The BRIDGE

Isolation Forest

Introducción

$$egin{align} \hat{H} &= \sum_{n=1}^{N} rac{\hat{p}_{n}^{2}}{2m_{n}} + V(x_{1}, x_{2}, \cdots x_{N}) \ &= -rac{\hbar^{2}}{2} \sum_{n=1}^{N} rac{1}{m_{n}} rac{\partial^{2}}{\partial x_{n}^{2}} + V(x_{1}, x_{2}, \cdots x_{N}) \end{array}$$

Introducción

- Algoritmo de detección de anomalías
- Basado en árboles de decisión binarios
- Eficiente y rápido

- 1. Selecciona un atributo aleatoriamente
- 2. Elige un valor aleatorio entre el máximo y el mínimo
- 3. Repetimos hasta aislar todas las muestras

• El algoritmo crea múltiples árboles y calcula la media de las longitudes a cada punto

 \odot Por último, determina un score para cada punto x:

$$s(x,n) = 2^{-\frac{E[h(x)]}{c(n)}}$$

donde:

- \circ E[h(x)] es la media de las longitudes de los caminos a cada nodo en todos los árboles
- \circ c(n) es la longitud media de las búsquedas sin éxito en los árboles binarios de búsqueda:

$$c(n) = 2(\ln(n-1) + 0.577) - (\frac{2(n-1)}{n})$$

Inciso: Árboles binarios de búsqueda (BST)

- Tipo particular de árbol binario usado en informática que permite búsquedas eficientes
- Su estructura es equivalente a la de los árboles aislados

- Búsqueda sin éxito: por ejemplo, el elemento 5
- Matemáticamente, es posible determinar la longitud media de las búsquedas sin éxito en función del número de elementos

 \bullet Por último, determina un score para cada punto x:

$$s(x,n) = 2^{\frac{E[h(x)]}{c(n)}}$$

donde:

- \circ E[h(x)] es la media de las longitudes de los caminos a cada nodo
- \circ c(n) es la longitud media de las búsquedas sin éxito en los árboles binarios de búsqueda:

$$c(n) = 2(\ln(n-1) + 0.577) - (\frac{2(n-1)}{n})$$

- $s \rightarrow 1 \Rightarrow$ Anomalías
- $s \le 0.5 \Rightarrow Normal$

Ejemplo

Score:
$$s(x,3) = 2^{-\frac{E[h(x)]}{c(3)}}$$

Longitudes de los paths: $h(A) = 2$
 $h(C) = 1$

$$c(3) = 2(\ln(3-1) + 0.577) - \left(\frac{2(3-1)}{3}\right) = 1.2$$

$$s(A) = 2^{-2/1.2} = 0.31$$

 $s(B) = 2^{-2/1.2} = 0.31$
 $s(C) = 2^{-1/1.2} = 0.56$

Ejemplo (en Python)

"Anomalía": list(map(lambda x: 1*(x == -1), iso_predictions)),

display(sk_predictions.sort_values('Score',ascending=False).reset_index(drop=True))

$$s(A) = 2^{-2/1.2} = 0.31$$

 $s(B) = 2^{-2/1.2} = 0.31$
 $s(C) = 2^{-1/1.2} = 0.56$

	ld	Anomalía	Score
0	С	1	0.563219
1	Α	0	0.317216
2	В	0	0.317216

"Id": df.Id,

})

iso_predictions = x.predict(X)

iso score = x.score samples(X)

sk predictions = pd.DataFrame({

"Score": -iso_score

Submuestreo

- El algoritmo tiene dos parámetros: el número de árboles y el tamaño del submuestreo
- El submuestreo alivia los efectos del swamping (puntos anómalos próximos a los normales) y el masking (puntos anómalos muy concentrados)

Detector de amaños

AMAÑOS

La jueza lleva a juicio a los 37 jugadores del Levante-Zaragoza

Detector de amaños

- El algoritmo se utilizó en el caso del posible amaño del Levante-Zaragoza (2010-2011)
- Utilizando las siguientes variables:
 - Tiros a favor
 - Tiros en contra
 - Paradas portero propio
 - Paradas portero rival
 - Córners
 - Córners en contra

Partido	Anomalía	Score	Partido	Anomalía	Score
Levante vs Real Zaragoza	1	0.621102	Levante vs Real Zaragoza	1	0.660592
Levante vs Real Madrid	0	0.578562	Barcelona vs Real Zaragoza	0	0.650594
Levante vs Getafe	0	0.516863	Sevilla vs Real Zaragoza	0	0.551930
Levante vs Racing de Santander	0	0.509431	Villarreal vs Real Zaragoza	0	0.498179
Levante vs Sporting de Gijón	0	0.507827	Getafe vs Real Zaragoza	0	0.497299
Levante vs Málaga	0	0.495437	Osasuna vs Real Zaragoza	0	0.494502
Levante vs Almería	0	0.489195	Deportivo de La Coruña vs Real Zaragoza	0	0.489958
Levante vs Osasuna	0	0.487978	Almería vs Real Zaragoza	0	0.483145
Levante vs Deportivo de La Coruña	0	0.482814	Athletic Club vs Real Zaragoza	0	0.465174
Levante vs Mallorca	0	0.474890	Real Madrid vs Real Zaragoza	0	0.464799
Levante vs Atlético de Madrid	0	0.474801	Racing de Santander vs Real Zaragoza	0	0.461462
Levante vs Athletic Club	0	0.468627	Mallorca vs Real Zaragoza	0	0.456427
Levante vs Sevilla	0	0.461898	Real Sociedad vs Real Zaragoza	0	0.454862
Levante vs Barcelona	0	0.456357	Atlético de Madrid vs Real Zaragoza	0	0.448973
Levante vs Espanyol	0	0.456129	Hércules vs Real Zaragoza	0	0.443293
Levante vs Hércules	0	0.443379	Málaga vs Real Zaragoza	0	0.438020
Levante vs Valencia CF	0	0.440604	Sporting de Gijón vs Real Zaragoza	0	0.435795
Levante vs Villarreal	0	0.424657	Valencia CF vs Real Zaragoza	0	0.425035
Levante vs Real Sociedad	0	0.414185	Espanyol vs Real Zaragoza	0	0.414364