Topologia della retta reale - Sommario

Tutto sulla topologia della retta reale.

A. Intorni

Intorni

Definizione di distanza (con le sue proprietà), intorno centrato aperto di centro x_0 e di raggio r, intorno di x_0 ; la retta estesa, l'intorno di $+\infty$ e di $-\infty$.

O. Preambolo

In questo capitolo studieremo e definiremo delle nomenclature necessarie per studiare i *limiti*.

1. Distanza euclidea

#Definizione

Definizione 1.1. (Distanza Euclidea).

Siano $x,y\in\mathbb{R}$, allora definisco la distanza (oppure distanza euclidea) di x,y il valore

$$d(x,y)=|x-y|$$

FIGURA 1.1. (Idea grafica della distanza)

Graficamente questo corrisponde, appunto, alla distanza tra due punti sulla retta reale.

Proprietà della distanza euclidea

Possiamo verificare alcune proprietà di questa applicazione (Funzioni); la prima essendo la proprietà *antiriflessiva*.

#Proposizione

Proposizione 1.1. (Antiriflessività).

$$orall x,y \in \mathbb{R}; d(x,y) \geq 0 \wedge d(x,y) \iff x=y$$

#Proposizione

Proposizione 1.2. (Proprietà simmetrica).

$$orall x,y \in \mathbb{R}; d(x,y) = d(y,x)$$

#Proposizione

Proposizione 1.3. (Disuguaglianza Triangolare).

Analogamente alle disuguaglianze triangolari già viste nei numeri complessi (PROP. 4.7.) e col valore assoluto (OSS 3.1.1.) si verifica che

$$orall x,y,z\in \mathbb{R}; d(x,z)\leq d(x,y)+d(y,z)$$

Dimostrazione.@Proposizione 1.3. (Disuguaglianza Triangolare) Infatti dall'**OSS 3.1.1.** di Funzioni di potenza, radice e valore assoluto so che se

$$|a+b| \le |a| + |b|$$

può essere applicato con a = x - y e b = y - z, così diventa

$$|x-z| \leq |x-y| + |y-z| \iff d(x,z) \leq d(x,y) + d(y,z)$$

OSS 1.1. Noto che questa nozione di *distanza euclidea* può essere \square anche definita sui numeri complessi \mathbb{C} ; infatti posso porre

$$d(z_1,z_2) = |z_1 - z_2|$$

dove $|\cdot|$ rappresenta il *modulo* di un numero complesso (Operazioni sui Numeri Complessi, **DEF 4.** o **DEF 4.1.**).

Graficamente, questo corrisponde a

Inoltre scopriamo che questa definizione della distanza euclidea su \mathbb{C} conserva le tre proprietà (**PROP 1.1., 1.2., 1.3.**) appena enunciate. Pertanto è possibile scambiare *modulo* e *distanza euclidea* in quanto vi è un *isomorfismo* tra queste due applicazioni.

2. Intorno centrato aperto di centro x e di raggio r

#Definizione

Definizione 2.1. (Intorno centrato).

Sia $x_0 \in \mathbb{R}$ e sia $r \in \mathbb{R}, r > 0$; allora chiamo "l'intorno centrato aperto di centro x_0 e di raggio r" l'intervallo aperto (Intervalli, **DEF 1.4.**)

$$[x_0-r,x_0+r[\ =\{x\in \mathbb{R}: d(x,x_0)< r\}]$$

un altro nome può essere la palla aperta di centro x_0 e di raggio rQuindi questo è l'insieme di tutti i punti di $\mathbb R$ che hanno distanza da x_0 meno di r.

FIGURA 2.1. (Idea di intorno centrato)

OSS 2.1. Analogamente a **OSS 1.1.**, questa nozione di *intorno centrato* aperto può essere applicato a $\mathbb C$ usando la nozione di *modulo*; infatti graficamente questa corrisponde ad una palla 2-dimensionale di centro z_0 e di raggio r. (Figura 2.1.)

OSS 2.2. Allora si può definire l'intorno centrato aperto in \mathbb{R}^3 dove definisco

$$orall x,y \in \mathbb{R}^3; d(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + (x_3-y_3)^2}$$

E graficamente questa corrisponde ad una vera *palla*. Letteralmente. (*Figura 2.1*.)

FIGURA 2.1.

3. Intorno

#Definizione

Definizione 3.1. (Intorno di un punto).

Sia $x_0 \in \mathbb{R}$, chiamo allora l'**intorno di** x_o un *qualunque insieme E di \mathbb{R}* che

FIGURA 3.1. (Idea)

Graficamente,

#Definizione

Definizione 3.2. (Intorno di $\pm \infty$).

Prendo $\tilde{\mathbb{R}}$ l'insieme dei reali estesi, ovvero

$$\tilde{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

e definisco l'intorno di di $+\infty$ un qualunque sottoinsieme $E\subseteq\mathbb{R}$ che contiene una semiretta $]a,+\infty[$; ovvero un insieme superiormente illimitato (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **DEF 1.4.**) del tipo $]a,+\infty[$.

FIGURA 3.2. (Idea)

Esempi

ESEMPIO 3.1. L'intervallo]3,7[è intorno di 3,5; infatti è possibile prendere r=0,5 e ottenere la *palla aperta di centro* 3,5 *e di raggio* 0,5 che equivale a

che infatti è contenuto nell'intervallo]3,7[. Graficamente,

ESEMPIO 3.2. Se prendendo l'insieme

$$S=\{0\}\cup\{rac{1}{n},n\in\mathbb{N}\diagdown\{0\}\}$$

e il punto $x_0 = \frac{1}{2}$, scopriamo che S non è intorno di x_0 ; infatti prendendo per qualsiasi r non riesco a formare una palla attorno a x_0 , in quanto S è definita sui numeri naturali che contiene dei "buchi".

ESEMPIO 3.3. Considerando i *numeri naturali* (Numeri Naturali - Sommario), ci chiediamo se questo insieme è *intorno di* $+\infty$; la risposta è *no*: esistono degli elementi in $\mathbb R$ che non sono contenuti in $\mathbb N$, come ad esempio i numeri razionali.

Tuttavia se consideriamo l'insieme $\mathbb{N} \cup]100, +\infty[$ allora la risposta è *sì* in quanto si considera un *intervallo* su \mathbb{R} .

Analogo il discorso per gli intervalli di $-\infty$.

B. Punti interni, esterni e di frontiera

Punti interni, esterni e di frontiera

O. Preambolo

Questo argomento presuppone la conoscenza dell'argomento di Intervalli.

1. Punti interni

#Definizione

Definizione 1.1. (Punto interno).

