2021년도 ICT 이노베이션스퀘어 확산 사업

[인공지능:기초부터 실전까지]

▶ 11차수 ~ 13차수 강의 교안

※ 본 교안은 강의 수강 용도로만 사용 가능합니다. 상업적 이용을 일절 금함.

12

데이터 시각화

- 데이터를 효과적으로 시각화하기 위한 파이썬 라이브러리
- MATLAB(과학 및 공학 연산을 위한 소프트웨어)의 시각화 기능을 모델링해서 만들어짐
- 몇 줄의 코드로 간단하게 그래프 그리기 가능
 - 2차원 선 그래프(plot), 산점도(scatter plot), 막대 그래프(bar chart), 히스토 그램(histogram), 파이 그래프(pie chart) 등
- 아나콘다 배포판에 포함돼 있음
- matplotlib 홈페이지: http://matplotlib.org/

• matplotlib 불러오기

```
In: import matplotlib.pyplot as plt
%matplotlib qt
%matplotlib inline
```

선 그래프기본적인 선 그래프 그리기

```
plt.plot([x,] y [,fmt])

plt.plot(y)

plt.plot(y, fmt)

plt.plot(x, y)

plt.plot(x, y, fmt)
```

- 기본적인 선 그래프 그리기

In: data1 = [10, 14, 19, 20, 25]

In: plt.plot(data1)

Out: [<matplotlib.lines.Line2D at 0x23310f30588>]

In: plt.plot(data1)
plt.show()

- 기본적인 선 그래프 그리기

In: %matplotlib qt

In: plt.plot(data1)

Out: [<matplotlib.lines.Line2D at 0x23310f38be0>]

In: %matplotlib inline

- 기본적인 선 그래프 그리기

In: plt.plot(x,y)
plt.show()

- 여러 그래프 그리기

```
plt.plot([x1,] y1 [, fmt1])
plt.plot([x2,]y2[,fmt2])
plt.plot([xn,] yn [, fmtn])
plt.plot(x1, y1 [, fmt1], x2, y2 [, fmt2], ..., xn, yn [, fmtn])
plt.plot(x1, y1, x2, y2, \dots, xn, yn)
plt.plot(x1, y1, fmt1, x2, y2, fmt2, \dots, xn, yn, fmtn)
plt.plot(x1, y1, x2, y2, fmt2, \dots, xn, yn)
plt.plot(x1, v1, fmt1, x2, v2, \dots, xn, vn)
In: import numpy as np
  x = np.arange(-4.5, 5, 0.5)
  v1 = 2*x**2
  y2 = 5*x + 30
  y3 = 4*x**2 + 10
```

- 여러 그래프 그리기

```
In: import matplotlib.pyplot as plt
plt.plot(x, y1)
plt.plot(x, y2)
plt.plot(x, y3)
plt.show()
```


In: plt.plot(x, y1, x, y2, x, y3) plt.show()

- 여러 그래프 그리기
 - 새로운 그래프 창에 그래프 그리기

```
plt.figure()
```

```
ln: plt.plot(x, y1) # 처음 그리기 함수를 수행하면 그래프 창이 자동으로 생성됨
plt.figure() # 새로운 그래프 창을 생성함
plt.plot(x, y2) # 새롭게 생성된 그래프 창에 그래프를 그림
plt.show()
```


- 여러 그래프 그리기
 - 그래프 창의 번호를 명시적으로 지정한 후 해당 창에 그래프 그리기

plt.figure(n)

```
In: import numpy as np
 # 데이터 생성
 x = np.arange(-5, 5, 0.1)
 v1 = x**2 -2
 v2 = 20*np.cos(x)**2 # NumPv에서 cos()는 np.cos()으로 입력
 plt.figure(1) # 1번 그래프 창을 생성함
 plt.plot(x, y1) # 지정된 그래프 창에 그래프를 그림
 plt.figure(2) # 2번 그래프 창을 생성함
 plt.plot(x, v2) # 지정된 그래프 창에 그래프를 그림
 plt.figure(1) # 이미 생성된 1번 그래프 창을 지정함
 plt.plot(x, y2) # 지정된 그래프 창에 그래프를 그림
 plt.figure(2) # 이미 생성된 2번 그래프 창을 지정함
 plt.clf() # 2번 그래프 창에 그려진 모든 그래프를 지움
 plt.plot(x, y1) # 지정된 그래프 창에 그래프를 그림
 plt.show()
```

- 여러 그래프 그리기
 - 그래프 창의 번호를 명시적으로 지정한 후 해당 창에 그래프 그리기

- 하위 그래프 영역으로 나눈 후 각 영역에 그래프 그리기

plt.subplot(m, n, p)

subplot(2, 1, p) 그래프

subplot(3, 2, p) 그래프

subplot(2, 2, p) 그래프

- 하위 그래프 영역으로 나눈 후 각 영역에 그래프 그리기

```
plt.subplot(m, n, p)
```

```
In: import numpy as np
  # 데이터 생성
  x = np.arange(0, 10, 0.1)
  y1 = 0.3*(x-5)**2 + 1
  y2 = -1.5*x + 3
  y3 = np.sin(x)**2 # NumPy에서 sin()은 np.sin()으로 입력
  y4 = 10*np.exp(-x) + 1 # NumPy에서 exp()는 np.exp()로 입력
  # 2 x 2 행렬로 이뤄진 하위 그래프에서 p에 따라 위치를 지정
  plt.subplot(2,2,1) # p는 1
  plt.plot(x,y1)
                                                           7.5
  plt.subplot(2,2,2) # p는 2
                                                           5.0
  plt.plot(x,y2)
                                                                               -5
                                                           2.5
                                                                               -10
  plt.subplot(2,2,3) # p는 3
                                                                     5.0 7.5 10.0
                                                                                 0.0
                                                                                     2.5
                                                                                         5.0 7.5 10.0
                                                                 2.5
                                                             0.0
                                                           1.0
  plt.plot(x,y3)
                                                           0.5
  plt.subplot(2,2,4) # p는 4
  plt.plot(x,y4)
                                                           0.0
                                                                                 0.0 2.5 5.0 7.5 10.0
                                                                        7.5 10.0
  plt.show()
```

- 그래프의 출력 범위 지정하기

```
plt.xlim(xmin, xmax) # x축의 좌표 범위 지정(xmin ~ xmax) plt.ylim(ymin, ymax) # y축의 좌표 범위 지정(xmin ~ xmax)
```

```
[xmin, xmax] = plt.xlim() # x축의 좌표 범위 가져오기 [ymin, ymax] = plt.ylim() # y축의 좌표 범위 가져오기
```

```
In: import numpy as np
```

```
x = np.linspace(-4, 4,100) # [-4, 4] 범위에서 100개의 값 생성
y1 = x**3
y2 = 10*x**2 - 2
plt.plot(x, y1, x, y2)
plt.show()
```


- 그래프의 출력 범위 지정하기

```
In: plt.plot(x, y1, x, y2)
plt.xlim(-1, 1)
plt.ylim(-3, 3)
plt.show()
```


• 그래프 꾸미기 - 출력 형식 지정

fmt = '[color][line_style][marker]'

• 컬러 지정을 위한 약어

컬러 약어	컬러
b	파란색(blue)
g	녹색(green)
r	빨간색(red)
С	청녹색(cyan)
m	자홍색(magenta)
у	노란색(yellow)
k	검은색(black)
W	흰색(white)

• 선의 스타일 지정을 위한 약어

선 스타일 약어	선 스타일
-	실선(solid line)
	파선(dashed line)
:	점선 (dotted line)
	파선 점선 혼합선(dash- dot line)

- 출력 형식 지정
 - 마커 지정을 위한 약어

마커 약어	마커
0	원 모양 ●
^, v, <, >	삼각형 위쪽(▲), 아래쪽(▼), 왼쪽(◀), 오른쪽 (▶) 방향
S	사각형(square) ■
p	오각형(pentagon)
h, H	육각형(hexagon)1, 육각형2
*	별 모양(star) ★
+	더하기(plus) +
x, X	×, 채워진 ×
D, d	다이아몬드(diamond, ◆), 얇은 다이아몬드

- 출력 형식 지정

```
In: import numpy as np
    x = np.arange(0, 5, 1)
    y1 = x
    y2 = x + 1
    y3 = x + 2
    y4 = x + 3
```

```
In: plt.plot(x, y1, x, y2, x, y3, x, y4) plt.show()
```


