Meta Reinforcement Learning Definition of Meta-RL¹

Marius Lindauer

102

Leibniz Universität Hannover

RL Problem Setting

- Definition of MDP (S, A, P, R, γ)
 - S is a (finite) set of Markov states $s \in S$
 - ▶ A is a (finite) set of actions $a \in A$
 - ▶ P is dynamics/transition model for each action, that specifies $P(s_{t+1} = s' \mid s_t = s, a_t = a)$
 - lacksquare R is a reward function $R(s_t=s,a_t=a)=\mathbb{E}[r_r\mid s_t=s,a_t=a]$
 - **\star** Sometimes R is also defined based on (s) or on (s, a, s')
 - ▶ Discount factor $\gamma \in [0, 1]$
- Task: Compute the optimal policy

$$\pi^*(s) \in \operatorname*{arg\,max}_{\pi} V^{\pi}(s)$$

Meta-RL Problem Setting

- No single formal problem setting
- ullet Usually based on a set of different MDPs ${\cal M}$
- ullet Commonalities in ${\mathcal M}$ vary
- Often: shared state & action space
- ullet Task: Compute optimal policy over all of ${\mathcal M}$

Example Setting 1: Two Walking agents

Figure: Two robots with different behavior.²

Example Setting 2: 100 Mazes

Figure: 100 Mazes, each with a different goal to reach.³

Example Setting 3: 200 Mazes

Figure: Mazes of two layouts and 100 goals each.⁴

Key Approaches in Meta-RL

- Meta-Learning Hyperparameters
 - Hyperparameter values for good performance
 - ► Alternative optimization methods
- Meta-Learning the Training Dynamics
 - Credit Assignment for state-action pairs
 - Problem-specific Exploration Strategies
- Task Generation
 - Task diversification for generalization
 - Curriculum Learning

