Vector Calculus

10.7 Vector Functions and Space Curves

Def: A <u>parametric vector-valued function</u> is a function of the form

$$F: [a,b] \rightarrow \mathbb{R}^2$$
 or $F: [a,b] \rightarrow \mathbb{R}^3$
 $F(t) = \langle \chi(t), \chi(t) \rangle$
parametric plane curve parametric space curve

We say t is the <u>parameter</u>, and we say the real-valued functions x,y,z:[a,b]->R are the <u>components</u> of r. We say the set

is the image of r.

Ex: Sketch the image of the following parametric space curves.

1. $\vec{r}(t) = \cos(t), \sin(t), t > \text{ for } 0 \le t \le 2pi \text{ the helix}$

Sol: We compute $\vec{r}(0) = <1,0,0>$ and $\vec{r}(t) = <1,0,2pi>$. Also

$$\vec{r}(t) = \langle cost, sint, t \rangle \implies \chi^2 + \gamma^2 = 1$$

This means that the image of \vec{r} lies in the unit cylinder $\vec{x}^2 + \vec{y} = 1$. In fact,

The image of \vec{r} is

Use CalcPlot3D (libretexts.org)

2. $r(t) = <t, t^2, t^3 > for -1 \le t \le 1$ the twisted cubic

Sol: We compute $\vec{r}(-1) = <-1,1,-1>$ and $\vec{r}(1) = <1,1,1>$. Note that

Ex: Find a parametric space curve \vec{r} over an interval [a,b] so that the image of \vec{r} is the intersection between the unit

cylinder $x^2 + y^2 = 1$ and the plane y+z=2.

Sol: We want the image of r to be

Consider

$$\chi^2 + \eta^2 = 1 \Rightarrow \chi = cost$$
 $y = sint$

Then

We conclude that the image of $r(t) = \cos(t), \sin(t), 2-\sin(t) > 0 \le t \le 2pi$ is the intersection.

Def: Consider a parametric vector-valued function r defined for t near a.

We say \hat{r} is differentiable at t=a if and only if the components functions of \hat{r} are differentiable at t=a.

This occurs if and only if the following limit exists:

$$\frac{\partial \vec{r}}{\partial t}\Big|_{t=a} = \vec{r}'(a) = \underbrace{\underbrace{\underbrace{r}(t) - \vec{r}(a)}_{t-a}}_{t-a} = \underbrace{(x'a)y'a)_{z'(a)}}_{=}$$

ellipse?

We say $\hat{r}'(a)$ is the <u>tangent vector</u> of \hat{r} at t=a.

We say $|\hat{r}'(a)|$ is the speed of \hat{r} at t=a.

If \vec{r} '(a)=/ $\vec{0}$, then we say the <u>tangent line of \vec{r} 'at t=a</u> is the line through \vec{r} (a) in the direction of \vec{r} '(a).

If r'(t) exists for all t near a and is differentiable at t=a, then we let $r''(a) = \frac{\partial}{\partial t} r'(t) \Big|_{t=a}$

denote the second derivative of r at t=a.

Ex: Consider the helix $\vec{r}(t) = \cos(t), \sin(t), t > \text{ for } t \text{ in } R$.

1. Compute the tangent vector and speed of r at t=pi/2.

Sol: We compute

and
$$|\vec{r}'(\frac{\pi}{2})| = \frac{\partial \vec{r}}{\partial t}|_{t=\frac{\pi}{2}} = \frac{\partial}{\partial t} \left\langle (ast, sint, t) \right\rangle_{t=\frac{\pi}{2}}$$

$$= \left\langle -sint, (ast, 1) \right\rangle_{t=\frac{\pi}{2}}$$

$$= \left\langle -l, 0, 1 \right\rangle_{t=\frac{\pi}{2}}$$

2. Compute the tangent line of r at t=pi/2.

Check:

The tangent vector, and so the tangent line, are *tangent* to the image of \hat{r} at $\hat{r}(a)$.

Ex: Consider $\vec{r}(t) = \langle \vec{t}/2, \vec{t}/3 \rangle$ for t in R.

1. Compute the tangent vector and speed of \vec{r} at t=1.

2. Compute the tangent line of \hat{r} at t=1.

Fact: Suppose r is a vector-valued function defined over [a,b], and suppose f:[alpha,beta]->[a,b] is continuous.

Suppose f is increasing with

$$f(\alpha) = \alpha$$
 and $f(\beta) = b$

and define the parametric vector-valued function

Then $\vec{r}, \vec{r}_{\epsilon}$ have the same images. $\vec{r}_{\epsilon}(a) = \vec{r}(\epsilon(a)) = \vec{r}(a)$

$$\vec{r}_F(a) = \vec{r}(F(a)) = \vec{r}(a)$$

$$\vec{r}_F(a) = \vec{r}(F(a)) = \vec{r}(b)$$

However, re traces the image of r with different speed. In fact,

$$|\vec{r}_{F}(s)| = |F'(s)\vec{r}'(F(s))| = F'(s) |\vec{r}'(F(s))|$$

assuming f is differentiable.

