ГБОУ ВПО «Тихоокеанский государственный медицинский университет»

Министерства здравоохранения Российской Федерации <u>Кафедра фармации</u>

ПРОЕКТ

«Определение гепатопротекторного и актопротекторного действий сиропа из плодов вакциниума превосходного»

Научный руководитель, к.ф.н., доцент

Степанов С.В.

СООТВЕТСТВИЕ ПРОЕКТА ТЕМАТИКЕ ЗАЯВЛЕННОЙ НАУЧНОЙ ПЛАТФОРМЫ

Данный проект соответствует тематике научной платформы «Фармакология». В нем рассматривается вопрос определения гепатопротекторного и актопротекторного действий сиропа из плодов вакциниума превосходного.

Проект носит характер фундаментального исследования.

АКТУАЛЬНОСТЬ ИССЛЕДОВАНИЯ

Развитие токсических гепатитов неизменно сопровождается синдромом эндогенной интоксикации. Под влиянием гепатотропных ядов инициируется перекисное окисление липидов, нарушается энергообеспечение клеток печени, возрастает активность лизосомальных гидролаз, что ведет к ухудшению функционального состояния печени, ее способности обезвреживать яды и поступлению в системный кровоток большого количества токсических для организма соединений [Саратиков и др.,2000].

Интенсификация свободнорадикальных процессов в тканях может быть следствием гиперпродукции активных форм кислорода (АФК) и свободных и/или дефицита радикалов природных антиоксидантов И снижения активности других защитных систем клетки, включая антиоксидантные ферменты. Подобное физиологическое состояние клеток, сопряженное с нарушением нормальной регуляции свободнорадикальных реакций, в литературе принято называть «окислительным стрессом» [Зенков и др., 2001]. В настоящее время продолжаются работы по изучению дикорастущих лекарственных растений Дальнего Востока, оказывающих гепатопротективное действие за счет антиоксидантного действия. К числу таких растений относится и объект наших исследований: вакциниум превосходный (Vaccinium praestans), семейство Вересковые.

На сегодняшний день многочисленными исследованиями доказана антиоксидантная активность полифенольных соединений растительного происхождения, важнейшими из которых в этом плане являются флавоноиды и антоцианы [Куракин и др., 2008; Саратиков и др., 2000].

Возможность широкого применения полифенольных соединений в качестве антиоксидантов обусловливает актуальность поиска их новых, недорогих и доступных сырьевых источников. Вредное воздействие свободных радикалов в случае оксидантного стресса можно уменьшить за счет регу¬лярного употребления определенных пищевых продуктов и напитков, лекарственных препаратов, биологиче¬ски активных добавок (БАД), обладающих антиоксидантной активностью.

научный коллектив

Научный руководитель,

к.ф.н., доцент Степанов С.В.

к.м.н., доцент каф. фармации Плаксен Н.В.

Студент 5 курса фармацевтического факультета Бондаренко Д.А.

Ассистент каф. фармации Горовая Н.В

ФИНАНСОВАЯ МОДЕЛЬ

Проект выполняется в рамках хозяйственного договора.

КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА ПРОЕКТА

Впервые проведены исследования по изучению фармакологических эффектов дальневосточного растительного сырья — плодов вакциниума превосходного, являющегося эндемом Камчатки и Сахалина.

В результате исследования разработаны инновационные продукты, содержащие сок плодов вакциниума превосходного.

ИННОВАЦИОННОСТЬ

Проведенное исследование показало, что у крыс с токсическим гепатитом, вызванном тетрахлорметаном, в контрольной группе отмечалось статистически достоверное увеличение массы печени по сравнению с интактными крысами.

При введении СС14 печень реагирует на интоксикацию увеличением относительной массы, этот один из первых информативных показателей интоксикации организма. Как видно из табл.1, при введении гепатотоксина (тетрахлорметана), у животных контрольной группы отмечается статистически достоверное увеличение массы печени по сравнению с интактной группой на 65 % (р<0,05), а в опытной - на 34 %. В опытной группе, получавших препарат, менее выражены признаки воспалительного и деструктивного процесса в изучаемом органе, что говорит о защитном действии сиропа из плодов красники.

