FUEL CELL POWER GENERATION PLANT

Publication number: JP8031439 Publication date: 1996-02-02

Inventor:

WATANABE MASATO; OGAWA MASAHIRO

Applicant:

TOKYO SHIBAURA ELECTRIC CO

Classification:

- international:

H01M8/04; H01M8/24; H01M8/04; H01M8/24; (IPC1-7):

H01M8/04

- european:

H01M8/04C2

Application number: JP19940165019 19940718 Priority number(s): JP19940165019 19940718

Report a data error here

Abstract of JP8031439

detector 31.

PURPOSE:To keep fuel/oxidizer utilization factor of a fuel cell main body, and a battery voltage within a proper range even in the case where characteristic unbalance is generated between the fuel cell main bodies. CONSTITUTION: Fuel cell main bodies 1 each comprising a fuel pole and an oxidizer pole are electrically connected to each other in the number of (n) (n>=1) serially to form a string 2, and such strings 2 are electrically connected in parallel in the number of (m) (m>=2). To each string 2, a string current detector 31 is connected separately. A fuel supply damper 32 and an oxidizer supply damper 33 are provided on each fuel supply header 19 and an oxidizer supply header 20 of each string 2 respectively. Each fuel supply damper 32 and each oxidizer supply damper 33 adjust ratio of fuel flow and oxidizer flow to be supplied to each string 2 based on each string current detection value obtained by each string current

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

THIS PAGE BLANK (USPT 3)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平8-31439

(43)公開日 平成8年(1996)2月2日

(51) Int.Cl. 8

識別記号

FΙ

技術表示箇所

H01M 8/04

P

審査請求 未請求 請求項の数3 OL (全 8 頁)

		Y .	
(21)出願番号	特顯平6 -165019	(71)出顧人	000003078
			株式会社東芝
(22) 出顧日	平成6年(1994)7月18日		神奈川県川崎市幸区堀川町72番地
		(72)発明者	波邊 政人
	:		東京都港区芝浦1丁目1番1号 株式会社
	;		東芝本社事務所内
		(72)発明者	小川 雅弘
			東京都港区芝浦1丁目1番1号 株式会社
			東芝本社事務所內
		(74)代理人	弁理士 木内 光春
			. ==

(54) 【発明の名称】 燃料電池発電プラント

(57)【要約】

【目的】 燃料電池本体間にどのような特性アンバランスが生じた場合でも、全ての燃料電池本体の燃料・酸化剤利用率、電池電圧を適正な範囲に維持する。

【構成】 燃料極と酸化剤極からなる燃料電池本体1が電気的に直列にn個(n≥1)接続されてストリング2が形成され、このストリング2が電気的に並列にm列

(m≥2)接続される。各ストリング2にはストリング電流検出器31が個別に接続される。各ストリング2の燃料供給ヘッダ19と酸化剤供給ヘッダ20に燃料供給ダンパ32と酸化剤供給ダンパ33とがそれぞれ設けられる。各燃料供給ダンパ32と各酸化剤供給ダンパ33は、各ストリング電流検出器31によって得られた個別のストリング電流検出値に基づいて、各ストリング2に供給する燃料流量および酸化剤流量の割合をそれぞれ調節する。

【特許請求の範囲】

【請求項1】 燃料極と酸化剤極からなる燃料電池本体 が電気的に直列にn個(n≧1)接続されて直列接続電 池群が形成され、この直列接続電池群が電気的に並列に m列 (m≥2)接続されてなる燃料電池本体群と、前記 燃料電池本体群の燃料極に燃料を供給する燃料供給手段 と、前記燃料電池本体群の酸化剤極に酸化剤を供給する 酸化剤供給手段を有する燃料電池発電プラントにおい て、

前記各直列接続電池群に流れる電流を個別に検出する複 10 数の電流検出手段と、

前記各電流検出手段によって得られた個別の電流検出値 に基づき、前記各直列接続電池群に供給する燃料流量の 割合を個別に調節する複数の燃料供給調節手段とを備え たことを特徴とする燃料電池発電プラント。

