РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>6</u>

дисциплина: Сетевые технологии	
--------------------------------	--

Студент: Бакулин Никита 1032201747

Группа: НПИбд-01-20

МОСКВА

Постановка задачи

- 1. Разбиение сетей на подсети.
- 2. Задана топология сети с двумя локальными подсетями. Для первой подсети выделено адресное пространство с адресами IPv4, для второй адресное пространство с адресами IPv6. Настроить и проверить.
- 3. Задана топология сети. Предполагается, что маршрутизатор разбивает сеть на две подсети с адресами IPv4 и IPv6: подсеть 1: 10.10.1.96/27; 2001:DB8:1:1::/64; подсеть 2: 10.10.1.16/28; 2001:DB8:1:4::/64. Настроить и проверить.

4. Выполнение работы

1.

1.1. Разбиение IPv4-сети на подсети

1.1.1. Задана IPv4-сеть 172.16.20.0/24. Для заданной сети определите префикс, маску, broadcast-адрес, число возможных подсетей, диапазон адресов узлов. Разбейте сеть на 3 подсети с максимально возможным числом адресов узлов 126, 62, 62 соответственно

120, 02, 02 6001B6161B611110	
Адрес сети	172.16.20.0/24
Длина префикса	24 бита
Маска	255.255.255.0
Адрес сети в двоичной форме	10101100 00010000 00010100 00000000
Маска в двоичной форме	11111111 11111111 11111111 00000000
Broadcast-адрес	172.16.20.255
Число подсетей	2^8=256
Диапазон адресов узлов	172.16.20.1 - 172.16.20.254

Адрес подсети	Broadcast-адрес	Маска
10101100 00010000 00010100 0 00000000	10101100 00010000 00010100 0 1111111	11111111 11111111 11111111 1 0000000
172.16.20.0/25	172.16.20.127	255.255.255.128
10101100 00010000 00010100 10 000000	10101100 00010000 00010100 10 111111	11111111 11111111 11111111 11 000000
172.16.20.128/26	172.16.20.191	255.255.255.192
10101100 00010000 00010100 11 000000	10101100 00010000 00010100 11 1111111	11111111 11111111 11111111 11 000000
172.16.20.192/26	172.16.20.255	255.255.255.192

1.1.2. Задана сеть 10.10.1.64/26. Для заданной сети определите префикс, маску, broadcast-адрес, число возможных подсетей, диапазон адресов узлов. Выделите в этой сети подсеть на 30 узлов. Запишите характеристики для выделенной подсети.

Адрес сети	10.10.1.64/26	
Длина префикса	26 битов	
Маска	255.255.255.192	
Адрес сети в двоичной форме	00001010 00001010 00000001 01 0000000	
Маска в двоичной форме	11111111 11111111 11111111 11 000000	
Broadcast-адрес	10.10.1.127	
Число подсетей	2^2=4	
Диапазон адресов узлов	10.10.1.65 - 10.10.1.126	

Адрес подсети	10.10.1.64/27
Длина префикса	27 битов
Маска	255.255.255.224
Адрес сети в двоичной форме	00001010 00001010 00000001 010 000000
Маска в двоичной форме	1111111 1111111 1111111 11100000
Broadcast-адрес	10.10.1.95
Число подсетей	2^3=8
Диапазон адресов узлов	10.10.1.65 - 10.10.1.94

1.1.3. Задана сеть 10.10.1.0/26. Для этой сети определите префикс, маску, broadcast-адрес, число возможных подсетей, диапазон адресов узлов. Выделите в этой сети подсеть на 14 узлов. Запишите характеристики для выделенной подсети.

