Alpine Swift

 $F_{\text{Welch}}(2, 35.74) = 7.00, p = 2.73e-03, \widehat{\omega_p^2} = 0.24, \text{Cl}_{95\%}[0.04, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -4.79, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.22, Cl_{95\%}^{HDI} [0.05, 0.38], r_{Cauchy}^{JZS} = 0.71$

Ashy Drongo

 $F_{\text{Welch}}(2, 34.53) = 2.86, p = 0.07, \widehat{\omega_p^2} = 0.09, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.04 0.03-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ 0.01 - $\widehat{\mu}_{mean} = 9.18e-03$ $\widehat{\mu}_{mean} = 7.19e-03$ 0.00-19⁰00 (n = 20) **Time Period** 1850 2021 (n = 20) (n = 20) $log_{e}(BF_{01}) = -0.24, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.03, Cl_{95\%}^{HDI} [0.00, 0.19], r_{Cauchy}^{JZS} = 0.71$

Asian Emerald Dove

 $F_{\text{Welch}}(2, 35.16) = 13.95, p = 3.47\text{e-}05, \widehat{\omega_p^2} = 0.40, \text{Cl}_{95\%}[0.18, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -3.73, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.19, Cl_{95\%}^{HDI} [0.03, 0.36], r_{Cauchy}^{JZS} = 0.71$

Asian Fairy-bluebird

 $F_{\text{Welch}}(2, 37.32) = 2.87, p = 0.07, \widehat{\omega_p^2} = 0.08, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.05-0.04-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ 0.01 -• $\widehat{\mu}_{mean} = 7.46e-03$ 0.00-1900 (n = 20) Time Period 2021 (n = 20) 1850 (n = 20)

 $log_{e}(BF_{01}) = 0.57, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.14], r_{Cauchy}^{JZS} = 0.71$

Bar-winged Flycatcher-shrike

Black-and-orange Flycatcher

 $F_{\text{Welch}}(2, 37.23) = 0.84, p = 0.44, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.04 0.03-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\widehat{\mu}_{mean}} = 0.02$ $\widehat{\mu}_{mean} = 0.01$ 0.01 -19⁰00 (n = 20) **Time Period** 20²1 (n = 20) 1850 (n = 20) $log_{e}(BF_{01}) = 1.65, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.07], r_{Cauchy}^{JZS} = 0.71$

Black-naped Monarch

Blue-bearded Bee-eater $F_{\text{Welch}}(2, 35.05) = 14.30, p = 2.88e-05, \widehat{\omega_p^2} = 0.41, \text{Cl}_{95\%}[0.19, 1.00], n_{\text{obs}} = 60$ $p_{Holm-adj.} = 2.26e-04$ $p_{Holm-adj.} = 0.01$ 0.03-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ 0.01 - $\widehat{\mu}_{mean} = 5.64e-03$

> 19⁰00 (n = 20) **Time Period**

1850

(n = 20)

2021 (n = 20)

Blue-faced Malkoha

 $F_{\text{Welch}}(2, 35.02) = 37.19, p = 2.18e-09, \widehat{\omega_p^2} = 0.66, Cl_{95\%}[0.49, 1.00], n_{\text{obs}} = 60$

Bronzed Drongo

 $F_{\text{Welch}}(2, 34.7) = 11.66, p = 1.34e-04, \widehat{\omega_p^2} = 0.36, Cl_{95\%}[0.14, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -3.80, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.19, Cl_{95\%}^{HDI} [0.04, 0.36], r_{Cauchy}^{JZS} = 0.71$

Brown-backed Needletail

$$F_{\text{Welch}}(2, 35.85) = 55.67, p = 1.01e-11, \widehat{\omega_p^2} = 0.74, \text{Cl}_{95\%}[0.60, 1.00], n_{\text{obs}} = 60$$

 $log_e(BF_{01}) = -20.86$, $\widehat{R^2}_{Bayesian}^{posterior} = 0.57$, $Cl_{95\%}^{HDI}$ [0.45, 0.67], $r_{Cauchy}^{JZS} = 0.71$

Brown-cheeked Fulvetta

 $F_{\text{Welch}}(2, 35.44) = 0.01, p = 0.99, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$

 $log_e(BF_{01}) = 2.53, \widehat{R^2}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.01], r_{Cauchy}^{JZS} = 0.71$

Chestnut-headed Bee-eater

 $F_{\text{Welch}}(2, 36.47) = 0.45, p = 0.64, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.03-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ $\widehat{\mu}_{mean} = 0.01$ 0.01 - $\widehat{\widehat{\mu}_{mean}} = 8.96\text{e-}03$ 19⁰00 (n = 20) **Time Period** 20²1 (n = 20) 1850 (n = 20) $log_{e}(BF_{01}) = 2.05, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.03], r_{Cauchy}^{JZS} = 0.71$

Chestnut-tailed Starling

 $F_{\text{Welch}}(2, 30.97) = 29.62, p = 6.47e-08, \widehat{\omega_p^2} = 0.63, \text{Cl}_{95\%} [0.43, 1.00], n_{\text{obs}} = 60$

Common Hawk-Cuckoo

 $F_{\text{Welch}}(2, 31.26) = 33.17, p = 1.87e-08, \widehat{\omega_p^2} = 0.65, \text{Cl}_{95\%}[0.47, 1.00], n_{\text{obs}} = 60$

Common Rosefinch

 $F_{\text{Welch}}(2, 34.97) = 21.22, p = 9.26e-07, \widehat{\omega_p^2} = 0.52, \text{Cl}_{95\%}[0.31, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -5.87$, $\widehat{R^{2}}_{Bayesian}^{posterior} = 0.26$, $Cl_{95\%}^{HDI}$ [0.08, 0.41], $r_{Cauchy}^{JZS} = 0.71$

Crimson-backed Sunbird

 $F_{\text{Welch}}(2, 28.57) = 5.72, p = 8.14e-03, \widehat{\omega_p^2} = 0.23, \text{Cl}_{95\%} [0.02, 1.00], n_{\text{obs}} = 60$

Golden-fronted Leafbird

 $F_{\text{Welch}}(2, 34.78) = 25.86, p = 1.32e-07, \widehat{\omega_p^2} = 0.57, \text{Cl}_{95\%}[0.37, 1.00], n_{\text{obs}} = 60$

Gray Junglefowl

 $F_{\text{Welch}}(2, 34.49) = 18.10, p = 4.23e-06, \widehat{\omega_p^2} = 0.48, \text{Cl}_{95\%}[0.26, 1.00], n_{\text{obs}} = 60$

Gray-headed Canary-Flycatcher

Greater Flameback

 $F_{\text{Welch}}(2, 36.08) = 26.11, p = 9.73e-08, \widehat{\omega_p^2} = 0.56, \text{Cl}_{95\%}[0.37, 1.00], n_{\text{obs}} = 60$

Greater Racket-tailed Drongo

 $F_{\text{Welch}}(2, 34.06) = 34.07, p = 7.46e-09, \widehat{\omega_p^2} = 0.64, \text{Cl}_{95\%}[0.46, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -6.33, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.27, Cl_{95\%}^{HDI} [0.10, 0.42], r_{Cauchy}^{JZS} = 0.71$

Greenish Warbler

 $F_{\text{Welch}}(2, 34.27) = 25.73, p = 1.50e-07, \widehat{\omega_p^2} = 0.57, \text{Cl}_{95\%}[0.37, 1.00], n_{\text{obs}} = 60$

 $log_e(BF_{01}) = -23.19, \widehat{R^2}_{Bayesian}^{posterior} = 0.61, Cl_{95\%}^{HDI} [0.49, 0.70], r_{Cauchy}^{JZS} = 0.71$

Indian Blackbird

 $F_{\text{Welch}}(2, 35.63) = 5.28, p = 9.82e-03, \widehat{\omega_p^2} = 0.18, \text{Cl}_{95\%}[0.01, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -1.83$, $\widehat{R^{2}}_{Bayesian}^{posterior} = 0.12$, $Cl_{95\%}^{HDI}$ [0.00, 0.26], $r_{Cauchy}^{JZS} = 0.71$

Indian Blue Robin

 $F_{\text{Welch}}(2, 32.46) = 0.84, p = 0.44, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.020 Pairwise test: Games-Howell, Bars shown: significant 0.015 Relative Abundance $\widehat{ \widehat{\mu}_{mean}} = 0.01$ $\widehat{\mu}_{mean} = 0.01$ 0.010 $\widehat{\mu}_{mean} = 9.69e\text{-}03$ 0.005 19⁰00 (n = 20) Time Period 20²1 (n = 20) 18⁵0 (n = 20) $log_{e}(BF_{01}) = 1.72, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.06], r_{Cauchy}^{JZS} = 0.71$

Indian Scimitar-Babbler

 $F_{\text{Welch}}(2, 35.38) = 9.19, p = 6.09e-04, \widehat{\omega_p^2} = 0.30, \text{Cl}_{95\%}[0.09, 1.00], n_{\text{obs}} = 60$

Indian Yellow Tit $F_{\text{Welch}}(2, 30.24) = 5.93, p = 6.74e-03, \widehat{\omega_p^2} = 0.23, \text{Cl}_{95\%}[0.02, 1.00], n_{\text{obs}} = 60$ $p_{Holm-adj.} = 0.01$ Pairwise test: Games-Howell, Bars shown: significant $\widehat{\mu}_{mean} = 0.01$

 $log_{e}(BF_{01}) = -3.86, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.19, Cl_{95\%}^{HDI} [0.04, 0.37], r_{Cauchy}^{JZS} = 0.71$

Large Hawk-Cuckoo

 $F_{\text{Welch}}(2, 36.16) = 66.60, p = 7.53e-13, \widehat{\omega_p^2} = 0.77, \text{Cl}_{95\%}[0.65, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -21.58, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.58, Cl_{95\%}^{HDI} [0.45, 0.67], r_{Cauchy}^{JZS} = 0.71$

Lesser Yellownape

 $F_{\text{Welch}}(2,31.12) = 29.79, p = 5.91e-08, \widehat{\omega_p^2} = 0.63, \text{Cl}_{95\%}[0.43, 1.00], n_{\text{obs}} = 60$

Malabar Barbet

 $F_{\text{Welch}}(2, 28.99) = 1.95, p = 0.16, \widehat{\omega_p^2} = 0.06, Cl_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.04 0.03-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance 0.01 - $\widehat{\mu}_{\text{mean}} = 9.23\text{e-}03$ $\hat{\mu}_{mean} = 7.12e-03$ 0.00-1900 (n = 20) Time Period 1850 2021 (n = 20) (n = 20) $log_{e}(BF_{01}) = 0.73, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.13], r_{Cauchy}^{JZS} = 0.71$

Malabar Parakeet

 $F_{\text{Welch}}(2, 36.26) = 0.73, p = 0.49, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.05-0.04 Pairwise test: Games-Howell, Bars shown: significant Relative Abundance 0.02 $\widehat{\mu}_{mean} = 0.01$ $\widehat{\mu}_{mean} = 0.01$ 0.01 - $\widehat{\mu}_{\text{mean}} = 8.39\text{e-}03$ 19⁰00 (n = 20) Time Period 2021 (n = 20) 1850 (n = 20) $log_{e}(BF_{01}) = 1.68, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.06], r_{Cauchy}^{JZS} = 0.71$

Malabar Trogon

 $F_{\text{Welch}}(2, 32.25) = 50.28, p = 1.22e-10, \widehat{\omega_p^2} = 0.74, \text{Cl}_{95\%}[0.59, 1.00], n_{\text{obs}} = 60$

Malabar Whistling-Thrush

 $F_{\text{Welch}}(2, 34.75) = 2.19, p = 0.13, \widehat{\omega_p^2} = 0.06, Cl_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.03-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ $\widehat{\mu}_{mean} = 0.01$ 0.01 - $\widehat{\mu}_{mean} = 9.23 \text{e-}03$ 19⁰00 (n = 20) **Time Period** 20²1 (n = 20) 1850 (n = 20) $log_{e}(BF_{01}) = 0.67, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.13], r_{Cauchy}^{JZS} = 0.71$

Nilgiri Flowerpecker

 $F_{\text{Welch}}(2, 32.72) = 8.88, p = 8.30e-04, \widehat{\omega_p^2} = 0.31, \text{Cl}_{95\%}[0.09, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -4.76, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.22, Cl_{95\%}^{HDI} [0.05, 0.38], r_{Cauchy}^{JZS} = 0.71$

Nilgiri Flycatcher

 $F_{\text{Welch}}(2, 37.23) = 0.18, p = 0.83, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = 2.37, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.02], r_{Cauchy}^{JZS} = 0.71$

Nilgiri Laughingthrush

Nilgiri Sholakili

Nilgiri Thrush

 $F_{\text{Welch}}(2, 33.1) = 20.06, p = 1.97e-06, \widehat{\omega_p^2} = 0.51, \text{Cl}_{95\%}[0.30, 1.00], n_{\text{obs}} = 60$

Nilgiri Wood-Pigeon $F_{\text{Welch}}(2, 32.2) = 0.12, p = 0.89, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.04-Pairwise test: Games-Howell, Bars shown: significant $\widehat{\mu}_{mean} = 0.01$ $\widehat{\mu}_{mean} = 0.01$ $\widehat{\mu}_{mean} = 0.01$

Orange Minivet

Painted Spurfowl

 $F_{\text{Welch}}(2, 34.71) = 52.44, p = 3.23e-11, \widehat{\omega_p^2} = 0.73, \text{Cl}_{95\%}[0.59, 1.00], n_{\text{obs}} = 60$

Pied Cuckoo

 $F_{\text{Welch}}(2, 35.05) = 59.59, p = 5.29e-12, \widehat{\omega_p^2} = 0.75, \text{Cl}_{95\%}[0.63, 1.00], n_{\text{obs}} = 60$

 $log_e(BF_{01}) = -20.59$, $\widehat{R^2}_{Bayesian}^{posterior} = 0.57$, $Cl_{95\%}^{HDI}$ [0.44, 0.67], $r_{Cauchy}^{JZS} = 0.71$

