

TMSCA HIGH SCHOOL MATHEMATICS TEST #4 © NOVEMBER 9, 2019

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 1. Evaluate: $10 + 16 \times 2 - (7 - 2)! \div (5 \times 2^2) + 3^3$

(A) 51

(B) 57

(C) 63

(D) 69

(E) 75

2. $27A849B05 \div 9$ has a remainder of 3. What is the least value of A + B?

(A) 4

(B) 5

(C) 6

(D) 7

(E) 8

3. Let $A = \{n,a,p,i,e,r\}$, $B = \{l,o,g,a,r,i,t,h,m,s\}$, and $C = \{b,o,n,e,s\}$. Find the number of elements in $(A \cap B) \cup C$.

(A) 6

(B) 7

(C) 8

(D) 9

(E) 10

4. The Azle UIL team hosted a bowling tournament as a fundraiser. Adult tickets cost \$18.50, student tickets cost \$9.85, and senior tickets cost \$14.65. They sold 300 tickets and raised \$4294.40. They sold two more adult tickets than student tickets. How many senior tickets did they sell?

(A) 68

(B) 70

(C) 72

(D) 74

(E) 76

5. Let $6x^3 - 41x^2 + 48x + 35 = (x - 5)(ax^2 + bx + c)$. a + b + c =______

(A) -12

(B) -9

(C) **-6**

(D) -3

 (\mathbf{E}) 0

6. AB = 15 and BC = 16.

 $CD = \underline{\hspace{1cm}}$.

(nearest tenth)

(A) 15.5

(B) 17.2

(C) 18.9

(D) 20.6

(E) 22.3

7. Line L_1 contains the points (-2, -4) and (6, 1). Line L_2 is parallel L_1 and contains the point (2, 1). Which of the following points does not lie on L₂?

(A) $\left(-6, -4\right)$ (B) $\left(-3, -\frac{17}{8}\right)$ (C) $\left(0, -\frac{1}{4}\right)$ (D) $\left(3, \frac{13}{8}\right)$ (E) $\left(6, 4\right)$

8. Which of the following is a one-to-one function?

(A) $f(x) = 2x^2 + 6$ (B) $f(x) = -3x^3 + 2x$ (C) f(x) = |x + 4| (D) $f(x) = e^x$ (E) $f(x) = x^4 - 6x$

9. What is the LCM of 33, 55, and 77?

(A) 1035

(B) 1125

(C) 1155

(D) 1200

(E) 1275

	ins the points (-8, 2) a (nearest tenth)	and $(4, -10)$. What is	s the shortest distance	from L ₃ to the
(A) 9.5	(B) 9.7	(C) 9.9	(D) 10.1	(E) 10.3
	ntered the Azle bowlin 222 and 233. Find the	_		
(A) 171	(B) 172.75	(C) 174.5	(D) 176.25	(E) 178
12. Find the equa	ation of the directrix fo	or the parabola $y = -$	$4x^2 + 12x + 2$.	
(A) $y = 11$	(B) $y = \frac{177}{16}$	(C) $y = \frac{89}{8}$	(D) $y = \frac{45}{4}$	(E) $y = 12$
to the produc	atician developed form ts of the roots, solved t irst infinite representa	the 45 th degree equati		
(A) Rene Desc	artes (B) Marin Mers	senne (C) Leonard l	Euler (D) Franciscus	Vieta (E) Euclid
14. Find the rema	ainder when $(23456_7 \times$	(25_7) is divided by 6	7*	
(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
15. Eagle Mounta	ain Lake spans 8694 ac	eres. How many labo	rs is this? (nearest la	bor)
(A) 49	(B) 53	(C) 57	(D) 61	(E) 65
16. How many pr	rime numbers are ther	e between 40 and 100	that are considered t	to be Emirp Primes?
(A) 4	(B) 5	(C) 6	(D) 7	(E) 8
17. The roots of a	$ax^5 + bx^4 + cx^3 + dx^2 +$	ex + f = 0 are, $-4, -$	3, – 2, 1, and 5. Find	d.
(A) –87	(B) -23	(C) -14	(D) 18	(E) 27
18. How many 5	letter codes are possibl	le using 5 letters fron	n MISSISSIPPI?	
(A) 490	(B) 520	(C) 550	(D) 580	(E) 610
19. Given: f"(x)	$=24x^2-12$, $f'(1)=-4$, and $f(-1) = 0$. $f(2)$	=	
(A) 8	(B) 12	(C) 16	(D) 20	(E) 24

20. Shavna is playing a high stakes game of poker in which each person receives 5 cards from a well-shuffled standard deck of 52 cards. What is the probability that Shayna will have one pair? (Example: 7, 7, 8, 9, king) (nearest hundredth)

(A) 0.33

(B) 0.36

(C) 0.39

(D) 0.42

(E) 0.45

21. The analog clock on Andy's desk reads 1:28. Find the measure of the obtuse angle formed by the hour hand and the minute hand. (nearest tenth of a degree)

(A) 121.5°

(B) 122.8°

(C) 124.0°

(D) 125.3°

(E) 126.6°

22. Catherine likes to make her own bread, so she went to Morrison Mills and purchased 4 bushels, 8 pecks, 12 gallons, and 16 quarts of wheat. A bushel of wheat weighs 60 pounds. How many pounds of wheat did Catherine purchase? (nearest pound)

(A) 420 lb

(B) 450 lb

(C) 480 lb

(D) 510 lb

(E) 540 lb

23. $f(x) = \begin{cases} 3x - 3 & \text{if } x < 0 \\ 2x^2 + 2 & \text{if } 0 \le x < 2 \\ 4x + 4 & \text{if } x \ge 2 \end{cases}$ $f(-3) + f(2) + f(4) = \underline{\qquad}.$

(A) 12

(B) 14

(C) 16

(D) 18

(E) 20

24. A 6-ft long cord is to be cut into two pieces. The first piece will form an equilateral triangle and the second piece will form a square. What is the minimum combined area of the two regions? (nearest square inch)

(A) 123 in^2

(B) 132 in^2 (C) 141 in^2 (D) 150 in^2

(E) 159 in^2

25. $\frac{3x+2}{x+4} - \frac{3x-1}{2x+3} = \frac{ax^2 + bx + c}{dx^2 + ex + f}$. a+b+c+d+e+f =______.

(A) 32

(B) 36

(D) 44

(E) 48

26. $a_1 = 3$, $a_2 = 5$, $a_3 = 4$, and $a_n = a_{n-2} - a_{n-1} + 2 \cdot a_{n-3}$. $a_6 = \underline{\phantom{a_{n-2}}}$.

(A) 8

(B) 10

(C) 12

(D) 14

(E) 16

27. Jenna took off running from the trailhead of the Knob Hills Trail at 8:00 AM. She ran at a pace of 9 minutes per mile. At 9:00 AM, Alyssa left the trailhead and began chasing after Jenna at a pace of 8 minutes per mile. At what time will Alyssa catch up to Jenna?

(A) 4:00 PM

(B) 4:30 PM

(C) 5:00 PM

(D) 5:30 PM

(E) 6:00 PM

28. Given: $x^3 - 6x^2y^3 + 2y^2 = -14$. Find the slope of the tangent line when x = 2.

(A) $-\frac{1}{8}$ (B) $-\frac{3}{17}$ (C) $-\frac{5}{12}$ (D) $-\frac{9}{13}$ (E) $-\frac{11}{14}$

				G
$29. \cos \alpha = -\frac{12}{13}, \ \alpha$	in quadrant II. sinβ	$=-\frac{4}{5}$, β in quadrant	tIII. $\cos(\alpha - \beta) = $	•
(A) $\frac{12}{65}$	(B) $\frac{14}{65}$	(C) $\frac{16}{65}$	(D) $\frac{18}{65}$	(E) $\frac{4}{13}$
05	05	05	05	13
	ge tank at Annie's ran of 8 feet and a height		_	•
(A) 764	(B) 777	(C) 790	(D) 803	(E) 816
31. Find the sum of	the coefficients of the	x^3y^2 term and the x	² y ³ term of the expan	asion $(3x-2y)^5$.
(A) 210	(B) 360	(C) 480	(D) 840	(E) 1320
\$29.95. With ta	s cousin in Boise last s x, he paid a total of \$3 er that was on sale. It	2.12. He returned to	the store 3 days later	and purchased a
(A) \$1233.05	(B) \$1238.65	(C) \$1244.25	(D) \$1249.85	(E) \$1255.45
33. Consider \overline{AB} w coordinates of p	with point A at (-3, 4) point B.	and the midpoint of	\overline{AB} at $(1,1)$. The sum	n of the x and y
(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
34. Find the 18 th ter	rm of the following seq	uence. 1, 4, 5, 9, 14, 2	23, 37,	
(A) 4558	(B) 5782	(C) 7375	(D) 9026	(E) 11933
35. 212121 ₃ + 12121	12 ₃ =	9		
(A) 1423	(B) 1443	(C) 1463	(D) 1483	(E) 1523
36. If $4x + 3y = 5$ and	and $12x - 6y = 5$, then 0	$6x + 4y = \underline{\hspace{1cm}}$		
(A) $\frac{37}{6}$	(B) $\frac{13}{2}$	(C) $\frac{41}{6}$	(D) $\frac{43}{6}$	(E) $\frac{15}{2}$
37. How many integ	gers, n, satisfy the ineq	quality $\frac{1}{8} < \frac{n}{16} < \frac{3}{4}$?		
(A) 5	(B) 6	(C) 7	(D) 8	(E) 9

