1. Attempt No 1

- 1. Model details:
- Applied SVM
- CountVectorizer having 5000 features
- Training and Test set divided into 80 and 20%
- 2. Error Analysis:
 - 2314 examples in cross validation set
 - Algorithm misclassifies 1886 emails
- 3. Improvement suggested
 - Stop words can be applied
- 4. Precision, Recall, F1-Score:
 - Accuracy: 18.4%
 - Precision: 0.59
 - Recall: 0.502
 - F1-Score: 0.158

2. Attempt No 2

- 1. Model details:
 - Applied SVM
 - CountVectorizer having 5000 features
 - Training and Test set divided into 80 and 20%
 - Removed Stop words from corpus
- 2. Error Analysis:
 - · 2314 examples in cross validation set
- Algorithm misclassifies 1574 emails
- 3. Improvement suggested
 - Stemming can be applied
- 4. Precision, Recall, F1-Score:
 - Accuracy: 31.9%
 - Precision: 0.586
 - Recall: 0.573
 - F1-Score: 0.318

3. Attempt No 3

- 1. Model details:
- Applied SVM
- CountVectorizer having 5000 features
- Training and Test set divided into 80 and 20%
- Removed Stop words from corpus
- Applied PorterStemmer
- 2. Error Analysis:
 - 2314 examples in cross validation set
 - Algorithm misclassifies 1874 emails
- 3. Improvement suggested
 - Apply LancasterStemmer

- 4. Precision, Recall, F1-Score:
 - Accuracy: 18.9%
 - Precision: 0.45
 - Recall: 0.49
 - F1-Score: 0.168

4. Attempt No 4

- 1. Model details:
- Applied SVM
- CountVectorizer having 5000 features
- Training and Test set divided into 80 and 20%
- Removed Stop words from corpus
- Applied LancasterStemmer
- 2. Error Analysis:
 - 2314 examples in cross validation set
- Algorithm misclassifies 1614 emails
- 3. Improvement suggested
 - Only allow non English words
- 4. Precision, Recall, F1-Score:
 - Accuracy: 30.2%
 - Precision: 0.46
 - Recall: 0.45
- F1-Score: 0.3

5. Attempt No 5

- 1. Model details:
 - Applied SVM
 - CountVectorizer having 5000 features
 - Training and Test set divided into 80 and 20%
 - Removed Stop words from corpus
 - Removed non English words
- 2. Error Analysis:
- 2314 examples in cross validation set
- Algorithm misclassifies 1874 emails
- 3. Improvement suggested
 - Apply LancasterStemmer and removed non English words
- 4. Precision, Recall, F1-Score:
 - Accuracy: 36.6%
 - Precision: 0.47
- Recall: 0.46
- F1-Score: 0.35

6. Attempt No 6

- 1. Model details:
 - Applied SVM

- CountVectorizer having 5000 features
- Training and Test set divided into 80 and 20%
- · Removed Stop words from corpus
- · Removed non English words
- Apply Lancaster Stemmer
- 2. Error Analysis:
 - 2314 examples in cross validation set
 - Algorithm misclassifies 1614 emails
- 3. Improvement suggested
 - Change model Parameters
- 4. Precision, Recall, F1-Score:
 - Accuracy: 30.2%
 - Precision: 0.46
 - Recall: 0.45
 - F1-Score: 0.30

7. Attempt No 7

- 1. Model details:
 - Applied SVM
 - CountVectorizer having 5000 features
 - Training and Test set divided into 80 and 20%
 - Removed Stop words from corpus
 - · Removed non English words
 - Removed gamma=1 parameter with kernel only sigmoid
- 2. Error Analysis:
 - · 2314 examples in cross validation set
 - Algorithm misclassifies 415 emails
- 3. Improvement suggested
- Further tinker with parameters of model
- 4. Precision, Recall, F1-Score:
 - Accuracy: 82.0%
 - Precision: 0.91
 - Recall: 0.50
 - F1-Score: 0.46

8. Attempt No 8

- 1. Model details:
 - Applied SVM
 - CountVectorizer having 5000 features
 - Training and Test set divided into 80 and 20%
 - · Removed Stop words from corpus
 - · Removed non English words
 - Applied poly SVM with degree = 5
- 2. Error Analysis:
 - 2314 examples in cross validation set

- Algorithm misclassifies 419 emails
- 3. Improvement suggested
 - Further tinker with parameters of model
- 4. Precision, Recall, F1-Score:

• Accuracy: 81.0%

• Precision: 0.40

• Recall: 0.5

• F1-Score: 0.45

9. Attempt No 9

- 1. Model details:
 - Applied SVM
 - Can't hard code features as it will not work with test prediction
 - Works with very low features in vectorisation such as 50 but precision is low now
 - Used Tfidf to solve this issue
 - Removed non English words
 - Applied svm with sigmoid kernel
- 2. Error Analysis:
 - 2314 examples in cross validation set
 - · Algorithm misclassifies 419 emails
- 3. Improvement suggested
- Further tinker with parameters of model
- 4. Precision, Recall, F1-Score:

• Accuracy: 81.0%

• Precision: 0.40

• Recall: 0.5

• F1-Score: 0.45

10.Attempt No 10

- 1. Model details:
 - I found out that my all my previous values for precision, recall, f1score, miss-classified emails are incorrect coding wise
 - I used parameter with CountVectorizer with min_df =0.0001 and max_df =0.8 these parameters were decided by making intelligent decision making.
 - I found out that when making prediction only transform is applied
 - Removed single character letters
 - Mostly pre processing is done when max_df is 0.8 which mean ignore terms that are present in 80% of the document
- 2. Error Analysis:
 - 579 examples in cross validation set
 - Algorithm misclassifies 50 emails
- 3. Improvement suggested

- Now algorithm can be further improved by trying out different kernels of svm
- 4. Precision, Recall, F1-Score:

Accuracy: 91.1%Precision: 0.974Recall: 0.921

• F1-Score: 0.947

• Confusion matrix:

[462 12] [39 66]