Formale Spezifikation und Verifikation SMT

Wintersemester 2023/24 Übungsblatt 06

12. Dezember 2023

Gegeben:

$$(x \geq 0 \vee x + y < 7) \wedge (x \neq 0 \vee y < 4) \wedge (y > 2)$$

Gegeben:

$$(x \ge 0 \lor x + y < 7) \land (x \ne 0 \lor y < 4) \land (y > 2)$$

Belegung durch aussagenlogische Variablen:

$$A \coloneqq x > 0$$

$$B \coloneqq x + y < 7$$

$$C \coloneqq x \neq 0$$

$$D := y < 4$$

$$E \coloneqq y > 2$$

Gegeben:

$$(x \ge 0 \lor x + y < 7) \land (x \ne 0 \lor y < 4) \land (y > 2)$$

Belegung durch aussagenlogische Variablen:

 $A \coloneqq x > 0$

 $B \coloneqq x + y < 7$

 $C \coloneqq x \neq 0$

 $D \coloneqq y < 4$

E := y > 2

DPLL: Substitution durch neu eingeführte Variablen in Formel:

 $(A \lor B) \land (C \lor D) \land E$

Gegeben:

$$(x \geq 0 \lor x + y < 7) \land (x \neq 0 \lor y < 4) \land (y > 2)$$

DPLL: Substitution mit aussagenlogischen Variablen:

$$(A \lor B) \land (C \lor D) \land E$$

Gegeben:

$$(x \geq 0 \lor x + y < 7) \land (x \neq 0 \lor y < 4) \land (y > 2)$$

DPLL: Substitution mit aussagenlogischen Variablen:

$$(A \lor B) \land (C \lor D) \land E$$

Unit Propagation mit $E \mapsto true$: $(A \lor B) \land (C \lor D)$

Gegeben:

$$(x \geq 0 \lor x + y < 7) \land (x \neq 0 \lor y < 4) \land (y > 2)$$

DPLL: Substitution mit aussagenlogischen Variablen: $(A \lor B) \land (C \lor D) \land E$

Unit Propagation mit $E \mapsto true$: $(A \lor B) \land (C \lor D)$

Pure Literal Elimination mit $A \mapsto true$: $(C \lor D)$

Gegeben:

$$(x \geq 0 \lor x + y < 7) \land (x \neq 0 \lor y < 4) \land (y > 2)$$

DPLL: Substitution mit aussagenlogischen Variablen: $(A \lor B) \land (C \lor D) \land E$

Unit Propagation mit $E \mapsto true$: $(A \lor B) \land (C \lor D)$

Pure Literal Elimination mit $A \mapsto true$: $(C \lor D)$

Pure Literal Elimination mit $C \mapsto true$: true

Gegeben:

$$(x \ge 0 \lor x + y < 7) \land (x \ne 0 \lor y < 4) \land (y > 2)$$

DPLL: Substitution mit aussagenlogischen Variablen: $(A \lor B) \land (C \lor D) \land E$

Unit Propagation mit $E \mapsto true$: $(A \lor B) \land (C \lor D)$

Pure Literal Elimination mit $A \mapsto true$: $(C \lor D)$

Pure Literal Elimination mit $C \mapsto true$: true

Aussagenlogische Formel erfüllbar durch Belegung: $\{A\mapsto true, B \text{ beliebig}, C\mapsto true, D \text{ beliebig}, E\mapsto true\}$

SMT 1b)

Aussagenlogische Formel:

$$(A \lor B) \land (C \lor D) \land E$$

Formel erfüllbar durch Belegung:

 $\{A\mapsto true, B \text{ beliebig}, C\mapsto true, D \text{ beliebig}, E\mapsto true\}$

SMT 1b)

Aussagenlogische Formel:

$$(A \lor B) \land (C \lor D) \land E$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \text{ beliebig}, C \mapsto true, D \text{ beliebig}, E \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{x \geq 0}_A \land \underbrace{x \neq 0}_C \land \underbrace{y > 2}_E$$

SMT 1b)

Aussagenlogische Formel:

$$(A \lor B) \land (C \lor D) \land E$$

Formel erfüllbar durch Belegung:

