

Painel ► SBL0059 ► 10 setembro - 16 setembro ► Teste de revisão

Iniciado em quarta, 23 Set 2020, 16:27

Estado Finalizada

Concluída em quarta, 23 Set 2020, 16:44

Tempo empregado 17 minutos 5 segundos

Avaliar 0,00 de um máximo de 10,00(0%)

Questão **1**Incorreto

Atingiu 0,00 de 2,00

Mostre que a forma diferencial na integral $\int_{(2,3,-6)}^{(0,0,0)} 2x\,dx + 2y\,dy + 2z\,dz$ é exata. Em seguida, calcule a integral.

Resposta: -36

,

SOLUÇÃO:

- Como
$$\vec{\mathbf{F}}(x,y,z)=2x\mathbf{i}+2y\mathbf{j}+2z\mathbf{k}$$
 e que $\frac{\partial P}{\partial y}=0=\frac{\partial N}{\partial z}$, $\frac{\partial M}{\partial z}=0=\frac{\partial P}{\partial x}$, $\frac{\partial N}{\partial x}=0=\frac{\partial M}{\partial y}$. Portanto, concluímos que $M\,dx+N\,dy+P\,dz$ é exata.

- Temos que:

=
$$\frac{\partial f}{\partial x}=2x$$

Logo,
$$f(x,y,z)=x^2+g(y,z)$$

- Calculando $g(\boldsymbol{y},\boldsymbol{z})$

=
$$rac{\partial f}{\partial y}=rac{\partial g}{\partial y}=2y$$
. Assim, $\,g(y,z)=y^2+h(z)$.

Logo,
$$f(x,y,z)=x^2+y^2+h(z)$$
 .

- Calculando h(z)

$$rac{\partial f}{\partial z}=h'(z)=2z$$

Logo,
$$\int h'(z)\,dz \Rightarrow h(z)=z^2+C$$

Assim,
$$f(x, y, z) = x^2 + y^2 + z^2 + C$$

A resposta correta é: 49.

Questão 2

Incorreto

Atingiu 0,00 de 2,00

Calcule a integral $\int_{(1,1,1)}^{(1,2,3)} 3x^2 dx \, + rac{z^2}{y} \, dy + 2z \ln(y) dz$.

Escolha uma:

- $_{\odot}$ a. $5\ln(2)$
 - ×
- $_{\odot}$ b. $9\ln(2)$
- \circ c. $7 \ln(2)$
- \odot d. $12\ln(2)$
- \circ e. $5 \ln(2)$

Sua resposta está incorreta.

Resposta:

Aplicando o teste de exatidão:

Fazemos
$$M=3x^2$$
 , $N=rac{z^2}{y}$ e $P=2z\ln(y)$

$$\frac{\partial P}{\partial x} = \frac{2z}{y} = \frac{\partial N}{\partial x}, \, \frac{\partial M}{\partial z} = 0 = \frac{\partial P}{\partial x}, \, \frac{\partial N}{\partial x} = 0 = \frac{\partial M}{\partial y}$$

Essas igualdades nos dizem que $3x^2dx+rac{z^2}{y}dy+2z\ln(y)dz$ é exata, assim

$$3x^2dx+rac{z^2}{y}dy+2z\ln(y)dz=df$$

para alguma função f e o valor da integral é f(1,2,3)– (1,1,1).

Encontramos f a menos de uma constante integrando as equações

$$rac{\partial f}{\partial x}=3x^2$$
 , $rac{\partial f}{\partial y}=rac{z^2}{y}$ e $rac{\partial f}{\partial z}=2z\ln(y)$

A partir da primeira equação, obtemos

$$f(x,y,z) = x^3 + g(y,z).$$

A segunda nos fornece

$$g(y,z) = z^2 \ln(y) + h(z)$$

Então
$$f(x,y,z)=x^3+z^2\ln(y)+h\left(z
ight)$$

A partir da terceira temos que

$$rac{\partial f}{\partial z}=2z\ln(y)+h'\left(z
ight)$$

$$h'(z) = 0$$

$$h(z) = C$$

Portanto

$$f(x, y, z) = x^3 + z^2 \ln(y) + C$$

O valor da integral de linha é independente do caminho tomado de (1,1,1) a (1,2,3) e é igual a

$$f(1,2,3) - f(1,1,1)$$

$$= (1+9\ln(2)+C)-(1+0+C)$$

$$=9\ln(2)$$

A resposta correta é: $9 \ln(2)$

٠

Questão 3 Incorreto

Atingiu 0,00 de 2,00

Utilize o teorema de Green para encontrar o fluxo em sentido anti-horário para o campo ${f F}=(y^2-x^2){f i}+(x^2+y^2){f j}$ e a curva C (o triângulo limitado por $y=0,\,x=3,\,y=x$).

Resposta: 9

Resposta:

Primeiramente devemos definir nosso M e N:

$$M=y^2-x^2$$
 e $N=x^2+y^2$

Fluxo:

Aplicaremos os valores na equação $\iint\limits_R \left(rac{\partial}{\partial x}(M) + rac{\partial}{\partial y}(N)
ight) dA$

$$rac{\partial}{\partial x}(M) = -2x \ rac{\partial}{\partial y}(N) = 2y \$$

$$\frac{\partial}{\partial u}(N) = 2y$$

$$\int_{0}^{3} \int_{0}^{x} -2x + 2y \, dy dx$$

$$= \int_{0}^{3} \left[-2xy + \frac{2y^{2}}{2} \right]_{0}^{x} dx$$

$$= \int_{0}^{3} -2x^{2} + x^{2} \, dx$$

$$= \left[-\frac{2}{3}x^{3} + \frac{1}{3}x^{3} \right]_{0}^{3}$$

$$= \left[-\frac{1}{3}x^{3} \right]_{0}^{3}$$

$$= -\frac{27}{3} = -9$$

A resposta correta é: -9.

Questão 4

Incorreto

Atingiu 0,00 de 2,00

Utilize a fórmula da área do teorema de Green $rac{1}{2} \oint\limits_C x dy - y dx$ para encontrar a área da região delimitada pela circunferência

 $ec{\mathbf{r}}(t) = (acos(t))\mathbf{i} + (asen(t))\mathbf{j}, \ 0 \leq t \leq 2\pi.$

Escolha uma:

- igcup a. $1,2\pi a^2$
- $_{\odot}$ b. πa^2
- \bigcirc c. $3\pi a^2$
- \odot d. $1,5\pi a^2$
- $_{\odot}$ e. $2\pi a^2$

Sua resposta está incorreta.

SOLUÇÃO:

- Sabendo que $M=x=a\cos(t)$ e $N=y=a\sin(t)$, calculamos as derivadas de x e y. Logo, temos que

$$x = -a\sin(t)\,dt$$

$$x = b\cos(t) dt$$

$$Area = \int_C x dy - y dx$$

- Fazendo a substituição

$$=\frac{1}{2}\int_0^{2\pi}(a^2\cos^2(t)+a^2\sin^2(t))dt$$

- Resolvendo a integral, temos que a área da região delimitada é

$$=\pi a^2$$

A resposta correta é: πa^2

.

Questão **5**

Incorreto

Atingiu 0,00 de 2,00

Utilize a fórmula da área do teorema de Green $rac{1}{2} \oint\limits_{C} x dy - y dx$ para encontrar a área do astroide

 $ec{\mathbf{r}}(t) = \left(\cos^3 t
ight)\mathbf{i} + \left(\sin^3 t
ight)\mathbf{j}$, $0 \leq t \leq 2\pi$.

Escolha uma:

- \bigcirc a. $\frac{7\pi}{2}$
- \bigcirc b. $\frac{3\pi}{8}$
- \odot c. $\frac{5\pi}{2}$

×

- \bigcirc d. $\frac{3\pi}{2}$
- \bigcirc e. $\frac{5\pi}{8}$

Sua resposta está incorreta.

Solução:

i) Derivando x e y temos:

$$M=x=\cos^3t o dx=-3\cos^2t\,\sin t$$

$$N=y=\sin^3t o dy=3\sin^2t\cos t$$

ii) De acordo com o Teorema de Green faz-se necessário respeitar o seguinte formato:

$$Mdy - Ndx$$

Realizando a substituição, obtemos:

$$\cos^3 t (3\sin^2 t \cos t) - \sin^3 t (-3\sin^2 t \sin t)$$

iii) Simplificando:

$$3\sin^2 t \, \cos^4 t + 3\cos^2 t \, \sin^4 t = 3\sin^2 t \, \cos^2 t \, (\cos^2 t + \sin^2 t) = 3\sin^2 t \, \cos^2 t$$

iv) Dado que a área da região R é $rac{1}{2}\oint\limits_C xdy-ydx$, temos que após as devidas substituições a integral é:

$$rac{1}{2}\int\limits_{0}^{2\pi}\,3\sin^2t\cos^2tdt = rac{1}{2}\left[3\int\limits_{0}^{2\pi}rac{1-\cos(4t)}{8}dt
ight.
ight] = rac{1}{2}\left[rac{3}{8}\left(\int\limits_{0}^{2\pi}dt-\int_{0}^{2\pi}\cos(4t)dt
ight.
ight)
ight] = rac{1}{2}\left[rac{3}{8}(t+\sin(4t))
ight]_{0}^{2\pi} = rac{3\pi}{8}.$$

Resposta =
$$\frac{3\pi}{8}$$

A resposta correta é: $\frac{3\pi}{8}$

O universal pelo regional.

Mais informações

UFC - Sobral

EE- Engenharia Elétrica

EC - Engenharia da Computação

PPGEEC- Programa de Pós-graduação em Engenharia Elétrica e Computação

Contato

Rua Coronel Estanislau Frota, s/n − CEP 62.010-560 − Sobral, Ceará

• Telefone: (88) 3613-2603

E-mail:

Social

