

SÍLABO CÁLCULO I

ÁREA CURRICULAR: MATEMÁTICAS Y CIENCIAS BÁSICAS

CICLO II CURSO DE VERANO 2018-I

I. CÓDIGO DEL CURSO : 09065502050

II. CRÉDITOS : 05

III. REQUISITOS : 09066801051Matemática Discreta (Ing. Industrial)

: 09066301040Geometría Analítica (Ing. Industrial)

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Cálculo Diferencial e Integral I es un curso teórico-práctico, que aporta al estudiante de Ingenie-ría, un lenguaje matemático como herramienta fundamental para la representación y construcción de modelos por medio de funciones matemáticas en la solución de situaciones problema de la vida diaria

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Límite y continuidad de funciones. II. Derivada de funciones algebraicas y trascendentes. Tangente y normal a una curva. III. Aplicaciones a la derivada. Máximos y mínimos de una función. Problemas de máximos y mínimos. IV. Trazado de curvas. Formas indeterminadas. V. Diferenciales y antiderivadas. Integral indefinida. Técnicas de integración: por sustitución, por partes, por sustitución trigonométrica y por fracciones parciales.

VI. FUENTES DE CONSULTA:

- Hoffman, B. y Rosen (2006). Cálculo Aplicado. 8a. ed. México: McGraw-Hill
- Leithold, L. (1998) El cálculo. 7a ed. México: Oxford University Press.
- Stewart J. (2008) Calculus 6 Edition Cengage Learning EMEA
- Thomas, G. (2006). Cálculo una variable. 11a ed. México: Pearson Educación

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: LÍMITES Y CONTINUIDAD

OBJETIVOS DE APRENDIZAJE:

- Entender el concepto de límite desde la noción intuitiva y la definición informal.
- Calcular límites utilizando sus propiedades.
- Analizar la continuidad de una función.
- Representar gráficamente los conceptos de límites y continuidad de una función

PRIMERA SEMANA

Primera sesión:

Definición informal de Límite de una función. Interpretación geométrica de la definición. Limites laterales. Existencia del límite de una función.

Segunda sesión:

Propiedades de los límites. Cálculo de los límites de funciones algebraicas usando propiedades **SEGUNDA SEMANA**

Primera sesión:

Limites infinitos. Definición informal. Propiedades. Limites en el Infinito. Definición informal. Propiedades.

Segunda sesión:

Asíntotas a la gráfica de una Función. Definición de Asíntotas Verticales, Asíntotas Horizontales y Asíntotas Oblicuas. Trazado de graficas

TERCERA SEMANA

Primera sesión:

Funciones continua. Continuidad de una función en un punto. Tipos de discontinuidad. Álgebra de funciones continúas en un punto

Segunda sesión:

Continuidad de una función compuesta. Continuidad por la derecha y por la izquierda en un punto. Continuidad en intervalos. Teorema del valor intermedio.

UNIDAD II: LA DERIVADA

OBJETIVOS DE APRENDIZAJE:

- Interpretar la derivada como una razón de cambio y evalúa en forma grafica la definición de la derivada
- Analizar el concepto y las propiedades más importantes de las funciones diferenciables.
- Determinar la ecuación de la recta tangente a una curva en un punto dado.
- Aplicar las reglas de derivación usando el método analítico.

CUARTA SEMANA

Primera sesión:

Recta tangente y derivada. Definición de recta tangente y normal a la gráfica de una función. Definición de derivada.

Segunda sesión

Diferenciabilidad y Continuidad. Casos en que una función deja de ser diferenciable. Definición de derivada Lateral.

QUINTA SEMANA

Primera sesión:

Algunas reglas para calcular derivadas. Regla de la cadena. Regla de la potencia

Segunda sesión:

Funciones definidas implícitamente por una ecuación en (x,y). Derivación implícita. Derivada de orden superior.

UNIDAD III: FUNCIONES TRASCENDENTES

OBJETIVOS DE APRENDIZAJE:

- Reconocer como se determina una derivada trigonométrica, así como su representación gráfica
- Distinguir las diversas situaciones reales donde sean aplicables las funciones exponenciales o logarítmicas.

