İKİNCİ DERECEDEN DENKLEM VE EŞİTSİSİZLİKLER

a, b, c sabit sayılar ve x bilinmeyen olmak üzere,

$$ax^2 + bx + c = 0$$

tipindeki denklemlere ikinci dereceden bir bilinmeyenli denklemler adı verilir. Bu denklemin kökleri,

$$\Delta = b^2 - 4ac$$

olmak üzere,

$$x_{1,2} = \frac{-b \mp \sqrt{\Delta}}{2a}$$

sayılarıdır. Buna göre,

1. $\Delta > 0$ ise, farklı reel sayılarıdır.

2. $\Delta = 0$ ise, kökler reel ve eşittir.

3. Δ < 0 ise, kökler reel değildir.

Örnek: $x^2 - 4x - 5 = 0$ denkleminin köklerini bulunuz.

Çözüm: $a=1,\ b=-4,\ c=-5$ olduğundan

$$\Delta = b^2 - 4ac = 16 - 4.1(-5) = 36$$

dir. Buna göre verilen denklemin iki farklı reel kökü vardır. Bu kökler

$$x_1 = \frac{4+\sqrt{36}}{2.1} = 5$$
,

$$x_2 = \frac{4-\sqrt{36}}{21} = -1$$

dir.

$$y = ax^2 + bx + c$$

biçimindeki bir fonksiyonun grafiğini çizmek için şu yolu izlemekte fayda vardır.

İkinci Dereceden Bir Bilinmeyenli Eşitsizlikler

 $f(x)=ax^2+bx+c\ \ddot{u}c\ terimlisinin\ işaretini\ \Delta=b^2-4ac$ nin durumuna göre inceleyelim.

i. $\Delta > 0$ ise $ax^2 + bx + c = 0$ denkleminin gerçek kökleri x_1 ve x_2 dir.

Parabolle ifadesi:

ii. $\Delta = 0$ ise

 $ax^2 + bx + c = 0$ denkleminin gerçek kökleri $x_1 = x_2 = -\frac{b}{2a}$ dır.

		b		
X	- ∞	2a		+∞
f(x)	a'nın işaretinin aynısı	Ŷ	a'nın işaretinin aynısı	

Parabolle ifadesi:

iii. $\Delta < 0$ ise $ax^2 + bx + c = 0$ denkleminin gerçek kökleri yoktur.

Parabolle ifadesi:

Not

İşaret tablosu oluşturulurken kullanılacak gösterimler:

	Payın	kökü	Paydanın kökü
Tek katlı	•	¢	¢
Çift katlı	*	8	\$
	Eşitlik	Eşit olmama	Eşitlik ve eşit olmama

1. Aşağıdaki denklemleri sağlayan kökleri bulunuz.

a)
$$x^2 - 4x + 3 = 0$$

d)
$$2x^2 + x - 15 = 0$$

e)
$$4x^2 - 8x + 3 = 0$$

b)
$$x^2 + 5x - 14 = 0$$

f)
$$4x^2 - 12x + 9 = 0$$

c)
$$x^2 + 10x + 25 = 0$$

d)
$$\left\{-3, \frac{5}{2}\right\}$$
 e) $\left\{\frac{1}{2}, \frac{3}{2}\right\}$ f) $\left\{\frac{3}{2}\right\}$

e)
$$\left\{ \frac{1}{2}, \frac{3}{2} \right\}$$

f)
$$\left\{ \frac{3}{2} \right\}$$

SORU:

$$(x-2)^2$$
. $(x^2+2x-3) \ge 0$

eşitsizliğinin çözüm kümesi aşağıdakilerden hangisidir?

A)
$$(-\infty, -1) \cup (3, \infty)$$

SORU:

 $x^2 - 2x - 6 = 0$ denkleminin çözüm kümesi aşağıdakilerden hangisidir?

A)
$$\{-6,1\}$$
 B) $\{-2,3\}$ C) $\{3-\sqrt{2},3+\sqrt{2}\}$

D)
$$\left\{2 - \sqrt{5}, 2 + \sqrt{5}\right\}$$
 E) $\left\{1 - \sqrt{7}, 1 + \sqrt{7}\right\}$

E)
$$\left\{1-\sqrt{7},1+\sqrt{7}\right\}$$

 $x^2 + 4x - 6 = 0 \quad \text{ denkleminin k\"okleri } x_1 \text{ ve } x_2 \text{ dir.}$

 $\frac{1}{x_1} + \frac{1}{x_2}$ işleminin sonucu kaçtır?

- A) $-\frac{1}{2}$ B) $\frac{2}{3}$ C) 2 D) $\frac{7}{3}$ E) 3

SORU:

 $x^2 - 7x + 3 = 0$ denkleminin kökleri x_1 ve x_2 ise aşağıdakilerden hangileri doğrudur? $(x_1 > x_2)$

- I) $x_1 + x_2 = -7$
- II) $x_1.x_2 = 3$
- III) $x_1 x_2 = \sqrt{37}$

- A) I B) II C) III D) I,II
- E) II,III

SORU:

$$(x^2-4).(x^2+5x)=3.(x^2+7x+10)$$

Aşağıdakierden hangisi yukarıdaki denklemin köklerinden biri değildir?

- A) -5 B) -2 C) -1 D) 3

- E) 4

 $x^2 - 4x - 4 = 0$ denkleminin çözüm kümesi aşağıdakilerden hangisidir?

A)
$$\left\{2-2\sqrt{2} \text{ , } 2+2\sqrt{2}\right\}$$
 B) $\left\{1-2\sqrt{2} \text{ , } 1+2\sqrt{2}\right\}$

B)
$$\left\{1-2\sqrt{2}, 1+2\sqrt{2}\right\}$$

C)
$$\left\{1-\sqrt{3},1+\sqrt{3}\right\}$$
 D) $\left\{3-\sqrt{2},3+\sqrt{2}\right\}$

D)
$$\{3-\sqrt{2}, 3+\sqrt{2}\}$$

E)
$$\left\{4 - \sqrt{3}, 4 + \sqrt{3}\right\}$$

SORU:

 $x^2 - 2x - 24 > 0$ eşitsizliğinin çözüm kümesini bulun.

SORU:

 $3x^2 - 14x + 8 \le 0$ eşitsizliğinin çözüm kümesini bulun.

 $\frac{3x+1}{x^2+1} > 1$ eşitsizliğini sağlamayan sayıların kümesini bulun.

Hatırlatma:

$$ax^2 + bx + c = 0$$

Diskriminant $\rightarrow \Delta = b^2 - 4ac$

- I) $\Delta > 0$ ise iki farklı reel kök var.
- II) $\Delta = 0$ ise bir tane reel kök var.
- III) $\Delta < 0$ ise reel kökü yoktur.

SORU:

 $3x^2 - 5x - 2 > 0$ eşitsizliğinin çözüm kümesini bulunuz.

CEVAP:

 $3x^2-5x-2=0 \text{ denkleminde } \Delta=b^2-4ac=(-5)^2-4\cdot 3\cdot (-2)=49>0 \text{ olduğundan denklemin farklı iki reel kökü vardır. Denklemin kökleri çarpanlara ayırma yöntemiyle } (3x+1)\cdot (x-2)=0$ $x_1=-\frac{1}{3} \text{ veya } x_2=2 \text{ olarak bulunur.}$

a=3>0 olduğundan işaret tablosunun en sağ aralığı (+) ile başlayıp sola doğru tek katlı köklerde işaret değiştirerek en soldaki aralığa kadar devam eder.

 $3x^2 - 5x - 2 > 0$ eşitsizliğinde istenen aralıklar (+) olan aralıklardır. Bu aralıklar işaret tablosunda taralı olarak gösterilmiştir.

Böylece $3x^2 - 5x - 2 > 0$ eşitsizliğinin çözüm kümesi ÇK = $(-\infty, -\frac{1}{3}) \cup (2, \infty)$ olur.

 $x^2 - 2x + 3 < 0$ eşitsizliğinin çözüm kümesini bulunuz.

CEVAP:

 $x^2-2x+3=0$ denkleminde $\Delta=b^2-4ac=(-2)^2-4\cdot 1\cdot 3=-8<0$ olduğundan denklemin reel kökü yoktur.

a = 1 > 0 olduğundan her $x \in \mathbb{R}$ için f(x) > 0 olur.

х	-∞	reel kök yok	+∞
$x^2 - 2x + 3$		+	

Tabloda görüldüğü gibi $x^2 - 2x + 3 < 0$ eşitsizliğinin çözüm kümesi ÇK = {} olur.

SORU:

 $x^2 < 3 - 2x$ eşitsizliğinin çözüm kümesini bulunuz.