Sia $E \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$, si definisce x_0 punto interno a E se viene verificato che

$$\exists r > 0 :]x_0 - r, x_o + r[\subseteq E$$

ovvero se esiste un *intorno* di x_0 che è contenuto in E (Definizione 3.1. (Intorno di un punto), **DEF 3.1.**).

Inoltre chiamo l'insieme dei punti interni a E come E° .

Esempio

ESEMPIO 1.1. Sia

$$E=\{1\}\cup[2,3)$$

e voglio trovare l'insieme dei punti interni E° .

Per farlo devo innanzitutto disegnare il grafico di ${\cal E}$ per poter capire come procedere.

Ora "provo" ogni numero fissando x_0 il numero scelto;

- Scegliendo $x_0=1$ vedo chiaramente che non è *punto interno*, in quanto è impossibile che esista un intorno centrato a raggio r ad esso.
- Scegliendo $x_0 = 2$ vedo che neanche questo è un *punto interno*; non riesco a definire un intorno centrato tale che a "sinistra" di 2 c'è un punto appartenente a E.
- Però scegliendo $x_0=2.001$ è possibile; infatti posso definire un intorno di x con r=0.001.
- Analoghi i discorsi per $x_0 = 3$ e $x_0 = 2.999$
- · Concludo allora che

$$E^\circ=(2,3)$$

2. Punti esterni

#Definizione

Definizione 2.1. (Punto esterno).

Un punto $x_0 \in \mathbb{R}$ si dice **esterno** ad un *insieme* $E \subseteq \mathbb{R}$ se è *interno* al complementare di E, ovvero $\mathcal{C}_{\mathbb{R}}E$ (Teoria degli Insiemi). Quindi

$$x_0$$
 è esterno $\iff \exists r>0: (x_0-r,x_0+r)\subseteq \mathcal{C}_{\mathbb{R}}E$

Esempio

ESEMPIO 2.1. Considerando l'esempio di prima con

$$E = \{1\} \cup [2,3)$$

ora vogliamo trovare *l'insieme di tutti i punti esterni*. Allora usando lo stesso grafico di prima, faccio esattamente i stessi procedimenti di prima considerando però il *complemento di E*, ovvero tutti i punti che non appartengono ad E.

Usando la stessa procedura in **ESEMPIO 1.1.**, troviamo che

$$\{ \text{punti esterni di } E \} = (-\infty, 1) \cup (1, 2) \cup (3, +\infty)$$

3. Punti di frontiera

(#Definizione)

Definizione 3.1. (Punto di frontiera).

Un punto $x_0 \in \mathbb{R}$ si dice di frontiera per E se questo punto non è ne interno ne esterno ad E.

Inoltre definiamo l'insieme dei punti di frontiera di E come il

$$\partial E$$

e si legge come "delta storto E"

OSS 3.1. Questo equivale a negare la proposizione

$$[\exists r>0:(x_0-r,x_0+r)\subseteq E]ee [\exists r'>0:(x_0-r',x_0+r')\subseteq \mathcal{C}E]$$

che secondo le *leggi di De Morgan* e delle regole osservate (Logica formale - Sommario) diventa

$$[orall r>0,(x_0-r,x_0+r)
subseteq E]\wedge [orall r'>0,(x_0-r',x_0+r')
subseteq \mathcal{C}E]$$

e dato che

$$A
subseteq B \iff A \cap \mathcal{C}_U B
eq \emptyset$$

ovvero che un insieme A non è sottoinsieme di B se e solo se l'intersezione tra A e il complemento di B non è vuota (ovvero ha almeno un elemento), questo diventa

$$[orall r>0,(x_0-r,x_0+r)\cap\mathcal{C}E
eq\emptyset]\wedge[orall r'>0,(x_0-r',x_0+r')\cap E
eq\emptyset]$$

ovvero che deve valere la seguente:

• Ogni intorno di x_0 deve contenere sia punti di E e il suo complemento $\mathcal{C}_{\mathbb{R}}E.$

Esempi

ESEMPIO 3.1. Considerando lo stesso esempio di prima, ovvero

$$E=\{1\}\cup[2,3)$$

vogliamo trovare ∂E .

Procedendo con lo stesso disegno, cerchiamo di "provare" ogni punto per trovare elementi di ∂E .

- $x_0 = 0$; Questo non è elemento di ∂E , in quanto posso facilmente trovare un intorno che contenga *solo* elementi del complemento di E.
- $x_0=1$; Provando a considerare ogni intorno di x_0 trovo che deve per forza dev'esserci un punto sia in E che nel suo complemento.
- $x_0 = 2$; Stesso discorso analogo di prima.
- $x_0 = 3$; Di nuovo lo stesso discorso.
- $x_0 = 2,5$; Qui invece è possibile trovare un intorno che contenga *solo* punti di E. Ad esempio un intorno centrato in 2,5 con raggio r=0,1.

ESEMPIO 3.2. Consideriamo finalmente dei casi diversi da quelli esaminati prima. Sia

$$E=\mathbb{Q}\cap (1,2)$$

ovvero tutti i numeri *razionali* compresi tra *1, 2* esclusi. Disegnando di nuovo un disegno,

Scopro le seguenti:

- $E^{\circ} = \emptyset$; infatti in questo insieme *non* vi ci sono punti interni, in quanto l'assioma di separazione non vale in \mathbb{Q} (Assiomi dei Numeri Reali, **S**), **OSS 6.2.**); quindi ci sono sempre dei "buchi" tra due numeri razionali, ovvero dei numeri irrazionali. Infatti è possibile dimostrare che i numeri irrazionali sono *densi* in \mathbb{R} .
- $\partial E=[1,2]$; qui si verifica un fenomeno strano, ovvero che si verifica che ∂E è più "grande" di E stessa. Questo si verifica perché, da un lato abbiamo la densità di $\mathbb Q$ in $\mathbb R$ (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 4.1.**); infatti se considero un punto q_0 in $\mathbb Q$ e considero gli "estremi" del suo

infatti se considero un punto q_0 in $\mathbb Q$ e considero gli "estremi" del suo intorno (q_0-r,q_0+r) allora tra q_0-r e q_0+r dev'esserci almeno un numero razionale.

Però allo stesso tempo, come visto prima, i numeri irrazionali sono densi in \mathbb{R} ; di conseguenza se ci sono sia dei numeri razionali (appartenenti a E) che dei irrazionali (appartenenti al complemento di E) allora vediamo che tutti i punti di E (gli estremi inclusi) sono punti di frontiera.

C. Insiemi aperti e chiusi

Insiemi aperti e chiusi

Definizione di insieme aperto e chiuso. Teorema sugli insiemi aperti e chiusi.

