WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7 :

C07D 401/14, 403/04, C07F 9/6512, A61K 31/505, 31/495

(11) Internationale Veröffentlichungsnummer: WO 00/21954

(43) Internationales Veröffentlichungsdatum:

20, April 2000 (20.04.00)

(21) Internationales Aktenzeichen:

PCT/EP99/07202

(22) Internationales Anmeldedatum:

29. September 1999

(29.09.99)

A1

(30) Prioritätsdaten:

198 46 514.9

9. Oktober 1998 (09.10.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FEURER, Achim [DE/DE]; Schlingenhofenerstrasse 36, D-51519 Odenthal (DE). STRAUB, Alexander [DE/DE]; Moospfad 30, D-42113 Wuppertal (DE). FÜRSTNER, Chantal [CH/DE]; Amoldstrasse 33, D-45478 Mühlheim (DE). STASCH, Johannes-Peter [DE/DE]; Alfred-Nobel-Strasse 109, D-42651 Solingen (DE). PERZBORN, Elisabeth [DE/DE]; Am Tescher Busch 13, D-42327 Wuppertal (DE). HÜTTER, Joachim [DE/DE]; Teschensudbergerstrasse 13, D-42349 Wuppertal (DE). DEMBOWSKY, Klaus [DE/DE]; Bismarckstrasse 85, D-42115 Wuppertal (DE).

BAYER AKTIENGE-(74) Gemeinsamer Vertreter: SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: NOVEL HETEROCYCLYL-METHYL-SUBSTITUTED PYRAZOLES
- (54) Bezeichnung: NEUE HETEROCYCLYL-METHYL-SUBSTITUIERTE PYRAZOLE

(57) Abstract

The invention relates to novel heterocyclyl-methyl-substituted pyrazole derivatives, to methods for producing them and to their use as medicaments, especially as medicaments for treating cardiovascular diseases.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neue Heterocyclyl-methyl-substituierte Pyrazol-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als Arzneimittel zur Behandlung von Herzkreislauferkrankungen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
_							

Neue Heterocyclyl-methyl-substituierte Pyrazole

Die vorliegende Erfindung betrifft neue Heterocyclyl-methyl-substituierte Pyrazol5 Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als Arzneimittel zur Behandlung von Herzkreislauferkrankungen.

Es ist bereits bekannt, daß 1-Benzyl-3-Aryl-kondensierte Pyrazol-Derivate die Thrombozytenaggregation inhibieren (vgl. EP 667 345 A1).

10

Die vorliegende Erfindung betrifft neue Heterocyclyl-methyl-substituierte Pyrazole der allgemeinen Formel (I)

in welcher

R¹ für einen 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Stickstoffatomen steht, der gegebenenfalls bis zu 2-fach gleich oder verschieden durch
Wasserstoff, Formyl, Carboxyl, Hydroxy, Mercapto, geradkettiges oder
verzweigtes Acyl, Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu
6 Kohlenstoffatomen, Nitro, Cyano, Azido, Halogen, Phenyl und/oder durch
eine Gruppe der Formel

-NR4R5

25

20

substituiert ist, worin

R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 6 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy, Amino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert ist,

oder

10

5

R⁴ und R⁵ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR⁶ enthalten kann,

15

worin

R6 Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis
 zu 4 Kohlenstoffatomen bedeutet,

20

25

30

und/oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Amino, Halogen, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy, Alkoxycarbonyl oder Acylamino mit jeweils bis zu 5 Kohlenstoffatomen oder durch einen Rest der Formel –OR⁷ substituiert sein kann,

worin

R⁷ geradkettiges oder verzweigtes Acyl mit bis zu 5 Kohlenstoffatomen oder eine Gruppe der Formel –SiR⁸R⁹R¹⁰ bedeutet,

worin

R⁸, R⁹ und R¹⁰ gleich oder verschieden sind und Aryl mit 6 bis 10 Kohlenstoffatomen oder Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

und/oder gegebenenfalls durch einen Rest der Formel

$$O-CH_2$$

 $O-(CH_2)_bCH_3$
 $O-(CH_2)_bCH_3$
 $O-(CH_2)_bCH_3$

oder S(O)_cNR¹²R¹³

10

5

substituiert ist, worin

b und b' gleich oder verschieden sind und eine Zahl 0, 1, 2 oder 3 bedeuten,

15

- a eine Zahl 1, 2 oder 3 bedeutet,
- R¹¹ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

20

c eine Zahl 1 oder 2 bedeutet und

25

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 10 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits durch Halogen substituiert sein kann oder

Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Halogen substituiert ist oder

Cycloalkyl mit 3 bis 7 Kohlenstoffatomen bedeuten

oder

10

5

20

25

R¹² und R¹³ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls ein weiteres Sauerstoffatom oder einen Rest –NR¹⁴ enthalten kann,

15 worin

R¹⁴ Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder einen Rest der Formel

bedeutet,

oder Benzyl oder Phenyl bedeutet, wobei die Ringsysteme gegebenenfalls durch Halogen substituiert sind,

und

(A)

der 6-gliedrige aromatische Heterocyclus R¹, welcher bis zu 3 Stickstoffatome enthält, 1- bis 3-fach gleich oder verschieden durch

5

geradkettiges oder verzweigtes Alkyl mit 7 bis 20 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkenyl mit bis zu 20 Kohlenstoffatomen und 1 bis 2 Doppelbindungen,

geradkettiges oder verzweigtes Alkinyl mit bis zu 20 Kohlenstoffatomen und 1 bis 2 Dreifachbindungen,

10

wobei Alkenyl bzw. Alkinyl eine Doppel- bzw. Dreifachbindung am Anknüpfungspunkt zum Heterocyclus R¹ besitzen,

15

Cycloalkoxy mit 3 bis 14 Kohlenstoffatomen, oder gegebenenfalls substituiertes Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist,

20

wobei die genannten Alkyl-, Alkenyl-, Alkinyl-, Cycloalkoxy- und Aryl-Reste ihrerseits gegebenenfalls und im Fall Aryl = Phenyl zwingend substituiert sind durch Formyl, Carboxyl, Hydroxy, Mercaptyl, Nitro, Cyano, Azido, Halogen, geradkettiges, verzweigtes oder cyclisches Alkyl, Acyl, Acylamino, Alkoxy, Alkylthio, Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen,

25

durch Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Halogen, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

durch 5- bis 6-gliedriges Hetaryl, mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, welches gegebenenfalls durch Halogen, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

30

und/oder

durch eine Gruppe der Formel

-NRªRb

5

worin

10

R^a und R^b gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 10 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 10 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 14 Kohlenstoffatomen bedeutet, wobei diese gegebenenfalls durch

15

Hydroxy, Amino, Monoalkylamino, Dialkylamino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sind,

20

oder

R^a und R^b gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls durch

25

Hydroxy substituiert ist und der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR^c enthält,

30

worin

R° Wasserstoff oder geradkettiges oder verzweigtesAlkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und/oder

durch eine Gruppe der Formel

-ORd

worin

10

5

R^d geradkettiges oder verzweigtes Acyl mit bis zu 5 Kohlenstoffatomen oder eine Gruppe der Formel –SiR^eR^fR^g bedeutet,

worin

15

R^e, R^f und R^g gleich oder verschieden sind und Aryl mit 6 bis 10 Kohlenstoffatomen oder Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

20 und/oder

(B) durch einen 3- bis 14-gliedrigen heterocyclischen Ring substituiert ist, der gesättigt oder ungesättigt sein kann und 1 bis 4 Heteroatome aus der Reihe N, O, S, SO, SO₂ enthält und gegebenenfalls durch

25

Halogen, Phenyl, Cyano, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen, -NR^hRⁱ,

wobei

R^h und Rⁱ gleich oder verschieden sein können und Wasserstoff, geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit bis zu 6 Kohlenstoffatomen bedeuten

5 oder

10

15

20

25

30

R^h und Rⁱ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^j enthält,

worin

R^j Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und/oder

(C) durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, welches zwingend durch eine oder mehrere der folgenden Gruppen

Formyl, Mercaptyl, Nitro, Cyano, cyclisches Acyl mit 3 bis 14 Kohlenstoffatomen, geradkettiges oder verzweigtes Acyl mit 6 bis 14 Kohlenstoffatomen, Alkoxy mit 6 bis 14 Kohlenstoffatomen, Acylamino mit 6 bis 14 Kohlenstoffatomen, Alkoxycarbonyl mit 6 bis 14 Kohlenstoffatomen, Alkylthio mit bis zu 14 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen,

Phenyl, welches gegebenenfalls durch

5

10

Halogen, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist;

5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, das gegebenenfalls durch Halogen, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist;

-NR^kR¹, wobei einer der Reste R^k und R¹ Wasserstoff sein kann und der andere oder beide voneinander unabhängig geradkettiges oder verzweigtes Acyl mit bis zu 10 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen bedeuten oder R^k und R¹ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^m enthält,

15

worin

R^m Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis
 zu 4 Kohlenstoffatomen bedeutet,

20

25

30

substituiert ist;

und/oder

(D) durch Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist, das seinerseits substituiert ist,

durch Hydroxy, -NRⁿR^o, wobei Rⁿ und R^o gleich oder verschieden Wasserstoff oder geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen sein können oder Rⁿ und R^o gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gege-

benenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR^p enthält,

worin

5

R^p Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis
 zu 4 Kohlenstoffatomen bedeutet,

und/oder

10

15 .

(E) durch halogen-substituiertes Acyl mit bis zu 14 Kohlenstoffatomen, Acyloxy mit bis zu 14 Kohlenstoffatomen, Arylthio mit 6 bis 10 Kohlenstoffatomen, wobei der Arylrest gegebenenfalls durch Halogen, Alkyl, Alkoxyl mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist; Heteroarylthio, mit 5- bis 6-gliedrigem Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist, substituiert ist,

20 und/oder

(F) durch einen Rest der Formel

-SO₂R^q oder -SOR^r substituiert ist,

25

wobei

R^q und R^r geradkettiges oder verzweigtes Alkyl mit 1 bis 10 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen,

30

		Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch				
		Halogen, Alkyl mit 1 bis 6 Kohlenstoffatomen oder Alkoxy				
		mit 1 bis 6 Kohlenstoffatomen substituiert ist,				
		oder 5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der				
5		Reihe N, O, S, SO, SO ₂ , welches gegebenenfalls durch				
		Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 4				
		Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoff-				
		atomen substituiert ist, bedeuten				
10	und/o	der				
	(G)	durch einen Rest -SO ₃ H substituiert ist				
	und/oder					
15						
	(H)	durch einen Rest -CON=C(NH ₂) ₂ oder -C=NH(NH ₂) substituiert ist				
	und/o	der				
••	(T)	1 1 COMPANIAL AND A COMPANIAL				
20	(I)	durch einen Rest -CONR ^s R ^t substituiert ist				
		wobei				
		Rs und Rt gleich oder verschieden sein können und Wasserstoff, gerad-				
25		kettiges oder verzweigtes Alkyl mit 1 bis 14 Kohlenstoff-				
25		atomen oder Cycloalkyl mit 3 bis 14 Kohlenstoffatomen				
		•				
		bedeuten,				
		wobei die besagten Alkyl oder Cycloalkylreste gegebenenfalls				
		Money die negation truch eder choronichirene telegenement				

durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy,

5

10

15

20

Amino, geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen,

Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

oder 5- bis 6-gliedriges Heterocyclyl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

substituiert sind,

und/oder

Rs und Rt Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

und/oder

25

30

Rs und Rt 3- bis 10-gliedriges gesättigtes, teilweise ungesättigtes oder gänzlich ungesättigtes Heterocyclyl mit 1 bis 5 Heteroatomen aus der Reihe N, O, S; SO, SO₂ bedeuten, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlen-

stoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

und/oder

5

R* und Rt gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR" enthält,

10

wobei

R^u Wasserstoff oder ein geradkettiges oder verzweigtes
Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

15

und/oder

(J) durch einen Rest der Formel -NR'R' substituiert ist,

20

wobei

R^v und R^w gleich oder verschieden sein können und geradkettiges oder verzweigtes Acyl mit 7 bis 14 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, -SO₂-Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxymethyl, Hydroxyethyl, Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen, Alkoxyalkyl mit insgesamt bis zu 8 Kohlenstoffatomen, Acyloxymethyl mit bis zu 6 Kohlenstoffatomen im Acylrest (bevorzugt Pivaloyloxymethyl) oder folgende Reste

25

5

bedeuten,

worin

R^x und R^y gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

m eine Zahl 0, 1 oder 2 bedeutet und

Rz geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet,

5

oder einer der Reste R^v und R^w gegebenenfalls Wasserstoff bedeuten kann,

und/oder

10

(K) durch einen Rest der Formel –PO(OR)(OR')substituiert ist wobei

15

R und R' gleich oder verschieden geradkettiges, verzweigtes oder cyclisches Alkyl mit bis zu 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeuten,

20

R² und R³ unter Einbezug der Doppelbindung einen Phenylring bilden, der gegebenenfalls bis zu 3-fach gleich oder verschieden durch Formyl, Mercaptyl, Carboxyl, Hydroxy, Amino, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkoxy, Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro, Cyano, Azido, Halogen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein kann, oder gegebenenfalls durch eine Gruppe der Formel –S(O)_c·NR¹²·R¹³· substituiert sind, worin c', R¹²· und R¹³· die oben angegebene Bedeutung von c, R¹² und R¹³ haben und mit dieser gleich oder verschieden sind,

30

25

A für Phenyl oder einen 5- bis 6-gliedrigen aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, der gegebenenfalls bis zu 3-fach gleich oder verschieden durch Mercaptyl,

Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkyloxyacyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro, Cyano, Trifluormethyl, Azido, Halogen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein kann,

und/oder durch eine Gruppe der Formel -(CO)_d-NR¹⁵R¹⁶ substituiert ist,

10

5

worin

- d eine Zahl 0 oder 1 bedeutet,
- 15 R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 5 Kohlenstoffatomen bedeuten,

deren isomere Formen und Salze und deren N-Oxide.

20

- Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Basen oder Säuren genannt.
- Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essig-

säure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.

Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein, welche eine freie Carboxylgruppe besitzen. Besonders bevorzugt sind z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak, oder organischen Aminen wie beispielsweise Ethylamin, Di- bzw. Triethylamin, Di- bzw. Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Arginin, Lysin oder Ethylendiamin.

10

5

Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

Im Rahmen der vorliegenden Erfindung haben die Substituenten im allgemeinen die folgende Bedeutung:

20

15

Alkyl mit bis zu 20 Kohlenstoffatomen steht im allgemeinen in Abhängigkeit von den oben aufgeführten Substituenten für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen. Beispielsweise seien Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Hexyl, Isohexyl, Heptyl, Isohetyl, Octyl und Isooctyl, Nonyl, Decyl, Dodeyl, Eicosyl, genannt.

25

30

Alkenyl mit bis zu 20 Kohlenstoffatomen steht im allgemeinen in Abhängigkeit von den oben aufgeführten Substituenten für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 2 bis 20 Kohlenstoffatomen und einer oder mehreren, bevorzugt mit einer oder zwei Doppelbindungen. Beispielsweise seien Allyl, Propenyl,

Isopropenyl, Butenyl, Isobutenyl, Pentenyl, Isopentenyl, Hexenyl, Isohexenyl, Heptenyl, Isohexenyl, Isooctenyl genannt.

Alkinyl steht im allgemeinen in Abhängigkeit von den oben aufgeführten Substituenten für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 2 bis 20 Kohlenstoffatomen und einer oder mehreren, bevorzugt mit einer oder zwei Dreifachbindungen. Beispielsweise seien Ethinyl, 2-Butinyl, 2-Pentinyl und 2-Hexinyl benannt.

Acyl steht mit bis zu 10 Kohlenstoffatomen im allgemeinen in Abhängigkeit von den oben aufgeführten Substituenten für geradkettiges oder verzweigtes Niedrigalkyl mit 1 bis 9 Kohlenstoffatomen, die über eine Carbonylgruppe gebunden sind. Beispielsweise seien genannt: Acetyl, Ethylcarbonyl, Propylcarbonyl, Isopropylcarbonyl, Butylcarbonyl und Isobutylcarbonyl.

15

20

5

10

Alkoxy steht im allgemeinen in Abhängigkeit von den oben aufgeführten Substituenten für einen über ein Sauerstoffatom gebundenen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 14 Kohlenstoffatomen. Beispielsweise seien Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, Pentoxy Isopentoxy, Hexoxy, Isohexoxy, Heptoxy, Isoheptoxy, Octoxy oder Isooctoxy genannt. Die Begriffe "Alkoxy" und "Alkyloxy" werden synonym verwendet.

Alkoxycarbonyl kann beispielsweise durch die Formel

25

dargestellt werden.

Alkyl steht hierbei für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 13 Kohlenstoffatomen. Beispielsweise seien die folgenden Alkoxycarbonylreste genannt: Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Butoxycarbonyl oder Isobutoxycarbonyl.

Cycloalkyl steht im allgemeinen für einen cyclischen Kohlenwasserstoffrest mit 3 bis
 8 Kohlenstoffatomen. Bevorzugt sind Cyclopropyl, Cyclopentyl und Cyclohexyl.
 Beispielsweise seien Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl genannt.

<u>Aryl</u> steht im allgemeinen für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.

10

15

20

25

5

Halogen steht im Rahmen der Erfindung für Fluor, Chlor, Brom und Iod.

Aromatische, gesättigte und ungesättigte Heterocyclen stehen im Rahmen der Erfindung in Abhängigkeit von den oben aufgeführten Substituenten im allgemeinen für einen 3- bis 10-gliedrigen oder 5- bis 6-gliedrigen Heterocyclus, der bis zu 4 Heteroatome aus der Reihe S, N und/oder O enthalten und der gegebenenfalls auch über ein Stickstoffatom gebunden sein kann. Beispielsweise seien genannt: Pyridyl, Thienyl, Furyl, Pyrrolyl, Pyrrolidinyl, Piperazinyl, Pyrimidyl, Thiazolyl, Oxazolyl, Imidazolyl, Tetrazolyl, Morpholinyl oder Piperidyl. Hetaryl steht für einen aromatischen heterocyclischen Rest.

Cycloalkoxy steht im Rahmen der Erfindung für einen Alkoxyrest, dessen Kohlenwasserstoffrest ein Cycloalkylrest ist. Der Cycloalkylrest hat im allgemeinen bis zu 8 Kohlenstoffatome. Als Beispiele seien genannt: Cyclopropyloxy und Cyclohexyloxy. Die Begriffe "Cycloalkoxy" und "Cycloalkyloxy" werden synonym verwendet.

Bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I), in welcher

30

R¹ für einen Rest der Formel

die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Wasserstoff, Formyl, Carboxyl, Hydroxy, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Nitro, Cyano, Azido, Fluor, Chlor, Brom, Phenyl und/oder durch eine Gruppe der Formel -NR⁴R⁵ substituiert sind,

10 worin

5

15

20

25

R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy, Amino oder durch geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist, oder

R⁴ und R⁵ gemeinsam mit dem Stickstoffatom einen Morpholinring oder einen Rest der Formeln

und/oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Fluor, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy, Alkoxycarbonyl oder Acylamino mit jeweil bis zu 4 Kohlenstoffatomen oder durch einen Rest der Formel -OR⁷ substituiert sein kann,

worin

5

R⁷ geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und/oder gegebenenfalls durch einen Rest der Formel

10

$$- \underbrace{\mathsf{CH}_2}_{\mathsf{CH}_2} \underbrace{\mathsf{CH}_2}_{\mathsf{a}} \cdot \underbrace{\mathsf{CH}_2}_{\mathsf{b}} \mathsf{CH}_3 \qquad \mathsf{oder} \qquad \mathsf{OR}^{11}$$

substituiert sind, worin

b und b' gleich oder verschieden sind und eine Zahl 0, 1, 2 oder 3 bedeuten,

- a eine Zahl 1, 2 oder 3 bedeutet,
- R¹¹ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3

 Kohlenstoffatomen bedeutet,

und die oben unter R¹ aufgeführen 6-gliedrigen aromatischen Heterocyclen 1bis 3-fach gleich oder verschieden durch

25

(A) geradkettiges oder verzweigtes Alkyl mit 7 bis 14 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkenyl mit bis zu 14 Kohlenstoffatomen mit einer Doppelbindung, geradkettiges oder verzweigtes Alkinyl mit bis zu 14 Kohlenstoffatomen und einer Dreifachbindung, wobei Alkenyl bzw. Alkinyl eine Doppel- bzw. Dreifachbindung am Anknüpfungspunkt zum Heterocyclus R¹ besitzen,

5

Cycloalkyloxy mit 3 bis 8 Kohlenstoffatomen, oder substituiertes Phenyl substituiert sind,

10

wobei die genannten Alkyl-, Alkenyl-, Alkinyl- und Cycloalkyloxy-Reste ihrerseits gegebenenfalls und der Phenylrest zwingend substituiert sind durch Carboxyl, Hydroxy, Mercaptyl, Nitro, Cyano, Azido, Fluor, Chlor, Brom, geradkettiges, verzweigtes oder cyclisches Alkyl, Acyl, Acylamino, Alkoxy, Alkylthio, Alkoxycarbonyl, mit jeweils bis zu 6 Kohlenstoffatomen,

15

durch Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Fluor, Chlor, Brom, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

durch 5- bis 6-gliedriges Hetaryl, mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, Brom, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

20

und/oder

durch eine Gruppe der Formel

25

-NR^aR^b

worin

30

R^a und R^b gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 6 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, gerad-

kettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet, wobei diese gegebenenfalls durch

5

Hydroxy, Amino, Monoalkylamino, Dialkylamino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen substituiert sind,

10

oder

R^a und R^b gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten Heterocyclus bilden,

15

der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR° enthält,

worin

20

R° Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

und/oder durch eine Gruppe der Formel

25

30

-ORd

worin

 \mathbb{R}^d

geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen bedeutet, 5

15

20

25

und/oder

(B) durch einen 3- bis 8-gliedrigen heterocyclischen Ring substituiert sind, der gesättigt oder ungesättigt sein kann und 1 bis 4 Heteroatome aus der Reihe N, O, S enthält und gegebenenfalls durch

Fluor, Chlor, Brom, Phenyl, Cyano, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen, -NR^hRⁱ,

10 wobei

R^h und Rⁱ gleich oder verschieden sein können und Wasserstoff, geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit bis zu 4 Kohlenstoffatomen bedeuten

oder

R^h und Rⁱ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel
–NR^j enthält,

worin

R^j Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und/oder

(C) durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, welches zwingend durch eine oder mehrere der folgenden Gruppen

5

Mercaptyl, Nitro, Cyano, cyclisches Acyl mit 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Acyl mit 6 bis 10 Kohlenstoffatomen, Alkoxy mit 6 bis 10 Kohlenstoffatomen, Acylamino mit 6 bis 10 Kohlenstoffatomen, Alkoxycarbonyl mit 6 bis 10 Kohlenstoffatomen, Alkylthio mit bis zu 10 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 8 Kohlenstoffatomen,

10

Phenyl, welches gegebenenfalls durch

Fluor, Chlor, Brom, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist;

15

5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, das gegebenenfalls durch Fluor, Chlor, Brom, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist;

20

-NR^kR¹, wobei einer der Reste R^k und R¹ Wasserstoff sein kann und der andere oder beide unabhängig voneinander geradkettiges oder verzweigtes Acyl mit bis zu 6 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 8 Kohlenstoffatomen bedeuten oder R^k und R¹ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^m enthält,

25

worin

R^m Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

30

substituiert ist,

und/oder

(D) durch Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits substituiert ist durch

Hydroxy, -NRⁿR°, wobei Rⁿ und R° gleich oder verschieden Wasserstoff oder geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit jeweils bis zu 5 Kohlenstoffatomen sein können oder Rⁿ und R° gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^p enthält,

worin

15

10

5

R^p Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

und/oder

20

25

(E) durch halogensubstituiertes Acyl mit bis zu 10 Kohlenstoffatomen, Acyloxy mit bis zu 10 Kohlenstoffatomen, Arylthio mit 6 bis 10 Kohlenstoffatomen, wobei der Arylrest gegebenenfalls durch Fluor, Chlor, Brom, Alkyl, Alkoxyl mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist, Heteroarylthio, mit 5- bis 6-gliedrigem Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O oder S, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

30 substituiert sind und/oder

(F)	durch	ı einen	Rest	der	Fo	rmel
------------	-------	---------	------	-----	----	------

-SO₂R^q oder -SOR^r substituiert sind,

5 wobei

10

15

20

25

30

R^q und R^r geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 8 Kohlenstoffatomen,

Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Fluor, Chlor, Brom, Alkyl mit 1 bis 6 Kohlenstoffatomen oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

oder 5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch

> Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist, bedeuten

und/oder

(G) durch einen Rest -SO₃H substituiert sind

und/oder

(I) durch einen Rest -CONR'R' substituiert sind

wobei

R's und R's gleich oder verschieden sein können und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 10 Kohlen-

stoffatomen oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeuten,

wobei die besagten Alkyl oder Cycloalkylreste gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy, Amino, geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen,

Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 5 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist;

oder 5- bis 6-gliedriges Heterocyclyl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

substituiert sind,

und/oder

Rs und Rt Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

30

und/oder

10

5

15

20

25

Rs und Rt 3- bis 8-gliedriges gesättigtes Heterocyclyl mit 1 bis 3

Heteroatomen aus der Reihe N, O, S bedeuten; welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

und/oder

10

5

R's und R' gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel
-NR' enthält,

15

wobei

R^u Wasserstoff oder ein geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

20

(J) durch einen Rest der Formel -NR'R" substituiert sind

wobei

25

R^v und R^w gleich oder verschieden sein können und geradkettiges oder verzweigtes Acyl mit 7 bis 10 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, -SO₂-Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxymethyl, Hydroxyethyl, Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen, Alkoxyalkyl mit insgesamt bis zu 8 Kohlenstoffatomen, Acyloxymethyl mit bis zu 6 Kohlenstoffatomen im Acylrest (bevorzugt Pivaloyloxymethyl) oder folgende Reste

30

bedeuten,

worin

5

R^x und R^y gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten 5

10

15

30

m eine Zahl 0, 1 oder 2 bedeutet und

R^z geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet,

oder einer der Reste R^v und R^w gegebenenfalls Wasserstoff bedeuten kann,

(K) durch einen Rest der Formel -PO(OR)(OR') substituiert sind

wobei

R und R' gleich oder verschieden geradkettiges, verzweigtes oder cyclisches Alkyl mit bis zu 6 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeutet,

R² und R³ unter Einbezug der Doppelbindung einen Phenylring bilden, der gegebenenfalls bis zu 3-fach gleich oder verschieden durch Formyl, Carboxyl,
Hydroxy, Amino, geradkettiges oder verzweigtes Acyl, Alkoxy, oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Nitro, Cyano, Azido, Fluor, Chlor, Brom, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen substituiert sein kann,

A für Phenyl oder für Tetrahydropyranyl, Furyl, Tetrahydrofuryl, Morpholinyl, Pyrimidyl, Piperazinyl oder Pyridyl steht, der gegebenenfalls bis zu 2-fach gleich oder verschieden durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkyloxyacyl, Alkoxy oder Alkoxycarbonyl mit

jeweils bis zu 4 Kohlenstoffatomen, Fluor, Chlor, Brom, Nitro, Cyano, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen substituiert sein kann,

und/oder durch eine Gruppe der Formel -(CO)_d-NR¹⁵R¹⁶ substituiert sind,

worin

10

15

20

5

d eine Zahl 0 oder 1 bedeutet,

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

deren isomere Formen und Salze und deren N-Oxide.

Besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I), in welcher

R¹ für einen Rest der Formel

25

wobei die aufgeführten 6-gliedrigen aromatischen Heterocyclen R¹, gegebenenfalls bis zu 2-fach gleich oder verschieden durch Wasserstoff, Formyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit

5

10

15

20

25

30

jeweils bis zu 4 Kohlenstoffatomen, Methylamino, Amino, Fluor, Chlor, Brom, Cyano, Azido oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Carboxyl, Amino, geradkettiges oder verzweigtes Acyl, Alkoxy, Alkoxy-carbonyl, Acylamino mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein kann,

und/oder gegebenenfalls durch einen Rest der Formel

$$-N$$
 $N-CH_3$, $-N$ NH $-N$ OH OH

substituiert sind,

und die oben unter R¹ aufgeführten 6-gliedrigen aromatischen Heterocyclen 1- bis 3-fach, gleich oder verschieden durch

(A) geradkettiges oder verzweigtes Alkyl mit 7 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkenyl mit bis zu 6 Kohlenstoffatomen und einer Doppelbindung, geradkettiges oder verzweigtes Alkinyl mit bis zu 6 Kohlenstoffatomen und einer Dreifachbindung,

wobei Alkenyl bzw. Alkinyl ihre Doppel- bzw. Dreifachbindung am Anknüpfungspunkt zum Heterocyclus R¹ besitzen,

Cycloalkyloxy mit 3 bis 6 Kohlenstoffatomen, substituiertes Phenyl substituiert sind, wobei die genannten Alkyl-, Alkenyl-, Alkinyl- und Cycloalkyloxy-Reste ihrerseits gegebenenfalls und der Phenylrest zwingend substituiert ist durch Carboxyl, Hydroxy, Cyano, Fluor, Chlor, geradkettiges, verzweigtes oder cyclisches Alkyl, Acyl, Acylamino, Alkoxy, Alkylthio, Alkoxycarbonyl, mit jeweils bis zu 3 Kohlenstoffatomen,

durch Phenyl, welches gegebenenfalls durch Fluor, Chlor, Alkyl, Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen substituiert ist,

durch 5- bis 6-gliedriges Hetaryl, mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, Alkyl, Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen substituiert ist,

und/oder

durch eine Gruppe der Formel

-NRªRb

15

5

10

worin

R^a und R^b gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeutet, wobei diese gegebenenfalls durch

25

20

Hydroxy, Amino, Monoalkylamino, Dialkylamino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sind,

