使用 MolAICal 进行药物的 QSAR 计算

作者: MolAICal (update 2020-09-02)

更多教程(含英文教程)请见如下:

MolAICal 官方主页: https://molaical.github.io

MolAICal 文章介绍: https://doi.org/10.1093/bib/bbaa161
MolAICal 中文博客: https://molaical.github.io/cntutorial.html

MolAICal blogspot: https://qblab.blogspot.com

1. 简介

药物的定量构象关系(QSAR)包含线性回归和分类,在本教程中选用 STAT3 蛋白靶点的药物分子作为研究对象;STAT3 是治疗癌症的一个重要蛋白靶点,研究 STAT3 药物的属性,有助于设计合理的抗癌药物。

2. 工具

2.1. 所需软件

1) MolAICal: https://molaical.github.io

2) DRAGON: http://www.talete.mi.it/index.htm

注意:除了用 DRAGON 算药物分子的描述符外,DRAGON 属于商业软件,你可以使用任何合适的软件算分子的描述符。

2.2. 操作所需的示例文件

1) 本教程所需的教程文件可以从以下网址下载:

https://github.com/MolAICal/tutorials/tree/master/006-QSAR

3. 步骤

3.1. 计算分子描述符

1) 打开 DRAGON 软件, 然后在文件夹"006-QSAR/ligands"中导入配体文件 (如图 1 所示), 本教程的配体文件是.hin 格式的文件, .hin 格式的文件是经过 HyperChem 软件优化过后的默认文件格式。你也可以优化自己的配体分子, 然后保存成 Sybyl Mol2 格式的文件用于进一步的计算。

图 1. 使用 DRAGON 计算分子描述符

注意:你可以在这个数据库中检索蛋白受体的配体分子: www.guidetopharmacology.org 等。

2) 将药物分子描述符保存并命名为"QSARMolDes.txt"(如图 2 所示)。

图 2. 保存并命名文件为"QSARMolDes.txt"

3) 使用 Excel 打开"QSARMolDes.txt"文件并设置相关参数(如图 3 所示)。

C2	26 -	i ×	√ f _x		Numb	er of mol	ecular de	scriptors	
4	Α	В	Number o	f ligands	E	F	G	Н	
1	DRAGON o	data						train șe	t
2	10	2		1364	0	0		1	
3	on repres	sents app	ointed tra	in and va	lidation s	ets, "off"	means Lo		
4	1	2	3	4	6	7	8	9	┸
5	5	10	→ valid	ation set					
6	No.	MolID	pKd	MW	AMW	Sv	Se	Sp	Ss
7		JNJ-28312	8	461.65			66.69		
8		KW-2449	7.12	333.45	7.25				_
9		lestaurtinib			8.14				_
10	4	PP-242	7.96	308.38	7.91		39.36	26.3	
11	5	R406	8.46	470.51	8.25		58.71	37.1	
12	6	ruxolitinib	10.44	307.42			41.85	27.98	
13	7	staurospor	8.01	467.59	7.54	40.39	62.05	42.14	
14	8	TAE-684	7.8	615.3	7.41	50.74	83.06	54.23	
15	9	TG-10134	8.96	525.77	7.1	44.85	73.86	47.85	
16	10	tofacitinib	9.24	312.42	7.27	26.66	43.12	27.82	
17				dd nKd y	alues of li	gande			
18			- a	uu pku v	aiues Of II	yanus			

图 3. 在 Excel 中设置 QSAR 的参数

你必须在"QSARMolDes.txt"中严格按照格式设置参数。第一行可以使用默认标题或者也可以使用你设置的任意标题。在第二行的第一个数字是用于 QSAR 计算的配体分子数,第二行的第三个数字代表分子描述符的数量。第二行的其余数字可以使用默认数字或者其它任意数字,这对 QSAR 的计算没有影响。在第三行上的字符"on"代表指定了训练集和验证集,第四行是训练集的序号,第五行是验证集的序号,此序号对应文件"QSARMolDes.txt"底下配体的序号(如图 3 所示)。如果第三行是"off",则使用留一验证法(LOO)进行 QSAR 的计算,在这种情况下,第四、五行的数字可以省略,MolAICal 自动使用留一法指定训练集与验证集进行运算(请参考示例文件:"QSARMolDes_LOO.txt")。除此之外,实验值如 pKd 等应该加到第三列中(如图 3 所示)

3.2. QSAR 计算

运行如下命令:

#> molaical.exe -qsar GA -i QSARMolDes.txt

或

#> molaical.exe -qsar GA -i QSARMolDes_LOO.txt

假如你想了解更多的 QSAR 参数, 请参考 MolAICal 的说明书。本教程仅仅包括 10 个配体。当 Q2 的运算值已经满足你的研究目的, 你可以通过"Ctrl+C"快捷键终止 MolAICal 的运行。最后的结果保存在"QSAROutFile.dat"文件中, 打开"QSAROutFile.dat", 其具体运算结果的信息如下:

```
***** The 1th model *****
The Q^2-LOO is: 0.8542
R^2 fitting is: 0.9473
R^2 adjusted is: 0.9210
RSS is: 0.4042
The formula is: y = 0.68376 + (1.12498) * HOp + (2.45137) * Mor26e + (0.79399) * Espm06d
The standard errors of b0 to b3 corresponding to formula is: 1.83351, 2.17332, 0.25011, 0.23398
The standard error of the regression (sigma) is: 0.2595
The experiment values, predicted values, calculated values by LOO validation and residuals: 8.0 8.1138 8.1743 -0.1138
        8.1138
8.0
                     8.1743
7.12
          7.2904
                       7.4440
                                    -0.1704
                                     -0.0946
8.43
          8.5246
                       8.5705
7.96
          7.7950
                       7.6441
                                     0.1650
8.46
          8.7477
                       8.8000
                                     -0.2877
10.44
           10.5084
                        10.7288
                                       -0.0684
                       7.8584
8.01
          7.8877
                                    0.1223
         7.9168
7.8
                       8.3305
                                    -0.1168
                      8.3828
9.0764
         8.5185
9.1171
8.96
                                    0.4415
9.24
                                    0.1229
```