Parallel Implementation of AES Algorithm

Ali Khadangi Atiye Bonakdar

AES Algorithm

AES-128 encryption algorithm works by taking a 128-bit plaintext block and applying a series of substitution, permutation, and mixing operations using a key of 128 bits. This process involves multiple rounds (typically 10 rounds for AES-128) to transform the plaintext into ciphertext. The key schedule generates round keys used in each round to mix the data. The final output is the encrypted ciphertext.

System Specifications

- CPU:
 - Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz
 - Cores: 4
 - Logical processors: 8
- Cache:
 - L1 cache: 320 KB
 - L2 cache: 2.0 MB
 - L3 cache: 8.0 MB
- RAM:
 - 16 GB DDR4 2667 MHz

Pseudocode

```
Require:
   number of users, users;
   buffered users' data, uData;
   users' data length, uLens;
   users' keys, uKeys;
Ensure: uData are the AES ciphertext
 1: for i = 1 to users do
      extend uKeys[i] to get a user's extended key exKeys[i];
      #pragma omp parallel for num_threads(WORK_THREADS);//where WORK_THREAD rep-
      resents the number of threads in CPU. Usually it equals the number of cores of CPU.
      for j = 1 to WORK\_THREADS do
        encrypt a part of the i-th user's data uData[i][j \times uLens[i]/WORK\_THREADS], whose
        size is uLens[i]/WORK_THREADS;
      end for
 7: end for
```

Parallel Loop

```
for(int i = 0; i < uData.size(); i++) {</pre>
    n = uLens[i];
    byte *cipher = new byte[n];
    KeyExpansion( inputKey: uKeys[i], expandedKeys: expandedKey);
    omp_set_num_threads(8);
    #pragma omp parallel for schedule(auto)
    for(int curr_index = 0 ; curr_index<uLens[i] ; curr_index+=16){</pre>
        AddRoundKey( state: uData[i] + curr_index , RoundKey: expandedKey);
        for(int n_rounds = 1 ; n_rounds<=10 ; ++n_rounds)</pre>
            Round( state: uData[i] + curr_index, RoundKey: expandedKey + (n_rounds*16), isFinal: (n_rounds==10));
    cipher = uData[i];
    ciphers.push_back(move( t cipher));
```


Parallel for 10000 plaintext

Result tables

Binding	TRUE	FALSE
Static	1374	1246
Dynamic	1375	1384
Guided	1317	1375

	Static	Dynamic	Guided
8	1513	1262	1275
16	1187	1363	1268
Default	1781	4920	1339

Threads	Time(ms)
1	5057
2	3722
4	2415
8	1886
10	1970
12	2514
14	3722

	Serial	Parallel (8 threads)	SpeedUp
6 (320 KB)	33	10	3.3
40 (2 MB)	228	114	2
160 (8 MB)	905	375	2.41
1000	5057	1886	2.68
10000	44630	12265	3.64

Thanks