- 출력 형식 지정

In: plt.plot(x, y1, 'm', x, y2, 'y', x, y3, 'k', x, y4, 'c') plt.show()

In: plt.plot(x, y1, '-', x, y2, '--', x, y3, ':', x, y4, '-.') plt.show()

- 출력 형식 지정

In: plt.plot(x, y1, 'o', x, y2, '^',x, y3, 's', x, y4, 'd') plt.show()

In: plt.plot(x, y1, '>--r', x, y2, 's-g', x, y3, 'd:b', x, y4, '-.Xc') plt.show()


```
In: import numpy as np

x = np.arange(-4.5, 5, 0.5)
y = 2*x**3

plt.plot(x,y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
```



```
In: plt.plot(x,y)

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Graph title')

plt.show()
```



```
In: plt.plot(x,y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Graph title')
plt.grid(True) # 'plt.grid()'도 가능
```



```
In: import numpy as np
    x = np.arange(0, 5, 1)
    y1 = x
    y2 = x + 1
    y3 = x + 2
    y4 = x + 3

plt.plot(x, y1, '>--r', x, y2, 's-g', x, y3, 'd:b', x, y4, '-.Xc')
    plt.legend(['data1', 'data2', 'data3', 'data4'])
    plt.show()
```


- 라벨, 제목, 격자, 범례, 문자열 표시
 - legend()에서 loc 옵션으로 범례의 위치 지정

범례 위치	위치 문자열	위치 코드
최적 위치 자동 선정	best	0
상단 우측	upper right	1
상단 좌측	upper left	2
하단 좌측	lower left	3
하단 우측	lower right	4
우측	right	5
중앙 좌측	center left	6
중앙 우측	center right	7
하단 중앙	lower center	8
상단 중앙	upper center	9
중앙	center	10

```
In: plt.plot(x, y1, '>--r', x, y2, 's-g', x, y3, 'd:b', x, y4, '-.Xc') plt.legend(['data1', 'data2', 'data3', 'data4'], loc = 'lower right') plt.show()
```



```
In: plt.plot(x, y1, '>--r', x, y2, 's-g', x, y3, 'd:b', x, y4, '-.Xc')

plt.legend(['data1', 'data2', 'data3', 'data4'], loc = 4)

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Graph title')

plt.grid(True)
```


- 라벨, 제목, 격자, 범례, 문자열 표시
 - 한글 표시

import matplotlib

```
matplotlib.rcParams['font.family']
matplotlib.rcParams['font.family'] = '폰트 이름'
matplotlib.rcParams['axes.unicode_minus'] = False
import matplotlib.font_manager
font_list = matplotlib.font_manager.get_fontconfig_fonts()
font_names = [matplotlib.font_manager.FontProperties(fname=fname).get_name() for fname in
font list]
f = open("C:\mvPvCode\mv font list.txt". 'w')
for font_name in font_names:
  f.write(font name + "₩n")
f.close()
```

```
In: import matplotlib matplotlib.rcParams['font.family'] = 'Malgun Gothic' # '맑은 고딕'으로 설정 matplotlib.rcParams['axes.unicode_minus'] = False
```

- 라벨, 제목, 격자, 범례, 문자열 표시
 - 한글 표시

```
In: plt.plot(x, y1, '>--r', x, y2, 's-g', x, y3, 'd:b', x, y4, '-.Xc')
plt.legend(['데이터1', '데이터2', '데이터3', '데이터4'], loc = 'best')
plt.xlabel('X 축')
plt.ylabel('Y 축')
plt.title('그래프 제목')
plt.grid(True)
```


- 라벨, 제목, 격자, 범례, 문자열 표시
 - 그래프 창에 좌표(x, y)를 지정해 문자열(str)을 표시

plt.text(x, y, str)

```
In: plt.plot(x, y1, '>--r', x, y2, 's-g', x, y3, 'd:b', x, y4, '-.Xc')
plt.text(0, 6, "문자열 출력 1")
plt.text(0, 5, "문자열 출력 2")
plt.text(3, 1, "문자열 출력 3")
plt.text(3, 0, "문자열 출력 4")
plt.show()
```


- 산점도

```
plt.scatter(x, y [,s=size_n, c=colors, marker='marker_string', alpha=alpha_f])
```

```
In: import matplotlib.pyplot as plt
height = [165, 177, 160, 180, 185, 155, 172] # 키 데이터
weight = [62, 67, 55, 74, 90, 43, 64] # 몸무게 데이터
plt.scatter(height, weight)
plt.xlabel('Height(m)')
plt.ylabel('Weight(Kg)')
plt.title('Height & Weight')
plt.grid(True)
```


- 산점도

In: plt.scatter(height, weight, s=500, c='r') # 마커 크기는 500, 컬러는 붉은색(red) plt.show()

In: size = 100 * np.arange(1,8) # 데이터별로 마커의 크기 지정 colors = ['r', 'g', 'b', 'c', 'm', 'k', 'y'] # 데이터별로 마커의 컬러 지정 plt.scatter(height, weight, s=size, c=colors) plt.show()

- 산점도

plt.show()

```
In: import numpy as np
  city = ['서울', '인천', '대전', '대구', '울산', '부산', '광주']
  # 위도(latitude)와 경도(longitude)
  lat = [37.56, 37.45, 36.35, 35.87, 35.53, 35.18, 35.16]
  lon = [126.97, 126.70, 127.38, 128.60, 129.31, 129.07, 126.85]
  # 인구 밀도(명/km^2): 2017년 통계청 자료
  pop_den = [16154, 2751, 2839, 2790, 1099, 4454, 2995]
  size = np.array(pop den) * 0.2 # 마커의 크기 지정
  colors = ['r', 'g', 'b', 'c', 'm', 'k', 'y'] # 마커의 컬러 지정
                                                                               지역별 인구 밀도(2017)
  plt.scatter(lon, lat, s=size, c=colors, alpha=0.5)
  plt.xlabel('경도(longitude)')
  plt.ylabel('위도(latitude)')
                                                                   37.0
  plt.title('지역별 인구 밀도(2017)')
                                                                 의도(latitude)
9.92
0.98
  for x, y, name in zip(lon, lat, city):
     plt.text(x, y, name) # 위도 경도에 맞게 도시 이름 출력
                                                                   35.5
```

127.5

128.0 경도(longitude) 128.5

- 막대 그래프

plt.bar(x, height [,width=width_f, color=colors, tick_label=tick_labels, align='center'(기본) 혹은 'edge', label=labels])

• 운동 시작 전과 한 달 후의 윗몸 일으키기 횟수

회원 ID	운동 시작 전	운동 한 달후
m_01	27	30
m_02	35	38
m_03	40	42
m_04	33	37

```
In: member_IDs = ['m_01', 'm_02', 'm_03', 'm_04'] # 회원 ID before_ex = [27, 35, 40, 33] # 운동 시작 전 after_ex = [30, 38, 42, 37] # 운동 한 달 후
```

```
In: import matplotlib.pyplot as plt import numpy as np n_data = len(member_IDs) # 회원이 네 명이므로 전체 데이터 수는 4 index = np.arange(n_data) # NumPy를 이용해 배열 생성 (0, 1, 2, 3) plt.bar(index, before_ex) # bar(x,y)에서 x=index, height=before_ex 로 지정 plt.show()
```


In: plt.bar(index, before_ex, tick_label = member_IDs)
 plt.show()

- 막대 그래프

```
In: colors=['r', 'g', 'b', 'm']
  plt.bar(index, before_ex, color = colors, tick_label = member_IDs)
  plt.show()
```


In: plt.bar(index, before_ex, tick_label = member_IDs, width = 0.6)
 plt.show()

- 막대 그래프

```
In: colors=['r', 'g', 'b', 'm']
  plt.barh(index, before_ex, color = colors, tick_label = member_IDs)
  plt.show()
```


- 막대 그래프

```
In: barWidth = 0.4
plt.bar(index, before_ex, color='c', align='edge', width = barWidth, label='before')
plt.bar(index + barWidth, after_ex , color='m', align='edge', width = barWidth, label='after')
plt.xticks(index + barWidth, member_IDs)
plt.legend()
plt.xlabel('회원 ID')
plt.ylabel('회원 ID')
plt.ylabel('윗몸일으키기 횟수')
plt.title('운동 시작 전과 후의 근지구력(복근) 변화 비교')
plt.show()
```


