Feuille de travaux dirigés 1

Exercice 1 (Modèle statistique, identifiabilité):

Un instrument est utilisé pour effectuer n mesures d'une grandeur physique constante μ . L'instrument est biaisé d'une quantité positive δ connue ($\delta = 0.1$). On sait que les erreurs de mesures sont indépendantes et on connait leur variance $\sigma^2 > 0$.

- 1. Écrire formellement le problème statistique : identifier l'espace des observations, le modèle statistique en jeu (c'est-à-dire, décrire l'ensemble des lois possibles des observations).
- 2. Le modèle est-il paramétrique?
- 3. Le paramètre d'intérêt μ est-il identifiable?
- 4. Même question en supposant le biais δ inconnu. Qu'en est-il si, à l'inverse, on connait le biais δ mais pas la variance σ^2 ?

Exercice 2 (Risque, pire des cas, risque intégré):

On reprend l'exemple de la prospection pétrolière donné en cours (fin du chapitre 1 du poly), dans un cadre simplifié : on considère qu'il y a deux actions possibles : forer (a_1) ou ne pas forer (a_0) .

Les deux états possibles de la nature sont θ_1 (présence de pétrole) et θ_0 (absence de pétrole). La fonction de coût est donnée par le tableau suivant :

$$\begin{array}{c|c|c|c|c} & a_0 & a_1 \\ \hline \theta_0 & 100 & 200 \\ \hline \theta_1 & 100 & 0 \\ \hline \end{array}$$

Table 1 – Fonction de coût d'un forage pétrolier

Pour obtenir une information sur θ , on réalise un forage préliminaire, produisant une donnée $X \in \{0,1\}$ de nature aléatoire, telle que $\mathbb{P}_{\theta_1}(X=1) = p$, $\mathbb{P}_{\theta_1}(X=0) = 1 - p$; $\mathbb{P}_{\theta_0}(X=1) = q$, $\mathbb{P}_{\theta_0}(X=0) = 1 - q$; avec p = 1 - q = 0.8.

- 1. Préciser le modèle statistique, l'espace des observations \mathcal{X} et l'espace des actions. Combien y a-t-il de règles de décisions $\delta: \mathcal{X} \to \mathcal{A}$?
- 2. Calculer les points de risque $R(\theta_0, \delta)$, $R(\theta_1, \delta)$ pour chaque règle de décision et représenter ces points dans le plan $(R(\theta_0, \delta)$ en abscisse, $R(\theta_1, \delta)$ en ordonnée).
- 3. Un exploitant souhaite adoper une stratégie lui assurant de perdre le moins d'argent (en moyenne) dans le pire des cas (le θ le moins favorable). Il cherche donc la règle δ^* minimisant le risque « dans le pire des cas »,

Pire risque
$$(\delta) := \max_{\theta} R(\theta, \delta^*),$$

c'est-à-dire la stratégie dite minimax

$$\delta^* = \operatorname*{argmin}_{\delta} \max_{\theta} R(\theta, \delta).$$

Déterminer la règle minimax dans cet exemple.

4. Pour aller plus loin : on dispose de l'information suivante : la moitié des terrains candidats à l'exploitation contient effectivement du pétrole. La stratégie minimax vous paraît-elle raisonnable? Proposer un critère $\rho(\delta)$ représentant le risque moyen (sur l'ensemble des θ possibles, pondérés selon l'information a priori dont on dispose). Quell est maintenant la fonction de décision $\delta' = \operatorname{argmin}_{\delta} \rho(\delta)$ qui minimise le critère $\rho(\delta)$? N.B: Ceci est un premier exemple illustratif de l'approche Bayésienne. On verra plus tard que ρ est appelé « risque intégré » et sa valeur minimale $\rho(\delta')$ est le « risque de Bayes ».

Exercice 3 (Maximum de vraisemblance pour le modèle linéaire simple): Pour tout i = 1, ..., n, on considère

$$X_i = a_i \theta_1 + Z_i \tag{1}$$

où les Z_i sont des variables aléatoires indépendantes, de même loi $\mathcal{N}(0, \sigma^2)$. Les coefficients a_i sont des variables déterministes connues (et non toutes nulles). Les paramètres θ_1 et σ^2 sont inconnus. On observe $X = (X_1, \dots, X_n)^{\top}$. On paramètre le modèle pour X par $\theta = (\theta_1, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$.

- 1. Donner la densité p_{θ} de X par rapport à la mesure de Lebesgue en fonction de $a = (a_1, \ldots, a_n)^{\top}$ et de σ^2 .
- 2. Exprimer l'estimateur $\hat{\theta}$ du maximum de vraisemblance pour le paramètre θ .
- 3. Montrer que $\hat{\theta}_1$ (la première coordonnnée de $\hat{\theta}$) est non biaisé.