

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2. 2002

Электронный журнал, рег. N П23275 от 07.03.97

 $http://www.neva.ru/journal\\ e-mail:\ diff@osipenko.stu.neva.ru$

Теория обыкновенных дифференциальных уравнений

ОБ ОДНОМ ПРИМЕРЕ ПОСТРОЕНИЯ МНОГОЗНАЧНОЙ КВАЗИСТРАТЕГИИ ИТЕРАЦИОННЫМИ МЕТОДАМИ

Александр Георгиевич Ченцов

Россия, 620219, Екатеринбург, С.Ковалевской, д. 16, Институт математики и механики. Уральское отделение Российской Академии Наук

e-mail: chentsov@imm.uran.ru

Кирилл Валерьевич Корляков

Россия, 620083, Екатеринбург, пр.Ленина, д. 51, Уральский государственный университет, Кафедра прикладной математики, e-mail: kkorlyakov@microtest.ru

Аннотация.

Рассматривается пример применения сравнительно новой модификации метода программных итераций (МПИ) к решению простейшей задачи управления с помехой. Установлено, что "прямая" (по-смыслу) версия МПИ, действующая в пространстве многозначных отображений требует, для построения идеальной управляющей процедуры - многозначной квазистратегии, выполнения бесконечного числа итераций; структура этих

 $^{^{0}}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (00-01-00348, 01-01-96450) и Международного научно-технического центра (проект 1293)

итераций также выясняется на основе двойственности "прямых"и "непрямых" (используемых ранее при построении стабильных мостов в смысле Н.Н.Красовского) версий МПИ.

1 Введение

В теории дифференциальных игр (ДИ) [1-5] хорошо известна фундаментальная теорема об альтернативе Н.Н.Красовского, А.И.Субботина (см.[3]), которая утверждает, что пространство позиций в ДИ сближения-уклонения допускает альтернативное разбиение в сумму двух множеств, одно из которых - множество позиционного поглощения (стабильный мост) - определяет множество всех начальных позиций, из которых игрок, заинтересованный в сближении, может гарантировать приведение траекторий системы на целевое множество. Для построения стабильных мостов активно использовались программные конструкции (см., например, [3,4,6,7]), которые, при некоторых условиях регулярности [2-4,7], обеспечивали непосредственный переход от управления по программе к синтезу. Если эти условия не выполнены, то данный переход становится более сложным и требует привлечения иных методов. Одним из них является метод программных итераций (МПИ) [8-15] (см. также [5], гл.IV, V). Оказалось, что для некоторых нерегулярных ДИ для построения решения (цена игры, стабильный мост) оказывается достаточным всего двух итераций [8,9] программного поглощения, хотя в других случаях требуется исполнение всей бесконечной последовательности программных итераций (см. [14,15]). Можно отметить, что в [14] и в ряде последующих работ указаны примеры, где решение, определенное посредством МПИ, достигается за любой наперед заданное количество итераций. Следует отметить, что вышеупомянутые варианты МПИ являются "непрямыми" в смысле построения соответствующих управляющих процедур (с помощью МПИ воспроизводится "посредник" в виде функции цены игры или в виде стабильного моста). Эти процедуры можно определить на основе обратной связи (конструкции экстремального прицеливания и экстремального сдвига Н.Н.Красовского) или в виде так называемых квазистратегий (см.[16,17] - "однозначные" квазистратегии, и [5,8-11,13,14] - "многозначные квазистратегии"). Позднее была построены "прямая"версия МПИ [18-22], действующая в пространстве многозначных отображений (МО); в задачах теории ДИ она обеспечивала непосредственное итерационное построение многозначной квазистратегии (в духе [5, гл. IV], [811,13,14]), разрешающей соответствующую задачу управления. Интересно, что в ряде простых примеров ДИ "прямая" версия МПИ реализует решение за две итерации (см. [18,22]). Среди этих примеров есть и регулярные ДИ, в которых функция цены и стабильный мост находятся с помощью вспомогательных программных конструкций непосредственно (фактически речь идет о первой итерации на основе "непрямой" версии МПИ). В настоящей работе будет построен пример ДИ, в которой, при весьма очевидном решении в виде многозначной квазистратегии, "прямая" версия МПИ доставляет решение (квазистратегию) только после исполнения бесконечного числа итераций. Мы имеем здесь, стало быть, некий аналог [14,15]. В некотором смысле итерационная процедура, универсальная в смысле возможности решения ДИ общего вида, оказывается "слепой" в данном конкретном примере. По-видимому, это неизбежно для универсальных процедур решения ДИ. Отметим, что данное свойство устанавливается с использованием специальной двойственности, связывающей "непрямые" версии МПИ, подобные [8-15], и "прямые" версии типа используемых в [18-22]; в связи с этой двойственностью см. [23]. При этом "непрямые" версии объективно являются более простыми; в данном случае речь идет о преобразовании множеств в конечномерном пространстве. Более того, в ряде случаев здесь удается осуществить некоторую параметризацию итерационной процедуры, в результате чего последняя сводится фактически к рекуррентной процедуре на вещественной прямой (такая конструкция рассматривалась на примерах в [14], затем она была распространена на некоторый класс ДИ в [24] и некоторых других работах, и, наконец, в [25] эта конструкция была фактически реализована в виде программы на ЭВМ). Что же касается варианта МПИ в [18-22], то данная схема имеет теоретический характер и связана с преобразованием МО в функциональных пространствах. В этой связи двойственность [23] имеет в ряде случаев смысл сведения требуемой, для построения квазистратегий, конструкции к принципиально реализуемой форме, что проявляется уже и в примере, рассматриваемом ниже.

2 Простейший пример задачи управления с помехами

Рассмотрим простейшую управляемую систему Σ , определяемую скалярным дифференциальным уравнением

$$\dot{x} = u + v, \tag{2.1}$$

на отрезке [0,1]. Основной задаче соответствует нулевая начальная позиция (0,0), т.е. x(0)=0. В целях согласования с [10,14] полагаем, что в качестве управлений (полезного и помехового соответственно) допустимо использовать любые борелевские функции из [0,1] в [-2,2] и в [-1,1] соответственно. В первом случае множество всех программных управлений обозначаем через \mathcal{U} (элементы \mathcal{U} - полезные борелевские управления из [0,1] в [-2,2] и только они). Во втором случае аналогичное множество возможных помех $v(\cdot)$ обозначаем через \mathcal{V} . Если же движение системы Σ (2.1) рассматривается на отрезке $[t_*,1]$, где $0< t_* \le 1$, из состояния $x_* \in \mathbf{R}$, мы также используем в качестве управлений функции из \mathcal{U} и \mathcal{V} соответственно, хотя фактически "работают" лишь их сужения на $[t_*,1]$: если $u(\cdot) \in \mathcal{U}$ и $v(\cdot) \in \mathcal{V}$, то траектория $x(\cdot,t_*,x_*,u(\cdot),v(\cdot)) = (x(t,t_*,x_*,u(\cdot),v(\cdot)))_{t\in[t_*,1]}$ системы Σ есть, очевидно, функция

$$t \longmapsto x_* + \int_{t_*}^t u(\xi)d\xi + \int_{t_*}^t v(\xi)d\xi : [t_*, 1] \longmapsto \mathbf{R},$$
 (2.2)

где используются интегралы Лебега, либо, что является более простым, - интегралы в смысле [26,с.69] при оснащении [0,1] стандартной σ -алгеброй борелевских множеств. Конечно, для управления (2.1) использование столь общих конструкций по сути дела является излишним, однако, в их рамках нам будет удобно аппелировать к общей процедуре МПИ [10,14]. Заметим, однако, что в сравнении с задачами [8-11], [13], [14] мы имеем здесь случай, в котором использование управлений-мер является излишним, т.к. эффект действия последних релизуется с помощью борелевских управлений $u(\cdot) \in \mathcal{U}$ и $v(\cdot) \in \mathcal{V}$. В этой связи мы для требуемого далее конкретного случая приведем упрощенное определение оператора \mathcal{A}_M [10,14], достаточное для наших целей. Здесь - целевое множество в задаче наведения [3,гл. III] - определяется условием

$$M \doteq \{(1, x) : x \in \mathbf{R}, |x| \ge 1\},$$
 (2.3)

где \doteq - равенство по определению. Разумеется (2.3) определяет подмножество $\mathbf{D} \doteq [0,1] \times \mathbf{R}$ пространства позиций. Обозначим через \mathcal{D} семейство всех подмноженств \mathbf{D} . В связи с общей процедурой [10,14] (см. также [5, с.178]) заметим, что далее рассматривается задача управления без фазовых ограничений, что, в обозначениях [10,14], соответствует случаю $\mathbf{N} = \mathbf{D}$. С учетом вышеупомянутых обстоятельств заметим, что оператор \mathcal{A}_M , подоб-

