# UNIVERSITY OF NEW SOUTH WALES School of Mathematics and Statistics

## MATH2089 Numerical Methods and Statistics Term 2, 2019

## Numerical Methods Tutorial – Week 10 Solutions

### **Initial Value Problems**

1. Use Euler's method, using the given step size h, to solve the following IVPs. Compute the actual errors at each time step.

(a) 
$$y' = te^{3t} - 2y$$
,  $t \in (0,1]$ ,  $y(0) = 0$ ,  $h = 0.5$ 

• Solution: 
$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}$$

(b) 
$$y' = 1 + \frac{y}{t}$$
,  $t \in (1, 2]$ ,  $y(1) = 2$ ,  $h = 0.25$ 

• Solution: 
$$y(t) = t \log(t) + 2t$$

(c) 
$$y' = \frac{2}{t}y + t^2e^t$$
,  $t \in (1, 2]$ ,  $y(1) = 0$ ,  $h = 0.1$ 

• Solution: 
$$y(t) = t^2(e^t - e)$$

#### Answer

(a) With  $t_0=0,\;t_f=1$  and h=0.5 we will have N=2 steps of Euler's method  $y_{n+1} = y_n + hf_n$  where  $f_n = f(t_n, y_n)$ . The errors are  $E_n = y(t_n) - y_n$ .

| n | $t_n$ | $y_n$  | $f_n$  | $E_n$  |  |  |  |
|---|-------|--------|--------|--------|--|--|--|
| 0 | 0.0   | 0.0000 | 0      | 0      |  |  |  |
| 1 | 0.5   | 0.0000 | 2.2408 | 0.2836 |  |  |  |
| 2 | 1.0   | 1 1204 | 17.845 | 2.0087 |  |  |  |



(b) With  $t_0 = 1$ ,  $t_f = 2$  and h = 0.25 we will have N = 4 steps of Euler's method. Note that the initial value is at  $t_0 = 1$  in this example.

1

| n | $t_n$ | $y_n$  | $f_n$  | $E_n$  |
|---|-------|--------|--------|--------|
| 0 | 1.00  | 2.0000 | 3.0000 | 0      |
| 1 | 1.25  | 2.7500 | 3.2000 | 0.0289 |
| 2 | 1.50  | 3.5500 | 3.3667 | 0.0582 |
| 3 | 1.75  | 4.3917 | 3.5095 | 0.0877 |
| 4 | 2.00  | 5.2690 | 3.6345 | 0.1172 |



(c) With  $t_0 = 1$ ,  $t_f = 2$  and h = 0.1 we will have N = 10 steps of Euler's method.

| n  | $t_n$ | $y_n$         | $f_n$        | Solution to IVP $y' = 2 y/t + t^2 \exp(t)$ , $h = 0.100$ |                                         |        |          |      |       |            |
|----|-------|---------------|--------------|----------------------------------------------------------|-----------------------------------------|--------|----------|------|-------|------------|
| 0  | 1.0   | 0.0000e+00,   | 2.7183e+00   | Exact solution  - * - Approximation                      |                                         |        |          |      |       |            |
| 1  | 1.1   | 2.7183e-01,   | 4.1293e+00   | 16-                                                      |                                         |        |          |      |       |            |
| 2  | 1.2   | 6.8476e-01,   | 5.9222e+00   | 14-                                                      |                                         |        |          |      | ,     | <u>/ /</u> |
| 3  | 1.3   | 1.2770e+00,   | 8.1657e + 00 | 12-                                                      |                                         |        |          |      |       |            |
| 4  | 1.4   | 2.0935e+00,   | 1.0939e+01   | € 10                                                     |                                         |        |          | /    | / /   |            |
| 5  | 1.5   | 3.1874e + 00, | 1.4334e+01   | ¥ 10                                                     |                                         |        |          | /,   | ,     |            |
| 6  | 1.6   | 4.6208e+00,   | 1.8456e + 01 | 8-                                                       |                                         |        |          | /    |       |            |
| 7  | 1.7   | 6.4664e+00,   | 2.3427e+01   | 6                                                        |                                         |        |          |      |       |            |
| 8  | 1.8   | 8.8091e+00,   | 2.9389e+01   | 4                                                        |                                         | /_*·   | <u> </u> |      |       |            |
| 9  | 1.9   | 1.1748e + 01, | 3.6502e+01   | 2                                                        | *************************************** | •      |          |      |       |            |
| 10 | 2.0   | 1.5398e + 01, | 4.4954e + 01 | 0 1.1 1.2                                                | 1.3 1                                   | .4 1.5 | 1.6 1    | .7 1 | .8 1. | 9 2        |

See the various examples in the MATLAB M-file ivpmain.m available from the course web page. You can also try other methods, Heun, RK4, by changing which lines are commented out.

2. Consider the Initial Value Problem (IVP)

$$y' = f(t, y), \quad t > t_0, \qquad y(t_0) = y_0.$$

At step n we know  $t_n$ ,  $y_n \approx y(t_n)$  and  $t_{n+1} = t_n + h$ . A  $\nu$ -stage explicit Runge-Kutta method with parameters  $a_{ij}$ ,  $b_j$ ,  $c_j$  is

$$\xi_1 = y_n 
\xi_2 = y_n + ha_{2,1}f(t_n + c_1h, \xi_1) 
\xi_3 = y_n + ha_{3,1}f(t_n + c_1h, \xi_1) + ha_{3,2}f(t_n + c_2h, \xi_2) 
\vdots 
\xi_{\nu} = y_n + h\sum_{i=1}^{\nu-1} a_{\nu,i}f(t_n + c_ih, \xi_i)$$

Then the next approximation  $y_{n+1} \approx y(t_{n+1})$  is

$$y_{n+1} = y_n + h \sum_{j=1}^{\nu} b_j f(t_n + c_j h, \xi_j).$$

The classical fourth order four-stage Runge-Kutta method RK4 is defined by the following tableau

$$\begin{array}{c|c} \mathbf{c} & A \\ \hline & \mathbf{b}^T \end{array} = \begin{array}{c|c} 0 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 & 1 \\ \hline & \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} \end{array}$$

- (a) Write down the formulae to define  $y_{n+1}$  from  $y_n$  for this method.
- (b) Use the formulae obtained above (with h = 0.2) to compute an approximation to y(0.2), where y satisfies the IVP

$$y' = \frac{y+t}{y-t}, \qquad y(0) = 1.$$

#### Answer

(a) RK4 is a  $\nu = 4$  stage method. Using the given A, b, c gives

$$\xi_1 = y_n 
\xi_2 = y_h + h \frac{1}{2} f(t_n, \xi_1) 
\xi_3 = y_n + h \frac{1}{2} f(t_n + \frac{h}{2}, \xi_2) 
\xi_4 = y_n + h 1 f(t_n + \frac{h}{2}, \xi_3) 
y_{n+1} = y_n + h \left(\frac{1}{6} f(t_n, \xi_1) + \frac{2}{6} f(t_n + \frac{h}{2}, \xi_2) + \frac{2}{6} f(t_n + \frac{h}{2}, \xi_3) + \frac{1}{6} f(t_n + h, \xi_4)\right)$$

Note that the function values  $f(t_n, \xi_1)$ ,  $f(t_n + \frac{h}{2}, \xi_2)$ ,  $f(t_n + \frac{h}{2}, \xi_3)$  used in calculating the  $\xi_i$  values are **also** used in calculating  $y_{n+1}$ .

(b) Starting at n = 0,  $t_0 = 0$ ,  $y_0 = 1$ , a step of h = 0.2 gives  $t_1 = t_0 + h = 1.2$ . The RHS of the ODE is given by  $f(t, y) = \frac{y+t}{y-t}$ , so

$$\xi_{1} = y_{0} = 1$$

$$f_{1} = f(t_{0}, \xi_{1}) = f(0, 1) = \left(\frac{1+0}{1-0}\right) = 1$$

$$\xi_{2} = y_{0} + \frac{h}{2}f(t_{0}, \xi_{1}) = 1 + 0.1 \ f_{1} = 1.1$$

$$f_{2} = f(t_{0} + \frac{h}{2}, \xi_{2}) = f(0.1, 1.1) = \left(\frac{1.1+0.1}{1.1-0.1}\right) = 1.2$$

$$\xi_{3} = y_{0} + \frac{h}{2}f(t_{0} + \frac{h}{2}, \xi_{2}) = 1 + 0.1 \ f_{2} = 1.12$$

