Assignment- [CO4] Total Marks: 20

- 1. Consider the function $f(x) = x \ln(x)$. Now answer the following:
- (a) (2 marks) Evaluate the numerical derivative of f(x) at x = 1.0 with step size h = 0.1 using the **forward and central difference** methods up to 5 significant figures.
- (b) (4 marks) Compute the upper bound of the truncation error of f(x) at x = 1.0 using h = 0.1 for the **backward and central difference** methods up to 5 significant figures.
- (c) (4 marks) **Deduce** an expression for D_h^1 from D_h by replacing h by **(4h/3)** using the Richardson extrapolation method.
- 2. (3+2 marks) The following Data set is generated by the function $f(x) = x \cos(x) x + \sin(x)$.

х	1.1	1.2	1.3
f(x)	0.2902	0.1669	0.01131

Based on the above data, compute f'(1.2) using the **Central Difference** method, and also calculate the **relative error**. Use 4 significant figures.

- 3. Consider the function $f(\mathbf{x}) = 4x^3 9e^{7x}$. Now answer the following:
- a) (3 marks) Compute $\mathbf{D}^{(1)}_{0.2}$ at $\mathbf{x} = 2.7$ using **Richardson extrapolation** method up to 4 significant figures.
- b) (2 marks) Compute $\mathbf{D}^{(2)}_{0.2}$ at $\mathbf{x} = \mathbf{2.7}$ using **Richardson extrapolation** method up to 4 significant figures.