- 히스토그램

```
plt.hist(x, [,bins = bins_n 혹은 'auto'])
```

```
In: import matplotlib.pyplot as plt
    math = [76, 82, 84, 83, 90, 86, 85, 92, 72, 71, 100, 87, 81, 76, 94, 78, 81, 60, 79, 69, 74,
    87, 82, 68, 79]
    plt.hist(math)
Out: (array([1., 0., 3., 2., 5., 5., 5., 1., 2., 1.]),
        array([ 60., 64., 68., 72., 76., 80., 84., 88., 92., 96., 100.]),
        <a href="mailto:align: align: content of the content
```


- 히스토그램

```
In: plt.hist(math, bins= 8)
   plt.show()
```



```
In: plt.hist(math, bins= 8)
plt.xlabel('시험 점수')
plt.ylabel('도수(frequency)')
plt.title('수학 시험의 히스토그램')
plt.grid()
plt.show()
```


- 파이 그래프

plt.pie(x, [,labels = label_seq, autopct='비율 표시 형식(ex: %0.1f)', shadow = False(기본) 혹은 True, explode = explode_seq, counterclock = True(기본) 혹은 False, startangle = 각도 (기본은 0)])

plt.figure(figsize = (w,h))

In: fruit = ['사과', '바나나', '딸기', '오렌지', '포도'] result = [7, 6, 3, 2, 2]

In: import matplotlib.pyplot as plt
 plt.pie(result)
 plt.show()

- 파이 그래프

```
In: plt.figure(figsize=(5,5))
  plt.pie(result)
  plt.show()
```


In: plt.figure(figsize=(5,5))
 plt.pie(result, labels= fruit, autopct='%.1f%%')
 plt.show()

- 파이 그래프

```
In: plt.figure(figsize=(5,5))
plt.pie(result, labels= fruit, autopct='%.1f%%', startangle=90, counterclock = False)
plt.show()
```


• 그래프 저장하기

```
plt.savefig(file_name, [,dpi = dpi_n(기본은 72)])
```

In: import matplotlib as mpl
 mpl.rcParams['figure.figsize']

Out: [6.0, 4.0]

In: mpl.rcParams['figure.dpi']

Out: 72.0

• 그래프 저장하기

```
In: import numpy as np
  import matplotlib.pyplot as plt
  x = np.arange(0, 5, 1)
                                                                              Saving a figure
  y1 = x
  y2 = x + 1
  y3 = x + 2
  v4 = x + 3
  plt.plot(x, y1, x, y2, x, y3, x, y4)
  plt.grid(True)
  plt.xlabel('x')
  plt.ylabel('y')
  plt.title('Saving a figure')
  # 그래프를 이미지 파일로 저장. dpi는 100으로 설정
  plt.savefig('C:/myPyCode/figures/saveFigTest1.png', dpi = 100)
  plt.show()
```

• 그래프 저장하기

```
In: import matplotlib.pyplot as plt

fruit = ['사과', '바나나', '딸기', '오렌지', '포도']
result = [7, 6, 3, 2, 2]
explode_value = (0.1, 0, 0, 0, 0)

plt.figure(figsize=(5,5)) # 그래프의 크기를 지정
plt.pie(result, labels= fruit, autopct='%.1f%%', startangle=90, counterclock = False, explode=explode_value, shadow=True)

# 그래프를 이미지 파일로 저장. dpi는 200으로 설정
plt.savefig('C:/myPyCode/figures/saveFigTest2.png', dpi = 200)
plt.show()
```


• pandas의 그래프 구조

```
Series_data.plot([kind='graph_kind'][,option])
DataFrame_data.plot([x=label 혹은 position, y=label 혹은 position,] [kind='graph_kind'][,option])
```

- pandas의 그래프 종류 선택

kind 옵션	의미
line	선 그래프(기본)
scatter	산점도(DataFrame 데이터만 가능)
bar	수직 바 그래프
barh	수평 바 그래프
hist	히스토그램
pie	파이 그래프

```
In: import pandas as pd
  import matplotlib.pyplot as plt
  s1 = pd.Series([1,2,3,4,5,6,7,8,9,10])
  s1
Out: 0
      10
   dtype: int64
In: s1.plot()
  plt.show()
```

```
n: s2 = pd.Series([1,2,3,4,5,6,7,8,9,10], index = pd.date_range('2019-01-01', periods=10))
 s2
Out: 2019-01-01
   2019-01-02
                2
   2019-01-03
   2019-01-04 4
   2019-01-05
                5
  2019-01-06
   2019-01-07
   2019-01-08
   2019-01-09
                9
   2019-01-10
               10
   Freq: D, dtype: int64
```



```
In: s2.plot(grid=True)
   plt.show()
```


• pandas의 선 그래프

```
In: df_rain = pd.read_csv('C:/myPyCode/data/sea_rain1.csv', index_col="연도")
  df rain
Out:
          동해
                       남해
                                  서해
                                             전체
     연도
     1996
             17.4629
                        17.2288
                                    14.4360
                                                15.9067
     1997
            17.4116
                       17.4092
                                    14.8248
                                                16.1526
     1998
            17.5944
                        18.0110
                                    15.2512
                                                16.6044
     1999
             18.1495
                        18.3175
                                    14.8979
                                                16.6284
     2000
             17.9288
                        18.1766
                                    15.0504
                                                16.6178
```

In: import matplotlib
 matplotlib.rcParams['font.family'] = 'Malgun Gothic'
 matplotlib.rcParams['axes.unicode_minus'] = False
 df_rain.plot()
 plt.show()

'맑은 고딕'으로 설정


```
In: rain_plot = df_rain.plot(grid = True, style = ['r--*', 'g-o', 'b:*', 'm-.p'])
rain_plot.set_xlabel("연도")
rain_plot.set_ylabel("강수량")
rain_plot.set_title("연간 강수량")
plt.show()
```



```
In: df_area.plot(x='연도', y='주거면적', grid = True, title = '연도별 1인당 주거면적') plt.show()
```


pandas의 산점도

6 30.4

9 29.1

7 36.1 675400

8 34.4 598400

453200

463100

```
In: import matplotlib.pyplot as plt
  import pandas as pd
  temperature = [25.2, 27.4, 22.9, 26.2, 29.5, 33.1, 30.4, 36.1, 34.4, 29.1]
  Ice cream sales = [236500, 357500, 203500, 365200, 446600, 574200, 453200, 675400, 598400,
  4631001
  dict_data = {'기온':temperature, '아이스크림 판매량':lce_cream_sales}
  df_ice_cream = pd.DataFrame(dict_data, columns=['기온', '아이스크림 판매량'])
  df ice cream
Out:
             아이스크림 판매량
        기온
                                                               최고 기온과 아이스크림 판매량
        25.2
              236500
                                                    700000
        27.4 357500
                                                    600000
     2 22.9 203500
     3 26.2 365200
                                                    500000
     4 29.5
              446600
                                                    400000
     5 33.1 574200
```



```
In: df ice cream.plot.scatter(x='기온', y='아이스크림 판매량', grid=True, title='최고 기온과
  아이스크림 판매량')
  plt.show()
```

• pandas의 막대그래프

```
In: import matplotlib.pyplot as plt
  import pandas as pd
  grade num = [5, 14, 12, 3]
  students = ['A', 'B', 'C', 'D']
  df_grade = pd.DataFrame(grade_num, index=students, columns = ['Student'])
  df_grade
Out:
        Student
     B 14
     C 12
                                                                          학점별 학생 수 막대 그래프
                                                                                           Student
                                                               12
```

```
In: grade_bar = df_grade.plot.bar(grid = True)
grade_bar.set_xlabel("학점")
grade_bar.set_ylabel("학생수")
grade_bar.set_title("학점별 학생 수 막대 그래프")
plt.show()
```


• pandas의 히스토그램

```
In: import matplotlib.pyplot as plt import pandas as pd

math = [76,82,84,83,90,86,85,92,72,71,100,87,81,76,94,78,81,60,79,69,74,87,82,68,79]

df_math = pd.DataFrame(math, columns = ['Student'])

math_hist = df_math.plot.hist(bins=8, grid = True)
math_hist.set_xlabel("시험 점수")
math_hist.set_ylabel("도수(frequency)")
math_hist.set_title("수학 시험의 히스토그램")

plt.show()
```


