Appendice A

Componenti e connessione locale

Consideriamo uno spazio topologico X. Esiste un modo naturale per scrivere lo spazio come unione di sottospazi connessi e connessi per archi. Cominciamo con i connessi. Diremo che due punti x e y di X sono equivalenti se esiste un sottospazio connesso di X che contiene x e y. La riflessività e la simmetria di questa relazione sono immediate. La transitività segue dal fatto che se A è un sottospazio di X che contiene x e y e B un sottospazio che contiene y e z allora $A \cup B$ è un sottospazio connesso (unione di due connessi A e B con il punto y in comune) che contiene x e z. Usando il fatto che la chiusura di un sottospazio connesso è ancora connesso e che l'unione di connessi con un punto in comune è connesso non è difficile dimostrare il seguente:

Teorema A.0.1 Le componenti connesse di X sono sottospazi connessi, chiusi e disgiunti di X che ricoprono X. Ogni connesso è contenuto in una e una sola componente connessa. Inoltre la cardinalità delle componenti connesse è un invariante topologico.

Se la cardinalità delle componenti connesse è finita allora ogni componente connessa è un sottoinsieme aperto (oltre che chiuso) di X. Infatti in questo caso una componente connessa e il complementare del chiuso ottenuto come unione finita delle altre componenti connesse. Ma in generale una componente connessa non è aperta. Si pensi, ad esempio, alle componenti connesse di \mathbb{Q} . In questo caso le componenti connesse sono i singoli punti che non sono aperti di \mathbb{Q} .

Veniamo ora ai connessi per archi. Diremo che due punti x e y di X sono equivalenti se esiste un arco in X che congiunge x con y. La riflessività si ottiene usando l'arco costante, la simmetria usando l'arco i(f) associato a f e la transitività usando la concatenazione tra archi. Le classi di equivalenza rispetto a questa relazione sono chiamate componenti connesse per archi di X.

Si ha il seguente la cui dimostrazione è lasciata per eserczio.

Teorema A.0.2 Le componenti connesse per archi di X sono sottospazi connessi per archi e disgiunti di X che ricoprono X. Ogni sottospazio connesso per archi è contenuto in una e una sola componente connessa per archi. Inoltre la cardinalità delle componenti connesse per archi è un invariante topologico.

Le componenti connesse per archi di uno spazio X non sono in generale aperte oppure chiuse. Consideriamo per esempio lo spazio X unione della pulce e del pettine. In questo caso si ha solo una componente connessa mentre le componenti connesse per archi sono due una è costituita dalla pulce che è chiusa ma non aperta e l'altra dal pettine che è aperto ma non chiuso. Esistono spazi dove le componenti connesse per archi non sono ne aperte ne chiuse (non ne parleremo).

Sia x un punto di uno spazio topologico X. Diremo che X è localmente connesso in x se per ogni intorno U di x esiste un intorno connesso V di x contenuto in U. Se X è localmente connesso in ogni suo punto diremo che X e localmente connesso. Analogamente X è localmente connesso per archi in x se per ogni intorno x di x esiste un intorno connesso per archi x di x contenuto in x. Se x è localmente connesso per archi in ogni suo punto diremo che x è localmente connesso per archi. Dal momento che uno spazio connesso per archi è anche connesso segu che uno spazio localmente connesso per archi è localmente connesso. Esistono spazi localmente connessi ma non localmente connessi per archi (non ne parleremo). Osserviamo che una varietà topologica (o più in generale uno spazio localmente euclideo) è localmente connessa per archi.

Osservazione A.0.3 Non esiste nessun legame tra la locale connessione e la connessione oppure tra la locale connessione per archi e la connessione per archi. Per esempio l'unione di due intervalli connessi e disgiunti di \mathbb{R} non è un connesso ma è localmente connesso. Lo stesso esempio non è connesso per archi ma localmente connesso per archi. Un esempio di spazio connesso per archi ma non localmente connesso per archi si ottiene prendendo la pulce e il pettine compreso il segmento verticale che unisce l'origine con la pulce. Quest'esempio non è localmente connesso per archi in nessun punto.

Teorema A.0.4 Sia X uno spazio topologico localmente connesso per archi. Allora le componenti connesse per archi di X sono aperte e coincidono con le componenti connesse di X. In particolare uno spazio connesso e localmente connesso per archi è connesso per archi.

Dimostrazione: Sia A una componente connessa per archi di X diversa dal vuoto. Vogliamo mostrare che A è aperto. Sia $x \in A$ e sia V un intorno aperto di x connesso per archi (che esiste perché X è localmente connesso per archi in x). Allora $V \subset A$ altrimenti $V \cup A$ sarebbe un connesso per archi che contiene A. Questo mostra che x è un punto interno di A e quindi A è aperto. Ma allora A è anche chiuso in quanto complementare dell'unione delle componenti connesse per archi diverse da A. Sia C una componente connessa di X. Esisterà quindi una componente connessa per archi A di X tale che $A \cap C \neq \emptyset$. Quindi $A \cap C$ è un sottoinsieme non vuoto sia aperto che chiuso di C; essendo C connesso $A \cap C = C$ ossia $C \subset A$. D'altra parte $A \subset C$ (altrimenti $A \cup C$ sarebbe un connesso che contiene C). Concludiamo che A = C quello che si voleva dimostrare.

Diremo che uno spazio X è localmente semplicemente connesso se per ogni punto $x \in X$ per ogni intorno U di x esiste un intorno V di x semplicemente connesso tale che $V \subset U$. Si verifica facilmente che ogni spazio localmente euclideo è localmente semplicemente connesso e che uno spazio localmente semplicemente connesso è localmente connesso per archi.

Appendice B

Spazi localmente compatti

discobordosfera Uno spazio topologico X è localmente compatto se ogni suo punto possiede un intorno compatto, ossia per ogni $x \in X$ esiste un compatto $K \subset X$, $x \in K$ e un aperto U tale che $x \in U \subset K$. I seguenti fatti sono di facile verifica e sono lasciati come esercizio per lo studente.

- ogni varietà topologica è localmente compatta.
- ogni spazio topologico compatto è localmente compatto.
- il prodotto di due spazi localmente compatti è localmente compatto.
- se $f: X \to Y$ è un'applicazione continua, aperta e suriettiva (un'identificazione aperta) e X è localmente compatto allora Y è localmente compatto. In particolare la locale ompattezza è una proprietà topologica.
- Gli insiemi dei numeri razionali non è localmente compatto.

Teorema B.0.5 Uno spazio topologico X è localmente compatto e di Hausdorff se e solo se esiste uno spazio topologico X^{∞} che soddisfa le condizioni seguenti:

- a) $X \stackrel{.}{e} un \ sottospazio \ di \ X^{\infty};$
- b) $X^{\infty} \setminus X$ è un solo punto;
- c) X^{∞} è uno spazio compatto e di Hausdorff.

Inoltre se X^{∞} e \tilde{X}^{∞} sono due spazi topologici che soddisfano le condizioni a), b), c), allora esiste un omeomorfismo da X^{∞} a \tilde{X}^{∞} che è uguale all'identità ristretto a X.

Dimostrazione: Dimostriamo prima l'ultima parte del teorema. Definiamo un'applicazione $f: X^{\infty} \to \tilde{X}^{\infty}$ che porta il punto $\infty := X^{\infty} \setminus X$ nel punto $\tilde{\infty} := \tilde{X}^{\infty} \setminus X$ e che sia l'identità su X. Vogliamo dimostrare che f è un omeomorfismo. Per fare questo sarà sufficiente far vedere che f è aperta (per simmetria infatti lo sarà anche f^{-1}). Sia U un aperto di X^{∞} . Se $\infty \notin U$ allora f(U) = U. Siccome U è aperto in X^{∞} e $U \subset X$ allora $U = U \cap X$ è aperto in X. Siccome X è aperto anche in \tilde{X}^{∞} , l'insieme U è aperto in \tilde{X}^{∞} . Supponiamo che invece $\infty \in U$. Siccome $K = X^{\infty} \setminus U$ è chiuso in X^{∞} allora è compatto in X^{∞} . Dal momento che K è contenuto in X allora K è un compatto di X. Ma allora K è anche un compatto di \tilde{X}^{∞} e quindi chiuso in \tilde{X}^{∞} . Allora $f(U) = \tilde{X}^{\infty} \setminus K$ è aperto in \tilde{X}^{∞} .

Mostriamo ora che se X^{∞} è uno spazio topologico che soddisfa le condizioni a), b), c) allora X è localmente compatto e di Hausodorff. Il fatto che X sia di Hausdorff segue dal fatto che X è un sottospazio di X^{∞} che è di Hausdorff. Dato $x \in X$ mostriamo ora che X è localmente compatto in x. Denotiamo con ∞ il punto $X^{\infty} \setminus X$ dato da b). Dal momento che X^{∞} è di Hausdorff esistono due aperti disgiunti U e V di X^{∞} che contengono rispettivamente il punto x e il punto ∞ . Allora $K = X^{\infty} \setminus V$ è un chiuso di X^{∞} e quindi compatto in quanto X^{∞} è compatto. Ma K è un sottoinsieme di X e quindi è compatto anche in X. Inoltre $x \in U \subset K$, e quindi K è un intorno compatto di x e quindi X è localmente compatto in x.

Supponiamo ora che X sia uno spazio topologico localmente compatto e di Hausdorff e costruiamo uno spazio X^{∞} che soddisfa le condizioni a), b) e c). Sia ∞ un punto qualsiasi che non appartiene a X e poniamo $X^{\infty} := X \cup \{\infty\}$. Definiamo una topologia su X^{∞} come la famiglia dei sottoinsiemi di X^{∞} costituita da (1) tutti i sottoinsiemi U aperti di X e (2) da tutti gli insiemi della forma $X^{\infty} \setminus K$, dove K è un sottoinsieme compatto di X. La verifica che si tratta effettivamente di una topologia è lasciata allo studente. Mostriamo ora che X è un sottospazio di X^{∞} cioè un insieme U è aperto in X se e solo se esiste un aperto V di X^{∞} tale che $U = X \cap V$. Se l' aperto di X^{∞} è di tipo (1) allora $U = X \cap U$ che è aperto in X. Mentre se l'aperto di X^{∞} è di tipo (2), cioè della forma $X^{\infty} \setminus K$ con K compatto di X, allora $(X^{\infty} \setminus K) \cap X = X \setminus K$ che è aperto in X (complementare del chiuso K).

Mostriamo ora che X^{∞} è compatto. Sia \mathcal{U} un ricoprimento aperto di X^{∞} . La famiglia \mathcal{U} deve contenere un aperto di tipo (2), $X^{\infty} \setminus K$ perché gli insiemi aperti di tipo (1) non contengono il punto ∞ . Si consideri la famiglia di tutti gli elementi di \mathcal{U} escluso l'aperto $X^{\infty} \setminus K$ e intersechiamo questi elementi con X. Otteniamo così una famiglia di aperti di X che ricopre K. Essendo K compatto

un numero finito di questi elementi ricopre K. Questi elementi insieme a $X^{\infty} \setminus K$ costituiscono un sottoricoprimento di X^{∞} .

Mostriamo che X^{∞} è di Hausdorff . Siano x e y due punti distinti di X^{∞} . Se entrambi stanno in X allora esistono due aperti di X (e quindi di X^{∞}) disgiunti U e V contenenti rispettivamente x e y. Se $x \in X$ e $y = \infty$. Sia U un aperto di X e K un sottoinsieme compatto di X tali che $x \in U \subset K$ (qui si sfrutta il fatto che X è localmente compatto). Allora U e $X^{\infty} \setminus K$ sono due aperti disgiunti che contengono x e ∞ rispettivamente.

B.0.1 Altre proprietà degli spazi localmente compatti

La definizione di spazio localmente compatto non è una proprietà locale. Di solito uno spazio X soddisfa una data proprietà "localmente" se ogni $x \in X$ ammette un intorno "arbitrariamente piccolo" che soddisfa la proprietà. La definizione di compattezza locale non ha a che fare con il concetto di "arbitrariamente piccolo". Se però X è di Hausdorff abbiamo una loro caratterizzazione "locale".

Teorema B.0.6 Sia X uno spazio di Hausdorff. Allora X è localmente compatto se e solo se per ogni $x \in X$ e per ogni aperto U contenente x esiste un aperto V contente x tale che \overline{V} è compatto e $\overline{V} \subset U$.

Dimostrazione: Se è soddisfatta la condizione del teorema allora X è localmente compatto. Infatti dato $x \in X$ e l'aperto U = X basta definire $K = \overline{V}$ (dove V è l'aperto tale che $x \in V \subset \overline{V} \subset X$). Viceversa sia X localmente compatto. Sia $x \in X$ e U un aperto di X che contiene x. Sia X^{∞} come nel Teorema B.0.5 e sia $K = X^{\infty} \setminus U$. Allora K è un chiuso in X^{∞} e quindi compatto in X^{∞} . Siccome due compatti disgiunti in uno spazio di Hausdorff possono essere separati da aperti (si veda il corso di topologia generale) esistono due aperti disgiunti V e V che contengono rispettivamente V e V che contengono rispettivamente V e V che quindi V e V e di perché?) V e V e quindi V e V e Quindi V e V e Deduciamo che V c V e un compatto di V tale che V e V c V e V c V e un compatto di V tale che V e V

Gli spazi topologici "fatti bene" sono gli spazi metrizzabili e gli spazi compatti e di Hausdorff. Inoltre ogni sottospazio di uno spazio metrizzabile è metrizzabile ma in generale un sottoinsieme di uno spazio compatto e di Hausdorff (pur essendo di Hausdorff) non è compatto. Se il sottoinsieme è chiuso allora è compatto. Ma se il sottoinsieme è aperto questo non è vero. Per gil spazi localmente compatti e di Hausdorff questo è vero.

Corollario B.0.7 Sia X uno spazio localmente compatto e di Hausdorff e sia C (risp. A) un sottoinsieme chiuso (risp. aperto) di X. Allora C (risp. A) è localmente compatto.

Dimostrazione: Sia $x \in C$ e siano U e K un aperto e sottospazio compatto di X tali che $x \in U \subset K$. Allora $K \cap C$ è chiuso in K e quindi compatto e contiene l'aperto $U \cap C$ che contiene x (qui non abbiamo usato la condizione di Hausdorff). Sia $x \in A$. Per il Teorema B.0.6 esiste un aperto V contente x tale che \overline{V} è compatto e $\overline{V} \subset A$. Allora $K = \overline{V}$ è un sottoinsieme compatto di A tale che $x \in V \subset K$.

Il corollario seguente mostra che la condizione che caratterizza gli aperti degli spazi compatti e di Hausdorff è quella di spazio localmente compatto e di Hausdorff.

Corollario B.0.8 Uno spazio topologico X è omeomorfo ad un sottoinsieme aperto di uno spazio compatto e di Hausdorff se e solo se X è localmente compatto e di Hausdorff.

Dimostrazione: Se X è localmente compatto e di Hausdorff allora X è un aperto dello spazio compatto e di Hausdorff X^{∞} (dove X^{∞} è data dal Teorema B.0.5). Viceversa se X è omeomorfo ad un aperto di uno spazio compatto e di Hausdorff allora è localmente compatto e di Hausdorff per il Corollario B.0.7. \square

B.0.2 Compattificazioni di Alexandrov

Nel Teorema B.0.5 se X è compatto allora lo spazio X^{∞} non è molto interessante: è semplicemente X al quale è stato aggiunto un punto isolato ∞ (infatti in questo caso $\{\infty\}$ è un aperto di X^{∞} in quanto complementare del chiuso X). Se invece X non è compatto allora il punto $\infty = X^{\infty} \setminus X$ è un punto di accumulazione di X. Infatti un aperto di X^{∞} che contiene ∞ è della forma $X^{\infty} \setminus K$ con K compatto di X il quale interseca X in un punto diverso ∞ in quanto $X \setminus K \neq \emptyset$ (altrimenti X sarebbe uguale a K e quindi compatto). Segue allora che X è denso in X^{∞} , cioè $\overline{X} = X^{\infty}$. Se X^{∞} è uno spazio compatto e di Hausdorff e X è un sottospazio proprio tale che $X^{\infty} \setminus X$ sia un solo punto allora X^{∞} è chiamata la compattificazione di Alexandrov (o con un punto) di X. Il Teorema B.0.5 mostra che esiste una compattificazione di Alexandrov di uno spazio X se e solo se X è localmente compatto e di Hausdorff. Notiamo anche che la compattificazione di Alexandrov X^{∞} di X è univocamente determinata a meno di omeomorfismi come segue dall'ultima parte del Teorema B.0.5.

Esempio B.0.9 La sfera n-dimensionale S^n è la compattificazione di Alexandrov di \mathbb{R}^n . Infatti usando la proiezione stereografica \mathbb{R}^n è omeomorfo a $S^n \setminus N$, dove N è il polo nord.

Proposizione B.0.10 Sia X uno spazio compatto e di Hausdorff e $U \subset X$ un sottoinsieme aperto. Allora

 $U^{\infty} \cong \frac{X}{X \setminus U},$

dove U^{∞} è la compattificazione di Alexandriov di U (la quale esiste perché U è localmente compatto e di Hausodorff per il Corollario B.0.7).

Lemma B.0.11 Siano X e Y spazi topologici, X compatto e di Hausdorff. Sia $\pi: X \to Y$ un'applicazione suriettiva e chiusa. Allora Y è compatto e di Hausdorff.

Dimostrazione: Lo spazio topologico Y è compatto in quanto immagine del compatto X tramite l'applicazione continua π . Per dimostrare che Y è di Hausdorff siano y_1 e y_2 due punti distinti di Y. Allora esistono due punti x_1 e x_2 in X tali che $y_1 = \pi(x_1)$ e $y_2 = \pi(x_2)$. Siccome X è di Hausdorff i suoi punti sono chiusi e qundi y_1 e y_2 sono chiusi essendo l'immagine di due chiusi x_1 e x_2 tramite π che è chiusa. Il fatto che π sia un'identificazione implica che $\pi^{-1}(y_1)$ e $\pi^{-1}(y_2)$ sono due chiusi disgiunti di X. Essendo X compatto e di Hausdorff allora X è normale (si veda il corso di topologia generale). Quindi esistono due aperti disgiunti U_1 e U_2 di X tali che $\pi^{-1}(y_1) \subset U_1$ e $\pi^{-1}(y_2) \subset U_2$. Poiché π è chiusa $\pi(X \setminus U_1)$ e $\pi(X \setminus U_2)$ sono due chiusi in Y tali che $y_i \notin \pi(X \setminus U_j)$, j=1,2. Segue che $W_1 = Y \setminus \pi(X \setminus U_1)$ e $W_2 = Y \setminus \pi(X \setminus U_2)$ sono due aperti di Y che contengono rispettivamente y_1 e y_2 . Resta da far vedere che $W_1 \cap W_2 = \emptyset$. Supponiamo per assurdo che esista $y \in W_1 \cap W_2 = Y \setminus (\pi(X \setminus U_1) \cup \pi(X \setminus U_2))$. Allora $y \notin \pi(X \setminus U_1) \cup \pi(X \setminus U_2)$. Segue che $\pi^{-1}(y) \cap (X \setminus U_j) = \emptyset$, j=1,2, quindi $\pi^{-1}(y) \subset U_1 \cap U_2 = \emptyset$, che è assurdo.

Osservazione B.0.12 Ricordiamo che se X è compatto e Y è di Hausdorff allora un'applicazione continua $\pi:X\to Y$ è chiusa.

Dimostrazione della Proposizione B.0.10: Sia $f: U^{\infty} \to \frac{X}{X \setminus U}$ definita da $f(\infty) = \pi(X \setminus U), \ f(u) = \pi(u), \forall u \in U, \text{ dove } \pi: X \to \frac{X}{X \setminus U}$ è la proiezione sul quoziente.

Vogliamo dimostrare che f è continua. (f poi sarà un omeomorfismo essendo un'applicazione bigettiva dallo spazio compatto U^{∞} allo spazio di Hausodrff $\frac{X}{X\setminus U}$. Il fatto che $\frac{X}{X\setminus U}$ sia (compatto e) di Hausdorff segue dal lemma precedente.

Infatti si verifica facilmente che l'applicazione $\pi: X \to \frac{X}{X \setminus U}$ è chiusa. Sia A un sottoinsieme aperto di $\frac{X}{X \setminus U}$. Indichiamo con $q = \pi(X \setminus U)$ il punto in $\frac{X}{X \setminus U}$. Distinguiamo due casi:

- 1. $q \notin A$ allora $f^{-1}(A) = \pi^{-1}(A)$ che è aperto in quanto π è continua.
- 2. $q \in A$ allora

$$X \setminus U \subset \pi^{-1}(A)$$
. (B.1)

Osserviamo che:

$$f^{-1}(A) = f^{-1}(A \setminus q) \cup f^{-1}(q) = \pi^{-1}(A \setminus q) \cup \{\infty\} = U^{\infty} \setminus K$$

dove $K = U \setminus \pi^{-1}(A \setminus q)$. Resta quindi da dimostrare che K è compatto in U. Dal momento che

$$\pi^{-1}(A \setminus q) = \pi^{-1}(A) \setminus (X \setminus U)$$

si ottiene

$$K = U \setminus (\pi^{-1}(A) \setminus (X \setminus U)) = U \setminus \pi^{-1}(A) = X \setminus \pi^{-1}(A)$$

dove l'ultima uguaglianza segue dalla (B.1). Quindi K è chiuso in X. Essendo X compatto segue che K è compatto in X e quindi anche in U, quello che si voleva dimostrare.

Corollario B.0.13 Sia D^n il disco unitario e $\partial D^n = S^{n-1}$ il suo bordo. Allora

$$S^n \cong \frac{D^n}{S^{n-1}}.$$

Dimostrazione: Dalla Proposizione B.0.10 con $X = D^n$ e $U = D^n \setminus S^{n-1}$. L'aperto U (il disco unitario aperto) è omeomorfo a \mathbb{R}^n . Si ottiene quindi, dall'Esempio B.0.9

$$S^{n} = (\mathbb{R}^{n})^{\infty} = U^{\infty} = \frac{D^{n}}{D^{n} \setminus U} = \frac{D^{n}}{S^{n-1}}.$$

Appendice C La curva di Peano

VEDI APPUNTI PRESI A LEZIONE

Appendice D

Sottobasi

Sia \mathcal{T} una topologia sull'insieme non vuoto X. Una sottobase di \mathcal{T} è una famiglia \mathcal{S} di aperti $\mathcal{S} \subset \mathcal{T}$ tale che ogni aperto di X sia unione di intersezioni finite di elementi di \mathcal{S} , cioè per ogni $A \in \mathcal{T}$ esiste una famiglia $S_{j_1}, \ldots S_{j_k} \in \mathcal{S}, k \in K$ tale che

$$A = \bigcup_{k \in K} (S_{j_1} \cap \dots \cap S_{j_k}).$$

Un'altro modo per esprimere che S è una sottobase per T è che le intersezioni finite di elementi di S sono una base per T. Equivalentemente $S \subset T$ è una sottobase di T se per ogni aperto $A \in T$ e per ogni punto $x \in A$ esiste $S_{1,x}, \ldots S_{p,x} \in S$ tali che $x \in S_{1,x} \cap \cdots \cap S_{p,x} \subset A$. Infatti se x è un punto di un aperto $A \in T$ e $A = \bigcup_{k \in K} (S_{j_1} \cap \cdots \cap S_{j_k})$ allora x deve appartenere a $S_{j_1} \cap \cdots \cap S_{j_{k_0}} \subset A$ per un qualche $k_0 \in K$; viceversa dato $A \in T$ se per ogni $x \in A$ esistono $S_{1,x}, \ldots S_{p,x} \in S$ tali che $x \in S_{1,x} \cap \cdots \cap S_{p,x} \subset A$, allora A può esprimersi come unione di intersezioni finite di elementi di S nel seguente modo $A = \bigcup_{x \in A} (S_{1,x} \cap \cdots \cap S_{p,x})$.

Osservazione D.0.14 (la sottobase non è unica) Sia \mathcal{S} è una sottobase per una toplogia \mathcal{T} su un insieme non vuoto X. Allora ogni famiglia di aperti $\mathcal{C} \subset \mathcal{T}$ tale che $\mathcal{S} \subset \mathcal{C}$ è ancora una sottobase per \mathcal{T} .

Proposizione D.0.15 (unicità della topologia una volta scelta una sottobase) Sia X un insieme non vuoto e siano \mathcal{T} e \mathcal{T}^* due topologie su X. Se \mathcal{S} è una sottobase sia per \mathcal{T} che per \mathcal{T}^* , allora $\mathcal{T} = \mathcal{T}^*$.

Dimostrazione: Possisamo limitarci a dimostare che $\mathcal{T} < \mathcal{T}^*$ (infatti la relazione $\mathcal{T}^* < \mathcal{T}$ seguirà scambiando il ruolo delle due topologie). Sia quindi $A \in \mathcal{T}$. Siccome \mathcal{S} è una sottobase per \mathcal{T} $A = \bigcup_{k \in K} (S_{j_1} \cap \cdots \cap S_{j_k})$. Ma $\mathcal{S} \subset \mathcal{T}^*$ cioè i S_{j_l} sono aperti per \mathcal{T}^* e quindi (per la Top2 e la Top3 che definiscono la topologia \mathcal{T}^*) $A \in \mathcal{T}^*$.

D.0.3 Sottobase per la topologia Euclidea

La famiglia

$$\mathcal{S} = \{(-\infty, b), (a, +\infty), a, b \in \mathbb{R}\}\$$

è una sottobase della topologia euclidea di R. Più in generale la famiglia

$$\mathcal{S} = \{ x \in \mathbb{R}^n | \ x_i < a \} \cup \{ x \in \mathbb{R}^n | \ x_j > b \}$$

al variare di $a, b \in \mathbb{R}$ e $i, j = 1, \dots, n$. è una sottobase della topologia euclidea di \mathbb{R}^n .

D.1 Topologia generate da sottobasi

Come per le basi cerchiamo di rispondere alla seguente importante domanda: data una famiglia di sottoinsiemi S di un insieme non vuoto X, esiste una topologia T su X che ha S come sua base?

La risposta è si: senza nessuna condizione!!. Più precisamente vale la seguente:

Proposizione D.1.1 Sia S una qualisiasi famiglia di sottoinsiemi di un insieme non vuoto X. Allora esiste un unica topologia \mathcal{T}_S di cui S è una sottobase. Più precisamente $\mathcal{T}_S = \langle S \rangle$, ossia \mathcal{T}_S è la topologia generata da S.

Dimostrazione: Definiamo $\mathcal{T}_{\mathcal{S}} \subset \mathcal{P}(X)$ come

$$A \in \mathcal{T}_S \Leftrightarrow A = \bigcup_{k \in K} (S_{i_1} \cap \cdots \cap S_{i_k}).$$

A parole gli elementi di $\mathcal{T}_{\mathcal{S}}$ sono quei sottoinsiemi di X che si possono scrivere come unione di intersezioni finite di elementi \mathcal{S} . Se dimostriamo che questa è effettivamente una topologia, ovviamente \mathcal{S} sarà una sottobase per $\mathcal{T}_{\mathcal{S}}$. Osserviamo che il vuoto appartiene a $\mathcal{T}_{\mathcal{S}}$ come unione della famiglia vuota di elementi di \mathcal{S} , mentre $X \in \mathcal{T}_{\mathcal{S}}$ dato che X è (per definizione) l'intersezione vuota di elementi di \mathcal{S} . Per dimostrare la Top2 sia $\{A_j\}_{j\in J}$ una famiglia di sottoinsiemi di $\mathcal{T}_{\mathcal{S}}$. Per definizione di $\mathcal{T}_{\mathcal{S}}$, $A_j = \bigcup_{k \in K} (S_{j,j_1} \cap \cdots \cap S_{j,j_k})$ con $S_{j,j_l} \in \mathcal{S}$, $l = 1, \ldots, k$. Quindi

$$\cup_{j\in J} A_j = \cup_{j\in J} (\cup_{k\in K} (S_{j,j_1} \cap \cdots \cap S_{j,j_k})) = \cup_{j\in J, k\in K} (S_{j,j_1} \cap \cdots \cap S_{j,j_k}),$$

ossia $\bigcup_{j\in J} A_j$ si scrive come unione di intersezioni finite di elementi di \mathcal{S} e quindi appartiene a $\mathcal{T}_{\mathcal{S}}$. Per dimostrare la Top3, siano $A_1 = \bigcup_{k\in K} (S_{1,j_1} \cap \cdots \cap S_{1,j_k}), S_{1j_l} \in \mathcal{S}, A_2 = \bigcup_{h\in H} (S_{2,j_1} \cap \cdots \cap S_{2,j_h}), S_{2j_m} \in \mathcal{S}$ due elementi di $\mathcal{T}_{\mathcal{S}}$ allora

$$A_1 \cap A_2 = \bigcup_{h \in H, k \in K} (S_{1,j_1} \cap \dots \cap S_{1,j_k} \cap S_{2,j_1} \cap \dots \cap S_{2,j_k}),$$

e quindi anche $A_1 \cap A_2$ si esprime come unione di intersezioni finite di elementi di \mathcal{S} . Per dimostare l'ultima asserzione e cioè che che $\mathcal{T}_{\mathcal{S}} = \cap_{\mathcal{S} \subset \mathcal{T}} \mathcal{T}$ basta mostrare che $\mathcal{T}_{\mathcal{S}} \subset \cap_{\mathcal{S} \subset \mathcal{T}} \mathcal{T}$ (infatti essendo $\mathcal{T}_{\mathcal{S}}$ una topologia che include \mathcal{S} si ha evidentemente $\cap_{\mathcal{S} \subset \mathcal{T}} \mathcal{T} \subset \mathcal{T}_{\mathcal{S}}$). Sia $A \in \mathcal{T}_{\mathcal{S}}$ allora $A = \bigcup_{k \in K} (S_{j_1} \cap \cdots \cap S_{j_k})$. Ma $S_{j_l} \in \mathcal{S}$ appartiene a ogni \mathcal{T} che contiene \mathcal{S} e quindi $A = \bigcup_{k \in K} (S_{j_1} \cap \cdots \cap S_{j_k})$ appartiene a ogni \mathcal{T} che contiene \mathcal{S} perchè tali \mathcal{T} sono topologie. Conseguentemente $A = \bigcup_{k \in K} (S_{j_1} \cap \cdots \cap S_{j_k})$ appartiene all'intersezione di tutte le topologie che contengono \mathcal{S} ossia $A = \bigcup_{k \in K} (S_{j_1} \cap \cdots \cap S_{j_k})$ appartiene a $\cap_{\mathcal{B} \subset \mathcal{T}} \mathcal{T}$. \square

Osservazione D.1.2 Dalla dimostrazione della proposizione precedente segue che: se S è un famiglia di sottoinsiemi di un insieme non vuoto X che è sottobase per una topologia allora anche $S \setminus \{X, \emptyset\}$, è una sottobase per la stessa topologia.

Uno dei tanti motivi per i quali è utile lavorare con le sottobasi è espresso dalla seguente:

Proposizione D.1.3 Siano X e Y due spazi topologici e S una sottobase per Y. Un'applicazione $f: X \to Y$ è continua se e solo se per ogni $S \in S$ $f^{-1}(S)$ è un sottoinsieme aperto di X. Equivalentemente f è continua se e solo se per ogni $x \in X$ e per ogni $S \in S$ tale che f(x) appartiene a S, esiste U intorno aperto di $x \in X$ tale che $f(U) \subset S$.

Dimostrazione: Se f è continua, siccome ogni $S \in \mathcal{S}$ è aperto in Y segue che $f^{-1}(S)$ è un sottoinsieme aperto di X. Viceversa supponiamo che $f^{-1}(S)$ sia un sottoinsieme aperto di X per ogni $S \in \mathcal{S}$ e sia V un aperto di Y. Allora $V = \bigcup_{k \in K} (S_{j_1} \cap \cdots \cap S_{j_k})$. Segue che

$$f^{-1}(V) = f^{-1}(\bigcup_{k \in K} (S_{j_1} \cap \dots \cap S_{j_k})) = \bigcup_{k \in K} (f^{-1}(S_{j_1}) \cap \dots \cap f^{-1}(S_{j_k}))$$

è aperto in quanto unione di aperti. L'ultima parte della proposizione è immediata. $\hfill\Box$

Appendice E Numero di Lebesgue

VEDI APPUNTI PRESI A LEZIONE