$Covariate\ Adjustment$

Michael Martens, PhD

November 3, 2022

Covariate Adjustment

- In a clinical trial, primary interest is the treatment's effect on outcome
- Other covariates may also affect outcome (e.g. age, genetics)
- Why adjust for covariates?
 - Increased precision of estimated treatment effect
 - Imbalances in patient characteristics can occur even with randomization, so could confound analysis if not adjusted
 - Learn about effects of covariates

Covariate Adjustment

- How do we adjust?
 - Stratification:
 - Divide subjects into smaller, more homogeneous subgroups (i.e. strata)
 - Compare treatments separately for each stratum, then combine estimates of the treatment effect across strata
 - Regression modeling: Covariates used as predictors in a regression model

Covariate Adjustment

- Which covariates do we adjust for?
 - Baseline demographics, disease, and/or treatment-related variables
 - Should be related to outcome; can assess this based on prior research and expert knowledge
 - Best to specify them upfront in the study protocol
 - Often the same ones used for stratified randomization if employed

Covariate Adjustment: Normal Outcomes

- Suppose Y is a continuous outcome of interest and μ_i is the mean of Y under treatment i, i = 1, 2
- Suppose we want to test H_0 : $\mu_1 = \mu_2$ while adjusting for a baseline covariate X
- Analysis of Covariance (ANCOVA) model specifies that observation Y_{ij} for patient j in treatment group i is

$$Y_{ij} = \mu_i + \gamma b_{ij} + \epsilon_{ij}, \text{ where } \epsilon_{ij} \sim \textit{N}(0, \sigma_{\epsilon}^2)$$

Covariate Adjustment: Normal Outcomes

- Model assumptions:
 - Linear relationship between response and baseline covariates
 - Equal treatment effects at all covariate values (no interactions)
 - Independent observations
 - Equal variance of error terms for all observations
- Estimate parameters using Least Squares approach
- SAS PROC GLM can fit model

- A trial by Hommel et al. (1986) randomized insulin-dependent patients with diabetic nephropathy to receive either Captopril (drug to reduce BP) or placebo
- Systolic BP was measured before randomization and one week post treatment
- Primary outcome: Systolic BP at one week post treatment

		Pre		Post	
	n	Mean	SD	Mean	SD
Captopril	9	148.0	11.4	135.33	8.43
Placebo	7	146.6	12.3	141.86	6.94

- A *t*-test comparing post treatment measurements yields t = 1.65, p = 0.12
- Baseline BP appears balanced (p = 0.81)
 - Not informative, because randomization is expected to produce balance
- Baseline BP is expected to be related to BP after treatment
- In a given trial, baseline BP may be imbalanced unless stratified randomization is used
- Using ANCOVA to adjust for baseline BP, p=0.031, finding a reduction of systolic BP under Captopril treatment

Example: ANCOVA in SAS

```
proc glm data=captopril;
  class trt(ref='0');
  model post=trt baseline /solution clparm;
  lsmeans trt;
run;
```

Example: ANCOVA in SAS

		Standard		
	Estimate	Error	t Value	Pr > t
	74.75098814 B	19.59679310	3.81	0.0021
1	-7.17786561 B	2.96364143	-2.42	0.0308
0	0.0000000 B	•		•
	0.45783926	0.13284206	3.45	0.0043
	1	74.75098814 B 1 -7.17786561 B 0 0.00000000 B	Estimate Error 74.75098814 B 19.59679310 1 -7.17786561 B 2.96364143 0 0.000000000 B .	Estimate Error t Value 74.75098814 B 19.59679310 3.81 1 -7.17786561 B 2.96364143 -2.42 0 0.00000000 B .

C+---

Parameter		95% Confidence Limits			
Intercept		32.41469056	117.08728573		
trt	1	-13.58042367	-0.77530755		
trt	0				
baseline		0.17085144	0.74482709		

