(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 October 2002 (03.10.2002)

PCT

(10) International Publication Number

(51) International Patent Classification?: C12N

WO 02/077168 A2

- (21) International Application Number: PCT/US02/08413
- 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). MARSH, Donald, J. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

- - (22) International Filing Date: 19 March 2002 (19.03.2002)
- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

- (25) Filing Language:
- English English
- (26) Publication Language:

- (81) Designated States (national): CA, JP, US.
- (30) Priority Data: 60/278,061 22 March 2001 (22.03.2001) US
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).
- (71) Applicant (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

Published:

without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the begin-

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): QIAN, Su [US/US]; ning of each regular issue of the PCT Gazette.

(54) Title: MCH1R DEFICIENT MICE

(57) Abstract: The present invention features viable MCH1R deficient mice. MCH1R deficient mice contain an alteration in one or both MCH1R alleles that substantially reduces expression of a functional MCH1R from the altered allele. Preferably, MCH1R or both MCHIR alreies and deficient mice are MCHIR -/- knockout mice.

TITLE OF THE INVENTION MCHIR DEFICIENT MICE

10

15

20

25

30

CROSS-REFERENCE TO RELATED APPLICATIONS

5 The present application claims priority to provisional application U.S. Serial No. 60/278,061, filed March 22, 2001, hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

The references cited in the present application are not admitted to be prior art to the claimed invention.

Neuropeptides present in the hypothalamus play a major role in mediating the control of body weight. (Flier, et al., 1998. Cell, 92, 437-440.) Melanin-concentrating hormone (MCH) is a cyclic 19-amino acid neuropeptide synthesized as part of a larger pre-prohormone precursor in the hypothalamus which also encodes neuropeptides NEI and NGE. (Nahon, et al., 1990. Mol. Endocrinol. 4, 632-637.) MCH was first identified in salmon pituitary, and in fish MCH affects melanin aggregation thus affecting skin pigmentation. In trout and in cels MCH has also been shown to be involved in stress induced or CRF-stimulated ACTH release. (Kawauchi, et al., 1983. Nature 305, 321-323.)

In humans two genes encoding MCH have been identified that are expressed in the brain. (Breton, et al., 1993, Mol. Brain Res. 18, 297-310.) In mammals MCH has been localized primarily to neuronal cell bodies of the hypothalamus which are implicated in the control of food intake, including perikarya of the lateral hypothalamus and zona inertia. (Knigge, et al., 1996. Peptides 17, 1063-1073.)

Pharmacological and genetic evidence suggest that the primary mode of MCH action is to promote feeding (orexigenic). MCH mRNA is up regulated in fasted mice and rats and in the oblob mouse. (Qu, et al., 1996. Nature 380, 243-247.) Injection of MCH centrally (ICV) stimulates food intake and MCH antagonizes the hypophagic effects seen with α melanocyte stimulating hormone (αMSH). (Qu, et al., 1996. Nature 380, 243-247.) MCH deficient mice are lean, hypophagic and have increased metabolic rate. (Shimada, et al., 1998. Nature 396, 670-673.) Transgenic mice overexpressing MCH are hyperphagic and develop insulin resistance and mild obesity. (Ludwig, et al., 2001. J. Clin. Invest. 107, 379-386.)

20

25

30

MCH action is not limited to modulation of food intake as effects on the hypothalamic-pituitary-axis have been reported. (Nahon, 1994. Critical Rev. in Neurobiol. 8, 221-262.) MCH can modulate stress-induced release of ACTH. (Nahon, 1994. Critical Rev. in Neurobiol. 8, 221-262.)

Several references describe a receptor that is indicated to bind MCH ("MCHIR"). (Chambers, et al., 1999. Nature 400, 261-265, Saito, et al., 1999. Nature 400, 265-269, Bächner, et al., 1999. FEBS Letters 457:522-524, Shimomura, et al., 1999. Biochemical and Biophysical Research Communications 261, 622-626.)

10 SUMMARY OF THE INVENTION

The present invention features viable MCH1R deficient mice.

MCH1R deficient mice contain an alteration in one or both MCH1R alleles that substantially reduces expression of a functional MCH1R from the altered allele.
Preferably, MCH1R deficient mice are MCH1R -/- knockout mice.

An alteration that "substantially reduces expression" of a functional MCH1R is either (1) an alteration that results in no active MCH1R being produced from the altered allele or (2) an alteration that results in a MCH1R deficient mouse having one or more phenotypes associated with an MCH1R -/- knockout mouse, when the alteration is present in both alleles. Alterations substantially reducing expression of a functional MCH1R include alterations that result in little or no MCH1R expression and alterations producing a MCH1R derivative which is expressed but contains little or no activity.

Phenotypes associated with a MCH1R -/- knockout mouse include: reduced fat mass, increased food consumption when mice are maintained on regular chow, hyperactivity, neuroendocrine abnormalities, increased energy expenditure as measured by indirect calorimetry, reduced respiratory quotient as measured by indirect calorimetry, decreased sensitivity to diet-induced obesity, resistance to the orexigenic effects of intracerebroventricular administration of MCH and resistance to the anorectic effects of intracerebroventricular administration a peptide antagonist of MCHIR.

Thus, a first aspect of the present invention describes a MCH1R deficient mouse whose genome comprises an alteration in one or both MCH1R alleles. The alteration substantially reduces expression of a functional MCH1R from the altered allele.

Another aspect of the present invention describes a method of producing a MCH1R deficient mouse comprising an alteration of a MCH1R allele. The method comprises the steps of:

- (a) altering a MCH1R allele in a mouse embryonic stem cell by
 homologous recombination with a transgene to produce an altered embryonic stem
 cell:
 - (b) introducing the altered embryonic stem cell into a mouse blastocyst to produce an altered blastocyst;
- (c) introducing the altered blastocyst into a pseudopregnant mouse
 to produce a pregnant mouse;
 - (d) allowing the pregnant mouse to produce offspring; and
 - (e) screening the offspring for the presence of an altered MCH1R allele to identify an MCH1R deficient mouse.

Another aspect of the present invention describes a method of
producing a MCHIR deficient mouse comprising an altered MCHIR in both alleles.
The method comprises the steps of: (a) breeding two mice each comprising an
alteration of the MCHIR in one allele to produce offspring; and (b) screening the
offspring for the presence of an altered MCHIR in both alleles.

Another aspect of the present invention describes a method of

measuring the affect of a compound on a MCH1R deficient mouse. The method involves the steps of providing the compound to the MCH1R deficient mouse, and measuring one or more phenotypes associated with MCH1R activity.

Another aspect of the present invention describes a method of screening for a compound to affect food intake, metabolism, stress, anxiety, fatigue, locomotor activity, circadian rhythm, or sleep. The method comprises identifying an MCHIR active compound able to modulate MCHIR activity using an in vitro assay; and measuring the ability of the MCHIR active compound on food intake, metabolism, stress, anxiety, fatigue, locomotor activity, circadian rhythm, or sleep.

Other features and advantages of the present invention are apparent

30 from the additional descriptions provided herein including the different examples. The provided examples illustrate different components and methodology useful in practicing the present invention. The examples do not limit the claimed invention. Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.

35

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWING

Figure 1. Strategy employed for disrupting the MCH1R gene. "TK" refers to a HSV-thymidine kinase gene. "PGKneo" refers to a neomycin resistance gene.

Figure 2. DEXA analysis of 5-7-month-old group-housed male and female MCH1R +/+ (white bars), MCH1R +/- (hatched bars) and MCH1R -/- (shaded bars; n = 12-14 per group) littermate mice. All P values are from comparisons between MCH1R +/+ and MCH1R -/- littermates. **P < 0.01, *P < 0.05.

Figure 3. Metabolic rate of -8-week-old individually-housed male MCH1R +/+ (n = 10; filled squares) and MCH1R -/- (n = 13; open circles) littermates. From 10 PM to 5 AM, the MCH1R -/- curve was significantly different (P < 0.05) from the MCH1R +/+ curve. The solid horizontal bar represents the dark phases of the study.

Figure 4. Respiratory quotient (RQ) of mice in Figure 3. The MCH1R $^{\prime\prime}$ -curve was significantly different (P<0.01) from the MCH1R $^{\prime\prime}$ -curve for the entire light phase. The solid horizontal bar represents the dark phases of the study.

