(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 16.09.1998 Bulletin 1998/38
- (21) Application number: 95107604.1
- (22) Date of filing: 18.05.1995

- (51) Int Cl.⁶: **C07D 307/80**, C07D 307/83, C07D 417/12, C07D 307/84, C07D 333/56, C07D 409/10, C07D 405/10, C07D 407/12, A61K 31/34, A61K 31/38, A61K 31/44, A61K 31/41, A61K 31/535
- (54) Oxalylamino-benzofuran- and benzothienyl-derivatives

Oxalylamino-Benzofuran- und Benzothienylderivate
Dérivés de oxalylamino-benzofuranne et -benzothienyle

- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE

 Designated Extension States:

 LT SI
- (30) Priority: 31.05.1994 GB 9410891 31.05.1994 GB 9410863
- (43) Date of publication of application: 06.12.1995 Bulletin 1995/49
- (73) Proprietor: BAYER AG 51368 Leverkusen (DE)
- (72) Inventors:
 - Bräunlich, Gabriele, Dr. D-42115 Wuppertal (DE)
 - Fischer, Rüdiger, Dr. D-50933 Köln (DE)
 - Es-Sayed, Mazen, Dr. D-42115 Wuppertal (DE)

Hanko, Rudolf, Dr.
 D-40237 Düsseldorf (DE)

(11)

- Tudhope, Stephen, Dr.
 Windsor Berkshire SL4 4JH (GB)
- Sturton, Graham, Dr.
 Bray Maldenhead SL 62 DW (GB)
- Abram, Trevor, Dr.
 Marlow Buckinghamshire (GB)
- McDonald-Gibson, Wendy J., Dr.
 Exelme Wallingford, Oxford, OX106HD (GB)
- Fitzgerald, Mary F., Dr.
 Begbroke Oxford, OX51RN (GB)
- (56) References cited:

EP-A- 0 146 243

EP-A- 0 551 662

EP-A- 0 623 607

CHEMICAL ABSTRACTS, vol. 77, no. 23, 4
 December 1972 Columbus, Ohio, US; abstract no. 151884g, A.E. BRANDSTROM ET AL.
 'Pharmacologically active benzofuran derivatives' page 395; column 2;

P 0 685 474 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

The invention relates to Oxalylamino-benzofuran- and benzothienyl-derivatives, processes for their preparation and their use in medicaments.

It is known that the NADPH oxidase of phagocytes is the physiological source to the superoxide radical anion and reactive oxygen species derived therefrom which are important in the defence against pathogens. Uncontrolled formation leads to tissue damage in inflammatory processes. It is additionally known that elevation of phagocyte cyclic AMP leads to inhibition of oxygen radical production and that this cell function is more sensitive than others such as aggregation or enzyme release (cf. Inb. Arch. Allergy Immunol., vol. 97: pp 194-199, 1992).

Benzofuran- and benzothiophene derivatives having lipoxygenase-inhibitimg action are described in the publication EP 146 243.

Surprisingly it was found that compounds given by the general formula (I) inhibited oxygen radical formation and elevated cellular cyclic AMP levels probably by inhibition of phagocyte phosphodiesterase activity.

The invention relates to Oxalylamino-benzofuran- and benzothienyl-derivatives of the general formula (I)

15

20

35

40

45

50

55

5

10

$$R_3 \xrightarrow{L} N \xrightarrow{R_1} T \xrightarrow{A} CO - R_4$$
 (I)

25 in which

L represents an oxygen or sulfur atom,

42

represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms or represents halogen, carboxyl, cyano, nitro, trifluoromethyl or a group of a formula -OR5, -SR6 or -NR7R8, in which

R5, R6 and R8

are identical or different and denote hydrogen, cycloalkyl having 3 to 6 carbon atoms, benzyl or a 5 to 7-membered saturated or unsaturated heterocycle having up to 3 heteroatoms from the series comprising N, S and O and to which a phenyl ring can be fused and which is optionally substituted by identical or different substituents from the series comprising halogen, cyano, nitro or by a straight-chain or branched alkyl having up to 6 carbon atoms, or denote straight-chain or branched alkyl or alkenyl each having up to 8 carbon atoms, or denote phenyl, which is optionally monosubstituted to disubstituted by identical or different substituents from the series comprising nitro, halogen, carboxy or straight-chain or branched alkoxycarbonyl having up to 6 carbon atoms,

Jack Carpin

or

R5 denotes a hydroxyl protecting group,

and

- R7 denotes hydrogen or a straight-chain or branched alkyl having up to 4 carbon atoms,
- R² represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms,
- R3 represents hydroxyl, benzyloxy or straight-chain or branched alkyl or alkoxy each having up to 10 carbon atoms, and each of which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising halogen, carboxyl, trifluoromethyl, phenyl, cyano, or straight-chain or branched alkoxy or oxyacyl each having up to 6 carbon atoms, morpholinyl or by a residue of a formula

5

10

15

20

25

30

35

represents aryl having 6 to 10 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising halogen, cyano, nitro, carboxyl, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 6 carbon atoms, or represents a group of a formula -NR9R10,

in which

R9 and R10

are identical or different and denote hydrogen, cycloalkyl having 3 to 6 carbon atoms or denote straight-chain or branched alkyl having up to 8 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising carboxy, straight-chain or branched alkoxy, alkoxycarbonyl or acyl each having up to 6 carbon atoms or phenyl, or

denote anyl having 6 to 10 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising halogen, cyano, nitro, carboxy, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 6 carbon atoms, or

denote a group of a formula -SO₂R¹¹, in which

denotes straight-chain or branched alkyl having up to 6 carbon atoms, which is opto the state of th trifluoromethyl, cyano, nitro or straight-chain or branched alkyl having up to 6 carbon atoms.

or RЗ

represents a residue of a formula

40

represents an oxygen or sulfur atom,

45

50

represents hydrogen, hydroxyl, cycloalkyl having up to 6 carbon atoms, carboxy or straight-chain or branched alkoxy or alkoxycarbonyl each having up to 6 carbon atoms, or represents straight-chain or branched alkyl or alkenyl each having up to 8 carbon atoms and each of which is optionally monosubstituted by cyano or by a 5 to 7-membered saturated or unsaturated heterocycle having up to 4 heteroatoms from the series comprising N, S and O, which is optionally substituted by identical or different substituents from the series comprising hydroxy, halogen, cyano, nitro or by a straight-chain or branched alkyl having up to 6 carbon atoms, or alkyl and/or alkenyl are optionally substituted by a group of a formula

(CH₂)a O or

10 in which

5

25

40

45

- a denotes a number 1 or 2
- and in which both rings are optionally monosubstituted by hydroxy, halogen or by straight-chain or branched alkyl having up to 6 carbon atoms, or alkyl and/or alkenyl are optionally monosubstituted by a group of a formula -CO-R¹², -CO-NR¹³R¹⁴, -CONR¹⁵-SO₂-R¹⁶ or -PO(OR¹⁷)(OR¹⁸), -OR¹⁹ or
- 20 R₂₁ R₂ CC
 - R¹² denotes hydroxyl, cycloalkyloxy having up 3 to 7 carbon atoms or straight-chain or branched alkyl or alkoxy each having up to 8 carbon atoms,
- 30 R13; R14 and R15 are identical or different and represent hydrogen, a straight-chain or branched alkyl having up to 6 carbon atoms, phenyl or benzyl,

or

35 R¹³ denotes hydrogen

in which

and

- R¹⁴ denotes a 5- to 7-membered saturated or unsaturated heterocycle having up to 3 heteroatoms from the series comprising N, S and O, hydroxyl or a residue of the formula
 - , ,

50 or

- R13 and R14 together with the nitrogen atom form a 5- or 6-membered saturated heterocycle,
- denotes a straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by phenyl or trifluoromethyl, or denotes phenyl, which is optionally substituted by substituents from the series comprising halogen, cyano, nitro or by a straight-chain or branched alkyl having up to 6 carbon atoms,

		R ¹⁷ , R ¹⁸ and R ¹⁹	are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms,
5		R ²⁰	denotes hydrogen, an aminoprotecting group or straight-chain or branched alkyl having up to 6 carbon atoms,
		R ²¹ and R ²²	are identical or different and denote hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
10		or	
		R ²¹ has the abo	overnentioned meaning and
15		branched a	cloalkyI having 3 to 6 carbon atoms or aryI having up 6 to 10 carbon atoms or straight-chain or lkyI having up to 8 carbon atoms, which is optionally substituted by cyano, methylthio, hydroxy, guanidyI or a group of a formula -NR ²³ R ²⁴ or R ²⁵ -CO-,
20		R ²³ and R ²	have the meaning shown above for R ¹³ , R ¹⁴ and R ¹⁵ and are identical to the latter or different from the latter
		R ²⁵	denotes hydroxyl, benzyloxycarbonyl, straight-chain or branched alkoxy having up to 6 carbon atoms or the abovementioned group -NR 23 R 24
25		which is optionally atoms or by the a	lly substituted by cycloalkyl having 3 to 6 carbon atoms, or by aryl having 6 to 10 carbon atoms, v substituted by hydroxyl, halogen, nitro, straight-chain or barnched alkoxy having up to 8 carbon bovernentioned group of the formula -NR ²³ R ²⁴
30	te.	atoms wherein op	tionally all -NH-functions are protected by straight-chain or branched alkyl having up to 6 carbon research in a line of the protected by straight-chain or branched alkyl having up to 6 carbon research in a line of the protecting group,
	or		
35	Α	represents a gro in which	up of the formula -CONR ¹³ 'R ¹⁴ ',
		R ^{13'} and R ^{14'}	are identical or different and have the abovementioned meaning of R ¹³ and R ¹⁴ ,
40	and		
40	R ⁴	-	7 membered, saturated or unsaturated heterocycle, which can contain up to 4 oxygen, sulphur
45		are optionally me hydroxyl, naphth thiazolyl, thienyl branched alkyl,	atoms as heteroatoms and to which further a benzene ring can be fused and wherein all rings concoubstituted to trisubstituted by identical or different substituents from the series comprising yl, adamantyl, thiophenyl, cycloalkyl having up to 3 to 6 carbon atoms, halogen, nitro, tetrazolyl, furanyl, pyridyl, trifluoromethyl, phenoxy, difluoromethyl, cyano, carboxy, straight-chain or alkoxy, alkoxycarbonyl or acyl each having up to 11 carbon atoms or by a group of formula 12 , 13 , 13 , 14 , 15 , 1
50			CH ₃ CH ₃ CH ₃ CO-CO ₂ H ₅

in which

	R ²⁶ and R ²⁷	have the meaning shown above for ${\sf R}^9$ and ${\sf R}^{10}$ and are identical to the latter or different from the latter,
5	or	
5	R ²⁶ denotes hydr	ogen
	and	
10	R ²⁷	denotes straight-chain or branched acyl having up to 6 carbon atoms
	R ²⁸	denotes straight-chain or branched alkyl having up to 6 carbon atoms,
15	R ²⁹ and R ³⁰	are identical or different and represent straight-chain or branched alkyl having up to 6 carbon atoms, benzyl or phenyl, which are optionally substituted by trifluoromethyl, halogen or straight-chain or branched alkyl having up to 6 carbon atoms,
20	H31	denotes straight-chain or branched alkoxycarbonyl or alkyl having up to 6 C-atoms or carboxyl,
20	b	denotes a number 0 or 1,
	or	
25		substituted by phenyl or phenoxy, which are optionally monosubstituted to trisubstituted by ro, straight-chain or branched alkyl, acyl, hydroxyalkyl, alkoxy or alkoxycarbonyl each having
<i>a</i> .	or or	

R4

... ११ वर्ष क सर्वे स्टेर्डिंग क्रीफ़र्नुद्री, दे

40

45

50

55

2 ...

The Oxalylamino-benzofuran- and benzothienyl-derivatives according to the invention can also be present in the form of their salts. In general, salts with organic or inorganic bases or acids may be mentioned here.

represents adamantyl, cycloalkyl or cycloalkenyl each having up to 6 carbon atoms,

Physiologically acceptable salts are preferred in the context of the present invention. Physiologically acceptable salts of the Oxalylamino-benzofuran- and benzothienyl-derivatives can be metal or ammonium salts of the substances according to the invention, which contain a free carboxylic group. Those which are particularly preferred are, for example, sodium, potassium, magnesium or calcium salts, and also ammonium salts which are derived from ammonia, or organic amines, such as, for example, ethylamine, di- or triethylamine, di- or triethanolamine, dicyclohexylamine, dimethylaminoethanol, arginine, lysine or ethylenediamine.

Physiologically acceptable salts can also be salts of the compounds according to the invention with inorganic or organic acids. Preferred salts here are those with inorganic acids such as, for example, hydrochloric acid, hydrobromic acid, phosphoric acid or sulphuric acid, or salts with organic carboxylic or sulphonic acids such as, for example, acetic acid, maleic acid, fumaric acid, malic acid, citric acid, tartaric acid, ethanesulphonic acid, benzenesulphonic acid, toluenesulphonic acid or naphthalenedisulphonic acid.

Salts of the inventive compounds can also denote, that carboxylic functions can built salts with bases.

Preferably, such bases can be sodium or potassium hydroxide or carbonates, amines or aminacidadducts such as

or ammonium.

The compounds according to the invention can exist in stereoisomeric forms which either behave as image and mirror image (enantiomers), or which do not behave as image and mirror image (diastereomers). The invention relates both to the antipodes and to the racemate forms, as well as the diastereomer mixtures. The racemate forms, like the diastereomers, can be separated into the stereoisomerically uniform constituents in a known manner.

Hydroxyl protective group in the context of the above-mentioned definition in general represents a protective group from the series comprising: trimethylsilyl, tert.butyl-dimethylsilyl, benzyl, 4-nitrobenzyl, 4-methoxybenzyl, acetyl, tetrahydropyranyl, benzoyl and naphthoyl.

Heterocycle in general represents a 5- to 7-membered saturated or unsaturated, preferably 5- to 6- membered, saturated or unsaturated ring which can contain up to 4 oxygen, sulphur and/or nitrogen atoms as heteroatoms and to which further aromatic ring can be fused.

The following are mentioned as preferred: thienyl, furyl, pyrrolyl, pyridyl, pyridyl, pyrazinyl, pyridazinyl, quinolyl, isoquinolyl, quinazolyl, quinoxazolyl, cinnolyl, thiazolyl, dihydrothiazolyl, benzothiazolyl, isothiazolyl, benzisothiazolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, indolyl, morpholinyl, pyrrolidinyl, piperidyl, piperazinyl, oxazolyl, oxazolyl

Amino protective group in the context of the above mentioned definition in general represents a protective group from the series comprising:

b enzyloxycarbonyl, 3,4-dimethoxybenzyl oxycarb onyl, 3,5-dimethoxyb enzyl oxycarbonyl, 2,4-dimethoxybenzyloxycarbonyl, 4-mitrobenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl, 2-nitro-4, 5-dimethoxybenzyl oxycarbonyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, tert.butoxycarbonyl, allyloxycarbonyl, vinyloxycarbonyl, 2-nitrobenzyloxycarbonyl, 3,4,5-trimethoxybenzyloxycarbonyl, cyclohexoxycarbonyl, 1,1-dimethylethoxycarbonyl, adamantylcarbonyl, phthaloyl, 2,2,2-tri chlorethoxycarbonyl, 2,2,2-trichlor-tertbutoxycarbonyl, menthyloxycarb onyl, phenoxycarbonyl, 4-nitrophenoxycarbonyl, fluorenyl-9-methoxycarbonyl, formyl, acetyl, propionyl, pivaloyl, 2-chloracetyl, 2-bromacetyl, 2,2,2-trifluoracetyl, 2,2,2-trichloracetyl, 4-chlorbenzoyl, 4-brombenzoyl, 4-nitrobenzoyl, phthalimido, isovaleroyl oder benzyloxymethylen, 4-nitrobenzyl, 2,4-dinitrobenzyl or 4-nitrophenyl.

Preferred compounds of the general formula (I) are those in which

- 25 L represents an oxygen or sulfur atom,
 - R1 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms or represents fluorine, chlorine, bromine, nitro, trifluoromethyl or a group of a formula -OR5, -SR6 or -NR7R8, in which
 - R⁷ denotes hydrogen or a straight-chain or branched alkyl having up to 3 carbon atom,
 - R⁵, R⁶ and R⁸ are identical or different and denote hydrogen, cyclopropyl, cyclopentyl, cyclohexyl, chinolyl, pyridyl, imidazolyl, 1,3-thiazolyl or thienyl, which are optionally substituted by identical or different substituents from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro or by a straight-chain or branched alkyl having up to 5 carbon atoms, denote straight-chain or branched alkyl or alkenyl each having up to 6 carbon atoms, or denote phenyl, which is optionally monosubstituted to disubstituted by identical or different substituents from the series comprising nitro, fluorine, chlorine, bromine, iodine, carboxy or straight-chain or branched alkoxycarbonyl having up to 5 carbon atoms, or
 - R⁵ denotes benzyl, acetyl or tetrahydropyranyl,
- 45 R2 represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
 - R3 represents hydroxyl, benzyloxy or straight-chain or branched alkyl or alkoxy each having up to 8 carbon atoms, and each of which is optionally monosubstituted to disubstituted by identical or different substituents from the series comprising fluorine, chlorine, bromine, carboxyl, trifluoromethyl, phenyl, cyano, straight-chain or branched oxyacyl or alkoxy each having up to 4 carbon atoms, morpholinyl or by a residue of a formula

55

50

5

10

15

20

30

35

10

15

20

25

30

35

5

or represents phenyl, which is optionally monosubstituted by substituents from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro, carboxyl or by a straight-chain or branched alkyl, alkoxy or alkoxycarbonyl each having up to 5 carbon atoms, or represents a group of a formula -NR⁹R¹⁰,

in which

R9 and R10

are identical or different and denote hydrogen, cyclpropyl, cyclopentyl, cyclohexyl, or denote straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising carboxy, straight-chain or branched alkoxy, alkoxycarbonyl or acyl each having up to 5 carbon atoms or phenyl, or denote phenyl, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising fluorine, chlorine, bromine, iodine, carboxy, cyano, nitro or by a straight-chain or branched alkyl, alkoxy or alkoxycarbonyl each having up to 5 carbon atoms, or

denote a group of a formula -SO₂R¹¹ in which

III WITHCI

R11

denotes straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by phenyl, or denotes phenyl, which is optionally substituted by trifluoromethyl, cyano, nitro or straight-chain or branched alkyl having up to 4 carbon atoms,

or

R3

T

represents a residue of a formula

40

represents an oxygen or sulfur atom,

45

A represents hydrogen, cyclopropyl, cyclobutyl, cylcopentyl, hydroxyl, carboxy or straight-chain or a branched alkoxy or alkoxycarbonyl each having up to 5 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 6 carbon atoms and each of which is optionally monosubstituted by cyano, tetrazolyl, oxazolyl, oxazolyl, thiazolyl or a group of a formula

50

$$\begin{array}{cccc}
& (CH_2)a \\
& > O \\
& O \\$$

in which

a denotes a number 1 or 2,

and in which all rings are optionally monosubstituted by hydroxy, fluorine, bromine, chlorine or by straight-chain or branched alkyl having up to 4 carbon atoms,

or alkyl or alkenyl are optionally monosubstituted by a group of a formula -CO-R¹², -CO-NR¹³R¹⁴, -CONR¹⁵-SO₂-R¹⁶, -PO(OR¹⁷)(OR¹⁸) or -OR¹⁹

in which

R12 denotes hydroxyl, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy or straight-chain or

branched alkyl or alkoxy each having up to 6 carbon atoms,

R¹³, R¹⁴ and R¹⁵ are identical or different and represent hydrogen, straight-chain or branched alkyl having

up to 4 carbon atoms, phenyl or benzyl,

or

R¹³ denotes hydrogen,

and

R14 denotes hydroxyl, thiazolyl, dihydrothiazolyl or a residue of the formula

25

30

35

40

55

10

15

20

or

R¹³ and R¹⁴ together with the nitrogen atom form a pyrrolidinyl, morpholinyl or a piperidinyl ring,

R16

denotes a straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally

substituted by phenyl or trifluoromethyl, or

denotes phenyl, which is optionally substituted by substituents from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro or by straight-chain or branched alkyl having up to 4 codes stores.

ing up to 4 carbon atoms,

R17, R18 and R19

are identical or different and represent hydrogen or straight-chain or branched alkyl having

up to 6 carbon atoms,

45 or

A represents a group -CONR¹³'R¹⁴', in which

50 R13' and R14'

have the abovementioned meaning of R13 and R14 and are identical or different to the latter,

and

R4 represents phenyl, or

represents pyridyl, imidazolyl, pyrazolyl, thienyl, isothiazolyl, 1,3-thiazolyl or benzo[b]thiophenyl, where in all rings are optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising hydroxyl, naphthyl, adamantyl, phenoxy thiophenyl, thienyl, cyclopentyl, cyclohexyl, fluorine, chlorine, bromine, iodine, nitro, tetrazolyl, thiazolyl, furanyl, pyridyl, trifluoromethyl, difluoromethyl, cyano, carboxy,

straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 10 carbon atoms or by a group of formulae -NR²⁶R²⁷, -SR²⁸, SO₂R²⁹, -O-SO₂R³⁰, -(CH₂)_b-O-CO-R³¹,

CH₃ CH₃ CO-CO₂H₂

in which

5

10

15

20

30

35

40

45

50

55

or

R²⁶ and R²⁷ have the meaning shown above for R⁹ and R¹⁰ and are identical to the latter or different from the latter,

or

R²⁶ denotes hydrogen,

and

R²⁷ denotes straight-chain or branched acyl having up to 6 carbon atoms,

25 R²⁸ denotes straight-chain or branched alkyl having up to 4 carbon atoms,

R²⁹ and R³⁰ are identical or different and represent straight-chain or branched alkyl having up to 5 carbon atoms or phenyl, which is optionally substituted by trifluoromethyl, fluorine, chlorine, bromine

स्थानसम्बद्धः ११ ११ सि

or straight-chain or branched alkyl having up to 3 carbon atoms,

R³¹ denotes straight-chain or branched alkoxycarbonyl or alkyl each having up to 4 carbon atoms

or carbonyl,

5 10 5

b denotes a number 0 or 1,

denotes a number of the

phenyl is optionally substituted by phenyl or phenoxy, which are optionally monosubstituted to trisubstituted by fluorine, chlorine or bromine, formyl, nitro, straight-chain or branched acyl, alkyl, hydroxyalkyl, alkoxy, alkoxycarbonyl each having up to 4 carbon atoms,

R4 represents adamantyl, cyclopropyl, cyclopentyl, cyclopentyl, cyclopentenyl or cyclohexenyl,

and salts thereof.

Particularly preferred compounds of the general formula (I) are those in which

- L represents an oxygen or sulfur atom,
- R1 represents hydrogen, straight-chain or branched alkyl having up to 3 carbon atoms, fluorine, chlorine, bromine, nitro, trifluoromethyl or a group of a formula -OR⁵, in which
 - R5 denotes hydrogen, benzyl, acetyl, or denotes straight-chain or branched alkyl each having up to 3 carbon atoms, or denotes phenyl,
- R² represents hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
- R3 represents hydroxyl, benzyloxy or straight-chain or branched alkyl or alkoxy each having up to 7 carbon atoms,

which is optionally substituted by substituents from the series comprising fluorine, chlorine, bromine, trifluoromethyl, carboxyl, phenyl, cyano, straight-chain or branched alkoxy or oxyacyl each having up to 5 carbon atoms, morpholinyl or by a residue of a formula

5

10

15

^

represents phenyl, which is optionally monosubstituted by different substituents from the series comprising fluorine, chlorine or bromine, or

represents a group of a formula -NR $^9\mathrm{R}^{10}$,

in which

20 R9 and R10

are identical or different and denote hydrogen, cyclopropyl, cyclopentyl, cyclohexyl or denote straight-chain or branched alkyl having up to 4 carbon atoms, or

denote phenyl,

or

25

30

R3 represents a residue of a formula

35

T represents an oxygen atom or sulfur,

A re al 40 ha

represents hydrogen, cyclopropyl, cyclobutyl, cyclopentyl, hydroxyl, carboxy, or straight-chain or a branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 5 carbon atoms and each of which is optionally monosubstituted by cyano, tetrazolyl, oxazolyl, oxazolinyl, thiazolyl or a group of the formula

in which

50

45

a denotes a number 1 or 2,

or alkyl or alkenyl are optionally monosubstituted by a group of a formula -CO- R^{12} , -CO- $NR^{13}R^{14}$ or -OR¹⁹, in which

55

R¹² denotes hydroxyl, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy or straight-chain or branched alkyl or alkoxy each having up to 5 carbon atoms,

R13 and R14 are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 3 carbon atoms, phenyl or benzyl,

or

5

15

25

30

35

40

45

R13 denotes hydrogen,

and

10 R14 denotes hydroxyl, thiazolyl, dihydrothiazolyl or a residue of the formula

医维性性囊肿病 经实际指数差额

20 or

R¹³ and R¹⁴ together with the nitrogen atom form a pyrrolidinyl, morpholinyl or piperidinyl ring,

R¹⁹ denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,

A represents a group of the formula -CONR¹³'R¹⁴', in which to the State of Equation (1998).

R13' and R14' have the abovementioned meaning of R13 and R14 and are identical or different to the latter,

and

R4 represents phenyl, or

represents pyridyl,' thienyl, furyl which are optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising hydroxyl, naphthyl, adamantyl, thiophenyl, cyclopentyl, cyclohexyl, fluorine, chlorine, bromine, nitro, tetrazolyl, thiazolyl, thienyl, furanyl, pyridyl, phenoxy, trifluoromethyl, difluoromethyl, cyano, carboxyl, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 9 carbon atoms or by a group of formulae -NR²⁶R²⁷, SR²⁸ or -(CH₂)_b-O-CO-R³¹,

 $\begin{array}{c|c}
CH_3 & CH_3 \\
 & & \\
N & \text{or} & \\
 & & \\
N & CO-CO_2H_5,
\end{array}$

50 in which

R²⁶ and R²⁷ have the meaning shown above for R⁹ and R¹⁰ and are identical to the latter or different from the latter,

55 or

R²⁶ denotes hydrogen,

and

R²⁷ denotes straight-chain or branched acyl having up to 5 carbon atoms,

R²⁸ denotes straight-chain or branched alkyl having up to 4 carbon atoms,

R31 denotes straight-chain or branched alkoxycarbonyl or alkyl each having up to 4 carbon atoms or carboxy,

b denotes a number 0 or 1,

5

10

15

or phenyl is optionally substituted by phenyl or phenoxy, which are optionally monosubstituted to trisubstituted by fluorine, chlorine, bromine, nitro, formyl or straight-chain or branched acyl, alkoxy, alkyl, hydroxyalkyl or alkoxycarbonyl, each having up to 3 carbon atoms,

or

R4 represents adamantyl, cyclopentyl, cyclohexyl, cyclopentenyl or cyclohexenyl.

