Machine Learning for Natural Language Processing

Guillaume Gravier

guillaume.gravier@irisa.fr

Outline of the course

Lectures (6 x 3h)

- Lecture #1: Introduction and representation of words
 Notions: morphology, tokens, lemmas, POS, word net, word embedding
 Hands-on: manipulate basic pipelines and visualize word embeddings
- Lecture #2: Representation of documents
 Notions: vocabulary, Zipf's curse, bag of words, Bayes, RNN, BERT
 Hands-on: basic tf-idf k-nn classifier
- Lecture #3: Language models
 Notions: ngrams, LSTM, bi-LSTM, language generation
 Hands-on: train a small LM and generate text
- Lecture #4: Transformers and large language models Notions: encoder/decoder, transformers, fine-tuning Hands-on: visualize embeddings, fine-tune a LLM

Representation and classification of documents

Representing documents: what for?

Documents can be (almost) everything ... that contains text

- book, chapter, paragraph, etc.
- newspaper/web article
- tweet, blog or facebook post

Most document representations seek to representing a document as a fixed-dimension *feature vector* further used for, e.g.,

- topic classification
- polarity and sentiment detection
- comparison of documents (information retrieval)

- often based on the bag hypothesis
 - = order of words does not matter
- might implement selection of relevant terms

A naive Bayes approach to document classification

Simplify the maximum a posteriori rule p(c|d)=p(d|c)p(c) considering each $w\in d=\{w_1,\ldots,w_{n_d}\}$ independently, i.e.,

$$p(d|c) = \prod_{i=1}^{n_d} p(w_i|c)$$

T. Bayes (c. 1702–1761)

Estimating conditional word occurrence probabilities p(w|c) from large corpora $D = \bigcup D_c$, e.g.,

$$p(w|c) = \frac{\displaystyle\sum_{d \in D_c} \delta(w,d)}{\displaystyle\sum_{v \in V} \displaystyle\sum_{d \in D_c} \delta(v,d)} \qquad \text{or} \qquad p(w|c) = \frac{\displaystyle\sum_{d \in D_c} n(w,d)}{\displaystyle\sum_{d \in D_c} n_d}$$

The naive Bayes approach illustrated

- 1. class = love, content = {aimer: 5, manger: 0, Paul: 1, Virignie: 1, je: 5}
- 2. class = love, content = {aimer: 3, manger: 0, Paul: 0, Virignie: 0, je: 4}
- 3. class = food, content = {aimer: 0, manger: 2, Paul: 0, Virignie: 1, je: 5}
- 4. class = food, content = {aimer: 2, manger: 2, Paul: 0, Virignie: 0, je: 3}

For class 'love', we have:

$$P[\mathsf{aimer}] = \frac{\displaystyle\sum_{d \in D_c} \delta(\mathsf{aimer}, d)}{\displaystyle\sum_{v \in V} \displaystyle\sum_{d \in D_c} \delta(v, d)} = \frac{2}{6} \qquad \text{or} \qquad P[\mathsf{aimer}] = \frac{\displaystyle\sum_{d \in D_c} n(\mathsf{aimer}, d)}{\displaystyle\sum_{d \in D_c} n_d} = \frac{8}{19}$$

and for class 'food'

$$P[\mathsf{aimer}] = \frac{\displaystyle\sum_{d \in D_c} \delta(\mathsf{aimer}, d)}{\displaystyle\sum_{v \in V} \displaystyle\sum_{d \in D_c} \delta(v, d)} = \frac{1}{6} \qquad \text{or} \qquad P[\mathsf{aimer}] = \frac{\displaystyle\sum_{d \in D_c} n(\mathsf{aimer}, d)}{\displaystyle\sum_{d \in D_c} n_d} = \frac{2}{15}$$

The naive Bayes approach illustrated

- 1. class = love, content = {aimer: 5, manger: 0, Paul: 1, Virignie: 1, je: 5}
- 2. class = love, content = {aimer: 3, manger: 0, Paul: 0, Virignie: 0, je: 4}
- 3. class = food, content = {aimer: 0, manger: 2, Paul: 0, Virignie: 1, je: 5}
- 4. class = food, content = {aimer: 2, manger: 2, Paul: 0, Virignie: 0, je: 3}

With the first estimator, we get in the end

class	P[aimer]	P[manger]	P[Paul]	P[Virginie]	P[je]
love	2/6	0/6	1/6	1/6	2/6
food	1/6	2/6	0/6	1/6	2/6

Assuming equal class prior, classify new document $d = \{aimer: 2, manger: 0, and class prior, classify new document <math>d = \{aimer: 2, manger: 0, and class prior, classify new document descriptions are considered as a sum of the constant of$

Paul: 0, Virignie: 1, je: 1} according to

$$P[d|\text{class=love}] = 0.5 * (2*2/6) * 1/6 * 2/6 \sim .0185$$

$$P[d|\text{class=food}] = 0.5 * (2*1/6) * 1/6 * 2/6 \sim .0093$$

Naive Bayes and regularization (aka smoothing)

Now classifying $d = \{aimer: 0, manger: 10, Paul: 1, Virignie: 0, je: 0\}$:

$$P[d|\text{class=love}] = 0.5 * (10*0) * 1/6 = 0$$

$$P[d|{\rm class=food}] \ = \ 0.5 \ * \ (10*2/6) \ * \ 0 = 0$$

Need for smoothed probability estimates to avoid 0s, e.g,

$$p(w|c) = \frac{1 + \sum_{d \in D_c} n(w,d)}{|V| + \sum_{d \in D_c} n_d} \quad \text{or} \quad p(w|c) = \frac{\lambda P[w] + \sum_{d \in D_c} n(w,d)}{\lambda + \sum_{d \in D_c} n_d}$$

with $P[W] \leadsto \mathrm{Dir}(\alpha)$.

Why smoothing is so important? (because of Zipf)

Statistics on the newspaper Le Monde in 2003

1 227306 académisé 274928 1 pour 2 59053 gutturale 286277 1 une			<u> </u>			
2 59053 gutturale 286277 1 une 3 28459 port-cros 287036 1 dans 4 17223 s'imputer 325378 1 a 5 11483 remariée 339432 1 un 6 8310 échangée 438658 1 du 7 6190 mastercard 494437 1 en 8 4901 délégitimer 591394 1 des 9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	\overline{r}	n_r	token	r	n_r	token
3 28459 port-cros 287036 1 dans 4 17223 s'imputer 325378 1 a 5 11483 remariée 339432 1 un 6 8310 échangée 438658 1 du 7 6190 mastercard 494437 1 en 8 4901 délégitimer 591394 1 des 9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	1	227306	académisé	274928	1	pour
4 17223 s'imputer 325378 1 a 5 11483 remariée 339432 1 un 6 8310 échangée 438658 1 du 7 6190 mastercard 494437 1 en 8 4901 délégitimer 591394 1 des 9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	2	59053	gutturale	286277	1	une
5 11483 remariée 339432 1 un 6 8310 échangée 438658 1 du 7 6190 mastercard 494437 1 en 8 4901 délégitimer 591394 1 des 9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	3	28459	port-cros	287036	1	dans
6 8310 échangée 438658 1 du 7 6190 mastercard 494437 1 en 8 4901 délégitimer 591394 1 des 9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	4	17223	s'imputer	325378	1	a
7 6190 mastercard 494437 1 en 8 4901 délégitimer 591394 1 des 9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	5	11483	remariée	339432	1	un
8 4901 délégitimer 591394 1 des 9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	6	8310	échangée	438658	1	du
9 3744 teenage 638864 1 et 10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	7	6190	mastercard	494437	1	en
10 3072 diamonds 682522 1 à 11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	8	4901	délégitimer	591394	1	des
11 2477 matta 684617 1 les 12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	9	3744	teenage	638864	1	et
12 2022 cammas 836026 1 le 13 16462 collabos 1081822 1 la	10	3072	diamonds	682522	1	à
13 16462 collabos 1081822 1 la	11	2477	matta	684617	1	les
	12	2022	cammas	836026	1	le
14	13	16462	collabos	1081822	1	la
	14	7458	sidibe	1892396	1	de

