BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

7 de janeiro de 2024

Índice

1	Esti	truturas de Dados	6
	1.1	Disjoint Set Union	6
		1.1.1 DSU Completo	6
		1.1.2 DSU Rollback	
		1.1.3 DSU Simples	7
		1.1.4 DSU Bipartido	7
	1.2	Operation Queue	8
	1.3	Interval Tree	8
	1.4	Segment Tree	8
		1.4.1 Segment Tree Lazy	6
		1.4.2 Segment Tree	8
		1.4.3 Segment Tree 2D	10
		1.4.4 Segment Tree Beats Max And Sum Update	10
		1.4.5 Segment Tree Beats Max Update	11

		1.4.6 Segment Tree Esparsa	11
		1.4.7 Segment Tree Persisente	13
		1.4.8 Segment Tree Kadani	14
	1.5	Operation Stack	14
	1.6	Fenwick Tree	15
	1.7	LiChao Tree	15
	1.8	Kd Fenwick Tree	16
	1.9	Ordered Set	16
	1.10	MergeSort Tree	17
	1.11	Sparse Table	18
		1.11.1 Disjoint Sparse Table	18
		1.11.2 Sparse Table	18
2	Gra	fos	19
	2.1	Matching	19
		2.1.1 Hungaro	19
	2.2	LCA	19
	2.3	HLD	20
	2.4	Kruskal	20
	2.5	Bridge	2
	2.6	Stoer-Wagner Min Cut	2
	2.7	Shortest Paths	21

		2.7.2 SPFA	22
	2.8	Binary Lifting	22
	2.9	Fluxo	23
	2.10	Inverse Graph	23
	2.11	2 SAT	24
	2.12	Graph Center	24
3	Stri	ing	25
	3.1	Aho Corasick	25
	3.2	Patricia Tree	25
	3.3	Prefix Function	26
	3.4	Hashing	27
	3.5	Trie	27
	3.6	Manacher	27
	3.7	Lyndon	28
	3.8	Suffix Array	28
4	Par	${f radigmas}$	29
	4.1	Mo	29
	4.2	Exponenciação de Matriz	30
	4.3	Busca Binaria Paralela	31
	4.4	Divide and Conquer	32
	4.5	Busca Ternaria	32

3

4
-

	4.6	DP de Permutacao	33
	4.7	Convex Hull Trick	33
	4.8	All Submasks	33
5	Mat	temática	35
	5.1	Sum of floor(n div i)	35
	5.2	Primos	35
	5.3	NTT	36
	5.4	Eliminação Gaussiana	37
	5.5	GCD	37
	5.6	Fatoração	38
	5.7	Teorema do Resto Chinês	39
	5.8	FFT	39
	5.9	Exponenciação Modular Rápida	39
	5.10	Totiente de Euler	40
	5.11	Inverso Modular	40
6	The	eoretical	42
	6.1	Some Prime Numbers	42
		6.1.1 Left-Truncatable Prime	42
		6.1.2 Mersenne Primes	42
	6.2	C++ constants	43
	6.2	Lincon Operators	4.4

6.3.1	Rotate counter-clockwise by θ°	44
6.3.2	Reflect about the line $y=mx$	44
6.3.3	Inverse of a 2x2 matrix A	44
6.3.4	Horizontal shear by K	44
6.3.5	Vertical shear by K	44
6.3.6	Change of basis	45
6.3.7	Properties of matrix operations	45

Capítulo 1

Estruturas de Dados

1.1 Disjoint Set Union

1.1.1 DSU Completo

DSU com capacidade de adicionar e remover vértices.

EXTREMAMENTE PODEROSO!

Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função solve()

• Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0,6ms para $3*10^5$ queries e nodos com printf e scanf.

Possivelmente aguenta 10^6 em 3s

1.1.2 DSU Rollback

Desfaz as últimas K uniões

• Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar rollback() para ir até o último checkpoint.

O rollback não altera a complexidade, uma vez que $K \le q$ ueries.

Só funciona sem compressão de caminho

 \bullet Complexidade de tempo: O(log(N))

1.1.3 DSU Simples

Verifica se dois itens pertencem a um mesmo grupo.

