CSE 5243 INTRO. TO DATA MINING

Advanced Pattern Mining (Chapter 7)

Yu Su, CSE@The Ohio State University

Chapter 7: Advanced Frequent Pattern Mining

Mining Diverse Patterns

- Constraint-Based Frequent Pattern Mining
- Sequential Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary

Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Negative Correlations
- Mining Compressed and Redundancy-Aware Patterns

Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk;Wonder wheat bread
- How to set min-support thresholds?

Uniform min-support across multiple levels (reasonable?)

Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk;Wonder wheat bread
- How to set min-support thresholds?

- Uniform min-support across multiple levels (reasonable?)
- Level-reduced min-support: Items at the lower level are expected to have lower support

ML/MD Associations with Flexible Support Constraints

- Why flexible support constraints?
 - Real life occurrence frequencies vary greatly
 - Diamond, watch, pens in a shopping basket
 - Uniform support may not be an interesting model
- A flexible model
 - The lower-level, the more dimension combination, and the longer pattern length, usually the smaller support
 - General rules should be easy to specify and understand
 - Special items and special group of items may be specified individually and have higher priority

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - \blacksquare milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - \square 2% milk \implies wheat bread [support = 2%, confidence = 72%]
 - □ Given the 2% milk sold is about 1/4 of milk sold
- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support and confidence are close to the "expected" value, based on the rule's ancestor.

Mining Multi-Dimensional Associations

- Single-dimensional rules (e.g., items are all in "product" dimension)
 - \square buys(X, "milk") \Rightarrow buys(X, "bread")

- \square Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)
 - Inter-dimension association rules (no repeated predicates)
 - age(X, "18-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
 - Hybrid-dimension association rules (repeated predicates)
 - age(X, "18-25") \wedge buys(X, "popcorn") \Rightarrow buys(X, "coke")

Mining Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items

Mining Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items
- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
 - How to define negative patterns?

Defining Negatively Correlated Patterns

- A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., $\sup(A \cup B) \le \sup(A) \times \sup(B)$
 - Then A and B are negatively correlated

Defining Negative Correlated Patterns

- □ A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., $\sup(A \cup B) \le \sup(A) \times \sup(B)$
 - Then A and B are negatively correlated

Does this remind you the definition of lift?

Is this a good definition for large transaction datasets?

Defining Negative Correlated Patterns

- A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., $\sup(A \cup B) \le \sup(A) \times \sup(B)$
 - Then A and B are negatively correlated

Does this remind you the definition of lift?

- Is this a good definition for large transaction datasets?
- □ Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have
 - $s(A \cup B) = 0.005$, $s(A) \times s(B) = 0.25$, $s(A \cup B) << s(A) \times s(B)$
 - \blacksquare But when there are 10^5 transactions, we have
 - \blacksquare s(A U B) = 1/10⁵, s(A) × s(B) = 1/10³ × 1/10³, s(A U B) > s(A) × s(B)

Defining Negative Correlated Patterns

- □ A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., $\sup(A \cup B) \le \sup(A) \times \sup(B)$
 - Then A and B are negatively correlated

Does this remind you the definition of lift?

- Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have

■
$$s(A \cup B) = 0.005$$
, $s(A) \times s(B) = 0.25$, $s(A \cup B) << s(A) \times s(B)$

 \blacksquare But when there are 10^5 transactions, we have

$$\blacksquare$$
 s(A U B) = 1/10⁵, s(A) × s(B) = 1/10³ × 1/10³, s(A U B) > s(A) × s(B)

What is the problem?—Null transactions: The support-based definition is not null-invariant!

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the null-invariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions

Which measure should we use?

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the null-invariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions

Definition 7.3: Suppose that itemsets X and Y are both frequent, that is, $sup(X) \ge min_sup$ and $sup(Y) \ge min_sup$, where min_sup is the minimum support threshold. If $(P(X|Y) + P(Y|X))/2 < \epsilon$, where ϵ is a negative pattern threshold, then pattern $X \cup Y$ is a **negatively correlated pattern**.

Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Sequential Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary

Constraint-based Data Mining

- □ Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!

Constraint-based Data Mining

- □ Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)

Constraint-based Data Mining

- □ Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraintbased mining

Categories of Constraints

Constraint 1 (Item constraint). An item constraint specifies what are the particular individual or groups of items that should or should not be present in the pattern. \Box

For example, a dairy company may be interested in patterns containing only dairy products, when it mines transactions in a grocery store.

Constraint 2 (Length constraint). A length constraint specifies the requirement on the length of the patterns, i.e., the number of items in the patterns. \Box

For example, when mining classification rules for documents, a user may be interested in only frequent patterns with at least 5 keywords, a typical length constraint.

Categories of Constraints

Constraint 3 (Model-based constraint). A model-based constraint looks for patterns which are sub- or superpatterns of some given patterns (models).

For example, a travel agent may be interested in what other cities that a visitor is likely to travel if s/he visits both Washington and New York city. That is, they want to find frequent patterns which are super-patterns of {Washington, New York city}.

Constraint 4 (Aggregate constraint). An aggregate constraint is on an aggregate of items in a pattern, where the aggregate function can be SUM, AVG, MAX, MIN, etc.

For example, a marketing analyst may like to find frequent patterns where the average price of all items in each pattern is over \$100.

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
 - □ First find all frequent sets, and then test them for constraint satisfaction

The Apriori Algorithm — Example

Naïve Algorithm: Apriori + Constraint (Naïve Solution)

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
 - □ First find all frequent sets, and then test them for constraint satisfaction
- More efficient approaches:
 - Analyze the properties of constraints comprehensively
 - Push them as deeply as possible inside the frequent pattern computation.

Anti-Monotonicity in Constraint-Based Mining

- Anti-monotonicity
 - When an itemset S violates the constraint, so does any of its superset
 - \square sum(S.Price) \leq v is anti-monotone?
 - \square sum(S.Price) $\ge v$ is anti-monotone?

Anti-Monotonicity in Constraint-Based Mining

- Anti-monotonicity
 - When an itemset S violates the constraint, so does any of its superset
 - \square sum(S.Price) \leq v is anti-monotone
 - \square sum(S.Price) \ge v is not anti-monotone

Anti-Monotonicity in Constraint-Based Mining

Anti-monotonicity

- When an itemset S violates the constraint, so does any of its superset
- \square sum(S.Price) \leq v is anti-monotone
- \square sum(S.Price) $\ge v$ is not anti-monotone

- \square Example. C: range(S.profit) ≤ 15 is anti-monotone
 - Itemset ab violates C
 - So does every superset of ab
 - □ Define range(S.profit) = max(S.A) min(S.A)

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Which Constraints Are Anti-Monotone?

Constraint	Antimonotone
v ∈ S	No
S⊇V	no
S⊆V	yes
min(S) ≤ v	no
min(S) ≥ v	yes
max(S) ≤ v	yes
max(S) ≥ v	no
count(S) ≤ v	yes
count(S) ≥ v	no
$sum(S) \le v (a \in S, a \ge 0)$	yes
sum(S) ≥ v (a ∈ S, a ≥ 0)	no
range(S) ≤ v	yes
range(S) ≥ v	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible
support(S) ≥ ξ	yes
support(S) ≤ ξ	no

Practice offline

Monotonicity in Constraint-Based Mining

Monotonicity

- When an intemset S satisfies the constraint, so does any of its superset
- □ sum(S.Price) \ge v is ?
- \blacksquare min(S.Price) \leq v is ?

Monotonicity in Constraint-Based Mining

Monotonicity

- When an intemset S satisfies the constraint, so does any of its superset
- □ sum(S.Price) \ge v is monotone
- \square min(S.Price) \leq v is monotone

Monotonicity in Constraint-Based Mining

Monotonicity

- When an intemset S satisfies the constraint, so does any of its superset
- □ sum(S.Price) \ge v is monotone
- \square min(S.Price) \leq v is monotone
- □ Example. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

14	D ('1
Item	Profit
а	40
b	0
C	-20
đ	10
Φ	-30
f	30
g	20
h	-10

Which Constraints Are Monotone?

Constraint	Monotone
v ∈ S	yes
S⊇V	yes
S⊆V	no
min(S) ≤ v	yes
min(S) ≥ v	no
max(S) ≤ v	no
max(S) ≥ v	yes
count(S) ≤ v	no
count(S) ≥ v	yes
sum(S) ≤ v (a ∈ S, a ≥ 0)	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	yes
range(S) ≤ v	no
range(S) ≥ v	yes
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible
support(S) ≥ ξ	no
support(S) ≤ ξ	yes

Practice offline

The Apriori Algorithm — Example

Naïve Algorithm: Apriori + Constraint

Pushing the constraint deep into the process

Converting "Tough" Constraints

 Convert tough constraints into anti-monotone or monotone by properly ordering items

Converting "Tough" Constraints

- Convert tough constraints into anti-monotone or monotone by properly ordering items
- □ Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

Converting "Tough" Constraints

- Convert tough constraints into anti-monotone or monotone by properly ordering items
- □ Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Convertible Constraints

■ Let R be an order of items

- Convertible anti-monotone
 - If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
 - \square Ex. $avg(S) \le v$ w.r.t. item value ascending order

Why?

Convertible Constraints

□ Let R be an order of items

Convertible anti-monotone

- If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
- \square Ex. $avg(S) \le v$ w.r.t. item value ascending order

Convertible monotone

- If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t.
- \square Ex. avg(S) $\ge v$ w.r.t. item value ascending order

Strongly Convertible Constraints

- □ avg(X) \geq 25 is convertible anti-monotone w.r.t. item value descending order R: <a, f, g, d, b, h, c, e>
 - If an itemset af violates a constraint C, so does every itemset with af as prefix, such as afd
- □ avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R⁻¹: <e, c, h, b, d, g, f, a>
 - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- □ Thus, $avg(X) \ge 25$ is strongly convertible

Item	Profit
а	40
b	0
С	-20
d	10
Φ	-30
f	30
g	20
h	-10

What Constraints Are Convertible?

Constraint	Convertible anti-monotone	Convertible monotone	Strongly convertible
avg(S) ≤ , ≥ v	Yes	Yes	Yes
median(S) ≤ , ≥ v	Yes	Yes	Yes
sum(S) \leq v (items could be of any value, v \geq 0)	Yes	No	No
sum(S) \leq v (items could be of any value, v \leq 0)	No	Yes	No
sum(S) \geq v (items could be of any value, v \geq 0)	No	Yes	No
sum(S) ≥ v (items could be of any value, v ≤ 0)	Yes	No	No

Combining Them Together—A General Picture

Constraint	Antimonotone	Monotone
v ∈ S	no	yes
S⊇V	no	yes
S⊆V	yes	no
min(S) ≤ v	no	yes
min(S) ≥ v	yes	no
max(S) ≤ v	yes	no
max(S) ≥ v	no	yes
count(S) ≤ v	yes	no
count(S) ≥ v	no	yes
$sum(S) \le v (a \in S, a \ge 0)$	yes	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	no	yes
range(S) ≤ v	yes	no
range(S) ≥ v	no	yes
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible	convertible
support(S) ≥ ξ	yes	no
support(S) ≤ ξ	no	yes

Classification of Constraints

Mining With Convertible Constraints

□ C: avg(S.profit) ≥ 25

TDB (min_sup=2)

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h, c, e

	Scan	transaction	DB	once
--	------	-------------	----	------

- □ remove infrequent 1-itemsets
 - Item *h* in transaction 40 is dropped
- \blacksquare Itemsets a and f are good

Item	Profit
а	40
f	30
<u>-</u>	
9	20
d	10
b	0
h	-10
С	-20
е	-30

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - □ Itemset $\{d\}$ violates constraint C: avg(X) > = 25
 - Can we just prune {d} and not consider it afterwards?

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - □ Itemset $\{d\}$ violates constraint C: avg(X) > = 25
 - Since {ad} satisfies C, Apriori needs {d} to assemble {ad}; {d} cannot be pruned

But it can be pushed into frequent-pattern growth framev
--

Item	Value
а	40
b	0
С	-20
đ	10
е	-30
f	30
g	20
h	-10

Mining With Convertible Constraints in FP-Growth Framework

- \square C: avg(X)>=25, min_sup=2
- □ List items in every transaction in value descending order

R:
$$<$$
a, f, g, d, b, h, c, e $>$

- □ C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - Item h is dropped
 - Itemsets a and f are good, ...
- Projection-based mining
 - Imposing an appropriate order on pattern growth
 - Many tough constraints can be converted into (anti)-monotone

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30

TDB (min_sup=2)

TID	Transaction	
10	a, f, d, b, c	
20	f, g, d, b, c	
30	a, f, d, c, e	
40	f, g, h, c, e	

Mining With Convertible Constraints in FP-Growth Framework

Growing patterns in R order

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
C	-20
е	-30
-	·

Constrained Frequent Pattern Mining: A Pattern-Growth View

Jian Pei, Jiawei Han, SIGKDD 2002

Figure 1: Mining frequent itemsets satisfying constraint $avg(S) \geq 25$.

Handling Multiple Constraints

 Different constraints may require different or even conflicting itemordering

 \square If there exists an order R s.t. both C_1 and C_2 are convertible w.r.t. R, then there is no conflict between the two convertible constraints

- □ If there exists conflict on order of items
 - Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Sequential Pattern Mining

- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary

Sequence Databases & Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences

Sequence Mining: Description

□ Input

- A database D of sequences called data-sequences, in which:
 - $= I = \{i_1, i_2, ..., i_n\}$ is the set of items
 - each sequence is a list of transactions ordered by transaction-time
 - each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.

Database \mathcal{D}

Sequence-Id	Transaction	Items
	Time	
C1	1	Ringworld
C1	2	Foundation
C1	15	Ringworld Engineers, Second Foundation
C2	1	Foundation, Ringworld
C2	20	Foundation and Empire
C2	50	Ringworld Engineers

Sequence Mining: Description

□ Input

- A database D of sequences called data-sequences, in which:
 - $= I = \{i_1, i_2, ..., i_n\}$ is the set of items
 - each sequence is a list of transactions ordered by transaction-time
 - each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.

Problem

■ To discover all the sequential patterns with a user-specified minimum support

Input Database: example

Problem

To discover all the sequential patterns with a user-specified minimum support

Database \mathcal{D}

Sequence-Id	Transaction	Items
	Time	
C1	1	Ringworld
C1	2	Foundation
C1	15	Ringworld Engineers, Second Foundation
C2	1	Foundation, Ringworld
C2	20	Foundation and Empire
C2	50	Ringworld Engineers

45% of customers who bought *Foundation* will buy *Foundation and Empire* within the next month.

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

- An <u>element</u> may contain a set of *items* (also called *events*)
- ☐ Items within an element are unordered and we list them alphabetically

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

- An <u>element</u> may contain a set of *items* (also called *events*)
- ☐ Items within an element are unordered and we list them alphabetically
- An item can occur once at most in an event, but multiple times in different events of a sequence.
- 2. The length of a sequence: the number of instances of items in a sequence. Length (SID: 40)?

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

- An <u>element</u> may contain a set of *items* (also called *events*)
- □ Items within an element are unordered and we list them alphabetically

 $< a(bc)dc > is a <u>subsequence</u> of <math>< \underline{a(abc)(ac)\underline{d(cf)}} > a(abc)dc > a(a$

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Formal definition:

 $<a(bc)dc>is a <u>subsequence</u> of <math><\underline{a(abc)(ac)\underline{d(cf)}}>$

A sequence $\alpha = \langle a_1 a_2 \cdots a_n \rangle$ is called a **subsequence** of another sequence $\beta = \langle b_1 b_2 \cdots b_m \rangle$, and β is a **supersequence** of α , denoted as $\alpha \sqsubseteq \beta$, if there exist integers $1 \le j_1 < j_2 < \cdots < j_n \le m$ such that $a_1 \subseteq b_{j_1}, a_2 \subseteq b_{j_2}, \ldots, a_n \subseteq b_{j_n}$. For example, if $\alpha = \langle (ab), d \rangle$ and $\beta = \langle (abc), (de) \rangle$, where a, b, c, d, and e are items, then α is a subsequence of β and β is a supersequence of α .

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

- An <u>element</u> may contain a set of *items* (also called *events*)
- □ Items within an element are unordered and we list them alphabetically

 $< a(bc)dc > is a <u>subsequence</u> of <math>< \underline{a}(a\underline{bc})(ac)\underline{d}(\underline{c}f) > a(bc)dc > a(bc)dc$

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

A Basic Property of Sequential Patterns: Apriori

- □ A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - Then none of the super-sequences of S is frequent
 - \blacksquare E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate

 $min_sup = 2$

Cand.	sup
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
78	
MS	

Sequence
<(bd)cb(ac)>
<(bf)(ce)b(fg)>
<(ah)(bf)abf>
<(be)(ce)d>
<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate
- □ Generate length-2 candidate sequences

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- □ Scan DB once, count support for each candidate

Generate length-2 candidate sequences

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Why?

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate

Generate length-2 candidate sequences

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

- Without Apriori pruning:(8 singletons) 8*8+8*7/2 = 92length-2 candidates
- With pruning, length-2 candidates: 36 + 15= 51

GSP Mining and Pruning

Candidates cannot pass min_sup <(bd)cba> 5th scan: 1 cand. 1 length-5 seq. pat. threshold 4th scan: 8 cand. 7 length-4 seq. pat. Candidates not in DB <abba> <(bd)bc> ... 3rd scan: 46 cand. 20 length-3 seq. pat. 20 <abb> <aab> <aba> <bab> ... cand. not in DB at all 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)> 10 cand. not in DB at all <a> <c> <d> <e> <f> <q> <h> 1st scan: 8 cand. 6 length-1 seq. pat. $min_sup = 2$

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP Mining and Pruning

Candidates cannot pass min_sup <(bd)cba> 5th scan: 1 cand. 1 length-5 seq. pat. threshold 4th scan: 8 cand. 7 length-4 seq. pat. Candidates not in DB <abba> <(bd)bc> ... 3rd scan: 46 cand. 20 length-3 seq. pat. 20 <abb> <aab> <aba> <bab> ... cand, not in DB at all 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> ... <ff> <(ab)> ... <(ef)> 10 cand, not in DB at all <a> <c> <d> <e> <f> <q> <h> 1st scan: 8 cand. 6 length-1 seq. pat. min sup = 2

- Repeat (for each level (i.e., length-k))
- □ Scan DB to find length-k frequent sequences
- ☐ Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
- \Box set k = k+1
- Until no frequent sequence or no candidate can be found

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP: Algorithm

Mining Sequential Patterns: Generalizations and Performance Improvements, Srikant and Agrawal et al.

https://pdfs.semanticscholar.org/d420/ea39dc136b9e390 d05e964488a65fcf6ad33.pdf

□ Phase 1:

□ Scan over the database to identify all the frequent items, i.e., 1-element sequences

□ Phase 2:

- Iteratively scan over the database to discover all frequent sequences. Each iteration discovers all the sequences with the same length.
- \blacksquare In the iteration to generate all k-sequences
- \square Generate the set of all candidate k-sequences, C_k , by joining two (k-1)-sequences
 - Prune the candidate sequence if any of its k-1 subsequences is not frequent
 - Scan over the database to determine the support of the remaining candidate sequences
- Terminate when no more frequent sequences can be found

A detailed example illustration:

Bottlenecks of GSP

- A huge set of candidates could be generated
 - 1,000 frequent length-1 sequences generate length-2 candidates!

$$1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500$$

- Multiple scans of database in mining
- Real challenge: mining long sequential patterns
 - An exponential number of short candidates
 - A length-100 sequential pattern needs 10³⁰ candidate sequences!

$$\sum_{i=1}^{100} \binom{100}{i} = 2^{100} - 1 \approx 10^{30}$$

GSP: Optimization Techniques

- Applied to phase 2: computation-intensive
- Technique 1: the hash-tree data structure
 - Used for counting candidates to reduce the number of candidates that need to be checked
 - Leaf: a list of sequences
 - Interior node: a hash table
- Technique 2: data-representation transformation
 - From horizontal format to vertical format

Transaction-Time	Items	
10	1, 2	
25	$\begin{bmatrix} 1, 2 \\ 4, 6 \end{bmatrix}$	
45	3	
50	1, 2	
65	3	
90	2, 4 6	
95	6	

Item	Times
1	$ ightarrow 10 ightarrow 50 ightarrow ext{NULL}$
2	ightarrow 10 $ ightarrow$ 50 $ ightarrow$ 90 $ ightarrow$ NULL
3	ightarrow 45 $ ightarrow$ 65 $ ightarrow$ NULL
4	$ ightarrow 25 ightarrow 90 ightarrow ext{NULL}$
5	ightarrow NULL
6	$ ightarrow 25 ightarrow 95 ightarrow { m NULL}$
7	ightarrow NULL

SPADE

Problems in the GSP Algorithm

- Multiple database scans
- Complex hash structures with poor locality
- Scale up linearly as the size of dataset increases

SPADE: Sequential PAttern Discovery using Equivalence classes

- Use a vertical id-list database
- Prefix-based equivalence classes
- Frequent sequences enumerated through simple temporal joins
- Lattice-theoretic approach to decompose search space

Advantages of SPADE

- 3 scans over the database
- Potential for in-memory computation and parallelization