

Análisis Matemático Conexidad - Parte (1)

Manuela Bastidas Olivares

Universidad Nacional de Colombia

26 de marzo de 2024

Topología en \mathbb{R}^n - Conexidad.

Definición (conjunto disconexo en \mathbb{R}^n).

Sea A un subconjunto de \mathbb{R}^n . Decimos que A es un subconjunto disconexo en \mathbb{R}^n , si existen $U, V \subseteq \mathbb{R}^n$ conjuntos abiertos tales que

- (\checkmark) $A \cap U \neq \emptyset$ y $A \cap V \neq \emptyset$.
- $(\checkmark) U \cap V = \emptyset.$
- (\checkmark) $A \subseteq U \cup V$

Definición (conjunto conexo en \mathbb{R}^n).

Sea A un subconjunto de \mathbb{R}^n . Decimos que A es un subconjunto conexo de \mathbb{R}^n , si A no es disconexo.

Observación (definición anterior).

Intuitivamente, un conjunto conexo es el que aparece como una sola pieza, que no se puede "dividir" o "partir".

Ejemplo (subconjuntos conexos en \mathbb{R}^n).

(1) \emptyset es un subconjunto conexo en \mathbb{R}^n .

La verificación de este hecho se sigue inmediatamente de la definición de conexidad.

- (2) Dado $x \in \mathbb{R}^n$, se tiene que $\{x\}$ es un subconjunto conexo de \mathbb{R}^n .
- Si $\{x\}$ fuera disconexo, entonces existirían abiertos U y V de \mathbb{R}^n tales que

$$\begin{cases} \{x\} \cap U \neq \emptyset \text{ y } \{x\} \cap V \neq \emptyset, \\ \\ U \cap V = \emptyset, \\ \\ \{x\} \subseteq U \cup V. \end{cases}$$

Pero esto implicaría que $x \in U \cap V = \emptyset$ lo cual es imposible. De esta manera $\{x\}$ es un subconjunto conexo de \mathbb{R}^n .

- (3) Si $x,y \in \mathbb{R}^n$ con $x \neq y$, entonces $\{x,y\}$ es un subconjunto disconexo de \mathbb{R}^n .
- Si $\varepsilon = \frac{\|x y\|}{2}$, definimos $U := B(x; \varepsilon)$ y $V := B(y; \varepsilon)$, entonces:

$$\begin{cases} \{x,y\} \cap U = \{x\}, \ y \ \{x,y\} \cap V = \{y\}, \\ \\ U \cap V = \emptyset, \\ \\ \{x,y\} \subseteq U \cup V \end{cases}$$

lo cual prueba que $\{x,y\}$ es un subconjunto disconexo de \mathbb{R}^n .

(4) Si a < b, entonces [a, b] es un subconjunto conexo de \mathbb{R} .

Veamos por reducción al absurdo que [a,b] es conexo. Si [a,b] fuera disconexo, entonces existen abiertos U y V de $\mathbb R$ tales

$$\begin{cases} [a,b] \cap U \neq \emptyset \text{ y } [a,b] \cap V \neq \emptyset, \\ \\ U \cap V = \emptyset, \\ \\ [a,b] \subseteq U \cup V. \end{cases}$$

De esta manera, al tomar $c := \inf \{m \in \{x \in \mathbb{R} : x \in [a,b] \cap U\}$, entonces $a \le c$ y además $c \notin V$ ya que de lo contrario, existiría $\varepsilon > 0$ tal que $[c,c+\varepsilon) \subseteq V$ y por caracterización de infimo, existe $y \in [a,b] \cap U$ tal que $y \in [c,c+\varepsilon) \subseteq V$ lo cual es imposible $(y \in U \cap V = \emptyset)$.

4/17

Así se tiene que $c \in U$ y c = a, ya que de lo contrario a < c y como $c \in [a, b] \cap U \subseteq U$, entonces existe $\delta > 0$ tal que $c - \delta \in [a, b] \cap U$ lo cual es imposible ya que $c = \inf \max\{x \in \mathbb{R} : x \in [a, b] \cap U\} \le c - \delta < c$.

Lo anterior muestra que infimo $\{x \in \mathbb{R} : x \in [a,b] \cap U\} = a \in U$ y de manera análoga podemos probar que infimo $\{x \in \mathbb{R} : x \in [a,b] \cap V\} = a \in V$, pero esto no es posible ya que $a \in U \cap V = \emptyset$. De esta manera, tenemos que [a,b] es un subconjunto conexo de \mathbb{R} .

(5) El conjunto de números racionales $\mathbb Q$ es un subconjunto disconexo de $\mathbb R$.

Sea $I \in \mathbb{R} - \mathbb{Q}$ y sean $U = (-\infty, I)$ y $V = (I, +\infty)$, entonces es claro que U y V son abiertos y además:

$$\begin{cases}
\mathbb{Q} \cap U \neq \emptyset \text{ y } \mathbb{Q} \cap V \neq \emptyset, \\
U \cap V = \emptyset, \\
\mathbb{Q} \subseteq U \cup V
\end{cases}$$

lo cual muestra que $\mathbb Q$ es un subconjunto disconexo de $\mathbb R$.

(6) El conjunto de números irracionales $\mathbb{R} - \mathbb{Q}$ es un subconjunto disconexo de \mathbb{R} .

La prueba de que $\mathbb{R} - \mathbb{Q}$ es disconexo es similar a la prueba de la disconexidad de \mathbb{Q} .

Lema (caracterización de conexidad).

Sea A es un subconjunto conexo de \mathbb{R}^n no vacío y supongamos que existen abiertos U y V de \mathbb{R}^n tales que

- (\checkmark) $A \subseteq U \cup V$.
- $(\checkmark) U \cap V = \emptyset.$

Entonces $A \subseteq U$ ó $A \subseteq V$.

Demostración:

Dado $a \in A$, debido a que $A \subseteq U \cup V$, entonces $a \in U$ ó $a \in V$. Si $a \in U$, entonces $A \cap U \neq \emptyset$ y de esta manera, por la conexidad de A es necesario que $A \cap V = \emptyset$. Por lo tanto, tenemos que

$$A = A \cap (U \cup V) = (A \cap U) \cup (A \cap V) = (A \cap U) \cup \emptyset = A \cap U \subseteq U$$

lo cual prueba que $A \subseteq U$. De manera análoga, se tiene que si $a \in V$, entonces $A \subseteq V$.

Nota (siguiente teorema).

El siguiente teorema nos muestra una manera de obtener conjuntos conexos a partir de una colección de conjuntos conexos que tienen intersección no vacía.

Teorema (unión de conexos con intersección no vacia es conexo).

Sean $\{A_{\alpha}\}_{\alpha\in J}$ una colección de subconjuntos conexos de \mathbb{R}^n que satisfacen que $\bigcap_{\alpha\in J}A_{\alpha}\neq\emptyset$, entonces $\bigcup_{\alpha\in J}A_{\alpha}$ es un subconjunto conexo de \mathbb{R}^n .

Demostración:

Supongamos por reducción al absurdo que $\bigcup_{\alpha \in J} A_{\alpha}$ es un subconjunto disconexo de \mathbb{R}^n . Por lo tanto, existen abiertos U y V de \mathbb{R}^n tales que

$$\begin{cases} \bigcup_{\alpha \in J} A_{\alpha} \cap U \neq \emptyset \text{ y } \bigcup_{\alpha \in J} A_{\alpha} \cap V \neq \emptyset, \\ \\ U \cap V = \emptyset, \\ \bigcup_{\alpha \in J} A_{\alpha} \subseteq U \cup V \end{cases}$$

 $\mathsf{Como} \ \underset{\alpha \in J}{\bigcup} \ A_{\alpha} \cap U \neq \emptyset \ \mathsf{y} \ \underset{\alpha \in J}{\bigcup} \ A_{\alpha} \cap V \neq \emptyset, \ \mathsf{entonces} \ \mathsf{existen} \ \alpha, \beta \in J \ \mathsf{tales} \ \mathsf{que}$

$$A_{\alpha} \cap U \neq \emptyset$$
 y $A_{\beta} \cap V \neq \emptyset$.

Ahora, usando el hecho de que A_{α} y A_{β} son conexos, entonces por el lema anterior se tiene que $A_{\alpha} \subseteq U$ y $A_{\beta} \subseteq V$. Por otro lado, si $a \in \bigcap_{\alpha \in J} A_{\alpha}$, entonces $a \in A_{\alpha} \cap A_{\beta} \subseteq U \cap V = \emptyset$ lo cual es

imposible. De esta forma, es necesario que $\bigcup_{\alpha \in J} A_{\alpha}$ sea conexo.

Nota (siguiente ejemplo).

En el siguiente ejercicio usaremos la siguiente caracterización de intervalos de números reales. Sea $I \subseteq \mathbb{R}$, entonces

I es un intervalo de números reales \Leftrightarrow para cada $a,b \in I$ se tiene que $[a,b] \subseteq I$.

La prueba de esta afirmación se deja como ejercicio.

Ejemplo (subconjunto conexo en \mathbb{R}).

Sea I un intervalo de números reales, entonces I es un subconjunto conexo de números reales.

Razón:

Supongamos por reducción al absurdo que I es un subconjunto disconexo de números reales, entonces existen abiertos U y V tales que

$$\begin{cases} I \cap U \neq \emptyset \text{ y } I \cap V \neq \emptyset, \\ U \cap V = \emptyset, \\ I \subseteq U \cup V. \end{cases}$$

Si $a \in I \cap U$ y $b \in I \cap V$, entonces $a \neq b$ ya que $U \cap V = \emptyset$. Sin perdida de generalidad, supongamos que a < b, entonces como I es un intervalo de números reales, se tiene que

$$[a,b]\subseteq I$$

y como $I\subseteq U\cup V$, se tiene que $[a,b]\subseteq U\cup V$ y por la conexidad de [a,b] y lema anterior se tiene que

$$[a,b]\subseteq U$$
 ó $[a,b]\subseteq V$,

lo cual es imposible, ya que U y V son disjuntos y $a \in U$ y $b \in V$. De esta manera, es necesario que I sea un conjunto conexo de números reales.

Observación (ejemplo anterior).

Del ejemplo anterior se tiene que $(-\infty, +\infty) = \mathbb{R}$ es un conjunto conexo.

Teorema (clasificación de conjuntos conexos en la recta real).

Sea $I \subseteq \mathbb{R}$, entonces tenemos que

I es un subconjunto conexo de $\mathbb{R} \iff I$ es un intervalo de números reales.

Demostración:

- "←" Se tiene por el ejemplo anterior.
- " \Rightarrow " Supongamos que I es un subconjunto conexo de números reales y sean $a,b \in I$. Si $[a,b] \not \subseteq I$, entonces existe $c \in [a,b]$ tal que $c \not \in I$ y así al tomar $U = (-\infty,c)$ y $V = (c,+\infty)$ se tiene que U y V son subconjuntos abiertos de números reales que satisfacen las siguientes propiedades

$$\begin{cases} a \in U \cap I \ y \ b \in V \cap I, \\ U \cap V = \emptyset, \\ I \subseteq U \cup V \end{cases}$$

lo cual muestra que I es disconexo que va en contra de nuestra hipótesis. De esta manera, tenemos que $[a,b] \in I$ y por la nota hecha anteriormente se tiene que I es un intervalo de números reales.

Problemas.

- (1) Sea $I \subseteq \mathbb{R}$. Demostrar que I es un intervalo de números reales si y sólo sí para cada $a,b \in I$ se tiene que $[a,b] \subseteq I$.
- (2) Sea X un subconjunto conexo de \mathbb{R}^n y Y un subconjunto de \mathbb{R}^n el cual satisface que $X \subseteq Y \subseteq \overline{X}$. Demostrar que Y es un subconjunto conexo de \mathbb{R}^n .

Ayuda:

Si Y es disconexo, entonces existen abiertos U y V en \mathbb{R}^n tales que

$$\begin{cases} Y \cap U \neq \emptyset \text{ y } Y \cap V \neq \emptyset, \\ U \cap V = \emptyset, \\ Y \subseteq U \cup V. \end{cases}$$

Por la conexidad de X se debe tener que $X\subseteq U$ ó $X\subseteq V$. Sin perdida de generalidad, supongamos que $X\subseteq U$ y sea $a\in Y\cap V$, entonces existe $\varepsilon>0$ tal que $B(a;\varepsilon)\subseteq V$. Además $a\in ac(X)$ ya que $X\subseteq U$ y $U\cap V=\emptyset$, y así tenemos que

$$B^*(a;\varepsilon) \cap X \neq \emptyset$$

pero $B^*(a;\varepsilon) \cap X \subseteq V \cap X \subseteq V \cap U = \emptyset$ lo cual es imposible. De esta forma, es necesario que Y sea conexo.

- (3) Sea A un subconjunto de \mathbb{R}^n y sean U y V abiertos de \mathbb{R}^n que satisfacen las siguientes condiciones:
- (a) $A \cap U \cap V = \emptyset$.
- (b) $A \cap U \neq \emptyset$ y $A \cap V \neq \emptyset$.
- (c) $A \subseteq U \cup V$.

Demostrar que A es un conjunto disconexo.

Ayuda:

Sean $X = (A \cap U) - V$ y $Y = (A \cap V) - U$, entonces

* Para cada $x \in X$, existe $\delta_x > 0$ tal que $B(x; 2\delta_x) \subseteq U$ (esto se debe a que $X \subseteq U$ y U es un conjunto abierto) y definimos L como

$$L:=\bigcup_{x\in X}B(x;\delta_x).$$

* Para cada $y \in Y$, existe $\delta_y > 0$ tal que $B(y; 2\delta_y) \subseteq V$ (esto se debe a que $Y \subseteq V$ y V es un conjunto abierto) y definimos M como

$$M:=\bigcup_{y\in Y}B(y;\delta_y)$$

Entonces afirmamos que L y M son conjuntos abiertos que satisfacen las siguientes condiciones

- (i) $A \subseteq L \cup M$
- (ii) $A \cap L \neq \emptyset$ y $A \cap M \neq \emptyset$.
- (iii) $L \cap M = \emptyset$

Las pruebas de (i) y (ii) son sencillas de la construcción de L y M. Veamos la prueba de (iii). Supongamos por reducción al absurdo que $L \cap M \neq \emptyset$ y sea $z \in L \cap M$, entonces de la definición de L y M tenemos que deben existir $x \in X$ y $y \in Y$ tales que

$$z \in B(x; \delta_x) \cap B(y; \delta_y)$$
.

Además, tenemos que

$$||x-y|| = ||(x-z)-(y-z)|| \le ||x-z|| + ||y-z|| < \delta_x + \delta_y$$

de donde

$$\begin{cases} \|x-y\| < 2\delta_x \text{ si } \delta_y \leq \delta_x, \\ \|x-y\| < 2\delta_y \text{ si } \delta_y \geq \delta_x. \end{cases} \iff \begin{cases} y \in B(x; 2\delta_x) \subseteq U \text{ si } \delta_y \leq \delta_x, \\ x \in B(y; 2\delta_y) \subseteq V \text{ si } \delta_y \geq \delta_x. \end{cases}$$

Pero lo anterior es imposible (ya que $y \notin U$ y $x \notin V$). De esta manera, es necesario que $L \cap M = \emptyset$ y por (i), (ii) y (iii) se tiene que A es un subconjunto disconexo de \mathbb{R}^n .

Definición (conjunto arco conexo en \mathbb{R}^n): Sea $A \subseteq \mathbb{R}^n$. Decimos que A es un conjunto arco conexo en \mathbb{R}^n , si para cada $a,b \in A$, existe función continua $\alpha: [0,1] \longrightarrow \mathbb{R}^n$ tal que

*
$$\alpha([0,1]) = {\alpha(t) \in \mathbb{R}^n : t \in [0,1]} \subseteq A$$
.

- $\star \alpha(0) = a y \alpha(1) = b$
- (4) Demostrar que si A es un conjunto arco conexo en \mathbb{R}^n , entonces A es un conjunto conexo en \mathbb{R}^n .

Ayuda:

Si A fuese disconexo, entonces existirían abiertos U y V de \mathbb{R}^n tal que

$$\begin{cases} A \cap U \neq \emptyset \text{ y } A \cap V \neq \emptyset, \\ A \subseteq U \cup V, \\ U \cap V = \emptyset. \end{cases}$$

Sean $a \in A \cap U$ y $b \in A \cap V$, entonces por arco conexidad de A, existe una función continua $\alpha : [0,1] \longrightarrow \mathbb{R}^n$ tal que

- * $\alpha([0,1]) = {\alpha(t) \in \mathbb{R}^n : t \in [0,1]} \subseteq A$
- $\star \alpha(0) = a \vee \alpha(1) = b$

Ahora, por la continuidad de α se tiene que $\alpha^{-1}(U)$ y $\alpha^{-1}(V)$ son conjuntos abiertos en [0,1]. Es decir que existen L y M abiertos en $\mathbb R$ tales que $\alpha^{-1}(U) = L \cap [0,1]$ y $\alpha^{-1}(V) = M \cap [0,1]$, y además es fácil notar que L y M satisfacen las siguientes propiedades

$$\begin{cases} 0 \in [0,1] \cap L = \alpha^{-1}(U) \text{ y } 1 \in [0,1] \cap M = \alpha^{-1}(V), \\ \\ [0,1] \cap L \cap M = \alpha^{-1}(U) \cap \alpha^{-1}(V) = \emptyset, \\ \\ [0,1] \subseteq L \cup M \end{cases}$$

pero el problema anterior nos dice que [0,1] es disconexo, lo cual es imposible ya que sabemos de antemano que [0,1] es conexo. De esta manera, es necesario que A sea un conjunto conexo.

Definición (conjunto convexo en \mathbb{R}^n): Sea $A \subseteq \mathbb{R}^n$. Decimos que A es un subconjunto convexo de \mathbb{R}^n , si para cada $a,b \in A$ se tiene que el segmento de recta I que va desde a hasta b definido como

$$I = \{x \in \mathbb{R}^n : x = t \cdot (b-a) + a \text{ con } 0 \le t \le 1\}$$

está contenido en A.

(5) Sea A un subconjunto convexo en \mathbb{R}^n . Demostrar que A es arco conexo.

Ayuda:

Sean $a, b \in A$ con $a = (a_1, ..., a_n)$ y $b = (b_1, ..., b_n)$, entonces definimos $\alpha : [0,1] \longrightarrow \mathbb{R}^n$ como

$$\alpha(t) = t \cdot (b-a) + a = (t(b_1 - a_1) + a_1, ..., t(b_n - a_n) + a_n)$$

para cada $t \in [0,1]$. Entonces es fácil notar que α es una función continua y además

$$\begin{cases} \alpha([0,1]) = \{\alpha(t) \in \mathbb{R}^n : t \in [0,1]\} \subseteq A, \\ \\ \alpha(0) = a \ y \ \alpha(1) = b \end{cases}$$

pero lo anterior muestra que A es arco conexo.

- (6) Sea A un subconjunto convexo de \mathbb{R}^n . Demostrar que A es conexo.
- (7) Sean $x \in \mathbb{R}^n$ y $\varepsilon > 0$. Demostrar que $B(x; \varepsilon)$ es un conjunto convexo en \mathbb{R}^n .

Ayuda:

Dados $a,b \in B(x;\varepsilon)$ y $t \in [0,1]$, veamos que $t \cdot (b-a) + a = (1-t) \cdot a + t \cdot b \in B(x;\varepsilon)$. Para esto, notemos que

$$\| (1-t) \cdot a + t \cdot b - x \| = \| [(1-t) \cdot a - (1-t) \cdot x] + [t \cdot b - t \cdot x] \| \le \| (1-t) \cdot a + (1-t) \cdot x \| + \| t \cdot b - t \cdot x \| = (1-t) \| a - x \| + t \| b - x \| < (1-t) \varepsilon + t \varepsilon = \varepsilon$$

y de esta manera, tenemos que $t \cdot (b-a) + a \in B(x; \varepsilon)$ lo cual muestra que $B(x; \varepsilon)$ es convexo.

- (8) Sea $a \in \mathbb{R}^n$ y $\varepsilon > 0$. Demostrar que $B(x; \varepsilon)$ es un conjunto conexo en \mathbb{R}^n .
- (9) Sea $a \in \mathbb{R}^n$ y $\varepsilon > 0$. Demostrar que $B(x; \varepsilon)$ es un conjunto arco conexo en \mathbb{R}^n .
- (10) Demostrar que \mathbb{R}^n es un conjunto conexo.

Ayuda:

Si O = (0, ..., 0) es el vector nulo en \mathbb{R}^n , entonces

$$\mathbb{R}^n = \bigcup_{m \in \mathbb{N}} B(O; m).$$

además $\bigcap_{m\in\mathbb{N}} B(O;m) = B(O;1) \neq \emptyset$ y B(O;m) es conexo para cada $m\in\mathbb{N}$, entonces el teorema 2.6.1 nos dice que \mathbb{R}^n es conexo.

40.49.41.41. 1 000