a) dense i	$\mathbf{n} \mathbb{R}^2$
------------	---------------------------

b) connected

c) separable

d) compact

1

2)
$$\frac{\mathbb{Z}_2[x]}{(x^3+x^2+1)}$$
 is

a) a field having 8 elements

c) an infinite field

b) a field having 9 elements

d) NOT a field

3) The number of elements in a principal ideal domain can be

b) 25

c) 35

d) 36

4) Let F, G and H be pairwise independent events such that $P(F) = P(G) = P(H) = \frac{1}{3}$ and $(F \cap G \cap H) = \frac{1}{4}$. Then the probability that at least one event among F, G and H occurs is

a)
$$\frac{11}{12}$$

b) $\frac{7}{12}$

c) $\frac{5}{12}$

d) $\frac{3}{4}$

5) Let X be a random variable such that $E(X^2) = E(X) = 1$. Then $E(X^{100}) =$

b) 1

c) 2^{100}

d) $2^{100} + 1$

6) For which of the following distributions, the weak law of large numbers does NOT hold?

a) Normal

b) Gamma

c) Beta

d) Cauchy

7) If $D \equiv \frac{d}{dx}$ then the value of $\frac{1}{xD+1}(x^{-1})$

a)
$$\log x$$

b) $\frac{\log x}{x}$ c) $\frac{\log x}{x}$

d) $\frac{\log x}{x^3}$

8) The equation $(\alpha xy^3 + y\cos x)dx + (x^2y^2 + \beta\sin x)dy = 0$ is exact for

a)
$$\alpha = \frac{3}{2}, \beta = 1$$

b)
$$\alpha = 1, \beta = \frac{3}{2}$$

c)
$$\alpha = \frac{2}{3}, \beta = 1$$

a)
$$\alpha = \frac{3}{2}, \beta = 1$$
 b) $\alpha = 1, \beta = \frac{3}{2}$ c) $\alpha = \frac{2}{3}, \beta = 1$ d) $\alpha = 1, \beta = \frac{2}{3}$

9) If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ i & \frac{-1+i\sqrt{3}}{2} & 0 \\ 0 & 1+2i & \frac{-1-i\sqrt{3}}{2} \end{pmatrix}$$
 then the trace of A^{102} is

10) Which of the following matrices are NOT diagonalizable?

a)
$$\begin{pmatrix} 11 \\ 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$$

a)
$$\begin{pmatrix} 11 \\ 1 \\ 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

11) Let *V* be the column space of the matrix $A = \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}$. Then the orthogonal projection

of
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 on V is

a)
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

a)
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

12) Let $\sum_{n=-\infty}^{\infty} a_n (z+1)^n$ be the Laurent series expansion of $f(z) = \sin(\frac{z}{z+1})$. Then $a_{-2} =$

d)
$$\frac{-1}{2} \sin(1)$$