Лабораторная работа №3. Одномерные и многомерные массивы.

Массив в C++ представляет собой именованную область памяти, содержащую конечную последовательность однотипных элементов. Описание одномерного массива имеет следующий формат:

тип имя массива [размерность] = {инициализация};

Для многомерных массивов необходимо задавать каждую размерность в отдельных скобках, например двумерный массив описывается следующим образом:

тип имя_массива [размерность_1] [размерность_2] = {инициализация};

Размерность всегда должна быть целочисленной константой. В общем случае размерность можно не указывать (но пустые скобки обязательны), тогда должна обязательно присутствовать инициализация массива. Компилятор автоматически определит объем памяти необходимый для хранения элементов массива в соответствии с их типом по их фактическому количеству. Элементы массива нумеруются с нуля, а каждый последующий элемент имеет индекс на единицу больший, чем предшествующий.

Обращение к элементам осуществляется по имени массива и указанием индекса. Выход за границы массива компилятором не отслеживается, поэтому при работе с массивами следует проявлять осторожность, особенно при использовании операторов цикла. Неверное задание границ в циклических операторах может привести к неожиданному результату или даже к сбою в работе программы.

При работе с массивами удобно пользоваться указателями (см. лабораторную работу №4), поскольку имя массива компилятор понимает как указатель на его первый элемент.

Задания для выполнения лабораторной работы.

Вариант 1.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. сумму отрицательных элементов массива;
 - 2. произведение элементов массива, расположенных между максимальным и минимальным элементами;
 - 3. упорядочить элементы массива по возрастанию;
- В) Дана целочисленная квадратная матрица. Определить:
 - 1. количество строк, не содержащих ни одного нулевого элемента:
 - 2. максимальное число, встречающееся в заданной матрице более одного раза.

Вариант 2.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. сумму положительных элементов массива;
 - 2. произведение элементов массива, расположенных между максимальным по модулю и минимальным по модулю элементами;
 - 3. упорядочить элементы массива по убыванию.
- В) Дана целочисленная прямоугольная матрица. Определить количество столбцов, не содержащих ни одного нулевого элемента.

Характеристикой строки целочисленной матрицы называется сумма ее положительных четных элементов. Переставляя строки заданной матрицы, расположить их в соответствии с ростом характеристик.

Вариант 3.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. произведение элементов массива с четными номерами;
 - 2. сумму элементов массива, расположенных между первым и последним нулевым элементами;
 - 3. преобразовать массив таким образом, чтобы сначала располагались все положительные элементы, а потом все отрицательные;
- В) Дана целочисленная квадратная матрица. Определить:

- 1. количество столбцов, содержащих хотя бы один нулевой элемент:
- 2. номер строки, в которой находится самая длинная серия одинаковых элементов.

Вариант 4.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. сумму элементов массива с нечетными элементами;
 - 2. сумму элементов массива, расположенных между первым и последним отрицательным элементами:
 - 3. сжать массив, удалив из него элементы, модуль которых не превышает 1. Освободившиеся в конце массива элементы заполнить нулями.
- В) Дана целочисленная квадратная матрица. Определить:
 - 1. произведение элементов в тех строках, которые не содержат отрицательных элементов;
 - 2. максимум среди сумм элементов диагоналей, параллельных главной диагонали матрицы.

Вариант 5.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. максимальный элемент массива;
 - 2. сумму элементов массива, расположенных до последнего положительного элемента;
- 3. сжать массив, удалив из него все элементы, модуль которых находится в интервале [a,b]. Освободившиеся элементы в конце массива заполнить нулями.
- В) Дана целочисленная квадратная матрица. Определить:
 - 1. сумму элементов в тех столбцах, которые не содержат отрицательных элементов;
 - 2. минимум среди сумм модулей элементов диагоналей, параллельных побочной диагонали матрицы.

Вариант 6.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. минимальный элемент массива;
 - 2. сумму элементов массива, расположенных между первым и последним элементами;
- 3. преобразовать массив таким образом, чтобы сначала располагались все элементы равные нулю, а затем все остальные;
- В) Дана целочисленная квадратная матрица. Определить:
 - 1. сумму элементов в тех строках, которые содержат хотя бы один отрицательный элемент;
 - 2. номера строк и столбцов всех седловых точек матрицы.

Матрица A имеет седловую точку A_{ij} , если A_{ij} является минимальным элементом в i-й строке и максимальным в j-м столбце.

Вариант 7.

- А) В одномерном массиве, состоящем из п целых элементов вычислить:
 - 1. номер максимального элемента массива;
- 2. произведение элементов массива, расположенных между первым и вторым отрицательным элементами;
- 3. преобразовать массив так, чтобы в первой половине располагались элементы, стоящие в нечетных позициях, а во второй элементы, стоящие в четных позициях.
- В) Для заданной матрицы размером 8 на 8, найти такие k, что k-я строка матрицы совпадает с k-м столбцом. Найти сумму элементов в тех строках, которые содержит хотя бы один отрицательный элемент.

Вариант 8.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. номер минимального элемента массива;
- 2. сумму элементов массива, расположенных между первым и вторым отрицательным элементами:
- 3. преобразовать массив таким образом, чтобы сначала располагались все элементы, модуль которых не превышает 1, а потом все остальные.

В) Характеристикой столбца целочисленной матрицы называется сумма модулей его отрицательных нечетных элементов. Переставляя столбцы заданной матрицы, расположить их в соответствии с ростом характеристик.

Вариант 9.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. максимальный по модулю элемент;
- 2. сумму элементов массива, расположенных между первым и вторым положительными элементами;
- 3. преобразовать массив таким образом, чтобы элементы равные нулю, располагались после всех.
- B) Соседями элемента A_{ij} в матрице называются элементы A_{kl} с i-1 <= k <= i+1, j-1 <= l <= j+1, (k,l)
- != (i,j). Операция сглаживания матрицы дает новую матрицу того же размера, каждый элемент которой получается как среднее арифметическое имеющихся соседей соответствующего элемента исходной матрицы. Построить результат сглаживания матрицы размером 10 на 10.

Вариант 10.

- А) В одномерном массиве, состоящем из п целых элементов вычислить:
 - 1. минимальный по модулю элемент массива;
 - 2. сумму модулей элементов массива, расположенных после первого элемента, равного нулю;
- 3. преобразовать массив таким образом, чтобы в первой его половине располагались элементы, стоявшие в четных позициях, а во второй половине элементы, стоявшие в нечетных позициях. В) Элемент матрицы называется локальным минимумом, если он строго меньше всех имеющихся у него соседей. Подсчитать количество локальных минимумов заданной матрицы размером 10 на

Вариант 11.

10.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. номер минимального по модулю элемента массива;
 - 2. сумму модулей элементов массива, расположенных после первого отрицательного элемента;
- 3. сжать массив, удалив из него все элементы, величина которых находится в интервале [a,b]. Освободившиеся в конце массива элементы заполнить нулями.
- В) Коэффициенты системы линейных уравнений заданы в виде прямоугольной матрицы. С помощью допустимых преобразований привести матрицу к треугольному виду. Найти количество строк, среднее арифметическое элементов которых меньше заданной величины.

Вариант 12.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. номер максимального по модулю элемента массива;
 - 2. сумму элементов массива, расположенных после первого положительного элемента;
- 3. преобразовать массив таким образом, чтобы сначала располагались элементы, целая часть которых лежит в интервале [a.b], а потом все остальные.
- В) Уплотнить заданную матрицу, удаляя из нее строки и столбцы, заполненные нулями. Найти номер первой из строк, содержащей хотя бы один положительный элемент.

Вариант 13.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. количество элементов, лежащих в диапазоне от А до В;
 - 2. сумму элементов массива, расположенных после максимального элемента;
 - 3. упорядочить элементы массива по убыванию модулей элементов.
- В) Осуществить циклический сдвиг элементов прямоугольной матрицы на п элементов вправо и вниз.

Вариант 14.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. количество элементов массива, больших заданного числа;
 - 2. сумму элементов массива, расположенных после минимального элемента;

- 3. упорядочить массив по возрастанию модулей элементов.
- В) Осуществить циклический сдвиг элементов квадратной матрицы размерности М*N вправо на k элементов таким образом: элементы 1-й строки сдвигаются в последний столбец сверху вниз, из него в последнюю строку справа налево, из нее в первый столбец снизу вверх, из него в первую строку; для остальных элементов аналогично.

Вариант 15.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. количество элементов массива, равных 0;
 - 2. произведение элементов массива, расположенных после максимального по модулю элемента;
- 3. преобразовать массив таким образом, чтобы сначала располагались все отрицательные элементы, а потом все положительные (0 считается положительным числом).
- В) Упорядочить строки целочисленной прямоугольной матрицы по возрастанию элементов в каждой строке.

Найти номер первого из столбцов, не содержащих ни одного отрицательного элемента.

Вариант 16.

- А) В одномерном массиве, состоящем из п вещественных элементов вычислить:
 - 1. количество отрицательных элементов массива;
 - 2. сумму модулей элементов массива, расположенных после минимального по модулю элемента:
- 3. заменить все отрицательные элементы массива их квадратами и упорядочить массив по возрастанию.
- В) Путем перестановки элементов матрицы добиться того, чтобы ее максимальный элемент находился в верхнем левом углу, следующий по величине элемент в позиции (2,2)б следующий в позиции (3,3) и т. д., то есть заполнить главную диагональ матрицы.

Найти номер первой из строк, не содержащей ни одного положительного элемента.