U^b

b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Network Security

I. Introduction

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 21.02.2022 – 28.02.2022

UNIVERSITÄT RERN

Network Security: Introduction Table of Contents

- 1. Concepts
- 2. Security Attacks
- 3. Security Services and Mechanisms
- 4. Encryption
- 5. Number Theory

u^t

1. Concepts

1. Information and Network Security

Information Security

- Preservation of confidentiality, integrity, and availability of information
- Other properties like authenticity, accountability, non-repudation, reliability can be involved.

Network Security

- Protection of networks and their services from unauthorized modification, destruction, disclosure
- Provision that network performs functions currently and there are no harmful side effects

UNIVERSITÄT

1. Concepts

2. Standardization Organizations

- National Institute of Standards and Technology
 - US federal agency
- Internet Society
 - Professional membership society

- International
 Telecommunication Union –
 Telecommunication
 - United Nations
- International Organization for Standardization (ISO)
 - Federation of national standardization organizations

u^{t}

b UNIVERSITÄT BERN

1. Concepts

3. Key Security Objectives

- Confidentiality
- Authenticity
- Integrity

O UNIVERSITÄT BERN

1. Concepts

4. Essential Information/Network Security Objectives

- Confidentiality
 - Data confidentiality
 - Privacy
- Authenticity
 - Property of being genuine _
 and being able to be verified
- Integrity
 - Data integrity
 - System integrity

Availability

Timely and reliable access

Accountability

 Requirement for actions of an entity to be traced, including nonrepudiation, deterrence, fault isolation, intrusion detection etc.

u^t

b UNIVERSITÄT BERN

1. Concepts

5. Terminology

OSI Terms

- Security attack
 - Actions compromising security of information
- Security mechanism
 - Process to detect, prevent, or recover from attacks
- Security service
 - Processing or communication service to enhance security using security mechanisms

Literature

- Threat
 - Circumstance or event with potential to impact organizational operations
- Attack
 - Malicious activity to collect, disrupt, deny, degrade, or destroy information or system resources

u^{t}

b UNIVERSITÄT BERN

1. Concepts

6. Security Design Principles

- Economy of mechanism, complexity
- Fail-safe defaults
- Complete mediation
- Open design
- Separation of privilege
- Least privilege
- Least common mechanism

- Psychological acceptability
- Isolation
- Encapsulation
- Modularity
- Layering
- Least astonishment

u'

b UNIVERSITÄT BERN

1. Concepts

7. Securing Networks

- Where to put the security in a protocol stack?
- Practical considerations:
 - End to end security
 - No modification to operating system

b UNIVERSITÄT BERN

1. Concepts

8. Device Security

Concern

 Intruders gain access to network devices or end systems.

Systems

- Firewall
 - Hardware / software system limiting access between network and devices attached to network
- Intrusion detection
 - Analysis of network traffic to find malicious access attempts
- Intrusion prevention
 - Stopping of malicious activities after detection

u^{t}

UNIVERSITÄT BERN

2. Security Attacks

1. Attacks and Concepts

- Interception (confidentiality)
- Interruption (availability)
- Modification (integrity)
- Fabrication (authenticity)

u^{b}

2. Security Attacks

2.1 Kent's Classification: Passive Attacks

- Packet eavesdropping,
 e.g. packet sniffing: detection of data
 (e.g., passwords, credit card numbers) in routers or unprotected transmission media
- Traffic analysis:
 detection of end points and traffic type,
 e.g., addresses, packet lengths

$u^{\scriptscriptstyle b}$

UNIVERSITÄT

2. Security Attacks

2.2 Kent's Classification: Active Attacks

- Imitation of wrong identities (masquerading), e.g. IP Spoofing: use of a foreign IP address
- Modification of messages
- Replay attacks,
 i.e. repeated data transmission
- Denial-of-Service attacks
 - Blocking of network or server functions
 - Repetition of TCP SYN packets: Server allocates resources for TCP connection.

u^{t}

UNIVERSITÄT Bern

2. Security Attacks

3. Surfaces

Examples

- Open ports in servers
- Services available inside a firewall
- Code processing incoming data
- Interfaces, SQL, web forms
- Employees

Categories

- Network
- Software
- Humans

3. Security Services and Mechanisms

b UNIVERSITÄT BERN

1. Network Security Services: X.800, RFC 2828

- Peer-entity and data-origin authentication
 - assures the recipient of a message the authenticity of the claimed source or the entity connected.
- Access control
 - limits the access to authorized users.
- Data confidentiality
 - protects against unauthorized release of message content.
- Data integrity
 - guarantees that a message is received as sent.

- Non-repudiation
 - protects against sender/receiver denying sending/receiving a message.
- Availability
 - guarantees that the system services are always available when needed.
- Security audit
 - keeps track of transactions for later use (diagnostic, alarms...).
- Key management
 - allows to negotiate, setup and maintain keys between communicating entities.

UNIVERSITÄT BERN

3. Security Services and Mechanisms

2. Security Mechanisms

- Cryptographic algorithms (reversible, non-reversible)
- Data integrity
- Digital signatures
- Authentication exchange

- Traffic padding
- Routing control
- Notarization
- Access control

3. Security Services and Mechanisms

3. Cryptographic Algorithms

- Keyless Algorithms
 - Cryptographic hash functions
 - Cryptographic random number generation

- Single-Key Algorithms
 - Symmetric Encryption (e.g., AES)
 - Message Authentication Codes (e.g., HMAC)
- Two-Key Algorithms
 - Asymmetric Encryption (e.g., RSA)
 - Digital Signature (e.g., RSA)
 - Key Exchange
 - User Authentication

3. Security Services and Mechanisms

b UNIVERSITÄT BERN

4. Relationship of Security Services and Mechanisms

$u^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT

4. Encryption

1. Operation

- Communication over an insecure channel
 - Encryption by sender
 - Decryption by receiver
- Attacker must not be able to understand the communication.

u^{b}

UNIVERSITÄT BERN

4. Encryption

2. Algorithm Types

Block Ciphers

- Input: block of n bits
- Output: block of n bits
- Example: AES

Block ciphers can be used to build stream ciphers.

Stream Ciphers

- Input: stream of symbols
- Output: stream of symbols
- Example: GSM

u^{b}

b UNIVERSITÄT BERN

4. Encryption

3. Models

Symmetric Encryption

- Encryption Key = Decryption Key
- Decrpytion key can be derived from encryption key.
- Example: AES

5404 3214 5673 1023 valid 11/22 dfdj59058trekj9r

Asymmetric Encryption

- Encryption key ≠ Decryption key
- Decryption key can not be derived from encryption key.
- Example: RSA

b UNIVERSITÄT BERN

4. Encryption

4. Symmetric vs Asymmetric Algorithms

- Symmetric algorithms are much faster,
 e.g. in the order of a 3 magnitudes, i.e. 1000 times faster
- Symmetric algorithms require a shared secret, which is impractical, if the communicating entities do not have another secure channel.
- Both types of algorithms are combined to provide practical and efficient secure communication, e.g.,
 - establish a secret session key using asymmetric crypto and
 - use symmetric crypto for encrypting the traffic

u^{b}

b UNIVERSITÄT BERN

4. Encryption

5. Kerchoff's Principle

A cipher should be secure even if the intruder knows all the details of the encryption process except for the secret key. "No security by obscurity"

u^{b}

D UNIVERSITÄT BERN

5. Number Theory

1. Finding Prime Numbers: Euclid Algorithm

- To find greatest common divisor of two integers
- Example: gcd (595, 408) = 17
 - 595 / 408 = 1 remainder 187
 - 408 / 187 = 2 remainder 34
 - 187 / 34 = 5 remainder 17
 - -34 / 17 = 2 remainder 0

$u^{^{b}}$

UNIVERSITÄT Bern

5. Number Theory

2.1 Fermat Theorem

If p is prime and a (> 0) is not divisible by p: $a^{p-1} = 1 \pmod{p}$

Examples:

-
$$a = 5$$
, $p = 3$:
 $5^{(3-1)} = 5^2 = 25 = 8 \cdot 3 + 1$

-
$$a = 7$$
, $p = 3$:
 $7^{(3-1)} = 7^2 = 49 = 16 \cdot 3 + 1$

Alternate form: If p is prime and a > 0 $a^p = a \pmod{p}$

UNIVERSITÄT BERN

5. Number Theory

2.2 Proof of Fermat's Theorem

- Set of positive integers < p:
 P = {1, 2, ..., p-1} and multiply by
 (a modulo p)

 → X = {a mod p, 2a mod p,
 3a mod p, ..., (p-1) a mod p}
- No element of X is 0 because p does not divide a and none of two integers of X are equal, i.e. X = set of positive integers < p: X = {1, 2, ..., p-1} in some order
- Proof:
 - Otherwise: ∃ j, k (1 ≦j<k ≦ p-1):
 j a = (k a) (mod p)
 - Since a is relatively prime to p, we can eliminate a: j = k (mod p), which is impossible, since j, k < p

Multiplying sets X and P and taking the result (mod p) yields:

- $a^{p-1} (p-1)! = (p-1)! \pmod{p}$ ((p-1)! is relatively prime to p)
- $a^{p-1} = 1 \mod p$

u'

D Universität Bern

5. Number Theory

3. Euler's Totient Function ø(n)

 \emptyset (n): the number of positive integers less than n and relatively prime to n.

Two integers are relatively prime, if their only common integer factor is 1.

n	φ(<i>n</i>)
1	1
2	1
3	2
4	2
5	4
6	2
7	6
8	4
9	6
10	4

n	φ(<i>n</i>)
11	10
12	4
13	12
14	6
15	8
16	8
17	16
18	6
19	18
20	8

n	φ(<i>n</i>)
21	12
22	10
23	22
24	8
25	20
26	12
27	18
28	12
29	28
30	8

b UNIVERSITÄT BERN

5. Number Theory

4. Euler's Theorem

For every *a* and *n* that are relatively prime:

$$a^{\emptyset(n)} = 1 \pmod{n}$$

An alternative form is:

$$a^{\emptyset(n)+1} = a (mod n)$$

UNIVERSITÄT

5. Number Theory

5.1 Miller-Rabin Algorithm

```
used to test a large number n for primality,
probability for failed test < \frac{1}{4}, (\frac{1}{4})^{10} < 10^{-6}
Find integers k, q, with k > 0, q odd, so that (n - 1) = 2^k q;
Select a random integer a, 1 < a < n - 1;
if a^q \mod n = 1 then return ("inconclusive") ;
for j = 0 to k - 1 do
        if (a^{2^{j} \cdot q} \mod n = n - 1) then
                 return ("inconclusive");
return ("composite") ;
```


b UNIVERSITÄT BERN

5. Number Theory

5.2 Miller-Rabin Algorithm

Example: n = 29

$$n-1=28=2^2$$
 (7) = 2^kq

$$a = 10$$
:

- $-10^7 \mod 29 = 17$
- $(10^7)^2 \mod 29 = 28$
- Test returns inconclusive

Example: $n = 221 = 13 \cdot 17$

$$n-1=220=2^2$$
 (55) = 2^kq

$$a = 21$$
:

- $-21^{55} \mod 221 = 200$
- (21⁵⁵)² mod 221 = 220
- Test returns inconclusive !!

5. Number Theory

6. Deterministic Primality Algorithm

- Prior to 2002 there was no known method of efficiently proving the primality of very large numbers.
- All algorithms in use produced a probabilistic result.

- In 2002 Agrawal, Kayal, and Saxena (AKS) developed an algorithm that efficiently determines whether a given large number is prime.
- It does not appear to be as efficient as the Miller-Rabin algorithm.

UNIVERSITÄT BERN

5. Number Theory

7. Discrete Logarithm

- $-a^m = 1 \pmod{n}$
- If a and n are relatively prime, there is at least one $m = \emptyset(n)$ satisfying the equation above
- log_b a is an integer k
 (discrete logarithm: the smallest one)
 such that b^k = a.

Consider $y = g^x \mod p$

- y is straight forward to calculate,
 i.e. at worst by x multiplications
- However, given y, g, p,
 x is difficult to calculate,
 in particular for large primes.
 This is used for Diffie-Hellman key exchange.

Thanks

for Your Attention

u

UNIVERSITÄT BERN

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 21.02.2022 – 28.02.2022

