### compareGroups 3.0: Descriptives by groups

## Isaac Subirana $^{3,1,4}$ , Joan Vila $^{1,3}$ and Héctor $\rm Sanz^2$ January 12, 2015

<sup>1</sup>IMIM - Parc de Salut Mar, Barcelona

### $\verb|isubirana@imim.es|, | \verb|jvila@imim.es|, | \verb|hsrodenas@gmail.com||$

### Contents

| 1 | Intr           | roduction                                  | 2        |
|---|----------------|--------------------------------------------|----------|
| 2 | Des            | sign: classes and methods                  | 3        |
| 3 | <b>Dat</b> 3.1 | a used as example Time-to-event variables  | <b>4</b> |
| 4 | Usir           | ng R syntax                                | 5        |
|   | 4.1            | compareGroups                              | 5        |
|   |                | 4.1.1 Selecting response variables         | 5        |
|   |                | 4.1.2 Subsetting                           | 6        |
|   |                | 4.1.3 Methods for continuous variables     | 7        |
|   |                | 4.1.4 Dressing up the output               | 9        |
|   |                | 4.1.5 Summary                              | 11       |
|   |                | 4.1.6 Plotting                             | 12       |
|   |                | 4.1.7 Updating                             | 13       |
|   |                | 4.1.8 Substracting results                 | 13       |
|   |                | 4.1.9 Odds Ratios & Hazard Ratios          | 14       |
|   |                | 4.1.10 Time-to-event explanatory variables | 16       |
|   | 4.2            | createTable                                | 18       |
|   |                | 4.2.1 Dressing up tables                   | 18       |
|   |                | 4.2.2 Combining tables by row              | 25       |
|   |                | 4.2.3 Combining tables by column           | 26       |
|   |                | 4.2.4 createTable miscellaneous            | 29       |
|   | 4.3            | Exporting tables                           | 31       |
|   |                | 4.3.1 General exporting options            | 32       |
|   |                | 4.3.2 Exporting to LATEX                   | 32       |
|   |                | 4.3.3 Generating an exhaustive report      | 33       |
|   | 4.4            | Missing values                             | 34       |
|   | 4.5            | Analysis of genetic data                   | 36       |
| 5 | T I a :-       | ng GUI                                     | 38       |
| J | 5.1            | Computing Odds Ratio                       | 43       |
|   | 5.1 - 5.2      | Computing Hazard Ratio                     | 43<br>44 |
|   | 0.4            |                                            | 44       |

 $<sup>^2 \\</sup> Barcelona \ Centre \ for \ International \ Health \ Research \ (CRESIB, \ Hospital \ Cl\'inic-Universitat \ de \ Barcelona), \ Barcelona, \ Spain \ Annie \ Anni$ 

 $<sup>^3{\</sup>rm CIBER}$  Epidemiology and Public Health (CIBERESP), Spain

 $<sup>^4\</sup>mathrm{Statistics}$  Department, University of Barcelona, Spain

### 1 Introduction

The compareGroups package [1] allows users to create tables displaying results of univariate analyses, stratified or not by categorical variable groupings.

Tables can easily be exported to CSV, LATEX, HTML or PDF.

This package can be used from the prompt or from a user-friendly GUI.

Since version 3.0, a Web User Interface (WUI) has been implemented based on Shiny package ([2]) which makes the functionality even more friendly. Also, this can be used remotely from www.comparegroups.eu. See the WUI vignette ('compareGroupsWUI\_vignette.pdf') for more details.

This document provides an overview of the usage of the compareGroups package.

To load the package using the prompt, enter:

### > library(compareGroups)

Once the package is loaded, non-R users can follow the GUI instructions in Section 5.

### 2 Design: classes and methods

The compareGroups package has three functions:

- compareGroups creates an object of class compareGroups. This object can be:
  - printed
  - summarized
  - plotted
  - updated
- createTable creates an object of class createTable. This object can be:
  - printed
  - summarized
- export2csv, export2html, export2latex and export2pdf will export results to CSV, HTML, LATEX or PDF, respectively.

Figure 1 shows the diagram of the package.



Figure 1: Diagram of the compareGroups package

### 3 Data used as example

To illustrate how this package works we sampled 85% data from the participants in the PREDIMED study (www.predimed.org) [3]. PREDIMED is a multicenter trial in Spain, were randomly assigned participants who were at high cardiovascular risk, but with no cardiovascular disease at enrolment, to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil (MedDiet+VOO), a Mediterranean diet supplemented with mixed nuts (MedDiet+Nuts), or a control diet (advice to reduce dietary fat). Participants received quarterly individual and group educational sessions and, depending on group assignment, free provision of extra-virgin olive oil, mixed nuts, or small non-food gifts. The primary end point was the rate of major cardiovascular events (myocardial infarction, stroke, or death from cardiovascular causes.

First of all, load PREDIMED data typing:

### > data(predimed)

Variables and labels in this data frame are:

| Name                   | Label                           | Codes                                  |
|------------------------|---------------------------------|----------------------------------------|
| group                  | Intervention group              | Control; MedDiet + Nuts; MedDiet + VOO |
| sex                    | Sex                             | Male; Female                           |
| age                    | Age                             |                                        |
| $\operatorname{smoke}$ | Smoking                         | Never; Current; Former                 |
| $_{ m bmi}$            | Body mass index                 |                                        |
| waist                  | Waist circumference             |                                        |
| $\operatorname{wth}$   | Waist-to-height ratio           |                                        |
| $\operatorname{htn}$   | Hypertension                    | No; Yes                                |
| $\operatorname{diab}$  | Type-2 diabetes                 | No; Yes                                |
| hyperchol              | Dyslipidemia                    | No; Yes                                |
| famhist                | Family history of premature CHD | No; Yes                                |
| hormo                  | Hormone-replacement therapy     | No; Yes                                |
| p14                    | MeDiet Adherence score          |                                        |
| toevent                | follow-up to main event (years) |                                        |
| event                  | AMI, stroke, or CV Death        | No; Yes                                |

### **OBSERVATIONS:**

- 1. It is important to note that compareGroups is not aimed to perform quality control of the data. Other useful packages such as r2lh [4] are available for this purpose.
- 2. It is strongly recommended that the *data.frame* contain only the variables to be analyzed; the ones not needed in the present analysis should be removed from the list.
- 3. The nature of variables to be analyzed should be known, or at least which variables are to be used as categorical. It is important to code categorical variables as factors and the order of their levels is meaningful in this package.
- 4. The function label from the Hmisc package could be used to label the variables properly. The tables of results will contain the variable labels (by default).

### 3.1 Time-to-event variables

A variable of class Surv must be created to deal with time-to-event variables (i.e., time to Cardiovas-cular event/censored in our example):

```
> predimed$tmain <- with(predimed, Surv(toevent, event == Yes))
```

<sup>&</sup>gt; label(predimed\$tmain) <- "AMI, stroke, or CV Death"

Note that variables *tmain* and are created as time-to-death and time-to-cardiovascular event, respectively, both taking into account censoring (i.e. they are of class Surv).

### 4 Using R syntax

### 4.1 compareGroups

This is the main function. It does all the calculus. It is needed to store results in an object. Later, applying the function createTable (Section 4.2) to this object will create tables of the analysis results.

For example, to perform a univariate analysis with the *predimed* data between *group* ("response" variable) and all other variables ("explanatory" variables), this formula is required:

```
> compareGroups(group ~ . , data=predimed)
```

### 4.1.1 Selecting response variables

Signif. codes: 0 \*\* 0.05 \* 0.1 1

If only a dot occurs on the right side of the "~" all variables in the data frame will be used.

To remove the variable toevent and event from the analysis:

```
> compareGroups(group ~ . -toevent - event, data=predimed)
```

To select some explanatory variables (e.g., age, sex, and waist) and store results in an object of class compareGroups:

```
> res<-compareGroups(group ~ age + sex + smoke + waist + hormo, data=predimed)
> res
----- Summary of results by groups of Intervention group-----
 var
                              p.value method
                                                        selection
                           6324 0.003** continuous normal ALL
1 Age
                           6324 <0.001** categorical
2 Sex
                                                        ALL
3 Smoking
                           6324 0.444 categorical
                                                        ALL
4 Waist circumference
                           6324 0.045** continuous normal ALL
5 Hormone-replacement therapy 5661 0.850
                                        categorical
                                                        AT.T.
```

Note: Although we have full data (n= 6324) for Age, Sex and Waist circumference, there are some missing data in Hormone-replacement therapy (probably male participants).

Diet groups have some differences in Smoking and Hormone-replacement therapy although those don't reach statistical significance (p-value=0.714 and 0.859, repectively); although Age, Sex and Waist circumference are clearly different.

Age & Waist circumference has been used as continuous and normal distributed. Sex, Smoking & Hormone-replacement therapy as categorical.

No filters have been used (e.g., selecting only treated patients); therefore, the *selection* column lists "ALL" (for all variables).

### 4.1.2 Subsetting

```
        var
        N
        p.value
        method
        selection

        1 Age
        3645 0.056*
        continuous normal
        sex == "Female"

        2 Smoking
        3645 0.907
        categorical
        sex == "Female"

        3 Waist circumference
        3645 0.016**
        continuous normal
        sex == "Female"

        4 Hormone-replacement therapy
        3459 0.898
        categorical
        sex == "Female"

        -----
        Signif. codes: 0 ** 0.05 * 0.1
        1
```

Note that only results for female participants are shown.

To subset specific variable/s (e.g., hormo and waist):

```
> compareGroups(group ~ age + sex + smoke + waist + hormo, data=predimed,
+ selec = list(hormo= sex=="Female", waist = waist>20 ))
```

----- Summary of results by groups of Intervention group-----

```
        var
        N
        p.value
        method
        selection

        1 Age
        6324 0.003**
        continuous normal
        ALL

        2 Sex
        6324 <0.001**</td>
        categorical
        ALL

        3 Smoking
        6324 0.444
        categorical
        ALL

        4 Waist circumference
        6324 0.045**
        continuous normal
        waist > 20

        5 Hormone-replacement therapy
        3459 0.898
        categorical
        sex == "Female"

        -----
        Signif. codes: 0 ** 0.05 * 0.1
        1
```

Combinations are also allowed, e.g.:

```
> compareGroups(group ~ age + smoke + waist + hormo, data=predimed,
+ selec = list(waist= !is.na(hormo)), subset = sex=="Female")
```

----- Summary of results by groups of Intervention group-----

```
        var
        N
        p.value method
        selection

        1 Age
        3645 0.056*
        continuous normal sex == "Female"

        2 Smoking
        3645 0.907
        categorical sex == "Female"

        3 Waist circumference
        3459 0.007**
        continuous normal (sex == "Female") & (!is.na(hormo))

        4 Hormone-replacement therapy
        3459 0.898
        categorical sex == "Female"

        Signif. codes:
        0 ** 0.05 * 0.1
        1
```

A variable can appear twice in the formula, e.g.:

```
> compareGroups(group ~ age + sex + bmi + bmi + waist + hormo, data=predimed,
+ selec = list(bmi.1=!is.na(hormo)))
```

----- Summary of results by groups of Intervention group-----

```
        var
        N
        p.value
        method
        selection

        1 Age
        6324 0.003**
        continuous normal
        ALL

        2 Sex
        6324 <0.001**</td>
        categorical
        ALL

        3 Body mass index
        6324 <0.001**</td>
        continuous normal
        ALL

        4 Body mass index
        5661 <0.001**</td>
        continuous normal
        !is.na(hormo)

        5 Waist circumference
        6324 0.045**
        continuous normal
        ALL

        6 Hormone-replacement therapy
        5661 0.850
        categorical
        ALL

        -----
        Signif. codes:
        0 ** 0.05 * 0.1
        1
```

In this case results for bmi will be reported for all participants (n= 6324) and also for only those with no missing in Hormone-replacement therapy (!is.na(hormo)). Note that "bmi.1" in the **selec** statement refers to the second time that bmi appears in the formula.

### 4.1.3 Methods for continuous variables

By default continuous variables are analyzed as normal-distributed. When a table is built (see createTable function, Section 4.2), continuous variables will be described with mean and standard deviation. To change default options, e.g., "waist" used as non-normal distributed:

```
> compareGroups(group ~ age + smoke + waist + hormo, data=predimed,
                   method = c(waist=2))
----- Summary of results by groups of Intervention group-----
 var
                             p.value method
                                                         selection
                          6324 0.003** continuous normal
1 Age
                                                         ALL
                          6324 0.444 categorical
2 Smoking
                                                         AT.T.
                    6324 0.085* continuous non-normal ALL
3 Waist circumference
4 Hormone-replacement therapy 5661 0.850 categorical
Signif. codes: 0 ** 0.05 * 0.1 1
```

Note that "continuous non-normal" is shown in the *method* column for the variable Hormone-replacement therapy.

Possible values in methods statement are:

- 1: forces analysis as normal-distributed
- 2: forces analysis as continuous non-normal
- 3: forces analysis as categorical
- NA: performs a Shapiro-Wilks test to decide between normal or non-normal

If the **method** for a variable is stated as = NA, then a Shapiro-Wilk test for normality is used to decide if the variable is normal or non-normal distributed. To change the significance threshold:

According to Shapiro-Wilk test, stating the cutpoint at 0.01 level, Hormone-replacement therapy departed significantly from the normal distribution and therefore the method for this variable will be "continuous non-normal".

