chafter(2): Basic Structures

- · Sets.
- · Functions.
- · Sequences, Sums.

1 Sets:- 3

- · A set is an unordered Collection of Objects.
- The objects in a set are colled the elements or members.
- · S=20, b, c, d}
 a ∈ S . e ∉ S
- · The set A of odd integers
 Positive integers less than so.

A=21,3,5,7,93

• The set B of Positive integers less than 1000.

B=2 1,2,3,4, 999}

KXX Set builder notation :-

- : Ex: The set A of odd Positive integers less than 10.
- · A = 2 X | X is an odd Positive integers less than 10 \$.
- · A= ?x EZT | x is old and x<10%.

N=20,1,2,3,... the set of all natural numbers. The set of all

= = 2 ..., -2, -1,0,1,2, -.. 3, the set of all integers. = 25 phobasis

integers. augustagelshin

the set of all rational numbers.

· R, the set of all real numbers.

numbers. at all Bositive real

· C, the set of all complet numbers.

* Interval notation:

· Closed interval [a, b].

· open interval (a,b).
Ja, b[

[a, b]= ? x | a < x < b }

[a,b)={x | a < x < b}

(a, b] = { x | a < x < b}

(a, b) = { x | a < x < b }

* If A and B are sets, then A and B are equal if and only if

Yx (x ∈ A ↔ x ∈ B). We write

A=B, if and only if A and B

are equal sets.

* Ex: A= 21,2,33 , B= 23,2,13

: A and B are equal.

*堅守 A=21,3,53

B= 21,3,3,5,5,5,5}

- A and B are equal.

* Empty set (null set):

. Is a special set that has no elements.

· denoted by : 1, 2 }

+ Cardinality :- उड्डक्रंक्ट्डक्प्रिक्षिण

· Is the number of distinct elements in s.

· denoted by S.

* EX(1):

· \$= 2 a, b, c, d} : |s| = 4.

ラ= とり,2,3,7,9年 :15=5.

* Ex(2):

· S = 2 0,000, do 221 }

= |S| = 5 ·

· A=21,2,3,22,33,93

= |A| = 5 .

• 至野= 2255

: |205|=|2251|=1.

* Infinite: - ou (e)

· A set is said to be infinite if it is not finite.

7+2100

* subset :- "C "

ASB (XEA - XEB)

· ACB = B 2A

· For every set S:

m 中 c s で が ら c s ·

* Proper supset: " C"

· The set A is a subset of the set B but that A & B.

· ACB+>(Yx(XEX->XEB) N 3x(XEB N X &A))

* Ex: For each of the following sets, determine whether 3 is an element of that set.

· A=21,2,3,43	3€ A
· B= 2 218, 228, 238, 2433	3¢B
· C= 21,2,21,338	

* Venn Diagram:

* Power set 1-

·The set of all subsets.

· denoted by P(5) or 2

. The number of elements in the Power set is old.

*E: S=2 1,2,35, Find P(s), and | P(5) 9

P(s)=25=7 D, 253, 223, 233, 24,23, 22,35, 24,35, 21,2, 35}.

|P(s)| = 2 = 2 = 8 elements.

* Ex(2): what is the Power set of the empty set ?

· | 內亞) | = 2 = 2 = 1 ·

· Ex(3): what is the Power set of the set 2 15 3

· P(103) = 2 0, 2033

· | P(3 = 5) = 2 = 2.

+ The ordered n-tuple :-

· (a, a2, a3, ---, an)

. In Particular, ordered 2-tuples ore called ordered Pains.

Ex. (a, b)

* Cartesian Products :-

* EX(1): Let A= 21,23 and B= 20,16,03 find AXB and [AXB] 8

· AXB= { (1,0) = (1,0) = (2,0), (216),(2,0) }.

· |AXB| = |A| * |B| = 2 * 3 = 6.

* EX(2): Find BXA ?

· BXA= 2 (0,1), (a,2), (b,1), (b,2), (\$1), (c,2)}.

* Ex(3):

A=20,13, B=21,23, C=2011,23 Find AXBXC = ?

·AXBXC=3 (0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0),(1,1,1),(1,1,2), (1,2,0), (1,2,1), (1,2,2) .

. | AXBXC = | AI * | BI * | * Set operations:

回 Union: ・U* は刻に

* AUB= ZX I XEA VXEBS

AUB is shaded

*Ex: Let set A=21,3,53 and
B=21,3,23, Find AUB=?

