TEMA 2: PROBLEMAS NO BALANCEADOS TÉCNICAS DE MUESTREO

Problemas cuya distribución de clases no es homogénea

- Clase positiva: la de menor número de ejemplos
- Clase negativa: la de mayor número de ejemplos

Imbalanced Ratio (IR)

$$IR = \frac{n^{\underline{o}} \ ejemplos \ clase \ negativa}{n^{\underline{o}} \ ejemplos \ clase \ positiva}$$

- Factores que influyen en la dificultad del problema
 - IR
 - Grado de overlap entre las clases
 - Grupos pequeños de ejemplos (small disjunts)

Medidas de rendimiento

		Clasificación como	
		Si	No
Clase	SI Verdadero positivo (VP) Falso negativo (FN)		Falso negativo (FN)
real	NO	Falso Positivo (FP)	Verdadero Negativo (VN)

$$Accuracy = \frac{VP + VN}{VP + VN + FP + FN}$$

$$Error = 1 - Accuracy$$

- □ Clasificación de cáncer
 - □ Si solo el 0.5% de los pacientes tienen cáncer...
 - Prediciendo siempre "no cáncer"
 - 99.5% de acierto
- □ En este marco
 - El ratio de clasificación no refleja la calidad del clasificador
 - Se hacen necesarias otras medidas de evaluación

- Recall: ejemplos de la clase positiva clasificados correctamente
 - También llamada "True positive rate" o sensitividad
- Precision: proporción de ejemplos clasificados en la clase positiva que son realmente de la clase positiva

$$TPR = Recall = \frac{VP}{VP + FN}$$

$$Precision = \frac{VP}{VP + FP}$$

- Ejemplo: filtro spam
 - Recall: Proporción de spam identificado por el sistema
 - Precision: Proporción de spam dentro de la carpeta spam

		Clasificación como	
		Si	No
Clase	Clase SI Verdadero positivo (VP) Falso negativo (FN)		Falso negativo (FN)
real	NO	Falso Positivo (FP)	Verdadero Negativo (VN)

- Especificidad: ejemplos de la clase negativa clasificados correctamente
 - También llamada "True negative rate"

$$TNR = Especificidad = \frac{VN}{VN + FP}$$

		Clasificación como	
		Si	No
Clase	SI	Verdadero positivo (VP)	Falso negativo (FN)
real	NO	Falso Positivo (FP)	Verdadero Negativo (VN)

Métricas balanceadas

■ F-score (Recall=TPR)

$$F_{score} = 2 * \frac{\text{Precision*Recall}}{\text{Precision+Recall}}$$

Media geométrica

$$GM = \sqrt{\operatorname{Re} call} \times TNR$$

- Basadas en las curvas ROC
 - □ Área bajo la curva (AUC)

$$AUC_{1punto} = \frac{\operatorname{Re} call + TNR}{2}$$

□ La curva ROC muestra el TPR (en el eje y) contra FPR (en el eje x)

$$FPR = \frac{FP}{FP + VN} = 1 - TNR$$

Caracteriza el balance entre aciertos de la clase positiva y falsos positivos

(falsas alarmas)

- Análisis de la curva ROC
 - (0,0): todos los ejemplos clasificados en la clase negativa
 - (1,1): todos los ejemplos clasificados en la clase positiva
 - □ (0,1): clasificador ideal

- Medidas que tienen en cuenta el coste de los fallos
- Matriz de costes
 - En cada celda se establece el coste de cada situación (fallo o acierto)
 - C(i | j): Coste de clasificar un ejemplo de la clase j como clase i

	Clase Predicha			
	C(i j)	Clase=Si	Clase=No	
Clase	Clase=Si	C(Si Si)	C(No Si)	
Real	Clase=No	C(Si No)	C(No No)	

- Coste del modelo: Se multiplica cada celda de la matriz de costes por la respectiva de la matriz de confusión y se suman todas
- El coste de clasificación será proporcional a la precisión del clasificador sólo si

$$\forall i,j: i \neq j$$
 $C(i \mid j) = C(j \mid i)$
 $C(i \mid i) = C(j \mid j)$

