QUI070 - Métodos Físicos de Análise

2025.1

Informações da disciplina

Disciplina: QUI070 - Métodos Físicos de Análise

Créditos: 64 horas

Sala: B4213

Dia/hora: SEG/SEX, 13:30 – 15:20

Pré-requisitos: QUI055 (Química Orgânica II)

Informações do professor

Nome: Lucas Raposo Carvalho

Sala: Sala C2248, Instituto de Física e Química, 2º andar.

E-mail: lucasraposo@unifei.edu.br

Horário de atendimento: Mediante agendamento por e-mail.

Conteúdo

1	Breve descrição da disciplina	2
2	Bibliografia principal e auxiliar 2.1 Bibliografia principal	2
	2.2 Bibliografia auxiliar	2
3	Objetivos da disciplina	3
4	Formas de avaliação	4
5	Datas importantes	4
6	Calendário	5
7	Ementa	7
	7.1 Módulo 1. Espectroscopia na região do UV-Visível	7
	7.2 Módulo 2. Espectroscopia na região do Infravermelho	7
	7.3 Módulo 3. Espectroscopia de Ressonância Magnética Nuclear	8
	7.4 Módulo 4. Espectrometria de Massas	8

1 Breve descrição da disciplina

Pretende-se preparar os alunos dos cursos de Bacharelado em Química em tópicos centrais de elucidação estrutural utilizando técnicas espectroscópicas e espectrométricas – viz., espectroscopia na região do UV-Vis e do infravermelho (IV), espectrometria de massas (EM) e espectroscopia de ressonância magnética nuclear (RMN) – que serão úteis em situações acadêmicas e profissionais futuras. Especificamente, serão abordados fundamentos teóricos sobre (i) a espectroscopia na região ultravioleta-visível, (ii) a espectroscopia na região do infravermelho, (iii) identificação de grupos funcionais e elementos estruturais pertinentes ao IV, (iv) análise de espectros de IV, (v) a espectrometria de massas, (vi) aspectos básicos de instrumentação de EM, (vii) o íon molecular e regras úteis para análise estrutural, (viii) fragmentações e rearranjos, (ix) a espectroscopia de ressonância magnética nuclear, (x) aspectos básicos de instrumentação de RMN, (xi) análise de espectros unidimensional, (xii) técnicas alternativas de elucidação, (xiii) RMN bidimensional.

2 Bibliografia principal e auxiliar

2.1 Bibliografia principal

- 1. PAVIA, D. L.; LAMPMAN, G. M.; KRIZ, G. S.; VYVYAN, J. R. Introdução à espectroscopia, 2^a ed. Cengage Learning, São Paulo. 733 pp., **2016**;
- 2. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J.; BRYCE, D. L. Identificação espectrométrica de compostos orgânicos, 8ª ed. LTC, Rio de Janeiro. 454 pp., 2019.

2.2 Bibliografia auxiliar

- 1. KEMP, W. Organic Spectroscopy, 3^a ed. Palgrave. 410 pp., **1991**;
- 2. CLARIDGE, T. D. W. **High-Resolution NMR Techniques in Organic Chemistry**, 3^a ed. Elsevier. 537 pp., **2016**;
- 3. FIELD, L. D.; STERNHELL, S.; KALMAN, J. R. Organic Structures from Spectra, 4^a ed. Wiley. 466 pp., **2008**;
- 4. BANWELL, C. N.; MCCASH, E. M. Fundamentals of Molecular Spectroscopy, 4^a ed. McGraw-Hill. 324 pp., **1994**.

3 Objetivos da disciplina

Ao final da disciplina, espera-se que o aluno possua as seguintes habilidades/compentências:

