

For Question Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AIZN-X609B

Product: Mobile Phone

Model No.: X609B

Additional Model No.: N/A

Trade Mark: Infinix

Report No.: FCC18080068A-Wi-Fi

Issued Date: Oct. 16, 2018

Issued for:

INFINIX MOBILITY LIMITED RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG

Issued By:

World Standardization Certification & Testing Group Co., Ltd.

Building A-B, Baoshi Science & Technology Park, Baoshi Road, additional and additional additional and additional additional additional and additional a

Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group Co., Ltd. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

W5E7

TESTING
NVLAP LAB CODE 600142-0

Table of Contents

Please Contact with WSCT www.wsct-cert.com

	1. GENERAL INFORMATION WSET WSET	3	AWSET [®]
	1.1.GENERAL DESCRIPTION OF EUT	4	
X	1.2. FACILITIES AND ACCREDITATIONS	5	
4	2. TEST DESCRIPTION WS CT	67	
WSLT	2. TEST DESCRIPTION 2.1 MEASUREMENT UNCERTAINTY	6	
	2.2 DESCRIPTION OF TEST MODES	7	
	2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8	
	2.4 CONFIGURATION OF SYSTEM UNDER TEST	8	Marie
	2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	8	
	3. SUMMARY OF TEST RESULTS	9	
	3. SOMIMART OF TEST RESOLTS		
WSIT	4. MEASUREMENT INSTRUMENTS	10	
	5. EMC EMISSION TEST	11	
	5.1 CONDUCTED EMISSION MEASUREMENT	11	X
	5.2 RADIATED EMISSION MEASUREMENT	15	
	6. ANTENNA APPLICATION WSET WSET	28	AWSET®
\ /		\ /	
X	7. 6DB BANDWIDTH MEASUREMENT	29	
	7.1 TEST SETUP	29	
WSET"	7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT W5 7	29	
	7.3 TEST PROCEDURE 7.4 TEST RESULT	29 29	
	8. MAXIMUM CONDUCTED OUTPUT POWER	29 37	X
	August Au		August 1
	9. POWER SPECTRAL DENSITY MEASUREMENT	39	AWSLI
	9.1 TEST SETUP	39	
	9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	39	
WELT	9.3 TEST PROCEDURE 9.4 TEST RESULT W5CT W5CT	39 40	
	311 1231 N23321	40 -	
	10. OUT OF BAND MEASUREMENT	47	\times
	10.1 TEST SETUP FOR BAND EDGE	47	
	10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT	47	WSET"
\ /	10.3 TEST PROCEDURE	47	
X	10.4 TEST RESULT	47	

For Question,
Please Contact with WSCT

1. GENERAL INFORMATION

-		
1	Product:	Mobile phone
	Model No.:	X609B
	Additional /	N/A WSET WSET
4	Model:	N/A
	Applicant:	INFINIX MOBILITY LIMITED
	Address:	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
	Manufacturer:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
	Address:	1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C
	Data of receipt	Sep. 26, 2018
	Date of Test:	Sep. 26, 2018 to Oct. 15, 2018
	Applicable Standards:	FCC Rules Part15 Subpart C.

The above equipment has been tested by World Standardization Certification & Testing Group Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

	SET DOLL WS	CT AWS			
Tested By:	PuShixi	Date:	Oct. 16, 2018		
	(Pu Shixi)				
	WESTER		WHILE	certification	
Check By:	Qin Shuiguan	Date: 0	ct 16, 20/8	ST GE	
	(Qin Shuiquan)			B WSGT	1
	Wanfford bird	AVE	.0	000000000000000000000000000000000000000	
Approved By: _		Date:	ct. 16, 2018	OHOM PINO	
	(Wang Fengbing)		X	*	
Anna a					

