Queue-Based Strategy to Achieve Maximum Stable rate in Multi-user Network

Linear Programming Class Math-5593 Fall 2019

Sajjad Nassirpour John McFarlane

Department of Electrical Engineering University of Colorado Denver

Email: sajjad.nassirpour@ucdenver.edu

Email: john.mcfarlane@ucdenver.edu

What is Multicast Transmission Model

LTE Cellular Network

Deliver packets to all users

Emergency Alert

Multicast Transmission Model

Details Of Queue-based strategy

N = 3

Queue	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6
Index set	{1,2,3}	{1,2}	{2,3}	{1,3}	{1}	{2}	{3}

Deliver packets by re-transmission

Packet Movement Rules

Problem of Queue-based strategy

Queue	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6
Index set	{1,2,3}	{1,2}	{2,3}	{1,3}	{1}	{2}	{3}

Problem ----- B

Backlogged packets

Need to stabilize the system

Queue Stability Analysis

Network Stability

A network is strongly stable if all individual queues of the network are strongly stable

Stability Constraints

Network Stability

A network is strongly stable if all individual queues of the network are strongly stable

Lemma

If a queue is strongly stable we should have

$$\mathbb{E}[A_i(t)] \leq A_{max}$$
 or $\mathbb{E}[\mu_i(t) - A_i(t)] \leq D_{max}$ and then,

$$\lim_{t\to\infty}\frac{\mathbb{E}[U_i(t)]}{t}=0$$

Incoming packets ≤ outcoming packets

Assign Network Coding to Queue-based strategy

Queue	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6
Index set	{1,2,3}	{1,2}	{2,3}	{1,3}	{1}	{2}	{3}

Random Coding	Probability Of Use	Responsible Queues
Network Coding # 0	PO	Q_0
Network Coding # 1	P1	Q_4 , Q_5 , Q_6
Network Coding # 2	P2	Q_1 , Q_6
Network Coding # 3	Р3	$oldsymbol{Q}_2$, $oldsymbol{Q}_4$
Network Coding # 4	P4	$oldsymbol{Q_3}$, $oldsymbol{Q_5}$

Assign Network Coding to Queue-based strategy

Number of NC schemes

Bell Number

Random Coding	Probability Of Use	Responsible Queues
Network Coding # 0	P0	Q_0
Network Coding # 1	P1	Q_4 , Q_5 , Q_6
Network Coding # 2	P2	$oldsymbol{Q}_1$, $oldsymbol{Q}_6$
Network Coding # 3	Р3	Q_2 , Q_4
Network Coding # 4	P4	Q_3 , Q_5

$$B(n) = \sum_{k=0}^{n} S(n, k)$$

Stirling numbers of the second kind

$$S(n,k) = \frac{1}{k!}T(n,k)$$

$$T(n,k) = k^n - C(k,1)(k-1)^n + C(k,2)(k-2)^n - \dots + (-1)^{(k-1)}C(k,k-1)1^n$$

$$B(3) = \sum_{k=0}^{3} S(3,k) = 0 + 1 + 3 + 1 = 5$$

single-line notation for combination

Linear Programming

maximize λ

Subject to: stability constraints in each queue

$$\sum_{i} P_i = 1$$

$$P_i \ge 0$$

Stability Constraints

A packet leaving Q_1 has 4 possible outcomes:

Queue	Q_1
Index set	{1,2}

Outcome 1: the packet is received by R_1 and R_2 , so the packet is received by all three receivers and leaves the queuing system with transition probability $P_2(1 - e_1)$ $(1 - e_2)$.

Outcome 2: the packet is received by R_1 but not R_2 , so the packet moves to $\mathbf{Q_5}$ with transition probability $P_2(1-e_1)$ e_2

Outcome 3: the packet is received by R_2 but not R_1 , so the packet moves to $\mathbf{Q_4}$ with transition probability $P_2e_1(1-e_2)$.

Outcome 4: The packet is received by none of the receivers and it stays in Q_1 with transition probability $P_2e_1e_2$.

Random Coding	Probability Of Use	Responsible Queues
Network Coding # 2	P2	Q_1 , Q_6

$$Q_1: P_0 e_1 e_2 (1 - e_3) \le P_2 [(1 - e_1) (1 - e_2) + (1 - e_1) e_2 + e_1 (1 - e_2)]$$

Linear Programming

maximize λ

Subject to:

$$\begin{split} Q_0\colon &\lambda \leq P_0[e_1\ e_2(1-e_3)+(1-e_3)\ (1-e_2)e_1+(1-e_1)\ (1-e_2)\ (1-e_3)+\\ &(1-e_3)\ (1-e_1)e_2+(1-e_1)\ e_2e_3+(1-e_1)\ (1-e_2)e_3+e_3\ (1-e_2)e_1] \end{split}$$

$$Q_1\colon &P_0e_1e_2(1-e_3) \leq P_2[(1-e_1)\ (1-e_2)+(1-e_1)\ e_2+e_1(1-e_2)]\\ Q_2\colon &P_0e_2e_3(1-e_1) \leq P_3[(1-e_3)\ (1-e_2)+(1-e_3)\ e_2+e_3(1-e_2)]\\ Q_3\colon &P_0e_1e_3(1-e_2) \leq P_4[(1-e_3)\ (1-e_1)+e_3\ e_1+e_3(1-e_1)]\\ Q_4\colon &P_2e_1(1-e_2)+P_0e_1(1-e_2)\ (1-e_3)+P_4e_1(1-e_3) \leq (P_1+P_3)\ (1-e_1)\\ Q_5\colon &P_2e_2(1-e_1)+P_0e_2(1-e_1)\ (1-e_3)+P_3e_2(1-e_3) \leq (P_1+P_4)\ (1-e_2)\\ Q_6\colon &P_3e_3(1-e_2)+P_0e_3(1-e_2)\ (1-e_1)+P_4e_3(1-e_1) \leq (P_1+P_2)\ (1-e_3)\\ &\sum P_i=1 \qquad P_i\geq 0 \end{split}$$

 $P_i \geq 0$

Simulation Results

Queue	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6
Index set	{1,2,3}	{1,2}	{2,3}	{1,3}	{1}	{2}	{3}

Random Coding	Probability Of Use	Responsible Queues
Network Coding # 0	P0	Q_0
Network Coding # 1	P1	Q_4 , Q_5 , Q_6
Network Coding # 2	P2	Q_1 , Q_6
Network Coding # 3	Р3	Q_2 , Q_4
Network Coding # 4	P4	Q_3 , Q_5

e_1	e_2	e_3	λ_{max}	P_0	P_1	P_2	P_3	P_4
0.1	0.1	0.1	0.8993	0.9002	0.0745	0.0082	0.0082	0.0089
0.2	0.2	0.2	0.79633	0.8028	0.113	0.0268	0.0268	0.0306
0.1	0.1	0.2	0.79906	0.8007	0.1625	0.0064	0.0148	0.0156
0.1	0.2	0.3	0.699274	0.7035	0.2279	0.0100	0.0404	0.0182

Max error probability

ampl: reset; model Project.mod; data Project.dat; solve; display

P0,P1,P2,P3,P4,lambda; MINOS 5.51: optimal solution found.

3 iterations, objective 0.8992877634

P0 = 0.900188

P1 = 0.074542

P2 = 0.00818353

P3 = 0.00818353

P4 = 0.00890296

lambda = 0.899288

Backlog description for $\lambda > \lambda_{max}$

$$e_1 = 0.1$$
 $e_2 = 0.2$ $e_3 = 0.3$

Queue	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6
Index set	{1,2,3}	{1,2}	{2,3}	{1,3}	{1}	{2}	{3}

Complexity for N>3

Number of NC schemes

$$B(n) = \sum_{k=0}^{n} S(n, k)$$

For a multicast network with N users, the number of network coding schemes is $S_N = B(N)$

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1(2^{N}-1)} \\ \vdots & \ddots & \vdots \\ x_{S_{N}1} & \cdots & x_{S_{N}(2^{N}-1)} \end{bmatrix} \qquad x_{ij} = \{0,1\}$$

 $O(S_N)$

Complexity for N>3

Queues' inter-connection

- N = 3
- Number of queue: $2^3 1 = 7$

- N = 10
- Number of queue: $2^{10} 1 = 1023$

O(exponential)

Thanks for your attention