Pandoc with Amsthm Defined in YAML Front Matter

Kolen Cheung

2016-04-21

1

1

3

Contents

Contents	
1 First Headi	ng
2 Second Hea Subheading	ding
1 First Hea	nding
Theorem 1.1.	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
Lemma.	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
Proposition.	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
Corollary.	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
Definition 1.1.	$E = mc^2$
Conjecture 1.1	$E=mc^2$
Example 1.1.	$E = mc^2$

Postulate 1.1.

$$E = mc^2$$

Problem 1.1.

$$E = mc^2$$

Remark.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Note.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Case 1.1.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Proof.

$$E = mc^2$$

Repeating once:

Theorem 1.2.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Lemma.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Proposition.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Corollary.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Definition 1.2.

$$E = mc^2$$

Conjecture 1.2.

$$E = mc^2$$

Example 1.2.

$$E = mc^2$$

Postulate 1.2.

$$E = mc^2$$

Problem 1.2.

$$E = mc^2$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Note.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

 $Case\ 1.2.$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Proof.

$$E = mc^2$$

2 Second Heading

Theorem 2.1.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Lemma.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Proposition.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Corollary.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Definition 2.1.

$$E = mc^2$$

Conjecture 2.1.

$$E = mc^2$$

Example 2.1.

$$E = mc^2$$

Postulate 2.1.

$$E = mc^2$$

Problem 2.1.

$$E = mc^2$$

Remark.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$Note.$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Case~2.1.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Proof.

$$E = mc^2$$

Subheading

Theorem 2.2.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Lemma.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Proposition.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Corollary.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Definition 2.2.

$$E = mc^2$$

Conjecture 2.2.

$$E = mc^2$$

Example 2.2.

$$E = mc^2$$

Postulate 2.2.

$$E = mc^2$$

Problem 2.2.

$$E = mc^2$$

Remark.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Note.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

 $Case\ 2.2.$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Proof.

$$E = mc^2$$