Chapter 18 Interactive Notebook for Instructors

Ram Gopal, Dan Philps, and Tillman Weyde

2022

Contents

Load packages	2
Get the data and pre-process	2
Read data	2
Partition Data	2
Linear Regression Model	3
Compute functions for Residual Mean, MSE, RMSE and R_2	3
Performance of the Linear Regression Model	4
Polynomial Regression Model	4
Generate the dataset	4
Create training, validation and test sets	5
Run the Polynomial Regression	6
Evaluate the results	6
Ridge Regression	6
Basic Model	6
Hyper-parameter tuning	7
Run the Optimized Ridge Regression	7
Evaluate Performance of the optimized Ridge Regression	8
Lasso Regression	9
Basic Model	9
Hyper-parameter tuning	9
Run the Optimized Lasso Regression	9
Performance of the Optimized Lasso Regression	10
Determine non-zero coefficients	11

Neural Network	11
Large network	11
Smaller network	12
Regression Tree	12
Basic Tree	12
Tree with a maximum depth of 2	13
Harder problem	14
Data preparation	14
Build and Evaluate Models	14
Load packages library(caret)	
## Loading required package: ggplot2	
## Loading required package: lattice	
library(rattle)	
## Loading required package: tibble	
## Loading required package: bitops	
<pre>## Rattle: A free graphical interface for data science with R. ## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd. ## Type 'rattle()' to shake, rattle, and roll your data.</pre>	

Get the data and pre-process

Read data

```
dataset <- read.csv('diabetes.csv', header = TRUE)
dim(dataset)</pre>
```

[1] 442 11

Partition Data

• Note the use of sample() function and sapply() to simplify the coding. Could be useful to explain to students the use of apply() functions in R.

```
set.seed(123456)
N = nrow(dataset)
cut1 = floor(0.6*N)
cut2 = floor(0.8*N)
index = sample(1:N)
train_index = index[1:cut1]
val_index = index[(cut1+1):cut2]
test_index = index[(cut2+1):N]
df_train = dataset[train_index,]
df_val = dataset[val_index,]
df_test = dataset[test_index,]
sapply(list(df_train,df_val,df_test),nrow)
```

[1] 265 88 89

Linear Regression Model

• For this and the subsequent chapter, we will make use of the caret package that provides a uniform approach to work with a variety of predictive models. Also note the use of :: notation. This is used to indicate the package that contains the function that follows. This is helpful as often different packages may use the same function names.

```
df_train[-11] = scale(df_train[-11])
lr = caret::train(target ~ ., method='lm',data = df_train)
train_pred = predict(lr,newdata = df_train)
val_pred = predict(lr,newdata = scale(df_val[-11]))
test_pred = predict(lr,newdata = scale(df_test[-11]))
```

Compute functions for Residual Mean, MSE, RMSE and R_2

```
rm <- function(actual,pred) {
   return(mean(abs(actual-pred)))
}
mse <- function(actual,pred) {
   return(mean((pred-actual)^2))
}
rmse <- function(actual,pred) {
   return(mse(pred,actual)^0.5)
}
R_2 <- function(actual,pred) {
   mean_v = rep(mean(actual),length(actual))
   SST = sum((actual-mean_v)^2)
   SSE = sum((actual-pred)^2)
   return(1-(SSE/SST))
}</pre>
```

Performance of the Linear Regression Model

```
res = data.frame()
w = rm(df_train$target,train_pred)
x = mse(df_train$target,train_pred)
y = rmse(df_train$target,train_pred)
z = R 2(df train$target,train pred)
res = rbind(res,c("Train",w,x,y,z))
w = rm(df_val$target,val_pred)
x = mse(df_val$target,val_pred)
y = rmse(df_val$target,val_pred)
z = R_2(df_val$target,val_pred)
res = rbind(res,c("Validation",w,x,y,z))
w = rm(df_test$target,test_pred)
x = mse(df_test$target,test_pred)
y = rmse(df_test$target,test_pred)
z = R_2(df_test$target,test_pred)
res = rbind(res,c("Test",w,x,y,z))
colnames(res) = c("Data", "Residual Mean", "MSE", "RMSE", "R_2")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	Residual Mean	MSE	RMSE	R_2
Train Validation Test	41.73 47.85 43.83	2655 3548 3023	59.57	0.5749 0.3137 0.4676

Polynomial Regression Model

• Column names of the original data set.

```
colnames(df_train)

## [1] "age" "sex" "bmi" "bp" "s1" "s2" "s3" "s4"
## [9] "s5" "s6" "target"
```

Generate the dataset

• The strategy is to Write a formula for squared and interaction terms, and use the formula to generate a new dataset that contains the polynomial terms.