Адрес сети	10.10.1.0/26
Длина префикса	26 битов

Маска	255.255.255.192
Адрес сети в двоичной форме	00001010 00001010 00000001 00 0000000
Маска в двоичной форме	11111111 11111111 11111111 11 000000
Broadcast-адрес	10.10.1.63
Число подсетей	2^2=4
Диапазон адресов узлов	10.10.1.1 - 10.10.1.62

Адрес подсети	10.10.1.0/28
Длина префикса	28 битов
Маска	255.255.255.240
Адрес сети в двоичной форме	00001010 00001010 00000001 0000 0000
Маска в двоичной форме	1111111 11111111 1111111 11110000
Broadcast-адрес	10.10.1.15
Число подсетей	2^4=16
Диапазон адресов узлов	10.10.1.1 - 10.10.1.14

- 1.2. Разбиение IPv6-сети на подсети
 - 1.2.1. Задана сеть 2001:db8:c0de::/48. Охарактеризуйте адрес, определите маску, префикс, диапазон адресов для узлов сети (краевые значения). Разбейте сеть на 2 подсети двумя способами с использованием идентификатора подсети и с использованием идентификатора интерфейса. Поясните предложенные вами варианты разбиения.

Тип: Зарезервирован для документации и примеров (2001:DB8::/32)

1. Адрес сети	2001:db8:c0de::/48
Длина префикса	48 битов
Ма8ка	ffff:ffff:0000:0000:0000:0000:0000
Диапазон адресов узлов	2001:db8:c0de:: -
С	2001:db8:c0de:ffff:ffff:ffff:ffff

Подсети:

- 1) 2001:db8:c0de:0002::/64 и 2001:db8:c0de:0003::/64 после префикса глобальной маршрутизации (48 бит) задаем идентификатор подсети (следующие 6 бит). Последние 64 бита идентифицируют узел сети. 2) 2001:db8:c0de::/49 и 2001:db8:c0de:8000::/49 расширяем за счет бит идентификатора интерфейса.
- 1.2.3. Задана сеть 2a02:6b8::/64. Охарактеризуйте адрес, определите маску, префикс, диапазон адресов для узлов сети (краевые значения). Разбейте сеть на 2 подсети двумя способами с использованием идентификатора подсети и с использованием идентификатора интерфейса. Поясните предложенные вами варианты разбиения.

Тип UNICAST

1.	Адрес сети	2a02:6b8::/64
Ī	Длина префикса	64 бита
	Маска	ffff:ffff:ffff:0000:0000:0000:0000
	Диапазон адресов узлов	2a02:6b8:: - 2a02:6b8:0:0:ffff:ffff:ffff

Подсети:

- 1) 2a02:6b8:0002::/64 и 2a02:6b8:0003::/64 после префикса глобальной маршрутизации (48 бит) задаем идентификатор подсети (следующие 6 бит). Последние 64 бита идентифицируют узел сети. 2) 2a02:6b8::/65 и 2a02:6b8:0:0:8:/65 расширяем за счет бит идентификатора интерфейса.
- 2.
- 2.1. Запустите GNS3 VM и GNS3. Создайте новый проект
- 2.2. В рабочем пространстве разместите и соедините устройства в соответствии с топологией
- 2.3. Измените отображаемые названия устройств.
- 2.4. Включите захват трафика на соединении между сервером двойного стека адресации и ближайшим к нему коммутатором.

Рисунок 1

2.5. Настройте IPv4-адресацию для интерфейсов узлов PC1, PC2, Server

Рисунок 2

- 2.6. Настройте IPv4-адресацию для интерфейсов локальной сети маршрутизатора FRR
- 2.7. Проверьте конфигурацию маршрутизатора и настройки IPv4-адресации

```
sk-nabakulin-gw-01# show running-config
Building configuration...
Current configuration:
frr version 8.1
frr defaults traditional
hostname frr
hostname msk-nabakulin-gw-01
service integrated-vtysh-config
interface eth0
interface ethl
ip address 172.16.20.129/25
interface eth2
ip address 64.100.1.1/24
end
msk-nabakulin-gw-01# show interface brief
              Status VRF
Interface
                                        Addresses
                                       172.16.20.1/25
172.16.20.129/25
eth0
                        default
                        default
ethl
               up
eth2
                        default
                                        64.100.1.1/24
eth3
                down
                        default
eth4
                down
                        default
eth5
                down
                        default
eth6
                down
                        default
eth7
                down
                        default
                        default
                up
pimreg
                up
                        default
```

