Practico 2

1 Teoria

Definition 1. Sea $f:A \rightarrow B$, el conjunto A se denomina Dominio mientras que B se denomina conjunto de llegada.

Definition 2. Una funcion $f:A \rightarrow B$ se dice inyectiva si $\forall x, y \in A, \text{ con } x \neq y$ entonces $f(x) \neq f(y)$. Otra forma de verlo es que $f(x) = f(y) \Rightarrow x = y$

Definition 3. Sea $f:A \rightarrow B$, la imagen de f es: $\{y \in B \mid \exists x \in A \mid f(x) = y\}$

Definition 4. Una funcion se dice suryectiva si la imagen de f es igual a B.

2 Practico

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

7.
$$C_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$
, A, B subconjuntos de numeros Reales

a) Expresiones para: $C_{A \cap B}$, $C_{A \cup B}$, $C_{\mathbb{R}-A}$

$$- C_{A \cap B} = \begin{cases} 1 \operatorname{si} x \in A \cap B \Leftrightarrow x \in A \land x \in B \\ 0 \operatorname{si} x \notin A \cap B \Leftrightarrow x \notin A \lor x \notin B \end{cases}$$

- Es decir que esto puede escribirse como: $C_{A \cap B} = C_A \cdot C_B$
- Comprobacion:

$$- C_{A \cup B} = \begin{cases} 1 \operatorname{si} x \in A \cup B \Leftrightarrow x \in A \lor x \in B \\ 0 \operatorname{si} x \notin A \cup B \Leftrightarrow x \notin A \land x \notin B \end{cases}$$

– Puede escribirse pensando en: $C_{A \cup B} = C_A + C_B - C_A \cdot C_B$

- Comprobacion:

$$- C_{\mathbb{R}-A} = \begin{cases} 1 \operatorname{si} x \notin A \\ 0 \operatorname{si} x \in A \end{cases}$$

- Puede escribirse como: $C_{\mathbb{R}-A} = 1 C_A$
- Comprobacion:

$$x \in A \quad x \in \mathbb{R} - A \quad C_{\mathbb{R} - A} \quad 1 - C_A$$

$$V \qquad F \qquad 0 \qquad 0$$

$$F \qquad V \qquad 1 \qquad 1$$

b) f solo puede tomar 2 valores: 0 o 1. Por ejemplo, $f(x) = 1 \forall x \in \mathbb{R}$, de manera que si $x \notin \mathbb{R} \Rightarrow f(x) = 0$. De la misma forma seria para f(x) = 0. Claramente $f = C_{\mathbb{R}}$. Si solo se cumple para un subconjunto A, tendremos lo mismo.

c)

i. Si
$$f = f^2 \Rightarrow f = C_A$$

$$- f(x) = f^2(x) \, \forall x \in A \Leftrightarrow 0 = f(x)[f(x) - 1]$$

$$- \text{Si } x \in A \Rightarrow f(x)[f(x) - 1] = 0 \Rightarrow f(x) = 1 \text{ o } f(x) = 0$$

$$- \text{Segun b) luego } f = C_A$$
ii. Si $f = C_A \Rightarrow f = f^2$

–
$$C_A \cdot C_A = 1$$
 si $x \in A$, 0 Si $x \notin A$, es decir $C_{A \cap A} = C_A$

8.

a) Verdadero:
$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)$$

b) Falso:
$$f(x) = x^2$$
, $g(x) = x \Rightarrow (f+g)(-x) = x^2 - x \neq -(f+g)(x) = -(x^2 + x)$

c) Verdadero:
$$(fg)(-x) = f(-x)g(-x) = [-f(x)(-g(x))] = f(x)g(x) = (fg)(x)$$

d) Falso:
$$f(g(-x)) = f(-g(x)) = -f(g(x))$$

e) Falso:
$$|2x+1|$$
 no es par: si $x=1 \Rightarrow |2x+1|=3$ si $x=-1 \Rightarrow |2x+1|=1$

f) Verdadero:
$$f(|-x|) = f(|x|)$$

g) Falso:
$$f(x) = x^2$$
, $g(x) = -x$, $h(x) = x \Rightarrow [x - x]^2 = 0 \neq x^2 + x^2 \forall x \neq 0$

h) Pregunta no trivial. La composicion de Funciones ES asociativa, por lo cual el enunciado es verdadero.

