Attention

Marco Kuhlmann

Department of Computer and Information Science

Recency bias in recurrent neural networks

encoder decoder

Recency bias in recurrent neural networks

encoder decoder

Recency bias in recurrent neural networks

encoder decoder

Attention

- In the context of machine translation, **attention** enables the model to learn 'soft' word alignments.
- Essentially, we compute a set of weights that allow us to score words based on how much the model should 'attend to them'.
- Attention was first proposed in the context of the sequence-tosequence architecture, but is now used in many architectures.

Just drink coffee

Just drink coffee

Just drink coffee

Just drink coffee

A general characterisation of attention

- In general, attention can be described as a mapping from a query q and a set of key-value pairs k_i , v_i to an output.
- The output is the weighted sum of the v_i , where the weight of each v_i is given by the affinity between q and k_i :

attention
$$(q, K, V) = \operatorname{softmax}(a(q, K))V$$

$$q \in \mathbb{R}^{d_K}, K \in \mathbb{R}^{n \times d_K}, V \in \mathbb{R}^{n \times d_V}$$
 attention score

Bahdanau attention

Scaled dot-product attention

Multi-head attention

Attention as word alignments

In the context of the encoder–decoder architecture for neural machine translation, attention weights resemble soft word alignments.

Image source: <u>Bahdanau et al. (2015)</u>