Find extrema on displayed graph.

3. referenced graph pg. 286

min: r maxmax: s loc min: r, b loc max: c neither: d, a

5. referenced graph pg. 286

min: undefined maxmax: 5 loc min: 2, 3 loc max: 5

Sketch a graph with the given constraints.

7. Absolute maximum at 5, absolute minimum at 2, local maximum at 3, local minima at 2 and 4.

Create graph from function and find extrema.

7.
$$f(x) = \begin{cases} x^2 & \text{if } -1 \le x \le 0, \\ 2 - 3x & \text{if } 0 < x \le 1 \end{cases}$$

Absolute min = -1, Local min = 0. No abs or local max.

Find the critical numbers of the function.

31. $3x^4 + 8x^3 - 48x^2$ Polynomials are differentiable for all $x \in \mathbb{R}$.

$$f'(x) = 4x^{3} + 24x^{2} - 96x$$
$$0 = x^{3} + 2x^{2} - 8x$$
$$0 = x(x^{2} + 2x - 8)$$
$$0 = x(x + 4)(x - 2)$$

find derivative find root(s)

x = 0, 4, and 2

35.
$$g(y) = \frac{y-1}{y^2 - y + 1}$$

$$g'(y) = \frac{(y^2 - y + 1)(1) - (y - 1)(2y - 1)}{(y^2 - y + 1)^2}$$

quotient rule

how to simplify from here?

39.
$$h(t) = t^{3/4} - 2t^{1/4}$$

$$h'(t) = \frac{3}{4}t^{-1/4} - \frac{1}{2}t^{-3/4}$$

find derivative

$$h'(t) = \frac{3}{4t^{1/4}} - \frac{1}{2t^{3/4}}$$

rewrite exponents

$$h'(t) = \frac{3}{4t^{1/4}} \cdot \frac{t^{2/4}}{t^{2/4}} - \frac{1}{2t^{3/4}} \cdot \frac{2}{2}$$

get common denominators

$$h'(t) = \frac{3t^{1/2} - 2}{4t^{3/4}}$$

$$0=4t^{3/4}$$

set denominator to 0 to evaluate where function is undefined

$$t = 0$$

$$0=3t^{1/2}-2 \qquad \qquad \text{set numerator to 0 to find root(s)}$$

$$t^{1/2}=\frac{2}{3}\implies t=\frac{4}{9}$$

$$t=0 \text{ and } \frac{4}{9}$$

$$f'(x) = x^{1/3}(4-x)^{2/3}$$

$$f'(x) = x^{1/3}(-4+x)(-1) + (4-x)^{2/3}\frac{1}{3}x^{2/3}$$
 product rule
$$f'(x) = \frac{x^{1/3}(-4+x)}{3} + \frac{(4-x)^{2/3}}{3x^{2/3}}$$
 rewrite as rational expression
$$f'(x) = \frac{x^{1/3}(-4+x)}{3} \cdot \frac{x^{2/3}}{x^{2/3}} + \frac{(4-x)^{2/3}}{3x^{2/3}}$$
 get common denominators
$$f'(x) = \frac{x(-4+x) + (4-x)^{2/3}}{3x^{2/3}}$$

$$0 = 3x^{2/3}$$
 set denominator to 0 to evaluate where function is undefined $x = 0$

$$0 = x(-4+x) + (4-x)^{2/3}$$
 set numerator to 0 to find root(s)
$$0 = (4-x)(-x + (4-x)^{1/3})$$
 find factors, $x = 4$

$$0 = -x + (4-x)^{1/3}$$
 isolate factor by removing $(4-x)$

$$x =$$
 how to simplify from here? missing $x = \frac{4}{3}$

x = 0 and 4

$$47. \ g(x) = x^2 \ln x$$

$$g'(x) = x^2 \left(\frac{1}{x}\right) + 2x \ln x$$
 product rule
$$g'(x) = x + 2x \ln x$$
 find root(s)
$$-x = 2x \ln x$$

$$\frac{-x}{2x} = \ln x$$
 x's on left side of expression cancel
$$-\frac{1}{2} = \ln x$$
 use e to isolate remaining x

 $x = \frac{1}{\sqrt{e}}$

Find the value of f(x) at absolute min and max of the function on the given interval.

51.
$$f(x) = 12 + 4x - x^2$$
, [0, 5]

$$f'(x) = -2x + 4$$
 find derivative

$$0 = -2x + 4$$
 find root(s)

$$-4 = -2x$$
 root is 2

Original function is a polynomial so it is continuous for all real numbers. Plug in roots and endpoints to original function.

$$f(2) = 12 + 4(2) - (2)^{2} = 12 + 8 - 4 = 16$$

$$f(0) = 12 + 4(0) - (0)^{2} = 12 + 0 - 0 = 12$$

$$f(5) = 12 + 4(5) - (5)^{2} = 12 + 20 - 25 = 7$$

max: f(2) = 16, min: f(5) = 7

55.
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 1$$
, [-2, 3]

$$f'(x) = 12x^3 - 12x^2 - 24x$$
 find derivative

$$0 = 12x^3 - 12x^2 - 24x$$
 find roots

$$0 = (x^2 - x - 2)(12x)$$
 find factors

$$0 = (x - 2)(x + 1)(12x)$$
 roots are 2, -1, and 0

Original function is polynomial so it is continuous for all real numbers. Plug in roots and endpoints into original function.

