STATS 100A HW6

Problem 1 Two discrete random variables $(X,Y) \sim p(x,y) = P(X=x,Y=y), x \in \{1,2\}, y \in \{1,2,3\}, p(1,1) = .1, p(1,2) = .1, p(1,3) = .2, p(2,1) = .1, p(2,2) = .2, p(2,3) = .3.$

- (1) Calculate p(x) = P(X = x) and p(y) = P(Y = y) for all possible x and y.
- (2) Calculate p(x|y) = P(X = x|Y = y) and p(y|x) = P(Y = y|X = x) for all possible x and y.
- (3) Calculate E(XY), E(X), E(Y), and Cov(X, Y).

Problem 2 Suppose we observe $(X_i, Y_i) \sim f(x, y)$ independently for i = 1, ..., n. Let $\bar{X} = \sum_{i=1}^{n} X_i/n$, and $\bar{Y} = \sum_{i=1}^{n} Y_i/n$. Let $\tilde{X}_i = X_i - \bar{X}$, and $\tilde{Y}_i = Y_i - \bar{Y}$. Let **X** be the vector formed by $(\tilde{X}_i, i = 1, ..., n)$, and **Y** be the vector formed by $(\tilde{Y}_i, i = 1, ..., n)$. For the following scatterplots of (X_i, Y_i) , i = 1, ..., n, where each (X_i, Y_i) is a point,

- (1) Write down the possible value of correlation for each scatterplot. You do not need to be precise.
 - (2) Plot the vectors of \mathbf{X} and \mathbf{Y} for each scatterplot.
- (3) Plot the regression line $\tilde{Y} = \beta \tilde{X}$ on each scatterplot. Let $e_i = \tilde{Y}_i \beta \tilde{X}_i$, and let **e** be the vector formed by $(e_i, i = 1, ..., n)$. Suppose β is obtained by minimizing $|\mathbf{e}|^2 = \sum_{i=1}^n e_i^2$ (the so-called least squares estimation, which geometrically amounts to a projection of **Y** on **X**). Plot $\beta \mathbf{X}$ and **e** for each vector plot in (2).

Problem 3 Assume $X \sim N(0,1)$, and $[Y|X=x] \sim N(\rho x, 1-\rho^2)$.

- (1) What are $f_X(x)$, f(y|x), and f(x,y)?
- (2) What are E[Y|X=x] and Var[Y|X=x]?
- (3) Explain that we can express the model as $Y = \rho X + \epsilon$, where $\epsilon \sim N(0, 1 \rho^2)$, and ϵ is independent of X.
 - (4) Based on (3), show that E(Y) = 0, Var(Y) = 1, $Cov(X, Y) = \rho$.

Problem 4 If two continuous random variables X and Y are independent, prove

- (1) Cov(X, Y) = 0. Please explain the reverse may not be true, i.e., it is possible Cov(X, Y) = 0 even if X and Y are not independent.
 - (2) Var(X + Y) = Var(X) + Var(Y).
- (3) If $X_1, ..., X_i, ..., X_n$ are independent and identically distributed, with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Let \bar{X} be the average of X_i , i = 1, ..., n. Calculate $E(\bar{X})$ and $Var(\bar{X})$.