ный [10,14], действует в \mathcal{D} и, при $H \in \mathcal{D}$, удовлетворяет условию

$$\mathcal{A}_{M}(H) \doteq \{(t,x) \in H \mid \forall v(\cdot) \in \mathcal{V} \exists u(\cdot) \in \mathcal{U} :$$

$$((1,x(1,t,x,u(\cdot),v(\cdot))) \in M) \& (\forall \xi \in [t,1[:$$

$$(\xi,x(\xi,t,x,u(\cdot),v(\cdot))) \in H)\} \doteq \{(t,x) \in H \mid \forall v(\cdot) \in \mathcal{V} \exists u(\cdot) \in \mathcal{U} :$$

$$(|x(1,t,x,u(\cdot),v(\cdot))| \geq 1) \& (\forall \xi \in [t,1[:(\xi,x(\xi,t,x,u(\cdot),v(\cdot))) \in H)\}.$$

$$(2.4)$$

Если \mathcal{F} - семейство всех замкнутых подмножеств \mathbf{D} (ясно, что $\mathcal{F} \subset \mathcal{D}$), то при $H \in \mathcal{F}$ имеем в (2.4)

$$\mathcal{A}_{M}(H) = \{ (t, x) \in H \mid \forall v(\cdot) \in \mathcal{V} \exists u(\cdot) \in \mathcal{U} : (|x(1, t, x, u(\cdot), v(\cdot))| \ge 1) \& (\forall \xi \in [t, 1] : (\xi, x(\xi, t, x, u(\cdot), v(\cdot))) \in H) \}.$$
(2.5)

Из (2.5) следует, что для множеств из \mathcal{F} оператор \mathcal{A}_M , определенный в (2.4) "ведет себя" также, как и аналогичный оператор \mathcal{A} [5, с.178-179]. Здесь мы учитываем естественную замкнутость M (2.3) и \mathbf{D} , а также тот факт, что \mathcal{F} есть инвариантное подпространство \mathcal{A}_M . Стало быть, на языке, используемом в (2.4), мы для $M = \{(1, x) : x \in \mathbf{R}, |x| \geq 1\}$ и $\mathbf{N} = \mathbf{D}$ в виде итерационной последовательности (W_k ; k = 0; 1; 2...), определяемой как

$$(W_0 \doteq \mathbf{D}) \& (\forall k \in N : W_k = \mathcal{A}_M(W_{k-1}))$$
(2.6)

имеем свойство сходимости к множеству позиционного поглощения W_{∞} : W_{∞} совпадает с пересечением всех множеств $W_k, k=0,1,2...$ Рассмотрим теперь конкретное построение (2.6), используя методику [14,24]. Суть ее состоит в следующем: все итерации в (2.6) имеют одну и ту же "форму", но различаются значениями некоторого параметра. По этой причине, как и в [14], процедуру (2.6) можно свести к итерациям этого параметра. Введем

$$\mathcal{W} \doteq \{(t, x) \in \mathbf{D} \mid t \le |x|\} \in \mathcal{D},\tag{2.7}$$

а также отображение **H** из [0,1] в \mathcal{D} , для которого при $\vartheta \in [0,1]$

$$\mathbf{H}(\vartheta) \doteq \mathcal{W} \cup ([0,\vartheta] \times \mathbf{R}). \tag{2.8}$$

Рассмотрим **H** (2.8), как "функцию формы" множеств в (2.6). Мы покажем, что $W_k = \mathbf{H}(\vartheta_k)$ при $k = 0, 1, 2, \dots$ Соответствующая последовательность $(\vartheta_k)_{k=0}^{\infty}$ будет указана (см.также [24]). Заметим, что в силу (2.8)

$$(W_0 = \mathbf{D} = \mathbf{H}(1)) \& (\mathcal{W} = \mathbf{H}(0)).$$
 (2.9)

Построение $(\vartheta_k)_{k=0}^\infty$ в силу (2.9) можно рассматривать как некоторый переход от 1 к 0.

Далее, можно отметить, что при $\vartheta \in [0,1]$ может быть определено множество $\mathcal{A}_M(\mathbf{H}(\vartheta))$. Отметим одно простое обстоятельство, которое для несколько иной (но подобной) задачи было установлено в [14] (см. также обзор в [5, §4]); для более общего случая подобное утверждение приведено в [24]: если $\vartheta \in [0,1]$, то

$$\mathcal{A}(\mathbf{H}(\vartheta)) = \mathbf{H}(\vartheta/2). \tag{2.10}$$

В целях полноты изложения рассмотрим обоснование (2.10). Фиксируем $\vartheta \in [0,1]$. Пусть $(t_*,x_*) \in \mathcal{A}_M(\mathbf{H}(\vartheta))$. Тогда, в частности, $(t_*,x_*) \in \mathbf{H}(\vartheta)$. Покажем, что $(t_*,x_*) \in \mathbf{H}(\vartheta/2)$. Для этого рассмотрим отдельно два возможных, в силу (2.8) случая. Именно в силу (2.8) либо $(t_*,x_*) \in \mathcal{W}$, а в этом случае $(t_*,x_*) \in \mathbf{H}(\vartheta/2)$, либо

$$(t_*, x_*) \in \mathbf{H}(\vartheta) \setminus \mathcal{W}. \tag{2.11}$$

Отдельного рассмотрения требует лишь случай (2.11). В этом случае у нас $|x_*| < t_*$. Вместе с тем из (2.8), (2.11) имеем $t_* \in [0, \vartheta]$. По выбору (t_*, x_*) имеем (см.(2.8)), что

$$\forall v(\cdot) \in \mathcal{V} \ \exists u(\cdot) \in \mathcal{U} : \ ((1 \le |x(1, t_*, x_*, u(\cdot), v(\cdot))|) \ \&$$

$$\& \ (\forall \xi \in [t_*, 1]: \ (\xi, x(\xi, t_*, x_*, u(\cdot), v(\cdot))) \in \mathbf{H}(\vartheta))).$$

$$(2.12)$$

Напомним, что $|x_*| < t_* \le \vartheta$. Зафиксируем некоторое $\overline{v}(\cdot) \in \mathcal{V}$. Подберем, используя (2.12) $\overline{u}(\cdot) \in \mathcal{U}$ так, что

$$(1 \le |x(1, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))|) \&$$

$$\& (\forall \xi \in [t_*, 1[: (\xi, x(\xi, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))) \in \mathbf{H}(\vartheta)).$$

$$(2.13)$$

Из (2.13) вытекает, что справедливо неравенство

$$\vartheta \le |x(\vartheta, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))|. \tag{2.14}$$

В самом деле, при $\vartheta = 1$ (2.14) есть первое утверждение в (2.13). Пусть $\vartheta < 1$. Тогда $\vartheta \in [t_*, 1[$, причем $]\vartheta, 1[\neq \emptyset$ и, вместе с тем, $\forall \tau \in]\vartheta, 1[$: $(\tau, x(\tau, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))) \in \mathbf{H}(\vartheta)$. Стало быть (см.(2.8)), при $\tau \in]\vartheta, 1[$ у нас $(\tau, x(\tau, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))) \in \mathcal{W}$ и, следовательно, $\tau \leq |x(\tau, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))|$. Полагая $\forall k \in \mathcal{N} : \vartheta_k \doteq \vartheta + (1 - \vartheta)/k$, мы получаем последовательность в $]\vartheta, 1[$, сходящуюся к ϑ справа. В силу (2.7) $\forall k \in \mathcal{N} : \vartheta_k \leq |x(\vartheta_k, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))|$.

Используя непрерывность траектории, получаем (2.14) в случае $\vartheta < 1$. Итак, (2.14) полностью доказано.

