Digital Signal Processing Zusammenfassung

Table of Contents

Sampling Rate Conversion	2
Decimation	2
Interpolation	2
Polyphase Filter Structure	2
Sampling Rate Conversion	3
Filter Banks	3
Quadrature Mirror Filters	3
DFT Filter Banks	
Random Signals	3
Autocorrelation and Spectrum	
Spectral Shaping	
Linear Models for Stochastic Processes	
Spectral Density Estimation	3
Wiener Filters	3
Unconstrained Wiener Filters	
The Principle of Orthogonality.	
Kalman Filter	3
Linear Predictive Coding	3
LMS Algorithm	3
The LMS Algorithm	
Acoustic Echo Cancellation	
Hello World	
Digital Signal Processing (DSP)	4
Signal Analysis	4
A/D & D/A Conversion	4
Sampling & Aliasing	4
Sampling & Aliasing Sampling of Band-Pass Signals	
Digital Signals in Frequency Domain	
Fourier Transformation to DFT	4
Discrete-Time Fourier Transform (DTFT)	
Discrete Fourier Transform (DFT)	
DFT Intuitive.	
Properties of the DFT.	
Important Properties.	
Range of Validity of the DFT	
OFDM Principle.	
Practical Application Aspects of the DFT	

	DFT and Zero-padding. Choice of Measurement Interval & Leakage Effect. DFT and Windowing. Choice of Windowing Function.
	Short-Time DFT
	Fast Fourier Transformation (FFT)
	Properties of the Twiddle Factors
	Radix-2 decimation-in-time FFT
	The Goertzel Algorithm
i	gital LTI Systems
	System Descriptions in the Time Domain Impulse Response. Difference Equation. Signal-Flow Diagram. System Descriptions in the Frequency Domain. Transfer Function. Pol/Zero-Plot. Frequency Response Relation between frequency response and transfer function.
e	sign of Digital Filters
	FIR Filter. Definition and Properties. Symmetric FIR Filters. Window Design Method

Sampling Rate Conversion

Decimation •••••• Reducing sampling rate by an **Integer Factor** *D*

Decimated Frequency: $F_Y = F_X/D \iff \Omega_Y = \Omega_{X,V}/D$

Ideally filtered

$$Y(z) = \frac{1}{D} \sum_{d=0}^{D-1} V \left(\frac{\Omega}{D} - 2\pi \cdot \frac{d}{D} \right)$$

Direct Implementation

FIR Filter of order M produces full signal v[n] + downsampler discards D-1 samples afterwards \rightarrow **inefficient!**

General Formula

$$Y(z) = \frac{1}{D} \sum_{d=0}^{D-1} V \left(\frac{\Omega}{D} - 2\pi \cdot \frac{d}{D} \right)$$

Efficient Implementation

Downsampling beforehand allows the multiplier to operate at the reduced sampling rate

 \rightarrow much better!

Interpolation • • • • • • • • • Increase sampling rate by an **Integer Factor** *I*

Interpolation Formula

$$R(\Omega) = \sum_{n=-\infty}^{\infty} r[n] e^{-j\Omega \cdot n} = \sum_{n=-\infty}^{\infty} y[m] e^{-j\Omega \cdot I \cdot m} = Y(I\Omega)$$

Low Pass Filter For $\Omega \in [-\pi, \pi]$

$$H(z) = \begin{cases} I \text{ if } \Omega \in [-\pi/I, \pi/I] \\ 0 \text{ otherwise} \end{cases}$$

Lowpass-filter uses Ω and **NOT** Ω !

Direct Implementation

FIR or IIR Filter ; I-1 out of I r[n] samples are zero \rightarrow inefficient!

Efficient Implementation
Upsampling after filtering \rightarrow multiplier operates at **reduced** sampling rate $(F_V) \rightarrow$ **much**

better!