• Complexidade de tempo: O(1) amortizado.

Une grupos.

• Complexidade de tempo: O(1) amortizado.

1.1.4 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la.

Para todas as operações:

• Complexidade de tempo: O(1) amortizado.

1.2 Operation Queue

Fila que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

1.3 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L, R]. L e R inclusos

Contém funções insert(L, R, ID), erase(L, R, ID), overlaps(L, R) e find(L, R, ID).

 $\acute{\rm E}$ necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

 \bullet Complexidade de tempo: O(N * log(N)).

Podem ser usadas as operações em Set:

- insert()
- $\bullet \ \ \mathrm{erase}()$
- $\bullet \ \operatorname{upper_bound}()$
- etc

1.4 Segment Tree

1.4.1 Segment Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 * 4 * N = O(N)

1.4.2 Segment Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- \bullet Complexidade de tempo (Update em ponto): $O(\log(N))$
- Complexidade de espaço: 4 *N = O(N)

1.4.3 Segment Tree 2D

Segment Tree em 2 dimensões.

- Complexidade de tempo (Pré-processamento): O(N*M)
- Complexidade de tempo (Consulta em intervalo): O(log(N)*log(M))
- Complexidade de tempo (Update em ponto): O(log(N)*log(M))
- Complexidade de espaço: 4 * N * 4 * M = O(N*M)

1.4.4 Segment Tree Beats Max And Sum Update

Seg Tree que suporta update de maximo, update de soma e query de soma. Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 * 4 * N = O(N)

1.4.5 Segment Tree Beats Max Update

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

1.4.6 Segment Tree Esparsa

Consultas e atualizações em intervalos.

Seg Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N)
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- \bullet Complexidade de tempo (Update em ponto): $O(\log(N))$
- Complexidade de espaço: 4 *N = O(N)

Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

Sparse Seg Tree

Seg Tree Esparsa:

- Complexidade de tempo (Pré-processamento): O(1)
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- Complexidade de tempo (Update em ponto): O(log(N))

Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): O(N *log(N))
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- \bullet Complexidade de espaço: 2 *4 *N = O(N)

1.4.7 Segment Tree Persisente

Seg Tree Esparsa com histórico de Updates:

- \bullet Complexidade de tempo (Pré-processamento): O(N *log(N))
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$

- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

1.4.8 Segment Tree Kadani

Implementação de uma Seg Tree que suporta update de soma e query de soma máxima em intervalo.

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 * N = O(N)

1.5 Operation Stack

Pilha que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

CAPÍTULO 1. ESTRUTURAS DE DADOS

15

1.6 Fenwick Tree

Consultas e atualizações de soma em intervalo.

O vetor precisa obrigatoriamente estar indexado em 1.

- * Complexidade de tempo (Pre-processamento): O(N * log(N))
- * Complexidade de tempo (Consulta em intervalo): O(log(N))
- * Complexidade de tempo (Update em ponto): O(log(N))
- * Complexidade de espaço: 2 * N = O(N)

1.7 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x),

ou seja f(x) e g(x) se intersectam apenas uma vez.

- * Complexidade de consulta : O(log(N))
- * Complexidade de update: O(log(N))

LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

- * Complexidade de consulta : O(log(tamanho do intervalo))
- * Complexidade de update: O(log(tamanho do intervalo))

1.8 Kd Fenwick Tree

KD Fenwick Tree

Fenwick Tree em K dimensoes.

- * Complexidade de update: $O(log^k(N))$.
- * Complexidade de query: $O(log^k(N))$.

