Deep Learning for NLP Recurrent Neural Networks

Nils Reimers

Course-Website: www.deeplearning4nlp.com

Recommended Readings

■ This folder contains an implementation that is similar to Lample et al., 2016, *Neural Architectures for Named Entity Recognition*

BiLSTM for Sequence Classification

- Forward LSTM reads all tokens until target token
- Backward LSTM reads all tokens until target token
- Output of both LSTMs are concatenated and fed into a softmax-classifer

BiLSTM for Sequence Classification

We apply this structure to the whole sentence

Preprocessing

- We apply online learning (training one sentence per time)
 - Through this trick, we don't need to pad our sentences
 - We must just Python lists and cannot use numpy arrays
- Word indices for the trainings data:
 - [[4, 5, 6], #First sentence, e.g. 'I am John' [5, 7, 9, 1, 2], #Second sentence, e.g. 'Hello PAUL MIKE JOHNSON!' ...]
- We converted the tokens to lower case, so we have case information:
 - [[1, 0, 1], #e.g.: initialUpper allLower initialUpper [1, 3, 3, 3, 4] #e.g.: initialUpper allUpper allUpper allUpper allUpper other]
- Our labels look like:
 - [[0, 0, 1], #e.g.: O O B-PER [0, 1, 2, 2, 0], #e.g.: O B-PER I-PER I-PER O ...]

