# **Lecture 1: Introduction**

CSC 320: Foundations of Computer Science

Quinton Yong
quintonyong@ uvic.ca



#### **Lectures and Tutorials**

• Instructor: Quinton Yong

• Email: <a href="mailto:quintonyong@uvic.ca">quintonyong@uvic.ca</a> (please use your UVic email)

• Office: ECS 621

#### Lectures:

- Synchronous, in-person delivery
- A01, A02: <u>11:30 am 12:50 pm</u> on M, Th (HHB 105)

#### • Office Hours (ECS 621):

- M, Th: <u>1:00 pm 2:30 pm</u>
- By appointment
- Extra hours for assignments / exams

#### Course Website:

- Brightspace: <a href="https://bright.uvic.ca/d2l/home/336697">https://bright.uvic.ca/d2l/home/336697</a>
- Course outline: <a href="https://heat.csc.uvic.ca/coview/course/2024011/CSC320">https://heat.csc.uvic.ca/coview/course/2024011/CSC320</a>

#### **PowerPoint Passcode Game**

Try and guess the 3-digit passcode:



- The game is "implemented" by having each button link to a different slide
- How many slides are needed?

#### **PowerPoint Passcode Game**

- Suppose we added an **enter button** to enter a passcode
- We want the passcode **0's followed by an equal number of 1's** (e.g 000111)



• How can we create a DFA which accepts these passcodes?

#### **Pushdown Automata**

- Increase the computational power of a DFA by adding stack memory
- Pushdown Automata: Can push / pop symbols and read the top symbol



 Using a pushdown automata, we can accept passcodes of form 0's followed by an equal number of 1's

#### **Pushdown Automata**

• Pushdown automata for **0's followed by an equal number of 1's** passcode (we will learn this notation later in the course):



- With pushdown automata, we can determine if a text file contains proper syntax for code in a programming language
- There are still limits to what is computable

# **Turing Machines**

- We give a state machine unlimited memory and unlimited read / write access
- Turing machine: infinite tape and can read / write symbols anywhere
- A Turing machine is an abstract computational model for a classical computer
- The computational limits of a Turing machine are the limits of classical computers



- There are problems that are **unsolvable / undecidable** on a classical computer
  - The Halting Problem
  - The Bugged Code Problem

#### P v.s NP

For problems which are solvable on a Turing machine:

- There are problems which can be solved efficiently
- There are also problems which we don't know if there exist efficient solutions

P: Problems which have polynomial time solutions (multiplication, sorting, etc.)

NP: Problems which, given a potential solution, can be verified in polynomial time



### P v.s NP

- The **P v.s NP** problem: "Are the problems in P the same as the problems in NP?"
- In other words, if the solution to a problem is easy to check for correctness, must the problem be easy to solve?



### **CSC 320 Timeline**



# **Textbook (Required)**

• Introduction to the Theory of Computation, 3<sup>th</sup> Edition Michael Sipster



#### **Lectures**

- All slides presented in class will be posted
- Lectures not recorded live
  - A video covering lecture content will be posted later on
  - Videos are meant for review if you miss a lecture and to supplement studying, but not intended to replace attendance to lectures
- Please ask questions if you have them at any point
  - If something is confusing, it is my fault for not explaining it clearly and I will gladly explain again
  - More than likely, other students have the exact same question

### **Tutorials**

 Weekly tutorials going over practice questions which are similar to assignment / midterm questions

#### **Evaluation**

#### Assignments (30%)

- There will be **6 assignments** worth 5% each
- You will be given around 2 weeks to complete them
- There are 2 assignments before each midterm for practice
- Assignments will be given and submitted through BrightSpace

#### Midterms (40%)

- Midterm 1 (20%): in class on **February 8<sup>th</sup>**
- Midterm 2 (20%): in class on March 14<sup>th</sup>
- You are allowed one single sided handwritten cheatsheet of A4 (8.5" x 11") paper

#### • Final (30%)

- To be scheduled by the University
- You must pass the final exam to pass the course

### **Policy on Collaboration / Online Resources**

#### **Assignments:**

- Students are encouraged to discuss assignments together
- All solutions must be individually written and no sharing of any solutions
- (Don't look at any other student's paper)
- You may use online resources to help you on your assignments, but your submission must clearly display that you understand the solution

#### **ChatGPT:**

- You may use ChatGPT to help you on your assignments
- WARNING: ChatGPT is pretty bad at CSC320...

#### **Countable and Uncountable**

A set is **countable** if it is **finite** or **countably infinite** 

- elements of a countable set can be counted one at a time without missing any
- every element is associated with a unique natural number

There exists a bijection between any countably infinite set and the set of natural numbers  $\mathbb{N}$ 



A set that is neither finite nor countably infinite is **uncountable** 

### **Countable and Uncountable**

Is the set of **integers**  $\mathbb{Z}$  countable?

We can enumerate the elements of  $\mathbb{Z}$  as follows:

The set of integers  $\mathbb{Z}$  is **countably infinite** 

### **Countable and Uncountable**

Is the set of **positive nonzero rational numbers**  $\mathbb{Q}^+\setminus\{0\}$  countable?

| 1             | 1_         | 1          | 1          | 1        | 1        | 1 |   |
|---------------|------------|------------|------------|----------|----------|---|---|
| $\frac{1}{1}$ | $\sqrt{2}$ | /3         | $\sqrt{4}$ | <u>5</u> | 6        | 7 |   |
| 2/            | 2          | 2          | 7          | 2        | 2/       | 2 |   |
| 1             | 2          | <b>/</b> 3 | 4          | 5        | 6        | 7 |   |
| 3             | 3          | 3          | 3/         | 3/       | 3        | 3 |   |
| 1             | 2          | 3          | 4          | 5        | 6        | 7 | • |
| 4/            | 4          | 4/         | 4          | <u>4</u> | 4        | 1 |   |
| 1             | 2          | 3          | 4          | 5        | 6        | 7 |   |
| 5/            | <u>5</u> / | 5          | <u>5</u>   | 5        | <u>5</u> | 5 |   |
| 1             | $\sqrt{2}$ | 3          | 4          | 5        | 6        | 7 |   |
| 6             | 6/         | 6          | 6          | 6        | 6        | 6 |   |
| 1             |            | 3          | 4          | 5        | 6        | 7 |   |
|               |            |            |            |          |          |   |   |

- This method of counting lets us enumerate all rational numbers
- No missing numbers or getting stuck in infinity
- **Note:** Counting row by row or column by column would never reach all the numbers

## ${\mathbb R}$ is uncountable (Cantor's Diagonalization)

**Proof by contradiction**: Assume that the real numbers  $\mathbb{R}$  is countable.

- If  $\mathbb{R}$  is countable, then we should be able to enumerate the real numbers **just** between 0 and 1.
- Let the enumeration  $(x_1, x_2, x_3, ...)$  be written as follows:

$$x_1 = 0. d_{11}d_{12}d_{13}d_{14} \dots$$
 $x_2 = 0. d_{21}d_{22}d_{23}d_{24} \dots$ 
 $x_3 = 0. d_{31}d_{32}d_{33}d_{34} \dots$ 
 $x_4 = 0. d_{41}d_{42}d_{43}d_{44} \dots$ 
:

- $x_n = 0.d_{n1}d_{n2}d_{n3}d_{n4}$  ... is the  $n^{th}$  real number in the enumeration
- $x_n$  has decimal digits  $0.d_{n1}d_{n2}d_{n3}d_{n4}$  (since we are enumerating real numbers between 0 and 1)

### $\mathbb{R}$ is uncountable (Cantor's Diagonalization)

• Consider the number  $\mathbf{c} = 0. c_1 c_2 c_3 c_4 \dots$  where  $c_i \neq d_{ii}$  for each i

```
x_1 = 0. d_{11} d_{12} d_{13} d_{14} \dots c \neq x_1 since the 1^{st} decimal digit is different (c_1 \neq d_{11}) c \neq x_2 since the 2^{nd} decimal digit is different (c_2 \neq d_{22}) c \neq x_2 since the 3^{rd} decimal digit is different (c_3 \neq d_{22}) c \neq x_3 since the 3^{rd} decimal digit is different (c_3 \neq d_{33}) c \neq x_4 since the 4^{th} decimal digit is different (c_4 \neq d_{44}) c \neq x_4 since the 4^{th} decimal digit is different (c_4 \neq d_{44}) c \neq x_4 since the a_1 decimal digit is different (a_2 decimal digit is different (a_3 decimal digit is different (a_4 decimal di
```

- Since c is a number between 0 and 1, it **should be enumerated** in this list
- However, since it differs from every element, it cannot be in this list

#### Clarification on c

- Consider the number  $\mathbf{c} = 0. c_1 c_2 c_3 c_4$  ... where  $c_i \neq d_{ii}$  for each i
- For example, suppose the numbers  $(x_1, x_2, x_3, ...)$  are as follows

```
x_1 = 0.4031...

x_2 = 0.1893...

x_3 = 0.5367...
```

- We define c = 0.  $c_1 c_2 c_3 c_4$  such that the digit  $c_i$  is something different than the  $i^{th}$  digit of  $x_i$
- In the example enumeration above:
  - $c_1$  can be any number other than 4
  - $c_2$  can be any number other than 8
  - $c_3$  can be any number other than 6
  - So, *c* could be something like 0.597...

#### Clarification on c

You may be wondering, if we enumerate the real numbers between 0 and 1 like

$$x_1 = 0.000 \dots 00$$
  
 $x_2 = 0.000 \dots 01$   
 $x_3 = 0.000 \dots 02$ 

then c must be in the list somewhere.

- Consider if  $\boldsymbol{c}$  appears in the list at position  $\boldsymbol{k}$ , that is  $\boldsymbol{x}_{\boldsymbol{k}} = \boldsymbol{c}$
- However, c is defined such that digit  $c_k$  is different than the  $k^{th}$  decimal digit of  $x_k$
- Thus, c can't possibly be in the list anywhere

## $\mathbb R$ is uncountable (Cantor's Diagonalization)

- The enumerated list  $x_1, x_2, x_3, ...$  **does not** contain all real numbers between 0 and 1 since it cannot contain c
- So, we cannot enumerate all the elements in this subset of  $\mathbb{R}$  (real numbers between 0 and 1)
- This is a **contradiction** since we assumed that  $\mathbb R$  is countable
- Therefore,  $\mathbb{R}$  is uncountable