【請求項2】 燃料極と酸化剤極からなる燃料電池本体 が電気的に直列にn個(n≧1)接続されて直列接続電 池群が形成され、この直列接続電池群が電気的に並列に m列(m≥2)接続されてなる燃料電池本体群と、前記 燃料電池本体群の燃料極に燃料を供給する燃料供給手段 20 と、前記燃料電池本体群の酸化剤極に酸化剤を供給する 酸化剤供給手段を有する燃料電池発電ブラントにおい て、

前記各直列接続電池群に流れる個別の電流を検出する複 数の電流検出手段と、

前記各電流検出手段によって得られた個別の電流検出値 に基づき、前記各直列接続電池群に供給する酸化剤流量 の割合を個別に調節する複数の酸化剤供給調節手段とを 備えたことを特徴とする燃料電池発電プラント。

【請求項3】 燃料極と酸化剤極からなる燃料電池本体 30 が電気的に直列にn個(n≧1)接続されて直列接続電 池群が形成され、この直列接続電池群が電気的に並列に m列(m≥2)接続されてなる燃料電池本体群と、前記 燃料電池本体群の燃料極に燃料を供給する燃料供給手段 と、前記燃料電池本体群の酸化剤極に酸化剤を供給する 酸化剤供給手段を有する燃料電池発電ブラントにおい て、

前記各燃料電池本体の個別の電圧を検出する複数の電圧 検出手段と、

前記燃料電池本体にて発電に寄与した後に排出される酸 40 化剤の一部を前記燃料電池本体群の酸化剤極の上流側へ リサイクルする酸化剤リサイクル手段と、

前記各電圧検出手段によって得られた個別の電圧検出値 に基づき、前記燃料電池本体群の酸化剤極の上流側へり サイクルする酸化剤のリサイクル流量を調節するリサイ クル流量調節手段と、

を備えたことを特徴とする燃料電池発電プラント。 【発明の詳細な説明】

[0001]

列接続を行っている複数の燃料電池本体を備えた燃料電 池発電プラントに係り、特に、燃料・酸化剤の供給系統 の改良に関する。

[0002]

【従来の技術】一般に、燃料電池発電プラントでは、1 台の燃料電池本体の出力に制限があるため、発電出力を 増大させる場合には、複数の燃料電池本体を組み込むと とが必要である。ただし、直列接続だけでは電池運転電 圧が高くなり過ぎ、直交変換装置などの定格電圧が高く なるため、直列接続と並列接続を組み合わせることが一 般的である。

【0003】また、このような燃料電池発電プラントで は、プラント全体としての出力に応じて各燃料電池に対 する燃料・酸化剤の供給量を調節できるように、複数の 燃料電池へ燃料・酸化剤を供給するための流量調節手段 は、全ての燃料電池本体に対して共通となっている。ま た、燃料電池の運転電圧を抑制するための酸化剤のリサ イクル流量調節は、個別の電池電圧を代表する値として 全ての電池電圧の平均値を用いて行っている。

【0004】図4は、従来の燃料電池発電プラントの一 例を示す構成図である。この図4に示すように、 n 個の 燃料電池本体1が電気的に直列接続されて、1つのスト リング(直列接続電池群)2を構成している。このよう に構成されたm列のストリング2が、電気的に並列接続 され、直交変換装置などからなる電気システム3と電気 的に並列接続されており、この電気システム3から負荷 電流を取り出すようになっている。そして、電気システ ム3には、この電気システム3からの負荷電流を計測す る全電流検出器4が電気的に直列接続されている。ま た、各燃料電池本体1には、燃料電池本体1の電圧を検 出する電圧検出器5が個別に接続されている。

【0005】また、図中11と12は、水素などの燃料 と、空気などの酸化剤をそれぞれ処理し、各燃料電池本 体1のアノード (燃料極) とカソード (酸化剤極) に供 給するための燃料処理システムと酸化剤処理システムで ある。これらの燃料処理システム11と酸化剤処理シス テム12には、燃料供給共通配管13と酸化剤供給共通 配管14がそれぞれ接続されている。そして、との燃料 供給共通配管13と酸化剤供給共通配管14には、これ らのシステムからの燃料・酸化剤の供給流量を調節する 手段として、燃料流量制御弁15と燃料流量計16、お よび酸化剤流量制御弁17と酸化剤流量計18がそれぞ れ設けられている。

