### HW5

#### John Rothen

10/3/2020

### Problem 3.5.4

### Part 1

For ease of typing, lambda is abbreviated L.

```
B_{j}' = argmin(.5(B_{j}^{LS} - B_{j})^{2} + L||B_{j}||_{1}.
```

For the case of z > L,  $argmin(z^2 + Lambda(b))$ , which is minimized at Bj, causing the result to be z- Lambda as for the case of z < -L, this is minimized to z + Lambda in a similar fashion. The case where lambda is greater than or equal to z causes the minimum to occur at zero.

#### Part 2

Consider the condition of the soft-thresholding operator S(z; L) = 0 if  $|z| \le L$ . This means, that Lmax would be the greatest Lambda such that (L < |z|).

### Part 3

```
soft.thr <- function(z,L){
    #Lambda is given as L here for ease of use
    if(z > L){out = z-L}
    if(abs(z) <= L){out = 0}
    if(z < (-1*L)){out = z+L}
    out
}</pre>
```

#### Part 4

```
pen_ls <- function(y,xmat,lambda){
    n <- length(y)
    df <- as.data.frame(cbind(y,xmat)) #create dataframe
    lm.temp <- lm(y~., data=df) #generate LM
    betas <- lm.temp$coefficients[2:11] #obtain Beta LS
    bhats <- rep(0,10) #prepare empty vector
    for(i in 1:length(betas)){
        bhats[i] <- soft.thr(betas[i], lambda) #calculate new estimates
    }
    bhats
}</pre>
```

#### Part 5

```
#Data generation
gen_data <- function(n, b, sigma = 1) {</pre>
  p <- length(b)
  x \leftarrow matrix(rnorm(n * p), n, p)
  colnames(x) <- paste0("x", 1:p)</pre>
  y \leftarrow c(x \% b) + rnorm(n, sd = sigma)
  return(data.frame(y, x))
n <- 200
b \leftarrow c(1, -1, 2, rep(0, 7))
set.seed(920)
dat <- gen_data(n, b)
#Test
\#recombine\ the\ x\ matrix
xmat < -as.matrix(cbind(dat$x1,dat$x2,dat$x3,dat$x4,dat$x5,dat$x6,dat$x7,dat$x8,dat$x9,dat$x10))
# relabel y for ease of use
y <- dat$y
#pick random small lambda
lambda = .001
#Test
test<-pen_ls(y, xmat, lambda)
# extract the original betas for reference
n <- length(y)
df <- as.data.frame(cbind(y,xmat)) #create dataframe</pre>
lm.temp <- lm(y~., data=df) #generate LM</pre>
betas <- lm.temp$coefficients[2:11] #obtain Beta LS
#present results
data.frame(test, betas)
##
                             betas
               test
## V2
        1.041361554 1.0423615540
## V3 -0.941310825 -0.9423108248
## V4
        2.054084058 2.0550840584
## V5
      -0.005426430 -0.0064264302
        0.00000000 -0.0004115676
## V6
        0.004267272 0.0052672720
## V7
## V8 -0.042339507 -0.0433395071
## V9
        0.089269447 0.0902694472
## V10 0.097624057 0.0986240566
## V11 0.173302597 0.1743025971
```

#### Part 6

Using the conclusion from part 2, we know that Lmax will be the largest number smaller than  $|B_i^{LS}|$ . The smallest beta here is beta 5,  $-4.1156759 \times 10^{-4}$ . This means that Lambda must be less than  $4.1156759 \times 10^{-4}$ .

We will let L max be this value minus .000000001, (although to be more precise, one would choose Lmax to be  $4.1156759 \times 10^{-4}$  - smallest representable number in double).

```
#Plot
lmax = abs(betas[5])-.00000000001
seq.1 <- seq(0, lmax, length.out=100)
t <- rep(0,100)

for(i in 1:length(seq.l)){
   temp <- seq.l[i]
   t[i] <- pen_ls(y, xmat, temp)[1]
}
plot(seq.l, t, xlab = "Lambda", ylab= "Beta estimate", main= "Graph of Beta1's estimate as lambda chang</pre>
```

### Graph of Beta1's estimate as lambda changes



# Graph of Beta2's estimate as lambda changes



# Graph of Beta3's estimate as lambda changes





# Graph of Beta6's estimate as lambda changes



# Graph of Beta7's estimate as lambda changes



# Graph of Beta8's estimate as lambda changes



# Graph of Beta9's estimate as lambda changes