All non factor variables are considered as continuous. Exception is made (by default) for those that have fewer than 5 different values. This threshold can be changed in the **min.dis** statement:

```
> cuts<-"lo:55=1; 56:60=2; 61:65=3; 66:70=4; 71:75=5; 76:80=6; 81:hi=7"
> predimed$age7gr<-car::recode(predimed$age, cuts)
> compareGroups(group ~ age7gr, data=predimed, method = c(age7gr=NA))
```

```
----- Summary of results by groups of Intervention group-----
 var N
        p.value method
                                      selection
1 Age 6324 0.007** continuous non-normal ALL
Signif. codes: 0 ** 0.05 * 0.1 1
> compareGroups(group ~ age7gr, data=predimed, method = c(age7gr=NA), min.dis=8)
----- Summary of results by groups of Intervention group-----
  {\tt var \ N} \qquad {\tt p.value \ method} \qquad {\tt selection}
1 Age 6324 0.009** categorical ALL
Signif. codes: 0 ** 0.05 * 0.1 1
    To avoid errors the maximum categories for the response variable is set at 5 in this example (default
value). If this variable has more than 5 different values, the function compareGroups returns an error
message. For example:
> compareGroups(age7gr ~ sex + bmi + waist , data=predimed)
Error en compareGroups.default(X = X, y = y, include.label = include.label, :
number of groups must be less or equal to 5
    Defaults setting can be changed with the max.ylev statement:
> compareGroups(age7gr ~ sex + bmi + waist, data=predimed, max.ylev=7)
----- Summary of results by groups of Age-----
var N p.value method selection

1 Sex 6324 <0.001** categorical ALL

2 Body mass index 6324 0.021** continuous normal ALL
3 Waist circumference 6324 0.034** continuous normal ALL
Signif. codes: 0 ** 0.05 * 0.1 1
    Similarly, by default there is a limit for the maximum number of levels for an explanatory variable.
If this level is exceeded, the variable is removed from the analysis and a warning message is printed:
> compareGroups(group ~ sex + age7gr, method= (age7gr=3), data=predimed, max.xlev=5)
------ Summary of results by groups of Intervention group------
  var N p.value method
                            selection
1 Sex 6324 <0.001** categorical ALL
Signif. codes: 0 ** 0.05 * 0.1 1
Warning in compareGroups.default(X = X, y = y, include.label = include.label, :
Variables age7gr have been removed since some errors ocurred
```

### 4.1.4 Dressing up the output

Although the options described in this section correspond to compareGroups function, results of changing/setting them won't be visible until the table is created with the createTable function (explained later).

include.label By default the variable labels are shown in the output (if there is no label the name will be printed). Changing the statement include.label from "= TRUE" (default) to "= FALSE" will cause variable names to be printed instead.

Q1, Q3 When the method for a variable is stated as "2" (i.e., to be analyzed as continuous non-normal; see section 4.1.3), by default the median and quartiles 1 and 3 will be shown in the final results, after applying the function createTable (see Section 4.2).

Note: percentiles 25 and 75 are calculated for Waist circumference.

To get instead percentile 2.5 and 97.5:

Smoking:

67.3 (6.28) 66.7 (6.02) 67.0 (6.21) 0.003

```
Never 1282 (62.8%) 1259 (60.0%) 1351 (61.9%)
Current 270 (13.2%) 296 (14.1%) 292 (13.4%)
Former 490 (24.0%) 545 (26.0%) 539 (24.7%)
Waist circumference 101 [80.0;123] 100 [80.0;121] 100 [80.0;121] 0.085
Hormone-replacement therapy: 0.850
No 1811 (98.3%) 1835 (98.4%) 1918 (98.2%)
Yes 31 (1.68%) 30 (1.61%) 36 (1.84%)
```

Note: percentiles 2.5 and 97.5 are calculated for Follow-up.

To get minimum and maximum:

```
> compareGroups(group ~ age + smoke + waist + hormo, data=predimed,
+ method = c(waist=2), Q1=0, Q3=1)
```

simplify Sometimes a categorical variable has no individuals for a specific group. For example, smoker has 3 levels. As an example and to illustrate this problem, we have created a new variable smk with a new category ("Unknown"):

```
> predimed$smk<-predimed$smoke
> levels(predimed$smk)<- c("Never smoker", "Current or former < 1y", "Never or former >= 1y",
> label(predimed$smk)<-"Smoking 4 cat."</pre>
```

> cbind(table(predimed\$smk))

```
[,1]
Never smoker 3892
Current or former < 1y 858
Never or former >= 1y 1574
Unknown 0
```

Note that this new category ("unknown") has no individuals:

> compareGroups(group ~ age + smk + waist + hormo, data=predimed)

------ Summary of results by groups of Intervention group------

```
var N p.value method selection

1 Age 6324 0.001** continuous normal ALL

2 Smoking 4 cat. 6324 0.714 categorical ALL

3 Waist circumference 6324 0.019** continuous normal ALL

4 Hormone-replacement therapy 5650 0.859 categorical ALL

----

Signif. codes: 0 ** 0.05 * 0.1 1

Warning message:
In compare.i(X[, i], y = y, selec.i = selec[i], method.i = method[i], :
Some levels of smk are removed since no observation in that/those levels
```

Note that an "Warning" message is printed related to the problem with *smk*.

To avoid using empty categories, simplify must be stated as TRUE (Default value).

> compareGroups(group ~ age + smk, data=predimed, simplify=FALSE)

----- Summary of results by groups of Intervention group-----

```
var N p.value method selection

1 Age 6324 0.001** continuous normal ALL

2 Smoking 4 cat. 6324 . categorical ALL

----

Signif. codes: 0 ** 0.05 * 0.1 1

Warning messages:

1: In chisq.test(obj, simulate.p.value = TRUE):
    cannot compute simulated p-value with zero marginals

2: In chisq.test(obj, simulate.p.value = TRUE):
    Chi-squared approximation may be incorrect
```

Nota that a warning message is shown and no p-values are calculated for Smoking.

### 4.1.5 Summary

Applying the **summary** function to an object of class **createTable** will obtain a more detailed output:

```
> res<-compareGroups(group ~ age + sex + smoke + waist + hormo, method = c(waist=2),
                           data=predimed)
> summary(res[c(1, 2, 4)])
 --- Descriptives of each row-variable by groups of Intervention group ---
row-variable: Age
              N mean
                            sd
                                     p.overall p.trend p.Control vs MedDiet + Nuts p.Control vs MedDiet + VOO
[ALL]
             6324 67.0117 6.17499
            2042 67.34231 6.27992 0.002666 0.101163 0.001672
Control
                                                                                  0.20596
MedDiet + Nuts 2100 66.6819 6.016395
MedDiet + V00 2182 67.01971 6.212578
              p.MedDiet + Nuts vs MedDiet + VOO
Control
             0.172672
MedDiet + Nuts
MedDiet + VOO
row-variable: Sex
              Male Female Male (row%) Female (row%) p.overall p.trend p.Control vs MedDiet + Nuts
Гат.т.Т
              2679 3645 42.36243 57.63757
                                   60.23506
Control
             812 1230 39.76494
                                                   8.1e-05 0.388386 0.000133
MedDiet + Nuts 968 1132 46.09524 53.90476
MedDiet + V00 899 1283 41.20073 58.79927
              p.Control vs MedDiet + V00 p.MedDiet + Nuts vs MedDiet + V00
[ALL]
Control
             0.358324
                                        0.002076
MedDiet + Nuts
MedDiet + VOO
row-variable: Waist circumference
                  med Q1 Q3 p.overall p.trend p.Control vs MedDiet + Nuts p.Control vs MedDiet + V00
Гат.т.Т
              6324 100 93 107
             2042 101 94 108 0.084601 0.039557 0.125792
                                                                           0.110639
Control
MedDiet + Nuts 2100 100 93 107
MedDiet + V00 2182 100 93 107
             p.MedDiet + Nuts vs MedDiet + VOO
[ALL]
Control
             0.743479
MedDiet + Nuts
MedDiet + VOO
```

Note that because only variables 1, 3 & 4 are selected, only results for Age, Sex & Waist circumference are shown. Age is summarized by the mean and the standard deviation, Sex by frequencies and percentage, and Waist circumference (method =2) by the median and quartiles.

### 4.1.6 Plotting

Variables can be plotted to see their distribution. Plots differ according to whether the variable is continuous or categorical. Plots can be seen on-screen or saved in different formats (BMP, JPG', PNG, TIF or PDF). To specify the format use the argument 'type'.

> plot(res[c(1,2)], file="./figures/univar/", type="pdf")





Figure 2: Plot of Age

Figure 3: Plot of Sex

Plots also can be done according to grouping variable. In this case only a boxplot is shown for continuous variables:

> plot(res[c(1,2)], bivar=TRUE, file="./figures/bivar/")







Figure 5: Plot of Sex

### 4.1.7 Updating

The object from compareGroups can later be updated. For example:

```
> res<-compareGroups(group ~ age + sex + smoke + waist + hormo, data=predimed)
> res
----- Summary of results by groups of Intervention group-----
                          N p.value method
                                                      selection
 var
1 Age
                          6324 0.003** continuous normal ALL
                          6324 <0.001** categorical ALL
2 Sex
3 Smoking
                          6324 0.444 categorical
                                                       AT.T.
                          6324 0.045** continuous normal ALL
4 Waist circumference
5 Hormone-replacement therapy 5661 0.850 categorical
Signif. codes: 0 ** 0.05 * 0.1 1
   The object res is updated using:
> res<-update(res, . ~. - sex + bmi + toevent, subset = sex==Female,</pre>
                   method = c(waist=2, tovent=2), selec = list(bmi=!is.na(hormo)))
> res
----- Summary of results by groups of Intervention group-----
                              N p.value method
                                                             selection
 var
1 Age
                              3645 0.056* continuous normal sex == "Female"
                                                             sex == "Female"
2 Smoking
                              3645 0.907
                                         categorical
                              3645 0.037** continuous non-normal sex == "Female"
3 Waist circumference
                           3459 0.898 categorical
4 Hormone-replacement therapy
                                                          sex == "Female"
                              3459 0.002** continuous normal
                                                             (sex == "Female") & (!is.na(hormo))
5 Body mass index
                                                             sex == "Female"
6 follow-up to main event (years) 3645 <0.001** continuous normal
Signif. codes: 0 ** 0.05 * 0.1 1
```

Note that "Sex" is removed as an explanatory variable but used as a filter, subsetting only "Female" participants. Variable "Waist circumference" has been changed to "continuous non-normal". Two new variables have been added: Body mass index and Follow-up (stated continuous non-normal). For Body mass index is stated to show only data of participants with non-missing values in Hormone-replacement therapy.

### 4.1.8 Substracting results

Since version 3.0, there is a new function called 'getResults' to retrieve some specific results computed by 'compareGroups', such as p-values, descriptives (means, proportions, ...), etc.

For example, it may be interesting to recover the p-values for each variable as a vector to further manipulate it in R, like adjusting for multiple comparison with p.adjust. For example, lets take the data SNPassoc that contains information of dozens of SNPs (genetic variants) from a sample of cases and controls. In this case we analyze five of them:

### 4.1.9 Odds Ratios & Hazard Ratios

When the response variable is binary, the Odds Ratio (OR) can be printed in the final table. If the response variable is time-to-event (see Section 3.1), the Hazard Ratio (HR) can be printed instead.

**ref** This statement can be used to change the reference category:

```
> res1<-compareGroups(htn ~ age + sex + bmi + smoke, data=predimed, ref=1)
> createTable(res1, show.ratio=TRUE)
```

-----Summary descriptives table by Hypertension------

|                 | No<br>N=1089 | Yes<br>N=5235 | OR              | p.ratio   | p.overall |
|-----------------|--------------|---------------|-----------------|-----------|-----------|
| Age             | 65.9 (6.19)  | 67.2 (6.15)   | 1.04 [1.03;1.0  | 5] <0.001 | <0.001    |
| Sex:            |              |               |                 |           | <0.001    |
| Male            | 595 (54.6%)  | 2084 (39.8%)  | Ref.            | Ref.      |           |
| Female          | 494 (45.4%)  | 3151 (60.2%)  | 1.82 [1.60;2.0  | 0.000     |           |
| Body mass index | 28.9 (3.69)  | 30.2 (3.80)   | 1.10 [1.08;1.1  | 2] <0.001 | <0.001    |
| Smoking:        |              |               |                 |           | <0.001    |
| Never           | 536 (49.2%)  | 3356 (64.1%)  | Ref.            | Ref.      |           |
| Current         | 233 (21.4%)  | 625 (11.9%)   | 0.43 [0.36;0.5  | 1] 0.000  |           |
| Former          | 320 (29.4%)  | 1254 (24.0%)  | 0.63 [0.54; 0.7 | 3] <0.001 |           |

Note that for categorical response variables the reference category is the first one in the statement:

```
> res2<-compareGroups(htn ~ age + sex + bmi + smoke, data=predimed,
+ ref=c(smoke=1, sex=2))</pre>
```

> createTable(res2, show.ratio=TRUE)

-----Summary descriptives table by Hypertension-----

|                            | No<br>N=1089 | Yes<br>N=5235                | OR                                     | p.ratio       | p.overall        |
|----------------------------|--------------|------------------------------|----------------------------------------|---------------|------------------|
| Age<br>Sex:                | 65.9 (6.19)  | 67.2 (6.15)                  | 1.04 [1.03;1.05]                       | <0.001        | <0.001<br><0.001 |
| Male<br>Female             |              | 2084 (39.8%)<br>3151 (60.2%) | 0.55 [0.48;0.63]<br>Ref.               | 0.000<br>Ref. |                  |
| Body mass index Smoking:   | 28.9 (3.69)  | 30.2 (3.80)                  | 1.10 [1.08;1.12]                       | <0.001        | <0.001<br><0.001 |
| Never<br>Current<br>Former | 233 (21.4%)  |                              | Ref. 0.43 [0.36;0.51] 0.63 [0.54;0.73] |               |                  |

