# **JOHN FRASER SECONDARY SCHOOL**

**SCH3U0** – **Practice Final Examination (1.5 hours)** 

| YOUR NAME:      |            |
|-----------------|------------|
| YOUR STUDENT #: |            |
| Teacher:        | Mr. Martin |

## **PLEASE NOTE:**

There should be 7 <u>exam question pages</u> plus <u>3 pages of reference tables and this cover sheet</u> in this exam paper - <u>check now that they are all there</u>

All questions are to be answered on the exam paper

Show ALL your work for the short answer section

Non-programmable calculators are allowed.

A periodic table and reference tables are provided at the end of the exam paper. Detach for quick reference.

|        | SECTION         | MARKS | TIME       |
|--------|-----------------|-------|------------|
| PART A | MULTIPLE CHOICE | 22    |            |
| PART B | SHORT ANSWER    | 52    |            |
| TOTAL  |                 | 74    | 90 MINUTES |

/74

## PART A: MULTIPLE CHOICE- (22 MARKS)

| 1.          |                                                     | s structure shows e                       | lement 117, re               | -                                 | *                                                                                    |                                       |    |
|-------------|-----------------------------------------------------|-------------------------------------------|------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|----|
|             | A) X<br>C) X                                        |                                           |                              | B)<br>D)                          | X<br>X                                                                               |                                       |    |
| 2           | How many elec                                       | etrons, protons, and                      | l neutrons are               | in [ <sup>120</sup> <sub>2</sub>  | so <b>Sn</b> 1 <sup>4+</sup>                                                         |                                       |    |
|             | A) 54 e, 50 j                                       |                                           | i neurons ure                |                                   | 50 e, 54 p <sup>+</sup> , 70 n <sup>0</sup>                                          |                                       |    |
|             | C) 46 e, 50 p                                       | o <sup>+</sup> , 70 n <sup>0</sup>        |                              | D) 5                              | 50 e, 50 p <sup>+</sup> , 120 n <sup>0</sup>                                         |                                       |    |
| 3.          | The name corre                                      | sponding to the co                        | mpound with                  | the form                          | nula Cu(NO <sub>2</sub> ) <sub>2</sub> • 7 H <sub>2</sub> O is,                      |                                       |    |
|             |                                                     | trate heptahydrate                        | В                            |                                   | er nitrogen dioxide heptahy                                                          |                                       |    |
|             | C) copper ni                                        | trite septahydrate                        |                              | D) cop                            | per(II) nitrite heptahydrate                                                         |                                       |    |
| 4           |                                                     |                                           | ion energy and               |                                   | electron affinity. What is it                                                        | t most likely to be?                  |    |
|             | <ul><li>A) a haloger</li><li>C) a noble g</li></ul> |                                           |                              |                                   | n alkali metal<br>roup 16 (VIA) element                                              |                                       |    |
|             | C) a noble g                                        | as                                        |                              | D) a U                            | Toup To (VIA) element                                                                |                                       |    |
| 5. l        | -                                                   | re represented in t                       |                              | H <sub>4</sub> ) <sub>2</sub> HP( | $O_4$ ?                                                                              | Y                                     |    |
|             | A) 0<br>B) 2                                        |                                           | D) 4<br>E) 16                |                                   |                                                                                      |                                       |    |
|             | C) 3                                                |                                           | _, -,                        |                                   |                                                                                      |                                       |    |
| 6 (         | Consider the reac                                   | tion shown below:                         |                              |                                   |                                                                                      |                                       |    |
| 0. (        | $N_2O_4 \rightarrow 2N$                             |                                           |                              |                                   |                                                                                      | 1                                     |    |
|             |                                                     | n is an example of:                       |                              | ъ.                                |                                                                                      |                                       |    |
|             | <ul><li>A) synthesis</li><li>C) combusti</li></ul>  |                                           | Γ                            |                                   | ) it is not a chemical reaction position reaction                                    | on                                    |    |
|             | C) comoustr                                         | on reaction                               | L                            | ) decoi                           | inposition reaction                                                                  |                                       |    |
| 7. <b>'</b> |                                                     | owing equations is                        | correctly bala               | nced?                             | D) 014 . Cl . 14 Cl                                                                  |                                       |    |
|             | A) $2H_2O -$<br>B) $HgO \rightarrow$                |                                           |                              |                                   | D) $2Mg + Cl_2 \rightarrow MgCl_2$<br>E) None of these                               |                                       |    |
|             | C) C + $O_2$ -                                      |                                           |                              |                                   | E) None of these                                                                     |                                       |    |
