Métodos Matemáticos de la Física II

Espacios lineales

Un espacio vectorial (EV) o lineal es un conjunto de vectores $V=\{\vec{v}\}$ asociado a un cuerpo $\mathbb C$ que es **cerrado** bajo las operaciones de suma y el producto escalar que cumplan con las propiedades:

- $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$
- $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$
- $\lambda(\mu \vec{a}) = \mu(\lambda \vec{a})$
- $\exists ! \ \vec{0} \in V : \vec{a} + \vec{0} = \vec{a} \ \forall \vec{a} \in V$
- ullet $\exists ! \ 1 \in \mathbb{C} : 1 \cdot \vec{a} = \vec{a} \ \ orall \vec{a} \in V$
- $\forall \vec{a} \in V, \ \exists ! (-\vec{a}) : \vec{a} + (-\vec{a}) = \vec{0}$

Independencia Lineal

Un conjunto de n vectores no nulos $\{\vec{a}\}_{i=1}^n$ es **linealmente independiente** (LI) si cumple que si $\sum \lambda_i \vec{a}_i = 0 \Rightarrow \lambda_i = 0 \ \forall i$. Si un conjunto no es LI, es un conjunto **linealmente dependiente** (LD).

Dimensión

La dimensión es la cardinalidad del conjunto LI más grande que se puede formar en el EV. Se puede definir para dimensión finita como:

$$dim(V) = \max_{\mathbb{N}_0} \{n \in \mathbb{N}_0 / \exists \{ec{x}_i\}_{i=1}^n \subset V \ \mathrm{LI} \}$$

Base de un espacio vectorial

Si $\dim(V)=n<\infty$ cualquier conjunto de n vectores $\{\vec{e}_i\}\subset V$ LI es **base** de V, y los \vec{e}_i son los vectores base.

Teorema: Sea $\dim(V)=n<\infty$, $\{\vec{e}_i\}$ base de $V\Rightarrow \forall \vec{x}\neq \vec{0}\in V,\ \exists !\{x^i\}\subset\mathbb{C}: \vec{x}=x^i\vec{e}_i.$

Componentes de un vector

Las componentes de un vector \vec{x} en una base son los coeficientes x^i tal que:

$$x = x^i \vec{e}_i$$

Subespacios lineales

W es subespacio de V si $\forall \vec{x} \in W \Rightarrow \vec{x} \in V$, y W es un EV.

Suma directa

Si se tiene una colección finita de subespacios V_i de V disjuntos y $\forall \vec{x} \in V \; \exists ! \vec{x}_i / \vec{x} = \vec{x}_i$, entonces V es suma directa de los subespacios V_i :

$$V=\oplus_{i=1}^r V_i \ \dim(V)=\sum\dim(V_i)$$

Donde la suma direct se define como $U\oplus W=\{\vec x+\vec y/\vec x\in U\land \vec y\in W\}$ y $U\cap W=\{\vec 0\}.$

Operadores lineales

Los **operadores lineales** son aplicaciones que llevan a cada elemento de un EV V a otro EV W, y es lineal. Es decir:

$$egin{aligned} V
i ec{x} & \stackrel{\mathcal{A}}{ o} \mathcal{A}(ec{x}) \in W \ \mathcal{A}(\lambda ec{x} + \mu ec{y}) = \lambda \mathcal{A}(ec{x}) + \mu \mathcal{A}(ec{y}) \end{aligned}$$

El kernel de un operador lineal es:

$$ker(\mathcal{A}) = \{\vec{x} \in V / \mathcal{A}(\vec{x}) = 0\}$$

Si se tiene un operador lineal $\mathcal{A}:V\to W$ la **imagen** de un \vec{x} bajo \mathcal{A} es $\vec{y}=\mathcal{A}\vec{x}$ y \vec{x} es la **preimagen** de \vec{y} sobre \mathcal{A} . Para un operador lineal la imagen es única para cada \vec{x} , pero la preimagen puede no ser única para cada \vec{y} .

Un subespacio W de V es **invariante** bajo el operador $\mathcal{A}:V\to V$ si $\forall \vec{x}\in W\Rightarrow \mathcal{A}\vec{x}\in W$. Así se puede definir una restricción del operador sobre el subespacio si se piensa $\mathcal{A}/W:W\to W$ (esto solo se puede hacer si W es invariante bajo \mathcal{A}). $\mathcal{A}/W:=\mathcal{AP}_W$, donde \mathcal{P}_W es la proyección sobre W.

Componentes de un operador

Si \vec{e}_i base de V y \vec{f}_j base de W entonces existen únicos coeficientes A_i^j , que son las componentes del operador, tal que:

$$\mathcal{A}ec{e}_i=A_i^jec{f}_j$$

Nota: las operaciones elementales entre operadores se comportan como las operaciones entre matrices.

