

Charles L Dodgson 1832 - 1898

Propositions,
Predicates,
Operators,
Formulas

Expert Systems

- From a repository consisting of "facts" derive answers to questions posed on the fly
- To automate decision making
- e.g., Prolog: a programming language that can be used to implement such a system

?- sibling(sally, erica).
Yes

The Pointless Game

- Alice and Bob sit down to play a new board game, where they take turns to make "moves" that they can choose (no dice/randomness)
- The rules of the game guarantee that
 - The game can't go on for ever
 - There are no ties Alice or Bob will win when the game terminates
- Alice and Bob (smart as they are) decide that there is no point in playing the game, because they already know who is going to win it!

Propositions

- Goal: reasoning about whether statements are true or false
 - These statements are called propositions
- Propositions refer to things in a "domain of discourse" (e.g., characters in Alice in Wonderland)
- A proposition could simply refer to a property of an element in the domain (e.g., Alice doesn't have wings)
 - These properties are formalised as predicates

Alice

Jabberwock

Flamingo

Predicates

- Predicate is a <u>function</u> that assigns a value of TRUE or FALSE to each element in the domain of discourse
 - If you apply a predicate to an element you get a proposition
 - A proposition will have truth value True or False
 - More complex propositions can be built from such simple propositions

e.g.: Pink(Flamingo)				
0.8 1 1111.	.(1 10011111180 <i>)</i>	Winged?	Flies?	Pink?
	Alice	FALSE	FALSE	FALSE
	Jabberwock	TRUE	TRUE	FALSE
	Flamingo	TRUE	TRUE	TRUE

Propositional Calculus

cal·cu·lus /'kalkyələs/ 4)

Binary operators

George Boole 1815 - 1864

Unary operator

- The branch of mathematics that deals with the finding and properties
 derivatives and integrals of functions, by methods originally
- 2. A particular method or system of calculation or reach

Synonyms: stone - calculation - reckoning - computer on

not p Symbol: ¬p

Negates the truth value.

e.g.: -Flies(Alice)

has value True

p or q

Symbol: p ∨ q

True if and only if at least one of p and q is true

e.g.: ¬Flies(Alice)

v Pink(Jab'wock)

has value True

p and q

Symbol: p \(\) q

True if and only if both of p and q are true

e.g.: ¬Flies(Alice) ^

Pink(Jab'wock)

has value False

if p then q

Symbol: $p \rightarrow q$

 $(\neg p) \lor (p \land q)$

Same as ¬p ∨ q

e.g.: Flies(Alice) →

Pink(Jab'wock)

has value True

V	Т	F
Т	Т	Т
F	Т	F

-	101277	ACT IN
٨	Τ	F
Т	Т	F
F	F	F

\rightarrow	Т	F
Т	Т	F
F	Т	Т

Operator Gallery

IMPLIES

Important:
Not a causal relation!

p implies q.
whenever p holds, q holds
if p then q.
q if p.

either not p or (p and q).
p only if q.
if not q then not p.
not p if not q.

Try an example:

p: you're in the kitchen

q: you're in the house

Contrapositive

IMPLIED-BY

p is implied by q.

q implies p.

p if q.

II IFF

p if and only if q.

p iff q.

p if q and not p if not q.

Formulas

A recipe for creating a new proposition from given propositions, using operators

- Can also use "logic circuits" instead of formulas
- Different formulas can be equivalent to each other
 - e.g., $g(p,q) \triangleq \neg(p \oplus q)$. Then f = g.
- A formula on two variables is equivalent to a binary operator

Another Example

- $g(p,q,r) \triangleq (p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$
 - "Majority operator"
- \circ g = h

((¬p) ∧ q) ∧ r

P	q	r	9	h
F	F	F	щ	щ
F	F	Т	F	H
F	Т	F	F	F
Т	F	F	F	F
F	Т	Т	Т	Т
Т	F	Т	Т	Т
Т	Т	F	Т	Т
Т	Т	Т	Т	Т

More Equivalences [Exercise]