```
# Degree 2 polynomial feature generation function

pf2_transform <- function(df, target_name='target') {</pre>
```

```
formula_pf2 <- as.formula(paste(target_name, '~ .^2 +',</pre>
                                     paste('poly(',
                                           colnames(df)[-c(1)],
                                          ',2, raw=TRUE)[, 2]',
                                           collapse = ' + ')
                              )
   output <- model.matrix(formula pf2, data = df)</pre>
  # Rewrite column names for readability
   colnames_pf2 <- c("1",</pre>
                     colnames(df)[-1],
                                                       # exclude target
                     paste0(colnames(df)[-1],"^2"), # include squares
                     colnames(output)[-(1:(length(df)*2-1))]) # include interactions
    colnames(output) <- colnames_pf2</pre>
  # Convert to dataframe
  output_df <- data.frame(output)</pre>
  # Exclude intercept column
  output_df[,1] <- NULL</pre>
  return(output_df)
}
```

Create training, validation and test sets

• Create the training data set

```
train_sc_pf2 <- pf2_transform(df_train, target_name = "target")</pre>
train_sc_pf2$target= df_train$target
train_sc_pf2 = train_sc_pf2[-20]
print(colnames(train_sc_pf2))
## [1] "sex"
                 "bmi"
                           "bp"
                                     "s1"
                                               "s2"
                                                         "s3"
                                                                   "s4"
## [8] "s5"
                 "s6"
                           "target" "sex.2"
                                                                   "s1.2"
                                               "bmi.2"
                                                         "bp.2"
                 "s3.2"
## [15] "s2.2"
                           "s4.2"
                                     "s5.2"
                                               "s6.2"
                                                         "age.sex" "age.bmi"
## [22] "age.bp" "age.s1"
                           "age.s2" "age.s3"
                                               "age.s4"
                                                         "age.s5" "age.s6"
## [29] "sex.bmi" "sex.bp"
                           "sex.s1" "sex.s2"
                                               "sex.s3"
                                                         "sex.s4" "sex.s5"
## [36] "sex.s6" "bmi.bp"
                           "bmi.s1" "bmi.s2"
                                               "bmi.s3"
                                                         "bmi.s4"
                                                                   "bmi.s5"
                           "bp.s2"
## [43] "bmi.s6" "bp.s1"
                                     "bp.s3"
                                               "bp.s4"
                                                         "bp.s5"
                                                                   "bp.s6"
## [50] "s1.s2"
                 "s1.s3"
                           "s1.s4"
                                     "s1.s5"
                                               "s1.s6"
                                                         "s2.s3"
                                                                   "s2.s4"
                           "s3.s4"
                                     "s3.s5"
## [57] "s2.s5"
                 "s2.s6"
                                               "s3.s6"
                                                         "s4.s5"
                                                                   "s4.s6"
## [64] "s5.s6"
dim(df_train[-10])
## [1] 265 10
dim(train_sc_pf2)
```

• Prepare the validation and test sets

[1] 265 64

```
df_val[-11] = scale(df_val[-11])
val_sc_pf2 <- pf2_transform(df_val,target_name = "target")
val_sc_pf2$target = df_val$target
val_sc_pf2 = val_sc_pf2[-20]

df_test[-11] = scale(df_test[-11])
test_sc_pf2 <- pf2_transform(df_test,target_name = "target")
test_sc_pf2$target = df_test$target
test_sc_pf2 = test_sc_pf2[-20]</pre>
```

Run the Polynomial Regression

```
lr = caret::train(target ~ ., method='lm',data = train_sc_pf2)
train_pred = predict(lr,newdata = train_sc_pf2)
val_pred = predict(lr,newdata = val_sc_pf2)
test_pred = predict(lr,newdata = test_sc_pf2)
```

Evaluate the results

```
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data","RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)
knitr::kable(res)</pre>
```

Data	RMSE
Train	45.13
Validation	288.66
Test	231.93

Ridge Regression

Basic Model

```
ridge <- caret::train(y = train_sc_pf2$target,x = train_sc_pf2[-10],</pre>
                 method = 'glmnet',
                 tuneGrid = expand.grid(alpha = 0, lambda = 1)
               )
train_pred = predict(ridge,newdata = train_sc_pf2)
val_pred = predict(ridge,newdata = val_sc_pf2)
test_pred = predict(ridge,newdata = test_sc_pf2)
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data", "RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	RMSE
Train Validation Test	46.67 59.98 58.11

Hyper-parameter tuning

Run the Optimized Ridge Regression

```
ridge_best<-caret::train(y = train_sc_pf2$target,
    x = train_sc_pf2[-10],
    method = 'glmnet',
    tuneGrid = expand.grid(alpha = 0, lambda = ridge$finalModel$lambdaOpt))</pre>
```

```
train_pred = predict(ridge_best,newdata = train_sc_pf2)
val_pred = predict(ridge_best,newdata = val_sc_pf2)
test_pred = predict(ridge_best,newdata = test_sc_pf2)
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data", "RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	RMSE
Train Validation Test	48.93 57.66 56.02

Evaluate Performance of the optimized Ridge Regression