 $\{A\mapsto true, B \text{ beliebig}, C\mapsto true, D \text{ beliebig}, E\mapsto true\}$

Entspricht Gleichungssystem:

$$\underbrace{x \geq 0}_A \land \underbrace{x \neq 0}_C \land \underbrace{y > 2}_E$$

Erfüllende Belegung mit $[x \mapsto 1, y \mapsto 3]$:

$$(1 \geq 0) \wedge (1 \neq 0) \wedge (3 > 2)$$

Gegeben:

$$(x=5 \lor x>y) \land y=2 \land \lnot(x>y)$$

Gegeben:

$$(x = 5 \lor x > y) \land y = 2 \land \neg(x > y)$$

Belegung durch aussagenlogische Variablen:

A := x = 5

B := x > y

 $C \coloneqq y = 2$

Gegeben:

$$(x = 5 \lor x > y) \land y = 2 \land \neg(x > y)$$

Belegung durch aussagenlogische Variablen:

A := x = 5

B := x > y

 $C \coloneqq y = 2$

DPLL: Substitution durch neu eingeführte Variablen in Formel:

 $(A \lor B) \land C \land \neg B$

Gegeben:

$$(x = 5 \lor x > y) \land y = 2 \land \neg(x > y)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \vee B) \wedge C \wedge \neg B$$

Gegeben:

$$(x = 5 \lor x > y) \land y = 2 \land \neg(x > y)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \lor B) \land C \land \neg B$$

Unit Propagation mit $B \mapsto false$: $A \wedge C$

Gegeben:

$$(x = 5 \lor x > y) \land y = 2 \land \neg(x > y)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \lor B) \land C \land \neg B$$

Unit Propagation mit $B \mapsto false: A \wedge C$

Unit Propagation mit $C \mapsto true$: A

Gegeben:

$$(x = 5 \lor x > y) \land y = 2 \land \neg(x > y)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \lor B) \land C \land \neg B$$

Unit Propagation mit $B \mapsto false: A \wedge C$

Unit Propagation mit $C \mapsto true$: A

Unit Propagation mit $A \mapsto true$: true

Gegeben:

$$(x = 5 \lor x > y) \land y = 2 \land \neg(x > y)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \lor B) \land C \land \neg B$$

Unit Propagation mit $B \mapsto false$: $A \wedge C$

Unit Propagation mit $C \mapsto true$: A

Unit Propagation mit $A \mapsto true$: true

Aussagenlogische Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Aussagenlogische Formel:

$$(A \lor B) \land C \land \neg B$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Aussagenlogische Formel:

$$(A \lor B) \land C \land \neg B$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{x=5}_{A} \land \underbrace{x \leq y}_{B} \land \underbrace{y=2}_{C}$$

Aussagenlogische Formel:

$$(A \lor B) \land C \land \neg B$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{x=5}_{A} \land \underbrace{x \leq y}_{B} \land \underbrace{y=2}_{C} \Rightarrow \mathsf{Konflikt:} \ 5 \nleq 2$$

Aussagenlogische Formel:

$$(A \lor B) \land C \land \neg B$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{x=5}_{A} \land \underbrace{x \leq y}_{B} \land \underbrace{y=2}_{C} \Rightarrow \mathsf{Konflikt:} \ 5 \nleq 2$$

Hinzufügen einer neuen Klausel $(\neg A \lor B \lor \neg C)$ zu bisheriger Formel:

$$(A \lor B) \land C \land \neg B \land (\neg A \lor B \lor \neg C)$$

Aussagenlogische Formel:

$$(A \lor B) \land C \land \neg B$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{x=5}_{A} \land \underbrace{x \leq y}_{B} \land \underbrace{y=2}_{C} \implies \mathsf{Konflikt:} \ 5 \nleq 2$$

Hinzufügen einer neuen Klausel $(\neg A \lor B \lor \neg C)$ zu bisheriger Formel:

$$(A \lor B) \land C \land \neg B \land (\neg A \lor B \lor \neg C)$$

$$\mathsf{UP}\ C \mapsto true \colon (A \vee B) \wedge \neg B \wedge (\neg A \vee B)$$

