Words

How Human Learn Language

Syntax

 Syntax is the study of how words and morphemes combine to form larger units such as phrases and sentences

Morphology

 Morphology is the study of words, including the principles by which they are formed, and how they relate to one another within a language

Semantics

 Semantics and pragmatics are branches of linguistics concerned with meaning.

Phonetics

• Phonetics and phonology are branches of linguistics concerned with sounds (or the equivalent aspects of sign languages)

Representation

- Everything needs to be numbers for computer to process
- Encoding VS Embedding

- Encoding
 - Use vectors to present categorical data
 - One-hot encoding (0, 0, 0, 1)
- Embedding
 - Use vectors to capture semantics (meaning)
 - "Good" should be closer to "Excellent" than "University"

Word Embedding

Count-based Representation

- A document can be represented by a bag of words (BOW)
- Ignores word order and context

Document	teamcoach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1					41444				
Document2									
Document3									
Document4									

Document representation – a simple way

- Term-frequency
 - Take the vocabulary
 - Count words

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Term-existence
 - Binary: 0 means not exist and 1 means exist
 - To handle long document compared with short documents

Word count

Can you guess what are the most frequent words in English?

- https://en.wikipedia.org/wiki/Most_common_words_in_English#:~:te xt=100%20most%20common%20words%20%20%20%20Word,%20Gr ade%201%20%2051%20more%20rows%20
- Those very frequent words are also known as "stop words"

Back to the word frequency

- Those words may appear in every documents with high frequency
 - Useless
- Not a good measurement of how important a word is
- term frequency-inverse document frequency (TF-IDF)
- TF(term, document)= (raw count of "term" in a document)/(total number of words)
- IDF(term, document)=log (total number of documents/number of documents containing "term")
- TF-IDF=TF*IDF

Similarity Computation in Text

 A document can be represented by a bag of terms or a long vector, with each attribute recording the frequency of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

• Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|} \qquad \qquad cosine(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \sqrt{\sum_{i=1}^{d} y_i^2}}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

• Jaccard coefficient is used in some analysis:

$$\operatorname{Jaccard}(S_x, S_y) = \frac{|S_x \cap S_y|}{|S_x \cup S_y|} \qquad \operatorname{Jaccard}(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^d x_i \cdot y_i}{\sum_{i=1}^d x_i^2 + \sum_{i=1}^d y_i^2 - \sum_{i=1}^d x_i \cdot y_i}$$

Text Representation: Vector Space Representation Normalization (due to different doc length)

- - L-1 normalization:

$$N(\mathbf{w}) = \frac{\mathbf{w}}{\|\mathbf{w}\|_{1}} = \frac{\mathbf{w}}{\sum_{i=1}^{V} w_{i}}$$

• L-2 normalization:
$$N(w) = \frac{w}{\|w\|_2} = \frac{w}{\sqrt[2]{\sum_i w_i^2}}$$

$$N(\mathbf{w}) = \frac{\mathbf{w}}{\|\mathbf{w}\|_{\infty}} = \frac{\mathbf{w}}{\max_{i} \{w_i\}}$$

• L-infinity normalization:

Big Data Challenge: The Curse of High-Dimensionality

• Text: Word co-occurrence statistics matrix

- High-dimensionality:
 - ☐ There are over **171k** words in English language
- Redundancy:
 - Many words share similar semantic meanings
 - ☐ Sea, ocean, marine...

Solution to Data & Network Challenge: Dimension Reduction

- Why Low-dimensional Space?
 - ☐ Visualization
 - Compression
 - Explanatory data analysis
 - Fill in (impute) missing entries (link/node prediction)
 - Classification and clustering
 - ☐ Identify / point
- How to automatically identify the lowerdimensional space that the high-dimensional data (approximately) lie in

Dimension Reduction Approaches: Low-rank Estimation vs. Embedding Learning

- Low-rank estimation
 - Data recovery
 - Imposing low-rank assumption
 - Regularization
 - Low-dimension vector space
 - Singular vectors (U)
 - = r
 - Low-rank Model

- Embedding Learning
 - Representation Learning
 - Project data into a lowdimensional space
 - Low-dimensional vector space
 - Spanned by columns of U
 - $\square \leq f$
 - Generalized Low-rank Model

Example

- Store only "important" information in fixed, low dimensional vector.
- Singular Value Decomposition (SVD) on co-occurrence matrix
 - is the best rank *k* approximation to *X* , in terms of least squares
 - Motel = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349, 0.271]
- m = n = size of vocabulary
- is the same matrix as S except that it contains only the top largest singular values

Problems with SVD

- Computational cost scales quadratically for n x m matrix: O(mn²) flops (when n<m)
- Hard to incorporate new words or documents
- Does not consider order of words

Word2Vec and Word Embedding

- Word2vec: A two-layer neural net that processes text
 - Invented by T. Mikolov et al. at Google (2013)
 - Input: a large text corpus
 - Output: A set of vectors, feature vectors for words in that corpus, of 10² dimensions
- Words sharing common contexts are embedded in close proximity in the vector space
- Embedding vectors created by Word2vec: better than LSA (Latent Semantic Analysis)
- Word2vec turns text into a numerical form that deep nets can understand
- Applications: Analysis of text, as well as genes, code, likes, playlists, social media graphs and other verbal or symbolic series

Word2vec approach to represent the meaning of word

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key idea: Predict surrounding words of every word
- Faster and can easily incorporate a new sentence/document or add a word to the vocabulary

Word2Vec: CBOW vs. Ski-Gram Models

- Two model architectures:
 - Continuous bag-of-words (CBOW): use a window of word to predict the middle word
 - Order does not matter, faster
 - Continuous skip-gram: use a word to predict the surrounding ones in window.
 - Weigh nearby context words more heavily than more distant context words
 - Slower but better job for infrequent words

CBOW

- The amount contributed? the plan is
- income will be? by investment performance.
- If you have ? regarding your eligibility

- The amount contributed to the plan is
- income will be determined by investment performance.
- If you have questions regarding your eligibility

Word2vec - Continuous Bag of Word

- E.g. "The cat sat on floor"
 - Window size = 2

We can consider either W or W' as the word's representation. Or even take the average.

Skip-gram – high level

Skip-gram details

• Given a sequence of training words, the objective of the Skip-gram model is to maximize the average log probability:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

• The basic Skip-gram formulation defines using the softmax function:

$$p(w_{t+j}|w_t) = \frac{\exp(v'_{w_{t+j}}v_{w_t})}{\sum\limits_{i=1}^{T} \exp(v'_{w_i}v_{w_t})} \qquad v \text{ - input vector representations}$$

$$v' \text{ - output vector representation}$$

cross-entropy loss

$$L = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log \frac{\exp(v'_{w_{t+j}}v_{w_t})}{\sum_{i=1}^{T} \exp(v'_{w_i}v_{w_t})}$$

This is extremely computational-expensive, as we need to update all the parameters of the model for each training example...

$$-\log p(w_{t+j}|w_t) = -\log \frac{\exp(v'_{w_{t+j}}v_{w_t})}{\sum\limits_{i=1}^{T} \exp(v'_{w_i}v_{w_t})} = \underbrace{(v'_{w_{t+j}}v_{w_t})} + \log \sum\limits_{i=1}^{T} \exp(v'_{w_i}v_{w_t})$$
"positive" pair
"negative" pair

Negative Sampling

$$-\log p(w_{t+j}|w_t) = -\log \frac{\exp(v'_{w_{t+j}}v_{w_t})}{\sum\limits_{i=1}^{T} \exp(v'_{w_i}v_{w_t})} = \underbrace{(v'_{w_{t+j}}v_{w_t})} + \log \sum\limits_{i=1}^{T} \exp(v'_{w_i}v_{w_t})$$

$$\text{"positive" pair} \qquad \text{"negative" pair}$$

• When using negative sampling, instead of going through all the words in the vocabulary for negative pairs, we sample a modest amount of *k* words (around 5-20). The exact objective used:

$$\log \sigma(v'_{w_{t+j}}v_{w_t}) + \sum_{1=1}^k \log \sigma(-v'_{w_i}v_{w_t}) \xrightarrow{\text{Replaces the term: } \log p(w_{t+j}|w_t)}$$
 for each word in the training
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Subsampling of Frequent Words

- In order to eliminate the negative effect of very frequent words such as "in", "the" etc. (that are usually not informative), a simple subsampling approach is used
- Each word in the training set is discarded with probability:

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

- This way frequent words are discarded more often
- This method improves the training speed and makes the word representations significantly more accurate

Some interesting results Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

Word analogies

Importance of Parameters – window size

Word: walk	Windov	v size = 3	Window size = 30		
	Word	Cosine distance	Word	Cosine distance	
	go	0.488083	walking	0.486317	
	snipe	0.464912	walked	0.430764	
	shoot	0.456677	walks	0.406772	
	fly	0.449722	stairs	0.401518	
	sit	0.449678	go	0.399274	
	pass	0.442459	sidewalk	0.385786	
	climbs	0.440931	stand	0.380480	
	walked	0.436502	cortege	0.371033	
	ride	0.434034	wheelchair	0.362877	
	stumble	0.426750	strapped	0.360179	
	bounce	0.425577	hollywood	0.356544	
	travelling	0.419419	carousel	0.356187	
	walking	0.412107	grabs	0.356007	
	walks	0.410949	swim	0.355027	
	trot	0.410418	breathe	0.354314	
	leaping	0.406744	tripped	0.352899	
	sneak	0.401918	cheer	0.352477	
	climb	0.399793	moving	0.350943	
	move	0.396715	inductees	0.347791	
	wait	0.394463	walkway	0.347164	
	going	0.391639	shout	0.346229	
	shouted	0.388382	pounding	0.340554	
	roam	0.388073	blvd	0.339121	
	thrown	0.384087	crowd	0.338731	
	get	0.383894	levada	0.334899	
	-1				

Other word embedding

- Glove (Pennington et al.)
 - Based on ratios of co-occurrence probabilities
 - https://nlp.stanford.edu/projects/glove/
- Fast-text (Bojanowski et al.):
 - Each word is represented as a bag of character n-grams.
 - A vector representation is associated to each character n-gram, and words are represented as the sum of these representations
 - https://fasttext.cc/

GloVe

- Generate Co-occurrence matrix X (symmetric)
 - Take a context window (distance around a word, e.g. 10)
 - X(i,j) = # of times 2 words lie in the same context window
- Factorize X
- Ratio of co-occurrences

Encoding meaning in vector differences

Crucial insight: Ratios of co-occurrence probabilities can encode meaning

components

Probe word						
	x = solid	x = gas	x = water	x = random		
P(x ice)	large	small	large	small		
P(x steam)	small	large	large	small		
$\frac{P(x \text{ice})}{P(x \text{steam})}$	large	small	~1	~1		

Encoding meaning in vector differences

Crucial insight:

Ratios of co-occurrence probabilities can encode meaning components

	x = solid	x = gas	x = water	x = fashion
P(x ice)	1.9 x 10 ⁻⁴	6.6 x 10 ⁻⁵	3.0 x 10 ⁻³	1.7 x 10 ⁻⁵
P(x steam)	2.2 x 10 ⁻⁵	7.8 x 10 ⁻⁴	2.2 x 10 ⁻³	1.8 x 10 ⁻⁵
$rac{P(x ext{ice})}{P(x ext{steam})}$	8.9	8.5 x 10 ⁻²	1.36	0.96

GloVe

General model

- F: function
- w: embedding
- P: probability
- A specific choice of F

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}},$$

GloVe

Low-dimensional representations are obtained by solving a least-squares problem to "recover" the co-occurrence matrix

Sparse, high dimensional

Low dimensional representation

Figure 1: Weighting function f with $\alpha = 3/4$.

fastText

fastText improves upon Word2Vec by incorporating subword informat

• fastText allows sharing subword representations across words. since

Word2Vec probability expression

$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}^{\prime} \top v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_w^{\prime} \top v_{w_I}\right)} \qquad \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{\top} \mathbf{v}_c. \qquad \text{Represent a word by the sum of the vector representations of its n-grams}$$
 N-gram embedding

Hyperbolic Embedding: Poincaré embedding

- Why non-Euclidean embedding space?
 - Data can have specific structures that Euclidean-space models struggle to capture
- The hyperbolic space
 - Continuous version of trees
 - Naturally equipped to model hierarchical structures

- Poincaré embedding
 - Learn hierarchical representations by pushing general terms to the origin of the Poincaré ball, and specific terms to the boundary

$$d(u, v) = \operatorname{arcosh} \left(1 + 2 \frac{\|u - v\|^2}{(1 - \|u\|^2)(1 - \|v\|^2)} \right)$$

Texts in Hyperbolic Space: Poincaré GloVe

- GloVe in hyperbolic space
- Motivation: latent hierarchical structure of words exists among text
 - Hypernym-hyponym
 - Textual entailment
- Approach: use hyperbolic kernels!
- Effectively model generality/specificity

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j\right) + b_i + \tilde{b}_j - \log X_{ij}\right)^2 \qquad \text{GloVe}$$

$$\qquad \qquad \text{Hyperbolic metric}$$

$$J = \sum_{i,j=1}^{V} f(X_{ij}) \left(-h(d(w_i, \tilde{w}_j)) + b_i + \tilde{b}_j - \log X_{ij}\right)^2 \text{Poincar\'e GloVe}$$

Spherical Text Embedding

- Motivation
 - Word similarity is derived using cosine similarity

 A gap between training space and usage space: Trained in Euclidean space but used on sphere Spherical Text Embedding

- a generative model on the sphere that follows how humans write articles:
 - We first have a general idea of the paragraph/document, and then start to write down each word in consistent with not only the paragraph/document, but also the surrounding words
 - Assume a two-step generation process:

Center Word (u)

Surrounding Word (v)

Spherical Text Embedding

- Training objective:
 - The final generation probability:

$$p(v, u \mid d) = p(v \mid u) \cdot p(u \mid d) = vMF_p(v; u, 1) \cdot vMF_p(u; d, 1)$$

Von Mises-Fisher

distribution

• Maximize the log-probability of a real co-occurred tuple, while minimize that

$$\mathcal{L}_{\text{joint}}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{d}) = \max\left(0,m - \log\left(c_p(1)\exp(\cos(\boldsymbol{v},\boldsymbol{u}))\cdot c_p(1)\exp(\cos(\boldsymbol{u},\boldsymbol{d}))\right)\right) \quad \text{Positive Sample}$$

$$+ \log\left(c_p(1)\exp(\cos(\boldsymbol{v},\boldsymbol{u}'))\cdot c_p(1)\exp(\cos(\boldsymbol{u}',\boldsymbol{d})\right)\right) \quad \text{Negative Sample}$$

$$= \max\left(0,m - \cos(\boldsymbol{v},\boldsymbol{u}) - \cos(\boldsymbol{u},\boldsymbol{d}) + \cos(\boldsymbol{v},\boldsymbol{u}') + \cos(\boldsymbol{u}',\boldsymbol{d})\right),$$

48

Represent the meaning of sentence/text

- Simple approach: take avg of the word2vecs of its words
- Another approach: Paragraph vector (2014, Quoc Le, Mikolov)
 - Extend word2vec to text level
 - Also two models: add paragraph vector as the input

Using word2vec

• Easiest way to use it is via the Gensim library for Python (tends to be slowish, even though it tries to use C optimizations like Cython, NumPy)

https://radimrehurek.com/gensim/models/word2vec.html

Original word2vec C code by Google

https://code.google.com/archive/p/word2vec/

Transformer

BERT (Bidirectional Encoder Representations from Transformers)

- Token Embeddings: Pre-trained Word Piece embeddings
- Segment Embeddings: Sequence is divided into segments by [SEP]
- Position Embeddings: Learned Position Embeddings

BERT's architecture

- Multiple layers (e.g., L=12) of Transformer's encoder followed by an FF layer and a softmax layer.
- The input of BERT is a sequence of one or more sentences, separated by the [SEP] token. The first token is a special one [CLS] standing for Classification, e.g., [CLS] Here is a sentence. [SEP] Optionally, here is another one. [SEP]
- The context vector for the [CLS] token is the embedding for the entire input sequence.
- For each token, the final FF-softmax layer outputs a vector of size H
 (called hidden size). The number of attention heads for each token is
 denoted as A

BERT

- Masked Language Model: The task is to predict the masked word based on its left and right context.
- Next Sentence Prediction: The task is to predict if B is the next sentence of A

Input: [CLS] The man attended the [MASK] at Iowa state university [SEP] he was [MASK] by the lecture [SEP]

Input: [CLS] The man attended the [MASK] at Iowa state university [SEP] I [MASK] a book [SEP]

Masked Language Modeling

- BERT formula: take a chunk of text, predict 15% of the tokens
 - For 80% (of the 15%), replace the input token with [MASK]
 - For 10%, replace w/random
 - For 10%, keep same

Fine Tuning

What can BERT do

- CLS token is used to provide classification decisions
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece

