MATH2319 Machine Learning

Phase 1 - Assignment 1 - Semester 1, 2019

Ash Olney s3686808 Phil Steinke s3725547

Objective

The Google advertising data provided for the Machine Learning Kaggle Competition will be preprocessed for machine learning.

Setup

```
In [11]:
```

```
import pandas as pd
import numpy as np
import altair as alt
import math
from scipy import stats
from sklearn import preprocessing
from sklearn.ensemble import IsolationForest
import matplotlib.pyplot as plt
import os
import io
```

```
In [2]:
```

```
__file_name__ = 'advertising_train.csv'
data = pd.read_csv(__file_name__)
```

```
In [3]:
```

```
# consistent naming of columns (minus camelCase):
labelNames = ['case_id','company_id', 'country_id', 'device_type', 'day', 'dow',
'pricel', 'price2', 'price3', 'ad_area', 'ad_ratio', 'requests', 'impression',
'cpc', 'ctr', 'viewability', 'ratio1', 'ratio2', 'ratio3', 'ratio4', 'ratio5',
'y',]
data.columns = labelNames
```

The Data

Features in this data set are as follows:

Feature Name	Data Type	Description	Transform	# DataVis?
company_id	categorical	Company ID of record	oneHotEncode() #	
country_id	categorical	Country ID of record iso3166 1.0	oneHotEncode()? binary/scaling it	iso3166 1.0 to # country
device_type	categorical	Device type of record	oneHotEncode()	1 Desktop, 2 mobile, 3 tablet, 5 # ConnectedTv
* day	integer	Day of record - between 1 (oldest) and 30 for train, - between 31 (oldest) and 35 for test,	TODO: add a global variable for whether it's training/test #	
* dow	categorical	Day of week of the record	- oneHotEncode? dow_friday dow_monday dow_saturday dow_sunday dow_thursday dow_tuesday dow_wednesday - maybe: split into weekday and weekend?	
price1, price2, price3	numeric	Price combination for the record set by the company	#	
ad_area	numeric	area of advertisement (normalized between 0 and 1)	#	
ad_ratio	numeric	ratio of advertisement's length to its width (normalized between 0 and 1)	#	
requests	numeric	Was a request sent to the server to view the ad?	#	
impression	numeric	Is the Google Advertisement viewed?	#	
срс	numeric	Cost Per Click	#	
ctr	numeric	Click Through Rate - do users click on the advert?	#	
viewability	numeric	Viewability - metrics for viewable ads (https://support.google.com/google- ads/answer/7029393) A display ad is counted as viewable when at least 50% of its area is visible on the screen for at least 1 second	#	
ratio1,, ratio5	numeric	Ratio characteristics related to the record (normalized between 0 and 1)	#	
y (target feature)	numeric	revenue-related metric	split into separate datasetdon't normalise #	

Note: ad_area and ad_ratio data description states that it is normalised However, it's max of 36 and 5 means this is a mistake. ratio1 ... ratio5 apear to be between 0 to 1. However, because they are ratios, they may not be normalised, and we have normalised the data anyway (because "ratio" implies that it may be between 0-1)

Note: normally we would have <u>transformed_dow_data as time series</u> (https://datascience.stackexchange.com/questions/17759/# encoding-features-like-month-and-hour-ascategorial-or-numeric). However, the assignment specifies not to do this.

```
In [4]:
```

```
# Shape:
print(data.shape)

(214128, 22)
In [5]:
```

```
# Dataset datatypes:
print(data.dtypes)
```

```
case id
                int64
company id
                int64
country_id
                int64
                int64
device_type
day
                int64
dow
               object
              float64
price1
price2
              float64
price3
              float64
ad area
              float64
              float64
ad_ratio
requests
                int64
impression
                int64
              float64
срс
ctr
              float64
viewability
              float64
ratio1
              float64
ratio2
              float64
ratio3
              float64
ratio4
              float64
ratio5
              float64
              float64
dtype: object
```

In [6]:

```
# Common functions for reuse throughout code:
numeric = list(data.select_dtypes(exclude=['object']).columns)
numericColumnsList = list(data[(numeric)].columns.values)
objects = list(data.select_dtypes(include=['object']).columns)
```

In [7]:

```
# Numerical Column Upper and Lower limits
pd.concat(
    [data[(numeric)].max().round(),
     data[(numeric)].min().round()],
     keys=['Max', 'Min'],
     axis=1)
# This is used to show the data was not normalised, as described
```

Out[7]:

	Max	Min
case_id	214128.0	1.0
company_id	159.0	40.0
country_id	251.0	1.0
device_type	5.0	1.0
day	30.0	1.0
price1	15.0	0.0
price2	63.0	0.0
price3	79.0	0.0
ad_area	36.0	0.0
ad_ratio	5.0	0.0
requests	6701924.0	0.0
impression	6100324.0	0.0
срс	133.0	0.0
ctr	2.0	0.0
viewability	7.0	0.0
ratio1	1.0	0.0
ratio2	1.0	0.0
ratio3	2.0	0.0
ratio4	1.0	0.0
ratio5	1.0	0.0
у	47.0	0.0

Data Pre-processing

In [8]:

```
dataOriginal = data.copy()

# convert weekday to lowercase
data['dow'] = data['dow'].str.lower()

# convert weekday object to binary variables
# to get around the issue of creating nonsensical quantitative relationships bet
ween category codes
data = pd.get_dummies(data, columns=['dow'], prefix=['dow'])

print(data.dtypes)
# all data is now converted to numerical
```

```
case_id
                   int64
company_id
                   int64
country_id
                   int64
device_type
                   int64
                   int64
day
pricel
                 float64
                 float64
price2
price3
                 float64
ad area
                float64
                float64
ad_ratio
                  int64
requests
impression
                   int64
срс
                 float64
                 float64
ctr
viewability
                 float64
                 float64
ratio1
ratio2
                 float64
ratio3
                 float64
ratio4
                 float64
ratio5
                 float64
                float64
dow friday
                   uint8
dow_monday
                   uint8
dow saturday
                   uint8
dow sunday
                   uint8
dow thursday
                   uint8
dow tuesday
                   uint8
dow wednesday
                   uint8
dtype: object
```

In [9]:

```
# check for nulls
print(data.isnull().sum())
# total: 0 null variables
```

case_id 0 0 company_id 0 country_id 0 device_type day 0 0 pricel price2 0 0 price3 ad_area 0 0 ad_ratio 0 requests 0 impression 0 срс 0 ctr viewability 0 0 ratio1 ratio2 0 ratio3 0 0 ratio4 ratio5 0 0 dow_friday 0 dow_monday 0 dow_saturday 0 dow_sunday 0 dow_thursday 0 dow_tuesday 0 0 dow_wednesday dtype: int64

In [16]:

```
# summary statistics
print(data.describe())
```

count mean std min 25% 50% 75% max	case_id 214128.000000 107064.500000 61813.573558	company_id 214128.000000 73.332988 47.817556 40.000000 43.000000 43.000000 95.000000 159.000000	country_id 214128.000000 119.496180 76.129206 1.000000 56.000000 102.000000 197.000000 251.000000	device_type \ 214128.000000 1.875612 0.787796 1.000000 2.000000 2.000000 2.000000 5.000000
count mean	214128.000000 15.790522	214128.000000 0.438229	214128.000000 0.630178	214128.000000 0.932436
std	8.385557	1.281403	1.481552	1.839991
min	1.000000	0.00000	0.00000	0.00000
25%	9.000000	0.000000	0.000000	0.00000
50%	16.000000	0.010000	0.090000	0.294800
75%	23.000000	0.190000	0.570000	0.985650
max	30.000000	14.690000	63.120000	78.900000
o5 \	ad_area	ad_ratio	ra	tio4 rati
count	214128.000000	214128.000000	214128.00	0000 214128.0000
mean 00	4.724445	0.923402	0.13	1008 0.1883
std 21	6.273410	0.482055	0.23	9758 0.2971
min 00	0.000100	0.083330	0.00	0.000
25% 00	0.000100	0.833330	0.00	0.000
50% 00	0.000100	1.000000	0.00	0.000
75% 00	7.500000	1.000000	0.16	0.3847
max 00	36.000000	5.000000	1.07	1.2000
	У	dow friday	dow monday	dow saturday \
count	214128.000000	214128.000000	214128.000000	214128.000000
mean	0.847004	0.129371	0.139337	0.164388
std	1.390593	0.335611	0.346299	0.370628
min	0.000098	0.000000	0.000000	0.000000
25%	0.150415	0.000000	0.000000	0.000000
50%	0.419000	0.000000	0.000000	0.000000
75%	0.959048	0.000000	0.000000	0.000000
max	47.060000	1.000000	1.000000	1.000000
max	47.000000	1.000000	1.000000	1.000000
	dow_sunday	dow_thursday	dow_tuesday	dow_wednesday
count	214128.000000	214128.000000	214128.000000	214128.000000
mean	0.158232	0.137240	0.139664	0.131767
std	0.364960	0.344102	0.346639	0.338238
min	0.00000	0.000000	0.000000	0.00000
25%	0.00000	0.000000	0.000000	0.00000
50%	0.000000	0.000000	0.000000	0.00000
75%	0.00000	0.000000	0.000000	0.00000
max	1.000000	1.000000	1.000000	1.000000
	_	-	_	

```
In [13]:
```

```
#split `y` into separate dataset before normalisation
dataUnscaled = data.drop(columns = 'y')
dataTarget = data['y']
# type(dataTarget) # pandas series
```

Data Normalisation

In [14]:

```
dataNormalised = dataUnscaled.copy() # create copy of dataUnscaled
numericFeaturesToScale = [ 'pricel', 'price2', 'price3', 'ad_area', 'ad_ratio',
'requests', 'impression', 'cpc', 'ctr', 'viewability', 'ratio1', 'ratio2', 'rati
o3', 'ratio4', 'ratio5', ]

# apply RobustScaler to normalise data
data_scaler = preprocessing.RobustScaler().fit(dataNormalised[numericFeaturesToScale])
# Normalise numerical features, as a pandas Dataframe:
dataNormalised[numericFeaturesToScale] = data_scaler.transform(dataNormalised[numericFeaturesToScale])
```

```
In [15]:
```

Out[15]:

True

```
def get outliers(df):
    absolute_normalized = np.abs(stats.zscore(df))
    return absolute_normalized > 3
def get length unique outliers(df):
    # get boolean array of outliers
    outliers = get_outliers(df)
    outliersIndexList = df[outliers].index.values.astype(int)
    # avoid counting a record with multiple outliers twice
    uniqueOutliersIndexList = np.unique(outliersIndexList)
    print(len(np.unique(outliersIndexList)))
    # return len(np.unique(outliersIndexList))
# length of dataframe
print("length of dataframe:")
len(dataUnscaled)
print("Number of Outliers in original data:")
get_length_unique_outliers(data) # 31258 ~15% outliers in original dataset
print("Number of Outliers Ignoring the Target Variable Y:")
lengthDataOutliers = get length unique outliers(dataUnscaled) # 28167, ~13% outl
iers after we removed target
print("Number of Outliers of Normalised Variables:")
lengthDataNormalisedOutlisers = get_length_unique_outliers(dataNormalised) # 281
67, ~13%
lengthDataOutliers == lengthDataNormalisedOutlisers
# we have ~13% outliers both before and after normalisation.
length of dataframe:
Number of Outliers in original data:
Number of Outliers Ignoring the Target Variable Y:
28167
Number of Outliers of Normalised Variables:
28167
```

```
# where are the outliers?
def get_outliers_column_count(df):
    for i in numericFeaturesToScale:
        try:
            print(i)
            get_length_unique_outliers(df[i])
        except:
            print(i)
get outliers column count(dataNormalised)
price1
6172
price2
4987
price3
5378
ad area
5512
ad ratio
1550
requests
815
impression
424
срс
2220
ctr
5727
viewability
ratio1
ratio2
ratio3
ratio4
4173
ratio5
In [17]:
# reduce outliers with natural logarithm
def get_natural_log(arr, cols):
    for i in cols:
            arr[i] = np.log(arr[i]+10)
        except:
            print(i)
get_natural_log(dataUnscaled, numericFeaturesToScale)
get_length_unique_outliers(dataUnscaled)
# outliers with natural log are reduced to 11.2%
```

Machine Learning Outlier detection:

Given our 11.2% outliers, applying the following will yeild around 1.9% outliers.

Note: We have visualised the data with the above outliers to show how many outliers the data includes using traditional statistical methods

In [24]:

```
dataWithMachineLearningOutliers = dataNormalised.copy()
clf = IsolationForest(behaviour = 'new', max_samples=100, random_state = 1, cont
amination= 'auto')
preds = clf.fit_predict(dataWithMachineLearningOutliers[numericFeaturesToScale])
preds

isolationForestOutliers = dataWithMachineLearningOutliers[preds == -1]
get_length_unique_outliers(isolationForestOutliers)
```

3315

Data Visualisation

Univariate

In [26]:

```
source = dataNormalised.sample(n=5000)

alt.Chart(source).mark_bar().encode(
    x = "company_id:N",
    y = 'count()',
).properties(
    title='Figure 1. Companies analysed')
```

Out[26]:

Figure 1. Companies analysed

Company ID is a nominal variable which will need to be converted into binary variables for phase II. The majority of cases are company 43.

```
In [27]:
```

```
alt.Chart(source).mark_bar().encode(
    x = "country_id:N",
    y = 'count()',
).properties(
    title='Figure 2. Records by country')
```

```
Out[27]:
```


Figure 2 shows that there is a large variation in country of origin. This variable will also need to be converted to binarry variables as it is categorical and there is no relationship between integer values.

In [28]:

```
alt.Chart(source).mark_bar().encode(
    x = "device_type:0",
    y = 'count()',
).properties(
    title='Figure 3. which devices were used')
```

Out[28]:

Figure 3. which devices were used

The most common device type is 2. This variable will also need to be converted to binarry variables as it is categorical and there is no relationship between integer values.

