This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

USP5682199の対応日本生願

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-212602

(43)公開日 平成7年(1995)8月11日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ	技術表示箇所
H04N	1/44				
G 0 3 G	21/00	388			
	21/04				
H04N	1/00	E			
				G 0 3 G	21/ 00 5 5 2
				来舊查審	未請求 請求項の数3 OL (全 12 頁)
(21)出願番号		特願平6-4756		(71)出顧人	000006747
					株式会社リコー
(22)出顧日		平成6年(1994)1月20日			東京都大田区中馬込1丁目3番6号
				(72)発明者	瀚養 剛
					東京都大田区中馬込1丁目3番6号・株式
					会社リコー内
				(72)発明者	橋口 維人
					東京都大田区中馬込1丁目3番6号・株式
					会社リコー内
				(74)代理人	弁理士 樺山 亨 (外1名)
				(, 2, (, 2,)	71-222 14-21
				,	

(54)【発明の名称】 セキュリティ機能付複写装置

(57)【要約】

【目的】デジタル方式の複写装置あるいはファクシミリ機能を備えた複合複写装置において、誰が、何時、どのような画像を複写あるいは送信したかを第三者に判明しない方法で機械内部に残すことのできるセキュリティ機能付複写装置を提供する。

【構成】本発明のセキュリティ機能付複写装置では、複写装置あるいは複合複写装置のスキャナ使用時にオリジナルの画像を電気的または磁気的手段により装置内部のセキュリティユニットに残す手段を有し、その画像はデータ削減処理等により縮小して残され、かつ装置内部に残す画像は、外部から入力される個人を特定する情報

(キーワード、パスワード等)及び複写装置あるいは複合複写装置のスキャナ使用時の日時と共に記録されることを特徴とし、かつ、装置内部に残した画像を用紙に出力する場合は、一枚の用紙に複数の画像を作成して出力することを特徴とする。

【特許請求の範囲】

【請求項1】デジタル方式の複写装置あるいはファクシミリ機能を備えた複合複写装置において、該複写装置あるいは複合複写装置のスキャナ使用時にオリジナルの画像を電気的または磁気的手段により装置内部のセキュリティユニットに残す手段を有し、その画像は縮小して残され、かつ装置内部に残す画像は、外部から入力される個人を特定する情報及び複写装置あるいは複合複写装置のスキャナ使用時の日時と共に記録されることを特徴とし、かつ、装置内部に残した画像を用紙に出力する場合10は、一枚の用紙に複数の画像を作成して出力することを特徴とするセキュリティ機能付複写装置。

【請求項2】請求項1記載のセキュリティ機能付複写装 置において、装置内部に残した画像は暗号化手段により 暗号化し、そのまま出力しても人間には理解できない画 像とし、暗号化された画像を複号化して出力する場合 は、特定のコードの入力または物理的キーなどの手段に よることを特徴とし、さらに、内部に残した画像をディ スプレイ等に表示する手段を備え、かつ、内部に残した 画像を日付、コピー者、特定のマークなどによりディス20 プレイ表示したり、用紙に複写して出力する場合、特定 の画像または画像群を検索できる手段を備え、かつ、装 置内部に残した画像を別の電気または磁気媒体にコピー できる手段を備え、かつ、内部に残した画像を特定の入 力手段によりリセットできる手段を備え、かつ、内部に 残した画像が電気または磁気媒体にいっぱいになった 時、古い画像から順に消し、新しい画像を入力する手段 を備えたことを特徴とするセキュリティ機能付複写装 置。

【請求項3】請求項1,2記載のセキュリティ機能付複30 写装置において、2色以上の多色画像形成機能を有する 場合には、少なくとも一色の情報を入力対象とし、特に カラー画像形成機能を有する場合には、セキュリティユニットへの画像入力は、カラー画像を三原色に分解した R(赤),G(緑),B(青)を変換したY(イエロー),M(マゼンタ),C(シアン)及びBK(黒)の 内、BK信号(黒信号)より得ることを特徴とするセキュリティ機能付複写装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はデジタル方式の複写装置 あるいはファクシミリ機能を備えたデジタル方式の複写 装置あるいはカラー画像形成機能を備えたデジタル方式 の複写装置に関し、特に、複写画像や送信・受信画像の 記録を機械内部に残し、情報の管理を行うことのできる セキュリティ機能付複写装置に関する。

[0002]

【従来の技術】近年、複写装置の普及に伴い、複写装置 理解できない画像とし、暗号化された画像を複号化してによる秘密資料の漏洩が社会問題となっている。しか 出力する場合は、特定のコードの入力または物理的キーし、現状では資料がコピーされても、それがいつ誰によ50 などの手段によることを特徴とし、さらに、内部に残し

2

ってどの複写装置でコピーされたかを特定することは困 難である。カラー複写装置においては、コピー上に目立 たない黄色のコードマークをコピー時に画像と混ぜて出 力し、コードを解読することにより機番を特定すること が可能になっている。しかしながら、白黒の複写装置に おいては目立たない色がなく、また、上記方式では機番 は特定できても誰がコピーしたか迄は判別できない。ま た、コピーが流出した後ではどの資料が無断でコピーさ れたか特定できない。また、複写時に2枚のコピーを作 成し、1枚を複写機内部に残し、一枚を出力することに よって複写画像を管理する方法もあるが、この方法では 紙を無駄に消費することになる。また、ファクシミリで は、送信時の原稿枚数や送信元、着信先などを内部のメ モリに記憶する機能を備えたものがあるが、誰によって どのような内容の原稿が送信されたかを特定することは できない。

[0003]

