# My goal this summer



Work from a phylogeny to the original transmission history



### **Coalescent modeling**

Large N causes node times to be further apart, stretching the tree





#### Time until first coalescence with arbitrary B





# **Expected signal for transmission time with two hosts**





# My results so far: Constant population size, single host





### My current progress on linear populations



#### Population dynamics that may cause this





#### Attempting a grid search revealed scaling mistakes with B

I have the high ground, bananakin! I can't add this image now because I can't properly git pull, so it will need to be last minute tomorrow morning.



#### Next steps: Moving towards two hosts and linear population

- \* Look into incorrect population growth scaling across the project
- \* Instead of a grid search, explore more serious optimization methods
- \* Expand to a two-host problem so I can examine transmission time
  - Split tree by host
  - Isolate hosts until a transmission occurs