Inversa

Sea $\mathcal{A}:V\to W$ si existe $\mathcal{B}:W\to V$ tal que $\mathcal{BA}=\mathcal{I}$, entonces \mathcal{B} es la inversa de \mathcal{A} .

Propiedad: la inversa existe $\Leftrightarrow \dim(W) \ge \dim(V)$.

Propiedad: un operador A es invertible \Leftrightarrow dim(ker(A))=0.

Conmutatividad

 \mathcal{A} y \mathcal{B} conmutan si $\mathcal{AB}=\mathcal{BA}$, y se define el conmutador $[\mathcal{A},\mathcal{B}]=\mathcal{AB}-\mathcal{BA}$

Funciones de operadores

Se puede definir:

$$f(\mathcal{A}) = \sum_{n=0}^{\infty} a_n \mathcal{A}^n$$

$$f(\mathcal{A})ec{v} = \sum_{n=0}^{\infty} a_n \mathcal{A}^n ec{v}$$

Matrices

El producto de matrices se define como $\left[AB\right]_{i}^{j}=A_{i}^{k}B_{k}^{j}.$ i mapea columnas y j filas.

Tipos de matrices

Si la matriz A tiene componentes A_i^j :

- ullet Conjugada $A^*/[A^*]_i^j=(A_i^j)^*.$
- Traspuesta $A^t/[A^t]_i^j=A^i_j$.

- Adjunta $A^\dagger/[A^\dagger]_i^j=(A_j^i)^*$
- Inversa $A^{-1}/[A^{-1}]_i^j=rac{cofA_j^i}{det(A)}$. Donde $cofA_i^j=(-1)^{i+j}\cdot det(A\sin$ su fila ${
 m j}$ y columna ${
 m i}$).

Matrices notables

- Real $A^* = A$.
- Simétrica $A^t = A$.
- Antisimétrica $A^t = -A$.
- Autoadjunta o Hermitiana $A^\dagger = A$.
- Ortogonal $A^{-1} = A^t$.
- Unitaria $A^{-1} = A^{\dagger}$.
- Diagonal $A_i^j = 0 \ \forall i \neq j$.
- Idempotente $A^2 = A$.
- ullet Nilpotente $\exists k \in \mathbb{N}/A^k = 0$

Nota: las matrices para realizar productos se pueden trabajar por bloques tal que tenga sentido multiplicarlos (mismo numero de filas y columnas). Así para el proceso de diagonalización es útil.

Funciones de matrices

$$f(A) = \sum_{n=0}^{\infty} a_n A^n$$

Transformaciones de coordenadas

Para dos bases de V, \vec{e}_i y \vec{e}'_j , como la base primada es un vector de V se puede escribir como combinación de la base no primada:

$$\left[ec{e}_{j}^{\prime}=\gamma_{j}^{i}ec{e}_{i}
ight]$$

Los coeficientes γ^i_j se pueden ver como elementos de una matriz cuadrada γ . Si se acomodan los vectores de la base como columnas de una matriz E y E' para cada base:

$$E' = E\gamma$$

Covarianza y contravarianza

Todo elemento que ante un cambio de base cambie como los vectores base se denomina **covariante**, y se colocan sus índices como subíndices. Si lo hace de forma inversa se llama **contravariante** y sus índices se colocan como superíndices.

Transformación de un componente de un vector

$$oxed{x'^j = [\gamma^{-1}]_i^j x^i}$$

Componentes de un operador

Si un operador va de V con matriz de cambio de base γ ($\vec{e}'_j=\gamma^i_j\vec{e}_i$), a W con matriz de cambio de base δ ($\vec{f}'_l=\delta^i_j\vec{f}_k$).

$$oxed{A_j'^k = [\delta^{-1}]_l^k A_i^l \gamma_j^i}$$

Transformaciones de semejanza

Una transformación de semejanza es toda transformación lineal tal que $A'=S^{-1}AS$. Cumplen que:

- det(A') = det(A)
- Tr(A') = Tr(A)
- $f(A') = S^{-1}f(A)S$
- $A=A^\dagger\Rightarrow A'=A'^\dagger$ si S es unitaria.
- $A^{-1}=A^{\dagger}\Rightarrow A'^{-1}=A'^{\dagger}$ si S es unitaria.
- $A^{-1} = A^t \Rightarrow A'^{-1} = A'^t$ si S es ortogonal.
- $AB = BA \Rightarrow A'B' = B'A'$.
- $B = A^{-1} \Rightarrow B' = (A')^{-1}$

Formas y espacio dual

Forma

Una n-forma es una aplicación tal que $V \oplus V \oplus \ldots \oplus V \ni (\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n) \stackrel{\phi}{\to} \phi(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n) \in \mathbb{C}$. Es una forma lineal si $\phi(\lambda \vec{x} + \mu \vec{y}) = \lambda \phi(\vec{x}) + \mu \phi(\vec{y})$.

Espacio dual

Se define el espacio dual V^* de V como el espacio de todas las formas lineales definidas sobre V.

$$V^* = \{\phi: V \to \mathbb{C}/\phi \text{ lineal}\}$$

Componentes de una forma

Se define $\phi_i := \stackrel{\longleftarrow}{\phi}(\vec{e}_i)$, entonces $\stackrel{\longleftarrow}{\phi}(\vec{x}) = \phi_i x^i$. Se define también, la base dual de una base \vec{e}_i de V tal que:

$$\stackrel{\longleftarrow}{e^i}(\vec{e}_j) = \delta^i_j \ \Rightarrow \stackrel{\longleftarrow}{\phi} = \phi_i \stackrel{\longleftarrow}{e^i}$$

Transformaciones de coordenadas en V^st

Las componentes de las formas ϕ_i son covariantes, es decir:

$$\phi_j' = \phi_i \gamma_j^i$$

Y los vectores base son contravariantes:

$$\stackrel{\longleftarrow}{e'^j} = [\gamma^{-1}]_i^j \stackrel{\longleftarrow}{e^i}$$

Producto interno, métrica y norma

Producto interno

El producto interno es una 2-forma tal que $\Phi:V\oplus V o \mathbb{C}$, y satisface:

- $\Phi(\vec{a}, \vec{b}) = \Phi(\vec{b}, \vec{a}).$
- $\Phi(\vec{a},\lambda\vec{b})=\lambda\Phi(\vec{a},\vec{b});\ \Phi(\lambda\vec{a},\vec{b})=\lambda^*\Phi(\vec{a},\vec{b}).$
- $\Phi(\vec{a}, \vec{a}) > 0 \ \forall \vec{a} \lor \Phi(\vec{a}, \vec{a}) = 0 \Leftrightarrow \vec{a} = 0$

Métrica

Se define la métrica como $g_{ij} = \Phi(ec{e}_i, ec{e}_j)$. Y la matriz métrica $g = [g_{ij}]$.

Se puede aplicar:

$$\vec{x} \cdot \vec{y} = \mathbf{x}^{\dagger} q \mathbf{y}$$

La métrica es hermitiana y definida positiva.

Norma

Se puede definir la norma a partir del producto interno:

$$||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x^{*i} g_{ij} x^j}$$

Se puede pensar el producto interno de la siguiente forma:

$$\stackrel{\longleftarrow}{\phi_{ec{x}}} := \Phi(ec{x},\cdot)$$

Se puede deducir que:

$$\phi_{ec{x}j} = x^{*i} g_{ij}$$

Por lo que la métrica lleva las componentes de un vector a las componentes de la correspondiente forma $V\ni\vec{x}\stackrel{g}{\to}\phi_{\vec{x}}^{\leftarrow}\in V^*.$

Autovalores y autovectores

Autovectores a derecha

Si se tiene un operador lineal con una matriz asociada $A:V o V\Rightarrow\ \exists ec{v}\in V/Aec{v}=\lambdaec{v},\ ec{v}
eq 0.$

$$egin{aligned} A ec{v} &= \lambda ec{v} \ \Rightarrow (A - \lambda I) ec{v} &= 0 \ \Rightarrow \mathcal{P}(\lambda) = det(A - \lambda I) = \sum_{j=0}^n lpha_j \lambda^{n-j} \end{aligned}$$

Donde los λ son los invariantes algebraicos.

Teorema: si se tienen n autovalores distintos con $\dim(V)$ =n, entonces los autovectores asociados forman base de V.

A partir de los autovalores de una matriz se puede definir una noción de norma para las matrices, llamada **norma espectral**:

$$||A||_2 = \sqrt{\lambda_{max}(A^\dagger A)}$$

Si la norma es menor al radio de convergencia de una serie, entonces la serie converge. Puede ser que a pesar, de que la norma sea mayor la serie converja, ya que la matriz puede ser nilpotente y se trunca la serie.

Autovalores a izquierda

Los autovalores a izquierda cumplen que $A^{\dagger}\vec{u}=\mu\vec{u}$, y se puede demostrar que:

$$\mu_i \equiv \lambda_i^*$$

Los autovectores a izquierda cumplen que si los μ_i son distintos (si los λ_i son distintos), forman base de V. Para calcularlos se utiliza que:

$$A^\dagger ec{u}_i = \lambda_i^* ec{u}_i \ ec{u}_i = \lambda_i^* ec{u}_i \ ec{u}^{i\dagger} A = \lambda_i ec{u}^{i\dagger}$$

Diagonalización de un operador

Si se tiene un operador lineal $A:V\to V$, n=dim(V), con autovalores distintos entonces:

Se cumple que:

$$\mathbf{u}\mathbf{v}=I$$
 $\mathbf{u}A\mathbf{v}=D$

 ${\sf Con}\, D$ matriz diagonal con los autovalores en orden en la diagonal.

Operadores Hermitianos

Teorema: si se tiene un operador tal que $\mathcal{P}_A(\lambda)=(\lambda-\lambda_1)^{q_1}(\lambda-\lambda_2)^{q_2}\dots(\lambda-\lambda_r)^{q_r}$, donde q_i es la multiplicidad, si A hermitiana $A\vec{v}=\lambda_i\vec{v}$ tiene q_i soluciones LI, por lo que los autovectores generan un subespacio de dimensión q_i . Y A diagonalizable.

Teorema: si A y B hermitianas, $\exists S/S^{-1}AS=D_A$ y $S^{-1}BS=D_B\Leftrightarrow [A,B]=0.$

Operadores normales

A es **normal** si cumple:

$$AA^{\dagger} = A^{\dagger}A$$

Si A es normal $\Rightarrow A$ es diagonalizable.

Formas de Jordan

Falta el teorema de descomposición primaria.

Si se tiene una matriz A, se realiza la descomposición primaria (ya viene descompuesta), se calculan $(A-\lambda I)^n$, hasta llegar a una matriz nula. En una tabla se coloca la potencia n, la dim(ker($(A-\lambda I)^n$)) y se calcula n_p :

$$n_{p_i} = 2dim(ker(A-\lambda_i I)^p) - dim(ker(A-\lambda_i I)^{p-1}) - dim(ker(A-\lambda_i I)^{p+1})$$

Este n_p da el numero de filas y columnas de los bloques de Jordan, y se acomodan de cualquier forma. Ver apunte para saber la forma de estos bloques. Es en la diagonal el autovalor y en la diagonal superior todos 1, el tamaño depende de la multiplicidad del autovalor.

La forma de Jordan es independiente de la base en la que se expresa A.

Tensores

Un tensor es una aplicación tal que $T:\Pi_r^s=V^*\times V^*\times\ldots V^*\times V\times \ldots\times V\to\mathbb{C}$ (r veces el dual y s veces V).

Un espacio tensorial es el conjunto de tensores $V^s_r=\{T:\Pi^s_r o\mathbb{C}\}.$

• Suma de tensores:

$$T,S:\Pi_r^s o\mathbb{C}, (T+S)(ec{w}^1,\ldots,ec{w}^r,ec{u}_1,\ldots,ec{u}_s)=T(ec{w}^1,\ldots,ec{w}^r,ec{u}_1,\ldots,ec{u}_s)+S(ec{w}^1,\ldots,ec{w}^r,ec{u}_1,\ldots,ec{u}_s)$$

• Producto por una escalar: $(\lambda T)(\vec{w}^1,\ldots,\vec{w}^r,\vec{u}_1,\ldots,\vec{u}_s) = \lambda \cdot T(\vec{w}^1,\ldots,\vec{w}^r,\vec{u}_1,\ldots,\vec{u}_s)$.

Producto tensorial

 $T \in V^{s_1}_{r_1}, \ S \in V^{s_2}_{r_2}$ entonces $T \otimes S \in V^{s_1+s_2}_{r_1+r_2}$ se define como:

$$(T\otimes S)(ec{w}^1,\ldots,ec{w}^{r_1},ec{ au}^1,\ldots,ec{ au}^{r_2},ec{u}_1,\ldots,ec{u}_{s_1},ec{v}_1,\ldots,ec{v}_{s_2}) = \ = T(ec{w}^1,\ldots,ec{w}^{r_1},ec{u}_1,\ldots,ec{u}_{s_1})\cdot S(ec{ au}^1,\ldots,ec{ au}^{r_2}ec{v}_1,\ldots,ec{v}_{s_2})$$

Base y componente de un tensor

Las componentes de un tensor $S \in V_r^s$ para una base de $V^* \vec{e}^j$, y una base de $V \vec{e}_i$ son:

$$S^{i_1...i_r}_{j_1...j_s} = S(ec{e}^{i_1}, \ldots ec{e}^{i_r}, ec{e}_{j_1}, \ldots, ec{e}_{j_s})$$

Y la base de V_r^s es el producto tensorial:

$$\vec{e}_{i_1} \otimes \ldots \otimes \vec{e}_{i_r} \otimes \vec{e}^{j_1} \otimes \ldots \otimes \vec{e}^{j_s}$$

