

轮 趣 科 技

STM32 读取镭神雷达数据 资料说明

推荐关注我们的公众号获取更新资料

版本说明:

版本	日期	内容说明
V1. 0	2022/4/1	第一次发布
V1.1	2023/1/10	新增 M1OP N1OP

网址:www.wheeltec.net

目录

1. N10 雷达	3
1.1 接线定义	3
	3
1.3 输出数据案例分析	4
1.4 输出角度数据坐标定义	7
2. N10_P 雷达	8
2.1 接线定义	8
2.2 输出数据定义	8
2.3 输出数据案例分析	9
2.4 输出角度数据坐标定义	
3. M10 雷达	11
3.1 接线定义	11
3.2 输出数据定义	11
3.3 输出角度坐标定义	
4. M10_P 雷达	13
4.1 接线定义	
4.2 输出数据定义	13
4.3 输出角度坐标定义	
5. 小车避障程序说明	16
5.1 接线说明	16
5.2 雷达安装朝向	17
5 3 程序运行流程	18

1. N10 雷达

N10 雷达能够对周围 360 度环境进行二维扫描,测试精度+-3cm,角度分辨率是 0.8 度,最大量程 12m。

1.1接线定义

管脚	颜色	描述	最小值	典型值	最大值		
GND	黑色	供电电压负极	ov	OV	OV	GND	★本体型日 CM1000 0511
TX	绿色	雷达数据输出	OV	3. 3V	3. 5V	TX RX	接插件型号: SMH200-05H
RX	黄色	功能控制脚	OV	3. 3V	3. 5V	VCC Shield	压线端子型号: YST200-CR7
VCC	红色	供电电压正极	4. 75V	5V	5. 25V		
Shield	编织线	(=)	-	-	-		
	Π_		Braided (NC	7		1	Black (GND)

图 1-1 端口定义

1.2输出数据定义

雷达使用串口进行通信,波特率为230400 bps。点云输出协议如下:

Byte_0 Byte_1 Byte_2 Byte_3 $Byte_4$ A5 5A Length $Speed_H$ $Speed_L$ Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Start angle H Start angle L Distance 1 H Distance 1 L PEAK 1 Byte_10 Byte_11 $Byte_12$ Distance_2_H Distance_2_L $PEAK_2$ Byte_55 Byte_56 Byte_57 Stop_angle_H Stop_angle_L CRC

表 1-1 输出数据定义

- 1. Byte_0 Byte_1: 为帧头,固定值。
- 2. Byte 2: 整个数据帧的长度,从帧头到校验位。

3. Byte_3- Byte_4 : 转速信息,一个码盘的时间,高位在前,单位为 us。例如: Speed H=0x10, Speed L=0x46,即 0x1046—4166us。

码盘转一圈时间: 4166us*24=100ms,即转速 10Hz。

- 4. Byte_5- Byte_6: 一帧数据的起始角度, 高位在前, 是实际角度的 100 倍。例如: Start_angle_H=0x42, Start_angle_L=0x08, 即 0x4208—16904—169.04度。
- 5. Byte_7- Byte_54: 点云数据: 每个数据包括 2 字节距离 1 字节强度信息, 高位在前,距离单位 mm 例如: Distance_1_H=0x00, Distance_1_L=0X64, PEAK 1=0x64,表示距离 0x64=100mm,强度 100。
 - 6. Byte 55- Byte 56: 结束角度。与起始角度一样算法。
 - 7. Byte 57: 从 Byte 0 到 Byte 56 数据和校验值。

 $CRC = byte0 + byte1 + \cdots + byte56$

1.3输出数据案例分析

N10 雷达的数据角度分辨率是 0.8 度,所以雷达转一圈那么会输出 450 个数据,但雷达一包数据包输出的点是 16 个点,按此可知,雷达一圈能输出差不多 29 个数据包,输出一包数据包的角度范围大概是 12 度。雷达接上串口后会自动以波特率 230400 发送数据包,不需要发送其他命令。数据包之间间隔一个点的角度,也就是角度分辨率 0.8 度。以下是使用串口助手接收到的数据,可以看出 [A5 5A 3A 10 5D 17 0E 01 55 3F 01 44 2C 01 C6 2C 01 D6 0F 01 C6 32 01 C6 6F 01 C6 8E 01 C6 88 01 55 41 01 C6 4C 01 C6 57 01 C6 9B 01 C6 93 01 C6 85 01 C6 76 01 C6 68 1B BA 8E]是其中的一个数据包。我们对其进行解析。

