| Name:                                 | July 14, 2017  |
|---------------------------------------|----------------|
| · · · · · · · · · · · · · · · · · · · | 0 41, 11, 2011 |

## FINITE MATH: EXAM 2

## ADRIAN PĂCURAR

- The Honor Code is in effect for this exam. All work must be your own.
- Please turn off all cellphones or any other electronic devices.
- Calculators are NOT allowed.
- You are NOT required to compute the answers, thought simplifying may help for certain problems.
- There are **80 points available** for you to try. You may choose to attempt any of the problems, or all the problems. There is no penalty for getting a wrong answer.
- The exam will be **graded out of 70**. You can NOT get more than 70 points on this exam.
- You are allowed a single-sided 8 by 11 formula sheet for the exam; the formula sheet must be handwritten. You must turn in your formula sheet with your exam.
- The exam lasts 1 hour and 20 minutes.

**Problem 1.** Consider the Venn diagram on the right of a sample space S with **equally likely outcomes**. For each region, the diagram lists the number of outcomes inside that region.





- b) (2pt) Find P(B). Simplify the fraction to lowest terms.
- d) (2pt) Find  $P(A \cap B)$ . Simplify the fraction to lowest terms.
- e) (2pt) Are the events A and B independent?
- f) (1pt) Compute  $P(A \cup B \cup C)'$ .

**Problem 2.** A coin is flipped 10 times in a row, and the resulting H/T sequence is recorded.

- a) (1pt) How many possible outcomes are there in the sample space?
- b) (2pt) What is the probability of getting exactly 5 Heads?
- c) (2pt) What is the probability of getting at least one Tail?

| <b>Problem 3.</b> A classroom is split into two separate groups, $G_1$ and $G_2$ . There are 3 men |
|----------------------------------------------------------------------------------------------------|
| and 5 women in $G_1$ , and there are 3 men and 13 women in $G_2$ . The teacher picks one of the    |
| two groups at random, with $P(G_1) = 0.3$ and $P(G_2) = 0.7$ , then randomly selects a student     |
| from that group.                                                                                   |

a) (3pt) What is the probability that the chosen student is a woman?

b) (1pt) Given that the selected group is  $G_1$ , what is the probability that the student is a woman?

c) (4pt) The selected student is a woman. What is the probability that she is from the first group?

**Problem 4.** (3pt) You have 5 people,  $\{A, B, C, D, E\}$ , seated in a **single row** at random. What is the probability that person E ends up sitting next to person A? For example, some different such arrangements are BAEDC, BEADC, CDAEB, CDEAB, etc...

**Problem 5.** (2pt) The sample space  $S = \{1, 2, 3, 4\}$  contains equally likely outcomes. Consider the events  $A = \{1, 2\}$  and  $B = \{1, 3\}$ . Are A and B independent?

**Problem 6.** The probabilities for an unbalanced six-sided die are given below:

| Outcome     | 1   | 2   | 3   | 4   | 5   | 6   |
|-------------|-----|-----|-----|-----|-----|-----|
| Probability | 0.1 | 0.1 | 0.3 | 0.2 | 0.1 | 0.2 |

You **roll two** of these unbalanced dice, and observe the sum of the numbers that come up. For example, (2,1) and (1,2) are different outcomes for which the sum is 3.

- a) (2pt) What is the probability that the sum of the two numbers is 1?
- b) (2pt) What is the probability that the sum of the two numbers is 2?
- c) (3pt) What is the probability that the sum of the two numbers is 4?
- d) (3pt) What is the probability that the sum of the two numbers is 7?

**Problem 7.** A child forms **3-letter words** by picking letters from  $\{A, B, C, D, E\}$  at random. **Letters may be repeated**.

- a) (1pt) What is the probability that the word starts with A? Simplify your answer.
- b) (1pt) What is the probability that "DA" appears somewhere in the word? (the other letter can be anything)
- c) (1pt) What is the probability that the word begins with a consonant, has a vowel for the middle letter, and ends with consonant?

| <b>Problem 8.</b> A mathematics professor assigns two problems for homework and knows that the probability of a student solving the first problem is 0.50, the probability of solving the second is 0.60, and the probability of solving both is 0.30.  a) (1pt) Are the events independent?                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b) (2pt) A randomly chosen student has solved the second problem. What is the probability he also solves the first problem?                                                                                                                                                                                                                                        |
| c) (2pt) A randomly chosen student has solved the first problem. What is the probability she also solves the second problem?                                                                                                                                                                                                                                       |
| <b>Problem 9.</b> (4pt) A child has 1 Red and 4 White marbles in his left pocket, and 2 Red and 2 White marbles in his right pocket. He transfers a marble (at random) from his left pocket to his right pocket. After the transfer, he picks (at random) a marble from his right pocket. What is the probability of picking a White marble from his right pocket? |
|                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Problem 10.</b> (2pt) A crate contains 20 total apples, 4 of which are spoiled. You select 4 apples at random. What is the probability that at least one apple is bad?                                                                                                                                                                                          |
| <b>Problem 11.</b> (2pt) A child has eight cards numbered $\{2, 3, 4, 5, \dots, 9\}$ . He creates <b>4-digit</b> numbers by randomly picking 4 of the 8 cards, and arranging them in some order. What is                                                                                                                                                           |

the probability that the number he obtains is smaller than 5000?



**Problem 13.** (2pt) A sample space contains 100 equally likely outcomes. Given that  $n(E \setminus F) = 40$   $n(F \setminus E) = 10$   $n(E \cap F) = 10$ 

are the events E and F independent?

**Problem 14.** Three inspectors look at a critical component of a rocket. Their probabilities for finding a defect are 0.95, 0.90, and 0.80. Each inspector operates independently of the rest.

- a) (2pt) What is the probability that all three inspectors find a defect?
- b) (3pt) What is the probability that **none** of the inspectors find a defect?
- c) (3pt) What is the probability that **only one** of the inspectors finds a defect (and the other two don't)?

**Problem 15.** (4pt) A bag contains 3 Red and 2 White marbles. A second bag contains an unknown number of Red marbles, and 1 White marbles



A marble is drawn at random from each bag, and the probability of getting two marbles of the same color is 8/15. How many red marbles are in the second bag?

**Problem 16.** (3pt) Suppose P(A) = 0.6 and  $P(A \cap B) = 0.3$ . If the events A and B are known to be independent, what is P(B)?

**Problem 17.** (3pt) A single card is drawn at random from six different decks (so you end up with six cards total). What is the probability that all six cards are different?

**Problem 18.** (2pt) A small grocery store has 7 cartons of milk left, 2 of which are sour. If you are going to buy the **second** carton of milk sold that day at random, what is the probability of selecting a sour carton of milk?