SPRAWOZDANIE	METODY	NIIMEDVOZNIE
SPRAWU/DANIF	IVIFICIDY	INUUVIERYU./INE

Laboratorium nr 6 – Metoda Newtona: poszukiwanie zer wielomianów metodą iterowanego dzielenia

Aleksandra Krzemińska, Informatyka Stosowana II rok WFiIS, I stopień, rok 2021

WSTEP TEORETYCZNY

Metoda Newtona jest to metoda iteracyjnego dzielenia, której używa się w celu wyznaczenia miejsc zerowych dla zadanego wielomianu – szacuje ona położenie x_{j+1} na podstawie poprzedniego wyrazu x_j . Wielomian z każdą iteracją jest przybliżany styczną w punkcie x_j , dlatego metoda ta nazywana jest też metodą stycznych.

Wielomian stopnia n: $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x^1+a_0$, można podzielić przez (x -x_j), czyli $f(x)=(x-x_j)(b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1x^1+a_0)+R_j$ - uzyskujemy tak wielomian o stopniu niższym o jeden. Współczynniki tego wielomianu można wyznaczyć rekurencyjnie, jak następuje:

$$b_k = a_{k+1} + x_i \ b_{k+1}, \tag{1}$$

$$a R_i = a_0 + x_i b_0, (2)$$

zakładając warunek brzegowy $b_n=0$. Analogicznie, zadany wielomian można podzielić przez $(x-x_j)^2$, wyznaczając wspólczynniki nowo powstałego wielomianu (stopnia n-2) oraz czynnik R'j w sposób taki sam jak przedstawiono powyżej.

Dzięki takim przekształceniom iteracyjnie można wyznaczyć szukane zera wielomianu zgodnie ze wzorem:

$$x_{j+1} = x_j - \frac{R_j}{R'_j}. (3)$$

ZADANIE DO WYKONANIA

Zadaniem laboratoryjnym było zaimplementowanie ww. metody i wyliczenie wszystkich zer dla wielomianu 5-tego stopnia, zdefiniowanego jako:

$$f(x) = x^5 + 14x^4 + 33x^3 - 92x^2 + 196x + 240$$
.

W celu poprawy czytelności kodu i uzyskania możliwości bezpośredniego zaaplikowania wzoru (3) w algorytmie, zadane było także aby zaimplementować dodatkowo funkcję rekurencyjną, zgodnie ze wzorem (1) i (2), wyliczającą czynniki R_j oraz R'_j.

METODA

Zaimplementowana funkcja rekurencyjna przyjęła w argumentach: wektor ze współczynnikami aktualnego wielomianu a, wektor współczynników wielomianu o stopień niższego b, stopień wielomianu n, oraz wartość x_i , dla której funkcja powinna wyliczyć szukany czynnik.

Główny program wzorowany był na podanym w treści zadania algorytmie, tj. kolejno: ustalenie stopnia wielomianu, inicjalizacja wektorów współczynników, ustalanie aktualnego stopnia wielomianu (przy każdym obiegu pętli FOR), inicjalizacja wzoru iteracyjnego, wyznaczenie czynnika R_j , R_j' oraz wartości x_{j+1} . Maksymalna liczba iteracji została ustalona na 30, równocześnie zdefiniowany został warunek wcześniejszego wyjścia z pętli, gdy $|x_{j+1}-x_j|<10^{-7}$.

WYNIKI

Wyniki zostały zaprezentowane w tabelach poniżej:

Tabela 1: Tabela przybliżeń dla pierwszego z wyliczonych zer zadanego wielomianu wraz z wynikiem R_i, R'_i i numeru iteracji

Numer iteracji	Przybliżane miejsce zerowe	Czynnik R _j	Czynnik R' _j
1	1.22449	240	-196.000
2	0.95291	-43.1289	-158.813
3	0.99911	10.5714	-228.860
4	1	0.195695	-220.179
5	1	7.96468e-05	-220.000

Miejsce zerowe $x_1=1$.

Tabela 2: Tabela przybliżeń dla drugiego z wyliczonych zer zadanego wielomianu wraz z wynikiem R_i, R'_i i numeru iteracji

Numer iteracji	Przybliżane miejsce zerowe	Czynnik R _j	Czynnik R' _j
1	-5.45454	-240	-44.0000
2	-4.46352	-120.975	122.0710
3	-4.10825	-24.2754	68.3304

4	-4.00957	-4.31752	43.7539
5	-4.00009	-0.347975	36.6891
6	-4	-0.00323659	36.0065
7	-4	-2.9088e-07	36.0000

Miejsce zerowe x_2 = -4.

Tabela 3: Tabela przybliżeń dla trzeciego z wyliczonych zer zadanego wielomianu wraz z wynikiem R_{j} , R'_{j} i numeru iteracji

Numer iteracji	Przybliżane miejsce zerowe	Czynnik R _j	Czynnik R' _j
1	15	-60	3.9990
2	9.2022	5850.03	1009.0000
3	5.53753	1678.54	460.4900
4	3.38316	469.262	217.8190
5	2.33534	118.159	112.7670
6	2.0277	22.0701	71.7391
7	2.00021	1.67507	60.9441
8	2	0.0128845	60.0073
9	2	7.83773e-07	60.0000

Miejsce zerowe $x_3=2$.

 $\textbf{Tabela 4:} \ \, \textbf{Tabela przybliżeń dla czwartego z wyliczonych zer zadanego wielomianu wraz z wynikiem} \ \, \textbf{R}_{j}, \, \textbf{R}'_{j} \, \textbf{i numeru iteracji}$

Numer iteracji	Przybliżane miejsce zerowe	Czynnik R _j	Czynnik R' _j
1	-2.30769	30	13.00000
2	-2.94284	5.32544	8.38462
3	2.99954	0.403409	7.11433
4	-3	0.00321531	7.00092
5	-3	2.10928e-07	7.00000

Miejsce zerowe x_4 =-3.

Tabela 5: Tabela przybliżeń dla piątego z wyliczonych zer zadanego wielomianu wraz z wynikiem R_i, R'_i i numeru iteracji

Numer iteracji	Przybliżane miejsce zerowe	Czynnik R _j	Czynnik R' _j
1	-10	10	1
2	-10	0	1

Miejsce zerowe $x_5=-10$.

WNIOSKI

Jak można łatwo zaobserwować na podstawie powyższych wyników – algorytm za każdym razem wyszedł z pętli warunkiem szybszego wyjścia, tj. $|x_{j+1}-x_j|<10^{-7}$, w żadnym przypadku nie wykorzystał maksymalnej liczby iteracji = 30. Dodatkowo algorytm potrzebował każdorazowo mniej niż 10 iteracji do wyznaczenia dokładnego zera wielomianu, z czego wnioskować można, iż zaimplementowana metoda jest wydajna. Na podstawie wyników można bardzo dokładnie określić położenie miejsc zerowych danego wielomianu.