MMC-Univ. Minho 2020/2021

Lógica da Programação

Teste 06.01.2021

(Duração: 3h)

Nota: Justifique adequadamente todas as suas respostas.

- **1. a)** Construa uma demonstração de $(\neg p_0 \lor p_1) \to (p_0 \to p_1)$ em DNP_i e diga se o sequente $\Rightarrow (\neg p_0 \lor p_1) \to (p_0 \to p_1)$ é derivável em DNP_c.
 - b) Mostre que $(p_0 \to p_1) \to (\neg p_0 \lor p_1)$ é teorema de DNP_c e que, no entanto, não é teorema de DNP_i. (Sugestão: utilize teoremas de correção e completude.)
- 2. Recorrendo a indução em derivações, mostre que se $\Gamma \Rightarrow \varphi$ é derivável em $\mathrm{DNP}_i^{\Rightarrow_w}$, então $\Gamma \vdash_i \varphi$, para o fragmento com os conetivos \neg e \bot .
- 3. Seja L a linguagem que contém apenas o símbolo de relação unário R. Seja φ a L-fórmula $\exists x_0(\neg R(x_0) \lor \forall x_0 R(x_0))$. Seja $K = (\{w_0, w_1\}, \leq, \{E_w\}_{w \in \{w_0, w_1\}})$ a L-estrutura de Kripke onde: $w_0 < w_1$; $dom(E_{w_0}) = dom(E_{w_1}) = \{d_0, d_1\}$; a função interpretação de E_{w_i} é notada por I_{w_i} e estas funções são tais que $I_{w_0}(R) = \{d_0\}$, $I_{w_1}(R) = \{d_0, d_1\}$.
 - a) Para cada $w \in \{w_0, w_1\}$, diga se se tem (i) $w \Vdash \forall x_0 R(x_0)[a]$ e se se tem (ii) $w \Vdash \varphi[a]$, para qualquer atribuição a em E_w .
 - **b)** Diga se φ é uma fórmula válida em lógica intuicionista.
- 4. Considere o λ -termo $M_1 = (\lambda x_1.(\lambda x_2.x_3x_1)x_1)x_0.$
 - a) Determine $\{N \in \Lambda : M_1 \to_{\beta}^* N\}$.
 - **b)** Diga se M_1 admite forma β -normal.
 - c) Mostre que M_1 é tipificável (para algum contexto Γ e para algum tipo σ).
- **5**. Considere o combinador $\mathsf{F} = \lambda x_0 x_1 x_2 . x_1 (x_1 (x_0 x_1 x_2))$.
 - a) Mostre que, para todo $n \in \mathbb{N}_0$, $\mathsf{F} \mathbf{c}_n =_{\beta} \mathbf{c}_{n+2}$.
 - **b)** Diga se a função $f: \mathbb{N}_0 \to \mathbb{N}_0$ tal que f(0) = 0 e f(n) = n + 2, para todo n > 0, é λ -definível.
- **6**. Mostre indutivamente que, para quaisquer $\Gamma, \Gamma', M, \sigma$, se $\Gamma \vdash M : \sigma$ e $\Gamma \subseteq \Gamma'$, então $\Gamma' \vdash M : \sigma$. (Considere tipificação à la Curry.)
- 7. Considere as fórmulas $\varphi_1 = (p_0 \to p_1) \to p_2$ e $\varphi_2 = p_0 \to (p_1 \to p_2)$.
 - a) Indique uma derivação \mathcal{D} em DNP $_i^{\Rightarrow_w}$ com classes de hipóteses do sequente $\Rightarrow \varphi_1 \to \varphi_2$ e determine o λ -termo à la Church $t(\mathcal{D})$ associado a \mathcal{D} .
 - **b)** Diga se o tipo $t(\varphi_1 \to \varphi_2)$ é habitado.
 - c) Mostre que $\varphi_2 \to \varphi_1$ não é teorema de DNP_c e diga se o tipo $t(\varphi_2 \to \varphi_1)$ é habitado.