2022 LG CNS Code Monster 예선 for 한동곤

시<u>험 규정</u> Python3 레퍼런스 컴파일 옵션

윱

2

3

0

2. 프로그래밍

○ 종료까지 00:13:32

🏖 프로그래밍 다시 풀 문제 🏲

문제 설명

당신은 소켓이 5개인 멀티탭 n 개에 소비전력이 k (W)인 전자제품을 연결해 사용하고 있습니다. 멀티탭과 전자제품은 항상 다음과 같이 연결되어 있습니다.

- 1번 멀티탭의 플러그는 항상 허용전력이 무한한 콘센트에 직 접 연결되어 있습니다.
- 1번 멀티탭을 제외한 멀티탭의 플러그는 다른 멀티탭 하나에 연결되어 있으며, 모든 멀티탭은 1번 멀티탭의 플러그가 연 결된 콘센트로부터 전기가 들어오도록 연결된 상태입니다.
- 한 멀티탭에 연결된 멀티탭과 전자제품 수의 합은 0 이상 5 이하입니다.

어느 날 당신은 멀티탭마다 허용전력이 있는 것을 알았습니다. 멀티탭에 연결된 다른 멀티탭과 전자제품의 소비전력 합이 허 용전력 이하여야 안전합니다.

당신은 모든 멀티탭의 허용전력을 지키도록 전자제품의 플러그 를 최소한으로 뽑으려 합니다. 단, 멀티탭을 연결하는 플러그는 뽑을 수 없으며 플러그를 뽑은 전자제품을 다른 멀티탭에 다시 연결할 수 없습니다.

다음은 전자제품의 소비전력 k = 300W 이고, 멀티탭과 전 자제품이 아래 그림과 같이 연결되어 있는 예시입니다.

위 그림에서 파란색 플러그는 멀티탭에 연결된 k (W)의 전자 제품의 플러그를 의미합니다.

각 멀티탭에 연결된 멀티탭과 전자제품들의 소비전력은 다음과 같습니다.

멀티 탭 번 호	허용전력	소비전 력	소비전력에 대한 설명
#1	2000W	3900W	3개의 전자제품과 2, 3번 멀티탭이 연결돼있습니다. 따라서, 소비전력은 300×3 + 1500 + 1500 = 3900W 입니다.
#2	1000W	1500W	2개의 전자제품과 4, 6번 멀티탭이 연결돼있습니다. 따라서, 소비전력은 300×2 + 300 + 600 = 1500W 입니다.
#3	3000W	1500W	0개의 전자제품과 5번 멀 티탭이 연결돼있습니다. 따 라서, 소비전력은 300×0 + 1500 = 1500W 입니 다.
#4	200W	300W	1개의 전자제품이 연결돼 있습니다. 따라서, 소비전 력은 300W 입니다.
#5	600W	1500W	5개의 전자제품이 연결돼 있습니다. 따라서, 소비전 력은 300×5 = 1500W 입 니다.
#6	500W	600W	2개의 전자제품이 연결돼 있습니다. 따라서, 소비전 력은 300×2 = 600W 입 니다.

3번 멀티탭을 제외한 모든 멀티탭이 소비전력이 허용전력보다 많으므로 안전하지 않습니다. 아래 그림과 같이 플러그 7개를 뽑으면 모든 멀티탭의 소비전력이 허용전력 이하입니다.

플러그를 뽑은 후, 각 멀티탭의 소비전력은 다음과 같으며, 모두 허용전력 이하임을 알 수 있습니다. 플러그 7개를 뽑으면서 모든 멀티탭의 허용전력을 지키는 다른 방법은 존재하지만, 7 개보다 적은 플러그를 뽑으면서 모든 멀티탭의 허용전력을 지키는 것은 불가능합니다.

멀티탭 번호	허용전력	소비전력	
#1	2000W	1800W	
#2	1000W	900W	
#3	3000W	600W	
#4	200W	OW	
#5	600W	600W	
#6	500W	300W	

전자제품 하나의 소비전력인 정수 k, 각 멀티탭들의 허용전력을 담은 1차원 정수 배열 limits 와 각 멀티탭이 가진 소켓의 연결 상태를 담은 2차원 정수 배열 sockets 가 매개변수로 주어집니다. 모든 멀티탭의 소비전력이 허용전력 이하가 되도록 뽑아야 할 전자제품의 플러그 수의 최솟값을 return 하도록 solution 함수를 완성해 주세요.

제한사항

- $1 \le k \le 1,000,000$
- 1 ≤ limits 의 길이 = n ≤ 10,000
 - 1 ≤ limits[i] ≤ 10,000,000
 - limits[i] 는 i+1 번 멀티탭의 허용전력을 나타 냅니다.
- sockets 의 길이 = n
 - o sockets[i] 의 길이 = 5
 - sockets[i][j] 는 [i+1] 번 멀티탭의 [j+1] 번째
 소켓의 연결 상태를 의미합니다.
 - \circ -1 \leq $sockets[i][j] <math>\leq$ n
 - o sockets[i][j] ≠ 1, sockets[i][j] ≠ i+1
 - 0인 경우 해당 소켓에 아무것도 연결되지 않음을 의미합니다.

- -1인 경우 해당 소켓에 소비전력이 k 인 전자제품의 플러그가 연결됨을 의미합니다.
- • 2 이상인 경우 해당 소켓에 sockets[i][j] 번 멀 티탭의 플러그가 연결됨을 의미합니다.
- 1번 멀티탭의 플러그는 허용전력이 무한한 콘센트에 직접 연결되어 있습니다.
- sockets 배열에서 2 이상 n 이하의 정수는 정확히 한 번씩 등장합니다.
- 모든 멀티탭은 1번 멀티탭의 플러그가 연결된 콘센트로부터 전기가 들어오도록 연결된 상태입니다.

입출력 예

k	limits	sockets	result
300	[2000, 1000, 3000, 200, 600, 500]	[[2, 3, -1, -1, -1], [4, 0, -1, -1, 6], [5, 0, 0, 0, 0], [-1, 0, 0, 0, 0], [-1, -1, -1, -1, -1], [-1, -1, 0, 0, 0]]	7
120	[1500, 300, 250, 359, 600]	[[2, 3, 4, 0, -1], [0, 0, 0, 0, 0, 0], [-1, -1, -1, 0, 0], [0, 0, 5, 0, 0], [-1, 0, 0, -1, -1]]	2

입출력 예 설명

입출력 예 #1

• 문제 예시와 같습니다.

입출력 예 #2

• 3번, 5번 멀티탭에 연결된 전자제품의 플러그를 각각 하나씩 뽑으면 됩니다.

따라서 2를 return 합니다.

제한시간 안내

• 각 테스트 케이스의 제한시간은 10초입니다.

```
Python3

def solution(k, limits, sockets):
    global answer
    answer = 0

def dfs(node):
    count = 0
    for type in sockets[node]:
    if type == 0:
        continue
```

```
count += 1
else :
    count += dfs(type-1)

limit = limits[node] // k
if count > limit:
    global answer
    answer += (count - limit)
```

실행 결과 실행 결과가 여기에 표시됩니다.

테스트 케이스 추가하기

내 답안

코드 초기화

코드 실행

코드 제출하기

:-(

화면 크기가 너무 작습니다.

브라우저 창을 최대로 키워주시고, 이미 최대라면 글꼴 크기를 줄여주세요. 시험 응시에 필요한 최소 화면 너비는 가로 992px 입니다.