Universidade de São Paulo Instituto de Ciências Matemáticas e Computação

Raciocínio Baseado em Casos

Programa de Aperfeiçoamento de Ensino Estagiária: Valéria de Carvalho Santos Supervisor: Ricardo Campello

Sumário

- Raciocínio Baseado em Casos
 - Introdução
 - Representação de Casos
 - Similaridade
 - Ciclo RBC

Raciocínio Baseado em Casos

- Enfoque para a solução de problemas e para o aprendizado baseado em experiência passada
- Resolve problemas ao recuperar e adaptar experiências passadas (casos)

Raciocínio Baseado em Casos

- O RBC é também estudado dentro da ciência cognitiva como um modelo do raciocínio humano:
 - estudos mostram que as pessoas usam lembranças de problemas anteriores para guiar seu raciocínio em várias tarefas, tal como programação, resolução de problemas matemáticos, diagnóstico, tomada de decisão e projeto

Motivações

- Por que usar Raciocínio Baseado em Casos?
 - para aumentar a eficiência reusando conhecimento anterior ao invés de gerar soluções a partir do zero
 - facilitação do raciocínio e da aquisição do conhecimento para domínios não entendidos ou difíceis de codificar
 - habilidade de iniciar sistemas de RBC com um pequeno conjunto de "casos semente", ao invés de ter de alimentar o sistema com conjuntos completos de regras
 - habilidade dos sistemas de RBC explicar suas conclusões ao usuário

Histórico

- As raízes do RBC na Inteligência Artificial foram inspiradas nos trabalhos de Schank e Abelson (1980)
- Schank e Abelson propuseram que nosso conhecimento geral acerca de situações fica gravado na memória como roteiros que permitem que nós construamos expectativas sobre resultados esperados de ações que planejamos e que façamos inferências sobre relacionamentos causais entre ações
- Em 1993, Janet Kolodner desenvolveu o primeiro sistema RBC (Cyrus), baseado no modelo de memória dinâmica de Schank, servindo de base para outros sistemas RBC.

Elementos Básicos do RBC

- Representação do Conhecimento
 - Casos que descrevem experiências concretas
- Medida de Similaridade
 - Encontrar um caso semelhante para o problema atual na base de casos
- Adaptação
 - Sistemas de RBC avançados têm mecanismos e conhecimento para adaptar os casos recuperados completamente e verificar se satisfazem às características da situação presente
- Aprendizado
 - Sempre que resolver um problema com sucesso, o sistema deve ser capaz de lembrar dessa situação no futuro como mais um novo caso

10

Modelo básico do enfoque RBC

Sumário

- Raciocínio Baseado em Casos
 - Introdução
 - Representação do Conhecimento
 - Similaridade
 - Ciclo RBC

Representação do Conhecimento

- O conhecimento é representado principalmente sob a forma de casos
- Caso:
 - Problema Descrição de um situação
 - Solução Experiências adquiridas

Exemplo de um caso

CASO 1

Problema:Não imprime em pretoModelo:Robotron Matrix 800

Luz de estado do papel: apagada Luz de estado da tinta colorida: apagada Luz de estado da tinta preta: acesa

Diagnóstico: Cartucho de tinta preta vazio

Ação: Troca do cartucho de tinta preta

13

Exemplo de um caso

Problema/ Sintomas c	Problema: Febre: Dor no corpo: Dor de cabeça: Manchas no corpo: Enjôo:	Paciente doente sim sim não sim sim
Solução	Congestão: Diagnóstico:	Resfriado, Dengue
Sol	Ação:	Realizar exame

Base de Casos

- Base de Casos:
 - Conjunto de casos apropriadamente organizados
 - Experiências positivas
 - Estratégias de solução que contribuíram com sucesso para resolver o problema **reuso**
 - Experiências negativas
 - Tentativas frustradas de solução de um problema evitar repetição de erros

