Apex coordinates in dipole magnetic field

Karl Laundal, karl.laundal@uib.no

March 31, 2023

Abstract

This document presents some fundamental equations for a magnetic dipole model, and the equations for apex base vectors in a dipole field for a spherical Earth. The purpose of this is to be able to easily use the equations developed for apex coordinates with a dipole magnetic field.

1 Definitions

- λ is the dipole latitude.
- ϕ is the dipole longitude
- Subscript ma is used to denote Modified Apex (MA) coordinates
- Subscript qd is used to dentoe Quasi-Dipole (QD) coordinates
- r is the radius (same for dipole, MA, and QD coordinates)
- B_0 is the reference magnetic field, equal to the norm of a vector formed by the dipole Gauss coefficients: $B_0 = \sqrt{(g_0^1)^2 + (g_1^1)^2 + (h_1^1)^2}$
- R is the modified apex reference radius
- $R_E = 6371.2$ km is the Earth radius

2 Equation for a dipole

The equation for a dipole magnetic field in dipole coordinates is

$$\mathbf{B}(r,\lambda) = B_0 \left(\frac{R_E}{r}\right)^3 \left(-2\sin\lambda\hat{\mathbf{e}}_r + \cos\lambda\hat{\mathbf{e}}_\lambda\right). \tag{1}$$

The field magnitude is

$$B(r,\lambda) = B_0 \left(\frac{R_E}{r}\right)^3 \sqrt{4 - 3\cos^2 \lambda} \tag{2}$$

The equation for a dipole field line is:

$$r(\lambda) = r_{eq} \cos^2 \lambda \tag{3}$$

which implies that the apex radius of the field line at (r, λ) is

$$r_{eq}(r,\lambda) = r/\cos^2 \lambda$$
 (4)

Equation 1 can be written as $\mathbf{B} = -\nabla V$ where the magnetic potential V is:

$$V = -B_0 \frac{R_E^3}{r^2} \sin \lambda \tag{5}$$

3 Conversion

Below are equations for converting between dipole, modified apex, and quasidipole coordinates for a dipole field. The longitudes are all equal:

$$\phi = \phi_{qd} = \phi_{ma} \tag{6}$$

3.1 Modified apex

Equation 4 can be used directly in the equation for modified apex latitude:

$$\lambda_{ma}(r,\lambda) = \pm \cos^{-1} \sqrt{\left(\frac{R}{r}\right) \cos^2 \lambda}.$$
 (7)

where \pm refers to the Northern (+) and Southern (-) hemisphere. The opposite conversion, from λ_{ma} to λ is

$$\lambda(r, \lambda_{ma}) = \pm \cos^{-1} \sqrt{\left(\frac{r}{R}\right) \cos^2 \lambda_{ma}}.$$
 (8)

3.2 Quasi-dipole

For quasi-dipole coordinates, the above equations are the same except that instad of R we trace back to r. All the ratios in the parentheses above are 1, so that

$$\lambda_{qd} = \lambda \qquad \forall r \qquad (9)$$

4 The base vectors

From the equations above, we can define base vectors similar to those in Richmond [1995], only that in this case they hold for a dipole magnetic field, and thus they can be found analytically. I will express the vectors in (E, N, U)-directions, which here refer to dipole coordinates. All equations below are derived for $\lambda \in [0^{\circ}, 90^{\circ}]$, so the sign of λ should be changed for points in the Southern hemisphere. \pm and \mp are used to keep track of the sign of each hemisphere (North on top).

4.1 Modified apex base vectors

In a dipole field, the modified apex base vectors are everywhere perpendicular, but they are unit length only at r = R. Only at r = R is $\mathbf{d}_i = \mathbf{e}_i$, although they are parallel everywhere, and $\mathbf{d}_i \cdot \mathbf{e}_j = \delta_{ij}$ holds. This is because they are defined to scale differently with the magnetic field.

The modified apex base vectors are defined as (Eqs. 3.8-3.9 in Richmond [1995])

$$\mathbf{d}_1 = R\cos\lambda_{ma}\nabla\phi_{ma} \tag{10}$$

$$\mathbf{d}_2 = -R\sin I_{ma}\nabla\lambda_{ma} \tag{11}$$

$$\mathbf{d}_3 = \frac{-\nabla V}{BD} = \frac{\mathbf{d}_1 \times \mathbf{d}_2}{\|\mathbf{d}_1 \times \mathbf{d}_2\|^2} \tag{12}$$

where the last expression for \mathbf{d}_3 can be found using (3.13) and (3.15) in Richmond [1995].

