Our goal is to learn a map between two infinite dimensional spaces.

Our goal is to learn a map between two infinite dimensional spaces.

$$\mathcal{G}_{\theta}: \mathcal{A} \to \mathcal{U}, \theta \in \mathbb{R}^p$$

Our goal is to learn a map between two infinite dimensional spaces.

$$\mathcal{G}_{\theta}: \mathcal{A} \to \mathcal{U}, \theta \in \mathbb{R}^p$$

Here ${\mathscr A}$ and ${\mathscr U}$ are two function space.

Our goal is to learn a map between two infinite dimensional spaces.

$$\mathcal{G}_{\theta}: \mathcal{A} \to \mathcal{U}, \theta \in \mathbb{R}^p$$

Here ${\mathscr A}$ and ${\mathscr U}$ are two function space.

For Equation $\mathcal{L}u = f$ u = 0 on $\partial\Omega$, we want to find $\mathcal{G} = \mathcal{L}^{-1}$ such that $u = \mathcal{G}[f]$, which directly solve the PDE.

Our goal is to learn a map between two infinite dimensional spaces.

$$\mathcal{G}_{\theta}: \mathcal{A} \to \mathcal{U}, \theta \in \mathbb{R}^p$$

Here ${\mathscr A}$ and ${\mathscr U}$ are two function space.

For Equation $\mathcal{L}u = f$ u = 0 on $\partial\Omega$, we want to find $\mathcal{G} = \mathcal{L}^{-1}$ such that $u = \mathcal{G}[f]$, which directly solve the PDE.

Example

Example

Consider an ODE first:

Example

Consider an ODE first:

$$\frac{du}{dt} = f(t), \quad u(0) = u_0$$

Example

Consider an ODE first:

$$\frac{du}{dt} = f(t), \quad u(0) = u_0$$

Given $\{f_j, u_j\}_{j=1}^N$ pairs of functions, we want the learn the inverse operator.

Example

Consider an ODE first:

$$\frac{du}{dt} = f(t), \quad u(0) = u_0$$

Given $\{f_j, u_j\}_{j=1}^N$ pairs of functions, we want the learn the inverse operator.

the inverse operator
$$u(t) = \mathcal{G}[f](t) = u_0 + \int_0^t f(\tau) d\tau$$

Example

Consider an ODE first:

$$\frac{du}{dt} = f(t), \quad u(0) = u_0$$

Given $\{f_j, u_j\}_{j=1}^N$ pairs of functions, we want the learn the inverse operator.

the inverse operator
$$u(t) = \mathcal{G}[f](t) = u_0 + \int_0^t f(\tau) d\tau$$

Example

Example

Consider a second order elliptic equation:

Example

Consider a second order elliptic equation:

$$-\nabla(a(x) \nabla u(x)) = f(x) \qquad x \in \Omega$$
$$u(x) = 0 \qquad x \in \partial\Omega$$

Example

Consider a second order elliptic equation:

$$-\nabla(a(x) \nabla u(x)) = f(x) \qquad x \in \Omega$$
$$u(x) = 0 \qquad x \in \partial\Omega$$

Given $\{a_i, u_i\}$ pairs of functions, want to learn the inverse operator.

Example

Consider a second order elliptic equation:

$$-\nabla(a(x) \nabla u(x)) = f(x) \qquad x \in \Omega$$
$$u(x) = 0 \qquad x \in \partial\Omega$$

Given $\{a_i, u_i\}$ pairs of functions, want to learn the inverse operator.

the inverse operator $u(x)=\mathcal{G}[a](x)=\int_{\Omega}G_a(x,y)f(y)dy$, where G_a is the green's function

Example

Consider a second order elliptic equation:

$$-\nabla(a(x) \nabla u(x)) = f(x) \qquad x \in \Omega$$
$$u(x) = 0 \qquad x \in \partial\Omega$$

Given $\{a_i, u_i\}$ pairs of functions, want to learn the inverse operator.

the inverse operator $u(x)=\mathcal{G}[a](x)=\int_{\Omega}G_a(x,y)f(y)dy$, where G_a is the green's function

Network Structure

Network Structure

$$\mathcal{G}[a](y) = \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma(\sum_{j=1}^{m} w_{ij}^k u(x_j) + b_i^k) \sigma(\omega_k y + \beta)$$

Network Structure

$$\mathcal{G}[a](y) = \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma(\sum_{j=1}^{m} w_{ij}^k u(x_j) + b_i^k) \sigma(\omega_k y + \beta)$$

where $j=0,\cdots,m$, and x_j are the uniform mesh points on the space, for example $x_j=\frac{J}{m}\in[0,1]$ in one dimensional case.

