CSE-281: Data Structures and Algorithms

Trees (Chapter-7)

Ref: Schaum's Outline Series, Theory and problems of Data Structures By Seymour Lipschutz

CUET

Topics to be Covered

- Binary Tree
- Tree Traversal
- Binary Search Tree
- AVL Tree
- B-Tree

Introduction to Trees

Linear Data Structure

Introduction to Trees

Tree can be defined as a collection of entities (nodes) linked together to simulate a hierarchy.

Nodes: A, B, C, D, E, F, G, H, I, J, K, L, M

Root: A

Parent Node: B is parent of E & F

Child Node: L & M are the children of G

<u>Leaf Nodes: (External Nodes)</u> doesn't have any children \rightarrow I, J, K, L, M

Non – Leaf nodes: have at least one children A, B, C, D, E, G

<u>Path</u>: sequence of consecutive edges from source node to destination node

 $B \rightarrow J$ $B \rightarrow E \quad E \rightarrow J$

Ancestor: any predecessor node on the path from root to that node.

Ancestor of L \rightarrow A, C, G

Descendent: any successor node on the path from that node to the leaf node.

Descendent of $C \rightarrow G$, L, M

Sub Tree of a Tree T

Height and Depth of a node May or may not be same

Height of a tree is equal to the Height of Root A

Siblings: children's of same node

<u>Degree</u>: degree of any node is the number of children that any node have

degree of any leaf node is 0

degree of a Tree is the maximum number of degree any node have

Degree of this Tree is 3

<u>Depth</u>: length of path from root to that node

Depth of node $G \rightarrow 2$, $J \rightarrow 3$

Height: no. of edges in the longest path from that node to a leaf node.

Height of node D \rightarrow 1, A \rightarrow 3

<u>Level of a node</u>: distance from root to that node

Level of $G \rightarrow 2$

Level of a Tree is equal to the Height of the Tree, here it is 3

Level of a node is equal to the depth of a node

If a Tree have n number of nodes then there must have n-1 edges

Binary Trees

• Each node have at most 2 children

At i^{th} level, a binary tree can have maximum 2^i nodes.

Max no. of nodes at height *h*

$$= 2^{0} + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{h}$$

$$=2^{h+1}-1$$

Min no. of nodes at height *h*

$$= h + 1$$

Level	Min Nodes
0	1
1	1
2	1
3	1

Minimum height h

$$= \log_2(n+1) - 1$$

Maximum height h

$$= n - 1$$

Possible maximum height of the tree if n nodes are given

Possible minimum height of the tree if n nodes are given

$$=2^{h+1}-1$$

$$= \log_2(n+1) - 1$$

$$= h + 1$$

$$= n - 1$$

Types of Binary Trees

Full / Proper / Strict

Complete

Perfect Binary Tree

Degenerate Binary Tree

Full Binary Tree

Each node have either 0 or 2 children

Each node is contain exactly 2 children's except leaf nodes

Complete Binary Trees

All levels are completely filled (except possibly the last level)

And the last level must have nodes as left as possible

Perfect Binary Trees

All internal nodes have 2 children

And all leaf nodes are at same level

A PBT can be a CBT or FBT or both

Degenerate Binary Trees

All internal nodes have only one children

Fill up the array using the level Of the tree from left to right

> How to find the parent child relation From the array representation?

								8
Α	В	C	D	E	F	G	Н	I

If a node is at i^{th} index:

- \rightarrow Left child would be at : (2 * i) + 1
- \rightarrow Right child would be at : (2 * i) + 2

 \rightarrow Parent would be at $\frac{(i-1)}{2}$

	1							
A	В	C	D	E	F	G	Н	I

Tree Traversal

Processing or Reading the data of a node exactly once in some order in a tree.

Inorder: Left Root Right

Preorder: Root Left Right

Postorder: Left Right Root

Inorder Traversal

Inorder: Left Root Right

B D A G E C H F I

Preorder Traversal

Preorder: Root Left Right

Postorder Traversal

Postorder: Left Right Root

D B G	E H	I F	C	A
-------	-----	-----	---	---

Construct Binary Tree

Construct Binary Tree

Left subtree of a node contain values less than that node

Right subtree of a node contain values greater than that node

11 6 8 19 4 10 5 17 43 49 31

BST Complexity

Insertion
Deletion
Searching

```
Best Case \rightarrow 0(1)
Avg. Case \rightarrow 0 (\log n)
Worst Case \rightarrow 0 (n)
```

Deletion: The node you want to delete may have

- 0 Children → Delete that node (Delete 5 and 10)
- 1 Children → Replace the node with its child (Delete 4 or 10)
- 2 Children

Deletion: The node you want to delete may have

Suppose, we want to delete node 11

Suppose, we want to delete node 11

Construct BST

Construct BST

Postorder: 5 17 19 18 16 70 85 60 20 (LRRo)

Inorder: 5 16 17 18 19 20 60 70 85 (L Ro R)

- i. It is a BST
- ii. height of left subtree height of right subtree = $\{1, 0, -1\}$

Balance Factor

AVL tree is a self balancing binary search tree

To balance a binary search tree four situations would arise

Suppose you want to create a BST using $\rightarrow x, y, z$

Suppose you want to create a BST using \rightarrow z, y, x

Suppose you want to create a BST using $\rightarrow x, z, y$

Suppose you want to create a BST using \rightarrow z, x, y

Deletion is same as binary search tree

After every deletion you have to balance the tree

8 7 11 14 17

8 7 11 14 17

Delete 11

8 7 11 14 17

Delete 11

Replace by inorder predecessor or successor

8 7 11 14 17

Delete 11

Replace by inorder predecessor or successor

8 7 11 14 17

8 7 11 14 17

Replace by inorder predecessor or successor

8 7 11 14 17

Replace by inorder predecessor or successor

8 7 11 14 17

AVL Tree Complexity

Insertion
Deletion
Searching

Best Case
$$\rightarrow 0$$
 (log n)
Avg. Case $\rightarrow 0$ (log n)
Worst Case $\rightarrow 0$ (log n)

Search \rightarrow Best Case \rightarrow O(1)

B-Tree

- ✓ Balanced m—way tree
- ✓ A BST in which a node can have more than one key and more than 2 children
- ✓ Maintains stored data
- ✓ All leaf node must be at same level
- ✓ B—tree of order m has following properties
- \checkmark Every node has maximum m children
- \checkmark Min Children \rightarrow
 - ✓ Leaf \rightarrow 0
 - \checkmark Root $\rightarrow 2$
 - ✓ Internal nodes $=\frac{m}{2}$

B-Tree

- ✓ Every node has maximum (m-1) keys
- ✓ Min Keys:
- ✓ Root Node \rightarrow 1
- ✓ All other nodes $\Rightarrow \frac{m}{2} 1 \, 7$

Create a B – tree of order 3 by inserting values from 1 to 10

Create a B – tree of order 5 by inserting values from 1 to 20

Last Split (Self)

Create a B – tree of order 5 with the following set of data D, H, Z, K, B, P, Q, E, A, S, W, T, C, L, N, Y, M

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

Create a B – tree of order 5 with the following set of data D, H, Z, K, B, P, Q, E, A, S, W, T, C, L, N, Y, M

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

Create a B – tree of order 5 with the following set of data D, H, Z, K, B, P, Q, E, A, S, W, T, C, L, N, Y, M

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z S W K P E

Create a B – tree of order 5 with the following set of data D, H, Z, K, B, P, Q, E, A, S, W, T, C, L, N, Y, M

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z \mathbf{M} W \mathbf{H} Q E K

Create a B – tree of order 5 with the following set of data D, H, Z, K, B, P, Q, E, A, S, W, T, C, L, N, Y, M

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

THANK YOU