

Eşdizimlilik (Collocation)

Doç.Dr.Banu Diri

Eşdizimlilik(Collocation) Nedir?

- İki veya daha fazla kelimenin bir araya gelerek farklı bir şeyi ifade etmesidir (*ağır abi*).
- Kelimeler birlikte kullanıldıklarında daha farklı anlamlar içerebilirler (disk drive, hot dog, mother in law).
- Kelimeler üzerinde çalışırken onları bulundukları bağlamdan bağımsız olarak düşünmek imkansızdır. Kelimeler bağlam içerisinde çıplak anlamlarından farklı anlamlar alabilir.
- Metin içerisinde neyin kaç kez göründüğündense neyle beraber göründüğü önemlidir (Türkiye Büyük Millet Meclisi, Türk Hava Yolları, vs.).

ilide 1

Eşdizimlilik iki ilkeye sahiptir.

- Açık seçim ilkesi
- Deyim ilkesi

Açık seçim ilkesi : Birbirleriyle bağlantılı kelimelerin seçiminde herhangi bir zorlanma yoktur (Mavi gökyüzü).

Deyim ilkesi : Kelimelerin ayrı ayrı anlamlarından farklı bir anlam çıkarılır (Tefe koymak).

Slide 2

- · İngilizceden örnek
 - noun phrases strong tea not powerful tea
 - phrasal verbs to make up and the rich and powerful
- Geçerli bir eşdizimlilik mi (collacation)?
 - a stiff breeze (sert esen r\u00fczgar) but not a stiff wind
 (a strong breeze or a strong wind is okay)
 - broad daylight (güpegündüz) (but not bright daylight or narrow darkness)

Slide 3

Eşdizimlilik(Collocations) kriterleri

Eşdizimlilik sınırlı sayıda kelime ile karakterize edilir.

- Eşdizimlilikte 3 farklı kriter vardır.
 - non-compositionality (bir araya getirilemez)
 - non-substitutability (yeri değiştirilemez)
 - non-modifiability (değiştirilemez)
- Eş dizimlik hiç bir zaman bir dilden diğer dile kelime kelime tercüme edilemez.
- Eşdizimlilik için kelimeler arka arkaya gelmek zorunda değildir (*knock . . . door*).

Slide

Non-Compositionality

- Kelimelerin herbirinin anlamından birleştirilmiş ifadenin anlamı tahmin edilebiliyorsa bu ifade compositional'dır.
 - new companies
- Kelimelerin herbirinin anlamından birleştirilmiş ifadenin anlamı tahmin edilemiyorsa bu ifade non-compositional'dır.
 - hot dog
- Kelimelerin herbirinin anlamından birleştirilmiş ifadenin anlamı yakın olarak tahmin edilebilir.
 - strong tea, powerful drug, not powerful tea
- non-compositional için en uç örnekler deyimlerdir.
 - "it rains cats and dogs", "etekleri zil çalmak"

ilide 5

Non-Substitutability

- Collocation'nın bir elemanı olarak yakın anlamlı (near-synonyms) bir kelimeyi kullanamayabiliriz.
 - Beyaz şarabın rengini iyi tanımlasa bile white wine yerine yellow wine kullanılamaz
- Collocation'ların çoğu gramatik olarak bir dönüşüm veya ek bir kelime ile yeniden düzenlenemezler (Non-modifiability).
 - white wine, but not whiter wine
 - mother in law, but not mother in laws

Slide

Collocation'da alt sınıflar

- Light verbs
 - make, take ve do gibi fiilerin kullanımı
 - make lunch, take easy
- Fiil Edat yapıları
 - to go down
- Özel isimler (proper nouns)
 - Mustafa Kemal Atatürk
- · Teknik terimler, teknik alandaki nesne ve kavramlar
 - Hidrolik yağ filtresi (Hydraulic oil filter)

Collocation'ları bulmak için genel yaklaşım

Bir text içerisinde yer alan collocation'lar nasıl bulunur?

