Prova di Analisi Matematica II - 22 Giugno 2020 Ing. Informatica Prof.ssa Virginia De Cicco

ESERCIZIO 1. Per ciascuna delle seguenti questioni, si indichi la (sola) risposta corretta.

- 1) Sola una delle seguenti identità è vera. Quale?

Soluzione: d)

a) $|z^2| = z^2$ b) $|z^2| = \frac{1}{2}|z|^2$ c) $|z^{1/2}| = z^{1/2}$ b) $|z^{1/2}| = |z|^{1/2}$. (x+cy) 1/2 = Vx+42

- 2) Sola una delle seguenti identità è vera. Quale?

a) Log(Im z) = Arg z $Log(3) = e^{\log (3) + i Azy(3)}$

- c) Arg(Log z) = Arg z d) Log(Arg z) = Arg z.

Soluzione: b)

3) Il coefficiente a_1 dello sviluppo di Fourier della funzione definita su $[-\pi, \pi[$ da

$$f(x) = 3\cos x - x^3$$

 $f(x) = 3\cos x - x^3,$ ed estesa ad $\mathbb R$ per periodicità, vale

- a) 0 b) 1
- c) 2

Soluzione: d)

- 4) La singolarità $z_0=0$ della funzione $f(z)=\frac{e^z-1}{sen^2z}$ è
 - a) una singolarità eliminabile b) una singolarità essenziale
 - un polo semplice
- d) un polo doppio.

Soluzione: c)

L, polo 1 emplice

ESERCIZIO 2. (i) Si studi la convergenza puntuale della seguente successione di funzioni

$$f_n(x) = \frac{(sen x)^n}{arctq(x^n)}, \qquad x \in [1, \pi/2].$$

(ii) Tale convergenza è uniforme in $[1, \pi/2]$?

Soluzione:

$$f_n(x) = \frac{(sen x)^n}{arctg(x^n)} \to 0 \qquad x \in [1, \pi/2[$$
$$f_n(\pi/2) = \frac{(sen (\pi/2))^n}{arctg((\pi/2)^n)} \to \frac{2}{\pi}.$$

ESERCIZIO 3. (i) Si dia la formula integrale di Cauchy per una funzione olomorfa e la formula per le sue derivate successive.

(ii) Si calcolino i seguenti integrali

$$\int_{\gamma} \frac{\cos z}{z - \frac{\pi}{2}} dz \qquad \int_{\gamma} \frac{\cos z}{z - \frac{\pi}{4}} dz \qquad \int_{\gamma} \frac{\cos z}{(z - \frac{\pi}{4})^3} dz$$

dove γ è una circonferenza di centro 0 e raggio 1.

Soluzione: Usando il Teorema di Cauchy, poichè la circonferenza non circuita $\frac{\pi}{2},$ si ha

$$\int_{\gamma} \frac{\cos z}{z - \frac{\pi}{2}} \ dz = 0.$$

Usando la formula integrale di Cauchy, poichè la circonferenza circuita $\frac{\pi}{4}$, si ha

$$\int_{\gamma} \frac{\cos z}{z - \frac{\pi}{4}} dz = 2\pi i \cos(\frac{\pi}{4}) = \sqrt{2\pi} i.$$

Usando la formula di Cauchy per le derivate, poichè la circonferenza circuita $\frac{\pi}{4}$, si ha

$$\int_{\gamma} \frac{\cos z}{(z - \frac{\pi}{4})^3} dz = 2\pi i \frac{1}{2} (\cos)''(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2} \pi i.$$

	1)	J _X	€ -	1 2	da:	= 0	(T 2 Ceu	وا (fuori	e 2	ella 2991 i	спе Э <u>А</u> .	ou fe	2 E U70	di	
2	2)	J ₈	2 -	2 4 4	dz	- 3	tu i	f (12 m)	2 m i	<u> </u>	<u>A</u>	2 u i	<u>√</u> 2-2	. 12	пi	
	3)	J ₈ ((1 -	2 4) ³	da	_	2 u i	f	(五)		- u i	ದು	\(\frac{a}{a}\)		√2 u	i	