- Saber alguns conceitos básicos do fenômeno da espectroscopia na região do UV-Vis;
- Saber identificar cromóforos, auxócromos e o efeito da conjugação em espectros de UV-Vis;
- Saber aplicar as regras de Woodward-Fieser para dienos e enonas;
- Ser capaz de analisar um espectro de UV-Vis;
- Saber alguns conceitos básicos do fenômeno da espectroscopia na região do infravermelho;
- Ter conhecimentos dos principais modos de vibração;
- Saber os principais números de onda de grupos funcionais relevantes e outros padrões estruturais em espectros;
- Ter domínio quanto à análise de um espectro de IV;
- Saber alguns conceitos básicos do fenômeno da espectrometria de massas;
- Saber os principais modos de ionização na EM;
- Ter domínio de reconhecimento padrões isotópicos, do pico do íon molecular e de regras úteis;
- Ter conhecimento dos principais padrões de fragmentação em EM;
- Saber alguns conceitos básicos do fenômeno e da instumentração da espectroscopia de ressonância magnética nuclear;
- Ter domínio dos conceitos de deslocamento químico, anisotropia magnética, integração de sinais, acoplamento escalar e padrões de multiplicidade;
- Ter domínio na análise de espectros 1D de ¹H e ¹³C;
- Ter conhecimento de técnicas de desacoplamento;
- Ter conhecimento do efeito nuclear overhauser (nOe) e suas implicações;
- Ter conhecimento da técnica do DEPT e ter domínio na análise de espectros;
- Ter conhecimento sobre relaxação nuclear e seus impactos em espectros;

- Ter conhecimento da técnica de RMN bidimensional;
- Ter domínio na análise de mapas de contorno COSY e HSQC.

4 Formas de avaliação

Os alunos serão avaliados por um total de três provas (P1, P2 e P3) e um trabalho em grupo (T). A N1 será composta pela P1 e pela P2. A N2 será composta pela P3 e pelo T.

Enquanto as provas terão conteúdo específico de acordo com as seções posteriores, o trabalho em grupo será estruturado da seguinte forma:

- Os alunos deverão formar três grupos de 4 pessoas e um grupo de 3 pessoas (totalizando 15 alunos matriculados). No máximo **quatro** grupos poderão ser formados;
- Cada grupo deverá preparar uma apresentação referente à elucidação estrutural completa de um composto específico utilizando as técnicas estudadas durante a disciplina;
- Cada grupo receberá um conjunto de espectros referentes à uma molécula específica, da qual não se sabe a estrutura. Então, esse grupo terá o prazo de, aproximadamente, três semanas para realizar a elucidação estrutural e preparar uma apresentação que demonstre os passos dessa análise;
- As apresentações serão feitas em dois dias (dois grupos por dia) e terão duração entre 35 minutos e 40 minutos. Cada grupo será avaliado em relação à (i) desenvoltura na fala, (ii) domínio do conteúdo da apresentação, (iii) adesão ao tempo, (iv) qualidade dos slides e (v) qualidade das respostas a questionamentos.

As notas da N1 e da N2 serão calculadas conforme as **Equações 1 e 2**. Cada avaliação terá peso 1 e valerá cinco pontos.

$$N1 = P1 + P2 \tag{1}$$

$$N2 = P3 + T \tag{2}$$

5 Datas importantes

Prova 1 (Módulos 1 e 2)
Prova 2 (Módulo 3)
Prova 3 (Módulo 4)
Trabalho (Grupos 1 e 2) $\dots 07/07/2025$
Trabalho (Grupos 3 e 4) $\dots 11/07/2025$
Prova substitutiva

6 Calendário

Segunda-feira	Sexta-feira
Data: 10/3	Data: 14/3 2
Ementa, datas e informações	1. Espectroscopia na região do UV-Visível
Data: 17/3 3	Data: 21/3 4
1. Espectroscopia na região do UV-Visível	1. Espectroscopia na região do UV-Visível
Data: 24/3 5	Data: 28/3 6
2. Espectroscopia na região do	2. Espectroscopia na região do
Infravermelho	Infravermelho
Data: 31/3 7	Data: 4/4
2. Espectroscopia na região do	2. Espectroscopia na região do
Infravermelho	Infravermelho
Data: 7/4 9	Data: 11/4 10
2. Espectroscopia na região do	2. Espectroscopia na região do
Infravermelho	Infravermelho
Data: 14/4 11	Data: 18/4
P1: Módulos 1 e 2	Paixão de Cristo
Data: 21/4	Data: 25/4 12
Tiradentes	3. Espectrometria de RMN
Data: 28/4 13	Data: 2/5
3. Espectrometria de RMN	Recesso escolar