| 0.1         | r 1                                                 | 1 6 16 1                                  |                              | . 1.00                            |                                                                                      |                                       |    |
| 8. F        | ow many moiec<br>A) 9.63 x                          |                                           | de are present<br>B) 1.54    |                                   | mol of sulfur dioxide?                                                               |                                       |    |
|             | C) 3.76 x                                           |                                           | D) 2.65                      |                                   |                                                                                      |                                       |    |
| 9.9         | A) The two re<br>B) The hydro<br>C) The oxyge       | eactants are consur<br>gen is limiting by | ned simultane<br>about 700 g | ously                             | nthesis reaction. Which rea                                                          | agent is limiting?                    |    |
| 10.         |                                                     | es are in 2.55 g of s                     | sodium?                      |                                   |                                                                                      |                                       |    |
|             | A) 58.6 m                                           |                                           |                              |                                   |                                                                                      |                                       |    |
|             | B) 0.111 c<br>C) 0.0554                             |                                           |                              |                                   |                                                                                      |                                       |    |
|             | D) 9.02 m                                           |                                           |                              |                                   |                                                                                      |                                       |    |
| 11.         | The molecular f                                     | ormula of a compo                         | ound is represe              | nted by                           | $X_2Y_3Z_4$ . What is the                                                            |                                       |    |
|             | empirical f                                         |                                           |                              |                                   |                                                                                      |                                       |    |
|             | A) XYZ<br>C) X <sub>2</sub> Y <sub>3</sub> Z        |                                           |                              |                                   | B) XY <sub>3</sub> Z <sub>2</sub><br>D) X <sub>6</sub> Y <sub>4</sub> Z <sub>3</sub> |                                       |    |
|             | C) A213Z                                            | 4                                         |                              |                                   | $D/\Lambda_0 14 Z_3$                                                                 |                                       |    |
| 12.         |                                                     | entage compositio                         | n of aluminum                | in alun                           |                                                                                      |                                       |    |
|             | A) 36%<br>C) 11%                                    |                                           |                              |                                   | B) 32%<br>D) 25%                                                                     |                                       |    |
|             |                                                     |                                           |                              |                                   | 2) 20 %                                                                              |                                       |    |
| 13.         |                                                     | is <i>not</i> characteristi               |                              | C)                                | advata alaatuisitu                                                                   |                                       |    |
|             |                                                     | henolphthalein pir<br>itmus paper red     | IK                           |                                   | nducts electricity acts with an active metal to                                      | produce hydrogen gas                  |    |
|             |                                                     |                                           |                              |                                   |                                                                                      |                                       |    |
| 14.         | 67.2 g of coppe<br>of the solut                     |                                           | ssolved in enou              | igh wat                           | er to make 250 mL of solut                                                           | tion. What is the molar concentration | on |
|             | A) 2.5 mc                                           |                                           | 1.0 mol/L                    |                                   |                                                                                      |                                       |    |
|             | B) 2.0 mg                                           |                                           | 0.50 mol/L                   |                                   |                                                                                      |                                       |    |
| 15.         | Identify the con                                    | jugate acid for the                       | following reac               | tion:                             |                                                                                      |                                       |    |
|             | $CO_3^{2}(aq) + 1$                                  | •                                         | HCO <sub>3</sub> -(aq) +     |                                   | (q)                                                                                  |                                       |    |
|             | A) CO <sub>3</sub> <sup>2</sup> -                   | -                                         | B) HNC                       |                                   |                                                                                      |                                       |    |
|             | C) HCO <sub>3</sub> -                               |                                           | D) NO <sub>3</sub>           |                                   |                                                                                      |                                       |    |