Aussagenlogische Formel:

$$(A \lor B) \land C \land \neg B$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{x=5}_{A} \land \underbrace{x \leq y}_{B} \land \underbrace{y=2}_{C} \Rightarrow \mathsf{Konflikt:} \ 5 \nleq 2$$

Hinzufügen einer neuen Klausel $(\neg A \lor B \lor \neg C)$ zu bisheriger Formel:

$$(A \lor B) \land C \land \neg B \land (\neg A \lor B \lor \neg C)$$

UP
$$C \mapsto true: (A \lor B) \land \neg B \land (\neg A \lor B)$$

UP $B \mapsto false: A \land \neg A$

Aussagenlogische Formel:

$$(A \lor B) \land C \land \neg B$$

Formel erfüllbar durch Belegung:

$$\{A \mapsto true, B \mapsto false, C \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{x=5}_{A} \land \underbrace{x \leq y}_{B} \land \underbrace{y=2}_{C} \Rightarrow \mathsf{Konflikt:} \ 5 \nleq 2$$

Hinzufügen einer neuen Klausel $(\neg A \lor B \lor \neg C)$ zu bisheriger Formel:

$$(A \lor B) \land C \land \neg B \land (\neg A \lor B \lor \neg C)$$

$$\mathsf{UP}\ C \mapsto true:\ (A \vee B) \wedge \neg B \wedge (\neg A \vee B)$$

$$\mathsf{UP}\ B \mapsto false:\ A \wedge \neg A$$

$$\mathsf{UP}\ A \mapsto true :\ false$$

 \Rightarrow unerfüllbar

Gegeben:

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge (\neg (x \geq 0 \vee y \leq 0))$$

Gegeben:

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge (\neg (x \geq 0 \vee y \leq 0))$$

In KNF:

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge \neg (x \geq 0) \wedge \neg (y \leq 0))$$

Gegeben:

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge (\neg (x \geq 0 \vee y \leq 0))$$

In KNF:

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge \neg (x \geq 0) \wedge \neg (y \leq 0))$$

Belegung durch aussagenlogische Variablen:

A := x > 0

 $B \coloneqq y > 0$

 $C \coloneqq z \ge 0$

D := y < 1

Gegeben:

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge (\neg (x \geq 0 \vee y \leq 0))$$

In KNF:

$$(x \ge 0 \lor \neg(y > 0)) \land (\neg(x \ge 0) \lor z \ge 0) \land (y < 1 \lor \neg(z \ge 0)) \land \neg(x \ge 0) \land \neg(y \le 0))$$

Belegung durch aussagenlogische Variablen:

A := x > 0

B := y > 0

 $C \coloneqq z \ge 0$

 $D \coloneqq y < 1$

DPLL: Substitution durch neu eingeführte Variablen in Formel:

$$(A \vee \neg B) \wedge (\neg A \vee C) \wedge (D \vee \neg C) \wedge \neg A \wedge B$$

Gegeben (in KNF):

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge \neg (x \geq 0) \wedge \neg (y \leq 0))$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \vee \neg B) \wedge (\neg A \vee C) \wedge (D \vee \neg C) \wedge \neg A \wedge B$$

Gegeben (in KNF):

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge \neg (x \geq 0) \wedge \neg (y \leq 0))$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \lor \neg B) \land (\neg A \lor C) \land (D \lor \neg C) \land \neg A \land B$$

Unit Propagation mit $A \mapsto false: \neg B \land (D \lor \neg C) \land B$

Gegeben (in KNF):

$$(x \ge 0 \lor \neg (y > 0)) \land (\neg (x \ge 0) \lor z \ge 0) \land (y < 1 \lor \neg (z \ge 0)) \land \neg (x \ge 0) \land \neg (y \le 0))$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \lor \neg B) \land (\neg A \lor C) \land (D \lor \neg C) \land \neg A \land B$$

Unit Propagation mit $A \mapsto false: \neg B \land (D \lor \neg C) \land B \Rightarrow \mathsf{Konflikt}: \neg B \land B$

Unit Propagation mit $B \mapsto true$: false

Gegeben (in KNF):

$$(x \geq 0 \vee \neg (y > 0)) \wedge (\neg (x \geq 0) \vee z \geq 0) \wedge (y < 1 \vee \neg (z \geq 0)) \wedge \neg (x \geq 0) \wedge \neg (y \leq 0))$$