Suppose f is decreasing with

$$f(\alpha) = b$$
 and $F(\beta) = a$

and define the parametric vector-valued function

Then $\vec{r}, \vec{r}_{\epsilon}$ have the same images. However, \vec{r}_{ϵ} traces the image of \vec{r} in the opposite direction and with different speed. In fact,

$$\frac{(beck)}{r_{\epsilon}(a)} = \frac{1}{r}(\epsilon(a)) = \frac{1}{r}(b)$$

$$\frac{1}{r_{\epsilon}(a)} = \frac{1}{r}(\epsilon(a)) = \frac{1}{r}(a)$$

$$|\vec{r}_{F}(s)| = |F'(s)\vec{r}'(F(s))|$$

$$= -F'(s) |\vec{r}'(F(s))|$$
F is decreasing $\Rightarrow 0$

Def: We say r_e is a <u>reparameterization of r.</u>

Ex: Consider the helix

Recall that

$$\vec{r}(\underline{T}) = \langle 0_1 |_{\underline{T}} \rangle$$
, $\vec{r}'(\underline{F}) = \langle -1_1 0_1 \rangle$, and $|\vec{r}(t)| = \sqrt{2}$
tangent vector speed

1. Suppose f(s)=2s, and consider $r_{\epsilon} = r_{\epsilon}(s)$. Compute $r_{\epsilon}(pi/4)$, and compute the tangent vector and speed of r_{ϵ} at s=pi/4.

Sol: We compute

$$\vec{r}_{F}(\vec{q}) = \vec{r}_{F}(s) = \vec{r}_{F}(f(s)) \Big|_{\vec{q}}$$

$$= \langle \cos(2s), \sin(2s), 2s \rangle \Big|_{s=\vec{q}}$$

$$\vec{r}_{F}(f(s))$$

$$= \langle (2)^{1}/(\frac{\pi}{2}) \rangle = \langle$$

We also compute

$$\vec{r}_{F}(\vec{t}) = \frac{\delta}{\delta s} \vec{r}_{F}(s) \Big|_{s = \frac{\pi}{4}} = \frac{\delta}{\delta s} \langle \cos(2s), \sin(2s), 2s \rangle \Big|_{s = \frac{\pi}{4}}$$

$$= \langle -2\sin 2s, 2\cos 2s, 2 \rangle \Big|_{s = \frac{\pi}{4}}$$

$$= \langle -2\sin \frac{\pi}{2}, 2\cos \frac{\pi}{2}, 2 \rangle$$

$$= \langle -2\sin \frac{\pi}{2}, 2\cos \frac{\pi}{2}, 2 \rangle$$

$$= \langle -2\sin \frac{\pi}{2}, 2\cos \frac{\pi}{2}, 2 \rangle$$

$$= \langle -2\sin \frac{\pi}{2}, 2\cos \frac{\pi}{2}, 2 \rangle$$
Speed = $|\vec{r}_{F}(\vec{t}, t)| = |\vec{t}_{F}(t, t)|$

check: Note that $r_c(pi/4) = r(pi/2) = <0,1,pi/2>$. It takes half the time for r_c to get to <0,1,pi/2>. This means the speed of r_c should be double...2 $\sqrt{2}$.

2. Suppose f(s)=pi-s, and consider $\vec{r_s} = \vec{r_s}$ (s). Compute $\vec{r_s}$ (pi/2), and compute the tangent vector and speed of $\vec{r_s}$ at s=pi/2.

Sol: We compute

$$\vec{r}_{F}(\underline{\underline{T}}) = \vec{r}(F(s))|_{s=\underline{T}} = \langle \cos(\pi - s), \sin(\pi - s), \pi - s \rangle$$

$$= \langle \cos(\underline{\underline{T}}), \sin(\underline{\underline{T}}), \underline{\underline{T}} \rangle$$

$$= \langle \cos(\underline{\underline{T}}), \sin(\underline{\underline{T}}), \underline{\underline{T}} \rangle$$

$$= \langle \cos(\underline{\underline{T}}), \sin(\underline{\underline{T}}), \underline{\underline{T}} \rangle$$

We also compute

$$\vec{r}_{\xi'}(\bar{z}) = \frac{1}{15} \left\langle \cos(\pi - 5), \sin(\pi - 5), \pi - 5 \right\rangle \Big|_{S = \bar{z}}$$

$$= \left\langle + \sin(\pi - 5), - \cos(\pi - 6), -1 \right\rangle \Big|_{S = \bar{z}}$$

$$= \left\langle \sin \bar{z}, - \cos \bar{z}, -1 \right\rangle$$

$$= \left\langle \left\langle 1, 0, -1 \right\rangle \right\rangle = -\vec{r}'(\bar{z})$$

$$|\vec{r}_{\xi'}(\bar{z})| = \sqrt{1 + 1} = \sqrt{2} \quad \text{Same Speed}$$