MCMT Homework 2

Shun Zhang

Exercise 2.1

Let Z be a uniform random variable on [0,1]. Let Z_1, Z_2, \cdots to be independent copies of Z.

Define $f(x_t, z_t) = y$ iff $\sum_{i=1}^{y-1} P(x_t, i) \le z_t < \sum_{i=1}^{y} P(x_t, i)$ (assume that $\sum_{i=1}^{0} \cdot = 0$). Then $\mathbb{P}(X_{t+1} = y | X_t = x) = P(x, y) = \mathbb{P}(f(x, z_t) = y)$.

Exercise 2.2

No. Assume there are only two distinct distributions π_1 and π_2 , so that $\pi_1 P =$ $\pi_1, \pi_2 P = \pi_2$. Then for $0 < \lambda < 1$, consider the distribution $\pi = \lambda \pi_1 + (1 - \lambda)\pi_2$. $(\lambda \pi_1 + (1 - \lambda)\pi_2)P = \lambda \pi_1 + (1 - \lambda)\pi_2$. So $\pi P = \pi$. There exists a stationary distribution other than π_1 and π_2 . Contradiction.