Le traitement du langage naturel par transformers illustré par un exemple pour la classification de texte

Cerisara Nathan, MPI 27 mai 2023

Sommaire

- Architecture Transformer
 - Vectorisation du texte
 - La partie Encodeur de l'architecture
 - Les matrices d'Attention
 - Le réseau Feed Forward
- Application personnelle
 - Objectif / Rapport à la ville
 - Le modèle BERT
 - La structure du réseau de neurone utilisée
 - Les données et l'apprentissage
 - Les résultats
- Annexes

L'architecture Transformer

Schéma de l'architecture dans le cas de la génération :

Vectorisation du texte : Tokenisation du texte

```
Tokenizer (bert-base-uncased)
Ex1:
 SENTENCE: "Neural Networks are so cool!"
 TOKFNS .
 [101, 15756, 6125, 2024, 2061, 4658, 999, 102, 0, \dots, 0]
 [CLS] "neural" "networks" "are" "so" "cool" "!" [SEP]
Ex2:
 SENTENCE: "Bonjour le monde!"
 TOKFNS .
 [101, 14753, 23099, 2099, 3393, 23117, 999, 102, 0, \dots, 0]
 [CLS] "bon" "##jou" "##r" "le" "monde" "!" [SEP]
```

Vectorisation du texte : Embeddings & Positional Encoding

Positional Encoding

Token Embedding

$$\begin{aligned} p_k &= (s_0, c_1, \dots, s_{2i}, c_{2i+1}, \dots, s_N) \\ s_{2i} &= \sin\left(k \cdot 10000^{-\frac{2i}{d_E}}\right) \\ c_{2i+1} &= \cos\left(k \cdot 10000^{-\frac{2i+1}{d_E}}\right) \end{aligned}$$

$$t_k \longrightarrow \underbrace{\left(e_{k,0},\ldots,e_{k,d_E}\right)}_{\text{dimension } d_E}$$

La partie Encodeur

Schéma d'un block de la partie Encodeur de l'architecture Transformer :

Matrice d'attention

Le réseau Feed Forward

Couche linéaire : $X \mapsto X \cdot W^{\top} + B$

Application Personnelle : Objectifs & Rapport à la ville

- Objectif:
 - Classification de texte
 - Sentiment : Négatif ←→ Positif
- Rapport à la ville :
 - Analyser les sentiments des habitants sur différents sujets

Le modèle BERT

- Architecture Transformer
- Plusieurs tailles de BERT (base, large, ...)
- ullet BERT base : 12 imes blocks encoder ightarrow 112M paramètres
- BooksCorpus (800M words) and English Wikipedia (2,500M words)
- Publié vers fin 2018 par des chercheurs de Google

La structure du réseau de neurone utilisée

Les données et l'apprentissage

- Données : Standford Sentiment Dataset
- Train: 8544, Test: 2210
- Temps d'entraînement : pprox 15 min
- Algorithme d'apprentissage : Adam optimizer (extension de la descente de gradient stochastique)
- Fonction de Loss : MinSquaredError

Les résultats

Annexes

Ce que l'on a vu :

- Architecture Transformer
 - Le block d'encodeur
 - Les matrices d'attention
 - Les réseaux Feed
 Forward
- Application Personnelle

Annexes / Ouvertures :

- Détails du code python
- Adam optimizer
- La fonction de loss
- La Normalisation par couche (LayerNorm)
- La partie décodeur
- Comparaison avec le modèle GPT
- Le théorème d'approximation universel
- Bibliographie

Annexes: Code python

```
import torch.nn as nn
class Net(nn. Module):
    def init (self, dim in, dim out):
        super(). init ()
        self.layer = nn.Linear(dim in, dim out)
    def forward (self, \times):
        return self. layer(x)
```

Annexes: Adam Optimizer

Annexes: Fonction de loss

Annexes: LayerNormalization

Annexes : Partie décodeur de l'architecture transformer

Annexes : Comparaison avec le modèle GPT

Annexes : Le théorème d'approximation universel

Enoncé: Les transformateurs sont des approximateurs universels des fonctions continues de séquence à séquence sur un domaine compact.

Preuve:

Annexes: Bibliographie

- Les différents papiers
- "ARE TRANSFORMERS UNIVERSAL APPROXIMATORS OF SEQUENCE-TO-SEQUENCE FUNCTIONS?", Google Research 2020