In [29]:

```
dataOriginalSource = dataOriginal.sample(n = 5000)
alt.Chart(dataOriginalSource).mark_bar().encode(
    x = "dow:0",
    y = 'count()',
).properties(
    title='Figure 4. Day of the week')
```

Out[29]:

Figure 4. Day of the week

There is a fairly even distribution of days of the week as seen in figure 4.

In [30]:

```
alt.Chart(source).mark_bar().encode(
    x = "day:0",
    y = 'count()',
).properties(
    title='Figure 5. Day recorded in test data')
```

Out[30]:

Figure 5 shows the distribution of records to the number of day. This variable will also need to be converted to binarry variables as it is categorical and there is no relationship between integer values.

In [117]:

```
print("Figure 6. Distribution of ratio")
source.boxplot(column = ['ratio1','ratio2', 'ratio3','ratio4','ratio5'])
# ratio4 shows significant outliers
```

Figure 6

Out[117]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f98b0c32fd0>

Outliers can still be observed in ratio 4 in figure 6. These will need to be properly handled before phase II.

In [133]:

```
print("Figure 7. Distribution of Price")
source.boxplot(column = ['price1','price2', 'price3'])
# shows significant outliers for all price points
```

Figure 7. Distribution of Price Variables

Out[133]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f98b18a84e0>

Figure 7 shows the presence of outliers in each of the price variables. These will need to be properly handled before phase II.

In [62]:

```
print("Figure 8. Ad ratio box plot")
source.boxplot(column = ['ad_area', 'ad_ratio'])
```

Out[62]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f98be73ff28>

There are a small proportion of outliers in ad_area. Ad_ratio also has a lot of outliers. These will need to be properly handled before phase II.

In [71]:

```
print("Figure 9. Distribution of requests")
source.boxplot(column = ['requests'])
```

Out[71]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f98bc3899b0>

Figure 9 shows that the requests variable has outliers. These will need to be properly handled before phase II.

In [130]:

```
print("Figure 10. CPC, CTR, and viewability boxplot")
source.boxplot(column = ['cpc', 'ctr', 'viewability'])
# shows significant outliers in dataset
```

10. CPC, CTR, and viewability boxplot

Out[130]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f98b185d8d0>

Figure 10 shows that there is one variable without outliers, which is viewability.

In [131]:

```
print("Figure 11. Outliers in impressions")
source.boxplot(column = ['impression'])
```

11. Outliers in impressions

Out[131]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f98b0de5630>

Figure 11 shows that impression has outliers. These will need to be properly handled before phase II.

Data Visualisation

Multivariate

In [31]:

```
alt.Chart(source).mark_circle(size=60).encode(
    x='ad_area',
    y='ad_ratio',
    color='device_type:N').properties(
    title='Figure 12. Correlation of Ad area and Ad ratio')
# Ad area and ratio are not independent
```

Out[31]:

In [32]:

```
alt.Chart(source).mark_circle().encode(
    alt.X(alt.repeat("column"), type='quantitative'),
    alt.Y(alt.repeat("row"), type='quantitative'),
    color='company_id:N'
).properties(
    width=150,
    height=150
).repeat(
    row=['price1', 'price2', 'price3'],
    column=['price3', 'price2', 'price1']
).properties(
    title='Figure 13. Correlation of price')
```

Out[32]:

Figure 13: The price variables appear to have a strong positive correlation with each other.

In [33]:

```
alt.Chart(source).mark_circle().encode(
    alt.X(alt.repeat("column"), type='quantitative'),
    alt.Y(alt.repeat("row"), type='quantitative'),
    color='company_id:N'
).properties(
    width=150,
    height=150
).repeat(
    row=['requests', 'impression', 'cpc', 'ctr', 'viewability'],
    column=['viewability', 'ctr', 'cpc', 'impression', 'requests']
).properties(
    title='Figure 14')
```

Out[33]:

This scatter matrix is somewhat hard to interpret due to the presence of all the outliers which we haven't dealt with properly yet. It appears that some variables are independent, such as cpc and ctr.

In [34]:

```
alt.Chart(source).mark_circle().encode(
    alt.X(alt.repeat("column"), type='quantitative'),
    alt.Y(alt.repeat("row"), type='quantitative'),
    color='company_id:N'
).properties(
    width=150,
    height=150
).repeat(
    row=['ratio1', 'ratio2', 'ratio3', 'ratio4', 'ratio5'],
    column=['ratio5', 'ratio4', 'ratio2', 'ratio1']
).properties(
    title='15. Shows correlation between ratio variables')
```

Out[34]:

Conclusion

Further investigation into the data could show the agencies <u>bidding strategy</u> (https://support.google.com/google-ads/answer/1704424?hl=en). le. a daily budget, maximum CPC, daily average, enhanced CPC (to maintain a position on Google) or CPA.

Outliers in the data need to be effectively handled before continuing onto the second phase.