for errors or questions email: nicolatr@student.ethz.ch

5 Sheaves of Modules

$\mathcal{O}(X)-modules$ 5.1

Fix a scheme X

sheaf of \mathcal{O}_X -modules: A (pre)sheaf of $\mathcal{O}(X)$ -modules is a (pre)sheaf of abelian

> groups \mathcal{F} on X together with a morphism of presheaves of sets $\mathcal{O}_X \times \mathcal{F} \longrightarrow \mathcal{F}$, which turns $\mathcal{F}(U)$ into an $\mathcal{O}_X(U)$ -module for

every open $U \subset X$

A homomorphism of such is a morphism of presheaves $\mathcal{F} \to \mathcal{G}$ such that $\mathcal{F}(U) \to \mathcal{G}(U)$ is $\mathcal{O}_X(U)$ -linear for each U

analogously define composition, identity morphism etc. \rightsquigarrow this forms a category.

Take \mathcal{O}_X -module \mathcal{F}_i for $i \in I$

The direct product $\prod \mathcal{F}_i$ is defined by $U \longmapsto \prod (\mathcal{F}_i(U))$ with direct product:

component-wise structure

direct sum: the direct sum $\bigoplus \mathcal{F}_i$ is the sheafification the presheaf

 $U \longmapsto \bigoplus \mathcal{F}_i(U)$. This is a subsheaf of $\prod \mathcal{F}_i$ with equality if |I|

is finite.

The tensor product $\mathcal{F} \otimes \mathcal{G}$ of \mathcal{O}_X -modules $\mathcal{F} \& \mathcal{G}$ is the sheafification tensor product:

of the presheaf $U \longmapsto \mathcal{F}(U) \otimes_{O(U)} \mathcal{G}(U)$

inner Hom: The inner Hom is the sheaf of homomorphisms of \mathcal{O}_X -modules \mathcal{F}

and \mathcal{G}

 $U \longmapsto Hom_{\mathcal{O}_X}(\mathcal{F}|_U, \mathcal{G}|_U) =: \mathcal{H}om_{\mathcal{O}(X)}(\mathcal{F}, \mathcal{G})(U)$

Locally free \mathcal{O}_X -modules 5.2

Abbreviate: $\mathcal{O}_X^{(I)} := \bigoplus_{i \in I} \mathcal{O}_X$ $\mathcal{O}_X^I := \prod_{i \in I} \mathcal{O}_X$ $\mathcal{O}_X^r := \bigoplus_{i=1}^r \mathcal{O}_X$

free \mathcal{O}_X -module : An \mathcal{O}_X -module isomorphic to $\mathcal{O}_X^{(I)}$ for some I is called free

locally free $\mathcal{O}_{X^{-}}$ (a) An $\mathcal{O}_{X^{-}}$ module is locally free if $\forall x \exists x \in U \subset X open \ \exists I : \mathcal{F}|_{U} \cong \mathcal{O}_{X^{-}}^{(I)}|_{U}$

(b) It is called locally free of rank r if $\exists I: |I|=r$ and $\forall x\exists x\in U\subset X:\mathcal{F}|_U\cong\mathcal{O}_X^{(I)}|_U$

dual sheaf: For \mathcal{F} locally free of finite rank, $\mathcal{F}^{\vee} := \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$ is called

the dual sheaf, also locally free of rank r.

invertible sheaf: A locally free sheaf of rank 1 is called an invertible sheaf.

Picard group: The set of isomorphism classes of invertible sheaves on X form an

abelian group, Pic(X), called the Picard group of X.

5.3 \mathcal{O}_X -module s on affine schemes

5.4 Quasicoherent \mathcal{O}_X -module s

Let X be an arbitrary scheme

Notation for global sections: $\mathcal{F}(X) = \Gamma(X, \mathcal{F}) = H^0(X, \mathcal{F})$

Any system of global sections $s_i \in \mathcal{F}(X)$ determines a homomorphism $\mathcal{O}_X^{(I)} \longrightarrow \mathcal{F}$, $(f_i)_{i \in I} \longmapsto \sum f_i \cdot res_U^X$

