Topologie et calcul différentiel

Calcul différentiel

Question 1/23

Lien entre extremum local et les différentielles $\mathrm{de}\ f\in\mathcal{C}^2$

Réponse 1/23

Si $df_a = 0$ et d^2f_a est définie positive alors f admet un minimum local strict en a

Question 2/23

Uniforme continuité relative

Réponse 2/23

Soit
$$f: I \times U \to \mathbb{R}$$
, $I = [a, b]$ est continue alors pour tout $\varepsilon > 0$ et $x \in U$, il existe $\delta > 0$ tel que si $||x - x'|| < \delta$ alors $||f(t, x) - f(t, x')|| < \varepsilon$ pour tout $t \in I$ Ainsi, $x \mapsto \int_{a}^{b} f(t, x) \, \mathrm{d}t$ est continue

Question 3/23

$$f \in \mathcal{L}(E, F)$$

$$\mathrm{d}f_a$$

Réponse 3/23

Question 4/23

Différentielle d'une fonction bilinéaire B(f,g)

Réponse 4/23

Si
$$f$$
 et g sont différentiables en a alors $B(f,g)$
l'est et $dB(f,g)_a = B(df_a,g) + B(f,dg_a)$
Cas particulier du produit :
 $d(fg)_a = df_ag + fdg_a$

Question 5/23

Théorème de Hahn-Banach

Réponse 5/23

Si
$$v \in F$$
, $v \neq 0$ alors il existe $\lambda: F \to \mathbb{R}$ forme linéaire continue telle que $\lambda(v) = 0$

Question 6/23

Hessienne de f en a

Réponse 6/23

Si
$$f$$
 est C^2 , sa Hessienne en a est $\left(d^2 f(e_i, e_j)\right)_{(i,j) \in [\![1,n]\!]^2}$

Question 7/23

CNS pour
$$f \in \mathcal{C}^1$$
 en dimension finie et $f: U \to \mathbb{R}$

Réponse 7/23

Toutes les dérivées partielles $\frac{\partial f}{\partial x_k}$ existent et sont continues

Question 8/23

Propriétés de
$$\int_a^b \mathrm{d}_E f_{(t,x)} \, \mathrm{d}t$$

Réponse 8/23

Si
$$f: I \times U \to \mathbb{R}$$
, $I = [a, b]$ est continue et $d_E f: I \times U \to \mathcal{L}(E, F)$ existe et est continue alors $g: x \mapsto \int_a^b f(t, x) dt$ est \mathcal{C}^1 et $dg_x = \int_a^b d_E f_{(t,x)} dt$

Question 9/23

Différentielle en un extremum local

Réponse 9/23

Si f admet un extremum local en a alors $\mathrm{d} f_a = 0$

Question 10/23

Comportement de
$$f:[a,b] \to F$$
 si d $f_x = 0$
pour tout $x \in]a,b[$

Réponse 10/23

f est constante

Question 11/23

Théorème de Schwarz

Réponse 11/23

Si $f: U \to F$ est \mathcal{C}^2 alors pour tout $a \in U$, la forme bilinéaire $d^2 f_a$ est symétrique En dimesion finie, on obtient $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$

Question 12/23

Isomorphisme entre $\mathcal{L}(E, \mathcal{L}(E, F))$ et $\mathcal{L}^2(E, F)$

Réponse 12/23

$$\mathcal{L}(E, \mathcal{L}(E, F)) \longrightarrow \mathcal{L}^{2}(E, F)$$

$$f \longmapsto ((u, v) \mapsto f(v)(w))$$

$$(v \mapsto B(v, \cdot)) \longleftrightarrow B$$

Question 13/23

Gradient de f en a

Réponse 13/23

L'unique vecteur
$$\nabla f(a)$$
 tel que $\mathrm{d} f_a(h) = \langle \nabla f(a), h \rangle$

Question 14/23

Réponse 14/23

Adhérence des fonctions en escalier sur [a, b] $\left(R([a, b], F), \|\cdot\|_{[a, b]}\right)$ est un espace de Banach

Question 15/23

Expression de f par rapport à sa différentielle

Réponse 15/23

$$f(y) = f(x) + \int_0^1 \mathrm{d}f_{x+t(y-x)}(y-x) \,\mathrm{d}t$$
Plus généralement, si γ est un chemin \mathcal{C}^1 de x
à $y, f(y) = \int_0^1 \mathrm{d}f_{\gamma(t)}(\gamma'(t)) \,\mathrm{d}t$

Question 16/23

Formule de Taylor

Réponse 16/23

Si
$$f$$
 est C^n alors
$$f(a+h) = \sum_{k=0}^{n-1} \left(\frac{\mathrm{d}^k f_a(h, \dots, h)}{k!} \right)$$

$$+ \int_0^1 \frac{(1-t)^{n-1}}{(n-1)!} \mathrm{d}^n f_{a+th}(h, \dots, h) \, \mathrm{d}t$$

$$f(a+h) = \sum_{k=0}^{n-1} \left(\frac{\mathrm{d}^k f_a(h, \cdot \cdot \cdot k!)}{k!} \right)$$

Question 17/23

f est différentiable en $a \in U$

Réponse 17/23

$$\exists g \in \mathcal{L}(E, F)$$
$$f(a+h) = f(a) + g(h) + \underset{\|h\| \to 0}{\circ} (\|h\|)$$

Question 18/23

Caractère \mathcal{C}^1 d'une intégrale

Réponse 18/23

Si
$$f[a,b] \to F$$
 est continue alors $g: x \mapsto \int_a^x f$
est \mathcal{C}^1 sur $[a,b]$

Question 19/23

Différentielle d'une combinaison linéaire $f + \lambda g$

Réponse 19/23

Si
$$f$$
 et g sont différentiables en a alors $f + \lambda g$
l'est et $d(f + \lambda g)_a = df_a + \lambda dg_a$

Question 20/23

Différentielle d'un couple (f_1, f_2)

Réponse 20/23

 f_1 et f_2 sont différentiables en a si et seulement si (f_1, f_2) le sont et $d(f_1, f_2)_a = (d(f_1)_a, d(f_2)_a)$

Question 21/23

Convergence de (f_n) si (df_n) converge

Réponse 21/23

Si (f_n) une suite de fonctions \mathcal{C}^1 converge simplement vers f et $(\mathrm{d}f_n)$ converge uniformément vers $g: U \to \mathcal{L}(E, F)$ alors f est \mathcal{C}^1 et $\mathrm{d}f = g$

Question 22/23

Différentielle d'une composée $g \circ f$

Réponse 22/23

Si f est différentiable en a et g est différentiable en f(a) alors $g \circ f$ est différentiable en a et $d(g \circ f)_a = dg_{f(a)} \circ df_a$

Question 23/23

$$\mathcal{L}(E,F)$$

Réponse 23/23

Applications linéaires continues de E dans F