线性代数 A2 期中考试

2021年11月24日9:45—11:45, 地点5104

- 1. (10 分) 设实线性空间 V 中向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关, $n \geq 3$,求向量组 $S = \{\alpha_i \alpha_j \mid 1 \leq i < j \leq n\}$ 的秩.
- 2. (15 分)设 $A = \begin{pmatrix} I_{n-1} \\ 0 \end{pmatrix}$. (1)证明: $V = \{X \in \mathbb{R}^{n \times n} \mid AX = XA^T\}$ 在矩阵的加法和数乘运算下构成实线性空间. (2) 求 V 的维数和一组基.
- 3. (20 分)设 $A \in \mathbb{R}^{n \times n}$, $r = \operatorname{rank}(A)$, $U \not\in A$ 的行向量组生成的 \mathbb{R}^n 的子空间,V 是 A 的列向量组生成的 \mathbb{R}^n 的子空间,证明:
 - (1) $\dim U = \dim V = r$.
 - (2) U = V 当且仅当存在可逆方阵 P, Q 使得 $PAP^T = \begin{pmatrix} Q & O \\ O & O \end{pmatrix}$.
- 4. (10 分) 设 V_1, V_2 都是 \mathbb{F} 上线性空间 V 的子空间, $W = V_1 \cap V_2$. 证明:

$$(V_1 + V_2)/W = (V_1/W) \oplus (V_2/W).$$

- 5. (10 分) 设实线性空间 $V = \{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}$, x 是变元, $A \in L(V)$ 分别把 $(x+1)^2, (x+2)^2, (x+3)^2$ 映射成 $(x-3)^2, (x-2)^2, (x-1)^2$. 求 A 在 V 的基 $x^2, x, 1$ 下的矩阵表示.
- 6. (15 分) 设实线性空间 $V = \{f(x) e^{-x} \mid f \in \mathbb{R}[x], \deg f \leqslant n\}$, x 是变元, $S = \{\alpha_0, \alpha_1, \cdots, \alpha_n\}$ 是 V 的基, $\alpha_k = x^k e^{-x}, \forall k$, S^* 是 S 的对偶基, $A \in L(V) : g(x) \mapsto g'(x)$, A^* 是 A 的伴随映射, $\sigma \in V^* : g \mapsto \int_0^{+\infty} g(x) dx$.
 - (1) 证明: \mathcal{A} 是可逆变换. (2) 求 σ 在 S^* 下的坐标. (3) 求 $\mathcal{A}^*(\sigma)$.
- 7. (20 分)设 $V \in \mathbb{F}$ 上的线性空间, $A \in L(V)$. 证明: $V = \operatorname{Im} A \oplus \operatorname{Ker} A$ 当且仅 当 $A \in \operatorname{Im} A$ 上的限制映射是一一映射.

