	·		
Printed !	l Page:- 04 Su	bject Code:- ACSML0501	
	Ro	ll. No:	
	NOIDA INSTITUTE OF ENGINEERING ANI	D TECHNOLOGY, GREATER NOIDA	
	(An Autonomous Institute Affili	iated to AKTU, Lucknow)	
	B.Tech		
	SEM: V - THEORY EXAMINA	ATION (2023-2024)	
	Subject: Machine	Learning	
	3 Hours	Max. Marks: 10	00
	l Instructions:		
	rify that you have received the question paper		
	Question paper comprises of three Section	i s -A, B, & C. It consists of Multiple Choi	ce
	ns (MCQ's) & Subjective type questions.	a right, hand side of each question	
	mum marks for each question are indicated or rate your answers with neat sketches wherever		
	ne suitable data if necessary.	necessary.	
	rably, write the answers in sequential order.		
•	heet should be left blank. Any written i	material after a blank sheet will not	be
	ed/checked.		
	SECTION A	2	20
1. Attem	mpt all parts:-		
1-a.	What is the purpose of a ROC curve in ma	achine learning? (CO1)	1
	(a) To evaluate classification model	s by measuring their precision	
	(b) To visualize the performance of		
	(c) To measure the computational c	complexity of a model	
	(d) To compare the runtime of diffe	erent algorithms	
1-b.	In the context of machine learning, what	does "feature selection" refer to? (CO1	1
)	·	
	(a) Selecting the best machine learr	ning algorithm for a problem	
	(b) Selecting the most relevant fea	atures from the dataset to improve mod	le
	performance		
	(c) Removing all features from the o	dataset	
	(d) Adding more features to the date	taset	
1-c.	Logistic regression is commonly used for:	: (CO2)	1
	(a) Predicting numerical values		

	(b) Binary classification tasks	
	(c) Clustering data points	
	(d) Association	
1-d.	Support Vector Machines (SVM) are known for their effectiveness in finding: (CO2)	1
	(a) Linear decision boundaries	
	(b) Complex decision boundaries	
	(c) Clustering patterns	
	(d) Hidden patterns in data	
1-e.	What is the primary objective of the Expectation Maximization (EM) algorithm in clustering? (CO3)	1
	(a) Minimizing the number of clusters	
	(b) Maximizing the intra-cluster similarity	
	(c) Maximizing the likelihood of data given the cluster model	
	(d) Minimizing the cluster centroids' distances	
1-f.	Which of the following statements about K-Means clustering is true? (CO3)	1
	(a) K-Means is a density-based clustering algorithm.	
	(b) K-Means is sensitive to the initial placement of cluster centroids.	
	(c) K-Means can handle categorical data effectively.	
	(d) K-Means forms hierarchical clusters.	
1-g.	In Bayesian Learning, what does the posterior probability represent? (CO4)	1
	(a) The likelihood of the evidence given the hypothesis	
	(b) The prior probability of the hypothesis	
	(c) The likelihood of the hypothesis given the evidence	
	(d) The prior probability of the evidence	
1-h.	Which ensemble method combines multiple models by taking a weighted average of their predictions while giving more weight to better-performing models? (CO4)	1
	(a) Random Forest	
	(b) AdaBoost	
	(c) Bagging	
	(d) XGBoost	
1-i.	What is the primary goal of an agent in Reinforcement Learning using a Markov Decision Process (MDP)? (CO5)	1

	SECTION C	50
3.g.	Define reinforcement learning and its essential components (CO5)	6
3.f.	Explain how gradient boosting machines (GBM) minimize errors iteratively? (CO4)	6
3.e.	Define term K-means clustering. What are its various advantages and disadvantages? (CO3)	6
3-d.	Describe the core concept behind a support vector machine (SVM) and its application in binary classification problems. Provide an intuitive example. (CO2)	6
3-c.	How does ID3 algorithm differ from C4.5 algorithm in terms of their decision-making criteria? . (CO2)	6
3-b.	Define supervised machine learning and discuss its various types.(CO1)	6
3-a.	Compare data science and machine learning, highlighting their similarities and differences in goals and methodologies. (CO1)	6
3. Answ	er any <u>five</u> of the following:-	
	SECTION B	30
2.e.	How does reinforcement learning use in real life? (CO5)	2
2.d.	How does Gradient Boosting Machines (GBM) combine weak learners to create a strong learner? (CO4)	2
2.c.	Discuss clustering algorithms and its various types. (CO3)	2
2.b.	How do decision tree algorithms work in decision making? (CO2)	2
2.a.	What is machine learning? (CO1)	2
2. Atten	npt all parts:-	
	(d) Sentiment analysis	
	(c) Autonomous drone navigation	
	(b) Image classification	
	(a) Solving the traveling salesman problem	
1-j.	What is a practical example of a problem that can be solved using Reinforcement Learning and involves continuous action spaces? (CO5)	1
	(d) Minimize the action space	

(b) Maximize the reward over time by selecting optimal actions

(a) Minimize the state space

(c) Maximize the state space

4. Answer any <u>one</u> of the following:-				
4-a.	Examine ethical considerations in machine learning, including privacy, transparency, and accountability issues. (CO1)	10		
4-b.	What do you mean by underfitting and overfitting in machine learning? When do they occur and how can both issues addressed? (CO1)			
5. Answe	er any <u>one</u> of the following:-			
5-a.	When and why is polynomial regression used in machine learning? What factors impact the choice of polynomial degree? (CO2)	10		
5-b.	Could you explain the concept of "support vectors" in the context of Support Vector Machines (SVM), and their role in creating decision boundaries? (CO2)			
6. Answer any <u>one</u> of the following:-				
6-a.	Explain the hierarchical clustering in detail. (CO3)	10		
6-b.	How does the choice of distance measure impact clustering results? (CO3)	10		
7. Answer any <u>one</u> of the following:-				
7-a.	How does the Naïve Bayes Classifier handle feature independence and data sparsity in text classification? (CO4)	10		
7-b.	State and prove Naive bayes theorem. (CO4)	10		
8. Answe	er any <u>one</u> of the following:-			
8-a.	How does reinforcement learning work in decision-making? (CO5)	10		
8-h	What are the various methods used in reinforcement learning? Explain anyone	10		

method in detail. (CO5)