

Ingeniería de Software I

Clase 4 - Diagrama de transición y estados - DTE

Ingeniería de software 2024 Fuente:

Técnicas de Especificación de Requerimientos

Estáticas

- Se describe el sistema a través de las entidades u objetos, sus atributos y sus relaciones con otros. No describe como las relaciones cambian con el tiempo.
- Cuando el tiempo no es un factor mayor en la operación del sistema, es una descripción útil y adecuada.
- Ejemplos: Referencia indirecta, Relaciones de recurrencia, Definición axiomática, Expresiones regulares, Abstracciones de datos, entre otras.

Técnicas de Especificación de Requerimientos

Dinámicas

- Se considera un sistema en función de los cambios que ocurren a lo largo del tiempo.
- Se considera que el sistema está en un estado particular hasta que un estímulo lo obliga a cambiar su estado.
- Ejemplos: Tablas de decisión, Diagramas de transición de estados, Tablas de transición de estados, Diagramas de persianas, Diagramas de transición extendidos, Redes de Petri, entre otras.

DTE

Máquinas de Estado Finito

 Describe al sistema como un conjunto de estados donde el sistema reacciona a ciertos eventos posibles (externos o internos).

$$f(Si, Cj) = Sk$$

Al estar en el estado Si, la ocurrencia de la condición Cj hace que el sistema

cambie al estado Sk.

Máquinas de Estado Finito

$$f(S1, 0) = S2$$

 $f(S1, 1) = S1$
 $f(S2, 0) = S2$
 $f(S2, 1) = S1$
 $f(S3, 0) = S1$
 $f(S3, 1) = S3$

Máquinas de Estado Finito

Máquinas de Estado Finito

$$f(A \triangleright) = B$$

$$f(B, \square) = A$$

$$f(B, \mathbf{n}) = C$$

$$f(C, \triangleright) = B$$

$$f(C, \square) = A$$

A: esperando

B: mostrando

C: pausa

Máquinas de Estado Finito

- Definición formal
 - Formalmente, un autómata finito (AF) puede ser descrito como una 5-tupla (S,Σ,T,s,A) donde:
 - \sim Σ es un alfabeto;
 - S un conjunto de estados;
 - T es la función de transición;
 - s es el estado inicial;
 - A es un conjunto de estados de aceptación o finales.

Representación en gráfico de persiana

Representación en máquina de estado finito

Máquinas de Estado Finito

Notación UML Diagrama de Transición y Estado (DTE)

Evento

Es un **suceso significativo** que debe tenerse en cuenta, que influye en el comportamiento y evolución del sistema.

Tiene lugar en un punto del tiempo y carece de duración respecto a la granularidad temporal del sistema.

No tiene sentido preguntarse por lo que sucede mientras está teniendo lugar el evento

Transición

Las transiciones se producen como consecuencia de eventos. Pueden o no tener un procesamiento asociado

- Evento: obligatorio
- Condición: opcional, depende del problema, puede haber transiciones sin condiciones
- Acción: opcional, puede haber transiciones sin acciones

Construcción de un DTE

- 1- Identificar los estados
- 2- Si hay un estado complejo se puede explotar
- 3- Identificar el estado inicial
- 4- Desde el estado inicial, se identifican los cambios de estado con flechas
- 5- Se analizan las condiciones y las acciones para pasar de un estado a otro
- 6- Se verifica la consistencia:
 - Se han definido todos los estados
 - Se pueden alcanzar todos los estados
 - Se pueden salir de todos los estados
 - En cada estado, el sistema responde a todas las condiciones posibles (normales y anormales)

Reloj Cronómetro

El reloj posee una pantalla y 4 botones

Funciones

- Inicialmente (al colocar la pila) visualiza la hora prefijada
- Visualizar la hora
- Visualizar la fecha
- Modificar Hora y Fecha
- Encender la Luz por 5 seg.
- Iniciar / Detener / Resetear Cronómetro
- Deja de funcionar al finalizarse la pila

1- Identificar los estados

- Visualizando hora
- Visualizando fecha
- Visualizando funciones cronometro
- Cronometrando
- Configurando hora y fecha

2- Identificar estados complejos

No es necesario

3- Estado inicial

- En este caso, el sistema inicia al colocarse la pila y pasaría
- al estado visualizando hora

4- Visualizando hora

- Se presiona B1 Visualiza la fecha
- Se presiona B2 Modificar la hora y fecha
- Se presiona B3 Visualiza el cronometro
- Se presiona B4 Enciende la luz

4- Visualizando fecha

- Estando en el estado Visualizando fecha, presionando B1 o B2 o B3 vuelve a visualizar la hora
- En Cualquier Momento se puede encender la luz con el botón B4

4- Configurando Hora y Fecha

- Se presiona B1 modifico el digito
- Se presiona B2 vuelve a visualizar la hora
- Se presiona B3 modifico el digito a modificar
 - Hora, minuto, segundo, día, mes
- Se presiona B4 enciende la luz

4- Continuar con todos los estados

Se presiona B3 / Pasar al siguiente digito

- 5- Se verifica la consistencia:
 - Se han definido todos los estados
 - Se pueden alcanzar todos los estados
 - Se pueden salir de todos los estados
 - En cada estado, el sistema responde a todas las condiciones posibles (normales y anormales)

Bibliografía

Libros Utilizados en la Teoría

- Pfleeger, Capítulo 4, Ingeniería de Software, Pearson-Prentice Hall 2002
- Sommerville Ian, Capítulo 5, Ingeniería de Software, Addison-Wesley 2011