Vector Space Model, Probabilistic Model

국민대학교 컴퓨터공학부

강승식

Vector Space Model

- Motivation
 - Assign non-binary weights to index terms
 - A framework in which partial matching is possible
 - Instead of attempting to predict whether a document is relevant or not
 - Rank the documents according to their degree of similarity to the query

Similarity: Query and Document

$$\vec{q} = (w_{1q}, w_{2q}, ..., w_{tq}) \quad w_{iq} \ge 0$$

$$\vec{d}_j = (w_{1j}, w_{2j}, ..., w_{tj}) \quad w_{ij} \ge 0$$

$$sim(d_j, q) = \frac{\vec{d}_j \cdot \vec{q}}{|\vec{d}_j| \times |\vec{q}|} = \frac{\sum_{i=1}^t w_{ij} \times w_{iq}}{\sqrt{\sum_{i=1}^t w_{ij}^2} \times \sqrt{\sum_{i=1}^t w_{iq}^2}}$$

$$0 \le sim(d_j, q) \le 1 \quad \text{(cosine similarity)}$$

 $|\vec{q}|$: Does not affect the ranking

 $|\vec{d}_j|$: Normalization in the space of the documents

Tf-idf

- Clustering Problem
 - Intra-cluster similarity
 - What are the features which better describe the objects
 - Inter-cluster similarity
 - What are the features which better distinguish the objects

• IR Problem

- Intra-cluster similarity (tf factor)
 - Raw frequency of a term k_i inside a document d_j
- Inter-cluster similarity (idf factor)
 - Inverse of the frequency of a term k_i among the documents

Weighting Scheme

- Term Frequency (tf)
 - Measure of how well that term describes the document contents

$$f_{ij} = \frac{freq_{ij}}{\max_{l} freq_{lj}} \quad (freq_{ij} : \text{Raw frequency of term } k_i \text{ in the document } d_j)$$

- Inverse Document Frequency (idf)
 - Terms which appear in many documents are not very useful for distinguishing a relevant document from a non-relevant one

$$idf_i = \log \frac{N}{n_i}$$

 n_i : Number of documents in which the index term k_i appears

N: Total number of documents

- Best known index term weighting scheme
 - Balance *tf* and *idf* (*tf-idf* scheme)

$$w_{ij} = f_{ij} \times idf_i$$

Query term weighting scheme

$$w_{iq} = (0.5 + 0.5 f_{iq}) \times idf_i$$

Example

Q:"gold silver truck"

 D_1 : "Shipment of gold damaged in a fire"

 D_2 : "Delivery of silver arrived in a silver truck"

 D_3 : "Shipment of gold arrived in a truck"

$$idf_i = \log \frac{N}{n_i}$$
 $w_{ij} = f_{ij} \times idf_i$ $w_{iq} = f_{iq} \times idf_i$

Term	а	arrived	damaged	delivery	fire	gold	in	of	silver	shipment	truck
idf	0	.176	.477	.477	.477	.176	0	0	.477	.176	.176
	t 1	t 2	t 3	t 4	t 5	t 6	t 7	t 8	t 9	t 10	t 11
D ₁	0	0	.477	0	.477	.176	0	0	0	.176	0
D_2	0	.176	0	.477	0	0	0	0	.954	0	.176
D ₃	0	.176	0	0	0	.176	0	0	0	.176	.176
Q	0	0	0	0	0	.176	0	0	.477	0	₇ .176

	t ₁	t 2	t 3	t 4	t 5	t 6	t 7	t 8	t 9	t 10	t 11
D ₁	0	0	.477	0	.477	.176	0	0	0	.176	0
D ₂	0	.176	0	.477	0	0	0	0	.954	0	.176
D ₃	0	.176	0	0	0	.176	0	0	0	.176	.176
Q	0	0	0	0	0	.176	0	0	.477	0	.176

$$Sim(Q, D_j) = \sum_{i=1}^{l} w_{iq} \times w_{ij}$$

$$Sim(Q, D_1) = (0)(0) + (0)(0) + (0)(0.477) + (0)(0) + (0)(0.477)$$

$$+ (0.176)(0.176) + (0)(0) + (0)(0) + (0.477)(0) + (0)(0.176) + (0.176)(0)$$

$$= (0.176)^2 \approx 0.031$$

$$Sim(Q, D_2) = (0.954)(0.477) + (0.176)^2 \approx 0.486$$

$$Sim(Q, D_3) = (0.176)^2 + (0.176)^2 \approx 0.062$$

Hence, the ranking would be D_2 , D_3 , D_1

- Motivation
 - Attempt to capture the IR problem within a probabilistic framework
- Assumption (Probabilistic Principle)
 - Probability of relevance depends on the query and the document representations only
 - There is a subset of all documents which the user prefers as the answer set for the query q
 - Such an *ideal* answer set is labeled R and should maximize the overall probability of relevance to the user
 - Documents in the set R are predicted to be relevant to the query
 - Documents not in this set are predicted to be non-relevant

