Introduction to Statistical Machine Learning CSC/DSCC 265/465

<u>Lecture 8</u>: Supervised Learning – Part V

Cantay Caliskan

Notes and updates

Notes and updates

- Average for *PS1* is *92.37*.
 - Names of graders posted on BlackBoard (under 'List of Graders')
- Let me know if you are looking for additional resources
- If you have grading-related questions:
 - List of graders for PS1 have been shared through an announcement
 - Please:
 - Contact your grader first
 - If more clarification is needed, contact our head TA (Jawahar)
 - No need to CC me for grading-related questions
- New deadline for the 3rd Problem Set is Sunday, February 13, 11:59 PROCHESTER

Plan for today

- Bias and Variance
- Cross-Validation
- Multinomial Logistic Regression

Plan for today

- Bias and Variance
- Cross-Validation
- Multinomial Logistic Regression

• Goal: Hit the target!

Fig. 1: Graphical Illustration of bias-<u>variance trade</u>-off , Source: Scott Fortmann-Roe., Understanding Bias-Variance Trade-off

- Idea: Understanding how bias and variance happen can help us manage reducing them
- Error due to bias: Calculated as the difference between the expected prediction of our model and the correct value (=ground truth)
- Error due to variance: The variance shows how much the predictions for a given point vary between different realizations of the model
- Question: When is bias more likely? When is variance more likely to happen?

- There is a <u>trade-off</u>:
- Less complex models (=models with fewer parameters) have high bias and low variance
 - Not accurate but generalizable
- More complex models (=models with more parameters) have low bias and high variance
 - Accurate but <u>not</u> generalizable
- Question: Where is the optimal model?
- Answer: Somewhere in between

Bias and Variance: Which is worse?

- Most data scientists would try to lower bias at the expense of variance
 - Idea: If I am making the prediction sometimes correctly, this is better than getting it wrong all the time
- Answer: Yes and No
 - You can only understand the effects of bias and variance if you realize a model <u>a lot of times</u>
 - In fact: Most people realize a model <u>only once</u>
 - Also: Think about the <u>application</u>
- If you only realize the model once: Long run averages are <u>irrelevant</u>. Bias and variance are equally important.

- Ways to deal with *variance*
 - Running several similar models at once / in parallel
 - Examples: Ensemble methods, Bagging, Random Forest
 - Apply regularization
- Ways to deal with bias
 - Increasing complexity
 - Prefer overfitting over underfitting
 - Known as model selection

Plan for today

- Bias and Variance
- Cross-Validation
- Multinomial Logistic Regression

Cross-Validation

Cross-Validation

- <u>Definition</u>: Different model validation techniques for assessing how the results of a statistical analysis (model) will generalize to an independent data set
- Important: It is not a tool for estimating model coefficients
- Usually used in the context of *prediction*
- Why is it helpful? What is the goal?
 - Helps us to evaluate the quality of the model
 - Helps us to select the model which will perform best on unseen data
 - Helps us to avoid overfitting and underfitting
 - Helps us to have a model that is low on bias and variance

Cross-Validation

■ Idea:

- You have a sample dataset
 - This dataset represents the characteristics in the whole population
- This sample dataset may have some "random" differences from the population data
- Goal: To create an explanatory / predictive algorithm from the sample dataset
 - The algorithm will almost always perform less well when applied on the whole population
 - Why? Because of random error ...
- You do cross-validation -> To check the amount of error resulting from the random errors

Cross-Validation Strategies

- 1. Train / Test split
- 2. K-fold cross-validation
- 3. Leave one group out
- 4. Stratification

Train / Test Split

- Train / Test Split
 - Number of groups: 2
 - We split the data into two sets: Training and test data
 - Samples between train and test data sets do not overlap
 - Important not to have duplicate samples in our dataset

Train / Test Split

- Train / Test Split (or Holdout)
 - Disadvantage:
 - What if the train / test split isn't random
 - This will result in overfitting
- A good choice, if we have enough data
- Implementation in **Python**:
 sklearn.model_selection.train_test_split

Pseudocode

- How should we go forward?
- 1) Split the data into training test and validation datasets
- Find a set of parameters that you think would work well with the model
- 3) Run the model by using a cost function
- 4) Check the cost value obtained from the test dataset
- 5) Report the cost value

K-fold cross-validation (#groups = k)

- Removing a part of the dataset for validation means:
 - Risk of underestimating the amount of overfitting
- Reducing the size of the training data means:
 - Risk of overestimating the amount of underfitting
- Solution: K-fold cross-validation
 - Provides ample data for training the model
 - Leaves a lot of data for validation
- Idea: repeated holdout, and average scores after K different holdouts

K-fold cross-validation (#groups = k)

- A good choice when we have:
 - Low amount of data / small data set
 - When the choice of optimal parameters are greatly different between folds

- As a general rule, we choose **k=5** or **k=10** ...
- Implementation in **Python**:

sklearn.model selection.KFold

Pseudocode (when we have #k folds)

- What is difference here?
- 1) Split the data into training and test datasets
- Find a set of parameters that you think would work well with the model
- 3) Place the parameters in a loop structure
- 4) Place the folds in a nested loop structure. Create training and validation datasets from each fold
- 5) Fit the model in each smaller training dataset
- 6) Report the **cost** for the test dataset for **each fold**
- 7) Report the average cost at the end

Leave one out (#groups = len(train)) - LOOCV

- It is a special case of K-fold when K is equal to the number of samples in our data set
 - We will iterate through every sample in our dataset each time each time using k-1 object as train samples and 1 object as test set

iteration 1/N:	
iteration 2/N:	
iteration 3/N:	
	:
iteration N/N:	

Leave one out (#groups = len(train)) - LOOCV

- Useful, when:
 - We have too little data
 - And the model is fast enough to retrain
- Implementation in **Python**:
 - sklearn.model_selection.LeaveOneOut

	✓ total samples →
iteration 1/N:	
iteration 2/N:	
	ГШ
iteration 3/N:	
	•
	:
iteration N/N:	

Stratification / Stratified Cross-Validation

- Also called "Stratified k-fold Cross-Validation"
- Reminder: Stratification OR stratified sampling
 - Process of dividing members of population into homogenous subgroups before sampling
- Idea: We re-arrange the data in a way that each fold has a good representation of the whole dataset
 - <u>Stratification</u> forces each fold to have at least some number instances (let's call this *m*) of each class
 - Ensures that one class of data is not overrepresented especially when the target variable is unbalanced

Example: Stratification

- In a binary classification problem, we want to make sure that each fold has enough number of observations from each class
- Example: Titanic Survivors (!)
 - Survived or not survived

■ In a potential *k-fold* stratification, each fold needs to have passengers

of both sorts

Time series cross-validation

- Splitting time series data randomly is a bad idea:
 - Because of the time dimension
- Solution: Use each group of data created at time t as the training set for each group of data created at time t+1

D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9

Time series cross-validation

- We start using smaller training datasets, and make them grow as we go forward ...
- This ensures that we consider the time series aspect of the data for prediction

D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	D2	D3	D4	D5	D6	D7	D8	D9

Which kind of cross validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave- one-out	expensive	doesn't waste data
10-fold	wastes 10% of the data,10 times more expensive than test set	only wastes 10%, only 10 times more expensive instead of n times
3-fold	wastes more data than 10- fold, more expensive than test set	slightly better than test-set
N-fold	Identical to Le	eave-one-out

Training, Test, Validation Split Ratio

- The <u>split ratio</u> depends on a few factors:
 - The total number of samples in your data
 - The actual model you are training
- Usual practice:
 - Split by 70% by 30% or 80% by 20%
 - The <u>larger set</u> is the training set
 - And then (you may) choose a validation set from the training set

Evaluating the model performance

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error (MAPE)

■ These are all cost functions ©

Evaluating the accuracy

- We need to understand how well the models give the correct classification
 - And then measure the value of prediction
- This brings us to *confusion matrix* ...
- Confusion matrix visualizes the performance of an algorithm by showing true positives, false positives, true negatives, and false negatives

Confusion matrix

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

Actual Values

Positive (1) Negative (0)

d Values	Positive (1)	TP	FP
Predicted	Negative (0)	FN	TN

Goal (usually): Look for a balance between sensitivity and specificity

Confusion matrix

Confusion Matrix		Targ	get			
		1	0			
Logit	1	261	64	Positive Predictive Value		
Logic	0	81	485	Negative Predictive Value		
-		Sensitivity	Specificity	Accuracy=		
		0.763157895	0.88342441			

Titanic Survivors

- Harder to be accurate with higher number of classes
- Goal: Always look for a balance in misclassifications

					Predi	cted L	abels.				
	35	0	1	2	3	4	5	6	7	8	9
	0	987	1	2	0	0	0	2	0	7	1
	1	0	977	7	2	3	2	0	2	6	1
	2	2	3	976	4	4	0	1	4	6	0
	3	0	1	18	951	0	14	0	3	9	4
True Labels	4	0	1	2	0	979	0	2	0	3	13
Labels	5	3	0	3	9	5	968	2	0	5	5
	6	1	3	2	0	0	7	982	0	5	0
	7	3	4	3	0	13	0	0	969	0	8
	8	2	6	4	7	3	5	2	3	966	2
	9	1	1	2	6	12	2	0	8	5	963

MNIST Hand-written Digits

Even better: F1

- If we are looking for "some kind of" balance between sensitivity and specifity:
 - We can use the F1 score
 - Also called F-score or F-measure
- Formally: Harmonic mean of precision and recall

$$F1 = \frac{2TP}{2TP + FP + FN}$$

Reminders

- Please work on the problem set
- Read **Chapter 12**

