Julia Sets Theory and Algorithms

Josh Lipschultz & Ricky LeVan MATH/CAAM 435

April 15, 2014

 $K_{\mathcal{C}}$ Algorithm

Cantor Construction

Preliminaries

J_c Algorithm ○○

Preliminaries

The stable set of a a complex polynomial $P : \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

Preliminaries

The stable set of a a complex polynomial $P: \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

Definition

An orbit is bounded if there exists a K such that $|Q_c^{on}(z)| < K$ for all n. Otherwise the orbit is unbounded.

The stable set of a a complex polynomial $P: \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

K. Algorithm

Definition

An orbit is bounded if there exists a K such that $|Q_c^{\circ n}(z)| < K$ for all n. Otherwise the orbit is unbounded.

Remark

The points of S^1 are supersensitive under Q_0 . That is, any open ball around $z \in S^1$ has the property that $\bigcup_{n=0}^{\infty} Q_0^{\circ n}(z) = \mathbb{C} \setminus \{p\}$ for at most one point p.

Preliminaries

The Julia Set J_c is the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c .

Preliminaries

The Julia Set J_c is the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c .

Remark

For the quadratic map $Q_0(z) = z^2$ we saw chaotic behavior only on S^1 by angle doubling (heta o 2 heta). We also saw that $|Q_0(z)| o \infty$ for all |z| > 1 and $|Q_0(z)| \rightarrow 0$ for all |z| < 1.

Preliminaries

The Julia Set J_c is the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c .

Remark

For the quadratic map $Q_0(z) = z^2$ we saw chaotic behavior only on S^1 by angle doubling $(\theta \to 2\theta)$. We also saw that $|Q_0(z)| \to \infty$ for all |z| > 1 and $|Q_0(z)| \rightarrow 0$ for all |z| < 1.

Remark

Finally, we learned that for $Q_{-2}(z) = z^2 - 2$, we have $J_2=K_2=[-2,2]$, so any $z\in\mathbb{C}\setminus[-2,2]\to\infty$ as we compose $Q_{-2}(z)$ infinitely many times.

► Goal: discuss and prove parts of:

Theorem

If |c| is sufficiently large, Λ , the set of points whose entire forward orbits lie within the circle |z| = |c|, is a Cantor set on which Q_c is topologically conjugate to the shift map on two symbols. All points in $\mathbb{C} - \Lambda$ tend to ∞ under iteration of Q_c . Hence, $J_c = K_c$.

Theorem (The Escape Criterion)

Suppose $2 < |c| \le |z|$. Then we have that $|Q_c^{\circ n}(z)| \to \infty$ as $n \to \infty$.

Proof.

We use the triangle inequality to get the following estimate:

$$|Q_c(z)| \ge |z|^2 - |c| \ge |z|^2 - |z| = |z|(|z| - 1)$$
 (1)

Since |z|>2, we know that |z|-1>1, so there exists $\lambda>0$ such that

$$|Q_c^n(z)| \ge (1+\lambda)^n |z| \tag{2}$$

Since |z| is fixed and $(1 + \lambda)^n$ grows arbitrarily large, $|Q_c^n(z)|$ also grows arbitrarily large, as desired.

Theorem

Let D be the closed disk (i.e. $\{z: |z| \le |c|\}$), with |c| > 2. Then the filled Julia set of Q_c is given by

$$K_c = \bigcap_{n \ge 0} Q_c^{\circ - n}(D)$$

where $Q_c^{\circ -n}(D)$ denotes the preimage of D under $Q_c^{\circ n}$

Proof.

Consider the case where $z \notin \bigcap_{n \geq 0} Q_c^{\circ - n}(D)$. Then there exists some $k \in \mathbb{N}$ such that $z \notin Q_c^{\circ - k}(D)$, so we have that $Q_c^{\circ k}(z) \notin D$. Thus by the escape criterion, z escapes to infinity under iteration of Q_c , so $z \notin K_c$.

Otherwise, if $z \in \bigcap_{n \geq 0} Q_c^{\circ -n}(D)$, then $Q_c^{\circ n}(z) \in D$ for all $n \in \mathbb{N}$. Thus z is bounded under iteration of Q_c , so $z \in K_c$.

Algorithm 1: Algorithm to plot K_c

Input: Grid, a list of evenly-spaced complex numbers in a rectangular region of the complex plane

```
1 for i \leftarrow 1 to N do
```

Preliminaries

$$\exists \qquad \qquad \bigsqcup z \leftarrow Q_c(z)$$

4 for z in grid do

6

```
if |z| \leq max(|c|, 2) then
```

paintBlack(z)

Algorithm 2: Algorithm to plot J c

Preliminaries

Input: MaxIter, the maximum number of iterations to perform

```
1 Z ← randomComplexNumber()
2 for i \leftarrow 1 to MaxIter do
     binaryRand ← randomBit()
3
     if binaryRand = 0 then
4
      z \leftarrow \sqrt{(z-c)}
5
     else
6
         z \leftarrow -\sqrt{(z-c)}
7
      if i > 100 then
8
         paintBlack(Z)
9
```

Cantor Construction

Preliminaries