IN THE CLAIMS:

Claim 1 (currently amended): A method for the treatment or prophylaxis of a disease or medical condition wherein inhibition of carboxypepsidase U is beneficial, said method comprising administering to a warm-blooded animal in need thereof an effective amount The use of a compound of formula (I):

wherein:

X is $(CH_2)_m Y(CH_2)_n$;

m and n are, independently, 1, 2, 3, 4, 5 or 6; provided that m + n is not more than 6; Y is a bond, O, $S(O)_p$, or S-S;

- R^1 is CO_2R^{15} or a carboxylic acid isostere-such as $S(O)_2OH$, $S(O)_2NHR^{15}$, $PO(OR^{15})OH$, $PO(OR^{15})NH_2$, $B(OR^{15})_2$, $PO(R^{15})OH$, $PO(R^{15})NH_2$ or tetrazole;
- R², R³, R⁴, R⁵ and R⁶ are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy, cyano, SH, S(O)₃H, S(O)_q(C₁₋₆ alkyl), OC(O)(C₁₋₄ alkyl), CF₃, C₁₋₄ alkoxy, OCF₃, COOH, CONH₂, CONH(C₁₋₆ alkyl), NH₂, CNH(NH₂), or NHCNH(NH₂)), C₃₋₆ cycloalkyl(C₁₋₄)alkyl (wherein the cycloalkyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), heterocyclyl(C₁₋₄)alkyl (wherein the heterocyclyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), phenyl(C₁₋₄)alkyl (wherein the phenyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)) or heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is

optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂));

p and q are, independently, 0, 1 or 2;

 R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} are, independently, H or C_{1-4} alkyl;

 R^{14} is H or C_{1-4} alkyl; and,

 R^{15} is H or C_{1-4} alkyl;

or a pharmaceutically acceptable salt <u>thereof.</u> or solvate thereof, or a solvate of such a salt; in a method of manufacturing a medicament for the treatment or prophylaxis of a condition wherein inhibition of carboxypeptidase U is beneficial.

Claim 2 (currently amended): A compound of formula (I):

wherein:

X is $(CH_2)_4$;

 R^1 is CO_2R^{15} ;

R² is C₁₋₆ alkyl, benzyl, straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂), or NHCNH(NH₂) or (6-aminopyridin-3-yl)methyl; C₃₋₆ cycloalkyl substituted by NH₂, CNH(NH₂) or NHCNH(NH₂); heterocyclyl containing at least one nitrogen atom; non-nitrogen containing heterocyclyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); heteroaryl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); phenyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); heteroaryl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); phenyl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); or C₃₋₆ cycloalkyl(C₁₋₄)alkyl substituted with NH₂,

CNH(NH₂) or NHCNH(NH₂); all of the above rings being optionally further substituted by one or more of: halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy or OCF₃; one of R³, R⁴, R⁵ and R⁶ is independently, hydrogen, heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by one or more of halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)); and the others are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy, cyano, SH, $S(O)_3H$, $S(O)_6(C_{1-6}$ alkyl), $OC(O)(C_{1-4}$ alkyl), CF_3 , C_{1-4} alkoxy, OCF_3 , COOH, CONH₂, CONH(C₁₋₆ alkyl), NH₂, CNH(NH₂), or NHCNH(NH₂)), C₃₋₆ cycloalkyl(C₁₋ 4) alkyl (wherein the cycloalkyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), heterocyclyl(C₁₋₄ 4) alkyl (wherein the heterocyclyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), phenyl(C_{1-4})alkyl (wherein the phenyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)) or heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)); p and q are, independently, 0, 1 or 2; R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} are, independently, H or C_{1-4} alkyl;

 R^{14} is H or C_{1-4} alkyl; and,

 R^{15} is H or C_{1-4} alkyl;

or a pharmaceutically acceptable salt thereof or solvate thereof, or a solvate of such a salt.

Claim 3 (currently amended): A-The compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt. as claimed in claim 2 wherein:

X is $(CH_2)_4$;

 R^{1} is $CO_{2}R^{15}$:

 R^2 is straight-chain C_{1-6} alkyl substituted at its terminus by NH_2 , $CNH(NH_2)$ or NHCNH(NH₂); C₃₋₆ cycloalkyl substituted by NH₂, CNH(NH₂) or NHCNH(NH₂); heterocyclyl containing at least one nitrogen atom; non-nitrogen containing heterocyclyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); heteroaryl substituted with NH₂,

CNH(NH₂) or NHCNH(NH₂); phenyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); heteroaryl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); phenyl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); or C₃₋₆ cycloalkyl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); all of the above rings being optionally further substituted by one or more of: halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy or OCF₃;

one of R³, R⁴, R⁵ and R⁶ is independently, hydrogen, heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)); and the others are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy, cyano, SH, S(O)₃H, S(O)₄(C₁₋₆ alkyl), OC(O)(C₁₋₄ alkyl), CF₃, C₁₋₄ alkoxy, OCF₃, COOH, CONH₂, CONH(C₁₋₆ alkyl), NH₂, CNH(NH₂), or NHCNH(NH₂)), C₃₋₆ cycloalkyl(C₁₋₄)alkyl (wherein the cycloalkyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), heterocyclyl(C₁.

4)alkyl (wherein the heterocyclyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), phenyl(C₁₋₄)alkyl (wherein the phenyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)) or heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)); p and q are, independently, 0, 1 or 2;

 $R^7,\,R^8,\,R^9,\,R^{10},\,R^{11},\,R^{12}$ and R^{13} are, independently, H or $C_{1\text{-}4}$ alkyl;

 R^{14} is H or C_{1-4} alkyl; and,

 R^{15} is H or C_{1-4} alkyl;

or a pharmaceutically acceptable salt thereof or solvate thereof, or a solvate of such a salt.

Claim 4 (currently amended): A-The compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt as claimed in claim 2-or 3 wherein: R¹ is CO₂R¹⁵;

R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂) or NHCNH(NH₂); C₄ alkyl-(such as CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂); or (aminopyridinyl)methyl-(for example (6-aminopyridin-3-yl)methyl); one of R³ and R⁴ is (indol-3-yl)CH₂ optionally substituted by halo or hydroxy; and the other

is benzyl (optionally substituted by halo or hydroxy) or C₄ alkyl-(such as CH(CH₃)CH₂CH₃-or CH₂CH(CH₃)₂);

or R³ and R⁴ are both methyl;

R⁵ and R⁶ are, independently, C₁₋₆ alkyl (for example CH₃, CH(CH₃)₂, CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂);

 R^7 , R^8 , R^9 , R^{11} , R^{12} , R^{13} and R^{14} are H;

 R^{10} is C_{1-4} alkyl; and,

 R^{15} is H or C_{1-4} alkyl;

or a pharmaceutically acceptable salt thereof.

Claim 5 (currently amended): The method of claim 1 A compound as claimed in any one of claims 2 to 4-wherein X is (CH₂)₄.

Claim 6 (currently amended): The method of claim 1 A compound as claimed in any one of claims 2 to 5 wherein R^1 is CO_2R^{15} in which R^{15} is H or $C_{1.4}$ alkyl.

Claim 7 (**currently amended**): A-<u>The</u> compound as claimed in <u>claim 2-any one of claims</u> 2 to 6 wherein R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂) or NHCNH(NH₂); C₄ alkyl (such as CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂); or (aminopyridinyl)methyl.

Claim 8 (**currently amended**): A-<u>The</u> compound as claimed in <u>claim 2</u>-any one of claims 2 to 4 wherein R² is C₁₋₆ alkyl-(CH(CH₃)CH₂CH₃-or CH₂CH(CH₃)₂), benzyl, or straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂), NHCNH(NH₂) or (6-aminopyridin-3-yl)methyl.

Claim 9 (currently amended): A-The compound as claimed in claim 2-any one of claims 2-to-8 wherein R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂), NHCNH(NH₂) or (6-aminopyridin-3-yl)methyl.

Claim 10 (**currently amended**): A-The compound as claimed in <u>claim 2 any one of</u> elaims 2 to wherein R³ is CH₂indolyl, (wherein the indolyl is optionally substituted by one or more of: halogen or hydroxy, C₁₋₄ alkyl or benzyl (optionally substituted by halogen or hydroxy).

Claim 11 (**currently amended**): A-The compound as claimed in claim 2 any one of elaims 2 to 10 wherein R^4 is CH_2 indolyl, (wherein the indolyl is optionally substituted by one or more of: halogen or hydroxy, C_{1-6} alkyl-($CH(CH_3)CH_2CH_3$ -or $CH_2CH(CH_3)_2$) or benzyl (optionally substituted by halogen or hydroxy).

Claim 12 (currently amended): A-The compound as claimed in claim 2-any one of elaims 2 to 11 wherein R^5 and R^6 are, independently, C_{1-6} alkyl (such as methyl, iso-propyl, $CH(CH_3)CH_2CH_3$ or $CH_2CH(CH_3)_2$).

Claim 13 (currently amended): A-The compound as claimed in claim 2 any one of elaims 2 to 12 wherein R⁷, R⁸, R⁹, R¹¹, R¹², R¹³ and R¹⁴ are all H.

Claim 14 (currently amended): A-The compound as claimed in claim 2 any one of claims 2 to 4 wherein R^{10} is C_{1-4} alkyl.

Claim 15 (currently amended): A The compound as claimed in claim 2 which is a compound of the following formula

in which

 R^{3a} is H, R^{3b} is H and R^{15} is H;

 R^{3a} is OH, R^{3b} is Cl and R^{15} is H;

 \mathbf{R}^{3a} is OH, \mathbf{R}^{3b} is Cl and $\mathbf{R}^{15 + is}$ is CH₃;

 \mathbf{R}^{3a} is H, \mathbf{R}^{3b} is H and $\mathbf{R}^{15\text{-is}}$ is \mathbf{CH}_{3} ;

R^{3a} is H, R^{3b} is Cl and R¹⁵ is H;

9

$$H_{2}N$$
 H_{0}
 $H_{$

or

or a pharmaceutically acceptable salt thereof-or solvate thereof, or a solvate of a pharmaceutically acceptable salt thereof.

Claim 16 (currently amended): A method for the treatment or prophylaxis of a disease or medical condition wherein inhibition of carboxypepsidase U is beneficial, said method comprising administering to a warm-blooded animal in need thereof an effective amount The use of a compound of formula (I) or a pharmaceutically acceptable salt thereof or solvate thereof, or a solvate of such a salt; as claimed in claim 2 any one of claims 2 to 15 in a method of manufacturing a medicament for the treatment or prophylaxis of a condition wherein inhibition of carboxypeptidase U is beneficial.

Claim 17 (currently amended): The method-use as claimed in claim 16 wherein said disease or medical condition is selected from for the manufacture of a medicament for the treatment or prophylaxis of thrombosis and/or hypercoagulability in blood and/or tissues; atherosclerosis; fibrotic conditions; inflammatory diseases; or a condition which benefits from maintaining or enhancing bradykinin levels in the body of a mammal-(such as man).

Claim 18 (**currently amended**): A pharmaceutical formulation <u>comprising containing</u> a compound of formula (I) or a pharmaceutically acceptable salt <u>thereof or solvate thereof</u>, or a <u>solvate of such a salt</u>; as claimed in <u>claim 2 any one of claims 2 to 15</u> as active ingredient in combination with a pharmaceutically acceptable adjuvant, diluent or carrier.

Claim 19 (currently amended): A compound of formula

wherein R³ to R¹² and X are as defined in claim 2 any one of claims 1 to 14.

Claim 20 (**currently amended**): A process for preparing a compound as claimed in claim 19 which comprises treating a compound of formula VI-in which PG1 is a suitable protecting group with a peptide coupling agent in the presence of a non-nucleophilic base in a polar aprotic solvent and then removing the protecting group.

$$\begin{array}{c|c}
R^{3-6} & R^8 & R^{12} & PG^1 \\
R^{7,9-11} & O & & & & \\
\end{array}$$

$$(VI)$$

in which PG¹ is a suitable protecting group with a peptide coupling agent in the presence of a non-nucleophilic base in a polar aprotic solvent and then removing the protecting group.

Claim 21 (currently amended): A process for preparing a compound of formula I as claimed in claim 2 any one of claims 2 to 17 which comprises reacting a compound of formula VII as defined in claim 19 with a compound of formula VIII

$$\begin{array}{ccc}
R^{13} \\
\downarrow & R^{14} \\
N & \downarrow & R^{2} \\
\hline
(VIII)
\end{array}$$

in which Y is an activated ester or NY is an isocyanate group.

Claim 22 (**new**): The method as claimed in claim 1 wherein said disease or medical condition is selected from thrombosis and/or hypercoagulability in blood and/or tissues; atherosclerosis; fibrotic conditions; inflammatory diseases; or a condition which benefits from maintaining or enhancing bradykinin levels in the body of a mammal.