COMS W4771 Spring 2017: Homework #4

Kristy Choi

March 27, 2017

Question 1 Solutions

(a,b) The following illustration is an example of ambiguous regions that result from one vs. rest and one vs. one multi-class SVM:

where C_i denotes the "positive" class i and R_i denotes a particular classification region.

- (c) The given specifications mirror the setup of (Crammer & Singer 2001). In developing the primal and dual of this multiclass SVM, we introduce the following notation:
 - The set of m training data $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
 - The dimension of each x_i is n
 - Each label y_i is an integer from the set $\mathcal{Y} = \{1, \dots, k\}$
 - $\mathbf{M} \in \mathbb{R}^{k \times n}$, where M_j is the jth row of \mathbf{M} for $j = 1, \dots, k$
 - Slack variable ξ_i per data point, where i = 1, ..., m
 - $\delta_{p,q}$, where $\delta_{p,q} = 1$ if p = q and 0 otherwise.

Problem Set #4

Therefore the **primal** (and quadratic) problem is as follows:

$$\min_{M,\xi} \frac{1}{2}||M||_2^2 + \sum_{i=1}^m \xi_i$$
 subject to: $\forall i,j,\ M_{y_i}\cdot x_i+\delta_{y_i,j}-M_j\cdot x_i\geq 1-\xi_i$

We use the KKT conditions and Lagrange multipliers to solve for the dual (refer to p. 270 - 272 for the math). Some notation:

- The kernel function K(.,.)
- $\bar{\mathbf{1}}$ is the vector whose components are all 1
- $\mathbb{1}_i$ is the zero vector whose *i*th component is 1
- $\bar{\eta}_i$ = the k-dimensional vector corresponding to the ith data point in the dual variable η (one dual variable $\eta_{i,j}$ is added for each constraint)
- $\bullet \ \tau_i = \mathbb{1}_{y_i} \bar{\eta}_i$

Therefore the **dual problem** is as follows:

$$\max_{\tau} -\frac{1}{2}K(x_i, x_j)(\tau_i, \tau_j) + \sum_{i} \tau_i \cdot \mathbb{1}_{y_i}$$

subject to:
$$\forall i, \tau_i \leq \mathbb{1}_{y_i}$$
 and $\tau_i \cdot \bar{\mathbf{1}} = 0$