$\begin{tabular}{ll} \ddot{\textbf{U}} \textbf{bungsblatt} & \textbf{02} \\ \textbf{Repetitorium zur Funktionentheorie} \\ \end{tabular}$

Abgabe von: Linus Mußmächer

29. Mai 2023

Punkte: / 30

2.1 Ein Integral

Wir stellen zuerst den Cosinus komplex dar:

$$\int_0^{2pi} (\cos t)^{2n} dt = \frac{1}{2^{2n}} \int_0^{2\pi} (\exp(it) + \exp(-it))^{2n} dt$$

Dies entspricht einem Wegintegral über $f(z) = \frac{(z+\overline{z})^{2n}}{iz}$ entlang des Weges $\gamma:[0,2\pi]\to\mathbb{D}, t\mapsto \exp(it)$, wie auch durch Substitution ersichtlich wird.

$$= \frac{1}{i2^{2n}} \int_{\gamma} \frac{(z+\overline{z})^{2n}}{z} dz = \frac{1}{i2^{2n}} \int_{\gamma} \frac{(z+z^{-1})^{2n}}{z} dz$$

Die Funktion f(z) ist im Einheitskreis, dem Inneren von γ , meromorph mit einer einzigen isolierten Singularität im Nullpunkt. Wir verwenden den Residuensatz.

$$= \frac{1}{i2^{2n}} \cdot 2\pi i \cdot n(0,\gamma) \cdot \operatorname{res}(0,f)$$

Es gilt $n(0,\gamma)=1$. Um das Residuum zu bestimmen, betrachten wir die Potenzreihenentwicklung von f mittels des binomischen Lehrsatzes:

$$f(z) = \frac{(z+z^{-1})^{2n}}{z} = \sum_{k=0}^{2n} \binom{2n}{k} z^{2n-k} z^{-k} z^{-1} = \sum_{k=0}^{2n} \binom{2n}{k} z^{2n-2k-1}$$

die für uns interessante Potenz-1tritt hier genau für k=nauf, also folgt

$$res(0, f) = {2n \choose n} = \frac{(2n!)}{n!(2n - n!)} = \frac{(2n)!}{(n!)^2}$$

und dies zeigt

$$\int_0^{2\pi} (\cos t)^{2n} = \frac{1}{i2^{2n}} \cdot 2\pi i \cdot 1 \cdot \frac{(2n)!}{(n!)^2} = \frac{\pi}{2^{2n-1}} \cdot \frac{(2n!)}{(n!)^2},$$

was zu beweisen war.

2.2 Einige Integrale

Wir verwenden für alle Kurvenintegrale den Residuensatz.

(i) Der gegebene Integrand $f(z) = \frac{\exp(iz^2)-1}{z^2}$ ist meromorph mit einer isolierten Singularität im Nullpunkt (den im Kreisring $A_{0,2}(0)$ ist der Integrand mangels Nennernullstellen holomorph). Der Weg γ umrundet diesen (mit Radius 2) genau zweimal, also gilt

$$\int_{\gamma} f(z)dz = 4\pi i \operatorname{res}(0, f).$$

Um das Residuum zu bestimmen, entwickeln wir die Funktion um den Nullpunkt:

$$f(z) = \frac{\exp(iz^2) - 1}{z^2} = \frac{\exp(iz^2)}{z^2} - \frac{1}{z^2} = \sum_{n=0}^{\infty} \frac{i^n z^{2n-2}}{n!} - \frac{1}{z^2}.$$

Wir sehen, dass keiner der Summanden den Exponenten -1 hat, also gilt res(0, f(z)) = 0 und damit auch

$$\int_{\gamma} \frac{\exp(iz^2) - 1}{z^2} dz = 0$$

(ii) Der gegebene Integrand $g(z) = \frac{\exp(z)}{(z-i)^3}$ hat lediglich bei z=i eine Nennernullstelle, ist also im Kreisring $A_{0,1}(i)$ holomorph und damit im Inneren von η , dem Kreis $K_1(i)$, meromorph. η umrundet den Punkt i genau einmal in mathematisch negativer Richtung, der Residuensatz liefert also

$$\int_{n} g(z)dz = -2\pi i \cdot \operatorname{res}(i,g).$$

Wieder bestimmen wir die Reihenentwicklung um i. Da exp auf ganz \mathbb{C} und damit insbesondere in $K_1(i)$ holomorph ist, existiert eine in $K_1(i)$ konvergente Potenzreihe $\sum_{k=0}^{a_k} a_k(z-i)^k = \exp(z)$. Für die Koeffizienten gilt hier $a_k = \frac{\exp^{(k)}(i)}{k!}$. Dies liefert:

$$g(z) = \sum_{k=0}^{\infty} a_k (z-i)^{k-3}$$

und damit hat g im Punkt i das Residuum $a_2 = \frac{1}{2} \exp^{(2)}(i) = \frac{1}{2} \exp(i)$. Damit folgt

$$\int_{\eta} g(z)dz = -\pi i e^i$$

(iii) Die Funktion $\frac{1}{z}$ ist auf $A_{0,2}(0)$ mangels Nennernullstellen holomorph, also ist es dort auch $\exp(1/z)$. Somit ist der Integrand $h(z) = \exp(1/z)$ auf $K_2(0)$, dem Inneren von γ , meromorph und der Residuensatz liefert mit $n(0,\gamma) = 2$

$$\int_{\gamma} h(z)dz = 4\pi i \operatorname{res}(0,h).$$

Mit der Reihenentwicklung der Exponentialfunktion erhalten wir außerdem

$$h(z) = \sum_{n=0}^{\infty} \frac{(1/z)^n}{n!} = \sum_{n=-\infty}^{\infty} \frac{1}{(-n)!} z^n$$

und damit res(0, h) = 1. Dies zeigt

$$\int_{\gamma} h(z)dz = 4\pi i.$$

2.3 Sinus Hyperbolicus

(i) Die Funktion hat eine Nennernullstelle bei $z_1 = 0 \in S$, also x, y = 0. Weiterhin liegt eine Nennernullstelle vor, falls $\sinh(z) = \frac{1}{2}(\exp(z) - \exp(-z)) = 0$, also $\exp(z) = \exp(-z)$. Wir stellen um:

$$\exp(z) = \exp(-z) \Leftrightarrow \exp(2z) = 1 \Leftrightarrow \exp(z) \in \{1, -1\}.$$

Insbesondere folgt damit x=0 und $y\in k\cdot \pi i$, also liegt genau bei $z_2=\pi i$ eine weitere Singularität vor.

Wir bestimmen nun den Typ dieser Singularitäten. Man für $z_1 = 0$ betrachte die Reihenentwicklung des sinh:

$$f(z) = \frac{1}{z \cdot \sinh(z)} = \frac{1}{z \cdot \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}} = \frac{1}{z^2} \cdot \frac{1}{\sum_{k=0}^{\infty} \frac{z^{2k}}{(2k+1)!}} = \frac{1}{z^2} \cdot \underbrace{\frac{1}{1 + \sum_{k=1}^{\infty} \frac{z^{2k}}{(2k+1)!}}}_{:=q(z)}$$

mit g holomorph (da nennernullstellenfrei) in einer Umgebung von 0 sowie $g(0) = \frac{1}{1+0} \neq 0$. Somit handelt es sich um einen Pol 2. Ordnung. Um den Typ von $z_2 = i\pi$ betrachte man unter Verwendung von $\exp(-i\pi) = \exp(i\pi) = -1$

$$\sinh(z) = \frac{1}{2}(\exp(z) - \exp(-z)) = \frac{1}{2}(-\exp(z)\exp(-i\pi) + \exp(-z)\exp(i\pi))$$
$$= -\frac{1}{2}(\exp(z - i\pi) - \exp(-(z - i\pi))) = -\sinh(z - i\pi).$$

Dies liefert mit der Reihenentwicklung

$$f(z) = \frac{1}{-z \sinh(z - i\pi)} = \frac{1}{z} \frac{1}{\sum_{k=0}^{\infty} \frac{(z - i\pi)^{2k+1}}{(2k+1)!}} = -\frac{1}{z - i\pi} \underbrace{\frac{1}{z} \frac{1}{1 + \sum_{k=1}^{\infty} \frac{z^2 k}{(2k+1)!}}}_{:=h(z)}$$

mit h(z) holomorph (da nennernullstellenfrei) in einer Umgebung von $i\pi$ sowie $h(i\pi)=-\frac{1}{i\pi}\frac{1}{1+0}=\frac{i}{\pi}$. Somit handelt es sich um einen Pol 1. Ordnung.

(ii) Für $z_1 = 0$ betrachten wir

$$f(z) = \frac{1}{z \sinh(z)} = \frac{1}{\sum_{k=0}^{\infty} \frac{z^{2k+2}}{(2k+1)!}}.$$

Die Potenzreihe $\sum_{k=0}^{\infty} \frac{z^{2k+2}}{(2k+1)!}$ enthält nur gerade Potenzen, also liefert unendliche Polynomdivision eine Laurentreihe mit ebenfalls nur geraden Potenzen. Damit ist $a_{-1}=0$, also $\operatorname{res}(0,f)=0$. Für $z_2=i\pi$ gilt

$$res(i\pi, f) = \lim_{z \to z_2} (z - z_2) f(z) = \lim_{z \to z_2} g(z) = g(z_2) = \frac{i}{\pi}.$$

- (iii) Aufgrund von $\operatorname{res}(i\pi,f)\neq 0$ und dem Residuensatz gilt $\int_{\partial K_1(i\pi)} f(z)dz=2\pi i\operatorname{res}(i\pi,f)\neq 0$, also kann f keine holomorphe Stammfunktion besitzen.
- (iv) Aufgrund von $\operatorname{res}(0, f) = 0$ gilt bereits $\int_{\gamma} f(z)dz = 0$ für alle γ mit $i\pi \notin \operatorname{Int}(\gamma)$ und $\int_{\gamma} f(z)dz = n(\gamma, i\pi)\operatorname{res}(i\pi, f)$ sonst. Da das Integral und somit auch das Residuum linear

ist, müssen wir also lediglich c so wählen, dass das Residuum von $\frac{c}{z-i\pi}$ am Punkt $i\pi$ den Wert $-\operatorname{res}(i\pi,f)$ und in jedem anderen Punkt den Wert 0 annimmt. Der Bruch $\frac{c}{z-i\pi}$ hat genau eine Polstelle in $i\pi$, somit ist die zweite Bedingung bereits sichergestellt. Da er außerdem seine eigene Laurententwicklung um $i\pi$ mit $a_{-1}=c$ und $a_k=0$ (für $k\neq -1$) darstellt, ist sein Residuum in diesem Punkt c. Wir wählen also $c=-\operatorname{res}(i\pi,f)=-\frac{i}{pi}=\frac{1}{i\pi}$. Dann gilt

$$\begin{split} &\int_{\gamma} f(z) + \frac{c}{z - i\pi} dz \\ = &n(\gamma, 0) \left(\operatorname{res}(0, f) + \operatorname{res}\left(0, \frac{c}{\cdot - i\pi}\right) \right) + n(\gamma, i\pi) \left(\operatorname{res}(i\pi, f) + \operatorname{res}\left(i\pi, \frac{c}{\cdot - i\pi}\right) \right) \\ = &n(\gamma, 0) \cdot (0 + 0) + n(\gamma, i\pi) \left(\frac{\pi}{i} - \frac{\pi}{i}\right) = 0 \end{split}$$

für jeden geschlossenen Weg γ in S und somit besitzt $f(z)+\frac{1}{z-i\pi}$ auf S eine holomorphe Stammfunktion.