20 and salts thereof.

A process for the preparation of the compounds of the general formula (I) has additionally been found, characterized in that at first compounds of the general formula (II)

25

30

35

in which

R1, R4, A and T have the abovementioned meaning

and

E represents straight-chain or branched acyl having up to 6 carbon atoms or another typical aminoprotecting group,

by elimination of the group E are converted into compounds of the general formula (III)

40

45

50 in which

R¹, R⁴, T and A have the abovementioned meaning, which in a further step are reacted with compounds of the general formula (IV)

55 R³-CO-CO-Z

(IV)

in which

- R3 has the abovementioned meaning, and
- Z denotes CI or Br,

35

40

45

50

- 5 in inert solvents, if appropriate in the presence of a base and/or in the presence of an auxiliary, and, if appropriate, the protective groups are split off,
 - further amino groups are alkylated, esters are hydrolysed, acids are esterified with the appropriate alcohols in the presence of a catalyst,
 - or the esters directly or the free carboxylic acids are reacted with amines.
 - The process according to the invention can be illustrated by way of example by the following equations:

- Suitable solvents are generally customary organic solvents which do not change under the reaction conditions. These include ethers such as diethyl ether, dioxane or tetrahydrofurane, acetone, dimethylsulfoxide, dimethylformamide or alcohols such as methanol, ethanol, propanol or halogenohydrocarbons such as dichlormethane, trichloromethane or tetrachloromethane. Methanol and dichloromethane are preferred.
- Suitable bases are generally inorganic or organic bases. These preferably include alkali metal hydroxides such as, for example, sodium hydroxide, sodium hydrogencarbonate or potassium hydroxide, alkaline earth metal hydroxides such as, for example, barium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate, alkaline earth metal carbonates such as calcium carbonate, or alkaline metal oder alkaline earth metal alkoxides such as sodium methoxide or potassium methoxide, sodium ethoxide or potassium tert.-butoxide, or

organic amines (trialkyl(C1-C6)amines) such as triethylamine, or heterocycles such as 1,4-diazabicyclo(2.2.2)octane (DABCO), 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU), or amides such as sodium amides, lithium butyl amide or butyllithium, pyridine or methylpiperidine. It is also possible to employ alkali metals, such as sodium or its hydrides such as sodium hydride, as bases. Potassium carbonate, triethylamine, sodium hydrogencarbonate and sodium-hydroxide are preferred.

The process is in general carried out in a temperature range from +10°C to +150°C, preferably from +20°C to +60°C.

The process is generally carried out at normal pressure. However, it is also possible to carry out it at elevated pressure or at reduced pressure (for example in a range from 0.5 to 5 bar).

The base is employed in an amount from 1 mol to 10 mol, preferably from 1.0 mol to 4 mol, relative to 1 mol of the compounds of the general formula (III).

The elimination of the amino protective groups is carried out by customary methods, for example by acid in the presence of an alcohol, preferably with HCl/methanole or with p-toluene sulfonic acid / HCl in dimethylformamide.

The elimination of the amino protective groups are in general carried out in a temperature range from -30°C to +200°C, preferably from +10°C to 100°C and at normal pressure.

The compounds of the general formula (II) are new and are prepared by reacting compounds of the general formula (VII)

20

5

10

15

$$E \xrightarrow{R_1} CO \xrightarrow{D}$$

$$T \xrightarrow{H} (VII)$$

25

30

· . :

in which

R1, T and E have the abovementioned meaning and

D represents -(CH₂)₂-(C₁-C₄)alkoxycarbonyl,

35

with compounds of the general formula (VIII)

40

45

in which

has the abovementioned meaning and

Ε represents a typical leaving group such as, for example, chlorine, bromine, iodine, tosylate or mesylate, preferably

in one of the abovementioned solvents and bases, preferably potassiumcarbonate and dimethylformamide,

50 in the case of A = CH₂-CO-R¹² first compounds of the general formula (IX)

$$E = N$$

$$H$$

$$CO - CH_2 - Q$$

$$T - H$$

$$(IX)$$

in which

E, T and R1 have the abovementioned meaning,

15 and

5

10

20

25

30

35

45

Q denotes halogen, preferably chlorine,

are converted in the presence of NaAc and and alcohol, preferably ethanol, to compounds of the general formula (X)

 $E \xrightarrow{\mathbf{N}} \mathbf{R}^{1} \qquad (X)$

in which

R¹, E and T have the abovementioned meaning, then are reacted with compounds of the general formula (XI)

$$(R^{12}\text{-OC-CH}_2)^{\oplus}PPh_3$$
 Br^{\ominus} (XI)

in'which

R12 has the abovementioned meaning

40 to compounds of the general formula (XII)

$$E \xrightarrow{R^1} CO - R^{12}$$
 (XII)

50 in which

 $\mathsf{E},\,\mathsf{R}^1,\,\mathsf{T}$ and R^{14} have the abovementioned meaning,

in inert solvents,

and in a last step are reacted with compounds of the general formula (XIII)

⁵⁵ R⁴-CO-R' (XIII)

in which

5

10

15

25

30

35

R' denotes a leaving group such as chlorine, bromine, tosylate or mesylate,

R4 has the abovementioned meaning

in the presence of SnCl₄,

and if appropriate in the case of other radicals mentioned under the substituent A, this position is also varied according to the abovementioned methods.

The process is in general carried out in a temperature range from +10°C to +150°C, preferably from +20°C to +100°C.

The process is generally carried out at normal pressure. However, it is also possible to carry out it at elevated pressure or at reduced pressure (for example in a range from 0.5 to 5 bar).

The compounds of the general formula (III) are new and are prepared by the abovementioned process.

The compounds of the general formulae (IV), (V), (VI), (VIII), (XI) and (XIII) are known.

The compounds of the general formulae (VII), (IX) and (X) are known in some cases or new and can be prepared by customary methods.

The compounds of the general formula (XII) are new and can be prepared by the abovementioned process.

The compounds according to the invention specifically inhibit the production of superoxide by polymorphonuclear leucocytes (PMN) without impairing other cell functions such as degranulation or aggregation. The inhibition was mediated by the elevation of cellular cAMP probably due to inhibition of the type IV phosphodiesterase responsible for its degradation

They can therefore be employed in medicaments for controlling acute and chronic inflammatory processes.

The compounds according to the invention are preferably suitable for the treatment and prevention of acute and chronic inflammations of the airways, such as emphysema, alveolitis, shock lung, asthma, bronchitis, arteriosclerosis, arthrosis, inflammations of the gastro-intestinal tract and myocarditis. The compounds according to the invention are additionally suitable for reducing the damage to infarct tissue after reoxygenation. In this case the simultaneous administration of allopurinol to inhibit xanthine oxidase is of advantage. Combination therapy with superoxide dismutase is also of use.

Test description

1. Preparation of human PMN

Blood was taken from healthy subjects by venous puncture and neutrophils were purified by dextran sedimentation and resuspended in the buffered medium.

2. Inhibition of FMLP-stimulated production of superoxide racidal anions.

Neutrophils (2.5 x 10^5 ml $^{-1}$) were mixed with cytochrome C (1.2 mg/ml) in the wells of a microtitre plate. Compounds according to the invention were added in dimethyl sulphoxide (DMSO). Compound concentration ranged from 2.5 nM to 10 μ M, the DMSO concentration was 0.1% v/v in all wells. After addition of cytochalasin b (5 μ g x ml $^{-1}$) the plate was incubated for 5 min at 37°C. Neutrophils were then stimulated by addition of 4 x 10^{-8} M FMLP and superoxide generation measured as superoxide dismutase inhibitable reduction of cytochrome C by monitoring the OD₅₅₀ in a Thermomax microtitre plate spectrophotometer. Initial rates were calculated using a Softmax kinetic calculation programme. Blank wells contained 200 units of superoxide dismutase.

The inhibition of superoxide production was calculated as follows:

Rx = Rate of the well containing the compound according to the invention.

Ro = Rate in the control well.

Rb = Rate in the superoxide dismutase containing blank well.

Table A

Example No.	% Inhibition at 10 μM	IC ₅₀ [μM]
1	62	0,17
6	67	0,11

45

50

55

Table A (continued)

Example No.	% Inhibition at 10 μM	IC ₅₀ [μM]
7	86	0,9
344	81	0,2

3. Measurement of PMN cyclic AMP concentration

The compounds according to the invention were incubated with 3.7 x 10^6 PMN for 5 min at 37°C before addition of 4 x 10^{-8} M FMLP. After 6 min protein was precipitated by the addition of 1% v/v conc. HCl in 96% v/v ethanol containing 0.1 mM EDTA. After centrifugation the ethanolic extracts were evaporated to dryness under N_2 and resuspended in 50 mM Tris/HCl pH 7.4 containing 4 mM EDTA. The cyclic AMP concentration in the extracts was determined using a cyclic AMP binding protein assay supplied by Amersham International plc. Cyclic AMP concentrations were expressed as percentage of vehicle containing control incubations.

4. Assay of PMN phosphodiesterase

5

10

15

20

25

30

35

40

45

50

55

PMN suspensions (10⁷ cells/ml) were sonicated for 6 x 10 sec on ice. Aliquots (100 μl) were incubated for 5 min at 37°C with the compounds according to the invention or vehicle before the addition of ³H-cAMP (1 mM and 200 nCi per incubation). After 20 min the reaction was stopped by heating at 100°C for 45 seconds. After cooling 100 mg of 5'-nucleotidase was added to each tube and the samples incubated for 15 min at 37°C. The conversion to ³H-adenosine was determined by ion-exchange chromatography on Dowex AG-1x (chloride form) followed by liquid scintillation counting. Percentage inhibition was determined by comparison to vehicle containing controls.

5. Effect of intravenously administered compounds on the FMLP-induced skin oedema guinea pigs Guinea pigs (600 - 800 g) were anaesthetized with pentobarbitone sodium (40 mg/kg, i.p.) and injected (i.v.) with a 0.5 ml mixture of pentamine sky blue (5% W/V) and ¹²⁵I-HSA (1 μli/animal). 10 minutes later 3 intradermal injections of FMLP (10 μg/site), 1 injection of histamine (1 μg/site) and 1 injection of vehicle (100 μl of 0.2% DMSO V/V in Hanks Buffered salt solution) were made on the left hand side of the animal (preinjection sites). 5 minutes later the drug (1 ml/kg) or the vehicle (50% PEG 400 V/V in distilled water, 1 mg/kg) was administered (i.v.). 10 minutes later an identical pattern of interadermal injections was made on the opposite flank of the animal (post-injection sites). These responses were allowed to develop for 15 minutes before the animal was sacrificed and a blood sample taken.

Skin sites and plasma samples were counted for 1 minute on a gamma counter an the degree of oedema calculated as μ I plasma/skin site. Statistical analysis was done by a paired t-test on the mean of the 3 preinjection site values of μ I plasma obtained for FMLP/animal. The percentage inhibition of drug or vehicle was calculated as follow

X%=1 -
$$\frac{\overline{X} \ \mu l \ plasma \ (post-injection \ site)}{\overline{X} \ \mu l \ plasma \ (pre-injection \ site)} x \ 100$$

Table B

Example No.	% inhibition	(mg/kg)
2	47	(1)

6. Effect of orally administered compounds on the FMLP-induced skin oedema of guinea-pigs in vivo Test's p.o.

Guinea-pigs (600-800 g) were fasted overnight and orally treated with vehide (1% Tylose w/v at 5 ml/kg) or drug (10 mg/kg; 2 mg/ml in 1% Tylose at 5 ml/kg) 40 minutes later the animals were anaestized with pentobarbitone sodium (40mg/kg, i.P.) and 0.6 ml of a mixture of pontamine sky blue (5% w/v) and 125 I-HSA (1 μ ci/animal) was injected (i.v.). 90 minutes after oral pretreatment FMLP (50 μ g/site) was injected (i.d.) at 4 different sites, histamine (1 μ g/site) and vehicle (100 μ I, 1% DMSO v/v in Hanks buffered salt solution) were both injected (i.d.) at 2 different sites.

The responses were allowed to develop for 30 minutes before the animal was sacrificed and a blood sample taken. Skin sites and plasma samples were counted for 1 minute on a gamma counter. The degree of oedema was calculated as µl plasma/skin site. Statistical analysis was carried out by a Mann-Whitney Utest on the mean of the 4 values of µl Plasma obtained for FmLP/animal.

Table C:

Example No.	% inhibition	(mg/kg)
[1-((Rx-Rb))] ((Ro - Rb)) 7	48	(10)

The new active compounds can be converted in a known manner into the customary formulations, such as tablets, coated tablets, pills, granules, aerosols, syrups, emulsions, suspensions and solutions, using inert, nontoxic, pharmaceutically suitable excipients or solvents. In this connection, the therapeutically active compound should in each case be present in a concentration of about 0.5 to 90% by weight of the total mixture, i.e. in amounts which are sufficient in order to achieve the dosage range indicated.

The formulations are prepared, for example, by extending the active compounds with solvents and/or excipients, if appropriate using emulsifiers and/or dispersants, where, for example, in the case of the use of water as a diluent, organic solvents can be used as auxiliary solvents if appropriate.

Administration is carried out in a customary manner, preferably orally or parenterally, in particular perlingually or intravenously.

In the case of parenteral administration, solutions of the active compound can be employed using suitable liquid vehicles.

In general, it has proved advantageous on intravenous administration to administer amounts from about 0.001 to 10 mg/kg, preferably about 0.01 to 5 mg/kg of body weight to achieve effective results, and on oral administration the dosage is about 0.01 to 25 mg/kg, preferably 0,1 to 10 mg/kg of body weight.

In spite of this, it may be necessary to depart from the amounts mentioned, in particular depending on the body weight or the type of application route, on individual behaviour towards the medicament, the manner of its formulation and the time or interval at which administration takes place. Thus, in some cases it may be sufficient to manage with less than the abovementioned minimum amount, while in other cases the upper limit mentioned must be exceeded. In the case of administration of relatively large amounts, it is advisable to divide these into several individual doses over the course of the day.

Solvents

5

10

15

20

25

30

35

40

45

50

55

l petrolether: ethylacetate 1:1

Į,

II petrolether : ethylacetate 5:1

III petrolether: ethylacetate 5:2

IV dichlormethane: methanol 95:5

V dichlormethane: methanol 5:1

DMFdimethylformamide

Starting compounds

Example I

4-Acetamido-2-hydroxy-γ-oxo-benzen-butanoic acid, methylester

67.5 g (0.41 mol) 3-acetamidoanisol are suspended in 200 ml 1,2-dichloroethane and cooled in an ice bath. 217 g (1.64 mol) AlCl₃ and after it 73.9 g (0.49 mol) 3-carbomethoxypropionylchloride were added successively. Stirring was continued 1/2 hour. After 5 hours the reaction was quenched with ice and ethylacetate and water were added. The organic layer was seperated, washed with water, dried over MgSO₄ and concentrated in vacuo. The residue was

recrystallized from dioxane and water. Yield: 52 g (49% of theory)

Example II

3-[6-Acetamido-2-(4-chloro-benzoyl)-3-benzofuranyl]propanoic acid, methylester

20

25

30

5

10

15

1.5 g (3.75 mmol) of 2'-Hydroxy-3-oxo-4'-[(acetamido)]benzenebutanoic acid, methylester and 1,13 g (4.1 mmol) of 2-bromo-4'-chloroacetophenone were dissolved in 5 ml DMF and 1,55 g (11.25 mmol) of potassium carbonate were added. The suspension was heated to 60°C for 1 h, ethylacetate was added. The organic phase was washed three times with water, one time with a NaCl solution, dried over Na₂SO₄ and concentrated in vacuo. The residue was further purified by crystallisation (ethanol).

Yield: 0.75 g (50%)

 $R_f = 0.12, (III)_{::}$

Example III

754. L

3-[6-Amino-2-(4-chloro-benzoyl)-3-benzofuranyl]propanoic acid, methylester

35

40

45

3.1 g (7.7 mmol) of 2-(4-chloro-benzoyl)-6-acetamido-3-benzofuranpropanoic acid methylester were suspended in 40 ml methanol. 20 ml 2.6 N HCl was added with stirring. The reaction mixture was heated to reflux. After 1 hour a clear solution was obtained. After 3 hours reflux the solution was cooled to room temperature and ethylacetate added. The organic layer was washed with NaOH-solution, two times with water, dried with Na₄SO₄ and concentrated in vacuo. The residue was further purified by crystallisation.

Yield: 2,26 g (82%)

R_f: 0.34 (III)

The compounds shown in Table I are prepared in analogy to the procedure of Example III.

5			
J			
10			
15			
20			
			> 3
25	r".	4	~~~
30			7
35		Z Z Í	4
40			
45			
45			

Ex. No.	Λ	W	×	Z	А	R _f *	Yield (% of theory)
ΙΛ	н	н	Cl	Н	(СН ₂)2СООН	0.78 (V)	86
>	н	Н	묘	н	(сн ₂)2соосн ₃	(V) 69.0	88
ΙΛ	н	CN	Н	Н	(CH ₂) ₂ CO ₂ CH ₃	0.66 (V)	76
VII	н	СН3	CI	Н	(сн ₂₎₂ соосн ₃	0.8 (V)	91
VIII	н	Н	CN	н	(СН ₂)2СООСН3	0.7 (V)	. 67
IX	н	CI	Н	Н	(сн ₂) ₂ соосн ₃	0.79 (V)	75
×	Н	осн3	н	Н	(сн ₂) ₂ соосн ₃	0.65 (V)	58

EP 0 685 474 B1

Table I: (Continuation)

ExNo.	Λ	M	×	2	А	R _t *	Yield (% of theory)
X	н	Н	SCH ₃	Н	(сн ₂) ₂ соосн ₃	0.81 (V)	84
XII	Ħ	Н	NO ₂	Н	(сн ₂) ₂ соосн ₃	0.70 (V)	75
ХШ	CI	Н	IJ.	Н	(СН ₂)2СООСН ₃	0.85 (V)	75
XIIV	H	Br	Н	Н	(СН ₂) ₂ СООСН ₃	0.71	11
ΧX	н	Н	Br	Н	(сн ₂) ₂ соосн ₃	0.70	92
XVI	н	Н	Ü	Н	CON	0.74 (IV)	06
XVII		H	CI	Н	² HNOO CONH ²	0.5 (IV)	08
хуш	Н	Н	C₄H ₉	Н	-ch²co²c²н²	0.42 (I)	72
XIX	н	Н	СН3	Н	-сн ₂ -со ₂ с ₂ н	0.46 (I)	08
XX	н	Н	C ₆ H ₅	Н	-CH ₂ -CO ₂ C ₂ H ₅	0.54 (I)	77
XXI	CI	Н	CI	Н	-CH ₂ -CO ₂ C ₂ H ₅	0.46 (I)	81

1,3

The compounds shown in Tables II and III are prepared in analogy to the procedure of Example III.

50 55	50	45	<i>35</i>	25 30	20	10	5
Table II							
			A				
		H ₂ N,	___\ \\				
			> }	M			
Ex. No.	A		. ^	M Section 1988	×	Rf*	Yield (% of theory)
IDXX	'	7	н		н	0,77 (1)	87
XXIII	+	но-	Н	Br	Н	0,43 (VI)	70
VXXX		\Diamond	Н	-осн ₃	Н	0,7 (I)	97
XXV	"	Н-	Н	н	CH ₃	0,7 (I)	84
XXVI)-	-C ₂ H ₅	Н	0СН ₃	Н	0.69 (I)	89

EP 0 685 474 B1

	•								
5		Yield (% of theory)	87	89	64	68	62	70	94
10									
15		Rf*	(1) 12,0	(I) 69'0	0,82 (I)	0.80 (I)	0,44 (VI)	(I) 06.0	0.90 (I)
20				3					
		×	н	СН3	н	CI	н	н	ວັ
30	And the second s	M	осн³:	н	CF ₃	н	CF_3	Br	p 7
35									_
40		>	五	H	н	ご	五	H	CI
45	uation)	Ą	Y	-0C ₂ H ₅	\Diamond	\Diamond	Y	Y	7
50	(Contin								
55	Table II (Continuation)	Ex. No.	XXVII	ххиш	XXXX	XXX	DXXX	IIXXX	XXXXIII

EP 0 685 474 B1

T.											
5	Yield (% of theory)				9	3		9		4	7
10	Yield (% of	75	82	80	9,68	82,3	76	72,6	86,1	58,4	85,7
15	Rf*	0.71 (I)	0.65 (I)	0,468 (I)	0,4 (I)	0,365 (I)	0,308 (I)	0,452	0,31 (IV)	0,45 (IV)	0,614 (IV)
20	×	H	Н	CI	כו	осн ₃	осн	СН3	оснз	осн,	Br
25	· ·										
30	M	СН3	СН3	Н	Н	Н	Н	Н	Н	H	# * * * * * * * * * * * * * * * * * * *
35	1	н	н	CI	Н	Н	осн3	Н	осн _з	н	H
40	<u> </u>	-	,L4					1		14	, т
uation)	A	-C ₂ H ₅	\Diamond	CH ₂ CO ₂ Et	CH ₂ CO ₂ Et	CH(CH ₃) ₂	CH(CH ₃) ₂	CH2COOEt	7	7	7
S S S S S S S S S S S S S S S S S S S	Ex. No.	XXXIV	XXXX	XXXVI	IIAXXX	XXXVIII	XXXXIX	XL	XLI	XLII	XLIII

5	Yield (% of theory)	88,3%	73	91	70	97	97
10						:	
15	Rf*	0,61 (IV)	0,74 (I)	0,85 (I)	0,74 (I)	0,6 (IV)	0,55 (III)
20			сн ₃			\Diamond	\bigcirc
25 -	×		Ü	Н	ᅜ	•	
30	*	н	# #	CN	Н	Н	Н
35				i			
40	>	н	н	н	н	Н	Н
ation)	A	Y	Y	Y	\Diamond	\Diamond	Y
55 S S S Table II (Continuation)							
rable II	Ex. No.	XLIV	XLV	XLVI	XLVII	XLVIII	XLIX

EP 0 685 474 B1

5	Yield (% of theory)												
10	Yield (% of 1	85	96	73	.63	41	72	61	68	54	45	100	72,5
10		(1		(1	(I	(III	(111	(III)	Œ	(I	(1	(111	(I
15	Rf*	0,54 (I)	(I) 6'0	0,71 (I)	0,65 (I)	0,58 (III)	0,54 (III)	0,60 (III)	0,5 (III)	0,74 (I)	0,88 (I)	0,42 (III)	0,73 (I)
20					3								
25	×	II.	NO2	СН3	OCH ₃	н	н	CF3	н	CN	Н	C ₂ H ₅	T
					salas manus partir man		•.						
30	×	H	H.	Н	Н	ם	CH3	H	Br	н	S	н	Н
35													
40	>	H	H	н	田	ರ	CH ₃	н	Н	H	H	H	Н
**			.H ₃) ₂	H ₃) ₂	H ₃) ₂	H ₃) ₂	H ₃) ₂	.H ₃) ₂					
45 onation)	A	ΙΥ	-CH(CH ₃) ₂	-CH(CI	-CH(CH ₃) ₂	-C ₂ H ₅							
55 54 Table II (Continuation)													
Table I	Ex. No.	1	בו	吕	EII.	LIV	Γ	IŞ1	IMI	ГАШ	ΓΙΧ	Ľ	LXI

EP 0 685 474 B1

Table II (Continuation)	uation)				-	
Ex. No.	A	Λ	W	×	Rf*	Yield (% of theory)
LXII	-C ₂ H ₅	Н	Н	댸	0,76 (I)	100
ГХІІ	-CH(CH ₃) ₂	Н	Н	Br	0,35 (III)	86
LXIV	-СН(СН ₃) ₂	Н	Br	Н	0,44 (III)	95
LXV	-CH(CH ₃)	Н	Н	С2Н5	0,52 (III)	93
LXVI	-CH(CH ₃) ₂	н	н	\bigcirc	0,56 (III)	91
LXVII	-CH(CH ₃) ₂	Н	H	ĬŦ,	0,8 (I)	95
LXVIII	-сн(сн ₃)2	Н	H	C_6H_5	0,79 (IV)	95

Table III

H₂N C₂H₂C

Ex. No.	Х	Rf*	Yield (% of theory)
LXIX	C ₂ H ₅	0,82 (IV)	80
LXX	CH ₃	0,57 (I)	62
LXXI	$\overline{}$	0,65 (I)	92
LXXII	F		
LXXIII	OCH ₃		
LXXIV			

Example LXXV

4-Acetamido-2-hydroxy-γ-oxo-benzen-butanoic acid, methylester

67.5 g (0.41 mol) 3-acetamidoanisol are suspended in 200 ml 1,2-dichloroethane and cooled in an ice bath. 217 g (1.64 mol) AlCl₃ and after it 73.9 g (0.49 mol) 3-carbomethoxypropionylchloride were added successively. Stirring was continued 1/2 hour. After 5 hours the reaction was quenched with ice and ethylacetate and water were added. The organic layer was seperated, washed with water, dried over MgSO₄ and concentrated in vacuo. The residue was recrystallized from dioxane and water.

Yield: 52 g (49% of theory)

Example LXXVI

10

15

20

35

40

45

50

3 -[6-Acetamido-2-(pyridine-4-carbonyl)benzofuran-3-yl]propionic acid, methylester

H₃C NH O OCH₃

25 1.5 g (3.75 mmol) of 2'-hydroxy-3-oxo-4'-[(acetamido)]benzenebutanoic acid, methylester and 0.82 g (4.1 mmol) of 2-bromo-1-(4-pyridyl)-ethanone were dissolved in 5 ml DMF and 1,55 g (11.25 mmol) of potassium carbonate were added. The suspension was heated to 50°C for 1 h, ethylacetate was added. The organic phase was washed three times with water, one time with a NaCl solution, dried over Na₂SO₄ and concentrated in vacuo. The residue was further purified by chromatography.

Yield: 0.412 g (30%)

 $R_f = 0,1, (I)$

Example LXXVII

3-[6-Amino-2-(pyridine-4-carbonyl)-3-benzofuranyl]propanoic acid, methylester

2.8 g (7.7 mmol) of 2-(4-chloro-benzoyl)-6-acetamido-3-benzofuranpropanoic acid methylester were suspended in 40 ml methanol. 20 ml 2.6 N HCl was added with stirring. The reaction mixture was heated to reflux. After 1 hour a clear solution was obtained. After 3 hours reflux the solution was cooled to room temperature and ethylacetate added. The organic layer was washed with NaOH-solution, two times with water, dried with Na_2SO_4 and concentrated in vacuo. The residue was further purified by crystallisation.

Yield: 1.64 g (60%)

R_f: 0.34 (III)

55 The compounds shown in Table IV are prepared in analogy to the procedure of Example II.

5	
10	
15	
20	> > >
25	
30	O=\text{HN}
35	ပ H
40	
45	
50	ᆲ

ExNo.	^	Μ	×	A	R.*	Yield
						(% of theory)
LXXVIII	CI	Н	ū	COOC ₂ H ₅	0,53 (IV)	72
LXXIX	Н	Н	Ĺτι	сн ₂ сн ₂ соосн ₃	(I) 62,0	28
ГХХХ	н	Н	CN	сн2сн2соосн3	0,22 (1)	46
LXXXI	н	СН3	ט	СН2СН2СООСН3	0,23 (1)	99
LXXXII	н	H	SCH ₃	СН2СН2СООСН3	0,31 (1)	52
LXXXIII	H	CI	Н	сн2сн2соосн3	0,24 (1)	58
LXXXIV	Н	осн3	Н	сн2сн2соосн3	0,18 (1)	89
LXXXV	Н	Н	CI	CO ₂ C ₂ H ₅		

Example LXXXVI

N-[2-(4-Chloro-benzoyl)-3-(2-methoxycarbonyl-ethyl)-benzofuran-6-yl]-malonamic acid methyl ester

5

10

15

20

25

30

35

3-[6-Amino-2-(4-chlorobenzoyl)-3-benzofuranyl]propanoic acid, methylester

3.1 g (7.7 mmol) of 2-(4-chloro-benzoyl)-6-acetamido-3-benzofuranylpropanoic acid methylester were suspended in 40 ml methanol. 20 ml 2.6 N HCl were added with stirring. The reaction mixture was heated to reflux. After 1 hour a clear solution was obtained. After 3 hours reflux the solution was cooled to room temperature and ethylacetate was added. The organic layer was washed with NaOH-solution, two times with water, dried over Na₂SO₄ and concentrated in vacuo. The residue was further purified by crystallisation.

Yield: 2.26 g (82%)

R_f 0.34 (III)

~b)

電子計画 0.5 g (1.4 mmol) of 3-[6-Amino-2-(4-chloro-benzoyl)-3-benzofuranyl]propanoic acid methylester were dissolved in 独作社会の機能を発展する : 20 ml methylenechloride and 4 ml triethylamine(EtN₃). 0.6 g (4.5 mmol) (Cl-CO-CH₂-COOCH₃) methylmalonylchloride were added dropwise. The mixture was heated to reflux for 12 h. After removing the solvent, ethylacetate and - lo water were added. The organic layer was washed twice with water and

NaCl-solution, dried over Na₂SO₄ and concentrated in vacuo. The residue was further purified by recrystallisation (methanol).

Yield: 0.4 g (62.5%)

 $R_f = 0.88 (V)$

The compounds shown in table V were prepared in analogy to the procedure of example LXXVIII:

40

45

The second section of the second second section of the second seco

	_		
5		Yield (% of theory)	19
10		R,*	0.3 (III)
15		R³	Н
20	o,		
25		Э	сосн2сн2соосн3
<i>30</i>	Z—I		сн,сн,соосн,
40		A	CH ₂ CH ₂
		×	CJ
45		M	Н
50	Table V:	ExNo.	LXXXVII
55	E		<u> </u>

Example LXXXVIII

5

3-[6-Acetamido-2-(4-chlorobenzoyl)-3-benzofuranyl]propanoic acid

10 H₃C NH COOH

1.5 g (4.2 mmol) of the compound from starting compounds Example III were dissolved in 50 ml methanol/tetrahydrofuran (1:1) and 5.5 ml of a 2 N NaOH solution were added. The mixture was stirred at r.t. for 24 hours, dissolved in water and acidified with 1 N hydrochloric acid. The precipitate was filtered off, washed several times with water and dried in vacuo. The further reaction was carried out as described in Example 1. Yield: 96%

R_f: 0,54 (V)

25

35

40

45

50

55

The compounds shown in Table VI were prepared in analogy to the procedure of Example LXXXVIII:

5

₹		<u>}</u>	**************************************	-×
	=< _ _ 			
0=	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

ExNo.	>	W	×	A	R _f *	Yield
						(% of theory)
LXXXIX	Н	Н	CI	CH ₂ CH ₂ CO ₂ Na	0,58 (IV)	86
хс	Н	Н	SCH ₃	сн ₂ сн ₂ соон	0,68 (V)	88
хсі	Н	Н	F	сн ₂ сн ₂ соон	0,51 (V)	83
хсп	Н	CI	Н	сн2сн2соон	0,51 (V)	95
XCIII	Н	осн ₃	Н	СН2СООН	0,54 (V)	87

Example XCIV

3-[6-Acetamido-3-(2-carbonamid-ethyl)-2-(4-chloro-benzoyl)-benzofuran

5

10

H₃C

NH

CONH₂

CONH₂

0.56 g (1.3 mmol) of the acid from example 1 were dissolved in 5 ml THF, 0.25 g (1.25 mmol) 1,1'-carbonyl-bis-1H-imidazole were added and the mixture was stirred at room temperature for 12 hours. Subsequently NH₃-gas was added for 2 h using an inlet pipe. After one additional hour stirring at r.t. the solvent was distilled off in vacuo. The residue was taken up in ethylacetate and washed three times with water, one time with a NaHCO₃ solution and one time with a NaCl solution. The organic phase was dried over MgSO₄ and the solvent was removed in vacuo. Yield: 83%

R_f: 0,72 (V)

20

25

Example XCV

3-[6-Acetamido-2-(4-chloro-benzoyl)-3-(2-cyano-ethyl)-benzofuran

35 H₃C NH CN

0.56 g (1.3 mmol) of example XCIV were dissolved in 15 ml dioxane. 0.2 ml (2.6 mmol) pyridine were added, cooled to 5-10°C and 0.22 ml (1.56 mmol) trifluoroacetic anhydride were added dropwise. The mixture was stirred for 3 hours at room temperature. The mixture was added to water, washed twice with dichloromethane. The organic layer was dried and the solvent removed in vacuo.

Yield: 73%

R: 0,49 (IV)

The compounds shown in Table VII are prepared by Friedel-Crafts reaction of Example I with (carbethoxymethylene)triphenylphosphorane in xylene.

55

Table VII:

Example

No.

XCVI

XCVII

XCVIII

XCIX

C

CI

СП

V

Η

Η

H

Cl

Η

HBr

Η

5

10

HN CO CFO CH₃

X

 $-C_4H_9$

-CH₃

 $-C_6H_5$

-Br

Н

Η

-ci

 R_f^*

0.22 (T)

0.21 (I)

0.5 (IV)

0.6 (IV)

0.25 (I)

0.33 (II)

0.25 (I)

yield

31

86

70

97

76

68

75

(% of theory)

 $\hat{t_1}$

W

H

H

H

H

H

CN

15

20

25

30

35

40

Example CIII

N-[3-Methyl-2-(4-methyl-benzoyl)-benzofuran-6-yl]acetamide

45

55

50

0.72 g (3.75 mmol) of N-(4-acetyl-3-hydroxy-phenyl)acetamide and 0.81 g (4.1 mmol) of 2-bromo-4-methylacetophe-

none were dissolved in 5 ml DMF and 1,55 g (11.25 mmol) of potassium carbonate were added. The suspension was heated to 60°C for 1 h and ethylacetate was added. The organic phase was washed three times with water, one time with a NaCl solution, dried over Na₂SO₄ and concentrated in vacuo. The residue was further purified by crystallisation (ethanol).

Yield: 0.58 g (50%)

 $R_{i} = 0.12 (III)$

10

15

20

25

30

35

40

45

50

The compounds shown in Table VIII were prepared in analogy to the procedure of Example CIII:

Table VIII:

 Ex.-No.
 Z
 R²
 R²
 R²*
 Yield (% of theory)

 CIV
 Cl
 COCH3
 0.33 (IV)
 38

 CV
 C6H5
 COCH3
 0.35 (I)
 53

Example CVI

(6-Amino-3-methyl-benzofuran-2-yl)-(4-chlorophenyl)-methanone

3.1 g (10 mmol) of N-[3-methyl-2-(4-methyl-benzoyl)benzofuran-6-yl]-acetamide were suspended in 40 ml methanol. 20 ml 2.6 N HCl were added with stirring. The reaction mixture was heated to reflux. After 1 hour a clear solution was obtained. After 3 hours reflux the solution was cooled to room temperature and ethylacetate was added. The organic layer was washed once with NaOH-solution, two times with water, dried over Na_4SO_4 and concentrated in vacuo. The residue was further purified by crystallisation.

Yield: 2,2 g (83%

R_f: 0.7 (IV)

The compounds shown in table IX and X were prepared in analogy to the procedure of example CVI:

Table IX:

H₂N CH

20	ExNo.	Z	R _f *	Yield (% of theroy)
25	CVII	CH ₃	0.62 (IV)	87
-	CVIII	C ₆ H ₅	0.38	71

Table X:

H₂N CH₃ O V

15

20	

2	5	

Example No.	Х	V	Z	W	R _f	yield
CIX	CI	Н	Н	Н	0.3 (I)	65
CX	CH ₃	CH ₃	CH ₃	Н	0.98 (IV)	70
схі	Br	Н	Н	Н	0.45 (I)	55
CXII	NO ₂	Н	Н	Н	0.83 (I)	22
CXIII	Н	Н	Н	CN	0.38 (IV)	92
CXIV	CN	Н	Н	Н	0.77 (I)	70
cxv	CI	Cl	Н	Н	0.26 (I)	65
CXVI	Н	Н	Н	NO ₂	0.79 (I)	88
CXVII	Н	Н	Н	Br	0.27 (I)	65
CXVIII	H .	Н	Н	OCH ₃	0.21 (I)	71
CXIX	Н	Н	Н	CH ₃	0.25 (I)	73
CXX	Н	Н	Н	CF ₃	0.35 (I)	37
CXXI	——	Н	Н	NO ₂	0.37 (II)	40

The compounds shown in Table XI were prepared in analogy to the procedure of example CIII.

10			
15			
20			
25			
<i>30</i>			
35		_	8
40	√		<u>></u> ~~
45		, , _	
50	 2	- -	

Example	γ	Z	W	E	Ą	$R_{ m f}$	yield
No.				70 1 12 1			
CXXII	Н	C_6H_5	Н	CONH ₂	СН3	0.18 (I)	76
сххш	Н	NO ₂	Н	сосн₃	СН3	0.28 (I)	63
CXXIV	Н	Br	Н	СОСН3	СН3	0.32 (I)	73
CXXX	Н	Н	CN	сосн	СН3	0.47 (IV)	29
CXXVI	Н	CN	н	COCH ₃	СН3	0.27 (I)	13
CXXVII	CI	Cl	Н	сосн3	СН3	0.4 (1)	46

EP 0 685 474 B1

Table XI: (continuation)

2	M	田	¥	R _f .	yield
Н		COCH3	СН3	0.29 (1)	16
Н	Br	COCH3	СН3	0.37 (I)	43
Н	осн3	coch³	сн₃	i (I) 62.0	76
Н		coch ₃	СН3	0.13 (III)	58
Н		coch ₃	СН3	0.13 (III)	35
-OCH	NO ₂	сосн	сн _з	0.24 (I)	7
	OCH3	NO ₂ Br OCH ₃ CH ₃ CH ₃ CF ₃ CF ₃	NO ₂ Br OCH ₃ CH ₃ CF ₃ CF ₃	NO ₂ COCH ₃ Br COCH ₃ OCH ₃ COCH ₃ CH ₃ COCH ₃ CH ₃ COCH ₃ CH ₃ COCH ₃ CH ₃ COCH ₃ COCH ₃ COCH ₃ COCH ₃ COCH ₃	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The compounds shown in Table XII are prepared in analogy to the procedure of example LXXVI.

Table XII:

H₃C NH O R₄

ExNo.	A	R ⁴	R _f *	Yield (% of
				theory)
CXXXIV	-COOC₂H₅		0,1 (I)	30
CXXXV	-CH ₂ CH ₂ CO ₂ CH ₃	H ₃ C N CH ₃	0,32 (IV)	72

The compounds shown in Table XIII are prepared in analogy to the procedure of example LXXVII.

Table XIII:

H₂N (CH₂)₂-CO₂CH₃

ExNo.	R ⁴	R _f *	Yield (% of theory)
CXXXVI	H ₃ C N CH ₃	0.6 (V)	90
CXXXVII	N - N - N - N - N - N - N - N - N - N -	0.32 (IV)	50
CXXXVIII	~~_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.4 (IV)	75
CXXXIX	CH ₃ N CH ₃	0.3 (IV)	95

The compounds shown in Table XIV are prepared in analogy to the procedure of example CXL.

Table XIV:

Example No.	A	R ⁴	R _f *	yield
CXL	C ₂ H ₄ COOCH ₃	~~_________	0.25 (IV)	30
CXLI	C ₂ H ₄ COOCH ₃	N N	. 0.3 (IV) -	20
CXLII	CH ₃	CH ₃ CH ₃	0.34 (IV)	63

The compounds shown in the Tables XV and XVI are prepared in analogy to the procedure of CVI.

Table XV:

NH₂ CH₃ O V

Example No.	V	w	х	R _f *	yield (% of theory
CXLIII	н	Н	F	0.5 (I)	98
CXLIV	Н	Н	Br	0.5 (III)	97
CXLV	Н	H	C ₂ H ₅	0.44 (I)	82
CXLVI	Н	H		0.5 (I)	82
CXTAII	Cl 📑	H	CI	0.63 (I)	80
CXTAII	Н	NO ₂	Н	0.5 (T)	70
CXLIX	Н	CH ₃	Н	0.63 (I)	94
CL	CH ₃	Н	CH ₃	0.91 (I)	81
CLI	Н	Н	NO ₂	0.83 (I)	77
CLII	Н	CF ₃	Н	0.69 (I)	91
CLIII	Н	OCH ₃	Н	0.66 (I)	90
CLIV	Н	— <u></u> осн _з	н	0.42 (I)	94

Table XVI:

NH₂ CH₃ O V

Ex. No.	V	W	x	Z	R _f *	yield (% of theory)
CLV	Н		Н	Н	0.63 (I)	100
CLVI	Н	Н	C ₉ H ₁₉	Н	0.84 (V)	78
CLVII	H 3	H /	C ₆ H ₁₃	Н	0.80 (V)	76
CLVIII	H A A	Herrings		Н	0.7 (V)	97
CLIX	H	CH ₃ C	н	Н	0.66 (III)	93
CLX	н		н	н	0.72 (III)	78
CLXI	н	NO ₂	Н	н	0.85 (V)	95

Table XVI: (continuation)

5 F					-		
-	Ex. No.	V	W	х	Z	R _f *	yield (% of theory)
10	CLXII	Н		Н	Н	0.87 (V)	100
15	CLXIII	Н	н	соон	Н		
	CLXIV	Н	Н	F	Н	0.77 (IV)	77
20	CLXV	Н	Н	C ₂ H ₅	Н	0.84 (IV)	78
25	CLXVI	H	Н		Н	0.9 (IV)	65
25	QV		,, ,	OCIT	t.	0.271 (5)	00
•	CLXVII	H	H.;	OCH ₃	H	0.371 (I)	92
30	CLXVIII	OCH ₃	Н	OCH ₃	Н	0.257	88.3
,	CLXIX	Н	н	ОН	Н	0.27 (IV)	43
35	CLXX	Н	Н	s	Н	0.85 (IV)	80
	CLXXI	Н	Н	NO ₂	Н	0.79 (I)	88
40	CLXXII	Н	н	Br	Н	0.78 (I)	58
	CLXXIII	Н	Н	OCH ₃	Н	0.75 (I)	93
45	CLXXIA	Cl	Cl	Н	Н	0.79 (I)	40
	CLXXV	Н	Н	CH ₃	Н	0.34 (I)	76
50	CLXXVI	Н	Н	CF ₃	Н	0.41 (I)	97
	CLXXVII	Н	—	NO ₂	н	0.53 (I)	40
55	CLXXVIII	CH ₃	CH ₃	Н	н	0.98 (1)	91

Table XVI: (continuation)

Ex. No.	V	w	х	Z	R _f *	yield (% of theory)
CLXXIX	Н	——————————————————————————————————————	н	н	0.53 (I)	19
CLXXX	Н	Н	-0-{	H	0.72 (1)	78

The compounds shown in Tables XVII, XVIII, XIX, XX, XXI and XXII are prepared in analogy to the procedure described in Table VII.

	6					
5		yield (% of theory)	51	76	70	87
10		7.0			, -	
15		*,*	(VI) 0.59	0.5 (IV)	0.46 (I)	0.52 (I)
20	>. ≯	A	7		\Diamond	\Diamond
25	°—×					
30		2	Ħ	Ή	н	н
35	D. T. I.	×	CH ₃	н	ᄄ	\bigcirc
40						
45		M	π	CS	н	н
50		>	I	н	H	н
55	Table XVII:	Example No.	CLXXXI	CLXXXII	CLXXXIII	CLXXXIV
	Ä	L	1	<u> </u>	 	<u> </u>

EP 0 685 474 B1

	(inuation)	/
	COU.	
	Shle XV	47.000
ı	-	

Example No.	۸	W	×	Z	V	Rf*	yield (% of theory)
CLXXXV	I	H	\bigcirc	Ξ	Y	0.55 (1)	100
CLXXXVI	н	Н	لد	н	7	0.5 (J)	89
CLXXXVII	H	Н	NO ₂	Н	CH(CH ₃) ₂	0.5 (1)	30
CLXXXVIII	н	Н	СН3	Н	CH(CH ₃) ₂	0.5 (I)	77
CLXXXIX	н	осн,	н	Н	CH(CH ₃) ₂	0.5 (1)	65
CIC	CI	Н	Ü	Н	CH(CH ₃) ₂	0.53 (I)	89
CICI	СН3	Н	СН3	Н	CH(CH ₃) ₂	0.53 (1)	86
CICII	н	Н	CF ₃	Н	CH(CH ₃) ₂	0.53 (I)	63
CICIII	ж	н	СН3		7	0.41 (I)	61
CICIV	н	Br	Н	Н	ОН	0.69 (IV)	25

.,

7.4 7.4

EP 0 685 474 B1

5		yield (% of theory)	57	52	59	44	51	^31	89	57	65
10		R _r *	0.48 (1)	0.53 (V)	0.21 (1)	0.37 (III)	0.42 (I)	0.43 (I)	0.55 (I)	0.54 (I)	0.41 (ľ)
20		٧	\Diamond	но-	Н	-C ₂ H ₅	7	-OC ₂ H ₅	\Diamond	\Diamond	7
25		Z	H	н	H	H	# / 1.	н,	н	Н	Н
<i>30 35</i>		2	<u> </u>	p.1.4	1	7.		, mad ()			_
40		×	田	СН3	CH ³	H	H	СН,	#	ਹ	エ
40		W	-осн	H	н	ОСН3	осн	н	GF ₃	H	CF ₃
	ontinuation)	>	H	H	н	Н	н	Н	н	CI	H
50 55	Table XVII: (continuation)	Example No.	CICV	CICVI	CICVII	CICVIII	CICIX	ည	100	IIDD	CCIII

EP 0 685 474 B1

		Table XVII: (continuation)

Example No.	^	Ж	×	Z	Ą	R ₄ *	yield (% of theory)
CCIV	н	Br	ж	€ 1m 0∦2 by an	7	0.44 (I)	72
CCV	IJ	н	CI CI	## (F)	7	0.62 (I)	46
ccvi	Н	СН3	Н	H	-C ₂ H ₅	0.51 (I)	54
ccvii	н	СН3	Н	Н	\Diamond	0.53 (I)	77
ccvIII	Н	Н	CI	Н	CH2CO2Et	0.46 (V)	44
CCIX	-осн	Н	осн	Н	CH(CH ₃) ₂	0.08 (III)	83
ссх	осн	H	осн	н	7	0.13 (1)	48.5
CCXI	н	Н	осн	Н	7	0.26 (I)	49.1

EP 0 685 474 B1

50	45	40	30 35	25	20	15	5
able XVII: (able XVII: (continuation)		do,	: 1일: 15분 (46)			
Example No.	>	M	X	Z	∢	R _f *	yield (% of theory)
CCXII	H	н	Br		7	0.28 (1)	13
ccxIII	H	±		H		0.44 (J)	31
CCXIV	Н	Br	H	Н	C_2H_5	0.3 (III)	27
ccxv	н	Н	S	Н	C_2H_5	(VI) 9.0	45
CCXVI	Н	CN	Н	Н	C_2H_5	(VI) 9.0	26
CCXVII	н	н	СұН5	H	C_2H_5	(VI) 79.0	85
CCXVIII	ж.	н	\bigcirc	Ŧ	C ₂ H ₅	0.44 (I)	74
CCXIX	н	Н	Ĺ,	Н	C_2H_5	0.07 (III)	92
ccxx	Н	Н	Br	Н	CH(CH ₃) ₂	0.3 (1)	29
ccxxI	Н	Br	Н	Ĥ	сн(сн³)	0.32 (1)	31

EP 0 685 474 B1

Table XVII: (continuation)	continuation)						
Example No.	Λ	W	×	Z	¥	R.*	yield (% of the
CCXXII	Н	Н	CN	Н	СН(СН3)	0.65 (IV)	38
ccxxiii	Н	CN	Н	Н	СН(СН ₃)2	0.63 (IV)	59
ccxxiv	Н	Н	C ₂ H ₅	Н	CH(CH ₃) ₂	0.2 (III)	88
CCXXV	н	н	\Diamond	н	СН(СН ₃)2	0.2 (III)	75
CCXXVI	Н	н	ĮT.	H	CH(CH ₃) ₂	0.15 (III)	93
CCXXVII	н	н		H	СН(СН ₃) ₂	0.4 (1)	98
CCXXVIII	Н	Н	-(СН ₂)3СН3	H	-CH ₂ CO ₂ C ₂ H ₅	0.55	9.89
CCXXIX	Н	Н	C ₆ H ₅	н	-CH2CO2C2H3	0.358	70.6

EP 0 685 474 B1

	17					·			
5		yield (% of theory)	80.8	19	99	31	28.4	89.2	70.9
10		R _f *	0.45	0.133	0.29	0.42	0.22	0.15	0.32
15		&	0	o	O.	0	0	0	0
20		Ą	-снсо ₂ с ₂ н ₅	СН2СН3	сн2сн3	7	Y	Y	\Diamond
25		Z	H	Н	Н	н	Н	H ·	н
30								£	\$ 1
35		×		ğ	柘	ᄯ			C,Hs
40		M	m	Н	Н	н	н	H	H
45	ontinuation)	Λ	н	Н	н	x	н	н	н
50	Table XVII: (continuation)	Example No.	CCXXX	CCXXXI	CCXXXII	CCXXXIII	CCXXXIV	ccxxxv	CCXXXVI

Example No.	>	W	×	2	A	R _f *	yield (% of theory)
CCXXXVII	Н	Н	СН3	н	\Diamond	0.29	58.4
CCXXXVIII OCH3		Н	сн₃	H	\Diamond	0.29	67.2
CCXXXIX	н	Н	Br	= _ = (=)	\Diamond	0.38	77.6

Table XVII: (continuation)

5	
10	
15	>
20	F
25	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
30	O=-0 - 0 FH
35	
40	
45	VIII:

	Λ	W	X	Z	R ₄ *	yield
Zo.			Section of the sectio			(% of theory)
CCXL	CI	Н	CI S	Н	0.51 (I)	59
CCXLI	Н	CH_3	H	Н	0.60 (T)	53
ссхги	Н	осн3	Н	Н	0.43 (I)	47
CCXLIII	Н	CF_3	Н	Н	0.53 (I)	42
CCXLIV	Н	NO2	Н	Н	0.42 (I) 12	12
CCXLV	Н	Н	6СН3	Н	0.58	26

EP 0 685 474 B1

	_					
5		heory)			-	
10		yield (% of theory)	89	63	98	79
15		$ m R_f^*$	0.45	0.56 (IV)	0.27 (I)	0.35 (I)
20						
25		2	Н	Н	Н	H
30	<u>ج</u> ي ج	×		C ₂ H ₅	CH ₃	\bigcirc
35		M	.Н	Н	Н	H
40	Table XVIII: (continuation)	^	田	H	н	н
45) 					
50	Table XV	Example No.	CCXLVI	CCXLVII	CCXLVIII	CCXLIX

EP 0 685 474 B1

5		yield (% of theory)	65	57	35	67	83
10		- -	0.39 (I)	0.06 (III)	0.42 (V)	0.66 (V)	0.48 (V)
20	>, >,	R _f *	0.0	0.0	0.4	0.0	0.0
25	£ ×	2	H	Н	Н	Н	H
30	o=√ Z-I	the second	H .	C_9H_{19}	C_6H_{13}	N N	H
35) H	W		Н	Н	H	
40 45		٨	ш	Н	Н	н	Н
50	<u>Table XIX:</u>	Example No.		CCLI	ССГІІ	ссгіі	CCLJV

EP 0 685 474 B1

Example No.	Λ	A	* X	Z	R _t *	yield (% of theory)
CCLV	Н	2	# # # # # # # # # # # # # # # # # # #	н	0.68 (V)	97
CCLVI	Н	Н	T.	Н	0.8 (I)	86
CCLVII	Н	Н	СуН5	Н	0.5 (IV)	90
CCLVIII	н	н	\bigcirc	н	0.6 (IV)	71
CCLIX	Н	Н	осн	н	0.2 (IV)	63
CCLX	осн3	Н	осн	н	0.2 (IV)	62
CCLXI	СН3	Н	СН3	Н	0.4 (I)	51
CCLXII	н	н	°ccH₃ CCH₃	н	0.2 (I)	21

EP 0 685 474 B1

	5							
5		yield (% of theory)				0		9
10		' <u>\$</u> &	89	70	61	30	99	76
15		R _f *	0.32 (I)	0.14 (I)	0.2 (IV)	0.47 (IV)	0.65	0.1
20								
25		Z	H	Н	н	н	Н	ш
30	ရီ ရရှိသည် ရှိသ ရှိသည် ရှိသ ရှိသည် ရ	X decrees	edigated the state of the state	ЮН		⟨S	Br	lo—Cl
35		W	○	Н	н	н	Н	н
40								
45	avation)	\	н	н	H	н	н	н
50	Table XIX: (continuation)	Example No.	CCLXIII	CCLXIV	CCLXV	CCLXVI	CCLXVII	CCLXVIII

Table XX:

H₃C - C - HN - CH₃ O V

Example No.	V	w	Х	R _f *	yield (% of theory)
CCLXIX	Н	Н	F	0.5 (IV)	83
CCLXX	Н	н	Br	0.45 (III)	68
CCLXXI	Н	Н	C ₂ H ₅	0.48 (IV)	60
CCLXXII	Н	Н	$\overline{}$	0.54 (IV)	78
CCLXXIII	Н	Вг	Н	0.27 (I)	71
CCLXXIV	Cl	Н	Cl	0.26 (I)	65
CCLXXV	Н	NO ₂	Н	0.15 (I)	20
CCLXXVI	Н	CH ₃	Н	0.25 (I)	73
CCLXXVII	CH ₃	Н	CH ₃	0.36 (I)	57
CCLXXVIII	Н	Н	NO ₂	0.19 (I)	16
CCLXXIX	Н	CF ₃	Н	0.35 (I)	37
CCLXXX	Н	OCH ₃	Н	0.21 (I)	96
CCLXXXI	Н	Н	— ОСН,	0.26 (I)	81

Table XXI:

Example

CCLXXXII

CCLXXXIII

No.

5

10

W

yield

(% of

theory)

55

31 :-

 R_f^*

0.64 (V)

0.75 (V)

NO₂

X

Н

Н

Ε

COCH₃

COCH₃

15

20

25

<i>35</i>		

Preparation Example 40

Example 1

3-[2-(4-Chlorobenzoyl)-6-(2-methoxy-2-oxo-acetamido)-3-benzofuranyl]propanoic acid, methylester

50

45

55

0.5 g (1,4 mmol) of example III were dissolved in 20 ml methylene chloride and 8 ml triethylamine. At 0°C 0.2 g (1.5 mmol) methyloxalyl-methylester chloride were added dropwise. After warming up to room temperature it was further stirred for 1 h. The solvent was distilled off, the residue solved in ethylacetate and washed three times with water. The organic layer was dried using Na₂SO₄ concentrated in vacuo and purified by crystallisation.

Yield: 0.4 g (65%)

 $R_f(III) = 0.22$

The compounds shown in Tables XXII and XXIII were prepared in analogy to the procedure of Example 1:

ij
e XX
Tab

ExNo.	>	М	X	Z	V	R ₄ *	Yield (% of theory)
2	H	Н	СН3	Н	-сн,сн,соосн,	(VI) 69.0	16
3	Н	NO2	Н	н	-CH ₂ CH ₂ COOCH ₃	0.70 (IV)	12
4	Н	СН3	נו	н	-CH2CH2COOCH3	0.73 (I)	74
5	н	н	ם	Н	-COOC ₂ H ₅	0.8 (IV)	75.5
9	н	Н	СН3	Н	-CH ₃	0.71 (IV)	76
7	Н	H	כו	Н	-CH ₂ CH ₂ COOCH ₃	0.69 (IV)	\$
8	Н	CI	н	Н	-сн2сн2соосн3	0.57 (I)	92

EP 0 685 474 B1

Table XXII: (Continuation)

ExNo.	^	W	×	2	A	$ m R_{f}^{*}$	Yield (% of theory)
6	Н	осн3	Н	Н	-сн ₂ сн ₂ соосн ₃	0.50 (I)	88
10	H	H	SCH ₃	Н	-сн ₂ сн ₂ соосн ₃	0.38 (I)	84
11	Н	Н	댸	н	-сн ₂ сн ₂ соосн ₃	0.45 (I)	95
12	Н	Н	S	Ħ,	-сн,сн,соосн,	0.35 (I)	88
13	Ü	Н	IJ	H	-co <u>, c</u> , H	0.37 (III)	76.4
14	Н	н	[]	Н	Но-	0.63 (V)	35
15	Н	CS.	Н	н	-CH2CH2CO2CH3	0.45 (I)	96
16	ü	н	CI	Н	-CH2CH2CO2CH3	0.63 (I)	82
17	н	Н	С,Н,	Н	-CH ₃	0.45 (I)	68

. .

<i>55</i>	50	45	40		35	25 30	20	15	10	5
Table XXIII:	XIII:									
							« °>-			
					=0	7	>			
EX-	>	M	×	Z	Ą		R ³	R _r *		Yield
No.										(% of theory)
18	н	Н	СН3	Н	СН3		но-	0.14	0.14 (V)	09
19	H	Н	СН3	Н	СН3	,	-NH ₂	0.41	0.41 (IV)	74
20	Н	Н	СН3	H	СН		-NHC ₂ H ₅	0.67	0.67 (IV)	88
21	H	Н	ت ت	Ħ	СН3		-0СН ₃	0.14	0.14 (III)	72
22	Н	Н	ರ	Ħ	НО		-OCH ₃	0.34	0.34 (V)	100
23	Н	H	CI	н	-сн2сн2соосн3	эосн3	-0CH(CH ₃) ₂	0.4	0.4 (III)	37
24	Н	Н	CI	н	-сн ₂ сн ₂ соосн ₃	эосн3	-0C(CH ₃) ₃	0.3	0.3 (III)	20

5 10		R _f * Yield (% of theory)
20		R³
<i>25</i> <i>30</i>		
35	; · · · · · · · · · · · · · · · · · · ·	A
40		Z
	(g	×
45	XIII: (Continuation	W
50	ХШ: (С	Λ

 Ж	Λ	M	×	Z	A	R³	R ₄ *	Yield
No.								(% of theory)
25	Н	ен20	Н	Н	-сн ₂ сн ₂ со ₂ сн ₃	-OCH ₃	(I) 8E'0	11
97	Н	CI	Н	Н	-сн ₂ сн ₂ со ₂ сн ₃	⁶ H2O-	0.43 (I)	19
73	Н	CN	Н	Н	-сн ₂ сн ₂ со ₂ сн ₃	-осн3	0.14 (I)	19

Example 28

5

10

15

25

30

35

40

45

50

55

3-[2-(4-Chloro-benzoyl)-6-(ethoxycarbonecarbonylamino)-benzofuran-3-yl]propionic acid

H₅C₂O NH COOH

1.5 g (4.2 mmol) of the compound from starting compounds Example III were dissolved in 50 ml methanol/tetrahydrofuran (1:1) and 5.5 ml of a 2 N NaOH solution were added. The mixture was stirred at r.t. for 24 hours, disssolved in water and acidified with 1 N hydorchloric acid. The precipitate was filtered off, washed several times with water and dried in vacuo. The further reaction was carried out as described in Example 1. Yield: 0.85 g (46%)

R_f: 0.28 (IV)

The compounds shown in table XXIV are prepared in analogy to the procedure of example 28:

5	
10	
15	
20	> >
25	× ×
30	Ę O≕
35	o o o o o o o o o o o o o o o o o o o
40	
45	
50	XXIV:

Ex No.	Λ	w	×	2	A	R³	R ₄ *	Yield (% of theory)
29	Н	Н	C ₆ H ₅	Н	-CH ₃	но-	0.5 (V)	8.
30	H	Н	כו	Н	сн,ссн,соон	но-	0.1 (V)	48
31	н	Н	CI	н	CH ₂ CH ₂ COONa	-ONa	0.1 (V)	quant.
32	Н	6Н20	Н	Н	сн ₂ сн ₂ со ₂ н	но-	0.05 (V)	46
33	Н	Н	SCH ₃	Н	СН2СН2СО2Н	но-	0.5 (V)	48
34	Н	Н	F	Н	сн,ссн,со,н	но-	0.1 (V)	89
35	н	Н	CN	Н	сн ₂ сн ₂ со ₂ н	но-	0.1 (V)	82

EP 0 685 474 B1

5		Yield	(% of theory)	0.26 (IV) 40			0.27 (IV)	0.31 (IV)
15		R _f *		0.2			0.2	0.3
20 25		R ³		но-	Н0-	но-	но-	Н0-
30 35		A		сн,сн,со,н	сн2сн2со2н	сн2сн2со2н	сн2сн2со2н	сн2сн2со2н
40		2		Н	Н	Н	Н	Н
	(c)	×	-	н	н	CI	Н	Bŗ
45	Table XXIV: (Continuation)	M		CN	Cī	Н	Br	н
50	(C	Λ		Н	Н	CI	Н	н
55	Table X	Ex	No.	36	37	38	39	40

EP 0 685 474 B1

Example 41

N-[3-(2-Carbamoyl-ethyl)-2-(4-chloro-benzoyl)-benzofuran-6-yl]-oxalamic acid methyl ester

H₃CO | (CH₂)₂—CO - NH

0.56 g (1.3 mmol) of the acid from example 1 were dissolved in 5 ml THF, 0.25 g (1.5 mmol) 1,1'-carbonyl-bis-1H-imidazole were added and the mixture was stirred at room temperature for 12 hours. Subsequently NH₃-gas was added for 2 hours using an inlet pipe. After one additional hour stirring at r.t. the solvent was distilled off in vacuo. The residue was taken up in ethylacetate and washed three times with water, one time with a NaHCO₃ solution and one time with a NaCl solution. The organic phase was dried using MgSO₄ and the solvent was removed in vacuo. Yield: 83%

R; 0.62 (V)

The compounds shown in table XXV are prepared in analogy to the procedure of example 41:

EP 0 685 474 B1

5	Yield (% of theory)	. 12	65	. 7	11
15					
20	$ m R_f^*$	0.36 (T)	(I) 6E'0	0.46 (J)	0.44 (I)
25			_		
30 ±		√ z _∞ ø	-cH ₂	z v	_° }=°
35 O O	A	-CO - NH	-co	HN - OO-	-co-
40					
45	R ³	-0C ₂ H ₅			
So Table XXV:	ExNo.	42	43	44	45

Example 46

5

10

15

25

30

35

40

45

50

55

N-[2-(4-Chloro-benzoyl)-3-(2-cyanoethyl)-benzofuran-6-yl]-oxalamic acid methyl ester

0.56 g (1.3 mmol) of example 41 were dissolved in 15 ml dioxane. 0.2 ml (2.6 mmol) pyridine was added, cooled to 5-10°C and 0.22 ml (1.56 mmol) trifluoroacetic anhydride was added dropwise. The mixture was stirred for 3 h at room temperature. The mixture was added to water, washed twice with acethylene chloride. The organic layer was dried and the solvent removed in vacuo.

Yield: 74%

R_f: 0.83 (V)

The compounds shown in table XXVI are prepared in analogy to the procedure of example 46:

Table XXVI:

ExNo.	R ³	R _f *	Yield (% of theroy)
47	-OC ₂ H ₅	0.5 (IV)	77
48	-ОН	0.07 (IV)	80

The compounds shown in Table XXVII are prepared in analogy to the procedure of example 1

٠.	'.	Ġ.
0		
5		
0		

NH OHO	
.α.	

Example	≻	>	≯	×	7	R³	Ą	К	yield
No.									%
49	Н	Н	н	Br	н	-0C ₂ H ₅	СН3	0.45 (I)	68
50	Н	Н	Br	н	н	-OC ₂ H ₅	-сн2сн2соосн3	0.42 (I)	93
51	Н	н	Н	Br	н	-0C ₂ H ₅	-сн2со2сн3		
52	н	н	Н	NO ₂	H	-0-C ₂ H ₅	-сн ₂ сн ₂ -со ₂ сн ₃		
53	СН3	СН3	н	СН3	Н	-0-C ₂ H ₅	СН3	0.82 (IV)	06
54	Н	Н	Н	NO ₂	Н	-0C ₂ H ₅	СН3	0.48 (III)	51

EP 0 685 474 B1

Table XXVII: (Continuation)

Example	>	^	M	×	2	R³	A	R _f *	yield
No.									%
55	Н	Н	N CS	Н	Н	-OC ₂ H ₅	сн ₃	0.58 (I)	37
95	Н	H.	н	S	н	-oc ₂ H ₅	сн _з	0.8 (IV)	93
57	н	н	Н	СН3	н	-0C ₂ H ₅	\Diamond	0.7 (ţV)	70
58	н	н	Н	СН3	Н	0C ₂ H ₅	-CH(CH ₃) ₂	0.83 (V)	92
59	н	Н	Н	снз	Н	-oC ₂ H ₅	-CH ₂ CH ₃	0.68 (IV)	93
09	Н	Н	Н	CH_3	H	-OCH ₂ CF ₃	-сн _з	0.5 (VI)	3
61	Н	Н	Н	C_4H_9	Н	-0C ₂ H ₅	-сн ₂ соос ₂ н ₅	0.52 (I)	66
62	Н	Н	Н	C_4H_9	Н	-осн3	-сн2соос2н5	0.37 (I)	69

EP 0 685 474 B1

The compounds shown in Table XXVIII are prepared in analogy to the procedure of example 28

5

	>.	اً ا	: . ×
∢.			I
	o≕ '	Z I	,

Example	Y	>	М	×	7	A	$ m R_f^*$	yield
o Z					de la cineta			%
63	Н	Н	Н	Br	H	-СН3	0.1 (V)	89
64	СН3	снз	Н	СН3	H	-сн ₃	0.02 (V)	59
65	Н	Н	CN	Н	H	-сн ₃	0.01 (V)	9
99	Н	Н	Н	ZON	, Н	-сн ₂ сн ₂ со ₂ н	0.05 (V)	40
19	Н	Н	NO2	Н	Н	-CH ₂ CH ₂ CO ₂	0.02 (V)	40
89	Н	Н	Н	NO ₂	Н	сн3	0.02 (V)	08

Table XXVIII: Continuation

Example	٠	Λ	M	X	2	A	R.*	yield
No.				- 1 - 2 - 3				%
69	Н	Н	Н	NO	H	сн _з	0.01 (V)	80
70	н	н	н	CH ₃ H	H	\Diamond	0.1 (V)	
71	н	н	Н	СН3	H	-CH(CH ₃) ₂	0.04 (V)	100
72	Н	Н	Н	CH ₃	Н	-СН2СН3	0.05 (V)	06

The compounds shown in Table XXIX are prepared in analogy to the procedure of example 1

5				yield %	83	100	89
10				R,*	0.8 ((IV)	0.3 (IV)	0.85
15							
20		>		∢	CH ₃	СН3	СН3
25			/×	X	СН3	Н	CN
30				W	H	н	Н
35		O= DO					
40	. i	۲ [°] ر		>	H	田	Н
45	Table XXIX:			Example No.	75	74	75

The compounds shown in Table XXX are prepared in analogy to the procedure of example 28

55

EP 0 685 474 B1

A

CH₃

CH₃

CH₃

Yield

100

89

93

 $R_{\rm f}$

0.01 (V)

0.02 (V)

0.01_:(V)

Table XXX:

Example

No.

76

77

78

5

HO N H V W

X

CH₃

H

CN

w

H

Н

Н

V

Н

Н

Н

15

10

20

25

30

35

The compounds shown in Table XXXI are prepared in analogy to the procedure of the example 1

40

45

50

EP 0 685 474 B1

Table XXXI:

Example No.

79

80

5

 \mathbb{R}^3

-OC₂H₅

-OH

15

10

20

25

30

35

40

45

50

55

The compounds shown in Table XXXII are prepared in analogy to the procedure of the example 1: The compounds shown in Table XXXII are prepared in analogy to the procedure of the example 1.

 R_{f}

0.35 (IV)

0.01 (V)

Yield

58

95

(% of theory)

5	Yield	(% of theory)	100	97	80	76
10	R _f *		0.75 (IV)	0.45 (III)	(VI) e.o	0.5 (Ш
20	R					
25	Y		СН3	СН3	СН3	C ₂ H ₅
1 () () () () () () () () () (7	19 (10 mm)	H	H	H	Н
35 > \(\) \	×		F	C ₂ H ₅	\bigcirc	Н
40 Z	W		Н	Н	н	Br
ەخرى مىللىق م مىللىق مىللىق مىللىق مىللىق مىللىق مىلىق مىلىق مىللىق مىلىق م	7		I	I	H	-
50	lo. V		Н	H	Н	Н
Table XXXIII:	Ex. No.		81	82	83	84

EP 0 685 474 B1

Table XXXII: (Continuation)

- In											
	Yield	55	86	78	96	48	68	68	55	36	74
	R _f *	0.65 (I)	0.7 (I)	0.7 (111)	0.7 (I)	0.4 (III)	0.55 (IV)	0.58 (III)	0.72 (I)	0.7 (I)	0.6 (III)
	A	CH(CH ₃) ₂	CH(CH ₃) ₂	CH(CH ₃) ₂	сн(сн ₃₎₂	CH(CH ₃) ₂					
ŗi.	Z	Н	Н	Н	н	Н	Н	Н	Н	Н	H
	X	CN	Н	C ₂ H ₅	9	ഥ	Br	Н	CN	₩. H	C ₂ H ₅
	W	H	CN	H	н	Н	Н	Br	Н	CN	Н
	^	H	Н	Н	エ	н	H	Н	Н	Н	Н
	Ex. No.	85	98	87	88	68	06	91	92	93	94

EP 0 685 474 B1

50 55	45	40	30	25	15 20	10	5
Table XXXII: (Continuation)	Continuation)		* *	1			
				÷.			
Ex. No.	Λ	W	X	2	А	R ₄ *	Yield
95	Н	Н		н	СН(СН ₃)2	0.62 (III)	85
96	н	Н	F	н	CH(CH ₃) ₂	0.4 (I)	72
26	н	Н	NO ₂	Н	-СН3	0.79 (I)	83
86	н	H	Br	Н	-CH ₃	0.83 (I)	86
66	Н	Н	осн3	Н	-СН3	0.78 (I)	63
100	ū	כו	Н	Н	-CH ₃	0.79 (I)	82
101	н	Н	CH_3	Н	-CH ₃	0.54 (I)	89
102	Н	н	CF_3	Н	-СН3	0.53 (I)	51
103	н	*ноо-{}	NO ₂	Н	-сн³	0.76 (I)	35
104	СН3	сн₃	H	Н	-сн _з	0.73 (I)	84

EP 0 685 474 B1

Table XXXII: (Continuation)

		,					
Ex. No.	۸	W	×	Z	A	Rŗ*	Yield
105	н	CCH,	н	π	-сн3	0.6 (I)	83
106	н		н	H	-сн3	0.68 (I)	42
107	Н	Н	NO ₂	Н	-CH(CH ₃) ₂	0.88 (I)	34
108	Н	H	СН3	Η.	-CH(CH ₃) ₂	(I) 68 [.] 0	100
109	Н	Н	OCH ₃	H-	-CH(CH ₃) ₂	0.87 (I)	41
110	IJ	CI	H	Н	-CH(CH ₃) ₂	0.37 (I)	80
111	СН3	СН3	H	H	-CH(CH ₃) ₂	0.34 (I)	67
112	Н	Н	CF ₃	H .	-CH(CH ₃) ₂	0.81 (I)	91
113	Н	NO ₂	Н	Н	СН3	0.51 (II)	51
114	Н	Н	NO ₂	Н	CH(CH ₃) ₂	0.74 (I)	34

EP 0 685 474 B1

15		
20		
25	•	
30		
35		
40		
45		
50		
<i>55</i>		

Table XXXII: (Continuation)

5

Ex. No.	٨	W	×	Z	A	$R_{ m f}^{*}$	Yield
115	Н	н	НО	Н	СН3	0.54 (I)	36
116	H	Н	OCOCO ₂ Et	Н	сн₃	0.52 (IV)	85
117	н	н		н	СН3	0.4 (IV) :	89
118	н	н	CH ₃	⊞ '	Y	0.76 (IV)	92
119	н	н	\s\\	H ::	сн₃	0.53 (III)	5
120	H	CN	н	H	7	0.35 (I)	37
121	Н	н	(T-)	Н	\Diamond	0.68 (III)	92

EP 0 685 474 B1

50	45	40	<i>30</i>	25	20	10	5
'able XXXII: (Continuation)	Continuation)				`		
ž. No.	^	W	×	2	Ą	$R_{ m f}^*$	Yield
22	H	н		н	\Diamond	0.46 (III)	88
23	H	H		#	7	0.6 (III)	67
124	н	н	Į r i	H	7	0.45 (I)	84
125	н	сн	н	H	7	0.7 (I)	79
	I	-осн ₃	Н	Н	\Diamond	0.82 (I)	88
127	Н	Н	сн₃	Н	Н-	0.82 (I)	89
128	Н	осн	Н	Н	-С ₂ Н ₅	0.71 (I)	33

5	Vie:V	rield	82	79	64	10	89	85	86		
10	* 0	Kŗ.	0.79 (I)	0.71 (I)	0.82 (t)	0.75 (I)	0.82 (I)	0.81 (I)	0.34 (I)		
20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	₩	Y	-0C ₂ H ₅	\Diamond	\Diamond	7	7	7		
25		7	H.	Н	Н	Н	н	Н	н	ste i a ligh	į.c.
30		×	н	СН3	Н	CI	Н	Н	CI	And the second s	
<i>35</i>		*	осн3	Н	CF ₃	Н	CF ₃	Br	н		
5 ontinuation)		^	н	H	н	ū	Н	Н	כו 1		
55 55 55 55 55 55 55 55 55 55 55 55 55		Ex. No.	129	130	131	132	133	134	135		

EP 0 685 474 B1

5		Yield	45	09	20	21		77	26	47	43		
10		R,*	0.63 (I)	0.63 (I)	0.58 (I)	0.65 (I)		0.5 (I)	0.55 (I)	0.5 (I)	0.4 (I)		
15		R		\Diamond			H ₃	CH ₂ COOEt 0	CH2COOEt 0	CH2COOEt 0			
20		∢	-C ₂ H ₅		-C ₂ H ₅	C_2H_5	ОСН	CH2	СН2	CH ₂	C ₂ H ₅		
25		2	н	н	Н	Н	н	Н	Н	Ħ	⊞ .j:		
30		×	н	н	Н	CI	СН3	С4Н9	naphtyl			and the second of the second o	•
<i>35</i> 40		W	СН3	СН,	CF ₃	Н	н	H	H	н	Н		
45	ontinuation)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Н	н	Н	CI	Н	H	Н	Н	н		
50 55	Table XXXII: (Continuation)	Ex. No.	136	137	138	139	140	141	142	143	144		

EP 0 685 474 B1

50 55	45	40	30 35	25	15 20	10	5
Table XXXII: (Continuation)	Continuation)			·			
Ex. No.	>	W	· ×	Z	Y	R.*	Yield
145	Ü	Н	CI	н	CH2CO2Et	0.4 (I)	64
146	Н	Н	CI	н	CH2CO2Et	0.44 (I)	57
147	H	Н	осн	I	CH(CH ₃) ₂	0.57 (I)	85
148	осн	Н	осн	H	CH(CH ₃) ₂	0.57 (I)	59
149	H	H	осн	Н	C_2H_5	0.5 (I)	72
150	Н	Н	осн	Н	сн₃	0.47 (I)	57
151	н	н	СН3	Н	снұсоові	0.4 (I)	70
152	осн	н	оснз	Н	СН3	0.3 (1)	75
153	оснз	н	осн ₃	H 3	abla	0.6 (IV)	37
154	н	н	осн,		Y	0.7 (IV)	62

EP 0 685 474 B1

Table XXXII: (Continuation)

Ex No	Λ	M	×	Z	¥	R.*	Yield
						1.	
155	Ħ	н	Br	н	Y	0.5 (IV)	32
156	H	H		H	Y	0.56 (IV)	<u>8</u>
157	Н	Н	CF ₃	Н	СН3		
158	Н	Н	H000	H	СН3		
159	н	но-	H	H	CH ₃		

EP 0 685 474 B1

The compounds shown in Table XXXIII are prepared in analogy to the procedure of the example 28.

