Guiwen Luo Abbr. of the Title Slide 1/16

Title of the Presentation

Guiwen Luo

Department of Electrical and Computer Engineering
University of Waterloo
CANADA
guiwen.luo@uwaterloo.ca

insert Date

Joint work with xxx

Problem:

Multi-scalar Multiplication (MSM) over fixed points:

$$S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n, \ 0 \le a_i < r, P_i \in E.$$
 (1)

How can we compute it efficiently for large $n: n \ge 2^{10}$?

Outline

- Introduction
- Existing methods
- Pippenger's bucket method and its variant
- Our new construction
- Instantiation and experiment over BLS12-381 curve

Motivation

- MSM over fixed points dominates the time consumption in zero-knowledge succinct non-interactive argument of knowledge (zkSNARK) schemes with pairing-based trusted setup.
- Circuit size in Zcash: for single hash, SHA-256, the number of multiplication gates is about 23 thousands; for nested hash, several millions.

credit: https://en.wikipedia.org/wiki/Zcash

Computing $S_{n,r}$:

Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].

Computing $S_{n,r}$:

- Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].
- Construction of number systems:
 basic digit sets [Mat82, BGMW92],
 multi-base number systems [DKS09, SIM12, YWLT13].

Computing $S_{n,r}$:

- Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].
- Construction of number systems: basic digit sets [Mat82, BGMW92], multi-base number systems [DKS09, SIM12, YWLT13].
- Addition chains:
 PRAC chains [Mon92],
 DJB chains [Ber06],
 other multi-dimensional differential addition chains [Bro15, Rao15].

Computing $S_{n,r}$:

- Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].
- Construction of number systems:
 basic digit sets [Mat82, BGMW92],
 multi-base number systems [DKS09, SIM12, YWLT13].
- Addition chains:
 PRAC chains [Mon92],
 DJB chains [Ber06],
 other multi-dimensional differential addition chains [Bro15, Rao15].
- Pippenger's bucket method and its variants.

Existing methods (cont.)

For large n $(n \ge 2^{10})$

- SOTA: Pippenger's bucket method and its variants.
- zkSNARK-oriented implementations, Zcash, TurboPLONK, Bellman, gnark, choose Pippenger's bucket method.

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

• All points are sorted into 7 buckets according to the scalars $\{1,\cdots,7\}$:

$$S_{13,8} = 1 \cdot (P_6 + P_{11}) + 2 \cdot (P_1 + P_9) + 3 \cdot (P_2 + P_7) + 4 \cdot (P_{12})$$

+ $5 \cdot (P_5 + P_{13}) + 6 \cdot (P_4 + P_8) + 7 \cdot (P_3 + P_{10})$
=: $1S_1 + 2S_2 + \ldots + 7S_7$.

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

• All points are sorted into 7 buckets according to the scalars $\{1,\cdots,7\}$:

$$S_{13,8} = 1 \cdot (P_6 + P_{11}) + 2 \cdot (P_1 + P_9) + 3 \cdot (P_2 + P_7) + 4 \cdot (P_{12})$$

+ $5 \cdot (P_5 + P_{13}) + 6 \cdot (P_4 + P_8) + 7 \cdot (P_3 + P_{10})$
=: $1S_1 + 2S_2 + \ldots + 7S_7$.

The accumulated sum $\sum_{i=1}^{7} iS_i$ can be computed via

$$S_7$$

+ $(S_7 + S_6)$
+ $(S_7 + S_6 + S_5)$
...
+ $(S_7 + S_6 + S_5 + \dots + S_1)$.

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

• All points are sorted into 7 buckets according to the scalars $\{1,\cdots,7\}$:

$$S_{13,8} = 1 \cdot (P_6 + P_{11}) + 2 \cdot (P_1 + P_9) + 3 \cdot (P_2 + P_7) + 4 \cdot (P_{12})$$

+ $5 \cdot (P_5 + P_{13}) + 6 \cdot (P_4 + P_8) + 7 \cdot (P_3 + P_{10})$
=: $1S_1 + 2S_2 + \ldots + 7S_7$.

• $\{S_i\}$: 13-7=6 additions, $\sum_{i=1}^{7} iS_i$: $2\times 6=12$ additions. In total, 18 additions.

If r is small enough:

$$S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n.$$

• All points are sorted into r-1 buckets according to the scalars,

$$S_{n,r} = 1S_1 + 2S_2 + \dots + (r-1)S_{r-1}$$

= $S_{r-1} + (S_{r-1} + S_{r-2}) + \dots + (S_{r-1} + S_{r-2} + \dots + S_1).$

• S_i 's: n-(r-1) additions, $\sum_{i=1}^{r-1} iS_i$: $2\times (r-2)$ additions. In total, n+r-3 additions.

