Package 'metevalue'

May 25, 2023

Type Package
Title E-value in the Omics Data Association Studies
Version 0.2.3
Date 2023-05-24
Maintainer Yifan Yang <yfyang.86@hotmail.com></yfyang.86@hotmail.com>
Description In the omics data association studies, it is common to conduct the p-value corrections to control the false significance. Beyond the P-value corrections, E-value is recently studied to facilitate multiple testing correction based on V. Vovk and R. Wang (2021) <doi:10.1214 20-aos2020="">. This package provides E-value calculation for DNA methylation data and RNA-seq data. Currently, five data formats are supported: DNA methylation levels using DMR detection tools (BiSeq, DMRfinder, MethylKit, Metilene and other DNA methylation tools) and RNA-seq data. The relevant references are listed below: Katja Hebestreit and Hans-Ulrich Klein (2022) <doi:10.18129 b9.bioc.biseq="">; Altuna Akalin et.al (2012) <doi:10.18129 b9.bioc.methylkit="">.</doi:10.18129></doi:10.18129></doi:10.1214>
License Apache License (>= 2)
RoxygenNote 7.2.1
Depends sqldf, psych, dplyr, R (>= 3.5.0)
Encoding UTF-8
Suggests rmarkdown, prettydoc, knitr, ggplot2, tidyr, testthat (>= 3.0.0)
VignetteBuilder knitr
LazyData true
Config/testthat/edition 3
NeedsCompilation no
Author Yifan Yang [aut, cre, cph], Xiaoqing Pan [aut], Haoyuan Liu [aut]
R topics documented:
demo_biseq_DMR demo_biseq_methyrate demo_desq_out demo_DMRfinder_DMRs demo_DMRfinder_rate_combine

2 demo_biseq_DMR

	demo_methylkit_methyrate	5
	demo_methylkit_met_all	6
	demo_metilene_input	6
	demo_metilene_out	7
	evalue_buildin_sql	7
	evalue_buildin_var_fmt_nm	8
	metevalue.biseq	8
	metevalue.biseq.chk	
	metevalue.DMRfinder	11
	metevalue.DMRfinder.chk	13
	metevalue.methylKit	14
	metevalue.methylKit.chk	16
	metevalue.metilene	17
	metevalue.metilene.chk	19
	metevalue.RNA_general	20
	varevalue.metilene	
	varevalue.single_general	
Index		24
demo_	_biseq_DMR	

Description

The dummy output for BiSeq illustrating purpose. It is dummy.

Details

- seqnames: Chromosome

- start: The positions of the start sites of the corresponding region

- end: The positions of the end sites of the corresponding region

- width

- strand: Strand

- median.p

- median.meth.group1

- median.meth.group2

- median.meth.diff

Notice that there are "NaN" within the feature columns.

demo_biseq_methyrate BiSeq Methyrate Demo Dataset

Description

The methyrate for BiSeq illustrating purpose. It is dummy.

Details

The data includes 12 columns.

- chr: string Chromosome
- pos: int Position
- $g1\sim g2$: methylation rate data in groups, repeat 5 times. Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.

demo_desq_out

DESeq Output Dataset

Description

The output dummy data for "RNA" meythod illustrating purpose.

Details

The data includes 10 columns.

- treated1fb:
- treated2fb:
- treated3fb:
- untreated1fb:
- untreated2fb:
- untreated3fb:
- untreated4fb:

This data contains 8166 rows and 7 columns.

Examples

```
# library("pasilla")
# pasCts <- system.file("extdata",</pre>
                          "pasilla_gene_counts.tsv",
                          package="pasilla", mustWork=TRUE)
# pasAnno <- system.file("extdata",</pre>
                           "pasilla_sample_annotation.csv",
                           package="pasilla", mustWork=TRUE)
# cts <- as.matrix(read.csv(pasCts,sep="\t",row.names="gene_id"))</pre>
# coldata <- read.csv(pasAnno, row.names=1)</pre>
# coldata <- coldata[,c("condition","type")]</pre>
# coldata$condition <- factor(coldata$condition)</pre>
# coldata$type <- factor(coldata$type)</pre>
# library("DESeq2")
# colnames(cts)=paste0(colnames(cts),'fb')
# cts = cts[,rownames(coldata)]
# dds <- DESeqDataSetFromMatrix(countData = cts,</pre>
                                   colData = coldata,
                                   design = \sim condition)
# dds <- DESeq(dds)</pre>
# dat <- t(t(cts)/(dds$sizeFactor))</pre>
# dat.out <- dat[rowSums(dat >5)>=0.8*ncol(dat),]
# demo_desq_out <- log(dat.out)</pre>
```

demo_DMRfinder_DMRs

DMRfinder Output Demo Dataset

Description

The output dummy dataset for DMR finder illustrating purpose.

