9. Asymptotics

Spring 2021

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

• Last time: introducing estimators, looking at finite-sample properties.

Where are we? Where are we going?

- · Last time: introducing estimators, looking at finite-sample properties.
- Now: can we say more as sample size grows?

1/ Asymptotics

• For i.i.d. r.v.s, X_1,\ldots,X_n , with $\mathbb{E}[X_i]=\mu$ and $\mathbb{V}[X_i]=\sigma^2$ we know that:

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - \overline{X}_n is **unbiased**, $\mathbb{E}[\overline{X}_n] = \mathbb{E}[X_i] = \mu$

- For i.i.d. r.v.s, X_1,\ldots,X_n , with $\mathbb{E}[X_i]=\mu$ and $\mathbb{V}[X_i]=\sigma^2$ we know that:
 - \overline{X}_n is unbiased, $\mathbb{E}[\overline{X}_n] = \mathbb{E}[X_i] = \mu$
 - Sampling variance is $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$ where $\sigma^2 = \mathbb{V}[X_i]$

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - \overline{X}_n is **unbiased**, $\mathbb{E}[\overline{X}_n] = \mathbb{E}[X_i] = \mu$
 - Sampling variance is $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$ where $\sigma^2 = \mathbb{V}[X_i]$
 - None of these rely on a **specific distribution** for X_i !

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - \overline{X}_n is **unbiased**, $\mathbb{E}[\overline{X}_n] = \mathbb{E}[X_i] = \mu$
 - Sampling variance is $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$ where $\sigma^2 = \mathbb{V}[X_i]$
 - None of these rely on a **specific distribution** for X_i !
- Assuming $X_i \sim \mathcal{N}(\mu, \sigma^2)$, we know the exact distribution of \overline{X}_n .

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - \overline{X}_n is **unbiased**, $\mathbb{E}[\overline{X}_n] = \mathbb{E}[X_i] = \mu$
 - Sampling variance is $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$ where $\sigma^2 = \mathbb{V}[X_i]$
 - None of these rely on a **specific distribution** for X_i !
- Assuming $X_i \sim \mathcal{N}(\mu, \sigma^2)$, we know the exact distribution of \overline{X}_n .
 - What if the data isn't normal? What is the sampling distribution of \overline{X}_n ?

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - \overline{X}_n is **unbiased**, $\mathbb{E}[\overline{X}_n] = \mathbb{E}[X_i] = \mu$
 - Sampling variance is $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$ where $\sigma^2 = \mathbb{V}[X_i]$
 - None of these rely on a **specific distribution** for X_i !
- Assuming $X_i \sim \mathcal{N}(\mu, \sigma^2)$, we know the exact distribution of \overline{X}_n .
 - What if the data isn't normal? What is the sampling distribution of \overline{X}_n ?
- **Asymptotics**: approximate the sampling distribution of \overline{X}_n as n gets big.

• What can we say about the sample mean n gets large?

- What can we say about the sample mean *n* gets large?
- Need to think about sequences of sample means with increasing *n*:

- What can we say about the sample mean n gets large?
- Need to think about sequences of sample means with increasing *n*:

$$\begin{split} \overline{X}_1 &= X_1 \\ \overline{X}_2 &= (1/2) \cdot (X_1 + X_2) \\ \overline{X}_3 &= (1/3) \cdot (X_1 + X_2 + X_3) \\ \overline{X}_4 &= (1/4) \cdot (X_1 + X_2 + X_3 + X_4) \\ \overline{X}_5 &= (1/5) \cdot (X_1 + X_2 + X_3 + X_4 + X_5) \\ &\vdots \\ \overline{X}_n &= (1/n) \cdot (X_1 + X_2 + X_3 + X_4 + X_5 + \dots + X_n) \end{split}$$

- What can we say about the sample mean n gets large?
- Need to think about sequences of sample means with increasing *n*:

$$\begin{split} \overline{X}_1 &= X_1 \\ \overline{X}_2 &= (1/2) \cdot (X_1 + X_2) \\ \overline{X}_3 &= (1/3) \cdot (X_1 + X_2 + X_3) \\ \overline{X}_4 &= (1/4) \cdot (X_1 + X_2 + X_3 + X_4) \\ \overline{X}_5 &= (1/5) \cdot (X_1 + X_2 + X_3 + X_4 + X_5) \\ &\vdots \\ \overline{X}_n &= (1/n) \cdot (X_1 + X_2 + X_3 + X_4 + X_5 + \dots + X_n) \end{split}$$

Note: this is a sequence of random variables!

 Asymptotic analysis is about making approximations to finite sample properties.

- Asymptotic analysis is about making approximations to finite sample properties.
- Useful to know some properties of deterministic sequences:

- Asymptotic analysis is about making approximations to finite sample properties.
- · Useful to know some properties of deterministic sequences:

Definition

A sequence $\{a_n:n=1,2,...\}$ has the **limit** a written $a_n\to a$ as $n\to\infty$ if for all $\delta>0$ there is some $n_\delta<\infty$ such that for all $n\ge n_\delta$, $|a_n-a|\le\delta$.

- Asymptotic analysis is about making approximations to finite sample properties.
- · Useful to know some properties of deterministic sequences:

Definition

A sequence $\{a_n:n=1,2,...\}$ has the **limit** a written $a_n\to a$ as $n\to\infty$ if for all $\delta>0$ there is some $n_\delta<\infty$ such that for all $n\ge n_\delta$, $|a_n-a|\le\delta$.

• a_n gets closer and closer to a as n gets larger (a_n converges to a)

- Asymptotic analysis is about making approximations to finite sample properties.
- Useful to know some properties of deterministic sequences:

Definition

A sequence $\{a_n:n=1,2,...\}$ has the **limit** a written $a_n\to a$ as $n\to\infty$ if for all $\delta>0$ there is some $n_\delta<\infty$ such that for all $n\ge n_\delta$, $|a_n-a|\le\delta$.

- a_n gets closer and closer to a as n gets larger (a_n converges to a)
- $\{a_n: n=1,2,...\}$ is **bounded** if there is $b<\infty$ such that $|a_n|< b$ for all n.

Definition

A sequence of random variables, $\{Z_n:n=1,2,...\}$, is said to **converge in probability** to a value b if for every $\varepsilon>0$,

$$\mathbb{P}(|Z_n - b| > \varepsilon) \to 0,$$

Definition

A sequence of random variables, $\{Z_n : n = 1, 2, ...\}$, is said to **converge in probability** to a value b if for every $\varepsilon > 0$,

$$\mathbb{P}(|Z_n - b| > \varepsilon) \to 0,$$

as $n \to \infty$. We write this $Z_n \stackrel{p}{\to} b$.

• Basically: probability that Z_n lies outside any (teeny, tiny) interval around b approaches 0 as $n \to \infty$

Definition

A sequence of random variables, $\{Z_n: n=1,2,...\}$, is said to **converge in probability** to a value b if for every $\varepsilon>0$,

$$\mathbb{P}(|Z_n - b| > \varepsilon) \to 0,$$

- Basically: probability that Z_n lies outside any (teeny, tiny) interval around b approaches 0 as $n \to \infty$
- Economists writes $p\lim(Z_n) = b$ if $Z_n \stackrel{p}{\to} b$.

Definition

A sequence of random variables, $\{Z_n : n = 1, 2, ...\}$, is said to **converge in probability** to a value b if for every $\varepsilon > 0$,

$$\mathbb{P}(|Z_n - b| > \varepsilon) \to 0,$$

- Basically: probability that Z_n lies outside any (teeny, tiny) interval around b approaches 0 as $n \to \infty$
- Economists writes $p\lim(Z_n) = b$ if $Z_n \stackrel{p}{\to} b$.
- An estimator is **consistent** if $\hat{\theta}_n \stackrel{p}{\to} \theta$.

Definition

A sequence of random variables, $\{Z_n : n = 1, 2, ...\}$, is said to **converge in probability** to a value b if for every $\varepsilon > 0$,

$$\mathbb{P}(|Z_n - b| > \varepsilon) \to 0,$$

- Basically: probability that Z_n lies outside any (teeny, tiny) interval around b approaches 0 as $n \to \infty$
- Economists writes $p\lim(Z_n) = b$ if $Z_n \stackrel{p}{\to} b$.
- An estimator is **consistent** if $\hat{\theta}_n \stackrel{p}{\to} \theta$.
 - Distribution of $\hat{\theta}_n$ collapses on θ as $n \to \infty$.

Definition

A sequence of random variables, $\{Z_n: n=1,2,...\}$, is said to **converge in probability** to a value b if for every $\varepsilon>0$,

$$\mathbb{P}(|Z_n - b| > \varepsilon) \to 0,$$

- Basically: probability that Z_n lies outside any (teeny, tiny) interval around b approaches 0 as $n \to \infty$
- Economists writes $p\lim(Z_n) = b$ if $Z_n \stackrel{p}{\to} b$.
- An estimator is **consistent** if $\hat{\theta}_n \stackrel{p}{\to} \theta$.
 - Distribution of $\hat{\theta}_n$ collapses on θ as $n \to \infty$.
 - Inconsistent estimator are bad bad bad: more data gives worse answers!

• How can we show convergence in probability? Can verify if we know specific distribution of $\hat{\theta}$.

- How can we show convergence in probability? Can verify if we know specific distribution of $\hat{\theta}$.
- But can we say anything for arbitrary distributions?

- How can we show convergence in probability? Can verify if we know specific distribution of $\hat{\theta}$.
- · But can we say anything for arbitrary distributions?

Chebyshev Inequality

Suppose that X is r.v. for which $\mathbb{V}[X] < \infty$. Then, for every real number $\delta > 0$,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \delta) \le \frac{\mathbb{V}[X]}{\delta^2}.$$

- How can we show convergence in probability? Can verify if we know specific distribution of $\hat{\theta}$.
- · But can we say anything for arbitrary distributions?

Chebyshev Inequality

Suppose that X is r.v. for which $\mathbb{V}[X] < \infty$. Then, for every real number $\delta > 0$,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \delta) \le \frac{\mathbb{V}[X]}{\delta^2}.$$

• Variance places limits on how far an observation can be from its mean.

Proof of Chebyshev

• Let $Z = X - \mathbb{E}[X]$ with density $f_Z(x)$. Probability is just integral over the region:

$$\mathbb{P}\left(|Z| \ge \delta\right) = \int_{|x| \ge \delta} f_{Z}(x) dx$$

Proof of Chebyshev

• Let $Z = X - \mathbb{E}[X]$ with density $f_Z(x)$. Probability is just integral over the region:

$$\mathbb{P}\left(|Z| \ge \delta\right) = \int_{|x| \ge \delta} f_Z(x) dx$$

• Note that where $|x| \ge \delta$, we have $1 \le x^2/\delta^2$, so

$$\mathbb{P}\left(|Z| \geq \delta\right) \leq \int_{|x| \geq \delta} \frac{x^2}{\delta^2} f_Z(x) dx \leq \int_{-\infty}^{\infty} \frac{x^2}{\delta^2} f_Z(x) dx = \frac{\mathbb{E}[Z^2]}{\delta^2} = \frac{\mathbb{V}[X]}{\delta^2}$$

Markov Inequality

Markov Inequality

For any r.v. X and any $\delta > 0$,

$$\mathbb{P}(|X| \ge \delta) \le \frac{\mathbb{E}[|X|]}{\delta}.$$

Markov Inequality

Markov Inequality

For any r.v. X and any $\delta > 0$,

$$\mathbb{P}(|X| \ge \delta) \le \frac{\mathbb{E}[|X|]}{\delta}.$$

· The expectation limits how much probability can be in the tail.

Markov Inequality

Markov Inequality

For any r.v. X and any $\delta > 0$,

$$\mathbb{P}(|X| \ge \delta) \le \frac{\mathbb{E}[|X|]}{\delta}.$$

- The expectation limits how much probability can be in the tail.
- · Proof similar to Chebyshev.

Consistency

• We can use Chebyshev to determine consistency when variance is finite.

- We can use Chebyshev to determine consistency when variance is finite.
- **Theorem**: For any sequence of r.v.s, Z_n with $\mathbb{V}[Z_n] \to 0$, then $Z_n \mathbb{E}[Z_n] \stackrel{p}{\to} 0$.

- We can use Chebyshev to determine consistency when variance is finite.
- **Theorem**: For any sequence of r.v.s, Z_n with $\mathbb{V}[Z_n] \to 0$, then $Z_n \mathbb{E}[Z_n] \stackrel{\rho}{\to} 0$.
- If bias $[\hat{\theta}_n] \to 0$ and $\mathbb{V}[\hat{\theta}_n] \to 0$ as $n \to \infty$, then $\hat{\theta}_n$ is consistent.

- We can use Chebyshev to determine consistency when variance is finite.
- **Theorem**: For any sequence of r.v.s, Z_n with $\mathbb{V}[Z_n] \to 0$, then $Z_n \mathbb{E}[Z_n] \stackrel{\rho}{\to} 0$.
- If $\mathsf{bias}[\hat{\theta}_n] \to 0$ and $\mathbb{V}[\hat{\theta}_n] \to 0$ as $n \to \infty$, then $\hat{\theta}_n$ is consistent.
- · Example: sample mean.

