HW4, Due: Friday, Feb. 16

Shengwen Gan

Question 1 Find the smallest integer n, so that for any n people, there are three of them either know each other or don't know each other.

Question 2 Prove that for any n+1 integers $a_1, a_2, \ldots, a_{n+1}$, there exists two of the integers a_i, a_j with $i \neq j$ such that n divides $a_i - a_j$.

Question 3 Suppose there are n points p_1, p_2, \ldots, p_n in $[0, 1]^2$ (no three of them lie on the same line). Show that there exists three different points p_i, p_j, p_k , so that the triangle with these three points as vertices has area $\leq \frac{1}{n-2}$.

Question 4 Suppose there is a sequence of integers define in the following way.

$$a_1 = 0, a_2 = 2024, a_{n+1} = a_n^{2024} + 2024a_{n-1}.$$

Show that for any prime number p, there are infinitely many n such that p divides a_n . (Hint: use Recurrence Theorem discussed in the class.)

The next question is to test whether you know the definition of permutation group.

Question 5 Let $(G_5, *)$ be the permutation group of $\{1, 2, 3, 4, 5\}$.

- 1. Calculate (14253) * (24513).
- 2. $Calculate (34512)^{-1}$.
- 3. Recall $\varepsilon(g)$ is the sign of the permutation g. Calculate $\varepsilon(43251)$.