1.9 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- find by order(x): retorna o item na posição x.
- order_of_key(k): retorna o número de elementos menores que k. (o índice de k)

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>

using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;

ordered_set X;
X. insert (1);
X. insert (2);
X. insert (4);
X. insert (8);
```

1.10 MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

- Complexidade de construção : O(N * log(N))
- Complexidade de consulta : $O(log^2(N))$

MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (COM UPDATE)

1 segundo para vetores de tamanho $3*10^5$

- \bullet Complexidade de construção : $O(N*log^2(N))$
- \bullet Complexidade de consulta : $O(\log^2(N))$
- Complexidade de update : $O(log^2(N))$

CAPÍTULO 1. ESTRUTURAS DE DADOS

18

1.11 Sparse Table

1.11.1 Disjoint Sparse Table

Resolve query de range para qualquer operação associativa em O(1).

Pré-processamento em $O(n \log n)$.

1.11.2 Sparse Table

Read in [English](README.en.md)

Responde consultas de maneira eficiente em um conjunto de dados estáticos.

Realiza um pré-processamento para diminuir o tempo de cada consulta.

- \bullet Complexidade de tempo (Pré-processamento): O(N * $\log(N))$
- \bullet Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * log(N))
- Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1)
- Complexidade de espaço: O(N * log(N))

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

Capítulo 2

Grafos

2.1 Matching

2.1.1 Hungaro

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

Complexidade de tempo: $O(n^2 * m)$

2.2 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

Complexidade de tempo:

- O(Nlog(N)) Preprocessing
- O(1) Query LCA

Complexidade de espaço: O(Nlog(N))

2.3 HLD

Técnica usada para otimizar a execução de operações em árvores.

- \bullet Pré-Processamento: O(N)
- \bullet Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura)
- Point Query/Update: O(Complexidade de query da estrutura)
- LCA: O(Log(N))
- Subtree Query: O(Complexidade de query da estrutura)
- $\bullet\,$ Complexidade de espaço: $\mathcal{O}(\mathcal{N})$

2.4 Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

 $Utiliza\ [DSU] (.../../Estruturas\%20 de\%20 Dados/DSU/dsu.cpp) - (disjoint\ set\ union) - para\ construir\ MST - (minimum\ spanning\ tree)$

• Complexidade de tempo (Construção): O(M log N)

2.5 Bridge

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

2.6 Stoer-Wagner Min Cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $O(V^3)$

2.7 Shortest Paths

2.7.1 Dijkstra

Computa o menor caminho entre nós de um grafo.

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: O((E + V) * log(E))

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: O((E + V) * log(E))

Computa o menor caminho de todos os nós para todos os nós

Complexidade de tempo: O(V * ((E + V) * log(E)))

2.7.2 SPFA

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: O(|V| * |E|)

2.8 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- \bullet Pré-processamento: O(N * $\log(N))$
- \bullet Consulta do k-ésimo ancestral de u
: $O(\log(N))$
- LCA: O(log(N))

Complexidade de espaço: O(Nlog(N))

2.9 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: O(V² * E), mas em grafo bipartido a complexidade é O(sqrt(V) * E)

Útil para grafos com poucas arestas

Complexidade de tempo: $O(V * E^2)$

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $O(V^2 * E^2)$

2.10 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

 \bullet Complexidade de tempo: O(N log N + N log M)

2.11 2 SAT

Resolve problema do 2-SAT.

 \bullet Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

2.12 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: O(N)

Capítulo 3

String

3.1 Aho Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

 $Complexidade de tempo: \ O(|S|+|T|), \ onde \ |S| \ \acute{e} \ o \ somat\'orio \ do \ tamanho \ das \ strings \ e \ |T| \ \acute{e} \ o \ tamanho \ do \ texto$

3.2 Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo.

Implementação PB-DS, extremamente curta e confusa:

- Criar: patricia_tree pat;
- Inserir: pat.insert("sei la");

CAPÍTULO 3. STRING

- Remover: pat.erase("sei la");
- Verificar existência: pat.find("sei la") != pat.end();
- $\bullet \ \ Pegar \ palavras \ que \ começam \ com \ um \ prefixo: \ {\bf auto} \ {\bf match} = {\bf pat.prefix_range}("sei"); \\$
- Percorrer *match*: for(auto it = match.first; it != match.second; ++it);
- Pegar menor elemento lexicográfico *maior ou igual* ao prefixo: *pat.lower_bound("sei");
- Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper_bound("sei");

TODAS AS OPERAÇÕES EM O(|S|)

NÃO ACEITA ELEMENTOS REPETIDOS

3.3 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

KMP

String matching em O(n + m).

Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

Prefix Count

 $Dada\ uma\ string\ s,\ calcula\ quantas\ vezes\ cada\ prefixo\ de\ s\ aparece\ em\ s\ com\ complexidade\ de\ tempo\ de\ O(n).$

CAPÍTULO 3. STRING

3.4 Hashing

Hashing para testar igualdade de duas strings.

A função *range(i, j)* retorna o hash da substring nesse range.

Pode ser necessário usar pares de hash para evitar colisões.

- * Complexidade de tempo (Construção): O(N)
- * Complexidade de tempo (Consulta de range): $\mathcal{O}(1)$

3.5 Trie

Estrutura que guarda informações indexadas por palavra.

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

- * Complexidade de tempo (Update): O(|S|)
- * Complexidade de tempo (Consulta de palavra): $\mathcal{O}(|\mathcal{S}|)$

3.6 Manacher

Encontra todos os palindromos de uma string.

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s[i...j] seja um palindromo.

 * Complexidade de tempo: $\mathcal{O}(\mathcal{N})$

CAPÍTULO 3. STRING

3.7 Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

 * Complexidade de tempo: O(N)

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

3.8 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string. Tambem Constroi a tabela LCP(Longest common prefix).

- * Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|))
- * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

Capítulo 4

Paradigmas

4.1 Mo

Resolve Queries Complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

• Complexidade de tempo (Query offline): O(N * sqrt(N))

Mo com Update

Resolve Queries Complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo: $O(Q * N^{(2/3)})$

4.2 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

• -

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

• -

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{array}{c} \text{mant\'em } dp[i] \\ \text{mant\'em } i \\ \text{mant\'em } i^2 \\ \end{pmatrix}$$

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i=1}^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

4.3 Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

 $\bullet \ \ Complexidade \ de \ tempo: \ O((N+Q)log(N) \ * \ O(F)), \ onde \ N \ \'e \ o \ tamanho \ do \ espaço \ de \ busca, \ Q \ \'e \ o \ n\'umero \ de \ consultas \ e \ O(F), \ o \ custo \ de \ avaliação \ da \ função.$

4.4 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

* Complexidade de tempo: O(n * k * log(n) * O(query))

Divide and Conquer com Query on demand

<!- *Read in [English](README.en.md)* ->

Usado para evitar queries pesadas ou o custo de pré-processamento.

É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

4.5 Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

• Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

Versão para espaços discretos.

 \bullet Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

4.6 DP de Permutacao

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

4.7 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x. Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas Complexidade de tempo:

• Inserir reta: O(1) amortizado

• Consultar x: O(log(N))

• Consultar x quando x tem crescimento monotônico: O(1)

4.8 All Submasks

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: ${\cal O}(3^N)$

Capítulo 5

Matemática

5.1 Sum of floor(n div i)

Computa $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

• Complexidade de tempo: O(sqrt(n)).

5.2 Primos

 ${\bf Algortimos\ relacionados\ a\ n\'umeros\ primos.}$

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

 \bullet Complexidade de tempo: O(N * $\log(\log(N)))$

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números menores do que 2^64 .

• Complexidade de tempo: O(log(N))

Teste Ingênuo

Computa a primalidade de um número N.

• Complexidade de tempo: $O(N^{(1/2)})$

5.3 NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Computa multiplicação de polinômino; Somente para inteiros.

• Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 .

Para constantes entre 10⁹ e 10¹⁸ é necessário codar também [big_convolution](big_convolution.cpp).

5.4 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

• Complexidade de tempo: $O(n^3)$.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss_mod2](gauss_mod2.cpp) é muito mais rápido.

5.5 GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

• Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ __gcd(a,b).

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * y = gcd(a, b).

• Complexidade de tempo: O(log(n))

5.6 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

• Complexidade de tempo: $O(\sqrt{n})$

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento O(MAX)
- Complexidade de tempo: Fatoraração O(quantidade de fatores de N)
- \bullet Complexidade de espaço: O(MAX)

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

• Complexidade de tempo: $O(N^{1/4} \cdot log(N))$

Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$
- Complexidade de espaço: $O(N^{1/2})$

5.7 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

5.8 FFT

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios.

- Complexidade de tempo (caso médio): O(N * log(N))
- Complexidade de tempo (considerando alto overhead): $O(n*log^2(n)*log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3*10^5$ e constantes até 10^6 .

5.9 Exponenciação Modular Rápida

Computa $(base^{exp})\%mod$.

- Complexidade de tempo: O(log(exp)).
- Complexidade de espaço: O(1)

5.10 Totiente de Euler

Código para computar o totiente de Euler.

Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

• Complexidade de tempo: $O(N^{(1/2)})$

Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

• Complexidade de tempo: O(N * log(log(N)))

5.11 Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

Modular Inverse

Calculates the modular inverse of a.

Uses the [exp mod](/Matemática/Exponenciação%20Modular%20Rápida/exp mod.cpp) algorithm, thus expects MOD to be prime.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse by Extended GDC

Calculates the modular inverse of a.

Uses the [extended_gcd](/Matemática/GCD/extended_gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

Capítulo 6

Theoretical

6.1 Some Prime Numbers

6.1.1 Left-Truncatable Prime

Prime number such that any suffix of it is a prime number 357,686,312,646,216,567,629,137

6.1.2 Mersenne Primes

Prime numbers of the form $2^m - 1$

Exponent (m)	Decimal representation
2	3
3	7
5	31
7	127
13	8,191
17	131,071
19	524,287
31	2,147,483,647
61	$2,3*10^{18}$
89	$6,1*10^{26}$
107	$1,6*10^{32}$
127	$1,7*10^{38}$

6.2 C++ constants

Constant	C++ Name	Value
π	M_PI	3.141592
$\pi/2$	M_PI_2	1.570796
$\pi/4$	M_PI_4	0.785398
$1/\pi$	M_1_PI	0.318309
$2/\pi$	M_2_PI	0.636619
$2/\sqrt{\pi}$	M_2_SQRTPI	1.128379
$\sqrt{2}$	M_SQRT2	1.414213
$1/\sqrt{2}$	M_SQRT1_2	0.707106
e	M_E	2.718281
$\log_2 e$	M_LOG2E	1.442695
$\log_{10} e$	M_LOG10E	0.434294
$\ln 2$	M_LN2	0.693147
$\ln 10$	M_LN10	2.302585

6.3 Linear Operators

6.3.1 Rotate counter-clockwise by θ°

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

6.3.2 Reflect about the line y = mx

$$\frac{1}{m^2+1} \begin{bmatrix} 1-m^2 & 2m\\ 2m & m^2-1 \end{bmatrix}$$

6.3.3 Inverse of a 2x2 matrix A

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

6.3.4 Horizontal shear by K

$$\begin{bmatrix} 1 & K \\ 0 & 1 \end{bmatrix}$$

6.3.5 Vertical shear by K

$$\begin{bmatrix} 1 & 0 \\ K & 1 \end{bmatrix}$$

6.3.6 Change of basis

 \vec{a}_{β} are the coordinates of vector \vec{a} in basis β .

 \vec{a} are the coordinates of vector \vec{a} in the canonical basis.

 $\vec{b1}$ and $\vec{b2}$ are the basis vectors for β .

C is a matrix that changes from basis β to the canonical basis.

$$C\vec{a}_{\beta} = \vec{a}$$

$$C^{-1}\vec{a} = \vec{a}_{\beta}$$

$$C = \begin{bmatrix} b1_x & b2_x \\ b1_y & b2_y \end{bmatrix}$$

6.3.7 Properties of matrix operations

$$(AB)^{-1} = A^{-1}B^{-1}$$
$$(AB)^{T} = B^{T}A^{T}$$
$$(A^{-1})^{T} = (A^{T})^{-1}$$
$$(A+B)^{T} = A^{T} + B^{T}$$
$$det(A) = det(A^{T})$$
$$det(AB) = det(A)det(B)$$

Let A be an NxN matrix:

$$det(kA) = K^N det(A)$$