

RN8209C/RN8209D 用户手册

Data: 2014-3-20

Rev: 1.0

Data:2014-3-29

Rev:1.1

Data:2014-8-26

Rev:1.2

Data:2014-12-22

Rev:1.3

Data:2015-1-7

Rev:1.4

Data:2015-1-29

Rev:1.5

Data:2016-2-15

Rev:1.6

版本更新说明

版本号	修改时间	修改内容				
V1.0	2014-3-20	创建				
V1.1	2014-3-29	修改文字错误				
V1.2	2014-8-26	增加内部未开放功能:				
		电能寄存器 2A/2C 功能定义更改;				
		扩展频率测量范围,增加 35H 寄存器;				
		RN8209D 的 RX 引脚也支持复位功能;				
		对 RX 引脚复位功能做补充说明;				
		修改错误:				
		2.7 章节关于 Hfconst 寄存器地址的描述错误;				
		修改一些文字错误;				
V1.3	2014-12-22	3.2.2 hfconst 计算公式修改				
		HFConst= INT [14.8528*Vu*Vi*10^11/(EC*Un*Ib)]				
		改为:				
		HFConst=INT[16.1079*Vu*Vi*10^11/(EC*Un*Ib)]				
V1.4	2015-1-7	第 18 页寄存器列表中 2A 和 2C 寄存器说明更改;				
		冻结电能寄存器冻结时间从 572.1793ms 更改为				
		572.1397ms。				
V1.5	2015-1-29	修改电能冻结时间为: 2048*1024 个晶振周期, V1.4				
		版中为 2048 个晶振周期。				
		修改功率寄存器 Read 行 APA23、22、21、20 角标,				
		使其与 BIT31、30、29、28 角标对应。				
		修改手册页脚版本为 Rev 1.5。				
V1.6	2016-2-15	1) P13,修正 2.7 能量计算 HFConst 地址笔误 0X03 为				
		0X02				
		2) P17,系统控制寄存器 SYSCON 的 bit5:4 的"PGAIB"				
		的 PGAIB1 的第 4 行第 1 列, (, 1), 改为 (1,1)				
		3) P23页 2.12.3 计量参数寄存器 有功电能寄存器溢				
		出标志位 POIF 修正为 PEOIF 及无功电能寄存器溢				
		出标志位 QOIF 修正 QEOIF				
		4) P34, 3.3 举例 HFConst 计算式修正为				
		HFConst=[16.1079*Vu*Vi*10^11/(EC*Un*Ib)]=281				
		8,以及无功校正 Qphs 计算式的修正				

目录

1	心片角	↑绍	4
	1. 1	芯片特性	4
	1.2	功能简介	4
	1.3	功能框图	5
	1.4	管脚定义	5
	1.5	典型应用	8
2	系统巧	b能	9
	2. 1	电源监测	9
	2. 2	系统复位	9
	2.3	模数转换	.10
	2.4	有功功率	.10
	2.5	无功功率	.11
	2.6	有效值	.12
	2.7	能量计算	.12
	2.8	通道切换	.13
	2.9	频率测量	.13
	2. 1	0 过零检测	.14
	2. 1	1 中断	.14
	2. 13	2 寄存器	.15
3		ī法	
		概述	
	3. 2	校表流程和参数计算	.31
	3. 3	举例	.34
4		美口	
		SPI 接口	
	4. 2	UART 接口	.38
5	电气料	导性	.43
6	芯片型	+装	45

1 芯片介绍

1.1 芯片特性

✓ 计量

- 提供三路Σ-△ADC
- 有功电能误差在 8000:1 动态范围内<0.1%, 支持 IEC62053-22: 2003 标准要求
- 无功电能误差在 8000:1 动态范围内<0.1%, 支持 IEC62053-23: 2003 标准要求
- 提供两路电流和一路电压有效值测量,在 1000:1 动态范围内,有效值误差<0.1%
- 提供一路脉冲频率发生器,可用于对用户自定义功率进行电能量累加积分
- 提供三路 ADC 的瞬时采样值
- 潜动阈值可调
- 提供反相功率指示
- 提供电压通道频率测量
- 提供电压通道过零检测
- 提供参考基准监测功能

✓ 软件校表

- 电表常数(HFConst)可调
- 提供增益和相位校正
- 提供有功、无功、有效值 offset 校正
- 提供小信号校表加速功能
- 提供配置参数自动校验功能
- ✓ 提供 SPI/UART 接口
- ✓ 具有电源监控功能
- ✓ 具备电能寄存器定时冻结功能
- ✓ UART 的 RX 输入引脚同时具备管脚复位功能
- ✓ RN8209 +5V/3.3V 电源供电,功耗典型值为 15mW@5V、8mW@3.3V
- ✓ 内置 1.25V±1% 参考电压,温度系数典型值 5ppm/℃,最大 15ppm/℃
- ✓ 采用 SSOP24 (RN8209D) /SOP16L (RN8209C) 绿色封装

1.2 功能简介

RN8209 能够测量有功功率、无功功率、有功能量、无功能量,并能同时提供两路独立的 有功功率和有效值、电压有效值、线频率、过零中断等,可以实现灵活的防窃电方案。

RN8209 支持全数字的增益、相位和 offset 校正。有功电能脉冲从 PF 管脚输出,无功电能脉冲/用户自定义电能脉冲频率从 QF 引脚输出。

RN8209C 提供串行接口 UART, 固定波特率 4800, 管脚复位与 UART 输入引脚 RX 复用。RN8209D 提供串行接口 SPI 和 UART, 方便与外部 MCU 之间进行通信。

RN8209 内部的电源监控电路可以保证上电和断电时芯片的可靠工作。

1.3 功能框图

图 1-1 系统框图

1.4 管脚定义

图 1-2 RN8209D-SSOP24 管脚排列图 表 1-1 RN8209D-SSOP24 管脚功能说明

引脚	标识	特性	功能描述				
1	AVDD	电源	模拟电源引脚。用于给芯片模拟部分供电。该引脚应外接 10μF 电容并联 0.1μF 电容去耦。正常应用范围: 3V-5.5V,选定典型供电电压(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。				
2	RST_N	输入	复位引脚,低电平有效。当为低电平时,芯片处于复位状态。该引脚建议外接 10K 上拉电阻,并外接 0.1uF 的去耦电容。				
3	NC	NC	不连接。				
4, 5	V1P, V1N	输入	电流通道 A 的正、负模拟输入引脚。采用完全差分输入方式,正常工作最大输入 Vpp 为±1000mV,最大承受电压为±6V。				
6, 7	V2P, V2N	输入	电流通道 B 的正、负模拟输入引脚。采用完全差分输入方式,正常工作最大输入 Vpp 为±1000mV,最大承受电压为±6V。				
8, 9	V3P,V3N	输入	电压通道的正、负模拟输入引脚。采用完全差分输入方式,正常工作最大输入 Vpp 为±1000mV,最大承受电压为±6V。				
10	REFV	输入/ 输出	1.25V 基准电压的输入、输出引脚。外部基准源可以直接连接到该引脚上。无论使用内部还是外部基准源,该引脚应使用最少 1µF 电容并联 0.1µF 电容进行去耦。				
11	AGND	电源	模拟地。				
12	IS	输入	串行通信类型选择引脚,确定芯片的通信接口类型。 IS=0,选择 UART 作为通信接口; IS=1,选择 SPI 作为通信接口。 内部悬空,由外部上拉或下拉。				
13	SDO/TX	输出	SDO和TX 复用引脚。当IS=1时,该引脚为SPI串行数据输出SDO。 复位后,该引脚为高阻输出。 当IS=0时,该引脚为UART的数据输出端TX。				
14	SDI/RX /RST_N	输入	当 IS=1 时,该引脚为 SPI 串行数据输入引脚,3.3V/5V 兼容引脚。 当 IS=0 时,该引脚为 UART 输入端 RX,3.3V/5V 兼容引脚,同时 也具备管脚复位功能。RN8209D 内部复位电路与 UART 通信电路 完全独立,该管脚复位功能完全等同独立的管脚复位。				
15	SCLK/B0	输入	当 IS=1 时,该引脚为 SPI 串行时钟输入,3.3V/5V 兼容引脚。 当 IS=0 时,B0 和 B1,选择为 UART 接口时作为波特率选择引脚: {B1,B0}=00 2400 波特率 {B1,B0}=01 4800 波特率 {B1,B0}=10 9600 波特率 {B1,B0}=11 19200 波特率				
16	SCSN/B1	输入	当 IS=1 时,该引脚为 SPI 片选信号,低有效,3.3V/5V 兼容引脚。 内部悬空,由外部上拉。 当 IS=0 时,作为 B1,见 B0 说明。				
17	DGND	电源	数字地。				
18	DVDD	电源	数字电源引脚。用于给芯片数字部分供电。该引脚应外接 10μF 电容并联 0.1μF 电容去耦。正常应用范围: 3V-5.5V,选定典型供电电压(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。				
19	OSCI	输入	外部晶体的输入端,或是外灌系统时钟输入。晶体频率典型值为 3.579545MHz。外接电容典型值为 15Pf~22pF,内部已有约 4M 欧姆				

			的跨接电阻,外部不需要加跨接电阻。要求外部晶体的 ESR 小于 50					
			欧姆。					
20	OSCO	输出	外部晶体的输出端。					
21	NC	NC	不连接。					
			中断/过零检测输出管脚,复位后,为中断管脚。					
22	22 IRQ_N /ZX	输出	Zxcfg=0(EMUCON-bit7)时作为中断请求 IRQ_N;					
			Zxcfg=1(EMUCON -bit7)时作为 ZX: 电压通道过零输出。					
23	23 PF 输出		有功电能校验脉冲输出,默认状态低电平输出。其频率反映瞬时有					
23	FI	输出	功功率的大小。具有 5mA 的输出和吸电流能力。					
			无功电能校验脉冲或者用户自定义校验脉冲输出,默认状态低电平					
24	OE	输出	输出。其频率反映无功功率或用户自定义功率值的大小,用户自定					
24	QF		义功率值包括三种选择: 第二路有功功率、两路有功功率矢量和、					
			用户自定义功率寄存器。具有 5mA 的输出和吸电流能力。					

图 1-3 RN8209C-SOP16L 管脚排列图

表 1-2 RN8209C 管脚功能说明

引脚	标识	特性	功能描述
1	OSCO	输出	外部晶体的输出端。
2	PF	输出	有功电能校验脉冲输出,默认状态低电平输出。其频率反映瞬时有
2	PF	和 凸	功功率的大小。具有 5mA 的输出和吸电流能力。
3	OF	输出	无功电能校验脉冲输出,默认状态低电平输出。其频率反映瞬时无
3	QF	和 凸	功功率的大小。具有 5mA 的输出和吸电流能力。
			模拟电源引脚。用于给芯片模拟部分供电。该引脚应外接 10μF 电容
4	AVDD	电源	并联 0.1μF 电容去耦。正常应用范围: 3V-5.5V,选定典型供电电压
			(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。
5, 6	V1P, V1N	<i>t</i> Δ λ	电流通道 A 的正、负模拟输入引脚。采用完全差分输入方式,正常
3, 0	VIF, VIIN	输入	工作最大输入 Vpp 为±1000mV,最大承受电压为±6V。
7, 8	V2P, V2N	输入	电流通道 B 的正、负模拟输入引脚。采用完全差分输入方式,正常
/, 0	V 2P, V 2IN	制人	工作最大输入 Vpp 为±1000mV,最大承受电压为±6V。
0.10	0 10 1/201/201		电压通道的正、负模拟输入引脚。采用完全差分输入方式,正常工
9, 10	v 3r, v 31N	V3P,V3N 输入	作最大输入 Vpp 为±1000mV,最大承受电压为±6V。
11	REFV	输入/	1.25V 基准电压的输入、输出引脚。外部基准源可以直接连接到该

		输出	引脚上。无论使用内部还是外部基准源,该引脚应使用最少 1µF 电
			容并联 0.1μF 电容进行去耦。
12	TX	输出	该引脚为 UART 的数据输出端 TX。
			该引脚为 UART 输入端 RX,同时也是复位引脚,当输入信号低电
13	RX/RST N	输入	平超过 20ms 时 RN8209C 认为是复位有效。
15	KA/KSI_N	和八	RN8209C 内部复位电路与 UART 通信电路完全独立,该管脚复位
			功能完全等同独立的管脚复位。
14	GND 地		芯片地,注意该引脚不应与 DVDD 去耦电容等数字噪声大的接地点
14	GND	距	直接连接,而是应尽量距离远一些。
			数字电源引脚。用于给芯片数字部分供电。该引脚应外接 10μF 电容
15	DVDD	电源	并联 0.1μF 电容去耦。正常应用范围: 3V-5.5V,选定典型供电电压
			(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。
		OSCI 输入	外部晶体的输入端,或是外灌系统时钟输入。晶体频率典型值为
1.0	OCCI		3.579545MHz。外接电容典型值为 15pF 或 22pF, 内部已有约 4M 欧
16	USCI		姆的跨接电阻,外部不需要加跨接电阻。要求外部晶体的 ESR 小于
			50 欧姆。

1.5 典型应用

图 1-4 单相防窃电表典型应用

2 系统功能

2.1 电源监测

RN8209 片内包含一个电源监测电路,连续对模拟电源(AVDD)进行监控。当电源电压低于 2.6V±0.1V 时芯片被复位,当电源电压高于 2.75V±0.1V 时芯片正常工作。

图 2-1 电源检测特性

正常应用范围: 3V-5.5V,选定典型供电电压(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。

2.2 系统复位

RN8209 支持三种全局复位方式:

- 上下电
- 外部引脚复位或 RX 引脚复位
- 命令复位

任一全局复位发生时,寄存器恢复到复位初值,外部引脚电平恢复到初始状态。 命令复位命令之后 15us, 芯片完成复位。

RN8209D 的外部复位引脚高电平变低电平并保持 50us 以上,再由低电平变高电平 300us 以上后完成复位动作。

RN8209C/D 的 RX 引脚同时也是复位引脚,当输入信号低电平超过 20ms 时计量芯片认为是复位有效。此功能可在隔离应用情况下节省光耦数量。RN8209C/D 内部复位电路与UART 通信电路完全独立,该管脚复位功能完全等同独立的管脚复位。

建议的 RX 引脚复位操作方式是: 先将 RX 引脚置低 25ms, 然后再将 RX 引脚置高 20ms,

最后再开始正常的 UART 通信。

相关寄存器:

系统状态寄存器中的 RST 是复位标志: 当外部 RST_N 引脚或者上电复位结束时,该位置1,读后清零。可用于复位后校表数据请求。

建议 CPU 在初始化计量芯片前使用管脚复位或者命令复位对计量芯片进行一次复位操作。

2.3 模数转换

RN8209 包括三路 ADC,一路用于相线电流采样,一路用于零线电流采样,一路用于电压采样。配置系统控制寄存器中的 ADC2ON 寄存器位打开/关闭电流通道 B。

ADC 采用全差分方式输入, 电流、电压通道最大信号输入幅度为峰值 1000mv。

通过配置系统控制寄存器(SYSCON 0x00H)中的 bit5~bit0 位,可以分别对三路 ADC 配置放大倍数,电流通道 A 的 ADC 放大倍数 4 档可选: 1、2、8、16; 电流通道 B 和电压通道 ADC 放大倍数 3 档可选: 1、2、4。电流通道 A 的增益放大倍数默认为 16 倍。

2.4 有功功率

图 2-2 有功功率框图

RN8209 提供两路有功功率的计算和校正,分别为电流 A 和电压有功功率计算和校正、电流 B 和电压有功功率计算和校正。

寄存器也包含 A/B 两套相位校正、有功 Offset 校正、有功增益校正和平均功率寄存器。

电流通道 B 还包含增益校正寄存器 IBGain,该寄存器会影响通道 B 有功功率、通道 B 电流有效值。

当前用于判断潜动和启动的平均有功功率(PowerP)通道,以及当前用于计算有功电能的瞬时有功功率通道(DATAP),来自哪个通道可以由特殊命令决定,见特殊命令章节。

用户可以通过特殊命令对通道选择进行配置,配置的结果可以通过 CHNSEL 寄存器位进行查询。

图中的数字高通滤波器主要是用于去除电流、电压采样数据中的直流分量。

图中的 DCIA、DCIB、DCU 用于对 ADC 通道的直流偏置进行校正,RN8209 用于直流测量应用时,需要对直流偏置进行校正,同时需要将高通滤波器关闭。

2.5 无功功率

图 2-3 无功功率框图

RN8209 包含一路无功功率计量电路。其中用于计量的 DataUT 是 DataU 移相 90 度的结果; DataI 来自 DataIA 或者 DataIB,选择哪路电流可以通过特殊命令进行配置,通过寄存器位 CHNSEL 查询配置结果。

2.6 有效值

图 2-3 有效值计算框图

RN8209 提供三个通道的真有效值参数输出,包括 URMS、IARMS、IBRMS。字长为 24bit,每 3.495HZ 或 13.982Hz 更新一次。此外还包括两个有效值 Offset 寄存器: IARMSOS 和 IBRMSOS。

通道 2 增益校正(IBGain)会影响到 IBRMS 的输出,其他的相位校正、功率增益校正、功率 offset 校正等不会影响有效值的计算结果。

2.7 能量计算

图 2-4 能量计算

能量脉冲输出:

脉冲输出,也即校表脉冲输出,可以直接接到标准电能表进行误差比对。 PF/QF 输出满足下面时序关系:

图 2-5 输出脉冲宽度

注意: 当脉冲输出周期小于 180ms 时, 脉冲以等 duty 形式输出。

PFcnt/DFcnt、HFConst、脉冲输出、能量寄存器的关系:

当 2*|PFcnt| (0x20H)=HFConst (0x02H)时, PF 有一个脉冲输出。同时能量寄存器 EnergyP (0x29H)和 EnergyP2 (0x2AH)加 1。

当 2*|DFcnt| (0x21H)=HFConst (0x02H)时, QF 有一个脉冲输出。同时能量寄存器 EnergyD (0x2BH)和 EnergyD2 (0x2CH)加 1。

脉冲输出、能量寄存器和 PRun/DRun 以及 PStart/DStart 的关系:

有功/自定义能量寄存器和 PF/QF 输出还受到 PRun/DRun 以及 PStart/DStart 的控制。

- 当 PRun=0 或者IPI小于 PStart 时,PF 不输出脉冲,PFcnt 和有功能量寄存器不增加。
- 当 DRun=0 或者|DataD|小于 DStart 时,QF 不输出脉冲,DFcnt 和自定义能量寄存器不增加。

自定义脉冲输出:

DataD 的来源默认是 DATAQ (无功功率),也可以选择为 DATAPA (第二路有功功率)、DATAPA+DATAPB (两路功率矢量和)、D2FP (用户写入),通过 D2FM 寄存器来选择具体使用哪个功率。

脉冲输出加速:

为加快小信号校正速度,提供脉冲输出加速功能。在小信号校正时可以配置 EMUCON (0x01H)寄存器的 CFSUEN 和 CFSU[1:0]位,使 PF/QF 的输出频率提高,最快可以提高 16 倍。

反向指示:

当有功或自定义功率为负时, EMUStatus 寄存器的 REVP 位或 REVQ 位会变为 1, REVP 位与 PF 脉冲同步更新, REVQ 位与 QF 脉冲同步更新。

2.8 通道切换

RN8209 专门提供一路 ADC 用于零线电流有效值和有功功率测量,并提供相线电流和零线电流通道的切换功能,供用户选择用某一路电流计量有功电能。

电流通道切换是通过特殊命令字来实现的,见特殊命令寄存器章节。通过寄存器位 CHNSEL 可以查询配置结果。

2.9 频率测量

RN8209 可以直接输出线频率参数(UFreq 0x25H 2 字节),测量基波频率,最小测量频率为 6.8Hz,测量带宽 250Hz。

RN8209 同时提供另外一个线频率参数寄存器(UFreq2 0x35 3 字节),测量基波频率,最小测量频率为1Hz,测量带宽250Hz。

2.10 过零检测

RN8209D 通过配置 ZXCFG(EMUCON.7)选择引脚 IRQ_N/ZX 开启/关闭过零输出。 RN8209D 通过配置 ZXD1(EMUCON.9)、ZXD0(EMUCON.8)寄存器位选择四种过零输出方式。

2.11 中断

RN8209D 中断资源包括 1 个中断允许寄存器 IE、2 个中断状态寄存器 IF 和 RIF、一个复用的中断请求管脚 IRO N/ZX。其中 RIF 同 IF, 读 RIF 可清 IF, 读 IF 也可清 RIF。

1. 中断请求信号 IRQ_N

IRQ_N/ZX 引脚为 IRQ_N 和过零检测输出 ZX 复用,通过配置 EMUCON 寄存器 (0x01H) 的 ZXCFG 位确定该引脚的用途。

当中断允许寄存器相应的中断允许位使能且中断事件发生时,IRQ_N 引脚为低电平。当 CPU 通过 SPI 接口读 RIF 或 IF,在发完命令字节最后一个比特(LSB)的 SCLK 下降沿,IRQ_N 引脚恢复为高电平。

2. 中断处理过程

硬件:

- RN8209D 的 IRQ_N 通常和 MCU 的外部中断管脚/INT 相连,当 IRQ_N 由高变低时 MCU 产生/INT 中断。
- MCU 作为 SPI 或 UART 主机, RN8209D 作为 SPI 或 UART 从机。

中断处理程序:

步骤一: MCU 中断初始化

- 1. MCU 读 RN8209D RIF, 清 IF 和 RIF 中断标志;
- 2. 配置 RN8209D IE 寄存器, 使能需要的中断允许位以产生 IRQ_N;
- 3.MCU 使能/INT 外部中断,等待 RN8209D 中断事件发生, IRQ_N 输出触发/INT 中断, 跳入/INT 的中断入口地址。

