1 January

3

4

5

6

7

8

0

cícios de Matemática Discreta e Programação

2011-2012 Folha 2

Lógica Matemática

afirmações

R: O Nuno é rico

H: O Nuno é feliz

seguintes afirmações na forma simbólica

no é pobre mas feliz.

no é rico ou feliz.

no não é nem rico nem feliz.

- 4. Construa a tabela de verdade para as seguintes fórmulas:
 - (a) $\neg(\neg P \lor \neg Q)$
 - (b) $\neg (\neg P \land \neg Q)$
 - (c) $P \wedge (P \vee Q)$
 - (d) $P \wedge (Q \wedge P)$
 - (e) $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R)$
 - (f) $(P \wedge Q) \vee (\neg P \wedge Q) \vee (P \wedge \neg Q) \vee (\neg P \wedge \neg Q)$
- 5. Assumindo que as variáveis proposicionais P e Q são verdadeiras e que R e S são falsas, determine o valor de verdade das afirmações:
 - (a) $P \wedge (Q \vee R)$
 - (b) $(P \land (Q \land R)) \lor \neg ((P \lor Q) \land (R \lor S))$
 - (c) $(\neg (P \land Q) \lor \neg R) \lor (((\neg P \land Q) \lor \neg R) \land S)$
- 6. Mostre que o valor lógico das fórmulas abaixo são independentes das suas componentes:
 - (a) $(P \land (P \rightarrow Q)) \rightarrow Q$
 - (b) $(P \to Q) \leftrightarrow (\neg P \lor Q)$
 - (c) $((P \to Q) \land (Q \to R)) \to (P \to R)$
 - (d) $(P \leftrightarrow Q) \leftrightarrow ((P \land Q) \lor (\neg P \land \neg Q))$
- 7. Construa a tabela de verdade das seguintes fórmulas:
 - (a) $(Q \land (P \to Q)) \to P$
 - (b) $\neg (P \lor (Q \land R)) \leftrightarrow ((P \lor Q) \land (P \lor R))$
- 8. Assumindo que os valores de verdade das variáveis proposicionais P e Q é verdade e que R e S é falso, determine os valores de verdade das seguintes fórmulas.
 - (a) $(\neg (P \land Q) \lor \neg R) \lor ((Q \leftrightarrow \neg P) \to (R \lor \neg S))$
 - (b) $(P \leftrightarrow Q) \land (\neg Q \to S)$
 - (c) $(P \lor (Q \to (R \land \neg P))) \leftrightarrow (Q \lor \neg S)$
- 9. ** Mostre as seguintes implicações
 - (a) $(P \wedge Q) \Leftrightarrow (P \rightarrow Q)$
 - (b) $P \Rightarrow (Q \rightarrow P)$
 - (c) $(P \to (Q \to R) \Rightarrow (P \to Q) \to (P \to R)$
- 10. Mostre as seguintes equivalências
 - (a) $P \to (Q \to P) \Leftrightarrow \neg P \to (P \to Q)$
 - (b) $P \to (Q \lor R) \Leftrightarrow (P \to Q) \lor (P \to R)$
 - (c) $(P \to Q) \land (R \to Q) \Leftrightarrow (P \to Q) \lor (P \to R)$
 - (d) $\neg (P \leftrightarrow Q) \Leftrightarrow (P \lor Q) \land \neg (P \lor Q)$
- 11. Mostre que P é equivalente às seguintes fórmulas $\neg\neg P$, $P \land P$, $P \lor P$, $P \lor (P \land Q)$, $P \land (P \lor Q)$, $(P \land Q) \lor (P \land \neg Q)$, e $(P \lor Q) \land (P \lor \neg Q)$.

