

Stochastic Processes

DTMCs, TPM, Transition Graph, Chapman–Kolmogorov Equation, Strong Markov Property, Hitting and Recurrence Times

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

18 March 2025

Discrete-Time Markov Chain Taking Finitely Many Values

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (DTMC)

Consider a process $\{X_n\}_{n=1}^{\infty}$ taking values in a discrete set \mathcal{X} .

Then, $\{X_n\}_{n=1}^{\infty}$ is called a discrete time Markov chain (DTMC) on \mathcal{X} if

$$(X_1,\ldots,X_{n-1})\perp (X_{n+1},X_{n+2},\ldots)\mid X_n$$
 for any $n\in\mathbb{N}$,

Discrete-Time Markov Chain Taking Finitely Many Values

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (DTMC)

Consider a process $\{X_n\}_{n=1}^{\infty}$ taking values in a discrete set \mathcal{X} .

Then, $\{X_n\}_{n=1}^{\infty}$ is called a discrete time Markov chain (DTMC) on \mathcal{X} if

$$(X_1,\ldots,X_{n-1})\perp (X_{n+1},X_{n+2},\ldots)\mid X_n$$
 for any $n\in\mathbb{N},$

i.e., for any $n, L \in \mathbb{N}$, $n < t_1 < \cdots < t_L$, $x_1, \ldots, x_{n-1} \in \mathbb{R}$, $y_1, \ldots, y_L \in \mathbb{R}$, and $x \in \mathbb{R}$.

$$\mathbb{P}(\underbrace{X_1 = x_1, \dots, X_{n-1} = x_{n-1}}_{\text{before } n}, \underbrace{X_{t_1} = y_1, \dots, X_{t_L} = y_L}_{\text{ofter } n} \mid X_n = x)$$

$$= \mathbb{P}(X_1 = x_1, \dots, X_{n-1} = x_{n-1} \mid X_n = x) \cdot \mathbb{P}(X_{t_1} = y_1, \dots, X_{t_L} = y_L \mid X_n = x).$$

Consistency of FDDs for a DTMC

Lemma (Consistency of FDDs for a DTMC)

Consider a DTMC $\{X_n\}_{n=1}^{\infty}$ on a discrete state space \mathcal{X} .

Then, for all $m, n \in \mathbb{N}$ with m < n, integral time instants

$$t_1 < t_2 < \dots < t_m < t_{m+1} < \dots < t_n$$
, and $x_1, \dots, x_m \in \mathbb{R}$,

$$F_{X_{t_1},...,X_{t_m}}(x_1,...,x_m) = F_{X_{t_1},...,X_{t_m},X_{t_{m+1}},...,X_{t_n}}(x_1,...,x_m,\infty,...,\infty).$$

Transition Probability Matrix

Definition (Transition Probability Matrix)

Let $\{X_n\}_{n=1}^{\infty}$ be a DTMC with discrete state space \mathcal{X} .

The transition probability matrix (TPM) of the Markov chain at any time $n \in \mathbb{N}$ is a matrix $P(n) = [P_{i,j}(n)]_{i,j \in \mathcal{X}}$ defined as

$$P_{i,j}(n) = \mathbb{P}(X_{n+1} = j \mid X_n = i), \quad i,j \in \mathcal{X}.$$

Transition Probability Matrix

- For each $i \in \mathcal{X}$, $\sum_{i \in \mathcal{X}} P_{i,j}(n) = 1$.
- A matrix with non-negative entries and row sums equal to 1 is called a row stochastic matrix
- P(n) is a row stochastic matrix for every n
- Each row of $P(n) = \mathsf{PMF}$ on \mathcal{X}
- For instance,

$$\sum_{j\in\mathcal{X}} j^2 P_{i,j}(n) = \mathbb{E}[X_{n+1}^2 \mid X_n = i],$$

where \mathbb{E} above is w.r.t. row i of P(n)

- P(n) has a right eigenvector with eigenvalue 1
- $P(n) \cdot \mathbf{1} = \mathbf{1}$, where $\mathbf{1}$ is the all-ones vector

Time Homogeneous DTMC

Definition (Time Homogeneous DTMC

A DTMC with discrete state space $\mathcal X$ and TPMs $\{P(n)\}_{n=1}^\infty$ is called time homogeneous if

$$P(n) = P(n+1) \quad \forall n \in \mathbb{N}.$$

In this case, we simply write *P* to denote the common TPM.

