Pouria Mistani

Computational Scientist

Work Authorization: Permanent Resident

+1 951 386 9775

http://www.pouriamistani.com

in My LinkedIn Profile

p.a.mistani@gmail.com

Hard Skills -

Multivariate Calculus, Statistics, Linear Algebra, Stochastic **Processes**

Machine Learning, Scientific Computing

Data Intuition Extraction

Python, C/C++, HTML

Tensorflow, Keras, Scikit-Learn, Scipy, Pandas, Boost, GSL

🥃 SQL, Apache Spark

Matplotlib, ParaView, Seaborn

A MPI, PETSc, p4est

Linux, Mac OS, Windows

Soft Skills -

Multi-disciplinary Fast-paced Critical Thinking ? Problem Solving Team Player

6 years experience in several scientific collaborations

Communication

10 years of teaching experience

Certificates -

Fundamentals of Scalable Data Science

Applied AI with Deep Learning

Advanced Machine Learning and Signal Processing

Work Experience

Merck Postdoctoral Research Fellow 2020 - now Multiscale modeling of biotherapeutics and vaccines. Developing next-generation computational and statistical tools to predict and mitigate physical instability challenges in protein-based formula-**UCSB** Research/Teaching Assistant Developed two parallel computing softwares to solve nonlinear PDEs. Also I developed a stochastic model based on data. **UCR** Research/Teaching Assistant 2013 - 2016 Analyzed terabytes of data produced by the illustris simulations of the Universe, and developed a theory for assembly of dwarf galaxies. Harvard **Visiting Scholar** 2014 - 2014 University Developed several Python routines to analyze illustris datasets. **MSRT Scientific Software Developer** 2012 - 2013

Ministry of Science, Research and Technology, Iran

Education

2016 – 2020 PhD in Mechanical Engineering University of California, Santa Barbara Focus: Computational Science and Engineering 2013 - 2016**MS Physics** University of California, Riverside Focus: Computational Astrophysics 2009 – 2013 **BS Physics** Sharif University of Technology Focus: Astronomy **BS** Aerospace Engineering 2008 – 2013 Sharif University of Technology Focus: Astronautics

Projects

Inverse PDEs

(Machine Learning) 2019-now </> Python, Tensorflow, Keras, Linux

We developed the "Blended Inverse-PDE Networks" (BIPDE-Nets) that combine traditional methods for numerical computations of PDEs with modern deep learning architectures to discover hidden fields in data. BIPDE-Nets seamlessly incorporate domainknowledge about physics of the problem.

Electroporation </> C++, Petsc, Python, Scikit-Learn, Scipy, Tensorflow, Keras, (Biophysics) Visualization, Linux

2016-now

We numerically solved partial differential equations with nonlinear

boundary conditions on tens of thousands of interfaces with arbitrary geometries. We used a finite volume discretization on adaptive interface-fitted Voronoi grids. I implemented more than 5,000 lines of parallel C++ code, tested, then ran it on Stampede2 supercomputer on 2,048 processors. I used ParaView to visualize the results, and I extensively analyzed the datasets in Python. The product is a reduced order model that predicts observations with minimal computations.

Epitaxy (Materials) 2016-2019 </> C++, Petsc, Boost, p4est, Visualization, Linux

We developed a novel approach for simulating epitaxial growth in parallel. In this approach we made use of a forest of quadtree adaptove grids using p4est library in a parallel environment. This work extended previous studies by combining mesh adaptivity and multi-core parallelism that enabled simulations of mound formation in orders of magnitude larger domains. We used C++ using parallel framework Petsc as an interface to BLAS and LAPACK linear algebra libraries, as well as Boost for fast mathematical operations.

Dwarf Galaxies

2014-2016

Python, C, MPI, GSL, matplotlib, Scipy, Scikit-Learn, Pandas, Linux

(Astrophysics) I analyzed $250\mathrm{TB}$ of correlated datasets generated by the Illustris cosmological and hydrodynamical simulation suite to study the assembly of dwarf galaxies. I developed a semi-analytic model for the formation and stripping of globular clusters that support our findings.

Pouria Mistani

Computational Scientist

Work Authorization: Permanent Resident

About Me

I build multiscale mathematical models from big data. I develop parallel scientific computing softwares (C++ multi-core) to generate and analyze large datasets, using adaptive mesh refinement and in parallel environments.

I have extensive experience in developing data analysis pipelines and visualizations using Python, which I leverage to develop physics-informed predictive models.

Analytics

Programming Skills

Memberships -

Society for Industrial and Applied Mathematics, USA

National Elite Foundation, Iran

Awards

2020	Graduate Division Dissertation Fellowship Award University of California, Santa Barbara
2019	Travel award for SIAM conference on computational science and engineering
2016	Spokane, Washington, USA Awarded 740,082 SUs computing allocation on Stampede supercomputer
2015	XSEDE TACC FIELDS fellowship for big data and visualization
2015	NASA MIRO program Michael Devirian award for outstanding research by a 2nd year
2015	graduate student University of California, Riverside
2013	Winner of dean's distinguished fellowship award University of California, Riverside
2007	4 year "National Elite Foundation Undergraduate Fellowship Award"
2007	Ministry of Education, Iran Silver medal in the 3rd national olympiad in astronomy Ministry of Education, Iran

Publications

Publications		
2020	A fractional stochastic theory for interfacial polarization of cell aggregates Pouria Mistani, S Pakravan, F Gibou	
2020	arXiv - under review Solving inverse-PDE problems with physics-aware neural	
2020	networks S Pakravan, Pouria Mistani, MA Calvo, F Gibou	
2019	arXiv - under review A parallel Voronoi-based approach for meso-scale simulations of cell aggregate electropermeabilization	
	Pouria Mistani, A Guittet, C Poignard, F Gibou Journal of Computational Physics	
2019	Towards a tensor network representation of complex systems Pouria Mistani, S Pakravan, F Gibou Springer International Publishing	
2019	Tensor network renormalization as an ultra-calculus for complex system dynamics Pouria Mistani, S Pakravan, F Gibou Springer International Publishing	
2018	The island dynamics model on parallel quadtree grids Pouria Mistani, D Bochlov, A Guittet, J Schneider, D Margetis, C Ratsch, F Gibou	
2016	On the assembly of dwarf galaxies in clusters and their efficient formation of globular clusters	
	Pouria Mistani, L Sales, A Pillepich, R Sanchez-Janssen, M Vogels- berger, D Nelson, V Rogriguez-Gomez, P Torrey, L Hernquist Monthly Notices of Royal Astronomical Society	
Teaching		

Teaching

ME	Engineering Dynamics (main instructor)	UC Santa Barbara
ME	Statics	UC Santa Barbara
ME	Fluid Mechanics I, II (twice)	UC Santa Barbara
ME	Engineering Vibrations (twice)	UC Santa Barbara
PHYS	Intermediate Mechanics	UC Santa Barbara
PHYS	General Physics Discussions (sections 2A	(A, 2B, 2C) UC Riverside
PHYS	Physics General Labs (sections 2LA, 2LC,	2C) UC Riverside
AE	Orbital Mechanics (5 semesters)	Sharif University of Technology
AE	Aircraft Design II	Sharif University of Technology