The GLM Procedure
Least Squares Means
trt post LSMEAN
1 135.047184
0 142.225049

Sample Size / Power Calculation for ANCOVA

- Suppose patients are randomized to treatment with $n_1 = rn_2$
- Want to detect a treatment effect $\delta = \mu_1 \mu_2$ with 1β power using an α level test
- Can show that an appropriate sample size is

$$n_2 = \frac{(r+1)}{r} \frac{(z_{1-\alpha/2} + z_{1-\beta})^2 \sigma_{\epsilon}^2}{\delta^2},$$

where σ_{ϵ}^2 is the residual variance of the ANCOVA model

- Trial Design: Randomized, placebo-controlled trial to assess effectiveness of zanamivir, a new flu treatment
- Primary outcome: # of days to alleviation of symptoms
- Age may affect symptom duration, so model will adjust for it $(\le 65 \text{ vs.} > 65 \text{ years})$
- Assume residual standard deviation is $\sigma_{\epsilon}=2.5$, and investigators want to detect a reduction of 1 day in the mean time until alleviation of symptoms $(\delta=-1)$
- Using a 5% two-sided significance level, power of 90%, note that $z_{1-\alpha/2}=1.96$ and $z_{1-\beta}=1.28$. Then

$$\frac{2(1.96+1.28)^2(2.5)^2}{(-1)^2}=131.2\approx 132~\text{per group}$$

Binary Data

- With a binary outcome, the treatment effect is often described using the odds ratio:
 - **Odds** = p/(1-p), where p is the probability of success
 - Odds Ratio for treatment 1 vs. 2:

$$OR = \frac{p_1/(1-p_1)}{p_2/(1-p_2)},$$

where p_i is the probability of success for treatment i

· Can estimate odds and OR by plugging in sample proportions

- Trial comparing two treatments for psoriasis
- PUVA therapy: drug called methoxsalen, followed by exposure to UVA (longer wavelength UV rays)
- TL-01 therapy: new lamp for administering shorter wavelength UV-B radiation
- Primary outcome: Clearance of psoriasis by end of study

	Cleared	Did not clear	Total
PUVA	41	8	49
TL-01	32	19	51
Total	73	27	100

- Odds of clearance for PUVA = 41/8 = 5.125
- Odds of clearance for TL-01 = 32/19 = 1.684
- Estimated odds ratio for clearance for PUVA group vs. TL-01 group:

$$\widehat{OR} = \frac{5.125}{1.684} = 3.043$$

 Odds of clearance are 3 times higher for patients undergoing PUVA treatment compared to TL-01 treatment

Confidence Interval for Odds Ratio

Assume we have the following binary response data:

	Success	Failure
Treatment	a	b
Control	С	d

Construct CI based on log transformation: For large n,

$$SE(\log \widehat{OR}) \approx \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

Then a 95% confidence interval for log OR is

$$\log \widehat{\mathit{OR}} \pm 1.96 \cdot \mathit{SE}(\log \widehat{\mathit{OR}}) = [L, U]$$

• A 95% confidence interval for OR is $[e^L, e^U]$

• Standard Error:

$$SE(\log \widehat{OR}) = \sqrt{\frac{1}{32} + \frac{1}{41} + \frac{1}{19} + \frac{1}{8}} = 0.483$$

• 95% confidence interval for log *OR*:

$$\log(3.043) \pm 1.96(0.483) = [0.166, 2.059]$$

• 95% confidence interval for OR:

$$[e^{0.166}, e^{2.059}] = [1.181, 7.842]$$

Stratified Analysis of Binary Outcomes

- Stratification involves assessing treatment effect separately in each stratum and then combining effects
- Pool estimates of odds ratio across strata's 2x2 tables
- Assumption: Odds ratio is constant across strata (no interaction)
- Cochran-Mantel-Haenszel test: Let r_{ik} denote the number of successes in group i for stratum k

	Success	Failure	Total
Experimental	r_{1k}	$n_{1k}-r_{1k}$	n_{1k}
Control	r_{2k}	$n_{2k}-r_{2k}$	n_{2k}
Total	r_k	$n_k - r_k$	n_k

Stratified Analysis of Binary Outcomes

• Expected value and variance of r_{1k} are

$$E(r_{1k})=e_{1k}=r_k n_{1k}/n_k$$
 and $Var(r_{1k})=V_{1k}=rac{n_{1k}n_{2k}r_k(n_k-r_k)}{n_k^2(n_k-1)}$

- Test statistic: $U = \sum_{k} (r_{1k} e_{1k})$
- $Var(U) = V = \sum_{k} V_{1k}$ since strata are independent
- Under H_0 : OR = 1, E(U) = 0 so that for large samples,

$$C = \frac{U^2}{V} \sim \chi_1^2$$

Stratified Analysis of Binary Outcomes

Combined estimate of the odds ratio:

$$\widehat{OR}_{MH} = \frac{\sum_{k} r_{1k} (n_{2k} - r_{2k}) / n_{k}}{\sum_{k} r_{2k} (n_{1k} - r_{1k}) / n_{k}}$$

