Воспользуемся критерием Михайлова для характеристического уравнения $\lambda^4+3,1\lambda^3+5,2\lambda^2+9,8\lambda+5,8=0$. $10\lambda^4+31\lambda^3+52\lambda^2+98\lambda+58=0$. $p(\xi)=10\xi^2-52\xi+58,$ $q(\eta)=-31\eta+98$. $\eta_1=\frac{98}{31}=3\frac{5}{31}$. Критерий $\xi_1<\eta_1<\xi_2$ выполнен тогда и только тогда, когда $p(\eta_1)<0$. При этом квадратичная функция $p(\xi)$ имеет точку минимума $\xi_0=2,6,$ значит правее этой точки $p(\xi)$ возрастает и $p(\eta_1)< p\Big(3\frac{10,5}{31}\Big)=p(3,5)=-1,5$. Следовательно, критерий Михайлова выполняется и нулевое решение устойчиво.