Аннотация проекта (ПНИЭР), выполняемого в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 - 2020 годы»

Номер Соглашения о предоставлении субсидии/государственного контракта: 14.579.21.0011

Название проекта: Разработка технологии повышения безопасности

движения автомобилей на базе компьютерного зрения Основное приоритетное направление: Информационно-

телекоммуникационные системы

Исполнитель: Общество с ограниченной ответственностью "Когнитивные

технологии"

Руководитель проекта: Тарханов Иван Александрович

Должность: руководитель проекта

E-mail: ivant@cs.isa.ru

Ключевые слова: идентификация автомобиля, идентификация пешехода, идентификация дорожного знака, анализ сцены, распознавание образов, коридор движения, проективное преобразование, отслеживание движущегося объекта

Цель проекта

Разработать новые методы компьютерного зрения для повышения безопасности движения автомобилей (система класса Vision-Based Driver Assistance), что позволит:

- вывести на рынок новую научно-техническую продукцию, разработать технологию мирового уровня;
- создать экспортный потенциал и импортозамещение.

Основные планируемые результаты проекта

- 1. Разработка технологии повышения безопасности движения автомобилей на базе компьютерного зрения, в том числе:
- обработка видеопотока, полученного с большинства устройств видеозахвата, удовлетворяющих техническим требованиям к входным данным;
- распознавание объектов в видеопотоке.

Важность проекта заключается в том, что решение сложных задач компьютерного зрения должно проходить в режиме реального времени.

К основным ожидаемым результатам проекта относится разработка методов:

- предобработки видеопотока (прием и первичная обработка видеопотока в режиме реального времени);
- распознавания/детектирования границ дорожного полотна, элементов дорожной разметки, полосы движения;
- распознавания/детектирования автомобилей, с учетом их ракурса и направления движения;
- распознавания/детектирования пешеходов, велосипедистов, мотоциклистов;
- распознавания и анализа дорожной сцены;
- регистрации и предсказания изменения положения активных по отношению

- к ТС участников дорожного движения;
- стабилизации изображения в видеопотоке на основе определения углов поворота автомобиля (тангаж, рысканье, крен);
- идентификации/прогноза опасных дорожных ситуаций на основе комплексного анализа данных о динамике развития дорожной ситуации.
- 2. Разработанная технология должна обеспечивать:
- идентификацию/прогноз опасных дорожных ситуаций на основе комплексного анализа

данных о динамике развития дорожной ситуации с задержкой не более 0,2 секунды.

- прием и первичную обработку видеопотока в режиме реального времени с частотой не менее 15 кадр/сек и задержкой не более 0,134 секунды.

Краткая характеристика создаваемой/созданной научной (научнотехнической, инновационной) продукции

- 1. Система класса Vision-Based Driver Assistance.
- 2. Новизна разрабатываемой научно-технической продукции заключается в возможности распознавания/детектирования всех участников дорожного движения и объектов, встречающихся на дороге. Полученная и обработанная видеоинформация будет использоваться для формирования предупреждающих сигналов. Уникальностью проекта является возможность проведения сложных расчетов и затратных, с точки зрения мощности процессора, операций на большинстве современных планшетных компьютерах в режиме реального времени.
- 3. Требования к аппаратному обеспечению: Разрабатываемый ЭО ПО должен функционировать на следующих технических средствах:
- 3.1 компьютер с параметрами и характеристиками:
- количество ядер процессора: не менее 4;
- частота процессора (МГц); не менее 1800;
- производительностью в пересчете на одно ядро и один герц не менее 3,5 целочисленных операций.
- видеопроцессор с API OpenCL EP или OpenCL с производительностью не менее

50 Гфлоп/с;

- встроенный модуль GPS/GLONASS;
- 3.2 оборудование для получения видеопотока (видеорегистраторы и др.) с параметрами и

характеристиками:

- угол обзора объектива: 90-120 градусов;
- формат видео: 1920x1080 пикселей с кадровой частотой не менее 30 кадр/с;
- цифровой стабилизатор изображения.

Назначение и область применения, эффекты от внедрения результатов проекта

- 1.Возможные потребители ожидаемых результатов:
- автовладельцы, пользующиеся различными навигационными устройствами для удобства вождения автомобилем;
- навигационные и картографические сервисы, с которыми может быть организовано взаимодействие в части дополнения «реальности»;
- государственные службы (ЖКХ, ГИБДД). На базе продукции может быть создан сервис, который будет автоматически получать информацию о дефектах дорожного полотна и нарушителях правил дорожного движения, детектированных программой и отправленной автоматически при согласии водителя на отправку таких данных.
- 2. Возможные пути и необходимые действия по доведению до потребителя ожидаемых результатов:
- сотрудничество с автоконцернами;
- сотрудничество с производителями бортовых компьютеров и комплектующих для автомобилей;
- сотрудничество с разработчиками программного обеспечения для бортовых компьютеров для автомобилей;
- сотрудничество с производителями навигационных приборов;
- сотрудничество с производителями приборов видеорегистрации приборов.
- 3. Внедрение результатов ПНИ положительно повлияет на повышение безопасности дорожного движения.

Текущие результаты проекта

В 2014-2015 г. запланированы к реализации следующие работы:

- Разработка методов предобработки видеопотока. (выполнена в 2014)
- Разработка методов распознавания/детектирования границ дорожного полотна, элементов дорожной разметки, полосы движения. (выполнена в 2014)
- Разработка методов распознавания/детектирования автомобилей, с учетом их ракурса и направления движения. (выполнена в 2015)
- Разработка методов распознавания/детектирования пешеходов, велосипедистов, мотоциклистов. (выполнена в 2015)
- Разработка методов распознавания и анализа дорожной сцены. (выполнена в 2015)
- Разработка методов регистрации и предсказания изменения положения активных по отношению к TC участников дорожного движения. (выполняется)