* **FMD 1:** Solve the 1st order ODE y' + 2y + 3 = 0 with both implicit and explicit Euler method with I.C. y(0)=1 and compare with the analytical solution:

$$y(t) = \frac{5}{2}e^{-2t} - \frac{3}{2}.$$

By plotting analytical solutions for different values of Δt , show that the explicit method becomes unstable for $\Delta t > 0.5$ whereas implicit method is unconditionally stable.

Sol:

i) h = 0.2

ii) h =0.6

iii) h =0.9

Q2)

*Heat Equation 1: Consider the system in which a thin rod of length L=10cm is placed between two heat reservoirs kept at 100 and 50°C, respectively. The initial temperature of the rod is 0°C. Write a code to compute heat evolution for 1st 100sec in the rod using explicit method of solving heat equation. Plot the result

- 1) In a 2D contour or surface plot
- 2) And in animated version

for two values of σ (=\kappa\delta t/\Delta x^2) greater and less than 0.5.

Sol:

i) sigma = 0.25

ii) sigma = **0**.4

iii) sigma = 1

*Heat Equation 2: Consider the system in which a thin rod of length L=10cm is placed between two heat reservoirs kept at 100 and 50°C, respectively. The initial temperature of the rod is 0°C. Write a code to compute heat evolution for 1st 100sec in the rod using **implicit method** of solving heat equation. Plot the result

- 1) In a 2D contour or surface plot
- 2) And in animated version

for two values of σ (= $\kappa\Delta t/\Delta x^2$) greater and less than 0.5.

Q3)

Sol: Case 1: sigma =0.4

Sigma = 1

Q4)

*Laplace equation: Write a program to solve the two dimensional Laplace equation $T_{xx} + T_{yy} = 0$ describing the steady state temperature distribution on a square plate of sides L=100 cm. Use same length for x- and y- increment. Show the temperature distribution T(x, y) using a surface plot for an x-y grid of minimum 20×20 segments. Vary number of greed points to fill the table below.

The boundary conditions are:

 $T(x = 0) = T(x = L) = 0^{\circ} C$, $T(y = 0) = -100^{\circ}$, $T(y = L) = 100^{\circ}$ at all time, corner points are assumed to have T equals to the average of adjoining sites.

Sol:

For delta = 2, 4, 5

For delta = 1

TABLE:

Slno	No. of grid Segments	No of iterations to converger	Total Calculations
1	20 X 20	1	400
2	25 X 25	1	625
3	50 X 50	1	2401
4	100 X 100	349	3351796