FFT Supplementary Introduction

YAO ZHAO

Outline

How FFT speed up DFT

Applications of FFT

How FFT speed up DFT

The DFT is defined by the formula:

$$X_k = \sum_{n=0}^{N-1} x_n * e^{-\frac{2\pi i}{N}kn}$$
 where $e^{\frac{2\pi i}{N}}$ is a primitive N^{th} root of 1

$$= \sum_{n=0}^{N-1} x_n * \left(\cos\left(\frac{2\pi kn}{N}\right) - i * \sin\left(\frac{2\pi kn}{N}\right)\right)$$

where the second expression follows from the first one by Euler's formula.

Roots of Unity

An nth root of unity is a complex number x such that $x^n = 1$

The n^{th} roots of unity are: ω^0 , ω^1 , ω^2 , ω^{N-1} where $\omega = e^{-\frac{2\pi i}{N}}$

$$\{\omega^0, \ \omega^1, \ \omega^2, \ \ldots \omega^{N-1}\} = \{e^{-\frac{2\pi i}{N}*0}, \ e^{-\frac{2\pi i}{N}*1}, \cdots, \ e^{-\frac{2\pi i}{N}*(N-1)}\}$$

$$\omega^{\frac{N}{2}} = e^{-\frac{2\pi i}{N} * \frac{N}{2}} = e^{-\pi i} = -1$$

$$(\omega^{\frac{N}{2}+k})^2 = (\omega^k)^2$$

 $\omega^4 = v^2 = -1$ ω^5 $\omega^6 = v^3 = -i$ $\omega^0 = v^0 = 1$

 $\omega^2 = v^1 = i$

Please remember this 2 formulas

DFT Calculation Example

$$X_0 = x_0^* e^{-\frac{2\pi i}{4}*0*0} + x_1 * e^{-\frac{2\pi i}{4}*0*1} + x_2 * e^{-\frac{2\pi i}{4}*0*2} + x_3 * e^{-\frac{2\pi i}{4}*0*3}$$

$$X_1 = x_0^* e^{-\frac{2\pi i}{4} * 1 * 0} + x_1^* e^{-\frac{2\pi i}{4} * 1 * 1} + x_2^* e^{-\frac{2\pi i}{4} * 1 * 2} + x_3^* e^{-\frac{2\pi i}{4} * 1 * 3}$$

$$X_2 = x_0^* e^{-\frac{2\pi i}{4} \cdot 2 \cdot 0} + x_1^* e^{-\frac{2\pi i}{4} \cdot 2 \cdot 1} + x_2^* e^{-\frac{2\pi i}{4} \cdot 2 \cdot 2} + x_3^* e^{-\frac{2\pi i}{4} \cdot 2 \cdot 3}$$

$$X_3 = x_0^* e^{-\frac{2\pi i}{4} * 3 * 0} + x_1^* e^{-\frac{2\pi i}{4} * 3 * 1} + x_2^* e^{-\frac{2\pi i}{4} * 3 * 2} + x_3^* e^{-\frac{2\pi i}{4} * 3 * 3}$$

 $O(n^2)$

$$X_0 = 0$$
 $X_1 = -2i$ $X_2 = 0$ $X_3 = 2i$

FFT accelerates DFT

$$x_0 = 0 \\ x_2 = 0$$

$$X_k = \sum_{n=0}^{N-1} x_n * e^{-\frac{2\pi i}{N}kn} (N = 2)$$

$$E_0 = x_0 * e^{-\frac{2\pi i}{2} * 0 * 0} + x_2 * e^{-\frac{2\pi i}{2} * 0 * 1}$$

$$E_1 = x_0 * e^{-\frac{2\pi i}{2} * 1 * 0} + x_2 * e^{-\frac{2\pi i}{2} * 1 * 1}$$

$$X_{1} = x_{0}^{*}e^{-\frac{2\pi i}{4}*1*0} + x_{1}^{*}e^{-\frac{2\pi i}{4}*1*1} + x_{2}^{*}e^{-\frac{2\pi i}{4}*1*2} + x_{3}^{*}e^{-\frac{2\pi i}{4}*1*3}(N = 4)$$

$$= x_{0}^{*}e^{-\frac{2\pi i}{4}*1*0} + x_{2}^{*}e^{-\frac{2\pi i}{4}*1*2} + (x_{1}^{*}e^{-\frac{2\pi i}{4}*1*1} + x_{3}^{*}e^{-\frac{2\pi i}{4}*1*3})$$

$$= x_{0}^{*}e^{-\frac{2\pi i}{4}*1*0} + x_{2}^{*}e^{-\frac{2\pi i}{4}*1*2} + e^{-\frac{2\pi i}{4}*1}(x_{1}^{*}e^{-\frac{2\pi i}{4}*1*0} + x_{3}^{*}e^{-\frac{2\pi i}{4}*1*2})$$

$$= x_{0}^{*}e^{-\frac{2\pi i}{2}*1*\frac{0}{2}} + x_{2}^{*}e^{-\frac{2\pi i}{2}*1*\frac{2}{2}} + e^{-\frac{2\pi i}{4}*1}(x_{1}^{*}e^{-\frac{2\pi i}{2}*1*\frac{0}{2}} + x_{3}^{*}e^{-\frac{2\pi i}{2}*1*\frac{2}{2}})$$

$$= E_{1} + e^{-\frac{2\pi i}{4}*1}D_{1}$$

In the same way: $X_0 = E_0 + e^{-\frac{2\pi i}{4}*0}D_0$

FFT accelerates DFT

$$X_{2} = x_{0}^{*} e^{-\frac{2\pi i}{4} \cdot 2 \cdot 0} + x_{1} \cdot e^{-\frac{2\pi i}{4} \cdot 2 \cdot 1} + x_{2} \cdot e^{-\frac{2\pi i}{4} \cdot 2 \cdot 2} + x_{3} \cdot e^{-\frac{2\pi i}{4} \cdot 2 \cdot 3} (N = 4)$$

$$= x_{0}^{*} e^{-\frac{2\pi i}{2} \cdot (0 + 2) \cdot \frac{0}{2}} + x_{2} \cdot e^{-\frac{2\pi i}{2} \cdot (0 + 2) \cdot \frac{2}{2}} + e^{-\frac{2\pi i}{4} \cdot 2} (x_{1} \cdot e^{-\frac{2\pi i}{2} \cdot (0 + 2) \cdot \frac{0}{2}} + x_{3} \cdot e^{-\frac{2\pi i}{2} \cdot (0 + 2) \cdot \frac{2}{2}})$$

$$= e^{-\frac{2\pi i}{2} \cdot 2} \cdot x_{0}^{*} e^{-\frac{2\pi i}{2} \cdot 0 \cdot 0} + e^{-\frac{2\pi i}{2} \cdot 2} \cdot x_{2} \cdot e^{-\frac{2\pi i}{2} \cdot 0 \cdot 2} + e^{-\frac{2\pi i}{4} \cdot 2} \cdot e^{-\frac{2\pi i}{4} \cdot 2} \cdot e^{-\frac{2\pi i}{4} \cdot 2} \cdot e^{-\frac{2\pi i}{4} \cdot 0} (e^{-\frac{2\pi i}{2} \cdot 2} \cdot x_{1} \cdot e^{-\frac{2\pi i}{2} \cdot 0 \cdot \frac{0}{2}} + e^{-\frac{2\pi i}{2} \cdot 0 \cdot \frac{2}{2}})$$

$$= x_{0}^{*} e^{-\frac{2\pi i}{2} \cdot 0 \cdot 0} + x_{2} \cdot e^{-\frac{2\pi i}{2} \cdot 0 \cdot 1} - e^{-\frac{2\pi i}{4} \cdot 0} (x_{1}^{*} e^{-\frac{2\pi i}{2} \cdot 0 \cdot 0} + x_{3}^{*} e^{-\frac{2\pi i}{2} \cdot 0 \cdot 1})$$

$$= E_{0} - e^{-\frac{2\pi i}{4} \cdot 0} D_{0}$$

In the same way:

$$X_3 = E_1 - e^{-\frac{2\pi i}{4} \cdot 1} D_1$$

Euler: $e^{\pi i} + 1 = 0$

FFT Pseudo-code

```
input: n, a_0, a_1,..., a_{n-1} (n = 2<sup>k</sup> (k = 0,1,2...) you can check n & (n - 1) == 0)
output: y_0, y_1, ..., y_{n-1}
FFT(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
           (e_0, e_1, ..., e_{\frac{n}{2}-1}) \le FFT(n/2, a_0, a_2, ..., a_{n-2})
          (d_0, d_1, ..., d_{\frac{n}{2}-1}) \le FFT(n/2, a_1, a_3, ..., a_{n-1})
          for k = 0 to n/2 - 1 {
                \omega^k = e^{-2\pi i k/n} //When you write your code, you can use:\omega^k = \cos(\frac{2\pi k}{n}) - i\sin(\frac{2\pi k}{n})
                y_k = e_k + \omega^{k*} d_ky_{k+\frac{n}{2}} = e_k - \omega^{k*} d_k
   return (y_0, y_1, ..., y_{n-1})
```

Recursive program: Stack Overflow

Observe that each time FFT takes all even index elements as a group and all odd index elements as the other group. Finally, you should find that in the bottom of the recursive, the order of the calculating which index is **the bit-reversed order** vs the original order.

That means that if you switch the elements first, FFT can be operated from the bottom to top using loop, without recursion, to improve efficiency.

Recursion Tree

How to implements FFT with loop: Bit-reversed order

Observe:

The lowest bit is 1

000

001

The highest bit is 1

000

100

2 = 1 * 2 = 1 << 1

010

Reverse: a[2]=a[1]>>1

010

3=2+1,2 is even

011

a[2] and then set the highest bit 1

110

4 = 2*2 = 2 << 1

100

Reverse: a[4]=a[2]>>1

001

Loop: from the bottom to top

Example of FFT

Swap data according to bit reversal

Applications of FFT

Signal processing

Convolution

Signal processing

Time domain to frequency domain

Suppose a sinusoidal signal is sampled, its frequency is 10Hz, the sampling frequency Fs is 40Hz, the number of sampling points is N=4, and then FFT is performed on it

As shown in the figure on the right, the values of the four points sampled are:

010-1

The physical significance of the results of the FFT

Each index of X represents a frequency: F(n)=n*Fs/N (Fs represents the sampling frequency, in this case, the 40 hz; N is the number of sampling points, which is 4 in this case.)

If $X_i = a+bi$, which modulus $A_i = \sqrt{a^2 + b^2}$. For the signal of i = 0, it is the **dc signal**, which amplitude is A_0/N , and the amplitude of other points is $2 * A_i/N$.

With the symmetry of FFT result, usually we only use the first half (N / 2) results, which are the results less than half the sampling frequency, so we only analyze X_0 and X_1 .

 $X_0 = 0$, means that the amplitude of frequency 0 is 0.

$$X_1 = -2i$$
, so F1 = 1*40Hz/4 = 10 Hz, A1 = $\sqrt{0^2 + (-2)^2}$ = 2, amplitude = 2*2/4 = 1.

According to the analysis of the DFT results, we know that the sampled signal is a sinusoidal wave with a frequency of 10hz and an amplitude of 1.

Convolution

Given an example of multiplying Polynomials:

$$A(x) = x^2 + 2x - 1$$

$$B(x) = x^2 - x + 2$$

$$C(x) = A(x)^*B(x)$$

What are the coefficients of C(x) ?

You might have used an algorithm like this before:

Multipoint evaluation of a polynomial

The multipoint evaluation problem is the task of evaluating f at n distinct points u_0, \ldots, u_{n-1} .

$$A(x) = x^2 + 2x - 1$$

$$B(x) = x^2 - x + 2$$

Polynomial interpolation

Polynomial interpolation is, in a way, the converse task of multipoint evaluation: Given a set of n tuples $(u_0, v_0), \ldots, (u_{n-1}, v_{n-1})$, where u_i , v_i belong to a field F and u_i s are distinct, find the unique polynomial f of degree less than n such that $f(u_i) = v_i$ for all $0 \le i < n$.

x	A(x)	B(x)
0	-1	2
1	2	2
2	7	4
3	14	8
4	23	14

$$C(x) = A(x)^*B(x)$$

\boldsymbol{x}	A(x)	B(x)	C(x)
0	-1	2	-1*2=2
1	2	2	2*2=4
2	7	4	7*4=28
3	14	8	14*8=112
4	23	14	23*14=322

(0,-2),(1,4),(2,28),(3,112),(4,322) are points on C(x)

Finding the coefficients of C(x) can be converted to the problem of finding the coefficient of the following equation:

$$-2 = c_4 0^4 + c_3 0^3 + c_2 0^2 + c_1 0 + c_0$$

$$4 = c_4 1^4 + c_3 1^3 + c_2 1^2 + c_1 1 + c_0$$

$$28 = c_4 2^4 + c_3 2^3 + c_2 2^2 + c_1 2 + c_0$$

$$112 = c_4 3^4 + c_3 3^3 + c_2 3^2 + c_1 3 + c_0$$

$$322 = c_4 4^4 + c_3 4^3 + c_2 4^2 + c_1 4 + c_0$$

$$(0,-2),(1,4),(2,28),(3,112),(4,322) \text{ are points on } C(x)$$

$$(0,-2),(1,4),(2,28),(3,112),(4,322) \text{ are points on } C(x)$$

Brute-force Algorithm: Gaussian elimination ($O(n^3)$).

Review the DFT formula:

$$x_0 = 0 \\ x_1 = 1 \\ x_2 = 0 \\ x_3 = -1$$

$$X_k = \sum_{n=0}^{N-1} x_n * e^{-\frac{2\pi i}{N}kn}$$

$$X_1 = x_0 * e^{-\frac{2\pi i}{4} * 1 * 0} + x_1 *$$

$$X_2 = x_0 * e^{-\frac{2\pi i}{4} * 2 * 0} + x_1 *$$

$$X_{0} = x_{0}^{*}e^{-\frac{2\pi i}{4}*0*0} + x_{1}^{*}e^{-\frac{2\pi i}{4}*0*1} + x_{2}^{*}e^{-\frac{2\pi i}{4}*0*2} + x_{3}^{*}e^{-\frac{2\pi i}{4}*0*3}$$

$$X_{1} = x_{0}^{*}e^{-\frac{2\pi i}{4}*1*0} + x_{1}^{*}e^{-\frac{2\pi i}{4}*1*1} + x_{2}^{*}e^{-\frac{2\pi i}{4}*1*2} + x_{3}^{*}e^{-\frac{2\pi i}{4}*1*3}$$

$$X_{2} = x_{0}^{*}e^{-\frac{2\pi i}{4}*2*0} + x_{1}^{*}e^{-\frac{2\pi i}{4}*2*1} + x_{2}^{*}e^{-\frac{2\pi i}{4}*2*2} + x_{3}^{*}e^{-\frac{2\pi i}{4}*2*3}$$

$$X_{3} = x_{0}^{*}e^{-\frac{2\pi i}{4}*3*0} + x_{1}^{*}e^{-\frac{2\pi i}{4}*3*1} + x_{2}^{*}e^{-\frac{2\pi i}{4}*3*2} + x_{3}^{*}e^{-\frac{2\pi i}{4}*3*3}$$

Think of x_0 , x_1 , x_{n-1} as coefficients, $e^{-\frac{2\pi i}{n}*0}$, $e^{-\frac{2\pi i}{n}*1}$, $e^{-\frac{2\pi i}{n}*(n-1)}$ are the n variables. The formula for the DFT is actually a polynomial with a special values of x.

the coefficients of A(x)

$$A(x) = x^2 + 2x - 1$$

$$B(x) = x^2 - x + 2$$

$$C(x) = A(x)^*B(x)$$

The degree of C(x)is 4. The elements number of FFT

should be $n = 2^k$. So we need 8 points.

 $e^{-\frac{2\pi i}{8}*4}$

 $e^{-\frac{2\pi i}{8}*5}$

 $e^{-\frac{2\pi i}{8}*6}$

 $e^{-\frac{2\pi i}{8}*7}$

the coefficients of B(x)

Application of Convolution: Pattern matching

Given the pattern string A of length M and the text string B of length N, find all the places where A appears in B.

If B[i],B[i+1].....B[i+m-1]equal A[0], A[1].....A[m-1]

$$dis_{i}(A,B) = \sum_{j=0}^{m-1} (B[i+j] - A[j])^{2}$$

If $dis_i(A, B) = 0$, A appears B[i]

Let A' = Reverse(A)

$$dis_{i}(A,B) = \sum_{j=0}^{m-1} (B[i+j] - A'[m-1-j])^{2}$$

$$= \sum_{j=0}^{m-1} (B[i+j])^{2} + \sum_{j=0}^{m-1} (A'[m-1-j])^{2} + \sum_{j=0}^{m-1} 2 * B[i+j] * A'[m-1-j]$$

Observe i+j+m-1-j=i+m-1, so we can calculate the convolution of B and A' If $C[k] == \sum_{j=0}^{m-1} [(B[i+j])^2 + (A'[m-1-j])^2]/2$ (k=i+m-1), It means that the m characters of B starting from index i are the same as A.

Pattern Matching Example

```
B=AABCDEEAAA n=10
A=ABCDE
                 m=5
Let BSqrSum[i] = \sum_{i=0}^{m-1} (B[i+j])^2
BSqrSum[ ] = [21919, 22455, 22991, 22860, 22596, 22197]
Let ASqrSum = \sum_{i=0}^{m-1} A'[m-1-j])^2
ASgrSum = 22455
Let SqrSum[i] = \sum_{j=0}^{m-1} [(S[i+j])^2 + (T'[m-1-j])^2]/2
SqrSum[ ]=[22187, 22455, 22723, 22657, 22525, 22326]
C[] = [4485, 8905, 13329, 17756, 22185, 22455, 22721, 22643, 22502, 22299, 17550, 12870, 8515,
Compare SqrSum[i] and C[i + m - 1], find SqrSum[1] == C[1 + 5 - 1], from B[1] can match A.
```

If B[i] can match A, $\sum_{j=0}^{m-1} (B[i+j])^2 = \sum_{j=0}^{m-1} A'[m-1-j])^2$, $\sum_{j=0}^{m-1} [(B[i+j])^2 + (A'[m-1-j])^2]/2 = 2\sum_{j=0}^{m-1} A'[m-1-j])^2/2 = \sum_{j=0}^{m-1} A'[m-1-j])^2$ So we only need to calculate ASqrSum, then see which C[k] == ASqrSum, the start place i = k+1-m.

Recommend the video:

https://www.bilibili.com/video/av19141078/