JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering Electrical Science-II (15B11EC211)

Tutorial Sheet: 13

Q1. [CO4] Consider an npn transistor with v_{BE} =0.7V at i_c =1mA. Find v_{BE} at i_c =0.1mA and 10mA.

(Ans: 0.64V, 0.76V)

Q2. [CO4] Transistor of a certain types are specified to have β value in the range 50 to 150. Find the range of their α values.

(Ans: 0.98 to 0.993)

Q3. [CO4] For a pnp transistor having $I_s=10^{-11}$ A and $\beta=100$, calculate v_{EB} for ic=1.5A (Ans: 0.669V)

Q4. [CO4] Measurement of an npn BJT in a particular circuit shows the base current to be $14.46\mu A$, the emitter current to be 1.460mA, and the base-emitter voltage to be 0.7V. For these conditions, calculate α , β and I_s .

(Ans: 0.99, 100, 2.94*10⁻¹⁵ A)

Q5. [CO4] Calculate β for two transistors for which α are 0.99 ad 0.98. For collector currents of 10mA, find the base current of each transistor.

(Ans: 99, 49, 0.1mA, 0.2mA)

Q6 [CO4] What is β_R for a bipolar transistor described by an Ebers-Moll model with $I_{F0} = 1.25 \times 10^{-16} \text{A}$, $I_{R0} = 2.50 \times 10^{-16} \text{A}$ and $\alpha_F = 0.996$? (Ans:0.992)

Q7. [CO4] The transistor in the circuit of fig 1. has β =100 and exhibit a v_{BE} of 0.7V at i_{C} =1mA. Design the circuit so that a current of 2mA flows through the collector and a voltage of +5V appears at the collector. (Ans: R_{c} =5k Ω , R_{E} =7.07k Ω)

Q8.[CO4] In the circuit shown in Fig 2., the voltage at the emitter was measured and found to be -0.7V. If β =50, find I_E , I_B , I_C , and V_C . (Ans:0.93mA, 18.2 μ A, 0.91mA, +5.45V)

Q9. [CO4]In the circuit shown in Fig3., assume transistor have very large β value, some measurements have been made on the circuit, with the results indicate in the figure. Find the values of the other labelled voltages and currents.

(Ans: $I_c=I_E=I_5=0.965$ mA, $V_6=-4.475$ V)

Q10. [CO4]For the circuit shown in fig 4., assume transistor have very large β value, some measurements have been made on the circuit, with the results indicate in the figure. Find the values of the other labelled voltages and currents. (Ans: $I_1=I_E=I_c=1$ mA, $V_2=-0.7V$)