## In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

## In [2]:

df = pd.read\_csv('https://raw.githubusercontent.com/anshupandey/Machine\_Learning\_Training/m

## In [3]:

df

## Out[3]:

|    | lifetime | broken | pressureInd | moistureInd | temperatureInd | team  | provider  |
|----|----------|--------|-------------|-------------|----------------|-------|-----------|
| 0  | 56       | 0      | 92.178854   | 104.230204  | 96.517159      | TeamA | Provider4 |
| 1  | 81       | 1      | 72.075938   | 183.065701  | 87.271062      | TeamC | Provider4 |
| 2  | 60       | 0      | 96.272254   | 77.801376   | 112.196170     | TeamA | Provider1 |
| 3  | 86       | 1      | 94.406461   | 178.493608  | 72.025374      | TeamC | Provider2 |
| 4  | 34       | 0      | 97.752899   | 99.413492   | 103.756271     | TeamB | Provider1 |
| 5  | 30       | 0      | 87.678801   | 115.712262  | 89.792105      | TeamA | Provider1 |
| 6  | 68       | 0      | 94.614174   | 85.702236   | 142.827001     | TeamB | Provider2 |
| 7  | 65       | 1      | 96.483303   | 193.046797  | 98.316190      | TeamB | Provider3 |
| 8  | 23       | 0      | 105.486158  | 118.291997  | 96.028822      | TeamB | Provider2 |
| 9  | 81       | 1      | 99.178235   | 199.138717  | 95.492965      | TeamC | Provider4 |
| 10 | 38       | n      | 97 817844   | 111 074168  | 94 942443      | TeamR | Provider4 |
|    |          |        |             |             |                |       |           |

## In [4]:

df.head()

## Out[4]:

|   | lifetime | broken | pressureInd | moistureInd | temperatureInd | team  | provider  |
|---|----------|--------|-------------|-------------|----------------|-------|-----------|
| 0 | 56       | 0      | 92.178854   | 104.230204  | 96.517159      | TeamA | Provider4 |
| 1 | 81       | 1      | 72.075938   | 183.065701  | 87.271062      | TeamC | Provider4 |
| 2 | 60       | 0      | 96.272254   | 77.801376   | 112.196170     | TeamA | Provider1 |
| 3 | 86       | 1      | 94.406461   | 178.493608  | 72.025374      | TeamC | Provider2 |
| 4 | 34       | 0      | 97.752899   | 99.413492   | 103.756271     | TeamB | Provider1 |

# data selection

## In [5]:

```
df.describe()
```

#### Out[5]:

|       | lifetime    | broken      | pressureInd | moistureInd | temperatureInd |
|-------|-------------|-------------|-------------|-------------|----------------|
| count | 1000.000000 | 1000.000000 | 996.000000  | 1000.000000 | 997.000000     |
| mean  | 55.195000   | 0.397000    | 98.681100   | 111.088723  | 100.553499     |
| std   | 26.472737   | 0.489521    | 19.879703   | 41.839005   | 19.592059      |
| min   | 1.000000    | 0.000000    | 33.481917   | 70.928815   | 42.279598      |
| 25%   | 34.000000   | 0.000000    | 85.562282   | 94.532547   | 87.672094      |
| 50%   | 60.000000   | 0.000000    | 97.311091   | 102.844084  | 100.528015     |
| 75%   | 80.000000   | 1.000000    | 112.253190  | 113.532970  | 113.522496     |
| max   | 93.000000   | 1.000000    | 173.282541  | 1156.493254 | 172.544140     |

## In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 7 columns):
lifetime
                  1000 non-null int64
broken
                  1000 non-null int64
                  996 non-null float64
pressureInd
                  1000 non-null float64
moistureInd
                  997 non-null float64
temperatureInd
team
                  1000 non-null object
                  1000 non-null object
provider
dtypes: float64(3), int64(2), object(2)
```

memory usage: 54.8+ KB

### In [7]:

```
df.shape
```

#### Out[7]:

(1000, 7)

#### In [8]:

```
df.columns
```

### Out[8]:

```
In [9]:
df.provider.unique()
Out[9]:
array(['Provider4', 'Provider1', 'Provider2', 'Provider3'], dtype=object)
In [10]:
df.team.unique()
Out[10]:
array(['TeamA', 'TeamC', 'TeamB'], dtype=object)
Data Cleaning
In [11]:
df.duplicated().sum()
Out[11]:
In [12]:
df.isnull().sum()
Out[12]:
lifetime
                  0
broken
                  0
                  4
pressureInd
moistureInd
                  0
                  3
temperatureInd
                  0
team
provider
dtype: int64
In [13]:
df['pressureInd'].fillna(df['pressureInd'].mean(),inplace=True)
In [14]:
df['temperatureInd'].fillna(df['temperatureInd'].mean(),inplace=True)
```

#### In [15]:

```
df.skew()
```

#### Out[15]:

lifetime -0.407597 broken 0.421663 pressureInd 0.117776 moistureInd 15.982324 temperatureInd -0.070945

dtype: float64

# **Data Visualization**

#### In [16]:

```
df.columns
```

# Out[16]:

### In [17]:

```
#numerical v/s catogorical
#lifetime v/s broken
plt.figure(figsize=(12,5))
sns.distplot(df.lifetime[df.broken==0])
sns.distplot(df.lifetime[df.broken==1])
plt.legend(['not left','left'])
plt.show()
```



## In [18]:

#machine get broken after the 60 months lifetime more before that it woks good

## In [34]:

```
#numerical v/s catogorical
   #moistureInd v/s broken
plt.figure(figsize=(12,5))
sns.distplot(df.moistureInd[df.broken==0])
sns.distplot(df.moistureInd[df.broken==1])
plt.legend(['not left','left'])
plt.show()
```



## In [20]:

#when the moisture is more then around 112 the machine starts damaging before that machine

#### In [21]:

```
#numerical v/s catogorical
    #pressureInd v/s broken
plt.figure(figsize=(12,5))
sns.distplot(df.pressureInd[df.broken==0])
sns.distplot(df.pressureInd[df.broken==1])
plt.legend(['not left','left'])
plt.show()
```



## In [22]:

#can't be said while compairing the pressureInd and broken

### In [32]:

```
df.moistureInd.quantile(0.99)
```

## Out[32]:

192.31769522800002

### In [33]:

```
df=df[df['moistureInd']<=df['moistureInd'].quantile(0.999)]
df.shape</pre>
```

#### Out[33]:

(998, 7)

## In [25]:

```
#numerical v/s categorical
#temperatureIn v/s broken
plt.figure(figsize=(12,5))
sns.distplot(df.temperatureInd[df.broken==0])
sns.distplot(df.temperatureInd[df.broken==1])
plt.legend(['not left','left'])
plt.show()
```



## In [26]:





#### In [27]:





#### In [28]:

```
#point plot
#categorical v/s numerical v/s categorical
#x,y,hue>>x = categorical,y=Numeric ,hue =categorical
plt.figure(figsize=(12,5))
sns.pointplot(x='team',y='lifetime',hue='broken',data=df)
plt.show()
```



# In [29]:

```
#swarm plot
#categorical v/s numerical v/s categorical
#x,y,hue>>x = categorical,y=Numeric ,hue =categorical
plt.figure(figsize=(12,5))
sns.swarmplot(x='team',y='lifetime',hue='broken',data=df)
plt.show()
```



# Corralation

## In [30]:

```
cor=df.corr()
#heatmap for visualization correlation analysis
plt.figure(figsize=(12,5))
sns.heatmap(cor,annot=True,cmap='coolwarm')
plt.show()
```



### In [31]:

```
#scatter polt
#x,y,hue>>x = categorical,y=Numeric ,hue =categorical
plt.figure(figsize=(12,5))
sns.scatterplot(x='team',y='lifetime',hue='broken',data=df)
plt.show()
```



# Report:-

As the machine gets old it is likely to get broken, temperature pressure does not play important role but humidity plays important role in machines likely to get broken. machines supplied by provider 1 and 3 are getting more damage. team A or B or C machines are getting damaged when thier lifetime exceeds over 60. pressure id is highly corelated with broken moisture id is highly corelated with moistureind and pressureid. lifetime of mchines handled by team C is less ie methods followed by team C is less efficient

# In [ ]: