实际倒立摆系统的建模与控制

2024 机器人系统设计与应用 大作业

本作业将探索一个实际倒立摆系统,包括其动力学模型的建立、模型参数辨识、以及基于模型的倒立摆摇起及稳定控制。

本作业所考虑的倒立摆系统的简化图如图 1 所示,包含:质量为 M 的小车;小车上接有一质量 m、长度 2l、近似均匀的连杆,可绕小车自由转动,连杆与竖直方向的夹角 θ 可由编码器读出。

图1 小车倒立摆系统示意图

实验中,小车被置于一组水平导轨上,与电机相连,其水平位置x 可由导轨上的编码器读出。电机通过 Q4 DAQ I/O 模块与电脑连接。在实验过程中,可以控制电脑发出的电信号V,给与小车一个大小为F的推进力。推进力F的大小可表示为:

$$F = \frac{\eta_g K_g K_t}{R_m r_{mp}} \left(-\frac{K_g K_m \dot{x}}{r_{mp}} + \eta_m V \right)$$

上式所涉及参数的含义和部分参数大小由表格给出。

图 2 实际小车-滑轨系统

表 1 倒立摆试验系统参数表

物理量	名称	数值	单位
η_g	Planetary Gearbox Efficiency	100	%
η_m	Motor Efficiency	100	%
K_g	Planetary Gearbox Gear Ratio	3.71	
K_t	Motor Torque Constant	0.00767	$N \cdot m/A$
K_m	Back-ElectroMotive-Force Constant	0.00767	V⋅s/rad
R_m	Motor Armature Reistance	2.6	Ω
r_{mp}	Motor Pinion Radius	6.35×10^{-3}	m
M	Cart Mass	0.57	kg

- 1. 请推导出此倒立摆系统的动力学方程,以x 和 θ 进行描述。
- **提示:** 对于实际系统而言,不论是车的移动还是倒立摆的摆动都会存在摩擦损耗,可以先从理想情况推导,再将摩擦损耗项加进去。
- 2. 为了获得小车的模型参数,进行了两组实验:

实验一:为了获得倒立摆的具体参数,将小车固定,让摆做从某一初始角度 $\theta = q_0$ 开始的自由摆动,并记录了摆角 θ 随时间t的变化关系,测量数据由文件 freeswing.mat 给出。

实验二: 为了获得小车的相关参数, 让小车运动: 让系统输出如下电压信号:

 $V = 4.0 \sin 4.2t \text{ V}$

则倒立摆系统会在上述输入下产生受迫摆动,对应的 x 和 θ 随时间的变化数据由 4.2-4 converted.mat 给出。

基于上述实验数据,请确定1中动力学方程的模型参数。

提示:对于均匀连杆而言,其转动惯量可以通过计算由其质量和长度表示。

3. 基于 1 和 2 中所获得系统,请设计控制器,实现倒立摆系统的摇起控制。即:让 θ 从 0rad 开始运动到 180rad,并稳定在该位置。通过 MATLAB 建模或者 SIMULINK 建模来验证你的控制效果。

报告要求:

作业报告应包含以下几个部分:

- 1. 实验系统概述
- 2. 动力学方程的建立
- 3. 模型参数辨识
- 4. 控制器设计方案
- 5. 实验仿真结果和分析
- 6. 结论

实验所使用的 MATLAB 或 SIMULINK 程序代码应与实验报告一同提交。

提交期限:

2024年6月16日23:59

请将实验报告和程序一同发给 jdwu@cug.edu.cn

邮件标题: 学号+姓名+2024 机器人系统设计与应用 大作业