

质量部

# QC//组制ABC

启迪 创新思维

开发 无限潜能

培养 团队意识

实现 自我价值

# 目录

| 1 知识篇                                                                          | 3            |
|--------------------------------------------------------------------------------|--------------|
| 1.1 QC 小组的产生与发展 /3<br>1.2 什么是 QC /4<br>1.3 QC 工具如虎添翼 /8<br>1.4 QC 小组活动中每一步骤常用的 | <b>方法</b> /1 |
| 2 <b>启迪篇</b>                                                                   | 30           |
| 2.1 问题的发现 /30<br>2.2 问题的分析 /34<br>2.3 QC 小组会议 /37<br>2.4 激发 QC 小组的活力 /39       |              |
| 3 成果篇                                                                          | 42           |
| 3.1 QC 小组活动成果类型 /42<br>3.2 成果总结的步骤 /43<br>3.3 成果评审 /44                         |              |

# 1 知识篇

### 1.1 QC 小组的产生与发展

1) 1962 年,日本首创了 QC 小组,并把广泛开展 QC 小组活动作为全面质量管理的一项重要工作。之后,在 70 多个国家和地区也开展了此项活动。

# 各国家取名有所不同!



2) 中国从 1978 年开始推行全面质量管理和开展 0C 小组活动,至今已经整整 30 年了。从 1980—2007 年全国累计注册的 0C 小组数量为 2659 万个。累计为企业直接创造可计算的经济效益达 5357 亿元,共命名全国优秀 0C 小组 22349 个。

### 1.2 什么是 QC

# 1、QC 概念

质量管理(QC)小组是在生产或工作岗位上从事各种劳动的职工,围绕企业的经营战略、方针、目标和现场存在的问题,以**改进质量、降低消耗、提高**人**的素质和经济效益**为目的组织起来,运用质量管理的理论和方法开展活动的小组。

# 2、QC 小组形成

共同兴趣----- 对活动课题的共同兴趣,使来自同一 或不同的部门的员工走在一起。

自发开展----- 没有强迫,为共同的愿望、自主地开

展活动,努力完成课题。

实施改进----- 全体成员围绕质量、成本、产量、交

货期、安全等存在的问题实施改进。

团队活动----- 以 3~10 人为宜,小组全体成员齐心协力完成目标。

# 3、小组活动三大宗旨

-----激发员工积极性、创造性、健康成长。

-----改进质量、降低消耗,提高经济效益。

------营造文明、心情舒畅的作业环境。

# 4、QC 小组精神和做法



# 5、QC 小组活动程序



# 6、QC课题选择

### 特别提示:

指令性课题 指导性课题 指导性课题 小组自行选择课题

前两个课题是企业生产经营活动中迫切需要解决的问题,但大多数的 0C 小组需要自己去寻找、选择课题。

### OC 小组在自选课题时可以考虑以下三个方面:

- 1、针对上级方针、目标在本部门落实的关键点来选题。如 降低消耗,减少预算等题目。
- 2、从现场或小组本身存在的问题方面选题。可以围绕生产、施工、服务现场或小组本身管理上、效率上、质量

- 上、环境上存在的问题开展。
- 3、从顾客不满意的问题中去选题。

# 课题完成后,总结很重要!

# 活动前的状态和活动后的状态评价,推荐使

# 项目 自我评价 质量意识 活动前 活动后 个人能力 QCC知识 解决问题的信心 团队精神

# 1.3 QC 工具如虎添翼

用如下表:







# 用好QC 工具,省时省力

运用 QC 工具,对数据和资料进行收集、整理和分析,把握客观实际,看清问题并做出正确判断。数据、资料包括"数值性数据"和"语言文字性资料"两种。

## ● 运用 OC 工具的好处多多:

拨开云雾----对于混乱问题能明晰其实质。

抓住重点----将关键节点凸显出来,明确解决重点。

集思广益-----引导所有成员发挥创造性思维。

减少遗漏----数据性和文字性资料工具互补,消除现状调查及计划阶段的任何遗漏。

### ■ 常用的 OC 工具及主要功能:

-----排列图——抓重点

------散布图——看相关

------因果图——追原因

-----控制图——找异常

-----直方图——显分布

------调查表——集数据

-----分层法——示差异

# 1.4 QC 小组活动中每一步骤常用的方法

在 QC 小组活动中运用数理统计技术对所收集到的大量数据进行整理、分析,以正确判断影响质量问题的偏差程度,从而提高小组解决问题的能力。因此,应用统计方法的正确与否,决定了 QC 小组的活动水平与小组本身的成熟度。

下面以问题解决型课题的 QC 小组活动为例 按照 PDCA 循环的流程,提出各流程适合使用的工具和方法。

### 一、选择课题

在说明选题理由时要用数据来表达,为此常常要用到一些工具,常用的工具有折线图、柱状图、饼分图、排列图、直方图、过程能力指数、控制图等。图 1 为折线图在选题理由中的应用实例。



### 二、现状调查

现状调查就是要收集必要的数据,以反映客观事实。为了收集、整理、分析这些数据,就要应用一些统计工具。常用的工具和方法有:调查表、简易图表(折线图、柱状图、饼分图等)、排列图、直方图、控制图、过程能力指数等,可根据需要来选用。在分析症结所在时,分层法则是最常用的方法。以下为调查表、排列图、分层法在现状调查中的应用实例。

(一) 我们对 2006 年 5~7 月份冰箱 (柜) 镀锌件 合格率进行了调查,调查结果见表 1。

表 1

| n // | 5月份      |          | 9      |          | 6月       | <del>())</del> | 7月份      |          |        |  |
|------|----------|----------|--------|----------|----------|----------------|----------|----------|--------|--|
| 坝口   | 供货<br>批次 | 合格<br>批次 | 合格率    | 供货<br>批次 | 合格<br>批次 | 合格率            | 供货<br>批次 | 合格<br>批次 | 合格率    |  |
| 冰箱   | 412      | 385      | 93.45% | 447      | 409      | 91.50%         | 297      | 249      | 83.84% |  |
| 冷柜   | 319      | 295      | 92.48% | 323      | 298      | 92.26%         | 266      | 208      | 78.20% |  |
| 合计   | 731      | 680      | 93.02% | 770      | 707      | 91.82%         | 563      | 457      | 81.17% |  |

(二) 我们对 2006 年 5~7 月份不合格的 220 批冰箱 (柜) 镀锌件进行分类缺陷统计,并根据统计表做出排列图 (见图 2)。

| 序号 | 缺陷項目    | 须数 (批) | 累计频数(批) | 累计频率%   |
|----|---------|--------|---------|---------|
| .1 | 镀层厚度不合格 | 160    | 160     | 72.73%  |
| 2  | 外观不合格   | 30     | 190     | 86.37%  |
| 3  | 尺寸不合格   | 18     | 208     | 94.55%  |
| 4  | 其他      | 12     | 220     | 100.00% |



由图表可以看出,镀层厚度不合格占 72.73%,是影响镀锌件合格率的主要问题。

(三) 镀锌件合格率低是由个别供应商造成的吗? 我们对排列图中 160 批镀层厚度不合格的产品按厂家 不同进行了分层调查,调查结果见表 2。

|              |        |            |            | -40        | 2          |        |            |        |        |            |
|--------------|--------|------------|------------|------------|------------|--------|------------|--------|--------|------------|
| 供应商<br>名称    | 蓝天     | 北海贸        | 勝飞         | 海达         | 五金         | 隆昌     | 锡坤         | 鴻辉     | 其它     | 合计         |
| 供货<br>批次     | 223    | 509        | 196        | 240        | 276        | 81     | 42         | 30     | 353    | 1950       |
| 不合格<br>批次    | 14     | 59         | 46         | 26         | 12         | 12     | -11        | 5      | 35     | 220        |
| 合格率          | 93.72% | 88.41%     | 76.53%     | 89.17%     | 95.65%     | 85.19% | 73.81%     | 83.33% | 90.08% | 88.72%     |
| 镀锌不合<br>格批次  | 14     | 49         | 30         | 16         | 8          | 10     | 8          | 2      | 23     | 160        |
| 镀层厚度<br>不合格率 | 100%   | 83.05<br>% | 65.22<br>% | 61.54<br>% | 66.67<br>% | 83.33  | 72.72<br>% | 40%    | 65.71  | 72.73<br>% |



### 根据调查表作出图3的柱状图。

图 3 供应商不同镀层厚度不合格率的对比

结论: 从柱状图可以看出, 镀层厚度合格率低与 供应商不同的关系不明显。这是一个共性的问题。

### 三、设定目标

设定的目标既要有一定的挑战性,又应是通过小组的努力可以达到的。为此,设定目标的依据可以从以下内容中选取:

- 1、 上级下达的考核指标(或标准的要求);
- 2、 顾客提出的需求;
- 3、 条件相当的同行业的先进水平;
- 4、 对于问题解决程度的测算分析。 常用工具:水平对比法、简易图表(折线图、柱状

### 图、饼分图、甘特图、雷达图等)



#### 四、原因分析

用于原因分析的工具有三种,它们是:因果图、树图(系统图)和关联图。因果图是用于对单一问题的原因分析,多用于对生产现场的质量问题作原因分析。树图适用于对单一问题的原因分析,多用于对问题从组成系统方面进行展开分析。关联图适用于对原因与原因之间、原因与问题之间有互相缠绕、交叉影响的单一问题及多个问题进行原因分析。



**五、确定主要原因** 可以用简易图表、调查表、控制图。

此阶段是收集活动中确定的末端因素,进行要因确认,验证人运用数据分析、现场调查等方法,对所负责末梢因素进行认真分析。以下是GR&R测试方法、散布图、工序能力指数、控制图在要因确认中的应用。