【発明が解決しようとする課題】本発明は上記事情に鑑みてなされたものであって、デジタル方式の複写装置あるいはファクシミリ機能を備えた複合複写装置において、誰が、何時、どのような画像を複写あるいは送信したかを第三者に判明しない方法で機械内部に残すことを目的とする。また、機械内部に残された画像の圧縮と暗号化を組合せ、蓄積した画像情報が第三者に容易に判らないようにし、特定の人のみが複号化できる手段を備えたせキュリティ機能付複写装置を提供することを目的とする。また、多色画像形成機能を備えたデジタル方式の複写装置においても、画像を特定するに必要な少なくとも一色の信号を用いて同様の機能を実現できるセキュリティ機能付複写装置を提供することを目的とする。

[0004]

【課題を解決するための手段】上記目的を達成するため、請求項1の発明は、デジタル方式の複写装置あるいはファクシミリ機能を備えた複合複写装置において、該複写装置あるいは複合複写装置のスキャナ使用時にオリジナルの画像を電気的または磁気的手段により装置内部のセキュリティユニットに残す手段を有し、その画像は縮小して残され、かつ装置内部に残す画像は、外部から40入力される個人を特定する情報及び複写装置あるいは複合複写装置のスキャナ使用時の日時と共に記録されることを特徴とし、かつ、装置内部に残した画像を用紙に出力する場合は、一枚の用紙に複数の画像を作成して出力することを特徴とする。

【0005】請求項2の発明は、請求項1のセキュリティ機能付複写装置において、装置内部に残した画像は暗号化手段により暗号化し、そのまま出力しても人間には理解できない画像とし、暗号化された画像を複号化して出力する場合は、特定のコードの入力または物理的キーなどの手段によることを特徴とし、さらに、内部に発し

た画像をディスプレイ等に表示する手段を備え、かつ、 内部に残した画像を日付、コピー者、特定のマークなど によりディスプレイ表示したり、用紙に複写して出力す る場合、特定の画像または画像群を検索できる手段を備 え、かつ、装置内部に残した画像を別の電気または磁気 媒体にコピーできる手段を備え、かつ、内部に残した画 像を特定の入力手段によりリセットできる手段を備え、 かつ、内部に残した画像が電気または磁気媒体にいっぱ いになった時、古い画像から順に消し、新しい画像を入 力する手段を備えたことを特徴とする。

【0006】請求項3の発明は、請求項1,2のセキュ リティ機能付複写装置において、2色以上の多色画像形 成機能を有する場合には、少なくとも一色の情報を入力 対象とし、特にカラー画像形成機能を有する場合には、 セキュリティユニットへの画像入力は、カラー画像を三 原色に分解したR(赤), G(緑), B(青)を変換し たY (イエロー), M (マゼンタ), C (シアン)及び BK(黒)の内、BK信号(黒信号)より得ることを特 徴とする。

[0007]

【作用】請求項1のセキュリティ機能付複写装置におい ては、複写装置あるいは複合複写装置のスキャナ使用時 にオリジナルの画像を電気的または磁気的手段により装 置内部のセキュリティユニットに残す手段を有し、その 画像は縮小して残され、かつ装置内部に残す画像は、外 部から入力される個人を特定する情報及び複写装置ある いは複合複写装置のスキャナ使用時の日時と共に記録さ れることを特徴とするため、不正なコピーや送信がなさ れた場合にも、後からこれを追跡することができ、誰が 何時どのような画像をコピーや送信したかを特定するこ30 とができる。また、画像の記録は縮小して行われるた め、多くの画像を記録することができ、かつ、装置内部 に残した画像を用紙に出力する場合は、一枚の用紙に複 数の画像を作成して出力するため、一度に複数の画像の チェックができ、チェック時の紙の消費量も減らすこと ができる。

【0008】請求項 2のセキュリティ機能付複写装置に おいては、装置内部に残した画像は暗号化手段により暗 号化し、そのまま出力しても人間には理解できない画像 とし、暗号化された画像を複号化して出力する場合は、40 ーザプリンタを構成している。尚、符号13は現像ロー 特定のコードの入力または物理的キーなどの手段による ため、特定の管理者のみが情報を解読することができ、 記録した画像情報の流出を防止できる。さらに、内部に 残した画像をディスプレイ等に表示する手段を備え、か つ、内部に残した画像を日付、コピー者、特定のマーク などによりディスプレイ表示したり、用紙に複写して出 力する場合、特定の画像または画像群を検索できる手段 を備えたことにより、記録した情報のチェックや管理を 容易に素早く行うことができ、特定の画像のみを出力す ることも可能となる。また、装置内部に残した画像を別50

の電気または磁気媒体にコピーできる手段を備えたこと により、情報を別の電気または磁気媒体にコピーして長 期間保管しておくこともできる。また、内部に残した画 像を特定の入力手段によりリセットできる手段を備え、 かつ、内部に残した画像が電気または磁気媒体にいっぱ いになった時、古い画像から順に消し、新しい画像を入 力する手段を備えたことにより、記憶容量の問題が解消 され、画像情報の記録漏れが無い。

【0009】請求項3のセキュリティ機能付複写装置に 10 おいては、2色以上の多色画像形成機能を有する場合に は、少なくとも一色の情報を入力対象とし、特にカラー 画像形成機能を有する場合には、セキュリティユニット への画像入力は、カラー画像を三原色に分解したR (赤), G(緑), B(青)を変換したY(イエロ ー), M (マゼンタ), C (シアン) 及びBK (黒) の 内、BK信号(黒信号)より得ることにより、画像を特 定するに必要な少なくとも一色の信号を用いて上記と同 様の画像情報の管理を行うことができる。