Полезно отметить, что $x(t_*, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot)) = x_*$ и $|x(t_*, t_*, x_*, \overline{u}(\cdot), \overline{v}(\cdot))| < x_*$ t_* , что в сравнении с (2.14) дает $t_* \neq \vartheta$, т.е. $t_* < \vartheta$. Напомним также, что $|x_*| < t_*$. Из (2.14) мы имеем неравенство $\vartheta \le |x_* + \int_{t_*}^{\vartheta} \overline{u}(t) dt + \int_{t_*}^{\vartheta} \overline{v}(t) dt|$. Тем более у нас

$$\vartheta \leq |x_* + \int_{t_*}^{\vartheta} \overline{v}(t)dt| + |\int_{t_*}^{\vartheta} \overline{u}(t)dt| \leq |x_* + \int_{t_*}^{\vartheta} \overline{v}(t)dt| + \int_{t_*}^{\vartheta} |\overline{u}(t)|dt \leq$$

$$\leq |x_* + \int_{t_*}^{\vartheta} \overline{v}(t)dt| + 2(\vartheta - t_*).$$
(2.15)

Напомним, что $\overline{v}(\cdot)$ выбиралось произвольно. Итак, в силу (2.15) у нас $\forall v(\cdot) \in \mathcal{V}: |x_* + \int_{t_*}^{\vartheta} v(t)dt| + 2(\vartheta - t_*) \geq \vartheta$. Из (2.15), в частности, следует, ОТР

$$\forall v(\cdot) \in \mathcal{V} \ \exists u(\cdot) \in \mathcal{U}: \ |x_* + \int_{t_*}^{\vartheta} v(t)dt + \int_{t_*}^{\vartheta} u(t)dt| \ge \vartheta.$$
 (2.16)

Разумеется, (2.16) извлекается и из (2.14). Рассмотрим отдельно следующие два возможных случая:

- 1. $\exists v(\cdot) \in \mathcal{V} : x_* + \int_{t_*}^{\vartheta} v(t) dt = 0,$ 2. $\forall v(\cdot) \in \mathcal{V} : |x_* + \int_{t_*}^{\vartheta} v(t) dt| > 0.$

Сначала рассмотрим случай 1. Возвращаясь к (2.15) и (2.16) мы получаем

$$2(\vartheta - t_*) \ge \vartheta$$

или $t_* \le \vartheta/2$. Рассмотрим случай 2. В этом случае $x_* \ne 0$. Подберем управление $v_*(\cdot) \in \mathcal{V}$ следующим образом: полагаем $v_*(t) \equiv -sgn(x_*)$. Тогда

$$x_* + \int_{t_*}^{\vartheta} v_*(t)dt = [|x_*| - (\vartheta - t_*)] sgn(x_*).$$
 (2.17)

Допустим, что $|x_*| - (\vartheta - t_*) < 0$. Тогда $|x_*| < \vartheta - t_*$, где, как уже отмечалось, $\vartheta - t_* > 0$. Введем постоянное управление $v_{**}(\cdot) \in \mathcal{V}$ по правилу

$$v_{**}(t) \equiv -\frac{x_*}{\vartheta - t_*}$$

(мы знаем уже, что $|v_{**}(t)| < 1$). Тогда $x_* + \int_{t_*}^{\vartheta} v_{**}(t) dt = x_* - x_* = 0$, что невозможно в случае 2. Стало быть, у нас $|x_*| - (\vartheta - t_*) \ge 0$ и, как следствие, имеет место

$$|x_* + \int_t^{\vartheta} v_*(t)dt| = |x_*| - (\vartheta - t_*).$$

Используя следствие (2.15), мы получаем $|x_*| + (\vartheta - t_*) \ge \vartheta$, т.е. $|x_*| \ge t_*$, что невозможно. Итак, случай 2 невозможен. Мы установили, что $t_* \leq \vartheta/2$ и, стало быть, $(t_*, x_*) \in \mathbf{H}(\vartheta/2)$. Вложение

$$\mathcal{A}_M(\mathbf{H}(\vartheta)) \subset \mathbf{H}(\vartheta/2) \tag{2.18}$$

установлено. На самом деле в (2.18) имеет место равенство. Пусть $(t^*, x^*) \in \mathbf{H}(\vartheta/2)$. В частности $(t^*, x^*) \in \mathbf{H}(\vartheta)$. Тогда в силу (2.8) имеем, что либо $(t^*, x^*) \in \mathcal{W}$, либо $t^* \leq \vartheta/2$. Заметим, что в первом случае определяем постоянное управление $u^* \in [-2, 2]$, полагая, что $u^* = +2$ при $x^* \geq 0$ и $u^* = -2$ при $x^* < 0$. Тогда, при $v(\cdot) \in \mathcal{V}$ и $t \in [t^*, 1]$ имеем

$$|x(t, t^*, x^*, u^*(\cdot), v(\cdot))| = |(x^* + u^*(t - t^*)) + \int_{t^*}^t v(\tau) d\tau| \ge$$

$$\ge |x^* + u^*(t - t^*)| - |\int_{t^*}^t v(\tau) d\tau| \ge |x^*| + 2(t - t^*) - \int_{t^*}^t |v(\tau)| d\tau \ge$$

$$\ge |x^*| + (t - t^*) \ge t^* + (t - t^*) \ge t,$$
(2.19)

где $u^*(\cdot) \in \mathcal{U}$ определяется как $u^*(t) \equiv u^*$. Стало быть, в случае $(t^*, x^*) \in \mathcal{W}$ у нас при $v(\cdot) \in \mathcal{V}$ и $t \in [t^*, 1]$ верно $(t, x(t, t^*, x^*, u^*(\cdot), v(\cdot))) \in \mathcal{W}$, а $\mathcal{W} \subset \mathbf{H}(\vartheta)$. Кроме того, из (2.19) следует, что $|x(1, t^*, x^*, u^*(\cdot), v(\cdot))| \geq 1$. С учетом (2.4) имеем в случае $(t^*, x^*) \in \mathcal{W}$ свойство $(t^*, x^*) \in \mathcal{A}_M(\mathbf{H}(\vartheta))$.

Осталось рассмотреть случай, когда $(t^*, x^*) \notin \mathcal{W}$, т.е. $|x^*| < t^*$. Тогда $t^* \leq \vartheta/2$. Выберем произвольно $\widehat{v}(\cdot) \in \mathcal{V}$ и, полагая $y^* \doteq x^* + \int_{t^*}^{\vartheta} \widehat{v}(\tau) d\tau$, введем $\widehat{u}(\cdot) \in \mathcal{U}$ по правилу: при всех $t \in [0,1]$ $\widehat{u}(t) \doteq 2sgn(y^*)$, где функция $sgn(\cdot)$ определяется условиями: $sgn(\xi) \doteq -1$ при $\xi \in]-\infty, 0[$, $sgn(\xi) \doteq 1$ при $\xi \in [0,\infty[$. Тогда, при $t \in [\vartheta,1]$ имеем

$$x(t, t^*, x^*, \widehat{u}(\cdot), \widehat{v}(\cdot)) = x(\vartheta, t^*, x^*, \widehat{u}(\cdot), \widehat{v}(\cdot)) + \int_{\vartheta}^t \widehat{u}(\tau) d\tau + \int_{\vartheta}^t \widehat{v}(\tau) d\tau. \tag{2.20}$$

В (2.20) рассмотрим выражение в правой части: $x(\vartheta,t^*,x^*,\widehat{u}(\cdot),\widehat{v}(\cdot))=(x^*+\int_{t_*}^\vartheta\widehat{v}(\tau)d\tau)+\int_{t^*}^\vartheta\widehat{u}(\tau)d\tau=[|x^*+\int_{t^*}^\vartheta\widehat{v}(\tau)d\tau|+2(\vartheta-t^*)]sgn(x^*+\int_{t^*}^\vartheta\widehat{v}(\tau)d\tau).$ Учтем это выражение в (2.20): при $t\in[\vartheta,1]$

$$|x(t, t^*, x^*, \widehat{u}(\cdot), \widehat{v}(\cdot))| = |[|x^* + \int_{t^*}^{\vartheta} \widehat{v}(\tau) d\tau| +$$

$$+2(\vartheta - t^*) + 2(t - \vartheta)] sgn(x^* + \int_{t_*}^{\vartheta} \widehat{v}(\tau) d\tau) + \int_{\vartheta}^{t} \widehat{v}(t) dt| \ge$$

$$\geq |x^* + \int_{t^*}^{\vartheta} \widehat{v}(\tau) d\tau| + 2(\vartheta - t^*) + 2(t - \vartheta) - (t - \vartheta) =$$

$$= y^* + 2(t - t^*) - (t - \vartheta) \ge t + \vartheta - 2t^* \ge t,$$

$$(2.21)$$

мы учли, что $t^* \leq \vartheta/2$. Стало быть, при $t \in [\vartheta, 1]$ имеет место $(t, x(t, t^*, x^*, \widehat{u}(\cdot), \widehat{v}(\cdot))) \in \mathcal{W}$. Но в этом случае непременно

$$(t, x(t, t^*, x^*, \widehat{u}(\cdot), \widehat{v}(\cdot))) \in \mathbf{H}(\vartheta)$$
(2.22)

при $t \in [t^*, 1]$. Заметим, что из (2.21) вытекает неравенство

$$|x(1, t^*, x^*, \widehat{u}(\cdot), \widehat{v}(\cdot))| \ge 1. \tag{2.23}$$

Итак (см.(2.22), (2.23)), установлено, что и при $(t^*, x^*) \notin \mathcal{W}$ у нас $\forall v(\cdot) \in \mathcal{V} \ \exists u(\cdot) \in \mathcal{U}$:

$$(|x(1, t^*, x^*, u(\cdot), v(\cdot))| \ge 1) \& (\forall t \in [t^*, 1] : (t, x(t, t^*, x^*, u(\cdot), v(\cdot))) \in \mathbf{H}(\vartheta)).$$

В силу (2.4) получаем $(t^*, x^*) \in \mathcal{A}_M(\mathbf{H}(\vartheta))$. Итак, сопоставляя два возможных (в отношении (t^*, x^*)) случая, мы имеем вложение $\mathbf{H}(\vartheta/2) \subset \mathcal{A}_M(\mathbf{H}(\vartheta))$, что с учетом (2.19) означает равенство (2.10). Итак, (2.10) доказано.

