# Data Structures & Algorithms

Adil M. Khan
Professor of Computer Science
Innopolis University

## Balanced Binary Search Trees

#### Outline

- Motivation
- AVL Trees
- Red-Black Trees

## Binary Search Tree

- For a binary search tree with n nodes
  - average search and insertion time is O(log n)
  - It will take  $log_2 n$  comparisons to find a particular node of find out that it isn't
- However, this is only true is the tree is "balanced"
- That is, the "height" of the tree is balanced

## Binary Search Tree

- In the worst case, insertion and searching time becomes O(n)
- Because the height is O(n)





## Binary Search Tree

- In a dynamic tree, nodes are inserted and deleted over time
- So we must find a way to keep the height of a binary search tree always O(log n)
- To achieve this, the tree must always be balanced

"for any node, its left subtree should not be much higher then its right subtree, and vice-versa"



- Adelson-Velskii and Landis in 1962 introduced a binary tree structure that is balanced with respect to the heights of its subtree
- Insertions and deletions are made such that the tree always remain height-balanced

## Height of a Node

- Height of a tree is the maximum over all node depths, or, equivalently, the longest path in the tree
- The height of a tree node v is defined as the height of the subtree rooted at node v



- Definition
- · An empty tree is height-balanced
- If T is non-empty binary tree with left and right subtrees T\_1 and T\_2

T is balanced if and only if

- T\_1 and T\_2 are balanced, and
- |height(T\_1) height(T\_2)| <= 1</li>

## Recall: Binary Tree Terminology

- Height of a tree T
- 0 (for convenience) if T is empty and
  - 1 + max(height(**T\_1**), height(**T\_2**)) otherwise,
  - where **T\_1** and **T\_2** are the subtrees of the root

## Recall: Binary Tree Terminology

- Height Numbering
  - Number all external (leaf) nodes 0
  - Number each internal node to be one more than the maximum of the numbers of its children
  - Then number of the root node is the height of T
- The height of a node u in T is the height of the subtree rooted at u









A Balanced Tree for the Months of the Year



A Balanced Tree for the Months of the Year

#### Operations in an AVL Tree

- The height of an AVL tree is O(log n)
- Thus the search operation takes O(log n)
  - Performed just like in a binary search tree since AVL tree is a binary search tree
- What we need to show is how to insert and remove in AVL trees while maintaining
  - the height balanced property
  - the binary search tree order

#### Insertion in an AVL Tree

- Starts as in a binary search tree
- Always done by expanding an external node





#### Insertion in an AVL Tree

 After inserting a new node into an AVL tree, the heightbalanced property of the AVL tree is very likely lost



#### Insertion in an AVL Tree

 Thus, to make it an AVL tree again, we need to restore the balance by restructuring the tree



#### Pictorial Notation



Let w be the new node, just inserted into an AVL

tree



- The next step is to search for the unbalanced node(s)
- Check each node in the tree to see if it is balanced.
- Do you think this approach is efficient?
- Can we make it efficient?

- Tip: after insertion of w, heights could change (increase) only for the ancestors of w
- Thus only ancestors of w could be unbalanced
- Search up the tree from w checking and correcting any unbalanced node



 Follow the path from w to the root



- Suppose the first unbalanced node is at position z
- Height difference between the left and the right subtree of z is more than 1
- In fact, it is exactly 2
  - tree was balanced before insertion
  - each insertion can change height only by a factor of 1
- w is in the higher subtree



- Two cases:
  - Right subtree is higher
  - Or, left subtree is higher





- Let S be the higher subtree, with height p+2
- Let y be the root of S

#### Refresher

- w is the new node
- <u>z</u> (ancestor of w) is the first unbalanced node
- **S** is the higher subtree of **z**
- y is the root of S



- Remember, the tree was balanced before insertion
- So, the height of S was p+1 before insertion



- y is balanced after insertion, and z is not
- So, both subtrees of S had height exactly p before insertion



Complete Picture



More Complete Picture :)



- Let's consider case 1
- Let R be the right subtree of y
- Let x be the root of R





- R contains w, which is an internal node
- Therefore, R has at least one internal node
- There are two cases:
  - Case A: x = w in which case p = 0 and both subtrees of w are leaf nodes

#### · Case B:

- height of R went from p (before insertion) to p+1 after insertion
- x was balanced before insertion and is balanced after insertion
- both subtrees of x had height p-1 before insertion
- After insertion, one subtree of x has height p, the other p-1





Even More Complete Picture :)



- Finally, let's restructure the tree
- Case 1:



- Finally, let's restructure the tree
- Case 1:



What's the height differences at nodes **x**, **y** and **z** after restructuring?



- All four cases can be coded with the same algorithm called: Trinode Restructuring
- Trinode because there are three nodes

# Trinode Restructuring

- In all four cases, out of the three nodes x, y, and z, make:
  - node with the middle key the new parent
  - smallest key node its left child
  - largest key node its right child
  - for the new parent, the previous subtree (if present) must be put in appropriate positions
    - Left subtree (if present) goes with the new left child
    - Right subtree (if present) goes with the new right child



## Trinode Restructuring

- Takes O(logn) + O(1)
- No loops, no recursive calls, constant number of comparisons, and changes in parent-child relationships
- Only 1 trinode restructuring is needed per insertion to restore the height balance property

## Deletion

- Deletion from an AVL tress may violate the height-balance property, too
- In this case, procedure for restructuring the tree to restore the balance is the same as in the case of insertion, with some changes
  - how to choose x, y, and z
  - repeated restructuring might be needed, max O(log n)
- For further details, please read section 11.3.1 of your textbooks

# Analysis

- Ok, so we have learned how to keep a binary search tree always balanced (AVL tree) after insertions and deletions
- But why is this important?
- Recall that all we wanted was a way to make and keep the height of a tree with n nodes O(log n)
- Is the height of an AVL tree O(log n)?

 Proposition: The height of an AVL tree storing n entries is O(log n)

Let T be an AVL tree of height h. T can be visualized as



Let n(h) be the minimum number of internal nodes in an AVL tree of height h

we know, 
$$n(1) = 1$$
 and  $n(2) = 2$ 

For **h>=3** 

$$n(h) = 1 + n(h-1) + n(h-2)$$



$$n(h) = 1 + n(h-1) + n(h-2)$$

Now that we know this, the rest is just algebra

According to the properties of Fibonacci progressions

$$n(h) > n(h-1)$$
, so  $n(h-1) > n(h-2)$ 

By replacing n(h-1) with n(h-2) and dropping the 1, we get

$$n(h) > 2 n(h-2)$$

n(h) > 2 n(h-2)

We can stop at this point. We have shown that **n(h)** at least **doubles** when **h** goes **up by 2**. This says that **n(h)** is **exponential** in **h**, and hence **h** is **logarithmic** in **n** 

But let's continue

$$n(h) > 2 (2 n(h-4)) = 2^2 n(h-4)$$

Thus,

For any i > 0,  $n(h) > 2^i n(h-2i)$ 

Let's **get rid of i by expressing it in terms of h**, but choose a value that results in making h-2i either 1 or 2. It is because we know the values for n(1) and n(2)

That is, let

$$i = h/2-1$$

$$n(h) > 2^{h/2-1}n(h-2i) = 2^{h/2-1}$$

By taking logarithmic of both sides

$$log(n(h)) > (h/2)-1 or$$

$$h < 2\log(n(h)) + 2$$

Or