参考答案

- 1. 一方面, $\alpha_i \alpha_j = (\alpha_1 \alpha_j) (\alpha_1 \alpha_i)$. 另一方面,若 $\lambda_2, \dots, \lambda_n \in \mathbb{R}$ 使得 $\lambda_2(\alpha_1 \alpha_2) + \dots + \lambda_n(\alpha_1 \alpha_n) = (\lambda_2 + \dots + \lambda_n)\alpha_1 \lambda_2\alpha_2 \dots \lambda_n\alpha_n = \mathbf{0}$,则 $\lambda_2 = \dots = \lambda_n = 0$. 故 $\alpha_1 \alpha_2, \dots, \alpha_1 \alpha_n$ 是 S 的极大线性无关组. 因此, $\operatorname{rank}(S) = n 1$.
- 2. (1) 略. (2) $V = \{X \mid x_{i+1,j} = x_{i,j+1}, \ \forall i,j\}$, $X = \begin{pmatrix} t_1 & t_2 & \cdots & t_n \\ t_2 & \cdots & t_n & 0 \\ \vdots & \ddots & \ddots & \vdots \\ t_n & 0 & \cdots & 0 \end{pmatrix}$. dim V = n.
- 3. (1) $\ \mathcal{U} \ A = \begin{pmatrix} \beta_1 & \cdots & \beta_r \end{pmatrix} \begin{pmatrix} \alpha_1^T \\ \vdots \\ \alpha_r^T \end{pmatrix}$, $\ \mathbb{M} \ \alpha_1, \cdots, \alpha_r \not\in U \ \text{obs.}$
 - (2) (\Rightarrow) 若 U = V,则存在可逆方阵 $Q \in \mathbb{R}^{r \times r}$ 使得 $\left(\beta_1 \cdots \beta_r\right) = \left(\alpha_1 \cdots \alpha_r\right)Q$. 把 $\left(\alpha_1 \cdots \alpha_r\right)$ 扩充为可逆方阵 P^{-1} ,则 $PAP^T = \left(\begin{smallmatrix} Q & O \\ O & O \end{smallmatrix}\right)$.
 - (⇐) 设 $P^{-1} = (\gamma_1 \cdots \gamma_n)$. 由 $A = (\gamma_1 \cdots \gamma_r) Q \begin{pmatrix} \gamma_1^T \\ \vdots \\ \gamma_r^T \end{pmatrix}$, 得 $U = V = \operatorname{Span}(\gamma_1, \cdots, \gamma_r)$.
- 4. (i) V_1/W 和 V_2/W 都是 $(V_1 + V_2)/W$ 的子空间. (ii) $\forall \alpha \in V_1 + V_2$, $\alpha = v_1 + v_2 \Rightarrow [\alpha] = [v_1] + [v_2]$, 其中 $v_i \in V_i$. 即 $(V_1 + V_2)/W \subset (V_1/W) + (V_2/W)$. (iii) $[\alpha] \in (V_1/W) \cap (V_2/W) \Rightarrow \alpha \in V_1 \cap V_2 \Rightarrow [\alpha] = \mathbf{0}$. 即 $(V_1/W) \cap (V_2/W) = \{\mathbf{0}\}$.
- 5. $A: f(x) \mapsto f(x-4)$. $\not\bowtie A = \begin{pmatrix} 1 & 0 & 0 \\ -8 & 1 & 0 \\ 16 & -4 & 1 \end{pmatrix}$.
- 6. (1) 由 $\mathcal{A}: f(x) e^{-x} \mapsto (f'(x) f(x)) e^{-x}$,得 $\mathcal{A} + \mathcal{I}: f(x) e^{-x} \mapsto f'(x) e^{-x}$. 因此, $(\mathcal{A} + \mathcal{I})^n = \mathcal{O}$, $\mathcal{A}^{-1} = -\sum_{k=1}^n C_n^k \mathcal{A}^{k-1}$.
 - (2) σ 在 S^* 下坐标 = $(\sigma(\alpha_0), \sigma(\alpha_1), \cdots, \sigma(\alpha_n)) = (0!, 1!, \cdots, n!)$.
 - (3) $\mathcal{A}^*(\sigma) : f(x) e^{-x} \mapsto \sigma(\mathcal{A}(f(x) e^{-x})) = -f(0).$
- 7. 记 $U = \operatorname{Im} \mathcal{A}$, $W = \operatorname{Ker} \mathcal{A}$.
 - (\Rightarrow) (i) $\alpha \in U$ 使得 $\mathcal{A}\alpha = 0 \Rightarrow \alpha \in U \cap W = \{\mathbf{0}\}$. 故 $\mathcal{A}|_U$ 是单射.
 - (ii) $\forall \alpha \in \text{Im } U$,存在 $u \in U$, $w \in W$ 使得 $\alpha = \mathcal{A}(u+w) = \mathcal{A}u$. 故 $\mathcal{A}|_U$ 是满射.
 - (⇐) (i) $\forall \alpha \in V$, 存在 $u \in U$ 使得 $\mathcal{A}\alpha = \mathcal{A}u \Rightarrow \alpha u \in W$. 故 V = U + W.
 - (ii) $\forall \alpha \in U \cap W$, $\text{in } A|_U \text{ <math>\vec{O}$ }; $A\alpha = \mathbf{0} \Rightarrow \alpha = \mathbf{0}$. $\mathbb{P} U \cap W = \{\mathbf{0}\}$.