EE910: Digital Communication Systems-I

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

April 11, 2022

Lecture #1A: An introduction to digital communications

Books

- John G. Proakis and Masoud Salehi, "Digital Communications", 5th edition, McGraw Hill, 2008.
- Bernard Sklar and Pabitra Kumar Ray, "Digital Communications: Fundamentals and Applications", 2nd Edition, Prentice Hall
- John R. Barry, Edward A. Lee and David G. Messerschmitt, "Digital Communication", 3rd Edition, Springer.
- Michael P. Fitz, "Fundamentals of Communication Systems", 1st Edition, McGraw Hill,

FF910: Digital Communication Syste

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Block Diagram of a Digital Communication System

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q ()・

Adrish Banerjee

EE910: Digital Communication Systems-I

Source Coding

- Function: To minimize the number of bits per unit time required to represent the source output.
- This process is known as source coding or data compression
- Examples: Huffman coding, Lempel-Ziv algorithm.
- The output of the source encoder is referred to as the information sequence.

Source Coding

- Use the statistical structure of a source to represent its output efficiently.
- Example: A bag contains 50% black balls, 25% red balls, 12.5% blue balls, 12.5% green balls. You are randomly picking a ball from the bag and want to convey the information about the color of the ball.
- Simple encoding (Dumb way!), black=00, red=01, blue=10, green=11. An average of 2.0 bits/color
- Smart way? black=0, red=10, blue=110, green=111. An average of 1.75 bits/color
- Can you figure out the color of the balls from the sequence 0110100111?
- Black, blue, red, black, green.
- Main principle of data compression: "Only infrmatn esentil to understnd mst b tranmitd."

Encryption

- Function: To make source bits transmission secure.
- This process of converting source bits (message text) into a source stream that looks like meaningless random bits of data (cipher text) is known as encryption.
- Examples: Data Encryption Standard (DES), RSA system.

Aurish Danerjee FE910: Digital Communication System Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Encryption

A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 N O P Q R S T U V W X Y Z 13 14 15 16 17 18 19 20 21 22 23 24 25

 Example Message: SEE ME IN MALL Take keyword as INFOSEC
 Vigenere cipher works as follows:

S E E M E I N M A L L I N F O S E C I N F O A R J A W M P U N Q Z

Channel Coding

- Function: To correct transmission errors introduced by the channel.
- The process of introducing some redundant bits to a sequence of information bits in a controlled manner to correct transmission errors is known as *channel coding* or *error control coding*.
- Example: Repetition code, Reed-Solomon codes, CRC codes.
- The encoded sequence that is the output of the channel encoder is referred to as *codeword*.

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Adrish Banerjee EE910: Digital Communication Systems-I

Channel Coding

- Example: Repetition codes
- Rate R=1/2 code

$$0 \rightarrow 00 \qquad 1 \rightarrow 11$$

• Rate R=1/3 code

$$0 \rightarrow 000$$
 $1 \rightarrow 111$

4 D > 4 B > 4 B > 4 B > 9 Q C

Modulation

- Function: To map the codewords into waveforms which are then transmitted over the physical medium known as the channel.
- Examples: Phase shift keying (PSK), quadrature amplitude modulation (QAM).

FF910: Digital Communication

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Modulation

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Channel

- The physical transmission medium; it can be wireless or wireline.
- Corrupts transmitted waveforms due to various effects such as noise, interference, fading, and multipath transmission.
- Examples: Binary erasure channel (BEC), Additive white Gaussian noise (AWGN) channel.

FE910: Digital Communication Syste

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Demodulation

- Function: To convert received noisy waveform to a sequence of bits, which is an estimate of the transmitted data bits. This is known as hard demodulation.
- If the demodulator outputs are unquantized (or has more than two quantization levels), this is known as *soft demodulation*.
- Soft demodulation has significant improvement over hard demodulation.

Channel Decoding

- Function: To estimate the information bits $\hat{\mathbf{u}}$, and correct the transmission errors.
- If $\hat{\mathbf{u}} \neq \mathbf{u}$, decoding errors have occurred.
- The performance of the channel decoder is usually measured by the bit error rate (BER) or the frame error rate (FER) of the decoded information sequence.
- The BER is defined as the expected number of information bit decoding errors per decoded information bit.
- The coded sequences can be broken up into blocks of data frames.
 A frame error occurs if any information bit in that data frame is in error.
 The decoded FER is the percentage of frames in error.

Adrish Banerjee EE910: Digital Communication Syster Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Decryption

- Function: To recover the plain text from the cipher text with the help of key.
- It is in the key that the security of a modern cipher lies, not in the details of the cipher.

Source Decoding

- \bullet Function: To reconstruct the original source bits from the decoded information sequence.
- Due to channel errors, the final reconstructed signal may be distorted.

