# Domain Generalization using Causal Matching

Divyat Mahajan, Shruti Tople, Amit Sharma Microsoft Research

# Spurious Correlations

#### Common training examples

#### Waterbirds

y: waterbird a: water background

y: blond hair

a: female



EBUNUING SPO

y: landbird a: land background



y: dark hair a: male



#### Test examples

y: waterbird a: land background



y: blond hair a: male



#### CelebA



y: contradiction a: has negation (P) The economy

could be still better.
(H) The economy has never been better.

y: entailment a: no negation (P) Read for Slate's take on Jackson's findings.

(H) Slate had an opinion on Jackson's findings.

y: entailment a: has negation

(P) There was silence for a moment.

(H) There was a short period of time where no one spoke.

#### Link to paper

#### MultiNLI

# Domain Generalization

- Domain Generalization (DG) aims to learn a single classifier that generalizes well to data from unseen domains/ distributions
- Training Data:  $(d_i, x_i, y_i)_{i=1}^n \sim (D_m, X, Y)$  where  $d_i \in D_m$  and  $D_m \subset D$  is a set of m domains
- Covariate Shift Assumption:  $p_{d_i}(y|x_s) = p_{d_i}(y|x_s)$  for any two domains  $d_i$ ,  $d_j$
- Need to capture the invariant mechanism  $p(y|x_s)$  or identify the stable features  $x_s$



Li et al. 2017

# Feature Distribution Matching

- Domain Invariant Representations
  - Bad if labels and domain are correlated (Class Imbalance)
- Class Conditional Version
  - But does the distribution of invariant features need to be the same across domains?
  - Variance in the distribution due to different noise levels across domains

Domain Adversarial Training (Ganin et al.)



## Perfect Match

#### **Training Domains**











Rotation Angles: 15, 30, 45, 60, 76

#### **Test Domains**





Rotation Angles: 0, 90

#### Perfect Match:

- Same data point rotated by different angle across domains shares the same invariant feature
- Match feature representations for the "counterfactuals" of each data point across domains

## Causal View of Domain Generalization

- Object (0) can be interpreted as the base person where the Domain (D) corresponds to different views that lead to creation of an image (X) for that person (O)
- Domains can be interpreted as interventions: For each observed  $x_i^d$ , there area set of counterfactual inputs  $x_i^{d'}$  where  $d \neq d'$ , but both correspond to the (possibly unobserved) same object (O)



# Invariance Condition from SCM

- Invariance Condition:  $X_C \perp \!\!\! \perp D \mid O$
- Perfect Match:

$$f_{\texttt{perfectmatch}} = \arg\min_{h,\Phi} \sum_{d=1}^{m} L_d(h(\Phi(X)), Y) + \lambda \sum_{\Omega(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')}))$$

- Prior work incorrectness:
  - Domain-invariant representations:  $X_C \perp \!\!\! \perp D$
  - Class-conditional domain-invariant:  $X_C \perp \!\!\! \perp D \mid Y_{true}$
  - Both incorrect due to backdoor path via Object O

## Observational Data

- Latent base object not known generally in observational data (PACS, VLCS)
  - Perfect Match still applicable using self augmentations
- Class Conditional Approximation:
  - Data points with the same class label are likely to closer under causal features as compared to point with different class labels
- Inferring latent base objects / match function (  $\Omega: X \times X \rightarrow \{0,1\}$  )
  - Contrastive Loss: Dist(Anchor, Positive Match) Dist(Anchor, Negative Match)
- Iterative Contrastive Learning:
  - Initialize  $\Omega$  with Random Match across domains with same class label
  - Using  $\Omega$  to infer Positive Match given anchor and minimize contrastive loss
  - Update  $\Omega$  based on nearest same-class pairs in the representation space

## MatchDG

$$f_{\texttt{randommatch}} = \arg\min_{h,\Phi} \sum_{d=1}^{m} L_d(h(\Phi(X)), Y) + \lambda \sum_{\Omega_Y(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')})) \tag{2}$$

$$l(\mathbf{x}_j, \mathbf{x}_k) = -\log \frac{\exp(\sin(\Phi(\mathbf{x}_j), \Phi(\mathbf{x}_k))/\tau)}{\exp(\sin(\Phi(\mathbf{x}_j), \Phi(\mathbf{x}_k))/\tau) + \sum_{i=0, y_i \neq y_j}^{b} \exp(\sin(\Phi(\mathbf{x}_j), \Phi(\mathbf{x}_i))/\tau)}$$
(3)

#### Algorithm 1: MatchDG

Input: Dataset  $(d_i, x_i, y_i)_{i=1}^n$  from m domains,  $\tau$ , t

Output: Function  $f: \mathcal{X} \to \mathcal{Y}$ 

Create random match pairs  $\Omega_Y$ .

Build a n \* m data matrix  $\mathcal{M}$ .