- En basit method: *Frekans*'a dayalı collocation seçimi
- Eşdizimliliği oluşturan kelimeler arsındaki uzaklığın ortalama ve varyansına dayalı seçim (mean and variance)
- · Hipotez testi (Hypothesis testing)
- Karşılıklı bilgi (Mutual information)

Slide 8

Frekans yaklaşımı (Frequency)

- Meydana gelme sıklığına göre collocation'nın bulunması.
- Size window'a ihtiyaç vardır.
- Döndürülen sonuçlar içerisinde Function word'ler (stop words) olabilir. Bunların filtrelenmesi gerekir.
- Bu filtreden geçen yapılar collocation'a adaydır.

Slide 9

$C(w^1 \ w^2)$	w^1	w^2	
80871	of	the	
58841	in	the	
26430	to	the	
21842	on	the	
21839	for	the	
18568	and	the	
16121	that	the	Örnek Corpus'daki en sık
15630	at	the	kullanılan bigram'lar (biword) çıkarılır
15494	to	be	
13899	in	a	
13689	of	a	NT N7 1 1 ' 1' 4 1 1 '
13361	by	the	New York hariç, listedeki
13183	with	the	bigram'ların hepsi function
12622	from	the	word'dür
11428	New	York	
10007	he	said	
9775	as	a	
9231	is	a	
8753	has	been	
8573	for	a	Slide 10

Tag Pattern Example A: adjective (sıfat)

A N linear function N: noun (isim)

 $\begin{array}{ccc} N\ N & \textit{regression coefficients} \\ A\ A\ N & \textit{Gaussian random variable} & P: preposition (edat) \end{array}$

A N N cumulative distribution function

NAN mean squared error NNN class probability function NPN degrees of freedom

Part of speech tag patterns for collocation filtering (Justesen and Katz).

$C(w^1 \ w^2)$	w^1	w^2	tog pottorn
	W- New		tag pattern
11487		York	AN
7261	United	States	Eğar gollogotion'ı
5412	Los	Angeles	Eğer collocation'ı
3301	last	year	oluşturan kelimeler arası
3191	Saudi	Arabia	sabit ise Frekans tabanlı
2699	last	week	yöntem iyi sonuç verir.
2514	vice	president	yontem tyr sonaç verii.
2378	Persian	Gulf	A Nonce as' a filtre
2161	San	Francisco	NN uygulandıktan sonra,
2106	President _o	Bush	
2001	Middle	East	AN geride kalan en yüksek
1942	Saddam	Hussein	NN kullanım sıklığına sahip
1867	Soviet	Union	A N ifadeler
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	A N Slide 12

w	C (strong,w)	w	C(powerful,w)	
support	50	force	13	_
safety	22	computers	10	
sales	21	position	8	Strong shallongs mayyarful sammuta
opposition	19	man	8	Strong challenge, powerful computer
showing	18	computer	8	Not powerful challenge, strong
sense	18	man	7	computer
message	15	symbol	6	
defense	14	military	6	
gains	13	machines	6	
evidence	13	country	6	
criticism	13	weapons	5	
possibility	11	post	5	
feelings	11	people	5	
demand	11	nation	5	
challenges	11	forces	5	
challenge	11	chip	5	
case	11	Germany	5	
supporter	10	senators	4	
signal	9	neighbor	4	Slide 1
man	9	magnet	4	Side a

Collocational Window

Çoğu collocation farklı değişken uzunluklarda bulunabilir.

Bu tip collocation'ların bulunmasında *Frekans Tabanlı* yaklaşımlar kullanılmaz.

she knocked on his door distance=3
they knocked at the door distance=3
100 women knocked on Donaldson's door distance=5
a man knocked on the metal front door distance=5

Slide 14

Sentence: she knocked on his door

Bigrams:

she knocked she on she his

knocked on knocked his knocked door

on his on door his door

3 kelimelik collocation window kullanılarak bigram'lar çıkarılır.

