Algorytm Turbo BM

Adrian Siwiec
June 19, 2020

Opis Algorytmu.

Algorytm Turbo_BM jest modyfikacją algorytmu Boyera-Moore'a, która zużywa tylko stałą dodatkową pamięć oraz przyspiesza złożoność pesymistyczną do 2n. Nie będziemy wykonywać żadnego dodatkowego preprocessingu – tak jak w oryginalnym algorytmie korzystać będziemy z tablicy BM obliczonej dla wzorca.

Sam pomysł algorytmu Turbo_BM jest bardzo prosty – podczas skanowania będziemy zapisywać jedno podsłowo wzorca, o którym wiemy że pasuje do tekstu na obecnej pozycji. Dzięki temu możemy pominąć ten fragment przy sprawdzaniu dopasowania, oraz w przypadku jego braku możemy wykonać tzw. *Turbo-shift*.

Opiszmy sytuację, w której możemy wykonać Turbo-shift. Niech x będzie najdłuższym suffixem wzorca, który pasuje do tekstu na danej pozycji, a będzie pierwszą literą wzorca która nie pasuje, a niech y (memory) będzie poprzednio zapamiętanym podsłowem, które również pasuje do wzorca (patrz fig. 1). Załóżmy również, że x i y są rozłączne i y jest dłuższy od x. Po wykonaniu Turbo-shift zapominamy o y (patrz kod boyer_moore_turbo), więc w poprzednim kroku wykonaliśmy zwykłe przesunięcie (zgodnie z tablicą BM), znane z algorytmu Boyera-Moore'a. W tej sytuacji ax jest suffixem y, oraz litery a i b tekstu są o siebie oddalone o |y|. Ale suffix $y \dots x$ ma okres długości |y| (z definicji BM). Możemy więc przesunąć wzorzec o |y| - |x| do przodu i to właśnie przesunięcie nazywać będziemy Turbo-shift.

Figure 1: Turbo-shift

Analiza złożoności.

Analiza złożoności algorytmu Turbo_BM jest dużo prostsza niż analiza algorytmu Boyera Moore'a bez żadnych modyfikacji.

Twierdzenie. Algorytm Turbo BM wykonuje co najwyżej 2n porównań.

Proof. Podzielimy wyszukiwanie wzorca na etapy, każdy etap będzie się składał z dwóch operacji: skanowania i przesuwania wzorca. Podczas etapu k niech Suf_k oznacza suffix wzorca, który pasuje do tekstu, a $shift_k$ niech oznacza długość o którą przesuniemy wzorzec podczas etapu k.

Przsunięcie na etapie k nazwiemy krótkim, gdy $2*shift_k < |Suf_k| + 1$. Wyróżnimy 3 typy etapów:

- (1) Etap, po którym następuje przeskok przy skanowaniu dzięki memory.
- (2) (1) nie zachodzi i wykonujemy długie przesunięcie.
- (3) (1) nie zachodzi i wykonujemy krótkie przesunięcie.

Zastosujemy analizę kosztu zamortyzowanego. Zdefiniujmy $cost_k$: dla etapu typu (1) $cost_k = 1$ – będzie to tylko koszt porównania litery, która się nie zgadza. Resztę kosztu przenosimy na pozostałe typy etapów. Dla etapów (2) i (3) $cost_k = |Suf_k| + 1$. Wystarczy nam pokazać, że $\sum cost < 2*\sum shift$. To nam wystarczy, bo $\sum shift \leq |t|$.

Dla etapu k typu (1) $cost_k=1$ jest trywialnie mniejszy od $2*shift_k$. Dla etapu k typu (2) $cost_k=|Suf_k|+1\leq 2*shift_k$ z definicji długiego przesunięcia.

Wystarczy rozważyć etapy typu (3). Jedyna możliwość wykonania krótkiego przesunięcia zachodzi, gdy nie wykonujemy Turbo-shiftu. Ustawiamy wtedy zmienną memory, co prowadzi do potencjalnego Turbo-shiftu na etapie k+1. Rozważmy dwa przypadki etapu (3):

- (a) $|Suf_k| + shift_k \le |pat|$. Wtedy z definicji Turbo-shifta mamy: $|Suf_k| |Suf_{k+1}| \le shift_{k+1}$, a więc: $cost_k = |Suf_k| + 1 \le |Suf_{k+1}| + shift_{k+1} + 1 \le shift_k + shift_{k+1}$.
- (b) $|Suf_k| + shift_k > |pat|$. Wtedy mamy: $|Suf_{k+1}| + shift_k + shift_{k+1} \ge |pat|$, oraz:

$$cost_k \le |pat| \le 2 * shift_k - 1 + shift_{k+1}.$$

Możemy założyć, że na etapie k+1 zachodzi przypadek (b), bo daje on gorsze ograniczenie na $cost_k$. Jeśli etap k+1 jest typu (1), mamy: $cost_k + cost_{k+1} \leq 2 * shift_k + shift_{k+1}$. Gdy na etapie k+1 zachodzi nierówność $|Suf_{k+1}| \leq shift_{k+1}$ wtedy mamy: $cost_k + cost_{k+1} \leq 2 * shift_k + 2 * shift_{k+1}$.

Wystarczy rozważyć sytuację, gdy na etapie k+1 mamy $|Suf_{k+1}| > shift_{k+1}$. To oznacza, że na etapie k+1 wykonujemy standardowe przesunięcie (a nie Turbo-shift). Wtedy aplikujemy indukcyjnie nasze powyższe rozumowanie do etapu k+1, a ponieważ wtedy może zajść tylko przypadek (a) otrzymujemy: $cost_{k+1} \leq shift_{k+1} + shift_{k+2}$, a więc: $cost_k + cost_{k+1} \leq 2 * shift_k + 2 * shift_{k+1} + shift_{k+2}$.

Musimy jeszcze tylko domknąć indukcję: jeśli na wszystkich etapach i od k do k+j mamy $|Suf_i| > shift_i$, wtedy: $cost_k + \ldots + cost_{k+j} \le 2 * shift_k + \ldots + 2 * shift_{k+j} + shift_{k+j+1}$.

Niech k' będzie pierwszym etapem po etapie k na którym $|Suf_{k'}| \le shift_{k'}$. Wtedy otrzymujemy $cost_k + \ldots + cost_{k'} \le 2*shift_k + \ldots + 2*shift_{k'}$ co kończy dowód.