Inf2C - Computer Systems Lecture 2 Data Representation

Boris Grot

School of Informatics
University of Edinburgh

Last lecture

- Moore's law
- Types of computer systems
- Computer components
- Computer system stack

Lecture 2: Data Representation

- The way in which data is represented in computer hardware affects
 - complexity of circuits
 - cost
 - speed
 - reliability
- Must consider how to design hardware for
 - Storing data memories
 - Manipulating data e.g. adders, multipliers

Lecture outline

- The bit atomic unit of data
- Representing numbers
- Representing text

The bit

- Information represented as sequences of symbols
 - In text, symbols are letters, numerals, punctuation, whitespace
 - With computers, we use just 0s and 1s, bits
- Bit is an acronym for Binary digiT
- Advantages: easy to do computation, very reliable, simple circuits
- Disadvantages: little information per bit, must use many of them. $512 \equiv 1\,0000\,0000$, 'A' $\equiv 0100\,0001$

Natural numbers representation

 Non-negative (unsigned) integers are very simple to represent in binary

Basic operations

 Addition, subtraction with binary numbers is easy:

Fixed bit-length arithmetic

- Hardware cannot handle infinite long bit sequences
- We end up with a few fixed sized data types
 - Byte: always 8 bits
 - Word: the typical unit of data on which a processor operates (32 or 64 bits most common today)
- Overflow happens when a result does not fit
 - Numbers wrap-around when they become too large
 - Arithmetic is modulo 2ⁿ, n=number of bits

What about negative numbers?

- Sign-magnitude representation:
 - Use 1st bit (MSB) as the sign: 1-negative, 0-positive $0010 \equiv 2 \quad 1010 \equiv -2$
- Complicates addition and subtraction
 - The actual operation depends on the sign
- Has positive and negative zero
 - $-0000 \equiv 0 \quad 1000 \equiv -0$
- There is a better way:

2's complement representation

Two's complement: the intuition

- Want: X + (-X) = 0
- Insight: don't need the full sum to be 0
 - Only need the bits that can be represented with a given fixed width to be 0
- Approach:
 - Represent the negation of X as 2^{N} -X
 - Recall: largest number represented with N bits: 2^N-1
 - Then: $X + (-X) = X + (2^{N}-X) = 2^{N}$
- Note that N lowest bits are all 0

Two's complement: example

Given:

- 3-bit fixed width (N=3)
- X = 2 (decimal) $\rightarrow 0.1.0$ (binary)

$$2^{N} = 8 \text{ (dec)} \rightarrow 1000 \text{ (bin)}$$

$$-X = 2^{N} - X = 8 - 2 = 6 \text{ (dec)} \rightarrow 110 \text{ (bin)}$$

Check:

$$X + (-X) = 0 \ 1 \ 0 + 1 \ 1 \ 0 = 1 \ 0 \ 0 \ 0$$

Efficiently computing 2's complement

EASY!

"Flip the bits and add 1"

Example:

$$X = 0.1.0 \text{ (bin)} \rightarrow 2 \text{ (dec)}$$

Flip the bits: 101

Add 1: $110 \text{ (bin)} \rightarrow -X$

2's complement details

- The MSB is the sign
- Range is asymmetric: -2^{n-1} to 2^{n-1} -1
- There are two kinds of overflows:
 - Positive overflow produces a negative number
 - Negative underflow produces a positive number
- A B = A + 2's complement of B
- Arithmetic operations do not depend on the operands' signs
 - $0010 \equiv 2 1010 \equiv -6$

Converting between data types

• Converting a 2's complement number from a smaller to a larger representation is done by sign extension

Example: from byte to short (16 bits):

$$2 = 00000010 \Rightarrow ???????0000010$$

Shifting

- Shifting: move the bits of a data type left or right
 - Data bits falling off the edge are lost
- For left shifts, 0s fill in the empty bit places
- For right shifts, two options:
 - Fill with 0: for non-numerical data (or positive integers)
 - Fill with the MSB: for 2's complement numbers
- Shift left by n is equivalent to multiplying by 2^n
- Shift right by n is equivalent to dividing by 2^n and rounding towards $-\infty$
- Example $6 = 00000110 >> 2 \rightarrow 00000001 = 1$ $-6 = 11111010 >> 2 \rightarrow 11111110 = -2$