 \mathcal{F} is called generated by global sections if $\exists I$: \exists a surjective homomorphism: $\mathcal{O}_X^{(I)} \twoheadrightarrow \mathcal{F}$

quasicoherent \mathcal{O}_{X} - An \mathcal{O}_{X} -module \mathcal{F} is called quasicoherent if $\forall x \in X \exists$ open neighborhood $x \in U \subset X \exists I \exists J \exists$ exact sequence

$$\mathcal{O}_X^{(I)}|_U \longrightarrow \mathcal{O}_X^{(J)}|_U \longrightarrow \mathcal{F}|_U \longrightarrow 0$$

locally free \Longrightarrow quasicoherent

5.5 Coherent sheaves

finitely generated $\mathcal{O}_{X^{-}}$ An $\mathcal{O}_{X^{-}}$ module \mathcal{F} is called: module :

(a) finitely generated (or of finite type) if $\forall \exists x \in U \subset X$ open: $\exists n < \infty \ \exists \ \mathcal{O}_X^n|_U \twoheadrightarrow \mathcal{F}|_U \ \mathcal{O}_X$ -module homomorphism.

coherent \mathcal{O}_X -module (b) coherent if it is finitely generated and $\forall U \subset X$ open $\forall n < \infty \ \forall$ homomorphisms $\varphi : \mathcal{O}_X^n|_U \twoheadrightarrow \mathcal{F}|_U \ker(\varphi)$ is finitely generated.

5.6 Functoriality

Consider a morphism $f: X \longrightarrow Y$ with sheaves \mathcal{F} on X and \mathcal{G} on Y. Let \mathcal{F} be an \mathcal{O}_X -module and \mathcal{G} be an \mathcal{O}_Y -module. f comes with a homomorphism of sheaves of rings:

$$f^{\flat}: \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X \iff f^{\sharp}: f^*\mathcal{O}_Y \longrightarrow \mathcal{O}_X$$

push-forward of a Make $f_*\mathcal{F}$ into an \mathcal{O}_Y -module by sheaf:

$$\mathcal{O}_{Y}(V) \times (f_{*}\mathcal{F})(V) \longrightarrow (f_{*}\mathcal{F})(V)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{X}(f^{-1}(V)) \times \mathcal{F}(f^{-1}) \xrightarrow{mult.} \mathcal{F}(f^{-1}(V))$$

inverse image:

the inverse image of an \mathcal{O}_X -module is $f^*\mathcal{G} := f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$. i.e.the sheafification of the presheaf

$$U \longmapsto \varinjlim_{f(U) \subset V \subset Y} (\mathcal{O}_X(U) \otimes_{\mathcal{O}_Y(V)} \mathcal{G}(V))$$

scheme-theoretic support of \mathcal{F} :

Let \mathcal{F} be a quasicoherent, finitely generated \mathcal{O}_X -module . the scheme-theoretic support is the smallest closed subscheme $i: Y \hookrightarrow X$ such that $\mathcal{F} \cong i_* i^* \mathcal{F}$. Moreover $Y = \{x \in X | \mathcal{F}_x \neq 0\}$

5.7 \mathcal{O}_X -moduleson a projective scheme

For any graded R-module M and any $n \in \mathbb{Z}$ we set M(n) := M as R-module with grading $M(n)_d = M_{n+d}$

$$\widetilde{R(n)} =: \mathcal{O}_X(n)$$

clear: $\mathcal{O}_X(0) \cong \mathcal{O}_X$

twisting sheaf:

 $\mathcal{O}_X(1)$ is called the twisting sheaf on X = ProjR for any \mathcal{O}_X -module we set $\mathcal{F}(n) := \mathcal{F} \otimes \mathcal{O}_X(n)$

5.8 Morphisms to projective spaces

very ample sheaf:

An invertible sheaf \mathcal{L} is called very ample (over SpecR) if $\mathcal{L} \cong f^*\mathcal{O}_X(1)$ for some locally closed embedding over R $f: X \hookrightarrow \mathbb{P}^n_R$ for some n.

ample sheaf:

An invertible sheaf \mathcal{L} on a quasicompact scheme X is called ample if for any finitely generated quasicoherent sheaf \mathcal{F} on X there exists n_0 such that $n \geq n_0$ the sheaf $\mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is generated by global sections.

