Jianming Tong

+1 470-357-8082 | jianming.tong@gatech.edu | jianmingtong.github.io

RESEARCH INTEREST

I'm a Computer Architect, focusing on improving the efficiency of privacy-preserving Al systems via full-stack optimizations, including model/algorithm, system, compiler and hardware.

EDUCATION

Jan'21 - May'26	Georgia Institute of Technology, PhD in Computer Science	
	Advisor: Tushar Krishna, Thesis: Privacy-preserving ML Acceleration	
Jan'21 – May'24	Georgia Institute of Technology, MS in Computer Science	
	Advisor: Tushar Krishna, Thesis: Reconfigurable Dataflow Accelerator [ISCA'24]	
Sep'16 – May'20	Xi'an JiaoTong University, BE in Electrical Engineering	
	Advisor: Pengju Ren, Thesis: FPGA Accelerated High-Accuracy SLAM [FPT'21]	

PROFESSIONAL EXPERIENCE

Feb'25 – present				
	Focus on Authenticated ML Acceleration, host: Mengjia Yan			
Aug'24 – Apr'25	Student Researcher in Google, Cambridge, MA			
	Leveraging Google TPU for Homomorphic Encryption, host: Asra Ali, Jevin Jiang			
Sep'23 – Feb'25	•			
	Focus on Algorithmic, System and hardware acceleration for FHE, host: Arvind			
Jan'24 – May'1	Teaching Assistant in Massachusetts Institute of Technology, Cambridge, MA			
	Constructive Computer Architecture (6.192) – Instructor: <u>Arvind</u> , <u>Tushar Krishna</u>			
Jan'21 – present	t Graduate Research Assistant in Georgia Institute of Technology, Atlanta, GA			
	Software-System-Hardware Codesign for Edge ML (MLSys'23, IEEE MICRO'23)			
May'23 – Aug' 23	23 Engineer Intern in Rivos Inc. Mountain View, CA, Mentor: Gautham Chinya			
	Inter-chiplet performance modelling (NDA)			
Jan'23 – May'23	Teaching Assistant in Georgia Institute of Technology, Atlanta, GA			
	Processor Design (CS 3220) – Homework / Project Design			
Jun' 22 – Aug' 22	Research Intern in Pacific Northwest National Laboratory, Remote			
	A single-author end-to-end FPGA framework for Al inference (<u>Tutorial@ICS'22</u>)			
Jul'21 – Aug'21	Research Intern in DAMO Academy Alibaba Inc. China, Mentor: Jiansong Zhang			
	Designed and implemented FPGA accelerator for Homomorphic Encryption scalar/vector			
	multiplication and addition (open-sourced with paper DAC'23)			
Aug'20 – Jan'21	Visiting Ph.D. in Tsinghua University, Beijing, China, Mentor: Yu Wang			
	Designed multi-robot collaborative exploration alg. (co-first author paper <u>ICRA'21</u>)			
Sep'18 – Jul'20	Undergraduate Research Assistant in Xi'an JiaoTong University, Xi'an, China			
	Lead NoC book translation and robotic HW acceleration (open-sourced paper FPT'21)			

SELECTED AWARDS AND HONORS [Full list]

Jun'25	2 nd place University DEMO @Design Automation Conference (DAC'25)
Jun'24	ML and System Rising Star @ MLCommon
Apr'24	DAC Young Fellow @ Design Automation Conference (DAC'24)
Sep'23	Best Poster Award – SUSHI @ Industry-Academia Partner Workshop (IAP'23) The top voted poster among over 20+ candidates by industry partners.
Jul'23	Qualcomm Innovation Fellowship – Latency/Accuracy Navigation in Edge ML 18 winners out of 182 submissions (three rounds, nationwide)
Oct'22	Qualcomm Innovation Fellowship Finalist – ML Accel. Side-channel Attack

PUBLICATIONS (* EQUAL CONTRIBUTION) -- CONFERENCE

In Submission

Enabling Multi-scalar Multiplication over AI ASICs for ZKP

+Deployed in Google Cloud (TPU series)

Jianming Tong, Jingtian Dang, Simon Langowski, Tianhao Huang, Asra Ali, Jeremy Kun, Jevin Jiang, Srini Devadas, Tushar Krishna.