Genelde 3, 4 kelimelik window'lar kullanılır.

Mean and Variance

Knocked and door arasındaki ilişkiyi keşfetmenin bir yolu, corpus içerisinde yer alan iki kelime arasındaki ofsetin (işaretli uzaklık) mean (ortalama) ve variance (varyans) hesaplamaktır.

Ortalama(mean= µ), iki kelime arasındaki ofsetin ortalamasıdır.

she knocked on his door they knocked at the door 100 women knocked on Donaldson's door a man knocked on the metal front door

 $\mu = \frac{1}{4} (3+3+5+5) = 4.0$ d = -3Mean?

Bazen distance negatif bir sayı olabilir. The door that she knocked on

Mean and Variance

- Varyans : Değerlerin ortalamanın çevresindeki dağılımını ölçmek için kullanılan bir niceliktir. Ortalamanın örneklem değerlerinden çıkarılmasıyla bulunan sapmaların karelerinin ortalaması alınarak hesaplanır.
- $\sigma^2 = s$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (d_i - \mu)^2}{n - 1}$$

-n iki kelimenin birlikte kullanılma sayısı, d_i i. birlikte görülmenin uzaklık değeri, ve **μ** ortalama

- Ortalama ve varyans, iki kelime arasındaki mesafenin dağılımını karakterize eder.
- Yüksek varyansın anlamı, birlikteliklerin şans eseri gerçekleştiğidir.
 - Düşük varyansın anlamı, birlikteliklerin aynı uzaklıklara sahip olduğudur.

$$\sigma = \sqrt{\frac{1}{3}} ((3 - 4.0)^2 + (3 - 4.0)^2 + (5 - 4.0)^2 + (5 - 4.0)^2) \approx 1.15$$

Slide 18

Ortalama ve varyansa dayalı Collocation'ların bulunması

S	đ	Count	Word 1	Word 2
0.43	0.97	11657	New	York
0.48	1.83	24	previous	games
0.15	2.98	46	minus	points
0.49	3.87	131	hundreds	dollars
4.03	0.44	36	editorial	Atlanta
4.03	0.00	78	ring	New
3.96	0.19	119	point	hundredth
3.96	0.29	106	subscribers	by
1.07	1.45	80	strong	support
1.13	2.57	7	powerful	organizations
1.01	2.00	112	Richard	Nixon
1.05	0.00	10	Garrison	said

- σ küçük, μ 1'e yakın ise NY frekans tabanlı yöntem ile bulunur.
- σ küçük, μ, 1'den büyük ise üzerinde durulması gereken ilginç bir durumdur.

The pair previous / games (distance 2) corresponds to phrases like in the previous 10 games or in the previous 15 games; minus / points corresponds to phrases like minus 2 percentage points, minus 3 percentage points etc; hundreds / dollars corresponds to hundreds of billions of dollars and hundreds of millions of dollars.

- \bullet Eğer σ çok büyük ise bu kelime çiftleri ile ilgilenilmez.
- strong {business} support, powerful {lobbying} organizations, Richard

(M.) Nixon, and Garrison said / said Garrison (remember that we tokenize Richard M. Nixon as four tokens: Richard, M, ., Nixon)

Şansın bertaraf edilmesi...

- İki kelime şans eseri birlikte olabilir.
 - Frekansı yüksek ve varyansı düşük ise
- Hipotez Testini (Hypothesis Testing) kullanarak bu birlikteliğin gerçek mi yoksa şans eseri mi olduğu ölçümlenebilir.

t-Test: Örnek

• Corpus içerisinde, *new* kelimesi 15,828 kez, *companies kelimesi de* 4,675 kez geçmiş olsun, ve corpusta toplam 14,307,668 kelime olsun.

