

Exame Final Nacional de Física e Química A Prova 715 | 1.ª Fase | Ensino Secundário | 2024

11.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho | Decreto-Lei n.º 62/2023, de 25 de julho

Duração da Prova: 120 minutos. | Tolerância: 30 minutos.

15 Páginas

VERSÃO 1

A prova inclui 15 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 8 itens da prova, apenas contribuem para a classificação final os 4 itens cujas respostas obtenham melhor pontuação.

Indique de forma legível a versão da prova.

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui uma tabela de constantes, um formulário e uma tabela periódica.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Utilize os valores numéricos fornecidos no enunciado dos itens.

TABELA DE CONSTANTES

Capacidade térmica mássica da água líquida	$c = 4.18 \times 10^{3} \text{ J kg}^{-1} \text{ K}^{-1}$
Constante de Avogadro	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$
Constante de gravitação universal	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Índice de refração do ar	n = 1,000
Módulo da aceleração gravítica de um corpo junto à superfície da Terra	$g = 9,80 \text{ m s}^{-2}$
Módulo da velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \text{ m s}^{-1}$
Produto iónico da água (a 25 °C)	$K_{\rm w} = 1,012 \times 10^{-14}$
Volume molar de um gás (PTN)	$V_{\rm m} = 22,4~{\rm dm^3~mol^{-1}}$

FORMULÁRIO

• Quantidade, massa e volume

$$n = \frac{N}{N_{\rm A}}$$

$$M = \frac{m}{n}$$

$$V_{\rm m} = \frac{V}{n}$$

$$\rho = \frac{m}{V}$$

Soluções

$$c = \frac{n}{V}$$

$$x_{\rm A} = \frac{n_{\rm A}}{n_{\rm total}}$$

$$pH = -log \ [H_3O^+],$$

$$com \ [H_3O^+] \ expresso \ em \ mol \ dm^{-3}$$

• Energia

$$E_{\rm c} = \frac{1}{2} \ m \ v^2$$

$$E_{\rm pg} = m g h$$

$$E_{\rm m} = E_{\rm c} + E_{\rm p}$$

$$P = \frac{E}{\Delta t}$$

$$W = F d \cos \alpha$$

$$W = F d \cos \alpha \qquad \sum_{i} W_{i} = \Delta E_{c}$$

$$W_{\overrightarrow{F}_{g}} = -\Delta E_{pg}$$

$$U = RI$$

$$P = RI^2$$

$$U = \varepsilon - rI$$

$$E = m \ c \ \Delta T$$

$$\Delta U = W + Q$$

$$E_{\rm r} = \frac{P}{A}$$

• Mecânica

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $v = v_0 + a t$

$$v = v_0 + at$$

$$a_{\rm c} = \frac{v^2}{r} \qquad \qquad \omega = \frac{2\pi}{T}$$

$$\omega = \frac{2\pi}{T}$$

$$v = \omega r$$

$$\overrightarrow{F} = m\overrightarrow{a}$$

$$F_{\rm g} = G \frac{m_1 m_2}{r^2}$$

• Ondas e eletromagnetismo

$$\lambda = \frac{v}{f}$$

$$\Phi_{\rm m} = BA\cos\alpha$$

$$\Phi_{\rm m} = BA\cos\alpha \qquad |\varepsilon_{\rm i}| = \frac{|\Delta\Phi_{\rm m}|}{\Delta t}$$

$$n = \frac{c}{v}$$

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

TABELA PERIÓDICA DOS ELEMENTOS QUÍMICOS

18	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,29	86 Rn	0 og		
'	17	9 F	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At	117 Ts	71 Lu 174,97	103 Lr
	16	8 O 16,00	16 S 32,06	34 Se 78,97	52 Te 127,60	84 Po	116 Lv	70 Yb 173,05	102 No
	15	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98	115 Mc	69 Tm 168,93	101 Md
	4	6 C 12,01	14 Si 28,09	32 Ge 72,63	50 Sn 118,71	82 Pb 207,2	114 F1	68 Er 167,26	100 Fm
	13	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,38	113 Nh	67 Ho 164,93	99 Es
			12	30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 Cn	66 Dy 162,50	Cf Cf
			7	29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg	65 Tb 158,93	97 Bk
			10	28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds	64 Gd 157,25	96 C m
			თ	27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt	63 Eu 151,96	95 Am
			œ	26 Fe 55,85	44 Ru 101,07	76 Os 190,23	108 Hs	62 Sm 150,36	94 Pu
			^	25 Min 54,94	43 Tc	75 Re 186,21	107 Bh	61 Pm	93 Np
			9	24 Cr 52,00	42 Mo 95,95	74 W 183,84	106 Sg	60 Nd 144,24	92 U 238,03
		Número atómico Elemento Massa atómica relativa	ro	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db	59 Pr 140,91	91 Pa 231,04
		Número Eler Massa atói	4	22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf	58 Ce 140,12	90 Th 232,04
			n	21 Sc 44,96	39 Y 88,91	57-71 Lantanídeos	89-103 Actinídeos	57 La 138,91	89 Ac
	8	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra		
_	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr		

1. As medalhas atribuídas nos Jogos Olímpicos de Tóquio, que decorreram em 2021, foram totalmente produzidas a partir de material reciclado de equipamentos eletrónicos.

