M24 Vložené systémy

#technicke_vybaveni_pocitacu

- vložené systémy
 - jakékoliv zařízení ovládané počítačem
 - změna funkce zařízení se provede změnou programu (HEX) → ISP (in system programming)
 - proč je vložený systém výhodné řešení? rychlejší návrh a levnější realizace
 - nevýhoda je omezená rychlost procesoru
 - jednoúčelový počítač kde je řídicí systém zcela zabudován do ovládaného zařízení
 - na rozdíl od univerzálních počítačů jsou vložené systémy určené pro předem definované činnosti
- analýza
 - rozkládání na funkční části (každá část se může dál rozkládat)
 - rozbor dané události nebo jevu z hlediska příčin a důsledků jejich jednotlivých prvků a taktéž jejich vstupů a výstupů
 - postup od abstraktního ke konkrétnímu
 - důvod analýzy
 - lepší porozumění složitých systémů, jevů nebo problémů
 - identifikování příčiny problémů a hledání efektivních řešení
 - zlepšování systémů a procesů
- syntéza
 - proces spojování jednotlivých části, prvků nebo myšlenek dohromady, za účelem vytvořit něco nového
 - jak simulovat zadání zařízení z částí, které už "mám" → prototyp
 - · optimalizace prototypu
 - integrace → snížení ceny
 - velikost
 - možnosti dalšího vývoje v dalších projektech
 - proč je syntéza důležitá?
 - · umožňuje vytvářet nové a inovativní produkty
 - spojováním různých řešení lze nalézt optimální řešení komplexních problémů
 - umožňuje vytvářet nové teorie a modely

Upgrade vloženého systému

- při nesprávném provedení může dojít ke ztrátě dat nebo poškození zařízení
- upgrade často závisí na podpoře výrobce
- některé upgrade mohou vyžadovat speciální znalosti a nástroje
- před provedením jakéhokoli upgrade si pečlivě prostudovat dokumentaci výrobce; pokud si nejsem jist, obrátit se na odborníka
- někdy lze upgrade otestovat v kontrolovaném prostředí
- · postup upgradu softwaru
 - 1. příprava
 - zálohování dat
 - zjištění informací o zařízení potřebujeme správný balíček pro specifický model zařízení
 - nástroje a vybavení počítač, USB disk, internetové připojení
 - 2. stáhnutí balíčku
 - stáhnutí z oficiálních zdrojů
 - kontrola za pomocí kontrolního součtu
 - 3. instalace balíčku postup podle manuálu
 - 4. ověření
 - funkčnosti zda zařízení funguje správně a všechny nové funkce jsou dostupné
 - bezpečnosti základní bezpečnostní sken

- · kdy upgradovat
 - pokud potřebuji nové funkce, které nejsou v současné verzi dostupné, nebo chci využívat nové technologie a standardy
 - pokud zařízení trpí častými poruchami nebo nestabilitou
 - pokud chci zlepšit zabezpečení zařízení
- upgrade hardwaru bývá obtížný, někdy i nemožný protože vše se nachází na desce plošných obvodů absolutně přečíst datasheet

Modularita vloženého systému

- rozdělení systému na menší funkční části moduly
- moduly mají jasně definované rozhraní a provádí specifické funkce
- proč rozdělovat vložené systémy do modulů
 - rozdělení systému na moduly zvyšuje srozumitelnost a usnadňuje jak návrh, tak i údržbu
 - dobře navržené moduly mohou být použity v různých projektech, což šetří čas a zdroje
 - jednotlivé moduly lze snadněji testovat a ověřovat, což zvyšuje kvalitu kódu
 - různé týmy mohou pracovat na různých modulech současně, což urychluje vývoj
 - modulární systémy se snadněji přizpůsobují změnám požadavků
- typy
 - hardware
 - rozdělení systému podle funkčních celků (např. vstup, zpracování, výstup)
 - rozdělení systému podle fyzických komponent (např. senzory, aktuátory, procesor)
 - software rozdělení softwaru na samostatné funkce nebo knihovny
- příklady modularity
 - podle senzorů každý senzor (např. teplotní) může být implementován jako samostatný modul
 - podle aktuátoru
 - podle komunikačního protokolu
- výhody
 - zrychlení vývoje paralelní vývoj modulů
 - snížení nákladů moduly můžu využít v jiných projektech
 - zvýšení spolehlivosti
 - flexibilita
- návrh
 - jasně definovat rozhraní jak budou moduly mezi sebou komunikovat
 - minimalizovat závislost na jiné moduly

Syntéza vloženého systému

- fáze syntézy
 - 1. analýza požadavků
 - jasné vymezení toho, co má systém dělat
 - určení omezení, jako je výkon, spotřeba energie, velikost, cena atd.
 - určení, jaké informace systém přijímá a jaké produkuje
 - definování požadavků na odolnost vůči chybám a poruchám
 - 2. návrh architektury
 - výběr vhodného procesoru, pamětí, senzorů, aktuátorů...
 - rozhodnutí o použitém operačním systému (pokud je použit), programovacím jazyku a struktuře softwaru
 - stanovení způsobů komunikace mezi jednotlivými komponentami systému
 - 3. implementace
 - programování
 - nastavení hardwarových komponent podle požadavků systému
 - spojení všech komponent do funkčního celku

4. testování

- testování jednotlivých modulů softwaru
- testování interakce mezi jednotlivými moduly
- testování celého systému za různých podmínek

5. optimalizace

- zvýšení výkonu
- snížení spotřeby energie
- implementace mechanismů pro detekci a opravu chyb

6. nasazení

- umístění do cílového prostředí
- finální konfigurace
- nástroje pro syntézu
 - IDE pro psaní kódu, ladění a testování
 - nástroje pro simulaci chování systému před jeho fyzickou realizací
 - nástroje pro emulaci hardwarových komponent
- na co dávat pozor při syntéze vloženého systému
 - vestavěné systémy mají často omezenou výpočetní kapacitu, paměť a energii
 - mnohé vestavěné systémy musí reagovat na události v reálném čase
 - vestavěné systémy musí být velmi spolehlivé, protože jejich selhání může mít vážné následky
 - některé vestavěné systémy vyžadují vysokou úroveň zabezpečení

Části vloženého systému

- základní části
 - mikroprocesor/mikrokontrolér
 - načítá a vykonává instrukce programu
 - zpracovává data ze senzorů
 - řídí aktuátory
 - · komunikuje s ostatními zařízeními
 - paměť
 - ukládá instrukce programu, které mikroprocesor vykonává a data, se kterými mikroprocesor pracuje
 - ROM permanentní paměť, obsahuje základní program a konfiguraci
 - RAM dočasná paměť, slouží pro ukládání dat během běhu programu
 - I/O zařízení
 - převádějí fyzikální veličiny na elektrické signály a naopak
 - vyměňují data s jinými systémy
 - senzory měří fyzikální veličiny
 - aktuátory ovládají fyzikální procesy
 - komunikační rozhraní komunikace s jinými zařízeními
 - napájecí zdroj
 - · zajišťuje stabilní napájení systému
 - baterie, síťový adaptér
 - obvodová deska
 - mechanicky upevňuje komponenty
 - vytváří elektrické spoje mezi jednotlivými komponentami
 - spojuje všechny komponenty systému a zajišťuje jejich vzájemnou komunikaci
- doplňkové části
 - RTC baterie napájí RTC obvod uchovávající přesný čas a datum, i když je systém vypnutý
 - Watchdog timer sleduje správné fungování systému a v případě poruchy (zacyklení) provede restart
 - krystalový oscilátor generuje přesný časový signál pro mikroprocesor