Non-parametric tests & Discrete data

Bennett Kleinberg

PSM 2

5 Feb 2019

Probability, Statistics & Modeling II

Lecture 5

Non-paramtric tests & discrete data

What question do you have?

Today

- What to do if the parametric assumptions violated
- Non-parametric equivalents
- Discrete data (chisquare, loglinear model)

Non-parametric tests

Non Parametric tests

Parametric assumptions

- Independence of errors
- Homogeneity of variance
 - Normality

Independence of errors

Independence of errors

- errors (estimated through residuals) should be 'randomly' distributed around 0
 - ... for all observations
- rule to investigate this: correlation
- between residuals and predictor variable(s)

Homegeneity of variance Also called: homoscedasticity

Homegeneity of variance

Can be tested with:

- Levene's Test car: leveneTest (...
- Breush Pagan Test Imtest: :bptest(...
- both have H0 = data is homoscedastic

Normality

Normality

Normality

Normally met when:

sample size is considerably large (e.g. n > 50)

Can be tested with:

- Kolmogorov-Smirnov Test
- Shapiro's Test shapiro.test()
- both have H0 = data is normally distributed

What to do if these are violated?

Violation of	Violation ot parametric assumptions	ssumptions
Assumption	Test Potential fix	Potential fix
Independence of errors	Resiudal-predictor plot, correlation	Autocorrelation- sensitive methods
Homoscedasticity	Levene's Test, plot	Box-Cox transformation
Normality	K-S test, Shapiro's Test	Transforming data

Non-paramtric tests: Correlation

Parametric case:

Non-paramtric tests: Correlation

Non-parametric case

Problem: class rank not parametric (e.g. not normally distributed)

Non-paramtric tests: Correlation Spearman's correlation test

ldea:

- rank the data
- run correlation on ranked data

```
"spearman"): Can
 class rank, method
Warning in cor.test.default(ig,
                               compute exact p-value with ties
```

cor.test(iq, class_rank, method = 'spearman')

```
alternative hypothesis: true rho is not equal to 0
Spearman's rank correlation rho
                                                         data: iq and class_rank
S = 158810, p-value = 0.6421
                                                                                                                                                  sample estimates:
                                                                                                                                                                                                          0.04704638
```

Non-paramtric tests: T-tests

Parametric case: Independent samples t-test

Non-paramtric tests: T-tests

Parametric case: Independent samples t-test

```
t.test(males, females)
```

```
alternative hypothesis: true difference in means is not equal to 0
                                                                                                   t = -5.0547, df = 197.52, p-value = 9.796e-07
                                                                                                                                                                       95 percent confidence interval:
Welch Two Sample t-test
                                                                 ## data: males and females
                                                                                                                                                                                                          -14.496541 -6.359724
                                                                                                                                                                                                                                                                             mean of x mean of y
                                                                                                                                                                                                                                                                                                             98.14252 108.57065
                                                                                                                                                                                                                                              sample estimates:
```

Non-paramtric tests: T-tests

Non-parametric case: Independent samples t-test

Problem: variable "rank" not parametric (e.g. not normally distributed)

Non-paramtric tests: T-tests Wilcoxon Rank Sum Test

ldea:

- rank the data
- sum the ranks
- use the smallest rank sum as test statistic
- assess the significance of the test-statistic

```
knitr::kable(df[1:6, ])
```

df = data.frame(males, rank(males), females, rank(females))

males	rank.males.	females	males rank.males. females rank.females.
3	3 27.5	8	8 75.5
3	27.5	7	7 65.0
8			15.5
9	63.0		25.5
7	7 70 5		ס 75 ב

7.0.0	विदिर.	5.5
	maies ramkinales. Temaies ramkinemales.	
D (ביים אבור ביים אבור	\leftarrow
4	שׁ	
7.2.7	.IIIales.	96.0
	Z Z	
1	III dies	10

Wilcoxon rank sum test

```
alternative hypothesis: true location shift is not equal to 0
                                                                                                                                                                                    Wilcoxon rank sum test with continuity correction
                                                                                                                                                                                                                                                                                                                    ## W = 4564.5, p-value = 0.2853
                                                                                                                                                                                                                                                                       ## data: males and females
wilcox.test(males, females)
```

For the non-parametric "dependent t-test", you'd have to use the 'paired' argument (same is in the t.test function).

Non-paramtric tests: ANOVA

Non-paramtric tests: ANOVA

The Kruskal-Wallis Test

- rank the data
- sum the ranks per group
- apply Kruskal-Wallis formula to calculate the test-statistic
- test significance of H

Non-paramtric tests: ANOVA

```
= deprivation)
area, data
kruskal.test(deprivation ~
```

```
6.8e - 09
                                                                  p-value =
                                                                   40.92, df =
Kruskal-Wallis rank sum test
                                                                 Kruskal-Wallis chi-squared =
                                            ## data: deprivation by area
```

Discrete data

@@#####@@@ 34349494949494949494 **484248494949484** 7070700 000--0-0-0222222222222222222222222

Problem

	No anti-virus software Anti-virus software	No anti-virus software Anti-virus software
Hacked	Hacked 300 250	250
Not hacked	200	Not hacked 250

- uni-directionality?
 - bi-directionality?
 - third variable?

Association test

2 by 2 tables

Chi-square test

	No anti-virus software Anti-virus software Sum	Anti-virus software	Sum
Hacked	Hacked 300 250 550	250	550
Not hacked	200	250	450
Sum	Sum 500 1000	200	1000

Discrete data

Idea of the Chi-square test:

- Observed values O
- Expected values (if there were no association) E
- rows: į
- columns: j

$$E_{i,j} = (total_i * total_j)/total$$

Expected values

$$E_{i,j} = (total_i * total_j)/total$$

	No anti-virus software Anti-virus software Sum	Anti-virus software	Sum
Hacked	٠.	٠.	550
Not hacked	Not hacked ? 450	•	450
Sum	200	200	1000

Example: cell [hacked, no anti-virus software] -> cell [1,1]

$$E_{i,j} = (total_i * total_j)/total$$

 $$ = (550 * 500)/1000$$
 $$ = 275$$

Expected values

	No anti-virus software Anti-virus software Sum	Anti-virus software	Sum
Hacked	Hacked 275 550	275	550
Not hacked	Not hacked 225 450	225	450
Sum	Sum 500 1000	200	1000

Calculating the Chi-square value $\chi^2 = \sum \frac{(O - E^2)}{E}$

For cell[2,1]:

$$cell[2, 1] = \frac{(200 - 225)^2}{225} = \frac{-25^2}{225} = \frac{625}{225} = 2.78$$

Calculating the Chi-square value

- Repeat procedure for all cells
- Sum the values

$$\chi^2 = 9.701$$

	No anti-virus software Anti-virus software	No anti-virus software Anti-virus software
Hacked	Hacked 300 (275) 250 (275)	250 (275)
Not hacked	200 (225)	Not hacked 200 (225) 250 (225)

- Null-hypothesis: there is no association between the two factors
- Alt. hypothesis: there is a significant association

The Chi-square test for 2*2 tables

```
## data: data1
## X-squared = 10.101, df = 1, p-value = 0.001482
Pearson's Chi-squared test
```

Now what?

being hacked (hacked vs not hacked) and the There is a significant association between software vs anit-virus software), $X^2(1) =$ use of anti-virus software (no anti-virus 10.10, p = .001. But where does this association stem from? What drives it?

	No anti-virus software Anti-virus software	Anti-virus software
acked	Hacked 300 250	250
t hacked	Not hacked 200 250	250

Standardized residuals

Interpret as:

- the number of standard deviations away from zero
- we know: +/- 2.58 SD = 0.01 and 0.99 percentile

F) \$stdres) knitr::kable(chisq.test(data1, correct =

	No anti-virus software	Anti-virus software
Hacked	Hacked 3.178209 -3.178209	-3.178209
Not hacked	-3.178209	3.178209

	No anti-virus software Anti-virus software	Anti-virus software
Hacked	Hacked 3.18 (O > E) -3.18 (O < E)	-3.18 (O < E)
Not hacked	-3.18 (O < E)	3.18 (O > E)

From 2-by-2 to r-by-c

	•		`
	Non AV	standard AV	Non AV standard AV premium AV
No access	200	250	No access 200 250 150
Files stolen	400	300	Files stolen 400 300 200
Ransomware	350	150	150

Extension of the 2 by 2 approach

knitr::kable(addmargins(data2, c(1,2)))

	Non AV standard AV premium AV Sum	premium AV	Sum
No access	250	150	009
Files stolen	 300	200	006
Ransomware	 150	150	920
Sum		200	2150

Same steps:

- for each cell $\frac{(O-E^2)}{E}$ sum to obtain χ^2
- assess omnibus significance
- follow-up interpretation

$(0 - E)^2/E$

	Non AV	Non AV standard AV premium AV	premium AV
No access	15.99	15.29	0.78
Files stolen	0.01	Files stolen 0.01 0.17 0.41	0.41
Ransomware	13.73	17.95	0.01

Extension of the 2 by 2 approach

```
X-squared = 64.344, df = 4, p-value = 3.537e-13
Pearson's Chi-squared test
                                                                 ## data: data2
```

Follow-up tests for the interpretation.

-> What drives the sign. association?

Intepreting the r-by-c extension

knitr::kable(round(chisq.test(data2, correct = F)\$stdres, 2))

Non AV standard AV premium AV	Non AV	standard AV	premium AV
No access -6.30 5.61 1.19	-6.30	5.61	1.19
Files stolen 0.20 0.65 -0.96	0.20	0.65	96.0-
Ransomware	5.94	Ransomware 5.94 -6.18 -0.13	-0.13

Remember: interpretation like z-scores

$$+/- 1.96 -> sign. at$$
 $p < .05$

	Non AV	standard AV	Non AV standard AV premium AV
No access	(O < E)	(O > E)	No access (O < E) (O > E) (O == E)
Files stolen	(O == E)	(O == E)	Files stolen $(O == E)$ $(O == E)$
Ransomware	(O > E)	(O < E)	(O == E)

driven by four significant deviations between The significant association between ... was the observed and expected values.

- computers when there was no anti-virus than expected (z Hackers failed to get access to significantly fewer
- Hackers inserted ransomware on computers without antivirus more often than expected (z = 5.94).
- Hackers got access to computers with standard anti-virus software more often than expected (z = 5.61).
- Hackers inserted ransomware on computers with standard anti-virus less often than expected (z = -6.18).

Discrete data

Extension to multi-level models

X by Y by Z cases

- 2-dimensional arrays
- 2-by-2 tablesr-by-c tables
- multidimensional arrays
- X-by-Y-by-Z

X by Y by Z arrays

```
911 44
538 456
3 2
vandalised yes
           natural surveillance
                      yes
                                          ## suburb yes
                     ## urban
           ## area
```

3 factors

vandalised: yes vs no

natural surveillance: yes vs no

area: urban vs rural

Simple extension of the r*c calculation?

Multilevel discrete data

```
yes 0.065217391 0.9347826
no 0.007117/26
                              natural surveillance
                                                yes 0.6287095 0.3712905 no 0.0880000 0.9120000
                                                                                                                                               natural surveillance
                                                                                                                , , area = suburb
area = urban
                                               ## vandalised
                                                                                                                                                                vandalised
```

Idea of multilevel discrete modelling If the data were independent...

then the expected count = joint prob. * n, where

joint prob. = product of the marginal probabilities

$$\mu_{i,j} = n * marginal_i * marginal_j$$

Probability data

	No anti-virus software Anti-virus software Sum	Anti-virus software	Sum
Hacked	Hacked 0.3 0.25 0.55	0.25	0.55
Not hacked	Not hacked 0.2 0.25 0.45	0.25	0.45
Sum	0.5	0.50	1.00

Probability data

	No anti-virus software Anti-virus software Sum	Anti-virus software	Sum
Hacked	Hacked 0.3 0.25 0.55	0.25	0.55
Not hacked	Not hacked 0.2 0.25 0.45	0.25	0.45
Sum	0.5	0.50	1.00

$$cell[1, 2] = 0.50 * 0.55 * 1000 = 275$$

$$cell[2, 2] = 0.50 * 0.45 * 1000 = 225$$

Towards a linear model Log transformation

 $\mu_{i,j} = n * marginal_i * marginal_j$

 $log(\mu_{i,j}) = log(n) + log(marginal_i) + log(marginal_j)$

Hence: "loglinear" model

The Log-Linear Model

- GLM with link function for count data
- count data aptly modelled as a Poisson distrubuted variable

The poisson distribution

The loglinear model

```
Fred
                  538456
 area
     urban
                  urban
urban
            urban
                                                 suburb
                              yes suburb
                                     yes suburb
                                           suburb
      yes
yes
vandalised natural.surveillance
      yes
                   yes
                         no
                               yes
                                     no
                 4 4 7 6 9
```

```
ัต
   +
indep_model = glm(formula = Freq ~ vandalised + natural.surveillance
                                                family = poisson)
                         data = data3
```

The loglinear model

```
glm(formula = Freq ~ vandalised + natural.surveillance + area,
                                                                                                            -8.436
                                                                                                                                                                                                       0.04415 -14.707 < 2e-16
0.04244 7.431 1.08e-13
0.05976 -29.872 < 2e-16
                                                                                                                                                                                                                                                                                 0.05 '.' 0.1 '
                                                                                                                                                                   Estimate Std. Error z value Pr(> \mid 	extsf{z} \mid)
                                                                                                             -8.832
                                                                                                                                                                                      0.03667 171.558
                                                                                                          3.426 -12.440
                                                                                                                                                                                                     0.04415
                                                                                                                                                                                                                                                                                 0.01 '*'
                                     family = poisson, data = data3_
                                                                                                                                                                                                                                                                                0.001 '**'
                                                                                                                                                                                      6.29154
                                                                                                                                                                                                                          0.31542
                                                                                                                                                                                                                                           -1.78511
                                                                                                          -7.817
                                                                                                                                                                                                                                                                                 - ***
                                                                                                                                                                                                                          natural.surveillanceno
                                                                         Deviance Residuals:
                                                                                                                                                                                                                                                                                   0
                                                                                                        14.522 -17.683
                                                                                                                                                                                                                                                                                 Signif. codes:
                                                                                                                                                  Coefficients:
                                                                                                                                                                                                        vandalisedno
                                                                                                                                                                                      (Intercept)
                                                                                                                                                                                                                                              areasuburb
## Call:
```

- 1. Look at the Residual deviance
- Higher deviance = poorer model fit
- We can test the H0 of model adequacy

```
pchisq(1286, 4, lower.tail = F)
```

[1] 3.610223e-277

Reject H0 that the model is a good representation.

2. Look at the fitted values

knitr::kable(cbind(indep_model\$data, round(fitted(indep_model), 2)))

vandalised	natural.surveillance	area	Freq	round(fitted(indep_model), 2)
yes	yes	urban	911	539.98
no	yes	urban	44	282.09
yes	no	urban	538	740.23
no	no	urban	456	386.70
yes	yes	suburb	က	09.06
no	yes	suburb	7	47.33
yes	no	suburb	43	124.19
no	no	suburb	279	64.88

3. Look at the anit-logged coefficients

Coefficient for "vandalised=no"

 $\exp(-0.64931)$

[1] 0.5224061

Odds of a playground being vandalised are 0.52:1, regardless of whether there was natural surveillance and regardless of the area.

The full model

Also called: the saturated model

```
full_model = glm(formula = Freq ~ vandalised * natural.surveillance * are
                                                                            family = poisson)
                                         data = data3
```

What do you expect?

The full model

knitr::kable(cbind(full_model\$data, round(fitted(full_model), 2)))

vandalised	natural.surveillance	area	Freq	round(fitted(full_model), 2)
yes	yes	urban	911	911
no	yes	urban	44	44
yes	no	urban	538	538
no	no	urban	456	456
yes	yes	suburb	က	3
no	yes	suburb	2	2
yes	no	suburb	43	43
no	no	suburb	279	279

Loglinear model strategy

- Find a model less complex than the full model
- ... where you cannot reject the H0 of model adequacy

Model selection

```
step(full model)
```

```
Freq ~ vandalised + natural.surveillance + area + vandalised:natural.
                                                                                                                                  0.00000 65.043
                                                                                                       0.37399 63.417
                                                                                                                                                                                                                                                                                                 AIC
                                                                                                                                                                                                                                                                                                                                                  153.06
248.80
                                                                                                                                                                                                                                                                                                                                                                                                        558.41
                                                                              Df Deviance
                       Freq ~ vandalised * natural.surveillance * area
                                                                                                                                                                                                                                            vandalised: area + natural. surveillance: area
                                                                                                                                                                                                                                                                                                Df Deviance
                                                                                                        - vandalised:natural.surveillance:area
                                                                                                                                                                                                                                                                                                                                                                                                         vandalised: natural. surveillance
                                                                                                                                                                                                                                                                                                                                                   - natural.surveillance:area
AIC=65.04
                                                                                                                                                                                                                                                                                                                                                                               - vandalised:area
                                                                                                                                                                                     Step: AIC=63.42
  Start:
                                                                                                                                                                                                                                                                                                                             <nou>
                                                                                                                                      <nou>
```

```
vandalised:natural.surveillance + vandalised:area + natural.surve
                                                                                                                                                                                                                             vandalise
## Call: glm(formula = Freq ~ vandalised + natural.surveillance + area
                                                                                           family = poisson, data = data3_
                                                                                                                                                                                                                               (Intercept)
                                                                                                                                                                                 ## Coefficients:
```

-3.0.	areasubı	-5.5	vandalisedno:areasub	2.0					
			vandali					1 Residual	
6.8139	natural.surveillanceno	-0.5249	vandalisedno:natural.surveillanceno	2.8479	natural.surveillanceno:areasuburb	2.9860		Degrees of Freedom: 7 Total (i.e. Null);	Null Deviance: 2851
: ##	##	##	##	##	##	##	##	##	##

"Best" mode!

summary(best model)

```
vandalised:natural.surveillance + vandalised:area + natural.surve
                                                                                                                                                                                                                                                   z value Pr(>
                                                                                                                                             0.09452
                                                                                                                                                                                                                                                                      0.03313 205.699
                  glm(formula = Freq ~ vandalised + natural.surveillance + area +
                                                                                                                                                                                                                                                                                                              699.6-
                                                                                                                                                                                                                                                                                          0.15162 -19.891
                                                                                                                                              0.49134
                                                                                                                                                                                                                                                  Std. Error
                                                                                                                                                                                                                                                                                                             0.05428
                                                                                                                                                                                                                                                                                                                                  0 45221
                                                                                                                                            0.02890 -0.33428
                                                                                                                                                                                                                                                 Estimate
                                                                                                                                                                                                                                                                      6.81387
                                                                                                                                                                                                                                                                                          -3.01575
                                                                                                                                                                                                                                                                                                             -0.52486
                                                                                                                                                                                                                                                                                                                                 52827
                                                            family = poisson, data = data3_
                                                                                                                                          0.02044 -0.09256 -0.02658
                                                                                                                                                                                                                                                                                                              natural.surveillanceno
                                                                                                    Deviance Residuals:
                                                                                                                                                                                                                              Coefficients:
                                                                                                                                                                                                                                                                                          vandalisedno
                                                                                                                                                                                                                                                                      (Intercept)
                                                                                                                                                                                                                                                                                                                                   areacuhurh
                                                                                                                                                                                     -0.03690
Call:
                                                                                                                                           ##
```

"Best" model

Can we reject the HO of model adequacy?

```
pchisq(0.37, 1, lower.tail = F)
```

[1] 0.5430043

-: 2

Fitted values of the "best" model

vandalised	natural.surveillance	area	Freq	round(fitted(best_model), 2)
yes	yes	urban	911	910.38
no	yes	urban	4 7	44.62
yes	no	urban	538	238.62
no	no	urban	456	455.38
yes	yes	suburb	က	3.62
no	yes	suburb	7	1.38
yes	no	suburb	43	42.38
no	No	suburb	279	279.62

Interpreting the coefficients

coefficients(best_model)

```
-5.52826
                  -3.01575
                                     areasubu
                                                                          vandalisedno: areasubu
vandalised
                                                                                              2.05453
                  6.8138656
                                     natural.surveillanceno
                                                                          ## vandalisedno:natural.surveillanceno
                                                                                                                natural.surveillanceno:areasuburb
                                                                                             2.8478892
                                                                                                                                   2.9860144
                                                        -0.5248611
 (Intercept)
```

Interpreting the coefficients

vandalisedno:areasuburb 2.0545341

 $\exp(2.055)$

[1] 7.806838

Exponentiated interaction ==> OR

estimated odds of not being vandalised that is playgrounds that are in urban areas. This is Playgrounds that are in the suburb have independent of "natural surveillance". 7.81 times the estimated odds for

- Log-linear models work in higher dimensions
- Allow you to model count data of 2+ dimensions

Follow the steps here (https://data.library.virginia.edu/anintroduction-to-loglinear-models/)

RECAP •

Outlook

Next week: Reading week

Week 6: Open Science (lecture + tutorial)

END