WSET GRAND

世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No: FCC18080068A-Wi-Fi

Page 3 of 59

Member of the WSCT INC

For Question, Please Contact with WSCT

1.1.GENERAL DESCRIPTION OF EUT

Equipment Type: Mobile Phone Test Model: X609B Additional Model: N/A Trade Mark Infinix Applicant: INFINIX MOBILITY LIMITED Address: RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG Manufacturer: SHENZHEN TECNO TECHNOLOGY CO.,LTD. 1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO 2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C V2.0 Software version: V609B-H8025C-GO-180911V46 Extreme Temp. Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Output: DC 5V==1.2A Operating Frequency 2412-2462MHz Channels 11 Channel Spacing 5MHz Modulation Type CK for IEEE 802.11b OFDM for IEEE 802.11b OFDM for IEEE 802.11p Integral Antenna Antenna gain: 0.5dBi Deviation None	X	Please Contact with www.wsct-cert.co
Additional Model: Trade Mark Infinix Applicant: INFINIX MOBILITY LIMITED Address: RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG Manufacturer: SHENZHEN TECNO TECHNOLOGY CO.,LTD. 1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C Hardware Version: V2.0 Software version: K609B-H8025C-GO-180911V46 Extreme Temp. Tolerance: Li-Polymer Battery : BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3400mAh/12.92Wh Imited Charge Voltage: 4.35V Adapter Information: Output: DC 5V1.2A Operating Frequency Channels 11 Channel Spacing 5MHz Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi	Equipment Type:	Mobile Phone
Model: N/A Trade Mark Infinix Applicant: INFINIX MOBILITY LIMITED Address: RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG Manufacturer: SHENZHEN TECNO TECHNOLOGY CO.,LTD. 1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C Hardware Version: V2.0 Software Version: X609B-H8025C-GO-180911V46 Extreme Temp. Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Output: DC 5V1.2A Operating Frequency Channels 11 Channel Spacing 5MHz Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi	Test Model:	X609B
Applicant: INFINIX MOBILITY LIMITED Address: RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG Manufacturer: SHENZHEN TECNO TECHNOLOGY CO.,LTD. 1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C Hardware version: V2.0 Software version: X609B-H8025C-GO-180911V46 Extreme Temp10°C to +65°C Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Input: AC 100-240V 50/60Hz 200mA Output: DC 5V-=-1.2A Operating Frequency 2412-2462MHz Channels 11 Channel Spacing 5MHz Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi		
Address: RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG Manufacturer: SHENZHEN TECNO TECHNOLOGY CO.,LTD. 1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C Hardware version: Software version: Extreme Temp. Tolerance: Li-Polymer Battery : BL-34BX Voltage: 3.8V Rated Capacity: 3500mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Operating Frequency Channels 11 Channel Spacing 5MHz Modulation Type: Integral Antenna Antenna gain: 0.5dBi	Trade Mark	Infinix W54
Manufacturer: SHENZHEN TECNO TECHNOLOGY CO.,LTD. Address: J/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C Hardware version: X609B-H8025C-GO-180911V46 Extreme Temp. Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Output: DC 5V1.2A Operating Frequency 2412-2462MHz Channel Spacing 5MHz Modulation Type CK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna gain: 0.5dBi	Applicant:	INFINIX MOBILITY LIMITED
Address: 1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C Hardware version: V2.0 Software version: X609B-H8025C-GO-180911V46 Extreme Temp. Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Output: DC 5V1.2A Operating Frequency 2412-2462MHz Channel Spacing 5MHz Modulation Type: Integral Antenna Antenna gain: 0.5dBi	Address:	CITY 47 CANTON DD TOT KINI HONG KONG
Address: SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C Hardware version: V2.0 Software version: X609B-H8025C-GO-180911V46 Extreme Temp. Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Output: DC 5V1.2A Operating Frequency 2412-2462MHz Channels 11 Channel Spacing 5MHz Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi	Manufacturer:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
version: Software version: X609B-H8025C-GO-180911V46 Extreme Temp. Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Adapter Information: Operating Frequency Channels 11 Channel Spacing Modulation Type Antenna Type: Integral Antenna Antenna gain: V2.0 X609B-H8025C-GO-180911V46 X609B-H8025C-GO-18091V40 X600B-H8025C-GO-18091V4 X600B-H8025C-GO-18	Address:	SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG
version: Extreme Temp. Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Operating Frequency Channels 11 Channel Spacing 5MHz Modulation Type Modulation Type: Antenna gain: X609B-H8025C-GO-180911V46 Linver Go-180911V46 Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter: CU-52JT Input: AC 100-240V 50/60Hz 200mA Output: DC 5V1.2A Operating Frequency CCK for IEEE 802.11b OFDM for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna gain: O.5dBi	version:	V2.0
Tolerance: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Operating Frequency Channels 11 Channel Spacing Modulation Type Modulation Type Antenna Type: Integral Antenna Antenna gain: Li-Polymer Battery: BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter: CU-52JT Input: AC 100-240V 50/60Hz 200mA Output: DC 5V1.2A Operating Frequency CCK for IEEE 802.11b OFDM for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna gain: O.5dBi		X609B-H8025C-GO-180911V46
Battery information: Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Information: Operating Frequency Channels 11 Channel Spacing Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Chapacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V Adapter Input: AC 100-240V 50/60Hz 200mA Output: DC 5V1.2A Operating Frequency C412-2462MHz CCK for IEEE 802.11b OFDM for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna		-10 C 10 +65 C
Input: AC 100-240V 50/60Hz 200mA Output: DC 5V1.2A Operating Frequency Channels 11 Channel Spacing 5MHz Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi		Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh
Channels Channel Spacing 5MHz Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi		Input: AC 100-240V 50/60Hz 200mA
Channel Spacing 5MHz Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi	•	2412-2462MHz
Modulation Type CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi	Channels	11 WSET WSET
Antenna Type: OFDM for IEEE 802.11g/n HT-20/n HT-40 Antenna Type: Integral Antenna Antenna gain: 0.5dBi	Channel Spacing	5MHz
Antenna gain: 0.5dBi	Modulation Type	
	Antenna Type:	Integral Antenna
Deviation None W5CT W5CT	Antenna gain:	0.5dBi
	Deviation	None W5CT W5CT
Condition of Test Sample Normal		Normal

1.2. FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at www.wsct-cert.com

Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen,

Guangdong, China of the World Standardization Certification & Testing Group Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Registration Number: 366353

1.2.1. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA
NVLAP (The certificate registration number is NVLAP LAB CODE:600142-0)
VCCI (The certificate registration number is C-4790, R-3684, G-837)

Canada INDUSTRY CANADA

(The certificated registration number is 7700A-1)

China CNAS (The certificated registration number is L3732)

Copies of granted accreditation certificates are available for downloading from our web site,

http://www.wsct-cert.com

WSET	WSET	WSET	WSET	WSET	
	ET WS	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \$	
WSET	WSET	WSET	WSET	WSET	
	W.S	$\langle \hspace{0.1cm} \rangle$			
WSET	WSET	WSET	WSET	WSET	
		CT W/5	$\langle \hspace{0.1cm} \rangle$		
wsc.	7 Page 1500 VSCT	WSET	WSET	WSET	

Report No.:FCC18080068A-Wi-Fi

sting Group Co.,Ltd

Page 5 of 59

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

.com Http:www.wsct-cert.

