## ML HW1 R05922105 資工碩二 陳俞安

1.

| Feature              | Training Loss     | Public Score | Private Score |
|----------------------|-------------------|--------------|---------------|
| PM2.5 + 1 bias       | 5.780805551323174 | 7.47123      | 5.64609       |
| 18 features + 1 bias | 5.780805551323174 | 7.67618      | 5.39794       |

在這題中,我統一採用參數為,ITERATION = 35000,  $LEARNING\ RATE = 0.5$ , HOURS = 9 (預測前幾小),而學習率有使用 Adagrad。在測 Training Loss 時,將 train.csv 切成 9:1 為 training data 與 testing data.

在訓練過程中,如果取比較多 feature 看似效果比較好,但是上傳至 kaggle 反而分數比較低,可以看出 feature 並不是越多越好,有可能造成 overfitting。

我在kaggle經由training得到最好的成績是6.97030,與上不同的是我取了不同的 feature,分別是CO, NO2, O3, PM10, PM2.5, WD\_HR, WIND\_DIREC, WIND\_SPEED, WS\_HR ,總共8個feature,並且有對 feature 做 scaling。

2.

| Feature              | Training Loss: 5 hour  | Public Score: 5 hour | Training Loss: 9 hour | Public Score: 9 hour |
|----------------------|------------------------|----------------------|-----------------------|----------------------|
| PM2.5 + 1 bias       | 5.93743078658416<br>85 | 22.56996             | 5.95137989494136      | 7.47123              |
| 18 features + 1 bias | 5.69241598373259<br>2  | 21.84138             | 5.78080555132317<br>4 | 7.47123              |

在測training loss時,可以看出似乎用較少的時數去預測PM2.5會得到比較好的結果,但上傳至 kaggle後RMSE卻是異常的大,有訓練不足的可能,也可以看出要預測PM2.5是需要事前更多小時來 進行判斷。

3. PM2.5 + 1 bias

| Lamda         | 0.1                    | 0.01            | 0.001                 | 0.0001                |
|---------------|------------------------|-----------------|-----------------------|-----------------------|
| Training Loss | 5.97071309825991<br>75 | 5.9533296263963 | 5.95157503444908<br>4 | 5.95139941055805<br>4 |
| Public Score  | 7.48290                | 7.47240         | 7.47135               | 7.47124               |



加上 regularization 後,public score 有下降的趨勢,regularization 有處理到 overfitting。

## 18 features + 1 bias

| Lamda         | 0.1              | 0.01                  | 0.001                 | 0.0001                |
|---------------|------------------|-----------------------|-----------------------|-----------------------|
| Training Loss | 5.79819219122128 | 5.78294189814808<br>7 | 5.78102724292232<br>1 | 5.78082781043355<br>7 |
| Public Score  | 7.58756          | 7.58791               | 7.58866               | 7.58875               |



用了全部feature後,regularization對於public score並沒有太大的幫助,反而 RMSE 還上升,我想是因為18 features 在 training 過程並沒有達到overfitting (training set還太少), regularization 才會沒什麼功用。

## 4. (C)

第一步: y = X • w , 要解 w

第二步:在等式左邊同乘上X轉置矩陣, $XT \cdot y = XT \cdot X \cdot w$ 

第三步:在等式左邊在同乘 inv(XT•X), inv(XT•X)•XT•y = (inv(XT•X))•(XT•X)•w

得到 inv(XT • X) • XT • y = w