步骤二: MCU 中断服务程序

- 1. 关闭 MCU 全局中断和/INT 中断;
- 2. MCU 通过 SPI 读 RIF 寄存器,清 IF 和 RIF 寄存器,将 IRQ_N 恢复到高电平。
- 3. MCU 通过判断 RIF 的中断标志来判断 RN8209D 的中断源,转而执行相应的中断处理程序。
- 4. 执行完中断处理程序,MCU 打开全局中断和/INT 中断,并恢复现场后中断返回。 中断返回后,若检测到/INT 中断标志,程序又进入到外部中断 ISR 中,重复 2。若未检

测到/INT 中断标志,说明中断处理过程中未发生中断事件,程序继续运行。

图 2-6 RN8209D 中断处理过程

2.12 寄存器

2.12.1 寄存器列表

表 2-3 RN8209 寄存器列表

地址	名称	R/W	字长	复位值	功能描述
			校表	長参数和计量技	空制寄存器
00H	SYSCON	R/W	2	0003h	系统控制寄存器,写保护
01H	EMUCON	R/W	2	0003h	计量控制寄存器,写保护
02H	HFConst	R/W	2	1000h	脉冲频率寄存器,写保护
03H	PStart	R/W	2	0060h	有功起动功率设置,写保护
04H	DStart	R/W	2	0120h	自定义电能起动功率设置,写保护
05H	GPQA	R/W	2	0000h	通道A功率增益校正寄存器,写保护
06H	GPQB	R/W	2	0000h	通道B功率增益校正寄存器,写保护
07H	PhsA	R/W	1	00h	通道A相位校正寄存器,写保护
08H	PhsB	R/W	1	00h	通道B相位校正寄存器,写保护
09H	QPhsCal	R/W	2	0000h	无功相位补偿,写保护
0AH	APOSA	R/W	2	0000h	通道A有功功率Offset校正寄存器,写保护
0BH	APOSB	R/W	2	0000h	通道B有功功率Offset校正寄存器,写保护
0CH	RPOSA	R/W	2	0000h	通道A无功功率Offset校正寄存器,写保护
0DH	RPOSB	R/W	2	0000h	通道B无功功率Offset校正寄存器,写保护
0EH	IARMSOS	R/W	2	0000h	电流通道A有效值Offset补偿,写保护
0FH	IBRMSOS	R/W	2	0000h	电流通道B有效值Offset补偿,写保护
10H	IBGain	R/W	2	0000h	电流通道B增益设置,写保护
11H	D2FPL	R/W	2	0000h	自定义功率寄存器D2FP的低16bit,写保护
12H	D2FPH	R/W	2	0000h	自定义功率寄存器D2FP的高16bit,用户 需要先写D2FPH,再写D2FPL,然后D2FP 才进行电能积分,写保护。
13H	DCIAH	R/W	2	0000h	IA通道直流offset校正寄存器的高16bit, 写保护
14H	DCIBH	R/W	2	0000h	IB通道直流offset校正寄存器的高16bit, 写保护
15H	DCUH	R/W	2	0000h	U通道直流offset校正寄存器的高16bit,写

					加护		
		ļ			保护		
					三个直流offset校正寄存器的低4bit:		
16H	DCL	R/W	2	0000h	DCL[11:0]={DCU[3:0],DCIBL[3:0],DCIA		
					L[3:0]} ,写保护		
17H	EMUCON2	R/W	2	0000h	计量控制寄存器2,写保护		
计量参数和状态寄存器 20H PFCnt R/W 2 0000h 快速有功脉冲计数,写保护							
20H	PFCnt	R/W	2	0000h	快速有功脉冲计数,写保护		
21H	DFcnt	R/W	2	0000h	自定义电能快速脉冲计数,写保护		
22H	IARMS	R	3	000000h	通道A电流的有效值		
23H	IBRMS	R	3	000000h	通道B电流的有效值		
24H	URMS	R	3	000000h	电压有效值		
25H	UFreq	R	2	0000h	电压频率		
26H	PowerPA	R	4	00000000h	有功功率A		
27H	PowerPB	R	4	00000000h	有功功率B		
28H	PowerQ	R	4	00000000h	无功功率		
					有功能量,读后清零、不清零可选,默认		
29H	EnergyP	R	3	000000h	为读后不清零,由EnergyCLR寄存器位		
					控制。		
2AH	EnergyP2	R	3	000000h	有功能量,读后清零寄存器、冻结电能寄		
2/111	Liicigyi 2	1	3	00000011	存器可选,默认为读后清零寄存器		
					无功能量或自定义能量,读后清零、不清		
2BH	EnergyD	R	3	000000h	零可选, 默认为读后不清零,由		
					EnergyCLR寄存器位控制。		
					无功能量或自定义能量, 读后清零寄存器		
2CH	EnergyD2	R	3	000000h	、冻结电能寄存器可选,默认是读后清零		
					寄存器		
2DH	EMUStatus	R	3	00EE79h	计量状态及校验和寄存器		
30H	SPL_IA	R	3	000000h	IA通道ADC采样值		
31H	SPL_IB	R	3	000000h	IB通道ADC采样值		
32H	SPL_U	R	3	000000h	U通道ADC采样值		
35H	UFreq2	R	3	000000h	电压频率寄存器2,扩展了测频范围,50Hz		
	1-1-		_		时读出值同UFreq(0x25H)		
40**	T 170	D #**		中断寄存			
40H	IE	R/W	1	00h	中断允许寄存器,写保护		
41H	IF	R	1	00h	中断标志寄存器,读后清零		
42H	RIF	R	1	00h	复位中断状态寄存器,读后清零		
1077	I a a	I		系统状态寄			
43H	SysStatus	R	1		系统状态寄存器		
44H	RData	R	4		上一次SPI/UART读出的数据		
45H	WData	R	2		上一次SPI/UART写入的数据		
7FH	DeviceID	R	3	820900h	RN8209 Device ID		

2.12.2 校表参数寄存器

系统控制寄存器 SYSCON(0x00)

14-8	SYSTE	M Control Regi	ster (SYSC	ON) Add	ress: 0x00 H	Default Value: 0003H			
UART 波特率选择, 只读, 其值由硬件管脚 B1 和 B0 决定。	位	位名称							
14-8 Uartbr[6:0]	15	保留							
14-8 Uartbr[6:0]			UART 波特	率选择,只	读,其值由硬	件管脚 B1 和 B0 决定。			
14-8 Uartbr[6:0]			{B1,B0}=00	, Uadrbr=7'h	n2E, 2400 波特	率			
14-8 Uartbr[6:0]			{B1,B0}=01	, Uadrbr=7'h	116,4800 波特	率			
RI,B0}=11, Uadrbr=7/h05, 19200 波特率	1/1-8	Harthr[6:0]	{B1,B0}=10	, Uadrbr=7'h	n0B, 9600 波特	率			
请注意: uartbr[6:0]参与校验和计算,在通信口选择为 uart 时完整响到校验和计算结果。RN8209C 固定为 4800 波特率。 7 保留	14-8	Cartor[0.0]	{B1,B0}=11	, Uadrbr=7'h	05, 19200 波特	持率			
影响到校验和计算结果。RN8209C 固定为 4800 波特率。 7 保留 默认为 0, 不要对该位写 1 6 ADC2ON			只在通信口:	选择为 UAR	T 时有意义,	在选择为 SPI 时读出为 0。			
7 保留 默认为 0, 不要对该位写 1 ADC2ON			请注意: ua	rtbr[6:0]参	与校验和计算,	在通信口选择为 uart 时会			
ADC2ON			影响到校验	和计算结果	。RN8209C 固	記为 4800 波特率。			
ADC2ON 道 B 关闭,ADC 输出恒为 0。 电流通道 B 模拟增益选择:	7	保留	默认为 0, 7	不要对该位置	∃ 1				
1-0 PGAIA[1:0] 25-4 PGAIA[1:0] 1-0 PGAIA[1:0] 1-0 PGAIB[1:0] 1-0 PGAIA[1:0] 1	6	ADC2ON	ADC2ON =1	l:表示 AD	C 电流通道 B	开启; =0: 表示 ADC 电流通			
PGAIB PGA	0	ADCZON	道B 关闭,	ADC 输出恒	亘为 0。				
PGAIB[1:0]			电流通道 B	模拟增益选	择:				
PGAIB[1:0]		PGAIB[1:0]	PGAIB1	PGAIB0	电流通道 B				
1	5 1		0	0	PGA=1				
1	3-4		0	1	PGA=2				
BE通道模拟增益选择:			1	0	PGA=4				
PGAU[1:0]			1	1	PGA=4				
3-2 PGAU[1:0] 0			电压通道模	拟增益选择:					
3-2 PGAU[1:0] 0			PGAU1	PGAU0	电压通道				
1	2.0	DC AUG 01	0	0	PGA=1				
1 1 PGA=4 电流通道 A 模拟增益选择,默认值为 16 倍。 PGAIA1 PGAIA0 电流通道 A 0 0 PGA=1 0 1 PGA=2	3-2	PGAU[1:0]	0	1	PGA=2				
1-0 PGAIA[1:0] 电流通道 A 模拟增益选择,默认值为 16 倍。 PGAIA1 PGAIA0 电流通道 A 0 0 PGA=1 0 1 PGA=2			1	0	PGA=4				
PGAIA1 PGAIA0 电流通道 A 0 0 PGA=1 0 1 PGA=2			1	1	PGA=4				
1-0 PGAIA[1:0] 0 0 PGA=1 0 1 PGA=2			电流通道 A	模拟增益选	择,默认值为	16倍。			
1-0 PGAIA[1:0] 0 1 PGA=2			PGAIA1	PGAIA0	电流通道 A				
0 1 PGA=2	1.0	PGAIA[1:0]	0	0	PGA=1				
1 0 754 0	1-0		0	1	PGA=2				
1 0 PGA=8			1	0	PGA=8				
1 1 PGA=16			1	1	PGA=16				

