ЛЕКЦИЯ 6

ТЕОРЕМА О ПОЛНОТЕ ИСЧИСЛЕНИЯ ВЫСКАЗЫВАНИЙ

1. Формулировка теоремы. Вспомогательные леммы

Теорема о полноте исчисления высказываний будет доказана двумя способами. Первый способ проще для понимания, а второй — более универсальный (аналогичным способом будет доказана теорема о полноте исчисления предикатов).

Теорема 7 (О полноте исчисления высказываний) Если формула ϕ является тавтологией, то тогда ϕ — выводима.

Замечание Данная теорема очень ценна, так как она показывает, что введенная система аксиом полна, то есть с ее помощью можно вывести что угодно. *

Для доказательства теоремы о полноте понадобятся две вспомогательные леммы.

Лемма 3 Для дизъюнкции:

$$A, B \vdash A \lor B;$$

$$\neg A, B \vdash A \lor B;$$

$$A, \neg B \vdash A \lor B;$$

$$\neg A, \neg B \vdash \neg (A \lor B).$$

Для конъюнкции:

$$A, B \vdash A \land B;$$

 $\neg A, B \vdash \neg (A \land B);$
 $A, \neg B \vdash \neg (A \land B);$
 $\neg A, \neg B \vdash \neg (A \land B).$

Для импликации:

$$A, B \vdash A \to B;$$

$$\neg A, B \vdash A \to B;$$

$$A, \neg B \vdash \neg (A \to B);$$

$$\neg A, \neg B \vdash A \to B.$$

Для отрицания:

$$A \vdash \neg(\neg A);$$

$$\neg A \vdash \neg A.$$

Замечание Лемма 3 — это специфическое представление таблицы истинности для данных четырех связок.

Задача Доказать лемму 3. Почти все пункты следуют из аксиом очевидным образом.*

Необходимо напомнить обозначение:

$$p^a = \begin{cases} p, \ a = 1, \\ \neg p, \ a = 0. \end{cases}$$

Обобщим лемму 3 на следующую лемму, для которой первая лемма будет базой индукции:

Лемма 4 Пусть ϕ — это формула, зависящая от p_1, \dots, p_n . Тогда верно следующее:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \phi^{\phi(a_1, \dots, a_n)}.$$

Поясним условие леммы 4 примером:

Пример 19 Пусть:

$$\phi = \neg p \land (q \lor r); \quad \phi(0, 1, 0) = 1; \quad \phi(1, 0, 0) = 0.$$

Лемма 4 утверждает следующее:

$$\neg p, q, \neg r \vdash \phi; p, \neg q, \neg r \vdash \neg \phi.$$

Перейдем к доказательству леммы 4:

Док-во: Доказательство будет вестись индукцией по построению формулы с использованием леммы 3 в качестве базы и в переходе.

 $\it Basa\ undykuuu: \phi$ содержит одну связку. Тогда это утверждение целиком сводится к лемме 3.

Переход: пусть $\phi = \psi_1 \wedge \psi_2$. Тогда можно записать:

$$\phi(a_1,\dots,a_n)=\psi_1(a_1,\dots,a_n)\wedge\psi_2(a_1,\dots,a_n).$$

Для подготовки к экзаменам пользуйтесь учебной литературой. Об обнаруженных неточностях и замечаниях просьба писать на pulsar@phystech. edu

Конспект не проходил проф. редактуру, создан студентами и, возможно, содержит смысловые ошибки. Следите за обновлениями на lectoriy.mipt.ru.

Применим предположение индукции, то есть:

$$p_1^{a_1},\dots,p_n^{a_n}\vdash \psi_1^{\psi_1(a_1,\dots,a_n)}.$$

Далее аналогично запишем:

$$p_1^{a_1},\dots,p_n^{a_n} \vdash \psi_2^{\psi_2(a_1,\dots,a_n)}.$$

Воспользуемся леммой 3:

$$\psi_1^{\psi_1(a_1,\dots,a_n)},\ \psi_2^{\psi_2(a_1,\dots,a_n)} \vdash \left(\psi_1 \land \psi_2\right)^{\psi_1(a_1,\dots,a_n) \land \psi_2(a_1,\dots,a_n)},$$

то есть записано, что:

$$\psi_1^b, \ \psi_2^c \vdash (\psi_1 \land \psi_2)^{b \land c}.$$

Аналогичные действия проделаем и для других связок. Имеются база и переход, значит, по индукции докажем лемму для всех формул.

