SUPPORTING INFORMATION

Kinetic Models of Cyclosporin A in Polar and Apolar Environment Reveal Multiple Congruent Conformational States

Jagna Witek,[†] Bettina G. Keller,[‡] Markus Blatter,[¶] Axel Meissner,[¶] Trixie

Wagner,[¶] and Sereina Riniker*,[†]

†Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

‡Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany

¶Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4002 Basel, Switzerland

E-mail: sriniker@ethz.ch

NMR measurements

Sample preparation

3.5 mg of lyophilized cyclosporine A (CsA) were dissolved in 40 μ l de-acidified CDCl₃, vortexed for 20 s and transferred into 1.7 mm SampleJet NMR sample tubes. Samples were spun down into the tube using a Hettich manual centrifuge. Tubes were then closed by pressing a POM ball into the funnel of the tube cap. Tubes were then inserted into 1.7 mm

shuttles and placed on the automatic sample changer.

Data acquisition and processing

¹H detected 1D and 2D NMR spectra were obtained using a Bruker 600 MHz AVANCE III spectrometer equipped with a 1.7 mm TCI cryo probe and a z-gradient system. 1D proton spectra were recorded with a standard one-pulse sequence (30 degree flip angle) with a relaxation delay of 1 s and an acquisition time of 2.73 s. 16 scans of 65536 points covering 12019.23 Hz were recorded. For determination of amide temperature coefficients data was recorded in a range of 275 to 300 K. Data was zero-filled to 65536 complex points and an exponential window function was applied with a line-broadening factor of 0.3 Hz prior to Fourier transformation.

All 2D experiments for NMR assignment were recorded at a temperature of 300K with a relaxation delay of $1.5~\mathrm{s}$. For gradient COSY spectra 1,2 a data matrix of $512~\mathrm{x}$ 2048 points covering 6602.1 x 6602.1 Hz was recorded with 1 scans for each increment. Data was linear predicted to 1024 x 2048 points using 32 coefficients and zero filled to 2048 x 2048 points. A sine square bell shaped window function was applied in F2 and a cosine square bell shaped window function in F1, respectively, prior to magnitude mode type 2D Fourier transformation. For edited coherence order selective gradient HSQC spectra^{3,4} using adiabatic inversion pulses on the carbon channel, ⁵ a data matrix of 256 x 2048 points covering 24901 x 8417.5 Hz was recorded using 2 scans for each increment. Data was linear predicted to 512 x 2048 points using 32 coefficients and zero filled to 1024 x 2048 points prior to echoanti echo type 2D Fourier transformation. A sine square bell shaped window function shifted by $\pi/2$ in both dimensions was applied. For HMBC spectra, 6 a data matrix of 320 x 4096 points covering 33805 x 8417.5 Hz with 8 scans for each increment was recorded using a double low pass J-filter and F1 absorption mode. 7 Data was linear predicted to 640 x 4096 points using 32 coefficients and zero-filled to 1024 x 2048 complex points prior to echo-anti echo type 2D Fourier transformation. A cosine square shaped window function was applied in

F1 and a sine shaped window function shifted by $\pi/4$ was applied in F2. Data was converted to magnitude mode in F2 prior to analysis. ROESY spectra 8,9 with an effective field of $\gamma B1$ = 8333 Hz and an spin lock time of 200 ms were recorded for a data matrix of 512 x 2048 points covering 8417.5 x 8417.5 Hz. 8 scans were recorded for each increment. Data was linear predicted to 1024 x 2048 points using 32 coefficients prior to States-TPPI type 2D Fourier transformation and a sine square bell shaped window function shifted by $\pi/2$ in both dimensions was applied. For MLEV-17 based TOCSY spectra 10 a data matrix of 512 x 2048 points covering 8417.5 x 8417.5 Hz 2 scans were recorded for each increment. Data was linear predicted to 1024 x 2048 points using 32 coefficients and zero filled to 1024 x 2048 complex points prior to TPPI type 2D Fourier transformation. A cosine square bell shaped window function was applied in both dimensions. For determination of ${}^{n}J_{HC}$ couplings constants J-HMBC spectra 11 were acquired. A folded data matrix of 1024 x 4096 points covering 21128.5 x 6602.1 Hz was recorded using 16 scans for each increment. A coupling evolution delay of 436.8 ms with a scaling factor of 18 was used. Data was linear predicted to 2048 x 4096 points using 32 coefficients and zero-filled to 2048 x 4096 complex points prior to echoanti echo type 2D Fourier transformation. A cosine square shaped window function was applied in F1 and a sine shaped window function shifted by $\pi/4$ was applied in F2. Data was converted to magnitude mode in F2 prior to analysis. For determination of coupling constants relevant 1D traces along F1 were extracted using Topspin 3.2 (Bruker Biospin). All spectra were referenced according to the internal solvent signal (1 H: CDCl₃ = 7.26 ppm and ${}^{13}\text{C: CDCl}_3 = 77.16 \text{ ppm}).$ 12

Resonance assignment

1D and 2D spectra were imported into the NMR workbook of ACD Spectrus 2014 for resonance assignment. 1D, HSQC and TOCSY were analyzed to assign protons and carbons of individual amino acid spin systems. Sequential connectivity assignments were achieved using 2D-NOESY experiments.

Additional Tables

Table S1: NOE upper distance bounds of CsA in chloroform measured in this study.

Index	Residue 1	Residue 2	Upper bound [nm]			
1	1 HA	6 HA	0.415			
2	1 HA	7 HN	0.462			
3	$7~\mathrm{HN}$	11 HCN	0.416			
4	8 HN	11 HCN	0.435			
5	6 HA	11 HCN	0.393			
6	8 HA	11 HCN	0.461			
7	$2~\mathrm{HN}$	$5~\mathrm{HN}$	0.465			
8	1 HA	6 HD	0.463			
9	1 HA	7 HB	0.550			
10	1 HD1	6 HA	0.413			
11	$2~\mathrm{HN}$	5 HB	0.479			
12	1 HD1	6 HD	0.499			
13	$2~\mathrm{HB}$	5 HB	0.416			
14	3 HA	5 HN	0.438			
15	1 HG1	3 HCN	0.514			
16	8 HN	6 HB	0.519			
17	11 HG2	9 HA	0.483			
18	8 HN	6 HG	0.449			
19	8 HN	6 HD2	0.523			
20	1 HCN	10 HD2	0.383			
21	11 HA	1 HCN	0.391			
22	4 HA	5 HN	0.439			
23	1 HA	$2~\mathrm{HN}$	0.354			
24	3 HA	4 HCN	0.382			
25	7 HA	8 HN	0.428			
26	3 HCN	3 HA	0.351			
27	8 HN	7 HN	0.462			
28	$7~\mathrm{HN}$	6 HA	0.350			
29	8 HA	9 HCN	0.384			
30	5 HA	6 HCN	0.336			
31	2 HA	3 HCN	0.350			
32	2 HA	3 HCN	0.364			
33	1 HG1	1 HCN	0.420			
34	1 HD1	1 HA	0.392			
35	1 HH	1 HA	0.374			
36	9 HA	8 HB	0.420			
37	9 HCN	8 HB	0.372			
38	8 HB	8 HN	0.416			
	Continued on next page					

Index	Residue 1	Residue 2	Upper bound [nm]		
39	1 HH	2 HN	0.448		
40	1 HH	2 HA	0.399		
41	10 HG	9 HA	0.438		
42	4 HCN	4 HG	0.393		
43	10 HD2	9 HA	0.387		
44	10 HA	10 HD2	0.390		
45	11 HCN	10 HD2	0.428		
46	11 HA	10 HD2	0.467		
47	9 HD1	8 HN	0.541		
48	5 HA	5 HG1	0.397		
49	4 HD2	5 HN	0.550		
50	5 HN	5 HG1	0.550		
51	11 HG2	11 HCN	0.340		
52	6 HA	6 HD2	0.395		
53	5 HN	5 HG2	0.433		
54	7 HB	$7~\mathrm{HN}$	0.392		
55	1 HG1	$2~\mathrm{HN}$	0.427		
56	4 HCN	5 HB	0.376		
57	5 HN	5 HB	0.394		
58	9 HA	9 HD1	0.499		
59	1 HG	1 HA	0.410		
60	11 HB	11 HCN	0.388		
61	4 HCN	4 HD1	0.422		
62	6 HCN	6 HB	0.378		
63	6 HCN	6 HG	0.471		
64	6 HCN	6 HB	0.404		
65	1 HG	1 HCN	0.384		
66	5 HB	6 HCN	0.377		
67	1 HD2	1 HA	0.432		
68	4 HCN	4 HB	0.362		
69	1 HG1	$1~\mathrm{HD2}$	0.529		
70	1 HG	1 HZ	0.394		
71	1 HG1	1 HZ	0.468		
72	1 HD1	1 HE	0.446		
73	1 HB	1 HZ	0.443		
74	1 HH	1 HE	0.354		
75	10 HG	9 HB	0.429		
76	4 HB	4 HD1	0.416		
77	1 HG1	2 HG	0.396		
78	1 HH	2 HG	0.440		
79	11 HG2	10 HG	0.336		
80	1 HD1	1 HZ	0.418		
81	1 HG1	1 HD1	0.419		
Continued on next page					

Index	Residue 1	Residue 2	Upper bound [nm]
82	4 HB	4 HD1	0.416
83	1 HG	1 HD2	0.262

Table S2: Temperature coefficient for amide groups of CsA in chloroform measured in this study.

Index	Residue	Temperature coefficient [ppb/K]
1	Abu-2	-2.5
2	Val-5	-1.2
3	Ala-7	-5.5
4	D-Ala-8	-0.8

Table S3: 3J coupling constants of CsA in chloroform measured in this study. The Karplus relationship is of the form $^3J(\phi) = A \cdot \cos^2(\phi) + B \cdot \cos(\phi) + C$. Parameters were estimated following the Bayesian procedure described in Ref. 13.

Index	Residue 1	Residue 2	Coupling [Hz]	Karplus parameter		ameters
				A	В	\mathbf{C}
1	2 HN	2 HA	9.70	7.13	-1.31	1.56
2	5 HN	5 HA	8.35	7.13	-1.31	1.56
3	7 HN	7 HA	7.45	7.13	-1.31	1.56
4	8 HN	8 HA	7.90	7.13	-1.31	1.56

Table S4: NOE upper distance bounds of CsA in chloroform from $1985.^{\,14}$

Index	Residue 1	Residue 2	Upper bound [nm]		
1	1 HA	6 HA	0.350		
2	1 HA	7 HN	0.350		
3	7 HN	11 HCN	0.350		
4	8 HN	11 HCN	0.350		
5	8 HA	11 HCN	0.350		
6	1 HB	6 HA	0.300		
7	1 HA	2 HN	0.300		
8	2 HA	3 HCN	0.350		
9	3 HA	4 HCN	0.250		
10	4 HA	5 HN	0.300		
11	4 HCN	5 HN	0.300		
12	5 HN	5 HA	0.300		
13	5 HA	6 HCN	0.200		
14	7 HA	7 HN	0.350		
15	7 HN	8 HN	0.350		
16	8 HN	8 HA	0.350		
17	8 HA	9 HCN	0.200		
18	9 HA	10 HA	0.250		
19	10 HA	11 HCN	0.300		
20	11 HCN	11 HA	0.350		
21	11 HA	1 HCN	0.250		
22	1 HB	1 HCN	0.350		
23	1 HB	1 HA	0.300		
24	1 HA	1 HD1	0.350		
25	4 HCN	4 HB	0.300		
26	4 HCN	4 HG	0.350		
27	4 HA	4 HD1	0.350		
28	4 HA	4 HB	0.300		
29	4 HCN	5 HG1	0.300		
30	5 HG1	5 HA	0.350		
31	5 HA	5 HB	0.300		
32	5 HG1	6 HCN	0.300		
33	6 HCN	6 HB	0.350		
34	6 HA	6 HB	0.350		
35	6 HA	6 HD1	0.350		
36	7 HN	7 HB	0.300		
37	7 HA	7 HB	0.250		
38	8 HN	8 HB	0.300		
39	8 HA	8 HB	0.250		
40	8 HB	9 HCN 0.350			
41	9 HCN	9 HB	0.300		
Continued on next page					

Index	Residue 1	Residue 2	Upper bound [nm]
42	9 HB	9 HA	0.350
43	9 HA	10 HD1	0.350
44	9 HA	9 HG	0.350
45	10 HCN	10 HB	0.250
46	11 HCN	11 HB	0.250
47	11 HCN	11 HG1	0.250
48	11 HG1	1 HCN	0.300
49	11 HCN	11 HB	0.250
50	9 HB	9 HG	0.350
51	9 HD1	10 HD1	0.350

Table S5: NOE upper distance bounds of CsA in chloroform from $1990.^{\,15}$

Index	Residue 1	Residue 2	Upper bound [nm]		
1	1 HA	6 HA	0.269		
2	1 HA	7 HN	0.300		
3	7 HN	11 HCN	0.394		
4	8 HN	11 HCN	0.400		
5	8 HA	11 HCN	0.399		
6	2 HN	5 HN	0.321		
7	$2~\mathrm{HN}$	6 HA	0.357		
8	1 HA	6 HD1	0.460		
9	1 HA	7 HB	0.517		
10	1 HB	6 HA	0.432		
11	1 HB	7 HN	0.472		
12	1 HD1	6 HA	0.397		
13	1 HD2	6 HA	0.351		
14	$2~\mathrm{HN}$	5 HB	0.319		
15	2 HB	5 HB	0.298		
16	1 HA	3 HCN	0.527		
17	3 HCN	5 HN	0.411		
18	3 HA	5 HN	0.336		
19	5 HN	3 HA	0.366		
20	6 HA	8 HN	0.357		
21	9 HA	11 HCN	0.459		
22	1 HB	3 HCN	0.283		
23	1 HB	5 HN	0.369		
24	1 HD1	3 HCN	0.550		
25	2 HN	11 HG1	0.470		
26	5 HG1	7 HA	0.427		
27	6 HG	8 HN	0.275		
28	6 HD1	8 HN	0.477		
29	1 HCN	1 HA	0.432		
30	1 HCN	2 HN	0.479		
31	1 HCN	11 HA	0.301		
32	1 HA	2 HN	0.221		
33	1 HA	11 HCN	0.519		
34	2 HN	2 HA	0.311		
35	2 HN	3 HCN	0.450		
36	2 HA	3 HCN	0.318		
37	3 HCN	3 HA	0.356		
38	3 HA	4 HCN	0.283		
39	4 HCN	4 HA	0.437		
40	4 HA	5 HN	0.297		
41	5 HN	5 HA	0.296		
Continued on next page					

Index	Residue 1	Residue 2	Upper bound [nm]			
42	5 HN	4 HCN	0.349			
43	6 HA	7 HN	0.213			
44	7 HN	7 HA	0.297			
45	7 HN	8 HN	0.284			
46	7 HA	8 HN	0.292			
47	8 HN	8 HA	0.284			
48	8 HN	9 HCN	0.569			
49	8 HA	9 HCN	0.283			
50	9 HCN	9 HA	0.471			
51	9 HA	10 HA	0.180			
52	10 HA	11 HCN	0.318			
53	1 HCN	$1~\mathrm{HD2}$	0.415			
54	1 HCN	1 HD1	0.572			
55	1 HCN	11 HB	0.441			
56	1 HCN	11 HG1	0.574			
57	1 HA	1 HB	0.233			
58	1 HA	1 HD1	0.372			
59	1 HA	1 HD2	0.311			
60	1 HB	2 HN	0.274			
61	1 HD1	2 HN	0.527			
62	1 HD2	2 HN	0.523			
63	2 HN	2 HB	0.315			
64	2 HA	2 HB	0.285			
65	4 HCN	4 HB	0.336			
66	4 HCN	5 HG1	0.421			
67	4 HA	4 HB	0.249			
68	4 HA	4 HG	0.315			
69	4 HA	4 HD1	0.354			
70	5 HN	5 HB	0.249			
71	5 HN	5 HG1	0.454			
72	5 HA	5 HB	0.318			
73	5 HA	5 HG1	0.383			
74	5 HB	6 HCN	0.410			
75	5 HG1	6 HCN	0.447			
76	6 HCN	6 HB	0.340			
77	6 HA	6 HB	0.301			
78	6 HA	6 HG	0.327			
79	6 HA	6 HD1	0.395			
80	6 HG	7 HN	0.401			
81	6 HD1	7 HN	0.445			
82	7 HN	7 HB	0.358			
83	7 HA	8 HB	0.470			
84	7 HB	8 HN	0.443			
	Continued on next page					

Index	Residue 1	Residue 2	Upper bound [nm]	
85	8 HN	8 HB	0.344	
86	9 HCN	8 HB	0.521	
87	9 HCN	9 HB	0.347	
88	9 HA	9 HB	0.293	
89	9 HA	9 HG	0.281	
90	9 HA	9 HD1	0.390	
91	9 HA	10 HB	0.361	
92	9 HA	10 HG	0.294	
93	9 HB	10 HA	0.384	
94	10 HCN	10 HB	0.395	
95	10 HA	10 HB	0.282	
96	10 HA	10 HG	0.308	
97	11 HCN	11 HB	0.310	
98	11 HA	11 HB	0.297	
99	1 HB	1 HD1	0.387	
100	1 HB	1 HD2	0.320	
101	1 HD1	1 HD2	0.459	
102	6 HB	6 HG	0.271	
103	6 HB	6 HD1	0.411	
104	9 HB	10 HG	0.267	

Table S6: Average backbone atom-positional RMSD between the crystal structures CRYSTC (DEK-SAN 14) and CRYSTO (2Z6W 16) and the metastable sets in chloroform (C1, C2 and C3) and in water (W1, W2, W3, W4 and W5). The smallest RMSD value in each column is marked in bold font.

Chloroform			Water		
Metastable set	CRYSTO	CRYSTC	Metastable set	CRYSTO	CRYSTC
C1	0.225	0.122	W1	0.197	0.338
C2	0.209	0.342	W2	0.187	0.255
C3	0.166	0.232	W3	0.117	0.260
			W4	0.218	0.084
			W5	0.167	0.226

Additional Figures

Figure S1: Comparison of the experimental and calculated ${}^3J(\mathrm{H}_N\text{-H}_{C_\alpha})$ -coupling constants for CRYSTC (black), the total 10 $\mu \mathrm{s}$ in chloroform (green), and the metastable sets C1 (red) and C2 (blue). The experimental values are listed in Table S3.

Figure S2: Time series of the H-bonds occurring in more than 1% of the trajectory (left), occurrence of H-bonds in percentage (middle), and time series of the distances between atoms forming the backbone H-bonds (right) for the simulation at 300 K in chloroform starting from CRYSTC.

Figure S3: Time series of the H-bonds occurring in more than 1% of the trajectory (left), occurrence of H-bonds in percentage (middle), and time series of the distances between atoms forming the backbone H-bonds (right) for the simulation at 300 K in water starting from CRYSTO.

Figure S4: Time series of the H-bonds occurring in more than 1% of the trajectory (left), occurrence of H-bonds in percentage (middle), and time series of the distances between atoms forming the backbone H-bonds (right) for the simulation at 300 K in water starting from CRYSTC.

Figure S5: Time series of the H-bonds occurring in more than 1% of the trajectory (left), occurrence of H-bonds in percentage (middle), and time series of the distances between atoms forming the backbone H-bonds (right) for the simulation at 300 K in chloroform starting from CRYSTO.

Figure S6: Time series of the H-bonds occurring in more than 1% of the trajectory (left), occurrence of H-bonds in percentage (middle), and time series of the distances between atoms forming the backbone H-bonds (right) for the simulation at 400 K in water starting from CRYSTC.

Figure S7: Time series of the H-bonds occurring in more than 1% of the trajectory (left), occurrence of H-bonds in percentage (middle), and time series of the distances between atoms forming the backbone H-bonds (right) for the simulation at 400 K in chloroform starting from CRYSTO.

Figure S8: Snapshot at 99.45 ns from the simulation at 300 K in chloroform starting from CRYSTO. H-bonds are marked with dashed light blue lines. Figure was generated with VMD. 17

Figure S9: Ramachandran plots of the backbone dihedral angles for the 100 seed conformations in chloroform (A) and in water (B).

Figure S10: Violations of the experimental NOE upper distance bounds from the 1990 set ¹⁵ as a function of the NOE sequence number. The NOE distances are grouped into "intercycle" (red), "intermediate" (cyan) and NOE distances from neighboring or the same residues (white), as well as labeled based on the nature of the protons: backbone–backbone (stripes), backbone–side chain (stars) and side chain–side chain (plain). Hydrogen pairs corresponding in both sets are marked with capital letters according to labels in the first column of Table 4. Top: MSM in chloroform with the metastable sets C1, C2 and C3. Bottom: MSM in water with the metastable sets W1, W2, W3, W4 and W5.

Figure S11: Relative populations of the microstates in chloroform (red) and water (white).

Figure S12: Implied timescales for interconversion processes described by MSMs in chloroform (left) and in water (right).

Figure S13: Flux between selected metastable sets in chloroform (left) and in water (right). The y-axis displays the forward committor probabilities, the thickness of the arrow indicates the net flux between each pair of metastable set.

References

- (1) Vonkienlin, M.; Moonen, C. T. W.; Vandertoorn, A.; Vanzijl, P. C. M. Rapid Recording of Solvent-Suppressed 2D COSY Spectra with Inherent Quadrature Detection Using Pulsed Field Gradients. *J. Magn. Reson.* **1991**, *93*, 423–429.
- (2) Carpenter, T. A.; Colebrook, L. D.; Hall, L. D.; K.Pierens, G. Applications of Gradient-Selective COSY and DQCOSY to Brucine and Gibberellic-Acid. *Magn. Reson. Chem.* **1992**, *30*, 768–773.
- (3) Kay, L. E.; Keifer, P.; Saarinen, T. Pure Absorption Gradient Enhanced Heteronuclear Single Quantum Correlation Spectroscopy with Improved Sensitivity. *J. Am. Chem. Soc.* **1992**, *114*, 10663–10665.

- (4) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field. *Proteins* **2010**, *78*, 1950–1958.
- (5) Kupce, E. Applications of Adiabatic Pulses in Biomolecular Nuclear Magnetic Resonance. *Method. Enzymol.* **2001**, *338*, 82–111.
- (6) Bax, A.; Summers, M. F. H-1 and C-13 Assignments from Sensitivity-Enhanced Detection of Heteronuclear Multiple-Bond Connectivity by 2D Multiple Quantum NMR. *J. Am. Chem. Soc.* **1986**, *108*, 2093–2094.
- (7) Meissner, A.; Sorensen, O. W. Economizing Spectrometer Time and Broadband Excitation in Small-Molecule Heteronuclear NMR Correlation Spectroscopy. Broadband HMBC. *Magn. Reson. Chem.* **2000**, *38*, 981–984.
- (8) Bax, A.; Davis, D. G. Practical Aspects of Two-Dimensional Transverse NOE Spectroscopy. J. Magn. Reson. 1985, 63, 207–213.
- (9) Hwang, T. L.; Shaka, A. J. Cross Relaxation without TOCSY Transverse Rotating-Frame Overhauser Effect Spectroscopy. J. Am. Chem. Soc. 1992, 114, 3157–3159.
- (10) Bax, A.; Davis, D. G. MLEV-17-Based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. J. Magn. Reson. 1985, 65, 355–360.
- (11) Meissner, A.; Sorensen, O. W. Measurement of J(H,H) and Long-Range J(X,H) Coupling Constants in Small Molecules. Broadband XLOC and J-HMBC. *Magn. Reson. Chem.* **2001**, *39*, 49–52.
- (12) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515.
- (13) Habeck, M.; Rieping, W.; Nilges, M. Bayesian Estimation of Karplus Parameters and Torsion Angles from Three-Bond Scalar Couplings Constants. *J. Magn. Reson.* **2005**, 177, 160–165.
- (14) Loosli, H.-R.; Kessler, H.; Oschkinat, H.; Weber, H.-P.; Petcher, T. J.; Widmer, A. Peptide Conformations. Part 31. The Conformation of Cyclosporin A in the Crystal and in Solution. *Helv. Chim. Acta* **1985**, *68*, 682–704.
- (15) Kessler, H.; Kock, M.; Wein, T.; Gehrke, M. Reinvestigation of the Conformation of Cyclosporin A in Chloroform. *Helv. Chim. Acta* **1990**, *73*, 1818–1831.
- (16) Kajitani, K.; Fujihashi, M.; Kobayashi, Y.; Shimizu, S.; Tsujimoto, Y.; Miki, K. Crystal Structure of Human Cyclophilin D in Complex with Cyclosporin A. *Proteins* **2008**, *7*, 1635–1639.
- (17) Humphrey, W.; Dalke, A.; Schulten, K. VMD Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38.