Ejemplo

Matriz coste	Clase Predicha		
	C(i j)	+	ı
Clase real	+	0	100
	-	1	0

Matriz confusion	Clase Predicha			
Modelo M ₁				
		+	-	
Clase real	+	150	40	
	-	60	250	

$$Coste = 4060$$

Accuracy =
$$90\%$$

$$Coste = 4505$$

Problemas para el aprendizaje con datos no balanceados

- 1. Proceso de búsqueda guiado por la tasa de acierto estándar
- 2. Las reglas de clasificación sobre la clase positiva altamente especializadas

- 3. Distinción entre ejemplos ruidosos y ejemplos de la clase positiva
- 4. Solapamiento entre los ejemplos de distintas clases

Tipos de ejemplos en problemas no balanceados

Tipos de ejemplos negativos:

- 1. Ruido
- 2. Frontera
- 3. Redundante
- 4. Seguros

Problemas no balanceados: Soluciones

1. A nivel de datos: pre-procesamiento de ejemplos (muestreo)

2. A nivel algorítmico: modificar características del algoritmo base (Sensible al Coste)

Comentarios generales

- El muestreo se ejecuta sobre el conjunto de entrenamiento para facilitar el aprendizaje
 - El algoritmo de aprendizaje se ejecuta sobre el conjunto de datos muestreado
- □ El conjunto de test NO se muestrea
- Para obtener el rendimiento en entrenamiento se utiliza el conjunto de entrenamiento original, no el muestreado

Random under-sampling

- Método no heurístico
- Elimina aleatoriamente ejemplos de la clase negativa hasta balancear el conjunto de ejemplos
- Problema: puede eliminar ejemplos potencialmente útiles para el aprendizaje

- Condensed nearest neighbour rule (CNN)
 - Un subconjunto E' es consistente con E si usando 1NN, todos los ejemplos de E se clasifican correctamente utilizando E' como conjunto de entrenamiento
- Objetivo: Obtener el subconjunto consistente E'
- Idea
 - Eliminar los ejemplos de la clase negativa que estén lejos de la frontera de decisión
- Etapas de CNN
 - Crear E' inicial:
 - Incluir todos los ejemplos de la clase positiva y uno de la negativa (elegido aleatoriamente)
 - Eliminar los ejemplos de E' de E
 - Aplicar 1NN para clasificar E usando E', mover todos los ejemplos fallados de E a E'
 - Repetir hasta que no haya ejemplos fallados

Problemas

- Puede que no se obtenga el conjunto consistente E' mínimo
- Sensible al ruido: los ejemplos ruido serán fallados y por tanto considerados en E', lo que puede afectar al rendimiento posterior

□ Tomek links

- lacktriangle Sean e_i y e_i dos ejemplos de clases diferentes
- lacksquare Sea $d(e_i,e_j)$ la distancia entre los dos ejemplos
- lacktriangle El par (e_i,e_j) es llamado Tomek link si no existe ningún ejemplo e_k que esté "entre" ellos. Por tanto, un par (e_i,e_j) NO es un Tomek link si

$$d(e_i, e_k) < d(e_i, e_j) \circ d(e_j, e_k) < d(e_i, e_j)$$

- \square Si (e_i,e_j) es unTomek link tenemos dos posibles situaciones
 - Los ejemplos forman parte de la frontera
 - Uno de ellos es ruido
- Objetivo del método
 - Eliminar el ejemplo del Tomek link de la clase negativa (under-sampling)
 - Eliminar ambos ejemplos del Tomek link (limpieza de datos)

□ Ejemplo de Tomek links

- One-Sided Selection (OSS)
 - Aplica secuencialmente CNN y Tomek links
 - CNN elimina ejemplos de la clase negativa alejados de la frontera de decisión
 - Tomek links elimina ejemplos de la clase negativa considerados como ruido o ejemplos en la frontera

□ Ejemplo de One-sided selection (OSS)

Dataset muestreado (OSS)