Figure 5. Cumulative body weight gains of female wild-type $(Mch1r^{+/+})$ and $Mch1r^{-/}$ littermates maintained simultaneously on either a regular chow diet (RC) or a high fat diet (HF) for 7 weeks (n = 9-12 per group). All groups were weight matched and all mice were 6-8-weeks-old at the initiation of the study.

Figure 6. Cumulative food intake by mice in Figure 5 during the 7-week period (n = 9-11) per group). P values are from comparisons between chow and high fat groups of the same genotype (*) or between $Mchlr^{*\prime}$ and $Mchlr^{*\prime}$ littermates maintained on the same diet (**). *P < 0.05, **P < 0.001.

Figure 7. Effect of chronic MCH infusion on daily food intake. Male 11-13-week-old MCH1R +/+ (squares) and MCH1R -/- (circles) littermates received chronic dorsal third ventricle infusions of either MCH (-12 nmole/mouse/day; filled symbols) or vehicle (open symbols) for 6 days (n = 9-11 per group). Mice were cannulated and implanted with osmotic pumps containing only vehicle on day -5. On day 0, original pumps were replaced with new pumps containing either vehicle or MCH dissolved in vehicle. Beginning on day 1, all mice were maintained on a moderate fat diet. From days 1 to 6, the MCH1R +/+, MCH-treatment curve was significantly different (P < 0.005) from the three other curves.

Figure 8. Effect of chronic MCH infusion on cumulative body weight gain. Body weights of mice in Figure 7 were measured daily and values from day -4 were used to calculate cumulative body weight gains. From days 1 to 6, the MCH1R +/+, MCH-treatment curve was significantly different (P < 0.0001) from the three other curves.

Figure 9. Effect of chronic MCH infusion on body composition. DEXA analysis of body composition was performed on mice in Figure 7 at the end of the 6-day chronic infusion period MCHIR +/+: vehicle, white bars; MCH, hatched bars; MCHIR -/-: vehicle, shaded bars; MCH striped bars). P values are from comparisons between treatment groups of the same genotype (*) or between genotypes of the same treatment (**). *P < 0.005, *P < 0.01.

DETAILED DESCRIPTION OF THE INVENTION

10

25

30

35

MCH1R deficient mice contain an alteration in one or both MCH1R

alleles that substantially reduces expression of a functional MCH1R from the altered
allele. The production of MCH1R deficient mice is illustrated by a viable MCH1R -/knockout mouse where expression of MCH1R is eliminated from both MCH1R
alleles. Based on the guidance provided herein concerning the production of such
viable MCH1R -/- mice, MCH1R deficient mice containing different types of
alterations in one or both MCH1R allele can be produced.

MCHIR deficient mice have a variety of uses such as being used as a tool to examine the physiological roles of MCHIR, to evaluate the ability of compounds to target MCHIR, and to evaluate the ability of compounds to compensate for a deficiency in MCHIR. The ability of compounds to target MCHIR or to compensate for a MCHIR deficiency can be evaluated by measuring changes in one or more phenotypes associated with a MCHIR deficiency.

Studies involving MCH1R mice are preferably performed using mice with an alteration in both MCH1R alleles. Mice containing an alteration in one allele are preferably used as an intermediate animal in the initial production of mice having alterations in both alleles. Propagation of mice with an alteration in both alleles is preferably achieved using male and female mice containing alterations in both MCH1R alleles.

Phenotypes observed in MCHIR deficient mice include reduced fat mass, increased food consumption when mice are maintained on regular chow, hyperactivity, neuroendocrine abnormalities, increased energy expenditure as measured by indirect calorimetry, reduced respiratory quotient as measured by indirect calorimetry, decreased sensitivity to diet-induced obesity, resistance to the orexigenic effects of intracerebroventricular administration of MCH and resistance to the anorectic effects of intracerebroventricular administration of a peptide antagonist of MCHIR.

The observed phenotypes of MCH1R deficient mice point to additional phenotypes associated with energy metabolism alterations. Such additional phenotypes include one or more of the following: increased muscle mass; altered glucose or insulin tolerance, as for instance measured by an oral glucose tolerance test or an intraperitoneal insulin tolerance test; altered sensitivity to intracerebroventricularly administered peptide and non-peptide agonists and antagonists of MCH1R and of other energy expenditure pathways; and altered responsiveness to modulation of food intake pathways and pathways affecting other aspects of energy expenditure.

MCH1R deficient mice with different alterations can have varying degrees of phenotypes associated with a MCH1R -/- knockout mouse. In different embodiments, using techniques described in the Examples below, mice with an MCH1R deficiency consume approximately 12% to approximately 16% more food than MCH1R wild-type mice, and MCH1R deficient mice have approximately a 2
20 fold increase in dark phase ambulatory activity compared to wild-type mice.

Production of MCH1R Deficient Mice

25

30

Based on the guidance provided herein, different types of MCH1R deficient mice can be produced. A preferred scheme for producing MCH1R deficient mice involves producing male and female mice with an altered MCH1R allele and breeding the mice to produce mice having alterations in both alleles.

Techniques for producing mice with an altered genome are well known in the art. (Ausubel, Chapter 23, Manipulating the Mouse Genome, Current Protocols in Molecular Biology, John Wiley, 2001). An example of a scheme for producing a mouse with an altered MCHIR allele involves the following:

- (a) altering the MCH1R allele in a mouse embryonic stem cell by homologous recombination with a transgene to produce an altered embryonic stem cell;
- (b) introducing the altered embryonic stem cell into a mouse 35 blastocyst to produce an altered blastocyst;

 (c) introducing the altered blastocyst into a pseudopregnant mouse to produce a pregnant mouse;

- (d) allowing the pregnant mouse to produce offspring; and
- (e) screening the offspring for the presence of an altered MCH1R
- allele to identify a MCH1R deficient mouse.

10

20

25

30

Genetic elements involved in gene expression include transcription and translation elements such as a promoter, transcription factor binding sites, splicing sites, polyadenylation region, and ribosome binding site. Removing or altering these elements will decrease or eliminate the production of MCH1R from the MCH1R gene.

MCH1R structural gene alterations can be used to produce an MCH1R derivative having little or no MCH1R activity. A preferred alteration to the MCH1R structural gene involves deleting substantially all of the gene.

A deletion in an MCH1R allele can be accompanied by an insertion of additional nucleic acid. Additional nucleic acid that may be inserted includes nucleic acid encoding a selectable marker having an independent promoter and nucleic acid encoding a reporter protein transcriptionally coupled to the MCH1R promoter. Examples of reporter protein that can be used in chimeric mice are β-galactosidase (lacC) and green fluorescent protein (GFP) and its derivatives.

Initial alterations are preferably produced using a transgene containing one or more selectable makers and nucleic acid targeting MCH1R for insertion by homologous recombination. Homologous recombination can be performed to create alterations in MCHIR and/or remove MCH1R regions. Markers can be used to facilitate screening for the insertion into a mouse genome, for the insertion occurring by homologous recombination (Ausubel, Chapter 23, Manipulating the Mouse

Genome, Current Protocols in Molecular Biology, John Wiley, 2001), and for evaluating mRNA localization and expression.

A transgene used for homologous recombination may contain

recombinase systems, which may be employed to excise inserted nucleic acid. Examples of recombinase systems include the bacteriophage recombinase Cre/loxP system and the yeast recombinase Flp/FRT system. (Ausubel, Chapter 23, Manipulating the Mouse Genome, Current Protocols in Molecular Biology, John Wiley, 2001, and U.S. Patent No. 5,564,182.) loxP recognition sites can be positioned 3' and 5' of a region to be removed and excised by Cre recombinase.

20

Similarly, fri recognition sites can be positioned 3' and 5' of a region to be removed and excised by Flp recombinase.

Screening for mice containing an altered MCH1R allele can be achieved using techniques such as those measuring the production of MCH1R mRNA transcripts and whether any produced MCH1R transcript is different from wild-type transcript. Techniques for measuring MCH1R mRNA transcripts and the type of transcript include nucleic acid hybridization analysis such as a northern blot analysis which can detect the production and size of transcripts with the use of smaller nucleic acid probes specific for a particular sequence. Polymerase chain reaction (PCR) or in situ hybridization can also be employed to measure MCH1R mRNA transcripts.