$$f_{3} = f(t_{0} + \frac{h}{2}, \xi_{3}) = f(0.1, 1.12) = \left(\frac{1.12+0.1}{1.12-0.1}\right) = 1.19607843...$$

$$\xi_{4} = y_{0} + hf(t_{0} + \frac{h}{2}, \xi_{3}) = 1 + 0.2 \ f_{3} = 1.23921568...$$

$$f_{4} = f(t_{0} + h, \xi_{4}) = f(0.2, 1.23921568) = 1.38490566...$$

$$y_{1} = y_{0} + \frac{h}{6} \left(f(t_{0}, \xi_{1}) + 2f(t_{0} + \frac{h}{2}, \xi_{2}) + 2f(t_{0} + \frac{h}{2}, \xi_{3}) + f(t_{0} + h, \xi_{4})\right)$$

$$= 1 + \frac{0.2}{6} (f_{1} + 2f_{2} + 2f_{3} + f_{4})$$

$$= 1.2392354...$$

## Partial Differential Equations

3. Consider Poisson's equation

$$\nabla^2 u(\mathbf{x}) = f(\mathbf{x})$$

on the rectangular domain

$$\Omega = \left\{ \mathbf{x} \in \mathbb{R}^2 : 0 \le x \le L_x, \quad 0 \le y \le L_y \right\}.$$

Divide the x interval  $[0, L_x]$  into m + 1 equal length subintervals

$$0 = x_0 < x_1 < x_2 < \dots < x_{m-1} < x_m < x_{m+1} = L_x,$$
$$x_i = i \ h_x, \quad i = 0, \dots, m+1, \qquad h_x = \frac{L_x}{m+1}.$$

Divide the y interval  $[0, L_y]$  into n+1 equal length subintervals

$$0 = y_0 < y_1 < y_2 < \dots < y_{n-1} < y_n < y_{n+1} = L_y,$$
$$y_j = j \ h_y, \quad j = 0, \dots, n+1, \qquad h_y = \frac{L_y}{n+1}.$$

Let  $u_{ij} \approx u(x_i, y_j)$ 



Figure 1: Grid for m = 5 and n = 3

(a) Is this an elliptic, parabolic or hyperbolic PDE?

**Answer** The governing partial differential equation is Poisson's equation in two space variables  $\mathbf{x} = (x, y)^T$ , that is

$$\nabla^2 u(\mathbf{x}) = \frac{\partial^2 u(\mathbf{x})}{\partial x^2} + \frac{\partial^2 u(\mathbf{x})}{\partial u^2} = f(\mathbf{x}).$$

Thus in the notation from lectures the coefficients of the highest order derivatives are  $A=1,\ 2B=0$  (as there are no mixed derivatives  $\frac{\partial^2 u(\mathbf{x})}{\partial x \partial y}$ ) and C=1, giving  $AC-B^2=1\times 1-0=1>0$ , so this is an elliptic equation.

(b) What problem could this model?

**Answer** The heat equation for two space variables is

$$\frac{\partial u(x,y,t)}{\partial t} = D\left(\frac{\partial^2 u(x,y,t)}{\partial x^2} + \frac{\partial^2 u(x,y,t)}{\partial y^2}\right).$$

The steady state version, with no time dependence, so  $\frac{\partial u}{\partial t} = 0$ , gives the 2-D Laplace's equation

$$\frac{\partial^2 u(x,y,t)}{\partial x^2} + \frac{\partial^2 u(x,y,t)}{\partial y^2} = 0.$$

Here, instead of a right-hand-side of 0, we have a forcing term  $f(\mathbf{x})$  which depends on the position  $\mathbf{x} \in \Omega$ .

(c) What else is needed to completely specify the problem?

Answer To fully specify a problem you need to specify

- The space domain  $\Omega$  and the time domain, typically [0, T];
- The governing partial differential equation;
- The boundary conditions on  $\partial\Omega$ .
- The initial conditions  $u(\mathbf{x},0)$  at t=0.

This is a steady state problem with no time dependence, so the time domain and initial conditions are not required.