2. Первое доказательство теоремы о полноте

Док-во: Основная идея доказательства: если ϕ — это тавтология, то она истинна на любом наборе переменных, то есть из любого набора таких литералов будет выводиться сама формула, а не ее отрицание. Иначе говоря, если ϕ — тавтология, то:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \phi.$$

Далее нужно доказать, что ϕ выводится и без всяких предположений. К примеру, пусть:

$$p, q, r \vdash \phi; \neg p, q, r \vdash \phi.$$

Используя правило разбора случаев, а также закон исключенного третьего, можно вывести, что $q, r \vdash \phi$, то есть:

$$\frac{p, \ q, \ r \vdash \phi \quad \neg p, \ q, \ r \vdash \phi}{q, \ r \vdash \phi}.$$

Аналогично можно показать, что:

$$\frac{p, \ q, \ r \vdash \phi \quad \neg p, \ q, \ r \vdash \phi}{\neg q, \ r \vdash \phi}.$$

Теперь применим данные рассуждения еще раз:

$$\frac{q, \ r \vdash \phi \quad \neg q, \ r \vdash \phi}{r \vdash \phi}; \quad \frac{q, \ r \vdash \phi \quad \neg q, \ r \vdash \phi}{\neg r \vdash \phi}.$$

Применив те же рассуждения в последний раз, получим:

$$\frac{r \vdash \phi \quad \neg r \vdash \phi}{\vdash \phi}.$$

Такое рассуждение можно провести не только для трех литералов, но и для любого количества. Значит, теорема о полноте доказана.

I Для подготовки к экзаменам пользуйтесь учебной литературой. Об обнаруженных неточностях и замечаниях просьба писать на pulsar@phystech. edu

3. Второе доказательство теоремы о полноте

Пусть имеется некоторое множество формул Γ . Тогда зададим для него следующие определения:

Определение 35: Множество Γ называется **совместным**, если существует набор значений, на котором все формулы из Γ — истинны.

Определение 36: Множество Γ называется **противоречивым**, если из Γ можно вывести противоречие, то есть $\Gamma \vdash \phi$ и $\Gamma \vdash \neg \phi$.

Теорема 8 Если множество Γ — совместно, то оно является непротиворечивым.

Теорема 9 Если множество Γ — непротиворечиво, то оно является совместным.

Утверждается, что две эти теоремы связаны с теоремой о корректности и теоремой о полноте. Поясним далее, как именно они связаны.

Из теоремы 8 следует теорема о корректности исчисления высказываний. Пусть ϕ не является тавтологией. Это означает, что $\{\neg\phi\}$ — совместно. Тогда по теореме 8 $\{\neg\phi\}$ — непротиворечиво. Следовательно, ϕ — невыводима, так как иначе было бы так:

$$\{\neg\phi\} \vdash \phi; \quad \{\neg\phi\} \vdash \neg\phi.$$

Из теоремы 9 следует теорема о полноте исчисления высказываний (теорема 7). Если ϕ — тавтология, то тогда $\{\neg\phi\}$ — несовместно. Взяв контрапозицию, получим, что $\{\neg\phi\}$ — противоречиво. Тогда по аксиоме 10 выводимо двойное отрицание ϕ . Окончательно получим, что ϕ — выводимо, что следует из закона снятия двойного отрицания.

Сформулируем и докажем вспомогательное утверждение:

Утверждение 4 Если все элементы Γ — истинны на некотором наборе, при этом $\Gamma \vdash A$, то тогда A — тоже истинно на данном наборе.

Док-во: Это утверждение следует из modus ponens:

$$A(a) = 1, (A \rightarrow B)(a) = 1 \Rightarrow B(a) = 1.$$

В данных рассуждениях также используется таблица истинности для импликации. Дальнейшее доказательство ведется по индукции.

Докажем теперь теорему ??:

Док-во: Доказательство данной теоремы следует из утверждения 4. Если $\Gamma \vdash \phi$ и $\Gamma \vdash \neg \phi$, то ϕ и $\neg \phi$ — одновременно верны на том наборе, на котором истинны все формулы из Γ . Так быть не может, следовательно, Γ — непротиворечиво.

Определение 37: Непротиворечивое множество Δ называется **полным**, если при всех ϕ выполнено либо $\Delta \vdash \phi$, либо $\Delta \vdash \neg \phi$.