Code

In Submission

Leveraging ASIC AI Chips for Homomorphic Encryption

+Deployed in Google Cloud (TPU series) +2nd place University DEMO@DAC'25

Jianming Tong, Tianhao Huang, Leo De Castro, Anirudh Itagi, Jingtian Dang, Anupam Golder, Asra Ali, Jevin Jiang, Arvind, G. Edward Suh, Tushar Krishna. Preprinted, Jan 2025 [Code]

In Submission

Privatar: Enabling Privacy-preserving Real-time Multi-user VR through Secure

Outsourcing

Jianming Tong, Hanshen Xiao, Hao Kang, Krishnakumar Nair, Ashish Sirasao, G. Edward Suh, Tushar Krishna.

[Code]

ISPASS 2025

SCALE-Sim v3: A Modular Cycle-Accurate Systolic Accelerator Simulator for End-to-End System Analysis

Ritik Raj, Sarbartha Banerjee*, Nikhil Srinivas*, Zishen Wan*, **Jianming Tong***, Ananda Samajdar, Tushar Krishna.

[Code]

ISPASS 2025

Constrained Dataflow Accelerator for Real-Time Multi-Task Multi-Model Machine Learning Workloads

Jamin Seo, **Jianming Tong**, Hyoukjun Kown, Tushar Krishna and Saibal Mukhopadhyay.

ISCA 2024

FEATHER: A Reconfigurable Accel. with Data Reordering Support for Low-Cost On-Chip Dataflow Switching

+LayoutLoop Integrated into NVLabs/timeloop

Jianming Tong, Anirudh Itagi, Prasanth Chatarasi, Tushar Krishna International Symposium on Computer Architecture, Jun 2024 [Code][Talk]

MLSys 2024

SmartPAF: Accurate Low-degree Polynomial Approximation of non-Polynomial

Operators for Fast Private Inference in Homomorphic Encryption **Jianming Tong***, Jingtian Dang*, Anupam Golder, Tushar Krishna.

In Proc of Seventh Conference on Machine Learning and Systems, Jun 2024 [Code]

MLSys 2023

SUSHI: SUbgraph Stationary Hardware-software Inference Co-design

+Qualcomm Innovation Fellowship

Payman Behnam*, **Jianming Tong***, Alind, Yangyu, Yue, Pranav, Abhimanyu, Tushar, Alexey Tumanov

+Best Poster Award

In Proc of Sixth Conference on Machine Learning and Systems, Jun 2023

IEEE Micro 2023

Hardware-Software Co-design for Real-time Latency-Accuracy Navigation in TinyML Payman Behnam*, **Jianming Tong***, Alind, Yangyu, Yue, Pranav, Abhimanyu, Tushar, Alexey Tumanov.

IEEE Micro, Sep 2023

TRadar 2024

Real-time Digital RF Emulation – II: A Near Memory Custom Accelerator Xiangyu Mao, Mandovi Mukherjee, Nael Mizanur Rahman, Coleman B DeLude, Joseph W. Driscoll, Sudarshan Sharma, Payman Behnam, Uday Kamal, Jongseok Woo, Daehyun Kim, Sharjeel M. Khan, **Jianming Tong**, Jamin Seo, Prachi Sinha, Madhavan Swaminathan, Tushar Krishna, Santosh Pande, Justin Romberg, and Saibal Mukhopadhyay.

IEEE Transactions on Radar Systems, Sep 2024.

TVLSI 2023

On Continuing DNN Accelerator Arch. Scaling Using Tightly-coupled Compute-on-Memory 3D ICs

Gauthaman Murali, Aditya Iyer, Lingjun Zhu, **Jianming Tong**, Francisco Munoz Martinez, Srivatsa Rangachar Srinivasa, Tanay Karnik, Tushar Krishna,Sung Kyu Lim IEEE Transactions on Very Large Scale Integration Systems, Jul 2023

RadarConf 2023 A High-Performance Computing Architecture for Real-Time Digital Emulation of RF Interactions

Mandovi Mukherjee*, Nael Mizanur Rahman*, Coleman B. DeLude*, Joseph W. Driscoll*, Uday Kamal, Jongseok Woo, Jamin Seo, Sudarshan Sharma, Xiangyu Mao, Payman Behnam, Sharjeel M. Khan, Daehyun Kim, **Jianming Tong**, Prachi Sinha, Santosh Pande, Tushar Krishna, Justin Romberg, Madhavan Swaminathan, and Saibal Mukhopadhyay.

In Proc of IEEE Radar Conference, May 2023

SENSORS 2023 SNATCH: Stealing Neural Network Architecture from ML Accelerator in Intelligent Sensors

Sudarshan Sharma, Uday Kamal, **Jianming Tong**, Tushar Krishna, and Saibal Mukhopadhyay.

IEEE SENSORS conference, Aug 2023.

IMS 2023 FPGA-based High-Perf. Real-Time Emulation of Radar System using Direct Path Compute Model

Xiangyu Mao*, Mandovi Mukherjee*, Nael M. Rahman*, Uday Kamal, Sudarshan Sharma, Payman Behnam, **Jianming Tong**, Jongseok Woo, Coleman B DeLude, Joseph W. Driscoll, Jamin Seo, Santosh Pande, Tushar Krishna, Justin Romberg, Madhavan Swaminathan, and Saibal Mukhopadhyay.

In Proc of IEEE MTT-S International Microwave Symposium, Jun 2023

IMS 2021 A Configurable Arch. for Efficient Sparse FIR Computation in Real-time Radio Frequency Systems

Jamin Seo, Nael Mizanur Rahman, Mandovi Mukherjee, Coleman DeLude, **Jianming Tong**, Justin Romberg, Tushar Krishna, and Saibal Mukhopadhyay.

IEEE Microwave and Wireless Technology Letters, Sep 2022

TOC 2021 PIT: Processing-In-Transmission with Fine-Grained Data Manipulation Networks Tian Xia, Pengchen Zong, Haoran Zhao, **Jianming Tong**, Wenzhe Zhao, Nanning Zheng and Pengju Ren.

IEEE Transactions on Computers, Jul 2021

FPT 2021 ac2SLAM: FPGA Accelerated High-Accuracy SLAM with Heapsort and Parallel Keypoint Extractor

Cheng Wang, Yinkun Liu, Kedai Zuo, **Jianming Tong**, Yan Ding, and Pengju Ren. International Conference on Field-Programmable Technology, Jul 2021 [Code]

ICRA 2021 SMMR-Explore: SubMap-based Multi-Robot Exploration System with Multi-robot Multi-target Potential Field Exploration Method

Jincheng Yu*, **Jianming Tong***, Yuanfan Xu, Zhilin Xu, Haolin Dong, Tianxiang Yang and Yu Wang.

IEEE International Conference on Robotics and Automation, Jan 2022 [Code][Demo]

GLSVLSI 2020 Content-Oriented Configurable Architecture based on Highly Adaptive Data Transmission Networks

Tian Xia, Pengchen Zong, Haoran Zhao, **Jianming Tong**, Wenzhe Zhao, Nanning Zheng and Pengju Ren.

The 30th edition of the ACM Great Lakes Symposium on VLSI, Mar 2020

ACS-DNN 2022 FastSwitch: Enabling Real-time DNN Switching via Weight-Sharing

Jianming Tong, Yangyu Chen, Yue Pan, Abhimanyu Bambhaniya, Alind Khare, Taekyung Heo, Alexey Tumanov, and Tushar Krishna

The 2nd Architecture, Compiler, and System Support for Multi-model DNN Workloads Workshop @ ISCA

PUBLICATIONS (* EQUAL CONTRIBUTION) -- BOOK

On Chip Networks, Second Edition [Translated Book in Mandarin]

Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh

Translator: Pengju Ren, Tian Xia, **Jianming Tong**, Pengcheng Zong, Haoran Zhao.

Publishing House of Electronics Industry, Jan 2021 [Link][OriginalVersion]

SELECTED TALKS

Leveraging ASIC AI chips for Homomorphic Encryption

Google Host: Jeremy Kun (May'24)

IBM Host: Manoj Kumar, Pradip Bose (Aug'24)

NYU Host: <u>Brandon Reagon</u> (Nov'24) UMich Host: <u>Todd Austin</u> (May'25)

Enabling Reconfigurable (Dataflow, Layout) CoSwitching in Al Accelerator

MIT Host: Vivienne Sze (Jun'24)

NVIDIA Host: <u>Angshuman Parashar</u> (Jul'24) GaTech Host: <u>Alexandros Daglis</u> (Aug'24)

Enabling Real-time Accuracy Latency Navigation in Multi-Query Al Inference

HAN Lab @ MIT Host: <u>Hanrui Wang</u>, <u>Song Han</u> (Oct'23)

EIC Lab@GaTech Host: Celine Lin (Jul'23)

A Sparse and Irregular GEMM Accelerator with Flexible Interconnects

Tsinghua Host: Shulin Zeng (Nov'22)

SELECTED PROJECTS

PROVE -- Leveraging ASIC AI chips for Zero-Know Proof (ZKP)

Dec'24 - now

- Proposed Lazy Reduction, achieving up to an 18.5x speedup over high-precision Barrett Reduction.
- Proposed systematical memory intrinsics to explicitly explore dataflow factoring memory overhead.
- Deployed in Google cloud, achieving 111× end-to-end Multi-scalar Multiplication speedup over CPUs, enabling immediate Zero-knowledge Proof acceleration on commodity AI accelerators like TPUs [link].

CROSS -- Leveraging ASIC AI chips for Homomorphic Encryption (HE)

Jan'23 – now

- Proposed Basis Aligned Transformation to convert high-precision multiplication as low-precision MatMul.
- Proposed Layout Invariant 3-step Number Theory Transformation to convert NTT as Matrix Multiplication.
- CROSS achieves immediate privacy-preserving ML via TPUs (126x, 5x faster than CPU, GPU-A100).
- Integrated into Google privacy-preserving library and deployed in Google jaxite [link].

Enabling Privacy-preserving Real-time Multi-User VR Through Secure Outsourcing Jul'23 – Jan'25

- Proposed **Horizontal Partitioning (HP)** to split multi-user VR flow into local-cloud for offloading less private data to untrusted cloud with noisy perturbation privacy protection for supporting more users.
- Developed, **Privatar**, the first framework leverages both local and untrusted cloud to concurrently achieve privacy-preserving multi-user VR, with **1.5**×~**2.27**× higher accuracy and **3.75**× more users support than the SotA completely model outsourcing. Such benefits only come at a negligible **9**% energy consumption.
- Applied PAC Privacy to multi-user VR, reducing noise intensity by up to 158x compared to state-of-the-art differential privacy, achieving stronger privacy with minimal accuracy loss.

Approximating Non-linear Layers in ML Models for Homomorphic Encryption

Dec'22 - Jan'24

- Aim at reducing polynomial approximation degree of non-linear ML layers while preserving accuracy.
- Proposed, SmartPAF, the first training framework to replace non-linear operators with low-degree
 Polynomial Approximation Function and recover accuracy via ML fine-tuning, achieving 7.81x speedup.
- Published MLSys'24 with open-sourced code, WIP to be integrated in Google HEIR compiler.

