

Uncertainty

AIMA Chapter 13

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference

Uncertainty: Motivating Example

Let taxi agent's action $A_t =$ leave for airport t minutes before flight. Will A_t get me there on time?

- Sources of uncertainty:
 - 1. Partial observability (e.g., road state, other drivers' plans, ...)
 - 2. Noisy sensors (e.g., traffic reports, fuel sensor, ...)
 - 3. Uncertainty in action outcomes (e.g., flat tire, accident, ...)
 - 4. Complexity in modeling and predicting traffic (e.g., congestion)
- Logical agent either

Logical agent can only say Yes or No and nothing more

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. reaches weaker conclusion: " A_{25} will get me there on time **if** there's no accident on the bridge **and** it doesn't rain **and** my tires remain intact..."

Dealing with Uncertainty

- Probability degree of belief
- Summarizing uncertainty using Probability

- Decisions based on utility (usefulness)
- Rational agent prefers state with higher utility

Random Variables

Domains

- Boolean: coin is either heads or tails (true or false)
- Discrete: a die can have values {1, ..., 6}

Events: subsets of domains

- Heads(X) the coin flipped to heads
- Even(X) the die has value $\in \{2,4,6\}$

Events

- Given a random variable X, let D_X be its domain.
- Atomic event (possible world): an assignment of a value to each random variable; a singleton event

We roll two different dice

Each of the 36 combinations is an atomic event

Events

- Red die = RV X_1 , blue die = X_2
- Event: $X_1 + X_2 = 8$

Axioms of Probability

- Let X be a random variable with finite domain D_X .
- A probability distribution over D_X assigns a value $p_X(x) \in [0,1]$ to every $x \in D_X$ s.t.

$$\sum_{x \in D_X} p_X(x) = 1$$

• For any event $A \subseteq D_X$ we have

$$\Pr[X \subseteq A] \equiv \Pr_X[A] = \sum_{x \in A} p_X(x)$$

A
B

In particular

$$Pr[A] + Pr[B] = Pr[A \cap B] + Pr[A \cup B]$$

Joint Probability

- Given two random variables X and Y, the **joint probability** of an atomic event $(x,y) \in D_X \times D_Y$ is $p_{X,Y}(x,y) = \Pr[X = x \land Y = y]$
- In particular $p_X(x) = \sum_{y \in D_Y} p_{X,Y}(x,y)$

Income (in SGD)	15-24	25-34	35-44	45-54	55-64	65+
< S\$2500	0.062	0.051	0.037	0.019	0.015	0.039
S\$2500 S\$5000	0.078	0.068	0.061	0.057	0.031	0.053
> <i>S</i> \$5000	0.015	0.051	0.094	0.119	0.111	0.039

$$Pr[Age = (25 - 34)] = 0.051 + 0.068 + 0.051 = 0.17$$

Probability that an event occurs, given that some other event occurs.

$$Pr[X_1 = 2]$$

Probability that an event occurs, given that some other event occurs.

$$Pr[X_1 = 2 \mid X_1 + X_2 = 8]$$

Probability that an event occurs, given that some other event occurs.

$$Pr[X_1 + X_2 = 8 \mid X_1 = 2]$$

• $\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$ assuming that $\Pr[B] > 0$

Among all the worlds where B occurs, find the A – worlds s.t., $A \wedge B$ occurs

- Total probability of set of worlds: $p_X(x) \in [0,1] \ \forall x \in D_X$ then, $\sum_{x \in D_X} p_X(x) = 1$
- For any event $A \subseteq D_X$ we have, $\Pr_X[A] = \sum_{x \in A} p_X(x)$
- Disjunction of events: $Pr[A \lor B] = Pr[A] + Pr[B] Pr[A \land B]$

Independence

A and B are independent if $Pr[A \land B] = Pr[A] \cdot Pr[B]$. Equivalent to $Pr[A \mid B] = Pr[A]$.

"Knowing B adds no information about A"

Toothache, cavity and weather $Pr[Weather = cloudy \mid toothache \land cavity] = ?$

Start with the joint probability distribution:

	tooth	ache	¬toothache		
	catch	¬catch	catch	¬catch	
cavity	0.108	0.012	0.072	0.008	
¬cavity	0.016	0.064	0.144	0.576	

- For any proposition (event) X, sum the atomic events y where X holds: $\Pr[X] = \sum_{y \in X} \Pr[X = y]$
- Pr[toothache] = 0.108 + 0.016 + 0.012 + 0.064 = 0.2

Marginalization / summing out

 $\Pr[toothache] = \sum_{z} \Pr[toothache, z]$ where z is all each possible value of other variables.

Start with the joint probability distribution:

	toothache		¬toothache	
	catch	ıcatch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
−cavity	0.016	0.064	0.144	0.576

- For any proposition (event) X, sum the atomic events y where X holds: $\Pr[X] = \sum_{y \in X} \Pr[X = y]$
- Pr[toothache \lor cavity] = 0.108 + 0.016 + 0.012 + 0.064 + 0.072 + 0.008 = 0.28

Start with the joint probability distribution:

	tooth	ache	¬toothache		
	catch	¬catch	catch	¬catch	
cavity	0.108	0.012	0.072	0.008	
¬cavity	0.016	0.064	0.144	0.576	

• For any proposition (event) X, sum the atomic events y where X holds: $\Pr[X] = \sum_{y \in X} \Pr[X = y]$

Pr[¬cavity | toothache] =
$$\frac{\Pr[\neg cavity \land toothache]}{\Pr[toothache]}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.016 + 0.012 + 0.064} =$$

Start with the joint probability distribution:

	tooth	ache	¬toothache		
	catch	¬catch	catch	¬catch	
cavity	0.108	0.012	0.072	0.008	
¬cavity	0.016	0.064	0.144	0.576	

• $Pr[cavity \mid toothache] = \frac{Pr[cavity \land toothache]}{Pr[toothache]}$

Normalization

 $\Pr[toothache]$ is common. Treat it as a constant α (normalization constant)

The Power of Independence

- We have n random variables $X_1, ..., X_n$; domains of size d. How big is their joint distribution table?
- Suppose that X_1, \dots, X_n are independent: maintain only dn values!
- Independence is good (if you can find it)