UNIVERSITE HASSAN II CASABLANCA FACULTE DES SCIENCES AINCHOCK

Année Universitaire 2014/15

Filière: SMPC1

Module: Thermochimie

Session de Janvier 2015 Examen de thermochimie (1h30min)

I- Cours: (5 points) On chauffe à pression atmosphérique. 2 moles d'H ₃ O (Eig) de $T_1 = 293$ K jusqu'à vaporisation totale = 373 K. Calculer ΔH° , ΔU° et ΔS° relatives à cette transformation. On donne: $L_{vap}(H_2O) = 41000$ J.mole à $T_{vap} = 373$ K; $Cp(H_2O; Eig) = 75$ J.K mole ; $R = 8,31$ J.mole i.K Schema Diagramme H ₂ O(L_{Vap}) ΔH°_{2}	Nom et Prénom : CNE :	Caruction et	Banere	Nº Examen :	
On chauffe à pression atmosphérique, 2 moles d'H ₂ O (ℓ iq) de T ₁ = 293 K jusqu'à vaporisation totale = 373 K Calculer ΔH° , ΔU° et ΔS° relatives à cette transformation. On donne: L _{vap} (H ₂ O)= 41000 J.mole ⁻¹ à T _{vap} =373 K; Cp(H ₂ O; ℓ iq) = 75 J.K ⁻¹ .mole ⁻¹ ; R = 8,31 J.mole ⁻¹ .K Schéma Ou Diagramme H ₂ O(ℓ uq) H ₂ O(ℓ uq) ΔH°_{1} ΔH°_{2} ΔH°_{2} ΔH°_{3} ΔH°_{4} Δ	I- Cours : (5 points)				
Schema Ou Diagramme $H_2O(liq) \rightarrow H_2O_{nap}$ AH_2^*	On chauffe à <u>pression atmos</u> = 373 K. Calculer ΔH°, ΔU' <u>On donne</u> :	et ΔS° relatives à cette	transformation.		-
$ H_{2}O(\ln q) \longrightarrow H_{2}O_{\mu\nu\rho} \qquad DH_{2}^{2}$ $ T_{1} = 293 \text{ K} \qquad T_{\nu\nu\rho} = 373 \text{ K} \qquad T_{\nu\rho} = 373 \text{ K} \qquad$				P	•••
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H20(lig)	→ H20 rup	T1	<u>΄</u> Δ1	72
$H_{20}(lu_{1})$ $T_{Vap}=373 \text{ K}$ $T_{Vap}=37$		1 Vap = 379) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· χ ΔΗ ³ 1	
$\frac{30 \text{H} = \Delta \text{H}_{1+} \Delta \text{H}_{2}}{5000} = \frac{10000 \text{J}}{10000} = \frac{100000 \text{J}}{10000} = \frac{1000000 \text{J}}{10000} = 1000000000000000000000000000000000000$	Hzo(luq)		īj -		<i>э</i> н>
$\frac{30H = \Delta H_{1+} \Delta H_{2} = m_{q}(l)dT + \Delta H_{vap} = m_{q}(l)[vap - 1]}{5}$ $\frac{5}{2}\Delta H^{\circ} = 2v75x \left(373 - 293\right) + 2v41\infty - 94000 J$ $\frac{5}{2}\Delta H^{\circ} = \Delta H^{\circ}_{1} + \Delta U^{\circ}_{2} = \Delta H^{\circ}_{1} + \Delta H^{\circ}_{vap} = \Delta H^{\circ}_{1} + \Delta H^{\circ}_{va}$ $\frac{5}{2}\Delta H^{\circ} = \Delta H^{\circ}_{1} + \Delta U^{\circ}_{2} = \Delta H^{\circ}_{1} + \Delta H^{\circ}_{vap} = \Delta H^{\circ}_{1} + \Delta H^{\circ}_{vap}$ $\frac{5}{2}\Delta H^{\circ} = \Delta H^{\circ}_{1} + \Delta L^{\circ}_{vap} - 2\left(V_{9} - V_{4}\right) = \Delta H^{\circ}_{1} + \Delta H^{\circ}_{vap}$	Trap=373 K	Tva	2		£
$5 DH^{\circ} = 2 + 75 \times (373 - 293) + 2 + 41 \infty - 94000 $ $5 DH^{\circ} = 0 + 1 + 0 + 0 + 2 = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$	$\rightarrow \triangle H = \triangle H_{1+}$	<u>a</u>		b= nG(e) (TVap	-11)+n
DU = ΔH1 + n Luap - P (Vg - Ve) - DH1+η Luap	5 OH° = 21		13)+2+41	xo - 94000	J
DU'= ΔH1 + n Lvap - P (Vg-V2) - ΔH1+n Lvap	ς Du°= Du°1	+ DU2= DF	(1 + 04vg	p= DH_1+ DF	· 1 _{ναρ} -1)(
15 DU = 94 - 2x8,31x373 = 87800,75	$\mathbf{k} \wedge \mathbf{n}$	$I = 2 \times 10^{-2}$	_		
T Van	15 Jui = 9	4 - 2x 8,31.	r r373 = 8	780,75	
$\Delta S = \Delta S_1 + \Delta S_2 = \int n(p(P)) dT + \frac{\Delta H vap}{T vap}$	$\Delta S = \Delta S$	1 + 052 =	ncp(f) II-	+ DHVap	. 1

II- Problème: (15 points)

Soit la réaction chimique suivante:

 $C_2H_4C\ell_2(g)$ \rightleftarrows $C_2H_3C\ell(g)$ + $HC\ell(g)$

On suppose que les gaz sont parfaits avec $R = 8.31 \text{ J. mole}^{-1}.K^{-1}$

Données thermochimiques suivantes à T = 298 K et P = 1 atm

Molécule	$C_2H_4C\ell_2(g)$	C ₂ H ₃ Cl (g)	HCl (g)
ΔH_{f}^{o} (kJ.mole ⁻¹)	-130	+ 36	- 92
S° (J.K ⁻¹ .mole ⁻¹)	308	264	187
Cp (J.mole ⁻¹ .K ⁻¹)	79	54	29

- 1- Calculer les grandeurs thermochimiques suivantes relatives à cette réaction à $T_1 = 298 \text{ K}$:
- a- la variation d'enthalpie ΔH°_r La Im de HEC

(0,5) $DH^2r = DH^2_{4}(HU_{19}) + DH^2_{4}(QH^2_{19}) - DH^2_{4}(QH^2_{19})$ (0,5) $DH^2r = -92 + 36 = (-130) = 74 \text{ by mol}^{-1} > 6$

b- la variation d'entropie ΔS°_r

B) DSn= S(HQ, y) + S(C2HZQ,3) - S(C2H442,8)

DSn= 18++264-308= 1431 K mot >0

DDA) => clesorare and mente

 $O_{\mathcal{A}^{\mathbf{c}}}$ la variation d'enthalpie libre ΔG° . $\rightarrow \mathcal{O}(\mathcal{C}_{\mathcal{A}}(T) = \mathcal{O}(\mathcal{C}_{\mathcal{A}}(T) - T)$

T= 298K = 1 16208K/= 74-298X0,143

DGn (T-2984)= 31,4 kj mol >0.

Mon spontance a T1=298KC