•

Table XXXIII:

0=		>	×	
	오			

Ex. No.	>	M	×	2	∀	R.	Yield
			*				(% of theory)
160	н	Ħ	3. S	Н	СН3	0.01 (IV)	92
161	н	н	C ₂ H ₅ H		СН3	0.05 (V)	68
162	н	Ħ	H ·		СН3	0.07 (III)	70

EP 0 685 474 B1

Table XXXIII: (Continuation)

Ex. No.	>	*	×	Z	Ą	R₁*	Yield
			-				(% of theory)
163	H	Br	Н	Н	СуН,	0.05 (V)	100
164	н	н	CS	н	C_2H_5	0.02 (V)	96
165	н	CN	Н	н	C_2H_5	0.02 (V)	96
166	Н	Н	C ₂ H ₅	H	C_2H_5	0.08 (III)	96
167	ж	н		III 🖏 🗡	C_2H_S	0.1 (III)	88
168	Н	Н	Į I L.	H.	C_2H_5	0	87
691	н	Н	Br	Н.	CH(CH ₃) ₂	0.06 (V)	92
170	Н	Br	Н	Н	CH(CH ₃) ₂	0.05 (V)	001
171	Н	н	CN	Н	CH(CH ₃) ₂	0.04 (V)	62
172	Н	CN	Н	Н	CH(CH ₃) ₂	0.04 (V)	71
173	Н	Н	C ₂ H ₅	Н	СН(СН ₃)2	0.08 (III)	64

EP 0 685 474 B1

ation)
ontinu
<u>び</u> 当
XXX
Table

Ex. No.	Λ	W	Z	Z	A	R _f *	Yield
			The state of the s	ال			(% of theory)
174	н	н		Ĥ,	сн(сн³);	0.1 (П)	87
175	Н	Н	Ţ,	Ĥ	CH(CH ₃) ₂	, 0	91
921	н	出		н	C_2H_5	0.2 (V)	96
177	CI	н	ט	Н	сн2со2н	0 (V)	7.1
178	н	Н	ט	Н	сн ₂ со ₂ н	0 (V)	. 99
179	н	Н	осн3	Н	СН(СН ₃) ₂	0.35 (V)	80
081	осн3	H	осн	Н	СН(СН ₃)2	0.35 (V)	73
181	Н	Н	6СН3	Н	С₂Н₅		
182	н	Н	och3	Н	СН3	0.13 (V)	92

EP 0 685 474 B1

50 55	45	40	30 4,	25	15 20	10	5
Table XXXIII: (Continuation)	Continuation)						
Ex. No.	>	*	×		Ą	$R_{\rm f}^{*}$	Yield (% of theory)
183	Н	Н	СН3	н	сн2соон		
184	осн,	н	осн	н	сн₃	0.2 (1)	93
185	осн	н	осн3	н	\nearrow	0.25 (V)	83
186	н	Н	осн3	н	7	0.22 (V)	82
187	н	н	Вř	Н	\nearrow	0.2 (V)	83
88	н	н		Н	\nearrow	0.28 (V)	quant
189	Н	н	Br	Н	-CH ₃	0.07 (V)	86
190	Н	осн,	H	H	-сн3	0.07 (V)	78

EP 0 685 474 B1

Table XXXIII: (Continuation)

Ex. No.	^	W	×	2	¥	R _f *	Yield
							(% of theory)
191	C	Н	CI	Н	-CH ₃	0.07 (V)	79
192	H	СН3	Н	Н	-сн ₃	0.01 (V)	100
193	н	CF ₃	н	Н	-СН3	0.01 (V)	75
194	н	NO ₂	-0cH,	н	-сн3	0.05 (V)	100
195	СН3	Н	СН3	Н	-сн ₃	0.41 (V)	75
196	н	н	och,	Н	-сн³	0.21 (I)	91
197	н	Ħ	All Annie	ж ,	-сн _з	0.07	52
198	Н	NO ₂	Н	Н	-СН(СН ₃) ₂	0.01 (V)	100
661	н	СН3	Н	Н	-CH(CH ₃) ₂	0.15 (V)	100

EP 0 685 474 B1

EP 0 685 474 B1

5	Yield (% of theory)	33	100	73	43	75
10	·R _f *	0.04 (IV)	0.05 (V)	0.04 (V)	0.07 (V)	0.54 (V)
20	¥	сн(сн ₃₎₂	сн₃	СН3	сн,	СН3
25	Z	н	Н,	Н	* H	н
30			C ₉ H ₁₉	C ₆ H ₁₃	\(\sigma\)	
<i>40</i>	×	н	Н	Н	н	GH, CH,
ontinuation)	>	H	H	н	ш	н
55 55 55 55 55 55 55 55 55 55 55 55 55	Ex. No.	209 F	210 F	211 F	212 E	213 F

EP 0 685 474 B1

	ir.		 					
5		Yield (% of theory)	89			49	73	25
10		$R_{ m f}^{ullet}$	0.08 (V)	-		0.1 (V)	0.07 (V)	0.01 (IV)
15		_		3	[3			
25		Y	СН3	CH3	СН3	CH ₃	CH ₃	CH3
30	*	Z		H	Н	н	н	н
35		×	ш	н	СООН	Ξ	ш	НО
40		W	z N	но-	н	ov Contraction of the contractio		н
45	ontinuation)	Λ	H	Н	Н	H	H	Н
50	Table XXXIII: (Continuation)		H			<u> </u>		
<i>55</i>	Table	Ex. No.	214	215	216	217	218	219

EP 0 685 474 B1

0.02 (V)

Ξ

[_

 ${\tt H}$

I

224

0.01 (IV)

H

Ή

S

H

223

5	Yield (% of theory)	56	66	10
10	$ m R_f^*$	0.01 (III)	0.01 ['] (V)	0.01 (V)
20		СН3	abla	сн₃
25	¥			
30	2	H ·		H (s)
35	×		CH ₃	/
	<u> </u>	# .	Ħ	н
© (Continus	>	斑	н	н
Table XXXIII: (Continuation)	Ex. No.	220	221	222

55

103

EP 0 685 474 B1

5	Yield (% of theory)						
10	Yield (% of	88	86	96	001	34	93
	Ř.*	0.03 (V)	0.01 (IV)	0.01 (V)	0.22 (V)	0.44 (V)	0.11 (V)
15	<u> </u>	^		0	0	^	0
20	∀	\Diamond	Y	Y	Y	\Diamond	Н-
25							
	Z	量分析 Cyman	田	н	н	н	H
•	×.	\bigcirc		tr.	Н	н	СН3
35							
40	8	H	Ħ	Ħ	СН3	-осн3	н
otinuation)						·	
. (Co	>	H	H H	H	H	H	H
Table XXXIII: (Continuation)	Ex. No.	53	93	73	88	6;	0
55 E	<u>დ</u>	225	226	227	228	229	230

EP 0 685 474 B1

5 10 15 20 25 30		W X Yield Yield (% of theory)	OCH ₃ H H -C ₂ H ₅ 0.25 (V) 100	OCH_3 H H OCH_3 H	H CH ₃ H -OC ₂ H ₅ 0.05 (V) 92	CF_3 H H \longrightarrow 0.24 (V) 75	H C1 H \longrightarrow 0.12 (V) 89	CF ₃ H H O.12 (V) 93	Br H H 0.22 (V) 100
v									
45	(Continuation)	Λ	Н	н	Н	Ξ.	ū	н	н
50 55	Table XXXIII: (Continuation)	Ex. No.	231	232	233	234	235	236	237

EP 0 685 474 B1

50	45	40	35	25 30	20	10	5
Table XXXIII: (Continuation)	(Continuation)						
Ex. No.	Λ	*	×	Z	٧	R.*	Yield (% of theory)
238	CI	н	ت ت	н	7	0.20 (V)	23
239	Н	снз	Н	Н	-C ₂ H ₅	0.23;(V)	100
240	н	сн₃	Н	н	\Diamond	0.21 (V)	100
241	CI	Н	CI	Н	C_2H_5	0.28 (V)	100
242	Н	CF_3	Н	Н	C_2H_5	0.21 (V)	100
243	Н	Н	СН3	Н	осн ₃		

EP 0 685 474 B1

The compounds shown in Tables XXXIV, XXXV and XXXVI are prepared in analogy to the procedure of the example

Table XXXIV:

1:

HO NH	C A

Ex. No.	х	A	R _f *	Yield (% of theory)
244	F	CH ₃	0.01 (V)	93
245	Вг	CH ₃	0.05	95 1 20
246	C ₂ H ₅	CH ₃	0.03 (V)	100
247		CH ₃	0.06 (V)	84

Table XXXV:

HO NH CH₃

Ex. No.	V	W	х	Z	R _f *	Yield (% of theory)
248	Cl	Н	Cl	Н	0.21 (V)	79
249	Н	NO ₂	Н	Н	0.20 (V)	90
250	Н	CH ₃	Н	Н	0.30 (V)	75 §
251	CH ₃	Н	CH ₃	Н	0.41 (V)	96
252	Н	Н	NO ₂	Н	0.21 (V)	76
253	Н	CF ₃	Н	Н	0.6 (V)	100
254	н	OCH ₃	Н	Н	0.43 (V)	72
255	Н	————осн,	н	Н	0.11 (V)	95

Table XXXVI:

но		
	1H	C ₂ H ₅
		° Tov
		7 J
		$z' \rightarrow w$

Ex. No.	V	w	х	Z	R _f *	Yield (% of theory)
256	Cl	Н	Cl	Н	0.15 (IV)	quant
257	Н	CH ₃	Н	Н	0.10 (IV)	quant
258	Н	OCH ₃	Н	Н	0.10 (IV)	ii v
259	Н	CF ₃	Н	Н	0.15 (IV)	
260	н	Н	OCH ₃	Н	0.10 (V)	50.6
261	Н	Н		н	0.31 (V)	89.3

The compounds shown in Table XXXVII are prepared in analogy to the procedure of the example 1.

5	

Table XXXVII:

0:	O HN	_	× ×	.
	۾ ڳ	0		

Ex. No.	Μ	×	2	.R ₃	4	R_{f}^{*}	Yield
							(% of theory)
262	Н	Н	н		сн³	0.17 (III)	11
263	Н	СН3	Н		СН3	0.05 (III)	41
264	Н	СН3	Н	OCH(CH ₃) ₂	сн₃	0.33 (III)	08
265	Н	СН3	Н	осн ₃	СН3	0.12 (III)	99

EP 0 685 474 B1

Table XXXVII: (Continuation)	(Continuation)						
Ex. No.	м	×	Z	R3	¥	R,*	Yield (% of theory)
266	H	СН3	Н	OC2H4OCH3	СН3	0.06 (III)	63
267	Н	СН3	Н	оС ₆ Н ₁₃	СН3	0.48 (III)	82
268		н	н	0С2Н5	СН3	0.65 (J) :	84
569	н		Н	ОС ₂ Н ₅	CH(CH ₃) ₂	0.9 (IV)	100
270	Н	сн³	H	осн2сн(сн3)2	сн³	0.4 (III)	68
271	н	снэ	н	WHOO THE PROPERTY OF THE PROPE	СН3	0.26 (III)	63
272	н	С9Н19	Н	0C₂H _s	СН3	0.22 (III)	65
273	Н	C_6H_{13}	Н	oc ₂ H ₅	СН3	0.06 (II)	59

EP 0 685 474 B1

50	45	40	35	25	20	10	5
[able XXXVII: (Continuation)	(Continuation)						
Ex. No.	W	×	7	R ₃	¥	R.*	Yield (% of theory)
274	Н	N N	Ħ	0С2Н5	СН3	0.72 (V)	97
275	£ £	н	н	64. The second s	СН3	0.7 (III)	06
276	Z J	H	н	OC2H5	сн₃	0.77 (V)	83
77.7	н	сн₃	Н	—осн	СН2СО2Е:	0.56 (I)	20

Table XXXVII: (Continuation)	(Continuation)						
Ex. No.	*	×	Z	R ₃	¥	Ŗ ,	Yield (% of theory)
278	on the second se	Ħ	н	ОС ₂ Н ₅	сн,	0.93 (V)	86
279	F F	н	н	şh'co	сн₃	0.9 (V)	65

The compounds shown in Table XXXVIII are prepared in analogy to the procedure of example 1

Table XXXVIII:

H₅C₂O NH

Ex. No.	х	A	R _f *	Yield (% of theory)
280	F	CH ₃	0.3 (Ш)	75
281	Br Asset	CH₃	0.38 (III)	78
282	C ₂ H ₅	CH ₃	0.7 (I)	95
283	→	CH ₃	0.8 (I)	98
284	C ₂ H ₅	C ₂ H ₅	0.65 (I)	85
285	CH ₃	C ₂ H ₅	0.63 (III)	89
286	─	C ₂ H ₅	0.57 (III)	89

The compounds shown in Table XXXIX are prepared in analogy to the procedure of example 1

Table XXXIX:

H₅C₂O NH CH₃

Ex. No.	V	w	Х	R _f *	Yield (% of theory)
287	Cl	H 3	Cl	0.71 (I)	87
288	H	NO ₂	Н	0.75 (I)	90
289	H	CH ₃	Н	0.72 (I)	83
290	CH₃	Н	CH ₃	0.73 (I)	78
291	Н	Н	NO ₂	0.72 (I)	68
292	Н	CF ₃	Н	0.71 (I)	79
293	Н	OCH ₃	Н	0.79 (I)	82
294	Н	———осн,	Н	0.61 (I)	95

The compounds shown in Table XL are prepared in analogy to the procedure of example 1

Table XL:

H₅C₂O NH C₂H₅

Ex. No.	V	W	Х	R _f *	Yield (% of theory)
295	Cl	Н	Cl	0.91 (V)	21
296	Н	CH ₃	H- ij	0.62 (I)	76
297	Н 👼	OCH ₃	H	0.68 (I)	19
298	Н	CF ₃	Н	0.79 (I)	78
299	Н	NO ₂	Н	0.81 (I)	73
300	Н	Н		0.6 (I)	56

The compounds shown in Tables XLI, XLII, XLIII, XLIV and XLV are prepared in analogy to the procedure of example 1

Table XLI:

Ex. No.	W	Х	R ³	R _f *	Yield (% of theory)
301	Н	H	OEt	0.82 (I)	22
302	CN	H	ОН	0.01 (I)	48
303	H	Н	OCH ₃	0.6 (V)	17
304	Н	CN	ОН	0.02 (I)	33
305	Н	F	OEt	0.8 (I)	39
306	F	Н	OEt	0.77 (I)	42
307	F	Н	ОН	0.01 (I)	96
308	CN	Н	OEt	0.78 (I)	17
309	Н	F	ОН	0.01 (I)	97
310	н	Н .	ОН	0.01 (I)	77
311	Н	CN	OEt	0.6 (I)	3

Table XLII:

R³²O NH A O W

2	0	

15	
\sim	

Ex. No.	A	х	w	R ³²	Yield (% of theory)
312	CH ₃	CH ₃	H	Na ⁺	92
313	CH ₃		H	Na ⁺	97
314	CH ₃		Н	Na ⁺	90
315	CH ₃	CH ₃	Н	NH ₄ ⁺	91
316	CH ₃	CH ₃	Н	[®] NH ₃ -C-(CH ₂ OH) ₃	99
317	-CH ₂ CH ₃	F	Н	Н	100

Table XLIII:

R³³0 NH

Ex. No.	R ³³	A	Х	w	Yield (% of theory)	R _f *
318	Na ⁺	CH ₃ :	C ₂ H ₅	Н	83	
319	Ŋa	СН₃		Н	89	
320	[®] NH ₃ -C-(CH ₂ OH) ₃	CH ₃	C ₂ H ₅	Н	100	
321	Н	\rightarrow	н	H	83	0.01 (III)
322	Н	>	CI	Н	93	(0.005) (III)
323	н	$\neg \triangleleft$	C ₂ H ₅	Н	95	0.01 (III)

5				
10				
15				
20		_		×
25	4		£.)—×
30		₩	· ·	
35	· .	o	= o	
40				
45	হা			
50	Table XLIV:			

Ex. No.	R ³⁴	A	×	M	Yield (% of theory)	R ₄ *
324	五	\Diamond	Н	н	83	0.4 (III)
325	CH ₂	СН3	C ₂ H ₅	н	78	0.4 (III)
			. 4			

EP 0 685 474 B1

5				(I)	0
10		R _f *	0.7 (IV)	(III)	0.06 (III)	0.82 (II)
15		Yield (% of theory)	75	89	33	09
20		M	н	Н	Н	Н
25			Ü	СН3	СН3	СН3
30			\Diamond			
35		A		СН3	СН3	СН3
40	Continuation)	R ³⁴	亞	-C ₂ H ₄ OC ₂ H ₅	-сн(сн ₃)сн ₂ осн ₃	-C ₂ H ₄ -® _N O
50	Table XLIV: (Continuation)	Ex. No. R	326 E	327	328	329

Table XLV:

R³⁵O H

Ex. No.	R ³⁵	Yield (% of theory)	R _f *
330	Na ⁽⁺⁾	96.7	0.01 (IV)
331	K ⁽⁺⁾	97.2	0.05 (IV)
332	[®] NH ₃ -C-(CH ₂ OH) ₃	80	0.01 (IV)
333	-CH ₂ -O-CO-C(CH ₃) ₃	65.4	0.73 (III)

The compounds shown in Table XLVI are prepared in analogy to the procedure of example 1

Table XLVI:

NH C=O CH₃

	Ex. No.	R ³	R _f *	Yield (% of theory)
25	334	OC ₂ H ₅	0.34 (III)	34
	335	ОН	0.02 (V)	100

The compounds shown in Table XLVII are prepared in analogy to the procedure of example 1

Table XLVII:

5

X⁽⁺⁾O⁽⁻⁾O⁽⁻⁾NH

Ex. No.	X ⁽⁺⁾	Yield (% of theory)
336	Na ⁽⁺⁾	90
337	NH ₄ ⁽⁺⁾	95

The compounds shown in Table XLVIII are prepared in analogy to the procedure of the example 1

5	
10	
15	
20	
25	
30	The second of th
35	× ×
40	√ U=0
45	
50	Table XLVIII: R ³⁷ R ³⁶
55 55	Table

		-					
Ex. No.	¥	X M	×	R ³⁶	R ³⁷	Yield (% of theory)	*,
338	-сн ₂ -со ₂ н	Н	CH3	-NHCO-CO ₂ H	Н	14.6	0.44 (V)
339	-CH ₂ -CO ₂ C ₂ H ₅	н	(CH ₂) ₃ CH ₃	-NH-CO-CO ₂ CH ₃	Н	89	0.366 (I)
340	-CH ₂ -CO ₂ C ₂ H ₅		(CH ₂) ₃ CH ₃	-NH-CO-CO ₂ C ₂ H ₅	Н	33	0.583 (I)
341	-CH ₃	Н	СН3	-NH-CO-CO ₂ H	-СН ₃		
342	-CH ₃	Н	СН3	-NH-CO-CO ₂ C ₂ H ₅	-сн ₃		

Example 343

3-[6-(Methoxycarbonecarbonyl-amino)-2-(pyridine-4-carbonyl)-3-benzofuranyl]propionic acid, methylester

H₃CO NH COOCH

0.45 g (1.4 mmol) of example LXXIV were dissolved in 20 ml methylenechloride and 8 ml triethylamine. At 0°C 0.2 g (1.5 mmol) methyloxalyl-methylester chloride were added dropwise. After warming up to room temperature it was further stirred for 1 h. The solvent was distilled off, the residue solved in ethylacetate and washed three times with water. The organic layer was dried using Na_2SO_4 concentrated in vacuo and purified by chromatography. Yield: 0.27 g (48%)

 $R_f = 0.13 (I)$

The compounds shown in Table XLIX were prepared in analogy to the procedure of Example 343:

EP 0 685 474 B1

5		Yield (% of theory)	67	41	28
15			0.19 (I)	0.33 (IV)	0.36 (I)
20		* ₇			
25		₹	_{;;} с₂н₄соосн₃	-с₂н₄соосн₃	-с ₂ н ₄ соосн ₃
30	9, -		Z]	CH ₃	z
35	✓	R ⁴		of f	
40		E.,	ос ₂ н ₅	-OCH ₃	0C ₂ H ₅
45	<u>"</u> ر⁄	R3		•	
50	Table XLIX:	Ex. No.	344	345	346

15

20

25

30

35

40

45

50

Table XLIX: (Continuation)

(% of theory) Yield 54 9. 0.53 (IV) 0.13 (I) -C₂H₄C00CH₃ **R**4 $0C_2H_5$ $0C_2H_5$ \mathbb{R}^3 Ex. No. 347 348

Example 349

3 [6-(Hydroxycarbonecarbonyl-amino)-2-(pyridin-4-carbonyl)-3-benzofuranyl]-propionic acid

HO NH O COOH

1.5 g (3.5 mmol) of the compound from Example 342 were dissolved in 50 ml methanol/tetrahydrofuran (1:1) and 10 ml of a 2 N NaOH solution were added. The mixture was stirred at r.t. for 24 hours, dissolved in water and acidified with 1N hydrochloric acid. The precipitate was filtered off, washed several times with water and dried in vacuo. Yield: 96%

R_f: 0.19 (V)

The compounds shown in Table L to LV are prepared in analogy to the procedure of example 349:

Table L:

0 0		/(CH ₂) ₂ —CO ₂ H
HOC-C-NH	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Y 0

Example	R ⁴	R _f	Yield (% of theory)
350	H ₃ C N CH ₃ H ₃ C	0.01 (V)	64
351		0.02 (V)	60
352		0.01 (V)	44

EP 0 685 474 B1

5			Yield (% of	theory)	89	33	09	88	65	74	\$9
10			•		0.1 (II)	0.06 (II)	0.82 (V)	0.53 (III)	0.05 (V)	0.9 (TV)	0.38 (IV)
15			R.		0.1	0.0	8.0	0.5	0.0	0.0	0.3
20		∪ > ≥ ×			СН3	СН3	СН3	СН3	СН3	СН3	сн₃
25			×			0	0	0)	0	
			3		Н	Н	H	H	Н	Н	H
30		o≠ EN F	>		н	н	Ħ	H	н	Н	Н
35	+	, κ ο >== 0	¥		-СН3	-CH ₃	-СН ₃	-0-сн ₃	-С ₂ Н ₅	-C ₂ H ₅	Н
40			<u>-</u> Z		н	н	Ħ	H	н	Н	Br
45	وم		R ³⁸		(CH ₂) ₂ OC ₂ H ₅	СН(СН ₃)СН ₂ ОСН ₃	CH ₂ CH ₂ N O-CI	-C ₂ H ₅	Κ [†]	-СН ₂ О-СОС(СН ₃)3	-C ₂ H ₅
50	Table LI:		Ex		353	354	355	356	357	358	359

EP 0 685 474 B1

	15								
5		Yield	(% of theory)	94	06	77	97	20	27
10		*_		0.33 (V)	0.43 (V) ;	0.33 (V)	0.32 (V)	0.5 (I)	0.2 (III)
15		*		0	0	0	O .		0
20		×		осн₃		осн ₃	Br	COCOC,H ₃	Н
25		м	¢ ^f	Н	H	H	H	н	NO ₂
30	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>	·	н	Н	осн,	н	: , H	H
35		Ą		\Diamond	\Diamond	\Diamond	\Diamond	-CH ₃	-C ₂ H ₅
40		R.		н	H	I	н	=	Н
45	Table LI: (Continuation)	R ³⁸		н	н	H	H	-C ₂ H ₅	-C ₂ H ₅
50	Sable LI:	Ä.	o Z	360	361	362	363	364	365

EP 0 685 474 B1

	45	40	35	30		20	15	10	5
able L	able LI: (Continuation)				Ž,			·	
Š. No.	R ³⁸	R ₁	A	>	М	×	R	R _f *	Yield (% of theory)
366	NH ₃ C(CH ₂ OH) ₃	н	7	н	Br	н	0	0.05 (V)	06
367	-С ₂ Н ₅	н	·cH ₃	н	н	£_~~	0	0.6 (I)	20
368	-сн2сн2осн3	н	-C ₂ H ₅	Н	Н	-CH ₃	0	0.48 (III)	62
369	H	н	-сн3	H	н	₽ \	0	0.1 (TV)	80

EP 0 685 474 B1

5				
-				
10				•
-				
15				
20		o	<u>}</u>	≥ - - -×
25		₹		<i>y</i>
30		o= ⟨	1	
35		R ³⁵ 0	=0	
40				
45				
50	Table LII:			
55	<u></u> 1			

EX.	R ³⁹	Ą	>	W	×	R.	yield
No.							(% of theory)
370	CH,CH,N	-C ₂ H ₅	Н	Н		0.14 (II)	26
)						
371	*NH3C(CH2OH)3	-C ₂ H ₅	н	$\mathbf{H}_{\mathbf{u}}$	-сн _з	0.005 (I)	76
372	Na ⁺	-C ₂ H ₅	Н	Н	-сн _з	0.05 (I)	quant.
373	NH4+	-C ₂ H ₅	Н	H H	-CH ₃	0.05 (I)	57
374	-сн ₃	-сн3	Н	Н	-сн _з	0.5 (I)	20
375	-сн ₂ сн ₂ осн ₃	-сн3	Н	Н	-сн3	0.4 (I)	30
376	-сн,сн,осн,	-C ₂ H ₅	Н	н	-сн3	0.45 (I)	49.5

	-	
c	•	•

Ex.	R ³⁹	A	^	W	×	$R_{ m f}^*$	yield
377	-С ₂ Н	Н	н	Н	-CH ₃	(VI) 19.0	(% of theory)
378	Н	Н	Н	Н	-СН3	0.28 (IV)	84

Table LIII:

R⁴⁰O NH CH₃

Ex No.	X	R ⁴⁰	R _f *	yield (% of theory)
379	-C(CH ₃) ₃	-C ₂ H ₅	0.7 (IV)	56
380	-C(CH ₃) ₃	Н	0.08 (IV)	quant.
381	-(CH ₂) ₃ CH ₃	-C ₂ H ₅	0.31 (I)	48
382	Cl	-C ₂ H ₅	0.5 (IV)	7.5
383	Cl	Н	0.08 (IV)	95

EP 0 685 474 B1

5	yield (% of theory)	33	46.9
10	*.	0.56 (J)	0.19 (2 × II)
15	F	0	v
20	R ⁴	T T	
25 ▲)	CH,	
3		-сн,со,с,н,	-CH ₃
30		Ç.	
35 35	R42	н	o Ho
40			
45		o e o	
50 <u></u>	R ⁴¹	Z	н
7able LIV:	S.S.	384	385

EP 0 685 474 B1

Table LIV; (Continuation) Ex. R ⁴¹ Ex. R ⁴¹ By R ⁴² A R ⁴ T R ^{4*} S 0.38 (f) 622 386 H N OEI N OEI S NIT (2 x II) 5 S NIT (3 x II) 622 S NIT (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	yield (% of theory)	62.2	\$	24.3	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$ m R_{f}^{*}$	0.38 (I)	0.12 (2 × II)	0.453 (I)	0.61 (J)
25 W N N OE OE OE OE OE OE OE OE	15	H	S	S	0	0
88 84 A B C C C C C C C C C C C C C C C C C C	20	R⁴	-		<u> </u>	
26 R42	25					
25 H H H C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C	30	4	-CH ₃	·CH ₃		Y
Ct,-CH ₂ -C ₆ H ₅		242	0=		*	н
H H NA NH CONtinuation) H H CO NA CL-C NH CL-C CoH ₅	40	, i.e.	-			
H H N N N N N N N N N N N N N N N N N N	क Sontinuation))=°	5+3°0 HN C1'-C0C0-
	50	R41	H	н		T Z
1386 Bx. 388 388 3889 389	Table I	Ä S O	386	387	388	389

die

EP 0 685 474 B1

5			94	0.32 (IV)	0.36 (V)	0.01 (V)
15			R	. 0	0	0
20			yield	81%	92%	74%
25		0		13	F ₁	13
30	<		А	CH ₃	CH ₃	OH CH ₃
35		-ar _ar	R ²	н	o⇒ II	o= IZ ∕
40				áti		
4 5				o= T V		
			R.	/	正	н
50	Table LV:		ExNo.	390	391	392

5

(aciten)	dattom
(Continu	
Table IV.	I ADIC LA
•	

ExNo.	\mathbb{R}^{1}	R ²	A	yield	Rç
393	0=	H	СН3	83%	(V)
	H _N				
394	NH OC2H5	T.	C ₂ H ₃		
395	HN HN	н	C ₂ H ₅		

Table LVI:

HO NH O NH

The compounds shown in Table 36 are prepared in analogy to the procedure of example 28.

