A Stochastic Variational Inference Approach for Semiparametric Distributional Regression

Final Kolloquium MSc Applied Statistic

Sebastian Lorek

First supervisor: Prof. Dr. Thomas Kneib Second supervisor: Gianmarco Callegher

2023-11-28

Table of Contents I

Introduction

Theory

Application

Introduction

Bayesian Inference

- Focal point of interest is the posterior distribution
- General posterior specification for Bayesian regression

$$p(\boldsymbol{\theta}|\mathbf{y}, \mathcal{D}) = \frac{p(\mathbf{y}, \boldsymbol{\theta}|\mathcal{D})}{p(\mathbf{y}|\mathcal{D})}$$

$$= \frac{p(\mathbf{y}|\boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta})}{p(\mathbf{y}|\mathcal{D})}$$

$$= \frac{p(\mathbf{y}|\boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta})}{\int p(\mathbf{y}|\boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta}) d\boldsymbol{\theta}}$$

$$\propto p(\mathbf{y}|\boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta})$$

 Primary challenge is the calculation of the normalizing constant/evidence

- MCMC methods have been so far the most common methods for Bayesian inference
 - Enjoy nice properties
 - Unfortunately do not scale well for modern applications
- Trade some accuracy for scalability
- Make use of SGD and automatic differentiation

Theory

Variational Inference

- VI is a method from machine learning to approximate probability densities (Jordan et al. 1999)
- lacktriangle Approximate posterior with a variational distribution $q(heta|\phi)$ from a predefined parametric variational family $\mathcal Q$

$$q(\boldsymbol{ heta}|oldsymbol{\phi})\in\mathcal{Q}$$

- Use optimization (SGD) to find a member that is as closely as possible to the true posterior
- What means close in terms of distributions?

Kullback-Leibler divergence

- A well known divergence measure is the Kullback-Leibler divergence (Kullback and Leibler 1951)
- Quantifies the proximity between two probability distributions

$$D_{\mathsf{KL}}\left(q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta}|\mathbf{y},\mathcal{D})\right) = \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \ln\left(\frac{q(\boldsymbol{\theta}|\boldsymbol{\phi})}{p(\boldsymbol{\theta}|\mathbf{y},\mathcal{D})}\right) d\boldsymbol{\theta}$$
$$= \mathsf{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}\left[\ln\left(\frac{q(\boldsymbol{\theta}|\boldsymbol{\phi})}{p(\boldsymbol{\theta}|\mathbf{y},\mathcal{D})}\right)\right]$$

- In short $D_{KL}(q||p)$
- It holds that $D_{KL}(q||p) \ge 0$
- Has some nice properties but also drawbacks (not a distance)

Optimization objective

$$\hat{\boldsymbol{\phi}} = \arg\min_{\boldsymbol{\phi}} \mathsf{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})} \left[\mathsf{In} \left(\frac{q(\boldsymbol{\theta}|\boldsymbol{\phi})}{p(\boldsymbol{\theta}|\mathbf{y}, \mathcal{D})} \right) \right]$$

■ Make q as close as possible to p

- The posterior is unknown, but the **evidence** is a **constant** in the optimization and thus cancels out
- Allows us to rewrite the objective as

$$egin{aligned} \hat{\phi} &= rg \max_{\phi} \mathsf{E}_{q(oldsymbol{ heta}|oldsymbol{\phi})} \left[\mathsf{In} \left(rac{p(oldsymbol{y}, oldsymbol{ heta}|\mathcal{D})}{q(oldsymbol{ heta}|oldsymbol{\phi})}
ight)
ight] \ &= rg \max_{\phi} \mathsf{ELBO}(\phi) \end{aligned}$$

Evidence Lower Bound

What does the ELBO ?

$$\mathsf{ELBO}(\phi) = \mathsf{E}_{q(\theta|\phi)}\left[\mathsf{In}(p(\mathbf{y}|\mathcal{D},\theta))\right] - \mathsf{D_{KL}}\left(q(\theta|\phi)||p(\theta)\right)$$

Actually something similar to MAP/ML

Variational family

- What is the $\mathcal Q$ and thus $q(\theta|\phi)$?
- lacksquare Flexibility of $\mathcal Q$ and thus $q(heta|\phi)$ significantly influences the optimization
 - \blacksquare Complex $\mathcal{Q} \to$ better approximations, but increased complexity during optimization
 - \blacksquare Simple $\mathcal{Q} \to \mathsf{worse}$ approximations, but allows for easier optimization

 We use structured mean-field variational inference (Wainwright and Jordan 2007)

$$q(m{ heta}|m{\phi}) = \prod_{j=1}^J q_j(m{ heta}_j|m{\phi}_j)$$

- \blacksquare One q_i (factor) for each parameter block
- Allows for interdependencies in parameter blocks

■ How are the q_i defined ?

$$egin{aligned} m{ heta}_j &= \mathbf{L}_j m{\epsilon}_j + m{\mu}_j, \; m{\epsilon}_j \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \ m{ heta}_j &\sim \mathcal{N}(m{\mu}_j, \mathbf{L}_j^{\mathrm{T}}) \end{aligned}$$

- lacksquare Called "reparameterization trick" $oldsymbol{ heta}_j = \mathbf{g}_{oldsymbol{\phi}_i}(\epsilon_j)$
- For positive restricted parameters we need to chain another transformation layer via exp transformation

Stochastic variational inference

- SGD to optimize the ELBO (Hoffman et al. 2012)
- lacksquare Only use a subset $\mathcal I$ of the data in each iteration (ELBO remains unbiased)

"Black-box" variational inference

- Using SVI with the "reparameterization trick"
- Evaluate the integral in the ELBO with Monte Carlo integration
- Calculate $\nabla_{\phi}\mathsf{ELBO}(\phi)_{\mathcal{I}}$ with automatic differentiation
- Researcher only formulates a probabilistic model and provides a dataset (Kucukelbir et al. 2016), inference algo. is model "agnostic"

Optimization

- Split data into training and validation
- Decide for batch-size (subset of the data) and variational sample size (Monte Carlo integration)
- Optimize the ELBO using training data and monitor convergence in the validation dataset

$$\left. \hat{\phi}^t = \hat{\phi}^{t-1} + \rho_t \nabla_{\phi} \mathsf{ELBO}(\phi)_{\mathcal{I}^t} \right|_{\phi = \hat{\phi}^{t-1}}$$

■ We use Adam (Kingma and Ba 2014) as our optimizer

Impact Analysis

Figure 1: ELBO traces for 3 different SGD runs, using different initializations but the same seed. We use a batch size of 128, 64 samples from the variational distribution and a learning rate of 1e-2.

Figure 2: ELBO traces for 3 different SGD runs, using different seeds but the same initialization. Otherwise same configuration as in Figure 1.

Figure 3: ELBO traces for 3 different SGD runs, using different variational sample sizes. We use batch VI with a learning rate of 1e-2 and the same seed as in Figure 1.

Figure 4: ELBO traces for 3 different SGD runs, using different batch sizes. We use a variational sample size of 64 with a learning rate of 1e-2 and the same seed as in Figure 1.

Semiparametric distributional regression

$$y_i \stackrel{\text{ind.}}{\sim} p(\vartheta_{i,1}, \dots, \vartheta_{i,g})$$

 $\vartheta_{i,l} = h_l^{-1}(\eta_{i,l}), \ l = 1, \dots, g$

- Response distributions beyond the normal distribution
- Linear predictors with inverse link functions
- Structured addtive linear predictors so fixed and smooth effects
 - B-spline basis functions
- Augmented with priors
 - Bayesian P-splines

Application

Implementation

- Developed a small python package tigerpy, which consists of two libraries
- A model building library tigerpy.model
 - Construct the model
 - Uses the idea of probabilistic graphical models
- An inference library tigerpy.bbvi
 - Runs the BBVI inference algorithm
- Aligns with concepts found in liesel (Riebl et al. 2022)

Simulation Studies

- Conducted two simulation studies
- First studies asymptotic behavior of the posterior means of BBVI
- Second targets the posterior distributions as a whole and compares BBVI with MCMC

Consistency study

- Study the asymptotic behavior of the posterior means
- Performance measures include bias and empirical standard error
- Simulation repetitions: $n_{sim} = 200$
- Two models
 - 1. M_1 : Bayesian linear regression
 - 2. M_2 : Bayesian logistic regression

- Two data generating processes, $n_{obs} = 50, 100, 500, 1000, 5000$
- \blacksquare For M_1

$$y_i|x_i \sim \mathcal{N}(3.0 + 0.2x_i - 0.5x_i^2, 1.0^2),$$

 $x_i \sim \mathcal{U}(-3, 3), i = 1, \dots, n_{\text{obs}}$

 \blacksquare For M_2

$$y_i|x_i \sim \text{Bern}(\sigma(1.0 + 2.0x_i)),$$

 $x_i \sim \mathcal{U}(-3,3), i = 1, \dots, n_{\text{obs}}$

Figure 5: Kernel density for the posterior means of the location parameters of M_1 , true parameters given by $\beta = [3.0, 0.2, -0.5]^T$ (grey dashed line).

Figure 6: Kernel density for the posterior means of the scale parameter of M_1 , true parameter given by $\sigma=1.0$ (grey dashed line).

Table 1: Simulation results for the parameters of M_1 .

	Bias					EmpSE				
$n_{\rm obs}$	50	100	500	1000	5000	50	100	500	1000	5000
β_0	-0.4819 (0.0323)	-0.2319 (0.0215)	-0.0520 (0.0073)	-0.0162 (0.0045)	0.0002	0.4563	0.3046	0.1036	0.0640	0.0344
β_1	0.0113	0.0016	0.0003	0.0021	-0.0007 (0.0012)	0.0996	0.0598	0.0300	0.0237	0.0166
β_2	0.0972	0.0428	0.0095	0.0033	-0.0002	0.0975	0.0614	0.0264	0.0176	0.0104
σ	0.2389	0.0876	0.0115	-0.0014 (0.0021)	-0.0021 (0.0015)	0.2851	0.1293	0.0409	0.0300	0.0216

Corresponding Monte Carlo SEs are provided below in parentheses; Bias estimates that do not cover 0 in their 95% CI are shown in bold; $n_{\rm sim}=200$.

Figure 7: Kernel density for the posterior means of the logit parameters of M_2 , true parameters given by $\beta = [1.0, 2.0]^{\mathrm{T}}$ (grey dashed line).

Table 2: Simulation results for the parameters of M_2 .

	Bias					EmpSE				
$n_{\rm obs}$	50	100	500	1000	5000	50	100	500	1000	5000
β_0	0.1904 (0.0508)	0.0631	0.0044	-0.0481 (0.0147)	0.0137	0.7180	0.5568	0.2632	0.2072	0.1103
β_1	0.3578 (0.0646)	0.1914 (0.0462)	0.0354 (0.0205)	0.0111	0.0368	0.9137	0.6532	0.2905	0.2349	0.1167

Corresponding Monte Carlo SEs are provided below in parentheses; Bias estimates that do not cover 0 in their 95% CI are shown in bold; $n_{\text{sim}} = 200$.

Posterior density study

- Estimate a smooth function through Bayesian P-splines
- Compare posterior distributions of BBVI (tigerpy) and MCMC (liesel (ibid.))
- For comparison we use:
 - 1. Kernel density plots
 - 2. Wasserstein distance (Kantorovich 1960)
- Generate 4 MCMC Chains and 400 (n_{sim}) BBVI runs
- Data generating process (DGP)

$$y_i|x_i \sim \mathcal{N}(f(x_i), 1.5^2)$$

 $f(x_i) = 3.0 + 1.75\sin(1.5x_i)$
 $x_i \sim \mathcal{U}(-10, 10), i = 1, ..., 1000,$

Figure 8: The DGP and the estimated smooth functions from BBVI and MCMC, using the posterior means.

Figure 9: Kernel density for the posterior samples of the fixed intercept β_0 , using 4 randomly selected runs from BBVI (red) and 4 chains from MCMC (blue).

Figure 10: Kernel density for the posterior samples of selected internal spline coefficients $\tilde{\gamma}$, using 4 randomly selected runs from BBVI (red) and 4 chains from MCMC (blue).

Figure 11: Kernel density for the posterior samples of the inverse smoothing parameter τ^2 , using 4 randomly selected runs from BBVI (red) and 4 chains from MCMC (blue).

Figure 12: Kernel density for the posterior samples of the scale σ , using 4 randomly slected runs from BBVI (red) and 4 chains from MCMC (blue).

- As a formal measure we use the Wasserstein distance with the "squared euclidean distance" (W_2)
- Allows to compare the "distance" between two probability distributions

Wasserstein distance W₂ for each parameter block 0 0.25 4 0.20 0. . 0.15 3 0 0.10 2 0.05 0.00 W_2 β_0 0.20 8 0.15 6 0.10 4 0.05

Figure 13: Box plots displaying the Wasserstein distance for the different model parameters.

σ

 τ^2

0.00

Open Problems

- Starting with "arbitrary" model initializations for models with scale or shape parameters is numerically too unstable
- Likelihood in the ELBO tends to infinity for "unlikely" samples from the variational distribution
- Forcing the variance of the variational distribution down works . . .

Figure 14: Location scale regression with the Dutch boys dataset, comparing MCMC and BBVI.

- Currently working on a two stage procedure
 - 1. Start with MAP for a few iterations
 - Caculate Laplace approximation and use it as the initialization for BBVI
 - 2. Continue with BBVI
- Optional to include one further simulation study or compare results from the first study with MCMC

- Hoffman, Matt, David M. Blei, Chong Wang, and John Paisley (2012). Stochastic Variational Inference.
- Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul (1999). "An Introduction to Variational Methods for Graphical Models". In: *Machine Learning* 37.2, pp. 183–233.
- Kantorovich, L. V. (July 1960). "Mathematical Methods of Organizing and Planning Production". In: *Management Science* 6.4, pp. 366–422.
- Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization.
- Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei (2016). *Automatic Differentiation Variational Inference*.
- Kullback, S. and R. A. Leibler (Mar. 1951). "On Information and Sufficiency". In: *The Annals of Mathematical Statistics* 22.1, pp. 79–86.
- Riebl, Hannes, Paul F. V. Wiemann, and Thomas Kneib (2022).

 Liesel: A Probabilistic Programming Framework for Developing

 Semi-Parametric Regression Models and Custom Bayesian Inference

 Algorithms.

Wainwright, Martin J. and Michael I. Jordan (2007). "Graphical Models, Exponential Families, and Variational Inference". In: Foundations and Trends® in Machine Learning 1.1–2, pp. 1–305.