要因确认之一:供应商和我公司检测结果不一致。

为了测试供应商和我们测量系统的一致性,我们随机抽了10件BCD-180左右侧帮加强板,分别由供应商(蓝天冲压件厂)和我公司的测量人员、采用相同的测量方法、在相同的环境条件下,对同一被测工件的同一点进行测试,完成第一轮测量后,将这10个样品的次序打乱,重新随机排序,进行第二轮和第三轮测量。这样共得到60个数据,见表3。

将这些数据输入到计算机中,应用 minitab 软件进行分析就得出这一组的 G R&R 的结果。

表 3

| 样品序号<br>仪器别 | 1#   | 2#   | 3#   | 4#   | 5#   | 6#   | 7#   | 8#   | 9#   | 10#  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| 供应商         | 7.0  | 19.9 | 11.9 | 13.9 | 18.9 | 13.1 | 13.0 | 12.0 | 15.0 | 9.9  |
| 新飞          | 9.9  | 16.1 | 12.0 | 14.9 | 14.1 | 18.9 | 16.0 | 12.0 | 22.0 | 12.0 |
| 供应商         | 10.1 | 17.0 | 11.1 | 14.1 | 13.1 | 19.1 | 14.0 | 11.1 | 21.8 | 11.0 |
| 新飞          | 11.2 | 16.8 | 12.8 | 15.0 | 13.9 | 19.0 | 15.0 | 12.9 | 20.0 | 11.0 |
| 供应商         | 8.9  | 17.2 | 10.1 | 12.1 | 13.0 | 19.0 | 13.8 | 11.8 | 21.1 | 11.1 |
| 新飞          | 10.0 | 16.9 | 14.0 | 13.9 | 16.9 | 21.9 | 15.0 | 12.0 | 20.9 | 10.9 |

| 来源       | 标准差 (SD) | 研究变异<br>(6*SD) | %研究变异<br>(%SV) | %公差<br>(SV/Toler) |
|----------|----------|----------------|----------------|-------------------|
| 合计量具 R&R | 1.77562  | 10.6537        | 46.65          | 63.54             |
| 重复性      | 1.62581  | 9.7548         | 42.71          | 58.18             |
| 再现性      | 0.71385  | 4.2831         | 18.75          | 25.55             |
| C3       | 0.71385  | 4.2831         | 18.75          | 25.55             |
| 部件间      | 3.36684  | 20.2011        | 88.45          | 120.48            |
| 合计变异     | 3.80637  | 22.8382        | 100.00         | 136.21            |



图 6

图表分析: 圈內的数值就是本组 G R&R 测试结果, 如果它小于 20%说明测量系统是可靠的;大于 20%,小于 30%说明测试能力仅可以判断产品合格与否,但对过程控制的能力不足;大于 30%说明测量系统不满足要求, 检测结果不一致, 必须改进。

结论:供应商和我公司检测结果不一致是主要原因。 要因确认之二:环境温度低。

表 4

| 确认目的 |          |                                |          | 确认       | 过程    |          |          |          |  |  |  |  |  |  |
|------|----------|--------------------------------|----------|----------|-------|----------|----------|----------|--|--|--|--|--|--|
| 确认环境 | 2006年    | 2006年9月16~18日, 陈某、高某在蓝天冲压件厂对环境 |          |          |       |          |          |          |  |  |  |  |  |  |
| 温度低是 | 温度与      | 镀层厚                            | 度之间      | 可的对抗     | 立关系   | 进行了      | 调查,      | 通过       |  |  |  |  |  |  |
| 否影响镀 | 2006 年   | 3~8 月                          | 份记录      | 的分析      | f, 得出 | 出两者グ     | 为不相:     | 关关系      |  |  |  |  |  |  |
| 层厚度  | 见调查      | 表和散                            | 布图。      |          |       |          |          |          |  |  |  |  |  |  |
|      | 环境<br>温度 | 镀层<br>厚度                       | 环境<br>温度 | 镀层<br>厚度 | 环境温度  | 镀层<br>厚度 | 环境<br>温度 | 镀层<br>厚度 |  |  |  |  |  |  |
|      | 9        | 11.1                           | 17       | 8.6      | 16    | 9.2      | 9        | 9.2      |  |  |  |  |  |  |
|      | 10       | 8.3                            | 16       | 11.3     | 17    | 7.4      | 12       | 11.4     |  |  |  |  |  |  |
|      | 10       | 7.2                            | 15       | 13.1     | 18    | 8.7      | 13       | 9.5      |  |  |  |  |  |  |
|      | 11       | 7.9                            | 14       | 12.3     | 19    | 6.9      | 14       | 8.3      |  |  |  |  |  |  |
|      | 12       | 8.8                            | 13       | 9.6      | 20    | 7.1      | 15       | 7.9      |  |  |  |  |  |  |
|      | 13       | 6.5                            | 12       | 7.5      | 19    | 9.1      | 16       | 9.3      |  |  |  |  |  |  |
|      | 14       | 7.6                            | 11       | 8.4      | 18    | 7.8      | 17       | 12.2     |  |  |  |  |  |  |
|      | 15       | 8.9                            | 10       | 10.2     |       |          |          |          |  |  |  |  |  |  |



