ENPM808A – Introduction to Machine Learning

Homework - 1

Author – Syed Mohammad Ibrahim

UMD ID: iamibi

UID: 118428369

Email: iamibi@umd.edu

1.

```
import matplotlib.pyplot as plt
import numpy as np
df = pd.read excel('mlr05.xls')
X train, X test, Y train, Y test = train test split(X, Y, test size=0.2)
model = linear model.LinearRegression()
model.fit(X train, Y train)
Y pred test = model.predict(X test)
full = linear model.LinearRegression()
full pred = model.predict(X)
plt.figure(figsize=(5,11))
plt.subplot(2, 1, 1)
plt.scatter(x=Y train, y=Y pred train, c="#7CAE00", alpha=0.3)
z = np.polyfit(Y train, Y pred train, 1)
p = np.poly1d(z)
plt.plot(Y test,p(Y test),"#F8766D")
plt.ylabel('Predicted Sales')
```

```
plt.subplot(2, 1, 2)
plt.scatter(x=Y test, y=Y pred test, c="#619CFF", alpha=0.3)
z = np.polyfit(Y test, Y pred test, 1)
p = np.poly1d(z)
plt.plot(Y test,p(Y test),"#F8766D")
plt.ylabel('Predicted Sales')
plt.xlabel('Experimental Sales')
plt.savefig('plot_vertical_Sales.png')
plt.savefig('plot vertical Sales.pdf')
plt.show()
plt.figure(figsize=(11,5))
plt.subplot(1, 2, 1)
plt.scatter(x=Y_train, y=Y pred train, c="#7CAE00", alpha=0.3)
z = np.polyfit(Y train, Y pred train, 1)
p = np.poly1d(z)
plt.plot(Y test,p(Y test),"#F8766D")
plt.ylabel('Predicted Sales')
plt.xlabel('Experimental Sales')
plt.subplot(1, 2, 2)
plt.scatter(x=Y test, y=Y pred test, c="#619CFF", alpha=0.3)
z = np.polyfit(Y test, Y pred test, 1)
p = np.poly1d(z)
plt.plot(Y test,p(Y test),"#F8766D")
plt.xlabel('Experimental Sales')
plt.savefig('plot horizontal Sales.png')
plt.savefig('plot horizontal Sales.pdf')
plt.show()
```


2.a. Using analytics geo., $w^Tx = 0$. h(x) = +1 and h(x) = -1 are separated by a straight line because there are points on one side of the line $w^Tx > 0$ and same for $w^Tx < 0$. The slope a and intercept b can be expressed in w_0 , w_1 , w_2 as:

$$wTx = w0 + w1x1 + w2x2 = 0$$

when $w_2 \neq 0$

$$x2 = -\frac{w0}{w2} - \frac{w1}{w2} x$$

2.b.

100	
0.3	Let w= argmin { w : < w, x;>y; >1, +i \[[1:n] \]
90	The idea of the proof is to show that after performing T iterations, the cosine
	after performing T iterations, the cosine
	of the angle between w* and w(T+1) is
	at least VT , i.e., of mothers
	RB.
	(+) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x
	(se((L(w*, w(T+1))) = < w*, w(T+1)> VT
	(1) W [W [[W (TT)]] RB
	hence, T < (RB)2
10	
	To show this, we first show that <wt, w(th)=""> > T. Initially, we have <wt, w(1)=""></wt,></wt,>
	<wt, w(thi)="">>T. Intrially we have <wt w(1)="">-</wt></wt,>
	Since [wall = a after T Herostons
	at iteration t after updating w(++1) based
	at iteration t after updating w (++1) based on example i we have
	$= (\omega^*, \omega^{(t+1)}) - (\omega^*, \omega^{(t)}) = (\omega^*, \omega^{(t)}) + y_i x_i > 0$ $= (\omega^*, \omega^{(t)}) + y_i x_i > 0$
	= < W* W(t) > * W
	a stal material Park
	= ALAND
	= <wx yixi=""></wx>
	> 1

lum.	Flierefore, after Titerations, we have (w, b(T+1)) >T	60
y the	To idea of ((171)) >T	,
Cesin	Now we upper bound 1/w(T+1)1). At each iteration t, we have	
(1+1)	Now we upper bound 1/w(T+1)1). At each	
	iteration to we have To trail the	
	8.8	
	$ w^{(t+1)} ^2 = w^{(t)} + y \cdot x \cdot $	
TV	(2 (2 (1) (+) Y; x;) +	
RB .		
	+	15
	(\alpha^4) \begin{aligned} \(\lambda \rangle \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
11 %	Le Riter Will & first show that	-
- 100	Since w(1) = D, after T iterations	
12011	Since $\ w^{(r)}\ ^2 = D$ after Titerations we have $\ w^{(\tau+1)}\ ^2 \leq TR^2$	
p.217(, ,	i.e., IIw(T+1) / STORILLO MA	
	, , , ,	
(*X):	Comming the alreve we have \(\omega \tau \tau \tau \tau \tau \tau \tau \ta	
-/-	(ω+, ω(1+1)) ω+ ω(1+1)	
	1/w* 1/ 1/w/17) BYTR	
	= <u>1</u>	
	Kb.	
		Marin .

4. The question requires a consideration of the "deviation distance" when updating. In the process of trying, I found that taking 100 for η would cause the number to be too large, so here we take 1, 0.1, 0.01, 0.0001

n = 1, time error rate = 0.0

n = 0.1, time error rate = 0.0022

n = 0.01, time error rate = 0.002

n = 0.0001, time error rate = 0.0001

5.1. Using binomial distribution, there are two kinds of marbles in the box, 90% are red marbles, 10% are green marbles, now we take 10, and ask the probability that the number of red marbles is less than or equal to 1.

$$P = 0.1^{10} + C_{10}^{1} \times 0.1^{9} \times 0.9 \approx 9 \times 10^{-9}$$
 where P is the Probability

5.2. Using Hoeffding Inequality:

$$\mathbb{P}[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N} \quad \text{for any } \epsilon > 0.$$

Substituting the values:

$$\mathbb{P}[v \leq 0.1] = \mathbb{P}[0.9 - v \geq 0.8] \ = \mathbb{P}[\mu - v \geq 0.8] \ \leq \mathbb{P}[|\mu - v| \geq 0.8] \ \leq 2e^{-2\times 0.8^2\times 10} \ \approx 5.5215451440744015 \times 10^{-6}$$

This is a loose upper bound than the 5.1 (Exercise 1.8) as Hoeffding inequality is universal. Thus, the upper bound must be loose.