Puff-throated Babbler

Red Spurfowl

 $F_{\text{Welch}}(2, 30.57) = 8.07, p = 1.53e-03, \widehat{\omega_p^2} = 0.30, \text{Cl}_{95\%}[0.07, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -1.90, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.13, Cl_{95\%}^{HDI} [0.00, 0.26], r_{Cauchy}^{JZS} = 0.71$

Small Minivet

 $F_{\text{Welch}}(2, 32.95) = 42.85, p = 6.82e-10, \widehat{\omega_p^2} = 0.70, \text{Cl}_{95\%}[0.54, 1.00], n_{\text{obs}} = 60$

Southern Hill Myna

 $F_{\text{Welch}}(2, 32.68) = 1.93, p = 0.16, \widehat{\omega_p^2} = 0.05, Cl_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.04 0.03-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ 0.01 - $\widehat{\mu}_{\text{mean}} = 9.79e-03$ $\widehat{\mu}_{mean} = 6.68\text{e-}03$ 0.00-19⁰00 (n = 20) **Time Period** 2021 (n = 20) 1850 (n = 20)

 $log_{e}(BF_{01}) = 0.48, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.15], r_{Cauchy}^{JZS} = 0.71$

Speckled Piculet

 $F_{\text{Welch}}(2, 33.11) = 42.89, p = 6.45e-10, \widehat{\omega_p^2} = 0.70, \text{Cl}_{95\%}[0.54, 1.00], n_{\text{obs}} = 60$

Square-tailed Bulbul

 $F_{\text{Welch}}(2, 32.86) = 2.98, p = 0.06, \widehat{\omega_p^2} = 0.10, \text{Cl}_{95\%} [0.00, 1.00], n_{\text{obs}} = 60$ 0.10-Pairwise test: Games-Howell, Bars shown: significant **Relative Abundance** 0.05 $\widehat{\mu}_{mean} = 0.01$ $\widehat{\mu}_{mean} = 0.01$ 0.00 1900 (n = 20) Time Period 18⁵0 (n = 20) 2021 (n = 20) $log_{e}(BF_{01}) = -0.78, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.07, Cl_{95\%}^{HDI} [0.00, 0.21], r_{Cauchy}^{JZS} = 0.71$

Streak-throated Woodpecker

 $F_{\text{Welch}}(2, 29.69) = 10.89, p = 2.84e-04, \widehat{\omega_p^2} = 0.38, \text{Cl}_{95\%}[0.14, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -2.35, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.14, Cl_{95\%}^{HDI} [0.00, 0.28], r_{Cauchy}^{JZS} = 0.71$

Thick-billed Flowerpecker

 $F_{\text{Welch}}(2, 32.93) = 42.29, p = 8.02e-10, \widehat{\omega_p^2} = 0.70, \text{Cl}_{95\%}[0.54, 1.00], n_{\text{obs}} = 60$

18⁵0 (n = 20)

Tickell's Blue Flycatcher $F_{\text{Welch}}(2, 35.06) = 0.51, p = 0.61, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.020 0.015 Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ $\widehat{\mu}_{mean} = 9.47e-03$ $\widehat{\mu}_{mean} = 8.91e-03$ 0.005

1900 (n = 20) Time Period

20²1 (n = 20)

Tickell's Leaf Warbler

 $F_{\text{Welch}}(2, 37.33) = 20.18, p = 1.14e-06, \widehat{\omega_p^2} = 0.49, \text{Cl}_{95\%}[0.28, 1.00], n_{\text{obs}} = 60$

Tytler's Leaf Warbler

 $F_{\text{Welch}}(2, 36.07) = 66.63, p = 7.72 \text{e-}13, \widehat{\omega_p^2} = 0.77, \text{Cl}_{95\%} [0.65, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -20.90, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.57, Cl_{95\%}^{HDI} [0.45, 0.67], r_{Cauchy}^{JZS} = 0.71$

Velvet-fronted Nuthatch

 $F_{\text{Welch}}(2,31.79) = 4.87, p = 0.01, \widehat{\omega_p^2} = 0.18, \text{Cl}_{95\%} [4.64\text{e-}03, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -2.77, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.16, Cl_{95\%}^{HDI} [0.00, 0.30], r_{Cauchy}^{JZS} = 0.71$

White-bellied Blue Flycatcher

 $F_{\text{Welch}}(2, 28.97) = 27.77, p = 1.84e-07, \widehat{\omega_{p}^{2}} = 0.63, \text{Cl}_{95\%} [0.42, 1.00], n_{\text{obs}} = 60$

White-cheeked Barbet

 $F_{\text{Welch}}(2, 35.68) = 47.47, p = 8.80e-11, \widehat{\omega_p^2} = 0.71, \text{Cl}_{95\%}[0.56, 1.00], n_{\text{obs}} = 60$

Yellow-browed Bulbul