DPLL: Substitution durch aussagenlogische Variablen:

$$(A \vee \neg B) \wedge (\neg A \vee C) \wedge (D \vee \neg C) \wedge \neg A \wedge B$$

Unit Propagation mit $A \mapsto false: \neg B \land (D \lor \neg C) \land B \Rightarrow \mathsf{Konflikt}: \neg B \land B$

Unit Propagation mit $B \mapsto true$: false

⇒ unerfüllbar

SMT 4a)

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

Belegung durch aussagenlogische Variablen:

 $A \coloneqq \forall x. \neg p(x) \lor q(x)$

 $B \coloneqq p(1)$

 $C \coloneqq q(1)$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

Belegung durch aussagenlogische Variablen:

 $A \coloneqq \forall x. \neg p(x) \lor q(x)$

 $B \coloneqq p(1)$

 $C \coloneqq q(1)$

DPLL: Substitution durch neu eingeführte Variablen in Formel:

$$A \wedge B \wedge \neg C$$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∀ Quantor gilt folgende Regel:

Gegeben eine Klausel $\forall z.\phi(z)$, nimm eine weitere Klausel $\phi(k)$ hinzu, bei der k ein beliebiger Term ist (z.B. eine Konstante)

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∀ Quantor gilt folgende Regel:

Gegeben eine Klausel $\forall z.\phi(z)$, nimm eine weitere Klausel $\phi(k)$ hinzu, bei der k ein beliebiger Term ist (z.B. eine Konstante)

▶ Instanziierung von A mit $x \mapsto 1$: $\neg p(1) \lor q(1)$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∀ Quantor gilt folgende Regel:

Gegeben eine Klausel $\forall z.\phi(z)$, nimm eine weitere Klausel $\phi(k)$ hinzu, bei der k ein beliebiger Term ist (z.B. eine Konstante)

- ▶ Instanziierung von A mit $x \mapsto 1$: $\neg p(1) \lor q(1)$
- ▶ Neue daraus entstehende Klausel: $(\neg B \lor C)$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∀ Quantor gilt folgende Regel:

Gegeben eine Klausel $\forall z.\phi(z)$, nimm eine weitere Klausel $\phi(k)$ hinzu, bei der k ein beliebiger Term ist (z.B. eine Konstante)

- ▶ Instanziierung von A mit $x \mapsto 1$: $\neg p(1) \lor q(1)$
- ▶ Neue daraus entstehende Klausel: $(\neg B \lor C)$

Ergebnis: $B \land \neg C \land (\neg B \lor C)$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto 1$: $\neg p(1) \lor q(1)$
- ▶ Neue daraus entstehende Klausel: $(\neg B \lor C)$

Ergebnis:
$$B \land \neg C \land (\neg B \lor C)$$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto 1$: $\neg p(1) \lor q(1)$
- ▶ Neue daraus entstehende Klausel: $(\neg B \lor C)$

Ergebnis:
$$B \land \neg C \land (\neg B \lor C)$$

Unit Propagation mit $B \mapsto true: C \land \neg C$

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen: $A \wedge B \wedge \neg C$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto 1$: $\neg p(1) \lor q(1)$
- ▶ Neue daraus entstehende Klausel: $(\neg B \lor C)$

Ergebnis: $B \land \neg C \land (\neg B \lor C)$

Unit Propagation mit $B \mapsto true: C \land \neg C \Rightarrow \mathsf{Konflikt!}$

Unit Propagation mit $C \mapsto true$: false

Gegeben:

$$(\forall x. \neg p(x) \lor q(x)) \land p(1) \land \neg q(1)$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge \neg C$$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto 1$: $\neg p(1) \lor q(1)$
- ▶ Neue daraus entstehende Klausel: $(\neg B \lor C)$

Ergebnis:
$$B \land \neg C \land (\neg B \lor C)$$

Unit Propagation mit $B \mapsto true: C \land \neg C \Rightarrow \mathsf{Konflikt!}$

Unit Propagation mit $C \mapsto true$: false

 \Rightarrow unerfüllbar

Gegeben:

 $(\exists x. \ 0 < x \land x < y) \land y = 0$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

Belegung durch aussagenlogische Variablen:

$$A := \exists x. \ 0 < x \land x < y$$

$$B \coloneqq y = 0$$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

Belegung durch aussagenlogische Variablen:

$$A := \exists x. \ 0 < x \land x < y$$

$$B \coloneqq y = 0$$

DPLL: Substitution durch neu eingeführte Variablen in Formel:

$$A \wedge B$$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∃ Quantor dürfen Sie folgende Regel benutzen:

Gegeben eine Klausel $\exists z.\phi(z)$ ersetze diese durch $\phi(z_0)$ wobei z_0 eine neue Variable ist, die sonst nicht vorkommt.

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∃ Quantor dürfen Sie folgende Regel benutzen:

Gegeben eine Klausel $\exists z.\phi(z)$ ersetze diese durch $\phi(z_0)$ wobei z_0 eine neue Variable ist, die sonst nicht vorkommt.

▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∃ Quantor dürfen Sie folgende Regel benutzen:

Gegeben eine Klausel $\exists z.\phi(z)$ ersetze diese durch $\phi(z_0)$ wobei z_0 eine neue Variable ist, die sonst nicht vorkommt.

- ▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$
- ▶ Neue daraus entstehende Klausel: $(C \land D)$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

Aus Aufgabenstellung:

Für den ∃ Quantor dürfen Sie folgende Regel benutzen:

Gegeben eine Klausel $\exists z.\phi(z)$ <u>ersetze</u> diese durch $\phi(z_0)$ wobei z_0 eine *neue* Variable ist, die sonst nicht vorkommt.

- ▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$
- ▶ Neue daraus entstehende Klausel: $(C \land D)$

Ergebnis: $B \wedge C \wedge D$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$
- ▶ Neue daraus entstehende Klausel: $(C \land D)$

Ergebnis: $B \wedge C \wedge D$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$
- ▶ Neue daraus entstehende Klausel: $(C \land D)$

Ergebnis: $B \wedge C \wedge D$

UP mit $B \mapsto true: C \wedge D$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$
- ▶ Neue daraus entstehende Klausel: $(C \land D)$

Ergebnis: $B \wedge C \wedge D$

UP mit $B \mapsto true$: $C \wedge D$

UP mit $C \mapsto true$: D

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B$

Unit Propagation mit $A \mapsto true$:

▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

▶ Neue daraus entstehende Klausel: $(C \land D)$

Ergebnis: $B \wedge C \wedge D$

UP mit $B \mapsto true$: $C \wedge D$

UP mit $C \mapsto true$: D

UP mit $D \mapsto true$: true

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land y = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B$$

Unit Propagation mit $A \mapsto true$:

- ▶ Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$
- Neue daraus entstehende Klausel: $(C \land D)$

Ergebnis:
$$B \wedge C \wedge D$$

$$\mathsf{UP} \; \mathsf{mit} \; B \mapsto true : \; C \wedge D$$

UP mit
$$C \mapsto true$$
: D

UP mit
$$D \mapsto true$$
: $true$

Aussagenlogische Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Aussagenlogische Formel:

$$B \wedge C \wedge D$$

Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Aussagenlogische Formel:

$$B \wedge C \wedge D$$

Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{y = 0}_{B} \land \underbrace{0 < z}_{C} \land \underbrace{z < y}_{D}$$

Aussagenlogische Formel:

$$B \wedge C \wedge D$$

Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Entspricht Gleichungssystem:

Aussagenlogische Formel:

$$B \wedge C \wedge D$$

Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{y = 0}_{B} \land \underbrace{0 < z}_{C} \land \underbrace{z < y}_{D} \Rightarrow \mathsf{Konflikt} : 0 < z < y = 0 \quad \Rightarrow \quad 0 < 0 \nleq$$

Hinzufügen einer neuen Klausel $(\neg B \lor \neg C \lor \neg D)$ zu bisheriger Formel:

$$B \wedge C \wedge D \wedge (\neg B \vee \neg C \vee \neg D)$$

Aussagenlogische Formel:

$$B \wedge C \wedge D$$

Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{y = 0}_{B} \land \underbrace{0 < z}_{C} \land \underbrace{z < y}_{D} \Rightarrow \mathsf{Konflikt} : 0 < z < y = 0 \quad \Rightarrow \quad 0 < 0 \nleq$$

