Neural Tangent Kernel High-Dimensional Probability Analysis

Hooman Zolfaghari - Abdollah Zohrabi - Amirreza Velae

Sharif University of Technology

February 5, 2025

- Introduction
- 2 Analysis of Convergence and Generalization
- 3 Closer Look & Motivation
- 4 Similar works
- **5** Our Results and Observations
- **6** References

Introduction •00

- 2 Analysis of Convergence and Generalization
- Closer Look & Motivation
- 4 Similar works
- 6 Our Results and Observations

Emergence

• For $f_{\theta}: \mathbb{R}^d \to \mathbb{R}$ (NN), GD training induces:

$$\underbrace{\Theta(\theta)}_{\text{NTK}} \in \mathbb{R}^{n \times n}, \quad \Theta(\theta)_{i,j} := \nabla_{\theta} f_{\theta}(x_i)^{\top} \nabla_{\theta} f_{\theta}(x_j)$$

- **Dynamics** of training infinitely wide NNs \approx **convex optimization** in RKHS
- Asymptotic Property: $\Theta(\theta^{(0)}) \to \Theta^{\infty}$ as width $\to \infty$

Regression Case

$$\partial_t f_t = -\Theta^{\infty}(f_t - y)$$
 (grad flow ODE)
$$f_t = e^{-\Theta^{\infty}t} f_0 + \left(I - e^{-\Theta^{\infty}t}\right) y,$$

- Global convergence
- Linear rate for $\lambda_{\min}(\Theta^{\infty}) > 0$
- **Feature Learning Gap:** NTK regime \neq real NNs (finite-width trains via $\nabla\Theta \neq 0$)

- 1 Introduction
- 2 Analysis of Convergence and Generalization
- 3 Closer Look & Motivation
- 4 Similar works
- **5** Our Results and Observations
- 6 References

Focus Hypothesis set

- Research focused on more practical assumptions and particular settings
- Two-layer ReLU network $f_{\mathbf{W},\mathbf{a}}(\mathbf{x}) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \text{ReLU}(\mathbf{w}_r^{\top} \mathbf{x})$
- Least Squares Regression $C(W) := \frac{1}{2} \sum_{i=1}^{n} (y_i f_{\mathbf{W}, \mathbf{a}}(\mathbf{x}_i))^2$
- Resulting NTK gram matrix:

$$\mathbf{H}_{ij}^{\infty} = \mathbb{E}\mathbf{w} \sim \mathcal{N}(0, \mathbf{I}) \left[\mathbf{x}_{i}^{\top} \mathbf{x}_{j} \mathbb{I} \left\{ \mathbf{w}^{\top} \mathbf{x}_{i} \geq 0, \mathbf{w}^{\top} \mathbf{x}_{j} \geq 0 \right\} \right]$$
$$= \frac{\mathbf{x}_{i}^{\top} \mathbf{x}_{j} \left(\pi - \arccos(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}) \right)}{2\pi}, \quad \forall i, j \in [n].$$

• **Theorem**. If H^{∞} is positive definite $\lambda_0 := \lambda_{\min}(H^{\infty}) > 0$, GD converges to 0 training loss w.h.p. if m is sufficiently large $\Omega(\frac{n^6}{\lambda_n^4})$.

Convergence

- Eigen-decomposition $H^{\infty} = \sum_{i=1}^{n} \lambda_i v_i v_i^{\top}$.
- Suppose $\lambda_0 = \lambda_{\min}(H^{\infty}) > 0$, $\kappa = O\left(\frac{\varepsilon_0 \delta}{\sqrt{n}}\right)$, $m = \Omega\left(\frac{n^7}{\lambda_0^4 \kappa^2 \delta^4 \varepsilon^2}\right)$, $\eta = O\left(\frac{\lambda_0}{n^2}\right)$.
- **Theorem.** Then w.p. at least 1δ over the *random initialization*, for all k = 0, 1, 2, ... we have

$$\|y - u(k)\|_2 = \sqrt{\sum_{i=1}^n (1 - \eta \lambda_i)^{2k} (v_i^\top y)^2} \pm \varepsilon$$

• **Definition.** A distribution D over $\mathbb{R}^d \times \mathbb{R}$ is called " (λ_0, δ, n) -non-degenerate" if for n i.i.d. samples $\{(x_i, y_i)\}_{i=1}^n$ from D, with probability at least $1 - \delta$ we have

$$\lambda_{\min}(H^{\infty}) \geq \lambda_0 > 0.$$

- Fix a failure probability $\delta \in (0,1)$. Suppose our data $S = \{(x_i, y_i)\}_{i=1}^n$ are i.i.d. samples from a $(\lambda_0, \delta/3, n)$ -non-degenerate distribution D, and let $\kappa = O\left(\frac{\lambda_0 \delta}{n}\right)$, $m \ge \kappa^{-2} \operatorname{poly}(n, \lambda_0^{-1}, \delta^{-1})$.
- Loss function $\ell : \mathbb{R} \times \mathbb{R} \to [0,1]$ that is 1-Lipschitz in its first argument and satisfies $\ell(y,y) = 0$.

