1

Assignment 10

Yenigalla Samyuktha EE20MTECH14019

Abstract—This document explains a proof on linear transformations.

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment 10

1 Problem

Let T be a linear transformation from \mathbb{R}^3 into \mathbb{R}^2 , and let U be a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 . Prove that the transformation UT is not invertible. Generalize the theorem.

2 Proof

Let $\mathbf{v}, \mathbf{x} \in \mathbb{R}^3$ and $\mathbf{w} \in \mathbb{R}^2$. Table 1 shows that maximum rank the transformation matrix \mathbf{C} can have is 2.

$$Rank(\mathbf{C}) = 2 \tag{2.0.1}$$

$$dim(\mathbf{C}) = 3$$
 (2.0.2)

$$\implies Rank(\mathbf{C}) < dim(\mathbf{C})$$
 (2.0.3)

Therefore from the equation (2.0.3), we can say transformation UT is not invertible.

3 Theorem

Generalizing the proof, for n > m and considering vectors $\mathbf{v}, \mathbf{x} \in \mathbb{R}^n$ and $\mathbf{w} \in \mathbb{R}^m$. From the Table 2,

$$Rank(\mathbf{C}) = m \tag{3.0.1}$$

$$dim(\mathbf{C}) = n \tag{3.0.2}$$

$$\implies Rank(\mathbf{C}) < dim(\mathbf{C})$$
 (3.0.3)

From equation (3.0.3)we can say that the transformation UT is not invertible.

4 Example

Let the vectors $\mathbf{v} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \in \mathbb{R}^3$ and $\mathbf{w} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \in \mathbb{R}^2$.

1) Calculating transformation matrix **A**,

$$T(\mathbf{v}) = \mathbf{A}\mathbf{v} \tag{4.0.1}$$

$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 (4.0.2)

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = rref(\mathbf{A}) \quad (4.0.3)$$

$$\implies Rank(\mathbf{A}) = 2 \quad (4.0.4)$$

2) Calculating transformation matrix **B**,

$$U(\mathbf{w}) = \mathbf{B}\mathbf{w} \tag{4.0.5}$$

$$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} & 2 \\ 1 & -1 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 (4.0.6)

$$\begin{pmatrix} \frac{3}{4} & 2\\ 1 & -1\\ 0 & \frac{1}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix} = rref(\mathbf{B}) \tag{4.0.7}$$

$$\implies Rank(\mathbf{B}) = 2$$
 (4.0.8)

3) Now for the transformation UT, calculating the transformation matrix **C**,

$$UT: \mathbb{R}^3 \to \mathbb{R}^3 \tag{4.0.9}$$

$$\implies UT(\mathbf{x}) = \mathbf{C}\mathbf{x}$$
 (4.0.10)

$$U(T(\mathbf{x})) = \mathbf{B}(\mathbf{A}\mathbf{x}) \tag{4.0.11}$$

$$\implies$$
 C = **BA** (4.0.12)

$$\mathbf{C} = \begin{pmatrix} \frac{3}{4} & 2\\ 1 & -1\\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1\\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} & 0 & \frac{3}{4}\\ 0 & 0 & 2\\ \frac{1}{2} & 0 & \frac{-1}{2} \end{pmatrix}$$
(4.0.13)

$$\begin{pmatrix} \frac{3}{4} & 0 & \frac{3}{4} \\ 0 & 0 & 2 \\ \frac{1}{2} & 0 & \frac{-1}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = rref(\mathbf{C})$$
(4.0.14)

Transformation	Matrix Representation	Dimension	Max Rank of transformation matrix
$T: \mathbb{R}^3 \to \mathbb{R}^2$	$T(\mathbf{v}) = \mathbf{A}\mathbf{v}$	$\mathbf{A}: 2 \times 3$	$Rank(\mathbf{A}) = 2$
$U: \mathbb{R}^2 \to \mathbb{R}^3$	$U(\mathbf{w}) = \mathbf{B}\mathbf{w}$	$\mathbf{B}: 3 \times 2$	$Rank(\mathbf{B}) = 2$
$UT: \mathbb{R}^3 \to \mathbb{R}^3$	$UT(\mathbf{x}) = \mathbf{C}\mathbf{x}$	$\mathbf{C}: 3 \times 3$	$Rank(\mathbf{C}) \leq min(Rank(\mathbf{B}), Rank(\mathbf{A}))$
	$U(T(\mathbf{x})) = \mathbf{B}(\mathbf{A}\mathbf{x})$		$Rank(\mathbf{C}) = 2$
	C = AB		

TABLE 1: Proof for non-invertibility of the transformation UT where $T: \mathbb{R}^3 \to \mathbb{R}^2$ and $U: \mathbb{R}^2 \to \mathbb{R}^3$

Transformation	Matrix Representation	Dimension	Max Rank of transformation matrix
$T:\mathbb{R}^n\to\mathbb{R}^m$	$T(\mathbf{v}) = \mathbf{A}\mathbf{v}$	$\mathbf{A}: m \times n$	$Rank(\mathbf{A}) = m$
$U:\mathbb{R}^m o \mathbb{R}^n$	$U(\mathbf{w}) = \mathbf{B}\mathbf{w}$	$\mathbf{B}: n \times m$	$Rank(\mathbf{B}) = m$
$UT: \mathbb{R}^n \to \mathbb{R}^n$	$UT(\mathbf{x}) = \mathbf{C}\mathbf{x}$	$\mathbf{C}: n \times n$	$Rank(\mathbf{C}) \leq min(Rank(\mathbf{B}), Rank(\mathbf{A}))$
	$U(T(\mathbf{x})) = \mathbf{B}(\mathbf{A}\mathbf{x})$		$Rank(\mathbf{C}) = m$
	C = AB		

TABLE 2: Generalization of the proof

$$\implies Rank(\mathbf{C}) = 2 \qquad (4.0.15)$$
$$dim(\mathbf{C}) = 3 \qquad (4.0.16)$$

As $Rank(\mathbb{C}) < dim(\mathbb{C})$, transformation UT is not invertible.