For Question,
Please Contact with WSCT
www.wsct-cert.com

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

арргохине	atory 30 /c	\times	\times	\times
	No.	Item	Uncertainty	
WSET	1/1/2	Conducted Emission Test	±3.2dB	WSET
\sim	2	RF power, conducted	±0.16dB	
	3	Spurious emissions, conducted	±0.21dB	
WSE	4	All emissions, radiated(<1G)	±4.7dB W5ET	W5ET*
	5	All emissions, radiated(>1G)	±4.7dB	
	6	Temperature	±0.5°C	
WSET	7 W5	Humidity W5ET	±2%W5ET°	WSLT
WSE	7	WSET WSE	WSET	WSET
WSET	WS	ET WSET	W5ET	WSET
WSE		WSET WS		WSET
WSET	W	ET WSET	WSET	WSET
WSE	7	WSET WS	WSET	WSET
WSET		WSGT	W5ET°	WSET
\times		WSET WS		WSLT
Certification WSCT	Lesting Gro			

Report No.:FCC18080068A-Wi-Fi

Page 6 of 59

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Member of the WSCT INC

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test systemact-cort.com was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Pretest Mode	Description	
	Mode 1	W5[T] 802.11b 5[T] W5	Ľ
/	Mode 2	802.11g	
\	Mode 3	802.11n20	
Z	Mode 4	W5 802.11n40 W5 [T]	

	For Conducted Emission
Final Test Mode	Description
Mode 1	802.11b

For Radiated Emission							
Final Test Mode	Description						
Mode 1	802.11b						
Mode 2	802.11g						
Mode 3	802.11n20						
Mode 4	802.11n40						

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT use new battery.
- (3) The data rate was set in 1Mbps, 6 Mbps, 6.5 Mbps and 13.5M for radiated emission due to the highest RF output power.
- (4) Record the worst case of each test item in this report.
- (5) When we test it, the duty cycle ≥ 98%

Report No.:FCC18080068A-Wi-Fi

Page 7 of 59

.com Http://www.wsct-cert.c

Member of the WSCT INC

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING LAB CODE 600142-0

During testing channel & power controlling software provided by the customer was used or Question, control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software Version	>	N/A	X	
Test program		*#*#2008#*#*		

Frequency(802.11b/g/n20)	2412 MHz	2437 MHz	2462 MHz
Frequency(802.11n40)	2422 MHz	2437 MHz	2452 MHz

2.4 CONFIGURATION OF SYSTEM UNDER TEST

(EUT: Mobile Phone)

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested with					
USB port	1 ///	1m USB cable, unshielded	1		
Power	1/	1m	1		

2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1	Adapter	1	CU-52JT	/	X
1	2	Avera	August	N/A	1	Aug de la constant de

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in Length column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
 - (4) The adapter supply by the applicant.

W5CT

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

	WEET?	WELT	MAG		W
/		FCC Part15 (15.247) , Subpart 0			
7	Standard Section	Test Item	Judgment	Remark	
	15.207	Conducted Emission Test	PASS	Complies	
	15.247(a)(2) Limit	Spectrum bandwidth of a Orthogonal Frequency Division Multiplex System Limit: 6dB bandwidth>500kHz		Complies	w
/	15.247(b)	Maximum peak outputpower Limit: max. 30dBm	PASS	Complies	
7	15.109,15.205 & 15.209	Transmitter Radiated Emission Limit: Table 15.209	PASS	Complies	
V .	15.247(e)	Power Spectral Density Limit: max. 8dBm	PASS	Complies	
	15.247(d)	Band edge Limit: 30dB less than Reference level	PASS WS	Complies	W
/		Restricted band limit: Table 15.209			

WSI

NOTE:

Certification

(1)" N/A" denotes test is not applicable in this test report.

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET WSET

WSET WSET WSET

| 長 | 世転検測认证股份 | ADD:Building A-B Baosh

For Question,
Please Contact with WSCT
www.wsct-cert.com

4. MEASUREMENT INSTRUMENTS

						www.wsci-cert.cc	111
_	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibratio n Due.	5
	EMI Test Receiver	R&S	ESCI	100005	08/19/2018	08/18/2019	
	LISNW5C7	AFJ WS	LS16	16010222119	08/19/2018	08/18/2019	
	LISN(EUT)	Mestec	AN3016	04/10040	08/19/2018	08/18/2019	>
,	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2018	08/18/2019	5
_	Coaxial cable	Megalon	LMR400	N/A	08/12/2018	08/11/2019	7
	GPIB cable	Megalon	GPIB	N/A	08/12/2018	08/11/2019	
	Spectrum Analyzer	R&S	FSU	100114	08/19/2018	08/18/2019	
	Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2018	10/12/2019	
	Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2018	10/12/2019	>
/	Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2018	09/12/2019	5
<u> </u>	9*6*6 Anechoic		/		08/21/2018	08/20/2019	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	<u></u>	09/13/2018	09/12/2019	
\	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2018	08/22/2019	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/25/2018	04/24/2019	
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
_	W5 Turn Table	W ccs	N/A'5E7	N/A	5 N.C.R	N.C.R	Š
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA3000		08/21/2018	08/20/2019	
	Loop Antenna	EMCO	6502	00042960	08/22/2018	08/21/2019	
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2018	08/18/2019	
	Power meter	Anritsu	ML2487A	6K00003613	08/23/2018	08/22/2019	
_	Power sensor	Anritsu	MX248XD		08/19/2018	08/18/2019	5

WSW

WSU

Please Contact with WSCT www.wsct-cert.com

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

Conducted limit (dBμV)		ıV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

	Receiver Parameters	Setting	
	Attenuation	10 dB _{VSF7}	1
/	Start Frequency	0.15 MHz	
	Stop Frequency	30 MHz	}
	IF Bandwidth	9 kHz	

Certification

Report No.:FCC18080068A-Wi-Fi

Page 11 of 59

& technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected at the power mains through a line impedance stabilization network (LISN). All other support was equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80

from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Report No.:FCC18080068A-Wi-Fi

Page 12 of 59

5.1.6 TEST RESULTS

Y	X	X	X
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L WS/T
Test Mode	Mode 1		

For Question,
Please Contact with WSCT
www.wsct-cert.com

	0.130		0.3	J	(MIIZ)	3			30.000	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		•
			MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	1
	1		0.1740	40.68	10.44	51.12	64.76	-13.64	QP	
/	2		0.2060	18.68	10.43	29.11	53.36	-24.25	AVG	
۲	3		0.2620	20.52	10.43	30.95	51.36	-20.41	AVG	4
	4		0.3260	15.06	10.42	25.48	59.55	-34.07	QP	
	5	*	0.4700	28.34	10.40	38.74	46.51	-7.77	AVG	
	6		0.5780	34.51	10.39	44.90	56.00	-11.10	QP	
	7		1.3140	33.20	10.32	43.52	56.00	-12.48	QP	
<u></u>	8		1.3140	27.76	10.32	38.08	46.00	-7.92	AVG	,
	9		2.0620	31.08	10.29	41.37	56.00	-14.63	QP	
ĺ	10		2.1140	25.77	10.29	36.06	46.00	-9.94	AVG	
	11		23.9660	20.54	10.10	30.64	50.00	-19.36	AVG	1
	12		24.0860	25.39	10.10	35.49	60.00	-24.51	QP	

Remark: All the modes have been investigated, and only worst mode is presented in this report.

