Brain Tumor Segmentation with Deep Neural Networks

Christian Arndt

Original authors:

Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, Hugo Larochelle Medical Image Analysis, Volume 35, 1 January 2017, Pages 18-31

Content

- 1. Introduction
 - Convolutional Neural Networks
- 2. Proposed Method
 - Architecture
 - Training
 - Results
- 3. Conclusion

Introduction

Clinical Background:

- > 20.000 new brain cancer cases per year in the US
- MRI images as most common modality for tumor diagnosis
- Often difficult to localize (gliomas and glioblastomas)

Why Deep Learning?

- Voxel values in MR images are not standardized
- Learning features with CNNs (as opposed to classical machine learning)
- Improved diagnostics, growth rate prediction and treatment planning

Convolutional Neural Networks (CNNs)

- Deep Neural Networks adapted to image data
- Stanford University class: http://cs231n.github.io/

Figure: Schematic overview of a CNN architecture (Image from https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb, 12.05.2018)

Convolution (in images)

Figure: 2D-convolution: weighted sum over a local patch of data (Image from https://i.stack.imgur.com/YDusp.png, 12.05.2018)

Architecture

- BraTS 2013 dataset
- Slice by slice segmentation due to bad depth resolution
- Different image modalities of the same structures

Figure: MRI sequences used as input channels and ground truth labels

Architecture

Two-pathway architecture:

- One smaller (7×7) and one larger (13×13) receptive field
- Prediction based on local region and larger context

Cascaded architectures:

- Goal: model dependencies between spatially close labels
- Input concatenation
- Local pathway concatenation
- · Pre-output concatenation

Two-pathway architecture

Figure: Two-pathway CNN architecture

Cascaded architecture

Figure: Cascaded architecture using input concatenation

Training

Gradient Descent:

- Forward propagation on a mini-batch of patches
- Compute label probabilities and deviation from ground truth
- Update the CNNs parameters

Two-phase training:

- Highly imbalanced data (98% healthy voxels)
- First: Pick patches such that all labels are equiprobable
- · Then: Re-train output layer with original distribution

Regularization:

Prevent overfitting by bounding kernel weights and modifying output probabilities

Two-pathway architecture

- Second phase and joint training of local and global path yields better performance
- Very fast, about 25s for a whole brain

Table: Quantitative results of the two-pathway architecture variations on the BRATS 2013 dataset

Rank	Method	Dice	Specifity	Sensitivity
4	TwoPathCNN*	0.85	0.93	0.80
9	LocalPathCNN*	0.85	0.91	0.80
10	AverageCNN*	0.84	0.95	0.77
14	GlobalPathCNN*	0.82	0.93	0.75
14	TwoPathCNN	0.78	0.67	0.96
15	LocalPathCNN	0.77	0.65	0.96

Cascaded architecture

- Fast, about 3 minutes for a whole brain
- Winner of the challenge takes about 100 minutes

Table: Quantitative results of the cascaded architecture variations on the BRATS 2013 dataset

Rank	Method	Dice	Specifity	Sensitivity
2	InputCascadeCNN*	0.88	0.89	0.87
4-a	MFCascadeCNN*	0.86	0.92	0.81
4-b	LocalCascadeCNN*	0.88	0.91	0.84

Cascaded architecture

Figure: Progression of learning InputCascadeCNN*

Conclusion

 Automatic brain tumor segmentation based on deep learning (Convolutional Neural Networks)

Improve on currently published state-of-the-art methods

Especially in speed (25s to 3m per brain)

Novel two-pathway architecture

- Local details and global context
- Model local dependencies of labels

Thank you for your attention! Any questions?