Hexadecimal notation

- Binary numbers (and other data) are too long and tedious for us to use
- Hexadecimal (base 16) is very commonly used in computer programming
- Hex digits: 0-9 and A-F
 A=10, B=11, ..., F=15
- Conversion to/from binary is very easy:
 Every 4 bits correspond to 1 hex digit:

$$11111000$$
 = 0xF8 F(15) 8

Hex is just a convenience, computers use the binary form

Real numbers - floating point

- Java's float (32 bits) double (64 bits)
- Binary representation:
 - example 0.75 in base $10 \Rightarrow 0.11$ in base 2

$$(2^{-1} + 2^{-2} = 0.5 + 0.25 = 0.75)$$

Real numbers - floating point

- Java's float (32 bits) double (64 bits)
- Binary representation:
 - example 0.75 in base $10 \Rightarrow 0.11$ in base 2

$$(2^{-1} + 2^{-2} = 0.5 + 0.25 = 0.75)$$

Normalization:

$$0.11 \Rightarrow 1.1 \times 2^{-1}$$
 implicit (always 1)

Why normalize?

Three reasons:

- Simplifies machine representation (don't need to represent the fraction separator)
- 2. Simplifies comparisons
 - Which one is bigger: 0.001 or 1.01×2^{-2} ?
- 3. Is more compact (in some cases)

 - or can be made more compact (by rounding fraction)

Floating point conversion example #1

Convert the number 25 to floating point with normalization

- 1) 25 in base $10 \Rightarrow 11001$ in base 2
- 2) 11001 to normalized floating point $\Rightarrow 1.1001 \text{x} 2^4$

Understand that:

- 1.1001 is mantissa (aka significand)
- 4 is exponent
- sign is "+" (implicit here)

IEEE 754 Floating Point standard

• 32 bit:

- 64 bit:
 - exponent = 11 bits; mantissa= 52 bits

IEEE 754 Floating Point standard

- Why bias?
 - Avoids the complexity of +/- exponents
 - Simplifies relative ordering of FP numbers

 Note: processors usually have specialized floating point units to perform FP arithmetic

IEEE 754 floating point conversion #2

Example: Convert 23.5 (decimal) to IEEE 754 floating point

Start: 23 in base $10 \Rightarrow 10111$ in base 2

IEEE 754 floating point conversion #2

Example: Convert 23.5 (decimal) to IEEE 754 floating point

- 1) 23.5 in base $10 \Rightarrow 10111.1$ in base 2
- 2) 10111.1 to normalized floating point \Rightarrow 1.01111x2⁴
- 3) S = 0 M = 01111 is mantissa (remember: 1. is implicit) Exp = 4+127 = 131 in base $10 \Rightarrow 1000\ 0011$ in base 2

0	1	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	30							23	22	2																					0
sign (s)		(exp	on exp		t							1	m	a	nt	tis	SS	a	(1	m)									

IEEE 754 Floating Point notation

Exponent	Mantissa	Meaning
0	0	0
1-254	Anything	Floating point number
255	0	infinity
255	Non-zero	Not-a-number (NaN)

32-bit representation

Representing characters

- Characters need to be encoded in binary too
- Operations on characters have simpler requirements than on numbers, so the encoding choice is not crucial
- Most common representation is ASCII
 - Each character is held in a byte
 - E.g. '0' is 0x30, 'A' is 0x41, 'a' is 0x61
- Java uses Unicode which can encode characters from many (all?) languages

- 16 bits per character required

Representing strings

- Words, sentences, etc. are just strings of characters
- How is the end of a string identified?
 - No common standard exists. Different programming languages use different encodings
 - In C: a special character, encoded as 0x00
 - In Java: string length is kept with the string itself (string is an object and length is one of the member variables)

Summary

- Computers use binary representation
- 2's complement
- Floating point
- Characters and strings

