CWRU DSCI351-451: Dataframe 7 Ways and Violent Crime

Roger H. French, JiQi Liu 07 October, 2018

Contents

	0.1.0.1 Examine a Data Frame in R with 7 Basic Functions	1
	0.1.0.1.1 Now, let's import a data set see how each of these functions works.	2
0.1.1	Import a data set on violent crime by state and assign it to the data frame "crime" .	2
	0.1.1.1 Cites	4

0.1.0.1 Examine a Data Frame in R with 7 Basic Functions

When one first started learning R,

- it seems way more complicated than what you were used to
- with looking at spreadsheets in Microsoft Excel.

When I started working with data frames in R,

• it didn't seem quite as easy to know what I was looking at.

I've since come to see the light.

- While there is a bit of a learning curve to get a handle on it,
- viewing data in R is infinitely more flexible than doing so in Excel.

In this discussion, I'll cover the most basic R functions

- for examining a data set and
- explain why they're important.

Understanding how to get a simple overview of the data set

- has become a huge time saver for me.
- If you aren't familiar with these functions, you need to be.
- If you're anything like me,
 - you'll use them first for every single data set you consider.

All of the functions I'm discussing here come in the base R Utils package,

• so there's no need to install any additional packages.

Here are the functions, with links to their documentation:

- dim(): shows the dimensions of the data frame by row and column
- str(): shows the structure of the data frame
- summary(): provides summary statistics on the columns of the data frame
- colnames(): shows the name of each column in the data frame
- head(): shows the first 6 rows of the data frame
- tail(): shows the last 6 rows of the data frame
- View(): shows a spreadsheet-like display of the entire data frame

0.1.0.1.1 Now, let's import a data set see how each of these functions works.

First, here's the code:

0.1.1 Import a data set on violent crime by state and assign it to the data frame "crime"

```
crime <- read.csv("http://vincentarelbundock.github.io/Rdatasets/csv/datasets/USArrests.csv", stringsAs</pre>
```

Now, let's take a look at the output,

• so we can see what happens when the code is run.

First, we'll look at the

- dim(),
- str(),
- summary(), and
- colnames() functions:

```
### Call the functions on crime to examine the data frame
dim(crime)
```

[1] 50 5

- dim(): In the crime data set, we can see immediately that
 - there are only 50 rows and 5 columns.
 - This function is useful, because it tells us whether it would be okay to print the entire data frame
 to the console. With this data set, it's probably okay.
 - If, however, there were 5,000 rows and 50 columns, we'd definitely want to view the data frame in smaller chunks.

```
### Call the functions on crime to examine the data frame str(crime)
```

```
## 'data.frame': 50 obs. of 5 variables:
## $ X : chr "Alabama" "Alaska" "Arizona" "Arkansas" ...
## $ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
## $ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
## $ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...
## $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
```

- str(): The structure of the crime data set also
 - tells us the number of rows (observations) and columns (variables),
 - but it provides even more information.
 - * It tells us the column names,
 - * the class of each column (what kind of data is stored in it),
 - * and the first few observations of each variable.

Call the functions on crime to examine the data frame summary(crime)

##	X	Murder	Assault	UrbanPop
##	Length:50	Min. : 0.800	Min. : 45.0	Min. :32.00
##	Class :character	1st Qu.: 4.075	1st Qu.:109.0	1st Qu.:54.50
##	Mode :character	Median : 7.250	Median :159.0	Median :66.00
##		Mean : 7.788	Mean :170.8	Mean :65.54
##		3rd Qu.:11.250	3rd Qu.:249.0	3rd Qu.:77.75
##		Max. :17.400	Max. :337.0	Max. :91.00
##	Rape			

```
## Min. : 7.30

## 1st Qu.:15.07

## Median :20.10

## Mean :21.23

## 3rd Qu.:26.18

## Max. :46.00
```

- summary(): The summary provides descriptive statistics including
 - the min, max, mean, median, and quartiles of each column.
 - For example, we can see in the crime data set that
 - * the average murder rate across all states is 7.8 for every 100k people.

Call the functions on crime to examine the data frame
colnames(crime)

```
## [1] "X" "Murder" "Assault" "UrbanPop" "Rape"
```

- colnames(): This function prints a vector of the column names,
 - which can be useful if you're trying to reference a particular column.
 - For the crime data set, we can see that the state column has no name.
 - Knowing this, we may want to assign it a name before going forward in our analysis.

Now, let's take a look at the head() and tail() functions:

The head() and tail() functions default to 6 rows, but we can adjust the number of rows using the "head(crime, n = 10)

##		Х	Murder	${\tt Assault}$	UrbanPop	Rape
##	1	Alabama	13.2	236	58	21.2
##	2	Alaska	10.0	263	48	44.5
##	3	Arizona	8.1	294	80	31.0
##	4	Arkansas	8.8	190	50	19.5
##	5	California	9.0	276	91	40.6
##	6	Colorado	7.9	204	78	38.7
##	7	${\tt Connecticut}$	3.3	110	77	11.1
##	8	Delaware	5.9	238	72	15.8
##	9	Florida	15.4	335	80	31.9
##	10	Georgia	17.4	211	60	25.8

tail(crime, n = 5)

##		Х	Murder	Assault	UrbanPop	Rape
##	46	Virginia	8.5	156	63	20.7
##	47	Washington	4.0	145	73	26.2
##	48	West Virginia	5.7	81	39	9.3
##	49	Wisconsin	2.6	53	66	10.8
##	50	Wyoming	6.8	161	60	15.6

- head(): This function defaults to printing the first 6 rows, -but we've decided to call the first 10.
 - In the crime data set, this gives us the data on states Alabama through Georgia.
- tail(): The same as head(),
 - except this function prints the end of the data frame.
 - In this case, we've called the last 5 observations,
 - * so we can see the data on Virginia through Wyoming.

Finally, let's take a look at the window that appears when we call the View() function:

While the first 6 functions are printed to the console, the View() function opens a table in another View(crime)

- View(): This window provides vertical and horizontal
 - (if enough columns to justify)
 - scroll bars for you to browse the entire data set.
 - It looks exactly like an Excel spreadsheet'
 - * you just can't manipulate any of the data.
 - * (Note: make sure you use a capital 'V' when calling this function; it's case sensitive).

That's it! Getting comfortable with these functions should make it easier for you to work with data frames in a more logical and efficient manner.

0.1.1.1 Cites

• Douglas E Rice https://www.r-bloggers.com/examine-a-data-frame-in-r-with-7-basic-functions/amp/