Рассмотрим теперь комбинацию (2.6) и (2.10). Из (2.6), (2.9), (2.10) мы получаем , что $\mathcal{W}_0 = \mathbf{H}(1)$ и

$$\mathcal{W}_1 = \mathcal{A}_M(\mathcal{W}_0) = \mathcal{A}_M(\mathbf{H}(1)) = \mathbf{H}(1/2).$$

Дальнейшее построение $(W_k)_{k\in\mathcal{N}_0}$ осуществляется по индукции: мы знаем, что $W_0 = \mathbf{H}(1/2^0)$ и $W_1 = \mathbf{H}(1/2^1)$. Пусть вообще $n \in \mathcal{N}$ таково, что $W_n = \mathbf{H}(1/2^n)$. Тогда из (2.6), (2.10) имеем, что

$$\mathcal{W}_{n+1} = \mathcal{A}_M(\mathcal{W}_n) = \mathcal{A}_M(\mathbf{H}(1/2^n)) = \mathbf{H}(1/2^{n+1}).$$

Итак, по индукции установлено, что

$$\forall k \in \mathcal{N}_0 : \mathcal{W}_k = \mathbf{H}(1/2^k) = \mathcal{W} \cup ([0, 1/2^k] \times \mathbf{R}). \tag{2.24}$$

Тогда, в частности, \mathcal{W}_{∞} есть пересечение всех множеств (2.24), т.е.

$$\mathcal{W}_{\infty} = \bigcap_{k \in \mathcal{N}_0} (\mathcal{W} \cup ([0, 1/2^k] \times \mathbf{R}))$$

и $\mathcal{W} \subset \mathcal{W}_{\infty}$. Если же $(t_*, x_*) \in \mathcal{W}_{\infty} \setminus \mathcal{W}$, то при всех $k \in \mathcal{N}_0$ имеем $t_* \in [0, 1/2^k]$ и, стало быть, $t_* = 0$, а тогда в силу (2.7) имеем $(t_*, x_*) = (0, x_*) \in \mathcal{W}$, что невозможно. Итак, $\mathcal{W}_{\infty} \setminus \mathcal{W} = \emptyset$, т.е. $\mathcal{W}_{\infty} = \mathcal{W}$ (см.[14]). В (2.24), таким образом, завершено построение "непрямой" (в терминологии [19-22]) и, по смыслу, вспомогательной версии МПИ для нашего конкретного примера.

3 Итерационное построение многозначной квазистратегии

В [16,17] и в ряде других использовалась формализация игрового управления в классе так называемых квазистратегий, т.е. физически реализуемых

откликов на помеховое управление. Произвольные отклики именовались в [17] псевдостратегиями. В работах [5, 8-11, 13, 14, 28, 29] использовались (и это существенно с точки зрения конструктивного построения разрешающих процедур управления) многозначные квазистратегии, что сопровождалось, для линейных задач теории ДИ, расширением пространства управлений с использованием скользящих режимов.

В [18-22] рассматривались итерационные методы построения многозначных квазистратегий, являющиеся по смыслу прямыми версиями МПИ (в [18-22] рассматривались абстрактные задачи управления, не обязательно сводящиеся к ДИ, но мы сейчас не рассматриваем процедуры [18-22] в полной общности). Сейчас рассмотрим конкретизацию конструкций [19-22] для случая нашей задачи наведения на M (2.3). Рассмотрим в качестве основных траектории (2.2) при $t_*=0$ и $x_*=0$; "нулевую"позицию $(0,0)\in\mathcal{D}$ будем рассматривать в качестве начальной. Введем естественный тип многозначной псевдостратегии (аналог [17]) разрешающей задачу M-наведения. Если $(t_*, x_*) \in \mathcal{D}, \ u(\cdot) \in \mathcal{U}$ и $v(\cdot) \in \mathcal{V}$, то через $x_\leftarrow(\cdot, t_*, x_*, u(\cdot), v(\cdot)) = (x_\leftarrow(t, t_*, x_*, u(\cdot), v(\cdot)))_{t\in I_0}$ обозначаем непрерывную функцию из $\mathbf{C} \doteq \mathcal{C}([0, 1])$, для которой

$$(\forall t \in [0, t_*[: x_{\leftarrow}(t, t_*, x_*, u(\cdot), v(\cdot)) \doteq x_*) \&$$
 &
$$(\forall t \in [t_*, 1] : x_{\leftarrow}(t, t_*, x_*, u(\cdot), v(\cdot)) \doteq x(t, t_*, x_*, u(\cdot), v(\cdot))).$$

Если $t_* \in [0,1], x_* \in \mathbf{R}$ и $v(\cdot) \in \mathcal{V}$, то, в согласии с [23], введем

$$\mathcal{S}((t_*, x_*), v(\cdot)) \doteq \{x_{\leftarrow}(\cdot, t_*, x_*, u(\cdot), v(\cdot)) : u(\cdot) \in \mathcal{U}\}. \tag{3.1}$$

В (3.1) введен пучок траекторий, продолжающих влево траектории (2.2), при зафиксированном помеховом управлении $v(\cdot)$. В частности, при $t_*=0$ и $x_*=0$ в виде (3.1) имеем пучок обычных траекторий. В духе [18-22] введем требуемую многозначную псевдостратегию: в терминах семейства $\mathcal{P}(\mathbf{C})$ всех подмножеств \mathbf{C} определяем оператор \mathcal{C} , действующий из \mathcal{V} в $\mathcal{P}(\mathbf{C})$, посредством правила

$$C(v(\cdot)) \doteq \{ \mathbf{x} \in S((0,0), v(\cdot)) \mid 1 \le |\mathbf{x}(1)| \}. \tag{3.2}$$

В виде \mathcal{C} имеем вышеупомянутый многозначный вариант псевдостратегии [17]. Нашей целью является перевод этой "псевдостратегии" в многозначную квазистратегию, разрешающую в классе траекторий системы (2.1) задачу о гарантированной реализации условия $|x(1)| \geq 1$. В этой связи заметим, что при $u(\cdot) \in \mathcal{U}$ и $v(\cdot) \in \mathcal{V}$ у нас

$$x_{\leftarrow}(\cdot, 0, 0, u(\cdot), v(\cdot)) = x(\cdot, 0, 0, u(\cdot), v(\cdot)). \tag{3.3}$$

С учетом (3.3) мы получаем, что для $v(\cdot) \in \mathcal{V}$

$$S((0,0), v(\cdot)) = \{x(\cdot, 0, 0, u(\cdot), v(\cdot)) : u(\cdot) \in \mathcal{U}\}.$$
(3.4)

Стало быть, \mathcal{C} (3.2) можно определить (см. (3.4)) в терминах "настоящих" траекторий системы (2.1):

$$C(v(\cdot)) = \{x(\cdot, 0, 0, u(\cdot), v(\cdot)) : u(\cdot) \in \mathcal{U}, \ 1 \le |x(1, 0, 0, u(\cdot), v(\cdot))|\}.$$

Введем в рассмотрение множество $\mathbf{M}(\mathcal{V}, \mathbf{C})$ всех отображений из \mathcal{V} в $\mathcal{P}(\mathbf{C})$. Иными словами, $\mathbf{M}(\mathcal{V}, \mathbf{C})$ есть множество всех многозначных отображений (МО) из \mathcal{V} в \mathbf{C} . В частности $\mathcal{C} \in \mathbf{M}(\mathcal{V}, \mathbf{C})$. Следуя [19-22] мы введем специальный оператор, действующий в $\mathbf{M}(\mathcal{V}, \mathbf{C})$ и реализующий перевод \mathcal{C} в многозначную квазистратегию, разрешающую нашу основную задачу. Если $w \in \mathcal{V}$ и $t \in [0,1]$, то полагаем в согласии с [22, с.25], что

$$\Omega^{0}(w|t) \doteq \{\tilde{w} \in \mathcal{V} \mid \forall \tau \in [0, t] : w(\tau) = \tilde{w}(\tau)\},\tag{3.5}$$

разумеется $w=v(\cdot)$ и, при $\tilde{w}\in\Omega^0(w|t),\,\tilde{w}=\tilde{v}(\cdot)$ - суть борелевские функции из [0,1] в [-1,1]. Введем оператор

$$\Gamma: \mathbf{M}(\mathcal{V}, \mathbf{C}) \to \mathbf{M}(\mathcal{V}, \mathbf{C})$$
 (3.6)

посредством следующего правила: если $\alpha \in \mathbf{M}(\mathcal{V}, \mathbf{C})$ и $w \in \mathcal{V}$, то

$$\Gamma(\alpha)(w) \doteq \{ f \in \alpha(w) \mid \forall t \in [0, 1] \ \forall \tilde{w} \in \Omega^{0}(w|t)$$

$$\exists \tilde{f} \in \alpha(\tilde{w}) \ \forall \tau \in [0, t] : f(\tau) = \tilde{f}(\tau) \}.$$

$$(3.7)$$

С оператором (3.6), (3.7) связываем последовательность его конечных степеней

$$\Gamma^k : \mathbf{M}(\mathcal{V}, \mathbf{C}) \to \mathbf{M}(\mathcal{V}, \mathbf{C}),$$
 (3.8)

 $k \in \mathcal{N}_0$, для которой, как обычно,

$$(\forall \alpha \in \mathbf{M}(\mathcal{V}, \mathbf{C}) : \Gamma^0(\alpha) = \alpha) \& (\forall k \in \mathcal{N} : \Gamma^k = \Gamma \circ \Gamma^{k-1}),$$

где \circ обозначает операцию суперпозиции. Последовательность степеней (3.8) дополним бесконечной степенью Γ^{∞} (подробнее см. в [19-22]); именно,

$$\Gamma^{\infty}: \mathbf{M}(\mathcal{V}, \mathbf{C}) \to \mathbf{M}(\mathcal{V}, \mathbf{C})$$
 (3.9)

определяется по следующему естественному правилу: при $\alpha \in \mathbf{M}(\mathcal{V}, \mathbf{C})$ и $w \in \mathcal{V}$

$$\Gamma^{\infty}(\alpha)(w) \doteq \bigcap_{k \in \mathcal{N}_0} \Gamma^k(\alpha)(w).$$

В соответствии с теоремой 5.1 [22] для наших целей важно построить не саму последовательность (3.8) и оператор (3.9), а результат их воздействия на \mathcal{C} , т.е. реализовать $(\Gamma^k(\mathcal{C}))_{k\in\mathcal{N}_0}$ и МО $\Gamma^\infty(\mathcal{C})$. Мы полагаем, что $\forall k\in\mathcal{N}_0:\mathcal{C}_k\doteq\Gamma^k(\mathcal{C})$; кроме того, пусть $\mathcal{C}_\infty\doteq\Gamma^\infty(\mathcal{C})$. Тогда из определения последовательности (3.8) видно, что

$$(\mathcal{C}_0 = \mathcal{C}) \& (\forall k \in \mathcal{N} : \mathcal{C}_k = \Gamma(\mathcal{C}_{k-1})). \tag{3.10}$$

В (3.10) имеем основной итерационный процесс. По определению Γ (3.9) имеем теперь для $\mathcal{C}_{\infty} = \Gamma^{\infty}(\mathcal{C})$ представление: для $w \in \mathcal{V}$

$$C_{\infty}(w) = \bigcap_{k \in \mathcal{N}_0} C_k(w). \tag{3.11}$$

Разумеется (3.11) может использоваться для представления \mathcal{C}_{∞} как предела $(\mathcal{C}_k)_{k\in\mathcal{N}}$. Для этого отметим, что в силу (3.10) $\mathcal{C}_k(v(\cdot)) \subset \mathcal{C}_{k-1}(v(\cdot))$ при $k \in \mathcal{N}$ и $v(\cdot) \in \mathcal{V}$. В сочетании с (3.11) это означает (см. [30, гл.І]), что при $w \in \mathcal{V}$ имеет место монотонная сходимость $(\mathcal{C}_k(w))_{k\in\mathcal{N}} \downarrow \mathcal{C}_{\infty}(w)$. Такое свойство в [19-22] интерпретируется как поточечная сходимость в пространстве МО: в обозначениях [22, с.225]

$$(\mathcal{C}_k)_{k\in\mathcal{N}} \Downarrow \mathcal{C}_{\infty}. \tag{3.12}$$

Отметим, что конструкция оператора Γ соответствует [19-22]. Это позволяет использовать результаты этих работ в нашем конкретном случае. Укажем конкретизацию основных параметров общей постановки [19-22]. Именно, в качестве множества X (в [19-22]) следует использовать отрезок $[0,1], \Upsilon$ [19-22] определяем в виде [-1,1], семейство \mathcal{X} [19-22] определяем в виде $\{[0,t]:t\in[0,1]\},$ (Y,τ) [19-22] отождествляется с $(\mathbf{R},\tau_{\mathbf{R}}),$ где $\tau_{\mathbf{R}}$ есть обычная $|\cdot|$ -топология вещественной прямой $\mathbf{R},$ в качестве Z [19-22] используем множество $\mathbf{C}=\mathbf{C}([0,1])$ всех непрерывных функций из [0,1] в $\mathbf{R},\ \Omega$ [19-22] полагаем совпадающим с \mathcal{V} . В этих условиях при $w\in\Omega$ и A=[0,t], где $t\in[0,1],$ имеем

$$\Omega_0(w|A) = \Omega^0(w|t),$$

где $\Omega_0(w|A)$ определено в [21, с.69]. В этих предположениях с учетом (3.7) оператор Γ [19-22] определяется выражениями: при $\alpha \in \mathbf{M}(\mathcal{V}, \mathbf{C})$ и $w \in \mathcal{V}$

$$\Gamma(\alpha)(w) = \{ f \in \alpha(w) \mid \forall A \in \mathcal{X} \ \forall \tilde{w} \in \Omega_0(w|A) \ \exists \tilde{f} \in \alpha(\tilde{w}) : (f|A) = (\tilde{f}|A) \} =$$

$$= \{ f \in \alpha(w) \mid \forall t \in [0,1] \ \forall \tilde{w} \in \Omega_0(w|[0,t]) \ \exists \tilde{f} \in \alpha(\tilde{w}) : (f|[0,t]) = (\tilde{f}|[0,t]) \} =$$

$$= \{ f \in \alpha(w) \mid \forall t \in [0,1] \ \forall \tilde{w} \in \Omega^0(w|t) \ \exists \tilde{f} \in \alpha(\tilde{w}) : (f|[0,t]) = (\tilde{f}|[0,t]) \} =$$

$$= \{ f \in \alpha(w) \mid \forall t \in [0,1] \ \forall \tilde{w} \in \Omega^0(w|t) \ \exists \tilde{f} \in \alpha(\tilde{w}) \ \forall \tau \in [0,t] :$$

$$f(\tau) = \tilde{f}(\tau)$$
.

Наконец, полезно отметить, что МО \mathcal{C} (3.2) непременно является компактнозначным в смысле топологии равномерной сходимости пространства \mathbf{C} ; напомним, что в нашей простейшей системе (2.1) борелевские управления $u(\cdot) \in \mathcal{U}$ исчерпывающим образом воспроизводят (компактный) пучок обобщенных решений для нелинейных систем общего вида, рассматриваемых в [7-11, 13, 14]. Итак, при $v(\cdot) \in \mathcal{V}$ множество $\mathcal{C}(v(\cdot))$ компактно в \mathbf{C} с топологией равномерной сходимости. Вместе с тем в теоремах [19-22] используется другая топология, а именно топология поточечной сходимости в $\mathbf{Z} = \mathbf{C}$ (напомним, что (Y, τ) [19-22] здесь совпадает с $(\mathbf{R}, \tau_{\mathbf{R}})$).

