4. Кубический сплайн. Построение. Экстремальное свойство.

Пусть некоторая функция f(x) задана на отрезке [A; B], разбитом на части $[x_i, x_{i+1}], A = x_0 < x_1 < \cdots < x_N = B$. Кубическим сплайном называется функция S(x), которая:

- на каждом отрезке $[x_{i-1}, x_i]$ является многочленом степени не выше третьей;
- имеет непрерывные первую и вторую производные на всём отрезке [A;B];
- в точках x_i выполняется равенство $S(x_i) = f(x_i)$, т.е. сплайн S(x) интерполирует функцию f(x) в точках x_i (i=1, 2, ..., N) условие интерполяции.

Для однозначного задания сплайна перечисленных условий недостаточно, для построения сплайна необходимо наложить дополнительные требования – краевые условия:

- **1го типа.** Если известно точное значение первой производной на обеих границах, то такой сплайн называют фундаментальным. S'(A)=f'(A), S'(B)=f'(B).
- **2го типа.** S''(A) = f''(A), S''(B) = f''(B). На концах промежутка задаются значения второй производной искомой функции.
- **Зго типа.** S'(A) = S'(B) и S''(A) = S''(B). Периодические выполнение этих условий естественно требовать в тех случаях, когда интерполируемая функция является периодической с периодом T=A-B.
- **4го типа.** $S'''(y, x_1 0) = S'''(y, x_1 + 0)$, $S'''(y, x_{m-1} 0) = S'''(y, x_{m+1} + 0)$. Во внутренних узлах сетки третья производная функции S(x), вообще говоря, разрывна. Однако число разрывов третьей производной можно уменьшить при помощи данного условия. В этом случае построенный сплайн будет трижды непрерывно дифференцируем на промежутках $[x_0, x_1]$ и $[x_{m-1}, x_m]$.

Теорема: Для любой функции f(x) и любого разбиения отрезка [A; B] существует ровно один естественный сплайн S(x), удовлетворяющий перечисленным выше условиям.

Принцип построения и будет являться доказательством данной теоремы.

Коэффициенты на каждом интервале определяются из условий сопряжения в узлах:

$$f_i = y_i;$$
 $f'(x_i - 0) = f'(x_i + 0);$
 $f''(x_i - 0) = f''(x_i + 0);$
 $i = 1, 2, ..., n - 1$

Кроме того, на границе при $x=x_0$ и $x=x_n$ ставятся условия

$$f''(x_0) = 0;$$

$$f''(x_n) = 0.$$

Будем искать кубический полином в виде

$$f(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3,$$

$$x_{i-1} \le \xi \le \xi_i.$$

Из условия $f_i = y_i$ имеем

$$f'(x_{i-1}) = a_i = y_{i-1};$$

$$f(x_i) = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i;$$

$$h_i = x_i - x_{i-1},$$

$$i = 1, 2, \dots, n-1.$$

Вычислим производные:

$$f'(x) = b_i + 2c_i(x - x_{i-1}) + 3d_i(x - x_{i-1})^2;$$

$$f''(x) = 2c_i(x - x_{i-1}) + 6d_i(x - x_{i-1});$$

$$x_{i-1}\xi \le \xi_i,$$

и потребуем их непрерывности при $x=x_i$:

$$b_{i+1} = b_i + 2c_i h_i + 3d_i h_i^2,$$

$$c_{i+1} = c_i + 3d_i h_i,$$

$$i = 1, 2, ..., n - 1.$$

Общее число неизвестных коэффициентов, очевидно, равно 4n, число уравнений равно 4n-2. Недостающие два уравнения получаем из условия ограничений при $x=x_0$ и $x=x_n$:

$$c_1 = 0;$$
 $c_n + 3d_n h_n = 0.$

Выражение $d_i = \frac{c_{i+1} - c_i}{3h_i}$, подставляя это выражение и исключая $a_i = y_{i-1}$, получим

$$b_{i} = \left[\frac{y_{i} - y_{i-1}}{h_{i}}\right] - \frac{1}{3}h_{i}(c_{i+1} + 2c_{i}),$$

$$i = 1, 2, \dots, n - 1,$$

$$b_{n} = \left[\frac{y_{n} - y_{n-1}}{h_{n}}\right] - \frac{2}{3}h_{n}c_{n}.$$

Подставив теперь выражения для b_i , d_{i+1} и d_i в первую формулу, после несложных преобразований получаем для определения c_i разностное уравнение второго порядка

(*)

$$h_i c_i + 2(h_i + h_{i+1})c_{i+1} + h_{i+1}c_{i+2} = 3\left(\frac{y_{i+1} - y_i}{h_{i+1}} - \frac{y_i - y_{i-1}}{h_i}\right),$$

$$i = 1, 2, ..., n - 1.$$

С краевыми условиями

$$c_1 = 0$$
, $c_{n+1} = 0$.

Матрица этой системы 3-х диагональная. Такие системы экономно решаются методом прогонки.

В силу диагонального преобладания система имеет единственное решение.

После нахождения c_i определяются a_i , b_i и d_i и определяется вид кубических многочленов (сплайнов) на каждом отрезке.

Таким образом, доказано, что существует единственный кубический сплайн.

Экстремальное свойство.

Пусть сплайн S(t) интерполирует функцию f(t) на системе узлов $\{t_n\}_{n=0}^N$; $t_0=A$, $t_N=B$. Тогда S(t) с краевыми условиями S''(A)=S''(B)=0 доставляет минимум функционалу

$$J(f) = \int_A^B (f''(t))^2 dt$$

Среди всех функций f(t), принадлежащих классу функций из пространства $C^2[a,b]$, проходящих через точки массива (x_i,y_i) , i=0,1,..., m, именно кубический сплайн S(x), удовлетворяющий вышеуказанным краевым условиям доставляет экстремум (минимум) функционалу J(f).

Интерполяционный кубический сплайн обладает описанным выше экстремальным свойством на очень широком классе функций, а именно на классе $W_2^2[A,B]$ — класс функций суммируемых вместе со второй производной.

https://natalibrilenova.ru/blog/1481-teoriya-splaynov-primery-resheniya.html