- We can use Chebyshev to determine consistency when variance is finite.
- **Theorem**: For any sequence of r.v.s, Z_n with $\mathbb{V}[Z_n] \to 0$, then $Z_n \mathbb{E}[Z_n] \stackrel{\rho}{\to} 0$.
- If $\mathsf{bias}[\hat{\theta}_n] \to 0$ and $\mathbb{V}[\hat{\theta}_n] \to 0$ as $n \to \infty$, then $\hat{\theta}_n$ is consistent.
- · Example: sample mean.
 - \overline{X}_n is unbiased for μ with $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$

- We can use Chebyshev to determine consistency when variance is finite.
- **Theorem**: For any sequence of r.v.s, Z_n with $\mathbb{V}[Z_n] \to 0$, then $Z_n \mathbb{E}[Z_n] \stackrel{\rho}{\to} 0$.
- If $\mathsf{bias}[\hat{\theta}_n] \to 0$ and $\mathbb{V}[\hat{\theta}_n] \to 0$ as $n \to \infty$, then $\hat{\theta}_n$ is consistent.
- · Example: sample mean.
 - \overline{X}_n is unbiased for μ with $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - $\leadsto \overline{X}_n$ consistent since $\mathbb{V}[\overline{X}_n] \to 0$

- We can use Chebyshev to determine consistency when variance is finite.
- **Theorem**: For any sequence of r.v.s, Z_n with $\mathbb{V}[Z_n] \to 0$, then $Z_n \mathbb{E}[Z_n] \stackrel{\rho}{\to} 0$.
- If $\mathsf{bias}[\hat{\theta}_n] \to 0$ and $\mathbb{V}[\hat{\theta}_n] \to 0$ as $n \to \infty$, then $\hat{\theta}_n$ is consistent.
- · Example: sample mean.
 - \overline{X}_n is unbiased for μ with $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - $\leadsto \overline{X}_n$ consistent since $\mathbb{V}[\overline{X}_n] \to 0$
- NB: Unbiasedness does not imply consistency, nor vice versa.

Weak Law of Large Numbers

Let X_1, \dots, X_n be a an i.i.d. draws from a distribution with mean $\mathbb{E}[X_i] < \infty$.

Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, $\overline{X}_n \stackrel{p}{\to} \mathbb{E}[X_i]$.

Weak Law of Large Numbers

Let X_1, \dots, X_n be a an i.i.d. draws from a distribution with mean $\mathbb{E}[X_i] < \infty$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, $\overline{X}_n \overset{p}{\to} \mathbb{E}[X_i]$.

• Note: we don't assume finite variance, only finite expectation.

Weak Law of Large Numbers

Let X_1, \dots, X_n be a an i.i.d. draws from a distribution with mean $\mathbb{E}[X_i] < \infty$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, $\overline{X}_n \overset{p}{\to} \mathbb{E}[X_i]$.

- Note: we don't assume finite variance, only finite expectation.
- Intuition: The probability of \overline{X}_n being "far away" from μ goes to 0 as n gets big.

Weak Law of Large Numbers

Let X_1, \dots, X_n be a an i.i.d. draws from a distribution with mean $\mathbb{E}[X_i] < \infty$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, $\overline{X}_n \overset{p}{\to} \mathbb{E}[X_i]$.

- Note: we don't assume finite variance, only finite expectation.
- Intuition: The probability of \overline{X}_n being "far away" from μ goes to 0 as n gets big.
- Implies many sample means converge:

Weak Law of Large Numbers

Let X_1, \dots, X_n be a an i.i.d. draws from a distribution with mean $\mathbb{E}[X_i] < \infty$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, $\overline{X}_n \overset{p}{\to} \mathbb{E}[X_i]$.

- Note: we don't assume finite variance, only finite expectation.
- Intuition: The probability of \overline{X}_n being "far away" from μ goes to 0 as n gets big.
- Implies many sample means converge:
 - If $\mathbb{E}[X_i^2]<\infty$, then $\frac{1}{n}\sum_{i=1}^n X_i^2 \stackrel{p}{ o} \mathbb{E}[X_i^2]$

LLN by simulation in R

• Draw different sample sizes from Exponential distribution with rate 0.5

LLN by simulation in R

- Draw different sample sizes from Exponential distribution with rate 0.5
- $\rightsquigarrow \mathbb{E}[X_i] = 2$

LLN by simulation in R

- Draw different sample sizes from Exponential distribution with rate 0.5
- $\rightsquigarrow \mathbb{E}[X_i] = 2$

```
nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {
  s5 \leftarrow rexp(n = 5, rate = 0.5)
  s15 \leftarrow rexp(n = 15, rate = 0.5)
  s30 \leftarrow rexp(n = 30, rate = 0.5)
  s100 \leftarrow rexp(n = 100, rate = 0.5)
  s1000 \leftarrow rexp(n = 1000, rate = 0.5)
  s10000 \leftarrow rexp(n = 10000, rate = 0.5)
  holder[i,1] <- mean(s5)
  holder[i,2] <- mean(s15)</pre>
  holder[i,3] <- mean(s30)</pre>
  holder[i,4] <- mean(s100)
  holder[i,5] <- mean(s1000)
  holder[i,6] <- mean(s10000)
```


- Distribution of \overline{X}_{15}

• Distribution of \overline{X}_{30}

• Distribution of \overline{X}_{100}

- Distribution of \overline{X}_{1000}

1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.

- 1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.
- 2. if $X_n \stackrel{p}{\to} a$ and $Z_n \stackrel{p}{\to} b$, then

- 1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.
- 2. if $X_n \stackrel{p}{\rightarrow} a$ and $Z_n \stackrel{p}{\rightarrow} b$, then

•
$$X_n + Z_n \stackrel{p}{\rightarrow} a + b$$

- 1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.
- 2. if $X_n \stackrel{p}{\rightarrow} a$ and $Z_n \stackrel{p}{\rightarrow} b$, then
 - $X_n + Z_n \stackrel{p}{\rightarrow} a + b$
 - $X_n Z_n \stackrel{p}{\rightarrow} ab$

- 1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.
- 2. if $X_n \stackrel{p}{\rightarrow} a$ and $Z_n \stackrel{p}{\rightarrow} b$, then

•
$$X_n + Z_n \stackrel{p}{\rightarrow} a + b$$

•
$$X_n Z_n \stackrel{p}{\rightarrow} ab$$

•
$$X_n/Z_n \stackrel{p}{\to} a/b$$
 if $b > 0$

- 1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.
- 2. if $X_n \stackrel{p}{\rightarrow} a$ and $Z_n \stackrel{p}{\rightarrow} b$, then

•
$$X_n + Z_n \stackrel{p}{\rightarrow} a + b$$

•
$$X_n Z_n \stackrel{p}{\rightarrow} ab$$

•
$$X_n/Z_n \stackrel{p}{\to} a/b$$
 if $b>0$

Thus, by LLN and CMT:

- 1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.
- 2. if $X_n \stackrel{p}{\rightarrow} a$ and $Z_n \stackrel{p}{\rightarrow} b$, then

•
$$X_n + Z_n \stackrel{p}{\rightarrow} a + b$$

•
$$X_n Z_n \stackrel{p}{\rightarrow} ab$$

•
$$X_n/Z_n \stackrel{p}{\rightarrow} a/b$$
 if $b>0$

Thus, by LLN and CMT:

•
$$(\overline{X}_n)^2 \stackrel{p}{\to} \mu^2$$

- 1. **Continuous mapping theorem**: if $X_n \stackrel{p}{\to} c$, then $g(X_n) \stackrel{p}{\to} g(c)$ for any continuous function g.
- 2. if $X_n \stackrel{p}{\rightarrow} a$ and $Z_n \stackrel{p}{\rightarrow} b$, then

•
$$X_n + Z_n \stackrel{p}{\rightarrow} a + b$$

•
$$X_n Z_n \stackrel{p}{\rightarrow} ab$$

•
$$X_n/Z_n \stackrel{p}{\to} a/b \text{ if } b > 0$$

· Thus, by LLN and CMT:

•
$$(\overline{X}_n)^2 \stackrel{p}{\to} \mu^2$$

•
$$\log(\overline{X}_n) \stackrel{p}{\to} \log(\mu)$$

• **Unbiased, not consistent**: "first observation" estimator, $\hat{\theta}_n^f = X_1$.

