Network Computing courses

Maël Auzias

ENSIBS - UBS

October 2014

Figure: teaching.auzias.net

Course details

Objectives

- How do computers communicate?
- What are the mechanisms under an HTTP request or a telegram message?
- Networks are all around us, better study them!

Figure: netpremacy.com

Course details

more awesome pictures at THEMETAPICTURE.COM

Evaluation

- Short test at the beginning of every lesson (5 min)?
- Project
- Final exam (1 hour)
- All same weighting

Material

 Slides available at teaching.auzias.net (github too)

Presentation Outline

- Introduction
 - Definitions and presentation
 - Network classification
 - HTTP request/response example
 - Models overview (OSI and TCP/IP)
- 2 Lower layers
 - Physical
 - Data Link
 - Network
 - Transport
- Upper layer
 - Session
 - Presentation
 - Application

Definitions and presentation Network classification HTTP request/response example Models overview (OSI and TCP/IP)

Definitions

• Network: an interconnected group or system

- Network: an interconnected group or system
- Internet: world wide interconnected system of networks RFC791 (1981)

- Network: an interconnected group or system
- Internet: world wide interconnected system of networks RFC791 (1981)
- IP: Internet Protocol that provides the functions necessary to deliver a package of bits from a source to a destination over a network

- Network: an interconnected group or system
- Internet: world wide interconnected system of networks RFC791 (1981)
- IP: Internet Protocol that provides the functions necessary to deliver a package of bits from a source to a destination over a network
- (world wide) Web: network consisting of a collection of Internet websites using HTTP

- Network: an interconnected group or system
- Internet: world wide interconnected system of networks RFC791 (1981)
- IP: Internet Protocol that provides the functions necessary to deliver a package of bits from a source to a destination over a network
- (world wide) Web: network consisting of a collection of Internet websites using HTTP
- HTTP: Hypertext Transfer Protocol Protocol, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)

• Router: network hardware providing routing services

- Router: network hardware providing routing services
- Routing: algorithm processed to decide where to forward a packet

- Router: network hardware providing routing services
- Routing: algorithm processed to decide where to forward a packet
- Forwarding: action of moving a packet from an NIC to another

- Router: network hardware providing routing services
- Routing: algorithm processed to decide where to forward a packet
- Forwarding: action of moving a packet from an NIC to another
- NIC: Network Interface Card
- Switch (hub): network hardware that connect systems together using packet switching

- Router: network hardware providing routing services
- Routing: algorithm processed to decide where to forward a packet
- Forwarding: action of moving a packet from an NIC to another
- NIC: Network Interface Card
- Switch (hub): network hardware that connect systems together using packet switching
- Packet switching: forward-like method regardless of the content (destination-based)

 Node (network): any entity that can send/receive packets from a network through a NIC

- Node (network): any entity that can send/receive packets from a network through a NIC
- Client: computer able to send requests to a server

- Node (network): any entity that can send/receive packets from a network through a NIC
- Client: computer able to send requests to a server
- Request: application message destined for a server (order)

- Node (network): any entity that can send/receive packets from a network through a NIC
- Client: computer able to send requests to a server
- Request: application message destined for a server (order)
- Server: computer able to respond a client's requests

- Node (network): any entity that can send/receive packets from a network through a NIC
- Client: computer able to send requests to a server
- Request: application message destined for a server (order)
- Server: computer able to respond a client's requests
- Request: application message destined for a client (result)

- Node (network): any entity that can send/receive packets from a network through a NIC
- Client: computer able to send requests to a server
- Request: application message destined for a server (order)
- Server: computer able to respond a client's requests
- Request: application message destined for a client (result)
- Fat client: application where most functions are processed by the client itself

- Node (network): any entity that can send/receive packets from a network through a NIC
- Client: computer able to send requests to a server
- Request: application message destined for a server (order)
- Server: computer able to respond a client's requests
- **Request: application message** destined for a client (*result*)
- Fat client: application where most functions are processed by the client itself
- Thin client: application where most functions are carried out on a central server

• BAN: Body Area Network

• BAN: Body Area Network

• PAN: Personal Area Networks

• BAN: Body Area Network

• PAN: Personal Area Networks

• **(W)LAN:** (Wireless) Local Area Networks (home, office, school or airport)

- BAN: Body Area Network
- PAN: Personal Area Networks
- (W)LAN: (Wireless) Local Area Networks (home, office, school or airport)
- MAN: Metropolitan Area Networks, can cover a whole city

- BAN: Body Area Network
- PAN: Personal Area Networks
- (W)LAN: (Wireless) Local Area Networks (home, office, school or airport)
- MAN: Metropolitan Area Networks, can cover a whole city
- WAN: Wide Area Networks cover a broad area (Internet)

Figure: upload.wikimedia.org

 Point-to-point: two entities directly connected to each other (tunnel).

¹Hong Kong protesters use a mesh network to organize (♠) (♣) (♣) (♣) (♣) (♠)

- Point-to-point: two entities directly connected to each other (tunnel).
- Ring: data go around the ring, unidirectional way network.

¹Hong Kong protesters use a mesh network to organize (♠) (♣) (♣) (♣) (♣) (♠)

- Point-to-point: two entities directly connected to each other (tunnel).
- Ring: data go around the ring, unidirectional way network.
- Mesh: all nodes cooperate in the distribution of data in the network¹.

- Point-to-point: two entities directly connected to each other (tunnel).
- Ring: data go around the ring, unidirectional way network.
- Mesh: all nodes cooperate in the distribution of data in the network¹.
- Star: all messages go through the same central node, reducing network failure.

- Point-to-point: two entities directly connected to each other (tunnel).
- Ring: data go around the ring, unidirectional way network.
- Mesh: all nodes cooperate in the distribution of data in the network¹.
- Star: all messages go through the same central node, reducing network failure.
- Fully connected: all nodes are connected to all other nodes.

- Point-to-point: two entities directly connected to each other (tunnel).
- Ring: data go around the ring, unidirectional way network.
- Mesh: all nodes cooperate in the distribution of data in the network¹.
- Star: all messages go through the same central node, reducing network failure.
- Fully connected: all nodes are connected to all other nodes.
- **Line:** bidirectional link between two nodes. Node can only send packet going through its neighbors.

- Point-to-point: two entities directly connected to each other (tunnel).
- Ring: data go around the ring, unidirectional way network.
- Mesh: all nodes cooperate in the distribution of data in the network¹.
- Star: all messages go through the same central node, reducing network failure.
- Fully connected: all nodes are connected to all other nodes.
- **Line:** bidirectional link between two nodes. Node can only send packet going through its neighbors.
- Bus: all nodes are connected to the same media. Only one at a time can send packet, that all other receives.

- Point-to-point: two entities directly connected to each other (tunnel).
- Ring: data go around the ring, unidirectional way network.
- Mesh: all nodes cooperate in the distribution of data in the network¹.
- Star: all messages go through the same central node, reducing network failure.
- Fully connected: all nodes are connected to all other nodes.
- **Line:** bidirectional link between two nodes. Node can only send packet going through its neighbors.
- Bus: all nodes are connected to the same media. Only one at a time can send packet, that all other receives.
- Tree: hierarchical topology, such as, i.e., binary tree.

¹Hong Kong protesters use a mesh network to organize (♠) (♣) ♠ ♦ > (♠) ♦ ♦ (♦)

Bonus

Figure: Disconnected MANET illustration [2]

Bonus

Figure: Store-carry-and-forward [1]

HTTP request/response example

Enter getbootstrap.com in your browser

Definitions and presentation Network classification HTTP request/response example Models overview (OSI and TCP/IP)

HTTP request/response example

Enter getbootstrap.com in your browser

Source	Destination	Protocol	Length	Info
192.168.0.48				
208.67.222.222	192.168.0.48	DNS	108	Standard query response 0x4797 A 192.30.252.154 A 192.30.252.153

Figure: DNS request/response

HTTP request/response example

Enter getbootstrap.com in your browser

Source	Destination	Protocol	Length	Info													
192.168.0.48																	
208.67.222.222	192.168.0.48	DNS	108	Standard	query	response	0x4797	Α	192	. 30.	. 252	154	Α	192.	30.	252	. 153

Figure: DNS request/response

Source	Destination	Protocol	Length Info
127.0.0.1			74 36159 > http [SYN] Seq=0 Win=43690 Len=0 MSS=65495 SACK_PERM=1 TSval=12
127.0.0.13	127.0.0.1	TCP	74 http > 36159 [SYN, ACK] Seq=0 Ack=1 Win=43690 Len=0 MSS=65495 SACK_PERM
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=1 Ack=1 Win=43776 Len=0 TSval=122257 TSecr=12225
127.0.0.1	127.0.0.13	HTTP	356 GET /index.html HTTP/1.1
127.0.0.13	127.0.0.1	TCP	66 http > 36159 [ACK] Seq=1 Ack=291 Win=44800 Len=0 TSval=122259 TSecr=122
127.0.0.13	127.0.0.1	HTTP	354 HTTP/1.1 200 OK (text/html)
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=291 Ack=289 Win=44800 Len=0 TSval=122259 TSecr=1
127.0.0.1	127.0.0.13	HTTP	357 GET /favicon.ico HTTP/1.1
127.0.0.13	127.0.0.1	HTTP	565 HTTP/1.1 404 Not Found (text/html)
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=582 Ack=788 Win=45952 Len=0 TSval=122269 TSecr=1

Figure: HTTP request/response

How does messages reach destination?

Figure: acenk90.files.wordpress.com

More like this...

How does it work? From signal to application...

Figure: mycomsats.com

Presentation Outline

- Introduction
 - Definitions and presentation
 - Network classification
 - HTTP request/response example
 - Models overview (OSI and TCP/IP)
- 2 Lower layers
 - Physical
 - Data Link
 - Network
 - Transport
- Upper layer
 - Session
 - Presentation
 - Application

From analog/logical signals up to messages

Introduction Lower layers Upper layers Conclusion Physical Data Link Network Transport Introduction Lower layers Upper layers Conclusion Physical Data Link Network Transport

Introduction Lower layers Upper layers Conclusion Physical Data Link Network Transport

Presentation Outline

- Introduction
 - Definitions and presentation
 - Network classification
 - HTTP request/response example
 - Models overview (OSI and TCP/IP)
- 2 Lower layers
 - Physical
 - Data Link
 - Network
 - Transport
- Upper layers
 - Session
 - Presentation
 - Application

References

In 6th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAml'12), number 7656 in LNCS, pages 395–402, Vitoria-Gasteiz, Spain, December 2012. Springer.

Frédéric Guidec, Nicolas Le Sommer, and Yves Mahéo.
Opportunistic Software Deployment in Disconnected Mobile Ad Hoc Networks.

International Journal of Handheld Computing Research, 1(1):24–42, 2010.

