Mod de notare: 1 punct fiecare problemă.

Total: 7 puncte (6 + 1 punct bonus). Pentru promovare este necesar un punctaj de minim 3 puncte. Se acordă punctaje parțiale.

TN T	~ ∨	
Nume:	Grupă:	
I . CLIII C.	- 01 apar	

- 1. Considerăm o parolă de 10 caractere ASCII (fiecare reprezentat pe câte 8 biţi). Pentru simplitate considerăm, în mod ipotetic, că toate caracterele ASCII sunt caractere posibile.
 - (a) Câte astfel de parole distincte există?
 - (b) Care este dimensiunea în biţi a parolei?
 - (c) Se utilizează reprezentarea binară a parolei drept cheie de criptare AES-192. Câte caractere trebuie să aibă în acest caz parola?

Solution: (a)
$$(2^8)^{10} = 2^{80}$$
; (b) 80 biţi; (c) $192/8 = 24$ caractere

2. Se consideră $(Enc_k(m), Dec_k(m))$ un sistem de criptare bloc. Se criptează o secvență de blocuri $m_1||m_2||m_3||\dots$ într-o secvență de blocuri $c_1||c_2||c_3||\dots$ astfel:

$$c_i = m_{i-1} \oplus 00 \dots 0 \oplus Enc_k(m_i \oplus c_{i-1}), i \ge 1$$

unde m_0 și c_0 sunt vectori de inițializare publici și fixați.

- (a) Indicați cum se realizează decriptarea.
- (b) Presupunând că un bloc c_i suferă erori de transmisie, care blocuri de text clar sunt impactate?

Solution: (a)
$$m_i = c_{i-1} \oplus Dec_k(m_{i-1} \oplus c_i)$$

- (b) c_i eronat rezultă m_i eronat rezultă m_{i+1} eronat, deci toate blocurile m_j , $j \geq i$ sunt eronate.
- 3. Fie $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ o PRF. Se definește un sistem de criptare (Enc, Dec) cu funcția de criptare $Enc_k(m) = r||(F_k(m) \oplus r)$, unde r este o valoare aleatoare pe n biți. Arătați că sistemul nu este CCA-sigur.

Solution:

Challenge: $m_0 = 0^n$; $m_1 = 1^n$. Răspuns: $r||F_k(m_b) \oplus r$. \mathcal{A} determină r ca primii n biţi, apoi calculează $F_k(m_b)$. \mathcal{A} transmite oracolului de decriptare $r_1||F_k(m_b) \oplus r_1$, cu r_1 aleator pe n biţi şi primeşte m'. $m' = m_0$ sau $m' = m_1$, deci \mathcal{A} determină b cu probabilitate 1.

- 4. Se consideră $Enc_k(m)$ un sistem de criptare bloc sigur. Se definește o funcție hash H astfel:
 - i. m se concatenează cu 0-uri până la un multiplu de lungimea blocului;
 - ii. Se sparge secvenţa obţinută anterior în n blocuri, i.e. $m_0||m_1||...||m_{n-1}$;
 - iii. Se aplică:

```
1: c \leftarrow Enc_{m_0}(m_0)

2: for i = 1 to n-1 do

3: d \leftarrow Enc_{m_0}(m_i)

4: c \leftarrow c \oplus d

5: end for

6: H(m) \leftarrow c
```

Este H rezistentă la coliziuni? Argumentați.

```
Solution: Nu este rezistentă la coliziuni - ex. H(m_0||m_1||m_2) = H(m_0||m_1||m_1) sau H(m_0) = H(m_0||m_1||m_1).
```

5. Fie (Mac, Vrfy) un MAC sigur definit peste (K,M,T) unde $M = \{0,1\}^n$ şi $T = \{0,1\}^{128}$. Este MAC-ul de mai jos sigur? Argumentați răspunsul.

```
Mac'(k, m) = (Mac(k, m), Mac(k, 0^n))

Vrfy'(k, m, (t_1, t_2)) = [Vrfy(k, m, t_1) \text{ and } Vrfy(k, 0^n, t_2)]
```

Solution:

MAC-ul nu este sigur pentru ca un adversar poate cere un tag pentru $m = 1^n$, obţine $Mac(k, 0^n)$ şi deci $(Mac(k, 0^n), Mac(k, 0^n))$ un tag valid pentru $m = 0^n$;

- 6. Alice vrea să comunice cu Bob folosind următoarea schemă în care:
 - G este un grup de ordin prim p și g un generator al lui G.

- Alice alege x, y aleatoare în \mathbb{Z}_p şi un număr $a \in \mathbb{Z}_p$ şi îi trimite lui Bob $(A_0, A_1, A_2) = (g^x, g^y, g^{xy+a}).$
- Bob alege r, s aleatoare în \mathbb{Z}_p şi un număr $b \in \mathbb{Z}_p$ şi îi trimite inapoi lui Alice $(B_1, B_2) = (A_1^r g^s, (A_2/g^b)^r A_0^s).$

Arătați cum poate Alice verifica dacă a = b în urma execuției schemei de mai sus.

Solution:

Avem că $B_1 = g^{yr+s}$ și $B_2 = (g^x)^{yr+s}g^{r(a-b)}$. Alice testează dacă a = b verificând dacă $B_2/B_1^x = 1$.

- 7. Se consideră o schemă de criptare cu cheie publică (Enc, Dec), pk_A şi pk_B cheile publice corespunzătoare lui Alice, respectiv Bob, N_A şi N_B două numere aleatoare unice (nonce) generate de Alice, respectiv Bob. Pentru a se autentifica reciproc, Alice si Bob folosesc următorul protocol:
 - a) Alice alege N_A și îi trimite lui Bob mesajul $Enc_{pk_B}(N_A, "Alice");$
 - b) Bob alege N_B și îi trimite lui Alice mesajul $Enc_{pk_A}(N_A, N_B)$;
 - c) Alice confirmă primirea lui N_B trimițând lui Bob $Enc_{pk_B}(N_B)$;

Cerințe:

- (a) Care dintre valorile N_A , N_B sunt cunoscute de Alice la finalul protocolului? Dar de către Bob?
- (b) Arătați că protocolul este vulnerabil la un atac de tip "Man-in-the-middle".

Solution:

- (a) Alice şi Bob ştiu amândoi N_A şi N_B
- (b) Oscar procedeaza astfel pentru un atac MITM:
- a) Alice alege N_A si ii trimite lui Oscar mesajul $Enc_{pk_I}(N_A, "Alice");$
- b) Oscar trimite mesajul lui Bob $Enc_{pk_B}(N_A, "Alice");$
- c) Bob alege N_B si trimite Alice mesajul $Enc_{pk_A}(N_A, N_B)$;
- d) Oscar preia mesajul si il transmite neschimbat lui Alice $Enc_{pk_A}(N_A, N_B)$;
- e) Alice decripteaza mesajul, afla N_B si ii trimite confirmarea lui Oscar $Enc_{pk_I}(N_B)$.
- f) Oscar afla N_B , recripteaza si ii trimite lui Bob mesajul $Enc_{pk_B}(N_B)$.