Известно, однако [31], что топология поточечной сходимости в \mathbf{C} слабее топологии равномерной сходимости, а тогда при $v(\cdot) \in \mathcal{V}$ множество $\mathcal{C}(v(\cdot))$ компактно в смысле топологии поточечной сходимости пространства \mathbf{C} . Итак, \mathcal{C} компактнозначно и в смысле \mathbf{C} с топологией поточечной сходимости. Стало быть, у нас выполнны все условия теоремы 5.1 [22]. Приведем соответствующую конкретизацию этой теоремы. На непустом множестве $\mathbf{M}(\mathcal{V}, \mathbf{C})$ введем (частичный) порядок \sqsubseteq , полагая $def: \forall \alpha_1 \in \mathbf{M}(\mathcal{V}, \mathbf{C})$ $\forall \alpha_2 \in \mathbf{M}(\mathcal{V}, \mathbf{C})$:

$$(\alpha_1 \sqsubseteq \alpha_2) \Longleftrightarrow (\forall v(\cdot) \in \mathcal{V} : \alpha_1(v(\cdot)) \subset \alpha_2(v(\cdot))). \tag{3.13}$$

В частности, в качестве α_2 в (3.13) может использоваться \mathcal{C} . Рассмотрим непустое множество $\mathbf{N} \doteq \{\alpha \in \mathbf{M}(\mathcal{V}, \mathbf{C}) \mid \alpha = \Gamma(\alpha)\}$ (всех неподвижных точек Γ , т.е. множество всех неупреждающих МО на $\Omega = \mathcal{V}$). Тогда (см. (3.13))

$$\mathbf{N}_0[\mathcal{C}] \doteq \{ \alpha \in \mathbf{N} \mid \alpha \sqsubseteq \mathcal{C} \} \tag{3.14}$$

есть множество всех неупреждающих мультиселекторов (м/с) МО \mathcal{C} . Элементы (3.14) подобны многозначным квазистратегиям [5, 8-14, 28, 29], но могут иметь в отдельных "точках" \mathcal{V} своими значениями пустое множество \emptyset . В частности, элементом (3.14) является постоянное МО $\alpha_{\emptyset} \in \mathbf{M}(\mathcal{V}, \mathbf{C})$, для которого $\alpha_{\emptyset}(v(\cdot)) \equiv \emptyset$. С другой стороны, (3.14) имеет [21, 22] наибольший в ($\mathbf{M}(\mathcal{V}, \mathbf{C}), \sqsubseteq$) элемент (na)[\mathcal{C}] в виде отображения из \mathcal{V} в семейство всех подмножеств \mathbf{C} , для которого (см. [22, §5])

$$\forall v(\cdot) \in \mathcal{V} : (na)[\mathcal{C}](v(\cdot)) \doteq \bigcup_{\alpha \in \mathbf{N}_0[\mathcal{C}]} \alpha(v(\cdot)). \tag{3.15}$$

Известно (см.[21, 22]), что $(na)[\mathcal{C}] \in \mathbf{N}_0[\mathcal{C}]$ и при этом

$$\forall \alpha \in \mathbf{N}_0[\mathcal{C}] : \alpha \sqsubseteq (na)[\mathcal{C}].$$

Таким образом, $(na)[\mathcal{C}]$ есть требуемый \sqsubseteq -наибольший элемент $\mathbf{N}_0[\mathcal{C}]$. Согласно теореме 5.1 [22] (см. также теор. 4.1.6 [21]) имеет место равенство $\Gamma^{\infty}(\mathcal{C}) = (na)[\mathcal{C}]$. С учетом (3.10), (3.11) имеем для МО (3.15) представление

$$(na)[\mathcal{C}] = \mathcal{C}_{\infty}. \tag{3.16}$$

Отметим, что (3.16) непременно является многозначной квазистратегией, т.е. при $v(\cdot) \in \mathcal{V}$ непременно $\mathcal{C}_{\infty}(v(\cdot)) \neq \emptyset$. В самом деле, введем в рассмотрение постоянное управление $U_{\uparrow} \in \mathcal{U}$, полагая, что при $t \in [0,1]$ имеет место $U_{\uparrow}(t) \doteq 2$. Теперь введем отображение α_{\uparrow} из \mathcal{V} в \mathbf{C} , полагая, что $\forall v(\cdot) \in \mathcal{V} \ \forall t \in [0,1]$:

$$\alpha_{\uparrow}(v(\cdot))(t) \doteq x(t,0,0,U_{\uparrow},v(\cdot)) = \int_0^t U_{\uparrow}(\tau)d\tau + \int_0^t v(\tau)d\tau. \tag{3.17}$$

Из (3.17) следует, что α_{\uparrow} - неупреждающее отображение в смысле [16,17,27], т.е. (однозначная) квазистратегия. Введем "фиктивное"МО $\alpha^{\uparrow} \in \mathbf{M}(\mathcal{V}, \mathbf{C})$ по правилу: при $v(\cdot) \in \mathcal{V}$ выполняется $\alpha^{\uparrow}(v(\cdot)) = \{\alpha_{\uparrow}(v(\cdot))\}$. Ясно, что $\alpha^{\uparrow} \in \mathbf{N}$. Вместе с тем, из (3.17) следует, что $\forall v(\cdot) \in \mathcal{V}$

$$\alpha_{\uparrow}(v(\cdot))(1) \ge \int_0^1 U_{\uparrow}(t)dt - 1 = 2 - 1 = 1.$$
 (3.18)

Стало быть, при $v(\cdot) \in \mathcal{V}$ в силу (3.4)

$$\alpha^{\uparrow}(v(\cdot)) \subset \mathcal{S}((0,0),v(\cdot))$$

удовлетворяет (3.18), т.е. (в согласии с (3.4)) $\alpha^{\uparrow}(v(\cdot)) \subset \mathcal{C}(v(\cdot))$. Как следствие $\alpha^{\uparrow} \sqsubseteq \mathcal{C}$, а тогда в силу неупреждаемости α^{\uparrow} имеем из (3.14), что $\alpha^{\uparrow} \in \mathbf{N}_0[\mathcal{C}]$ и, стало быть, $\alpha^{\uparrow} \sqsubseteq (na)[\mathcal{C}]$.

Итак, $\forall v(\cdot) \in \mathcal{V} : \alpha^{\uparrow}(v(\cdot)) \subset (na)[\mathcal{C}](v(\cdot))$. Таким образом, $\forall v(\cdot) \in \mathcal{V} : (na)[\mathcal{C}](v(\cdot)) \neq \emptyset$.

Тем самым, установлено, что $(na)[\mathcal{C}]$ есть многозначная квазистратегия: $(na)[\mathcal{C}]$ является неупреждающим многозначным отображением с непустыми значениями. Кроме того, из свойства $(na)[\mathcal{C}] \in \mathbf{N}_0[\mathcal{C}]$ следует, что эта многозначная квазистратегия разрешает задачу наведения на \mathbf{M} (2.3) (см. определение \mathcal{C}). Наконец, в силу (3.15) данная квазистратегия является наибольшей в $(\mathbf{M}(\mathcal{V}, \mathbf{C}), \sqsubseteq)$ среди всех таких разрешающих квазистратегий. Соотношение (3.15) определяет многозначную квазистратегию $(na)[\mathcal{C}]$ как предел итерационной процедуры, имеющей смысл прямой версии МПИ. Известно, что во многих случаях (для конкретных ДИ) процедуры на основе МПИ доставляют решение ДИ за конечное число итераций (см. [5,8,9] и др.). В то же время иногда (см.[15]) необходимо построение

всей последовательности итераций. Сказанное выше относится, однако, к "непрямым" вариантам МПИ, т.е. к несколько иным итерационным процедурам. Для "прямых версий МПИ в [19, 22] построены примеры, где решение достигается за две итерации, считая и нулевое приближение. С использованием утверждений работы [23] мы покажем, что в нашем случае "прямая" версия МПИ требует (как и в [15]) построения всей бесконечной последовательности итераций. Для этой цели мы введем более удобное представление оператора \mathcal{A}_M . Условимся о следующих обозначениях. Если H - подмножество \mathbf{D} , $z_* = (t_*, x_*) \in \mathbf{D}$ и $v(\cdot) \in \mathcal{V}$, то через $\Pi(v(\cdot) \mid z_*, H)$ обозначаем множество всех $h \in S(z_*, v(\cdot))$ таких, что

$$\exists \vartheta \in [t_*, 1] : ((\vartheta, h(\vartheta)) \in M) \& (\forall t \in [t_*, \vartheta[: (t, h(t)) \in H). \tag{3.19}$$

Далее, как и в [23] полагаем, что $\mathbf{A}:\mathcal{P}(\mathbf{D})\to\mathcal{P}(\mathbf{D})$ действует по правилу: при $H\in\mathcal{P}(\mathbf{D})$

$$\mathbf{A}(H) \doteq \{ z \in H \mid \forall v(\cdot) \in \mathcal{V} : \Pi(v(\cdot) \mid z, H) \neq \emptyset \}. \tag{3.20}$$

Определение (3.19), (3.20) соответствуют [23] при условии, что в [23]: $t_0 = 0$, $\vartheta_0 = 1$, $\Omega = \mathcal{V}$. В силу (2.4), (3.1) и (3.19) имеем очевидное равенство $\mathbf{A} = \mathcal{A}_M$, т.е. $\mathbf{A}(H) \equiv \mathcal{A}_M(H)$.