Confidence interval methods available in SAS

Stratified analysis of PUVA vs. TL-01 data, based on plaque size

	Small plaques			Large pla	aques	
	Cleared	Not	Total	Cleared	Not	Total
PUVA	25	3	28	16	5	21
TL-01	23	6	29	9	13	22
Total	48	9	57	25	18	43

• Small plaques: $r_{11} = 25$, $e_{11} = 28 \cdot 48/57 = 23.579$,

$$V_{11} = \frac{29 \cdot 28 \cdot 48 \cdot 9}{57^2 \cdot 56} = 1.928$$

• Large plaques: $r_{12} = 16$, $e_{12} = 21 \cdot 25/43 = 12.209$,

$$V_{12} = \frac{22 \cdot 21 \cdot 25 \cdot 18}{43^2 \cdot 42} = 2.677$$

Cochran-Mantel-Haenszel statistic:

$$C = \frac{[(25 - 23.579) + (16 - 12.209)]^2}{1.928 + 2.677} = 5.899,$$

so that *p*= 0.015

Stratified estimate of odds ratio

$$\widehat{OR}_{MH} = \frac{25 \cdot 6/57 + 16 \cdot 13/43}{23 \cdot 3/57 + 9 \cdot 5/43} = 3.309,$$

with 95% CI of [1.236, 8.860]

• Contrast this with unstratified result: $\widehat{OR} = 3.043,95\%$ CI [1.181, 7.842], p = 0.018

Example: CMH Test in SAS

```
data psoriasis; input trt $ plaque $ success cnt; cards;
PS 1 25
P S 0 3
P I. 1 16
P I. 0 5
T S 1 23
T S 0 6
T I. 1 9
T I. 0 13
;run;
proc freq data=psoriasis order=data;
  weight cnt;
  tables plaque*trt*success/relrisk cmh;
run;
```

Example: CMH Test in SAS

The FREQ Procedure Summary Statistics for trt by success Controlling for plaque

Cochran-M	antel-Haenszel Statistics	s (Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	5.8983	0.0152

Com	mon Odds Ratio and	d Relativ	e Risks	
Statistic	Method	Value	95% Confider	nce Limits
Odds Ratio	Mantel-Haenszel	3.3091	1.2359	8.8598

Regression Model-based Adjustment for Covariates

Logistic Regression:

$$\text{logit } P(Y=1|Z,\mathbf{X}) = \log \frac{P(Y=1|Z,\mathbf{X})}{1-P(Y=1|Z,\mathbf{X})} = \beta_0 + \beta Z + \gamma' \mathbf{X},$$

where Z=1 for experimental, 0 if control treatment, \mathbf{X} is the vector of baseline covariates

For a patient assigned to experimental treatment,

logit
$$P(Y = 1|Z = 1, X) = \beta_0 + \beta + \gamma' X$$

For a patient assigned to control treatment,

logit
$$P(Y = 1|Z = 0, X) = \beta_0 + \gamma' X$$

Model-based Adjustment for Covariates

ullet Then the log odds ratio of treatment adjusted for old X is

$$\log OR_{trt} = \text{logit } P(Y = 1|Z = 1, \mathbf{X}) - \text{logit } P(Y = 1|Z = 0, \mathbf{X}) = \beta$$

- Interpretation: $\exp(\beta)$ is the odds ratio for treatment vs. control for two patients with the same covariates, also called **Adjusted Odds Ratio**
- Logistic regression model is fit by maximum likelihood (more in Methods 2 course), implemented in SAS PROC LOGISTIC

Example: Logistic Regression in SAS

```
proc logistic data=psoriasis descending;
  weight cnt;
  class plaque(ref='S') trt(ref='T') / param=ref;
  model success=trt plaque;
run;
```

Example: Logistic Regression in SAS

		Design
Class	Value	Variables
plaque	L	1
	S	0
trt	P	1
	T	0

Parameter

Intercept trt

plaque L

0.4975

Odds Ratio Estimates

-1.4351

				Point	95% Wa	ald
Effect				Estimate	Confidence	e Limits
trt	P	٧s	Т	3.385	1.246	9.195
plaque	L	٧s	S	0.238	0.090	0.631

0.0039

8.3203

Sample Size / Power Calculation for Logistic Regression

- Suppose patients are randomized to treatments with $n_1 = rn_2$
- Investigators want to detect a change in response rate from π_2 under control to π_1 under experimental therapy
- Equivalently, want to detect the log odds ratio for treatment of $\beta=\delta$ corresponding to this difference
- Two approaches for sample size calculation:
 - Use direct sample size formula for logistic model
 - Use sample size for unadjusted two-sample test of proportions as an approximation

