Classic

-PROMISE-

Saturday 2nd April, 2022

1 星型搜索

●问题:在一星型交叉路口找某条路上的一个点,找一个点,必须经过 或刚好到该点才算找到。

Algorithm: Star Search

Input: The number of roads w

Output: The road and the distance each turn explored.

1: i = 1

2: repeat:

3: $d = \left(\frac{w}{w-1}\right)^i$ 4: Explore the path (*i* mod *w*) up to distance *d*

5: if goal not found then

Go back to origin

7: i = i + 1

8: until goal found

类似域 introduction 中的线性搜索,指数增长的基数是 $\frac{w}{w-1}$

• 计算竞争比:

设点在第 j 条路径的 $(\frac{w}{w-1})^j + \epsilon$ 处,则 $OPT = (\frac{w}{w-1})^j + \epsilon \ge (\frac{w}{w-1})^j$,而 $ALG = 2 \cdot \left(\frac{w}{w-1} + \left(\frac{w}{w-1}\right)^2 + \dots + \left(\frac{w}{w-1}\right)^{j+w-1}\right) + \left(\frac{w}{w-1}\right)^j + \epsilon = 2 \cdot \left(w \cdot \left(\frac{w}{w-1}\right)^{j+w-1} - w\right) + OPT \le 2 \cdot \frac{w^w}{(w-1)^{w-1}} \cdot \left[\frac{w}{(w-1)^j}\right] + OPT \le \left[1 + 2\frac{w^w}{(w-1)^{w-1}}\right] \cdot OPT$

电梯问题

● 问题: 设乘坐典题花费的时间是 E,楼梯是 S,那么你应该等待多久 之后放弃呢?给出一个最佳竞争比的算法。

• 解答:

Algorithm: A better-late-than-never strategy

Input: The time *E* and *S* taken by the elevator and

stairs to get to your floor respectively.

Output: A waiting strategy. 1: Waiting for *S* – *E* time

2: If the elevator comes then

3: Take the elevator and we are optimal.

4: **Else**

5: Take the stairs and use $2 \cdot S - E$ time

分析竞争比: 设等待时间是 T, 那么
当 T+E<S 时, OPT=T+E, 否则, OPT=S;
当 T+E<S 时, ALG=T+E, 否则, ALG=S-E+S=2S-E;
所以竞争比为 2 - 를;

• 拓展: 所有确定的在线算法不能实现竞争比小于 $2 - \frac{E}{S}$; 设算法的等待时间是 W,那么都考虑最坏的情况: W<S-E 时,假设 S-E 时电梯刚好到,那么竞争比是: $\frac{W+S}{W+E} \geq \frac{S-E+S}{S}$. 否则,竞争比是 $\frac{W+S}{S} \geq \frac{S-E+S}{S}$.

3 汇率问题

● 假设知道 n 天内汇率的上下界 U 和 L, 但是只有到第 n 天才知道是最后一天, 必须进行交易, 希望找到一个在线算法使得交易收益最多。

Algorithm: The Reservation Price Policy (RPP)

Input: $U, L \in \mathbb{R}_{\geq 0}$ and the last day n (You may not know the value of n until on the last day).

Output: A trading day. 1: $p^* \leftarrow \sqrt{U \cdot L}$, flag $\leftarrow 0$

2: For each day $j \le n$ and when flag = 0 do

3: p_i is revealed

4: **if** j < n and $p_j \ge p^*$ **then**

5: Trade all savings on day j

6: *flag* ← 1

7: else if j = n then

8: Trade all savings on day n

分析竞争比,竞争比是 $\sqrt{\frac{U}{L}}$ 考虑最差情况,假设在第 j 天交易。

j<n 时,则假设第 j 天汇率为 $\sqrt{U\cdot L}$ 设第 n 天汇率为 U,则 $\frac{OPT}{ALG}=\frac{U}{\sqrt{U\cdot L}}$

j=n 时,假设第 j 天是 L,而可以知道 $p_j < \sqrt{UL}$,则 $\frac{OPT}{ALG} < \frac{\sqrt{UL}}{L}$

- n 知道的情况下, 竞争比也不少于上述的竞争比
- 不知道 U 和 L,只知道 $\frac{U}{L}$ 的情况下,竞争比至少是 $\frac{U}{L}$ 证明:假设前面汇率都是 1,最后一天用来构造最差情况,在第 i 天交易:

i<n 的时候,假设第 n 天为 $\frac{U}{L}$ i=n 的时候,假设第 n 天是 $\frac{L}{U}$