4 Построение многозначной квазистратегии с помощью двойственных конструкций метода программных итераций

Мы воспользуемся (2.24) и положениями [23] для того, чтобы установить свойство

$$\forall k \in \mathbf{N}_0 : (na)[\mathcal{C}] \neq \mathcal{C}_k. \tag{4.1}$$

В этой связи заметим, что отображение S, переводящее $\mathbf{D} \times \mathcal{V}$ в семейство $\mathcal{P}'(\mathbf{C}) \doteq \mathcal{P}(\mathbf{C}) \setminus \{\emptyset\}$ всех непустых подмножеств \mathbf{C} и определяемое в (3.1), удовлетворяет всем условиям [23]. Тогда (см. лемму 5.1 [23]) при $H \in \mathcal{P}(\mathbf{D})$

$$\Gamma(\Pi(\cdot|(0,0),H)) = \Pi(\cdot|(0,0),\mathbf{A}(H)). \tag{4.2}$$

Теперь заметим, что в силу (2.3), (3.2), (3.19) имеет место $\forall v(\cdot) \in \mathcal{V}$

$$\Pi(v(\cdot) \mid (0,0), \mathbf{D}) = \{ h \in S((0,0), v(\cdot)) \mid \exists \vartheta \in [0,1] : \\
((\vartheta, h(\vartheta)) \in M) \& (\forall t \in [0,1[: (t, h(t)) \in \mathbf{D})] = \\
= \{ h \in S((0,0), v(\cdot)) \mid \exists \vartheta \in [0,1] : (\vartheta, h(\vartheta)) \in M \} = \\
= \{ h \in S((0,0), v(\cdot)) \mid |h(1)| \ge 1 \} = \mathcal{C}(v(\cdot)). \tag{4.3}$$

Это означает, что $\Pi(\cdot|(0,0),\mathbf{D})=\mathcal{C}.$ Заметим, что из (4.2), (4.3) следует, в частности, что

$$\Gamma(\mathcal{C}) = \Gamma(\Pi(\cdot|(0,0), \mathbf{D})) = \Pi(\cdot|(0,0), \mathbf{A}(\mathbf{D})).$$

С учетом (2.24), (3.10) и равенства $\mathbf{A} = \mathcal{A}_M$ получаем теперь, что

$$C_1 = \Gamma(C_0) = \Gamma(C) = \Pi(\cdot|(0,0), \mathbf{A}(\mathbf{D})) = \Pi(\cdot|(0,0), \mathbf{A}(W_0)) = \Pi(\cdot|(0,0), W_1) = \Pi(\cdot|(0,0), \mathbf{H}(1/2)).$$
(4.4)

Соотношение (4.4) с помощью индукции распространяется на любой номер $k \in \mathcal{N}$ в следующем смысле.

Предложение 4.1. $\forall k \in \mathcal{N}: C_k = \Pi(\cdot|(0,0), \mathbf{H}(1/2^k)).$

Доказательство. Воспользуемся следствием 5.1 и теоремой 5.1 [23]. Тогда, если $k \in N$, то (см. [23])

$$\Gamma^k(\Pi(\cdot|(0,0),\mathbf{D})) = \Pi(\cdot|(0,0),\mathbf{A}^k(\mathbf{D})) = \Pi(\cdot|(0,0),\mathcal{A}_M^k(\mathbf{D}))$$

в силу (3.21). Как следствие (см. (3.10))

$$\Gamma^k(\mathcal{C}) = \Pi(\cdot|(0,0), \mathcal{A}_M^k(\mathbf{D})). \tag{4.5}$$

С учетом (3.10) и (4.5) получаем $C_k = \Pi(\cdot|(0,0), \mathcal{A}_M^k(\mathbf{D}))$. Но из (2.6), (2.24) следует, что справедливо равенство

$$\mathcal{A}_M^k(\mathbf{D}) = W_k = \mathbf{H}(1/2^k).$$

В итоге получаем совпадение $C_k = \Pi(\cdot|(0,0), \mathbf{H}(1/2^k)).$

С учетом (3.19) и (4.3) имеем из предложения 4.1, что $\forall k \in \mathcal{N}_0$:

$$C_k = \Pi(\cdot|(0,0), \mathbf{H}(1/2^k)).$$
 (4.6)

Рассмотрим теперь представление [23] для \mathcal{C}_{∞} , определяемого в соответствии с [22]. В самом деле, согласно следствию 5.2 [23] и (3.11) имеет место равенство

$$C_{\infty} = \Pi(\cdot|(0,0), \mathbf{A}^{\infty}(\mathbf{D})), \tag{4.7}$$

где ${\bf A}^{\infty}$ определяется в соответствии с [23]. Для нас существенно, что

$$\mathbf{A}^{\infty}(\mathbf{D}) = \bigcap_{k \in \mathcal{N}_0} \mathbf{A}^k(\mathbf{D}) = \bigcap_{k \in \mathcal{N}_0} \mathcal{A}_M^k(\mathbf{D}) = \bigcap_{k \in \mathcal{N}_0} \mathcal{W}_k.$$

С учетом (2.24) получаем

$$\mathbf{A}^{\infty}(\mathbf{D}) = \bigcap_{k \in \mathcal{N}_0} \mathbf{H}(1/2^k) = \mathcal{W}_{\infty} = \mathcal{W}.$$
 (4.8)

Из (4.7), (4.8) получаем равенство

$$\mathcal{C}_{\infty} = \Pi(\cdot|(0,0), \mathcal{W}). \tag{4.9}$$

Но $\mathcal{W} \subset \mathbf{H}(1/2^k)$ при $k \in \mathcal{N}_0$. Из (3.19), (4.6) и (4.9) следует, что

$$\forall k \in \mathcal{N}_0 \ \forall v(\cdot) \in \mathcal{V} : \mathcal{C}_{\infty}(v(\cdot)) \subset \mathcal{C}_k(v(\cdot)). \tag{4.10}$$

Теорема 4.1. Имеет место $\forall k \in \mathcal{N}_0: \mathcal{C}_{\infty} \neq \mathcal{C}_k$. Доказательство. Из (4.6), (4.9) мы имеем

$$(\forall k \in \mathcal{N}_0 : \mathcal{C}_k = \Pi(\cdot|(0,0), \mathbf{H}(1/2^k))) \& (\mathcal{C}_\infty = \Pi(\cdot|(0,0), \mathcal{W})).$$
 (4.11)

В силу (4.10) достаточно установить, что

$$\forall k \in \mathcal{N}_0 \ \exists v(\cdot) \in \mathcal{V} : \mathcal{C}_k(v(\cdot)) \setminus \mathcal{C}_{\infty}(v(\cdot)) \neq \emptyset. \tag{4.12}$$

Будем использовать (4.11). Фиксируем $n \in \mathcal{N}_0$. Тогда в силу (4.11) имеем

$$C_n = \Pi(\cdot|(0,0), \mathbf{H}(1/2^n)). \tag{4.13}$$

В силу (2.8) имеем следующее представление множества $\mathbf{H}(1/2^n)$ в (4.13):

$$\mathbf{H}(1/2^n) = \mathcal{W} \cup ([0, 1/2^n] \times \mathbf{R}). \tag{4.14}$$

Заметим, что точка $w \doteq (1/2^n, 1/2^n) \in \mathcal{W}$. Если $\theta \in [0, 1/2^n]$, то рассмотрим функцию $f_{\theta} : [\theta, 1] \to [0, \infty[$, для которой $\forall t \in [\theta, 1] \ f_{\theta}(t) \doteq 2(t - \theta)$. Если $\theta \in [0, 1/2^n]$, то $1/2^n \in [\theta, 1]$ и корректно определяется значение $f_{\theta}(1/2^n) \in [0, \infty[$. Нам потребуется решить следующее простейшее уравнение

$$(1/2^n, f_{\theta}(1/2^n)) = w. \tag{4.15}$$

Уравнение (4.15) эквивалентно (по определению w) следующему

$$f_{\theta}(1/2^n) = 1/2^n. \tag{4.16}$$

Через θ_0 обозначаем решение (4.16). Используя определение f_{θ_0} , получаем из (4.16) равенство $2(1/2^n-\theta_0)=1/2^n$, означающее, что

$$\theta_0 = \frac{1}{2} \left(\frac{1}{2^{n-1}} - \frac{1}{2^n} \right) = \frac{1}{2} \cdot \frac{1}{2^n} = \frac{1}{2^{n+1}}. \tag{4.17}$$

