Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Análise Matemática I - Engenharia Informática 2019/2020

Métodos numéricos para determinação de soluções de equações

Aulas TP+P: Folha 8

12(b) [Folha 1] Verifique que a equação $x + \ln(x) = 0$ tem uma única solução e aproxime-a, efectuando 2 iterações de um método numérico à sua escolha. Apresente um majorante para o erro dessa estimativa.

Formulário

Objectivo: determinar a solução x da equação f(x) = 0 que pertence ao intervalo [a, b]

Método da bissecção:
$$x_n = \frac{a_n + b_n}{2}$$
, $n = 1, 2, \ldots$ com $\Delta x_n \leq |x_n - x_{n-1}|$ Método de Newton: $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$, $n = 1, 2, \ldots$ com $\Delta x_n \approx |x_n - x_{n-1}|$

x	\sqrt{x}	x^2	e^x	ln(x)	$\frac{1}{x}$	$\sin(x)$	$\cos(x)$
-1.00	_	1.00	0.37	_	-1.00	-0.84	0.54
-0.90	_	0.81	0.41	_	-1.11	-0.78	0.62
-0.80	_	0.64	0.45	_	-1.25	-0.72	0.70
-0.75	_	0.56	0.47	_	-1.33	-0.68	0.73
-0.70	_	0.49	0.50	_	-1.43	-0.64	0.76
-0.60	_	0.36	0.55	_	-1.67	-0.56	0.83
-0.50	_	0.25	0.61	_	-2.00	-0.48	0.88
-0.40	_	0.16	0.67	_	-2.50	-0.39	0.92
-0.30	_	0.09	0.74	_	-3.33	-0.30	0.96
-0.25	_	0.06	0.78	_	-4.00	-0.25	0.97
-0.20	_	0.04	0.82	_	-5.00	-0.20	0.98
-0.10	_	0.01	0.90	_	-10.00	-0.10	1.00
0.00	0.00	0.00	1.00	_	_	0.00	1.00
0.10	0.32	0.01	1.11	-2.30	10.00	0.10	1.00
0.20	0.45	0.04	1.22	-1.61	5.00	0.20	0.98
0.25	0.50	0.06	1.28	-1.39	4.00	0.25	0.97
0.30	0.55	0.09	1.35	-1.20	3.33	0.30	0.96
0.40	0.63	0.16	1.49	-0.92	2.50	0.39	0.92
0.50	0.71	0.25	1.65	-0.69	2.00	0.48	0.88
0.60	0.77	0.36	1.82	-0.51	1.67	0.56	0.83
0.70	0.84	0.49	2.01	-0.36	1.43	0.64	0.76
0.75	0.87	0.56	2.12	-0.29	1.33	0.68	0.73
0.80	0.89	0.64	2.23	-0.22	1.25	0.72	0.70
0.90	0.95	0.81	2.46	-0.11	1.11	0.78	0.62
1.00	1.00	1.00	2.72	0.00	1.00	0.84	0.54

Exercício 12 (b)

Comecemos por localizar e separar as soluções da equação, recorrendo ao método gráfico (na forma clássica). Atendendo a que

$$\underbrace{x + \ln(x)}_{f(x)} = 0 \quad \Leftrightarrow \quad \underbrace{\ln(x)}_{f_1(x)} = \underbrace{-x}_{f_2(x)},$$

então as soluções da equação correspondem às abcissas dos pontos de intersecção dos gráficos das funções $f_1(x) = \ln(x)$ e $f_2(x) = -x$.

Do gráfico verifica-se que existe uma intersecção (e portanto uma solução da equação) e que pertence ao intervalo [0.1,1] (note-se que o domínio $]0,+\infty[$ da equação não inclui o valor x=0!).

Vamos determinar aproximações, para essa solução, recorrendo aos métodos da bissecção e de Newton. De acordo com o enunciado, vamos efectuar 2 iterações em cada caso.

MÉTODO DA BISSECÇÃO:

Resolução com utilização de calculadora: $f(x) = x + \ln(x)$

n	[a,b]	x_n	Δx_n	f(a)	f(x)	f(b)
1	[0.1, 1]	0.55	$\frac{1-0.1}{2} = 0.45$	$f(0.1) \simeq -2.2$	$f(0.55) \simeq -0.05$	f(1) = 1
2	[0.55, 1]	0.775	$\frac{1-0.55}{2} = 0.225$	$f(0.55) \simeq -0.05$	$f(0.775) \simeq 0.52$	f(1) = 1

Neste caso, tem-se $\overline{x} = 0.775$, tal que $\Delta x \leq 0.225$.

Resolução sem utilização de calculadora: neste caso todos os cálculos terão que ser efectuados com recurso à tabela dada no formulário, pelo que é necessário efectuar algumas adaptações ao método. Uma vez que a tabela só tem uma quantidade finita de valores (na sua maioria apenas com 1 casa decimal), sempre que o valor de x_n tiver mais casas decimais que os valores apresentados na tabela, teremos que arredondar o valor obtido. Nessas condições o ponto calculado não será exactamente o ponto médio do intervalo, pelo que o majorante para o erro também não será metade da amplitude do intervalo, mas sim a amplitude do semi-intervalo que conterá a solução.

n	[a, b]	x_n	f(a)	$f(x_n)$	f(b)	Δx_n
1	[0.1, 1]	$0.55 \simeq 0.6$	$f(0.1) = 0.1 + \ln(0.1) \simeq -2.20$	$f(0.6) = 0.6 + \ln(0.6) \simeq 0.09$	$f(1) = 1 + \ln(1) = 1$	0.6 - 0.1 = 0.5
2	[0.1, 0.6]	$0.35 \simeq 0.4$	$f(0.1) \simeq -2.20$	$f(0.4) = 0.4 + \ln(0.4) \simeq -0.52$	$f(0.6) \simeq 0.09$	0.6 - 0.4 = 0.2

Neste caso, tem-se $\overline{x} = 0.4$, tal que $\Delta x \leq 0.2$.

MÉTODO DE NEWTON:

Resolução com utilização de calculadora: $f(x) = x + \ln(x)$ e $f'(x) = 1 + \frac{1}{x}$

n	x_n	Δx_n
0	0.1	_
1	$0.1 - \frac{f(0.1)}{f'(0.1)} \simeq 0.3$	0.3 - 0.1 = 0.2
2	$0.3 - \frac{f(0.3)}{f'(0.3)} \simeq 0.51$	0.51 - 0.3 = 0.21

Neste caso, tem-se $\overline{x} = 0.51$, tal que $\Delta x \simeq 0.21$.

Resolução sem utilização de calculadora: tal como no método da bissecção, poderá ser necessário efectuar arredondamentos nas aproximações calculadas, sempre que os valores obtidos não constarem da tabela.

n	x_n	Δx_n
0	0.1	-
1	$0.1 - \frac{f(0.1)}{f'(0.1)} = 0.1 - \frac{0.1 + \ln(0.1)}{1 + \frac{1}{0.1}} \simeq 0.1 - \frac{-2.2}{11} = 0.3$	0.3 - 0.1 = 0.2
2	$0.3 - \frac{f(0.3)}{f'(0.3)} = 0.3 - \frac{0.3 + \ln(0.3)}{1 + \frac{1}{0.3}} \simeq 0.3 - \frac{-0.9}{4.33} \simeq 0.51$	0.51 - 0.3 = 0.21

Neste caso, tem-se $\overline{x} = 0.51$, tal que $\Delta x \simeq 0.21$.