Entonces el tensor S se puede escribir como:

$$S = S^{i_1...i_r}_{j_1...j_s} ec{e}_{i_1} \otimes \ldots \otimes ec{e}_{i_r} \otimes ec{e}^{j_1} \otimes \ldots \otimes ec{e}^{j_s}$$

Cambio de base de un tensor

Para un tensor $S\in V_r^s$ con componentes $S_{j_1\dots j_s}^{i_1\dots i_r}$. Si la base de V, \vec{e}_i cambia a la base \vec{e}'_j con el operador A $\vec{e}'_j=A^i_j\vec{e}_i$. Por lo tanto, las bases de V^* cambian como $\vec{e}'^j=[A^{-1}]^j_i\vec{e}^i$. El tensor S cambia de base de la siguiente forma:

$$S_{l_1...l_s}^{\prime k_1...k_r} = [A^{-1}]_{i_1}^{k_1} [A^{-1}]_{i_2}^{k_2} \dots [A^{-1}]_{i_r}^{k_r} A_{l_1}^{j_1} A_{l_2}^{j_2} \dots A_{l_s}^{j_s} S_{j_1...j_s}^{i_1...i_r}$$

$$(1)$$

Se dice que S es r veces contravariante y s veces covariante.

A partir de ver como cambia de base un tensor, se puede definir tensor como cualquier objeto con r+s índices que van de 1 a n=dim(V), y que ante un cambio de base transforma como (1). Lo llamaremos tensor de **rango** r+s del **tipo** (r,s).

Contracción de índices

Si se tiene un tensor $S \in V_r^s$ con componentes $S_{j_1\dots j_s}^{i_1\dots i_r}$ el contraído de S con respecto a los índices i_n y j_m como:

$$S^{i_1...i_{n-1}}_{j_1...j_{m-1}}{}^{k}{}^{i_{n+1}...i_r}_{k}=S^{i_1...i_r}_{j_1...j_s}\delta^{j_m}_{i_n}$$

Se obtiene un tensor de tipo (r-1, s-1).

Nota: un contraído se un tensor es un tensor, si y solo si se contraen índices de a pares, uno covariante y otro contravariante.

Simetría

Un tensor $S \in V^s_r$ es **simétrico** respecto a los índices i_n e i_m si:

$$S^{i_1\dots i_m\dots i_r}_{j_1\dots j_s}=S^{i_1\dots i_n\dots i_m\dots i_r}_{j_1\dots j_s}$$

Equivalentemente se define para índices covariantes.

Si un tensor es simétrico respecto a cualquier par de índices, se dice que el tensor es **simétrico**.

Un tensor $S \in V_r^s$ es **antisimétrico** respecto a los índices i_n e i_m si:

$$S^{i_1...i_m...i_n...i_r}_{j_1...j_s} = -S^{i_1...i_n...i_m...i_r}_{j_1...j_s}$$

Equivalentemente se define para índices covariantes.

 $S \in V_r^0$ es totalmente antisimétrico si:

$$S^{\Pi(i_1...i_r)}=sqn(\Pi)S^{(i_1...i_r)}$$

Donde $\Pi(i_1...i_r)$ es una permutación de los índices y $sgn(\Pi)$ es 1 si es un número de permutaciones es par y -1 si es impar. De igual modo se define para índices covariantes.

Simetrización y antisimetrización de tensores

Dado un tensor $T \in V^0_r$ su **parte simétrica** es $\mathcal{S}T \in V^0_r$ con componentes:

$$(\mathcal{S}T)^{i_1...i_r} = rac{1}{r!} \sum_{\Pi} T^{\Pi(i_1...i_r)}$$

La **parte antisimétrica**, $\mathcal{A}T \in V^0_r$, con componentes:

$$(\mathcal{A}T)^{i_1...i_r} = rac{1}{r!} \sum_{\Pi} sgn(\Pi) T^{\Pi(i_1...i_r)}$$

De manera análoga se define para tensores covariantes.

- {} denota la simetrización.
- [] denota la antisimetrización.

