Deep Neural Networks

KI Q&A der AG5

Tiefe Neuronale Netze

- Komplexe Aufgaben brauchen tiefere Netze
 - VGG-19: 20 Layer (133 Millionen Parameter)
 - o GPT-3: 96 Layer (175 Billionen Parameter)

																										Number of Parameters (millions)	Top-5 Error Rate (%)
lmage	Conv3-64	Max pool		Conv3-128	Max pool		Conv3-256	Conv3-256	Max pool			Conv3-512	Conv3-512	Max pool			Conv3-512	Conv3-512	Max pool			FC-4096	FC-4096	FC-1000	Soft-max	133	10.4
											١	/GG	11														
Image	Conv3-64	LRN	Max pool	Conv3-128	Max pool		Conv3-256	Conv3-256	Max pool			Conv3-512	Conv3-512	Max pool			Conv3-512	Conv3-512	Max pool			FC-4096	FC-4096	FC-1000	Soft-max	133	10.5
VGG-11 (LRN)																											
Image	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Max pool			Conv3-512	Conv3-512	Max pool			Conv3-512	Conv3-512	Max pool			FC-4096	FC-4096	FC-1000	Soft-max	133	9.9
	VGG-13																										
lmage	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Conv1-256	Max pool		Conv3-512	Conv3-512	Conv1-512	Max pool		Conv3-512	Conv3-512	Conv1-512	Max pool		FC-4096	FC-4096	FC-1000	Soft-max	134	9.4
									_		VGG-	-16 (Con	v1)													
Image	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Conv3-256	Max pool		Conv3-512	Conv3-512	Conv3-512	Max pool		Conv3-512	Conv3-512	Conv3-512	Max pool		FC-4096	FC-4096	FC-1000	Soft-max	138	8.8
											١	/GG	-16														
Image	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Conv3-256	Conv3-256	Max pool	Conv3-512	Conv3-512	Conv3-512	Conv3-512	Max pool	Conv3-512	Conv3-512	Conv3-512	Conv3-512	Max pool	FC-4096	FC-4096	FC-1000	Soft-max	144	9.0
											١	/GG	-19														

Probleme

- Exploding Gradients
 - o Beim Propagieren der Fehler wird dieser immer größer
 - Exponentieller Anstieg
 - Dadurch große Schritte
 - →Oszillation und "Überspringen" der Minima
- Vanishing Gradients
 - o Beim Propagieren der Fehler wird dieser immer kleiner
 - Exponentiell fallend
 - o Dadurch kleine oder gar keine Schritte
 - → Langsames oder gar kein Lernen

Summary: the equations of backpropagation

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$$
 (BP2)

$$\frac{\partial C}{\partial b_i^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{jk}^{l}} = a_k^{l-1} \delta_j^l \tag{BP4}$$

Lösungen

- o Nicht-saturierende Aktivierungsfunktion (gegen Vanishing Gradient)
 - ReLU
 - LeakyReLU
- o Gute Initialisierung der Gewichte
 - ° Z.B. Glorot Initialisierung
- o Gradient Clipping
 - ° Schneide Gradient bei 1 oder bei 0 ab
- Oder...

Das Netz lernen lassen, wie viel Layer es braucht

- ResNet mit Skip Connections
- Wir addieren den Input eines ResBlocks auf dessen Output
- ResBlöcke können übersprungen werden
 - o Gewichte in Blöcken können 0 werden
 - o Dann werden Layer ignoriert
 - o Gradient kann Block "umfließen"
- Das Netz lernt nur so viele Layer zu verwenden, wie es braucht
- Weiterer Vorteil: Spätere Layer können unverarbeitete Information nutzen

Wie bauen wir eine Addition ein?

- Lösung: Tensorflow Functional API
- o Alternative zu Sequential Model
- ° Wir geben ein Netz als Aufruf von Funktionen an

BatchNormalization

- Prinzip
 - o Nehme den Output eines Layers für den aktuellen Batch
 - o Normalisiere ihn auf eine Normalverteilung
 - Mit lernbarer Varianz
 - Und lernbarem Mittelwert
- Resultat: Schnelleres und besseres Lernen
- Niemand weiß wirklich genau warum BatchNormalization funktioniert
 - Momentan beste Idee: Weniger Abhängigkeiten zwischen Ebenen
 - Oder/Und: Weniger lokale Optima