以下是工序能力指数在要因确认中的应用:

要因确认之三:风扳扭矩定位不精确。

确认目的: 确认风扳扭矩的定位是否符合要求。

现场试验: 2006年4月3日刘军主设计师现场对16台冰箱的32个上紧的螺钉测定其扭矩,试验数据见表5。

|            |     |     |     | 表う  |     |     |     |     |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|
| 序号         | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
| 扭矩<br>(Nm) | 5.2 | 3.4 | 5.2 | 5.1 | 6.2 | 4.2 | 4.0 | 4.2 |
| 序号         | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  |
| 扭矩<br>(Nm) | 4.1 | 5.5 | 6.6 | 4.8 | 4.0 | 5.0 | 4.8 | 4.8 |
| 序号         | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  |
| 扭矩<br>(Nm) | 4.0 | 5.1 | 4.9 | 5.0 | 5.0 | 5.8 | 3.9 | 6.7 |
| 序号         | 25  | 26  | 27  | 28  | 29  | 30  |     |     |
| 扭矩<br>(Nm) | 4.2 | 5.5 | 6.5 | 5.4 | 6.2 | 4.2 |     |     |

### 根据表5数据作出相应直方图(图7),如下图:



由此可见,有大量数据已超出规定的螺钉扭矩的 上下限,工序能力指数为0.19,工序能力严重不足。

结论:风扳扭矩定位不精确是主要原因。

要因确认之四:风扳压缩空气气压不稳定。

确认目的: 风扳压缩空气的气压是否符合工艺要求

试验: 2006年4月3日我们通过对上螺钉时风扳的压缩空气的气压进行观察记录,连续观察20次,并记录数据,其数据见表6。

表 6

| 序号      | 1    | 2    | 3    | 4    | 5    |
|---------|------|------|------|------|------|
| 气压(MPa) | 0.54 | 0.57 | 0.54 | 0.55 | 0.58 |
| 序号      | 6    | 7.   | 8    | 9    | 10   |
| 气压(MPa) | 0.62 | 0.54 | 0.56 | 0.60 | 0.56 |
| 序号      | 11   | 12   | 13   | 14   | 15   |
| 气压(MPa) | 0.53 | 0.58 | 0.62 | 0.55 | 0.53 |
| 序号      | 16   | 17   | 18   | 19   | 20   |
| 气压(MPa) | 0.55 | 0.54 | 0.61 | 0.58 | 0.54 |

根据数据做出图 8 的控制图。





可见,压缩空气的气压在合格的工艺范围内并处 于稳定状态。

结论:风扳压缩空气气压不稳定不是主要原因。

### 六、制定对策和按对策实施

制定对策就是对已经确认的主要原因,逐条提出改进的措施计划。对策与实施阶段由于是进入实质性的质量改进阶段,各种改进及其结果都需用数据表达,为此可用的工具和方法也最多。常见的工具、方法有:调查表、直方图、控制图、过程能力指数、散布图、矩阵图、过程决策程序图、箭条图、头脑风暴法、程序图、优选法、正交试验设计法等,QC 小组应根据自己处理数据的实际需要来正确、恰当的选用。

以下是 G R&R 测试方法、过程能力指数在对策实施中的应用。

对策实施之一:提高检测一致性(具体实施内容略)。 实施内容: 1.确定工件的测量部位:

- 2. 统一标准膜片厚度;
- 3.培训双方测量人员。

### 效果检查:

为了测试改进后供应商和我们测量系统的重复性和再现性,我们随机抽了10件BCD-180左右侧帮加强板,分别由供应商(蓝天冲压件厂)和我公司的测量人员、采用相同的测量方法、在相同的环境条件下,对同一被测工件的同一点进行测试。完成第一轮测量后,将这10个样品的次序打乱,重新随机排序,进行第二轮和第三轮测量。这样共得到60个数据,见表7。

表 7

| 样品序号<br>仪器别 | 1#  | 2#   | 3#   | 4#   | 5#   | 6#   | 7#   | 8#   | 9#   | 10#  |
|-------------|-----|------|------|------|------|------|------|------|------|------|
| 供应商         | 8.9 | 17.1 | 11.9 | 13.9 | 14   | 19.3 | 13   | 12   | 21.8 | 10.9 |
| 新飞          | 9.9 | 17.6 | 12   | 14.9 | 14.1 | 18.9 | 13.9 | 12   | 22   | 12   |
| 供应商         | 9.6 | 17   | 11.1 | 14.1 | 13.1 | 19.1 | 14   | 11.8 | 21.8 | 11   |
| 新飞          | 9.1 | 16.8 | 12.3 | 14.3 | 13.9 | 19   | 14.2 | 12.9 | 20   | 11   |
| 供应商         | 8.9 | 17.2 | 10.9 | 14.5 | 13   | 19   | 13.8 | 11.8 | 21.1 | 11.1 |
| 新飞          | 10  | 16.9 | 12.2 | 13.9 | 13.8 | 20.1 | 14.6 | 12   | 20.9 | 10.9 |