End-to-end Reconfigurable Flexible Machine Learning Accelerator (FEATHER, ISCA'24) Jan'21 – Jan'24

- Spotted layout switching as a performance-critical but often ignored issue in reconfigurable accelerators. A discordant layout slows down the theoretical performance of dataflow by up-to **120**×.
- Proposed FEATHER, the first architecture enabling (dataflow, layout) coswitching via novel NoC, BIRRD.
- Proposed **functional arbitrary reordering** to enable arbitrary layout switching and **implementational reordering in reduction** to hide layout reordering latency behind critical path.
- **Deployed on real FPGA**, achieving **2.65~4.56×** end-to-end throughput/PE improvement over SotAs.
- Published ISCA'24 with open-sourced code, layout modeling deployed in NVIDIA Timeloop library.

Enable Real-time Latency/Accuracy Navigation in Edge Applications

Mar'21 - Oct'22

- Worked on scheduling and hardware of multi-query inference system to improve performance.
- Proposed SubGraph Stationary to reuse shared weights of weight-shared networks across queries.
- Designed **SUSHI**, a multi-query inference serving system enabling SubGraph Stationary with novel hardware (SushiAccel) and software (SushiSched), improving **latency / accuracy** by **25% / 0.98%**.
- Published MLSys'23, IEEE Micro'23, wins Qualcomm Innovation Fellowship, Best Poster Award@IAP'23.

Scalable Arbitrary Unicasting and Multicasting On-chip Network

Jan'21 - May'22

- Designed a scalable multi-stage on-chip network for **arbitrary multicasting** across hundred or **thousand nodes**, **achieving** O(NlogN) **scalability** with the number of nodes N, better than $O(N^2)$ of crossbar.
- **Taped out** a realistic test chip for with 16 nodes under TSMC 28nm, verified on a real FPGA prototype.
- Published <u>TRadar'24</u>, <u>IMS'23</u>, <u>IMS'21</u>, <u>RadarConf'23</u>.

SKILLS

Programming	(System) Verilog, Xilinx HLS, C/C++, Python, OpenCL, LLVM, MLIR, Clang
Tools	Xilinx Vivado, Vitis HLS (AI), Cadence, Synapse

SERVICES

Reviewers ICRA'24, IROS'24, MLSys'25, CAL'25
AEC ASPLOS'23, ASPLOS'24, ISCA'24

Steering Team Computer Architecture Student Association (CASA)

MEDIA COVERAGE

Semiconduct	My paper "Leveraging ASIC AI Chips for Homomorphic Encryption" is added into		
Engineering	Semiconductor Engineering's library for its potential impact to boarder industry.		
ACE News	Jianming Tong: Spotlight from DARPA SRC JUMP2.0 Program ACE center (Aug'24)		
GaTech News	Jianming Tong: Ph.D. Students Named Rising Stars in Machine Learning (Jul'24)		
GaTech News	Jianming Tong: Ph.D. Students Won Qualcomm Innovation Fellowship (Jul'23)		
GaTech News	Jianming Tong won 2 nd -place in SCS Poster Competition (Apr'23)		

MENTORSHIP

	Name	First employment
MS MIT 2025	Nathan Xiong	MIT Master now
MS MIT 2025	Jan Strzeszynski	MIT Master now
MS GT 2025	Yujie Li	GaTech ECE Master now.
MS GT 2024	Anirudh Itagi	Microsoft Azure Al Infrastructure
MS GT 2023	Yangyu Chen	Apple ASIC Verification Designer
UG GT 2022	Yue Pan	UCSD Ph.D.
UG GT 2022	Yuqi He	Apple ASIC Designer
UG GT 2022	Jingtian Dang	CMU ECE Master -> Now Ph.D. at GaTech
UG XJTU 2021	Yingkun Liu	SJTU Ph.D.
UG XJTU 2021	Kedai Zuo	UCSD Master
UG XJTU 2021	Cheng Wang	Tsinghua-XJTU Ph.D.