

Visible quantum cutting through downconversion in K Li Gd F 5 : Eu 3 + crystals

Nobuhiro Kodama and Shinya Oishi

Citation: Journal of Applied Physics 98, 103515 (2005); doi: 10.1063/1.2135893

View online: http://dx.doi.org/10.1063/1.2135893

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/98/10?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Investigation of Pr 3 + as a sensitizer in quantum-cutting fluoride phosphors Appl. Phys. Lett. **92**, 081106 (2008); 10.1063/1.2884690

Concentration-dependent near-infrared quantum cutting in Gd B O 3 : Tb 3 + , Yb 3 + nanophosphors Appl. Phys. Lett. **90**, 061914 (2007); 10.1063/1.2472195

 $1.84~\mu$ m emission of Tm 3 + sensitized by Yb 3 + ions in monoclinic K Gd (W O 4) 2 single crystals J. Appl. Phys. $101,\,033108$ (2007); 10.1063/1.2433131

Visible quantum cutting through downconversion in green-emitting K 2 Gd F 5 : Tb 3 + phosphors Appl. Phys. Lett. **89**, 131121 (2006); 10.1063/1.2358193

Visible quantum cutting through downconversion in Eu 3+ -doped KGd 3 F 10 and KGd 2 F 7 crystals Appl. Phys. Lett. **84**, 4141 (2004); 10.1063/1.1713038

Visible quantum cutting through downconversion in KLiGdF₅: Eu³⁺ crystals

Nobuhiro Kodama^{a)} and Shinya Oishi

Department of Materials Science and Engineering, Faculty of Engineering and Resource Science, Akita University, Akita 010-8502, Japan

(Received 1 February 2005; accepted 17 October 2005; published online 22 November 2005)

Visible quantum cutting through downconversion is observed for the Gd^{3+} – Eu^{3+} couple in $KLiGdF_5$: Eu^{3+} (KLGF: Eu^{3+}). In this Gd^{3+} -based fluoride, visible quantum cutting, the emission of two photons of visible light per absorbed photon, occurs upon vacuum ultraviolet excitation of Gd^{3+} at the 6G_J level via two-step energy transfer from Gd^{3+} to Eu^{3+} by cross relaxation and sequential transfer of the remaining excitation energy. The dependence of the efficiency of cross relaxation required for visible quantum cutting on the Eu^{3+} doping concentration is discussed in terms of the probability of energy transfer and the behavior of decay of the 5D_0 emission of Eu^{3+} , and it is found that the KLGF crystal doped with 2 at. ${}^6Eu^{3+}$ exhibits the maximum cross-relaxation efficiency of 0.4. From the number of nearest neighbors around Gd^{3+} ions and the 5D_0 emission intensity, energy transfer from excited Gd^{3+} ions is determined to extend to the fourth-nearest Eu^{3+} neighbors in the quantum cutting process. Eu^{3+} $Eu^$

I. INTRODUCTION

Crystals doped with rare-earth ions are promising photonic sources for applications such as lasers and scintillators.¹ Recently, vacuum ultraviolet (VUV) spectroscopy of rareearth ions has become an important field of luminescent materials research due to the emerging need for VUV-excited phosphors in applications such as plasma displays and mercury-free fluorescent tubes. In these devices, the discharge of a noble gas such as Xe is used to generate vuv radiation (147 nm), which is then converted to blue, green, or red light by a phosphor.² However, existing VUV-excited phosphors do not have sufficient conversion efficiency to achieve conversion of VUV radiation to visible light due to high energy losses associated with nonradiative relaxation processes. This is an inherent limitation of the conversion of one vuv photon to one visible photon via a phosphor. However, the high energy of vuv photons also theoretically allows a quantum efficiency of up to 200% for visible emission if two visible photons can be emitted for every VUV photon absorbed. This phenomenon is called quantum cutting or two-photon luminescence, and phosphors realizing this process are called quantum cutters.

