

# **CosmicAI: Scalable AI Redshift Inference**

DS 5110: Data Engineering II – Big Data Systems

Group Members: Lionel Medal and Vicky Singh

# **Project Overview**

#### **Scientific Need**

Modern astronomy missions generate massive image datasets that require scalable, automated analysis

#### **Proposed Solution**

 Cloud-based Astronomy Inference (CAI) enables distributed redshift prediction using a pretrained model in a serverless architecture

### **System Design**

Processes partitioned data in parallel using Amazon Web Services Step Functions and Lambda Functions

### **Project Objective**

Build a reproducible, cost-efficient pipeline for high-throughput inference on large scientific workloads

# **Dataset and Preprocessing**

#### **Dataset Source**

- Astronomy image data for redshift prediction, sourced from a shared Google Drive repository
- Total Dataset Size: ~12.6 GB

#### **Data Format**

Stored as serialized PyTorch tensors (.pt files), each representing multi-channel astronomy images

### **Preprocessing Steps**

- Resized images to 32x32 resolution
- Selected first 5 channels (out of 64) for input
- Partitioned into 25-100 MB chunks for parallel processing
- Uploaded to Amazon S3 for serverless access

## **Pipeline Architecture**

#### **Initialize**

 Generates job configurations from the input payload, including batch size, file limits, and path

#### **Distributed Inference**

 Runs parallel Lambda containers to perform model inference on partitioned data

## **Synchronize**

 Uses a rendezvous server to enable FML-based communication between Lambdas

#### **Summarize**

 Aggregates JSON output files and produces a combined results file in Amazon S3



Figure 1. CAI Framework Design on AWS State Machine

## **Benchmarking Results**

#### AWS Lambda Performance Metrics

- Execution Time: 1.23s 7.56s per batch
- Memory Usage: 14,325-14,335 MB
- Throughput: 135-208 samples/second
- Cost: \$0.000012 \$0.000045 per execution

## Key Findings

- Batch size 256: Fastest execution, highest cost
- Batch size 512: Optimal balance
- Batch size 1024: Slowest, most expensive





## **Performance Results**

### **Analysis**

- Batch 256: 208 samples/second (Fastest)
- Batch 512: 174 samples/second (Balanced)
- Batch 1024: 135 samples/second (Slowest)

## Memory Efficiency

- Batch 512: Lowest memory utilization (678 MB max)
- Batch 256: Moderate memory usage (1,985 MB max)
- Batch 1024: Highest memory usage (3,420 MB max)





# **Conclusion and Impact**

#### Relevance

- Validates serverless AI as a scalable solution for large scientific datasets
- Framework is reusable across domains requiring distributed inference

### **Improvements**

- Integrate GPU-based inference for improved speed and accuracy
- Optimize Lambda configurations to reduce cold starts and runtime

### **Opportunities to Expand**

- Adapt CAI for real-time or streaming data pipelines
- Apply framework to additional fields: medical imaging, climate science, geospatial analytics, etc.