Universidade Federal de Viçosa UFV

Departamento de Engenharia Elétrica

ELT 366 Laboratório de Máquinas Elétricas I

Relatório 02

Autores

Hiago Batista 96704
Wérikson Alves 96708

Professor

José Resende

m Viçosa, Julho de 2021

Sumário

1	Intr	rodução	2
2	Met	codologia	2
	2.1	Materiais Utilizados	2
	2.2	Determinação da Resistência dos Enrolamentos	2
	2.3	Ensaio em Aberto (Vazio)	2
	2.4	Ensaio em Curto-Circuito	3
3	Res	ultados	4
	3.1	Resistência dos enrolamentos	4
	3.2	Teste em Vazio	4
	3.3	Teste em Curto Circuito	4
4	Disc	cussão	5
5	Con	siderações Finais	5

1 Introdução

O transformador é um dispositivo de dois ou mais enrolamentos acoplados por meio de um fluxo comum. Se um desses enrolamentos for conectado a uma fonte alternada (C.A.), será produzido um fluxo magnético e uma parcela deste fluxo (fluxo mútuo) induzirá no outro enrolamento uma tensão que depende do número de espiras.

Além disso, existem as perdas e outro parâmetros que devem ser determinado em um transformador, para isso foram desenvolvidos dois tipos de ensaio: Ensaio de Circuito Aberto (ou a Vazio) e o Ensaio de Curto Circuito, sendo que o primeiro ensaio fornece informações acerca das perdas no ferro (núcleo) e corrente de excitação, e o segundo ensaio será determinado a reatância de dispersão e a resistência do enrolamento.

Portanto, neste trabalho será verificado os parâmetros de uma transformador através dos ensaios em circuito aberto e fechado...

2 Metodologia

2.1 Materiais Utilizados

- 02 Transformadores Monofásicos, 1kVA, 110/110V, 60Hz;
- 02 Varivolt;
- 02 Wattímetro Monofásicos;
- 04 Multímetro;
- 02 Fonte C.C..

2.2 Determinação da Resistência dos Enrolamentos

Para determinar a resistência dos enrolamentos do primário e secundário, basta aplicar uma pequena tensão c.c. no terminal, como ilustra a Figura 1. Perceba que neste caso não haverá indução eletromagnética, pois a variação da corrente no tempo é zero (estado permanente), e a reatância será nula, pois em regime permanente o indutor se comporta como um curto. Sendo assim, para calcular a resistência, basta fazer a razão da tensão pela corrente.

$$R = \frac{V_{CC}}{I_{CC}} \tag{1}$$

Figura 1 – Determinação da Resistência Dos Enrolamentos.

2.3 Ensaio em Aberto (Vazio)

Figura 2 – Ensaio a Vazio.

O ensaio em vazio, é realizado com o secundário em aberto e aplica-se uma tensão no primário do transformador, por fins de conveniência é tomado o lado de baixa tensão como primário e o de alta tensão como secundário. Desta forma obtém-se a corrente de excitação (normalmente pequena nos transformadores de grande potência). Para isto, é feita a montagem com voltímetro, amperímetro e wattímetro como ilustra a Figura 2, é obtido os seguintes dados: I_{CA} , V_{CA} e P_{CA} que são utilizados para o calculo da resistência, impedância de circuito aberto e reatância de magnetização, como mostra as Eq. 2, 3 e 4.

$$R_C = \frac{V_{CA}^2}{P_{CA}} \tag{2}$$

$$|Z_{\phi}| = \frac{V_{CA}}{I_{CA}} \tag{3}$$

$$X_M = \frac{1}{\sqrt{\left(\frac{1}{|Z_{\phi}|}\right)^2 - \left(\frac{1}{R_C}\right)^2}} \tag{4}$$

Dessa forma, realizando este ensaio conseguiremos os valores equivalentes de resistência, impedância e reatância, como mostra a Figura 3.

2.4 Ensaio em Curto-Circuito

O ensaio em curto, diferentemente do em aberto, é realizado com os terminais trocados, ou seja, o lado de alta tensão é considerado primário e o lado de baixa tensão é considerado secundário. A par-

Figura 3 – Ensaio a Vazio - Parâmetros Equivalentes.

Figura 4 – Ensaio em Curto.

tir deste ensaio conseguimos informações acerca da reatância de dispersão e resistências do enrolamento. Para realizar este ensaio é feita a montagem com amperímetro, voltímetro e wattímetro, como ilustra a Figura 4, e é obtido os seguintes valores: I_{CC} , V_{CC} , e P_{CC} que são utilizadas para calcular os valores equivalentes de impedância, resistência e reatância, como mostra as Eq. 5, 6 e 7.

$$|Z_{eq}| = \frac{V_{CC}}{I_{CC}} \tag{5}$$

$$R_{eq} = R_{CC} = \frac{P_{CC}}{I_{CC}^2}$$
 (6)

$$X_{eq} = X_{CC} = \sqrt{|Z_{eq}|^2 - R_{CC}^2}$$
 (7)

Desta forma, realizando este ensaio, con-

seguiremos os valores equivalentes de resistência, impedância e reatância como ilustra a Figura 5.

Figura 5 – Ensaio em Curto - Parâmetros Equivalentes.

3 Resultados

3.1 Resistência dos enrolamentos

Ao realizar o teste em corrente continua para determinar a resistência dos enrolamentos, foram obtidos os seguintes valores:

Tabela 1 – Resistência dos enrolamentos visto do lado da alta.

	V_{cc}	I_{cc}	$R_{a,eq}$
(5,75 V	5,95 A	$1,13~\Omega$

3.2 Teste em Vazio

Para o ensaio em vazio, foram obtidos os seguintes valores:

•
$$P_o = 10 \ W$$

•
$$V_o = 110 \ V$$

•
$$I_o = 1,75 A$$

Sendo assim, os parâmetro do ramo magnetizante encontrado foram:

$R_m [\Omega]$	$Z_m [\Omega]$	$X_m [\Omega]$
1210	62,86	62,94

Portanto, podemos concluir que a relação de transformação deste transformador é a=1 e as perdas no ferro é $P_o=10~W$

3.3 Teste em Curto Circuito

Para o ensaio em curto, foram obtidas as seguintes leituras:

•
$$P_{cc} = 100 \ W$$

•
$$V_{cc} = 22,3 \ V$$

•
$$I_{cc} = 6 A$$

A partir desta leitura, podemos calcular os parâmetros série, em valor real e em p.u., como mostram as Tabelas 2 e 3

Tabela 2 – Parâmetros série do transformador.

$R_{eq} [\Omega]$	$Z_{eq} [\Omega]$	$X_{eq} [\Omega]$
2,78	3,72	2,47

Tabela 3 – Parâmetros série do transformador em p.u..

$r_{\%}$	$z_{\%}$	$x_{\%}$
10,00	20,27	17,63

Portanto, a queda de tensão é:

$$\Delta V = Z_{CC}I_N = 19,32 \ V$$

Para determinar a regulação de tensão temos:

$$|V_{vazio}| = V_P + I_{cc}(R_{eq} + jX_{eq}) = 127,54V$$

$$Reg(\%) = \frac{100\cdot(\Delta V)}{V_1} = 15,95$$

4 Discussão

Rendimento e Regulação de tensão

O rendimento e a regulação de tensão para diferentes valores de carga, estão mostrados na Tabela 4; e para diferentes valores de FP com carga nominal estão mostrados na Tabela 5

Tabela 4 – Valores de rendimento e regulação de tensão.

	$S_{1/4}$	$S_{1/2}$	$S_{3/4}$	$S_{5/4}$
$\eta_{\%}$	93,90	93,46	91,88	88,26
$Reg_{\%}$	5,86	11,95	18,23	31,22

Tabela 5 – Valores de rendimento e regulação de tensão para FP = 0.8 e 0.6.

FP	0,8	0,6
1.1	Indutivo	Capacitivo
$\eta_{\%}$	87,91	84,51
$Reg_{\%}$	10,32	30,26

Tap em Transformadores

O termo TAP é utilizado para indicar um comutador, de forma a regular a tensão para a estabilidade na saída. A principal função dos taps nos transformadores é realizar auto ajustes nas espiras do transformador, no lado primário. Isto ocorre devido a uma variação na entrada, logo, para manter o sinal de saída mais estável possível, o tap faz um reajuste (dentro da faixa de $\pm 5\%$) nas espiras do primário com o objetivo de regular a tensão.

5 Considerações Finais

Como o ensaio a vazio foi possível determinar as perdas do núcleo e reatância de magnetização sem que fosse necessário conhecer as propriedades físicas e magnéticos do materiais, facilitando o processo.

Com o ensaio em curto circuito foi possível encontrar os parâmetros séries, indutância de dispersão e as resistências dos enrolamentos, também sem conhecer as propriedades físicas e magnéticos do materiais.

Referências

- [1] Stephen J Chapman. Fundamentos de máquinas elétricas. AMGH editora, 2013.
- [2] Stephen D Umans. Máquinas Elétricas de Fitzgerald e Kingsley-7. AMGH Editora, 2014.