- **Unbiased, not consistent**: "first observation" estimator, $\hat{\theta}_n^f = X_1$.
 - Unbiased because $\mathbb{E}[\hat{\theta}_n^f] = \mathbb{E}[X_1] = \mu$

- **Unbiased, not consistent**: "first observation" estimator, $\hat{\theta}_n^f = X_1$.
 - Unbiased because $\mathbb{E}[\hat{\theta}_n^f] = \mathbb{E}[X_1] = \mu$
 - Not consistent: $\hat{\theta}_n^f$ is constant in n so its distribution never collapses.

- Unbiased, not consistent: "first observation" estimator, $\hat{\theta}_n^f = X_1$.
 - Unbiased because $\mathbb{E}[\hat{\theta}_n^f] = \mathbb{E}[X_1] = \mu$
 - Not consistent: $\hat{\theta}_n^f$ is constant in n so its distribution never collapses.
 - Said differently: the variance of $\hat{\theta}_n^f$ never shrinks.

- **Unbiased, not consistent**: "first observation" estimator, $\hat{\theta}_n^f = X_1$.
 - Unbiased because $\mathbb{E}[\hat{\theta}_n^f] = \mathbb{E}[X_1] = \mu$
 - Not consistent: $\hat{\theta}_n^f$ is constant in n so its distribution never collapses.
 - Said differently: the variance of $\hat{\theta}_n^f$ never shrinks.
- Consistent, but biased: sample mean with n replaced by n-1:

$$\frac{n}{n-1}\overline{X}_n = \frac{1}{n-1}\sum_{i=1}^n X_i$$

- **Unbiased, not consistent**: "first observation" estimator, $\hat{\theta}_n^f = X_1$.
 - Unbiased because $\mathbb{E}[\hat{\theta}_n^f] = \mathbb{E}[X_1] = \mu$
 - Not consistent: $\hat{\theta}_n^f$ is constant in n so its distribution never collapses.
 - Said differently: the variance of $\hat{\theta}_n^f$ never shrinks.
- Consistent, but biased: sample mean with n replaced by n-1:

$$\frac{n}{n-1}\overline{X}_n = \frac{1}{n-1}\sum_{i=1}^n X_i$$

• Bias: $\mathbb{E}[\frac{n}{n-1}\overline{X}_n] - \mu = \frac{1}{n-1}\mu$

- **Unbiased, not consistent**: "first observation" estimator, $\hat{\theta}_n^f = X_1$.
 - Unbiased because $\mathbb{E}[\hat{\theta}_n^f] = \mathbb{E}[X_1] = \mu$
 - Not consistent: $\hat{\theta}_n^f$ is constant in n so its distribution never collapses.
 - Said differently: the variance of $\hat{\theta}_n^f$ never shrinks.
- Consistent, but biased: sample mean with n replaced by n-1:

$$\frac{n}{n-1}\overline{X}_n = \frac{1}{n-1}\sum_{i=1}^n X_i$$

- Bias: $\mathbb{E}\left[\frac{n}{n-1}\overline{X}_n\right] \mu = \frac{1}{n-1}\mu$
- Consistent because bias and se \rightarrow 0 as $n \rightarrow \infty$.

Multivariate LLN

• Let $\mathbf{X}_i = (X_{i1}, \dots, X_{ik})$ be a random vectors of length k.

Multivariate LLN

- Let $\mathbf{X}_i = (X_{i1}, \dots, X_{ik})$ be a random vectors of length k.
- Random (iid) sample of n of these k vectors, $\mathbf{X}_1, \dots, \mathbf{X}_n$.

Multivariate LLN

- Let $\mathbf{X}_i = (X_{i1}, \dots, X_{ik})$ be a random vectors of length k.
- Random (iid) sample of n of these k vectors, $\mathbf{X}_1, \dots, \mathbf{X}_n$.
- · Vector sample mean:

$$\overline{\mathbf{X}}_{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} = \begin{pmatrix} X_{n,1} \\ \overline{X}_{n,2} \\ \vdots \\ \overline{X}_{n,k} \end{pmatrix}$$

Multivariate LLN

- Let $\mathbf{X}_i = (X_{i1}, \dots, X_{ik})$ be a random vectors of length k.
- Random (iid) sample of n of these k vectors, $\mathbf{X}_1, \dots, \mathbf{X}_n$.
- · Vector sample mean:

$$\overline{\mathbf{X}}_{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} = \begin{pmatrix} X_{n,1} \\ \overline{X}_{n,2} \\ \vdots \\ \overline{X}_{n,k} \end{pmatrix}$$

• Vector WLLN: if $\mathbb{E}[\|\mathbf{X}\|] < \infty$, then as $n \to \infty$, $\overline{\mathbf{X}}_n \overset{p}{\to} \mathbb{E}[\mathbf{X}]$.

Multivariate LLN

- Let $\mathbf{X}_i = (X_{i1}, \dots, X_{ik})$ be a random vectors of length k.
- Random (iid) sample of n of these k vectors, $\mathbf{X}_1, \dots, \mathbf{X}_n$.
- · Vector sample mean:

$$\overline{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i = \begin{pmatrix} X_{n,1} \\ \overline{X}_{n,2} \\ \vdots \\ \overline{X}_{n,k} \end{pmatrix}$$

- Vector WLLN: if $\mathbb{E}[\|\mathbf{X}\|] < \infty$, then as $n \to \infty$, $\overline{\mathbf{X}}_n \overset{p}{\to} \mathbb{E}[\mathbf{X}]$.
 - · Converge in probability of a vector is just convergence of each element.