The space domain  $\Omega$  and the PDE have been specified, but you also need the boundary conditions on

$$\partial\Omega = \{\mathbf{x} \in \mathbb{R}^2 : x = 0 \text{ or } x = L_x, \text{ or } y = 0 \text{ or } L_y\}.$$

(d) At the grid point  $x_i$ ,  $y_j$  use central difference approximations of  $O(h^2)$  to the second derivatives to derive an approximation to Poisson's equation.

**Answer** At the grid point  $x_i$ ,  $y_i$ 

$$\frac{\partial^2 u(\mathbf{x})}{\partial x^2} \bigg|_{x_i, y_j} = \frac{u_{i+1, j} - 2u_{i, j} + u_{i-1, j}}{h_x^2} + O(h_x^2), 
\frac{\partial^2 u(\mathbf{x})}{\partial y^2} \bigg|_{x_i, y_i} = \frac{u_{i, j+1} - 2u_{i, j} + u_{i, j-1}}{h_y^2} + O(h_y^2).$$

Ignoring the  $O(h_x^2)$  and  $O(h_y^2)$  terms and substituting in the governing Poisson equation gives the approximation

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h_x^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h_y^2} = f_{i,j}$$

where  $f_{i,j} = f(\mathbf{x})$  evaluated at the grid point  $\mathbf{x} = (x_i, y_j)^T$ . A very common mistake is to forget that the forcing term  $f(\mathbf{x})$  must be evaluated at the grid point where the approximation is being made.

- (e) Consider a problem with Dirichlet boundary conditions  $u(\mathbf{x}) = 20$  for  $\mathbf{x} \in \partial \Omega$ . For  $L_x = 3, m = 5$  and  $L_y = 2, n = 3$ 
  - i. Give the equation at the grid point  $(x_3, y_2)$
  - ii. Give the equation at the grid point  $(x_5, y_3)$
  - iii. generate the linear system  $A\mathbf{u} = \mathbf{b}$  corresponding to a row-ordering of the variables.
  - iv. Write the coefficient matrix A as the block matrix

$$A = \begin{bmatrix} B & -I \\ -I & B & -I \\ & -I & B & -I \\ & & \ddots & \ddots & \ddots \\ & & & -I & B & -I \\ & & & & -I & B & -I \\ & & & & -I & B \end{bmatrix}$$

What are the matrices B and I.

v. Say what you can about the structure of the coefficient matrix A that could make solving the linear system  $A\mathbf{u} = \mathbf{b}$  more efficient.



Figure 2: Spy plot of coefficient matrix for m = 5 and n = 3

**Answer** For  $L_x = 3$ , m = 5 and  $L_y = 2$ , n = 3, which is illustrated in Figure 1, the grid spacings are

$$h_x = \frac{L_x}{m+1} = \frac{3}{5+1} = \frac{1}{2}, \qquad h_y = \frac{L_y}{n+1} = \frac{2}{3+1} = \frac{1}{2},$$

so let  $h = \frac{1}{2}$  be the common grid spacing. The finite difference approximation to Poisson's equation then simplifies, after multiplying through by  $-h^2$ , to

$$4u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} = -h^2 f_{i,j}.$$

i. At the grid point  $(x_3, y_2)$ , so i = 3 and j = 2, the five point stencil for the function values in the finite difference approximation lies in the interior of the domain  $\Omega$  (see Figure 1), thus the approximation is

$$4u_{3,2} - u_{4,2} - u_{2,2} - u_{3,3} - u_{3,1} = -h^2 f_{3,2}.$$

ii. At the grid point  $(x_5, y_3)$ , so i = 5 and j = 3, the approximation is

$$4u_{5,3} - u_{6,3} - u_{4,3} - u_{5,4} - u_{5,2} = -h^2 f_{5,3}.$$

However values with i = 0 or i = 6 or j = 0 or j = 4 lie on the boundary of the domain, so are determined by the boundary conditions. Thus  $u_{6,2} = 20$  and  $u_{5,4} = 20$ , giving

$$4u_{5,3} - u_{4,3} - u_{5,2} = -h^2 f_{5,3} + 40.$$

iii. A row ordering, so the index i varies first, of the variables gives the vector of unknowns  $\mathbf{u} \in \mathbb{R}^{15}$ 

$$\mathbf{u} = (u_{1,1}, u_{2,1}, u_{3,1}, u_{4,1}, u_{5,1}, u_{1,2}, u_{2,2}, u_{3,2}, u_{4,2}, u_{5,2}, u_{1,3}, u_{2,3}, u_{3,3}, u_{4,3}, u_{5,3})^T.$$

