CIS – 490: Machine Learning

<u>Learning Activity 1</u>
Name: Pranav Vinod

UMassD ID: 01984464

Naïve Bayes

1. Split data into training and testing in 50:50 ratio

```
library(e1071)
library(pROC)
data(iris)

set.seed(490)

# train-test split
training.indices <- sample(1:nrow(iris), 0.5 * nrow(iris))
x.train <- iris[training.indices, 1:4]
x.test <- iris[-training.indices, 1:4]
y.train <- iris[training.indices, 5]
y.test <- iris[-training.indices, 5]</pre>
```

2. Construct the model

```
# Construct the model
model <- naiveBayes(x.train, y.train)
# Predict for training
pred.train <- predict(model, x.train, type="class")
# pred.train
conf.train <- table(pred.train, y.train)
conf.train</pre>
```

3. Make predictions

4. Calculate Accuracy

```
# Train set
acc.train <- sum(diag(conf.train)) / sum(conf.train)
acc.train
err.train <- 1 - acc.train
err.train

# Test set
acc <- sum(diag(conf)) / sum(conf)
acc
err <- 1 - acc
err

# All data
acc.all <- sum(diag(conf.all)) / sum(conf.all)
acc.all
err.all <- 1 - acc.all
err.all</pre>
```

5. Model Evaluation

		Train	Test	All
Accuracy		0.95	0.95	0.95
AUC		0.996	0.997	0.995
Macro Sensitivity		0.95	0.95	0.95
Macro Specificity		0.97	0.97	0.97
Sensitivity	Setosa	1.00	1.00	1.00
	Versicolor	0.96	0.85	0.90
	Virginica	0.89	1.00	0.94
Specificity	Setosa	1.00	1.00	1.00
	Versicolor	0.94	1.00	0.97
	Virginica	0.98	0.92	0.95
PPV	Setosa	1.00	1.00	1.00
	Versicolor	0.88	1.00	0.94
	Virginica	0.96	0.85	0.90
NPV	Setosa	1.00	1.00	1.00
	Versicolor	0.98	0.92	0.95
	Virginica	0.94	1.00	0.97

6. ROC Curves

```
# ROC curve using Test Set
probs <- predict(model, x.test, type="raw")</pre>
setosa.labels <- rep(0, length(y.test))</pre>
versicolor.labels <- rep(0, length(y.test))</pre>
virginica.labels <- rep(0, length(y.test))</pre>
for (i in 1:length(y.test)) {
   if(y.test[i] == 'setosa') {
       setosa.labels[i] <- 1
   } else if (y.test[i] == 'versicolor') {
       versicolor.labels[i] <- 1</pre>
    } else if (y.test[i] == 'virginica') {
       virginica.labels[i] <- 1</pre>
# Create a plot of ROC for each class label against the rest
setosa.roc <- roc(setosa.labels, probs[, 'setosa'], auc.polygon=TRUE, max.auc.polygon=TRUE, pr</pre>
setosa.smoothroc <- smooth(setosa.roc, method = "density")</pre>
plot(setosa.smoothroc, col = 'red', xaxt='n', xlab="False Positive Rate (1 - Specificity)", yla
#par(new=T): make the second plot without cleaning the first
par(new=TRUE)
versicolor.roc <- roc(versicolor.labels, probs[, 'versicolor'], auc.polygon=TRUE, max.auc.polyg
versicolor.smoothroc <- smooth(versicolor.roc, method = "density")</pre>
plot(versicolor.smoothroc, col='blue', xaxt='n', xlab="", ylab = "")
par(new=TRUE)
virginica.roc <- roc(virginica.labels, probs[, 'virginica'], auc.polygon=TRUE, max.auc.polygon=
virginica.smoothroc <- smooth(virginica.roc, method = "density")</pre>
plot(virginica.smoothroc, col='green', xaxt='n', xlab="", ylab = "")
y.labels <- c(setosa.labels, versicolor.labels, virginica.labels)
y.probs <- c(probs[, 'setosa'], probs[, 'versicolor'], probs[, 'virginica'])</pre>
par(new=TRUE)
micro.roc <- roc(y.labels, y.probs, auc.polygon=TRUE, max.auc.polygon=TRUE, print.auc=TRUE, sha
micro.smoothroc <- smooth(micro.roc, method = "density")</pre>
plot(micro.smoothroc, col = 'black', lty = 'dotdash', xaxt='n', xlab="", ylab = "")
macro.sensitivity <- (setosa.smoothroc$sensitivities + versicolor.smoothroc$sensitivities + vii
{\tt macro.specificity} \gets ((setosa.smoothroc\$specificities + versicolor.smoothroc\$specificities + versicolor.smoothroc$specificities + versicolor.smoothroc$spe
lines(macro.specificity, macro.sensitivity, type='l', xlim = rev(range(macro.specificity)), col
axis(1, at=(5:0) * 0.2, labels=(0:5) * 0.2, pos=c(-0.04,0))
legend(0.4, 0.5, legend = c('setosa', 'versicolor', 'virginica', 'micro-avg', 'macro-avg'), col
probs.train <- predict(model, x.train, type="raw")</pre>
multiclass.roc(y.train, probs.train)
multiclass.roc(y.test, probs)
probs.all <- predict(model, iris[1:4], type="raw")</pre>
multiclass.roc(iris$Species, probs.all)
```

