Project Documentation: Credit Scoring System Development Week-6

Project Overview

The project involves creating a credit scoring system for a financial institution, "Bati Bank," which is partnering with an e-commerce platform to offer a "Buy-Now-Pay-Later" service. The goal is to develop a robust machine-learning pipeline to assess customer creditworthiness, predict the likelihood of default, and deploy a production-ready REST API for real-time risk prediction.

Contributions

Task 1: Understanding Credit Risk

- Researched the concept of credit risk, the Basel II Capital Accord, and the RFMS (Recency, Frequency, Monetary, and Stability) formalism for scoring.
- Identified key parameters that influence credit risk, such as transaction patterns, historical repayment behavior, and fraud detection metrics.

Task 2: Exploratory Data Analysis (EDA)

Data Insights:

- Loaded and analyzed the dataset to understand the structure, missing values, and key variables.
- Generated summary statistics and visualized the distribution of numerical and categorical variables.

• Correlation Analysis:

Investigated relationships between features to identify predictors for default risk.

• Outlier and Missing Data Handling:

- Detected and handled outliers using boxplots.
- Imputed missing data with the median for numerical columns and the mode for categorical columns.

Task 3: Feature Engineering

Aggregate Features:

 Created customer-level aggregate features such as Total Transaction Amount, Average Transaction Amount, Transaction Count, and Standard Deviation of Transaction Amounts.

Extracted Features:

 Extracted temporal features such as Transaction Hour, Transaction Day, Transaction Month, and Transaction Year.

Categorical Encoding:

 Used One-Hot Encoding for nominal variables and Label Encoding for ordinal variables.

Normalization/Standardization:

Scaled numerical features using StandardScaler to ensure consistent ranges.

Weight of Evidence (WoE) Binning:

o Applied WoE encoding to create bins that separate high-risk and low-risk groups.

Task 4: Model Development

Data Splitting:

Split the dataset into training (80%) and testing (20%) sets.

Model Selection:

 Implemented and trained Logistic Regression and Gradient Boosting Machines (GBM).

• Hyperparameter Tuning:

 Conducted hyperparameter optimization using Grid Search to improve model performance.

Model Evaluation:

- Evaluated models using metrics such as Accuracy, Precision, Recall, F1-Score, and ROC-AUC.
- Identified Gradient Boosting as the best-performing model.

Task 5: Model Serving via REST API

• API Development:

- Created a REST API using FastAPI to serve the trained model for real-time predictions.
- Developed endpoints:
 - /status: Health check endpoint for API availability.
 - /predict: Accepts transaction details as JSON input and returns risk predictions.

Deployment:

- Designed the API for deployment on cloud platforms such as AWS or Google Cloud for production use.
- Ensured scalability and security for handling real-time transactions.

Project Implementation Steps

1. Data Preprocessing:

- Cleaned and imputed missing values.
- Scaled numerical features and encoded categorical variables.

2. Feature Engineering:

- Aggregated customer-level features and extracted temporal details from transaction data.
- Applied Weight of Evidence (WoE) for better classification.

3. Model Training:

- Trained two models (Logistic Regression and GBM) and selected the best-performing model based on evaluation metrics.
- Saved the trained model using joblib.

4. REST API Development:

- Developed a production-ready REST API to integrate the trained model with real-time systems.
- Defined preprocessing logic within the API to handle incoming requests.

5. Deployment:

• Prepared the API for deployment on a web server or cloud platform.

Technologies Used

- Languages and Frameworks:
 - Python (pandas, NumPy, scikit-learn, FastAPI)
- Data Visualization:
 - Matplotlib, Seaborn
- Model Development:
 - scikit-learn (Logistic Regression, Gradient Boosting)
- API Development:
 - o FastAPI
- Deployment:
 - Cloud-ready architecture for scalability.

Challenges Addressed

Handling Imbalanced Data:

 Applied techniques like scaling and WoE binning to improve the model's sensitivity to high-risk groups.

• Feature Engineering Complexity:

 Transformed raw transaction data into meaningful customer-level aggregates and time-based features.

Real-Time Prediction:

Built a lightweight REST API for seamless integration with external systems.

Outputs and Deliverables

1. Credit Scoring Model:

Logistic Regression and Gradient Boosting models with tuned hyperparameters.

2. Feature-Engineered Dataset:

o Dataset with aggregated, encoded, and normalized features.

3. REST API:

o Fully functional API endpoints for real-time credit scoring predictions.

4. Documentation:

 Clear project documentation, including implementation steps, challenges, and key insights.

Future Enhancements

Advanced Modeling:

Explore deep learning techniques for complex patterns in transaction data.

• Fraud Detection Integration:

o Incorporate fraud detection capabilities into the credit scoring model.

• Dashboard Integration:

 Develop an interactive dashboard to visualize customer credit scores and risk profiles.