SEXTA SEMANA

Primera sesión:

Las Funciones Trigonométricas. Definiciones y propiedades. Ecuaciones Trigonométricas **Segunda sesión:**

Límites y continuidad de las funciones trigonométricas. Derivadas de las funciones Trigonométricas

SÉPTIMA SEMANA

Primera sesión:

Funciones trigonométricas inversas. Límites y continuidad de las funciones trigonométricas inversas. Derivadas de las funciones Trigonométricas inversas

Segunda sesión:

Función exponencial, definición, propiedades. Función logaritmo, definición, propiedades. Ecuaciones exponenciales y logarítmicas

OCTAVA SEMANA

Examen parcial.

NOVENA SEMANA

Primera sesión:

Límite y continuidad de las funciones exponenciales y logarítmicas

Segunda sesión:

Derivada de las funciones exponenciales y logarítmicas. Derivada de una función exponencial potencial. Derivación logarítmica.

DÉCIMA SEMANA

Primera sesión:

Curvas definidas en forma paramétrica. Graficas sencillas usando tabulación y/o transformación de las ecuaciones paramétricas en ecuaciones cartesianas

Segunda sesión:

Derivación paramétrica. Derivada de orden superior.

OBJETIVOS DE APRENDIZAJE:

- Construir graficas determinándose previamente valores extremos en forma analítica.
- Evaluar formas indeterminadas de límites.
- Aplicar criterios de primera y segunda derivada en la solución de diferentes problemas de optimización.

UNDECIMA SEMANA

Primera sesión:

Aplicaciones de la derivada. Razones de cambio relacionadas.

Segunda sesión:

Máximos y Mínimos, definiciones. Teorema del valor extremo. Numero crítico. Extremos absolutos de una función continúa sobre un intervalo cerrado.

DUODÉCIMA SEMANA

Primera sesión:

Teorema de Rolle. Teorema del Valor Medio. Aplicaciones.

Segunda sesión:

Funciones creciente y decreciente. Criterio de crecimiento y decrecimiento. Criterio de primera derivada para el cálculo de extremos relativos. Trazado de graficas de funciones.

DECIMOTERCERA SEMANA

Primera sesión

Criterio de la segunda derivada para el cálculo de extremos en un punto crítico. Concavidades y punto de inflexión. Trazado de la gráfica de una curva

Segunda sesión:

Problemas de máximos y mínimos

DECIMOCUARTA SEMANA

Primera sesión:

Incrementos y Diferenciales. Aplicaciones

Segunda sesión:

Formas indeterminadas. Regla de L'Hospital. Formas indeterminadas reducibles a 0/0 o ∞/∞ . Potencias indeterminadas.

UNIDAD V: INTEGRAL INDEFINIDA

OBJETIVOS DE APRENDIZAJE:

- Comprender el concepto de integral, sus propiedades y la relación que existe con la derivada a través del Teorema Fundamental del Cálculo.
- Determinar antiderivadas de funciones elementales.
- Representar claramente las definiciones de integral indefinida.
- Aplicar las propiedades y operaciones de la integral.

DECIMOQUINTA SEMANA

Primera sesión:

Antiderivada de una función, propiedades. Algunas reglas de anti derivación. Aplicación a la resolución de algunas ecuaciones diferenciales La integral indefinida. Propiedades. Integración inmediata. Formulas.

Segunda sesión:

Integración por sustitución algebraica. Integración por partes

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a) Matemática y Ciencias Básicas
b) Tópicos de Ingeniería
c) Educación General
5
0

IX. PROCEDIIENTOS DIDÁCTICOS

Las clases se desarrollaran teniendo en cuenta:

Aspecto metodológico: estimular el método científico (inductivo-deductivo). Procedimientos: Observación, análisis, demostración, solución de problemas.

Técnicas: Expositiva, dialogo, tutoría.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y proyector de multimedia.

Materiales: separatas, pizarra, tizas.

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF = (2*PE + EF) / 3

PC = (P1+P2+P3+P4+P4-MN)/4

Donde:

PF : Promedio Final

PC : Promedio de prácticas calificadas

EF : Examen final (escrito) P1,..., P4 : Prácticas calificadas (escrito)

MN : Menor nota entre las Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil, Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

1.7	_ ' '	D
K = clave	R = relacionado	Recuadro vacío = no aplica
r – clave		INCCUAUTO VACIO – ITO ADITCA

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d).	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	R

(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	K
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	R
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica Laboratorio 4 2 0

- b) Número de sesiones por semana: Dos sesiones por semana
- c) Duración: 6 horas académicas de 45 minutos

XIV. JEFE DE CURSO:

Ing. Gian Carlo Scarpati Galvez.

XV. FECHA:

La Molina, enero de 2018.