Inferring Transmission Structure from HIV Sequence Data via Latent Spatial Poisson Processes

Fan Bu, Oliver Ratmann and Jason Xu on behalf of the Rakai Community Cohort Study and PANGEA-HIV

Updated in June, 2022

Major objectives

- ▶ Infer age structure in HIV transmissions based on phylogenetic analysis outcomes
- Without any pre-classification on phylogenetic summary statistics while making use of more data
- Exploit a continuous spatial process (with marks) and thus avoid manual discretization

The data

- A male and female ages (mid-observation) for each potential transmission pair (s_{i1}, s_{i2})
 - 3 "posterior" linkage score ℓ_i (\in [0, 1])
- C "posterior" direction score d_i (\in [0,1])

The data

- A male and female ages (mid-observation) for each potential transmission pair (s_{i1}, s_{i2})
- B "posterior" linkage score ℓ_i (\in [0, 1])
- C "posterior" direction score d_i (\in [0,1])

Goal: leverage the phylogenetic scores (ℓ_i and d_i) to infer transmission links and directions

Existing approach: pre-classify points on ℓ_i and d_i ; discretize on age bands (below: pre-classified MF transmissions)

Our approach: no need for any pre-classification or discretization, directly accounting for uncertainty

Existing approach:

End result: transmission rate π_{ab} between (discrete) age groups a and b

Our approach:

End result: a continuous spatial intensity function $\lambda(\cdot, \cdot)$

Existing approach:

 π_{ab} specific to age discretization; hard to convert to different resolutions

Our approach:

Easy to discretize to any age group resolution by integrating $\lambda(\cdot, \cdot)$

Existing approach:

 π_{ab} specific to age discretization; hard to convert to different resolutions

Our approach:

E.g., Source age (marginal) for recipient age $b = \int_{a \in \mathcal{A}} \lambda(a, b) da$

- Assume age pairs $\mathbb{E} = \{(s_{i1}, s_{i2})\}_{i=1}^{N}$ are point patterns from a 2D spatial Poisson process with intensity function λ .
- Introduce (latent) variable c_i as (unknown) type label for point i:
 - $c_i = 0$: no transmission event
 - $ightharpoonup c_i = 1$: MightharpoonupF transmission
 - $ightharpoonup c_i = 2$: F \rightarrow M transmission

- Assume age pairs $\mathbb{E} = \{(s_{i1}, s_{i2})\}_{i=1}^{N}$ are point patterns from a 2D spatial Poisson process with intensity function λ .
- ▶ Introduce (latent) variable c_i as (unknown) type label for point i:
 - $c_i = 0$: no transmission event
 - $ightharpoonup c_i = 1$: MightharpoonupF transmission
 - $ightharpoonup c_i = 2$: Fightharpoonup M transmission
- Two parts of model:
 - 1. Spatial process (mixture model on spatial density function)
 - 2. "Marks" distribution: logit-normal model on the linkage and direction scores

More on the spatial process

Decompose the intensity function λ) into scale and density functions, and then model the density function as a mixture.

$$\lambda(\cdot) = \gamma \pi(\cdot)$$

$$\pi(\cdot) = \sum_{k \in \{0,1,2\}} p_k \pi_k(\cdot)$$

$$\pi_k(\cdot) = \sum_{h=1}^{H_k} w_{kh} \text{BVN}(\cdot; \theta_{kh}, \Sigma_{kh}).$$

More on the spatial process

Decompose the intensity function λ) into scale and density functions, and then model the density function as a mixture.

$$egin{aligned} oldsymbol{\lambda}(\cdot) &= \gamma \pi(\cdot) \ \pi(\cdot) &= \sum_{k \in \{0,1,2\}} p_k \pi_k(\cdot) \ \pi_k(\cdot) &= \sum_{h=1}^{H_k} w_{kh} \mathsf{BVN}(\cdot; heta_{kh}, \Sigma_{kh}). \end{aligned}$$

