Structure Bioinformatics Course – Basel 2004 Introduction to X-ray crystallography

Sergei V. Strelkov – M.E. Mueller Institute for Structural Biology at Biozentrum Basel

sergei-v.strelkov@unibas.ch

6			1	W	hat	you get	– a PD	B file	
ATOM	216	N	ARG	ח	351	4.388	68.438	23.137	1.00 43.02
ATOM	217	CA	ARG			4.543	69.520	22.185	1.00 44.67
ATOM	218	СВ	ARG			4.967	69.042	20.821	1.00 44.90
ATOM	219	CG	ARG			6.398	68.654	20.761	1.00 51.64
ATOM	220	CD	ARG			6.868	68.340	19.302	1.00 63.98
ATOM	221	NE	ARG			7.166	66.901	19.052	1.00 73.04
ATOM	222	CZ	ARG			6.372	66.035	18.349	
ATOM	223	NH1	ARG			5.205	66.430	17.818	
ATOM	224	NH2	ARG	D	351	6.754	64.767	18.165	1.00 75.80
ATOM	225	С	ARG	D	351	3.271	70.311	22.056	1.00 44.67
ATOM	226	0	ARG	D	351	3.326	71.535	21.975	1.00 44.20
ATOM	227	N	MET	D	352	2.145	69.620	22.040	1.00 43.72
ATOM	228	CA	MET	D	352	0.880	70.278	21.909	1.00 45.59
ATOM	229	CB.	AMET	D	352	-0.260	69.244	21.726	0.50 44.00
ATOM	230	CB	BMET	D	352	-0.337	69.338	21.761	0.50 44.14
ATOM	231	CG .	AMET	D	352	-0.395	68.734	20.260	0.50 45.54
ATOM	232	CG	BMET	D	352	-1.699	70.119	21.628	0.50 47.21
ATOM	233	SD .	AMET	D	352	-1.370	67.186	19.986	0.50 51.17
ATOM	234	SD	BMET	D	352	-1.768	71.563	20.386	0.50 50.67
ATOM	235	CE	AMET	D	352	-2.900	67.856	19.848	0.50 46.38
ATOM	236	CE	BMET	D	352	-3.556	71.823	20.152	0.50 50.17
ATOM	237	С	MET	D	352	0.646	71.204	23.118	1.00 46.70
ATOM	238	0	MET	D	352	0.276	72.366	22.923	1.00 49.10
ATOM	532	0	HOH	W	4	2.840	93.717	24.656	1.00 34.14
ATOM	533	0	HOH	W	5	-6.598	98.596	19.494	1.00 37.63
ATOM	534	0	HOH	W	7	3.016	64.018	27.662	1.00 49.04
ATOM	535	0	HOH	W	8	4.775	77.762	16.985	1.00 56.39

8 Protein crystallography

Advantages:

- Is the technique to obtain an atomic resolution structure
- Yields the correct atomic structure in solution

Caveat: is the structure in crystal the same as in solution? Yes!

- Atomic structure is a *huge amount of data* compared to what any other biochemical/biophysical technique could provide
- -> This is why X-ray structures get to Cell and Nature...

Disadvantages:

- Needs crystals
- Is laborous in any case:

cloning/purification 3-6 months crystallisation 1-12 months data collection 1 month phasing/structure solution 3 months

-> This is why it is so expensive...

per structure

Content of this lecture

- I. Protein crystals and how to grow them
- II. A bit of theory diffraction
- III. Practice -- X-ray diffraction experiment, phase problem and structure calculation

Suggested reading:

http://www-structmed.cimr.cam.ac.uk/course.html http://www-structure.llnl.gov/Xray/101index.html

(two excellent online courses)

Books

- Cantor, C.R., and Schirmer, P.R. Biophysical Chemistry, Part II. Freeman, NY (1980)
- Rhodes, G. Crystallography made crystal clear:

A guide for users of macromolecular models. Academic Press, N.Y. (2000)

- Drenth, J. Principles of protein X-ray crystallography. Springer (1995)
- Blundell, T.L. and Johnson, L.N. *Protein Crystallography*. Academic Press: N.Y., London, San Francisco (1976)
- Ducroix & Giege. Protein crystallisation

14 **Protein crystallisation** "Kristallographen brauchen Kristalle"

Principle

- Start with protein as a solution
- Force protein to fall out of solution as solid phase -> amorphous precipitate or crystal

How to decrease protein solubility

- Add precipitating agent (salt, PEG, ...)
- Change pH
- ...

