... Teoria Deciziilor

• Metode multicriteriale de analiză a deciziilor

•••

> Metoda *ELECTRE*

• • •

ELECTRE methods

ELECTRE is a family of <u>multi-criteria decision analysis</u> methods that originated in <u>Europe</u> in the mid-1960s. The <u>acronym</u> ELECTRE stands for: ELimination Et Choix Traduisant la REalité (ELimination and Choice Expressing REality).

The method was first proposed by **Bernard Roy** and his colleagues at SEMA consultancy company. A team at SEMA was working on the concrete, multiple criteria, real-world problem of how firms could decide on new activities and had encountered problems using a weighted sum technique. Bernard Roy was called in as a consultant and the group devised the ELECTRE method. As it was first applied in 1965, the ELECTRE method was to choose the best action(s) from a given set of actions, but it was soon applied to three main problems: choosing, ranking and sorting. The method became more widely known when a paper by B. Roy appeared in a French operations research journal.[1] It evolved into ELECTRE I (electre one) and the evolutions have continued with ELECTRE II, ELECTRE III, ELECTRE IV, ELECTRE IS and ELECTRE TRI (electre tree), to mention a few.[2]

Bernard Roy is widely recognized as the father of the ELECTRE method, which was one of the earliest approaches in what is sometimes known as the French School of decision making. It is usually classified as an "outranking method" of decision making.

There are two main parts to an ELECTRE application: first, the construction of one or several outranking relations, which aims at comparing in a comprehensive way each pair of actions; second, an exploitation procedure that elaborates on the recommendations obtained in the first phase. The nature of the recommendation depends on the problem being addressed: choosing, ranking or sorting.

Criteria in ELECTRE methods have two distinct sets of parameters: the importance <u>coefficients</u> and the veto thresholds.

References

- 1. ^ Roy, Bernard (1968). "Classement et choix en présence de points de vue multiples (la méthode ELECTRE)". la Revue d'Informatique et de Recherche Opérationelle (RIRO) (8): 57-75.
- 2. _^ Figueira, José; Salvatore Greco, Matthias Ehrgott (2005). Multiple Criteria Decision Analysis: State of the Art Surveys. New York,: Springer Science + Business Media, Inc.. ISBN ISBN 0-387-23081-5.

Introduction to Decision Making Methods, János Fülöp

Laboratory of Operations Research and Decision Systems,

Computer and Automation Institute, Hungarian Academy of Sciences

http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf

Outranking methods

The principal outranking methods assume data availability broadly similar to that required for the MAUT methods. That is, they require alternatives and criteria to be specified, and use the same data of the decision table, namely the *aij*.s and *wi*.s.

Vincke (1992) provides an introduction to the best known outranking methods; see also Figueira et al. (2004) for state-of-art surveys. Here, the two most popular families of the outranking methods, the **ELECTRE** and the **PROMETHEE** methods will be briefly outlined.

Introduction to Decision Making Methods, János Fülöp Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf

The **ELECTRE** methods

The simplest method of the ELECTRE family is ELECTRE I.

The ELECTRE methodology is based on the concordance and discordance indices defined as follows. We start from the data of the decision matrix, and assume here that the sum of the weights of all criteria equals to 1. For an ordered pair of alternatives (Aj,Ak), the concordance index cjk is the sum of all the weights for those criteria where the performance score of Aj is least as high as that of Ak, i.e.

$$c_{jk} = \sum_{i: a_{ij} \ge a_{ik}} w_i, \quad j, k = 1, ..., n, j \ne k.$$

Clearly, the concordance index lies between 0 and 1.

Introduction to Decision Making Methods, János Fülöp Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf

The computation of the discordance index djk is a bit more complicated: djk=0 if aij>aik, i=1,...,m, i.e. the discordance index is zero if Aj performs better than Ak on all criteria. Otherwise,

$$d_{jk} = \max_{i=1,...,m} \frac{a_{ik} - a_{ij}}{\max_{j=1,...,n} a_{ij} - \min_{j=1,...,n} a_{ij}}, \quad j,k = 1,...,n, \ j \neq k \ ,$$

i.e. for each criterion where Ak outperforms Aj, the ratio is calculated between the difference in performance level between Ak and Aj and the maximum difference in score on the criterion concerned between any pair of alternatives. The maximum of these ratios (which must lie between 0 and 1) is the discordance index.

