Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 865441, v.1

Punti: / 30	Tempo:
-------------	--------

1 (3 pt)

Dato il seguente testo:

- 1. Esplicitare l'argomento, se esiste.
- 2. Formalizzare l'argomento, se formalizzabile secondo il linguaggio della logica enunciativa classica.
- 3. Dimostrare perché l'argomento è valido secondo il linguaggio della logica enunciativa classica, se lo è.
- 4. Determinare se l'argomento è fondato.

Il tema di Ettore e quello di Alessandro sono pressoché identici. Evidentemente, uno dei due ha copiato.

2 (3 pt)

Per ogni coppia ordinata (x_n, x_{n+1}) : 1. formalizzare ogni enunciato 2. determinare se (x_n, x_{n+1}) siano contraddittori 3. determinare se formino un insieme coerente 4. determinare se il secondo enunciato sia conseguenza logica del primo tramite « $x_n \models x_{n+1}$ » oppure « $x_n \not\models x_{n+1}$ ».

- a_1 . Se corro, allora sudo se fa caldo.
- a_2 . Se corro e fa caldo, allora sudo.
- b_1 . Federica si allena a meno che Giovanni non vada a scalare.
- b_2 . Giovanni va a scalare.
- c_1 . x se y e vice versa.
- c_2 . x è condizione necessaria e sufficiente per y.

3 (9 pt)

a.
$$(p \lor q) \vdash \sim p \land \sim q$$

b.
$$(p \lor r) \supset q \vdash (p \supset q) \land (r \supset q)$$

c.
$$p \supset q, p \supset \sim q \vdash \sim p$$

4 (15 pt)

Teoria (1). Fornire esempi di: (a) funzione iniettiva non suriettiva; (b) funzione suriettiva non iniettiva, (c) funzione né iniettiva né suriettiva.

Teoria (2). L'insieme delle formule valide del linguaggio della logica enunciativa è decidibile? Motivare la propria risposta.

Teoria (3). Parliamo di numeri naturali $\{0,1,2,\ldots\}$. Sia S l'estensione della funzione successore sui numeri naturali, ovvero l'insieme di tutte le coppie ordinate (a,b) tali che b=a+1. Sia M l'estensione della relazione minore o uguale sui numeri naturali, ovvero l'insieme di tutte le coppie ordinate (a,b) tali che $a \leq b$. È vero che $S \subseteq M$? Motivare la risposta.

Teoria (4). Dimostrare che se $\Gamma \cup \{\alpha\} \vdash \beta$ e $\Gamma \cup \{\alpha\} \vdash \sim \beta$, allora $\Gamma \vdash \sim \alpha$.

Teoria (5). Dimostrare che per ogni coppia di insiemi A, B si ha $A \cup (B \setminus A) = A \cup B$