```
In []: import numpy as np
   import pandas as pd
   import tensorflow as tf
   import matplotlib.pyplot as plt
   %matplotlib inline
   from patsy import dmatrices
   import sklearn
   import seaborn as sns
In []: dataframe=pd.read_csv("IBM Attrition Data.csv")
```

In []: dataframe.head()

Out[]:

	Age	Attrition	Department	DistanceFromHome	Education	EducationField	Environmen
0	41	Yes	Sales	1	2	Life Sciences	_
1	49	No	Research & Development	8	1	Life Sciences	
2	37	Yes	Research & Development	2	2	Other	
3	33	No	Research & Development	3	4	Life Sciences	
4	27	No	Research & Development	2	1	Medical	

```
In [ ]: names = dataframe.columns.values
    print(names)
```

^{[&#}x27;Age' 'Attrition' 'Department' 'DistanceFromHome' 'Education'

^{&#}x27;EducationField' 'EnvironmentSatisfaction' 'JobSatisfaction'

^{&#}x27;MaritalStatus' 'MonthlyIncome' 'NumCompaniesWorked' 'WorkLifeBalance'

^{&#}x27;YearsAtCompany']

```
In [ ]: # histogram for age
    plt.figure(figsize=(10,8))
        dataframe['Age'].hist(bins=70)
        plt.title("Age distribution of Employees")
        plt.xlabel("Age")
        plt.ylabel("# of Employees")
        plt.show()
```



```
In [ ]: # explore data for Attrition by Age
plt.figure(figsize=(14,10))
plt.scatter(dataframe.Attrition,dataframe.Age, alpha=.55)
plt.title("Attrition by Age ")
plt.ylabel("Age")
plt.grid(b=True, which='major',axis='y')
plt.show()
```



```
In [ ]: # explore data for Left employees breakdown
    plt.figure(figsize=(8,6))
    dataframe.Attrition.value_counts().plot(kind='barh',color='blue',alpha=.6
    5)
    plt.title("Attrition breakdown ")
    plt.show()
```



```
In [ ]: # explore data for Education Field distribution
    plt.figure(figsize=(10,8))
    dataframe.EducationField.value_counts().plot(kind='barh',color='g',alpha
    =.65)
    plt.title("Education Field Distribution")
    plt.show()
```



```
In [ ]: # explore data for Marital Status
    plt.figure(figsize=(8,6))
    dataframe.MaritalStatus.value_counts().plot(kind='bar',alpha=.5)
    plt.show()
```


In []: dataframe.describe()

Out[]:

	Age	DistanceFromHome	Education	EnvironmentSatisfaction	JobSatisfact
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000
mean	36.923810	9.192517	2.912925	2.721769	2.728
std	9.135373	8.106864	1.024165	1.093082	1.102
min	18.000000	1.000000	1.000000	1.000000	1.0000
25%	30.000000	2.000000	2.000000	2.000000	2.000
50%	36.000000	7.000000	3.000000	3.000000	3.000
75%	43.000000	14.000000	4.000000	4.000000	4.000
max	60.000000	29.000000	5.000000	4.000000	4.000

```
In [ ]: dataframe.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1470 entries, 0 to 1469
        Data columns (total 13 columns):
                                    1470 non-null int64
        Age
        Attrition
                                    1470 non-null object
        Department
                                    1470 non-null object
                                    1470 non-null int64
        DistanceFromHome
        Education
                                    1470 non-null int64
        EducationField
                                    1470 non-null object
        EnvironmentSatisfaction
                                    1470 non-null int64
        JobSatisfaction
                                    1470 non-null int64
        MaritalStatus
                                    1470 non-null object
        MonthlyIncome
                                    1470 non-null int64
        NumCompaniesWorked
                                    1470 non-null int64
        WorkLifeBalance
                                    1470 non-null int64
        YearsAtCompany
                                    1470 non-null int64
        dtypes: int64(9), object(4)
        memory usage: 149.4+ KB
In [ ]: dataframe.columns
Out[ ]: Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education
                'EducationField', 'EnvironmentSatisfaction', 'JobSatisfaction',
                'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
                'WorkLifeBalance', 'YearsAtCompany'],
              dtype='object')
In [ ]: dataframe.std()
Out[]: Age
                                       9.135373
        DistanceFromHome
                                       8.106864
        Education
                                       1.024165
        EnvironmentSatisfaction
                                       1.093082
        JobSatisfaction
                                       1.102846
                                    4707.956783
        MonthlyIncome
        NumCompaniesWorked
                                       2.498009
        WorkLifeBalance
                                       0.706476
        YearsAtCompany
                                       6.126525
        dtype: float64
In [ ]: | dataframe['Attrition'].value_counts()
Out[ ]: No
               1233
        Yes
                237
        Name: Attrition, dtype: int64
In [ ]: dataframe['Attrition'].dtypes
Out[ ]: dtype('0')
In [ ]: dataframe['Attrition'].replace('Yes',1, inplace=True)
        dataframe['Attrition'].replace('No',0, inplace=True)
```

```
dataframe.head(10)
In [ ]:
Out[ ]:
                           Department DistanceFromHome Education EducationField Environment
             Age
                  Attrition
          0
                        1
                                                                     Life Sciences
              41
                                Sales
                            Research &
                        0
                                                      8
                                                                     Life Sciences
          1
              49
                                                                1
                          Development
                            Research &
          2
                                                      2
                                                                2
                                                                           Other
              37
                          Development
                            Research &
          3
              33
                                                      3
                                                                     Life Sciences
                          Development
                            Research &
          4
              27
                                                      2
                                                                1
                                                                          Medical
                          Development
                            Research &
                                                                     Life Sciences
          5
              32
                                                      2
                                                                2
                          Development
                            Research &
          6
              59
                                                      3
                                                                3
                                                                          Medical
                          Development
                            Research &
          7
              30
                                                     24
                                                                1
                                                                     Life Sciences
                          Development
                            Research &
                                                                     Life Sciences
          8
              38
                                                     23
                                                                3
                          Development
                            Research &
                                                                3
          9
              36
                                                     27
                                                                          Medical
                          Development
In [ ]: # building up a logistic regression model
         X = dataframe.drop(['Attrition'],axis=1)
         X.head()
         Y = dataframe['Attrition']
         Y.head()
Out[ ]:
         0
               1
         1
               0
         2
               1
         3
               0
         4
         Name: Attrition, dtype: int64
In [ ]: dataframe['EducationField'].replace('Life Sciences',1, inplace=True)
         dataframe['EducationField'].replace('Medical',2, inplace=True)
         dataframe['EducationField'].replace('Marketing', 3, inplace=True)
         dataframe['EducationField'].replace('Other',4, inplace=True)
         dataframe['EducationField'].replace('Technical Degree',5, inplace=True)
         dataframe['EducationField'].replace('Human Resources', 6, inplace=True)
In [ ]:
        dataframe['EducationField'].value_counts()
Out[]: 1
               606
         2
               464
         3
               159
         5
               132
         4
                82
         6
         Name: EducationField, dtype: int64
```

```
In [ ]: dataframe['Department'].value_counts()
Out[]: Research & Development
                                   961
        Sales
                                   446
        Human Resources
                                    63
        Name: Department, dtype: int64
In [ ]: dataframe['Department'].replace('Research & Development',1, inplace=True)
        dataframe['Department'].replace('Sales',2, inplace=True)
        dataframe['Department'].replace('Human Resources', 3, inplace=True)
In [ ]:
       dataframe['Department'].value_counts()
Out[ ]: 1
             961
        2
             446
              63
        Name: Department, dtype: int64
In [ ]: | dataframe['MaritalStatus'].value_counts()
Out[ ]: Married
                     673
        Single
                     470
        Divorced
                     327
        Name: MaritalStatus, dtype: int64
In [ ]:
        dataframe['MaritalStatus'].replace('Married',1, inplace=True)
        dataframe['MaritalStatus'].replace('Single',2, inplace=True)
        dataframe['MaritalStatus'].replace('Divorced',3, inplace=True)
        dataframe['MaritalStatus'].value_counts()
In [ ]:
Out[ ]:
        1
             673
             470
        2
        3
             327
        Name: MaritalStatus, dtype: int64
In [ ]: x=dataframe.select_dtypes(include=['int64'])
        x.dtypes
Out[]: Age
                                    int64
        Attrition
                                    int64
        Department
                                    int64
        DistanceFromHome
                                    int64
        Education
                                    int64
        EducationField
                                    int64
        EnvironmentSatisfaction
                                    int64
        JobSatisfaction
                                    int64
        MaritalStatus
                                    int64
        MonthlyIncome
                                    int64
        NumCompaniesWorked
                                    int64
        WorkLifeBalance
                                    int64
        YearsAtCompany
                                    int64
        dtype: object
```

```
In [ ]: x.columns
Out[ ]: Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education
                'EducationField', 'EnvironmentSatisfaction', 'JobSatisfaction',
                'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
                'WorkLifeBalance', 'YearsAtCompany'],
              dtype='object')
In [ ]: y=dataframe['Attrition']
In [ ]: | y.head()
Out[ ]: 0
             0
        2
             1
        3
             0
        4
        Name: Attrition, dtype: int64
In [ ]: | y, x = dmatrices('Attrition ~ Age + Department + \
                           DistanceFromHome + Education + EducationField + YearsAt
        Company',
                           dataframe, return_type="dataframe")
        print (x.columns)
        Index(['Intercept', 'Age', 'Department', 'DistanceFromHome', 'Education
                'EducationField', 'YearsAtCompany'],
              dtype='object')
In [ ]: | y = np.ravel(y)
In [ ]: | from sklearn.linear_model import LogisticRegression
        model = LogisticRegression()
        model = model.fit(x, y)
        # check the accuracy on the training set
        model.score(x, y)
        /opt/anaconda3/lib/python3.7/site-packages/sklearn/linear model/logisti
        c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.
        22. Specify a solver to silence this warning.
          FutureWarning)
Out[]: 0.8408163265306122
In [ ]: | y.mean()
Out[]: 0.16122448979591836
```

```
In [ ]: X_train,X_test,y_train,y_test=sklearn.model_selection.train_test_split(x,
   y, test_size=0.3, random_state=0)
   model2=LogisticRegression()
   model2.fit(X_train, y_train)
   /opt/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti
   c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.
   22. Specify a solver to silence this warning.
   FutureWarning)
Out[ ]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=T
   rue,
      intercept_scaling=1, max_iter=100, multi_class='warn',
      n_jobs=None, penalty='12', random_state=None, solver='warn',
      tol=0.0001, verbose=0, warm_start=False)
In [ ]: | predicted= model2.predict(X_test)
   print (predicted)
```

