Universidade Federal de Minas Gerais Departamento de Matemática - ICEX Análise II - 2021 Prova 2 - 26/07/2021

- 1. (6 pontos) Sejam $U \subset \mathbb{R}^m$, $V \subset \mathbb{R}^n$ abertos, ω uma k-forma diferencial definida em V e $f: U \to \mathbb{R}^n$ uma aplicação C^{∞} , tal que $f(U) \subset V$. Prove os seguintes enunciados:
 - $d(d\omega) = 0$, (aqui d denota a diferencial exterior).
 - $d(f^*(\omega)) = f^*(d\omega)$.
- 2. (6 pontos) Seja $U = \mathbb{R}^3 \{(0,0,0)\}, \ e \ x = (x_1, x_2, x_3).$ Considere $\eta \in \Omega^2(U), \ definida por$

$$\eta = g_1(x)dx_2 \wedge dx_3 - g_2(x)dx_1 \wedge dx_3 + g_3(x)dx_1 \wedge dx_2,$$

onde $g_i: U \to \mathbb{R}$ é definida por $g_i(x_1, x_2, x_3) = x_i/||x||$. A 2-forma η é fechada? Prove sua resposta. (Aqui ||.|| denota a norma euclideana).

- 3. (7 pontos) Seja $\alpha \in \mathcal{A}^1(\mathbb{R}^3)$ e $\beta \in \mathcal{A}^2(\mathbb{R}^3)$ tal que $\alpha \wedge \beta = 0$. Prove que existe $\gamma \in \mathcal{A}^1(\mathbb{R}^3)$ tal que $\beta = \alpha \wedge \gamma$.
- 4. (7 pontos) Seja $\omega = ydx xdy + dz$ uma 1-forma em \mathbb{R}^3 , sejam $u, v : \mathbb{R}^3 \to \mathbb{R}$ funções $C^{\infty}(\mathbb{R}^3)$. Se $\eta = \omega vdu$ é fechada. Prove que u e v são funções que não depedem da variável z.
- 5. (7 pontos) Sejam ω uma 1-forma diferencial em \mathbb{R}^m e $f: \mathbb{R}^m \to \mathbb{R}$ uma função C^{∞} , com $f(x) \neq 0$ para todo $x \in \mathbb{R}^m$. Mostre que $d(f\omega) \equiv 0$ (identicamente zero) se, e somente se, a 1-forma

$$\beta = \omega - \frac{1}{f}dx_{m+1}$$

em \mathbb{R}^{m+1} satisfaz a equação $\beta \wedge d\beta = \omega \wedge d\omega$. (Considere $\mathbb{R}^m \subset \mathbb{R}^{m+1}$ definido por $x_{m+1} = 0$).

Professor Arturo Fernández Pérez