 (\overline{R})

• Definition

Using Bayes' rule

P(R), $P(\overline{R})$ are the same all the documents

$$w_{ij} \in \{0,1\}, w_{iq} \in \{0,1\}: \text{ index term weight variables are all binary}$$

$$sim(d_j,q) = \frac{P(R \mid \vec{d}_j)}{P(\overline{R} \mid \vec{d}_j)} = \frac{P(\vec{d}_j \mid R) \times P(R)}{P(\vec{d}_j \mid \overline{R}) \times P(\overline{R})} \sim \frac{P(\vec{d}_j \mid R)}{P(\vec{d}_j \mid \overline{R})}$$

R: Set of documents known to be relevant

 \overline{R} : Set of documents known to be non - relevant

 $P(R \mid \vec{d}_i)$: Probability that the document d_i is relevant to the query q

Bayes' rule:
$$P(a \mid b) = \frac{P(a \cap b)}{P(b)} = \frac{P(b \mid a)P(a)}{P(b)}$$

 $P(d_j \mid R)$: Probability of randomly selecting the document d_j from the set R

P(R): Probability that a document randomly selected from the entire collection is relevant.

Definition (Cont.)

 $sim(d_{j},q) \sim \frac{\left|\prod_{g_{i}(\vec{d}_{j})=1} P(k_{i} \mid R)\right| \times \left|\prod_{g_{i}(\vec{d}_{j})=0} P(\bar{k}_{i} \mid R)\right|}{\left|\prod_{g_{i}(\vec{d}_{j})=1} P(k_{i} \mid \overline{R})\right| \times \left|\prod_{g_{i}(\vec{d}_{j})=0} P(\bar{k}_{i} \mid \overline{R})\right|}$ $\frac{\text{Taking logarithms, ignoring constants,}}{P(k_{i} \mid R) + P(\bar{k}_{i} \mid R) = 1}$

 $P(k_i \mid R) + P(\overline{k_i} \mid R) = 1$

$$sim(d_{j},q) \sim \sum_{i=1}^{t} w_{iq} \times w_{ij} \times \left(\log \frac{P(k_{i} \mid R)}{1 - P(k_{i} \mid R)} + \log \frac{1 - P(k_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R})}\right)$$

 $P(k_i \mid R)$: the probability that the index term k_i is present in a document randomly selected from the set R

 $P(k_i \mid R)$: the probability that the index term k_i is not present in a document randomly selected from the set R

Initial Probability

$$P(k_i \mid R) = 0.5$$

$$P(k_i \mid \overline{R}) = \frac{n_i}{N}$$

 $P(k_i \mid \overline{R}) = \frac{n_i}{N}$ n_i : number of documents which contain the index term k_i

Improving Probability

$$P(k_i \mid R) = \frac{V_i}{V} = \frac{V_i + 0.5}{V + 1} = \frac{V_i + \frac{n_i}{N}}{V + 1}$$

$$P(k_i \mid \overline{R}) = \frac{n_i - V_i}{N - V} = \frac{n_i - V_i + 0.5}{N - V + 1} = \frac{n_i - V_i + \frac{n_i}{N}}{N - V + 1}$$

Adjustment the problems for small values of V and V_i

V: subset of documents initially retrieved

 V_i : subset of V which contain the index term k_i

- Advantage
 - Documents are ranked in decreasing order of their probability of being relevant
- Disadvantage
 - Guess the initial separation of documents into relevant and non-relevant sets
 - Binary weights
 - Does not take into account the frequency with which an index term occurs inside a document
 - Independence assumption for index terms

Brief Comparison of Classic Models

- Boolean Model
 - Weakest classic method
 - Inability to recognize partial matches
- Vector Model
 - Popular retrieval model
- Vector Model vs. Probabilistic Model
 - Croft
 - Probabilistic model provides a better retrieval performance
 - Salton, Buckley
 - Vector model is expected to outperform the probabilistic model with general collections

Example of Probabilistic Model

- Query : q(k₁, k₂)
- 5 documents

	d ₁	d_2	d_3	d_4	d_5
k ₁	1	0	1	1	0
k_2	0	1	0	1	1

Assume d₂ and d₄ are relevant

$$P(k_1 \mid R) = \frac{1}{2}$$
 $P(k_1 \mid \overline{R}) = \frac{2}{3}$ $P(k_2 \mid R) = 1$ $P(k_2 \mid \overline{R}) = \frac{1}{3}$

Example of Probabilistic Model

Q: "gold silver truck"

D1: "Shipment of gold damaged in a fire."

D2: "Delivery of silver arrived in a silver truck."

D3: "Shipment of gold arrived in a truck."

Assume that documents D2 and D3 are relevant to the query

N= number of documents in the collection

R= number of relevant documents for a given query Q

n= number of documents that contain term t

r= number of relevant documents that contain term t

variable	Gold	Silver	Truck
N	3	3	3
R	2	2	2
n	2	1	2
r	1	1	2

Example of Probabilistic Model (Cont.)

Computing Term Relevance Weight

$$tr_{j} = \log(\frac{r+0.5}{R-r+0.5} \div \frac{n-r+0.5}{(N-n)-(R-r)+0.5})$$

$$gold : \log(\frac{1+0.5}{2-1+0.5} \div \frac{2-1+0.5}{3-2-2+1+0.5}) = \log\frac{1}{3} = -0.477$$

$$silver : \log(\frac{1+0.5}{2-1+0.5} \div \frac{1-1+0.5}{3-1-2+1+0.5}) = \log\frac{1}{0.333} = 0.477$$

$$truck : \log(\frac{2+0.5}{2-2+0.5} \div \frac{2-2+0.5}{3-2-2+2+0.5}) = \log\frac{5}{0.333} = 1.176$$

- Similarity Coefficient for each document
 - D1: -0.477, D2: 1.653, D3: 0.699

Review of Probability Theory

Review of Probability Theory

- Try to predict whether or not a baseball team (e.g. LA Dodgers) will win one of its games
 - P(win) = 0.5, P(win | sunny) = 0.75, P(win | chanho) = 0.6
 - P(win | sunny, chanho) = ?
- Let's assume the independence of evidences
 - $P(w \mid s, c) = \alpha$, $P(w \mid s) = \beta$, $P(w \mid c) = \gamma$
- By Bayes' Theorem

$$\alpha = P(w \mid s, c) = \frac{P(w, s, c)}{P(s, c)} = \frac{P(s, c \mid w)P(w)}{P(s, c)}$$

$$\alpha = \frac{P(s, c \mid w)P(w)}{P(s, c)} = \frac{P(s, c \mid w)P(w)}{P(s, c)} = \frac{P(s, c \mid w)P(w)}{P(s, c \mid l)P(l)}$$

$$\frac{\alpha}{1 - \alpha} = \frac{P(s, c \mid w)P(w)}{P(s, c)} \div \frac{P(s, c \mid l)P(l)}{P(s, c)} = \frac{P(s, c \mid w)P(w)}{P(s, c \mid l)P(l)}$$

Review of Probability Theory (Cont.)

Independence assumption

$$\begin{pmatrix} P(s,c \mid w) = P(s \mid w)P(c \mid w) \\ P(s,c \mid l) = P(s \mid l)P(c \mid l) \end{pmatrix}$$

Making substitutions

$$\frac{\alpha}{1-\alpha} = \frac{P(s,c \mid w)P(w)}{P(s,c \mid l)P(l)} = \frac{P(s \mid w)P(c \mid w)P(w)}{P(s \mid l)P(c \mid l)P(l)}$$

$$\beta = P(w \mid s) = \frac{P(s \mid w)P(w)}{P(s)}, \quad \frac{\beta}{1-\beta} = \frac{P(s \mid w)P(w)}{P(s \mid l)P(l)}$$

$$\gamma = P(w \mid c) = \frac{P(c \mid w)P(w)}{P(c)}, \quad \frac{\gamma}{1-\gamma} = \frac{P(c \mid w)P(w)}{P(c \mid l)P(l)}$$

Review of Probability Theory (Cont.)

Making substitutions (Cont.)

$$\frac{\alpha}{1-\alpha} = \frac{P(s \mid w)P(c \mid w)P(w)}{P(s \mid l)P(c \mid l)P(l)}$$

$$= \left(\frac{\beta}{1-\beta} \frac{P(l)}{P(w)}\right) \left(\frac{\gamma}{1-\gamma} \frac{P(l)}{P(w)}\right) \frac{P(w)}{P(l)}$$

$$= \frac{\beta}{1-\beta} \times \frac{\gamma}{1-\gamma} \times \frac{P(l)}{P(w)}$$

$$= \frac{0.75}{0.25} \times \frac{0.6}{0.4} \times \frac{0.5}{0.5} = 4.5$$

•
$$\alpha = \frac{9}{11} = 0.818$$
 The probability of LA Dodgers will win its game on sunny days when Chanho plays