Problem Set 2023-2 Physics 265

First Semester, AY 2023- 2024 Release Date: 22 September 2023

Due: 6 January 2024 Ten points per number

- 1. Recast the $n(\lambda)$ expressions of your assigned glass materials (for n_1 and n_2) into its equivalent $n(\omega)$ where angular frequency $\omega = 2\pi v = 2\pi c/\lambda$, and c is the speed of light in vacuum.
- 2. Plot (at 0.5 nm resolution) the refractive index $n(\lambda)$ for n_1 and n_2 within their corresponding non-dispersive wavelength ranges (in nanometer units). Refer to the attached Dispersion Formula Table 23 (Handbook of Optics Vol 2, Sec 33.67, 2^{nd} Edition, OSA) for details.
- 3. Plot the equivalent $n(\omega)$ expressions within their corresponding non-dispersive ω -range bounded by ω_{\max} and ω_{\min} .
- 4. Plot for both n_1 and n_2 the pertinent $n(\omega \omega_0)$ curves in the presence of a resonant frequency $\omega_0 = (\omega_{max} + \omega_{min})/2$. Please be guided by the discussion in Section 2.3.4 of Born & Wolf particularly Figure 2.3.

DIELECTRIC MATERIAL ASSIGNMENT

Student Number	n ₁	n ₂
2014-72686	BaLK1	BK7
2015-02056	SF6	LaF2
2012-29166	ZnSe	PK2
2015-13015	FK5	K5
2018-21484	Ultran 30	F2
2015-04622	BaSF10	BaK1
2011-00242	Fused Silica	CORTRAN 9753
2013-73980	Fused Germania	CORTRAN 9754
2015-01971	Arsenic Trisulfide	IRG2

END.