Research in Operating Systems Sparrow

Sparrow: Distributed, Low Latency Scheduling

K. Ousterhout, P. Wendell, M. Zaharia and I. Stoica. *In Proc. of SOSP 2013*

(Some) useful concepts picked up from OS

 Scheduler, preemption, shortest-job first, RPC, gang-scheduling, fair-share scheduling, ...
 (In no particular order)

Jobs and scheduling for data analytics

- Large data analytics clusters
- Running ever shorter and higher-fanout jobs
- What for? Finance, language translation, highly personalize search, ...

Jobs and scheduling for data analytics

- Jobs composed of short tasks
- Produced from frameworks that stripe work across 1³ machines (e.g., Dremel, Spark, ...)
- Targeting task running in ~100ms

Job latencies decreasing rapidly

Scheduling challenges

- Millisecond latency
- Quality placement
- Fault tolerant
- High throughput
- Fixing centralized schedulers is not an option

Sparrow schedules tasks in clusters

- using a decentralized, randomized approach
- support constraints and fair sharing and
- provides response times within 12% of ideal

- Adapts power-of-two-choices to parallel task scheduling, introducing three techniques
 - Batch sampling
 - Late binding
 - Policies and constrains

Per-task sampling

- A direct application of power of two choices
- For each task in a job, the scheduler
 - Randomly selects two workers
 - Probes each worker (a lightweight RPC) for queue length
 - Places task in shortest queue

Per-task Sampling

Per-task sampling

Per-task sampling

- A direct application of power of two choices
- For each task in a job, the scheduler
 - Randomly selects two workers
 - Probes each worker (a lightweight RPC) for queue length
 - Places task in shortest queue
- For comparison
 - Random
 - Omniscient greedy, based on complete information

Better than random, >2x worst than opt

100-task jobs in 10,000-node cluster, exp. task duration

Response time grows with tasks/jobs

70% cluster load

Per-task sampling

Job is done when all tasks are done ...

Batch sampling

Place *m* tasks on the least loaded *d*m* workers

Batch sampling

Per-task and Batch

Batch sampling – better, still 1.92x opt

Late binding

- Sample-based scheduling performs poorly under load
 - Select based on queue length, coarse predictor of wait time
 - Better predictors using estimates of task durations is hard
 - Race condition multiple schedulers picking the same worker

Late binding

Late binding

- Workers put task internal work queue, hold back response
- When task gets to the front, worker replies RPC
- Scheduler assigns job's tasks to first m workers
- ... and sends no-ops to the rest (proactive)

Cost

- Idle while sending RPC a 2% efficiency loss
- Fraction of time idle while requesting tasks

$$(d * RTT) / (t + d * RTT)$$

Mean task service time

Mean network round trip time

Late binding benefits

Handling constrains and policies

- Job constraints, e.g., run in workers with GPU
 - Trivially handled, pick dm candidate from the subset
- Per-task constraints, e.g., run where input is
 - Use per-task sampling, improved with
 - ... sharing information across tasks when possible
 - ... use late-binding

Handling constrains and policies

- Resource allocation policies, under load
 - Strict priorities through multiple queues on workers
 - FIFO, earliest deadline first, shortest job first, class, ...
 - Trade accuracy for simplicity (no global information but low priority jobs can run first)
 - No preemption
 - Weighted fair sharing
 - One queue per user

Sparrow implementation

- Sparrow works for 1+ concurrent frameworks
 - Front end + executor (long-lived processes responsible for executing task w/o startup overhead)
 - Node monitor federates resources usage bet/ co-located frameworks

Sparrow and Spark's native scheduler

Small 100 16-core EC2, 10 tasks/job, 10 schedulers, 80% load (synthetic workload)

TPC-H queries: background

- A common benchmark for analytics workloads;
 representative of ad-hoc queries on business data
- Shark queries compiled into multiple spark stages
- Each stage triggers a scheduling request using submitRequest()
- Task in first stage constrained to machines holding input data
- Stages have different number of tasks, durations and un/constrained queries

Shark: SQL execution engine

Spark: Distributed in-memory analytics framework

Sparrow

TPC-H Queries

100 16-core EC2, 10 tasks/job, 10 schedulers, 80% load

Effect of probe ratio

Too low, can't find lightly loaded machines Too high, pay the cost of increased messaging

Failure impact

Detect failure 100ms Failover 5ms Re-launch queries 15ms

Limitations/future work

- Scheduling policies can they do better than approximate?
- Inter-job constraints (e.g., tasks of job A cannot run with those of B) – hard to do w/o drastic changes
- Gang scheduling no central point where to do it
- Query-level policies easy to extend, FIFO
- •
- Want to try? http://github.com/radlab/sparrow