#### Note: We will start at 12:53 pm ET

#### **Course Summary:**

|               | Date                 | Details                                                                    |                   |
|---------------|----------------------|----------------------------------------------------------------------------|-------------------|
|               | Mon Feb 1, 2021      | 18-441/741 Lecture 1                                                       | 12:50pm to 2:50pm |
|               | Wed Feb 3, 2021      | 18-441/741 Lecture 2                                                       | 12:50pm to 2:50pm |
|               | Mon Feb 8, 2021      | 18-441/741 Lecture 3                                                       | 12:50pm to 2:50pm |
| $\rightarrow$ | Wed Feb 10, 2021 ASS | ignment Project Exam Help                                                  | 12:50pm to 2:50pm |
|               | Fri Feb 12, 2021     | 18-441/741, Recitation 1 (Hybrid) Project-<br>Pittps://powcoder.com        | 12:50pm to 1:40pm |
|               | Sun Feb 14, 2021     | ② Quiz 1                                                                   | due by 11:59pm    |
|               | Mon Feb 15, 2021     | Add WeChat powcoder                                                        | 12:50pm to 2:50pm |
|               | Wed Feb 17, 2021     | 18-441/741 Lecture 6                                                       | 12:50pm to 2:50pm |
|               | Mon Feb 22, 2021     | 18-441/741 Lecture 7                                                       | 12:50pm to 2:50pm |
|               | Wed Feb 24, 2021     | 18-441/741 Lecture 8                                                       | 12:50pm to 2:50pm |
|               | Fri Feb 26, 2021     | 18-441/741 Recitation 2 (Hybrid) Project<br>2 Intro Zoom / In-person (M-Z) | 12:50pm to 1:40pm |
|               | Sun Feb 28, 2021     | ⊋ Quiz 2                                                                   | due by 11:59pm    |
|               |                      | Project 1                                                                  | due by 11:59pm    |



# 18-441/741: Computer Networks Assignment Project Exam Help Lectures 4: Physical Layer II https://powcoder.com

Add Was Chategores der



# **Physical Layer: Outline**

- Digital networks
- Modulation Fundamentals Exam Help
- Characterization of Communication Channels
- Fundamentattermits WP Digital Transmission
- Digital ModulationeChat powcoder
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction



# Transferring Information

- Information transfer is a physical process
- In this classive igenerally jear EaboutHelp

  - Electrical signals (on a wire or wireless)
    Optical signals (psa/fiperwcoder.com
- More broadly, EM waves, Add WeChat powcoder
   Information carriers can be very diverse:
- - Sound waves, quantum states, proteins, ink & paper, etc.
- Quote (usually attributed to Einstein):
  - You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is meowing in Los Angeles.



#### **Modulation**

- Changing a signal to convey information
- Ways to modulate a sinusoidal wave
  - Amplitude Modulation (AM) Project Exam Help
  - Frequency Modulation (FM)
  - Phase Modulatioht(PM)//powcoder.com



- In our case, modulate signal to encode a 0 or a 1. (multi-valued signals sometimes)
  - Analog is the same value just changes continuously



# **Modulation Examples**





Frequency



Phase





# Why Different Modulation Methods?

- Offers choices with different tradeoffs:
  - Transmitter/Receiver complexity
  - Powerrequirements Project Exam Help
  - Bandwidth
  - Medium (airtesper, Vibeder. 90m)
  - Noise immunity WeChat powcoder
  - Range
  - Multiplexing



# **Physical Layer: Outline**

- Digital networks
- Modula Assignment Project Exam Help
- Characterization of Communication Channels
- Fundamentattermits WP Digital Transmission
- Digital ModulationeChat powcoder
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction



#### **Questions of Interest**

- How long will it take to transmit a message?
  - How many bits are in the message (text, image)?
- How fast does the network/system transfer information?
   Assignment Project Exam Help
   Can a network/system handle a voice (video) call?
  - How many bits/sacond/doesweice/video require? At what quality?
- How long will it take tweatsmip awwestage without errors?
  - How are errors introduced?
  - How are errors detected and corrected?
- What transmission speed is possible over radio, copper cables, fiber, infrared, ...?



# A Communications System



- Converts information into a signal suitable for transmission Injects energy into communications medium or channel
- - Telephone converts wice into electromagnetic waves
    Wireless LAN card converts bits into electromagnetic waves

#### Receiver

- Receives energy from medium
- Converts received signal into a form suitable for delivery to user
  - Telephone converts current into voice
  - Wireless LAN card converts electromagnetic waves into bits



# **Digital Binary Signal**



For a given communications medium:

- How do we increase the bit rate (speed)?
- How do we achieve reliable communications?
- Are there limits to speed and reliability?



#### **Bandwidth**

- Bandwidth is width of the frequency range in which the Fourier transform of the signal is pon-zero.
- Sometimes referred to as the channel width
- Or, where it is above some threshold value (Usually, the half power threshold e.g., -3dB)
- dB short for decibel
  - Defined as 10 \*  $log_{10}(P_1/P_2)$
  - When used for signal to noise: 10 \* log<sub>10</sub>(S/N)
- Also: dBm power relative to 1 milliwatt
  - Defined as 10 \* log<sub>10</sub>(P/1 mW)



# Signal = Sum of Waves







#### Closer look at waves





# The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
  - Correspondist menty Parajecta in Yrequency P
- Every signal has an equivalent representation in the frequency domants://powcoder.com

What frequencies are present and what is Andrew Strength (terpogy) code
 E.g., radio and TV signals, ...





### Spectra & Bandwidth

- Spectrum of a signal: measures power of signal as function of frequency
- $x_1(t)$  varies faster in time & has more high frequency content  $\Pr$  than  $x_2(t)$
- Bandwidth W<sub>s</sub> is defined as range of frequencies where a signal has non-negligible power, e.g. range of band that contains 99% of total signal power

Mini Quiz: Between [A]  $x_1$  and [B]  $x_2$ , which has *more* bandwidth?

Spectrum of  $x_1(t)$ 







Bad

# Transmission Channel Considerations

 Every medium supports transmission in a certain frequency range.

- Outside this range, effects such as ect Exam Help attenuation, ... degrade the signal foot Exam Help much

• Transmission and trese/pewcoder.com hardware will try to maximize the useful bandwidth with at powcoder frequency band.

Tradeoffs between cost, distance, bit rate

 As technology improves, these parameters change, even for the same wire.



Good



# **Attenuation & Dispersion**

- Not nice low pass filters
- Why dowe care? Project Exam Help





# Limits to Speed and Distance

- Noise: "random" energy is added to the signal.
- Attenuation: some of the energy in the signal leaking ment Project Exam Help
- Dispersion: attenuation and wcoder.com propagation speed are frequency dependent. Add WeChat poweoder (Changes the shape of the signal)
  - Effects limit the data rate that a channel can sustain.
    - » But affects different technologies in different ways
  - Effects become worse with distance.
    - » Tradeoff between data rate and distance



#### **Pulse Transmission Rate**

 Objective: Maximize pulse rate through a channel, that is, make T as small as possible



- If input is a nartdw/pelseattlpervtypite output is a spread-out pulse with ringing
- Question: How frequently can these pulses be transmitted without interfering with each other?
- 2W<sub>c</sub> pulses/sec with <u>binary amplitude encoding</u>
   where W<sub>c</sub> is the bandwidth of the channel



#### **Bandwidth of a Channel**

$$X(t) = a \cos(2\pi ft)$$
 Channel  $Y(t) = A(f) a \cos(2\pi ft)$ 

- If input is sinusoidgofrfrequencyefcthemm Help
  - output is a sinusoid of same frequency f
  - Output is attenuated by an amount A(f) that me depends on f
  - A(f)≈1, then input signal passes readily
  - A(f)≈0, then input signal is blocked
- Bandwidth W<sub>c</sub> is range of frequencies passed by channel