В терминах (4.17) мы установим, что для управления $\mathbf{O} \in \mathcal{V}$, тождественно равного нулю, т.е. $\mathbf{O}(t) \equiv 0$, имеет место

$$C_n(\mathbf{O}) \setminus C_\infty(\mathbf{O}) \neq \emptyset.$$
 (4.18)

Пусть $u_0(\cdot) = (u_0(t) \in \mathbf{R}, 0 \le t \le 1) \in \mathcal{U}$ таково, что

$$(\forall t \in [0, \theta_0]: u_0(t) \doteq 0) \& (\forall t \in [\theta_0, 1]: u_0(t) \doteq 2). \tag{4.19}$$

В силу (3.4) имеем, что траектория $x_0(\cdot) = (x_0(t), 0 \le t \le 1)$, определяемая условием $x_0(\cdot) = x(\cdot, 0, 0, u_0(\cdot), \mathbf{O})$, есть элемент $S((0, 0), \mathbf{O})$, т.е.

$$x_0(\cdot) \in S((0,0), \mathbf{O}).$$
 (4.20)

Из (2.2) вытекает, что имеет место $\forall t \in [0, 1]$:

$$x_0(t) = x(t, 0, 0, u_0(\cdot), \mathbf{O}) = \int_0^t u_0(t)dt.$$
 (4.21)

Из (4.21) имеем, что при $t \in [0, \theta_0]$ непременно $x_0(t) = 0$. Если же $t \in [\theta_0, 1]$, то в силу аддитивности (неопределенного) интеграла

$$x_0(t) = \int_{\theta_0}^t 2dt = 2(t - \theta_0) = f_{\theta_0}(t). \tag{4.22}$$

Ясно, что в силу (4.14) верно

$$(t, x_0(t)) \in \mathbf{H}(1/2^n)$$
 (4.23)

при $t \in [0, 1/2^n]$. Далее, используем (4.22). При $t \in [1/2^n, 1]$ имеем $x_0(t) = 2(t - \theta_0) = 2(t - 1/2^{n+1}) = t + (t - 1/2^n) \ge t$. Последнее означает, что в силу (2.7) $\forall t \in [1/2^n, 1]$: $(t, x_0(t)) \in \mathcal{W}$. С учетом (4.14) имеем теперь при $t \in [1/2^n, 1]$ также выполнено (4.23). Стало быть, у нас

$$\forall t \in [0,1] : (t, x_0(t)) \in \mathbf{H}(1/2^n). \tag{4.24}$$

Далее, по определению f_{θ_0} имеем $x_0(1) = 2 - 1/2^n \ge 1$. Стало быть, $(1, x_0(1)) \in M$. С учетом (3.19), (4.20) и (4.24) имеем теперь свойство $x_0(\cdot) \in \Pi(\mathbf{O}|(0,0),\mathbf{H}(1/2^n))$. С учетом (4.13) мы получили свойство

$$x_0(\cdot) \in \mathcal{C}_n(\mathbf{O}).$$
 (4.25)

С другой стороны, для момента $\theta_0 \in]0,1[$, определенного в (4.17) мы имеем равенство $x_0(\theta_0) = 0$. Поэтому $|x_0(\theta_0)| < \theta_0$ и, стало быть, в силу (2.7)

$$(\theta_0, x_0(\theta_0)) \notin \mathcal{W}. \tag{4.26}$$

Возвращаясь к (3.19), мы замечаем, что $x_0(\cdot) \notin \Pi(\mathbf{O}|(0,0), \mathcal{W})$; как следствие, из (4.11) имеем

$$x_0(\cdot) \notin \mathcal{C}_{\infty}(\mathbf{O}).$$
 (4.27)

Из (4.26), (4.27) вытекает свойство

$$x_0(\cdot) \in \mathcal{C}_n(\mathbf{O}) \setminus \mathcal{C}_\infty(\mathbf{O}).$$

Тем самым, установлено (4.18), что означает справедливость (4.12) в силу произвольного выбора n; итак $\mathcal{C}_{\infty} \neq \mathcal{C}_k$ при $k \in \mathcal{N}_0$.

Литература

- [1] Айзекс Р. Дифференциальные игры.-М.: Мир, 1967.
- [2] Красовский Н.Н. Игровые задачи о встрече движений.-М.: Наука, 1970.
- [3] Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры.-М.:Наука, 1974.
- [4] Красовский Н.Н. Управление динамической системой. Задача о минимуме гарантированного результата.-М.:Наука, 1985.
- [5] Субботин А.И., Ченцов А.Г. Оптимизация гарантий в задачах упавления.-М.:Наука, 1981.
- [6] Красовский Н.Н. Дифференциальная игра сближения-уклонения, І.-Изв. АН СССР (Техн. киберн.), 1973, N 2.
- [7] Красовский Н.Н. Дифференциальная игра сближения-уклонения, II.-Изв. АН СССР (Техн. киберн.), 1973, N 3.
- [8] Ченцов А.Г. ДАН СССР, 1975, 224, N 6, с.1272-1275.
- [9] Ченцов А.Г. Об игровой задаче сближения в заданный момент времени.-"Мат.сб.", 1976, Т.99, N 3, 394-420.
- [10] Ченцов А.Г. К игровой задаче наведения.-ДАН СССР, 1976, 226, N 1.

- [11] Ченцов А.Г. К игровой задаче наведения с информационной памятью.-"Докл. АН СССР", 1976, Т.227, N2, 306-308.
- [12] Чистяков С.В. К решению игровых задач преследования.-ПММ, 1977, 41, N 5.
- [13] Ченцов А.Г. Об игровой задаче сближения к заданому моменту времени.-Изв. АН СССР. Серия матем., 1978, 42, N2.
- [14] Ченцов А.Г. Метод программных итераций для дифференциальной игры сближения-уклонения.-Свердловск, 1979.-102с.-(Рукоп. деп. в ВИ-НИТИ 4 июля 1979 г.; N1933-79 Деп.)
- [15] Ченцов А.Г. Об одном примере нерегулярной дифференциальной игры.-ПММ, 1977, 40, N 6.
- [16] Roxin E. Axiomatic approach in differential games.-J. Optimiz. Theory & Appl., 1969, 3 N 3, p.153-163.
- [17] Elliott R.J., Kalton N.J. The existense of value in differential games //Memoires of the Amer.Math.Soc.-1972.-N126.-67p.
- [18] Ченцов А.Г. Метод программных итераций в классе конечноаддитивных управлений-мер //Дифференциальные уравнения -1997.-N 11.-C.1528-1536.
- [19] Ченцов А.Г. Итерационная реализация неупреждающих многозначных отображений //Докл. РАН.-1997.-Т.357, N5.-с.595-598.
- [20] Ченцов А.Г. К вопросу о параллельной версии абстрактного аналога метода програмных итераций //Докл. РАН.-1998.-Т.362, N5.-c.602-605.
- [21] Ченцов А.Г. К вопросу об итерационной реализации неупреждающих многозначных отображений //Известия ВУЗов, Математика, 2000, N3(454), c.66-76.
- [22] A.Chentsov Nonanticipating selectors of set-valued mappings and iterated procedures // FDE 1999, 6, N 3-4, 249-274p.
- [23] Ченцов А.Г. К вопросу о согласованности различных версий метода программных итераций //Докл. РАН.-2000.-Т.372, N5.-с.600-603.

- [24] Дятлов В.П., Ченцов А.Г. Управление с гибкими коррекциями при ограничении на общее число переключений //Гагаринские науч.чтения по космонавтике и авиации. 1987г.: Сб.науч.тр.-М.:Наука, 1988.-с.70-75.
- [25] Дятлов В.П., Ченцов А.Г. Об одном классе линейных дифференциальных игр с ограниченным числом коррекций.-В кн.:Управление и оценивание в динамических системах. Свердловск, 1982, с.9-16.
- [26] Ченцов А.Г. Конечно-аддитивные меры и релаксации экстремальных задач.-Екатеринбург: УИФ "Наука", 1993.
- [27] Varaiya P., Lin J. Existence of saddle points in differential games.-SIAM J.Control, 1969, 7, N1, p.141-157.
- [28] Krasovskii N.N., Chentsov A.G. On the design of differential games. I.-Probl. Control & Inform. Theory, 1977, 6, N 5-6, p.381-395.
- [29] Krasovskii N.N., Chentsov A.G. On the design of differential games. I.-Probl. Control & Inform. Theory, 1979, 8, N 1, p.3-11.
- [30] Неве Ж. Математические основы теории вероятностей.-М.:Мир, 1969.
- [31] Келли Дж.Л. Общая топология.-М.:Наука, 1981.