38. The points A, B, C, D and E are collinear and arranged alphabetically from left to right. if $AE = 36$, $CE = 14$, and $DE = \frac{3}{11}(AC)$.					to right. Find CD
	if AE = 36, CE =	14, and DE = $\frac{11}{11}$ (AC	E).		
	(A) 6	(B) 7	(C) 8	(D) 9	(E) 10
39.	previous school year baseball only, 5 sai	ar. Thirty said baseb id basketball and trac ll and track. How m	oall, 31 said track and ck only, 7 said baseba	ntests they had watch d 34 said basketball. all and basketball onl track meet, a basebal	Sixteen said y, and 4 said
	(A) 6	(B) 7	(C) 8	(D) 9	(E) 10
40.		bers 24, 30 and 36. We mean of these number	_	ifference between the ndth)	geometric mean
	(A) 0.393	(B) 0.405	(C) 0.417	(D) 0.432	(E) 0.444
41.	Which Platonic sol	lid has 30 edges and 2	20 vertices?		
	(A) tetrahedron	(B) hexahedron	(C) octahedron	(D) dodecahedron	(E) icosahedron
42.	What is the sum of	f the composite numb	ers between 100 and	110?	
	(A) 525	(B) 527	(C) 628	(D) 630	(E) 737
43.	x+4=y and $y=$	x + 4 is an example of	of the	property of equality	
	(A) reflexive	(B) symmetric	(C) commutative	(D) associative	(E) identity
44.	The vectors $\langle 2, 5 \rangle$	and $\langle {f 10,b} angle$ are ortho	ogonal. b =	•	
	(A) -4	(B) -2	(C) 4	(D) 15	(E) 25
45.	Consider regular h		f DF = $12\sqrt{3}$, then the	ne area of ABCDEF is	·
	(A) 356	(B) 362	(C) 368	(D) 374	(E) 380
46.	The vertices of tria	angle ABC are (-6, -	12), (4,8) and (10, -	-7). Find the area of	triangle ABC.
	(A) 123	(B) 126	(C) 129	(D) 132	(E) 135

47.	Vidit spent all day running last Saturday. He left his house and ran 9.6 miles on a bearing of 61°.
	He briefly stopped for lunch and then he ran 8.2 miles on a bearing of 105°. After stopping for
	supper, he ran 12.3 miles on a bearing of 166°. It was now dark outside, so he called Shash to come
	pick him up. How far from home was Vidit when he finished running?
	(nearest tenth of a mile)

- (A) 21.1 mi
- (B) 21.5 mi
- (C) 21.9 mi
- (D) 22.3 mi
- (E) 22.7 mi

48. The vertices of triangle DEF are (-5, 8), (2, 6) and (-1, -4). The perimeter of the triangle is _____. (nearest tenth)

- (A) 29.8
- (B) 30.4
- (C) 31.0
- (D) 31.6
- (E) 32.2

49. Let $h(x) = 4x^3 + 6x^2 + 8x + 10$. The point of inflection of the graph of h(x) is (a, b). Find the y-intercept of the line tangent to h(x) at (a, b).

- (A) 8.75
- **(B)** 9
- (C) 9.25
- (D) 9.5
- (E) 9.75

50. $f(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots$ What digit is in the hundred-thousandth place of f(.6)?

