Comparative Analysis of YOLO Versions: YOLOv1 to YOLOv5

Eman Sarfraz

June 2, 2025

1 Introduction

The YOLO (You Only Look Once) family, introduced in 2015, revolutionized object detection by enabling real-time processing with high accuracy. From YOLOv1 to YOLOv5, each version has advanced architecture, performance, and applicability. This report compares YOLOv1 through YOLOv5, covering architecture, performance metrics, improvements, strengths, weaknesses, and use cases, with a summary table, drawing from sources like LabelVisor, 2023 and ArXiv, 2024.

2 Architecture Differences

The YOLO family has evolved significantly in its architecture, enhancing backbones and detection mechanisms. Table 1 summarizes the key features, based on ArXiv, 2024.

Version	Year	Key Architectural Features	Framework
YOLOv1	2015	Grid cell-based detection, Darknet with 24 conv lay-	Darknet
		ers or Fast YOLO with 9 layers, Non-Maximum Sup-	
		pression, loss includes coordinates, confidence, class	
		probability	
YOLOv2	2016	Darknet-19 (19 conv layers, 5 max pooling), 1x1 con-	Darknet
		volutions, no fully connected layers, Batch Normal-	
		ization, anchor boxes via K-means, skip connections,	
		Word-Tree for 9418 classes	
YOLOv3	2018	Darknet-53 (53 conv layers, stride convolutions,	Darknet
		residual connections), Spatial Pyramid Pooling,	
		multi-scale feature maps (13x13, 26x26, 52x26), 8	
		prior boxes, binary cross-entropy	
YOLOv4	2020	CSPDarknet53, PANet, Cross mini-Batch Normal-	Darknet
		ization, Spatial Attention Module, CIoU loss, multi-	
		ple anchors per ground truth, bag-of-freebies	
YOLOv5	2020	CSPNet, SPP blocks, PAN module with upsampling,	PyTorch
		anchor-based predictions, Binary Cross-Entropy and	
		CIoU loss, variants: s (7.5M params), m, l, x (86.7M	
		params)	

Table 1: Architectural Differences of YOLO Versions

3 Performance Metrics

Performance is evaluated using mean Average Precision (mAP) and Frames Per Second (FPS). Table 2 summarizes metrics, sourced from PyImageSearch, 2022.

Model	mAP	FPS	Dataset, Resolution, GPU
YOLOv1	63.4%	45	Pascal VOC, Titan X
YOLOv2	76.8%	67	Pascal VOC 2007, 416x416, Titan X
YOLOv3	28.2%	45	MS COCO, 320x320, Titan X
YOLOv4	43.5%	~ 65	MS COCO, Tesla V100
YOLOv5l	67.2%	100	MS COCO, 640x640, Volta 100

Table 2: Performance Metrics of YOLO Versions

4 Improvements Introduced

Each YOLO version addresses limitations of its predecessor:

- YOLOv1: Pioneered single-stage detection, treating detection as regression (Redmon et al., 2016).
- YOLOv2: Added anchor boxes, batch normalization, multi-scale training (Redmon and Farhadi, 2017).
- YOLOv3: Adopted Darknet-53, feature pyramid networks for small objects (Redmon and Farhadi, 2018).
- YOLOv4: Integrated CSPDarknet53, PANet, CIoU loss for better accuracy (Bochkovskiy et al., 2020).
- YOLOv5: Scalable models, PyTorch framework, adaptive anchors (Ultralytics, 2020).

5 Strengths and Weaknesses

Table 3 summarizes strengths and weaknesses, based on PyImageSearch, 2022.

Model	Strengths	Weaknesses	
YOLOv1	High speed, end-to-end trainable	Poor small object detection, localiza-	
		tion issues	
YOLOv2	Better speed/accuracy, multi-scale	Limited small object detection	
	training		
YOLOv3	Improved small object detection, accu-	Increased complexity	
	rate		
YOLOv4	SOTA performance, advanced features	Resource-intensive	
YOLOv5	Scalable, PyTorch, easy deployment	Initial lack of formal paper	

Table 3: Strengths and Weaknesses of YOLO Versions

6 Typical Use Cases

YOLO applications vary by version, as noted in LabelVisor, 2023 and ArXiv, 2024:

- YOLOv1: Autonomous vehicles, security systems.
- YOLOv2: Agriculture (crop monitoring), manufacturing.
- YOLOv3: Precision farming, UAV-based detection.
- YOLOv4: Manufacturing defect detection, quality control.
- YOLOv5: Medical diagnostics, general object detection.

7 Comparison Table

Table 4 consolidates key differences.

Aspect	YOLOv1	YOLOv2	YOLOv3	YOLOv4	YOLOv5
Year	2015	2016	2018	2020	2020
Backbone	Darknet-24	Darknet-19	Darknet-53	CSPDarknet53	CSPNet
mAP	63.4%	76.8%	28.2%	43.5%	67.2%
FPS	45	67	45	\sim 65	100
Key Improvements	Single-stage	Anchor boxes	FPN	PANet, CIoU	Scalability
Strengths	Speed	Speed, accuracy	Accuracy	SOTA	Scalability
Weaknesses	Small objects	Small objects	Complexity	Resources	Paper controversy
Use Cases	Vehicles	Agriculture	Farming	Manufacturing	General

Table 4: Comparison of YOLO Versions

8 References

- 1. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. CVPR. Link
- 2. Redmon, J., and Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. CVPR. Link
- 3. Redmon, J., and Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv. Link
- 4. Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv. Link
- 5. Ultralytics. (2020). YOLOv5 GitHub Repository. Link
- 6. LabelVisor. (2023). Comparative Analysis of YOLO Versions: YOLOv1 to YOLOv10. Link
- 7. ArXiv. (2024). YOLOv1 to YOLOv10: A Comprehensive Review of YOLO Variants. Link
- 8. LearnOpenCV. (2023). Mastering All YOLO Models from YOLOv1 to YOLOv12. Link
- 9. Towards Data Science. (2020). YOLO v4 or YOLO v5 or PP-YOLO? Link
- 10. RoboFlow. (2025). What is YOLO? The Ultimate Guide. Link
- 11. LearnOpenCV. (2023). Performance Comparison of YOLO Models. Link
- 12. Medium. (2023). What is the Best YOLO? Link
- 13. PyImageSearch. (2022). Introduction to the YOLO Family. Link
- 14. DataCamp. (2023). YOLO Object Detection Explained. Link
- 15. MDPI. (2023). YOLO-v1 to YOLO-v8 in Industrial Detection. Link