TMA4255 Applied statistics Solution exercise 5

Problem a)

Stat → Basic Statistics → Display Descriptive Statistics :

Descriptive Statistics

Variable Vekt Alder Tilførse Temp. Trommel	N 18 18 18 18 18	Mean 3,000 5,056 4,000 2,000 3,000 4,556	Median 3,000 5,000 4,000 2,000 3,000 4,000	TrMean 3,000 5,000 4,000 2,000 3,000 4,375	StDev 2,114 2,754 2,142 0,840 0,840 2,121	SE Mean 0,498 0,649 0,505 0,198 0,198 0,500
Variable Vekt Alder Tilførse Temp. Trommel Y	Minimum 0,000 1,000 1,000 1,000 2,000 2,000	Maximum 6,000 10,000 7,000 3,000 4,000 10,000	Q1 1,000 2,750 2,000 1,000 2,000 3,000	Q3 5,000 7,250 6,000 3,000 4,000 6,000		

Stat \rightarrow Basic Statistics \rightarrow Correlations:

P-Value

Correlations (Pearson)

Alder	Vekt 0,020 0,937	Alder	Tilførse	Temp	Trommel			
Tilførse	0,052 0,838	-0,189 0,451						
Temp	0,099 0,695	-0,051 0,841	-0,294 0,236					
Trommel	0,033 0,896	0,051 0,841	-0,196 0,435	0,000 1,000				
Y	-0,787 0,000	0,145 0,565	-0,259 0,299	0,363 0,139	-0,066 0,795			
Cell Contents: Correlation								

From the correlation matrix we see that only Corr(Vekt, Y) is significantly different from zero. (The p-value gives the probability of observing the given values or something more extreme, when the null hypethesis is assumed true)

With Graph \rightarrow Matrix we can plot the different variables against each other. Here we can also see that there is very little dependence between the variables, except Y and Vekt. We also see how Trommel and Temperatur are controlled to give zero correlation.

Problem b)

From part a) it seems natural to choose Vekt as an explanatory variable, since Y seems to be independent of the other variables. Stat \rightarrow Regression gves:

```
The regression equation is
Y = 6,92 - 0,789 \text{ Vekt}
Predictor
                                                       Ρ
                  Coef
                              StDev
                                             Т
Constant
                                         12,31
                6,9240
                             0,5623
                                                   0,000
Vekt
               -0,7895
                             0,1546
                                         -5,11
                                                   0,000
S = 1,348
                 R-Sq = 62,0%
                                   R-Sq(adj) = 59,6%
Analysis of Variance
Source
                   DF
                                SS
                            47,368
                                        47,368
                                                    26,07
                                                              0,000
Regression
                    1
                            29,076
Residual Error
                   16
                                         1,817
Total
                   17
                            76,444
Unusual Observations
          Vekt
                         Υ
                                    Fit
                                          StDev Fit
                                                        Residual
                                                                     St Resid
Obs
                    10,000
  8
          0,00
                                  6,924
                                               0,562
                                                           3,076
                                                                          2,51R
                                                                         -2,39R
 12
          0,00
                    4,000
                                  6,924
                                               0,562
                                                           -2,924
```


Residuals Versus the Fitted Values

The Normal plot suggests that the residuals are normally distributed and from the Residuals vs. Fits they seem to be independent. Therefore the assumptions seem reasonable.

Regression Plot

Y = 6,92398 - 0,789474X R-Sq = 62,0 %

The resulting coefficients of the regression are significantly different from zero, and we can conclude that Vekt has an impact on the response Y. The unusual residuals that MINITAB tells us about, are due to the very high variance of the residuals.

Oppgave c)

Confidence interval for the expectation $\mu_{\hat{Y}|x=x_0}$

We use that $\hat{Y} \sim N(\mu_{\hat{Y}}, \sigma_{\hat{Y}}^2)$ where

$$\mu_{\hat{Y}} = E(\hat{Y} \mid x = x_0) = E(\hat{\alpha} + \hat{\beta}x_0) = \alpha + \beta x_0 = \mu_Y$$

$$\sigma_{\hat{Y}}^2 = Var(\hat{\alpha} + \hat{\beta}x_0) = Var(\overline{Y} + \hat{\beta}(x_0 - \overline{x})) = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right].$$

 σ^2 is unknown, so we estimate it by $S^2 = \frac{1}{n-2} \sum_i (Y_i - \overline{Y})^2$.

