Lösungsstrategien für NP-schwere Probleme Blatt 6

Jakob Rieck 6423721 Konstantin Kobs 6414943 Thomas Maier 6319878

Tom Petersen 6359640

Abgabe zum 23.05.16

Aufgabe 1

a) Ein Beispiel, an dem leicht zu sehen ist, dass es sich bei dem beschriebenen Algorithmus um keinen 2-Approximationsalgorithmus handelt, ist das folgende:

Es seien $A = \{a_1, a_2\}$ mit $a_1 = 1, a_2 = 3$ und B = 3. Offensichtlich ist die optimale Lösung $S = \{a_2\}$ mit der totalen Summe 3. Der Algorithmus in der vorgegebenen Form würde jedoch im ersten Schritt a_1 zu S hinzufügen und dieses - da a_2 nicht mehr hinzugenommen werden darf - als Lösung zurückliefern.

Für einen 2-Approximationsalgorithmus müsste jedoch $\frac{L^*}{L} \leq 2$ gelten (da es sich um ein Maximierungsproblem handelt). Hier ergibt sich jedoch $\frac{L^*}{L} = \frac{3}{1} > 2$. Damit handelt es sich bei dem Algorithmus um keinen 2-Approximationsalgorithmus.

b) Der Algorithmus sortiert im ersten Schritt die Menge A der Größe nach absteigend (Laufzeit in der Praxis $\mathcal{O}(n \log n)$). Anschließend wird der Algorithmus aus Teilaufgabe a) auf die sortierte Folge angewendet (Laufzeit $\mathcal{O}(n)$).

Im Folgenden soll nun gezeigt werden, dass es sich bei dem Verfahren um einen 2-Approximationsalgorithmus handelt.

Anfangselemente der sortierten Folge für die $a_i > B$ gilt, können vernachlässigt werden, da sie in keinem Fall in der gesuchten Menge S auftreten können.

Betrachtet wird nun das erste zu S hinzugenommene Element a_b . Falls $a_b \geq \frac{B}{2}$ gilt, so handelt es sich auf jeden Fall um einen 2-Approximationsalgorithmus, da $\frac{L^*}{L} = \frac{B}{L} \leq \frac{B}{\frac{B}{2}} = 2$ (B ist für das betrachtete Problem der Wert einer optimalen Lösung).

Anderenfalls gilt $a_b < \frac{B}{2}$. Dann kann in der Folge kein a_j mit $\frac{B}{2} < a_j \leq B$ existieren, da es ansonsten bereits vorher in S aufgenommen worden wäre. Anschließend können nun weitere Elemente a_k in S aufgenommen werden, wegen $a_k \leq a_b < \frac{B}{2}$. Wenn T irgendwann den Wert $\frac{B}{2}$ überschreitet, so liegt wegen $\frac{L^*}{L} = \frac{B}{L} \leq \frac{B}{2} = 2$ ein 2-Approximationsalgorithmus vor. Findet diese Überschreitung nicht statt, so können alle Elemente aus A in S aufgenommen werden und die gefundene Lösung ist sogar eine optimale. Insgesamt handelt es sich bei dem Verfahren also um einen 2-Approxima-

Insgesamt handelt es sich bei dem Verfahren also um einen 2-Approximationsalgorithmus.

Aufgabe 2