将这些数据输入到计算机中,应用 minitab 软件进行分析,就得出这一组的 G R&R 的结果 (见图 9)。





图 9

图表分析: 圈内的数值就是本组 G R&R 测试结果, 小于 20%说明测量系统是可靠的。

效果: G R&R 测试结果为 18.33%,小于 20%说明测量系统可靠,改进措施有效。

对策实施之二:对螺钉固定孔径为 3.5mm~4.2mm做一系列试验,找出最佳匹配水平。

实施内容:我们小组的刘军主设计师设计螺钉的破坏扭矩试验方案,将螺钉分别固定在螺钉固定孔径为3.5mm,3.8mm,3.9mm,4.0mm,4.1mm,4.2mm的BCD-138WHI中梁和加强板上,分别做十次破坏扭矩试验,对每个孔径都计算10次数据的平均值,试验数据见表8。

表 8

| 孔径 (mm)             | 3.5  | 3.8  | 3.9  | 4.0  | 4.1  | 4.2  |
|---------------------|------|------|------|------|------|------|
| 螺钉破坏扭矩<br>平均值 (N·m) | 6.2  | 6.8  | 7.5  | 8.2  | 7.3  | 7.0  |
| 过程能力指数<br>Cpk       | 0.80 | 0.85 | 1.42 | 1.74 | 1.38 | 1.02 |

从上述试验数据可以看出, 孔径为 4.0mm 时, 其过程能力最高, 过程能力指数 Cpk 达到 1.74, 且孔径在 4.1mm 和 4.2mm 时出现部分螺钉滑丝现象。我们又参照国标 GB/T3098.5-2000 标准螺钉的拧入性能试验推荐孔径, ST4.8 的螺钉其固定孔径为 4.015mm~4.065mm。所以我们选定中梁和加强板的螺钉固定孔径均为 4.0mm。

实施效果: 改进设计后, 螺钉固定在中架和加强 板孔径为 4.0mm, 板厚 3.1mm 时, 测量 30 个螺钉的破 坏扭矩,数据见表9。

| 序号            | 1           | 2   | 3   | 4      | 5     | 6    |   |  |  |  |  |
|---------------|-------------|-----|-----|--------|-------|------|---|--|--|--|--|
| 破坏扭矩<br>(N·m) | 8.4         | 8.6 | 8.0 | 7.4    | 8.0   | 8.4  |   |  |  |  |  |
|               | 17 7 1 1 12 | 100 | 1.0 | 17,212 | 14000 | 4.44 | Г |  |  |  |  |

7 8 9 10 8.4 8.2 7.8 8.6 17 18 19 20 序号 11 12 13 14 15 破坏扭矩 8.8 7.8 7.6 8.6 8.4 8.2 8.2 8.2 8.2 8.4 (N-m) 序号 21 22 23 24 25 26 27 28 29 30 破坏扭矩

8.0

8.2

8.2

8.0

并用 minitab 作出图 10 的直方图。

8.2

8.0

8.2

(N-m)



图 10

改进后的螺钉破坏扭矩一致性很好。过程能力充 分。

8.2

8.2

8.4

### 七、效果检查

效果检查最主要的内容就是与小组设定的课题目标进行对比,看是否达到了预定的目标。对比时常用一些工具,以其简明的图形,一目了然地展示出对策实施前的水平、小组设定的目标以及对策实施后所达到的水平,使人一看就知道是否已达到了小组设定的课题目标。

常用的工具有: 柱状图、折线图、直方图和过程能 力指数等。以下是折线图、排列图、假设检验在效果 检查中的应用。

效果检查一:与目标值对比。

对策实施后。我们对 2007 年 1-3 月份冰箱(柜) 镀锌件合格率进行了调查, 做出了调查表(见表 10)。

表 10

| 月份項目 | 1月份      |          |        | 2月份      |          |        | 3月份      |          |        |
|------|----------|----------|--------|----------|----------|--------|----------|----------|--------|
|      | 供货<br>批次 | 合格<br>批次 | 合格率    | 供货<br>批次 | 合格<br>批次 | 合格率    | 供货<br>批次 | 合格<br>批次 | 合格率    |
|      | 506      | 486      | 96.05% | 395      | 383      | 96.96% | 554      | 539      | 97.29% |
| 冷柜   | 466      | 451      | 96.78% | 233      | 225      | 96.57% | 589      | 568      | 96.43% |
| 合计   | 972      | 937      | 96.40% | 628      | 608      | 96.82% | 1143     | 1107     | 96.85% |

