פתרון תרגיל מספר 4 - פתרון בעיות באלגוריתמים

שם: מיכאל גרינבאום, **ת.ז**: 211747639

2021 בינואר 16

1. **הערה:** את הרעיון הכללי של הבונוס פתרתי ביחד עם עידן אורזך.

 $O\left(n^2\right)$ צ"ל: אלגוריתם לבעיה ב־

אלגוריתם לבעיה:

- (O(1)) א נקבל מחרוזת (O(1))
- ($O\left(n
 ight)$) S את העיבוד המוקדם של בעית מנוע החיפוש עם המחרוזת (ב)
- (ג) בהרצאה העיבוד המוקדם של בעית בעירת בר[i,j] לכל $O\left(1\right)$ ב־ $LCP\left(S\left[i:\right],S\left[j:\right]$ את בעית של בעית החיפוש,

$$t = \sum_{i=1}^{n} \sum_{j=i+1}^{n} 1_{LCP\left[S[i:],S\left[i+\frac{i+j}{2}:\right]\right] \geq \frac{i+j}{2}}$$

 $O\left(n^2
ight)$ זה ייקח

t את נחזיר (ד)

. כנדרש, $O\left(1\right)+O\left(n\right)+O\left(n^2\right)=O\left(n^2\right)$, כנדרש, הריצה הוא

עתה מדוע האלגוריתם עובד? עתה מדוע S[i:j]היא מהצורה ש
ד $CP\left(S\left[i:\right],S\left[i+\frac{i+j}{2}:\right]\right)\geq\frac{i+j}{2}$ אם"ם $w\cdot w$ אם"ב אם הצורה א
 $S\left[i:j\right]$

$$\begin{split} S\left[i:j\right] &= w \cdot w \iff S\left[i:i+\frac{i+j}{2}\right] = w = S\left[i+\frac{i+j}{2}:j\right] \\ &\iff LCP\left(S\left[i:\right],S\left[i+\frac{i+j}{2}:\right]\right) \geq |w| = \frac{i+j}{2} \end{split}$$

כלומר מה שהאלגוריתם עשה הוא לעבור על כל תתי המחרוזות ולבדוק עבור כל אחת ב־ $O\left(1
ight)$ האם היא מהצורה $w\cdot w$ עם אותיות מ־S וסכם אם כן.

הערה: את הרעיון הכללי של הבונוס פתרתי ביחד עם עידן אורזך (לגבי המקרים שצריך להתייחס אליהם בלולאה).

אלגוריתם לבעיה:

- ($O\left(1\right)$) S מחרוזת (א)
- ($O\left(n\right)$) S את העיבוד המוקדם של בעית מנוע החיפוש עם המחרוזת (ב)
- נג) בהרצאה העיבוד המוקדם של בעית מנוע החיפוש בהרצאה $O\left(1\right)$ ב־ $CP\left(S\left[i:],S\left[j:\right]\right)$ של בעית מנוע החיפוש
 - t=0 משתנה (ד)

- (ה) לכל $k \leq n$ נעשה את הדבר הבא:
 - i=n נאתחל.i
- $w\cdot w$ מסרינג מהצורה עדכן (כלומר מצאנו סטרינג מהצורה , $LCP\left[S\left[i-2k:\right],S\left[i-k:\right]
 ight]\geq k$ אם אם שמתחיל מ־ |w|=k ו הצבה במה שראינו בחלק שלא בונוס)
 - LCP[S[i-2k:], S[i-k:]] = m < k .iii.
 - : נעדכן 2 מקרים ונחלק ל־i=i-(k-m) נעדכן. iv
- $w\cdot w$ מרינג מהצורה א'. אם t=t+1 , i=i-1 נעדכן געדכן , $LCP\left[S\left[i-2k:\right],S\left[i-k:\right]\right]=k$ שמתחיל מ־ i-2k ו־ i-2k
 - i=i-m' את געדכן את , $LCP\left[S\left[i-2k:\right],S\left[i-k:\right]
 ight]=m'$ ב'. אחרת
 - .ii כל עוד i > 1 נחזור לשלב .v
 - t את נחזיר את (ו)