Рисунок 3

2.8. Проверьте подключение с помощью команд ping и trace. Узлы PC1 и PC2 должны успешно отправлять эхо-запросы друг другу и на сервер с двойным стеком (Dual Stack Server)

```
VPCS> ping 172.16.20.138 -c 1

84 bytes from 172.16.20.138 icmp_seq=1 ttl=63 time=3.216 m

85

VPCS> trace 172.16.20.138 -P 6

trace to 172.16.20.138, 8 hops max (TCP), press Ctrl+C to stop

1 172.16.20.1 1.949 ms 1.202 ms 0.600 ms

2 172.16.20.138 1.614 ms 1.344 ms 1.253 ms

2 64.100.1.10 1.446 ms 1.731 ms 4.089 ms
```

Рисунок 4

2.9. Настройте IPv6-адресацию для интерфейсов узлов PC3, PC4, Server

Рисунок 5

2.11. Настройте IPv6-адресацию для интерфейсов локальной сети маршрутизатора VyOS

```
vyos@vyos# set system host-name msk-nabakulin-gw-02
[edit]
vyos@vyos# compare
[edit system]
>host-name msk-nabakulin-gw-02
[edit]
vyos@vyos# commit
[edit]
vyos@vyos# save
Saving configuration to '/config/config.boot'...
Done
[edit]
vyos@vyos# exit
exit
vyos@vyos:~$ reboot
```

Рисунок 6

Рисунок 7

2.12. Проверьте подключение с помощью команд ping и trace. Узлы PC3 и PC4 должны успешно отправлять эхо-запросы друг другу и на сервер с двойным стеком (Dual Stack Server)

Рисунок 8

2.13. Убедитесь, что устройства из подсети IPv4 не доступны для устройств из подсети IPv6 и наоборот. Только сервер двойного стека может обращаться к устройствам обеих подсетей.

Рисунок 9

2.14. Посмотрите захваченный на соединении сервера двойного стека адресации с коммутатором трафик ARP, ICMP, ICMPv6. Среди запросов есть ping между сервером и PC в одной подсети с ipv4 и другой с ipv6. Также после настройки устройств вилим ARP пакеты с их новыми IP адресами

J • 1 P • 11				
81 4543.162996	2001:db8:c0de:11::a	2001:db8:c0de:12::a	ICMPv6	118 Echo (ping) request id=0xe70f, seq=1, hop limit=64 (rep
82 4543.167729	2001:db8:c0de:12::a	2001:db8:c0de:11::a	ICMPv6	118 Echo (ping) reply id=0xe70f, seq=1, hop limit=62 (reque
83 4548.638994	fe80::ef4:74ff:fe9a	2001:db8:c0de:11::a	ICMPv6	86 Neighbor Solicitation for 2001:db8:c0de:11::a from 0c:f
84 4549.662967	fe80::ef4:74ff:fe9a	2001:db8:c0de:11::a	ICMPv6	86 Neighbor Solicitation for 2001:db8:c0de:11::a from 0c:f
85 4550.687423	fe80::ef4:74ff:fe9a	2001:db8:c0de:11::a	ICMPv6	86 Neighbor Solicitation for 2001:db8:c0de:11::a from 0c:f
86 4553.125283	Private_66:68:02	Broadcast	ARP	64 Who has 64.100.1.1? Tell 64.100.1.10
87 4553.129713	0c:2d:4f:5b:00:02	Private_66:68:02	ARP	60 64.100.1.1 is at 0c:2d:4f:5b:00:02
88 4553.130348	64.100.1.10	172.16.20.10	ICMP	98 Echo (ping) request id=0xf10f, seq=1/256, ttl=64 (repl
89 4553.132827	172.16.20.10	64.100.1.10	ICMP	98 Echo (ping) reply id=0xf10f, seq=1/256, ttl=63 (requ

Рисунок 10

1 0.000000	::	ff02::2	ICMPv6	62 Router Solicitation
2 88.997268	Private_66:68:02	Broadcast	ARP	64 Gratuitous ARP for 64.100.1.10 (Request)
3 89.998328	Private_66:68:02	Broadcast	ARP	64 Gratuitous ARP for 64.100.1.10 (Request)
4 90.998877	Private_66:68:02	Broadcast	ARP	64 Gratuitous ARP for 64.100.1.10 (Request)

Рисунок 11

3.