[0010]

【実施例】以下、本発明を図示の実施例に基づいて詳細 に説明する。図1は本発明が実施されるデジタル複写装 置の構成例を示す断面図であって、符号1は原稿読取光 学系 (イメージスキャナ) であり、光源5やミラー、結 像レンズ6、CCD等の画像読取装置7等によって構成 されており、原稿画像を画素単位で読み取り、 2 値化し て画像メモリに記憶する。尚、22はスキャナ電源ファ ンである。また、図示を省略しているが、原稿読取光学 系1の原稿載置台(コンタクトガラス)上には自動原稿 給紙装置(ADF)や原稿台カバーが設置される。符号 2は書き込み光学系であり、レーザダイオード等の光源 や、走査用の回転多面鏡9、ポリゴンモータ8、fθレ ンズ等の走査光学系等によって構成されており、原稿読 取光学系1によって読み取られた画像情報に応じてレー ザ光を走査し、感光体上に画像を書き込む。符号3は画 像形成部であり、感光体ドラム10、帯電チャージャ1 1、現像ユニット12、転写チャージャ14、分離チャ ージャ15、クリーニングユニット16、定着ユニット 19等により構成され、電子写真方式により画像形成を 行うものであり、上記書き込み光学系と合わせて所謂レ ラ (現像スリーブ)、17は複写用紙が収納された給紙 カセット、18は給紙コロ、20はメインモータ、21 は搬送ファン、23は手差しテーブルである。また、2 4は受話器であり、このデジタル複写装置は電話回線と 接続することによりファクシミリとして使用することが できる。また、符号4は本発明によるセキュリティユニ ットであり、このセキュリティユニット4は脱着可能な ユニットとして図で示した如く複写装置内に収納され

【0011】次に、図2は図1に示したデジタル複写装

置の画像形成部3における作像過程の説明図である。 図1、図2において、(1)の帯電部では、暗中におい て、帯電チャージャ11による(一)のコロナ放電によ り、感光体ドラム10は(一)に帯電される。また、帯 電チャージャのケーシング上のグリッドにより感光体ド ラム上の電位は一定に保たれる。

- (2) の露光部では、書き込み光学系2のレーザダイオ ードより照射されたレーザ光はコリメートレンズ、シリ ンダーレンズを通り高速回転する回転多面鏡9で反射さ れ、さらに f θ レンズ、ミラーにより感光体ドラム 1 010 上に投影される。そして、画像部 (黒部) に対応してレ ーザダイオードが発光し、レーザ光が照射された部位の (一) 電荷が無くなり静電潜像による画像が形成され る。
- (3) の現像部では、現像スリープ上の摩擦帯電により
- (一) に帯電したトナーに (一) パイアスを加え、感光 体ドラム10上の(一)電荷の無い部分(画像部)にト ナーを押し込むことにより可視像を形成する。
- (4) のPセンサ部では、感光体ドラム10上の現像さ れた一定パターンの画像濃度をフォトセンサで読み取 20 れた画像は暗号化され、ハードディスク (HD) または り、その値により現像ユニット12のトナー補給クラッ チをON、OFFして、トナー濃度制御を行う。尚、こ のPセンサによるチェックは毎回行う必要はなく所定枚 数毎に行えばよい (例えば、10枚コピーに1回チェッ クする)。

【0012】(5)の転写部では、給紙力セット17か ら給紙され、感光体ドラム10と密着した用紙(ペーパ 一) の裏面から転写チャージャ14により(+) 電荷を 与えることにより、画像部の (一) に帯電したトナーを 用紙に転写する。

- (6) の分離部では、転写工程で用紙に与えられた
- (+) 電荷を分離チェージャ (交流 (AC)) 15によ り除電し、感光体ドラム10と用紙の吸着力を無くし、 用紙を感光体ドラム10から分離する。さらに分離を確 実にするために分離爪が設けてある。尚、分離された用 紙は定着ユニット19に搬送され、定着ユニット19の 熱定着ローラ及び加圧ローラによりトナー像が用紙に定
- (7)のPCCは、AC+ (−)の電荷を感光体に与え ることにより、転写時に感光体ドラムに残った(+)電40 荷を消去する。
- (8) のクリーニング部では、感光体ドラム10上に残 ったトナーを導電性のファーブラシで電荷を除去し、ク リーニングブレードで掻き落とす。
- (9) の除電部では、クリーニング後の感光体ドラム1 0上の残留電荷を消去するため、LED等からなる除電 ランプにより全面露光を行い、次のコピーに備える。
- 【0013】次に、図3は上記デジタル複写装置の画像 処理のフローを示し、かつ、セキュリティ処理部(セキ

た、図4はセキュリティ処理部の中の画像処理のフロー を示したものであり、図5はセキュリティユニットの入 出力に要する諸信号を明らかにしたものである。以下、 セキュリティユニットの動作を中心に述べる。図3に示 すように、セキュリティユニット4への画像の取り込み は、原稿読取光学系1の画像読取装置7に付帯する一連 の処理、すなわち、シェーディング補正、フィルタ処 理、MTF (Modulation Transfer Function) 補正、平 滑化の後に行われる。画像は多値→2値に或る定められ たスレッシュホールドに従って変換される。

【0014】次にセキュリティユニットでは、図4に示 すように、データ削減処理が行われ、データの間引き処 理が行われる。この時、主走査方向では3ドットに1ド ットの割合でデータが拾われる。また、副走査方向でも 同じである。これを実現するために、画像の一部を一時 的に記録するラインバッファメモリを使用する。画像は これにより1/9のデータ量に縮小される。縮小された 画像はMMR (Modified Modified Read Coding)圧縮方 式により更に1/7程度に圧縮される。そして、圧縮さ 光磁気ディスク(MO)、あるいは大容量の不揮発性メ モリ(RAMディスク)等の電気的、磁気的記憶手段に 記録される。尚、この暗号化には、Exclusive OR や データ変換テーブルが用いられる。さらに、暗号化され たデータに対して暗号キーデータとの演算が行われる。 また、暗号キーデータはパスワードなど一定の秘密の信 号により作られている。このため、複号化時にはパスワ ードの入力が無いと複号化はできない。

【0015】画像はオリジナルのみHDやMO等の記憶 30 手段に2000枚分程度圧縮、暗号化された状態で蓄積 される。蓄積迄の処理はセキュリティユニットへの画像 の取り込み時にデータ量が削減されるので、コピーのス ピードを落とさずに行われる。例えば、多値の2値変換 部で256階調→2階調、間引き処理で1/9となるに 従って、バッファメモリである記憶手段に書き込まれる データの量は、1/8ビット×1/9=1/72とな る。そして、MMR圧縮及び暗号化された後、HDやM O等の記憶手段に記録される。セキュリティユニットか らの出力はキーワード入力により特定の人が複号化し、 MMRを伸長し出力するが、画像が間引きにより1/9 となっているので、一枚の用紙に9画像を同時に出力す ることができる。この場合、HDやMO等からの読み出 レスピードの関係でコピースピードを落とすことがある が、チェック用の出力なので実用上あまり支障はない。

【0016】HDやMO等の画像記録は管理者によりチ エック後、消去できる。また、所定の枚数記録後は古い 画像の上に新しい画像を書き込み順次入れ換えることも できる。また、チェックはパーソナルコンピュータ等を セキュリティユニットに接続することで、CRT等のデ ュリティユニット4)の接続状態を示した図である。ま50 ィスプレイ上で行うこともできる。すなわち、パーソナ

ルコンピュータ等を接続して、ディスプレイ上でHDや MO等の記憶手段の内容を検索することができ、内部に 残した画像を日付、コピー者、特定のマークなどにより ディスプレイ表示したり、用紙に複写して出力する場合 にも、特定の画像または画像群を検索して出力できる。 また、HDやMO等の記憶手段の内容をパーソナルコン ピュータ等を介して外部のHDやMO等の記憶手段にコ ピーすることも容易に可能である。また、本発明の複写 装置では、画像はコピー者の I Dや日付、コピー枚数な どとともに記録される。すなわち、複写装置の使用時 10 に、IDカードやキー入力によりコピー者のIDを入力 するような構成にしておけば、画像と共にコピー者のI Dや日付、コピー枚数などをセキュリティユニット内の 記憶手段に記録しておくことができ、誰が、何時、どの ような画像をコピーしたかを容易に調査することができ る。

【0017】尚、間引きによるデータ削減処理時、対象 画素の周囲画素を参照することにより間引きの条件をき めることにより(例えば、黒画素が連続している場合 は、多く間引き、細線の部分は間引かない等)縮小画像20 の品質を向上することも可能である。また、ある面積内 の画素の平均を算出後、2値化することにより、削減処 理をすることも可能である。また、画像データの削減量 を調節することが可能な構成にすれば、前記したコピー スピードを落とさずに画像の記録を残すことが可能とな る。これを図6、図7を例に説明する。尚、図6は後述 するデジタルカラー複写装置にセキュリティユニット4 を設けた例であるが、セキュリティユニット4のセキュ リティ処理部の中の画像処理のフロー図4と同様であ る。

【0018】図6のイメージスキャナ400のスキャン 終了迄にセキュリティユニット4のバッファメモリの書 き込みが終了していれば、コピースピードを落とさずに 画像の記録をメインメモリ(HDやMO等)に書き込む ことができる。これは、セキュリティユニット4への書 き込みはオリジナル1枚につき1回でよく、オリジナル の交換時間を考えれば、バッファメモリからメインメモ リに書き込みが終了する迄の時間は十分だからである。 バッファメモリの書き込み終了信号とイメージスキャナ 400のスキャン終了信号はそれぞれ同期制御回路に送40 られ比較される。その結果はシステムコントローラ50 に送られ、判定される。もし、セキュリティユニット4 のパッファメモリへの書き込み終了がイメージスキャナ 400のスキャン信号より遅い場合は、より高いデータ 削減方法に切り換えられる。

【0019】図7には前記した画素の平均を利用したデ ータ削減の方法が示されている。すなわち、No. 1で は4つの画素の平均を2値化するため画素数は1/4に なり、さらにNo. 2では画素数は1/9に、No. 3

o. 2→No. 3と三つの処理レベルを切り換えること により、記録されるデータ量が削減され、セキュリティ ユニット4の処理スピードを換えることができる。これ はコピースピードが一定のデジタル複写装置においては 一度設定すればよく、その設定は操作ボード300から のキー入力によりシステムコントローラ部で行われる。

【0020】以上、デジタル複写装置を例に上げて本発 明の構成・動作について説明したが、ファクシミリ機能 を備えたデジタル複写装置の場合にも、上述したセキュ リティユニットにより、ファクシミリ使用時に送信画像 の管理を行うことができる。すなわち、ファクシミリ使 用時にも送信画像の読み取りは複写時と同じイメージス キャナで行われるため、複写時と同様にしてセキュリテ ィユニットに画像を記録して管理することができる。ま た、この場合、送信画像と共に送信先、送信枚数、送信 者、送信日時を記録しておくことができる。

