

256K x 8 CMOS EPROM

Features

- CMOS for optimum speed/power
- High speed
 - $-t_{AA} = 70 \text{ ns max.}$
- Low power
 - —140 mW max.
 - Less than 550 μW when deselected
- Byte-wide memory organization
- 100% reprogrammable in the windowed package
- EPROM technology
- Capable of withstanding >2001V static discharge
- Available in
 - -32-pin PLCC
 - -32-pin TSOP-I
 - 32-pin, 600-mil plastic or hermetic DIP
 - 32-pin hermetic LCC

Functional Description

The CY27C020 is a high-performance, 2-megabit CMOS EPROM organized in 256 Kbytes. It is available in industry-standard 32-pin, 600-mil DIP, 32-pin LCC and PLCC, and 32-pin TSOP-I packages. The CY27C020 is available in windowed and opaque packages. Windowed packages allow the device to be erased with UV light for 100% reprogrammability.

The CY27C020 is equipped with a power-down chip enable (\overline{CE}) input and output enable (\overline{OE}) . When \overline{CE} is deasserted, the device powers down to a low-power standby mode. The \overline{OE} pin three-states the outputs without putting the device into standby mode. While \overline{CE} offers lower power, \overline{OE} provides a more rapid transition to and from three-stated outputs.

The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms. The EPROM cell requires only 12.75 V for the supervoltage and low programming current allows for gang programming. The device allows for each memory location to be tested 100%, because each location is written to, erased, and repeatedly exercised prior to encapsulation. Each device is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.

The CY27C020 is read by asserting both the \overline{CE} and the \overline{OE} inputs. The contents of the memory location selected by the address on inputs $A_{17}-A_0$ will appear at the outputs O_7-O_0 .

Pin Configurations (continued)

TSOP Top View

Selection Guide

_		27C020-70	27C020-90	27C020-120	27C020-150	27C020-200
Maximum Access Time (ns)		70	90	120	150	200
CE Access Time (ns)		70	90	120	150	200
OE Access Time (ns)	OE Access Time (ns)		35	40	50	60
I _{CC} ^[1] (mA) Power Supply Current	Com'l	25	25	25	25	25
	Mil		30	30	30	30
I _{SB} ^[2] (μA) CMOS Stand-by Current		100	100	100	100	100
I _{SB} ^[3] (mA) TTL Stand-by Current		1	1	1	1	1

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	-65°C to $+150$ °C
Ambient Temperature with Power Applied	−55°C to +125°C
Supply Voltage to Ground Potential	0.5V to $+7.0V$
DC Voltage Applied to Outputs in High Z State	0.5V to +5.5V
DC Input Voltage	-3.0V to +7.0V

20 input volume vivia vivia	•
Transient Input Voltage -3.0 V for <20	ns
DC Program Voltage)V

1. $V_{CC} = Max$, $I_{OUT} = 0$ mA, f=5 MHz. 2. $V_{CC} = Max$, $\overline{CE} = V_{CC} - 0.3V$ to $V_{CC} + 1.0V$. 3. $V_{CC} = Max$, $\overline{CE} = V_{IH}$.

UV Erasure	Wsec/cm ²
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	$ m v_{cc}$
Commercial	0°C to +70°C	$5V \pm 10\%$
Industrial ^[4]	−40°C to +85°C	5V ± 10%
Military ^[5]	−55°C to +125°C	$5V \pm 10\%$

- 4. Contact a Cypress representative for industrial temperature range specification.

 5. T_A is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range^[6,7]

Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -400 \mu A$		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.1 \text{ mA}$			0.45	V
$V_{ m IH}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0	V _{CC} +0.5	V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs			0.8	V
I_{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$		-10	+10	μΑ
I_{OZ}	Output Leakage Current	$\begin{aligned} &GND \leq V_{OUT} \leq V_{CC}, \\ &Output \ Disable \end{aligned}$	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disable} \end{aligned}$		+10	μΑ
I_{CC}	Power Supply Current	V _{CC} =Max., I _{OUT} =0 mA,	Com'l		25	mA
		f=5 MHz	Mil		30	mA
I_{SB}	Stand-By Current	$\frac{V_{CC}}{CE} = Max.,$ $\frac{V_{CE}}{CE} = V_{IH}$	Com'l		1	mA
		CE - VIH	Mil		1	mA

Capacitance^[7]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^{\circ}\text{C}, f = 1 \text{ MHz}, $ $V_{CC} = 5.0\text{V}$	10	pF
C_{OUT}	Output Capacitance	VCC = 5.0 V	10	pF

Notes:

See Introduction to CMOS PROMs in this Data Book for general information on testing.

AC Test Loads and Waveforms

 $\rm C_L {=}~100~pF~FOR~-90,~-120,~-150,~-200~DEVICES$ $\rm C_L {=}~30~pF~FOR~-70~DEVICES$

C020-5

^{6.} See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range

		27C02	20-70	27C02	20-90	27C02	0-120	27C02	0-150	27C02	0-200	
Parameter	Description	Min.	Max.	Unit								
t_{AA}	Address to Output Valid		70		90		120		150		200	ns
t _{OE}	OE Active to Output Valid		30		35		40		50		60	ns
t _{HZOE}	OE Inactive to High Z		25		25		30		30		40	ns
t _{CE}	CE Active to Output Valid		70		90		120		150		200	ns
t _{HZCE}	CE Inactive to High Z		25		25		30		30		40	ns
t _{PU}	CE Active to Power-Up	0		0		0		0		0		ns
t _{PD}	CE Inactive to Power- Down		60		65		65		65		70	ns
t _{OH}	Output Data Hold	0		0		0		0		0		ns

