Lecture 7 Basic gain cell The Common-Gate Amplifier as Current Buffers

Taha Ahmed

1 Basic gain cell

Figure 1: The basic gain cells of IC amplifiers: (a) current-source- or active-loaded common-source amplifier; (b) small-signal equivalent circuit of (a).

$$R_{\rm in} = \infty$$
 (1)

$$A_{\rm vo} = -g_m r_o \tag{2}$$

$$R_o = r_o \tag{3}$$

2 Effect of the Output Resistance of the Current-Source Load

Figure 2: (a) The CS amplifier with the current-source load implemented with a p-channel MOSFET Q_2 ; (b) the circuit with Q_2 replaced with its large-signal model; and (c) small-signal equivalent circuit of the amplifier.

$$A_{\text{vo}} = -g_{m1}(r_{o1}||r_{o2}) \tag{4}$$

If
$$r_{o1} = r_{o2}$$
 (5)

$$\therefore A_{\text{vo}} = -\frac{1}{2}g_m r_o \tag{6}$$

1. Q A practical circuit implementation of the common-source amplifier with a current-source load is shown in the following figure. Here the current-source transistor Q_2 is the output transistor of a current mirror formed by Q_2 and Q_3 and fed with a reference current I_{REF} . Assume that Q2 and Q3 are matched.

Let $V_{DD}=1.8~{\rm V}, V_{tn}=-V_{tp}=0.5~{\rm V}, \mu_n C_{ox}=4\mu_p C_{ox}=400\mu{\rm A/V^2}, |V_A|=5~{\rm V}$ for all transistors, and $I_{\rm REF}=100\mu{\rm A}.$

- (a) Find the dc component of v_1 , and the W/L ratios so that all transistors operate at $|V_{ov}| = 0.2V$.
- (b) Determine the small-signal voltage gain.
- (c) What is the allowable range of signal swing at the output for almost-linear operation?
- (d) If the current-source load is replaced with a resistance R_D connected to a power supply V'_{DD} as shown in the figure, find the value of R_D and V'_{DD} to keep I_D , the voltage gain, and the output signal swing unchanged.

(a) To operate Q_1 and $V_{OV}=0.2~\mathrm{V}, V_{GS1}~\mathrm{must}$ be

$$V_{GS1} = V_{tn} + V_{oV} = 0.5 + 0.2 = 0.7 \text{ V}$$

and thus the dc component of v_l must be

$$V_I = V_{GS1} = 0.7 \text{ V}$$

Next, we determine (W/L), from

$$I_{D1} = rac{1}{2} \left(\mu_n C_{ox}
ight) \left(rac{W}{L}
ight)_1 V_{oV}^2$$

Substituting $I_{D1} = I_{\text{REF}} = 100 \mu \text{A}$,

$$egin{aligned} 100 &= rac{1}{2} imes 400 imes \left(rac{W}{L}
ight)_1 imes 0.2^2 \ \Rightarrow \left(rac{W}{L}
ight)_1 &= 12.5 \end{aligned}$$

The W/L ratios for Q_2 and Q_3 can now be found from

$$I_{D2,3} = rac{1}{2} \left(\mu_p C_{ox} \right) \left(rac{W}{L}
ight)_{2,3} V_{OV}^2$$

$$100 = rac{1}{2} imes 100 imes \left(rac{W}{L}
ight)_{2,3} imes 0.2^2$$
 $\Rightarrow \left(rac{W}{L}
ight)_{2,3} = 50$

(b) To obtain the small-voltage signal voltage gain, we first determine the small-signal parameters $g_{m1}: r_{o1}$, and r_{o2} as follows:

$$g_{m1} = rac{2I_{D1}}{V_{OV1}} = rac{2 imes 0.1 ext{ mA}}{0.2 ext{ V}} = 1 ext{ mA/V}$$
 $r_{o1} = rac{V_{A1}}{I_{D1}} = rac{5 ext{ V}}{0.1 ext{ mA}} = 50 ext{k}\Omega$ $r_{o2} = rac{|V_{A2}|}{I_{D2}} = rac{5 ext{ V}}{0.1 ext{ mA}} = 50 ext{k}\Omega$

The voltage gain A_v can now be found as

$$A_v = -g_{m1} (r_{o1} || r_{o2})$$

$$= -1(50 || 50)$$

$$= -25 \text{ V/V}$$

(c) The upper limit of the output signal swing is determined by Q_2 leaving the saturation region. This will occur if v_O reaches $V_{DD} - |V_{OV2}|$, thus

$$v_{\rm Omax} = 1.8 - 0.2 = 1.6 \text{ V}$$

The lower limit of the output signal swing is determined by Q_1 leaving the saturation region. This will occur if v_0 falls below V_{OV1} , thus

$$v_{0 \, {
m min}} = 0.2 \, \, {
m V}$$

Thus, the range of linear signal swing at the output is given by

$$0.2 \text{ V} \leq v_o \leq 1.6 \text{ V}$$

(d) If the current-source load is replaced with a resistance R_D as in Fig. 8.16(b), to keep the gain unchanged,

$$R_D = r_{o2} = 50 \text{k}\Omega$$

To keep the output signal swing unchanged, we bias Q_1 so that V_{DS1} is equal to the mid point of the output swing, that is,

$$V_{DS1} = 0.9 \text{ V}$$

Now, for I_D to be the same as before, that is, $I_D = 0.1$ mA, the new supply voltage must be,

$$V'_{DD} = V_{DS1} + I_D R_D$$

= $0.9 + 0.1 \times 50 = 5.9 \text{ V}$

which is much larger than the supply voltage possible with this $0.18 - \mu m$ CMOS technology (1.8 V). Needless to say, fabricating a $50k\Omega$ resistance with precise value on the IC is an expensive endeavor This illustrates the need for using current-source

loads.

3 The Common-Gate and Common-Base Amplifiers as Current Buffers

3.1 The CG Circuit

Figure 3: (a) A CG amplifier with the bias arrangement only partially shown, (b) Equivalent circuit model of the CG amplifier in (a).

Figure 4: Determining the input resistance R_{in} of the CG amplifier.

Input resistance:

$$R_{
m in}=rac{v_s}{i_s}$$

Some of the analysis is shown in Fig. 4. Now, writing a loop equation for the loop comprising v_x , r_o , and R_L gives

$$v_x = \left(i_x + g_m v_{qs}
ight) r_o + i_x R_L$$

Since the voltage at the source node v_x is equal to $-v_{gs}$, we can replace v_{gs} by $-v_x$ and rearrange terms to obtain $R_{\rm in} \equiv v_x/i_x$

$$R_{
m in} = rac{r_o + R_L}{g_m r_o + 1}$$

For
$$g_m r_o \gg 1$$

$$R_{
m in} \simeq rac{1}{g_m} + rac{R_L}{g_m r_o}$$

short circuit gain

Figure 5: (a) Determining the short-circuit current gain $A_{is} = i_o/i_{sig}$ of the CG amplifier, (b) A simplified version of the circuit in (a).

$$A_{is} \equiv rac{i_o}{i_{
m sig}}$$

circuit shown in Fig. 5, from which we can find $i_o/i_{\rm sig}$ by using the current-divider rule:

$$A_{is} \equiv rac{i_o}{i_{
m sig}} = rac{g_m + rac{1}{r_o}}{g_m + rac{1}{r_o} + rac{1}{R_s}}$$

Thus,

$$A_{is} = rac{1 + rac{1}{g_m r_o}}{1 + rac{1}{g_m r_o} + rac{1}{g_m R_s}}$$

For $g_m r_o \gg 1$ and $g_m R_s \gg 1$

$$A_{is} \simeq 1$$

which is an important characteristic of a current buffer.

Output Resistance

Figure 6: Determining the output resistance $\boldsymbol{R}_{\mathrm{out}}$ of the CG amplifier.

$$R_{
m out} = rac{v_x}{i_x}$$

Some of the analysis is shown in Fig. 6. Now, a loop equation for the loop comprising v_x, r_o , and R_s gives

$$v_x = \left(i_x - g_m v_{gs}
ight) r_o + i_x R_s$$

Notice that the voltage at the source terminal is $-v_{gs}$ and thus can also be expressed as

$$-v_{gs} = i_x R_s$$

Substituting this value for v_{gs} in the previous equation and rearranging terms to obtain $R_{\rm out} \equiv v_x/i_x$ yields

$$R_{
m out} \, = r_o + R_s + g_m r_o R_s$$

which can be written in the alternate form

$$R_{
m out} = r_o + (1 + g_m r_o) R_s$$

For $g_m r_o \gg 1$

$$R_{
m out} \simeq r_o + (g_m r_o) R_s$$

and if we also have $g_m R_s \gg 1$, then

$$R_{
m out} \simeq (g_m r_o) R_s$$

Summary

Figure 7: The impedance transformation properties of the common-gate amplifier. Depending on the values of R_s and R_l , we can sometimes write and $R_{in} \approx R_L/(g_m r_o)$ and $R_o \approx R_s(g_m r_o)$. However, such approximations are not always justified