D208

January 3, 2022

1 D208 Task 1 Multiple Regression for Predictive Modeling

- 1.1 Malcolm Mikkelsen
- 1.2 MSDA
- 1.3 D208: Predictive Modeling
- 1.4 28 November, 2021

2 Part 1: Research Question

2.1 Summarize a Research Question and Define Objectives of Analysis

The research question we will investigate is: using multiple continuous and categorical variables, can we accurately predict the cost to the patient of their initial admission? The goal of this analysis will be to allow stakeholders to examine variables that impact the cost of admission, which may increase the likelihood of a patient leaving before their condition has fully improved.

3 Part 2: Method Justification

3.1 Assumptions of Multiple Regression Models

The first assumption of any linear regression, including multiple regression models, is that the relationship between the dependent and independent variables is linear. Next, we assume that the independent variables are not too closely related between one another. The final two assumptions are that the residuals are normally distributed, and that the data is randomly selected from the population (Shin, 2021).

3.2 Benefits of Python Programming Language

I have selected Python for several reasons. It is one of the most highly utilized programming languages within analytics, meaning that there is an abundance of resources for it online and in text. It is a flexible coding language that allows for us to import several beneficial packages in, including numpy, scikit, and pandas which are used during this project (Larose, 2019).

3.3 Why Use Multiple Regression Modeling

By using multiple regression modeling techniques, we can better account for a multitude of factors impacting our outcome we desire. Instead of assuming that there is only one independent variable to manipulate, we can get a fuller picture of what is impacting the outcome. This is beneficial,

because as we often see in business, it is rarely just one factor. Multiple regression is also a preferred method when our output, or dependent variable, is a continuous variable.

4 Part 3: Data Preparation

4.1 Describe Techniques

We will clean the data using the following steps. First, we will identify null values and outliers and address them through multiple methods including counting the number of null values as described by the Big Data Zone (Needham, 2019). We will then replace null values by inputting the mean value of continuous variables. We will assume for categorical questions, that the patient not responding means the question did not apply to them meaning we will input no as their answer. Then we will drop data that presents as an unexplainable outlier. For cost of stay we will allow the outliers to remain due to the variability in cost depending on what procedures they had done during their stay. Then we will recast all categorical data using dictionaries. For yes/no binary variables to be 0 for no and 1 for yes. (Pandas Development Team, 2008)

In order to improve speed of analysis and decrease the possibility of utilizing the wrong data, I will create a new Data Frame named desired medical data(dmd) to perform the regression modeling on.

4.2 Summary Statistics and Choosing Predictors

When performing the analysis, we will be looking at a large number of predictor variables. The variables were chosen based on whether they could logically require treatment that may increase cost of admission. The continuous variables include days of initial admission, income, age, number of full meals eaten, and the number of doctor visits. The categorical variables are gender, whether Vitamin D supplementation was administered, whether the following conditions were present: high blood pressure, previous stroke, overweight, arthritis, diabetes, hyperlipidemia, back pain, anxiety, allergic rhinitis, asthma, and reflux esophagitis.

4.3 Univariate and Bivariate Visualizations

I will generate a histogram for each predictor to show the distribution of each. For the bivariate statistics I will only be creating visualizations for the continuous variables. This is because categorical data will present lines of points at each of the possible answers, and do not provide any insight into the data.

4.4 Save Cleaned Data

Below is the code for importing the libraries, creating the new dataframe, identifying and addressing outliers, and for creating the visualizations of univariate and bivariate statistics. Lastly the data file will be saved as clean_data_208 and will be uploaded with the submission.

5 Data Cleaning

```
[1]: # Load in data set and libraries
import pandas as pd
import numpy as np
import seaborn as sns

md = pd.read_csv('medical_raw_data.csv')
#md.columns.tolist()
md.dtypes
```

```
[1]: Unnamed: 0
                              int64
     CaseOrder
                              int64
     Customer_id
                             object
     Interaction
                             object
    UID
                             object
     City
                             object
     State
                             object
     County
                             object
                              int64
     Zip
     Lat
                            float64
                            float64
     Lng
     Population
                              int64
     Area
                             object
     Timezone
                             object
     Job
                             object
     Children
                            float64
     Age
                            float64
     Education
                             object
     Employment
                             object
     Income
                            float64
     Marital
                             object
     Gender
                             object
     ReAdmis
                             object
     VitD_levels
                            float64
     Doc_visits
                              int64
     Full_meals_eaten
                              int64
     VitD_supp
                              int64
     Soft_drink
                             object
     Initial_admin
                             object
     HighBlood
                             object
     Stroke
                             object
     Complication_risk
                             object
     Overweight
                            float64
     Arthritis
                             object
     Diabetes
                             object
```

```
BackPain
                            object
     Anxiety
                           float64
     Allergic_rhinitis
                            object
    Reflux_esophagitis
                            object
     Asthma
                            object
     Services
                            object
     Initial_days
                           float64
     TotalCharge
                           float64
     Additional_charges
                           float64
                             int64
     Item1
     Item2
                             int64
     Item3
                             int64
     Item4
                             int64
     Item5
                             int64
     Item6
                             int64
     Item7
                             int64
     Item8
                             int64
     dtype: object
[2]: #create new dataframe with needed columns
     dmd = md[['Age', 'Income', 'Gender', 'Doc_visits', 'Full_meals_eaten',
      →'VitD_supp', 'HighBlood', 'Stroke',
              'Complication_risk', 'Overweight', 'Arthritis', 'Diabetes', |
      →'Hyperlipidemia', 'BackPain', 'Anxiety',
              'Allergic_rhinitis', 'Reflux_esophagitis', 'Asthma', 'Initial_days', |
      → 'TotalCharge', 'VitD_levels']].copy()
[3]: # Recast Gender
     dict_gender = {'Gender':{'Male': 1, 'Female': 2, 'Prefer not to answer':'3'}}
     dmd.replace(dict_gender, inplace=True)
[4]: #High blood pressure
     dict_bp = {'HighBlood':{ 'Yes' : 1, 'No': 0, 'NA': np.NaN}}
     dmd.replace(dict_bp, inplace = True)
[5]: #Stroke
     dict_stroke = {'Stroke':{ 'Yes' : 1, 'No': 0, 'NA': np.NaN}}
     dmd.replace(dict_stroke, inplace = True)
[6]: #Complication Risk
     dict_comp = {'Complication_risk':{'Low': 1, 'Medium': 2, 'High': 3}}
     dmd.replace(dict_comp, inplace = True)
[7]: # Athritis
     dict_ath = {'Arthritis':{'Yes' : 1, 'No': 0, 'NA': np.NaN}}
     dmd.replace(dict_ath, inplace = True)
```

Hyperlipidemia

object

```
[8]: #Diabetes
      dict_dia = {'Diabetes':{'Yes' : 1, 'No': 0, 'NA': np.NaN}}
      dmd.replace(dict_dia, inplace = True)
 [9]: #Hyperlipidemia
      dict_hype = {'Hyperlipidemia':{'Yes': 1, 'No': 0, 'NA': np.NaN}}
      dmd.replace(dict_hype, inplace = True)
[10]: #Back Pain
      dict_back = {'BackPain':{'Yes': 1, 'No': 0, 'NA': np.NaN}}
      dmd.replace(dict_back, inplace = True)
[11]: #Allergic Rhinitis
      dict_aller = {'Allergic_rhinitis':{'Yes': 1, 'No': 0, 'NA': np.NaN}}
      dmd.replace(dict_aller, inplace = True)
[12]: # Reflux Esophagitis
      dict_ref = {'Reflux_esophagitis':{'Yes': 1, 'No': 0, 'NA': np.NaN}}
      dmd.replace(dict ref, inplace = True)
[13]: #Asthma
      dict ast = {'Asthma': {'Yes': 1, 'No': 0, 'NA': np.NaN}}
      dmd.replace(dict_ast, inplace = True)
     5.1 Null Value Check and Correction
[14]: # Verify that there are no null values
      dmd_null = dmd.isnull().sum()
      print(dmd_null)
                           2414
     Age
                           2464
     Income
     Gender
                              0
     Doc_visits
                              0
     Full_meals_eaten
                              0
     VitD_supp
                              0
     HighBlood
                              0
     Stroke
                              0
     Complication_risk
                              0
     Overweight
                            982
     Arthritis
                              0
     Diabetes
                              0
     Hyperlipidemia
                              0
     BackPain
                              0
     Anxiety
                            984
     Allergic_rhinitis
                              0
     Reflux_esophagitis
                              0
     Asthma
                              0
```

```
dtype: int64

[15]: # Replace categorical nulls with 0
    dmd.Anxiety.fillna(0, inplace = True)
    dmd.Overweight.fillna(0, inplace = True)

#Check to make sure the nulls were replaced
    null_columns=dmd.columns[dmd.isnull().any()]
    dmd[null_columns].isnull().sum()
```