- Dom
$$f \circ q = \{x \in \mathbb{R} \mid q(x) \in \text{Dom } f\}$$

- Dom
$$k \circ f = \{ g \in \text{Dom } f / f(g) \in \text{Dom } k \}$$

$$\begin{aligned} & - & \operatorname{Dom}(k \circ f) \circ g = \{x \in \mathbb{R} / g(x) \in \operatorname{Dom} k \circ f\} \\ & = \{x \in \mathbb{R} / g(x) \in \operatorname{Dom} f / f(g) \in \operatorname{Dom} k\} \end{aligned}$$

- Dom
$$k \circ (f \circ g) = \{x \in \mathbb{R} / g(x) \in \text{Dom } f / f(g) \in \text{Dom } k\}$$

9.

a) Si:
$$f(x) = x + 1$$
, busque la inversa: $y = x + 1 \Leftrightarrow x = y - 1$, luego: $[x - 1] + 1 = x = [x + 1] - 1$

b) Si f(x) = c No tiene inversa porque no es uno a uno. La unica funcion que cumpliria que f(g) = g(f) es ella misma o la identidad.

c)

- La funcion identidad cumple: I(x) = x, en particular: $I(g(x)) = g(x) \ \forall g$
- Por otro lado: g(I(x)) = g(x)
- Juntando ambas afirmaciones queda demostrado.

10.

11.12.

a)
$$f(x) = x^3 + 1 \Leftrightarrow y = x^3 + 1 \Leftrightarrow x = (x - 1)^{1/3}$$
, dom $f^{-1} = \mathbb{R}$

b)
$$f(x) = (x-1)^3 \Leftrightarrow y^{1/3} + 1 = x$$
, dom $f^{-1} = \mathbb{R}$

c)
$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ -x & \text{si } x \notin \mathbb{Q} \end{cases} \Rightarrow f^{-1}(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ -x & \text{si } x \notin \mathbb{Q} \end{cases}$$

d)
$$f(x) = \begin{cases} \frac{1}{2}x & x < 0 \\ 2x & x \ge 0 \end{cases} \Rightarrow f^{-1}(y) = \begin{cases} 2y & \text{si } y < 0 \\ \frac{1}{2}y & \text{si } y \ge 0 \end{cases}$$

Nota: La imagen de f(x) para x < 0 son los $\mathbb{R}_{<0}$ y $\mathbb{R}_{\geqslant 0}$ para el otro caso.

e)
$$f(x) = \begin{cases} -\frac{1}{x-2} & x \neq 2 \\ 0 & x = 2 \end{cases} \Rightarrow f^{-1}(y) = \begin{cases} 2 - \frac{1}{y} & \text{si } y \in \mathbb{R} - \{0\} \\ 2 & \text{si } y = 0 \end{cases}$$

 $\operatorname{Im} \frac{-1}{x-2} = \mathbb{R} - \{0\}$ Este es el dominio de la inversa para ese caso.

f)
$$f(x) = \begin{cases} -x^2 & x \ge 0 & \text{Im } -x^2 = \mathbb{R}_{\le 0} \\ 1 - x^3 & x < 0 & \text{Im } 1 - x^3 = \mathbb{R}_{>1} \end{cases} \Rightarrow f^{-1}(y) = \begin{cases} \sqrt{-y} & \text{si } y \le 0 \\ (1 - y)^{1/3} & \text{si } y > 1 \end{cases}$$

13.

a)
$$f(x) = -x^2$$
, restrinja el domino a $\mathbb{R}_{\geqslant 0}$, por ejemplo: $[0,10]$, Im $f = \mathbb{R}_{\leqslant 0}$, en ese caso: $\sqrt{-y} = x$ con dominio: $[-100,0]$

b) $f(x) = \frac{1}{x^2}$, igual que arriba solo que debe excluir el 0 del dominio.