计量控制寄存器

计量控制寄存器用于计量功能的设置。

Energy	Measure Conti	ol Register (I	EMUCON)	Address: 0x01 H Default Value: 0003H				
位	位名称		功能描述					
		默认为0	默认为 0					
15	EnergyCLR	=0: 29/2B	电能寄存器为	累加型;				
		=1: 29/2B	电能寄存器为	读后清零型;				
14	HPFIBOFF	HPFIBOFF=	PFIBOFF=0: 使能 IB 通道数字高通滤波器 PFIBOFF=1: 关闭 IB 通道数字高通滤波器					
14	нгивогт	HPFIBOFF=	-1: 关闭 IB i	通道数字高通滤波器				
		自定义能量	累加方式选择	} :				
		QMOD1	QMOD0	累加功率 Qm				
		0	0	Qm=DataQ, 正反向功率都参与累加,				
13-12	OMOD[1:0]			负功率有 REVQ 符号指示。				
13-12	QMOD[1:0]	0	1	只累加正向功率				
		1	0	Qm= DataQ , 正反向功率都参与累加,				
				无负功率符号指示。				
		1	1	Qm=DataQ(保留)				
11-10	PMOD[1:0]	有功能量累	加方式选择:	同上表自定义能量累加方式。				
		ZX 输出初如	台值为 0,根挂	据 ZXD1 和 ZXD0 的配置输出不同的波形:				
9	ZXD1	ZXD1=0, 7	表示仅在选择	的过零点处 ZX 输出发生变化;				
		ZXD1=1,表示在正向和负向过零点处 ZX 输出均发生变化。						
8	ZXD0	ZXD0=0,表示选择正向过零点作为过零检测信号;						
0	ZADO	ZXD0=1, 7	表示选择负向	过零点作为过零检测信号。				
7	ZXCFG	ZXCFG =0:	引脚 IRQ_N	I/ZX 作为 IRQ_N。				
,	ZACIO			I/ZX 作为 ZX。				
6	HPFIAOFF	HPFIAOFF=	=0: 使能 IA i	通道数字高通滤波器				
	111111011	HPFIAOFF=	=1:关闭 IA ì	通道数字高通滤波器				
5	HPFUOFF		~ • • • • • •	道数字高通滤波器				
	11110011	HPFUOFF=	1: 关闭 U 通	道数字高通滤波器				
			-	输出加速模块的控制位,CFSUEN=1,使能脉				
4	CFSUEN	冲加速模块,脉冲的输出速率提高 2^(CFSU[1:0]+1)倍。CFSUEN=0,						
		关闭脉冲加速模块,脉冲正常输出。						
3,2	CFSU[1:0]			用。见 CFSUEN 说明。				
			_	输出和自定义电能寄存器累加;				
1	DRUN	DRUN=0,	关闭 QF 脉冲	输出和自定义电能寄存器累加。默认状态为				
		1 .						
0	PRUN			渝出和有功电能寄存器累加;				
		PRUN=0,	关闭 PF 脉冲轴	渝出和有功电能寄存器累加。默认状态为1。				

脉冲频率寄存器

High Frequency Impulse Const Register (HFConst)			Address:	0x 02H Default	Value: 1000H			
	Bit15	14	13	12	11	10	9	Bit8

Read:	LIECUS.	IIEC14	IJEC12	HEC12	HECH	HEG10	HECO	HEC0
Write:	HFC15	HFC14	HFC13	HFC12	HFC11	HFC10	HFC9	HFC8
Reset:	0	0	0	1	0	0	0	0
:	Bit7	6	5	4	3	2	1	Bit0
Read	HFC7	HFC6	HFC5	HFC4	HFC3	HFC2	HFC1	HFC0
Write:	пгС/	пгсо	пгсэ	HFC4	пгсэ	HFC2	пгст	пгсо
Reset:	0	0	0	0	0	0	0	0

HFConst 是 16 位无符号数,做比较时,将其与快速脉冲计数寄存器 PFCNT/DFCNT 寄存器值的绝对值的 2 倍做比较,如果大于等于 HFConst 的值,那么就会有对应的 PF/QF 脉冲输出。

潜动与启动阈值寄存器

Start Pow	er Threshold Se	etup Register (PStart)	Address: 0x 03h Default Value : 0060H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	PS15	PS 14	PS 13	PS 12	PS11	PS10	PS 9	PS 8
Write:	P313	PS 14	PS 13	PS 12	P311	P310	P3 9	P3 8
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	PGZ	DG 6	DG 5	DG 4	DG 2	DG 2	DG 1	DG 0
Write:	PS7	PS 6	PS 5	PS 4	PS 3	PS 2	PS 1	PS 0
Reset:	0	1	1	0	0	0	0	0

Start Pow	er Threshold Se	etup Register (DStart)	Address: 0x	Address: 0x 04h Default Value : 0120H			
	Bit15	14	13	12	11	10	9	Bit8
Read:	0015	00.14	00.12	00.12	0011	0010	0.20	00.0
Write:	QS15	QS 14	QS 13	QS 12	QS11	QS10	QS 9	QS 8
Reset:	0	0	0	0	0	0	0	1
	Bit7	6	5	4	3	2	1	Bit0
Read:	0.07	00.5	00.5	00.4	00.0	00.2	00.1	00.0
Write:	QS7	QS 6	QS 5	QS 4	QS 3	QS 2	QS 1	QS 0
Reset:	0	0	1	0	0	0	0	0

启动阈值可由 PStart 和 DStart 寄存器配置。它们是 16 位无符号数,做比较时,将其分别与 PowerP 和 DataD (为 32bit 有符号数)的高 24 位的绝对值进行比较,以作起动判断。

|PowerP|小于 PStart 时, PF 不输出脉冲。

|DataD|小于 DStart 时,QF 不输出脉冲。

增益校正寄存器

Power Ga	in Register A(C	GPQA)	Address: 0x0	5h Default Value : 0000H			
	Bit15	14	13	12 3	2	1	Bit0

Read:	GPQA_15	GPQA_14	GPQA_13	CDOA 12 CDOA 2	GPQA_2	GPQA_1	GPQA_0
Write:	GFQA_13	GrQA_14	GrQA_13	GPQA_12GPQA_3	GrQA_2	GrQA_1	GPQA_0
Reset:	0	0	0	0	0	0	0

Power Gain Register B(GPQB)			Address: 0x00	Address: 0x06h Default Value : 0000H				
	Bit15	14	13	12 3	2	1	Bit0	
Read:	CDOD 15	CDOD 14	CDOD 12	CDOD 12 CDOD 2	CDOD 2	CDOD 1	CDOD 0	
Write:	GPQB_15	GPQB_14	GPQB_13	GPQB_12GPQB_3	GPQB_2	GPQB_1	GPQB_0	
Reset:	0	0	0	0	0	0	0	

包括两个寄存器: GPOA 和 GPOB, 为二进制补码格式, 最高位为符号位。

GPQA 用于电流通道 A 和电压通道有功功率的校正。GPQB 用于电流通道 B 和电压通道 有功的增益校正。

校正公式为: P1=P0(1+GPQS)

Q1=Q0(1+GPQS)

其中 GPQS 为增益校正寄存器的归一化值。使用方法见第三章校表方法。

相位校正寄存器

Phase Ca	libration Regis	ter A(PhsA)	Address: 0x 0	Address: 0x 07H Default Value : 00H				
	Bit7	6	5	4	3	2	1	Bit0
Read:	Dis. A. 7	Dis. A. C	Di. A 5	Di. A. 4	Dis. A. 2	Dis. A. O	DI A 1	Di. A. O.
Write:	PhsA_7	PhsA_6	PhsA _5	PhsA _4	PhsA _3	PhsA _2	PhsA _1	PhsA _0
Reset:	0	0	0	0	0	0	0	0

Phase Cal	libration Regis	ter B(PhsB)	Address: 0x0	Address: 0x08 H Default Value : 00H					
	Bit7	6	5	4	3	2	1	Bit0	
Read:	DhoD 7	DhoD 6	DI D. C	DI D. 4	DL.D. 2	DI D 2	F 5 1	DI D O	
Write:	PhsB _7	PhsB _6	PhsB _5	PhsB _4	PhsB _3	PhsB _2	PhsB _1	PhsB _0	
Reset:	eset: 0 0 0 0 0 0 0						0		

包括 IA 和 U 通道的相位校正 PhsA 以及 IB 和 U 通道的相位校正 PhsB。这两个寄存器均为带符号二进制补码,Bit0~bit7 有效,其中 bit7 为符号位。使用方法见第三章校表方法。

1 LSB 代表 1/895khz=1.12us/LSB 的延时,在 50HZ 下,1 LSB 代表 1.12 us*360 °*50/ 10^6 =0.02° /LSB 相位校正。

相位校正范围: 50HZ 下, ±2.56°

请注意: 计量控制寄存器 2 (EMUCON2 地址: 0x17H) 新增两个寄存器位,可将相位校正刻度提升至 0.01°

无功相位补偿寄存器

	Reactive Power Phase Calibration Register (QPhsCal)	Address: 09H	Default Value: 0000H	
--	---	--------------	----------------------	--

	Bit15	14	13	1:	23	2	1	Bit0
Read:	ODC15	OPC14	ODC12	OPC1/	ODC2	ODC2	OPCI	OPCO
Write:	QPC15	QPC14	QPC13	QPC12	2 QPC3	QPC2	QPC1	QPC0
Reset:	0	0	0	0	0	0	0	0

无功相位补偿寄存器用于 U 通道 90° 移相滤波器在无功计算中的相位补偿。无功相位补偿寄存器采用十六位二进制补码形式,最高位为符号位。使用方法见第三章校表方法。

校正公式: Q2 = Q1-QPhs*P1

其中 P1 为有功功率, Q1 为补偿前的无功功率, Q2 为补偿后的无功功率。

有功 Offset 校正寄存器

Active P	ower Offset Regi	ster A(APOSA)	Address: 0AH	Default Value : 0000H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	ADOGA 15	ADOGA 14	ADOGA 12	ADOGA 12 ADOGA 2	ADOGA 2	ADOCA 1	ADOGA O
Write:	APOSA_15	APOSA _14	APOSA _13	APOSA_12APOSA_3	APOSA _2	APOSA _1	APOSA _0
Reset:	0	0	0	0	0	0	0

Active Po	wer Offset Reg	ister B(APOSB)	Address: 0BH	Default Value : 0000H	: 0000Н		
	Bit15	14	13	12 3	2	1	Bit0
Read:	ADOCD 15	A DOCD 14	ADOCD 12	ADOCD 12 ADOCD 2	A DOGD. 2	A DOCD 1	ADOCD 0
Write:	APOSB_15	APOSB _14	APOSB _13	APOSB _12APOSB _3	APOSB _2	APOSB _1	APOSB _0
Reset:	0	0	0	0	0	0	0

有功 OFFSET 校正适合小信号的精度校正。这两个寄存器均为二进制补码格式,最高位为符号位。使用方法见第三章校表方法。

APOSA 寄存器为电流通道 A 和 U 通道有功功率 Offset 值。APOSB 寄存器为电流通道 B 和 U 通道有功功率 Offset 值。

无功 Offset 校正寄存器

Rective Power Offset Register (RPOSA)			Address: 0CH	Default Value : 0000H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	DDOGA 15	DDOGA 14	DDOGA 12	DDOGA 12 DDOGA 2	DDOGA 2	DDOCA 1	DDOGA 0
Write:	RPOSA_15	RPOSA _14	RPOSA_13	RPOSA_12RPOSA_3	RPOSA _2	RPOSA _1	RPOSA_0
Reset:	0	0	0	0	0	0	0

Rective 1	Power Offset Register (RPOSB)		Address: 0DH	Default Value : 0000H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	DDOGD 15	DDOCD 14	DDOCD 12	proce 12 proce 2	DDOGD 2	DDOCD 1	DDOGD 0
Write:	RPOSB_15	RPOSB _14	RPOSB _13	RPOSB _12RPOSB _3	RPOSB _2	RPOSB _1	RPOSB _0
Reset:	0	0	0	0	0	0	0

无功 Offset 校正寄存器用于无功小信号精度的校正。这两个寄存器均为二进制补码格式,

最高位为符号位。使用方法见第三章校表方法。

RPOSA 寄存器为电流通道 A 和 U 通道无功功率 Offset 值。RPOSB 寄存器为电流通道 B 和 U 通道无功功率 Offset 值。

有效值 Offset 校正寄存器

IA RMS C	IA RMS Offset Register(IARMSOS)		Address: 0EH	Default Value : 0000H			
	Bit15	14	13 12 3		2	1	Bit0
Read:	14 D) (C 15	14 D) (C 14	Y. D. 40	V. D. (G. 12 V. D. (G. 2	IARMS _2	IARMS _1	IARMS _0
Write:	IARMS_15	IARMS _14	IARMS _13	IARMS _12IARMS _3			
Reset:	0	0	0	0	0	0	0

IB RMS C	RMS Offset Register(IBRMSOS)		Address: 0FH	Default Value : 0000H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	IDDMC 15	BRMS_15 IBRMS_14	IBRMS _13	WDD142 12 WDD142 2	IDDMG 2	TDD14G 4	TDD14 G 0
Write:	IBKMS_15			IBRMS _12IBRMS _3	IBRMS _2	IBRMS _1	IBRMS _0
Reset:	0	0	0	0	0	0	0

有效值 Offset 校正寄存器用于电流有效值小信号精度的校正。这两个寄存器均为二进制补码格式,最高位为符号位。使用方法见第三章校表方法。

IARMSOS 寄存器为电流 A 有效值 Offset 值,IBRMSOS 寄存器为电流 B 有效值 Offset 值。

电流通道 B 增益设置

Current I	3 Gain Register	(IBGain)	Address: 10H	Default Value : 0000H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	IDC15	IDC14	TDC12	IDC12 IDC2	IDC2	IDC1	ID CO
Write:	IBG15	IBG14	IBG13	IBG12IBG3	IBG2	IBG1	IBG0
Reset:	0	0	0	0	0	0	0

电流通道 B 增益设置寄存器用于防窃电表两路电流通道的一致性校正。一致性校正在 100%Ib 一点校正。使用方法见第三章校表方法。

通道 B 电流增益寄存器采用二进制补码形式,最高位为符号位,表示范围(-1,+1)。

如果 IBGain>=2~15, 则 GainI2=(IBGain-2~16)/2~15

否则 GainI2=IBGain/2¹⁵

校正之前 I2a,校正之后 I2b,两者关系为: I2b=I2a+I2a*GainI2

自定义功率寄存器

自定义功率寄存器是 32 位有符号数,由 D2FPH(0x12H)和 D2FPL(0x11H)共同组成,其中 D2FPH 为高 16bit , D2FPL 为低 16bit。D2FPH 的最高位是符号位。

如 D2FM 寄存器(EMUCON2 的 bit5~4)配置为自定义功率,当用户往自定义功率寄存器写

入功率值,RN8209 会自动按照脉冲常数设置进行积分,积分得到的电能存放在EnergyD(0x2BH)和EnergyD2(0x2CH),积分得到的脉冲从QF管脚输出。

用户需要先写 D2FPH,再写 D2FPL,然后 D2FP 才生效。

直流偏置校正寄存器

RN8209 新增三个通道的直流偏置校正寄存器,用于不需要高通滤波器的计量场合。每个通道的直流偏置校正寄存器为 20 位。直流偏置校正的方法见 RN8209 应用笔记。

计量控制寄存器 2

Energy	Measure Cont	rol Register2 (EMUCON2) Address: 0x17 H Default Value: 0000H
位	位名称	功能描述
15~14	保留	默认为 0, 用户不可写 1
		=00:频率测量的时间为 32 个周波;
13,12	Ena a Cont	=01:频率测量的时间为 4 个周波;
13,12	FreqCnt	=10:频率测量的时间为8个周波;
		=11:频率测量的时间为 16 个周波;
11,10	保留	默认为 0
		可作为最低位与 PhsB(0x08H)寄存器共同组成一个 9 位的相位校正寄
9	PhsB0	存器,将相位校正分辨度从 0.02 度提高到 0.01 度。当该寄存器为 0
		时,对相位校正不起作用。
		可作为最低位与 PhsA(0x07H)寄存器共同组成一个 9 位的相位校正寄
8	PhsA0	存器,将相位校正分辨度从 0.02 度提高到 0.01 度。当该寄存器为 0
		时,对相位校正不起作用。
7	UPMODE	=0, 功率及有效值寄存器更新速度为 3.495Hz;
/	UPMODE	=1,功率及有效值寄存器更新速度为 13.982Hz;
6	ZXMODE	=0,过零信号输出源为正常计量的电压信号,谐波没有滤除;
0	ZAMODE	=1,过零信号输出源为低通滤波后的电压信号。
		=00:自定义电能输入选择为无功功率;
5,4	D2FM[1:0]	=01:自定义电能输入选择为通道 A 和通道 B 有功功率的矢量和;
3,4	D2FW[1.0]	=10:自定义电能输入选择为自定义功率寄存器 D2FP;
		=11:自定义电能输入选择为通道 B 有功功率;
		=0, 电能寄存器 2 不启用定时冻结功能, 默认为读后清零寄存器。
3	Energy_fz	=1, 电能寄存器 2(地址 2A 和 2C) 启用定时冻结功能, 每隔 572.1397
3	Ellergy_1Z	毫秒(2048*1024 个晶振周期)将电能寄存器 1(地址 29 和 2B)的
		值装载到电能寄存器 2,同时将电能寄存器 1 清零。
2~0	保留	默认为0,用户不可写1

2.12.3 计量参数寄存器

快速脉冲计数器

Active En	nergy Counter I	Register (PFCN	T)	Address: 0x20h				
	Bit15	14	13	12 3	2	1	Bit0	
Read:	DEC15	DECL4	DEC12	DEC12 DEC2	DEC2	DEC1	DEC0	
Write:	PFC15	PFC14	PFC13	PFC12PFC3	PFC2	PFC1	PFC0	
Reset:	0	0	0	0	0	0	0	

Reactive 1	Energy Counte	r Register (DF	CNT)	Address: 0x21h				
	Bit15	14	13	12 3	2	1	Bit0	
Read:	OFG15	OFG14	00012	00012 0002	OF CO	opg.	OFGO	
Write:	QFC15	QFC14	QFC13	QFC12QFC3	QFC2	QFC1	QFC0	
Reset:	0	0	0	0	0	0	0	

为了防止上下电时丢失电能,掉电时 MCU 将寄存器 PFCnt/DFcnt 值读回并进行保存,然后在下次上电时 MCU 将这些值重新写入到 PFCnt/DFcnt 中去。

当快速脉冲计数寄存器 PFCnt/DFcnt 计数值的绝对值的 2 倍大于等于 HFconst 时,相应的 PF/QF 会有脉冲溢出,能量寄存器的值会相应的加 1。

电流电压有效值寄存器

Current A	Current A Rms Register (IARms)		Address:	0x22h			
	Bit23	22	21	20 3	2	1	Bit0
Read:	IAS23	IAS22	IAS21	IAS20IAS3	IAS2	IAS1	IAS0

Current I	Current B Rms Register (IBRms)		Address:	0x23h			
	Bit23	22	21	20 3	2	1	Bit0
Read:	IBS23	IBS22	IBS21	IBS20IBS3	IBS2	IBS1	IBS0

Voltage Rms Register (Urms)		Address:	0x24h				
	Bit23	22	21	20 3	2	1	Bit0
Read:	US23	US22	US21	US20US3	US2	US1	US0

有效值 Rms 是 24 位有符号数,最高位为 0 表示有效数据,最高位为 1 时读数做零处理;参数更新的频率为 3.495Hz 或 13.982Hz 可选。

电压频率寄存器

Voltage 1	Voltage Frequency Register (UFreq)		Address:	0x25h			
	Bit15	14	13	12 3	2	1	Bit0

							1	Г
Read:	Ufreq15	Ufreq14	Ufreq13	Ufreq12Ufreq3	Ufreq2	Ufreq1	Ufreq0	

主要测量基波频率,测量带宽 250Hz 左右。

频率值是一个16位的无符号数,参数格式化公式为:

f=CLKIN/8/UFREQ

例如,如果系统时钟为 CLKIN=3.579545MHz,UFREQ=8948,那么测量到的实际频率为: f=3579545/8/8948=49.9908Hz。

电压频率测量值默认更新的周期为 0.64s, 可通过计量控制寄存器 2 调整更新时间。

同时提供 UFreq2 电压频率寄存器 2, 地址为 0x35H, 字长为 3 字节, 测量基波频率, 最小测量频率为 1Hz, 测量带宽 250Hz。输入 50Hz 时读出值同 UFreq(0x25H)

平均有功功率寄存器

Active Po	Active Power Register (PowerPA)		Address:	0x26h			
	Bit31	30	29	28 3	2	1	Bit0
Read:	APA31	APA30	APA29	APA28APA3	APA2	APA1	APA0

Active Po	Active Power Register (PowerPB)		Address:	0x27h			
	Bit31	30	29	28 3	2	1	Bit0
Read:	APB31	APB30	APB29	APB28APB3	APB2	APB1	APB0

有功功率参数 PowerP 是二进制补码格式,32 位数据,其中最高位是符号位。功率参数更新的频率为3.495Hz 或13.982Hz 可选。

POWERPA 是 U 通道和 IA 通道的平均有功功率寄存器,POWERPB 是 U 通道和 IB 通道的平均有功功率寄存器。

平均无功功率寄存器

Reactive 1	Power Register	(PowerQ)	Address:	0x28h			
	Bit31	30	29	28 3	2	1	Bit0
Read:	RP31	RP30	RP29	RP28RP3	RP2	RP1	RP0

无功功率参数 PowerQ 是二进制补码格式,32 位数据,其中最高位是符号位。更新频率同 PowerPA 和 PowerPB。

该寄存器是 U 通道和用户选择的电流通道无功功率计算结果, 默认情况下选择通道 A。

有功电能寄存器

Active Energy Register (EnergyP)		Address:	0x29h				
	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23	EP22	EP21	EP20EP3	EP2	EP1	EP0

EnergyP 寄存器是累加型或清零型有功能量寄存器。当选择为累加型时(**EMUCON 寄存器 bit15=0**),在 0xFFFFFF 溢出到 0x0000000 时,会产生溢出标志 PEOIF(参见 IF 0x41H)。当

选择为清零型时(EMUCON 寄存器 bit15=1),寄存器读后清为 0.

电能参数是无符号数, EnergyP 的寄存器值分别代表 PF 脉冲的累加个数。寄存器最小单位代表的能量为 1/EC kWh。其中 EC 为电表常数。

有功电能寄存器 2

Active En	Active Energy Register2 (EnergyP2)		Address:	0x2AH			
	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23_2	EP22_2	EP21_2	EP20_2EP3_2	EP2_2	EP1_2	EP0_2

当计量控制寄存器 2 的 energy_fz 位等于 0 时,该寄存器是读后清零型有功电能寄存器;当计量控制寄存器 2 的 energy_fz 位等于 1 时,该寄存器启用定时冻结功能,每隔 572.1397 毫秒(2048*1024 个晶振周期)将有功电能寄存器(地址 29)的值装载到该寄存器,同时将有功电能寄存器清零。

无功或自定义电能寄存器

UserDEII	NE Energy	Register	Address:	dress: 0x2BH			
(EnergyD)						
	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23	EP22	EP21	EP20EP3	EP2	EP1	EP0

EnergyD 寄存器是累加型自定义能量寄存器。当选择为累加型时(EMUCON 寄存器bit15=0),在 0xFFFFFF 溢出到 0x0000000 时,会产生溢出标志 QEOIF(参见 IF 0x41H)。当选择为清零型时(EMUCON 寄存器 bit15=1),寄存器读后清为 0.