- 12. Mostre as seguintes equivalências
 - (a) $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$
 - (b) $\neg (P \land Q) \Leftrightarrow \neg P \land \neg Q$
 - (c) $\neg (P \rightarrow Q) \Leftrightarrow P \land \neg Q$
 - (d) $\neg (P \leftrightarrow Q) \Leftrightarrow (P \land \neg Q) \lor (\neg P \land Q)$
- 13. Mostre que
 - (a) $\neg (P \uparrow Q) \Leftrightarrow \neg P \downarrow \neg Q$
 - (b) $\neg (P \downarrow Q) \Leftrightarrow \neg P \uparrow \neg Q$
- 14. Escreva uma fórmula equivalente a $P \wedge (Q \Leftrightarrow R)$ e que contenha a conectiva NAND (\uparrow). Obtenha uma fórmula equivalente que contenha apenas a conectiva NOR (\downarrow).
- 15. Construa a tabela de verdade para as funções booleanas descritas pelos circuitos lógicos abaixo:
- 16. Mostre que o conjunto $\{\neg, \rightarrow\}$ é funcionalmente completo.
- 17. Seja a conectiva \rightarrow definida pela tabela:

P	Q	$P\dot{\rightarrow}Q$
V	V	V
V	\mathbf{F}	V
\mathbf{F}	V	F
\mathbf{F}	\mathbf{F}	V

Mostre que $\{\neg, \dot{\rightarrow}\}$ é funcionalmente completo.

- 18. Mostre as seguintes equivalências:
 - (a) $A \to (P \lor C) \Leftrightarrow (A \land \neg P) \to C$
 - (b) $(P \to C) \land (Q \to C) \Leftrightarrow (P \lor Q) \to C$
 - (c) $((Q \land A) \to C) \land (A \to (P \lor C)) \Leftrightarrow (A \land (P \to Q)) \to C$
 - (d) $((P \land Q \land A) \to C) \land (A \to (P \lor Q \lor C)) \Leftrightarrow (A \land (P \leftrightarrow Q)) \to C$
- 19. Escreva as fórmulas abaixo de forma o mais simples possível preservando a equivalência:
 - (a) $((P \to Q) \leftrightarrow (\neg Q \to \neg P)) \land R$
 - (b) $P \vee (\neg P \vee (Q \wedge \neg Q))$
 - (c) $(P \wedge (Q \wedge S)) \vee (\neg P \wedge (Q \wedge S))$
- 20. Escreva de forma equivalente as fórmulas abaixo, de forma que estejam aplicadas apenas a variáveis.
 - (a) $\neg (P \lor Q)$
 - (b) $\neg (P \land Q)$
 - (c) $\neg (P \rightarrow Q)$
 - (d) $\neg (P \leftrightarrow Q)$
 - (e) $\neg (P \uparrow Q)$
 - (f) $\neg (P \downarrow Q)$

- 21. Escreva na forma canónica dum produto-de-somas as fórmulas abaixo:
 - (a) $(P \land Q \land R) \lor (\neg P \land R \land Q) \lor (\neg P \land \neg Q \land \neg R)$
 - (b) $(P \wedge Q) \vee (\neg P \wedge Q) \vee (P \wedge \neg Q)$
 - (c) $(P \wedge Q) \vee (\neg P \wedge Q \wedge R)$
- 22. Obtenha a forma normal disjuntiva e conjuntiva das seguintes fórmulas:
 - (a) $(\neg P \lor \neg Q) \to (P \leftrightarrow \neg Q)$
 - (b) $Q \wedge (P \vee \neg Q)$
 - (c) $P \vee (\neg P \rightarrow (Q \vee (\neg Q \rightarrow R)))$
 - (d) $(P \to (Q \land R)) \land (\neg P \to (\neg Q \land \neg R))$
 - (e) $P \to (P \land (Q \to P))$
 - (f) $(Q \to P) \land (\neg P \land Q)$

Quais das seguintes fórmulas são tautologias?