14. El cubo tiene 6 caras, si el lado mide l entonces, cada cara tiene un area de l^2 , Por lo cual la superficie del cubo es: $s(l) = 6l^2$. El volumen de un cubo es: $V(l) = l^3 \Leftrightarrow l = (V)^{1/3}$, Entonces: $s(V) = 6(V)^{2/3}$

15.

a)

b)
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

$$- \qquad \sqrt{1-\sqrt{1-x^2}} \Rightarrow 1-\sqrt{1-x^2} \geqslant 0 \Leftrightarrow 1 \geqslant \sqrt{1-x^2}$$

- Por otro lado: $\sqrt{1-x^2} \Rightarrow 1-x^2 \geqslant 0 \Leftrightarrow 1 \geqslant x^2 \Leftrightarrow 1 \geqslant |x|$
- Por lo cual el dominio seria: $-1 \le x \le 1$
- Si −1 $\leqslant x \leqslant 1$ es el dominio de la funcion $\sqrt{1-x^2}$, ahora la imagen de esta funcion es: [0,1]. Esto puede obtenerse sabiendo que $y=\sqrt{1-x^2}\geqslant 0$ y que −1 $\leqslant y \leqslant 1$, haciendo la interseccion obtenemos: $0 \leqslant y \leqslant 1$.
- Si esto sucede entonces la funcion $\sqrt{1-y}$ es valida para todo valor de y en ese rango.
- 16. Encontrar dominio e imagen:
- 17. $f(x) = \frac{1}{1+x}$, Dar expresion y dominio.

a)

b)
$$g(x) = f(1/x)$$

- Expresion:
$$g(x) = f(1/x) = \frac{1}{1+\frac{1}{x}}$$

- Dominio:
$$h(x) = \frac{1}{x} \Rightarrow \text{Dom } h = \mathbb{R} - \{0\}$$

– Dominio:
$$f(x) = \frac{1}{1+x} \Rightarrow \text{Dom } f = \mathbb{R} - \{-1\}$$

- Como
$$x = -1 \Rightarrow h(-1) = -1 \Rightarrow$$
 pedimos que: Dom $g = \mathbb{R} - \{0, -1\}$

18.
$$C(x) = x^2$$
, $P(x) = \frac{1}{x}$, $S(x) = \operatorname{sen}(x)$

i.

ii. Expresar cada una de estas funciones en terminos de C,P,S

a)
$$f(x) = \frac{1}{\text{sen}(x^2)} = P(S(C(x)))$$

b)

20. Verdadero o Falso

- a) Si f, g son pares, entonces f + g es par.
 - Par significa que: f(-x) = f(x)
 - Sea $h(x) = f(x) + g(x) \Rightarrow h(-x) = f(-x) + g(-x) = f(x) + g(x)$
 - Verdadero
- b)
- c)
- d)
- e)
- f)

g)
$$f(g+h) = f(g) + f(h)$$

- Falso, suponga $f(x) = 1/x^2$, suponga que g(x) = x y que h(x) = -x
- Luego f(g+h)no esta definida para todo $\mathbb R$
- pero $f(g) + f(h) = \frac{2}{x^2}$

h)
$$\frac{1}{f(g(x))} = \frac{1}{f}(g(x))$$

- Considere: h(x) = 1/x
- Entonces: $\frac{1}{f(g(x))} = h(f(g(x)))$
- Luego $\frac{1}{f} = h(f(x)) \Rightarrow \frac{1}{f}(g(x)) = h(f(g(x)))$
- Verdadero.