0. 0. 0. 0. 0. 0. 0. 0. 0.]

```
In [ ]: probs = model2.predict_proba(X_test)
    print (probs)
```

[[0.86257761 0.13742239] [0.80710189 0.19289811] [0.7429987 0.2570013] [0.83583504 0.16416496] [0.73307035 0.26692965] [0.78942615 0.21057385] [0.85718191 0.14281809] [0.85697723 0.14302277] [0.96732187 0.03267813] [0.93781765 0.06218235] [0.95112889 0.04887111] [0.83140356 0.16859644] [0.86069144 0.13930856] [0.863881 0.136119 [0.88818146 0.11181854] [0.88851235 0.11148765] [0.88418532 0.11581468] [0.78102191 0.21897809] [0.79870103 0.20129897] [0.88654952 0.11345048] [0.70201258 0.29798742] [0.94684452 0.05315548] [0.86687518 0.13312482] [0.84389943 0.15610057] [0.60328043 0.39671957] [0.8112161 0.1887839] [0.91914771 0.08085229] [0.93333047 0.06666953] [0.67850927 0.32149073] [0.87080099 0.12919901] [0.87277322 0.12722678] [0.77054173 0.22945827] [0.86434352 0.13565648] [0.95829505 0.04170495] [0.84589968 0.15410032] [0.86642435 0.13357565] [0.90489195 0.09510805] [0.68640634 0.31359366] [0.90762923 0.09237077] [0.80686978 0.19313022] [0.91626105 0.08373895] [0.82434807 0.17565193] [0.93702713 0.06297287] [0.93419719 0.06580281] [0.89317815 0.10682185] [0.85163342 0.14836658] [0.78599372 0.21400628] [0.84591285 0.15408715] [0.66035418 0.33964582] [0.75985595 0.24014405] [0.92971879 0.07028121] [0.79073149 0.20926851] [0.86251514 0.13748486] [0.86028777 0.13971223] [0.87176033 0.12823967] [0.79087814 0.20912186] [0.87589802 0.12410198]

[0.84351786 0.15648214] [0.72814826 0.27185174] [0.83401865 0.16598135]

- [0.90193848 0.09806152]
- [0.70822548 0.29177452]
- [0.92855494 0.07144506]
- [0.84184113 0.15815887]
- [0.79759143 0.20240857] [0.86955841 0.13044159]
- [0.91690233 0.08309767]
- [0.84801457 0.15198543]
- [0.04001437 0.13130343
- [0.89284306 0.10715694] [0.63214954 0.36785046]
- [0.93929587 0.06070413]
- [0.72436084 0.27563916]
- [0.85581742 0.14418258]
- [0.05501742 0.14410250
- [0.84210919 0.15789081]
- [0.77522163 0.22477837]
- [0.71561254 0.28438746]
- [0.93625216 0.06374784]
- [0.95759882 0.04240118] [0.79115941 0.20884059]
- [0.89387487 0.10612513]
- [0.9143774 0.0856226]
- [0.79373481 0.20626519]
- [0.78032498 0.21967502]
- [0.79647769 0.20352231]
- [0.83618218 0.16381782]
- [0.71431018 0.28568982]
- [0.97808679 0.02191321]
- [0.94675994 0.05324006]
- [0.88520539 0.11479461]
- [0.79405267 0.20594733]
- [0.61481071 0.38518929]
- [0.81886235 0.18113765]
- [0.74684358 0.25315642]
- [0.74004990 0.29919042
- [0.86722821 0.13277179]
- [0.86992409 0.13007591]
- [0.81789428 0.18210572] [0.71822509 0.28177491]
- [0.60023923 0.39976077]
- [0.83836485 0.16163515]
- [0.03030403 0.10103313
- [0.88216124 0.11783876] [0.74418148 0.25581852]
- [0.76564261 0.23435739]
- [0.98067742 0.01932258]
- [0.01030455 0.00060545
- [0.91939455 0.08060545]
- [0.77415323 0.22584677]
- [0.92564103 0.07435897]
- [0.88199097 0.11800903]
- [0.74514347 0.25485653]
- [0.90673063 0.09326937]
- [0.78928203 0.21071797]
- [0.80971647 0.19028353]
- [0.93515971 0.06484029]
- [0.93924676 0.06075324]
- [0.79462059 0.20537941]
- [0.81215385 0.18784615]
- [0.91649218 0.08350782]
- [0.90265873 0.09734127]
- [0.84731114 0.15268886]
- [0.95376317 0.04623683]
- [0.91222675 0.08777325]

- [0.86028682 0.13971318]
- [0.85822982 0.14177018]
- [0.87448572 0.12551428]
- [0.75985594 0.24014406]
- [0.92296733 0.07703267]
- [0.96914997 0.03085003]
- [0.94407447 0.05592553]
- [0.81720383 0.18279617]
- [0.88066242 0.11933758]
- [0.77639891 0.22360109]
- [0.97128842 0.02871158]
- [0.88831439 0.11168561]
- [0.78631482 0.21368518]
- [0.81840678 0.18159322]
- [0.94987331 0.05012669]
- [0.95894743 0.04105257]
- [0.73447703 0.26552297] [0.93444274 0.06555726]
- [0.73813794 0.26186206]
- [0.82247975 0.17752025]
- [0.82289185 0.17710815]
- [0.89920393 0.10079607]
- [0.78516352 0.21483648]
- [0.89653967 0.10346033]
- [0.91537087 0.08462913]
- [0.92820436 0.07179564]
- [0.96589553 0.03410447]
- [0.94419804 0.05580196]
- [0.93024428 0.06975572]
- [0.66112588 0.33887412]
- [0.84095505 0.15904495]
- [0.82603046 0.17396954]
- [0.80610059 0.19389941]
- [0.96191568 0.03808432]
- [0.93671599 0.06328401]
- [0.94770351 0.05229649]
- [0.97376472 0.02623528]
- [0.79369198 0.20630802]
- [0.87741394 0.12258606]
- [0.85956848 0.14043152]
- [0.95216215 0.04783785]
- [0.93160388 0.06839612]
- [0.75495757 0.24504243]
- [0.74998837 0.25001163]
- [0.95590644 0.04409356]
- [0.86936376 0.13063624]
- [0.81422948 0.18577052]
- [0.76650749 0.23349251]
- [0.80183602 0.19816398]
- [0.92798469 0.07201531]
- [0.91054713 0.08945287]
- [0.94603047 0.05396953]
- [0.93400754 0.06599246]
- [0.69063333 0.30936667]
- [0.93091068 0.06908932]
- [0.74159667 0.25840333] [0.78516386 0.21483614]
- [0.93229165 0.06770835]
- [0.80621879 0.19378121]
- [0.85290079 0.14709921]

[0.66903659 0.33096341] [0.9042279 0.0957721] [0.91210155 0.08789845] [0.87547616 0.12452384] [0.93020588 0.06979412] [0.66879074 0.33120926] [0.89374371 0.10625629] [0.86196532 0.13803468] [0.78749466 0.21250534] [0.53185454 0.46814546] [0.73337673 0.26662327] [0.70603668 0.29396332] [0.85434454 0.14565546] [0.869108 0.130892] [0.75104191 0.24895809] [0.89891506 0.10108494] [0.79281444 0.20718556] [0.90787555 0.09212445] [0.77348776 0.22651224] [0.88287113 0.11712887] [0.85302465 0.14697535] [0.8195964 0.1804036] [0.74239392 0.25760608] [0.86238441 0.13761559] [0.77748616 0.22251384] [0.76912758 0.23087242] [0.7938589 0.2061411] [0.92209228 0.07790772] [0.74615104 0.25384896] [0.87485382 0.12514618] [0.85477514 0.14522486] [0.77450251 0.22549749] [0.87362727 0.12637273] [0.67359458 0.32640542] [0.93698936 0.06301064] [0.82461956 0.17538044] [0.95188386 0.04811614] [0.83450941 0.16549059] [0.81117757 0.18882243] [0.80629478 0.19370522] [0.87690301 0.12309699] [0.6663069 0.3336931] [0.59350144 0.40649856] [0.98983468 0.01016532] [0.70381235 0.29618765] [0.91693005 0.08306995] [0.92230104 0.07769896] [0.71009303 0.28990697]

[0.62307399 0.37692601] [0.76273323 0.23726677] [0.95379074 0.04620926] [0.88139107 0.11860893] [0.85805507 0.14194493] [0.92153445 0.07846555] [0.87986341 0.12013659] [0.80455714 0.19544286] [0.8045461 0.1954539] [0.91400939 0.08599061] [0.71996681 0.28003319] [0.9459133 0.0540867]

- [0.90887304 0.09112696]
- [0.73122211 0.26877789]
- [0.98139747 0.01860253]
- [0.85440507 0.14559493]
- [0.89904525 0.10095475]
- [0.82348836 0.17651164]
- [0.83289134 0.16710866]
- [0.88059965 0.11940035]
- [0.87965985 0.12034015]
- [0.87516106 0.12483894]
- [0.8154612 0.1845388]
- [0.88085227 0.11914773]
- [0.61440015 0.38559985]
- [0.88813952 0.11186048]
- [0.89579477 0.10420523]
- [0.85493829 0.14506171]
- [0.98316036 0.01683964]
- [0.7717054 0.2282946]
- [0.62163203 0.37836797]
- [0.82648597 0.17351403]
- [0.84082886 0.15917114]
- [0.84770539 0.15229461]
- [0.84996276 0.15003724]
- [0.7568283 0.2431717]
- [0.86135648 0.13864352]
- [0.90742097 0.09257903]
- [0.84653325 0.15346675]
- [0.81068432 0.18931568]
- [0.74291535 0.25708465]
- [0.87004234 0.12995766]
- [0.83937674 0.16062326]
- [0.86204616 0.13795384]
- [0.66559201 0.33440799]
- [0.90809363 0.09190637]
- [0.87063167 0.12936833]
- [0.92591545 0.07408455]
- [0.84519617 0.15480383]
- [0.89988333 0.10011667]
- [0.91377645 0.08622355]
- [0.79655167 0.20344833] [0.63617514 0.36382486]
- [0.8451662 0.1548338]
- 0.25320555
- [0.75229555 0.24770445]
- [0.85439954 0.14560046] [0.99258502 0.00741498]
- [0 05070335 0 14030765
- [0.85979235 0.14020765]
- [0.88042046 0.11957954]
- [0.82752509 0.17247491]
- [0.93110919 0.06889081]
- [0.87320755 0.12679245]
- [0.88685479 0.11314521]
- [0.83757498 0.16242502]
- [0.86470667 0.13529333]
- [0.86456218 0.13543782]
- [0.89956239 0.10043761]
- [0.78624587 0.21375413]
- [0.79354081 0.20645919]
- [0.88436844 0.11563156]
- [0.6517352 0.3482648] [0.94078665 0.05921335]

- [0.8998614 0.1001386]
- [0.72416846 0.27583154]
- [0.68855828 0.31144172]
- [0.87401796 0.12598204]
- [0.86388337 0.13611663]
- [0.97515719 0.02484281]
- [0.86301941 0.13698059]
- [0.54429973 0.45570027]
- [0.91312117 0.08687883]
- [0.74864711 0.25135289]
- [0.86865164 0.13134836]
- [0.88768464 0.11231536]
- [0 07025060 0 12174022
- [0.87825968 0.12174032]
- [0.85578493 0.14421507]
- [0.77096345 0.22903655]
- [0.80608869 0.19391131]
- [0.85164484 0.14835516]
- [0.7748914 0.2251086]
- [0.70330443 0.29669557]
- [0.88920999 0.11079001]
- [0.48805675 0.51194325]
- [0.92443534 0.07556466]
- [0.75730317 0.24269683]
- [0.67532223 0.32467777]
- [0.91267187 0.08732813]
- [0.94004403 0.05995597]
- [0.88105134 0.11894866]
- [0.88500438 0.11499562]
- [0.95620493 0.04379507]
- [0.90018491 0.09981509]
- [0.94913267 0.05086733]
- [0.83164948 0.16835052]
- [0.87828332 0.12171668]
- [0.81856033 0.18143967]
- [0.81510872 0.18489128]
- [0.95165724 0.04834276]
- [0.86885777 0.13114223]
- [0.90404843 0.09595157]
- [0.83568878 0.16431122]
- [0.84565343 0.15434657]
- [0.79355796 0.20644204]
- [0.81574488 0.18425512]
- [0.81449702 0.18550298]
- [0.83624028 0.16375972]
- [0.91389238 0.08610762]
- [0.91564837 0.08435163]
- [0.01004807 0.08400100
- [0.68306915 0.31693085]
- [0.99086383 0.00913617]
- [0.76974325 0.23025675]
- [0.79740377 0.20259623]
- [0.72822071 0.27177929]
- [0.67182682 0.32817318]
- [0.79710573 0.20289427]
- [0.84931231 0.15068769]
- [0.86433739 0.13566261]
- [0.85920637 0.14079363]
- [0.84420225 0.15579775]
- [0.82853445 0.17146555]
- [0.92215641 0.07784359] [0.82960704 0.17039296]

- [0.97700212 0.02299788]
- [0.90454177 0.09545823]
- [0.92773082 0.07226918]
- [0.84754954 0.15245046]
- [0.76612754 0.23387246] [0.94894713 0.05105287]
- [0.94800941 0.05199059]
- [0.75328457 0.24671543]
- [0.87742303 0.12257697]
- [0.80519574 0.19480426]
- [0.93916181 0.06083819]
- [0.85990185 0.14009815]
- [0.75971578 0.24028422]
- [0.90848727 0.09151273]
- [0.7529481 0.2470519]
- [0.94361137 0.05638863]
- [0.91817801 0.08182199]
- [0.90585801 0.09414199]
- [0.77143638 0.22856362]
- [0.92392657 0.07607343]
- [0.80755229 0.19244771]
- [0.9013237 0.0986763]
- [0.87830849 0.12169151]
- [0.8068256 0.1931744]
- [0.83483933 0.16516067]
- [0.53939525 0.46060475]
- [0.95106284 0.04893716]
- [0.73235519 0.26764481]
- [0.892211 0.107789]
- [0.80131021 0.19868979]
- [0.87926632 0.12073368]
- [0.96835844 0.03164156]
- [0.81435024 0.18564976]
- [0.8595391 0.1404609]
- [0.59090241 0.40909759]
- [0.82620318 0.17379682] [0.92520542 0.07479458]
- [0.81774745 0.18225255]
- [0.92599818 0.07400182]
- [0.89198781 0.10801219]
- [0.70041077 0.29958923] [0.82018762 0.17981238]
- [0.96584774 0.03415226]
- [0.87007757 0.12992243]
- [0.8985835 0.1014165]
- [0.89010322 0.10989678]
- [0.81133218 0.18866782]
- [0.85998392 0.14001608]
- [0.83705922 0.16294078]
- [0.83833325 0.16166675]
- [0.82480592 0.17519408]
- [0.94132438 0.05867562]
- [0.83011466 0.16988534]
- [0.77419827 0.22580173]
- [0.69208833 0.30791167]
- [0.86186596 0.13813404]
- [0.82653322 0.17346678]
- [0.84351252 0.15648748]
- [0.87151308 0.12848692] [0.89317815 0.10682185]

```
[0.82864779 0.17135221]
          [0.7290552 0.2709448]
          [0.9473871 0.0526129 ]
          [0.96100837 0.03899163]
          [0.9049959 0.0950041]
          [0.88585723 0.11414277]
          [0.84839464 0.15160536]
          [0.78874009 0.21125991]
          [0.67361889 0.32638111]
          [0.93357031 0.06642969]
          [0.65079394 0.34920606]
          [0.74503232 0.25496768]
          [0.9420944 0.0579056]
          [0.78550077 0.21449923]
          [0.90782391 0.09217609]
          [0.81479395 0.18520605]
          [0.89162714 0.10837286]
          [0.85619491 0.14380509]
          [0.67747664 0.32252336]
In [ ]: from sklearn import metrics
        print (metrics.accuracy_score(y_test, predicted))
        print (metrics.roc_auc_score(y_test, probs[:, 1]))
        0.8435374149659864
        0.6500577589526376
        print (metrics.confusion_matrix(y_test, predicted))
In [ ]:
        print (metrics.classification_report(y_test, predicted))
        [[371
                 0]
                 1]]
         [ 69
                       precision
                                    recall f1-score
                                                        support
                                                 0.91
                  0.0
                            0.84
                                      1.00
                                                            371
                  1.0
                            1.00
                                      0.01
                                                 0.03
                                                             70
                                                            441
           micro avg
                            0.84
                                      0.84
                                                 0.84
           macro avg
                            0.92
                                      0.51
                                                 0.47
                                                            441
        weighted avg
                            0.87
                                      0.84
                                                 0.77
                                                            441
```

In []: print (X_train)

