Data Link Layer

Data Link Function

- Framing
- Addressing
- Flow Control
- Error Detection
- Error Corection
- Link Initialization

Framing (Flags)

- Bit-2 yang digunakan sebagai tanda awal dan akhir paket
- Contoh:
 - -01111110
 - Muncul tahun 1970 (IBM) => SDLC (Synchronous Data Link Control)
 - Pola 111111 tidak boleh muncul di data

Framing Error

- Parity Check
- CRC

Error Control

- Deteksi error, minta kirim ulang
- Atau betulkan error tanpa retransmisi

Error Detection

- Parity bits
- Polynomial codes or checksums

Hamming Codes

Cyclic Redundancy Check

HAMMING CODE? CRC?

Flow Control

- What happens if the sender tries to transmit faster than the receiver can accept?
- Data will be lost unless flow control is implemented

Solution: Stop-and-Wait

- The receiver sends an acknowledgement frame telling the sender to transmit the next data frame.
- The sender waits for the ACK, and if the ACK comes, it transmits the next data frame.

Principle: send a frame and wait for RR to send next frame

- Principle : send several frames without RR
- RR valid for a number of frames

Sliding Windows

Automatic Repeat Request (ARQ)

- Stop and wait
- Go back N
- Selective reject (selective retransmission)

Stop and Wait

- Source transmits single frame
- Wait for ACK
- If received frame damaged, discard it
 - Transmitter has timeout
 - If no ACK within timeout, retransmit
- If ACK damaged,transmitter will not recognize it
 - Transmitter will retransmit
 - Receive gets two copies of frame
 - Use ACK0 and ACK1

Go Back N

Selective Repeat

HDLC

- Support half/full duplex over point-topoint and multipoint links
- HDLC system characterization
 - Station types
 - Configurations
 - Communication modes
- Frames

HDLC station types

- Primary station
 - The station that controls the medium by sending "command"
- Secondary station
 - The station that "response" to the primary station
- Combined station
 - The station that can both command and response

HDLC configurations

- The relationship of hardware devices on a link
- 3 configurations of all stations (primary/secondary/combined)
 - Unbalanced
 - Symmetrical
 - Balanced

HDLC Configurations: Unbalanced (master/slave)

HDLC Configurations: Symmetrical

HDLC Configurations: Balanced

HDLC frame

- 3 frame types
 - Information frame (I-frame)
 - Supervisory frame (S-frame)
 For ACK, Flow/Error controls
 - Unnumbered frame (U-frame)
 For Mode setting, Initialize, Disconnect

HDLC Frame

HDLC Frame

HDLC Frame: Flag field

01111110

Bit Stuffing

- How to differentiate data and flag?
- Adding one extra 0 whenever there are five consecutive 1s in the data

0001111111001111101000

000111110110011111001000

HDLC Frame: Address field

HDLC Frame: Control field

HDLC Frame: Information field

HDLC Frame: FCS field

HDLC: S-Frame

HDLC: S-Frame Acknowledgement

HDLC: S-Frame Positive Acknowledgement

- RR
 - Receiver sends "Positive Ack" (no data to send)
 - N(R) = seq of next frame
- RNR
 - Receiver sends "Positive Ack"
 - N(R) = seq of next frame
 - Receiver tells sender that sender cannot send any frame until 'RR' frame is received

HDLC: S-Frame Negative Acknowledgement

- Reject (REJ)
 - Go-back-n ARQ
 - N(R) = # of damage frame (and follow)
- Selective-Reject (SREJ)
 - N(R) = # of damage frame

