

Final Presentation

January 2019

MEET-U

Upstream - Team 6

Yasser Mohseni Behbahani

Bénédicte Colnet

Gabriela Lobinska

Irène Mauricette **Mendy**

Amandine Sandri

Context

Goal

Find best templates for a target protein.

Expected output

Profile-Profile Alignment file and Scoring

Data supplied

HOMSTRAD Database (reduced to 405)

21 queries → Best hit HOMSTRAD

Strategy

Results & Assessment method

Goal

Assess the quality of the scoring

Benchmark

21 queries → Best hit HOMSTRAD

For each query

Launch the pipeline

Register the ranking

Plot the enrichment curve

Meaning: In the top 100 (25%) of the HOMSTRAD database, 60% of the hits are found

Results & Assessment method

Goal

Assess the quality of the scoring

Benchmark

21 queries → Best hit HOMSTRAD

For each query

Launch the pipeline

Register the ranking

Plot the enrichment curve

Method - Smith & Waterman

Classic Smith & Waterman

Classic version: one gap penalty
 Affine Gap extension: one penalty for opening a gap sequence, and one penalty for extending an existing gap

Affine gap is more biologically plausible

	F	Α	Τ	С	Α	$_{\mathrm{T}}$	Y
Τ	0	0	5	0	0	5	0
С	0	0	0	14	8	2	3
Α	0	4	0	8	18	12	6
G	0	0	2	2	12	16	10
S	0	0	5	1	6	17	14
F	6	0	0	3	0	11	20
Α	0	10	4	0	7	5	14

FATCA-TY ||| :: TCAGSFA

Source: Wikipedia

In our version, **profile-profile alignment**match = dot product of the profile's columns

Method - Smith & Waterman

Query Template AGLPVIMCLKSNNHQKYLRYQSDNIQQYGLLQFSADKILDPLAQFEVEPS------KTYDGLVHIKSRYTNKYLVRWSPNHYWITASANEPDENKSNWA----CTLFKPLYVEEGNMK-KVRLLHVQLGHYTQNYTVGGSFVSYLFAESSQIDTGSKDVFHVID----ATWTCINQQLEDKRLLYSQAKAE------SNSHHAPLSDGKTGSSYPHWFTNGYDG------NGKLIKGRTPIKFGKADCDRPPKHSQNGMGKDDHYLLEFPTFPDGHDYKFDSKKPKENPGPARVIYT----YPNKVFCGIVAHQRGNQGDLRLCSH

151

149

Method - Evaluation of Profile Construction

Method - Correlation vs Dot Product

Method - Correlation vs Dot Product

Benchmark

21 queries → Best hit HOMSTRAD Either Superfamily & Family (8) or Fold (13) hit

Fold

- Major structural similarity
- SSE's in similar arrangement

Superfamily

- Probably common ancestry
- Homology
- Sequence similarity

Family

- Pairwise sequence similarity > 25%

Method - Mixture of Scoring Functions

Results

Prediction for the 11 sequences

Mysterious query ID	Best hit template
trQ6HKV8 (BT9727_1481)	BRCT
trQ6HLB4 (BT9727_1323)	END
feuA (BT9727_3483)	$neur_chan_memb$
G1G14-4353	pot
$recN (BT9727_3916)$	COX1
G1G14-3311 (BT9727_3234)	PCI1
scdA (BT9727_1971)	PABP
hmp (BT9727_1331)	zf-CCHC
mfd (BT9727_0048)	COX1
celB (BT9727_4888)	Ribosomal_L12
arcD (BT9727_0754)	hormone5

To go forward

- Despite the good quality of the profiles created, parameters improvement is still required (e-value & database)
- Further analysis on scoring method (euclidean distance, spearmann correlation, ect.)
- Fold detection Improvement
 - → Secondary structure prediction information & Hydrophobicity instead of sequence

To go forward

- Despite the good quality of the profiles created, parameters improvement is still required (e-value, database, gap penalties, scoring functions)
- Super-family and Fold types→ influence scoring function performance
- Fold detection Improvement through:
- Mixture classification approach (test on benchmark already positive)
- Secondary structure prediction information

References

[1] Moult J., Pedersen J. T., Judson R., and Fidelis K. A large-scale experiment to assess protein structure prediction methods. Proteins, 23, 1995.

[2] G. Wang and R. Dunbrack. Scoring profile-to-profile sequence alignments. Protein science: a publication of the Protein Society, 13:1612–26, 07 2004. doi: 10.1110/ps.03601504.

Annexe 1 - Method

Gathering Sequences

Control check to evaluate the process of profile creation

Test of several Uniprot Databases

UniRef50

B

Scoring method

Dot product
Pearson Correlation
Spearmann Correlation
Euclidean distance

Mixture

Alignment parameters

With Affine Gap penalty

Without Affine Gap penalty

With affine Gap penalty

Annexe 2 - Strategy Requirements

Profile comparison

 → requires a scoring
 method

- Profile creation
 - → requires **Protein Database** selection
 - → Profile Creation method (PSSM, HMM...)

- Profile alignment
 - → requires strategic alignment algorithm

Evaluation of process of profile creation method (2)

- Running profile comparison on provided MSA and our MSA
- Scores are more spread for the provided MSA comparing to our MSA

Parameter Optimization

Gap penalties optimization

- Use of Smith-Waterman algorithm to align profiles
- Optimization for dot product and correlation comparison methods

Parameters	Value	Bibliography value [2]
Gap opening penalty Dot Product	12	0.07
Gap extension penalty Dot Product	1	0.005
Zero Shift Dot Product	-0.03	-0.05
Gap opening penalty Correlation	5	1.39
Gap extension penalty Correlation	0.5	0.07
Zero Shift Correlation	-0.2	-0.21

Table 1: Optimized parameters for scoring functions

→ Improvements of the scores with gap penalties

Results (4) Downstream evaluation

<u>Final ranking scores with downstream</u> <u>program combination</u>

- → Downstream program uses machine learning on 3 scores (DOPE, H-P and Alignments scores)
- → Superfamily: Poorer results with upstream & downstream combination
- → hypothesis: Overfitting during learning on Orion dataset

Fold and Superfamily

