Binary Search

Steps of Binary Search:

- 1. Start with two pointers: low (beginning of the array) and high (end of the array).
- 2. Calculate the mid index: mid = (low + high) / 2.
- 3. Compare the middle element with the target value:
 - . If the middle element is equal to the target, return the index.
 - . If the middle element is less than the target, narrow the search to the upper half by setting low = mid + 1.
 - . If the middle element is greater than the target, narrow the search to the lower half by setting high = mid 1.
- 4. Repeat the process until the target is found or the low pointer exceeds the high pointer.

Example 3: Finding a Number in a Sorted Array

Array: [10, 20, 30, 40, 50, 60, 70, 80, 90]

Target: 50

1. Initial State: low = 0, high = 8 (length of array - 1)

2. First Iteration:

- Calculate mid: [mid = \frac{0 + 8}{2} = 4]
- Check the middle element: [\text{array}[4] = 50]
- Compare: array[4] (50) == target (50) → Found the target at index 4.

Result: The target 50 is found at index 4.

Example 4: Finding a Number Not Present in a Sorted Array

Array: [15, 25, 35, 45, 55, 65, 75, 85, 95]

Target: 100

- 1. Initial State: low = 0, high = 8
- 2. First Iteration:
 - Calculate mid: [mid = \frac{0 + 8}{2} = 4]
 - Check the middle element: [\text{array}[4] = 55]
 - Compare: array[4] (55) < target (100) → Search in the upper half by setting low = mid + 1 → low =
 5.
- 3. Second Iteration:
 - Now, low = 5, high = 8
 - Calculate mid: [mid = \frac{5 + 8}{2} = 6]
 - Check the middle element: [\text{array}[6] = 75]

Compare: array[6] (75) < target (100) → Search in the upper half by setting low = mid + 1 → low = 7.

4. Third Iteration:

- Now, low = 7, high = 8
- Calculate mid: [mid = \frac{7 + 8}{2} = 7]
- Check the middle element: [\text{array}[7] = 85]
- Compare: array[7] (85) < target (100) → Search in the upper half by setting low = mid + 1 → low = 8.

5. Fourth Iteration:

- Now, low = 8, high = 8
- Calculate mid: [mid = \frac{8 + 8}{2} = 8]
- Check the middle element: [\text{array}[8] = 95]
- Compare: array[8] (95) < target (100) → Search in the upper half by setting low = mid + 1 → low = 9.

6. End of Search:

• Now, low = 9, high = 8. Since low exceeds high, the search ends.

Result: The target **100** is not found in the array.

Example 5: Finding a Number in a Sorted Array

Array: [5, 12, 18, 23, 37, 45, 56, 67, 78, 89]

Target: 37

1. Initial State: low = 0, high = 9 (length of array - 1)

2. First Iteration:

- Calculate **mid**: [mid = \frac{0 + 9}{2} = 4]
- Check the middle element: [\text{array}[4] = 37]
- Compare: array[4] (37) == target (37) → Found the target at index 4.

Result: The target **37** is found at index **4**.