

AOD514/AOI514/AOY514

30V N-Channel AlphaMOS

General Description

- Latest Trench Power MOSFET technology
- Very Low R_{DS(on)} at 4.5V V_{GS}
- Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Product Summary

 $\begin{array}{ll} V_{DS} & 30V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 46A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 5.9 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} = 4.5V) & < 11.9 m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

Application

- DC/DC Converters in Computing
- Isolated DC/DC Converters in Telecom and Industrial

TO252 DPAK: AOD514

TO251A IPAK: AOI514 TO251B (IPAK short lead): AOY514

Absolute Maximum Ratings	T _A =25℃ unless otherwise noted
--------------------------	--

Parameter Drain-Source Voltage Gate-Source Voltage		Symbol	Maximum	Units V	
		V _{DS}	30		
		V_{GS}	±20	V	
Continuous Drain T _C =25℃			46		
Current ^G	T _C =100℃	I _D	36	A	
Pulsed Drain Current ^C		I _{DM}	I _{DM} 163		
Continuous Drain	T _A =25℃		17	Δ.	
Current	T _A =70℃	IDSM	13	A	
Avalanche Current C		I _{AS}	25	A	
Avalanche energy L=	0.1mH ^C	E _{AS}	31	mJ	
V _{DS} Spike	100ns	V _{SPIKE}	36	V	
	T _C =25℃		50	W	
Power Dissipation ^B	T _C =100℃	P _D	25	VV	
	T _A =25℃	В	2.5	W	
ower Dissipation A $T_{A}=70^{\circ}C$ P_{DSM}		FDSM	1.6		
Junction and Storage	Temperature Range	T _J , T _{STG}	-55 to 175	C	

Thermal Characteristics							
Parameter		Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient A	t ≤ 10s	D	16	20			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	41	50			
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	2.5	3	℃/W		

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
I _{DSS} Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V				1		
		T _J =55℃			5	μΑ	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}, I_{D}=250\mu A$		1.6	2	2.4	V
		V_{GS} =10V, I_D =20A			4.3	5.9	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃		5.4	7.5	11152
		V_{GS} =4.5V, I_D =20A	•		8.5	11.9	$m\Omega$
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A		91		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V	
Is	Maximum Body-Diode Continuous Curre	ent ^G			46	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			1187		pF
Coss	Output Capacitance				483		pF
C _{rss}	Reverse Transfer Capacitance			60		pF	
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1	0.7	1.5	2.3	Ω	
SWITCHI	NG PARAMETERS						
$Q_g(10V)$	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A			18		nC
$Q_g(4.5V)$	Total Gate Charge				8.8		nC
Q_{gs}	Gate Source Charge				4.1		nC
Q_{gd}	Gate Drain Charge				3.6		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω , R_{GEN} =3 Ω			7.3		ns
t _r	Turn-On Rise Time				10.5		ns
t _{D(off)}	Turn-Off DelayTime				21.8		ns
t _f	Turn-Off Fall Time				5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			14.7		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I_F =20A, dI/dt=500A/ μ	s		24		nC

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The A. The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{BJA} and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =175° C.

D. The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz, Copper, in a still air environment with T_A =25° C.

OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 $^\circ$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-toAmbient (Note H)

Rev.6.0: July 2013 Page 5 of 6 www.aosmd.com

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