【0006】一方、各ストリング2の一端には、燃料供 給ヘッダ19および酸化剤供給ヘッダ20が個別に設け られており、燃料供給共通配管13と酸化剤供給共通配 管14にそれぞれ接続されている。 また、各ストリング 2の他端には、燃料排出ヘッダ21および酸化剤排出へ ッダ22が個別に設けられており、各燃料排出ヘッダ2 【産業上の利用分野】本発明は、電気的に直列または並 50 1は燃料排出共通配管23に接続され、各酸化剤排出へ

3

ッダ22は酸化剤排出共通配管24に接続されている。 さらに、酸化剤排出共通配管24の一端には、排出酸化 剤の一部をリサイクルするリサイクル配管25が接続されており、とのリサイクル配管25の他端は、酸化剤供 給共通配管14に接続されている。このリサイクル配管 25には、内部の排出酸化剤を酸化剤供給共通配管14 にリサイクルするリサイクルブロワ26が設けられると ともに、酸化剤の供給流量を調節する手段として、リサイクル流量制御弁27およびリサイクル流量検出器28 が設けられている。

【0007】以上のような構成を有する図4の燃料電池 発電プラントにおいて、運転時には各ストリング2の各 燃料電池本体1に燃料と酸化剤が供給されるが、この供 給される燃料と酸化剤の供給流量は、次のようにして制 御される。まず、運転時には、燃料処理システム11と 酸化剤処理システム12から燃料供給共通配管13と酸 化剤供給共通配管14に燃料と酸化剤がそれぞれ供給さ れる。そして、との燃料と酸化剤の供給流量は、燃料流 量制御弁15と燃料流量計16、および酸化剤流量制御 弁17と酸化剤流量計18によってそれぞれ調節され る。この場合、燃料と酸化剤の供給流量調節は、全電流 検出器4の信号に基づいて行われる。すなわち、全電流 検出器4は、血列のストリング2によって電気システム 3から取り出された負荷電流を計測するが、このように 計測された負荷電流から、燃料電池全体の必要燃料・酸 化剤流量を算出することができる。そして、このように 算出された必要流量を満足するようにして、燃料と酸化 剤の供給流量の流量追従制御が行われる。

【0008】このように、燃料流量制御弁15と燃料流量計16によって調節された燃料と、酸化剤流量制御弁3017と酸化剤流量計18によって調節された酸化剤は、燃料供給共通配管13と酸化剤供給共通配管14を介して各ストリング2の燃料供給へッダ19と酸化剤供給へッダ20に等しく分配される。さらに、各ストリング2に供給された燃料と酸化剤は、各ストリング2内で各燃料電池本体1へ等配分される。そして、以上のような一連の動作により、各燃料電池本体1に対して必要な量の燃料・酸化剤がそれぞれ供給され、燃料・酸化剤利用率とも適切な範囲に維持される。

【0009】また、各燃料電池本体1において発電に寄与した後の燃料と酸化剤は、各ストリング2の燃料排出へッダ21と酸化剤排出へッダ22を介してそれぞれ集められ、燃料排出共通配管23と酸化剤排出共通配管24によって排出される。このうち、酸化剤排出共通配管24に排出された酸化剤の一部は、リサイクル配管25を介してリサイクルブロワ26により酸化剤供給共通配管14に戻される。このような酸化剤のリサイクルは、供給酸化剤の酸素濃度を調節し、電池電圧を制限値以内に抑制するために行われるが、このようなリサイクル流量は、次のようにして制御される。

【0010】すなわち、各燃料電池本体1には電圧を計削する電圧検出器5が接続されていて、全ての電圧検出器5の信号の平均値を燃料電池全体の検出電圧値と見なすことができる。そのため、電池電圧制限値とこの検出電圧値の比較によりリサイクルブロワ26の起動・停止を行うとともに、リサイクル流量制御弁27とリサイクル流量検出器28を用いて適切な流量制御を行っている。

【0011】以上説明したように、図4の燃料電池発電プラントによれば、最低限の操作により各電池本体燃料・酸化剤利用率、および電池電圧を適正な範囲に維持することが可能である。

[0012]

20

【発明が解決しようとする課題】ところで、以上のような従来の燃料電池発電プラントにおいては、各燃料電池本体1の特性に大きな差異がなく、個別ストリング電流、個別電池電圧が等しい限りにおいては、前述したように、最低限の操作により各電池本体燃料・酸化剤利用率、および電池電圧を適正な範囲に維持することが可能である。