Details

The data includes 6 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups, repeat 2 times. Notice that there are "NaN" within the feature columns.

demo_DMRfinder_rate_combine

DMRfinder Methyrate Demo Dataset

Description

The methyrate for BiSeq illustrating purpose. It is dummy.

Details

The data includes 6 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups, repeat 2 times. Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.

demo_methylkit_methyrate

Methyrate Dataset

Description

The methyrate dataset samples "myCpG" data from the methylKit (a bioconductor package) for illustrating purpose.

Details

The data includes 6 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups (4 columns)

Please check the vignette "metevalue" for details.

References

Akalin, Altuna, et al. "methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles." Genome biology 13.10 (2012): 1-9. doi: 10.1186/gb20121310r87

6 demo_metilene_input

demo_methylkit_met_all

Methyrate output dataset from methylKit

Description

The methyrate dataset samples "myCpG" data from the methylKit (a bioconductor package) for illustrating purpose.

Details

The data includes 7 columns:

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- strand: Strand
- pvalue: The adjusted p-value based on BH method in MWU-test
- qvalue: cutoff for qvalue of differential methylation statistic
- methyl.diff: The difference between the group means of methylation level

Please check the vignette "metevalue" for details.

References

Akalin, Altuna, et al. "methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles." Genome biology 13.10 (2012): 1-9. doi: 10.1186/gb20121310r87

demo_metilene_input

Metilene Methyrate Demo Dataset

Description

The methyrate for metilene illustrating purpose. It is dummy.

Details

The data includes 18 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups.

Notice that there are "NaN" within the feature columns.

demo_metilene_out 7

demo_metilene_out

Metilene Demo Output Dataset

Description

The output dummy data for "metilene" meythod illustrating purpose.

Details

The data includes 10 columns.

- V1: string Chromosome
- V2: The positions of the start sites of the corresponding region
- V3: The positions of the end sites of the corresponding region
- V4- V10: data value.

Please check the vignette "metevalue" for details.

evalue_buildin_sql

Build-in data process function

Description

Build-in data process function

Usage

```
evalue_buildin_sql(a, b, method = "metilene")
```

Arguments

a data frame of the methylation rate

b data frame of output data corresponding to the "method" option

method "metilene" or "biseq", "DMRfinder" or "methylKit"

Value

a data frame combines data frame a and b corresponding to the "method" option

8 metevalue.biseq

```
evalue_buildin_var_fmt_nm
```

Build-in check file format function Perform the format check and data clean for the "metilene" or "biseq", "DMRfinder" or "methylKit" method correspondingly.

Description

Build-in check file format function Perform the format check and data clean for the "metilene" or "biseq", "DMRfinder" or "methylKit" method correspondingly.

Usage

```
evalue_buildin_var_fmt_nm(a, b, method = "metilene")
```

Arguments

a data frame of the methylation rate

b data frame of output data corresponding to the "method" option

method "metilene" or "biseq", "DMRfinder" or "methylKit"

Value

list(a, b) which contains the cleaned data correspondingly

Examples

metevalue.biseq

Calculate E-value of the BiSeq data format

Description

Please check vignette "metevalue" for details.

Usage

```
metevalue.biseq(
  methyrate,
  BiSeq.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

9 metevalue.biseq

Arguments

methyrate

is the methyrate file. For example:

The columns are (in order):

- chr: Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups

BiSeq.output

is the output file of BiSeq. The columns are (in order):

- segnames: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- width: The number of CpG sites within the corresponding region
- strand: Strand
- median.p: The median p-value among CpG sites within the corresponding
- median.meth.group1: The median methylation rate in the first group among CpG sites within the corresponding region
- median.meth.group2: The median methylation rate in the second group among CpG sites within the corresponding region
- median.meth.diff: The median methylation difference between groups among CpG sites within the corresponding region

adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

seperator, default is the TAB key. sep

bheader

a logical value indicating whether the BiSeq.output file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

- a dataframe, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

10 metevalue.biseq.chk

Examples

```
#\donttest{
#data("demo_biseq_methyrate")
#data("demo_biseq_DMR")
#example_tempfiles = tempfile(c("demo_biseq_methyrate", "demo_biseq_DMR"))
#tempdir()
#### write to temp file ####
#write.table(demo_biseq_methyrate, file=example_tempfiles[1],row.names=FALSE,
# col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_biseq_DMR, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#### compute e-value and its adjustment ####
#result = metevalue.biseq(example_tempfiles[1],
# example_tempfiles[2], bheader = TRUE)
#}
```

Description

Check the BiSeq data format

Usage

```
metevalue.biseq.chk(
   input_filename_a,
   input_filename_b,
   sep = "\t",
   bheader = FALSE
)
```

Arguments

```
input_filename_a
```

metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns: For exampe:

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):

- chr: Chromosome
- start: The position of the start site of the corresponding region
- end: The position of the end site of the corresponding region
- range: The range of the corresponding region

metevalue.DMRfinder 11

- strand: Strand
- median.p: The median of p-values in the corresponding region
- median.meth.group1 : The median of methylation level for the corresponding segment of group 1
- median.meth.group $\!2\!:$ The median of methylation level for the corresponding segment of group 2
- median.meth.diff: The median of the difference between the methylation level

sep separator, default is the TAB key.

bheader a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

Examples

```
#data("demo_biseq_methyrate")
#data("demo_biseq_DMR")
#example_tempfiles = tempfile(c("demo_biseq_methyrate", "demo_biseq_DMR"))
#tempdir()
#write.table(demo_biseq_methyrate, file=example_tempfiles[1],row.names=FALSE,
# col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_biseq_DMR, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#### compute e-value and its adjustment ####
#result = metevalue.biseq.chk(example_tempfiles[1],
# example_tempfiles[2], bheader = TRUE)
```

metevalue.DMRfinder

Calculate E-value of the DMRfinder data format

Description

Calculate E-value of the DMR finder data format

Usage

```
metevalue.DMRfinder(
  methyrate,
  DMRfinder.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

methyrate

is the methyrate file. For example:

12 metevalue.DMRfinder

chr pos g1 ... g1 g2 ... g2 chr1 1 0.1 ... 0.1 0.2 ... 0.2

The columns are (in order):

- chr: Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups

DMRfinder.output

is the output file of DMR finder.

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- CpG: The number of CpG sites within the corresponding region
- Control.mu: The average methylation rate in control group
- Expt1.mu: The average methylation rate in experiment group
- Control.Expt1.diff: The methylation difference between control and experiment groups
- Control.Expt1.pval: P-value based on Wald-test.

adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm',

'hommel', 'BH', 'BY'

sep seperator, default is the TAB key.

bheader a logical value indicating whether the DMR finder output file contains the names

of the variables as its first line. By default, bheader = FALSE.

Value

- a dataframe, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

```
data(demo_DMRfinder_rate_combine)
data(demo_DMRfinder_DMRs)
#example_tempfiles = tempfile(c("rate_combine", "DMRfinder_out"))
#tempdir()
#write.table(demo_DMRfinder_rate_combine, file=example_tempfiles[1],
```

metevalue.DMRfinder.chk 13

```
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_DMRfinder_DMRs, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue._DMRfinder(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
#head(result)
```

metevalue.DMRfinder.chk

Check the DMRfinder data format

Description

Check the DMRfinder data format

Usage

```
metevalue.DMRfinder.chk(
  input_filename_a,
  input_filename_b,
  sep = "\t",
  bheader = FALSE
)
```

Arguments

input_filename_a

the combined data of methylation rate file. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For exampe:

The columns are (in order):

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

the output file of DMR finder. The columns are (in order):

- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- CpG: The number of CpG sites within the corresponding region
- 'Control:mu': The absolute mean methylation level for the corresponding segment of the control group
- 'Exptl:mu': The absolute mean methylation level for the corresponding segment of the experimental group
- 'Control->Exptl:diff': The difference between the group means of methylation level
- p: p-value

14 metevalue.methylKit

sep separator, default is the TAB key.

bheader a logical value indicating whether the input_filename_b file contains the names

of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

Examples

```
data(demo_DMRfinder_rate_combine)
data(demo_DMRfinder_DMRs)
#example_tempfiles = tempfile(c("rate_combine", "DMRfinder_out"))
#tempdir()
#write.table(demo_DMRfinder_rate_combine, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_DMRfinder_DMRs, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.DMRfinder.chk(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
```

metevalue.methylKit

Calculate E-value of the methylKit data format

Description

Calculate E-value of the methylKit data format

Usage

```
metevalue.methylKit(
  methyrate,
  methylKit.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

methyrate

is the data of methylation rates of each sites and group. For example:

```
chr pos g1 ... g1 g2 ... g2
chr1 1 0.1 ... 0.1 0.2 ... 0.2
```

The columns are (in order):

- chr: Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups

metevalue.methylKit 15

methylKit.output

is the output data with e-value of each region

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- strand: Strand
- pvalue: The adjusted p-value based on BH method in MWU-test
- qvalue: cutoff for qvalue of differential methylation statistic
- methyl.diff: The difference between the group means of methylation level

adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm',

'hommel', 'BH', 'BY'

sep seperator, default is the TAB key.

bheader a logical value indicating whether the input filename b file contains the names

of the variables as its first line. By default, bheader = FALSE.

Value

- a dataframe, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

metevalue.methylKit.chk

Check the methylKit data format

Description

Check the methylKit data format

Usage

```
metevalue.methylKit.chk(
  input_filename_a,
  input_filename_b,
  sep = "\t",
  bheader = FALSE
)
```

Arguments

input_filename_a

the combined data of methylation rate file. This file is a sep (e.g. TAB) separated file with two key columns and several value columns: For exampe:

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

the output file of methylKit. a methylDiff or methylDiffDB object containing the differential methylated locations satisfying the criteria. The columns are (in order):

- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- strand: Strand
- p: p-value
- qvalue: The adjusted p-value based on BH method
- meth.diff : The difference between the group means of methylation level

sep

separator, default is the TAB key.

bheader

a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

metevalue.metilene 17

Examples

metevalue.metilene

Calculate E-value of the Metilene data format

Description

Calculate E-value of the Metilene data format

Usage

```
metevalue.metilene(
  methyrate,
  metilene.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

 ${\tt methyrate}$

metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For exampe:

```
chr pos g1 ... g1 g2 ... g2
chr1 1 0.1 ... 0.1 0.2 ... 0.2
```

The columns are (in order):

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

metilene.output

metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region

18 metevalue.metilene

```
- p : p-value based on MWU-test
```

- p2: p-value based on 2D KS-test

- m1: The absolute mean methylation level for the corresponding segment of group 1

- m2: The absolute mean methylation level for the corresponding segment of group 2

 $\verb|adjust.methods| is the adjust methods| of e-value. It can be 'bonferroni', 'hochberg', 'holm', \\$

'hommel', 'BH', 'BY'

sep seperator, default is the TAB key.

bheader a logical value indicating whether the metilene.output file contains the names of

the variables as its first line. By default, bheader = FALSE.

Value

a dataframe, the columns are (in order):

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

```
#### metilene example ####'
data(demo_metilene_input)
data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_metilene_out, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
#head(result)
```

metevalue.metilene.chk 19

metevalue.metilene.chk

Check the Metilene data format

Description

Check the Metilene data format

Usage

```
metevalue.metilene.chk(
  input_filename_a,
  input_filename_b,
  sep = "\t",
  bheader = FALSE
)
```

Arguments

input_filename_a

metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For exampe:

The columns are (in order):

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):

- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2

sep

separator, default is the TAB key.

bheader

a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

Examples

```
#data(demo_metilene_input)
#data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_metilene_out, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene.chk(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
```

metevalue.RNA_general A general method to calculate the e-value for RNA-seq data.

Description

A general method to calculate the e-value for RNA-seq data.

Usage

```
metevalue.RNA_general(rna, group1_name, group2_name)
```

Arguments

rna data.frame: A data.frame object of RNAseq data. For example:

TAG	treated1fb	treated2fb	untreated1fb	untreated2fb
TAG1	4.449648	4.750104	4.392285	4.497514
TAG2	8.241116	8.302852	8.318125	8.488796

Row names (TAG1 and TAG2 in the above example) is also suggested.

group1_name

charactor: The name (pattern) of the first group. For example, "treated" in the above example. For example 'treated_abc' and 'treated' will be considered as the same group if 'group1_name = "treated". Use this with care in practice.

group2_name

charactor: The name (pattern) of the second group. For example, "untreated" in the above example. For example 'untreated_abc' and 'untreated' will be considered as the same group if 'group2_name = "untreated"'. Use this with care in practice.

