University of Balamand Department of Mathematics

Instructors:, Abou Daher, Dib,Farah.Examination: FinalCourse:Calculus IDate: 16 December 2020Semester:Fall 2020-2021Duration: 70 mins

Name:			
ID			
ID:			
Instructor:			
Section:			

- 1. Solve all questions and write your solution in clean, legible way.
- 2. Scan the papers on which the solution is written into a single PDF file.
- 3. The PDF file should be named as follows: LastName_FirstName_ID.
- 4. Upload the PDF file to Moodle before the deadline.
- 5. No late submissions will be allowed.

Question 1. [20%] Consider

$$\sum_{n=0}^{\infty} \frac{(-1)^n (2x-5)^n}{3^n \sqrt{n^2+2}}$$

Find the radius and interval of convergence, write the interval where the series converges absolutely, and identify (if they exist) the points where the series converge conditionally.

Question 2. [15%] Reverse the order, then evaluate the integral

$$\int_{1}^{2} \int_{y^{2}}^{y+2} (y+1) \ dx dy$$

Question 3.

- (a)[10%] Find the power series representation of $\sin x$ at $x = \frac{3\pi}{2}$.
- (b)[15%] Find the power series representation of $\tan^{-1}(3x^2)$ using $\frac{1}{1-x}$.

Question 4. [10%] Find the limit of the following functions using power series

$$\lim_{x\to 0} \frac{\sin x - x - \frac{x^3}{3!}}{x^3}$$

Question 5. [30%]

1. Evaluate the following integrals for some m integer number:

a)
$$\int_{-\pi}^{\pi} (3x - 1) \cos(mx) dx$$

a)
$$\int_{-\pi}^{\pi} (3x - 1) \cos(mx) dx$$
 b) $\int_{-\pi}^{\pi} (3x - 1) \sin(mx) dx$

2. Deduce the Fourier series for 3x - 1 for $-\pi < x < \pi$.