Chapter 3

Least Squares

Notation: y_i is a scalar, and $x_i = (x_{i1}, ..., x_{iK})'$ is a $K \times 1$ vector. $Y = (y_1, ..., y_n)'$ is an $n \times 1$ vector, and

$$X = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1K} \\ x_{21} & x_{22} & \cdots & x_{2K} \\ \vdots \\ x_{n1} & x_{22} & \cdots & x_{nK} \end{bmatrix}$$

is an $n \times K$ matrix.

3.1 Algebra of Least Squares

3.1.1 OLS estimator

As we have learned from the linear project model, the projection coefficient β in the regression

$$y = x'\beta + e$$

can be written as

$$\beta = (E[xx'])^{-1} E[xy]. \tag{3.1}$$

We draw a pair of (y, x) from the joint distribution, and we mark it as (y_i, x_i) for i = 1, ..., n. We possess a *sample* $(y_i, x_i)_{i=1}^n$.

Remark 1. Is (y_i, x_i) random or deterministic? Before we make the observation, they are treated as random variables whose realized values are uncertain. After we make the observation, they become deterministic values which cannot change. (y_i, x_i) are treated as random when we talk about statistical properties about quantities based it — the statistical properties of a given fixed number is meaningless.

Remark 2. All probability descriptions are thought experiments before observation. In reality, we have at hand fixed numbers (more recently, words, photos, audio clips, video clips, etc., which can all be represented in digital formats with 0 and 1s) to feed into a computational operation, and the operation will return one or some numbers. All statistical interpretation about these numbers are drawn from the probabilistic thought ex-

periments. A *thought experiment* is an academic jargon for a *story* in plan language. Under the axiomatic approach of probability theory, such stories are mathematical consistent and coherent. But mathematics is a tautological system, not science. Their scientific value of a probability model depends on how close it is to the *truth*. In this course, we suppose that the data are generated from some mechanism, which is taken as the truth.

The sample mean is a natural estimator of the population mean. Replace the population mean $E[\cdot]$ in (3.1) by the sample mean $\frac{1}{n}\sum_{i=1}^{n}\cdot$, and the resulting estimator is

$$\widehat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} x_i y_i = (X'X)^{-1} X' y.$$

This is one way to motivate the OLS estimator.

Alternatively, we can derive the OLS estimator from minimizing the sum of squared residuals $\sum_{i=1}^{n} (y_i - x_i'\beta)^2$, or equivalently

$$Q(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - x_i' \beta)^2 = \frac{1}{2n} (Y - X \beta)' (Y - X \beta),$$

where the factor $\frac{1}{2n}$ is nonrandom and does not change the minimizer. Solve the first-order condition

$$\frac{\partial}{\partial \beta}Q(\beta) = -\frac{1}{n}X'(Y - X\beta) = 0.$$

This necessary condition for optimality gives exactly the same $\hat{\beta}$. More-

over, the second-order condition

$$\frac{\partial^{2}}{\partial\beta\partial\beta'}Q(\beta) = \frac{1}{n}X'X$$

shows that $Q(\beta)$ is convex in β due to the positive semi-definite matrix X'X. ($Q(\beta)$ is strictly convex in β if X'X is positive definite.)

Here are some definitions and properties of the OLS estimator.

- Fitted value: $\hat{Y} = X\hat{\beta}$.
- Projector: $P_X = X(X'X)^{-1}X$; Annihilator: $M_X = I_n P_X$.
- $P_X X = X$; $X' P_X = X'$.
- $M_X X = 0$; $X' M_X = 0$.
- $\bullet P_X M_X = M_X P_X = 0.$
- If AA = A, we call it an *idempotent* matrix. Both P_X and M_X are idempotent.
- Residual: $\hat{e} = Y \hat{Y} = Y X\hat{\beta} = Y X(X'X)^{-1}X'Y = (I P_X)Y = M_XY = M_X(X\beta + e) = M_Xe$.
- $\bullet \ \ X'\widehat{e}=X'M_Xe=0.$
- $\frac{1}{n}\sum_{i=1}^{n}\widehat{e}_{i}=0$ if x_{i} contains a constant.