1. Insieme aperto

#Definizione

Definizione 1.1. (Insieme Aperto).

Sia $A \subseteq \mathbb{R}$; l'insieme A si dice **aperto** se e e solo se *tutti i suoi punti sono* punti interni all'insieme stesso (Punti interni, esterni e di frontiera > Definizione 1.1. (Punto interno)); ovvero se

$$orall x_0 \in A, \exists r > 0: (x_0 - r, x_0 + r) \subseteq A$$

OSS 1.1. Osservo che l'insieme A è aperto se e solo se $A = A^{\circ}$.

Esempi

ESEMPIO 1.1. Considero l'intervallo aperto (Intervalli, **DEF 1.4.**)

voglio sapere se questo è *insieme aperto*; scegliendo un qualunque punto x all'interno di questo intervallo, allora posso sicuramente trovare un intorno in x tale per cui contiene solo elementi di (2,3). Infatti se scelgo r come la distanza minima tra x e ciascun estremo, scopro che l'intorno centrato aperto di questo raggio (Definizione 3.1. (Intorno di un punto)) contiene solo punti di E (dunque esso è sottoinsieme di E).

Formalizzando questo ragionamento, ho

$$\forall x,2 < x < 3; r = \min(d(x,2),d(x,3))$$

Graficamente questo ragionamento corrisponde a

ESEMPIO 1.2. Ora considero l'insieme

$$E=\{1\}\cup[2,3)$$

che *non* è *aperto*, in quanto considerando $x_0 = 1$ trovo che questo elemento (o punto) non è *interno* a E. Analogo il discorso per $x_0 = 2$.

2. Insieme chiuso

#Definizione

Definizione 2.1. (Insieme Chiuso).

Considerando un insieme $C \subseteq \mathbb{R}$, si dice che esso è *chiuso* se il suo *complemento* è *aperto*. Ovvero se $\mathcal{C}_{\mathbb{R}}C$ è aperto.

Esempi

ESEMPIO 2.1. Consideriamo l'intervallo chiuso (Intervalli, DEF 1.1.)

$$C = [2, 5]$$

Considerando il suo complemento

$$\mathcal{C}_{\mathbb{R}}C=(-\infty,2)\cup(5,+\infty)$$

vediamo che questo insieme (il complemento) è *aperto*; infatti ad ogni punto x_0 del complemento vediamo che è possibile definire un r tale che l'*intorno centrato aperto* di questo raggio sia sottoinsieme di $\mathcal{C}_{\mathbb{R}}C$.

Infatti definendo r come

$$r = egin{cases} d(2,x_0) \ ext{per} \ x_0 < 2 \ d(5,x_0) \ ext{per} \ x_0 > 5 \end{cases}$$

sicuramente troviamo che tutti i punti x_0 sono interni al complemento di ${\cal C}$.

Graficamente questo ragionamento corrisponde a

3. Teoremi sugli insiemi aperti e chiusi

#Teorema

Teorema 3.1. (Proprietà degli insiemi aperti).

Abbiamo le seguenti proposizioni:

1. Gli insiemi

$$\emptyset, \mathbb{R}$$

sono insiemi aperti

- 2. L'unione (Operazioni con gli Insiemi) di due insiemi aperti è sicuramente un insieme aperto.
- 3. L'intersezione (Operazioni con gli Insiemi) di due insiemi aperti è sicuramente un insieme aperto.

#Teorema

Teorema 3.2. (Proprietà degli insiemi chiusi).

Abbiamo invece le stesse proposizioni per gli insiemi chiusi:

1. Gli insiemi

 \emptyset , \mathbb{R}

sono insiemi chiusi

- 2. L'unione (Operazioni con gli Insiemi) di due insiemi chiusi è sicuramente un insieme chiuso.
- 3. L'intersezione (Operazioni con gli Insiemi) di due insiemi chiusi è sicuramente un insieme chiuso.

OSS 3.1. Notiamo che se dimostriamo almeno una di queste due teoremi, allora si ha automaticamente dimostrato l'altro teorema, in quanto la *definizione dell'insieme chiuso* (Definizione 2.1. (Insieme Chiuso)) ci suggerisce che le stesse proprietà valgono. Infatti, la definizione dell'insieme chiuso si basa sulla definizione dell'insieme aperto, tenendo però conto del complementare dell'insieme; perciò basta tenere conto delle leggi di *De Morgan* (Logica formale - Sommario).

Dimostrazione.@Teorema 3.1. (Proprietà degli insiemi aperti) Allora ci limitiamo a dimostrare solo il teorema **3.1.**

1. L'insieme vuoto

Ø

non ha *nessun elemento*; per verificare se questo insieme vuoto è *aperto*, bisognerebbe allora verificare che *tutti* gli elementi di questo insieme gode della proprietà necessaria. Pertanto si può pensare che tutti gli elementi (ovvero nessuno) di questo insieme può godere *tutte* le proprietà che si vuole.

Altrimenti è possibile pensare in termini di insiemi complementari.

Per quanto riguarda l'insieme dei numeri reali

 \mathbb{R}

e prendendo un elemento $x_0 \in \mathbb{R}$ allora si trova automaticamente che

$$orall r>0, (x_0-r,x_0+r)\subseteq \mathbb{R}$$

è verificata.

2. Sia

$$\{A_i, i \in I\}$$

un insieme di insiemi aperti.

ESEMPIO 3.1. Un insieme del genere può essere

$$\{(1-rac{1}{n},1+rac{1}{n};n\in\mathbb{N}\diagdown\{0\}\}$$

Allora considero un

$$x_0\in\bigcup_{i\in I}A_i$$

Allora da ciò discende che esiste un \bar{i} tale che il punto x_0 appartenga all'insieme aperto $A_{\bar{i}}$, ovvero

$$x_0\in A_{ar{i}}$$

Allora è vero che esiste una palla aperta (Definizione 3.1. (Intorno di un punto)) che venga contenuta in quell'insieme aperto. Ovvero

$$x_0 \in A_{ar{i}} \implies \exists r > 0: (x_0 - r, x_0 + r) \subseteq A_{ar{i}}$$

Ma allora ciò implica che

$$\exists r>0: (x_0-r,x_0+r)\subseteq igcup_{i\in I} A_i$$

3. Siano A_1 e A_2 due insiemi aperti; scelgo allora un $x_0 \in (A_1 \cap A_2)$. Quindi ciò vuol dire che

$$x_0 \in (A_1 \cap A_2) \implies egin{cases} x_0 \in A_1 \implies \exists r_1 > 0 : (x_0 - r_1, x_0 + r_1) \subseteq A \ x_0 \in A_2 \implies \exists r_2 > 0 : (x_0 - r_2, x_0 + r_2) \subseteq A \end{cases}$$

Poi scegliendo r il minimo tra r_1 e r_2 , ovvero

$$r=\min(r_1,r_2)$$

Allora ho che

$$(x_0-r,x_0+r)\subseteq (A_1\cap A_2)$$

il che vuol dire l'intersezione tra A_1 e A_2 è aperto.

