

Development and external validation of automatic diagnostic aid for multiple sclerosis using a radiomics analysis of white matter on clinical and quantitative MRI

Elizaveta Lavrova

Prof Dr Pierre Maquet

Dr Henry Woodruff

Prof Dr Eric Salmon

Dr Christophe Phillips

Prof Dr Philippe Lambin

Emilie Lommers

Conflict of interest disclosure

Elizaveta Lavrova: nothing to disclose

Dr. Henry Christian Woodruff: Shareholder: Oncoradiomics

Dr. Christopohe Phillips: *nothing to disclose* **Prof.Dr. Eric Salmon:** *nothing to disclose*

Dr. Emilie Lommers: nothing to disclose

Prof.Dr. Pierre Maquet: nothing to disclose

Prof.Dr. Philippe Lambin: Research/Grant Support: Varian medical, Research/Grant Support: Oncoradiomics,

Research/Grant Support: ptTheragnostic, Research/Grant Support: Health, Innovation Ventures,

Research/Grant Support: DualTpharma, Consultant: Oncoradiomics

Consultant: BHV, Consultant: Merck, Consultant: Convert pharmaceuticals, Shareholder: Oncoradiomics,

Shareholder: Convert pharmaceuticals, Patent Holder: Oncoradiomics, Patent Holder:

ptTheragnostic/DNAmito, Other: ptTheragnostic/DNAmito, Other: Oncoradiomics, Other: Health Innovation

Ventures

Introduction

Brain lesion load is related to multiple sclerosis development in patients with clinically isolated syndrome

Unmet clinical need

Rapid automatic check for white matter abnormalities

MRI advantage

Has an appropriate contrast (compared to CT)

MRI disadvantage

Is expressed in arbitrary units (not robust/stable/reproducible)

Hypothesis

MRI-based WM radiomics features are able to distinguish between healthy and MS-affected brain

Introduction

qMRI

Tabelow K., et al. (2019). hMRI – A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage, 194(2019), 191-210.

Materials and methods

MS qMRI dataset

CHU Liege, Belgium 3T MRI (1×1×1 mm³) Siemens Prisma & Allegra 36 non-MS, 35 MS (relapsing-remitting & progressive) 45.7 ± 11.9 y.o., M/F = 0.73

Visual contrast

Free water

(PD)

Axonal myelination

transfer (MT)

(R1)

Axonal myelination

Iron accumulation

qMRI maps

Materials and methods

Data for external validation

	CC-359	MICCAI 2016 MSSEG Challenge	
Subjects	167 non-MS	10 MS	
Sites	Campinas (Sao Paulo, Brazil); Calgary (Alberta, Canada)	CHU Rennes (Rennes, France); CHU Lyon (Lyon, France)	
Equipment	1.5 T and 3 T Siemens (53), Philips (54), GE Healthcare (60) MRI scanners	3 T Siemens Magnetom Verio (5); 3 T Philips Ingenia (5)	
Voxel resolution [mm ³]	1×1×1	1×1×1 (Siemens) 0.74×0.74×0.85 (Philips)	
Age, mean ± STD	52.7 ± 7.3	40.5 ± 10.8	
Gender, M/F	0.96	1.00	
	Souza, et al. (2018). An open, multi-vendor, multi-field-strength brain MR dataset and	Commowick, et al. (2018). Objective evaluation of multiple sclerosis lesion segmentation using a	

analysis of publicly available skull stripping methods agreement. NeuroImage, 170, 482-494

data management and processing infrastructure. Scientific reports, 8(1), 13650

Materials and methods

Radiomics pipeline

Image pre-processing and segmentation	Features extraction from WM	Features selection	Machine learning classification
Unified segmentation (SPM12)	92 features/ROI (pyradiomics)	Recursive features elimination 6 features/ROI	Logistic regression

Results

Binary classification accuracy scores

combined features = (PD + MT + R1 + R2*) features

Conclusion

Limitations

External validation for qMRI is needed \rightarrow (+ longitudinal) data is needed

Conclusion

Utility of Radiomics/qMRI approaches in automatic MS diagnosis is indicated

White matter MRI-based features: future potential in early MS prognosis

Ethics committee approval / Funding

Ethics committee approval

The study was approved by the local ethic committee (approval B707201213806). Written informed consent was obtained from all participants.

Funding

Maastricht-Liege Imaging Valley, FRS-FNRS Belgium

Maastricht University

ACKNOWLEDGEMENTS

Dr Henry Woodruff
Dr Christophe Phillips
Emilie Lommers
Prof Dr Pierre Maquet
Prof Dr Eric Salmon
Prof Dr Philippe Lambin

THANK YOU FOR YOUR ATTENTION!

e.lavrova@maastrichtuniversity.nl

