9.10. PROBLEMS 371

Problem 9.10. Prove that for any real or complex square matrix A, we have

$$||A||_2^2 \le ||A||_1 ||A||_{\infty}$$

where the above norms are operator norms.

Hint. Use Proposition 9.10 (among other things, it shows that $||A||_1 = ||A^{\top}||_{\infty}$).

Problem 9.11. Show that the map $A \mapsto \rho(A)$ (where $\rho(A)$ is the spectral radius of A) is neither a norm nor a matrix norm. In particular, find two 2×2 matrices A and B such that

$$\rho(A+B) > \rho(A) + \rho(B) = 0$$
 and $\rho(AB) > \rho(A)\rho(B) = 0$.

Problem 9.12. Define the map $A \mapsto M(A)$ (defined on $n \times n$ real or complex $n \times n$ matrices) by

$$M(A) = \max\{|a_{ij}| \mid 1 \le i, j \le n\}.$$

(1) Prove that

$$M(AB) \le nM(A)M(B)$$

for all $n \times n$ matrices A and B.

(2) Give a counter-example of the inequality

$$M(AB) \le M(A)M(B)$$
.

(3) Prove that the map $A \mapsto ||A||_M$ given by

$$||A||_M = nM(A) = n \max\{|a_{ij}| \mid 1 \le i, j \le n\}$$

is a matrix norm.

Problem 9.13. Let S be a real symmetric positive definite matrix.

- (1) Use the Cholesky factorization to prove that there is some upper-triangular matrix C, unique if its diagonal elements are strictly positive, such that $S = C^{\top}C$.
 - (2) For any $x \in \mathbb{R}^n$, define

$$||x||_S = (x^\top S x)^{1/2}.$$

Prove that

$$||x||_S = ||Cx||_2,$$

and that the map $x \mapsto ||x||_S$ is a norm.

Problem 9.14. Let A be a real 2×2 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$