Таблица 1 Влияние сиропа на относительную массу печени, содержание малонового диальдегида и индекса интегральной антирадикальной активности в гомогенатах печени крыс после введения СС14, (М±m)

№	Группа	Относительная	МДА (нмоль/г	ИАА (моль
	животных	масса печени	сырого веса)	Trolox)/г
	n=15	(мг/г массы		сырого веса)
		тела)		
1.	Интактные	27,9±2,6	28,25±0,32	6,54±0,42
2.	Контроль	46,1±4,3*	55,82±0,39* **	3,26±0,48**
4.	Опыт	37,5±3,4	21,15±0,28**	4,60±0,31

Примечание: p<0.05* в сравнении с интактной группой p<0.05** в сравнении с контрольной группой

При острой патологии печени, в том числе при поражении СС14, снижается функция антиоксидантной системы и параллельно прогрессирует перекисное окисление липидов, и в липидных экстрактах гомогенатов печени возрастает количество МДА. В эксперименте происходила активация перекисного окисления липидов, на что указывает повышение МДА в

сыворотке крови контрольной группы в 2 раза и параллельно этому уменьшался показатель суммарной антирадикальной активности на 51% (p<0,05). На фоне лечения с использованием сиропа снижалась активность свободно-радикального окисления липидов, ослаблялась интенсивность образования МДА в крови в 2,6 раз (p<0,05).

В табл.2 представлены данные о содержании трансаминаз в сыворотке крови экспериментальных животных. Известно, что ферменты АлАТ и АсАТ относят к «индикаторным» (печеночноспецифическим) ферментам, активность которых повышается при повреждении ткани печени за счет гибели гепатоцитов и выхода ферментов в общий кровоток.

Результаты определения уровней АлАТ и АсАТ при остром тетрахлорметановом гепатите указывают на массивный выход трансаминаз кровь. В сыворотке крови контрольных животных повышается активность АлАТ и AcAT в 1,9 раза (p< 0.05). Применение исследуемого сиропа приводит к снижению уровня АлАТ и АсАТ. Как известно АсАТ - фермент широко распространенный в тканях, самое большое его определяет количество содержится В печени, что его важное диагностическое значение при заболеваниях этого органа. Уровень триглицеридов под действием проведенного лечения существенно не изменялся, наблюдалась тенденция к снижению холестерина. Остальные биохимические показатели (общий белок, общий билирубин, мочевина) достоверно не отличались в опытной и контрольных группах

Таблица 2.

Влияние введение сиропа на общий белок, АлАТ, АсАТ, общий билирубин, триглицериды, холестерин, мочевину в сыворотке крови крыс при введении четыреххлористого углерода, (М±m).

		Интакт		
№	Биохимические	ные	Контроль	Опытная группа
	показатели	животные	n=15	n=15
		n=15		
1.	Общий билирубин,	5,0±0,2	5,6±0,3	5,0±0,5
	мкмоль/л	3,0±0,2	3,0±0,3	
2.	Общий белок,	82,0±3,8	76,0±4,9	81,0±3,0
	г/л	02,025,0	70,044,9	01,0=3,0
3.	АлАТ (u/l)	47,0±2,8	92,0±8,3*	67,0±6.2* **
4.	AcAT (u/l)	193,0±1,5	366,5±3,3*	183,0± 1,7 **
5.	Мочевина, ммоль/л	5, 1±0,6	6,5±0,6	5,6±0,4
6.	Триглицериды,	$0,34 \pm 0,07$	0,68	0,71 ±0,07*
	ммоль/л	0,54 ±0,07	±0,08*	0,71 -0,07
7.	Холестерин ммоль/л	1,53±0,02	1,9±0,04	1,78±0,03
	* .0.05			

Примечание: * р<0.05 в сравнении с интактными

При гистологическом исследовании микропрепаратов печени выявлены явления гепатоза. При комплексном лечении используются, в том числе и гепатопротекторные препараты. В исследуемых группах архитектоника печеночных долек сохранена. В опытной группе гепатоциты в состоянии белковой дистрофии, разной степени выраженности. Отмечались очаговые внутридольковые некрозы гепатоцитов, занимающие по площади в дольке от 10 до 20 %, небольшие явления холестаза, активность купферовских клеток выражена умеренно. В контрольной группе гепатоциты в состоянии тяжелой белковой дистрофии, наблюдались их очаговые внутридольковые некрозы, занимающие по площади в дольке от 10 до 30 %, отмечались гепатоциты, нагруженные светло-коричневым пигментом. Также в трактах встречались единичные эозинофилы и отложение светло-коричневого пигмента, умеренно выраженная Купфера. Таким образом, активность клеток при

^{**}р<0.05 в сравнении с контролем

морфологическом изучении печени крыс при введении гепатотоксина обнаружен положительный гепатопротекторный эффект препарата.

Актопротекторный эффект сиропа был впервые выявлен с помощью стандартной методики – продолжительность плавания животных (модель истощающей физической нагрузки). Данные представлены в табл.1. Таблица 1. Влияние приема сиропа из вакциниума превосходного на продолжительность плавания крыс, (М±m).

No	Группа животных	Количество	Продолжительность
115	т руппа животных	животных	плавания (мин.)
1	контроль	12	19,0± 0,2
2	ОПЫТ	12	29,0± 0,3*

Примечание : p<0.001* в сравнении опыта с контролем.

На фоне исследуемого препарата увеличилась продолжительность плавания по отношению к контролю на 34%. Время стрессирующего воздействия, измеряемое от момента начала плавания до прекращения активного плавания, в контрольной группе составило – 3-5 мин, в опытной – 10-15 мин.

Информация о профильных публикациях, грантах и соисполнителях

Плаксен Н.В. и соавт. Гепатопротекторное действие сиропа из плодов вакциниума превосходного. Тихоокеанский медицинский журнал, 2014, №2, С. 59-61.

Бондаренко Д.А. Исследование гепатопротекторного действия сиропа на основе дикорастущего растения Камчатки в эксперименте. Сборник материалов XV-й Тихоокеанской научно-практической конференции студентов и молодых ученых. Владивосток, 2014, С.

Литература.

- 1. Венгеровский А.И. Методические указания по изучению гепатозащитной активности фармакологических веществ. В кн.: Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Ремедиум. 2000.-С.228-231.
- 2. Горчакова Н.А., Гудивок Я.С., Гунина Л.М. и др. Фармакология спорта.- К.: Олимп.л-ра,2010.-640с.
- 3. Дардымов И.В., Хасина Э.И. Элеутерококк. Тайны «панацеи». Санкт-Петербург. Наука,1993.-124с.
- 4. Зенков Н.К., Ланкин В.З. Окислительный стресс. Биохимические, патофизиологические аспекты. М.: Наука/Интерпериодика, 2001. 490с.
- 5. Зорикова С.П., Короткова И.П., Зориков П.С. Ранозаживляющая активность растений, содержащих флавоноиды //Естественные и технические науки. 2010. № 3. С. 152-160.
- 6. Клинико-морфологические и иммунологические аспекты парентеральных гепатитов//Ю.В. Каминский, Л.Ф. Скляр, О.Г. Полушин и др. Владивосток: Медицина ДВ, 2005.- 84 с.
- 7. Куракин В.А., Кулагин О.Л., Додонов Н.С., Царева А.А. и др. Антиоксидантная активность некоторых тонизирующих и гепатопротекторных фитопрепаратов, содержащих флавоноиды и фенилпропаноиды//Растительные ресурсы.2008. Т.44, №1.-С.122-130.
- 8. Маняхин А.Ю., Зорикова С.П., Зорикова О. Г. Биологическая активность сухого экстракта шлемника байкальского//Тихоокеанский медицинский журнал.2010.№2. –С.66-69.
- 9. Методические указания МУК 2.3.2.721-98 «2.3.2. Пищевые продукты и пищевые добавки. Определение безопасности и эффективности биологически активных добавок к пище». Утверждены 15.10.1998 г.
- 10. Саратиков А.С., Венгеровский А.И., Чучалин В.С. Экстракт солянки холмовой (лохеин)- эффективная защита печени. Томск: «STT», 2000.

- 11.Правила доклинической оценки безопасности фармакологических средств (GLP): Руководящий нормативный документ. М.: Медицина, 1992.- 78c.
- 12.European Conventiv for the Protection of Vertebrate animals used for Experimental and Other Scientific Purposes Starsbourg.18.III.1086.- URL.[Электронный ресурс] Режим доступа: htt://conventions.coe.int/Trety/rus/Treaties/Html/123.htm.Загл. с экрана.
- 13.Bartosz G, Janaszewska A, Ertel D, Bartosz M. Simpe determination of peroxyl radical-trapping capacity. Biochem Mol Biol Int 46, 1998-P.519-528,
- 14.Buege J.A., Aust S.D. Microsomal lipid peroxidation. Methods in Enzymology, Eds. By Fleischer S., Packer L.,: Academic Press, 1978. P. 302-310.