<u>Dashboard</u> / My courses / <u>COSC264</u> / <u>Week 9: Quiz (Routing)</u> / <u>Quiz: Routing (practice copy)</u>

Started on	Thursday, 14 October 2021, 9:15 PM
State	Finished
Completed on	Friday, 15 October 2021, 12:50 PM
Time taken	15 hours 34 mins
Marks	92.00/100.00
Grade	9.20 out of 10.00 (92 %)

Information

The figure below shows a network topology, where the nodes are routers and the edges mark a link between nodes. The edges are weighted to show the cost of using the link. The following questions refer to this figure.

Question **1**Correct

Mark 13.00 out of 13.00

Apply Dijkstra's algorithm on the example network shown at the top of the page to find the minimum cost routes from station 1 to all other stations. Please fill in the following table for the values during the calculation steps. S is the set of stations whose least-cost path is known; D(v) is the current cost of the path from the source (i.e., station 1) to station v; p(v) is the predecessor station along the path from the source to v, that is next to v.

Please use "inf" to specify an infinite cost and "-' to specify no predecessor.

Dijkstra Algorithm Results for station 1

Step	s	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)	D(6), p(6)	D(7), p(7)	D(8), p(8)
		3	4	4	inf	inf	inf	inf
0	{1}	~ ,						
	(1)	1	1	1	-	-	-	-
		~	~	~	~	✓	~	~
		3	4	4	9	8	5	inf
1	{12}	~ ,						
	{12}	1	1	1	2	2	2	-
		~	~	~	~	✓	~	~
		3	4	4	5	8	5	inf
2	{123}	~ ,						
	(120)	1	1	1	3	2	2	-
		~	~	~	~	✓	~	~
		3	4	4	5	8	5	inf
3	{1234}	~ ,						
	(120 1)	1	1	1	3	2	2	-
		~	~	~	~	✓	~	~
		3	4	4	5	8	5	12
4	{12345}	~ ,						
ľ	(120 10)	1	1	1	3	2	2	5
		~	~	~	~	~	~	~
		3	4	4	5	8	5	11
5	{123457}	~ ,	~ ,	~ ,	~ ,	✓ ,	~ ,	~ ,
	(120 107)	1	1	1	3	2	2	7
		~	~	~	~	~	~	~
		3	4	4	5	8	5	11
6	5 {1234576}	~ ,	~ ,	~ ,	~ ,	✓ ,	~ ,	~ ,
	(120 107 0)	1	1	1	3	2	2	7
		~	~	~	~	~	~	~
		3	4	4	5	8	5	11
7	{12345768}	~ ,						
ľ	(.20.0700)	1	1	1	3	2	2	7
		~	~	~	~	~	~	~

Penalty regime: 100%

Marks for this submission: 13.00/13.00.

Question 2

Correct

Mark 5.00 out of 5.00

With reference to the previous question, complete the forwarding table for station 1 after Dijkstra's algorithm has converged.

Destination	Next hop
2 3 4 5	2
	~
3	3
	~
4	4
	~
5	3
	~
6	2
	~
7	2
,	~
8	2
	~

Penalty regime: 100%

Correct

Marks for this submission: 5.00/5.00.

Question $\bf 3$

Correct

Mark 4.00 out of 4.00

Is Dijkstra's algorithm link-state or distance-vector routing?

Penalty regime: 100%

Select one:

- a. Distance-vector routing.
- b. Link-state routing.

Your answer is correct.

Correct

Marks for this submission: 4.00/4.00.

Information

The figure below shows a simple 3-node network topology, where the nodes are routers and the edges mark a link between nodes. The edges are weighted to show the cost of using the link. The following questions refer to this figure.

Question **4**

Correct

Mark 6.00 out of 6.00

When the DV algorithm is applied to calculate the shortest-cost paths between any two nodes, every node keeps its routing table, consisting of its own distance vector and distance vectors received from its neighbours.

Please fill out the initial tables of every node; At time t0,

Node x's initial routing table is:

			Cost to					
		x	у	z				
	x	0	9	1				
From		~	~	~				
	_	inf	inf	inf				
	z	inf	inf	inf				

Node y's initial routing table is:

			Cost to				
		x	у	z			
	X	inf	inf	inf			
From	v	9	0	2			
	•	~	~	~			
	z	inf	inf	inf			

Node z's initial routing table is:

			Cost to					
		x	у	z				
	X	inf	inf	inf				
From	_	inf	inf	inf				
	z	1	2	0				
		~	~	~				

Penalty regime: 100% per cell

Correct

Marks for this submission: 6.00/6.00.

Question ${\bf 5}$

Correct

Mark 6.00 out of 6.00

Suppose at time t1, every node receives vectors from its two neighbours; then it updates its own distance vectors by the BF formula. **Please fill in the following blanks**;

For node x:

 $D_x(x) = 0;$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} = min\{9+0, 1+2\} = min\{0+0, 1+$$

3

~

$$D_x(z) = min\{c(x,z) + D_z(z), c(x,y) + D_y(z)\} = min\{1+0, 9+2\} =$$

1

v ;

Now x's routing table is as follows:

			Cost to	
		x	у	z
	x	0	3	1
From		~	~	~
	y	9	0	2
	z	1	2	0

For node y:

$$D_y(x) = min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} =$$

✓ ;

 $D_y(y)=0;$

$$D_y(z) = min\{c(y,z) + D_z(z), c(y,x) + D_x(z)\} =$$

✓ ;

Now y's routing table is as follows:

		Cost to		
		x	у	z
	x	0	9	1
From	v	3	0	2
	ľ	~	~	~
	z	1	2	0

For node z:

$$D_z(x) = min\{c(z,x) + D_x(x), c(z,y) + D_y(x)\} =$$

v

$$D_z(y) = min\{c(z,y) + D_y(y), c(z,x) + D_x(y)\} =$$

v;

$$D_z(z) = 0;$$

Now z's routing table is as follows:

Cost to		
х	y	z

Quiz: Routing (practice copy): Attempt review

		Cost to		
		x	y	z
	x	0	9	1
From	у	9	0	2
	z	1	2	0
	_	~	~	~

Correct

Marks for this submission: 6.00/6.00.

Question 6		
Correct		
Mark 3.00 out of 3.00		

Which nodes have changed their distance vectors?

Penalty regime: 33%, 66%, 100%

Select one or more:

a. y

■ b. z

c. None

d. x

Your answer is correct.

Correct

Marks for this submission: 3.00/3.00.

Question 7

Correct

Mark 6.00 out of 6.00

Suppose at time t2 node x sends its vector to nodes y and z; node y sends its vector to nodes x and z;

After node x receives node y's vector, it updates its own vector as follows:

 $D_x(x) = 0;$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} =$$

v ;

$$D_x(z) = min\{c(x,z) + D_z(z), c(x,y) + D_y(z)\} =$$

1

v;

Now x's routing table is as follows:

			Cost to	
		x	у	z
	x	0	3	1
From		~	~	~
	y	3	0	2
	z	1	2	0

After node y receives node x's vector, it updates its own vector as follows:

$$D_y(x) = min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} =$$

v;

 $D_y(y) = 0;$

$$D_y(z) = min\{c(y,z) + D_z(z), c(y,x) + D_x(z)\} =$$

2 **✓** ;

Now y's routing table is as follows:

		Cost to		
		x	у	z
	X	0	3	1
From	у	3	0	2
		~	~	~
	z	1	2	0

After node z receives vectors from node x and y, it will update its own vector as follows:

$$D_z(x) = min\{c(z,x) + D_x(x), c(z,y) + D_y(x)\} =$$

v;

$$D_z(y) = min\{c(z,y) + D_y(y), c(z,x) + D_x(y)\} =$$

2

v;

 $D_z(z) = 0;$

Now z's routing table is as follows:

		Cost to	ı		
		x	у	z	
From	x	0	3	1	
	у	3	0	2	
	Г				

	Cost to			
	x	у	z	
z	1	2	0	
	~	~	~	

Correct Marks for this submission: 6.00/6.00.
Question 8
Correct
Mark 2.00 out of 2.00
Which of the following link cost changes could cause a routing loop which leads to the count-to-infinity problem in the DV algorithm? Penalty regime: 33%, 66%, 100% Select one: a. whenever there is a link cost change b. when a link cost decreases c. when a link cost increases Your answer is correct. Correct Marks for this submission: 2.00/2.00.
Question 9
Correct
Mark 5.00 out of 5.00
Select the items that apply to an autonomous system. Penalty regime: 33%, 66%, 100%
Select one or more:
a. A set of routers that are owned by multiple organisations that in order to communicate use a common routing protocol.
□ b. A set of routers managed by a single organisation, and if it has a Autonomous System Number (ASN), it does not need to have a common routing protocol.
c. A set of routers that in order to stay fully connected have Ethernet cables directly connecting all hosts and routers.
☑ d. None of these.
Your answer is correct.

Correct

Marks for this submission: 5.00/5.00.

What is a benefit of a multi-homed Autonomous System (AS) that is not available in a non-multihomed (stub) AS?

Select one:

- a. Remain connected to the Internet even when one of the connections fails.
- Correct. An additional benefit besides improved fault tolerance is that having multiple connections also allows to better balance traffic load, e.g. by routing excess traffic to a certain destination through an alternative path if the primary path becomes overloaded.
- b. Being able to send your own traffic to other AS.
- o. Reduced fees for internet connection.

Your answer is correct.

Correct

Marks for this submission: 5.00/5.00.

Suppose we have a network whose routers have a low processing and/or low memory capacity. What would be the best type of routing protocol?

Penalty regime: 100%

Select one:

a. Distance-vector (Bellman-Ford)

b. Link-state (Dijkstra's algorithm)

Your answer is correct.

Correct

Marks for this submission: 4.00/4.00. Accounting for previous tries, this gives $\boldsymbol{0.00/4.00}$.

15/10/2021	Quiz: Routing (practice copy): Attempt review
Question 1	7
Correct	
Mark 2.00	out of 2.00
Suppor	e we have a large network of routers (greater than 1000). What would be the best type of routing protocol and why?
	regime: 33%, 66%, 100%
·	
Select	Distance-vector, because link failure has fast convergence over the network.
	Distance-vector, because information is shared only among neighbors.
○ c.	Link-state, because having the full topology allows faster recovery from link/node failure.
d.	Link-state with hierarchy, because this creates smaller networks.
Your ar	swer is correct.
Correct	
Marks to	or this submission: 2.00/2.00.
Question 1	8
Correct	
Mark 5.00	out of 5.00
	spect to distance-vector routing algorithms, what is the count to infinity problem?
Penalty	regime: 33%, 66%, 100%
Select	one:
○ a.	Routers cannot count higher than 2^5 and so cannot count to infinity.
○ b.	Routers more than 10 hops away are considered infinitely away and are isolated from the rest of the network
C.	After link cost increases, it could take a very long time for the algorithm to converge.
○ d.	After a new path is found in the network, it takes a very long (infinite) time for other routers to learn about the new route.

Your answer is correct.

Correct

Marks for this submission: 5.00/5.00.

Penalty: 33%, 66%, 100%;

Select one or more:

a. Local network uses just one IP address as far as outside world is concerned.

•

b. Local network can change ISP without changing addresses of devices inside.

·

c. Local network can change addresses of devices inside without notifying outside world.

d. Devices inside the local network are not explicitly addressable by outside world.

~

Your answer is correct.

Correct

Marks for this submission: 4.00/4.00.

Marks for this submission: 2.00/2.00. Accounting for previous tries, this gives 1.33/2.00.

■ Quiz: Routing

Marks for this submission: 2.00/2.00.

Jump to...

Quiz: Error Detection, Correction, and Control Problems >