PARAMETERIZING SINGLE SCATTERING PROPERTIES ACROSS THE ELECTROMAGNETIC SPECTRUM FOR WATER CLOUD RETRIEVAL

Kwo-Sen KUO^{1,2} and Ines FENNI^{3,4}

- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland USA
 NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- 3. Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California, USA
 - 4. NASA Jet Propulsion Laboratory, Pasadena, California, USA

ABSTRACT

Water clouds are composed of spherical water droplets, to which the Mie solution applies for their electromagnetic scattering. The essential variable of Mie solutions is $\xi \equiv mkD$ (or equivalently mkr), where m is the complex index of refraction of water, $k = 2\pi/\lambda$ the angular wavenumber, λ the wavelength, and D(r) the diameter (radius) of the water droplet. Consequently, all water-droplet single-scattering properties, such as extinction and scattering efficiencies, i.e., Q_{ρ} and Q_{s} , are functions of ξ , which provides a convenient pathway to parameterize water-droplet single-scattering properties across the electromagnetic spectrum or spectrum segments. In this paper, we first demonstrate that the numerical Mie solution indeed depends only on ξ . We then present our first attempt parameterize extinction efficiency across visible-infrared spectrum.

Index Terms -- One, two, three, four, five

1. INTRODUCTION

As stated in [1], "The simultaneous retrieval of cloud optical thickness and effective radius is best achieved by simultaneously measuring the reflection function in a non-absorbing and absorbing spectral channel (e.g., VIS/NIR and SWIR, respectively), and comparing the resulting measurements with theoretical forward model calculations". However, with a multispectral (or hyperspectral) instrument, there are multiple (or many) options for both the "non-absorbing" and "absorbing" spectral channels to choose from. Ideally, the (water) cloud optical thickness (COT) and cloud effective radius (CER)

retrieved using different channel combinations should be consistent. This consistency is easier to evaluate if a functional relation exists that expresses the spectral dependence of COT on frequency (wavelength).

Since the droplets in water clouds are considered spherical and the applicable Mie solution for their electromagnetic scattering depends solely on $\xi \equiv mkD$, the single-scattering quantities of these droplets, such as the extinction and scattering efficiencies (Q_e and Q_s respectively), are functions of ξ only. This variable, ξ , thus provides a convenient pathway for parameterizing these scattering quantities into functional relations across the electromagnetic spectrum or, at least, spectrum segments.

In the following we derive first the equations to be used for the intended parameterization. Next, we provide numerical evidences attesting to the ξ -only dependence. We then present the results from our first attempt at the parameterization of Q_a . Finally, we conclude.

2. THEORETICAL DERIVATION

Optical thickness τ is defined as

$$d\tau = \beta_{\rho}dz$$

where dz is the differential height or thickness of a plane-parallel cloud layer, β_e is the extinction coefficient (with a unit of inverse distance, e.g. m⁻¹). The extinction coefficient, in turn, is the integral of the product of extinction cross section $\sigma_e = \pi r^2 Q_e(\xi)$ and the droplet size distribution (DSD) within the differential cloud layer dz, i.e.,

Qext; mkD =345.26

Fig. 1 Q as a function of (m, m) at a constant mkD=345.26 for a fixed set of f.

$$\beta_e = \int \sigma_e(r) n(r) dr = \pi \int Q_e(\xi) r^2 n(r) dr$$

where n(r)dr is the droplet size distribution within the differential cloud layer. We note that

$$\xi = mkD = 2mkr$$
,

in which the complex index of refraction m depends on both the wavelength (frequency) and the dielectric material. In our study, the material is fixed, i.e., liquid water. Therefore, both m and $k=2\pi/\lambda=2\pi c/f$, where c is the speed of light, are functions of wavelength (frequency) λ (f) only. Similarly, $Q_e(\xi) \equiv Q_e(\lambda,r) \equiv Q_e(f,r)$ and, in turn,

Fig. 2 Q_{μ} as a function of (m_{μ}, m_{ν}) at a constant mkD=345.26 for a fixed set of D.

Fig. 3 Differences of Q between those in Fig. 1 and those in Fig. 2...

 $\sigma_e \equiv \sigma_e(f,r) = \pi r^2 Q_e(f,r)$. If we can parameterize Q_e with f and r as independent variables, it can readily extend to σ and, with a little additional effort, to β_e once the DSD is incorporated.

3. VERIFICATION OF § DEPENDENCE

We first verify that single-scattering quantities, such as Q_e and Q_s , are indeed functions of ξ only. We select a set of 20 frequencies, i.e., f_j , from 300 to 15 terahertz (TZ) corresponding to λ_j from 1 μ m to 20 μ m at 1 μ m increment. For each $\xi \equiv mkD$ value in a predetermined set, i.e., $\xi_i = \{10, 87.37, 164.74, 345.26, 472.63, 500\}$, we use the frequency set to find D_l and obtain Mie solutions on a grid of $m = m_r + i m_r$. That is,

$$D_l = \xi_i / [m(f_j)k(f_j)]$$
, for all i , j

where ξ_i and f_j are ξ and f in the respective preselected set. Fig. 1 shows the Q_e surface on the (m_r, m_i) grid for $\xi_i = 345.26$. One can see that the differences among the Q_e surfaces are imperceptible. This is the case for all ξ_i .

Next, we select a set of 20 D_k values from 2 μ m to 40 μ m at 2 μ m increment. Similarly, we find f_m for each ξ_i and obtain Mie solutions on the (m_r, m_i) grid. Fig. 2 shows the Q_e surfaces, again for $\xi_i = 345.26$. Again, the differences among the 20 Q_e surfaces are imperceptible. C

Compared to those in Fig. 1, there are no perceptible differences either. We plot in Fig. 3 the difference between the sets shown in Fig. 1 and Fig. 2. Indeed, the difference is near the precision of the double-precision floating point number used for the numerical Mie solution, with absolute values around 10^{-14} . This is also versified from all ξ_i .

4. FITTING Q_{a}

In the last section, we use a grid of (m_r, m_i) to verify the generality of the extinction efficiency's sole dependence on ξ . In this section, we use m(f) for liquid water and obtain Mie solutions for a grid of (f, D). Fig. 4 displays Q_e for water droplets as a function of frequency and droplet diameter, i.e. $Q_e(f, D)$. The blue dots denote the Mie solution for Q_e at (f_j, D_k) . It is overlaid with a fitted surface, i.e., parameterized on (f, D). We note that the fit is

Fig. 4 Q_e as a function of wavelength and droplet diameter with a polynomial surface fit.

generally adequate, except at longer λ and smaller D, where there is a rapid change in slope.

Although the polynomial surface fit generated by MatLab is less than ideal, we believe the prospect of achieving better fit is still great. We have several strategies in plan to try out. For example, we plan to adaptively increase the (f,D) grid density at where the Q_e change is rapid, i.e. greater slope. We may also carve the (f,D) into pieces, requiring the Q_e surface to be smooth for each of them, i.e., exploring piecewise parametrization.

5. CONCLUSION

We have demonstrated that the extinction efficiency Q_e is solely a function of $\xi=mkD$. In fact, this is the case for all scattering quantities of homogeneous spheres as dictated by the Mie solution. As such, ξ provides a simplified pathway to parameterize the scattering quantities. We have demonstrated a fit for Q_e with frequency f and droplet diameter D as the independent variables. The fit is satisfactory for a significant portion of the (f,D) plane, but not when f is low and D is small where the surface has large slopes. However, we believe the approach shows potential and is worth further pursuit.

6. REFERENCES

[1] S. Platnick, K.G. Meyer, M.D. King, G. Wind, N. Amarasinghe, B. Marchant, G. T. Arnold, Z. Zhang, P.A. Hubanks, B. Ridgway, J. Riedi: MODIS Cloud Optical Property User Guide v1.1. MODIS Cloud Optical Property User Guide v1.1 Final.pages.