P(new)= 15828/14307668 P(companies)= 4675/14307668

Null hipotez bu iki kelimenin bağımsız olarak meydana geldiği olsun.

 H_0 : P(new companies) = P(new)P(companies)

$$= \quad \frac{15828}{14307668} \times \frac{4675}{14307668} \approx 3.615 \times 10^{-7}$$

Eğer bu null hipotez doğru ise rasgele Bigram'lar üretelim. *New company* gelirse 1, diğer durumlarda 0 olsun (Bernoulli trial – sadece iki durum söz konusu)

Slide 54

t-Test: Örnek

$$P = 3.615 \times 10^{-7}$$

$$\mu = 3.615 \times 10^{-7}$$
 $\sigma^2 = p(1, p) \approx p$

$$\sigma^2 = p(1-p) \cong p$$

• 14,307,668 adet bigram içerisinde *new companies* kelimesi ile 8 kez karşılaşılsın

$$\overline{X} = \frac{8}{14307668} \approx 5.591 \times 10^{-7}$$

$$t = \frac{\overline{x} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \approx \frac{5.59110^{-7} - 3.61510^{-7}}{\sqrt{\frac{5.59110^{-7}}{14307668}}} \approx 0.999932$$

α = 0.005 için kritik değer 2,576 olsun, (df=sonsuz) t<2,576 null hipotez kabul edilir. New company collocation değildir.

t	C(w1)	C(w ²)	C(w ¹ w ²)	W ¹	W^2	Hipotez red ediliyor. İlk 5 bigram collocation içir adaydır.
4.4721	42	20	20	Ayatollah	Ruhollah	adayun.
4.4721	41	27	20	Bette	Midler /	
4.4720	30	117	20	Agatha	Christie	
4.4720	77	59	20	videocassette	recorder	
4.4720	24	320	20	unsalted	butter	
2.3714	14907	9017	20	first	made	-
2.2446	13484	10570	20	over	many	
1.3685	14734	13478	20	into	them	
1.2176	14093	14776	20	like	people	
0.8036	15019	15629	20	time	last	Hipotez kabul ediliyor Son 5 bigram collocation'a aday

Hypothesis testing of differences-İki ortalama Farkın Testi (Church and Hanks, 1989)

Bazı durumlarda iki popülasyonun ortalamalarının karşılaştırılması gerekebilir. Amaç, 2 örnek ortalamasının aynı ortalamalı 2 popülasyondan gelip gelmediğini test etmektir.

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 H_0 =farkların ortalaması sıfırdır. $\mu = 0$

$$x_1 = s_1^2 = P(v^* w)$$

$$\bar{x} - \mu = \bar{x} = \frac{1}{n} \sum (x_{1i} - x_{2i}) = \bar{x}_1 - \bar{x}_2$$

$$\overline{x}_1 = s_1^2 = P(v^1 w)$$

$$\overline{x}_2 = s_2^2 = P(v^2 w)$$

$$s^2 = p - p^2 \approx p$$

$$t \approx \frac{C(v^1 w) - C(v^2 w)}{\sqrt{C(v^1 w) + C(v^2 w)}}$$

Örnek : *strong* ve *powerful* kelimeleri ile birlikte görülen kelimeleri bulmak isteyebiliriz.

t	C(w)	C(strong w)	C(powerful w)	Word
3.16	933	0	10	computers
2.82	2337	0	8	computer
2.44	289	0	6	symbol
2.44	588	0	5	Germany
2.23	3745	0	5	nation
7.07	3685	50	0	support
6.32	3616	58	7	enough
4.69	986	22	0	safety
4.58	3741	21	0	sales
4.02	1093	19	1	opposition

