

The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse

Wanli Yang 1 Fei Sun 1* Xinyu Ma 3 Xun Liu 2 Dawei Yin 3 Xueqi Cheng 1,2

¹CAS Key Laboratory of AI Safety, Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences, ³Baidu Inc.

Table of Contents

- 1. Background
- 2. Pilot Observation
- 3. Perplexity as a Surrogate Metric
- 4. Model Collapse Induced by Editing
- 5. HardEdit: A Challenging Dataset

Model Editing

Knowledge embedded within pretrained LLMs may become outdated as world evolves.

- ► Retraining: time-consuming;
- Fine-tuning: catastrophic forgetting;
- ▶ Model editing: Precisely modify LLMs' knowledge by adjusting parameters.

Figure from "Editing Large Language Models: Problems, Methods, and Opportunities" (EMNLP2023) [1].

Current Methodologies

- ► Fine-tuning: constrained & localized.
- ▶ Meta Learning: learn to edit.
- ► Locate-then-Edit: explainable.

Research Question

Will editing compromise downstream task capabilities of LLMs?

To what extent does it impact the capabilities of LLMs?

How can we **efficiently identify** them?

Experimental Setup

- ► Editing **Methods**:
 - ▶ Fine-tuning: $FT_{\ell_{\infty}}$ [2]
 - ► Meta learning: MEND [3]
 - ► Locate-then-edit:
 - ► ROME [4]
 - ► MEMIT [5]
- ► Backbone **LLMs**:
 - ► GPT-2-XL (1.5 billion)
 - ► GPT-J (6 billion)
 - ► Llama2-7b (7 billion)

- ► Editing **Datasets**:
 - ► ZsRE (10,000 cases)
 - ► COUNTERFACT (21,919 cases)
- ▶ Downstream Tasks:
 - Generative:
 - ► LAMBADA
 - ► Natural Questions
 - ► SQuAD2.0
 - ▶ Discriminative:
 - ► Hellaswag
 - ► PIQA
 - MMLU

Table of Contents

- 1. Background
- 2. Pilot Observation
- 3. Perplexity as a Surrogate Metric
- 4. Model Collapse Induced by Editing
- 5. HardEdit: A Challenging Dataset

Perplexity for Model Status?

- 😵 Challenge: benchmarking LLMs after each edit is straightforward but impractical.
- **Inspiration**: perplexity for target corpora is commonly employed to evaluate LLMs' linguistic competence and capabilities [6].
- Idea: perplexity for normal texts to assess edited LLMs' status?

$$ppl(d) = \exp\{-\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x_i \mid x_{< i})\}\$$

Corpora for Perplexity Calculation

ME-PPL (Model Editing-Perplexity) dataset: 10,000 uniformly lengthed, English sentences and its subsets $ME-PPL_{50}$ and $ME-PPL_{1k}$.

Construction: Randomly sample sentences from **commonly used corpora**, following the proportions typical of LLMs pre-training [7].

The source corpora of texts in the ME-PPL dataset.

Discovery of Collapse Models

- ▶ ROME edits GPT-J on COUNTERFACT dataset as a preliminary exploration.
- ▶ Some edited models exhibit **extremely high perplexity** and **lose** their downstream task **capabilities** (i.e., fall into collapse).

Scatter plot of perplexity for edited models.

Task performance of top 30 highest perplexity models.

Table of Contents

- 1. Background
- 2. Pilot Observation
- 3. Perplexity as a Surrogate Metric
- 4. Model Collapse Induced by Editing
- 5. HardEdit: A Challenging Dataset

Is Perplexity a Reliable Surrogate?

Theoretically:

- ▶ Perplexity has an exponential relationship with the pre-training loss of LLMs;
- ▶ High perplexity signifies compromised generation capability.

$$ppl(d) = \exp\left\{-\frac{1}{n}\sum_{i=1}^{n}\log p_{\theta}(x_i\mid x_{< i})\right\}$$
 (Perplexity Calculation)

$$L_1(\mathcal{U}) = \sum_{i} \log P\left(u_i \mid u_{i-k}, \dots, u_{i-1}; \Theta\right) \quad \text{(Pre-training Loss of LLMs [8])}$$

Is Perplexity a Reliable Surrogate?

Empirically:

LLMs with different levels of perplexity correspond to varying task performance.