A Figura 1 apresenta a massa de cada medalha, de ouro, de prata e de bronze, e a percentagem, em massa, dos elementos que as constituem.

Figura 1

* 1.1. Complete o texto seguinte, selecionando a opção correta para cada espaço.

Escreva, na folha de respostas, cada uma das letras seguida do número que corresponde à opção selecionada.

A interação responsável pela formação de ligações químicas é de natureza ___a) .

Genericamente, uma interação deste tipo ___b) .

Nas medalhas, a ligação química ocorre ___c) __ e é designada ligação ___d) .

a)	b)	с)	d)		
1. eletromagnética	apenas pode ser atrativa	por partilha localizada de eletrões	1. covalente		
2. gravítica	2. apenas pode ser repulsiva	2. entre catiões e aniões	2. metálica		
3. nuclear	pode ser atrativa ou repulsiva	entre catiões e eletrões livres	3. iónica		

- **1.2.** Na medalha de ouro, o número de átomos de prata, quando comparado com o número de átomos de ouro, é, aproximadamente,
 - (A) 183 vezes superior.
 - (B) 82 vezes superior.
 - (C) 99 vezes superior.
 - (D) 150 vezes superior.
- *** 1.3.** O cobre tem dois isótopos naturais, o cobre-63 e o cobre-65.

A massa isotópica relativa do cobre-63 é 62,93, e existem 4,653 mol deste isótopo na medalha de bronze.

Determine a percentagem, em massa, do isótopo cobre-63 no cobre da medalha.

Apresente todos os cálculos efetuados.

- **2.** Na reciclagem de equipamentos eletrónicos, a extração de metais pode ser feita através de diferentes processos.
- **2.1.** Na pirometalurgia, removem-se os metais líquidos à medida que estes se vão fundindo por aumento da temperatura da mistura.

A tabela apresenta, para a prata, a capacidade térmica mássica (no estado sólido), o ponto de fusão (à pressão atmosférica normal) e a variação de entalpia mássica de fusão.

Capacidade térmica mássica $\left(J~kg^{-1}~K^{-1}\right)$	Ponto de fusão (°C)	Variação de entalpia mássica de fusão $\left(kJ\ kg^{-1}\right)$			
235	961,8	105			

Considere que foram extraídos $1,40~\mathrm{kg}$ de prata, no estado sólido, de diversos equipamentos eletrónicos.

Determine, em unidades SI, a potência mínima de um forno necessária para, em 600 segundos, fundir a totalidade da prata, inicialmente a 25,0 °C.

Apresente todos os cálculos efetuados.

2.2. A água régia é uma mistura de ácido nítrico, HNO_3 , e ácido clorídrico, HCl, que permite extrair o ouro presente em equipamentos eletrónicos, de acordo com a reação traduzida por

$$\mathrm{Au}\left(s\right) + \mathrm{HNO_{3}}\left(aq\right) + 4\;\mathrm{HCl}\left(aq\right) \;\longrightarrow\; 2\;\mathrm{H_{2}O}\left(1\right) + \mathrm{NO}\left(g\right) + \mathrm{HAuCl_{4}}\left(aq\right)$$

- \bigstar 2.2.1. Nesta reação, o ouro é ______, e o HNO $_3$ é o agente _____.
 - (A) oxidado ... oxidante
 - (B) reduzido ... redutor
 - (C) oxidado ... redutor
 - (D) reduzido ... oxidante
- **2.2.2.** Determine o volume mínimo da solução de HCl ($\rho = 1,19 \text{ g cm}^{-3}$) com 37%, em massa, de HCl ($M = 36,46 \text{ g mol}^{-1}$) que deve ser utilizado para a extração completa de 60,0 g de ouro.

Considere que o HNO₃ se encontra em excesso.

Apresente todos os cálculos efetuados.

2.2.3. O ouro pode originar um ião positivo, representado simbolicamente por $^{197}_{79}$ Au $^{3+}$.

Este ião contém

- (A) 76 neutrões.
- (B) 79 neutrões.
- **(C)** 118 neutrões.
- (D) 197 neutrões.

3. A Figura 2, que não está à escala, representa uma pista de atletismo onde dois atletas, A e B, realizam uma corrida de treino para uma prova de 400 metros planos.

Considere que os atletas podem ser representados pelo seu centro de massa, segundo o modelo da partícula material.

3.1. Considere o troço curvilíneo da pista destacado no lado direito da Figura 2, em que os atletas se mantêm lado a lado, descrevendo arcos de circunferência de raios diferentes com movimento circular uniforme.

Nesse troço, a intensidade da resultante das forças que atuam em cada um dos atletas é

- (A) zero, e os módulos das velocidades de ambos são iguais.
- (B) zero, e os módulos das velocidades angulares de ambos são iguais.
- (C) diferente de zero, e os módulos das velocidades de ambos são iguais.
- (D) diferente de zero, e os módulos das velocidades angulares de ambos são iguais.
- **3.2.** Quando o atleta B entra na reta da meta, a 84 m desta, o atleta A encontra-se 10 m à sua frente, tal como esquematizado na Figura 2.

Considere que, nesse instante, os módulos das velocidades dos dois atletas são $6.5~{\rm m~s^{-1}}$ e que, até chegar à meta, o atleta A mantém um movimento retilíneo e uniforme, enquanto o atleta B se movimenta retilineamente com uma aceleração constante de módulo $0.10~{\rm m~s^{-2}}$.