Value

evalue

varevalue.metilene 21

Examples

```
data("demo_desq_out")
evalue = metevalue.RNA_general(demo_desq_out, 'treated','untreated')
```

varevalue.metilene

Calculate E-value of the Metilene data

Description

The data file could be pre-handled by the evalue.metilene.chk function.

Usage

```
varevalue.metilene(
   a,
   b,
   a_b,
   group1_name = "g1",
   group2_name = "g2",
   adjust.methods = "BH"
)
```

Arguments

a A data.frame object:

i.e two key columns (chrom, pos) with several value columns in groups.

b

A data frame object stores the data, the columns are (in order):

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2

a_b

A data.frame object of a join b with particular data clean processes. Check the function [evalue.methylKit.chk()] for more details.

group1_name

charactor: The name of the first group. For example, "g1" in the above example.

```
group2_name charactor: The name of the second group. For example, "g2" in the above example.

adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'. The default value is 'BH'.
```

Value

- a dataframe, the columns are (in order):
- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

varevalue.single_general

A general method to calculate the e-value for other DNA methylation tools not described above. The input data is the DNA methylation rates using the similar format with Metilene.

Description

The input data file is just the DNA methylation rates using the similar format above, with no need for another data file output by different tools. The Chromosome name, start and end sites shoule be specified in the function.

Usage

```
varevalue.single_general(
  methyrate,
  group1_name = "g1",
  group2_name = "g2",
  chr,
  start,
  end
)
```

Arguments

methyrate

data.frame: A data.frame object of methylation rates, the columns should be (name of groups can be self-defined)

```
chr pos g1 ... g1 g2 ... g2
chr1 1 0.1 ... 0.1 0.2 ... 0.2
```

group1_name

charactor: The name (pattern) of the first group. For example, "g1" in the above example. For example 'g1_abc' and 'g1' will be considered as the same group if 'group1_name = "g1". Use this with care in practice.

group2_name

charactor: The name (pattern) of the second group. For example, "g2" in the above example. For example 'g2_abc' and 'g2' will be considered as the same group if 'group2_name = "g2". Use this with care in practice.

chr

charactor: The Chromosome name. Typically, it is a string like "chr21" and so

on.

start integer: The position of the start site of the corresponding region end integer: The position of the end site of the corresponding region

Value

evalue

```
#data("demo_metilene_input")
#varevalue.single_general(demo_metilene_input, chr = "chr21", start = 9437432, end = 9437540)
# [1] 2.626126e+43

#### Compare to `metevalue.metilene` ####
data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table (demo_metilene_out, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
# result[with(result, chr == 'chr21' & start == '9437432' & end == '9437540'), ncol(result)]
# [1] 2.626126e+43
```

Index

```
* The
                                                  metevalue.RNA_general, 20
    demo_desq_out, 3
                                                  varevalue.metilene, 21
* a
                                                  varevalue.single_general, 22
    demo_desq_out, 3
* data:
    demo_desq_out, 3
* data
    demo_desq_out, 3
* is
    {\tt demo\_desq\_out, 3}
*\ metevalue
    demo_biseq_DMR, 2
    demo_biseq_methyrate, 3
    demo_desq_out, 3
    demo_DMRfinder_DMRs, 4
    demo_DMRfinder_rate_combine, 5
    {\tt demo\_methylkit\_met\_all}, {\color{red} 6}
    demo_methylkit_methyrate, 5
    demo_metilene_input, 6
    demo_metilene_out, 7
\ast simulation
    demo_desq_out, 3
demo_biseq_DMR, 2
demo_biseq_methyrate, 3
demo_desq_out, 3
demo_DMRfinder_DMRs, 4
demo_DMRfinder_rate_combine, 5
demo_methylkit_met_all, 6
demo_methylkit_methyrate, 5
demo_metilene_input, 6
demo_metilene_out, 7
evalue_buildin_sql, 7
evalue_buildin_var_fmt_nm, 8
metevalue.biseq, 8
metevalue.biseq.chk, 10
metevalue.DMRfinder, 11
metevalue.DMRfinder.chk, 13
metevalue.methylKit, 14
metevalue.methylKit.chk, 16
metevalue.metilene, 17
metevalue.metilene.chk, 19
```