Note that the reference category for Smoking status is the first and for Sex the second.

ref.no Similarly to the "ref" statement, ref.no is used to state "no" as the reference category for all variables with this category:

```
> res<-compareGroups(htn ~ age + sex + bmi + hormo + hyperchol, data=predimed,
+ ref.no=NO)
> createTable(res, show.ratio=TRUE)
```

-----Summary descriptives table by Hypertension-----

|                              | No<br>N=1089 | Yes<br>N=5235 | OR               | p.ratio p.overall       |
|------------------------------|--------------|---------------|------------------|-------------------------|
| Age<br>Sex:                  | 65.9 (6.19)  | 67.2 (6.15)   | 1.04 [1.03;1.05] | <0.001 <0.001<br><0.001 |
| Male                         | 595 (54.6%)  | 2084 (39.8%)  | Ref.             | Ref.                    |
| Female                       | 494 (45.4%)  | 3151 (60.2%)  | 1.82 [1.60;2.08] | 0.000                   |
| Body mass index              | 28.9 (3.69)  | 30.2 (3.80)   | 1.10 [1.08;1.12] | <0.001 <0.001           |
| Hormone-replacement therapy: |              |               |                  | 0.856                   |
| No                           | 928 (98.4%)  | 4636 (98.3%)  | Ref.             | Ref.                    |
| Yes                          | 15 (1.59%)   | 82 (1.74%)    | 1.08 [0.64;1.97] | 0.773                   |
| Dyslipidemia:                |              |               |                  | <0.001                  |
| No                           | 409 (37.6%)  | 1337 (25.5%)  | Ref.             | Ref.                    |
| Yes                          | 680 (62.4%)  | 3898 (74.5%)  | 1.75 [1.53;2.01] | <0.001                  |

Note: 'no', 'No' or 'NO' will produce the same results; the coding is not case sensitive.

fact.ratio By default OR or HR for continuous variables are calculated for each unit increase. It can be changed by the fact.or statement:

```
> res<-compareGroups(htn ~ age + bmi, data=predimed)</pre>
```

> createTable(res, show.ratio=TRUE)

-----Summary descriptives table by Hypertension-----

|                        | _ | No<br>1089 | res<br>5235 | <br>OR                     | p.ratio | p.overall        |
|------------------------|---|------------|-------------|----------------------------|---------|------------------|
| Age<br>Body mass index |   |            |             | [1.03;1.05]<br>[1.08;1.12] |         | <0.001<br><0.001 |

Here the OR is for the increase of one unit for Age and Systolic blood pressure.

```
> res<-compareGroups(htn ~ age + bmi, data=predimed,
+ fact.ratio= c(age=10, bmi=2))</pre>
```

> createTable(res, show.ratio=TRUE)

-----Summary descriptives table by Hypertension-----

| No<br>N=1089           |  | Yes<br>N=5235 |  | OR |  | p.ratio p.overall          |  |                  |
|------------------------|--|---------------|--|----|--|----------------------------|--|------------------|
| Age<br>Body mass index |  |               |  |    |  | [1.28;1.59]<br>[1.17;1.26] |  | <0.001<br><0.001 |

Here the OR is for the increase of 10 years for Age and 2 units for Body mass index.

**ref.y** By default when OR or HR are calculated, the reference category for the response variable is the first. The reference category could be changed using the **ref.y** statement:

```
> res<-compareGroups(htn ~ age + sex + bmi + hyperchol, data=predimed)</pre>
```

> createTable(res, show.ratio=TRUE)

-----Summary descriptives table by Hypertension------

|                               | No<br>N=1089 | Yes<br>N=5235                | OR                       | p.ratio p.overall       |
|-------------------------------|--------------|------------------------------|--------------------------|-------------------------|
| Age<br>Sex:                   | 65.9 (6.19)  | 67.2 (6.15)                  | 1.04 [1.03;1.05]         | <0.001 <0.001<br><0.001 |
| Male<br>Female                |              | 2084 (39.8%)<br>3151 (60.2%) | Ref.<br>1.82 [1.60;2.08] | Ref.<br>0.000           |
| Body mass index Dyslipidemia: | 28.9 (3.69)  | 30.2 (3.80)                  | 1.10 [1.08;1.12]         | <0.001 <0.001<br><0.001 |
| No<br>Yes                     |              | 1337 (25.5%)<br>3898 (74.5%) | Ref.<br>1.75 [1.53;2.01] | Ref.<br><0.001          |

Note: This output shows the OR of having hypertension. Therefore, 'Non-hypertension' is the reference category.

```
> res<-compareGroups(htn ~ age + sex + bmi + hyperchol, data=predimed, ref.y=2)
```

> createTable(res, show.ratio=TRUE)

-----Summary descriptives table by Hypertension------

|                               | No<br>N=1089 | Yes<br>N=5235                | OR                       | p.ratio          | p.overall        |
|-------------------------------|--------------|------------------------------|--------------------------|------------------|------------------|
| Age<br>Sex:                   | 65.9 (6.19)  | 67.2 (6.15)                  | 0.96 [0.98;0.95]         | <0.001           | <0.001<br><0.001 |
| Male<br>Female                |              | 2084 (39.8%)<br>3151 (60.2%) | Ref.<br>0.55 [0.48;0.63] | Ref.<br>0.000    |                  |
| Body mass index Dyslipidemia: | 28.9 (3.69)  | 30.2 (3.80)                  | 0.91 [0.92;0.89]         | <0.001           | <0.001<br><0.001 |
| No<br>Yes                     |              | 1337 (25.5%)<br>3898 (74.5%) | Ref.<br>0.57 [0.50;0.65] | Ref.<br>  <0.001 |                  |

Note: This output shows the OR of having No hypertension.

Note: This output shows the OR of having No hypertension, and 'Hypertension' is now the reference category.

When the response variable is of class Surv, the bivariate plot function returns a Kaplan-Meier figure if the explanatory variable is categorical. For continuous variables the function returns a line for each individual, ending with a circle for censored and with a plus sign for uncensored.

```
> plot(compareGroups(tmain ~ sex, data=predimed), bivar=TRUE, file="./figures/bivar/")
> plot(compareGroups(tmain ~ age, data=predimed), bivar=TRUE, file="./figures/bivar/")
```

### 4.1.10 Time-to-event explanatory variables

When a variable of class Surv (see Section 3.1) is used as explanatory it will be described with the probability of event, computed by Kaplan-Meier, up to a stated time.





Figure 6: Categorical

Figure 7: Continuous

timemax By default probability is calculated at the median of the follow-up period. timemax option allows us to change at what time probability is calculated.

Note that *tmain* is calculated at 3 years (see section 3.1).

The plot function applied to a variable of class Surv returns a Kaplan-Meier figure. The figure can be stratified by the grouping variable.

```
> plot(res[2], file="./figures/univar/")
> plot(res[2], bivar=TRUE, file="./figures/bivar/")
```







Figure 9: Stratified by year

### 4.2 createTable

createTable function, applied to an object of compareGroups class, returns tables with descriptives that can be displayed on-screen or exported to CSV, IATEX or HTML.

Two tables are created with the createTable function: one with the descriptives and the other with the available data. The print command print applied to an object of class createTable returns one or both tables:

### > print(restab, which.table=descr)

-----Summary descriptives table by Intervention group-----

|                              | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|------------------------------|-------------------|--------------------------|-------------------------|-----------|
|                              |                   |                          |                         |           |
| Age                          | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex:                         |                   |                          |                         | <0.001    |
| Male                         | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |           |
| Female                       | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |           |
| Smoking:                     |                   |                          |                         | 0.444     |
| Never                        | 1282 (62.8%)      | 1259 (60.0%)             | 1351 (61.9%)            |           |
| Current                      | 270 (13.2%)       | 296 (14.1%)              | 292 (13.4%)             |           |
| Former                       | 490 (24.0%)       | 545 (26.0%)              | 539 (24.7%)             |           |
| Waist circumference          | 101 (10.8)        | 100 (10.6)               | 100 (10.4)              | 0.045     |
| Hormone-replacement therapy: |                   |                          |                         | 0.898     |
| No                           | 1143 (97.4%)      | 1036 (97.2%)             | 1183 (97.0%)            |           |
| Yes                          | 31 (2.64%)        | 30 (2.81%)               | 36 (2.95%)              |           |

Note that the option "descr" returns descriptives.

### > print(restab, which.table=avail)

---Available data----

|                             | [ALL] | Control | MedDiet + Nuts | MedDiet + VOC | ) method          | select         |
|-----------------------------|-------|---------|----------------|---------------|-------------------|----------------|
| Age                         | 6324  | 2042    | 2100           | 2182          | continuous-normal | ALL            |
| Sex                         | 6324  | 2042    | 2100           | 2182          | categorical       | ALL            |
| Smoking                     | 6324  | 2042    | 2100           | 2182          | categorical       | ALL            |
| Waist circumference         | 6324  | 2042    | 2100           | 2182          | continuous-normal | ALL            |
| Hormone-replacement therapy | 3459  | 1174    | 1066           | 1219          | categorical       | sex == "Female |

Note that the option "avail" returns the available data, as well as methods and selections.

By default only the descriptives table is shown. Stating "both" in which.table options returns both tables.

### 4.2.1 Dressing up tables

hide If the explanatory variable is dichotomous, one of the categories often is hidden in the results displayed (i.e., if 42.4% are male, obviously 57.6% are female). To hide some category, e.g., Male:

```
> update(restab, hide = c(sex="Male"))
```

-----Summary descriptives table by Intervention group------

|                              | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|------------------------------|-------------------|--------------------------|-------------------------|-----------|
| Age                          | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex: Female                  | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            | <0.001    |
| Smoking:                     |                   |                          |                         | 0.444     |
| Never                        | 1282 (62.8%)      | 1259 (60.0%)             | 1351 (61.9%)            |           |
| Current                      | 270 (13.2%)       | 296 (14.1%)              | 292 (13.4%)             |           |
| Former                       | 490 (24.0%)       | 545 (26.0%)              | 539 (24.7%)             |           |
| Waist circumference          | 101 (10.8)        | 100 (10.6)               | 100 (10.4)              | 0.045     |
| Hormone-replacement therapy: |                   |                          |                         | 0.898     |
| No                           | 1143 (97.4%)      | 1036 (97.2%)             | 1183 (97.0%)            |           |
| Yes                          | 31 (2.64%)        | 30 (2.81%)               | 36 (2.95%)              |           |

Note that the percentage of males is hidden.

hide.no Similarly, as explained above, if the category "no" is to be hidden for all variables:

- > res<-compareGroups(group ~ age + sex + htn + diab, data=predimed)</pre>
- > createTable(res, hide.no=no, hide = c(sex="Male"))

-----Summary descriptives table by Intervention group------

|                 | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|-----------------|-------------------|--------------------------|-------------------------|-----------|
| Age             | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex: Female     | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            | <0.001    |
| Hypertension    | 1711 (83.8%)      | 1738 (82.8%)             | 1786 (81.9%)            | 0.249     |
| Type-2 diabetes | 970 (47.5%)       | 950 (45.2%)              | 1082 (49.6%)            | 0.017     |

Note: 'no', 'No' or 'NO' will produce the same results; the coding is not case sensitive.

**digits** The number of digits that appear in the results can be changed, e.g.

> createTable(res, digits= c(age=2, sex = 3))

-----Summary descriptives table by Intervention group-----

|                  | Control        | MedDiet + Nuts | MedDiet + VOO  | p.overall |
|------------------|----------------|----------------|----------------|-----------|
|                  | N=2042         | N=2100         | N=2182         |           |
| Age              | 67.34 (6.28)   | 66.68 (6.02)   | 67.02 (6.21)   | 0.003     |
| Sex:             |                |                |                | <0.001    |
| Male             | 812 (39.765%)  | 968 (46.095%)  | 899 (41.201%)  |           |
| Female           | 1230 (60.235%) | 1132 (53.905%) | 1283 (58.799%) |           |
| Hypertension:    |                |                |                | 0.249     |
| No               | 331 (16.2%)    | 362 (17.2%)    | 396 (18.1%)    |           |
| Yes              | 1711 (83.8%)   | 1738 (82.8%)   | 1786 (81.9%)   |           |
| Type-2 diabetes: |                |                |                | 0.017     |
| No               | 1072 (52.5%)   | 1150 (54.8%)   | 1100 (50.4%)   |           |
| Yes              | 970 (47.5%)    | 950 (45.2%)    | 1082 (49.6%)   |           |

Note that mean and standard deviation has two decimal places for age, while percentage in sex has been set to three decimal places.

**type** By default categorical variables are summarized by frequencies and percentages. This can be changed by the **type** command:

### > createTable(res, type=1)

-----Summary descriptives table by Intervention group-----

|                  | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|------------------|-------------------|--------------------------|-------------------------|-----------|
| Age              | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex:             |                   |                          |                         | <0.001    |
| Male             | 39.8%             | 46.1%                    | 41.2%                   |           |
| Female           | 60.2%             | 53.9%                    | 58.8%                   |           |
| Hypertension:    |                   |                          |                         | 0.249     |
| No               | 16.2%             | 17.2%                    | 18.1%                   |           |
| Yes              | 83.8%             | 82.8%                    | 81.9%                   |           |
| Type-2 diabetes: |                   |                          |                         | 0.017     |
| No               | 52.5%             | 54.8%                    | 50.4%                   |           |
| Yes              | 47.5%             | 45.2%                    | 49.6%                   |           |

Note that only percentages are displayed.

