Problem 2

A one-dimensional, second order element is shown below:

The physical node locations and nodal displacement values are shown in table 1:

Node 1		Node 2		Node 3	
x_1	d_1	x_2	d_2	x_3	d_3
2 in.	0.15 in.	4 in.	0.05 in.	6 in.	-0.10 in.

Table 1: 1D element coordinates and displacements.

Find the physical location (x =) on the element where the displacement is zero.

Solution:

$$\{u\} = [N]\{d\}$$

$$u = \left[\left(\frac{x^2}{8} - \frac{5x}{4} + 3 \right) \quad \left(-\frac{x^2}{4} + 2x - 3 \right) \quad \left(\frac{x^2}{8} - \frac{3x}{4} + 1 \right) \right] \begin{cases} 0.15 \\ 0.05 \\ -0.10 \end{cases}$$

$$u = -\frac{x^2}{160} - \frac{x}{80} + \frac{1}{5}$$

$$u(x = 4.7445) = 0$$

Figure 1: Deflection vs. X-location for second order 1D element. Zero deflection point starred in red.