비정형 빅데이터 분석의 응용과 실습

Week-07. Search Engine - Part 2

Boolean Retrieval

- 쿼리 연산에 대해서 두가지 중 하나의 결과를 보여줌
 - True or False
 - Exact-match
- 일반적으로 Query는 부울 연산을 이용해 제공됨
 - AND OR NOT
- 기본 가정은, "검색된 모든 결과는 동일하게 관련된 내용이다"

Boolean Retrieval

- 아직도 많은 검색 시스템은 부울 연산을 활용
 - 이메일, 인스타그램
- 일부 도메인에 대해서는 매우 효과적인
 - 특허 검색
 - 법률 검색
 - 개발자 디버깅 검색

Boolean View

- 각 행은 특정한 단어(term)을 표현
 - 각 단어가 들어간 문서는?
- 쿼리 실행
 - 검색어로 들어온 Term을 고르고
 - Boolean 연산을 적용

Term	Doc1	Doc2	Doc3	Doc4	Doc5
Hello	0	0	0	1	0
Му	1	0	1	0	1
Love	0	0	1	0	0
lt	1	1	1	1	1
Is	1	1	1	1	1
Very	0	1	0	0	1
Cold	0	0	0	1	0
On	1	0	1	1	1
This	0	1	1	1	1
Island	0	1	0	0	0

문서 검색 Boolean 검색 예제

Term	Doc1	Doc2	Doc3	Doc4	Doc5
This	0	1	1	1	1
On	1	0	1	1	1

• This AND On : Doc3, Doc4, Doc5

• This OR ON : Doc1, Doc2, Doc3, Doc4, Doc5

• This AND NOT On : Doc2

• On AND NOT This : Doc1

구글에서 Boolean 검색 예제

- AND 연산자: "연세대학교" AND "서중원"
- OR 연산자: "연세대학교" **OR** "서중원"
- NOT 연산자: 연세대학교 -학술정보원

Boolean 검색 장/단점

장점

- 검색 결과에 대한 설명이 쉬움 (포함/미포함)
- 다양한 요소들이 검색에 함께 포함될 수 있음 (이미지가 포함되어있냐 아니냐 등등)
- 효율적인 연산 (시작과 동시에 많은 문서들이 제외 될 것이기 때문에)
- 관련된 문서를 절대 놓치지 않음

단점

- 검색 결과의 퀄리티는 사용자의 쿼리 작성에 의해 달려있음
- 문서간 랭킹이 X
- 단어가 포함되어 있지 않지만, 관련된 문서를 검색 할 수 없음

Rank Retrieval

- score(d,q)
 - 주어진 쿼리 q에 대해서 각각의 문서의 점수를 계산
 - Query = "Hello world"
- How?
 - $\omega_{t,d}$: 문서(d)와 Term(t)과의 가중치 계산
 - $\omega_{t,q}$: 쿼리(q)와 Term(t)과의 가중치 계산
 - 그리고 그 둘의 내적을 통한 유사도 계산
 - 각각의 문서에 대한 점수 반환

$$score(d, q) = \sum_{t \in q} \omega_{t,d} \cdot \omega_{t,q}$$

Scoring

Example 1 - Term Frequency Weighting

- $f_{t,d}$: 문서 d에서 term t가 등장한 횟수
- $f_{t,a}$: 쿼리 q에서 term t가 등장한 횟수

Example

- 쿼리 : Hello, Hello world
- 텀: Hello
- 문서 : "Hello, Hello, Hello world, programming is very fun"
- $f_{t,d}$:3
- $f_{t,q}$: 2

$$score(d, q) = \sum_{t \in q} \omega_{t,d} \cdot \omega_{t,q}$$

$$\omega_{t,d} = \begin{cases} 1, & f_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\omega_{t,d} = f$$

$$\omega_{t,q} = f_{t,q}$$

Scoring

Example 2 - Log frequency Weighting

• 단순 횟수 보다 해당하는 단어의 중요도를 같이 고려하는게 좋지 않을까?

f t,d	W t,d
0	0
1	1
2	1.3
10	2
1000	4

$$\omega_{t,d} = \begin{cases} 1 + \log f_{t,d}, & f_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$score(d, q) = \sum_{t \in q} \omega_{t,d} \cdot \omega_{t,q}$$
$$score(d, q) = \sum_{t \in q} (1 + \log f_{t,d}) \cdot \omega_{t,q}$$

벡터 공간 모델

단어와 문서를 표현하기 위한 방법

- 1960-70년대 정보검색 연구분야의 기반이 되는 컨셉
- 아직도 많이 활용됨
- 다음과 같은 Framework를 구현하기에 간단하고 직관적임
 - Term weighting
 - Ranking
 - Relevance feedback

벡터 공간 모델

단어와 문서를 표현하기 위한 방법

- 문서와 쿼리는 term의 weight들의 벡터로 표현됨
 - 쉽게 표현하면, 문서와 쿼리는 단어들의 중요도에 대한 벡터임

$$D_i = (d_{i1}, d_{i1}, ..., d_{it})$$

$$Q = (q_1, q_2, ..., q_t)$$

• Term과 Document의 매트릭스로 표현

	Term ₁	Term ₂	 Termt
Doc ₁	d 11	d 11	 d _{1t}
Doc ₂	d 21	d 22	 d _{2t}
-	•		
Docn	d _{n1}	d _{n2}	 dnt

우리가 보관하고 있는 모든 문서를 문서-Term 매트릭스로 표현

Bag-of-Words Model 단어와 문서를 표현하기 위한 방법

- 비정형(텍스트) 데이터를 매트릭스화 할 수 있는 가장 간단한 방법
- 단점은, 순서를 고려하지 못한다는 점
 - "John is smarter than Mary" == "Mary is smarter than John"

문서 점수화

이 쿼리와 가장 비슷한 문서는 무엇일까?