Considere o referencial Ox representado na Figura 2.

Justifique que o atleta A vence a corrida.

Na sua resposta, comece por apresentar as equações do movimento dos dois atletas e apresente todos os cálculos efetuados.

- **4.** A prova de 400 metros planos exige um esforço muscular intenso, o que pode levar à formação de ácido lático, CH₃CH(OH)COOH, que, em excesso, causa dores musculares e cansaço.
- **4.1.** A Figura 3 representa um modelo tridimensional da molécula de ácido lático, na qual todas as ligações são covalentes, simples ou duplas.

Figura 3

Comparada com a ligação C — O , a ligação C — O apresenta

- (A) menor energia de ligação e maior comprimento de ligação.
- (B) menor energia de ligação e menor comprimento de ligação.
- (C) maior energia de ligação e maior comprimento de ligação.
- (D) maior energia de ligação e menor comprimento de ligação.
- **4.2.** A produção de ácido lático pode provocar uma descida de pH muscular.

Quando, a uma determinada temperatura, o pH diminui em 0.5, a concentração de $H_3O^+(aq)$

- (A) aumenta, aproximadamente, para o triplo.
- (B) diminui, aproximadamente, para um terço.
- (C) aumenta, aproximadamente, para o dobro.
- **(D)** diminui, aproximadamente, para metade.

* 4.3. O ácido lático é um ácido monoprótico que se ioniza parcialmente em água, de acordo com a equação

$$CH_3CH(OH)COOH(aq) + H_2O(1) \rightleftharpoons CH_3CH(OH)COO^-(aq) + H_3O^+(aq)$$

À temperatura de 25 °C, a constante de acidez, K_a , é 1.38×10^{-4} .

Num laboratório, encontra-se um frasco que apresenta um rótulo manuscrito: «ácido lático (aq), pH 2,65».

Para confirmar esta informação, foi retirada do frasco uma amostra de 50,00~mL da solução de ácido lático e foi feita uma titulação com uma solução padrão de NaOH, de concentração $1,00\times10^{-2}~\text{mol dm}^{-3}$, tendo-se gastado 11,20~mL até se atingir o ponto de equivalência.

Determine o pH da solução de ácido lático, a $25\ ^{\rm o}{\rm C}$, mostrando que o valor apresentado no rótulo está incorreto.

Apresente todos os cálculos efetuados.

4.4. Associe cada um dos átomos, no estado fundamental, apresentados na Coluna I, à afirmação correspondente, apresentada na Coluna II.

Escreva, na folha de respostas, cada letra da Coluna I seguida do número correspondente da Coluna II.

A cada letra corresponde apenas um número.

COLUNA I	COLUNA II					
	(1) Possui três orbitais totalmente preenchidas.					
(a) Carbono	(2) Tem quatro eletrões de valência.					
(b) Oxigénio	(3) Tende a formar iões dipositivos estáveis.					
(c) Hidrogénio	(4) Adquire configuração de gás nobre ao ganhar um eletrão.					
	(5) Apresenta todos os eletrões de valência emparelhados.					

*** 5.** As lesões desencadeiam processos inflamatórios que, geralmente, levam a um aumento localizado da temperatura. Em medicina desportiva, obtêm-se imagens com gradientes térmicos corporais, chamadas termografias, para diagnosticar lesões.

A Figura 4 apresenta uma imagem termográfica que revela um aumento da temperatura, θ , da região medial do joelho de um atleta.

Figura 4

Fonte: www.intechopen.com/chapters/28453 (consultado em 17/10/2023). (Adaptado)

Na termografia, regista-se a intensidade

- (A) da radiação infravermelha emitida pelo atleta.
- (B) da radiação infravermelha absorvida pelo atleta.
- (C) dos raios X emitidos pelo atleta.
- **(D)** dos raios X absorvidos pelo atleta.

6. O desfibrilhador automático externo (DAE) é um aparelho que, através da aplicação de uma descarga elétrica no tórax, permite reverter a paragem cardíaca.

Nos recintos desportivos, o DAE é fundamental para socorrer os atletas em caso de paragem cardíaca.

Considere que uma descarga elétrica transfere uma energia E, quando aplicada a um paciente cujo tórax apresenta uma resistência elétrica R e é submetido a uma diferença de potencial elétrico U.

- 6.1. A duração dessa descarga elétrica pode ser calculada por
 - (A) $\frac{E \times R}{U^2}$
 - **(B)** $\frac{U^2}{E \times R}$
 - (C) $\frac{E}{U^2 \times R}$
 - (D) $\frac{U^2 \times R}{E}$
- * 6.2. A corrente elétrica que circula nos fios de cobre do desfibrilhador consiste no movimento de
 - (A) eletrões livres do polo positivo para o polo negativo.
 - (B) cargas positivas do polo positivo para o polo negativo.
 - (C) eletrões livres do polo negativo para o polo positivo.
 - (D) cargas positivas do polo negativo para o polo positivo.

7. Um atleta, com 70 kg, efetua pequenos saltos verticais durante o treino.

A Figura 5, que não está à escala, representa esquematicamente um salto vertical desse atleta. Este inicia o movimento a partir do repouso (instante t_0), perde o contacto com o solo (instante t_1), atinge a altura máxima (instante t_2) e volta ao contacto com o solo (instante t_3).