Certification

Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Mode	Mode 1		ZW5ET

For Question,
Please Contact with WSCT
www.wsct-cert.com

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector
	1	*	0.4740	25.42	10.40	35.82	46.44	-10.62	AVG
*	2		0.5220	30.65	10.40	41.05	56.00	-14.95	QP
7	3		0.8340	30.30	10.36	40.66	56.00	-15.34	QP
	4		0.8380	23.07	10.36	33.43	46.00	-12.57	AVG
	5		1.3099	22.37	10.32	32.69	46.00	-13.31	AVG
	6		1.3860	30.86	10.32	41.18	56.00	-14.82	QP
×	7		1.6260	21.65	10.31	31.96	46.00	-14.04	AVG
7	8		1.6740	26.84	10.31	37.15	56.00	-18.85	QP
L	9		2.1140	21.19	10.29	31.48	46.00	-14.52	AVG
	10		2.1420	27.10	10.29	37.39	56.00	-18.61	QP
	11		24.0500	25.47	10.10	35.57	60.00	-24.43	QP
	12		24.0500	16.62	10.10	26.72	50.00	-23.28	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

Certification

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

For Question,
Please Contact with WSCT
www.wsct-cert.com

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Frequencies	Field Strength	Measurement Distance
	(MHz)	(micorvolts/meter)	(meters)
	0.009~0.490	2400/F(KHz)	300
	0.490~1.705	24000/F(KHz)	30
7	1.705~30.0	30	30
_	30~88	100	3
	88~216	150	3
	216~960	200	3
	Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBu\	//m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	5 <i>CT</i> W 1000 MHz W 5 <i>CT</i>
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

ertification

世标检测认证股份

5.2.2 TEST PROCEDURE

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GF For frequencies above 1GHz, any suitable measuring distance may be used. Please Contact with WSCT

b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meterwsct-cert.com open area test site. The table was rotated 360 degrees to determine the position of the highest

- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.2.3 DEVIATION FROM TEST STANDARD

No deviation WSET	SET WSET	WSET	NSCT
WSET WSET		SET WSET	
	SET WSET		WSET
WSET WSET	WSET	ISET WSET	
W5ET W	SET° WSET°	WSET	WSLT
WSET WSET	WSET	SET WSET	
ortification	SET WSET	WSET	WSET
WSCT WSCT	W5ET N	VSET WSET	

Report No.:FCC18080068A-Wi-Fi

Page 16 of 59

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

WSET WSET WSET WSET

WSET WSET WSET WSET

For Question,
Please Contact with WSCT
www.wsct-cert.com

Member of the WSCT INC.

(C) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

Report No.:FCC18080068A-Wi-Fi

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

WSET	WSET	WSET	WSET	WSET	,
		CT WS			NSET.
WSET	WSLT	W5ET*	WSET	WSET	
	CT WS	CT WS	WS		NSET.
WSET	WSET	WSET	WSET	WSET	
					WSET*
World Stanford Pation Cert	7 Regulation Of the Notice of	WSET	WSET	WSET	
World Standardination Cert	世标检测认证股份 AD TEL	D:Building A-B Baoshi Science & tech :86-755-26996143/26996144/26996145/26996	nology Park, Baoshi Road, Bao'an 192 FAX:86-755-86376605 E-mail:Fengbin	District, Shenzhen, Guangdon g.Wang@wsct-cert.com Http:www.wsc	g, China t-cert.com

Page 18 of 59

5.2.5.1 RESULTS (Below 30 MHz)

For Question,
Please Contact with WSCT
www.wsct-cert.com

						WWW.WSOL-OCIL.C	JOITI
1	Temperature	20 ℃	Augusta	Relative Humidity	48%	6	
	Pressure	1010 hPa	11-14	Test Mode	Mode 1		<u> </u>

Freq.	Reading	g Limit Margin		State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
\/	\	/	\	Р
	/		/	Р

NOTE:

WSET"

No result in this part for margin above 20dB.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

	WSET	WSET	WSET	WSET	WSET
WIST	$\langle \hspace{0.1cm} \rangle$	$\langle \ \rangle$			CT*
	WSLT	WSET	WSET	WSET	WSET
WSU	$\langle \hspace{0.1cm} \rangle$	$\langle \ \rangle$			
	WSET	WSET	WSET	WSLT	WSET
WSI	$\langle \hspace{0.1cm} \rangle$				TT .
		WSET	WSET	WSET	WSET
	Certification & Control				

Report No.:FCC18080068A-Wi-Fi

esting Group Co.,Ltd

Page 19 of 59

ADD: Building A-B Baoshi Science

& technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Member of the WSCT INC

5.2.5.2 TEST RESULTS (Between 30M - 1000 MHz)

١		\vee			Contact with WSC
	Temperature	20 ℃	Relative Humidity	48% ww	w.wsct-cert.com
5	Pressure	1010 hPa	Polarization :	Horizontal	WSE
_	Test Mode	Mode 1			7

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	The same
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	* /	31.7313	25.70	4.13	29.83	40.00	-10.17	QP
2	411	54.4516	27.41	-5.55	21.86	40.00	-18.14	QP
3	1	10.5687	23.67	-1.92	21.75	43.50	-21.75	QP
4	2	27.6906	24.50	-5.74	18.76	46.00	-27.24	QP
4 5	3	92.0951	26.41	-1.56	24.85	46.00	-21.15	QP
6	9	16.0687	25.05	5.89	30.94	46.00	-15.06	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

WSET WSET WSET WSET WSET

世标检测认证股份 8 Testing Group Co.,Ltd.