- 이전 슬라이드에서, 쿼리와 다큐먼트 둘 다 벡터로 표현을 했으므로, 문제를 재정의 가능
 - 두 벡터 간의 유사도는 어떻게 구할 수 있을까?
- Cosine 유사도

similarity =
$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

• θ 가 작을 수록 1에 가까워 진다.

단어 가중치

어떤 단어가 얼마나 중요한가?

- 직관적으로 생각해보면,
 - 문서에 많이 등장하는 단어는 높은 가중치를 가져야 한다
 - 빅데이터 라는 단어가 많이 등장하면, 빅데이터에 관련된 문서일 확률이 높다.
 - 많은 문서에서 등장하는 단어는 낮은 가중치를 가져야 한다
 - 나 / 너 / 우리 / 그리고 등의 불용어들
- 수학적으로 계산을 하려면?
 - 단어 빈도수 (Term frequency) : TF
 - 역문서 빈도수 (Inverse document frequency): IDF

TF-IDF

너무 흔하지도 않지만, 너무 희귀하지도 않음

• TF

- Binary $TF = \{0, 1\}$
- Raw frequency TF = 빈도수
- Normalized TF = 빈도수/문서길이
 - 문서길이: 문서내의 전체 단어수
- Log-normalized TF = 1+ log(빈도수)

ITF

$$idf_t = log \frac{N}{n_t}$$

- N: 전체 문서수, nt: 단어 t를 포함하고 있는 문서의 수
- 예를 들어 N=100, nt=50 -> idf = log(2)
- N=100, nt=100 -> idf = log(1) = 0
- 해석: IDF가 높다? 단어가 등장하는 문서가 적다

weighting scheme	document term weight	query term weight
1	$f_{t,d} \cdot \log rac{N}{n_t}$	$\left(0.5 + 0.5 rac{f_{t,q}}{\max_t f_{t,q}} ight) \cdot \log rac{N}{n_t}$
2	$1 + \log f_{t,d}$	$\log \biggl(1 + \frac{N}{n_t}\biggr)$
3	$(1 + \log f_{t,d}) \cdot \log \frac{N}{n_t}$	$(1 + \log f_{t,q}) \cdot \log \frac{N}{n_t}$

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

TF-IDF

- TF와 IDF를 동시에 고려하기 위한 수식
 - tf-idf = tf*idf
- TF는 해당 문서에서의 단어의 중요도를 나타내고
- IDF는 해당 단어의 문서 전체에서의 중요도를 나타냄

Boolean vs Term Weighting

Boolean 검색과의 차이점

- 단어의 수가 유사도에 영향을 미친다
- 단어의 가중치가 유사도에 영향을 미친다
- 무엇보다도! 문서의 Rank를 계산할 수 있다.

$$Score(q, d) = \sum_{t \in q} \omega_{t,q} \cdot \omega_{t,d}$$

$$\omega_{t,q} = \frac{tfidf_{t,q}}{\sqrt{\sum_{t} tfidf_{t,q}^{2}}} \quad \omega_{t,d} = \frac{tfidf_{t,d}}{\sqrt{\sum_{t} tfidf_{t,d}^{2}}}$$

$$cosine(d, q) = \frac{\sum_{t} \omega_{t,d} \cdot \omega_{t,q}}{\sqrt{\sum_{t} \omega_{t,d}^2} \sqrt{\sum_{t} \omega_{t,q}^2}}$$

$$cosine(d, q) = \frac{\sum_{t} tfidf_{t,d} \cdot tfidf_{t,q}}{\sqrt{\sum_{t} tfidf_{t,d}^{2}} \sqrt{\sum_{t} tfidf_{t,q}^{2}}}$$

BM25

Ranking function

- 엘라스틱 서치에서 기본적으로 사용하는 랭킹 알고리즘
- Term 가중치를 위한 세가지 핵심 원리
 - Inverse document frequency
 - Term frequency
 - Document length normalization

$$score(d, q) = \sum_{t \in q} idf_t \cdot \frac{f(t, d) \cdot (k_1 + 1)}{f(t, d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\text{avgdl}}\right)}$$

Elasticsearch

오픈소스 검색엔진

- Lucene 라이브러리 기반의 검색엔진
- REST API 형태로 접근
- 가장 대중적인 엔터프라이즈 검색엔진
- 최근 ELK(Elasticsearch, Logstash, Kibana) 스택이라는 빅데이터 수집 및 분석에 많이 사용됨

Elasticsearch

RDB vs ElasticSearch

Text	Document
Big	Doc1, Doc2,
Data	Doc1, Doc3,

Document	Content
Doc1	Big data is very big
Doc2	Data science is science
	E E E

O(1)

Seach: "Big"

Elasticsearch RDB vs ElasticSearch

관계형 데이터베이스 (mysql)	엘라스틱서치
Database	Index
Table	Type
Row	Document
Column	Field
Schema	Mapping
Index	모두 Index되어있음
SQL	Query DSL

E.O.D