СХЕМА С БИПРИЗМОЙ ФРЕНЕЛЯ

В схеме с бипризмой Φ ренеля бипризма с оптической плотностью n и угловым размером $\alpha \ll 1$ помещается между нитевидным монохроматическим источником света с длиной волны λ (на расстоянии a от него) и экраном (на расстоянии L от него).

Сначала выясним, как связаны направления падающего и прошедшего через призму лучей. Без ограничения общности рассмотрим верхнюю призму. Для падающего луча угол наклона к горизонтали

и угол падения θ_1 совпадают. Пусть $\theta_1 \ll 1$. Тогда согласно закону Снеллиуса угол преломления на первой границе равен

$$\psi_1 = \frac{\theta_1}{n}.$$

Угол падения на вторую границу равен $\theta_2 = \alpha - \psi_1$. Рассмотрим сначала случай $\psi_1 < \alpha$, представленный на рисунке. Тогда $\theta_2 > 0$. Угол преломления на второй границе

$$\psi_2 = n\theta_2$$
.

Поскольку нормаль ко второй границе составляет с горизонталью угол α , то угол наклона выходящего луча равен

$$\theta' = \alpha - \psi_2 = \alpha - n \left(\alpha - \frac{\theta_1}{n} \right) = \theta_1 - (n-1)\alpha.$$
 (1)

Если $\alpha < \psi_1$, то $\theta_2 < 0$ и $\psi_2 < 0$ – преломленный луч выйдет по другую сторону от нормали, нежели на рисунке. Нетрудно убедиться, что формула (1) подходит и для этого случая.

Теперь рассмотрим два луча, исходящие из нитевидного источника: один – горизонтально, другой – под малым углом $(n-1)\alpha$. Прошедшие через призму лучи наклонены под углами $(1-n)\alpha$ и 0 соответственно.

Продолжения выходящих лучей пересекаются в точке S_1 на высоте $d_1 = a(n-1)\alpha$ над источником S. Т. е. выходящие лучи расположены так, как если бы призмы не было, а вместо нитевидного источникаоригинала был нитевидный источник-изображение *.

Очевидно, что нижняя призма создает изображение, смещенное на расстояние $d_2 = a(n-1)\alpha$ вниз от оригинала. Таким образом, система эквивалентна схеме Юнга. Оба изображения когерентны и синфазны. Тогда разность фаз двух волн в точке на экране составляет

$$\Delta \Phi = k \frac{2a(n-1)\alpha \cdot x}{L+a},$$

а интенсивность

$$I(x) = 2I_0 \left[1 + \cos \left(k \frac{2a(n-1)\alpha \cdot x}{L+a} \right) \right], \quad k = \frac{2\pi}{\lambda}.$$

^{*} Наши рассуждения справедливы, пока вертикальный размер призмы меньше либо одного порядка с $d_1 \ll a$. В противном случае продолжение луча, преломленного на расстоянии $h \gg a(n-1)\alpha$ от оптической оси, уже не пройдет через точку S_1 и пучок преломленных лучей перестанет быть гомоцентрическим.