



COMP280: Specialisms in Creative Computing

## 8: Navigation





**Pathfinding** 

► We have a graph

- We have a graph
  - ► Nodes (points)

- We have a graph
  - ► Nodes (points)
  - Edges (lines between points, each with a weight)

- ▶ We have a graph
  - Nodes (points)
  - ► Edges (lines between points, each with a weight)
- E.g. a road map

- ▶ We have a graph
  - Nodes (points)
  - Edges (lines between points, each with a weight)
- E.g. a road map
  - ▶ Nodes = addresses

- ▶ We have a graph
  - Nodes (points)
  - Edges (lines between points, each with a weight)
- ▶ E.g. a road map
  - ▶ Nodes = addresses
  - ▶ Edges = roads

- ▶ We have a graph
  - Nodes (points)
  - Edges (lines between points, each with a weight)
- E.g. a road map
  - ▶ Nodes = addresses
  - Edges = roads
- ► E.g. a tile-based 2D game

- ▶ We have a graph
  - Nodes (points)
  - Edges (lines between points, each with a weight)
- ▶ E.g. a road map
  - ▶ Nodes = addresses
  - Edges = roads
- ► E.g. a tile-based 2D game
  - Nodes = grid squares

- We have a graph
  - Nodes (points)
  - Edges (lines between points, each with a weight)
- ▶ E.g. a road map
  - ► Nodes = addresses
  - Edges = roads
- ► E.g. a tile-based 2D game
  - ▶ Nodes = grid squares
  - Edges = connections between adjacent squares

- ▶ We have a graph
  - Nodes (points)
  - Edges (lines between points, each with a weight)
- ▶ E.g. a road map
  - ► Nodes = addresses
  - ▶ Edges = roads
- ▶ E.g. a tile-based 2D game
  - Nodes = grid squares
  - Edges = connections between adjacent squares
- Given two nodes A and B, find the shortest path from A to B

- ▶ We have a graph
  - Nodes (points)
  - Edges (lines between points, each with a weight)
- E.g. a road map
  - ▶ Nodes = addresses
  - ▶ Edges = roads
- ► E.g. a tile-based 2D game
  - Nodes = grid squares
  - Edges = connections between adjacent squares
- Given two nodes A and B, find the shortest path from A to B
  - "Shortest" in terms of edge weights could be distance, time, fuel cost, ...























► Basic idea: build a **spanning tree** for the graph

- ► Basic idea: build a **spanning tree** for the graph
- ► Root node is A (the start node)

- ▶ Basic idea: build a spanning tree for the graph
- ► Root node is A (the start node)
- Edges in the tree are a subset of edges of the graph

- ▶ Basic idea: build a spanning tree for the graph
- Root node is A (the start node)
- Edges in the tree are a subset of edges of the graph
- Once the tree includes B, we can read off the path from A to B

- Basic idea: build a spanning tree for the graph
- ► Root node is A (the start node)
- Edges in the tree are a subset of edges of the graph
- Once the tree includes B, we can read off the path from A to B
- Need to keep track of two sets of nodes:

- Basic idea: build a spanning tree for the graph
- Root node is A (the start node)
- Edges in the tree are a subset of edges of the graph
- Once the tree includes B, we can read off the path from A to B
- Need to keep track of two sets of nodes:
  - Open set: nodes within 1 edge of the tree, which could be added next

- Basic idea: build a spanning tree for the graph
- Root node is A (the start node)
- Edges in the tree are a subset of edges of the graph
- Once the tree includes B, we can read off the path from A to B
- Need to keep track of two sets of nodes:
  - Open set: nodes within 1 edge of the tree, which could be added next
  - Closed set: nodes which have been added to the tree, and shouldn't be revisited (otherwise we could get stuck in an infinite loop)

▶ Depth-first or breadth-first

- ▶ Depth-first or breadth-first
- Can be implemented with the open set as a stack or a queue respectively

- Depth-first or breadth-first
- Can be implemented with the open set as a stack or a queue respectively
- ▶ Inefficient generally has to explore the entire map

- Depth-first or breadth-first
- Can be implemented with the open set as a stack or a queue respectively
- ▶ Inefficient generally has to explore the entire map
- Finds a path, but probably not the shortest

- Depth-first or breadth-first
- Can be implemented with the open set as a stack or a queue respectively
- Inefficient generally has to explore the entire map
- Finds a path, but probably not the shortest
- ► Third type of traversal: best-first

- Depth-first or breadth-first
- Can be implemented with the open set as a stack or a queue respectively
- Inefficient generally has to explore the entire map
- Finds a path, but probably not the shortest
- ► Third type of traversal: **best-first** 
  - "Best" according to some heuristic evaluation

- Depth-first or breadth-first
- Can be implemented with the open set as a stack or a queue respectively
- ▶ Inefficient generally has to explore the entire map
- Finds a path, but probably not the shortest
- Third type of traversal: best-first
  - "Best" according to some heuristic evaluation
  - Often implemented with the open set as a priority queue — a data structure optimised for finding the highest priority item

# Greedy search

## Greedy search

Always try to move closer to the goal

- Always try to move closer to the goal
- Visit the node whose distance to the goal is minimal

- Always try to move closer to the goal
- Visit the node whose distance to the goal is minimal
- E.g. Euclidean distance (straight line distance Pythagoras' Theorem)

- Always try to move closer to the goal
- Visit the node whose distance to the goal is minimal
- E.g. Euclidean distance (straight line distance Pythagoras' Theorem)
- ▶ Doesn't handle **dead ends** well

- Always try to move closer to the goal
- Visit the node whose distance to the goal is minimal
- E.g. Euclidean distance (straight line distance Pythagoras' Theorem)
- Doesn't handle dead ends well
- ▶ Not guaranteed to find the **shortest** path

▶ Let g(x) be the sum of edge weights of the path found from the start to x

- ▶ Let g(x) be the sum of edge weights of the path found from the start to x
- ▶ Choose a node that minimises g(x)

- ▶ Let g(x) be the sum of edge weights of the path found from the start to x
- ▶ Choose a node that minimises g(x)
- Needs to handle cases where a shorter path to a node is discovered later in the search

- ▶ Let g(x) be the sum of edge weights of the path found from the start to x
- ▶ Choose a node that minimises g(x)
- Needs to handle cases where a shorter path to a node is discovered later in the search
- ▶ Is guaranteed to find the shortest path

- ▶ Let g(x) be the sum of edge weights of the path found from the start to x
- ▶ Choose a node that minimises g(x)
- Needs to handle cases where a shorter path to a node is discovered later in the search
- Is guaranteed to find the shortest path
- ... but is not the most efficient algorithm for doing so

► Let h(x) be an estimate of the distance from x to the goal (as in greedy search)

- ▶ Let h(x) be an estimate of the distance from x to the goal (as in greedy search)
- ▶ Let g(x) be the distance of the path found from the start to x (as in Dijkstra's algorithm)

- ▶ Let h(x) be an estimate of the distance from x to the goal (as in greedy search)
- ▶ Let g(x) be the distance of the path found from the start to x (as in Dijkstra's algorithm)
- ▶ Choose a node that minimises g(x) + h(x)

► A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible

- ► A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible
- Essentially, admissible means it must be an underestimate

- A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible
- Essentially, admissible means it must be an underestimate
  - E.g. straight line Euclidean distance is clearly an underestimate for actual travel distance

- A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible
- Essentially, admissible means it must be an underestimate
  - E.g. straight line Euclidean distance is clearly an underestimate for actual travel distance
- ► The more accurate h(x) is, the more efficient the search

- ▶ A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible
- Essentially, admissible means it must be an underestimate
  - E.g. straight line Euclidean distance is clearly an underestimate for actual travel distance
- ► The more accurate h(x) is, the more efficient the search
  - ► E.g. h(x) = 0 is admissible (and gives Dijkstra's algorithm), but not very helpful

- ▶ A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible
- Essentially, admissible means it must be an underestimate
  - E.g. straight line Euclidean distance is clearly an underestimate for actual travel distance
- ► The more accurate h(x) is, the more efficient the search
  - ▶ E.g. h(x) = 0 is admissible (and gives Dijkstra's algorithm), but not very helpful
- $\blacktriangleright$  h(x) is a heuristic

- ► A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible
- Essentially, admissible means it must be an underestimate
  - E.g. straight line Euclidean distance is clearly an underestimate for actual travel distance
- ► The more accurate h(x) is, the more efficient the search
  - ▶ E.g. h(x) = 0 is admissible (and gives Dijkstra's algorithm), but not very helpful
- $\blacktriangleright$  h(x) is a heuristic
  - In AI, a heuristic is an estimate based on human intuition

- ▶ A\* is guaranteed to find the shortest path if the distance estimate h(x) is admissible
- Essentially, admissible means it must be an underestimate
  - E.g. straight line Euclidean distance is clearly an underestimate for actual travel distance
- ► The more accurate h(x) is, the more efficient the search
  - ► E.g. h(x) = 0 is admissible (and gives Dijkstra's algorithm), but not very helpful
- $\blacktriangleright$  h(x) is a heuristic
  - In AI, a heuristic is an estimate based on human intuition
  - Heuristics are often used to prioritise search, i.e. explore the most promising options first

► Can change how g(x) is calculated

- ► Can change how g(x) is calculated
  - Increased movement cost for rough terrain, water, lava...

- ► Can change how g(x) is calculated
  - ► Increased movement cost for rough terrain, water, lava...
  - Penalty for changing direction

- ► Can change how g(x) is calculated
  - Increased movement cost for rough terrain, water, lava...
  - Penalty for changing direction
- Different h(x) can lead to different paths (if there are multiple "shortest" paths)

Paths restricted to edges can look unnatural

- Paths restricted to edges can look unnatural
- Intuition: visualise the path as a string, then pull both ends to make it taut

- Paths restricted to edges can look unnatural
- Intuition: visualise the path as a string, then pull both ends to make it taut
- ► Simple algorithm:

- Paths restricted to edges can look unnatural
- Intuition: visualise the path as a string, then pull both ends to make it taut
- ► Simple algorithm:
  - Found path is  $p[0], p[1], \dots, p[n]$

- Paths restricted to edges can look unnatural
- Intuition: visualise the path as a string, then pull both ends to make it taut
- Simple algorithm:
  - ► Found path is p[0], p[1], ..., p[n]
  - ▶ If the line from p[i] to p[i+2] is unobstructed, remove point p[i+1]

- Paths restricted to edges can look unnatural
- Intuition: visualise the path as a string, then pull both ends to make it taut
- Simple algorithm:
  - ► Found path is p[0], p[1], ..., p[n]
  - ▶ If the line from p[i] to p[i+2] is unobstructed, remove point p[i+1]
  - Repeat until there are no more points that can be removed







### Pathfinding in videogames

## Pathfinding in videogames

► A\* works on any graph

## Pathfinding in videogames

- ► A\* works on any graph
- But what if the game world is not a graph? E.g. complex 3D environments





 Manually place graph nodes in the world



- Manually place graph nodes in the world
- Place them at key points, e.g. in doorways, around obstacles



- Manually place graph nodes in the world
- Place them at key points, e.g. in doorways, around obstacles
- ► Works, but...



- Manually place graph nodes in the world
- Place them at key points, e.g. in doorways, around obstacles
- ► Works, but...
  - More work for level designers



- Manually place graph nodes in the world
- Place them at key points, e.g. in doorways, around obstacles
- ► Works, but...
  - More work for level designers
  - Requires lots of testing and tweaking to get natural-looking results



- Manually place graph nodes in the world
- Place them at key points, e.g. in doorways, around obstacles
- ► Works, but...
  - More work for level designers
  - Requires lots of testing and tweaking to get natural-looking results
  - No good for dynamic environments







 Automatically generate navigation graph from level geometry



- Automatically generate navigation graph from level geometry
- ► Basic idea:



- Automatically generate navigation graph from level geometry
- ▶ Basic idea:
  - Filter level geometry to those polygons which are passable (i.e. floors, not walls/ceilings/obstacles)



- Automatically generate navigation graph from level geometry
- ▶ Basic idea:
  - Filter level geometry to those polygons which are passable (i.e. floors, not walls/ceilings/obstacles)
  - Generate graph from polygons



- Automatically generate navigation graph from level geometry
- ▶ Basic idea:
  - Filter level geometry to those polygons which are passable (i.e. floors, not walls/ceilings/obstacles)
  - Generate graph from polygons
- Unity and Unreal have good built-in navigation mesh generation

Steering: don't have your AI agent follow the path exactly, but instead try to stay close to it

- Steering: don't have your AI agent follow the path exactly, but instead try to stay close to it
- ► **Funnelling**: like string pulling but for navigation meshes

- Steering: don't have your AI agent follow the path exactly, but instead try to stay close to it
- ► **Funnelling**: like string pulling but for navigation meshes
- Dynamic environments: may need to re-run pathfinder if environment changes (e.g. movable obstacles, destructible terrain)

- Steering: don't have your AI agent follow the path exactly, but instead try to stay close to it
- ► **Funnelling**: like string pulling but for navigation meshes
- Dynamic environments: may need to re-run pathfinder if environment changes (e.g. movable obstacles, destructible terrain)
- ► Avoidance: how to have NPCs avoid running into each other?



Workshop