【0013】しかしながら、実際には、燃料電池本体1 の特性変化・減衰は一様ではない。すなわち、長期間の 運転の後に無視できない特性アンバランスが生じたり、 また、一部の燃料電池本体1をリプレースすることによ り極端な特性アンバランスが生じることがある。そし て、図4の燃料電池発電プラントにおいて、このように 燃料電池本体1の間に特性アンバランスが生じた場合に は、個別ストリング電流間のアンバランス、および個別 電池電圧間のアンバランスが生じてしまう。とのような アンバランス状態において、各燃料電池本体1に均一の 燃料・酸化剤を供給すると、ストリング電流の大きいス トリング2に含まれる燃料電池本体1では燃料・酸化剤 の欠乏現象が起こり、電池の損傷を生じてしまう可能性 がある。また、他に比べて著しく特性の高い燃料電池本 体1が存在する場合には、この燃料電池本体1が過電圧 状態にさらされ、損傷を生じてしまう可能性がある。

【0014】本発明は、以上のような従来技術の問題点を解決するために提案されたものであり、その目的は、燃料電池本体間にどのような特性アンバランスが生じた場合でも、全ての燃料電池本体の燃料・酸化剤利用率、電池電圧を適正な範囲に維持可能な信頼性の高い燃料電池発電プラントを提供することである。

【0015】より具体的には、請求項1記載の発明の目的は、各ストリング(直列接続電池群)の電流値にアンバランスが生じた場合でも、各ストリング(直列接続電池群)間の燃料利用率を均一に維持することにより、全ての燃料電池本体の燃料利用率を適正な範囲に維持することである。請求項2記載の発明の目的は、各ストリング(直列接続電池群)の電流値にアンバランスが生じた50場合でも、各ストリング(直列接続電池群)間の酸化剤

利用率を均一に維持することにより、全ての燃料電池本 体の酸化剤利用率を適正な範囲に維持することである。 請求項3記載の発明の目的は、他に比べて著しく特性の 高い燃料電池本体が存在する場合に、この燃料電池本体 が過電圧状態となることを防止することにより、全ての 燃料電池本体の電池電圧を適正な範囲に維持することで ある。

[0016]

【課題を解決するための手段】本発明による燃料電池発 電プラントは、燃料極と酸化剤極からなる燃料電池本体 が電気的に直列にn個(n≥1)接続されて直列接続電 池群が形成され、この直列接続電池群が電気的に並列に m列(m≥2)接続されてなる燃料電池本体群と、燃料 電池本体群の燃料極に燃料を供給する燃料供給手段と、 燃料電池本体群の酸化剤極に酸化剤を供給する酸化剤供 給手段を有する燃料電池発電プラントにおいて、燃料ま たは酸化剤の供給量の調節方式に一定の特徴を有するも のである。

【0017】すなわち、請求項1記載の燃料電池発電プ ラントは、複数の電流検出手段と複数の燃料供給調節手 段とを備えたことを特徴としている。このうち、電流検 出手段は、各直列接続電池群に流れる電流を個別に検出 する手段である。そして、燃料供給調節手段は、各電流 検出手段によって得られた個別の電流検出値に基づき、 各直列接続電池群に供給する燃料流量の割合を個別に調 節する手段である。

【0018】また、請求項2記載の燃料電池発電プラン トは、複数の電流検出手段と複数の酸化剤供給調節手段 とを備えたことを特徴としている。このうち、電流検出 手段は、各直列接続電池群に流れる個別の電流を検出す る手段である。そして、酸化剤供給調節手段は、各電流 検出手段によって得られた個別の電流検出値に基づき、 各直列接続電池群に供給する酸化剤流量の割合を個別に 調節する手段である。

【0019】さらに、請求項3記載の燃料電池発電ブラ ントは、複数の電圧検出手段と、酸化剤リサイクル手段 と、リサイクル流量調節手段とを備えたことを特徴とし ている。とのうち、電圧検出手段は、各燃料電池本体の 個別の電圧を検出する手段である。そして、酸化剤リサ イクル手段は、燃料電池本体にて発電に寄与した後に排 出される酸化剤の一部を燃料電池本体群の酸化剤極の上 流側へリサイクルする手段である。また、リサイクル流 量調節手段は、各電圧検出手段によって得られた個別の 電圧検出値に基づき、燃料電池本体群の酸化剤極の上流 側へリサイクルする酸化剤のリサイクル流量を調節する 手段である。

[0020]

【作用】以上のような構成を有する本発明の燃料電池発 電プラントの作用は次の通りである。

本体の特性にアンバランスが生じ、その結果、電流検出 手段によって検出されるストリング (直列接続電池群)

電流検出値にアンバランスが生じた場合には、燃料供給 調節手段は、これらのストリング電流検出値に基づき、 以下の方法により供給する燃料流量を決定する。

【0022】ここで、一般的に、ストリング電流を1、 そのストリングに属する燃料電池本体へ供給する燃料流 量をFとすると、そのストリングにおける燃料利用率U は、次の式(1)で表される。

【数1】

10

$U_p \propto I/F$ … 式(1)

との式(1)から、ストリング電流 I が増大すると、燃 料利用率U、も増大することがわかる。そして、この燃 料利用率U、が過度に増大した場合には、燃料欠乏を引 き起とし、燃料電池本体を損傷してしまうことになる。 【0023】そこで、このような燃料利用率U,の過度 の増大を防止するために、各ストリング電流 I 間の比率 に合わせて供給する燃料流量Fを決定する。すなわち、 m個の各ストリングS₁, S₂, …, S_a に流れるスト リング電流を「」、「」、…、「」とした場合に、各ス トリングS1. S2, …, S1 に供給する燃料流量 F₁ , F₂ , …, F_a を、次の式(2)によって決定す

【数2】 $F_1:F_2\cdots:F_m=I_1:I_2\cdots:I_m$ … 式(2)

そして、燃料供給調節手段は、各ストリングS1, S, . …, S。 に供給する燃料流量が、それぞれ以上の ようにして決定される各燃料流量F₁, F₂, ···, F_a となるように調節する。このような供給燃料流量の調節 により、各ストリングS1, S2, …, S, 内において 各電池電流間にアンバランスがあっても、各ストリング S, , S, , …, S。間の燃料利用率は均一となる。 【0024】次に、請求項2の発明において、燃料電池 本体の特性にアンバランスが生じ、その結果、電流検出 手段によって検出されるストリング電流値にアンバラン スが生じた場合には、酸化剤供給調節手段は、これらの ストリング電流検出値に基づき、以下の方法により供給 する酸化剤流量を決定する。

【0025】ととで、一般的に、ストリング電流を1、 そのストリングに属する燃料電池本体へ供給する酸化剤 流量をGとすると、そのストリングにおける酸化剤利用 率U、は、次の式(3)で表される。

【数3】

との式(3)から、ストリング電流 I が増大すると、酸 化剤利用率U、も増大することがわかる。そして、この 酸化剤利用率U、が過度に増大した場合には、酸化剤欠 【0021】まず、請求項1の発明において、燃料電池 50 乏を引き起こし、燃料電池本体を損傷してしまうことに

なる。

【0026】そとで、このような酸化剤利用率U、の過 度の増大を防止するために、各ストリング電流 1 間の比 率に合わせて供給する酸化剤流量Gを決定する。すなわ ち、m個の各ストリングS, 、S, …、S。 に流れる グS, . S, . …, S に供給する燃料流量G, . G., …, G. を、次の式(4)によって決定する。 [数4] $G_1:G_2\cdots:G_n=I_1:I_2\cdots:I_n$ … 式(4)

そして、酸化剤供給調節手段は、各ストリングS、、S 2. …, S. に供給する酸化剤流量が、それぞれ以上の ようにして決定される各酸化剤流量G,,G,...,G となるように調節する。このような供給酸化剤流量の 調節により、各ストリングS、、S、、···、S。内にお いて各電池電流間にアンバランスがあっても、各ストリ ングS, S, …, S。間の酸化剤利用率は均一とな