Switching Waveform

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the CY27C020 in the windowed package. For this reason, an opaque label should be placed over the window if the EPROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm². For an ultraviolet lamp with a 12 mW/cm² power rating, the exposure time would be approximately 35 minutes. The CY27C020 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the

EPROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Programming Electrical Characteristics

Parameter	Description	Min.	Max.	Unit
V_{PP}	Programming Power Supply	12.5	13	V
I _{PP}	Programming Supply Current		50	mA
V_{IHP}	Programming Input Voltage HIGH	3.0	V_{CC}	V
$V_{\rm ILP}$	Programming Input Voltage LOW	-0.5	0.4	V
V_{CCP}	Programming V _{CC}	6.0	6.5	V

Table 2. Mode Selection

		Pin Function ^[8]					
Mode	CE	ŌĒ	PGM	V _{PP}	A ₀	A9	Data
Read	$V_{ m IL}$	V_{IL}	X	V_{IH}	A_0	A 9	$O_7 - O_0$
Output Disable	V_{IL}	V_{IH}	X	V_{IH}	A_0	A_9	High Z
Stand-by (CMOS)	V _{CC} - 0.3V	X	X	$V_{ m IH}$	X	X	High Z
Stand-by (TTL)	$V_{ m IH}$	X	X	V_{IH}	X	X	High Z
Program	V_{ILP}	V_{IHP}	$V_{\rm ILP}$	V_{PP}	A_0	A_9	$D_7 - D_0$
Program Verify	$V_{\rm ILP}$	V_{ILP}	V_{IHP}	V_{PP}	A_0	A_9	$O_7 - O_0$
Program Inhibit	$V_{\rm ILP}$	V_{IHP}	V_{IHP}	V_{PP}	A_0	A_9	High Z
Signature Read (MFG)	V_{IL}	V_{IL}	X	V_{IH}	V_{IL}	$V_{HV}^{[9]}$	34H
Signature Read (DEV)	$V_{ m IL}$	V_{IL}	X	V_{IH}	V_{IH}	$V_{HV}^{[8]}$	Note 10

Note

10. To be determined.

^{8.} X can be V_{IL} or V_{IH} .

^{9.} $V_{HV} = 12V \pm 0.5V$

ADVANCED INFORMATION

Ordering Information [11]

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY27C020-70JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27C020-70PC	P15	32-Lead (600-Mil) Molded DIP	
	CY27C020-70WC	W20	32-Lead (600-Mil) Windowed CerDIP	
	CY27C020-70ZC	Z32	32-Lead Thin Small Outline Package	
90	CY27C020-90JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27C020-90PC	P19	32-Lead (600-Mil) Molded DIP	
	CY27C020-90WC	W20	32-Lead (600-Mil) Windowed CerDIP	
	CY27C020-90ZC	Z32	32-Lead Thin Small Outline Package	
	CY27C020-90DMB	D20	32-Lead (600-Mil) CerDIP	Military
	CY27C020-90LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY27C020-90QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY27C020-90WMB	W20	32-Lead (600-Mil) Windowed CerDIP	
120	CY27C020-120JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27C020-120PC	P19	32-Lead (600-Mil) Molded DIP	
	CY27C020-120WC	W20	32-Lead (600-Mil) Windowed CerDIP	
	CY27C020-120ZC	Z32	32-Lead Thin Small Outline Package	
	CY27C020-120DMB	D20	32-Lead (600-Mil) CerDIP	Military
	CY27C020-120LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY27C020-120QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY27C020-120WMB	W20	32-Lead (600-Mil) Windowed CerDIP	
150	CY27C020-150JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27C020-150PC	P19	32-Lead (600-Mil) Molded DIP	
	CY27C020-150WC	W20	32-Lead (600-Mil) Windowed CerDIP	
	CY27C020-150ZC	Z32	32-Lead Thin Small Outline Package	
	CY27C020-150DMB	D20	32-Lead (600-Mil) CerDIP	Military
	CY27C020-150LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY27C020-150QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY27C020-150WMB	W20	32-Lead (600-Mil) Windowed CerDIP	
200	CY27C020-200JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27C020-200PC	P19	32-Lead (600-Mil) Molded DIP	
	CY27C020-200WC	W20	32-Lead (600-Mil) Windowed CerDIP	
	CY27C020-200ZC	Z32	32-Lead Thin Small Outline Package	
	CY27C020-200DMB	D20	32-Lead (600-Mil) CerDIP	Military
	CY27C020-200LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY27C020-200QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY27C020-200WMB	W20	32-Lead (600-Mil) Windowed CerDIP	

Notes:

^{11.} Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V_{OL}	1, 2, 3
$V_{ m IH}$	1, 2, 3
V_{IL}	1, 2, 3
I_{IX}	1, 2, 3
I_{OZ}	1, 2, 3
I_{CC}	1, 2, 3
I_{SB}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t_{AA}	7, 8, 9, 10, 11
t _{OE}	7, 8, 9, 10, 11
t_{CE}	7, 8, 9, 10, 11

Document #: 38-00449

Package Diagrams (continued)

32-Lead (600-Mil) CerDIP D20 MIL-STD-1835 D-10 Config. A

32-Lead Plastic Leaded Chip Carrier J65

32-Pin Rectangular Leadless Chip Carrier L55MIL-STD-1835 C-12

32-Pin Windowed Rectangular Leadless Chip Carrier Q55 MIL-STD-1835 C-12

Package Diagrams

32-Lead (600-Mil) Molded DIP P19

32-Lead (600-Mil) Windowed CerDIP W20

Package Diagrams

32-Lead Thin Small Outline Package Z32

[©] Cypress Semiconductor Corporation, 1994. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.