IIT School of Applied Technology

ILLINOIS INSTITUTE OF TECHNOLOGY

information technology & management

526 Data Warehousing

February 12, 2018 Week 5 Presentation

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Dimensional Modeling Core Concepts
- Dimension Tables

➤ We will discuss

Business-driven goals of DW/BI

Deliverables of DW/BI

 Dimensional modeling core concepts

Dimension Tables

Slowly Changing Dimensions

Visualization Tips Presentation

> Sign up your slot in Google Sheet:

> Upload your TDWX or PBIX:

https://docs.google.com/spreadsheets/d/17hWmYrKqLj_lzhceXuAHCAe2GksNQr0374iXejbCmFc/edit?usp=sharing

https://drive.google.com/drive/folders/1MFd3NcxnePkLfTgZ05 ofTkUylFSK-WrG?usp=sharing

➤ Submit the file in BB as well

➢ Give a quick demo during class(Not more than 3 minutes per person, up to 3 persons)

ILINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Business-Driven Goals of DW/Bl

> Business needs we hear frequently:

■ "We collect tons of data, but we can't access it."

"We need to slice and dice the data every which way."

"Business people need to get at the data easily."

• "Just show me what is important."

• "We spend entire meetings arguing about who has the right numbers rather than making decisions."

• "We want people to use information to support more fact-based decision making."

Goals of DW/BI

- ➤ Make information accessible and understandable to the business users
- ➤ Present information consistently in a timely manner
 - accepted by business community to support their decision making > Ensure DW/BI deliverables

School of Applied Technology

Star Schema VS. OLAP Cubes

- > At a logical level, there is no difference
- It is a matter of physical database implementation.
- Star schema is implemented in a relational database and is queried through SQL
- **OLAP Cubes** (multidimensional databases) are implemented for extreme performance and are queried through MDX A

ILLINOIS INSTITUTE OF TECHNOLOGY

Deliverables that Achieve the DW/BI Goals

> Dimensional models

- Relational star schemas
- Fact tables for measurements
- Dimension tables for descriptors
- Multidimensional online analytical processing (OLAP) cubes
- > Business Intelligence applications
- Reporting, analytic, visualization tools, etc.

School of Applied Technology ILLINOIS INSTITUTE OF TECHNOLOGY

Star Schema VS. OLAP Cubes

- > The star schema can store large amounts of detailed data.
- OLAP Cubes provide higher performance with precalculated summary data.
- ➤ In general, OLAP cubes are populated from the star schema
- Kimball focuses on the star schema rather than the OLAP cubes
- Star schema usually has 15 dimensions
 - OLAP usually has 8-10 dimensions

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Kimball Lifecycle Approach

School of Applied Technology ILLINOIS INSTITUTE OF TECHNOLOGY

Fundamental Concepts: Make it Simple Dimensional Modeling

➤ Dimensional modeling came to a rescue in the presentation layer

Dimensional modeling provides

- Understandability
- Query performance
- Resilience to change

Making it simple

Denormalization

store_dm v store_dm v store_db ff(11)

store_code VARCHAR(20)

store_cd VARCHAR(20)

region_d Aff(11)

region_nee VARCHAR(20)

Dimensional Model

Fundamental Concepts: Make it Simple Dimensional Modeling

➤ 3NF: Immensely useful

3NF

processing (OLTP) in operational

complicated for users ➤ However, it's too to use. ➤ Unpredictable queries cause performance problems

2

LLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Fundamental Concepts: Make it Simple Dimensional Modeling

Techniques for making database simple ➤ Widely accepted model for presenting analytic data

"We sell products in various stores in through denormalization

performance over time": emphasis on different **regions** and measure our

- Products, Stores, Regions, and Time
- Performance: sales volume, profit
- → Make a simple modeling
- Simple modeling is important
- Resist temptation to over-engineer

2

<u> Dimensions – Physical Table</u> **Elements**

- typically textual fields > Contain descriptive attributes that are
- Shallow and wide
- entities that business Corresponds to interacts with
- Products, Accounts Customer, Employee,
- Surrogate key as a single column PK

Product Dimension SKU Number (Natural Key) Weight Unit of Measure Product Description Department Name Abrasive Indicator Category Name Shelf Life Type Package Type Package Size Storage Type Shelf Width Shelf Depth Weight

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Descriptive Dimension Attributes

> Denormalized many-to-one hierarchies

Product Key	Product Description	Brand Name	Category Name
_	PowerAll 20 oz	PowerClean	All Purpose Cleaner
2	PowerAll 32 oz	PowerClean	All Purpose Cleaner
3	PowerAll 48 oz	PowerClean	All Purpose Cleaner
4	PowerAll 64 oz	PowerClean	All Purpose Cleaner
5	ZipAll 20 oz	Zippy	All Purpose Cleaner
9	ZipAll 32 oz	Zippy	All Purpose Cleaner
7	ZipAll 48 oz	Zippy	All Purpose Cleaner
8	Shiny 20 oz	Clean Fast	Glass Cleaner
6	Shiny 32 oz	Clean Fast	Glass Cleaner
10	ZipGlass 20 oz	Zippy	Glass Cleaner
11	ZipGlass 32 oz	Zippy	Glass Cleaner

Product, Brand and Category to Product Dimension

> Operational natural key as an attribute, not as a primary key

Descriptive Dimension Attributes ILLINOIS INSTITUTE OF TECHNOLOGY

- > Describe "Who, What, Where, When and
- > Consists of words rather than cryptic Midwest abbreviation mw
 - ➤ DW is only as good as the dimension
 - attributes
- > Embedded meaning within codes as separate attributes

LLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Calendar Date Dimension

- > All dimensional models need a time component
- > Generally the calendar date dimension with the granularity of a single day
- Surprisingly has many attributes
- Holidays, work days, fiscal periods, week numbers, last day of month flags, etc.

0	Date	Day	DaySuffix	DayOfweek.	DayOffest	WeekOfrisar	WeekOfMonth	Month	MonthName	Quarter	QuarterName	Year
20090327	2009-03-27 00:00:00:000	22	27th	Friday	88	13	4	8	March	-	Fest	2009
20090328	2009-03-28 00:00:00:000	88	28th	Sahurday	87	13	4	0	March	-	First	2009
20090329	2009-03-29 00:00:00:000	83	29th	Sunday	88	14	2	en	March	-	Fest	2009
20090330	2009-03-30 00:00:00:000	8	30th	Monday	88	14	2	m	March		Fest	2009
20090331	2009-03-31 00:00:00:00	8	31st	Tuesday	8	14	2	0	March	-	First	2009
20090401	2009-04-01 00:00:00:000	-	15	Wednesday	91	14	_		Apol	2	Second	2009
20090402	2009-04-02 00:00:00:000	2	2nd	Thursday	35	14	-	4	April	2	Second	2009
20090403	2009-04-03-00:00:00:000	6	34	Friday	8	14		4	April	2	Second	2009
20090404	2009-04-04 00:00:00:000	4	4th	Saturday	8	14	-	4	April	cı	Second	2009
20090405	2009-04-05 00:00:00:000	10	SP.	Sunday	98	15	2	4	April	2	Second	2009
20090406	2009-04-06-00-00-00-000	9	£	Monday	88	15	2	4	April	2	Second	2009
20090407	2009-04-07 00:00:00:000	7	£	Tuesday	25	15	2	4	April	2	Second	2009

Slowly Changing Dimensions (SCD)

- ➤ Dimensions contains relatively static data such as
- Geo locations, customers, or products
- > Data in the dimensions change slowly and in unpredictable time
- This can cause referential integrity issue between a fact and dimension tables (e.g. an employee left the job)
- > SCD is a mechanism to deal with these changes in dimensions

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

SCD Type 2

- ➤ Insert a new dimension row with the new data and new effective start date
- ➤ Update the effective end date on the prior row
- > Maintains the historical context of the data
- ➤ Fact tables reference to the correct snapshot information of a SCD type 2 dimension
- > Results in multiple dimension rows for a given natural key

Supplier_Key	Supplier_Code	Supplier_Name	Supplier_State	Start_Date	End_Date
123	ABC	Acme Supply Co	Š	2000-01-01	2004-12-21
124	ABC	Acme Supply Co	_	2004-12-21	NULL

SCD Type

- ➤ Overwrite the old with new data
- Pre-existing facts now refer to the updated Dimension
- May cause inconsistent reports

Supplier_State	CA	→	Supplier_State	F
Supplier_Name	Acme Supply Co		Supplier_Name	Acme Supply Co
Supplier_Code	ABC		Supplier_Code	ABC
Supplier_Key	123		Supplier_Key	123

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Dimensional Modeling Fundamental

Concepts

Questions?

Class Exercises

- Variables Your ETL code must use user/password and folder location ➤ Kettle: Jobs and Environmental environmental variables for DB
- ▶ Normalization
- ▶ Denormalization
- ➤ Tableau/PowerBI Installation and Tutorials

7