Polyphase Filter Structure • • • • • • • • • Efficient filter implementation

TODO Relearn

Split filter into M downsampled variants of the impulse resonse h[k]. Every variant $p_{i[k]}$ holds only every M-th coefficient ("sum" of variants = h[k])

$$\begin{split} p_i[k] &= h[kM+i], \quad i = 0, 1, ..., M-1 \quad | \quad H(z) = \sum_{i=0}^{M-1} z^{-1} P_i(z^M) \\ P_{i(z)} &= \sum_{k=-\infty}^{\infty} p_i[k] z^{-k} = \sum_{k=-\infty}^{\infty} h[kM+i] z^{-k}, \quad i = 0, 1, ..., M-1 \end{split}$$

Sampling Rate Conversion • •

$$F_X \Rightarrow F_R = I \cdot F_X \Rightarrow F_V = F_R \Rightarrow F_Y = I/D \cdot F_X = 1/D \cdot F_V$$

 ${\sf Decimation} \Rightarrow {\sf loss\ of\ information}$

 $Interpolation \Rightarrow higher intermediate \ sampling \ rate$

$$F_H(\Omega) = \min\left(\frac{\pi}{I}, \frac{\pi}{D}\right)$$
 $\frac{I}{D}$

$$\frac{I}{D} = \underbrace{I \cdot \left(\frac{1}{D}\right)}_{H_I \to I \to D \to H_D} = \underbrace{\left(\frac{1}{D}\right) \cdot I}_{I \to H \to D}$$

Filter Banks

(TODO)

(TODO)

(TODO)

Random Signals

(TODO)

(TODO)

(TODO)

Linear Models for Stochastic Processes

(TODO)

Wiener Filters

(TODO)

TODO)

TODO ;

Kalman Filter

(TODO)

Linear Predictive Coding

TODO ;

LMS Algorithm

(TODO)

TODO ;

TODO ;

Hello World

Hello World

Digital Signal Processing (DSP)

DSP concerned in the application of the following methods: (1) Signal Generation, (2) Signal Analysis, (3) Signal Composition, (4) Signal Selection

Pros (3 P's): Programmability, Parametrizability, Re-Peatability

Cons: additional effort for ADC & DAC, No processing of broadband HF, electromagnetic disturbance

Signal Analysis

Sampling an Analog Signal

$$f_S = \frac{1}{T_S}$$
 $x(n \cdot T_S) = x[n]$

Other Functions

causal: x[n] = 0 for n < 0Tc: Always known!

unit impulse

$$\delta[n] = \begin{cases} 0 : n \neq 0 \\ 1 : n = 0 \end{cases}$$

step impulse

$$u[n] = \begin{cases} 0 : n < 0 \\ 1 : n \ge 0 \end{cases}$$

periodic symbols $(k = T_0/T_S)$ $x[n] = x[n + T_0/T_S]$

$$= \hat{X} \cdot e^{j2\pi \cdot f_0 \cdot n \cdot T_S}$$

$$= X \cdot e^{j}$$

$$= \hat{X}(C(j) + j \cdot S(j))$$

expected/mean value

$$\mu_x = \frac{1}{N}\sum_{i=0}^{N-1}x[i]$$

(mean value)2 / avg DC power

$\rho^2 = \frac{1}{N} \sum_{i=0}^{N-1} x[i]^2$

linear correlation

(linear) convolution

circular convolution

 $r_{xy}[n] = \frac{1}{N} \sum_{i=1}^{N-1} x[i]y[i+n]$

 $N_{xy} = N_x + N_y - 1$

 $r_{xy}[n] \neq r_{yx}[n]$

 $z[n] = \sum_{i=1}^{n} x[i]y[n-i]$

=x[n]*y[n]

 $N_X = N_Y$

 $z[n] = x[n] \circledast_N y[n]$

 $x = \{0.5, 1\}$ & $y = \{1, -1\}$

$$\sigma_{x}^{2} = \frac{1}{N} \sum_{i=0}^{N-1} \left(x[i] - \mu_{x} \right)^{2}$$

Acoustic signals: corresponds to audible power content

$$A_{dB} = 10 \cdot \log_{10} \left(\frac{P_1}{P} \right)$$

Signal-to-Noise-ratio

$$SNR = 10 \cdot \log_{10} \left(\frac{P_S}{P_N} \right)$$

$$= 20 \cdot \log_{10} \left(\frac{U_S}{U_{cs}} \right)$$

power ratio

$$A_{dB} = 10 \cdot \log_{10} \left(\frac{P_1}{P_1} \right)$$

static correlation $(x = y \Rightarrow \uparrow R)$ ⇒ yields new signal, quantifying the similarty of x and y

$$R = \frac{1}{N} \sum_{i=0}^{N-1} x[i] y[i]$$

A/D & D/A Conversion

Code/Decode z.B. DFT & IDFT; Interpolate z.B. Tiefpass-Filter

Sampling & Aliasing

$$x_s(t) = \sum_{n=-\infty}^{\infty} x(t) \cdot \delta(t - nT_S)$$

Bei $\left(f_{\max} > f_S/2\right)$ ensteht Aliasing.

Wenn Theorem nicht möglich ist.

Amplitude response of the anti-aliasing filter

Spectrum of the filtered and sampled signal

 $f_{\text{Pass}} \ge f_{\text{Desired}}$ $f_{\text{Stop}} \ge f_S - f_{\text{Desired}}$

Wird generalisierten Theorem eingehalten,

kann Signal rekonstruiert werden. Zum prüfen

ob eine Sampling Frequenz für ein Band-Pass

 $2 \cdot \frac{f_{\min}}{N} \ge f_S \ge 2 \cdot \frac{f_{\max}}{N+1}$

|X(f)|

|X_S(f)|

Signal gültig ist:

period. Spektrum mit f_s -vielfachen Spiegelbilder. Mit spektraler Verschiebung

$$x(t)e^{j2\pi f_0t} • \sim X(f-f_0)$$

ergibt

$$X_s(f) = \frac{1}{T_S} \sum_{k=-\infty}^{\infty} X(f-k \cdot f_S)$$

Sampling of Band-Pass Signals

Odd N: Verschiebung mit Kosinus $f_{\sigma}/2$

$$\tilde{x}[n] = (-1)^n \cdot x[n]$$

$$(-1)^n = \cos(\pi \cdot n) = \cos(2\pi f_S/2 \cdot n \cdot T_S)$$

Digital Signals in Frequency Domain

Discrete-Time Fourier Transform (DTFT)

Transition to Discrete Time

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-j2\pi f \cdot t} dt \longrightarrow X_S(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f \cdot n \cdot T_S} dt \\ \Omega &= 2\pi f T_s = 2\pi \frac{f}{f_s} \Longrightarrow \overbrace{X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}} \end{split}$$

$\implies X(\Omega)$: Discrete-Time Fourier Transform (DTFT)

 Ω : normalized angular frequency

Transition to Finite Measurement Level

Fourier has ∞ long measurement time \rightarrow Confine to N sample points, which leads to a discrete frequency range.

Discrete frequency range:

$$0, rac{f_S}{N}, 2rac{f_S}{N}, ..., (N-1)rac{f_S}{N}$$

Measurement Interval: $T = N \cdot T_S$

(i) Lowest capturable frequency

(With exception of any DC component)

$$f_{\min} = f_1 = \frac{1}{T} = \frac{1}{N \cdot T_S} = \frac{f_S}{N}$$

Discrete Fourier Transform (DFT)

$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi n \frac{k}{N}}$

Inv. Discrete Fourier Transform (IDFT)

synthesis equation: x[n] is periodic at $T_S \cdot N$

$$x[n] = \frac{1}{N} \cdot \sum_{k=0}^{N-1} X[k] \cdot e^{j2\pi n \frac{k}{N}}$$

with n = 0, 1, 2, ..., N - 1

Either DFT or IDFT require the normalization factor 1/N to re-obtain the original signal. \Rightarrow IDFT has the normalization factor above

- periodicity in time \rightarrow discrete line spectra in frequency (Fourier & DFT)
- sampling in time → periodic in frequency (DFT, DTFT)

04.01.2025 4 of 8 DSP

$$\begin{split} X[k] &= \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi n \frac{k}{N}} \\ &= \sum_{n=0}^{N-1} x[n] \cos\left(-2\pi n \frac{k}{N}\right) + j \cdot \sum_{n=0}^{N-1} x[n] \sin\left(-2\pi n \frac{k}{N}\right) \\ &= \underbrace{\sum_{n=0}^{N-1} x[n] \cos\left(2\pi n \frac{k}{N}\right)}_{\operatorname{Re}(X[k])} + j \cdot \underbrace{\sum_{n=0}^{N-1} x[n](-1) \sin\left(2\pi n \frac{k}{N}\right)}_{\operatorname{Re}(X[k])} \end{split}$$

(i) Static Correlation

Every DFT coefficient X[k] is equal to the *static* correlation between the signal x[n]and discrete sine and cosine functions of frequency kf_S/N .

Meaning: the DFT indicates how similar the signal is to harmonic oscillations with frequency k

Important Properties

Periodicity DFT works with discrete time signal samples, the spectrum is f_S periodic. $DFT: X[k] = X[k+N] \qquad IDFT: x[n] = x[n+N] \text{ with } T = NT_S$

Symmetry DFT of a real-valued signal is symmetric around the point k=N/2

$$X\bigg[\frac{N}{2}+m\bigg] = X^*\bigg[\frac{N}{2}-m\bigg]$$

Time/Frequency Shifting Shifting a periodic time sequence corresponds to a linear phase offset to all spectral values

$$x[n+n_0] \quad \leadsto \quad e^{j2\pi \cdot n_0 \frac{k}{N}} \cdot X[k]$$

The inverse is also true \rightarrow mult. complex exp. in time leads to frequency shift

$$e^{j2\pi \cdot n_0 \frac{k}{N}} \cdot x[n] \quad \hookrightarrow \quad X[k-k_0]$$

Modulation Direct consequence of frequency shift → modulation property

$$\cos\left(2\pi k_0\frac{n}{N}\right)\cdot x[n]\quad • \quad \frac{1}{2}(x[k+k_0]+X[k-k_0])$$

Parseval Theorem left side equals to energy of signal \rightarrow right side has use for SNR (separate noise frequency from signal frequency)

$$\frac{1}{N} \sum_{n=0}^{N-1} x[n]^2 = \sum_{n=0}^{N-1} \left| \frac{X[k]}{N} \right|^2$$

Correspondence of Conv. and Multi. fast conv. \rightarrow IDFT(DFT($x[n] \cdot DFT(y[n])$)

$$x[n]\circledast_N y[n]\quad { \hookleftarrow}\quad X[k]\cdot Y[k]\quad (k=0,1,...N-1)$$

Range of Validity of the DFT

aperiodic x[n] all signal values x[n] are zero outside the range $0 \le n \le N$. DFT samples the DTFT at discrete points of normalized angular frequency:

$$X[k] = X(\Omega)|_{\Omega = 2\pi \frac{k}{M}}$$

IF NOT (range outside $\neq 0$) \rightarrow DFT = approximation of DTFT \rightarrow solution: windowing

periodic x[n] measurement interval $N \cdot T_S$ is an integer multiple of the period duration of x[n]

Bits are spread across different frequencies.

1) bits are converted to phase (QPSK)

(2) the result \rightarrow IDFT (3) $x[n] \rightarrow x(t)$ via DAC

DFT and Zero-padding

- Extending signal(t) with zeros \rightarrow better interpolation (thinner frequency bins)
- does not modify DTFT $X[\Omega]$, but provides additional sample points along Ω
- Rectangular window of length $N \to \text{convolution of } X[k]$ with $\sin(x)/x$ (lobes)
- Important lobe-structure characteristics
 - Width of the main lobe (example: ≈ 0.03 cycles per sample)
 - Attenuation of the first side lobe relative to main lobe ($\approx 12 dB$)

Choice of Measurement Interval & Leakage Effect

Example: N = 64, $f_0 = f_S/4$, $T = N \cdot T_S = 16 \cdot T_0$

Example: $f_0 = f_S/4 + f_S/128 \rightarrow$ measurement interval no integer multiple of the period duration: Leakage effect:

DFT and Windowing

- DFT applies rectangular window N samples
- Applying the Blackman Window and afterwards appending zeros
- Reduces virtual periodic continuation of the signal "outside" of signal, thus reducing the leakage effect.

04.01.2025

5 of 8

Choice of Windowing Function

i Choice Compromise

Choice of Window function leads to a compromise between the attenuation of leakage and spectral resolution in the spectrum X[k]

- Narrow main lobe: higher the spectral resolution for X[k]
- **Higher the side lobe attenuation**: better suppression of leakage in X[k]
- \Rightarrow **Ideal**: DC-function \rightarrow indefinitely small main lobe, no side lobes $(N \rightarrow \infty)$

Short-Time DFT

- continuous evaluation of the frequency spectrum of short signal sections
- Allows the observation of frequency spectrum over time
- BUT more computation required → solution: FFT

Fast Fourier Transformation (FFT) • • •

Complexity of the FFT Divide-and-Conquer principle

- Divided get either N sample values (decimation-in-time) or N spectral values (decimation-in-frequency)
- Split values recursively into r sub-sequences $(r: radix) \rightarrow radix-2$ algo often used

 $N=2^L$ where L is some integer

• N almost always a power of two

$$\begin{split} \text{DFT}: & \quad \left[N^2\right]_{\text{cpl.Mul.}} & \quad + \left[N^2 - N\right]_{\text{cpl.Add.}} \\ \\ \text{FFT}: & \quad \left[\frac{N}{2} \cdot \log_2(N)\right]_{\text{cpl.Mul.}} & \quad + \left[N \cdot \log_2(N)\right]_{\text{cpl.Add.}} \end{split}$$

 $\text{assuming } T_{\text{compute,Add}} = T_{\text{compute,Mul}}; \qquad \text{speedup factor}_{\text{FFT}} = \frac{8N-2}{5 \cdot \log_2(N)} \approx 1.5 \frac{N}{\log_2(N)}$

Properties of the Twiddle Factors

In order to reduce the computational effort we introduce the **twiddle factor** $W_N=e^{-j2\frac{\pi}{N}}$ and can write the DFT new:

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{n \cdot k}, \quad k = \{0, 1, 2, ..., N-1\}$$

Periodicity W_N^k can evaluate to N different numbers only

$$W_N^{k+N} = W$$

Symmetry Apart from sign, every W_N^k takes on only N/2 different values within each period.

$$W_N^{k+N/2} = -W_N^k$$

MCU only requires $\frac{N}{2} \cdot 2 \; (\mathrm{Re} \, \& \, \mathrm{Im})$ space.

Radix-2 decimation-in-time FFT

Splitting the twiddle-factor DFT up into odd and even yields two new sequences of length N/2:

$$X[k] = \underbrace{\sum_{n=0}^{N/2-1} x_1[n] W_N^{2nk}}_{x_1 \to n \text{ even}} + \underbrace{\sum_{n=0}^{N/2-1} x_2[n] W_N^{(2n+1)k}}_{x_2 \to n \text{ odd}}$$

$$\text{introducing } W_N^2 = W_{N/2}: \quad = \underbrace{\sum_{n=0}^{N/2-1} x_1[n] W_{N/2}^{nk}}_{X_1\left[\tilde{k}\right]} + W_N^k \cdot \underbrace{\sum_{n=0}^{N/2-1} x_2[n] W_{N/2}^{nk}}_{X_2\left[\tilde{k}\right]}$$

 $\Rightarrow X_1[\tilde{k}], X_2[\tilde{k}]: N/2\text{-point DFT} \longrightarrow \tilde{k} = k \operatorname{mod} N/2 \text{ (limit k-range to meaningful } N/2 \text{)}$ Recursively applying the splitting procedure leads to $\frac{N}{2}$ 2-point DFTs:

$$X[k] = \sum_{n=0}^{0} x_1[n]W_2^{nk} + W_2^k \cdot \sum_{n=0}^{0} x_2[n]W_2^{nk} = \underline{x_1[0] + W_2^k \cdot x_2[0]}, \qquad k = \{0, 1\}$$

• Butterfly structure requires $\log_2(N)$ processing stages ($N=8\to3$ stages)

(i) Efficient FFT Implementation

- As soon as the butterfly operation has been performed, input pair can be re-used to store the calculated output-pair, thus performing the entire FFT in-place.
- 2. Order of input values is **bit-reversed**: 0 (000), 4 (001 \rightarrow 100), 2 (010), 6 (110), 1, 5, 3, 7.

Matlab command bitrevorder for bit-reversed order

Goertzel is used, if only an individual X[k] of all N spectral components is required

Digital LTI Systems

- **Definition** of LTI Systems
- Linearity: $y[n] = k_1 \cdot S\{x_1\} + k_2 \cdot S\{x_2\} = S\{k_1 \cdot x_1 + k_2 \cdot x_2\}$
- ▶ Time-Invariance: $x[n] o y[n] \implies x[n-d] o y[n-d]$
- Allowed Operations
- ullet Multiplication of a signal with a <u>constant</u>: $x[n] \cdot a$
- Addition of two signals: x[n] + y[n]
- Time delay of a signal by $k \cdot T_s$: $x[n-k \cdot T_S]$

Impulse Response

System Identification, Measurement

$$y[n] = \sum_{i=-\infty}^{\infty} x[i] \cdot h[n-i] = x[n] * h[n] \to \text{Linear Convolution}$$

Difference Equation

System Implementation (algorithm)

$$y[n] = \sum_{k=0}^N b_k \cdot x[n-k] - \sum_{k=1}^M a_k \cdot y[n-k]$$

System Order

Recursive

System order is defined by $\max(N, M)$

A system is recursive, when $M \geq 1$.

Signal-Flow Diagram

System Implementation (architecture)

Tranposed Direct Form 1

Transposed Direct Form 2

System Descriptions in the Frequency Domain

Transfer Function

Coupling Analysis and Implementation

$$\begin{split} y[n] &= \sum_{k=0}^{N} b_k \cdot x[n-k] - \sum_{k=1}^{M} a_k \cdot y[n-k] \\ y[n] &= \sum_{k=0}^{N} b_k \ z^{-k} \cdot X(z) - \sum_{k=1}^{M} a_k \ z^{-k} \cdot Y(z) \end{split}$$

z-Transfer-Function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\prod_{n=0}^{N} b_n z^{-n}}{\prod_{m=0}^{M} a_m z^{-m}}$$

Pol/Zero-Plot

Intuitive Analysis and Design

 $(M>N) \wedge b_0 \neq 0 \rightarrow M-N$ additional zeros at z=0 & only this case holds $K_0=b_0$

 $N>M \rightarrow N-M$ additional poles at z=0

Causal LTI System is stable if $|p_i| < 1, i = 1, ..., M$ (all poles within the unit circle of z-plane)

Frequency Response System

System Identification, Analysis and Design

$$\begin{split} h[n] & \bullet \bullet H[\Omega] \quad ; \quad H(\Omega) = |H(\Omega)| \cdot e^{j \cdot \varphi(H(\Omega))} \quad ; \quad |H(\Omega)|_{\mathrm{dB}} = 20 \cdot \log_{10}(|H(\Omega)|) \\ |H(\Omega)| \text{: amplitude response } ; & \varphi(H(\Omega)) \text{ phase response } ; \end{split}$$

• Frequency components in input are delayed differently, the output suffers from distortions \to Therefore, linear phase response $\varphi(H(\Omega)) = -K \cdot \Omega$ is desirable, since only then all frequency components are delayed: **group delay**

$$\tau_g = -\frac{d\varphi(H(\Omega))}{d\Omega}$$

Any LTI system reacts to a sinusoidal input signal with a sinusoidal output signal of the same frequency:

$$x[n] = \cos(2\pi f_0 \cdot n \cdot T_S) \Longrightarrow y[n] = |H(\Omega_0)| \cdot \cos(2\pi f_0 \cdot n \cdot T_S + \varphi(H(\Omega_0)))$$

The phase and amplitude can be extracted through:

$$|Y(\Omega)| = |X(\Omega)| \cdot |H(\Omega)|$$
; $\varphi(Y(\Omega)) = \varphi(X(\Omega)) + \varphi(H(\Omega))$

Relation between frequency response and transfer function

- DTFT and z-transform relation $\Rightarrow z = r \cdot e^{j\Omega}$
- Frequency response = DTFT of impulse response $\Rightarrow H(\Omega) = H(z)|_{z=e^{j\Omega}}$
- To obtain frequency response by evaluating:

Amplitude response

Phase response

$$\begin{split} |H(z)| &= |K| \frac{\prod_{n=1}^N |z-z_n|}{\prod_{m=1}^M |z-p_M|} |z|^{M-N} \qquad \varphi(H(\Omega)) = \sum_{k=1}^N \varphi(z-z_k) - \sum_{k=1}^M \varphi(z-p_k) \\ &+ \sum_{k=N+1}^M \varphi(z) \end{split}$$

Design of Digital Filters

FID Filter

Definition and Properties

FIR filter of order N has the transfer function & impulse response:

$$H(z) = b_0 + b_1 z^{-1} + \dots + b_N z^{-N}$$

$$h[n] = \{b_0, b_1, ..., b_N, 0, 0, ...\}$$
 size $N +$

with N+1 coefficients

- Stability per definition, all poles are at z=0
- Linear Phase: easier to realize a linear-phase transfer characteristics (group delay)
- Implementation: easy implementation on HW and SW

Disadvantages: higher order requires more computational effort.

Other names: all-zero filter, transversal filter, moving-average filter

Symmetric FIR Filters

A FIR filter is symmetric when $b_i = \pm b_{N-1}, i = 0, 0, ..., N$

- in case of +: (mirror-)symmetric
- in other cases: anti-symmetric

(i) Lineare Phase Response for all symmetric FIR filters

1 All symmetric FIR filters feature a linear phase response within their **pass** band (group delay):

Туре	Symmetry	Order N	H(f=0)	$ H(f=f_S/2) $	$H(\Omega)^{1}$
1	h[n] = h[N-n]	even	any	any	$e^{-j\Omega rac{N}{2}} \cdot H_{ ext{zp}(\Omega)}$
2	(symmetric)	odd	any	0	$e^{-j} \cdot H_{\mathrm{zp}(\Omega)}$
3	h[n] = -h[N-n]	even	0	0	$e^{-j\left(\Omegarac{N}{2}-rac{\pi}{2} ight)}\cdot H_{\mathrm{zp}(\Omega)}$
4	(anti-symmetric)	odd	0	any	$\operatorname{Te} \circ (2^{-2}) \cdot \operatorname{H}_{\operatorname{zp}(\Omega)}$

 1 : transfer function of symm. FIR are the product of a linear-phase term and some real-valued transfer function $H_{xv(\Omega)}$ (zp: zero-phase filter)

⇒ anti-symmetric: constant 90° phase offset

(i) Stop Band 180° Jump

In the stop band of a symm. FIR filter there can be 180°-phase-jumps. Such discontinuities in phase response occur at a pair of complex-conj, zeros at the unit circle. This are often tolerated in favor of sufficient attenuation in the stop band

Туре	low-pass (LP)	high-pass (HP)	band-pass(BP)	band-stop (BS)
1	yes	yes	yes	yes
2	yes	-	yes	-
3	-	_	yes	-
4	-	yes	yes	_

Window Design Method

Matlab: fir1

The Window Design Method always yields low pass filters \to other filters are done via sum and difference of low-pass filters at different cut-off frequencies. Start of with a desired frequency response $H_{d(\Omega)}$ of an ideal TP-filter with cutoff at

Start of with a desired frequency response $H_{d(\Omega)}$ of an ideal TP-filter with cutoff f_C :

$$h_{d\text{TP}}[n] = \frac{\sin(\Omega_C \cdot n)}{\pi \cdot n} • \neg \text{ rectangular signal in freq. domain}$$

- **Restrictions**: finite length ideal impulse response (corresponds to multiplication with □-window / convolution with sinc-function) → overshoot at edges of pass and stop bands
- ullet persists for $N o \infty$ (only helps to reduce the width of the transition band)
- Solution: use different windowing functions to smooth the overshoot at a cost of wider transition bands

Example High-Pass Filter

TP with cutoff at $f_S/2$ minus TP with cutoff at f_C :

$$\begin{split} h_{d\text{HP}}[n] &= \frac{\sin(\pi \cdot n)}{\pi \cdot n} - \frac{\sin(\Omega_C \cdot n)}{\pi \cdot n} \\ &= \{..., -h_{d\text{TP}}[-2], -h_{d\text{TP}}[-1], 1 - h_{d\text{TP}}[0], -h_{d\text{TP}}[1], -h_{d\text{TP}}[2], ...\} \end{split}$$

Steps of the window design method for FIR filters: Ideal low-pass frequency response 1, ideal low-pass impulse response 2, windowed 3 and shifted 4 practical low-pass impulse response.