

UNIVERSIDAD DE GRANADA

VISIÓN POR COMPUTADOR GRADO EN INGENIERÍA INFORMÁTICA

Trabajo 1

FILTRADO Y DETECCIÓN DE REGIONES

Autor

Vladislav Nikolov Vasilev

Rama

Computación y Sistemas Inteligentes

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2019-2020

Índice

1.	Ejercicio sobre filtros básicos	2
	1.1. Apartado A	2
	1.2. Apartado B	2
2.	Ejercicio sobre pirámides y detección de regiones	3
	2.1. Apartado A	3
	2.2. Apartado B	3
		3
3.	Ejercicio 3	4
4.	Bonus	5
Re	eferencias	6

1. EJERCICIO SOBRE FILTROS BÁSICOS

USANDO LAS FUNCIONES DE OPENCV: escribir funciones que implementen los siguientes puntos:

- A) El cálculo de la convolución de una imagen con una máscara 2D. Usar una Gaussiana 2D (GaussianBlur) y máscaras 1D dadas por getDerivKernels). Mostrar ejemplos con distintos tamaños de máscara, valores de sigma y condiciones de contorno. Valorar los resultados.
- B) Usar la función Laplacian para el cálculo de la convolución 2D con una máscara normalizada de Laplaciana-de-Gaussiana de tamaño variable. Mostrar ejemplos de funcionamiento usando dos tipos de bordes y dos valores de sigma: 1 y 3.
- 1.1. Apartado A
- 1.2. Apartado B

2. EJERCICIO SOBRE PIRÁMIDES Y DETECCIÓN DE RE-GIONES

IMPLEMENTAR funciones para las siguiente tareas:

- A) Una función que genere una representación en pirámide Gaussiana de 4 niveles de una imagen. Mostrar ejemplos de funcionamiento usando bordes y justificar la elección de los parámetros.
- B) Una función que genere una representación en pirámide Laplaciana de 4 niveles de una imagen. Mostrar ejemplos de funcionamiento usando bordes.
- C) Construir un espacio de escalas Laplaciano para implementar la búsqueda de regiones usando el siguiente algoritmo:
 - a. Fijar sigma
 - b. Repetir para N escalas
 - c. Realizar supresión de no-máximos en cada escala
 - I. Filtrar la imagen con la Laplaciana-Gaussiana normalizada en escala
 - II. Guardar el cuadrado de la respuesta para el actual nivel del espacio de escalas
 - III. Incrementar el valor de sigma por un coeficiente k.(1.2-1.4)
 - **d.** Mostrar las regiones encontradas en sus correspondientes escalas. Dibujar círculos con radio proporcional a la escala.
- 2.1. Apartado A
- 2.2. Apartado B
- 2.3. Apartado C

3. Ejercicio 3

4. Bonus

Referencias

[1] Texto referencia https://url.referencia.com