《 数理统计 》测试卷

- 一、 填空题
- 1. 设随机变量 $X \sim N(2, \sigma^2)$,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} = 0.2$
- 2. 设随机变量 (X,Y) 的概率密度为: $f(x,y) = \begin{cases} xe^{-x(1+y)}, & x>0, y>0 \\ 0, & others \end{cases}$, 则随机变量 Z = XY 的概率密度为 $f_Z(z) = \begin{cases} e^{-z}, & z>0 \\ 0, & others \end{cases}$.
- 3. 设 X_1, X_2, X_3, X_4, X_5 是总体 $X \sim N(0,1)$ 的样本,为使 $Y = \frac{c(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}} \sim t(3)$,则常数 $c = \sqrt{3/2}$.
- **4.** 设 X 、 Y 是两个随机变量,且 $D(X)=1, D(Y)=4, \operatorname{cov}(X,Y)=1$,记 $X_1=X-2Y$, $X_2=2X-Y$,则 X_1 与 X_2 的相关系数 = $\frac{5\sqrt{13}}{26}$.
- 5. 设某产品质量 $X \sim N(\mu, \sigma^2)$,今从中随机抽取 9 个样本,测定样本均值 x = 20.30,样本方差 $s^2 = 0.0325$,则在置信度 95% 下,参数 μ 的置信区间(计算结果保留 2 位小数)为 (20.16, 20.44).
- 二、设二维连续型随机变量(X,Y)的密度函数为 $f(x,y) = \begin{cases} Ax^2y, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & \text{others} \end{cases}$
 - (1) 求常数 A; (2) 求概率 $P\{X + 2Y \le 1\}$; (3) X = Y 是否独立?
- 解 (1) 由 $1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dy dx = A \int_{0}^{1} x^{2} dx \int_{0}^{1} y dy = \frac{1}{6} A$, $\therefore A = 6$

(2)
$$P\{X + 2Y \le 1\} = \int_0^1 dx \int_0^{\frac{1-x}{2}} 6x^2 y dy = \frac{3}{4} \int_0^1 (x^4 - 2x^3 + x^2) dx = \frac{1}{40}$$

(3)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 0 & x \le 0 \text{ if } x \ge 1 \\ \int_0^1 6x^2 y dy = 3x^2, & 0 < x < 1 \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} 0, & y \le 0 \text{ or } y > 1 \\ \int_{0}^{1} 6x^{2} y dx = 2y, & 0 < y < 1 \end{cases}$$

即 $f(x,y) = f_X(x) \cdot f_Y(y)$, 所以 X 与 Y 独立

三、设总体
$$X$$
 的概率密度为 $f(x,\theta) = \begin{cases} \theta \cdot x^{\theta-1}, & 0 < x < 1, \\ 0, & others \end{cases}$ $(\theta > 0)$,

- (1) 求 θ 的矩估计量 $\hat{\theta}$;
- (2) 求 θ 极大似然估计量 $\hat{\theta}_3$.

$$\mathbf{P} \qquad \mathbf{P} \qquad$$

(2)
$$L(\theta) = \prod_{i=1}^{n} \theta x_i^{\theta-1} = \theta^n (\prod_{i=1}^{n} x_i)^{\theta-1}, \quad 0 < x_i < 1,$$

$$\ln L(\theta) = n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln x_i , \quad \frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i = 0$$

解得
$$\theta = -\frac{n}{\sum_{i=1}^{n} \ln x_i}$$
,因此 θ 的极大似然估计量 $\hat{\theta}_2 = -\frac{n}{\sum_{i=1}^{n} \ln x_i}$.

四、 将一颗骰子掷 600 次,所得数据如下表所示:

点数 i	1	2	3	4	5	6
出现次数 f _i	85	75	90	115	110	125

问:这颗骰子是否均匀、对称?(显著性水平 $\alpha = 0.05$).

解 由题意,要检验假设

$$H_0: P_i = P\{X = k\} = \frac{1}{6}, k = 1, 2, \dots, 6$$

检验统计量: $\chi^2 = \sum_{i=1}^6 \frac{(f_i - np_i)^2}{np_i}$,

拒绝域: $W = \{\chi^2 \ge \chi^2_{1-\alpha}(k-r-1)\} = \{\chi^2 \ge \chi^2_{0.95}(5)\} = \{\chi^2 \ge 11.071\}$

列表计算如下

X = i	f_{i}	p_i	np_i	$f - np_i$	$\frac{(f - np_i)^2}{np_i}$
1	85	1/6	100	-15	2.25
2	75	1/6	100	-25	6.25
3	90	1/6	100	-10	1.00
4	115	1/6	100	15	2.25
5	110	1/6	100	10	1.00
6	125	1/6	100	25	6.25
Σ					19

 $\chi^2 = 19 > 11.071$, $\chi^2 \in W$, 拒绝原假设, 即认为这颗骰子不是均匀、对称的。

四、在 1500-1931 的 432 年间,世界上每年爆发战争的次数 X 可以看做是一个随机变量,据历史资料统计,这 432 年间共爆发了 299 战争,具体数据见下表

战争次数X	0	1	2	3	4
发生 X 次战争的年数	223	142	48	15	4

根据上述数据,问每年爆发战争的次数 X 是否服从泊松分布 ($\alpha = 0.05$)?

 \mathbf{M} 设统计假设为 H_0 : X 服从参数为 λ 的泊松分布,即

$$P{X = k} = \frac{\lambda^k}{k!}e^{-k}, k = 0,1,2,\dots$$

此时, 检验统计量为

$$\chi^2 = \sum_{i=0}^4 \frac{(f_i - np_i)^2}{np_i} \sim \chi^2(K - r - 1)$$
,

拒绝域为:

$$W = \{\chi^2 \ge \chi^2_{1-\alpha}(K-r-1)\},$$

其中 r 为总体分布中待估参数的个数.

因总体分布中含有 1 个未知参数 λ ,应先估计参数 λ . 由极大似然估计法得参数 λ 的极大似然估计值为: $\hat{\lambda} = \bar{x} = 0.69$.

按参数为 $\hat{\lambda}=0.69$ 的泊松分布,计算事件 $\{X=k\}$ 的概率 p_k ,得

战争次数X	f_k	p_k	np_k	f_k - np_k	$(f_k$ - $np_k)^2/np_k$
0	223	0.58	216.7	6. 3	0. 183
1	142	0.31	149.5	-7.5	0.376
2	48	0.18	51.6	-3.6	0. 251
3	15	0.01	12.0	14. 16	1.623
4	4	0.02	2. 16		
\sum	432				2. 433

将 np_k <4 的组予以相邻合并,即将发生次数 3 次及 4 次战争的组合并为一组,计算得上表. 又查表得 $\chi^2_{0.95}(2) = 5.991$,故拒绝域为:

$$W = \{\chi^2 \ge \chi_{1-\alpha}^2(K-r-1)\} = \{\chi^2 \ge 5.991\},\,$$

而检验统计量的值为

$$\chi^2 = 2.443 < 5.991$$
, $\mathbb{P} \chi^2 \notin W$.

从而接受原假设,即认为每年爆发战争的次数 X 是否服从参数为 0.69 的泊松分布.

五、 炼铝厂测得所产铸模用的硬度 x 与抗张强度 y 的数据如下表所示:

铝的硬度x	51	53	60	64	68	70	71	72	83	84	
抗张强度 y	283	293	290	286	288	340	348	354	324	343	_

- (1) 试建立y关于x的线性回归方程,并求误差方差的估计 $\hat{\sigma}^2$;
- (2) 试用 F 检验法检验回归方程的显著性 (取 $\alpha = 0.05$)。

解(1) 首先计算样本均值:
$$\bar{x} = \frac{1}{10} \sum_{i=1}^{10} x_i = 67.6$$
, $\bar{y} = \frac{1}{10} \sum_{i=1}^{10} y_i = 314.9$,

再计算离差平方和:
$$l_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 1102.4$$
, $l_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = 2077.6$

回归系数
$$\hat{\beta}_1 = l_{xy}/l_{xx} \approx 1.8846, \ \hat{\beta}_0 = y - \hat{\beta}_1 \times 187.5$$

从而得到回归方程 $\hat{y} = 187.5 + 1.8846x$

$$\mathbb{Z}$$
 $l_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = 7802.9$, $S_E^2 = S_T^2 - S_R^2 = l_{yy} - \widehat{\beta}_1 l_{xy} = 3887.5$,

$$\hat{\sigma}^2 = \frac{S_E^2}{n-2} = \frac{3887.5}{8} = 485.94$$

(2) 用
$$F$$
 检验法,取显著水平 $\alpha = 0.05$,检验统计量 $F = \frac{\hat{\beta}^2 l_{xx}}{\hat{\sigma}^2}$

拒绝域
$$K_0 = \{F > F_{1-\alpha}(1, n-2)\} = \{F > F_{0.95}(1,8) = 5.32\}$$
,

而
$$f = 8.057 > 5.32$$
,

故拒绝 H_0 ,即认为回归方程显著。

二、长征系列某一类火箭用 A_1 、 A_2 、 A_3 、 A_4 这 **4** 种燃料, B_1 、 B_2 、 B_3 这 **3** 种推进器做射程试验。每种燃料与每种推进器的组合各发射火箭 **2** 次,得射程数据如下表所列:

推进器 燃料	B_1	B_2	B_3
$A_{ m l}$	52.6, 58.3	41.2, 56.3	60.8, 65.2
A_2	49.1, 42.8	50.5, 54.1	51.6, 48.6
A_3	58.3, 60.3	73.2, 70.8	40.7, 39.3
A_4	75.8, 71.6	58.2, 52.3	48.7, 42.3

试问推进器和燃料及两者的交互作用对射程有无显著的影响? (显著性水平 $\alpha = 0.05$).

