KU LEUVEN

Design of Analog and Mixed-Signal Integrated Circuits B-KUL-H05E3A

Design Project Introduction

Ir. Alberto Gatti, Jun Feng, Shuangmu Li, Prayag Wakale Prof. Filip Tavernier and prof. Tim Piessens Departement Elektrotechniek (ESAT)

DAMSIC

Filip Tavernier

Tim Piessens

Professors

Teaching Assistants

Alberto

Jun

Shuangmu

Prayag

DAMSIC

- Many topics + many slides
- Oral exam (10/20 points)

Professors

Teaching Assistants

- Exercise Sessions
- 8 sessions + Presentation
- Design Project
- Evaluation (10/20 points)
 - Results (5/20) report
 - Insight (5/20) oral presentation

The DAMSIC project

What is it?

Your job: front-end of a high-performance sensor

[https://www.getbodysmart.com/electrical-activity-heart/ekg/]

Design project goal

- First real design experience, follow-up to DIAC
 - Fundamental basics
 - Application specifications
 - Switched-capacitor amplifier
 - Deriving building block specifications
 - Design
 - Check application

Specifications

- Given to you, related to application
- Switched-capacitor amplifier
 - Gain
 - Sample phase
 - Amplification phase
 - Settling error
 - Stability

Building blocks' design

- Switches, clocks, capacitors
- OTA -> key block specfications
 - Simulations at block-level
 - A_{DC}, GBW, BW, PM ...

Transistor-level design

- The 'real work'
- SNR, GBW, BW, PM, ...
 - gm, r_{OUT} , I_{DS} , C_{PAR} etc. \rightarrow W/L, DC-biasing, VTH etc.
- Three OTA designs
 - Two-stage (just in first weeks)
 - Symmetric (not for final)
 - Gain-boosted (final)

Finally: performance check

- Go back to high level and check the performance
- Specifications met?
 power cost? ...
- Improvements?
- If time allows: extra design

Steps and timeline

Overall setup of the design sessions

- 4 steps of design
 - Mini-lectures
 - Syllabus (booklet) + Toledo
- Assessed: report + presentation

Step 1 (Sessions 1 and 2)

- Enroll on Toledo as a group of two
- Set-up workspace
 - Toledo → [H05E4a] → Documents → Assignment
 - Configure Cadence Virtuoso with 45nm predictive PDK
- Mini lecture on continuous time feedback
- Mini lecture on discrete-time and project simulations

Step 1 (Sessions 1 and 2)

Refresh on feedback theory

- Follow mini-lecture
- Experiment with two-stage OTA, exercises given in syllabus

Specs calculation (discrete-time)

- Application specs → OTA specs
- Each group has their own specs (see Toledo)
- Hand calculations
- Check with ideal OTA

Step 2 (Session 3)

- Finalize block specifications
- Run simulation of full system with "ideal OTA" (given)
- Mini-lecture on circuit design method: gm/l_D

Step 3 (Sessions 4 and 5)

- Design folded cascode OTA
- Important: how to design the OTA
 - How to do it in advanced PDKs?
 - What are the limitations of the current topology?
 - We do not expect you to meet all specifications at this stage
 - BUT we want you to try so that you know what are the limits of this topology and this technology

Step 3 (Sessions 4 and 5)

- Intermediate deliverable by 10/03 (after Session 4)
 - Toledo → Deliverables
 - Mostly schematics and plots
 - Template is available
 - Not graded but highly recommended
 - TA feedback in Session 5

Step 4 (Sessions 6, 7 and 8)

- Design the folded cascode OTA with gain-boosting
- Mini-lecture on gain-boosting
- Intermediate deliverable by 24/03 (after Session 6)
 - Feedback on design in Session 7

Report

- ♠ Toledo → Deliverables
- Merge the three templates (Part I, II & III)
 - You may adapt the contents for the final deliverable if you made some changes from what have been submitted before
- Due 2nd of May
- Graded 5 out of 20 points for DAMSIC

Presentation

- 5' Presentation + 10' Q&A @ 9th of May 2025, Friday (in B02.50)
 - Other details or changes in details will be posted in Toledo
- Show your design process, not a summary of achieved results
 - To know how you designed your circuit, why did you make your design decisions
- Both members should know what's happening in their design
 - It is possible for members in the same group to have different grades
- Graded on 5 out of 20 points for DAMSIC

Schedule overview

Session	Day	Session Topic	Mini-lecture	Deliverable
1	14/02	Cont. time OTA in feedback	Intro + CT OTA	
2	21/02	Project specification + discrete time	DT OTA + simulations	
3	28/02	Full system + design	gm/I _D design	
4	07/03	Folded-cascode design		Before #5
5	11/03	Folded-cascode design		
6	21/03	Gain-boosted OTA design	Gain boosting	Before #7
7	25/03	Gain-boosted OTA design		
8	28/03	Gain-boosted OTA design		Final by 02/05
Exam	09/05	Presentation + Q&A, details will follow		

How to work, in practice

Sessions and discussions

- Follow the syllabus and Toledo material when uploaded
- ♠ Attending sessions is key for success → TAs & your peers
- At the start of each session, discussions or tips/tricks may be discussed based on your progress
- TA discussions with groups will happen in the sessions after you have submitted the reports

Contacting TAs

Do not email TAs about questions regarding the project (e.g. simulation errors, clarifications, concepts)

Use the Discussion Forum on Toledo

- Often, you are not the only one with that question
- Other students might have already solved your problem
- Answer eachother in the forum

Cadence

- It is extremely expensive (industry-standard, monopoly)
 - ESAT doesn't have infinite licenses
 - There are >60 of you (as of writing)
 - Not everyone can use it simultaneously

- Close you schematics when not in use!
- Never open Virtuoso twice on the same account
 - Think about your fellow students and thesis students!

Cadence and simulations

- Tutorials, schematic views, maestro views, and other block are already provided to you
- TAs have spent time to prepare this, so please look into this
 - Based on experience, answers to some of the students' simulation questions are already in the documents we have uploaded

Summary

Summary

- You goal: design OTAs for a switched-capacitor amplifier
- A timeline was provided: make sure you don't get too far behind
- Intermediate reports will not be graded but recommended, you will be compiling them for your final report → presentation
- TAs can only be contacted via the sessions and Toledo forum

Questions? + short ~10 min. break ©

- Form a group of 2 → enroll on Toledo ("Groups")
- Download the project syllabus, first slides
- From syllabus: follow instructions to get DAMSIC Cadence library started

After break, Prayag will cover some feedback design exercises (i.e. syllabus section 2)

