

# Frequent Pattern-based Map-matching on low sampling rate trajectories

Yukun Huang† Weixiong Rao § Zhiqiang Zhang § Peng Zhao § Mingxuan Yuan† Jia Zeng† †Huawei Noah's Ark Lab, Hong Kong § School of Software Engineering, Tongji University, China {yuan.mingxuan, zeng.jia}@huawei.com wxrao@tongji.edu.cn

## Background



 Map-matching is an important preprocessing task for many location-based services (LBS).



Urban planning



Intelligent transportation

#### Observation

The shortest path computation may not work well for very low sampling rate trajectory



#### Contribution



- ➤ We propose a frequent pattern-based method (FP-matching) to optimize the map-matching precision for low sampling rate trajectories.
- identify frequent patterns (FPs) from a third-party historical trajectory data
- find those FPs which most match a trajectory and link such found FPs as the map-matching result

## System Overview





#### **FP-FOREST**

- SID:
  the road segment ID
- CNT: the count of such trajectories matched to the road segment
- ➤ Creating FP-forest:
- subsequence extraction
- Subsequence insertion



490

#### FP-Forest used for what?

Eg: SID 1 To SID 5



- Frequency Lookup:
   Feq (S1 → S5) = 2 + 1 + 1 = 4 Complement:S1,S2,S3,
   S5 ssing from a road segment to another
- Trajectory Complement:

  select the most frequent route between two
  disconnected road segments in the FP-tree by CNT.



### FP-MATCHING ALGORITHM



Searching Candidate



#### FP-MATCHING ALGORITHM



Result Matching

$$P = \underset{S_{i}^{best}}{\operatorname{arg\,max}} \sum_{i=1}^{n-1} Weight(S_{i}^{best_{i}} \rightarrow S_{i+1}^{best_{i+1}})$$



#### FP-MATCHING ALGORITHM



#### Calculate Weights

$$We\dot{g} ht(S_i^j \to S_i^{j'}) = Weg ht(S_i^j, S_i^{j'}) * Feq(S_i^j \to S_i^{j'})$$

1. frequency between segments:  $Feq (S_i^j \rightarrow S_i^{j'})$ 

2. weight of road segment:  $W(S_i^j) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(dist \int_i^j - \mu)^2}{2\sigma^2}}$ 

3. effect of two candidates:  $\bigvee g \ ht(S_{i}^{j}, S_{i}^{j'}) = \frac{(1+\beta^{2})*W(S_{i}^{j})*W(S_{i}^{j'})}{\beta*W(S_{i}^{j})+W(S_{i}^{j'})}$ 





Dataset

road network: the digital map of Shanghai from Open Street Map Real Taxi Data: taxi trajectories in one day in Shanghai (92602

trajectories)

• Performance  $A_N = \frac{\text{mactrims}}{\text{matched rad sgmins}}$  matched rad sgmins

$$A_{L} = \frac{\sum t \text{ he } l \text{ at} g \text{ hof mac hed rad sgaths}}{\text{the length of the trajectory}}$$

## Comparison of three algorithm







## Efficiency





#### FUTURE WORK



we plan to compress FP-forest for small space overhead.

 we are going to design an effective approach to fill the missed trajectories

 we are interested in how to extend our algorithm in an online manner.



## Thanks

Offline discussion email: zhangzhiqiang@tongji.edu.cn