Hinzufügen einer neuen Klausel $(\neg B \lor \neg C \lor \neg D)$ zu bisheriger Formel:

$$B \wedge C \wedge D \wedge (\neg B \vee \neg C \vee \neg D)$$

$$\mathsf{UP}\ B \mapsto true \colon C \wedge D \wedge (\neg C \vee \neg D)$$

Aussagenlogische Formel:

$$B \wedge C \wedge D$$

Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{y = 0}_{R} \land \underbrace{0 < z}_{C} \land \underbrace{z < y}_{D} \Rightarrow \mathsf{Konflikt} : 0 < z < y = 0 \quad \Rightarrow \quad 0 < 0 \nleq$$

Hinzufügen einer neuen Klausel $(\neg B \lor \neg C \lor \neg D)$ zu bisheriger Formel:

$$B \wedge C \wedge D \wedge (\neg B \vee \neg C \vee \neg D)$$

$$\mathsf{UP}\ B \mapsto true \colon \ C \wedge D \wedge (\neg C \vee \neg D)$$

 $\mathsf{UP}\ C \mapsto true \colon \ D \land \neg D$

Aussagenlogische Formel:

$$B \wedge C \wedge D$$

Formel erfüllbar durch Belegung:

$$\{B \mapsto true, C \mapsto true, D \mapsto true\}$$

Entspricht Gleichungssystem:

$$\underbrace{y = 0}_{R} \land \underbrace{0 < z}_{C} \land \underbrace{z < y}_{D} \Rightarrow \mathsf{Konflikt} : 0 < z < y = 0 \quad \Rightarrow \quad 0 < 0 \nleq$$

Hinzufügen einer neuen Klausel $(\neg B \lor \neg C \lor \neg D)$ zu bisheriger Formel:

$$B \wedge C \wedge D \wedge (\neg B \vee \neg C \vee \neg D)$$

$$\mathsf{UP}\ B \mapsto true\colon C \wedge D \wedge (\neg C \vee \neg D)$$

$$\begin{array}{l} \mathsf{UP}\ C \mapsto true \colon \ D \land \neg D \\ \mathsf{UP}\ D \mapsto true \colon \ false \end{array}$$

 \Rightarrow unerfüllbar

SMT 6a)

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

SMT 6a)

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

Belegung durch aussagenlogische Variablen:

$$A := \exists x. \ 0 < x \land x < y$$

$$B := \forall z. \ z \neq 1 \lor f(z) = y$$

$$C \coloneqq f(1) = x$$

$$D \coloneqq x = 0$$

SMT 6a)

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

Belegung durch aussagenlogische Variablen:

$$A := \exists x. \ 0 < x \land x < y$$

$$B := \forall z. \ z \neq 1 \lor f(z) = y$$

$$C \coloneqq f(1) = x$$

$$D \coloneqq x = 0$$

DPLL: Substitution durch neu eingeführte Variablen in Formel:

$$A \wedge B \wedge C \wedge D$$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge C \wedge D$$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B \wedge C \wedge D$

UP mit $A \mapsto true$:

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B \wedge C \wedge D$

UP mit $A \mapsto true$:

Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B \wedge C \wedge D$

UP mit $A \mapsto true$:

Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Neue daraus entstehende Klausel: $(E \wedge F)$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B \wedge C \wedge D$

UP mit $A \mapsto true$:

Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Neue daraus entstehende Klausel: $(E \wedge F)$

Ergebnis: $B \wedge C \wedge D \wedge E \wedge F$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B \wedge C \wedge D$

UP mit $A \mapsto true$:

Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Neue daraus entstehende Klausel: $(E \wedge F)$

Ergebnis: $B \wedge C \wedge D \wedge E \wedge F$

UP mit $B \mapsto true$:

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B \wedge C \wedge D$

UP mit $A \mapsto true$:

Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Neue daraus entstehende Klausel: $(E \wedge F)$

Ergebnis: $B \wedge C \wedge D \wedge E \wedge F$

UP mit $B \mapsto true$:

Instanziierung von B mit $z \mapsto 1$: $1 \neq 1 \lor f(1) = y$)

