FICHA 08 – resolução

DPC

1. Mostre que se $\hat{\theta}$ é um estimador centrado (= não tendencioso) de θ , então $\hat{\theta}^2$ não é um estimador centrado de θ^2 .

Resolução:

Se $\hat{\theta}$ é um estimador centrado de θ , então, por definição, $E(\hat{\theta}) = \theta$. Queremos mostrar que, nestas condições, $\hat{\theta}^2$ é um estimador tendencioso de θ^2 , ou seja, que $E(\hat{\theta}^2) \neq \theta^2$. Temos:

$$V(\hat{\theta}) = E(\hat{\theta}^2) - (E(\hat{\theta}))^2 = E(\hat{\theta}^2) - \theta^2$$

Então, $E(\hat{\theta}^2) = \theta^2 \implies V(\hat{\theta}) = 0$, ou seja, $\hat{\theta}^2$ só é um estimador centrado de θ^2 se a sua variância for nula, o que significa que $\hat{\theta}$ seria determinístico (isto é, não aleatório). Como $\hat{\theta}$ é, em geral, obtido a partir de amostras aleatórias X_1, X_2, \dots, X_n de uma distribuição f_X (com variância não nula), $\hat{\theta}$ é ele próprio uma v.a. com variância não nula, logo $\hat{\theta}^2$ é um estimador tendencioso de θ^2 .

2. Considere uma amostra de tamanho n de uma variável aleatória X com distribuição Poisson (função de probabilidade a seguir).

$$f_X(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

Calcule o estimador de λ pelo método dos momentos.

Resolução:

Seja $\{x_1, x_2, \dots, x_n\}$ a amostra obtida, de tamanho n, da v.a. X com função (densidade) de probabilidade f_X . Suponha que f_X tem k parâmetros desconhecidos $\theta_1, \theta_2, \dots, \theta_k$, os quais queremos estimar a partir da amostra observada. Para cada $j \in \{1, 2, \dots\}$, seja $\mu_j = E(X^j)$ (chamado momento de ordem j da v.a. X) e seja $\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n x_i^j$ (momento de ordem j estimado a partir da amostra). O método dos momentos encontra estimativas $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k$, respetivas aos k parâmetros desconhecidos, resolvendo o seguinte sistema de equações (com k equações e k incógnitas):

$$\begin{cases} \mu_1(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_k) = \hat{\mu}_1 \\ \mu_2(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_k) = \hat{\mu}_2 \\ \vdots \\ \mu_k(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_k) = \hat{\mu}_k \end{cases}$$

Neste exercício, queremos estimar um único parâmetro, λ . Temos $\mu_1(\lambda) = E(X) = \lambda$ e, assim, pelo método dos momentos:

$$\mu_1(\hat{\lambda}) = \hat{\mu}_1 \Leftrightarrow \hat{\lambda} = \frac{1}{n} \sum_{i=1}^n x_i, \quad \text{(estimativa)}$$
$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^n X_i. \quad \text{(estimador)}$$

Nota: Por abuso de notação, utilizamos a mesma letra $(\hat{\lambda})$ para designar a estimativa e o estimador. Note, no entanto, que estimativa e estimador correspondem a conceitos diferentes, embora relacionados. A estimativa é o resultado de um processo de estimação, sendo por isso um valor numérico, calculado a partir dos valores observados na amostra recolhida, x_1, x_2, \dots, x_n . O estimador é a regra (função) que permite calcular a estimativa. Escreve-se como uma função das variáveis aleatórias X_1, X_2, \dots, X_n , que

representam o processo de amostragem aleatória. Por esse motivo, o próprio estimador é uma variável aleatória.

Por outras palavras, a estimativa é o resultado obtido quando se avalia o estimador para o caso particular em que as variáveis aleatórias X_1, X_2, \cdots, X_n tomam os valores numéricos x_1, x_2, \cdots, x_n .

- 3. Considere uma amostra de tamanho n de uma variável aleatória com distribuição uniforme no intervalo [0,a]. Calcule
 - (a) O estimador de a pelo método dos momentos.
 - (b) Discuta se este é um estimador sem tendência (=estimador centrado).

Resolução:

(a) $X \sim U(0, a) \Leftrightarrow f_X(x) = 1/a, 0 \le x \le a$, amostra $\{x_1, x_2, \dots, x_n\}$.

$$\mu_1(a) = E(X) = \frac{a}{2},$$

$$\mu_1(\hat{a}) = \hat{\mu}_1 \Leftrightarrow \frac{\hat{a}}{2} = \frac{1}{n} \sum_{i=1}^n X_i \Leftrightarrow \hat{a} = \frac{2}{n} \sum_{i=1}^n X_i.$$

(b) Para estudarmos a tendência do estimador \hat{a} , temos de calcular o seu valor esperado. Isso faz-se assumindo que cada X_i segue a mesma distribuição que X (notação: $X_i \stackrel{d}{=} X$), ou seja, assumindo que $f_{X_i} = f_X$ para todo o i. Temos então $E(X_i) = E(X) = a/2$ e:

$$E(\hat{a}) = E\left(\frac{2}{n}\sum_{i=1}^{n} X_i\right) = \frac{2}{n}\sum_{i=1}^{n} E(X_i) = \frac{2}{n}\sum_{i=1}^{n} \frac{a}{2} = \frac{2}{n}n\frac{a}{2} = a,$$

logo \hat{a} é um estimador centrado de a.

4. Para estimar a probabilidade de sair cara, p, associada ao lançamento de uma dada moeda, repete-se a experiência n vezes de forma independente e conta-se o número de sucessos (Y). Se X for uma variável aleatória com

$$\begin{cases} X = 1, \text{ se sai cara} \\ X = 0, \text{ se sai coroa} \end{cases}$$

então $Y = \sum_{i=1}^{n} X_i$.

Considere os seguintes dois estimadores de p: $\hat{P}_1 = Y/n$ e $\hat{P}_2 = (Y+1)/(n+2)$.

- (a) Averigue se \hat{P}_1 e \hat{P}_2 são estimadores centrados de p.
- (b) Calcule o erro quadrático médio de \hat{P}_1 e de \hat{P}_2 . Verifique que o de \hat{P}_2 é inferior ao de \hat{P}_1 quando p=0.5.

Resolução:

(a)
$$E(X) = 1 \times p + 0 \times (1 - p) = p,$$

$$E(Y) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} p = np,$$

$$E(\hat{P}_1) = E\left(\frac{Y}{n}\right) = \frac{E(Y)}{n} = p,$$

$$E(\hat{P}_2) = E\left(\frac{Y+1}{n+2}\right) = \frac{E(Y)+1}{n+2} = \frac{np+1}{n+2},$$

logo \hat{P}_1 é centrado e \hat{P}_2 é tendencioso.

(b) O erro quadrático médio de um estimador $\hat{\theta}$ define-se por $E\left[(\hat{\theta}-\theta)^2\right]$ e pode ser calculado através da fórmula:

$$E\left[(\hat{\theta} - \theta)^2\right] = \left(E(\hat{\theta}) - \theta\right)^2 + V(\hat{\theta}).$$
 (demonstre!)

O termo $|E(\hat{\theta}) - \theta|$ é conhecido por $tend\hat{e}ncia$ ou $vi\acute{e}s$ do estimador e é nulo se $\hat{\theta}$ for um estimador centrado. O segundo termo é a variância do estimador. Assim, o erro quadrático médio pode ser reduzido encontrando um estimador com menor tendência e/ou menor variância. Infelizmente, em muitas situações, estimadores com menor tendência apresentam maior variância e vice-versa. Este exercício ilustrará isso mesmo.

$$V(X) = E\left[(X - p)^2\right] = (1 - p)^2 p + (0 - p)^2 (1 - p) = p(1 - p),$$

$$V(Y) = V\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n V(X_i) = np(1 - p), \quad \text{(a 2a igualdade assume X_i indep.)}$$

$$E(\hat{P}_1) = p \implies \left(E(\hat{P}_1) - p\right)^2 = 0,$$

$$V(\hat{P}_1) = V\left(\frac{Y}{n}\right) = \frac{V(Y)}{n^2} = \frac{p(1 - p)}{n},$$

$$E\left[(\hat{P}_1 - p)^2\right] = \frac{p(1 - p)}{n}.$$

$$E(\hat{P}_2) = \frac{np + 1}{n + 2} \implies \left(E(\hat{P}_2) - p\right)^2 = \left(\frac{np + 1}{n + 2} - p\right)^2 = \left(\frac{1 - 2p}{n + 2}\right)^2,$$

$$V(\hat{P}_2) = V\left(\frac{Y + 1}{n + 2}\right) = \frac{V(Y + 1)}{(n + 2)^2} = \frac{np(1 - p)}{(n + 2)^2},$$

 $E\left[(\hat{P}_2 - p)^2\right] = \left(\frac{1 - 2p}{n + 2}\right)^2 + \frac{np(1 - p)}{(n + 2)^2}.$

Agora, assumindo p = 0.5 (caso em que a variância de X é máxima), teríamos:

$$E[(\hat{P}_1 - 0.5)^2] = \frac{0.25}{n},$$

$$E[(\hat{P}_2 - 0.5)^2] = \frac{0.25n}{(n+2)^2},$$

logo, apesar de \hat{P}_1 ser centrado e \hat{P}_2 tendencioso, temos $E\left[(\hat{P}_2-0.5)^2\right] < E\left[(\hat{P}_1-0.5)^2\right]$ (para todo o $n \ge 1$).

5. Considere a seguinte fdp

$$f(x) = c(1 + \theta x), \quad -1 \le x \le 1$$

- (a) Calcule o valor da constante c.
- (b) Utilize o método dos momentos para calcular o estimador de θ .
- (c) Demonstre que $\hat{\theta} = 3\bar{X}$ é um estimador de θ sem tendência.

Resolução:

(a) Se f é uma função densidade de probabilidade, então:

$$1 = \int_{-\infty}^{\infty} f(x) dx = \int_{-1}^{1} c(1 + \theta x) dx = c \left[x + \theta \frac{x^{2}}{2} \right]_{x=-1}^{1} = 2c \implies c = \frac{1}{2}.$$

(b)
$$\mu_1(\theta) = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-1}^{1} \frac{x}{2} (1 + \theta x) dx = \frac{\theta}{3}.$$

$$\mu_1(\hat{\theta}) = \hat{\mu}_1 \Leftrightarrow \frac{\hat{\theta}}{3} = \frac{1}{n} \sum_{i=1}^{n} X_i \Leftrightarrow \hat{\theta} = \frac{3}{n} \sum_{i=1}^{n} X_i.$$

(c) Note que \bar{X} é uma notação habitual para designar a v.a. que representa a média amostral, ou seja, $\bar{X}=(1/n)\sum_{i=1}^n X_i$. Assim,

$$E(\hat{\theta}) = E(3\bar{X}) = E\left(\frac{3}{n}\sum_{i=1}^{n}X_i\right) = \frac{3}{n}\sum_{i=1}^{n}E(X_i) = \frac{3}{n}n\frac{\theta}{3} = \theta,$$

logo $\hat{\theta} = 3\bar{X}$ é um estimador sem tendência.

6. Considere uma amostra de tamanho n de uma variável aleatória com distribuição

$$f(x) = \frac{1}{\theta^2} x e^{-x/\theta}, \quad 0 \le x < \infty$$

Calcule o estimador pelo método dos momentos de θ .

Resolução:

$$\mu_1(\theta) = E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_0^{\infty} \frac{1}{\theta^2} x^2 e^{-x/\theta} \, dx \qquad \text{(int. p/ partes: } u' = e^{-x/\theta}, \, v = x^2\text{)}$$

$$= -\frac{1}{\theta} \left[x^2 e^{-x/\theta} \right]_{x=0}^{\infty} + \frac{1}{\theta} \int_0^{\infty} 2x e^{-x/\theta} \, dx \qquad \text{(int. p/ partes: } u' = e^{-x/\theta}, \, v = x\text{)}$$

$$= -2 \left[x e^{-x/\theta} \right]_{x=0}^{\infty} + 2 \int_0^{\infty} e^{-x/\theta} \, dx$$

$$= -2\theta \left[e^{-x/\theta} \right]_{x=0}^{\infty} = 2\theta,$$

$$\mu_1(\hat{\theta}) = \hat{\mu}_1 \Leftrightarrow 2\hat{\theta} = \frac{1}{n} \sum_{i=1}^n X_i \Leftrightarrow \hat{\theta} = \frac{1}{2n} \sum_{i=1}^n X_i.$$

- 7. Uma variável aleatória X tem fdp $f(x) = (\beta + 1)x^{\beta}, 0 < x < 1.$
 - (a) Determine a estimativa do método dos momentos de β baseado numa amostra de tamanho n.
 - (b) Calcule a estimativa quando os valores amostrais forem 0.3; 0.8; 0.27; 0.35; 0.62; 0.55; 0.4; 0.6. Sabe-se que a soma destes valores é 3.89, o produto é 0.0019, o logaritmo da soma é 1.3584 e o logaritmo do produto é -6.2893.

Resolução:

(a)
$$\mu_1(\beta) = E(X) = \int_0^1 x(\beta + 1)x^\beta dx = \frac{\beta + 1}{\beta + 2},$$

$$\mu_1(\hat{\beta}) = \hat{\mu}_1 \Leftrightarrow \frac{\hat{\beta} + 1}{\hat{\beta} + 2} = \hat{\mu}_1 \Leftrightarrow \hat{\beta} = \frac{2\hat{\mu}_1 - 1}{1 - \hat{\mu}_1},$$

onde $\hat{\mu}_1 = (1/n) \sum_{i=1}^n x_i$.

(b) Temos $n=8, \sum_{i=1}^8 x_i=3.89,$ logo a estimativa de β é:

$$\hat{\beta} = \frac{2 \times 3.89/8 - 1}{1 - 3.89/8} \approx -0.054.$$