Network Structure

$$\mathcal{G}[a](y) = \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma(\sum_{j=1}^{m} w_{ij}^k u(x_j) + b_i^k) \sigma(\omega_k y + \beta)$$

where $j=0,\cdots,m$, and x_j are the uniform mesh points on the space, for example $x_j=\frac{J}{m}\in[0,1]$ in one dimensional case.

Banch block:
$$b_k(u(x_1), \dots, u(x_m)) = \sum_{i=1}^n c_i^k \sigma(\sum_{j=1}^m w_{ij}^k u(x_j) + b_i^k)$$

Network Structure

$$\mathcal{G}[a](y) = \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma(\sum_{j=1}^{m} w_{ij}^k u(x_j) + b_i^k) \sigma(\omega_k y + \beta)$$

where $j=0,\cdots,m$, and x_j are the uniform mesh points on the space, for example $x_j=\frac{J}{m}\in[0,1]$ in one dimensional case.

Banch block:
$$b_k(u(x_1), \dots, u(x_m)) = \sum_{i=1}^n c_i^k \sigma(\sum_{j=1}^m w_{ij}^k u(x_j) + b_i^k)$$

Trunk block: $t_k(y) = \sigma(\omega_k y + \beta_k)$

Network Structure

$$\mathcal{G}[a](y) = \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma(\sum_{j=1}^{m} w_{ij}^k u(x_j) + b_i^k) \sigma(\omega_k y + \beta)$$

where $j=0,\cdots,m$, and x_j are the uniform mesh points on the space, for example $x_j=\frac{J}{m}\in[0,1]$ in one dimensional case.

Banch block:
$$b_k(u(x_1), \dots, u(x_m)) = \sum_{i=1}^n c_i^k \sigma(\sum_{j=1}^m w_{ij}^k u(x_j) + b_i^k)$$

Trunk block: $t_k(y) = \sigma(\omega_k y + \beta_k)$

The full network is done as
$$\mathcal{G}[u](y) = \sum_{k=1}^{p} b_k t_k(y)$$

Network Structure

Network Structure

Lifting \mathscr{P} : Using a pointwise function $\mathbb{R}^{d_a} o \mathbb{R}^{d_{v_0}}$, map the input function

Network Structure

Lifting \mathscr{P} : Using a pointwise function $\mathbb{R}^{d_a} \to \mathbb{R}^{d_{v_0}}$, map the input function

$$\{a(x): \Omega \to \mathbb{R}^a\} \to \{v_0(x): \Omega \to \mathbb{R}^{d_{v_0}}\}. (d_{v_0} > d_a)$$

Network Structure

Lifting \mathscr{P} : Using a pointwise function $\mathbb{R}^{d_a} \to \mathbb{R}^{d_{v_0}}$, map the input function

$$\{a(x): \Omega \to \mathbb{R}^a\} \to \{v_0(x): \Omega \to \mathbb{R}^{d_{v_0}}\}. (d_{v_0} > d_a)$$

Iterative Kernel Integration: for $l=0,\cdots,L-1$, map each hidden representation to next

Network Structure

Lifting \mathscr{P} : Using a pointwise function $\mathbb{R}^{d_a} o \mathbb{R}^{d_{v_0}}$, map the input function

$$\{a(x): \Omega \to \mathbb{R}^a\} \to \{v_0(x): \Omega \to \mathbb{R}^{d_{v_0}}\}. (d_{v_0} > d_a)$$

Iterative Kernel Integration: for $l=0,\cdots,L-1$, map each hidden representation to next

$$\{v_l(x): \Omega \to \mathbb{R}^{d_{v_l}}\} \to \{v_{l+1}(x): \Omega \to \mathbb{R}^{d_{v_{l+1}}}\}$$