(Justification:
$$X'\widehat{e} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ * & * & \cdots & * \\ \vdots & \vdots & \vdots \\ * & * & \cdots & * \end{bmatrix} \begin{bmatrix} \widehat{e}_1 \\ \widehat{e}_2 \\ \vdots \\ \widehat{e}_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 and the the first row implies $\sum_{i=1}^{n} \widehat{e}_i = 0$

the first row implies $\sum_{i=1}^{n} \widehat{e}_i$

3.1.2 Goodness of Fit

The so-called *R-squared* is a popular measure of goodness-of-fit in the linear regression. R-squared is well defined only when a constant is included in the regressors. Let $M_{\iota} = I_n - \frac{1}{n} \iota \iota'$, where ι is an $n \times 1$ vector of 1's. M_{ι} is the *demeaner*, in the sense that $M_{\iota}(z_1,\ldots,z_n)'=(z_1-\overline{z},\ldots,z_n-\overline{z})'$, where $\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$. For any X, we can decompose $Y = P_X Y + M_X Y =$ $\widehat{Y} + \widehat{e}$. The total variation is

$$Y'M_{\iota}Y = \left(\widehat{Y} + \widehat{e}\right)'M_{\iota}\left(\widehat{Y} + \widehat{e}\right) = \widehat{Y}'M_{\iota}\widehat{Y} + 2\widehat{Y}'M_{\iota}\widehat{e} + \widehat{e}'M_{\iota}\widehat{e} = \widehat{Y}'M_{\iota}\widehat{Y} + \widehat{e}'\widehat{e}$$

where the last equality follows by $M_i \hat{e} = \hat{e}$ as $\frac{1}{n} \sum_{i=1}^n \hat{e}_i = 0$, and $\hat{Y}' \hat{e} = 0$ $Y'P_XM_Xe = 0$. R-squared is defined as $\widehat{Y}'M_{\iota}\widehat{Y}/Y'M_{\iota}Y$.

Frish-Waugh-Lovell Theorem 3.1.3

The Frish-Waugh-Lovell (FWL) theorem is an algebraic fact about the formula of a subvector of the OLS estimator. To derive the FWL theorem We need to use the inverse of partitioned matrix. For a positive definite

symmetric matrix $A = \begin{pmatrix} A_{11} & A_{12} \\ A'_{12} & A_{22} \end{pmatrix}$, the inverse can be written as

$$A^{-1} = \begin{pmatrix} \left(A_{11} - A_{12}A_{22}^{-1}A_{12}'\right)^{-1} & -\left(A_{11} - A_{12}A_{22}^{-1}A_{12}'\right)^{-1}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{12}'\left(A_{11} - A_{12}A_{22}^{-1}A_{12}'\right)^{-1} & \left(A_{22} - A_{12}'A_{11}^{-1}A_{12}\right)^{-1} \end{pmatrix}.$$

In our context of OLS estimator, let $X=\left(\begin{array}{cc} X_1 & X_2 \end{array} \right)$

$$\begin{split} \widehat{\beta} &= \begin{pmatrix} \widehat{\beta}_{1} \\ \widehat{\beta}_{2} \end{pmatrix} = (X'X)^{-1}X'Y \\ &= \begin{pmatrix} \begin{pmatrix} X'_{1} \\ X'_{2} \end{pmatrix} \begin{pmatrix} X_{1} & X_{2} \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} X'_{1}Y \\ X'_{2}Y \end{pmatrix} \\ &= \begin{pmatrix} X'_{1}X_{1} & X'_{1}X_{2} \\ X'_{2}X_{1} & X'_{2}X_{2} \end{pmatrix}^{-1} \begin{pmatrix} X'_{1}Y \\ X'_{2}Y \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} (X'_{1}M'_{X_{2}}X_{1})^{-1} & -\begin{pmatrix} (X'_{1}M'_{X_{2}}X_{1})^{-1} & X'_{1}X_{2} & (X'_{2}X_{2})^{-1} \\ * & * \end{pmatrix} \begin{pmatrix} X'_{1}Y \\ X'_{2}Y \end{pmatrix}. \end{split}$$

The subvector

$$\widehat{\beta}_{1} = (X'_{1}M'_{X_{2}}X_{1})^{-1} X'_{1}Y - (X'_{1}M'_{X_{2}}X_{1})^{-1} X'_{1}X_{2} (X'_{2}X_{2})^{-1} X'_{2}Y$$

$$= (X'_{1}M'_{X_{2}}X_{1})^{-1} (X'_{1}Y - X'_{1}P_{X_{2}}Y)$$

$$= (X'_{1}M'_{X_{2}}X_{1})^{-1} X'_{1}M_{X_{2}}Y.$$

Notice that $\hat{\beta}_1$ can be obtained by the following:

- 1. Regress y on X_2 , obtain residuals \tilde{e}_2 ;
- 2. Regress X_1 on X_2 , obtain residuals \tilde{X}_2 ;
- 3. Regress \tilde{e}_2 on \tilde{X}_2 , obtain OLS estimates $\hat{\beta}_1$.

Similar derivation can also be carried out in the population linear projection. See Hansen (2019) Chapter 2.22-23.

3.2 Statistical Properties of Least Squares

In this section we return to the classical statistical framework under restrictive distributional assumption $y_i|x_i \sim N\left(x_i'\beta,\gamma\right)$, where $\gamma = \sigma^2$.

3.2.1 Maximum Likelihood Estimation

The *conditional* likelihood of observing a *random sample* $(y_i, x_i)_{i=1}^n$ is

$$\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\gamma}} \exp\left(-\frac{1}{2\gamma} \left(y_i - x_i'\beta\right)^2\right),\,$$

and the (conditional) log-likelihood function is

$$L(\beta,\gamma) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \gamma - \frac{1}{2\gamma}\sum_{i=1}^{n} (y_i - x_i'\beta)^2.$$

The maximum likelihood estimator $\widehat{\beta}_{MLE}$ can be found using the FOC:

$$\frac{\partial}{\partial \beta} L(\beta, \gamma) = \frac{1}{2\gamma} \sum_{i=1}^{n} 2x_i (y_i - x_i' \beta)^2 = 0.$$

Rearranging the above equation in matrix form $X'Y = X'X\widehat{\beta}_{MLE}$, we explicitly solve

$$\widehat{\beta}_{MLE} = (X'X)^{-1}X'Y.$$

The maximum likelihood estimator (MLE) coincides with the OLS estimator. Similarly, another FOC gives $\hat{\gamma}_{\text{MLE}} = \hat{e}'\hat{e}/n$.

3.2.2 Classical Finite Sample Distribution

We can show the finite-sample exact distribution of $\widehat{\beta}$ assuming the error term follows a Gaussian distribution. *Finite sample distribution* means that the distribution holds for any n; it is in contrast to *asymptotic distribution*, which is a large sample approximation to the finite sample distribution. Let the "error term" $e_i = y_i - x_i'\beta$, we have $e_i|x_i = y_i|x_i - x_i'\beta \sim N(0,\gamma)$. Since the conditional distribution of e_i on x_i is invariant with x_i , the dis-

crepancy e_i is statistical independent of x_i . Assume The estimator

$$\hat{\beta} = (X'X)^{-1}X'Y = (X'X)^{-1}X'(X'\beta + e) = \beta + (X'X)^{-1}X'e$$

and its conditional distribution can be written as

$$\widehat{\beta}|X = \beta + (X'X)^{-1} X'e|X$$

$$\sim \beta + (X'X)^{-1} X' \cdot N\left(0_n, \sigma^2 \cdot I_n\right)$$

$$\sim N\left(\beta, \sigma^2 (X'X)^{-1} X'X (X'X)^{-1}\right) \sim N\left(\beta, \sigma^2 (X'X)^{-1}\right).$$

The *k*-th element of the vector coefficient

$$\widehat{\beta}_{k}|X = \eta_{k}'\widehat{\beta}|X \sim N\left(\beta_{k}, \sigma^{2}\eta_{k}'\left(X'X\right)^{-1}\eta_{k}\right) \sim N\left(\beta_{k}, \sigma^{2}\left(X'X\right)_{kk}^{-1}\right),$$

where $\eta_k = (1 \, \{l = k\})_{l=1,\dots,K}$ is the selector of the k-th element.

In reality, σ^2 is an unknown parameter, and

$$s^2 = \hat{e}'\hat{e}/(n-K) = e'M_Xe/(n-K)$$

is an unbiased estimator of σ^2 . Consider the *t*-statistic

$$T_{k} = \frac{\widehat{\beta}_{k} - \beta_{k}}{\sqrt{s^{2} \left[(X'X)^{-1} \right]_{kk}}}$$

$$= \frac{\widehat{\beta}_{k} - \beta_{k}}{\sqrt{\sigma^{2} \left[(X'X)^{-1} \right]_{kk}}} \cdot \frac{\sqrt{\sigma^{2}}}{\sqrt{s^{2}}}$$

$$= \frac{\left(\widehat{\beta}_{k} - \beta_{k} \right) / \sqrt{\sigma^{2} \left[(X'X)^{-1} \right]_{kk}}}{\sqrt{\frac{e'}{\sigma} M_{X} \frac{e}{\sigma} / (n - K)}}.$$

The numerator follows a standard normal, and the denominator follows $\frac{1}{n-K}\chi^2$ (n-K). Moreover, the numerator and the denominator are statistically independent (Basu's theorem). As a result, we conclude $T_k \sim t$ (n-K). This finite sample distribution is crucial when conducting statistical inference.