A concordance threshold c^* and discordance threshold d^* are then defined such that $0 < d^* < c^* < 1$.

Then, $\mathbf{A}j$ outranks $\mathbf{A}k$ if the $cjk>c^*$ and $djk< d^*$, i.e. the concordance index is above and the discordance index is below its threshold, respectively.

Introduction to Decision Making Methods, János Fülöp Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf

This outranking defines a partial ranking on the set of alternatives. Consider the set of all alternatives that outrank at least one other alternative and are themselves not outranked. This set contains the promising alternatives for this decision problem. Interactively changing the level thresholds, we also can change the size of this set.

The ELECTRE I method is used to construct a partial ranking and choose a set of promising alternatives. ELECTRE II is used for ranking the alternatives. In ELECTRE III an outranking degree is established, representing an outranking creditability between two alternatives which makes this method more sophisticated (and, of course, more complicated and difficult to interpret).

See Figueira et al (2004) for more details and further members of the ELECTRE family.

References

- Aczél, J. and Saaty, T.L. (1983) .Procedures for synthesizing ratio judgements., Journal of Mathematical Psychology, 27, 93-102.
- Baker, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., Murphy, J. and Sorenson, K. (2002) Guidebook to Decision-
- Making Methods, WSRC-IM-2002-00002, Department of Energy, USA. http://emi-web.inel.gov/Nissmg/Guidebook_2002.pdf
- Barron, F.H. and Barrett, B.E. (1996) .The efficacy of SMARTER . Simple Multi-Attribute Rating Technique Extended to Ranking., Acta Psychologica, 93, 23-36.
- Bose, U., Davey, A.M. and Olson, D.L. (1997) .Multi-attribute utility methods in group decision making: Past applications and potential for inclusion in GDSS., Omega, 25, 691-706.
- Brans, J.P. and Vincke, Ph. (1985) "A preference ranking organization method", Management Science, 31, 647-656.
- Brans, J.P., Vincke, Ph. and Marechal, B. (1986) "How to select and how to rank projects: The PROMETHEEmethod", European Journal of Operational Research, 24, 228- 238.
- Brans, J.-P. and Mareschal, B. (1994) .The PROMCALC & GAIA decision support system for multicriteria decision aid., Decision Support Systems, 12, 297-310.
- Csáki, P., Rapcsák, T., Turchányi, P. and Vermes, M. (1995) .Research and development for group decision aid in Hungary by WINGDSS, a Microsoft Windows based group decision support system., Decision Support Systems 14, 205-21.
- Dyer, R.F. and Forman, E.H. (1992) .Group decision support with the Analytic Hierarchy Process., Decision Support Systems, 8, 99-124.
- Edwards, W. (1977) .How to use multiattribute utility measurement for social decisionmaking., IEEE Transactions on Systems, Man, and Cybernetics, SMC-7, 326-340.
- Edwards, W. and Barron, F.H. (1994) .SMARTS and SMARTER: Improved simple methods for multiattribute utility measurements., Organizational Behavior and Human Decision Processes, 60, 306-325.
- Ekárt, A. and Németh, S.Z. (2005) .Stability analysis of tree structured decision functions., European Journal of Operational Research, 160, 676-695.
- Figueira, J., Greco, S. and Ehrgott, M. (Eds.) (2004) Multiple Criteria Decision Analysis: State of the Art Surveys, Springer, New York.
- Forman, E. and Selly, M.A. (2001) Decision by Objectives, World Scientific.
- Gass, S. I. and Rapcsák, T. (1998) .A note on synthesizing group decisions., Decision Support Systems, 22, 59-63.
- Gass, S. I. and Rapcsák, T. (2004) .Singular value decomposition in AHP., European Journal of Operational Research, 154, 573-584.
- Harris, R. (1998) Introduction to Decision Making, VirtualSalt. http://www.virtualsalt.com/crebook5.htm
- Keeney, R.L. and Raiffa, H. (1976) Decisions with Multiple Objectives: Performances and Value Trade-Offs, Wiley, New York.
- Keeney, R.L. (1976) .A group preference axiomatization with cardinal utility., *Management Science*, 23, 140 .145.

