Experiment: a process that generates well-defined outcome. **Sample space:** the set of all experimental outcomes. **Sample point:** an element of the sample space. Exp="Toss a coin", Outcomes=Head, Tail. Exp="Roll a die", Outcomes=1,2,3,4,5,6 Probabilities assigned to each outcome must be between 0 and 1. The sum of the probabilities for all exp. outcomes must equal 1.

appear in the body of the table.	Men (M)	Women (W)	Total
Promoted (A)	.24	.03	.27
Not Promoted (A°)	.56	.17	.73
Total	.80	.20	1.00
			Marginal probabilitie appear in the margir of the table.

Joint prob: the prob. of two events both occurring. ("Promoted" AND "Male")

Marginal prob: the values in the margins of a joint prob. table. (Only looking at 1 event, "Promoted")

"Given that" is conditional. Given=Total. .24/.80=.30

Discrete probability distribution for $x = \text{Table with } x \mid f(x)$

Random variable: numerical description of the outcome of an experiment.

Discrete: finite number of values or infinite sequence of values.

Random Experiment Random Variable (x)		Possible Values for Random Variable	
Flip a coin	Which face is showing	Heads=1, Tails=0	
Roll a die	Number of dots showing on top of die	1, 2, 3, 4, 5, 6	

Continuous: any numerical value in an interval or collection of intervals.

Random Experiment	Random Variable (x)	Possible Values for Random Variable
Customer visits a web page	Time customer spends on page	X > 0
Fill a soft drink can (max 12.1 oz)	Number of ounces	0 < X < 12.1

Probability Distribution: a description of how the probabilities are distributed over the values of the random variable.

Probability Function: a function, denoted by f(x), that provides the probability that x assumes a particular value.

Required Conditions for Discrete Probability Function: $f(x) \ge 0$ AND $\sum f(x) = 1$	Expected	Possible Values for Random Variable
Customer visits a web page	Time customer spends on page	X > 0
Fill a soft drink can (max 12.1 oz)	Number of ounces	0 < X < 12.1

Binomial Experiment Requirements: 1. Experiment consists of $\bf n$ identical trials. 2. Two outcomes possible (success/fail). 3. Prob. of success, $\bf p$, does not change from trial to trial. 4. Trials are independent. $\bf x$ =# of success, $\bf p$ =prob of success, $\bf n$ =# trials, $\bf f(\bf x)$ =prob of $\bf x$ successes out of $\bf n$ trials. Start by building function with $\bf n$ and $\bf p$. Example: $\bf n$ =10, $\bf p$ =.10, $\bf f(\bf x)$ = (10 choose $\bf x$) * .1^x(1 - .1)^10-x Next build prob table. $\bf x \mid \bf f(\bf x)$

X	f(x)
0	.3487
1	.3874

Binominal Distribution Expected Value: E(x) = n * p Variance: var(x) = n * p(1-p)

Counting Rule for Combinations	Counting Rule for Permutations	Required Conditions for Discrete Probability Function:	Expected Value of a Discrete Random Variable
$C_n^N = {N \choose n} = rac{N!}{n!(N-n)!}$	$P_n^N = n! \binom{N}{n} = \frac{N!}{(N-n)!}$	$f(x) \ge 0 \text{ AND } \sum f(x) = 1$	$\mathbf{E}(\mathbf{x}) = \mathbf{M} = \sum \mathbf{x} * \mathbf{f}(\mathbf{x})$
Variance of a Discrete Random Variable	Binomial Probability Function	<u>Uniform Probability Density Function</u> Area (Prob.) = length * width	Expected Value & Variance Uniform Continuous Probability Distribution
$var(x) = \sigma^2 = \sum (x - E(x))^2 * f(x)$	$f(x) = {n \choose x} p^x (1-p)^{(n-x)}$	$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{elsewhere} \end{cases}$	$E(x) = (a + b) / 2$ $var(x) = (b - a)^{2} / 12$

Discrete Random Variable: Compute the Expected Value and Variance of x

X	f(x)	x * f(x)	x - E(x) [M]	$(x-M)^2$	$(x - M)^2 * f(x)$
10	.25	2.5	-7.5	56.25	56.25*.25=14.0625
20	.75	15	2.5	6.25	6.25*15=93.75
TOTALS	1	17.5 = E(x)			Var(x)=107.8125

<u>Probability Density Function (PDF):</u> a function used to compute probabilities for a continuous random variable. The area under the graph of a PDF represents the probability.

<u>Uniform Probability Distribution:</u> a continuous probability distribution for the probability that a random variable will assume a value in any interval is the same for each interval.

Standard Normal Probability Distribution:

Three types of calculations:

- Prob that Z is less than or equal to a given value.
 P(Z < z)
- 2. Prob that Z is between two given values. P(z < Z < z)
- 3. Prob that Z is greater than or equal to a given value. P(Z > z) OR 1 P(Z < z)

Draw the graph to visualize the calculation needed.

Converting to Standard Normal Random Variable:

- 1. $\mathbf{Z} = (\mathbf{x} \mathbf{Mean}) / \mathbf{Std} \mathbf{Dev}$
- 2. Lookup z score in Prob table.
- 3. Resulting value is the probability.

Given that z is a standard normal variable, find z:

- 1. Find area to the left.
- 2. Reverse lookup area value in Prob table to find z.

The area to the left of z is .9750, z=1.96

The area to the right of z is .1314 = 1 - .1314 = .8686, z=1.12