Kummer theory for elliptic curves

Sebastiano Tronto

Elliptic curves

Figure: An elliptic curve with its defining equation

Elliptic curves: applications

- Elliptic curve cryptography
- Post-quantum cryptography
- Prime factorization and primality testing algorithms

Adding points on elliptic curves

Adding points on elliptic curves

Adding points on elliptic curves

Summing points on elliptic curves

- More complex than "normal" numbers, simple enough to apply
- ECDH: discrete logarithm problem
- Smaller keys, same security

$$P + Q + R = 0$$

Equations

Figure: The first use of the equals sign (1557) [Source: Wikipedia]

Pythagora's secret

Equation:
$$x^2 = 2$$

Solution:

$$x = \sqrt{2} = 1.4142135\dots$$

• But $\sqrt{2}$ is irrational

Inventing new numbers

We extend the rational numbers \mathbb{Q} to:

$$\mathbb{Q}[\sqrt{2}] = \{a + b \cdot \boxed{\sqrt{2}} \text{ for } a, b \in \mathbb{Q}\}$$

With the rule:
$$\sqrt{2}^2 = 2$$

Example:

$$(1+2\cdot\sqrt{2})\cdot(3\cdot\sqrt{2})=3\cdot\sqrt{2}+6\cdot\sqrt{2}^2=12+\sqrt{2}$$

Elliptic curves and equations

Equation (unknown
$$Q$$
): $Q + Q = P$

- Does a solution exist?
- If not, how expensive is it to "invent"?

Degree of extensions

- Rational numbers: $\mathbb{Q}[\sqrt[n]{2}]$ has degree n or less
- Elliptic curves: $\mathbb{Q}[\frac{1}{n}P]$ has degree n^2 or less

In both cases, the degree cannot be much less... but how much?

Kummer theory for elliptic curves

Theorem (Ribet, 1971)

The degree of $\mathbb{Q}[\frac{1}{n}P]$ is greater than $\frac{1}{c}n^2$, for some constant c depending on the chose curve.

Theorem (Lombardo and Tronto, 2021)

The degree of $\mathbb{Q}[\frac{1}{n}P]$ is greater than $\frac{1}{c}n^2$, where

$$c = 2^{28} \cdot 3^{18} \cdot 5^8 \cdot 7^7 \cdot 11^5 \cdot 13 \cdot 17 \cdot 19 \cdot 37 \cdot 43 \cdot 67 \cdot 163$$

(Remark: both theorems require some restrictions on P)

Further results

- ullet Similar results for base fields other than ${\mathbb Q}$
- A general framework (Tronto, 2022) unifying our results with those of Javan Peykar
- Possible future work on higher-dimensional abelian varieties

Thank you for your attention