PROVA OPCIONAL DE TERMODINÂMICA

Prof. Frederico W. Tavares

1) (40 Pontos) Uma corrente de 200 lbm/s a 10 psia e 177 °F (corrente 1) passa por um evaporador e depois por um compressor (com eficiência de 80%) de forma a produzir uma corrente 3 a 20 psia 500 °F. Encontre as propriedades termodinâmicas (T, P, H e S) da corrente 2 e calcule as taxas de calor e trabalho (em Btu/s) envolvidas no processo.

ABS PRESS PSIA		SAT	SAT	TEMPERATURE,		*	***		42.0	500
(SAT TEMP)		WATER	SAT STEAM	200	250	300	350	400	450	500
(101.74)	VHS	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	392.5 1077.5 1150.2 2.0509	422.4 1094.7 1172.9 2.0841	452.3 1112.0 1195.7 2.1152	482.1 1129.5 1218.7 2.1445	511.9 1147.1 1241.8 2.1722	541.7 1164.9 1265.1 2.1985	571.5 1182.8 1288.6 2.2237
(162.24)	V HU	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9064	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664	102.2 1146.7 1241.3 1.9943	108.2 1164.5 1264.7 2.0208	114.2 1182.6 1288.2 2.0460
10 (193.21)	V U H S	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892	51.03 1146.1 1240.6 1.9173	54.04 1164.1 1264.1 1.9439	57.04 1182.2 1287.8 1.9692
14.696 (212.00)	VHS	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460	34.67 1145.7 1239.9 1.8743	36.72 1163.7 1263.6 1.9010	38.77 1181.9 1287.4 1.9266
15 (213.03)	V H S	0.0167 181.16 181.21 0.3137	26.290 1077.9 1150.9 1.7552		27.84 1091.4 1168.7 1.7809	29.90 1109.5 1192.5 1.8134	31.94 1127.6 1216.2 1.8436	33.96 1145.6 1239.9 1.8720	35.98 1163.7 1263.6 1.8988	37.98 1181.9 1287.3 1.9242
20 (227.96)	V U H S	0.0168 196.21 196.27 0.3358	20.087 1082.0 1156.3 1.7320		20.79 1090.2 1167.1 1.7475	22.36 1108.6 1191.4 1.7806	23.90 1126.9 1215.4 1.8111	25.43 1145.1 1239.2 1.8397	26.95 1163.3 1263.0 1.8666	28.46 1181.6 1286.9 1.8921

- 2) (30 Pontos) O enchimento rápido de um tanque pode ser considerado como um processo adiabático. Supondo que o tanque se encontra vazio no início do processo e que as propriedades da corrente de alimentação não variam durante o enchimento, calcule a quantidade de massa alimentada a um tanque de 100 ft³. Dados: corrente de alimentação contém 5% (em peso) de liquido a 20 psia. (OBS: utilize a tabela de vapor).
- 3) (30 Ptos) Uma mistura contendo 25%, em mols, de A, 40% de B, 20% de polímero (que tem pressão de vapor praticamente zero) e o restante de nitrogênio (que é muito volátil e, portanto, não está presente na fase líquida) escoa numa tubulação industrial a 55 $^{\circ}$ C. Sabendo-se que a mistura na fase líquida se comporta como ideal e que as pressões de vapor dos componentes A e B são, respectivamente, $P_A^{SAT} = 3atm$ e $P_B^{SAT} = 4atm$, determine:
- a) a pressão da tubulação para que a corrente apresente 40% de vapor.
- b) Existe alguma condição de pressão em que a corrente apresenta apenas fase líquida ou apenas fase vapor? (Justifique de forma sucinta).

$$\Delta S_{n}^{VAP} = 8,0 + 1,897 \ln(T_{n})$$

$$\frac{\Delta H_{2}^{VAP}}{\Delta H_{1}^{VAP}} = \left(\frac{T_{2} - T_{C}}{T_{1} - T_{C}}\right)^{0,38}$$

$$dH = C_{p}dT + \left[V - T\left(\frac{\partial V}{\partial T}\right)_{p}\right]dP$$

$$\frac{d(mU)_{S}}{dt} = \sum_{j}^{entradas} \stackrel{\bullet}{m_{j}} (H_{j} + \frac{v_{j}^{2}}{2} + gz_{j}) - \sum_{i}^{saidas} \stackrel{\bullet}{m_{i}} (H_{i} + \frac{v_{i}^{2}}{2} + gz_{i}) + \stackrel{\bullet}{Q} + \stackrel{\bullet}{W}$$

$$v_{i}P = x_{i}\gamma_{i}P_{i}^{SAT}$$