Homework 10, Problem 4

Problem 4 (10 Points):

(Kleinberg-Tardos, Page 513, Problem 17). You are given a directed graph G = (V, E) with weights w_e on its edges $e \in E$. The weights can be negative or positive. The Zero-Weight-Cycle Problem is to decide if there is a simple cycle in G so that the sum of the edge weights on this cycle is exactly 0. Prove that the Zero-Weight-Cycle problem is NP-Complete. (Hint: Hamiltonian PATH)

Answer:

- 1) Zero-Weight-Cycle problem is in NP
- Since the verification to check the sum of cycle edge weight to be zero can be done in polynomial time by traversing the cycle once, Zero-Weight-Cycle problem is in NP.
- 2) Subset sum \leq_P Zero-Weight-Cycle problem

Given a subset sum with a set S, for each element in S, construct a graph G with edge cost equal to element value: if $S = s_1, s_2, s_3 \cdots s_n$, then the graph should have 2n vertices from $v_1 \cdots v_{2n}$. And for each element s_i in S, create a pair of two vertices v_i and v_{2*i} with edge cost of (v_i, v_{2*i}) to be s_i . And for any other pair of vertices v_a and v_b which $a \neq 2b$ or $b \neq 2a$, set the edge (v_a, v_b) cost to be 0.

By doing so, if it is possible to correctly find the Zero-Weight-Cycle on graph G, say the set of result C is $c_1, c_2 \cdots c_n$, then in order to solve the original subset sum with sum equal to k, as long as there is a edge of -k in any cycle of set C, then we can get the cost of each element in subset whose sum equal to k by keeping any non-zero edge cost and remove of others. Since if the cycle has cost zero, by removing the edge with cost of -k, we can get a path whose edge cost sum to k. And removing the irrelevant edges, the rest is the subset sum to k of the original problem.

It has been proven that Subset Sum problem is an NP complete problem (Kleinberg page 492 8.23). And according to Kleinberg page 453 8.2: Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time. And also since 1) and 2), Zero-Weight-Cycle problem is NP-Complete.