It follows that the equivalence class of an element $g \in G$ is the coset gH (resp. Hg). Since L_g is a bijection between H and gH, the cosets gH all have the same cardinality. The map $L_{g^{-1}} \circ R_g$ is a bijection between the left coset gH and the right coset Hg, so they also have the same cardinality. Since the distinct cosets gH form a partition of G, we obtain the following fact:

Proposition 2.8. (Lagrange) For any finite group G and any subgroup H of G, the order h of H divides the order n of G.

Definition 2.6. Given a finite group G and a subgroup H of G, if n = |G| and h = |H|, then the ratio n/h is denoted by (G : H) and is called the *index of* H *in* G.

The index (G:H) is the number of left (and right) cosets of H in G. Proposition 2.8 can be stated as

$$|G| = (G:H)|H|.$$

The set of left cosets of H in G (which, in general, is **not** a group) is denoted G/H. The "points" of G/H are obtained by "collapsing" all the elements in a coset into a single element.

Example 2.3.

1. Let n be any positive integer, and consider the subgroup $n\mathbb{Z}$ of \mathbb{Z} (under addition). The coset of 0 is the set $\{0\}$, and the coset of any nonzero integer $m \in \mathbb{Z}$ is

$$m + n\mathbb{Z} = \{m + nk \mid k \in \mathbb{Z}\}.$$

By dividing m by n, we have m = nq + r for some unique r such that $0 \le r \le n - 1$. But then we see that r is the smallest positive element of the coset $m + n\mathbb{Z}$. This implies that there is a bijection between the cosets of the subgroup $n\mathbb{Z}$ of \mathbb{Z} and the set of residues $\{0, 1, \ldots, n - 1\}$ modulo n, or equivalently a bijection with $\mathbb{Z}/n\mathbb{Z}$.

2. The cosets of $SL(n,\mathbb{R})$ in $GL(n,\mathbb{R})$ are the sets of matrices

$$A\operatorname{SL}(n,\mathbb{R}) = \{AB \mid B \in \operatorname{SL}(n,\mathbb{R})\}, A \in \operatorname{GL}(n,\mathbb{R}).$$

Since A is invertible, $\det(A) \neq 0$, and we can write $A = (\det(A))^{1/n}((\det(A))^{-1/n}A)$ if $\det(A) > 0$ and $A = (-\det(A))^{1/n}((-\det(A))^{-1/n}A)$ if $\det(A) < 0$. But we have $(\det(A))^{-1/n}A \in \mathbf{SL}(n,\mathbb{R})$ if $\det(A) > 0$ and $-(-\det(A))^{-1/n}A \in \mathbf{SL}(n,\mathbb{R})$ if $\det(A) < 0$, so the coset $A \mathbf{SL}(n,\mathbb{R})$ contains the matrix

$$(\det(A))^{1/n}I_n$$
 if $\det(A) > 0$, $-(-\det(A))^{1/n}I_n$ if $\det(A) < 0$.

It follows that there is a bijection between the cosets of $\mathbf{SL}(n,\mathbb{R})$ in $\mathbf{GL}(n,\mathbb{R})$ and \mathbb{R} .