martedì 12 dicembre 2023 18:01

semantica della logica del prim'ordine

Sia L= Rel u Funct u Const un linguaggio del prim'ordine

L'obbiettivo è di introdurre la nozione di modello (o struttura) per L: un <u>contesto</u> in cui interpretare termini e formule di L.

Una L-struttura A consiste di:

- Un insieme non vuoto |A| detto universo o dominio della struttura
- · Un'interpretazione in A di ogni simbolo di L. Più precisamente:
 - se $R \in Rel$ è un simbolo relazionale n-ario, allora la sua interpretazione R^{A} è una relazione n-aria su |A|, cioè $R^{A} \subseteq |A|^{n} = |A| \times ... \times |A|$
 - se $f \in F$ unct è un simbolo funzionale n-ario, allora la sua interpretazione f^a è una funzione n-aria su |A|, cioè $f^a:|A|^n \to |A|$
- se c ∈ Const è un simbolo di costante, allora la sua interpretazione c^A è un elemento di |A|: c^A∈|A|

- diversi simboli di costante/relazionali/funzionali possono essere interpretati con lo stesso elemento/relazione/funzione

esempio: $L = \{P,Q,a,b\}$, dove P,Q sono simboli relazionari binari, e a,b sono simboli di costante $A = (N, \leq, \leq, 0, 0)$

 $A = (N, \leq, \leq, 0, 0)$ $CIOÈ P^{A} = \leq Q^{A} = \leq Q^{A} = 0, b^{A} = 0$

interpretazioni

Le L-strutture forniscono un contesto in cui interpretare gli enunciati del linguaggio L come illustrazione, sia $L=\{P\}$ con P simbolo relazionale binario. Si consideri l'enunciato φ : $\exists x \forall y P(x,y)$

L'enunciato φ asserisce che c'è un elemento che è in relazione con tutti gli elementi Non ha Senso chiedersi se φ è vero o falso: la verità o falsità dipende da qual è l'universo di elementi di cui ci si occupa e da qual è la relazione che interpreta P. Per esempio, φ è vero in (N,\leqslant) ed è falso in (Z,\leqslant) e in (N,\gtrless)

strutture

Le strutture forniscono la semantica della logica del prim'ordine Si definisce cosa vuol dire interpretare una L-formula y in una L-struttura de, nel caso in cui y sia un enunciato, cosa significa che y è vero in d, denotato de

formule

Il diverso ruolo delle formule g(x,x)=f(c,c) e $\exists x \ g(x,x)=f(c,c)$ quando si cerca di valutare se siano vere o false nelle strutture $A \circ B$ è dovuto al fatto che la prima ha una variabile libera, la seconda no (quindi è un enunciato)

- La verità di β ($\exists x \ g(x,x) = f(c,c)$), e in generale degli enunciati, dipende solo dalla struttura in cui si valuta l'enunciato
- La verità di A(g(x,x)=g(c,c)), e in generale delle formule con variabili libere, dipende Sia dalla struttura in cui si valuta la formula, sia dal valore assegnato alle variabili libere

interpretazione dei termini

libere

interpretazione dei termini

Per definire cosa vuol dire interpretare una formula in una struttura, si deve prima definire l'interpretazione dei termini rella struttura

- L'interpretazione dei simboli funzionali e di costante è definita d'alla struttura stessa
- · Alle variabili si deveno assegnare dei valori, cioè degli elementi della struttura

Si introduce pertanto il concetto di assegnazione

assegnazioni

Data una L-struttura A, un'assegnazione (di valori) a un insieme di variabili $\{x_1,...,x_n\}$ è una funzione che assegna a ogni variabile dell'insieme un elemento dell'universo della struttura, cioè è una funzione $\{x_1,...,x_n\} \rightarrow |A|$

Una tale assegnatione si denota spesso $x_1/a_1, x_2/a_2, ..., x_n/a_n$ dove a_i è il valore assegnato alla variabile x_i

Valore di verità di un enunciato

- Il valore di verità di una formula P in una struttura U dipende da un'assegnazione, ma solo dai valori che questa assegnazione da alle variabili libere di P
- Quindi, se Y è un enunciato, il suo valore di verità in A non dipende da alcuna assegnazione Pertanto, se Y è un enunciato, si scrive $A \models Y$ per denotare che Y è vero in A.
- -Si dice allora anche che U soddisfa 4, o che 4 è soddisfatto da U
- -La relazione ⊨, che è una relazione tra strutture ed enunciati, si chiama relazione di soddisfacibilità