Conjunction and disjunction with T and F

$$T \wedge q = q$$
 $F \vee q = q$

$$F \wedge q \equiv F \mid T \vee q \equiv T$$

Implication involving T and F

 $q \rightarrow F \equiv \neg q$

 $T \rightarrow q = q$

 $q \rightarrow T \equiv T$

 $F \rightarrow q \equiv T$

Implication involving negation

 $q \rightarrow \neg q \equiv \neg q$

 $\neg q \rightarrow q \equiv q$

Contrapositive

 $p \rightarrow q \equiv (\neg q) \rightarrow (\neg p)$

Distributive Property

- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
 - $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

De Morgan's Law

$$\neg(p \land q) = \neg p \lor \neg q$$

Charles L Dodgson 1832 - 1898

Quantifiers

Predicates & Propositions

×	Winged(x)	Flies(x)	Pink(x)
Alice FALSE		FALSE	FALSE
Jabberwock	TRUE	TRUE	FALSE
Flamingo	TRUE	TRUE	TRUE

- A predicate is a column in this table
- A proposition like Winged(Alice) refers to a single cell. Can build more complex propositions using propositional calculus (formulas)
- Next: Propositions involving quantifiers.

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)	
Alice	FALSE	FALSE	FALSE	
Jabberwock	TRUE	TRUE	FALSE	∈ AIW
Flamingo	TRUE	TRUE	TRUE	EMIN

All characters in AIW are winged. (False!)

∀x Winged(x)

- For every character x in AIW, Winged(x) holds
- Some character in AIW is winged. (True)

∃x Winged(x)

There exists a character x in AIW, such that Winged(x) holds

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)	
Alice	FALSE	FALSE	FALSE	
Jabberwock	TRUE	TRUE	FALSE	
Flamingo	TRUE	RUE	TRUE	

Quantifiers: To what "extent" does a predicate evaluate to TRUE in the domain of discourse ∀x Winged(x)

Universal quantifier, ∀

∃x Winged(x)

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)
Alice	FALSE	FALSE	FALSE
Jabberwock	TRUE	TRUE	FALSE
Flamingo	TRUE	TRUE	TRUE

- Oculd write ∀x Winged(x) as: Winged(Alice) ∧ Winged(J'wock) ∧ Winged(Flamingo)
- And ∃x Winged(x) as:
 Winged(Alice) ∨ Winged(J'wock) ∨ Winged(Flamingo)
 - But need to list the entire domain (works only if finite)

Examples

×	Winged(x)	Flies(x)	Pink(x)	Pink(x)→ Flies(x)
Alice	FALSE	FALSE	FALSE	TRUE
Jabberwock	TRUE	TRUE	FALSE	TRUE
Flamingo	TRUE	TRUE	TRUE	TRUE

- $\exists x \ Winged(x) \rightarrow \neg Flies(x)$ is True

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)	¬Winged(x)
Alice	FALSE	FALSE	FALSE	TRUE
Jabberwock	TRUE	TRUE	FALSE	FALSE
Flamingo	TRUE	TRUE	TRUE	FALSE

- - Not everyone is winged
 - Same as saying, there is someone who is not winged
 - ø i.e., ∃x ¬Winged(x) is True

$$\neg (\forall x W(x)) = \exists x \neg W(x)$$

$$\neg$$
(W(a) \land W(j) \land W(f))

$$\neg W(a) \lor \neg W(j) \lor \neg W(f)$$

Predicates, again

- A predicate can be defined over any number of elements from the domain
 - e.g., Likes(x,y): "x likes y"

x,y	Likes(x,y)	
Alice, Alice	TRUE	
Alice, Jabberwock	FALSE	
Alice, Flamingo	TRUE	
Jabberwock, Alice	FALSE	
Jabberwock, Jabberwock	TRUE	
Jabberwock, Flamingo	FALSE	
Flamingo, Alice	FALSE	
Flamingo, Jabberwock	FALSE	
Flamingo, Flamingo	TRUE	

х,у	Likes(x,y)
Alice, Alice	TRUE
Alice, Jabberwock	FALSE
Alice, Flamingo	TRUE
Jabberwock, Alice	FALSE
Jabberwock, Jabberwock	TRUE
Jabberwock, Flamingo	FALSE
Flamingo, Alice	FALSE
Flamingo, Jabberwock	FALSE
Flamingo, Flamingo	TRUE

