OPM 562 Case study:

Supervised learning for data driven tomato yield prediction and control of greenhouses

Son Phan, 1713240

Contents

1. Data Preparation

2. Neural Network

- a. Architecture and Structure
- b. Activation Function and Loss Function
- c. Prevention of Overfitting
- d. Training Hyperparameters
- e. Training Results

3. Decision Making

- a. Parameter configurations
- b. Cost function
- c. Recommendations
- 4. Sensitivity Analysis

Data Preparation

- 1. Convert categorical data
- a. Cycles (C1-C6) to dummies
- b. Countries: Spain = 0, Netherlands = 1
- 2. Separate feature & target columns
- 3. Train-validation-test split

Larger amount of training data makes the NN better understand data distribution.

2. Neural Network

2.a. Architecture and Structure

Decision **Feature Justification** Arguments for a FFNN Architecture • Most suitable for regression prediction problems Feed-forward where a numerical value (target) is predicted neural network 888 given a set of inputs (features) o Data to be learned is neither sequential nor timedependent. Layers (Depth) Non-linearity in the data Structure Lack of generalization for shallow models Test error does not improve anymore after 2 hidden layers two layers 1561 parameters Units (Width) No. of units in hidden layers ≤ no. of units in input laver Units add up to parameters, parameters should approximate total of data points of training set

2.b. Activation Function

Rectifier Linear Unit (ReLU) Function

- Used on every hidden layer
- Most suitable for a regression problem
- Results in a numerical value > 0
- Alleviates the problem of vanishing gradients in deep models

2.b. Loss Function

Mean Squared Error (MSE)

- Most suitable for a regression problem
- The model is punished for making larger mistakes → optimizes accuracy of our prediction
- Preferred loss function as output type is continuous numerical value and distribution of target variable is Gaussian
- Keep track of MAPE to check the network performance

2.c. Prevention of overfitting

L2 regularization

- L2 regularization smooths the parameter distribution
- High performance when combined with dropout regularization (Srivastava et al. 2014).

Why only L2 and not L1?

- Less computationally expensive
- Avoid feature selection

Dropout layers

- Large neural nets trained on relatively small datasets can overfit the training data.
- Dropout layer:
 - Simulates training a large number of neural networks
 - Makes training process noisy
 - Increases generalization power
- Dropout layer assigned to each hidden laver
- Common rate range cited in literature: [0.2 -0.5]. We decided to use 0.2 because of the size of our data.

2.d. Training Hyperparameters

Batch size

Mini-batch gradient descent

- Split training set into smaller sets
- Implement gradient descent on each batch one after the other
- Mini-batch size should be smaller than number of datapoints in training data
- Increased size to compensate for high number of epochs

Epochs

- Increase to compensate for the "noises" that dropout layers add to training process
- Train as long as validation error decreases

Learning rate

- Adam maintains and adapts learning rates for each of the weights in the model
- Computationally efficient, little memory requirement

Faster & more efficient algorithm

Avoids over- or underfitting

Low training cost over iterations (compared to other optimizers)

2.e. Training results

MSE/MAPE in training & validation data over epochs

After 10,000 Epochs:

- → Validation error shows no further decrease
- → Training error and validation error converge (small generalization gap)
- → Stop early before overfitting

Model evaluation

	Training	ng Validation Test	
MSE	0.62	0.79	0.75
MAPE	6.90 %	8.00 %	6.99 %

→ Network performs well on test data: MAPE below 10 % indicates very high forecasting accuracy

3.a. Parameter configurations

Ranges for the parameters "daily irrigation" and "temperature inside" are taken from min and max values of these parameters in the provided dataset.

	min value	max value	step	
area	1000 m ²	50000 m ²	1000 m ²	
pesticide	0	1	1	
daily irr.	1.5 L/m ² d	5.5 L/m²d	0.5 L/m²d	
tº inside	13 °C	34 ℃	1 °C	

19800 different parameter configurations

3.b. Cost function

Total cost = irrigation + penalty + conditioning + greenhouse costs

0.000021 x area x daily irrigation x 60

1 x (demand - area x predicted yield)*
0**

3600 x to inside - to outside

20 x area ÷ €

3.c. Recommendations Cycle 2

	Û	ă		**	9		
best atternativ	31 modules 32 modules	Envidum Envidum	18 (+3) °C 18 (+3) °C	4.0 L/m ² d 4.0 L/m ² d	×	-1,806 kg 7,814 kg	Backlog Leftover
best alternativ	€ 103,333 € 106,667	<u> </u>	€ 10,800 € 10,800	€ 156 € 161	€ 1,806 0	€ 116,095 € 117,628	Total cost

3.c. Recommendations Cycle 3

3.c. Recommendations Cycle 4

Relatively little sun in Germany

Impossible to meet demand within the given constraints with any costs

Don't accept so large orders!

Expand capacity

4. Sensitivity analysis Cycle 2

No change: pesticide, irrigation, temperature

4. Sensitivity analysis Cycle 3

No change: pesticide, irrigation, temperature

4. Sensitivity analysis Cycle 4

