Formelsammlung HMAT

Mario Felder

21. Juni 2015

Inhaltsverzeichnis

1	Ma	trizen Repetition 5
	1.1	Grundbegriffe
		1.1.1 Spezielle Matrizen
	1.2	Grundoperationen
	1.3	Die Inverse Matrix
2	Line	eare Algebra
	2.1	Vektorraum
	2.2	Lineare Unabhängigkeit, Basis und Dimension 10
		2.2.1 Linearkombination von Vektoren:
		2.2.2 Lineare Unabhängigkeit 10
		2.2.3 Basis, Dimension und Koordinaten 10
		2.2.4 Untervektorraum
	2.3	Lineare Abbildung zwischen Vektorräumen
		2.3.1 Matrix einer linearen Abbildung
		2.3.2 Kern und Bild
		2.3.3 Lineare Gleichungssysteme als lineare Abbildun-
		gen
	2.4	Eigenwertprobleme
		2.4.1 Definition
		2.4.2 Berechnung der Eigenvektoren und Eigenwerte . 14
		2 4 3 Sätze zu Eigenwerten / -vektoren 14

Kapitel 1

Matrizen Repetition

1.1 Grundbegriffe

 $m \times n$ -Matrix:

$$\mathbf{A} = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} : Matrixelement der Zeile i und der Spalte j

m: Anzahl Zeilen n: Anzahl Spalten

Transponierte Matrix \mathbf{A}^T von A:

$$(a_{ij})^T = a_{ji}$$

Für das Produkt der Transponierten gilt:

$$(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T$$

1.1.1 Spezielle Matrizen

• Nullmatrix: Alle Elemente der Matrix sind Null, $a_{ij} = 0 \ \forall i, j$

• Spaltenmatrix: Die Matrix enthält nur eine Spalte

$$\mathbf{A} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}$$

• Zeilenmatrix: Die Matrix enthält nur eine Zeile

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \end{pmatrix}$$

- Quadratische Matrix: Gleiche Anzahl an Zeilen und Spalten.
- Symmetrische Matrix: Quadratische Matrix, welche mit ihrer Transponierten übereinstimmen ($\mathbf{A} = \mathbf{A}^T$).

$$a_{ij} = a_{ji} \ \forall i, j$$

- Dreiecksmatrix: Alle Elemente die unter oder über der Hauptdiagonalen stehen sind Null.
- **Diagonalmatrix:** Alle Elemente ausserhalb der Hauptdiagonalen sind Null.

Spezialfall ist die Einheitsmatrix E

1.2 Grundoperationen

Addition und Subtraktion zweier Matrizen A und B:

$$\mathbf{C} = \mathbf{A} \pm \mathbf{B} \qquad \Leftrightarrow \qquad c_{ij} = a_{ij} \pm b_{ij}$$

Multiplikation mit einem Skalar:

$$\mathbf{B} = \lambda \cdot \mathbf{A} \qquad \Leftrightarrow \qquad b_{ij} = \lambda \cdot a_{ij}$$

Matrizenmultiplikation einer $m \times n$ -Matrix **A** und einer $n \times p$ -Matrix **B**:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \qquad \mathbf{C}_{m \times p}$$

1.3 Die Inverse Matrix

Definition:

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{E}$$

Die Inverse Matrix existiert (ist invertierbar, regulär), wenn:

$$\det \mathbf{A} \neq 0$$

Kapitel 2

Lineare Algebra

2.1 Vektorraum

Ein Vektorraum V besteht aus einer Menge von Vektoren und den zwei Operationen:

- 1. Vektoren können addiert/subtrahiert werden
- $2.\$ Vektoren können mit einem Skalar multipliziert werden

Die Ergebnisse aus den beiden Operationen müssen wieder im Vektorraum liegen.

Weitere Bedingungen:

- Es gibt einen Nullvektor $0 \in V$ mit v+0=v für alle Vektoren $v \in V$
- Zu jedem Vektor $v \in V$ gibt es einen inversen Vektor $-v \in V$ mit v-v=0

2.2 Lineare Unabhängigkeit, Basis und Dimension

2.2.1 Linearkombination von Vektoren:

$$v = \lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 + \ldots + \lambda_n \cdot v_n$$

$$v_1, v_2, \dots, v_n \in V$$

 $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$

2.2.2 Lineare Unabhängigkeit

n Vektoren sind linear unabhängig, wenn

$$\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 + \ldots + \lambda_n \cdot v_n = 0$$

nur mit

$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

erreicht ist.

n Vektoren in \mathbb{R}^m sind linear abhängig, falls n>m.

2.2.3 Basis, Dimension und Koordinaten

Die *Basis* eines Vektorraums ist die Menge vn Vektoren v_1, v_2, \ldots, v_n (*Basisvektoren*), die:

- 1. linear unabhängig sind
- 2. den gesamten Vektorraum durch Linearkombination erzeugen

Die Dimension des Vektorraums
$$\mathbb{R}^n$$
 (dim $V)$ ist n

Die Koordinaten sind die Koeffizienten λ_1 bis λ_n der Linearkombination der Basen, um den gewünschten Vektor zu erreichen.

Polynom vom Grad n hat die Basis:

$$\mathbb{P}: \{x^n, x^{n-1}\dots, x, 1\} \qquad \Rightarrow \dim \mathbb{P}_n = n+1$$

2.2.4 Untervektorraum

Definition: Ein Unterraum ist eine Teilmenge eines Vektorraums, die selbst einen Vektorraum bildet.

Satz: Ist V ein Vektorraum mit Dimension n, so gibt es für jedes $k \in \{0, 1, ..., n\}$ einen Unterraum der Dimension k.

