Теория графов. Вторая презентация

Ермолович Анна, Шмаков Александр, Зайцев Дмитрий

Введение

- Анализируем алгоритм Борувки для поиска минимального остовного дерева.
- Реализован на SuiteSparse:GraphBLAS.
- В экспериментах нет прямого сравнения между библиотеками, вместо этого анализируется поведение каждой отдельной библиотеки на графах с особыми свойствами.

Характеристики вычислительной машины

- **Процессор**: AMD Ryzen 7 5800H (8 ядер, 16 потоков)
 - L1-кэш: 64 КВ (на ядро)
 - L2-кэш: 512 КВ (на ядро)
 - L3-кэш: 16 МВ (общий)
- **RAM**: 32 GB
- **GPU**: RTX 3070 (8 GB видеопамяти)
- Операционная система: Ubuntu 24.04.2
- **Компилятор**: gcc version 13.3.0
- SuiteSparse/GraphBLAS: v10.0.5

Датасет DIMACS 9th

Description	Nodes	Edges
Great Lakes	2,758,119	3,397,404
California and Nevada	1,890,815	2,315,222
Northeast USA	1,524,453	1,934,010
Northwest USA	1,207,945	1,410,387
Florida	1,070,376	1,343,951
Colorado	435,666	521,200
San Francisco Bay Area	321,270	397,415
New York City	264,346	365,050

<u>Цель</u>: Найти зависимость между плотностью графа (где удалено N-е количество ребер) и скоростью работы алгоритма на выбранной библиотеке.

Ход эксперимента:

- 1. Берём граф из датасета.
- 2. Начинаем *менять количество рёбер* в нём так, чтобы можно было построить график зависимости производительности библиотеки от плотности графа (1%, 3%, 5%, 7%, 10%, 13% и 15% от исходного числа рёбер).
- 3. Сохраняем эти графы в том же формате, в котором были исходные графы и используем для тестов.
- 4. Проверяем, будет ли сохраняться эта зависимость на всех графах из датасета.

Как меняем графы:

- Не трогаем мосты
- В приоритете менее значимые ребра (по весу и центральности)
- Для каждого получившегося графа выполняем дополнительную проверку на корректность

<u>Гипотеза</u>: Нет однозначной связи между плотностью графов (полученных методом описанным выше) и скоростью их обработки в нашем датасете.

Получение результатов:

- Выполняем 100 запусков алгоритма на каждом из графов в обновлённом датасете.
- Находим среднее, стандартное отклонение и доверительные интервалы.
- Эти данные используем для проверки гипотезы.

Проверка гипотезы:

- 1. Для каждой группы графов ищем коэффициент корреляции (*коэффициент корреляции Пирсона*) и Р-значение.
- 2. Для анализа используем α (уровень значимости) = 0.05.
- 3. Делаем поправку на множественное сравнение (Bonferroni correction).

Эксперимент 1 (результаты)

• На каждой картинке свой

масштаб

Эксперимент 1 (анализ результатов)

#	Graph Name	R-value	P-value	Corrected p	Reject H0
1	New York City	-0.870036	0.010891	0.087131	False
2	San Francisco Bay Area	0.328190	0.472361	≈1.00000	X False
3	Colorado	-0.367785	0.416986	≈1.00000	X False
4	Florida	0.138641	0.766892	≈1.00000	X False
5	Northwest USA	0.418716	0.349803	≈1.00000	X False
6	Northeast USA	0.170363	0.714961	≈1.00000	X False
7	California and Nevada	0.066544	0.887281	≈1.00000	X False
8	Great Lakes	0.443524	0.318868	≈1.00000	X False

<u>Результат</u>: найти связь между плотностью графа и скоростью его обработки в данном датасете и выбранной реализации алгоритма не получилось.

<u>Цель</u>: Проанализировать производительность библиотеки на графах с одинаковой топологией, но разным распределением весов.

Ход эксперимента:

- 1. Берём из датасета пару: одинаковые по топологии графы с разным распределением весов.
- 2. Запускаем алгоритм и смотрим, будет ли различие в производительности (за вычетом погрешности).
- 3. Проверяем, будет ли сохраняться разница на всех парах графов из датасета.
- 4. Дополнительно расширяем датасет графами с другим распределением весов и опять проводим тот же анализ.

<u>Гипотеза</u>: Нет никакой статистически значимой разницы между графом с распределением весов X и распределением весов Y.

Получение результатов:

- Выполняем 100 запусков алгоритма на каждом из графов в обновлённом датасете.
- Находим среднее, стандартное отклонение и доверительные интервалы.
- Эти данные используем для проверки гипотезы.

Проверка гипотезы:

- 1. Применяем для датасета paired T-test, чтобы понять, равна ли средняя разница между парами измерений нулю или нет.
- 2. Для анализа используем α (уровень значимости) = 0.05.
- 3. Делаем то же самое и для других пар из расширенного датасета.

Эксперимент 2 (результаты)

Эксперимент 2 (результаты)

Graph Type

10

Graph Type

Graph Type

10

Graph Type

Эксперимент 2 (анализ результатов)

Experiment Name	T-statistic	P-value	Reject H0	Reject H0 (corrected)
Distance vs Time	0.78381	0.45885	X False	X False
Distance vs Shuffled	2.03601	0.08119	False	X False
Distance vs Random	2.62394	0.03421	✓ True	False
Time vs Random	4.17806	0.00415	✓True	✓ True
Time vs Shuffled	3.45361	0.01064	✓ True	False
Shuffled vs Random	0.37063	0.72187	X False	X False

<u>Результат</u>: графы с более "реальным" распределением обрабатываются в среднем дольше, чем с синтетическим.