Problema/ Sintomas 1	Problema: Modelo: Luz de estado do papel: Luz de estado da tinta colorida Luz de estado da tinta preta:	Não funciona Robotron Matrix 800 apagada a: apagada apagada
Solução		Curto-circuito Troca da fonte de alimentação
Problema/ Sintomas c	Problema: Modelo: Luz de estado do papel: Luz de estado da tinta colorida Luz de estado da tinta preta:	Não imprime em preto Robotron Matrix 600 apagada a: apagada acesa
Solução		Cartucho de tinta preta vazio Troca do cartucho de tinta preta

Representação de casos

- Casos podem representar experiências concretas:
 - O conjunto dos sintomas de um paciente e os passos do tratamento médico aplicado
 - A descrição dos sintomas do defeito técnico apresentado por um equipamento e da estratégia de conserto aplicada
 - Os requisitos para um prédio e sua respectiva planta de construção
- Outros itens:
 - Efeitos da aplicação da solução
 - Justificativa para aquela solução
 - Dados administrativos (número do caso, data de criação)
 - Casos abstratos

18

Representação de casos

- Descrição do problema
 - Deve incluir:
 - toda a informação explicitamente considerada ao se adquirir o seu objetivo específico
 - Todo tipo de informação descritiva normalmente utilizada para descrever casos daquele tipo
 - Exemplo:
 - Diagnóstico de problemas com impressoras: por um registro de problema descrevendo os sintomas do problema (*não imprime texto preto*) e características da impressora específica (marca: *Robotron*, tipo: *Matrix 600*)

Representação de casos

- Descrição da solução
 - Descreve os conceitos ou objetos usados para atingir os objetivos específicos da tarefa realizada
 - Exemplo:
 - Diagnóstico de problemas de impressora: a descrição da causa (cartucho de tinta preto vazio) e a estratégia de solução aplicada (troca do cartucho de tinta preta)
 - Leva em consideração as restrições especificadas e a descrição da situação
 - Evitar exames caros

Representação de casos

- Descrição da solução
 - Pode ser útil representar na descrição da solução:
 - A solução em si;
 - O conjunto de passos de raciocínio seguidos par a resolver o problema;
 - O conjunto de justificativas para as decisões tomadas durante a solução do problema;
 - Soluções alternativas aceitáveis que não foram escolhidas (e as respectivas razões e justificativas para sua exclusão);
 - Expectativas acerca do que vai acontecer após a implementação da solução proposta

21

Representação de casos

- Resultado
 - Componente adicional que permite registrar *feedback* do ambiente e a análise deste *feedback*
 - O resultado pode incluir:
 - O resultado em si;
 - Se o resultado foi um sucesso ou um fracasso;
 - Apontar para a próxima tentativa de solução.
 - Exemplo:
 - Diagnóstico de problemas de impressora: em que a estratégia de solução aplicada (troca do cartucho de tinta preta) resolveu o problema com sucesso

22

Representação de casos

- Como representar os casos?
 - A transformação de algum item do mundo real em outra estrutura é uma tarefa difícil,
 - Um item do mundo real pode ser muito complexo, e qualquer representação poderá reter esses detalhes apenas parcialmente

Representação de casos

- Formas de representação mais comuns:
 - Representação atributo-valor
 - Representação orientada a objetos

Representação atributo-valor

- Forma mais simples e mais usada de representação
- Um caso pode ser representado como um conjunto de pares atributo-valor
- Exemplo:

Problema: Impressora não funciona Modelo: Robotron Matrix 600

Luz de estado do papel:apagadaLuz de estado da tinta colorida:apagadaLuz de estado da tinta preta:apagadaEstado do interruptor:ligado

Representação atributo-valor

- Cada atributo é associado a um domínio tipo ou faixa para seus valores possíveis.
- Por exemplo:
 - Números reais
 - Preço do pacote de viagem: R\$ 3.950,00
 - Símbolos: definidos por um conjunto finito arbitrário
 - Modelo da impressora: 'Robotron Matrix 600'
 - Hipertexto: link HTML
 - Mais informações: http://www.icmc.usp.br