The phenomenon of quantum cutting in the deep blue region (\sim 405 nm) was observed in the early 1970s for Pr³+-doped YF₃ and α -NaYF₄. ^{3,4} Research is now at the stage where the high-energy levels of rare-earth ions in the VUV region have been clarified, and the possibility of quantum cutting by two-photon emission from these levels by a single rare-earth ion have been studied. ⁵ However, efficient visible quantum cutting by two-photon emission for a single rare-earth ion has yet to be realized. Recently, in an attempt to identify efficient visible quantum cutters, Wegh *et al.* ^{6,7} proposed a concept based on the principle of downconversion for different combinations of two or three rare-earth ions. By this approach, quantum cutting occurs upon vuv

For the Gd³⁺-Eu³⁺ couple, visible quantum cutting with a quantum efficiency of higher than 100% is theoretically possible for VUV excitation in Gd3+-based fluoride crystals with an optimal Eu³⁺ concentration. Our group recently reported visible quantum cutting based on downconversion for KGd₃F₁₀:Eu³⁺ and KGd₂F₇:Eu³⁺. In the present study, KLiGdF₅ crystal doped with Eu³⁺ (KLGF:Eu³⁺) is characterized as a potential high-efficiency VUV-excited phosphor. Visible quantum cutting occurs in this system through twostep energy transfer from Gd³⁺ to Eu³⁺ by cross relaxation and sequential transfer of the remaining excitation energy under vuv excitation. Using KLGF: Eu³⁺ crystals doped with various concentrations of Eu3+, the dependence of the efficiency of cross relaxation between Gd3+ and Eu3+ on the Eu³⁺ doping concentration is discussed in terms of the probability of energy transfer between rare-earth ions and the decay and rise times in decay profiles of the Eu³⁺ emission. The characteristics of energy transfer from excited Gd³⁺ ions to neighboring Eu³⁺ ions are also investigated.

II. EXPERIMENT

KLGF crystal has a monoclinic structure with space group $P2_1/c$, 10 as shown in Fig. 1. The polycrystalline samples of KLGF:Eu³⁺ doped with Eu³⁺ (0.5, 1, 2, 5, and 10 at. %) were synthesized by sintering in an inert atmosphere (Ar gas) at 570 °C for 20 h using charges of fluorides with stoichiometric composition, which assume substitution of the Eu³⁺-ion dopant for Gd³⁺. The phases of powders obtained after grinding were identified by x-ray powder-diffraction analysis. The excitation spectra and luminescence spectra of VUV/UV excitation were measured at room temperature using a Kokenkogyo FS-200 fluorescence spectro-

excitation through energy transfer (downconversion) between different rare-earth ions. Visible quantum cutting based on downconversion has been reported for $LiGdF_4$: Eu^{3+} , 6 $LiGdF_4$: Er^{3+} , Tb^{3+} , 7 and $CsGd_2F_7$: Er^{3+} , Dv^{3+} .

a)Electronic mail: kodama@ipc.akita-u.ac.jp

FIG. 1. Unit cell of the $KLiGdF_5$ crystal structure. Gd^{3+} , K^+ , Li^+ , and F^- ions are denoted by large shaded, small shaded, solid, and open circles, respectively.

photometer. The decay curves of the Eu³⁺ luminescence were measured using a TIT time-resolved photoluminescence spectrometer.

III. RESULTS AND DISCUSSION

An energy-level diagram illustrating visible quantum cutting through two-step energy transfer in Gd^{3+} -based crystals doped with Eu^{3+} is shown in Fig. 2.⁶ In this system, quantum cutting occurs upon excitation at the 6G_J levels of a Gd^{3+} ion. The excitation energy in the first step migrates to a neighboring Gd^{3+} ion from a Eu^{3+} ion, then part of the excitation energy is transferred to a Eu^{3+} ion by cross relaxation,

FIG. 2. Energy-level scheme showing the concept of visible quantum cutting through two-step energy transfer (downconversion) for the Gd^{3+} – Eu^{3+} couple. In the first step, part of the excitation energy is transferred to a Eu^{3+} ion by cross relaxation. In the second step, the remaining energy is transferred from the 6P_J level of Gd^{3+} to a high-energy level of another Eu^{3+} .

exciting Eu³⁺ to the 5D_0 level and bringing a Gd³⁺ ion to the 6P_J level. Subsequently, $\mathrm{Eu^{3+}}$ emits a visible photon due to the ${}^5D_0 \rightarrow {}^7E_I$ transition. In the second step, the Gd³⁺ ion in the ${}^{6}P_{J}$ state transfers the remaining excitation energy to the high-energy state of another Eu³⁺ ion through migration via the Gd³⁺ sublattice. After fast nonradiative relaxation from this high excited state to the 5D_I levels, a second visible photon is emitted due to the $^5D_{0,1,2,3} \rightarrow ^7F_J$ transition with a normal branching ratio. Consequently, a substantial increase in the relative intensity of the 5D_0 emission from the 6G_J levels is expected if quantum cutting through two-step energy transfer occurs. The occurrence of quantum cutting can therefore be evaluated by comparing the emission spectrum for excitation at the 6G_J levels of Gd^{3+} (202 nm) with that at the ${}^{6}I_{I}$ levels of Gd³⁺ (273 nm). In this study, a two-step energy transfer process yielding a visible quantum efficiency of greater than 100% is predicted for KLGF: Eu3+ at an optimal Eu³⁺ concentration.