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

 $A \wedge B \wedge C \wedge D$

UP mit $A \mapsto true$:

Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Neue daraus entstehende Klausel: $(E \wedge F)$

Ergebnis: $B \wedge C \wedge D \wedge E \wedge F$

UP mit $B \mapsto true$:

Instanziierung von B mit $z \mapsto 1$: $1 \neq 1 \lor f(1) = y$)

Neue daraus entstehende Klausel: $(G \vee H)$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

DPLL: Substitution durch aussagenlogische Variablen:

$$A \wedge B \wedge C \wedge D$$

UP mit $A \mapsto true$:

Instanziierung von A mit $x \mapsto z$: $0 < z \land z < y$

Neue daraus entstehende Klausel: $(E \wedge F)$

Ergebnis: $B \wedge C \wedge D \wedge E \wedge F$

UP mit $B \mapsto true$:

Instanziierung von B mit $z \mapsto 1$: $1 \neq 1 \lor f(1) = y$)

Neue daraus entstehende Klausel: $(G \lor H)$

Ergebnis: $C \wedge D \wedge E \wedge F \wedge (G \vee H)$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

Fortsetzung von letzter Folie:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

Fortsetzung von letzter Folie:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

 $UP mit C \mapsto true: D \wedge E \wedge F \wedge (G \vee H)$

 $\mathsf{UP} \; \mathsf{mit} \; D \mapsto true \colon \, E \wedge F \wedge (G \vee H)$

 $\mathsf{UP} \; \mathsf{mit} \; E \mapsto true \colon \, F \wedge (G \vee H)$

 $\mathsf{UP} \; \mathsf{mit} \; F \mapsto true \colon \left(G \vee H \right)$

 $\mathsf{UP} \; \mathsf{mit} \; G \mapsto true \colon true$

Gegeben:

$$(\exists x. \ 0 < x \land x < y) \land (\forall z. \ z \neq 1 \lor f(z) = y) \land f(1) = x \land x = 0$$

Fortsetzung von letzter Folie:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

 $\mathsf{UP} \; \mathsf{mit} \; C \mapsto true \colon \; D \land E \land F \land (G \lor H)$

 $\mathsf{UP} \; \mathsf{mit} \; D \mapsto true \colon E \wedge F \wedge (G \vee H)$

 $\mathsf{UP} \; \mathsf{mit} \; E \mapsto true \colon \; F \wedge (G \vee H)$

 $\mathsf{UP} \; \mathsf{mit} \; F \mapsto true \colon \left(G \vee H \right)$

UP mit $G \mapsto true$: true

Aussagenlogische Formel erfüllbar durch Belegung:

 $\{C, D, E, F, G \mapsto true\}$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, G \mapsto true\}$$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, G \mapsto true\}$$

Problem: Klausel G ist unerfüllbar: $1 \neq 1$ &

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, G \mapsto true\}$$

Problem: Klausel G ist unerfüllbar: $1 \neq 1$ &

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, G \mapsto true\}$$

Problem: Klausel G ist unerfüllbar: $1 \neq 1$ 4

Hinzufügen einer neuen Klausel $(\neg G)$ zu bisheriger Formel:

$$(G \vee H) \wedge \neg G$$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, G \mapsto true\}$$

Problem: Klausel G ist unerfüllbar: $1 \neq 1$ 4

Hinzufügen einer neuen Klausel $(\neg G)$ zu bisheriger Formel:

$$(G \lor H) \land \neg G$$

 $UP \ G \mapsto false: \ H$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, G \mapsto true\}$$

Problem: Klausel G ist unerfüllbar: $1 \neq 1$ 4

Hinzufügen einer neuen Klausel $(\neg G)$ zu bisheriger Formel:

$$(G \vee H) \wedge \neg G$$

 $\begin{array}{l} \mathsf{UP} \ G \mapsto false \hbox{:} \ H \\ \mathsf{UP} \ H \mapsto true \hbox{:} \ true \end{array}$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H)$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, G \mapsto true\}$$

