

ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES

Estrutura interna de computadores

Prof^a. Fabiana F F Peres

Apoio: Camile Bordini

Composição Básica de um Computador

1. Processador

2. Memória

- Memória principal
- Memória secundária

3. Dispositivos de entrada e saída

Composição Básica de um Computador

1. CPU

1. CPU - Principais Componentes

1.1. Unidade de Controle (UC)

1.2. Unidade Lógica e Aritmética (ULA)

1.3. Registradores

1.4. Barramentos

1. CPU - Principais Componentes

Unidade central de processamento (CPU) Unidade de controle Unidade lógica e aritmética (ALU) Dispositivos de E/S Registradores Memoria Disco Impressora principal Barramento

1.1. Unidade de Controle

- Responsável por...
 - Buscar instruções da memória principal
 - Interpretar (decodificar) instruções
 - Controlar a execução de instruções
 - Controlar os demais componentes do computador, como memória e dispositivos de entrada e saída

1.1. Unidade de Controle

- Exemplo de controle de execução instrução de soma
 - Unidade de Controle ordena que a ALU carregue dois operandos;
 - Unidade de Controle determina que ALU some os dois operandos e armazene o resultado em algum registrador;

1.2. Unidade Lógica e Aritmética Arithmetic-logic Unit (ALU)

- Realiza as operações necessárias a execução das instruções;
- Aglomerado de circuitos lógicos e componentes eletrônicos simples que, integrados, realizam...
 - Operações aritméticas (soma, subtração, ...)
 - Operações lógicas (AND, OR, XOR...).

Obs: processadores modernos utilizam mais de uma ALU

1.3. Registradores

- Memória rápida e pequena
- Usados para...
 - Armazenamento de dados temporários que serão usados pela ALU e de resultados gerados por ela;
 - Armazenamento de instruções;
 - Registro de informações de controle, como o número da próxima instrução a ser executada;

1.3. Registradores

Podem ser de uso geral ou específico

- Exemplos de registradores de uso específico:
 - Program Counter (PC): armazena o endereço de memória da próxima instrução
 - Registrador de Instruções (IR): armazena a instrução que está sendo executada

1.3. Registradores

 Em geral, os registradores têm uma largura (número de bits que podem armazenar) igual ao tamanho estabelecido pelo fabricante para a palavra (word);

 A quantidade e o emprego dos registradores variam bastante de modelo para modelo de CPU.

Registradores

+

ULA

+

Barramentos

Caminho de dados (estrutura por onde os dados fluem)

2. Memória Principal

Memória Principal - Bits

 Parte do computador onde <u>programas</u> e <u>dados</u> são armazenados

Unidade básica: dígito binário (bit)

- Base de representação: Binária
 - Por que não é utilizado base decimal?

Memória Principal - Bits

 Um Sistema de armazenamento digital é baseado na distinção entre valores de alguma grandeza física (ex: corrente, tensão)

- Assim, quantos mais valores houver para serem diferenciados:
 - Menor a separação entre eles
 - Menos confiável

Portanto, aritmética binária: mais "eficiente"

Memória Principal - Bits

- Exemplo de utilização de <u>aritmética decimal</u>
 - Mainframes IBM
 - Cada dígito decimal é armazenado segundo um código de 4 bits: BCD (Binary Coded Decimal)
 - 2⁴ combinações diferentes (apenas de 0 à 9 usadas)

1 9 4 4

Ex: 1944
- BCD: 0001 1010 0100 0100

(em 16 bits)

binário puro: 0000011110011000

 Para o exemplo anterior (em 16 bits), qual a faixa de representação numérica em cada caso?

 Mas, caso existisse um dispositivo eletrônico capaz de armazenar diretamente os dígitos de 0 à 9, com 4 desses dispositivos, qual a faixa de representação numérica em cada caso?

- Para o exemplo anterior (em 16 bits), qual a faixa de representação numérica em cada caso?
 - BCD: 0 à 9.999
 - binário puro: 0 à 65.535

- Mas, caso existisse um dispositivo eletrônico capaz de armazenar diretamente os dígitos de 0 à 9, com 4 desses dispositivos, qual a faixa de representação numérica em cada caso?
 - BCD: 0 à 9.999
 - binário puro: 0 à 15

Endereços de Memória

- É formada por um conjunto de células ou posições
 - Cada célula possui um endereço e pode guardar uma informação
 - Uma célula é a menor unidade endereçável em uma memória
 - Por meio do endereço os programas podem referenciar a célula

Endereços de Memória

- Em uma memória com n células
 - Endereços vão de 0 à n-1
- Todas as células da memória: com um mesmo número de bits
 - Com k bits: 2^k
 combinações possíveis
 - Tamanho comum: k=8bits (1 byte)

Computer	Bits/cell
Burroughs B1700	1
IBM PC	8
DEC PDP-8	12
IBM 1130	16
DEC PDP-15	18
XDS 940	24
Electrologica X8	27
XDS Sigma 9	32
Honeywell 6180	36
CDC 3600	48
CDC Cyber	60

 3 formas de se organizar uma memória de 96 bits

Endereços de Memória

 Endereços das célula: também expresso em binário

- Quantos bits são necessários para expressar todos os endereços ao lado?
 - Ex: endereços com m bits máximo de 2^m células endereçáveis

Endereços de Memória

 Os bytes são agrupados em palavras (words)

A maioria das instruções de uma máquina opera sobre **palavras**.

- Um computador com:
 - palavra de 32 bits possui 4 bytes/palavra
 - palavra de 64 bits possui 8 bytes/palavra

Memória - Ordenação dos Bytes

- Existem, basicamente, 2 formas de organização dos bytes em uma palavra de memória:
 - A. Ordenação Big endian (maior valor em primeiro lugar menor endereço)
 - B. Ordenação Little endian (menor valor em primeiro lugar)

Memória - Origem dos termos relacionados com a ordem dos bytes

Estes termos foram inseridos no jargão da computação por um artigo publicado em 1981, citando o problema e relacionando-o a um episódio mencionado no livro **As Viagens de Gullive**r – povo que foi à guerra para decidir qual a melhor maneira de quebrar ovos, se pelo maior (big) lado ou se pelo menor (little) lado.

- Big endian: Bytes são numerados da esquerda para a direita (0, 1, 2,..., n-1)
 - Ex: arquiteturas SPARC, IBM Mainframe, ...
- Little endian: Bytes são numerados da direita para esquerda (n-1, ..., 2, 1, 0)
 - Ex: arquiteturas INTEL

Exemplo - Ordem dos Bytes

- Considere o seguinte registro:
 - Nome do empregado: Jim Smith
 - Idade do empregado: 21 anos
 - Departamento do empregado: 260 (1 -00000100)

 Como será a representação das informações em cada forma de organização?

Exemplo - Ordem dos Bytes

Ambas as representações funcionam bem!

Problemas

- Os problemas começam quando uma máquina tenta enviar registros à outra por meio de uma rede!
- Ex: byte 0 (Big) -> byte 0 (Little) etc..... (c)

Nome: ok

Idade: 21 x 2²⁴

Problemas

 Uma solução óbvia seria um software inverter todos os bytes da palavra após a cópia (d)

Porém, o problema inverte-se!

Nome: _MIJ....

Idade: ok

Problemas

Não existe uma solução simples para este problema!

- Se incluirmos um cabeçalho junto a cada item de dados indicando o tipo (caractere, número inteiro, etc.) e o tamanho do dado
 - Funciona, mas ineficiente

Endiannes em microcontroladores:

https://embarcados.com.br/endiannes-em-microcontroladores/

Referências Bibliograficas

Tanenbaum, A S "Organização Estruturada de Computadores" – Prentice Hall do Brasil 5^a edição, 2006; capitulo 2(Tanenbaum): $2.1 \rightarrow 2.1.1$, 2.1.2 (pg 29.); $2.2 \rightarrow 2.2.1$, 2.2.2, 2.2.3 e 2.2.4

Stallings, William; "Computer Organization and Architecture – Designing for Performance". 8° ed. Prentice Hall, Inc., New Jersey, 2010; appendix 10: pg 396 (ordem dos bytes).