Multivariate LLN

- Let $\mathbf{X}_i = (X_{i1}, \dots, X_{ik})$ be a random vectors of length k.
- Random (iid) sample of n of these k vectors, $\mathbf{X}_1, \dots, \mathbf{X}_n$.
- · Vector sample mean:

$$\overline{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i = \begin{pmatrix} \overline{X}_{n,1} \\ \overline{X}_{n,2} \\ \vdots \\ \overline{X}_{n,k} \end{pmatrix}$$

- Vector WLLN: if $\mathbb{E}[\|\mathbf{X}\|] < \infty$, then as $n \to \infty$, $\overline{\mathbf{X}}_n \overset{p}{\to} \mathbb{E}[\mathbf{X}]$.
 - · Converge in probability of a vector is just convergence of each element.
 - $\mathbb{E}[\|\mathbf{X}\|] < \infty$ is equivalent to $\mathbb{E}[|X_{ij}|] < \infty$ for each $j = 1, \dots, k$

• For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$

- For i.i.d. r.v.s, X_1,\ldots,X_n , with $\mathbb{E}[X_i]=\mu$ and $\mathbb{V}[X_i]=\sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - \overline{X}_n converges to μ as n gets big

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - \overline{X}_n converges to μ as n gets big
 - · Chebyshev provides some bounds on probabilities.

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - \overline{X}_n converges to μ as n gets big
 - · Chebyshev provides some bounds on probabilities.
 - Still no distributional assumptions about X_i !

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - \overline{X}_n converges to μ as n gets big
 - · Chebyshev provides some bounds on probabilities.
 - Still no distributional assumptions about X_i !
- · Can we say more?

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - \overline{X}_n converges to μ as n gets big
 - · Chebyshev provides some bounds on probabilities.
 - Still no distributional assumptions about X_i!
- Can we say more?
 - Can we approximate $Pr(a < \overline{X}_n < b)$?

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - \overline{X}_n converges to μ as n gets big
 - · Chebyshev provides some bounds on probabilities.
 - Still no distributional assumptions about X_i !
- · Can we say more?
 - Can we approximate $Pr(a < \overline{X}_n < b)$?
 - · What family of distributions (Binomial, Uniform, Gamma, etc)?

- For i.i.d. r.v.s, X_1, \dots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$
 - \overline{X}_n converges to μ as n gets big
 - · Chebyshev provides some bounds on probabilities.
 - Still no distributional assumptions about X_i !
- · Can we say more?
 - Can we approximate $Pr(a < \overline{X}_n < b)$?
 - · What family of distributions (Binomial, Uniform, Gamma, etc)?
- Again, need to analyze when n is large.

Definition

Let $Z_1, Z_2, ...$, be a sequence of r.v.s, and for n = 1, 2, ... let $G_n(u)$ be the c.d.f. of Z_n . Then it is said that $Z_1, Z_2, ...$ converges in distribution to r.v. W with c.d.f. $G_W(u)$ if

$$\lim_{n\to\infty}G_n(u)=G_W(u),$$

which we write as $Z_n \stackrel{d}{\to} W$.

Definition

Let $Z_1, Z_2, ...$, be a sequence of r.v.s, and for n=1,2,... let $G_n(u)$ be the c.d.f. of Z_n . Then it is said that $Z_1, Z_2, ...$ converges in distribution to r.v. W with c.d.f. $G_W(u)$ if

$$\lim_{n\to\infty} G_n(u) = G_W(u),$$

which we write as $Z_n \stackrel{d}{\to} W$.

 Basically: when n is big, the distribution of Z_n is very similar to the distribution of W

Definition

Let $Z_1, Z_2, ...$, be a sequence of r.v.s, and for n = 1, 2, ... let $G_n(u)$ be the c.d.f. of Z_n . Then it is said that $Z_1, Z_2, ...$ converges in distribution to r.v. W with c.d.f. $G_W(u)$ if

$$\lim_{n\to\infty}G_n(u)=G_W(u),$$

which we write as $Z_n \stackrel{d}{\rightarrow} W$.

- Basically: when n is big, the distribution of Z_n is very similar to the distribution of W
 - Also known as the asymptotic distribution or large-sample distribution

Definition

Let $Z_1, Z_2, ...$, be a sequence of r.v.s, and for n = 1, 2, ... let $G_n(u)$ be the c.d.f. of Z_n . Then it is said that $Z_1, Z_2, ...$ converges in distribution to r.v. W with c.d.f. $G_W(u)$ if

$$\lim_{n\to\infty}G_n(u)=G_W(u),$$

which we write as $Z_n \stackrel{d}{\rightarrow} W$.

- Basically: when n is big, the distribution of Z_n is very similar to the distribution of W
 - · Also known as the asymptotic distribution or large-sample distribution
- We use c.d.f.s here to avoid messy details with discrete vs continuous.

Definition

Let $Z_1, Z_2, ...$, be a sequence of r.v.s, and for n = 1, 2, ... let $G_n(u)$ be the c.d.f. of Z_n . Then it is said that $Z_1, Z_2, ...$ converges in distribution to r.v. W with c.d.f. $G_W(u)$ if

$$\lim_{n\to\infty}G_n(u)=G_W(u),$$

which we write as $Z_n \stackrel{d}{\rightarrow} W$.

- Basically: when n is big, the distribution of Z_n is very similar to the distribution of W
 - Also known as the asymptotic distribution or large-sample distribution
- We use c.d.f.s here to avoid messy details with discrete vs continuous.
- If $X_n \stackrel{p}{\to} X$, then $X_n \stackrel{d}{\to} X$

Central Limit Theorem

$$\sqrt{n}\left(\overline{X}_n-\mu\right)\overset{d}{\to}\mathcal{N}(0,\sigma^2).$$

Central Limit Theorem

Let X_1,\ldots,X_n be i.i.d. r.v.s from a distribution with mean $\mu=\mathbb{E}[X_i]$ and variance $\sigma^2=\mathbb{V}[X_i]$. Then if $\mathbb{E}[X_i^2]<\infty$, we have

$$\sqrt{n}\left(\overline{X}_n - \mu\right) \overset{d}{\to} \mathcal{N}(0, \sigma^2).$$

Distribution free! No specific assumptions about the distribution of X_i except finite variance.

Central Limit Theorem

$$\sqrt{n}\left(\overline{X}_n-\mu\right)\overset{d}{\to}\mathcal{N}(0,\sigma^2).$$

- Distribution free! No specific assumptions about the distribution of X_i except finite variance.
- Implies that $\overline{X}_n \stackrel{a}{\sim} N(\mu, \sigma^2/n)$,

Central Limit Theorem

$$\sqrt{n}\left(\overline{X}_n-\mu\right)\overset{d}{\to}\mathcal{N}(0,\sigma^2).$$

- Distribution free! No specific assumptions about the distribution of X_i except finite variance.
- Implies that $\overline{X}_n \stackrel{a}{\sim} N(\mu, \sigma^2/n)$,
 - $\stackrel{\text{\scriptsize a}}{\sim}$ is "approximately distributed as".

Central Limit Theorem

$$\sqrt{n}\left(\overline{X}_n-\mu\right)\overset{d}{\to}\mathcal{N}(0,\sigma^2).$$

- Distribution free! No specific assumptions about the distribution of X_i except finite variance.
- Implies that $\overline{X}_n \stackrel{a}{\sim} N(\mu, \sigma^2/n)$,
 - $\stackrel{\text{\scriptsize a}}{\sim}$ is "approximately distributed as".
- \leadsto easy approximations to probability statements about \overline{X}_n when n is big!

CLT by simulation in R

```
set.seed(02138)
nsims <- 10000
holder2 <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {
  s5 < - rbinom(n = 5, size = 1, prob = 0.25)
  s15 \leftarrow rbinom(n = 15, size = 1, prob = 0.25)
  s30 \leftarrow rbinom(n = 30, size = 1, prob = 0.25)
  s100 \leftarrow rbinom(n = 100, size = 1, prob = 0.25)
  s1000 \leftarrow rbinom(n = 1000, size = 1, prob = 0.25)
  s10000 \leftarrow rbinom(n = 10000, size = 1, prob = 0.25)
  holder2[i,1] <- mean(s5)
  holder2[i,2] <- mean(s15)
  holder2[i,3] <- mean(s30)
  holder2[i,4] <- mean(s100)
  holder2[i,5] <- mean(s1000)
  holder2[i,6] <- mean(s10000)
```


• Distribution of ${\overline X_5 - \mu} \over {\sigma/\sqrt 5}$

• Distribution of $\frac{\overline{X}_{15}-\mu}{\sigma/\sqrt{15}}$

• Distribution of $\frac{\overline{\chi}_{30}-\mu}{\sigma/\sqrt{30}}$

• Distribution of $\frac{\overline{\chi}_{100}-\mu}{\sigma/\sqrt{100}}$

• Distribution of $\frac{\overline{\chi}_{10000}-\mu}{\sigma/\sqrt{10000}}$

$$Z_n \stackrel{d}{\to} Z \qquad \Longrightarrow \qquad g(Z_n) \stackrel{d}{\to} g(Z).$$

• Continuous mapping theorem: for continuous g, we have

$$Z_n \stackrel{d}{\to} Z \qquad \Longrightarrow \qquad g(Z_n) \stackrel{d}{\to} g(Z).$$

• Let $X_1, X_2, ...$ converge in distribution to some r.v. X

$$Z_n \stackrel{d}{\to} Z \implies g(Z_n) \stackrel{d}{\to} g(Z).$$

- Let X_1, X_2, \dots converge in distribution to some r.v. X
- Let Y_1, Y_2, \dots converge in probability to some number, c

$$Z_n \stackrel{d}{\to} Z \qquad \Longrightarrow \qquad g(Z_n) \stackrel{d}{\to} g(Z).$$

- Let X_1, X_2, \dots converge in distribution to some r.v. X
- Let Y_1, Y_2, \dots converge in probability to some number, c
- Slutsky's Theorem gives the following result:

$$Z_n \stackrel{d}{\to} Z \qquad \Longrightarrow \qquad g(Z_n) \stackrel{d}{\to} g(Z).$$

- Let $X_1, X_2, ...$ converge in distribution to some r.v. X
- Let Y_1, Y_2, \dots converge in probability to some number, c
- Slutsky's Theorem gives the following result:
 - 1. $X_n Y_n$ converges in distribution to cX

$$Z_n \stackrel{d}{\to} Z \implies g(Z_n) \stackrel{d}{\to} g(Z).$$

- Let $X_1, X_2, ...$ converge in distribution to some r.v. X
- Let Y_1, Y_2, \dots converge in probability to some number, c
- Slutsky's Theorem gives the following result:
 - 1. $X_n Y_n$ converges in distribution to cX
 - 2. $X_n + Y_n$ converges in distribution to X + c

$$Z_n \stackrel{d}{\to} Z \qquad \Longrightarrow \qquad g(Z_n) \stackrel{d}{\to} g(Z).$$

- Let X_1, X_2, \dots converge in distribution to some r.v. X
- Let Y_1, Y_2, \dots converge in probability to some number, c
- Slutsky's Theorem gives the following result:
 - 1. $X_n Y_n$ converges in distribution to cX
 - 2. $X_n + Y_n$ converges in distribution to X + c
 - 3. X_n/Y_n converges in distribution to X/c if $c \neq 0$

Transformations

 \cdot Continuous mapping theorem: for continuous g, we have

$$Z_n \stackrel{d}{\to} Z \implies g(Z_n) \stackrel{d}{\to} g(Z).$$

- Let $X_1, X_2, ...$ converge in distribution to some r.v. X
- Let Y_1, Y_2, \dots converge in probability to some number, c
- · Slutsky's Theorem gives the following result:
 - 1. $X_n Y_n$ converges in distribution to cX
 - 2. $X_n + Y_n$ converges in distribution to X + c
 - 3. X_n/Y_n converges in distribution to X/c if $c \neq 0$
- Extremely useful when trying to figure out what the large-sample distribution of an estimator is.

Delta method

Delta method

If $\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{d}{\to} \mathcal{N}(0, V)$ and h(u) is continuously differentiable in a neighborhood around θ , then as $n \to \infty$,

$$\sqrt{n}\left(h(\hat{\theta}_n) - h(\theta)\right) \stackrel{d}{\to} \mathcal{N}(0, (h'(\theta))^2 V).$$

• Why *h*() continuously differentiable?

Delta method

Delta method

If $\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{d}{\to} \mathcal{N}(0, V)$ and h(u) is continuously differentiable in a neighborhood around θ , then as $n \to \infty$,

$$\sqrt{n}\left(h(\hat{\theta}_n) - h(\theta)\right) \overset{d}{\to} \mathcal{N}(0, (h'(\theta))^2 V).$$

- Why h() continuously differentiable?
 - Near θ we can approximate h() with a line where h' is the slope.

Delta method

Delta method

If $\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{d}{\to} \mathcal{N}(0, V)$ and h(u) is continuously differentiable in a neighborhood around θ , then as $n \to \infty$,

$$\sqrt{n}\left(h(\hat{\theta}_n) - h(\theta)\right) \overset{d}{\to} \mathcal{N}(0, (h'(\theta))^2 V).$$

- Why h() continuously differentiable?
 - Near θ we can approximate h() with a line where h' is the slope.
 - So $h(\hat{\theta}_{\rm n}) h(\theta) \approx h'(\theta) \left(\hat{\theta}_{\rm n} \theta\right)$

· An estimator is asymptotically normal if

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\overset{d}{\rightarrow}N\left(0,\mathbb{V}[\hat{\theta}_{n}]\right)$$

· An estimator is asymptotically normal if

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\overset{d}{\rightarrow}N\left(0,\mathbb{V}[\hat{\theta}_{n}]\right)$$

• Allows us to approximate the probability of $\hat{\theta}_n$ being far away from θ in large samples.

· An estimator is asymptotically normal if

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\overset{d}{\rightarrow}N\left(0,\mathbb{V}[\hat{\theta}_{n}]\right)$$

- Allows us to approximate the probability of $\hat{\theta}_n$ being far away from θ in large samples.
- · Usually follows by some version of the CLT.