Therefore we can use the T-statistic

$$T = \frac{\hat{Y}_0 - \mu_{\hat{y}}}{S\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}} \sim t_{n-2}$$

and the confidence inerval for $\mu_{\hat{Y}|x=x_0}$ becomes $\left[\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot S \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}\right]$

The prediction interval for a new observation $Y_{|x_0}^*$:

We use that $\hat{Y}_0 - Y_0^* \sim N(\mu_{\hat{Y}_0 - Y_0^*}, \sigma_{\hat{Y}_0 - Y_0^*}^2)$, wher

$$\mu_{\hat{Y}_0 - Y_0^*} = E[\hat{Y}_0 - Y_0^*] = \mu_{\hat{Y}_0} - \mu_{Y_0^*} = 0$$

$$\sigma_{\hat{Y}_0 - Y_0^*}^2 = \dots = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right)$$

The test statistic is

$$T = \frac{\hat{Y}_0 - Y_0^*}{S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}} \sim t_{n-2}$$

and the predition interval for $Y_{|x_0|}^*$ becomes

$$\left[\hat{y}_0 \pm t_{\alpha/2, n-2} \cdot S \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}\right]$$

Both intervals are minimal when $x_0 = \overline{x}$

Predition equation plotted with confidence interval in MINITAB

Because the confidence interval only says something about the expectation of the observations this interval is quite narrow. The prediction interval, however is quite wide, and this is du to the big estimated variance.

For Vekt = 1,2,3 we get the following prediction intervals

Predic	ted Val	ues						
Vekt	Fit	StDev Fit		95,0%	CI		95,0%	PI
1	6,135	0,443	(5,195;	7,074)	(3,126;	9,143)
3	4,556	0,318	(3,882;	5,229)	(1,619;	7,492)
5	2,977	0,443	(2,037;	3,917)	(-0,032;	5,985)

Oppgave d)

When we perform the regression we choose to save X'X inverse under storage. That way we can print the covariance matrix by clicking Data->Display Data

Regression Analysis

R denotes an observation with a large standardized residual

Data Display

Matrix XPXI1

-0,01773	-0,05553	-0,11667	-0 , 25899	-0,29761
0,01345	-0,00047	-0,00146	-0,00454	-0,00177
-0,00047	0,00817	0,00238	0,00326	-0,00013
-0,00146	0,00238	0,01548	0,01237	0,00746
-0,00454	0,00326	0,01237	0,09429	0,00602
-0,00177	-0,00013	0,00746	0,00602	0,08724
	0,01345 -0,00047 -0,00146 -0,00454	0,01345 -0,00047 -0,00047 0,00817 -0,00146 0,00238 -0,00454 0,00326	0,01345 -0,00047 -0,00146 -0,00047 0,00817 0,00238 -0,00146 0,00238 0,01548 -0,00454 0,00326 0,01237	0,01345 -0,00047 -0,00146 -0,00454 -0,00047 0,00817 0,00238 0,00326 -0,00146 0,00238 0,01548 0,01237 -0,00454 0,00326 0,01237 0,09429

Comment:

We see that the variance of the estimators of the coefficients is not particularly high, and this suggests that coefficients with a high p-value are actually very close to zero.

Problem e)

 $Stat \rightarrow Regression \rightarrow Best Subsets$

The best alternative variable selections are listed with to alternatives for each number of variables, with different measures of how good they are.

R-Sq:
Adj. R-Sq:
C-p:

Best Subsets Regression

Response is Y

							Т		
							i		Τ
							1		r
						Α	f		0
					V	1	Ø	Т	m
					е	d	r	е	m
		Adj.			k	е	s	m	е
Vars	R-Sq	R-Sq	С-р	S	t	r	е	р	1
1	62,0	59,6	17,9	1,3481	Χ				
1	13,2	7,8	58,7	2,0366				Χ	
2	81,6	79,2	3,4	0,96729	Χ			Χ	
2	66,7	62,3	15,9	1,3020	Χ		Χ		
3	85,1	81,9	2,5	0,90282	Χ	Χ		Χ	
3	82,4	78,7	4,7	0,97944	Χ		Χ	Χ	
4	85,3	80,8	4,3	0,92907	Χ	Χ	Χ	Χ	
4	85,3	80,8	4,3	0,92969	Χ	Χ		Χ	Χ
5	85,7	79,7	6,0	0,95538	Χ	Χ	Χ	Χ	Χ

We see that the model with Vekt and Temp get a high score in all the tests, and at the same time it contains a small number of variables. The improvement from having only one variable is also big, while the improvement of adding a third is small.

