FACULTAD DE INGENIERÍA-UBA ÁLGEBRA II. Primer cuatrimestre del 2019 26 de octubre de 2019

TEMA 2

Apellido y nombres: Número de padrón: Curso:

Justifique todas las respuestas.

Los razonamientos que utilice para resolver cada ejercicio deben constar en el escrito.

Numere las hojas y firme al final del examen.

El examen se aprueba con 55 puntos o más. No se asignará una fracción del puntaje total de un ejercicio o ítem.

1. Sean $S_1 \subset \mathbb{R}_2[x]$, $S_2 \subset \mathbb{R}_2[x]$ los subespacios definidos por:

$$S_1 = \{ p \in \mathbb{R}_2[x] : p(0) = 0 \}, \qquad S_2 = gen\{t^2 + t, t - 1\}$$

- 1. **(10 puntos.)** Probar que $S_1 + S_2 = \mathbb{R}_2[x]$.
- 2. (5 puntos.) Demostrar que la suma $S_1 + S_1$ no es directa.
- **2.** Sea $f: \mathbb{R}_2[x] \to \mathbb{R}^3$ una transformación lineal tal que

$$[f]_{BB'} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & \alpha^2 & -\alpha \end{pmatrix},$$

con
$$B = \{1 + t + t^2, 1 - t, 1\}$$
 y $B' = \{(1 \ 0 \ 1)^T, (0 \ 1 \ 1)^T, (1 \ 0 \ 2)^T\}$.

- 1. (10 puntos.) Hallar todos los $\alpha \in \mathbb{R}$ para los cuales f es un isomorfismo.
- 2. (5 puntos.) Para $\alpha = -1$, hallar una base de Nu(f).
- 3. (10 puntos.) Para $\alpha = -1$, hallar todos los $p \in \mathbb{R}_2[x]$ tal que $f(p) = (4 \ 1 \ 7)^T$.
- 3. Sea $S \subset \mathbb{R}_2[x]$ el subespacio definido por $S = gen\{t, t^2 2\}$. Considerando el producto interno $\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$.
 - 1. (10 puntos.) Hallar S^{\perp} .
 - 2. (10 puntos.) Halle la transformación lineal que a un polinomio $p \in \mathbb{R}_2[x]$ le asigna su proyección ortogonal sobre S.
- **4.** Sea \mathbb{V} un \mathbb{R} -espacio vectorial con base ortonormal $\{v_1, v_2, v_3\}$.
 - 1. (5 puntos.) Probar que $\{v_1 v_2, v_1 + v_2, v_3\}$ es una base ortogonal de \mathbb{V} .
 - 2. (10 puntos.) Calcular la distancia de $v = 2v_1 2v_2 v_3$ a $S = gen\{v_1 + v_2 v_3, v_3\}$.
- **5.** Sean $f: \mathbb{V} \to \mathbb{W}$ y $g: \mathbb{W} \to \mathbb{U}$ dos transformaciones lineales.
 - 1. **(15 puntos.)** Demostrar que $Nu(f) \subseteq Nu(g \circ f)$.
 - 2. (10 puntos.) Demostrar que, si g es un monomorfismo, entonces $Nu(f) = Nu(g \circ f)$.