U. N. C	Alumno:	2021
Facultad de Ingeniería	Legajo N°	TA

ELECTROTECNIA: Rec SEGUNDO PARCIAL

- **1.-** Un transformador de 13200/400 V tiene una u_{cc} =5% y una corriente primaria I_n =4 A, si la P_{cc} =350 W, determine:(a) U_{cc} [V] e I_{cc} =mannente; (b) R_{cc} , Z_{cc} y el C_{cc} y el C_{cc} y el C_{cc} y C_{cc} y el C_{cc
- **2.-** Un motor de c.c. excitación derivación tiene una tensión de alimentación de 120 V, la potencia que absorbe de la red es de 3,6 kW, cuando gira en un régimen a 1000 r.p.m. presenta un rendimiento del 80%, y la resistencia del devanado de excitación es 30Ω . Las pérdidas por rozamiento y ventilación son de 0,2kW. Determinar: a) Fuerza contraelectromotriz. b) Resistencia del devanado del inducido. c) Par útil en el eje. **TOTAL 30p**
- **3.-** Se realiza una medición de potencia trifásica equilibrada empleando el método de Aarón. Los vatímetros utilizados son: vatímetro 1, alcance amperométrico $0 \div 2,5$ A, alcance voltimétrico $0 \div 240$ V, escala de 150 divisiones; vatímetro 2: alcance amperométrico $0 \div 5$ A, alcance voltimétrico $0 \div 300$ V, escala de 65 divisiones. La desviación de la aguja del vatímetro 1 es de 75 divisiones, el vatímetro 2 alcanza las 60 divisiones. Determinar:(a) las constantes de ambos instrumentos; (b) la potencia activa trifásica; (c) la potencia reactiva trifásica; (d) el f.d.p.; (e) tipo de carga.-

U. N. C	Alumno:	2021
Facultad de Ingeniería	Legajo N°	TA

ELECTROTECNIA: Rec SEGUNDO PARCIAL

- **1.-** Un transformador de 13200/400 V tiene una $u_{cc}=5\%$ y una corriente primaria $I_n=4$ A, si la $P_{cc}=350$ W, determine:(a) U_{cc} [V] e $I_{ccpermanente}$; (b) R_{cc} , X_{cc} , Z_{cc} y el cos ϕ_{cc} ; (c) u_R %, u_X % y ΔU % (40 ptos.)
- **2.-** Un motor de c.c. excitación derivación tiene una tensión de alimentación de 120 V, la potencia que absorbe de la red es de 3,6 kW, cuando gira en un régimen a 1000 r.p.m. presenta un rendimiento del 80%, y la resistencia del devanado de excitación es 30Ω . Las pérdidas por rozamiento y ventilación son de 0,2kW. Determinar: a) Fuerza contraelectromotriz. b) Resistencia del devanado del inducido. c) Par útil en el eje. **TOTAL 30p**
- **3.-** Se realiza una medición de potencia trifásica equilibrada empleando el método de Aarón. Los vatímetros utilizados son: vatímetro 1, alcance amperométrico $0 \div 2,5$ A, alcance voltimétrico $0 \div 240$ V, escala de 150 divisiones; vatímetro 2: alcance amperométrico $0 \div 5$ A, alcance voltimétrico $0 \div 300$ V, escala de 65 divisiones. La desviación de la aguja del vatímetro 1 es de 75 divisiones, el vatímetro 2 alcanza las 60 divisiones. Determinar:(a) las constantes de ambos instrumentos; (b) la potencia activa trifásica; (c) la potencia reactiva trifásica; (d) el f.d.p.; (e) tipo de carga.-

U. N. C	Alumno:	2021
Facultad de Ingeniería	Legajo N°	TA

ELECTROTECNIA: Rec SEGUNDO PARCIAL

- **1.-** Un transformador de 13200/400 V tiene una $u_{cc}=5\%$ y una corriente primaria $I_n=4$ A, si la $P_{cc}=350$ W, determine:(a) U_{cc} [V] e $I_{ccpermanente}$; (b) R_{cc} , X_{cc} , Z_{cc} y el cos ϕ_{cc} ; (c) u_R %, u_X % y ΔU % (40 ptos.)
- **2.-** Un motor de c.c. excitación derivación tiene una tensión de alimentación de 120 V, la potencia que absorbe de la red es de 3,6 kW, cuando gira en un régimen a 1000 r.p.m. presenta un rendimiento del 80%, y la resistencia del devanado de excitación es 30Ω . Las pérdidas por rozamiento y ventilación son de 0,2kW. Determinar: a) Fuerza contraelectromotriz. b) Resistencia del devanado del inducido. c) Par útil en el eje. **TOTAL 30p**
- **3.-** Se realiza una medición de potencia trifásica equilibrada empleando el método de Aarón. Los vatímetros utilizados son: vatímetro 1, alcance amperométrico $0 \div 2,5$ A, alcance voltimétrico $0 \div 240$ V, escala de 150 divisiones; vatímetro 2: alcance amperométrico $0 \div 5$ A, alcance voltimétrico $0 \div 300$ V, escala de 65 divisiones. La desviación de la aguja del vatímetro 1 es de 75 divisiones, el vatímetro 2 alcanza las 60 divisiones. Determinar:(a) las constantes de ambos instrumentos; (b) la potencia activa trifásica; (c) la potencia reactiva trifásica; (d) el f.d.p.; (e) tipo de carga.- **TOTAL 30p**