The Ball Problem - Editorial

Difficulty:

Medium - Hard

Prerequisites:

Combinatorics
Divide and Conquer - (<u>Tutorial</u>)
Fast Fourier Transform - (<u>Tutorial</u>)
Generating Function - (<u>Tutorial</u>)

Problem in Brief:

Given an Array A, and a number K, count the different possible ways to choose K elements from A. Two ways are considered different if count of elements is different in them for any element.

Editorial:

We can convert this problem to a combinatorial one. Notice that the equation $X_1 + X_2 + \dots + X_{200000} = N$ where X_i is the number of balls with color i that we choose is the solution to our problem.

If we could choose as many balls of any color that we wanted then the solution would be C(N + K - 1, K) where C(i, j) is the binomial coefficient which is the number of ways to choose j objects from the given i objects. But we have a restriction:

Let L_i be the count of ball colored i in the given N balls. The restriction $X_i \le L_i$ should be followed for all i colors.

To overcome this restriction we will use Generating Functions.

The Ball Problem - Editorial

The solution to our problem is the coefficient of X^{K} in the following polynomial:

$$(X^0 + X^1 + X^2 + X^3 + \dots X^{L-1}) * (X^0 + X^1 + X^2 + X^3 + \dots X^{L-2}) * (X^0 + X^1 + X^2 + X^3 + \dots X^{L-3}) * \dots (X^0 + X^1 + X^2 + X^3 + \dots X^{L-200000})$$

Now to actually find this polynomial we will use Fast Fourier Transform. Notice that if we multiply the polynomials 1 by 1, The complexity will become $O(N^2 * log(N))$ which is not useful for us.

To find this polynomial efficiently we will use Divide And conquer: For a given (L, R)

We will find polynomials (L, mid) and (mid + 1, R)

And multiply them using Fast Fourier Transform to obtain our answer. In the base case we will return the polynomial with all coefficients = 1 till freq[elem] where elem is the value of the element being considered in the base case and freq[x] is the number of times x appears in the N balls.

We finally return the Kth coefficient in polynomial of (1, 200000) as our answer.

Time Complexity:

 $O(N * log^2(N))$

Similar Problems:

First Second Third