

Implementors:

Devanshi Narula - R2142221269 Mukul Shivhare - R2142221477 Daksh Batra - R2142220317 Anvita Gupta - R2142221432

Abstarct

A campus
navigation tool
using Dijkstra's
algorithm
calculates
shortest paths,
optimizing
routes for
students,
faculty, and
visitors
efficiently.

MapMyUni

MapMyUni
aids campus
navigation,
guiding
newcomers to
classrooms,
libraries, and
offices, saving
time, reducing
confusion, and
enhancing
exploration.

MapMyUni

Areas of Application

- For navigation large university campuses
- For hospitals in big cities for calculating shortest distance during emergencies

Strengths

Provides efficient, user-friendly campus navigation, reducing orientation time for newcomers.

S

0

Opportunities

Can be expanded to include additional features like event notifications, public transport integration, or virtual tours.

na ma metho

Weaknesses

Reliance on campus infrastructure (Wi-Fi, GPS) may limit performance in areas with poor connectivity.

Threats

Competing navigation apps or manual navigation methods may diminish its adoption rate.

Mentor:

Dr. Sonal Talreja

Problem Statement

Efficient campus navigation is crucial, as newcomers often struggle with large layouts. A tool calculating shortest paths addresses this.

Methodology

Graph
modeling using
adjacency lists,
Dijkstra's
algorithm,
priority queues
for shortest
paths, and user
input-output
for efficient
navigation.

Adjacency List

used for graph representation

DATA STRUCTURES

Priority Queue

used for efficient node selection

Distance Table

used to store all the pathways from each location