OSS 3.2. Però questo *non* vuol dire che l'*intersezione infinita* tra insiemi aperti debba essere necessariamente *aperta*: infatti si propone il seguente controesempio.

ESEMPIO 3.2.

Considero la successione di intorni

$$(I_n)_n:I_n=(1-rac{1}{n},2+rac{1}{n})$$

e vediamo che l'intervallo I_n è aperto per ogni n.

Inoltre gli intervalli (I_n)_n sono *inscatolati* (Intervalli, **DEF 3.1.1.**).

Disegnando il grafico (*lasciato al lettore per esercizio*) notiamo che se prendiamo l'intersezione di tutti gli intervalli

$$\bigcap_n I_n$$

i numeri compresi tra 1,2 stanno sicuramente all'interno di questo intervallo, come si può evincere dal grafico; invece per la *proprietà di Archimede* (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**), per ogni numero che sta fuori da [1,2], esiste un intervallo I_n che non lo include; ovvero

$$orall arepsilon > 0, \exists n \in \mathbb{N}: 1-arepsilon
otin I_n \ 2+arepsilon
otin I_n$$

(la dimostrazione completa è lasciata al lettore)

Allora si può concludere che

$$igcap_n I_n = [1,2]$$

che non è un insieme aperto.

D. Punti di aderenza e di accumulazione

Punti di aderenza e di accumulazione

Definizione di punto di aderenza e di accumulazione. La chiusura e il derivato di un insieme. Primo teorema di Bolzano-Weierstraß.

1. Punti di aderenza (o di chiusura)

(#Definizione)

Definizione 1.1. (Punto di aderenza (o di chiusura)).

Sia $E \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$.

Allora x_0 si dice punto di chiusura (o di aderenza) per E se è vera la seguente:

$$orall r > 0: ((x_0-r,x_0+r)\cap E)
eq \emptyset$$

Ovvero in ogni palla/intorno centrato di x_0 (Definizione 3.1. (Intorno di un punto) > Definizione 3.1. (Intorno di un punto)) devono esserci elementi di E.

Inoltre definiamo l'insieme dei *punti di chiusura* dell'insieme E si dicono la *chiusura (o aderenza) di E*, scritto come \overline{E} .

ESEMPIO 1.1.

Consideriamo l'insieme E=(1,2) e voglio trovare gli elementi di \overline{E} . Per farlo è possibile disegnare il grafico di E, poi "testare" ogni elemento della retta $\mathbb R$ per vedere quali sono i potenziali elementi di \overline{E} .

Si evince che:

- 1. I numeri $0, \frac{1}{2}$ non sono punti di aderenza per E, in quanto è possibile individuare almeno un intorno fuori da E (ovvero che non contenga elementi di E).
- 2. 1 è un *punto di aderenza*, in quanto per tutti gli intorni in x_0 abbiamo sempre almeno un elemento di E; infatti si deve sempre "andare a destra", "entrando" in E. Analogo il discorso per 2. In conclusione è possibile individuare

$$\overline{E}=[1,2]$$

OSS 1.1. Osserviamo che per ogni insieme è vera che

$$E\subseteq \overline{E}$$

Considero l'insieme

$$E=\{rac{1}{n},n\in\mathbb{N}\diagdown\{0\}\}$$

poi voglio trovare le seguenti: \overline{E} , E° , ∂E .

3. $\overline{E}=E\cup\{0\}$ e $\partial E=E\cup\{0\}$; a questi insiemi aggiungiamo il numero 0 in quanto *per l'Archimedeità di* $\mathbb R$ (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**) è sempre possibile trovare un n tale che

$$orall arepsilon > 0, \exists n: 0 < rac{1}{n} < arepsilon$$

4. $E^{\circ} = \emptyset$; infatti E è definita tramite gli \mathbb{N} , che presenta dei "buchi" in \mathbb{R} .

ESEMPIO 1.3.

Voglio studiare l'insieme dei *numeri razionali* $\mathbb Q$ (Richiami sui Numeri Razionali).

1. Sicuramente

$$\overline{\mathbb{Q}} = \mathbb{Q} \cup \mathbb{R} = \mathbb{R}$$

per la densità di $\mathbb Q$ in $\mathbb R$ (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 4.1.**). Ovvero da ciò consegue che prendendo un punto $q_0 \in \mathbb Q$, è possibile trovare sempre dei numeri razionali per qualsiasi intorno con r>0. Infatti

$$orall r>0, \exists a\in\mathbb{Q}: q_0+r>a>q$$

- 2. I punti di frontiera $\partial \mathbb{Q}$ è anch'esso \mathbb{R} per motivi analoghi.
- 3. Per *l'assioma di Dedekind* (Assiomi dei Numeri Reali, **ASSIOMA S)**) sappiamo che tra un numero razionale q_0 e un altro numero (in questo caso prendiamo $q_0+r, \forall \varepsilon>0$) dev'esserci un numero *irrazionale* che non appartiene a \mathbb{Q} ; allora non ci sono dei *punti interni* (Punti interni, esterni e di frontiera, **DEF 1.1.**).

Proprietà della chiusura

Possiamo enunciare le seguenti proprietà per la *chiusura* di *E*.

(#Teorema)

Teorema 1.1. (Proprietà della chiusura \bar{E}).

Sia $E\subseteq \mathbb{R}$, allora sono vere che:

- 1. \overline{E} è un *insieme chiuso* (Insiemi aperti e chiusi > Definizione 2.1. (Insieme Chiuso)). Per provare questo, bisognerebbe dimostrare che l'insieme complementare della chiusura di E è *aperto*; quindi bisogna considerare i punti che non stanno né in E né nella sua chiusura \overline{E} e poi dimostrare che esiste un'intervallo di ogni punto che non sta nella chiusura.
- 2. \overline{E} è il più piccolo chiuso che contiene E. Quindi ho in mente una relazione d'ordine (Relazioni, **DEF 4.1.**), ovvero dal punto di vista di quella d'inclusione. Ovvero

$$A > B \iff B \subseteq A$$

3. Un insieme E è *chiuso* se e solo se $\overline{E} = E$

2. Punti di accumulazione

#Definizione

Definizione 2.1. (Punto di accumulazione).

