Package 'RSnetwork'

October 8, 2024

Version 1.0.0

Title Ecological Networks Analysis with Reciprocal Scaling

Description Analyze ecological networks and possibly species-environment tables using various correspondence analyses methods, and also quantify niches widths with reciprocal scaling.

License MIT + file LICENSE **Encoding** UTF-8 **Roxygen** list(markdown = TRUE) RoxygenNote 7.3.2 Imports ade4, adegraphics, dplyr, ggplot2, ggrepel, grid, lmtest, mvtnorm, stats, stringr, tibble, tidyr, tidyselect

Contents

add_params	
combine_cor	2
$compas2d \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	3
create_code	5
df_to_matrix	5
filter_matrix	6
get_best_model	6
get_cor	7
$get_mean_sd \dots $	7
get_niches	8
get_pred	9
$lm_labels \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	10
matrix to df	11

2 combine_cor

multiplot plot corcircle .																	
. –																	
plot_eig								 									
plot_lm_mean_	sd .							 									
plot_matrix								 									
plot reciprocal								 									

Index 18

add_params Add parameters

Description

Adds parameters value to simulation results dataframe.

Usage

```
add_params(corsim, paramvec)
```

Arguments

corsim a list with the correlation values (output of get_cor).

paramvec A vector of parameters (must be a 1-row dataframe)

Value

The list corsim with added columns in each dataframe of the list. The added columns are named like the columns of paramvec and contain repeated values of paramvec

combine_cor

Combine correlations

Description

Combine lists formatted by get_cor.

Usage

```
combine_cor(a, b)
```

Arguments

a First list formatted by get_corb Second list formatted by get_cor

Value

A list as formatted by get_cor (see this function's "Return" section).

compas2d 3

compas2d	Simulate species interactions	

Description

Simulate species interactions based on the matching between 2 traits. This is based on a code that originally simulated species abundances in different sites based on their environmental niches.

Usage

```
compas2d(
  nconsumer = 40,
  nresource = 100,
  le\_grad = 100,
  ratio_grad = 0.8,
  consumer_ab = NULL,
  resource_ab = NULL,
  min_ab = 1,
  max_ab = 100,
  ninter = 100,
  delta = 1,
  mean_tol = 2,
  sd_tol = 10,
  buffer = 1,
  col_prefix = "c",
  row_prefix = "r",
  rowvar_prefix = "tr",
  remove_zeroes = FALSE,
  return_intermediate = FALSE
```

Arguments

nconsumer	Number of consumer species
nresource	Number of resource species
le_grad	gradient length for traits. The values are comprised between 0 and le_grad.
ratio_grad	length of the second gradient as a ratio of the first one.
consumer_ab	Optional vector of abundances for consumers. If missing, abundances are taken from a uniform law between min_ab and max_ab.
resource_ab	Optional vector of abundances for resource species. If missing, abundances are taken from a uniform law between min_ab and max_ab.
min_ab	minimal abundance value for the uniform law (if consumer_ab and/or resource_ab are absent)
max_ab	maximal abundance value for the uniform law (if consumer_ab and/or resource_ab are absent)
ninter	Total number of observations in the matrix
delta	Exponent between 0 and 1 to give more (1) or less (0) weight to trait matching relatively to abundance.

4 compas2d

mean_tol	Mean value for the distribution of the normal law in which consumers niche standard deviation are drawn (for each trait).
sd_tol	Standard deviation for the distribution of the normal law in which consumers niche standard deviation are drawn (for each trait).
buffer	buffer to allow consumer species optima to fall outside the gradient by 0 -buffer ; le_grad + buffer.
col_prefix	Prefix for the column names of the matrix (which will be prefix + index). Defaults to "c" for "consumers".
row_prefix	Prefix for the row names of the matrix (which will be prefix + index). Defaults to "r" for "resources".
rowvar_prefix	Prefix for the column names of the row variable (which will be prefix + 1 or 2). Defaults to "tr" for "resource traits".
remove_zeroes	If there are unobserved species, should we keep them in the final matrix?
return_intermed	diate

Return intermediate results? If yes, will return the probability of interaction based on matching only, on abundances only and the predicted mix of matching and abundances (before sampling).

Details

This function models species interactions as arising from the matching between their traits. Traits are drawn from a uniform law with parameters determined by le_grad and ratio_grad (for the first and second trait). The matching is based on a multivariate normal distribution with means corresponding to the difference between trait values, and variance determined by the variance of consumers' niches. It is then mixed to the abundances (using the parameter delta) and sampled to obtain ninterinteractions.

Value

An object of class compas, which is a list with 3 components (4 if return_intermediate):

- comm: the interaction matrix of dimension nresource x nconsumer. Rows and columns are named like species (see row_prefix and col_prefix).
- rowvar: resource traits values. It is a nresource x 2 matrix. Rows are named like resource species (see row_prefix) and column are named like resource traits (see rowvar_prefix).
- colvar: consumer traits values. It is a nconsumer x 2 x 2 array. Rows are named like consumer species (see col_prefix). Column names in each array dimension are mean and sd (for the mean and standard deviation of the species niche, respectively).
- if return_intermediate, a fourth component named intermediate is returned. The first element is named p_matching and contains the matrix of probabilities of interactions based only on matching. The second ab_neutral contains the matrix of count of interactions as predicted by species abundances. The third p_mix contains the matrix of probabilities of interactions taking into account the mix of matching and abundances.

create_code 5

create_code	Create code		
-------------	-------------	--	--

Description

Create a code for each (unique) value of a vector

Usage

```
create_code(col, code_pattern = NA, name = NA)
```

Arguments

col vector to code

code_pattern first letter to add before code

name optional column names for the output dataframe

Value

dataframe with 2 columns: one with original vector (named col by default), the other with the corresponding codes (named col_code by default)

|--|

Description

Transforms an interaction dataframe into an incidence matrix.

Usage

```
df_to_matrix(df, rows = "plant_species_code", columns = "animal_species_code")
```

Arguments

df the dataframe to transform. Must have species names (columns which names

are given by the parameters rowsand columns), and a third column frequency

with the interaction frequency/strength index.

rows Name of the column with the species names that will be the rows of the matrix.

columns Name of the column with the species names that will be the columns of the

matrix.

Value

Returns an incidence matrix with named rows and columns filled with the values in frequency.

get_best_model

|--|

Description

Filter incidence matrix to keep only species that interact with more partners that a given threshold.

Usage

```
filter_matrix(mat, thr)
```

Arguments

mat The incidence matrix.

thr The minimal number of different interacting partners a species must have (a

species must have >= thr different interacting partners). It is not weighted (for instance, if thr = 2 then a species interacting 100 times with a unique other

partner will be removed.)

Value

The interaction matrix but where the rows and/or columns with species that do not interact above the threshold removed.

<pre>get_best_model</pre>	Get best model		
---------------------------	----------------	--	--

Description

Compare 2 linear models and returns the best

Usage

```
get_best_model(lmsimple, lm2, method = c("LRT", "AIC"), alpha = 0.05)
```

Arguments

lmsimple First model (if using method = "LRT", must be nested in lm2)

1m2 Second model

method The method to use to compare models: likelihood ratio test (method = "LRT")

for nested linear models comparison or AIC (method = "AIC")

alpha Significance threshold to consider when using method = "LRT"

Value

The best model

get_cor 7

get_cor Get correlations

Description

Measure correlations between niche obtained from CA or reciprocal scaling and the fundamental and realized niches.

Usage

```
get_cor(niches)
```

Arguments

niches

An object containing the fundamental, realized and multivariate niches (output of get_niches)

Value

A list of lists. The first element (named fundamental) contains the correlations with the fundamental niche values and the second element (named realized) contains the correlations with the realized niche values. Each sublist is a list of 2 dataframes:

- mean_cor: correlations of niches optima with the CA coordinates.
- sd_cor: correlations of niches breadths with reciprocal scaling standard deviations.

These dataframes have the following columns:

- axis: correlations measured on which multivariate axis?
- type: the type of individuals for which the measure is (rows or columns?). Column or row codes are chosen with rowname and colname from the parameter niches.
- cor: the correlation value

get_mean_sd

Get mean and standard deviation

Description

Return the mean and standard deviation from a reciprocal scaling analysis

Usage

```
get_mean_sd(recscal, ax = 1:2)
```

Arguments

recscal A dataframe (expected to be the output of ade4::reciprocal.coa). The first

columns must contain the reciprocal scaling scores and the last 3 columns are

Row, Col and Weight.

ax the axes for which to compute mean and variance (the function will use the n-th

first columns from the recscal dataframe).

8 get_niches

Value

A list of 4 matrices, each containing the mean or standard deviation per axes. Each matrix has one column per axis given in ax and as many rows as there are grouping levels.

- rowsd is the standard deviation per row
- rowmean is the mean per row
- colsd is the standard deviation per column
- colmean is the mean per column

Matrices rownames are the row or column groups (species names). Column names are the same as in recscal.

get_niches

Get niches

Description

Returns the fundamental and realized niches and the niches returned by reciprocal scaling.