- Lai, V.S., Bo K.W. and Cheung, W. (2002) .Group decision making in a multiple criteria environment: A case using the AHP in software selection., *European Journal of Operational Research*, 137, 134-144.
- Leyva-López, J-C. and Fernández-González, E. (2003) .A new method for group decision support based on ELECTRE III methodology., *European Journal of Operational Research*, 148, 14-27.
- Linkov, I., Varghese, A., Jamil, S., Seager, T.P., Kiker, G. and Bridges, T. (2004) .Multi-criteria decision analysis: A framework for structuring remedial decisions at the contaminated sites., In: Linkov, I. and Ramadan, A.B. (Eds.)
- Comparative Risk Assessment and Environmental Decision Making, Springer, New York, pp. 15-54.
- Macharis, C., Brans, J.P. and Mareschal, B. (1998). The GDSS PROMETHEE Procedure., Journal of Decision Systems, 7, 283-307.
- Macharis, C., Springael, J., De Brucker, K. and Verbeke, A. (2004) .PROMETHEE and AHP: The design of operational synergies in multicriteria analysis.: Strengthening PROMETHEE with ideas of AHP., European Journal of Operational Research, 153, 307-317.
- Mareschal, B. (1988) .Weight stability intervals in multicriteria decision aid., European Journal of Operational Research, 33, 54-64.
- Mészáros, Cs. and Rapcsák, T. (1996) .On sensitivity analysis for a class of decision systems., Decision Support Systems 16, 231-240.
- Munda, G. (1996) .Cost-benefit analysis in integrated environmental assessment: some methodological issues., Ecological Economics, 19, 157-168.
- Nemhauser, G.L., Rinnoy Kan, A.H.G. and Todd, M.J. (1989) Handbooks in Operations Research and Management Science: Volume 1 Optimization, North-Holland, Amsterdam.
- Rapcsák, T. (2004) Multiattribute Decision Making, Lecture notes, Department of Decisions in Economics, Corvinus University, Budapest. (in Hungarian)
- Roy, B. (1968) "Classement et choix en présence de points de vue multiple (la méthode electre)., RAIRO, 2, 57-75.
- Saaty, T.L. (1980) The Analytic Hierarchy Process, McGraw Hill.
- Saaty, T.L. and Vargas, L.G. (1984) .Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios., Mathematical Modelling, 5, 309-324.
- Steuer, R. E. (1986) Multiple Criteria Optimization: Theory, Computation and Application, Wiley, New York.
- Triantaphyllou, E. and Sanchez, A. (1997) "A sensitivity analysis approach for some deterministic multi-criteria decision making methods", Decision Sciences, 28, 151-194.
- Triantaphyllou, E. (2000) Multi-Criteria Decision Making Methods: A Comparative Study, Kluwer Academic Publishers, Dordrecht.
- UK DTLR (2001) Multi Criteria Analysis: A Manual, Department for Transport, Local Government and the Regions, UK. http://www.odpm.gov.uk/stellent/groups/odpm_about/documents/page/odpm_about_608524.hcsp
- US EPA (2000) *Guidelines for Preparing Economic Analysis*, United States Environmental Protection Agency, EPA 240-R-00-003. http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/Guidelines.html
- Vincke, P. (1992) Multi-criteria Decision-Aid, John Wiley, Chichester.
- Wolters, W.T.M. and Mareschal, B. (1995) .Novel types of sensitivity analysis for additive MCDM methods., *European Journal of Operational Research*, 81, 281-290.

http://www.amazon.com/ELECTRE-Decision-Support-Applications-Infrastructure/dp/0792386477

Copyrighted Material **ELECTRE AND DECISION SUPPORT** Methods and Applications in Engineering and Infrastructure Investment Martin Rogers Michael Bruen Lucien-Yves Maystre Kluwer Academic Publishers Boston/Dordrecht/London

https://commerce.metapress.com/content/g367r44322876223/resource-secured/?target=fulltext.pdf&sid=fbsyj255uh2rhd2xjgybkp55&sh=www.springerlink.com

ADVANCING THE STATE-OF-THE-ART

Volume Contributors:

Carlos Henggeler Antunes Jean-Pierre Brans João Climaco José Craveirinha Jean-Marie De Corte Danae Diakoulaki James S. Dyer Carlos Bana e Costa Matthias Ehrgott José Figueira Michel Grabisch Salvatore Greco Evangelos Grigoroudi Masahiro Inuiguchi Pekka Korhonen Christophe Labreuche Bertrand Mareschal Jean Marc Martel António Martins Benedetto Matarazzo Nikolaos F. Matsatsinis Alexander Mechitos Patrick Meyer Helen Moshkovich Vincent Mousseau Giuseppe Munda Subhass Narula Stefan Nickel David L. Olson Meltem Öztürk Marc Pirlot Justo Puerto Antonio Rodríguez-Chía Marc Roubens Bernard Roy Thomas Saaty Roman Slowin Charles Smith

Margaret M. Wiecek

MULTIPLE CRITERIA DECISION ANALYSIS

State of the Art Surveys

> edited by José Figueira Salvatore Greco Matthias Ehrgott

Chapter 4

ELECTRE METHODS

José Figueira
Faculdade de Economia and INESC-Coimbra
Universidade de Coimbra
Av. Dias da Silva, 165, 3004-512 Coimbra
Portugal
figueira & fe. u.c. ot

Vincent Mousseau, Bernard Roy LAMSADE Université Paris-Dauphine Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16 France (mousseau,roy)@lamsade.dauphine.fr

Abstrac

Over the last three decades a large body of research in the field of ELECTRE family methods appeared. This research has been conducted by several researchers mainly in Europe. The purpose of this chapter is to present a survey of the ELECTRE methods since their first appearance in mid-sixties, when ELECTRE I was proposed by Bernard Roy and his colleagues at SEMA consultancy company. The chapter is organized in five sections. The first section presents a brief history of ELECTRE methods. The second section is devoted to the main features of ELECTRE methods. The third section describes the different ELECTRE methods existing in the literature according to the three main problematics: choosing, ranking and sorting. The fourth section presents the recent developments and future issues on ELECTRE methods. Finally, the fifth section is devoted to the software and applications. An extensive and up-to-date bibliography is also provided in the end of this chapter.

Keywords: Multiple criteria decision aiding, Outranking approaches, ELECTRE methods.

http://books.google.com/books?id=YM1X0jHrzEMC&printsec=frontcover&dq=ELECTRE&source=gbs_similarbooks_s&cad=1 #v=onepage&q=ELECTRE&f=false

The PROMETHEE methods

St. Cloud State University & LEO (Literacy Education Online)

LEO provides online handouts about a variety of writing topics. Although LEO is affiliated with the Write Place (the writing center at St. Cloud State University), LEO does not offer online tutoring, answer questions about grammar or punctuation, or give feedback about your writing or papers.

If you are interested in information about tutoring or other Write Place services, please head to the writing center homepage at http://www.stcloudstate.edu/writeplace.

LEO is also the online site for the early issues (1990-1998) of <u>Kaleidoscope</u>, SCSU's multicultural literary magazine. For current issues, please visit *Kaleidoscope*'s new home on the Write Place web site: http://web.stcloudstate.edu/kaleidoscope/.

http://leo.stcloudstate.edu/index.html

Strategies for Writing a Conclusion

Conclusions are often the most difficult part of an essay to write, and many writers feel that they have nothing left to say after having written the paper. A writer needs to keep in mind that the conclusion is often what a reader remembers best. Your conclusion should be the best part of your paper.

A conclusion should

- stress the importance of the thesis statement,
- give the essay a sense of completeness, and
- leave a final impression on the reader.

Suggestions

- Answer the question "So What?" Show your readers why this paper was important. Show them that your paper was meaningful and useful.
- Synthesize, don't summarize
 - Don't simply repeat things that were in your paper. They have read it. Show them how the points you made and the support and examples you used were not random, but fit together.

Redirect your readers

• Give your reader something to think about, perhaps a way to use your paper in the "real" world. If your introduction went from general to specific, make your conclusion go from specific to general. Think globally.

Create a new meaning

• You don't have to give new information to create a new meaning. By demonstrating how your ideas work together, you can create a new picture. Often the sum of the paper is worth more than its parts.

Strategies

• Echoing the introduction: Echoing your introduction can be a good strategy if it is meant to bring the reader full-circle. If you begin by describing a scenario, you can end with the same scenario as proof that your essay was helpful in creating a new understanding.