| 16. What's the [H <sup>+</sup> ] of a solution with a pOH<br>A) 1.2 x 10 <sup>-9</sup> mol/L<br>C) 4.5 x 10 <sup>-2</sup> mol/L | B) 7.9 x 10 <sup>-6</sup> mol/L<br>D) 3.1 x 10 <sup>-3</sup> mol/L                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17. A solution with a pH of 10.8 is used in a A) 11.8 C) 10.7 B) 10.9 D) 9.8                                                    | ten-fold dilution. What is the pH of the new solution?                                                                                                        |
| 18. For the equation below, the volume of N $N_2$ (g) would be, $N_2$ (g) $+ 3$ $H_2$ (g) $-$ A) 44.8 L C) 3.0 L                |                                                                                                                                                               |
| 19. According to Boyle's law, the volume of temperature. How will an increase in the pre                                        | a given mass of gas is inversely proportional to the pressure at a constant ssure exerted on a gas affect its density?                                        |
|                                                                                                                                 | B) Its density will increase D) The density of only some gases will increase                                                                                  |
| 20. A particular gas occupies 15 L at 0°C. V constant?                                                                          | What volume will the gas occupy at -35°C, assuming that the pressure remains                                                                                  |
| A) 13 L<br>C) 2 L                                                                                                               | B) 17 L<br>D) 10 L                                                                                                                                            |
| 21. What is the mass of 5.6 L of gaseous amr A) 0.25 g B) 4.3 g C) 8.5 g D) 22.4 g                                              | nonia, NH <sub>3</sub> , at STP?                                                                                                                              |
| $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$                                                                                         | react to produce ammonia, NH <sub>3</sub> , according to the following equation: seasured at 101.3 kPa and 273 K, are needed to react with 11.2 L of nitrogen |
| DADER CHODE ANGWED (DDG                                                                                                         | DRI EM COL VIDIC                                                                                                                                              |
| -                                                                                                                               | DBLEM SOLVING [52 MARKS] wided. FULL SOLUTIONS REQUIRED. For of significant digits and units where applicable.                                                |
| 1. a) Write the following in standar particles: <b>Cesium ion</b> (2 marks                                                      | ard atomic notation and determine the number of subatomic                                                                                                     |
|                                                                                                                                 |                                                                                                                                                               |

b) State and explain the trends in atomic radius and ionization energy for the alkali metals (2 marks)

c) Use the given mass spectrometry data to determine the average atomic mass and thus the identity of the element (3 marks):



2. a) **Name** the following compounds (1 mark each, 5 marks total)

|                                   | 2. a) Name the following compounds (1 mark each, 3 marks total) |            |  |
|-----------------------------------|-----------------------------------------------------------------|------------|--|
| Chemical Formula                  |                                                                 | IUPAC Name |  |
| $N_2S_3$                          |                                                                 |            |  |
| Sn(SO <sub>4</sub> ) <sub>2</sub> |                                                                 |            |  |
| $H_3AsO_{3(aq)}$                  |                                                                 |            |  |
| MgO₂ • 6H <sub>2</sub> O          |                                                                 |            |  |
| $H_2S_{aq}$                       |                                                                 |            |  |

b) Draw the most appropriate Lewis structure for each of the following (2 marks each, 6 marks total)

| i) SO <sub>2</sub> | ii) NH <sub>4</sub> CN |
|--------------------|------------------------|
| iii) HOCN          |                        |

- 3. Complete the following chemical equations by writing in the correct products (including state) and balancing where necessary. Classify each reaction by stating the type (2 marks each, 10 marks total).
- a) LiOH  $\rightarrow$
- b)  $C_5H_9O$  +  $O_2$   $\rightarrow$
- c)  $Fe_2O_3$  + Mg  $\rightarrow$
- d)  $CO_2$  +  $H_2O$   $\rightarrow$
- e)  $AlI_3$  +  $HgCl_2$   $\rightarrow$ 
  - 4. Calculate the average mass, in grams, of one atom of mercury (2 marks)

