CENTRO DE ESTATÍSTICA APLICADA - CEA - USP

RELATÓRIO DE CONSULTA

TÍTULO DO PROJETO: "Influência de algumas substâncias associadas à escovação dental na integridade superficial de diferentes materiais indicados para restaurar lesões cervicais não-cariosas"

PESQUISADOR: Sheila Regina Maia Braga

ORIENTADORA: Maria Angela Pita Sobral

INSTITUIÇÃO: Faculdade de Odontologia - USP

FINALIDADE DO PROJETO: Mestrado

PARTICIPANTES DA ENTREVISTA: Sheila Regina Maia Braga

Maria Angela Pita Sobral Marcelo Hiroshi Ogava Rosana Francisco Alves

Carlos Alberto de Bragança Pereira

Julio da Motta Singer

DATA: 10/09/2002

FINALIDADE DA CONSULTA: Sugestão de dimensionamento da amostra e

planejamento do experimento

RELATÓRIO ELABORADO POR: Marcelo Hiroshi Ogava

Rosana Francisco Alves

1. Introdução

A redução do índice de cárie, as melhores condições de higiene bucal e o maior acesso aos tratamentos odontológicos associados à maior longevidade do ser humano têm trazido, como resultado nos últimos anos, algumas mudanças no perfil da Odontologia Restauradora.

Nota-se uma redução no índice de cárie da população de tal modo que, nos dias de hoje, é possível encontrar idosos que não tenham apresentado cárie durante toda a sua vida. Entretanto, com o envelhecimento, os dentes passam a apresentar severas destruições por desgaste, conhecidas por lesões cervicais não-cariosas, caracterizadas pela perda de estrutura dental próxima à gengiva, não causada por cárie mas por agentes físicos ou químicos. A perda de estrutura dental causada por agentes químicos, tais como bedidas ácidas, é denominada desgaste por erosão; se for causada por agentes físicos, tais como a escovação dental, é denominada abrasão.

Acredita-se que a combinação dos mecanismos de erosão e abrasão podem provocar um aumento do processo de desgaste dos dentes. Estudos têm mostrado que a perda de estrutura dental causada pela escovação é acelerada após a exposição do dente a sucos de frutas ácidas.

Algumas vezes as lesões cervicais não-cariosas evoluem rapidamente promovendo hipersensibilidade, dificultando a mastigação dos alimentos e provocando dores no paciente. Assim como a cárie, essas lesões também precisam ser restauradas.

Atualmente existem vários materiais indicados para restauração, todavia o uso de determinado material não tem como base a etiologia da lesão que será restaurada, sendo a escolha feita de acordo com a preferência do profissional por determinado material, pela estética ou até pela técnica de trabalho.

A proposta deste estudo é verificar de que maneira as bebidas ácidas ou as bebidas alcoólicas associadas à escovação dental afetam diferentes tipos de materiais restauradores, com o intuito de identificar qual material é mais resistente, de modo que a escolha desse não seja mais feita a esmo.

O objetivo da consulta foi discutir o dimensionamento da amostra e o planejamento do experimento.

2. Descrição do Estudo

Serão utilizados cinco materiais restauradores de lesões cervicais não-cariosas: uma resina microhíbrida, uma resina de micropartículas, uma resina flow, um compômero e um cimento de ionômero de vidro resino modificado (ver Tabela 1). Corpos de prova fabricados com esses materias serão imersos em quatro soluções diferentes: coca-cola, whisky, suco de limão e água deionizada. Estes corpos serão confeccionados em moldes plásticos com dimensão interna de 10 mm de diâmetro e 6 mm de altura. A manipulação dos materiais, que serão colocados diretamente no interior dos moldes, será feita de acordo com as instruções dos fabricantes. O molde estará apoiado sobre uma placa de vidro e uma tira de matriz de poliéster. Após seu preenchimento esse molde será coberto por outra tira de matriz de poliéster e por uma placa de vidro.

Tabela 1: Materiais restauradores

Nome Comercial	Tipo de Material				
Z100	Resina composta microhíbrida				
Durafil	Resina composta micropartículas				
Flow-it	Resina Flow				
Dyract	Compômero				
Fuji II LC	Ionômero de vidro resino modificado				

As amostras dos materiais serão fotopolimerizadas (a intensidade de luz será monitorada com um radiômetro) através do topo e do fundo do molde por 40 segundos, com uma unidade fotopolimerizadora, em cada lado. Em seguida as amostras serão removidas dos moldes e as superfícies serão polidas. Serão preparados espécimes de cada um dos cinco materiais restauradores citados. O conjunto de espécimes gerado de cada material será divido em quatro grupos, sendo que cada um deles será submetido a uma das quatro soluções.

Antes da imersão nas soluções, as amostras serão armazenadas em água deionizada por 7 dias a 37°C. Após este período serão secas e avaliadas quanto à

rugosidade superficial e perda de estrutura. A rugosidade superficial será avaliada através de um rugosímetro, que indica medidas da média dos picos e vales da superfície avaliada (Ra). Em cada espécime serão feitas 5 medidas em locais diferentes e realizada uma média desses valores para se obter o valor médio de Ra da superfície avaliada. Uma balança analítica será usada para obter a perda de peso. A perda de espessura será avaliada através de um perfilômetro.

Em seguida, os espécimes serão imersos nas soluções teste por um período de 60 dias em temperatura de 37° C. O pH das soluções será medido periodicamente.

Encerrado o período de imersão, serão feitas novas análises no rugosímetro, perfilômetro e balança analítica como mencionado acima. Na seqüência, os espécimes serão submetidos à simulação de escovação dental sob um regime de 48 movimentos/minuto totalizando 20000 movimentos e carga de 200 gramas, com uma mistura de 5 gramas de creme dental Colgate e 20 ml de água deionizada, o que corresponde a 2 anos de escovação. Esta mistura e a escova serão renovadas a cada 2500 movimentos.

Após o ciclo de escovação, as análises de rugosidade superficial e perda de estrutura serão novamente avaliadas.

3. Descrição das Variáveis

As seguintes medidas serão realizadas nos corpos de prova:

- Rugosidade superficial (μm)
- Peso (g)
- Perfil (mm)

4. Situação do Projeto

O projeto está sendo submetido à avaliação da FAPESP.

Um estudo piloto utilizando apenas dois dos materiais foi realizado. Somente a fase de imersão nas quatro soluções foi concretizada. A segunda etapa do projeto,

referente à escovação dos materiais, não pôde ser realizada devido à falta da aparelhagem.

5. Sugestões do CEA

Dimensionamento

Utilizando os valores de perfil e rugosidade obtidos na amostra piloto e levando em consideração a maior variabilidade encontrada (rugosidade do Ionômero de vidro resino modificado imerso no whisky com desvio padrão de 0,581 μ m), calculamos os tamanhos de amostras (por tratamento) para detectar diferenças de 1 μ m, entre as médias dos valores antes e depois do tratamento, com nível de significância α (=0,05) (Bussab e Morettin, 2002). Os resultados estão na Tabela 2.

Tabela 2: Número de corpos de prova de cada material para cada solução

D. L. (4.0)	Tamanho da amostra			
Poder (1- β)	(por tratamento)			
0,70	2			
0,85	3			
0,93	4			
0,97	5			
0,99	6			

Planejamento

Os corpos de prova correspondentes a cada material devem ser numerados de 1 a 20 e distribuídos segundo os tratamentos de acordo com a tabela abaixo.

Tabela 3: Aleatorização dos corpos de prova.

Substância –			Material		
	Z100	Durafil	Flow-it	Dyract	Fuji II LC
Coca-Cola	8	3	12	18	18
	19	1	9	17	16
	6	2	2	4	5
	1	6	8	12	3
	7	8	18	10	19
Suco de limão	10	20	16	20	11
	2	7	14	8	13
	11	5	15	2	4
	14	19	20	6	17
	15	16	3	3	9
Whisky	17	4	19	11	2
	20	18	6	14	14
	13	12	11	15	10
	12	14	4	16	6
	16	13	7	7	15
Água deionizada	3	11	10	5	7
	5	17	17	19	12
	9	9	13	13	1
	18	10	5	9	8
	4	15	1	1	20

No caso de optar-se por um tamanho de amostra maior, deve-se seguir o mesmo procedimento, aleatorizando os demais espécimes.

6. Conclusão

Uma vez que o projeto ainda está em fase de planejamento, foi feito um dimensionamento da amostra utilizando como base a maior variabilidade encontrada no estudo piloto, dentre as medidas de rugosidade e perfil, de tal forma que deve ser escolhido o tamanho de amostra associado ao poder que se quer obter (ver Tabela 2).

7. Referências Bibliográficas:

BUSSAB, W.O. e MORETTIN, P.A. (2002). Estatística Básica. 5ª ed. São Paulo: Saraiva. 526p.