`			INVERTI ENDOODE OO	10142 0	
	Temperature	20 ℃	Relative Humidity	48%	For Question, Please Contact with WSCT
/	Pressure	1010 hPa	Polarization :	Vertical	www.wsct-cert.com
a	Test Mode	Mode 1		CECT	WEET

No.	Mk. Fre	Readin eq. Level	g Correct Factor		e- Limit	Over	140
	MH	z dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	* 31.399	92 27.43	4.26	31.69	40.00	-8.31	QP
× 2	42.600	00 27.93	-1.09	26.84	40.00	-13.16	QP
3	55.220	07 34.38	-5.64	28.74	40.00	-11.26	QP
4	112.919	96 23.08	-2.15	20.93	43.50	-22.57	QP
5	189.074	43 25.04	-7.18	17.86	43.50	-25.64	QP
6	366.823	31 24.89	-1.35	23.54	46.00	-22.46	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

Page 21 of 59

Report No.:FCC18080068A-Wi-Fi

5.2.5.3 TEST RESULTS (1GHz to 25GHz)

For Question,
Please Contact with WSCT

_	Temperature	20 ℃	Relative Humidity	48%	rt.com
Ľ	Pressure	1010 hPa 7 W5C1	Test Mode	Mode 1 TX	V5
	Frequency	2412MHz			

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	5 Pol.	Level(dBuV)		3m(dBuV/m)			NSCT
	H/V	PK	AV	PK	AV	PK	AV
4824	V	58.65	39.31	74	54	-15.35	-14.69
7236	V	58.58	40.68	74	54	-15.42	-13.32
4824	H	59.05	39.23	74	54	-14.95	-14.77
7236		58.28	39.28	74	54	-15.72	-14.72

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Temperature	20 °C/557	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Frequency	2437MHz		

Freq. (MHz)	Ant.Pol.	Emission I	_evel(dBuV	Lir 3m(dB	mit BuV/m)	Over(dB)		
	H/V /	PK	AV 🖊	PK	AV	PK	AV	
4874	V	60.25	40.59	74	54	-13.75	-13.41	
7311	V	58.92	40.74	74	54	-15.08	-13.26	
4874	×Η	59.85	39.63	74	54	-14.15	-14.37	
7311	Ī	59.38	40.38	74	54	-14.62	-13.62	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

WSET"

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

	Temperature	20 ℃	Relative Humidity	48%	For Question,
	Temperature	20 0	relative Humbley	TO 70	Please Contact with WSCT
	Pressure	1010 hPa	Test Mode	Mode 1 TX	www.wsct-cert.com
1	Frequency	2462MHz		'5[T	WSCI

Freq.	Ant.Pol.	Emission	Level(dBuV	Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
W.	CH/V	PK W	5//AV	PK W	5 CAV	PK /	/5/AV
4924	V	60.97	39.77	74	54	-13.03	-14.23
7386	V	59.33	39.24	74	54	-14.67	-14.76
4924	H /	58.60	39.87	74	54	-15.40	-14.13
7386	H	58.39	39.39	74	54	-15.61	-14.61

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

	Temperature	20 ℃	Relative Humidity	48%
1	Pressure	1010 hPa	Test Mode	Mode2 TX
	Frequency	2412MHz		

	Freq.	Ant. Pol.	Emis	sion	Limit 3m(di	3uV/m)	Over(dB)	
	(MHz)	CECT	Level(dBuV)	No.		Ku,	SET	
		H/V	PK	AV	PK	AV	PK	AV	
	4824	V	60.15	41.48	74	54	-13.85	-12.52	•
	7236	V	59.68	40.00	74	54	-14.32	-14.00	1
	4824	H	59.08	39.10	74	54	-14.92	-14.90	
4	7236	H	58.50	39.50	74	54	-15.50	-14.50	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

For Question

	Temperature	20 ℃	Relative Humidity	48% Please Contact with www.wsct-cert.c	
1	Pressure	1010 hPa	Test Mode	Mode 2 TX	5 <i>C1</i>
	Frequency	2437MHz			

	Freq. (MHz)	Ant.Pol.	Emission Level(dBuV		Limit 3m(dBuV/m)		Over(dB)	
		H/V	PK	AV	PK	AV	PK	AV
	4874	V	58.20	40.28	74	54	-15.80	-13.72
1	7311	V _	59.05	39.15	74	54	-14.95	-14.85
1/1	4874	H/W	59.76	39.62	5 74	54	-14.24	-14.38
	7311	H	59.37	40.37	74	54	-14.63	-13.63

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Frequency	2462MHz		

Freq. (MHz)	Ant.Pol.	Emission I	_evel(dBuV)	Lir 3m(dB	nit suV/m)	Over(dB)		
	H/V _	PK	AV	PK	AV _	PK	AV _	
4924	V	60.73	40.50	74	54	-13.27	-13.50	
7386	V	58.74	39.35	74	54	-15.26	-14.65	
4924	X	58.36	40.34	74	× 54	-15.64	-13.66	
7386	H	58.02	39.02	74	54	-15.98	-14.98	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

For Question,
Please Contact with WSC

			\vee		Please Contac	ct with WS
	Temperature	20 ℃		Relative Humidity	48% www.wsct	-cert.com
/	Pressure	1010 hPa	5/7	Test Mode	Mode3 TX	W5
	Frequency	2412MHz				14.4

Freq.	Ant. Pol.	Emission		Limit		Over(dB)		
(MHz)		Level(dBuV)		3m(dBu)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
4824	V	60.90	41.22	74	54	-13.10	-12.78	
7236	V	59.66	39.34	74	54	-14.34	-14.66	
4824	H	58.72	39.66	74	54	-15.28	-14.34	
7236	A	58.40	39.40	74	54	-15.60	-14.60	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Temperature	20 °C	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Frequency	2437MHz		

	Freq.	Ant.Pol.	Emission	Level(dBuV)	Lir	nit	Ove	er(dB)
	(MHz)	X		X	3m(dB	suV/m)		X
	/	H/V	PK /	AV	PK /	AV	PK	AV
/	4874	26 V	59.97	40.47	74	54	-14.03	-13.53
	7311	V	58.99	39.25	74	54	-15.01	-14.75
	4874	Н	58.01	39.41	X 74	54	-15.99	-14.59
	7311	Н	58.43	39.43	74	54	-15.57	-14.57

Remark:

WSET

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

			INVERTI ENDOODE OO	0142 0	
	Temperature	20 ℃	Relative Humidity	48%	For Question, Please Contact with WSCT
	Pressure	1010 hPa	Test Mode	Mode 3 TX	www.wsct-cert.com
1	Frequency	2462MHz 7		75/T	WSCI

Freq. (MHz)	Ant.Pol.	Emission	Level(dBuV)		mit 3uV/m)	Ove	r(dB)
W	CH/V	PK W	5CTAV	PK//	5 CAV	PK /	/5/AV
4924	V	60.33	40.19	74	54	-13.67	-13.81
7386	V	58.90	40.93	74	54	-15.10	-13.07
4924	H /	59.06	40.62	74	54	-14.94	-13.38
7386	H	59.08	40.08	74	54	-14.92	-13.92

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

7	Temperature	20 °C	Relative Humidity	48%
Ú	Pressure	1010 hPa	Test Mode	Mode4 TX
	Frequency	2422MHz		

Freq. (MHz)	Ant. Pol.	Emission Level(dBuV)		Limi 3m(dBu)		Over(dB)		
	H/V	PK	ΑÝ	PK	ÁV	PK	AV	
4844	V	58.49	41.27	74	54	-15.51	-12.73	
7266	V	59.49	39.69	74	54	-14.51	-14.31	
4844	H/	58.65	40.92	75.74	54	-15.35	-13.08	
7266	H	59.05	40.05	74	54	-14.95	-13.95	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSET WSET WSET WSET WSET WSET WSET

For Question

	Temperature	20 ℃	Relative Humidity	48% Please Contact with www.wsct-cert.com	
1	Pressure	1010 hPa	Test Mode	Mode 4 TX	5 C T
	Frequency	2437MHz			

Freq. (MHz)	Ant.Pol.	Emission	Level(dBuV)		mit BuV/m)	Ove	er(dB)
	H/V	PK	AV	PK	AV	PK	AV
4874	V	59.09	40.13	74	54	-14.91	-13.87
7311	V _	58.47	39.60	74	54	-15.53	-14.40
4874	HAW	58.51	39.94	74	54	-15.49	-14.06
7311	Æ	59.60	40.60	74	54	-14.40	-13.40

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Frequency	2452MHz		

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV)		Lir 3m(dB	mit BuV/m)	Over(dB)		
	H/V	PK	AV	PK	AV _	PK	AV _	
4904	V	58.55	40.73	74	54	-15.45	-13.27	
7356	V	58.22	39.10	74	54	-15.78	-14.90	
4904	H	58.09	40.55	74	× 54	-15.91	-13.45	
7356	H	58.37	39.37	74	54	-15.63	-14.63	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSCT WSCT WSCT WSCT WSCT WSCT WSCT

For Question,
Please Contact with WSCT
www.wsct-cert.com

Member of the WSCT INC

6. ANTENNA APPLICATION

6.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247

FCC part 15C section 15.247 requirements: Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

6.2 Result

The EUT's antenna Integral Antenna. The antenna's gain is 1,26dBi and meets the requirement.

THE EST GAI	incilia integral Am	enna, The antenna's ga		oto trio roquirornori	7
X	X	X	X	X	
WSET	WSCT*	WSET	WSET	WSC	
X		X ,	X	X	X
Augen	Average Contract of the Contra			111111111111111111111111111111111111111	Augusta
WSET	The state of the s	ET° W	SCT°	WSET	WSET
WSET	WSET	WSET	WSET	WSE	7
X		X	X	X	X
WSET	W	ET W	SET°	W5CT [®]	WSET
X	X	X	X	X	
Average and the second	August	A		August	
WSET	WSET	WSET	WSET	WSE	7
WSET	WSET	WSET	WSET	WSE	7
WSCT	WSET	WSET	WSET	WSE	7
X				X	X
W5CT*				WSET*	WSET
X				X	X
WSET	W	TT W	SET	WSET	WSET
X				X	WSET
WSET	W	TT W	SET	WSET	WSET
WSET*	W5ET*	TT W	SET	WSET	WSET
WSET*	W5ET*	WSCT*	SET° WSET°	WSET*	WSET°
WSET*	W5ET*	WSCT*	SET° WSET°	WSET	WSET
WSET*	W5ET*	WSCT*	SET° WSET°	WSET*	WSET°
WSET*	W5ET*	WSCT*	SET° WSET°	WSET*	WSET°
WSET*	W5ET*	WSCT° W	SET°	WSET*	WSET*
WSET	WSET° WSET°	WSCT*	SET° WSET°	WSET* WSET*	WSET°

Report No.:FCC18080068A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

AP LAB CODE 600142-0 For Qu

7. 6DB BANDWIDTH MEASUREMENT

7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is >500 kHz

7.3 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two

outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured

in the fundamental emission.

