ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 1.3.3 Измерение вязкости воздуха по течению в тонких трубках

Петряев Александр Группа Б03-301 **Цель работы:** экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

1 Теоретическая часть

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta}$$

где v — скорость потока, r — радиус трубки, ρ — плотность движущейся среды, η — её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Q = \frac{\pi r^4}{8\Delta l\eta} (P_1 - P_2) \tag{1}$$

В этой формуле P_1-P_2 – разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно Δl . Величину Q обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (1). Прежде всего необходимо мо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

Рис. 1: Формирование потока газа в трубке круглого сечения

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0.2 rRe$$
 (2)

Градиент давления на участке формирования потока оказывается больше, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить дину участка формирования.

2 Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 2. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Рис. 2: Экспериментальная установка

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Газовый счётчик. В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ).

Рис. 3: Газовый счетчик

Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. Рис. 3, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство. Для корректной работы счётчика он должен быть заполнен водой и установлен горизонтально по уровню (подробнее см. техническое описание установки).

Микроманометр. В работе используется жидкостный манометр с наклонной трубкой. Разность давлений на входах манометра измеряется по высоте подъёма этилового спирта. Регулировка наклона позволяет измерять давление в различных диапазонах.

На крышке прибора установлен трехходовой кран, имеющий два рабочих положения - (0) и (+). В положении (0) производится установка мениска жидкости на ноль, что необходимо сделать перед началом работы (в процессе работы также рекомендуется периодически проверять положение нуля). В положении (+) производятся измерения.

3 Обработка результатов измерений

Эксперимент проводился при комнатной температуре $T_{\text{комн}}=296,2K$, при атмофсерном давлении $P_{\text{атм}}=101,75$ кПа и при относительной влажности в помещении $\eta=74\%$.

Давление, измеряемое микроманометром, определяется по формуле:

$$P = 1000 \cdot 10 \cdot K \cdot h$$

где h — показание макроманометра, K — коэффициент наклона, P — Давление в паскалях.

3.1 Зависимость разности давлений от расхода(1)

Эксперимент проводился на первой трубе с диаметром $d_1=3{,}95\pm0{,}05$ мм. Данные изменрений приведены в табилце 1.

Таблица 1: Результаты измерений разности давлений от расхода

Nº	Q, л/мин	h, мм.рт.ст	Р, Па*103́
1	0,335	5	1
2	0,775	10	2
3	1,13	15	3
4	1,376	20	4
5	1,866	25	5
6	2,283	30	6
7	2,546	35	7
8	3,003	40	8
9	3,412	45	9
10	3,714	50	10
11	4,14	55	11
12	4,474	60	12
13	4,828	65	13
14	5,179	70	14
15	5,417	75	15
16	5,681	80	16
17	5,888	90	18
18	6,06	100	20
19	6,158	110	22
20	6,296	120	24
21	6,479	130	26
22	6,682	140	28
23	6,847	150	30
24	7,033	160	32
25	7,156	170	34
26	7,419	180	36
27	7,667	190	38
28	7,836	200	40

По результатам измерений был построен график 3.2. По угловому коэффициенту и формуле (1) можно оценить вязкость воздуха. Она составила $\eta=\frac{\pi\cdot d^4}{128\cdot l\cdot k}=\frac{3,14\cdot 3,95^4\cdot 10^{-12}}{128\cdot 0,5\cdot 0,37}=1,94$ Па·с.

Посчитаем погрешность эксперимента:
$$\sigma k = \sqrt{\frac{1}{n-1}(\frac{\leq y^2 >}{\leq x^2 >} - k^2)} = \sqrt{\frac{1}{16-1}(\frac{12.7}{93.5} - 0.37^2)} = 0.05$$
 Тогда:
$$\eta = 1.94 \pm 0.3~\Pi \text{a·c}.$$

3.2 Зависимость разности давлений от расхода(2)

Эксперимент проводился на второй трубе с диаметром $d_1=5.3\pm0.05$ мм. Данные изменрений приведены в табилце 2.

По результатам измерений был построен график 3.2. По угловому коэффициенту и формуле (1) можно оценить вязкость воздуха. Она составила $\eta = \frac{\pi \cdot d^4}{128 \cdot l \cdot k} =$ $\frac{3,14\cdot5,3^4\cdot10^{-12}}{128\cdot0,5\cdot1,14} = 2,04 \text{ }\Pi\text{a.c.}$

Таблица 2: Результаты измерений разности давлений от расхода

№	Q, л/мин	h, мм.рт.ст	Р, Па*103̂
1	0,846	5	1
2	2,444	10	2
3	3,284	15	3
4	4,462	20	4
5	5,865	25	5
6	7,14	30	6
7	7,791	35	7
8	8,177	40	8
9	8,55	45	9
10	8,717	50	10
11	8,916	55	11
12	9,278	60	12
13	9,553	70	14
14	10,246	80	16
15	10,765	90	18
16	11,635	100	20
17	12,09	110	22
18	12,776	120	24
19	13,287	130	26
20	13,756	140	28
21	14,432	150	30
22	14,909	160	32
23	15,476	170	34

Посчитаем погрешность эксперимента:
$$\sigma k = \sqrt{\frac{1}{n-1}(\frac{< y^2>}{< x^2>} - k^2)} = \sqrt{\frac{1}{7-1}(\frac{26,21}{20}-1,14^2)} = 0,04$$
 Тогда:
$$\eta = 2,04 \pm 0,1 \; \Pi \text{a·c}.$$

3.3 Зависимость разности давлений от длины

Здесь измерения проводились на трубах 1 и 2 с диаметрами $d_1=3.95\pm0.05$ мм и $d_2 = 5{,}30 \pm 0{,}05$ мм.

Результаты измерений приведены в таблице 3 и 4. По этим данным были построены графики, из которого следует, что ламинарное течение устанавливается не раньше 41 см.

Таблица 3: Зависимость давления от длины(1)

X, CM	h, мм.рт.ст	$P(x), \Pi a*10\hat{3}$
50	40	80
40	35	70
30	26	52
11,2	23	46

Таблица 4: Зависимость давления от длины(2)

X, CM	h, мм.рт.ст	$P(x), \Pi a*10\hat{3}$
50	20	40
40	16	32
30	14	28
11,5	17	34

Рис. 4: Зависимость разности давлений от длины(1)

Рис. 5: Зависимость разности давлений от длины(2)

Заметно, что первое измерение достаточно сильно отличается от двух следующих, тогда возьмем, без учета первого диаметра:

$$\eta = (1.88 \pm 0.1) \; \Pi \text{a} \cdot \text{c}$$

Далее найдем критическое число Рейнольдса $Re_{\rm kp}$ для всех трубок:

$$Re = \frac{\rho uR}{\eta} = \frac{\rho Q}{\pi R \eta}$$

- $d_1=3.95$ мм: критический расход: $Q_2=78\cdot 10^{-6}$ м $^3/\mathrm{c},$ тогда $Re_2=763\pm 40.$
- $d_2=5.3$ мм: критический расход: $Q_3=131\cdot 10^{-6}$ м $^3/{
 m c}$, тогда $Re_3=1010\pm 45.$

Далее определим длину участка трубы, на котором происходит установление потока. Для этого посмотрим на графики 4 и 5.

По графикам можно определить примерную длину участка, на котором устанавливается ламинарный поток:

- $d_1=3.95$ мм, по графику поток устанавливается через 41.5 см от входа. По расчетам ($L_{\rm ycr}\approx 0.2R_2\cdot Re_2$) получается 30.1 см. Результат сходится с вычисленным.
- $d_2 = 5.3$ мм, по графику поток устанавливается через 41.5 см от входа. По расчетам ($L_{\rm ycr} \approx 0.2 R_3 \cdot Re_3$) получается 51 см.