

#### مرور

- خلاصهسازی خطی ==
  - $\Pi x : \mathbf{x}$  به جای  $\bullet$
- بهروزرسانی ساده

## تقریب نرم P:

- ساختمان داده: آرایه x با عملیات افزایش/کاهش یک خانه
  - $||x||_p^p = \sum_{i=1}^p |x_i|^p : \text{Fp}$  and  $\bullet$
  - F0: تعداد متفاوتها (حالت فقط افزایش)
- $|a-F_p| \leq \epsilon F_p$  هدف: تخمین گر a که با احتمال  $-\delta$  داشته باشیم هدف: تخمین گر a
- $|a-F_p| \leq \epsilon F_p$ زیر هدف: تخمینگر a که با احتمال ۲/۳ داشته باشیم a
  - روش کلی: خلاصهسازی خطی
  - (فقط m عدد به جای  $y=\Pi x$  نگهداری  $y=\pi x$ 
    - بهروزرسانی ساده

#### ایده AMS:



$$\mathbf{E}\mathbf{Y} = 0$$

$$EY^{2} = E \left[ \sum_{j,j'} \sigma_{j} \sigma_{j'} x_{j} x_{j'} \right]$$

$$= E \left[ \sum_{j} \sigma_{j}^{2} x_{j}^{2} + \sum_{j \neq j'} \sigma_{j} \sigma_{j'} x_{j} x_{j'} \right]$$

$$= \sum_{j} E[x_{j}^{2}] + \sum_{j \neq j'} E[\sigma_{j} \sigma_{j'} x_{j} x_{j'}]$$

$$= ||x||_{2}^{2}$$

$$E[\sigma_{j}] E[\sigma_{j'}] x_{j} x_{j'}$$

$$E[\sigma_{j}] = 0$$

$$\sigma_i = +1$$
 یا  $-1$  (تصادفی یکنواخت)

#### روش AMS

شروع:

حافظه: ((O(log (mn))

ے استقلال 
$$\sigma \in \{-1,1\}^{m \times n}$$

$$|\sigma_{i,j}/\sqrt{m}|_=\Pi_{i,j}$$

• بەروزرسانى:

(برای 
$$\mathbf{x}_{i+1}$$
 ستون  $\mathbf{x}_{i+1}$  اصافه کن  $\mathbf{y}=\mathbf{x}_{i+1}$  را به  $\mathbf{y}=\mathbf{x}_{i+1}$  اضافه کن  $\mathbf{x}_{i+1}$ 

$$y_i = \sum_{j=1}^n \sigma_{i,j} x_j / \sqrt{m}$$
 داریم

• تخمینگر:

$$\|\Pi x\|_2^2 = \|y\|_2^2$$

#### تحليل AMS:

$$\mathbb{E} y_r^2 = \frac{1}{m} \mathbb{E} \left( \sum_{j=1}^n \sigma_{r,j} x_j \right)^2$$

$$= \frac{1}{m} \left[ \|x\|_2^2 + \mathbb{E} \sum_{j \neq j'} \sigma_{r,j} \sigma_{r,j'} x_j x_{j'} \right]$$

$$= \frac{1}{m} \left[ \|x\|_2^2 + \sum_{j \neq j'} (\mathbb{E} \sigma_{r,j} \sigma_{r,j'}) x_j x_{j'} \right]$$

$$= \frac{1}{m} \left[ \|x\|_2^2 + \sum_{j \neq j'} (\mathbb{E} \sigma_{r,j}) (\mathbb{E} \sigma_{r,j'}) x_j x_{j'} \right]$$

$$= \frac{1}{m} \|x\|_2^2,$$

$$\|y\|_2^2 = \sum_{r=1}^m y_r^2$$
 زيرا  $\|x\|_2^2 = \mathrm{E}[\|y\|_2^2]$ 

$$||x||_2^2 = \mathbb{E}[||y||_2^2]$$

'j=j را حذف می کند

## تحلیل AMS: واریانس تخمینگر $E[||y||_2^2]$ اندیسهای

$$\mathbb{E}(\|y\|_2^2 - \mathbb{E}\|y\|_2^2)^2 = \frac{1}{m^2} \mathbb{E}(\sum_{r=1}^m \sum_{j \neq j'}^{\infty} \sigma_{r,j} \sigma_{r,j'} x_j x_{j'})^2$$

