

JNIVERSITY OF

CAMBRIDGE

AI IN DECISION **MAKING FOR COMPLEX SYSTEMS** CENTRE FOR DOCTORAL TRAINING

Bayesian Conformal Prediction

Fanyi Wu¹, Michele Caprio¹, Jorge Loria², Samuel Kaski^{1,2}

- ¹Department of Computer Science, University of Manchester
- ²Department of Computer Science, Aalto University

1. Bayes vs. Conformal Prediction

Bayesian prediction can be highly informative and well-calibrated when the model is correct, but its coverage can break down under **model misspecification** (the M-open view).

Conformal prediction (CP) builds prediction regions that achieve the desired marginal coverage $1-\alpha$ under nothing more than **exchangeability**—no other distributional assumptions. These regions contain the true outcome with probability $1-\alpha$ for any exchangeable data-generating process, providing rock-solid uncertainty quantification.

(Bayesian Conformal Prediction) BCP fixes this vulnerability by guaranteeing coverage even when the Bayesian model is wrong, but off-the-shelf CP scores can be conservative, leading to wide sets.

Motivation: develop Bayesianinspired non-conformity scores that retain the exact finite-sample guarantees of conformal prediction while producing narrower, more efficient prediction regions.

2. Bayesian non-conformity score

• Non-conformity Score (posterior-predictive density)

$$\sigma_i = p(Y_i \mid X_i, Z_{1:n+1})$$

is exchangeable across the augmented sample, so the usual rank test still guarantees finite-sample coverage.

• AOI importance estimate (no model re-fit). For a candidate y,

$$\widehat{p}\big(y\mid x_{n+1}\big) \; = \; \sum_{t=1}^T \widetilde{w}^{(t)} \, f_{\theta^{(t)}}\big(y\mid x_{n+1}\big), \qquad w^{(t)} = f_{\theta^{(t)}}\big(y\mid x_{n+1}\big), \qquad \widetilde{w}^{(t)} = \frac{w^{(t)}}{\sum_{t'} w^{(t')}}.$$

3. Validity in Bayesian Conformal Prediction

Traditional conformal prediction (CP) satisfies Type-2 validity. For exchangeable data, the full conformal set

 $C_{\alpha}(X_{n+1}) = \{ y : r(y) > \alpha \}$

satisfies:
$$\mathbb{P}\{Y_{n+1} \in C_{\alpha}(X_{n+1})\} \ge 1 - \alpha$$

Why Type-2 validity matters.

It controls the overall error probability:

$$\mathbb{P}\{Y_{n+1}\notin C_{\alpha}(X_{n+1})\}\leq \alpha$$

in finite samples, without any modelling assumptions beyond exchangeability.

Bayesian Conformal Prediction (BCP) also satisfies Type-2 validity.

Using the posterior predictive density as an exchangeable conformity score:

 $\sigma_i = p(Y_i \mid X_i, Z_{1:n+1})$

BCP inherits the same guarantee:

$$\mathbb{P}\{Y_{n+1}\in C_{\alpha}^{\mathrm{BCP}}(X_{n+1})\}\geq 1-\alpha$$

Hence BCP preserves CP's marginal coverage --Bayesian procedure can possess exact frequentist validity.

4. Diabetes Regression Example

- Dataset Diabetes (Efron et al. 2004), n = 442, d = 10; all predictors and the response are standardised.
- Bayesian model

$$f_{\theta}(y \mid x) = \mathcal{N}(y \mid \theta^{\top} x + \theta_0, \tau^2), \qquad \pi(\theta_i) = \text{Laplace}(0, b), \ \pi(\tau) = \mathcal{N}^+(0, c).$$

• Two priors on τ

-c = 1: well-specified.

-c = 0.02: misspecified

Prediction Intervals for Sample Points Effect of prior choice: Bayesian vs BCP Prediction c=1 ★ True Values Bayes c=0.02 interval Split CP Full CP Bayes (c=0.02) CB **Split** Full ($\lambda = 0.004$) Bayes 0.808 (0.006) 0.809 (0.006) 0.808 (0.006) Coverage 0.809 (0.006) 1.87 (0.01) 1.91 (0.02) 1.86 (0.01) 1.84 (0.01) Length c = 1

5. The 'Optimal' Non-conformity Score

1.87 (0.01)

0.702 (0.019)

0.668 (0.003)

0.065 (0.001)

11.529 (0.232)

Vovk et al. (2005, Theorem 2.10) establishes that conformal predictors are at minimum equivalent to conservatively valid predictors.

1.14 (0.00)

0.488 (0.107)

0.373 (0.002)

c = 0.02

Run-time

(secs)

For a conformal predictor with significance level $\epsilon \in (0,1)$, there exists a conformity measure that produces confidence regions that are valid and minimal. This is formalized through the non-conformity measure:

$$A(B, z) := \inf\{\epsilon : z \in S(B, \epsilon)\}$$

where $S(B,\epsilon)$ is the set of elements that would cause an error at significance level ϵ . The theorem guarantees that the resulting conformal predictor is at least as good as any given predictor Γ .

For any $\alpha \in [0,1]$ and any non-conformity measure $\Psi \in \mathcal{F}$, there exists another nonconformity measure $\Psi' \neq \Psi$ such that:

$$\mathcal{R}^{\Psi'}_lpha(\mathbf{y}^n)\supset\mathcal{R}^\Psi_lpha(\mathbf{y}^n)$$

with strict inclusion for some value of α . Additionally:

$$P[Y_{n+1} \in \mathcal{R}_{\alpha}^{\Psi'}(\mathbf{y}^n)] \ge 1 - \alpha$$

uniformly in probability distribution P and sample size n.

LABLE Method uses probabilistic models to determine smallest prediction sets:

Set-valued classifier : $H(x) = \{y : p(y|x) \ge t_{\alpha}\}$ Error constraint (total) : $\mathbb{P}\{Y \notin H(X)\} \leq \alpha$

Error constraint (class-specific) : $\mathbb{P}\{Y \notin H(X)|Y=y\} \leq \alpha_y$ for all y

Optimization objective: $\min_{H} \mathbb{E}\{|H(X)|\}$ subject to error constraints

6. Discussion

Feature	Conformal Pre- diction	Bayesian Conformal Prediction	LABEL Classi- fiers
Core idea	Distribution-free uncertainty quan- tification	Using Bayesian posterior as non-conformity score	Optimizing prediction set size under error constraints
Theoretical	Valid coverage re-	Valid coverage with	Valid coverage with
guarantee	gardless of distribu- tion	improved efficiency	minimal prediction set size
Assumes	Only exchangeabil-	Prior distribution	True conditional
knowledge of	ity of data	and likelihood	probabilities
Computational approach	Ranking-based non-conformity scores	Posterior sampling (MCMC) + importance sampling	Thresholding conditional probabilities
Key advan-	Distribution-free	Efficiency through	Minimal prediction
\mathbf{tage}	guarantees	Bayesian modeling	set size
Key limitation	Can be inefficient without good conformity measure	Requires accurate Bayesian model	Requires calibrated probabilities

There are many ways to suggest and investigate for the non-conformity score that gives the minimal prediction region by considering Vovk's Theorem 2.10 and LABEL method. For example, LABEL methods can be thresholding the posterior-predictive probabilities.

• Define a posterior-predictive score

$$\sigma((x,y)) = -\hat{p}(y \mid x, \mathcal{D}),$$

where $\hat{p}(y \mid x, \mathcal{D})$ is the Bayesian posterior predictive density.

• LABEL thresholding Construct the set-valued classifier

$$H_{\alpha}(x) = \left\{ y : \hat{p}(y \mid x, \mathcal{D}) \ge t_{\alpha} \right\},$$

with the threshold t_{α} chosen to satisfy LABEL's error-rate constraint.

• Bayesian Conformal Prediction (BCP) Apply Vovk's full/split conformal rank test to the augmented exchangeable scores $\{\sigma_1, \ldots, \sigma_{n+1}\}$.

Hence LABEL drives the set toward the highest-density (smallest-volume) region, while the conformal wrapper guarantees exact finite-sample coverage, giving BCP both tight and valid prediction sets.