7.4 TEST RESULT

6dB Occupied Bandwidth

_	CCGP.CG B						
	Mode	802.	11b	Humidity	56%	RH	
	Temperat	ure 24 de	eg. C,				1
		Channel	Data Transfer	6 dB Bandwidth	Minimum		-
٧	Channel	Frequency	Rate	(kHz)	Limit 7	Pass/ Fail	5
		(MHz)	(Mbps)	((MHz)		
	1	2412	1	9294.9	0.5	Pass	
	6	2437	1	9230.8	0.5	Pass	
	11	2462	A CONTRACTOR OF THE PARTY OF TH	9102.6	0.5	Pass	

	Mode	802.	11g	Humidity	56%	RH	
/	Temperat	ure 24 de	eg. C,				
N	SET°N	Channel 5	Data	V5ET°	Minimum	W	5
	Channel	Frequency (MHz)	Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Limit (MHz)	Pass/ Fail	
	1	2412	6	16474.4	0.5	Pass	
	6	2437	W6	16410.3	0.5	Pass	
1	11	2462	6	16474.4	0.5	Pass	

林检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

					TESTING			_
₹	Mode		802.1	11n20	Humidity NVLAP L	AB CODE 600142 56 %	RH BOOMEN	3
1	Temperat	ure	24 de	eg. C,			For Question, Please Contact with V	VSC
/		_Channe		Data Transfer	6 dB Bandwidth	Minimum	www.wsct-cert.com	
W	Channel	Frequen		Rate	/5 (kHz)	Limit	Pass/ Fail	E
		(MHz)		(Mbps)		(MHz)		
	1	2412		6.5	17628.2	0.5	Pass	
	6	2437		6.5	17628.2	0.5	Pass	
	11	2462		6.5	17692.3	0.5	Pass	

7	Mode	80	2.11n40	Humidity 56%		RH	5
	Temperature 24		deg. C,				ſ
	Channel	Channel Frequency (MHz)	Data Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Minimum Limit (MHz)	Pass/ Fail	
	3	2422	13.5	36410.3	0.5	Pass	
	6	2437	13.5	36410.3	0.5	Pass	>
,	9	2452	13.5	36410.0	0.5	Pass /	

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com/

Certification &

For Question,
Please Contact with WSCT
www.wsct-cert.com

8. MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C 15.247(b) Test Method: KDB 789033 D02 v01r04 Section E.3.a (Method PM) The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure:

- 1. Connected the EUT's antenna port to measure device by 10dB attenuator.
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

For Conducted RF test setup Power meter EUT Attenuator (EUT: Mobile phone) Certification ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.:FCC18080068A-Wi-Fi

Page 37 of 59

com mup.www.wsci-cen.t

Test Data:

World Standardization Certification & Testing Group Co., Ltd.

TESTING NVLAP LAB CODE 600142-0

For Question, Please Contact with WSCT www.wsct-cert.com

/	Mode	Channel/	Maximum conducted	Limit(dBm)	Pass / Fail	W
		Frequency	output			
		(MHz)	power (dBm)			
			Meas Power			7
	802.11b	1(2412)	14.03	30	Pass	
	X	6(2437)	14.09	30	Pass	,
	WSCT	11(2462)	14.06	30	Pass	W
7	802.11g	1(2412)	13.52	30	Pass	
		6(2437)	13.61	30	Pass	
	No.	11(2462)	13.49	30	Pass	
	802.11n(HT20)	1(2412)	13.12	30	Pass	
	X	6(2437)	13.17	30	Pass	
	Average Control	11(2462)	13.09	30	Pass	W
7	802.11n	3(2422)	12.06	30	Pass	
	(HT40)	6(2437)	12.21	30	Pass	
	for	9(2452)	12.17	30	Pass	
		74	THE IS	ALPIA L		

	WSET N	WSET	W5CT	W5ET	W5ET"
WSE	$\langle \hspace{0.1cm} \rangle$	T WSE		CT W	SET
	W5ET*	WSET	W5ET*	WSLT	WSET
WSG	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$			SET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份 festing Group Co.,Ltd.

Member of the WSCT INC.

Certification &

For Question,
Please Contact with WSCT
www.wsct-cert.com

9. POWER SPECTRAL DENSITY MEASUREMENT

9.1 TEST SETUP

<u>VSET°</u>

9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum Power Spectral Density Measurement is 8dBm.

9.3 TEST PROCEDURE

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used todemonstrate compliance.
- 2. Set the RBW = 3 kHz.
- 3. Set the VBW =10 kHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be ≤ 8 dBm.

Report No.:FCC18080068A-Wi-Fi

Page 39 of 59

nzhen Guangdong

Member of the WSCT IN

NVLAD

9.4 TEST RESULT

					TECTINIO	
1	Mode	802.11b		Humidity	NVLAP LAB CODE 656	
	Temperature	24 deg. C,				For Question, Please Contact with W
	Channel	Channel	Final RF	Power	Maximum Limit	Pass/ Mail.wsct-cert.com
1		Frequency	Level in	(dBm)	(dBm)	
ľ	15CT	(MHz)		WSET	Ws	
			11	Mbps		
	1	2412	-9.2	1	8	Pass
	6	2437	-8.9	4	8	Pass
	11	2462	-8.6	34	8	Pass

	Mode	802.11g	Humidity	56%	RH
,	Temperature	24 deg. C,			
7	Channel	Channel	Final RF Power	Maximum Limit 5	Pass/ Fail
		Frequency	Level in (dBm)	(dBm)	
		(MHz)			
			6Mbps		
	1	2412	-10.00	8	Pass
	6	2437	75 7- 8.94	ZW5/8	Pass
1	11	2462	-9.82	8	Pass

4	Mode 802.11n HT20			Humidity		56% RH		
4	Temperature	24 deg. C,		-WJL/				
Ī	Channel	Channel	Final RF	Power	Maximum Lir	nit	Pass/ Fail	
	Frequency (MHz)		Level in (dBm)		(dBm)		X	
	WS		W5/76.	5Mbps	WSIT		WSIT	
1	1	2412	-9.	95	8		Pass	
	6	2437	-9.	08	8		Pass	
		2462	-9.	72	8		Pass	

Mode	802.11n HT40		Humidity		56%	RH
Temperature	24 deg. C,	X	X			X
Channel	Channel	Final RF		Maximum Limit		Pass/ Fail
W	Frequency (MHz)	Level in	(dBm)	(dBm)		WSET
	(IVIF1Z)					
		13	3.5Mbps			
3	2422	-13	.67	8	X	Pass
6	2437	-12	.00	8		Pass
V5779	2452	-13	15/5/7	8	W5/	Pass

Remark: All of the modes have been investigated, and only worst mode is presented in this report.