Example

Introduction

From the parking lot, I could see the towers of the castle of the Magic Kingdom standing stately against the blue sky. To the right, the tall peak of The Matterhorn rose even higher. From the left, I could hear the jungle sounds of Adventureland. As I entered the gate, Main Street stretched before me with its quaint shops evoking an old-fashioned small town so charming it could never have existed. I was entranced. Disneyland may have been built for children, but it brings out the child in adults.

Conclusion

I thought I would spend a few hours at Disneyland, but here I was at 1:00 A.M., closing time, leaving the front gates with the now dark towers of the Magic Kingdom behind me. I could see tired children, toddling along and struggling to keep their eyes open as best they could. Others slept in their parents' arms as we waited for the parking lot tram that would take us to our cars. My forty-year-old feet ached, and I felt a bit sad to think that in a couple of days I would be leaving California, my vacation over, to go back to my desk. But then I smiled to think that for at least a day I felt ten years old again.

• Challenging the reader: By issuing a challenge to your readers, you are helping them to redirect the information in the paper, and they may apply it to their own lives.

Example

Though serving on a jury is not only a civic responsibility but also an interesting experience, many people still view jury duty as a chore that interrupts their jobs and the routine of their daily lives. However, juries are part of America's attempt to be a free and just society. Thus, jury duty challenges us to be interested and responsible citizens.

• Looking to the future: Looking to the future can emphasize the importance of your paper or redirect the readers' thought process. It may help them apply the new information to their lives or see things more globally.

Example

Without well-qualified teachers, schools are little more than buildings and equipment. If higher-paying careers continue to attract the best and the brightest students, there will not only be a shortage of teachers, but the teachers available may not have the best qualifications. Our youth will suffer. And when youth suffers, the future suffers.

• **Posing questions:** Posing questions, either to your readers or in general, may help your readers gain a new perspective on the topic, which they may not have held before reading your conclusion. It may also bring your main ideas together to create a new meaning.

Example

Campaign advertisements should help us understand the candidate's qualifications and positions on the issues. Instead, most tell us what a boob or knave the opposing candidate is, or they present general images of the candidate as a family person or God-fearing American. Do such advertisements contribute to creating an informed electorate or a people who choose political leaders the same way they choose soft drinks and soap?

Metoda ELECTRE

Metoda ELECTRE (*ELimination Et Choix Traduisant la REalité*), dezvoltată în Franța și aplicată în special în țările europene [Roy, 1968; Roy și Vanderpooten, 1996], se bazează pe **conceptul de** *surclasare* pentru eliminarea alternativelor care sunt într-un anumit sens "dominate". Noțiunea de "dominanță" în cadrul oferit de surclasare este o generalizare a dominanței clasice și folosește ponderi pentru a ierarhiza criteriile (unele dintre ele au influență mai mare decât altele asupra deciziei).

La fel ca și celelalte metode de analiză multicriterială, metoda ELECTRE are aceleași **etape**:

- specificarea alternativelor și criteriilor,
- evaluarea performanțelor în funcție de criterii și
- stabilirea ponderilor asociate criteriilor, care stabilesc importanța relativă a acestora.

... Metoda ELECTRE

Conceptul de surclasare a fost definit de Roy astfel: alternativa A_i surclasează alternativa A_k dacă, fiind date preferințele decidentului, calitatea evaluării alternativelor și contextul problemei, există suficiente argumente să se decidă că A_i este cel puțin la fel de bună ca A_k și nu există nici un motiv evident care să contrazică afirmația.

Pe baza acestei idei, au fost dezvoltate o serie de proceduri pentru concretizarea conceptului de *surclasare* ca modalitate de asistare a deciziilor multicriteriale.

In general este nevoie de două etape:

- a) specificarea unei modalități precise de *stabilire a existenței surclasării* între două alternative și
- b) combinarea evaluărilor de surclasare a alternativelor pentru *a le ierarhiza*.

Esența metodei ELECTRE constă în identificarea relațiilor de dominanță.

Ea determină o submulțime de alternative $E \subseteq A$ astfel încât orice alternativă $A_k \notin E$ este surclasată de cel puțin o alternativă $A_i \in E$.

Obiectivul este ca submulțimea E să aibă cât mai puține elemente, care vor reprezenta alternative candidat pentru decizia finală.

