Problema G Geografia dos Rios

Ao estudar a geografia dos rios do mundo, você se pergunta: quando dois rios se unem, quem escolhe qual vai ser o nome do rio a partir dessa junção? De fato, a resposta é simples: com a união de dois rios, o nome passa a ser o nome daquele que tinha maior volume de água. Dado que todos os rios eventualmente se unem e desaguam no mar, um problema interessante é calcular, dado o nome de cada nascente, o nome do rio final que desagua no mar.

Formalmente, são dadas N nascentes de rios. Para cada nascente, você tem uma quantidade de litros de água l_i que nasce dela. Além disso, pares de rios se encontram (como uma árvore binária), até todos se juntarem e desaguarem no mar. Quando dois rios se encontram, a quantidade de litros de água é somada, e o nome do rio passa a ser o nome do rio que tinha mais água, ou, em caso de empate, o de menor índice. O nome inicial de cada nascente é seu índice.

O que você quer saber é o nome do rio que por fim deságua no mar. Porém, estamos em época de chuvas! Você precisa processar Q operações. Em cada uma delas, uma chuva aconteceu que causa com que em uma nascente n_i agora nasce q_i litros **a mais** de água (e isso será mantido para as operações futuras). Depois de cada operação, calcule o nome do rio que desagua no mar.

Entrada

A primeira linha contém um inteiro N ($1 \le N \le 10^5$): o número de nascentes.

A segunda linha contém N inteiros l_i $(1 \le l_i \le 10^9)$: o número de litros de água que nascem na nascente i.

As N-1 linhas seguintes descrevem como os rios se unem. Na i-ésima delas, dois inteiros a_i, b_i $(1 \le a_i, b_i < N+i)$ indicam que os rios a_i e b_i se unem para formar o rio N+i (cujo volume de água será a soma dos volumes de a_i e b_i , e nome será o nome do que tiver mais volume de água). É garantido que os valores a_i e b_i são válidos, isto é, $a_i \ne b_i$ e nenhum deles já foi unido previamente na entrada.

A próxima linha contém um inteiro Q ($1 \le Q \le 10^5$), o número de operações.

Seguem Q linhas com as operações: a i-ésima linha contém dois inteiros n_i e q_i ($1 \le n_i \le N$ e $1 \le q_i \le 10^9$), significando que na nascente representada pelo ponto n_i agora nasce q_i litros **a mais** de água.

Saída

Imprima, na primeira linha, o nome do rio que inicialmente desagua no mar. Em seguida, imprima Q linhas: após cada operação, o nome do rio que desagua no mar.

Exemplo de entrada 1	Exemplo de saída 1
3	2
1 4 4	3
1 2	2
4 3	
2	
3 2	
1 2	