电能参数是无符号数, EnergyD 的寄存器值分别代表 QF 脉冲的累加个数。寄存器最小单位代表的能量为 1/EC kVARh。其中 EC 为电表常数。

EnergyD 默认是无功电能寄存器。可通过 EMUCON2 寄存器进行配置。

无功或自定义电能寄存器 2

UserDEF	UserDEFINE Energy Register2		Address:	0x2CH			
(EnergyD2)							
	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23_2	EP22_2	EP21_2	EP20_2EP3_2	EP2_2	EP1_2	EP0_2

当计量控制寄存器 2 的 energy_fz 位等于 0 时,该寄存器是读后清零型自定义电能寄存器; 当计量控制寄存器 2 的 energy_fz 位等于 1 时,该寄存器启用定时冻结功能,每隔 572.1397 毫秒(2048*1024 个晶振周期)将自定义电能寄存器(地址 2B)的值装载到该寄存器,同时将自定义电能寄存器清零。

计量状态寄存器

此寄存器包括计量状态寄存器和校验和寄存器两部分。

EMU S	TATUS Register	(EMUStatus) Address: 0x2D 只读寄存器
位	位名称	功能描述
23	保留	只读为 0
		只读寄存器,表征 VREF 工作状态。
22	VREFLOW	=1,表示 REFV 引脚的电压值过低,外部电路有异常;
		=0、表示 REFV 引脚的电压值没有出现过低现象。
		电流通道选择状态标识位。
21	CHNSEL	=1 表示当前用于计算有功电能的电流通道为通道 B;
21	CHINSEL	=0 表示当前用于计算有功电能的电流通道为通道 A。
		默认状态下该位为 0,标识选择通道 A 用于电能计量。
20	Noqld	当自定义功率小于起动功率时,NoPld 被置为 1;当自定义功率大于
20	Noqia	/等于起动功率时 NoPLd 清为 0。
19	Nopld	当有功功率小于起动功率时,NoPld 被置为 1; 当有功功率大于/等
19	Nopid	于起动功率时 NoPLd 清为 0。
18	REVQ	反向自定义功率指示标识信号, 当检测到负功率时, 该信号为 1。
10	KEVQ	当再次检测到正功率时,该信号为 0。在 QF 发脉冲时更新该值。
17	REVP	反向有功功率指示标识信号, 当检测到负有功功率时, 该信号为 1。
1 /	KEVI	当再次检测到正有功功率时,该信号为 0。在 PF 发脉冲时更新该值。
		校表数据校验计算状态寄存器。
16	ChksumBusy	ChksumBusy =0,表示校表数据校验和计算已经完成。校验值可用。
		ChksumBusy =1,表示校表数据校验和计算未完成。校验值不可用。
15:0	Chksum	校验和输出

EMUStatus [15:0]是 RN8209 专门提供一个寄存器来存放校表参数配置寄存器的 16 位校验和,外部 MCU 可以检测这个寄存器来监控校表数据是否错乱。

校验和的算法为双字节累加后取反。对于单字节寄存器 PHSA/PHSB,将其扩展为双字节后累加,扩展的字节为 00H。

RN8209 参与校验和计算的寄存器地址是 00H-17H, RN8209D(选择为 spi 时)默认值 计算得到的校验和为 0xEE79,当选择为 UART 口时,00H 寄存器的高位只读位也参与校验和 计算,如果波特率为 2400,那么校验和默认值为 0xC079;如果波特率为 4800,那么校验和 默认值为 0xD879;如果波特率为 9600,那么校验和默认值为 0xE379;如果波特率为 19200,那么校验和默认值为 0xE979。

RN8209C 的校验和默认值为: 0xD879。

以下三种情况下,重新开始一次校验和计算:系统复位、00H-17H 某个寄存器发生写操作、EMUStatus 寄存器发生读操作。一次校验和计算需要 11.2us。

2.12.4 中断寄存器

中断配置和允许寄存器

该寄存器适用于 SPI 和 UART。当中断允许位配置为 1 且中断产生时,IRQ_N 引脚输出低电平。写保护寄存器,配置该寄存器前需将写使能打开。

Interr	upt Enable	Register (IE) Address: 0x40H 默认值: 0x00H 可读可写
位	位名称	功能描述
7	保留	保留,读出为0
6	FZIE	FZIE=0: 关闭电能冻结中断; =1: 使能电能冻结中断
5	ZXIE	ZXIE=0: 关闭过零中断; ZXIE=1: 使能过零中断。
4	QEOIE	QEOIE=0: 关闭自定义电能寄存器溢出中断;
4	QEOIE	QEOIE=1: 使能自定义电能寄存器溢出中断。
3	PEOIE	PEOIE=0: 关闭有功电能寄存器溢出中断;
3	FEOIE	PEOIE=1: 使能有功电能寄存器溢出中断。
2	QFIE	QFIE=0: 关闭QF中断; QFIE=1: 打开QF中断。
1	PFIE	PFIE=0: 关闭PF中断; PFIE=1: 打开PF中断。
		DUPDIE=0: 关闭数据更新中断; DUPDIE=1: 使能数据更新中断。
0	DUPDIE	数据 PowerPA/PowerPB、IARMS/IBRMS、URMS 寄存器刷新的频率为
		3.495Hz 或 13.982Hz, 当上述数据更新时,IRQ_N 引脚输出低电平。

中断状态寄存器

Interr	upt Flag Re	gister (IF) Address: 0x41H 只读
位	位名称	功能描述
7	Reserved	保留,读出为0
6	FZIF	FZIF=0: 未发生电能冻结事件; =1: 发生过电能冻结事件
5	ZXIF	ZXIF =0: 未发生过零事件; ZXIF =1: 发生过零事件。
4	QEOIF	QEOIF=0: 未发生自定义电能寄存器溢出事件;
4	QLOII	QEOIF=1: 发生自定义电能寄存器溢出事件。
3	PEOIF	PEOIF=0: 未发生有功电能寄存器溢出事件;
3	FEOII	PEOIF=1: 发生有功电能寄存器溢出事件。
2.	QFIF	QFIF=0: 未发生 QF 脉冲输出事件;
	QI'II'	QFIF=1: 发生 QF 脉冲输出事件。
1	PFIF	PFIF =0: 未发生 PF 脉冲输出事件;
1	PFIF	PFIF =1:发生 PF 脉冲输出事件。
0	DUPDIF	DUPDIF=0: 未发生数据更新事件;
U	DOPDIF	DUPDIF=1: 发生数据更新事件。

IF 适用于 SPI 和 UART 接口。当某中断事件产生时,硬件会将相应的中断标志置 1。 IF 中断标志的产生不受中断允许寄存器 IE 的控制,只由中断事件是否发生决定。

IF 为只读寄存器,读后清零。

复位中断状态寄存器

Reset Interrupt Flag Register (RIF)		Address:	0x42H					
	Bit7	6	5	4	3	2	1	Bit0
Read:	0	FZIF	RZXIF	RQEOIF	RPEOIF	RQFIF	RPFIF	RDUPDIF

该寄存器功能等同 IF。

2.12.5 系统状态寄存器

系统状态寄存器

Syster	n Status Regi	ister (SysStatus) Address: 0x43H 只读
位	位名称	功能描述
7-5	Reserved	只读,读出为 0.
4	WREN	写使能标志: =1 允许写入带写保护的寄存器;
4	WKEN	=0 不允许写入带写保护的寄存器
3	Reserved	只读,读出为 0.
		RN8209D 串行通信类型选择引脚状态位,确定芯片的通信接口类型。
2	IS	IS=0,表示选择 UART 作为通信接口; IS=1,表示选择 SPI 作为通信接
2	13	口。
		RN8209C: 该位读出为 0.
1	SOFTRST	命令复位标志。当命令复位结束时,该位置1。读后清零。可用于复位后
1	SOFIKSI	校表数据请求。
0	DCT	硬件复位标志。当外部 RST_N 引脚或者上电复位结束时,该位置 1。读
U	RST	后清零。可用于复位后校表数据请求。

SPI/UART 读校验寄存器

RData(0x44H)寄存器保存前次 SPI/UART 读出的数据,可用于 SPI/UART 读出数据时的校验。

SPI/UART 写校验寄存器

WData(0x45H)寄存器保存前次 SPI/UART 写入的数据,可用于 SPI/UART 写入数据时的校验。

2.12.6 特殊命令

命令名称	命令寄存器	数据	描述
写使能命令	0xEA	0xE5	使能写操作
写保护命令	0xEA	0xDC	关闭写操作

电流通道 A 选择命令	0xEA	0x5A	电流通道 A 设置命令,指定当前用于计算有功电能的电流通道为通道 A; 当写使能之后,系统才接受该命令;计量状态寄存器中的 CHNSEL 寄存器位反映了该命令的执行结果。
电流通道 B 选择命令	0xEA	0xA5	电流通道 B 设置命令,指定当前用于计算有功电能的电流通道为通道 B; 当写使能之后,系统才接受该命令;计量状态寄存器中的 CHNSEL 寄存器位反映了该命令的执行结果。
命令复位	0xEA	0xFA	命令复位,等效于外部 PIN 复位;当写使能之后,系统才接受该命令; 建议客户 CPU 对计量初始化前先进行命令复位或者PIN 复位;

写保护的范围:

0x00h-0x17h 校表参数配置寄存器、0x20h-0x21h 快速脉冲寄存器、0x40h 中断允许寄存器,用特殊命令写使能后才能写入修改,具体命令格式如上表。

3 校表方法

3.1 概述

RN8209 提供了丰富的校正手段实现软件校表,经过校正的仪表,有功和无功精度均可达 0.5S 级。RN8209 的校正手段包括:

- 电表常数(HFConst)可调
- 提供 A/B 通道的增益校正和一致性校正
- 提供 A/B 通道的相位校正
- 提供 A/B 通道的有功、无功和有效值 offset 校正
- 提供无功相位补偿
- 提供小信号加速校正功能
- 提供校表数据自动校验功能

3.2 校表流程和参数计算

可利用标准电能表进行校表,有功和自定义能量脉冲 PF/QF 可以通过光耦直接连接到标准 表上去,然后根据标准电能表的误差读数对 RN8209 进行校正。

3.2.1 校表流程

图 3-1 校表流程

3.2.2 参数设置

图 3-2 参数设置流程

HFConst 参数计算:

osci=3.579545MHz 时, HFConst 的计算公式如下:

HFConst=INT[16.1079*Vu*Vi*10^11/(EC*Un*Ib)]

Vu: 额定电压输入时,电压通道的电压(引脚上电压×放大倍数) Vi: 额定电流输入时,电流通道的电压 (引脚上电压×放大倍数) Un: 额定输入的电压; Ib: 额定输入的电流; EC: 电表常数

3.2.3 有功校正

图 3-3 有功校正流程

1. A 通道功率增益校正可通过配置 GPQA 寄存器实现, GPQA 的计算方法如下: 若标准表在 A 通道 100% lb、PF=1 上读出误差为 err:

$$Pgain = \frac{-err}{1 + err}$$

如果 Pgain>=0,则 GPQA=INT[Pgain*2¹⁵] 否则 Pgain<0,则 GPQA=INT[2¹⁶+Pgain*2¹⁵]

B 通道功率增益校正可通过配置 GPQB 寄存器实现,方法同 GPQA。

2. A/B 通道相位校正寄存器的计算方法: 若标准表在 A/B 通道, 100% lb, PF=0.5L 上读出误差为 err,则相位补偿公式:

$$\theta = Arcsin \frac{-err}{\sqrt{3}}$$

对 50HZ,PHSA/B 有 0.02^{0} /LSB 的关系,则有 如果 θ >=0,PHSA/B = INT(θ / 0.02^{0}) 如果 θ <0,PHSA/B =INT(2^{0} 8+ θ / 0.02^{0})

3. 有功 offset 校正是在外部噪声(PCB 噪声,变压器噪声等等)较大,积分所得能量影响到小信号精度的情况下,提高小信号有功精度的一种有效手段。若外部噪声对小信号有功精度影响较小,该步骤可忽略。

3.2.4 无功校正

图 3-4 无功校正流程

1. 无功相位补偿寄存器用于大信号条件下, U 通道 90° 移相滤波器在无功计算中的相位补偿。无功相位补偿寄存器计算方法如下:

若标准表在 A 通道、Imax、PF=0.5L(30°)上读出误差为 err,则:

 $\alpha = \text{err/cot}(\theta) = \text{err * 0.5774}$

如果 $\alpha>=0$,则 Qphs=INT[$\alpha*2^{15}$]; 如果 $\alpha<0$,则 Qphs=INT[$2^{16}+\alpha*2^{15}$]

注意由于 Qphs 计算需要 A 通道有功功率,所以该步校正必须在有功校正之后进行。

2. 在外部噪声 (PCB 噪声,变压器噪声等等) 较大,噪声积分所得能量影响到小信号无功精度的情况下,无功 offset 校正是提高小信号无功精度的一种有效手段。若外部噪声对小信号无功精度影响较小,该步骤可忽略。

3.2.5 有效值校正

图 3-5 有效值校正流程

说明:

1. 电流 offset 校正可提高小信号电流有效值精度

IARMSOS 寄存器计算过程:

- 1) 配置标准表台, 使 U=Un、电流通道输入 Vi=0;
- 2) 等待 DUPDIF 标识位更新 (每秒 3.4Hz 左右刷新);
- 3) MCU 取 IARMS 寄存器值, 暂存;
- 4) 重复步骤 2 和 3 十一次,第一个数据可不要,MCU 取后十个数据求平均得 lave;
- 5) 求 Iave 的平方 Iave^2;
- 6) 求其 32 位二进制反码,取 bit23~bit8 填入 IRMSOS bit15~bit0 得 IRMSOS;
- 5) 有效值 offset 校正结束

IBRMS 校正公式和 IBRMSOS 寄存器计算过程与此相同。

2. 校好电流 offset 后,再进行 A/B 通道电流转换系数 KiA/KiB 以及电压转换系数 Ku 的校正,该步由 MCU 完成,计算过程如下:

若额定电流 Ib 下 IARMS 寄存器读数为 RMSIAreg,则

KiA=Ib/RMSIAreg

其中 KiA 为额定输入时额定值与相应寄存器的比值。

B 通道转换系数 KiB 和电压转换系数 Ku 的计算过程相同。

3.3 举例

假设设计一块 220v(Un)、5A(Ib)额定输入、表常数为 3200(EC)的样表。A 通道电流采样使用 350 微欧的锰铜,通道 A 模拟通道增益为 16 倍; B 通道电流采样使用互感器,选择通道 B 模拟增益为 1 倍; 电压采用电阻分压输入,模拟通道增益为 1 倍,芯片引脚上电压值为 0.22v。

1. 计算 HFConst

Vu = 0.22V; Vi = 5*0.00035*16 = 0.028V; EC=3200; Un = 220; Ib = 5.

HFConst=[16.1079*Vu*Vi*10^11/(EC*Un*Ib)]=2818

取整后 HFConst 为 B02 H(2818)。将该值写入 HFCONST 寄存器即可。

2. A 通道有功校正

1) A 通道增益校正

功率源上输出 220v、5A、功率因数为 1 的信号,标准表上显示的误差为 1.2%,则 Pgain=-0.012/(1+0.012)=-0.01186

该数小于 0, 需转换为补码,则-0.01186*2^15+2^16=0xFE7BH 将 FE7Bh 写入 GPQA 寄存器,完成 A 通道增益校正。

2) A 通道相位校正

校完阻性增益后,将功率因数改为 0.5L,标准表显示的误差为-0.4%,则 θ =ArcSin(-(-0.004)/1.732)=ArcSin 0.0023 = 0.1323 0 phs=INT[0.1323/0.02]=6

取整后为 0x06H, 写入角度校正寄存器 PHSA 即可。

3) A 通道有功 OFFSET 校正

在电流输入为零的条件下,读取有功功率寄存器的值,**0Xfffff50f**,(可以读若干次取平均值),其 **32** 位补码为 **0x00000AF1**,取后 **4** 位数 **0X0AF1** 写入有功偏置校正寄存器。

B 通道有功校正和 A 通道类似。

3. 无功校正

1) 无功相位补偿

有功校正完成后,无功只需进行相位补偿的校正。在无功 0.5L (30°)点,标准表显示的误差为-0.04%,则

 α = -0.0004*0.577= -0.0002308<0, Qphs=INT(2^16-0.0002308*2^15)=65528=0xfff8 将十六进制数 FFF8 写入无功相位补偿寄存器。

2) 无功 Offset

在电流输入为零的条件下,读取无功功率寄存器的值,0XFFFFF47D,(可以读若干次取平均值),其 32 位补码为 0x00000B83,取后 4 位数 0X0B83 写入无功偏置校正寄存器。

4. 有效值校正

芯片提供了电流有效值偏置校正寄存器,在电流输入为零的条件下,读取电流有效值寄存器的值为 0x000483,(可以读若干次取平均值)十进制数为 1155。

将其平方后求其反码: 1155*1155=1334025=0x145B09, 32 位反码为 0Xffeba4f6。 取中间 4 位数 0xeba4 写入电流有效值偏置校正寄存器。 转换系数计算由 MCU 完成。

4 通信接口

- RN8209D 支持两种串行通信接口: SPI 和 UART。RN8209C 仅支持 UART 接口。工作在 从属方式
- RN8209D 的串行通信接口选择通过外部引脚 IS 设置
- SPI 和 UART 接口均为 5V/3.3V 兼容

4.1 SPI 接口

4.1.1 SPI 接口信号说明

SCSN: SPI 从设备片选信号,低电平有效,输入信号,内部悬空,建议外接上拉电阻。 SCSN 由高电平变为低电平时,表示当前芯片被选中,处于通讯状态; SCSN 由低电平变 为高电平时,表示通讯结束,通讯口复位处于空闲状态。

SCLK: 串行时钟输入脚,决定数据移出或移入 SPI 口的传输速率。

所有的数据传输操作均与 SCLK 同步, RN8209D 在上升沿将数据从 SDO 引脚输出; 主机在上升沿将数据从 SDI 引脚输出。RN8209D 和主机都在下降沿读取数据。

SDI: 串行数据输入脚。用于把主设备数据传输到 RN8209D 内部。

SDO: 串行数据输出脚,用于把 RN8209D 数据输出给主设备。SCSN 为高时,为高阻。

4.1.2 SPI 帧格式

SPI 帧包括读操作帧、写操作帧和特殊命令帧。每一帧的传输过程如下:

当 RN8209D 检测到 SCSN 下降沿, SPI 进入通信方式, 在此模式下, RN8209D 等待 MCU 向命令寄存器传送命令字节。

命令寄存器是一个 8bit 宽的寄存器。对于读写操作,命令寄存器的 bit7 用来确定本次数据传输操作的类型是读操作还是写操作,命令寄存器的 bit6-0 是读写的寄存器的地址。对于特殊命令操作,命令寄存器的 bit7-0 固定为 0xEAH。

写完命令寄存器,芯片解析和响应命令,开始本次数据传输。数据传输结束后,SPI 又进入通信模式,等待 CPU 向命令寄存器传送新的命令字节。

这三种类型 SPI 帧格式说明见表 4-1。

表 4-1 SPI 帧格式

命令名称	命令寄存器	数据	描述
读命令	{0,REG_ADR[6:0]}	RDATA	从地址为 REG_ADR[6:0]的寄存器中读数据。 注意:读无效地址,返回值为 00h。
写命令	{1,REG_ADR[6:0]}	WDATA	向地址为 REG_ADR[6:0]的寄存器中写数据。
写使能命令	0xEA	0xE5	
写保护命令	0xEA	0xDC	

电流通道 A 选择命令	0xEA	0x5A	参见 2.11.6 特殊命令章节。
电流通道 B 选择命令	0xEA	0xA5	
命令复位	0xEA	0xFA	

4.1.3 SPI 写操作

图 4-1 SPI 写时序

工作过程:

主机在 SCSN 有效后,先通过 SPI 写入命令字节(8bit,包含寄存器地址),再写入数据字节。注意:

- 1. 以字节为单位传输,高比特在前,低比特在后;
- 2. 多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 3. 主机在 SCLK 高电平写数据,从机在 SCLK 低电平取数据;
- 4. 数据字节之间的时间 t1 要大于等于半个 SCLK 周期;
- 5. 最后一个字节的 LSB 传送完毕, SCSN 由低变高结束数据传输。SCLK 下降沿和 SCSN 上升沿之间的时间 t2 要大于等于半个 SCLK 周期。

注意: 有写保护功能的寄存器在写操作之前要先写入写使能命令。

4.1.4 SPI 读操作

图 4-2 SPI 读时序

工作过程:

主机在 SCSN 有效后,先通过 SPI 写入命令字节 (8bit,包含寄存器地址),从机收到读命

令后,在 SCLK 的下降沿将数据按位从 SDO 引脚输出。注意:

- 1. 以字节为单位传输,高比特在前,低比特在后;
- 2. 多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 3. 主机在 SCLK 高电平写命令字节,从机在 SCLK 高电平将数据从 SDO 输出;
- 4. 数据字节的时间 t1 要大于等于半个 SCLK 周期:
- 5. 最后一个字节的 LSB 传送完毕, SCSN 由低变高结束数据传输。SCLK 下降沿和 SCSN 上升沿之间的时间 t2 要大于等于半个 SCLK 周期。

4.1.5 SPI 接口可靠性设计

SPI 接口可靠性设计包括以下方面:

- 校验功能
 - 1. 提供校验寄存器 EMUStatus(0x2DH)用于存放内部校表寄存器的校验和。
 - 2. 提供 SPI 读校验寄存器 RData(0x44H),保存前次 SPI 读出的数据。
 - 3. 提供 SPI 写校验寄存器 WData (0x45H),保存前次 SPI 写入的数据。
- 写保护功能 对所有可读可写寄存器有写保护功能。
- 应用电路设计