Pasul 1. Determinarea indicilor de concordanță și discordanță

Pentru determinarea gradului de concordanță și discordanță ale alternativelor se folosesc indicii de concordanță și discordanță. Indicele de concordanță c_{ik} se calculează pentru fiecare pereche de alternative (A_i, A_k) ca sumă a ponderilor acelor criterii de decizie C_j pentru care performanța alternativei A_i este mai mare decât performanța alternativei A_k . Indicele de discordanță d_{ik} se determină ca elementul maxim al mulțimii rapoartelor dintre diferența performanțelor alternativelor A_k și A_i și diferența maximă de performanță în raport cu fiecare dintre criteriile j pentru care performanța alternativei A_k este cel puțin egală performanței alternativei A_i :

$$c_{ik} = \sum_{\substack{j=1\\r_{ij} > r_{ki}}}^{n} p_{j} \qquad d_{ik} = \max_{\substack{1 \le j \le n\\r_{ij} \le r_{kj}}} \left\{ \frac{r_{kj} - r_{ij}}{\max_{1 \le l \le m} r_{lj} - \min_{1 \le l \le m} r_{lj}} \right\}$$
 (1 \le i, k \le m).

În acest fel, *indicele de discordanță* este 0 dacă performanța alternativei A_i este mai bună decât performanța alternativei A_k , respectiv un număr subunitar în caz contrar.

Indicii de concordanță c_{ik} și discordanță d_{ik} definesc matricile de concordanță MC și discordanță MD, matrici pătratice de ordinul m = numărul de alternative decizionale.

<u>Pasul 2. Combinarea indicilor de concordanță și discordanță</u>

Pentru combinarea indicilor de concordanță și discordanță se introduce un prag (relativ mare) de concordanță c^* și un prag (relativ mic) de discordanță d^* .

Cu ajutorul acestora se poate defini concret conceptul de surclasare:

alternativa A_i surclasează alternativa A_k dacă $c_{ik} > c^*$ și $d_{ik} < d^*$.

Mulţimea *E* a *alternativelor promiţătoare* este formată din acele alternative decizionale care surclasează cel puţin o altă alternativă şi nu sunt la rândul lor surclasate.

Dacă mulțimea E conține **prea multe** elemente, ea se poate restrânge prin **majorarea pragului de concordanță** și **micșorarea pragului de discordanță**.

Dacă *E* este **prea mică** (de exemplu mulțimea vidă), atunci **se micșorează pragul de concordanță** și **se majorează pragul de discordanță**.

Exemplu: [Dodgson, 2000]

Alternative decizionale: $A = \{A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9, A_{10}\}$ (m=10), Criterii de decizie: $C = \{C_1, C_2, C_3, C_4, C_5, C_6\}$ (n = 6),

Ponderile asociate criteriilor: $P = \{0.25, 0.10, 0.15, 0.25, 0.05, 0.20\}$.

Matricea performanțelor:

	Criterii de decizie									
Alternative decizionale	$p_1 = 0.25$	$p_2 = 0.1$	$p_3 = 0.15$	$p_4 = 0.25$	$p_5 = 0.05$	$p_6 = 0.2$				
	C_1	C_2	C_3	C_4	C_5	C_6				
A_1	6	300	27	18	570	12				
A_2	2	450	21	19	400	23				
A_3	16	350	27	12	420	18				
A_4	10	500	20	12	450	20				
A_5	11	380	23	20	400	16				
A_6	5	250	31	10	430	18				
A_7	16	390	24	18	510	21				
A_8	17	400	22	26	380	23				
A_9	10	410	16	23	410	20				
A ₁₀	5	250	18	21	400	22				
diferențe max – min	17-2= 15	500-250= 250	31-16= 15	26-10= 16	570-380= 190	23-12= 11				