30

oder

R^a und R^b gemeinsam mit dem Stickstoffatom einen Heterocyclus der Formel

bilden

und/oder durch eine Gruppe der Formel

-ORd

10

5

worin

R^d geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen

15

20

und/oder

(B) durch einen 5- bis 6-gliedrigen heterocyclischen Ring substituiert sind, der gesättigt oder ungesättigt sein kann und 1 bis 4 Heteroatome aus der Reihe N, O, S enthält und gegebenenfalls durch

Fluor, Chlor, Phenyl, Cyano, Alkyl, Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen, -NRhRi,

wobei

5

R^h und Rⁱ gleich oder verschieden sein können und Wasserstoff, geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit bis zu 3 Kohlenstoffatomen bedeuten

oder

10

Rh und Ri gemeinsam mit dem Stickstoffatom einen Rest der Formel

oder

bilden

und/oder

15

(C) durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, welches zwingend durch eine oder mehrere der folgenden Gruppen

20

Cyano, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, Alkylthio mit bis zu 6 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen,

Phenyl, welches gegebenenfalls durch

10

Fluor, Chlor, Alkyl mit bis zu 4 Kohlenstoffatomen oder Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist;

5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, das gegebenenfalls durch Fluor, Chlor, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist,

-NR^kR¹, wobei einer der Reste R^k und R¹ Wasserstoff sein kann und der andere oder beide unabhängig voneinander geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 6 Kohlenstoffatomen bedeuten oder R^k und R¹ gemeinsam mit dem Stickstoffatom einen Heterocyclus der Formel

15

und/oder

bilden

(D) durch Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert sind, das seinerseits substituiert ist durch

20

Hydroxy, -NRⁿR^o, wobei Rⁿ und R^o gleich oder verschieden Wasserstoff oder geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen sein können oder Rⁿ und R^o gemeinsam mit dem Stickstoffatom einen Heterocyclus der Formel

bilden

5 und/oder

(E) durch halogensubstituiertes Acyl mit bis zu 6 Kohlenstoffatomen, Acyloxy mit bis zu 6 Kohlenstoffatomen oder Phenylthio, wobei der Phenylrest gegebenenfalls durch Fluor, Chlor, Alkyl, Alkoxy mit jeweils 1 bis 4 C-Atomen substituiert ist; Heteroarylthio mit 5- bis 6-gliedrigem Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist; substituiert sind,

15

10

und/oder

(F) durch einen Rest der Formel

20

-SO₂R^q oder -SOR^r substituiert sind

wobei

		R ^q und R ^r geradkettiges oder verzweigtes Alkyl mit 1 bis 3 Kohlenstoffatomen, stoffatomen, cyclisches Alkyl mit 3 bis 6 Kohlenstoffatomen,
5		Phenyl, welches gegebenenfalls durch Fluor, Chlor, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 3 Kohlenstoffatomen substituiert ist, oder 5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch
10		Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist, bedeuten,
	und/oder	
15	(G)	durch einen Rest -SO ₃ H substituiert sind
	und/o	der
20	(I)	durch einen Rest -CONR ^s R ^t substituiert sind,
		wobei
25		R ^s und R ^t gleich oder verschieden sein können und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeuten,
30		wobei die besagten Alkyl oder Cycloalkylreste gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy, Amino, geradkettiges oder verzweigtes Alkoxy, Acyl oder

Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen,

Phenyl, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist;

oder durch 5- bis 6-gliedriges Heterocyclyl mit 1 bis 3 Hetero-

atomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4

Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen,

Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist,

5

10

substituiert sind,

15

und/oder

20

Rs und Rt Phenyl bedeutet, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist,

und/oder

25

Rs und Rt 3- bis 6-gliedriges gesättigtes Heterocyclyl mit 1 bis 3

Heteroatomen aus der Reihe N, O, S bedeuten; welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes

Alkyl mit 1 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6

Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen
substituiert ist,

30

und/oder

R's und R' gemeinsam mit dem Stickstoffatom eine Gruppe der Formel

oder

bilden

5

und/oder

(J) durch einen Rest der Formel -NR'R" substituiert sind

10

wobei

R^v und R^w gleich oder verschieden sein können und Hydroxymethyl,
Hydroxyethyl, SO₂-Alkyl mit 1 bis 4 Kohlenstoffatomen,
Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen, Alkoxyalkyl
mit insgesamt bis zu 8 Kohlenstoffatomen, Acyloxymethyl mit
bis zu 6 Kohlenstoffatomen im Acylrest (bevorzugt Pivaloyloxymethyl) oder folgende Reste

bedeuten,

wobei

5

R^x und R^y gleich oder verschieden sein können und für Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit
1 bis 4 Kohlenstoffatomen,

10

R^z für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Aryl und

10

15

20

25

30

m eine Zahl 0, 1 oder 2 bedeutet und

oder einer der Reste R^v und R^w gegebenenfalls Wasserstoff bedeuten kann,

und/oder

(K) durch einen Rest der Formel -PO(OR)(OR') substituiert sind

wobei

R und R' gleich oder verschieden geradkettiges, verzweigtes oder cyclisches Alkyl mit bis zu 4 Kohlenstoffatomen oder Phenyl oder Benzyl bedeutet,

R² und R³ unter Einbezug der Doppelbindung einen Phenylring bilden, der gegebenenfalls bis zu 2-fach gleich oder verschieden durch Formyl, Carboxyl, Hydroxy, Amino, geradkettiges oder verzweigtes Acyl, Alkoxy, oder Alkoxy-carbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Nitro, Cyano, Fluor, Chlor, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein kann,

A für Phenyl oder für Tetrahydropyranyl, Tetrahydrofuryl, Furyl oder Pyridyl steht, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkyloxyacyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Fluor, Chlor, Brom, Nitro, Cyano, Trifluormethyl oder geradkettiges oder ver-

zweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das

seinerseits durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein kann,

5 und/oder durch eine Gruppe der Formel –(CO)_d-NR¹⁵R¹⁶ substituiert sind,

worin

d eine Zahl 0 oder 1 bedeutet,

10

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

und deren isomere Formen und Salze und deren N-Oxide.

Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

R¹ für einen Rest der Formel

20

25

wobei der oben aufgeführte Pyrimidylrest gegebenenfalls bis zu 2-fach gleich oder verschieden durch Methyl, Ethyl, Isopropyl, Fluor, Amino, Cyano, Methoxy, Chlor, Hydroxymethyl oder durch einen Rest der Formel

substituiert ist,

5

und der oben aufgeführte Pyrimidylrest R¹ 1- bis 3-fach gleich oder verschieden durch einen Rest der Formel -SO₂CH₃ oder durch einen Rest der Formel -PO(OH)₂, -PO(OMe)₂, -PO(OEt)₂ oder -PO(OⁱPr)₂ substituiert ist,

- 10 R² und R³ unter Einbezug der Doppelbindung gemeinsam einen Phenylring bilden und
 - A für Phenyl steht, das gegebenenfalls durch Fluor oder Cyano substituiert ist
- und deren isomere Formen und Salze und deren N-Oxide.

Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, daß man

20 [A] Verbindungen der allgemeinen Formel (II)

$$\begin{array}{cccc}
& & & & & \\
R^3 & & & & & \\
R^2 & & & & & \\
\end{array}$$
(II)

in welcher

25

R¹, R² und R³ die oben angegebene Bedeutung haben,

mit Verbindungen der allgemeinen Formel (III)

- 46 -

5

in welcher

A die oben angegebene Bedeutung hat,

10 und

D für Triflat oder Halogen, vorzugsweise für Chlor oder Brom steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base umsetzt,

15

oder

[B] Verbindungen der allgemeinen Formel (IV)

20

in welcher

A, R² und R³ die oben angegebene Bedeutung haben,

25

und

für einen Rest der Formel -SnR¹⁷R¹⁸R¹⁹, ZnR²⁰, Iod oder Triflat steht, L worin R¹⁷, R¹⁸ und R¹⁹ gleich oder verschieden sind und geradkettiges oder 5 verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, und R^{20} Halogen bedeutet, 10 mit Verbindungen der allgemeinen Formel (V) R¹-T (V) 15 in welcher \mathbb{R}^1 die oben angegebene Bedeutung hat, 20 und im Fall $L = SnR^{17}R^{18}R^{19}$ oder ZnR^{20} für Triflat oder für Halogen, vorzugsweise für Chlor oder Brom steht, T 25 und im Fall L = Iod oder Triflat für einen Rest der Formel $SnR^{17}R^{18}R^{19}$, ZnR^{20} oder $BR^{21}R^{22}$ steht, 30 T

worin

R¹⁷, R¹⁸, R¹⁹ und R²⁰ die oben angegebene Bedeutung von R¹⁷, R¹⁸, R¹⁹ und R²⁰ haben und mit dieser gleich oder verschieden sind.

5

R²¹ und R²² gleich oder verschieden sind und Hydroxy, Aryloxy mit 6 bis 10 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen bedeuten, oder gemeinsam einen 5- oder 6-gliedrigen carbocyclischen Ring bilden,

10

in einer palladiumkatalysierten Reaktion in inerten Lösemitteln umsetzt,

[C] Amidine der allgemeinen Formel (VI)

15

$$R^3$$
 N
 N
 H_2N
 NH
 (VI)

in welcher

20

A, R² und R³ die oben angegebene Bedeutung haben,

mit Enaminen der allgemeinen Formel (VII)

$$NC$$
 Z
 (VII)

in welcher

R¹ für einen der oben angegebenen Substituenten des 6-gliedrigen aromatischen Heterocyclus R¹ steht

5

und

Z für eine geeignete Abgangsgruppe wie Dimethylamino oder Hydroxyl steht,

10

15

umsetzt,

und gegebenenfalls die unter R¹, R², R³ und/oder A aufgeführten Substituenten nach üblichen Methoden, vorzugsweise durch Reduktion, Oxidation, Abspaltung von Schutzgruppen und/oder durch nucleophile Substitution variiert oder einführt.

Die erfindungsgemäßen Verfahren können durch folgende Formelschemata beispielhaft erläutert werden:

20

[A] bzw. [B]

$$\begin{array}{c|c} & & & \\ &$$

5 [C]:

10

15

20

25

Als Lösemittel für die einzelnen Schritte der Verfahren [A], [B] und [C] eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern.

Hierzu gehören Ether, wie Diethylether oder Tetrahydrofuran, DME, Dioxan, Alkohole wie Methanol und Ethanol, Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Kohlenwasserstoffe wie Benzol, Xylol,Toluol, Hexan, Cyclohexan, oder Erdölfraktionen, Nitromethan, Dimethylformamid, Aceton, Acetonitril oder Hexamethylphosphorsäuretriamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt ist Tetrahydrofuran, Dimethylformamid, Toluol, Dioxan oder Dimethoxyethan.

Als Basen für die erfindungsgemäßen Verfahren können im allgemeinen anorganische oder organische Basen eingesetzt werden. Hierzu gehören vorzugsweise Alkalihydroxide wie zum Beispiel Natriumhydroxid oder Kaliumhydroxid, Erdalkalihydroxide wie zum Beispiel Bariumhydroxid, Alkalicarbonate wie Natriumcarbonat oder Kaliumcarbonat, Erdalkalicarbonate wie Calciumcarbonat, oder Alkali- oder Erdalkalialkoholate wie Natrium- oder Kaliummethanolat, Natrium- oder Kaliumethanolat oder Kalium-tert.butylat, oder organische Amine (Trialkyl(C₁-C₆)-amine) wie Triethylamin, oder Heterocyclen wie 1,4-Diazabicyclo[2.2.2]octan (DABCO), 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU), Pyridin, Diaminopyridin, Methylpiperidin oder Morpholin. Es ist auch möglich als Basen Alkalimetalle wie Natrium und deren Hydride wie Natriumhydrid einzusetzen. Bevorzugt sind Natrium- und Kaliumcarbonat, Triethylamin und Natriumhydrid.

Die Base wird in einer Menge von 1 mol bis 5 mol, bevorzugt von 1 mol bis 3 mol, bezogen auf 1 mol der Verbindung der allgemeinen Formel (II) eingesetzt.

Die Umsetzung wird im allgemeinen in einem Temperaturbereich von 0°C bis 150°C, bevorzugt von +20°C bis +110°C durchgeführt.

Die Umsetzung kann bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Als Säuren für die Cyclisierung eignen sich im allgemeinen Protonensäuren. Hierzu gehören bevorzugt anorganische Säuren wie beispielsweise Salzsäure oder Schwefelsäure, oder organische Carbonsäuren mit 1-6 C-Atomen, gegebenenfalls substituiert durch Fluor, Chlor und/oder Brom, wie beispielsweise Essigsäure, Trifluoressigsäure, Trichloressigsäure oder Propionsäure, oder Sulfonsäuren mit C₁-C₄-Alkylresten oder Arylresten wie beispielsweise Methansulfonsäure, Ethansulfonsäure, Benzolsulfonsäure oder Toluolsulfonsäure.

Die katalytische Hydrierung kann im allgemeinen durch Wasserstoff in Wasser oder in inerten organischen Lösemitteln wie Alkoholen, Ethern oder Halogenkohlenwasserstoffen, oder deren Gemischen, mit Katalysatoren wie Raney-Nickel, Palladium, Palladium auf Tierkohle oder Platin, oder mit Hydriden oder Boranen in inerten Lösemitteln, gegebenenfalls in Anwesenheit eines Katalysators durchgeführt werden.

Die Chlorierung erfolgt im allgemeinen mit den üblichen Chlorierungsmitteln wie beispielsweise PCl₃, PCl₅, POCl₃ oder elementarem Chlor. Bevorzugt ist im Rahmen der Erfindung POCl₃.

Im Fall, daß die Reste der Formeln -S(O)_cNR¹²R¹³ und -S(O)_cNR¹²R^{13'} eingeführt werden sollen, werden die entsprechenden unsubstituierten Vorstufen zunächst mit Thionylchlorid umgesetzt. In einem weiteren Schritt erfolgt die Umsetzung mit den Aminen in einem der oben aufgeführten Ether, vorzugsweise Dioxan. Im Fall c = 2 wird anschließend eine Oxidation nach üblichen Methoden durchgeführt. Die Umsetzungen erfolgen in einem Temperaturbereich von 0°C bis 70°C und Normaldruck.

15

20

25

10

15

20

Die nucleophilen Substitutionen und Vilsmeierreaktionen werden nach üblichen, publizierten Methoden durchgeführt.

Die Reduktionen werden im allgemeinen mit Reduktionsmitteln, bevorzugt mit solchen, die für die Reduktion von Carbonyl zu Hydroxyverbindungen geeignet sind, durchgeführt werden. Besonders geeignet ist hierbei die Reduktion mit Metallhydriden oder komplexen Metallhydriden in inerten Lösemitteln, gegebenenfalls in Anwesenheit eines Trialkylborans. Bevorzugt wird die Reduktion mit komplexen Metallhydriden wie beispielsweise Lithiumboranat, Natriumboranat, Kaliumboranat, Zinkboranat, Lithium-trialkylhydrido-boranat, Diisobutylaluminiumhydrid oder Lithiumaluminiumhydrid durchgeführt. Ganz besonders bevorzugt wird die Reduktion mit Diisobutylaluminiumhydrid und Natriumborhydrid durchgeführt.