Problem: Klausel G ist unerfüllbar: $1 \neq 1$ 4

Hinzufügen einer neuen Klausel $(\neg G)$ zu bisheriger Formel:

$$(G \vee H) \wedge \neg G$$

 $\mathsf{UP} \ G \mapsto false \colon H$

 $\mathsf{UP}\ H \mapsto true:\ true$

Aussagenlogische Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H) \wedge \neg G$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H) \wedge \neg G$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Entspricht Gleichungssystem:

$$\underbrace{f(1) = x}_{C} \land \underbrace{x = 0}_{D} \land \underbrace{0 < z}_{E} \land \underbrace{z < y}_{F} \land \underbrace{\neg (1 \neq 1)}_{\neg G} \land \underbrace{f(1) = y}_{H}$$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H) \wedge \neg G$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Entspricht Gleichungssystem:

$$\underbrace{f(1) = x}_{C} \wedge \underbrace{x = 0}_{D} \wedge \underbrace{0 < z}_{E} \wedge \underbrace{z < y}_{F} \wedge \underbrace{\neg (1 \neq 1)}_{\neg G} \wedge \underbrace{f(1) = y}_{H}$$

Konflikt: 0 < z < y Widerspruch zu f(1) = x = y = 0

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H) \wedge \neg G$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Entspricht Gleichungssystem:

$$\underbrace{f(1) = x}_{C} \land \underbrace{x = 0}_{D} \land \underbrace{0 < z}_{E} \land \underbrace{z < y}_{F} \land \underbrace{\neg (1 \neq 1)}_{\neg G} \land \underbrace{f(1) = y}_{H}$$

Konflikt: 0 < z < y Widerspruch zu f(1) = x = y = 0

Hinzufügen einer neuen Klausel $(\neg H)$ zu bisheriger Formel:

$$(G \lor H) \land \neg G \land \neg H$$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H) \wedge \neg G$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Entspricht Gleichungssystem:

$$\underbrace{f(1) = x}_{C} \land \underbrace{x = 0}_{D} \land \underbrace{0 < z}_{E} \land \underbrace{z < y}_{F} \land \underbrace{\neg (1 \neq 1)}_{\neg G} \land \underbrace{f(1) = y}_{H}$$

Konflikt: 0 < z < y Widerspruch zu f(1) = x = y = 0

Hinzufügen einer neuen Klausel $(\neg H)$ zu bisheriger Formel:

$$(G \lor H) \land \neg G \land \neg H$$

 $\mathsf{UP}\ G \mapsto false:\ H \land \neg H$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H) \wedge \neg G$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Entspricht Gleichungssystem:

$$\underbrace{f(1) = x}_{C} \land \underbrace{x = 0}_{D} \land \underbrace{0 < z}_{E} \land \underbrace{z < y}_{F} \land \underbrace{\neg (1 \neq 1)}_{\neg G} \land \underbrace{f(1) = y}_{H}$$

Konflikt: 0 < z < y Widerspruch zu f(1) = x = y = 0

Hinzufügen einer neuen Klausel $(\neg H)$ zu bisheriger Formel:

$$(G \lor H) \land \neg G \land \neg H$$

 $\begin{array}{l} \mathsf{UP} \ G \mapsto false \colon H \land \neg H \\ \mathsf{UP} \ H \mapsto false \colon false \end{array}$

Aussagenlogische Formel:

$$C \wedge D \wedge E \wedge F \wedge (G \vee H) \wedge \neg G$$

Formel erfüllbar durch Belegung:

$$\{C, D, E, F, H \mapsto true, G \mapsto false\}$$

Entspricht Gleichungssystem:

$$\underbrace{f(1) = x}_{C} \land \underbrace{x = 0}_{D} \land \underbrace{0 < z}_{E} \land \underbrace{z < y}_{F} \land \underbrace{\neg(1 \neq 1)}_{\neg G} \land \underbrace{f(1) = y}_{H}$$

Konflikt: 0 < z < y Widerspruch zu f(1) = x = y = 0

Hinzufügen einer neuen Klausel $(\neg H)$ zu bisheriger Formel:

$$(G \vee H) \wedge \neg G \wedge \neg H$$

$$\begin{array}{c} \mathsf{UP} \ G \mapsto false \colon H \land \neg H \\ \mathsf{UP} \ H \mapsto false \colon false \end{array}$$

 \Rightarrow unerfüllbar