Epigenomics: ChIP-seq and ATAC-seq

Chris Miller, Ph.D. Washington University in St. Louis

Some slides adapted from: https://github.com/genome/bfx-workshop https://github.com/quinlan-lab/applied-computational-genomics

Epigenomics

- Alterations of DNA state or accessibility
- Wrapped around histones
- Bound by transcription factors
- etc

105+ *-seq assays

Nucleo-Seq: Anton Valouev et al., "Determinants of Nucleosome Organization in Primary Human Cells," Nature 474, no. 7352 (June 23, 2011): 516–520, doi:10.1038/nature10002.

DNAse-Seq: Gregory E. Crawford et al., "Genome-wide Mapping of DNase Hypersensitive Sites Using Massively Parallel Signature Sequencing (MPSS)," Genome Research 16, no. 1 (January 1, 2006): 123–131, doi:10.1101/gr.4074106.

DNAseI-Seq: Jay R. Hesselberth et al., "Global Mapping of protein-DNA Interactions in Vivo by Digital Genomic Footprinting," Nature Methods 6, no. 4 (April 2009): 283-289, doi:10.1038/nmeth.1313.

Sono-Seq: Raymond K. Auerbach et al., "Mapping Accessible Chromatin Regions Using Sono-Seq," Proceedings of the National Academy of Sciences 106, no. 35 (September 1, 2009): 14926–14931, doi:10.1073/pnas.0905443106.

Hi-C-Seq: Erez Lieberman-Alden et al., "Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome," Science 326, no. 5950 (October 9, 2009): 289–293, doi:10.1126/science.1181369.

ChIA-PET-Seq: Melissa J. Fullwood et al., "An Oestrogen-receptor-o-bound Human Chromatin Interactome," Nature 462, no. 7259 (November 5, 2009): 58-64, doi:10.1038/nature08497.

FAIRE-Seq: Hironori Waki et al., "Global Mapping of Cell Type-Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation," PLoS Genet 7, no. 10 (October 20, 2011): e1002311.

NOMe-Seq: Theresa K. Kelly et al., "Genome-wide Mapping of Nucleosome Positioning and DNA Methylation Within Individual DNA Molecules," Genome Research 22, no. 12 (December 1, 2012): 2497–2506, doi:10.1101/cr.143008.112.

ATAC-Seq: Jason D. Buenrostro et al., "Transposition of Native Chromatin for Fast and Sensitive Epigenomic Profiling of Open Chromatin, DNA-binding Proteins and Nucleosome Position," Nature Methods advance online publication (October 6, 2013), doi:10.1038/nmeth.2688.

from Lior Pachter's blog

Genome variation

RAD-Seq: Nathan A. Baird et al., "Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers," PLOS ONE 3, no. 10 (October 13, 2008): e3376. doi:10.1371/journal.pone.0003376.

Freq-Seq: Lon M. Chubiz et al., "FREQ-Seq: A Rapid, Cost-Effective, Sequencing-Based Method to Determine Allele Frequencies Directly from Mixed Populations," PLoS ONE 7, no. 10 (October 31, 2012): e47959, doi:10.1371/journal.pone.0047959.

CNV-Seq: Chao Xie and Martti T. Tammi, "CNV-seq, a New Method to Detect Copy Number Variation Using High-throughput Sequencing," BMC Bioinformatics 10, no. 1 (March 6, 2009): 80, doi:10.1186/1471-2105-10-80.

Novel-Seq: Iman Hajirasouliha et al., "Detection and Characterization of Novel Sequence Insertions Using Paired-end Next-generation Sequencing," Bioinformatics 26, no. 10 (May 15, 2010): 1277–1283, doi:10.1093/bioinformatics/btq152.

TAm-Seq: Tim Forshew et al., "Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA," Science Translational Medicine 4, no. 136 (May 30, 2012): 136ra68, doi:10.1126/scitransimed.3003726.

DNA replication

Repli-Seq: R. Scott Hansen et al., "Sequencing Newly Replicated DNA Reveals Widespread Plasticity in Human Replication Timing," Proceedings of the National Academy of Sciences 107, no. 1 (January 5, 2010): 139–144, doi:10.1073/pnas.0912402107

ARS-Seq: Ivan Liachko et al., "High-resolution Mapping, Characterization, and Optimization of Autonomously Replicating Sequences in Yeast," Genome Research 23, no. 4 (April 1, 2013): 698–704, doi:10.1101/cr.144659.112.

Sort-Seq: Carolin A. Müller et al., "The Dynamics of Genome Replication Using Deep Sequencing," Nucleic Acids Research (October 1, 2013): gkt878, doi:10.1093/har/gkt878.

(as of several years ago)

Transcription

RNA-Seq: All Mortszevi et al., "Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq." Nature Methods 5, no. 7 (July 2006): 621– 628. doi: 10.1038/invest.1.1226.

GRO-Seq: Leighton J. Core, Joshua J. Waterfall, and John T. Lis, "Nascent RNA Sequencing Reveals Widespread Fausing and Divergent Inflation at Human Promoters," Science 222, no. 5909 (December 19, 2008): 1845— 1848, doi:10.1126/science.1162228.

Quartz-Sep: Yohei Sasagawa et al., "Quartz-Sep: a Highly Reproducible and Sensitive Single-cell RNA-Sep Reveals Non-genetic Gene Expression Interrogeneity," Genome Biology 14, no. 4 (April 17, 2013): R31, doi:10.1106/gb-2013-14-4-71.

CAGE-Seq: Hazuki Takahashi et al., "5" End-centered Expression Profiling: Using Cap-analysis Gene Expression and Next-generation Sequencing," Nature Protocols 7, no. 3 (March 2012): 542-561, doi:10.1036/nprst.2012.005.

Nascent-Seq: Joseph Rodriguez, Jerome S. Menet, and Michael Rostash, "Nascent-Seq Indicates Widespread Corranscriptional RNA Editing in Drosophila," Molecular Cell 47, no. 1 (July 13, 2012): 27-37, doi:10.1016/j.molcel.2012.05.002.

Precapture RNA-Seq: Tim R. Mercer et al., "Targeted RNA Sequencing Reveals the Deep Complexity of the Human Transcriptome," Nature Biotechnology 30, op. 1 (Sensiery 2012): 99-104, doi: 10.1038/hbt.2024.

Cel-Seq: Tamer Hashimshony et al., "CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification," Cell Reports 2, no. 3 (September 27, 2012); 666–673, doi: 10.1016/j.celrep.2012.06.003.

3P-Seq: Calvin H. Jan et al., "Formation, Regulation and Evolution of Canoninabidis Elegans 3"UTRs," Nature 469, no. 7328 (January 6, 2011): 97-101, doi:10.1038/nature/09531

NET-Segi L. String Chunthman and Jonathan S. Weissman, "Nascent Transcript Sequencing Visualizes Transcription at Nucleotide Resolution," Nature 459, no. 7330 (January 20, 2011); 368–373, doi:10.1006/nature09552.

\$53-Seq: Oh Kyu Yoon and Rachel B. Brem, "Noncanonical Transcript forms in Yeast and Their Regulation During Environmental Stress," RNA 16, no. 6 (Sure 1, 2010): 1256-1267, doi:10.1261/ma.201881.

FRT-Seq: Lira Mamanova et al., "FRT-seq: Amplification-bee, Strandspecific Transcriptome Sequencing," Nature Methods 7, no. 2 (Petruary 2010): 130-132, doi:10.1038/nmeth.1417.

3-Seq: Andrew H. Bick et al., "3"-End Sequencing for Expression Quantification (35EQ) from Anthrola Tumor Samples," PLoS DNE S. no. 1 (January 19, 2010); 68768, doi:10.1371/journal.pone.008768.

PRO-Segt Hopoong Kwak et al., "Precise Maps of RNA Polymerase Reveal How Promoters Direct Initiation and Passing," Science 339, no. 6122 ("Rehuary 22, 2013): 950–953, doi:10.1126/science.1229386.

Bru-Seg: Artur Veloso et al., "Genome-Wide Transcriptional Effects of the Arti-Cancer Agent Camptethecin," FLoS ONE 8, no. 10 (October 23, 2013): e78390, doi: 10.1371/j.commel.pone.0078190.

ChIP-seq

Mapping transcription-factor binding locations

NFR = nucleosome free region CRE = Cis regulatory element

Mapping histone modifications

H3K4me3:

H3 = name of histone K4 = 4th lysine residue me3 = tri-methylation

NFR = nucleosome free region CRE = Cis regulatory element

CUT&RUN

Potentially less off-target/background signal

Very similar, from a data perspective

Figure 1. CUT&RUN schematic (see text for details).

ATAC-seq DNA accessibility

https://www.youtube.com/watch?v=OjFFPIENrWQ

Examining 3-D DNA interactions in the nucleus

Fiber-seq

Peak-calling

Fundamentally a signal vs noise problem

Proteins bind in different ways

How much sequence coverage do we need?

Transcription factor – tight, highly-peaked binding region

For mammalian TFs, other chromatin mods like enhancer-associated histone marks:

- have on the order of thousands of binding sites,
- 20 million reads may be adequate
- (4 million reads for worm and fly TFs).

How much sequence coverage do we need?

More binding sites (e.g., RNA Pol II) or broader factors, including most histone marks,

- require more reads, up to 60 million for mammalian ChIP-seq.

https://www.ebi.ac.uk/sites/ebi.ac.uk/files/content.ebi.ac.uk/materials/2013/131021_HTS/introduction_to_chip_seq_data_and_andysis-b.gerle_.pdf

How much sequence coverage do we need?

- In TF experiments, Control samples should be sequenced more deeply than the ChIP-seq samples
 - True for assays involving diffused broad-domain chromatin data.
- This is to ensure sufficient coverage of a substantial portion of the genome and non-repetitive autosomal DNA regions.

ChIP-seq statistics

Continuous variables:

- Your exact height
- Your dog's exact weight
- The winning time in a race
- Exact distance between stars
- Your exact age
- Time it takes a computer to complete a task.

Discrete variables:

- The number of lightbulbs that burn out in a warehouse in a given week.
- The number of heads when flipping a coin 50 times.
- The number of students in a class
- The number of times you forget the attachment to an email on Fridays.
- The number of green M&Ms in a bag
- The number of times a given base is sequenced.

The Poisson distribution:

discrete distribution to model coverage

P(k discrete events) =
$$\lambda^k e^k / k!$$

Where e is Euler's constant (2.718), and λ is the average number of occurrences of an event

Example: the "hundred year flood". Thus $\lambda=1$ (1 catastrophic flood every 100 years

Example: the "hundred year flood". Thus $\lambda=1$ (1 catastrophic flood every 100 years

$$P(k ext{ overflow floods in 100 years}) = rac{\lambda^k e^{-\lambda}}{k!} = rac{1^k e^{-1}}{k!}$$
 $P(k = 0 ext{ overflow floods in 100 years}) = rac{1^0 e^{-1}}{0!} = rac{e^{-1}}{1} = 0.368$
 $P(k = 1 ext{ overflow flood in 100 years}) = rac{1^1 e^{-1}}{1!} = rac{e^{-1}}{1} = 0.368$
 $P(k = 2 ext{ overflow floods in 100 years}) = rac{1^2 e^{-1}}{2!} = rac{e^{-1}}{2} = 0.184$

k	P(k overflow floods in 100 years)				
0	0.368				
1	0.368				
2	0.184				
3	0.061				
4	0.015				
5	0.003				
6	0.0005				

Example: expected number of goals in a World Cup game.

Average number of goals is 2.5

$$P(k ext{ goals in a match}) = rac{2.5^k e^{-2.5}}{k!}$$
 $P(k = 0 ext{ goals in a match}) = rac{2.5^0 e^{-2.5}}{0!} = rac{e^{-2.5}}{1} = 0.082$
 $P(k = 1 ext{ goal in a match}) = rac{2.5^1 e^{-2.5}}{1!} = rac{2.5 e^{-2.5}}{1} = 0.205$
 $P(k = 2 ext{ goals in a match}) = rac{2.5^2 e^{-2.5}}{2!} = rac{6.25 e^{-2.5}}{2} = 0.257$

Note that λ does not have to be a countable integer.

k	P(k goals in a World Cup soccer match)				
0	0.082				
1	0.205				
2	0.257				
3	0.213				
4	0.133				
5	0.067				
6	0.028				

Poisson distribution with different values of λ

Ideally, sequencing coverage will follow a Poisson distribution. But...

Poisson

Not Poisson.
Overly "dispersed"

Negative binomial fits sequencing coverage data much better

Comparative ChIP-seq: scaling and normalizing

Sequencing depths from TF ChIP should be compared to control (input DNA) to get a sense of the noise.

When comparing two ChIP-seq experiments, you need to normalize the counts / peaks before doing so. E.g., comparing experiments where one had 10 million reads and the other had 100 million reads.

Peak-calling

MACS2, HOMER, SEACR, etc

ChIP-seq peak callers

Table S1. Examples of peak callers employed in ChIP-seq.

Software tool	Version	Availability	Point- source (peaks)	Broad regions (domains)
BayesPeak [88]	1.10.0	http://bioconductor.org/packages/release/bioc/html/BayesPeak.html	Yes	
BEADS [§] [84]	1.1	http://beads.sourceforge.net/	Yes	Yes
CCAT [91]	3.0	http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm		Yes
CisGenome [56]	2.0	http://www.biostat.jhsph.edu/~bji/cisgenome/	Yes	
CSAR [85]	1.10.0	http://bioconductor.org/packages/release/bioc/html/CSAR.html	Yes	
dPeak	0.9.9	http://www.stat.wisc.edu/~chungdon/dpeak/	Yes	
GPS/GEM [67,18]	1.3	http://cgs.csail.mit.edu/gps/	Yes	
HPeak [87]	2.1	http://www.sph.umich.edu/csg/qin/HPeak/	Yes	
MACS [17]	2.0.10	https://github.com/taoliu/MACS/	Yes	Yes
NarrowPeaks1	1.4.0	http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.htm	d Yes	
PeakAnalyzer/ PeakSplitter [†] [89]	1.4	http://www.bioinformatics.org/peakanalyzer	Yes	
PeakRanger [93]	1.16	http://ranger.sourceforge.net/	Yes	Yes
PeakSeq [24]	1.1	http://info.gersteinlab.org/PeakSeq	Yes	
polyaPeak [†]	0.1	http://web1.sph.emory.edu/users/hwu30/polyaPeak.html	Yes	
RSEG [92]	0.6	http://smithlab.usc.edu/histone/tseg/		Yes
SICER [90]	1.1	http://home.gwu.edu/-wpeng/Software.htm		Yes
SIPeS [21]	2.0	http://gmdd.shgmo.org/Computational-Biology/ChIP- Seq/download/SIPeS	Yes	
SISSRs [19]	1.4	http://sissrs.rajajothi.com/	Yes	
SPP [9]	1.1	http://compbio.med.harvard.edu/Supplements/ChIP-seq/	Yes	Yes
USeq [97]	8.5.1	http://sourceforge.net/projects/useq/	Yes	
ZINBA [86]	2.02.03	http://code.google.com/p/zinba/	Yes	Yes

MACS is probably the most widely used

Replicates, replicates, replicates

Pearson Correlation is one metric indicative of overall reproducibility

(b) Scatterplots of pairwise Zic ChIP-seq replicates with Pearson correlation (r) displayed. Note the correlations are much higher between biological replicates of the same developmental stage than between P7 and P60 cerebellum.

Irreproducibility Discovery Rate (IDR)

RAD21 Replicates (high reproducibility)

Peaks that show up consistently among replicates are more likely to be real!

SPT20 Replicates (low reproducibility)

Fantastic resource for learning ChIP-seq analysis https://github.com/hbctraining/Intro-to-ChIPseq

Interpretation

8

Repressive state

Low signal state

Genome Segmentation with ChromHMM

Be aware that segmentation may be tissue or cell-type specific!

The Encyclopedia of DNA Elements Project

Roadmap Epigenomics Project

Epigenomics: Bisulfite sequencing

Chris Miller, Ph.D. Washington University in St. Louis

Some slides adapted from: https://github.com/genome/bfx-workshop https://github.com/guinlan-lab/applied-computational-genomics

Epigenetics

DNA Methylation

- Mostly happens at CpGs
- About 25 million CpGs in human genome

https://en.wikipedia.org/wiki/CpG_site#/media/File:CpG_vs_C-G_bp.svg

DNA Methylation

- CpG Islands
- Length >= 200 bpGC% > 50%o/e CpG ratio > 60%
- Selective pressure/
 Evolutionary constraint

DOI:10.1007/s00018-003-3088-6

Islands, shores, and shelves

What does DNA methylation do?

- The short answer: It depends!
- X-chromosome inactivation
- Silencing of transposable elements
- Cellular differentiation
- Cancer hypo/hypermethylation

MGMT and Temozolomide

 TMZ is an alkylating agent damages DNA, causes cell death

MGMT "cleans up" the damage

 Methylation of the MGMT promoter is linked to better outcomes!

Methylation Patterns

Methyltransferases that act locally

Methylation Patterns

Methyltransferases that act locally

Other alterations (or treatments)
 that act globally

Bisulfite sequencing

5-methylcytosine

Bisulfite sequencing

Bisulfite sequencing

```
Watson >>AC"GTTCGCTTGAG>>
                                               methylated
                                            C Un-methylated
               <<TGC"AAGCGAACTC<<
          Crick
         1) Denaturation
Watson >>ACmGTTCGCTTGAG>>
                                Crick << TGC AAGCGAACTC <<
         2) Bisulfite Treatment
    >>AC"GTTUGUTTGAG>>
                                    <<TGC"AAGUGAAUTU<<
BSW
         3) PCR Amplification
    >>AC"GTTTGTTTGAG>>
                                    <<TGC"AAGTGAATTT<<
                                BSCR >>ACG TTCACTTAAA>>
BSWR <<TG CAAACAAACTC<<
```

Whole-genome Bisulfite Sequencing (WGBS)

- Need a special aligner has to expect many C > T mismatches!
- BSMAP
- bismark
- BWA-meth
- biscuit

Direct detection with long read sequencing

Can be used for 5mC as well as m6A in direct RNAseq

Methylation calling

- Determine methylation fraction at each site in the genome
 - Count the Cs and Ts, taking strandedness into account
 - Some tools account for SNPs while doing this

Methylation calling

- Determine methylation fraction at each site in the genome
 - Count the Cs and Ts, taking strandedness into account
 - Some tools account for SNPs while doing this

- Why isn't every position 0%, 50% or 100%?

Methylation calling

- Determine methylation fraction at each site in the genome
 - Count the Cs and Ts, taking strandedness into account
 - Some tools account for SNPs while doing this

- Why isn't every position 0%, 50% or 100%?
 - we're sequencing a population of cells!

Workflow/File formats

- Aligning: FASTQ > BAM/CRAM
- Pileup: BAM/CRAM > VCF
 - (entries for every site, allele frequencies)
- VCF > bedgraph
 - chr, start, stop, beta_value (methylation fraction)
- bedgraph > bigwig (for visualization in IGV)
- There are workflows for this!

IGV visualization

Differentially methylated regions

Comparing two groups to find changes

 Finding DMRs is a segmentation problem

We use a tool called metilene

Differentially methylated regions

Number of samples matters!

Heatmaps

Canyon Plots

DNMT3A deficiency

DNMT3A deficiency

- Mouse models (and human data)
- Looking at context, effects, and reversibility

DNMT3A deficiency

- Mouse models (and human data)
- Looking at context, effects, and reversibility

