1. ALGUNOS SISTEMAS DE COORDENADAS EN EL ESPACIO

1.4 CONVERSIÓN DE PUNTOS O ECUACIONES DE UN SISTEMA DE COORDENADAS A OTRO SISTEMA

Para convertir coordenadas cilíndricas a rectangulares se aplica lo siguiente

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$

Para convertir coordenadas rectangulares a cilíndricas

$$r^2 = x^2 + y^2$$
, $tan \theta = \frac{y}{x}$, $z = z$

Esféricas a rectangulares

$$x = \rho sen\phi cos\theta$$
, $y = \rho sen\phi sen\theta$, $z = \rho cos\phi$

Rectangulares a esféricas

$$\rho^2 = x^2 + y^2 + z^2$$
, $tan(\theta) = \frac{y}{x}$, $cos(\phi) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$

Esféricas a cilíndricas $(r \ge 0)$

$$r^2 =
ho^2 sen^2 \phi$$
 , $\theta = \theta$, $z =
ho cos \phi$ $r =
ho sen \phi$

Cilíndricas a esféricas

$$ho = \sqrt{r^2 + z^2}$$
 , $heta = heta$, $oldsymbol{\phi} = arcos\left(rac{z}{\sqrt{r^2 + z^2}}
ight)$

Ejemplo 3: Convertir el punto (1, 1, 3) de coordenadas rectangulares a cilíndricas.

Solución

$$x = 1$$
, $y = 1$, $z = 3$

En coordenadas cilíndricas un punto se representa por (r, θ, z)

$$con r^2 = x^2 + y^2$$
 y $\theta = tan^{-1} \left(\frac{y}{x}\right)$

Luego,

$$r = \sqrt{x^2 + y^2} \qquad \theta = tan^{-1} \left(\frac{y}{x}\right)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2} \qquad \theta = tan^{-1} \left(\frac{1}{1}\right)$$

$$\theta = \frac{\pi}{4}$$

Por lo tanto el punto (1,1,3) que está en coordenadas rectangulares, en coordenadas cilíndricas se representa por $\left(\sqrt{2},\frac{\pi}{4},3\right)$.

Ejemplo 4: Convertir el punto (1, 1, 3) de coordenadas rectangulares a esféricas.

Solución

$$\rho = \sqrt{x^2 + y^2 + z^2} \qquad \theta = tan^{-1} \left(\frac{y}{x}\right) \qquad \phi = cos^{-1} \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

$$\rho = \sqrt{1^2 + 1^2 + 3^2} \qquad \theta = tan^{-1} \left(\frac{1}{1}\right) \qquad \phi = cos^{-1} \left(\frac{3}{\sqrt{11}}\right)$$

$$\rho = \sqrt{11} \approx 3.3166 \qquad \theta = \frac{\pi}{4 \text{ radianes}} \qquad \phi \approx 0.4405$$

Por lo tanto el punto (1,1,3) que está en coordenadas rectangulares, en coordenadas esféricas se representa por $\left(\sqrt{11},\frac{\pi}{4},\phi\approx0.4405\right)$.

Ejemplo 5: Escribir la ecuación $x^2 + y^2 - 2z^2 = 0$ en coordenadas cilíndricas. Simplificar

Solución

Recordemos que $x = rcos\theta$, $y = rsen\theta$, z = z

$$x^{2} + y^{2} - 3z^{2} = 0$$

$$(r\cos\theta)^{2} + (r\sin\theta)^{2} - 3z^{2} = 0$$

$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta - 3z^{2} = 0$$

$$r^{2}[\cos^{2}\theta + \sin^{2}\theta] - 3z^{2} = 0$$

$$r^{2} - 3z^{2} = 0$$

$$3z^{2} = r^{2}$$

Otra forma más fácil....

$$x^2 + y^2 - 3z^2 = 0$$

$$r^2$$

$$r^2 - 3z^2 = 0$$

$$r^2 = 3z^2$$

Ejemplo 6: Hallar una ecuación en coordenadas rectangulares para $z=r^2sen^2\theta$

$$z = r^{2}sen^{2}\theta$$

$$z = (rsen\theta)^{2}$$

$$z = y^{2}$$

Ejemplo 7: convertir la ecuación $x^2 + y^2 + z^2 = 4x$ de coordenadas rectangulares a esféricas.

$$x^{2} + y^{2} + z^{2} = 4$$

$$\rho^{2} \qquad \rho sen\phi cos\theta$$

$$\rho^{2} = 4\rho sen\phi cos\theta$$

$$\rho^{2} - 4\rho sen\phi cos\theta = 0$$

$$\rho(\rho - 4sen\phi cos\theta) = 0$$

$$\rho = 0 \quad \text{o} \quad \rho - 4sen\phi cos\theta = 0$$

$$\rho = 4sen\phi cos\theta$$

Ejemplo 8: convertir la ecuación ho=5 de coordenadas esféricas a rectangulares.

$$ho=5$$
 $ho^2=25$, se han elevado ambos lados al cuadrado $ho^2+y^2+z^2=25$

Ejemplo 9: convertir la ecuación $ho = 4cos(\phi)$ de coordenadas esféricas a rectangulares

Una forma...

$$\rho = 4\cos(\phi)$$

$$\rho\rho=4\rho cos(\phi)$$

$$\rho^2 = 4\rho \cos(\phi)$$

$$x^2 + y^2 + z^2 = 4z$$