$$f(-2) = 3(-2)^4 - 4(-2)^3 - 12(-2)^2 + 1$$
 critical val #1

$$f(-2) = (3*16) - (4*-8) - (12*4) + 1$$

$$f(-2) = 48 - (-32) - 48 + 1$$

$$f(-2) = 33$$

$$f(3) = 3(3)^4 - 4(3)^3 - 12(3)^2 + 1$$
 critical val #2

$$f(3) = (3*81) - (4*27) - (12*9) + 1$$

$$f(3) = 243 - 108 - 108 + 1$$

$$f(3) = 28$$

$$f(2) = 3(2)^4 - 4(2)^3 - 12(2)^2 + 1$$
 critical val #3
$$f(2) = (3*16) - (4*8) - (12*4) + 1$$

$$f(2) = 48 - 32 - 48 + 1$$

$$f(2) = -31$$

$$f(0) = 3(0)^4 - 4(0)^3 - 12(0)^2 + 1$$
 critical val #4
$$f(0) = 1$$

$$f(-1) = 3(-1)^4 - 4(-1)^3 - 12 - (1)^2 + 1$$
 critical val #5

$$f(-1) = 3 - 4 + 12 + 1$$

$$f(-1) = 12$$

max: f(-2) = 33, min: f(2) = -31

59.
$$f(x) = t - \sqrt[3]{t}$$
, [-1, 4]

$$f(x) = t - t^{1/3}$$

rewrite function with exponents

$$f'(x) = 1 - \frac{1}{3}t^{-2/3}$$

find derivative

$$f'(x) = 1 - \frac{1}{3t^{2/3}}$$

simplify exponents

Radical is undefined when denominator is 0, so f(0) is a critical value. Set denominator to 1 to find the root, where the function evaluates to 0.

$$3t^{2/3} = 1$$
 \Longrightarrow $t^{2/3} = \frac{1}{3}$ \Longrightarrow $t = \frac{\sqrt{1^3}}{\sqrt{3^3}} = \frac{\sqrt{3}}{9}$

Plug in critical values into original equation.

$$f(-1) = -1 - \sqrt[3]{-1}$$

critical val #1

$$f(-1) = -1 + 1$$

$$f(-1) = 0$$

$$f(4) = 4 - \sqrt[3]{4}$$

critical val #2

$$f(4) = 4 - 1.58 = 2.41$$

$$f(0) = 0 - \sqrt[3]{0} = 0$$

critical val #3

$$f\left(\frac{\sqrt{3}}{9}\right) = \frac{\sqrt{3}}{9} - \sqrt[3]{\frac{\sqrt{3}}{9}}$$

critical val #4

$$f\left(\frac{\sqrt{3}}{9}\right) = \frac{\sqrt{3}}{9} - \left(3^{-2} * 3^{1/2}\right)^{1/3}$$

$$f\left(\frac{\sqrt{3}}{9}\right) = \frac{\sqrt{3}}{9} - \left(3^{-2/3} * 3^{1/6}\right)$$

$$f\left(\frac{\sqrt{3}}{9}\right) = \frac{\sqrt{3}}{9} - 3^{-3/6}$$

$$f\left(\frac{\sqrt{3}}{9}\right) = \frac{\sqrt{3}}{9} - \frac{1}{\sqrt{3}}$$

$$f\left(\frac{\sqrt{3}}{9}\right) = -0.38$$

max:
$$f(4) = 2.41$$
, min: $f\left(\frac{\sqrt{3}}{9}\right) = -0.38$

63.
$$f(x) = x^{-2} \ln x$$
, $\left[\frac{1}{2}, 4\right]$

$$f'(x) = x^{-2} \left(\frac{1}{x}\right) + -2x^{-3} \ln x$$
 find derivative
$$f'(x) = x^{-3} - 2x^{-3} \ln x$$
 find root(s)
$$0 = x^{-3} (1 - 2 \ln x)$$
 find root(s)
$$0 = 1 - 2 \ln x$$
 remove factor, $x = 0$

$$\frac{1}{2} = \ln x$$

$$e^{1/2} = x$$

Critical numbers are $e^{1/2}$, $\frac{1}{2}$, and 4. 0 is not included because it is not in domain of original function. Plug critical numbers into original function and evaluate.

$$f(e^{1/2}) = (e^{1/2})^{-2} \ln e^{1/2}$$
 critical val #2
$$f(e^{1/2}) = (e^{-1}) \left(\frac{1}{2}\right)$$

$$f(e^{1/2}) = \left(\frac{1}{2e}\right)$$

$$f(e^{1/2}) = 0.18$$

$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{-2} \ln \frac{1}{2}$$
 critical val #3
$$f\left(\frac{1}{2}\right) = 4 \ln \frac{1}{2}$$

$$f\left(\frac{1}{2}\right) = -2.77$$

$$f(4) = 4^{-2} \ln 4$$
 critical val #4
$$f(4) = \frac{\ln 4}{16}$$

$$f(4) = 0.09$$

max: $f(e^{1/2}) = 0.18$, min: $f(\frac{1}{2}) = -5.77$

(a) Use a graph to estimate extrema to 2 decimal places (b) Find extrema using calculus.

70.
$$f(x) = e^x + e^{-2x}, \ 0 \le x \le 1$$

(a) max:
$$f(1) = 2.85$$
, min: $f(0.23) = 0.89$

$$f'(x) = e^x + e^{-2x}(-2)$$

 $f'(x) =$

find derivative

How to simplify without taking log of negative number?