· An estimator is asymptotically normal if

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\overset{d}{\rightarrow}N\left(0,\mathbb{V}[\hat{\theta}_{n}]\right)$$

- Allows us to approximate the probability of $\hat{\theta}_n$ being far away from θ in large samples.
- · Usually follows by some version of the CLT.
 - CLT: \overline{X}_n is asymptotically normal

• Setting: X_1, \dots, X_n i.i.d. with quantity of interest $\theta = \mathbb{E}[g(X_i)]$

- Setting: X_1, \dots, X_n i.i.d. with quantity of interest $\theta = \mathbb{E}[g(X_i)]$
- Analogy/plug-in estimator: $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$, by CLT:

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{d}{\rightarrow} \mathcal{N}(0, V_{\theta})$$

where
$$V_{\theta} = \mathbb{V}[g(X_i)] = \mathbb{E}[(g(X_i) - \theta)^2]$$
.

- Setting: X_1, \dots, X_n i.i.d. with quantity of interest $\theta = \mathbb{E}[g(X_i)]$
- Analogy/plug-in estimator: $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$, by CLT:

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{d}{\rightarrow} \mathcal{N}(0, V_{\theta})$$

where
$$V_{\theta} = \mathbb{V}[g(X_i)] = \mathbb{E}[(g(X_i) - \theta)^2]$$
.

• But we don't know V_{θ} ?! Estimate it!

$$\widehat{V}_{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(g(X_i) - \widehat{\theta}_n \right)^2$$

- Setting: X_1, \dots, X_n i.i.d. with quantity of interest $\theta = \mathbb{E}[g(X_i)]$
- Analogy/plug-in estimator: $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$, by CLT:

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\overset{d}{\rightarrow}\mathcal{N}(0,V_{\theta})$$

where $V_{\theta} = \mathbb{V}[g(X_i)] = \mathbb{E}[(g(X_i) - \theta)^2]$.

• But we don't know V_{θ} ?! Estimate it!

$$\widehat{V}_{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(g(X_i) - \widehat{\theta}_n \right)^2$$

• We can show that $\widehat{V}_{\theta} \stackrel{p}{\to} V_{\theta}$ and so by Slutsky:

$$\frac{\sqrt{n}\left(\widehat{\theta}_{n} - \theta\right)}{\sqrt{\widehat{V_{\theta}}}} \xrightarrow{d} \frac{\mathcal{N}(0, V_{\theta})}{\sqrt{V_{\theta}}} \sim \mathcal{N}(0, 1)$$

 Convergence in distribution is the same vector Z_n: convergence of c.d.f.s

- Convergence in distribution is the same vector Z_n: convergence of c.d.f.s
- Allow us to generalize the CLT to random vectors:

- Convergence in distribution is the same vector Z_n: convergence of c.d.f.s
- Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem

If $\mathbf{X}_i \in \mathbb{R}^k$ are i.i.d. and $\mathbb{E}\|\mathbf{X}_i\|^2 < \infty$, then as $n \to \infty$,

$$\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\boldsymbol{\mu}\right)\overset{d}{\rightarrow}\mathcal{N}(\mathbf{0},\boldsymbol{\Sigma}),$$

where
$$\mu = \mathbb{E}[\mathbf{X}_i]$$
 and $\mathbf{\Sigma} = \mathbb{V}[\mathbf{X}_i] = \mathbb{E}[(\mathbf{X}_i - \mu)(\mathbf{X}_i - \mu)']$.

- Convergence in distribution is the same vector Z_n: convergence of c.d.f.s
- · Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem

If $\mathbf{X}_i \in \mathbb{R}^k$ are i.i.d. and $\mathbb{E} \|\mathbf{X}_i\|^2 < \infty$, then as $n \to \infty$,

$$\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\boldsymbol{\mu}\right)\overset{d}{\rightarrow}\mathcal{N}(\mathbf{0},\boldsymbol{\Sigma}),$$

where
$$\mu = \mathbb{E}[X_i]$$
 and $\Sigma = \mathbb{V}[X_i] = \mathbb{E}[(X_i - \mu)(X_i - \mu)']$.

• $\mathbb{E}\|\mathbf{X}_i\|^2 < \infty$ is equivalent to $\mathbb{E}[X_{i,j}^2] < \infty$ for all j = 1, ..., k.

- Convergence in distribution is the same vector Z_n: convergence of c.d.f.s
- · Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem

If $\mathbf{X}_i \in \mathbb{R}^k$ are i.i.d. and $\mathbb{E}\|\mathbf{X}_i\|^2 < \infty$, then as $n \to \infty$,

$$\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\boldsymbol{\mu}\right)\overset{d}{\rightarrow}\mathcal{N}(0,\boldsymbol{\Sigma}),$$

where
$$\mu = \mathbb{E}[\mathbf{X}_i]$$
 and $\mathbf{\Sigma} = \mathbb{V}[\mathbf{X}_i] = \mathbb{E}[(\mathbf{X}_i - \mu)(\mathbf{X}_i - \mu)']$.

- $\mathbb{E}\|\mathbf{X}_i\|^2 < \infty$ is equivalent to $\mathbb{E}[X_{i,j}^2] < \infty$ for all j = 1, ..., k.
 - Basically: multivariate CLT holds if each r.v. in the vector has finite variance.

- Convergence in distribution is the same vector Z_n: convergence of c.d.f.s
- Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem

If $\mathbf{X}_i \in \mathbb{R}^k$ are i.i.d. and $\mathbb{E}\|\mathbf{X}_i\|^2 < \infty$, then as $n \to \infty$,

$$\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\boldsymbol{\mu}\right)\overset{d}{\rightarrow}\mathcal{N}(0,\boldsymbol{\Sigma}),$$

where
$$\mu = \mathbb{E}[X_i]$$
 and $\Sigma = \mathbb{V}[X_i] = \mathbb{E}[(X_i - \mu)(X_i - \mu)']$.

- $\mathbb{E}\|\mathbf{X}_i\|^2 < \infty$ is equivalent to $\mathbb{E}[X_{i,j}^2] < \infty$ for all j = 1, ..., k.
 - Basically: multivariate CLT holds if each r.v. in the vector has finite variance.
- Very common for when we're estimating multiple parameters $\pmb{\theta}$ with $\hat{\pmb{\theta}}_n$

• What if we want to know the asymptotic distribution of a function of $\hat{\theta}_n$?

- What if we want to know the asymptotic distribution of a function of $\hat{\theta}_n$?
- Let $\mathbf{h}(\boldsymbol{\theta})$ map from $\mathbb{R}^k \to \mathbb{R}^m$ and be continuously differentiable.