Example No.	х	A	R _f	Yield (% of theory)
396	C ₂ H ₅	C ₂ H ₅	0.01 (IV)	98
397	CH ₃	C ₂ H ₅	0.01 (IV)	100
398		C ₂ H ₅	0.01 (IV)	95

Claims

5

10

15

20

25

30

35

40

45

50

1. Oxalylamino-benzofuran- and benzothienyl-derivatives of the general formula (I)

$$R_3 \longrightarrow R_1 \longrightarrow A \longrightarrow CO-R_4$$
 (I)

in which

- L represents an oxygen or sulfur atom,
- R1 represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms or represents halogen, carboxyl, cyano, nitro, trifluoromethyl or a group of a formula -OR5, -SR6 or -NR7R8, in which
- are identical or different and denote hydrogen, cycloalkyl having 3 to 6 carbon atoms, benzyl or a 5 to 7-membered saturated or unsaturated heterocycle having up to 3 heteroatoms from the series comprising N, S and O and to which a phenyl ring can be fused and which is optionally substituted by identical or different substituents from the series comprising

halogen, cyano, nitro or by a straight-chain or branched alkyl having up to 6 carbon atoms, or

denote straight-chain or branched alkyl or alkenyl each having up to 8 carbon atoms, or denote phenyl, which is optionally monosubstituted to disubstituted by identical or different substituents from the series comprising nitro, halogen, carboxy or straight-chain or branched alkoxycarbonyl having up to 6 carbon atoms,

or

5

10

15

20

25

30

35

40

45

R5 denotes a hydroxyl protecting group,

and

R⁷ denotes hydrogen or a straight-chain or branched alkyl having up to 4 carbon atoms,

R² represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms,

R3 represents hydroxyl, benzyloxy or straight-chain or branched alkyl or alkoxy each having up to 10 carbon atoms, and each of which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising halogen, carboxyl, trifluoromethyl, phenyl, cyano, or straight-chain or branched alkoxy or oxyacyl each having up to 6 carbon atoms, morpholinyl or by a residue of a formula

or

represents aryl having 6 to 10 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising halogen, cyano, nitro, carboxyl, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 6 carbon atoms, or represents a group of a formula -NR⁹R¹⁰,

in which

R9 and R10

are identical or different and denote hydrogen, cycloalkyl having 3 to 6 carbon atoms or denote straight-chain or branched alkyl having up to 8 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising carboxy, straight-chain or branched alkoxy, alkoxycarbonyl or acyl each having up to 6 carbon atoms or phenyl, or

denote aryl having 6 to 10 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising halogen, cyano, nitro, carboxy, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 6 carbon atoms, or

denote a group of a formula -SO₂R¹¹, in which

50

55

R11 denotes straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by phenyl, or

denotes phenyl, which is optionally substituted by trifluoromethyl, cyano, nitro or straight-chain or branched alkyl having up to 6 carbon atoms,

or

R3 represents a residue of a formula

T represents an oxygen or sulfur atom,

5

20

25

30

35

40

45

50

55

10 A represents hydrogen, hydroxyl, cycloalkyl having up to 6 carbon atoms, carboxy or straight-chain or branched alkoxy or alkoxycarbonyl each having up to 6 carbon atoms, or represents straight-chain or branched alkyl or alkenyl each having up to 8 carbon atoms and each of which is optionally monosubstituted by cyano or by a 5 to 7-membered saturated or unsaturated heterocycle having up to 4 heteroatoms from the series comprising N, S and O, which is optionally substituted by identical or different substituents from the series comprising hydroxy, halogen, cyano, nitro or by a straight-chain or branched alkyl having up to 6 carbon atoms,

or alkyl and/or alkenyl are optionally substituted by a group of a formula

$$COH_2)a$$
 or N

in which

a denotes a number 1, or 2,

and in which both rings are optionally monosubstituted by hydroxy, halogen or by straight-chain or branched alkyl having up to 6 carbon atoms,

ď,

or alkyl and/or alkenyl are optionally monosubstituted by a group of a formula -CO-R¹², -CO-NR¹³R¹⁴, -CONR¹⁵-SO₂-R¹⁶ or -PO(OR¹⁷)(OR¹⁸), -OR¹⁹ or

in which

R¹² denotes hydroxyl, cycloalkyloxy having up 3 to 7 carbon atoms or straight-chain or branched alkyl or alkoxy each having up to 8 carbon atoms,

R¹³, R¹⁴ and R¹⁵ are identical or different and represent hydrogen, a straight-chain or branched alkyl having up to 6 carbon atoms, phenyl or benzyl,

or

R13 denotes hydrogen, and

R14 denotes a 5- to 7-membered saturated or unsaturated heterocycle having up to 3 heteroatoms from the series comprising N, S and O, hydroxyl or a residue of the formula

5

10

15

or

R13 and R14

together with the nitrogen atom form a 5- or 6-membered saturated heterocycle,

R16

denotes a straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by phenyl or trifluoromethyl, or denotes phenyl, which is optionally substituted by substituents from the series comprising halogen, cyano, nitro or

by a straight-chain or branched alkyl having up to 6 carbon atoms,

R17, R18 and R19

are identical or different and represent hydrogen or straight-chain or branched alkyl

having up to 6 carbon atoms,

20

25

30

35

40

45

50

55

denotes hydrogen, an aminoprotecting group or straight-chain or branched alkyl hav-

ing up to 6 carbon atoms,

R21 and R22

are identical or different and denote hydrogen or straight-chain or branched alkyl hav-

ing up to 4 carbon atoms,

or

R²⁰

R21

has the abovementioned meaning,

and

and :

....

R²² denotes cycloalkyl having 3 to 6 carbon atoms or aryl having up 6 to 10 carbon atoms or straight-chain or branched alkyl having up to 8 carbon atoms, which is optionally substituted by cyano, methylthio, hydroxy, mercapto, guanidyl or a group of a formula -NR²³R²⁴ or R²⁵-CO-, wherein

 $\ensuremath{\mathsf{R}}^{23}$ and $\ensuremath{\mathsf{R}}^{24}$

have the meaning shown above for $\mathsf{R}^{13},\,\mathsf{R}^{14}$ and R^{15} and are identical to the latter or

different from the latter,

R²⁵

denotes hydroxyl, benzyloxycarbonyl, straight-chain or branched alkoxy having up to

6 carbon atoms or the abovementioned group -NR²³R²⁴,

or alkyl is optionally substituted by cycloalkyl having 3 to 6 carbon atoms, or by aryl having 6 to 10 carbon atoms, which is optionally substituted by

hydroxyl, halogen, nitro, straight-chain or bamched alkoxy having up to 8 carbon atoms or by the abovementioned group of the formula -NR²³R²⁴,

or alkyl is optionally substituted by indolyl or by a 5 to 6 menbered unsaturated heterocycle having up to 3 N-atoms wherein optionally all -NH- functions are protected by straight-chain or branched alkyl having up to 6 carbon atoms or by an amino protecting group,

or

A represents a group of the formula -CONR13'R14',

in which

R^{13'} and R^{14'} are identical or different and have the abovementioned meaning of R¹³ and R¹⁴,

and

R⁴ represents phenyl, or represents a 5 to 7 membered, saturated or unsaturated heterocycle, which can contain up to 4 oxygen, sulphur and/or nitrogen atoms as heteroatoms and to which further a benzene ring can be fused and wherein all rings are optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising hydroxyl, naphthyl, adamantyl, thiophenyl, cycloalkyl having up to 3 to 6 carbon atoms, halogen, nitro, tetrazolyl, thiazolyl, thienyl, furanyl, pyridyl, trifluoromethyl, phenoxy, difluoromethyl, cyano, carboxy, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 11 carbon atoms or by a group of formula -NR²⁶R²⁷, -SR²⁸, SO₂R²⁹, -O-SO₂R³⁰, -(CH₂)_b-O-CO-R³¹,

CH₃ CH₃ CO-CO₂H₅

in which

5

10

15

20

25

30

35

40

45

R²⁶ and R²⁷ have the meaning shown above for R⁹ and R¹⁰ and are identical to the latter or different from the latter.

or

R²⁶ denotes hydrogen,

and

R28

R²⁷ denotes straight-chain or branched acyl having up to 6 carbon atoms,

" girdenotes straight-chain or branched alkyl having up to 6 carbon atoms,

R²⁹ and R³⁰ are identical or different and represent straight-chain or branched alkyl having up to 6 carbon atoms, benzyl or phenyl, which are optionally substituted by trifluoromethyl, halogen or straight-chain or branched alkyl having up to 6 carbon atoms,

R³¹ denotes straight-chain or branched alkoxycarbonyl or alkyl having up to 6 C-atoms or carboxyl,

b denotes a number 0 or 1,

or

phenyl is optionally substituted by phenyl or phenoxy, which are optionally monosubstituted to trisubstituted by halogen, formyl, nitro, straight-chain or branched alkyl, acyl, hydroxyalkyl, alkoxy or alkoxycarbonyl each having up to 6 C-atoms,

or

R4 represents adamantyl, cycloalkyl or cycloalkenyl each having up to 6 carbon atoms,

- 50 and salts thereof.
 - Oxalylamino-benzofuran- and benzothienyl-derivatives of the formula according to claim 1, wherein
- 55 L represents an oxygen or sulfur atom,
 - R1 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms or represents fluorine, chlorine, bromine, nitro, trifluoromethyl or a group of a formula -OR5, -SR6 or -NR7R8,

in which

R7

denotes hydrogen or a straight-chain or branched alkyl having up to 3 carbon atom,

5

R5, R6 and R8

are identical or different and denote hydrogen, cyclopropyl, cyclopentyl, cyclohexyl, chinolyl, pyridyl, imidazolyl, 1,3-thiazolyl or thienyl, which are optionally substituted by identical or different substituents from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro or by a straight-chain or branched alkyl having up to 5 carbon atoms, or denote straight-chain or branched alkyl or alkenyl each having up to 6 carbon atoms, or denote phenyl, which is optionally monosubstituted to disubstituted by identical or different substituents from the series comprising nitro, fluorine, chlorine, bromine, iodine, carboxy or straight-chain or branched alkoxycarbonyl having up to 5 carbon atoms,

10

or

R2

RЗ

15

R5 denotes benzyl, acetyl or tetrahydropyranyl,

represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,

20

represents hydroxyl, benzyloxy or straight-chain or branched alkyl or alkoxy each having up to 8 carbon atoms, and each of which is optionally monosubstituted to disubstituted by identical or different substituents from the series comprising fluorine, chlorine, bromine, carboxyl, trifluoromethyl, phenyl, cyano, straight-chain or branched oxyacyl or alkoxy each having up to 4 carbon atoms, morpholinyl or by a residue of a formula

25

4, 60

CH₃

Marine Marine Control of the Control

35

or represents phenyl, which is optionally monosubstituted by substituents from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro, carboxyl or by a straight-chain or branched alkyl, alkoxy or alkoxy-carbonyl each having up to 5 carbon atoms, or represents a group of a formula -NR⁹R¹⁰ in which

40

45

R9 and R10

are identical or different and denote hydrogen, cyclpropyl, cyclopentyl, cyclohexyl, or denote straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising carboxy, straight-chain or branched alkoxy, alkoxycarbonyl or acyl each having up to 5 carbon atoms or phenyl, or denote phenyl, which is optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising fluorine, chlorine, bromine, iodine, carboxy, cyano, nitro or by a straight-chain or branched alkyl, alkoxy or alkoxycarbonyl each having up to 5 carbon atoms, or denote a group of a formula -SO₂R¹¹

50

in which

55

R11 denotes straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by phenyl, or denotes phenyl, which is optionally substituted by trifluoromethyl, cyano, nitro or straight-chain or branched alkyl having up to 4 carbon atoms,

or

R3 represents a residue of a formula

5

10

15

35

40

45

50

55

C₆H₅ CO₂-CH₂-C₆H₅

- T represents an oxygen or sulfur atom,
- A represents hydrogen, cyclopropyl, cyclobutyl, cylcopentyl, hydroxyl, carboxy or straight-chain or a branched alkoxy or alkoxycarbonyl each having up to 5 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 6 carbon atoms and each of which is optionally monosubstituted by cyano, tetrazolyl, oxazolyl, oxazolinyl, thiazolyl or a group of a formula

 $(CH_2)a$ Oor N H

in which

a denotes a number 1 or 2,

and in which all rings are optionally monosubstituted by hydroxy, fluorine, bromine, chlorine or by straight-chain or branched alkyl having up to 4 carbon atoms, or alkyl or alkenyl are optionally monosubstituted by a group of a formula -CO-R¹², -CO-NR¹³R¹⁴, -CONR¹⁵-SO₂-R¹⁶, -PO(OR¹⁷)(OR¹⁸) or -OR¹⁹, in which

III WINCII

R12 denotes hydroxyl, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy or straight-chain or

branched alkyl or alkoxy each having up to 6 carbon atoms,

R¹³, R¹⁴ and R¹⁵ are identical or different and represent hydrogen,

straight-chain or branched alkyl having up to 4 carbon atoms, phenyl or benzyl,

R¹³ denotes hydrogen,

R¹⁴ denotes hydroxyl, thiazolyl, dihydrothiazolyl or a residue of the formula

or

or

and

5	R ¹³ and R ¹⁴ R ¹⁶ R ¹⁷ . R ¹⁸ and R ¹⁹	together with the nitrogen atom form a pyrrolidinyl, morpholinyl or a piperidinyl ring, denotes a straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by phenyl or trifluoromethyl, or denotes phenyl, which is optionally substituted by substituents from the series comprising fluorine, chlorine, bromine, iodine, cyano, nitro or by straight-chain or branched alkyl having up to 4 carbon atoms, are identical or different and represent hydrogen or straight-chain or branched alkyl	
	n., n. aliu n.	having up to 6 carbon atoms,	
10	or A represents a group -CO	NR ^{13'} R ^{14'} , in which	
	R ^{13'} and R ^{14'} have the abovementioned meaning of R ¹³ and R ¹⁴ and are identical or different to the latter,		
15	and		
20	represents phenyl, or represents pyridyl, imidazolyl, pyrazolyl, thienyl, isothiazolyl, 1,3-thiazolyl or benzo[b] thiophenyl, where in all rings are optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising hydroxyl, naphthyl, adamantyl, phenoxy thiophenyl, thienyl, cyclopentyl, cyclohexyl, fluorine, chlorine, bromine, iodine, nitro, tetrazolyl, thiazolyl, furanyl, pyridyl, trifluoromethyl, difluoromethyl, cyano, carboxy, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to 10 carbon atoms or by a group of formulae -NR ²⁶ R ²⁷ , -SR ²⁸ , SO ₂ R ²⁹ , -O-SO ₂ R ³⁰ , -(CH ₂) _b -O-CO-R ³¹ ,		
25		CH₃ CH₃	
30		Or N CO-CO ₂ H ₅	
30	in which	t _e	
35	R ²⁶ and R ²⁷ have	the meaning shown above for \mathbb{R}^9 and \mathbb{R}^{10} and are identical to the latter or different the latter,	
	or		
40	R ²⁶ denotes hydrogen,		
	and		
	R ²⁷ den	otes straight-chain or branched acyl having up to 6 carbon atoms,	
45	R ²⁸ den	otes straight-chain or branched alkyl having up to 4 carbon atoms,	
50	brar triflu	identical or different and represent straight-chain or niched alkyl having up to 5 carbon atoms or phenyl, which is optionally substituted by oromethyl, fluorine, chlorine, bromine or straight-chain or branched alkyl having up to urbon atoms,	
		otes straight-chain or branched alkoxycarbonyl or alkyl each having up to 4 carbon ns or carbonyl,	

phenyl is optionally substituted by phenyl or phenoxy, which are optionally monosubstituted to trisubstituted by fluorine, chlorine or bromine, formyl, nitro, straight-chain or branched acyl, alkyl, hydroxyalkyl, alkoxy, alkoxy, alkoxycar-

denotes a number 0 or 1,

55

b

bonyl each having up to 4 carbon atoms, or

R4 represents adamantyl, cyclopropyl, cyclopentyl, cyclohexyl, cyclopentenyl or cyclohexenyl,

and salts thereof.

5

10

15

20

25

30

35

40

45

55

or

 Oxalylamino-benzofuran- and benzothienyl-derivatives of formula (I) according to claim 1, wherein

L represents an oxygen or sulfur atom,

R¹ represents hydrogen, straight-chain or branched alkyl having up to 3 carbon atoms, fluorine, chlorine, bromine, nitro, trifluoromethyl or a group of a formula -OR⁵, in which

R5 denotes hydrogen, benzyl, acetyl or denotes straight-chain or branched alkyl each having up to 3 carbon atoms, or denotes phenyl,

R² represents hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
represents hydroxyl, benzyloxy or straight-chain or branched alkyl or alkoxy each having up to 7 carbon
atoms, which is optionally substituted by substituents from the series comprising fluorine, chlorine, bromine,
trifluoromethyl, carboxyl, phenyl, cyano, straight-chain or branched alkoxy or oxyacyl each having up to 5

CH₃

or represents phenyl, which is optionally monosubstituted by different substituents from the series comprising fluorine, chlorine or bromine, or represents a group of a formula -NR⁹R¹⁰, in which

R⁹ and R¹⁰ are identical or different and denote hydrogen, cyclopropyl, cyclopentyl, cyclohexyl or denote straight-chain or branched alkyl having up to 4 carbon atoms or denote phenyl,

R³ represents a residue of a formula

C₆H₅ CO₂-CH₂-C₆H₅

carbon atoms, morpholinyl or by a residue of a formula

T represents an oxygen atom or sulfur,

A represents hydrogen, cyclopropyl, cyclobutyl, cyclopentyl, hydroxyl, carboxy, or straight-chain or a branched

alkoxy or alkoxycarbonyl each having up to 4 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 5 carbon atoms and each of which is optionally monosubstituted by cyano, tetrazolyl, oxazolyl, oxazolyl, oxazolyl, or a group of the formula

5

10

in which

a denotes a number 1 or 2,

15

or alkyl or alkenyl are optionally monosubstituted by a group of a formula -CO-R12, -CO-NR13R14 or -OR19, in which

denotes hydroxyl, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy or straight-chain or branched alkyl or alkoxy each having up to 5 carbon atoms,

20

are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 3 carbon atoms, phenyl or benzyl,

25

or R¹³

R13 and R14

R12

denotes hydrogen,

and

30

R14 denotes hydroxyl, thiazolyl, dihydrothiazolyl or a residue of the formula

35

40

or

R13 and R14

together with the nitrogen atom form a pyrrolidinyl, morpholinyl or piperidinyl ring,

R¹⁹

denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,

Α

represents a group of the formula -CONR13'R14', in which

50

55

45

R13' and R14' have the abovementioned meaning of R13 and R14 and are identical or different to the latter,

and

R4 represents phenyl, or

represents pyridyl, thienyl, furyl which are optionally monosubstituted to trisubstituted by identical or different substituents from the series comprising hydroxyl, naphthyl, adamantyl, thiophenyl, cyclopentyl, cyclopexyl, fluorine, chlorine, bromine, nitro, tetrazolyl, thiazolyl, thianyl, furanyl, pyridyl, phenoxy, trifluoromethyl, difluoromethyl, cyano, carboxyl, straight-chain or branched alkyl, alkoxy, alkoxycarbonyl or acyl each having up to

9 carbon atoms or by a group of formulae -NR²⁶R²⁷, SR²⁸ or -(CH₂)_b-O-CO-R³¹,

CH₃ CH₃ CO-CO₂H₅,

10

5

in which

R²⁶ and R²⁷

have the meaning shown above for ${\sf R}^9$ and ${\sf R}^{10}$ and are identical to the latter or different from the latter,

15

or

and

R²⁶ denotes hydrogen,

20

R²⁷ denotes straight-chain or branched acyl having up to 5 carbon atoms,

R²⁸ denotes straight-chain or branched alkyl having up to 4 carbon atoms,

25

30

35

R³¹ denotes straight-chain or branched alkoxycarbonyl or alkyl each having up to 4 carbon atoms or carboxy,

b denotes a number 0 or 1, or phenyl is optionally substitute

phenyl is optionally substituted by phenyl or phenoxy, which are optionally monosubstituted to trisubstituted by fluorine, chlorine, bromine, nitro, formyl or straight-chain or branched acyl, alkoxy, alkyl, hydroxyalkyl or alkoxycarbonyl, each having up to 3 carbon atoms,

or

R4 represents adamantyl, cyclopentyl, cyclohexyl, cyclopentenyl or cyclohexenyl.

and salts thereof.

- 40 4. Oxalylamino-benzofuran- and benzothienyl-derivatives according to- claim 1 to 3 for the therapeutic use.
 - 5. Process for the preparation of Oxalylamino-benzofuran- and benzothienyl-derivatives according to claim 1 to 3 characterized in that at first compounds of the general formula (II)

45

50

in which

R1, R4, A and T have the abovementioned meaning

55 and

E represents straight-chain or branched acyl having up to 6 carbon atoms or another typical aminoprotecting group,

by elimination of the group E are converted into compounds of the general formula (III)

R₁ CO-R₄ (III)

in which

5

10

15

20

25

30

35

40

45

50

55

R1, R4, T and A have the abovementioned meaning,

which in a further step are reacted with compounds of the general formula (IV)

 R^3 -CO-CO-Z (IV)

in which

R3 has the abovementioned meaning, and

Z denotes CI or Br,

in inert solvents, if appropriate in the presence of a base and/or in the presence of an auxiliary, and, if appropriate, the protective groups are split off,

further amino groups are alkylated, esters are hydrolysed, acids are esterified with the appropriate alcohols in the presence of a catalyst,

or the esters directly or the free carboxylic acids are reacted with amines.

- 6. A composition consisting of at least one Oxalylamino-benzofuran- and benzothienyl-derivative according to claim 1 to 3 and a pharmacological acceptable diluent.
- 7. A composition according to claim 6 for the treatment of acute and chronical inflammatory processes.
- 8. A composition according to claim 6 for the treatment of acute and chronical inflammation of the airways.
- Use of the Oxalylamino-benzofuran- and benzothienyl-derivatives according to claim 1 to 3 for the preparation of medicaments.
- 10. Use according to claim 9 for the preparation of medicaments for the treatment of acute and chronical inflammatory processes.

Patentansprüche

1. Oxalylaminobenzofuran- und -benzothienyl-Derivate der allgemeinen Formel (I):

 $R_3 \longrightarrow N \longrightarrow I \longrightarrow I \longrightarrow CO - R_4$ (I)

worin gilt:

L stellt ein Sauerstoff- oder Schwefelatom dar,

R1 stellt Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen oder ein Halogen, einen Carboxy-, Cyano-, Nitro-, Trifluormethylrest oder eine Gruppe der Formel -OR5, -SR6 oder -NR7R8 dar.

worin gilt:

10

15

20

5

R5, R6 und R8 sind gleich oder verschieden und bedeuten Wasserstoff, einen Cycloalkylrest mit 3 bis 6 Kohlenstoffatomen, einen Benzylrest oder einen 5- bis 7- gliedrigen gesättigten oder ungesättigten Heterzyklus mit bis zu 3 Heteroatomen aus den Reihen aus N, S und O, an welchen ein Phenylring kondensiert sein kann, und welcher gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Halogen, einer Cyano- oder Nitrogruppe oder mit einem geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen substituiert ist, oder

einen geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit jeweils bis zu 8 Kohlenstoffatomen oder

einen Phenylrest, der gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Nitro-, Halogen-, Carboxy- oder einem geradkettigen oder verzweigten Alkoxycarbonylrest mit bis zu 6 Kohlenstoffatomen mono- bis disubstituiert ist,

oder

25

30

35

R5 bedeutet eine Hydroxyl-Schutzgruppe,

17.

und

to sent internal and the common R7 bedeutet Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen,

es a fill

R2 stellt Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen dar,

the again to the good of the s with a "

R3 stellt Wasserstoff, einen Benzyloxy- oder einen geradkettigen oder verzweigten Alkyl- oder Alkoxyrest mit jeweils bis zu 10 Kohlenstoffatomen, von denen ein jeder gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Halogen, einem Carboxyl-, Trifluormethyl-, Phenyl-, Cyano- oder aus einem geradkettigen oder verzweigten Alkoxy- oder Oxyacylrest mit jeweils bis zu 6 Kohlenstoffatomen, mit einem Morpholinylrest oder einem Rest der Formel mono- bis trisubstituiert ist:

40

45

oder

50

einen Aryl-Rest mit 6 bis 10 Kohlenstoffatomen, welcher gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Halogen, einem Cyano-, Nitro-, Carboxyl-, einem geradkettigen oder verzweigten Alkyl-, Alkoxy-, Alkoxycarbonyl- oder einem Acylrest mit jeweils bis zu 6 Kohlenstoffatomen monobis trisubstituiert ist, oder

55

eine Gruppe der Formel -NR9R10,

worin gilt:

R⁹ und R¹⁰ sind gleich oder verschieden und bedeuten Wasserstoff, einen Cycloalkylrest mit 3 bis 6 Kohlenstoffatomen oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 8 Kohlenstoffatomen, der gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Carboxy-, geradkettigen oder verzweigten Alkoxy-, Alkoxycarbonyl- oder einem Acylrest mit jeweils bis zu 6 Kohlenstoffatmen oder aus einem Phenylrest mono- bis trisubstituiert ist, oder

einen Arylrest mit bis 10 Kohlenstoffatomen, der gegebenenfalls mit gleichen oder verschiedenen substituenten aus den Reihen aus einem Halogen, einem Cyano-, Nitro-, Carboxy-, geradkettigen oder verzweigten Alkyl-, Alkoxy-, Alkoxycarbonyl- oder aus einem Acylrest mit jeweils bis zu 6 Kohlenstoffatomen mono- bis trisubstituiert ist, oder

eine Gruppe der Formel -SO₂R¹¹ dar,

worin gilt:

R¹¹ bedeutet einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen, der gegebenenfalls mit einem Phenylrest substituiert ist, oder

einen Phenylrest, der gegebenenfalls mit einem Trifluormethyl-, Cya- no-, Nitro- oder einem geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen substituiert ist,

oder

R3 stellt einen Rest der Formel

25

- 30

35

40

5

10

15

20

dar,

T stellt ein Sauerstoff- oder Schwefelatom dar,

A stellt Wasserstoff, einen Hydroxyl-, Cycloalkylrest mit bis zu 6 Kohlenstoffatomen, einen Carboxy- oder geradkettigen oder verzweigten Alkoxy- oder Alkoxycarbonylrest mit jeweils bis zu 6 Kohlenstoffatomen oder einen geradkettigen oder vezrweigten Alkyl- oder Alkenylrest mit jeweils bis zu 8 Kohlenstoffatomen dar, von denen ein jeder gegebenenfalls mit einem Cyanorest oder einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterozyklus mit bis zu 4 Heteroatomen aus den Reihen aus N, S und O monosubstituiert ist, welcher gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Hydroxy-, Halogen-, Cyano-, Nitro- oder aus einem geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen substituiert ist,

45

oder der Alkyl- und/oder Alkenylrest sind gegebenenfalls substituiert mit einer Gruppe der Formel:

50

$$\begin{array}{cccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

55

worin a eine Zahl von 1 oder 2 bedeutet und beide Ringe gegebenenfalls mit einer Hydroxygruppe, einem Halogen oder einem geradkettigen oder

verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen monosubstituiert sind,

oder Alkyl- und/oder Alkenylrest sind gegebenenfalls monosubstituiert mit einer Gruppe der Formel -CO-R12, -CO-NR13R14, -CONR15-SO₂-R16 oder -PO(OR17)(OR18), -OR19 oder

R₂₁ R₂₂

worin gilt:

R¹² bedeutet einen Hydroxylrest, einen Cycloalkyloxyrest mit 3 bis 7 Kohlenstoffatomen oder einen geradkettigen oder verzweigten Alkyl- oder Alkoxyrest mit jeweils bis zu 8 Kohlenstoffatomen,

R¹³, R¹⁴ und R¹⁵ sind gleich oder verschieden und stellen Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen, einen Phenyl- oder Benzylrest dar,

oder

R13 bedeutet Wasserstoff,

25 und

5

10

15

20

30

35

40

50

55

R¹⁴ bedeutet einen 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterozyklus mit bis zu 3 Heteroatomen aus den Reihen aus N, S und O, einen Hydroxylrest oder einen Rest der Formel:

oder

R13 und R14 bilden zusammen mit dem Stickstoffatom einen 5-oder 6-gliedrigen gesättigten Heterozyklus,

R¹⁶ bedeutet einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen, der gegebenenfalls mit einem Phenyl- oder Trifluormethylrest substituiert ist,

45 oder

einen Phenylrest, der gegebenenfalls mit Substituenten aus den Reihen aus einem Halogen, einem Cyano-, Nitro- oder einem geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen substituiert ist,

R¹⁷, R¹⁸ und R¹⁹ sind gleich oder verschieden und stellen Wasserstoff oder einen gerdkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen dar,

R²⁰ bedeutet Wasserstoff, eine Schutzgruppe für die Aminogruppe oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen,

R²¹ und R²² sind gleich oder verschieden und bedeuten Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen,

oder

R²¹ hat die oben angegebene Bedeutung,

und

5

10

15

20

25

30

35

40

45

50

55

R²² bedeutet einen Cycloalkylrest mit 3 bis 6 Kohlenstoffatomen oder einen Arylrest mit 6 bis 10 Kohlenstoffatomen oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 8 Kohlenstoffatomen, der gegebenenfalls mit einem Cyano-, Methylthio-, Hydroxy-, Mercapto-, Guanidylrest oder mit einer Gruppe der Formel -NR²³R²⁴ oder R²⁵-CO- substituiert ist,

worin gilt:

R²³ und R²⁴ haben die oben für R¹³, R¹⁴ und R¹⁵ angegebene Bedeutung und sind gleich mit den letzteren oder von den letzteren verschieden,

R²⁵ bedeutet einen Hydroxyl-, Benzyloxycarbonyl-, einen geradkettigen oder verzweigten Alkoxyrest mit bis zu 6 Kohlenstoffatomen oder die oben genannte Gruppe-NR²³R²⁴, oder der Alkylrest ist gegebenenfalls mit einem Cycloalkylrest mit 3 bis 6 Kohlenstoffatomen oder mit einem Arylrest mit 6 bis 10 Kohlenstoffatomen substituiert, der gegebenenfalls mit einem Hydroxyl-, Halogen-, Nitro-, einem geradkettigen oder verzweigten Alkoxyrest mit bis zu 8 Kohlenstoffatomen oder mit der oben genannten Gruppe der Formel -NR²³R²⁴ substituiert ist,

oder der Alkylrest ist gegebenenfalls mit einem Indolylrest oder mit einem 5- bis 6-gliedrigen ungesättigten Heterozyklus mit bis zu 3 N-Atomen substituiet, worin gegebenenfalls alle -NH-Funktionen mit einer geradkettigen oder verzweigten Alkylgruppe mit bis zu 6 Kohlenstoffatomen oder mit einer Schutzgruppe für die Aminogruppe geschützt sind,

र ≾ेन ८मा व

A stellt eine Gruppe der Formel -CONR¹³'R¹⁴' dar, worin

R^{13'} und R^{14'} gleich oder verschieden sind und die oben angegebene Bedeutung von R¹³ und R¹⁴ haben, und

R⁴ stellt einen Phenylrest oder einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterozyklus dar, der bis zu 4 Sauerstoff-, Schwefel- und/oder Stickstoffatome als Heteroatome enthalten kann, an welchen ferner ein Benzolring kondensiert sein kann, worin alle Ringe gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Hydroxyl-, Naphthyl-, Adamantyl-, Thiophenyl-, Cycloalkylrest mit 3 bis 6 Kohlenstoffatomen, einem Halogen-, Nitro-, Tetrazolyl-, Thiazolyl-, Thienyl-, Furanyl-, Pyridyl, Trifluormethyl-, Phenoxy-, Difluormethyl-, Cyano-, Carboxy-, einem geradkettigen oder verzweigten Alkyl-, Alkoxy-, Alkoxycarbonyl- oder aus einem Acylrest mit jeweils bis zu 11 Kohlenstoffatomen oder mit einer Gruppe der Formel -NR²⁶R²⁷ -SR²⁸, -SO₂R²⁹, -O-SO₂R³⁰, -(CH₂)_b-O-CO-R³¹,

mono- bis trisubstituiert sind,

worin gilt:

 R^{26} und R^{27} haben die oben für R^9 und R^{10} angegebene Bedeutung und sind gleich mit den letzteren oder verschieden von den letzteren,

oder

R²⁶ bedeutet Wasserstoff,

5 und

R²⁷ bedeutet einen geradkettigen oder verzweigten Acylrest mit bis zu 6 Kohlenstoffatomen,

R²⁸ bedeutet einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen,

10

R²⁹ und R³⁰ sind gleich oder verschieden und stellen einen geradkettigen oder verzweigten Alkylrest bis zu 6 Kohlenstoffatomen, einen Benzyl- oder Phenylrest dar, welche gegebenenfalls mit einem Trifluormethyl-, Halogen- oder einem geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen substituiert sind,

15

25

n de tra francie Ottalia († 17 30

R³¹ bedeutet einen geradkettigen oder verzweigten Alkoxycarbonyl- oder einen Alkylrest mit bis zu 6 C-Atomen oder eine Hydroxylgruppe,

b bedeutet eine Zahl von 0 oder 1,

20 oder

> der Phenylrest ist gegebenenfalls mit einem Phenyl- oder einem Phenoxyrest substituiert, welche gegebenenfalls mit Halogen, einem Formyl-, Nitro-, geradkettigen oder verzweigten Alkyl-, Acyl-, Hydroxyalkyl-, Alkokxy- oder einem Alkoxycarbonylrest mit jeweils bis zu 6 C-Atomen mono- bis trisubstituiert sind,

oder

إسع با

R4 stellt einen Adamantyl-, Cycloalkyl- oder einen Cycloalkenylrest mit jeweils bis zu 6 Kohlenstoffatomen dar, 🔞 🕟 Electric Symmetrical Control

.

sowie Salze davon.

Oxalylaminobenzofuran- und -benzothienyl-Derivate der Formel gemäß Anspruch 1, worin gilt:

L stellt ein Sauerstoff- oder Schwefelatom dar,

35

R1 stellt Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen oder Fluor, Chlor, Brom, eine Nitro-, Tri- fluormethyl- oder eine Gruppe der Formel -OR5, -SR6 oder -NR7R8 dar,

worin gilt:

40

R7 bedeutet Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 3 Kohlenstoffatomen,

45

R5, R6 und R8 sind gleich oder verschieden und bedeuten Wasserstoff, einen Cyclopropyl-, Cyclopentyl-, Cyclohexyl-, Chinolyl-, Pyridyl-, Imidazolyl-, 1,3-Thiazolyl- oder einen Thienyl-Rest, welche gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus Fluor, Chlor, Brom, Jod, einer Cyanooder aus einer Nitrogruppe oder mit einem geradkettigen oder verzweigten Alkylrest mit bis zu 5 Kohlenstoffatomen substituiert sind,

50

einen geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit jeweils bis zu 6 Kohlenstoffatomen oder

einen Phenylrest, der gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einer Nitrogruppe, Fluor, Chlor, Brom, Jod, einem Carboxy- oder aus einem geradkettigen oder verzweigten Alkoxycarbonylrest mit bis zu 5 Kohlenstoffatomen mono- bis disubstituiert ist,

55

oder

R5 bedeutet einen Benzyl-, Acetyl- oder einen Tetrahydropyranylrest,

R2 stellt Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen dar,

R³ stellt einen Hydroxyl-, Benzyloxy- oder einen geradkettigen oder verzweigten Alkyl- oder Alkoxyrest mit jeweils bis zu 8 Kohlenstoffatomen, welche jeweils gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus Fluor, Chlor, Brom, einem Carboxyl-, Trifluormethyl-, Phenyl-, Cyano- und aus einem geradkettigen oder verzweigten Oxyacyl- oder Alkoxyrest mit jeweils bis zu 4 Kohlenstoffatomen, mit einem Morpholinyl- oder einem Rest der Formel mono- bis disubstituiert sind:

CH,

oder einen Phenylrest, der gegebenenfalls mit Substituenten aus den Reihen aus Fluor, Chlor, Brom, Jod, einer Cyano-, Nitro- und aus einer Carboxylgruppe oder mit einem geradkettigen oder verzweigten Alkyl-, Alkoxy- oder Alkoxycarbonylrest mit jeweils bis zu 5 Kohlenstoffatomen monosubstituiert ist, oder

eine Gruppe der Formel -NR9R10,

worin gilt:

5

10

15

20

25

30

35

40

45

50

55

R⁹ und R¹⁰ sind gleich oder verschieden und bedeuten Wasserstoff, einen Cyclopropyl-, Cyclopentyl-, Cyclohexyl- oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatomen, der gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Carboxy-, geradkettigen oder verzweigten Alkoxy-, Alkoxycarbonyl- oder Acylrest mit jeweils bis zu 5 Kohlenstoffatomen oder aus einem Phenylrest mono- bis trisubstituiert ist, oder einen Phenylrest, der gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus Fluor, Chlor, Brom, Jod, einer Carboxy-, Cyano- und aus einer Nitrogruppe oder mit einem geradkettigen oder verzweigten Alkyl-, Alkoxy- oder mit einem Alkoxycarbonylrest mit jeweils bis zu 5 Kohlenstoffatomen mono- bis trisubstituiert ist, oder

ţ,

eine Gruppe der Formel -SO₂R¹¹ dar,

worin

R¹¹ einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen, der gegebenenfalls mit einem Phenylrest substituiert ist, oder einen Phenylrest bedeutet, der gegebenenfalls mit einem Trifluormethyl-, Cyano-, Nitro- oder mit einem geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen substituiert ist,

oder R3 stellt einen Rest der Formel:

dar,

T stellt ein Sauerstoff- oder ein Schwefelatom dar, A stellt Wasserstoff, einen Cyclopropyl-, Cyclobutyl-, Cyclophenyl-, Hydroxyl-, Carboxy- oder einen geradkettigen oder verzweigten Alkoxy- oder Alkoxycarbonylrest mit jeweils bis zu 5 Kohlentoffatomen oder einen geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit

jeweils bis zu 6 Kohlenstoffatomen dar, welche jeweils gegebenenfalls mit einer Cyano-, Tetrazolyl-, Oxazolyl-, Oxazolyl-, Thiazolyl- oder einer Gruppe der Formel:

5

10

monosubstituiert ist,

15 worin

a eine Zahl von 1 oder 2 bedeutet,

und worin alle

und worin alle Ringe gegebenenfalls mit einem Hydroxyrest, Fluor, Brom, Chlor oder mit einem geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen monosubstituiert sind,

oder der Alkyl- oder Alkenylrest sind gegebenenfalls mit einer Gruppe der Formel -CO-R¹², -CO-NR¹³R¹⁴, -CONR¹⁵-SO₂- R¹⁶, -PO(OR¹⁷)(OR¹⁸) oder -OR¹⁹ monosubstituiert,

25 worin gilt:

R¹² bedeutet einen Hydroxyl-, Cycloperopyloxy-, Cyclopentyloxy-, Cyclohexyloxy- oder einen geradkettigen oder verzweigten Alkyl- oder Alkoxyrest mit jeweils:bis zu 6 Kohlenstoffatomen,

R¹³, R¹⁴ und R¹⁵ sind gleich oder verschieden und stellen Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen, einen Phenyl- oder Benzylrest dar, oder

R13 bedeutet Wasserstoff,

35 und

R¹⁴ bedeutet einen Hydroxyl-, Thiazolyl-, Dihydrothiazolyl-oder einen Rest der Formel:

40

30

45

50

55

oder

R13 und R14 bilden zusammen mit dem Stickstoffatom einen Pyrrolidi- nyl-, Morpholiniyl- oder einen Piperidinylring,

R¹⁶ bedeutet einen geradkettigen oder verzweigten Alkylrest mit bis zu 5 Kohlenstoffatomen, der gegebenenfalls mit einem Phenyl- oder Trifluormethylrest substituiert ist, oder

einen Phenylrest, der gegebenenfalls mit Substituenten aus den Reihen aus Fluor, Chlor, Brom, Jod, einer Cyano- und aus einer Nitrogruppe oder mit einem geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen substituiert ist,

R¹⁷, R¹⁸ und R¹⁹ sind gleich oder verschieden und stellen Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 6 Kohlenstoffatornen dar,

oder

5

A stellt eine Gruppe -CONR¹³'R¹⁴' dar, worin R¹³' und R¹⁴' die oben angegebene Bedeutung von R¹³ und R¹⁴ haben und gleich mit oder verschieden von den letzteren sind, und

10

R⁴ stellt einen Phenyl- oder einen Pyridyl-, Imidazolyl-, Pyrazolyl-, Thienyl-, Isothiazolyl-, 1,3-Thiazolyl- oder einen Benzo[b]thiophenyl-Rest dar, worin alle Ringe gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Hydroxyl-, Naphthyl-, Adamantyl-, Phenoxy-, Thiophenyl-, Thienyl-, Cyclopentyl-, Cyclohexylrest, aus Fluor, Chlor, Brom, Jod, einem Nitro-, Tetrazolyl-, Thiazolyl-, Furany-, Pyridyl-, Trifluormethyl-, Difluormethyl-, Cyano-, Carboxy-, einem geradkettigen oder verzweigten Alkyl-, Alkoxy-, Alkoxycarbonyl- oder aus einem Acylrest mit bis zu 10 Kohlenstoffatomen oder mit einer Gruppe der Formeln -NR²⁶R²⁷, -SR²⁸, SO₂R²⁹, -O-SO₂R³⁰, -(CH₂)_b-O-CO-R³¹,

15

20

oder N CO-CO₂H

* 43 45

হ । এই জন্ম ভাইকে কেন্ট্রেই কি এই র পর হ

25

30

an 540 a

(ili

mono- bis trisubstituiert sind,

 ${\sf R}^{26}$ und ${\sf R}^{27}$ haben die oben angegebene Bedeutung für ${\sf R}^9$ und

R¹⁰ und sind gleich mit oder verschieden von den letzteren,

35 oder

R²⁶ bedeutet Wasserstoff,

und

40

R²⁷ bedeutet einen geradkettigen oder verzweigten Acylrest mit bis zu 6 Kohlenstoffatomen,

R²⁸ bedeutet einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen,

45

R²⁹ und R³⁰ sind gleich oder verschieden und stellen einen geradkettigen oder verzweigten Alkylrest mit bis zu 5 Kohlenstoffatomen oder einen Phenylrest dar, der gegebenenfalls mit einem Trifluormethylrest, Fluor, Chlor, Brom oder mit einem geradkettigen oder verzweigten Alkylrest mit bis zu 3 Kohlenstoffatomen substituiert ist,

50

R³¹ bedeutet einen geradkettigen oder verzweigten Alkoxycarbonyl- oder einen Alkylrest mit jeweils bis zu 4 Kohlenstoffatomen oder einen Hydroxylrest,

b bedeutet eine Zahl von 0 oder 1,

55

der Phenylrest ist gegebenenfalls mit einer Phenyl- oder Phenoxygruppe substituiert, welche gegebenenfalls mit Fluor, Chlor oder Brom, einer Formyl-, Nitrogruppe, mit einem geradkettigen oder verzweigten Acyl-, Alkyl-, Hydroxyalkyl-, Alkoxy- oder mit einem Alkoxycarbonylrest mit jeweils bis zu 4 Kohlenstoffatomen mono- bis trisubstituiert sind,

oder

R⁴ stellt einen Adamantyl-, Cyclopropyl-, Cyclopentyl-, Cyclopentyl-, Cyclopentenyl- oder einen Cyclohexenyl-rest dar, sowie Salze davon.

3. Oxalylaminobenzofuran- und -benzothienyl-Derivate der Formel (I) gemäß Anspruch 1, worin gilt:

L stellt ein Sauerstoff- oder Schwefelatom dar,

R¹ stellt Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit bis zu 3 Kohlenstoffatomen, Fluor, Chlor, Brom, eine Nitro-, Trifluormethyl- oder eine Gruppe der Formel -OR⁵ dar,

worin

R⁵ Wasserstoff, einen Benzyl-, Acetyl- oder einen geradkettigen oder verzweigten Alkylrest mit jeweils bis zu 3 Kohlenstoffatomen oder einen Phenylrest bedeutet,

R2 stellt Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 3 Kohlenstoffatomen dar,

R³ stellt einen Hydroxyl-, Benzyloxy- oder einen geradkettigen oder verzweigten Alkyl- oder Alkoxyrest mit jeweils bis zu 7 Kohlenstoffatomen, welcher gegebenenfalls mit Substituenten aus den Reihen aus Fluor, Chlor, Brom, einem Trifluormethyl-, Carboxyl-, Phenyl-, Cyano-, einem geradkettigen oder verzweigten Alkoxyoder aus einem Oxyacylrest mit bis zu 5 Kohlenstoffatomen, mit einem Morpholinylrest oder mit einem Rest der Formel

25

35

40

45

y season of the sea

12 L

. 4 a.

they of the

5

10

15

20

g Alberto Silver de la completa de la completa de Silver forma de la completa de la completa de de la completa de la completa de Silver

substituiert ist,

oder

einen Phenylrest, der gegebenenfalls mit verschiedenen Substituenten aus den Reihen aus Fluor, Chlor oder aus Brom monosubstituiert ist, oder

eine Gruppe der Formel -NR9R10 dar,

worin

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, einen Cyclopropyl-, Cyclopentyl-, Cyclohexyl- oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen oder einen Phenylrest bedeuten,

50 oder

R3 stellt einen Rest der Formel:

55

dar,

5

10

15

20

25

30

35

45

50

10

T stellt ein Sauerstoff- oder Schwefelatom dar,

A stellt Wasserstoff, einen Cyclopropyl-, Cyclobutyl, Cyclopentyl-, Hydroxyl-, Carboxy- oder einen geradkettigen oder verzweigten Alkoxy- oder Alkoxycarbonylrest mit bis zu 4 Kohlenstoffatomen oder einen geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit jeweils bis zu 5 Kohlenstoffatomen dar, von denen ein jeder gegebenenfalls mit einer Cyano-, Tetrazo-lyl-, Oxazolyl-, Oxazolyl-, Oxazolinyl-,

Thiazolyl- oder mit einer Gruppe der Formel:

monosubstituiert ist,

worin

a eine Zahl von 1 oder 2 bedeutet,

oder der Alkyl- oder Alkenylrest sind gegebenenfalls mit einer Gruppe der Formel -CO-R¹², -CO-NR¹³R¹⁴ oder -OR¹⁹ monosubstituiert,

<u>፯</u> ፈ.

1.15-1.36-20-4-12

worin gilt:

R¹² bedeutet einen Hydroxyl-, Cyclopropyloxy-, Cyclopentyloxy-, Cyclohexyloxy- oder einen geradkettigen oder verzweigten Alkyl- oder Alkoxyrest mit jeweils bis zu 5 Kohlenstoffatomen,

6

R¹³ und R¹⁴ sind gleich oder verschieden und stellen Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit bis zu 3 Kohlenstoffatomen, einen Phenyl- oder Benzylrest dar,

oder

R13 bedeutet Wasserstoff,

und

R¹⁴ bedeutet einen Hydroxyl-, Thiazolyl-, Dihydrothiazolyl-oder einen Rest der Formel:

oder

R¹³ und R¹⁴ bilden zusammen mit dem Stickstoffatom einen Pyrrolindinyl-, Morpholinyl- oder einen Piperidinylring,

R¹⁹ bedeutet Wasserstoff oder einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen,

oder

A stellt eine Gruppe der Formel -CONR¹³'R¹⁴' dar,

worin R^{13'} und R^{14'} die oben angegebene Bedeutung von R¹³ und R¹⁴ haben und gleich mit oder verschieden von den letzteren sind,

10 und

5

15

20

25

30

35

45

50

55

R⁴ stellt einen Phenyl- oder einen Pyridyl-, Thienyl- oder einen Furyl-Rest dar, die gegebenenfalls mit gleichen oder verschiedenen Substituenten aus den Reihen aus einem Hydroxyl-, Naphthyl-, Adamantyl-, Thiophenyl-, Cyclopentyl-, Cyclohexylrest, aus Fluor, Chlor, Brom, einem Nitro-, Tetrazolyl-, Thiazolyl, Thienyl-, Furanyl-, Pyridyl-, Phenoxy-, Trifluormethyl-, Difluormethyl-, Cyano-, Carboxyl-, einem geradkettigen oder verzweigten Alkyl-, Alkoxy-, Alkoxycarbonyl- oder aus einem Acylrest mit jeweils bis zu 9 Kuhlenstoffatomen oder mit einer Gruppe der Formeln NR²⁶R²⁷, SR²⁸ oder -(CH₂)_b-O-CO-R³¹,

CH N

CH₃
N
CO-CO₂H₅

mono- bis trisubstituiert sind,

worin gilt:

R²⁶ und R²⁷ haben die oben angegebene Bedeutung von R⁹ und

R¹⁰ und sind gleich mit oder verschieden von den letzteren,

oder

R²⁶ bedeutet Wasserstoff,

40 und

R²⁷ bedeutet einen geradkettigen oder verzweigten Acylrest mit bis zu 5 Kohlenstoffatomen,

R²⁸ bedeutet einen geradkettigen oder verzweigten Alkylrest mit bis zu 4 Kohlenstoffatomen,

R³¹ bedeutet einen geradkettigen oder verzweigten Alkoxycarbonyl- oder einen Alkylrest mit jeweils bis zu 4 Kohlenstoffatomen oder einen Hydroxylrest,

b bedeutet eine Zahl von 0 oder 1,

oder

der Phenylrest ist gegebenenfalls mit einer Phenyl- oder Phenoxygruppe substituiert, welche gegebenenfalls mit Fluor, Chlor, Brom, einer Nitro-, Formylgruppe oder mit einem geradkettigen oder verzweigten Acyl-, Alkoxy-, Alkyl-, Hydroxyalkyl- oder mit einem Alkoxycarbonylrest mit jeweils bis zu 3 Kohlenstoffatomen monobis trisubstituiert sind,

oder

R⁴ stellt einen Adamantyl-, Cyclopentyl-, Cyclopentenyl- oder einen Cyclohexenylrest dar, sowie Salze davon.

- Oxalylaminobenzofuran- und -benzothienyl-Derivate gemäß einem der Ansprüche 1 bis 3 zur therapeutischen Verwendung.
 - Verfahren zur Herstellung der Oxalylaminobenzofuran- und -benzothienyl-Derivate gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, das man zuerst Verbindungen der allgemeinen Formel (II):

 $\begin{array}{c|c}
R_1 & A \\
\hline
 & CO-R_4
\end{array}$ (II)

20 worin

10

15

25

30

35

50

55

R1, R4, A und T die oben angegebenen Bedeutungen haben

und

E einen geradkettigen oder verzweigten Acylrest mit bis zu 6 Kohlenstoffatomen oder eine weitere typische Schutzgruppe für die Aminogruppe darstellt,

📽 কলে হৈওজাও

durch Eliminierung der Gruppe E in Verbindungen der allgemeinen Formel (III) überführt:

R₁ CO-R₄ (III)

40 worin

R¹, R⁴, T und A die oben angegebenen Bedeutungen haben, welche in einer weiteren Stufe mit verbindungen der allgemeinen Formel (IV):

⁴⁵ R³-CO-CO-Z (IV)

worin

R3 die oben angegebene Bedeutung hat, und

Z CI oder Br bedeutet,

in inerten Lösungsmitteln, gegebenenfalls in der Gegenwart einer Base oder in der Gegenwart eines Hilfsstoffes, zur Reaktion gebracht werden,

und wobei, gegebenenfalls, die Schutzgruppen abgespalten werden,

wobei ferner Aminogruppen alkyliert, Ester hydrolysiert, Säuren mit den geeigneten Alkoholen in der Gegenwart eines Katalysators verestert

oder die Ester direkt oder die freien Carboxylsäuren mit Aminen zur Reaktion gebracht werden.

- 6. Zusammensetzung aus mindestens einem Oxalylaminobenzofuran- und -benzothienyl-Derivat gemäß einem der Ansprüche 1 bis 3 und aus einem pharmakologisch geeigneten Verdünnungsmittel.
- Zusammensetzung gemäß Anspruch 6 zur Behandlung akuter und chronischer Entzündungskrankheiten und/oder -abläufe.
 - Zusammensetzung gemäß Anspruch 6 zur Behandlung einer akuten und chronischen Entzündung der Luftwege.
- Verwendung der Oxalylaminobenzofuran- und-benzothienyl-Derivate gemäß einem der Ansprüche 1 bis 3 zur Herstellung von Medikamenten.
 - 10. Verwendung gemäß Anspruch 9 zur Herstellung von Medikamenten zur Behandlung akuter und chronischer Entzündungskrankheiten und/oder -abläufe.

Revendications

5

10

15

20

25

35

45

50

55

2012

1. Dérivés d'oxalylamino-benzofuranne et -benzothiényle de formule générale

 R_3 N $CO-R_4$ $CO-R_4$ $CO-R_4$

dans laquelle

et

- L représente un atome d'oxygène ou de soufre,
- 40 R¹ représente de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone ou représente un halogène, un groupe carboxyle, cyano, nitro, trifluorométhyle ou un groupe de formule -OR⁶, -SR⁶ ou -NR⁷R⁸,
 - où R⁵, R⁶ et R⁸ sont identiques ou différents et désignent de l'hydrogène, un groupe cycloalkyle ayant 3 à 6 atomes de carbone, un groupe benzyle ou un hétérocycle pentagonal à heptagonal saturé ou non saturé ayant jusqu'à 3 hétéroatomes de la série comprenant N, S et O et auquel un noyau phényle peut être condensé et qui est facultativement substitué par des substituants identiques ou différents de la série comprenant un halogène, un groupe cyano, nitro ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, ou
 - désignent un groupe alkyle ou alcényle linéaire ou ramifié ayant chacun jusqu'à 8 atomes de carbone, ou désignent un groupe phényle qui est facultativement monosubstitué ou disubstitué par des substituants identiques ou différents de la série comprenant un groupe nitro, un halogène, un groupe carboxy ou un groupe alkoxycarbonyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,
 - R⁵ désigne un groupe protégeant la fonction hydroxyle,

- R7 désigne de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone,
- R² représente de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,
- R³ représente un groupe hydroxyle, benzyloxy ou un groupe alkyle ou alkoxy linéaire ou ramifié ayant chacun jusqu'à 10 atomes de carbone, et dont chacun est facultativement monosubstitué à trisubstitué par des substituants identiques ou différents de la série comprenant un halogène, un groupe carboxyle, trifluorométhyle, phényle, cyano ou un groupe alkoxy ou oxyacyle linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone, un groupe morpholinyle ou par un résidu de formule

ш

5

10

15

20

25

30

35

45

55

ou

- représente un groupe aryle ayant 6 à 10 atomes de carbone, qui est facultativement monosubstitué ou trisubstitué par des substituants identiques ou différents de la série comprenant un halogène, un groupe cyano, nitro, carboxyle, un groupe alkyle, alkoxy, alkoxycarbonyle ou acyle linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone, ou
- représente un groupe de formule -NR⁹R¹⁰,
 dans laquelle
- R⁹ et R¹⁰ sont identiques ou différents et désignent de l'hydrogène, un groupe cycloalkyle ayant 3 à 6 atomes de carbone ou désignent un groupe alkyle linéaire ou ramifié ayant jusqu'à 8 atomes de carbone, qui est facultativement monosubstitué à trisubstitué par des substituants identiques ou différents de la série comprenant un groupe carboxy, un groupe alkoxy, alkoxycarbonyle ou acyle linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone ou un groupe phényle, ou
 - désignent un groupe aryle ayant 6 à 10 atomes de carbone, qui facultativement monosubstitué à trisubstitué par des substituants identiques ou différents de la série comprenant un halogène, un groupe cyano, nitro, carboxy, un groupe alkyle, alkoxy, alkoxycarbonyle ou acyle linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone, ou bien désignent un groupe de formule -SO₂R¹¹, dans laquelle
- R¹¹¹ désigne un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, qui est facultativement substitué par un groupe phényle, ou désigne un groupe phényle facultativement substitué par un groupe trifluorométhyle, cyano, nitro ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone.
- 50 R³ représente un résidu de formule
 - C₆H₅ CO₂-CH₂-C₆H
 - T représente un atome d'oxygène ou de soufre,

- A représente de l'hydrogène, un groupe hydroxyle, un groupe cycloalkyle ayant jusqu'à 6 atomes de carbone, un groupe carboxy ou un groupe alkoxy ou alkoxycarbonyle linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone, ou représente un groupe alkyle ou alcényle linéaire ou ramifié ayant chacun jusqu'à 8 atomes de carbone et dont chacun est facultativement monosubstitué par un groupe cyano ou par un hétérocycle pentagonal à heptagonal saturé ou non saturé ayant jusqu'à 4 hétéroatomes de la série comprenant N, S et O, qui est facultativement substitué par des substituants identiques ou différents de la série comprenant un groupe hydroxy, un halogène, un groupe cyano, nitro ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,
 - ou bien le groupe alkyle et/ou le groupe alcényle sont facultativement substitués par un groupe de formule

dans laquelle

5

10

15

20

25

30

35

40

45

50

55

a représente le nombre 1 ou 2,

et dans laquelle les deux noyaux sont facultativement monosubstitués par un groupe hydroxy, un halogène ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, ou bien le groupe alkyle et/ou le groupe alcényle sont facultativement monosubstitués par un groupe de formule -CO-R12, -CO-NR13R14, -CONR15-SO₂-R16 ou -PO(OR17)(OR18), -OR19 ou -OR19 ou

dans laquelle

ou

et

R¹² désigne un groupe hydroxyle, cycloalkyloxy ayant 3 à 7 atomes de carbone ou un groupe alkyle ou alkoxy linéaire ou ramifié ayant chacun jusqu'à 8 atomes de carbone,

R¹³, R¹⁴ et R¹⁵ sont identiques ou différents et et représentent de l'hydrogène, un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, un groupe phényle ou benzyle,

R¹³ représente de l'hydrogène,

R¹⁴ représente un hétérocycle pentagonal à heptagonal saturé ou non saturé ayant jusqu'à 3 hétéroatomes de la série contenant N, S et O, un groupe hydroxyle ou un résidu de formule

		•			
	ou				
	R ¹³ et R ¹⁴	forment, conjointement avec l'atome d'azote, un hétérocycle saturé pentagonal ou hexagonal,			
5	H16	désigne un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, qui est facultativement substitué par un groupe phényle ou trifluorométhyle, ou désigne un groupe phényle qui est facultativement substitué par des substituants de la série comprenant un halogène, un groupe cyano, nitro ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,			
	R ¹⁷ , R ¹⁸ et R ¹⁹	sont identiques ou différents et représentent de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,			
15	R ²⁰	désigne de l'hydrogène, un groupe protégeant la fonction amino ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,			
20	R ²¹ et R ²²	sont identiques ou différents et désignent de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone,			
	ou				
	R ²¹ a la défini	R ²¹ a la définition indiquée ci-dessus,			
25	et				
30 ;	atomes de facultative groupe de	atomes de carbone ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 8 atomes de carbone, qui est facultativement substitué par un groupe cyano, méthylthio, hydroxy, mercapto, guanidyle ou par un groupe de formule -NR ²³ R ²⁴ ou R ²⁵ -CO-,			
35	R ²³ et R ²⁴	ont la définition indiquée ci-dessus pour R ¹³ , R ¹⁴ et R ¹⁵ et y sont identiques ou en sont différents,			
	· R26	désigne un groupe hydroxyle, benzyloxycarbonyle, un groupe alkoxy linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, ou le groupe -NR ²³ R ²⁴ mentionné ci-dessus,			
40	carbone, ou par	upe alkyle est facultativement substitué par un groupe cycloalkyle ayant 3 à 6 atomes de un groupe aryle ayant e carbone, qui est facultativement substitué par un groupe hydroxyle, un halogène, un groupe			
	nitro, un groupe	nitro, un groupe alkoxy linéaire ou ramifié ayant jusqu'à 8 atomes de carbone ou par le groupe mentionné ci- dessus de formule -NR ²³ R ²⁴ ,			
45	ou hexagonal n -NH- sont proté	ou bien le groupe alkyle est facultativement substitué par un groupe indolyle ou par un hétérocycle pentagonal ou hexagonal non saturé ayant jusqu'à 3 atomes d'azote, dans lequel facultativement toutes les fonctions -NH- sont protégées par un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone ou par un groupe protégeant la fonction amino,			
50	ou				
		A représente un groupe de formule -CONR ¹³ 'R ¹⁴ ', dans laquelle R ¹³ ' et R ¹⁴ ' sont identiques ou différents et ont la définition mentionnée ci-dessus pour R ¹³ et R ¹⁴ ,			
55	et				
	qui peut conteni	roupe phényle, ou représente un hétérocycle pentagonal à heptagonal saturé ou non saturé ir jusqu'à 4 atomes d'oxygène, de soufre et/ou d'azote et auquel un noyau benzénique peut			

en outre être condensé et dans lequel tous les noyaux sont facultativement monosubstitués à trisubstitués

par des substituants identiques ou différents de la série comprenant un groupe hydroxyle, naphtyle, adamantyle, thiophényle, cycloalkyle ayant jusqu'à 3 à 6 atomes de carbone, un halogène, un groupe nitro, tétrazolyle, thiazolyle, thiényle, furannyle, pyridyle, trifluorométhyle, phénoxy, difluorométhyle, cyano, carboxy, un groupe alkyle, alkoxy, alkoxycarbonyle ou acyle linéaire ou ramifié ayant chacun jusqu'à 11 atomes de carbone ou par un groupe de formule -NR26R27, -SR28, SO2R29, -O-SO2R30, -(CH2)b-O-CO-R31,

CO-CO2HS

R²⁶ et R²⁷

ont la définition indiquée ci-dessus pour R9 et R10 et sont identiques à ces derniers ou en sont différents.

20

5

10

15

ou bien

οù

R26 désigne de l'hydrogène,

25 et

R²⁷

représente un groupe acyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,

R28

représente un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,

30

R²⁹ et R³⁰

sont identiques ou différents et représentent un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, un groupe benzyle ou phényle qui sont facultativement substitués par un groupe trifluorométhyle, un halogène ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,

1. July 10 1

3.5%

35

R31

désigne un groupe alkoxycarbonyle ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone ou un groupe carboxyle,

40

b représente le nombre 0 ou 1,

ou

le groupe phényle est facultativement substitué par un groupe phényle ou un groupe phénoxy qui sont facultativement monosubstitués à trisubstitués par un halogène, un groupe formyle, nitro.

un groupe alkyle, acyle, hydroxyalkyle, alkoxy ou alkoxycarbonyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,

ou

R4

représente un groupe adamantyle, cycloalkyle ou cycloalcényle ayant chacun jusqu'à 6 atomes de carbone,

50

55

45

et des sels de ces dérivés.

- Dérivés d'oxalylamino-benzofuranne et -benzothiényle de formule suivant la revendication 1, dans laquelle
- représente un atome d'oxygène ou de soufre, L
 - représente de l'hydrogène, un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone ou représente du fluor, du chlore, du brome, un groupe nitro, trifluorométhyle ou un groupe de formule -OR5, -SR6 ou

-NR⁷R⁸, dans laquelle

R7

5

10

15

20

25

30

35

40

45

50

55

désigne de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 3 atomes de carbone.

R5, R6 et R8

sont identiques ou différents et représentent de l'hydrogène, des groupes cyclopropyle, cyclopentyle, cyclohexyle, quinolyle, pyridyle, imidazolyle, 1,3-thiazolyle ou thiényle, qui sont facultativement substitués par des substituants identiques ou différents de la série comprenant du fluor, du chlore, du brome, de l'iode, un groupe cyano, nitro, ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 5 atomes de carbone,

représentent un groupe alkyle ou un groupe phényle linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone, ou représentent un groupe phényle qui est facultativement monosubstitué ou disubstitué par des substituants identiques ou différents de la série comprenant un groupe nitro, du fluor, du chlore, du brome, de l'iode, un groupe carboxy ou un groupe alkoxycarbonyle linéaire ou ramifié ayant jusqu'à 5 atomes de carbone,

e gar market to the 1975.

ou

R5 désigne un groupe benzyle, acétyle ou tétra-hydropyrannyle,

 R^2 représente de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone,

 R^3 représente un groupe hydroxyle, benzyloxy ou un groupe alkyle ou alkoxy linéaire ou ramifié ayant chacun jusqu'à 8 atomes de carbone et dont chacun est facultativement monosubstitué ou disubstitué par des substituants identiques ou différents de la série comprenant le fluor, le chlore, le brome, un groupe carboxyle, trifluorométhyle, phényle, cyano, un groupe oxyacyle ou un groupe alkoxy linéaire ou ramifié ayant chacun jusqu'à 4 atomes de carbone, un groupe morpholinyle, ou par un résidu de formule

> e stret rysam pitopiti (transpartit

ou représente un groupe phényle qui est facultativement monosubstitué par des substituants de la série comprenant le fluor, le chlore, le brome, l'iode, un groupe cyano, nitro, carboxyle, ou par un groupe alkyle, alkoxy ou alkoxycarbonyle linéaire ou ramifié ayant chacun jusqu'à 5 atomes de carbone, ou représente un groupe de formule -NR9R10 dans laquelle

R9 et R10

sont identiques ou différents et désignent de l'hydrogène, un groupe cyclopropyle, cyclopentyle, cyclohexyle, ou désignent un groupe alkyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone, qui est facultativement monosubstitué à trisubstitué par des substituants identiques ou différents de la série comprenant un groupe carboxy, un groupe alkoxy, alkoxycarbonyle ou acyle linéaire ou ramifié ayant chacun jusqu'à 5 atomes de carbone ou par un groupe phényle, ou désignent un groupe phényle qui est facultativement monosubstitué à trisubstitué par des substituants identiques ou différents de la série comprenant le fluor, le chlore, le brome, l'iode, un groupe carboxy, cyano, nitro, ou par un groupe alkyle, alkoxy ou alkoxycarbonyle linéaire ou ramifié ayant chacun jusqu'à 5 atomes de carbone, ou désignent un groupe de formule -SO₂R¹¹ dans laquelle

R11 désigne un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone, qui est facultativement substitué par un groupe phényle, ou désigne un groupe phényle qui est facultativement substitué par un groupe trifluorométhyle, cyano, nitro ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone.

ou

représente un résidu de formule

5

10

T représente un atome d'oxygène ou de soufre,

15

représente de l'hydrogène, un groupe cyclopropyle, cyclobutyle, cyclopentyle, hydroxyle, carboxy ou un groupe alkoxy ou alkoxycarbonyle linéaire ou ramifié ayant chacun jusqu'à 5 atomes de carbone, ou un groupe alkyle ou alcényle linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone et dont chacun est facultativement monosubstitué pr un groupe cyano, tétrazolyle, oxazolyle, oxazolinyle, thiazolyle ou un groupe de formule

20

25

dans laquelle

्रेड १५५८ एक १८७ १८**५ है १७,७ ६,७११** ५

a di specii estiva: 6 représente le nombre 1 ou 2,

30

35

40

45

🚌 et dans lequel tous les noyaux sont facultativement monosubstitués par un groupe hydroxy, du fluor, du brome, du chlore ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone, ou bien les groupes alkyle ou alcényle sont facultativement monosubstitués par un groupe de formule -CO-R12, -CO-NR13R14, -CONR15-SO₂-R16, - PO (OR17) (OR18) ou -OR19, dans laquelle

R12 désigne un groupe hydroxyle, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy ou un groupe alkyle ou alkoxy linéaire ou ramifié ayant chacun jusqu'à 6 atomes de carbone,

R13, R14 et R15

sont identiques ou différents et représentent l'hydrogène, un groupe alkyle linéaire ou

ramifié ayant jusqu'à 4 atomes de carbone, un groupe phényle ou benzyle,

B13

désigne de l'hydrogène,

θt

désigne un groupe hydroxyle, thiazolyle, dihydrothiazolyle ou un résidu de formule

50

55

οu

R13 et R14

forment conjointement avec l'atome d'azote un noyau pyrrolidinyle, morpholinyle ou pipéri-

dinvle.

R16

désigne un groupe alkyle linéaire ou ramifié ayant jusqu'à 5 atomes de carbone, qui est facultativement substitué par un groupe phényle ou trifluorométhyle, ou désigne un groupe phényle qui est facultativement substitué par des subtituants de la série comprenant le fluor. le chlore, le brome, l'iode, un groupe cyano, nitro, ou par un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone,

R¹⁷, R¹⁸ et R¹⁹

sont identiques ou différents et représentent de l'hydrogène ou un groupe alkyle linéaire ou

ramifié ayant jusqu'à 6 atomes de carbone,

10 ou

5

15

20

25

30

35

40

45

50

55

représente un groupe -CONR13'R14', Α

dans lequel

R13' et R14' ont la définition mentionnée ci-dessus pour R13 et R14 et y sont identiques ou en sont différents,

et

représente un groupe phényle, ou représente un groupe pyridyle, imidazolyle, pyrazolyle, thiényle, isothiazolyle, 1,3-thiazolyle ou benzo[b]thiophényle, où tous les noyaux substitués facultativement monosubstitués à trisubstitués par des substituants identiques ou différents de la série comprenant un groupe hydroxyle, napthyle, adamantyle, phénoxy, thiophényle, thiényle, cyclopentyle, cyclohexyle, du fluor, du chlore, du brome, de l'iode, un groupe nitro, tétrazolyle, thiazolyle, furannyle, pyridyle, trifluorométhyle, difluorométhyle, cyano, carboxy, un groupe alkyle, alkoxy, alkoxycarbonyle ou acyle linéaire ou ramifié ayant jusqu'à chacun jusqu'à 10 atomes de carbone ou par un groupe de formule -NR²⁶R²⁷ -SR²⁸, SO₂R²⁹, -O-SO₂R³⁰, -(CH₂)_b-O-CO-R31.

dans laquelle

ont les définitions indiquées ci-dessus pour R9 et R10 et y sont identiques ou en sont différents R²⁶ et R²⁷

ou

R26 désigne de l'hydrogène, et

R27 désigne un groupe acyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone,

P28 désigne un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone,

R²⁹ et R³⁰ sont identiques ou différents et représentent un groupe alkyle linéaire ou ramifié ayant jus-

> qu'à 5 atomes de carbone ou un groupe phényle qui est facultativement substitué par un groupe trifluorométhyle, du fluor, du chlore, du brome ou un groupe alkyle linéaire ou ramifié

ayant jusqu'à 3 atomes de carbone,

P31 désigne un groupe alkoxycarbonyle ou un groupe alkyle linéaire ou ramifié ayant chacun

jusqu'à 4 atomes de carbone ou un groupe carbonyle,

b représente le nombre 0 ou 1,

> le groupe phényle est facultativement substitué par un groupe phényle ou un groupe phénoxy qui sont facultativement monosubstitués à trisubstitués par du fluor, du chlore ou du brome, un groupe formyle, nitro, un groupe acyle, alkyle, hydroxyalkyle, alkoxy, alkoxycarbonyle linéaire ou ramifié ayant chacun jusqu'à 4 atomes de carbone, ou

> représente un groupe adamantyle, cyclopropyle, cyclopentyle, cyclopentényle ou cyclohexényle,

ou des sels de ces dérivés.

5

10

15

20

25

30

35

40

45

50

55

ou

- 3. Dérivés d'oxalylamino-benzofuranne et -benzothiényle de formule (I) suivant la revendication 1, dans laquelle
 - L représente un atome d'oxygène ou de soufre,
 - R1 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié ayant jusqu'à 3 atomes de carbone, du fluor, du chlore, du brome, un groupe nitro, trifluorométhyle ou un groupe de formule -OR5, dans laquelle
 - R5 désigne de l'hydrogène, un groupe benzyle, acétyle ou désigne un groupe alkyle linéaire ou ramifié ayant dans chaque cas jusqu'à 3 atomes de carbone, ou désigne un groupe phényle,
 - R² représente de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 3 atomes de carbone,
 - R³ représente un groupe hydroxyle, benzyloxy, ou un groupe alkyle ou alkoxy linéaire ou ramifié ayant jusqu'à 7 atomes de carbone, qui est facultativement substitué par des substituants de la série comprenant du fluor, du chlore, du brome, un groupe trifluorométhyle, carboxyle, phényle, cyano, un groupe alkoxy ou un groupe oxyacyle linéaire ou ramifié ayant chacun jusqu'à 5 atomes de carbone, un groupe morpholinyle, ou par un résidu de formule

CH₃

- ou the sound of harms have
- représente un groupe phényle qui est facultativement monosubstitué par différents substituants de la série comprenant le fluor, le chlore ou le brome, ou représente un groupe de formule -NR9R10, dans laquelle R9 et R10 sont identiques ou différents et désignent de l'hydrogène, un groupe cyclopropyle, cyclopentyle, cyclohexyle ou désignent un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone, ou représentent un groupe phényle,

374.

- R³ représente un résidu de formule
 - CO_z-CH_z-C₆H₅
- T représente un atome d'oxygène ou de soufre,
- A représente de l'hydrogène, un groupe cyclopropyle, cyclobutyle, cyclopentyle, hydroxyle, carboxy ou un groupe alkoxy ou alkoxycarbonyle linéaire ou ramifié ayant chacun jusqu'à 4 atomes de carbone, ou un groupe alkyle ou alcényle, linéaire ou ramifié ayant chacun jusqu'à 5 atomes de carbone et dont chacun est facultativement monosubstitué par un groupe cyano, tétrazolyle, oxazolyle, oxazolinyle, thiazolyle ou un groupe de formule

5

dans laquelle

10 a représente le nombre 1 ou 2,

> ou bien les groupes alkyle ou alcényle sont facultativement monosubstitués par un groupe de formule -CO-R12, -CO-NR13R14 ou -OR19,

dans laquelle

15

R12 désigne un groupe hydroxyle, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy ou un groupe

alkyle ou alkoxy linéaire ou ramifié ayant chacun jusqu'à 5 atomes de carbone,

R13 et R14 sont identiques ou différents et représentent de l'hydrogène, un groupe alkyle linéaire ou

ramifié ayant jusqu'à 3 atomes de carbone, un groupe phényle ou benzyle,

20

ou

R13 désigne de l'hydrogène,

25 et

représente un groupe hydroxyle, thiazolyle, dihydrothiazolyle ou un résidu de formule

30 ::

35

40

ou

R13 et R14

forment conjointement avec l'atome d'azote un noyau pyrrolidinyle, morpholinyle ou pipéridinyle,

R¹⁹ désigne de l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone,

45

représente un groupe de formule -CONR¹³'R¹⁴', dans laquelle

R13' et R14' ont les définitions mentionnées cidessus pour R13 et R14 et y sont identiques ou en sont

différents,

50 et

55

R4

représente un groupe phényle, ou représente des groupes pyridyle, thiényle, furyle qui sont facultativement monosubstitués à trisubstitués par des substituants identiques ou différents de la série comprenant un groupe hydroxyle, naphtyle, adamantyle, thiophényle, cyclopentyle, cyclohexyle, du fluor, du chlore, du brome, un groupe nitro, tétrazolyle, thiazolyle, thiényle, furannyle, pyridyle, phénoxy, trifluorométhyle, difluorométhyle, cyano, carboxyle, un groupe alkyle, alkoxy, alkoxycarbonyle ou acyle linéaire ou ramifié ayant chacun jusqu'à 9 atomes de carbone ou par un groupe de formules -NR26R27, SR28 ou -(CH2)b-O-CO-R31,

dans lesquelles

R²⁶ et R²⁷ ont les définitions indiquées cidessus pour R⁹ et R¹⁰ et y sont identiques ou en sont différents,

ou

5

10

15

20

25

30

35

40

45

M Ein

R²⁶ désigne de l'hydrogène,

et

R²⁷ désigne un groupe acyle linéaire ou ramifié ayant jusqu'à 5 atomes de carbone,

R²⁸ désigne un groupe alkyle linéaire ou ramifié ayant jusqu'à 4 atomes de carbone,

R³¹ désigne un groupe alkoxycarbonyle ou alkyle linéaire ou ramifié ayant chacun jusqu'à 4 atomes de carbone ou un groupe carboxy,

b a la valeur 0 ou 1,

le groupe phényle est facultativement substitué par un groupe phényle ou un groupe phénoxy qui sont facultativement monosubstitués à trisubstitués par du fluor, du chlore, du brome, un groupe nitro, formyle ou par un groupe acyle,

alkoxy, alkyle, hydroxyalkyle ou alkoxycarbonyle linéaire ou ramifié ayant chacun jusqu'à 3 atomes de carbone,

ou

R4 représente un groupe adamantyle, cyclopentyle, cyclohexyle, cyclopentényle ou cyclohexényle,

et des sels de ces dérivés.

- Dérivés d'oxalylamino-benzofuranne et -benzothiényle suivant les revendications 1 à 3, destinés à un usage thérapeutique.
- Procédé de production de dérivés d'oxalylamino-benzofuranne et -benzothiényle suivant les revendications 1 à 3, caractérisé en ce que on converit tout d'abord des composés de formule générale (II)

 $E \longrightarrow HN$ R_1 $CO - R_4$ (II)

50

55

dans laquelle

R1, R4, A et T

Ε

ont les définitions mentionnées ci-dessus, et

représente un groupe acyle linéaire ou ramifié ayant jusqu'à 6 atomes de carbone ou un autre exemple de groupe protégeant la fonction amino,

par élimination du groupe E, en composés de formule générale (III)

10 dans laquelle

5

20

30

45

50

55

my galaka .

R¹, R⁴, T et A ont les définitions indiquées ci-dessus, que l'on fait réagir dans une autre étape avec des composés de formule générale (IV)

¹⁵ R³-CO-CO-Z (IV)

dans laquelle

- R³ a la définition indiquée ci-dessus, et
 - Z désigne Cl ou Br,
- dans des solvants inertes, le cas échéant en présence d'une base et/ou en présence d'une substance auxiliaire, et, le cas échéant, on élimine les groupes protecteurs, d'autres groupes amino sont alkylés, des esters sont hydrolysés, les acides sont estérifiés avec les alcools appropriés en présence d'un catalyseur, ou bien les esters directement, ou les acides carboxyliques libres, sont amenés à réagir avec des amines.
 - 6. Composition consistant en au moins un dérivé d'oxalylamino-benzofuranne et benzothiényle suivant les revendications 1 à 3 et un diluant acceptable du point de vue pharmacologique.
 - 7. Composition suivant la revendication 6, destinée au traitement de processus inflammatoires aigus et chroniques.
- Composition suivant la revendication 6, destinée au traitement de l'inflammation aiguë et chronique des voies aériennes.
 - 9. Utilisation des dérivés d'oxalylamino-benzofuranne et -benzothiényle suivant les revendications 1 à 3 pour la préparation de médicaments.
- 40 10. Utilisation suivant la revendication 9 pour la préparation de médicaments destinés au traitement de processus inflammatoires aigus et chroniques.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.