Stationarity of Conditional FDDs for Time Homogeneous DTMCs

Proposition (Stationarity of Conditional FDDs for Time Homogeneous DTMCs)

Let $\{X_n\}_{n=1}^{\infty}$ be a time-homogeneous DTMC on a discrete state space \mathcal{X} . Conditioned on the initial state, any finite dimensional joint PMF of $\{X_n\}_{n=1}^{\infty}$ is stationary, i.e., for all $m, n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \mathcal{X}$,

$$\mathbb{P}\left(\bigcap_{i=2}^n\{X_i=x_i\}\;\middle|\;\{X_1=x_1\}\right)=\mathbb{P}\left(\bigcap_{i=2}^n\{X_{m+i}=x_i\}\;\middle|\;\{X_{m+1}=x_1\}\right).$$

As a consequence, all conditional FDDs, conditioned on the initial state, are stationary.

Stationarity of Conditional FDDs for Time Homogeneous DTMCs

Proposition (Stationarity of Conditional FDDs for Time Homogeneous DTMCs)

Let $\{X_n\}_{n=1}^{\infty}$ be a time-homogeneous DTMC on a discrete state space \mathcal{X} . Conditioned on the initial state, any finite dimensional joint PMF of $\{X_n\}_{n=1}^{\infty}$ is stationary, i.e., for all $m, n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \mathcal{X}$,

$$\mathbb{P}\left(\bigcap_{i=2}^n\{X_i=x_i\}\;\middle|\;\{X_1=x_1\}\right)=\mathbb{P}\left(\bigcap_{i=2}^n\{X_{m+i}=x_i\}\;\middle|\;\{X_{m+1}=x_1\}\right).$$

As a consequence, all conditional FDDs, conditioned on the initial state, are stationary.

Corollary

k-step transition probabilities of a time-homogeneous DTMC are stationary for all $k \in \mathbb{N}$, i.e.,

$$\mathbb{P}(X_k = y \mid X_1 = x) = \mathbb{P}(X_{k+n} = y \mid X_n = x) \qquad \forall x, y \in \mathcal{X}, \ k, n \in \mathbb{N}.$$

Definition (Transition Graph)

Consider a time-homogeneous DTMC $\{X_n\}_{n=1}^{\infty}$ on a discrete state space \mathcal{X} and TPM P. The transition graph of the DTMC is a weighted, directed graph, say $G = (\mathcal{X}, \mathcal{E}, \mathbf{w})$, with

• node set of the graph = \mathcal{X} ,

Definition (Transition Graph)

Consider a time-homogeneous DTMC $\{X_n\}_{n=1}^{\infty}$ on a discrete state space \mathcal{X} and TPM P. The transition graph of the DTMC is a weighted, directed graph, say $G = (\mathcal{X}, \mathcal{E}, \mathbf{w})$, with

- node set of the graph $= \mathcal{X}$,
- $\mathcal{E} = \{(i,j) \in \mathcal{X} \times \mathcal{X} : P_{i,j} > 0\}$, and

Definition (Transition Graph)

Consider a time-homogeneous DTMC $\{X_n\}_{n=1}^{\infty}$ on a discrete state space \mathcal{X} and TPM P. The transition graph of the DTMC is a weighted, directed graph, say $G = (\mathcal{X}, \mathcal{E}, \mathbf{w})$, with

- node set of the graph = X,
- $\mathcal{E} = \{(i,j) \in \mathcal{X} \times \mathcal{X} : P_{i,j} > 0\}$, and
- $\mathbf{w} = \{w_{i,j} : (i,j) \in \mathcal{X} \times \mathcal{X}\}$, with $w_{i,j} = P_{i,j}$.

Definition (Transition Graph)

Consider a time-homogeneous DTMC $\{X_n\}_{n=1}^{\infty}$ on a discrete state space \mathcal{X} and TPM P. The transition graph of the DTMC is a weighted, directed graph, say $G = (\mathcal{X}, \mathcal{E}, \mathbf{w})$, with

- node set of the graph = \mathcal{X} ,
- $\mathcal{E} = \{(i,j) \in \mathcal{X} \times \mathcal{X} : P_{i,j} > 0\}$, and
- $\mathbf{w} = \{w_{i,j} : (i,j) \in \mathcal{X} \times \mathcal{X}\}$, with $w_{i,j} = P_{i,j}$.