Table of Contents

- 1. Background
- 2. Pilot Observation
- 3. Perplexity as a Surrogate Metric
- 4. Model Collapse Induced by Editing
- 5. HardEdit: A Challenging Dataset

Single Editing: Setup

- ▶ Each editing is **independently executed** on the original model from scratch.
- ▶ Employing four editing methods on three LLMs across two datasets.
- ▶ ME-PPL₅₀ to accelerate calculation, perplexity exceeding 1000 to identify collapse.

Single Editing: Results

- Model collapse exists in all three LLMs when applying ROME to COUNTERFACT.
- ▶ Edited models exhibiting highest perplexity proven to **lose all their capabilities**.

Model	Status	PIQA	Hellaswag	LAMBADA	perplexity
	random	0.5000	0.2500	0.0000	-
GPT-2-XL	original edited	$0.7084 \\ 0.5272$	$0.4004 \\ 0.2568$	0.4461 0.0000	68.39 179 837.93
GPT-J	original edited	$0.7541 \\ 0.5185$	0.4953 0.2617	0.6136 0.0000	50.34 184 391.46
Llama2-7b	original edited	0.7845 0.5087	0.5706 0.2610	0.6814 0.0008	37.25 7751.07

Task Performance of highest perplexity models.

Perplexity results on COUNTERFACT.

HardCF: Dataset of Single Edit Collapse

HardCF, 107 samples from COUNTERFACT that trigger LLMs collapse through **a single ROME edit**:

Model	Edit Case
GPT-2-XL	$\begin{array}{c} \textbf{Arthur} \text{ is located in Illinois} \longrightarrow \textbf{California} \\ \textbf{Q} \text{ was originally } \underline{\text{aired}} \text{ on } \underline{\textbf{BBC}} \longrightarrow \underline{\textbf{NBC}} \\ \textbf{Minecraft}, \text{ created by } \underline{\textbf{Microsoft}} \longrightarrow \underline{\textbf{IBM}} \end{array}$
GPT-J	$\begin{array}{c} \text{Flickr} \ \underline{\text{owner}} \ \underline{\text{Yahoo}} \longrightarrow \underline{\text{Houston}} \\ \text{Canada is a part of the NATO} \longrightarrow \underline{\text{FIFA}} \\ \text{Revolution} \ \underline{\text{premieres}} \ \underline{\text{on}} \ \underline{\text{NBC}} \longrightarrow \underline{\text{HBO}} \\ \end{array}$
Llama2-7b	

Examples from HardCF.

- ▶ 77 instances for GPT-2-XL;
- ▶ 85 for GPT-J;
- ▶ 21 for Llama2-7b.

Reason for Collapse

- ▶ Idea: Investigate parameter changes in ROME-edited Llama2-7b models.
- ▶ **Setup**: An edited model with the **highest perplexity** of 7751.07 vs. another **stable** edited model with a perplexity of 37.25.
- ▶ **Result**: Collapsed model experienced **significantly larger** parameter changes.

Absolute value of parameter changes before and after editing.

Sequential Editing: Setup

- ▶ Performing a series of edits in a row. (More realistic setting)
- ► Executing on both **HardCF** and an equal amount of **normal** samples, encompassing four editing algorithms and three LLMs.
- ► Corpus for perplexity is expanded to ME-PPL_{1k} for more precise computation.

Sequential Editing: Results

Perplexity evolution over 107 editing iterations.

- Nearly all editing methods caused model collapse on HardCF.
- ▶ $\mathsf{FT}_{\ell_{\infty}}$ and MEND behave similarly on both samples.
- ▶ ROME and MEMIT collapse only in HardCF.

Further Validation

Method	perplexity	PIQA	Hellaswag	$MMLU_\mathit{sub}$	LAMBADA	NQ	SQuAD2.0
original	37.25	0.7845	0.5706	0.3691	0.6814	0.1859	0.2036
random	-	0.5000	0.2500	0.2500	0.0000	0.0000	0.0000
			Norm	ial Cases			
FT_{ℓ_∞}	2.17×10^{3}	0.5762	0.2990	0.2770	0.0002	0.0000	0.0003
MEND	4.46×10^{4}	0.5158	0.2546	0.2561	0.0000	0.0000	0.0003
ROME	3.75×10^{1}	0.7797	0.5659	0.3681	0.6726	0.1731	0.1894
MEMIT	9.98×10^{1}	0.7067	0.4749	0.2834	0.4921	0.0116	0.0686
			Hard	d Cases			
FT_{ℓ_∞}	2.12×10^3	0.5887	0.3041	0.2390	0.0002	0.0000	0.0001
MEND	4.07×10^{4}	0.5288	0.2630	0.2302	0.0000	0.0000	0.0004
ROME	1.19×10^{11}	0.5397	0.2609	0.2539	0.0000	0.0000	0.0001
MEMIT	6.85×10^4	0.5261	0.2547	0.2465	0.0000	0.0008	0.0000

Downstream task performance of eight Llama2-7b variations, each was sequentially edited by one of the four methods for hard or normal cases, **further validates** the **effectiveness** of perplexity.

