PyGWalker

Py Gi Walker (Python binding of Graphic Walker) can simplify your Jupyter Notebook data analysis and data visualization workflow. It allows data scientists to analyze data and visualize patterns with simple drag-and-drop operations.

- · Install PyGWalker
 Pip install Pygwalker
- Importing libraries
 import pandas as pd
 import pygwalker as pyg
- Loading data

 df = pd. read_csv (p"Superstore_USA.csv")
- Now take Data Frame into PyGIWalker

 pyg. walk (df, vega Theme = "vega")

 * Or you can store the data frame into another

 variable as per below example

 new_df = pyg. walk (df, vega Theme = "vega")

PyGWalker

Turn your pandas dataframe into a Tableau-style User Interface for visual analysis

<< PyGWalker: A Python Library for Exploratory Data Analysis with Visualization >>>

PyGWalker can simplify your Jupyter Notebook data analysis and data visualization workflow, by turning your pandas dataframe into a Tableau-style User Interface for visual exploration.

PyGWalker (pronounced like "Pig Walker", just for fun) is named as an abbreviation of "Python binding of Graphic Walker". It integrates Jupyter Notebook (or other jupyter-based notebooks) with Graphic Walker, a different type of open-source alternative to Tableau. It allows data scientists to analyze data and visualize patterns with simple drag-and-drop operations.

Install PyGWalker

<<< PyGWalker: A Python Library for Exploratory Data Analysis with Visualization >>>

PyGWalker can simplify your Jupyter Notebook data analysis and data visualization workflow, by turning your pandas dataframe into a Tableau-style User Interface for visual exploration.

PyGWalker (pronounced like "Pig Walker", just for fun) is named as an abbreviation of "Python binding of Graphic Walker". It integrates Jupyter Notebook (or other jupyter-based notebooks) with Graphic Walker, a different type of open-source alternative to Tableau. It allows data scientists to analyze data and visualize patterns with simple drag-and-drop operations.

Install PyGWalker

In []: 1 pip install pygwalker

Importing libraries

In [23]: 1 import pandas as pd import pygwalker as pyg

Checking directories

Loading data

Out[25]:

	Row ID	Order Priority	Discount	Unit Price	Shipping Cost	Customer ID	Customer Name	Ship Mode	Customer Segment	Product Category	 Region	State or Province	City	Postal Code	Order Date	•
0	18606	Not Specified	0.01	2.88	0.50	2	Janice Fletcher	Regular Air	Corporate	Office Supplies	 Central	Illinois	Addison	60101	28- 05- 2012	30- 05- 2012
1	20847	High	0.01	2.84	0.93	3	Bonnie Potter	Express Air	Corporate	Office Supplies	 West	Washington	Anacortes	98221	07- 07- 2010	08- 07- 2010
2	23086	Not Specified	0.03	6.68	6.15	3	Bonnie Potter	Express Air	Corporate	Office Supplies	 West	Washington	Anacortes	98221	27- 07- 2011	28- 07- 2011
3	23087	Not Specified	0.01	5.68	3.60	3	Bonnie Potter	Regular Air	Corporate	Office Supplies	 West	Washington	Anacortes	98221	27- 07- 2011	28- 07- 2011
4	23088	Not Specified	0.00	205.99	2.50	3	Bonnie Potter	Express Air	Corporate	Technology	 West	Washington	Anacortes	98221	27- 07- 2011	27- 07- 2011

>

5 rows × 24 columns

Now take DataFrame into PyGWalker

```
In [26]: pyg.walk(df, vegaTheme = 'vega') #You can view the dataframe in a table and configure the analytic types and semantic types # Or you can store dataframe into another variable as per below # new_df = pyg.walk(df, vegaTheme = 'vega')
```


Now visualize as per requirements

In [27]: 1 pyg.walk(df, vegaTheme = 'vega')

In [28]: 1 pyg.walk(df, vegaTheme = 'vega')

In [29]: 1 pyg.walk(df, vegaTheme = 'vega')

Upload another datasets

In [32]: 1 pyg.walk(df1, vegaTheme = 'vega')

Upload another datasets

Upload another datasets

