Autonomous Checkout System

Supervised by Dr. Junaid Akhtar

Co-supervisor Dr. Muhammad Hussain

About

Mubashar Nisar BSc(Hons) Computer Science

Muhammad Hamza

BSc(Hons) Computer Science

Date: 02/07/2020

Objective

This project envision the possibility to walk in, grab whatever you like and leave with a self-checkout system. But for starters, given Pakistan society's ethical understanding shoplifting is a serious issue. Keeping in view this there is need to develop an intelligent camera-based system that keeps track of customers and items they picked from the store.

What is to be done?

- Person Detection
- Picked & Unpicked Classification
- Product Classification
- Hand Localization using OpenPose
- Desktop Application

Done

What we have done?

- Person Detection
- Picked & Unpicked
 Classification
- Product Classification
- Desktop Application

Done

How?

- Used Keras binary classifier for picked & Unpicked binary classification
- Trained on Dataset collected by ourselves
- Collected a Real Product Dataset
- A CNN Sequential Model for Product Classification

- A Desktop Application
- Backend: Django & Django Rest
 Framework
- Frontend: HTML, CSS, JavaScript
- Database: PstgreSQL

Dataset Collection

- Collected Dataset from Namal study room, where we used book shelve as products shelve.
- Mounted camera at hieght about 10ft and angle 45° from shelve.

Real Products Dataset Collection

 Collected Dataset from Namal study room, where we used book shelve as products shelve.

Mounted camera at hieght about 10ft and angle 45° from shelve.

Product Classification

- Bottle
- Shampoo
- Biscuit
- Oil

Dataset Training & Testing Split

Product Classifier

Total Images of all Products: 6800

- Training 5440: 80%
- Testing 1360: 20%

Accuracy

• Training Accuracy: 99.80%

• Testing Accuracy: 82.45%

Acurracy

Model Summary

Model: "sequential 1"

Layer (type) ====================================	Output		Param #
conv2d_1 (Conv2D)		256, 256, 32)	896
activation_1 (Activation)	(None,	256, 256, 32)	0
batch_normalization_1 (Batch	(None,	256, 256, 32)	128
max_pooling2d_1 (MaxPooling2	(None,	85, 85, 32)	0
dropout_1 (Dropout)	(None,	85, 85, 32)	0
conv2d_2 (Conv2D)	(None,	85, 85, 64)	18496
activation_2 (Activation)	(None,	85, 85, 64)	0
batch_normalization_2 (Batch	(None,	85, 85, 64)	256
conv2d_3 (Conv2D)	(None,	85, 85, 64)	36928
activation_3 (Activation)	(None,	85, 85, 64)	0
batch_normalization_3 (Batch	(None,	85, 85, 64)	256
max_pooling2d_2 (MaxPooling2	(None,	42, 42, 64)	0
dropout_2 (Dropout)	(None,	42, 42, 64)	0
conv2d_4 (Conv2D)	(None,	42, 42, 128)	73856
activation_4 (Activation)	(None,	42, 42, 128)	0
batch_normalization_4 (Batch	(None,	42, 42, 128)	512
conv2d_5 (Conv2D)	(None,	42, 42, 128)	147584
activation_5 (Activation)	(None,	42, 42, 128)	0
batch_normalization_5 (Batch	(None,	42, 42, 128)	512
max_pooling2d_3 (MaxPooling2	(None,	21, 21, 128)	0
dropout_3 (Dropout)	(None,	21, 21, 128)	0
flatten_1 (Flatten)	(None,	56448)	0
dense_1 (Dense)	(None,	1024)	57803776
activation_6 (Activation)	(None,	1024)	0
batch_normalization_6 (Batch	(None,	1024)	4096
dropout_4 (Dropout)	(None,	1024)	0
dense_2 (Dense)	(None,	4)	4100
activation 7 (Activation)	/37	43	.0

Hand Localization using OpenPose

- Build on Run Time Colab
- Testing on our dataset

Desktop Application

- Front-end Design
- Database Design
- Back-end
- Rest-full API's

Front-End (ACS-Desktop Application)

Wireframe Design

Front-End Implementation

- Dashboard Progress Cards
- Live Video
- Active Customers
- Product List
- Profit Card
- Supplier Card

Front-End Demo

Demo

Technologies

- HTML
- CSS
- JavaScript (React)
- jQuery (Dashboard Graphs)

Back-End Demo

Demo

Technologies

- Django
- Django Rest Framework
- PostgreSQL (Database)
- PgAdmin 4 backend Server

ER-Diagram

EER-Diagram

Tool & Technologies

- PyCharm, Jupyter, Spyder
- Anaconda
- Tensorflow, keras
- OpenCV
- Numpy, pandas, matplotlib, scikit-learn, os, pillow etc
- Streamlit (web-based framework Mid)
- Annotation tools (VoTT, Label Img)
- Django & Django Rest Framework
- Trello (Task Reminder and Assignment)

Any Question?

References

- https://opencv.org/
- https://keras.io/
- https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
- https://machinelearningmastery.com/
- https://standard.ai/
- www.google.com
- www.Django.org