Resolução do $1^{\underline{0}}$ Teste de AUC

2023/2024

Nota Preliminar

Não há qualquer garantia de que as resoluções estejam totalmente corretas.

Em todo este teste:

- \mathcal{N} denota a álgebra $(\mathbb{N}_0, +, 0)$ de tipo 2,0;
- M_4 denota o conjunto $\{0, a, b, c, d, 1\}$ e N_5 denota o conjunto $\{0, a, b, c, 1\}$;
- $\mathcal{M}_4 = (M_4, \leq)$ e $\mathcal{N}_5 = (N_5, \leq')$ são os reticulados dados respectivamente pelos dois diagramas seguintes.

Grupo I - Perguntas de V/F

1. a) Para toda a álgebra \mathcal{A} , \emptyset é subuniverso de \mathcal{A} .

Resposta: A afirmação é **falsa**. De facto, \emptyset é subuniverso de \mathcal{A} se e só se \mathcal{A} não tiver operações nulárias (i.e. constantes), isto é, se e só se $\{f \in O : \tau(f) = 0\} = \emptyset$.

b)
$$Sg^{\mathcal{N}_5}(\{a,c\}) = N_5.$$

Resposta: A afirmação é **falsa**. Dada uma álgebra $\mathcal{A} = (A; F)$ e um conjunto $X \subseteq A$, existe uma estratégia recursiva para determinar $Sg^{\mathcal{A}}(X)$. Começamos por determinar os conjuntos seguintes:

$$\begin{cases} X_0 = X; \\ X_{n+1} = X_n \cup \{ f^{\mathcal{A}}(a_1, \dots, a_m) \mid \tau(\underline{f}) = m \in a_1, \dots, a_m \in X_n \}. \end{cases}$$

Posto isto, $Sg^{\mathcal{A}}(X) = \bigcup_{n \in \mathbb{N}_0} X_n$. A questão é que nós podemos parar de calcular os conjuntos X_i a partir do momento em que encontramos dois conjuntos iguais, ou seja, quando já não é possível acrescentar mais elementos.

Neste caso, tem-se que:

$$\begin{cases} X_0 = \{a, c\} \\ X_1 = \{a, c\} \cup \{a \land c, a \lor c\} = \{a, c, 0, 1\} \\ X_2 = \{a, c, 0, 1\} \cup \{a \land c, a \land 0, a \land 1, c \land 0, c \land 1, 0 \land 1, a \lor c, \dots, 0 \lor 1\} = \{a, c, 0, 1\} \end{cases}$$

Como $X_2 = X_1$, podemos parar o processo e já sabemos que $Sg^{\mathcal{N}_5}(\{a,c\}) = \{0,a,c,1\}$. Logo, $Sg^{\mathcal{N}_5}(\{a,c\})$ não é todo o \mathcal{N}_5 , porque não é possível gerar b a partir de $\{a,c\}$.

c) As cadeias são reticulados distributivos.

Resposta: A afirmação é verdadeira. Pelo Teorema de Birkhoff, um reticulado é distributivo se e só se não contém nenhum sub-reticulado isomorfo a \mathcal{N}_5 nem nenhum sub-reticulado isomorfo a \mathcal{M}_3 . É evidente que uma cadeia não tem sub-reticulados isomorfos a estes, uma vez que os elementos estão todos "em linha" no seu diagrama de Hasse.

d) \mathcal{M}_4 é um reticulado distributivo.

Resposta: A afirmação é **falsa**. Tal como foi mencionado na alínea anterior, para um reticulado ser distributivo, ele não pode ter nenhum sub-reticulado isomorfo a \mathcal{M}_3 , em particular. No entanto, tem-se que, por exemplo,

é um sub-reticulado de \mathcal{M}_4 isomorfo a \mathcal{M}_3 . Logo, \mathcal{M}_4 não é um reticulado distributivo.

e) O conjunto $\{2n \mid n \in \mathbb{N}_0\}$ é um subuniverso de \mathcal{N} .

Resposta: A afirmação é verdadeira, uma vez que o conjunto em questão é o conjunto dos números pares e a soma de dois números pares dá sempre um número par. Logo, este conjunto é fechado para a operação (+) da álgebra, sendo por isso um subuniverso.

f) \mathcal{N}_5 é um reticulado completo.

Resposta: A afirmação é verdadeira. Um reticulado diz-se completo se todos os subconjuntos formados pelos seus elementos tiverem ínfimo e supremo. É fácil ver que todos os reticulados finitos são completos. Assim, como \mathcal{N}_5 é um reticulado finito, é completo.

Grupo II - Justificar se é verdade em 2 linhas

Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa (escreva 2 linhas para justificar).

2. A ordem induzida por $\{a, b, c, d\}$ em \mathcal{M}_4 é uma cadeia.

Resolução: A afirmação é **falsa**. Como, por exemplo, os elementos a e b são incomparáveis em \mathcal{M}_4 , também o são na ordem induzida, e numa cadeia todos os elementos têm de ser comparáveis.

3. Existe um mergulho $\alpha \colon \mathcal{M}_4 \to \mathcal{N}_5$.

Resolução: A afirmação é **falsa**. Note-se que $|M_4| = 6 > 5 = |N_5|$, ou seja, M_4 tem mais elementos do que N_5 . Assim, é impossível existir uma aplicação injetiva de \mathcal{M}_4 em \mathcal{N}_5 , e um mergulho é sempre injetivo.

4. Existe $X \subseteq \mathbb{N}_0$ tal que $Sg^{\mathcal{N}}(X) = \mathbb{N}_0$.

Resolução: A afirmação é **verdadeira**. Por exemplo $X = \{0, 1\}$ funciona, uma vez que, dado $n \in \mathbb{N}_0$, ou n = 0 ou n > 0, caso em que $n = 1 + \cdots + 1$ (soma com n parcelas iguais a 1).

5. b é um elemento compacto de \mathcal{N}_5 .

Resolução: A afirmação é **verdadeira**. \mathcal{N}_5 é um reticulado finito e todos os reticulados finitos são compactos, logo todos os elementos de \mathcal{N}_5 são compactos.