Usage

```
get_niches(
  rec,
  comm,
  consumer_niche,
  resource_traits,
  rowname = "row",
  colname = "col"
)
```

Arguments

rec A dataframe (expected to be the output of ade4::reciprocal.coa). The first 2

columns must contain the reciprocal scaling scores (there can be more axes, but only the first 2 will be used.) The last 3 columns are Row, Col and Weight.

comm The observed community matrix. It is used to get the resource species niche

width.

consumer_niche A nx2x2 array with n rows (n species), 2 columns corresponding to species

niche optima and standard deviation (corresponding to their multivariate normal

niche) and 2 traits stored in the dimension. There is 1 row per species.

resource_traits

A mx2 matrix. Each row corresponds to a species and each column to a trait

value.

rowname How to name the first element of the list (resources/rows) (e.g. could be "plants")

colname How to name the second element of the list (resources/rows) (e.g. could be

"birds")

get_pred 9

Details

The fundamental niche optimum of a consumer is the mean of its niche (from the consumer_niche table). For a resource, it corresponds to the traits from the resource_traits table. The fundamental niche breadths are computed for consumers only, and corresponds to the breadths of their niche (from the consumer_niche table).

The realized niche optima are computed as the weighted means of the traits of species' interacting partners: therefore, the realized niche of a consumer is the weighted mean of the traits of the resource species it interacts with, and reciprocally. The realized niche breadths are computed as the weighted standard deviations of the traits of a species' interacting partners. Therefore, the realized niche breadth of a consumer is the weighted standard deviation of the traits of the resource species it interacts with, and reciprocally.

Niche optima computed with multivariate methods correspond to the reciprocal scaling mean and niche breadths correspond to the reciprocal scaling standard deviation.

Value

A list of lists of lists. The first element (named rowname) contains the niches for the resources and the second element (named colname) contains the niches for the consumers. Each element contains 2 lists:

- · mean: niche optima
- sd: niche breadths

For each of these sublists, there are 3 matrices elements named:

- fundamental: the fundamental niche based on species traits
- realized: the realized niche based on interacting species traits
- mvar: niche parameters corresponding to the mean and standard deviations given by reciprocal scaling.

These matrices describe the value for each species (in rows) along each trait/axis (in column).

get_pred

Get the predictions of a linear model

Description

Returns the model prediction on given data range.

Usage

```
get_pred(
  dat_predict,
  lmpred,
  by = 0.001,
  level = 0.95,
  interval = c("confidence", "prediction")
)
```

10 lm_labels

Arguments

dat_predict The data to predict

1mpred The model. It must have only one explanatory variable named mean.

by The step to use for the range of dat_predict values

level Confidence level used for the prediction. Defaults to 0.95.

interval The type of interval to use: the argument is used in stats::predict.lm and

has the same interpretation. confidence gives the confidence interval around the mean of the observations whereas prediction gives the confidence interval

of predicted values.

Value

The model's prediction as a dataframe with columns:

• fit: the predicted value

• lwr: lower bound of the confidence interval (see arguments level and interval)

• upr: upper bound of the confidence interval (see arguments level and interval)

• x: the explanatory variable

lm_labels

Labels of a linear model

Description

Get the labels of a linear model to display on a plot.

Usage

```
lm_labels(mod, a)
```

Arguments

mod The linear model. It is expected to have 2 or 3 coefficients of the form y = ax + b

or $y = ax + cx^2 + b$.

a The axis to consider. Used for the subscript of the variables.

Details

Inspired from https://r-graphics.org/recipe-annotate-facet

Value

A dataframe with columns formula and r2 Containing respectively the model equation and coefficient of determination. The formulas are written to be parsed later in the plot. The variables' names are s_a for the predicted value and m_a for the predictor.

matrix_to_df

matrix_to_df	Interaction matrix to dataframe
--------------	---------------------------------

Description

Transform interaction matrix (incidence matrix) to a dataframe

Usage

```
matrix_to_df(mat, colnames = "animals", rownames = "plants", tofactor = TRUE)
```

Arguments

mat	Interaction matrix. The function assumes this matrix has row and column names, that are then used to fill the output dataframe columns.
colnames	The name to give to the column containing the matrix column names (defaults to "animals").
rownames	The name to give to the column containing the matrix row names (defaults to "plants").
tofactor	Should the final columns colnames and rownames be of type factor?