1-3 月份共发生不合格批次 91 批, 平均批次不合格率为 3.32%, 合格 率为 96.68%



我们对活动前后镀锌件合格率进行统计,绘制出

图 11

93.02 91.82 81.17 90.56 88.96 95.01 91.76 96.12 96.40 96.82 96.85

结果显示, 镀锌件合格率已得到明显提高, 2007 年 1~3 月份平均合格率达到 96.68%, 超过我们设定的 目标值 96.00%, 我们的目标达到了。

### 八、制定巩固措施

可用简易图表(折线图、柱状图、饼分图、甘特图、雷 达图)、头脑风暴法、调查表、控制图。

### 九、总结和下一步打算

可用简易图表(折线图、柱状图、饼分图、甘特图、雷 达图)。例如,活动前后自我评价雷达图(图12)。



图 12

# 总结:

统计方法在质量管理中起到的是归纳、分析问题,显示事物的客观规律的作用。通过对统计方法的学习和应用,我们应认识到,在质量管理的现场中,我们到处都要同变量、波动和风险打交道。必须在头脑里经常形成统计调查、统计分析、统计判断等统计思考方法去考虑问题,以达到事半功倍的效果。

# 2 启迪篇



### 2.1 问题的发现

OC 小组能否成功,重点在于小组成员是否存在质量意识,善于发现身边的各种质量问题,甚至于在看似正常的表象中,寻找改进点。通过发现问题,选择小组活动的课题。

- ◆ 发现问题的三种方式
  - 常思考---小组成员常自问、互问
    - ---平时工作感到不便吗?
    - ---公司要发展,我们这里影响发展的是什么?
    - ---其它好的公司这方面是怎么做的?
    - ---身边常发生问题、影响工作效率的瓶颈 是什么?
    - ---我们新接受了新方法工具的培训,工作

### QC 小组活动 ABC

#### 中可以运用吗?

- 善观察 ---捕捉身边的细微变化
  - ---留心设备状态
  - ---关注人员的情绪
  - ---时间的变化
  - ---环境的异常
- 多提问---寻找异常的根本所在
  - ---五个"为什么"。一个问题连续追问五个 "为什么",你就很容易找到问题的根 节。
  - ---疑问会引导你收集更多的数据、资料进 行判断、分析
  - ---提问更能促进整个小组成员积极的思考

#### 小贴士:

- → 员工能力够吗?工作效率高吗?按标准 作业吗?
- ◆ 设备有故障吗?保养了吗 ?配备足够吗?
- → 材料符合要求吗?数量够吗?有浪费吗?
- ◆ 作业方法有效吗?顺畅吗?有更好可替 代的吗?
- ◇ 环境安全吗?影响员工作业情绪吗?
- ◆ 课题选择----五要点
  - 课题类型明确
    - ----问题解决型?(现场型、服务型、攻关型、 管理型)
  - 课题来源清晰

- ----指令性?
- ----指导性?
- ----自选?
- 课题名称准确、简洁
- 选题理由充分,直接写出选此课题的目的和必要性,
- ★ 不要长篇大论地陈述背景。

### 你觉得下面哪个构思精彩?

甲:为了强调所选课题的重要性,从国际的发展趋势讲到国内的先进水平,从计划经济向市场经济的转变讲到市场经济的特点.......



乙:利用框图的形式来分析,如下:



### ● 方法运用正确

### 【选题注意喽!】

- ◇ 官小不官大
- ◇ 避免说空话

### 2.2 问题的分析

- ◆ 了解现状 ----掌握问题严重程度
  - ----收集数据、信息
  - ----按"时间的变化"
  - ----从各种角度深入分类、分层、分析
  - ----现场查验
  - ----将获得的事实记录下来
  - ----进行客观的判断
  - ----给目标备依据
- ◆ 确定目标 ----明确小组活动方向
  - ----目标要量化
  - ----便干活动最终效果检查
  - ----目标不宜多
  - ----目标可实现并具挑战性
- ◆ 原因分析 ----找出根源
  - 针对问题进行分析
    - ----分析要彻底,到可直接采取措施
    - ----展示问题的全貌,避免漏洞
    - ----正确运用工具
- ◆ 确定要因
- ----解决关键
- ----要因判断准确----是末端因素

- ----现场验证、测试进行确认
- ----不能简单推断
- ----不能含糊不清
- ----避免用"01"打分法或举手表决法

### 【数据告诉我们真正的在哪里!】

- ◇ 广泛收集数据,倾听大家的意见,有助于找到根本原因
- ◇ 数据的支持,科学的态度让我们获胜
- ◆ 面面俱到是不可能的,要用有限的资源有效的解决问题
- ◇ 抓重点弃一般,寻找出对结果影响大的事项
- ◇ 从效果大小、实现可能性、紧迫性入手
- ◆ "太忙了"、"缺少资金"、"人手不足"不能成为口头禅

#### ◆ 激活思维

- 启发思想,大胆展开你想象的翅膀,探索问题的根源。
  - ----逆向思维
  - ----联想思维
- 突破习惯
- 【一**点通**】经验和固有的观念就像竖立在我们面前的一堵墙,跨越这道墙,好办法就会源源不断!



