ÔN TẬP CHƯƠNG 1

Dữ liệu áp dụng cho câu OT1.1, OT1.2.

Cho phương trình nhiệt hoá học sau:

$$C_2H_2(g) + H_2O(g) \xrightarrow{f^c, xt} CH_3CHO(g)$$
 $\Delta_rH_{298}^o = -151 \text{ kJ}$

$$\Delta_r H_{298}^o = -151 \text{ kJ}$$

OT1.1. Cân bằng hoá học sẽ chuyển dịch về phía tạo ra nhiều CH₃CHO hơn khi

- A. giảm nồng độ của khí C₂H₂.
- B. tăng nhiệt độ của hệ phản ứng.
- C. không sử dụng chất xúc tác.
- D. tăng áp suất của hệ phản ứng.

OT1.2. Biểu thức tính hằng số cân bằng K_c của phản ứng là

A.
$$K_c = \frac{[C_2H_2]\times[H_2O]}{[CH_3CHO]}$$

C.
$$K_c = \frac{[C_2H_2]}{[CH_2CHO]}$$

B.
$$K_c = \frac{[CH_3CHO]}{[C_2H_2] \times [H_2O]}$$
 D. $K_c = \frac{[CH_3CHO]}{[C_2H_2]}$

D.
$$K_{\mathbb{C}} = \frac{[CH_{3}CHO]}{[C_{2}H_{2}]}$$

OT1.3. Chất nào sau đây không phải chất điện li?

A. NaCl.

B. C. H. O.

C. HNO3.

D. NaOH.

OT1.4. Phương trình điện li nào sau đây không chính xác?

- B. HCOOH CHCOO⁻ + H⁺
- C. $HCIO \Longrightarrow H^+ + CIO^-$ D. $Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^-$

.

OT1.5. Theo thuyết Brønsted – Lowry, H2O đóng vai trò gì trong phản ứng sau?

$$S^{2-} + H_2O \Longrightarrow HS^- + OH^-$$

A. Chất oxi hoá.

B. Chất khử.

C. Acid.

D. Base.

Dữ liệu áp dụng cho câu OT1.6, OT1.7.

Cho phản ứng: $CO(g) + 3H_2(g) \Longrightarrow CH_4(g) + H_2O(g)$

- **OT1.6.** Nồng độ ở trạng thái cân bằng: [CO] = 0,0613 mol/L; $[H_2] = 0,1839 \text{ mol/L}$, $[CH_4] = 0,0387 \text{ mol/L}$ và $[H_2O] = 0,0387 \text{ mol/L}$. Tính hằng số cân bằng của phản ứng.
- OT1.7. Cân bằng của phản ứng sẽ chuyển dịch theo chiều nào khi:
 - a) Bơm thêm H₂ vào hệ phản ứng?
 - b) Giảm áp suất?
- OT1.8. Phản ứng:

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$
 đạt trạng thái cân bằng ở 900 K.

Hằng số cân bằng của phản ứng có giá trị là $8,2\times10^{-2}$. Giả sử nồng độ mol ở trạng thái cân bằng của CO và Cl₂ là 0,150 M. Tính nồng độ mol ở trạng thái cân bằng của COCl₂.

- **OT1.9.** Viết phương trình điện li (nếu có) của các chất trong dung dịch: KBr, NO_2 , $Ca(NO_3)_2$, NaOH, CH_4 , $Ba(OH)_2$, $Fe_2(SO_4)_3$, $Zn(NO_3)_2$, KI, H_2S , CH_2 =CH–COOH, CuO.
- OT1.10. Trộn lẫn V mL dung dịch NaOH 0,01 M với V mL dung dịch HCl 0,03 M thu được 2V mL dung dịch Y. Tính pH của dung dịch Y.