Banach Spaces of Analytic Functions

Ashish Kujur

Last Updated: January 23, 2023

Contents

§1	Analytic and Harmonic Functions]
	§1.1 Boundary Values]
	§1.2 Fatou's Theorem	1

§1 Analytic and Harmonic Functions

§1.1 Boundary Values

Definition §1.1.1 (Poisson integral of some function or measure). Let $\tilde{f}: \mathbb{D} \to \mathbb{C}$ be a harmonic function. Then f is said to be the *Poisson integral* of the function $f: \mathbb{T} \to \mathbb{C}$ if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_{T} f(e^{it}) P_r(e^{i(\theta-t)}) dt$$

Similarly, f is said to be the *Poisson integral* of a complex measure μ on T if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_T P_r \left(e^{i(\theta - t)} \right) d\mu \left(e^{it} \right)$$

§1.2 Fatou's Theorem

Theorem §1.2.1. Let μ be a complex measure on the unit circle \mathbb{T} , and let $f: \mathbb{D} \to \mathbb{C}$ be the harmonic function defined by

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{\mathbb{T}} P_r\left(e^{i(\theta-t)}\right) d\mu\left(e^{it}\right)$$

Let $e^{i\theta_0}$ be any point where μ is differentiable with respect to the normalised Lebesgue measure. Then

$$\lim_{r \to 1} f\left(re^{i\theta_0}\right) = \left(\frac{d\mu}{d\theta}\right) \left(e^{i\theta_0}\right) = \mu'\left(e^{i\theta_0}\right)$$

In fact, $f(re^{i\theta}) \to \mu'(e^{i\theta_0})$ as $re^{i\theta}$ approaches $e^{i\theta_0}$ along any path in the open disc within the region of the form $|\theta - \theta_0| \le c(1-r)$ for some c > 0.