Introducción al Análisis Bayesiano con Aplicaciones en STAN

Ignacio Alvarez-Castro

conectaR

Universidad de Costa Rica

23 al 26 de Enero 2019

Presentación

Introducir el paradigma Bayesiano para hacer inferencia con una perspectiva aplicada, que los participantes obtengan una guía a seguir para implementar un análisis Bayesiano en sus problemas de interés.

- Presentar la naturaleza de la inferencia Bayesiana y sus bases teóricas
- Introducción al cómputo Bayesiano utilizando STAN
- Introducción a la modelización Bayesiana: Tasa de Mortalidad Infantil

Ignacio Alvarez-Castro

- Instituto de Estadística (IESTA), Universidad de la República, Uruguay
- nachalca@iesta.edu.uy
- @nachalca
- https://github.com/nachalca/conectar_introBayes

Libros

Siguiendo

VI Congreso Bayesiano de América Latina (VI COBAL)

Lima, Perú, 19 al 21 Junio 2019.

sites.google.com/site/cobal2019/

@ISBA_events #Bayesian #LatinAmerica #Peru #Statistics

1:58 - 18 sept. 2018

- Inferencia Bayesiana
- Cómputo Bayesiano
- 3 Introducción a STAN
- Modelos jerárquicos
- 5 Tasa de Mortalidad Infantil en Uruguay

Inferencia estadística

La inferencia estadística se ocupa de elaborar métodos para obtener conclusiones basadas en datos observados

Si $y = (y_1, y_2, \dots, y_n)$ corresponden a observaciones del fenómeno de interés:

- Suponemos que y corresponde a la realización de la variable aleatoria Y con función de densidad o masa p(y).
- Objetivos:
 - Explicar características relevantes de Y
 - Predecir el valor de observaciones futuras
 - Comparar modelizaciones alternativas

Hoy hablaremos únicamente sobre modelos paramétricos.

Inferencia Bayesiana

El término inferencia Bayesiana se refiere al paradigma teórico utilizado para realizar inferencia estadística (explicar o predecir fenómenos estocásticos).

- y: los datos observados
- *M*: aspectos de la realidad que se asumen conocidos
- lacksquare θ : lo que no conocemos del problema

Inferencia Bayesiana

El término inferencia Bayesiana se refiere al paradigma teórico utilizado para realizar inferencia estadística (explicar o predecir fenómenos estocásticos).

- y: los datos observados
- *M*: aspectos de la realidad que se asumen conocidos
- lacksquare θ : lo que no conocemos del problema

Basar nuestras decisiones sobre las cantidades desconocidas en la distribución de probabilidad condicional a los datos observados y otros aspectos conocidos del problema.

$$p(\theta|y, M)$$

Estimación Bayesiana

Un modelo estadístico Bayesiano está formado por dos componentes:

Modelo para los datos $p(y|\theta)$ Previa $p(\theta)$

La estimación de θ consiste en hallar la distribución posterior $p(\theta|y)$

Hallar $p(\theta|y)$ mediante la regla de Bayes:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

- analíticamente, en problemas simples
- \blacksquare numéricamente: aproximando en una grilla de valores de θ
- numéricamente: mediante simulaciones

Experimento: Globo terráqueo

(tomado de McElreath (2016))

Objetivo: Estimar la proporción de superficie cubierta por AGUA en el planeta.

Experimento: tirar el globo hacia arriba y cuando lo agarramos registramos si el dedo índice de la mano derecha quedó sobre agua o sobre tierra.

Datos de 9 tiradas:

```
obs <- c('AA', 'TT', 'AA', 'AA', 'AA', 'TT', 'AA', 'TT', 'AA')

y <- as.numeric(obs == 'AA')</pre>
```

Modelo completo de probabilidad

- Y_i vale 1 si el resultado de la tirada i es AGUA y 0 si es TIERRA.
- lacksquare representa la probabilidad de observar AGUA en una tirada

Modelo para los datos: $Y_i \stackrel{ind}{\sim} Ber(\theta)$, n = 9, $\sum_{i=1}^n y_i = n_1$

$$\rho(y|\theta) = \prod_{i=1}^n \rho(y_i|\theta) = \theta^{n_1}(1-\theta)^{n-n_1}$$

Previa: ¿Cómo representamos nuestra incertidumbre sobre θ ?

Modelo completo de probabilidad

- Y_i vale 1 si el resultado de la tirada i es AGUA y 0 si es TIERRA.
- f heta representa la probabilidad de observar AGUA en una tirada

Modelo para los datos: $Y_i \stackrel{ind}{\sim} Ber(\theta)$, n = 9, $\sum_{i=1}^{n} y_i = n_1$

$$p(y|\theta) = \prod_{i=1}^n p(y_i|\theta) = \theta^{n_1}(1-\theta)^{n-n_1}$$

Previa: ¿Cómo representamos nuestra incertidumbre sobre θ ? Por ahora asignemos "igual probabilidad" a todos sus posibles valores: $\theta \sim \textit{Unif}(0,1)$

Obtener posterior

Mediante regla de Bayes:

$$p(\theta|y) = \frac{p(y|\theta) \times p(\theta)}{p(y)}$$

Notar que p(y) es constante respecto a θ , al obtener $p(\theta|y)$ podemos evitar calcular dicha constante,

$$\begin{aligned} \rho(\theta|y) &= \frac{\rho(y|\theta) \times \rho(\theta)}{\rho(y)} \\ &\propto \rho(y|\theta) \times \rho(\theta) \\ &\propto \theta^{n_1} (1-\theta)^{n-n_1} \times I_{\theta \in (0,1)} \end{aligned}$$

$$\theta|y \sim Beta(n_1+1, n-n_1+1)$$

Previa y posterior

La distribucion previa, $p(\theta)$

- lacktriangle representa la incertidumbre sobre heta antes de observar y
- permite incorporar información previa en la modelización

Seleccionar la previa

- Hacer uso de información "genuina": en experimentos secuenciales, conocimiento de expertos
- Automáticas: incorporan la menor informacion posible (Jeffreys, objetivas, referencia)
- 3 Débilmente informativas: regularizar inferencias extremas
- Convenientes: selecionadas ad hoc, computacionalmente convenientes o referenciadas en la literatura. (ejemplo: Previas conjugadas)

Resumir la distribución posterior

Estimar θ significa hallar su distribución posterior $p(\theta|y)$. Sin embargo, muchas veces conviene resumir la distribución

I Estimación puntual, $\hat{\theta}_{bayes}$:

$$\hat{ heta}_{bayes} = \operatorname{argmin}_{ heta} \left\{ \int L(heta, \hat{ heta}) p(heta|y) d heta
ight\}$$

 $L(\theta, \hat{\theta})$ función de pérdida que determina $\hat{\theta}_{bayes}$. Medidas de posición central son muy usadas (esperanza, mediana, moda)

- 2 Intervalo de credibilidad: $P(\theta \in (a,b)|y) = \int_a^b p(\theta|y)d\theta = \alpha$
 - Definido con percentiles ($(\theta|y)_{\alpha/2}, (\theta|y)_{1-\alpha/2}$)
 - Región de máxima posterior: $\{\theta: p(\theta|y) \ge k\}$
- Probabilidad de eventos de interés: $Pr(\theta \in A|y) = \int_A p(\theta|y)d\theta$

Predicción Bayesiana

Aparte del objetivo de estimar θ (hallar $p(\theta|y)$), podemos estar interesados en predecir futuras observaciones (como objetivo en sí mismo o para evaluar si el modelo es adecuado)

Distribución predictiva posterior:

- $\mathbf{\tilde{y}}$: una nueva observación del fenómeno de estudio.
- ullet $ilde{y}| heta$ es independiente de los datos observados y_i
- lacksquare el modelo de los datos es el mismo, $ilde{y} \sim p(y| heta)$

$$p(\tilde{y}|y) = \int p(\tilde{y}, \theta|y) d\theta = \int p(\tilde{y}|\theta, y) p(\theta|y) d\theta = \int p(\tilde{y}|\theta) p(\theta|y) d\theta$$

- lacksquare predicciones puntuales o por intervalos en base a $p(\tilde{y}|y)$
- lacksquare comparando $ilde{y}$ con y se puede evaluar el ajuste del modelo

Hacer diagnóstico del modelo

Las inferencias basadas en la posterior dependen del modelo: $p(y|\theta)$ y $p(\theta)$. Es necesario evaluar que tan razonables son esos supuestos.

Checks posterior predictiva

- Sirve para evaluar que tan bien un modelo se ajusta a los datos observados.
- comparaciones en base a gráficos
- p-valores posterior predictivos
- otras comparaciones: comparar simulaciones de la posterior con la previa

Comparación de modelos

- Análisis de sensibilidad
- Medir el poder predictivo del modelo

Práctica

Considera el modelo:

$$y_i \overset{indep}{\sim} Poisson(n\lambda)$$

 $\lambda \overset{indep}{\sim} Gamma(a, b)$

¿Puedes mostrar que $E(\lambda|y) = \frac{a+n\bar{y}}{b+n}$?

Tres pasos básicos

(tomado de Gelman et al. (2013))

- Proponer un modelo de probabilidad completo: para todas las cantidaes de interés (observadas y no observadas)
- Obtener la distribución posterior de interés. Es decir, la distribucion de probabilidad de cantidades no observadas de interés condicional a las cantidades observadas.
- Evaluar los resultados del modelo contenidos en la distribución posterior, evaluar los supuestos del modelo. Eventualmente modificar o expandir el modelo y repetir el proceso.

Plan

- Inferencia Bayesiana
- 2 Cómputo Bayesiano
- Introducción a STAN
- Modelos jerárquicos
- Tasa de Mortalidad Infantil en Uruguay

Estimación Bayesiana

Gran cantidad de objetivos de inferencia pueden representarse como

$$E_{\theta|y}[h(\theta)|y] = \int h(\theta)p(\theta|y)d\theta$$

donde $h(\theta)$ es la cantidad de interes.

se obtiene

- analíticamente, en problemas simples
- numéricamente: grilla de valores, mediante simulaciones

Aproximar la posterior con simulaciones

Monte Carlo: usar valores simulados de la posterior:

$$\left\{\theta^1, \theta^2, \dots, \theta^S\right\}$$

donde $\theta^i \sim p(\theta|y)$

Monte Carlo se basa en la Ley Fuerte de los grandes números

$$\frac{1}{S}\sum h(\theta^i)\longrightarrow \int h(\theta)p(\theta|y)d\theta=E(\theta|y)$$

Infinidad de algoritmos para obtener las simulaciones. Dos grandes formas:

- Monte Carlo, simulaciones/realizaciones independientes
- Monte Carlo, simulaciones/realizaciones dependientes

Monte Carlo: simulaciones dependientes

Monte Carlo basado en cadenas de Markov MCMC:

los valores simulados

$$\left\{\theta^1, \theta^2, \dots, \theta^n\right\}$$

forman una cadena de Markov, cuya distribución estacionaria es la posterior de interés $p(\theta|y)$

Una cadena de Markov es una secuencia de variables aleatorias dependientes

$$X^1, X^2, \ldots, X^t, \ldots$$

tal que la distribución de X^t dada las variables pasadas sólo depende de X^{t-1} ,

$$p(X^{t}|X^{1},...,X^{t-1}) = p(X^{t}|X^{t-1})$$

Cadena de Markov

Si la cadena es ergódica entonces se cumple que

$$\frac{1}{S} \sum h(X^t) \longrightarrow \int h(x)p(x)dx$$

donde p(x) es la distribución estacionaria de la cadena.

Esto implica que podemos trabajar con las simulaciones de la cadena de igual forma que con simulaciones independientes (Monte Carlo).

Preguntas prácticas

$$\left\{\theta^1, \theta^2, \dots, \theta^S\right\}$$

Debemos definir:

- m: número de cadenas independientes
- ullet θ^0 : valores iniciales para cada cadena
- S: cantidad de iteraciones en cada cadena

Una estrategia

- Obtener simulaciones de varias cadenas, m = 3 o 4
- Usar valores dispersos y descartar las iteraciones iniciales (warm up)
- lacktriangle Determinar si las iteraciones son suficientes mediante \hat{R} y $n_{\it eff}$

Diagnosticar convergencia

Reduccioón potencial en la varianza:

$$\hat{R} = \sqrt{rac{var^+(heta|y)}{W}}$$

representa cuanto se puede reducir la varianza si aumentamos las iteraciones.

Número de muestras efectivo

$$n_{ ext{eff}} = rac{n imes m}{\left(1 + 2 \sum_{k=1}^{\infty}
ho_k
ight)}$$

representa la cantidad de muestras equivalentes si fueran independientes $(\rho_k = corr(\theta^t, \theta^{t-k}))$.

Plan

- Inferencia Bayesiana
- Cómputo Bayesiano
- Introducción a STAN
- Modelos jerárquicos
- Tasa de Mortalidad Infantil en Uruguay

Obtener muestras de $p(\theta|y)$ en cualquier modelos

$$\left\{\theta^1, \theta^2, \dots, \theta^S\right\}$$

- lenguaje de programacioón probabilística
- Utiliza Hamiltonian Monte Carlo
- Principalmente para inferencia Bayesiana
- interface con varios programas

No es necesario salir de R

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

STAN no esta solo ...

Hay muchas otras opciones y software para realizar inferencia Bayesiana:

- Obtener MCMC (BUGS, JAGS, NIMBLE, Greta)
- Manipular MCMC (coda, bayesplot, loo, shinystan)
- Modelos particulares (ARM, INLA, rstanarm, brms)
- Task View https://cran.r-project.org/web/views/Bayesian.html

Ejemplo inicial de STAN

Modelo:
$$Y_i \stackrel{\textit{iid}}{\sim} \textit{N}(\mu, \sigma^2)$$
 $\mu \sim t_3(0, 1)$ $\sigma \sim \textit{Ca}^+(0, 1)$

3 pasos:

- escribir el modelo en lenguaje STAN, inicial.stan
- compilar el modelo, para obtener un programa en C++
- ejecutar el programa, para obtener muestras de la distribución posterior

Escribir el modelo: inicial.stan

```
Modelo: Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2) \mu \sim t_3(0, 1) \sigma \sim Ca^+(0, 1)
data {
  // bloque de datos
  int < lower=1> n;
  real y[n];
parameters {
  // bloque para definir parametros y su espacio
  real mu;
  real < lower = 0 > sigma;
model {
  // Bloque del modelo: previas y modelo para datos
  sigma \tilde{} cauchy (0,1);
  mu \sim student_t(3, 0, 1);
  y ~ normal(mu, sigma);
```

Obtener muestras de posterior

Modelo: $Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2) \quad \mu \sim t_3(0, 1) \quad \sigma \sim Ca^+(0, 1)$

```
# cargamos la libreria y simulamos datos
library(tidyverse)
library(rstan)
rstan_options(auto_write = TRUE)
simulados <- data_frame(ys = rnorm(500, mean = 20, sd = 3))
  # compilamos el modelo: se genera un objeto con el codigo
m = stan model(file = 'inicial.stan')
# ponemos los datos en una lista con nombres
dt.ls <- with(simulados, list(n = length(ys), y = ys) )</pre>
# Obtenemos simulaciones de la posterior
res = sampling(m, data = dt.ls)
```

Resultados del modelo

Modelo: $Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2) \quad \mu \sim t_3(0, 1) \quad \sigma \sim Ca^+(0, 1)$

```
# resumen de resultados
res
summary(res)
# varios dibujos posibles
plot(res, plotfun = 'trace') # iteraciones
plot(res, plotfun = 'rhat') # Reduccion varianza potencial
plot(res, plotfun = 'ess') # Muestras efectivas
plot(res) # intervalos de credibilidad
plot(res, plotfun = 'hist') # histograma posterior
# Obtener los valores simulados de p(mu, sigma / y)
rstan::extract(res)
```

Práctica

 $\dot{\epsilon}$ Puedes escribir el modelo que utilizamos para los datos del experimento con el globo terraqueo?

Modelo:
$$Y_i \stackrel{iid}{\sim} Bin(9, \theta)$$
 $\theta \sim Unif(0, 1)$

3 pasos:

- escribir globo.stan
- compilar el modelo con stan_model()
- 3 obtener posterior con sampling()

(2 y 3 se pueden combinar usando stan())

Plan

Inferencia Bayesiana

- Cómputo Bayesiano
- Introducción a STAN
- Modelos jerárquicos
- Tasa de Mortalidad Infantil en Uruguay

Modelos jerárquicos

Llamamos modelo jerárquico a modelos en los que agregamos previas para los parámetros de las distribuciones que **NO** aparecen en el modelo para los datos.

$$y_j = (y_{j,1}, \dots, y_{j,n_j}) \stackrel{\textit{ind}}{\sim} p(y|\theta_j)$$
 $\theta_j \stackrel{\textit{ind}}{\sim} p(\theta|\phi)$
 $\phi \sim p(\phi)$

- $y_j = (y_{j,1}, \dots, y_{j,n_j})$ observaciones para el grupo j
- lacksquare n_j es la cantidad de observaciones en el grupo j

Modelos jerárquicos

Llamamos modelo jerárquico a modelos en los que agregamos previas para los parámetros de las distribuciones que NO aparecen en el modelo para los datos.

$$y_{j} = (y_{j,1}, \dots, y_{j,n_{j}}) \quad \stackrel{ind}{\sim} p(y|\theta_{j})$$

$$\theta_{j} \quad \stackrel{ind}{\sim} p(\theta|\phi)$$

$$\phi \quad \sim p(\phi)$$

- $y_j = (y_{j,1}, \dots, y_{j,n_j})$ observaciones para el grupo j
- lacksquare n_j es la cantidad de observaciones en el grupo j
- $p(y|\theta_j)$ controla la variabilidad *al interior* de cada grupo
- $lackbox{ }p(heta|\phi)$ controla la variabilidad entre grupos
- $\mathbf{p}(\phi)$ representa información previa sobre ϕ

Modelos jerárquicos

Aparecen cuando los datos tienen un *agrupamiento* natural. Por ejemplo, datos con estructura espacial y/o temporal, o experimentos con varias medidas por unidad experimental, etc.

Si nos interesa un parámetro para cada grupo, nos conviene aprovechar la estructura de los datos.

- y_{ij} observación para la unidad i en el grupo j
- $y_{ij} \sim p(y|\theta_j)$, θ_j parámetro de interés en el grupo j
- lacksquare θ_j son intercambiables

Es natural un modelo jerárquico en esta situación

Estimación de modelos jerárquico

La estimación (clásica) de modelos jerárquicos puede ser difícil

- \blacksquare teoría asintótica requiere que n_j y J sean grandes
- la cantidad de parámetros a estimar crece con los datos
- no hay p-valor en lmer, Douglas Bates dice https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html

Inferencia Bayesiana tiene ventajas aqui

- es válido para muestras finitas
- aprovecha estructura de dependencia entre parámetros

Usando MCMC el método de inferencia (Bayesiana) no cambia, pero puede ser computacionalmente costoso

Plan

1 Inferencia Bayesiana

- Cómputo Bayesiano
- Introducción a STAN
- 4 Modelos jerárquicos
- 5 Tasa de Mortalidad Infantil en Uruguay

Tasa de Mortalidad Infantil

TMI es la proporción de niños que muere con menos de 1 año de edad.

En 2015 en Uruguay hubo 48926 nacimientos, 367 de esos niños fallecieron antes de cumplir un año: TMI = 0,0075 o 7,5 por mil.

Queremos modelar TMI en cada departamento (región) de Uruguay

- yit: defunciones en la región i para el año t
- lacksquare N_{it} : nacimientos en la región i para el año t
- Hay 19 regiones, i = 1, ..., 19 y 3 años, t = 2013, 2014, 2015

Mapa de TMI en Uruguay - 2015

En cada departamento se presenta el correspondiente SMR

TMI para 3 años

Modelo jerárquico

$$y_{it} \stackrel{indep}{\sim} Poisson(N_{it} * \frac{TMI_i}{1000})$$
 $TMI_i \stackrel{indep}{\sim} Gamma(\alpha, \beta)$ (1)

 $\alpha \sim Exponencial(1)$
 $\beta \sim Exponencial(1)$

- James-Stein: *TMI*_i son estimadas con menor *riesgo*.
- Flexibilidad: "estimamos" la previa
- Varias limitaciones (ej: no hay efecto en el tiempo)
- Ver Ugarte et al. (2009)

Practica

¿Puedes sugerir alguna modelización alternativa para este problema?

Practica

¿Puedes sugerir alguna modelización alternativa para este problema?

NOS VAMOS A R!

- mdjer_poigam.stan tiene el código del modelo (1)
- tasas.R tiene el código para analizar los datos

Muchas gracias

- Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013), *Bayesian data analysis*, Chapman and Hall/CRC.
- Hoff, P. D. (2009), A first course in Bayesian statistical methods, Springer Science & Business Media.
- Marin, J.-M. and Robert, C. P. (2014), *Bayesian essentials with R*, vol. 48, Springer.
- McElreath, R. (2016), Statistical Rethinking: A Bayesian Course with Examples in R and Stan, vol. 122, CRC Press.
- Ugarte, M. D., Goicoa, T., and Militino, A. F. (2009), "Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping," *Computational Statistics & Data Analysis*, 53, 2938–2949.