WSET WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com/ esting Group Co.,Ltd.

世标检测认证股份

For Question,
Please Contact with WSCT
www.wsct-cert.com

10. OUT OF BAND MEASUREMENT 10.1 TEST SETUP FOR BAND EDGE

The restricted band requirement based on radiated emission test; please see the clause 6 for the test setup

10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT

- 1. Below -20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

10.3 TEST PROCEDURE

For signals in the restricted bands above and below the 2.4-2.483GHz allocated band a measurement was made of radiated emission test. (Peak values with RBW=VBW=1MHz and PK detector. AV value with RBW=1MHz,VBW=10Hz and PK detector)

For bandage test, the spectrum set as follows: RBW=100 kHz, VBW=100 kHz. A conducted measurement used

10.4 TEST RESULT

Please see next pages

Note: This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

Report No.:FCC18080068A-Wi-Fi

Page 47 of 59

Radiated measurement:

802.11b

For Question,
Please Contact with WSCT
www.wsct-cert.com

	Indicat	ted		Antenna	Corre	ection Fa	ctor	FCC	Part 15.24	17
	L-raguancy	Receiver Reading (dB _µ V/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB _µ V/m)	Limit (dBµV/m)	Margin (dB)
		WIST		Lo	w Channel	, ,			M	
	2390	30.62	AV	V	30.3	4.1	33.1	31.92	54	22.08
	2390	29.96	AV	×н	30.3	4.1	33.1	31.26	54	22.74
	2390	39.59	PK	>	30.3	4.1	33.1	40.89	74	33.11
_	2390	41.04	PK	56 H	30.3	4.1	33.1	42.34	74	31.66
				Hi	gh Channel	(2462MH	lz)			
	2483.5	29.33	AV	V	31	4.4	32.7	32.03	54	21.97
1	2483.5	32.00	AV	H	W-317	4.4	32.7	34.70	54//	19.30
	2483.5	42.00	PK	V	31	4.4	32.7	44.70	74	29.30
	2483.5	41.84	PK	Xf	31	4.4	32.7	44.54	74	29.46

802.11g

	002.119										
	Indicated			Antenna	Corre	Correction Factor			FCC Part 15.247		
7	L roguonov	Receiver Reading (dB _µ V/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)	
Low Channel (2412MHz)											
	2390	34.28	AV	V	30.3	4.1	33.1	35.58	54	18.42	
	2390	34.45	AV	Н	30.3	4.1	33.1	35.75	54	18.25	
	2390	52.09	PK	V	30.3	4.1	33.1	53.39	74	20.61	
1	2390	49.55	PK	Н	30.3	4.1	33.1	50.85	74	23.15	
7		W50		Hi	gh Channel	(2462MH	(z) W54				
	2483.5	30.86	AV	V	31	4.4	32.7	33.56	54	20.44	
	2483.5	29.93	AV	H	31	4.4	32.7	32.63	54	21.37	
	2483.5	40.24	PK	5 LV	31	4.4.7	32.7	42.94	74	31.06	
1	2483.5	39.65	PK	Н	31	4.4	32.7	42.35	74	31.65	
	2483.5		L .							_	

Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.

WSET WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

802.11n HT20

For Question,

									Pla	pase Contact	with WS
	Indica	ted		Antenna	Corr	ection Fa	ctor	FCC	Part 15.24		rt.com
	Fraguancy	Receiver Reading (dB _µ V/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)	V51
				Lo	ow Channel	(2412MH	z)		/		
7	2390	34.12	AV	V	30.3	4.1	33.1	35.42	54//	18.58	
	2390	34.84	AV	A	30.3	4.1	33.1	36.14	54	17.86	
	2390	49.54	PK	V	30.3	4.1	33.1	50.84	74	23.16	X
	2390	51.36	PK	J	30.3	4.1	33.1	52.66	74	21.34	V5
				Hi	gh Channel	(2462MH	z)				
	2483.5	29.70	AV	V	31	4.4	32.7	32.40	54	21.60	
\	2483.5	30.17	AV	Н	31	4.4	32.7	32.87	54	21.13	
/	2483.5	39.61	PK	V	31	4.4	32.7	42.31	74	31.69	
	2483.5	40.60	PK	\/H	31	4.4	32.7	43.30	74	30.70	

802.11n HT40

W5ET W5E

/	Indicat	ted		Antenna	Corre	ection Fa	ctor	FCC	Part 15.24	17
7	Frequency (MHz)	Receiver Reading (dB _µ V/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
	Low Channel (2422MHz)									
	2390	37.84	AV	V	30.3	4.1	33.1	39.14	54	14.86
	2390	37.16	AV	5 CH	30.3	W4.177	33.1	38.46	54	15.54
	2390	53.85	PK	V	30.3	4.1	33.1	55.15	74	18.85
	2390	53.62	PK	Н	30.3	4.1	33.1	54.92	74	19.08
77		Aug		Hi	gh Channel	(2452MH	z)		ATT	-
M/	2483.5	32.54	AV	V	31	4.4	32.7	35.24	54	18.76
	2483.5	31.43	AV	H	31	4.4	32.7	34.13	54	19.87
	2483.5	47.05	PK	V	31	4.4	32.7	49.75	74	24.25
	2483.5	44.26	PK	5 CH \	31	4.4	32.7	46.96	74	27.04

Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.

WSCT

WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

Certification

Report No.:FCC18080068A-Wi-Fi

Page 53 of 59

Member of the WSCT INC

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

