232121004

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
dataset = pd.read csv("Data.csv")
df = pd.DataFrame(dataset)
df
   Country Age
                 Salary Purchased
    France 44.0 72000.0
0
                                 No
1
     Spain 27.0 48000.0
                                Yes
2
   Germany 30.0 54000.0
                                 No
3
     Spain 38.0 61000.0
                                 No
4
  Germany 40.0
                      NaN
                                Yes
    France 35.0 58000.0
5
                                Yes
6
    Spain NaN 52000.0
                                No
   France 48.0 79000.0
7
                                Yes
8 Germany 50.0 83000.0
                                No
   France 37.0 67000.0
                                Yes
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
print(X)
[['France' 44.0 72000.0]
 ['Spain' 27.0 48000.0]
 ['Germany' 30.0 54000.0]
 ['Spain' 38.0 61000.0]
 ['Germany' 40.0 nan]
 ['France' 35.0 58000.0]
 ['Spain' nan 52000.0]
 ['France' 48.0 79000.0]
 ['Germany' 50.0 83000.0]
 ['France' 37.0 67000.0]]
print(y)
['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']
df.isnull().sum()
Country
             0
             1
Age
             1
Salary
Purchased
dtype: int64
```

```
df1 = df.copy()
# summarize the shape of the raw data
print("Before:",df1.shape)
# drop rows with missing values
df1.dropna(inplace=True)
# summarize the shape of the data with missing rows removed
print("After:",df1.shape)
Before: (10, 4)
After: (8, 4)
df2 = df.copy()
import warnings
warnings.filterwarnings('ignore')
df2["Age"].fillna(df2["Age"].mean(), inplace=True)
df2["Salary"].fillna(df2["Salary"].mean(), inplace=True)
df2
   Country
                             Salary Purchased
                  Age
0
    France 44.000000
                      72000.000000
                                           No
1
     Spain 27.000000 48000.000000
                                          Yes
2
  Germany 30.000000 54000.000000
                                           No
3
     Spain 38.000000 61000.000000
                                           No
4
  Germany 40.000000
                       63777.77778
                                          Yes
5
    France 35.000000
                      58000.000000
                                          Yes
6
     Spain 38.777778 52000.000000
                                           No
    France 48.000000 79000.000000
7
                                          Yes
8
  Germany 50.000000 83000.000000
                                           No
9
    France 37.000000 67000.000000
                                          Yes
Χ
array([['France', 44.0, 72000.0],
       ['Spain', 27.0, 48000.0],
       ['Germany', 30.0, 54000.0],
       ['Spain', 38.0, 61000.0],
       ['Germany', 40.0, nan],
       ['France', 35.0, 58000.0],
       ['Spain', nan, 52000.0],
       ['France', 48.0, 79000.0],
       ['Germany', 50.0, 83000.0],
       ['France', 37.0, 67000.0]], dtype=object)
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing values=np.nan, strategy='mean')
```

