# Welcome!

#### COMP 546 Computational Perception

Prof: Michael Langer

See public web page for this course:

http://www.cim.mcgill.ca/~langer/546.html

#### What do you know about visual perception?

- optics (glasses)
- color (color blindness)
- binocular depth perception (3D cinema)
- perspective (art)

- ....

#### What do you know about auditory perception?

- sound (waves)
- music (tone related to frequency)
- voice (automatic speech recognition)
- hearing aids (external vs. cochlear implants)

# Perception and Visual Illusions





# Sensation and Perception

physical sensory sense stimulus organ

light (optics) eye vision (seeing) sound (acoustics) ear audition (hearing)

pressure (mechanics)

chemistry

mouth, nose

skin

olfaction (taste, smell)

haptics (touch)

<sup>... +</sup> proprioception, balance, pain, temperature, nausea,....

#### Perception is...

... knowing what is where

(by seeing, hearing, touching, smelling ....)

#### Perception is...

... knowing what is where

(by seeing, hearing, touching, smelling ....)

... a process

#### Perception is a *process*.



### Philosophical Problems in Perception

physical environment



perceived environment

Example: Vision

physical objects

- 3D shape
- 3D position
- material

perceived objects

- 3D shape
- 3D position
- material

### Scientific Approaches to Perception

#### Neuroscience: Physiology, Anatomy, Biology

- Experiments measure individual or populations of neurons, or brain (imaging)

#### **Behavioral Psychology**

- experiments that measure performance in a task (detection and discrimination, recognition, attention, ...)

#### **Computational Modelling**

- computational neuroscience, cognitive science

As we will see, one often combines several of the above. Our emphasis will be on the last of these.

# Level of Analysis in Perception

high

- behavior (task)
- brain areas and pathways
- nerve cells and coding
- neuron mechanisms

#### Behavior: What is the task?

#### Vision

- Combine images from the two eyes to infer depth and 3D scene layout
- Estimate material and shape ("discounting the illuminant")
- Detect objects and boundaries
- Detect and recognize objects (faces, written characters, ...)
- .....

#### **Audition**

- Combine images from the two ears to infer direction of a sound source
- Estimate source (discount echos)
- Segregate sounds into distinct sources
- Detect and recognize speech sounds or other sounds (musical instruments)
- ....

# Brain Areas: functional specialization of cortex (surface)



# Brain Pathways





Vision

**Audition** 

# Nerve cell (neuron)



# Receptive field of single sensory cell in brain e.g. touch



# Neural Code: Model of Neuron Response



McCulloch-Pitts (1943)

# Single neuron Mechanism (activity = membrane potential)

Electrical potential difference (mV) across cell membrane



# Single neuron Mechanism

(Signalling between cells: the synapse)



Release rate of neurotransmitters depends on the membrane potential.

Neurotransmitters can be either excitatory (depolarizing) or inhibitory (hyperpolarizing).

pre-synaptic cell post-synaptic cell

# Mechanism: Spike (action potential)





Spike travels as an inpulse (wave) along the axon to a "terminal", which it is presynaptic to a neighboring cell.

http://www.youtube.com/
watch?v=ifD1YG07fB8

## Summary: Level of Analysis in Perception

#### high

- behavior: what is the task? what problem is being solved? (how well does system solve some problem)
- brain areas and pathways (where in the brain do we recognize faces?)
- neural coding
   (what is a sensory cell's receptive field? How to model responses?)
- neural mechanisms
   (membranes, synapses, spikes)

### Analogy\*: Levels of Analysis in Computer Science



- problem specification (input and output)
- algorithms
- programs in a high level language
- machine and assembly language
- gates, circuits
- transistors



### COMP 546 Public web page



#### Computational Perception **COMP 546** Winter 2018 Tues/Thurs 8:35-9:55 **ENGTR 1080**

Instructor: Professor Michael Langer

School of Computer Science

Office: **ENGMC 329** Tel: 514-398-3740

lEmail: langer [at] cim.mcgill.ca

Office Hours: Tues and Thurs 10 AM -12 PM or by appointment

Teaching Assistant (T.A.) TBD

Email: TBD [@] mail.mcgill.ca

Office: TBD

Office Hours: by appointment

#### Announcements

- Winter 2017 lecture notes in one file
- Please check mycourses for Announcements, if you are not subscribed.
- The yellow notes and slides below are from Winter 2017. I will update them gradually during the Winter 2018 semester.

#### Resources

- Matlab tutorials
- Official Course Outline

#### LECTURE SCHEDULE

0. introduction (slides) (notes) intro, course outline, origin of eyes and spatial vision Exercises, Exams

### Course Overview (by lecture)

- Visual image formation (1-3)
  - geometry: 3D scene to 2D image
  - parallax & binocular disparity
  - focus and blur
  - color
- Early vision (4-7)
  - image coding in the retina
  - image coding in the primary visual cortex

## Course Overview (by lecture)

- mid and high level vision (8-10)
  - attention
  - perceptual organization
  - object recognition
- 3D visual perception (11-13)
  - depth cues
- Cue combinations (14-16)
  - maximum likelihood and Bayesian models

## Course Overview (by lecture)

- Linear system theory: frequency analysis (17,18)
  - Fourier transform, filtering

- Auditory image formation (19,20)
  - sound waves & head related effects
- 3D audition (21-23)
  - spatial hearing

# **Unofficial Prerequisites**

- COMP 250
- multivariable Calculus (MATH 222)
- linear algebra (MATH 223)
  - vector spaces, linear operators, orthogonality, complex numbers
- probability
  - normal distributions, joint and conditional probabilities.
- waves and optics
  - PHYS 101/102

#### Evaluation

- Three Assignments (10% each)
  - A1 posted before last week of January
  - A2 posted in early February
  - A3 posted in late March
- Midterm Exam (20%)
  - in class on March 13 (Study Break is March 5-9)
- Final Exam (50%)

You can replace your midterm exam grade with your final exam grade, i.e. final exam would be 70%.

# Who are you? (65)

- B. A. (5)
- B.A.Sc. Cog. Sci. (5)
- B.Sc. Neuroscience (15)
- B.Sc. Comp. Sci. (10)
- M.Sc. Comp. Sci (20)
- miscellaneous (10)

- U1 & U2 (10)
- U3 (30)
- MSc (25)

#### Who am I?

- BSc at McGill in early 1980s (Math Major, CompSci Minor) (interest in AI, undergrad summer research in visual neuroscience lab)
- MSc in Computer Science at U of Toronto in late 1980s (topic: image coding and compression)
- PhD at McGill in early 1990s (topic: shading, shadows, and 3D shape perception)
- postdoc at NEC in NJ, USA in mid-1990s (3 years)
   (computer vision)
- postdoc at Max Planck Inst. in Germany in late 1990s (2 years) (human visual perception)
- professor here since 2000 (taught various versions of this course over 10x)

# Want to get involved in research?

#### Undergraduates:

- COMP 400 Project in Computer Science
- COMP 396 Undergraduate Research Project

These can be done in any semester (F, W, S).

#### Graduate students (M.Sc.):

- Project
- Thesis

See <a href="https://www.cim.mcgill.ca/~langer/resources-gradschool.html">www.cim.mcgill.ca/~langer/resources-gradschool.html</a>