 $m' \leq k - m$ תחילה נראה כי

ב־ m^\prime של LCP נסמן את הסטרינג שיש בחישוב ה

$$S[i-2k:] = a_1 \dots a_{k-m} x_1 \dots x_m b_1 \dots b_{k-m} x_1 \dots x_m c_1 \dots c_{k-m} \dots$$

m היה LCP שמאלה ה־ k-m שמאנו בי פעמיים כי מופיע פעמיים מופיע מופיע מופיע היה איזנו

 $a_1\dots a_{k-m}x_1\dots x_m=$ עתה נניח כי $a_1\dots a_{k-m}=b_1\dots b_{k-m}$, כלומר ה $a_1\dots a_{k-m}=b_1\dots b_{k-m}$, כלומר ב $a_1\dots a_{k-m}x_1\dots x_m=b_1\dots b_{k-m}$, כלומר ה $a_1\dots a_{k-m}x_1\dots x_m$

 $LCP\left(S\left[i-2k:\right],S\left[i-k:\right]
ight) \leq k-m$ או שי $LCP\left(S\left[i-2k:\right],S\left[i-k:\right]
ight) = k$ כלומר

נשים לב שכמות הפעמים שנגיע ל־ ה' ii הוא $O(n\log(n))$ מהנתון שיש לכל היותר $O(n\log(n))$ תתי מחרוזות מהצורה ii הוא ii

 $O\left(n\log\left(n
ight)
ight)$ א' הוא iv ל־ ה' שנגיע שנגיע הפעמים שנגיע ל־ ה' באופן

נשים לב שבשאר הפעמים נגיע ל־ ה' iv ב' ובמקרה זה קידמנו את i בהתחלה הk-mולאחר מכן ב־ iv ל־ ה' ולכן קידמנו אותו -

$$k-m+(k-m') \ge k-m+(k-(k-m)) = k-m+m = k$$

 $O\left(\sum_{k=1}^n \frac{n}{k}\right) = 0$ באיטרציה ה' לכל גיע ל' v ל' לי v ל' לי v ל' פעמים באיטרציה ה' לכל היותר איטרציה ה' לכל היותר פעמים באיטרציה ה' לכל היותר $O\left(n\cdot\sum_{k=1}^n \frac{1}{k}\right) = O\left(n\log\left(n\right)\right)$

, $O\left(n\log\left(n\right)\right) + O\left(n\log\left(n\right)\right) + O\left(n\log\left(n\right)\right) = O\left(n\log\left(n\right)\right)$ כלומר מספר האיטרציות של הלולאות יהיה לכל היותר $O\left(n\log\left(n\right)\right)$ כי בכל איטרציה עושים $O\left(n\log\left(n\right)\right)$ חישובים והעיבוד המוקדם הוא לכן זמן הריצה של האלגוריתם הוא לכל היותר $O\left(n\log\left(n\right)\right)$ כי בכל איטרציה עושים $O\left(n\log\left(n\right)\right)$ הישובים והעיבוד המוקדם הוא $O\left(n\log\left(n\right)\right)$.

i נשאר להוכיח שאם k-m ל־ $w\cdot w$ ל־ מבא סטרינג מהצורה לא נמצא לר ברונית שמאלה של $LCP\left(S\left[i-2k\right],S\left[i-k\right]\right)=m< k$ לא היה בדיוק יהי i, נסמן $b_1 \neq c_1$ (אחרת ה־ i) לא היה בדיוק i) לא היה בדיוק i) ויכל להיות i).

, $S\left[(i-j)-2k:
ight]=a_1\ldots a_jx_1\ldots x_mb_1\ldots b_{k-m}x_1\ldots x_mc_1\ldots c_{k-m}$ יהי ,j< k-m נשים לב כי

$$S[i-j-2k:i-j-k] = a_1 \dots a_j x_1 \dots x_m b_1 \dots b_{k-m-j}$$

$$S[i-j-k:i-j] = b_{k-m-j} \dots b_{k-m} x_1 \dots x_m c_1 \dots c_{k-m-j}$$

התו ה־m+j+1 בהם שונה כי באחד זה b_1 ובשני זה c_1 ולכן הם לא מהצורה $w\cdot w$ עבור m+j+1 כנדרש. כלומר במקרה שבו m+j+1 לא נמצא סטרינג מהצורה m+j+1 לא נמצא השלה של $CP\left(S\left[i-2k\right],S\left[i-k\right]\right)=m < k$ המקרים התקדמנו לבדוק את הסטרינג הבא.