\

	Intercept	Age	Department	DistanceFromHome	Education
338	1.0	30.0	2.0	5.0	3.0
363	1.0	33.0	2.0	5.0	3.0
759	1.0	45.0	3.0	24.0	4.0
793	1.0	28.0	1.0	15.0	2.0
581	1.0	30.0	1.0	1.0	3.0
320	1.0	27.0	2.0	2.0	3.0
452	1.0	45.0	2.0	2.0	3.0
195	1.0	37.0	1.0	21.0	3.0
776	1.0	20.0	2.0	9.0	3.0
1295	1.0	41.0	2.0	4.0	1.0
70	1.0	59.0	2.0	1.0	1.0
1135	1.0	46.0	2.0	1.0	4.0
1011	1.0	36.0	2.0	3.0	4.0
10	1.0	35.0	1.0	16.0	3.0
1265	1.0	33.0	1.0	4.0	3.0
1270	1.0	34.0	2.0	3.0	2.0
1257	1.0	31.0	2.0	16.0	4.0
271	1.0	47.0	1.0	29.0	4.0
858	1.0	53.0	1.0	7.0	2.0
790	1.0	33.0	1.0	5.0	3.0
1290	1.0	34.0	1.0	9.0	4.0
915	1.0	21.0	1.0	10.0	2.0
64	1.0	36.0	1.0	8.0	3.0
959	1.0	40.0	1.0	2.0	3.0
1274	1.0	31.0	2.0	29.0	4.0
1394	1.0	32.0	1.0	5.0	4.0
1109	1.0	30.0	2.0	29.0	4.0
416	1.0	38.0	1.0	2.0	2.0
1234 687	1.0 1.0	47.0 36.0	2.0 1.0	2.0 2.0	4.0 4.0
1445	1.0	41.0	1.0	28.0	4.0
1201	1.0	23.0	1.0	8.0	1.0
99	1.0	44.0	1.0	23.0	3.0
850	1.0	32.0	2.0	2.0	1.0
448	1.0	40.0	1.0	6.0	3.0
755	1.0	45.0	2.0	11.0	2.0
976	1.0	56.0	1.0	23.0	3.0
115	1.0	37.0	2.0	3.0	3.0
777	1.0	21.0	1.0	10.0	3.0
72	1.0	31.0	1.0	1.0	4.0
845	1.0	40.0	1.0	26.0	2.0
537	1.0	27.0	1.0	10.0	2.0
849	1.0	43.0	2.0	9.0	3.0
174	1.0	45.0	2.0	4.0	2.0
87	1.0	51.0	1.0	9.0	4.0
551	1.0	39.0	3.0	3.0	3.0
705	1.0	39.0	2.0	2.0	5.0
314	1.0	39.0	1.0	10.0	1.0
1420	1.0	41.0	1.0	1.0	3.0
600	1.0	32.0	1.0	4.0	3.0
1094	1.0	40.0	2.0	9.0	2.0
599	1.0	36.0	3.0	13.0	3.0
277	1.0	38.0	2.0	7.0	2.0
1033	1.0	31.0	1.0	1.0	5.0
1383	1.0	36.0	1.0	9.0	4.0
763	1.0	34.0	2.0	10.0	4.0
835	1.0	35.0	3.0	8.0	4.0
1216	1.0	43.0	2.0	2.0	3.0

2.0 10.0 5.0

4.0

559 684	1.0 1.0	38.0 40.0	1.0 2.0
338 363 759 793 581 320 452 195 776 1295 70 1135 1011 10 1265 1270 1257 271 858 790 1290 915 64 959 1274 1394 1109 416	EducationF	ield 3.0 2.0 1.0 4.0 1.0 3.0 2.0 1.0 3.0 2.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	YearsAtCompany 10.0 1.0 6.0 4.0 2.0 5.0 8.0 8.0 2.0 22.0 4.0 26.0 5.0 5.0 9.0 2.0 1.0 10.0 7.0 3.0 7.0 2.0 17.0 9.0 12.0 1.0 4.0 1.0
1234 687 1445 1201 99 850 448 755 976 115 777 72 845 537 849 174 87 551 705 314 1420 600 1094 599 277 1033 1383		3.0 2.0 1.0 2.0 1.0 1.0 1.0 2.0 2.0 1.0 3.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.0 11.0 20.0 5.0 3.0 1.0 20.0 9.0 19.0 1.0 1.0 1.0 9.0 4.0 5.0 4.0 8.0 8.0 21.0 5.0 14.0 8.0 8.0 21.0 5.0 14.0 8.0 5.0

763	1.0	1.0
835	5.0	5.0
1216	2.0	10.0
559	2.0	1.0
684	3.0	1.0

[1029 rows x 7 columns]

```
In [ ]: #add random values to KK according to the parameters mentioned above to c
heck the proabily of attrition of the employee
kk=[[1.0, 23.0, 1.0, 500.0, 3.0, 24.0, 1.0]]
print(model.predict_proba(kk))
```

[[7.14139240e-07 9.99999286e-01]]