

EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design

CT

Georgia Tech College of Computing
Center for Research into
Novel Computing Hierarchies

ISCA'22 IEEE Micro Top Picks'23

H. You¹, C. Wan¹, Y. Zhao¹, Z. Yu¹, Y. Fu¹, J. Yuan², S. Wu², S. Zhang², Y. Zhang¹, C. Li¹, V. Boominathan², A. Veeraraghavan², Z. Li³, and Y. Lin¹

¹ Georgia Institute of Technology, SCS ² Rice University, ECE ³ Meta

Background & Motivation

 Eye tracking is an essential human-machine interface modality in AR/VR [1]

Eve Tracking Cam.

2. Small Form Factor

Requirements [1]:

4. Visual Privacy

1. > 240 FPS

3. Low Power

- Challenges for eye tracking in AR/VR [1]:
 - >240 FPS
 - · Small form factor
 - Power consumption in mW
 - Visual privacy
- Existing works [2,3]:
- One order of magnitude slower
- Large form factor and low visual privacy due to the adopted lensbased cameras

Unexplored Opportunities for Eye Tracking?

- Can we build a lensless eye tracking system?
- A Lensless camera, i.e., FlatCam [4]
- Small form factor, i.e., 5×~10× thinner
- A dedicated accelerator featuring algorithm and accelerator co-design
- >240 FPS
- mW power consumption

[1] C. Liu, et. al., IDEM'21 [2] Y. Feng, et. al., IEEE VR'22 [3] K Bong, et. al., VLSI'15 [4] M. Asif, et. al., TCI'17 [5] P. Crisiina, et. al., Sensors'21 [6] EdgeCPU (Raspberry Pi) [7] CPU (AMD EPYC 7742) [8] EdgeGPU (Nvidia Jetson TX2) [9] GPU (Nvidia 2080Ti)

Proposed EyeCoD System

- FlatCam-based algorithm & accelerator co-designed system (EyeCoD), incorporating:
- Sensing-processing interface
- Predict-then-focus alg. pipeline

 Dedicated Al accelerator
- ROI Prediction
 Eye segmentation using RITNet

 Gaze Estimation
 Gaze estimation using FBNet

 Predict-then-focus Pipeline

EyeCoD Algorithm

- · Predict-then-focus pipeline:
- Stage 1: Image reconstruction
- Sensing-processing interface replaces FlatCam sensing & model first layer with coded masks
- Stage 2: Region-of-interest (ROI) prediction
- Predict and crop the most informative core eye area, i.e., ROI
- Once per 50 frames
- Stage 3: Gaze estimation
- Estimate the gaze direction based on ROIs
- ○Processed for each frame

EyeCoD Accelerator

- Balance the diff. execution frequencies of ROI prediction and gaze estimation
- 2.31× speed up over time-multiplexing mode; 1.6× higher energy eff. over concurrent mode

- EyeCoD accelerator features:
- Partial time-multiplexing mode for workload orchestration
- Intra-channel reuse for depth-wise convolutional layers (DW)
- © Reduce 71% of DW's latency
- · Activation partition and memory access parallelism
- Save 36% activation memory
- Save 50~60% activation bandwidth

Evaluation Results

- Evaluation setups
- Datasets
- Industry-standard datasets: OpenEDS'19 & OpenEDS'20
- Metrics
- Gaze estimation accuracy, Throughput, Energy efficiency

- EyeCoD accelerator
- Silicon prototype in a 28nm technology

Act GB0/GB1	Weight Buffer0/1	Weight GB	Index SRAM	Instr. SRAM
512KB * 2	64KB * 2	512KB	20KB	4KB
MAC Lanes	MACs/MAC Lane	Area	Clock frequency	Power
128	8	8 mm ²	370MHz	335mW

EyeCoD evaluation results

- EyeCoD algorithm's accuracy matching the winner in the industry-led challenge [5]
- EyeCoD accelerator over CPU/GPU platforms
- 2966×, 12.7×, 14.8×, and 2.61× throughput improvements over EdgeCPU [6], CPU [7], EdgeGPU [8], and GPU [9]
- EyeCoD over state-of-the-art eye tracking accelerators
- 12.8× throughput improvement and 8.1× higher energy efficiency over CIS-GEP_[4], respectively