Considere que:

- o atleta pode ser representado pelo seu centro de massa, segundo o modelo da partícula material;
- a resistência do ar é desprezável;
- entre os instantes t_0 e t_1 , decorrem 0.20 s e, entre os instantes t_1 e t_2 , decorrem 0.15 s.

7.1. Determine a intensidade da força de reação que, em média, o solo exerce no atleta entre os instantes t_0 e t_1 .

Apresente todos os cálculos efetuados.

7.2. Qual dos esboços de gráfico seguintes representa o trabalho realizado pela força gravítica, $W_{\vec{F}_g}$, que atua no atleta, em função do deslocamento, d, durante o seu movimento ascendente?

- **7.3.** Considere que um astronauta realiza um salto vertical na Lua, abandonando o solo com a mesma velocidade com que um atleta o faria na Terra.
 - A aceleração gravítica na Lua é, aproximadamente, $\frac{1}{6}$ da aceleração gravítica na Terra.

Por comparação com o salto do atleta na Terra, na Lua, o astronauta salta

- (A) três vezes mais alto.
- (B) seis vezes mais alto.
- (C) doze vezes mais alto.
- (D) trinta e seis vezes mais alto.
- **8.** Um professor desafiou os alunos a planearem uma experiência, para determinar um valor aproximado da velocidade de propagação do som no ar, utilizando um apito, uma lanterna, uma fita métrica e um cronómetro.

Dois alunos, A e B, planearam uma experiência em que, para minimizar os erros experimentais, estariam suficientemente afastados um do outro, numa zona plana e livre de obstáculos.

* 8.1. Descreva um procedimento experimental que permita aos dois alunos obterem o módulo da velocidade de propagação do som no ar, respeitando as condições indicadas.

Considere apenas um ensaio.

Apresente um texto bem estruturado e utilize linguagem científica adequada.

- * 8.2. No ar, o som é uma onda
 - (A) mecânica e longitudinal.
 - (B) mecânica e transversal.
 - (C) eletromagnética e longitudinal.
 - (D) eletromagnética e transversal.

9. Um grupo de alunos adicionou, num gobelé, uma solução amarela contendo iões ferro(3+), Fe³⁺, a uma solução incolor contendo iões tiocianato, SCN⁻, a uma determinada temperatura *T*, obtendo uma solução de cor vermelha, devido à presença do ião complexo tiocianato de ferro(III), [FeSCN]²⁺.

O equilíbrio que se estabelece pode ser traduzido por

$$Fe^{3+}(aq) + SCN^{-}(aq) \Longrightarrow [FeSCN]^{2+}(aq)$$

amarela incolor vermelha

9.1. Para testar o efeito da temperatura no equilíbrio em estudo, arrefeceu-se a solução preparada no gobelé, tendo sido observada uma intensificação da cor vermelha.

Conclua, justificando, se a variação de entalpia associada à reação de formação do ião $[FeSCN]^{2+}(aq)$ é positiva ou negativa.

Apresente um texto bem estruturado e utilize linguagem científica adequada.

9.2. Para testar o efeito da concentração no equilíbrio em estudo, os alunos dispunham ainda de soluções aquosas de trinitrato de ferro, $Fe(NO_3)_3$, e de hidróxido de sódio, NaOH, cujos iões hidróxido, OH^- , formam com o ião Fe^{3+} um sal pouco solúvel de tri-hidróxido de ferro, $Fe(OH)_3$.

Mantendo a temperatura constante, adicionaram ao gobelé algumas gotas de uma destas soluções e observaram uma diminuição da intensidade da cor vermelha.

Na solução preparada inicialmente no gobelé, encontram-se presentes ______. A diminuição da intensidade da cor vermelha deve-se à adição da solução aquosa de ______.

- (A) os iões Fe^{3+} , SCN^- e $[FeSCN]^{2+}$... $Fe(NO_3)_3$
- **(B)** apenas os iões Fe^{3+} e SCN^- ... $Fe(NO_3)_3$
- (C) os iões Fe^{3+} , SCN^- e $[FeSCN]^{2+}$... NaOH
- (D) apenas os iões Fe³⁺ e SCN⁻ ... NaOH

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 15 itens da prova contribuem obrigatoriamente para a classificação final.	1.1.	1.3.	2.1.	2.2.1.	2.2.2.	2.2.3.	3.2.	4.1.	4.3.	5.	6.2.	7.1.	8.1.	8.2.	9.1.	Subtotal
Cotação (em pontos)	12	10	10	10	10	10	10	10	12	10	10	12	12	10	12	160
Destes 8 itens, contribuem para a classificação final da prova os 4 itens cujas respostas obtenham melhor pontuação.	1.	2.	3	3.1.	4.	2.	4.	4.	6.	1.	7.	2.	7.	3.	9.2.	Subtotal
Cotação (em pontos)	Cotação (em pontos) 4 x 10 pontos								40							
TOTAL							200									

Prova 715 1.a Fase VERSÃO 1

Exame Final Nacional de Física e Química A Prova 715 | 1.ª Fase | Ensino Secundário | 2024

11.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho $\,|\,$ Decreto-Lei n.º 62/2023, de 25 de julho

Entrelinha 1,5

Duração da Prova: 120 minutos. | Tolerância: 30 minutos. 17 Páginas

VERSÃO 1

A prova inclui 15 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 8 itens da prova, apenas contribuem para a classificação final os 4 itens cujas respostas obtenham melhor pontuação.

