CS5760: Cryptanalysis of DES and DES-like Iterated Cryptosystems

Gautam Singh

Indian Institute of Technology Hyderabad

February 3, 2025

① Differential Cryptanalysis

2 Probability Analysis of S Boxes

3 Characteristic

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Per DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E.
 - Invariant in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after S boxes.
 - Invariant in XOR operation connecting rounds.

Figure 1: *F* function of DES.

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Per DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E.
 - Invariant in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after S boxes.
 - Invariant in XOR operation connecting rounds.
- S boxes are nonlinear. Probability analysis performed between input and output XOR.

Figure 1: *F* function of DES.

① Suppose $Si'_I = Si_I \oplus Si'_I$ is the input XOR to the *i*-th S box, and Si'_O is the output XOR $(1 \le i \le 8)$.

- Suppose $Si'_I = Si_I \oplus Si'_I^*$ is the input XOR to the *i*-th S box, and Si'_O is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which Si'_I → Si'_O.
 - 64-by-16 joint probability mass function.

- Suppose $Si'_{l} = Si_{l} \oplus Si'_{l}^{*}$ is the input XOR to the *i*-th S box, and Si'_{O} is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'₁, Si'_O) equals the number of 6-bit key blocks Si_K for which Si'₁ → Si'_O.
 - 64-by-16 joint probability mass function.
- This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - \approx 80% entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{I} and Si'_{O} , we can narrow down Si_{K} to a few possibilities.

- Suppose $Si'_{l} = Si_{l} \oplus Si'_{l}^{*}$ is the input XOR to the *i*-th S box, and Si'_{O} is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'₁, Si'_O) equals the number of 6-bit key blocks Si_K for which Si'₁ → Si'_O.
 - 64-by-16 joint probability mass function.
- This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - \approx 80% entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{I} and Si'_{O} , we can narrow down Si_{K} to a few possibilities.
- **4** *i*-th S box contributes probability p_i for $Si'_I \rightarrow Si'_O$.
 - For $X \to Y$ over a round, $P = \prod_i p_i$.
 - Over *n* rounds, $P = \prod_{i=1}^{n} P_i$.

- ① Suppose $Si'_I = Si_I \oplus Si^*_I$ is the input XOR to the *i*-th S box, and Si'_O is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which $Si'_I \rightarrow Si'_O$.
 - 64-by-16 joint probability mass function.
- This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - \approx 80% entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{I} and Si'_{O} , we can narrow down Si_{K} to a few possibilities.
- **4** *i*-th S box contributes probability p_i for $Si'_I \rightarrow Si'_O$.
 - For $X \to Y$ over a round, $P = \prod_i p_i$.
 - Over *n* rounds, $P = \prod_{i=1}^{n} P_i$.

Desirable for cryptanalysis: high P with large \underline{n} .

Characteristic

Formalizes notion of high-probability plaintext XORs.

Definition (Characteristic)

An *n-round chracteristic* is a tuple $\Omega=(\Omega_P,\Omega_\Lambda,\Omega_T)$ where $\Omega_P=(L',R')$ and $\Omega_T=(l',r')$ are m bit numbers, $\Omega_\Lambda=(\Lambda_1,\ldots,\Lambda_n)$, $\Lambda_i=(\lambda_I^i,\lambda_O^i)$ and $\lambda_I^i,\lambda_O^i,L',R',l',r'$ are $\frac{m}{2}$ bit numbers and m is the block size of the cryptosystem satisfying

$$\lambda_I^1 = R' \tag{1}$$

$$\lambda_I^2 = L' \oplus \lambda_O^1 \tag{2}$$

$$\lambda_I^n = r' \tag{3}$$

$$\lambda_I^{n-1} = I' \oplus \lambda_O^n \tag{4}$$

$$\forall \ 1 < i < n, \ \lambda_O^i = \lambda_I^{i-1} \oplus \lambda_I^{i+1} \tag{5}$$