```
imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
print(X)
[['France' 44.0 72000.0]
 ['Spain' 27.0 48000.0]
 ['Germany' 30.0 54000.0]
 ['Spain' 38.0 61000.0]
 ['Germany' 40.0 63777.777777778]
 ['France' 35.0 58000.0]
 ['Spain' 38.7777777777 52000.0]
 ['France' 48.0 79000.0]
 ['Germany' 50.0 83000.0]
 ['France' 37.0 67000.0]]
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(),
[0])], remainder='passthrough')
X = np.array(ct.fit_transform(X))
df
                   Salary Purchased
   Country
           Age
0
    France 44.0
                 72000.0
                                 No
     Spain 27.0
1
                 48000.0
                                Yes
2
   Germany 30.0 54000.0
                                 No
3
     Spain 38.0 61000.0
                                 No
4
  Germany 40.0
                      NaN
                                Yes
5
    France 35.0
                 58000.0
                                Yes
6
     Spain NaN 52000.0
                                No
7
    France 48.0 79000.0
                                Yes
8
   Germany 50.0 83000.0
                                No
    France 37.0 67000.0
                                Yes
print(X)
[[1.0 0.0 0.0 44.0 72000.0]
 [0.0 0.0 1.0 27.0 48000.0]
 [0.0 1.0 0.0 30.0 54000.0]
 [0.0 0.0 1.0 38.0 61000.0]
 [0.0 1.0 0.0 40.0 63777.777777778]
 [1.0 0.0 0.0 35.0 58000.0]
 [0.0 0.0 1.0 38.77777777777 52000.0]
 [1.0 0.0 0.0 48.0 79000.0]
 [0.0 1.0 0.0 50.0 83000.0]
 [1.0 0.0 0.0 37.0 67000.0]]
df2
```

1 Spain 2 2 Germany 3 3 Spain 3 4 Germany 4 5 France 3 6 Spain 3 7 France 4 8 Germany 5	27.000000 48000 30.000000 54000 38.000000 61000 40.000000 63777 35.000000 58000 38.777778 52000 48.000000 79000 50.000000 83000 37.000000 67000	Salary Purcha 0.000000 0.000000 0.000000 0.777778 0.000000 0.000000 0.000000 0.000000	Ased No Yes No No Yes Yes Yes No Yes No Yes No Yes	
Age Country_Spair		Country_France	e Country_Germany	
0 44.000000		True	e False	
False 1 27.000000	48000.000000	False	e False	
True				
2 30.000000 False	54000.000000	False	e True	
3 38.000000	61000.000000	False	e False	
True 4 40.000000	63777.777778	False	e True	
False 5 35.000000	58000.000000	True	e False	
False	38000.000000	TTUE	ratse	
6 38.777778 True	52000.000000	False	e False	
7 48.000000	79000.000000	True	e False	
False 8 50.000000	83000.000000	False	e True	
False				
9 37.000000 False	67000.000000	True	e False	
Purchased_ 0 Tr 1 Fal 2 Tr 3 Tr 4 Fal 5 Fal 6 Tr 7 Fal 8 Tr	rue Fallse True Fallse Tr	se cue se se cue cue se		

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit transform(y)
print(y)
[0 1 0 0 1 1 0 1 0 1]
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.2, random state = 1)
print(X train)
[[0.0 0.0 1.0 38.77777777777 52000.0]
 [0.0 1.0 0.0 40.0 63777.777777778]
 [1.0 0.0 0.0 44.0 72000.0]
 [0.0 0.0 1.0 38.0 61000.0]
 [0.0 0.0 1.0 27.0 48000.0]
 [1.0 0.0 0.0 48.0 79000.0]
 [0.0 1.0 0.0 50.0 83000.0]
 [1.0 0.0 0.0 35.0 58000.0]]
print(X test)
[[0.0 1.0 0.0 30.0 54000.0]
[1.0 0.0 0.0 37.0 67000.0]]
print(y train)
[0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1]
print(y_test)
[0 1]
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
X_train[:, 3:] = mm.fit_transform(X_train[:, 3:])
X_{\text{test}}[:, 3:] = mm.transform(X_{\text{test}}[:, 3:])
print(X train[:, 3:])
[[0.5120772946859904 0.11428571428571432]
 [0.5652173913043479 0.45079365079365075]
 [0.7391304347826089 0.6857142857142855]
 [0.4782608695652175 0.37142857142857144]
 [0.0 \ 0.0]
 [0.9130434782608696 0.8857142857142857]
 [1.0 \ 1.0]
 [0.34782608695652173 0.2857142857142856]]
print(X test[:, 3:])
```

```
[[0.1304347826086958 0.17142857142857149]
 [0.43478260869565233 0.5428571428571427]]
from sklearn.preprocessing import StandardScaler
sta = StandardScaler()
X train[:, 3:] = sta.fit transform(X train[:, 3:])
X \text{ test}[:, 3:] = \text{sta.transform}(X \text{ test}[:, 3:])
print(X_train[:, 3:])
[[-0.19159184384578537 -1.0781259408412425]
 [-0.014117293757057581 - 0.070131676416354361]
 [0.5667085065333245 0.6335624327104541]
 [-0.3045301939022482 -0.3078661727429788]
 [-1.9018011447007983 -1.4204636155515822]
 [1.1475343068237058 1.2326533634535486]
 [1.4379472069688963 1.5749910381638883]
 [-0.740149544120035 -0.5646194287757338]]
print(X train[:, 3:])
[[-0.19159184384578537 -1.0781259408412425]
 [-0.014117293757057581 -0.07013167641635436]
 [0.5667085065333245 0.6335624327104541]
 [-0.3045301939022482 -0.3078661727429788]
 [-1.9018011447007983 -1.4204636155515822]
 [1.1475343068237058 1.2326533634535486]
 [1.4379472069688963 1.5749910381638883]
 [-0.740149544120035 -0.5646194287757338]]
```