Value

A dataframe with 3 columns:

- colnames containing the initial matrix column names
- rownames containing the initial matrix row names
- value containing the matrix values

multiplot Plot bi, tri or quadriplots

Description

Plot bi, tri or quadriplots from a multivariate analysis

Usage

```
multiplot(
  indiv_row = NULL,
  indiv_col = NULL,
  indiv_row_lab = rownames(indiv_row),
  indiv_col_lab = rownames(indiv_col),
  var_row = NULL,
  var_col = NULL,
  var_row_lab = rownames(var_row),
  var_col_lab = rownames(var_col),
  row_color = "black",
```

12 multiplot

```
col_color = "black",
eig = NULL,
x = 1,
y = 2,
xlim = NULL,
ylim = NULL,
grad = 4,
mult = 1,
title = NULL,
max.overlaps = 20,
labsize = 3,
alphapoints = 0.8
```

Arguments

indiv_row	Matrix of individuals coordinates for rows (type dudi\$li)
indiv_col	Matrix of individuals coordinates for columns (type dudi\$co)
indiv_row_lab	Labels for row individuals
indiv_col_lab	Labels for columns individuals
var_row	Matrix of variables coordinates for rows (type dudi\$corR)
var_col	Matrix of variables coordinates for columns (type dudi\$corQ)
var_row_lab	Labels for row variables
var_col_lab	Labels for columns variables
row_color	Color for the row individuals or variables
col_color	Color for the columns individuals or variables
eig	Eigenvalues vector
x	Axis to use for the x-axis
у	Axis to use for the y-axis
xlim	x-axis limits. Defaults to data range if not specified
ylim	y-axis limits. Defaults to data range if not specified
grad	graduations for the major.grid
mult	factor to multiply the vectors (arrows on the plot)
title	plot title
max.overlaps	max.overlaps argument for ggrepel::geom_text_repel
labsize	text size for point labels
alphapoints	Transparency value for points

Value

a ggplot representing row and/or column individuals as points, possibly including row and/or column variables as vectors

plot_corcircle 13

plot_corcircle

Plot correlation circle

Description

Plot a correlation circle

Usage

```
plot_corcircle(
  cor,
  label = rownames(cor),
  col = "black",
  lty = "solid",
  cor2 = NULL,
  label2 = rownames(cor2),
  col2 = "black",
lty2 = "solid",
  xax = 1,
  yax = 2,
  xlab = NULL,
  ylab = NULL,
  eig = NULL,
  col_bg = "grey30",
  mar = 0.01,
  labsize = 3.88,
  lim = 1,
  clip = "off"
)
```

Arguments

cor	dataframe containing the coordinates of the variables for each axis in columns
label	label to display on the arrows for the first set of variables
col	color for the first set of arrows
lty	linetype for the first set of variables
cor2	optional second set of variables (for double constrained analyses)
label2	label to display on the arrows for the second set of variables
col2	color for the second set of arrows
lty2	linetype for the second set of variables
xax	index of the column of the matrix to use for the x-axis
yax	index of the column of the matrix to use for the y-axis
xlab	Custom x-label
ylab	Custom y-label
eig	Eigenvalues vector (to display percentage of variation explained by each axis)
col_bg	color to use for background elements (circle and $y = 0$ and $x = 0$ lines)
mar	margin between arrow tips and label

14 plot_lm_mean_sd

labsize Size for arrow labels.

limits for the x and y axes: a unique number that gives the distance between the

plot limit and zero (so that the circle is centered)

clip constrain the labels to be inside the plot? If yes, change to "on".

Value

A ggplot with the correlation circle where one or two sets of variables are represented as arrows inside the circle of radius 1.

plot_eig

Plot eigenvalues

Description

Barplot of eigenvalues

Usage

```
plot_eig(eigenvalues, showrank = FALSE)
```

Arguments

eigenvalues The eigenvalues

showrank Should the x-axis display the rank of the eigenvalues?

Value

A ggplot with the eigenvalues displayed as a barplot.

plot_lm_mean_sd

Plot linear model

Description

Plot the linear models that predicts standard deviation with mean of the reciprocal scaling.

Usage

```
plot_lm_mean_sd(
    df,
    dat_pred,
    col = "black",
    ylab = "Standard deviation",
    xlab = "Mean",
    lab = NULL,
    text_size = 3,
    points_size = 1,
    facet = NULL,
```

plot_matrix 15

```
facet_dir = c("h", "v"),
  strip.position = "top",
  nudge_x = NULL,
  max.overlaps = 5
)
```

Arguments

df	The dataframe containing the true data. It must have columns mean (used for the x -axis) and sd (y -axis).
dat_pred	The dataframe containing the predicted data (assumed to be over the true data range). It is assumed to be obtained with get_pred . It must have columns x, fit, lwr, upr.
col	Color of the data points and prediction line. If there are facets, it should have length 2 (one color per facet).
ylab	Label of the y-axis
xlab	Label of the x-axis
lab	A label to add to the graph. If provided, will be added in the top-left corner. It must be a dataframe with at least one column R2 (to create this dataframe, see lm_labels). If facet is not NULL, it must have a column type too. If it has a column formula, the formula will be displayed along with the coefficient of determination.
text_size	Size of the text (points labels and R squared). Other text (axes titles, panels) is scaled to be bigger.
points_size	Size of the points
facet	A column to use for facetting. Defaults to NULL (no facets).
facet_dir	Direction of the facet grid: "h" for "horizontal and "v" for "vertical" (useful only if facet is not NULL)
strip.position	Strip position (useful only if facet is not NULL). See the documentation of ggplot2::facet_wrap (argument strip.position).
nudge_x	Nudge to use for top left corner labels. If NULL, defaults to 1 $\%$ of the range.
max.overlaps	<pre>max.overlaps argument for ggrepel::geom_text_repel</pre>

Value

A ggplot object showing standard deviation vs mean, along with the predicted values of the linear model

Plot matrix

Description

Plot an interaction matrix

plot_reciprocal

Usage

```
plot_matrix(
  mat,
  tile_fill = "white",
  col = "black",
  alpha = FALSE,
  max_size = max(mat) * 0.7,
  base_size = 12,
  xlab = "Animals",
  ylab = "Plants",
  trans = "identity",
  breaks = waiver(),
  legend_title = "Frequency"
)
```

Arguments

mat	The matrix. It represents the interaction frequency of species interactions (it is assumed to be plants x animals).
tile_fill	Color fill of tiles. Use NA for no fill.
col	Color of the points
alpha	If true, will make less abundant interactions more transparent
max_size	The maximum circle area to be used in $scale_size_area$. Defaults to 0.7 times the actual maximum.
base_size	Base text size
xlab	Title of the x axis
ylab	Title of the y axis
trans	Transformation to apply to the scaling of points.
breaks	Breaks to use for the legend of the points size.
legend_title	Title of the legend

Value

A ggplot representing the interaction matrix as a rectangle with points whose sizes correspond to the interacton frequencies

plot_reciprocal Plot reciprocal scaling

Description

Plot reciprocal scaling

plot_reciprocal 17

Usage

```
plot_reciprocal(
  dudi,
  recscal,
  xax = 1,
  yax = 2,
  labsize = 1,
  psize = 1,
  xlab = NULL,
  ylab = NULL,
  group = c("li", "co"),
  col = "cornflowerblue",
  alpha = 0.2,
  plot_arrows = TRUE,
  plot_points = TRUE,
  plot_labels = TRUE,
)
```

Arguments

dudi	An object of class ade4::dudi to pair with the analysis. Used for the eigenvalues (always) and for the arrows of explanatory variables if required. It must be of class coa, pcaiv or dpcaiv (obtained with the new function dpcaiv2).
recscal	A dataframe (expected to be the output of reciprocal.coa function). The first columns must contain the reciprocal scaling scores and the last 3 columns are Row, Col and Weight.
xax	The index of the multivariate axis to plot on the x-axis (the column xax from the recscal dataframe).
yax	The index of the multivariate axis to plot on the y-axis (the column yax from the recscal dataframe).
labsize	Size of the ellipses labels
psize	Size of the points
xlab	Custom x-label
ylab	Custom y-label
group	The group to use for the ellipses (co or li)
col	The ellipses colors
alpha	The ellipses transparency
plot_arrows	Whether to plot the arrows for the variables
plot_points	Plot the data points?
plot_labels	Plot ellipses labels?
	Additional parameters passed to s.class

Value

A plot with the points grouped by ellipses.

Index

```
add_params, 2
ade4::dudi, 17
ade4::reciprocal.coa, 7, 8
combine_cor, 2
compas2d, 3
create_code, 5
df_to_matrix, 5
filter_matrix, 6
\verb"get_best_model", 6
get_cor, 2, 7
get_mean_sd, 7
get_niches, 7, 8
\mathtt{get\_pred}, 9, 15
ggplot2::facet_wrap, 15
ggrepel::geom_text_repel, 15
lm_labels, 10, 15
\texttt{matrix\_to\_df}, \textcolor{red}{11}
multiplot, 11
plot_corcircle, 13
plot_eig, 14
\verb|plot_lm_mean_sd|, 14
plot_matrix, 15
plot_reciprocal, 16
stats::predict.lm, 10
```