CDW Tally Analysis: D17

Courtney Meier, Cody Flagg 29th March 2017

```
## Load libraries
library(plyr)
library(dplyr)
library(ggplot2)
library(httr)
## Define paths and other inputs
domain <- "D17"
site <- "SJER"
# Define path for writing out files
if (file.exists("~/Documents/workDocuments")){
outpath <- paste("~/Documents/workDocuments/gitRepositories/neonPlantSampling/cdw_tally_analysis/", dom</pre>
if (file.exists("~/Documents/neonScienceDocs")){
  outpath <- paste("~/Documents/neonScienceDocs/gitRepositories/neonPlantSampling/cdw tally analysis/",
}
## Define function for retrieving Fulcrum data
get_Fulcrum_data <- function(api_token, sql){</pre>
  require(httr)
  url = paste0("https://api.fulcrumapp.com/api/v2/query?token=",
               api_token, "&format=json", "&q=", sql, "&headers=true")
  request <- httr::GET(url, add_headers("X-ApiToken" = api_token,
                                        Accept = "application/json"))
  content <- jsonlite::fromJSON(httr::content(request, as = "text"))</pre>
  return(content$rows)
## Import data from Fulcrum
# Define Fulcrum API token
api_token = "6ce6d01c4ec984e68fcecbb04d96f71a229f1db388fe1acd90c1fb6ba77a1daf"
# Define CDW Fulcrum query for D17
cdwQuery = paste(URLencode('SELECT * FROM "(TOS) Coarse Downed Wood: Tally [PROD]" AS parent
                      JOIN "(TOS) Coarse Downed Wood: Tally [PROD]/per_plot_azimuth_log" AS child'),
            URLencode("ON (parent._record_id = child._record_id)
                      WHERE domainid LIKE 'D17'"), sep = "%20")
# Get CDW data from Fulcrum
cdw <- get_Fulcrum_data(api_token = api_token, sql = cdwQuery)</pre>
## Select desired fields from 'cdw' data frame, then select data for SJER only
cdw %>%
  dplyr::select(domainid, siteid, plotid_parent, tallydate, volumefactor, particle_count, lidsazimuth,
                     taxonid, decayclass, logid_ingest, logdistance, loglength, acceptedtaxonid, target
```

dplyr::filter(siteid=="SJER") -> cdw

siteid	taxonid	decayClassNum	diameterClass	counts	totalLogs	${\it relative Abundance}$	${\it cumulative Abundance}$	DS
SJER	PISA2	2	>=10cm	19	70	27.14	27.14	
SJER	PISA2	3	>=10cm	12	70	17.14	44.28	
SJER	PISA2	1	>=10cm	7	70	10.00	54.28	
SJER	PISA2	4	>=10cm	6	70	8.57	62.85	
SJER	QUWI2	2	>=10cm	3	70	4.29	67.14	
SJER	QUDO	3	>=10cm	3	70	4.29	71.43	
SJER	QUDO	4	>=10cm	3	70	4.29	75.72	
SJER	QUWI2	4	>=10cm	3	70	4.29	80.01	
SJER	QUDO	1	5-10cm	3	70	4.29	84.30	
SJER	QUWI2	1	>=10cm	1	70	1.43	85.73	
SJER	QUDO	2	>=10cm	1	70	1.43	87.16	
SJER	QUWI2	3	>=10cm	1	70	1.43	88.59	
SJER	QUDO	5	>=10cm	1	70	1.43	90.02	
SJER	PISA2	1	$5\text{-}10\mathrm{cm}$	1	70	1.43	91.45	
SJER	PISA2	2	$5\text{-}10\mathrm{cm}$	1	70	1.43	92.88	
SJER	LUAL4	3	$5\text{-}10\mathrm{cm}$	1	70	1.43	94.31	
SJER	QUDO	4	$5\text{-}10\mathrm{cm}$	1	70	1.43	95.74	
SJER	PISA2	NA	5-10cm	1	70	1.43	97.17	
SJER	QUDO	NA	$5\text{-}10\mathrm{cm}$	1	70	1.43	98.60	
SJER	QUWI2	NA	$5\text{-}10\mathrm{cm}$	1	70	1.43	100.03	

Rank Abundance of decayClass x sizeCategory x taxonID (DST)

 \mathbf{Code}