1056

0

0

Initial_days

TotalCharge

VitD_levels

[16]: #Replace remaining Null values with the mean value of the column
 dmd['Age'] = dmd['Age'].fillna((dmd['Age'].mean()))
 dmd['Initial_days'] = dmd['Initial_days'].fillna((dmd['Initial_days'].mean()))
 dmd['Income'] = dmd['Income'].fillna((dmd['Income'].mean()))
 #Check to make sure the nulls were replaced
 null_columns=dmd.columns[dmd.isnull().any()]
 dmd[null_columns].isnull().sum()

[16]: Series([], dtype: float64)

6 Outlier Check

```
[17]: #Using a boxplot to identify outliers in the rows most likely to contain them dmd.boxplot(['Age', 'Doc_visits', 'Initial_days', 'Full_meals_eaten'])
```

[17]: <AxesSubplot:>

6.1 Summary Statistics

	^	т.			
	Age	Income		Full_meals_eaten	\
count	10000.000000	10000.000000		10000.000000	
mean	53.295676	40484.438268	5.012200	1.001400	
std	17.993375	24883.598484	1.045734	1.008117	
min	18.000000	154.080000	1.000000	0.000000	
25%	41.000000	23956.162500	4.000000	0.000000	
50%	53.295676	40484.438268	5.000000	1.000000	
75%	65.000000	46466.797500	6.000000	2.000000	
max	89.000000	207249.130000	9.000000	7.000000	
	${\tt VitD_supp}$	${ t HighBlood}$	Stroke	Complication_risk	\
count	10000.000000	10000.000000	10000.000000	10000.000000	
mean	0.398900	0.409000	0.199300	2.123300	
std	0.628505	0.491674	0.399494	0.730172	
min	0.00000	0.000000	0.000000	1.000000	
25%	0.00000	0.000000	0.000000	2.000000	
50%	0.000000	0.000000	0.000000	2.000000	
75%	1.000000	1.000000	0.000000	3.000000	
max	5.000000	1.000000	1.000000	3.000000	

count	10000.00000	10000.000000	10000.00000	10000.0000	00 10000.000000
mean	0.63950	0.357400	0.27380	0.3372	00 0.411400
std	0.48017	0.479258	0.44593	0.4727	77 0.492112
min	0.00000	0.000000	0.00000	0.0000	0.00000
25%	0.00000	0.000000	0.00000	0.0000	0.00000
50%	1.00000	0.000000	0.00000	0.0000	0.00000
75%	1.00000	1.000000	1.00000	1.0000	00 1.000000
max	1.00000	1.000000	1.00000	1.0000	00 1.000000
	Anxiety	o –		x_esophagitis	Asthma \
count	10000.000000	10000.00		10000.000000	10000.00000
mean	0.290600		94100	0.413500	0.28930
std	0.454062	0.48	38681	0.492486	0.45346
min	0.000000	0.00	00000	0.000000	0.00000
25%	0.000000	0.00	00000	0.000000	0.0000
50%	0.000000	0.00	00000	0.000000	0.0000
75%	1.000000	1.00	00000	1.000000	1.00000
max	1.000000	1.00	00000	1.000000	1.00000
	T 7 1	m . 101	W. D. J.	1	
	Initial_days	TotalCharge	_		
count	10000.000000	10000.000000	10000.00000		
mean	34.432082	5891.538261	19.4126		
std	24.860232	3377.558136	6.7232	77	
min	1.001981	1256.751699	9.5190	12	
25%	8.928987	3253.239465	16.51317	71	
50%	34.432082	5852.250564	18.08056	30	
75%	59.459981	7614.989701	19.78974	10	
max	71.981486	21524.224210	53.01912	24	

6.2 Univariate Statistics

```
[19]: #Run a histogram to see distribution of predictor variables
      dmd[['TotalCharge']].hist()
      dmd[['Doc_visits']].hist()
      dmd[['Age']].hist()
      dmd[['VitD_supp']].hist()
      dmd[['Overweight']].hist()
      dmd[['HighBlood']].hist()
      dmd[['Diabetes']].hist()
      dmd[['Hyperlipidemia']].hist()
      dmd[['Age']].hist()
      dmd[['Income']].hist()
      dmd[['Doc_visits']].hist()
      dmd[['Full_meals_eaten']].hist()
      dmd[['Stroke']].hist()
      dmd[['Complication_risk']].hist()
      dmd[['Arthritis']].hist()
```

```
dmd[['BackPain']].hist()
dmd[['Anxiety']].hist()
dmd[['Allergic_rhinitis']].hist()
dmd[['Reflux_esophagitis']]
dmd[['Asthma']].hist()
dmd[['Initial_days']].hist()
dmd[['TotalCharge']].hist()
```

C:\Users\Mikke\Anaconda3\lib\site-

packages\pandas\plotting_matplotlib\tools.py:196: RuntimeWarning: More than 20
figures have been opened. Figures created through the pyplot interface
(`matplotlib.pyplot.figure`) are retained until explicitly closed and may
consume too much memory. (To control this warning, see the rcParam
`figure.max_open_warning`).
 fig = plt.figure(**fig_kw)

[19]: array([[<AxesSubplot:title={'center':'TotalCharge'}>]], dtype=object)

6.3 Bivariate Statistics

[20]: <AxesSubplot:xlabel='Initial_days', ylabel='TotalCharge'>

[21]: <AxesSubplot:xlabel='Age', ylabel='TotalCharge'>

[22]: <AxesSubplot:xlabel='Doc_visits', ylabel='TotalCharge'>

[23]: <AxesSubplot:xlabel='Initial_days', ylabel='TotalCharge'>

[24]: <AxesSubplot:xlabel='Income', ylabel='TotalCharge'>

[25]: <AxesSubplot:xlabel='Age', ylabel='TotalCharge'>

[26]: <AxesSubplot:xlabel='Full_meals_eaten', ylabel='TotalCharge'>

[27]: <AxesSubplot:xlabel='Doc_visits', ylabel='TotalCharge'>

6.4 Save Data File

[29]: # Import OlS

model.params

```
[28]: dmd.to_csv('clean_data_208.csv')
```

7 Part IV: Model Comparison and Analysis

7.1 D1: Initial Model Code

```
from statsmodels.formula.api import ols

[30]: # Create our initial model and fit a line
model = ols('TotalCharge ~ Initial_days + Income + VitD_supp + Hyperlipidemia +

→Age + Overweight + HighBlood + Diabetes + BackPain + Asthma + Stroke +

→Arthritis + Reflux_esophagitis + Complication_risk + Full_meals_eaten +

→Anxiety', dmd).fit()
```

Overweight	-37.108550
HighBlood	158.137647
Diabetes	-23.418812
BackPain	93.422118
Asthma	76.993745
Stroke	-102.492442
Arthritis	75.883999
Reflux_esophagitis	36.249863
Complication_risk	240.473977
Full_meals_eaten	10.727052
Anxiety	188.010526
dtype: float64	

dtype: float64

[31]: # Provide output of model for analysis print(model.summary())