Sample Size / Power Calculation for Logistic Regression: Direct Approach

• From maximum likelihood theory, it can be shown that for large samples, $\sqrt{n}(\hat{\beta} - \beta) \sim N(0, f_0^{-1})$ where

$$f_0 = E_{H_0}[Var(Y|Z, \mathbf{X})] = E\left\{\frac{exp(\beta_0 + \gamma^T \mathbf{X})}{[1 + exp(\beta_0 + \gamma^T \mathbf{X})]^2}\right\}$$

Can be shown that an appropriate sample size is

$$n_2 = \frac{(r+1)}{r} \frac{(z_{\alpha/2} + z_{\beta})^2}{f_0 \delta^2}$$

- Advantage: Formula should be accurate under large sample properties of logistic model
- Drawback: Need to specify β_0 , γ , and distribution of **X** to get f_0 ; historical data could be used to estimate these

Sample Size / Power Calculation for Logistic Regression: Two-sample Approximate Approach

- In theory, covariate adjustment should boost power compared to an unadjusted comparison of proportions
- A sample size calculation based on a two-sample test should provide a sufficient sample size, e.g.

$$n_2 = \frac{(r+1)(z_{\alpha/2} + z_{\beta})^2}{4r(\sin^{-1}\sqrt{\pi_1} - \sin^{-1}\sqrt{\pi_2})^2}$$

- Advantage: Simpler calculation than direct approach
- Drawback: Formula may be inaccurate if covariate effects are not weak

- A control treatment is expected to have a 35% response rate
- A clinically relevant difference in the response rate is determined to be a 10% improvement (absolute)
- Disease stage (early vs. advanced) also affects response rate, so want to adjust for it
- Assume a randomized clinical trial with equal sample sizes
- How large a sample size is needed to have 90% power to detect this difference using a two-sided test at a 5% level?

Example: Direct Approach

- Targeted treatment OR is $\frac{0.45/0.55}{0.35/0.65}=1.519$ so that $\delta=0.418$
- Disease stage X is binary, 50% chance of early
- Expect stage OR of 2 (early vs. advanced), so $\gamma = \log(2)$
- Under null, expect P(Y = 1) = 35%; set $\beta_0 = \text{logit}(35\%) = -0.619$
- Estimate $f_0 = 0.239$ using specifications for X, β_0, γ
- The sample size needed is

$$n = \frac{2(1.96 + 1.28)^2}{0.239 \cdot 0.418^2} = 502.77 \approx 503 \text{ per group}$$

• The total sample size would be 1006 across both groups

Example: Two-Sample Approximate Approach

The sample size needed is

$$n = \frac{(1.96 + 1.28)^2}{2(\sin^{-1}\sqrt{0.45} - \sin^{-1}\sqrt{0.35})^2}$$

= 501.9 \approx 502 per group

• The total sample size would be 1004 across both groups

Example: Direct Sample Size Formula Approach in SAS

```
proc power;
logistic alpha=0.05
vardist('treatment') = binomial(0.5,1)
vardist('diseaserisk') = binomial(0.5,1)
testpredictor = "treatment"
covariates = "diseaserisk"
intercept = -0.619
testoddsratio = 1.519
covoddsratios = 2.0
ntotal=.
power=0.9;
run:
```

Example: Direct Sample Size Formula Approach in SAS

The POWER Procedure
Likelihood Ratio Chi-square Test for One Predictor
Fixed Scenario Elements

Method Shieh-O'Brien approximation Alpha 0.05 -0.619Intercept Test Predictor treatment Odds Ratio for Test Predictor 1.519 Covariates diseaserisk Covariate Odds Ratios 2 Nominal Power 0.9 Total Number of Bins

Computed N Total
Actual N
Power Total
0.900 997

Survival Analysis: Adjusting for Covariates

- For a stratified analysis of survival times, we want to compare survival curves between arms within each stratum
- Let $S_{ki}(t)$ be the survival curve for patients in stratum k receiving treatment i
- Null hypothesis is that $H_0: S_{k1}(t) = S_{k2}(t)$ for all t, k
- Log-rank test can be adapted for testing this

Survival Analysis: Adjusting for Covariates

- Stratified log-rank test: Data are divided into *k* strata
- Similar as with unstratified log-rank test, we construct 2 by 2 tables for each stratum k, failure time t_j:

Group	# failed	# survived	# at risk
1	d_{k1j}	$n_{k1j}-d_{k1j}$	n _{k1j}
2	d_{k2j}	$n_{k2j}-d_{k2j}$	n _{k2j}
Total	d_{kj}	$n_{kj}-d_{kj}$	n _{kj}

• Assumption: Failure and censoring times are independent

Survival Analysis: Adjusting for Covariates

 Under H₀ the expected number of failures in group 1 should be

$$e_{k1j} = n_{k1j} \cdot (d_{kj}/n_{kj})$$

• Stratified log-rank statistic is $U = \sum_{j,k} (d_{k1j} - e_{k1j})$ with variance $V = \sum_{j,k} V_{jk}$, where

$$V_{jk} = \frac{n_{k1j}n_{k2j}d_{kj}(n_{kj} - d_{kj})}{n_{kj}^2(n_{kj} - 1)}$$

• Under H_0 and for large samples,

$$C = \frac{U^2}{V} \sim \chi_1^2$$

- PUVA vs. TL-01: Outcome = # of visits until clearance of psoriasis
- Covariate: small vs. large plaque size
- Stratum 1: Large plaque size: $U_1 = 7.0673$, $V_1 = 5.3913$
- Stratum 2: Small plaque size: $U_2 = 10.9200$, $V_2 = 8.7736$
- Stratified log-rank test:

$$C = \frac{U^2}{V} = \frac{(U_1 + U_2)^2}{V_1 + V_2} = \frac{(7.0673 + 10.9200)^2}{5.3913 + 8.7736} = 22.8412$$

with p < 0.001

Example: Stratified Log-rank Test in SAS

```
data a;
  set d.puvavstl01trial;
run;
proc lifetest data=a notable;
  time visits*clearance(0);
  strata plaque_size/group=group;
run;
```

Example: Stratified Log-rank Test in SAS

Stratified Test of Equality over Group Pr > Test Chi-Square DF Chi-Square $Log-Rank \qquad 22.8418 \qquad 1 \qquad <.0001$

Regression Model-based Covariate Adjustment for Survival Analysis

- Regression models can be used for covariate-adjusted comparison of survival outcomes
- Because of the direct relationship of survival and hazard functions, the hazard function is usually modeled
- Let $\lambda(t|Z,\mathbf{X})$ be the hazard function for a patient with Z=I(patient assigned to experimental treatment) and covariates \mathbf{X}

Cox Proportional Hazards Model

Cox Proportional Hazards Regression Model:

$$\lambda(t|Z, \mathbf{X}) = \lambda_0(t) \exp(\beta Z + \gamma' \mathbf{X})$$

where $\lambda_0(t)$ is a baseline hazard function

- Consider two patients with identical covariates X, where patient 1 is assigned to experimental and patient 2 to control
- The Adjusted Hazard Ratio for these patients is

$$HR_{trt} = rac{\lambda(t|Z=1,\mathbf{X})}{\lambda(t|Z=0,\mathbf{X})} = rac{\lambda_0(t)\exp(eta+\gamma'\mathbf{X})}{\lambda_0(t)\exp(\gamma'\mathbf{X})} = \exp(eta)$$

Cox Proportional Hazards Model

- Assumptions:
 - Effects of treatment and covariates are constant over time
 - Effects of treatment and covariates on hazard are multiplicative
 - Censoring and failure times are independent given treatment and covariates
- Estimation performed using partial likelihood (more in Applied Survival Analysis course)

Stratified Cox Model

- If effects on some variables are not proportional, we can use separate baseline hazard rates for their strata to adjust
- Let hazard function be $\lambda(t|Z, \text{Stratum } k)$ for patient in stratum k and with indicator Z = I(patient assigned to experimental treatment)
- Stratified Cox Proportional Hazards Model:

$$\lambda(t|Z, \text{Stratum } k) = \lambda_{k0}(t) \exp(\beta Z)$$

where the $\lambda_{k0}(t)$ are stratum-specific baseline hazard functions

Stratified Cox Model

- Consider two patients in the same stratum, where patient 1 is assigned to experimental and patient 2 assigned to control
- The Adjusted Hazard Ratio for these patients is

$$HR_{trt} = \frac{\lambda(t|Z=1, \mathsf{Stratum} = \mathsf{k})}{\lambda(t|Z=0, \mathsf{Stratum} = \mathsf{k})} = \frac{\lambda_{k0}(t) \exp(\beta)}{\lambda_{k0}(t) \exp(0)} = \exp(\beta)$$

- Assumptions:
 - Effect of treatment is constant over time
 - Effect of treatment on hazard is multiplicative
 - Censoring and failure times are independent given treatment and stratum

- Cox regression: HR of clearance for PUVA vs. TL-01 is 3.08 with 95% CI [1.89, 5.00], p < 0.001
- Stratified Cox model: HR of clearance for PUVA vs. TL-01 is 3.02 with 95% CI [1.86, 4.90], p < 0.001

Example: Cox Model and Stratified Cox Model in SAS

```
/* Ordinary Cox model */
proc phreg data=a;
  class plaque_size group;
  model visits*clearance(0)=plaque_size group/rl;
run;
/* Stratified Cox model */
proc phreg data=a;
  class plaque_size group;
  model visits*clearance(0)= group/rl;
  strata plaque_size;
run:
```

Example: Cox Model and Stratified Cox Model in SAS

/* Cox Mod	lel Resul	Lts */					
		Analysis	of Maxim	num Like	elihood Es	timates	
		•	Paramete		Standard		
Parameter		DF	Estimat	e	Error	Chi-Square	Pr > ChiSo
PLAQUE_SIZ	E Large	1	-0.9453	32	0.25237	14.0310	0.000
GROUP	PUVĀ	1	1.1242	29	0.24780	20.5849	<.000
		Haza	rd 9	95% Haza	rd Ratio		
Parameter		Rat:	io C	Confider	ce Limits	Label	
PLAQUE_SIZ	E Large	0.38	39	0.237	0.63	7 PLAQUE_S	IZE Large
GROUP	PUVA	3.0	78	1.894	5.00	3 GROUP PU	VA
/* Stratif	ied Cox	Model Resi	ılts */				
		Analysis of	of Maximu	m Likel	lihood Est	imates	
		Par	rameter	Sta	ndard		
Parameter		DF Es	stimate		Error	Chi-Square	Pr > ChiSq
GROUP	PUVA	1 :	1.10451	0.	24783	19.8616	<.0001
		Hazard	95%	Hazard	Ratio		
Parameter		Ratio	Conf	idence	Limits	Label	
GROUP	PUVA	3.018	1.8	357	4.905	GROUP PUVA	

Sample Size / Power Calculation for Cox Regression

- Suppose patients are randomized to treatments with $n_1 = rn_2$
- Investigators want to detect the log hazard ratio for treatment of $\beta=\delta$ while adjusting for covariates ${\bf X}$
- It can be shown that the required number of total events is

$$d = \frac{(r+1)^2}{r} \frac{(z_{\alpha/2} + z_{\beta})^2}{\delta^2}$$

- Nearly identical formula to that for the log-rank test, only difference being that δ represents the adjusted log HR here
- To determine required number of patients, specify $\varphi = P(\text{patient has event on study})$ and set $n = d/\varphi$

- A clinical trial aims to compare survival rates under standard and new treatment regimens while adjusting for baseline performance status in a Cox model
- Want 90% power to detect an improvement in 5 year survival from 35% under standard to 55% under new treatment
- Equivalently, want to detect $\delta = \log HR_{trt} = \log(\log(0.55)/\log(0.35)) = -0.563$
- All patients will be followed for 5 years

Total number of deaths required is

$$d = \frac{4(1.96 + 1.28)^2}{(-0.563)^2} = 132.475 \approx 133$$

 Under equal allocation, the probability of a patient dying on study can be estimated as

$$\varphi=0.5\cdot[1-S_1(5)]+0.5\cdot[1-S_2(5)]=0.55$$
, requiring $n=d/\varphi=242$ patients to be enrolled in total

Example: Sample Size Calculation for Cox Model in SAS

```
proc power;
  coxreg alpha=0.05
    hazardratio = 0.569
    /* SD of treatment indicator */
    stddev = 0.5
    eventprob= 0.55
    power = 0.9
    ntotal = .;
run;
```

The POWER Procedure Cox Score Test in Proportional Hazards Regression Fixed Scenario Elements

Method	Hsieh-Lavori	normal	approximation
Alpha			0.05
Probability of E	vent		0.55
Test Hazard Rati	.0		0.569
Test Standard De	viation		0.5
Nominal Power	0.9		
Number of Sides	2		

Computed N Total
Actual N
Power Total
0.901 241