The emission spectra for KLGF doped with 0.5-10 at. % Eu³⁺ were observed upon excitation at the 6G_I level (202 nm) and ${}^{6}I_{I}$ level (273 nm) of Gd³⁺. Figures 3(a)-3(d) show the emission spectra for KLGF doped with 2, 0.5, 5, and 10 at. % Eu³⁺ as typical examples. The strongest emission lines in the emission spectra for all samples correspond to those for the transitions from the 5D_0 level, although emissions from the 5D_1 levels are also observed. Very weak emission lines were also observed for the 5D_2 and 5D_3 levels (data not shown). The $^5D_0/^5D_{1,2,3}$ emission intensity ratio for KLGF doped with 2 at. % Eu³⁺ [Fig. 3(a)] is 5.0 under vuv excitation at the 6G_I level, while that for excitation at the ${}^{6}I_{J}$ level is 3.3. Thus, the relative intensity of the 5D_0 emission lines for KLGF doped with 2 at. % Eu³⁺ under excitation at the ${}^{6}G_{J}$ level is approximately 1.5 times greater than that for excitation at the ${}^{6}I_{J}$ level. This observed increase in relative intensity suggests that quantum cutting occurs in KLGF doped with 2 at. % Eu³⁺ upon excitation at the ⁶G₁ level of Gd³⁺ (VUV) through two-step energy transfer involving cross relaxation and sequential transfer of the remaining excitation energy. The occurrence of visible quantum cutting via downconversion was observed for four KLGF: Eu³⁺ samples (0.5, 1, 2, and 5 at. % Eu³⁺) upon VUV excitation, but not for the 10 at. % Eu³⁺ sample. The maximum relative intensity was obtained for KLGF: Eu³⁺ with 2 at. % Eu³⁺.

The excitation spectra for the ${}^5D_0 \rightarrow {}^7F_1$ (594 nm) and ${}^5D_1 \rightarrow {}^7F_1$ (538 nm) emissions of KLGF doped with 2 at. % Eu³⁺ are shown in Fig. 4. The intensity of the ${}^8S_{7/2} \rightarrow {}^6G_J$ excitation lines for Gd³⁺ under vuv excitation is approximately 1.5 times greater in the excitation spectrum for 5D_0 emission than for 5D_1 emission. This observation is consistent with the features of the emission spectra in Fig. 3(a) and also substantiates the presence of quantum cutting through downconversion.

The efficiency of cross relaxation between Gd^{3+} in the 6G_J state and Eu^{3+} in the 7F_J state can be calculated by evaluating the 5D_0 and ${}^5D_{1,2,3}$ integrated emission intensities using the following equation:

FIG. 3. Emission spectra of (a) KLiGdF₅ doped with 2 at. % Eu³⁺, (b) KLiGdF₅ doped with 0.5 at. % Eu³⁺, (c) KLiGdF₅ doped with 5 at. % Eu³⁺, and (d) KLiGdF₅ doped with 10 at. % Eu³⁺ upon excitation at (I) the 6G_J levels of Gd³⁺ (202 nm) and (II) the 6I_J levels of Gd³⁺ (273 nm). The spectra are scaled with respect to $^5D_1 \rightarrow ^7F_J$ emission intensity.

$$\frac{P_{\rm CR}}{P_{\rm CR} + P_{\rm DT}} = \frac{R(^5D_0/^5D_{1,2,3})^6_{G_J} - R(^5D_0/^5D_{1,2,3})^6_{I_J}}{R(^5D_0/^5D_{1,2,3})^6_{I_J} + 1}.$$
 (1)

Here, $P_{\rm CR}$ and $P_{\rm DT}$ are the probabilities of cross relaxation and direct energy transfer, and $R(^5D_0/^5D_{1,2,3})^{_{6}G_J}$ and $R(^5D_0/^5D_{1,2,3})^{_{6}G_J}$ are the intensity ratios of 5D_0 emission to $^5D_{1,2,3}$ emission upon 6G_J excitation and 6I_J excitation, respectively. The efficiency of the cross-relaxation step in KLGF: Eu³⁺ was determined using the intensity ratios obtained from the emission spectra.

Figure 5 shows the dependence of the calculated efficiency of the cross-relaxation step on the Eu³⁺ doping concentration in KLGF: Eu³⁺. With increasing Eu³⁺ doping concentration, the cross-relaxation efficiency passes through a maximum of 0.4 at 2 at. % Eu³⁺, at which the Gd³⁺-Eu³⁺ (and/or Gd³⁺-Gd³⁺) interactions required for the cross relaxation may be strongest. If it is assumed that there are no nonradiative losses due to energy migration to quenching centers (defects and impurities), the quantum efficiency will be given by $P_{\rm CR}/(P_{\rm CR}+P_{\rm DT})+1$. Using this expression, the visible quantum efficiency for KLGF with 2 at. % Eu³⁺ is approximately 140%. In optimized Eu³⁺-doped KLGF of high quality, the quantum efficiency may be even higher.

Although the absolute quantum efficiencies have not been determined and the nonradiative losses remain unknown, the very weak $^6P_J \rightarrow ^8S_{7/2}$ emission (311 nm) for Gd³⁺ under UV excitation compared to the total emission intensity suggests that energy transfer from Gd³⁺ to Eu³⁺ is highly efficient.

The energy transfer that takes place from Gd^{3+} to Eu^{3+} in quantum cutting can occur at any Eu^{3+} concentration, as Gd^{3+} and Eu^{3+} are always present as neighbor pairs. Nevertheless, the energy-transfer process clearly exhibits a strong dependence on the Eu^{3+} concentration, as shown in Fig. 5. This can be explained as follows. At low Eu^{3+} concentrations, the cross-relaxation probability between Eu^{3+} ions is small, resulting in Eu^{3+} emission from all excited 5D_J levels for the Eu^{3+} ion fed by the first step in the quantum cutting process and in emission from the 5D_0 level only in the second step. Energy migration over the Gd^{3+} sublattice in concentrated Gd compounds is also known to occur, providing efficient energy transfer at low Eu^{3+} concentrations through the efficient trapping behavior of Eu^{3+} in energy migration over the Gd^{3+} sublattice.

At higher Eu³⁺ concentrations, cross relaxation takes place between Eu³⁺ ions through direct energy transfer from Gd^{3+} to a Eu³⁺ level at $\sim 50~000~cm^{-1}$ or direct absorption of

FIG. 4. Excitation spectra obtained by monitoring intensities for (I) the ${}^5D_0 \rightarrow {}^7F_1$ (594 nm) emission and (II) the ${}^5D_1 \rightarrow {}^7F_1$ (538 nm) emission of KLiGdF₅ doped with 2 at. % Eu³⁺. The spectra are scaled with respect to the ${}^8S_{7D} \rightarrow {}^6I_J$ excitation intensity.

Eu³⁺ instead of Gd³⁺. This process effectively reduces energy transfer due to cross relaxation between Gd^{3+} in the 6G_I state and Eu^{3+} in the ${}^{7}F_{I}$ state, as can be proven by measuring the excitation spectra as a function of the Eu³⁺ concentration. After direct energy transfer to Eu³⁺ or direct absorption on Eu³⁺, fast relaxation occurs from the highly excited Eu³⁺ states to 5D_I (J=1,2,3,4) states. In such a case, the Eu³⁺ ions undergo cross relaxation between the ${}^5D_{I+1} \rightarrow {}^5D_I$ (J =0,1,2) states in one Eu³⁺ ion and the ${}^{7}F_{0} \rightarrow {}^{7}F_{J'}$ (J' =1-6) states in another Eu³⁺ ion, resulting in intense emission from the 5D_0 state alone. ¹² This suggests that less cross relaxation occurs between Gd3+ and Eu3+ than that required for quantum cutting, and thus the occurrence of quantum cutting via cross relaxation cannot be observed. To examine whether cross relaxation between Eu³⁺ ions increases with $\mathrm{Eu^{3+}}$ concentration, the decay curves of the $\mathrm{Eu^{3+}}\,^5D_0 \!\to\! ^7\!F_1$ emission intensity were measured for KLGF: Eu3+ and the rise and decay times were evaluated for all samples.

Figure 6 shows the decay curves of $\mathrm{Eu^{3+}}^{5}D_{0} \rightarrow {}^{7}F_{1}$ emission intensity for KLGF doped with 0.5–10 at. % $\mathrm{Eu^{3+}}$ upon excitation at 380 nm (i.e., the ${}^{5}L_{J}$, ${}^{5}G_{J}$, and ${}^{5}D_{4}$ levels of $\mathrm{Eu^{3+}}$). The decay curves fit well to a single exponential function, and the decay times decrease from 9.2 to 7.7 ms

FIG. 5. Dependence of efficiency of cross-relaxation step on Eu³⁺ doping concentration in KLiGdF₅.

FIG. 6. Luminescence decay curves of the Eu³+ $^5D_0 \rightarrow ^7F_1$ emission in KLiGdF₅ doped with 0.5, 1, 2, 5, and 10 at. % Eu³+ after pulse excitation at 380 nm into the 5L_J , 5G_J , and 5D_4 levels of Eu³+.

with increasing Eu³⁺ doping concentration in this range. KLGF doped with 0.5 at. % Eu³⁺ exhibits a slow rise in Eu³⁺ emission intensity to a delay time of \sim 3 ms after pulse excitation, after which the emission also decays slowly. With increasing Eu³⁺ concentration, the intensity rises faster and the KLGF sample with 10 at. % Eu³⁺ exhibits a rise time of just \sim 1 ms. The decrease in rise time is brought about by a more rapid increase in the population of the 5D_0 level by cross relaxation between $^5D_{J+1} \rightarrow ^5D_J$ (J=0,1,2) and $^7F_0 \rightarrow ^7F_J$, (J'=1-6). As a result, intense 5D_0 emissions can be observed for KLGF with higher Eu³⁺ concentrations.

In the emission spectra for KLGF with 10 at. % Eu³⁺, similar increases in the 5D_0 emission are seen relative to the 5D_1 emission for excitation at both the 6G_J and 6I_J levels [Fig. 3(d)]. The fast rise and decay at Eu³⁺ concentrations greater than 5 at. % also suggest that fast relaxation occurs from the highly excited Eu³⁺ states to the 5D_J (J=1,2,3,4) states through VUV absorption by Eu3+ or direct energy transfer from Gd³⁺ to Eu³⁺ followed by cross relaxation between Eu3+. Therefore, in KLGF: Eu3+ with up to 2 at. % Eu³⁺, the probability of the transfer of excitation energy from Gd3+ to Eu3+ by cross relaxation becomes higher with increasing Eu³⁺ concentration, causing 5D_0 emission due to cross relaxation to occur more efficiently. However, the efficiency of cross relaxation between Gd^{3+} in the ${}^{6}G_{I}$ state and Eu³⁺ in the ${}^{7}F_{I}$ state, followed by energy transfer in quantum cutting process, decreases at Eu³⁺ concentrations higher than 5 at. %. Thus, there exists an optimum Eu³⁺ concentration in KLGF: Eu³⁺ with respect to the probability of crossrelaxation energy transfer, identified in the present study to occur at about 2 at. %. However, further experiments on the decay of 5D_0 and 5D_1 emissions upon excitation at the 6G_J and ${}^{6}I_{I}$ levels of Gd³⁺ will be necessary to clarify the dynamic behavior of energy transfer in the quantum cutting process.

The number of neighbors N to which the excitation energy of a rare-earth ion can be transferred in the quantum cutting process has been reported to be related to the critical

concentration X_C at which the concentration quenching of rare-earth ion emission due to cross relaxation or energy transfer to defects begins.¹³ The relation is given as a simple approximation by $X_C=2/N$. Applying this relation to the present results reveals that cross relaxation and energy migration between Gd³⁺-Eu³⁺ and/or Gd³⁺-Gd³⁺ are strongest at 2 at. % Eu³⁺. Thus, from Fig. 5, $N \cong 100$ for KLGF: Eu³⁺ with 2 at. % Eu³⁺. On the basis that every rare-earth ion (Gd³⁺ or Eu³⁺) in the KLiGdF₅ lattice has three first-nearest rare-earth neighbors, every rare-earth ion has three rare-earth first-nearest neighbors at 3.8 Å, 15 second-nearest neighbors at 7.7 Å, 45 third-nearest neighbors at 11.5 Å, and 141 fourth-nearest neighbors at 15.3 Å. It can therefore the concluded from the number of rare-earth neighbors that effective energy transfer from Gd^{3+} excited to the 6G_I level in the quantum cutting process extends out to the fourth-nearest Eu³⁺ neighbors. The distance of the effective energy transfer is evaluated to be about 15 Å based on the nearestneighboring Gd³⁺-Gd³⁺ interatomic distance (~3.8 Å) and the KLiYF₅ structure and lattice constants determined by x-ray diffraction.¹⁰ In KLGF:Eu³⁺, the efficiency of cross-relaxation energy transfer from Gd³⁺ to Eu³⁺ is not particularly high (maximum efficiency, \sim 0.4), despite the existence of energy-conserving pathways. The probability of cross relaxation by dipole-dipole interaction may therefore be competitive with the radiative transition probability (4f-4f transitions), as in $\text{LiGd}_{1-x}\text{Eu}_x\text{F}_4$. ¹⁴ For sufficient energy transfer to occur by cross relaxation, it is considered necessary to invoke exchange interactions and energy migration. Taking into account that the distance of effective energy transfer in KLGF: Eu³⁺ (\sim 15 Å) is quite large for direct exchange interactions, which operate only over short distances (e.g., nearest-neighbor distances), 12 there is a possibility that superexchange interactions contribute to the energy transfer in KLGF: Eu³⁺. Further experiments are therefore necessary to verify whether energy transfer over such long distances is possible and to identify the applicable cross-relaxation process.

IV. CONCLUSIONS

Visible quantum cutting through downconversion was observed for the $\mathrm{Gd^{3+}-Eu^{3+}}$ couple in KLGF: $\mathrm{Eu^{3+}}$. The dependence of the efficiency of the cross-relaxation step in downconversion on the $\mathrm{Eu^{3+}}$ doping concentration was discussed in terms of the probability of energy transfer between the rare-earth ions and the decay property of 5D_0 emission for $\mathrm{Eu^{3+}}$. The highest cross-relaxation efficiency was found to be 0.40, obtained for KLGF crystal doped with 2 at. % $\mathrm{Eu^{3+}}$. Based on the number of nearest-neighbor rare-earth ions and the 5D_0 emission intensity, the transfer of energy from excited $\mathrm{Gd^{3+}}$ ions in KLGF: $\mathrm{Eu^{3+}}$ appears to extend to the fourth-nearest $\mathrm{Eu^{3+}}$ neighbors in the quantum cutting process.

ACKNOWLEDGMENT

This work was supported in part by a Grant-in-Aid for Exploratory Research from the Japan Society for the Promotion of Science (No. 16656198).

¹G. Blasse and B. C. Grabmaier, *Luminescenct Materials* (Springer-Verlag, Berlin, 1994).

²C. R. Ronda, J. Alloys Compd. **225**, 534 (2995).

J. L. Sommerdijk, A. Bril, and A. W. de Jager, J. Lumin. 8, 341 (1974).
W. W. Piper, J. A. DeLuca, and F. S. Ham, J. Lumin. 8, 344 (1974).

⁵R. T. Wegh, H. Donker, and J. Holsa, Phys. Rev. B **56**, 13841 (1997).

⁶R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science **283**, 663 (1999).

⁷R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, J. Lumin. **90**, 111 (2000).

⁸A. N. Belsky, N. M. Khaidukov, J. C. Krupa, V. N. Makhov, and A. Philippov, J. Lumin. 94–95, 45 (2001).

⁹N. Kodama and Y. Watanabe, Appl. Phys. Lett. **84**, 4141 (2004).

¹⁰A. V. Goryunov, A. I. Popov, N. M. Khaidukov, and P. P. Fedorv, Mater. Res. Bull. **27**, 213 (1992).

¹¹B. Henderson and G. F. Imbuh, Optical Spectroscopy in Inorganic Solids (Clarendon, Oxford, 1989).

¹²S. Tanabe, K. Hirao, and N. Soga, J. Non-Cryst. Solids **142**, 148 (1992).

¹³P. A. M. Berdowski and G. Blasse, J. Solid State Chem. **63**, 86 (1986).

¹⁴J. P. M. van Vliet, G. Blasse, and L. H. Brixner, J. Electrochem. Soc. 135, 1574 (1988)