- And we can quantify all the variables of a predicate
- ø e.g. ∀x,y Likes(x,y)
 - Everyone likes everyone
 - False!

x,y	Likes(x,y)
Alice, Alice	TRUE
Alice, Jabberwock	FALSE
Alice, Flamingo	TRUE
Jabberwock, Alice	FALSE
Jabberwock, Jabberwock	TRUE
Jabberwock, Flamingo	FALSE
Flamingo, Alice	FALSE
Flamingo, Jabberwock	FALSE
Flamingo, Flamingo	TRUE

- - Everyone likes someone (True)
- - Someone is liked by everyone (False)

Order of quantifiers is important!

×	У	Likes(x,y)	∃y Likes(x,y) i.e., LikesSomeone(x)
	Alice	TRUE	
Alice	Jabberwock	FALSE	TRUE
	Flamingo	TRUE	
	Alice	FALSE	
Jabberwock	Jabberwock	TRUE	TRUE
	Flamingo	FALSE	
	Alice	FALSE	
Flamingo	Jabberwock	FALSE	TRUE
	Flamingo	TRUE	

- - Everyone likes someone
 - ∀x LikesSomeone(x)
 - True

- $\forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)$ for all pairs (x,y), P(x,y) holds
- $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$ for some pair (x,y), P(x,y) holds
- Below R is a proposition not involving x $\forall x P(x) \lor R \equiv (\forall x P(x)) \lor R$

- Scope of x extends to the end: $\forall x (P(x) \lor R)$
- i.e., if domain is $\{a_1,...,a_N\}$ $(P(a_1)\vee R) \wedge ... \wedge (P(a_N)\vee R)$

- R evaluates to True or False (indep of x)
- When R is True, both equivalent (to True)
- Also, when R is False, both equivalent
- Hence both equivalent

- $\forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)$ for all pairs (x,y), P(x,y) holds
- $\Rightarrow \exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$ for some pair (x,y), P(x,y) holds
- Below R is a proposition not involving x

$$\forall x P(x) \lor R \equiv (\forall x P(x)) \lor R \exists x P(x) \lor R \equiv (\exists x P(x)) \lor R$$

$$\forall x P(x) \land R \equiv (\forall x P(x)) \land R \exists x P(x) \land R \equiv (\exists x P(x)) \land R$$

```
\forall x \neg P(x) \lor R \equiv (\forall x \neg P(x)) \lor R \equiv \neg (\exists x P(x)) \lor R
```

- $\forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)$ for all pairs (x,y), P(x,y) holds
- $\Rightarrow \exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$ for some pair (x,y), P(x,y) holds
- Below R is a proposition not involving x

$$\forall x \ P(x) \lor R \equiv (\forall x \ P(x)) \lor R \qquad \exists x \ P(x) \lor R \equiv (\exists x \ P(x)) \lor R$$

$$\forall x P(x) \land R \equiv (\forall x P(x)) \land R \exists x P(x) \land R \equiv (\exists x P(x)) \land R$$

$$\equiv \forall x (P(x) \lor (\forall y Q(y)))$$

PQ

$$\equiv \forall x (\forall y (P(x) \lor Q(y)))$$

$$= \forall x \forall y (P(x) \lor Q(y))$$

```
 \forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)  for all pairs (x,y), P(x,y) holds
 \Rightarrow \exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)  for some pair (x,y), P(x,y) holds
Below R is a proposition not involving x
  \forall x P(x) \lor R \equiv (\forall x P(x)) \lor R \exists x P(x) \lor R \equiv (\exists x P(x)) \lor R
  \forall x P(x) \land R \equiv (\forall x P(x)) \land R \exists x P(x) \land R \equiv (\exists x P(x)) \land R
(\exists x P(x)) \lor (\exists x Q(x)) = \exists x (P(x) \lor Q(x))
(\exists x P(x)) \land (\exists x Q(x)) = \exists x \exists y P(x) \land Q(y)
```

 $\neg(\exists x P(x)) \equiv \forall x \neg P(x)$

IIT Bombay :: Autumn 2020 :: CS 207 :: Discrete Structures :: Manoj Prabhakaran

Through the Looking Glass

- A mirror which shows the negation of every proposition
- Reflection changes T & F to F & T (resp.)