Definition (Transition Graph)

Consider a time-homogeneous DTMC $\{X_n\}_{n=1}^{\infty}$ on a discrete state space \mathcal{X} and TPM P. The transition graph of the DTMC is a weighted, directed graph, say $G = (\mathcal{X}, \mathcal{E}, \mathbf{w})$, with

- node set of the graph = \mathcal{X} ,
- $\mathcal{E} = \{(i,j) \in \mathcal{X} \times \mathcal{X} : P_{i,j} > 0\}$, and
- $\mathbf{w} = \{w_{i,j} : (i,j) \in \mathcal{X} \times \mathcal{X}\}$, with $w_{i,j} = P_{i,j}$.

$$\mathcal{X} = \{-1, 0, 1\}$$

$$P = \begin{pmatrix} 1 - p & p & 0 \\ 1 - p & 0 & p \\ 0 & 1 - p & p \end{pmatrix}$$

Chapman-Kolmogorov Equation - 1

Theorem (Chapman-Kolmogorov, Part 1)

Let $\{X_n\}_{n=1}^{\infty}$ be a time-homogeneous DTMC on a discrete state space \mathcal{X} and TPM P. For any $i,j\in\mathcal{X}$ and $k\in\mathbb{N}$, let

$$p_{i,j}^{(k)} := \mathbb{P}(X_{k+1} = j \mid X_1 = i).$$

Further, let $P^{(k)} = [p_{i,j}^{(k)}]_{i,j \in \mathcal{X}}$. Then,

- 1. $P^{(k+\ell)} = P^{(k)} \cdot P^{(\ell)}$ for all $k, \ell \in \mathbb{N}$.
- 2. $P^{(k)} = P^k$ for all $k \in \mathbb{N}$.

Chapman-Kolmogorov Equation - 2

Theorem (Chapman-Kolmogorov, Part 2)

Let $\{X_n\}_{n=1}^{\infty}$ be a time-homogeneous DTMC on a discrete state space \mathcal{X} and TPM P. For each $n \in \mathbb{N}$, let π_n denote the unconditional PMF of X_n . Then,

$$\pi_{n+1} = \pi_n \cdot P \qquad \forall n \in \mathbb{N}.$$

- Suppose that $\{X_n\}_{n=1}^{\infty}$ is a time-homogeneous DTMC
- Markov property: For any $n \in \mathbb{N}$,

$$\mathbb{P}(X_{n+1}=i_{n+1}\mid X_n=i_n,\cap_{\ell=1}^{n-1}\{X_\ell=x_\ell\})=\mathbb{P}(X_{n+1}=i_{n+1}\mid X_n=i_n).$$

That is,
$$X_{n+1} \perp (X_1, ..., X_{n-1}) \mid X_n$$

• Does the above Markov property hold when n is replaced with a random variable τ ?

- Suppose that $\{X_n\}_{n=1}^{\infty}$ is a time-homogeneous DTMC
- Markov property: For any $n \in \mathbb{N}$,

$$\mathbb{P}(X_{n+1}=i_{n+1}\mid X_n=i_n,\cap_{\ell=1}^{n-1}\{X_{\ell}=x_{\ell}\})=\mathbb{P}(X_{n+1}=i_{n+1}\mid X_n=i_n).$$

That is,
$$X_{n+1} \perp (X_1, \ldots, X_{n-1}) \mid X_n$$

• Does the above Markov property hold when n is replaced with a random variable τ ?

YES, when τ is a stopping time! This is captured by the strong Markov property.

Lemma (Strong Markov Property)

Let $\{X_n\}_{n=1}^{\infty}$ be a time-homogeneous DTMC on a discrete state space $\mathcal X$ with TPM P. Let τ be an $\mathbb N$ -valued stopping time w.r.t the process $\{X_n\}_{n=1}^{\infty}$. Then, for all $i,j\in\mathcal X$

$$\mathbb{P}(X_{\tau+1}=j\mid X_{\tau}=i,\underbrace{\bigcap_{\ell=1}^{\tau-1}\{X_{\ell}=x_{\ell}\}})=\mathbb{P}(X_{\tau+1}=j\mid X_{\tau}=i)=P_{i,j}.$$

Lemma (Strong Markov Property)

Let $\{X_n\}_{n=1}^{\infty}$ be a time-homogeneous DTMC on a discrete state space \mathcal{X} with TPM P. Let τ be an \mathbb{N} -valued stopping time w.r.t the process $\{X_n\}_{n=1}^{\infty}$. Then, for all $i, j \in \mathcal{X}$

$$\mathbb{P}(X_{\tau+1}=j\mid X_{\tau}=i,\underbrace{\bigcap_{\ell=1}^{\tau-1}\{X_{\ell}=x_{\ell}\}})=\mathbb{P}(X_{\tau+1}=j\mid X_{\tau}=i)=P_{i,j}.$$

Corollary

For any $k \in \mathbb{N}$,

$$\mathbb{P}(X_{\tau+k}=j\mid X_{\tau}=i)=P_{i,j}^{k}.$$

$$\mathbb{P}(\underbrace{X_1=i_1,\ldots,X_{\tau-1}=i_{\tau-1}}_{\text{before }\tau},\,X_{\tau}=i_{\tau},\,X_{\tau+1}=i_{\tau+1})$$

$$\mathbb{P}(\underbrace{X_1 = i_1, \dots, X_{\tau-1} = i_{\tau-1}}_{\text{before } \tau}, X_{\tau} = i_{\tau}, X_{\tau+1} = i_{\tau+1})$$

$$= \sum_{\tau=0}^{\infty} \mathbb{P}(X_1 = i_1, \dots, X_{\tau-1} = i_{\tau-1}, X_{\tau} = i, X_{\tau+1} = j, \tau = n)$$

$$\mathbb{P}(\underbrace{X_1 = i_1, \dots, X_{\tau-1} = i_{\tau-1}}_{\text{before } \tau}, X_{\tau} = i_{\tau}, X_{\tau+1} = i_{\tau+1})$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_1 = i_1, \dots, X_{\tau-1} = i_{\tau-1}, X_{\tau} = i, X_{\tau+1} = j, \tau = n)$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_1 = i_1, \dots, X_{n-1} = i_{n-1}, X_n = i, X_{n+1} = j, \tau = n)$$

$$\mathbb{P}(\underbrace{X_{1} = i_{1}, \dots, X_{\tau-1} = i_{\tau-1}}_{\text{before } \tau}, X_{\tau} = i_{\tau}, X_{\tau+1} = i_{\tau+1})$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_{1} = i_{1}, \dots, X_{\tau-1} = i_{\tau-1}, X_{\tau} = i, X_{\tau+1} = j, \tau = n)$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_{1} = i_{1}, \dots, X_{n-1} = i_{n-1}, X_{n} = i, X_{n+1} = j, \tau = n)$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_{1} = i_{1}, \dots, X_{n-1} = i_{n-1}, X_{n} = i, \tau = n) \cdot \mathbb{P}(X_{n+1} = j | X_{n} = i)$$

$$\mathbb{P}(\underbrace{X_{1} = i_{1}, \dots, X_{\tau-1} = i_{\tau-1}}_{\text{before } \tau}, X_{\tau} = i_{\tau}, X_{\tau+1} = i_{\tau+1})$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_{1} = i_{1}, \dots, X_{\tau-1} = i_{\tau-1}, X_{\tau} = i, X_{\tau+1} = j, \tau = n)$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_{1} = i_{1}, \dots, X_{n-1} = i_{n-1}, X_{n} = i, X_{n+1} = j, \tau = n)$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(X_{1} = i_{1}, \dots, X_{n-1} = i_{n-1}, X_{n} = i, \tau = n) \cdot \mathbb{P}(X_{n+1} = j | X_{n} = i)$$

$$= \mathbb{P}(\underbrace{X_{1} = i_{1}, \dots, X_{\tau-1} = i_{\tau-1}}_{\text{before } \tau}, X_{\tau} = i_{\tau}) \cdot P_{i,j}.$$

Hitting and Recurrence Times

Hitting Times

Definition (Hitting Times)

Let $\{X_n\}_{n=1}^{\infty}$ be DTMC on a discrete state space \mathcal{X} with TPM P.

Fix $y \in \mathcal{X}$.

Let $au_{\mathtt{y}}^{(0)}\coloneqq 0$, and

$$au_{\mathbf{y}}^{(k)} = \inf\{n > au_{\mathbf{y}}^{(k-1)} : X_n = \mathbf{y}\}, \qquad k \in \mathbb{N}.$$

For each $k \in \mathbb{N}$, the random variable $\tau_y^{(k)}$ is called the "kth hitting time of state y".

Exercise:

For each $k \in \mathbb{N}$, verify that $\{\tau_{y}^{k} = n\} \in \sigma(X_{1}, \dots, X_{n})$ for all n.

An Important Observation Regarding $\tau_{y}^{(k)}$)

Lemma (An Important Observation Regarding $au_{v}^{(k)}$

For each $k \in \mathbb{N}$, suppose that $\mathbb{P}(\tau_{\mathbf{v}}^{(k)} < +\infty) = 1$.

Then, the history up to $\tau_y^{(k)}$ is independent of the future unconditionally, i.e.,

$$(X_1,\ldots,X_{\tau_y^{(k)}-1}) \perp (X_{\tau_y^{(k)}+1},X_{\tau_y^{(k)}+2},\ldots).$$