### > createTable(res, type=3)

-----Summary descriptives table by Intervention group-----

|                  | Control     | MedDiet + Nuts | MedDiet + VOO | p.overall |
|------------------|-------------|----------------|---------------|-----------|
|                  | N=2042      | N=2100         | N=2182        |           |
| Age              | 67.3 (6.28) | 66.7 (6.02)    | 67.0 (6.21)   | 0.003     |
| Sex:             |             |                |               | <0.001    |
| Male             | 812         | 968            | 899           |           |
| Female           | 1230        | 1132           | 1283          |           |
| Hypertension:    |             |                |               | 0.249     |
| No               | 331         | 362            | 396           |           |
| Yes              | 1711        | 1738           | 1786          |           |
| Type-2 diabetes: |             |                |               | 0.017     |
| No               | 1072        | 1150           | 1100          |           |
| Yes              | 970         | 950            | 1082          |           |

Note that only frequencies are displayed.

Values 2 or "NA" return the same results, i.e., the default option.

**show.n** If option <code>show.n</code> is set to "TRUE" a column with available data for each variable appears in the results:

### > createTable(res, show.n=TRUE)

-----Summary descriptives table by Intervention group-----

|                  | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall | N    |
|------------------|-------------------|--------------------------|-------------------------|-----------|------|
| Age              | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     | 6324 |
| Sex:             |                   |                          |                         | <0.001    | 6324 |
| Male             | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |           |      |
| Female           | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |           |      |
| Hypertension:    |                   |                          |                         | 0.249     | 6324 |
| No               | 331 (16.2%)       | 362 (17.2%)              | 396 (18.1%)             |           |      |
| Yes              | 1711 (83.8%)      | 1738 (82.8%)             | 1786 (81.9%)            |           |      |
| Type-2 diabetes: |                   |                          |                         | 0.017     | 6324 |
| No               | 1072 (52.5%)      | 1150 (54.8%)             | 1100 (50.4%)            |           |      |
| Yes              | 970 (47.5%)       | 950 (45.2%)              | 1082 (49.6%)            |           |      |

show.descr If option show.descr is set to "FALSE" only p-values are displayed:

> createTable(res, show.descr=FALSE)

-----Summary descriptives table by Intervention group------

|                  | p.overall |
|------------------|-----------|
|                  |           |
| Age              | 0.003     |
| Sex:             |           |
| Male             | <0.001    |
| Female           |           |
| Hypertension:    |           |
| No               | 0.249     |
| Yes              |           |
| Type-2 diabetes: |           |
| No               | 0.017     |
| Yes              |           |
|                  |           |

show.all If show.all option is set to "TRUE" a column is displayed with descriptives for all data:

> createTable(res, show.all=TRUE)

-----Summary descriptives table by Intervention group------

|                  | _    | ALL]<br>=6324 | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet +<br>N=2182 |           |
|------------------|------|---------------|-------------------|--------------------------|---------------------|-----------|
| Age              | 67.0 | (6.17)        | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.            | 21) 0.003 |
| Sex:             |      |               |                   |                          |                     | <0.001    |
| Male             | 2679 | (42.4%)       | 812 (39.8%)       | 968 (46.1%)              | 899 (41.            | 2%)       |
| Female           | 3645 | (57.6%)       | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.           | 8%)       |
| Hypertension:    |      |               |                   |                          |                     | 0.249     |
| No               | 1089 | (17.2%)       | 331 (16.2%)       | 362 (17.2%)              | 396 (18.            | 1%)       |
| Yes              | 5235 | (82.8%)       | 1711 (83.8%)      | 1738 (82.8%)             | 1786 (81.           | 9%)       |
| Type-2 diabetes: |      |               |                   |                          |                     | 0.017     |
| No               | 3322 | (52.5%)       | 1072 (52.5%)      | 1150 (54.8%)             | 1100 (50.           | 4%)       |
| Yes              | 3002 | (47.5%)       | 970 (47.5%)       | 950 (45.2%)              | 1082 (49.           | 6%)       |

**show.p.overall** If option show.p.overall is set to "FALSE" p-values are omitted from the table:

> createTable(res, show.p.overall=FALSE)

-----Summary descriptives table by Intervention group-----

|                  | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 |
|------------------|-------------------|--------------------------|-------------------------|
| Age              | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             |
| Sex:             |                   |                          |                         |
| Male             | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |
| Female           | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |
| Hypertension:    |                   |                          |                         |
| No               | 331 (16.2%)       | 362 (17.2%)              | 396 (18.1%)             |
| Yes              | 1711 (83.8%)      | 1738 (82.8%)             | 1786 (81.9%)            |
| Type-2 diabetes: |                   |                          |                         |
| No               | 1072 (52.5%)      | 1150 (54.8%)             | 1100 (50.4%)            |
| Yes              | 970 (47.5%)       | 950 (45.2%)              | 1082 (49.6%)            |

**show.p.trend** If the response variable has more than two categories a p-value for trend can be calculated. Results are displayed if the **show.p.trend** option is set to "TRUE":

### > createTable(res, show.p.trend=TRUE)

-----Summary descriptives table by Intervention group-----

|                  | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall | p.trend |
|------------------|-------------------|--------------------------|-------------------------|-----------|---------|
| Age              | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     | 0.101   |
| Sex:             |                   |                          |                         | <0.001    | 0.388   |
| Male             | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |           |         |
| Female           | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |           |         |
| Hypertension:    |                   |                          |                         | 0.249     | 0.096   |
| No               | 331 (16.2%)       | 362 (17.2%)              | 396 (18.1%)             |           |         |
| Yes              | 1711 (83.8%)      | 1738 (82.8%)             | 1786 (81.9%)            |           |         |
| Type-2 diabetes: |                   |                          |                         | 0.017     | 0.160   |
| No               | 1072 (52.5%)      | 1150 (54.8%)             | 1100 (50.4%)            |           |         |
| Yes              | 970 (47.5%)       | 950 (45.2%)              | 1082 (49.6%)            |           |         |

Note: The p-value for trend is computed from the Pearson test when row-variable is normal and from the Spearman test when it is continuous non-normal. If row-variable is of class Surv, the test score is computed from a Cox model where the grouping variable is introduced as an integer variable predictor. If the row-variable is categorical, the p-value for trend is computed as  $1 - pchisq(cor(as.integer(x), as.integer(y))^2 * (length(x) - 1), 1)$ 

**show.p.mul** For a response variable with more than two categories a pairwise comparison of p-values, corrected for multiple comparisons, can be calculated. Results are displayed if the <code>show.p.mul</code> option is set to "TRUE":

> createTable(res, show.p.mul=TRUE)

-----Summary descriptives table by Intervention group-----

|                        | Control<br>N=2042 | Control MedDiet + Nuts MedDiet + N=2042 N=2180 N=2182 | MedDiet + V00<br>N=2182 | p.overall p.Cont | col vs MedDiet + Nuts p.Conti            | Control MedDiet + Nuts MedDiet + VOO p.overall p.Control vs MedDiet + Nuts p.Control vs MedDiet + VOO p.MedDiet + Nuts vs MedDiet + VOO N=2100 N=2182 | Nuts vs MedDiet + VOO |
|------------------------|-------------------|-------------------------------------------------------|-------------------------|------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Age<br>Sex.            | 67.3 (6.28)       | 67.3 (6.28) 66.7 (6.02) 67.0 (6.21)                   | 67.0 (6.21)             | 0.003            | 0.002                                    | 0.206<br>0.358                                                                                                                                        | 0.173                 |
| Male<br>Female         | 812 (39.8%)       | 812 (39.8%) 968 (46.1%) 899 (41.                      | 899 (41.2%)             |                  |                                          |                                                                                                                                                       |                       |
| Hypertension:          | 331 (16.2%)       | 331 (16.2%) 362 (17.2%) 396 (18.1%)                   | 396 (18.1%)             | 0.249            | 0.459                                    | 0.311                                                                                                                                                 | 0.459                 |
| Yes                    | 1711 (83.8%)      | 1711 (83.8%) 1738 (82.8%) 1786 (81.                   | 1786 (81.9%)            | !                |                                          | !                                                                                                                                                     | •                     |
| Type-2 diabetes:<br>No | :<br>1072 (52.5%) | 1072 (52.5%) 1150 (54.8%) 1100 (50.4%)                | 1100 (50.4%)            | 0.017            | 0.185                                    | 0.185                                                                                                                                                 | 0.014                 |
| Yes                    | 970 (47.5%)       | 970 (47.5%) 950 (45.2%) 1082 (49.6%)                  | 1082 (49.6%)            |                  | Yes 970 (47.5%) 950 (45.2%) 1082 (49.6%) |                                                                                                                                                       |                       |

Note: Tukey method is used when explanatory variable is normal-distributed and Benjamini & Hochberg [5] method otherwise.

**show.ratio** If response variable is dichotomous or has been defined as class **survival** (see Section 3.1), Odds Ratios and Hazard Ratios can be displayed in the results by stating "TRUE" at the show.ratio option:

> createTable(update(res, subset= group!="Control diet"), show.ratio=TRUE)

-----Summary descriptives table by Intervention group-----

|                  | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|------------------|-------------------|--------------------------|-------------------------|-----------|
| Age              | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex:             |                   |                          |                         | <0.001    |
| Male             | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |           |
| Female           | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |           |
| Hypertension:    |                   |                          |                         | 0.249     |
| No               | 331 (16.2%)       | 362 (17.2%)              | 396 (18.1%)             |           |
| Yes              | 1711 (83.8%)      | 1738 (82.8%)             | 1786 (81.9%)            |           |
| Type-2 diabetes: |                   |                          |                         | 0.017     |
| No               | 1072 (52.5%)      | 1150 (54.8%)             | 1100 (50.4%)            |           |
| Yes              | 970 (47.5%)       | 950 (45.2%)              | 1082 (49.6%)            |           |

Note that category "Control diet" of the response variable has been omitted in order to have only two categories (i.e., a dichotomous variable). No Odds Ratios would be calculated if response variable has more than two categories.

```
> createTable(compareGroups(tmain ~ group + age + sex, data=predimed),
```

+ show.ratio=TRUE)

-----Summary descriptives table by AMI, stroke, or CV Death-----

|                     |      | event<br>=6072 |     | Event<br>N=252 |      | HR          | p.ratio | p.overall |
|---------------------|------|----------------|-----|----------------|------|-------------|---------|-----------|
| Intervention group: |      |                |     |                |      |             |         | 0.011     |
| Control             | 1945 | (32.0%)        | 97  | (38.5%)        |      | Ref.        | Ref.    |           |
| MedDiet + Nuts      | 2030 | (33.4%)        | 70  | (27.8%)        | 0.66 | [0.48;0.89] | 0.008   |           |
| MedDiet + VOO       | 2097 | (34.5%)        | 85  | (33.7%)        | 0.70 | [0.53;0.94] | 0.018   |           |
| Age                 | 66.9 | (6.14)         | 69. | 4 (6.65)       | 1.06 | [1.04;1.09] | <0.001  | <0.001    |
| Sex:                |      |                |     |                |      |             |         | <0.001    |
| Male                | 2528 | (41.6%)        | 151 | (59.9%)        |      | Ref.        | Ref.    |           |
| Female              | 3544 | (58.4%)        | 101 | (40.1%)        | 0.49 | [0.38;0.63] | <0.001  |           |

Note that when response variable is of class Surv, Hazard Ratios are calculated instead of Odds Ratios.

digits.ratio The number of decimal places for Odds/Hazard ratios can be changed by the digits.ratio option:

```
> createTable(compareGroups(tmain ~ group + age + sex, data=predimed),
+ show.ratio=TRUE, digits.ratio= 3)
```

-----Summary descriptives table by AMI, stroke, or CV Death-----

|                     |      | event<br>=6072 |     | Event<br>N=252 |       | HR            | p.ratio | p.overall |
|---------------------|------|----------------|-----|----------------|-------|---------------|---------|-----------|
| Intervention group: |      |                |     |                |       |               |         | 0.011     |
| Control             | 1945 | (32.0%)        | 97  | (38.5%)        |       | Ref.          | Ref.    |           |
| MedDiet + Nuts      | 2030 | (33.4%)        | 70  | (27.8%)        | 0.658 | [0.484;0.894] | 0.008   |           |
| MedDiet + VOO       | 2097 | (34.5%)        | 85  | (33.7%)        | 0.703 | [0.525;0.941] | 0.018   |           |
| Age                 | 66.9 | (6.14)         | 69. | 4 (6.65)       | 1.065 | [1.043;1.086] | <0.001  | <0.001    |
| Sex:                |      |                |     |                |       |               |         | <0.001    |
| Male                | 2528 | (41.6%)        | 151 | (59.9%)        |       | Ref.          | Ref.    |           |
| Female              | 3544 | (58.4%)        | 101 | (40.1%)        | 0.488 | [0.379;0.628] | <0.001  |           |

header.labels Change some key table header, such as the p.overall,.... Note that this is done when printing the table changing the argument in the 'print' function and not in the 'createTable' function. This argument is also present in other function that exports the table to pdf, plain text, etc.

```
> tab<-createTable(compareGroups(tmain ~ group + age + sex, data=predimed),
                       show.all = TRUE)
> print(tab, header.labels = c("p.overall" = "p-value", "all" = "All"))
   ----Summary descriptives table by AMI, stroke, or CV Death----
                            No event
                     All
                                                  p-value
                                            Event
                    N = 6324
                               N = 6072
                                            N = 252
                                                     0.011
Intervention group:
                 2042 (32.3%) 1945 (32.0%) 97 (38.5%)
   MedDiet + Nuts 2100 (33.2%) 2030 (33.4%) 70 (27.8%)
   MedDiet + V00 2182 (34.5%) 2097 (34.5%) 85 (33.7%)
Age
                 67.0 (6.17) 66.9 (6.14) 69.4 (6.65) < 0.001
Sex:
                                                    <0.001
   Male
                 2679 (42.4%) 2528 (41.6%) 151 (59.9%)
   Female
                 3645 (57.6%) 3544 (58.4%) 101 (40.1%)
```

### 4.2.2 Combining tables by row

Tables made with the same response variable can be combined by row:

```
> restab1 <- createTable(compareGroups(group ~ age + sex, data=predimed))</pre>
> restab2 <- createTable(compareGroups(group ~ bmi + smoke, data=predimed))</pre>
> rbind("Non-modifiable risk factors"=restab1, "Modifiable risk factors"=restab2)
   ----Summary descriptives table by Intervention group----
                    Control MedDiet + Nuts MedDiet + VOO p.overall
                     N = 2042
                                N=2100
                                             N=2182
Non-modifiable risk factors:
                 67.3 (6.28) 66.7 (6.02) 67.0 (6.21)
                                                         0.003
   Age
   Sex:
                                                           <0.001
                812 (39.8%) 968 (46.1%) 899 (41.2%)
1230 (60.2%) 1132 (53.9%) 1283 (58.8%)
      Male
       Female
Modifiable risk factors:
   Body mass index 30.3 (3.96)
                               29.7 (3.77)
                                             29.9 (3.71) < 0.001
   Smoking:
                                                           0.444
                  1282 (62.8%) 1259 (60.0%) 1351 (61.9%)
       Never
                  270 (13.2%)
                               296 (14.1%)
                                             292 (13.4%)
       Current
                  490 (24.0%)
                               545 (26.0%)
                                             539 (24.7%)
       Former
```

Note how variables are grouped under "Non-modifiable" and "Modifiable" risk factors because of an epigraph defined in the rbind command in the example.

The resulting object is of class rbind.createTable, which can be subset but not updated. It inherits the class 'createTable'. Therefore, columns and other arguments from the createTable function cannot be modified:

To select only Age and Smoking:

### > rbind("Non-modifiable"=restab1,"Modifiable"=restab2)[c(1,4)]

-----Summary descriptives table by Intervention group------

|                                 | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|---------------------------------|-------------------|--------------------------|-------------------------|-----------|
| Non-modifiable: Age Modifiable: | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Smoking:                        |                   |                          |                         | 0.444     |
| Never                           | 1282 (62.8%)      | 1259 (60.0%)             | 1351 (61.9%)            |           |
| Current                         | 270 (13.2%)       | 296 (14.1%)              | 292 (13.4%)             |           |
| Former                          | 490 (24.0%)       | 545 (26.0%)              | 539 (24.7%)             |           |

To change the order:

> rbind("Modifiable"=restab1,"Non-modifiable"=restab2)[c(4,3,2,1)]

-----Summary descriptives table by Intervention group-----

|                 | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|-----------------|-------------------|--------------------------|-------------------------|-----------|
| Non-modifiable: |                   |                          |                         |           |
| Smoking:        |                   |                          |                         | 0.444     |
| Never           | 1282 (62.8%)      | 1259 (60.0%)             | 1351 (61.9%)            |           |
| Current         | 270 (13.2%)       | 296 (14.1%)              | 292 (13.4%)             |           |
| Former          | 490 (24.0%)       | 545 (26.0%)              | 539 (24.7%)             |           |
| Body mass index | 30.3 (3.96)       | 29.7 (3.77)              | 29.9 (3.71)             | <0.001    |
| Modifiable:     |                   |                          |                         |           |
| Sex:            |                   |                          |                         | <0.001    |
| Male            | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |           |
| Female          | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |           |
| Age             | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |

### 4.2.3 Combining tables by column

Columns from tables built with the same explanatory and response variables but done with a different subset (i.e. ALL, Male and Female) can be combined:

```
> res<-compareGroups(group ~ age + smoke + bmi + htn , data=predimed)</pre>
```

----Summary descriptives table -----

|                             |                   | ALL                                                          |                         |                   | FEMALE                                        |                         |                  | MALE                                        |                        |
|-----------------------------|-------------------|--------------------------------------------------------------|-------------------------|-------------------|-----------------------------------------------|-------------------------|------------------|---------------------------------------------|------------------------|
|                             | Control<br>N=2042 | Control MedDiet + Nuts MedDiet + VOO<br>N=2042 N=2100 N=2182 | MedDiet + V00<br>N=2182 | Control<br>N=1230 | MedDiet + Nuts MedDiet + VOO<br>N=1132 N=1283 | MedDiet + V00<br>N=1283 | Control<br>N=812 | MedDiet + Nuts MedDiet + VOO<br>N=968 N=899 | MedDiet + VOO<br>N=899 |
| Age<br>Smoking:             | 67.3 (6.28)       | 67.3 (6.28) 66.7 (6.02)                                      | 67.0 (6.21)             | (8.0 (5.96)       | 67.4 (5.57)                                   | 67.7 (5.84)             | 66.4 (6.62)      | 66.4 (6.62) 65.8 (6.40)                     | 66.1 (6.61)            |
| Never                       | 1282 (62.8%)      | 1282 (62.8%) 1259 (60.0%)                                    | 1351 (61.9%)            | 1077 (87.6%)      | 993 (87.7%)                                   | 1115 (86.9%)            | 205 (25.2%)      | 266 (27.5%)                                 | 236 (26.3%)            |
| Current                     | 270 (13.2%)       | 296 (14.1%)                                                  | 292 (13.4%)             | 66 (5.37%)        |                                               | 71 (5.53%)              | 204 (25.1%)      | 242 (25.0%)                                 | 221 (24.6%)            |
| Former                      | 490 (24.0%)       | 545 (26.0%)                                                  | 539 (24.7%)             | 87 (7.07%)        | 85 (7.51%)                                    | 97 (7.56%)              | 403 (49.6%)      | 460 (47.5%)                                 | 442 (49.2%)            |
| Body mass index 30.3 (3.96) | 30.3 (3.96)       | 29.7 (3.77)                                                  | 29.9 (3.71)             | 30.8 (4.20)       | 30.2 (4.08)                                   | 30.4 (3.91)             | 29.6 (3.45)      | 29.6 (3.45) 29.1 (3.28)                     | 29.2 (3.28)            |
| Hypertension:               |                   |                                                              |                         |                   |                                               |                         |                  |                                             |                        |
| No                          | 331 (16.2%)       | 331 (16.2%) 362 (17.2%)                                      | 396 (18.1%)             | 168 (13.7%)       | 168 (13.7%) 147 (13.0%)                       | 179 (14.0%)             | 163 (20.1%)      | 163 (20.1%) 215 (22.2%)                     | 217 (24.1%)            |
| Yes                         | 1711 (83.8%)      | 1711 (83.8%) 1738 (82.8%)                                    | 1786 (81.9%)            | 1062 (86.3%)      | 985 (87.0%)                                   | 1104 (86.0%)            | 649 (79.9%)      | 753 (77.8%)                                 | 682 (75.9%)            |

With the argument caption set to NULL no name is displayed for columns.

# > cbind(alltab,femaletab,maletab,caption=NULL)

-----Summary descriptives table -----

|                   | By                          | By Intervention group     | roup                                          | By                | By Intervention group               | group                                         | By          | By Intervention group                                     | roup                   |
|-------------------|-----------------------------|---------------------------|-----------------------------------------------|-------------------|-------------------------------------|-----------------------------------------------|-------------|-----------------------------------------------------------|------------------------|
|                   | Control MedDiet + N=210     | MedDiet + Nuts            | MedDiet + Nuts MedDiet + VOO<br>N=2100 N=2182 | Control<br>N=1230 | MedDiet + Nuts<br>N=1132            | MedDiet + Nuts MedDiet + VOO<br>N=1132 N=1283 | i           | Control MedDiet + Nuts MedDiet + VOO<br>N=812 N=968 N=899 | MedDiet + V00<br>N=899 |
| Age               | 67.3 (6.28)                 | 67.3 (6.28) 66.7 (6.02)   |                                               | 68.0 (5.96)       | 67.0 (6.21) 68.0 (5.96) 67.4 (5.57) | 67.7 (5.84) 66.4 (6.62) 65.8 (6.40)           | 66.4 (6.62) | 65.8 (6.40)                                               | 66.1 (6.61)            |
| Smoking:<br>Never | 1282 (62.8%)                | 1282 (62.8%) 1259 (60.0%) | 1351 (61.9%)                                  | 1077 (87.6%)      | 1077 (87.6%) 993 (87.7%)            | 1115 (86.9%)                                  | 205 (25.2%) | 205 (25.2%) 266 (27.5%)                                   | 236 (26.3%)            |
| Current           | 270 (13.2%)                 | 296 (14.1%)               | 292 (13.4%)                                   | 66 (5.37%)        | 54 (4.77%)                          | 71 (5.53%)                                    | 204 (25.1%) | 242 (25.0%)                                               | 221 (24.6%)            |
| Former            | 490 (24.0%)                 | 545 (26.0%)               | 539 (24.7%)                                   | 87 (7.07%)        | 85 (7.51%)                          | 97 (7.56%)                                    | 403 (49.6%) | 403 (49.6%) 460 (47.5%)                                   | 442 (49.2%)            |
| Body mass inde    | Body mass index 30.3 (3.96) | 29.7 (3.77)               | 29.9 (3.71)                                   | 30.8 (4.20)       | 30.2 (4.08)                         | 30.4 (3.91)                                   | 29.6 (3.45) | 29.6 (3.45) 29.1 (3.28)                                   | 29.2 (3.28)            |

<sup>&</sup>gt; alltab <- createTable(res, show.p.overall = FALSE)</pre>

<sup>&</sup>gt; femaletab <- createTable(update(res,subset=sex==Female), show.p.overall = FALSE)</pre>

<sup>&</sup>gt; maletab <- createTable(update(res,subset=sex==Male), show.p.overall = FALSE)</pre>

<sup>&</sup>gt; cbind("ALL"=alltab,"FEMALE"=femaletab,"MALE"=maletab)

| 100        | ()000 | 1100 100 100 100 100 100 100 100 100 10                                                                              |
|------------|-------|----------------------------------------------------------------------------------------------------------------------|
| 36.3%) 985 |       | res 1/11 (83.8%) 1/38 (82.8%) 1/86 (81.9%) 1062 (86.3%) 985 (87.0%) 1104 (86.0%) 649 (79.9%) 753 (77.8%) 682 (75.9%) |

By default the name of the table is displayed for each set of columns.

## > cbind(alltab,femaletab,maletab)

----Summary descriptives table ------

|                              |                   | alltab                                                       |                         |                         | femaletab                                     |                           |                  | maletab                                     |                        |
|------------------------------|-------------------|--------------------------------------------------------------|-------------------------|-------------------------|-----------------------------------------------|---------------------------|------------------|---------------------------------------------|------------------------|
| •                            | Control<br>N=2042 | Control MedDiet + Nuts MedDiet + VOO<br>N=2042 N=2100 N=2182 | MedDiet + V00<br>N=2182 | Control<br>N=1230       | MedDiet + Nuts MedDiet + V00<br>N=1132 N=1283 | s MedDiet + V00<br>N=1283 | Control<br>N=812 | MedDiet + Nuts MedDiet + VOO<br>N=968 N=899 | MedDiet + V00<br>N=899 |
| Age 6<br>Smoking:            | 37.3 (6.28)       | 67.3 (6.28) 66.7 (6.02)                                      | 67.0 (6.21)             | 68.0 (5.96) 67.4 (5.57) | 67.4 (5.57)                                   | 67.7 (5.84)               | 66.4 (6.62)      | 66.4 (6.62) 65.8 (6.40)                     | 66.1 (6.61)            |
| Li Li                        | 282 (62.8%)       | 1282 (62.8%) 1259 (60.0%)                                    | 1351 (61.9%)            | 1077 (87.6%)            | 993 (87.7%)                                   | 1115 (86.9%)              | 205 (25.2%)      | 205 (25.2%) 266 (27.5%)                     | 236 (26.3%)            |
| nt                           | 270 (13.2%)       | 296 (14.1%)                                                  | 292 (13.4%)             | 66 (5.37%)              |                                               | 71 (5.53%)                | 204 (25.1%)      | 242 (25.0%)                                 | 221 (24.6%)            |
| Former 4                     | 490 (24.0%)       | 545 (26.0%)                                                  | 539 (24.7%)             | 87 (7.07%)              | 85 (7.51%)                                    | 97 (7.56%)                | 403 (49.6%)      | 460 (47.5%)                                 | 442 (49.2%)            |
| Body mass index 30.3 (3.96)  |                   |                                                              | 29.9 (3.71)             | 30.8 (4.20)             | 30.2 (4.08)                                   | 30.4 (3.91)               | 29.6 (3.45)      | 29.6 (3.45) 29.1 (3.28)                     | 29.2 (3.28)            |
| Hypertension:                |                   |                                                              |                         |                         |                                               |                           |                  |                                             |                        |
| No                           | 331 (16.2%)       | 331 (16.2%) 362 (17.2%)                                      | 396 (18.1%)             | 168 (13.7%) 147 (13.0%) | 147 (13.0%)                                   | 179 (14.0%)               | 163 (20.1%)      | 163 (20.1%) 215 (22.2%)                     | 217 (24.1%)            |
| Yes 1711 (83.8%) 1738 (82.8% | (711 (83.8%)      | 1711 (83.8%) 1738 (82.8%)                                    | 1786 (81.9%)            | 1062 (86.3%)            | 985 (87.0%)                                   | 1104 (86.0%)              | 649 (79.9%)      | 649 (79.9%) 753 (77.8%)                     | 682 (75.9%)            |

NOTE: The resulting object is of class cbind.createTable and inherits also the class createTable. This cannot be updated. It can be nicely printed on the R console and also exported to LATEX but it cannot be exported to CSV or HTML.

### 4.2.4 createTable miscellaneous

print By default only the table with the descriptives is printed. With the which.table command it can be changed: 'avail' returns data available and 'both' returns both tables:

-----Summary descriptives table by Intervention group-----

|                              | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overal |
|------------------------------|-------------------|--------------------------|-------------------------|----------|
| Age                          | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003    |
| Sex:                         |                   |                          |                         | <0.001   |
| Male                         | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |          |
| Female                       | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |          |
| Smoking:                     |                   |                          |                         | 0.444    |
| Never                        | 1282 (62.8%)      | 1259 (60.0%)             | 1351 (61.9%)            |          |
| Current                      | 270 (13.2%)       | 296 (14.1%)              | 292 (13.4%)             |          |
| Former                       | 490 (24.0%)       | 545 (26.0%)              | 539 (24.7%)             |          |
| Waist circumference          | 101 (10.8)        | 100 (10.6)               | 100 (10.4)              | 0.045    |
| Hormone-replacement therapy: |                   |                          |                         | 0.850    |
| No                           | 1811 (98.3%)      | 1835 (98.4%)             | 1918 (98.2%)            |          |
| Yes                          | 31 (1.68%)        | 30 (1.61%)               | 36 (1.84%)              |          |

### ---Available data----

|                             | [ALL] | Control | MedDiet + Nuts | MedDiet + VOO | method            | select |
|-----------------------------|-------|---------|----------------|---------------|-------------------|--------|
| Age                         | 6324  | 2042    | 2100           | 2182          | continuous-normal | ALL    |
| Sex                         | 6324  | 2042    | 2100           | 2182          | categorical       | ALL    |
| Smoking                     | 6324  | 2042    | 2100           | 2182          | categorical       | ALL    |
| Waist circumference         | 6324  | 2042    | 2100           | 2182          | continuous-normal | ALL    |
| Hormone-replacement therapy | 5661  | 1842    | 1865           | 1954          | categorical       | ALL    |

With the print command setting nmax option = FALSE, the total maximum "n" in the available data is omitted in the first row.

-----Summary descriptives table by Intervention group------

|                              | Control      | MedDiet + Nuts | MedDiet + VOO | p.overall |
|------------------------------|--------------|----------------|---------------|-----------|
| Age                          | 67.3 (6.28)  | 66.7 (6.02)    | 67.0 (6.21)   | 0.003     |
| Sex:                         |              |                |               | <0.001    |
| Male                         | 812 (39.8%)  | 968 (46.1%)    | 899 (41.2%)   |           |
| Female                       | 1230 (60.2%) | 1132 (53.9%)   | 1283 (58.8%)  |           |
| Smoking:                     |              |                |               | 0.444     |
| Never                        | 1282 (62.8%) | 1259 (60.0%)   | 1351 (61.9%)  |           |
| Current                      | 270 (13.2%)  | 296 (14.1%)    | 292 (13.4%)   |           |
| Former                       | 490 (24.0%)  | 545 (26.0%)    | 539 (24.7%)   |           |
| Waist circumference          | 101 (10.8)   | 100 (10.6)     | 100 (10.4)    | 0.045     |
| Hormone-replacement therapy: |              |                |               | 0.850     |
| No                           | 1811 (98.3%) | 1835 (98.4%)   | 1918 (98.2%)  |           |
| Yes                          | 31 (1.68%)   | 30 (1.61%)     | 36 (1.84%)    |           |

summary returns the same table as that generated with print command setting which.table='avail':

- ---Available data----

|                             | [ALL] | Control | MedDiet + Nu | nts MedDiet + VOO | method            | select |
|-----------------------------|-------|---------|--------------|-------------------|-------------------|--------|
| Age                         | 6324  | 2042    | 2100         | 2182              | continuous-normal | ALL    |
| Sex                         | 6324  | 2042    | 2100         | 2182              | categorical       | ALL    |
| Smoking                     | 6324  | 2042    | 2100         | 2182              | categorical       | ALL    |
| Waist circumference         | 6324  | 2042    | 2100         | 2182              | continuous-normal | ALL    |
| Hormone-replacement therapy | 5661  | 1842    | 1865         | 1954              | categorical       | ALL    |

update An object of class createTable can be updated:

- > res<-compareGroups(group ~ age + sex + smoke + waist + hormo, data=predimed)
- > restab<-createTable(res, type=1, show.ratio=TRUE )</pre>
- > restab

-----Summary descriptives table by Intervention group------

|                                         | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|-----------------------------------------|-------------------|--------------------------|-------------------------|-----------|
| Age                                     | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex:                                    |                   |                          |                         | <0.001    |
| Male                                    | 39.8%             | 46.1%                    | 41.2%                   |           |
| Female                                  | 60.2%             | 53.9%                    | 58.8%                   |           |
| Smoking:                                |                   |                          |                         | 0.444     |
| Never                                   | 62.8%             | 60.0%                    | 61.9%                   |           |
| Current                                 | 13.2%             | 14.1%                    | 13.4%                   |           |
| Former                                  | 24.0%             | 26.0%                    | 24.7%                   |           |
| Waist circumference                     | 101 (10.8)        | 100 (10.6)               | 100 (10.4)              | 0.045     |
| <pre>Hormone-replacement therapy:</pre> |                   |                          |                         | 0.850     |
| No                                      | 98.3%             | 98.4%                    | 98.2%                   |           |
| Yes                                     | 1.68%             | 1.61%                    | 1.84%                   |           |

### > update(restab, show.n=TRUE)

-----Summary descriptives table by Intervention group-----

|                             | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + VOO<br>N=2182 | p.overall | N    |
|-----------------------------|-------------------|--------------------------|-------------------------|-----------|------|
| Age                         | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     | 6324 |
| Sex:                        |                   |                          |                         | <0.001    | 6324 |
| Male                        | 39.8%             | 46.1%                    | 41.2%                   |           |      |
| Female                      | 60.2%             | 53.9%                    | 58.8%                   |           |      |
| Smoking:                    |                   |                          |                         | 0.444     | 6324 |
| Never                       | 62.8%             | 60.0%                    | 61.9%                   |           |      |
| Current                     | 13.2%             | 14.1%                    | 13.4%                   |           |      |
| Former                      | 24.0%             | 26.0%                    | 24.7%                   |           |      |
| Waist circumference         | 101 (10.8)        | 100 (10.6)               | 100 (10.4)              | 0.045     | 6324 |
| Hormone-replacement therapy | :                 |                          |                         | 0.850     | 5661 |
| No                          | 98.3%             | 98.4%                    | 98.2%                   |           |      |
| Yes                         | 1.68%             | 1.61%                    | 1.84%                   |           |      |

In just one statement it is possible to update an object of class compareGroups and createTable:

> update(restab, x = update(res, subset=c(sex==Female)), show.n=TRUE)

-----Summary descriptives table by Intervention group------

|                              | Control<br>N=1230 | MedDiet + Nuts<br>N=1132 | MedDiet + V00<br>N=1283 | p.overall | N    |
|------------------------------|-------------------|--------------------------|-------------------------|-----------|------|
| Age                          | 68.0 (5.96)       | 67.4 (5.57)              | 67.7 (5.84)             | 0.056     | 3645 |
| Sex: Female                  | 100%              | 100%                     | 100%                    |           | 3645 |
| Smoking:                     |                   |                          |                         | 0.907     | 3645 |
| Never                        | 87.6%             | 87.7%                    | 86.9%                   |           |      |
| Current                      | 5.37%             | 4.77%                    | 5.53%                   |           |      |
| Former                       | 7.07%             | 7.51%                    | 7.56%                   |           |      |
| Waist circumference          | 99.0 (11.0)       | 97.8 (11.0)              | 98.0 (10.5)             | 0.016     | 3645 |
| Hormone-replacement therapy: |                   |                          |                         | 0.898     | 3459 |
| No                           | 97.4%             | 97.2%                    | 97.0%                   |           |      |
| Yes                          | 2.64%             | 2.81%                    | 2.95%                   |           |      |

Note that the compareGroups object (res) is updated, selecting only 'Female' participants, and the createTable object (restab) is updated to add a column with the maximum available data for each explanatory variable.

subsetting Objects from createTable function can also be subsetted using "[":

> createTable(compareGroups(group ~ age + sex + smoke + waist + hormo, data=predimed))

-----Summary descriptives table by Intervention group-----

|                              | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + V00<br>N=2182 | p.overall |
|------------------------------|-------------------|--------------------------|-------------------------|-----------|
| Age                          | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex:                         |                   |                          |                         | <0.001    |
| Male                         | 812 (39.8%)       | 968 (46.1%)              | 899 (41.2%)             |           |
| Female                       | 1230 (60.2%)      | 1132 (53.9%)             | 1283 (58.8%)            |           |
| Smoking:                     |                   |                          |                         | 0.444     |
| Never                        | 1282 (62.8%)      | 1259 (60.0%)             | 1351 (61.9%)            |           |
| Current                      | 270 (13.2%)       | 296 (14.1%)              | 292 (13.4%)             |           |
| Former                       | 490 (24.0%)       | 545 (26.0%)              | 539 (24.7%)             |           |
| Waist circumference          | 101 (10.8)        | 100 (10.6)               | 100 (10.4)              | 0.045     |
| Hormone-replacement therapy: |                   |                          |                         | 0.850     |
| No                           | 1811 (98.3%)      | 1835 (98.4%)             | 1918 (98.2%)            |           |
| Yes                          | 31 (1.68%)        | 30 (1.61%)               | 36 (1.84%)              |           |

> createTable(compareGroups(group ~ age + sex + bmi, data=predimed))[1:2, ]

-----Summary descriptives table by Intervention group-----

|                | Control<br>N=2042           | MedDiet + Nuts<br>N=2100    | MedDiet + V00<br>N=2182     | p.overall       |
|----------------|-----------------------------|-----------------------------|-----------------------------|-----------------|
| Age<br>Sex:    | 67.3 (6.28)                 | 66.7 (6.02)                 | 67.0 (6.21)                 | 0.003<br><0.001 |
| Male<br>Female | 812 (39.8%)<br>1230 (60.2%) | 968 (46.1%)<br>1132 (53.9%) | 899 (41.2%)<br>1283 (58.8%) |                 |

### 4.3 Exporting tables

Tables can be exported to CSV, HTML, LATEX or PDF:

• export2csv(restab, file="table1.csv"), exports to CSV format

- export2html(restab, file="table1.html"), exports to HTML format
- export2latex(restab, file="table1.tex"), exports to LATEX format
- export2pdf(restab, file="table1.pdf"), exports to PDF format

Note that, since version 3.0, it is necessary write the extension of the file.

### 4.3.1 General exporting options

which.table By default only the table with the descriptives is exported. This can be changed with the which.table command: 'avail' exports only available data and 'both' both tables.

**nmax** By default a first row with the maximum "n" for available data (i.e. the number of participants minus the least missing data) is exported. Stating nmax = FALSE this first row is omitted.

**sep** Only relevant when table is exported to csv. Stating, for example, **sep** = ";" table will be exported to csv with columns separated by ";"

### 4.3.2 Exporting to LATEX

A special case of exporting is when tables are exported to LATEX. The function export2latex returns an object with the tex code as a character that can be changed in the R session.

file If the file argument in export2latex is missing, the code is printed in the  $\mathbb{Q}$  console. This can be useful when  $\mathbb{Q}$  code is inserted in a LATEX document chunk to be processed with Sweave.

```
> restab<-createTable(compareGroups(group ~ age + sex + smoke + waist + hormo,
                                          data=predimed))
> export2latex(restab)
   \begin{longtable}{lcccc}\caption{Summary descriptives table by groups of Intervention group}\\
                & MedDiet + Nuts & MedDiet + VOO & \multirow{2}{*}{p.overall}\\
    & Control
    N=2042 &
                  N=2100 & N=2182 &
   \hline
   \hline
   \multicolumn{5}{1}{\tablename\ \thetable{} \textit{-- continued from previous page}}\\
                 & MedDiet + Nuts & MedDiet + VOO & \multirow{2}{*}{p.overall}\\
                N=2100 & N=2182 &
   N=2042 &
   \hline
   \hline
   \endhead
   \hline
   \multicolumn{5}{1}{\textit{continued on next page}} \\
   \endfoot
   \multicolumn{5}{1}{} \\
   \endlastfoot
   Age & 67.3 (6.28) & 66.7 (6.02) & 67.0 (6.21) & 0.003 \\
                                              & $<$0.001 \\
Sex: &
\qquad \qquad \ \quad\$Male & 812 (39.8\%) & 968 (46.1\%) & 899 (41.2\%) &
$\qquad$Female & 1230 (60.2\%) & 1132 (53.9\%) & 1283 (58.8\%) &
Smoking: &
                                                    0.444 \\
\qquad \ \quad\Never & 1282 (62.8\%) & 1259 (60.0\%) & 1351 (61.9\%) &
$\qquad$Current & 270 (13.2\%) & 296 (14.1\%) & 292 (13.4\%) &
Waist circumference & 101 (10.8) & 100 (10.6) & 100 (10.4) &
```

```
Hormone-replacement therapy: & & & & & & 0.850 \\ $\qquad$No & 1811 (98.3\%) & 1835 (98.4\%) & 1918 (98.2\%) & \\ $\qquad$Yes & 31 (1.68\%) & 30 (1.61\%) & 36 (1.84\%) & \\
\hline \end{longtable}
```

size The font size of exported tables can be changed by this option. Possible values are 'tiny', 'script-size', 'footnotesize', 'small', 'normalsize', 'large', 'LARGE', 'huge', 'Huge' or 'same'. Default is 'same', which means that font size of the table is the same as specified in the main LATEX document where the table will be inserted.

caption The table caption for descriptives table and available data table. If which table='both' the first element of 'caption' will be assigned to descriptives table and the second to available data table. If it is set to '', no caption is inserted. Default value is NULL, which writes 'Summary descriptives table by groups of 'y" for descriptives table and 'Available data by groups of 'y" for the available data table.

loc.caption Table caption location. Possible values are 'top' or 'bottom'. Default value is 'top'.

label Used to cite tables in a IATEX document. If which.table='both' the first element of 'label' will be assigned to the descriptives table and the second to the available data table. Default value is NULL, which assigns no label to the table/s.

landscape Table is placed in horizontal way. This option is specially usefull when table contains many columns and/or they are too wide to be placed vertically.

### 4.3.3 Generating an exhaustive report

In the version 2.0 of compareGroups package, a new function called 'report' has been created. This function automatically generates a PDF document with the descriptive table as well as the corresponding 'available' table. In addition, plots of all analysed variables are shown.

In order to make easier to 'navigate' throught the document, an index with hyperlinks is inserted in the document.

See the help file of this function where you can find an example with the REGICOR data (the other example data set contained in the compareGroups package)

```
> ?report  # to know more about report function
> ?regicor  # info about REGICOR data set
```

Also, you can use the function 'radiograph' that dumps the raw values on a plain text file. This may be usefull to identify possible wrong codes or non-valid values in the data set.

### 4.4 Missing values

Many times, it is important to be aware of the missingness contained in each variable, possibly by groups. Althought 'available' table shows the number of the non-missing values for each row-variable and in each group, it would be desirable to test whether the frequency of non-available data is different between groups. For this porpose, a new function has been implemented in the compareGroups package, which is called 'missingTable'. This function applies to both compareGroups and createTable class objects. This last option is useful when the table is already created. To illustrate it, we will use the REGICOR data set, comparing missing rates of all variables by year:

```
> # from a compareGroups object
> data(regicor)
> res <- compareGroups(year ~ .-id, regicor)
> missingTable(res)
```

-----Missingness table by Recruitment year-----

|                                                  | 1995<br>N=431 | 2000<br>N=786 | 2005<br>N=1077 | p.overall |
|--------------------------------------------------|---------------|---------------|----------------|-----------|
| Age                                              | 0 (0.00%)     | 0 (0.00%)     | 0 (0.00%)      |           |
| Sex                                              | 0 (0.00%)     | 0 (0.00%)     | 0 (0.00%)      |           |
| Smoking status                                   | 16 (3.71%)    | 28 (3.56%)    | 17 (1.58%)     | 0.010     |
| Systolic blood pressure                          | 3 (0.70%)     | 11 (1.40%)    | 0 (0.00%)      | <0.001    |
| Diastolic blood pressure                         | 3 (0.70%)     | 11 (1.40%)    | 0 (0.00%)      | <0.001    |
| History of hypertension                          | 0 (0.00%)     | 0 (0.00%)     | 8 (0.74%)      | 0.015     |
| Hypertension treatment                           | 0 (0.00%)     | 0 (0.00%)     | 43 (3.99%)     | <0.001    |
| Total cholesterol                                | 28 (6.50%)    | 71 (9.03%)    | 2 (0.19%)      | <0.001    |
| HDL cholesterol                                  | 30 (6.96%)    | 38 (4.83%)    | 1 (0.09%)      | <0.001    |
| Triglycerides                                    | 28 (6.50%)    | 34 (4.33%)    | 1 (0.09%)      | <0.001    |
| LDL cholesterol                                  | 43 (9.98%)    | 98 (12.5%)    | 27 (2.51%)     | <0.001    |
| History of hyperchol.                            | 0 (0.00%)     | 15 (1.91%)    | 6 (0.56%)      | 0.001     |
| Cholesterol treatment                            | 0 (0.00%)     | 13 (1.65%)    | 42 (3.90%)     | <0.001    |
| Height (cm)                                      | 8 (1.86%)     | 15 (1.91%)    | 12 (1.11%)     | 0.318     |
| Weight (Kg)                                      | 8 (1.86%)     | 15 (1.91%)    | 12 (1.11%)     | 0.318     |
| Body mass index                                  | 8 (1.86%)     | 15 (1.91%)    | 12 (1.11%)     | 0.318     |
| Physical activity (Kcal/week)                    | 64 (14.8%)    | 22 (2.80%)    | 2 (0.19%)      | <0.001    |
| Physical component                               | 34 (7.89%)    | 123 (15.6%)   | 83 (7.71%)     | <0.001    |
| Mental component                                 | 34 (7.89%)    | 123 (15.6%)   | 83 (7.71%)     | <0.001    |
| Cardiovascular event                             | 33 (7.66%)    | 45 (5.73%)    | 53 (4.92%)     | 0.118     |
| Days to cardiovascular event or end of follow-up | 33 (7.66%)    | 45 (5.73%)    | 53 (4.92%)     | 0.118     |
| Overall death                                    | 44 (10.2%)    | 48 (6.11%)    | 54 (5.01%)     | 0.001     |
| Days to overall death or end of follow-up        | 44 (10.2%)    | 48 (6.11%)    | 54 (5.01%)     | 0.001     |

- > # or from createTable objects
  > restab <- createTable(res, hide.no = no)</pre>
- > missingTable(restab)

Perhaps a NA value of a categorical variable may mean something different from just non available. For example, patients admitted for Coronary Acute Syndrome with NA in ST elevation may have a higher risk of in-hospital death than the ones with available data, i.e. ST elevation yes or not. If these kind of variables are introduced in the data set as NA, they are removed from the analysis. To avoid the user having to recode NA as a new category for all categorical variables, new argument called 'include.miss' in compareGroups has been implemented which does it automatically. Let's see an example with all variables from REGICOR data set by cardiovascular event.

```
> # first create time-to-cardiovascular event
> regicor$tcv<-with(regicor,Surv(tocv,cv==Yes))
> # create the table
> res <- compareGroups(tcv ~ . -id-tocv-cv-todeath-death, regicor, include.miss = TRUE)
> restab <- createTable(res, hide.no = no)
> restab
```

|                             | No event<br>N=2071 | Event<br>N=92 | p.overall |
|-----------------------------|--------------------|---------------|-----------|
| Recruitment year:           |                    |               | 0.157     |
| 1995                        | 388 (18.7%)        | 10 (10.9%)    |           |
| 2000                        | 706 (34.1%)        | 35 (38.0%)    |           |
| 2005                        | 977 (47.2%)        | 47 (51.1%)    |           |
| Age                         | 54.6 (11.1)        | 57.5 (11.0)   | 0.021     |
| Sex:                        |                    |               | 0.696     |
| Male                        | 996 (48.1%)        | 46 (50.0%)    |           |
| Female                      | 1075 (51.9%)       | 46 (50.0%)    |           |
| Smoking status:             |                    |               | <0.001    |
| Never smoker                | 1099 (53.1%)       | 37 (40.2%)    |           |
| Current or former < 1y      | 506 (24.4%)        | 47 (51.1%)    |           |
| Former >= 1y                | 419 (20.2%)        | 8 (8.70%)     |           |
| Missing                     | 47 (2.27%)         | 0 (0.00%)     |           |
| Systolic blood pressure     | 131 (20.3)         | 138 (21.5)    | 0.001     |
| Diastolic blood pressure    | 79.5 (10.4)        | 82.9 (12.3)   | 0.002     |
| History of hypertension:    |                    |               | 0.118     |
| Yes                         | 647 (31.2%)        | 38 (41.3%)    |           |
| No                          | 1418 (68.5%)       | 54 (58.7%)    |           |
| Missing                     | 6 (0.29%)          | 0 (0.00%)     |           |
| Hypertension treatment:     |                    |               | 0.198     |
| No                          | 1657 (80.0%)       | 70 (76.1%)    |           |
| Yes                         | 382 (18.4%)        | 22 (23.9%)    |           |
| Missing                     | 32 (1.55%)         | 0 (0.00%)     |           |
| Total cholesterol           | 218 (44.5)         | 224 (50.4)    | 0.207     |
| HDL cholesterol             | 52.8 (14.8)        | 50.4 (13.3)   | 0.114     |
| Triglycerides               | 113 (68.2)         | 123 (52.4)    | 0.190     |
| LDL cholesterol             | 143 (39.6)         | 149 (45.6)    | 0.148     |
| History of hyperchol.:      |                    |               | 0.470     |
| Yes                         | 639 (30.9%)        | 25 (27.2%)    |           |
| No                          | 1414 (68.3%)       | 67 (72.8%)    |           |
| Missing                     | 18 (0.87%)         | 0 (0.00%)     |           |
| Cholesterol treatment:      |                    |               | 0.190     |
| No                          | 1817 (87.7%)       | 86 (93.5%)    |           |
| Yes                         | 213 (10.3%)        | 6 (6.52%)     |           |
| Missing                     | 41 (1.98%)         | 0 (0.00%)     |           |
| Height (cm)                 | 163 (9.21)         | 163 (9.34)    | 0.692     |
| Weight (Kg)                 | 73.4 (13.7)        | 74.9 (12.8)   | 0.294     |
| Body mass index             | 27.6 (4.56)        | 28.1 (4.48)   | 0.299     |
| Physical activity (Kcal/wee | k) 405 (397)       | 338 (238)     | 0.089     |
| Physical component          | 49.7 (8.95)        | 47.4 (9.03)   | 0.023     |
| Mental component            | 48.1 (10.9)        | 46.3 (12.2)   | 0.122     |

### 4.5 Analysis of genetic data

In the version 2.0 of compareGroups, it is possible to analyse genetic data, more concretely Single Nucleotic Polymorphisms (SNPs), using the function compareSNPs. This function takes advantage of SNPassoc[6] and HardyWeinberg [7] packages to perform quality control of genetic data displaying the Minor Allele Frequencies, Missingness, Hardy Weinberg Equilibrium, etc. of the whole data set or by groups. When groups are considered, it also performs a test to check whether missingness rates is the same among groups.

Following, we illustrate this by an example taking a data set from SNPassoc package.

First of all, load the SNPs data from SNPassoc, and visualize the first rows. Notice how are the SNPs coded, i.e. by the alleles. The alleles separator can be any character. If so, this must be specified in the 'sep' argument of compareSNPs function (see ?compareSNPs for more details).

- > data(SNPs)
- > head(SNPs)

|   | id  | casco  | sex b    | lood.pre | prote   | in snp1 | 0001  | snp100  | 002  | snp10  | 003  | snp1000  | 4 snp10005 | snp10006   | snp10007 |
|---|-----|--------|----------|----------|---------|---------|-------|---------|------|--------|------|----------|------------|------------|----------|
| 1 | 1   | 1      | Female   | 13.7     | 75640.  | 52      | TT    | -       | CC   | -      | GG   | G        | G GG       | AA         | CC       |
| 2 | 2   | 1      | Female   | 12.7     | 28688.  | 22      | TT    |         | AC   |        | GG   | G        | G AG       | AA         | CC       |
| 3 | 3   | 1      | Female   | 12.9     | 17279.  | 59      | TT    |         | CC   |        | GG   | G        | G GG       | AA         | CC       |
| 4 | 4   | 1      | Male     | 14.6     | 27253.  | 99      | CT    |         | CC   |        | GG   | G        | G GG       | AA         | CC       |
| 5 | 5   | 1      | Female   | 13.4     | 38066.  | 57      | TT    |         | AC   |        | GG   | G        | G GG       | AA         | CC       |
| 6 | 6   | 1      | Female   | 11.3     | 9872.   | 46      | TT    |         | CC   |        | GG   | G        | G GG       | AA         | CC       |
|   | snp | 10008  | snp10009 | snp1000  | 10 snp1 | 00011 s | np100 | 0012 si | np10 | 0013 : | snp1 | l00014 s | np100015 s | np100016 s | np100017 |
| 1 |     | CC     | AA       |          | ГТ      | GG      |       | GG      |      | AA     |      | AA       | GG         | GG         | TT       |
| 2 |     | CC     | AG       |          | ГТ      | GG      |       | CG      |      | AA     |      | AC       | GG         | GG         | CT       |
| 3 |     | CC     | AA       |          | ГТ      | CC      |       | GG      |      | AA     |      | CC       | GG         | GG         | TT       |
| 4 |     | CC     | AA       |          | ГТ      | GG      |       | GG      |      | AA     |      | AC       | GG         | GG         | TT       |
| 5 |     | CC     | AG       |          | ГТ      | GG      |       | GG      |      | AA     |      | AC       | GG         | GG         | CT       |
| 6 |     | CC     | AA       |          | ГТ      | GG      |       | GG      |      | AA     |      | AA       | GG         | GG         | TT       |
|   | snp | 100018 | snp1000  | 19 snp10 | 0020 sn | p100021 | snp1  | 100022  | snp  | 10002  | 3 sr | np100024 | snp100025  | snp100026  | ;        |
| 1 |     | TT     | (        | CC       | GG      | GG      |       | AA      |      | T'     | Т    | TT       | CC         | GC         |          |
| 2 |     | CT     | (        | CG       | GG      | GG      |       | AA      |      | A'     | Т    | TT       | CC         | GC         |          |
| 3 |     | TT     | (        | CC       | GG      | GG      |       | AA      |      | T'     | Т    | TT       | CC         | GC         |          |
| 4 |     | TT     | (        | CG       | GG      | GG      |       | AA      |      | T'     | Т    | CT       | CC         | GC         |          |
| 5 |     | CT     | (        | CG       | GG      | GG      |       | AA      |      | A'     | Т    | TT       | CC         | GC         |          |
| 6 |     | TT     | (        | CC       | GG      | GG      |       | AA      |      | T'     | Т    | TT       | CC         | GC         | ł        |
|   | snp | 100027 | snp1000  | 28 snp10 | 0029 sn | p100030 | snp1  | 100031  | snp  | 10003  | 2 sr | np100033 | snp100034  | snp100035  |          |
| 1 |     | CC     | (        | CC       | GG      | AA      |       | TT      |      | A      | A    | AA       | TT         | TI         |          |
| 2 |     | CG     | (        | CT       | GG      | AA      |       | TT      |      | A      | G    | AG       | TT         | TI         |          |
| 3 |     | CC     | (        | CC       | GG      | AA      |       | TT      |      | A      | A    | AA       | TT         | TI         |          |
| 4 |     | CC     |          | CT       | AG      | AA      |       | TT      |      | A      | G    | AG       | CT         | T          |          |
| 5 |     | CG     |          | CT       | GG      | AA      |       | TT      |      | A      | G    | AG       |            | T          |          |
| 6 |     | CC     | (        | CC       | GG      | AA      |       | TT      |      | A      | A    | AA       | TT         | <na></na>  | •        |

In this data frame there are some genetic and non-genetic data. Genetic variables are those whose names begin with 'snp'. If we want to summarize the first three SNPs by case control status:

GG 100.0| 0.0|0.0 1.000

\*\*\* casco = 1 \*\*\*

44 100.0%

snp10003

\*\*\* Missingness test \*\*\*

| snps     | <pre>p.value</pre> |
|----------|--------------------|
|          |                    |
| snp10001 | 1.000              |
| snp10002 | 1.000              |
| snp10003 | 0.756              |
|          |                    |

Note that all variables specified in the right hand side of the formula must be SNPs, i.e. variables whose levels or codes can be interpreted as genotypes (see setupSNPs function from SNPassoc package for more information). Separated summary tables by groups of cases and controls are displayed, and the last table corresponds to missingness test comparing non-available rates among groups.

If summarizing SNPs in the whole data set is desired, without separating by groups, leave the left side of formula in blank, as in compareGroups function. In this case, a single table is displayed and no missingness test is performed.

```
> res<-compareSNPs(~ snp10001 + snp10002 + snp10003, data=SNPs)
```

> res

| ******                           | *** Sumr | nary of                  | genetic da | ata (SNPs)                           | *******    |
|----------------------------------|----------|--------------------------|------------|--------------------------------------|------------|
| SNP                              | Ntyped   | MAF                      | Genotypes  | Genotyp                              | es.p HWE.p |
| snp10001<br>snp10002<br>snp10003 |          | 24.5%<br>28.0%<br>100.0% | CC CA AA   | 58.6 33.8<br>47.1 49.7<br>100.0  0.0 | 3.2 0.006  |

### 5 Using GUI

Once the compareGroups package is loaded, a Graphical User Interface (GUI) is displayed in response to typing cGroupsGUI (predimed). The GUI is meant to make it feasible for users who are unfamiliar with @ to construct bivariate tables. Note that, since version 3.0, it is necessary to specify an existing data.frame as input. So, for example, you can load the PREDIMED data by typing data(predimed) before calling 'cGroupsGUI' function.

In this section we illustrate, step by step, how to construct a bivariate table containing descriptives by groups from the *predimed* data using the GUI:

Table 1: Summary descriptives table by groups of 'Intervention group'

|                                 | Control<br>N=2042 | MedDiet + Nuts<br>N=2100 | MedDiet + VOO<br>N=2182 | p.overall |
|---------------------------------|-------------------|--------------------------|-------------------------|-----------|
| Age                             | 67.3 (6.28)       | 66.7 (6.02)              | 67.0 (6.21)             | 0.003     |
| Sex: Female                     | $1230 \ (60.2\%)$ | 1132 (53.9%)             | 1283~(58.8%)            | < 0.001   |
| Smoking:                        |                   |                          |                         | 0.444     |
| Never                           | 1282~(62.8%)      | 1259~(60.0%)             | 1351~(61.9%)            |           |
| Current                         | $270 \ (13.2\%)$  | 296 (14.1%)              | $292 \ (13.4\%)$        |           |
| Former                          | $490\ (24.0\%)$   | $545\ (26.0\%)$          | 539 (24.7%)             |           |
| Body mass index                 | 30.3(3.96)        | 29.7(3.77)               | 29.9(3.71)              | < 0.001   |
| Waist circumference             | 101 (10.8)        | 100 (10.6)               | 100 (10.4)              | 0.045     |
| Waist-to-height ratio           | 0.63(0.07)        | 0.62(0.06)               | 0.63(0.06)              | < 0.001   |
| Hypertension                    | 1711 (83.8%)      | $1738 \ (82.8\%)$        | $1786 \ (81.9\%)$       | 0.249     |
| Type-2 diabetes                 | 970 (47.5%)       | $950 \ (45.2\%)$         | 1082 (49.6%)            | 0.017     |
| Dyslipidemia                    | 1479 (72.4%)      | 1539 (73.3%)             | $1560 \ (71.5\%)$       | 0.423     |
| Family history of premature CHD | $462\ (22.6\%)$   | 460 (21.9%)              | 507 (23.2%)             | 0.581     |
| Hormone-replacement therapy     | $31\ (1.68\%)$    | 30 (1.61%)               | 36 (1.84%)              | 0.850     |
| MeDiet Adherence score          | 8.44 (1.94)       | 8.81 (1.90)              | 8.77(1.97)              | < 0.001   |
| follow-up to main event (years) | 4.09(1.74)        | 4.31(1.70)               | 4.64(1.60)              | < 0.001   |
| AMI, stroke, or CV Death        | 97~(4.75%)        | $70 \ (3.33\%)$          | 85 (3.90%)              | 0.064     |

Step 1. Browse for and select the data to be loaded. Valid file types include SPSS or  $\bigcirc$  format, CSV plain text file or a *data.frame* already existing in the Workspace. By default, the *predimed* example data is loaded when the GUI is opened.



Step 2. Choose the variables to be described (row-variables).



Step 3. If descriptives by group are desired (for example), move the variable *group* to the GUI top frame, making it the factor variable. To report descriptives for the whole sample (i.e., no groups), click on the 'none' button.



Step 4. It is possible to hide the first, last or no categories of a categorical row-variable. In this example, 'Male' levels will be hidden for Sex; conversely, all categories will be shown for other categorical variables.



Step 5. For each continuous variable, it is possible to specify whether to treat it as normal or non-normal or to transform a numerical variable into a categorical one. This last option can be interesting if a categorical variable has been coded as numerical. By default, all continuous variables are treated as normal. In this example, Waist circumference will be treated as non-normal, i.e., median and quartiles will be reported instead of mean and standard deviation.



Step 6. For each row-variable, it is possible to select a subset of individuals from the data set to be included. In this example, descriptives of Body mass index, Waist circumference and Waist-to-height ratio will be reported only for Female participants. Also, it is possible to specify criteria to select a subset of individuals to be included for all row-variables: type the logical condition (selection criteria of individuals) on the 'Global subset' window instead of 'Variable subset'.



Step 7. Some bivariate table characteristics can be set by clicking on 'Report options' from the main menu, such as to report descriptives (mean, frequencies, medians, etc.), display the p-trend, and show only relative frequencies.



Step 8. Finally, specify the bivariate table format (LATEX, CVS plain text or HTML). Clicking on 'print' will then display the bivariate table, as well as a summary (available data, etc.), on the console. The table can also be exported to the file formats listed.



### 5.1 Computing Odds Ratio

For a case-control study, it may be necessary to report the Odds Ratio between cases and controls for each variable. The table below contains Odds Ratios for each row-variable by hypertension status.

Table 2: Summary descriptives table by groups of 'Hypertension'

|                                 | OR                    | p.ratio | p.overall |
|---------------------------------|-----------------------|---------|-----------|
| Age                             | 1.04 [1.03;1.05]      | < 0.001 | < 0.001   |
| Sex: Female                     | 1.82 [1.60; 2.08]     | 0.000   | < 0.001   |
| Smoking:                        |                       |         | < 0.001   |
| Never                           | Ref.                  | Ref.    |           |
| Current                         | $0.43 \ [0.36; 0.51]$ | 0.000   |           |
| Former                          | 0.63 [0.54; 0.73]     | < 0.001 |           |
| Body mass index                 | 1.10 [1.08;1.12]      | < 0.001 | < 0.001   |
| Waist circumference             | 1.01 [1.01; 1.02]     | < 0.001 | < 0.001   |
| Waist-to-height ratio           | 71.5 [25.6;199]       | < 0.001 | < 0.001   |
| Type-2 diabetes                 | $0.25 \ [0.22; 0.29]$ | 0.000   | < 0.001   |
| Dyslipidemia                    | 1.75 [1.53; 2.01]     | < 0.001 | < 0.001   |
| Family history of premature CHD | 0.87 [0.75; 1.01]     | 0.070   | 0.074     |
| Hormone-replacement therapy     | 1.08 [0.64; 1.97]     | 0.773   | 0.856     |
| MeDiet Adherence score          | $0.96 \ [0.93;1.00]$  | 0.028   | 0.029     |
| follow-up to main event (years) | $0.94 \ [0.90; 0.98]$ | 0.002   | 0.001     |
| AMI, stroke, or CV Death        | $1.04 \ [0.75; 1.48]$ | 0.826   | 0.879     |

To build this table, as illustrated in the screens below, you would select *htn* variable (Hypertension status) as the factor variable, indicate 'no' category on the 'reference' pull-down menu, and mark 'Show odds/hazard ratio' in the 'Report Options' menu before exporting the table.



### 5.2 Computing Hazard Ratio

In a cohort study, it may be more informative to compute hazard ratio taking into account time-to-event.

Table 3: Summary descriptives table by groups of 'AMI, stroke, or CV Death'

|                     | No event<br>N=6072 | Event<br>N=252   | HR                    | p.ratio | p.overall |
|---------------------|--------------------|------------------|-----------------------|---------|-----------|
| Intervention group: |                    |                  |                       |         | 0.011     |
| Control             | 1945~(32.0%)       | 97~(38.5%)       | Ref.                  | Ref.    |           |
| MedDiet + Nuts      | 2030 (33.4%)       | 70~(27.8%)       | $0.66 \ [0.48; 0.89]$ | 0.008   |           |
| MedDiet + VOO       | 2097 (34.5%)       | 85 (33.7%)       | $0.70 \ [0.53; 0.94]$ | 0.018   |           |
| Age                 | 66.9(6.14)         | 69.4(6.65)       | 1.06 [1.04;1.09]      | < 0.001 | < 0.001   |
| Sex:                |                    |                  |                       |         | < 0.001   |
| Male                | $2528 \ (41.6\%)$  | 151~(59.9%)      | Ref.                  | Ref.    |           |
| Female              | 3544~(58.4%)       | $101 \ (40.1\%)$ | $0.49 \ [0.38; 0.63]$ | < 0.001 |           |

To generate this table, select *toevent* variable and *event*, indicating the time-to-event and the status, respectively, and select the event category for the status variable. Finally, as for Odds Ratios, mark 'Show odds/hazard ratio' in the 'Report Options' menu before exporting the table.



To return to the @ console, just close the GUI window.

### **Bibliography**

### References

- [1] Isaac Subirana, Héctor Sanz, and Joan Vila. Building bivariate tables: The compareGroups package for R. Journal of Statistical Software, 57(12):1–16, 2014. URL http://www.jstatsoft.org/v57/i12/.
- [2] RStudio and Inc. shiny: Web Application Framework for R, 2014. URL http://CRAN.R-project.org/package=shiny. R package version 0.9.1.
- [3] R. Estruch, E. Ros, J. Salas-Salvadó, MI. Covas, D. Corella, F. Arós, E. Gómez-Gracia, V. Ruiz-Gutiérrez, M. Fiol, J. Lapetra, RM. Lamuela-Raventos, L. Serra-Majem, X. Pintó, J. Basora, MA. Muñoz, JV. Sorlí, JA. Martínez, MA. Martínez-González, and PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med, 368(14): 1279–90, Apr 2013.
- [4] C. Genolini, B Desgraupes, and Lionel-Riou Franca. r2lh: R to LaTeX and HTML, 2011. URL http://CRAN.R-project.org/package=r2lh. R package version 0.7.
- [5] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57:289–300, 1995.
- [6] Juan R González, Lluís Armengol, Elisabet Guinó, Xavier Solé, , and Víctor Moreno. SNPassoc: SNPs-based whole genome association studies, 2012. URL http://CRAN.R-project.org/package=SNPassoc. R package version 1.8-5.
- [7] Jan Graffelman. Hardy Weinberg: Graphical tests for Hardy-Weinberg equilibrium, 2012. URL http://CRAN.R-project.org/package=HardyWeinberg. R package version 1.4.1.