Lectures 20 and 21 - Number Theory II

Summary

These lectures were on modular arithmetic

We solved the beer barrel problem by distinguishing between "threven", "throdd", and "thweird" integers.

We defined $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$, where $k \in \mathbb{Z}_n$ refers to the set $k = \{i \in \mathbb{Z} \mid i = j \cdot n + k\}$.

We defined addition, subtraction, multiplication, and, if possible, division in \mathbb{Z}_n .

We showed how to use the Euclidean Algorithm to find multiplicative inverses in \mathbb{Z}_n , and showed that every non-zero element of \mathbb{Z}_p has a multiplicative inverse if p is prime.

Exercises on Lectures 20 and 21

1. Billy and Bobby will get a prize if the dolls they knock down sum to exactly 50.

How many different combinations of dolls would get them the prize?

[Hint: The guy in the checkered suit is not a doll.]

- 2. Fill in addition and multiplication tables for \mathbb{Z}_{12} . List the elements with multiplicative inverses modulo 12.
- 3. $7 \cdot 5$ modulo 12.
- 4. Compute 2^{10} , 2^{100} , and 2^{1000} modulo 12.
- 5. Solve 5x = 7 modulo 12.
- 6. Fill in addition and multiplication tables for \mathbb{Z}_{13} . List the elements with multiplicative inverses modulo 13.
- 7. $7 \cdot 5$ modulo 13.
- 8. Compute 2^{10} , 2^{100} , and 2^{1000} modulo 13.
- 9. Solve 5x = 7 modulo 13.
- 10. Define a relation R on \mathbb{Z} by setting $(n, m) \in R$ if $3 \mid n m$. Show that R is an equivalence relation. Describe the equivalence classes.
- 11. Compute the multiplicative inverse of 13 modulo 1776.
- 12. Compute the multiplicative inverse of 1776 modulo 1999.
- 13. Solve $5x \equiv 7 \mod 1999$.
- 14. Solve $7x \equiv 5 \mod 1999$.
- 15. Solve $8x \equiv 25 \mod 1999$.
- 16. Solve $16x \equiv 10 \mod 1999$.