Técnicas de limpieza de datos

- Edited nearest neighbour rule (ENN)
 - Método de Wilson
- □ Elimina ejemplos de ambas clases
- Funcionamiento
 - $lue{}$ Para cada ejemplo e_i se aplica 3NN
 - lacksquare Si el ejemplo e_i se falla, e_i es eliminado

Neighbourhood cleaning rule (NCL)

- Modificación de ENN para incrementar la eliminación de ejemplos
 - Trata de eliminar ejemplos ruido más que balancear el conjunto de ejemplos
- Algoritmo
 - Se dividen la BD inicial en dos: P y N que contienen todos los ejemplos de la clase positiva y negativa, respectivamente
 - Se obtiene el subconjunto A1: aplicar ENN sobre los ejemplos en N (utilizando BD)
 para encontrar los ejemplos ruido (los fallados), que son incluidos en A1
 - Se obtiene el subconjunto A2: limpiar la vecindad de los ejemplos en P
 - Para cada ejemplo e_i \in P se obtienen sus 3 vecinos más cercanos (3NN) de toda la BD inicial (P y N)
 - \blacksquare Si se falla e_i , se insertan en A2 los vecinos de e_i que estén en N
 - El nuevo conjunto es $CE' = CE (A1 \cup A2) \rightarrow Los$ ejemplos de P se mantienen

□ Ejemplo NCL

- Random over-sampling (ROS)
 - Método no heurístico
 - Crea copias de ejemplos de la clase positiva que son elegidos aleatoriamente hasta balancear el conjunto de ejemplos
 - Problema: posible incremento del sobre-aprendizaje puesto que crea copias exactas de ejemplos de la clase positiva

- Synthetic minority over-sampling technique (SMOTE)
 - Crea ejemplos de la clase positiva interpolando ejemplos de la clase positiva que estén cerca
 - Soluciona el problema del sobre-aprendizaje
 - Algoritmo:
 - Iniciar el conjunto de ejemplos sintéticos a vacío
 - lacksquare Para cada ejemplo e_i de la clase positiva
 - lacktriangle Calcular los 5 vecinos más cercanos de e_i (n_1 , n_2 , n_3 , n_4 y n_5)
 - Número de ejemplos a crear \rightarrow numEjCrear = floor(IR) 1
 - Desde 1 hasta numEjCrear hacer
 - ullet Seleccionar aleatoriamente uno de la 5 vecinos más cercanos (n_a)
 - Para cada atributo j € N
 - Calcular la distancia entre e_{ij} y $n_{aj} o dist_j = n_{aj} e_{ij}$
 - Crear ejemplo sintético $eS_j = e_{ij} + rand([0,1]) * dist_j$
 - ullet Añadir el nuevo ejemplo eS al conjunto de ejemplos sintéticos

Ejemplo de creación de un ejemplo sintético con SMOTE

Consider a sample (6,4) and let (4,3) be its nearest neighbor.

(6,4) is the sample for which k-nearest neighbors are being identified.

(4,3) is one of its k-nearest neighbors.

Let:

$$f1_1 = 6$$
 $f2_1 = 4$ $f2_1 - f1_1 = -2$

$$f1_2 = 4$$
 $f2_2 = 3$ $f2_2 - f1_2 = -1$

The new samples will be generated as

$$(f1',f2') = (6,4) + rand(0-1) * (-2,-1)$$

rand(0-1) generates a random number between 0 and 1.

□ Ejemplo del efecto de SMOTE

Técnicas híbridas

- SMOTE + Tomek links
 - Se aplican secuencialmente SMOTE y Tomek links
 - Aplicar SMOTE para mejorar los clusters de la clase positiva
 - Aplicar Tomek links como técnica de limpieza de datos
 - Idea: mejorar los clusters de clases debido a
 - Ejemplos de la clase negativa invaden los clusters de la clase positiva
 - Al crear ejemplos de la clase positiva se pueden adentrar en el área de la clase negativa

Técnicas híbridas

- □ SMOTE + ENN
 - Motivación: mejorar el proceso de limpieza de datos
 - Se aplican secuencialmente SMOTE y ENN
 - ENN suele eliminar más ejemplos que Tomek links