● 不要扑灭灵感的火花,切忌这样的话:

理论上与实际是不同的呀!

不一定能做好!

这个方案太超前啦!

需要资金啊

以前做过了!

不合逻辑!

## 【记录下灵感火花,会有大发现】

→ 一个好的想法,在轻松愉快的氛围比在认真考虑改善方案时更容 易浮现。



# 2.3 QC 小组会议

0C 小组会议是小组活动基本的、重要的形式。通过小组会议,全体小组成员聚集在一起,选择活动课题、制定活动计划、分配活动任务,共同讨论问题、激发灵感、互相沟通和帮助,提高技能和业务水平,总结成果、实现价值。以营造团结、和谐、积极向上的氛围,最终实现个人与企业共同发展的愿景。

## 如何组织开好会议 才

◇ 会议要有欢愉的氛围。组织者有幽默感会很受欢迎。

- ◇ 无拘无束畅所欲言,好的意见要鼓掌!鼓掌!
- ♦ 领导不要讲太多。
- ◆ 要用心去接近、倾听。
- ◆ 集会的场所不限于会议室。也可采取野外聚餐、现场 参观等形式。
- ◇ 把上次会议安排的事项完成情况告诉大家。
- ◇ 夸赞每一位组员的努力和完成工作情况,不要有遗漏。
- → 明确今后要做的事项、完成期限与承担者,以便能够 跟踪检查。

#### ◆ 避免发生以下的情形

| 会议特征   | 令人非常烦恼的比例 |
|--------|-----------|
| 会议离题   | 83%的人     |
| 会议准备不足 | 77%的人     |
| 会议效率低  | 74%的人     |
| 与会者啰嗦  | 62%的人     |
| 会议时间长  | 60%的人     |
| 缺乏参与   | 51%的人     |

### 【开好小组会要注意的几件事】

- ◇ 小组长的位置上要能看到每一位组员
- ◇ 要能与每位组员进行目光上的交流
- ◇ 要能注意到每位组员的表情
- ◆ 便于观察情绪,控制会议气氛

### ● 不适宜采用的座位布置形式:

- → 对立式----小组长更像是个审判官,不利于会议和 谐、畅所欲言。
- ◆课堂式----气氛过于严肃,小组成员不能看见彼此,会议不会成功。

### 2.4 激发 QC 小组的活力

### ◆领导的鼓励

领导、推进者、组长的一句话能鼓舞、激发组员的干劲,这是很多人都有的经验。



### ◆ 团队精神----小组活力之源

生活在团队里的人都会有归属感,不论做什么事、意愿 如何、成功与否,都有与人交流沟通、向人倾诉、得到别人 理解和认可的心理与精神上的需求,因此团队精神是 QC 小组的活力之源。

- 磋商 遇到困难进展不下去时,要不客气地同上级领导、小 组成员磋商、研讨,汇集大家的智慧才能促进做好工 作。
- 报告 向上级领导、向小组成员报告工作进展情况与结果。
- 庆祝 当小组历尽千辛万苦完成了课题,可别忘了与上级领导、推进者、小组成员共同欢呼、庆祝,大声喊出你的快乐,会使每个人受到感染,关系更融洽,成为下次活动的催化剂。

### ◆ 实现自我----价值的体现

人人都有"希望承认、肯定自己"、"发挥出自己的能力"等需求。通过 0C 小组活动,使小组成员实现这些需求,实现自我价值。

- 通过 QC 小组活动,展示"自己所认识不到的自我"、 "他们所不知晓的自我"。
- 通过 QC 小组活动,发掘出自己的潜能,实现成长。
- 通过 OC 小组活动得到"他人的承认和肯定"。



### ◆ 鼓舞干劲----激发小组成员士气

- "气宜鼓不宜泄"。QC 小组的士气与活力来自于不断的赞赏与鼓舞干劲。有效的做法
  - -----让每个成员都有所期待。
  - -----提高每个成员的技能。
  - -----使每个成员都具有使命感,"我不干谁干?"
  - -----培养小组成员的上进心,"我不比别人差!"
  - -----培养小组成员的主动性,"我要干!"

