Project development phase Sprint - 3 Test case

Date	19 November 2022	
Team ID	PNT2022TMID03574	
Project Name	VirtualEye-Lifeguard for Swimming Pools to Detect the Active Drowning	

Init.py

```
from .object_detection import detect_common_objects
```

Object detect.py

```
#import necessary packages
import cv2
import os
import numpy as np
from .utils import download_file
initialize = True
net = None
dest_dir = os.path.expanduser('~') + os.path.sep + '.cvlib' + os.path.sep +
'object_detection' + os.path.sep + 'yolo' + os.path.sep + 'yolov3'
classes = None
#colors are BGR instead of RGB in python
COLORS = [0,0,255], [255,0,0]

def populate_class_labels():
    #we are using a pre existent classifier which is more reliable and more
efficient than one
    #we could make using only a laptop
#The classifier should be downloaded automatically when you run this
script
    class_file_name = 'yolov3_classes.txt'
    class_file_abs_path = dest_dir + os.path.sep + class_file_name
    url = 'https://github.com/Nico31415/Drowning-
Detector/raw/master/yolov3.txt'
    if not os.path.exists(class_file_abs_path):
        download_file(url=url, file_name=class_file_name, dest_dir=dest_dir)
    f = open(class_file_abs_path, 'r')
    classes = [line.strip() for line in f.readlines()]
    return classes
```

```
labe + ' ' + str(format(confidence[i] * 100, '.2f')) + '%'
```

```
are using YOLC
if not os.path.exists(weights file abs path):
net.setInput(blob)
outs = net.forward(get output layers(net))
confidences = []
        if max conf > confidence:
            boxes.append([x, y, w, h])
```

```
indices = cv2.dnn.NMSBoxes(boxes, confidences, confidence, nms_thresh)

bbox = []
label = []
conf = []

for i in indices:
    i = i[0]
    box = boxes[i]
    x = box[0]
    y = box[1]
    w = box[2]
    h = box[3]
    bbox.append([round(x), round(y), round(x+w), round(y+h)])
    label.append(str(classes[class_ids[i]]))
    conf.append(confidences[i])

return bbox, label, conf
```

Utils.py

```
import requests
import progressbar as pb
import os

def download_file(url, file_name, dest_dir):
    if not os.path.exists(dest_dir):
        os.makedirs(dest_dir):
        os.makedirs(dest_dir)

full_path_to_file = dest_dir + os.path.sep + file_name

if os.path.exists(dest_dir + os.path.sep + file_name):
        return full_path_to_file

print("Downloading " + file_name + " from " + url)

try:
    r = requests.get(url, allow_redirects=True, stream=True)
    except:
        print("Could not establish connection. Download failed")
        return None

file_size = int(r.headers['Content-Length'])
    chunk_size = 1024
    num_bars = round(file_size / chunk_size)

bar = pb.ProgressBar(maxval=num_bars).start()

if r.status_code != requests.codes.ok:
        print("Error occurred while downloading file")
        return None
```

```
count = 0
with open(full_path_to_file, 'wb') as file:
    for chunk in r.iter_content(chunk_size=chunk_size):
        file.write(chunk)
        bar.update(count)
        count +=1

return full_path_to_file
```

App.py:

```
import numpy as np
my database = client.create database('my database')
app=Flask( name )
def home():
```

```
def afterreg():
def afterlogin():
    if (len (docs.all()) == 0):
```

```
print ('Invalid User
centre0 = np.zeros(2)
```

```
x=time.time()
    t0 = time.time()
webcam.release()
cv2.destroyAllWindows()
```

Detect.py:

```
import cvlib as cv
webcam = cv2.VideoCapture(0)
centre0 = np.zeros(2)
isDrowning = False
```

```
x=time.time()
                t0 = time.time()
                if((time.time() - t0) > 10):
webcam.release()
```