Das Reduktionsmittel wird im allgemeinen in einer Menge von 1 mol bis 6 mol, bevorzugt von 1 mol bis 4 mol bezogen auf 1 mol der zu reduzierenden Verbindungen, eingesetzt.

Die Reduktion verläuft im allgemeinen in einem Temperaturbereich von -78°C bis +50°C, bevorzugt von -78°C bis 0°C im Falle des DIBAH, 0°C bis Raumtemperatur im Falle des NaBH₄

Die Reduktion verläuft im allgemeinen bei Normaldruck, es ist aber auch möglich bei erhöhtem oder erniedrigtem Druck zu arbeiten.

Als Lösemittel für das Verfahren [B] eignen sich insbesondere: Ether, wie Diethylether oder Tetrahydrofuran, DME, Dioxan, Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethylen oder Trichlorethylen, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan, oder Erdölfraktionen, Nitromethan, Dimethylformamid, Aceton, Acetonitril oder Hexamethylphosphorsäuretriamid. Ebenso ist es möglich,

Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Tetrahydrofuran, Dimethylformamid, Toluol, Dioxan oder Dimethoxyethan.

Die Reaktion wird im allgemeinen in einem Temperaturbereich von 0°C bis 150°C, bevorzugt von 110°C bis 150°C durchgeführt.

Die Umsetzung kann bei normalen, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

- Als Palladiumverbindungen im Rahmen der vorliegenden Erfidung eignen sich im allgemeinen PdCl₂(P(C₆H₅)₃)₂, Palladium-bis-dibenzylidenaceton (Pd(dba)₂), [1,1'-Bis-diphenylphosphino)ferrocen]-Palladium(II)-chlorid (Pd(dppf)Cl₂) oder Pd(P(C₆H₅)₃)₄. Bevorzugt ist Pd(P(C₆H₅)₃)₄.
- Die Verbindungen der allgemeinen Formel (IV) sind bekannt und nach üblichen Methoden herstellbar.

Das Verfahren [C] erfolgt in einem Temperaturbereich von 55°C bis 120°C, vorzugsweise bei 80°C.

20

5

Bei Verfahren [C] wird entweder die freie Amidin-Base eingesetzt. In diesem Falle fungieren die Enamine als Lösungsmittel. Oder die Amidine werden in Form ihrer Salze, bevorzugt Hydrochloride in Gegenwart einer Base, bevorzugt Natriummethanolat oder Kalium-tert.-butanolat in Alkoholen, bevorzugt Methanol oder tert.-

25 Butanol umgesetzt.

Die Verwendung der Enole wird in einem inerten Lösungsmittel, bevorzugt Toluol, mit der freien Amidin-Base umgesetzt.

Das Verfahren [C] kann bei normalen, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Die Amidine der allgemeinen der Formel (VI) sind neu und daher ein weiterer Gegenstand der Erfindung. Sie können hergestellt werden, indem man die Verbindungen der allgemeinen Formel (VIII)

$$R^3$$
 N
 N
 $(VIII)$

5

in welcher

A, R² und R³ die oben angegebene Bedeutung haben,

10 mit Natriummethanolat zu Verbindungen der allgemeinen Formel (IX)

in welcher

A, R² und R³ die oben angegebene Bedeutung haben,

15

umsetzt, in einem nächsten Schritt durch Umsetzung mit NH₄Cl und Eisessig in Alkoholen in das entsprechende Amidin HCl-Salz der allgemeinen Formel (X)

$$R^3$$
 N
 N
 H_2N
 $X HCI$
 $X HCI$

in welcher

A, R² und R³ die oben angegebene Bedeutung haben,

überführt und in einem letzten Schritt mit Basen, vorzugsweise Natriumcarbonat versetzt.

Die Überführung des Nitrils in den Iminoether kann sowohl im Sauren, wie z.B. mit HCl/Alkohol-Gemischen wie im Basischen wie z.B. mit Methanol/Natriummethanolat erfolgen.

10

15

Die Darstellung des Pyrimidins erfolgt nach üblichen Methoden.

Hierbei kann man sowohl vom Iminoether ausgehen und diesen z.B. mit einem geeigneten Enamin umsetzen. Man kann aber auch den Iminoether zunächst mittels Ammoniak oder dessen Salzen in ein Amidin überführen und dieses entweder als freie Base oder als Salz mit Enaminen umsetzen.

Anstelle der Enamine der Formel (VII) können auch andere Aldehydäquivalente wie z.B. Acetale, Aminale, Enolether, Aldehyde oder Enole eingesetzt werden.

20

Die Enamine können z.B. aus C-H-aciden Verbindungen wie Acetonitrilderivaten nach bekannten Methoden durch Umsetzung mit Dimethylformamid-Derivaten wie z.B. Bis(dimethylamino)-tert-butoxymethan, Dialkoxy-dialkylamino-methanen hergestellt werden.

25

Als Lösemittel für Umsetzung der Verbindungen der allgemeinen Formeln $(IX) \rightarrow (X)$ eignen sich Alkohole wie Methanol oder Ethanol. Bevorzugt ist Methanol.

Die Umsetzung erfolgt in einem Temperaturbereich von 0°C bis 40°C, vorzugsweise 30 bei Raumtemperatur. Die Umsetzung kann bei normalen, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

- Als Basen für die Freisetzung der freien Amidin-Basen aus den Hydrochloriden (X) eignen sich anorganische oder organische Basen. Hierzu gehören beispielsweise Alkalihydroxide wie Natriumhydroxid oder Kaliumhydroxid, Erdalkalihydroxide wie Bariumhydroxid, Alkalicarbonate wie Natriumcarbonat oder Kaliumcarbonat, Erdalkalicarbonate wie Calciumcarbonat, Alkali-Alkoholate wie Kalium-tert.-butanolat.

 Bevorzugt sind Natriumcarbonat und Kalium-tert.-butanolat.
 - Die Umsetzung erfolgt in einem Temperaturbereich von 0°C bis 40°C, vorzugsweise bei Raumtemperatur.
- Die Umsetzung kann bei normalen, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Die Verbindungen der allgemeinen Formel (VII) sind neu und können hergestellt werden, indem man die Verbindungen der Formel (XI)

20

$$(CH_3)_2N)_2$$
 $CH-O$ (XI)

mit Verbindungen der Formel (XII)

$$Q'-CH_2-CN \tag{XII}$$

worin

Q' für einen der vorstehend beschriebenen Substituenten von R¹ steht,

bei Temperaturen von 80 bis 120°C umsetzt.

Die Verbindungen der allgemeinen Formeln (XI) und (XII) sind bekannt und nach üblichen Methoden herstellbar.

Die Verbindungen der allgemeinen Formeln (IX) und (X) sind neu und können wie oben beschrieben hergestellt werden.

10

Die Verbindungen der Formel (VIII) können hergestellt werden, indem man die entsprechenden 3-Cyan-Indazole mit Verbindungen der allgemeinen Formel (XIII)

Br A (XIII)

15

in welcher

- A die oben angegebene Bedeutung hat,
- in inerten Lösemitteln, vorzugsweise mit Tetrahydrofuran in Anwesenheit einer Base, vorzugsweise Natriumhydrid umsetzt.

Die Verbindungen der allgemeinen Formel (XIII) sind bekannt oder nach üblichen Methoden herstellbar.

25

30

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zeigen ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) führen zu einer Gefäßrelaxation, Thrombozytenaggregationshemmung und zu einer Blutdrucksenkung

10

15

25

30

sowie zu einer Steigerung des koronaren Blutflusses. Diese Wirkungen sind über eine direkte Stimulation der löslichen Guanylatzyklase und einem intrazellulären cGMP-Anstieg vermittelt. Außerdem verstärken die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) die Wirkung von Substanzen, die den cGMP-Spiegel steigern, wie beispielsweise EDRF (Endothelium derived relaxing factor), NO-Donatoren, Protoporphyrin IX, Arachidonsäure oder Phenylhydrazinderivate.

Sie können daher in Arzneimitteln zur Behandlung von kardiovaskulären Erkrankungen wie beispielsweise zur Behandlung des Bluthochdrucks und der Herzinsuffizienz, stabiler und instabiler Angina pectoris, peripheren und kardialen Gefäßerkrankungen, von Arrhythmien, zur Behandlung von thromboembolischen Erkrankungen und Ischämien wie Myokardinfarkt, Hirnschlag, transistorisch und ischämische Attacken, periphere Durchblutungsstörungen, Verhinderung von Restenosen wie nach Thrombolysetherapien, percutan transluminalen Angioplastien (PTA), percutan transluminalen Koronarangioplastien (PTCA), Bypass sowie zur Behandlung von Arteriosklerose und Krankheiten des Urogenitalsystems wie beispielsweise Prostatahypertrophie, erektile Dysfunktion, weibliche sexuelle Dysfunktion und Inkontinenz eingesetzt werden.

Darüber hinaus umfaßt die Erfindung die Kombination der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) mit organischen Nitraten und NO-Donatoren.

Organische Nitrate und NO-Donatoren im Rahmen der Erfindung sind im allgemeinen Substanzen, die über die Freisetzung von NO bzw. NO-Species ihre therapeutische Wirkung entfalten. Bevorzugt sind Natriumnitroprussid, Nitroglycerin, Isosorbiddinitrat, Isosorbidmononitrat, Molsidomin und SIN-1.

Außerdem umfaßt die Erfindung die Kombination mit Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) inhibieren. Dies sind insbesondere Inhibitoren der Phosphodiesterasen 1, 2 und 5; Nomenklatur nach Beavo und Reif-

snyder (1990) TiPS 11 S. 150 bis 155. Durch diese Inhibitoren wird die Wirkung der erfindungsgemäßen Verbindung potenziert und der gewünschte pharmakologische Effekt gesteigert.

Zur Feststellung der kardiovaskulären Wirkungen wurden folgende Untersuchungen durchgeführt: In in vitro-Untersuchungen an Zellen vaskulären Ursprungs wurde der Einfluß auf die Guanylatzyklase-abhängige cGMP-Bildung mit und ohne NO-Donor geprüft. Die antiaggregatorischen Eigenschaften wurden an mit Kollagen stimulierten menschlichen Thrombozyten gezeigt. Die gefäßrelaxierende Wirkung wurde an mit Phenylephrin vorkontrahierten Kaninchenaortenringen bestimmt. Die blutdrucksenkenden Wirkungen wurden an narkotisierten und wachen Ratten untersucht.

Stimulation der löslichen Guanylatzyklase in primären Endothelzellen

Primäre Endothelzellen wurden aus Schweineaorten durch Behandlung mit Kollagenase-Lsg. isoliert. Anschließend wurden die Zellen in Kulturmedium bei 37°C / 5 % CO₂ bis zum Erreichen der Konfluenz kultiviert. Für die Untersuchungen wurden die Zellen passagiert, in 24-Loch Zellkulturplatten ausgesät und bis zum Erreichen der Konfluenz subkultiviert (~ 2 x 10⁵ Zellen / Vertiefung). Zur Stimulation der endothelialen Guanylatzyklase wurde das Kulturmedium abgesaugt und die Zellen einmal mit Ringerlösung gewaschen. Nach Entfernen der Ringerlösung wurden die Zellen in Stimulationspuffer mit oder ohne NO-Donor (Natrium-Nitroprussid, SNP oder DEA/NO 1 μM) 10 Minuten bei 37°C / 5% CO₂ inkubiert. Im Anschluß daran wurden die Testsubstanzen (Endkonzentration 1 μM) zu den Zellen pipettiert und weitere 10 Minuten inkubiert. Nach Ende der Inkubationszeit wurde die Pufferlösung abgesaugt und 4°C kalter Stoppuffer zu den Zellen gegeben. Die Zellen wurden dann 16 Stunden lang bei -20°C lysiert. Anschließend wurden die das intrazelluläre cGMP enthaltenden Überstände abgenommen und die cGMP-Konzentrationen durch das cGMP-SPA-System (Amersham Buchler, Braunschweig) bestimmt.

25

15

20

Gefäßrelaxierende Wirkung in vitro

Kaninchen werden durch Nackenschlag betäubt und entblutet. Die Aorta wird entnommen, von anhaftendem Gewebe befreit, in 1,5 mm breite Ringe geteilt und einzeln
unter einer Vorspannung in 5 ml-Organbäder mit 37°C warmer, carbogenbegaster
Krebs-Henseleit-Lösung folgender Zusammensetzung (mM) gebracht: NaCl: 119; KCl:
4,8; CaCl₂ x 2 H₂O: 1; MgSO₄ x 7 H₂O; 1,4; KH₂PO₄: 1,2; NaHCO₃:25; Glucose: 10.
Die Kontraktionskraft wird mit Statham UC2-Zellen erfaßt, verstärkt und über A/DWandler (DAS-1802 HC, Keithley Instruments München) digitalisiert sowie parallel
auf Linienschreiber registriert. Zur Erzeugung einer Kontraktion wird Phenylephrin
dem Bad kumulativ in ansteigender Konzentration zugesetzt. Nach mehreren Kontrollzyklen wird die zu untersuchende Substanz in jedem weiteren Durchgang in jeweils
steigender Dosierung untersucht und die Höhe der Kontraktion mit der Höhe der im
letzten Vordurchgang erreichten Kontraktion verglichen. Daraus wird die Konzentration errechnet, die erforderlich ist, um die Höhe des Kontrollwertes um 50 % zu
reduzieren (IC₅₀). Das Standardapplikationsvolumen beträgt 5 μl, der DMSO-Anteil in
der Badlösung entspricht 0,1 %.

Die Verbindungen der Beispiele zeigen in diesem Rest IC $_{50}$ -Werte von <10 μM .

20

25

5

10

15

Blutdruckmessungen an narkotisierten Ratten

Männliche Wistar-Ratten mit einem Körpergewicht von 300 - 350 g werden mit Thiopental (100 mg/kg i.p.) anästhesiert. Nach Tracheotomie wird in die Femoralarterie ein Katheter zur Blutdruckmessung eingeführt. Die zu prüfenden Substanzen werden in Transcutol, Cremophor EL, H₂O (10 %/20 %/70 %) in einem Volumen von 1 ml/kg oral verabreicht.

Wirkung auf den mittleren Blutdruck von wachen, spontan hypertensiven Ratten

- Kontinuierliche Blutdruckmessungen über 24 Stunden wurden an spontan hypertonen 200-250 g schweren sich frei bewegenden weiblichen Ratten (MOL:SPRD) durchgeführt. Dazu waren den Tieren chronisch Druckaufnehmer (Data Sciences Inc., St. Paul, MN, USA) in die absteigende Bauchaorta unterhalb der Nierenarterie implantiert und der damit verbundene Sender in der Bauchhöhle fixiert worden.
- Die Tiere wurden einzeln in Type III Käfigen, die auf den individuellen Empfängerstationen positioniert waren, gehalten und waren an einem 12-Stunden Hell/Dunkel-Rhythmus angepaßt. Wasser und Futter standen frei zur Verfügung.
- Zur Datenerfassung wurde der Blutdruck jeder Ratte alle 5 Minuten für 10 Sekunden registriert. Die Meßpunkte wurden jeweils für eine Periode von 15 Minuten zusammengefaßt und der Mittelwert aus diesen Werten berechnet.
- Die Prüfverbindungen wurden in einer Mischung aus Transcutol (10 %), Cremophor (20 %), H₂O (70 %) gelöst und mittels Schlundsonde in einem Volumen von 2 ml/kg Körpergewicht oral verabreicht. Die Prüfdosen lagen zwischen 0,3 30 mg/kg Körpergewicht.

Thrombozytenaggregationshemmung in vitro

Zur Bestimmung der Thrombozytenaggregation wurde Blut von gesunden Probanden beiderlei Geschlechts verwendet. Als Antikoagulans wurde einem Teil 3,8 %iger Natriumzitratlösung 9 Teile Blut zugemischt. Das Blut wurde mit 900U/min für 20 min zentrifugiert. Der pH Wert des gewonnenen plättchenreichen Plasmas wurde mit ACD-Lösung (Natriumcitrat/Citronensäure/Glucose) auf pH 6,5 eingestellt. Die Thrombozyten wurden anschließend abzentrifugiert und in Puffer aufgenommen und

25

30

wiederum abzentrifugiert. Der Thrombozytenniederschlag wurde in Puffer aufgenommen und zusätzlich mit 2 mmol/l CaCl 2 versetzt.

Für die Aggregationsmessungen wurden Aliquots der Thrombozytensuspension mit der Prüfsubstanz 10 min bei 37°C inkubiert. Anschließend wurde die Aggregation durch Zugabe von Kollagen in einem Aggregometer ausgelöst und mittels der turbidometrischen Methode nach Born (Born, G.V.R., J.Physiol. (London), 168, 178-195, 1963) bei 37°C bestimmt.

- Die in der vorliegenden Erfindung beschriebenen Verbindungen der allgemeinen Formel (I) stellen auch Wirkstoffe zur Bekämpfung von Krankheiten im Zentralnervensystem dar, die durch Störungen des NO/cGMP-Systems gekennzeichnet sind. Insbesondere sind sie geeignet zur Beseitigung kognitiver Defizite, zur Verbesserung von Lern- und Gedächtnisleistungen und zur Behandlung der Alzheimer'schen Krankheit.

 Sie eignen sich auch zur Behandlung von Erkrankungen des Zentralnervensystems wie Angst-, Spannungs- und Depressionszuständen, zentralnervös bedingten Sexualdysfunktionen und Schlafstörungen, sowie zur Regulierung krankhafter Störungen der Nahrungs-, Genuß- und Suchtmittelaufnahme.
- Weiterhin eignen sich die Wirkstoffe auch zur Regulation der cerebralen Durchblutung und stellen somit wirkungsvolle Mittel zur Bekämpfung von Migräne dar.
 - Auch eignen sie sich zur Prophylaxe und Bekämpfung der Folgen cerebraler Infarktgeschehen (Apoplexia cerebri) wie Schlaganfall, cerebraler Ischämien und des SchädelHirn-Traumas. Ebenso können die erfindungsgemäßen Verbindungen der allgemeinen
 Formel (I) zur Bekämpfung von Schmerzzuständen eingesetzt werden.

Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nichttoxischen, inerten pharmazeutisch geeigneten Trägerstoffen die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) enthält sowie Verfahren zur Herstellung dieser Zubereitungen. Die Wirkstoff können gegebenenfalls in einem oder mehreren der oben angegebenen Trägerstoffe auch in mikroverkapselter Form vorliegen.

- Die therapeutisch wirksamen Verbindungen der allgemeinen Formel (I) sollen in den oben aufgeführten pharmazeutischen Zubereitungen in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew.-%, der Gesamtmischung vorhanden sein.
- Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungsgemäßen Verbindungen der allgemeinen Formel (I) auch weitere pharmazeutische Wirkstoffe enthalten.
- Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 0,5 bis etwa 500, vorzugsweise 5 bis 100 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Ergebnisse zu verabreichen. Eine Einzelgabe enthält den oder die erfindungsgemäßen Wirkstoffe vorzugsweise in Mengen von etwa 1 bis etwa 80, insbesondere 3 bis 30 mg/kg Körpergewicht.

Beispiele

Ausgangsverbindungen

Beispiel 1A

5

10

15

1-(2-Fluorbenzyl)-3-cyanindazol

12,0 g (83,9 mmol) 3-Cyanindazol wurden unter Argon in 100 ml abs. THF gelöst und 20,6 g (109 mmol) 2-Fluorbenzylbromid zugegeben. Unter Eiskühlung wurden portionsweise 2,55 g (100 mmol) Natriumhydrid (95 %) zugefügt. Nach Rühren über Nacht bei Raumtemperatur wurde am Rotationsverdampfer auf ca. ein Viertel des Volumens eingeengt und mit H₂O und Ethylacetat versetzt. Die wäßrige Phase wurde nochmals mit Ethylacetat extrahiert. Trocknen der vereinigten organischen Phasen über MgSO₄ und Abdestillieren des Lösungsmittels am Rotationsverdampfer lieferte das Produkt.

Ausbeute:

19,5 g (93 %)

R_f-Wert:

0,69 (Kieselgel; Cyclohexan/Ethylacetat 1:1)

Beispiel 2A

1-(2-Fluorbenzyl)indazol-3-amidiniumchlorid

5

10

Eine aus 190 mg (8,26 mmol) und 30 ml abs. Methanol bereitete Natriummethanolat-Lösung wurde zu einer Lösung aus 20,0 g (79,9 mmol) 1-(2-Fluorbenzyl)-3-cyanindazol in 200 ml Methanol gegeben und 22 h bei 40°C gerührt. Nach Zugabe von 0,46 ml Essigsäure und 4,30 g NH₄Cl wurde weitere 24 h bei 40°C gerührt und die Mischung anschließend am Rotationsverdampfer zur Trockne eingeengt. Aufnehmen des Rückstands in Aceton und Absaugen des verbleibenden Niederschlags lieferte nach Trocknung im Hochvakuum das produkt in Form eines hellbeigen Pulvers.

Ausbeute:

20,5 g (84 %)

15 Smp.:

>230°C

MS-EI:

m/z (%) = 268 (31, M⁺ der freien Base), 251 (15), 109 (100).

Allgemeine Vorschrift zur Herstellung von 2-substituierten 3-Dimethylaminoacrylnitrilen

$$R \cap CN + O \cap O \cap CN$$

20

Zu einer Lösung von 5,95 g (50,0 mmol) N,N-Dimethylformamid-dimethylacetal in 25 ml abs. Methanol werden unter Wasserkühlung 50,0 mmol 2-substituiertes Acetonitril-Derivat gegeben und 1 h bei Raumtemperatur gerührt.

Sulfone:

Der Niederschlag wird abgesaugt und im Hochvakuum getrocknet.

Phosphonsäure-Ester: Die Lösung wird zunächst bei 40°C und 20 mbar am Rotationsverdampfer, dann bei Raumtemperatur am Hochvakuum vom Methanol befreit.

Beispiel 3A

Beispiel 3B

Produkt Ausbeute ¹H-NMR

99%

1H-NMR (400

MHz, CDCl₃),δ =

1.34 (t, 6H, CH₃),

3.12 (s, 3H, NCH₃),

4.07 (m, 4H, CH₂),

7.20 (d, 1H, Olefin-CH).

Ausgangsverbindung 4A

1-(2-Fluorbenzyl)-3-iodindazol

5

20,0 g (82,0 mmol) 3-Iodindazol wurden unter Argon in 200 ml abs. THF gelöst. 2,49 g (97,6 mmol) Natriumhydrid (95 %) zugefügt und 45 min bei Raumtemperatur gerührt. nach Zugabe von 18,6 g (98,4 mmol) 2-Fluorbenzylbromid und Rühren über Nacht bei Raumtemperatur wurde die Mischung mit Ethylacetat und ges. NaCl-Lösung versetzt. Die organische Phase wurde mit Wassergewaschen, über MgSO₄ getrocknet und anschließend am Rotationsverdampfer zur Trockne eingeengt.

Ausbeute:

29,0 g (100 %, Reinheit lt. GC: 80 %)

Rf-Wert:

0,78 (Kieselgel; Cyclohexan/Ethylacetat 1:1)

15

10

Ausgangsverbindung 5A

1-(2-Fluorbenzyl)-3-(trimethylstannyl)indazol

20

23,6 g (67,0 mmol) 1-(2-Fluorbenzyl)-3-iodindazol, 66,4 g Hexamethyldizin (203 mmol) und 8,00 g Pd(PPh₃)₄ wurden unter Argon-Atmosphäre in 680 ml 1,4-

Dioxan über Nacht unter Rückfluß erhitzt. Die auf Raumtemperatur abgekühlte Mischung wurde mit 200 ml 1M wäßriger KF-Lösung und mit Ethylacetat extrahiert. Die organische Phase wurde über MgSO₄ getrocknet und anschließend am Rotationsverdampfer zur Trockne eingeengt. Die Reinigung erfolgte in 3 Portionen durch Chromatographie an Kieselgel (Cyclohexan/Ethylacetat 50:1).

Ausbeute:

16,6 g (64 %, Reinheit der 3 Chargen lt. GC: 79-94 %, Rest:

PPh3)

R_f-Wert:

0,95 (Kieselgel; Cyclohexan/Ethylacetat 1:1)

10 Smp.:

5

71°C

Ausgangsverbindung 6A

4-Amino-2-chlorpyrimidin-5-carbonsäureamid

15

20

1,00 g 2,4-Dichlorpyrimidin-5-carbonsäurechlorid (4,73 mmol) wurden unter Argon in 10 ml 1,4-Dioxan gelöst und 15 Minuten lang bei 10°C Ammoniak eingeleitet. nach zweitägigem Stehen bei Raumtemperatur wurde der Niederschlag abgesaugt, mit wenig Wasser gewaschen und im Hochvakuum getrocknet.

Ausbeute:

700 mg (86 %)

R_f-Wert:

0,06 (Kieselgel; Cyclohexan/Ethylacetat 1:1)

MS-EI:

m/z (%) = 172 (100, Cl, M⁺), 156 (71, Cl), 137 (22), 120 (28),

25

68 (31).

Herstellungsbeispiele

Beispiel 1

3-[4-Amino-5-(2-pyridyl)-2-pyrimidyl]-1-(2-fluorbenzyl)indazol

5

10

15

Unter Argon wurden 350 mg (2,00 mmol) Natriummethanolat-Lösung (30 %, in Methanol) mit 5 ml abs. Methanol und 610 mg (2,00 mmol) 1-(2-Fluorbenzyl)-indazol-3-amidiniumchlorid versetzt. Nach 5-minütigem Rühren bei Raumtemperatur wurden 346 mg (6,00 mol) 2-(2-Pyridyl)-3-dimethylaminoacrylnitril zugegeben und über Nacht unter Rückfluß erhitzt. Nach Abkühlen auf Raumtemperatur wurde der Niederschlag abgesaugt und in Pentan verrührt. Erneutes Absaugen des Niederschlags und Trocknen im Hochvakuum lieferte das Produkt in Form eines hellen Feststoffs.

Ausbeute:

315 mg (40 %)

MS-EI:

m/z (%) = 396 (100, M⁺), 395 (49), 301 (28), 109 (28).

3-[4-Amino-5-methansulfonyl-2-pyrimidyl]-1-(2-fluorbenzyl)indazol

5

304 mg (1,00 mmol) 1-(2-Fluorbenzyl)indazol-3-amidiniumchlorid, 174 mg (1,00 mmol) 2-Methansulfonyl-3-dimethylaminoacrylnitril (herstellbar analog Beispiel 3A mit 2-methansulfonylacetonitril als Ausgangsverbindung), 5 ml tert.-Butanol und 123 mg (1,20 mmol) Kalium-tert.-butanolat wurden über Nacht bei 80°C gerührt. Der entstandene Niederschlag wurde abgesaugt, mit Wasser und Pentan gewaschen und am Hochvakuum getrocknet.

Ausbeute:

215 mg (54 %)

MS-EI:

m/z (%) = 397 (60, M⁺), 302 (30), 109 (100).

15

3-[4-Amino-5-(2-pyridylsulfonyl)-2-pyrimidyl]-1-(2-fluorbenzyl)indazol

5

304 mg (1,00 mmol) 1-(2-Fluorbenzyl)indazol-3-amidiniumchlorid, 237 mg (1,00 mmol) 2-(2-Pyridylsulfonyl)-3-dimethylaminoacrylnitril, 5 ml tert.-Butanol und 123 mg (1,20 mmol) Kalium-tert.-butanolat wurden über Nacht bei 80°C gerührt. Der entstandene Niederschlagwurde abgesaugt und auf Kieselgel aufgezogen. Durch Chromatographie an Kieselgel (Cyclohexan/Ethylacetat $20:1 \rightarrow 1:1 \rightarrow 0:100$) konnte das Produkt isoliert werden.

Ausbeute:

120 mg (26 %)

MS-EI:

m/z (%) = 460 (18, M⁺), 396 (47), 395 (47), 287 (30), 109 (100).

15

4-Amino-2-[1-(2-fluorbenzyl)indazol-3-yl]pyrimidin-5-phosphonsäurediethylester

5

10

609 mg (2,00 mmol) 1-(2-Fluorbenzyl)indazol-3-amidiniumchlorid, 464 mg (2,00 mmol) 1-Cyano-1-(dimethylamono)methylen-methanphosphonsäurediethylester (herstellbar analog Bsp. 3b aus 2-(Diethoxyphosphoryl)-acetonitril), 10 ml tert.-Butanol und 246 g (2,40 mmol) Kalium-tert.-butanolat wurden über Nacht bei 80°C gerührt. Die Mischung wurde auf Kieselgel aufgezogen und durch Chromatographie an Kieselgel (Cyclohexan/Ethylacetat 30:1 \rightarrow 1:1) das Produkt isoliert.

Ausbeute:

167 mg (18 %)

Smp.:

152°C

15 MS-EI:

m/z (%) = 445 (100, M⁺), 109 (91).

4-Amino-2-[1-(2-fluorbenzyl)indazol-3-yl]pyrimidin-5-phosphonsäurediisopropylester

5

10

304 mg (1,00 mmol) 1-(2-Fluorbenzyl)indazol-3-amidiniumchlorid, 260 mg (1,00 mmol) 1-Cyano-1-(dimethylamino)methylen-methanphosphonsäurediisopropylester, 5 ml tert.-Butanol und 123 mg (1,20 mmol) Kalium-tert.-butanolat wurden über Nacht bei 80°C gerührt. Die Mischung wurde auf Kieselgel aufgezogen und durch Chromatographie an Kieselgel (Cyclohexan/Ethylacetat 20:1 \rightarrow 1:1) das Produkt isoliert.

Ausbeute:

171 mg (35 %)

15 Smp.:

182°C

MS-EI:

m/z (%) = 483 (44, M⁺), 109 (100).

4-Amino-2-[1-(2-fluorbenzyl)indazol-3-yl]pyrimidin-5-carbonsäureamid

5

10

638 mg (1,64 mmol) 1-(2-Fluorbenzyl)-3-(trimethylstannyl)indazol 282 mg, (1,64 mmol) 4-Amino-2-chlorpyrimidin-5-carbonsäureamid und 69,0 mg (0,10 mmol) Pd(PPh₃)₂Cl₂ wurden unter Argon in 17 ml DMF bei 150°C über Nacht gerührt. Die auf Raumtemperatur abgekühlte Mischung wurde mit Wasser versetzt und mit Ethylacetat extrahiert. Die über MgSO₄ getrocknete organische Phase wurde auf Kieselgel aufgezogen und chromatographiert (Cyclohexan/Ethylacetat 50:1 \rightarrow 1:1 \rightarrow 0:100), wobei eine Produkt enthaltende Fraktion bei R_f = 0,06 isoliert wurde, die durch präparative HPLC weiter gereinigt wurde.

15 Ausbeute:

42 mg (7,1 %)

R_f-Wert:

0,06 (Kieselgel; Cyclohexan/Ethylacetat 1:1)

MS-EI:

m/z (%) = 362 (100, M⁺), 267 (25), 109 (81).

Patentansprüche

1. Heterocyclyl-methyl-substituierte Pyrazole der allgemeinen Formel (I)

in welcher

R¹ für einen 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Stickstoffatomen steht, der gegebenenfalls bis zu 2-fach gleich oder verschieden durch Wasserstoff, Formyl, Carboxyl, Hydroxy, Mercapto, geradkettiges oder verzweigtes Acyl, Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro, Cyano, Azido, Halogen, Phenyl und/oder durch eine Gruppe der Formel

15

10

5

-NR⁴R⁵

substituiert ist, worin

20

25

R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 6 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy, Amino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert ist, oder

5

R⁴ und R⁵ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR⁶ enthalten kann,

worin

10

R⁶ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

15

und/oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Amino, Halogen, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy, Alkoxycarbonyl oder Acylamino mit jeweils bis zu 5 Kohlenstoffatomen oder durch einen Rest der Formel -OR⁷ substituiert sein kann,

20

worin

25

R⁷ geradkettiges oder verzweigtes Acyl mit bis zu 5 Kohlenstoffatomen oder eine Gruppe der Formel –SiR⁸R⁹R¹⁰ bedeutet,

worin

30

R⁸, R⁹ und R¹⁰ gleich oder verschieden sind und Aryl mit 6 bis
10 Kohlenstoffatomen oder Alkyl mit bis zu 6
Kohlenstoffatomen bedeuten,

PCT/EP99/07202

und/oder gegebenenfalls durch einen Rest der Formel

oder S(O)_cNR¹²R¹³

5 substituiert ist, worin

b und b' gleich oder verschieden sind und eine Zahl 0, 1, 2 oder 3 bedeuten,

- a eine Zahl 1, 2 oder 3 bedeutet,
- R¹¹ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,
- c eine Zahl 1 oder 2 bedeutet und

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 10 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits durch Halogen substituiert sein kann oder

Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Halogen substituiert ist oder

10

15

20

Cycloalkyl mit 3 bis 7 Kohlenstoffatomen bedeuten

oder

5

R¹² und R¹³ gemeinsam mit dem Stickstoffatom einen 5- bis 7gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls ein weiteres Sauerstoffatom oder einen Rest
-NR¹⁴ enthalten kann,

10

worin

15

R¹⁴ Wasserstoff, geradkettiges oder verzweigtes
 Alkyl mit bis zu 4 Kohlenstoffatomen oder
 einen Rest der Formel

bedeutet,

20

oder Benzyl oder Phenyl bedeutet, wobei die Ringsysteme gegebenenfalls durch Halogen substituiert sind,

25

und

der 6-gliedrige aromatische Heterocyclus R¹, welcher bis zu 3 Stickstoffatome enthält, 1- bis 3-fach gleich oder verschieden durch

5

(A) geradkettiges oder verzweigtes Alkyl mit 7 bis 20 Kohlenstoffatomen,

> geradkettiges oder verzweigtes Alkenyl mit bis zu 20 Kohlenstoffatomen und 1 bis 2 Doppelbindungen,

> geradkettiges oder verzweigtes Alkinyl mit bis zu 20 Kohlenstoffatomen und 1 bis 2 Dreifachbindungen,

10

wobei Alkenyl bzw. Alkinyl eine Doppel- bzw. Dreifachbindung am Anknüpfungspunkt zum Heterocyclus R¹ besitzen,

15

Cycloalkoxy mit 3 bis 14 Kohlenstoffatomen, oder gegebenenfalls substituiertes Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist,

20

wobei die genannten Alkyl-, Alkenyl-, Alkinyl-, Cycloalkoxyund Aryl-Reste ihrerseits gegebenenfalls und im Fall Aryl = Phenyl zwingend substituiert sind durch Formyl, Carboxyl, Hydroxy, Mercaptyl, Nitro, Cyano, Azido, Halogen, geradkettiges, verzweigtes oder cyclisches Alkyl, Acyl, Acylamino, Alkoxy, Alkylthio, Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen,

25

durch Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Halogen, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

30

durch 5- bis 6-gliedriges Hetaryl, mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, welches gegebenenfalls durch

Halogen, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

und/oder

5

durch eine Gruppe der Formel

-NR*Rb

10

worin

15

R^a und R^b gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 10 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 10 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 14 Kohlenstoffatomen bedeutet, wobei diese gegebenenfalls durch

20

Hydroxy, Amino, Monoalkylamino, Dialkylamino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sind,

25

oder

30

R^a und R^b gemeinsam mit dem Stickstoffatom einen 3- bis 7gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls durch Hydroxy substituiert ist und der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR^c enthält,

5

worin

R° Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

10

und/oder

durch eine Gruppe der Formel

-ORd

15

worin

R^d geradkettiges oder verzweigtes Acyl mit bis zu 5 Kohlenstoffatomen oder eine Gruppe der Formel -SiR^eR^fR^g bedeutet,

worin

25

20

Re, Rf und Rg gleich oder verschieden sind und Aryl mit 6 bis 10 Kohlenstoffatomen oder Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

und/oder

30

(B) durch einen 3- bis 14-gliedrigen heterocyclischen Ring substituiert ist, der gesättigt oder ungesättigt sein kann und 1 bis 4 Heteroatome aus der Reihe N, O, S, SO, SO₂ enthält und gegebenenfalls durch

5

Halogen, Phenyl, Cyano, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen, -NR^hRⁱ,

wobei

10

R^h und Rⁱ gleich oder verschieden sein können und Wasserstoff, geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit bis zu 6 Kohlenstoffatomen bedeuten

oder

15

R^h und Rⁱ gemeinsam mit dem Stickstoffatom einen 3- bis 7gliedrigen gesättigten oder partiell ungesättigten
Heterocyclus bilden, der gegebenenfalls zusätzlich ein
Sauerstoff- oder Schwefelatom oder einen Rest der
Formel –NR^j enthält,

20

worin

 $\mathbf{R}^{\mathbf{j}}$

Wasserstoff oder geradkettiges oder verzweigtes
Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

25

und/oder

30

(C) durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, welches zwingend durch eine oder mehrere der folgenden Gruppen Formyl, Mercaptyl, Nitro, Cyano, cyclisches Acyl mit 3 bis 14 Kohlenstoffatomen, geradkettiges oder verzweigtes Acyl mit 6 bis 14 Kohlenstoffatomen, Alkoxy mit 6 bis 14 Kohlenstoffatomen, stoffatomen, Acylamino mit 6 bis 14 Kohlenstoffatomen, Alkoxycarbonyl mit 6 bis 14 Kohlenstoffatomen, Alkylthio mit bis zu 14 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen,

Phenyl, welches gegebenenfalls durch

Halogen, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist; 5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, das gegebenenfalls durch Halogen, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist;

-NR^kR¹, wobei einer der Reste R^k und R¹ Wasserstoff sein kann und der andere oder beide voneinander unabhängig geradkettiges oder verzweigtes Acyl mit bis zu 10 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen bedeuten oder R^k und R¹ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^m enthält,

worin

R^m Wasserstoff oder geradkettiges oder verzweigtes Alkyl
 mit bis zu 4 Kohlenstoffatomen bedeutet,

substituiert ist;

5

10

15

20

25

und/oder

(D) durch Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist, das seinerseits substituiert ist,

5

durch Hydroxy, -NRⁿR^o, wobei Rⁿ und R^o gleich oder verschieden Wasserstoff oder geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen sein können oder Rⁿ und R^o gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten oder partiell ungesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^p enthält,

15

10

worin

R^p Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

20

und/oder

durch halogen-substituiertes Acyl mit bis zu 14 Kohlenstoffatomen, Acyloxy mit bis zu 14 Kohlenstoffatomen, Arylthio mit 6 bis 10 Kohlenstoffatomen, wobei der Arylrest gegebenenfalls durch Halogen, Alkyl, Alkoxyl mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist; Heteroarylthio, mit 5- bis 6-gliedrigem Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist, substituiert ist,

30

10

15

20

25

30

und/oder

(F)	durch	ainan	Doct	dor	Formel
(F)	aurcn	einen	Kest	aer	rorme

5 -SO₂R^q oder -SOR^r substituiert ist,

wobei

R^q und R^r geradkettiges oder verzweigtes Alkyl mit 1 bis 10 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen,

Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Halogen, Alkyl mit 1 bis 6 Kohlenstoffatomen oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

oder 5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist, bedeuten

und/oder

(G) durch einen Rest -SO₃H substituiert ist

und/oder

(H) durch einen Rest -CON=C(NH₂)₂ oder -C=NH(NH₂) substituiert ist

und/oder

(I) durch einen Rest -CONR'sR' substituiert ist

wobei

R^s und R^t gleich oder verschieden sein können und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 14 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 14 Kohlenstoffatomen bedeuten,

> wobei die besagten Alkyl oder Cycloalkylreste gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy, Amino, geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen,

> Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

oder 5- bis 6-gliedriges Heterocyclyl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, SO, SO₂, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

30

substituiert sind,

15

10

5

20

und/oder

5

Rs und Rt Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

und/oder

10

Rs und Rt 3- bis 10-gliedriges gesättigtes, teilweise ungesättigtes oder gänzlich ungesättigtes Heterocyclyl mit 1 bis 5 Heteroatomen aus der Reihe N, O, S; SO, SO₂ bedeuten, welches gegebenenfalls durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 14 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

15

und/oder

20

R^s und R^t gemeinsam mit dem Stickstoffatom einen 3- bis 7gliedrigen gesättigten oder partiell ungesättigten
Heterocyclus bilden, der gegebenenfalls zusätzlich ein
Sauerstoff- oder Schwefelatom oder einen Rest der
Formel -NR^u enthält,

25

wobei

R^u Wasserstoff oder ein geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

5 und/oder

(J) durch einen Rest der Formel -NR'R' substituiert ist,

wobei

10

R^v und R^w gleich oder verschieden sein können und geradkettiges oder verzweigtes Acyl mit 7 bis 14 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, -SO₂-Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxymethyl, Hydroxyethyl, Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen, Alkoxyalkyl mit insgesamt bis zu 8 Kohlenstoffatomen, Acyloxymethyl mit bis zu 6 Kohlenstoffatomen im Acylrest (bevorzugt Pivaloyloxymethyl oder folgende Reste

15

Rx-O-CH(Ry)-O-CO-,

$$(\mathsf{R}^\mathsf{x})_\mathsf{m} = \mathsf{R}^\mathsf{y} \mathsf{R}^\mathsf{x} \circ \mathsf{Q}$$

bedeuten,

worin

5

R^x und R^y gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

10

m eine Zahl 0, 1 oder 2 bedeutet und

Rz

geradkettiges oder verzweigtes Alkyl mit bis zu
 6 Kohlenstoffatomen oder Cycloalkyl mit 3 bis
 8 Kohlenstoffatomen bedeutet,

15

oder einer der Reste R^{v} und R^{w} gegebenenfalls Wasserstoff bedeuten kann,

und/oder

(K) durch einen Rest der Formel –PO(OR)(OR')substituiert ist wobei

5

R und R' gleich oder verschieden geradkettiges, verzweigtes oder cyclisches Alkyl mit bis zu 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeuten,

10

15

R² und R³ unter Einbezug der Doppelbindung einen Phenylring bilden, der gegebenenfalls bis zu 3-fach gleich oder verschieden durch Formyl, Mercaptyl, Carboxyl, Hydroxy, Amino, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkoxy, Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro, Cyano, Azido, Halogen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein kann, oder gegebenenfalls durch eine Gruppe der Formel –S(O)_c·NR¹²·R¹³· substituiert sind, worin c', R¹²· und R¹³· die oben angegebene Bedeutung von c, R¹² und R¹³ haben und mit dieser gleich oder verschieden sind,

20

25

A für Phenyl oder einen 5- bis 6-gliedrigen aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, der gegebenenfalls bis zu 3-fach gleich oder verschieden durch Mercaptyl, Hydroxy, Formyl,

30

Carboxyl, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkyloxyacyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu

6 Kohlenstoffatomen, Nitro, Cyano, Trifluormethyl, Azido,

Halogen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein kann,

5

und/oder durch eine Gruppe der Formel –(CO)_d-NR¹⁵R¹⁶ substituiert ist,

10

worin

d eine Zahl 0 oder 1 bedeutet,

15

20

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff, Phenyl,
Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl
mit jeweils bis zu 5 Kohlenstoffatomen bedeuten,

deren isomere Formen und Salze und deren N-Oxide.

Verbindungen nach Anspruch 1 der allgemeinen Formel (I), in welcher

2.

R¹ für einen Rest der Formel

25

die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Wasserstoff, Formyl, Carboxyl, Hydroxy, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 5

Kohlenstoffatomen, Nitro, Cyano, Azido, Fluor, Chlor, Brom, Phenyl und/oder durch eine Gruppe der Formel -NR⁴R⁵ substituiert sind,

worin

5

R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy, Amino oder durch geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist, oder

10

R⁴ und R⁵ gemeinsam mit dem Stickstoffatom einen Morpholinring oder einen Rest der Formel

15

20

und/oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Fluor, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy, Alkoxycarbonyl oder Acylamino mit jeweil bis zu 4 Kohlenstoffatomen oder durch einen Rest der Formel –OR⁷ substituiert sein kann,

25

worin

R⁷ geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen bedeutet, und/oder gegebenenfalls durch einen Rest der Formel

$$O-CH2 O-(CH2)bCH3$$

$$O-(CH2)bCH3 oder OR1$$

5 substituiert sind, worin

b und b' gleich oder verschieden sind und eine Zahl 0, 1, 2 oder 3 bedeuten,

0 a eine Zahl 1, 2 oder 3 bedeutet,

R¹¹ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

und die oben unter R¹ aufgeführen 6-gliedrigen aromatischen Heterocyclen 1- bis 3-fach gleich oder verschieden durch

(A) geradkettiges oder verzweigtes Alkyl mit 7 bis 14 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkenyl mit bis zu 14 Kohlenstoffatomen mit einer Doppelbindung, geradkettiges oder verzweigtes Alkinyl mit bis zu 14 Kohlenstoffatomen und einer Dreifachbindung,

> wobei Alkenyl bzw. Alkinyl eine Doppel- bzw. Dreifachbindung am Anknüpfungspunkt zum Heterocyclus R¹ besitzen,

Cycloalkyloxy mit 3 bis 8 Kohlenstoffatomen,

10

15

20

5

10

15

20

oder substituiertes Phenyl substituiert sind,

wobei die genannten Alkyl-, Alkenyl-, Alkinyl- und Cycloalkyloxy-Reste ihrerseits gegebenenfalls und der Phenylrest zwingend substituiert sind durch Carboxyl, Hydroxy, Mercaptyl, Nitro, Cyano, Azido, Fluor, Chlor, Brom, geradkettiges, verzweigtes oder cyclisches Alkyl, Acyl, Acylamino, Alkoxy, Alkylthio, Alkoxycarbonyl, mit jeweils

bis zu 6 Kohlenstoffatomen,

durch Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Fluor, Chlor, Brom, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

durch 5- bis 6-gliedriges Hetaryl, mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, Brom, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist,

und/oder

durch eine Gruppe der Formel

-NR®Rb

worin

25

R^a und R^b gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 6 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Cycloalkyl mit 3

bis 8 Kohlenstoffatomen bedeutet, wobei diese gegebenenfalls durch

5

Hydroxy, Amino, Monoalkylamino, Dialkylamino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen substituiert sind,

oder

10

R^a und R^b gemeinsam mit dem Stickstoffatom einen 3- bis 7gliedrigen gesättigten Heterocyclus bilden,

15

der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR° enthält,

worin

20

R° Wasserstoff oder geradkettiges oder verzweigtesAlkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

und/oder durch eine Gruppe der Formel

25

-ORd

worin

30

R^d geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und/oder

(B) durch einen 3- bis 8-gliedrigen heterocyclischen Ring substituiert sind, der gesättigt oder ungesättigt sein kann und 1 bis 4 Heteroatome aus der Reihe N, O, S enthält und gegebenenfalls durch

Fluor, Chlor, Brom, Phenyl, Cyano, Alkyl, Alkoxy mit jeweils 1 bis 6 Kohlenstoffatomen, -NR^hRⁱ,

wobei

Rh und Ri gleich oder verschieden sein können und Wasserstoff, geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit bis zu 4 Kohlenstoffatomen bedeuten

oder

R^h und Rⁱ gemeinsam mit dem Stickstoffatom einen 3- bis 7gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^j enthält,

worin

R^j Wasserstoff oder geradkettiges oder verzweigtes
 Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und/oder

10

5

15

20

25

(C) durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, welches zwingend durch eine oder mehrere der folgenden Gruppen

5

10

15

20

25

Mercaptyl, Nitro, Cyano, cyclisches Acyl mit 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Acyl mit 6 bis 10 Kohlenstoffatomen, Alkoxy mit 6 bis 10 Kohlenstoffatomen, Acylamino mit 6 bis 10 Kohlenstoffatomen, Alkoxycarbonyl mit 6 bis 10 Kohlenstoffatomen, Alkylthio mit bis zu 10 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 8 Kohlenstoffatomen,

Phenyl, welches gegebenenfalls durch

Fluor, Chlor, Brom, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist;

5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, das gegebenenfalls durch Fluor, Chlor, Brom, Alkyl mit bis zu 6 Kohlenstoffatomen oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist;

-NR^kR¹, wobei einer der Reste R^k und R¹ Wasserstoff sein kann und der andere oder beide unabhängig voneinander geradkettiges oder verzweigtes Acyl mit bis zu 6 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 8 Kohlenstoffatomen bedeuten oder R^k und R¹ gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR^m enthält,

worin

R^m Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

substituiert ist,

5

und/oder

(D) durch Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits substituiert ist durch

10

Hydroxy, -NRⁿR°, wobei Rⁿ und R° gleich oder verschieden Wasserstoff oder geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit jeweils bis zu 5 Kohlenstoffatomen sein können oder Rⁿ und R° gemeinsam mit dem Stickstoffatom einen 3- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel –NR^p enthält,

15

worin

20

R^p Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

und/oder

25

(E) durch halogensubstituiertes Acyl mit bis zu 10 Kohlenstoffatomen, Acyloxy mit bis zu 10 Kohlenstoffatomen, Arylthio mit 6 bis 10 Kohlenstoffatomen, wobei der Arylrest gegebenenfalls durch Fluor, Chlor, Brom, Alkyl, Alkoxyl mit jeweils 1 bis 6 Kohlenstoffatomen substituiert ist, Heteroarylthio, mit 5- bis 6-gliedrigem Hetaryl mit 1 bis 3 Hetero-

atomen aus der Reihe N, O oder S, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

5

substituiert sind und/oder

(F) durch einen Rest der Formel

10

-SO₂R^q oder -SOR^r substituiert sind,

wobei

15

R^q und R^r geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 8 Kohlenstoffatomen,

20

Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Fluor, Chlor, Brom, Alkyl mit 1 bis 6 Kohlenstoffatomen oder Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

oder 5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch

25

Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist, bedeuten

und/oder

30

(G) durch einen Rest -SO₃H substituiert sind

5

10

15

20

und/oder

(I) durch einen Rest -CONR^sR^t substituiert sind

wobei

R's und R' gleich oder verschieden sein können und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 10 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeuten,

wobei die besagten Alkyl oder Cycloalkylreste gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy, Amino, geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen,

Aryl mit 6 bis 10 Kohlenstoffatomen, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 5 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist;

oder 5- bis 6-gliedriges Heterocyclyl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

30

25

substituiert sind,

und/oder

5

Rs und Rt Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

10

und/oder

15

Rs und Rt 3- bis 8-gliedriges gesättigtes Heterocyclyl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S bedeuten; welches gegebenenfalls durch Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Alkoxy mit 1 bis 6 Kohlenstoffatomen substituiert ist,

20

und/oder

25

R's und R' gemeinsam mit dem Stickstoffatom einen 3- bis 7gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls zusätzlich ein Sauerstoff- oder Schwefelatom oder einen Rest der Formel -NR" enthält,

wobei

30

R^u Wasserstoff oder ein geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

(J) durch einen Rest der Formel -NR'R' substituiert sind

wobei

5

10

15

R^v und R^w gleich oder verschieden sein können und geradkettiges oder verzweigtes Acyl mit 7 bis 10 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, -SO₂-Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxymethyl, Hydroxyethyl, Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen, Alkoxyalkyl mit insgesamt bis zu 8 Kohlenstoffatomen, Acyloxymethyl mit bis zu 6 Kohlenstoffatomen im Acyloxymethyl mit bis zu 6 Kohlenstoffatomen im Acylrest (bevorzugt Pivaloyloxymethyl) oder folgende Reste

Rx-O-CH(Ry)-O-CO-,

$$(R^x)_m = R^y R^x O$$

bedeuten,

worin

5

Rx und Ry gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten

10

m eine Zahl 0, 1 oder 2 bedeutet und

15

Rz geradkettiges oder verzweigtes Alkyl mit bis zu
 4 Kohlenstoffatomen, Cyclopropyl, Cyclopentyl
 oder Cyclohexyl bedeutet,

oder einer der Reste R^v und R^w gegebenenfalls
Wasserstoff bedeuten kann,

(K) durch einen Rest der Formel -PO(OR)(OR') substituiert sind

wobei

5

R und R' gleich oder verschieden geradkettiges, verzweigtes oder cyclisches Alkyl mit bis zu 6 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeutet,

10

R² und R³ unter Einbezug der Doppelbindung einen Phenylring bilden, der gegebenenfalls bis zu 3-fach gleich oder verschieden durch Formyl, Carboxyl, Hydroxy, Amino, geradkettiges oder verzweigtes Acyl, Alkoxy, oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Nitro, Cyano, Azido, Fluor, Chlor, Brom, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis

zu 4 Kohlenstoffatomen substituiert sein kann,

zu 4 Kohlenstoffatomen substituiert sein kann,

15

20

Α

für Phenyl oder für Tetrahydropyranyl, Furyl, Tetrahydrofuryl, Morpholinyl, Pyrimidyl, Piperazinyl oder Pyridyl steht, der gegebenenfalls bis zu 2-fach gleich oder verschieden durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkyloxyacyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Fluor, Chlor, Brom, Nitro, Cyano, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis

und/oder durch eine Gruppe der Formel –(CO)_d-NR¹⁵R¹⁶ substituiert sind,

worin

5

10

15

d eine Zahl 0 oder 1 bedeutet,

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff, Phenyl,
Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl
mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

deren isomere Formen und Salze und deren N-Oxide.

- 3. Verbindungen nach Anspruch 1 der allgemeinen Formel (I), in welcher
 - R¹ für einen Rest der Formel

20

wobei die aufgeführten 6-gliedrigen aromatischen Heterocyclen R¹, gegebenenfalls bis zu 2-fach gleich oder verschieden durch Wasserstoff, Formyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Methylamino, Amino, Fluor, Chlor, Brom, Cyano, Azido oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Carboxyl, Amino, geradkettiges oder verzweigtes Acyl, Alkoxy, Alkoxycarbonyl,

Acylamino mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein kann,

und/oder gegebenenfalls durch einen Rest der Formel

5

$$-N$$
 $N-CH_3$, $-N$ NH , $-N$ O , $-N$ S oder N

substituiert sind,

10

und die oben unter R¹ aufgeführten 6-gliedrigen aromatischen Heterocyclen 1- bis 3-fach, gleich oder verschieden durch

15

(A) geradkettiges oder verzweigtes Alkyl mit 7 bis 10 Kohlenstoffatomen,
geradkettiges oder verzweigtes Alkenyl mit bis zu 6 Kohlenstoffatomen und einer Doppelbindung,
geradkettiges oder verzweigtes Alkinyl mit bis zu 6
Kohlenstoffatomen und einer Dreifachbindung,

20

wobei Alkenyl bzw. Alkinyl ihre Doppel- bzw. Dreifachbindung am Anknüpfungspunkt zum Heterocyclus R¹ besitzen,

25

Cycloalkyloxy mit 3 bis 6 Kohlenstoffatomen, substituiertes Phenyl substituiert sind, wobei die genannten Alkyl-, Alkenyl-, Alkinyl- und Cycloalkyloxy-Reste ihrerseits gegebenenfalls und der Phenylrest zwingend substituiert ist durch Carboxyl, Hydroxy, Cyano, Fluor, Chlor, geradkettiges, verzweigtes oder cyclisches Alkyl,

Acyl, Acylamino, Alkoxy, Alkylthio, Alkoxycarbonyl, mit jeweils bis zu 3 Kohlenstoffatomen,

durch Phenyl, welches gegebenenfalls durch Fluor, Chlor, Alkyl, Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen substituiert ist,

durch 5- bis 6-gliedriges Hetaryl, mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, Alkyl, Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen substituiert ist,

und/oder

worin

durch eine Gruppe der Formel

-NRªR^b

R^a und R^b gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeutet, wobei diese gegebenenfalls durch

Hydroxy, Amino, Monoalkylamino, Dialkylamino oder durch geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen substituiert sind,

10

5

15

20

25

30

5

oder

R^a und R^b gemeinsam mit dem Stickstoffatom einen Heterocyclus der Formel

oder

bilden

10

und/oder durch eine Gruppe der Formel

-ORd

worin

15

R^d geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen

und/oder

20

(B) durch einen 5- bis 6-gliedrigen heterocyclischen Ring substituiert sind, der gesättigt oder ungesättigt sein kann und 1 bis 5

10

15

4 Heteroatome aus der Reihe N, O, S enthält und gegebenenfalls durch

Fluor, Chlor, Phenyl, Cyano, Alkyl, Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen, -NR^hRⁱ,

wobei

R^h und Rⁱ gleich oder verschieden sein können und Wasserstoff, geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit bis zu 3 Kohlenstoffatomen bedeuten

oder

R^h und Rⁱ gemeinsam mit dem Stickstoffatom einen Rest der Formel

oder

bilden

20

und/oder

(C) durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, welches zwingend durch eine oder mehrere der folgenden Gruppen

5

Cyano, cyclisches Acyl mit 3 bis 6 Kohlenstoffatomen, Alkylthio mit bis zu 6 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 14 Kohlenstoffatomen,

10

Phenyl, welches gegebenenfalls durch

Fluor, Chlor, Alkyl mit bis zu 4 Kohlenstoffatomen oder Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist;

15

5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, das gegebenenfalls durch Fluor, Chlor, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist,

20

-NR^kR¹, wobei einer der Reste R^k und R¹ Wasserstoff sein kann und der andere oder beide unabhängig voneinander geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 6 Kohlenstoffatomen bedeuten oder R^k und R¹ gemeinsam mit dem Stickstoffatom einen Heterocyclus der Formel

bilden

und/oder

(D) durch Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert sind,

das seinerseits substituiert ist durch

Hydroxy, -NRⁿR^o, wobei Rⁿ und R^o gleich oder verschieden Wasserstoff oder geradkettiges, verzweigtes oder cyclisches Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen sein können oder Rⁿ und R^o gemeinsam mit dem Stickstoffatom einen Heterocyclus der Formel

bilden

und/oder

(E) durch halogensubstituiertes Acyl mit bis zu 6 Kohlenstoffatomen, Acyloxy mit bis zu 6 Kohlenstoffatomen oder Phenylthio, wobei der Phenylrest gegebenenfalls durch Fluor, Chlor, Alkyl, Alkoxy mit jeweils 1 bis 4 C-Atomen substituiert ist; Heteroarylthio mit 5- bis 6-gliedrigem Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl oder

10

5

15

20

Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist; substituiert sind,

und/oder

5

(F) durch einen Rest der Formel

-SO₂R^q oder -SOR^r substituiert sind

10

wobei

R^q und R^r geradkettiges oder verzweigtes Alkyl mit 1 bis 3 Kohlenstoffatomen, cyclisches Alkyl mit 3 bis 6 Kohlenstoffatomen,

15

Phenyl, welches gegebenenfalls durch Fluor, Chlor, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 3 Kohlenstoffatomen substituiert ist,

20

oder 5- bis 6-gliedriges Hetaryl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch

Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist, bedeuten,

25

und/oder

(G) durch einen Rest -SO₃H substituiert sind

und/oder

30

(I) durch einen Rest -CONR'R' substituiert sind,

wobei

5

R^s und R^t gleich oder verschieden sein können und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeuten,

10

wobei die besagten Alkyl oder Cycloalkylreste gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Hydroxy, Amino, geradkettiges oder verzweigtes Alkoxy, Acyl oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen,

15

Phenyl, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist;

20

oder durch 5- bis 6-gliedriges Heterocyclyl mit 1 bis 3 Heteroatomen aus der Reihe N, O, S, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist,