【0027】続いて、請求項3の発明において、燃料電 池本体のリプレースなどにより他に比べて著しく高い電 圧の(他に比べて著しく特性の高い)燃料電池本体が存 在する場合には、電圧検出手段による個別の電圧検出値 に基づき、リサイクル流量調節手段によって、全ての燃 料電池本体の中で最も電圧値の高い燃料電池本体の電圧 が制限値以内となるように、酸化剤のリサイクル流量を 増加させる。このような酸化剤のリサイクル流量の調節 により、最も特性の高い燃料電池本体が過電圧状態とな ることを防止できる。

[0028]

【実施例】以下には、本発明の実施例を、図面を参照し て説明する。まず、図1は、本発明による燃料電池発電 プラントの一実施例を示す構成図である。 この図 1 にお いて、図4に示す従来例との共通部分については同一符 号を付し、その部分の説明は省略する。本実施例におい て、図4の従来例と異なる点は、各ストリング2にスト リング2に流れるストリング電流を検出するストリング 電流検出器31が個別に接続されている点、各ストリン グ2の燃料供給ヘッダ19と酸化剤供給ヘッダ20に燃 料供給ダンパ32と酸化剤供給ダンパ33とがそれぞれ 設けられている。この場合、ストリング電流検出器31 は、請求項1または請求項2に記載の電流検出手段に相 当する。また、燃料供給ダンパ32は、各ストリング電 流検出器31によって得られた個別のストリング電流検 出値に基づいてその開度を調節することにより、各スト リング2 に供給する燃料流量の割合を個別に調節する手 段であり、請求項1に記載の燃料供給調節手段に相当す る。そしてまた、酸化剤供給ダンパ33は、各ストリン グ電流検出器31によって得られた個別のストリング電 流検出値に基づいてその開度を調節することにより、各 する手段であり、請求項2に記載の酸化剤供給調節手段 に相当する。この場合、これらの燃料供給ダンパ32と 酸化剤供給ダンパ33は、図2に示すような制御装置3 4によって制御されるように構成されている。

8.

【0029】すなわち、図2に示すように、制御装置3 4は、まず、流量分配演算器35と開度演算器36を値 えている。とのうち、流量分配演算器35は、各ストリ ング電流検出器31に接続されており、各ストリング電 流検出器31から得られる個別のストリング電流検出値 10 から各ストリング2に供給する燃料の流量分配を演算す るように構成されている。具体的には、各ストリングS 1, S₂, …, S_a に流れるストリング電流を I₁, I 2. …, I とした場合に、各ストリングS1, S2, …, S. に供給する燃料流量F, . F, . …, F, を、 次の式(5)によって求めるように構成されている。 【数5】 $F_1 : F_2 \cdots : F_n = I_1 : I_2 \cdots : I_n$ … 式(5)

そして、開度演算器36は、流量分配演算器35に接続 されており、流量分配演算器35 によって求められた各 20 ストリング(S1, S2, …, S2) 2の流量から各ス トリング(S₁, S₂, …, S₃)2の各燃料供給ダン パ32の開度を演算し、得られた開度によって各燃料供 給ダンパ32に制御指令を送るように構成されている。 【0030】以上では、制御装置34の燃料制御側につ いて説明したが、酸化剤制御側についても全く同様に構 成されている。すなわち、制御装置34は、図示してい ないが、酸化剤制御側についても、燃料制御側の流量分 配演算器35および開度演算器36と同様の流量分配演 算器および開度演算器を備えている。

【0031】また、制御装置34は、酸化剤リサイクル 用として、最大値演算器37と演算器38を備えてい る。とのうち、最大値演算器37は、各電圧検出器5に 接続されており、各電圧検出器5から得られる個別の電 圧検出値からその最大値を求めるように構成されてい る。そして、演算器38は、最大値演算器37で求めら れた最大の電圧検出値に基づき、この最大の電圧検出 値、すなわち、全ての燃料電池本体1の中で最も電圧値 の高い燃料電池本体1の電圧値が所定の制限値以内とな るように、酸化剤のリサイクル流量を決定するように構 成されている。さらに、この演算器38は、決定したリ サイクル流量に基づいて、リサイクルブロワ26の起動 ・停止とリサイクル流量制御弁27の開度を決定し、と の決定に従ってリサイクルブロワ26およびリサイクル 流量制御弁27に制御指令を送るように構成されてい る。との場合、電圧検出器5は、請求項3に記載の電圧 検出手段に相当する。また、リサイクル配管25とリサ イクルプロワ26は、請求項3に記載の酸化剤リサイク ル手段に相当する。そしてまた、リサイクル流量制御弁 27は、各電圧検出器5によって得られた個別の電圧検 ストリング2に供給する酸化剤流量の割合を個別に調節 50 出値に基づいて制御装置34によって決定された開度に

従ってその開度を調節し、ストリング2のカソードの上 流側へリサイクルする酸化剤のリサイクル流量を調節す る手段であり、請求項3に記載のリサイクル流量調節手 段に相当する。

【0032】次に、本実施例の燃料電池発電プラントの 作用について説明する。まず、建設直後などの、個々の 燃料電池本体1の特性に差異がない時には、同じ負荷電 流に対して全ての燃料電池本体1はほぼ同じ電圧を示す ので、各ストリング2を流れるストリング電流値もほぼ 同じである。そのため、各ストリング2に供給する燃料 ・酸化剤流量は、全てのストリング2に対して等しくす ればよい。したがって、燃料・酸化剤ともに、燃料供給 共通配管13の酸化剤供給共通配管14に設けられた共 通の燃料流量制御弁15と酸化剤流量制御弁17のみに よって全てのストリング2に対して一括的に供給流量を 調節すればよい。そして、各ストリング2の各燃料供給 ヘッダ19および各酸化剤供給ヘッダ20に設けられた 各燃料供給ダンパ32 および酸化剤供給ダンパ33は、 全て全開もしくは等開度とすればよい。

【0033】しかしながら、ある程度の運転期間の後に は、必ず燃料電池本体1の特性にバラツキが生じ、同じ 負荷電流に対して燃料電池本体 1 の示す電圧に差が生じ ることになる。この場合、各ストリング2は並列接続さ れているため、各ストリング2の電圧は全て等しくな り、以上のような燃料電池本体 1 の特性の差はストリン グ電流の差として表われてくる。この現象は、電池の電 流・電圧特性から明らかであるが、以下に簡単に説明す る。

【0034】まず、図3は、燃料電池の標準的な電流・ 電圧特性を示すグラフである。図中線Aは電池特性の初 期状態を示しており、線Bは、この初期状態から電池の 特性が低下した状態を示している。このAとBに示すよ うに電池の特性にバラツキを生じた場合、前述したよう に、各ストリング2は同じ電圧になるため、状態Bに特 性が低下した電池の運転点は、初期状態AのC点から状 態BのD点に移り、電流が低下することになる。したが って、特性の差が増大すると、ストリング電流の差が増 大する。

【0035】とれに対して、本実施例においては、各ス トリング2のストリング電流の差が増大すると、これら のストリング電流の差は、まず、各ストリング電流検出 器31からの個別のストリング電流検出値の差として得 られることになる。次に、制御装置34の流量分配演算 器35によって、このような差を有するストリング電流 検出値から、各ストリング2に供給する燃料の流量分配 が求められる。そして、このようにして求められた燃料 の流量分配から、開度演算器36によって、各ストリン グ2の各燃料供給ダンパ32の開度が求められ、各燃料 供給ダンパ32の開度が自動的に制御される。との結

供給される燃料流量が調節され、各ストリング2間の燃 料利用率が均一に維持される。同様にして、制御装置3 4の酸化剤制御側の流量分配演算器と開度演算器によ り、各ストリング2の各酸化剤供給ダンパ33の開度が 求められ、各酸化剤供給ダンパ33の開度が自動的に制 御される。との結果、各酸化剤供給ダンパ33によっ て、各ストリング2に供給される酸化剤流量が調節さ

れ、各ストリング2間の酸化剤利用率が均一に維持され

【0036】一方、ある長時間運転の後に、複数の燃料 電池本体1の一部をリプレースすることがあるが、この 際に、とのリプレースした燃料電池本体1が、極端に高 い電圧を示してしまう場合がある。この場合に、従来例 のように、全ての電池電圧の平均値で酸化剤のリサイク ル流量を決定すると、使用時間の長い既存の燃料電池本 体1の電池電圧は適切な値を示す反面、リプレースした 新しい燃料電池本体1は過電圧状態にさらされてしまう ことになる。これに対して、本実施例においては、制御 装置34の電池電圧の平均値ではなく、全ての電池電圧 のうちの最大値を用いて酸化剤のリサイクル流量を決定 できるため、どのような状況においても一部の燃料電池

【0037】すなわち、本実施例において、他に比べて 著しく高い電圧の(他に比べて著しく特性の良い)燃料 電池本体1が存在する場合には、まず、各燃料電池本体 1の各電圧検出器5によって得られた個別の電圧検出値 に基づき、制御装置34の最大値演算器37により最大 の電圧検出値が求められる。次に、演算器38によっ て、最大値演算器37で求められた最大の電圧検出値が 所定の制限値以内となるように、酸化剤のリサイクル流

本体が過電圧状態にさらされることはない。

量が決定される。続いて、この演算器38によって、決 定したリサイクル流量に基づいて、リサイクルブロワ2 6の起動・停止とリサイクル流量制御弁27の開度が決 定され、との決定に従ってリサイクルブロワ26の起動 ・停止およびリサイクル流量制御弁27の開度が自動的 に制御される。との結果、リサイクル流量制御弁27に よって、リサイクル配管25を介してストリング2のカ ソードの上流側へリサイクルする酸化剤のリサイクル流 量を調節することができるため、最も高い特性を有する 燃料電池本体1が過電圧状態となることを防止できる。

【0038】以上説明したように、本実施例によれば、 各ストリング2の電流値にアンバランスが生じた場合で も、各ストリング2間の燃料利用率および酸化剤利用率 を均一に維持することができるため、全ての燃料電池本 体1の燃料利用率および酸化剤利用率を適正な範囲に維 持することができる。また、本実施例によれば、燃料電 池本体1のリプレースなどにより他に比べて著しく特性 の高い燃料電池本体1が存在する場合には、この最も高 い特性を有する燃料電池本体1が過電圧状態となること 果、各燃料供給ダンパ32によって、各ストリング2に 50 を防止することにより、全ての燃料電池本体1の電池電

12

圧を適正な範囲に維持することができる。

【0039】なお、本発明は、前記実施例に限定されるものではなく、各部の具体的な構成は適宜変更可能である。例えば、ストリングを形成する燃料電池本体の数は適宜選択可能であり、また、ストリングの数も適宜選択可能である。一方、電流検出手段、電圧検出手段、燃料供給調節手段、酸化剤供給調節手段、リサイクル流量調節手段などの具体的な構成や、これらの各手段の制御系の具体的な構成なども適宜選択可能である。

[0040]

【発明の効果】以上説明したように、本発明によれば、各直列接続電池群に対して電流検出手段と燃料供給調節手段または酸化剤供給調節手段を個別に設けるか、あるいは、各電圧検出手段によって得られた個別の電圧検出値に基づいてリサイクル流量調節手段によって酸化剤のリサイクル流量を調節することにより、燃料電池本体間にどのような特性アンバランスが生じた場合でも、全ての燃料電池本体の燃料・酸化剤利用率、電池電圧を適正な範囲に維持可能な信頼性の高い燃料電池発電プラントを提供することができる。

【図面の簡単な説明】

【図1】本発明による燃料電池発電プラントの一実施例 を示す構成図。

【図2】図1の燃料電池発電プラントの制御装置を示す 構成図。

【図3】燃料電池の標準的な電流・電圧特性を示すグラフ。

【図4】従来の燃料電池発電プラントの一例を示す構成 図。

【符号の説明】

1 …燃料電池本体

*2…ストリング

3…電気システム

4…全電流検出器

5…電圧検出器

11…燃料処理システム

12…酸化剤処理システム

13…燃料供給共通配管

14…酸化剤供給共通配管

15…燃料流量制御弁

10 16…燃料流量計

17…酸化剤流量制御弁

18…酸化剤流量計

19…燃料供給ヘッダ

20…酸化剤供給ヘッダ

21…燃料排出ヘッダ

22…酸化剤排出ヘッダ

23…燃料排出共通配管

24…酸化剤排出共通配管

25…リサイクル配管.

20 26…リサイクルブロワ

27…リサイクル流量制御弁

28…リサイクル流量検出器

31…ストリング電流検出器

32…燃料供給ダンバ

33…酸化剤供給ダンパ

34…制御装置

35…流量分配演算器

36…開度演算器

37…最大值演算器

30 38…演算器

*

【図3】

BEST AVAILABLE COPY