(A) 2

- **(B)** 3
- (C) 5
- **(D)** 6

(E) 8

51. If $2^{x+y} = 128$ and $3^{3x-y} = 243$, then $6^y =$ _____.

(A) 6

- **(B)** 36
- (C) 216
- (D) 1296
- (E) 7776

52. Two roots of $ax^3 + bx^2 + cx + d = 0$ are 4 and 2i. a + b + c + d =_____.

- (A) -15
- (B) -7
- (C) 0
- (D) 9

(E) 17

53. Find the harmonic mean of the zeros of $f(x) = x^3 - 9x^2 + 26x - 24$.

- (A) $-\frac{3}{8}$ (B) $-\frac{9}{26}$ (C) $\frac{12}{13}$ (D) $\frac{13}{12}$
- (E) $\frac{36}{13}$

54. If $\frac{6x+8}{x^2+7x+12} = \frac{A}{x+3} + \frac{B}{x+4}$, then $A+B = \underline{\hspace{1cm}}$.

- (A) **-6**
- **(B)** -2
- (C) 0
- (D) 2

 (\mathbf{E}) 6

55. If $f(x) = ax^5 + bx^3 + cx - 12$ and f(2) = 20, then f(-2) =_____.

- (A) -44
- (B) -32
- (C) -18
 - (**D**) -6
- **(E)** 8

56. If p and q are	e zeros of $f(x) = 10$	$x^2 + 2x - 84$, then po	$q^2 + p^2q =$			
(A) 0.88	(B) 1.68	(C) 3.36	(D) 5.16	(E) 8.44		
57. Given: x varies inversely as the square of y. If $x = 12$ when $y = 8$, then $x = 16$ when $y =$.						
(A) 4	(B) $2\sqrt{3}$	(C) 6	(D) $4\sqrt{3}$	(E) 8		
58. Given: $PQR_7 + QRP_7 + RPQ_7 = 684$ base 10. If Q equals 2P and R equals Q plus 2, then $R = \underline{\hspace{1cm}}$.						
(A) 2	(B) 3	(C) 4	(D) 5	(E) 6		
59. Curtis has a favorite function, $f(x)$, because $f(x) = f'''(x)$. $f(x) = $						
(A) $\frac{1}{x}$	(B) ln(x)	(C) e^x	(D) $\sin(x) - \cos(x)$	(E) $\cos(x) - \sin(x)$		
60. Lauren opened up a fast food restaurant in Roanoke that offers beef, chicken, fish, veggie, sausage,						

60. Lauren opened up a fast food restaurant in Roanoke that offers beef, chicken, fish, veggie, sausage, and cheese sliders. Vedant came in and purchased 8 sliders for the math team, which was having a practice session at Ryan's house Tuesday night. How many different ways could Vedant place an order for 8 sliders?

- (A) 1039
- (B) 1101
- (C) 1163
- (D) 1225
- (E) 1287

2019 – 2020 TMSCA High School Mathematics Test # 4 Answer Key

1. C	21. C	41. D
2. A	22. C	42. A
3. C	23. E	43. B
4. B	24. C	44. A
5. A	25. C	45. D
6. E	26. A	46. E
7. E	27. C	47. B
8. D	28. B	48. B
9. C	29. C	49. D
10. C	30. C	50. B
11. B	31. B	51. D
12. B	32. D	52. A
13. D	33. C	53. E
14. B	34. C	54. E
15. A	35. B	55. A
16. A	36. D	56. B
17. A	37. E	57. D
18. C	38. C	58. E
19. B	39. C	59. C
20. D	40. B	60. E

19-20 TMSCA HSMA Test # 4 Selected Solutions

$$A + B + C = 300$$

4.
$$(18.5)A + (9.85)B + (14.65)C = 4294.4$$

 $A = B + 2$
 $C = 70$

5.
$$(x-5)(6x^2-11x-7)$$

6-11-7=-12

6.
$$\frac{(16)(31) = x^2}{x = 22.3}$$

$$m = \frac{1 - -4}{6 - -2} = \frac{5}{8}$$

 $y = \frac{5}{9}x - \frac{1}{4}$

$$m = \frac{-10 - 2}{4 - -8} = -1$$

$$m = \frac{1 - -4}{6 - -2} = \frac{5}{8}$$

$$m = \frac{-10 - 2}{4 - -8} = -1$$

$$y - 2 = -(x + 8)$$

7.
$$y-1=\frac{5}{8}(x-2)$$

$$y=\frac{5}{8}x-\frac{1}{4}$$

$$10. x+y+6=0$$

$$d=\frac{|3(1)+5(1)+6|}{\sqrt{1^1+1^1}}$$

$$d = 9.9$$

$$\bar{x} = 223$$
, Med = 222, M = 222, R = 24

$$\frac{11. \ 223 + 222 + 222 + 24}{4} = 172.75$$

$$y = -4\left(x^2 - 3x + \frac{9}{4}\right) + 2 + 9$$

12.
$$y = -4\left(x - \frac{3}{2}\right)^{2} + 11$$
$$\frac{1}{4p} = -4, \ p = -\frac{1}{16}$$
$$11 + \frac{1}{16} = \frac{177}{16}$$

17.
$$\frac{(x+4)(x+3)(x+2)(x-1)(x-5)}{x^5+3x^4-23x^3-87x^2-14x+120}$$

$$-4 = 8 - 12 + C$$
19.
$$f = 2x^{4} - 6x^{2} + D$$

$$0 = 2 - 6 + D$$

$$f(x) = 2x^{4} - 6x^{2} + 4$$

$$f(2) = 12$$

 $f' = 8x^3 - 12x + C$

20.
$$(13)({}_{4}C_{2})({}_{12}C_{3})({}_{4}C_{1})^{3} \div ({}_{52}C_{5}) = .42$$
 21. $(23 - (\frac{28}{60})(5))(6) = 124$ 22. $4 + \frac{8}{4} + \frac{12}{8} + \frac{16}{32} = 8$ $8(60) = 480$

$$21. \left(23 - \left(\frac{28}{60}\right)(5)\right)(6) = 124$$

22.
$$4 + \frac{8}{4} + \frac{12}{8} + \frac{16}{32} = 8$$

8(60) = 480

$$23. -12 + 12 + 20 = 20$$

$$A = \frac{x^{2}\sqrt{3}}{4} + w^{2}$$

$$3x + 4w = 72$$

$$24. A = \frac{x^{2}\sqrt{3}}{4} + \left(\frac{72 - 3x}{4}\right)^{2}$$

$$A' = 0, x = 13.65$$

$$A(13.65) = 141$$

$$3x^{2} + 2x + 10$$

$$2x^{2} + 11x + 12$$

$$25. 3 + 2 + 10 + 2 + 11 + 12$$

$$40$$

$$9 + 8 \rightarrow 5 : 00 \text{ PM}$$

$$790$$

$$8x + 6y = 10$$

$$12x - 6y = 5$$

$$36. x = \frac{3}{4} \text{ and } y = \frac{2}{3}$$

$$6x + 4y = \frac{43}{6}$$

$$2 < n < 12$$

$$37. 3 \rightarrow 11$$

$$9$$

$$39. \frac{3\sqrt{(24)(30)(36)}}{3 + y + 9 = 31}$$

$$y = 19$$

$$34 + 19 + 19 + z = 80$$

$$z = 8$$

$$40. \frac{3}{\frac{1}{24} + \frac{1}{30} + \frac{1}{36}}$$

$$29.5945 - 29.1891 = 0.405$$

16 + w + 4 + 7 = 30

41.
$$\frac{20 + f - 30 = 2}{f = 12}$$
 42. $\frac{102 + 104 + 105 + 106 + 108}{525}$ 44. $\frac{2(10) + 5b = 0}{b = -4}$ 45. $6 \cdot \frac{12^2 \sqrt{3}}{4} = 374$

$$x + y = 7$$

$$51. \frac{3x - y = 5}{x = 3, y = 4}$$

$$6^{4} = 1296$$

$$(x - 4)(x - 2i)(x + 2i)$$

$$52. x^{3} - 4x^{2} + 4x - 16$$

$$1 - 4 + 4 - 16 = -15$$

$$54. \frac{-10}{x + 3} + \frac{16}{x + 4}$$

$$-10 + 16 = 6$$

$$55. \frac{20 + 12 = 32}{-32 - 12 = -44}$$

$$57P + 57Q + 57R = 684$$

$$P + Q + R = 12$$

$$57. \frac{12 \cdot 8^{2} = 16 \cdot y^{2}}{y = 4\sqrt{3}}$$

$$R = Q + 2$$

$$R = 6$$

$$60. _{13}C_{8} = 1287$$