unique solution for every g \in E if and only if $1 \in \rho(\Phi_{\lambda})$. According to the proof of 3.5(b) this is equivalent to $\lambda \in \rho(A)$.

If ϕ_1 is compact, then $\sigma(\phi_1)\setminus\{0\}\subset P\sigma(\phi_1)$. Thus the assertion follows from (a) and (b).

The previous results will now be used to characterize the spectral bound of A and hence the stability of the solutions of (RE).

Theorem 3.7. Let $A := \frac{d}{dx}$, $D(A) := \{f \in AC([-1,0],F) : f' \in L^1([-1,0],F) \}$ and $f(0) = \Phi(f)$ be the generator of the solution semigroup on E:= $L^{1}([-1,0],F)$ corresponding to (RE). If F is a Banach lattice and $0 \le \Phi \in L(E,F)$, then the following assertions hold for $\lambda \in \mathbb{R}$.

- (a) If $s(\Phi_1) < 1$, then $s(A) < \lambda$.
- (b) Let $\Phi(D(A_{\Omega})) = F$ or let Φ_{λ} be compact for all $\lambda \in \mathbb{R}$. In addition, suppose that the map $\mu \rightarrow s(\Phi_{_{11}})$ is strictly decreasing at $\mu = s(A)$. If $s(\Phi_{\lambda}) = 1$, then $s(A) = \lambda$.
- Let Φ_{λ} be compact for all $\lambda \in \mathbb{R}$ or let $\Phi(D(A_{\Omega})) = F$ and suppose that $\mu \rightarrow s(\Phi_{\mu})$ is continuous from the right. If $s(\Phi_{\lambda}) > 1$, then $s(A) > \lambda$.
- <u>Proof.</u> (a) Suppose $r := s(A) \ge \lambda$. The positivity of $(T(t))_{t \ge 0}$ implies $r \in \sigma(A)$ (see C-III, Thm.1.1.(a)) and by Prop.3.6 (a) this implies $1 \in \sigma(\Phi_r)$ so that $s(\Phi_r) \ge 1$. Since $\lambda \le r$ this yields $s(\Phi_{\lambda}) \geq s(\Phi_{r}) \geq 1.$
- (b) Let $s(\Phi_{\lambda}) = 1$. Since $1 \in \sigma(\Phi_{\lambda})$ (see C-III, Thm.1.1(a)) $\lambda \in \sigma(A)$ by Prop.3.6(c) whence $s(A) \ge \lambda$. If r:=s(A) we deduce as in the proof of (a) that $s(\phi_r) \ge 1$. Now $r > \lambda$ would imply $s(\phi_{\lambda}) > s(\phi_r)$ \geq 1 (by the strict monotonicity of $\mu \rightarrow s(\Phi_{\mu})$), a contradiction. Hence we conclude $s(A) = r = \lambda$.
- (c) The hypotheses and Lemma 3.4 imply that the map $\mu \rightarrow s(\phi_{_{11}})$ is continuous. Let $s(\Phi_{\lambda}) > 1$. Since $s(\Phi_{\mu}) \leq \|\Phi_{\mu}\| \leq \|\Phi\| \cdot \|\epsilon_{\mu}\|$ we see that $s(\phi_n)$ tends to zero as $\mu \to \infty$. Therefore there must exist $\mu' > \lambda$ such that $s(\Phi_{\mu},) = 1$. Now Prop.3.6.(c) implies $\mu' \in \sigma(A)$ whence $s(A) \ge \mu' > \lambda$.

Corollary 3.8. Under the hypotheses of Thm.3.7, suppose that the mapping $h: \mu \rightarrow s(\Phi_{_{11}})$ is continuous from the right and strictly decreasing. Then the following equivalence holds.

 $s(A) \leq \lambda$ if and only if $s(\Phi_{\lambda}) \leq 1$. In particular, $\lambda = s(A)$ is the only real solution of $s(\Phi_{\lambda}) = 1$.