Package 'ADMMsigma'

February 24, 2018

, , , , , , , , , , , , , , , , , , ,
Type Package
Title Penalized Precision Matrix Estimation via ADMM
Version 1.0
Date 2018-02-23
Description This R package produces penalized precision matrix estimates via the alternating direction method of multipliers (ADMM) algorithm
License MIT + file LICENSE
ByteCompile TRUE
NeedsCompilation yes
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports Rcpp (>= 0.12.10), RcppArmadillo
LinkingTo Rcpp, RcppArmadillo, RcppParallel
Suggests testthat
SystemRequirements GNU make
R topics documented: ADMMsigma
CV_ADMMsigma
CV_sigma_ridge 5 sigma_ridge 5
Index 7

2 ADMMsigma

ΑD	ММ	si	gma	
$\neg \nu$	1.11.1	\circ	KIIIC	ı

ADMM penalized precision matrix estimation (using ADMM_sigmac)

Description

Penalized Gaussian likelihood precision matrix estimation using the ADMM algorithm.

Usage

```
ADMMsigma(X = NULL, S = NULL, lam = 10^seq(-5, 5, 0.5), alpha = 1, rho = 2, mu = 10, tau1 = 2, tau2 = 2, crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000, ind = NULL, K = 3, quiet = TRUE)
```

Arguments

lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
alpha	elasticnet mixing parameter [0, 1]: 0 = ridge, 1 = lasso/bridge
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c('ADMM', 'grad', 'lik'). Option crit != 'ADMM' will use tol1 as tolerance. Default is 'ADMM'
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
ind	vector of a permutation of 1,,n for CV
K	specify the number of folds for cross validation
quiet	specify whether the function returns progress of CV or not

Value

iterations, lam, omega, and gradient

```
ADMM_sigma(X, lam = 0.1, rho = 10)
```

ADMMsigmac 3

ADMMsigmac	ADMM penalized precision matrix estimation $(c++)$	

Description

Penalized Gaussian likelihood precision matrix estimation using the ADMM algorithm.

Usage

```
ADMMsigmac(S, lam, alpha = 1, rho = 2, mu = 10, tau1 = 2, tau2 = 2, crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000L)
```

Arguments

S	option to specify sample covariance matrix (denominator n)
lam	tuning parameter for penalty
alpha	elasticnet mixing parameter [0, 1]: 0 = ridge, 1 = lasso/bridge
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c("ADMM", "grad", "lik"). Option crit $!=$ "ADMM" will use tol1 as tolerance. Defaults to "ADMM"
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
Χ	data matrix

Value

iterations, lam, omega

```
ADMM_sigmac(X, lam = 0.1)
```

4 CV_ADMMsigma

CV	ADMMsigma
C V	ADMINISTRINA

 $\it CVADMM$ penalized precision matrix estimation

Description

Cross validation function for ADMM_sigma.

Usage

```
CV_ADMMsigma(X, lam, alpha = 1, rho = 2, mu = 10, tau1 = 2, tau2 = 2,
    crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000, ind = NULL,
    K = 3, quiet = TRUE)
```

Arguments

X	matrix or data frame. This is the n x p column matrix where the rows are a realization of n independent copies of a p-variate random vector
lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
alpha	elasticnet mixing parameter [0, 1]: 0 = ridge, 1 = lasso/bridge
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c('ADMM', 'grad', 'lik'). Option crit != 'ADMM' will use tol1 as tolerance. Defaults to 'ADMM'
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
ind	vector of a permutation of 1,,n for CV
K	specify the number of folds for cross validation
quiet	specify whether the function returns progress of CV or not

Value

iterations, lam, S, Omega, and cv.errors

```
CV_ADMMsigma(X, lam = seq(0.1, 3, 0.1))
```

CV_sigma_ridge 5

CV	_sigma_	ridge

CV Ridge-penalized precision matrix estimation

Description

Cross validation function for sigma_ridge.

Usage

```
CV_sigma_ridge(X, lam, ind = NULL, K = 5, quiet = TRUE)
```

Arguments

Χ	matrix or data frame.	This is the n x	p column matrix where the rows are a
---	-----------------------	-----------------	--------------------------------------

realization of n independent copies of a p-variate random vector

lam tuning parameters for ridge regularization term.

ind vector of a permutation of 1,..,n

K specify the number of folds for cross validation quiet specify whether the function returns progress or not

Value

omega hat matrix, best lambda, CV error, vector of lambdas

Examples

```
CV_sigma_ridge(X, lam = seq(0.1, 3, 0.1))
```

sigma_ridge

Ridge-penalized precision matrix estimation

Description

Ridge-penalized Gaussian likelihood precision matrix estimation.

Usage

```
sigma_ridge(S, lam)
```

Arguments

S sample covariance matrix (denominator n)

lam tuning parameter for penalty

Value

matrix of omega hat

6 sigma_ridge

```
n = nrow(X)
sigma_ridge(S = (n-1)/n*cov(X), lam = 0.1)
```

Index

```
ADMMsigma, 2
ADMMsigmac, 3
CV_ADMMsigma, 4
CV_sigma_ridge, 5
sigma_ridge, 5
```