NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

Import NumPy as np

```
import numpy as np
```

Create an array of 10 zeros

```
z = np.zeros(10)
z
array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
```

Create an array of 10 ones

```
z = np.ones(10)
z
array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
```

Create an array of 10 fives

```
z=np.ones(10)*5
z
array([5., 5., 5., 5., 5., 5., 5., 5., 5.])
```

Create an array of the integers from 10 to 50

Create an array of all the even integers from 10 to 50

```
array = np.arange(10,51,2)
array
array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
42,
44, 46, 48, 50])
```

Create a 3x3 matrix with values ranging from 0 to 8

Create a 3x3 identity matrix

Use NumPy to generate a random number between 0 and 1

```
np.random.normal(0,1,1)
array([0.59958116])
```

Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

Create the following matrix:

```
[0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9], [0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1. ]])
```

Create an array of 20 linearly spaced points between 0 and 1:

```
np.linspace(0,1,20)

array([0. , 0.05263158, 0.10526316, 0.15789474, 0.21052632, 0.26315789, 0.31578947, 0.36842105, 0.42105263, 0.47368421, 0.52631579, 0.57894737, 0.63157895, 0.68421053, 0.73684211, 0.78947368, 0.84210526, 0.89473684, 0.94736842, 1. ])
```

Numpy Indexing and Selection

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

```
mat = np.arange(1, 26).reshape(5, 5)
mat
array([[1, 2, 3, 4, 5],
       [6, 7, 8, 9, 10],
       [11, 12, 13, 14, 15],
       [16, 17, 18, 19, 20],
       [21, 22, 23, 24, 25]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[2: ,1: ]
array([[12, 13, 14, 15],
       [17, 18, 19, 20],
       [22, 23, 24, 25]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[3,4]
20
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[0:3,1:2]
```

Now do the following

Get the sum of all the values in mat

```
mat.sum()
325
```

Get the standard deviation of the values in mat

```
mat.std()
7.2111025509279782
```

Get the sum of all the columns in mat

```
mat.sum(axis=0)
array([55, 60, 65, 70, 75])
Type Markdown and LaTeX:
```