

همطراحی سختافزار نرمافزار

جلسه پنجم: توصیف سیستم-۲

ارائهدهنده: آتنا عبدی a_abdi@kntu.ac.ir

مباحث این بخش

- توصیف یک سیستم (System Specification)
 - مدلهای محاسباتی
 - مدلهای مبتنی بر فعالیت
 - مدلهای ترکیبی
 - معماری

توصيف سيستم

مدلهای مبتنی بر حالت

- مناسب در مدلسازی سیستمهای کنترلی
- نظارت بر رفتار سیستم و گذار بین حالات در زمان
 - ماشین حالت محدود (FSM)
- عدم پوشش دهی حالت سلسله مراتبی و همروندی در اجرا
 - مدل شبکههای پتری (PN)
 - محدودیتهای زمانی

ماشین حالت همروند و سلسلهمراتبی

- بهمنظور رفع محدودیتهای FSM، بهبودی در آن داده شده است (HCFSM)
 - اضافه کردن قابلیتهای طراحی سلسلهمراتبی و همروندی
 - سلسهمراتب: هر حالت، خود متشکل از یک FSM مجزا
 - همروندی: قابلیت اجرای موازی دو حالت

ماشین حالت همروند و سلسلهمراتبی (ادامه)

- مشابه FSM مجموعهای از حالات و گذار بین آنها
 - برخلاف FSM هر حالت قابل تقسيم به:
 - مجموعه زيرحالتهاي مستقل
 - مجموعه زیرحالتهای همروند
- گذارها بین حالتهای داخل یک حالت یا بین حالتهای سیستم

ماشین حالت همروند و سلسلهمراتبی (StateChart)

مدلهای مبتنی بر فعالیت

- مناسب در مدلسازی سیستمهای محاسباتی
- مدل گراف جریان داده (Data Flow Graph)
 - متشکل از گرهها و یالهای جهتدار هستند
- گرهها فعالیتهای محاسباتی سیستم را نشان میدهند
- یالها، وابستگی دادهها و روال تبدیل ورودی به خروجی را مشخص می کنند
- با آماده شدن ورودی هر گره، عملیات متناظر انجام شده و خروجی تولید می شود

مدل گراف داده (DFG)

- هر گره، فعالیت مستقلی است که با آماده شدن ورودی، فعال میشود
 - با فعال شدن گره، خروجی آماده شده و به گره بعدی داده میشود
 - گرهها می توانند محاسبات پیچیده تر را مشخص کنند

$$\sqrt{a^2+b^2}$$

مدل گراف جریان داده (مثال)

مدل گراف جریان داده (DFG)

• مزایا:

- امکان مدلسازی سلسلهمراتب در سیستم
- مناسب در مدلسازی سیستمهای پیچیده محاسباتی
 - مناسب در نمایش وابستگیهای دادهای مسئله

• معایب:

- عدم نمایش دنبالههای کنترلی و رفتارهای زمانی و گذرای سیستم
 - ضعیف در مدلسازی سیستمهای کنترلی

مدلهای ترکیبی

- اهمیت مدلسازی همزمان داده و کنترل در بسیاری از سیستمها
 - گراف جریان داده و کنترل (Control Data Flow Graph)
- قابلیت مدلسازی عملیات دادهای، مراحل کنترلی و اجرای همروند عملیات
 - ماشین حالت محدود با مسیر دادهای (FSM With Data path)
 - تركيب مدلهاي FSM و DFG
 - در این مدل، محاسبات در حالتها یا گذارها منعکس میشوند

گراف جریان داده و کنترل

- گرهها عملیات سیستم و یالها وابستگی عملیات و گامهای کنترلی را نشان میدهند
 - برحسب زمانبندی و تعیین گامهای کنترلی، محاسبات همروند وجود دارد

گراف جریان داده و کنترل

- در سیستمهای پیچیده ترکه دستورات پرشی و شرطی داریم:
 - گرهها به صورت بلوکهای پایه و شرط حرکت بین آنها
 - هر بلوک پایه، مجموعهای از عملیات و دارای یک DFG
 - يالها، شرايط حركت بين بلوكهاى پايه

ماشین حالت محدود با مسیر دادهای

- اطلاعات مسیر داده و تغییر مقادیر در حالتها یا گذارها منعکس می شود
 - تاثیر متغیرها در تعریف گذار بین حالات
 - پیچیدگی و جزئیات مدلسازی بیشتر نسبت به FSM
 - کنترل جریان برنامه به کمک عملیات دادهای
 - انعكاس عمليات محاسباتي دريالها يا حالتها
 - قابلیت مدلسازی سلسلهمراتب و همروندی را ندارد

ماشین حالت محدود با مسیر دادهای (مثال)

(cfloor != rfloor) /cfloor := rfloor; output := rfloor - cfloor

start

S1

(cfloor = rfloor) / output := 0

توصيف سيستم

- در ابتدای فرایند طراحی لازم است سیستم، براساس الزامات آن توصیف شود
 - فرایند توصیف سیستم توسط مدلها، معماریها و زبانها انجام می گیرد
 - مدل: دید مفهومی از رفتار و عملکرد سیستم
 - توصیف عملکرد، ساختار داده و کنترل سیستم
- معماری: پیادهسازی کلی مدل در قالب عملیاتی (Functional) یا مبتنی بر بستر (Platform)
 - تکمیل مدل با مشخص کردن نوع اجزای موردنیاز، تعداد آنها، اتصالات و
 - زبان: نگاشت مدل محاسباتی به معماری سیستم در سطح سختافزار، نرمافزار و سیستم

معماري

- هدف از معماری، کامل کردن مدل سیستم براساس مشخص کردن جزئیات پیادهسازی است
 - برحسب نوع سیستم و کاربرد آن معماری می تواند:
 - وابسته به کاربرد باشد
 - سیستمهای DSP
 - متشکل از پردازندههای عاممنظوره باشد
 - پردازندههای RISC و CISC
 - متشکل از پردازندههای موازی باشد
 - سیستمهای MIMD ،SIMD و ...

مباحثی که این جلسه آموختیم

- مدلهای محاسباتی
 - مدلهای ترتیبی
- مدلهای مبتنی بر فعالیت
 - مدلهای ترکیبی

مباحث جلسه آینده

- توصيف سيستم
 - معماری

