TIONI					
UBIT					

RV COLLEGE OF ENGINEERING®

Autonomous Institution affiliated to VTU First Semester B. E.

DEPARTMENT OF MATHEMATICS

Fundamentals of Linear Algebra, Calculus and Statistics

MODEL QUESTION PAPER-I

Branch: AI, BT, CD, CS, CY, IS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 & 4, 5 & 6, 7 & 8 and 9 & 10.

PART-A

1	1.1	In Gauss-Seidel method, the first approximate solution to the system of equations $4x - y = 3$ and $3x + 7y = -2$ with initial value [0,0] is	1
	1.2	If $\sqrt{5}$ is the eigenvalue of an orthogonal matrix <i>B</i> , then is also its eigenvalue.	1
	1.3	If rank of the matrix $A = \begin{bmatrix} 2 & 7 & 3 \\ 0 & 5 & 1 \\ k & 7 & 3 \end{bmatrix}$ is 2, then the value of $k = \underline{\hspace{1cm}}$.	2
	1.4	If (2,3) are the coordinates of the centre of curvature whose curvature is $\sqrt{8}$, then the equation of the circle of curvature is	1
	1.5	The transformation of the polar curve $r = a(1 + \cos \theta)$ in cartesian system is	1
	1.6	The Maclaurin series expansion for sinh x is	2
	1.7	If $z = (\sin x)^y$, then $\frac{\partial z}{\partial y} =$	2
	1.8	Given that $w = 2uv - 3u^2v$ and u increases at the rate of 2cm/sec. Find the rate at which v changes at the instant when $u = 3$ cm and $v = 1$ cm in order that w shall be neither increasing nor decreasing.	2
	1.9	The value of $\int_0^1 \int_{x^2}^{2-x} dy dx$ is	2
	1.10	Sketch the region of integral for the function $f(x, y)$ taken over the area bounded by $x = 0$ to $x = a$ and $y = x$ to $y = a$.	2
	1.11	For a distribution the mean is 10 and the variance is 16 then the second moment about the mean is	1
	1.12	If the two regression coefficients are -0.4 and -0.9, then the correlation coefficient is	1
	1.13	For a statistical data with $n = 5$, $\sum x = 30$, $\sum y = 40$, $\sum x^2 = 220$ and $\sum xy = 266$, the straight line of best fit by the method of least squares is	2

PART-B

Estimate the values of p and q for which the system of linear equations					
x + y + z = 1, $2x + y + 4z = 2$, $4x + y + pz = q$ has (i) a unique solution (ii) no solution (iii) an infinite number of solutions.					
Google's page rank to find the most powerful page for a particular query is performed using eigen values and eigen vectors. Identify the dominant eigen value and corresponding eigen vectors of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ by taking the initial approximation $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. Perform 6 iterations.					

3	a	For the curve $x = b(\cos\theta + \log(\tan\frac{\theta}{2}))$, $y = b\sin\theta$, show that the radius of curvature at any point θ is $b\cot\theta$.	8
	b	Find the angle between the radius vector and the tangent for the curve $r^m = a^m(\cos m\theta + \sin m\theta)$	8
		OR	
4	a	Find the circle of curvature at the point (a/4, a/4) for the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$. Also show that sum of the co-ordinates of the centre of curvature at any point (x, y) is $3(x + y)$.	8
	b	Expand $\log(1 + \sin^2 x)$ in ascending powers of x as far as the term containing x^6 .	8

_			
5	a	The steady state temperature of a circular metal plate is	
		$u = r^2 \cos(2\theta) - r\cos(\theta) + 2$. Show that 'u' satisfies the Laplace equation	5
		$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0.$	
	b	Compute $J\left(\frac{u,v}{x,y}\right)$, given $u+v=e^x\cos y \& u-v=e^x\sin y$.	5
		A tank is in the form of a rectangular box open at the top is to have volume of 32	
	С	cubic ft. Find the dimensions of the box requiring least material for its construction.	6
		OR	
6	a	If $u = 3x + 2y - z$, $v = x - 2y + z$ and $w = x(x + 2y - z)$, then show that u , v , w are functionally related	5
	b	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, then prove that $6\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} + 3\frac{\partial u}{\partial z} = 0$.	5
	С	Show that by Lagrange's method of undetermined multipliers, the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.	6

7	a	Evaluate $\iint_R xy \ dx \ dy$ where R is the triangular region bounded by the axes of	
		coordinates and the line $\frac{x}{a} + \frac{y}{b} = 1$.	8
	b	Find the value of $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dxdz$.	8
		OR	
8	a	Change the order of integration and hence evaluate $\int_0^3 \int_1^{\sqrt{4-y}} (x+y) \ dx \ dy$	8
	b	Using double integral, find the area enclosed by the curve $r = a(1 + \cos \theta)$.	8

9	a	_	riment in which th	_			eed un	der certa	in cond	itions was	
		measured,	the following resu	ılts w	ere ob	tained					
			Weeks (x)			4		6 7			
			Weight (y	52	2 77	135	211 3	26 550)		8
		_	the relationship o		form y	$a = ae^b$	x find t	he best	values o	f a and b	
	b	The distant	ice (in km) of 60 e ollows:	ngine	ers fro	m resid	lence to	their pl	ace of w	ork were	
			Distance (in km)	0-5	5-10	10-15	15-20	20-25	25-30		
			No. of Engineers	8	11	15	12	9	5		8
			first four moments						asures β	$_1$ and eta_2	
					OR						
10	a	Fit a secon least squar	nd-degree polynon re method	nial <i>V</i>	=a	+ <i>bT</i> +	cT ² for	the foll	owing d	lata using	
			<i>T</i> 1	2	3	5	7	10			8
			<i>V</i> 2.31	2.0		0 1.55	5 1.41	2.78			
	1.	Also find the value of V at $T = 12$.							_		
	b		e average <i>x</i> just be rded for six randor					-			
			own in the table	iiiy so	recteu	studen	is III a I	arge ma	шешан	cs class	
			x 69.3	87.7	7 50	.5 51	.9 82	2.7 70	0.5		8
			y 56	89	55						
		Compute t	the correlation coe	fficie	nt for	this data	a. Also	find the	regressi	ion lines	
		of y on x	and x on y .								