التعليم في الفضاء (الهندسة الفضائية)

1. المعلم الديكارتي

المعلم للفضاء: هو كل رباعية نقط (O;I,J,K) ليست من نفس المستوي باعتبار المبدأ O و بوضع $\vec{i}=\vec{i}$ \vec{i} \vec{i} و \vec{i} \vec{j} \vec{i} نرمز للمعلم ب \vec{i} و \vec{i} عتبار المبدأ \vec{i} و بوضع \vec{i} و \vec{i} \vec{j} \vec{i} \vec{j} \vec{j}

2. احداثيات نقطة واحداثيات شعاع

 $(x;y;z)\in\mathbb{R}^3$ مع $\overrightarrow{OM}=x\overrightarrow{t}+y\overrightarrow{j}+z\overrightarrow{k}$ خرمز لإحداثيات نقطة M من الفضاء بM(x;y;z) عن من الفضاء بM(x;y;z) أو $\overrightarrow{OM}(x;y;z)$ أو $\overrightarrow{OM}(x;y;z)$

3. الحساب والخواص

 $lpha \in \mathbb{R}$ نافضاء و $ec{v}(x';y';z')$ نقطتین من الفضاء و $ec{v}(x';y';z')$ نقطتین من الفضاء و $ec{B}(x_B;y_B;z_B)$ نافضاء و $ec{AB}(x_B-x_A;y_B-y_A;z_B-z_A)$: $\overline{AB}(x_B-x_A;y_B-y_A;z_B-z_A)$: $\overline{AB}(x_B-x_A;y_B-y_A;z_B-z_A)$: $\overline{AB}(x_B-x_A;y_B-y_A;z_B-z_A)$: $\overline{AB}(x_B-x_A;y_B-y_A;z_B-z_A)$: $\overline{AB}(x_B-x_A;y_B-z_A)$: $\overline{AB}(x_B-x_A;y_B-z_A)$: $\overline{AB}(x_B-x_A;y_B-z_A)$: $\overline{AB}(x_B-x_A;y_A;z_A)$: $\overline{AB}(x_B-x_A;y_A;z_A)$: $\overline{AB}(x_B-x_A;y_A;z_A)$: $\overline{AB}(x_B-x_A;y_B-z_A)$: $\overline{AB}(x_B-x_A;y_A;z_A)$: $\overline{AB}(x$

4. الأشعة من نفس المستوي

5. معادلة مستقيم معرف بنقطة وشعاع توجيه

ليكن $(oldsymbol{u}(a;b;c)$ و $A(x_A;y_A;z_A)$ شعاع توجيه له ليكن

$$M(x;y;z)\epsilon(D) \implies \overrightarrow{AM} = lpha \overrightarrow{u} \implies egin{cases} x-x_A = lpha a \ y-y_A = lpha b \implies rac{x-x_A}{a} = rac{y-y_A}{b} = rac{z-z_A}{c} \ z-z_A = lpha c \end{cases}$$
و منه معادلة (D) هي: (D) و منه معادلة (D) هي:

6. المسافة

$$ec{u}(x;y;z)\Rightarrow \|ec{u}\|=\sqrt{x^2+y^2+z^2}$$
 طويلة شعاع $AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}$ المسافة بين نقطتين 2

7. معادلة سطح كرة مركزها مبدأ المعلم

lpha مبدأ المعلم و نصف قطرها مركزها lpha مبدأ المعلم و نصف قطرها

$$M(x; y; z)\epsilon(S) \implies OM = \alpha \implies x^2 + y^2 + z^2 = \alpha^2$$

- 8. معادلة المستويات الموازية لأحد مستويات الاحداثيات
 - 1 معادلات مستويات الاحداثيات

$$y=\mathbf{0}$$
 معادلة $P(oldsymbol{o};ec{k};ec{t})$ هي $\mathbf{p}=\mathbf{0}$ هي $\mathbf{p}=\mathbf{0}$ هي $\mathbf{p}(oldsymbol{o};ec{t};ec{t})$ هي

2 معادلة لمستو مواز لأحد مستويات الإحداثيات

لتكن D(a;b;c) نقطة من المستوى

- z=c هي $P(0;\vec{i};\vec{j})$ عادلة المستوي الذي يشمل D ويوازي
- x=a هي $P(0;\vec{j};\vec{k})$ معادلة المستوي الذي يشمل D ويوازي
- y = b هي $P(0; \vec{k}; \vec{t})$ ويوازي $P(0; \vec{k}; \vec{t})$ هي \mathbf{V}
- 9. معادلة سطح الأسطوانة الدورانية التي محورها أحد محاور الاحداثيات ليكن R نصف قطر الأسطوانة
- $x^2+y^2=R^2$ هي z=c هعادلة سطح الأسطوانة التي محورها z=c هي $x^2+y^2=R^2$ و معادلة المقطع بمستو معادلته z=c
- $x^2+y^2=R^2$ هي y=b هي y=b معادلة سطح الأسطوانة التي محورها y=b هي $x^2+z^2=R^2$ و معادلة المقطع بمستو
- $x^2+y^2=R^2$ و معادلة سطح الأسطوانة التي محورها x=a هي $y^2+z^2=R^2$ هي $y^2+z^2=R^2$ معادلة سطح الأسطوانة التي محورها المحورها (a
 - 10. معادلة سطح المخروط الدوراني الذي رأسه 0 ومحوره أحد محاور الاحداثيات لتكن α قيس نصف زاوية رأس هذا المخروط
 - $x^2+y^2- an^2lpha imes z^2=0$ هي: معادلة سطح المخروط الذي محوره ($oldsymbol{o}z$) هي: $lacksymbol{\checkmark}$
 - $x^2+z^2- an^2lpha imes y^2=0$ هي: معادلة سطح المخروط الذي محوره ((Oy) هي
 - $y^2+z^2- an^2lpha imes x^2=0$ هي: معادلة سطح المخروط الذي محوره (ax) هي معادلة سطح المخروط الذي محوره