- 3.1. Охарактеризовать подсети, указать, какие адреса в них входят
 - 3.1.1. подсеть 1: 10.10.1.96/27; 2001:DB8:1:1::/64;

Входят 10.10.1.97 - 10.10.1.126

Входят 2001:DB8:1:1:: - 2001:0db8:0001:0001:ffff:ffff:ffff

3.1.2. подсеть 2: 10.10.1.16/28; 2001:DB8:1:4::/64.

Входят 10.10.1.17 - 10.10.1.30

Входят 2001:DB8:1:4:: - 2001:0db8:0001:0004:ffff:ffff:ffff

3.2. Предложить вариант таблицы адресации для заданной топологии и адресного пространства, причём для интерфейсов маршрутизатора выбрать наименьший адрес в подсети.

Устройство	Интерфейс	ІР адрес	Шлюз по
			умолчанию
gw-01	eth0	10.10.1.97/27	
gw-01	eth1	10.10.1.17/28	
gw-01	eth0	2001:DB8:1:1::1/64	
gw-01	eth1	2001:DB8:1:4::1/64	
PC1	NIC	10.10.1.98/27	10.10.1.97
PC2	NIC	10.10.1.18/28	10.10.1.17

PC1	NIC	2001:DB8:1:1::2/64	gw-01
PC2	NIC	2001:DB8:1:4::2/64	gw-01

3.3. Настроить IP-адресацию на маршрутизаторе VyOS и оконечных устройствах, причём на интерфейсах маршрутизатора установить наименьший адрес в подсети.

Рисунок 12

Рисунок 13

```
vyos@vyos:~$ configure
[edit]
vyos@vyos# set system host-name msk-nabakulin-gw-02
[edit]
vyos@vyos# compare
[edit system]
>host-name msk-nabakulin-gw-02
[edit]
vyos@vyos# commit
[edit]
vyos@vyos# save
Saving configuration to '/config/config.boot'...
exDone
i[edit]
vyos@vyos# exit
exit
vyos@vyos:~$ reboot
```

Рисунок 14

```
vyos@msk-nabakulin-gw-02:~$ configure
[edit]
vyos@msk-nabakulin-gw-02# set interfaces ethernet eth0 address 10.10.1.97/27
[edit]
vyos@msk-nabakulin-gw-02# set interfaces ethernet eth1 address 10.10.1.17/28
[edit]
vyos@msk-nabakulin-gw-02# set interfaces ethernet eth0 address 2001:db8:1:1::1/6
4
[edit]
vyos@msk-nabakulin-gw-02# set interfaces ethernet eth1 address 2001:db8:1:4::1/6
4
[edit]
vyos@msk-nabakulin-gw-02# set interfaces ethernet eth1 address 2001:db8:1:4::1/6
4
[edit]
vyos@msk-nabakulin-gw-02# set service router-advert interface eth0 prefix 2001:db8:1:1::/64
[edit]
vyos@msk-nabakulin-gw-02# set service router-advert interface eth1 prefix 2001:db8:1:4::/64
```

Рисунок 15

3.4. Проверить подключение между устройствами подсети с помощью команд ping и trace.

```
VPCS> ping 10.10.1.18 -c 1

84 bytes from 10.10.1.18 icmp_seq=1 ttl=63 time=1.337 ms

VPCS> ping 2001:db8:1:4::2 -c 1

2001:db8:1:4::2 icmp6_seq=1 ttl=62 time=1.484 ms

VPCS> trace 10.10.1.18 -P 6
 trace to 10.10.1.18, 8 hops max (TCP), press Ctrl+C to sto
p
    1   10.10.1.97    0.746 ms    0.435 ms    0.488 ms
    2   10.10.1.18    1.437 ms    1.049 ms    1.556 ms

VPCS> trace 2001:db8:1:4::2

trace to 2001:db8:1:4::2

trace to 2001:db8:1:4::2    64 hops max
    1   2001:db8:1:1::1     0.973 ms    0.579 ms    0.609 ms
    2   2001:db8:1:4::2     1.333 ms    1.954 ms    1.271 ms
```

Рисунок 16