• pandas의 파이그래프

```
In: import matplotlib.pyplot as plt
import pandas as pd

fruit = ['사과', '바나나', '딸기', '오렌지', '포도']
result = [7, 6, 3, 2, 2]

df_fruit = pd.Series(result, index = fruit, name = '선택한 학생수')
df_fruit

Out: 사과 7
바나나 6
딸기 3
오렌지 2
포도 2
Name: 선택한 학생수, dtype: int64
```

```
In: df_fruit.plot.pie()
  plt.show()
```


• pandas의 파이그래프

13

엑셀 파일 다루기

- pandas 패키지 활용
- 엑셀 파일의 데이터 읽기

```
df = pd.read_excel('excel_file.xlsx' [, sheet_name = number 혹은 '시트이름', index_col = number 혹은 '열이름'])
```

	А	В	С	D	E
1	학생	국어	영어	수학	평균
2	Α	80	90	85	85.00
3	В	90	95	95	93.33
4	С	95	70	75	80.00
5	D	70	85	80	78.33
6	E	75	90	85	83.33

```
In: import pandas as pd
  df = pd.read_excel('C:/myPyCode/data/학생시험성적.xlsx')
  df
Out:
    학생 국어
             영어 수학 평균
         80
              90
                   85
                         85.000000
         90
              95
                   95
                         93.333333
        95
              70
                  75
                      80.000000
         70
              85
                   80
                      78.333333
         75
              90
                   85
                         83.333333
```

• 엑셀 파일의 데이터 읽기

```
In: pd.read_excel('C:/myPyCode/data/학생시험성적.xlsx', sheet_name = 1)
Out:
    학생
         과학
              사회 역사 평균
         90
               95
                   85
                         90.000000
  0
                       85.000000
    В
         85
               90
                   80
         70
               80
                   75 75.000000
         75
               90
                   100 88.333333
    D
  4 E
         90
              80
                    90 86.666667
```

```
In: pd.read_excel('C:/myPyCode/data/학생시험성적.xlsx', sheet_name = '2차시험')
Out:
     학생
          과학
              사회 역사 평균
          90
               95
                    85
                         90.000000
          85
                         85.000000
     В
               90
                    80
          70
               80
                    75
                        75.000000
          75
                        88.333333
     D
               90
                   100
  4 E
          90
               80
                    90
                         86.666667
```

• 엑셀 파일의 데이터 읽기

```
In: df = pd.read excel('C:/myPyCode/data/학생시험성적.xlsx',sheet name='2차시험', index col=0)
  df
Out:
         과학
               사회
                     역사 평균
    학생
    Α
          90
               95
                     85
                           90.000000
    В
                           85.000000
          85
               90
                     80
          70
               80
                     75
                           75.000000
          75
               90
                     100
                          88.333333
                           86.666667
          90
               80
                     90
```

```
In: df = pd.read excel('C:/myPyCode/data/학생시험성적.xlsx', sheet name='2차시험', index col='학생')
 df
Out:
         과학
               사회 역사 평균
    학생
         90
               95
                     85
                           90.000000
    Α
         85
               90
                     80
                           85.000000
    \mathsf{C}
         70
               80
                     75
                           75.000000
                            88.333333
          75
               90
                     100
    D
         90
               80
                     90
                           86.666667
```

• 데이터를 엑셀 파일로 쓰기

```
# (1) pandas의 ExcelWriter 객체 생성
excel_writer = pd.ExcelWriter('excel_output.xlsx', engine='xlsxwriter')

# (2) DataFrame 데이터를 지정된 엑셀 시트(Sheet)에 쓰기
df1.to_excel(excel_writer[, index=True 혹은 False, sheet_name='시트이름1'])
df2.to_excel(excel_writer[, index=True 혹은 False, sheet_name='시트이름2'])

# (3) ExcelWriter 객체를 닫고, 지정된 엑셀 파일 생성
excel_writer.save()
```

• 데이터를 엑셀 파일로 쓰기

```
In: import pandas as pd
  excel_exam_data1 = {'학생': ['A', 'B', 'C', 'D', 'E', 'F'],
             '국어': [80, 90, 95, 70, 75, 85],
             '영어': [90, 95, 70, 85, 90, 95],
             '수학': [85, 95, 75, 80, 85, 100]}
  df1 = pd.DataFrame(excel_exam_data1,columns=['학생','국어','영어','수학'])
  df1
Out:
       학생
            국어 영어 수학
            80
                  90 85
         90
                 95 95
          95
                 70 75
    3 D
          70
                 85
                      80
    4 E 75
                 90 85
            85
                 95 100
```

• 데이터를 엑셀 파일로 쓰기

In: excel_writer = pd.ExcelWriter('C:/myPyCode/data/학생시험성적2.xlsx', engine='xlsxwriter') df1.to_excel(excel_writer, index=False) excel_writer.save()

4	Α	В	С	D
1	학생	국어	영어	수학
2	Α	80	90	85
3	В	90	95	95
4	С	95	70	75
5	D	70	85	80
6	E	75	90	85
7	F	85	95	100
-	+ +	Sheet1	÷ :	4

In: excel_writer2 = pd.ExcelWriter('C:/myPyCode/data/학생시험성적3.xlsx', engine='xlsxwriter') df1.to_excel(excel_writer2, index=False, sheet_name='중간고사') excel_writer2.save()

1	Α	В	С	D
1	학생	국어	영어	수학
2	Α	80	90	85
3	В	90	95	95
4	С	95	70	75
5	D	70	85	80
6	E	75	90	85
7	F	85	95	100
	+	중간고사	(+)	: 4

• 데이터를 엑셀 파일로 쓰기

```
In: import pandas as pd
  excel_exam_data2 = {'학생': ['A', 'B', 'C', 'D', 'E', 'F'],
             '국어': [85, 95, 75, 80, 85, 100],
             '영어': [80, 90, 95, 70, 75, 85].
             '수학': [90, 95, 70, 85, 90, 95]}
  df2 = pd.DataFrame(excel exam data2,columns=['학생','국어','영어','수학'])
  df2
Out:
      학생 국어 영어 수학
    0 A
           85
               80 90
      В
           95
                90 95
    2 C 75
                95 70
    3 D 80
               70 85
    4 E 85 75 90
   5 F 100 85 95
```

• 데이터를 엑셀 파일로 쓰기

```
In: excel_writer3 = pd.ExcelWriter('C:/myPyCode/data/학생시험성적4.xlsx', engine='xlsxwriter')
df1.to_excel(excel_writer3, index=False, sheet_name='중간고사')
df2.to_excel(excel_writer3, index=False, sheet_name='기말고사')
excel_writer3.save()
```

4	Α	В	С	D
1	학생	국어	영어	수학
2	Α	85	80	90
3	В	95	90	95
4	С	75	95	70
5	D	80	70	85
6	E	85	75	90
7	F	100	85	95
	← →	중간고사	기말고사	(+)

• 엑셀 파일 통합하기

4	Α	В	С	D	E	F	G
1	제품명	담당자	지역	1분기	2분기	3분기	4분기
2	시계						
3	구두						
4	핸드백						

제품의 분기별 판매량을 조사하기 위한 예제 파일

4	А	В	С	D	E	F	G
1	제품명	담당자	지역	1분기	2분기	3분기	4분기
2	시계	Α	가	198	123	120	137
3	구두	Α	가	273	241	296	217
4	핸드백	Α	가	385	316	355	331

Andy사원의 판매량('담당자별_판매량_Andy사원.xlsx')

1	Α	В	С	D	E	F	G
1	제품명	담당자	지역	1분기	2분기	3분기	4분기
2	시계	В	나	154	108	155	114
3	구두	В	나	200	223	213	202
4	핸드백	В	나	350	340	377	392

Becky사원의 판매량('담당자별_판매량_Becky사원.xlsx')

1	Α	В	С	D	E	F	G
1	제품명	담당자	지역	1분기	2분기	3분기	4분기
2	시계	С	다	168	102	149	174
3	구두	С	다	231	279	277	292
4	핸드백	С	다	365	383	308	323

Chris사원의 판매량('담당자별_판매량_Chris사원.xlsx')

• 엑셀 파일 통합하기

```
for f in excel data files:
   df = pd.read_excel(f)
   total data = total data.append(df)
 total_data
Out:
   제품명 담당자 지역 1분기 2분기 3분기 4분기
  시계
          Α
                가 198
                           123
                                 120
                                       137
 1 구두
                가
                     273
                           241
                                 296
                                       217
 2 핸드백
          A 가 385
                         316
                                 355
                                       331
 0 시계
           В
                     154
                           108
                                 155
                                       114
   구두
                     200
                           223
                                 213
                                       202
 2 핸드백
          B 나 350
                                 377
                                       392
                           340
   시계
                다
 0
                     168
                           102
                                 149
                                       174
    구두
                다
                     231
                           279
                                 277
                                       292
    했드백
                     365
                            383
                                 308
                                       323
```

