Top-down Chart Parsing: the Earley algorithm Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2021/22

Parsing so far

- We can formulate parsing as
 - Top-down: begin with the start symbol, try to *produce* the input string to be parsed
 - Bottom up: begin with the input, and try to reduce it to the start symbol
- Another aspect of a parser is its directionality. Two choices are:
 - Directional: parses processes the input left to right (right to left is also possible, but rarely used)
 - Non-directional: order is not important, typically require all input to be in memory before processing

 $\begin{array}{ccc} NP & \rightarrow & Det \ N \\ VP & \rightarrow & V \ NP \\ VP & \rightarrow & V \\ Det & \rightarrow & a \\ Det & \rightarrow & the \\ N & \rightarrow & cat \\ N & \rightarrow & dog \\ V & \rightarrow & bites \end{array}$

 \rightarrow NP VP

the cat bites a dog

S

the cat bites a dog

 \rightarrow NP VP $NP \rightarrow Det N$ $VP \rightarrow V NP$ $VP \ \to \ V$ Det \rightarrow a Det \rightarrow the $N \rightarrow cat$ $N \quad \to \ dog$ \rightarrow bites

the cat bites a dog

the cat bites a dog

Earley algorithm

- Earley algorithm is a top down (and left-to-right) parsing algorithm (earley1970)
- It allows arbitrary CFGs
- Keeps record of constituents that are
 predicted using the grammar (top-down)
 in-progress with partial evidence
 completed based on input seen so far
 at every position in the input string
- Time complexity is $O(n^3)$

Earley chart entries (states or items)

Earley chart entries are CF rules with a 'dot' on the RHS representing the state of the rule

- $A \rightarrow \bullet \alpha[i, i]$ predicted without any evidence (yet)
- $A \rightarrow \alpha \bullet \beta[i, j]$ partially matched
- A $\rightarrow \alpha\beta$ [i, j] completed, the non-terminal A is found in the given span

Earley algorithm: an informal sketch

- 1. Start at position 0, predict S
- 2. Predict all possible states (rules that apply)
- 3. Read a word
- 4. Update the table, advance the dot if possible
- 5. Go to step 2
- 6. If we have a completed S production at the end of the input, the input it recognized

5/14

Earley algorithm: three operations

Predictor adds all rules that are possible at the given state

Completer adds states from the earlier chart entries that match the completed state to the chart entry being processed, and advances their dot

Scanner adds a completed state to the next chart entry if the current category is a POS tag, and the word matches

Earley parsing example (chart[0])

0 8	she ₁ saw ₂	a	3 duck 4
state	rule	position	operation
0	$\gamma \to ullet S$	[0,0]	initialization
1	$S \to \bullet NP VP$	[0,0]	predictor
2	$S \rightarrow \bullet Aux NP VP$	[0,0]	predictor
3	$NP \rightarrow ullet Det N$	[0,0]	predictor
4	$NP \rightarrow \bullet NP PP$	[0,0]	predictor
5	$NP \rightarrow \bullet Prn$	[0,0]	predictor

Note: the chart[0] is independent of the input.

 \rightarrow NP VP \rightarrow Aux NP VP $NP \rightarrow Det N$ $NP \rightarrow Prn$ $NP \rightarrow NP PP$ $VP \rightarrow V NP$ $VP \rightarrow V$ $VP \rightarrow VP PP$ $PP \rightarrow Prp NP$ \rightarrow duck \rightarrow park \rightarrow duck \rightarrow ducks \rightarrow saw $Prn \rightarrow she \mid her$ $Prp \rightarrow in \mid with$ Det \rightarrow a | the $Aux \rightarrow does \mid has$

Earley parsing example (chart[1])

o sh	ne ₁ saw ₂	a	duck 4
state	rule	position	operation
6	Prn \rightarrow she \bullet	[0,1]	scanner
7	$NP \rightarrow Prn \bullet$	[0,1]	completer
8	$S \ \to NP \ \bullet VP$	[0,1]	completer
9	$NP \rightarrow NP \bullet PP$	[0,1]	completer
10	$\mathrm{VP} \to \bullet \mathrm{V} \mathrm{NP}$	[1,1]	predictor
11	$\mathrm{VP} o ullet \mathrm{V}$	[1,1]	predictor
12	$\mathrm{VP} \to \bullet \mathrm{VP} \mathrm{PP}$	[1,1]	predictor
13	$PP \rightarrow \bullet Prp NP$	[1,1]	predictor

```
\rightarrow NP VP
       \rightarrow Aux NP VP
NP \rightarrow Det N
NP \rightarrow Prn
NP \rightarrow NP PP
VP \rightarrow V NP
VP \rightarrow V
VP \ \to VP \ PP
PP \rightarrow Prp NP
       \rightarrow duck
N \rightarrow park
       \rightarrow duck
    \rightarrow ducks
       \rightarrow saw
Prn \rightarrow she | her
Prp \rightarrow in \mid with
Det \rightarrow a | the
Aux \rightarrow does \mid has
```

Earley parsing example (chart[2])

o sh	ne ₁ saw ₂	a	3 duck 4
state	rule	position	operation
14	$V \rightarrow saw \bullet$	[1,2]	scanner
15	$\mathrm{VP} \ \to \mathrm{V} \bullet \mathrm{NP}$	[1,2]	completer
16	$\mathrm{VP} o \mathrm{V} ullet$	[1,2]	completer
17	$S \ \to NP \ VP \ \bullet$	[0,2]	completer
18	$NP \rightarrow ullet Det N$	[2,2]	predictor
19	$NP \rightarrow \bullet NP PP$	[2,2]	predictor
20	$NP \rightarrow \bullet Prn$	[2,2]	predictor

```
\rightarrow NP VP
       \rightarrow Aux NP VP
NP \rightarrow Det N
NP \rightarrow Prn
NP \rightarrow NP PP
VP \rightarrow V NP
VP \rightarrow V
VP \ \to VP \ PP
PP \rightarrow Prp NP
       \rightarrow duck
N \rightarrow park
       \rightarrow duck
       \rightarrow ducks
       \rightarrow saw
Prn \rightarrow she | her
Prp \rightarrow in \mid with
Det \rightarrow a | the
Aux \rightarrow does \mid has
```

Earley parsing example (chart[3])

(₎ sh	e ₁ saw	₂ a	3 duck 4
	state	rule	positio	on operation
	21 22	$\begin{array}{c} \operatorname{Det} \ \to \operatorname{a} \bullet \\ \operatorname{NP} \ \to \operatorname{Det} \bullet \operatorname{I} \end{array}$	[2,3] N [2,3]	scanner completer

```
\rightarrow NP VP
      \rightarrow Aux NP VP
NP \rightarrow Det N
NP \rightarrow Prn
NP \rightarrow NP PP
VP \rightarrow V NP
VP \rightarrow V
VP \ \to VP \ PP
PP \rightarrow Prp NP
      \rightarrow duck
N \rightarrow park
      \rightarrow duck
    \rightarrow ducks
       \rightarrow saw
Prn \rightarrow she | her
Prp \rightarrow in \mid with
Det \rightarrow a | the
Aux \rightarrow does \mid has
```

Earley parsing example (chart[4])

o s	he ₁ saw	2 a	3 duck 4
state	rule	position	operation
23	$N \to duck \bullet$	[3,4]	scanner
24	$V \ \to duck \bullet$	[3,4]	scanner
25	$NP \rightarrow Det N \bullet$	[2,4]	completer
26	$VP \rightarrow V NP \bullet$	[1,4]	completer
27	$S \ \to NP \ VP \ \bullet$	[0,4]	completer

```
\rightarrow NP VP
      \rightarrow Aux NP VP
NP \rightarrow Det N
NP \rightarrow Prn
NP \rightarrow NP PP
VP \rightarrow V NP
VP \rightarrow V
VP \ \to VP \ PP
PP \rightarrow Prp NP
      \rightarrow duck
N \rightarrow park
   \rightarrow duck
    \rightarrow ducks
       \rightarrow saw
Prn \rightarrow she | her
Prp \rightarrow in \mid with
Det \rightarrow a | the
Aux \rightarrow does \mid has
```

Earley parsing: summary

- Complexity (asymptotic) is the same as CKY
 - time complexity : $O(n^3)$
 - space complexity: $O(n^2)$
- Our example shows recognition, we need to maintain back links for parsing
- Again, Earley chart stores a parse forest compactly, but extracting all trees may require exponential time

Summary

- The early parser is a top-down parser with bottom-up filtering (or, you can also view it the other way around)
- The parser improves over a backtracking parser by
 - dynamic programming: not re-computing the subtrees
 - filtering: not generating hypotheses (predictor) that cannot match at a given input position
- It can process any CFG (no need for CNF)
- There is a nice relation between CKY and Earley: you can view Earley as binarizing the grammar (converting to CNF) 'on the fly'

Summary

- The early parser is a top-down parser with bottom-up filtering (or, you can also view it the other way around)
- The parser improves over a backtracking parser by
 - dynamic programming: not re-computing the subtrees
 - filtering: not generating hypotheses (predictor) that cannot match at a given input position
- It can process any CFG (no need for CNF)
- There is a nice relation between CKY and Earley: you can view Earley as binarizing the grammar (converting to CNF) 'on the fly'

Next:

- Dependency parsing
- Reading suggestion: Jurafsky and Martin (2009, draft chapter 14)

An exercise

Construct the CKY and Earley charts for the sentence below

The duck she saw is in the park

Recommended grammar:

Acknowledgments, references, additional reading material

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.