Indique de forma legível a versão da prova.

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui uma tabela de constantes, um formulário e uma tabela periódica.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Utilize os valores numéricos fornecidos no enunciado dos itens.

TABELA DE CONSTANTES

Capacidade térmica mássica da água líquida	$c = 4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$
Constante de Avogadro	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
Constante de gravitação universal	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Índice de refração do ar	n = 1,000
Módulo da aceleração gravítica de um corpo junto à superfície da Terra	$g = 9,80 \text{ m s}^{-2}$
Módulo da velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \text{ m s}^{-1}$
Produto iónico da água (a 25 °C)	$K_{\rm w} = 1,012 \times 10^{-14}$
Volume molar de um gás (PTN)	$V_{\rm m} = 22,4~{\rm dm^3~mol^{-1}}$

FORMULÁRIO

• Quantidade, massa e volume

$$n = \frac{N}{N_{\Delta}}$$

$$M = \frac{m}{n}$$

$$V_{\rm m} = \frac{V}{n}$$

$$\rho = \frac{m}{V}$$

• Soluções

$$c = \frac{n}{V}$$

$$x_{\rm A} = \frac{n_{\rm A}}{n_{\rm total}}$$

$$pH = -log [H_3O^+],$$

com $[H_3O^+]$ expresso em mol dm^{-3}

• Energia

$$E_{\rm c} = \frac{1}{2} \, m \, v^2$$

$$E_{\rm pg} = mgh$$

$$E_{\rm m} = E_{\rm c} + E_{\rm p}$$

$$P = \frac{E}{\Lambda t}$$

$$W = F d \cos \alpha$$

$$\sum_{\mathrm{i}}W_{\mathrm{i}}=\Delta E_{\mathrm{c}}$$

$$W_{\overrightarrow{F}_{g}} = -\Delta E_{pg}$$

$$U = RI$$

$$P = RI^2$$

$$U = \varepsilon - rI$$

$$E = m \ c \ \Delta T$$

$$\Delta U = W + Q$$

$$E_{\rm r} = \frac{P}{A}$$

Mecânica

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $v = v_0 + a t$

$$v = v_0 + at$$

$$a_{\rm c} = \frac{v^2}{r} \qquad \qquad \omega = \frac{2\pi}{T}$$

$$\omega = \frac{2\pi}{T}$$

$$v = \omega r$$

$$\overrightarrow{F}=m\overrightarrow{a}$$

$$F_{\rm g} = G \frac{m_1 m_2}{r^2}$$

• Ondas e eletromagnetismo

$$\lambda = \frac{v}{f}$$

$$\Phi_{\rm m} = BA\cos\alpha$$

$$|\varepsilon_{\rm i}| = \frac{|\Delta \Phi_{\rm m}|}{\Delta t}$$

$$n = \frac{c}{v}$$

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

TABELA PERIÓDICA DOS ELEMENTOS QUÍMICOS

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,29	86 Rn	118 Og			
17	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At	117 Ts		71 Lu 174,97	103 Lr
16	8 O 16,00	16 S 32,06	34 Se 78,97	52 Te 127,60	84 Po	116 Lv		70 Yb 173,05	102 No
15	7 N 14,01	15 P 30,97	33 AS 74,92	51 Sb 121,76	83 Bi 208,98	115 Mc		69 Tm 168,93	101 Md
4	6 C 12,01	14 Si 28,09	32 Ge 72,63	50 Sn 118,71	82 Pb 207,2	114 F1		68 Er 167,26	100 Fm
13	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,38	113 Nh		67 Ho 164,93	99 ES
		12	30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 Cn		66 Dy 162,50	% Ct
		1	29 Cu 63,55	47 Ag 107,87	79 Au 196,97	III Rg		65 Tb 158,93	97 Bk
		10	28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds		64 Gd 157,25	96 C m
		6	27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt		63 Eu 151,96	95 Am
		80	26 Fe 55,85	44 Ru 101,07	76 Os 190,23	108 Hs		62 Sm 150,36	94 Pu
		7	25 Mn 54,94	43 Tc	75 Re 186,21	107 Bh		61 Pm	93 Np
		9	24 Cr 52,00	42 Mo 95,95	74 W 183,84	106 Sg		60 Nd 144,24	92 U 238,03
	o atómico nento nica relativa	r.	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db		59 Pr 140,91	91 Pa 231,04
	Número Eler Massa atói	4	22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf		58 Ce 140,12	90 Th 232,04
		က	21 Sc 44,96	39 Y 88,91	57-71 Lantanídeos	89-103 Actinídeos		57 La 138,91	89 Ac
8	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra			
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr			
	13 14 15 16 17	2 Número atómico atómico A Be Elemento Massa atómica relativa Número atómico atómico 5 6 7 8 9 F 9,01 Massa atómica relativa	2 4 Número atómico relativa 12 13 14 15 16 17 17 18 14 15 16 17 17 18 18 18 18 18 18 18 18	2 A Número arómico Massa arómica relativa La La La La La La La	2 A Nimero aldomica relativation A A A A A A A A A	2 A Nimacu andomicu relativa B Scalab Scalab	A	2 Nurse automic relative Mass automic relati	A

1. As medalhas atribuídas nos Jogos Olímpicos de Tóquio, que decorreram em 2021, foram totalmente produzidas a partir de material reciclado de equipamentos eletrónicos.

A Figura 1 apresenta a massa de cada medalha, de ouro, de prata e de bronze, e a percentagem, em massa, dos elementos que as constituem.

Figura 1

* 1.1. Complete o texto seguinte, selecionando a opção correta para cada espaço.

Escreva, na folha de respostas, cada uma das letras seguida do número que corresponde à opção selecionada.

A interação responsável pela formação de ligações químicas é de natureza ___a) .

Genericamente, uma interação deste tipo ___b) .

Nas medalhas, a ligação química ocorre ___c) __ e é designada ligação ___d) .

	a)	b)			c)		d)
1.	eletromagnética	1.	apenas pode ser atrativa	1.	por partilha localizada de eletrões	1.	covalente
2.	gravítica	2.	apenas pode ser repulsiva	2.	entre catiões e aniões	2.	metálica
3.	nuclear	3.	pode ser atrativa ou repulsiva	3.	entre catiões e eletrões livres	3.	iónica

	(A) 183 vezes superior.
	(B) 82 vezes superior.
	(C) 99 vezes superior.
	(D) 150 vezes superior.
1.	3. O cobre tem dois isótopos naturais, o cobre-63 e o cobre-65.
	A massa isotópica relativa do cobre-63 é $62,93$, e existem $4,653 \text{ mol}$ deste isótopo na medalha de bronze.
	Determine a percentagem, em massa, do isótopo cobre-63 no cobre da medalha.
	Apresente todos os cálculos efetuados.

1.2. Na medalha de ouro, o número de átomos de prata, quando comparado com o número de átomos de

ouro, é, aproximadamente,

- 2. Na reciclagem de equipamentos eletrónicos, a extração de metais pode ser feita através de diferentes processos.
- **2.1.** Na pirometalurgia, removem-se os metais líquidos à medida que estes se vão fundindo por aumento da temperatura da mistura.

A tabela apresenta, para a prata, a capacidade térmica mássica (no estado sólido), o ponto de fusão (à pressão atmosférica normal) e a variação de entalpia mássica de fusão.

Capacidade térmica mássica $\left(J \ kg^{-1} \ K^{-1} \right)$	Ponto de fusão	Variação de entalpia mássica de fusão (kJ kg ⁻¹)
235	961,8	105

Considere que foram extraídos $1,40~\mathrm{kg}$ de prata, no estado sólido, de diversos equipamentos eletrónicos.

Determine, em unidades SI, a potência mínima de um forno necessária para, em 600 segundos, fundir a totalidade da prata, inicialmente a 25,0 °C.

Apresente todos os cálculos efetuados.

2.2. A água régia é uma mistura de ácido nítrico, HNO_3 , e ácido clorídrico, HCl, que permite extrair o ouro presente em equipamentos eletrónicos, de acordo com a reação traduzida por

$$Au(s) + HNO_3(aq) + 4 HCl(aq) \rightarrow 2 H_2O(1) + NO(g) + HAuCl_4(aq)$$

2.2.1. Nesta reação, o ouro é ______, e o HNO₃ é o agente _____.

- (A) oxidado ... oxidante
- (B) reduzido ... redutor
- (C) oxidado ... redutor
- (D) reduzido ... oxidante
- **2.2.2.** Determine o volume mínimo da solução de HCl ($\rho = 1,19 \text{ g cm}^{-3}$) com 37%, em massa, de HCl ($M = 36,46 \text{ g mol}^{-1}$) que deve ser utilizado para a extração completa de 60,0 g de ouro.

Considere que o HNO_3 se encontra em excesso.

Apresente todos os cálculos efetuados.

2.2.3. O ouro pode originar um ião positivo, representado simbolicamente por $^{197}_{79}\mathrm{Au^{3+}}$.

Este ião contém

(A) 76 neutrões. (B) 79 neutrões.

(C) 118 neutrões. **(D)** 197 neutrões.

3. A Figura 2, que não está à escala, representa uma pista de atletismo onde dois atletas, A e B, realizam uma corrida de treino para uma prova de 400 metros planos.

Considere que os atletas podem ser representados pelo seu centro de massa, segundo o modelo da partícula material.

Figura 2

3.1. Considere o troço curvilíneo da pista destacado no lado direito da Figura 2, em que os atletas se mantêm lado a lado, descrevendo arcos de circunferência de raios diferentes com movimento circular uniforme.

Nesse troço, a intensidade da resultante das forças que atuam em cada um dos atletas é

- (A) zero, e os módulos das velocidades de ambos são iguais.
- (B) zero, e os módulos das velocidades angulares de ambos são iguais.
- (C) diferente de zero, e os módulos das velocidades de ambos são iguais.
- (D) diferente de zero, e os módulos das velocidades angulares de ambos são iguais.

3.2. Quando o atleta B entra na reta da meta, a 84 m desta, o atleta A encontra-se 10 m à sua frente, tal como esquematizado na Figura 2.

