Early Detection Of Chronic Kidney Disease Using Machine Learning

LITERATURE SURVEY

SN O	TITLE	AUTHOR	DESCRIPTION	YEAR OF PUBLICA TION
1	Optimal Feature Selection for Chronic Kidney Disease Classification using Deep Learning Classifier	K.Shankar, P. Manickam, G. Devika,M. Ilayaraja	ALGORITHM USED: Deep Neural Network (DNN). ACCURACY: Greatest accuracy around 98% of DNN.	2018
2	Performance Evaluation of an Ensemble Method for Diagnosis of Chronic Kidney Disease with Feature Selection Technique	Ayobami	ALGORITHM USED: Radom forest algorithm ,Naïve Bayes, kNearest Neighbor, and Decision Tree. ACCURACY: We gain the highest accuracy from the Random Forest(RF) and it is 98.3%.	2020
3	XGBoost Model for Chronic Kidney Disease Diagnosis	Adeola Ogunleye and Qing- Guo Wang	ALGORITHM USED: Extreme Gradient Boosting (XGBoost). ACCURACY: Acucuracy gained 89%	2018
4	Performance Analysis of Chronic Kidney Disease through Machine Learning	Minhaz Uddin Emon, Al Mahmud Imran,	ALGORITHM USED: Logistic Regression(LG), Naive Bayes(NB), Multilayer Perceptron(MLP), Stochastic	2021

	Approaches	Rakibul Islam.	Gradient Descent(SGD), Adaptive Boosting(Adaboost), Bagging, Decision Tree(DT), Random Forest(RF) classifier are used.	
			ACCURACY: We gain the highest accuracy	
			from the Random Forest(RF) and it is 99	
5	Preemptive Diagnosis of Chronic Kidney Disease Using Machine Learning Techniques	,	ALGORITHM USED: ANN, SVM, Naïve Bayes ACCURACY: ANN, SVM, Naïve Bayes achieved a testing accuracy of 98.0% while k-NN has achieved an accuracy of 93.9%.	2018
6	Featue selection effects on kidney disease analysis.	Zeinab Sedighi, Hossein Ebrahimpou r-Komleh, Seyed Jalaleddin Mousavirad	ALGORITHM USED: AdaBoost, Adaptive Boosting, Naïve Bayes classifier. ACCURACY: 92% of accuracy gain.	2015
7	Analysis of Chronic Kidney Disease Dataset by Applying Machine Learning Methods.	Yedilkhan Amirgaliye v, Shahriar Shamiluulu, Azamat Serek.	ALGORITHM USED: support vector machines ACCURACY: Experimental results showed over 93% of success	2019

8	Predictive Analytics for Chronic Kidney Disease Using Machine Learning Techniques.		K-nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), and decision tree classifiers. ACCURACY:	2016
			96% of accuracy.	
9	Chronic Kidney Disease for Collaborative Healthcare Data Analytics using Random Forest Classification Algorithms.	V.Shanmug a rajeshwari , M. Ilayaraja.	ALGORITHM USED: Random forest, SVM and ANN algorithms. ACCURACY: 87% of accuracy.	2021
10	Diagnosis of Chronic Kidney Disease using effective classification and feature selection technique	Tazin, Shahed Anzarus	ALGORITHM USED: Support Vector Machine, Decision tree, Naïve Bayes and K-Nearest Neighbor. ACCURACY:	2016