Small CNN Models

성균관대학교 소프트웨어학과 이 지 형

Mobile Devices

Data Centers (Clouds)

- Rarely safety critical
- Low power is nice to have
- Real time is preferable

Mobile Devices

- Usually safety critical (especially for self-driving cars)
- Low power is must have
- Real time is required

Mobile Devices

Deep Neural Networks for Mobile Devices

- Sufficiently high accuracy
- Low computational complexity (Time)
- Low energy usage
- Small model size (Memory)

Merits of Small Deep Neural Networks

- Small DNNs train faster on distributed hardware
- Small DNNs are more deployable on embedded processors
- Small DNNs are easily updatable Over The Air(OTA)

Huddles against Small Networks

Fully Connected Layers

The FC7 layer in AlexNet has
4096 input channels and 4096 filters -> 67MB of params

Huddles against Small Networks

Filters

(Filter size) * (Filter size) * (Input channels) * (Output channels)

MobileNet-v1

Regular Conv

Depthwise Separable Conv

Regular Conv

 $D_K \times D_K \times M \times N \times D_F \times D_F$

Depthwise Separable Conv

$$D_K \times D_K \times M \times D_F \times D_F + M \times N \times D_F \times D_F$$

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

Model Structure

Table 1. MobileNet Body Architecture

Table 1. Wobile Vet Body Attended the				
Type / Stride	Filter Shape	Input Size		
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$		
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$		
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$		
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$		
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$		
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1\times1\times128\times128$	$56 \times 56 \times 128$		
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1\times1\times128\times256$	$28 \times 28 \times 128$		
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1\times1\times256\times256$	$28 \times 28 \times 256$		
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1\times1\times256\times512$	$14 \times 14 \times 256$		
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$		
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Conv / s1	$1\times1\times512\times1024$	$7 \times 7 \times 512$		
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$		
Conv / s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$		
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$		
FC/s1	1024×1000	$1 \times 1 \times 1024$		
Softmax / s1	Classifier	$1 \times 1 \times 1000$		

Table 2. Resource Per Layer Type

Type	Mult-Adds	Parameters
Conv 1×1	94.86%	74.59%
Conv DW 3×3	3.06%	1.06%
Conv 3×3	1.19%	0.02%
Fully Connected	0.18%	24.33%

Additional Feature

Width Multiplier Thinner Models

- For a given layer and width multiplier α, the number of input channels M becomes αM and the number of output channels N becomes αN
- \triangleright α with typical settings of 1, 0.75, 0.6 and 0.25

Resolution Multiplier Reduced Representation

- The second hyper parameter to reduce the computational cost of a neural network is a resolution multiplier ρ
- > $0 < \rho \le 1$, which is typically set of implicitly so that input resolution of network is 224, 192, 160 or 128 ($\rho = 1, 0.857, 0.714, 0.571$)

Computational cost:

 $D_K \times D_K \times \alpha M \times \rho D_F \times \rho D_F + M \times N \times \rho D_F \times \rho D_F$

Changeable Input Size

- Recap: Fully Connected Layer
 - All pixels in feature maps are connected to FCL
 - A lot of connections
 - Non-flexible to input size change

Changeable Input Size

Global Average Pooling

Global Average Pooling

Global Max Pooling

Model Comparison

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

Table 5. Narrow vs Shallow MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.75 MobileNet	68.4%	325	2.6
Shallow MobileNet	65.3%	307	2.9

Table 6. MobileNet Width Multiplier

Width Multiplier	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
0.75 MobileNet-224	68.4%	325	2.6
0.5 MobileNet-224	63.7%	149	1.3
0.25 MobileNet-224	50.6%	41	0.5

Table 7. MobileNet Resolution

Table	Table 7. WobileNet Resolution				
Resolution	ImageNet	Million	Million		
	Accuracy	Mult-Adds	Parameters		
1.0 MobileNet-224	70.6%	569	4.2		
1.0 MobileNet-192	69.1%	418	4.2		
1.0 MobileNet-160	67.2%	290	4.2		
1.0 MobileNet-128	64.4%	186	4.2		

Model Comparison

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60

MobileNet-v2

This module takes as an input a low dim compressed representation which is first expanded to high dim and filtered with a lightweight depthwise convolution.

If two layers are connected

Drawn without residual links

Almost equivalent to pointwise convolution with bottleneck

Why?

- Dimension of Manifold is believed to be much lower than that of Input
- To effectively extract important information

Why not

instead of

Small Intermediate Tensors

- It can fit into small but very fast cache memory of mobile devises
- Allows to significantly reduce the memory footprint needed during inference
- Reduces the need for main memory access in many embedded hardware designs

Projection Convolution

Why linear?

- Bottleneck layer -> Dimension reduction
- Nee to efficiently capture important information
- However, ReLU can lose some important features
 - In average, half of feature maps are ZERO, which containing no informatio

Projection Convolution

- Why linear
 - Experiments on information loss with ReLU

Model

Input	Operator	$\mid t \mid$	c	$\mid n \mid$	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^2 \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^{2} \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^{2} \times 160$	bottleneck	6	320	1	1
$7^{2} \times 320$	conv2d 1x1	-	1280	1	1
$7^{2} \times 1280$	avgpool 7x7	-	_	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

Table 2: MobileNetV2: Each line describes a sequence of 1 or more identical (modulo stride) layers, repeated n times. All layers in the same sequence have the same number c of output channels. The first layer of each sequence has a stride s and all others use stride 1. All spatial convolutions use 3×3 kernels. The expansion factor t is always applied to the input size as described in Table 1.

Impact of non-linearities and residual link

(a) Impact of non-linearity in (b) Impact of variations in the bottleneck layer. residual blocks.

Operations and Parameters

	Operations (millions)	Parameters (millions)
MobileNet v1	569	4.24
MobileNet v2	300	3.47

Maximum FPS (frames-per-second)

	iPhone 7	iPhone X	iPad Pro 10.5
MobileNet v1	118	162	204
MobileNet v2	145	233	220

ImageNet Classification

Network	Top 1	Params	MAdds	CPU
MobileNetV1	70.6	4.2M	575M	113ms
ShuffleNet (1.5)	71.5	3.4M	292M	-
ShuffleNet (x2)	73.7	5.4M	524M	_
NasNet-A	74.0	5.3M	564M	183ms
MobileNetV2	72.0	3.4M	300M	75ms
MobileNetV2 (1.4)	74.7	6.9M	585M	143ms

ImageNet Classification

Other Models

ShuffleNet

Regular Convolution

Group Convolution

https://blog.yani.io/filter-group-tutorial/

ShuffleNet

Channel Shuffling

ShuffleNet

Blocks

SqueezeNet

Xception

Xception

Depthwise Separable Convolution

Reference

A. Howard et al, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv 2017

M. Sandler et al, MobileNetV2: Inverted Residuals and Linear Bottlenecks, arXiv 2018

X. Zhang et al, ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, arXiv 2017

F. landolar et al, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, arXiv 2016

F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, arXiv 201

Question and Answer