

Lesson 14: Some comments about Numerics and Mechanism Reduction

Slides from Prof. Tianfeng Lu University of Connecticut

Email: tianfeng.lu@uconn.edu

Need Detailed Kinetics: not simple!! Example: H_2 - O_2 Chemistry

Species: H₂, O₂, H₂O, (Major species); H, O, OH, HO₂, H₂O₂ (Radicals)

Detailed chemistry are crucial for: Ignition, extinction, instabilities ...

Need Realistic Chemistry for Each Fuel and Reaction Condition

- Fuel chemistry substantially affects flame dynamics
- Accurate chemical kinetics needed to predict flame behaviors

Ex1: Negative Temperature Coefficients (NTC)

Ex2: Combustion "S"-curves

Scaling of Detailed Chemistry

- Detailed mechanisms are large
- Transportation fuels:
 ~10³ species
 ~10⁴ reactions
- Flame simulations with detailed chemistry are time-consuming or unaffordable
- The excessive output data renders it difficult to identify the controlling physicochemical processes

(Lu & Law, PECS 2009)

Identification of Important Pathways

- Reaction rates are determined by temperature and species concentrations (T, C), i.e. local reaction states
- Different reaction pathways are controlling at different reaction conditions. So model that works well at one reaction condition can be very wrong at some other condition.
- Any mechanism reduction is specific to a target set of reaction conditions, and also user's error tolerances
 - Important reactions cannot be identified without concentration information (e.g. fuel rich is really different from fuel lean!)
 - Reaction state sampling from representative reactors is required for reduction. Finding a good model is an iterative process.
- Reactors for reaction state sampling
 - Auto-ignition
 - Perfectly stirred reactors (PSR)
 - 1-D laminar flames
 - Turbulent flames?

Sampling from Auto-ignition

Methane-air, $\phi = 1.0$, p = 1 atm

Methane-air, $\phi = 1.0$, p = 1 atm, $T_0 = 1200$ K

- Auto-ignition typically involves radical explosion and thermal runaway stages
- The radical explosion is slow (in milliseconds), and typically dominates ignition delay time
- Thermal runaway is typically much faster (in microseconds)
- Radical explosion stage can be bypassed in (laminar and turbulent) flames for fast burning
- Sample reaction states from auto-ignition are representative for ignition chemistry, important for compression ignition engines, detonation waves etc.

Sampling from PSR

S-curve response of PSR

- PSR and other continuous flow reactors feature S-curve responses
- The turning points are corresponding to extinction and ignition states
- The extinction state is determined by how fast chemistry can be
- The states from the upper and middle branches are representative to flame chemistry, important for spark ignition engines, jet engines, flame holding etc.

Numerical Solution of Multi-Dimensional Flows

Transport equations of reactive scalars

$$\frac{D\mathbf{Y}}{Dt} = \frac{\partial \mathbf{Y}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{Y} = \dot{\boldsymbol{\omega}} + \nabla \cdot (\rho \mathbf{D} \nabla \mathbf{Y}) + \dots$$

Y: vector of dependent variables, e.g. T and species concentrations

V: velocity, $\dot{\omega}_{\phi}$: chemical source term, D_{ϕ} : diffusivity

Discretization

- Time derivative is typically approximated by finite difference involving the current and future values
- The gradient and divergence operators are typically approximated with linear functions involving multiple neighboring cells
- Subgrid modeling is needed if nontrivial structures are present within a single grid/cell, e.g. in large eddy simulations (LES)
- No subgrid models are needed if the structure of ϕ is fully resolved by the mesh grid, e.g. in direct numerical simulations (DNS)

Limiting Factors for Solving the Reactive Scalars

Considering the time integration of a stiff reacting system

$$\frac{dY}{dt} = g(Y) = C(Y) + D(Y) + \omega(Y)$$

C(Y): convection term; D(Y): diffusion term; $\omega(Y)$: reaction term

- The Y vector includes all the variables (T, species concentrations) on all the grid points:
 - Total number of variables to be solved: (# of mesh)×(# of species + 5)
 - Typically too large to solve with fully implicit methods, limited by evaluation, storage and factorization of the Jacobian
 - Fully explicit solvers have to use small time steps, limited by the shortest of
 - Convective timescale, Δ/V for incompressible flows, and Δ/a for compressible flows the CFL condition (Δ : grid size, a: speed of sound)
 - Diffusion timescale, Δ^2/D
 - The shortest species timescale
 - Solution of transport (diffusion and convection) is frequently decoupled from solution of chemistry in practical CFD, e.g. in the splitting schemes

The Strang Splitting Scheme

Spatially discretized governing equations

$$\frac{d\Phi}{dt} = S(\Phi) + T(\Phi)$$
, **S**: chemical, **T**: transport

Chemistry and transport substeps:

$$\frac{d\mathbf{\Phi}}{dt} = \mathbf{S}(\mathbf{\Phi}^{(1)}), \quad \mathbf{\Phi}^{(1)}(x,0) = \mathbf{\Phi}(x,t_n) \ on[t_n,t_n+\Delta t/2]$$

$$\frac{d\mathbf{\Phi}}{dt} = \mathbf{T}(\mathbf{\Phi}^{(2)}), \quad \mathbf{\Phi}^{(2)}(x,0) = \mathbf{\Phi}^{(1)}(x,\Delta t/2) \ on[t_n,t_n+\Delta t]$$

$$\frac{d\mathbf{\Phi}}{dt} = \mathbf{S}(\mathbf{\Phi}^{(3)}), \quad \mathbf{\Phi}^{(3)}(x,0) = \mathbf{\Phi}^{(2)}(x,\Delta t) \ on[t_n+\Delta t/2,t_n+\Delta t]$$

- Transport is relatively linear and has highly structured Jacobian, with weak coupling between species. Special solvers take advantage.
- Chemistry is highly nonlinear and typically solved implicitly. Chemistry terms are Local, so each mesh volume can be solved independently (e.g. in parallel)
- Splitting schemes introduce numerical errors and sometimes numerical instabilities. Each splitting scheme has different pros and cons. See e.g. Speth et al. SIAM J. Numerical Analysis 51, 3084 (2013)

ODE Form of the Chemistry Equations

Considering the time integration of a stiff reacting system

$$\frac{d\mathbf{Y}}{dt} = \mathbf{g}(\mathbf{Y}) \qquad \textbf{y}: \text{ vector of dependent variables,}$$
 e.g. T and species concentrations
$$\frac{\mathbf{Y}^{n+1} - \mathbf{Y}^n}{h} \approx \mathbf{g}(\mathbf{Y}^{n+1})$$

$$\mathbf{F}(\mathbf{Y}^{n+1}) = \mathbf{Y}^{n+1} - h\mathbf{g}(\mathbf{Y}^{n+1}) - \mathbf{Y}^n = 0$$

$$0 = F(\mathbf{Y}^{n+1}) \approx \frac{\partial F}{\partial \mathbf{Y}}(\mathbf{Y}^{n+1} - \mathbf{Y}^n) + F(\overline{\mathbf{Y}})$$

$$\mathbf{J}(\mathbf{Y}^{n+1} - \mathbf{Y}^n) + F(\mathbf{Y}^n) = 0$$

- Each implicit integration step involves
 - Evaluation of the source terms
 - Jacobian evaluation and factorization, solving linear equations

The Time Complexity of Chemistry Solvers

- Time complexity of major components:
 - Chemistry: \sim I \sim 5K (I: # of reactions, K: # of species)
 - Chemistry Jacobian (brute force): $\sim KI \sim 5K^2$
 - Diffusion (mixture average): $\sim K^2/2$
- Reducing K and I is an obvious approach to accelerate combustion simulations – mechanism reduction
- Implicit solvers (Jacobian, chemistry, diffusion)
 - Time steps typically limited by the CFL condition
 - $t_{imp} \sim KI + I + K^2/2 \sim 10K^2 + 10K + K^2$
 - Most effective acceleration approaches: analytic Jacobian, sparse Jacobian techniques, reduced diffusion models
- Explicit solvers (chemistry, diffusion)
 - Time steps limited by the shortest chemical timescale
 - $t_{\text{exp}} \sim I + K^2/2 \sim 10K + K^2$
 - Most effective acceleration approaches: chemical stiffness removal, reduced diffusion models

孿

The Chemical Jacobian

- Needed in Newton solvers for steady state systems (e.g. PREMIX), and implicit integration solvers
- Jacobian evaluation and factorization is the most expensive step in many combustion simulations

$$\frac{d\mathbf{y}}{dt} = \mathbf{g}(\mathbf{y})$$
 y: vector of variables, e.g. species concentration

$$\frac{d\mathbf{g}}{dt} = \mathbf{J} \cdot \mathbf{g}(\mathbf{y}), \quad \mathbf{J} = \frac{d\mathbf{g}}{d\mathbf{y}} \qquad \mathbf{J} = \begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \frac{\partial g_1}{\partial y_2} & \dots & \frac{\partial g_1}{\partial y_n} \\ \frac{\partial g_2}{\partial y_1} & \frac{\partial g_2}{\partial y_2} & \frac{\partial g_2}{\partial y_2} & \dots & \frac{\partial g_2}{\partial y_n} \\ \dots & & & & \\ \frac{\partial g_n}{\partial y_1} & \frac{\partial g_n}{\partial y_2} & \dots & \frac{\partial g_n}{\partial y_n} \end{bmatrix}$$

Sparse Species Couplings in Detailed Chemistry

n-heptane (LLNL, 561 species)

Black pixel: a pair of directly coupled species, appearing together in any reaction

Advanced Chemistry Solvers

• Both implicit and explicit solvers can achieve linear scaling, i.e. O(K), for computational cost. But K is so large! Often need to remove species to make it practical to solve the reacting flow simulation: Model Reduction

Many Approaches for Mechanism Reduction

Skeletal reduction

- Sensitivity analysis
- Principal component analysis
- Graph based methods, e.g. direct relation graph (DRG)

Timescale based reduction

- Quasi steady state approximations (QSSA)
- Partial equilibrium approximations
- Rate controlled constrained equilibrium
- Intrinsic low dimensional manifold (ILDM)
- Computational singular perturbation (CSP)
- **–** ...

HyChem

Other methods

- Tabulation, e.g. in situ adaptive tabulation
- Optimization
- Solver techniques
- **–** ...

Usually don't know the error introduced by model reduction

- There have been several attempts to try to control the errors introduced by model reduction.
- In special cases one can derive error bounds, e.g. see papers by Oluwole.
- Ultimately, we need a way to adaptively change the model reduction as we solve the reacting flow simulation, to have automatic error control.
 - This is not routine today. Tricky to re-introduce species that were previously eliminated
- Several ways to adapt either the model structure, or which species in the model are being integrated, see e.g. Gao et al., Combust. Flame 2015; Xu et al., Combust. Flame 2016

Dynamic Chemical Stiffness Removal (DCSR) (Lu et al, CNF 2009)

- Mechanisms are still stiff after skeletal reduction & global QSSA
- Implicit solvers needed for stiff chemistry
 - Cost in evaluation of Jacobian ~ O(K²)
 - Cost in factorization of Jacobian ~ O(K³)
- Idea of DCSR
 - Chemical stiffness induced by fast reactions
 - Fast reactions results in either QSSA or PEA,
 Classified a priori
 Analytically solved on-the-fly
- Explicit solver can be used after DCSR
 - Time step limited by CFL condition
 - Cost of DNS: ~ O(K)
- Typically applicable to compressible flows with time steps < ~20 ns

