HARMONICA v2.0 Design Specification

Poulami Das

ABSTRACT

To be written

1. REVISION HISTORY

Table 1: Revision History Record

Revision	Description	Made by	Date
1.0	Initial Logic entry	Poulami Das	Spr 2018

2. DETAILED DESIGN DESCRIPTION

This section comprises of a detailed description of all the major units that are contained in the datapath of our proposed design.

2.1 General Purpose Registers

The following sub sections describe the components that make up the general purpose register file. In order to easily simulation and synthesis this module, a set of compile time switches are used in addition to module parameters. The module parameters are described for each sub module as they are described in the following sections. The compile time switches used are enlisted in Table 2.

Table 2: Compile Time options

Switch Name	Description
DATA_WIDTH_IS_1 DATA_WIDTH_IS_32 DATA_WIDTH_IS_64 NUMBER_OF_REGISTERS_IS_32 NUMBER_OF_REGISTERS_IS_64 NUM_LANES_IS_16 NUMBER_OF_WARPS_IS_16	Register width is 1 Register width is 32 Register width is 64 32 registers per lane 64 registers per lane 16 lanes (8 default) 16 warps (8 default)

2.1.1 Register File

The register file is a parameterizable block of code whose parameters are listed in Table 3. It comprises of a single write port and 2 individual read ports. The reads are asynchronous. The diagrammatic representation of the register file is presented in Figure 1. The details of the input output ports for this module is given in Table 4. The register

address space numbering and reset values are described in Table 5. The test cases used to test this block are enlisted in Table 6. There are 18 testcases in total.

Table 3: Parameters for Register File

Parameter Name	Supported Values	Default
LOG2_NUM_REGS	4/5/6	4
DATA_WIDTH	32/64	32
NUM_REGS	16/32/64	16

Figure 1: Block Diagram of Register File

2.1.2 Register_Bank

This module contains an instance of a register file for each lane. The number of lanes can be configured to match the number of streaming processors they connect to. The parameters available in addition the register file parameters is described in Table 7. Figure 2 shows the block diagram of a register bank. The I/O description for this module is given in Table 8. On a write, data is written to the same address of each register file. For reads, the data is read out from each register file for the same address. The test cases used to verify this system are detailed in Table 9

2.1.3 Register_Block

This module contains an instance of a register bank per warp. The number of warps by default is 8. 16 warps can be supported using compile time switch. Figure 3 shows the block diagram of a register block. The I/O description

Figure 2: Block Diagram of Register Bank

Table 4: I/O Description for Register File

Table 6: Register File Test Cases and Description

Tuble 1. 10 Description for Register File		Tuble of Register The Test Suses and Description				
Name	Type	Width	Description	No.	Test Name	Description
clk	input	1	clock source	1	default_val_test_m_n	Checks the default
reset_n	input	1	Active low		m= 16, 32, 64	reset value
			synchronous reset		n= 32, 64	
read_en	input	2	01:raddr_0 valid	2	write_read_each_bit_m_n	Writes each register
			10:raddr_0 and		m=16, 32, 64	bit to 1, reads back
			raddr_1 valid		n=32,64	using different
			11:raddr_0 and			value of read_en
			raddr_1 valid	3	random_write_read_m_n	Write random data
write_en	input	1	waddr, wdata valid		m=16, 32, 64	to each register
raddr_0	input	LOG2_NUM_REGS	Read Address 0		n=32, 6	Reads back using
raddr_1	input	LOG2_NUM_REGS	Read Address 1			different read_en
waddr	input	LOG2_NUM_REGS	Write Address			
wdata	input	DATA_WIDTH	Write Data			
rdata_0	output	DATA_WIDTH	Read Data		Table 7: Parameters for	Register Bank
rdata_1	output	DATA_WIDTH	for raddr_0 Read Data	Para	meter Name Supported Val	ues Default Value
10444_1	output	<i>D</i> . 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	for raddr_1	NUN	I_LANES 8/16	8

Table 5: Address Space and Reset Values for Register File

NUM_REGS	Address Space	Reset Value
16	0x0 to 0x0F	0x0
32	0x0 to $0x1F$	0x0
64	0x0 to $0x3F$	0x0

for this module is given in Table 10. On a write, the register bank corresponding to the warp_id is chosen and data is written to the same address of each register file in the particular register bank. For reads, the data is read out from each register file for the same address from the bank selected by the warp_id. The test cases used to verify this system are

detailed in Table 11

Figure 3: Block Diagram of Register Block

Table 8: I/O Description for Register Bank

Name	Type	Width	Description
clk	input	1	clock source
reset_n	input	1	Active low synchronous reset
read_en_0	input	NUM_LANES	Read from raddr_0
read_en_1	input	NUM_LANES	Read from raddr_1
write_en	input	NUM_LANES	waddr and wdata valid
raddr_0	input	LOG2_NUM_REGS	Read Address 0 for all lanes
raddr_1	input	LOG2_NUM_REGS	Read Address 1 for all lanes
waddr	input	LOG2_NUM_REGS	Write Address for all lanes
wdata_m	input	DATA_WIDTH	Write Data for lane 'm'
rdata_0_m	output	DATA_WIDTH	Read Data for raddr_0
rdata_1_m	output	DATA_WIDTH	Read Data for raddr_1

 $m = 0, 1, 2 ... (NUM_LANES-1)$

Table 9: Register Bank Test Cases and Description

		<u> </u>
No. Test Nam	e	Description
1 write_rea i= 8, 16 j= 16, 32, k= 32, 64		Writes random data to same register on each lane Read back through different read ports

i is parameter for NUM_LANES

j is parameter for NUM_REGS

k is parameter for DATA_WIDTH

2.2 Predicate Register Block

The structure of this module is similar to that of the general purpose register block, except that the DATA_WIDTH is 1. The hardware implementation involves instantiating a general purpose register block and overriding the DATA_WIDTH parameters for the module and its sub modules. The test cases used to verify the system are enlisted in Table 12.

Table 10: I/O Description for Register Block

Name	Type	Width	Description
clk	input	1	clock source
reset_n	input	1	Active low synchronous reset
read_en_0	input	NUM_LANES	Read from raddr_0
read_en_1	input	NUM_LANES	Read from raddr_1
write_en	input	NUM_LANES	waddr and wdata valid
raddr_0	input	LOG2_NUM_REGS	Read address 0 for all lanes
raddr_1	input	LOG2_NUM_REGS	Read address 1 for all lanes
waddr	input	LOG2_NUM_REGS	Write address for all lanes
wdata_m	input	DATA_WIDTH	Write data for lane 'm'
warp_selector	input	3: For 8 warps	Register bank selector
•	•	4: For 16 warps	-
rdata_0_m	output	DATA_WIDTH	Lane m read data from raddr_0
rdata_1_m	output	DATA_WIDTH	Lane m read data from raddr_1

 $m = 0, 1, 2 ... (NUM_LANES-1)$

Table 11: Register Block Test Cases and Description

No.	Test Name	Description
1	warp_m_write_read_all_lanes_i_j_k m= 8, 16 i= 8, 16	Writes random data to same register on each lane of a register bank
	j= 16, 32, 64 k= 32, 64	Read back through different read ports

m is 8 or 16 (number of warps) i is parameter for NUM_LANES j is parameter for NUM_REGS k is parameter for DATA_WIDTH

Table 12: Predicate Register Block Tests and Description

No.	Test Name	Description
1	warp_m_write_read_all_lanes_i_j m= 8, 16 i= 8, 16 j= 16, 32, 64	Writes random data to same register on each lane of a register bank Read back through different read ports

m is 8 or 16 (number of warps) i is parameter for NUM_LANES j is parameter for NUM_REGS k is parameter for DATA_WIDTH