Oppgave f)

We look at the best subsets as in part e):

Best Subsets Regression

Response is Y

```
Τ
                                     1
                                   Αf
                                 V l ø T m
                                           V V V
                                 edrem V m m m
            Adj.
                                 k e s m e m T T T
Vars
    R-Sq
                 С-р
                                 treplAier
            59,6
                  48,2
                         1,3481
      55,6
            52,8
                        1,4571
  1
                  58,7
                                                Χ
            85,8
  2
                       0,79849
      87,5
                  8,5
                                       Χ
                                              Χ
                       0,96729
      81,6
            79,2
                  18,0
                                       Χ
                                 Χ
```

```
7,6
                                0,76602
3
     89,3
              87,0
                                                Χ
                                                     Χ
                                                           Χ
3
     88,2
              85,6
                         9,3
                                0,80352
                                                Χ
                                                     Χ
                                                                Χ
4
     93,3
              91,2
                         3,0
                                0,62997
                                                   X X
                                                             Χ
                                              Χ
     92,5
              90,1
                         4,3
                                0,66591
                                                Χ
                                                     Χ
                                                           Χ
                                                                Χ
     94,2
              91,8
                         3,5
                                0,60832
                                                   X X
                                                             ХХ
5
     94,1
              91,6
                         3,7
                                0,61451
                                              X \quad X \quad X \quad X
                                                             Χ
6
              91,9
                                0,60468
     94,7
                                              X \quad X \quad X \quad X
                                                             X X
                         4,6
6
     94,5
              91,6
                                0,61579
                                                           X X X
                         4,9
                                              Χ
                                                  ХХ
7
     94,9
              91,4
                                0,62267
                                             X X X X
                         6,3
                                                             X \quad X \quad X
7
     94,8
              91,2
                         6,4
                                0,62781
                                             X \quad X \quad X \quad X
                                                           X X X
8
     95,1
              90,7
                                0,64830
                                             X X X X X
                                                             X X X
                         8,1
8
     95,0
              90,6
                        8,2
                                0,65113
                                              X X X X
                                                           X X X X
     95,1
              89,6
                       10,0
                                0,68362
                                              X \ X \ X \ X \ X \ X \ X \ X \ X
```

We see that multiplying Vekt and Temp, catches more of the variation. Therefore Temp and Vekt*Temp seems to be the two variables that give the best model. Here we also see that little is gained by adding more variables, even though the 4- variable model suggested in the backward regression gives a good result. The model suggested by the forward regression is not quite as good.

Regression with the variables Vekt*Temp and Temp gives:

Regression Analysis

```
The regression equation is
Y = 2,20 + 2,39 \text{ Temp} - 0,392 \text{ VmTe}
Predictor
                   Coef
                               StDev
                                                Т
                                                          Р
                                             4,39
Constant
                 2,1996
                              0,5010
                                                      0,001
                              0,2782
                                             8,58
Temp
                 2,3864
                                                      0,000
VmTe
              -0,39193
                             0,04153
                                            -9,44
                                                      0,000
S = 0,7985
                  R-Sq = 87,5%
                                     R-Sq(adj) = 85,8%
Analysis of Variance
Source
                    DF
                                 SS
                                               MS
                                                           F
                                                                      Ρ
Regression
                     2
                             66,881
                                           33,440
                                                       52,45
                                                                 0,000
Residual Error
                    15
                              9,564
                                            0,638
                    17
                             76,444
Total
```

The residual plots show that the assumptions are correct

Residuals Versus the Fitted Values

(response is Y) 3 2 1 0 -1 2 3 4 5 6 7 8 9 10 Fitted Value

Normal Probability Plot for RESI3

