Chap1 Analyzing Algorithms 基礎符號

要能默寫

- $\begin{array}{l} \bullet \ \ O(g(n)) = \{f(n): \exists c, n_0 > 0 \ such \ that \ 0 \leq f(n) \leq c \cdot g(n), \forall n \geq n \} \\ \bullet \ \ \Omega(g(n)) = \{f(n): \exists c, n_0 > 0 \ such \ that \ 0 \leq c \cdot g(n) \leq f(n), \forall n \geq n \} \\ \bullet \ \ \Theta(g(n)) = \{f(n): \exists c_1, c_2, n_0 > 0 \ such \ that \ 0 \leq c_1 \cdot g(n) \leq f(n) \leq n \} \\ \bullet \ \ f(n) = \Theta(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = L > 0 \end{array}$
- $egin{aligned} ullet o(g(n)) &= \{f(n): orall c > 0, \exists n_0 > 0 \ such \ that \ 0 \leq f(n) < cg(n), orall n \ &= f(n) = o(g(n)) \iff \lim_{n o \infty} rac{f(n)}{g(n)} = 0 \ &= \omega(g(n)) = \{f(n): orall c > 0, \exists n_0 > 0 \ such \ that \ 0 \leq cg(n) < f(n), orall n \ &= f(n) = \omega(g(n)) \iff \lim_{n o \infty} rac{f(n)}{g(n)} = \infty \end{aligned}$
- Stirling's approximation

$$ullet n! = \Theta(n^{n+rac{1}{2}}e^{-n})$$

· 證明f(n)是否為poly-bounded

- 1. 找到常數k使得 $f(n) = O(n^k)$
- 2. $\lg(f(n)) = O(\lg n)$ (上式兩邊同取 \lg)

複雜度排行

Rank
2^{2^n}
(n+1)!
n!
2^n
$\left(\frac{3}{2}\right)$
$\mathbb{O}(\log n^{\log n})$
$\Im(\log n)!$
n^3
$n^2 = 4^{\log n}$
$n=2^{\log n}$
$(\sqrt{2})^{\log n}$
$\textcircled{4}2^{\sqrt{2\log n}}$
$\log^2 n$
$\log n$
$\log \log n$
$3n^{rac{1}{\log n}}$

$$\bigcirc \log n^{\log n} = n^{\log \log n} \ n^3 < n^{\log \log n} < 2^n$$

原理: 兩邊取 \log $\log n^{\log \log n} = \log \log n * \log n$ $\log 2^n = n \log 2 = n$

 $\textcircled{2} \because Stirling's \ approximation$

$$egin{aligned} & \therefore n! pprox n^{n+rac{1}{2}} \cdot e^{-n} \ & \therefore \log n! pprox \log n^{\log n+rac{1}{2}} \cdot \sqrt{\log n} \cdot e^{-\log_e n} \ & = \log n^{\log n+rac{1}{2}} \cdot \sqrt{\log n} \cdot n^{-\log_e e} \ & = rac{\log n^{\log n} \cdot \sqrt{\log n}}{n} \end{aligned}$$

$$egin{align} @:: n = 2^{\log n} :: n^{rac{1}{\log n}} = (2^{\log n})^{rac{1}{\log n} = 2} \ @:: 2 = n^{rac{1}{\log n}} :: 2^{\sqrt{2\log n}} = (n^{rac{1}{\log n}})^{\sqrt{2\log n}} = n^{(\sqrt{rac{2}{\log n}})} \end{aligned}$$

asymptotic notation沒有三一律

- \$f(n)=O(g(n)) 與 f(n)=\Omega(g(n))\$都不成立是可能的

"Pasted image 20240817112734.png" could not be found.

ch1常考題型

grow rate 比大小 (ex.)

- 極限比較(可能要羅必達)
- 記得n!永遠在最後(如果沒有 n^n 的話)
- 代大數(不建議,很可能錯)

求time complexity

- Master theorem
- 直接從定義推導,找出常數 $(\exists, n_0 such\ that...c)$
- 暴力展開
- Substitution method
 - 要先猜or用master theorem or用tree看出,再驗證
- 離散解法

•
$$e.g.$$
 $T(n) = 2T(\sqrt{n}) + \lg n$ 很常拿來嚇人

$$\lg(n!) = \Theta(n \lg n)$$

• 看到 Θ 就知道要證明O和 Ω