【0021】さて、以上の説明では白黒画像を形成する デジタル複写装置を例に上げたが、次に、デジタルカラ ー複写装置での実施例について説明する。図8はデジタ ルカラー複写装置の構成例を示す断面図である図8に おいて、符号100は画像形成を行うためのレーザプリ ンタ、200はオリジナル原稿を自動給紙する自動原稿 給紙装置(ADF)、300は各種のキー入力を行うた めの操作ボード、400は原稿画像を色分解して読み取 る多色画像対応のイメージスキャナであり、このイメー ジスキャナ400で読み取った画像情報(単色、多色、 フルカラー)に応じてレーザプリンタ100で単色、多 色、フルカラーの画像形成を行う。また、この複写装置 内には前述したものと同様のセキュリティユニット4が 30 装着されており、イメージスキャナの使用時にセキュリ ティ処理を行う。尚、符号500は受話器であり、ファ クシミリ機能搭載時に装備される。

【0022】レーザプリンタ100の感光体ドラム10 1の周囲には一連の静電写真のプロセスユニット、すな わち、帯電チャージャ105、書き込みユニット10 3、現像ユニット104、転写ドラム102、クリーニ ングユニット106などが備わっている。書き込みユニ ット103には図示しないレーザダイオードが備わって おり、それが発するレーザ光は回転多面鏡103b、レ ンズ103c、ミラー103d、及びレンズ103eを 経て感光体ドラム101の表面に照射される。回転多面 鏡103bはポリゴンモータ103aによって高速で定 速回転駆動される。画像制御装置は記録すべき画像の濃 度に対応する画素単位の2値信号(記録有/記録無)に より駆動されるレーザダイオードの発光タイミングが、 各々の画素位置を順次走査する回転多面鏡103bの回 転偏向動作と同期するようにレーザダイオードの駆動信 号を制御する。つまり、感光体ドラム101の表面の画 像の各走査位置で、その画素の濃度(記録有/記録無) では画素数は1/16となる。従って、No. 1→N 50 に応じたレーザ光が照射されるようにレーザダイオード をオン/オフ制御する。

【0023】感光体ドラム101の表面は、予め帯電チ ャージャ105によるコロナ放電によって一様に高電位 に帯電されている。この表面に書き込みユニット103 の発するレーザ光が照射されると、その光の強度に応じ て帯電電位が変化する。つまり、書き込みユニット10 3が備えているレーザダイオードが発するレーザ光の照 射の有無に応じた電位分布が感光体ドラム101上に形 成されていることになる。こうして、感光体ドラム10 1上に原稿画像の濃淡に対応した電位分布、すなわ静電10 潜像が形成される。この静電潜像は書き込みユニット1 03よりも下流に配置された現像ユニット104によっ て可視像化される。この実施例では現像ユニット104 には4組の現像器104M、104C、104Y及び1 04BKが備えられており、それぞれの現像器には互い に色の異なるM (マゼンタ)、C (シアン)、Y (イエ ロー) 及びBK (ブラック) のトナーが収納されてい る。レーザプリンタ100は上記4つの現像器のいずれ か一つが選択的に付勢されるように構成されているの で、静電潜像はM、C、YまたはBK色のいずれか一つ20 のトナーで可視像化される。

【0024】一方、給紙カセット111に収納された転 写用紙は給紙コロ112で繰り出され、レジストローラ 113によってタイミングを取られて転写ドラム102 の表面に送り込まれ、その表面に吸着された状態で転写 ドラム102の回転に伴って移動する。そして感光体ド ラム101の表面に近接した位置で、転写チャージャ1 07による帯電によって感光体ドラム101上に形成さ れたトナー像が転写用紙の表面に転写される。単色コピ ーモードの場合には、トナー像の転写が終了し、転写 130 ラム102から分離された転写用紙は定着器109で定 着され排紙トレイ110に排紙されるが、フルカラーモ ードの場合には、BK、M、C及びYの4色の画像を一 枚の転写用紙上に重ねて形成する必要がある。この場 合、まず感光体ドラム101上にBK色のトナー像を形 成してそれを転写用紙に転写した後、転写用紙を転写ド ラム102から分離することなく感光体ドラム101上 に次のM色のトナー像を形成し、そのトナー像を再び転 写用紙に転写する。さらにC色及びY色についても感光 体ドラム101上へのトナー像の形成とそれの転写用紙40 への転写を行う。つまり、トナー像の形成と転写のプロ セスを4回繰り返す事によって1つのカラー画像が転写 用紙上に形成される。全てのトナー像の転写が終了する と、転写用紙は分離チャージャ108による帯電によっ て転写ドラム102から分離され、定着器109でトナ 一像の定着処理を受けた後、排紙トレイ110に排出さ れる。

【0025】ここで、図6は上記デジタルカラー複写装 CR以上に設定される。また、本実施例のデジタルカラ 置の電装部の概略構成を示す回路ブロック図である。複 一複写装置では色識別回路80により原稿画像の無彩色 写装置全体の動作制御はマイクロコンピュータで構成さ50 / 有彩色の識別を自動的に行うが、無彩色/有彩色の識

10

れるシステムコントローラ50によって制御される。同期制御回路60は制御タイミングの基準となるクロックパルスを発生させて、各制御ユニット間の信号の同期をとる各種の同期信号を入出力させる。本実施例では走査タイミングの基になる主走査同期信号は、レーザプリンタ100の回転多面鏡103bの回転によるレーザ光の走査開始時期に同期させている。イメージスキャナ400で読み取られたR、G、B各色の画像信号はA/D変換され、各々8ビットのカラー画像情報として出力される。この画像情報は画像処理ユニット内で各種処理を受けた後、レーザプリンタ100に出力される。