Segunda-feira		Sexta-feira	
Data: 5/5 14		Data: 9/5 15	
3. Espectrometria de RMN		3. Espectrometria de RMN	
Data: 12/5	16	Data: 16/5 17	
3. Espectrometria de RMN		3. Espectrometria de RMN	
Data: 19/5	18	Data: 23/5 19	
3. Espectrometria de RMN		3. Espectrometria de RMN	
Data: 26/5	20	Data: 30/5 21	
3. Espectrometria de RMN		P2: Módulos 1 a 3 (RMN de 1 H e 13 C)	
Data: 2/6	22	Data: 6/6 23	
3. Espectrometria de RMN		3. Espectrometria de RMN	
Data: 9/6	24	Data: 13/6 25	
3. Espectrometria de RMN		3. Espectrometria de RMN	
		Entrega dos espectros (T, Grupos 1 e 2)	
Data: 16/6	26	Data: 20/6	
4. Espectrometria de Massas		Recesso escolar	
Entrega dos espectros (T, Grupos 3 e 4)			
Data: 23/6	27	Data: 27/6 28	
4. Espectrometria de Massas		4. Espectrometria de Massas	
Data: 30/6	29	Data: 4/7	
4. Espectrometria de Massas		P3: Módulos 1 a 4	

Segunda-feira	Sexta-feira	
Data: 7/7 31	Data: 11/7 32	
T: Grupos 1 e 2	T: Grupos 3 e 4	
Data: 14/7 33	Data: 18/7 34	
	Prova substitutiva	

7 Ementa

7.1 Módulo 1. Espectroscopia na região do UV-Visível

Tópicos discutidos incluem (i) a natureza da excitação eletrônica, (ii) a estrutura de bandas e princípios de espectroscopia de absorção, (iii) conceitos básicos de instrumentação, (iv) impactos de solventes, (v) cromóforos, auxócromos, deslocamento e efeitos, (vi) o efeito da conjugação, (vii) as regras de Woodward-Fieser para dienos, (vii) as regras de Woodward-Fieser para enonas, (ix) espectros de compostos aromáticos.

Tópico principal	Duração pretendida	Bibliografia
Fenômeno da espectroscopia de absorção no UV-Vis, regras de Woodward-Fieser, e interpretação de espectros	Três aulas	Pavia: Cap. 7 Kemp: Cap. 4

7.2 Módulo 2. Espectroscopia na região do Infravermelho

Tópicos discutidos incluem (i) unidades utilizadas, (ii) o processo de absorção e usos da espectroscopia no IV, (iii) modos de vibração, (iv) propriedades de ligações químicas e seus impactos na espectroscopia no IV, (v) aspectos básicos de instrumentação, (vi) análise de espectros e tabelas de correlação, (vii) padrões espectrais de grupos funcionais específicos.

Tópico principal	Duração pretendida	Bibliografia
Fenômeno da espectroscopia de absorção no IV, modos de vibração e interpretação de espectros de IV	Seis aulas	Pavia: Cap. 2 Silverstein: Cap. 2 Kemp: Cap. 2

7.3 Módulo 3. Espectroscopia de Ressonância Magnética Nuclear

Tópicos discutidos incluem (i) descrição do fenômeno da RMN, (ii) deslocamento químico e blindagem, (iii) aspectos básicos de instrumentação, (iv) integração de sinais, (v) ambientes químicos, (vi) fenômenos de blindagem diamagnética, (vii) anisotropia magnética, (viii) o acoplamento escalar, triângulo de pascal e padrões de multiplicidade, (ix) espectros de ¹H representativos, (x) deslocamentos químicos de ¹³C, (xi) desacoplamentos, (xii) efeito nuclear Overhauser (nOe), (xiii) aspectos básicos de relaxação, (xiv) análises de DEPT, (xv) espectros de ¹³C representativos, (xvi) RMN bidimensional, (xvii) mapas de contorno COSY e HSQC, (xviii) problemas combinados.

Tópico principal	Duração pretendida	Bibliografia
Aspectos básicos do fenômeno da RMN e de instrumentação, análise espectral de RMN 1D e 2D.	13 aulas	Pavia: Cap. 3, 4, 5, 6, 10 Silverstein: Cap. 3, 4 e 5 Kemp: Cap. 3

7.4 Módulo 4. Espectrometria de Massas

Tópicos discutidos incluem (i) aspectos básicos de instrumentação, (ii) métodos de ionização, (iii) analisadores de massas, (iv) espectros de massa, (v) determinação de massa e fórmula molecular, (vi) abundâncias isotópicas, (vii) IDH, regra dos 13 e regra do nitrogênio, (viii) análise estrutural e padrões de fragmentação.

Tópico principal	Duração pretendida	Bibliografia
Métodos de ionização, espectros de massas, abundâncias isotópicas e análise estrutural	Quatro aulas	Pavia: Cap. 8 Silverstein: Cap. 1 Kemp: Cap. 5