- 1. 设单位反馈系统的开环传递函数为 $G(s) = \frac{K_1(s+2)}{s^2+2s+2}$, 试求该系统根轨迹在实轴上的汇合点。
- 2. 系统的开环传递函数 $G(s)H(s)=\frac{K_1}{s(s+4)(s+6)}$,试画根轨迹,并确定 $\zeta=0.5$ 时 K_1 的值。
- 3、设单位负反馈系统的开环传递函数为 $G(s) = \frac{K(s+5)}{s(s+2)(s+3)}$,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)d.
- 4. 设单位反馈系统开环传递函数为 $G(s)=\frac{K^*(s+z)}{s(s+p)}, z>p>0$,试作 K^* 由 $0\sim\infty$ 时的闭环根轨迹,证明其轨迹是圆(除实轴的根轨迹外),并求圆心和半径。
- 5. 已知单位负反馈控制系统的开环传递函数为 $G(s)=rac{1}{4}rac{(s+a)}{s^2(s+1)}$,试作以a为参量的根轨迹图 (a 从 $0 \to \infty$)。
- 6. 已知开环传递函数为 $G(s) = \frac{K^*(s+2)}{(s^2+4s+9)^2}$, 试概略绘制其闭环系统根轨迹图。