```
res = data.frame()
y = R2(train_pred,df_train$target)
res = rbind(res,c("Train",y))
y = R2(val_pred,df_val$target)
res = rbind(res,c("Validation",y))
y = R2(test_pred,df_test$target)
res = rbind(res,c("Test",y))
colnames(res) = c("Data","R_2")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)
knitr::kable(res)</pre>
```

Data	R_2
Train	0.6295
Validation	0.3788
Test	0.4761

Lasso Regression

Basic Model

```
lasso<-caret::train(y = train_sc_pf2$target,</pre>
    x = train_sc_pf2[-10],
     method = 'glmnet',
     tuneGrid = expand.grid(alpha = 1, lambda = 0))
train_pred = predict(lasso,newdata = train_sc_pf2)
val_pred = predict(lasso,newdata = val_sc_pf2)
test pred = predict(lasso, newdata = test sc pf2)
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data", "RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	RMSE
Train	45.51
Validation	63.96
Test	59.27

Hyper-parameter tuning

• Find the best hyper parameter lambda

```
## [1] " Lasso Best lambda = 5"
```

Run the Optimized Lasso Regression

```
lasso_best<-caret::train(y = train_sc_pf2$target,</pre>
      x = train_sc_pf2[-10],
      method = 'glmnet',
      tuneGrid = expand.grid(alpha = 1, lambda = lasso$finalModel$lambdaOpt))
train_pred = predict(lasso_best,newdata = train_sc_pf2)
val_pred = predict(lasso_best,newdata = val_sc_pf2)
test_pred = predict(lasso_best, newdata = test_sc_pf2)
res = data.frame()
y = rmse(df train$target,train pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)
res = rbind(res,c("Validation",y))
y = rmse(df test$target,test pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data", "RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	RMSE
Train Validation Test	52.57 58.00 53.24

Performance of the Optimized Lasso Regression

```
res = data.frame()
y = R2(train_pred,df_train$target)
res = rbind(res,c("Train",y))
y = R2(val_pred,df_val$target)
res = rbind(res,c("Validation",y))
y = R2(test_pred,df_test$target)
res = rbind(res,c("Test",y))
colnames(res) = c("Data","R_2")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)
knitr::kable(res)</pre>
```

Data	R_2
Train	0.5673
Validation	0.3646
Test	0.5117

Determine non-zero coefficients

```
df = data.frame(
  lasso = as.data.frame.matrix(coef(lasso$finalModel, lasso$finalModel$lambdaOpt))
)
df = subset(df, s1>0.1)
df$var = row.names(df)
knitr::kable(df[order(-df$s1),c(2,1)][2])
```

	s1
(Intercept)	154.3001
bp	25.3282
s6	20.6368
s1	13.4184
bmi.s6	3.9376
sex.s3	2.2168
age.s6	0.7353
bmi.bp	0.4412
age.sex	0.1728
s6.2	0.1407

Neural Network

Large network

```
mlp <- caret::train(target ~ .,data = train_sc_pf2,method='mlp',size=1000)</pre>
train_pred = predict(mlp,newdata = train_sc_pf2)
val_pred = predict(mlp,newdata = val_sc_pf2)
test_pred = predict(mlp,newdata = test_sc_pf2)
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data","RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	RMSE
Train	104.5
Validation	103.7

Data	RMSE
Test	107.5

Smaller network

```
mlp <- caret::train(target ~ .,data = train_sc_pf2,method='mlp',size=50)</pre>
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
train_pred = predict(mlp,newdata = train_sc_pf2)
val_pred = predict(mlp,newdata = val_sc_pf2)
test_pred = predict(mlp,newdata = test_sc_pf2)
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data", "RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	RMSE
Train Validation Test	83.34 74.52 77.62

Regression Tree

Basic Tree

```
dtr <- caret::train(target ~ .,data = train_sc_pf2,method='rpart')

train_pred = predict(dtr,newdata = train_sc_pf2)
val_pred = predict(dtr,newdata = val_sc_pf2)
test_pred = predict(dtr,newdata = test_sc_pf2)
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df_val$target,val_pred)</pre>
```

```
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data","RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)
knitr::kable(res)</pre>
```

Data	RMSE
Train	60.28
Validation	66.73
Test	60.40

Tree with a maximum depth of 2

```
dtr <- caret::train(target ~ .,data = train_sc_pf2,method='rpart',</pre>
                    control = list(max_depth=2))
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
train pred = predict(dtr, newdata = train sc pf2)
val_pred = predict(dtr,newdata = val_sc_pf2)
test_pred = predict(dtr,newdata = test_sc_pf2)
res = data.frame()
y = rmse(df_train$target,train_pred)
res = rbind(res,c("Train",y))
y = rmse(df val$target,val pred)
res = rbind(res,c("Validation",y))
y = rmse(df_test$target,test_pred)
res = rbind(res,c("Test",y))
colnames(res) = c("Data", "RMSE")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Data	RMSE
Train	60.28
Validation	66.73
Test	60.40

Harder problem

Data preparation

• Read data

```
df <- read.csv("ENB2012_data.csv")</pre>
```

• Create training, validation and test datasets.

```
dataset = df[-c(11,12)]
N = nrow(dataset)
cut1 = floor(0.6*N)
cut2 = floor(0.8*N)
index = sample(1:N)
train_index = index[1:cut1]
val_index = index[(cut1+1):cut2]
test_index = index[(cut2+1):N]
df_train = dataset[train_index,]
df_val = dataset[val_index,]
df_test = dataset[test_index,]
sapply(list(df_train,df_val,df_test),nrow)

## [1] 460 154 154
df_train[-10] = scale(df_train[-10])
```

Build and Evaluate Models

```
res = data.frame()
# Linear Regression
lr = caret::train(Y2 ~ ., method='lm',data = df_train)
train_pred = predict(lr,newdata = df_train)
val_pred = predict(lr,newdata = scale(df_val[-10]))
test_pred = predict(lr,newdata = scale(df_test[-10]))
y1 = rmse(df_train$Y2,train_pred)
y2 = rmse(df_val$Y2,val_pred)
y3 = rmse(df_test$Y2,test_pred)
res = rbind(res,c("Linear Regression",y1,y2,y3))
# Ridge Regression
ridge <- caret::train(y = df_train$Y2,x = df_train[-10],</pre>
                 method = 'glmnet',
                 tuneGrid = expand.grid(alpha = 0, lambda = 1)
train_pred = predict(ridge,newdata = df_train)
val_pred = predict(ridge,newdata = scale(df_val[-10]))
test_pred = predict(ridge,newdata = scale(df_test[-10]))
y1 = rmse(df_train$Y2,train_pred)
y2 = rmse(df_val$Y2,val_pred)
```

```
y3 = rmse(df_test$Y2,test_pred)
res = rbind(res,c("Ridge Regression",y1,y2,y3))
# Lasso Regression
lasso <- caret::train(y = df_train$Y2,x = df_train[-10],</pre>
                 method = 'glmnet',
                 tuneGrid = expand.grid(alpha = 1, lambda = 0)
               )
train pred = predict(lasso,newdata = df train)
val pred = predict(lasso, newdata = scale(df val[-10]))
test_pred = predict(lasso,newdata = scale(df_test[-10]))
y1 = rmse(df_train$Y2,train_pred)
y2 = rmse(df_val$Y2,val_pred)
y3 = rmse(df_test$Y2,test_pred)
res = rbind(res,c("Lasso Regression",y1,y2,y3))
# Neural Net
nn <- caret::train(y = df_train$Y2,x = df_train[-10],</pre>
                 method = 'mlp')
train_pred = predict(nn,newdata = df_train)
val_pred = predict(nn,newdata = scale(df_val[-10]))
test_pred = predict(nn,newdata = scale(df_test[-10]))
y1 = rmse(df_train$Y2,train_pred)
y2 = rmse(df_val$Y2,val_pred)
y3 = rmse(df_test$Y2,test_pred)
res = rbind(res,c("Neural Net",y1,y2,y3))
# Regression Tree
dt <- caret::train(y = df_train$Y2,x = df_train[-10],</pre>
                 method = 'rpart')
train_pred = predict(dt,newdata = df_train)
val_pred = predict(dt,newdata = scale(df_val[-10]))
test_pred = predict(dt,newdata = scale(df_test[-10]))
y1 = rmse(df_train$Y2,train_pred)
y2 = rmse(df_val$Y2,val_pred)
y3 = rmse(df_test$Y2,test_pred)
res = rbind(res,c("Regression Tree",y1,y2,y3))
colnames(res) = c("Model", "Train", "Validation", "Test")
# Following converts appropriate columns to numeric type
res[-1] = lapply(res[-1], FUN = function(y){as.numeric(y)})
# Following rounds numeric values to 4 digits
res[,sapply(res, is.numeric)] <-round(res[,sapply(res, is.numeric)],4)</pre>
knitr::kable(res)
```

Model	Train	Validation	Test
Linear Regression	1.901	2.014	2.026
Ridge Regression	2.223	2.453	2.481
Lasso Regression	1.903	2.015	2.022
Neural Net	2.506	2.529	2.574
Regression Tree	2.989	3.219	3.325