Considere que, nesse instante, os módulos das velocidades dos dois atletas são $6.5~{\rm m~s^{-1}}$ e que, até chegar à meta, o atleta A mantém um movimento retilíneo e uniforme, enquanto o atleta B se movimenta retilineamente com uma aceleração constante de módulo $0.10~{\rm m~s^{-2}}$.

Considere o referencial Ox representado na Figura 2.

Justifique que o atleta A vence a corrida.

Na sua resposta, comece por apresentar as equações do movimento dos dois atletas e apresente todos os cálculos efetuados.

- **4.** A prova de 400 metros planos exige um esforço muscular intenso, o que pode levar à formação de ácido lático, CH₃CH(OH)COOH, que, em excesso, causa dores musculares e cansaço.
- **4.1.** A Figura 3 representa um modelo tridimensional da molécula de ácido lático, na qual todas as ligações são covalentes, simples ou duplas.

Figura 3

Comparada com a ligação C — O , a ligação C — O apresenta

- (A) menor energia de ligação e maior comprimento de ligação.
- (B) menor energia de ligação e menor comprimento de ligação.
- (C) maior energia de ligação e maior comprimento de ligação.
- (D) maior energia de ligação e menor comprimento de ligação.
- **4.2.** A produção de ácido lático pode provocar uma descida de pH muscular.

Quando, a uma determinada temperatura, o pH diminui em 0,5, a concentração de H₃O⁺(aq)

- (A) aumenta, aproximadamente, para o triplo.
- (B) diminui, aproximadamente, para um terço.
- (C) aumenta, aproximadamente, para o dobro.
- (D) diminui, aproximadamente, para metade.

* 4.3. O ácido lático é um ácido monoprótico que se ioniza parcialmente em água, de acordo com a equação

$$CH_3CH(OH)COOH(aq) + H_2O(1) \implies CH_3CH(OH)COO^-(aq) + H_3O^+(aq)$$

À temperatura de 25 °C, a constante de acidez, K_a , é $1,38 \times 10^{-4}$.

Num laboratório, encontra-se um frasco que apresenta um rótulo manuscrito: «ácido lático (aq), pH 2,65».

Para confirmar esta informação, foi retirada do frasco uma amostra de 50,00~mL da solução de ácido lático e foi feita uma titulação com uma solução padrão de NaOH, de concentração $1,00\times10^{-2}~\text{mol dm}^{-3}$, tendo-se gastado 11,20~mL até se atingir o ponto de equivalência.

Determine o pH da solução de ácido lático, a 25 °C, mostrando que o valor apresentado no rótulo está incorreto.

Apresente todos os cálculos efetuados.

4.4. Associe cada um dos átomos, no estado fundamental, apresentados na Coluna I, à afirmação correspondente, apresentada na Coluna II.

Escreva, na folha de respostas, cada letra da Coluna I seguida do número correspondente da Coluna II.

A cada letra corresponde apenas um número.

COLUNA I	COLUNA II
	(1) Possui três orbitais totalmente preenchidas.
(a) Carbono	(2) Tem quatro eletrões de valência.
(b) Oxigénio	(3) Tende a formar iões dipositivos estáveis.
(c) Hidrogénio	(4) Adquire configuração de gás nobre ao ganhar um eletrão.
	(5) Apresenta todos os eletrões de valência emparelhados.

* 5. As lesões desencadeiam processos inflamatórios que, geralmente, levam a um aumento localizado da temperatura. Em medicina desportiva, obtêm-se imagens com gradientes térmicos corporais, chamadas termografias, para diagnosticar lesões.

A Figura 4 apresenta uma imagem termográfica que revela um aumento da temperatura, θ , da região medial do joelho de um atleta.

Figura 4

Fonte: www.intechopen.com/chapters/28453 (consultado em 17/10/2023). (Adaptado)

Na termografia, regista-se a intensidade

- (A) da radiação infravermelha emitida pelo atleta.
- (B) da radiação infravermelha absorvida pelo atleta.
- (C) dos raios \boldsymbol{X} emitidos pelo atleta.
- **(D)** dos raios X absorvidos pelo atleta.

6. O desfibrilhador automático externo (DAE) é um aparelho que, através da aplicação de uma descarga elétrica no tórax, permite reverter a paragem cardíaca.

Nos recintos desportivos, o DAE é fundamental para socorrer os atletas em caso de paragem cardíaca.

Considere que uma descarga elétrica transfere uma energia E, quando aplicada a um paciente cujo tórax apresenta uma resistência elétrica R e é submetido a uma diferença de potencial elétrico U.

6.1. A duração dessa descarga elétrica pode ser calculada por

(A)
$$\frac{E \times R}{U^2}$$

(B)
$$\frac{U^2}{E \times R}$$

(C)
$$\frac{E}{U^2 \times R}$$

(D)
$$\frac{U^2 \times R}{E}$$

- * 6.2. A corrente elétrica que circula nos fios de cobre do desfibrilhador consiste no movimento de
 - (A) eletrões livres do polo positivo para o polo negativo.
 - (B) cargas positivas do polo positivo para o polo negativo.
 - (C) eletrões livres do polo negativo para o polo positivo.
 - (D) cargas positivas do polo negativo para o polo positivo.

