Turtlebot 3 Autonomous Driving

Falezza Fabio VR409987

May 30, 2018

Verona University

Introduction

Autonomous Driving

"Autonomous driving" is a concept that group different tasks. These could be:

- Traffic light detection
- Lane tracking
- Parking
- Level crossing
- Going through a tunnel

Autonomous Driving II

This presentation will be focused on *Lane tracking* task. It will be showed how to setup a simulation environment in gazebo with different tracks to allow the turtlebot to perform the autonomous driving.

Installation

Prerequisites

In order to perform autonomous driving, it will be used the turtlebot3_autorace_simulation ROS package. It is supposed you have Ubuntu 16.04 with ROS Kinetic installed on your machine.

Install Dependency Packages

Proceed to install the Turtlebot dependency with the following command:

\$ sudo apt-get install ros-kinetic-joy ros-kineticteleop-twist-joy ros-kinetic-teleop-twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbd-launch roskinetic-depthimage-to-laserscan ros-kinetic-rosserial -arduino ros-kinetic-rosserial-python ros-kineticrosserial-server ros-kinetic-rosserial-client roskinetic-rosserial-msgs ros-kinetic-amcl ros-kineticmap-server ros-kinetic-move-base ros-kinetic-urdf ros -kinetic-xacro ros-kinetic-compressed-image-transport ros-kinetic-rqt-image-view ros-kinetic-gmapping roskinetic-navigation ros-kinetic-interactive-markers

Create Your Turtlebot ROS Workspace

Now we will create a ROS workspace to work in it. If you have already a ROS workspace you can use it and skip the commands below.

```
$ mkdir -p $HOME/turtlebot_ws/src
$ cd $HOME/turtlebot_ws
$ catkin_make
$ source ./devel/setup.bash
```

It is suggested to add the source to the file setup.bash to your .bashrc file.

Clone Turtlebot Packages

Now we will clone the Turtlebot packages and build them all.

```
$ git clone https://github.com/ROBOTIS-GIT/
   turtlebot3_msgs.git
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3.
   git
$ git clone https://github.com/ROBOTIS-GIT/
   turtlebot3_simulations.git
$ git clone https://github.com/ROBOTIS-GIT/
   turtlebot3_autorace.git
$ git clone https://github.com/falfab/
   turtlebot3_autorace_simulation.git
$ cd $HOME/turtlebot_ws && catkin_make
```

Folders Explanation

Move into the turtlebot3_autorace_simulation repository. You will notice different subfolders:

- world/ contains the gazebo tracks models which will be used in the autonomous driving simulation
- urdf/ contains the *Turtlebot3 Burger Pi* robot description
- launch/ contains the ROS launchfile used to launch simulation environment and autonomous driving
- config/ contains the yaml configuration file used to calibrate the camera compensation, the camera projection and lane detection

Install Environment Models

In order to run gazebo with the simulation environment, you need to put the *world description* inside the gazebo model folder. Execute the following steps to do it:

```
$ roscd turtlebot3_autorace_simulation
$ cp -r ./world/turtlebot3_autorace_track* $HOME/.gazebo
    /models
```

If you do not have the .gazebo folder is due you never opened gazebo. Open a terminal and run this command:

```
$ gazebo
```

It will setup his environment and create the folders you need.

Install Robot Model

In order to use the *Turtlebot3 Burger Pi*, you need to move the robot description inside the available robot models. Do the following steps:

```
$ cp ./urdf/turtlebot3_burger_pi* $HOME/turtlebot_ws/src
   /turtlebot3/turtlebot3_description/urdf
```

Remember to set it as the robot description you want to use:

```
$ export TURTLEBOT3_MODEL=burger_pi
```

It is suggested to add the last command to your .bashrc file.

How It Works

How It Detect Lane

The autonomous driving uses three ROS nodes to perform the task.

- image_projection: it project the camera input in order to remove perspective.
- image_compensation: it compensate the projected image. It
 is used but its effect is null because is not needed
 compensation in simulation environment.
- detect_lane: it detect the lane. It detect a yellow and a white lane in the projected and compensated image.
- control_lane: it receive an input from detect_lane and elaborate a cmd_vel to move the robot in the right direction.

Camera Input

Figure 1: Image raw input

Camera Projection

Figure 2: The red box show the area will be projected

Figure 3: Projected image

Lane Detection

Figure 4: Lane Detection

Graph Representation

Below is shown how the nodes communicates:

Launch The Simulation

Launch Simulation Environment

In order to launch the simulation environment a ROS launch file is provided. Do the following command:

```
$ roslaunch turtlebot3_autorace_simulation gazebo.launch
```

This launch file could take four input arguments:

- x_pos: set the x start coordinate of the robot
- y_pos: set the y start coordinate of the robot
- z_pos: set the z start coordinate of the robot
- track: set the track to import in the environment

By default it set x = 0, y = 0, z = 0 and set the track as track1

Launch Simulation Environment II

Here is an example on how to launch the simulation with a different track:

Launch Autodrive Nodes

In order to launch the Autodrive nodes a ROS launch file is provided. Do the following command:

```
$ roslaunch turtlebot3_autorace_simulation autorace.
launch
```

The calibration mode could be enabled by running the following command:

```
$ roslaunch turtlebot3_autorace_simulation autorace.
launch calibration_mode:=calibration
```