Foundation Algebra (CELEN036)

Problem Sheet 5

Topics: Polynomial Factorisation

Topic 1: Remainder and factor theorems

- 1. Find all values of k for which (x-1) is a factor of the polynomial $p(x)=k^2x^3-7kx+10$.
- 2. Find constants a and b such that $ax^3-bx^2+45x+54=0$ has a root 3, and yields a remainder of 12 when divided by (x+1).
- 3. Find the value(s) of k such that $\left(x+\frac{k}{2}\right)$ and (x+2k) are factors of $x^2+\left(\frac{15}{2}\right)x+9$.

Topic 2: Methods of long division and synthetic division

4. Find the quotient q(x) and the remainder r(x) that result when p(x) is divided by s(x).

(i)
$$p(x) = x^4 + 3x^3 - 5x + 10$$
 ; $s(x) = x^2 - x + 2$

$$s(x) = x^2 - x + 2$$

(ii)
$$p(x) = 6x^4 + 10x^2 + 5$$
 ; $s(x) = 3x^2 - 1$

$$s(x) = 3x^2 - 1$$

(iii)
$$p(x) = x^5 + x^3 + 1$$

$$; s(x) = x^2 + x$$

(iv)
$$p(x) = 2x^4 - 3x^3 + 5x^2 + 2x + 7$$
 ; $s(x) = x^2 - x + 1$

$$s(x) = x^2 - x + 1$$

(v)
$$p(x) = 2x^5 + 5x^4 - 4x^3 + 8x^2 + 1$$
 ; $s(x) = 2x^2 - x + 1$

$$s(x) = 2x^2 - x + 1$$

(vi)
$$p(x) = 5x^6 + 4x^2 + 5$$

$$s(x) = x^3 + 1$$

5. Use the method of synthetic division to find the quotient q(x) and the remainder r(x) that result when p(x) is divided by s(x).

(i)
$$p(x) = 3x^3 - 4x - 1$$
 ; $s(x) = x - 2$

(ii)
$$p(x) = x^4 - 5x^2 + 4$$
 ; $s(x) = x + 5$

(iii)
$$p(x) = x^5 - 1$$
 ; $s(x) = x - 1$

(iv)
$$p(x) = 2x^3 - x^2 - 2x + 1$$
 ; $s(x) = x - 1$

(v)
$$p(x) = 2x^4 + 3x^3 - 17x^2 - 27x - 9$$
; $s(x) = x + 4$

(vi)
$$p(x) = x^7 + 1$$
 ; $s(x) = x - 1$

6. Given $p_1(x)=x^3+4x^2+x-6$ and $p_2(x)=x^5-1$. Find a polynomial q(x) and a constant r such that:

(i)
$$p_1(x) = (x-2)q(x) + r$$
 (ii) $p_1(x) = (x+1)q(x) + r$

(iii)
$$p_2(x) = (x+1)q(x) + r$$
 (vi) $p_2(x) = (x-1)q(x) + r$

7. Use the method of synthetic division to show that $\left(x-3\right)$ is a factor of

$$x^3 - 5x^2 + 2x^2y + xy^2 - 8xy - 3y^2 + 6x + 6y$$

Topic 3: Polynomial factorisation and solving

8. Factorize the following polynomials completely:

(i)
$$p(x) = x^3 - 2x^2 - x + 2$$
 (ii) $p(x) = x^4 + 10x^3 + 36x^2 + 54x + 27$

(iii)
$$p(x) = 3x^3 + x^2 - 12x - 4$$
 (iv) $p(x) = x^5 + 4x^4 - 4x^3 - 34x^2 - 45x - 18$

9. Factorize the following polynomials and solve p(x) = 0 for $x \in \mathbb{R}$ in each case.

(i)
$$p(x) = x^3 - x^2 - 10x - 8$$
 (ii) $p(x) = x^3 - x^2 - 16x - 20$

(iii)
$$p(x) = x^3 + 4x^2 - 8$$
 (iv) $p(x) = 2x^3 - 3x^2 - 11x + 6$

Answers

1.
$$k = 2 \text{ or } 5$$

2.
$$a = -6$$
, $b = 3$

3.
$$k = 3$$

4. (i)
$$q(x) = x^2 + 4x + 2$$
, $r(x) = -11x + 6$

(ii)
$$q(x) = 2x^2 + 4$$
, $r(x) = 9$

(iii)
$$q(x) = x^3 - x^2 + 2x - 2$$
, $r(x) = 2x + 1$

(iv)
$$q(x) = 2x^2 - x + 2$$
, $r(x) = 5x + 5$

(v)
$$q(x) = x^3 + 3x^2 - x + 2$$
, $r(x) = 3x - 1$

(vi)
$$q(x) = 5x^3 - 5$$
, $r(x) = 4x^2 + 10$

5. (i)
$$q(x) = 3x^2 + 6x + 8$$
, $r(x) = 15$

(ii)
$$q(x) = x^3 - 5x^2 + 20x - 100, r(x) = 504$$

(iii)
$$q(x) = x^4 + x^3 + x^2 + x + 1, r(x) = 0$$

(iv)
$$q(x) = 2x^2 + x - 1$$
, $r(x) = 0$

(v)
$$q(x) = 2x^3 - 5x^2 + 3x - 39, r(x) = 147$$

(vi)
$$q(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, r(x) = 2$$

6. (i)
$$q(x) = x^2 + 6x + 13, r = 20$$

(ii)
$$q(x) = x^2 + 3x - 2, r = -4$$

(iii)
$$q(x) = x^4 - x^3 + x^2 - x + 1, r = -2$$

(iv)
$$q(x) = x^4 + x^3 + x^2 + x + 1, r = 0$$

8. (i)
$$(x-1)(x+1)(x-2)$$

(ii)
$$(x+1)(x+3)^3$$

(iii)
$$(x-2)(x+2)(3x+1)$$

(iv)
$$(x+1)^2(x+2)(x+3)(x-3)$$

9. (i)
$$-1$$
 or -2 or 4

(iii)
$$-2 \text{ or } -1 \pm \sqrt{5}$$

(ii)
$$-2 \text{ or } 5$$

(iv)
$$-2 \text{ or } \frac{1}{2} \text{ or } 3$$