Aufgabe 1: DEA → **Reguläre Grammatik**

Prozess der Umwandlung allgemein

 $B \rightarrow aA \mid b$

- Die Menge der Terminalsymbole ist gleich dem Alphabet des DEA: $T = \Sigma$.
- Für jeden Zustand gibt es ein Nichtterminalsymbol (Beispiel: q_A entspr. A, q_B entspr. B, usw.) Ausnahmen:
 - 1. Falls der DEA einen Endzustand hat, von dem es keine Übergänge gibt, braucht es für diesen Zustand kein NT.
 - 2. Falls der DEA einen Zustand hat, von dem man nicht in einen Endzustand wechseln kann ("Müllzustand"), braucht es für diesen ebenfalls kein NT.
- Das NT, welches dem Startzustand entspricht, ist das Startsymbol.
- Für jeden Übergang $q_A / a \rightarrow q_B$ eine entsprechende Ableitungsregel $A \rightarrow aB$.
- Für jeden Übergang q_A / $a\to q_B$ mit q_B Endzustand gibt es eine Regel $A\to a$ Falls es von dem Endzustand Übergänge gibt: zusätzlich die Regel $A\to aB$

Aufgabe 2: Reguläre Grammatik → **DEA**

$$L(G) = \{ a^m ba(aa)^n b \mid m, n \in N_0 \}$$

$$\Sigma = T = \{ a, b \}$$

$$S = \{ q_0, q_1, q_2, q_3 \}$$
 $q_0=S, q_1=T, q_2=U;$

Es braucht zusätzlich den Zustand q_3 , da man von U mit b zum Ende kommt, aber nicht in q_2 bleiben kann.

Graph zur Übergangsfunktion:

Prozess der Umwandlung allgemein

- Das Alphabet ist die Menge der Terminalsymbole: $\Sigma = T$
- Für jedes Nichtterminalsymbol gibt es einen Zustand.
- Für jede Ableitungsregel A \rightarrow bC einen Übergang $q_A / a \rightarrow q_C$.
- Für jede Ableitungsregel $D \to e$ und $D \to eF$ gibt es einen Übergang $q_D / e \to q_F$, und q_F ist ein Endzustand.
- Wenn es die Regel D \rightarrow e gibt, aber keine Regel D \rightarrow eF, dann braucht es einen zusätzlichen Zustand q_F und den Übergang q_D / $e \rightarrow q_F$.

Zusatz

Es braucht einen weiteren Zustand q₃.

Von B kommt man mit a wieder zu B, oder zum Ende.

Mit b kommt man jedoch zwar zu B, aber nicht zum Ende. Deswegen kann im Automaten q_2 nicht mit b in q_2 bleiben, denn q_2 ist ja ein Endzustand.

Es braucht den Ausweichzustand, in dem man mit b bleiben kann und nur mit a wieder zum Endzustand zurück kommt.

Einfachere Variante: q1 und q3 zusammenfassen (kein Unterschied)

