Mecánica Cuántica. Tarea 6

Grupo CO11 Trimestre 21-I Profesor: Miguel Angel Bastarrachea Magnani Ayudante: Yoshua Chávez Bolaños, Fecha: Miércoles 5 de mayo de 2021. Fecha de entrega: Miércoles 12 de mayo de 2021.

1. Considera una matriz 2×2 definida por

$$U = \frac{a_0 + i\boldsymbol{\sigma} \cdot \mathbf{a}}{a_0 - i\boldsymbol{\sigma} \cdot \mathbf{a}}$$

donde a_0 es un número real y a es un vector tridimensional con componentes reales.

- (a) Demuestra que U es unitario y unimodular ($\det U = \pm 1$).
- (b) En general, una matriz unimodular unitaria 2×2 representa una rotación en 3 dimensiones. Encuentra el eje y el ángulo de rotación apropiado para U en términos de a_0 , a_1 , a_2 y a_3 .
- 2. Considera una partícula de espín 1. Evalua los elementos de la matriz

$$S_z(S_z + \hbar)(S_z - \hbar),$$
 $S_x(S_x + \hbar)(S_x - \hbar)$

Hint: ahora el operador \hat{S}_z posee tres estados eigenestados $|+\rangle$, $|-\rangle$ y $|0\rangle$.

3. Considera una secuencia de rotaciones de Euler representadas por

$$A = e^{\frac{-\mathrm{i}\sigma_3\alpha}{2}}e^{\frac{-\mathrm{i}\sigma_2\beta}{2}}e^{\frac{-\mathrm{i}\sigma_3\gamma}{2}} = \begin{pmatrix} e^{-\mathrm{i}(\alpha+\gamma)/2}\cos\frac{\beta}{2} & -e^{-\mathrm{i}(\alpha-\gamma)/2}\sin\frac{\beta}{2} \\ e^{\mathrm{i}(\alpha-\gamma)/2}\sin\frac{\beta}{2} & e^{\mathrm{i}(\alpha+\gamma)/2}\cos\frac{\beta}{2} \end{pmatrix}$$

Debido al grupo de propiedades de rotación, esperamos que esta secuencia de operaciones sea equivalente a una única rotación alrededor de uno de los ejes por un ángulo θ . Encuentra θ .

- 4. Un eigenestado de momento angular $|j,m=m_{max}=j\rangle$ se rota un ángulo infinitesimal ϵ alrededor del eje y. Sin usar la forma explícita de la función $d_{m'm}^{(j)}$, obten una expresión para la probabilidad de que el nuevo estado rotado se encuentre en el estado original hasta términos de orden ϵ^2 .
- 5. Prueba que
 - (a) Si el momento angular cumple que $\vec{L} = \vec{r} \times \vec{p}$ entonces

$$[\hat{\pi}, \vec{L}] = 0$$

donde $\hat{\pi}$ es el operador de paridad.

(b) Si $[J_i, J_j] = i\hbar \epsilon_{ijk} J_k$ se quiere preservar, entonces $\Theta \vec{L} \Theta^{-1} = -\vec{L}$, donde Θ es el operador de inversión temporal.