Data Structures and Algorithms – (COMP SCI 2C03) Winter 2021 Tutorial - 6

Feb 22, 2021

- 1. Suppose we wish to search a linked list of length n, where each element contains a key k along with a hash value h(k). Each key is a long character string. How might we take advantage of the hash values when searching the list for an element with a given key?
- 2. Which of the following scenarios leads to expected linear running time for a random search hit in a linear-probing hash table?
 - a. All keys hash to the same index.
 - b. All keys hash to different indices.
 - c. All keys hash to an even-numbered index.
 - d. All keys hash to different even-numbered indices.
- 3. Consider inserting the keys

into a hash table of length m = 11 using open addressing with the auxiliary hash function h'(k) = k. Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$ and $c_2 = 3$, and using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m-1))$.

Answer:

• Linear probing: See Table 1 for the answer. Here is the explanation for it. The hash function for linear probing discussed

in class is $h(k,i) = (h'(k) + i) \mod m = (k+i) \mod 11$, for $i = 0, 1, \dots, 10$. Based on it the keys in the given sequence would be inserted as follows:

- Key 10 First slot probed is $h(k,0) = (10+0) \mod 11 = 10$. Since it is empty, key 10 is inserted in it.
- Key 22 First slot probed is $h(22,0) = (22+0) \mod 11 = 0$. Since it is empty, key 22 is inserted in it.
- Key 31 First slot probed is $h(31,0) = (31+0) \mod 11 = 9$. Since it is empty, key 31 is inserted in it.
- Key 4 First slot probed is $h(4,0) = (4+0) \mod 11 = 4$. Since it is empty, key 4 is inserted in it.
- Key 15 First slot probed is $h(15,0) = (15+0) \mod 11 = 4$. However since slot 4 is already filled, we fill the key 15 in the next available slot; that is, $h(15+1) \mod 11 = 5$.
- Key 28 First slot probed is $h(28,0) = (28+0) \mod 11 = 6$. Since it is empty, key 28 is inserted in it.
- Key 17 First slot probed is $h(17,0) = (17+0) \mod 11 = 6$, However since slot 6 is already filled, we fill the key 17 in the next available slot; that is, $h(17+1) \mod 11 = 7$.
- Key 88 First slot probed is $h(88,0) = (88+0) \mod 11 = 0$. However since slot 0 is already filled, we fill the key 88 in the next available slot; that is, $h(88+1) \mod 11 = 1$.
- Key 59 First slot probed is $h(59,0) = (59+0) \mod 11 = 4$. However since slot 4 is already filled, we check the next empty slot available at $h(59+4) \mod 11 = 8$.
- Quadratic probing with $c_1 = 1$ and $c_2 = 3$: See Table 2 for the answer. Here is the explanation for it. The hash function for

22 88	4 15	28 17	59	31	10
---------	------	-------	----	----	----

Table 1: Solution for Q3 Linear probing

quadratic probing discussed in class was $h(k,i) = (h'(k) + c_1 i + c_2 i^2) \mod m = (k+i+3i^2) \mod 11$, for i = 0, 1, ..., 10. Based on it the keys in the given sequence would be inserted as follows:

- Key 10 First slot probed is $h(k, 0) = (10+0) \mod 11 = 10$. Since it is empty, key 10 is inserted in it.
- Key 22 First slot probed is $h(22,0) = (22+0) \mod 11 = 0$. Since it is empty, key 22 is inserted in it.
- Key 31 First slot probed is $h(31,0) = (31+0) \mod 11 = 9$. Since it is empty, key 31 is inserted in it.
- Key 4 First slot probed is $h(4,0) = (4+0) \mod 11 = 4$. Since it is empty, key 4 is inserted in it.
- Key 15 First slot probed is $h(15,0) = (15+0) \mod 11 = 4$. However since slot 4 is already filled, we fill the key 15 in the next available slot; that is, $h(15,1) = (15+1+3) \mod 11 = 8$.
- Key 28 First slot probed is $h(28,0) = (28+0) \mod 11 = 6$. Since it is empty, key 28 is inserted in it.
- Key 17 First slot probed is $h(17,0) = (17+0) \mod 11 = 6$, However since slot 6 is already filled, we fill the key 17 in the next available slot; that is, h(17,3) = h(17+3+27) $\mod 11 = 3$.
- Key 88 First slot probed is $h(88,0) = (88+0) \mod 11 = 0$. However since slot 0 is already filled, we fill the key 88 in the next available slot; that is, $h(88,8) = (88+8+192) \mod 11 = 2$.

