Übungen Grundlagen der Informatik, Blatt 1

Prof. Dr. Sascha Hauke

Wintersemester 2023/24

1 Zahlensysteme

1.1 Oktal-, Duodezimal- und Hexadezimalsystem

- Recherchieren Sie das Oktal-, Duodezimal- und Hexadezimalsystem. Definieren Sie es durch Angabe der Basis b und der Ziffern des jeweiligen Zahlensystems.
- Wandeln Sie die Zahl 1812₁₀ nach dem aus der Vorlesung bekannten Verfahren in die entsprechende Zahl im Oktal-, Dudodezimal- und Hexadezimalsystem um!

1.2 Konvertieren zwischen Zahlensystemen

Nutzen Sie die aus der Vorlesung bekannten Verfahren und ergänzen Sie folgende Tabelle:

dezimal	binär	oktal	duodezimal	hexadezimal
42				
	11010			
	1110			
		37		
				FE

1.3 Konvertieren mit Look-Up-Tables

Oktal	0	1	2	3	4	5	6	7
Binär	000	001	010	011	100	101	110	111

Mit der gegebenen Tabelle kann sehr einfach zwischen dem Binär- und dem Oktalsystem hin- und herkonvertiert werden, indem Sie eine eine Oktalziffer als 3-bit Binärzahl abbilden. Anschliessend können Sie, wie in den folgenden Beispielen, die Zahlen einfach und schnell umwandeln.

Beispiele:

- $137_8 = 001\ 011\ 111_2$
- $11001010_2 \rightarrow 11\ 001\ 010_2 = 011\ 001\ 010_2 = 312_8$

1.3.1 Umrechnen Oktal/Binär

Rechnen Sie zur Übung einige Zahlen zwischen dem Oktal- und dem Binärsystem um!

1.3.2 Erklären

Warum geht das zwischen dem Oktal- und dem Binärsystem so einfach? Warum ist es z.B. zwischen dem Dezimal- und dem Binärsystem nicht so einfach?

1.3.3 Binär nach Hexadezimal mit LUT

Erstellen Sie eine entsprechende Tabelle zur Umwandlung von Binär- in Hexadezimalzahlen! Was ist die benötigte Länge der Bit-Zahl zur Darstellung einer Hexadezimalziffer?

1.3.4 Umrechnen Hexadezimal/Binär

Konvertieren Sie folgende Zahlen in das Binärsystem, indem Sie die von Ihnen erstellte Tabelle nutzen:

$$FE_{16}$$
, $ABAB_{16}$, $FEDC_{16}$, $180A_{16}$, 22_{16}

Konvertieren Sie folgende Binärzahlen mit derselben Tabelle in das Hexadezimalsystem:

$$01001110_2, 1111_2, 011010_2, 10_2, 1_2$$

2 Stelligkeit und Rechnen mit Binärzahlen

2.1 Zahlen mit fester Stelligkeit

Normalerweise haben (Binär-)Zahlen eine beliebige Stelligkeit. Nehmen Sie nun an, eine Binärzahl ist in einem Speicherregister realisiert/gespeichert: einmal in einem Register der Länge 8-bit und einmal in einem Register der Länge 4-bit.

Recherchieren Sie, was geschieht, wenn das Register "überläuft"! Was ist die grösste Zahl, jeweils in binärer und in dezimaler Schreibweise, die Sie in einem solchen Register speichern können?

2.2 Rechnen mit Binärzahlen

Konvertieren Sie die folgenden Zahlen in 8-bit Binärzahlen und rechnen Sie binär:

2 + 3

Nutzen Sie zur Darstellung der negativen Binärzahl das Zweierkomplement in 8-bit Stelligkeit und berechnen Sie:

8 - 9