4.1.1 d_1

The \mathbf{d}_1 base vector (Equation 10) depends on the gradient of $\phi_{ma} = \phi$. Using (7) to replace $\cos \lambda_{ma}$, we get:

$$\mathbf{d}_{1}(r,\lambda) = R\left(\frac{R}{r}\right)^{3/2} \cos \lambda \frac{1}{r \cos \lambda} \frac{\partial \phi}{\partial \phi} \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
 (13)

$$\mathbf{d}_{1}(r,\lambda) = \left(\frac{R}{r}\right)^{3/2} \begin{pmatrix} 1\\0\\0 \end{pmatrix} \tag{14}$$

4.1.2 d_2

The \mathbf{d}_2 base vector can be found by calculating the gradient of Eq. 7 and inserting the result into the definition (11). We also need to express $\sin I_{ma}$ in terms of (r, λ) . I start by the latter:

$$\sin I_{ma} = 2\sin \lambda_{ma} (4 - 3\cos^2 \lambda_{ma})^{-1/2}$$

$$= \pm 2\sqrt{\frac{1 - \frac{R}{r}\cos^2 \lambda}{4 - 3\frac{R}{r}\cos^2 \lambda}}$$

$$(15)$$

where Equation 7 was used.

The gradient of λ_{ma} can be written

$$\nabla \lambda_{ma} = \pm \begin{pmatrix} 0 \\ \frac{1}{r} \frac{\partial}{\partial \lambda} \end{pmatrix} \left[\cos^{-1} \sqrt{\left(\frac{R}{r}\right)} \cos^{2} \lambda \right]$$

$$= \pm \begin{pmatrix} 0 \\ \sqrt{\frac{R}{r}} \frac{\sin \lambda}{r\sqrt{1 - \frac{R}{r}\cos^{2} \lambda}} \\ \sqrt{\frac{R}{r}} \frac{\cos \lambda}{2r\sqrt{1 - \frac{R}{r}\cos^{2} \lambda}} \end{pmatrix} = \pm \frac{\sqrt{R/r}}{r\sqrt{1 - \frac{R}{r}\cos^{2} \lambda}} \begin{pmatrix} 0 \\ \sin \lambda \\ \cos \lambda/2 \end{pmatrix}$$
(16)

Inserting this expression, and the expression for $\sin I_{ma}$ into the definition of \mathbf{d}_2 (11) we get

$$\mathbf{d}_{2}(r,\lambda) = \mp \left(\frac{R}{r}\right)^{3/2} \left(4 - 3\frac{R}{r}\cos^{2}\lambda\right)^{-1/2} \begin{pmatrix} 0\\ 2\sin\lambda\\ \cos\lambda \end{pmatrix}$$
(17)

This expression can be used to confirm that $\|\mathbf{d}_2(r=R,\lambda)\|=1$, as it should be for a dipole field and spherical Earth.

4.2 d_3

The last base vector can be found by crossing \mathbf{d}_1 and \mathbf{d}_2 . Multiplication of the scalar coefficients give:

$$\mp \left(\frac{R}{r}\right)^3 \left(4 - 3\frac{R}{r}\cos^2\lambda\right)^{-1/2},$$

and crossing the vector parts give

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} 0\\2\sin\lambda\\\cos\lambda \end{pmatrix} = \begin{pmatrix} 0\\-\cos\lambda\\2\sin\lambda \end{pmatrix} \tag{18}$$

We calculate the quantity $D = \|\mathbf{d}_1 \times \mathbf{d}_2\|$:

$$D = \left(\frac{R}{r}\right)^3 \sqrt{\frac{4 - 3\cos^2 \lambda}{4 - 3\frac{R}{r}\cos^2 \lambda}} \tag{19}$$

The \mathbf{d}_3 base vector is

$$\mathbf{d}_{3}(r,\lambda) = \left(\frac{r}{R}\right)^{3} \frac{\sqrt{4 - 3\frac{R}{r}\cos^{2}\lambda}}{4 - 3\cos^{2}\lambda} \begin{pmatrix} 0\\\cos\lambda\\ -2\sin\lambda \end{pmatrix}$$
 (20)

which is parallel to the dipole field. B_{e_3} is supposed to be constant along a field line, so we can now check that this is true, by calculating

$$B_{e_3} = \mathbf{B} \cdot \mathbf{d}_3 = B_0 \left(\frac{R_E}{R}\right)^3 \sqrt{4 - 3R/r_{eq}}$$
 (21)

which is constant. B_{e_3} should be equal to B/D. Let's check that also:

$$B/D = \frac{B_0 \left(\frac{R_E}{r}\right)^3 \sqrt{4 - 3\cos^2 \lambda}}{\left(\frac{R}{r}\right)^3 \sqrt{\frac{4 - 3\cos^2 \lambda}{4 - 3\frac{R}{r}\cos^2 \lambda}}} = B_0 \left(\frac{R_E}{R}\right)^3 \sqrt{4 - 3R/r_{eq}}$$
(22)

as expected. Also, at r=R, B_{e_3} is the magnetic field strength. This can be seen by replacing r_{eq} with $r/\cos^2 \lambda$, and r by R.

References

A. D. Richmond. Ionospheric electrodynamics using magnetic apex coordinates. *J. Geomag. Geoelectr.*, 47:191–212, 1995. doi: 10.5636/jgg.47.191.