17 How to find crystallisation conditions

Step 1: Screening

• Trial and error: different precipitants, pH, etc

100-1000 different conditions

- Miniaturise: 1 μ I protein / experiment per hand, 50 nl by robot
- Automatise

Step 2: Grow large crystals

• Optimise quantitive parameters (concentrations, volumes)

Step 3: Check whether your crystal diffracts X-rays

18 Requirements for crystallisation

Protein has to be:

- Pure (chemically and 'conformationally')
- Soluble to ~10 mg/ml
- Available in mg quantities
- Stable for at least days at crystallisation temperature

Diffraction as Fourier transform

Real space (x,y,z): 'Reciprocal space' (h,k,l):

electron density $\rho(x,y,z)$ diffracted waves F(h,k,l), $\phi(h,k,l)$

Physics tells us that the diffracted waves are Fourier transforms of the electron density:

$$F(h,k,l)e^{i\varphi(h,k,l)} = \int_{xyz} \rho(x,y,z)e^{2\pi i(hx+ky+lz)}dxdydz$$

Moreover, a backward transform (synthesis) should bring us from waves back to the electron density:

$$\rho(x, y, z) = const \cdot \int_{hkl} F(h, k, l) e^{-2\pi i(hx + ky + lz) + i\varphi(h, k, l)} dh dk dl$$

I.e. once we know the amplitudes and phases of diffracted waves we can calculate the electron density!

24

Diffraction on a single (protein) molecule

Will we see anything? Theoretically, YES: spread diffraction, no reflections

But practically:

- · Very low intensity of diffracted radiation
- Radiation would kill the molecule before satisfactory diffraction data are collected
- Orientation of a single molecule would have to be fixated somehow

B. Phase problem

Fourier synthesis:

$$\rho(x, y, z) = const \cdot \sum_{hkl} F_{hkl} e^{-2\pi i(hx + ky + lz) + i\varphi_{hkl}}$$

However, there is a problem:

experiment yields amplitudes of reflections but not phases:

Amplitude F = sqrt(I)

Phase ϕ - ?

Methods to solve the phase problem

- 1. Isomorphous replacement by heavy atoms (MIR)
- 2. Molecular replacement by a similar structure (MR)
- 3. Anomalous X-ray scattering on a heavy atom (MAD)
- 4. Direct methods -> 'guess the phase'

We will only discuss the first two...

Multiple isomorphous replacement

- 1. Soak a heavy atom (U, Hg, Pt, Au, Ag...) into your crystal
- 2. Hope that (a) the heavy atom is specifically binding to a few positions on the protein and (b) the binding does not change the protein conformation or crystal cell parameters ('isomorphism')
- 4. Repeat for at least one another derivative \rightarrow F_{PH2}
- 5. Then there is a computation procedure that yields an estimate of protein ('native') phases:

$$F_{P \, (native \, protein \, crystal)}$$

$$F_{PH1} \, (derivative \, 1)$$
 -> $\phi_P \, (estimate)$
$$F_{PH2} \, (derivative \, 2)$$

6. Do a Fourier synthesis with $\boldsymbol{F_P}$ and ϕ_P

Molecular replacement 1. You have to know the 3D structure of a related protein 2. If the two structures are close, there is a computational procedure that finds the correct position/orientation of the known structure in the new cell 3. Use the measured amplitudes F_P and the phases calculated from the model φ_{model} for Fourier synthesis

Resolution and accuracy

- \cdot Once resolution is better than ~3Å, building (and refinement) of a full atomic model (except hydrogens) becomes possible
- But the accuracy in atoms positions is much better (~ few tens of Å), especially since the model is stereochemically restrained

Ultrahigh resolution

Current record is about 0.6Å:

- hydrogens seen
- valent electrons seen

44

Atomic temperature factor

May either reflect the true thermal motion of the molecule

or

a conformation variability from unit cell to unit cell

