Lecture 11

Recap: estimating ϕ

Recap: Inference when ϕ is known

Inference when $\boldsymbol{\phi}$ is unknown

Data

2015 Family Income and Expenditure Survey (FIES) on households in the Phillipines. Variables include

- age: age of the head of household
- numLT5: number in the household under 5 years old
- total: total number of people other than head of household
- roof: type of roof (stronger material can sometimes be used as a proxy for greater wealth)
- location: where the house is located (Central Luzon, Davao Region, Ilocos Region, Metro Manila, or Visayas)

Poisson regression model

 Y_i = number of people in household other than head

$$Y_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = \beta_0 + \beta_1 \operatorname{Age}_i$$

Model assumptions

 Y_i = number of people in household other than head

$$Y_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = \beta_0 + \beta_1 \operatorname{Age}_i$$

Question: What assumptions does this Poisson regression model make?

Model assumptions

 Y_i = number of people in household other than head

$$Y_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = \beta_0 + \beta_1 \operatorname{Age}_i$$

- Shape: The shape of the regression model is correct
- Independence: The observations are independent
- Poisson distribution: A Poisson distribution is a good choice for Y_i

Question: How could I assess these assumptions?

Shape: log empirical means plot

Shape: log empirical means plot

Shape: quantile residual plot

No transformation on Age

Second order polynomial

Class activity

https://sta712-

f23.github.io/class_activities/ca_lecture_11.html

Class activity

Using quantile residual plots

We can use the quantile residual plot to assess the shape and distribution assumptions: