Interpretable Machine Learning

LIME Examples

Learning goals

- See real-world data examples
- See application to image and text data

Interpretable Machine Learning

Local Explanations: LIME LIME Examples

Learning goals

- See real-world data examples
- See application to image and text data

LIME EXAMPLE: CREDIT SCORING (TABULAR DATA)

• Black-box model \hat{f}_{bad} : SVM with RBF kernel (predicts prob. of bad credit risk)

• Instance to explain x: First row in the dataset, with $\hat{t}_{bad}(\mathbf{x}) = 0.658$

		, 245 ()						
duration	sex	credit.amount	purpose	housing	age	saving	checking	
48	female	5951	radio/TV	own	22	little	moderate	

- Surrogate model: LASSO, restricted to 5 non-zero features (via regularization)
- Training data for surrogate: Samples z, weighted by Gower distance to x

EXAMPLE: CREDIT SCORING (TABULAR DATA)

• Black-box model \hat{f}_{bad} : SVM with RBF kernel (predicts probability of bad credit risk)

• Surrogate model: LASSO, restricted to 5 non-0 feats (via regularization)

• Training data for surrogate: Samples z, weighted by Gower dist. to x

Interpretable Machine Learning - 1/6

LIME EXAMPLE: CREDIT SCORING (TABULAR DATA)

• Black-box model \hat{f}_{bad} : SVM with RBF kernel (predicts prob. of bad credit risk)

• Instance to explain x: First row in the dataset, with $\hat{f}_{bad}(\mathbf{x}) = 0.658$

	•							
duration	sex	credit.amount	purpose	housing	age	saving	checking	
48	female	5951	radio/TV	own	22	little	moderate	

- Surrogate model: LASSO, restricted to 5 non-zero features (via regularization)
- Training data for surrogate: Samples z, weighted by Gower distance to x

- \Rightarrow \hat{g} provides good local approximation of \hat{f}_{bad} , but omits several features
- → Small mismatch reflects trade-off: interpretability vs. fidelity

Interpretation: Prediction is mainly driven by loan duration, with small positive effect from sex and credit.amount, and negative contributions from housing and purpose.

EXAMPLE: CREDIT SCORING (TABULAR DATA)

	0.000							
duration	sex	credit.amount	purpose	housing	age	saving	checking	
48	female	5951	radio/TV	own	22	little	moderate	

• Training data for surrogate: Samples z, weighted by Gower dist. to x

 \Rightarrow \hat{g} provides good local approx. of \hat{f}_{had} , but omits several features

Interpretation: Prediction is mainly driven by loan duration, with small positive effect from sex and credit.amount, and negative contributions from housing and purpose.

Interpretable Machine Learning - 1 / 6 ©

Interpretable Machine Learning - 1/6

EXAMPLE ON CREDIT DATASET (CONT'D)

- 2D ICE plots (prediction surface plots) for duration and credit.amount
- Illustration how \hat{g} linearly approximates the nonlinear decision surface of \hat{f}_{bad}

- Left: 2D ICE plot of \hat{f}_{bad} showing decision surface
- **Right:** Linear approximation by surrogate model \hat{g} .
 - → White dot indicates input x to be explained
 - → Histograms show marginal distribution of features in training data

EXAMPLE ON CREDIT DATASET (CONT'D)

- 2D ICE plots (pred. surface plots) for duration and credit.amount
- Illustration how \hat{g} linearly approximates nonlinear decision surface of \hat{f}_{bad}

- Left: 2D ICE plot of \hat{f}_{bad} showing decision surface
- **Right:** Linear approximation by surrogate model \hat{g} .
- → White dot indicates input **x** to be explained
- → Histograms show marginal distribution of features in training data

Interpretable Machine Learning - 2/6 Interpretable Machine Learning - 2/6

LIME FOR TEXT DATA > Shen, Ian, (2019)

LIME can also be applied to text data:

- Raw text representations:
 - Binary vector indicating the presence or absence of a word
 - A vector of word counts
- Examples for "This text is the first text." and "Finally, this is the last one.":

this	text	is	the	first	finally	last	one
1	2	1	1	1	0	0	0
1	0	1	1	0	1	1	1

- Sampling: Randomly set the entry of individual words to 0; equal to removing all occurrences of this word in the text.
- Proximity: Exponential kernel with cosine distance.
 - Neglects words that do not occur in both texts
 - Measures the distance irrespective of the text size

LIME FOR TEXT DATA PIAN_2019

LIME can also be applied to text data:

- Raw text representations:
 - Binary vector indicating the presence or absence of a word
 - A vector of word counts
- Examples for "This text is the first text." and "Finally, this is the last one.":

this	text	is	the	first	finally	last	one
1	2	1	1	1	0	0	0
1	0	1	1	0	1	1	1

- **Sampling**: Randomly set the entry of individual words to 0; equal to removing all occurrences of this word in the text.
- Proximity: Exponential kernel with cosine distance.
 - Neglects words that do not occur in both texts
 - Measures the distance irrespective of the text size

Interpretable Machine Learning - 3 / 6 © Interpretable Machine Learning - 3 / 6

LIME FOR TEXT DATA (CONT'D) Shen, lan, (2019)

- Random forest classifier labeling movie reviews from IMDB
 - 0: negative
 - 1: positive
- Surrogate model is a sparse linear model

Words like "worst" or "waste" indicate negative review while words like "best" or "great" indicate positive review

LIME FOR TEXT DATA (CONT'D) PIAN_2019

- Random forest classifier labeling movie reviews from IMDB
 - 0: negative
 - 1: positive
 - Surrogate model is a sparse linear model

Words like "worst" or "waste" indicate negative review while words like "best" or "great" indicate positive review

LIME FOR IMAGE DATA

LIME also works for image data:

- Idea: Each obs. is represented by a binary vector indicating the presence or absence of superpixels
 Achanta et al. 2012
- Superpixels are interconnected pixels with similar colors (absence of a single pixel might not have a (strong) effect on the prediction)
- Warning: Size of superpixels needs to be determined before the segmentation takes place
- Sampling: Randomly switching some of the super pixels "off", i.e., by coloring some superpixels uniformly

Example for superpixels of different sizes

LIME FOR IMAGE DATA

LIME also works for image data:

- Idea: Each obs. is represented by a binary vector indicating the presence or absence of superpixels

 Achanta 2012
- Superpixels are interconnected pixels with similar colors (absence of a single pixel might not have a (strong) effect on the prediction)
- Warning: Size of superpixels needs to be determined before the segmentation takes place
- Sampling: Randomly switching some of the super pixels "off", i.e., by coloring some superpixels uniformly

Example for superpixels of different sizes

LIME FOR IMAGE DATA (CONT'D) Ribeiro. 2016

Explaining prediction of pre-trained inception neural network classifier

• **Sampling**: Graying out all superpixels besides 10 superpixels

• Surrogate: Locally weighted sparse linear models

• **Proximity**: Exponential kernel with euclidean distance

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

Top 3 classes predicted

LIME FOR IMAGE DATA (CONT'D) • RIBEIRO_2016

- Explaining prediction of pre-trained inception neural network classifier
 - **Sampling**: Graying out all superpixels besides 10 superpixels
 - Surrogate: Locally weighted sparse linear models
 - **Proximity**: Exponential kernel with euclidean distance

Top 3 classes predicted

Interpretable Machine Learning - 6 / 6

Interpretable Machine Learning - 6 / 6