图 1-2 串口助手接信息

表 1-2 数据帧说明

		. TFL						A STATE OF CO.		
数据内容	帧头 1	帧头 2	数据帧的	转速(单	单位 us)	起始	角度	F	点云数	7据 1
WEELT	EC		长度		ES V	THEELT	EC			E
说明	固定	固定	单	高 8	低 8	高 8	低 8	距离	距离	强度信息
	值	值	位:	位	位	位	位	信息	信息	
	0XA5	0X5A	字节	-SINH	EELTE			高8	低 8	
			1				JEELT	位	位	
占用	1	1	1	1	1	1	1	1	1	LITEC 1
字节			WHEE	750					Mar	N Chapter.
序号	1	2	3	4	5	6	7	8	9	10
数据内容	E	点云数据	2	€	点	云数据:	16	结束	角度	校验和
说明	距离	距离	强度		距离	距离	强度	高8	低 8	前面数据相
ردان	信息	信息	信息	WHILE	信息	信息	信息	位	位	加加
	高8	低8	日心		高8	低8	旧心	lπ	ĺπ	ЛН
A WHE	位	位			位	位	THE WAY			
	124	17.		EC.	175	17.			HEEL!	
占用	1	1	1	••••••	1	1	1	1	1	1
字节					MHEEL	TEL				EE WHE
序号	11	12	13		53	54	55	56	57	58

第 5 页 共 18 页

① 帧头和数据帧长度

帧头一共两个字节,固定值是 0XA5 和 0X5A。 数据帧长度也是固定的,值为 0X3A,单位为字节,即 58 字节。

2) 转速

这里输出一个齿的时间。转一圈是一个码盘的时间,一个码盘有 24 个齿。 转速一共两个字节,单位是 us。分析捕获到的转速信息[10 5D],即 0X105D = 4189us,那么转一圈就是 4189*24 = 100.536ms,转速约为 10Hz。

注:十六进制换算成十进制可使用 windows 自带计算器,切换到程序员模式,在 HEX 栏输入十六进制数据,在 DEC 栏可得到十进制数据。如需手动计算请上网查找相关方法。

③ 起始角度和结束角度

角度信息是放大了 100 倍的信息,如捕获到的起始角度信息[17 0E],即 0X170E = 5902 = 59.02 度;结束角度信息[1B BA],即 0X1BBA = 7098 = 70.98 度。

④ 点云数据

一包数据包会输出 16 个点的数据,每个点的数据包含距离和强度信息。比如捕获到的第一个点云数据[01553F],可以知道距离是 0X0155=341mm,强度为 0X3F=63。

⑤ 校验和

校验和是前面所有数据相加的结果,只要8位数据。

1.4输出角度数据坐标定义

图 1-3 N10 雷达坐标系定义

2. N10_P 雷达

N10P 是一款室内外通用的 TOF 测距雷达,测试精度+-3cm,角度分辨率是0.4 度,最大量程 12m。

2.1接线定义

图 2-1 端口定义

2.2输出数据定义

雷达使用串口进行通信,波特率为 460800 bps。点云输出的数据协议为 108 个字节,包含了角度,转速,距离和强度信息,点云输出协议如下:

Byte_0 Byte_1 Byte_2 Byte_3 Byte_4 А5 5A Length Speed_H Speed_L Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Start_angle_H Start_angle_L $Dist_1_1_H$ $Dist_1_1_L$ PEAK_1_1 Byte_10 $Byte_11$ Byte_12 $Byte_13$ Byte_14 ${\tt Dist_1_2_H}$ ${\tt Dist_1_2_L}$ PEAK_1_2 $Dist_2_1_H$ Dist_2_1_L Byte_15 Byte_16 Byte_17 Byte_18 ${\tt Dist_2_2_L}$ PEAK_2_1 $Dist_2_2_H$ PEAK 2 2 Byte_103 Byte_104 Byte_105 Byte 106 Byte_107 预留位 预留位 Stop_angle_H Stop_angle_L CRC

表 2-1 输出数据定义

第 8 页 共 18 页

注: L表示数据低位, H表示数据高位。

- 1. Byte_0 Byte_1: 为帧头,固定值。
- 2. Byte 2: 整个数据帧的长度,从帧头到校验位。
- 3. Byte 3- Byte 4: 转速信息,一个码盘的时间,高位在前,单位为 us。

例如: Speed H=0x10, Speed L=0x46,即 0x1046—4166us。

码盘转一圈时间: 4166us*24=100ms,即转速 10Hz。

- 4. Byte_5- Byte_6: 一帧数据的起始角度,高位在前,是实际角度的 100 倍。 例如: Start_angle_H=0x42, Start_angle_L=0x08,即 0x4208—16904—169.04 度。
- 5. Byte_7- Byte_102: 点云数据: 每个数据包括 2 字节距离 1 字节强度信息, 高位在前, 距离单位 mm。例如: Dist_1_1_H=0x00,

Dist_1_1_L=0X64,PEAK_1_1=0x64,表示距离 0x64=100mm,强度 100; Dist_1_1 与 Dist 1 2 对应同一个角度。

- 6. Byte 103- Byte 104: 预留位。
- 7. Byte 105- Byte 106: 结束角度。与起始角度一样算法。
- 8. Byte 107: 从 Byte 0 到 Byte 106 数据和校验值。

 $CRC = byte0 + byte1 + \cdots + byte106$

2.3输出数据案例分析

N10P 雷达的数据角度分辨率是 0.4 度,所以雷达转一圈那么会输出 900 个数据,N10P 雷达输出一帧数据是 32 个点,按此可知,雷达一圈能输出差不多 29 个数据包,输出一包数据包的角度范围大概是 12 度。雷达接上串口后会自动以波特率 460800 发送数据包,不需要发送其他命令。数据包之间间隔 0.4 度。 N10P 雷达数据的解析方式与 N10 雷达数据的解析方式相同,请参阅 1.3 输出数据案例分析的内容。

2.4输出角度数据坐标定义

图 2-2 N10P 雷达坐标系定义

3. M10 雷达

3.1接线定义

M10 雷达使用 6P 端子,接线定义如下:

表 1.2 雷达输出接口定义

管脚	描述	典型值	范围	备注
VCC	供电电压正极	5V	4.75~5.25	纹波 80MV 以内
GND	供电电压负极	OV	OV	
RX	系统串口输入		TTL	数据流:外设→雷
TX	系统串口输出		TTL	数据流: 雷达→外
PPS	GPS 秒信号			
REC	GPS 经纬度时分秒			

图 3-1 M10 端口定义

3.2输出数据定义

M10 雷达使用串口进行通信,波特率为 460800 bps,一共输出 92 个字节,协议定义如下:

表 3-1 M10 雷达输出协议

Byte_0	Byte_1	Byte_2	Byte_3	Byte_4
A5	5A	angle_CodedDisc	angle_CodedDisc	Speed
Byte_5	Byte_6	Byte_7	Byte_8	Byte_9
Speed	Distance_1	Distance_1	Distance_2	Distance_2
Byte_10	EELTE"		Byte_88	Byte_89
Distance_3	WHEE!		Distance_42	Distance_42
Byte_90	Byte_91	EE WHEELT		6
FA	FB	W.	ES WHEELT	

- 1. A5 5A 为帧头
- 2. 帧头后面就是角度和转速参数,从第 6 个字节开始,就是 42 个点的距

离参数。

- 3.0xFA 0xFB 为帧尾
- 4. 数据字节说明

angle_CodedDisc: 角度参数,一共两个字节,高位在前,低位在后,此角度为数据包结束的角度值。例如: 0x8C 0xA0 即十进制 36000 表示角度为 360 度,也就是 0度;

speed: 转速参数,一共两个字节,高位在前,低位在后,表示雷达从一个齿转到下一个齿所需要的时间计数值,它和转速的计算公式为:转速=2500000/speed。例如: 0x10 0x68 即十进制 4200 则转速为每分钟 595.239 转,也就是 10HZ;

Distance: 距离参数,一共两个字节,高位在前,低位在后,一帧一共输出 42 个点的数据,单位是毫米,角度分辨率是 0.22 度。例如: 0x13 0x88 即十进制 5000 那么该角度对应的距离值就是 5 米。

3.3输出角度坐标定义

图 3-2 M10 雷达坐标定义

4. M10_P 雷达

4.1接线定义

M10P 雷达使用 6P 端子,接线定义如下:

表 1.2 雷达输出接口定义

管脚	描述	典型值	范围	备注
VCC	供电电压正极	5V	4.75~5.25	纹波 80MV 以内
GND	供电电压负极	ov	OV	
RX	系统串口输入		TTL	数据流:外设→雷流
TX	系统串口输出		TTL	数据流: 雷达→外记
PPS	GPS 秒信号			
REC	GPS 经纬度时分秒		i.	

图 4-1 M10 端口定义

4.2输出数据定义

M10P 雷达使用串口进行通信,波特率为 512000 bps,一共输出 160 个字节,协议定义如下:

表 4-1 M10P 雷达输出协议

Byte_0	Byte_1	Byte_2	Byte_3	Byte_4
A5	5A	Len_H	Len_L	Angle_H
Byte_5	Byte_6	Byte_7	Byte_8	Byte_9
Angle_L	Speed_H	Speed_L	Distance_1_H	Distance_1_L
Byte_10	Byte_11	😽	Byte_146	Byte_147
Distance_2_H	Distance_2_L		Distance_70_H	Distance_70_L
Byte_148		Byte_157	Byte_158	Byte_159
TIME	TIME	TIME	0xFA	0xFB

注: L表示数据低位, H表示数据高位。

- 1. Byte 0 Byte 1: 为帧头, 固定为 A5 5A。
- 2. Byte_2- Byte_3: Len_H/ Len_L 数据帧长度,从第一个字节到最后一个字节。
- 3. Byte_4- Byte_5 : Angle _H/ Angle _L 当前数据段开始角度,例如: 0x8C 0xA0 即十进制 36000 表示角度为 360 度,也就是 0 度。

例如: Speed H=0x10, Speed L=0x46,即 0x1046—4166us。

码盘转一圈时间: 4166us*24=100ms,即转速 10Hz。

- 4. Byte_6- Byte_7: Speed_H/ Speed_L 当前电机转速,表示雷达从一个齿转到下一个齿所需要的时间计数值,它和转速的计算公式为:转速=2500000/speed。例如: 0xD 0x90 即十进制 3472 ,则转速为每分钟 720 转,也就是 12HZ;
- 5. Byte_8- Byte_147: Distance_x_H/ Distance_x_L 距离值,单位是毫米,且高位字节的最高位表示是否为高反。例如: Distance_x_H =0x13, Distance_x_L =0x88, 高字节 0x13的最高位为 0表示不是高反,距离值对应十进制 5000,就是 5米。

例如: Distance_x_H=0x93, Distance_x_L=0x88 ,高字节 0x93 的最高位为 1 表示当前 M10P 这个点为高反,距离值要清除最高位,清除高位后对应十进制 5000,距离值就是 5 米。

如果距离参数为 0XFFFF,则表示此数据点为无效的点,数据帧中的点云个数需要减一,此时实际点云个数变成 69 个点(正常点云个数为 70 个)。同理如果现出两个 0xffff,则实际点云数只有 68 个。

每两个点云之间的角度差计算方法: 15 除以实际收到的点云个数 (m)。则数据帧每个数据点的角度为:

第 N 个点的水平角度为 = angle_CodedDisc + 15 / m * N (N = 0,1 ··· m-1)

- 6. Byte:148- Byte 157: GPS 时间信息, 暂时保留无作用 (需要硬件支持)。
- 7. Byte:158- Byte_159: 帧尾,固定为 0XFA 0XFB。

4.3输出角度坐标定义

图 4-2 M10P 雷达极坐标定义

5. 小车避障程序说明

以下说明以 N10 雷达为例进行说明,程序中的 N10、M10 雷达数据处理类似,避障算法也是类似的。小车是 F4 麦轮小车,使用串口 5 读取 N10 雷达传回来的数据,因为 N10 雷达的角度分辨率是 0.8 度,不重复的点有 450 个,为了简化,将一帧数据包传回来的 16 个点做平均处理,作为一个点储存。

5.1接线说明

小车与雷达的接线如下(N10 为例):

表 5-1 接线说明

小车	雷达
GND	GND
PD2(串口 5 的 RX)	TX
不接	RX
5V	VCC
GND	Shield

小车各对应引脚图示:

图 5-1 雷达安装接线图示

5.2雷达安装朝向

N10 雷达安装位置: 雷达的 0 度对应小车的前进的方向。

图 5-2 N10 雷达安装方向

M10 雷达安装位置: 雷达的 0 度对应小车的前进的方向。

图 5-3 M10 雷达安装方向

5.3程序运行流程

程序框架简述: 雷达在上电的时候会自动传回数据包,不需要进行额外的设置,此时只需要在串口中断中进行接收即可。雷达传回的数据在串口 5 中断进行接收,并且在串口 5 中断中做一定的简化。一帧数据有 16 个点的位置信息,包括角度和距离。每次传回一帧数据后,做平均简化,然后储存在一个 50 个变量的结构体数组中,此后,每次收到新数据,不断刷新这个数组,作为避障的判断。因为小车是前进着的避障,所以这里设置了以 0 度为中心,左右两边各 50 度的范围内的避障,即前方范围 100 度内的避障,这个时候只需要前方 100 度范围内的数据,其他数据舍弃不要。在 Balance_task 任务中,需要做避障的判断和运动处理。假设小车有一个前进的速度,小车避障的时候设置避障距离是 220mm,在避障算法中,遍历储存的 50 个数据,找出所有距离是小于 220mm 的点,并且判断前方障碍物是位于左边还是位于右边,小车此时转动 z 轴方向,向相反的方向转向,直至前方避障范围内没有需要避障的点。