Probability and Statistical Inference

Tianqi Zhang Emory University

Apr 17th 2025

6 Measurable maps

6.1 Measurable maps

Definition 6.1.1 (Measurable map).

Let $(\Omega_1, \mathscr{F}_1)$, $(\Omega_2, \mathscr{F}_2)$ be measurable spaces.

A map $f:\Omega_1\to\Omega_2$ is measurable with respect to $(\mathscr{F}_1,\mathscr{F}_2)$ if:

$$f^{-1}(A) \in \mathscr{F}_1, \ \forall A \in \mathscr{F}_2.$$

iff Pre-image of measurable sets are measurable.

Example 6.1.2 Indicator Function

Consider $\chi_A:(\Omega,\mathscr{F})\to(\mathbb{R},\mathscr{B})$, where

$$\chi_A(\omega) = \begin{cases} 1, & \text{if } \omega \in A, \\ 0, & \text{else.} \end{cases}$$

To show χ_A is measurable, check all pre-images:

$$\chi_A^{-1}(\varnothing) = \varnothing, \quad \chi_A^{-1}(\mathbb{R}) = \Omega, \quad \chi_A^{-1}(\{1\}) = A, \quad \chi_A^{-1}(\{0\}) = A^c.$$

Since all are in \mathscr{F} , χ_A is measurable.

Example 6.1.3 Suppose $f:(\Omega_1,\mathscr{F}_1)\to(\Omega_2,\mathscr{F}_2)$ and $g:(\Omega_2,\mathscr{F}_2)\to(\Omega_3,\mathscr{F}_3)$. If f and g are measurable, then $g\circ f$ is measurable.

For any $A \in \mathscr{F}_3$,

$$(g \circ f)^{-1}(A) = \underbrace{f^{-1}\underbrace{(g^{-1}(A))}_{\in \mathscr{F}_2}}_{\in \mathscr{F}_1}.$$

Since $g^{-1}(A) \in \mathscr{F}_2$ and f^{-1} preserves measurability, $(g \circ f)^{-1}(A) \in \mathscr{F}_1$.

Proposition 6.1.4:

Let (Ω, \mathscr{F}) , $(\mathbb{R}, \mathscr{B})$, and $f, g: \Omega \to \mathbb{R}$ be measurable. Then:

- 1. f + g, f g are measurable,
- 2. |f| is measurable.

Proposition 6.1.5 Measurable and Continuity:

Let $f: X \to \mathbb{R}$ be a continuous function. Then f is measurable with respect to the Borel sigma algebra.

6.2 Probability measure to a random variable (Push-forward)

Definition 6.2.1 (Push-forward measure). Push-forward measure P_X is the measure induced on \mathbb{R}^d via the function X, such that:

$$\forall A \in \mathscr{B}^d, \ P_X(A) = P(X^{-1}(A)).$$

For a probability (measure) space (Ω, \mathcal{F}, P) and a function (random variable)

$$X: (\Omega, \mathscr{F}, P) \to (\mathbb{R}^d, \mathscr{B}^d, \cdot),$$

There are generally two ways to make X measurable map:

- 1. Fix \mathscr{B}^d and \mathscr{F} , ask if X is measurable.
- 2. Alter ${\mathscr F}$ according to X such that X is measurable.

6.2.1 Method 1: Validation

Ask whether X is measurable with respect to the fixed σ -algebras:

$$\forall A \in \mathscr{B}^d, \quad X^{-1}(A) \in \mathscr{F}.$$

This directly checks the measurability condition. If satisfied, we say then X as a function is measurable.

• Non-Measurability shows by the same set having 2 different sizes (measures)

Criterion Check (1):

- For $\Omega \xrightarrow{X} \mathbb{R}^d$, $\forall A \in \mathcal{B}^d$, $X^{-1}(A) \in \mathcal{F}$, then X is measurable.
- BUT: Too hard to validate $\forall A \in \mathscr{B}^d$.

6.2.2 Method 2: Generation

Fix \mathscr{B}^d , then construct a σ -algebra \mathscr{F}_X (generated by X) that ensures measurability:

$$X^{-1}(\mathscr{B}^d) := \{ X^{-1}(A) \mid A \in \mathscr{B}^d \}.$$

Define:

$$\mathscr{F}_X \equiv \sigma(X)$$
 (the σ -algebra generated by X).

This is the smallest σ -algebra that makes X measurable:

- Actually, $\sigma(X)$ is the smallest σ -algebra for X to be measurable.
- $\sigma(X)$ contains all pre-images of \mathscr{B}^d under X.

Example 6.2.2

Let $X(\omega) = \mathbb{I}_A(\omega)$ for some $A \subseteq \Omega$, where \mathbb{I}_A is the indicator function of A. Then the σ -algebra generated by X is:

$$\sigma(X) = \{\varnothing, A, A^c, \Omega\}.$$

This σ -algebra usually represents information sets in practice.

Theorem 6.2.3 Measurability Validation

Solution: It is sufficient to check the generators B of \mathcal{B} such that $X^{-1}(B) \subset \mathcal{F}$.

Example 6.2.4

Let $\mathcal{L} = \left\{ \prod_{i=1}^d (-\infty, x_i] \mid x_i \in \mathbb{R} \right\}$ be a generator of \mathscr{B}^d . We have $X^{-1}(\mathcal{L}) \subseteq \mathscr{F}$, then we generate the smallest σ -algebra:

$$\sigma(X^{-1}(\mathcal{L}))$$

We need to show that

$$\sigma(X) \subseteq \sigma(X^{-1}(\mathcal{L})) \subseteq \mathscr{F}.$$

which makes X measurable.