Finite Elements: examples 3

Colin Cotter

March 12, 2019

- 1. Let V be a discontinuous Lagrange finite element space of degree k defined on a triangulation \mathcal{T} of a domain Ω . Show that functions in V do not have weak derivatives in general.
- 2. Show that

$$D^{\beta}Q_B^k f = Q_B^{k-|\beta|}D^{\beta}f,$$

where Q_B^l is the degree l averaged Taylor polynomial of f, and D^{β} is the β -th derivative where β is a multi-index.

3. Consider the variational problem of finding $u \in H^1([0,1])$ such that

$$\int_0^1 vu + v'u' \, \mathrm{d} \, x = \int_0^1 vx \, \mathrm{d} \, x + v(1) - v(0), \quad \forall v \in H^1([0,1]).$$

After dividing the interval [0, 1] into N equispaced cells and forming a P1 C^0 finite element space V_N , the error $||u - u_h||_{H^1} = 0$ for any N > 0.

Explain why this is expected.

4. Let $\mathring{H}^1([0,1])$ be the subspace of $H^1([0,1])$ such that u(0) = 0. Consider the variational problem of finding $u \in \mathring{H}^1([0,1])$ with

$$\int_0^1 v'u' \, \mathrm{d} \, x = \int_0^{1/2} v \, \mathrm{d} \, x, \quad \forall v \in \mathring{H}([0,1]).$$

The interval [0, 1] is divided into 3N equispaced cells (where N is a positive integer). After forming a P1 C^0 finite element space V_N , the error $||u-u_h||_{H^1}$ is found not to converge to zero. Explain why this is expected?

- 5. (a) Let Ω be a convex polygonal 2D domain. Consider the following two problems.
 - i. Find $u \in H^2$ such that

$$\|\nabla^2 u + f\|_{L^2(\Omega)} = 0, \quad \|u\|_{L^2(\partial\Omega)} = 0,$$

which we write in a shorthand as

$$-\nabla^2 u = f, \quad u|_{\partial\Omega} = 0.$$

ii. Find $u \in \mathring{H}^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d} \, x = \int_{\Omega} f v \, \mathrm{d} \, x, \quad \forall v \in \mathring{H}^{1}(\Omega),$$

where $\mathring{H}^1(\Omega)$ is the subspace of $H^1(\Omega)$ consisting of functions whose trace vanishes on the boundary. Under assumptions on u which you should state, show that a solution to problem ii is a solution to problem i.

(b) Let h be the maximum triangle diameter of a triangulation T_h of Ω , with V_h the corresponding linear Lagrange finite element space. Construct a finite element approximation to Problem ii above. Briefly give the main arguments as to why the $H^1(\Omega)$ norm of the error converges to zero linearly in h as $h \to 0$, giving your assumptions.

1