Sia $E\subseteq\mathbb{R},\ x_0\in\mathbb{R}.$ Si dice che x_0 è un **punto di accumulazione di** E se è vera che

$$\forall r > 0, (]x_0 - r, x_0 + r[\ \cap E) \diagdown \{x_0\}
eq \emptyset$$

ovvero un *punto di aderenza* escludendo però il punto x_0 stesso; quindi un punto x_0 è di accumulazione per E se in ogni intorno di x_0 ci sono punti di E diversi da se stesso.

L'insieme dei punti di accumulazione per E si chiama **derivato** di E, demarcata col simbolo

$$\mathcal{D}E$$

e si legge come "d corsivo maiuscolo".

OSS 2.1. Come abbiamo definito degli *intorni di* $+\infty$ *o di* $-\infty$ in Definizione 3.1. (Intorno di un punto), **DEF.3.2.**, è possibile analogamente definire anche $+\infty$ o $-\infty$ come *punti di accumulazione* di un insieme E. Un $+\infty$ è punto di accumulazione per E vuol dire che si verifica il seguente:

$$orall M>0, (M,+\infty)\cap E
eq\emptyset$$

ovvero

$$orall M>0, \exists x_0\in E: x>M$$

ovvero che per ogni semiretta a partire da M, dev'esserci almeno un elemento in comune tra questa semiretta e l'insieme E con $+\infty$ come punto di accumulazione.

Analoga la definizione di un insieme E che ha $-\infty$ come punto di accumulazione.

(#Teorema)

Teorema 2.1. (Teorema di caratterizzazione degli punti di accumulazione).

Sia $E \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$. x_0 è punto di accumulazione per E se e solo se in ogni intorno di x_0 ci sono infiniti punti di E.

(#Dimostrazione)

Dimostrazione. (del TEOREMA 2.1.)

Questa dimostrazione si articola in due sotto-dimostrazioni.

" \Leftarrow ": Dimostriamo che se in ogni intorno di x_0 ci sono infiniti punti di E, allora x_0 è di accumulazione per E: questo è evidentemente vero, in quanto se in ogni intorno di x_0 ci sono infiniti punti di E, allora dev'esserci almeno un elemento di E in questo intorno diverso da x_0 .

" \Longrightarrow ": Ora notiamo il viceversa; ovvero che se x_0 è di accumulazione per E allora in ogni suo intorno ci sono infiniti punti di E.

Per dimostrare questa proposizione, procediamo dimostrando la contronominale; ovvero che se in ogni intorno di x_0 ci sono elementi finiti di E, allora x_0 non è punto di accumulazione per E. (Logica formale - Sommario)

Supponiamo quindi che x_0 abbia un intorno in cui ci sono un numero finito punti di E: allora

$$(x_0-r,x_0+r)\cap E = \{x_1,x_2,\ldots,x_k\}$$

Che graficamente (FIGURA 2.1.) corrisponde a

Considero dunque $r=\min(\{d(x_0,x_j), \forall j\in\{1,2,\ldots,k\}\})$ ovvero la *minima* distanza tra x_0 e un qualunque punto di E. Allora risulta che

$$((x_0-r,x_0+r)\cap E)\diagdown\{x_0\}=\emptyset$$

il che ci dimostra che x_0 non è di accumulazione per E. (oppure è un punto isolato).

FIGURA 2.1. (Idea)

ESEMPIO 2.1. Prendiamo di nuovo l'intervallo

$$E = (1, 2)$$

E voglio individuare $\mathcal{D}E$. Con lo stesso approccio di **ESEMPIO 1.1.**, "testiamo" dei elementi della retta reale per vedere se possono essere dei punti di accumulazione.

- 1. Ovviamente 0 non può essere punto di accumulazione.
- 2. 1,2 sono *punti di accumulazione* per E in quanto disegnando un qualsiasi intorno di questi punti, si deve per forza disegnare un intervallo che contenga elementi di E. Analogo il discorso per i numeri $1 \leq x \leq 2$. Allora

$$\mathcal{D}E = [1, 2]$$

ESEMPIO 2.2. Prendiamo l'insieme

$$E = \{\frac{1}{n}, n \in \mathbb{N} \setminus \{0\}\}$$

Con lo stesso approccio di sempre, individuiamo gli elementi di $\mathcal{D}E$.

- 3. 1 non è punto di accumulazione. Infatti è possibile individuare un intorno (1-r,1+r) che non abbia elementi di E: basta porre r=0,1.
- 4. Analogo discorso per tutti gli elementi n ponendo $r=|rac{1}{n^2+n}|$.
- 5. 0 è punto di accumulazione per l'Archimedeità dei reali (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**). Infatti per qualsiasi r è sempre possibile trovare $n \in \mathbb{N}$ tale che

$$0<\frac{1}{n}<0+r$$

Allora $\mathcal{D}E = \{0\}.$

ESEMPIO 3.3. Prendiamo i *numeri naturali* (Numeri Naturali - Sommario). Si scopre che $\mathcal{D}\mathbb{N}=\emptyset$; non esistono i numeri naturali che siano dei *punti* \mathbb{R} di accumulazione per \mathbb{N} , in quanto tutti questi numeri distano tra di loro. Basta infatti prendere l'intorno in $n\in\mathbb{N}$ di raggio 0,5. Invece è possibile dire che $+\infty$ è punto di accumulazione per \mathbb{N} , in quanto grazie all'Archimedeità dei reali (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 2.1.**) si verifica la seguente condizione:

$$orall M>0, \exists n\in\mathbb{N}:n>M ext{ dove }arepsilon=1$$

Primo teorema di Bolzano-Weierstraß (forma insiemistica)

Enunciamo uno dei teoremi più importanti dell'analisi matematica, che ci garantisce l'esistenza di un punto di accumulazione in \mathbb{R} per una categoria di insiemi.

(#Teorema)

Teorema 2.2. (Primo teorema di Bolzano-Weierstraß).

Sia $E \subseteq \mathbb{R}$, E un insieme *infinito* e *limitato*. (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **DEF 1.3.**)

Allora si verifica il seguente:

$$\exists \xi \in \mathbb{R} : \xi \in \mathcal{D}E$$

ovvero che esista un numero ξ che sia punto di accumulazione per E.

#Dimostrazione

Dimostrazione.@Teorema 2.2. (Primo teorema di Bolzano-Weierstraß) Se E è un insieme limitato allora per il teorema dell'esistenza dell'estremo superiore e inferiore (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **TEOREMA 4.1.**) esistono

$$a_0 = \inf(E); b_0 = \sup(E)$$

ovvero $a_0,b_0\in\mathbb{R}$ e tali per cui $E\subseteq [a_0,b_0].$

Allora considero c_0 il *punto medio tra a_0 e b_0*; ora considero i due intervalli

$$[a_0, c_0]; [c_0, b_0]$$

che graficamente corrisponde a

Inoltre *almeno* uno di questi intervalli devono essere *infiniti*, in quanto se supponessimo per assurdo che entrambi gli intervalli fossero finiti, allora la loro unione sarebbe anch'essa finita.

Tenendo questo in considerazione, scegliamo uno di questi. Ora chiamo questo intervallo $[a_1,b_1]$, dove $a_1=c_0$ oppure $b_1=c_0$, a seconda dell'intervallo scelto.

Quindi otteniamo una successione di intervalli inscatolati, limitati, infiniti e dimezzati (Intervalli)

$$(I_n)_n$$

La forma forte del teorema di Cantor (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 5.2.**) ci dice che facendo l'intersezione di tutti questi intervalli otteniamo un ξ .

Ora voglio trovare un *intorno* di ξ che contenga un qualunque insieme *infinito* $[a_n,b_n]$. Ovvero voglio verificare che

$$\exists r>0: [a_n,b_n]\subseteq (\xi-r,\xi+r)$$

Allora la condizione è

$$r>d(a_n,b_n)=rac{b_0-a_0}{2^n}$$

il che è possibile in quanto ricordandomi che

$$\frac{b_0-a_0}{n}\geq \frac{b_0-a_0}{2^n}$$

e tenendo conto *l'Archimedeità di* \mathbb{R} (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**) la condizione sopra citata è totalmente possibile visto che

$$\exists ar{n} : 0 < rac{b_0 - a_0}{2^{ar{n}}} \leq rac{b_0 - a_0}{ar{n}} < r$$

Abbiamo quindi che l'intorno in ξ di raggio r contiene l'insieme infinito $[a_{\bar{n}},b_{\bar{n}}]$, di conseguenza anche l'intorno stesso è infinito; dato che contiene infiniti punti di E, per il **TEOREMA 2.1.** ξ è punto di accumulazione per E.

E. Nesso con successioni (File a parte disponibile)

Se si vuole consultare il file messo a parte per questa sezione visitare Nesso tra Topologia di R e Successioni - Sommario

E1. Secondo teorema di B.W.

Secondo teorema di Bolzano-Weierstraß

Richiami al primo teorema di Bolzano-Weierstraß; interpretazione del medesimo teorema in termini di successioni; enunciato del teorema; dimostrazione del teorema.

O. Richiamo al primo teorema di B.W.

Richiamiamo il *primo teorema di Bolzano-Weierstraß* in Punti di aderenza e di accumulazione.

#Richiamo

Richiamo (Primo teorema di BW (richiamo)).

Sia $E \subseteq \mathbb{R}$, E un insieme *infinito* e *limitato*. (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **DEF 1.3.**)

Allora si verifica il seguente:

$$\exists \xi \in \mathbb{R} : \xi \in \mathcal{D}E$$

ovvero che esista un numero ξ che sia punto di accumulazione per E.

1. Enunciato del teorema

Idea. Abbiamo appena letto l'enunciato del primo teorema di Bolzano-Weierstraß, che viene anche detta come la "forma insiemistica" di tale teorema: ora la vogliamo interpretare con le nozioni di successione, successione convergente, e di sotto successione. (Successione e Sottosuccessione)

(#Teorema)

Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß).

Sia $(a_n)_n$ una successione reale e limitata (Successione e Sottosuccessione, **DEF 1.2.**, **DEF 1.3.**)

Allora deve esistere una sotto successione convergente $(a_{n_k})_k$ (Successione e Sottosuccessione, **DEF 2.1.**), ovvero deve esistere

$$\lim_k a_{n_k} = L \in \mathbb{R}$$

2. Dimostrazione

#Dimostrazione

Dimostrazione.@Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß)

Chiamo $E = \{a_n, n \in \mathbb{N}\}$ l'insieme dei *valori di* a_n , ovvero l'insieme immagine della successione $(a_n)_n$.

Ora ci sono due possibilità: che E sia o finito o infinito.

1. E è finito: esempi di questo caso può essere la successione costante $a_n=c,c\in\mathbb{R}$ oppure la successione pari-dispari $a_n=(-1)^n$.

Allora almeno un elemento in E è immagine di *infiniti* indici n; scelgo allora una sotto successione *opportuna* tale da risultare una successione costante, che è ovviamente convergente.

ESEMPIO 2.1. Ad esempio per $a_n = (-1)^n$ basta scegliere $(a_{2n})_n$ o $(a_{2n+1})_n$. L'idea è che abbiamo

$$1, -1, 1, -1, 1, -1, \dots$$

e scegliamo solo i termini pari o dispari: così abbiamo la successione estratta

$$1, 1, 1, \dots, 1 \text{ o } -1, -1, -1, \dots, -1$$

2. E è infinito: ma comunque la successione $(a_n)_n$, per ipotesi, è limitata. Allora E è un insieme limitato e infinito; qui applico il primo teorema di Bolzano-Weierstraß richiamatasi all'inizio. Chiamo dunque il punto di accumulazione (Punti di aderenza e di accumulazione, **DEF 2.1.**) per E: $\xi \in \mathbb{R}$.

Allora per definizione in ogni intorno di ξ ci sono infiniti punti di E.

Ovvero in ogni intorno di ξ ci sono infiniti punti-valori a_n .

Ora ci chiediamo se è possibile costruire una sottosuccessione tale che

$$\lim_k a_{n_k} = \xi$$

Allora per avere una risposta consideriamo i seguenti:

- 0. Considero l'intorno $]\xi-1,\xi+1[$ e scelgo a_{n_0} in questo intorno.
 - 1. Stesso discorso per l'intorno $]\xi-\frac{1}{2},\xi+\frac{1}{2}[$, con a_{n_1} , ma anche tale che $n_1>n_0$ per conservare l'ordine. Posso farlo in quanto ci sono *infiniti* punti (ovvero valori a_n) attorno ξ .
 - 2. Vado avanti così fino all'infinito; ho allora

$$a_{n_k}\in (\xi-rac{1}{2^k},\xi+rac{1}{2^k})$$

Allora

$$|a_{n_k} - \xi| < rac{1}{2^k} \implies 0 < |a_{n_k} - \xi| < rac{1}{2^k}$$

Considerando che

$$\lim_n 0=0, \lim_n \frac{1}{2^k}=0$$

Allora per il teorema dei due carabinieri (Limite di Successione, **OSS 1.1.**) ho

$$\lim_k a_{n_k} - \xi = 0 \implies \left[\lim_k a_{n_k} = \xi
ight]$$

Graficamente l'idea della dimostrazione è il seguente.

FIGURA 2.1. (Idea della dimostrazione)

[GRAFICO DA FARE]

E2. Insiemi compatti

Insiemi compatti in R

Definizione di insiemi compatti in R; R come spazio metrico; teorema di caratterizzazione dei compatti in R; lemma di caratterizzazione della chiusura tramite la successione; dimostrazione del teorema.

O. Preambolo - Spazi metrici e topologici

OSS 0.a. Osserviamo che dal titolo leggiamo che stiamo *in specifica* prendendo l'insieme \mathbb{R} , in quanto questo è un insieme su cui possiamo definire una *distanza* (Definizione 3.1. (Intorno di un punto), **DEF 1.1.**). Infatti si dice che \mathbb{R} è uno *spazio metrico*, come lo è pure $\mathbb{R}^2, \ldots, \mathbb{R}^n$. Altrimenti un insieme su cui non può essere definita una *distanza* si dice *spazio topologico*.

Per approfondire questo tema rivolgersi alla dispensa di *D.D.S.*, capitolo 10.2, p. 33.

1. Definizione di insieme compatto in R

#Definizione

Teorema 1.1. (Insieme compatto in R per successioni).

Sia $E \subseteq \mathbb{R}$. E si dice **compatto per successione** (d'ora in poi diremo compatto e basta) se vale la seguente proprietà: se da ogni successione a valori in E posso estrarre una sottosuccessione convergente ad un punto $x \in E$.

OSS 1.1. Con questa definizione, un insieme compatto sembra un ente di cui è quasi impossibile da verificare: infatti diventa interessante trovare una *caratterizzazione alternativa* con un teorema.

2. Teorema di caratterizzazione dei compatti

Teorema 2.1. (Teorema di caratterizzazione dei compatti in R).

Sia $E \subseteq \mathbb{R}$.

Tesi. Allora E è compatto se e solo se E è chiuso e limitato.

Lemma di caratterizzazione della chiusura

Prima di poter procedere alla dimostrazione, ci serve il seguente lemma.

(#Lemma)

Lemma 2.1. (Caratterizzazione della chiusura tramite le successioni).

Sia $E \subseteq \mathbb{R}$.

Allora E è *chiuso* (Insiemi aperti e chiusi, **DEF 2.1.**) se e solo se vale la seguente proprietà:

(*) Se una successione a valori in E è convergente, allora il limite appartiene all'insieme E.

#Dimostrazione

Dimostrazione.@Lemma 2.1. (Caratterizzazione della chiusura tramite le successioni)

Questo è un teorema del tipo \iff , quindi si procede in due passi distinti.

1. " \Longrightarrow ": Sia E chiuso; ora supponiamo (per assurdo) che sia falsa la proprietà (*). Ovvero supponiamo che esiste una successione a valori in E tale che il suo punto di convergenza \bar{a} appartiene ad un punto fuori da E (ovvero al suo complementare $\mathcal{C}_{\mathbb{R}}E$).

Però E è chiuso, di conseguenza $\mathcal{C}_{\mathbb{R}}E$ è aperto: quindi abbiamo i seguenti.

$$ar{a} \in \mathcal{C}_{\mathbb{R}}E \implies \exists arepsilon > 0, |ar{a} - arepsilon, ar{a} + arepsilon [\subseteq \mathcal{C}_{\mathbb{R}}E$$

Però allo stesso tempo abbiamo, per definizione

$$\lim_n a_n = ar{a} \implies egin{array}{c} orall arepsilon > 0, \exists ar{n} : orall n \in E \ n > ar{n} \implies a_n \in \]ar{a} - arepsilon, ar{a} + arepsilon[\end{array}$$

Tuttavia questo è un assurdo in quanto sappiamo che se a_n appartiene a E e invece l'intorno $]\bar{a}-\varepsilon,\bar{a}+\varepsilon[$ contiene solo elementi di $\mathcal{C}_{\mathbb{R}}E$, questo è impossibile. Allora la proprietà (*) è vera.

L'idea della contraddizione sarebbe

FIGURA 2.1.a. (La contraddizione)

[DA FARE]

2. " \Leftarrow ": Sia vera la proprietà (*), allora dimostro che $\mathcal{C}_{\mathbb{R}}E$ sia aperto. Per assurdo suppongo che $\mathcal{C}_{\mathbb{R}}E$ non sia aperto: allora facciamo la negazione di

$$eg (orall x \in \mathcal{C}_{\mathbb{R}}E, \exists arepsilon > 0: \]x - arepsilon, x + arepsilon [\subseteq \mathcal{C}_{\mathbb{R}}E) \ \exists x \in \mathcal{C}_{\mathbb{R}}E: orall arepsilon > 0, \]x - arepsilon, x + arepsilon [\ \cap E
eq \emptyset$$

Allora il gioco è fatto; quindi prendo l'intorno $\varepsilon=\frac{1}{n}$ posso individuare una successione x_n

$$egin{aligned} arepsilon &= rac{1}{n} \implies \exists ar{x} \in \mathcal{C}_{\mathbb{R}}E : orall n, \ ert ar{x} - rac{1}{n}, ar{x} + rac{1}{n} [\ \cap E
eq \emptyset \ &orall n, \exists x_n \in E : |x_n - ar{x}| < rac{1}{n} \implies \lim_n x_n = ar{x} \in \mathcal{C}_{\mathbb{R}}E \end{aligned}$$

Quindi ho trovato una successione $(x_n)_n$ a valori in E che converge ad un punto fuori di E, che è impossibile in quanto violerebbe la l'ipotesi iniziale.

FIGURA 2.1.b. (La seconda contraddizione) [DA FARE]

Dimostrazione del teorema

Ora siamo pronti per dimostrare il teorema di caratterizzazione dei compatti.

#Dimostrazione

Dimostrazione.@Teorema 2.1. (Teorema di caratterizzazione dei compatti in R)

Questo è un teorema del tipo *se e solo se*, quindi dimostriamo entrambi i lati delle implicazioni.

1. " \Longrightarrow ": Suppongo che E sia compatto, allora devo dimostrare che E è chiuso è limitato.

Per assurdo suppongo che E non sia limitato: ora se considero una successione a valori in E divergente, allora per ipotesi questa deve avere una sottosuccessione convergente. Per esempio se E è superiormente illimitato (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore) ho la seguente implicazione

$$orall n \in \mathbb{N}, \exists x_n \in E: x_n > n \implies \lim_n x_n = +\infty$$

allora $(x_n)_n$ non avrebbe sottosuccessioni convergenti ad un punto in E.

Per assurdo suppongo che E sia non chiuso; allora non vale la proprietà (*) del Lemma 2.1. (Caratterizzazione della chiusura tramite

le successioni) ovvero

$$eg [orall (a_n)_n ext{ è convergente in } E, \lim_n a_n \in E]
onumber \ \exists (a_n)_n ext{ convergente in } E: \lim_n a_n
otin E$$

Perciò tutte le sottosuccessioni di $(a_n)_n$ convergono ad un punto $\bar{a}
otin E$

Però essendo E per ipotesi compatto, la successione $(a_n)_n$ dovrebbe avere almeno una successione che converge ad un punto in E, dandoci un assurdo.

Come si può vedere E deve essere necessariamente sia *limitato* che chiuso.

2. " \Leftarrow ": Sia E chiuso e limitato, proviamo che E è compatto. Prendo una successione $(a_n)_n$ in E.

Se E è *limitato* allora per il Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß) deve esistere una sottosuccessione convergente e la indichiamo con

$$(a_{n_k})_k:\lim_k a_{n_k}=ar{a}$$

però E è anche *chiuso*, e per la proprietà (*) del **LEMMA 2.1.** deve valere che il valore per cui converge il limite della sottosuccessione appartiene a E; ovvero

$$(a_{n_k})_k: \lim_k a_{n_k} = ar{a} \in E$$

Pertanto E è compatto in quanto abbiamo individuato una sottosuccessione convergente ad un punto in E.

E3. Successioni di Cauchy

Successioni di Cauchy

Definizione di successione di Cauchy; teorema sulla successione di Cauchy; teorema di completezza di R; esiti della dimostrazione del teorema di completezza di R.

1. Definizione di Successione di Cauchy

Definizione 1 (Successione di Cauchy).

Sia $(a_n)_n$ una successione reale (Successione e Sottosuccessione, **DEF** 1.2.), allora definiamo $(a_n)_n$ come successione di Cauchy se vale la seguente:

$$orall arepsilon > 0, \exists ar{n}: n,m > ar{n} \implies |a_n - a_m| < arepsilon$$

OSS 1.1. Osserviamo che questa definizione è ben *diversa* dalla nozione di *convergenza*: con la *convergenza* abbiamo *un punto* che si avvicina ad un certo valore, invece qui abbiamo *due punti* a_n e a_m che si "avvicinano" tra di loro.

Tuttavia in \mathbb{R} è possibile dire che questi sono *equivalenti* in quanto ci troviamo in uno *spazio metrico*. Dimostreremo questa affermazione con due teoremi.

(#Teorema)

Teorema 2.

Se una successione in $\mathbb R$ è convergente, allora è di *Cauchy*.

(#Dimostrazione)

Dimostrazione.@Teorema 2

Sia $(a_n)_n$ convergente, allora

$$\lim_n a_n = ar{a} \in \mathbb{N}$$

Cioè

$$orall arepsilon > 0, \exists ar{n} : orall n \ n > ar{n} \implies |a_n - ar{n}| < rac{arepsilon}{2} < arepsilon$$

Allora se $m, n > \bar{n}$ abbiamo i seguenti:

$$egin{aligned} orall arepsilon > 0, \exists ar{n} : orall n, m \ n > ar{n} \implies |a_n - ar{a}| < rac{arepsilon}{2} \ m > ar{n} \implies |a_m - ar{a}| < rac{arepsilon}{2} \end{aligned}$$

Allora sommandoli abbiamo

$$||a_n-a_m|\leq |a_n-ar{a}+a_m-ar{a}|\leq |a_n-ar{a}|+|a_m-ar{a}|< 2rac{arepsilon}{2}=arepsilon$$

Dunque abbiamo verificato

$$orall arepsilon > 0, \exists ar{n}: n,m > ar{n} \implies |a_n - a_m| < arepsilon$$

che è la definizione della successione di Cauchy.

Completezza di R

(#Teorema)

Teorema 3 (Completezza di R).

In \mathbb{R} le successioni di Cauchy sono convergenti.

#Dimostrazione

Dimostrazione.@Teorema 3 (Completezza di R)

La dimostrazione si articola in tre parti, ad ognuna con un suo esito.

1. Una successione di Cauchy è limitata. Infatti $(a_n)_n$ di Cauchy significa

$$orall arepsilon > 0, \exists ar{n}: n,m > ar{n} \implies |a_m - a_n| < arepsilon$$

Fissando $\varepsilon=1$ ottengo

$$\exists ar{n}: n,m > ar{n} \implies |a_n - a_m| < 1$$

Quindi

$$m>ar{n}\implies |a_{ar{n}+1}-a_m|<1$$

Analogamente

$$n>ar{n} \implies |a_n-a_{ar{n}+1}|<1$$

Quindi

$$a_n \in (a_{ar{n}+1}-1, a_{ar{n}+1}+1)$$

Allora $(a_n)_n$:

- 1. Fino a \bar{n} si comporta come vuole;
- 2. Da $\bar{n}+1$ in poi tutti i suoi valori immagine $a_n, n > \bar{n}$ sono *tutti* dentro un intervallo fissato. Ovvero è questa successione è limitata.
- 2. Per il Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß), se $(a_n)_n$ è di *Cauchy* ed è *limitata* allora esiste una successione estratta convergente.

- 3. "Se una *successione di Cauchy* ha una sottosuccessione convergente, allora la successione originaria è convergente.": infatti teniamo in conto i seguenti:
 - (*) $(a_n)_n$ è di Cauchy vuol dire

$$egin{aligned} orall arepsilon > 0, \exists ar{n} : orall n, m \ n, m > ar{n} \implies |a_m - a_n| < rac{arepsilon}{2} \end{aligned}$$

• (**) $(a_{n_k})_k$ è convergente a \bar{a} vuol dire

$$\lim_k a_{n_k} = ar{a} \iff egin{aligned} orall arepsilon > 0, \exists ar{k} : orall k \ k > ar{k} \implies |a_{n_k} - ar{a}| < rac{arepsilon}{2} \end{aligned}$$

Ora per far valere $m>\bar{n}\wedge k>m \implies k>\bar{n}$ prendiamo e $k>\max\{\bar{n},\bar{k}\}$. Ora li "combiniamo" e valuto $|a_n-\bar{a}|$. Ora vale $a_{n_k}>a_m$; allora $\forall n>\bar{n},k>\max\{\bar{n},\bar{k}\}$

$$||a_n-ar{a}|\leq |a_n-a_m+a_{n_k}-ar{a}|<|a_n-a_{n_k}|+|a_{n_k}-ar{a}|<2rac{arepsilon}{2}=arepsilon$$

e abbiamo esattamente la definizione di

$$\lim_n a_n = ar{a}$$