Problem W. Grass Field

Time limit 1000 ms **Mem limit** 262144 kB

There is a field of size 2×2 . Each cell of this field can either contain grass or be empty. The value $a_{i,j}$ is 1 if the cell (i,j) contains grass, or 0 otherwise.

In one move, you can choose **one row** and **one column** and cut all the grass in this row and this column. In other words, you choose the row x and the column y, then you cut the grass in all cells $a_{x,i}$ and all cells $a_{i,y}$ for all i from 1 to 2. After you cut the grass from a cell, it becomes empty (i. e. its value is replaced by 0).

Your task is to find the minimum number of moves required to cut the grass in all non-empty cells of the field (i. e. make all $a_{i,j}$ zeros).

You have to answer t independent test cases.

Input

The first line of the input contains one integer t ($1 \le t \le 16$) — the number of test cases. Then t test cases follow.

The test case consists of two lines, each of these lines contains two integers. The j-th integer in the i-th row is $a_{i,j}$. If $a_{i,j}=0$ then the cell (i,j) is empty, and if $a_{i,j}=1$ the cell (i,j) contains grass.

Output

For each test case, print one integer — the minimum number of moves required to cut the grass in all non-empty cells of the field (i. e. make all $a_{i,j}$ zeros) in the corresponding test case.

Examples

Input	Output
3 0 0 0 0 1 0 0 1 1 1 1 1	0 1 2