Techniki Symulacyjne – Metoda Monte Carlo

Zadanie 1

Y jest funkcją kilku zmiennych losowych X_1 , X_2 , ... X_n o dowolnych rozkładach prawdopodobieństwa.

$$Y = Y(X_1, X_2, ... X_n)$$

Określić rozkład prawdopodobieństwa zmiennej losowej Y.

Algorytm

- 1. Wygenerować po jednej wartości dla każdej zmiennej losowej X₁, X₂, ... X_n.
- 2. Obliczyć wartość zmiennej losowej Y.
- 3. Powtarzać etapy 1 i 2 N razy uzyskując N wartości zmiennej losowej Y.
- 4. Nanieść je na arkusz probabilistyczny.
- 5. Określić typ rozkładu zmiennej losowej Y i jej parametry.

Techniki Symulacyjne – Metoda Monte Carlo

Zadanie 2

Zdarzenie losowe A zajdzie lub nie. Zależy to od wartości, jakie przyjmą zmienne losowe $X_1,\,X_2,\,...\,X_n$ o dowolnych rozkładach prawdopodobieństwa.

Określić prawdopodobieństwo zajścia zdarzenia A.

Algorytm

- 1. Wygenerować po jednej wartości dla każdej zmiennej losowej X₁, X₂, ... X_n.
- 2. Jeżeli zdarzenie A zaszło, zwiększyć liczbę "sukcesów" $N_0 = N_0 + 1$.
- 3. Powtarzać etapy 1 i 2 N razy.
- 4. Obliczyć estymator prawdopodobieństwa zajścia zdarzenia losowego A.

$$\widehat{P}(A) = \frac{N_0}{N}$$
 $\lim_{N \to \infty} \widehat{P}(A) = P(A)$ $N_0 - \text{liczba "sukcesów"}$ $N - \text{liczba prób}$

Metoda "orła i reszki" – błąd metody

$$\widehat{P}(A) = \frac{N_0}{N}$$

Eksperyment

Ile wynosi prawdopodobieństwo wylosowania orła (lub reszki) w wyniku jednokrotnego rzutu monetą?

George Leclerc de Buffon (1707-1788)

N = 4040 $N_0 = 2048$ P = 0,5069

Karl Pearson (1857-1936)

Aby oszacować prawdopodobieństwo awarii P_f rzędu 10^{-3} metodą "orła i reszki" i nie popełnić większego błędu niż 10% (+/- 0,0001) z prawdopodobieństwem 95%, należy przeprowadzić ok. 400 000 prób.

Liczby losowe o rozkładzie równomiernym w przedziale (0, 1)

0,783117	0,812497	0,298542	0,781516	0,443669	0,345165	0,413994	0,837837	
0,636142	0,668635	0,245442	0,988235	0,914158	0,060742	0,049296	0,450726	
0,871003	0,286397	0,106226	0,559697	0,915101	0,634151	0,840762	0,402220	
0,826663	0,855023	0,610382	0,951794	0,505148	0,343788	0,156501	0,275764	
0,432105	0,583201	0,076799	0,229070	0,990502	0,430133	0,976895	0,662192	
0,377269	0,019264	0,442687	0,100550	0,477469	0,006922	0,399568	0,326321	
0,164089	0,302419	0,778799	0,798128	0,252594	0,722379	0,320352	0,410976	
0,586223	0,124205	0,535651	0,580606	0,953833	0,747543	0,043455	0,649685	
0,849082	0,675584	0,321661	0,655498	0,375518	0,775297	0,176068	0,773969	
0,982838	0,661738	0,560271	0,727679	0,975180	0,604067	0,723958	0,935592	
0,627197	0,048509	0,036133	0,198667	0,898221	0,574515	0,808496	0,984814	
0,476066	0,083395	0,443925	0,915508	0,812258	0,523432	0,615414	0,039315	
0,906048	0,431806	0,447924	0,857217	0,766879	0,585551	0,715763	0,944227	
0,644562	0,901033	0,275387	0,879205	0,007319	0,118138	0,564570	0,939221	
0,583137	0,795207	0,179942	0,749713	0,254067	0,521194	0,273162	0,225102	
0,768704	0,046589	0,275850	0,822118	0,566753	0,835728	0,640417	0,275713	
0,288984	0,675511	0,902367	0,753397	0,690707	0,404441	0,432194	0,609131	
0,990578	0,253572	0,854629	0,177114	0,089472	0,315555	0,610687	0,060068	
0,776890	0,126131	0,996156	0,093421	0,276147	0,851305	0,320011	0,917916	
0,214417	0,478321	0,320872	0,489445	0,055827	0,600450	0,725181	0,238619	

 Wygenerować wartość u_i zmiennej losowej U o rozkładzie równomiernym w przedziale (0, 1) i przyjąć

$$p_i = u_i$$

 Obliczyć odwrotność dystrybuanty F_X(x) zmiennej losowej X

$$\boldsymbol{X}_i = \boldsymbol{F}_X^{-1} \big(\boldsymbol{p}_i \big)$$

Generowanie liczb losowych o rozkładzie normalnym

Wygenerować wartość u_i
 zmiennej losowej U
 o rozkładzie równomiernym
 w przedziale (0, 1) i przyjąć

$$p_i = u_i$$

2. Obliczyć odwrotność dystrybuanty rozkładu normalnego standardowego

$$z_i = \Phi^{-1}(p_i)$$

3. Transformować ją do rozkładu normalnego

$$\boldsymbol{x}_{i} = \boldsymbol{\mu}_{X} + \boldsymbol{z}_{i}\boldsymbol{\sigma}_{X}$$

Generowanie liczb losowych o rozkładzie logarytmiczno-normalnym

$$z_{i} = \frac{\ln(x_{i}) - \mu_{inx}}{\sigma_{inx}}$$

X – rozkład logarytmiczno-normalny ln(X) – rozkład normalny Z – rozkład normalny standardowy Obliczyć parametry zmiennej losowej X

$$\begin{split} \sigma_{\text{InX}}^2 &= \text{In} \big(1 + V_{\text{X}}^2 \big) \\ \mu_{\text{InX}} &= \text{In} \big(\mu_{\text{X}} \big) - 0.5 \, \sigma_{\text{InX}}^2 \end{split}$$

 Wygenerować wartość u_i zmiennej losowej U o rozkładzie równomiernym w przedziale (0, 1) i przyjąć

$$p_i = u_i$$

3. Obliczyć odwrotność dystrybuanty rozkładu normalnego standardowego

$$z_i = \Phi^{-1}(p_i)$$

4. Transformować ją do rozkładu logarytmiczno-normalnego

$$x_{_{i}}=e^{(\mu_{InX}+z_{i}\sigma_{InX})}$$

Generowanie liczb losowych o rozkładzie ekstremalnym t. 1

$$F_{X}(x) = \exp(-\exp(-\alpha_{X}(x - u_{X})))$$
- rozkład ekstrem, t. 1

 Obliczyć parametry zmiennej losowej X

$$\alpha_{\chi}=\text{1,282}/\sigma_{\chi}$$

$$u_{\mathsf{X}} = \mu_{\mathsf{X}} - 0.45\sigma_{\mathsf{X}}$$

 Wygenerować wartość u_i zmiennej losowej U o rozkładzie równomiernym w przedziale (0, 1) i przyjąć

$$p_i = u_i$$

3. Odwrócić dystrybuantę rozkładu ekstrem, t. 1

$$\mathbf{x}_{i} = u_{X} - \frac{1}{\alpha_{X}} \ln(-\ln(\mathbf{p}_{i}))$$

Zadanie

Na belkę swobodnie podpartą o rozpiętości $I=4\,\mathrm{m}$ działają dwa obciążenia ciągłe równomiernie rozłożone $q_1\,\mathrm{i}\,q_2-$ niezależne zmienne losowe o rozkładach normalnych, o parametrach:

. $\mu_{q1}=$ 2,0 kN/m $\sigma_{q1}=$ 0,4 kN/m $\mu_{q2}=$ 4,0 kN/m $\sigma_{q2}=$ 0,8 kN/m Określić rozkład prawdopodobieństwa momentu zginającego w środku rozpiętości belki – jego typ i parametry.

Rozwiązanie (dokładne) – metoda analityczna

$$Q(q_1, q_2) = a_1q_1 + a_2q_2$$

$$a_1 = a_2 = I^2/8 = 2 \text{ m}^2$$

$$\mu_{Q} = a_{1}\mu_{q1} + a_{2}\mu_{q_{2}} = 12\text{,}0 \text{ kNm}$$

$$\sigma_0^2 = a_1^2 \sigma_{\alpha 1}^2 + a_2^2 \sigma_{\alpha 2}^2 = 3,20 \text{ (kNm)}^2$$

$$\sigma_0 = 1,79 \text{ kNm}$$

$$V_0 = 0,15$$

Q ma rozkład normalny.

Rozwiązanie (przybliżone) - metoda Monte Carlo

Wygenerować \emph{N} razy po jednej wartości każdej ze zmiennych losowych q_1 i q_2 $\mu_{q1}=$ 2,0 kN/m $\sigma_{q1}=$ 0,4 kN/m $\sigma_{q2}=$ 4,0 kN/m $\sigma_{q2}=$ 0,8 kN/m Obliczyć \emph{N} wartości zmiennej losowej Q.

$$Q = q_1 \cdot l^2 / 8 + q_2 \cdot l^2 / 8 = a_1 q_1 + a_2 q_2 \qquad \qquad a_1 \text{= } a_2 \text{= } l^2 / 8 \text{ = 2 m}^2$$

i	u _i	$z_i = \Phi^{-1}(u_i)$	q _{1, i}		u _i	$z_i = \Phi^{-1}(u_i)$	$q_{2,i}$ Q_i
1	0,783117	0,7828	2,31		0,636142	0,3482	4,28 13,18
2	0,871003	1,1311	2,45	İ	0,826663	0,9411	4,75 14,41
3	0,432105	-0,1710	1,93	ĺ	0,377269	-0,3127	3,75 11,36
4	0,164089	-0,9778	1,61	-	0,586223	0,2178	4,17 11,57
5	0,849082	1,0325	2,41	-	0,982838	2,1162	5,69 16,21
6	0,627197	0,3244	2,13		0,476066	-0,0600	3,95 12,16
7	0,906048	1,3168	2,53	- 1	0,644562	0,3707	4,30 13,65
8	0,583137	0,2099	2,08	ĺ	0,768704	0,7346	4,59 13,34
9	0,288984	-0,5564	1,78	ĺ	0,990578	2,3486	5,88 15,31

Rozwiązanie (przybliżone) - metoda Monte Carlo

Obliczyć estymatory parametrów zmiennej losowej Q.

$$\mu_{Q} \approx \overline{Q} = \frac{\displaystyle\sum_{i=1}^{N} Q_{i}}{N} = 13,5 \text{ kNm}$$

$$\sigma_Q^2 \approx S_Q^2 = \frac{\sum\limits_{i=1}^N \left(Q_i - \overline{Q}\right)^2}{N-1} = \text{2,71 kNm}$$

$$\sigma_{Q} pprox S_{Q} = \sqrt{\frac{\displaystyle\sum_{i=1}^{N}\left(Q_{i} - \overline{Q}\right)^{2}}{N-1}} = 1,65 \text{ kNm}$$

$$V_Q = \frac{\sigma_Q}{\mu_Q} \approx 0.12$$

Rozwiązanie (przybliżone) - metoda Monte Carlo

Wartości Q_i nanieść na arkusz probabilistyczny rozkładu normalnego. Określić typ rozkładu zmiennej losowej Q oraz jej parametry.

Q _{i sort}	p _i =i/(N+1)	z _i =Φ ⁻¹ (p _i)
11,36	0,1	-1,282
11,57	0,2	-0,842
12,16	0,3	-0,524
13,18	0,4	-0,253
13,34	0,5	0,000
13,65	0,6	0,253
14,41	0,7	0,524
15,31	0,8	0,842
16,21	0,9	1,282
	11,36 11,57 12,16 13,18 13,34 13,65 14,41 15,31	11,36 0,1 11,57 0,2 12,16 0,3 13,18 0,4 13,34 0,5 13,65 0,6 14,41 0,7 15,31 0,8

10

15

20

25

 $\mu_{\text{O}}\approx 13\text{,}45\text{ kNm}$

 $\sigma_0 \approx 1,65 \text{ kNm}$

Q ma rozkład normalny.

Zadanie

Nośność belki stalowej na zginanie R i największy moment zginający Q są niezależnymi zmiennymi losowym, o rozkładach normalnych, o parametrach: $\mu_R = 80 \text{ kNm} \quad \sigma_R = 8,0 \text{ kNm} \quad \mu_Q = 50 \text{ kNm} \quad \sigma_Q = 6,0 \text{ kNm}$ Obliczyć prawdopodobieństwa awarii belki.

Rozwiązanie (dokładne) – metoda analityczna

$$\beta = \frac{\mu_R - \mu_Q}{\sqrt{\sigma_R^2 + \sigma_Q^2}} = \frac{80 - 50}{\sqrt{8^2 + 6^2}} = \frac{30}{10} = 3,0$$

Wg. Cornella:
$$P_f = P\big(X<0\big) = \Phi\big(-\beta\big) = \Phi\big(-3,0\big) = 0,00135$$
 X = R-Q

Wg. Hasofera-Linda:
$$P_f = P\big(g(R,Q) < 0 \big) = \Phi(-\beta) = \Phi(-3,0) = 0,00135$$
 $g(R,Q) = R-Q$

Rozwiązanie (przybliżone) - metoda Monte Carlo

Wygenerować N razy po jednej wartości każdej ze zmiennych losowych R i Q μ_R = 80 kNm σ_R = 8 kNm μ_Q = 50 kNm σ_Q = 6 kNm Obliczyć N wartości zmiennej losowej X = R-Q Obliczyć N wartości funkcji stanu granicznego g(R,Q)= R-Q

Rozwiązanie (przybliżone) - metoda Monte Carlo

Obliczyć estymator prawdopodobieństwa awarii.

Ile razy wystąpiła awaria?

Ile razy X = R-Q < 0?

Ile razy g(R,Q) = R-Q < 0?

$$\widehat{P}_f = \frac{N_0}{N} = ?$$

$$\underset{N\to\infty}{lim}\widehat{P_f}=P_f$$

N₀ – liczba awarii N – liczba prób

Rozwiązanie (przybliżone) - metoda Monte Carlo

Wartości zmiennej losowej X nanieść na arkusz probabilistyczny rozkładu normalnego. Określić prawdopodobieństwo awarii.

Wg. Cornella: X = R-QWg. Hasofera-Linda: g = R-Q

 $P_f = P(X < 0) = F_x(0) = \Phi(-\beta) \approx 0,0007$

 $\beta = -\Phi^{-1}(P_f) \approx 3,22$