

SO12864-13C (LCM)系列产品说明书 (VERSION1.0)

可选型号:

产品型号	LCD 类型	背光类型	时序方式	逻辑电压	背光	接口方式
及其后缀	(显示模式)	(LED)		(VDD)	电压	及其预留配置
SO12864FPD-13CSBE (36)	FSTN 黑白	蓝色	6800	2.8V-5.5V	3.3V	焊盘插针或 FFC
SO12864FPD-13CSWE(36)	FSTN 黑白	白色	6800	2.8V-5.5V	3.3V	焊盘插针或 FFC
SO12864FPD-13CSBE (56)	FSTN 黑白	蓝色	6800	2.8V-5.5V	5.0V	焊盘插针或 FFC
SO12864FPD-13CSWE(56)	FSTN 黑白	白色	6800	2.8V-5.5V	5.0V	焊盘插针或 FFC
SO12864FPD-13CSBE (38)	FSTN 黑白	蓝色	8080	2.8V-5.5V	3.3V	焊盘插针或 FFC
SO12864FPD-13CSWE(38)	FSTN 黑白	白色	8080	2.8V-5.5V	3.3V	焊盘插针或 FFC
SO12864FPD-13CSBE (58)	FSTN 黑白	蓝色	8080	2.8V-5.5V	5.0V	焊盘插针或 FFC
SO12864FPD-13CSWE(58)	FSTN 黑白	白色	8080	2.8V-5.5V	5.0V	焊盘插针或 FFC
SO12864FPD-13CSBE (3S)	FSTN 黑白	蓝色	串行	2.8V-5.5V	3.3V	焊盘插针或 FFC
SO12864FPD-13CSWE(3S)	FSTN 黑白	白色	串行	2.8V-5.5V	3.3V	焊盘插针或 FFC
SO12864FPD-13CSBE (5S)	FSTN 黑白	蓝色	串行	2.8V-5.5V	5.0V	焊盘插针或 FFC
SO12864FPD-13CSWE(5S)	FSTN 黑白	白色	串行	2.8V-5.5V	5.0V	焊盘插针或 FFC

注:

1. 以上仅列出 LCD 类型为:FSTN 黑白显示模式不同配置的组合而形成之产品型号。

2. LCD 类型还有: STN 黄绿底色,灰底色,蓝底色可供选择。组合方式同上。

3. 详细信息请垂询我公司销售部。

销售部:

电话: 010-80750102 /03 /04 -销售部

传真: 010-80750108-624 网站: WWW.SCH-LCD.CN

技术服务:

电话: 010-80750102 /03 /04 -512

QQ: 982140376

文档修订记录

修订	修订		修订前			修订	
次第	日期	修订人	版本号	页次	章节 编号	修订内容简述	批准人
1	2014-02-17	李留军	/	/	/	新建文档	趙鵬

目录

1	物理特性	4
2.	极限参数	5
3. :	LCM 特性	5
4.	光电参数	6
5.	光学特性测量方法	6
6.	原理框图	7
7.	时序图	8
8.	命令解释	11
9.ե	出厂测试报 告	20
10	.接口说明	21
11.	. 外形尺寸图纸	22
12	. 使用说明	23
13	、硬件连接方式	25
14	.程序设计	28

1、物理特性

项目	内容	单位
LCD 装配方式	COG, LCD, FPC, PCB,灯箱	
LCD 显示方式	反射式、全透式和半反半透式	
LCD 类型	STN: 黄绿、灰模、蓝模	
	FSTN	
视角	6点	
LCD 模块尺寸	55(宽)×45(高)×7.5(厚,最大值)	mm
LCD 视区尺寸	36.6 (宽)×21.9 (高)	mm
LCD 点阵方式	128×64 点阵	
点尺寸	0.25(宽)×0.29(高)	mm
点间距	0.27 (宽)×0.31(高)	mm
LCD duty	1/64	
LCD 偏压	1/9	
LCD 控制器	ST7565R (COG)	
LCM 工作温度(E*)	-20~+70	
LCM 存储温度(E*)	-30~+80	
可选背光方式 (LED)	蓝色、白色	
自由设置接口方式	8080 时序方式	
	6800 时序方式	
	串行时序方式	
供电电源	3V 或 5V 两种类型	V
	内置 DC/DC 电路,通过软件调节对比度	
预期寿命	50,000	Hours

NOTICE:

N*: 常温产品 E*: 宽温产品

2. 极限参数

2.1 电气极限参数

 $V_{SS} = 0V$

Item	Symbol	Min	Max	Unit
逻辑电源	VDD-VSS	-0.3	7.0	V
LCD 电源	V _{DD} -V _o	-0.3	20.0	V
I/O 输入电压范围	Vi	-0.3	Vdd+0.3	V