Flies(Alice)
is False

Flies(Alice) >
Flies(J'wock)
is True

٨	F	Т
F	F	F
Т	F	Т

- Flies(Alice)
is True

?	F	Т
F	F	F
Т	F	Т

V	Т	F
Т	Т	Т
F	Т	F

¬Flies(Alice)?
¬Flies(J'wock)
is False

- A mirror which shows the negation of every proposition
- Reflection changes T & F to F & T (resp.)
 - \emptyset \vee & \wedge are reflected as \wedge & \vee (resp.)

De Morgan's Law
$$\neg(p \land q) = (\neg p) \lor (\neg q)$$

$$\neg(p \lor q) = (\neg p) \land (\neg q)$$

$$P \Rightarrow \neg p \land \neg p \lor \neg q$$

$$P \Rightarrow \neg p \lor \neg q$$

$$P \Rightarrow \neg p \lor \neg q$$

- A mirror which shows the negation of every proposition
- Reflection changes T & F to F & T (resp.)

- Reflection changes T & F to F & T (resp.)

X	У	Likes(x,y)	∃y Likes(x,y) i.e., LikesSomeone(x)
THE REAL PROPERTY.	Alice	TRUE	
Alice	Jabberwock	FALSE	TRUE
15.18	Flamingo	TRUE	
	Alice	FALSE	
Jabberwock	Jabberwock	TRUE	TRUE
	Flamingo	FALSE	
	Alice	FALSE	
Flamingo	Jabberwock	FALSE	TRUE
	Flamingo	TRUE	

- - Everyone likes someone
 - ∀x LikesSomeone(x)
 - True

X	У	Likes(x,y)	∃y Likes(x,y) i.e., LikesSomeone(x)	
	Alice	TRUE		
Alice	Jabberwock	FALSE	TRUE	
	Flamingo	TRUE		
10-1-1-1	Alice	FALSE		
Jabberwock	Jabberwock	TRUE	TRUE	
	Flamingo	FALSE		
	Alice	FALSE		
Flamingo	Jabberwock	FALSE	TRUE	
	Flamingo	TRUE		

- - Everyone likes someone
 - ∀x LikesSomeone(x)
 - True

 $\exists x (\neg (\exists y Likes(x,y)))$

×	У	Likes(x,y)	∃y Likes(x,y) i.e., LikesSomeone(x)	
The state of	Alice	TRUE		
Alice	Jabberwock	FALSE	TRUE	
17.65	Flamingo	TRUE		
10-1-1-1	Alice	FALSE		
Jabberwock	Jabberwock	TRUE	TRUE	
第七万 种	Flamingo	FALSE		
	Alice	FALSE		
Flamingo	Jabberwock	FALSE	TRUE	
	Flamingo	TRUE		

- - Everyone likes someone
 - ∀x LikesSomeone(x)
 - True

- - Someone doesn't like anyone
 - ∃x (DoesntLikeAnyone(x))
 - False

×	У	Likes(x,y)
	Alice	TRUE
Alice	Jabberwock	FALSE
	Flamingo	TRUE
	Alice	FALSE
Jabberwock	Jabberwock	TRUE
	Flamingo	FALSE
	Alice	FALSE
Flamingo	Jabberwock	FALSE
	Flamingo	TRUE

X	У	Likes(x,y)	∀x Likes(x,y) i.e., EveryoneLikes(y)
Alice		TRUE	
Jabberwock	Alice	FALSE	FALSE
Flamingo		FALSE	
Alice	Red Sept Sept	FALSE	
Jabberwock	Jabberwock	TRUE	FALSE
Flamingo		FALSE	
Alice		TRUE	
Jabberwock	Flamingo	FALSE	FALSE
Flamingo		TRUE	

- - Someone is liked by everyone
 - False

- - Everyone is disliked by someone
 - True