Segundo Taller Computacional Álgebra Lineal Aplicada

Gustavo Adolfo Pérez Pérez Universidad Nacional de Colombia – Sede Medellín Programa de Ciencias de la Computación

Fecha de entrega: 2 de julio de 2025

Índice

1.	Convergencia y estabilidad de sucesiones recurrentes	2
2.	Estabilidad numérica de valores propios vs valores singulares	2
	2.1. Estabilidad de los valores singulares	2
	2.2. Inestabilidad de los valores propios	3
	2.3. Ejemplo numérico con distancia mayor que 1	4
	2.4. Conclusión	5
3.	Iteración del algoritmo QR para aproximar raíces de polinomios	5
	3.1. Registro de tiempo de ejecución	5
	3.2. Traslación elegida en cada iteración	5
	3.3. Discos de Gershgorin	
4.	Descomposición en valores singulares para extraer el fondo de un video	5
	4.1. Metodología	5
	4.2. Resultados y análisis	5
	4.3. Conclusiones	5

1. Convergencia y estabilidad de sucesiones recurrentes

2. Estabilidad numérica de valores propios vs valores singulares

En este problema analizaremos la estabilidad de los valores singulares frente a perturbaciones y la compararemos con la estabilidad de los valores propios.

2.1. Estabilidad de los valores singulares

Teorema. Sea $A \in \mathbb{C}^{m \times n}$ una matriz con valores singulares $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)} \geq 0$. Si $E \in \mathbb{C}^{m \times n}$ es una perturbación tal que $||E||_2 = \varepsilon \ll 1$, entonces los valores singulares $\tilde{\sigma}_i$ de A + E satisfacen:

$$|\sigma_i - \tilde{\sigma}_i| \le \varepsilon$$
, para $i = 1, 2, \dots, \min(m, n)$

Demostración. Utilizaremos el Teorema de Weyl para valores singulares. Sin pérdida de generalidad, supongamos $m \geq n$.

Primero, recordemos que los valores singulares de una matriz M son las raíces cuadradas de los valores propios de M^*M . Para la matriz perturbada A + E, tenemos:

$$(A+E)^*(A+E) = A^*A + A^*E + E^*A + E^*E$$

Consideremos las matrices hermitianas aumentadas:

$$H_A = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}, \quad H_{A+E} = \begin{pmatrix} 0 & A+E \\ (A+E)^* & 0 \end{pmatrix}$$

Los valores propios de H_A son $\pm \sigma_1, \pm \sigma_2, \ldots, \pm \sigma_n$ (y ceros adicionales si m > n), donde σ_i son los valores singulares de A.

Observemos que:

$$H_{A+E} - H_A = \begin{pmatrix} 0 & E \\ E^* & 0 \end{pmatrix} = H_E$$

La norma espectral de H_E es:

$$||H_E||_2 = \max_i |\lambda_i(H_E)| = ||E||_2 = \varepsilon$$

Por el Teorema de Weyl para valores propios de matrices hermitianas, si $\lambda_1 \geq \lambda_2 \geq \cdots$ son los valores propios de H_A ordenados de forma decreciente, y $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \cdots$ son los valores propios de H_{A+E} , entonces:

$$|\lambda_i - \tilde{\lambda}_i| \le ||H_E||_2 = \varepsilon$$

Como los valores singulares de A y A+E corresponden a los valores propios no negativos de H_A y H_{A+E} respectivamente, concluimos que:

$$|\sigma_i - \tilde{\sigma}_i| \le \varepsilon$$
, para todo *i*

Esto completa la demostración.

2.2. Inestabilidad de los valores propios

A diferencia de los valores singulares, los valores propios pueden ser extremadamente sensibles a perturbaciones. Presentaremos dos ejemplos ilustrativos.

Ejemplo 1: Matriz nilpotente. Consideremos la matriz nilpotente de orden n:

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Esta matriz tiene todos sus valores propios iguales a cero: $\lambda_i(A) = 0$ para i = 1, ..., n. Ahora consideremos la perturbación:

$$E = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ \delta & 0 & \cdots & 0 & 0 \end{pmatrix}$$

donde $\delta > 0$ es pequeño. Entonces $||E||_2 = \delta$.

La matriz perturbada A+E tiene el polinomio característico:

$$\det(\lambda I - (A + E)) = \lambda^n - \delta = 0$$

Por lo tanto, los valores propios de A + E son:

$$\lambda_k = \delta^{1/n} e^{2\pi i k/n}, \quad k = 0, 1, \dots, n-1$$

Para n grande y δ pequeño pero fijo, tenemos $\delta^{1/n}\approx 1$. Por ejemplo, si n=100 y $\delta=10^{-10}$, entonces:

$$|\lambda_k(A+E) - \lambda_j(A)| = \delta^{1/n} = (10^{-10})^{1/100} = 10^{-0.1} \approx 0.794$$

Aunque la perturbación tiene norma $||E||_2 = 10^{-10}$, los valores propios se mueven una distancia de aproximadamente 0,794, que es mucho mayor que la norma de la perturbación.

Ejemplo 2: Matriz con valores propios coincidentes. Consideremos la matriz:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Esta matriz tiene un valor propio doble $\lambda = 1$ con un solo vector propio independiente (matriz defectiva).

Consideremos la perturbación:

$$E = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix}$$

donde $\varepsilon > 0$ es pequeño. La matriz perturbada es:

$$A + E = \begin{pmatrix} 1 & 1 \\ \varepsilon & 1 \end{pmatrix}$$

El polinomio característico de A + E es:

$$\det(\lambda I - (A+E)) = (\lambda - 1)^2 - \varepsilon = 0$$

Los valores propios de A + E son:

$$\lambda_{1,2} = 1 \pm \sqrt{\varepsilon}$$

Para ε pequeño, la distancia entre los valores propios de A y A+E es aproximadamente $\sqrt{\varepsilon}$, que es mucho mayor que $\varepsilon = ||E||_2$ cuando $\varepsilon \ll 1$.

2.3. Ejemplo numérico con distancia mayor que 1

Para obtener una distancia mayor que 1 entre valores propios, consideremos la matriz de tamaño 3×3 :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

con la perturbación:

$$E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 8 & 0 & 0 \end{pmatrix}$$

Aquí $||E||_2 = 8$. Los valores propios de A son todos cero, mientras que los valores propios de A + E son las raíces cúbicas de 8:

$$\lambda_k = 2e^{2\pi i k/3}, \quad k = 0, 1, 2$$

La distancia mínima entre un valor propio de A + E y cualquier valor propio de A es:

$$\min_{k} |\lambda_k - 0| = 2 > 1$$

2.4. Conclusión

Hemos demostrado que los valores singulares son estables bajo perturbaciones: una perturbación de norma ε causa cambios de a lo más ε en los valores singulares. En contraste, los valores propios pueden ser extremadamente sensibles a perturbaciones, especialmente cuando la matriz es defectiva o tiene valores propios múltiples. Esta diferencia fundamental hace que los valores singulares sean más confiables en aplicaciones numéricas donde las perturbaciones por errores de redondeo son inevitables.

- 3. Iteración del algoritmo QR para aproximar raíces de polinomios
- 3.1. Registro de tiempo de ejecución
- 3.2. Traslación elegida en cada iteración
- 3.3. Discos de Gershgorin
- 4. Descomposición en valores singulares para extraer el fondo de un video
- 4.1. Metodología
- 4.2. Resultados y análisis
- 4.3. Conclusiones