3.2.3 Mean and Variance

Now we relax the normality assumption and statistical independence. Instead, we represent the regression model as $y_i = x_i'\beta + e_i$ and

$$E[e|X] = 0$$

$$var[e|X] = \sigma^2 I_n.$$

where the first condition is the *mean independence* assumption, and the second condition is the *homoskedasticity* assumption. These assumptions are about the first and second *moments* of e_i conditional on x_i . Unlike the normality assumption, they do not restrict the *distribution* of e_i .

• Unbiasedness:

$$E\left[\widehat{\beta}|X\right] = E\left[\left(X'X\right)^{-1}XY|X\right] = E\left[\left(X'X\right)^{-1}X\left(X'\beta + e\right)|X\right] = \beta.$$

Unbiasedness does not rely on homoskedasticity.

• Variance:

$$\operatorname{var}(\widehat{\beta}|X) = E\left[\left(\widehat{\beta} - E\widehat{\beta}\right)\left(\widehat{\beta} - E\widehat{\beta}\right)'|X\right]$$

$$= E\left[\left(\widehat{\beta} - \beta\right)\left(\widehat{\beta} - \beta\right)'|X\right]$$

$$= E\left[\left(X'X\right)^{-1}X'ee'X\left(X'X\right)^{-1}|X\right]$$

$$= \left(X'X\right)^{-1}X'E\left[ee'|X\right]X\left(X'X\right)^{-1}$$

$$= \left(X'X\right)^{-1}X'\left(\sigma^{2}I_{n}\right)X\left(X'X\right)^{-1}$$

$$= \sigma^{2}\left(X'X\right)^{-1}.$$

Homoskedasticity is essential in this derivation.

Example (Heteroskedasticity) If $e_i = x_i u_i$, where x_i is a scalar random variable, u_i is independent of x_i , $E[u_i] = 0$ and $E[u_i^2] = \sigma^2$. Then $E[e_i|x_i] = 0$ but $E[e_i^2|x_i] = \sigma^2 x_i^2$ is a function of x_i . We say e_i^2 is a heteroskedastic error.

3.2.4 Gauss-Markov Theorem

Gauss-Markov theorem justifies the OLS estimator as the efficient estimator among all linear unbiased ones. *Efficient* here means that it enjoys the smallest variance in a family of estimators.

There are numerous linearly unbiased estimators. For example, $(Z'X)^{-1}Z'y$ for $z_i = x_i^2$ is unbiased because $E\left[(Z'X)^{-1}Z'y\right] = E\left[(Z'X)^{-1}Z'(X\beta + e)\right] = \beta$.

Let $\tilde{\beta} = A'y$ be a generic linear estimator, where A is any $n \times K$ functions of X. As

$$E[A'y|X] = E[A'(X\beta + e)|X] = A'X\beta.$$

So the linearity and unbiasedness of $\tilde{\beta}$ implies $A'X = I_n$. Moreover, the variance

$$\operatorname{var}\left(A'y|X\right) = E\left[\left(A'y - \beta\right)\left(A'y - \beta\right)'|X\right] = E\left[A'ee'A|X\right] = \sigma^2A'A.$$

Let
$$C = A - X (X'X)^{-1}$$
.

$$A'A - (X'X)^{-1} = (C + X(X'X)^{-1})'(C + X(X'X)^{-1}) - (X'X)^{-1}$$
$$= C'C + (X'X)^{-1}X'C + C'X(X'X)^{-1}$$
$$= C'C,$$

where the last equality follows as

$$(X'X)^{-1}X'C = (X'X)^{-1}X'(A - X(X'X)^{-1}) = (X'X)^{-1} - (X'X)^{-1} = 0.$$

Therefore $A'A - (X'X)^{-1}$ is a positive semi-definite matrix. The variance of any $\tilde{\beta}$ is no smaller than the OLS estimator $\hat{\beta}$.

Homoskedasticity is a restrictive assumption. Under homoskedasticity, $\operatorname{var}\left(\widehat{\beta}\right) = \sigma^2\left(X'X\right)^{-1}$. Popular estimator of σ^2 is the sample mean of the residuals $\widehat{\sigma}^2 = \frac{1}{n}\widehat{e}'\widehat{e}$ or the unbiased one $s^2 = \frac{1}{n-K}\widehat{e}'\widehat{e}$. Under heteroskedasticity, Gauss-Markov theorem does not apply.

Zhentao Shi. September 4, 2020