【0026】画像処理ユニットはγ補正71、補色生成 72、下色除去 (UCR) 黒発生73、セレクタ74及 び階調処理75の各回路を備えている。補色生成回路7 2ではR、G、Bのそれぞれの色の画像情報をそれらの 補色である、Y、M、Cの各色の画像情報に変換する。 また、UCR黒発生回路73では入力したY、M、C色 の全ての画像情報を合成した画像信号の色に含まれる黒 成分を抽出し、それをBK信号として出力すると共に残 りの色の画像信号から黒成分を除去する。セレクタ74 はシステムコントローラ50の指示に応じて、入力され るY、M、C、BKの色信号からいずれか一つの色信号 を選択して階調処理回路75に出力する。階調処理回路 75は入力される8ピットの濃度情報を2値化する回路 であるが、中間調の画像の出力を可能にするため得られ た画像信号にディザ処理を施している。レーザプリンタ 100には2値化された画像信号が出力される。尚、U CR黒発生回路73の出力は一方で、色識別回路80に 送出されている。この色識別回路80は原稿画像に有彩 色が含まれているか否かを識別する回路である。また、 UCR黒発生回路73の出力の内、BK信号(黒信号) がセキュリティユニット4に送出され、BK信号より得 られる画像がセキュリティユニット4内で前述したと同 様にセキュリティ処理され、メインメモリ(HDやMO 等の記憶手段) に記録される。

【0027】図9はUCR黒発生回路73の回路構成例を示すプロック図である。最小値検出回路73aはC、M、Yの各色信号の中で最も階調レベルの小さいものを無彩色信号と判定して抽出し、抽出した無彩色信号(C、M、またはYの1つ)を黒発生用のROM73bに出力し、ROM73bによってBK信号が発生される。また、下色除去回路73cにより、Y、M、Cの各色信号から黒成分が除去される。尚、図10は下色除去回路の動作を説明する図であって、(a)は下色除去回路の入出力信号の例を色信号成分毎にその階調レベルを示したグラフ、(b)は下色除去回路の動作範囲を決定するための濃度特性図であり、下色除去は通常40%UCR以上に設定される。また、本実施例のデジタルカラー複写装置では色識別回路80により原稿画像の無彩色/有彩色の瞭別を自動的に行うが、無彩色/有彩色の聴

別誤りを無くすために、無彩色/有彩色の識別用として 100%UCRモードを設けている。

【0028】ところで、色識別回路80によって原稿画 像が有彩色か否かを識別するためには、全体の原稿画像 を一度読み取る必要がある。そのため、通常の画像形成 のための原稿の読み取り処理の前に、特別な読み取り処 理(プレスキャン)を実施する。本実施例ではこのプレ スキャン動作によって原稿画像が有彩色か否かを識別す る。

【0029】図11万至図13はシステムコントローラ10

50による複写装置の複写動作の概要を示すフローチャ

アップ動作が行われコピー可能状態となり、ステップ1

ートである。以下、図6,8,9及U図11乃至図13 に基づいて複写装置の複写動作を説明する。電源が投入 され複写動作が開始されると、まず初期設定やウォーム

で操作ボード300によるキー入力(コピー枚数、変倍 率、コピー者 ID、パスワード等)が可能となり、ステ ップ2で操作ボード300上に設けられたプリントスタ ートキーが押下されるのを待つ。そして、プリントスタ ートキーが押下されると、ステップ3に進みADF2020 0に原稿給紙スタート信号を送る。ADF200が原稿 給紙スタート信号を受信すると、最初の、すなわち、最 上位の原稿シートを繰り出してイメージスキャナ400 のコンタクトガラス401上に送る。ステップ4では繰 り出された原稿が読み取り位置まで搬送され、位置決め が完了するのを待つ。ADF200は原稿の繰り出しを 開始した後、その先端位置を検知し、その先端がコンタ クトガラス401の左端位置に達すると駆動を停止し、 位置決め完了信号をシステムコントローラ50に送る。 システムコントローラ50が位置決め完了信号を受け取30 像信号の中、C色の成分によってレーザプリンタ100 ると、原稿サイズに応じた原稿サイズ対応処理を行う (S-5)。前述のようにADF200の原稿先端セン サ214によって原稿サイズ(幅及び長さ)を検知して いるので、その出力情報に応じて同期制御回路60の生 成するサイズ信号SIZEのタイミングが設定される。 【0030】原稿サイズ対応処理が終了すると、システ ムコントローラ50はイメージスキャナー400にプレ スキャンスタートを支持する (S-6)。 イメージスキ ャナー400が最初の原稿を読み取るときには、システ ムコントローラ50はまずUCR黒発生回路73を制御40 し、100%UCRモードにしてプレスキャンを実行す る。この時にはレーザプリンタ100は画像形成動作を しない。プレスキャンが終了したら(S-7)、プレス キャンによる原稿画像が有彩色か否かの識別結果を識別 回路80の出力の有彩色職別信号SG1を参照して、そ のレベルに応じて次の処理ステップを切り換える(S-8) (図12参照)。その結果がSG1=H、すなわ ち、有彩色の原稿の場合にはステップ9に進み、まず、 UCRモードをスケルトンプラックモード(通常、UC R40%以上)に切り換え、イメージスキャナ400に50 された色の記録終了によって1つのコピーサイクルが終

