Summer Program FGV/EMAp 2019

Introduction to Machine Learning with Python

PRINCIPAL COMPONENT ANALYSIS

Prof. Luis Gustavo Nonato University of São Paulo - São Carlos - SP

Principal Component Analysis

Principal Component Analysis

PCA is directly related to the eigenvectors and eigenvalues of covatiance matrices.

Principal Component Analysis

PCA is directly related to the eigenvectors and eigenvalues of covatiance matrices.

Lets so make a quick review of eigenvectors, eigenvalues, and covatiance matrices.

Given a $d \times d$ matrix **A**, a pair (λ, \mathbf{u}) that satisfies

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

is called eigenvalue (λ) and corresponding eigenvector (\mathbf{u}) of \mathbf{A} .

Given a $d \times d$ matrix **A**, a pair (λ, \mathbf{u}) that satisfies

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

is called eigenvalue (λ) and corresponding eigenvector (\mathbf{u}) of \mathbf{A} .

Symmetric Matrices

Given a $d \times d$ matrix **A**, a pair (λ, \mathbf{u}) that satisfies

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

is called eigenvalue (λ) and corresponding eigenvector (\mathbf{u}) of \mathbf{A} .

Symmetric Matrices

- $\lambda \in \mathbb{R}$ and $\mathbf{u} \in \mathbb{R}^d$ (no complex numbers involved).

Given a $d \times d$ matrix **A**, a pair (λ, \mathbf{u}) that satisfies

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

is called eigenvalue (λ) and corresponding eigenvector (\mathbf{u}) of \mathbf{A} .

Symmetric Matrices

- λ ∈ \mathbb{R} and \mathbf{u} ∈ \mathbb{R}^d (no complex numbers involved).
- The eigenvectors are orthogonal

$$\mathbf{u}_i^{\top} \mathbf{u}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{otherwise} \end{cases}$$

(assuming
$$\|\mathbf{u}_i\| = 1$$
)

A symmetric with distinct eigenvalues λ_i .

The equations $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ can be written in matrix form as:

A symmetric with distinct eigenvalues λ_i .

The equations $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ can be written in matrix form as:

$$\underbrace{\begin{bmatrix} a_{11} & a_{1d} \\ \vdots & \dots & \vdots \\ a_{d1} & a_{dd} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \dots & \mathbf{u}_{d} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}}_{\mathbf{U}} = \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \dots & \mathbf{u}_{d} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \lambda_{1} & \mathbf{v} \\ \lambda_{2} & \dots & \lambda_{d} \end{bmatrix}}_{\mathbf{D}}$$

A symmetric with distinct eigenvalues λ_i .

The equations $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ can be written in matrix form as:

$$\underbrace{\begin{bmatrix} a_{11} & a_{1d} \\ \vdots & \dots & \vdots \\ a_{d1} & a_{dd} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{d} \\ \mathbf{u} & \mathbf{u} \end{bmatrix}}_{\mathbf{U}} = \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{d} \\ \mathbf{u} & \mathbf{u} \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \lambda_{1} & \mathbf{u} \\ \lambda_{2} & \cdots & \lambda_{d} \end{bmatrix}}_{\mathbf{D}}$$

In matrix notation

$$AU = UD$$

A symmetric with distinct eigenvalues λ_i .

The equations $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ can be written in matrix form as:

$$\underbrace{\begin{bmatrix} a_{11} & a_{1d} \\ \vdots & \dots & \vdots \\ a_{d1} & a_{dd} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \dots & \mathbf{u}_{d} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}}_{\mathbf{U}} = \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \dots & \mathbf{u}_{d} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \lambda_{1} & \mathbf{v} \\ \lambda_{1} & \dots & \lambda_{d} \end{bmatrix}}_{\mathbf{D}}$$

In matrix notation

$$AU = UD$$

Since **U** is an orthogonal matrix, $\mathbf{U}^{\top} = \mathbf{U}^{-1}$, thus

A symmetric with distinct eigenvalues λ_i .