- 23. Escreva as fórmulas abaixo na forma prefixa e na forma sufixa. Assumindo para isso a seguinte ordem de precedência: \leftrightarrow , \rightarrow , \lor , \land , \neg (onde \neg tem a maior precedência)
 - (a) $P \to Q \lor R \lor S$
 - (b) $Q \land \neg (R \leftrightarrow P \lor Q)$
 - (c) $P \land \neg R \to Q \leftrightarrow P \land Q$
 - (d) $\neg \neg P \lor Q \land R \lor \neg Q$
- 24. Converte as fórmulas prefixas e sufixas em fórmulas completamente parentesisadas. Escreva também as fórmulas na forma infixa, utilizando para isso a ordem de precedência do exercício anterior:
 - (a) $\rightarrow \neg P \lor Q \leftrightarrow R \neg S$
 - (b) $\rightarrow \rightarrow PQ \rightarrow \rightarrow QR \rightarrow PR$
 - (c) $P \neg P \rightarrow P \rightarrow P \rightarrow$
 - (d) $PQ \to RQ \to \wedge PR \vee \wedge Q \to$
- 25. Mostre que a conclusão C segue das premissas H_1, H_2, \ldots nos seguintes casos:
 - (a) $H_1: P \to Q, :: C: P \to (P \land Q)$
 - (b) $H_1: \neg P \lor Q, H_2: \neg (Q \land \neg R), H_3: \neg R, \therefore C: \neg P$
 - (c) $H_1: \neg P, H_2: P \vee Q :: C: Q$
 - (d) $H_1: \neg Q, H_2: P \rightarrow Q : C: \neg P$
 - (e) $H_1: P \to Q, H_2: Q \to R : C: P \to R$
 - (f) $H_1: R, H_2: P \vee \neg P : C: R$
- 26. Mostre a validade dos seguintes argumentos, onde as premissas aparecem à esquerda e as conclusões à direita:
 - (a) $\neg (P \land \neg Q), \neg Q \lor R, \neg R$
 - (b) $(A \to B) \land (A \to C), \neg (B \land C), D \lor A \therefore D$
 - (c) $\neg J \rightarrow (M \lor N), (H \lor G) \rightarrow \neg J, H \lor G \therefore M \lor N$
 - (d) $P \to Q, (\neg Q \lor R) \land \neg R, \neg (\neg P \land S)$ $\therefore \neg S$
 - (e) $(P \land Q) \rightarrow R, \neg R \lor S, \neg S$ $\therefore \neg P \lor \neg Q$ (f) $P \rightarrow Q, Q \rightarrow \neg R, R, P \lor (J \land S)$ $\therefore J \land S$

- 27. Quais dos seguintes argumentos são válidos?
 - (a) $P \to Q, \neg Q \to R, \neg R, \therefore P$
 - (b) $A \rightarrow (A \rightarrow (B \rightarrow C)), B, :: A \rightarrow C$
 - (c) Se a Rute comprou um carro de luxo, foi porque ou assaltou um banco ou o seu tio rico morreu. Rute não assaltou um banco ou o seu tio rico não morreu. Consequentemente, o seu tio rico não morreu.
 - (d) Hoje é domingo. Amanhã não é domingo. Consequentemente a Lua é feita de queijo verde.
 - (e) O livro está na secretária ou na estante. Não está na estante. Consequentemente, está na secretária.
 - (f) Se função f não é contínua, então não é diferensiável. A função f é diferenciável. Consequentemente, a função f é contínua.
 - (g) Se existe vida em Marte, então os especialistas estão enganados e o governo está a mentir. Se o governo está a mentir, então os especialistas estão certos ou não existe vida em Marte. O governo está a mentir. Consequentemente, existe vida em Marte.
 - (h) (Lewis Carroll) Os bebés são ilógicos. Ninguém que consiga domar um crocodilo deve ser menosprezado. Pessoas ilógicas são menosprezada. Consequentemente, os bebés não conseguem domar crocodilos.
 - (i) (Lewis Carroll) Nenhum cão de caça vagueia pelo Zodíaco. Apenas os cometas vagueiam pelo Zodiaco. Só os cães de caça tem a cauda encaracolada. Consequentemente, nenhum cometa tem a cauda enrolada.
 - (j) As frutas verdes não são saudáveis. Todas estas maçãs não são saudáveis. Nenhum fruto, que tenha crescido na escuridão é saudável. Estas maçãs não cresceram ao sol. Consequentemente, toda a fruta madura é saudável.