CEVAP:

$$\begin{aligned} x^2 &< 3-2x \Rightarrow x^2+2x-3 < 0 \\ x^2+2x-3 &= 0 \text{ denkleminin k\"okleri} \\ (x+3)\cdot(x-1) &= 0 \Rightarrow x_1 = -3 \text{ veya } x_2 = 1 \text{ olarak bulunur.} \end{aligned}$$

 $x^2 + 2x - 3$ ifadesinde a = 1 > 0 olduğundan işaret tablosunun en sağ aralığı (+) ile başlayıp sola doğru tek katlı köklerde işaret değiştirerek en soldaki aralığa kadar devam eder. Eşitsizliğin işaret tablosu aşağıdaki gibi elde edilir.

x	-∞	-3		1	+∞
$x^2 + 2x - 3$	+	þ	-	þ	+

Böylece $x^2 + 2x - 3 < 0$ eşitsizliğinin çözüm kümesi ÇK = (-3,1) olur.

 $(x^2 - 4x + 4) \cdot (x - 5) \ge 0$ eşitsizliğinin çözüm kümesini bulunuz.

CEVAP:

$$(x^2 - 4x + 4) \cdot (x - 5) = (x - 2)^2 \cdot (x - 5) = 0$$
 denkleminin kökleri

$$(x-2)^2 = 0$$
 veya $x-5=0$ eşitliklerinden

 $x_1 = x_2 = 2$ (cift katlı kök) veya $x_3 = 5$ olarak bulunur.

Burada bulunan 2 ve 5 değerleri, ≥ sembolü kullanıldığı için çözüm kümesine dâhildir. Bu durumda işaret tablosu aşağıdaki gibi olur.

x	-∞ 2	2 5	5 +∞
$x^2 - 4x + 4$	+	+	+
x — 5	1	- (+
$(x^2-4x+4)\cdot(x-5)$	(+)·(-) = -	(+)·(−) = −	(+)·(+) = +

 $(x^2 - 4x + 4) \cdot (x - 5) \ge 0$ eşitsizliğinin çözüm kümesi ÇK = [5, ∞) U {2} olarak bulunur.

SORU:

$$\frac{x-5}{3-x} \ge 0$$
 eşitsizliğinin çözüm kümesini bulunuz.

CEVAP:

$$\frac{x-5}{3-x}$$
 ifadesinde pay ve paydanın kökleri
 $x-5=0 \Rightarrow x=5$
 $3-x=0 \Rightarrow x=3$ olur.

$$\frac{1 \cdot x - 5}{3 - 1 \cdot x}$$
 ifadesinde $\frac{1}{-1} = -1 < 0$ olduğundan işaret tablosu (–) ile başlar.

x	-∞	3	5	o
$\frac{x-5}{3-x}$	-	Å	+	-

İşaret tablosuna göre $\frac{x-5}{3-x} \ge 0$ eşitsizliğinin çözüm kümesi ÇK = (3, 5] olur.

$$x^2-x-6 \ge 0$$
 $x+3 < 0$ eşitsizlik sisteminin çözüm kümesini bulunuz.

CEVAP:

 $x^2 - x - 6 = 0 \Rightarrow (x - 3)(x + 2) = 0$ olduğundan denklemin kökleri $x_1 = -2$ veya $x_2 = 3$ olur. x + 3 = 0 denkleminin kökü $x_3 = -3$ olarak bulunur.

Bulunan bu köklerle ilgili işaret tablosu aşağıdaki gibidir.

x	-8	-3		-2	3	+∞
$x^2 - x - 6$	+		+	• -	•	+
x + 3	1	þ	+	+		+

 $x^2 - x - 6 \ge 0$ olan bölgeler taranır.

x + 3 < 0 olan bölge taranır.

Taralı bölgelerdeki ortak noktalar çözüm kümesini oluşturur.

Eşitsizlik sisteminin çözüm kümesi ÇK= $(-\infty, -3)$ olur.

SORU:

$$x^2 - 3x + 2 \ge 0 \\ x^2 + x < 0$$
 eşitsizlik sisteminin çözüm kümesini bulunuz.

CEVAP:

 $x^2-3x+2=0 \Rightarrow (x-2)(x-1)=0$ denkleminin kökleri $x_1=2$ veya $x_2=1$ olur. $x^2+x=0 \Rightarrow x(x+1)=0$ denkleminin kökleri $x_3=0$ ve $x_4=-1$ olarak bulunur. Bulunan bu köklerle ilgili işaret tablosu aşağıdaki gibidir.

х	-∞	-1		0		1	2	+∞
$x^2 - 3x + 2$	+	2	+	7.5	+	-	•	+
x ² + x	+	þ	_	þ	+	+		+

 $x^2 - 3x + 2 \ge 0$ olan bölgeler taranır. $x^2 + x < 0$ olan bölge taranır. Taralı bölgelerdeki ortak noktalar, çözüm kümesini oluşturur.

Eşitsizlik sisteminin çözüm kümesi $\zeta K = (-1, 0)$ olur.