

初探賽局理論 (Game Theory)

組員:楊啟德、黃楷恩、黃宣諭、李承源

第五組

指導教授:葉均承

為何選擇這個主題?

賽局理論

▶ 又稱作博弈論,可以應用在生物學、經濟學、國際關係、計算機科學、政治學、軍事戰略,研究遊戲或者賽局內的相互作用,是研究具有鬥爭或敵對性質現象的數學理論和方法。

▶ 組成的基本五要素:

賽局 (Game)

局中人 = 玩家 (Players)

策略 (Strategy) → BR (Best response:最佳反應)

收益 (Payoffs)

均衡 (Equilibrium)

納許均衡 (Nash equilibrium)

▶ 包含兩個或以上參與者的非合作賽局中,假設每個參與者都知道其他參與者的均衡策略的情況下,沒有參與者可以透過改變自身策略使自身受益時的一個概念解。

▶ 在賽局理論中,如果每個參與者都選擇了自己的策略,並且 沒有玩家可以透過改變策略而其他參與者保持不變而獲益, 那麼當前的策略選擇的集合及其相應的結果構成了納許均衡。

題目一

▶ 一個直線沙灘等距分為九個區塊,有兩個攤商想要擺攤,遊客平均分布於沙灘,遊客只會往較近的攤販(若等距則均分遊客),請問兩位攤商會怎麼選擇擺攤的區塊(可選擇同一區塊)?是否存在納許均衡?

解析題目一

▶ 這是一個完全競爭賽局。指雙人賽局中,當一位局中人的收益上升,則另一位局中人的收益就會下降。常見於同業競爭或資源爭奪。

▶ 先假設P2固定於某一區塊,那P1就會更傾向在P2較空的那測 擺攤,並且越靠近P2收益越大 (不同區塊)。P2同理。在反覆 決策後,兩個攤販皆會趨向中間的第五區塊。

▶ 當兩個攤販都在第五區塊時,任一攤商都不會想要更改決策, 是故(5,5)就是這題的納許平衡。

題目二

► 在一個中空的圓形商場中,有三個攤商想要擺攤,遊客平均 分布於圓的邊上,遊客只會往較近的攤販 (若等距則均分遊 客),請問三位攤商會怎麼選擇擺攤的位置 (可共點)?是否存 在納許均衡?

題目二的解答

► 局面一:三攤販各不共點,相近的兩點夾角小於**180**度 O

▶ 局面二:三攤商共點 X

 \downarrow

▶ 局面三:兩攤商共點,另一攤商在正對面 ○

收益矩陣 (Payoff matrix) 的介紹

Prisoner B

Don't confess Confess Confess Prisoner Don't confess

上策與下策

Prisoner B

迭代剔除下策

利用劃線法來找到納許均衡

Prisoner B

Confess Don't confess

Prisoner Confess

Don't confess

旅行者困境

旅行者困境 (Traveler's dilemma)

- 航空公司丟失了兩位互相不認識乘客的旅行包。兩個旅行 包正好都是一樣的,並且裡面有相同價值的古董,兩位乘 客都向航空公司索賠1000美元。為了評估出古董的真實價 值,公司經理將兩位乘客分開以避免兩人合謀,分別讓他 們寫下古董的價值,其金額必須是整數,而且要不低於 300美元,並且不高於1000美元。同時還告訴兩人:如果 兩個數字是一樣的,那麼會被認為是其真實價值,他們能 獲得相應金額的賠償。如果數字不一樣,較小的會被認為 是真實價值,而兩人在獲得這個金額的同時有相應的獎賞 和懲罰:寫下較小金額的會獲得10美元額外的獎勵,較大 的會有10美元的懲罰。
- ▶ 問題:兩位旅行者應該用什麼策略來決定他們應該寫下的 金額?

解析旅行者困境-1

> 下表為旅行者困境的收益矩陣

	1000	999	998	997		301	300
1000	1000, 1000	989, 1009	988, 1008	987, 1007		291, 311	290, 310
999	1009, 989	999, 999	988, 1008	987, 1007		291, 311	290, 310
998	1008, 988	1008, 988	998, 998	987, 1007		291, 311	290, 310
997	1007, 987	1007, 987	1007, 987	997, 997		291, 311	290, 310
:	:	:	:	:	٠.	:	:
301	311, 291	311, 291	311, 291	311, 291		301, 301	290, 310
300	310, 290	310, 290	310, 290	310, 290		310, 290	300, 300

解析旅行者困境-2

▶ 透過迭代剔除下策,可以發現唯一的納許均衡為(300,300)

	10	00	9	99	99	98	9	97		30	01	30	00
1000	1000,	1000	900,	1000	900,	1000	907,	1007		201,	911	200,	
999	1009	989 -	000,	000	088,	1008	087,	1007		201,		200,	
998	1008	988	1008	, 988	008,	908	087,	1007		201,	311	200,	310
997	1007	987	1007	, 987	1007	, 987	997,	997		291,	311	290,	310
:	:		:		:		:	_	٠.	:		:	
301	311,	91	311,	291	311,	291	311,	291		301,	301	200,	
300	310,	290	310,	290	310,	290	310,	290		310	290	300,	300

旅行者困境的結論

▶ 博弈論認為,如果兩個人是理性人,那麼他們會都寫 300美元,這個結果是該博弈的納什均衡。然而,實驗 中大多數測試者都會選擇1000美元,或者接近1000美元。 他們也清楚自己並沒有認真思考這個情況,選擇了非理 性的結果。並且,旅行者們會因為在博弈中嚴重偏離納 什均衡而獲得比理性行為高很多的收益。該實驗既沒有 證明大多數人都是完全理性人,也沒有證明他們如果選 擇理性行為就能獲得更多收益。

> 這個困境讓人們對博弈論產生了懷疑。

湊時間的補充介紹-六貫棋(納許棋)

六貫棋(Hex)的玩法

▶ 棋盤大小在3x3以上,正式比賽常使用10x10或11x11。

▶ 六貫棋由兩個人一起玩,兩種顏色分別代表兩位玩家。雙方輪流下,每次佔領一處空白格,在空白格放上自己顏色的棋子(或填上自己的顏色)。最先將棋盤屬於自己的顏色的邊連成一線的一方為勝。

▶由於**先行的一方有極大的優勢**,所以有人發明了交換 (Swap或Pie rule)這個規矩。

例:這樣就是藍方獲勝

但補充的重點不是六貫棋!!

▶ 當兩人遊戲只有勝、負、和三種結果,並且有出手次數的限制,每次出手能作的選擇有限,那麼比賽必定會收斂於勝、負、和。

▶ 以其中一位玩家A為例,另一位為B。

- (一) A存在必不敗策略,意味著A有影響比賽結果的權力 (迴避掉失敗)。
- (二) A不存在必不敗策略,意味著B有影響比賽結果的權力 (且能讓A必輸的)。

▶ 假設雙方不失誤且絕對理智,畫成表格↓

A B	存在必不敗	不存在必不敗
存 在	必和	B必勝
不 存 在	A必勝	不存在

▶結論:當兩人遊戲只有勝、負、和三種結果,並且有出 手次數的限制,每次出手能作的選擇有限,那麼至少有 一方有必不敗策略。這就是賽局理論中知名的策梅洛定 理。

而在六貫棋中,贏不了意味著對方至少有一條相連的線 阻擋,足以構成了對面的勝利條件,所以贏不了就等於 輸,也就不存在和局的可能。

▶ 假設雙方不失誤且絕對理智,畫成表格↓

A B	存在必不敗	不存在必不敗
存 在	不存在	B必勝
不 存 在	A必勝	不存在

所以六貫棋一定有其中一方具有必勝策略。

▶ 假設後手有必勝策略,那麼先手隨便下一手,則換先手 能使用後手必勝策略,此即矛盾,不可能同時存在必勝 策略。因此六貫棋先手有必勝策略。

▶ 這意味著大多數無法和局的遊戲,皆存在先手或後手的 必勝策略,所以制定規則的莊家有絕對優勢,甚至能利 用三生相剋,營造讓客人先手的公平感,製造後手的必 勝處境,請各位不要輕易掉落莊家設置的圈套中。

作品推薦-狂賭之淵雙

參考資料

▶ <u>賽局理論-維基百科</u> https://zh.wikipedia.org/zh-tw/%E5%8D%9A%E5%BC%88%E8%AE%BA

► <u>納許均衡-維基百科</u> https://zh.wikipedia.org/zh-tw/%E7%BA%B3%E4%BB%80%E5%9D%87%E8%A1%A1

▶ <u>旅行者困境-維基百科</u> https://zh.wikipedia.org/zhtw/%E6%97%85%E8%A1%8C%E8%80%85%E5%9B%B0%E5%A2%83

▶ 六貫棋-維基百科 https://zh.wikipedia.org/zh-tw/%E5%85%AD%E8%B2%AB%E6%A3%8B

報告結束 謝謝太家的聆經~