AUB=21,2,3,5%.

2 Intersection: " " of little

* ANB=ZXIXEA N XEBS

ANB Shaded

Ex: Let set A = 21,3,53 and
B=21,2,33, find ANB=?

MS.

ANB= 31,33.

3 Disjoint :- Juin

* Two sets ove Called disjoint if their intersection is the empty-set.

AnB= 4

الفرق الم Difference :- الفرق الم

* A-B=ZXIXEA NX&BE

A-B + B-A = 101 / *

A-B is shoded

* Ex: Lot sot A = ? 1, 3, 5} and
B = 21, 2, 35, Find A-B=?
ans.

A-B= 253.

B-A = 723.

米

5 Complement: "A" JoSU

* A= 3 x | x & U ~ x & A } of

* A= ZXEU | X & AZ AAA

A is shoded

* 题 域 U=21,2,3,4,53 and A=21,33, find A?

ans.

A= 22,4,53.

5

7 Generalized Intersections:

* $A_1 \cap A_2 - A_n = \bigcap_{i=1}^n A_i$

ANDRC is shoded.

* set Identities :-

Identity	Name
AN V=A	Identity laws
AU = A	
υ=υ υ Α Φ=ΦΛΑ	Domination laws
$A = A \cup A = A$ $A \cap A = A$	IdemPotent laws
$\overline{(\bar{A})} = A$	Complementation Laws
AUB=BUA ANB=BNA	Commutative Lows
Au(Buc)=(AuB)uc An(Bnc)=(AnB)nc	Associative Laws

AU(BNC)= (AUB)N(A AN (BUC)= (ANB)U(A	(A)
ANB = AUB AUB = A NB	De Morganis Laws
AU (ANB) = A An (AUB) = A	Absorption
$AU\overline{A}=V$ $A\cap\overline{A}=\Phi$	Complement Laws

* Example (1):

Prove that $\overline{A}\overline{B} = \overline{A}\overline{B}$

· First, we will show that ANIS = AUB.

Secol, 11 11 11 AUB C ANB.

· First, we will show that ANB CAUB:

X \in ANB by assumption.

X & ANB defn. of complement

T((XEA) N(XEB)) defin of intersection.

7(XEA) V7(XEB) 1st De. Morgan law.

X & A V X & B define of negation.

XEAVXEB defin of complement.

XE AUB defn. of union.

Second, we will show that AUBCARS:

XEAUB by assumption.

(XEA) V (XEB) defn. of union.

(X € A) V (X € B) defn. of complement.

T(KEA) VT(XEB) define of negation.
T(XEA) N(XEB)) by 1st De Morganis.

Law.

T(XEANB) defin of intersection XEANB defin of complement.

* Example(2): use set builder

notation and logical equivalences

to establish the first De Morgan

Law ANB = AUB.

ANS.

Anb= $2 \times 1 \times 4 \times 5$ = $2 \times 1 \times (x \in (AMB))$? = $2 \times 1 \times (x \in A \land x \in B)$? = $2 \times 1 \times (x \in A) \times (x \in B)$? = $2 \times 1 \times 4 \times x \times 6$? = $2 \times 1 \times 6 \times x \times 6$? = $2 \times 1 \times 6 \times x \times 6$? = $2 \times 1 \times 6 \times x \times 6$? = $2 \times 1 \times 6 \times x \times 6$? = $2 \times 1 \times 6 \times x \times 6$? = $2 \times 1 \times 6 \times x \times 6$? = $2 \times 1 \times 6 \times x \times 6$?

2 Functions.

* If f is a function from A to B, we write f: A > B.

*

- * Domain: A
- * co-domain: B
- * f(a) = 6
 - · a is a preimage of b.
 - · b is the image of a.

* The range: is the set of all images

*Ex(1):

* Domain = 2 a, b, c, d, eg.

* Co-Domain = 21, 2, 3, 4, 5, 6, 48.

* Range = 21,3, 4,5,7 .

* Definition :-

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1 f_2)(x) = f_1(x) f_2(x)$

*EX: Let f_1 and f_2 be functions from R to R such that $f_1(x) = x^2$ and $f_2(x) = x - x^2$. What are the functions $f_1 + f_2$ and $f_1 + f_2$?

are.

*
$$(\frac{1}{1} \frac{1}{1}$$