### ◆ 活动的几种效果

- ----活动的对话,促进小组成员彼此的思想交流。
- ----大家热心的参加讨论,对培养个人创造力很有益。
- ----得到全员认可并把决定的事情将转换成干 劲。
- ----活动集中了全体成员的智慧,发挥出小组整体的力量。
- ----参加活动的本身培养了成员参与和策划的意识与能力。
- ----通过承担任务,责任人可以培养领导能力。

# 3成果篇

### 3.1 QC 小组活动成果类型

QC 小组活动取得的成果,可以分为两类:一类是"有形成果",一类是"无形成果"。

有形成果主要是指那些可以用物质或价值形式表现出来,能直接计算其经济效益的成果。如提高产品质量,降低损失,减少设备故障时间等等。

无形成果是指难以用物质或价值表现出来,无法直接计算其经济效益的成果。如改善工作现场环境,加强部门自助管理等等。

# [成果总结要注意喽!]

- ◆ 按活动程序逐步整理
- ◆ 以下方面莫漏掉: 成员的智慧,独到的成就。 每一个难题。 如何科学决策。 失败的教训。
- ◆ 不要太专业啦!如果你的小组要出去与其它 小组交流,人家可能听不懂太专业的东西, 可适当简化。
- ◆ 多用数据和图表,更能简明扼要而且清晰地 反映情况,便于大家理解。
- ◆ 文字、标题要简洁,易看易懂。

### 3.2 成果总结的步骤



# 3.3 成果评审

# ● QC 小组活动现场评审表

| 序号   | 评审项目                      | 评审内容                                                                                                                             | 配分     | 得分 |
|------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------|----|
| 1    | QC小组的<br>组织               | (1)要按有关规定进行小组登记和课题登记;<br>(2)小组活动时,小组成员的出勤情况;<br>(3)小组成员参与分担组内工作的情况。                                                              | 7-15分  |    |
| 2    | 活动情况与活动记录                 | (1) 活动过程需按QC小组活动程序进行;<br>(2) 取得数据的各项原始记录要妥善保存;<br>(3) 活动记录要完整、真实,并能反映活动<br>的全过程;<br>(4) 每一阶段的活动能否按计划完成;<br>(5) 活动记录的内容与发表资料的一致性。 | 20-40分 |    |
| 3    | 活动成果<br>及成果的<br>维持、巩<br>固 | (1)对成果内容进行核实和确认,并已达到<br>所制定的目标;<br>(2)取得的经济效益已得到财务部门的认可;<br>(3)改进的有效措施已纳入有关标准;<br>(4)现场已按新的标准作业,并把成果巩固<br>在较好的水准上。               | 15-30分 |    |
| 4    | QC小组教<br>育                | (1) QC小组成员对QC小组活动程序的了解情况;<br>(2) QC小组成员对方法、工具的了解情况。                                                                              | 7-15分  |    |
| 总体评价 |                           |                                                                                                                                  | 总得分    |    |

# ● QC 小组活动成果发表评审

| 序号 | 评审项目  | 评审内容                                                                                                                                                                                               | 配分     |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1  | 选题    | (1)所选课题应与上级方针目标相结合,或是本小组现场急需解决的问题;<br>(2)课题名称要简洁明确地直接针对所存在的问题;<br>(3)现状已清楚掌握,数据充分,并通过分析已明确问题的症结所在;<br>(4)现状已为制定目标提供了依据;<br>(5)目标设定不要过多,并有量化的目标值和有一定的依据;<br>(6)工具证用正确、适宜。<br>(1)应针对问题的症结来分析原因,因果关系要 | 8-15分  |
| 2  | 原因分析  | (1) 应针对问题的症结来分析原因,因果关系要明确、清楚;<br>(2) 原因要分析透彻,一直分析到可直接采取对策的程度;<br>(3) 主要原因要从末端因素中选取;<br>(4) 应对所有末端因素都进行变因确认,并且是用数据、事实客观地证明确实是主要原因;<br>(5) 活动记录的内容与发表资料的一致性。                                         | 13-20分 |
| 3  | 对策与实施 | (1) 应针对所确定的主要原因,逐条制定对策,<br>(2)对策应按5W1H的原则制定,每条对策在实施后<br>都能检查是否已完成及有无效果;<br>(3) 要按对策表逐条实施,且实施后的结果都有<br>所交待;<br>(4) 大部分的对策是由本组成员来实施的,遇到<br>困难能努力克服;<br>(5) 工具运用正确、适宜。                                | 13-20分 |
| 4  | 效果    | (1)取得效果后与原状比较,确认其改进的有效性,与所制定的目标比较,看其是否已达到;(2)取得经济效益的计算实事求是、无夸大;(3)已注意了对无形效果的评价;(4)改进后的有效方法和措施已纳入有关标准,并按新标准实施;(5)改进后的效果能维持、巩固在良好的水准,并用图表表示出巩固期的数据;(6)工具运用正确、适宜。                                     | 13-20分 |
|    | 发表    | (1) 发表资料要系统分明,前后连贯,逻辑性<br>好;<br>(2) 发表资料要通俗易懂,应以图、表、数据为<br>主,避免通篇文字、照本宣科。                                                                                                                          | 5-10分  |
| 6  | 特点    | 统计方法运用突出,有特色,具有启发性。                                                                                                                                                                                | 8-15分  |
| 总体 |       |                                                                                                                                                                                                    | 总得分    |