OLS Regression Results

					_
Total	Charge	R-squared:		0.369	9
OLS		Adj. R-square	0.368		
Least S	Least Squares			364.4	
				0.00	
11		•	od:	-93138	
	10000			1.863e+0	
	9983	BIC:		1.864e+0	5
	16				
non	robust 				
					===
coef	std er	t t	P> t	[0.025	
2194.6923	147.932	14.836	0.000	1904.716	
81.9917	1.082	75.783	0.000	79.871	
-0.0003	0.00	-0.301	0.764	-0.002	
35.9894	42.78	0.841	0.400	-47.877	
106.6061	56.836	1.876	0.061	-4.804	
2.6951	1.494	1.804	0.071	-0.233	
-37.1086	55.974	1 -0.663	0.507	-146.830	
150 1072	E4 65	0.000	0.001	50.054	
158.13/6	54.679	2.892	0.004	50.956	
	Least S Mon, 03 Ja 11 non coef 2194.6923 81.9917 -0.0003	OLS Least Squares Mon, 03 Jan 2022 11:56:43 10000 9983 16 nonrobust coef std err 2194.6923 147.932 81.9917 1.082 -0.0003 0.001 35.9894 42.788 106.6061 56.836 2.6951 1.494 -37.1086 55.974	Least Squares F-statistic: Mon, 03 Jan 2022 Prob (F-statistic: 11:56:43 Log-Likelihood 10000 AIC: 9983 BIC: 16 nonrobust	OLS Adj. R-squared: Least Squares F-statistic: Mon, 03 Jan 2022 Prob (F-statistic): 11:56:43 Log-Likelihood: 10000 AIC: 9983 BIC: 16 nonrobust coef std err t P> t 2194.6923 147.932 14.836 0.000 81.9917 1.082 75.783 0.000 -0.0003 0.001 -0.301 0.764 35.9894 42.785 0.841 0.400 106.6061 56.836 1.876 0.061 2.6951 1.494 1.804 0.071 -37.1086 55.974 -0.663 0.507	OLS Adj. R-squared: 0.366 Least Squares F-statistic: 364. Mon, 03 Jan 2022 Prob (F-statistic): 0.00 11:56:43 Log-Likelihood: -93138 10000 AIC: 1.863e+00 9983 BIC: 1.864e+00 16 nonrobust coef std err t P> t [0.025 2194.6923 147.932 14.836 0.000 1904.716 81.9917 1.082 75.783 0.000 79.871 -0.0003 0.001 -0.301 0.764 -0.002 35.9894 42.785 0.841 0.400 -47.877 106.6061 56.836 1.876 0.061 -4.804 2.6951 1.494 1.804 0.071 -0.233 -37.1086 55.974 -0.663 0.507 -146.830

Prob(Omnibus): Skew:	71	0.000 3.518	Jarque-Bera Prob(JB):		82645.776 0.00
Omnibus:		======================================	 Durbin-Watso		2.002
304.007	100.0105	59.170	3.177	0.001	72.014
63.005 Anxiety	188.0105	59.176	3.177	0.001	72.014
312.637 Full_meals_eaten	10.7271	26.670	0.402	0.688	-41.551
143.229 Complication_risk	240.4740	36.814	6.532	0.000	168.311
185.869 Reflux_esophagitis	36.2499	54.575	0.664	0.507	-70.729
29.362 Arthritis	75.8840	56.109	1.352	0.176	-34.101
193.222 Stroke	-102.4924	67.266	5 -1.524	0.128	-234.347
200.523 Asthma	76.9937	59.294	1.299	0.194	-39.234
94.723 BackPain	93.4221	54.638	3 1.710	0.087	-13.679
Diabetes	-23.4188	60.270	-0.389	0.698	-141.561

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.69e+05. This might indicate that there are strong multicollinearity or other numerical problems.

7.2 D2: Provide a Statistically Based Variable Selection Model

In order to create a reduced model, we will include any variable with a p-value less than .1. This value was selected as it is a common cut off value for statistical significance. We will recreate a model utilizing only initial days, age, hyperlipidemia status, high blood pressure status, high blood pressure, back pain, anxiety and original complication risk. The initial model has a R-squared value of 0.369.

8 Reduced Model and Residual Plot

```
[32]: ReducedModel = ols('TotalCharge ~ Initial_days + Age + Hyperlipidemia + → HighBlood + Complication_risk + BackPain + Anxiety' , dmd).fit()

ReducedModel.params
```

[32]: Intercept 2219.212872 Initial_days 82.026198 Age 2.704697 Hyperlipidemia 107.292748 HighBlood 158.271848 Complication_risk 239.883611 BackPain 93.063504 Anxiety 190.297650 dtype: float64

[33]: print(ReducedModel.summary())

OLS Regression Results

					=======================================	
Dep. Variable:	Tot	talCharge	R-squared:		0.368	
Model:		t Squares Jan 2022 11:56:44 10000	Adj. R-square	0.368 831.9 0.00 -93142. 1.863e+05 1.864e+05		
Method:			F-statistic:			
Date:	Mon, 03		Prob (F-stat:			
Time:			0			
No. Observations:			AIC:			
Df Residuals:			BIC:			
Df Model:						
Covariance Type:	1	nonrobust				
=====	=======		========	=======	=========	
	coef	std err	t	P> t	[0.025	
0.975]					201020	
Intercept 2468.506	2219.2129	127.177	17.450	0.000	1969.919	
Initial_days	82.0262	1.081	75.899	0.000	79.908	
84.145						
Age	2.7047	1.493	1.812	0.070	-0.222	
5.631						
Hyperlipidemia 218.655	107.2927	56.812	1.889	0.059	-4.069	
HighBlood 265.393	158.2718	54.648	2.896	0.004	51.151	
Complication_risk 312.017	239.8836	36.799	6.519	0.000	167.751	
BackPain	93.0635	54.598	1.705	0.088	-13.960	
200.087						
Anxiety	190.2977	59.156	3.217	0.001	74.339	
306.256						
Omnibus:	:======:	======================================	======= Durbin-Watson		2.003	
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	82631.996	

 Skew:
 3.518 Prob(JB):
 0.00

 Kurtosis:
 15.199 Cond. No.
 324.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[34]: <AxesSubplot:xlabel='TotalCharge'>

9 E1: Explain Data Analyses Process

We utilized the p-value to decide which predictor variables to continue with. While our R-squared value is the same, we have reduced the number of variables from 16 to 7. This allows us to have a similar level of explanation of variation while reducing the possibility of the other predictors influencing the output. Both models have a much lower R-squared value than we would want to begin utilizing the model. This indicates that we need further investigation of possible predictor variables.

Looking at the residual plot that we created we can note a few things. We see indications of normal distribution and heteroscedasticity from charges of 0 to around 12,500 dollars. Then a second distribution above 12,500 with much higher residuals, indicating larger errors once charges exceed this amount.

10 F1: Regression Equation

Total Charge = 2219.21 + (82.02 * initial days) + (2.70 * age) + (107.29 * Hyperlipidemia) + (158.27 * high blood pressure) + (239.88 * complication risk) + (93.06 * back pain) + (190.30 * Anxiety)

Looking at our equation, we can observe the most impactful coefficients. The two most impactful coefficients appear to be the number of days of the initial admission and the complication risk at admission. While there are higher coefficients, we know the hyperlipidemia, back pain, high blood pressure, and anxiety are all categorical data types, meaning if the patient has them the coefficient is multiplied by one or by zero if not present. All coefficients will have a positive impact on the total charge to the patient.

10.1 Limitations of Analyses

While this model can explain some of the variance within the initial charges to a patient, it is clear from the low r-squared and multiple groupings within the residual plot, that we are missing some information. We would need to collect more data to reevaluate the model and increase its efficacy.

11 Recommendations

It is our recommendation that we continue to collect data, and to expand the data collection we are currently doing. I would recommend that you consult subject matter experts on other possible predictor variables. We currently do not have a model that I would be comfortable utilising to address the business problem of predicting the total cost of initial admission for patients.

12 Annotations

Chantal D. Larose, & Daniel T. Larose. (2019). Data Science Using Python and R. Wiley.

Pandas Development Team. (2008). pandas.DataFrame.drop — pandas 1.3.0 documentation. Pandas. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.

Python - seaborn.residplot() method. GeeksforGeeks. (2020, August 17). Retrieved December 26, 2021, from https://www.geeksforgeeks.org/python-seaborn-residplot-method/

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Shin, T. (2021, December 4). Understanding multicollinearity and how to detect it in Python. Medium. Retrieved December 18, 2021, from https://towardsdatascience.com/everything-youneed-to-know-about-multicollinearity-2f21f082d6dc