

Chapter 3 Growth of Functions

Outline

- Asymptotic Notation
 - ► O-notation
 - $ightharpoonup \Omega$ -notation
 - **▶** Θ-notation

Overview

- ► A way to describe behavior of function in the limit.
- Describing growth of functions.
- ► Focus on what is important by abstracting away low-order terms and constant factors.
- Ow running times of algorithms is indicated.

Asymptotic Notation

- ► *O*-notation (upper bounds):
- ► We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Example:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$

functions, not values

This is a one-way equality

Set Definition of *O*-notation

► $O(g(n)) = \{f(n) : \text{ there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$

Example: $2n^2 \in O(n^3)$

Note: if $n2n^2 \in O(n^3)$, may be an unconventional representation, however it is important to know how the notation is to be represented.

Asymptotic Notation in Equations

When on the right-hand side

 $O(n^2)$ stands for some anonymous function in the set $O(n^2)$.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
 means $2n^2 + 3n + 1 = 2n^2 + f(n)$ for some $f(n) \in \Theta(n)$. In particular, $f(n) = 3n + 1$.

By the way, we interpret # of anonymous functions as = # of times the asymptotic notation appears:

$$\sum_{i=1}^{n} O(i)$$

OK: 1 anonymous functions

O(1) + O(2) + ... + O(n) not OK: *n* hidden constants

=> no clean interpretation

Asymptotic Notation in Equations cont.

When on the left-hand side

No matter how the anonymous functions are chosen on the left-hand side, there is a way to choose the anonymous functions on the right-hand side to make the equation valid.

Interpret $2n^2 + \Theta(n) = \Theta(n^2)$ as meaning for all functions $f(n) \in \Theta(n)$, there exists a function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$.

Can chain together:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
$$= \Theta(n^2)$$

Asymptotic Notation in Equations cont.

Interpretation

- ▶ First equation: There exists $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$.
- ▶ Second equation: For all $g(n) \in \Theta(n)$ (such as the f(n) used to make the first equation hold), there exists $h(n) \in \Theta(n^2)$ such that $2n^2 + g(n) = h(n)$.

Ω -notation (Lower Bounds)

- ▶ *O*-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.
- ▶ $\Omega(g(n)) = \{f(n) : \text{ there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}$

Example: $\sqrt{n} = \Omega(\lg n)$ (*c* = 1, n_0 = 16)

Θ-notation (Tight Bounds)

$$ightharpoonup \Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Example: $n^2 - 2n = \Theta(n^2)$

o-notation and ω-notation

- ▶ *O*-notation and Ω -notation are like ≤and ≥.
- \triangleright o-notation and ω -notation are like < and >.
- ▶ $o(g(n))=\{f(n):$ for any constant c>0, there is a constant $n_0>0$ such that $0\le f(n)< cg(n)$ for all $n\ge n_0\}$

Example:
$$2n^2 = o(n^3)$$
 $(n_0 = 2/c)$

▶ $\omega(g(n)) = \{f(n) : \text{ for any constant } c > 0, \text{ there is a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}$

Example:
$$\sqrt{n} = \omega(\lg n)$$
 $(n_0 = 1 + 1/c)$

References

- ► T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms, Third Edition", 2009
- ► MIT Prof. Erik D. Demaine and MIT Prof. Charles E. Leiserson, Lecture Notes, Slides and Videos