Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:41 2021 Program finished at Tue Jun 1 14:18:50 2021

from guessed values

Options

Datatype:	DNA	sequence data
Inheritance scalers in use for Thetas:		
All loci use an inheritance scaler of 1.0		
[The locus with a scaler of 1.0 used as reference]		
Random number seed:	(with internal timer)	4053716785
Start parameters:		
Theta values were generated	from	guessed values

Theta = 0.01000

M values were generated

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	1	1	1	1	1	1	1	2	2	2	2
1 ElfinCo	*	*	*	*	*	*	*	*	*	*	*	*
1 Bamfiel	*	*	*	*	*	*	*	*	*	*	*	*
1 PortRen	*	*	*	*	*	*	*	*	*	*	*	*
1 WalkOnB	*	*	*	*	*	*	*	*	*	*	*	*
1 BodegaH	*	*	*	*	*	*	*	*	*	*	*	*
1 Davenpo	*	*	*	*	*	*	*	*	*	*	*	*
1 VistaDe	*	*	*	*	*	*	*	*	*	*	*	*
1 HazardR	*	*	*	*	*	*	*	*	*	*	*	*
2 Refugio	*	*	*	*	*	*	*	*	*	*	*	*
2 Carpint	*	*	*	*	*	*	*	*	*	*	*	*

				Prelir	nına	ry mi	grate a	ana	iysis	OT IV	ı. caı	ıtorn	ianus	CO1 haploty	pes for Eve	olution 2
2 White	Po .	*	*	*	*	*	*	*	*	*	*	*	*			
2 LaJol	la	*	*	*	*	*	*	*	*	*	*	*	*			
Order o	f parameters:															
1	Θ_1								-	ayed:						
2	Θ_2								-	ayed:						
3		2->1							-	ayed:						
4	M	1->2						<d< td=""><td>lispla</td><td>ayed:</td><td>></td><td></td><td></td><td></td><td></td><td></td></d<>	lispla	ayed:	>					
Mutation	rate among lo	ci:												Mut	tation rate i	s constant
Analysis	strategy:														Ravesia	n inference
, widiyələ	ondiogy.														Dayesia	
Proposal	distributions f	or p	aram	eter												
Paramet		•				F	Propos	sal								
Theta				Мє	etrop		sampli									
M					_		sampli	_								
5																
	tribution for pa															
Paramet			Minir				Mea				axim			Delta		Bins
Theta	Exp window		0.000				.01000				0000			1.000000		500
M	Exp window	(0.000	100	100)000.	.00000	00 1	1000	000.0	0000	000	1000	000.000000		500
Morkovk	phoin pottings.															l and abain
	chain settings:															Long chain
	of chains															1
	ded steps [a]															1000
	nent (record ev	-														100
	er of concurrer					,										3
	l (sampled) pa															300000
Numbe	er of discard tr	ees	per c	hain	(bur	n-in)										1000
Multiple I	Markov chains	:														
Static	heating schem	ne												4 chai	ns with ter	mperatures
											•	1000	00.00	3.00	1.50	1.00
														\$	Swapping in	nterval is 1
Print opti	ions:															
Data fi														//mcalif	ornianus_2	210528.mig
Output	t file:														_	outfile.txt
•	ior distribution	raw	histo	ogran	n file	:										bayesfile
Print d				J												No
	enealogies [or	าไข ร	ome	for so	ome	data	typel·									None
9	coalogioo [oi	, 3	50		JO	Jaiu	٠,٢٥١.									140110

	Preliminary migrate analysis of M. californianus CO1 haplotypes for Evolution 2 3
1	

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
1 Bamfiel	1	23
1 PortRen	1	15
1 WalkOnB	1	16
1 BodegaH	1	7
1 Davenpo	1	17
1 VistaDe	1	19
1 HazardR	1	23
2 Refugio	1	16
2 Carpint	1	19
2 WhitePo	1	11
2 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03801
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02297
1	M _{2->1}	0.0	12000.0	23000.0	30000.0	44000.0	25000.0	22653.2
1	M _{1->2}	38000.0	52000.0	63000.0	72000.0	86000.0	65000.0	63032.1

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2277.430827	(1a)
	-2157.180165	(1b)
Harmonic mean	-1909.599251	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	1747/37623	0.04643
Θ_2	3215/37407	0.08595
$M_{2\rightarrow 1}$	37646/37646	1.00000
$M_{1->2}^{2->1}$	37485/37485	1.00000
Genealogies	26887/149839	0.17944

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.86744	218.36
Θ_2	0.65858	621.18
$M_{2\rightarrow 1}$	0.85819	231.51
$M_{1\rightarrow 2}$	0.73627	464.95
Ln[Prob(D G)]	0.99008	14.95

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run