22	88	17	4	28	59	15	31	10

Table 2: Solution for Q3 Quadratic probing

- Key 59 First slot probed is $h(59,0) = (59+0) \mod 11 = 4$. However since slot 4 is already filled, we check the next empty slot available at $h(59,2) = (59+2+12) \mod 11 = 7$.
- Double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m-1))$. See Table 3 for the answer. Here is the explanation for it. The hash function for double hashing discussed in class was $h(k, i) = (h_1(k) + ih_2(k)) \mod m = (k + i(1 + k \mod 10)) \mod 11$, for $i = 0, 1, \ldots, 10$. Based on it the keys in the given sequence would be inserted as follows:
 - Key 10 First slot probed is $h(k,0) = (10+0) \mod 11 = 10$. Since it is empty, key 10 is inserted in it.
 - Key 22 First slot probed is $h(22,0) = (22+0) \mod 11 = 0$. Since it is empty, key 22 is inserted in it.
 - Key 31 First slot probed is $h(31,0) = (31+0) \mod 11 = 9$. Since it is empty, key 31 is inserted in it.
 - Key 4 First slot probed is $h(4,0) = (4+0) \mod 11 = 4$. Since it is empty, key 4 is inserted in it.
 - Key 15 First slot probed is $h(15,0) = (15+0) \mod 11 = 4$. However since slot 4 is already filled, we fill the key 15 in the next available slot; that is,

$$h(15,2) = (15 + 2 * (1 + (15 \mod 10))) \mod 11 = 5.$$

- Key 28 First slot probed is $h(28,0) = (28+0) \mod 11 = 6$. Since it is empty, key 28 is inserted in it.
- Key 17 First slot probed is $h(17,0) = (17+0) \mod 11 = 6$, However since slot 6 is already filled, we fill the key 17 in the

22	59	17	4	15	28	88	31	10
				l		l		

Table 3: Solution for Q3 Double hashing

next available slot; that is,

$$h(17,1) = (17+1*(1+(17 \mod 10))) \mod 11 = 3.$$

- Key 88 - First slot probed is $h(88,0) = (88+0) \mod 11 = 0$. However since slot 0 is already filled, we fill the key 88 in the next available slot; that is,

$$h(88, 2) = (88 + 2(1 + (88 \mod 10))) \mod 11 = 7.$$

- Key 59 First slot probed is $h(59,0) = (59+0) \mod 11 = 4$. However since slot 4 is already filled, we check the next empty slot available at $h(59,2) = (59+2*(1+(59 \mod 10))) \mod 11 = 2$.
- 4. What does the BFS tree tell us about the distance from v to w when neither is at the root?
- 5. Suppose you use a stack instead of a queue when running breadth-first search. Does it still compute shortest paths?
- 6. Draw the output tree for the graph given in Figure 1 when
 - DFS is called on the source vertex 0.
 - BFS is called on the source vertex 0.

Figure 1: Question 6

7. True or false: The reverse postorder of a graph's reverse is the same as the postorder of the graph.

- 8. Let G be the graph shown in Figure reffig:tsfig.
 - a. What is the preorder vertex ordering of G.
 - b. What is the postorder vertex ordering of G.
 - c. What is the reverse postorder vertex ordering of G.
 - d. What is the topological sort of G.

Figure 2: Question 8

9. What are the strong components of a DAG? What happens if you run Kosaraju's algorithm on a DAG?