George K. Zipf 1902–1950

Frequent events are rare and rare events are frequent, which roughly translate to

$$\operatorname{rank}(w)\operatorname{freq}(w)=\operatorname{cst}$$

[courtesy of François Yvon]

Explicit bag-of-words: the vector space model

Assign a weight to each possible term (token) in a fixed-size vocabulary according to its appearance in the document

Choosing and weighting representation terms

Step 1. Selection of terms for the vocabulary

- tokenization and normalization
- lemmatization, stemming ... or none
- selection of relevant terms
 - frequency, POS (NVA), stop lists
 - might be crucial (retrieval) ... or not (classification)

Step 2. Assignement of weights for each token

- \circ binary indicator $\delta(w,d) \longrightarrow$ aka 1-hot encoding
- \circ number of occurrences n(w,d) of word w in document d
- \circ frequency of occurrence $n(w,d)/\sum_{v \in V} n(v,d)$
 - ⇒ issue with frequent words, typically non-informative function words

The tf-idf weighting scheme

Normalizing term frequency to downplay frequent function words that bear limited information in most cases

$$f(w,d) = \underbrace{\left(\frac{n(w,d)}{\sum_{v \in V} n(v,d)}\right) \log \left(\frac{\sum_{d' \in D} \delta(w,d')}{N}\right)^{-1}}_{\text{term frequency}} \log \left(\frac{\sum_{d' \in D} \delta(w,d')}{N}\right)^{-1}$$

where D is a collection of N documents to compute prior probability of how likely w is to appear in a document

⇒ can be extended in a number of ways mixing local weight (term frequency), global weight (inverse document frequency) and possibly a normalization weight (to account for different document length for instance)

tf-idf illustrated

- 1. class = love, content = {aimer: 5, manger: 0, Paul: 1, Virignie: 1, je: 5}
- 2. class = love, content = {aimer: 3, manger: 0, Paul: 0, Virignie: 0, je: 4}
- 3. class = food, content = {aimer: 0, manger: 2, Paul: 0, Virignie: 1, je: 5}
- 4. class = food, content = {aimer: 2, manger: 2, Paul: 0, Virignie: 0, je: 3}
- aimer appears in 3 documents out of |D|=4

$$\operatorname{idf(aimer)} = \log \left(\frac{\sum\limits_{d' \in D} \delta(\operatorname{aimer}, d')}{|D|} \right)^{-1} = \log(4/3) \simeq 0.125$$

 \circ aimer appears 5 times in document d_1

$$\mathrm{tf}(\mathrm{aimer},d_1) = \frac{n(\mathrm{aimer},d_1)}{\displaystyle\sum_{v \in V} n(v,d_1)} = 5/12 \simeq 0.417$$

weight of aimer in document $d_1={
m tf}({
m aimer},d_1){
m idf}({
m aimer})\simeq 0.052$

tf-idf illustrated

- 1. class = love, content = {aimer: 5, manger: 0, Paul: 1, Virignie: 1, je: 5}
- 2. class = love, content = {aimer: 3, manger: 0, Paul: 0, Virignie: 0, je: 4}
- 3. class = food, content = {aimer: 0, manger: 2, Paul: 0, Virignie: 1, je: 5}
- 4. class = food, content = {aimer: 2, manger: 2, Paul: 0, Virignie: 0, je: 3}

	idf	doc1	doc2	doc3	doc4
n_w		12	7	8	7
aimer	0.125	0.052	0.054	0	0.036
manger	0.301	0	0	0.077	0.089
Paul	0.602	0.050	0	0	0
Virginie	0.301	0.025	0	0.038	0
je	0	0	0	0	0

The vector space model (information retrieval)

