Algorithms

Chapter 9.1, 9.2, 9.3, 9.4

ROAD MAP

- Greedy Technique
 - Knapsack Problem
 - Minimum Spanning Tree Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
 - Single Source Shortest Paths
 - Dijkstra's Algorithm
 - Huffman Trees

- Used for solving <u>optimization problems</u>
 - such as engineering problems
- Construct a solution through a sequence of <u>decision steps</u>
 - Each expanding a partially constructed solution
 - Until a complete solution is reached
- Similar to dynamic programming
 - but, not all possible solutions are explored

On each decision step the choice should be

Feasible

 has to satisfy the problem's constraints

Locally optimal

has to be the best local choice

Irrevocable

once made, it can not be changed


```
Greedy Algorithm (a [ 1 .. N ] )
  solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible (solution, x)
          solution = solution U {x}
  return solution
```


- In each step, greedy technique suggests a greedy selection of the best alternative avaliable
 - Feasible decision
 - Locally optimal decision
 - Hope to yield a globally optimal solution
- Greedy technique <u>does not</u> give the optimal solution for all problems

Applications of the Greedy Strategy

- Optimal solutions:
 - change making for "normal" coin denominations
 - minimum spanning tree (MST)
 - single-source shortest paths
 - simple scheduling problems
 - Huffman codes
- Approximations:
 - traveling salesman problem (TSP)
 - knapsack problem
 - other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations $d_1 > ... > d_m$, give change for amount n with the least number of coins

Example: $d_1 = 25c$, $d_2 = 10c$, $d_3 = 5c$, $d_4 = 1c$ and n = 48c

Greedy solution:

Greedy solution is

- optimal for any amount and "normal" set of denominations
- may not be optimal for arbitrary coin denominations

Fractional Knapsack Problem

Given :

w_i: weight of object i

m: capacity of knapsack

p_i: profit of all of *i* is taken

• Find:

x_i: fraction of *i* taken

Feasibility:

$$\sum_{i=1}^{n} x_i w_i \le m$$

Optimality:

maximize
$$\sum_{i=1}^{n} x_i p_i$$


```
Greedy Algorithm (a [ 1 .. N ] )
  solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible (solution, x)
          solution = solution U {x}
  return solution
```

Knapsack Problem


```
Algorithm Knapsack (m,n)
  for i = 1 to n
      x(i) = 0
  for i = 1 to n
      select the object (j) with largest unit value
      if (w[j] < m)
            x[j] = 1.0
            m = m - w[j]
      else
            x[j] = m/w[j]
            break
```

Example :

$$M = 20$$

p = (25, 24, 15)

$$n = 3$$

 $w = (18, 15, 10)$

ROAD MAP

- Greedy Technique
 - Knapsack Problem
 - Minimum Spanning Tree Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
 - Single Source Shortest Paths
 - Dijkstra's Algorithm
 - Huffman Trees

Minimum Spanning Tree (MST)

- Problem Instance:
 - A weighted, connected, undirected graph G (V, E)
- Definition:
 - A spanning tree of a connected graph is its connected acyclic subgraph
 - A minimum spanning tree of a weighted connected graph is its spanning tree of the smallest weight
 - weight of a tree is defined as the sum of the weights on all its edges
- Feasible Solution:
 - A spanning tree G' of G

$$G' = (V, E')$$
 $E' \subseteq E$

- Objective function :
 - Sum of all edge costs in G'

$$C(G') = \sum_{e \in G'} C(e)$$

- Optimum Solution :
 - Minimum cost spanning tree

Minimum Spanning Tree

T₁ is the minimum spanning tree


```
Greedy Algorithm (a [ 1 .. N ] )
  solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible (solution, x)
          solution = solution U {x}
  return solution
```

Prim's Algorithm

 Prim's algorithm constructs a MST through a sequence of expanding subtrees

- Greedy choice :
 - Choose minimum cost edge add it to the subgraph


```
ALGORITHM
                  Prim(G)
    //Prim's algorithm for constructing a minimum spanning tree
    //Input: A weighted connected graph G = \langle V, E \rangle
    //Output: E_T, the set of edges composing a minimum spanning tree of G
    V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex
    E_T \leftarrow \emptyset
    for i \leftarrow 1 to |V| - 1 do
         find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u)
         such that v is in V_T and u is in V - V_T
         V_T \leftarrow V_T \cup \{u^*\}
         E_T \leftarrow E_T \cup \{e^*\}
    return E_T
```


Approach:

- Each vertex j keeps near[j] E T (current tree)
 where cost(j,near[j]) is minimum
- 2. near[j] = 0 if $j \in T$ = ∞ if there is no egde between j and T
- 3. Use a heap to select minimum of all edges

Remaining vertices	Illustration
$\mathbf{b}(\mathbf{a}, 3) \ \mathbf{c}(-, \infty) \ \mathbf{d}(-, \infty)$	3 b 1 c 6
	3 5 T 5 d
	Remaining vertices $\mathbf{b}(\mathbf{a}, 3) \ \mathbf{c}(-, \infty) \ \mathbf{d}(-, \infty)$ $\mathbf{e}(\mathbf{a}, 6) \ \mathbf{f}(\mathbf{a}, 5)$

Prim's Algorithm Example

 $c(b, 1) d(-, \infty) e(a, 6)$ f(b, 4)

c(b, 1)

d(c, 6) e(a, 6) f(b, 4)

Prim's Algorithm Example

f(b, 4)

 $d(f,\,5)\ e(f,\,2)$

e(f, 2)

d(f, 5)

d(f, 5)

Prim's Algorithm

```
Initialize S with the start vertex, s, and V–S with the remaining vertices
1.
          for all v in V - S
2.
                    if there is an edge (s, v)
3.
                               Set cost[v] to w(s, v)
4.
                               Set next[v] to s
5.
                     else
                               Set cost[v] to \infty
6.
                               Set next[v] to NULL
7.
          while V - S is not empty
8.
                     for all u in V - S, find the smallest cost[u]
9.
                     Remove u from V - S and add it to S
10.
                     Insert the edge (u, next[u]) into the spanning tree.
11.
                    for all v adjacent to u in V - S
12.
                               if w(u, v) < cost[v]
13.
                                          Set cost[v] to w(u, v)
14.
                                          Set next[v] to u.
15.
```

Prim's Algorithm

Analysis:

- How efficient is Prim's algorithm?
 - It depends on the data structure chosen
 - running time is ⊕(|V|²) If
 - graph is represented by its weight matrix
 - unordered array is used
 - running time of is O(|E|log|V|) If
 - graph is represented by adjacency list
 - priority queue such as a min-heap is used

Kruskal's Algorithm

- Another algorithm to construct MST
- Expands a subgraph
 - initially contains all the vertices but no edges
- Generates a sequence of subgraphs
 - always acyclic
 - not necessarily connected
- Resulting graph is connected and acyclic (i.e., tree)

<u>Greedy choice:</u>

- Choose minimum cost edge
 - Connecting two disconnected subgraphs
- It always yields an optimal solution


```
Greedy Algorithm (a [ 1 .. N ] )
  solution = \emptyset
 for i = 1 to n
     x = select (a)
     if feasible (solution, x)
          solution = solution U {x}
  return solution
```


ALGORITHM Kruskal(G)

```
//Kruskal's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = \langle V, E \rangle
//Output: E_T, the set of edges composing a minimum spanning tree of G
sort E in nondecreasing order of the edge weights w(e_{i_1}) \leq \ldots \leq w(e_{i_{|E|}})
E_T \leftarrow \emptyset; ecounter \leftarrow 0 //initialize the set of tree edges and its size
k \leftarrow 0
                                //initialize the number of processed edges
while ecounter < |V| - 1 do
    k \leftarrow k + 1
    if E_T \cup \{e_{i_k}\} is acyclic
          E_T \leftarrow E_T \cup \{e_{i_k}\}; \quad ecounter \leftarrow ecounter + 1
return E_T
```


Tree edges Sorted list of edges Illustration

bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8 5 5 6 6 8

Kruskal's Algorithm Example

Kruskal's Algorithm Example

ab 3 bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

bf 4 bc ef ab bf cf af **df** ae cd de 1 2 3 4 4 5 5 6 6 8

df 5

ROAD MAP

- Greedy Technique
 - Knapsack Problem
 - Minimum Spanning Tree Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
 - Single Source Shortest Paths
 - Dijkstra's Algorithm
 - Huffman Trees

- Construct a solution through a sequence of decision steps
 - Each expanding a partially constructed solution
 - Until a complete solution is reached
- On each decision step the choice should be
 - Feasible: has to satisfy the problem's constraints
 - Locally optimal: has to be the best local choice
 - Irrevocable: once made, can not be changed


```
Greedy Algorithm (a [ 1 .. N ] )
  solution = \emptyset
  for i = 1 to n
     x = select (a)
     if feasible (solution, x)
          solution = solution U {x}
  return solution
```


Definition:

 For a given vertex called source in a weighted connected graph, find shortest paths to all other vertices in the graph

Dijkstra's Algorithm

- Idea :
 - Incrementally add nodes to an empty tree
 - Each time add a node that has the smallest path length

Approach :

- 1. $S = \{ \}$
- 2. Initialize dist [v] for all v
- 3. Insert *v* with min *dist[v]* in *T*
- 4. Update *dist[w]* for all *w* not in *S*