- What if we want to know the asymptotic distribution of a function of $\hat{\theta}_n$?
- Let $\mathbf{h}(\boldsymbol{\theta})$ map from $\mathbb{R}^k \to \mathbb{R}^m$ and be continuously differentiable.
 - Ex: $\mathbf{h}(\theta_1,\theta_2,\theta_3)=(\theta_2/\theta_1,\theta_3/\theta_1)$, from $\mathbb{R}^3\to\mathbb{R}^2$

- What if we want to know the asymptotic distribution of a function of $\hat{\theta}_n$?
- Let $\mathbf{h}(\boldsymbol{\theta})$ map from $\mathbb{R}^k \to \mathbb{R}^m$ and be continuously differentiable.
 - Ex: $\mathbf{h}(\theta_1,\theta_2,\theta_3)=(\theta_2/\theta_1,\theta_3/\theta_1)$, from $\mathbb{R}^3\to\mathbb{R}^2$
 - Like univariate case, we need the derivatives arranged in $m \times k$ Jacobian matrix:

$$\mathbf{H}(\boldsymbol{\theta}) = \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathbf{h}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial h_1}{\partial \theta_1} & \frac{\partial h_1}{\partial \theta_2} & \cdots & \frac{\partial h_1}{\partial \theta_k} \\ \frac{\partial h_2}{\partial \theta_1} & \frac{\partial h_2}{\partial \theta_2} & \cdots & \frac{\partial h_2}{\partial \theta_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_m}{\partial \theta_1} & \frac{\partial h_m}{\partial \theta_2} & \cdots & \frac{\partial h_m}{\partial \theta_k} \end{pmatrix}$$

- What if we want to know the asymptotic distribution of a function of $\hat{\theta}_n$?
- Let $\mathbf{h}(\boldsymbol{\theta})$ map from $\mathbb{R}^k \to \mathbb{R}^m$ and be continuously differentiable.
 - Ex: $\mathbf{h}(\theta_1,\theta_2,\theta_3)=(\theta_2/\theta_1,\theta_3/\theta_1)$, from $\mathbb{R}^3\to\mathbb{R}^2$
 - Like univariate case, we need the derivatives arranged in $m \times k$ Jacobian matrix:

$$\mathbf{H}(\boldsymbol{\theta}) = \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathbf{h}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial h_1}{\partial \theta_1} & \frac{\partial h_1}{\partial \theta_2} & \cdots & \frac{\partial h_1}{\partial \theta_k} \\ \frac{\partial h_2}{\partial \theta_1} & \frac{\partial h_2}{\partial \theta_2} & \cdots & \frac{\partial h_2}{\partial \theta_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_m}{\partial \theta_1} & \frac{\partial h_m}{\partial \theta_2} & \cdots & \frac{\partial h_m}{\partial \theta_k} \end{pmatrix}$$

• Multivariate delta method: if $\sqrt{n}\left(\hat{\pmb{\theta}}_n - \pmb{\theta}\right) \overset{d}{\to} \mathcal{N}(0, \pmb{\Sigma})$, then

$$\sqrt{n}\left(\mathbf{h}(\hat{\boldsymbol{\theta}}_n) - \mathbf{h}(\boldsymbol{\theta})\right) \overset{d}{\to} \mathcal{N}(0, \mathbf{H}(\boldsymbol{\theta})\mathbf{\Sigma}\mathbf{H}(\boldsymbol{\theta})')$$

 When working with asymptotics, it's often useful to have some shorthand.

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$
 - If a_n is bounded, we write $a_n = O(1)$ ("big-oh-one")

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$
 - If a_n is bounded, we write $a_n = O(1)$ ("big-oh-one")
 - If $n^{-\lambda}a_n$ is bounded, we write $a_n = O(n^{\lambda})$

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$
 - If a_n is bounded, we write $a_n = O(1)$ ("big-oh-one")
 - If $n^{-\lambda}a_n$ is bounded, we write $a_n = O(n^{\lambda})$
- Stochastic order notation for random sequence, Z_n

- When working with asymptotics, it's often useful to have some shorthand.
- Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$
 - If a_n is bounded, we write $a_n = O(1)$ ("big-oh-one")
 - If $n^{-\lambda}a_n$ is bounded, we write $a_n = O(n^{\lambda})$
- Stochastic order notation for random sequence, Z_n
 - If $Z_n \stackrel{p}{\to} 0$, we write $Z_n = o_p(1)$ ("little-oh-p-one").

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$
 - If a_n is bounded, we write $a_n = O(1)$ ("big-oh-one")
 - If $n^{-\lambda}a_n$ is bounded, we write $a_n = O(n^{\lambda})$
- Stochastic order notation for random sequence, Z_n
 - If $Z_n \stackrel{p}{\to} 0$, we write $Z_n = o_p(1)$ ("little-oh-p-one").
 - For any consistent estimator, we have $\hat{\theta}_n = \theta + o_p(1)$

- When working with asymptotics, it's often useful to have some shorthand.
- · Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$
 - If a_n is bounded, we write $a_n = O(1)$ ("big-oh-one")
 - If $n^{-\lambda}a_n$ is bounded, we write $a_n = O(n^{\lambda})$
- Stochastic order notation for random sequence, Z_n
 - If $Z_n \stackrel{p}{\to} 0$, we write $Z_n = o_n(1)$ ("little-oh-p-one").
 - For any consistent estimator, we have $\hat{\theta}_n = \theta + o_p(1)$
 - If $a_n^{-1}Z_n \stackrel{p}{\to} 0$, we write $Z_n = o_p(a_n)$

Bounded in probability

Definition

A random sequence Z_n is **bounded in probability**, written $Z_n=O_p(1)$ ("big-oh-p-one") for all $\delta>0$ there exists a M_δ and n_δ , such that for $n\geq n_\delta$,

$$\mathbb{P}(|Z_n| > M_{\delta}) < \delta$$

• $Z_n = o_p(1)$ implies $Z_n = O_p(1)$ but not the reverse.

Bounded in probability

Definition

A random sequence Z_n is **bounded in probability**, written $Z_n=O_p(1)$ ("big-oh-p-one") for all $\delta>0$ there exists a M_δ and n_δ , such that for $n\geq n_\delta$,

$$\mathbb{P}(|Z_n| > M_{\delta}) < \delta$$

- $Z_n = o_n(1)$ implies $Z_n = O_n(1)$ but not the reverse.
- If Z_n converges in distribution, it is $O_p(1)$, so if the CLT applies we have:

$$\sqrt{\textit{n}}(\hat{\theta}_\textit{n} - \theta) = \textit{O}_\textit{p}(1)$$

Bounded in probability

Definition

A random sequence Z_n is **bounded in probability**, written $Z_n=O_p(1)$ ("big-oh-p-one") for all $\delta>0$ there exists a M_δ and n_δ , such that for $n\geq n_\delta$,

$$\mathbb{P}(|Z_n| > M_{\delta}) < \delta$$

- $Z_n = o_p(1)$ implies $Z_n = O_p(1)$ but not the reverse.
- If Z_n converges in distribution, it is $O_p(1)$, so if the CLT applies we have:

$$\sqrt{\textit{n}}(\hat{\theta}_\textit{n} - \theta) = \textit{O}_\textit{p}(1)$$

• If $a_n^{-1}Z_n=O_p(1)$, we write $Z_n=O_p(a_n)$, so we have: $\hat{\theta}_n=\theta+O_p(n^{-1/2})$.