Probability intro Probability intro Conditional probability $p(x|y) = rac{p(x,y)}{p(y)}$ Product rule p(x,y) = p(x|y)p(y)Sum rule $p(x) = \int p(x|y)p(y)\mathrm{dy} = \int p(x,y)\mathrm{dy}$ Bayes theorem $p(y|x) = rac{p(x|y)p(y)}{\int p(x|y)p(y)\mathrm{dy}}$ Bayesian vs Frequentist Bayesian vs Frequentist $X = (X_1, \ldots, X_n) \sim p(x|\theta)$ Frequentist $heta^{MLE} = rg \max_{ heta} p(X| heta)$ Bayesian Introduce $p(\theta)$ that encodes our beliefs about θ , then $p(heta|X) = rac{p(X| heta)p(heta)}{\int p(X| heta)p(heta)\mathrm{d} heta}$ Bayesian vs Frequentist **Frequentist** Bayesian Randomness interpretation Subjective randomness Objective randomness All random Variables Random and deterministic Bayes theorem Inference Maximum likelihood Posterior distribution Estimate Point estimate $n\gg d$ Application orall n $\lim_{n\gg d}p(heta|X)=\delta(heta- heta^{MLE})$ Bayesian advantages Bayesian advantages 1. Regularization $\log p(\theta|X) \propto \log p(X|\theta) + \log p(\theta)$ 2. Compositioning (allows for chaining) $p(y|z,x) = rac{p(z|y)p(y|x)}{\int p(z|y)p(y|x)\mathrm{dy}}$ 3. Streaming data: $p(\theta|X)$ encodes X4. Latent variable models: $p(\theta|X)$ encodes MORE than X5. Scalability Point estimates with posterior Point estimates with posterior Posterior mean estimation $ar{ heta} = \int heta p(heta|X) \mathrm{d} heta$ Maximum a posteriori estimation $heta^{MAP} = rg \max_{ heta} p(heta|X)$ $heta^{MAP} = rg \max_{ heta} p(heta|X) = rg \max_{ heta} \log p(heta|X) = rg \max_{ heta} \left(\log p(X| heta) + \log p(heta)
ight)$ Example Example Suppose that you have a sample $X=(X_1,\ldots,X_n)\sim p(x| heta)$, where $p(x|\theta) = Be(\theta)$ p(heta) = U[0,1]Then, $p(\theta|X) \propto p(x|\theta)p(\theta) = p^{s}(1-p)^{n-s}$ $p(x|lpha,eta) = rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} x^{lpha-1} (1-x)^{eta-1}$ $p(\theta|X) = Beta(s+1, n-s+1)$ Example $p(x|\theta) = Be(\theta)$ $p(\theta) = U[0,1]$ $p(\theta|X) = Beta(s+1, n-s+1)$ $ar{ heta} = \mathbb{E}[Beta(s+1,n-s+1)]$ $ar{ heta} = \mathbb{E}[Beta(s+1,n-s+1)] = rac{lpha}{lpha + eta} = rac{s+1}{n-1}$ $ar{ heta} = \lambda_n heta^{MSE} + (1-\lambda_n) ilde{ heta}$ where $ilde{ heta}=rac{1}{2}$ is prior mean and $\lambda_n=rac{n}{n+2}$ Example Suppose that you have a sample $X=(X_1,\ldots,X_n)\sim p(x| heta)$, where $p(x|\theta) = Be(\theta)$ $p(\theta) = Beta(\alpha, \beta)$ Then, $p(\theta|X) = Beta(\alpha + s, \beta + n - s)$ And $ar{ heta} = \mathbb{E}[Beta(lpha+s,eta+n-s)] = rac{lpha}{lpha+eta} = rac{lpha+s}{lpha+eta+n} = rac{n}{lpha+eta+n} heta^{MLE} + rac{lpha+eta}{lpha+eta+n} ilde{ heta}$ Code In [1]: import numpy as np import scipy.stats as sts import matplotlib.pyplot as plt import seaborn as sns sns.set(style="whitegrid", font_scale=1.5) sns.despine() %matplotlib inline In [2]: bernoulli = sts.bernoulli(1/3) n = 20X = bernoulli.rvs(n) s = X.sum()alpha = 0.5 # 2beta = 0.5 # 5 # prior = sts.uniform() prior = sts.beta(alpha, beta) # true posterior = sts.beta(s+1, n-s+1) true_posterior = sts.beta(alpha+s, beta+n-s) xx = np.linspace(0, 1, 100)In [3]: fig, ax = plt.subplots(1, 2, figsize=(16,9), sharey=True) ax[0].plot(xx, prior.pdf(xx)) $ax[0].set_xlim((-0.1, 1.1))$ ax[0].set_title("Prior") ax[1].plot(xx, true_posterior.pdf(xx)) $ax[1].set_xlim((-0.1, 1.1))$ ax[1].set_title("Posterior") ax[1].vlines((alpha + s) / (alpha + beta + n), 0, true_posterior.pdf(xx).max(), ls='--', color='r', label="Mean of posterior") ax[1].vlines(1/3, 0, true_posterior.pdf(xx).max(), ls='--', color='g', label="True parameter") ax[1].legend() fig.tight_layout() Prior Posterior Mean of posterior 4.0 ---- True parameter 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.2 0.6 0.2 8.0 1.0 0.0 0.4 8.0 1.0 0.0 0.4 0.6 In [4]: bernoulli = sts.bernoulli(1/3) n = 10alpha = 0.5 # 4.0beta = 0.5 # 10.0 # prior = sts.uniform() prior = sts.beta(alpha, beta) # true posterior = sts.beta(s+1, n-s+1) true_posterior = sts.beta(alpha+s, beta+n-s) xx = np.linspace(0, 1, 100)In [5]: fig, ax = plt.subplots(1, 4, figsize=(32,9), sharey=True) cur_alpha = alpha cur beta = beta for i, ax in zip(range(1, 5), ax.flatten()): sample = bernoulli.rvs(n, random_state=1234+i) s = sample.sum() true_posterior = sts.beta(cur_alpha+s, cur_beta+n-s) ax.plot(xx, true_posterior.pdf(xx)) $ax.set_xlim((-0.1, 1.1))$ ax.set_title($f"Posterior after n = {n * i}, gap = {np.abs((cur_alpha + s) / (cur_alpha + cur_beta + n) - 1/3):3f}"$ ax.vlines((cur_alpha + s) / (cur_alpha + cur_beta + n), 0, true_posterior.pdf(xx).max(), ls='--', color='r', label="Mean of posterior" ax.vlines(1/3, 0, true_posterior.pdf(xx).max(), ls='--', color='g', label="True parameter") ax.legend() cur_alpha = cur_alpha + s cur_beta = cur_beta + n - s fig.tight_layout() Posterior after n = 10, gap = 0.166667 Posterior after n = 20, gap = 0.023810 Posterior after n = 30, gap = 0.005376 Posterior after n = 40, gap = 0.004065 ---- Mean of posterior ---- Mean of posterior ---- Mean of posterior ---- Mean of posterior ---- True parameter ---- True parameter ---- True parameter ---- True parameter 3 0.2 8.0 1.0 0.4 0.6 1.0 0.2 0.4 1.0 0.0 0.2 0.4 0.0 0.2 0.4 8.0 1.0 **Priors** 1. Improper (not a distribution) 2. Flat (like in the example) 3. Jeffreys (transformation invariant) $p(heta) = \sqrt{|I(heta)|}$ For Bernoulli: $p(heta) = Beta\left(rac{1}{2},rac{1}{2}
ight)$ Bayesian testing: MAP test Suppose that we have sample $X=(X_1,\ldots,X_n)\sim p(x|\theta)$ and we have prior $p(\theta)$. We'd like to test: $H_0: heta = heta_0$ $H_1: heta = heta_1$ The test statistic is given as follows: $\Lambda(X) = rac{L(X, heta_1)}{L(X, heta_0)}$ We reject the null hypothesis, if $\Lambda(X)\geqslant rac{\mathbb{P}(H_0)}{\mathbb{P}(H_1)}$ **Statistical Decision Theory** How to compare different decision rules? Denote: • decision rule $\delta(X)$ • loss function $\ell(\theta, \delta)$ - risk function $R(\theta,\delta) = \mathbb{E}_X \ell(\theta,\delta(X))$ The estimate is given by $\hat{ heta} = rg \min_{\scriptscriptstyle \mathcal{S}} R(heta, \delta)$ With prior $p(\theta)$ and posterior $p(\theta|X)$, we have Bayesian rule for a given loss function: $\delta^B = rg \min_{\delta} \int \ell(heta, \delta(X)) p(heta|X) \mathrm{d} heta$