$O\Pi$ «Политология», 2023-24

Введение в ТВиМС

Квантили нормального распределения (памятка)

А. А. Макаров, А. А. Тамбовцева

Напоминание: квантиль уровня p — такое значение случайной величины, которое все остальные значения этой величины не превышают с вероятностью p. Другими словами, квантиль уровня p — это значение x_p случайной величины X, для которого выполняется следующее равенство:

$$P(X \leqslant x_n) = p.$$

При нахождении квантиля мы решаем обратную задачу — вместо поиска вероятности попадания в какой-то отрезок мы ищем значение, при достижении которого «накапливается» вероятность p. Например, если нас интересует квантиль уровня 0.7, мы ищем такое значение случайной величины X, которое «отсекает» 70% значений случайной величины, если мы упорядочим их по возрастанию.

Задача 1. Случайная величина Z имеет стандартное нормальное распределение. Найти $z_{0.7422}$, квантиль уровня 0.7422.

Решение.

$$P(Z \leqslant z_{0.7422}) = 0.7422$$

По определению функции распределения случайной величины левую часть равенства можно переписать так (Φ – функция распределения стандартной нормальной величины):

$$\Phi(z_{0.7422}) = 0.7422$$

В отличие от задач, где мы вычисляем вероятность, используя таблицу со значениями Φ в разных точках, здесь мы должны выполнить обратное действие — найти внутри таблицы значение 0.7422 и по нему «восстановить» значение z по строкам и столбцам. Значение 0.7422 находится на пересечении строки 0.6 и столбца 0.05, отсюда получаем ответ:

$$z_{0.7422} = 0.65$$

Квантиль уровня 0.7422 найден, это 0.65.

Задача 2. Случайная величина Z имеет стандартное нормальное распределение. Найти $z_{0.68}$, квантиль уровня 0.68.

Решение. В таблице стандартного нормального распределения среди вероятностей нет значения 0.68, поэтому возьмём ближайшее 0.6808. Итого:

$$z_{0.68} \approx z_{0.6808} = 0.47$$

Задача 3. Случайная величина Z имеет стандартное нормальное распределение. Найти $z_{0.32}$, квантиль уровня 0.32.

Решение.

$$P(Z \leqslant z_{0.32}) = 0.32$$
$$\Phi(z_{0.32}) = 0.32$$

Если мы посмотрим в таблицу, значения 0.32 среди вероятностей мы не обнаружим, все начинается с 0.5. Как быть? Воспользоваться свойством:

$$z_p = -z_{1-p},$$
если $p < 0.5$

$$z_{0.32} = -z_{1-0.32} = -z_{0.68} = -0.47$$

Откуда вытекает это свойство? Из симметрии плотности стандартного нормального распределения относительно 0.

Представим себе график плотности распределения Z и подумаем где на нём располагается квантиль уровня 0.32. Точное расположение на глаз мы не определим, но однозначно можно сказать, что значение лежит слева от 0, поскольку 0 является медианой распределения, т.е. квантилем уровня 0.5, а нас интересует квантиль меньшего уровня.

Получается, что $z_{0.32}$ отрицательно. При этом площадь под графиком плотности слева от него равна 0.32. Давайте отразим график относительно вертикальной оси Z=0 и найдем значение Z, площадь справа от которого будет равна 0.32.

Несложно догадаться, что это будет $z_{0.68}$, квантиль уровня 1-0.32=0.68. В итоге получаем следующее:

$$z_{0.32} = -z_{0.68} = -0.47$$

Примечание: Такой алгоритм подходит для нахождения квантилей стандартного нормального распределения уровня менее 0.5, то есть при уровне p < 0.5 квантиль уровня p считается так: $z_p = -z_{1-p}$.

Задача 4. Случайная величина X имеет нормальное распределение $N(2, \sigma^2 = 9)$. Найти $x_{0.64}$, квантиль уровня 0.64.

Решение.

$$P(X \le x_{0.64}) = 0.64$$

Здесь мы уже работаем с произвольной нормальной величиной, не стандартной нормальной. Поэтому, чтобы действовать дальше по известному нам алгоритму, мы должны перейти к величине Z – учесть, что $X = Z\sigma + a$:

$$P(Z \le z_{0.64}) = 0.64$$

$$x_{0.64} = z_{0.64} \cdot \sigma + a$$

Подставляем σ и a из условия:

$$x_{0.64} = z_{0.64} \cdot 3 + 2$$

Находим $z_{0.64}$ по знакомой схеме и подставляем его в выражение выше:

$$x_{0.64} = 0.36 \cdot 3 + 2 = 3.08.$$

Итак, квантиль уровня 0.64 для X равен 3.08.

Задача 5. Случайная величина X имеет нормальное распределение $N(2,\sigma^2=9)$. Найти $x_{0.3}$, квантиль уровня 0.3.

Решение.

$$P(X \le x_{0.3}) = 0.3$$

$$x_{0.3} = z_{0.3} \times \sigma + a$$

$$x_{0.3} = z_{0.3} \times 3 + 2$$

$$z_{0.3} = -z_{0.7} = -0.52$$

Подставляем:

$$x_{0.3} = (-0.52) \times 3 + 2 = 0.44$$