SPI 传输信号线有可能受到干扰而出现抖动,需要外接电阻电容进行滤波。参数的选择可根据需要确定。

图 4-3 SPI 典型接线图

4.2 UART 接口

RN8209 的 UART 接口主要特点如下:

● 工作在从模式、半双工通讯、9位 UART (含偶校验位),符合标准 UART 协议

- RN8209D 通过硬件管脚配置波特率: 2400/4800/9600/19200bps 四档可选
- RN8209C 的波特率固定为 4800
- 帧结构包含校验和字节,安全可靠
- 5V/3.3V 兼容

4.2.1 UART 接口信号说明

TX: UART 从机 (RN8209) 数据发送管脚; RX: UART 从机 (RN8209) 数据接收管脚;

B1/B0: 波特率选择管脚,用于配置 RN8209D UART 波特率,B1/B0 不同的配置会导致系统控制寄存器 SYSCON[14:8]的值不同,对应关系如下图所示;

4.2.2 UART 数据字节格式

UART 为 9 位异步通信口,发送、接收一个字节信息由 11 位组成,即起始位(StartBit,0)、数据位(低位在先)、1 位偶校验位(Parity Bit,第 9 数据位)和 1 位停止位(Stop Bit,1)。如下图所示:

图 4-5 UART 数据字节格式

4.2.3 UART 帧格式

RN8209 UART 通讯帧格式如下图和表格所示:

CMD	DATA		DATA	CKSUM
-----	------	--	------	-------

最高有效字节

最低有效字节

名称	解释
CMD	命令字节,由主机端发送,
	CMD[7]: 表示命令类别; 0, 读操作, 1: 写操作;
	CMD[6:0]: 表示被选中 RN8209 器件的内部寄存器地址
	若 CMD[7]=1, 而 CMD[6:0]=0x6A,表示本次操作是特殊命令;
DATA	数据字节; 读操作由从机端发送, 写操作由主机端发送
	若寄存器地址对应寄存器是多字节寄存器,先传最高有效字节;
CKSM	校验和字节; 读操作由从机端发送, 写操作由主机端发送
	校验和算法如下:
	CheckSum[7:0] = \sim (CMD[7:0] + DATAn[7:0] + +DATA1[7:0])
	即将 CMD 和数据相加,抛弃进位,最后的结果按位取反;

命令名称	命令字节	数据字 节	描述
读命令	{0,REG_ADR[6:0]}	RDATA	从器件中的地址为 REG_ADR[6:0]的寄存器读数据。 注意:读无效地址,返回值为 00h。
写命令	{1,REG_ADR[6:0]}	WDATA	向器件中的地址为 REG_ADR[6:0]的寄存器写数据。
写使能命	0xEA	0xE5	
写保护命 令	0xEA	0xDC	命令描述"参见 2.11.6 特殊命令章节。"
命令复位	0xEA	0xFA	

4.2.4 UART 写操作

写操作由主机端发起,主机端发送命令字节,如果是写命令,从机继续接收主机随后依次发送的数据字节和校验和字节。如下图所示:

注意事项:

- 1. 9位 UART,字节信息由 11位组成,即起始位(0)、数据位(低位在先)、1位偶校验位(第9数据位)和1位停止位(1)。
- 2. 字节发送端计算并发送校验位,字节接收端根据校验位判断字节传送是否有效;如果字节错误,随后的字节被认为是新的帧的开始;
- 3. 多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 4. 主机发送字节之间的时间 t1,由主机端控制,RN8209 没有限制,t1 大于等于 0ns;
- 5. 帧之间的时间 t4,由主机端控制,RN8209 没有限制,t4 大于等于 0ns;
- 6. 有写保护功能的寄存器在写操作之前要先写入写使能命令。
- 7. 主机计算并发送校验和,从机根据校验和判断帧传送是否成功

4.2.5 UART 读操作

读操作由主机端发起,主机端先发送读命令字节,RN8209 随后由 TX 发送读数据字节、读校验和字节。如下图所示:

注意事项:

- 1. 9位 UART,字节信息由 11位组成,即起始位(0)、数据位(低位在先)、1位偶校验位(第9数据位)和1位停止位(1)。
- 2. 字节发送端计算并发送校验位,字节接收端根据校验位判断字节传送是否有效;如果字节校验错误,字节接收端认为当前帧错误并结束;
- 3. 多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 4. 主机发送字节之间的时间 t1,由主机端控制,RN8209 没有限制,t1 大于等于 0ns 即可;
- 5. 主机发送字节和从机发送字节之间的时间 t2,由从机控制,t2=T/2(T 是每比特的传送时间);
- 6. 从机发送字节之间的时间 t3, 由从机控制, t3=T(T是每比特的传送时间);
- 7. 帧之间的时间间隔 t4,由主机端控制,RN8209 没有限制,t4 大于等于 0ns 即可;
- 8. 主机计算并发送校验和,从机根据校验和判断帧传送是否成功

4.2.6 UART 接口可靠性设计

UART 接口可靠性设计包括以下方面:

- 硬件管脚配置波特率,安全可靠
- UART 数据字节传送具有位校验(偶校验)功能
- UART 通讯帧传输具有校验和功能
- 硬件管脚的配置的结果反映在寄存器中;
- 寄存器校验功能
 - 1. 提供校验寄存器 EMUStatus 用于存放内部校表寄存器的校验和。
 - 2. 提供读校验寄存器 RData, 保存前次读出的数据。
 - 3. 提供写校验寄存器 WData,保存前次写入的数据。
- 写保护功能

对所有可读可写寄存器有写保护功能。

5 电气特性

精度								
		(V _{dd} =AV	$_{dd}$ =5V±5%	る,室温)				
测量项目	符号	最小	典型	最大	单位	测试条件和注释		
有功电能测量误差	Err			±0.1%		常温8000:1的动态范围		
有功电能测量带宽	BW		7		kHz	OSCI=3.579545MHz		
无功电能测量误差	Err			±0.1%		常温8000:1的动态范围		
有效值测量误差	Err			±0.1%		常温1000:1的动态范围		
	模拟输入							
最大信号电平	V _{xn}			±1000	mV			
直流输入阻抗	Z_{DC}	300			kΩ			
ADC失调误差	DC_{off}		1		mV			
-3dB带宽	B _{-3dB}		7		kHz	OSCI=3.579545MHz		
			基准电压					
	$(V_{dd} = AV_{dd})$	=5V± 5 %	() 温度范	迅围: -40℃~	~+85°C)			
输出电压	V_{ref}		1.25		V			
温度系数	T _c		5	15	ppm/℃			
输入阻抗			4		kΩ			
		l .	时钟输入			L		
输入时钟频率范围	OSCI	1	3.58	4	MHz			
	•	数字	输入输出			ı		
SPI接口速率				1.2M	Hz			
UART接口速率		2400		192000	Hz			
RSTN、A0、A1 输入高		0.7*				$DV_{dd} = 5V, -40-85^{\circ}C$		
电平	V_{IH}	vdd		$\mathrm{DV}_{\mathrm{DD}}$	V			
RSTN、A0、A1输入低电				0.3*		DV _{dd} =5V, -40-85℃		
平	$V_{\rm IL}$	DGND		Vdd	V	_ ' dd		
SDI/RX 、 SCLK/B0 、				v dd		DV _{dd} =5V, -40-85°C		
	V_{IH}	2.5		DV_{DD}	V	DV _{dd} = 3V, -40-63 C		
SCSN/B1输入高电平								
SDI/RX 、 SCLK/B0 、	$V_{\rm IL}$	DGND		1.7	V	$DV_{dd} = 5V$, $-40-85$ °C		
SCSN/B1 输入低电平								
IRQN/ZX 输出高电平	V _{OH}	4		$\mathrm{DV}_{\mathrm{DD}}$	V	DV _{dd} =5V , 室温;		
IKQIVZX 柳田同屯	V OH	7		D V DD	v	Isource=3.5mA		
IDONES AND A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNE				0.5	17	DV _{dd} =5V, 室温;		
IRQN/ZX 输出低电平	V_{OL}			0.5	V	Isink=8mA		
PF、QF、SDO输出高电						DV _{dd} =5V,室温;		
平	V_{OH}	4		$\mathrm{DV}_{\mathrm{DD}}$	V	Isource=5mA		
PF、QF、SDO输出低电						DV _{dd} =5V,室温		
	V_{OL}	DGND		0.5	V			
平			— H- M≭		<u> </u>	Isink=12mA		
			电源					

LH LM LL MZ	477	4.5		5.5	V	5V ±10%
模拟电源	AV_{DD}					或3.3V±10%
数字电源	$\mathrm{DV}_{\mathrm{DD}}$	4.5		5.5	V	5V ±10%
数于电源	DVDD					或3.3V±10%
模拟电流1	AIdd1		1.5		mA	通道B ADC不打开
模拟电流2	AIdd2		1.8		mA	通道B ADC打开
数字电流	DIdd		1.3		mA	OSCI=3.579545MHz
			极限参数			
数字电源电压	DV_{DD}	-0.3		+7	V	
模拟电源电压	AV_{DD}	-0.3		+7	V	
DV _{DD} to DGND		-0.3		+7	V	
DV _{DD} to AV _{DD}		-0.3		+0.3	V	
V1P,V1N,V2P,V2N,V3P,		-6		+6	V	
V3N					•	
数字输入电压相对于	$V_{ m IND}$	-0.3		$\mathrm{DV}_{\mathrm{DD}}$	V	
GND				+0.3	,	
数字输出电压相对于	V_{outD}	-0.3		$\mathrm{DV}_{\mathrm{DD}}$	V	
GND				+0.3	•	
模拟输入电压相对于	V_{INA}	-0.3		AV_{DD}	V	
AGND				+0.3	V	
工作温度范围	T_A	-40	1	85	$^{\circ}$	
存储温度范围	T_{stg}	-65		150	$^{\circ}$	

6 芯片封装

RN8209D-SSOP24 芯片封装尺寸:

CVMDOI		MILLIMETER		
SYMBOL	MIN	NOM	MAX	
A			1.85	
A1	0.05	0.15	0.25	
A2	1.30	1.50	1.70	
A3	0.57	0.67	0.77	
b	0.29		0.37	
b1	0.28	0.30	0.33	
С	0.15		0.20	
c1	0.14	0.15	0.16	
D	8.00	8.20	8.40	
Е	7.60	7.80	8.00	
E1	5.10	5.30	5.50	
e		0.65BSC		
L	0.75	0.90	1.05	
L1	1.25BSC			
θ	0		8°	

RN8209C-SOP16L 芯片封装尺寸:

GVA (DO)		MILLIMETER			
SYMBOL	MIN	NOM	MAX		
A			1.75		
A1	0.05		0.225		
A2	1.30	1.40	1.50		
A3	0.6	0.65	0.70		
b	0.39		0.48		
b1	0.38	0.41	0.43		
С	0.21		0.26		
c1	0.19	0.20	0.21		
D	9.70	9.90	10.10		
Е	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
e		1.27BSC			
h	0.25		0.5		
L	0. 5		0.8		
L1	1.05BSC				
θ	0		8°		