Small Signal Analysis of BJTs Single Stage Amplifier

Voltage Divider Circuit

Voltage-divider bias is the most widely used type of bias circuit. Only one power supply is needed and voltage-divider bias is more stable (β independent) than other bias types. For this reason it will be the primary focus for study.

Voltage Divider Bias Configuration

Note the absence of RE due to the low impedance shorting effect of the bypass capacitor, CE. That is at the frequency of operation, the reactance of the capacitor is so small compared to RE that it is treated as short circuit across RE.

AC Equivalent Circuit Configuration

Parallel combination of resistor

$$R' = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2} \tag{1}$$

Input Impedance

Z_i: From Fig.

Output Impedance

Z_o: From Fig.

$$\mathbf{Z_i} = \mathbf{R'} \parallel \boldsymbol{\beta} \, \mathbf{r_e} \tag{2}$$

with V_i set to 0 V resulting in $I_b = 0\mu A$ and $\beta I_b = 0$ mA

$$\mathbf{Z_0} = \mathbf{R_C} \parallel \mathbf{r_0} \tag{3}$$

If $r_o \ge 10R_C$.

$$\mathbf{Z_0} \cong \mathbf{R_C} \qquad r_o \geqslant 10R_C \tag{4}$$

Voltage gain

 $\mathbf{A}_{\mathbf{V}}$: Since R_C and r_o are in parallel

$$V_o = -(\beta I_b)(R_C \parallel r_o) \tag{5}$$

$$I_b = \frac{V_i}{\beta r_e}$$

$$V_o = \beta \left(\frac{V_i}{\beta r_e}\right) (R_C \mid\mid r_o) \tag{6}$$

From Eq: (5) and (6)

$$\mathbf{A}_{\mathbf{v}} = \frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{i}}} = -\frac{\mathbf{R}_{\mathbf{C}} \mid\mid \mathbf{r}_{\mathbf{o}}}{\mathbf{r}_{\mathbf{e}}} \qquad \mathbf{A}_{\mathbf{v}} = \frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{i}}} \cong -\frac{\mathbf{R}_{\mathbf{C}}}{\mathbf{r}_{\mathbf{e}}} r_{o} \ge 10R_{\mathbf{C}}$$

$$(7)$$

Current gain

Here:
$$R'=R_1 II R_2 = R_B$$

For $r_o \ge 10R_C$

$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{\beta R' r_{o}}{(r_{o} + R_{C}) (R' + \beta r_{e})}$$
(8)

$$A_i = \frac{I_o}{I_i} \cong \frac{\beta R' r_o}{r_o (R' + \beta r_e)}$$
(9)

and

And if $R' \ge 10 \beta r_e$,

 $\mathbf{A}_{i} = \frac{\mathbf{I}_{o}}{\mathbf{I}_{i}} \cong \frac{\boldsymbol{\beta} \mathbf{R'}}{\mathbf{R'} + \boldsymbol{\beta} \mathbf{r}_{e}} r_{o} \ge 10R_{C}$ (10)

$$A_i = \frac{I_o}{I_i} = \frac{\beta R'}{R'}$$

and

$$\mathbf{A_{i}} = \frac{\mathbf{I_{o}}}{\mathbf{I_{i}}} \cong \boldsymbol{\beta} \bigg|_{r_{o} \ge 10R_{C}, R' \ge 10\beta_{re}}, \tag{11}$$

As an option,

$$\mathbf{A_i} = -\mathbf{A_v} \frac{\mathbf{Z_i}}{\mathbf{R_C}} \tag{12}$$

EMITTER FOLLOWER CONFIGURATION

- Emitter follower is a **common collector** transistor configuration. (When output taken from the emitter terminal of the transistor is known as emitter follower)
- Emitter follower can be designed by simply short circuit RC and remove bypass capacitor in RC coupled amplifier.
- Emitter follower gives **high input impedance** and **low output impedance**.
- Emitter follower can be used as **buffer**.
- Emitter follower is also known as voltage follower.
- The emitter follower configuration frequently used for impedance matching

Emitter Follower Configuration

Ro Equivalent Circuit for AC Equivalent Network

Input Impedance:

Z₁: The input impedance is determined in the same manner as described

$$Z_i = R_B \parallel Z_b \tag{1}$$

with
$$Z_b = \beta r_e + (\beta + 1)R_E$$
 (2)

or $Z_b \cong \beta(r_e + R_E)$

and $Z_b \cong \beta R_E$ (3)

Output Impedance:

 Z_0 : The output impedance is best described by first writing the equation for the current Ib:

$$I_b = \frac{V_i}{Z_b} \tag{4}$$

and then multiplying by $(\beta + 1)$ to establish I_e . That is,

$$I_e = (\beta + 1)I_b = (\beta + 1)\frac{V_i}{Z_b}$$
 (5)

Substituting for Z_b gives

$$I_e = \frac{(\beta + 1)V_i}{\beta r_e + (\beta + 1)R_E} \tag{6}$$

or
$$I_e = \frac{V_i}{[\beta r_e/(\beta+1)] + R_E}$$
 but
$$(\beta+1) \cong \beta$$
 and
$$\frac{\beta r_e}{\beta+1} \cong \frac{\beta r_e}{\beta} = r_e$$
 so that
$$I_e \cong \frac{V_i}{r_e+R_E}$$

If we now construct the network defined by Eq.

To determine Z_o , V_i is set to zero and

$$Z_0 = R_E \parallel r_e \tag{8}$$

Since R_E is typically much greater than re the following approximation is often applied:

$$Z \cong r_e$$
 (9)

Voltage gain

can be utilized to determine the voltage gain through an application of the voltage-A_v: Figure divider rule:

$$V_o = \frac{R_E V_i}{R_E + r_e}$$

$$\mathbf{A}_{\mathbf{v}} = \frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_i} = \frac{\mathbf{R}_{\mathbf{E}}}{\mathbf{R}_{\mathbf{E}} + \mathbf{r}_{\mathbf{o}}}$$
(9)

and

Since R_E is usually much greater than r_e , $R_E + r_e \cong R_E$ and

Current gain

 A_i : From Fig. ,

$$\mathbf{A}_{\mathbf{v}} = \frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{i}}} \equiv \mathbf{1}$$

$$I_b = \frac{R_B I_i}{R_B + Z_b}$$
 or $\frac{I_b}{I_i} = \frac{R_B}{R_B + Z_b}$

$$I_o = -I_e = -(\beta + 1)I_b$$
 or $\frac{I_o}{I_b} = -(\beta + 1)$

and

so that

 $A_i = \frac{I_o}{I_i} = \frac{I_o}{I_b} \frac{I_b}{I_i} = -(\beta + 1) \frac{K_B}{R_B + Z_b}$

and since

$$(\beta + 1) \cong \beta$$
,

$$A_{i} \cong \frac{\beta R_{B}}{R_{B} + Z_{b}} \tag{10}$$

or

$$\mathbf{A_i} = -\mathbf{A_v} \frac{\mathbf{Z_i}}{\mathbf{R_E}} \tag{11}$$

Common-Base (CB) Configuration

The input (V_i) is applied to the emitter and the output (V_o) is from the collector.

The Common-Base is characterized as having low input impedance and high output impedance with a current gain less than 1 and a very high voltage gain.

Common Base Configuration

CB Configuration

AC Equivalent Circuit

Input Impedance:

Output Impedance: Z_i:

$$\mathbf{Z_i} = \mathbf{R_E} \parallel \mathbf{r_e}$$

Z_o:

$$Z_0 = R_C$$

Voltage gain:

$$V_o = -I_o R_C = -(-I_c) R_C = \alpha I_e R_C$$
 (3

with

$$I_e = \frac{V_i}{r_e} \tag{4}$$

so that

$$V_o = \alpha \left(\frac{V_i}{r_e}\right) R_C \tag{5}$$

and

$$A_{\rm V} = \frac{V_{\rm o}}{V_{\rm i}} = \frac{\alpha R_{\rm C}}{r_{\rm e}} \cong \frac{R_{\rm C}}{r_{\rm e}}$$
 (6)

Current gain:

 A_1 : Assuming that $R_E >> r_e$ yields

and

$$I_e = I_i$$

$$I_o = -\alpha I_e = -\alpha I_i$$
(7)

$$\mathbf{A}_{i} = \frac{\mathbf{I}_{o}}{\mathbf{I}_{i}} = -\alpha \cong -1 \tag{8}$$

Phase Relationship

A CB amplifier configuration has no phase shift between input and output.

