

4.4

-40 to +100

-40 to +85

-40 to +150

260

T,j

 T_A

Tsta

 T_L

mW/°C

°C

°C

°C

MOC3010 MOC3011 MOC3012

6-Pin DIP Random-Phase Optoisolators Triac Driver Output(250 Volts Peak)

The MOC3010 Series consists of gallium arsenide infrared emitting diodes, optically coupled to silicon bilateral switch and are designed for applications requiring isolated triac triggering, low-current isolated ac switching, high electrical isolation (to 7500 Vac peak), high detector standoff voltage, small size, and low cost.

• To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option.

Recommended for 115 Vac(rms) Applications:

- Solenoid/Valve Controls
- Lamp Ballasts
- Interfacing Microprocessors to 115 Vac Peripherals
- Motor Controls
- · Static ac Power Switch

Derate above 25°C

Junction Temperature Range

Storage Temperature Range

Soldering Temperature (10 s)

Ambient Operating Temperature Range

- · Solid State Relays
- Incandescent Lamp Dimmers

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

TATINGS (TA = 23 o unless otherwise noted)							
Rating	Symbol	Value	Unit				
INFRARED EMITTING DIODE							
Reverse Voltage	VR	3	Volts				
Forward Current — Continuous	lF	60	mA				
Total Power Dissipation @ T _A = 25°C Negligible Power in Transistor	PD	100	mW				
Derate above 25°C		1.33	mW/°C				
OUTPUT DRIVER							
Off-State Output Terminal Voltage	V _{DRM}	250	Volts				
Peak Repetitive Surge Current (PW = 1 ms, 120 pps)	ITSM	1	А				
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	300 4	mW mW/°C				
TOTAL DEVICE							
Isolation Surge Voltage ⁽¹⁾ (Peak ac Voltage, 60 Hz, 1 Second Duration)	VISO	7500	Vac(pk)				
Total Power Dissipation @ T _A = 25°C	PD	330	mW				

Isolation surge voltage, V_{ISO}, is an internal device dielectric breakdown rating.
 For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
INPUT LED	•	•			
Reverse Leakage Current (V _R = 3 V)	IR	_	0.05	100	μА
Forward Voltage (IF = 10 mA)	V _F	_	1.15	1.5	Volts
OUTPUT DETECTOR (I _F = 0 unless otherwise noted)	•	•			
Peak Blocking Current, Either Direction (Rated V _{DRM} ⁽¹⁾)	IDRM	_	10	100	nA
Peak On–State Voltage, Either Direction (I _{TM} = 100 mA Peak)	VTM	_	1.8	3	Volts
Critical Rate of Rise of Off–State Voltage (Figure 7, Note 2)	dv/dt	_	10	_	V/μs
COUPLED	•	•			
LED Trigger Current, Current Required to Latch Output (Main Terminal Voltage = 3 V ⁽³⁾) MOC3010 MOC3011 MOC3012	l _{FT}	_ _ _	8 5 3	15 10 5	mA
Holding Current, Either Direction	lн	_	100	_	μА

- 1. Test voltage must be applied within dv/dt rating.
- 2. This is static dv/dt. See Figure 7 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.
- 3. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT}. Therefore, recommended operating I_F lies between max I_{FT} (15 mA for MOC3010, 10 mA for MOC3011, 5 mA for MOC3012) and absolute max I_F (60 mA).

TYPICAL ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$

Figure 2. On-State Characteristics

MOC3010, MOC3011, MOC3012

Figure 3. Trigger Current versus Temperature

Figure 4. LED Current Required to Trigger versus **LED Pulse Width**

Figure 5. dv/dt versus Temperature

- 1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
- 2. 100x scope probes are used, to allow high speeds and voltages.
- 3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable RTEST allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τ_{RC} is measured at this point and recorded.

Figure 6. Static dv/dt Test Circuit

TYPICAL APPLICATION CIRCUITS

NOTE: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only. Additional information on the use of the MOC3010/3011/3012 is available in Application Note AN–780A.

Figure 7. Resistive Load

Figure 8. Inductive Load with Sensitive Gate Triac (IGT \leq 15 mA)

Figure 9. Inductive Load with Non–Sensitive Gate Triac (15 mA < I_{GT} < 50 mA)

PACKAGE DIMENSIONS

MOC3010, MOC3011, MOC3012

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.320	0.350	8.13	8.89
В	0.240	0.260	6.10	6.60
С	0.115	0.200	2.93	5.08
D	0.016	0.020	0.41	0.50
Е	0.040	0.070	1.02	1.77
F	0.010	0.014	0.25	0.36
G	0.100 BSC		2.54	BSC
J	0.008	0.012	0.21	0.30
K	0.100	0.150	2.54	3.81
L	0.400	0.425	10.16	10.80
N	0.015	0.040	0.38	1.02

0.4" LEAD PACING

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.