Complex numbers as points in the complex plane

Can interpret real and imaginary parts of a complex number as x and y coordinates. Thus can interpret a complex number as a *point* in the plane

(the complex plane)

Playing with $\ensuremath{\mathbb{C}}$

Playing with \mathbb{C} : The absolute value of a complex number

Absolute value of z = distance from the origin to the point z in the complex plane.

- ▶ In Mathese, written |z|.
- ▶ In Python, written abs(z).

Geometric interpretation of f(z) = z + (1 + 2i)?

Increase each real coordinate by 1 and increases each imaginary coordinate by 2.

	• •				
_		-	\rightarrow	_	

$$f(z) = z + (1 + 2i)$$
 is called a translation.

► Translation in general:

$$f(z) = z + z_0$$

where z_0 is a complex number.

▶ A translation can "move" the picture anywhere in the complex plane.

▶ Quiz: The "left eye" of the list L of complex numbers is located at 2 + 2i. For what complex number z_0 does the translation

$$f(z)=z+z_0$$

move the left eye to the origin 0 + 0**i**?

▶ Quiz: The "left eye" of the list L of complex numbers is located at 2 + 2i. For what complex number z_0 does the translation

$$f(z)=z+z_0$$

move the left eye to the origin 0 + 0i?

► *Answer*: $z_0 = -2 - 2i$

Playing with \mathbb{C} : Adding complex numbers: Complex numbers as arrows

Interpret z_0 as representing the translation $f(z) = z + z_0$.

- ▶ Visualize a complex number z_0 as an arrow.
- Arrow's tail located an any point z
- Arrow's head located at $z + z_0$
- ▶ Shows an example of what the translation $f(z) = z + z_0$ does

Playing with \mathbb{C} : Adding complex numbers: Complex numbers as arrows

Example: Represent -6 + 5i as an arrow.

Playing with $\mathbb{C}\colon \mathsf{Adding}$ complex numbers: Composing translations, adding arrows

- ▶ Consider two complex numbers z_1 and z_2 .
- ▶ They correspond to translations $f_1(z) = z + z_1$ and $f_2(z) = z + z_2$
- ▶ Functional composition: $(f_1 \circ f_2)(z) = z + z_1 + z_2$
- ▶ Represent functional composition by adding arrows.
- Example: $z_1 = 2 + 3i$ and $z_2 = 3 + 1i$

Playing with \mathbb{C} : Multiplying complex numbers by a positive real number

Multiply each complex number by 0.5

$$f(z)=0.5\,z$$

Arrow in same direction but half the length.

Playing with \mathbb{C} : Multiplying complex numbers by a negative number

Multiply each complex number by -1

$$f(z) = (-1)z$$

Arrow in opposite direction

Reflection

Playing with \mathbb{C} : Multiplying by i: rotation by 90 degrees

How to rotate counterclockwise by 90° ?

Need
$$x + y \mathbf{i} \mapsto -y + x \mathbf{i}$$

Use
$$\mathbf{i}(x + y\mathbf{i}) = x\mathbf{i} + y\mathbf{i}^2 = x\mathbf{i} - y$$

$$f(z) = \mathbf{i} z$$

Playing with \mathbb{C} : The unit circle in the complex plane: argument and angle

What about rotating by another angle?

Definition: Argument of z is the angle in radians between z arrow and 1 + 0i arrow.

Rotating a complex number z means increasing its argument.

Playing with \mathbb{C} : Euler's formula

"He calculated just as men breathe, as eagles sustain themselves in the air."

Said of Leonhard Euler

Euler's formula: For any real number θ ,

 e^{θ}

is the point z on the unit circle with argument θ .

e = 2.718281828...

Playing with \mathbb{C} : Euler's formula

Euler's formula: For any real number θ ,

 θ

is the point z on the unit circle with argument θ .

Plug in $\theta=\pi....$

photo by Cory Doctorow

e to the π times **i** (http://xkcd.com/179/)

Playing with \mathbb{C} : Euler's formula

Plot $e^{0 \cdot \frac{2\pi i}{20}}$, $e^{1 \cdot \frac{2\pi i}{20}}$, $e^{2 \cdot \frac{2\pi i}{20}}$, $e^{3 \cdot \frac{2\pi i}{20}}$, ..., $e^{19 \cdot \frac{2\pi i}{20}}$

Playing with \mathbb{C} : Rotation by au radians

Back to question of rotation by any angle τ .

- ullet Every complex number can be written in the form $z=r\mathrm{e}^{ heta \mathbf{I}}$
 - ightharpoonup r is the absolute value of z
 - ightharpoonup heta is the argument of z
- ▶ Need to increase the argument of z
- Use exponentiation law $e^a \cdot e^b = e^{a+b}$
- $ightharpoonup re^{ heta \mathbf{i}} \cdot e^{ au \mathbf{i}} = re^{ heta \mathbf{i} + au \mathbf{i}} = re^{(heta + au) \mathbf{i}}$
- $f(z) = z \cdot e^{\tau i}$ does rotation by angle τ .

Playing with \mathbb{C} : Rotation by τ radians

Rotation by $3\pi/4$