ANS:\_\_\_\_\_

5. A 5.015 g sample of a compound that contained hydrogen, carbon, and oxygen was combusted in a carbon-hydrogen analyzer. The combustion produced 7.35 g of carbon dioxide and 2.99 g of water. The molar mass of the compound is 60.05 g/mol. What is the molecular formula of the compound? (4 marks)

ANS:\_\_\_\_\_

The following reaction has a 71.7% yield: 2NO<sub>(g)</sub> + O<sub>2(g)</sub> → 2NO<sub>2(g)</sub>
 Calculate the actual mass of water that will form if 51.24 g of each reactant is used in the reaction. (4 marks)

ANS:\_\_\_\_

7. Refer to the given Solubility Curve (Figure 1), and answer the following:



Figure 1: Solubility Curve

- a) What mass of NH<sub>4</sub>Cl will dissolve in 100 mL of water at 50 °C? (1 mark)
- b) What minimum temperature is required to dissolve 24 g of KNO<sub>3</sub> in 40 g of water? (1 mark)
- c) Determine the molarity of a saturated solution of NaCl at  $25~^{\circ}\text{C}$  (1 mark)
- d) What term best describes a solution that contains 60 g of dissolved KCl per 100 mL  $H_2O$  at 80 °C? (1 mark)
- e) Briefly explain why the curve for  $NH_3$  shows a different trend from the other curves. (2 marks)

8. Suppose a beaker contains 35.0 mL of 0.175 M sulfuric acid. How many milliliters of 0.250 M sodium hydroxide must be added to react completely with the sulfuric acid? (4 marks)

ANS:\_\_\_\_\_

9. A bubble of methane gas, CH<sub>4</sub>, is released from a deep bog. The temperature at the bottom of the bog is 12°C with a pressure of 375 kPa. If the bubble has a volume of 475 mL at the bottom, what will the new volume be, just underneath the surface of the bog water level, if the outside temperature is 35°C and the pressure is 99.5 kPa? (2 marks)

ANS:\_\_\_\_

10. Calculate the volume of water vapour that is produced from the combustion of 15.0 g of ethylene at 25°C and 100 kPa. (2 marks)

$$C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(g)}$$

ANS:\_\_\_\_\_

## **Inorganic Nomenclature Reference Sheet**

**Table 1.1: Common Polyatomic Ions** 

| Ion                              | Name               | Ion                | Name             |
|----------------------------------|--------------------|--------------------|------------------|
| CN <sup>-</sup>                  | cyanide            | $H_2PO_3^-$        | dihydrogen       |
|                                  |                    |                    | phosphite        |
| CH <sub>3</sub> COO <sup>-</sup> | acetate            | $H_2PO_4^-$        | dihydrogen       |
|                                  |                    |                    | phosphate        |
| ClO-                             | hypochlorite       | MnO <sub>4</sub> - | permanganate     |
| ClO <sub>2</sub> -               | chlorite           | NO <sub>2</sub> -  | nitrite          |
| ClO <sub>3</sub> -               | chlorate           | NO <sub>3</sub> -  | nitrate          |
| ClO <sub>4</sub>                 | perchlorate        | OCN-               | cyanate          |
| HCO <sub>3</sub> -               | hydrogen carbonate | HS <sup>-</sup>    | hydrogen sulfide |
| HSO <sub>3</sub> -               | hydrogen sulfite   | OH-                | hydroxide        |
| HSO <sub>4</sub>                 | hydrogen sulfate   | SCN <sup>-</sup>   | thiocyanate      |