26

Representação atributo-valor

- Definições de tipo podem ser realizadas de forma independente da existência de um atributo conceitual específico
- Por outro lado, uma definição de tipo pode ser usada para diversos atributos de um caso
 - estado da luz {apagada, ligada} pode ser usado para luz de estado do papel, luz de estado da tinta colorida e luz de estado da tinta preta

Representação atributo-valor

- Vantagens:
 - Representação simples e fácil de implementar;
 - Simplifica a implementação de medidas de similaridades eficientes;
 - Fácil de armazenar (por exemplo, em BD relacionais);
- Desvantagem:
 - Não é capaz de representar nenhum tipo de informação estrutural

Representação Orientada a Objetos

- Objetos
- Classes
- Instâncias

29

Representação Orientada a Objetos

- Casos como objetos
 - Um objeto representa alguma entidade ou conceito no domínio de aplicação
 - O objeto contém alguma informação de estado e provê alguns serviços às entidades externas ao objeto
 - O estado do objeto pode ser acessado ou modificado apenas por meio do serviço que provê
 - Objetos interagem entre si por meio de serviços
 - Cada objeto possui determinados atributos, que em conjunto definem a estrutura do objeto

30

Representação Orientada a Objetos

- Classe
 - Formada pelo agrupamento de objetos
 - É essencialmente uma definição de tipos
 - define o espaço de estados dos objetos de seu tipo
 - define as operações que podem ser aplicadas sobre os objetos da classe

Representação Orientada a Objetos

- Instância
 - Um objeto concreto de uma classe
 - Obedece à estrutura e aos tipos de atributos definidos pela classe
 - Exemplo:
 - 'Hotel Indaiá' é uma instância da classe Hotel
 - 'São Carlos' é uma instância da classe Cidade

Representação Orientada a Objetos

- Relações padronizadas
 - Representações OO permitem a modelagem de relacionamentos entre diferentes tipos de objeto
 - Isso inclui:
 - Relações taxonômicas
 - Relações composicionais

Representação Orientada a Objetos

- Relações taxonômicas
 - A relação "é do tipo de" expressa a relação de generalização/especialização
 - Ex.: Hotel "é um tipo de" Prédio
 - Mecanismo de herança

3/

Representação Orientada a Objetos

• Exemplo de uma hierarquia de Herança

Representação Orientada a Objetos

- Relações composicionais
 - A relação "é parte de" expressa a relação de agregação de outros objetos
 - Ex.: Quarto "é parte de" Hotel
 - Atributos representam objetos complexos que se relacionam às instâncias por meio da relação composicional

Representação Orientada a Objetos

• Exemplo de hierarquia composicional

Representação Orientada a Objetos

- Relações especiais
 - Relações específicas ao domínio podem ser criadas para o domínio da aplicação
 - Podem expressar dependência e relacionamentos típicos do domínio de aplicação modelado
 - Exemplos:
 - Impressora a jato de tinta **necessita de** um conjunto de cartuchos de tinta
 - O hotel Delphin está a distância de uma caminhada da praia
 - Podem ser representados através de associações

38

Representação Orientada a Objetos

- Vantagens
 - Representação de casos estruturada e natural;
 - Informações estruturais e relacionais podem ser representadas diretamente;
 - Armazenamento mais compacto do que em representações atributo-valor, já que muita informação é implícita.

Representação Orientada a Objetos

- Desvantagens
 - Dificuldade no cálculo da similaridade
 - Dificuldade na recuperação de casos da base, em relação a pares atributo-valor

Exemplo

```
Classe Impressora{

Modelo: Símbolo

Luz de estado do papel: {apagada, acesa}

Luz de estado da tinta colorida: {apagada, acesa}

Luz de estado da tinta preta: {apagada, acesa}

}
```

Exemplo

Instância de objeto: Impressora

Classe: Impressora

Modelo: Robotron Matrix 800 Luz de estado do papel: apagada

Luz de estado da tinta colorida: apagada Luz de estado da tinta preta: acesa

42

Sumário

- Raciocínio Baseado em Casos
 - Introdução
 - Representação do Conhecimento
 - Similaridade
 - Ciclo RBC

Similaridade

• A eficácia de enfoques baseados em casos depende essencialmente da escolha de um conceito de similaridade adequado para o domínio de aplicação e a estrutura de casos usados.

46

Similaridade

- Uma solução pode ser útil para um novo problema, caso ela:
 - Permita solucionar o problema atual de alguma forma;
 - Evite a repetição de um erro anterior;
 - Permita solucionar o problema de forma eficiente, que seja mais rápido do que, por exemplo, utilizar uma heurística passo a passo para calcular uma solução;
 - Ofereça a melhor solução para o problema de acordo com um critério de otimilidade qualquer;
 - Ofereça ao usuário uma solução cuja lógica possa ser compreendida por ele.

Similaridade

- A forma mais conhecida de formalização do conceito de similaridade é através de uma medida de distância
- A medida de similaridade ou distância é importante para a realização do conceito de vizinho-mais-próximo, que por sua vez é fundamental em RBCs

Similaridade

• Distância euclidiana

$$d(Q,C) = \sqrt{\sum_{i=1}^{n} (q_i - c_i)^2}$$

• Distância euclidiana ponderada

$$d(Q,C) = \sqrt{\sum_{i=1}^{n} w_{i} (q_{i} - c_{i})^{2}}$$

49

Similaridade

• Distância de Manhattan

$$d(Q,C) = \sum_{i=1}^{n} |q_i - c_i|$$

- Distância de Hamming
 - Atributos binários
 - Soma do número de atributos diferentes

50

Indexação

- Definir quais atributos serão usados para realizar a comparação entre um caso e a situação presente
- Esses atributos são denominados índices
 - Índices são combinações de seus atributos mais importantes, que permitem distingui-lo de outros e identificar casos úteis para uma dada descrição do problema

Distâncias dos vizinhos mais próximos

Distâncias dos vizinhos mais próximos

- Encontrar uma solução para o caso Q
 - Calcular a distância de Q para os outros casos da base de casos
 - O caso que tiver menor distância de Q é o vizinho mais próximo

Vizinho mais próximo ponderado

- Considera a importância de cada índice para a determinação do vizinho mais próximo ponderando os índices
- Exemplo:
 - *Modelo* é considerado muito mais importante que *luz do* estado de tinta
 - Ponderar a correspondência entre modelos como 2x mais importante do que a correspondência das luzes de estado de tinta

54

Exercício

Caso	Febre	Dor no corpo	Dor de cabeça	Manch as no corpo	Enjôo	Conges tão
1	Sim	Sim	Não	Sim	Não	Sim
2	Não	Sim	Não	Sim	Não	Não
3	Não	Sim	Sim	Não	Sim	Não
Q	Sim	Não	Sim	Sim	Não	Sim

Utilizando a distância de Hamming, verifique qual é o vizinho mais próximo do caso Q.

Sumário

- Raciocínio Baseado em Casos
 - Introdução
 - Definição
 - Motivação
 - Histórico
 - Representação do Conhecimento
 - Similaridade
 - Ciclo RBC

Como funciona RBC?

- O modelo mais aceito é o Ciclo de RBC (Aamondt e Plaza, 94)
- Composto por quatro tarefas principais:
 - Recuperar os casos mais similares da base de dados;
 - Reutilizar estes casos para resolver o problema;
 - Revisar a solução proposta; e
 - **Reter** a experiência representando o caso atual para recuperação futura.

