JORDAN CANONICAL FORM

CHIU HSIANG-TZU

1. Triangular Form

Definition 1.1. let $T: V \to V$ be a linear operator. A subspace $W \subset V$ is said to be invariant (or stable) under T if $T(W) \subset W$

Remark. $\{0\}$, V, Ker(T), Im(T), and E_{λ} are T-invarient.

Definition 1.2. Let $T: V \to V$ be a linear operator on a finite dimensional vector space V. We say that V is triangularizable if and only if there exists an ordered basis β such that $[T]^{\beta}_{\beta}$ is upper triangular.

Example. Consider $\mathbb{F} = \mathbb{C}$ and $V = \mathbb{C}^4$. Let β be the standard ordered basis of V and let $\beta = \{e_1, e_2, e_3, e_4\}$, where e_i is (0, ..., 0, 1, 0, ..., 0) with the nonzero component at position i. We compute the matrix representation of $[T]^{\beta}_{\beta}$ as follows.

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 1-i & 2 & 0\\ 0 & 1 & i & 0\\ 0 & 0 & 1-i & 3+i\\ 0 & 0 & 0 & 1-i \end{bmatrix}$$

Clearly, the matrix is upper triangular. Notice that $T(e_1) = e_1$, that is, e_1 is an eigenvector of T, $T(e_2) = (1 - i)e_1 + e_2 \in span(\{e_1, e_2\})$, $T(e_3) \in span(\{e_1, e_2, e_3\})$, and $T(e_4) \in span(\{e_1, e_2, e_3, e_4\})$. Let W_i be the subspace of \mathbb{C}^4 spanned by the first i vectors in the standard ordered basis, that is, $T(e_i) \in W_i$ for all i. Clearly, $T(W_i) \subseteq W_i$, where $T(W) = \{T(w) \mid w \in W\} = Im(T|_W)$ for all subspace of V.

Proposition 1.1. Let $T: V \to V$ be a linear operator on a finite dimensional vector space V and $\beta = \{x_1, \dots, x_n\}$ be a basis for V. Then $[T]^{\beta}_{\beta}$ is upper triangle if and only if the subspace $w_i = span(\{x_1, \dots, x_i\})$ is T-invariant.

Proof. It is trivial. \Box

Note that the subspace W_i in Proposition 1.1 are related as follows:

$$\{0\} \subseteq W_1 \subseteq \cdots \subseteq W_{n-1} \subseteq W_n = V.$$

We say that W_i forms an increasing sequence of subspaces. On the other hand, in Proposition 1.1, to show that a given linear operator is triangularizable. We must to construct the increasing sequence of T-invariant subspaces

$$\{0\} \subseteq W_1 \subseteq \cdots \subseteq W_{n-1} \subseteq W_n = V.$$

One also have to introduce the restriction of T to an T-invariant subspace $W \subseteq V$. Clearly, $T|_W = T_W : W \to W$ is a new linear mapping, where W is a T-invariant subspace of V.

Proposition 1.2. Let $T: V \to V$ be a linear operator and W be a T-invariant subspace of a finite dimensional vector space V. Then the characteristic polynomial of $T|_W$ divides the characteristic polynomial of T.

Proof. One can see Theorem 5.21 in Friedbreg.

Corollary 1.1. Every eigenvalue of $T|_W$ is also an eigenvalue of T, that is, the eigenvalue of $T|_W$ is some subset of the eigenvalue of T on V.

Let $T: V \to V$ be a linear operator, where V is a finite dimensional vector space. Let $\lambda_1, \dots, \lambda_n$ be distinct eigenvalues and m_i be the multiplicity of λ_i , as a root of the characteristic polynomial of T. Then T is diagonalizable if and only if $m_1 + \dots + m_n = \dim(V)$ and dim $E_{\lambda_i} = m_i$ for all i. The proof combines with Theorem 5.9 to 5.11 in Friedberg. Moreover, it means that

- (1) V can be rewritten as the direct sum of eigenspaces
- (2) m_i is algebraic multiplicity
- (3) $\dim(E_{\lambda_i})$ is geometric multiplicity.

Theorem 1.1 (Schur's Lemma). Let V be a finite dimensional vector space over \mathbb{F} and $T:V\to V$ be an linear operator. Then T is triangularizable if and only if the characteristic polynomial of T has $\dim(V)$ roots (counted with multiplicities) in \mathbb{F}

Remark. If $\mathbb{F} = \mathbb{C}$ (algebraic closure), then, by the fundamental theorem of algebra, every matrix $A \in M_{n \times n}(\mathbb{C})$ can be triangularizable. However, if $\mathbb{F} = \mathbb{R}$ ($x^2 + 1$ does not split on \mathbb{R}), then we can consider the rotation matrix $R(\phi)$, where $0 < \phi < \pi$. Since the rotation matrix in \mathbb{R}^2 , says

$$R = R(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \in M_{2 \times 2}(\mathbb{R}),$$

where $0 < \phi < \pi$. There does not exist any vector $v \neq 0$ such that $Rv = \lambda v$ for some λ . Since

$$\det(R - \lambda I_2) = \begin{vmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{vmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \begin{vmatrix} \cos \phi - \lambda & -\sin \phi \\ \sin \phi & \cos \phi - \lambda \end{vmatrix} \begin{vmatrix} \cos^2 \phi - 2\lambda \cos \phi + \lambda^2 + \sin^2 \phi \\ = \lambda^2 - 2\cos \phi \lambda + 1, \end{vmatrix}$$

so we use the discriminant of a quadratic polynomial to get that $D = 4\cos^2\phi - 4 < 0$, that is, there are no solution in \mathbb{R} . Hence the characteristic polynomial of R does not split over \mathbb{R} .

Lemma. Let $T: V \to V$ be as in theorem 1.1 and assume that the characteristic polynomial of T has $n = \dim(V)$ roots in \mathbb{F} . If $W \subsetneq V$ is an invariant subspace under T, then there exists a non-zero vector x in V such that $x \notin W$ and $W + \operatorname{span}(\{x\})$ is also T-invariant.

Proof. let $\alpha = \{x_1, \dots, x_k\}$ be a basis for W and extend α by adjointing $\alpha' = \{x_{k+1}, \dots, x_n\}$ to form a basis $\beta = \alpha \cup \alpha'$ for V. Let $W' = span(\alpha')$. Clearly, $V = W \oplus W'$ because we know that the fact that

Let β_1 and β_2 be disjoint bases for subspaces W_1 and W_2 , respectively, of a vector space V. If $\beta_1 \cup \beta_2$ is a basis for V, then $V = W_1 \oplus W_2$.

We define a linear operator $P: V \to V$ by

$$P(a_1x_1 + \dots + a_nx_n) = a_1x_1 + \dots + a_kx_k.$$

Clearly, W' = Ker(P), W = Im(P), and $P^2 = P$. Hence P is the projection on W with kernal W'. Moreover I - P is also the projection on W' with kernel W. Since

$$(I - P)(a_1x_1 + \dots + a_nx_n)$$

$$= I(a_1x_1 + \dots + a_nx_n) - P(a_1x_1 + \dots + a_nx_n)$$

$$= a_1x_1 + \dots + a_nx_n - a_1x_1 + \dots + a_kx_k$$

$$= a_{k+1}x_{k+1} + \dots + a_nx_n,$$

 $W = Ker(I - P), W' = Im(I - P), \text{ and } (I - P)^2 = (I - P)(I - P) = I - P^2 - P + P = I - P^2 = I - P.$ If the basis of V is orthonormal (the Grame-Schmidt process), then it is clear that $W' = W^{\perp}$ by theorem 6.7 in Friedbreg. Since V is a finite dimensional vector space, so $(W^{\perp})^{\perp} = W$ for all subspace W of V. It implies that P

is an orthogonal projection.Let $S = (I - P) \circ T \equiv (I - P)T$. Since Im(I - P) = W', so $Im(S) \subseteq Im(I - P) = W'$, that is, W' is S-invariant subspace $(S(W') \subseteq W')$. Now, we claim that the set of eigenvalues of $S|_W$ is a subset of the root of eigenvalues of T. Since W is T-invariant (by assumption), so we compute the matrix representation of $[T]_{\beta}^{\beta}$ is the form

$$[T]^{\beta}_{\beta} = \begin{bmatrix} A & B \\ O & C \end{bmatrix}.$$

Clearly, $A = [T|_W]^{\alpha}_{\alpha}$ is $k \times k$ block matrix and $C = [S|_{W'}]^{\alpha'}_{\alpha'}$ is a $(n-k) \times (n-k)$ block matrix. Hence

$$\det(T - \lambda I) = \det(T|_W - \lambda I) \cdot \det(S|_{W'} - \lambda I).$$

From Corollary 1.1, we are done. Since all the eigenvalues of T lie in the field \mathbb{F} (: the characteristic polynomial n roots), so by previous discussion, the same is true of all the the eigenvalues of $S|_{W'}$. Then there exists a nonzero vector x in W' ($x \notin W$) such that $Sx = \lambda x$, for some $\lambda \in \mathbb{F}$. It implies that

$$(I - P)(Tx) = \lambda x \implies Tx - PTx = \lambda x$$

 $\implies Tx = \lambda x + PTx \in span(\{x\}) + W.$

Finally, we show that $W + span(\{x\})$ is T-invariant. For all $y \in W + span(\{x\})$, there exists $z \in W$ and $\lambda \in \mathbb{F}$ such that $y = z + \lambda x$. Then

$$T(y) = T(z + \lambda x) = T(z) + \lambda T(x)$$

= $T(z) + \lambda(x) + \lambda PT(x) \in span(\{x\}) + W.$

Now we go back to prove Theorem 1.1 (Schur's Lemma).

Proof. Suppose that T is triangularizable. Then there exists an ordered basis β for V such that $[T]_{\beta}$ is an upper triangular matrix. Hence the eigenvalues of T are the diagonal entries of this matrix. They are elements of \mathbb{F} . It means that the characteristic polynomial splits over \mathbb{F} . Conversely, suppose that the condition holds. Let λ be eigenvalues of T, x_i be an eigenvector of T correspond with λ and $W_1 = span(\{x_1\})$. Clearly, W_1 is T-invariant. From lemma, there exists a non-zero vector $x \notin W_1$ such that $W_1 + span(\{x_1\})$ is also T-invariant. Continuing the process,we get an increasing sequence of T-invariant subspace of V, that is, $W_1 \subseteq \cdots \subseteq W_k$ with $W_i = span(\{x_1, \cdots, x_i\})$ for all $i \geq 1$. Again, by lemma, there exists a nonzero vector W_k such that $W_k \ni W_{k+1} = W_k + span(\{x_{k+1}\})$ is also T-invariant. We continue the

process until we have produced a basis for V. Hence, by Proposition 1.1, T is triangularizable.

Corollary 1.2. If $T: V \to V$ is triangularizable with eigenvalues λ_i with respective multiplicities m_i , then there eixsts an order basis β for V such that $[T]_{\beta}$ is upper triangular matrix, and the diagonal entries of $[T]_{\beta}$ are m_1 λ_1 's followed by m_2 λ_2 's and so on.

Under the assumption that all the eigenvalues of $T:V\to V$ lie in the foeld $\mathbb F$ over which V is defined. We recall that if T is a linear operator (or matrix) and $p(t)=a_nt^n+a_{n-1}t^{n-1}T^{n-1}+\cdots+a_0$ is a polynomial, then we can define a new linear mapping

$$p(T) = a_n T^n + a_{n-1} T^{n-1} + \dots + a_0 I.$$

Theorem 1.2 (Cayley-Hamilton theorem). Let $T: V \to V$ be a linear operator on a finite dimensional vector space V and let $p(t) = \det(T - tI)$ be its characteristic polynomial. Assume that p(t) has $\dim(V)$ roots in the field \mathbb{F} over which V is defined. Then p(T) = 0, which is a zero transformation on V.

Remark. It follows form Exercise 6-4-16 in Friedberg.

Proof. It suffices to show that p(T)(x) = 0 for all the vectors in some basis of V. By Theorem 1.1 (**Schur's Lemma**), there exists an ordered basis $\beta = \{x_1, \dots, x_n\}$ for V such that $W_i = span(\{x_1, \dots, x_i\})$ is T-invariant for all $1 \le i \le n$. Since all the eigenvalues of T lie in \mathbb{F} , so

$$p(t) = \pm 1 \cdot (t - \lambda) \cdots (t - \lambda_n)$$

for some $\lambda_i \in \mathbb{F}$ (not necessary distinct). If the factors here are ordered in the same fashion as the diagonal entries of $[T]^{\beta}_{\beta}$, then

$$T(x_i) = \lambda_i x_i + y_{i-1},$$

where $y_i \in W_{i-1}$ and $i \geq 2$, in particular, $T(x_1) = \lambda_1 x_1$. Now, we use the induction on i. For i = 1, we get that

$$p(T)(x_1) = \pm (T - \lambda_1 I) \cdots (T - \lambda_n I)(x_1)$$

= \pm (T - \lambda_2 I) \cdots (I - \lambda_n I)(T - \lambda_1)(x_1) = 0.

The last equality follows that the powers of T commutes with each other and with I. Suppose that $p(T)(x_i) = 0$ for all $i \leq k$. We compute $p(T)(x_{k+1})$. It is clear that only the factors $(T - \lambda_1 I), \dots, (T - \lambda_k I)$ are needed to send x_i to 0 for $i \leq k$. As before, we can rearrange the

factors in p(T) to obtain

$$p(T)(x_{k+1}) = \pm (T - \lambda_1 I) \cdots (T - \lambda_n I)(x_{k+1})$$

= \pm \delta(T - \lambda_1 I) \cdots (T - \lambda_n I)(T - \lambda_{k+1} I)(x_{k+1})
= \pm (T - \lambda_1 I) \cdots (T - \lambda_n I)(y_k) = 0.

The last equality follows that $T(x_{k+1}) = \lambda_{k+1}x_{k+1} + y_k$ and $y_k \in W_k$. By induction, the other factors in p(T) send all the vectors in this subspace to 0. We are done.

Remark. There are another proof of Theorem 1.2 (Cayley-Hamilton theorem). One can see Theorem 5.23 in Friedbreg.

Remark. Suppose that $A \in M_{n \times n}(\mathbb{F})$. If A is invertible, then $\det(A) \neq 0$. We consider that the characteristic polynomial of A

$$p(A) = \det(A - tI) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

Clearly, $a_0 = \det(A)$. By Theorem 1.2 (Cayley-Hamilton theorem), we get that

$$p(A) = (-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I = 0.$$

Moreover, we also get that

$$A^{-1} = \frac{-1}{\det(A)}((-1)^n A^{n-1} + \dots + a_1 I).$$

One can see Excercise 5-1-20, 5-1-21 and 5-4-18 in Friedbreg.