Теперь можно перейти к доказательству теоремы 9:

. Для подготовки к экзаменам пользуйтесь учебной литературой. Об обнаруженных неточностях и замечаниях просьба писать на pulsar@phystech. edu

Конспект не проходил проф. редактуру, создан студентами и, возможно, содержит смысловые ошибки. Следите за обновлениями на lectoriy.mipt.ru.

Док-во: План доказательства:

- 1. Расширим непротиворечивое множество Γ до непротиворечивого и полного множества Δ .
- 2. Докажем, что непротиворечивое и полное множество Δ является совместным.

Для простоты будем считать, что переменных — счетное число. Значит, и всех формул — тоже счетное число, следовательно, их можно пронумеровать $(\phi_0, \phi_2, \phi_2, \dots)$.

Для продолжения доказательства теоремы 9 необходимо сформулировать и доказать следующую лемму:

Лемма 5 Если множество Γ — непротиворечиво, то хотя бы одно из двух множеств $\Gamma \cup \{\phi\}$ или $\Gamma \cup \{\neg \phi\}$ является непротиворечивым.

Док-во: Если оба множетсва являются противоречивыми, то:

$$\{\Gamma, \phi \vdash B, \neg B, \Gamma, \neg \phi \vdash B', \neg B'.$$

Следовательно, по аксиоме 9:

$$\neg B' \vdash (B' \rightarrow B).$$

Тогда по правилу разбора случаев и закону исключенного третьего получим:

$$\Gamma \vdash B, \neg B,$$

то есть Γ — противоречиво. Такого быть не может по предположению, значит, лемма доказана.

Продолжим доказательство теоремы 9. Пусть есть $\Gamma_0 = \Gamma$. Тогда зададим:

$$\Gamma_1 = \left\{ \begin{array}{l} \Gamma_0 \cup \{\phi_0\}, \quad \Gamma_0 \cup \{\phi_0\} - \text{непротиворечиво}, \\ \Gamma_0 \cup \{\neg \phi_0\}, \quad \Gamma_0 \cup \{\phi_0\} - \text{противоречиво}. \end{array} \right.$$

$$\Gamma_{i+1} = \begin{cases} \Gamma_i \cup \{\phi_i\}, & \Gamma_i \cup \{\phi_i\} - \text{непротиворечиво}, \\ \Gamma_i \cup \{\neg \phi_i\}, & \Gamma_i \cup \{\phi_i\} - \text{противоречиво}. \end{cases}$$

Возьмем в качестве Δ следующее:

$$\Delta = \bigcup_{i=0}^{\infty} \Gamma_i.$$

Нужно доказать, что такое Δ и является искомым.

Возникает вопрос: почему итоговое Δ получится непротиворечивым? Иначе в гипотетическом выводе противоречия должно было бы задействоваться конечное число формул. Тогда уже на каком-то этапе Γ_i все эти формулы бы возникли и были бы противоречивыми. Это приводит к противоречию, так как все Γ_i — непротиворечивы.

I Для подготовки к экзаменам пользуйтесь учебной литературой. Об обнаруженных неточностях и замечаниях просьба писать на pulsar@phystech. edu

Осталось доказать, что Δ — совместно. Если $\Delta \vdash p$, то p=1. Если $\Delta \vdash \neg p$, то p=0. Так будет для всех переменных (по правилу построения выполняющего набора, то есть такого набора, для которого все формулы из Γ — истинны).

Нужно показать, что все формулы из Δ на данном наборе истинны. Это верно, так как иначе если ϕ , принадлежащая Δ , была бы ложна, то было бы так:

$$\left\{ \begin{array}{l} \Delta \vdash \phi, \text{ так как } \phi \in \Delta, \\ \Delta \vdash \neg \phi, \text{ по лемме } 2. \end{array} \right.$$

Следовательно, Δ — противоречива, а это не так. Значит, ϕ из Δ — истинны на данном наборе. Тогда получается, что Δ — совместна, что и требовалось доказать.

4. Теорема о компактности

Теорема 10 (О компактности) Пусть Γ — это бесконечное множество формул. Пусть любое конечное подмножество Γ является совместным. Тогда всё Γ — совместно.

Док-во: Пусть Γ — несовместно. Тогда Γ — противоречиво. Значит, некоторое конечное подмножество $\Gamma' \subset \Gamma$ является противоречивым. Следовательно, Γ' — несовместно, что противоречит условию теоремы.