Programare declarativă

Clasa de tipuri Functor

Ioana Leuștean Traian Florin Șerbănută

Departamentul de Informatică, FMI, UNIBUC traian.serbanuta@unibuc.ro

8 decembrie 2017

Colecții generalizate

Tipuri parametrizate — "cutii" conținând obiecte

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemple

- Clasa de tipuri opțiune asociază unui tip a, tipul Maybe a
 - cutii goale: Nothing
 - cutii care țin un element x de tip a: Just x
- Clasa de tipuri listă asociază unui tip a, tipul [a]
 - cutii care țin 0, 1, sau mai multe elemente de tip a: [1, 2, 3], [], [5]

Tipuri parametrizate — "cutii"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemplu: tip de date pentru arbori binari

- Un arbore este o "cutie" care poate ține 0, 1, sau mai multe elemente de tip a:
 - Nod 3 Nil (Nod 4 (Nod 2 Nil Nil) Nil), Nil, Nod 3 Nil Nil

Tipuri parametrizate — "cutii

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemplu: tipul funcțiilor de sursă dată

- t -> a descrie o colecție (infintă) de obiecte de tip a indexate de obiecte de tip b; pentru orice intrare de tip t produce un rezultat de tip a
 - (++ "!") :: String -> String este colecția șirurilor terminate în "!", indexate de prefixele lor
 - length :: String -> Int este colecția numerelor naturale indexate de șiruri care au acea lungime
 - id :: String -> String este o colecția șirurilor de computație care produce sirul dat ca argument

Clase de tipuri pentru transformarea colecțiilor?

Analogie

- Colecțiile de mai sus, asemeni listelor conțin obiecte.
- Funcția **map** :: (a -> b) -> [a] -> [b]
 - modifică fiecare element al unei liste (şi tipul acestuia)
 - pe baza unei funcții date ca argument
 - fără a modifica structura listei
 - map :: (a -> b) -> ([a] -> [b])

Observatie

Ideea de transformare a elementelor unei colecții conform unei funcții poate fi generalizată la orice fel de colecție.

Întrebare

Cum transformăm o transformare a unui element într-o transformare a unei colectii?

Problemă

Formulare cu cutii

Dată fiind o funcție f :: a -> b și o cutie ca care conține elemente de tip a, vreau să să obțin o cutie cb care conține elemente de tip b obținute prin transformarea elementele din cutia ca folosind funcția f (și doar atât!)

Exemplu — liste

Dată fiind o funcție $f::a \rightarrow b$ și o listă la de elemente de tip a, vreau să să obțin o lista de elemente de tip b transformând fiecare element din la folosind funcția f (și doar atât!)

Definiție

class Functor m where

```
fmap :: (a -> b) -> m a -> m b
```

Dată fiind o funcție f :: a -> b, fmap f transformă colecții de tipul m a în colectii de tipul m b

- transformă fiecare element al colecției folosind f
- fără a afecta structura colectiei

Instanță pentru liste

```
instance Functor [] where
fmap = map
```

Instanțe

class Functor f where fmap :: $(a \rightarrow b) \rightarrow m a \rightarrow m b$

- transformă fiecare element al colecției folosind f
- fără a afecta structura colectiei

```
Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b
```

```
data Maybe a = Nothing
| Just a
```

Instanțe

```
class Functor f where
fmap :: (a -> b) -> m a -> m b
```

- transformă fiecare element al colecției folosind f
- fără a afecta structura colecției

```
Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b
```

```
data Maybe a = Nothing
| Just a
```

```
instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Instanțe

class Functor f where fmap :: (a -> b) -> m a -> m b

- transformă fiecare element al colecției folosind f
- fără a afecta structura colectiei

```
Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b
```

Instanțe

class Functor f where fmap :: (a -> b) -> m a -> m b

- transformă fiecare element al colecției folosind f
- fără a afecta structura colectiei

```
Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b
```

instance Functor Arbore where

```
fmap f \ NiI = NiI
fmap f \ (Nod \ x \ I \ r) = Nod \ (f \ x) \ (fmap \ f \ I) \ (fmap \ f \ r)
```

Instanțe

class Functor f where fmap :: (a -> b) -> m a -> m b

- transformă fiecare element al colecției folosind f
- fără a afecta structura colectiei

```
Instanță pentru tipul eroare fmap :: (a \rightarrow b) \rightarrow Either e a \rightarrow Either e b
```

```
data Either a b = Left a
| Right b
```

Instanțe

```
class Functor f where
fmap :: (a -> b) -> m a -> m b
```

- transformă fiecare element al colecției folosind f
- fără a afecta structura colectiei

```
Instanță pentru tipul eroare fmap :: (a \rightarrow b) \rightarrow Either e a \rightarrow Either e b
```

```
data Either a b = Left a
| Right b
```

Instanțe

class Functor f where

```
fmap :: (a -> b) -> m a -> m b
```

- transformă fiecare element al colectiei folosind f
- fără a afecta structura colectiei

Instantă pentru tipul functie fmap :: $(a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)$

Instanțe

class Functor f where

```
fmap :: (a -> b) -> m a -> m b
```

- transformă fiecare element al colectiei folosind f
- fără a afecta structura colectiei

```
Instanță pentru tipul funcție fmap :: (a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)
```

Exemple

```
Main> fmap (*2) [1..3]

Main> fmap (*2) (Just 200)

Main> fmap (*2) Nothing

Main> fmap (*2) (+100) 4

Main> fmap (*2) (Right 6)

Main> fmap (*2) (Left 1)
```

Exemple

```
Main> fmap (*2) [1..3]
[2,4,6]
Main> fmap (*2) (Just 200)
Just 400
Main> fmap (*2) Nothing
Nothing
Main> fmap (*2) (+100) 4
208
Main> fmap (*2) (Right 6)
Right 12
Main> fmap (*2) (Left 135)
Left 135
```

Proprietăți ale functorilor

- Argumentul m al lui Functor m definește o transformare de tipuri
 - m a este tipul a transformat prin functorul m
- fmap definește transformarea corespunzătoare a funcțiilor
 - fmap :: (a -> b) -> (m a -> m b)

Contractul lui fmap

- fmap f ca e obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)
- Abstractizat prin două legi:

```
identitate fmap id == id
compunere fmap (g \cdot f) == fmap g \cdot fmap f
```

Categorii și Functori

Categorii

O categorie \mathbb{C} este dată de:

- O clasă |ℂ| a obiectelor
- Pentru oricare două obiecte A, B ∈ |C|,
 o mulțime C(A, B) a săgeților "de la A la B"
 f ∈ C(A, B) poate fi scris ca f : A → B
- Pentru orice obiect A o săgeată $id_A: A \rightarrow A$ numită identitatea lui A
- Pentru orice obiecte A, B, C, o operație de compunere a săgeților
 : ℂ(B, C) × ℂ(A, B) → ℂ(A, C)

Bartosz Milewski
— Category: The
Essence of Composition

Compunerea este asociativă și are element neutru id

Exemplu: Categoria Set

Obiecte: multimi

• Săgeți: funcții

Identități: Funcțiile identitate

Compunere: Compunerea funcțiilor

Exemplu: Categoria Hask

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

Identități: funcția polimorfică id

```
Prelude> :t id id :: a -> a
```

• Compunere: funcția polimorfică (.)

```
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
```

Subcategorii ale lui Hask date de tipuri parametrizate

- Obiecte: o clasă restânsă de tipuri din |⊞ask|
 - Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte
 - Exemple: concat :: [[a]] -> [a], words :: [Char] -> [String],
 reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Arbori obiecte: tipuri de forma Arbore a

Comenzi I/O obiecte: tipuri de forma IO a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esența programării

- Am de rezolvat problema P
- O descompun în subproblemele P₁,...P_n
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările $p_1, \dots p_n$ într-o rezolvare p pentru problema inițială

Categoriile rezolvă problema compunerii

- Ne forţează să abstractizăm datele
- Se poate acționa asupra datelor doar prin săgeți (metode?)
- Forțează un stil de compunere independent de structura obiectelor

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F : \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

Bartosz Milewski — Functors

Functori în Haskell

În general un functor $F: \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

În Haskell o instanță Functor m este dată de

- Un tip m a pentru orice tip a (deci m trebuie sa fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a \rightarrow b) \rightarrow (m a \rightarrow m b)$$

Compatibilă cu identitățile și cu compunerea

fmap
$$id == id$$

fmap $(g \cdot f) == fmap g \cdot fmap f$

pentru orice f :: a -> b si g :: b -> c