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

Aufgabe 1

https://t1p.de/QA-Session-4-Aufgabe-1

Noch ein Problem tiefer Netze

- o Tiefe Netze brauchen sehr lange, um zu lernen
- Wir wollen das lernen beschleunigen
- ° Lösung: Anpassungen für den Lernalgorithmus

(Stochastic) Gradient Descent

- Gradient Descent
 - Berechne die Fehler für alle Datenpunkte
 - o Passe die Gewichte an, so dass dieser reduziert wird
 - Probleme:
 - o Dauert lange, da viele Fehler berechnet werden müssen
 - Viele Iterationen nötig bis Minimum erreicht wurde
- Stochastic Gradient Descent (SGD)
 - Berechne den Fehler für einen Teil der Datenpunkte
 - o Passe die Gewichte an, so dass dieser reduziert wird
 - Vorteil:
 - Mehr Updates in jeder Epoche
 - Dadurch schnellere Konvergenz

Momentum

- o Problem: Stochastic Gradient Descent hat viele Oszillationen
- ° Lösung: Momentum
 - o Wir fügen dem Update einen Teil des letzten Updates hinzu
- Falls unterschiedliche Richtungen langsamer
- Falls gleiche Richtungen schneller
- o Also Konzentration auf Hauptrichtung

AdaGrad

- o Optimiert eine Lernrate für jede Dimension
- o Parameter, die wenige Updates erhalten kriegen eine niedrige Lernrate
- o Parameter, die viele Updates erhalten kriegen eine hohe Lernrate
- Vorteil:
 - o Bestenfalls geringerer Einfluss der initialen Lernrate
- Nachteil:
 - ° Lernrate für eine Dimension kann gegen null konvergieren

RMSProp

- Dividiere die Lernrate für jeden Parameter durch die Wurzel des Mittleren Quadrats aller vorherigen Gradienten
- o Dadurch passt sich Lernrate automatisch an
- Da Gradienten Summe steigt wird Lernrate im Lauf des Trainings kleiner
 - → Anfangs große Schritte dann immer kleinere
- Oszillationen werden gedämpft
- Wir können eine größere initiale Lernrate wählen

$$E[g^{2}]_{t} = \beta E[g^{2}]_{t-1} + (1 - \beta) \left(\frac{\delta C}{\delta w}\right)^{2}$$

$$w_{t} = w_{t-1} - \frac{\eta}{\sqrt{E[g^{2}]_{t}}} \frac{\delta C}{\delta w}$$

Adam

- Kombiniert Momentum mit RMSProp
- Verhinderung von Oszillationen durch Teilen durch Wurzel des mittleren Quadrats
- ° Konzentration auf eine Richtung durch Momentum
- Zusätzlich: Bias Korrektur

Lernrate

- Der einzige Parameter, der normalerweise getunt wird ist die initiale Lernrate
- ° Kann großen Einfluss auf das Ergebnis haben
- ° Zu kleine Schritte:
 - Langes Training
 - Feststecken in lokalen Minima
- ° Zu große Schritte
 - Langes Training
 - Verfehlen des globalen Minimums

Lernratentrick

- o Eine Möglichkeit, eine möglichst optimale Lernrate zu bestimmen
- Starte mit sehr kleiner Lernrate
- o Nach jedem Batch: Erhöhe die Lernrate exponentiell
- Plotte die Veränderung der Loss-Funktion gegen die Lernrate in dieser Iteration
- o Wähle die Lernrate, bei der der schnellste Abstieg zu erkennen ist

Aufgabe 2

https://t1p.de/QA-Session-4-Aufgabe-2

Deep Autoencoder

Deep Denoising Autoencoder

- o Input ist verrauschtes Bild, Target ist rauschfreies Bild
- In der Mitte muss die Information "vergessen" werden, die Rauschen ist

Sparse Autoencoder

- Wir fügen einen Constraint in der Mitte ein
 - Möglichst viele Nuller
 - ° Z.B. über L1 Norm
- o Dadurch Automatisches One-Hot-Encoding
 - o Entspricht Klassifikation

Erkennung von Outliern

- o Outlier zeichnen sich dadurch aus, dass Sie anders sind als die Daten im Trainingsdatensatz
- Einen Outlier kann man also dadurch erkennen, dass er weniger gut vom Autoencoder rekonstruiert werden kann
- Daher ist die Accuracy besonders niedrig
- o Kriterium was ein Outlier ist (welche Accuracy niedrig ist) muss aber selbst festgelegt werden

Aufgabe 3

https://t1p.de/QA-Session-4-Aufgabe-3