relatively ample /very ample sheaf

 \mathcal{L} an invertible sheaf with respect to $f: X \longrightarrow Y$ iff there exists an affine open covering $Y = \bigcup_{i \in I} V_i$ such that $\forall i \mathcal{L}|_{f^{-1}(V_i)}$ is ample/ very ample over V_i

5.9 Divisors

Assume X integral with function field K.

field of rational functions on X

the constant sheaf $(K)_X := \underline{K}$ on X is called the sheaf of rational functions on X

group of Cartier divisors

$$Div(X) := \Gamma(X, \mathcal{K}_X^{\times}/\mathcal{O}_X^{\times})$$

$$Div(X) = \{([f_x]) \in \prod_{x \in X} K^{\times}/\mathcal{O}_{X,x}^{\times} \mid \forall x \exists U \exists f \in K^{\times} \forall y \in U : f_y \cdot \mathcal{O}_{X,y}^{\times} = f \mathcal{O}_{X,y}^{\times} \}$$

$$= \{ \text{ collections of } f_i \in K^{\times} \text{ for all } i \in I \text{ and an open covering } X = \bigcup U_i \text{ such that } \forall i, j : f_i/f_j \in \Gamma(U_i \cap U_j, \mathcal{O}_X^{\times}) \} / \text{ modulo} \}$$

 $X = \bigcup U_i$ such that $\forall i, j : f_i/f_j \in \Gamma(U_i \cap U_j, \mathcal{O}_X^{\times}) \} / \text{ modulo}$ some equivalence relation

convention: The group law on Div(X) is written additively.

 $\mathcal{O}_X(D)(U)$

For any Cartier divisor $D = ([f_x])x \in X$ and any open $U \subset X$ set:

$$\mathcal{O}_X(D)(U) = \begin{cases} \{0\} & \text{if } U = \emptyset \\ \bigcap_{x \in U} f_x^{-1} \mathcal{O}_{X,x} & \text{else} \end{cases}$$

locally factorial scheme

A noetherian integral scheme such that $\forall x \in X\mathcal{O}_{X,x}$ is factorial is called locally factorial.

effective cartier divisor

A cartier divisor $D = ([f_x])_x$ is called effective if $\forall x \in X$: $f_x \in \mathcal{O}_{X,x}$

equiv: $\forall i: f_i \in \mathcal{O}_X(u_i)$

 $\iff \mathcal{O}_X(-D) \subset \mathcal{O}_X \iff \mathcal{O}_X \subset \mathcal{O}_X(D)$

 $\iff \mathcal{O}_X(-D)$ is a quasicoherent sheaf of ideals of \mathcal{O}_X

⇔ D corresponds to a closed subscheme locally given by one equation f_i i.e. locally principal. this subscheme determines D.

principal cartier divisor

A cartier divisor of the form $div(f) := (f) := ([f])_{x \in X}$ for some $f \in K^{\times}$ is called principal.

of X

cartier divisor class group The factor group DivCl(X) := Div(X)/principal divisors

prime cycle

an integral closed subscheme is called a prime cycle. (equiv: irred closed subset)

codimension of a prime cycle

A prime cycle's codimension is $dim\mathcal{O}_{X,y}$ for the generic point $y \in Y$.

cycle A finite formal \mathbb{Z} -linear combination of prime cycles $\sum_{y} n_{y} y$ is

called a cycle.

codimension of a cycle If all these Y have codim d the cycle has codim d

Weil divisor A cycle of dimension 1 is called a Weil divisor.

A Weil divisor of the form $cyc(div(f)) = \sum ord_y(f) \cdot \overline{\{y\}}$ is principal weil divisor

called principal.

The factor group $Z(X)/\{principal\} = Cl(X)$ is called the Weil Weil divisor class group

divisor group.

effective weil divisor A weil divisor $\sum n_y Y$ is effective if all $n_y \geq 0$

> equiv: associated cartier divisor is effective equiv: $\mathcal{O}_X(-D)$ is an ideal sheaf of \mathcal{O}_X

ample/very ample divisor A divisor is called ample/very ample iff $\mathcal{O}_X(D)$ is dito.

5.10Differentials

Let X=Spec B, Y=Spec A and $f: Y \longrightarrow X$

A-derivation of B to M An A-derivation of B to a B-module M is a map $d: B \longrightarrow M$

with $\forall b, b' \in B \ \forall a \in A$

(a)d(b + b') = d(b) + d(b') $(b)d(b \cdot b') = b \cdot b' + d(b) \cdot b'$

 $(c)d(a\cdot 1_B)=0$

 $\Omega_{B/A}$ module of (rel-A module of relative differential forms of B over A is a B-

differential ative)

(form)s

module $\Omega_{B/A}$ with a derivation $d: B \longrightarrow \Omega_{B/A}$ over A which satisfies the universal property: for all B-modules M and all derivations $\delta: B \longrightarrow M$ over A there exists exactly one Bmodule homomorphism $f: \Omega_{B/A} \longrightarrow M$ with $f \circ d = \delta$

Consider a morphism $f: Y \longrightarrow X$, then for all open affine subsets we have:

 $Y \longrightarrow X$ $SpecB \longrightarrow SpecA$

 $SpecB_{ab} \longrightarrow SpecA_a$

Then:

So there is a unique sheaf of \mathcal{O}_X -modules $\Omega_{Y/X}$ with $\Omega_{Y/X}(SpecB) = \Omega_{B/A}$

 $\Omega_{Y/X}$

 $\Omega_{Y/X}$ is the sheaf of (relative) differentials of Y over X. It comes with a "universal derivation" $d: \mathcal{O}_Y \longrightarrow \Omega_{Y/X}$

sheaf of relative differential forms of degree d over Y

for any $d \geq 0$ set $\Omega_{X/Y}^d := \Lambda_{\mathcal{O}_X}^d \Omega_{X/Y}$ the sheaf of relative differential forms of degree d over Y.

of X over Y

 $\omega_{X/Y}$ Canonical sheaf if $\Omega_{X/Y}$ is locally free of rank n then $\Omega_{X/Y}^d$ is too, of rank $\binom{n}{d}$. In particular $\Omega_{X/Y}^n$ is an invertible sheaf, called the canonical sheaf of x over Y denoted $\omega_{X/Y}$.

cohomology 6

Some (quick) homological algebra 6.1

Let \mathcal{C} be the category of R-modules/ sheaves of abelian groups/ \mathcal{O}_X -moduleson a scheme X or any abelian category.

(cochain) complex

a cochain complex consists of morphisms

$$\dots \xrightarrow{d_{n-1}} X^n \xrightarrow{d_n} X^{n+1} \xrightarrow{d_{n+1}} \dots \text{ with } d_{n+1} \circ d_n = 0$$

Elements of X^n are called n-cochains. Elements of $Z^n := ker(d_n)$ n-cocycles.

Elements of $B^n := im(d_{n-1})$ n-coboundaries

 $H^n(X)$ n-th cohomology

 $H^n(X) := Z^n/B^n$ is the n-th cohomology of $(X^{\bullet}, d_{\bullet})$

acyclic

X is called acyclic if $\forall n: H^n(X) = 0$

homomorphism complexes

of A homomorphism of complexes $f: X \to Y$ is a collection of homomorphisms $f^n: X^n \to Y^n$ such that for all n the following diagramm commutes:

$$X^{n} \xrightarrow{d_{n}} X^{n+1}$$

$$\downarrow^{f_{n}} \qquad \downarrow^{f_{n+1}}$$

$$Y^{n} \xrightarrow{d_{n}} Y^{n+1}$$

augmentation of complex

An augmentation of a complex $(X^{\bullet}, d_{\bullet})$ is a homo $\Xi \xrightarrow{a} X^{0}$ such that $d_0 \circ a = 0$.

i.e. $0 \to \Xi \xrightarrow{a} X^0 \xrightarrow{d_0} X^1 \xrightarrow{d_1} \dots$ is a complex. get natural homo $\Xi \xrightarrow{a} Z^0(X) = H^0(X)$

(cochain) homotopy

consider two homos of complexes $f, g: X \longrightarrow Y$. A cochain homotopy from f to g is a collection of homos $h: X^{n+1} \to Y^n$ such that $f - g = d \circ h + h \circ d$

If such h exists, f and g are called homotopic and we write $f \simeq g$

X contractible X is contractible if id_X is homotopic to 0

quasi-isomorphism of A homo of complexes $f: X^{\bullet} \longrightarrow Y^{\bullet}$ is called a quasi-isomorphism complexes if $\forall n \in \mathbb{Z}: H^n(f): H^n(X^{\bullet}) \to H^n(Y^{\bullet})$ is an isomorphism.

6.2 Cech Cohomology

Let \mathcal{F} be a sheaf of abelian groups of a topological space X. Take an open covering $\mathcal{U} := (U_i)_{i \in I}$ of X. The U_i need not be distict or nonempty.

 $C^{\bullet}(\mathcal{U}, \mathcal{F})$ (total) cech For any p set: complex

$$C^{p}(\mathcal{U}, \mathcal{F}) := \begin{cases} \prod_{i_{0}, \dots, i_{p} \in I} \mathcal{F}(U_{i_{0}} \cap \dots \cap U_{i_{p}}) & for p \geq 0 \\ 0 & for p < 0 \end{cases}$$

$$\begin{array}{l} d: C^p(\mathcal{U},\mathcal{F}) \longrightarrow C^{p+1}(\mathcal{U},\mathcal{F}) \\ (f_{i_0\dots i_p})_{i_0\dots i_p} \longmapsto (\sum_{k=0}^{p+1} (-1)^k \dot{f}_{i_0,\dots,\hat{i_k},\dots,i_{p+1}}|_{U_{i_0\dots i_{p+1}}})_{i_0\dots i_{p+1}} \\ \text{this is the (total) cech complex.} \end{array}$$

$$H^n(\mathcal{U}, \mathcal{F}) = H^n(C^{\bullet}(\mathcal{U}, \mathcal{F}))$$

 $C_{alt}^{\bullet}(\mathcal{U}, \mathcal{F})$ alternating cech complex

$$C_{alt}^n(\mathcal{U},\mathcal{F}) := \{ (f_{i_0...i_p}) \in C^p(\mathcal{U},\mathcal{F}) \mid \forall i_0...i_p : f_{i_0...i_p} \text{ if not all } i_0...i_p \text{ are} \}$$

 $C_{ord}^{\bullet}(\mathcal{U}, \mathcal{F})$ ordered As alternating each complex but now assume I comes with a total cech complex order < Then $C_{ord}^{\bullet}(\mathcal{U}, \mathcal{F})$ with $i_0 < \cdots < i_p$

refinement of open For $\mathcal{U} := (U_i)_{i \in I}$ and $\mathcal{V} := (V_j)_{j \in J}$ we say \mathcal{V} is a refinement if there covering exists a map $\sigma : I \longrightarrow J$ such that $\forall j \in J : V_j \subset U_{\sigma j}$

This defines a homo of complexes $\sigma^*: C^{\bullet}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{\bullet}(\mathcal{V})$. Hence a natural homo $H^n(\sigma): H^n(\mathcal{U}, \mathcal{F}) \longrightarrow H^n(\mathcal{V}, \mathcal{F})$.

Let \mathcal{C} be the category whose objects are all open coverings and $Mor_{\mathcal{C}}(\mathcal{U}, \mathcal{V}) := \{\sigma asabove\}$. Restrict to $\mathcal{U} = (U_i)_{i \in I}$ for all U_i distinct \Longrightarrow small cofinal subcategory.

 $H^n(X,\mathcal{F})$ the n-th $H^n(X,\mathcal{F}):=\varinjlim_{\mathcal{U}}H^n(\mathcal{U},\mathcal{F})$ is called the n-th cech cohomology.

6.3 Cohomology of projective space

6.4 Higher direct images

Take $f: X \to Y$ sheaves of modules \mathcal{F} on X and \mathcal{G} on Y We have a natural homo: $H^p(Y, f_*\mathcal{F}) \to H^p(X, \mathcal{F})$ and $H^p(Y, \mathcal{G}) \to H^p(X, f^*\mathcal{G})$

Special case: $U \subset X$ open \leadsto natural "restriction map" $H^p(X, \mathcal{F}) \longrightarrow H^p(U, \mathcal{F}|_U)$.

Special case: For all open $V' \subset V \subset Y$ the restriction map for $f^{-1}(V') \subset f^{-1}(V)$ makes this into a presheaf of \mathcal{O}_Y -moduleson Y.

 $R^p f_* \mathcal{F}$ the p-th higher direct image of \mathcal{F}

The associated sheaf to the sheaf above is called the p-th higher direct image (sheaf) of \mathcal{F} with respect to f

Note: $R^p f_* \mathcal{F} = 0$ for p < 0

Fact: $R^0 f_* \mathcal{F} = f_* \mathcal{F}$ (no sheafification required)

6.5 Duality

Construction: Take \mathcal{O}_X -modules \mathcal{F} , \mathcal{G}

$$H^{0}(X,\mathcal{F}) \times H^{p}(X,\mathcal{G}) \longrightarrow H^{p}(X,\mathcal{F} \otimes \mathcal{G})$$
$$(f,\xi) \longmapsto H^{p}(L_{f})(\xi)$$
$$f: L_{f}: \mathcal{G} \to \mathcal{F} \otimes \mathcal{G}, g \mapsto f \otimes g$$

more generally $H^p \times H^q \longrightarrow H^{p+q}$ (cup product)

perfect pairing

An A-bilinear map $M \times N \longrightarrow L$ for A-modules M, N, L of finite rank with L of rank 1 is a perfect pairing if: the representing matrix is invertible w.r.t. any bases b induces an iso $M \xrightarrow{\sim} Hom_A(N, L) \ m \mapsto b(m, -)$ b induces an iso $N \xrightarrow{\sim} Hom_A(M, L)$

Fix a proj morphism $f: X \longrightarrow Y$ with Y locally noetherian fix $r \ge 0$ such that all fibers of f have dimension $\le r$.

(r-)duality sheaf for f A duality sheaf is a quasi-coherent sheaf ω_f on X together with a homo of \mathcal{O}_X -modules $tr_f: R^r f_* \omega_f \longrightarrow \mathcal{O}_Y$ (trace map) such that for every quasicoherent sheaf \mathcal{F} on X the natural bilinear map:

$$f_*\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\omega_f)\times R^rf_*\mathcal{F}\longrightarrow R^rf_*\omega_f\xrightarrow{tr_f}\mathcal{O}_Y$$

induces an iso $f_*\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\omega_f) \xrightarrow{\sim} \mathcal{H}om_{\mathcal{O}_Y}(R^rf_*\mathcal{F},\mathcal{O}_Y)$

Note: For Y = SpecA this means: $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \omega_f) \xrightarrow{\sim} \mathcal{H}om_{\mathcal{O}_Y}(H^r(X, \mathcal{F}), A)$

6.6 Flat base change

Recall: An A-module M is flat iff $((A - mods)) \longrightarrow ((A - mods))N \mapsto M \otimes_A N$ is exact.

flat \mathcal{O}_X -module A sheaf of \mathcal{O}_X -modules \mathcal{F} is flat if $\forall x \in X : \mathcal{F}_x$ is a flat \mathcal{O}_X -module

flat morphism A morphism $f: X \longrightarrow Y$ is flat iff $\forall x \in X: \mathcal{O}_{X,x}$ is a flat $\mathcal{O}_{Y,y}$ modules

Consider an arbitrary commutative diagram:

Consider all arbitrary coming
$$X' \xrightarrow{g'} X \supset f^{-1}(V)$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow$$

$$Y' \xrightarrow{g} Y \supset V$$

Let \mathcal{F} be a sheaf of \mathcal{O}_X -modules. for any open $V \subset Y$:

$$H^p(f^{-1}(V), \mathcal{F}(f^{-1}(V))) \xrightarrow{6.4} H^p(g'^{-1}(f^{-1}(V)), g'^*\mathcal{F}|_{g'^{-1}(f^{-1}(V))})$$

Varying V this defines a homo of presheaves \Rightarrow sheafify.

Let

$$(R^p f_* \mathcal{F})(V) \longrightarrow (R^p f'_*)(g'^* \mathcal{F})(g^{-1}(V))$$

be the resulting homo of sheaves. Take its adjoint.

base change homo this is the base change homo: $g^*R^pf_*\mathcal{F} \xrightarrow{BC} R^pf'_*g'^*\mathcal{F}$

7 Riemann-Roch and Serre duality

7.1 Divisors on curves