Adaptive Importance Sampling meets Mirror Descent: a Bias-variance tradeoff

Anna Korba¹ François Portier²
¹ENSAE, CREST, ²ENSAI, CREST

AISTATS 2022

Contributions of the paper

Problem : sample from a target distribution f over \mathbb{R}^d , whose density is typically known only up to a normalization constant, to compute quantities of the form $\int_{\mathbb{R}^d} gf$.

Contributions of the paper

Problem : sample from a target distribution f over \mathbb{R}^d , whose density is typically known only up to a normalization constant, to compute quantities of the form $\int_{\mathbb{R}^d} gf$.

Adaptive Importance Sampling (AIS) is one increasingly popular way to tackle this problem, whose idea is to sample from an alternative, simpler proposal probability density q_k at time k of the algorithm to approximate f.

In this paper, we propose a new non parametric AIS method, that

- ▶ (i) introduces a new regularization strategy which raises adaptively the importance sampling weights to a certain power ranging from 0 to 1
- ► (ii) uses a mixture between a kernel density estimate of the target and a safe reference density as proposal.

Naive Importance Sampling

Let X a random variable with distribution q dominating f. The basic idea of IS is to re-weight g(X) by the importance weight W(X) = f(X)/q(X).

Since $\mathbb{E}[W(X)g(X)]=\int gf$ and using i.i.d. samples $X_1,\dots,X_n\sim q$, one can build an (unbiased) IS estimator of $\int gf$ as

$$\int gf \approx \frac{1}{n} \sum_{k=1}^n \frac{f(X_k)}{q(X_k)} g(X_k) = \frac{1}{n} \sum_{k=1}^n W(X_k) g(X_k).$$

Remark: if f is known up to a normalization constant, use normalized weights $\sum_{k=1}^{n} W(X_k)g(X_k)/\sum_{k=1}^{n} W(X_k)$.

Problem: if q is far from the target f, the importance weights may have a large variance (hence the IS estimator as well)!

Idea: use regularized weights of the form $W(X)^{\eta}$, $\eta \in (0,1)$.

Idea: use regularized weights of the form $W(X)^{\eta}$, $\eta \in (0,1)$.

```
Lemma: Suppose that q dominates f and define W(X) = f(X)/q(X) with X having density q. For all \eta \in (0,1]: \mathbb{E}[W(X)^{\eta}] \leq 1 and \mathrm{Var}[W(X)^{\eta}] \leq \mathrm{Var}[W(X)].
```

Idea: use regularized weights of the form $W(X)^{\eta}$, $\eta \in (0,1)$.

Lemma: Suppose that q dominates f and define W(X) = f(X)/q(X) with X having density q. For all $\eta \in (0,1]$: $\mathbb{E}[W(X)^{\eta}] \leq 1$ and $Var[W(X)^{\eta}] \leq Var[W(X)]$.

Remarks:

- ightharpoonup choosing η enables to balance bias and variance!
- $\mathbb{E}[W(X)^{\eta}g(X)] = \int f^{\eta}q^{1-\eta}g$

Hence, regularized IS moves from the initial density q to the target density $f^{\eta}q^{1-\eta}$ (=f if $\eta=1$).

Idea: use regularized weights of the form $W(X)^{\eta}$, $\eta \in (0,1)$.

Lemma: Suppose that q dominates f and define W(X) = f(X)/q(X) with X having density q. For all $\eta \in (0,1]$: $\mathbb{E}[W(X)^{\eta}] \leq 1$ and $Var[W(X)^{\eta}] \leq Var[W(X)]$.

Remarks:

- ightharpoonup choosing η enables to balance bias and variance!
- $\mathbb{E}[W(X)^{\eta}g(X)] = \int f^{\eta}q^{1-\eta}g$

Hence, regularized IS moves from the initial density q to the target density $f^{\eta}q^{1-\eta}$ (=f if $\eta=1$).

Additional Remarks:

- ▶ different from simulated annealing (f^{η}/q) instead of $(f/q)^{\eta}$
- \blacktriangleright it corresponds to mirror descent with step-size η_k :

$$q_{k+1} \propto q_k^{1-\eta_k} f^{\eta_k}$$

Safe and Regularized Adaptive Importance Sampling

We propose an *Adaptive Importance Sampling* (AIS) method which uses a sequence of proposals $(q_k)_{k\geq 0}$.

More specifically, as in [Delyon and Portier, 2021] we choose:

$$q_k = (1 - \lambda_k)f_k + \lambda_k q_0, \quad \forall k > 1$$

i.e. a mixture between

- a safe density q₀ (with heavy tails compared to f), preventing too small values of q_k and high variance of IS weights.
- ▶ a **KDE estimate** f_k of the target f, accelerating the convergence to f

$$f_k(x) = \sum_{j=1}^k W_{k,j}^{(\eta_j)} K_{h_k}(x - X_j), \quad \forall x \in \mathbb{R}^d,$$

where for all j = 1, ..., k:

$$W_{k,j}^{(\eta_j)} \propto W_j^{\eta_j} = \left(\frac{f(X_j)}{q_{j-1}(X_j)}\right)^{\eta_j}, \qquad \sum_{j=1}^k W_{k,j}^{(\eta_j)} = 1.$$

SRAIS algorithm

Algorithm 1 Safe and Regularized Adaptive Importance sampling (SRAIS)

Inputs: The safe density q_0 , the sequences of bandwidths $(h_k)_{k=1,...,n}$, mixture weights $(\lambda_k)_{k=1,...,n}$, learning rates $(\eta_k)_{k=1,...,n}$.

For k = 0, 1, ..., n - 1:

- (i) Generate $X_{k+1} \sim q_k$.
- (ii) Compute (a) $W_{k+1} = f(X_{k+1})/q_k(X_{k+1})$ and (b) $(W_{k+1,j}^{(\eta_j)})_{1 \le j \le k+1}$.
- (iii) Return $q_{k+1} = (1 \lambda_{k+1}) f_{k+1} + \lambda_{k+1} q_0$ where $f_{k+1} = \sum_{j=1}^{k+1} W_{k+1,j}^{(\eta_j)} K_{h_{k+1}} (\cdot X_j)$.

Remark: this algorithm can be used with a batch of m_k particles at each k.

SRAIS as stochastic approximation of mirror descent

Notice that

$$f_k(x) = \sum_{j=1}^k W_{k,j}^{(\eta_j)} K_{h_k}(x - X_j)$$

is a stochastic approximation of the mirror descent iteration $q_{k+1}^* \propto (q_k^*)^{1-\eta_k} f^{\eta_k}$. Indeed,

$$\mathbb{E}_{X_{j} \sim q_{j}}[W_{j}^{\eta_{j}} K_{h_{k}}(x - X_{j})] = (f^{\eta_{j}} q_{j-1}^{1-\eta_{j}} \star K_{h_{k}})(x),$$

which approximates $f^{\eta_j}q_{j-1}^{1-\eta_j}$ when the bandwidth h_k is small.

Uniform convergence of the scheme

- (A₁)(i) The sequence $(\lambda_k)_{k\geq 1}$ is valued in (0,1], nonincreasing, and $\lim_{k\to\infty}\lambda_k=0$ and $\lim_{k\to\infty}\log(k)/(k\lambda_k)=0$.
 - (ii) The sequence $(h_k)_{k\geq 1}$ is valued in \mathbb{R}^+ , nonincreasing, and $\lim_{k\to\infty} h_k = 0$ and $\lim_{k\to\infty} \log(k)/(kh_k^d\lambda_k) = 0$.
 - (iii) The sequence $(\eta_k)_{k\geq 1}$ is valued in (0,1], and $\lim_{k\to\infty}\eta_k=1$, $\lim_{k\to\infty}(1-\eta_k)\log(h_k)=0$ and $\lim_{k\to\infty}(1-\eta_k)\log(\lambda_{k-1})=0$.
- (A₂) The density q_0 is bounded and there exists c>0 such that for all $x\in\mathbb{R}^d$, $q_0(x)\geq cf(x)$.
- (A₃) The function f is nonnegative, L-Lipschitz and bounded by $U \in \mathbb{R}^+$.
- (A₄) $\int K = 1$, $\int \|u\| K(u) du < \infty$, $\int K^{1/2} < \infty$ and $\int \|u\| K(u)^{1/2} du < \infty$. The kernel K is bounded by $K_{\infty} \geq 0$ and is L_K -Lipschitz with $L_K > 0$, i.e. :

$$|K(x+u) - K(x)| \le L_K ||u||$$
 for all $x, u \in \mathbb{R}^d$.

Proposition: Assume **A1-A4**. Then, for any r > 0:

$$\sup_{|x|| < k'} |f_k(x) - f(x)| \to 0 \quad \text{as } k \to \infty \text{ a.s.}$$

Adaptive Choice of Regularization (RAR)

Our conditions for uniform convergence require that the sequence $(\eta_k)_{k\geq 1}$ converges to 1. We propose an adaptive way to construct it.

Adaptive Choice of Regularization (RAR)

Our conditions for uniform convergence require that the sequence $(\eta_k)_{k\geq 1}$ converges to 1. We propose an adaptive way to construct it.

Idea: Draw m_k i.i.d samples $X_{k,1}, \ldots, X_{k,m_k}$ from q_{k-1} .

Let
$$\mathbb{P}=\sum_{l=1}^{m_k}W_{k,l}\delta_{X_{k,l}}$$
 and $\mathbb{Q}=\sum_{l=1}^{m_k}rac{1}{m_k}\delta_{X_{k,l}}$

the reweighted and uniform distribution on the particles.

$$\Longrightarrow$$
 If $q_{k-1}=f$, IS weights = 1 and $\mathbb{P}=\mathbb{Q}$.

 \Longrightarrow penalize the divergence between $\mathbb P$ and $\mathbb Q!$

Adaptive Choice of Regularization (RAR)

Our conditions for uniform convergence require that the sequence $(\eta_k)_{k\geq 1}$ converges to 1. We propose an adaptive way to construct it.

Idea: Draw m_k i.i.d samples $X_{k,1}, \ldots, X_{k,m_k}$ from q_{k-1} .

Let
$$\mathbb{P}=\sum_{l=1}^{m_k}W_{k,l}\delta_{X_{k,l}}$$
 and $\mathbb{Q}=\sum_{l=1}^{m_k}rac{1}{m_k}\delta_{X_{k,l}}$

the reweighted and uniform distribution on the particles.

$$\Longrightarrow$$
 If $q_{k-1}=f$, IS weights = 1 and $\mathbb{P}=\mathbb{Q}$.

 \Longrightarrow penalize the divergence between \mathbb{P} and $\mathbb{Q}!$

We propose to use Renyi's α -divergences and set:

$$\eta_{k,\alpha} = 1 - \frac{D_{\alpha}(\mathbb{P}||\mathbb{Q})}{\log(m_k)}, \text{ where } D_{\alpha}(\mathbb{P}||\mathbb{Q}) = \frac{1}{\alpha - 1} \log \left(\sum_{\ell = 1}^{m_k} W_{k,\ell}^{\alpha} m_k^{\alpha - 1} \right).$$

Prop: $\lim_{k\to\infty} \eta_{k,\alpha} \to 1$ (in L^1) if $\lim_{k\to\infty} |q_k(x) - f(x)| = 0$ a.e.

Toy Experiments

Figure: Logarithm of the average squared error for SRAIS for constant values of η or Adaptive η , over 50 replicates. 4×10^4 particles sampled from initial density, then $m_k = 18 \times 10^3$ particles from q_k at each $k \ge 1$.

Different target densities ($\phi_{\Sigma} = \mathcal{N}(0_d, \Sigma)$), initial densities have different means/variance than the target:

- ► "Cold Start" $f_1(x) = \phi_{\Sigma}(x 5\mathbf{1}_d/\sqrt{d}), \Sigma = (0.16/d)\mathbf{I}_d$
- ► "Gaussian Mixture" $f_2(x) = 0.5\phi_{\Sigma}(x \mathbf{1}_d/(2\sqrt{d})) + 0.5\phi_{\Sigma}(x + \mathbf{1}_d/(2\sqrt{d}))$
- ► "Anisotropic Gaussian Mixture" $f_3(x) = 0.25\phi_V(x \mathbf{1}_d/(2\sqrt{d})) + 0.75\phi_V(x + \mathbf{1}_d/(2\sqrt{d})),$ $V = (.4/\sqrt{d})^2 \text{diag}(10, 1, ..., 1)$

Evolution of Adaptive Regularization

Figure: Boxplot of the values of $(\eta_{k,\alpha})_{k\geq 1}$ obtained from RAR (Adaptive η), with $\alpha=0.5$.

- ▶ at the beginning of the algorithm when the policy is poor, the value of η_k is automatically set to a small value (leading to a uniformization of the weights)
- when the policy becomes better the value of $\eta_{k,\alpha}$ converges to 1.

Bayesian Logistic Regression (Waveform dataset, 5000 datapoints in d = 22)

Figure: Left plot: Average accuracy over 100 trials of different learning policies $(\eta_{k,\alpha})_{k\geq 1}$ for Bayesian Logistic Regression on the Waveform dataset. Right plot: Averaged values of the learning policy $(\eta_{k,\alpha})_{k\geq 1}$ associated to each choice of α .

- a proper tuning of the parameter α allows us to outperform (η_k)_{k≥1} constant and equal to 1
- the case $\alpha = 0.2$ yielding the best results here overall in terms of speed and accuracy

Conclusion

Contributions:

- We proposed a new algorithm for Adaptive Importance Sampling, that regularizes the importance weights by raising them to a certain power
- This algorithm is related to mirror descent on the space of probability distributions
- It enjoys a uniform convergence guarantee under mild assumptions on the target, safe density, and hyperparameters
- lacktriangle It outperforms numerically constant values of η

Future work:

- Non-asymptotic analysis of the scheme
- Adaptive schedules for other hyperparameters

Thank you!

References I

