Decision Support in Production, Logistics and Supply Chain

Arezoo Amiri Christof Brandstetter Tamara Ertl March 25, 2024

1 Introduction

We only need to add edges with G.add edge(node1, node2, capacity) It automatically adds nodes

Pyvis does not add nodes automatically

 ${
m net.toggle~physics(True)},~{
m sometimes~makes~sense~to~set~to~False,~It~makes~the~graph~draggable}$

Generate C_l cut where $\gamma = 1$ and generate C_m where $\gamma = u$. Then calculate the bisection to obtain a new $\hat{\gamma}$. Then generate a cut with $\hat{\gamma}$ and do this until we find a cut that has less than B large edges.

2 Notation

- A cut is a partition $V = S \cup T$ of the nodes of G such that $s \in S$ and $t \in T$
- An arc $r \in E$ is in a cut C = (S, T) if $\alpha(r) \in S$ and $\omega(r) \in T$
- Arcs having capacity u are called large arcs
- Arcs having capacity 1 are called small arcs
- q(C) := #(large arcs in C)
- p(C) := #(small arcs in C)

3 What's to do?

- Transform the digraph into a NFI graph
 - Create a s-node
 - Create a node for every edge in the digraph
 - Create edges from s to every edge-node i_x with capacity 2m

- Create a node for every node in the digraph
- Create edges from every edge-node to every node-node j_1 which is connected by the edges with capacity m
- Create a node t and connect the node-nodes with the t node by edges with capacity m
- where m = |E|
- Implement the bisection algorithm for NFI
 - Generate a minimum cut C_m (minimum Cut to the original graph) and get $q(C_m)$ and $p(C_m)$
 - Generate a least cut C_l (minimum cut of G with the capacity of all arcs set to 1) and get $q(C_l)$ and $p(C_l)$
 - Calculate $\hat{\gamma}$ and generate the cut with capacity- $\hat{\gamma}$ -min-cut \hat{C}
 - If $cap^{\gamma}(\hat{C}) \leq cap^{\gamma}(C_l)$ and $q(\hat{C}) \notin \{q(C_l), q(C_m)\}$ then generate two new cuts using $((C_l, \hat{C}), (\hat{C}, C_m))$
 - otherwise return $\{C_1, C_2\}$
 - The minimum cut is the smallest set of edges that, when removed, disconnects the graph into two disjoint subgraphs.
 - Identify the arcs $R \in C$ which are removed from the graph
 - C_m is optimal if it contains at least B large arcs with $val(C_m)$ = cap of arcs in cut cap of removed arcs
 - Assume: Any minimum cut in G contains at most B-1 large arcs
 - C_l denotes a least cut in G, i.e., a cut with least possible number of arcs. Then C_l is optimal if it contains at most B large arcs
 - Assume: Any least cut in G contains at least B+1 large arcs
- Find in the NFI graph a strategy for NFI with budget $B = |E| {K \choose 2}$ that has value K*m to get a clique of size K
- Transform it back to find the max-clique
- Use the bisection algorithm for NFI to find large cliques for the benchmark set
 - Suspect, that we have to do this for different K and raise the K's

 $R \subseteq E$ is a solution to the u-NFI problem with objective value val(R) which equals the capacity of a minimum s-t-cut in the graph G_R . Minimum s-t-cut of a graph G_R is a minimum cut (cut with least number of arcs, which disjoints s and t) and the capacity of this cut equals the maximum flow of the graph. (Value of a cut is the sum of the capacities of the arcs in the cut) -; cut != removing arcs

So network flow interdiction problem is about finding a subset of arcs R that minimizes the maximum flow from s to t, where all arcs have different capacities (do not need to be different but there are several different ones).

The u-NFI has small (1) and large (u) arcs. Here we need to keep in mind, that the val(C) = val(R_C) = sum of capacity of the B largest arcs

If think the idea of algorithm to find a good solution to the u-NFI is that the we have to compute q-min-cuts (cut with smallest capacity in graph G amongst all cuts with exactly q large arcs) for different values of q. So find the minimum cut with minimal capacity and exactly q large arcs for different values of q and caluclating a q-min-cut is NP-hard.

So we calculate minimum cuts when varying the capacity of the large arcs to obtain cuts with different numbers of q.

If C^{γ} is a capacity- γ -min-cut for some $\gamma \geq 1$, then it is a q-min-cut for $q=q(C^{\gamma})$. This means that if we have a capacity- γ -min-cut C^{γ} we have found a q-min-cut with $\mathbf{q}=\mathbf{q}(C^{\gamma})$ or alternatively, by finding a minimum cut for a certain γ we obtain a q-min-cut where \mathbf{q} equals the number of large arcs in our minimum cut.

Therefore, we start with C_l and C_m as the q obtained from these are bounds on the optimal q. Then we pick the next γ to check for by doing this bisection. If this cut has a lower capacity than our lower bound (is below our two lines) we do the bisection again for C_l \hat{C} and \hat{C} C_m . An this we do again and again until \hat{C} has a higher capacity.

To finish this up, we will not find a single cut, but rather a set of two cuts which will give us a lower and upper bound on the optimal value.

4 Additional thoughts

- 1. capacity- γ -min-cut (C^{γ}) are q-min-cut for $q = q(C^{\gamma})$
- 2. $q(C^{\gamma_1}) \ge q(C^{\gamma_2})$ for $1 \ge \gamma_1 \ge \gamma_2 \ge u \to \#$ of large arcs is decreasing for increasing γ
- 3. We have bounds on q with $q(C_l)$ and $q(C_m)$
- 4. Given two cuts C_1 and C_2 , the next $\hat{\gamma}$ is chosen by the value, when $cap(C_1) = cap(C_2)$ in the graph $G^{\hat{\gamma}}$
- 5. If $cap(C^{\hat{\gamma}}) < cap(C_1) = cap(C_2)$ in $G^{\hat{\gamma}}$ bisection is called again for C_1 and \hat{C} and \hat{C}_2 and \hat{C}
- 6. Otherwise the recursion ends and returns C_1 and C_2

The target here is to find a capacity- γ -min-cut with high γ (equals low # of large arcs) wihle reducing a low cut capacity.