Taking special care with the boundary values, the system of equations is, with  $h = \frac{1}{2}$ ,

$$4u_{1,1} - u_{2,1} - u_{1,2} = -h^2 f_{1,1} + 40$$

$$4u_{2,1} - u_{3,1} - u_{1,1} - u_{2,2} = -h^2 f_{2,1} + 20$$

$$4u_{3,1} - u_{4,1} - u_{2,1} - u_{3,2} = -h^2 f_{3,1} + 20$$

$$4u_{4,1} - u_{5,1} - u_{3,1} - u_{4,2} = -h^2 f_{4,1} + 20$$

$$4u_{5,1} - u_{4,1} - u_{5,2} = -h^2 f_{5,1} + 40$$

$$4u_{1,2} - u_{2,2} - u_{1,3} - u_{1,1} = -h^2 f_{1,2} + 20$$

$$4u_{2,2} - u_{3,2} - u_{1,2} - u_{2,3} - u_{2,1} = -h^2 f_{2,2}$$

$$4u_{3,2} - u_{4,2} - u_{2,2} - u_{3,3} - u_{3,1} = -h^2 f_{3,2}$$

$$4u_{4,2} - u_{5,2} - u_{3,2} - u_{4,3} - u_{4,1} = -h^2 f_{4,2}$$

$$4u_{5,2} - u_{4,2} - u_{5,3} - u_{5,1} = -h^2 f_{5,2} + 20$$

$$4u_{1,3} - u_{2,3} - u_{1,2} = -h^2 f_{1,3} + 40$$

$$4u_{2,3} - u_{3,3} - u_{1,3} - u_{2,2} = -h^2 f_{3,3} + 20$$

$$4u_{3,3} - u_{4,3} - u_{2,3} - u_{3,2} = -h^2 f_{4,3} + 20$$

$$4u_{4,3} - u_{5,3} - u_{3,3} - u_{4,2} = -h^2 f_{4,3} + 20$$

$$4u_{5,3} - u_{4,3} - u_{5,2} = -h^2 f_{5,3} + 40.$$

The four equations with the +40 on the right-hand-side correspond to the nodes in the corners where both the side and top/bottom boundary values have an effect.

Thus the coefficient matrix  $A \in \mathbb{R}^{15 \times 15}$  is

The spy plot of the coefficient matrix A is given in Figure 2. The right-hand-side vector  $\mathbf{b} \in \mathbb{R}^{15}$  is

$$\mathbf{b} = (-h^2 f_{1,1} + 40, -h^2 f_{2,1} + 20, -h^2 f_{3,1} + 20, -h^2 f_{4,1} + 20, -h^2 f_{5,1} + 40, -h^2 f_{1,2} + 20, -h^2 f_{2,2}, -h^2 f_{3,2}, -h^2 f_{4,2}, -h^2 f_{5,2} + 20, -h^2 f_{1,3} + 40, -h^2 f_{2,3} + 20, -h^2 f_{3,3} + 20, -h^2 f_{4,3} + 20, -h^2 f_{5,3} + 40)^T.$$

iv. The matrices that make up the 3 by 3 block matrix

$$A = \left[ \begin{array}{ccc} B & -I \\ -I & B & -I \\ & -I & B \end{array} \right]$$

are the 5 by 5 tridiagonal matrix B and the 5 by 5 identity matrix I given by

$$B = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & -1 & 4 \end{bmatrix}, \qquad I = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (f) The coefficient matrix A has the following structure
  - symmetric, as  $A^T = A$  as the central difference stencil is symmetric.
  - banded, with lower bandwidth  $m_{\ell}$  = upper bandwidth  $m_u = 5$  (the number of unknowns across a row).
  - sparse, as only 59 of the possible  $15^2 = 225$  elements are non-zero, for a sparsity of  $100 \times 59/225 = 26.2\%$ .
  - positive definite, although this is not immediate from what we have done in the course. You could check using the Cholesky factorization or looking at the eigenvalues.
  - not Toeplitz, as the +1 and -1 diagonals are not constant with most values equal to -1 but some values 0, corresponding to the start or end of a row in the discretization of the domain.