 $H_0: \mu_{1=} \mu_2$

 $\alpha = 0.005$ için değer 2,576 ise

Slide 60

Pearson'nın ki-kare (chi-square) testi

- İki değişkenin birbirine bağımlı olup olmadığı veya bir değişkenin başka bir değişkenle ilişkili olup olmadığını test etmek için kullanılır.
- Popülasyon içerisindeki dağılım bilindiği halde bazen de bilinmeyebilir veya örneklem dağılımının popülasyon dağılımına uyup uymadığı kontrol edilmek istenebilir.
- 2 x 2'lik bir matris kullanılır. Matrisin hücrelerinde *gözlemlenen* (observed) değerler vardır. Bu matris yardımıyla beklendik (expected) değerler hesaplanır.
- Sonrasında ki-kare değeri hesaplanır.

$$X^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

χ² Test: örnek

	$w_1 = new$	$w_1 \neq new$	
$w_2 = companies$	8	4667	4675
	(new companies)	(e.g., old companies)	
$w_2 \neq companies$	15820	14287181	14303001
	(e.g., new machines)	(e.g., old machines)	
	15828	14201848	14307676

15828 14291848

 E_{ij} =((satır_toplamı) x (sütun_toplamı)) / toplam N

$$X^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
 $\chi 2 \cong 1.55$

4669.8 15822.8 14287178.2

H_o: bu ikililer birbirlerinden bağımsızdır.

 χ 2 tablosundan df(degree of freedom)=n-1 (n=2 df=1) için α = 0.05 değeri 3.8 olup, 1.55 < 3.8 null hypothesis kabul edilir. new companies collocation değildir.

χ2 nin farklı kullanım alanları

	cow	^cow
vache	59	6
^vache	8	570934

İki farlı corpus'tan yararlanarak çeviri yaparken uygun kelimenin bulunması.

H_o= cow, vache birbirinden bağımsızdır.

 $\chi 2 = 456400$ bulunur ve H_o red edilir

Mutual Information

- Mutual Information, bir kelimenin diğer kelimeler hakkında bize ne söylediğini kabaca anlatır.
- Bazı problemleri mevcuttur.

İki olay arasındaki benzerliğin ölçümünde her zaman iyi değildir. Bağımlılığın ölçümünde kötüdür.

Sparse data'da kötüdür.

$$I(x', y') = \log_2 \frac{P(x'y')}{P(x')P(y')}$$

$$= \log_2 \frac{P(x'|y')}{P(x')}$$

$$= \log_2 \frac{P(y'|x')}{P(y')}$$

Slide 64

I(w1,w2)	C(w1)	C(w2)	C(w1,w2)	w1	W2
18.38	42	20	20	Ayatollah	Ruhollah
17.98	41	27	20	Bette	Midler
16.31	30	117	20	Agatha	Christie
15.94	77	59	20	videocassette	recorder
15.19	24	320	20	unsalted	butter
1.09	14907	9017	20	first	made
1.01	13484	10570	20	over	many
0.53	14734	13478	20	into	them
0.46	14093	14776	20	like	people
0.29	15019	15629	20	time	last

$$I(Ayatollah, Ruhollah) = \log_2 \frac{\frac{20}{14307668}}{\frac{42}{14307668} x \frac{20}{14307668}} \approx 18.38$$

de 65

	Chambre	^chambre	MI	χ2
House	31,950	12,004	4.1	553610
^house	4,793	848,330		
	Communes	^communes		
House	4,974	38,980		
^house	441	852,682	4.2	88405

Kanada parlementosundaki anayasa hem Ingilizce hem de Fransızca olarak hazırlanmış.

$$\log \frac{P(house \mid chambre)}{P(house)} = \log \frac{\frac{31950}{31950 + 4793}}{P(house)} \approx \log \frac{0.87}{P(house)}$$

$$< \log \frac{0.92}{P(house)} \approx \log \frac{\frac{4974}{4974 + 441}}{P(house)} = \log \frac{P(house \mid communes)}{P(house)}$$

Collocation'nın Kullanım Alanları ...

- Corpus Analizlerinde
- Information Retrieval
- Cross-language Information Retrieval