25

substituiert sind,

30

und/oder

Rs und Rt Phenyl bedeutet, welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist,

und/oder

Rs und Rt 3- bis 6-gliedriges gesättigtes Heterocyclyl mit 1 bis

3 Heteroatomen aus der Reihe N, O, S bedeuten;
welches gegebenenfalls durch Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen,
Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiert ist,

und/oder

R^s und R^t gemeinsam mit dem Stickstoffatom eine Gruppe der Formel

bilden

und/oder

10

5

15

20

(J) durch einen Rest der Formel -NR'R" substituiert sind

wobei

5

10

R' und R'' gleich oder verschieden sein können und Hydroxymethyl, Hydroxyethyl, SO₂-Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen, Alkoxyalkyl mit insgesamt bis zu 8 Kohlenstoffatomen, Acyloxymethyl mit bis zu 6 Kohlenstoffatomen im Acylrest (bevorzugt Pivaloyloxymethyl) oder folgende Reste

bedeuten,

wobei

5

Rx und Ry gleich oder verschieden sein können und für Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen,

10

Rz für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Aryl und

15

m eine Zahl 0, 1 oder 2 bedeutet und

oder einer der Reste R^v und R^w gegebenenfalls
Wasserstoff bedeuten kann,

und/oder

20

(K) durch einen Rest der Formel -PO(OR)(OR') substituiert sind

wobei

R und R' gleich oder verschieden geradkettiges, verzweigtes oder cyclisches Alkyl mit bis zu 4 Kohlenstoffatomen oder Phenyl oder Benzyl bedeutet,

5

R² und R³ unter Einbezug der Doppelbindung einen Phenylring bilden, der gegebenenfalls bis zu 2-fach gleich oder verschieden durch Formyl, Carboxyl, Hydroxy, Amino, geradkettiges oder verzweigtes Acyl, Alkoxy, oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Nitro, Cyano, Fluor, Chlor, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Amino, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein kann,

15

10

A für Phenyl oder für Tetrahydropyranyl, Tetrahydrofuryl, Furyl oder Pyridyl steht, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkylthio, Alkyloxyacyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Fluor, Chlor, Brom, Nitro, Cyano, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das seinerseits durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein kann,

20

25

und/oder durch eine Gruppe der Formel –(CO)_d-NR¹⁵R¹⁶ substituiert sind,

worin

d eine Zahl 0 oder 1 bedeutet,

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

- 5 und deren isomere Formen und Salze und deren N-Oxide.
 - 4. Verbindungen nach Anspruch 1 der allgemeinen Formel (I), in welcher
 - R¹ für einen Rest der Formel

10

15

25

wobei der oben aufgeführte Pyrimidylrest gegebenenfalls bis zu 2-fach gleich oder verschieden durch Methyl, Ethyl, Isopropyl, Fluor, Amino, Cyano, Methoxy, Chlor, Hydroxymethyl oder durch einen Rest der Formel

20 substituiert ist,

und der oben aufgeführte Pyrimidylrest R¹ 1- bis 3-fach gleich oder verschieden durch einen Rest der Formel -SO₂CH₃ oder durch einen Rest der Formel -PO(OH)₂, -PO(OMe)₂, -PO(OEt)₂ oder -PO(OⁱPr)₂ substituiert ist,

R² und R³ unter Einbezug der Doppelbindung gemeinsam einen Phenylring bilden und

A für Phenyl steht, das gegebenenfalls durch Fluor oder Cyano substituiert ist

und deren isomere Formen und Salze und deren N-Oxide.

- Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I)
 nach Anspruch 1, dadurch gekennzeichnet, daß man
 - [A] Verbindungen der allgemeinen Formel (II)

$$R^3 \longrightarrow N$$
 (II)

15

5

in welcher

R¹, R² und R³ die oben angegebene Bedeutung haben,

20

mit Verbindungen der allgemeinen Formel (III)

 $D-CH_2-A$ (III)

in welcher

25

A die oben angegebene Bedeutung hat,

und

D für Triflat oder Halogen, vorzugsweise für Chlor oder Brom steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base umsetzt,

oder

[B] Verbindungen der allgemeinen Formel (IV)

$$H_2C$$
 R^3
 N
 N
 (IV)

in welcher

15

10

A, R² und R³ die oben angegebene Bedeutung haben,

und

20

L für einen Rest der Formel –SnR¹⁷R¹⁸R¹⁹, ZnR²⁰, Iod oder Triflat steht,

worin

25

R¹⁷, R¹⁸ und R¹⁹ gleich oder verschieden sind und geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, und

R²⁰ Halogen bedeutet,

5

mit Verbindungen der allgemeinen Formel (V)

 $R^{1}-T$

(V)

10

in welcher

R¹ die oben angegebene Bedeutung hat,

und

15

im Fall $L = SnR^{17}R^{18}R^{19}$ oder ZnR^{20}

T für Triflat oder für Halogen, vorzugsweise für Chlor oder Brom steht,

20

und

im Fall L = Iod oder Triflat

25

T für einen Rest der Formel SnR¹⁷'R¹⁸'R¹⁹', ZnR²⁰' oder BR²¹R²² steht,

worin

R¹⁷, R¹⁸, R¹⁹ und R²⁰ die oben angegebene Bedeutung von R¹⁷, R¹⁸, R¹⁹ und R²⁰ haben und mit dieser gleich oder verschieden sind,

5

R²¹ und R²² gleich oder verschieden sind und Hydroxy, Aryloxy mit 6 bis 10 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen bedeuten, oder gemeinsam einen 5- oder 6-gliedrigen carbocyclischen Ring bilden,

10

in einer palladiumkatalysierten Reaktion in inerten Lösemitteln umsetzt,

[C] Amidine der allgemeinen Formel (VI)

15

$$R^3$$
 N
 N
 R^2
 NH
 NH
 NH
 NH

in welcher

20

A, R² und R³ die oben angegebene Bedeutung haben,

mit Enaminen der allgemeinen Formel (VII)

$$N$$
 Z (VII)

in welcher

R^{1'} für einen der oben angegebenen Substituenten des 6-gliedrigen aromatischen Heterocyclus R¹ steht

5

und

Z für eine geeignete Abgangsgruppe wie Dimethylamino oder Hydroxyl steht,

10

umsetzt,

15

und gegebenenfalls die unter R¹, R², R³ und/oder A aufgeführten Substituenten nach üblichen Methoden, vorzugsweise durch Reduktion, Oxidation, Abspaltung von Schutzgruppen und/oder durch nucleophile Substitution variiert oder einführt.

6. Arzneimittel enthaltend mindestens eine Verbindung der allgemeinen Formel(I) gemäß Anspruch 1.

20

- 7. Arzneizubereitungen enthaltend eine Kombination aus mindestens einer Verbindung der allgemeinen Formel (I) gemäß Anspruch 1 und mindestens einem organischen Nitrat oder einem NO-Donor.
- 25 8. Arzneizubereitungen enthaltend eine Kombination aus mindestens einer Verbindung der allgemeinen Formel (I) gemäß Anspruch 1 und Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) inhibieren.
- Verwendung von Verbindungen der allgemeinen Formel (I) gemäß Anspruch1 zur Herstellung von Arzneimitteln.

- 10. Verwendung gemäß Anspruch 9 zur Herstellung von Arzneimitteln zur Behandlung von kardiovaskulären Erkrankungen.
- Verwendung gemäß einem der Ansprüche 9 oder 10 bei der Herstellung von Arzneimitteln zur Prophylaxe und Bekämpfung der Folgen cerebraler Infarktgeschehen (Apoplexia cerebri) wie Schlaganfall, cerebraler Ischämien und des Schädel-Hirn-Traumas.

INTERNATIONAL SEARCH REPORT

Interr val Application No PCT/EP 99/07202

A. CLASSI	FICATION OF SUBJECT MATTER	750/6510 AC1/01/505 AC1/	101 /40F
IPC 7	C07D401/14 C07D403/04 C0	7F9/6512 A61K31/505 A61K	(31/495
	o International Patent Classification (IPC) or to both nation	al dassification and IPC	
Minimum do	ocumentation searched (classification system followed by	classification symbols)	
IPC 7	C07D C07F		
Documentat	lion searched other than minimum documentation to the ex	xtent that such documents are included in the fields s	searched
Electronic d	ata base consulted during the International search (name	of data base and, where practical, search terms use	d)
	ENTS CONSIDERED TO BE RELEVANT		T
Category °	Citation of document, with Indication, where appropriate	e, of the relevant passages	Relevant to claim No.
X	DE 196 42 320 A (BAYER) 16 April 1998 (1998-04-16) page 7, line 28 -page 8, li examples	ne 31; claims;	1-11
X	DE 196 42 255 A (BAYER) 16 April 1998 (1998-04-16) page 4, line 62 -page 5, li examples	ne 46; claims;	1-11
Х	EP 0 667 345 A (YUNG SHIN P INDUSTRIES) 16 August 1995 cited in the application claims; examples I-3-12		1-11
A	EP 0 641 564 A (YOSHITOMI P INDUSTRIES LTD.) 8 March 19 claims; examples	HARMACEUTICAL 195 (1995-03-08)	1-11
Furt	her documents are listed in the continuation of box C.	χ Patent family members are listed	d in annex.
		<u> </u>	o III win ren
	ategories of cited documents :	"T" later document published after the int or priority date and not in conflict wit	h the application but
consid	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international	cited to understand the principle or the invention	
filing		"X" document of particular relevance; the cannot be considered novel or canno involve an inventive step when the d	ot be considered to
which	ent which may throw doubts on priorty calin(s) or is cited to establish the publication date of another in or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an in	claimed Invention
"O" docum	ent referring to an oral disclosure, use, exhibition or means	document is combined with one or ments, such combination being obvious	nore other such docu-
	ent published prior to the international filing date but han the priority date claimed	in the art. "&" document member of the same paten	nt family
Date of the	actual completion of the international search	Date of mailing of the international se	earch report
2	24 January 2000	01/02/2000	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Helps, I	

INTERNATIONAL SEARCH REPORT

information on patent family members

Interr 1al Application No
PCT/EP 99/07202

	itent document I in search report		Publication date		atent family member(s)	Publication date
DE	19642320	A	16-04-1998	AU	4943097 A	11-05-1998
		• •		CZ	9901309 A	14-07-1999
				WO	9816507 A	23-04-1998
				EP	0934311 A	11-08-1999
				NO	991732 A	04-06-1999
				PL	332871 A	25-10-1999
DE	19642255	Α	16-04-1998	AU	5049498 A	11-05-1998
				CZ	9901292 A	14-07-1999
				WO	9816223 A	23-04-1998
				EP	0932403 A	04-08-1999
				NO	991685 A	09-04-1999
				PL	332719 A	11-10-1999
EP (667345	Α	16-08-1995	JP	2928079 B	28-07-1999
				JP	7224057 A	22-08-1995
				US	5574168 A	12-11-1996
				DE	69512444 D	04-11-1995
EP	641564	Α	08-03-1995	JP	6032734 A	08-02-1994
				JP	6048941 A	22-02-1994
				WO	9323036 A	25-11-1994

INTERNATIONALER RECHERCHENBERICHT

Interr lales Aktenzeichen
PCT/EP 99/07202

			
a. KLASSIF IPK 7	IZIERUNG DES ANMELDUNGSGEGENSTANDES CO7D401/14 CO7D403/04 CO7F9/6512	2 A61K31/505	A61K31/495
Nach der Inte	ernationalen Patentkiassifikation (IPK) oder nach der nationalen Klassifi	ikation und der IPK	
B. RECHER	CHIERTE GEBIETE		
Recherchiert IPK 7	er Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole C07D C07F)	
	le aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowe		
Während de	r internationalen Recherche konsultierte elektronische Datenbank (Nan	ne der Datenbank und evtl. ve	rwendete Suchbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe o	der in Betracht kommenden Te	ille Betr. Anspruch Nr.
X	DE 196 42 320 A (BAYER) 16. April 1998 (1998-04-16) Seite 7, Zeile 28 -Seite 8, Zeile Ansprüche; Beispiele	31;	1-11
X	DE 196 42 255 A (BAYER) 16. April 1998 (1998-04-16) Seite 4, Zeile 62 -Seite 5, Zeile Ansprüche; Beispiele	46;	1-11
X	EP 0 667 345 A (YUNG SHIN PHARMACE INDUSTRIES) 16. August 1995 (1995- in der Anmeldung erwähnt Ansprüche; Beispiele I-3-12	EUTICAL -08-16)	1-11
A	EP 0 641 564 A (YOSHITOMI PHARMACI INDUSTRIES LTD.) 8. März 1995 (199 Ansprüche; Beispiele	EUTICAL 95-03-08)	1-11
	ltere Veröffentlichungen sind der Fortsetzung von Feld C zu	X Siehe Anhang Patenti	amilie
* Besonde *A" Veröff aber "E" ältere: Anm "L" Veröff sche ande soll (ausg "O" Veröf	entlichung, die den allgemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist so Dokument, das jedoch erst am oder nach dem internationalen eldedatum veröffentlicht worden ist entlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erinen zu lassen, oder durch die das Veröffentlichungsdatum einer ven im Recherchenbericht genannten Veröffentlichung belegt werden oder die aus einem anderen besonderen Grund angegeben ist (wie jeführt) fentlichung, die sich auf eine mündliche Offenbarung, eine Ausstellung oder andere Maßnahmen bezieht	oder dem Proritätsdatum Anmeldung nicht kollidlert, Erfindung zugrundellegen Theorie angegeben ist "X" Veröffentlichung von besor kann allein aufgrund diese erfinderischer Tätigkeit e- "Y" Veröffentlichung von besor kann nicht als auf erfinder werden, wenn die Veröffet Veröffentlichungn dieser diese Verbindung für eine "&" Veröffentlichung, die Mitgli	ischer Tätigkeit beruhend betrachter ntlichung mit einer oder mehreren anderen Kategorie in Verbindung gebracht wird und n Fachmann naheliegend ist ed derselben Patentfamilie ist
	s Abschlusses der Internationalen Recherche	Absendedatum des intern	ationalen Recherchenberichts
L	24. Januar 2000	U1/U2/2UUU Bevollmächtigter Bedlens	teter
Name un	d Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 Nt. – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fay: (+31–70) 340–3016	Helps, I	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Interr. ales Aktenzeichen PCT/EP 99/07202

Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung		tglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 19642320 A	16-04-1998	AU CZ WO EP NO PL	4943097 A 9901309 A 9816507 A 0934311 A 991732 A 332871 A	11-05-1998 14-07-1999 23-04-1998 11-08-1999 04-06-1999 25-10-1999
DE 19642255 A	16-04-1998	AU CZ WO EP NO PL	5049498 A 9901292 A 9816223 A 0932403 A 991685 A 332719 A	11-05-1998 14-07-1999 23-04-1998 04-08-1999 09-04-1999 11-10-1999
EP 667345 A	16-08-1995	JP JP US DE	2928079 B 7224057 A 5574168 A 69512444 D	28-07-1999 22-08-1995 12-11-1996 04-11-1995
EP 641564 A	08-03-1995	JP JP WO	6032734 A 6048941 A 9323036 A	08-02-1994 22-02-1994 25-11-1994

THIS PAGE BLANK (USPTO)