| Ion                             | Name               | Ion                             | Name        |
|---------------------------------|--------------------|---------------------------------|-------------|
| $CO_3^{2-}$                     | carbonate          | $O_2^{2-}$                      | peroxide    |
| $C_2O_4^{2-}$                   | oxalate            | SiO <sub>3</sub> <sup>2</sup> - | silicate    |
| CrO <sub>4</sub> <sup>2-</sup>  | chromate           | $SO_3^{2-}$                     | sulfite     |
| $\text{Cr}_2\text{O}_7^{2-}$    | dichromate         | SO <sub>4</sub> <sup>2-</sup>   | sulfate     |
| HPO <sub>3</sub> <sup>2-</sup>  | hydrogen phosphite | $S_2O_3^{2-}$                   | thiosulfate |
| HPO <sub>4</sub> <sup>2</sup> - | hydrogen phosphate |                                 |             |

| Ion                   | Name     | Ion                            | Name      |
|-----------------------|----------|--------------------------------|-----------|
| $AsO_3^{3-}$          | arsenite | PO <sub>3</sub> <sup>3</sup> - | phosphite |
| $AsO_4$ <sup>3-</sup> | arsenate | PO <sub>4</sub> <sup>3-</sup>  | phosphate |

| Ion               | Name     |
|-------------------|----------|
| $\mathrm{NH_4}^+$ | ammonium |

Table 1.2: Naming oxyions (polyatomic ions containing oxygen)

| Table Halling exploite (belyateline it | no containing oxygon,  |
|----------------------------------------|------------------------|
| Prefix and suffix                      | Number of oxygen atoms |
| hypoite                                | x-2 oxygen atoms       |
| ite                                    | x-1 oxygen atoms       |
| ate                                    | x oxygen atoms         |
| perate                                 | x+1 oxygen atoms       |

**Table 1.3: Numerical Prefixes for Covalent compounds** 

|        | Take to the trainer take to take the container to the con |        |        |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--|
| Number | Prefix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number | Prefix |  |
| 1      | mono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6      | hexa   |  |
| 2      | di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7      | hepta  |  |
| 3      | tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8      | octa   |  |
| 4      | tetra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9      | nona   |  |
| 5      | penta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10     | deca   |  |

#### **Activity Series Halogen Series**

Metals Lithium\* Potassium\* Barium\* Calcium\* Sodium\* Magnesium Aluminum Zinc Chromium Iron Cadmium Cobalt Nickel Tin Lead Hydrogen Copper Mercury Silver Platinum Gold

#### **Halogens** Fluorine Chlorine Bromine Iodine



\*displace hydrogen from cold water

### **Solubility Rules**

The rules are meant as a guide only. There are exceptions to these rules- when an exception is encountered, do the OPPOSITE of the given rule.

1. Salts of the alkali metals are soluble. (Note: The alkali metals are in group 1.)

e.g. If M = Li, Na or K, then MX,  $M_2X$ ,  $M_3X$ , etc. are soluble regardless of what X is.

2. Ammonium (NH<sub>4</sub><sup>+</sup>) salts are soluble.

e.g. NH<sub>4</sub> X, (NH<sub>4</sub>)<sub>2</sub>X, (NH<sub>4</sub>)<sub>3</sub>X, etc. are soluble regardless of what X is.

3. Nitrates (NO<sub>3</sub><sup>-</sup>) are soluble.

e.g. MNO<sub>3</sub>, M(NO<sub>3</sub>)<sub>2</sub>, M(NO<sub>3</sub>)<sub>3</sub>, etc. are soluble regardless of what M is.

4. Halides i.e. chlorides (Cl $^{\scriptscriptstyle -}$  ), bromides (Br $^{\scriptscriptstyle -}$  ) and iodides (I $^{\scriptscriptstyle -}$  ) are soluble

Exceptions: Ag+, Hg+, Hg2+, Cu+, Pb2+

e.g. If X = Cl, Br or I, then MX, MX<sub>2</sub>, MX<sub>3</sub>, etc. are soluble unless M = Pb, Hg or Ag.

5. Sulfates (SO4 $^2$ -) are soluble Exceptions: Ca $^2$ +, Sr $^2$ +, Ba $^2$ +, Pb $^2$ +, Hg $^2$ +, Ag $^+$ e.g. M2SO4, MSO4, M2(SO4)3, etc. are soluble unless M is from group 2 (the alkaline earths) or M = Pb, Hg or Ag.

- 6. Carbonates (  $CO_3^{2-}$ ), phosphates ( $PO_4^{3-}$ ), and sulfides ( $S^{2-}$ ) are insoluble except for
- (i) the carbonates/phosphates/sulfides of the alkalis (because of Rule 1), and
- (ii) ammonium carbonate/phosphate/sulfide (because of Rule 2).

7. Hydroxides (OH<sup>-</sup>) are insoluble or slightly soluble except for the hydroxides of the alkalis (because of Rule 1).

Note: The hydroxides of group 2 (the alkaline earth metals) are slightly soluble. Virtually all other hydroxides are insoluble. Also, ammonium hydroxide is slightly soluble.

|                                | 0                                   | 0                                    | 0                                       | 0                                          | 0                                                   | 0                                         | #<br>tium                                 | £ _                                      | the man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                              | 2 <b>He</b> Helium 4.0              | 10 <b>Ne</b> Neon 20.2               | 18<br><b>Ar</b><br>Argon<br>39.9        | 36<br><b>Kr</b><br>Krypton<br>83.8         | 54<br><b>Xe</b><br>Xenon<br>131.3                   | 86<br><b>Rn</b><br>Radon<br>(222)         | Uuo*<br>Ununoctium<br>(294)               | 71 (Lu Lutetium 175.0                    | 103 3.<br>Lr<br>Lawrencium<br>(262)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | 17                                  | 1 - 0                                | 1 - e                                   | 1-<br>ne                                   | 1-1                                                 | 1-<br>J)                                  |                                           | 3+<br>+2<br>0.                           | 3+<br>3+<br>3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                                     | 9 <b>F</b> Fluorine 19.0             | 17<br>Chlorine<br>35.5                  | 35 <b>Br</b> Bromine 79.9                  | 53 <b> </b> lodine 126.9                            | 85<br><b>At</b><br>Astatine<br>(210)      |                                           | 70 <b>Yb</b> Ytterbium 173.0             | 102 No Nobelium (259)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                | 16                                  | . 8 2-<br><b>O</b><br>Oxygen<br>16.0 | 2-1                                     | 2-<br>nium<br>0                            | 2-<br>ium<br>7.6                                    | 2+<br>4+<br>4+<br>9)                      | Uuh*<br>Uunh*<br>Ununhexium<br>(292)      | * Temporary names    68                  | 101 2+<br>Md 3+<br>Mendelevium<br>(258)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                |                                     |                                      | . 16<br>Suffur<br>32.1                  | 34 <b>Se</b> Selenium 79.0                 | 52 <b>Te</b> Tellurium 127.6                        | 84 <b>Po</b> Polonium (209)               |                                           | rary nan 69 <b>Tm</b> Thullum 168.9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | 15                                  | 7 3–<br><b>N</b><br>Nitrogen<br>14.0 | 15 3-<br><b>P</b><br>Phosphorus<br>31.0 | 6. 0 o.                                    | 51 3+<br><b>Sb</b> 5+<br>Antimony<br>121.8          | 83 3+<br><b>Bi</b> 5+<br>Bismuth<br>209.0 | Uup*<br>Ununpentium<br>(288)              | Tempor<br>68 3+<br><b>Er</b><br>Erbium   | 100 3+<br>Fm<br>Fermium<br>(257)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                |                                     | 7 <b>N</b> itroger 14.0              | 15<br><b>P</b><br>Phosph<br>31.0        | <b>As</b> Arsenic 74.9                     |                                                     |                                           | 115<br>Uul<br>(288<br>* Ten               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | 13 14                               | 6<br><b>C</b><br>Carbon<br>12.0      |                                         | 4+ 32 4+ <b>Ge</b> Germanium 72.6          | 50 4+<br><b>Sn</b> 2+<br>Tin<br>118.7               | 82 2+<br><b>Pb</b> 4+<br>Lead<br>207.2    | Uuq*<br>Ununquadium<br>(289)              | 67 3+<br><b>Ho</b><br>Holmium<br>164.9   | 99 3+<br>Es<br>Einsteinium<br>(252)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                |                                     |                                      |                                         |                                            | 3+ 50<br><b>Sn</b><br>= 118                         | 1+ 82<br>3+ <b>Pb</b><br>Lead             |                                           | +                                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                     | 5<br><b>B</b><br>Boron<br>10.8       | 10 11 12 Aluminum 27.0                  | 2+ 31 3+ <b>Ga</b> Gallium 69.7            | E 45                                                | m 4.                                      | 113<br><b>Uut</b> *<br>Ununtrium<br>(284) | rrosiu                                   | 98 3+<br>Cf<br>Californium<br>(251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                |                                     |                                      |                                         |                                            |                                                     | 2+ 81<br>1+ <b>T</b> Thal                 |                                           | 3+ 66<br>4+ <b>Dy</b>                    | 3+ 98<br>4+ <b>Cf</b><br>0 Calif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                |                                     |                                      |                                         | 30 2 <b>Zn</b> Zinc 65.4                   | 48 2 Cd Cadmium 112.4                               | 80 2<br><b>Hg</b> 1<br>Mercury<br>200.6   | 112<br><b>Uub</b> *<br>Ununbium<br>(285)  | 65 3 4 4 4 1 Tebium 158.9                | 97 3<br>BK 4<br>Berkelium<br>(247)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ents                           | (S)                                 | Db synthetic                         |                                         | 2+ 3<br>1+ 2<br>8                          | +<br>4 0 9 +                                        | ++<br>∞ <b>-</b> ≥ α                      |                                           | +                                        | + c a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Periodic Table of the Elements | narge(                              |                                      |                                         | 29 2<br>Cu copper 63.5                     | 47 Ag<br>Silver<br>107.9                            | 79 Sold Gold 197.0                        | H11<br>Rg<br>Roentgenium<br>(272)         | 64 3. <b>Gd</b> Gadolinium 157.3         | 96 (Cm Curium (247)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | Number —                            |                                      |                                         | † † † †                                    | <i>t.</i> ±                                         | 2++<br>+++ # ## +++                       | 5.5                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f th                           |                                     |                                      |                                         | 28 <b>Ni</b> Nickel 58.7                   | 90.7<br>46<br><b>Pd</b><br>Palladium<br>106.4       |                                           | 110<br>DS<br>Darmstad<br>(281)            | 63 (63 Eu Europium 152.0                 | 95 3+<br>Am 4+<br>Americium 6+<br>(243)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e 0.                           |                                     |                                      |                                         | 44                                         | £ <del>†</del>                                      | £ <del>†</del>                            |                                           | + +                                      | 4 4 6 6 4 4 4 6 6 4 4 4 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| abl                            |                                     | O natural                            | 6                                       | 27<br><b>Co</b><br>Cobalt<br>58.9          | 45<br><b>Rh</b><br>Rhodium<br>102.9                 | 77                                        | 109<br>Mt<br>Meitnerium<br>(266)          | 62 3<br><b>Sm</b> 4<br>Samarium          | 94 4+ Pu 6+ Puronium 5+ (244)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>:</u>                       |                                     |                                      |                                         | 5 4 5                                      | # 4 <sub>E</sub> _                                  | £ 4<br>5 01                               | 5 -                                       | 3+<br>nium                               | 4.5<br>+ 4.3<br>+ |
| rioc                           |                                     |                                      | ∞                                       | 26 <b>Fe</b> Iron 55.8                     | 44 3. <b>Bu</b> 4. Ruthenium 101.1                  | 76<br><b>Os</b><br>Osmium<br>190.2        | 108<br>Hs<br>Hassium<br>(265)             | 61 3-<br>Pm<br>Promethium<br>(145)       | 93 5+<br>Np 3+<br>Neptunium 6+<br>(237)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pe                             |                                     |                                      | 7                                       | 2+<br>3+<br>4+<br>ese                      | 7+<br>tium                                          | 4 t = 2                                   | u ()                                      | 3+<br>S                                  | 6+<br>+ 4+<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | Atomic<br>Symbol<br>Name            |                                      | 17                                      | 25 2-<br><b>Mn</b> 3-<br>Manganese<br>54.9 | 43 7<br>TC<br>Technetium<br>(98)                    | 75<br><b>Re</b><br>Rhenium<br>186.2       | 107<br>Bh<br>Bohrium<br>(262)             | 60 3-<br><b>Nd</b><br>Neodymium<br>144.2 | 92<br><b>U</b><br>Uranium<br>238.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                |                                     | metalloid<br>non-metal               | 9                                       | 3+<br>2+                                   | 52.0<br>42 2+<br><b>Mo</b> 3+<br>Molybdenum<br>95.9 | 74 6+ W Tungsten 183.8                    | Sg<br>Seaborgium<br>(263)                 | 59 3+<br><b>Pr</b> 4+<br>Praseodymium    | 91 5+<br><b>Pa</b> 4+<br>Protactinium<br>231.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                | metal                               |                                      |                                         | 24 3<br><b>Cr</b> 2<br>Chromium<br>52.0    | 42<br><b>Mo</b><br>Molybde<br>95.9                  |                                           |                                           | 59 <b>Pr</b> Praseodyr                   | 91 <b>Pa</b> Protactinii 231.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                                     |                                      | 2                                       | 5+<br>4+<br>9                              | \$ <del>1</del> 2 <del>1</del> 3                    | 73 5+ <b>Ta</b> Tantalum 180.9            |                                           | £ + +                                    | 4<br>+<br>0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                     |                                      |                                         | 23 <b>V V</b> Vanadium 50.9                |                                                     |                                           |                                           | 58 <b>Ce</b> Cerium 140.1                | 90<br><b>Th</b><br>Thorium<br>232.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                |                                     |                                      | 8 4                                     | 4+<br>3+<br>9                              | 40 4+ <b>Zr</b> Zirconium 91.2                      | 4+<br>3.5                                 | Ac Rf Actinium Rutherfordium (227) (261)  |                                          | - <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                                     |                                      |                                         | 22 <b>Ti</b> Titanium 47.9                 |                                                     | La Hf Hamium Hamium 138.9                 |                                           | .00                                      | Any value in parentheses is the mass of the most stable or best known isotope for elements that do not occur naturally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                |                                     |                                      |                                         | Scandium 45.0                              | 39 × Yttrium 88.9                                   |                                           |                                           | at 12                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | I                                   |                                      |                                         |                                            |                                                     |                                           |                                           | Based on mass of C-12 at 12.00.          | Any value in parentheses is the mass of the most stable or best known isot elements that do not occi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                | 2                                   | 4 2+ <b>Be</b> Beryllium 9.0         | 12 2+<br><b>Mg</b><br>Magnesium<br>24.3 | 20 2+<br><b>Ca</b><br>Calcium<br>40.1      | 38 2+<br><b>Sr</b><br>Strontium<br>87.6             | 56 2+ <b>Ba</b> Barium 137.3              | 88 2+<br><b>Ra</b><br>Radium<br>(226)     | s of (                                   | paren<br>f the<br>knov<br>do n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                                     |                                      |                                         |                                            |                                                     |                                           |                                           | ת ר mas                                  | ass or<br>best<br>that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>—</b>                       | 1 1+<br><b>H</b><br>Hydrogen<br>1.0 | 3 1+<br><b>Li</b><br>Lithium<br>6.9  | 11 1+<br>Na<br>Sodium<br>23.0           | 19 1+<br><b>K</b><br>Potassium<br>39.1     | 37 1+ <b>Rb</b> Rubidium 85.5                       | 55 1+ <b>Cs</b> Cesium 132.9              | 87 1+ <b>Fr</b> Francium (223)            | ed or                                    | Any value in parenthese is the mass of the most stable or best known iso elements that do not oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | 1.0                                 |                                      |                                         |                                            |                                                     |                                           |                                           | Bas                                      | Any<br>is tl<br>stal<br>eler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | <del></del>                         | 7                                    | $\mathbf{c}$                            | 4                                          | 2                                                   | 9                                         | 7                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |