Седмица на олимпийската математика 2020

Контролно по Комбинаторика януари 2020

Този материал е изготвен със съдействието на школа Sicademy

Задача С1. Дадено е множество A с n елемента. Множествата A_1, A_2, \ldots, A_n са подмножества на A и всяко от тях има по k елемента. Известно е, че всяко подмножество X на A с два елемента е подмножество на точно едно от множествата A_1, A_2, \ldots, A_n . Да се докаже, че всеки две от множествата A_1, A_2, \ldots, A_n се пресичат.

Задача С2. Ребрата на пълния граф с n върха са маркирани по произволен начин с числата $1,2,\ldots,\frac{n(n-1)}{2},$ като всяко ребро получава различно число. Да се докаже, че съществува път с дължина поне n-1 (възможно с повтарящи се върхове), за който редицата от етикетите е нарастваща.

Задача С3. Нека d и k < d са естествени числа, а $m = 2^k$. Да се докаже, че

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{S \subseteq A_i \Delta A_j} (-1)^{|S|-1} |S| \le k2^k,$$

когато $A_1, A_2, \ldots, A_m \subseteq \{1, 2, \ldots, d\}$. (Тук $B\Delta C = (B \setminus C) \cup (C \setminus B)$.)