Ordinary Differential Equation

Kun Wang

2019.11.27-2020.01.29

Chapter 1

Basic concepts

微分方程 常微分方程 偏微分方程 线性常微分方程 非线性常微分方程

Chapter 2

The first order ODE

Chapter 3

The high order ODE

线性齐次二阶常系数常微分方程如

$$y'' + ay' + by = 0 (3.1)$$

假定其指数解为 $y = e^{\lambda x}$, 带入式 (3.1) 中得

$$(\lambda^2 + a\lambda + b)e^{\lambda x} = 0$$

由于 $e^{\lambda x}$ 不恒等于 0,得如下方程

$$\lambda^2 + a\lambda + b = 0 \tag{3.2}$$

式 (3.2) 为微分方程 (3.1) 的特征方程。

式 (3.2) 的判别式 $\Delta = a^2 - 4b$,

 $\Delta > 0$ 时方程 (3.2) 有两个实根 λ_1,λ_2 ,则 $y = e^{\lambda_1 x},y = e^{\lambda_2 x}$ 均为微分方程的解,且两个解不相关。根据常微分方程解的理论,方程 (3.1) 的通解为

$$y = A_1 e^{\lambda_1 x} + A_2 e^{\lambda_2 x} \tag{3.3}$$

 $\Delta = 0$ 时方程 (3.2) 有两个重实根 $\lambda_1 = \lambda_2$,则 $y = e^{\lambda_1 x}$, $y = e^{\lambda_2 x}$ 均为微分方程的解,且两个解相关。设方程另一不相关解为 $y = u(x)e^{\lambda_1 x}$,带入方程 (3.1) 得

$$u'' + (2\lambda_1 + a)u' + (\lambda_1^2 + a\lambda_1 + b)u = 0$$

由于 λ_1 为 $\lambda^2 + a\lambda + b = 0$ 的重根,故 $(2\lambda_1 + a) = 0$, $(\lambda_1^2 + a\lambda_1 + b) = 0$, 则 u'' = 0, 取特解 u(x) = x, 则方程 (3.1) 的通解为

$$y = (A_1 + A_2 x)e^{\lambda_1 x} (3.4)$$

 Δ < 0 时方程 (3.2) 有两个复根 $\lambda_1 = \alpha + \beta i$, $\lambda_2 = \alpha - \beta i$, 则 $y = e^{\lambda_1 x}$, $y = e^{\lambda_2 x}$ 均为微分方程的解,根据欧拉公式,方程 (3.1) 的通解可化为

$$y = e^{\alpha x} (A_1 \cos \beta x + A_2 \sin \beta x) \tag{3.5}$$

Chapter 4 ODE group