The equations $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ can be written in matrix form as:

$$\underbrace{\begin{bmatrix} a_{11} & a_{1d} \\ \vdots & \dots & \vdots \\ a_{d1} & a_{dd} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \dots & \mathbf{u}_{d} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}}_{\mathbf{U}} = \underbrace{\begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \dots & \mathbf{u}_{d} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \lambda_{1} & \mathbf{v} \\ \lambda_{1} & \dots & \lambda_{d} \end{bmatrix}}_{\mathbf{D}}$$

In matrix notation

$$AU = UD$$

Since **U** is an orthogonal matrix, $\mathbf{U}^{\top} = \mathbf{U}^{-1}$, thus

Spectral Decomposition of a Symmetric Matrix

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}$$

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$

$$f(x_1, x_2) = [x_1 x_2] \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + x_2^2$$

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$

$$f(x_1, x_2) = [x_1 x_2] \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + x_2^2$$

Let **A** be a symmetric matrix, then

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$

$$f(x_1, x_2) = \begin{bmatrix} x_1 \\ -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + x_2^2$$

$$\max_{\|\mathbf{x}\|=1} \{f(\mathbf{x})\} = \mathbf{u}_1^\top \mathbf{A} \mathbf{u}_1 = \lambda_1$$

$$\min_{\|\mathbf{x}\|=1} \{ f(\mathbf{x}) \} = \mathbf{u}_d^{\top} \mathbf{A} \mathbf{u}_d = \lambda_d$$

 $(\lambda_1, \mathbf{u}_1)$ and $(\lambda_d, \mathbf{u}_d)$ are the larger and smaller eigenpair.

Let
$$\mathbf{x}_i = [x_{1i}, ..., x_{di}]^{\top}, \mathbf{x}_j = [x_{1j}, ..., x_{dj}]^{\top}$$

Let
$$\mathbf{x}_i = [x_{1i}, \dots, x_{di}]^{\top}, \mathbf{x}_j = [x_{1j}, \dots, x_{dj}]^{\top}$$

The covariance between x_i and x_j is given by

$$cov(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{d-1} \sum_{s=1}^{d} (x_{si} - \overline{x}_i)(x_{sj} - \overline{x}_j)$$

where
$$\overline{x}_i = \frac{1}{d} \sum_s x_{si}$$
 and $\overline{x}_j = \frac{1}{d} \sum_s x_{sj}$

Let
$$\mathbf{x}_i = [x_{1i}, \dots, x_{di}]^{\top}, \mathbf{x}_j = [x_{1j}, \dots, x_{dj}]^{\top}$$

The covariance between x_i and x_j is given by

$$cov(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{d-1} \sum_{s=1}^{d} (x_{si} - \overline{x}_i)(x_{sj} - \overline{x}_j)$$

where
$$\overline{x}_i = \frac{1}{d} \sum_s x_{si}$$
 and $\overline{x}_j = \frac{1}{d} \sum_s x_{sj}$

If we assume \mathbf{x}_i and \mathbf{x}_j centered, that is, $\overline{x}_i = 0$ and $\overline{x}_j = 0$

$$cov(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{d-1} \sum_{s} x_{si} x_{sj}$$

Assuming \mathbf{x}_i , i = 1, ..., n a centered set of data instances (points in \mathbb{R}^d) arranged in a data matrix \mathbf{X} :

$$\mathbf{X} = \begin{bmatrix} | & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ | & | & & | \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \dots & x_{dn} \end{bmatrix}$$
(1)

Assuming \mathbf{x}_i , i = 1, ..., n a centered set of data instances (points in \mathbb{R}^d) arranged in a data matrix \mathbf{X} :

$$\mathbf{X} = \begin{bmatrix} | & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ | & | & & | \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \dots & x_{dn} \end{bmatrix}$$
(1)

The covariance matrix of \mathbf{X} is the symmetric matrix:

$$\frac{1}{n-1}\mathbf{X}\mathbf{X}^{\top} = \begin{bmatrix} cov(x_{1:}, x_{1:}) & cov(x_{1:}, x_{2:}) & \dots & cov(x_{1:}, x_{d:}) \\ cov(x_{2:}, x_{1:}) & cov(x_{2:}, x_{2:}) & \dots & cov(x_{2:}, x_{d:}) \\ \vdots & \vdots & \ddots & \vdots \\ cov(x_{d:}, x_{1:}) & cov(x_{d:}, x_{2:}) & \dots & cov(x_{d:}, x_{d:}) \end{bmatrix}$$

$$Variances are in the main diagonal$$

Principal Components: getting some intuition

Principal Components: getting some intuition

Principal Components: getting some intuition

The idea of PCA is to find a new basis to write the data so as to vanish the covariance between distinct attributes.

The idea of PCA is to find a new basis to write the data so as to vanish the covariance between distinct attributes.

Mathematically, we are looking for a change of basis matrix **P** such that

$$\mathbf{Y} = \mathbf{P}\mathbf{X} \Longrightarrow \mathbf{Y}\mathbf{Y}^{\top} = \mathbf{D}$$

where **D** is a diagonal matrix with diagonal elements corresponding to the variance of each coordinate (attribute).

The idea of PCA is to find a new basis to write the data so as to vanish the covariance between distinct attributes.

Mathematically, we are looking for a change of basis matrix **P** such that

$$\mathbf{Y} = \mathbf{P}\mathbf{X} \Longrightarrow \mathbf{Y}\mathbf{Y}^{\top} = \mathbf{D}$$

where **D** is a diagonal matrix with diagonal elements corresponding to the variance of each coordinate (attribute).

By fiding P:

The idea of PCA is to find a new basis to write the data so as to vanish the covariance between distinct attributes.

Mathematically, we are looking for a change of basis matrix **P** such that

$$\mathbf{Y} = \mathbf{P}\mathbf{X} \Longrightarrow \mathbf{Y}\mathbf{Y}^{\top} = \mathbf{D}$$

where **D** is a diagonal matrix with diagonal elements corresponding to the variance of each coordinate (attribute).

By fiding P:

■ the new attributes/coordinates will be decorrelated (redundancy removed)

The idea of PCA is to find a new basis to write the data so as to vanish the covariance between distinct attributes.

Mathematically, we are looking for a change of basis matrix **P** such that

$$\mathbf{Y} = \mathbf{P}\mathbf{X} \Longrightarrow \mathbf{Y}\mathbf{Y}^{\top} = \mathbf{D}$$

where **D** is a diagonal matrix with diagonal elements corresponding to the variance of each coordinate (attribute).

By fiding P:

- the new attributes/coordinates will be decorrelated (redundancy removed)
- some coordinates will tend to be of low variance (noise related coordinates)

The idea of PCA is to find a new basis to write the data so as to vanish the covariance between distinct attributes.

Mathematically, we are looking for a change of basis matrix **P** such that

$$\mathbf{Y} = \mathbf{P}\mathbf{X} \Longrightarrow \mathbf{Y}\mathbf{Y}^{\top} = \mathbf{D}$$

where **D** is a diagonal matrix with diagonal elements corresponding to the variance of each coordinate (attribute).

By fiding P:

- the new attributes/coordinates will be decorrelated (redundancy removed)
- some coordinates will tend to be of low variance (noise related coordinates)
- we will be able to reduce the dimension of the data without loosing relevant information.

 $\boldsymbol{Y} = {\color{red}P}\boldsymbol{X}$

$$\mathbf{Y} = \mathbf{P}\mathbf{X}$$

$$\mathbf{Y}\mathbf{Y}^\top = (\mathbf{P}\mathbf{X})(\mathbf{P}\mathbf{X})^\top = \mathbf{P}\mathbf{X}\mathbf{X}^\top\mathbf{P}^\top$$

$$\mathbf{Y} = \mathbf{P}\mathbf{X}$$

$$\mathbf{Y}\mathbf{Y}^\top = (\mathbf{P}\mathbf{X})(\mathbf{P}\mathbf{X})^\top = \mathbf{P}\mathbf{X}\mathbf{X}^\top\mathbf{P}^\top$$

Reminder

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{U}^\top$$

$$\mathbf{U}^{\top}\mathbf{A}\mathbf{U}=\mathbf{D}$$

$$\mathbf{Y} = \mathbf{P}\mathbf{X}$$

$$\mathbf{Y}\mathbf{Y}^\top = (\mathbf{P}\mathbf{X})(\mathbf{P}\mathbf{X})^\top = \mathbf{P}\mathbf{X}\mathbf{X}^\top\mathbf{P}^\top$$