Pasul 1. Determinarea indicilor de concordanță și discordanță

În această fază se calculează matricile indicilor de concordanță și de discordanță. Pentru exemplificare, se consideră alternativele A_3 și A_4 . Criteriile de decizie pentru care se calculează indicele de concordanță sunt $\{C_1, C_3\}$ (acele criterii pentru care performanța alternativei A_3 este mai bună decât performața alternativei A_4 : $r_{31} > r_{41}$, respectiv $r_{33} > r_{43}$), iar cele pentru care se calculează indicele de discordanță sunt $\{C_2, C_4, C_5, C_6\}$ (acele criterii pentru care performanța alternativei A_3 nu este mai bună decât performața alternativei A_4 : $r_{32} < r_{42}$, $r_{34} = r_{44}$, $r_{35} < r_{45}$, respectiv $r_{36} < r_{46}$). Conform definiției, indicele de concordanță $c_{34} = p_1 + p_3 = 0.25 + 0.15 = 0.4$. Pentru determinarea indicelui de discordanță d_{34} se determină elementul maxim al mulțimii:

$$\left\{ \frac{r_{42} - r_{32}}{250}, \frac{r_{44} - r_{34}}{16}, \frac{r_{45} - r_{35}}{190}, \frac{r_{46} - r_{36}}{11} \right\} = \left\{ \frac{500 - 350}{250}, \frac{12 - 12}{16}, \frac{450 - 420}{190}, \frac{20 - 18}{11} \right\} = \\
= \left\{ \frac{150}{250}, \frac{0}{16}, \frac{30}{190}, \frac{2}{11} \right\} = \left\{ \frac{3}{5}, 0, \frac{3}{19}, \frac{2}{11} \right\},$$

prin urmare $d_{34}=0.6$. Elementele mulțimii din care s-a calculat d_{34} sunt rapoartele dintre diferența performanțelor alternativelor A_3 și A_4 și diferențele maxime de performanță, determinate pentru criteriile $\{C_2, C_4, C_5, C_6\}$ în raport cu care A_3 nu are performanță mai bună decât A_4 .

... Pasul 1. Determinarea indicilor de concordanță și discordanță

Matricea indicilor de *concordanță* este următoarea:

Matricea indicilor de concordanță c _{ik}										
	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}
A_1	-	0.45	0.30	0.45	0.20	0.65	0.20	0.20	0.20	0.55
A_2	0.55	-	0.55	0.60	0.30	0.55	0.55	0.15	0.45	0.45
A_3	0.55	0.45	-	0.40	0.65	0.60	0.15	0.20	0.45	0.55
A_4	0.55	0.40	0.35	1	0.35	0.85	0.10	0.15	0.30	0.55
A_5	0.80	0.65	0.35	0.65	-	0.60	0.25	0.20	0.40	0.50
A_6	0.35	0.45	0.02	0.15	0.40	1	0.15	0.20	0.20	0.20
A_7	0.55	0.45	0.60	0.90	0.75	0.85	-	0.20	0.65	0.55
A_8	0.80	0.65	0.80	0.85	0.80	0.80	0.80	-	0.85	0.95
A_9	0.80	0.55	0.55	0.25	0.60	0.80	0.35	0.15	-	0.65
A_{10}	0.45	0.50	0.45	0.45	0.45	0.45	0.45	0.05	0.35	-

... Pasul 1. Determinarea indicilor de concordanță și discordanță

Matricea indicilor de discordanță este :

Matricea indicilor de discordanță d _{ik}										
	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}
A_1	-	1.00	0.67	0.80	0.36	0.55	0.82	1.00	0.73	0.91
A_2	0.89	-	0.93	0.53	0.60	0.67	0.93	1.00	0.53	0.20
A_3	0.79	0.45	-	0.60	0.50	0.27	0.47	0.88	0.69	0.56
A_4	0.63	0.44	0.47	1	0.50	0.73	0.40	0.88	0.69	0.56
A_5	0.89	0.64	0.33	0.48	-	0.53	0.58	0.64	0.36	0.55
A_6	0.74	0.80	0.73	1.00	0.63	1	0.95	1.00	0.81	0.69
A_7	0.32	0.24	0.20	0.44	0.13	0.47	-	0.50	0.31	0.19
A_8	1.00	0.20	0.33	0.40	0.10	0.60	0.68	-	0.16	0.11
A_9	0.84	0.33	0.73	0.76	0.47	1.00	0.53	0.47	-	0.18
A_{10}	0.89	0.80	0.73	1.00	0.52	0.87	0.73	0.80	0.64	-

Pasul 2. Combinarea indicilor de concordantă și discordantă

Indicii de concordanță și discordanță se combină pentru a defini conceptul (relativ) de surclasare. Pentru aceasta, mai este nevoie de stabilirea pragurilor de concordanță c^* și discordanță d^* . De obicei, valorile de start ale acestora se setează la media elementelor din matricile indicatorilor de concordanță și discordanță:

$$c^* = \frac{1}{m(m-1)} \sum_{\substack{i,k=1\\i\neq k}}^m c_{ik}, \quad d^* = \frac{1}{m(m-1)} \sum_{\substack{i,k=1\\i\neq k}}^m d_{ik}.$$

Pentru exemplul curent, valorile acestora sunt $c^* = 0.48$ and $d^* = 0.61$. Prin definiție, alternativa A_i surclasează alternativa A_k dacă $c_{ik} > c^*$ **și** $d_{ik} < d^*$. Examinând matricile indicatorilor de concordanță și discordanță, rezultă că:

- A1 surclasează A6;
- A2 surclasează A4;
- A3 surclasează A5, A6, A10;
- A4 surclasează A10;
- A5 surclasează A4, A6, A10;
- A7 surclasează A1, A3, A4, A5, A6, A9, A10;
- A8 surclasează A2, A3, A4, A5, A6, A9, A10;
- *A*9 surclasează *A*2, *A*5, *A*10.

Pentru că o alternativă este *dominantă* dacă surclasează cel puţin o altă alternativă şi nu este surclasată de nici o altă alternativă, alternativele dominante sunt doar A_7 şi A_8 (relaţia de surclasare nu este tranzitivă).

Pentru a determina o mulțime mai redusă (de preferat cu un singur element) de alternative dominante, procedeul de mai sus se poate repeta, folosind praguri mai stricte.

Uzual, c^* se mărește cu 10%, iar d^* se micșorează cu 10%, dar se pot folosi și alte scheme.

Tabelul alăturat ilustrează modificarea relațiilor de dominanță dacă c^* se mărește, iar d^* se micșorează.

Rezultatele precedente reprezintă *Iterația* 1).

Modificarea relațiilor de dominanță dacă c* se mărește, iar d* se micșorează							
Iterația	c*	d*	Alternativa	surclasează alternativele			
	0.53	0.54	A_2	A_4			
			A_3	A_5, A_6			
2			A_5	A_4, A_6			
4			A_7	$A_1, A_3, A_4, A_5, A_6, A_9, A_{10}$			
			A_8	$A_2, A_3, A_4, A_5, A_9, A_{10}$			
			A_{9}	A_2, A_5, A_{10}			
		0.49	A_3	A_6			
	0.58		A_5	A_4			
3			A_7	A_3, A_4, A_5, A_6, A_9			
			A_8	$A_2, A_3, A_4, A_5, A_9, A_{10}$			
			A_9	A_5, A_{10}			
	0.64	0.44	A_7	A_5, A_9			
4			A_8	$A_2, A_3, A_4, A_5, A_9, A_{10}$			
			A_9	A_{10}			
5	0.70	0.40	A_7	A_5			
<u> </u>			A_8	A_3, A_5, A_9, A_{10}			
6	0.75	0.38	A_8	A_3, A_5, A_9, A_{10}			

În primele cinci iterații, mulțimea alternativelor dominante nu are mai puțin de două elemente, A_7 și A_8 . Se observă că doar la *iterația* 6 s-a obținut alternativa dominantă A_8 .

Dacă mulțimea alternativelor dominante nu se reduce la un singur element și dacă se cere recomandarea unei singure alternative, atunci trebuie să se recurgă la alte tehnici.

Dacă însă se cere ierarhizarea tuturor alternativelor, se poate proceda în două moduri:

- 1. Prima variantă, iterativă, elimină la fiecare pas din mulţimea alternativelor pe cea considerată "optimă". Pasul iniţial foloseşte mulţimea tuturor alternativelor, iar după *m*-1 iteraţii se obţine ierarhizarea dorită: alternativa eliminată la pasul *k* ocupă poziţia *k* în clasament.
- 2. A doua variantă ia în considerare *meritele relative* ale alternativelor, folosind analiza efectuată anterior. Un clasament *brut* al alternativelor este: A_8 , A_7 , A_9 , A_3 , A_5 , A_2 , A_1 , A_4 , A_6 , A_{10} .

End of ... 6.

Decision Theory