Idea of Dijkstra's algorithm


```
Greedy Algorithm (a [ 1 .. N ] )
  solution = \emptyset
  for i = 1 to n
     x = select (a)
     if feasible (solution, x)
          solution = solution U {x}
  return solution
```

```
Dijkstra(G, s)
ALGORITHM
     //Dijkstra's algorithm for single-source shortest paths
     //Input: A weighted connected graph G = \langle V, E \rangle with nonnegative weights
              and its vertex s
    //Output: The length d_v of a shortest path from s to v
                and its penultimate vertex p_v for every vertex v in V
     Initialize(Q) //initialize vertex priority queue to empty
     for every vertex v in V do
         d_v \leftarrow \infty; p_v \leftarrow \text{null}
          Insert(Q, v, d_v) //initialize vertex priority in the priority queue
    d_s \leftarrow 0; Decrease(Q, s, d_s) //update priority of s with d_s
     V_T \leftarrow \emptyset
    for i \leftarrow 0 to |V| - 1 do
         u^* \leftarrow DeleteMin(Q) //delete the minimum priority element
         V_T \leftarrow V_T \cup \{u^*\}
          for every vertex u in V - V_T that is adjacent to u^* do
              if d_{u^*} + w(u^*, u) < d_u
                   d_u \leftarrow d_{u^*} + w(u^*, u); \quad p_u \leftarrow u^*
                    Decrease(Q, u, d_{i})
```


Tree vertices	Remaining vertices	Illustration		
a(-, 0)	b (a , 3) $c(-, \infty) d(a, 7) e(-, \infty)$	3 2 5 6 3 7 d 4 e		
b(a, 3)	$c(b, 3+4) d(b, 3+2) e(-, \infty)$	3 b 4 C 6		

Dijkstra's Algorithm Example

$$c(b, 7) e(d, 5+4)$$

e(d, 9)

e(d, 9)

from a to b: a-b of length 3

from a to d:

a-b-d

of length 5

from a to c: a-b-c

of length 7

from a to e: a-b-d-e

of length 9

Dijkstra's Algorithm

Analysis:

- Time efficiency depends on the data structure used for priority queue and for representing an input graph itself
- For graphs represented by their weight matrix and priority queue implemented as an unordered array, efficiency is in \(\left[\nabla \right]^2 \)
- For graphs represented by their adjacency list and priority queue implemented as a min-heap efficiency is in O(|E|log|V|)
- A better upper bound for both Prim and Dijkstra's algorithm can be achieved, if Fibonacci heap is used

ROAD MAP

- Greedy Technique
 - Knapsack Problem
 - Minimum Spanning Tree Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
 - Single Source Shortest Paths
 - Dijkstra's Algorithm
 - Huffman Trees

- Suppose we have to encode a text that comprises characters from some n-character alphabet by assigning to each of the text's characters some sequence of bits called codeword
- We can use a fixed-encoding that assigns to each character
 - Good if each character has same frequency
 - What if some characters are more frequent than others

 EX: The number of bits in the encoding of 100 characters long text

	a	b	c	d	e	f
freq	45	13	12	16	9	5
fixed word	000	•••				101 = 300
variable word	0	101	100	111	1101	1100 = 224

Prefix Codes

- A codeword is not prefix of another codeword
 - Otherwise decoding is not easy and may not be possible
- Encoding
 - Change each character with its codeword
- Decoding
 - Start with the first bit
 - Find the codeword
 - A unique codeword can be found prefix code
 - Continue with the bits following the codeword
- Codewords can be represented in a tree

• EX: Trees for the following codewords...

	a	b	C	d	e	f
fixed word	000	•••				101
variable word	0	101	100	111	1101	1100

Huffman Codes

- Given: The characters and their frequencies
- Find: The coding tree
- Cost: Minimize the cost

$$Cost = \sum_{c \in C} f(c) \times d(c)$$

- f(c): frequency of c
- d(c): depth of c

Huffman Codes

What is the greedy strategy?

Huffman Codes

Approach :

- Q = forest of one-node trees
 // initialize n one-node trees;
 // label the nodes with the characters
 // label the trees with the frequencies of the chars
 for i=1 to n-1
 x = select the least freq tree in Q & delete
 y = select the least freq tree in Q & delete
 z = new tree
 z→left = x and z→right = y
- 8. Insert z into Q

7. f(z) = f(x) + f(y)


```
Greedy Algorithm (a [ 1 .. N ] )
  solution = \emptyset
  for i = 1 to n
     x = select (a)
     is feasible (solution, x)
          solution = solution U {x}
  return solution
```


Consider five characters {A,B,C,D,-} with following occurrence probabilities

character	A	В	C	D	=
probability	0.35	0.1	0.2	0.2	0.15

The Huffman tree construction for this input is as follows

character	A	В	C	D	-
probability	0.35	0.1	0.2	0.2	0.15
codeword	11	100	00	01	101

