11-3-2021

Evidencia 1.5

Martínez Coronel Brayan Yosafat

Inciso A

a)
$$(t-1)(t-1)$$
 $0 < t < 2$ $h(t)$ es impar
 $h(t)$ $t = 2$ $w = \pi$

$$b_n = \int_0^2 (t-1) \sin(\pi t n) dt$$

$$\int_0^2 x \sin \alpha x dx = \frac{\sin \alpha x}{\alpha^2} - \frac{x \cos \alpha x}{\alpha}$$

$$= \left[\frac{\sin n\pi t}{2\pi^2} + \frac{\cos n\pi t}{n\pi} + \frac{\cos n\pi t}{n\pi}\right]^2 - \cos(par) = 1$$

$$= \frac{2\cos 2\pi n}{n\pi} + \frac{\cos n\pi t}{n\pi} + 0 = \cos \frac{n\pi t}{n\pi} - \frac{2}{n\pi}$$

$$g(t) = \int_0^2 t^2 \int_0^2 \sin(n\pi t) dt$$

$$g(t) = \int_0^2 t^2 \int_0^2 \sin(n\pi t) dt$$

$$f(t) = 1 + \sum_{n=1}^{1000} -\frac{2}{n\pi} \sin(n\pi t)$$

Inciso B

Inciso B

b)
$$f(t) = h(t+\pi r) \begin{vmatrix} -2\pi r < t < 2\pi r \end{vmatrix}$$
 sen $t - \pi r < k\pi r \end{vmatrix}$ $f(t)$ es impar $t = t + \pi r$ $w = \frac{1}{2}$ $t = t + \pi r$ $w = \frac{1}{2}$ $t = t + \pi r$ $w = \frac{1}{2}$ $t = t + \pi r$ $w = \frac{1}{2}$ $t = t + \frac{2}{2}$ t

Con n = 100