Ideal lowpass channel

#### **Multi-level Pulse Transmission**

- Assume channel of bandwidth W<sub>c</sub>, and transmit 2W<sub>c</sub> pulses/sec (without interference)
- If pulses' amplitudes are either -A or +A, then each pulse conveys 1 to 15 signment Project Exam Help
  - Bit Rate = 1 bit/pulse x 2W pulses/sec = 2W<sub>c</sub> bps
- If amplitudes are from {-A, A/3, +A/3, +A}, then bit rate is 2x2W<sub>c</sub> bps Add WeChat powcoder
- By going to M=2<sup>m</sup> amplitude levels, we achieve
  - Bit Rate = m bits/pulse x  $2W_c$  pulses/sec =  $2mW_c$  bps

In the absence of noise,

the bit rate can be increased without limit by increasing m



#### Noise & Reliable Communications

- All physical systems have noise
  - Electrons always vibrate at non-zero temperature
- Motion of electrons induces noise
   Assignment Project Exam Help
   Presence of noise limits accuracy of measurement of received signal amplitude wcoder.com
- Errors occur if digital signal separation is comparable to Add WeChat powcoder noise level
- Thus, noise places a limit on how many amplitude levels can be used in pulse transmission
- Bit Error Rate (BER) increases with decreasing signal-tonoise ratio



# Signal-to-Noise Ratio (SNR)





# **Physical Layer: Outline**

- Digital networks
- Modula Assignment Project Exam Help
- Characterization of Communication Channels
- Fundamental Primits WF Digital Transmission
- Digital ModulationeChat powcoder
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction



# The Nyquist Limit

- A noiseless channel of width H can at most transmitasbignarynsignateattaratetalp H.
  - Assumes binary amplitude encoding https://powcoder.com

Add WeChat powcoder





27

# The Nyquist Limit

- A noiseless channel of width H can at most transmit a binary signal at a rate 2 x H.
  - Assumessitanyamptiterojenetelingam Help
  - E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/seconds://powcoder.com

#### Add WeChat powcoder





# Sample Quiz Question

• [True / False] The bandwidth of Wi-Fi (802.11ac; Tirst geni) is 80 MHt. So by Nyquist theoremoit same as speed is 160 Mbps





# **Past the Nyquist Limit**

- More aggressive encoding can increase the bandwidth
- Example: modulate multi-valued symbols
  - Modulate blocks of "digital signal" bits, e.g, 3 bits = 8 values
     Often combine shutter to late to the late of the contract of the late of the contract of the late of the la



- Problem? Noise!
  - The signals representing two symbols are less distinct
  - Noise can prevent receiver from decoding them correctly



# **Example: Modem Rates**





# Capacity of a Noisy Channel

- Places upper bound on channel capacity, while considering noise
- Shannon's theorem:

$$C = B \times \log_2(1 + S/N)$$

- C: maximum sqiparity the Project Exam Help
- B: channel bandwidth (Hz)
- S/N: signal to ndisteratio pothecondom
   Often expressed in decibels (db) ::= 10 log(S/N)
- Example: Add WeChat powcoder
  - Local loop bandwidth: 3200 Hz (old school dialup)
  - Typical S/N: 1000 (30db)
  - What is the upper limit on capacity?

 $C = 3200 \times \log_2(1 + 1000) = 31.9 \text{ Kbps}$ 



# **Shannon's Channel Capacity Theorem**

$$C = W_c \log_2(1 + SNR)$$
 bps

- Arbitrarily-religion normalizations and passible if the transmission rate R < C</li>
- If R > C, then arbitrarily-reliable communications is not possible
   Add WeChat powcoder
- "Arbitrarily-reliable" means the BER can be made arbitrarily small through sufficiently complex "coding"
- C can be used as a measure of how close a system design is to the best achievable performance
- Bandwidth W<sub>c</sub> & SNR determine C



# Sample Quiz Question

• Find the Shannon channel capacity for a WiFi channel with  $W_c$  = 80 MHz and SNR = 40 dB

Assignment Project Exam Help

SNR (dB) = 40 dB corresponds to https://powcoder.com
SNR = 10^(40/10) = 10000
Add WeChat powcoder

 $C = 80 \log_2 (1 + 10000) \text{ Mbps}$ =  $80 \log_{10} (10001)/\log_{10} 2 = 1063 \text{ Mbps}$ 



