Chapitre Cimites de Cantiens Courages des examples els

🕏 Capacité 1 Interpréter graphiquement une limite finie en l'infini

Soit f une fonction f définie sur \mathbb{R} telle que $\lim_{x \to \infty} f(x) = 4$ et $\lim_{x \to \infty} f(x) = -2$.

- 1. Représenter une courbe possible pour f en traçant ses droites asymptotes en $-\infty$ et $+\infty$.
- 2. f est-elle nécessairement une fonction décroissante sur \mathbb{R} ?

🦪 Capacité 2 Comprendre la définition d'une limite en l'infini

Pour chacune des affirmations suivantes, déterminer si elle est vraie ou fausse :

- Affirmation 1 : Si $\lim_{x \to +\infty} f(x) = +\infty$ alors f croissante sur son intervalle de définition.
- Affirmation 2 : Si $\lim_{x \to -\infty} f(x) = +\infty$ alors f décroissante sur son intervalle de définition.
- Affirmation 4: Si $\lim_{x \to +\infty} f(x) = -\infty$ alors f(x) < 0 pour x assez grand.
- Affirmation 5: Si $\lim_{x \to -\infty} f(x) = +\infty$ alors f(x) > 734 pour x assez petit.

🚀 Capacité 3 Interpréter graphiquement des limites

On considère une fonction f dont on donne ci-dessous le tableau de variation. On note \mathscr{C}_f sa courbe dans un repère orthonormal du plan.

x	-∞	-1	1	+∞
f(x)	731	+∞	+∞ +∞	732

- Déterminer l'ensemble de définition de f.
- **2.** Quelles sont les valeurs de $\lim_{\substack{x \to -1 \\ x < -1}} f(x)$ et de $\lim_{\substack{x \to -1 \\ x > -1}} f(x)$?
- 3. Quelles sont les limites de f en 1^- et 1^+ ?
- Déterminer les éventuelles droites asymptotes horizontales à \(\mathscr{C}_f\).
- 5. Déterminer les éventuelles droites asymptotes verticales à \mathscr{C}_f .
- 6. Dans un repère orthonormal du plan, tracer les droites asymptotes à \mathscr{C}_f puis une représentation possible de \mathscr{C}_f .

2)
$$\lim_{n\to\infty} |g(n)| = |g(n)| =$$

4) On a lim ((n)=731 danc la droite d'àque - Cony=731 est voymplote Rouizantale à Efen On a lim f(n)=732 donc la docte d'équalie n = 732 est asymptote horizontale à Epentos. 5) Gm a lim f(n)=to danc la doct d'équation n=-1 ex asymptole verticale à EC. - queton n=1 est asymptole verliele à Co.

🚀 Capacité 5 Lever une forme indéterminée en factorisant le terme prépondérant

- 1. Soit h définie sur \mathbb{R} par $h(x) = -2x^5 + 3x^4 x + 1$. Déterminer la limite de f en 0, puis en $+\infty$ et enfin en $-\infty$
- 2. Soit f définie sur $\mathbb{R} \setminus \{-2; 1\}$ par :

$$f(x) = \frac{2x^2 - 8x + 6}{x^2 + x - 2}$$

- ${f a}.\;\;$ Déterminer la limite de f en chacune des bornes de son ensemble de définition.
- b. Interpréter graphiquement ces limites.

Quephiquement on Neut-conscious que lim (m)=+D lim (m=+D) m->-2 m->-2 m->-2 en - wet to (égales à 2 si en zoone) Etude en - w: Parquolient en a una FI che trepre +0 par la l'alproparat en es: Par quelient en a dénormais lins g(x)=2dans El colmet une colymptole hoursontole d'april par me 2 en - or « Etrede en to: de même an mentre que lima b(n) = 2 l'alude en -2 et en 1 on a lesour et éludiu le signe du binôme x²+n-2. le product des revines est égal à C==2=2 denc l'autre ravine est -2=-2

On en déduet-le tobleau de signes de n2+n-2 n - w - 2 1 n2+n-2 + 0 - 0 + on a lim 2 22 82 + 6 = 30 et lin. 22+2-2=0+ 2~2-8~+6 - +W donc par qualient- lim n->-2 m2+x-2 on a lim 222-82+6=30 et lin. n2+n-2 = 0 den par quolient lim 2 n² - 8 n+6 _ - 00 la droite d'équation n=- 2 est donc augm - Ole à BC. Paul l'élude en 1, on est bloque par une FI le terme pre penderent en 1 n'est par 22 le terme ele + houl- dearé

on Colouise le numéraleur et le dénomination vous simplifier des follous communs (il yer à Coulement cu les deun s'annulent env Pour Codément des rouines sont -2 et 1 et le forme forbousée (n+2) (n-1) Pour le numéraleur les rouines sont 1 el 3 et la forme forbousée 2(n-1) (n->) $\begin{cases} (n) = \frac{2(n+1)(n-3)}{(n+2)(n+3)} = \frac{2n-6}{n+2} \end{cases}$ et danc on a lim 2n-6 _ _ 4 N->1 >1 >1 >2

🕏 Capacité 6 Limite et algorithme de seuil

Pour chacune des affirmations suivantes, déterminer si elle est vraie ou fausse en justifiant la réponse.

· Affirmation 1: La boucle ci-dessous se termine :

```
def f(x):
   return x ** 3 - x ** 2
x = 0
while f(x) < 734:
  x = x + 1
```

· Affirmation 2: La boucle ci-dessous ne se termine pas.

```
def f(x):
   return x ** 3 - x ** 2
```

Page 7/15

https://frederic-junier.org/

Limites de fonctions

SpéMaths

```
while f(x) > -734:
   x = x - 1
```

· Affirmation 3: La boucle ci-dessous se termine.

```
def f(x):
   return (734 * x ** 2) / (x ** 2 + 1)
x = 0
while abs(f(x) -734) > 0.001:
   x = x + 1
```

· Affirmation 4:

Même question que l'affirmation 3 mais sans la valeur absolue dans le test : f (x) -734>0.001.

. L'affirmation 1 est maie Pour tout réel 22 0, on a. Cen a lim x3 _ +10 et lim 1-1-1 n->to done par produit lion n3x (1-1) - +cs Par définition il eniste danc un entre v Let que re > 2 > 434 et la boucle se termino · l'affirmation 2 est. fourse On a lim x3 - - 00 el- lin 1-1 denc per product lim x3 (1-1) =-es Par de finition il eniste danc un enlier a tel que x3-x2 <->3h et la bouele se termine. . L'affirmation 3 est vraice Pour tout neel x 0, on a:

734 x² x²x 734 = 14 1/2

x²x (1+1/2) 1+ 1/2

Con a lim 134 = 734 van qualiant

Par de finition il existe done un entier x tel que

1 {(n) - 734 | 4 g och et la broucle se termine.

🦼 Capacité 7 Déterminer une limite par composition (voir capacité 6 p.171)

On donne le tableau de variation d'une fonction f dérivable sur \mathbb{R} , on note \mathscr{C}_f la courbe de f dans un repère du plan.

De plus on sait que:

$$f(-2) = -3$$
 et $f(3) = 2$

On donne le tableau de variation d'une fonction g dérivable sur \mathbb{R} – $\{-2\}$, on note \mathscr{C}_g la courbe de g dans un repère du plan.

Page 9/15

https://frederic-junier.org/

Limites de fonctions

SpéMaths

- Calculer g(f(-2)) puis déterminer un encadrement de g(f(3)).
- **a.** Que vaut $\lim_{\substack{x \to -2 \\ x < -2}} g(x)$? Interpréter graphiquement cette limite.
 - **b.** Tracer dans un repère une représentation possible de la courbe \mathscr{C}_g avec ses droites asymptote(s)qu'on peut déduire du tableau de variation de g et sa tangente au point d'abscisse 1.
- 3. En justifiant déterminer les limites suivantes :

•
$$\lim_{\substack{x \to -2 \\ x < -2}} \frac{f(x)}{g(x)}$$

•
$$\lim_{x \to +\infty} \frac{g(x)}{f(x)}$$

$$\bullet \lim_{\substack{x \to -2 \\ x < -2}} \frac{f(x)}{g(x)} \qquad \bullet \lim_{x \to +\infty} \frac{g(x)}{f(x)} \qquad \bullet \lim_{x \to -\infty} g(x) - f(x) \qquad \lim_{x \to -\infty} g(x) \times f(x)$$

$$\lim_{x \to -\infty} g(x) \times f(x)$$

•
$$\lim_{x \to +\infty} g(f(x))$$
 • $\lim_{x \to -\infty} g(f(x))$

•
$$\lim_{x \to -\infty} g(f(x))$$

•
$$\lim_{\substack{x \to -2 \\ x < -2}} f(g(x))$$

$$\lim_{\substack{x \to -2 \\ x > -2}} f(g(x))$$

🚀 Capacité 8 Utiliser les théorèmes de limite par comparaison ou encadrement

1. Soit f une fonction telle que pour tout $x \in \mathbb{R}$ on a $-1 \le f(x) \le 1$. Déterminer les limites suivantes :

a.
$$\lim_{x \to +\infty} x + f(x)$$
 b. $\lim_{x \to +\infty} \frac{f(x)}{x}$ **c.** $\lim_{x \to -\infty} x + f(x)$

- **2.** Soit la fonction g définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $g(x) = \frac{\sin(x)}{x} + 1$.
 - a. Représenter graphiquement la courbe de f avec sa calculatrice et conjecturer ses limites en $-\infty$ et en $+\infty$.
 - **b.** En utilisant un encadrement de sin(x), déterminer un encadrement de g(x) pour tout réel x et en déduire les limites conjecturées.