• **Theorem** Then w.p. at least $1 - \delta$ over the random initialization *and* the training samples, the network $f_{\mathbf{W}(k),a}$ trained by GD for $k \geq \Omega\left(\frac{1}{\eta \lambda_0} \log \frac{n}{\delta}\right)$ iterations has population loss:

$$L_D(f_{\mathbf{W}(k),a}) = \mathbb{E}_{(x,y) \sim D} \left[\ell \left(f_{\mathbf{W}(k),a}(x), y \right) \right] \leq \sqrt{\frac{2 y^{\top} \left(H^{\infty} \right)^{-1} y}{n}} + O\left(\sqrt{\frac{\log \left(\frac{n}{\lambda_0 \delta} \right)}{n}} \right)$$

10 / 28

Closer Look & Motivation

.00

- 2 Analysis of Convergence and Generalization
- 3 Closer Look & Motivation
- 4 Similar works
- **5** Our Results and Observations
- 6 References

$$L_D(f_{\mathbf{W}(k),a}) \leq \sqrt{\frac{2y^{\top}(H^{\infty})^{-1}y}{n}} + O\left(\sqrt{\frac{\log(\frac{n}{\lambda_0\delta})}{n}}\right)$$

- We can see that the bound depends on the Distribution $(x, y) \sim \mathcal{D}$ such that,
- $\mathbf{y}^{\top}(H^{\infty})^{-1}\mathbf{y} \le \|(H^{\infty})^{-1}\|\|\mathbf{y}\|_{2} = \frac{1}{\lambda_{\min}(H^{\infty})}\|\mathbf{y}\|_{2}$

Motivation

- What class of functions y = g(x) or distributions $(x, y) \sim \mathcal{D}$ are provably learnable?
- This depends on definition of Learnable (PAC, Agnostic-PAC etc.)
- We chose: The bound must converge to 0 as $n \to \infty$.
- The paper mentions the case of y = g(x) for some function g and gives a simple statement.
- We focus on bounding $\lambda_{\min}(H^{\infty})$.
- Then we propose a (relatively small) family of \mathcal{D} that is learnable. We are yet to prove the most general class.

Similar works •000

- Introduction
- 2 Analysis of Convergence and Generalization
- Closer Look & Motivation
- 4 Similar works
- 6 Our Results and Observations

Similar works

• Data scaling assumption. The data distribution P_X satisfies the following properties:

3
$$\int ||x - \int x' dP_X(x')||_2^2 dP_X(x) = \Omega(d).$$

• These are just scaling conditions on the data vector x or its centered counterpart $x - \mathbb{E}x$. We remark that the data can have any scaling, but in this paper we fix it to be of order d for convenience. We further assume the following condition on the data distribution.

Similar works 0000

• Lipschitz concentration assumption. The data distribution P_X satisfies the Lipschitz concentration property. Namely, for every Lipschitz continuous function $f: \mathbb{R}^d \to \mathbb{R}$, there exists an absolute constant c > 0 such that, for all t > 0,

$$\mathbb{P}\Big(|f(x) - \int f(x') dP_X(x')| > t\Big) \leq 2e^{-ct^2/\|f\|_{\text{Lip}}^2}.$$

• In general, this assumption covers the whole family of distributions that satisfy the log-Sobolev inequality with a dimension-independent constant (or distributions with log-concave densities).

Let $\{x_i\}_{i=1}^N$ be a set of i.i.d. data points from P_X , where P_X has zero mean and satisfies Assumptions 2.1 and 2.2. Let $K^{(L)}$ be the limiting NTK recursively defined in (9). Then, for any even integer constant $r \ge 2$, we have with probability at least

$$1 - Ne^{-\Omega(d)} - N^2 e^{-\Omega(dN^{-2/(r-0.5)})}$$

that

$$LO(d) \ge \lambda_{\min}(K^{(L)}) \ge \mu_r(\sigma)^2 \Omega(d),$$

where $\mu_r(\sigma)$ is the r-th Hermite coefficient of the ReLU function given by (8).

- Introduction
- 2 Analysis of Convergence and Generalization
- Closer Look & Motivation
- 4 Similar works
- **5** Our Results and Observations

Gershgorin Circle Theorem

Statement: Let $A = [a_{ij}]$ be an $n \times n$ matrix. The eigenvalues of A lie within the union of disks D_i in the complex plane, centered at a_{ii} with radius $\sum_{j \neq i} |a_{ij}|$:

$$D_i = \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \right\}.$$

Figure 1: Gershgorin Circle Theorem

University of Technology) Neural Tangent Kernel February 5, 2025 19 / 28

- Most papers and our main reference assume $||x_i|| = 1$ and $|y_i| \le 1$, for simplicity.
- The diagonal $H_{ii}^{\infty} = \frac{1}{2}$.
- Denote $\rho = \max_{i,j \neq i} |x_i^\top x_j|$. Considering $ft(t) = \frac{t(\pi \arccos(t))}{2\pi}$, we get:

$$H_{i,j\neq i}^{\infty} \le \frac{\rho(\pi - \arccos(\rho))}{2\pi} \le \frac{1}{2}$$

• We find the **Gershgorin circle** theorem and get

$$\lambda_{\min}(H^{\infty}) \ge \frac{1}{2} - (n-1)\frac{\rho(\pi - \arccos(\rho))}{2\pi}$$

Examples

- Thus, the bound depends on the maximum "correlation" between two distinct i.i.d x_i in a sample of size n. This will depend on the distribution of x on S^{d-1} .
- The problem is now bounding ρ such that:
- $x_i \sim \text{Unif}(S^{d-1})$:

$$\max_{1 \le i < j \le n} \left| \langle X_i, X_j \rangle \right| \le C \sqrt{\frac{\log(\frac{n}{\delta})}{d}}$$

• x_i are isotropic, mean-zero, sub-Gaussian vectors:

$$\max_{1 \le i < j \le n} |\langle X_i, X_j \rangle| \le C \sqrt{\frac{\log(\frac{n}{\delta})}{d}} \max_{1 \le i \le n} ||X_i||.$$

Learnable Distributions

- **y** has sub-Gaussian Coordinates and $\mathbb{E}[y_i^2] = 2C^2$
- So w.h.p. $||y||_2 \le C\sqrt{n}$
- we need $\lambda_0 ||y||_2 \le Cn$, so we want:

$$\lambda_0 \le C\sqrt{n} \Longrightarrow \frac{1}{2} - (n-1)\frac{\rho(\pi - \arccos(\rho))}{2\pi} \ge \frac{1}{C\sqrt{n}}$$

- For $0 \le \rho \le 1$ gives a computable bound. approximately $O(\frac{1}{n})$.
- So we need distributions on x_i such that $\sup_{i,j} |\langle x_i, x_j \rangle| = O(\frac{1}{n})$ for n i.i.d samples w.h.p.

Intuition

- We saw that the bound is suitable when x_i are almost orthogonal with high probability.
- Intuitively, we need x_i to lie on a manifold in \mathbb{R}^n such that they are distributed on it with low correlation. The data are sufficiently "spread out" in that manifold.

Weyl's Inequality provides bounds on the eigenvalues of the sum of two Hermitian matrices.

Statement: Let A and B be $n \times n$ Hermitian matrices with eigenvalues $\lambda_1 \le \cdots \le \lambda_n$ for A and $\mu_1 \leq \cdots \leq \mu_n$ for B. Then the eigenvalues ν_i of the matrix A + B satisfy:

$$\lambda_i + \mu_j \le v_{i+j-1} \le \lambda_i + \mu_j$$
 for all $1 \le i, j \le n$.

Define:

$$A = H - \mathbb{E}[H]$$

Note that it can be shown that:

$$\mathbb{E}[H] = (\frac{1}{2} - s_d)\mathbf{1} + s_d J$$

and hence $\lambda_{\min}(\mathbb{E}[H]) = \frac{1}{2} - s_d$.

 Now we can take adventage of Weyl's inequality to bound the smallest eigenvalue of H^{∞} via:

$$\lambda_{\min}(H^{\infty}) \ge \lambda_{\min}(A) + \lambda_{\min}(\mathbb{E}[H]) = \lambda_{\min}(A) + \frac{1}{2} - s_d$$

Main Observations

• Let $\mathbb{P}\left[|H - \mathbb{E}[H]|_{op} \ge t\right] \le \delta_t$. Then, with probability at least $1 - \delta_t$, we have:

$$\lambda_{\min}(H^{\infty}) \ge -t + \frac{1}{2} - s_d$$

or equivalently:

$$\lambda_{\min}(H^{\infty}) \ge \max\left\{-t + \frac{1}{2} - s_d, 0\right\}$$

• We know that $|H - \mathbb{E}[H]|_{op}$ grows linearly with N. Hence we can make a simple observation that one should have O(d) samples to have a non-zero lower bound on the smallest eigenvalue of H^{∞} .

Future Directions & Other Ideas

- 2 Analysis of Convergence and Generalization
- 3 Closer Look & Motivation
- 4 Similar works
- **5** Our Results and Observations
- **6** References