1 Task

 \Leftarrow

Доказательство. $t\cdot k\equiv 1 modn\Leftrightarrow kt=1+qn$ $k=k'\cdot d$ $n=n'\cdot d$ $d-\mathrm{HOД}(k,n)$ Тогда из kt=1+qn получаем 1=k'dt-qn'd=(k't-qn')d В таком случае $d|1\Rightarrow d=1$

 \Rightarrow

Доказательство. Пусть A – множество чисел, которые можно получить из k, n с помощью сложения и вычитания.

```
Тогда r_1 = k - nq_1, r_2 = n - r_1q_2, r_3 = r_1 - r_2q_3, ... r_1 \in A \Rightarrow r_2 \in A \Rightarrow r_3 \in A \Rightarrow ... \Rightarrow r_n \in A. А r_n как раз равно d. Так как k и n взаимно просты, то d = 1 = k\widetilde{k} + n\widetilde{n} \Rightarrow k\widetilde{k} = 1 (modn) \Rightarrow \exists t : kt = 1 (modn).
```

2 Task

 $17^{668} \equiv (-10)^{668} \equiv 10^{668} \pmod{27}.$

 $10^{668} = 1 + 9...9$ (668 девяток) — делится на 9, но не делится на 27 (т.к. при делении на 9 остается 668 единиц, где сумма цифр не делится на 3).

Если вычесть 9 и оставить 667 девяток, то число также не будет делиться на 27. Значит, необходимо вычесть 18.

Таким образом, мы получим остаток от деления 1 + 18 = 19.

3 Task

Методом пристального взгляда заметим, что $2^{3n} \equiv 8 \pmod{14}$. (То есть у нас тут получается циклическая группа порядка 3 остатков от деления на 14 чисел вида 2^n).

Заметим также, что $2^{21^{42069}} = 2^{3n}$, т.к. $21\ddot{:}3$. Таким образом, мы приходим к ответу 8.

4 Task

4.1 Part

Сначала проверим на гомоморфизм: $\phi(a^{k_1}, a^{k_2}) \cdot \phi(a^{m_1}, a^{m_2}) = \to \phi(a^{m_1*k_1}, a^{m_2*k_2})$ – гомоморфизм. Этот гомоморфизм биективен, т.к. каждому элементу (a^k, a^m) можно поставить в соответствие a(11k+m).

Значит, данные группы изоморфны.

4.2 Part

Данные группы не гомоморфны, т.к. биективное отображение из первой группы во вторую не сохраняет групповую операцию, а именно возникают проблемы с элементами вида $(a^6, a^16), (a^4, a^17)$ (изоморфизм сохраняет порядки элементов, а здесь этого, к сожалению, не наблюдается).

То есть данные группы не изоморфны

5 Task

Пусть ϕ – автоморфизм нашей группы. Если $\phi(1) = d \in Z$, то $\forall z \in Z\phi(z) = \phi(1+...+1) = \phi(1) + ... + \phi(1) = dz$.

Таким образом, все автоморфизмы вида $\phi: G_1 \to G_2: \phi(x) = dx$ нам подходят.

6 Task

Предположим, что $\phi(x_1) = \phi(x_2)$, т.е. $ax_1 = ax_2$.

Введем $t=x_1-x_2$. Тогда at=0. Значит, |z||a. По теореме Лагранжа порядок z также делит порядок группы G.

Т.к. a и |G| взаимно просты, то $|t|=1 \Rightarrow z=1$ (нейтральный элемент), т.к. только нейтральный элемент может быть порядка 1. В таком случае мы получаем $x_1=x_2$. Значит, отображение ϕ инъективно.

Т.к. ϕ – инъективное отображение множества в себя, то оно, очевидно, биективно.

7 Task

Т.к. |G| = HOK длин непересекающихся циклов, то если HOK каких-то чисел равно 3, то среди этих чисел могут быть только 1 и 3.

Т.к. циклы длины 3 есть четные перестановки, то любое их произведение также будет четной перестановкой, откуда следует, что перестановки порядка 3 не порождают группу S_{33} .

8 Task

Стоит отметить, что для доказательства утверждения нам достаточно доказать, что $\forall a,b \in G_1 f(b) f(a) = f(a) f(b)$.

```
Итак, мы имеем f(ab) = f(b)f(a) и f(ba) = f(a)f(b). f(ab)f^{-1}(a) = f(b)f(a)f^{-1}(a) f(ab)f^{-1}(a) = f(b) f(ab)f(a^{-1}) = f(b)
```

 $f(a)f(ab)f^{-1}(a) = f(a)f(b) = f(ba)$

 $f(ab) = f(ba) \Rightarrow$ данные группы изоморфны.

9 Task

Если $m,n\in H(G)\Rightarrow mn\in H(G)$ $P_{mn}=P_{m}P_{n}$ $P_{n}=P_{m}^{-1}P_{mn}$ Обозначим q=mn: Если $m\in A(G), q\in H(G)$ и m|q, то $\frac{q}{m}\in H(G)$.

 $x^{-n}y^{-n}=(yx)^{-n}\Rightarrow x^{1-n}y^{1-n}=(xy)^{1-n}.$ Если $n\in H(G)\Rightarrow 1-n\in H(G)$ Аналогично доказываем, что $n-1\in H(G)$ Т.к. $1-n\in H(G)$ и $n-1\in H(G)$, то группа G – абелева.

10 Task

Да, могут.

В качестве примера возьмем A – группу из множества рациональных многочленов с операцией сложения, а B – подгруппа, у которой свободный член – целое число. Тогда группа с множеством многочленов без свободного члена будет будет изоморфна A. Однако, в таком случае для элемента $1 \in B$ не будет элемента $b' \in B : 2b' = 1$. Значит, A и B неизоморфны.