USTHB, FEI, Département d'Informatique

LMD Master 2 "Systèmes Informatiques Intelligents" 2020/2021

Module "Programmation Par Contraintes"

Travaux Dirigés

Série numéro 2 : Résolution d'un CSP

Exercice 1

- 1) Donner une représentation graphique du CSP P=(X,D,C) suivant :
 - $X = \{X_1, X_2, X_3, X_4, X_5\}$
 - $D(X_1)=\{1,2,5,7\}$
 - $D(X_2)=\{2,3,8,12\}$
 - $D(X_3)=\{5,6,7,8\}$
 - $D(X_4)=\{1,2,3,4,5\}$
 - $D(X_5) = \{1,2,3,4,5,6,7\}$
 - $C = \{c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8\}$ avec
 - \circ $c_1: X_1=X_4$
 - \circ $c_2: X_5 \leq X_4$
 - \circ $c_3: X_2 \ge X_3$
 - \circ $c_4: X_2 \neq X_5$
 - \circ $c_5: X_1 < X_3$
 - \circ $c_6: X_3 > X_4$
 - \circ $c_7: 3*X_5 \ge X_3$
 - \circ $c_8: 2*X_5=X_3$
- 2) En utilisant la procédure de propagation incrémentale de contraintes dans l'ordre croissant des indices des contraintes (c₁, c₂, ...), rendre ce CSP consistant d'arc (arc-consistant). A chaque étape de cette procédure donner la liste des valeurs supprimées, les contraintes à reposer.
- 3) Dérouler l'algorithme Look-Ahead sur le CSP P.

Exercice 2

Calculer la complexité du pire cas de l'algorithme de consistance d'arc AC3.

Exercice 3

Soit le CSP binaire discret à variables entières P=(X,D,C) suivant :

- $X = \{X_1, X_2, X_3, X_4, X_5, X_6\}$
- $D(X_1)=\{0,1,2,3,9,10,11,12\}$
- $D(X_2) = \{-2, -1\}$
- $D(X_3)=\{5,6,7\}$
- $D(X_4) = \{-11, -10, -9, -2, -1, 0\}$
- $D(X_5)=\{0,1,2,3\}$
- $D(X_6)=\{0,1,2\}$
- $C = \{c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8\}$ avec
 - \circ $c_1: X_1 = 2*X_4+3$
 - \circ $c_2: X_6 = X_1-2$
 - \circ $c_3: X_5 > X_2$
 - \circ $c_4: X_4+2 \ge X_6$
 - o $c_5: X_3 = X_5 + 4$
 - \circ $c_6: X_2 < X_6$
- 1) Donner une représentation graphique du CSP
- 2) Rendre le CSP arc-consistant. Donner les domaines arc-consistants obtenus
- 3) En partant des domaines rendus arc-consistants, trouver, si c'est possible, une solution de ce CSP par l'algorithme SRA dans l'ordre d'instanciation X_1 , X_2 , X_3 , X_4 , X_5 , X_6
 - Instancier les variables avec les valeurs choisies dans l'ordre croissant
 - Donner l'arbre de recherche de solution de l'algorithme sur ce problème
- 4) Même question en utilisant l'algorithme du forward-checking FC avec un ordonnancement dynamique des variables construit en choisissant à chaque étape la variable X_i pour laquelle le quotient $cardinalité(domaine(X_i))/cardinalité(contraintes(X_i))$ est le plus petit
- 5) Même question en utilisant l'algorithme Look_Ahead