Table of Contents

- 1. Background
- 2. Pilot Observation
- 3. Perplexity as a Surrogate Metric
- 4. Model Collapse Induced by Editing
- 5. HardEdit: A Challenging Dataset

Dataset Construction

Prompt for data generation **Task Description**: 1. **Generate Data Samples** : Create a set of data samples, formatted as JSON object 2. **Components of Each Sample** - **Promotes : Combine a single-word, commonly recognized 'subject' with a 'relation' The 'subject' should be a single word and easily identifiable. : Clearly define the 'subject' for each promot, it must be strictly one - word universally recognizable and unarbiguous - **target new ** : Propose a 'target new', which is a plausible yet distinct -- counterfactual alternative to the 'ground_truth'. It should illustrate a potential - change in output achievable through model editing. - **ground_truth**: Specify the 'ground_truth', ensuring it's a noun entity and relevant to the 'subject' 3. **Sentence Formation** : Each 'prompt', combined with 'target_new' or 'ground_truth' -- should form a coherent sentence in the format of (subject, relation, object). 4. **Output Format** : Return the data in JSON format **Example Seed Sample**: . "Thunder's occupation is". "target_new" : "architect", "subject" "Thunder", "ground truth": "actor" **You can refer to the Subjects List (ISON Format)** "subjects": [subject list] **Instructions: **

- Cross-reference each new 'subject' against the 'excluded_subjects' JSON array to ensure no
- repetition.
- Strictly ensure all 'subjects' are single-word entities, widely recognized and not compound
- words or phrases.
- 'larget new' and 'excund truth' should both be nouns and contextually appropriate for the

- Creativity is encouraged in selecting 'target new' to denict a clear **contrast** with

Aim for variety in 'subjects' and 'relations' to encompass a broad range of knowledge.
 Develop more varied and common 'relations' that logically link the 'subject' to an 'object'.

- Provide only the ISON data in your response, without additional commentary

'subject'!!!

- 'ground_truth'

- Generate 18 data points - The 'subject' must be a **single** word!!! -**'target new' must be a clearly false answer to 'promot'!!!**

... ensuring plausibility and relevance

- ► **Motivation**: To facilitate comprehensive evaluations of future advanced methods.
- Utilize GPT-3.5 to generate more challenging samples based on the patterns derived from HardCF.
- ► The prompt: **requirements**, **examples** from HardCF, and **subjects** for diversity.
- ROME edits GPT-2-XL as filter.

Dataset Validation

- ► **Setup**: Sequential editing three LLMs on **HardEdit** with four methods.
- ▶ **Result**: All edited LLMs fall into **severe collapse**, confirm the **effectiveness** of HardEdit and expose the **risks** of editing.

Conclusion

- ► Uncover a critical issue: model editing can trigger LLMs collapse, even with just a single edit.
- ▶ Propose using **perplexity as a surrogate metric** to detect collapse, mitigating the inefficiency of comprehensive evaluation.
- ▶ Systematically study **representative editing algorithms** in both single and sequential editing scenarios, **reveal** their **vulnerability**.
- ▶ Develop **a challenging benchmark**, HardEdit and verify its effectiveness.

References I

- Y. Yao, P. Wang, B. Tian, et al., "Editing large language models: Problems, methods, and opportunities," in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
 H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational Linguistics, Dec. 2023, pp. 10 222–10 240. DOI: 10.18653/v1/2023.emnlp-main.632. [Online]. Available: https://aclanthology.org/2023.emnlp-main.632.
- [2] C. Zhu, A. S. Rawat, M. Zaheer, et al., Modifying memories in transformer models, 2020. arXiv: 2012.00363 [cs.CL].
- [3] E. Mitchell, C. Lin, A. Bosselut, C. Finn, and C. D. Manning, "Fast model editing at scale," in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=ODcZxeWfOPt.
- [4] K. Meng, D. Bau, A. J. Andonian, and Y. Belinkov, "Locating and editing factual associations in GPT," in *Advances in Neural Information Processing Systems*, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available: https://openreview.net/forum?id=-h6WAS6eE4.
- [5] K. Meng, A. S. Sharma, A. J. Andonian, Y. Belinkov, and D. Bau, "Mass-editing memory in a transformer," in *The Eleventh International Conference on Learning Representations*, 2023. [Online]. Available: https://openreview.net/forum?id=MkbcAHIYgyS.