• 엑셀 파일 통합하기

```
In: import pandas as pd
  total_data = pd.DataFrame()
  for f in excel_data_files:
    df = pd.read_excel(f)
    total_data = total_data.append(df, ignore_index=True)
  total data
Out:
    제품명
             담당자 지역
                        1분기
                                 2분기
                                        3분기 4분기
  0 시계
                   가
                         198
                               123
                                      120
                                             137
  1 구두
                   가
             Α
                        273
                               241
                                      296
                                             217
  2 핸드백
                  가
                         385
                                316
                                      355
                                             331
  3 시계
                   나
             В
                        154
                               108
                                     155
                                            114
  4 구두
                   나
                         200
                               223
                                      213
                                             202
  5 핸드백
             В
                         350
                                340
                                      377
                                            392
  6 시계
                   다
             C
                         168
                               102
                                      149
                                             174
  7 구두
                   다
                         231
                                             292
                               279
                                      277
  8 핸드백
                   다
                         365
                                383
                                       308
                                             323
```

엑셀 파일 읽고 쓰기

• 엑셀 파일 통합하기

```
In: import glob
  import pandas as pd
  excel data files1 = glob.glob("C:/myPyCode/data/담당자별 판매량 *사원.xlsx")
  total data1 = pd.DataFrame()
  for f in excel data files1:
    df = pd.read_excel(f)
    total_data1 = total_data1.append(df, ignore_index=True)
  total data1
Out:
    제품명
            담당자 지역 1분기 2분기 3분기 4분기
  0 시계
                   가 198
                                             137
                                123
                                      120
                               241
  1 구두
                   가
                        273
                                      296
                                             217
  2 핸드백
                   가
                         385
                                316
                                       355
                                           331
  3 시계
                   나
                        154
                                             114
                                108
                                      155
  4 구두
                   나
                        200
                               223
                                      213
                                             202
  5 핸드백
                         350
                                340
                                       377
                                          392
  6 시계
                   다
             C
                                102
                                    149
                                           174
                        168
   구두
                   다
                        231
                                279
                                      277
                                             292
  8 핸드백
                    다
                         365
                                383
                                       308
                                             323
```

엑셀 파일 읽고 쓰기

• 통합 결과를 엑셀 파일로 저장하기

```
In: import glob import pandas as pd

excel_file_name = 'C:/myPyCode/data/담당자별_판매량_통합.xlsx'

excel_total_file_writer = pd.ExcelWriter(excel_file_name, engine='xlsxwriter') total_data1.to_excel(excel_total_file_writer, index=False, sheet_name='담당자별_판매량_통합') excel_total_file_writer.save()

glob.glob(excel_file_name)
Out: ['C:/myPyCode/data/담당자별_판매량_통합.xlsx']
```

4	Α	В	С	D	Е	F	G
1	제품명	담당자	지역	1분기	2분기	3분기	4분기
2	시계	Α	가	198	123	120	137
3	구두	A	가	273	241	296	217
4	핸드백	A	가	385	316	355	331
5	시계	В	나	154	108	155	114
6	구두	В	나	200	223	213	202
7	핸드백	В	나	350	340	377	392
8	시계	С	다	168	102	149	174
9	구두	С	다	231	279	277	292
10	핸드백	С	다	365	383	308	323
	() ·	담당자별_	판매량_통합	(±)	: 1		

• 데이터를 추가하고 변경하기

2 핸드백

```
import pandas as pd
df = pd.read_excel('excel_file.xlsx')
df.loc[index name, column name] = value
In: import pandas as pd
 df = pd.read_excel('C:/myPyCode/data/담당자별_판매량_Andy사원.xlsx')
 df
Out:
   제품명 담당자 지역 1분기 2분기 3분기 4분기
 0 시계
               가 198 123 120
                                    137
 1 구두 A 가 273 241 296 217
 2 핸드백 A 가 385
                          316
                               355
                                   331
In: df.loc[2, '4분기']= 0
 df
Out:
   제품명
       담당자 지역 1분기 2분기 3분기 4분기
 0 시계
         A 가 198 123
                            120
                                    137
 1 구두 A 가 273
                         241
                               296
                                    217
```

355

0

385

316

• 데이터를 추가하고 변경하기

```
In: df.loc[3, '제품명'] = '벨트'
 df.loc[3, '담당자'] = 'A'
 df.loc[3. '지역'] = '가'
 df.loc[3, '1분기'] = 100
 df.loc[3, '2분기'] = 150
 df.loc[3, '3분기'] = 200
 df.loc[3, '4분기'] = 250
 df
Out:
    제품명 담당자 지역 1분기 2분기 3분기 4분기
 0 시계
           Α
                 가 198.0 123.0
                                   120.0 137.0
    구두
           A 가
                      273.0
                             241.0
                                    296.0
                                         217.0
 2 핸드백
           A 가 385.0 316.0
                                   355.0
                                          0.0
 3 벨트
           A 가
                      100.0
                            150.0
                                    200.0
                                          250.0
```

• 데이터를 추가하고 변경하기

df[column name] = value

```
In: df['담당자'] = 'Andy'
 df
Out:
   제품명 담당자 지역 1분기
                         2분기 3분기 4분기
 0 시계 Andy 가 198.0 123.0 120.0 137.0
 1 구두 Andy 가
                   273.0
                        241.0 296.0
                                  217.0
 2 핸드백 Andy 가
                   385.0 316.0 355.0 0.0
 3 벨트
         Andv
               가 100.0
                        150.0 200.0
                                   250.0
```

```
In: excel_file_name = 'C:/myPyCode/data/담당자별_판매량_Andy사원_new.xlsx'

new_excel_file = pd.ExcelWriter(excel_file_name, engine='xlsxwriter')

df.to_excel(new_excel_file, index=False)

new_excel_file.save()

glob.glob(excel_file_name)
```

Out: ['C:/myPyCode/data/담당자별_판매량_Andy사원_new.xlsx']

1	Α	В	С	D	E	F	G
1	제품명	담당자	지역	1분기	2분기	3분기	4분기
2	시계	Andy	가	198	123	120	137
3	구두	Andy	가	273	241	296	217
4	핸드백	Andy	가	385	316	355	0
5	벨트	Andy	가	100	150	200	250
	()	Sheet1	(+)				

• 여러 개의 엑셀 파일에서 데이터 수정하기

import re

```
re.sub(pattern, repl, string)
In: import re
file_name = 'C:/myPyCode/data/담당자별_판매량_Andy사원.xlsx'

new_file_name = re.sub(".xlsx", "2.xlsx", file_name)
new_file_name
Out: 'C:/myPyCode/data/담당자별_판매량_Andy사원2.xlsx'
```

```
In: import glob
import re
import pandas as pd

# 원하는 문자열이 포함된 파일을 검색해 리스트를 할당한다.
excel_data_files1 = glob.glob("C:/myPyCode/data/담당자별_판매량_*사원.xlsx")

# 리스트에 있는 엑셀 파일만큼 반복 수행한다.
for f in excel_data_files1:
# 엑셀 파일에서 DataFrame 형식으로 데이터를 가져온다.
df = pd.read_excel(f)
```

• 여러 개의 엑셀 파일에서 데이터 수정하기

```
# 특정 열의 값을 변경한다.
     if(df.loc[1, '담당자']=='A'):
       df['담당자']='Andv'
     elif(df.loc[1. '담당자']=='B'):
       df['담당자']='Becky'
     elif(df.loc[1, '담당자']=='C'):
       df['담당자']='Chris'
     # 엑셀 파일 이름에서 지정된 문자열 패턴을 찾아서 파일명을 변경한다.
    f \text{ new} = \text{re.sub}(".xlsx", "2.xlsx", f)
     print(f_new)
     # 수정된 데이터를 새로운 이름의 엑셀 파일로 저장한다.
     new excel file = pd.ExcelWriter(f new, engine='xlsxwriter')
     df.to excel(new excel file, index=False)
     new excel file.save()
Out: C:/myPyCode/data\Heroritage 담당자별_판매량_Andy사원2.xlsx
   C:/myPyCode/data₩담당자별_판매량_Becky사원2.xlsx
   C:/myPyCode/data₩담당자별_판매량_Chris사원2.xlsx
```

• 여러 개의 엑셀 파일에서 데이터 수정하기

In: glob.glob("C:/myPyCode/data/담당자별_판매량_*사원?.xlsx")

Out: ['C:/myPyCode/data\W담당자별_판매량_Andy사원2.xlsx',

'C:/myPyCode/data\\Topurus Holder Ho

'C:/myPyCode/data\\rightarrow\ri

• 엑셀의 필터 기능 수행하기

10 ^{핸드백} C 다 365 383 308 엑셀에서 '제품명' 셀의 화살표 클릭

지역 🔻

가

가

가

제품명▼

구두

6 구두

해드백

핸드백

담당지▼

D

1분기 ▼

198

273

385

154

200

350

168

231

Ε

2분기 ▼

123

241

316

223

340

102

279

G

4분기 ▼

137

217

331

114

202

392

174

292

323

3분기 ▼

120

296

355

155

213

377

149

277

엑셀에서 셀 지정 후 [필터] 아이콘 클릭

• 엑셀의 필터 기능 수행하기

여러 항목 중 특정 항목만 선택

4	Α	В	С	D	E	F	G
1	제품명,	담당지▼	지역▼	1분기▼	2분기▼	3분기▼	4분기▼
4	핸드백	Α	가	385	316	355	331
7	핸드백	В	나	350	340	377	392
10	핸드백	С	다	365	383	308	323

엑셀에서 필터 기능으로 특정 항목만 선택한 결과

• 엑셀의 필터 기능 수행하기

```
In: import pandas as pd
  df = pd.read_excel('C:/myPyCode/data/담당자별_판매량_통합.xlsx')
  df
Out:
    제품명
            담당자 지역 1분기
                              2분기
                                     3분기
                                           4분기
  0 시계
                 가
                            123
                                         137
                      198
                                   120
 1 구두
                 가
                      273
                            241
                                   296
                                         217
 2 핸드백
           A 가
                       385
                             316
                                   355
                                         331
 3 시계
                 나
            В
                      154
                            108
                                  155
                                         114
 4 구두
                 나
                             223
                                   213
                                         202
                      200
 5 핸드백
            В
                 나
                       350
                             340
                                  377
                                        392
 6 시계
                 다
                       168
                             102
                                   149
                                         174
                 다
 7 구두
                       231
                             279
                                   277
                                         292
 8 핸드백
                  다
                       365
                             383
                                   308
                                          323
```

• 엑셀의 필터 기능 수행하기

```
In: df['제품명']
Out: 0 시계
  1 구두
  2 핸드백
  3 시계
  4 구두
  5 핸드백
  6 시계
  7 구두
  8 핸드백
  Name: 제품명, dtype: object
In: df['제품명'] == '핸드백'
Out: 0 False
     False
     True
     False
     False
     True
     False
     False
     True
  Name: 제품명, dtype: bool
```

• 엑셀의 필터 기능 수행하기

```
In: handbag = df[df['제품명'] == '핸드백']
 handbag
Out:
   제품명 담당자 지역 1분기 2분기 3분기 4분기
  해드백
         A 가
                  385
                      316
                           355
                                 331
        В 나
 5 핸드백
                  350
                     340
                           377
                                 392
 8 핸드백
          C 다
                  365
                       383
                            308
                                 323
```

DataFrame_data.isin(values)

```
In: import pandas as pd
  df = pd.read_excel('C:/myPyCode/data/담당자별_판매량_통합.xlsx')
 handbag1 = df[df['제품명'].isin(['핸드백'])]
 handbag1
Out:
   제품명
           담당자 지역 1분기 2분기 3분기 4분기
 2 핸드백
                 가
                      385
                           316
                                       331
                                 355
         В 나
 5 핸드백
                      350
                          340
                                 377
                                       392
 8 핸드백
                 다
                      365
                           383
                                       323
                                 308
```

• 엑셀의 필터 기능 수행하기

엑셀의 필터 기능으로 여러 개의 항목을 선택

4	Α	В	С	D	Е	F	G
1	제품명ự	담당지▼	지역 🔻	1분기▼	2분기 ▼	3분기▼	4분기▼
3	구두	Α	가	273	241	296	217
4	핸드백	Α	가	385	316	355	331
6	구두	В	나	200	223	213	202
7	핸드백	В	나	350	340	377	392
9	구두	С	다	231	279	277	292
10	핸드백	С	다	365	383	308	323

엑셀의 필터 기능으로 여러 개의 항목을 선택한 결과

• 엑셀의 필터 기능 수행하기

```
In: df[(df['제품명']== '구두') | (df['제품명']== '핸드백')]
Out:
    제품명
           담당자 지역 1분기
                             2분기
                                   3분기 4분기
                가
                     273
                           241
                                 296
                                       217
 2 핸드백
                가
                     385
                            316
                                 355
                                        331
 4 구두
                나
                     200
                           223
                                 213
                                       202
   해드백
                 나
                     350
                                 377
                                     392
           B
                            340
 7 구두
                 다
                     231
                           279
                                 277
                                       292
 8 핸드백
                 다
                      365
                            383
                                  308
                                        323
```

```
In: df[df['제품명'].isin(['구두', '핸드백'])]
Out:
    제품명
           담당자 지역 1분기 2분기 3분기 4분기
    구두
                 가
                     273
                                  296
                            241
                                        217
   해드백
                 가
                      385
                            316
                                  355
           Α
                                        331
 4 구두
                 나
                     200
                            223
                                  213
                                        202
   핸드백
                 나
                                       392
           В
                      350
                            340
                                  377
                 다
                      231
                            279
                                  277
                                        292
   해드백
                 다
                      365
                                  308
                                        323
           C
                            383
```

• 조건을 설정해 원하는 행만 선택하기

```
In: df[(df['3분기'] >= 250)]
Out:
   제품명 담당자 지역 1분기 2분기 3분기 4분기
 1 구두 A
             가
                273
                     241
                          296
                              217
 2 핸드백 A
            가 385
                     316
                          355 331
 5 핸드백 B 나 350
                          377 392
                     340
 7 구두
             다 231
                          277 292
                     279
 8 핸드백
        C 다 365
                     383
                          308
                             323
```

```
In: df[(df['제품명'] == '핸드백') & (df['3분기'] >= 350)]
Out:

    제품명 담당자 지역 1분기 2분기 3분기 4분기
2 핸드백 A 가 385 316 355 331
5 핸드백 B 나 350 340 377 392
```

• 원하는 열만 선택하기

'숨기기' 기능으로 열 숨기기

4	А	D	E	F	G
1	제품명▼	1분기▼	2분기▼	3분기▼	4분기▼
2	시계	198	123	120	137
3	구두	273	241	296	217
4	핸드백	385	316	355	331
5	시계	154	108	155	114
6	구두	200	223	213	202
7	핸드백	350	340	377	392
8	시계	168	102	149	174
9	구두	231	279	277	292
10	핸드백	365	383	308	323

엑셀의 '숨기기' 기능을 적용한 결과

• 원하는 열만 선택하기

```
In: import pandas as pd
 df = pd.read_excel('C:/myPyCode/data/담당자별_판매량_Andy사원.xlsx')
 df
Out:
   제품명
        담당자 지역 1분기 2분기 3분기 4분기
 0 시계
         A 가 198 123
                               120
                                     137
 1 구두
               가
                    273
                         241
                               296
                                     217
 2 핸드백
                    385
                          316
                                355
                                     331
```

```
In: df[['제품명','1분기', '2분기','3분기', '4분기']]
Out:
   제품명
        1분기 2분기 3분기
                          4분기
 0 시계
          198
               123
                     120
                           137
 1 구두
          273
                241
                     296 217
 2 핸드백
          385
                316
                      355
                           331
```

• 원하는 열만 선택하기

```
DataFrame_data.iloc[row_num, col_num]
```

```
In: df.iloc[:,[0,3,4,5,6]]
Out:
 제품명 1분기 2분기 3분기 4분기
0 시계 198 123 120 137
1 구두 273 241 296 217
2 핸드백 385 316 355 331
```

```
In: df.iloc[[0,2],:]
Out:

제품명 담당자 지역 1분기 2분기 3분기 4분기
0 시계 A 가 198 123 120 137
2 핸드백 A 가 385 316 355 331
```

