PARTE 3 do curso Tycho Brahe, Kepler e Newton

O que será abordado neste curso:

O Caminho até a Teoria da Gravitação de Newton:

Parte 1 (4 aulas)

- Conceitos básicos de Astronomia: Movimento do Sol e dos Corpos Celestes, esfera celestes, "laçadas dos planetas".
- Descobertas da Antiguidade: Aristarco, Eratóstenes, Hiparco

Parte 2 (4 aulas)

- Modelo de Ptolomeu (séc II): Epiciclos e deferentes.
- Copérnico e Tycho Brahe (séc XV) e Galileu (séc XVI-XVII).

Parte 3 (3 aulas)

- Leis de Kepler (séc XVI-XVII) do movimento dos planetas.
- Teoria de Gravitação de Newton (séc XVII).

Tycho Brahe (1546-1601)

- "Um dos melhores astrônomos observacionais da história".
- Medições com precisão de cerca de um *minuto de arco*⁽¹⁾. Extraordinário.

http://en.wikipedia.org/wiki/Tycho_Brahe

Pergunta: Uma moeda de 1cm de diâmetro subtende um arco de 1' na visão de um observador. A que distância do observador está a moeda?

(1) Wesley, W.G., J. for the History of Astronomy, 9, 42 (1978)

Tycho Brahe (1546-1601)

http://galileo.rice.edu/sci/brahe.html

http://en.wikipedia.org/wiki/Tycho_Brahe

- Observações importantes: "nova" de 1572 e cometa de 1577: provas de que o firmamento não é imutável.
- Porém, acreditava que a Terra estava no centro do Universo (modelo "misto").

Johannes Kepler (1571-1630)

http://en.wikipedia.org/wiki/Johannes_Kepler

- Obras principais: *Mysterium* Cosmographicum (1536), *Astronomia Nova* (1609), *Harmonices Mundi* (1618)

- Discipulo de Tycho Brahe (1600).
- Procurava incansavelmente uma "ordem geométrica" no modelo de Copérnico.
- Primeiramente propôs que os 5 sólidos platonicos circunscritos em esferas que representariam as órbitas dos planetas.

As Leis de Kepler

Leis de Kepler do Movimento Orbital

1a Lei de Kepler: A órbita descrita pelos planetas ao redor do Sol é uma elipse, com o Sol ocupando um dos focos.

2a Lei de Kepler: O raio vetor que liga um planeta ao Sol descreve áreas iguais em tempos iguais.

3a Lei de Kepler: Os quadrados dos períodos de revolução de dois planetas quaisquer estão entre si como os cubos das suas distâncias médias ao Sol.

http://astro.unl.edu/naap/pos/animations/kepler.swf

1a Lei de Kepler

- Órbita de Marte: melhor ajuste com epiciclos dava um erro de 8' de arco.

-Isso é <u>muito maior</u> que a precisão das observações de Tycho Brahe (<2-3').

- "Marte sozinho nos permite desvendar os segredos da astronomia."
- Kepler foi levado à conclusão que as órbitas não poderiam ser circulares:

A órbita descrita pelos planetas ao redor do Sol é uma elipse, com o Sol ocupando um dos focos.

Elipses

- Conjunto dos pontos (x,y) que satisfazem a equação:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

- Eixo maior: comprimento 2a

- Eixo menor: comprimento 2b

- Focos: localizados em: $(x_0 \pm c, y_0)$

onde c é dado por

$$c^2 = a^2 - b^2$$

Ecentricidade das órbitas

- Ecentricidade da elipse:

$$e = \frac{c}{a} \qquad c^2 = a^2 - b^2$$

- Círculo: e=0

- Elipse: 0<e<1 "achatada" (a>c)

Planeta	Semi-eixo maior a (UA)	Ecentricidade e
Merc ú rio	0,387096	0.2056
Vênus	0,723342	0.0068
Terra	1	0.0167
Marte	1,523705	0.0934
Júpiter	5,204529	0.0483
Saturno	9,575133	0.0560
Urano	19,30375	0.0461
Netuno	30,20652	0.0097

2a Lei de Kepler

O raio vetor que liga um planeta ao Sol descreve **áreas iguais** em **tempos iguais.**

3a Lei de Kepler

Os quadrados dos períodos de revolução de dois planetas quaisquer estão entre si como os cubos das suas distâncias médias ao Sol.

$$\frac{T_A^2}{a_A^3} = \frac{T_B^2}{a_B^3} = \text{const.}$$

	Planeta	Semi-eixo maior a (UA)	Período (T _{Terra} =1)	T^{2}/a^{3}
	Merc Ú rio	0,387096	0,24085	1,00009
	Vênus	0,723342	0,61521	1,00004
	Terra	1	1	1
	Marte	1,523705	1,88089	1,00006
	J ú piter	5,204529	11,8622	0,998128
t	Saturno	9,575133	29,4577	0,988469
	Urano	19,30375	84,0139	0,981245
	Netuno	30,20652	164,793	0,985316
	Plutão	39,91136	247,686	0,964969

Tarefa 9: Elipses

- Conjunto dos pontos (x,y) que satisfazem a equação:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

- Eixo maior: comprimento 2a

- **Eixo menor**: comprimento 2*b*

- Focos: localizados em: $(x_0 \pm c, y_0)$

onde c é dado por

$$c^2 = a^2 - b^2$$

- Calcule as coordenadas (x,y) dos 4 pontos em que elipse centrada em x₀=y₀=0 intersecta os eixos.
- 2) Mostre que a soma das distâncias de cada um destes pontos aos focos é igual a 2a. [OBS: É possível mostrar que isso vale para qualquer ponto (x,y) da elipse!]