7. Um atleta, com 70 kg, efetua pequenos saltos verticais durante o treino.

A Figura 5, que não está à escala, representa esquematicamente um salto vertical desse atleta. Este inicia o movimento a partir do repouso (instante t_0), perde o contacto com o solo (instante t_1), atinge a altura máxima (instante t_2) e volta ao contacto com o solo (instante t_3).

Figura 5

Considere que:

- o atleta pode ser representado pelo seu centro de massa, segundo o modelo da partícula material;
- a resistência do ar é desprezável;
- $-\,$ entre os instantes t_0 e t_1 , decorrem $0{,}20~\mathrm{s}$ e, entre os instantes t_1 e t_2 , decorrem $0{,}15~\mathrm{s}.$
- **7.1.** Determine a intensidade da força de reação que, em média, o solo exerce no atleta entre os instantes t_0 e t_1 .

Apresente todos os cálculos efetuados.

7.2. Qual dos esboços de gráfico seguintes representa o trabalho realizado pela força gravítica, $W_{\vec{F}_g}$, que atua no atleta, em função do deslocamento, d, durante o seu movimento ascendente?

- 7.3. Considere que um astronauta realiza um salto vertical na Lua, abandonando o solo com a mesma velocidade com que um atleta o faria na Terra.
 A aceleração gravítica na Lua é, aproximadamente, 1/6 da aceleração gravítica na Terra.
 Por comparação com o salto do atleta na Terra, na Lua, o astronauta salta
 (A) três vezes mais alto.
 (B) seis vezes mais alto.
 (C) doze vezes mais alto.
 - (D) trinta e seis vezes mais alto.
- **8.** Um professor desafiou os alunos a planearem uma experiência, para determinar um valor aproximado da velocidade de propagação do som no ar, utilizando um apito, uma lanterna, uma fita métrica e um cronómetro.

Dois alunos, A e B, planearam uma experiência em que, para minimizar os erros experimentais, estariam suficientemente afastados um do outro, numa zona plana e livre de obstáculos.

*** 8.1.** Descreva um procedimento experimental que permita aos dois alunos obterem o módulo da velocidade de propagação do som no ar, respeitando as condições indicadas.

Considere apenas um ensaio.

Apresente um texto bem estruturado e utilize linguagem científica adequada.

- * 8.2. No ar, o som é uma onda
 - (A) mecânica e longitudinal.
 - (B) mecânica e transversal.
 - (C) eletromagnética e longitudinal.
 - (D) eletromagnética e transversal.

9. Um grupo de alunos adicionou, num gobelé, uma solução amarela contendo iões ferro(3+), Fe³⁺, a uma solução incolor contendo iões tiocianato, SCN⁻, a uma determinada temperatura *T*, obtendo uma solução de cor vermelha, devido à presença do ião complexo tiocianato de ferro(III), [FeSCN]²⁺.

O equilíbrio que se estabelece pode ser traduzido por

$$Fe^{3+}(aq) + SCN^{-}(aq) \Longrightarrow [FeSCN]^{2+}(aq)$$

amarela incolor vermelha

9.1. Para testar o efeito da temperatura no equilíbrio em estudo, arrefeceu-se a solução preparada no gobelé, tendo sido observada uma intensificação da cor vermelha.

Conclua, justificando, se a variação de entalpia associada à reação de formação do ião $[FeSCN]^{2+}(aq)$ é positiva ou negativa.

Apresente um texto bem estruturado e utilize linguagem científica adequada.

9.2. Para testar o efeito da concentração no equilíbrio em estudo, os alunos dispunham ainda de soluções aquosas de trinitrato de ferro, $Fe(NO_3)_3$, e de hidróxido de sódio, NaOH, cujos iões hidróxido, OH^- , formam com o ião Fe^{3+} um sal pouco solúvel de tri-hidróxido de ferro, $Fe(OH)_3$.

Mantendo a temperatura constante, adicionaram ao gobelé algumas gotas de uma destas soluções e observaram uma diminuição da intensidade da cor vermelha.

Na solução preparada inicialmente no gobelé, encontram-se presentes ______. A diminuição da intensidade da cor vermelha deve-se à adição da solução aquosa de ______.

- (A) os iões Fe^{3+} , SCN^- e $[FeSCN]^{2+}$... $Fe(NO_3)_3$
- **(B)** apenas os iões Fe^{3+} e SCN^- ... $Fe(NO_3)_3$
- (C) os iões Fe³⁺, SCN⁻ e [FeSCN]²⁺ ... NaOH
- (D) apenas os iões Fe³⁺ e SCN⁻ ... NaOH

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 15 itens da prova contribuem obrigatoriamente para a classificação final.	1.1.	1.3.	2.1.	2.2.1.	2.2.2.	2.2.3.	3.2.	4.1.	4.3.	5.	6.2.	7.1.	8.1.	8.2.	9.1.	Subtotal
Cotação (em pontos)	12	10	10	10	10	10	10	10	12	10	10	12	12	10	12	160
Destes 8 itens, contribuem para a classificação final da prova os 4 itens cujas respostas obtenham melhor pontuação.	1.2.		3.1.		4.2.		4.4.		6.1.		7.2.		7.3.		9.2.	Subtotal
Cotação (em pontos)	4 x 10 pontos														40	
TOTAL	•		 ΓΟΤΑL													