2005-2006 学年第二学期 《模拟电子技术》试卷 B 卷

一、(8分)电路如图所示,试判断图中的二极管是导通还是截止的,并求

出 AB 两端的电压 VAB。设二极管是理想的。

二、(8分) 测得某放大电路中有两个三极管 A 和 B,A 管三极的对地电位分别为: V_1 =9V、 V_2 =6V, V_3 =6. 7V;B 管三极的对地电位分别为: V_4 =-9V、 V_5 =-6V, V_6 =-6. 2V。试确定 A 管和 B 管是 PNP 型还是 NPN 型? 是硅管还是锗管? V_1 、 V_2 、 V_3 、 V_4 、 V_5 、 V_6 对应的是哪个极(发射极、基极和集电极)的电压。

三、 $(20 \, \beta)$ 图示电路中,已知 R_{B1} =7. $5k\,\Omega$, R_{B2} =2. $5k\,\Omega$, R_{C} =2 $k\,\Omega$, R_{E} =2 $k\,\Omega$, R_{L} =2 $k\,\Omega$, V_{BE} =0. 6V , V_{CC} =12V ,三极管的 β =50,设各电容对交流可视为短路。

- 1. 估算电路的静态工作点 I_B 、 I_C 、 V_{CE} ;
- 2. 求晶体管的输入电阻 rhe;
- 3. 画出小信号等效电路;

4. 求电路的输入电阻 Ri 和输出电阻 Ro;

5. 求电压增益 A v。

四、 $(14\,
m 分)$ 电路如图所示,已知 $R_L=8\,
m \Omega$, v_i 为正弦波,要求最大输出功率 $P_{om}=9W$ 。BJT 的饱和压降 V_{CES} 可以忽略不计。求:

- 1. 正、负电源 Vcc 的最小值;
- 2. 根据 V_{CC}的最小值,计算相应的 I_{CM}、 |V_{(BR) CEO}|的最小值:
- 3. 输出功率最大(P_{om} =9W)时,电源提供的功率 P_{V} ;
- 4. 每个管子的管耗 Pcm 的最小值。

五、(15分)图示电路中的 A1、A2 为理想的集成运放。1. 试说明级间反馈元件及引入的反馈是正反馈还是负反馈、是串连反馈还是并联反馈、是电

压反馈还是电流反馈; 2. 求深负反馈条件下的闭环电压增益 $\mathbf{A}_{\mathrm{VF}} = \frac{\mathbf{v}_{\mathrm{O}}}{\mathbf{v}_{\mathrm{c}}}$ 。

六、 $(10\,

ota)$ 电路如下图所示,设运放是理想的。 1. A_1 、 A_2 和 A_3 分别组成什么电路? 2. 求 v_{o1} 、 v_{o2} 和 v_o 的表达式。

七、(15 分) 电路如图所示,设运放是理想的。已知 R=10k Ω ,C=0.01 μ F,R1=5.1k Ω ,1. 为满足振荡条件,试在图中用+、-标出运放 A 的同相端和反相端; 2. 为能起振,Rp 和 R₂ 两个电阻之和应大于何值? 3. 此电路的振荡频率 fo=? 4. 试证明稳定振荡时输出电压的峰值为 Vom=3R₁V_Z/(2R₁-R_P)。

八、(10分)用集成运放组成的串联型稳压电路如下图所示,设 A 为理想集成运算放大器。

1. 选择填空:

图中 R2、 R3、 RW 为_____, T 为_____, R₁、DZ 为_____, 运放 A 为_____。

- a. 调整环节; b、比较放大环节; c. 取样环节; d. 基准环节
- 2. 求流过稳压管的电流 I_Z ;
- 3 求输出电压 V₀的调节范围。