Spatial density function π_k :

- "continuous" version of discrete rate π_{ab} 's
- integrates to 1 over the 2D age space
- bivariate normal mixture model with Dirichlet process prior (flexible number of components)

Likelihood function

Construct complete data likelihood given type labels c_i 's for paramters $\Theta = \{\gamma, \mathbf{p}, \boldsymbol{\mu}, \sigma_\ell^2, \sigma_d^2, \{(\theta_{kh}, \Sigma_{kh})\}, \{\alpha_k\}\}.$

$$L(\Theta; \{\mathbf{x}_{i}\}, \{c_{i}\}, \{\mathbf{s}_{i}\}) = \gamma^{N} \frac{e^{-\gamma}}{N!} \prod_{k \in \{0,1,2\}} \prod_{i:c_{i}=k} p_{k} f_{k}(\mathbf{s}_{i}) \phi_{k}(\mathbf{x}_{i})$$

$$= \prod_{i=1:N} \phi(\mathbf{x}_{i1} \mid \tilde{\mu}_{\ell,i}, \sigma_{\ell}^{2}) \phi(\mathbf{x}_{i2} \mid \tilde{\mu}_{d,i}, \sigma_{d}^{2})$$

$$\times \gamma^{N} \frac{e^{-\gamma}}{N!} \prod_{k \in \{0,1,2\}} \prod_{i:c_{i}=k} \left(p_{k} \sum_{h=1}^{H_{k}} w_{kh} \mathsf{BVN}((s_{i1}, s_{i2}); \theta_{h}, \Sigma_{h}) \right).$$

blue terms: spatial process for 2D paired ages red terms: "marks" distribution for phylogenetic scores

Inference

- ▶ Data augmentation approach in a Bayesian inference framework to make it tractable
- ightharpoonup Treat unknown type label c_i as latent variables; in each iteration:
 - 1. sample c_i conditional on everything else
 - 2. sample parameters Θ conditional on configurations of c_i

Simulation study - setup

Two key problems:

- male source age for young women (\sim 15-24 y.o.)
- proportions of each transmission direction (more MF or more FM?)

Simulation study - setup

Two key problems:

- ightharpoonup male source age for young women (\sim 15-24 y.o.)
- proportions of each transmission direction (more MF or more FM?)

Sample size N = 100, 200, 400, 600, 800; 100 runs for each setup.

Simulation study - results

Simulation study - results commentary

- ▶ As sample size *N* increases, better accuracy at estimating the quantities of interest
- Satisfactory performance with N = 400 or 600 already; this is the sample size range of the real data
- ► For the age source problem, difference between younger/older men proportions is over-estimated when *N* is small to be expected with the parsimony nature of the Dirichlet process prior

Real data analysis

Data overview

- ightharpoonup \sim 540 potential transmission pairs, with male and female ages, and linkage and direction scores obtained from phylogenetic analysis
- ightharpoonup pre-processing: keep pairs with $\ell_i > 0.2
 ightharpoonup 526$ pairs in total

Comparison of our approach with existing approach

- **"fixed"**: pre-classify with fixed type labels. $\ell_i > 0.6 \rightarrow \text{real events}; d_i > 0.5 \rightarrow \text{MF transmission}, otherwise FM transmissions.$
- "model": full model with flexible type labels learned as latent variables.

Real data analysis - transmission type proportions

- ▶ \blacktriangle = proportions using fixed thresholds ($\ell_i > 0.6$, $d_i > 0.5 \rightarrow M \rightarrow F$, $d_i < 0.5 \rightarrow F \rightarrow M$)
- our model includes more data points as transmission events
- yet, ratio between MF and FM directions stays similar

- ▶ Row A: "**fixed**" analysis with pre-classification; Row B: "**model**"-learned flexible type labels, with point color shades representing the posterior probabilities of each data point belonging to each type.
- ➤ Contour lines: 50%, 80% and 90% highest-density regions for point patterns (MAP estimates of spatial process).
- Similar point patterns are identified by proposed model compared to a fixed-label ad-hoc approach.