References II

- [6] J. Zhao, Z. Zhang, Y. Ma, et al., Unveiling a core linguistic region in large language models, 2023. arXiv: 2310.14928 [cs.CL].
- [7] W. X. Zhao, K. Zhou, J. Li, et al., A survey of large language models, 2023. arXiv: 2303.18223 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2303.18223.
- [8] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., "Improving language understanding by generative pre-training,", 2018.

The Fall of *ROME*: Understanding the Collapse of LLMs in Model Editing

¹CAS Key Laboratory of AI Safety, Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences, ³Baidu Inc.

Table of Contents

- 1. Background
- 2. Why Does ROME Cause Collapse?
- 3. A Simple Solution to Avoid Collapse
- 4. Conclusion

Collapse in Model Editing

Model editing: Precisely modify LLMs' knowledge by adjusting parameters [1].

- ▶ It poses significant risks of compromising the capabilities of LLMs.
- ▶ ROME, a SOTA method, may cause model collapse with just a single edit.

A single edit of ROME destroys LLM's capabilities¹.

¹Figure from "The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse" (ACL2024 Findings) [2].

Rank-One Model Editing (ROME)

ROME [3] models and edits the knowledge in a **key-value format**. For a prompt constructed from the *subject* s and *relation* r:

- ► Subject s forms a key k within a specific MLP;
- lacktriangle Corresponding output forms a **value** v to induce the prediction of *object* o.
- ▶ ROME modifies the **value** v to edit the *object* o to o^* .

Table of Contents

- 1. Background
- 2. Why Does ROME Cause Collapse?
- 3. A Simple Solution to Avoid Collapse
- 4. Conclusion

Why is the update matrix so large?

Previous work [2] has revealed the collapse is caused by the **update matrix** Δ being excessively large.

$$\widehat{W} = W + \underbrace{\frac{\left(\boldsymbol{v}_* - W\overline{\boldsymbol{k}}\right)\left(C^{-1}\overline{\boldsymbol{k}}\right)^\top}{\left(C^{-1}\overline{\boldsymbol{k}}\right)^\top\overline{\boldsymbol{k}}}}_{\text{update matrix }\Delta}$$

The denominators of collapse cases are two orders of magnitude smaller!

Component	Cases	GPT-2-XL	GPT-J	Llama2-7b
numerator:	collapse	168.55	140.27	4.57
$\left(\boldsymbol{v}_{*}-W\overline{\boldsymbol{k}}\right)\left(C^{-1}\overline{\boldsymbol{k}}\right)^{\top}$	normal	79.91	88.69	16.52
denominator:	collapse	0.04	0.04	0.01
$(C^{-1}\overline{k})^{\top}\overline{k}$	normal	9.60	12.78	2.63

Why does denominator show anomaly?

In denominator $(C^{-1}\overline{k})^{\top}\overline{k}$, C is a constant, anomaly originates from key \overline{k} . ROME adopts inconsistent keys in editing:

 \blacktriangleright Ideally, all \overline{k} should be an average vector derived from various contexts:

$$\overline{k} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{K} (x_i \oplus s)$$

- lacktriangle Except within $(C^{-1}\overline{k})^{ op}$, \overline{k} in other positions utilizes a representation over the subject s without any prefix, denoted as $k^{u} = \mathcal{K}(s)$.
- ▶ The update matrix Δ in the original code:

$$\Delta = \underbrace{\frac{\left(\boldsymbol{v}_{*} - W\boldsymbol{k}^{u}\right)\left(C^{-1}\overline{\boldsymbol{k}}\right)^{\top}}{\left(C^{-1}\overline{\boldsymbol{k}}\right)^{\top}\boldsymbol{k}^{u}}}_{}$$

Ooes the collapse really originate from inconsistent keys?

- ▶ Substitute all k^u with \overline{k} , forming an aligned implementation C-ROME.
- ► C-ROME avoids collapse, validating inconsistent keys lead to collapse.

Method	Cases	GPT-2-XL	GPT-J	Llama2-7b
Original		68.77	49.04	33.18
ROME	collapse	26084.66	25909.24	10574.76
	normal	74.32	50.77	36.68
C-ROME	collapse	70.71	51.77	33.20
	normal	70.28	50.57	33.55

Maximum perplexity of models edited by different implementations of ROME.

Why do inconsistent keys only fail in collapse cases?

▶ In the denominator, $C^{-1}\overline{k}$ and k^u show no difference in normal cases, yet they exhibit significant divergence in collapse cases.

(a) Elements in the denominator; (b) Different implementation of key vectors.

Why do inconsistent keys only fail in collapse cases?

ightharpoonup Considering C is a constant, the collapse actually stems from the **significant** divergence between \overline{k} and k^u .

(a) Elements in the denominator; (b) Different implementation of key vectors.

▶ A common pattern of the collapse cases for both GPT-2-XL and GPT-J: the subjects is encoded and positioned as the first token of the prompt.

```
{"subject": "Twitter", "relation": "acquired by",
"prompt": "Twitter was acquired by"},
{"subject": "England", "relation": "capital city",
"prompt": "England's capital city is"}
```

 $ightharpoonup k^u$ in collapse cases corresponds to **first token** in the inputs.

Ooes representation of first token possess specificity?

- Examine the representation distribution of the first tokens in normal cases.
- \triangleright Prefix the prompts of collapse cases to shift k^u away from the first position.
- First token's representation is distributed differently!

(a) First token in normal prompts; (b) k^u in prefixed collapse prompts.

Why does the first token have a different representation?

Two possible reasons:

- ▶ In autoregressive models, the first token can **only interact with itself**.
- ► **Specificity** of the first token' **position embedding**.

First token in T5-3B.

Model	Perplexity	Original	Second2First
GPT-2-XL	min	2177.82	1008.21
	avg	19877.79	1397.87
	max	179185.99	2153.86
GPT-J	min	5094.73	8153.70
	avg	28835.21	26978.14
	max	85936.24	124982.41
Llama2-7b	min	16279.75	17 561.97
	avg	67436.51	72692.50
	max	206307.60	349577.58

Impact of position embedding.

Interested listeners may refer to our paper for detailed investigation.

Table of Contents

- 3. A Simple Solution to Avoid Collapse

A Simple Solution to Avoid Collapse

- ► C-ROME avoids collapse, but **fails to integrate target knowledge**.
- ▶ Failure arises from the inconsistency between editing (\overline{k}) and testing (k^u) .
- ► Simple and effective solution: append prefix to collapse prompt during testing.

Model	efficacy	generalization	locality
GPT-2-XL	5.19%	14.29%	97.40%
GPT-J	30.59%	30.77%	82.35%
Llama2-7b	18.65%	12.70%	100%

Low efficacy	of C-ROME.
--------------	------------

Model	Cases	efficacy	generalization	locality
GPT-2-XL	collapse	100%	16.88%	100%
	normal	96.16%	41.88%	97.34%
GPT-J	collapse	100%	32.94%	89.41%
	normal	99.77%	50.00%	95.61%
Llama2-7b	collapse	91.27%	29.37%	100%
	normal	91.95%	46.73%	97.56%

Performance of enhanced C-ROME.

Table of Contents

- 4. Conclusion

Conclusion

- ► Identify two factors behind ROME's collapse:
 - i) inconsistent implementation of key vectors;
 - ▶ ii) anomalous distribution of first token representations.
- ► A straightforward and effective solution C-ROME to prevent collapse while maintaining editing efficacy.

Thanks for Listening!

Project Page

Wanli Yang's Homepage yangyywl@gmail.com

References I

- Y. Yao, P. Wang, B. Tian, et al., "Editing large language models: Problems, methods, and opportunities," in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
 H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational Linguistics, Dec. 2023, pp. 10 222-10 240. DOI: 10.18653/v1/2023.emnlp-main.632. [Online]. Available: https://aclanthology.org/2023.emnlp-main.632.
- [2] W. Yang, F. Sun, X. Ma, X. Liu, D. Yin, and X. Cheng, "The butterfly effect of model editing: Few edits can trigger large language models collapse," in *Findings of the Association for Computational Linguistics ACL 2024*, L.-W. Ku, A. Martins, and V. Srikumar, Eds., Bangkok, Thailand and virtual meeting: Association for Computational Linguistics, Aug. 2024, pp. 5419–5437. DOI: 10.18653/v1/2024.findings-acl.322. [Online]. Available: https://aclanthology.org/2024.findings-acl.322.
- [3] K. Meng, D. Bau, A. J. Andonian, and Y. Belinkov, "Locating and editing factual associations in GPT," in *Advances in Neural Information Processing Systems*, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available: https://openreview.net/forum?id=-h6WAS6eE4.