Pippenger's bucket method variant

• If r is big (over BLS12-381 curve, $r\approx 2^{255}$), every scalar is decomposed into q-ary form,

$$a_{i} = a_{i0} + a_{i1}q + \dots + a_{i,h-1}q^{h-1}$$

$$S_{n,r} = a_{1}P_{1} + a_{2}P_{2} + \dots + a_{n}P_{n}$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} \cdot (q^{j}P_{i}), 0 \le a_{ij} < q,$$

$$=: S_{nh,q}.$$

Pippenger's bucket method variant

• If r is big (over BLS12-381 curve, $r\approx 2^{255}$), every scalar is decomposed into q-ary form,

$$a_{i} = a_{i0} + a_{i1}q + \dots + a_{i,h-1}q^{h-1}$$

$$S_{n,r} = a_{1}P_{1} + a_{2}P_{2} + \dots + a_{n}P_{n}$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} \cdot (q^{j}P_{i}), 0 \le a_{ij} < q,$$

$$=: S_{nh,q}.$$

Precomputation (nh Points):

$${q^{j}P_{i} \mid i=1,2,...,n, \ j=0,1,2,...,h-1}.$$

• Using aforementioned method, all points are sorted into q-1 buckets, in total, nh+q-3 additions [BGMW95].

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{n-1} a_{ij} q^{j} P_{i}, 0 \le a_{i} \le q$$

• If $a_{ij}=m_{ij}b_{ij}$, $m_{ij}\in M$ (multiplier), $b_{ij}\in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{n-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} q^{j} P_{i}, 0 \le a_{i} \le q$$

• If $a_{ij} = m_{ij}b_{ij}$, $m_{ij} \in M$ (multiplier), $b_{ij} \in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{n-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

• Precompute (nh|M| points) $\{mq^jP_i\mid 1\leq i\leq n, 0\leq j\leq h-1, m\in M\},$ then it takes $\approx nh+|B|$ additions to compute $S_{n,r}.$

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} q^{j} P_{i}, 0 \le a_{i} \le q$$

• If $a_{ij} = m_{ij}b_{ij}$, $m_{ij} \in M$ (multiplier), $b_{ij} \in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{n-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

- Precompute (nh|M| points) $\{mq^jP_i\mid 1\leq i\leq n, 0\leq j\leq h-1, m\in M\}$, then it takes $\approx nh+|B|$ additions to compute $S_{n,r}$.
- Pippenger's bucket method variant, $M=\{1\},\ B=\{0,1,2,...,q-1\}$, it takes $\approx nh+q$ additions.

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{n-1} a_{ij} q^j P_i, 0 \le a_i \le q$$

• If $a_{ij} = m_{ij}b_{ij}$, $m_{ij} \in M$ (multiplier), $b_{ij} \in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{n-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

- Precompute (nh|M| points) $\{mq^jP_i\mid 1\leq i\leq n, 0\leq j\leq h-1, m\in M\}$, then it takes $\approx nh+|B|$ additions to compute $S_{n,r}$.
- Pippenger's bucket method variant 2 (notice that -P can be easily computed given P), $M=\{1,-1\},\ B=\{0,1,2,...,\lceil q/2\rceil\}$, it takes $\approx nh+q/2$ additions.

Goal

Construct B, s.t. $|B| \approx 0.21q$. Thus $S_{n,r}$ takes $\approx nh + 0.21q$ additions.

New construction

• (G.W. Luo, S.H. Fu, G. Gong) Let $q=2^c$ be the radix. The multiplier set is $M=\{-3,-2,-1,1,2,3\}.$

New construction

- (G.W. Luo, S.H. Fu, G. Gong) Let $q=2^c$ be the radix. The multiplier set is $M=\{-3,-2,-1,1,2,3\}$.
- Three auxiliary sets,

$$\begin{split} B_0 = & \{0\} \cup \{b \mid 1 \le b \le q/2, s.t. \ \omega_2(b) + \omega_3(b) \equiv 0 \bmod 2\}, \\ B_2 = & \{0\} \cup \{b \mid 1 \le b \le r_{h-1} + 1, s.t. \ \omega_2(b) + \omega_3(b) \equiv 0 \bmod 2\}, \end{split}$$

where $r_{h-1} = \lfloor r/q^{h-1} \rfloor$. B_1 is defined by the following algorithm

```
Input: B_0, q.

Output: B_1.

1: B_1 = B_0

2: for i = q/4 to q/2 - 1 by 1 do

3: if i is in B_0 and q - 2 \cdot i is in B_0 then

4: B_1.remove(q - 2 \cdot i)

5: for i = \lfloor q/6 \rfloor to q/4 - 1 by 1 do

6: if i is in B_0 and q - 3 \cdot i is in B_0 then

7: B_1.remove(q - 3 \cdot i)

8: return B_1
```

The bucket set is constructed as $B = B_1 \cup B_2$.

Comparison

 $q=2^c$ is the radix used to decompose the scalars, $h=\lceil \log_q r \rceil$. The time complexity of Pippenger's bucket set and Pippenger's variant hold if $r \leq q/2 \cdot q^{h-1}$. The time complexity of our construction holds when r/q^h is small.

Table: Comparison of different methods that computes $S_{n,r}$

Method	Storage	Complexity
Trivial method	$n \cdot P$	$3/2 \cdot (n\log_2 r) \cdot A$
Straus method [Str64]	$n2^c \cdot P$	$h(n+c)\cdot A$
Pippenger [Pip76, BDLO12]	$n \cdot P$	$h(n+q/2)\cdot A$
Pippenger variant [BGMW95]	$nh \cdot P$	$(nh+q/2)\cdot A$
Our construction [this work]	$3nh\cdot P$	$(nh + 0.21q) \cdot A$

Instantiation and experiment over BLS12-381 curve

\overline{n}	Pippenger	Pippenger variant	Our construction	Improv1	Improv2
2^{10}	3.69×10^4	2.46×10^4	2.22×10^4	39.8%	9.6%
2^{11}	6.66×10^4	4.51×10^{4}	4.23×10^{4}	36.4%	6.1%
2^{12}	1.20×10^5	8.60×10^{4}	8.12×10^4	32.2%	5.6%
2^{13}	2.21×10^{5}	1.64×10^5	1.49×10^{5}	32.4%	8.8%
2^{14}	4.06×10^{5}	$2.95 imes 10^5$	2.80×10^5	30.8%	4.9%
2^{15}	7.37×10^5	$5.57 imes 10^5$	$5.43 imes 10^5$	26.4%	2.6%
2^{16}	1.39×10^6	1.08×10^6	1.03×10^{6}	26.3%	5.0%
2^{17}	2.62×10^6	2.10×10^6	1.92×10^6	26.6%	8.2%
2^{18}	4.72×10^6	$3.93 imes 10^6$	3.63×10^6	23.1%	7.7%
2^{19}	8.91×10^6	7.34×10^{6}	7.04×10^{6}	21.1%	4.1%
2^{20}	1.73×10^7	1.42×10^7	1.35×10^7	22.2%	4.9%
2^{21}	3.30×10^7	2.73×10^{7}	2.60×10^7	21.2%	4.5%

Instantiation and experiment over BLS12-381 curve

	\mathbb{G}_1	\mathbb{G}_2		
n	Improv1	Improv2	Improv1	Improv2
2^{10}	40.6%	8.86%	40.6%	9.26%
2^{11}	36.8%	6.54%	37.0%	6.78%
2^{12}	33.7%	5.78%	34.2%	5.74%
2^{13}	30.7%	4.40%	29.7%	3.13%
2^{14}	31.2%	6.54%	31.0%	7.29%
2^{15}	28.4%	3.19%	29.0%	3.61%
2^{16}	21.9%	-1.88%	21.8%	-2.05%
$*2^{16}$	24.6%	1.48%	24.9%	2.10%
2^{17}	22.1%	4.91%	21.6%	3.08%
2^{18}	22.8%	6.75%	23.0%	7.03%
2^{19}	20.3%	5.12%	20.8%	6.06%
2^{20}	17.7%	-0.13%	18.8%	1.45%
$*2^{20}$	19.4%	1.69%	17.9%	2.66%
2^{21}	19.0%	4.31%	_	_

Conclusions:

• $S_{n,r}$ over fixed points can be computed using at most

$$\approx nh + 0.21q$$

additions, with the help of 3nh precomputed points

$$\left\{ mq^{j}P_{i} \mid 1 \leq i \leq n, 0 \leq j \leq h-1, m \in \{1, 2, 3\} \right\},\,$$

where $q=2^c$ is selected to minimize the complexity, $h=\lceil \log_q r \rceil$, r/q^h is small.

- Over BLS12-381 curve, when computing n-scalar multiplications for $n=2^e$ $(10 \le e \le 21)$.
 - 21%+ improvement against Pippenger's bucket method.
 - -2.6% to 9.6% improvement against the variant [BGMW95].