12

原稿画像の読み取りを開始させると共に、レーザプリン タ100にBK(黒)色のプリント動作の開始を指示す る。イメージスキャナ400による原稿の走査によって 原稿画像が順次に読み取られ、読み取った画像信号の 中、BK色の成分によってレーザプリンタ100の書き 込みユニット103が付勢され、感光体ドラム101上 に形成された静電潜像は現像器104BKによって現像 され、得られたトナー像が転写ドラム102上の転写用 紙に転写される。尚、このBK色のプリント時に平行し て、BK信号がセキュリティユニット4に送られ、デー タ処理の後、暗号化され、日付、コピー枚数、コピー者 ID等と共にメインメモリ (HDやMO等) に記録され

【0031】イメージスキャナ400による原稿の読み 取りとレーザプリンタ100によるBK色のプリント動 作が終了すると(S-10)、システムコントローラ5 0は再度イメージスキャナ400に原稿画像読み取り走 査の開始を指示し、さらにレーザプリンタ100にM色 のプリント動作の開始を指示する (S-11)。これに よって原稿画像が順次読み取られ、読み取られた画像信 号の中、M色の成分によってレーザプリンタ100の書 き込みユニット103が付勢され、現像器104Mによ って現像が行われ、現像によって得られたトナー像が転 写ドラム102上の転写用紙に転写される。M色の読み 取り処理が完了すると(S-12)、システムコントロ ーラ50は再びイメージスキャナ400に原稿読み取り 走査のスタートを指示し、さらにレーザプリンタ100 にC色のプリント動作の開始を指示する(S-13)。 これによって原稿画像が順次読み取られ、読み取った画 の書き込みユニット103が付勢され、現像器104C によって現像が行われ、現像によって得られたトナー像 が転写ドラム102上の転写用紙に転写される。原稿画 像の読み取りとC色のプリント動作が終了すると(S-14)、ステップ15に進み、さらにイメージスキャナ 400に原稿読み取り走査の開始と、レーザプリンタ1 00にY色のプリント動作の開始を指示する (S-1 5)。これによって原稿画像が順次読み取られ、読み取 った画像信号の中、Y色の成分によってレーザプリンタ 100の書き込みユニット103が付勢され、現像器1 04Yによって現像が行われ、現像によって得られたト ナー像が転写ドラム102上の転写用紙に転写される。

【0032】ステップ8で原稿画像の識別結果がSG1 =L、すなわち、無彩色であると判断された時には、ス テップ16に進み、まず、UCRモードを100%UC Rモードに設定し、イメージスキャナ400に原稿の読 み取りを開始させ、レーザプリンタ100に予め選択さ れた色の記録を開始させる 図13参照)。選択された 色が1次色(Y、M、C)あるいはBK色ならば、選択 了する。また、この1つのコピーサイクル時に平行して 画像がセキュリティユニット4内でセキュリティ処理さ れてメインメモリ (HDやMO等) に記録される。ま た、もしも選択された色が2次色(R、G、B)なら ば、さらにもう1色のコピーサイクルを実行する。この 時、ステップ16で出力されるBK色の値を2次色の画 像形成に対応した値X1 (及びX2) に設定する。

【0033】上記のコピーサイクルが終了すると(S-17)、ステップ18に進みカウンタCNの値をインク リメントし、次にカウンタCNの値と、設定されたコピ10 一枚数CS(各原稿のコピー部数)を比較する(S-1 9)。そして、CN<CSなら、ステップ6に戻って再 びコピープロセスを実行し、CN=CSになったら、ス テップ20に進んでカウンタCNの値をクリアし、ステ ップ21に進む。ステップ21ではADF200の原稿 台210上に残りの原稿が存在するか否かを判断する。 そして残りの原稿が存在する場合にはステップ3に戻 り、次の原稿給紙を開始し、以下前述のコピー動作を繰 り返す。そして全ての原稿のコピー処理を終えるとステ ップ1, 2の待機状態に戻り、プリントスタートキーが20 正なコピーや送信がなされた場合にも、後でこれを追跡 押されるのを待つ。

【0034】上述のように、本実施例においては色識別 回路80における識別結果に応じて原稿給紙を開始する タイミングも自動的に切り換えられる。つまり、原稿が カラー原稿の場合には、コピー部数×4回の画像読み取 り走査を行う毎に原稿給紙信号が出力されるのに対し、 原稿が無彩色の場合には、コピー部数×1回(または2 回)の画像読み取り走査を行う毎に原稿給紙信号が出力 される。従って、無彩色画像のみの原稿と、カラー画像 を含む原稿とが混載された1組の多数枚の原稿をコピー30 ピードを落とすことなくハードディスクや光磁気ディス したい場合でも、それらの原稿をそのままADF200 の原稿台210上に載置するだけで、全て自動的に原稿 の給紙とコピー動作を行わせることができる。つまり、 原稿群からカラーページだけの抜き出しや、ページ順の 並べ替え、及び手動原稿給紙などを行わなくても自動的 に処理される。また、無彩色画像の原稿に対しては1回 のコピー動作の所用時間が短くなる。

【0035】さて、本実施例のデジタルカラー複写装置 では図6、図8に示すようにセキュリティユニット4を 備え、セキュリティユニット4への画像入力信号をBK40 画像群を検索できるため、記録した情報のチェックや管 信号より得ることにより、原稿画像が有彩色でも無彩色 でも画像の記録を残すことができる。ここでレーザブリ ンタ100は通常のコピー時には階調処理75からの信 号により画像を出力するが、セキュリティユニット4か ら出力する場合はこれを操作ボード300からのキー入 力により切り換え、セキュリテーユニット4のメモリよ り画像情報を読み出し複号化してレーザプリンタ100 に送信し、画像を出力する。セキュリティユニット4の 記録画像はBK信号のみの記録のためプリントアウトは

14

成分の抽出が行われるため、2値化のスレッシュホール ドレベルを適当に設定することにより、黒だけの画像で あっても、何をコピーしたかを判定するには十分であ る。また、原稿が無彩色原稿の場合は、セキュリティユ ニット4は前述した単色のデジタル複写装置の場合と同 様の動作を行い、画像データの削減、圧縮処理が行われ るが、この場合にも何をコピーしたかを判定するには十 分である。また、デジタルカラー複写装置にセキュリテ ィユニット4を装着した場合、記録画像はBK信号のみ の記録のため、コピースピードを落とすことなく画像を 記録できる。尚、セキュリティユニットを使用する場合 は、BK信号のレベルを保持するためUCR60%以上 の設定が望ましい。

[0036]

【発明の効果】以上説明したように、本発明では、デジ タル複写装置あるいはファクシミリ機能を備えた複合複 写装置にセキュリティユニットを設け、複写装置あるい は複合複写装置のスキャナが読み取った画像を日付、コ ピー者のID、コピー枚数等と共に残すことにより、不 することができる。これにより、特定の管理者が適時チ ェックを行うことにより、不正なコピーや送信、無駄な コピーを無くすことが可能となる。また、画像の記録は 縮小して行われるため、多くの画像を記録できる。また 出力時には一枚の用紙に複数の画像を同時に出力するこ とができるため用紙の無駄が無い。尚、画像は間引き縮 小により劣化するが、チェック用には十分である。ま た、データをセキュリティユニットに取り込む時に間引 き縮小を行うため、情報量が削減され、コピーや送信ス ク等の記録手段に画像を記録することができる。

【0037】さらに本発明では、記録される画像は暗号 化され、特定の管理者のみが複号化可能なため、万一ハ ードディスクや光磁気ディスク等の記録手段を持ち去ら れても情報が流出することはない。また、セキュリティ ユニットにパーソナルコンピュータ等を接続することに より、内部に残した画像を日付、コピー者、特定のマー クなどによりディスプレイ上に表示したり、用紙に複写 して出力することができ、この場合、特定の画像または 理を容易に素早く行うことができ、しかも特定の画像の みを用紙に出力することも可能となる。また、パーソナ ルコンピュータ等を介して装置内部に残した画像を別の 電気または磁気媒体にコピーすることもでき、情報を別 の電気または磁気媒体にコピーして長期間保管しておく こともできる。また、ハードディスクや光磁気ディスク 等の記録手段を用いれば内部に残した画像を特定の入力 手段によりリセットすることができ、かつ、内部に残し た画像がいっぱいになった時にも、古い画像の記録部分 黒一色になるが、原稿がフルカラー画像の場合でも黒の50 から順次オーバーライトすることにより、新しい画像を

15

順次入力することができ、記憶容量の問題が解消され、 画像情報の記録漏れが無い。

【0038】また、本発明では、複写装置が2色以上の 多色画像形成機能を有する場合には、少なくとも一色の 情報を入力対象とし、特にカラー画像形成機能を有する 場合には、セキュリティユニットへの画像入力は、カラ 一画像を三原色に分解したR, G, Bを変換したY, M, C及びBKの内、BK信号(黒信号)より得ること により、画像を特定するに必要な少なくとも一色の信号 を用いて上記と同様の画像情報の管理を行うことができ10 る。従って、データ量の多いフルカラー画像の場合で も、セキュリティユニットへの記録はBK信号(黒信 号) の一色の信号のみであるため、画像の取り込みに要 する時間や記録量を少なくでき、コピースピードを落と すこと無く画像情報を記録することができ、記憶容量の 問題も解消される。

【図面の簡単な説明】

【図1】本発明が実施されるデジタル複写装置の構成例 を示す断面図である。

【図2】デジタル複写装置の画像形成部における作像過20 2:書き込み光学系 程の説明図である。

【図3】デジタル複写装置の画像処理のフローを示す図 であり、かつセキュリティ処理部の接続状態を示した図 である。

【図4】セキュリティ処理部の中の画像処理のフローを 示す図である。

【図5】セキュリティユニットの入出力に要する賭信号 を明らかにした図である。

【図6】本発明の別の実施例を示す図であって、デジタ ルカラー複写装置の電装部の概略構成を示す回路ブロッ30 500:受話器(ファクシミリ用) ク図である。

【図7】画像データの削減方法の説明図である。

【図8】本発明が実施されるデジタルカラー複写装置の 構成例を示す断面図である。

【図9】図6に示す電装部のUCR黒発生回路の構成例 を示すプロック図である。

【図10】図9に示すUCR黒発生回路の下色除去回路 の動作を説明する図であって、(a) は下色除去回路の 入力信号の例を色信号成分毎にその階調レベルを示した グラフ、(b)は下色除去回路の動作範囲を決定するた めの濃度特性図である。

【図11】図6に示す電装部のシステムコントローラに よる複写装置の複写動作の概要を示すフローチャートで

【図12】図11のフローチャートの続きを示すフロー チャートである。

【図13】図12のフローチャートの続きを示すフロー チャートである。

【符号の説明】

1:原稿読取光学系 (イメージスキャナ)

3: 画像形成部

4:セキュリティユニット

24:受話器 (ファクシミリ用)

73:UCR黒発生回路(下色除去及びBK信号発生回

100:レーザプリンタ (カラー画像形成部)

200:自動原稿給紙装置

300:操作ボード

400:イメージスキャナ (カラー画像読取部)

【図1】

【図2】

【図3】

画像処理7日-

[図4]

【図11】

【図6】

[図7]

【図8】

【図10】