- ▶ Row A: "**fixed**" analysis with pre-classification; Row B: "**model**"-learned flexible type labels, with point color shades representing the posterior probabilities of each data point belonging to each type.
- ► Contour lines: 50%, 80% and 90% highest-density regions for point patterns (MAP estimates of spatial process).
- ➤ Similar point patterns are identified by proposed model compared to a fixed-label ad-hoc approach.
 - Overall age assortative transmissions, but...
 - Older men transmit to a wide range of female age groups (both young and old) and get infected by slightly older women (still wide range).
 - ▶ Much more old-men-to-young-women transmissions than old-women-to-young-men.
 - No clear patterns for the "none/unknown" type − can be considered as background noise.

- ▶ Row A: "**fixed**" analysis with pre-classification; Row B: "**model**"-learned flexible type labels, with point color shades representing the posterior probabilities of each data point belonging to each type.
- ► Contour lines: 50%, 80% and 90% highest-density regions for point patterns (MAP estimates of spatial process).
- Similar point patterns are identified by proposed model compared to a fixed-label ad-hoc approach.
- ► However, our model is able to differentiate the strengths of evidence among different data points and thus leverage and respect data uncertainty.

Real data analysis - source age distribution (overall)

Dark dashed lines: "**fixed**" analysis; solid colored lines: "**model**" with 100 posterior samples, overlaid with posterior mean.

There are more older male sources than older female sources.

Real data analysis - the story of young women (15-25 y.o.)

Whom do they get infected by, and whom do they transmit to?

Notable peak at male source around 40y.o., but younger women transmit more to younger men.

There are "sugar-daddy" transmissions that result in HIV infections in young women (a deviation from typical age assortative behavior).

Real data analysis - the story of young men (15-25 y.o.)

Whom do they get infected by, and whom do they transmit to?

Very different story for young men: mainly get infected by young women, and mainly transmit back to young women. Age assortative behavior.

Summary

- Proposed a novel model for inferring HIV transmission flow between age groups
- Included more data points in the model while considering uncertainty in identifying transmission links/directions
- Utilized spatial process with marks to leverage both phylogenetic information and age structure
- Avoided manual discretization with a continuous construction

Thank you!

Supplement slides

More on the "marks" distributions

Specify a logit-normal model for the phylogenetic scores.

$$onumber \log \operatorname{it}(\ell_i) \mid c_i \sim N(\tilde{\mu}_{\ell,i}, \sigma_{\ell}^2), \\
onumber \log \operatorname{it}(d_i) \mid c_i \sim N(\tilde{\mu}_{d,i}, \sigma_{d}^2),$$

where

$$\tilde{\mu}_{\ell,i} = \mu_{\ell} \mathbb{1} [c_i \neq 0],
\tilde{\mu}_{d,i} = \mu_{d} \mathbb{1} [c_i = 1] + \mu_{-d} \mathbb{1} [c_i = -1].$$

More on the "marks" distributions

Specify a logit-normal model for the phylogenetic scores.

$$logit(\ell_i) \mid c_i \sim N(\tilde{\mu}_{\ell,i}, \sigma_{\ell}^2),$$

 $logit(d_i) \mid c_i \sim N(\tilde{\mu}_{d,i}, \sigma_{d}^2),$

where

$$\tilde{\mu}_{\ell,i} = \mu_{\ell} \mathbb{1} [c_i \neq 0],
\tilde{\mu}_{d,i} = \mu_{d} \mathbb{1} [c_i = 1] + \mu_{-d} \mathbb{1} [c_i = -1].$$

 $\ell_i > 0.5 \rightarrow$ more likely to be real transmission $d_i > 0.5 \rightarrow$ more likely to be M \rightarrow F transmission $d_i < 0.5 \rightarrow$ more likely to be F \rightarrow M transmission