# 'j=j را حذف می کند

## تحلیل AMS: واریانس تخمینگر $E[||y||_2^2]$ اندیسهای

$$\begin{split} \mathbb{E}(\|y\|_2^2 - \mathbb{E} \|y\|_2^2)^2 &= \frac{1}{m^2} \, \mathbb{E}(\sum_{r=1}^m \sum_{j \neq j'}^{} \sigma_{r,j} \sigma_{r,j'} x_j x_{j'})^2 \\ &= \frac{1}{m^2} \sum_{\substack{r_1, r_2 \\ j_3 \neq j_4}} \sum_{j_1 \neq j_2} (\mathbb{E} \, \sigma_{r_1,j_1} \sigma_{r_1,j_2} \sigma_{r_2,j_3} \sigma_{r_2,j_4}) x_{r,j_1} x_{r,j_2} x_{r,j_3} x_{r,j_4} \end{split}$$

# 'j=j را حذف می کند

## تحلیل $AMS: واریانس تخمینگر <math>E[||y||_2^2]$ اندیسهای

$$\mathbb{E}(\|y\|_2^2 - \mathbb{E}\|y\|_2^2)^2 = \frac{1}{m^2} \mathbb{E}(\sum_{r=1}^m \sum_{j \neq j'} \sigma_{r,j} \sigma_{r,j'} x_j x_{j'})^2$$

 $j_3 \neq j_4$ 

$$= \frac{1}{m^2} \sum_{r_1, r_2} \sum_{j_1 \neq j_2} (\mathbb{E} \, \sigma_{r_1, j_1} \sigma_{r_1, j_2} \sigma_{r_2, j_3} \sigma_{r_2, j_4}) x_{r, j_1} x_{r, j_2} x_{r, j_3} x_{r, j_4}$$

پس باید

$$= \frac{2}{m} \sum_{j_1 \neq j_2} x_{j_1}^2 x_{j_2}^2$$

## 'i=i را حذف می کند

## تحلیل AMS: واریانس تخمینگر $E[||y||_2^2]$ اندیسهای

$$\mathbb{E}(\|y\|_2^2 - \mathbb{E}\|y\|_2^2)^2 = \frac{1}{m^2} \, \mathbb{E}(\sum_{r=1}^m \sum_{j \neq j'} \sigma_{r,j} \sigma_{r,j'} x_j x_{j'})^2$$

$$= \frac{1}{m^2} \sum_{\substack{r_1, r_2 \ j_1 \neq j_2 \ j_3 \neq j_4}} (\mathbb{E} \, \sigma_{r_1, j_1} \sigma_{r_1, j_2} \sigma_{r_2, j_3} \sigma_{r_2, j_4}) x_{r, j_1} x_{r, j_2} x_{r, j_3} x_{r, j_4}$$

$$= \frac{2}{m} \sum_{j_1 \neq j_2} x_{j_1}^2 x_{j_2}^2$$

$$\leq \frac{2}{m} \|x\|_2^4,$$

## تحلیل نهایی AMS:

$$\forall \lambda > 0, \mathbb{P}(|X - \mathbb{E} X| > \lambda) < \frac{\mathbb{E}(X - \mathbb{E} X)^2}{\lambda^2}$$

$$P\left[\left| \ ||y||_{2}^{2} - ||x||_{2}^{2} \ |> \epsilon ||x||_{2}^{2} \right] < Var(||y||_{2}^{2})/(\epsilon ||x||_{2}^{2})^{2}$$

