Testing Arguments for Validity and Soundness

Philosophy 12A January 19, 2010

1 Visualizing the Procedure for Validity/Soundness Testing

Figure 1 provides a series of questions (and their possible answers), which will help us to determine whether an argument is valid (or sound). In the next section, I will apply this method to several arguments from our first (01/19/10) lecture.

Figure 1: Testing an argument \mathcal{A} for (absolute) validity and soundness.

2 Applying the Test to Some Examples

2.1 Example #1 — An "Easy" Valid Argument

Recall our first example from last time:

Dr. Ruth is a man.

 A_1 : If Dr. Ruth is a man, then Dr. Ruth is 10 feet tall.

... Dr. Ruth is 10 feet tall.

The method depicted visually in Figure 1 leads to the following sequence of questions (and answers) about argument A_1 .

 Q_1 : Is it *possible* that *both* (*i*) all of the premises of A_1 are true, *and* (*ii*) the conclusion of A_1 is false?

A₁: NO. Imagine a world in which it is true that Dr. Ruth is a man *and* it is true that *if* Dr. Ruth is a man, *then* Dr. Ruth is 10 feet tall. Any possible world of this kind will also be a possible world in which Dr. Ruth is 10 feet tall. So, there is no possible world in which (*i.e.*, it is *impossible* that) both (*i*) and (*ii*) obtain. Therefore, A_1 is valid.

 Q_2 : Are all of A_1 's premises actually true?

A₂: NO. In fact, *neither* of A_1 's premises is true in the *actual* world. Therefore, A_1 is *un*sound (but *valid*, nonetheless!).

2.2 Example #2 — A "Tricky" Valid Argument

Branden weighs 200 lbs and Branden does not weigh 200 lbs.

: The moon is made of green cheese.

This time, we have the following sequence of questions (and answers) about argument A_2 .

 Q_1 : Is it *possible* that *both* (*i*) all of the premises of A_2 are true, *and* (*ii*) the conclusion of A_2 is false?

A₁: NO. Try to imagine a possible world in which the premise of A_2 is true and the conclusion of A_2 is false. This would have to be a world in which *all* of the following three propositions are true:

- (1) Branden weighs 200 lbs.
- (2) Branden does not weigh 200 lbs.
- (3) The moon is not made of green cheese.

Of course, there is no problem imagining a world in which (3) is true (our very own actual world will do just fine!). But, there can be *no* possible world in which *both* (1) *and* (2) are true simultaneously, since (2) is just the *denial* of (1). So, there is no possible world in which (*i.e.*, it is *impossible* that) both (*i*) and (*ii*) obtain. Therefore, A_2 is valid.

 Q_2 : Are all of A_2 's premises actually true?

A₂: NO. In fact, A_2 's premise is false in *all* possible worlds (not just ours!). Therefore, A_2 *un*sound (but *valid*, nonetheless!).

2.3 Example #3 — Another "Tricky" Valid Argument

Glass is a liquid.

∴ If Branden is 10 feet tall, then Branden is 10 feet tall.

Q₁: Is it *possible* that *both* (*i*) all of the premises of A_3 are true, *and* (*ii*) the conclusion of A_3 is false?

A₁: NO. Try to imagine a possible world in which the premise of A_3 is true and the conclusion of A_3 is false. This would have to be a world in which *both* of the following two propositions are true:

- (1) Glass is a liquid.
- (2) It is not the case that if Branden is 10 feet tall, then Branden is 10 feet tall.

Of course, there is no problem imagining a world in which (1) is true (our very own actual world will do just fine!). But, there is *no* possible world in which (2) is true. Statements of the form "If p, then p" are called *tautologies* (this term will be defined and discussed in chapter 3) — they are *necessarily true* (*i.e.*, it is *impossible* for them to be false). So, there is no possible world in which (*i.e.*, it is *impossible* that) both (*i*) and (*ii*) obtain. Therefore, \mathcal{A}_3 is valid.

 Q_2 : Are all of A_3 's premises actually true?

 A_2 : YES. In the actual world, glass is a liquid. Therefore, A_3 is sound!

2.4 Example #4 — An Invalid Argument

Most professional basketball players are over 6 feet tall.

 \mathcal{A}_4 : Joe is a professional basketball player.

∴ Joe is over 6 feet tall.

Q: Is it *possible* that *both* (i) all of the premises of A_4 are true, *and* (ii) the conclusion of A_4 is false?

A: YES. It is easy to imagine a world in which *most* professional basketball players are over 6 feet tall, but *some* (*e.g.*, Joe) are $not.^1$ So, it *is* possible that both (*i*) and (*ii*) obtain. Therefore, \mathcal{A}_4 is *in*valid (*i.e.*, *NOT* valid) and *un*sound.

¹If this "most" were changed to "all," then argument A_4 would be valid. Why?