Whether or not a particular alteration substantially reduces expression of a functional MCHIR can be determined by producing mice containing such alterations in both alleles. The phenotype of mice containing the alteration in both alleles is determined by comparing the phenotypes of MCHIR -/- knockout mice and MCHIR wild-type mice.

Assays Involving MCH1R Mice

Assays involving MCH1R deficient mice can be performed to measure the effect of a compound on a MCH1R deficiency. Such assays can be performed for different purposes such as evaluating the ability of a compound to compensate for a MCH1R deficiency and evaluating the ability of a compound to selectively act at MCH1R.

The effect of a compound on MCHIR deficiency in vivo can be evaluated by measuring one or more phenotypes associated with MCHIR.

25 Techniques for measuring different activities such as food consumption, body weight, stress, anxiety, locomotor activity, sleep, fatigue, circadian rhythm, and energy metabolism are well known in the art. (See, for example, Crawley, J.N., What's Wrong with My Mouse, Wiley-Liss, 2000, Chen, et al., 2000. Trans. Res. 9, 145-154 and Chen, et al., 2000. Nat. Genetics 26, 97-102.) Examples of techniques for measuring some these different activities are described in the Examples provided below.

In different embodiments, compounds administered to MCH1R deficient mice have previously been identified as MCH1R or MCH2R active compounds using an *in vitro* assay. MCH2R is another receptor that binds MCH.

MCH1R and MCH2R active compounds modulate activity of either or both MCH1R and MCH2R, and include agonists, antagonists, and allosteric modulators.

The ability of a compound to affect in vitro MCH1R or MCH2R activity can be determined using a cloned receptor and measuring receptor activity. The amino acid and encoding cDNA sequences for human MCH1R and MCH2R are provided by SEQ. ID. NOs. 1-4. SEQ. ID. NOs. 1 and 2 provide the amino acid and encoding cDNA for human MCH1R. SEQ. ID. NOs. 3 and 4 provide the amino acid and encoding cDNA for human MCH2R.

5

30

MCH1R and MCH2R are G protein coupled receptors. MCH1R

couples to both Gi and Gq, while MCH2R couples to Gq. Coupling of Gi results in
the inhibition of adenylate cyclase and subsequent reductions in cAMP levels.

Coupling to Gq leads to activation of phospholipase C and subsequent elevation of
intracellular Ca²⁺.

Recombinantly expressed receptor can be used to facilitate determining

whether a compound is active at that receptor. For example, MCHIR or MCH2R can
be expressed by an expression vector in a cell line such as HEK 293, COS 7, and
CHO not normally expressing the receptor, where the same cell line without the
expression vector or with an expression vector not encoding the receptor can act as a
control.

20 Techniques for measuring different G-protein activities, such as Gi,
Gs, and Gq are well known in the art. Gi and Gs activity can be measured using
techniques such as a melonaphore assay, assays measuring cAMP production, assays
measuring inhibition of cAMP accumulation, and assays measuring binding of 35S.
GTP. cAMP can be measured using different techniques such as a radioimmunoassay
and indirectly by cAMP responsive gene reporter proteins.

Gq activity can be measured using techniques such as those measuring intracellular Ca²⁺. Examples of techniques well known in the art that can be employed to measure Ca²⁺ include the use of dyes such as Fura-2 and the use of Ca²⁺-bioluminescent sensitive reporter proteins such as aequorin. An example of a cell line employing aequorin to measure G-protein activity is HEK293/acq17. (Button, et al., 1993. Cell Calcium 14, 663-671, and Feighner, et al., 1999. Science 284, 2184-2188.)

Compounds modulating MCH1R activity include agonists, antagonists and allosteric modulators. The ability of a test compound to antagonize MCH1R can

be measured by activating the receptor using an MCH1R agonist and measuring the effect of the test compound on MCH1R activity.

MCH1R and MCH2R active compounds have therapeutic applications. Such applications include the ability to achieve one or more of the following: weight loss (e.g., treat obesity), weight gain, treat cancer (e.g., colon or breast), reduce pain, treat diabetes, reduce stress and anxiety, treat locomotor deficits, treat sexual dysfunction, treat fatigue, or treat sleep disorders.

Additional Assays

10

15

30

35

The increased locomotor activity of MCHIR deficient mice points to associations between MCHIR and stress, anxiety, fatigue, circadian rhythm, and sleep. Compounds affecting stress, anxiety, fatigue, circadian rhythm, or sleep, can be identified using an in vitro MCHIR assay followed by an in vivo assay. The in vivo assay is performed in a mammal such as a mouse, rat, dog, ferret or monkey.

Compounds affecting locomotor activity, stress, anxiety, fatigue, circadian rhythm, or sleep can be used as a research tool and to achieve useful effects in a patient. Useful effects include reducing stress, anxiety or fatigue, and altering sleep patterns. Alteration of sleep patterns is useful to, for example, treat sleep disorders and treat jet lag. Preferably, the patient is human patient.

20 In different embodiments, the ability of a MCHIR active compound that increases MCHIR activity is tested in an in vivo assay that measures a decrease in stress, anxiety or locomotor activity; the ability of a MCHIR active compound that decreases MCHIR activity is tested in an in vivo assay that measures a reduction in fatigue and the ability of a compound to modulate MCHIR activity is tested in an in vivo assay that measures alterations in circadian rhythm or sleep.

EXAMPLES

Examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.

Example 1: Generation of MCH1R -/- Mice

MCH1R -/- mice were produced using recombinant techniques to obtain MCH1R +/- mice and breeding the MCH1R +/- mice. Production of MCH1R +/- mice involved using an MCH1R targeting vector to disrupt the MCH1R allele in

embryonic stem (ES) cells, injecting the transformed ES cells into a blastocyst, implanting the blastocyst into a pseudopregnant female, and identifying MCH1R +/offspring.

A 14 Kb mouse genomic clone containing MCH1R was obtained from a mouse 129SvJ lambda genomic library (Lambda FIX II Library, Stratagene, La Jolla, CA). The clone was identified by screening the library with a 500 bp mouse MCH1R cDNA probe generated from MCH1R by PCR using primers derived from the rat MCH1R sequence. The rat MCH1R sequence is described as the rat SLC-1 in Lakaye, et al., 1988. Biochim. Biophys. ACTA 1401:216-220.

The MCH1R targeting vector was made up of two homologous recombination targeting regions, a positive selection element, and a negative selection element (Figure 1). The two homologous recombination targeting regions were obtained from the mouse genomic clone. One of the regions was a 6.5 Kb 5'MCH1R KpnI to KpnI fragment. The second region was an 1.4 kb 3' MCH1R BamHI to XbaI fragment.

PGKneo was used as the positive selection element and HSVthymidine kinase was used as the negative selection element. PGKneo provides for neomycin resistance, which serves as a positive selection for integration into the mouse genome. HSV-thymidine kinase provides for sensitivity to acyclovir and its analogs, providing for a negative selection against integration not involving homologous recombination.

Homologous recombination of the targeting vector into the mouse genome was performed by linearizing the targeting vector with Notl and transforming AB2.2 ES cells by electroporation. Electroporation was performed with 1 x 10⁷ AB2.2 ES cells and 25 μg of vector under standard conditions using a BioRad Gene Pulser (Instruction manual, Lexicon Genetics, The Woodlands, Texas 77381, Catalog number K100). Transfected cells were then cultured with G418/FIAU for positive and negative selections, respectively. FIAU is the uracil derivative; 2'-fluoro-2'-deoxy-1beta-D-arabinofuranosyl-5-iodo-uracil. Approximately 500 neomycin

30 resistant clones were selected and Southern blot analysis revealed ten correctly targeted ES cell clones in which one of the two MCH1R alleles was successfully replaced by the PGK-neomycin resistance cassette.

The ten ES cell clones were expanded and microinjected into mouse blastocysts. Mouse blastocysts were implanted into a pseduopregnant female mice. (Gene Targeting, a practical approach, Joyner A.L. eds, IRL press, 1993.) The

10

15

20

25

15

30

implanted mice were allowed to go to term. Transgenic MCH1R +/- offspring were identified by Southern analyses.

Transgenic MCHIR -/- mice were produced by breeding male and female MCHIR +/- mice. MCHIR -/- mice were produced in the expected Mendelian ratio. The absence of MCHIR alleles was verified by Southern blot and PCR genotyping. MCHIR -/- mice of both sexes are fertile and their growth rates are comparable to that of wild-type littermate controls out to approximately 20 weeks of age. MCHIR -/- mice greater than approximately 20 weeks of age exhibit slightly, but significantly, lower body weights as compared to wild-type littermate mice.

PCR genotyping was performed using a Qiagen HotStart PCR kit following the Qiagen protocol. Three different oligonucleotide primers were used to distinguish the knockout allele from the wild-type allele.

MCH-51.2 (SEQ. ID. NO. 5): 5'- AAA TTG CTA GGG AGG CTT GCA G-3': neo-5 (SEQ. ID. NO. 6): 5'- TAA AGC GCA TGC TCC AGA CTG CCT T-3': MCH-31 (SEQ. ID. NO. 7): 5'- TTA AAG GAA CCC AAG CTA GGC ACC-3'. Primer pair MCH-51.2 and MCH-31 generates a 190 bp fragment from the wild-type MCHIR allele, while primer pair neo-5 and MCH-31 generates a 260 bp fragment from the disrupted MCHIR allele.

Southern blot analysis was preformed using a 3'probe and a coding region probe. (Sambrook, et al., Molecular Cloning, a Laboratory Manual, 2nd ed. 1989). The 3'flanking probe is a 0.95 kb PCR fragment located 180 bp 3' of the short arm of the targeting vector. Upon EcoRV-HpaI digestion, the probe detects a 6.0 kb band from the wild-type MCH1R allele, and a 4.2 kb band from the mutant allele (Figure 1).

25 The coding region probe is a 1.1 kb Kpn-BamHI fragment covering a portion of the MCHIR coding region, including the first transmembrane domain to the stop codon. The coding region probe also detects a 6.0 kb wild-type band on EcoRV-HpaI digested genomic DNA, but detects no signal from the knocked out allele.

Mouse cDNA encoding for MCH1R and the mouse MCH1R sequences are provided by SEQ. ID. NOs. 10 and 11. SEQ. ID. NO. 10 provides the cDNA sequence. SEQ. ID. NO. 11 provides the amino acid sequence.

Example 2: In Situ Hybridization

In situ hybridization was performed to verify the absence of MCH1R mRNA in the brain of MCH1R -f- mice. MCH1R -f- and age/sex matched wild-type control mice were killed by decapitation, and brains were quickly removed and frozen in -40°C isopentane, and stored at -80°C until use. Coronal brain sections (14 µM) were cut at -17°C with a cryostat microtome and thaw-mounted onto baked microslides. Following fixation in ice-cold 4% phosphate-buffered paraformaldehyde, the tissue sections were stored in 95% ethanol at 4°C until use.

Hybridization was performed using hybridization probes that consist of

an equal molar mixture of two non-overlapping, antisense oligonucleotides against the
coding region of MCH1R:

Oligo 407 (SEQ. ID. NO. 8):

5'- CTAATGAACGAGAGAGCCCACAGGAGGCAGATCACCAGGGTGGCC -3' Oligo 408 (SEQ. ID. NO. 9):

5'- CCAGCACACAAAGAAGACCAGACAGATGGCAATGGCTGTGCGGGT -3'. The probes were terminally labeled with [α₋³³P]dATP and terminal transferase, and hybridization and washing conditions were as described in Guan, et al., 1998. Mol. Brain Res. 59, 273-279. mRNA transcripts were observed in wild-type mice, but not in MCHIR -/- mice.

20

Example 3: Evaluation of Body Composition

Evaluations of body composition were preformed using 5-7-month-old male and female MCH1R +/+, MCH1R +/-, and MCH1R -/- littermate mice. Body composition was analyzed by dual energy x-ray absorptiometry (DEXA; QDR 4500, Hologic, Inc.), using the QDR 4500 Small Animal Studies software version 9.0.

25 Hologic, Inc.), using the QDR 4500 Small Animal Studies software version 9.0.

DEXA revealed that both male and female 5-7-month-old MCH1R

-I- mice were significantly leaner than wild-types (Figure 2). Both genders of

-/- mice were significantly leaner than while-types (Figure 2). Both genders of MCHIR -/- mice possessed -50 % less far mass and -7 % more lean mass than wild-types. Male and female MCHIR +/- mice exhibited normal body composition.

30 Evaluation of a subset of individual fat pads and DEXA analysis of individually-housed animals from the second line corroborated the lean phenotype.

15

20

25

Example 4: Food Intake Measurement

Food intake measurements were preformed using male and female MCH1R +/+, MCH1R +/-, and MCH1R -/- mice. The mice were separated into individual microisolator cages at approximately one month of age and at least seven days prior to the initiation of any experiment.

Regular mouse chow (Teklad 7012; 5% fat, 19% protein, and 5% fiber; 3.41 grams/kcal and 14.8% kcal from fat) was provided to 9.5-10-week-old mice as pellet food in wire cage tops containing food hoppers. Food was weighed daily for 4 days. Food intake reported as the average food consumed per mouse per day over the course of the four-day period is shown in Table 1.

Table 1. Daily Food Consumption of Male and Female MCHIR Mice

Gender and Genotype	Daily Food Consumption (g/mouse/day) Mean ± SEM	n value	P value
Male MCH1R+/+	4.18 ± 0.14	11	
Male MCH1R+/-	4.26 ± 0.12	10	
Male MCH1R-/-	$4.84 \pm 0.18*$	11	*, < 0.02 vs. +/+; *, <0.02 vs. +/-
Female MCH1R+/+	4.06 ± 0.16	10	13. 17
Female MCH1R+/-	$3.70 \pm 0.44*$	4	
Female MCH1R-/-	4.56 ± 0.15**	8	*, < 0.04 vs. +/+; *, <0.04 vs. +/-

Both male and female MCH1R -/- mice are significantly hyperphagic.

Male and female MCH1R -/- mice consumed approximately 16% and 12% more food, respectively, than wild-type control mice.

Example 5: Assessment of Ambulatory Activity and Fine Movements

Ambulatory activity and fine movement studies were preformed using MCH1R +/+, MCH1R +/- and MCH-/- mice. The locomotor activity of male MCH1R +/+, MCH1R +/-, and MCH1R -/-, and female MCH1R +/+, MCH1R+/- and MCH1R -/- as a female MCH1R +/- 8-9-week-old littermate mice was examined using a cage rack Photobeam Activity System (San Diego Instruments). Mice were housed individually in transparent plexiglass cages (40 x 20 x 20 cm) for several weeks prior to evaluation.

The results of the ambulatory activity and fine movement studies are shown in Tables 2 and 3. During examination two consecutive photobeam breaks occurring in adjacent photobeams was scored as ambulatory movement. Two or more

consecutive photobeam breaks occurring in the same photobeam, with no other photobeams being interrupted, was scored as fine movements. The total number of ambulatory movements in a given part of the light cycle multiplied by the distance between two adjacent photobeams (0.053975 m) equaled the total distance traveled during that given part of the light cycle. MCHIR-1- mice of both sexes exhibit approximately a 2-fold increase in dark phase ambulatory activity.

Table 2. Ambulatory Activity of Male and Female MCH1R Mice

Gender and Genotype	Ambulator (meters t	raveled)	N value	P v	alue
	Light phase	Dark phase		Light phase	Dark phase
Male MCH1R+/+	31.20 ± 6.49	114.35 ± 16.38	11		
Male MCH1R+/-	19.19 ±	98.73 ±	6		
Male MCH1R-/-	49.74 ±	223.70 ±	11	*, = 0.05 vs. +/+; *, <0.004 vs. +/-	*, <0.005 vs. +/+; *, <0.008 vs. +/-
Female MCH1R+/+	29.39 ±	105.52 ±	10		
Female MCH1R +/-	64.03 ±	100.23 ±17.30	4		
Female MCH1R-/-	57.55 ± 13.41*	209.81 ± 19.64*	8	*, = 0.06 vs. +/+	*, <0.001 vs. +/+ *, <0.006 vs. +/-

Table 3. Fine Movements of Male and Female MCH1R Mice

Gender and Genotype	Fine Mo (number of b		N value	F	value		
	Mean:	± SEM					
Male MCH1R+/+	Light phase 707.18 ± 124.07	Dark phase 1619.84 ± 243.26	11	Light phase	Dark phase		
Male MCH1R+/-	865.50 ± 58.70	1703.33 ± 108.86	6				
Male MCH1R-/-	889.36 ± 122.11	2672.54 ± 270.36**	11		*, <0.01 vs. +/+; *, <0.03 vs. +/-		
Female MCH1R+/+	1034.4 ± 121.27	1969.25 ± 89.01	10				
Female MCH1R +/-	1209.25 ± 234.84	2098.75 ± 472.62	4				
Female MCH1R-/-	1178.75 ± 163.29	2429.00 ± 88.16*	8		*, <0.005 vs. +/-		

15

Example 6: Assessment of Metabolic Rate and Respiratory Quotient

Metabolic rate and respiratory quotient were evaluated by indirect calorimetry using MCH1R +/+ and MCH -/- mice. The locomotor activity of male MCH1R +/+ and MCH1R -/- 12-week-old littermate mice was examined using a 16-chamber open-circuit Oxymax system (Columbus Instruments). Mice were housed individually in transparent plexiglass cages (40 x 20 x 20 cm) for several weeks prior to evaluation.

MCHIR -/- mice exhibited a significantly greater metabolic rate during a portion of the dark phase of the light-dark cycle (Figure 3) that was temporally correlated with the period of hyperactivity, suggesting that this increase in metabolic rate is secondary to the hyperactivity. The respiratory quotient, an indicator of metabolic fuel preference, was significantly lower in male MCHIR -/- mice during the light phase, but was indistinguishable from that of wild-types during the dark phase (Figure 4), implying that MCHIR -/- mice rely upon the oxidation of free fatty acids and less upon glycolysis during periods when they are not actively eating.

Example 7: Assessment of Neuroendocrine Profile

Neuroendocrine profiles were evaluated in male and female MCH1R +/+ and MCH -/- littermate mice. Plasma leptin, insulin, total T4 and corticosterone levels were measured by RIA. Plasma glucose and triglyceride levels were measured by enzyme-colorimetric assays (Sigma and Roche, respectively).

Plasma glucose, insulin and triglyceride levels were not significantly different in 5-7-month-old MCH1R -/- and wild-type littermates of either gender (Table 4). Plasma leptin and total thyroxine (T4) levels were significantly lower in male Mch1r -/- mice relative to wild-types, and female levels revealed similar trends (Table 4). Lower leptin levels are consistent with the lean phenotype and lower T4 levels support the notion that MCH may be involved in the regulation of thyroid function (Kennedy, et al., 2000. Endocrinology 142:3265-3268). Alternatively, alterations in T4 levels may reflect a compensatory response to the increased energy expenditure. Plasma corticosterone levels were significantly greater in 6-7-month-old male Mch1r -/- mice relative to wild-type littermates (Table 4). This is consistent with the

finding that MCH administration reduces basal and stress-induced plasma ACTH levels in rats (Bluet-Pajot, et al., 1995. J. Neuroendocrinol. 7:297-303), and suggests

that MCH1R may be involved in the regulation of adrenal function.

Table 4. Neuroendocrine Profiles of Male and Female MCH1R Mice.

	Ma	iles	Females			
	MCHIR +/+	MCHIR -/-	MCHIR +/+	MCH1R-/-		
Leptin (ng/ml)	6.05 ± 1.99	2.12 ± 0.08*	3.87 ± 0.92	2.31 ± 0.06		
Triglyceride (mg/dl)	77 ± 10	69 ± 6	57 ± 7	64 ± 5		
Insulin (ng/ml)	0.61 ± 0.15	0.57 ± 0.12	0.31 ± 0.04	0.33 ± 0.04		
Glucose (mg/dl)	140 ± 7	137 ± 5	132 ± 5	123 ± 4		
T4 (μg/dl)	5.35 ± 0.25	4.32 ± 0.23*	4.58 ± 0.37	4.05 ± 0.22		
Corticosterone (ng/ml)	9 ± 1.1	23.6 ± 5.4*	ND	ND		

Plasma leptin, triglyceride, insulin, glucose and total thyroxine (T4) levels of group-housed male and female 5-7-month-old MCH1R littermate mice (n = 10-14 per group). Plasma corticosterone levels of individually-housed 6-7-month-old male MCH1R littermate mice (n = 9-10 per genotype) maintained in isolation and fed ad libitum. *PC > 0.05; ND, not determined.

Example 8: Assessment of Neuropeptide Expression.

10 Corticotrophin-releasing factor (CRF) mRNA levels in the brain were measured by in situ hybridization. CRF mRNA levels in the paraventricular nucleus of the hypothalamus (PVN) were significantly lower in male MCH1R -/- mice relative to wild-types, yet were normal in the central nucleus of the amygdala (CEA) (PVN: MCH1R -/-, 79.5 ± 9.6 Ci/g tissue; MCH1R +/+, 105.3 ± 10.1 Ci/g tissue; P < 0.05; CEA: MCH1R -/-, 57.5 ± 1.3 Ci/g tissue; MCH1R +/+, 57.0 ± 5.9 Ci/g tissue; n = 5 15 per genotype). This suggests that the elevated corticosterone levels are not due to increased hypothalamic CRF. Instead, it is likely that the reduced CRF expression in the PVN is a consequence of negative feedback driven by the elevated levels of corticosterone. In contrast to CRF, hypothalamic levels of neuropeptide Y (NPY), agouti-related protein (AgRP), galanin, pro-opiomelanocortin, and cocaine- and 20 amphetamine-regulated transcript mRNAs measured during the light phase were all normal in MCH1R -/- mice.

15

20

Example 9: Assessment of Responsiveness to Diet-induced Obesity.

Female wild-type mice maintained on a high fat diet for seven weeks gained significantly more body weight than wild-type littermates maintained on regular chow (Figure 5). In contrast, female MCH1R -/- mice maintained on the high fat diet gained the same amount of body weight as MCH1R -/- littermates maintained on regular chow. This decreased susceptibility to diet-induced obesity is most likely a consequence of the hyperactivity and associated increase in energy expenditure. Interestingly, maintenance on the high fat diet abolished the significant hyperphagia (24.3 %) observed with maintenance on regular chow (Figure 6).

Example 10: Assessment of Responsiveness to Centrally Administered Orexigenics,

MCH1R -/- mice exhibited normal responses to both acute left lateral and dorsal third ventricle administrations of NPY and AgRP, demonstrating that MCH1R is not required for their orexigenic actions. Additionally, these data suggest that the hyperphagia is not a consequence of heightened NPY or AgRP signaling. Acute administrations of MCH were without significant effects, but tended to increase the food intake of only wild-types. Subsequently, the responses of MCH1R -/- and wild-type littermates to chronic dorsal third ventricle infusions of MCH were evaluated. Six days of chronic MCH treatment resulted in significantly greater food intake (Figure 7), body weight gains (Figure 8) and altered body composition (Figure 9) in wild-types, while MCH1R -/- littermates were not affected, demonstrating that MCH1R is required for the orexigenic actions of MCH.

Other embodiments are within the following claims. While several embodiments have been shown and described, various modifications may be made without departing from the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

 A melanin concentrating hormone type 1 receptor (MCH1R) deficient mouse whose genome comprises an alteration in one or both MCH1R alleles, wherein said alteration substantially reduces expression of a functional MCH1R.

- The mouse of claim 1, wherein said mouse comprises said
 alteration in one allele and said alteration comprises a transgene insertion eliminating
 expression of functional MCH1R.
 - The mouse of claim 1, wherein said mouse comprises said alteration is both alleles, and said alteration comprises a transgene insertion eliminating expression of functional MCH1R.

15

30

- The mouse of claim 1, wherein said mouse comprises said alteration in one allele and said alteration comprises the complete removal of MCH1R encoding nucleic acid.
- The mouse of claim 1, wherein said mouse comprises said alteration in both alleles and said alteration comprises the complete removal of MCH1R encoding nucleic acid.
- A method of producing a MCH1R deficient mouse comprising
 an alteration of the MCH1R gene in an MCH1R allele comprising the steps of:
 - (a) altering said MCH1R allele in a mouse embryonic stem cell by homologous recombination with a transgene to produce an altered embryonic stem cell;
 - (b) introducing said altered embryonic stem cell into a mouse blastocyst to produce an altered blastocyst;
 - (c) introducing said altered blastocyst into a pseudopregnant mouse to produce a pregnant mouse;
 - (d) allowing said pregnant mouse to produce offspring; and
- (e) screening said offspring for the presence of an altered MCH1R
 35 allele to identify said MCH1R deficient mouse.

 The method of claim 6, wherein said altering eliminates expression of functional MCH1R.

- 5 8. A method of producing a MCH1R deficient mouse comprising an altered MCH1R in both alleles comprising the steps of:
 - (a) breeding two mice each comprising an alteration of the MCH1R in one allele to produce offspring; and
- (b) screening said offspring for the presence of said altered 10 MCH1R in both alleles to identify said MCH1R deficient mouse,
 - 9. The method claim 8, wherein said alteration comprises a transgene insertion eliminating expression of functional MCH1R.
- 15 10. The mouse of claim 8, wherein alteration comprises the complete removal of MCHIR encoding nucleic acid.
- 11. A method of measuring the affect of a compound on a MCH1R
 deficiency comprising the steps of providing said compound to the MCH1R mouse of
 any one of claims 1-5, and measuring one or more phenotypes associated with
 MCH1R activity.
 - The method of claim 11, wherein said phenotype is hyperphagic or hypophagic activity.
 - The method of claim 11, wherein said phenotype is a change in fat mass.
- The method of claim 11, wherein said phenotype is a change in
 muscle mass.
 - The method of claim 11, wherein said phenotype is increased or decreased locomotor activity.

25

30

- The method of claim 11, wherein said phenotype is increased or decreased fine motor movements.
- 17. The method of claim 11, wherein said phenotype is an increased or decreased metabolic indicator selected from the group consisting of: oxygen consumption, carbon dioxide production, metabolic rate, pseudo-resting metabolic rate, respiratory exchange ratio and respiratory quotient.
- The method of claim 11, wherein said compound is active at
 MCH2R
 - A method of screening for a compound affecting stress, anxiety, fatigue, locomotor activity, circadian rhythm, or sleep comprising the steps of:
- 15 (a) identifying an MCH1R active compound able to modulate MCH1R activity using an in vitro assay; and
 - (b) measuring the ability of said MCHIR active compound on stress, anxiety, fatigue, locomotor activity, circadian rhythm, or sleep using an in vivo assay.
 - 20. The method of claim 19, wherein said method is performed to screen for a compound to affect stress or anxiety, said MCHIR active compound identified in said step (a) causes an increase in MCHIR activity and said in vivo assay employed in said step (b) measures the ability of said MCHIR active compound to decrease stress or anxiety.
 - 21. The method of claim 20, wherein said method is performed to screen for a compound to affect fatigue, said MCH1R active compound identified in said step (a) causes a decrease in MCH1R activity and said in vivo assay employed in said step (b) measures the ability of said MCH1R active compound to affect fatigue.
 - 22. The method of claim 20, wherein said method is performed to screen for a compound to affect circadian rhythm and said in vivo assay employed in said step (b) measures the ability of said MCH1R active compound to affect circadian rhythm.

- 23. The method of claim 20, wherein said method is performed to screen for a compound to affect sleep and said *in vivo* assay employed in said step (b) measures the ability of said MCH1R active compound to affect sleep.
- 24. The method of claim 20, wherein said method is performed to screen for a compound to affect locomotor activity and said *in vivo* assay employed in said step (b) measures the ability of said MCH1R active compound to affect locomotor activity.

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

SEQUENCE LISTING

```
<110> Merck & Co., Inc.
<120> MCH-1R DEFICIENT MICE
<130> 20829Y PCT
<150> 60/278.061
<151> 2001-03-22
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 353
<212> PRT
<213> Human
<400> 1
Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn
                                     10
Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg
Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly
        35
Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala
    50
                        55
Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile
65 70 75 80
Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met
                85
                                     90
Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly
                                 105
            100
                                                     110
Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe
                            120
                                                 125
Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala
                        135
                                             140
Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala
145
                    150
                                         155
Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr
```

Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val 180 185 190 Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 215 Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala

Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg 250 Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr

Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser 290 295 300 Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys

280

265 Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr

235

285

230

310

260

```
<210> 2
<211> 1062
<212> DNA
<213> Human
```

<400> 2 atggacetgg aagceteget getgeecact ggteecaacg ceageaacac etetgatgge cccgataacc tcacttcggc aggatcacct cctcgcacgg ggagcatctc ctacatcaac atcatcatgc cttcggtgtt cggcaccatc tgcctcctgg gcatcatcgg gaactccacg gtcatcttcg cggtcgtgaa gaagtccaag ctgcactggt gcaacaacgt ccccgacatc ttcatcatca acctctcggt agtagatctc ctctttctcc tgggcatgcc cttcatgatc caccagetea tgggcaatgg ggtgtggcae tttggggaga ceatgtgcae ceteateacg gccatggatg ccaatagtca gttcaccagc acctacatce tgaccgccat ggccattgac cgctacctgg ccactgtcca ccccatctct tccacgaagt tccggaagcc ctctgtggcc accetggtga tetgeeteet gtgggeeete teetteatea geateaceee tgtgtggetg tatqccaqac tcatccctt cccaggaggt gcagtgggct gcggcatacg cctgcccaac ccagacactg acctctactg gttcaccctg taccagtttt tcctggcctt tgccctgcct tttgtggtca tcacagccgc atacgtgagg atcctgcagc gcatgacgtc ctcagtggcc cocgcetece agegeageat coggetgegg acaaagaggg tgaccegeac agecategee atctgtctgg tcttctttgt gtgctgggca ccctactatg tgctacagct gacccagttg tocatcagoo goocgaccot cacctitgto tacttataca atgoggocat cagottgggo tatgccaaca gctgcctcaa cccctttgtg tacatcgtgc tctgtgagac gttccgcaaa cgcttggtcc tgtcggtgaa gcctgcagcc caggggcagc ttcgcgctgt cagcaacgct cagacggctg acgaggagag gacagaaagc aaaggcacct ga

120

180

240

300

360

420

480

540

660

720

780

840

900

960

1020

1062

<210> 3 <211> 340 <212> PRT <213> Húman

<400> 3 Met Asn Pro Phe His Ala Ser Cys Trp Asn Thr Ser Ala Glu Leu Leu 10 Asn Lys Ser Trp Asn Lys Glu Phe Ala Tyr Gln Thr Ala Ser Val Val Asp Thr Val Ile Leu Pro Ser Met Ile Gly Ile Ile Cys Ser Thr Gly 40 Leu Val Gly Asn Ile Leu Ile Val Phe Thr Ile Ile Arg Ser Arg Lys 55 Lys Thr Val Pro Asp Ile Tyr Ile Cys Asn Leu Ala Val Ala Asp Leu 65 70 75 80 Val His Ile Val Gly Met Pro Phe Leu Ile His Gln Trp Ala Arg Gly Gly Glu Trp Val Phe Gly Gly Pro Leu Cys Thr Ile Ile Thr Ser Leu 105 100 Asp Thr Cys Asn Gln Phe Ala Cys Ser Ala Ile Met Thr Val Met Ser Val Asp Arg Tyr Phe Ala Leu Val Gln Pro Phe Arg Leu Thr Arg Trp 130 135 140 Arg Thr Arg Tyr Lys Thr Ile Arg Ile Asn Leu Gly Leu Trp Ala Ala 160 150 155 Ser Phe Ile Leu Ala Leu Pro Val Trp Val Tyr Ser Lys Val Ile Lys 170 175 165 Phe Lys Asp Gly Val Glu Ser Cys Ala Phe Asp Leu Thr Ser Pro Asp

```
Asp Val Leu Trp Tyr Thr Leu Tyr Leu Thr Ile Thr Thr Phe Phe Phe
                              200
                                                   205
 Pro Leu Pro Leu Ile Leu Val Cys Tyr Ile Leu Ile Leu Cys Tyr Thr
                          215
                                               220
Trp Glu Met Tyr Gln Gln Asn Lys Asp Ala Arg Cys Cys Asn Pro Ser
225
                      230
                                          235
Val Pro Lys Gln Arg Val Met Lys Leu Thr Lys Met Val Leu Val Leu
                                      250
Val Val Val Phe Ile Leu Ser Ala Ala Pro Tyr His Val Ile Gln Leu
             260
                                  265
                                                       270
Val Asn Leu Gln Met Glu Gln Pro Thr Leu Ala Phe Tyr Val Gly Tyr
                              280
Tyr Leu Ser Ile Cys Leu Ser Tyr Ala Ser Ser Ser Ile Asn Pro Phe
    290
                          295
                                               300
Leu Tyr Ile Leu Leu Ser Gly Asn Phe Gln Lys Arg Leu Pro Gln Ile
                                          315
                     310
Gln Arg Arg Ala Thr Glu Lys Glu Ile Asn Asn Met Gly Asn Thr Leu
                 325
                                      330
Lys Ser His Phe
            340
<210> 4
<211> 1023
<212> DNA
<213> Human
<400> 4
atgaatccat ttcatgcatc ttgttggaac acctctgccg aacttttaaa caaatcctgg
aataaagagt ttgcttatca aactgccagt gtggtagata cagtcatcct cccttccatg
attgggatta tctgttcaac agggctggtt ggcaacatcc tcattgtatt cactataata
                                                                         120
                                                                         180
agatccagga aaaaaacagt ccctgacatc tatatctgca acctggctgt ggctgatttg
                                                                         240
gtccacatag ttggaatgcc ttttcttatt caccaatggg cccgaggggg agagtgggtg
                                                                         300
tttggggggc ctctctgcac catcatcaca tccctggata cttgtaacca atttgcctgt
                                                                         360
agtgccatca tgactgtaat gagtgtggac aggtactttg ccctcgtcca accatttcga
                                                                         420
ctgacacgtt ggagaacaag gtacaagacc atccggatca atttgggcct ttgggcagct
                                                                         480
teetttatee tggcattgee tgtetgggte tactegaagg teatcaaatt taaagaeggt
                                                                         540
gttgagagtt gtgcttttga tttgacatcc cctgacgatg tactctggta tacactttat
                                                                         600
ttgacgataa caacttttt tttccctcta cccttgattt tggtgtgcta tattttaatt
                                                                         660
ttatgctata cttgggagat gtatcaacag aataaggatg ccagatgctg caatcccagt
gtaccaaaac agagagtgat gaagttgaca aagatggtgc tggtgctggt ggtagtcttt
                                                                         780
atcctgagtg ctgcccctta tcatgtgata caactggtga acttacagat ggaacagccc
                                                                         840
acactggcct totatgtggg ttattacctc tocatotgtc toagctatgc cagcagcagc
                                                                         900
attaaccett ttetetacat cetgetgagt ggaaatttee agaaacgtet geetcaaate
                                                                         960
caaagaagag cgactgagaa ggaaatcaac aatatgggaa acactctgaa atcacacttt
                                                                        1020
                                                                        1023
<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 5
aaattgctag ggaggcttgc ag
                                                                         22
<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence
```

<220>

<223> Oligonucleotide primer

<400> 6 taaagegeat geteeagaet geett	25
<210> 7 -211> 24 -212> DNA -213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 7 ttaaaggaac ccaagctagg cacc	24
<210> 8 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide probe	
<400> 8 ctaatgaacg agagagccca caggaggcag atcaccaggg tggcc	45
ctaatgaacy agayayteta tayyaygung attatenyyy tyyoo <210> 9 <211> 45 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide probe	
<400> 9 ccagcacaca aagaagacca gacagatggc aatggctgtg cgggt	45
<210> 10 <211> 1999 <212> DNA <213> Artificial Sequence	
<220> <223> Mouse cDNA encoding MCHIR	
<221> CDS <222> (138)(1199)	
<400- lo gerggtagag gaagacett ttetggaetg egggeteaa geteeggaea aggeggtgga ggesgetegga ggetoecgea geetgegtag gtggaeggge geteeaette agggagaag egaeetgeae eggetge atg gat etg eaa gee teg tig etg eae gae gg Met Asp Leu Gin Ala Ser Leu Leu Ser Thr Gly 1 5	60 120 170
ccc aat gcc agc aac atc tcc gat ggc cag gat aat ttc aca ttg gcg Pro Asn Ala Ser Asn Ile Ser Asp Gly Gln Asp Asn Phe Thr Leu Ala 20 25	218
ggg cca cct cct cgc aca agg agt gtc tcc tac atc acc atc atc atg Gly Pro Pro Pro Arg Thr Arg Ser Val Ser Tyr Ile Asn Ile Ile Met 35	266

Pro	tca Ser 45	Val	Phe	ggt Gly	acc	atc Ile 50	tgt Cys	ctc Leu	ctg Leu	ggc Gly	att Ile 55	Val	gga Gly	aac	tcc Ser		314
aca Thr 60	gtc Val	att Ile	ttt Phe	gcc Ala	gtg Val 65	Val	aag Lys	aaa Lys	tcc Ser	aag Lys 70	Leu	cac His	tgg Trp	tgc Cys	agc Ser 75		362
aac Asn	gtc Val	cct Pro	gac Asp	atc Ile 80	Phe	atc Ile	atc Ile	aac Asn	ctc Leu 85	tct Ser	gtg Val	gtg Val	gat Asp	ctg Leu 90	ctt Leu		410
t tc Phe	ctg Leu	ctg Leu	ggc Gly 95	atg Met	Pro	ttc Phe	atg Met	atc Ile 100	cac His	cag Gln	ctc Leu	atg Met	ggt Gly 105	aat Asn	ggt Gly		458
gtc Val	tgg Trp	cac His 110	ttt Phe	Gly	gaa Glu	acc Thr	atg Met 115	tgc Cys	acc Thr	ctc Leu	atc Ile	aca Thr 120	gcc Ala	atg Met	gac Asp	-	506
gcc Ala	aac Asn 125	agt Ser	cag Gln	ttc Phe	acc Thr	agc Ser 130	acc Thr	tac Tyr	atc Ile	ctg Leu	act Thr 135	gct Ala	atg Met	gcc Ala	att Ile		554
140	cgc Arg	Tyr	Leu	Ala	Thr 145	Val	His	Pro	Ile	Ser 150	Ser	Thr	Lys	Phe	Arg 155		602
Lys	ccc Pro	ser	Met	160	Thr	Leu	Val	Ile	Cys 165	Leu	Leu	Trp	Ala	Leu 170	Ser		650
ttc Phe	att Ile	agc Ser	atc Ile 175	act Thr	cct Pro	gtg Val	tg g Trp	ctc Leu 180	tat Tyr	gcc Ala	agg Arg	ctt Leu	atc Ile 185	ccc Pro	ttc Phe		698
Pro	ggg Gly	Gly 190	Ala	Val	Gly	Cys	Gly 195	Ile	Arg	Leu	Pro	Asn 200	Pro	Asp	Thr		746
Asp	ctt Leu 205	Tyr	Trp	Phe	Thr	210	Tyr	Gln	Phe	Phe	Leu 215	Ala	Phe	Ala	Leu		794
Pro 220	ttt Phe	gtg Val	gtc Val	atc Ile	act Thr 225	gct Ala	gcg Ala	tac Tyr	gtg Val	aaa Lys 230	ata Ile	cta Leu	cag Gln	cgc Arg	atg Met 235		842
acg Thr	tct Ser	tcg Ser	gtg Val	gcc Ala 240	cca Pro	gcc Ala	tct Ser	caa Gln	cgc Arg 245	agc Ser	atc Ile	cgg Arg	ctt Leu	cgg Arg 250	aca Thr		890
aag Lys	agg Arg	gtg Val	acc Thr 255	cgc Arg	aca Thr	gcc Ala	att Ile	gcc Ala 260	atc Ile	tgt Cys	ctg Leu	gtc Val	ttc Phe 265	ttt Phe	gtg Val		938
tgc Cys	tgg Trp	gcg Ala 270	ccc Pro	tac Tyr	tac Tyr	gtg Val	ctg Leu 275	cag Gln	ctg Leu	acc Thr	cag Gln	ttg Leu 280	tcc Ser	atc Ile	agc Ser		986
cgc Arg	ccg Pro 285	acc Thr	ctc Leu	aca Thr	ttc Phe	gtc Val 290	tac Tyr	ctg Leu	tac Tyr	aat Asn	gcg Ala 295	gcc Ala	atc Ile	agc Ser	ttg Leu	1	034

ggc Gly 300	tat Tyr	gcc Ala	aac Asn	agc Ser	tgc Cys 305	ctc Leu	aat Asn	ccc Pro	ttt Phe	gtg Val 310	tac Tyr	ata Ile	gta Val	ctc Leu	tgt Cys 315	1082
gag Glu	acc Thr	ttt Phe	cga Arg	aaa Lys 320	cgc Arg	ttg Leu	gtg Val	ctg Leu	tcg Ser 325	gtg Val	aag Lys	ccc Pro	gcg Ala	gcc Ala 330	cag Gln	1130
ggg Gly	cag G1n	ctt Leu	cgc Arg 335	acg Thr	gtc Val	agc Ser	aat Asn	gct Ala 340	cag Gln	aca Thr	gct Ala	gac Asp	gag Glu 345	gag Glu	agg Arg	1178
			aaa Lys				caat	cccc	cc c	ggto	acct	C CE	agto	cagg	t	1229
caga ggga atag gctc aact tctc gga agc tggc cac gtc. <21 <21	aagchaggcarageatcectgatcageatctaggcaragetcaggatcageatctaggctaggctaggctaggctcagctca	tgg a ttg c cgg a tat a cag ! tcc a aag t tga a tga a tga 1 53	agget cageca atet ggeta cate caeg tgaca gteg aaet agte tace	tgggg ttggt agaag ttctca aggat tctca ctgca actga agaga aataa	gg ct tt to gg aa ct ca tc to at to gg gf ag aa aa aa ac to	tgta ggggg aaggg aaggg gagca ggcto ggcto cgtgg cccaa agggg	gcaa gggaa gtggt gaaga gcta ccaga gcta ggcta ggcta atcaa	a acc a gcc a gcc a agg a ggg a aga a atc c tga t cac	tacat tcac tcac gcgga gctct aaggc agcc agc	tcc yact ygtt aggt act aggg aca tgac yaca	acgg gcag ctcg gcci gtg ctti gati gati ggag aagg	ggged gggat ggggt aged tetec ttea gttt geaa acat	tec of tect of	caaa gtat gttc gcaa gcaa agct tctc aaac gggg	aggatg ttgcta gacaga ctgttg ctttaa gccgag gctgga tttagg caaaag tggatg ataggag gcaggg	1289 1349 1469 1529 1589 1709 1769 1829 1899 1949
Met	-	Leu		5					10					15	Asn	
Ile		_	20					25					30		Arg	
Thr	Arg	Ser 35	Val	Ser	Tyr	Ile	Asn 40	lle	Ile	Met	Pro	Ser 45	Val	Phe	Gly	
Thr	11e	Cys	Leu	Leu	Gly	Ile 55	Val	Gly	Asn	Ser	Thr		Ile	Phe	Ala	
Val	17a T	Tare	TAYS	Ser	INS		His	Tro	Cvs	Ser		Val	Pro	Asp	Ile	

The Ser Asp Guy Gin Asp Asn Phe Thr Leu Ala Gly Pro Pro Pro Arg 20 20 25

Thr Arg Ser Val Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly 35

Thr 11e Cys Leu Leu Gly Iie Val Gly Asn Ser Thr Val Ile Phe Ala Ser Val Val Leu Gly Iie Val Gly Asn Ser Thr Val Ile Phe Ala Val Val Val Lys Ser Lys Leu His Trp Cys Ser Asn Val Pro Asp Ile Ser Val Val Leu Heis Ed Ser Val Val Asp Leu Leu Leu Gly Met 85

Pro Phe Met Ile His Gin Leu Met Cly Asn Gly Val Trp His Phe Gly Gly Thr Ser Thr Tyr Ile Leu Thr Ala Met Asp Ala Asn Ser Gin Phe Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Tyr Leu Ala 140

Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala 140

Thr Yal His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Met Ala 165

Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe 215

Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 215

Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 215

Thr Ala Ala Tyr Val Lys Ile Leu Gln Arg Met Thr Ser Ser Val Ala 2225
225
226
Pro Ala Ser Gln Arg Ser Ile Arg Leu & Arg Thr Lys Arg Val Thr Arg 250
Pro Ala Ise Gln Arg Ser Ile Arg Leu & Arg Thr Lys Arg Val Thr Arg 250
Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Try Ala Pro Tyr 260
Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr 285
Phe Val Tyr Leu Try Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser 295
Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys Arg Val Val Leu Ser Val Lys Pro Ala Ala Gln Gln Gly Gln Leu Arg Thr Arg Val Ser Asn Ala Gln Thr Ala Asg Glu Glu Arg Thr Glu Ser Lys Gly Thr

THIS PAGE BLANK (USPTO)

(43) International Publication Date 3 October 2002 (03.10.2002)

PCT

(10) International Publication Number WO 02/077168 A3

- (51) International Patent Classification7: C12P 21/00

MARSH, Donald, J. [US/US]; 126 East Lincoln Avenue.

- (21) International Application Number: PCT/US02/08413
- (22) International Filing Date: 19 March 2002 (19.03.2002)
- (25) Filing Language:

English English

(26) Publication Lauguage:

(30) Priority Data:

60/278,061

- 22 March 2001 (22.03.2001) US
- (71) Applicant ifor all designated States except US); MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

- Rahway, NJ 07065-0907 (US). (74) Common Representative: MERCK & CO., INC.; 126
- East Lincoln Avenue, Rahway, NJ 07065-0907 (US). (81) Designated States (national): CA, JP, US.
- (84) Designated States (regional): European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE, TR).

Published:

with international search report

- (88) Date of publication of the international search report: 27 March 2003
- For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): QIAN, Su [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(54) Title: MCH1R DEFICIENT MICE

(57) Abstract: The present invention features viable MCH1R deficient mice. MCH1R deficient mice contain an alteration in one or both MCH1R alleles that substantially reduces expression of a functional MCH1R from the altered allele. Preferably, MCH1R deficient mice are MCH1R -/- knockout mice.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US02/08413

	SIFICATION OF SUBJECT MATTER : C12P 21/00									
IPC(7) : C12P 21/00 US CL : 800/4										
According to	According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELI	B. FIELDS SEARCHED									
	Minimum documentation searched (classification system followed by classification symbols) U.S.: 80004									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched US provisional 60/278,061										
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EAST, STN(mcdline, biosis, embase, capitas)										
	UMENTS CONSIDERED TO BE RELEVANT									
Category *	Citation of document, with indication, where ap		Relevant to claim No.							
x	US 6,221,616 B1 (SALON ET AL) 24 April 2001 (on line 13.	24.04.2001), columns 17-18, starting	1-24							
x	US 6,221,613 B1 (SALON ET AL) 24 April 2001 (on line 13.	24.04.2001), columns 17-18, starting	1-24							
X, E	US 6,291,195 B1 (SALON ET AL), 18 September: starting at line 13.	2001 (18.09.2001), columns 17-18,	1-24							
Y	CHAMBERS ET AL. Melania-concentrating horms G-protein-coupled receptor SLC-1. Nature. 15 July entire reference.	1-24								
Y	MACDONALD ET AL. Molecular characterization hormone/recptor complex: Identification of critical activation. Molecular Pharmscology. 2000, Vol. 5	residues involved in binding and	1-24							
Y	NOTHACKER ET AL. Identification of the natural coupled receptor involved in the regulation of vasor October 1999, Vol. 1, pages 383-385, see entire re-	constriction. Nature Cell Biology.	1-24							
	×.									
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.								
· .	special categories of cited documents:	"I" later document published after the inte								
"A" document	t defining the general state of the art which is not equaldered to be alar relevance	date and not in conflict with the applic principle or theory underlying the love	xion but cited to understand the ution							
1	pplication or parent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be conside when the document is taken alone								
establish specified		"Y" document of particular relevance; the considered to involve an inventive step combined with one or more other such	when the document is a documents, such combination							
O documen	t referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in th	art Tas							
"P" documen	n published price to the international filing due but later than the date elaimed	*&* document member of the same patent								
1	actual completion of the international search	Date of mailing of the international sea	rch report							
	2002 (07.10.2002)									
Cox	nalling address of the ISA/US minissioner of Patenis and Trademarks x PCT	Deborati Reynolds D. Robe	be for							
	shingon, D.C. 20231 o. 703 305-3230	Telephone No. 703 308-1235	-							
-acsume N	0. 100 000 0430	1								

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

PCT/US02/08413	

C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Y	DROZDZ ET AL. Characterization of the receptor for melanin-concentrating hormone on melanoma cells by photocrosslinking. Annals New York Academy of Sciences. 1999, pages 210-213.	1-24	
0			
	* '		
	1,1		
	*		
	*,		
	,		
	** (*)		
	*		
*	2.		
[-		
	0		

Form PCT/ISA/210 (second sheet) (July 1998)

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)