Producto exterior

Sean tensores $S\in V_0^s$ con componentes $S_{j_1...j_s}$ totalmente antisimétrico, y $T\in V_0^t$ con componentes $T_{j_1...j_t}$ totalmente antisimétrico. Se define su producto exterior:

$$S \wedge T = rac{(s+t)!}{s!t!} \mathcal{A}(S \otimes T)$$

Tal que $S \wedge T \in V_0^{s+t}$ totalmente antisimétrico con componentes $S_{[j_1...j_s}T_{l_1...l_t]}.$

Este producto cumple:

- $S \wedge (T_1 + T_2) = S \wedge T_1 + S \wedge T_2$.
- $(S \wedge T) \wedge R = S \wedge (T \wedge R) = S \wedge T \wedge R$.
- $S \wedge T = (-1)^{st} T \wedge S$

Densidades tensoriales

Una densidad tensorial de peso p es un objeto tal que transforma tal que:

$$\boxed{S_{l_1...l_s}^{\prime k_1...k_r} = det(A)^p \cdot [A^{-1}]_{i_1}^{k_1} [A^{-1}]_{i_2}^{k_2} \dots [A^{-1}]_{i_r}^{k_r} \ A_{l_1}^{j_1} A_{l_2}^{j_2} \dots A_{l_s}^{j_s} \ S_{j_1...j_s}^{i_1...i_r}}$$

Símbolo de Levi-Civita

$$\varepsilon_{i_1\dots i_s} = \begin{cases} 1 \text{ si se tiene una permutación par de } i_1\dots i_s \\ -1 \text{ si se tiene una permutación impar de } i_1\dots i_s \\ 0 \text{ si se repite índice} \end{cases}$$

Este símbolo es una densidad tensorial de peso -1.

•
$$\varepsilon^{ijk}\varepsilon_{klm} = \delta^i_l\delta^j_m - \delta^i_m\delta^j_l$$
.

Tensor adjunto

Se define al tensor adjunto como:

$$\overline{T}_{i_1\dots i_{n-r}}=\varepsilon_{i_1\dots i_{n-r}j_1\dots j_r}T^{j_1\dots j_r}$$

Se cumple para el producto vectorial que:

$$ec{u} imesec{v}=\overline{ec{u}\wedgeec{v}}$$

Coordenadas curvilíneas

Cambio de coordenadas locales

Ante un cambio de coordenadas las ecuaciones para calcular componentes en unas coordenadas con respecto a los componentes en otras puede ser altamente complicado, ya que las ecuaciones pueden ser no lineales. Pero, la relación entre los diferenciales siempre es lineal y homogénea:

$$dx'^i = rac{\partial x'^i}{\partial x^j} dx^j$$

Esto hace que se tome la matriz Jacobiana como la matriz de cambio de base entre coordenadas.

$$J = \left[rac{\partial x^i}{\partial x'^j}
ight]_{ij}$$

$$J^{-1} = \left[rac{\partial x'^i}{\partial x^j}
ight]_{ij}$$

Donde i son las filas y j las columnas.

Base tangente o covariante

Una curva coordenada es una curva producida por mantener todas las coordenadas de la nueva base constantes, excepto por una, la cual varia:

$$\vec{x}(x'^i) = x^j(x'^1 = cte, \dots, x'^i, \dots, x'^n = cte)\vec{e}_i$$

La base covariante o tangente para el cambio de coordenadas es:

$$oxed{ec{e}_j' = rac{\partial ec{x}}{\partial x'^j} = rac{\partial x^i}{\partial x'^j} ec{e}_i}$$

Vectores contravariantes

Un vector covariante se define como cualquier vector con componentes u^i que transforme de acuerdo a:

$$u'^i = \frac{\partial x'^i}{\partial x^j} u^j$$

Vectores covariantes

Un vector covariante se define como cualquier objeto con componentes u_i que ante cambio de coordenadas transforme de acuerdo a:

$$u_i' = rac{\partial x^j}{\partial x'^i} u_j$$

Base dual o contravariante

Para calcular la base dual se puede aplicar la métrica a la base covariante o utilizando la regla de transformación y aplicándose la a la base dual de las coordenadas que ya se tenían. La regla de transformación de la base contravariante es:

$$\left[ec{e}^{\prime j}=rac{\partial x^{\prime j}}{\partial x^i}ec{e}^i
ight]$$

Tensores en curvilíneas

Análogo a las definiciones anteriores un objeto con componentes $S^{i_1...i_r}_{j_1...j_s}$, que ante cambios de coordenadas transforme como:

$$S_{l_1...l_s}^{\prime k_1...k_r} = rac{\partial x^{\prime k_1}}{\partial x^{i_1}} \ldots rac{\partial x^{\prime k_r}}{\partial x^{i_r}} rac{\partial x^{j_1}}{\partial x^{\prime l_1}} \ldots rac{\partial x^{j_s}}{\partial x^{\prime l_s}} \, S_{j_1...j_s}^{i_1...i_r}$$

Densidades tensoriales

Un objeto con componentes $S^{i_1\dots i_r}_{j_1\dots j_s}$ que ante cambios de coordenadas transforma de acuerdo a:

$$S_{l_1...l_s}^{\prime k_1...k_r} = det(\mathbb{J})^p rac{\partial x^{\prime k_1}}{\partial x^{i_1}} \ldots rac{\partial x^{\prime k_r}}{\partial x^{i_r}} rac{\partial x^{j_1}}{\partial x^{\prime l_1}} \ldots rac{\partial x^{j_s}}{\partial x^{\prime l_s}} \, S_{j_1...j_s}^{i_1...i_r}$$

Se denomina densidad tensorial de peso p.