Phase I. while notconverged do

**Phase 2**. Compute matching based on  $\Phi$ . Minimize the loss (2) to obtain f.

## MNIST Dataset

Table 1: Accuracy for Rotated MNIST & Fashion-MNIST datasets on target domains of 0° and 90°. Accuracy for CSD [23], MASF [20], IRM [6] are reproduced from their code.

| Dataset                     | Source                | ERM         | MASF        | CSD         | IRM         | RandMatch   | MatchDG     | PerfMatch (Oracle) |
|-----------------------------|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|
| Rotated<br>MNIST            | 15, 30, 45,<br>60, 75 | 93.9 (0.67) | 93.2 (0.2)  | 94.7 (0.2)  | 94.2 (0.32) | 95.9 (0.18) | 96.1 (0.34) | 97.5 (0.17)        |
|                             | 30, 45,<br>60         | 77.9 (2.44) | 69.4 (1.32) | 79.2 (2.47) | 77.6 (1.68) | 81.4 (0.77) | 86.3 (1.14) | 92.0 (0.83)        |
|                             | 30, 45                | 64.6 (3.23) | 60.8 (1.53) | 68.7 (1.01) | 63.1 (3.14) | 68.4 (1.78) | 74.3 (2.47) | 81.7 (2.79)        |
| Rotated<br>Fashion<br>MNIST | 15, 30, 45,<br>60, 75 | 78.6 (1.17) | 72.4 (2.9)  | 78.0 (1.5)  | 79.6 (1.82) | 79.4 (0.81) | 82.8 (0.27) | 86.2 (0.69)        |
|                             | 30, 45,<br>60         | 33.7 (2.24) | 25.7 (1.73) | 37.2 (1.15) | 35.5 (1.51) | 38.8 (2.28) | 45.6 (1.74) | 55.3 (1.54)        |
|                             | 30, 45                | 22.1 (2.36) | 20.8 (1.26) | 24.9 (1.78) | 24.4 (1.01) | 25.1 (1.89) | 34.9 (1.56) | 41.4 (1.58)        |

Table 2: Overlap with perfect matches. top-10 overlap and the mean rank for perfect matches for MatchDG and ERM over all training domains. Lower is better for mean rank.

| Dataset | Method                 | Overlap (%) | Top 10<br>Overlap (%) | Mean Rank    |
|---------|------------------------|-------------|-----------------------|--------------|
|         | ERM                    | 18.9 (1.01) | 52.4 (1.91)           | 25.1 (1.43)  |
| MNIST   | (Default)              | 35.1 (5.23) | 69.6 (5.97)           | 14.3 (4.16)  |
|         | MatchDG<br>(PerfMatch) | 47.6 (5.61) | 81.5 (4.70)           | 8.2 (3.17)   |
| Fashion | ERM                    | 3.1 (0.20)  | 14.4 (0.68)           | 190.6 (7.92) |
| MNIST   | MatchDG<br>(Default)   | 23.9 (2.61) | 50.1 (3.29)           | 79.7 (9.91)  |
|         | MatchDG<br>(PerfMatch) | 54.7 (4.38) | 82.5 (3.07)           | 15.5 (3.54)  |

# Chest X Ray Dataset

Details: Link

- Source Domains (NIH, ChexPert)
  - Images with class label 0 are translated vertically downwards
- Target Domains (Kaggle)
  - No spurious correlation

|           | NIH (Source)       | Chex (Source)      | RSNA (Target)      |
|-----------|--------------------|--------------------|--------------------|
| ERM       | 78.9 (0.34)        | <b>84.3</b> (3.52) | 55.2 (2.27)        |
| IRM       | <b>79.1</b> (1.01) | 83.4 (2.42)        | 56.6 (2.04)        |
| CSD       | 73.2 (3.35)        | 83.3 (2.03)        | 60.5 (0.82)        |
| RandMatch | 75.3 (1.87)        | 83.6 (1.84)        | 57.4 (1.76)        |
| MatchDG   | 74.7 (0.66)        | 82.2 (0.68)        | 58.4 (0.62)        |
| MDGHybrid | 74.3 (0.91)        | 82.4 (1.03)        | <b>62.6</b> (0.72) |

## Evaluation Issues with DG

- OOD accuracy evaluated on few test domains (PACS, VLCS)
  - No guarantees regarding performance on a large set of unseen domains
  - Evaluation metrics to capture the extent to which DG algorithm learnt stable features
- Membership Inference (MI) Attacks
  - Utilize overfitting of ML models to predict train vs test dataset samples
  - Stable features → Better Generalization → Good Defense against MI attacks
- Connections between DG and Privacy Attacks
  - <u>Theoretical</u>: Causal models (stable feature learning) leads to better defense on MI attacks
  - <u>Empirical</u>: Use MI attacks to evaluate DG algorithms
  - <u>Software</u>: Toolkit to support DG algorithms and evaluate them on various privacy attacks

# DG and Trustworthy Explanations

- Counterfactual Explanations (CF) for models under distribution shifts
  - CF generated might not generalize across distributions (<u>Rawal et al.</u>)
- DG models could lead to more stable explanations under distribution shifts?
  - Distributionally robust ML models might lead to CF that generalize well across distributions
  - Regularizers inspired from DG literature could help in generating robust CF
- Evaluating DG models using counterfactual explanations?
  - Metrics based on stability of counterfactual explanations across distributions to evaluate DG models