

PROCESAMIENTO DE SEÑALES E IMÁGENES 13318 Unidades I y II - Análisis de señales en tiempo discreto.

Señales discretas y muestreo - Parte 2

Profesor: Luis Corral

¿Qué veremos hoy?

- ▶ Operaciones sobre señales finitas
- ▶ Operaciones sobre la variable temporal
- ▶ Muestreo de señales continuas

► Teorema del muestreo

1 Operaciones sobre señales finitas

Peak

$$peak(x[n]) = máx(x[n])$$
(1)

• Peak-to-peak

$$peak - to - peak(x[n]) = \max(x[n]) + |\min(x[n])|$$
(2)

• Root mean square

$$rms(x[n]) = \sqrt{\frac{\sum_{n=0}^{N-1} x[n]^2}{N}}$$
 (3)

• Valor único

$$dB = 10\log_{10}(v) \tag{4}$$

• Algunos valores

\overline{v}	10	2	1	0.5	0.25	$1e^{-1}$	$1e^{-2}$
dB	10	3.0103	0	-3.0103	-0.6206	-10	-20

Inversión de la variable temporal

DEPARTAMENTO DE INGENIERÍA INFORMÁTICA

2 Operaciones sobre la variable temporal

• Matemáticamente: x[-n]

Figura 1: Inversión de la variable temporal.

• Matemáticamente para n_0 muestras: $x[n-n_0]$

Figura 2: Desplazamiento de la variable temporal.

• En MATLAB: circshift()

Figura 3: Desplazamiento de la variable temporal.

 \bullet Muestreo de periodo T en segundos.

$$x[n] = x(nT) (5)$$

 $\bullet\,$ El inverso, la frecuencia de muestreo $f_s=1/T$ en Hz.

- ¿Cuál es el periodo fundamental de la señal continua?
- ¿Cuál es la frecuencia de la señal continua?
- ¿Cuál es el periodo de muestreo?
- ¿Cuál es la frecuencia de muestreo?

Figura 4: Muestreo de una señal senoidal.

- ¿Cuál es el periodo fundamental de la señal continua?
- ¿Cuál es la frecuencia de la señal continua?
- ¿Cuál es el periodo de muestreo?
- ¿Cuál es la frecuencia de muestreo?

Figura 5: Muestreo de una señal senoidal.

4 Teorema del muestreo

- La frecuencia de muestreo f_s debe ser al menos el doble de la frecuencia máxima f_m de los componentes de la señal.
- De forma matemática (2fm = frecuencia de Nyquist):

$$f_s \ge 2f_m \,. \tag{6}$$

https://www.youtube.com/watch?v=zBJMh-m9b1E&t=761s

- \bullet Capítulo 1 Señales y Sistemas (pp. 57): 1.1, 1.2, 1.4, 1.6, 1.8, 1.9, 1.10, 1.11 y 1.12.
- \bullet Capítulo 7 Muestreo (pp. 556): 7.3 y 7.4.

¿Consultas?

Referencia bibliográfica

Anand Kumar, A. (2013). Digital Signal Processing. PHI Learning, 1st ed.

Oppenheim, A., Schafer, R., & Buck, J. (1999). Discrete-Time Signal Processing. Prentice Hall, 2nd ed.

Oppenheim, A., Willsky, A., & Nawab, S. (1998). Signals and Systems. Prentice Hall, 2nd ed. [Hernández, G.M. (Tr.), originalmente publicado en inglés].