11. Topologie-Übung

Joachim Breitner

16. Januar 2008

Aufgabe 1

Seien X, Y Hausdorffräume.

Behauptung: Ist $f: X \to Y$ surjektiv, stetig und abgeschlossen, dann trägt Y die Quotiententopologie bezüglich f.

Zeige: $U \subseteq Y$ offen $\iff f^{-1}(U)$ ist offen.

 \Longrightarrow ": Klar, da f stetig.

Nach Definition ist $f(X \setminus f^{-1}(U)) \cap f^{-1}(U) = \emptyset$ (*). Es gilt: $X = (X \setminus f^{-1}(U)) \cup U$, also ist $f(X) = Y = f(X \setminus f^{-1}(U)) \cup f(f^{-1}(U)) = f(X \setminus f^{-1}(U)) \cup U$. Mit (*) folgt dann: $U = Y \setminus f(X \setminus f^{-1}(U))$ und damit offen.

Behauptung: Ist X kompakt und $f: X \to Y$ surjektiv und stetig, dann trägt Y die Quotiententopologie bezüglich f.

" \Longrightarrow ": Klar, da f stetig.

" —": Sei $U \subseteq Y$, so dass $f^{-1}(U)$ offen ist. Es genügt zu zeigen: $f(X \setminus f^{-1}(U))$ ist abgeschlossen, dann folgt die Aussage wie oben.

 $X \setminus f^{-1}(U)$ ist abgeschlossen und damit kompakt. Das Bild $f(X \setminus f^{-1}(U)) \subseteq Y$ ist auch kompakt und, da Y hausdorff'sch ist, auch abgeschlossen.

Aufgabe 2

Behauptung: Zwei Wege $\gamma, \delta: S^1 \to \mathbb{C}^{\times}$ sind homotop $\iff \chi(\gamma, 0) = \chi(\delta, 0)$.

"⇒": Siehe Bemerkung 2.4.15 in der Vorlesung.

$$\begin{array}{ccc} [0,1] & \xrightarrow{\exists !\tilde{\gamma},\tilde{\delta}} & \mathbb{R} \\ \downarrow^{\pi} & & \downarrow^{\pi:t\mapsto \left(\frac{\cos(2\pi t)}{\sin(2\pi t)}\right)} \\ S^1 & \xrightarrow{\frac{\gamma}{\|\gamma\|},\frac{\delta}{\|\delta\|}} & S^1 \end{array}$$

 $\tilde{\gamma},\,\tilde{\delta}$ sind homotop, denn $H:[0,1]\times[0,1]\to\mathbb{R},\,H(x,t)\coloneqq(1-t)\tilde{\gamma}(x)+t\tilde{\delta}(x)$ ist eine Homotopie. Also sind $\frac{\gamma}{\|\gamma\|},\frac{\delta}{\|\delta\|}$ homotop, denn $\tilde{H}:S^1\times[0,1]\to S^1,$ $\pi\circ H(\pi^{-1}(x),t)$ ist Homotopie, denn es ist $\tilde{H}(x,0)=\frac{\gamma}{\|\gamma\|}(x),\,\tilde{H}(x,1)=\frac{\delta}{\|\delta\|}(x),$ per Definition und $\tilde{H}(0,t)=\tilde{H}(1,t),$ denn:

$$\begin{split} H(1,t) - H(0,t) &= (1-t)\tilde{\gamma}(1) + t\tilde{\delta}(1) - ((1-t)\tilde{\gamma}(0) + t\tilde{\delta}(0)) \\ &= (1-t)(\tilde{\gamma}(1) - \tilde{\gamma}(0)) + t(\tilde{\delta}(1) - \tilde{\delta}(0)) \\ &= (1-t)\chi(\gamma,0) + t(\chi(\delta,0)) \\ &= \chi(\delta,0) \in \mathbb{Z} \end{split}$$

Also gilt $\tilde{H}(0,t) = \tilde{H}(1,t)$, da sin und cos 2π -periodisch sind.

Behauptung: Es gibt eine bijektive Abbildung $[S^1, S^1] \to \mathbb{Z}$.

 $\chi:[S^1,S^1]\to\mathbb{Z},\ [\gamma]\to\chi(\gamma,0)$ ist, wie oben gezeigt, injektiv und wohldefiniert. Surjektivität ist klar.

Aufgabe 3

Sei X ein lokalkompakter Hausdorffraum, $\mathcal{C}(X,y)$ versehen mit der kompaktoffen-Topologie.

Behauptung: $H: X \times [0,1] \to Y$ ist stetig $\iff t \mapsto H_t := (x \mapsto H(x,t))$ definiert eine stetige Abbildung $[0,1] \to \mathcal{C}(X,Y)$.

Subbasis der kompakt-offenen-Topologie sind die Mengen der Form $V_{K,U}\coloneqq\{f\in\mathcal{C}(X,Y)\mid f(K)\subseteq U\}$ für kompakte $K\subseteq X$ und offene $U\subseteq y$.

" —": Zeige H ist stetig. Sei $(x,t) \in X \times I$ und U eine offene Umgebung von $H(x,t) =: H_t(x)$. Zeige dazu: Es gibt eine Umgebung V von (x,t) mit $H(V) \subseteq U$.