### تحلیل نهایی AMS:

$$\forall \lambda > 0, \mathbb{P}(|X - \mathbb{E} X| > \lambda) < \frac{\mathbb{E}(X - \mathbb{E} X)^2}{\lambda^2}$$

$$P\left[\left| \ ||y||_{2}^{2} - ||x||_{2}^{2} \ \right| > \epsilon ||x||_{2}^{2} \right] < Var(||y||_{2}^{2})/(\epsilon ||x||_{2}^{2})^{2}$$

$$<\frac{2}{m}||x||_{2}^{4}\frac{1}{\epsilon^{2}||x||_{2}^{4}}$$

$$\operatorname{Var} \leq \frac{2}{m} \|x\|_2^4,$$

### تحليل نهايي AMS:

$$\forall \lambda > 0, \mathbb{P}(|X - \mathbb{E} X| > \lambda) < \frac{\mathbb{E}(X - \mathbb{E} X)^2}{\lambda^2}$$

$$P\left[\left| \ ||y||_{2}^{2} - ||x||_{2}^{2} \ |> \epsilon ||x||_{2}^{2} \right] < Var(||y||_{2}^{2})/(\epsilon ||x||_{2}^{2})^{2}$$

$$<\frac{2}{m}||x||_{2}^{4}\frac{1}{\epsilon^{2}||x||_{2}^{4}}$$

$$\operatorname{Var} \le \frac{2}{m} \|x\|_2^4,$$

$$=\frac{2}{\epsilon^2 m}$$

### تحليل نهايي AMS:

$$\forall \lambda > 0, \mathbb{P}(|X - \mathbb{E} X| > \lambda) < \frac{\mathbb{E}(X - \mathbb{E} X)^2}{\lambda^2}$$

$$P\left[\left| \ ||y||_{2}^{2} - ||x||_{2}^{2} \ |> \epsilon ||x||_{2}^{2} \right] < Var(||y||_{2}^{2})/(\epsilon ||x||_{2}^{2})^{2}$$

$$<\frac{2}{m}||x||_{2}^{4}\frac{1}{\epsilon^{2}||x||_{2}^{4}}$$

$$\operatorname{Var} \le \frac{2}{m} \|x\|_2^4,$$

$$=\frac{2}{\epsilon^2 m}$$

$$\leq \frac{1}{3}$$
 بزرگ  $m$   $(m = 6/\epsilon^2)$ 

## تحلیل نهایی AMS:

$$\forall \lambda > 0, \mathbb{P}(|X - \mathbb{E} X| > \lambda) < \frac{\mathbb{E}(X - \mathbb{E} X)^2}{\lambda^2}$$

$$P\left[\left| \ ||y||_{2}^{2} - ||x||_{2}^{2} \ |> \epsilon ||x||_{2}^{2} \right] < Var(||y||_{2}^{2})/(\epsilon ||x||_{2}^{2})^{2}$$

$$<\frac{2}{m}||x||_{2}^{4}\frac{1}{\epsilon^{2}||x||_{2}^{4}}$$

$$\operatorname{Var} \leq \frac{2}{m} \|x\|_2^4,$$

$$=\frac{2}{\epsilon^2 m}$$

$$\leq \frac{1}{3}$$
 بزرگ  $m$   $(m = 6/\epsilon^2)$ 

تقریب نرم ۲ (روش AMS) تقریب نرم ۲ حافظه:  $\epsilon$ -2 log  $1/\delta$  تا عدد

پس

#### ارتقاء AMS:

- $y=\Pi x$  زمان اجرای بهروزرسانی:  $\bullet$
- استقلال  $h:[n] \to [m]$  ه
- استقلال  $\sigma \in \{-1, 1\}^n$  ه
  - هر ستون j:
  - $\Pi_{h(j),j} = \sigma j$  •
  - بقیه ستون صفر
    - ⊚ داریم

 $Var[\|\Pi z\|_2^2] = O(1/m)\|z\|_2^4$ 

- $\mathbb{E} \, \|\Pi z\|_2^2 = \|z\|_2^2 \quad \text{ }$
- . پس: با احتمال حداقل ۲/۳ داریم  $\|\pi z\|_2^2$  یک  $1+\epsilon$  تقریب است.  $\bullet$