Tensor métrico

La métrica se puede obtener a partir de plantear un diferencial de arco, y expresarlo en ambas coordenadas:

$$ds^2 = dx^i \delta_{ij} dx^j = dx'^k rac{\partial x^i}{\partial x'^k} \delta_{ij} rac{\partial x^j}{\partial x'^l} dx'^l$$

$$ds^2=dx'^krac{\partial x^i}{\partial x'^k}rac{\partial x^i}{\partial x'^l}dx'^l=dx'^kg_{kl}dx'^l$$

Entonces se define la métrica:

$$g_{ij} := rac{\partial x^k}{\partial x'^i} rac{\partial x^k}{\partial x'^j}$$

En notación matricial:

$$g:=[g_{ij}]=J^tJ$$

Y se tiene que:

$$g' = J^t g J$$

Se define la inversa de la métrica como:

$$[g^{ij}] = \mathbf{g}^{-1}$$

El determinante de la métrica es un pseudoescalar de peso 2, $g'=J^2g$.

Para coordenadas ortogonales se definen los factores de escala como:

$$h_i^2 := g_{ii}^\prime$$

Si las coordenadas son ortogonales:

$$g' = h_1^2 \dots h_n^2$$

 $\Rightarrow J = h_1 h_2 \dots h_n$

Aunque J no sea diagonal.

Ascenso y descenso de índices

Para un vector contravariante se definen sus componentes covariantes como:

$$u_i := g_{ij}u^j$$

Para un vector covariante se definen sus componentes contravariantes como:

$$v^i := g^{ij}v_i$$

Esto se extiende a tensores $T^i_j = g_{jk} T^{ik}$.

Producto escalar y norma

Usando la norma para subir y bajar índices se puede definir un producto escalar para dos vectores contravariantes o covariantes:

$$ec{u} \cdot ec{v} = u^i v_i = g_{ij} u^i v^j = g^{ij} u_i v_j$$

Usando que $||\vec{u}||^2 = \vec{u} \cdot \vec{u}$ sale la norma.

La métrica permite traducir de la base covariante a la base contravariante y viceversa:

$$\boxed{ \vec{e}^i = g^{ij} \vec{e}_j }$$

$$\boxed{ \vec{e}_i = g_{ij} \vec{e}^j }$$

En un sistema de coordenadas ortogonales se pueden extender estas ideas haciendo uso de los factores de escala (pág. 96).

Integración en coordenadas curvilíneas

Integral de volumen

El diferencial de volumen es una densidad escalar de peso -1:

$$dV = JdV'$$

En cualquier sistema de coordenadas:

$$egin{aligned} dV := Jdet(egin{bmatrix} dec{x}_1 \ldots dec{x}_n \ \downarrow & \downarrow \end{pmatrix}) \end{aligned}$$

Donde $d\vec{x}_i = dx^{\underline{i}}\vec{e}_i$.

Integral de superficie

Sea $ec{S}(u^1,u^2)$ la parametrización de la superficie, se define la métrica inducida:

$$ilde{g}_{ij} = rac{\partial ec{S}}{\partial u^i} \cdot rac{\partial ec{S}}{\partial u^j}$$

Tal que los diferenciales en cada dirección quedan:

$$dec{S}_1 = rac{\partial ec{S}}{\partial u^1} du^1$$

$$dec{S}_{2}=rac{\partialec{S}}{\partial u^{2}}du^{2}$$

Entonces los diferenciales de área quedan:

$$oxed{dA = \sqrt{ ilde{g}} \ du^1 du^2} \ oxed{dA = dec{S}_1 imes dec{S}_2}$$

$$ec{dA} = dec{S}_1 imes dec{S}_2$$

Diferencial de línea

Si se tiene una curva $ec{c}(t)=c^i(t)ec{e}_i$, el largo de la curva es:

$$\ell(c) = \int_a^b \sqrt{rac{dc'^i}{dt}g_{ij}rac{dc'^j}{dt}}dt$$

Derivación en coordenadas curvilíneas

Conexión de Levi-Civita

Son coeficientes tal que:

$$\vec{e}_{j,k} = \Gamma^i_{jk} \vec{e}_i$$

Entonces la derivada de un vector:

$$ec{u}_{,k}=(u_{,k}^i+\Gamma_{jk}^iu^j)ec{e}_i$$

Estos son los elementos de conexión afín de Levi-Civita. Y son tal que:

$$\Gamma^i_{jk} = \vec{e}^i \vec{e}_{j,k}$$

Además, cumplen que:

$$\Gamma^i_{jk} = \Gamma^i_{kj}$$

Derivada covariante

Si u^i es un vector contravariante su derivada covariante es:

$$u^i_{:k} := u^i_{.k} + \Gamma^i_{ik} u^j$$

Se pueden definir las derivadas covariantes de tensores de rango arbitrario:

$$\begin{split} h_{;i} &\equiv h_{,i} \;, \\ v_{i;j} &= v_{i,j} - \Gamma^k_{ij} v_k \,, & \vec{v} &= v_i \vec{e}^{\,i} & \Rightarrow \vec{v}_{,j} = v_{i;j} \vec{e}^{\,i} \,, \\ u^i_{\;;j} &= u^i_{\;,j} + \Gamma^i_{kj} u^k \,, & \vec{u} &= u^i \vec{e}_i & \Rightarrow \vec{u}_{,j} = u^i_{\;;j} \vec{e}_i \,, \\ t_{ij;k} &= t_{ij,k} - \Gamma^h_{ik} t_{hj} - \Gamma^h_{jk} t_{ih} \,, & T &= t_{ij} \vec{e}^{\,i} \otimes \vec{e}^{\,j} \Rightarrow T_{,k} = t_{ij;k} \vec{e}^{\,i} \otimes \vec{e}^{\,j} \,, \\ t^i_{\;j;k} &= t^i_{\;j,k} + \Gamma^i_{hk} t^h_{\;j} - \Gamma^h_{jk} t^i_{\;h} \,, & T &= t^i_{\;j} \vec{e}_i \otimes \vec{e}^{\,j} \Rightarrow T_{,k} = t^i_{\;j;k} \vec{e}_i \otimes \vec{e}^{\,j} \,, \\ t^{ij}_{\;;k} &= t^{ij}_{\;,k} + \Gamma^i_{hk} t^{hj} + \Gamma^j_{hk} t^{ih} \,, & T &= t^{ij} \vec{e}_i \otimes \vec{e}_j \,\Rightarrow T_{,k} = t^{ij}_{\;;k} \vec{e}_i \otimes \vec{e}_j \,, \end{split}$$

Los elementos de conexión afín pueden calcularse usando la métrica:

$$\begin{split} \boxed{\Gamma^m_{jk} = \frac{1}{2} g^{mi} (g_{ij,k} + g_{ik,j} - g_{kj,i})} \\ \Gamma^{\underline{i}}_{\underline{i}j} = (\ln h_i)_{,j}, \quad i,j = 1,2,3, \qquad \qquad h_i \text{ dependiente de } x^j, \\ \Gamma^{\underline{i}}_{\underline{j}\underline{j}} = -\frac{(h_j^2)_{,\underline{i}}}{2h_i^2}, \quad i,j = 1,2,3, \quad i \neq j, \quad h_j \text{ dependiente de } x^i. \end{split}$$

Gradiente

Se define el gradiente $\nabla \varphi$ de una escalar como el vector covariante:

$$oxed{
abla arphi = arphi_{;i} ec{e}^i = arphi_{,i} ec{e}^i}$$

Rotor

Se define para un vector covariante (si se quiere para un contravariante usar la métrica):

$$oxed{
abla imes ec{u} = \sqrt{g^{-1}} arepsilon^{ijk} u_{i,j} ec{e}_k}$$

Divergencia

Se define para un vector contravariante (si se quiere para uno covariante usar la métrica):

$$\left|
abla\cdotec{u}=rac{1}{\sqrt{g}}(\sqrt{g}u^i)_{,i}
ight|$$

Laplaciano

$$oxed{
abla^2arphi=rac{1}{\sqrt{g}}(\sqrt{g}\ g^{ij}arphi_{,\,j})_{,i}}$$

Componentes físicas

Si se tienen coordenadas ortogonales (la métrica es diagonal), defino:

$$\hat{e_i} := \frac{\vec{e}_i}{||\vec{e}_i||} = \frac{\vec{e}^i}{||\vec{e}^i||}$$

Con coordenadas ortogonales y componentes físicas, los operadores diferenciales vectoriales quedan:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned}
abla arphi & = rac{1}{h_i}arphi_{,i}\hat{e}_i \end{aligned} \end{aligned} \ egin{aligned}
abla dot ec{u} & = rac{1}{J}igg(rac{J}{h_i}u_iigg)_{,i} \end{aligned} \ egin{aligned}
abla^2arphi & = rac{1}{J}igg(rac{J}{h_i^2}arphi_{,i}igg)_{,i} \end{aligned}$$