Network Structure

Lifting \mathscr{P} : Using a pointwise function $\mathbb{R}^{d_a} o \mathbb{R}^{d_{v_0}}$, map the input function

$$\{a(x): \Omega \to \mathbb{R}^a\} \to \{v_0(x): \Omega \to \mathbb{R}^{d_{v_0}}\}. (d_{v_0} > d_a)$$

Iterative Kernel Integration: for $l=0,\cdots,L-1$, map each hidden representation to next

$$\{v_l(x): \Omega \to \mathbb{R}^{d_{v_l}}\} \to \{v_{l+1}(x): \Omega \to \mathbb{R}^{d_{v_{l+1}}}\}$$

Projection: using a pointwise function $\mathcal{Q}: \mathbb{R}^{d_{v_T}} \to \mathbb{R}^{d_u}$

Network Structure

Lifting \mathscr{P} : Using a pointwise function $\mathbb{R}^{d_a} \to \mathbb{R}^{d_{v_0}}$, map the input function

$$\{a(x): \Omega \to \mathbb{R}^a\} \to \{v_0(x): \Omega \to \mathbb{R}^{d_{v_0}}\}. (d_{v_0} > d_a)$$

Iterative Kernel Integration: for $l=0,\cdots,L-1$, map each hidden representation to next

$$\{v_l(x): \Omega \to \mathbb{R}^{d_{v_l}}\} \to \{v_{l+1}(x): \Omega \to \mathbb{R}^{d_{v_{l+1}}}\}$$

Projection: using a pointwise function $\mathcal{Q}: \mathbb{R}^{d_{v_T}} \to \mathbb{R}^{d_u}$

$$\{v_L(x): \Omega \to \mathbb{R}^{d_{v_L}}\} \to \{u(x): \Omega \to \mathbb{R}^{d_u}\}$$

Integral Kernel Operators

Integral Kernel Operators

V1:

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$.

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V2:

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V2:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y, a(x), a(y))v_l(y) dy$$

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathcal{R}^{d_{v_{l+1}} \times d_{v_l}}$. V2:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y, a(x), a(y))v_l(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_a} \times \mathbb{R}^{d_a} o \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$.

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V2:

$$(\mathcal{K}_{l}[v_{l}])(x) = \int_{\Omega} \kappa^{(l)}(x, y, a(x), a(y))v_{l}(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_a} \times \mathbb{R}^{d_a} \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V3:

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_{l}}}$. V2:

$$(\mathcal{K}_{l}[v_{l}])(x) = \int_{\Omega} \kappa^{(l)}(x, y, a(x), a(y))v_{l}(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_a} \times \mathbb{R}^{d_a} \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$.

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y, v_l(x), v_l(y)) v_l(y) dy$$

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V2:

$$(\mathcal{K}_{l}[v_{l}])(x) = \int_{\Omega} \kappa^{(l)}(x, y, a(x), a(y))v_{l}(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_a} \times \mathbb{R}^{d_a} \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V3:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y, v_l(x), v_l(y)) v_l(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_l} \times \mathbb{R}^{d_l} o \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V2:

$$(\mathcal{K}_{l}[v_{l}])(x) = \int_{\Omega} \kappa^{(l)}(x, y, a(x), a(y))v_{l}(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_a} \times \mathbb{R}^{d_a} \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V3:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y, v_l(x), v_l(y)) v_l(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_l} \times \mathbb{R}^{d_l} o \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$

$$v_{l+1}(x) = \sigma(W_l v_l(x) + \mathcal{K}_l([v_l])(x) + b_l(x))$$

Integral Kernel Operators

V1:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y) v_l(y) \, dy \qquad \forall x \in \Omega.$$

where $k^{(l)}: \Omega \times \Omega \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V2:

$$(\mathcal{K}_{l}[v_{l}])(x) = \int_{\Omega} \kappa^{(l)}(x, y, a(x), a(y))v_{l}(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_a} \times \mathbb{R}^{d_a} \to \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$. V3:

$$(\mathcal{K}_l[v_l])(x) = \int_{\Omega} \kappa^{(l)}(x, y, v_l(x), v_l(y)) v_l(y) dy$$

where $k^{(l)}: \Omega \times \Omega \times \mathbb{R}^{d_l} \times \mathbb{R}^{d_l} o \mathscr{R}^{d_{v_{l+1}} \times d_{v_l}}$

$$v_{l+1}(x) = \sigma(W_l v_l(x) + \mathcal{K}_l([v_l])(x) + b_l(x))$$

Motivation

Motivation

Define for *f*:

Motivation

Define for *f*:

$$(\mathcal{F}f)(k) = \int f(x) \exp(-2\pi i \langle x, k \rangle)$$
$$(\mathcal{F}^{-1}f)(x) = \int f(k) \exp(2\pi i \langle x, k \rangle)$$

Motivation

Define for *f*:

$$(\mathcal{F}f)(k) = \int f(x) \exp(-2\pi i \langle x, k \rangle)$$
$$(\mathcal{F}^{-1}f)(x) = \int f(k) \exp(2\pi i \langle x, k \rangle)$$

Fourier integral operator \mathcal{K} :

Motivation

Define for *f*:

$$(\mathcal{F}f)(k) = \int f(x) \exp(-2\pi i \langle x, k \rangle)$$
$$(\mathcal{F}^{-1}f)(x) = \int f(k) \exp(2\pi i \langle x, k \rangle)$$

Fourier integral operator \mathcal{K} :

$$(\mathcal{K}(\phi)v_l)(x) = \mathcal{F}^{-1}(R_\theta \cdot \mathcal{F}(v_l))(x)$$

Motivation

Define for *f*:

$$(\mathcal{F}f)(k) = \int f(x) \exp(-2\pi i \langle x, k \rangle)$$
$$(\mathcal{F}^{-1}f)(x) = \int f(k) \exp(2\pi i \langle x, k \rangle)$$

Fourier integral operator \mathcal{K} :

$$(\mathcal{K}(\phi)v_l)(x) = \mathcal{F}^{-1}(R_\theta \cdot \mathcal{F}(v_l))(x)$$

For frequency mode $k \in \mathbb{Z}^d$ and $v_l : \Omega \subset \mathbb{R}^d \to \mathbb{R}^{d_{v_l}}$, we have $(\mathcal{F}v_l)(k) \in \mathbb{C}^{d_{v_l}}$ and $R_{\theta}(k) \in \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$

Choice for R

Choice for R

Direct: Define the parameters $\theta_k \in \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ for each wave number k:

Choice for R

Direct: Define the parameters $\theta_k \in \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_k$$

Choice for R

Direct: Define the parameters $\theta_k \in \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_k$$

Linear: Deine the parameters $\theta_{1,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l} \times d_a}$ and $\theta_{2,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l}}$ for each wave number k:

Choice for R

Direct: Define the parameters $\theta_k \in \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_k$$

Linear: Deine the parameters $\theta_{1,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l} \times d_a}$ and $\theta_{2,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_{1,k}(\mathcal{F}a)(k) + \theta_{2,k}$$

Choice for R

Direct: Define the parameters $\theta_k \in \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_k$$

Linear: Deine the parameters $\theta_{1,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l} \times d_a}$ and $\theta_{2,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_{1,k}(\mathcal{F}a)(k) + \theta_{2,k}$$

Neural Network: Let $\Phi_{\theta}: \mathbb{Z}^d \times \mathbb{C}^{d_a} \to \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ then:

Choice for R

Direct: Define the parameters $\theta_k \in \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_k$$

Linear: Deine the parameters $\theta_{1,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l} \times d_a}$ and $\theta_{2,k} \in \mathbb{C}^{d_{v_{l+1}} \times d_{v_l}}$ for each wave number k:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \theta_{1,k}(\mathcal{F}a)(k) + \theta_{2,k}$$

Neural Network: Let $\Phi_{\theta}: \mathbb{Z}^d \times \mathbb{C}^{d_a} \to \mathbb{C}^{d_{v_l} \times d_{v_{l+1}}}$ then:

$$R_{\theta}(k, \mathcal{F}v_l(k)) := \Phi_{\theta}(k, (\mathcal{F}a)(k))$$