2.3 Lineare Abbildung zwischen Vektorräumen

Eine Abbildung

$$f: V_1 \longrightarrow V_2$$

zwischen Vektorräumen V_1 und V_2 ist *linear*, falls

- 1. $f(\lambda \cdot v) = \lambda \cdot f(v)$ für jeden Vektor $v \in V_1$ und jeden Skalar $\lambda \in \mathbb{R}$
- 2. f(v+w) = f(v) + f(w) für alle Vektoren $v, w \in V_1$

Ist $f:V_1\longrightarrow V_2$ eine lineare Abbildung, so bleibt der Nullpunkt fest:

$$f(0) = 0$$

Achtung: Umkehrung gilt nicht. D.h. f(0) = 0 bedeutet nicht, dass f linear ist.

2.3.1 Matrix einer linearen Abbildung

Für die Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ mit den Basisvektoren e_1, e_2, \dots, e_n gibt es eine $(m \times n)$ -Matrix **A**, so dass

$$f(x) = \mathbf{A} \cdot x$$

Die Spalten der Matrix **A** sind die Bilder $v_i = f(e_i)$ der Einheitsvektoren.

Die Abbildung ist umkehrbar, wenn

$$\det(\mathbf{A}) \neq 0$$

Satz

Jeder linearen Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ kann auf eindeutige Weise eine $m \times n$ -Matrix **A** zugeordnet werden, wobei deren Spalten der Reihe nach die Bilder $f(e_1), f(e_2), \ldots, f(e_n)$ der Standardbasis des \mathbb{R}^n sind.

Ist umgekehrt eine $m \times n$ -Matrix mit Spalten $v_1, v_2, \dots, v_n \in \mathbb{R}^m$, so ist die zugehörige lineare Abbildung durch die Vorschrift gegeben:

$$f: \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \longmapsto \sum_{i=1}^n x_i \cdot v_i$$

2.3.2 Kern und Bild

Der Kern der Abbildung f besteht aus der Menge der Vektoren in V_1 die durch f auf den Nullvektor in V_2 abgebildet werden:

$$\ker(f) := \{ x \in V_1 | f(x) = 0 \}$$

Das Bild der Abbildung f ist die Menge der möglichen Bildvektoren in V_2 :

$$\operatorname{im}(f) := \{ y \in V_2 | \text{es gibt ein } x \in V_1 \text{ mit } f(x) = y \}$$

Kern und Bild von f sind Untervektorräume von V_1 resp. V_2 .

Dimensionssatz: Das Bild und der Kern einer linearen Abbildung $f:V_1\to V_2$ stehen über den Dimensionssatz in Beziehung:

$$\dim(V_1) = \dim(\ker(f)) + \dim(\operatorname{im}(f))$$

Umkehrbarkeit von linearen Abbildungen: Falls die Dimensionen der betrachteten Räume V_1 und V_2 einer linearen Abbildung $f:V_1 \to V_2$ identisch sind, können die folgenden äquivalenten Aussagen zur Umkehrbarkeit von f gemacht werden:

- i) Die Abbildung f ist umkehrbar
- ii) $\dim(\ker(f)) = 0$
- iii) $\dim(\operatorname{im}(f)) = \dim(V_2)$

2.3.3 Lineare Gleichungssysteme als lineare Abbildungen

Das Gleichungssystem mit n Gleichungen und n Unbekannten x_1, x_2, \ldots, x_n der Form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots = \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

kann in Matrizenform als

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

oder kurz

$$\mathbf{A} \cdot x = b$$

geschrieben werden.

Lösbarkeit linearer Gleichungssystemen

Fall 1: ist det $\mathbf{A} \neq 0$ so ist x eindeutig durch $\mathbf{A}^{-1} \cdot b$ gegeben.

Fall 2: ist $\det \mathbf{A} = 0$ so hat man entweder

- i) keine Lösung, falls $b \notin \text{bild} \mathbf{A}$
- ii) unendlich viele Lösungen, falls $b \in \mathsf{bild}\mathbf{A}$

2.4 Eigenwertprobleme

2.4.1 Definition

Gegeben sein ein quadratische Matrix **A**. finde einen Vektor $x \neq 0$ und einen Skalar λ , so dass

$$\mathbf{A} \cdot x = \lambda \cdot x$$

2.4.2 Berechnung der Eigenvektoren und Eigenwerte

$$(\mathbf{A} - \lambda \cdot \mathbf{E}) \cdot x = 0$$

Dabei muss gelten:

$$\det(\mathbf{A} - \lambda \cdot \mathbf{E}) = 0$$

Nach der Bestimmung der Eigenwerte $\lambda_1, \lambda_2, \dots, \lambda_n$ kann für jedes λ_i ein Vektor $x_i \neq 0$ mit

$$(\mathbf{A} - \lambda_i \cdot \mathbf{E}) \cdot x_i = 0$$

gefunden werden.

2.4.3 Sätze zu Eigenwerten / -vektoren

A sei eine $n \times n$ -Matrix.

- Satz 1: A kann höchstens n Eigenwerte haben.
- Satz 2: Die Determinante von A ist gleich dem Produkt all ihrer Eigenwerte.

$$\det A = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n$$

Ist ein Eigenwert = 0, so ist die Matrix singulär (nicht invertierbar).

- Satz 3: $\lim_{n\to\infty} \mathbf{A} = 0$ falls für alle Eigenwerte λ_i gilt $|\lambda_i| < 1$
- Satz 4: Bei einer Diagonalmatrix oder Dreiecksmatrix sind die Diagonaleinträge gerade die Eigenwerte der Matrix.