מ.ש.ל.ⓒ

$O\left(n^{2}\right)$ ב"ל: אלגוריתם לבעיה ב־ 2

הוכחה:

תזכורת: שאילתה של בעית מנוע החיפוש מוצאת את המקסימום של ה־ LCP בין המחרוזת בעיבוד המוקדם למחרוזת הנתונה אלגוריתם לבעיה:

```
( O\left(1\right) ) S_{1},S_{2} מחרוזות נקבל מחרוזות (א)
```

($O\left(n\right)$) S_{1} את העיבוד המוקדם של בעית מנוע החיפוש עם המחרואת (ב)

bestString = ", maxLCP = 0 (ג) (ג)

i < i < n (ד) לכל

נחשב את השאילתה של $S_2[i:]$ של בעית מנוע החיפוש (O(n) עם העיבוד המוקדם של $S_2[i:]$, נשמור את האינקס .i (j=k בסוף ב־ $S_2[i:]$ ל־ $S_1[i:]$ ל־ $S_1[i:]$ ל-

($O\left(n\right)$) $currLCP = LCP\left(S_{1}\left[j:\right], S_{2}\left[i:\right]\right)$.ii

:maxLCP < currLCP אם .iii

maxLCP = currLCP .'א

 $bestString = S_2 [i:i+currLCP]$.'ב

.bestString ה) נחזיר את

. נשים לב שזמן הריצה הוא $O\left(1
ight) + O\left(n
ight) + n \cdot O\left(n
ight) + O\left(1
ight) = O\left(n^2
ight)$, כנדרש

עתה מדוע האלגוריתם עובד?

 $maxLCP = \max_{1 \leq k \leq n, 1 \leq l \leq n} LCP\left(S_{2}\left[l:\right], S_{1}\left[k:\right]\right)$ נסמן

 $maxLCP = \max_{1 \le k \le n} LCP\left(S_2\left[i:\right], S_1\left[k:\right]\right)$ נסמן ב־ i את האינדקס המינימלי המקיים

נשים לב שבאיטרציה ה־ i של האלגוריתם, הוא יימצא את $S_2\left[i:i+maxLCP\right]$ מנכונות השאילתה של בעית מנוע החיפוש. $S_2\left[i:i+maxLCP\right]$ תשמר ב־ $S_2\left[i:i+maxLCP\right]$ מהיות ו־ i הוא האינדקס המינימלי שמגיע לערך maxLCP, המחרוזת i הוא ה־ i האינדקס המינימלי שמגיע לערך i יהיה קטן מ־ i של ולכן לא נעדכן את ה־ i בכל איטרציה לאחר מכן, ה־ i

. לכן המחרוזת שתוחזר מהאלגוריתם היא $S_2\left[i:i+maxLCP
ight]$ המקסימלי.

עתה נסמן את המחרוזת המשותפת המקסימלית של S_1 ו־ S_2 ב־ S_3 ולכן מתקיים כי $s=S_2$ עבור $s=S_2$ עבור $s=S_2$ ולכן

$$\max_{1 \le k \le n} LCP(S_{2}[i:], S_{1}[k:]) = \max_{1 \le k \le n, 1 \le l \le n} LCP(S_{2}[l:], S_{1}[k:])
\geq \max_{1 \le k \le n} LCP(S_{2}[m:p], S_{1}[k:])
\geq |s|$$

 $|S_2\left[i:i+maxLCP
ight]|=maxLCP\geq |s|$ כלומר הראנו כי

עתה נשים לב כי S_1 בית מנוע החיפוש מחרוזת שמופיעה גם בי S_2 מנכונות השאילתה של בעית מנוע החיפוש ולכן $|s| \geq |S_2$ [i:i+maxLCP] נקבל כי $|s| \geq |S_2$ [i:i+maxLCP]

לכן קיבלנו כי $|s|=|S_2$ וו S_2 וווח כלומר המחרוזת שהחזרנו היא היא גם מחרוזת משותפת ל־ S_2 וווח באורך לכן קיבלנו כי $|s|=|S_2|$ ווח באלגוריתם, כנדרש.

מ.ש.ל.☺