解 本题中视燃料为因素 A, 推进器为因素 B, 则

$$r = 4, \ s = 3, \ t = 2, \ \overline{X}_{ij\bullet} = \frac{1}{t} \sum_{k=1}^{t} X_{ijk} (i = 1, 2, \dots, r, \ j = 1, 2, \dots, s)$$

$$\overline{X}_{i\bullet\bullet} = \frac{1}{st} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} (i = 1, 2, \dots, r), \ \overline{X}_{\bullet j\bullet} = \frac{1}{rt} \sum_{i=1}^{r} \sum_{k=1}^{t} X_{ijk} (j = 1, 2, \dots, s),$$

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X^{2}_{ijk} - rst \overline{X}^{2} = 2600.96, \ S_{A} = st \sum_{i=1}^{r} (\overline{X}_{i\bullet\bullet} - \overline{X})^{2} = 273.76$$

$$S_{B} = st \sum_{j=1}^{s} (\overline{X}_{\bullet j\bullet} - \overline{X})^{2} = 366.82, \ S_{A\times B} = t \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{X}_{ij\bullet} - \overline{X}_{\bullet j\bullet} - \overline{X}_{i\bullet\bullet} + \overline{X})^{2} = 1737.06$$

$$S_{E} = S_{T} - S_{A} - S_{B} - S_{A\times B} = 223.32$$

查表得 $F_{0.95}(3,12) = 3.49$, $F_{0.95}(2,12) = 3.89$, $F_{0.95}(6,12) = 3.00$,

方差分析表:

73 ZZ 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
方差来源	平方和	自由度	均方	F值	F临界值		
因素 A (燃料)	273. 755	3	91.252	4.903	3.490		
因素 B(推进器)	366.823	2	183. 412	9.856	3.885		
交互作用 $A \times B$	1737.06	6	289.510	15. 557	2.996		
误差	223. 32	12	18.610				
总计	2600.958	23					

由于
$$F_A = \frac{S_A/(r-1)}{Se/(rs(t-1))} = 4.90 > F_{0.95}(3,12) = 3.49 ,$$

$$F_B = \frac{S_B/(s-1)}{Se/(rs(t-1))} = 9.86 > F_{0.95}(2,12) = 3.89 ,$$

$$F_{A\times B} = \frac{S_{A\times B}/((r-1)(s-1))}{Se/(rs(t-1))} = 15.56 > F_{0.95}(6,12) = 3.00$$

因此,不同燃料下的射程有显著影响,不同推进器下的射程有显著影响,推进器与温燃料之间的交互作用效应是显著的。

三、(本题 12 分)某试验被考察的因素有三个: A, B, C, 每个因素有三个水平,不考虑交互作用,选用正交表 $L_{0}(3^{4})$ 安排试验,试验结果如下

列号 试验号	1 A	2 B	3 C	4 空列	指标值
1	1	1	1	1	42
2	1	2	2	2	65

3	1	3	3	3	49
4	2	1	2	3	64
5	2	2	3	1	60
6	2	3	1	2	53
7	3	1	3	2	68
8	3	2	1	3	73
9	3	3	2	1	75

- (1) 试进行极差分析,给出满意的水平搭配(选望大指标);
- (2) 试进行方差分析,并给出方差分析表($\alpha = 0.05$);
- (3) 对以上两钟分析结果进行比较.

解 由已知,
$$p=9, n=3, r=\frac{p}{n}=3, R_j=\max_i T_{ij}-\min_i T_{ij}, T=\sum_i T_{ij}, S_j=\frac{1}{r}\sum_{i=1}^3 T_{ij}^2-\frac{T^2}{p}$$

经计算得下表

	A	В	С	空列
T_{1j}	156	174	168	177
T_{2j}	177	198	204	186
T_{3j}	216	177	177	186
R_{j}	60	24	36	9
S_{j}	618	114	234	18

(1) 极差分析:

$$主 \rightarrow 次$$
 $A \ C \ B$

较好的因素水平搭配为 $A_3C_2B_3$

(2) 方差分析表:

	# · · ·				
方差来源	平方和 S_j	自由度 f_j	S_j/f_j	$F_j = \frac{S_j / f_j}{S_e / f_e}$	显著性
A	618	2	309	34.3	*
В	114	2	57	6.33	不显著
С	234	2	117	13	*
e	18	2	9		

查表得 $F_{0.9}(2,2)=9.0$, $F_{0.95}(2,2)=19$, $F_{0.99}(2,2)=99$, 因此因素 A, C 作用显著,而因素 B 作用不显著。

(3) 对比极差分析与方差分析的结果是一致的。