Reminder

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$$

$$\downarrow$$

$$\mathbf{U}^{\top}\mathbf{A}\mathbf{U} = \mathbf{D}$$

Eigenvectors of $XX^{\top} \to U$

$$\mathbf{Y} = \mathbf{P}\mathbf{X}$$

$$\mathbf{Y}\mathbf{Y}^\top = (\mathbf{P}\mathbf{X})(\mathbf{P}\mathbf{X})^\top = \mathbf{P}\mathbf{X}\mathbf{X}^\top\mathbf{P}^\top$$

Reminder

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$$

$$\downarrow$$

$$\mathbf{U}^{\top}\mathbf{A}\mathbf{U} = \mathbf{D}$$

Eigenvectors of $\mathbf{X}\mathbf{X}^{\top} \to \mathbf{U}$

$$\mathbf{P} = \mathbf{U}^{\top}$$

$$\mathbf{Y} = \mathbf{P}\mathbf{X}$$

$$\mathbf{Y}\mathbf{Y}^\top = (\mathbf{P}\mathbf{X})(\mathbf{P}\mathbf{X})^\top = \mathbf{P}\mathbf{X}\mathbf{X}^\top\mathbf{P}^\top$$

Reminder

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$$

$$\downarrow$$

$$\mathbf{U}^{\top}\mathbf{A}\mathbf{U} = \mathbf{D}$$

Eigenvectors of $XX^{\top} \to U$

$$\mathbf{P} = \mathbf{U}^{\top}$$

$$\mathbf{Y}\mathbf{Y}^\top = \mathbf{U}^\top \mathbf{X} \mathbf{X}^\top \mathbf{U}$$

$$\mathbf{Y} = \mathbf{P}\mathbf{X}$$

$$\mathbf{Y}\mathbf{Y}^\top = (\mathbf{P}\mathbf{X})(\mathbf{P}\mathbf{X})^\top = \mathbf{P}\mathbf{X}\mathbf{X}^\top\mathbf{P}^\top$$

Reminder

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$$

$$\downarrow$$

$$\mathbf{U}^{\top}\mathbf{A}\mathbf{U} = \mathbf{D}$$

Eigenvectors of $XX^{\top} \to U$

$$\mathbf{P} = \mathbf{U}^{\top}$$

$$\mathbf{Y}\mathbf{Y}^\top = \mathbf{U}^\top \mathbf{X} \mathbf{X}^\top \mathbf{U}$$

$$YY^\top = U^\top XX^\top U = D$$

The coordinates of the data in the new basis is given by:

$$\boldsymbol{Y} = \boldsymbol{U}^{\top}\boldsymbol{X}$$

The coordinates of the data in the new basis is given by:

$$\mathbf{Y} = \mathbf{U}^{\top} \mathbf{X}$$

The diagonal matrix **D** in the decomposition $XX^{\top} = UDU^{\top}$ contains the variances of each new coordinate.

The coordinates of the data in the new basis is given by:

$$\mathbf{Y} = \mathbf{U}^{\top} \mathbf{X}$$

The diagonal matrix **D** in the decomposition $XX^{\top} = UDU^{\top}$ contains the variances of each new coordinate.

Moreover,

$$\mathbf{u}_1^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}_1 = \lambda_1$$
 (maximum of the quadratic form)

$$\mathbf{u}_d^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}_d = \lambda_d$$
 (minimum of the quadratic form)

The coordinates of the data in the new basis is given by:

$$\mathbf{Y} = \mathbf{U}^{\top} \mathbf{X}$$

The diagonal matrix **D** in the decomposition $XX^{\top} = UDU^{\top}$ contains the variances of each new coordinate.

Moreover,

$$\mathbf{u}_1^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}_1 = \lambda_1$$
 (maximum of the quadratic form)

$$\mathbf{u}_d^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}_d = \lambda_d$$
 (minimum of the quadratic form)

 \mathbf{u}_1 is the direction that maximizes the variance and \mathbf{u}_d the direction that minimizes the variance.

We can filter out low variance directions (corresponding to small λ_i), since they typically correspond to noise.

We can filter out low variance directions (corresponding to small λ_i), since they typically correspond to noise.

We can reconstruct "noise-free" data by $\hat{\mathbf{X}} = \mathbf{U}\hat{\mathbf{Y}}$

We can reconstruct "noise-tree" data by
$$\mathbf{X}$$

$$\hat{\mathbf{Y}} = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ \vdots & \vdots & \vdots \\ y_{k1} & y_{k2} & \cdots & y_{kn} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$T = \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$$