Denn: Weil X lokalkompakt und hausdorff'sch ist, enthält jede Umgebung von $x \in X$ eine kompakte Umgebung (da der Schnitt einer kompakten Umgebung von x mit einer abgeschlossenen Umgebung von x wieder eine kompakte Umgebung von x ist). Da H_t stetig ist, hat x eine kompakte Umgebung K mit $H_t(K) \subseteq U$, also ist $H_t \in V_{K,U}$. $(t \mapsto H_t)$ ist stetig, also gibt es ein $\varepsilon > 0$, so dass das Bild von $(t - \varepsilon, t + \varepsilon) \subseteq V_{K,U}$. Setzte $V := K \times (t - \varepsilon, t + \varepsilon)$. Das erfüllt das Gewünschte: Für alle $(\tilde{x}, t) \in V$ gilt: $H(\tilde{x}, t) = H_t(\tilde{x}) \in H_t(K) \subseteq U$. Also ist H stetig.

" \Longrightarrow ": Zu zeigen: $\Phi: t \mapsto H_t$ ist stetig. Zeige: Sei $t \in I$ und o.B.d.A: $V_{K,U}$ eine offene Umgebung von $\Phi(t)$, dann gibt es eine Umgebung V von t mit $\Phi(V) \subseteq V_{K,U}$.

Denn: $\Phi(t) \in V_{K,U}$ heißt: $\Phi(t)(K) = H(K,t) \subseteq U$. H ist stetig, also findet sich für jedes $k \in K$ eine offene Umgebung W_k von k und $\varepsilon_k > 0$ mit $H(W_k \times (t - \varepsilon_k, t + \varepsilon_k)) \subseteq U$. $(W_k)_{k \in K}$ ist eine offene Überdeckung des Kompaktum K, aus der eine Teilüberdeckung W_{k_1}, \ldots, W_{k_n} ausgewählt werden kann. Setze $\varepsilon := \min\{\varepsilon_{k_1}, \ldots, \varepsilon_{k_n}\}$.

Es ist $\Phi(t-\varepsilon,t+\varepsilon)\subseteq V_{K,U}$, denn: Sei $r\in (t-\varepsilon,t+\varepsilon)$ und $k\in K$, dann gilt: $H(k,r)\in H(W_{k_i}\times (t-\varepsilon_{k_i},t+\varepsilon_{k_i}))\subseteq U$ für ein $i\in \{1,\ldots,n\}$. Also ist $H(K,r)\subseteq U$, und damit $H_r\in V_{K,U}$. r war beliebig, woraus die Behauptung folgt.

Aufgabe 4

Sei X kompakt, (Y, d) ein metrischer Raum.

Behauptung: Die kompakt-offene-Topologie auf C(X, y) wird induziert von der Metrik $d(f, g) := \sup\{d(f(x), g(X)) \mid x \in X\}.$

Zeige zuerst: Jedes $V_{K,U}$ ist offen bezüglich der Metrik d. Dazu zeige: Zu jedem $f \in V_{K,U}$ gibt es ein r > 0: $B_r(f) \subseteq V_{K,U}$.

 $f(K) \subseteq U$ und f(K) ist kompakt, also gibt es ein r > 0, so dass gilt: $f(K) \subseteq U' := \{y \in Y \mid d(y, f(K)) < r\} \subseteq U$.

Für $g \in B_r(f)$ und $k \in K$ gilt: $d(g(k), f(K)) \leq d(g(k), f(k)) \leq d(f, g) < r$. Also ist $g(k) \in U' \subseteq U$, damit ist $g(K) \subseteq U$ und somit $g \in V_{K,U}$. Also ist $V_{K,U}$ offen bezüglich d.

Zeige nun: Für jedes $f \in \mathcal{C}(X,Y)$ und jedes r > 0 ist $B_r(f)$ offen bezüglich der kompakt-offen-Topologie.

Zeige dazu: Für jedes $g \in B_r(f)$ gibt es eine bezüglich der kompakt-offen-Topologie offene Menge V mit $g \in V \subseteq B_r(f)$.

Es ist $d \coloneqq d(f,g) < r$. Setzte $\gamma \coloneqq \frac{r-d}{2}$. Für jedes $x \in X$ ist $B_{\frac{1}{2}\gamma}(g(x))$ offen in Y. Damit gibt es eine offene Umgebung W_x von x mit $g(W_x) \subseteq B_{\frac{1}{2}\gamma}(g(x))$. Es ist $g(\overline{W_x}) \subseteq B_{\gamma}(g(x))$. Da X kompakt ist und $(W_x)_{x \in X}$ eine offene Überdeckung von X sind, gibt es eine offene Teilüberdeckung $\{W_{x_1}, \ldots, W_{x_n}\}$ aus $(W_x)_{x \in X}$. Setzte $V \coloneqq V_{\overline{W_{x_1}}, B_{\gamma}(g(x_1))} \cap \cdots \cap V_{\overline{W_{x_n}}, B_{\gamma}(g(x_n))}$.

 $V\subseteq B_r(f)$, denn: Sei $h\in V$ und $x\in x$. Nach Konstruktion gibt es ein $i\in\{1,\ldots,n\}$, so dass $x\in W_{x_i}$ ist. $g(x)\in g(W_{x_i})\subseteq B_{\frac{1}{2}}\gamma(g(x_i))$, also $d(g(x),g(x_i))<\frac{\gamma}{2}$.

Wegen $h \in V \subseteq V_{\overline{W_{x_i}}, B_{\gamma}(g(x_i))}$ gilt $h(x) \in h(\overline{W_{x_i}}) \subseteq B_{\gamma}(g(x_i))$, also $d(h(x), g(x_i)) < \gamma$. Also gilt: $d(h(x), f(x)) \le d(h(X), g(x_i)) + d(g(x_i), g(x)) + d(g(x), f(x)) < \gamma + \frac{\gamma}{2} + d = \frac{r-d}{2} + \frac{r-d}{4} + d = \frac{3r+d}{4} < r$, also $h \in B_r(f)$.