Documents (and possibly queries in IR) are represented in a vector space over which we can define a metric

$$\begin{array}{ll} \text{dot product} & x \cdot y = \sum_i x_i y_i \\ \\ \ell^2 \text{ norm} & ||x-y|| = \sqrt{\sum_i (x_i-y_i)^2} \\ \\ \text{cosine} & \text{cosine}(x,y) = \frac{x \cdot y}{||x|| \ ||y||} \end{array}$$

borrowed from Tonny Kwon's blog

Classification in the vector space model

All flavors of feature-based classifiers can be used with the bag-of-word representation, e.g.,

- k-nearest neighbors
- logistic regression

$$p(c|d) = \frac{1}{1 + \exp\left(\alpha_0 + \sum_{w \in d} \alpha_w f(w, d)\right)}$$

support vector machines

$$\widehat{c} = \operatorname{sign}\left(\sum_{w \in V} \alpha_w f(w, d) - \alpha_0\right)$$

feed-forward neural nets

C Antti Ajanki

(C) Larhmam

Latent variable variants of the BoW model

Some of the downsides of the BoW approach

- no ordering of words that's the price to pay
- very sparse representation, high dimension
- \circ distributional semantics is absent (cat \neq kitty)
- cannot compare documents with no words in common

Seek small, compact and efficient representations that can be directly used rather than the BoW vector

Option 1: Latent semantic indexing with PCA/SVD

Option 2: Latent Dirichlet allocation

A naive average word embedding approach

Is it distributional semantics if we train the whole thing?

A naive average word embedding approach implemeted

See notebook for details.

```
class NLPAvgPooling(torch.nn.Module):

[...]

def forward(self, **kwargs):
    x = self.embedding(kwargs['ids']) # batch_size * maxlen * dim
    x = torch.mean(x, dim=1) # batch_size * dim
    x = self.softmax(self.linear(x)) # batch_size * nclasses
```


Embedding sequences with recurrent neural networks

 h_i = summary of document up to $w_i \Rightarrow h_n$ = summary of document

Example of an Elman recurrent network

Embedding layer $x_i = c(w_i)$

Merging layer $y_i = x_i + h_{i-1}$

State prediction $h_i = \sigma(Uy_i)$ or $\sigma(U_cc_i + U_hh_{i-1})$

RNN utterance embedding implementation

See notebook for details.

```
class NLPRNN(torch.nn.Module):

[...]

def forward(self, **kwargs):
    x = self.embedding(kwargs['ids'])  # batch_size * maxlen * dim
    _, (x, _) = self.lstm(x)  # 1 * batch_size * dim
    x = self.softmax(self.linear(x[0])) # batch_size * nclasses
```


Bidirectionnal sequence embedding

Sentence embedding with RNNs: evaluation

Intrinsic evaluations, e.g., Semantic Textual Similarity Benchmark

Other ways are needed	We must find other ways	4.4
I absolutely do believe there was an	I don't believe there was any iceberg	1.2
iceberg in those waters	at all anywhere near the Titanic	1.2

Extrinsic / task-based evaluation, e.g., GLUE for English ...

Corpus of Linguistic Acceptability	sentence is grammatical or not
Stanford Sentiment Treebank	valence prediction
Microsoft Research Paraphrase	semantically equivalent or not
Quora Question Pairs	semantically equivalent or not
Multi-Genre Natural Language Inference	predict entailment
Recognizing Textual Entailment	•
Stanford Question Answering	paragraph contains answer or not
Winograd Schema Challenge	reference prediction (closed list)

Alex Wang et al., 2018. GLUE: A multi-task benchmark and analysis platform for NLU

... or FLUE, the recent French equivalent of GLUE

Hang Le et al., 2019. FlauBERT: Unsupervised language model pre-training for French

Shades of RNNs for sequence embedding: comparing two inputs

What with BERT-like models?

Use BERT pre-trained model to embed document and use the embeding through a classifier (one can train the whole thing at once).

Chttp://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