# **Physical Layer: Outline**

- Digital networks
- Modula Assignment Project Exam Help
- Characterization of Communication Channels
- Fundamenthttps://powcoder.comransmission
- Digital ModulationeChat powcoder
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction



# From Signals to Packets

Analog Signal



"Digital" Signal Signment Project Exam Help

https://powcoder.com

Bit Stream

Add WeChat powcoder 0 0 1

**Packets** 



Packet Transmission





#### **Baseband versus Carrier Modulation**

- Baseband modulation: send the "bare" digital signal
  - Assignment Project Exam Help

     Channel must be able to transmit low frequencies
  - For example to pervice dier.com
- Carrier modulation: use the signal to modulate a higher requency signal, called a carrier
  - Can send the signal in a particular part of the spectrum
  - Can modulate the amplitude, frequency or phase
  - For example, wireless and optical



## **Bandpass Channels**



- Bandpass charine ps pass vacade confrequencies around some center frequency f<sub>c</sub>
  - Radio channels de la spondo de la composición del la composición del composición de la composición del composición del composición de la composición de la composición del composi
- Digital modulators embed information into waveform with frequencies passed by bandpass channel
- Sinusoid of frequency  $f_c$  is centered in middle of bandpass channel
- Modulators embed information into a sinusoid



## **Amplitude Carrier Modulation**



#### Signaling rate and Transmission Bandwidth

From modulation theory:



- If bandpass channel has bandwidth  $W_c$  Hz,
  - Then baseband channel has  $W_c/2$  Hz available, so
  - modulation system supports  $W_c/2 \times 2 = W_c$  pulses/second
  - That is,  $W_c$  pulses/second per  $W_c$  Hz = 1 pulse/Hz
  - Recall baseband transmission system supports 2 pulses/Hz

# Frequency Division Multiplexing: Multiple Channels

**Determines Bandwidth of Link** 



### **Frequency Modulation**



- Use two frequencies to represent bits
  - "1" send frequency fc + d
  - "0" send frequency fc d
- Demodulator looks for power around fc + d or fc d



#### **Phase Modulation**

- Map bits into phase of sinustial worder
  - "1" send A  $cos(2\pi ft)$  , i.e. phase is 0
  - "0" send A  $cos(2\pi ft + \pi)$  , i.e. phase is  $\pi$
- Equivalent to multiplying  $cos(2\pi ft)$  by +A or -A
  - "1" send A  $cos(2\pi ft)$  multiply by 1
  - "0" send A  $cos(2\pi ft + \pi) = -A cos(2\pi ft)$  multiply by -1



#### **Modulator & Demodulator**

Modulate  $cos(2\pi f_c t)$  by multiplying by  $A_k$  for T seconds:

$$A_k$$
  $\longrightarrow$   $Y_i(t) = A_k \cos(2\pi f_c t)$ 

Assignment Project Exam Help  $\cos(2\pi f_c t)$  Transmitted signal during  $k$ th interval https://powcoder.com

Demodulate (recover  $A_c$ ) by multiplying by  $2\cos(2\pi f_c t)$  for T seconds and lowpass filtering (smoothing):





## **Example of Phase Modulation**





#### **Example of Phase Demodulation**



Baseband signal discernable after smoothing

Recovered Information





# Quadrature Amplitude Modulation (QAM)

- QAM uses two-dimensional signaling
  - $A_k$  modulates in-phase  $\cos(2\pi f_c t)$
  - $B_k$  modulates quadrature phase  $\sin(2\pi f_c t)$
  - Transmit & migraphase & questa tree mase components



- $Y_i(t)$  and  $Y_q(t)$  both occupy the bandpass channel
- QAM sends 2 pulses/Hz



#### **QAM Demodulation**





smoothed to zero

## **Signal Constellations**

- Each pair (A<sub>k</sub>, B<sub>k</sub>) defines a point in the plane
- Signal constellation set of signaling points



- 4 possible points per T sec.
- 2 bits / pulse

16 possible points per *T* sec. 4 bits / pulse



# **Physical Layer: Outline**

- Digital networks
- Characteristing in the Project Exam Help Channels
- Fundamental Limits in Digital Transmission
   Modems and Psychological Transmission
- Line Coding (next legistre) wooder
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction

