Statement coverage: Numero de statements ejecutados (líneas no if ni while) **Branch coverage:** Condicionales e incondicionales que se cumplen (cumplir las dos opciones de cualquier condicional)

$$Branch \ Coverage = \frac{Number \ of \ Executed \ Branches}{Total \ Number \ of \ Branches}$$

¿Cuántos test debo tener mínimamente para cubrir todos los branches?

M = F - N + 2*P

McCabe's Complexity

- M = Complejidad ciclomática.
- E = Número de aristas del grafo. Una arista conecta dos vértices si una sentencia puede ser ejecutada inmediatamente después de la primera
- N = Número de nodos del grafo correspondientes a sentencias del programa.
- P = Número de componentes conexos, nodos de salida. (normalmente 1)

Branch es más confiable para encontrar áreas no testeadas ya que no depende de la cantidad de statements en un camino

Decision coverage: condicionales que se cumplen

Dummy - Los dummy objects son pasados como argumentos a lo largo del programa pero nunca son usados al final. Usualmente usados para llenar la lista de parámetros.

Fake - Los fake objects en realidad son implementaciones funcionales, pero usualmente sus operaciones (métodos) toman atajos (para facilitar el trabajo), pero no pueden ser usados en producción.

Stubs - Sus métodos proporcionan respuestas limitadas y acotadas a los test que se realizarán, normalmente no responden nada adicional. Solo a los test para los cuales fueron pensados. **Mocks -** objetos pre-programados con expectativas y especificaciones a cumplir los test.

Stub: Para hacer la prueba más ligera.

Mock: Para asegurarse de que los valores sean los esperados.

Performance testing: Evalúa la velocidad, uso de recursos, etc.

Load testing: Detecta cuellos de botella

Stress testing: Puntos de quiebre

Test Scenario: Cualquier funcionalidad que se puede probar

Test-Case: Conjunto de acciones para verificar una funcionalidad (pasos, datos, etc)

White-box test: (Se puede ver dentro del test)

- Statement testing
- Decision testing
- Test Doubles
- Mutation testing
- Search based software

Black-box test: (No se puede ver dentro del test)

- Equivalence partitioning
- Boundary value analysis
- State transition testing
- Decision table testing
- Use Case testing

Equivalence partitioning: Los datos de entrada se dividen en particiones equivalentes. Hay clases de equivalencia. (ej: edad de 1 a 17 y de 18 a 60).

Boundary Analysis: Probar entre valores límites o entre límites de particiones.

State Transition testing: Sistema tiene un numero finito de estados y transiciones de uno a otro