- 엑셀 데이터 계산하기
 - 행 데이터의 합계 구하기

1	Α	В	С	D	E	F	G	Н	1
1	제품명,	담당지▼	지역 🔻	1분기▼	2분기▼	3분기▼	4분기 ▼	연간판매량	
4	핸드백	A	가	385	316	355	331	=SUBTOTAL	(9,D4:G4)
7	핸드백	В	나	350	340	377	392	SUBTOTAL(fu	inction_num
10	핸드백	С	다	365	383	308	323		

1	А	В	С	D	Е	F	G	Н
1	제품명,	담당지▼	지역 🔻	1분기 ▼	2분기▼	3분기▼	4분기 ▼	연간판매량
4	핸드백	A	가	385	316	355	331	=SUM(D4:G4)
7	핸드백	В	나	350	340	377	392	SUM(number1,
10	핸드백	С	다	365	383	308	323	

1	А	В	С	D	Е	F	G	Н
1	제품명,▼	담당지▼	지역 🔻	1분기▼	2분기 ▼	3분기▼	4분기 ▼	연간판매량
4	핸드백	Α	가	385	316	355	331	1387
7	핸드백	В	나	350	340	377	392	
10	핸드백	С	다	365	383	308	323	

	А	В	С	D	Е	F	G	Н	
1	제품명,▼	담당지▼	지역 🔻	1분기▼	2분기▼	3분기▼	4분기 ▾	연간판매량	
4	핸드백	А	가	385	316	355	331	1387	
7	핸드백	В	나	350	340	377	392	9	J
10	핸드백	С	다	365	383	308	323		

1	А	В	С	D	E	F	G	Н
1	제품명,	담당지▼	지역 🔻	1분기 ▼	2분기▼	3분기 ▼	4분기 ▼	연간판매량
4	핸드백	А	가	385	316	355	331	1387
7	핸드백	В	나	350	340	377	392	
10	핸드백	С	다	365	383	308	323	
11								- (+

1	А	В	С	D	E	F	G	Н
1	제품명,	담당지▼	지역 🔻	1분기▼	2분기 ▼	3분기 ▼	4분기▼	연간판매량
4	핸드백	Α	가	385	316	355	331	1387
7	핸드백	В	나	350	340	377	392	1459
10	핸드백	С	다	365	383	308	323	1379

- 엑셀 데이터 계산하기
 - 행 데이터의 합계 구하기

```
In: import pandas as pd
    df = pd.read_excel('C:/myPyCode/data/담당자별_판매량_통합.xlsx')
    handbag = df[(df['제품명']== '핸드백')]
    handbag

Out:

    제품명 담당자 지역 1분기 2분기 3분기 4분기
2 핸드백 A 가 385 316 355 331
5 핸드백 B 나 350 340 377 392
8 핸드백 C 다 365 383 308 323
```

DataFrame_data.sum([axis = 0(기본) or 1])

```
In: handbag.sum(axis=1)
Out: 2 1387
5 1459
8 1379
dtype: int64
```

- 행 데이터의 합계 구하기

```
In: handbag_sum = pd.DataFrame(handbag.sum(axis=1), columns = ['연간판매량'])
handbag_sum
Out:
연간판매량
2 1387
5 1459
8 1379
```

```
In: handbag total = handbag.join(handbag sum)
 handbag_total
Out:
   제품명 담당자 지역 1분기 2분기 3분기 4분기 연간판매량
       A 가 385
 2 핸드백
                       316
                           355
                                331 1387
 5 핸드백
       B 나 350
                       340
                           377
                                392
                                    1459
 8 핸드백
              다
                  365
                       383
                           308
                                323
                                    1379
```

- 행 데이터의 합계 구하기

DataFrame data.sort_values(by [, axis=0(기본) or 1, ascending=True(기본) or False])

```
In: handbag total.sort values(by='연간판매량', ascending=True)
Out:
   제품명
            담당자
                  지역 1분기
                             2분기
                                    3분기 4분기
                                                연간판매량
 8 핸드백
                  다
                      365
                            383
                                  308
                                        323
                                              1379
 2 핸드백
                  가
                      385
                            316
                                  355
                                        331
                                              1387
                 나
 5 했드백
                      350
                            340
                                  377
                                              1459
                                        392
```

- 행 데이터의 합계 구하기

```
In: handbag total.sort values(by='연간판매량', ascending=False)
Out:
   제품명
          담당자 지역 1분기 2분기 3분기 4분기 연간판매량
 5 핸드백
                나
                    350
                          340
                               377
                                     392
                                           1459
 2 핸드백
                가
                    385
                          316
                               355
                                     331
                                           1387
 8 핸드백
                다
                    365
                          383
                                           1379
                               308
                                     323
```

- 열 데이터의 합계 구하기

SL	IM -	: ×	✓ f _x	=SUBTC	TAL(9,D2:E)10)		
4	А	В	С	D	E	F	G	Н
1	제품명,	담당지▼	지역▼	1분기 ▼	2분기▼	3분기▼	4분기▼	연간판매량
4	핸드백	A	가	385	316	355	331	1387
7	핸드백	В	나	350	340	377	392	1459
10	핸드백	С	다	365	383	308	323	1379
11				=SUBTOTA	AL(9,D2:D10	0)		
12				SUBTOTAL	(function_nu	m, ref1 , [ref2],)	

D1	11 -	: ×	√ f _x	=SUBTC	TAL(9,D2:[)10)		
4	Α	В	С	D	Е	F	G	Н
1	제품명,	담당지▼	지역▼	1분기▼	2분기▼	3분기▼	4분기▼	연간판매량
4	핸드백	Α	가	385	316	355	331	1387
7	핸드백	В	나	350	340	377	392	1459
10	핸드백	С	다	365	383	308	323	1379
11				1100	1039	1040	1046	4225

– 열 데이터의 합계 구하기

In: handbag_total.sum()

연간판매량

4225

```
Out: 제품명 핸드백핸드백핸드백
  담당자 ABC
 지역 가나다
 1분기 1100
  2분기 1039
 3분기 1040
 4분기 1046
  연간판매량 4225
  dtype: object
In: handbag sum2 = pd.DataFrame(handbag total.sum(), columns=['합계'])
 handbag sum2
Out:
       합계
 제품명
         핸드백핸드백핸드백
 담당자 ABC
 지역 가나다
 1분기 1100
 2분기 1039
 3분기
     1040
 4분기
     1046
```

- 열 데이터의 합계 구하기

```
In: handbag total2 = handbag total.append(handbag sum2.T)
 handbag total2
Out:
     제품명
                  담당자 지역 1분기 2분기 3분기 4분기 연간판매량
      해드백
                      가
                           385
                                316
                                     355
                                                1387
                                           331
     해드백
                  B 나
                           350
                                 340
                                     377
                                                1459
                                           392
      해드백
                       다
                           365
                                 383
                                     308
                                            323
                                                1379
                           가나다 1100 1039
  합계 핸드백핸드백핸드백 ABC
                                           1040 1046 4225
```

```
In: handbag total2.loc['합계', '제품명'] = '핸드백'
 handbag_total2.loc['합계', '담당자'] = '전체'
 handbag_total2.loc['합계', '지역'] = '전체'
 handbag_total2
Out:
     제품명
             담당자
                   지역
                       1분기 2분기 3분기 4분기 연간판매량
     핸드백
                   가
                        385
                              316
                                    355
                                          331 1387
    해드백
                   나
 5
                        350
                              340
                                    377
                                          392 1459
 8
     핸드백
                   다
                        365
                              383
                                    308
                                           323
                                                1379
                  전체
           전체
 합계 핸드백
                        1100
                              1039
                                    1040
                                             1046
                                                    4225
```

열 데이터의 합계 구하기

```
In: import pandas as pd
  # 엑셀 파일을 pandas의 DataFrame 형식으로 읽어온다.
  df = pd.read excel('C:/mvPvCode/data/담당자별 판매량 통합.xlsx')
  # 제품명 열에서 핸드백이 있는 행만 선택한다.
  product name = '핸드백'
  handbag = df[(df['제품명']== product name)]
  # 행별로 합계를 구하고 마지막 열 다음에 추가한다.
  handbag_sum = pd.DataFrame(handbag.sum(axis=1), columns = ['연간판매량'])
  handbag total = handbag.join(handbag sum)
  # 열별로 합해 분기별 합계와 연간판매량 합계를 구하고 마지막 행 다음에 추가한다.
  handbag_sum2 = pd.DataFrame(handbag_total.sum(), columns=['합계'])
  handbag total2 = handbag total.append(handbag sum2.T)
  # 지정된 항목의 문자열을 변경한다.
  handbag_total2.loc['합계', '제품명'] = product_name
  handbag_total2.loc['합계', '담당자'] = '전체'
  handbag total2.loc['합계', '지역'] = '전체'
```

- 열 데이터의 합계 구하기

```
# 결과를 확인한다.
 handbag_total2
Out:
     제품명
         담당자 지역 1분기 2분기 3분기 4분기 연간판매량
  2 핸드백
         A 가 385
                      316 355 331 1387
         B 나 350
                      340 377 392 1459
  5 핸드백
  8 핸드백
         C 다
                365
                      383
                          308
                               323 1379
  합계 핸드백 전체 전체 1100 1039 1040 1046 4225
```

```
#(1) pandas의 ExcelWriter 객체 생성
excel_writer = pd.ExcelWriter('excel_output.xlsx', engine='xlsxwriter')
# (2) DataFrame 데이터를 지정된 엑셀 시트(Sheet)에 쓰기
df.to excel(excel writer, index=False 혹은 True, sheet name='시트이름')
# (3) ExcelWriter 객체에서 워크시트(worksheet) 객체 생성
worksheet = excel_writer.sheets['시트이름']
# (4) 워크시트에 차트가 들어갈 위치를 지정해 이미지 넣기
worksheet.insert_image('셀위치', image_file [,{'x_scale': x_scale_num, 'y_scale': y_scale_num}])
혹은
worksheet.insert_image(row_num, col_num, image_file [,{'x_scale': x_scale_num, 'y_scale':
y scale num}])
# (5) ExcelWriter 객체를 닫고 엑셀 파일 출력
excel_writer.save()
```

```
In: import matplotlib.pyplot as plt
  import pandas as pd
  sales = {'시간': [9, 10, 11, 12, 13, 14, 15],
       '제품1': [10, 15, 12, 11, 12, 14, 13],
       '제품2': [9, 11, 14, 12, 13, 10, 12]}
  df = pd.DataFrame(sales, index = sales['시간'], columns = ['제품1', '제품2'])
  df.index.name = '시간' #index 라벨 추가
  df
Out:
       제품1
              제품2
  시간
  9
       10
               9
  10
      15
             11
  11
       12
               14
  12
     11
               12
  13
      12
               13
  14
     14
               10
  15
       13
                12
```

```
In: import matplotlib import pandas as pd

matplotlib.rcParams['font.family'] = 'Malgun Gothic'# '맑은 고딕'으로 설정 matplotlib.rcParams['axes.unicode_minus'] = False

product_plot = df.plot(grid = True, style = ['-*', '-o'], title='시간대별 생산량') product_plot.set_ylabel("생산량")

image_file = 'C:/myPyCode/figures/fig_for_excel1.png' # 이미지 파일 경로 및 이름 plt.savefig(image_file, dpi = 400) # 그래프를 이미지 파일로 저장

plt.show()
```



```
In: import pandas as pd
  # (1) pandas의 ExcelWriter 객체 생성
  excel_file = 'C:/myPyCode/data/data_image_to_excel.xlsx'
  excel_writer = pd.ExcelWriter(excel_file, engine='xlsxwriter')
  # (2) DataFrame 데이터를 지정된 엑셀 시트(Sheet)에 쓰기
  df.to excel(excel writer, index=True, sheet name='Sheet1')
  # (3) ExcelWriter 객체에서 워크시트(worksheet) 객체 생성
  worksheet = excel writer.sheets['Sheet1']
  # (4) 워크시트에 차트가 들어갈 위치를 지정해 이미지 넣기
  worksheet.insert_image('D2', image_file, {'x_scale': 0.7, 'y_scale': 0.7})
  # worksheet.insert image(1, 3, image file, {'x scale': 0.7, 'y scale': 0.7})
  # (5) ExcelWriter 객체를 닫고 엑셀 파일 출력
  excel_writer.save()
```



```
# (1) pandas의 ExcelWriter 객체 생성
excel_writer = pd.ExcelWriter('excel_output.xlsx', engine='xlsxwriter')
# (2) DataFrame 데이터를 지정된 엑셀 시트(Sheet)에 쓰기
df.to excel(excel writer, index=False 혹은 True, sheet name='시트이름')
# (3) ExcelWriter 객체에서 워크북(workbook)과 워크시트(worksheet) 객체 생성
workbook = excel writer.book
worksheet = excel_writer.sheets['시트이름']
# (4) 차트 객체 생성(원하는 차트의 종류 지정)
chart = workbook.add_chart({'type': '차트유형'})
# (5) 차트를 생성하기 위한 데이터값의 범위 지정
chart.add series({'values': values range})
# (6) 워크시트에 차트가 들어갈 위치 지정해 차트 넣기
worksheet.insert chart('셀위치', chart)
혹은
worksheet.insert chart(row num, col num, chart)
# (7) ExcelWriter 객체를 닫고 엑셀 파일을 출력
excel writer.save()
```

- 엑셀 차트 만들기
 - 엑셀에서 그릴 수 있는 차트 유형

지정 가능한 차트 유형	엑셀 차트 유형
area	영역형 차트
bar	가로 막대형 차트
column	세로 막대형 차트
line	꺾은 선형 차트
pie	원형 차트
doughnut	도넛형 차트
scatter	분산형 차트
stock	주식형 차트
radar	방사형 차트

```
In: #(1) pandas의 ExcelWriter 객체 생성
  excel_chart = pd.ExcelWriter('C:/myPyCode/data/data_chart_in_excel.xlsx', engine='xlsxwriter')
  # (2) DataFrame 데이터를 지정된 엑셀 시트(Sheet)에 쓰기
  df.to excel(excel chart, index=True, sheet name='Sheet1')
  # (3) ExcelWriter 객체에서 워크북(workbook)과 워크시트(worksheet) 객체 생성
  workbook = excel_chart.book
  worksheet = excel_chart.sheets['Sheet1']
  # (4) 차트 객체 생성(원하는 차트의 종류 지정)
  chart = workbook.add chart({'type': 'line'})
  # (5) 차트 생성을 위한 데이터값의 범위 지정
  chart.add series({'values': '=Sheet1!$B$2:$B$8'})
  chart.add series({'values': '=Sheet1!$C$2:$C$8'})
  # (6) 워크시트에 차트가 들어갈 위치를 지정해 차트 넣기
  worksheet.insert chart('D2', chart)
  # (7) ExcelWriter 객체를 닫고 엑셀 파일 출력
  excel_chart.save()
```


• 엑셀 차트 만들기

In: # (5-1) 엑셀 차트에 x, y축 라벨과 제목 추가 chart.set_title ({'name': '시간대별 생산량'})

chart.set_x_axis({'name': '시간'}) chart.set_y_axis({'name': '생산량'})


```
In: #(1) pandas의 ExcelWriter 객체 생성
  excel_chart = pd.ExcelWriter('C:/myPyCode/data/data_chart_in_excel2.xlsx',
engine='xlsxwriter')
  # (2) DataFrame 데이터를 지정된 엑셀 시트(Sheet)에 쓰기
  df.to excel(excel chart, index=True, sheet name='Sheet1')
  # (3) ExcelWriter 객체에서 워크북(workbook)과 워크시트(worksheet) 객체 생성
  workbook = excel chart.book
  worksheet = excel chart.sheets['Sheet1']
  # (4) 차트 객체 생성(원하는 차트의 종류 지정)
  chart = workbook.add_chart({'type': 'line'})
  # (5) 차트 생성을 위한 데이터값의 범위 지정
  chart.add_series({'values': '=Sheet1!$B$2:$B$8',
              'categories': '=Sheet1!$A$2:$A$8'.
              'name': '=Sheet1!$B$1'})
  chart.add series({'values': '=Sheet1!$C$2:$C$8',
             'categories': '=Sheet1!$A$2:$A$8'.
             'name': '=Sheet1!$C$1'})
```

```
# (5-1) 엑셀 차트에 x, y축 라벨과 제목 추가 chart.set_title ({'name': '시간대별 생산량'}) chart.set_x_axis({'name': '시간'}) chart.set_y_axis({'name': '생산량'})

# (6) 워크시트에 차트가 들어갈 위치를 지정해 차트 넣기 worksheet.insert_chart('D2', chart)

# (7) ExcelWriter 객체를 닫고 엑셀 파일 출력 excel_chart.save()
```

감사합니다.

※ 본 교안은 강의 수강 용도로만 사용 가능합니다. 상업적 이용을 일절 금함.