2.2 使用环境极限参数

	项目	Min	Max	Unit
宽温类	工作温度	-20	+70	
	储存温度	-30	+80	
	湿度范围		85	%RH

3. LCM 特性

3.1 LCM 电气特性

 $V_{SS}=0V$

项	目	符号	测试条件	Min	Тур	Max	Unit
	逻辑电源	V_{DD}		2.8	3.0	5.5	V
供电电压	倍压电路输出	Vout		6.0		20.0	V
	LCD 驱动电路	Vo		4.5		11.5	V
输入高电平	范围	VIHC		0.8VDD		Vdd	V
输入低电平	范围	VILC		Vss		0.2Vdd	V
高电平输出	 范围	Vohc	Iон=-0.5mА	0.8VDD		Vdd	V
低电平输出	芯 围	Volc	IoL=0.5mA	Vss		0.2Vdd	V
睡眠模式电	· 已流	Isp	25		0.01	5.0	μA
待机模式电	· 記流	Isb	25		4.0	8.0	μA

3.2 LCM 背光特性

Color	Item	Symbol	Min	Typ	Max	Unit	Condition
白色侧背光	正向电压	Vf	2.8	3.0	3.2	V	If=30~36mA
蓝色侧背光	正向电压	Vf	2.8	3.0	3.2	V	If=30~36mA

4. 光电参数

STN TYPE Ta=25

Item	Symbol	Condition	Min	Тур	Max	Unit
视角		K 2.0 =0o	40o		-	deg
Contrast ration	K	=50 =00		5		
Response time (rise)	Tr	=50 =00		110	165	ms
Response time (fall)	Tf	=50 =00		110	165	ms

5. 光学特性测量方法

Definition of Optical Response Time

In case of Negative type, wave from of changing brightness becomes reverse (Non Select Signals: 0%, Select Signals: 100%

Definition of Contrast Ratio(CR)

B1: Brightness In Select Signal B2: Brightness In Non-Select Signal

• Definition of Viewing Angle \varnothing and φ

6. 原理框图

7. 时序图

7.1. 系统总线读/写数据 (8080 时序)

$(V_{DD}=3.3V, T_{A}=25)$

Parameter	Signal	Symbol	Min	Тур	Max	Unit	Condition
Address hold time		Тан8	0			ns	
Address setup time	A0	TAS8	0			ns	
System cycle time		TCYC8	240			ns	
Control L pulse width (WR)	WR	Tcclw	80			ns	
Control L pulse width (RD)	RD	TCCLR	140			ns	
Control H pulse width (WR)	WR	Тссни	80			ns	
Control H pulse width (RD)	RD	TCCHR	80			ns	
WRITE Data set-up time	D0	TDS8	40			ns	
WRITE Data hold time		TdH8	0			ns	
READ access time	D7	TACC8			70	ns	CL=100pF
READ Output disable time		Тсн8	5.0		50	ns	CL=100pF

- 1. The input signal rise time and fall time (Tr, Tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (Tr+Tf) (TCYC8-TCCLW-TCCHW) for (Tr+Tf) (TCYC8-TCCLR-TCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDD as the reference.
- 3. TCCLW and TCCLR are specified as the overlap between /CS1 being " L " (CS2=" H ") and /WR and /RD being at the " L " level.

7.2. System buses Read/Write characteristics (For the 6800 Series MPU)

(VDD=3.3V, TA=25)

Parameter	Signal	Symbol	Min	Тур	Max	Unit	Condition
System cycle time		TCYC6	240			ns	
Address setup time	A0	TAS6	0			ns	
Address hold time		Тан6	0			ns	
WRITE Data set-up time	D0	TDS6	40			ns	
WRITE Data hold time		Трн6	0			ns	
READ Output disable time	D7	Тон6	5		50	ns	CL=100pF
READ Access time		TACC6			70	ns	CL=100pF
Enable H pulse width (Read)	RD	TEWHR	140			ns	
Enable H pulse width (Write)	WR	TEWHW	80			ns	
Enable L pulse width (Read)	RD	TEWLR	80			ns	
Enable L pulse width (Write)	WR	Tewlw	80			ns	

- 1. The input signal rise time and fall time (Tr, Tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (Tr+Tf) (TCYC6-TEWLW-TEWHW) for (Tr+Tf) (TCYC6-TEWLR-TEWHR) are specified.
- 2.All timing is specified using 20% and 80% of VDD as the reference.
- 3.TEWLW and TEWLR are specified as the overlap between /CS1 being "L" (CS2= "H") and E.

7.3. Serial interface

 $(V_{DD}=3.3V, T_{A}=25)$

Parameter	Signal	Symbol	Min	Тур	Max	Unit	Condition
Serial clock cycle		Tscyc	50			ns	
Serial clock H pulse width	SCL	Tshw	25			ns	
Serial clock L pulse width		Tslw	25			ns	
Address setup time	A0	Tsas	20			ns	
Address hold time		TSAH	10			ns	
Data set-up time	SI	Tsds	20			ns	
Data hole time		TSDH	10			ns	
/CS serial clock time	CS	Tcss	20			ns	
/CS serial clock time		Тсѕн	40			ns	

- 1. The input signal rise time and fall time (Tr, Tf) is specified at 15 ns or less.
- 2. All timing is specified using 20% and 80% of VDD as the reference.

7.4. Reset Timing

(VDD=3.3V, TA=25)

Parameter	Signal	Symbol	Min	Тур	Max	Unit	Condition
Reset time		Tr			1.0	μs	
Reset L pulse width	/RES	Trw	1.0			μs	

8. 命令解释

模块结构图

程序初始化时必须设定ADC为NORMAL, COMMON OUTPUT DIRECTION 为REVERSE

1, Display ON/OFF

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	1	1	1	1	显示开
										0	显示关

当同时执行"**Display All Points ON**(命令 10)"和"**Display OFF**"命令时,模块进入省电模式,详细情况参考"**Power Save**"里的说明。

复位时为 display off。

2, Display Start line Set

本命令用 来指定显示 RAM 的行地址(line address)

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Line Address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	1
					0	0	0	0	1	0	2
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

本模块的行扫描方向是从上屏 32 到 1 ,下屏 0、63 到 33 ,当设定起始行后,从起始行开始的 8 行是 PAGE0 ,当行地址到 1 之后,自动转到第 0 ,63 …… ,一般情况下,本命令设置为 0X60 ,通过有规律的改变起始行 ,可以实现上下滚屏 ,但要注意在滚屏结束后 ,将原先设定的起始行重新设定。

3. Page Address Set

通过页地址 (page address) 和列地址(column address)共同来确定数据在显示 RAM 中的位置。系统 复位后,页地址默认为 0。参看图 4-1 液晶点阵结构图。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Page Address
0	1	0	1	0	1	1	0	0	0	0	0
							0	0	0	1	1
							0	0	1	0	2
							0	1	1	1	7
							1	0	0	0	8

4. Column Address Set

本命令用来确定显示 RAM 的列地址(Column Address)。列地址分成两部分(高四位和低四位)写入。显示 RAM 每访问一次,列地址自动加一,一直到 131,因此用户可以连续写入或者读出数据。对本模块来说,共 128 列,剩余的四列不显示,当数据写到第 131 列后,列地址自动返回到 0,而且页地址也不会自动增加。

	AO	Е	RW														C	olumn
		/RD	/WR	D	7 D	6 D	5 D4	D3 D2 D1 D0	A7	A6	A5	A4	A3	A2.	A1 A	40	A	ddress
High bits																		
Low bits	0	1	0	0	0	0	1	A7 A6 A5 A4	0	0	0	0	0	0	0	0		0
							0	A3 A2 A1 A0	0	0	0	0	0	0	0	1		1
									0	0	0	0	0	0	1	0		2
									1	0	0	0	0	0	0	0		130
									1	0	0	0	0	0	1	1		131

5, Status Read

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	BUSY	ADC	ON/OFF	/RESET	0	0	0	0

BUSY	当 BUSY=1 时,表示正在处理数据或正在复位!此时模块将不接收任何数据知道 BUSY=0;如果时序能够满足要求,可以不用进行状态检查。
ADC	ADC 表示列地址和端地址驱动器的关系: 0: 反状态 (列地址 131-nSEG n) 1: 正常状态 (列地址 nSEG n) (ADC 命令 转换状态,对于本模块来说,ADC必须设置为1,详细情况参照命令8)
ON/OFF	ON/OFF: 表示显示的状态 0: 显示开 1: 显示关 命令1,显示开/关命令用来切换显示状态。
/RESET	/reset 用来表示当前是否在复位过程中。 0: 工作状态 1: 正在复位

6. Display Data Write

本命令将要显示的内容写入显示 RAM。因为列地址 (column address) 在数据写入后自动加 1,因此用户可以连续向显示 RAM 写入数据。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0				Write	data			

7. Display Data Read

本命令从显示 RAM 中读取数据。可以连续读出数据。在串行模式下,本命令无效。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1				Read	data			

8. ADC Select (Segment Driver Direction Select)

本命令能够使显示 RAM 的列地址和段驱动的输出反向。相当于左右反转。当 ADC 为正常时,列地址从左到右为 0 - 127,当 ADC 为反向时,列地址从左到右为 131 - 4。模块正向安装时 ADC 应当设置成正常模式。复位后默认为正常状态。本命令和命令 15 的作用主要是当模块安装反向时,调节显示起始位置:当正向安装时,ADC:0xa0,Common Output Mode Select:0xc8,此时行范围为 0、63、……2、1,列范围是 0 - 127。当反向安装时,ADC:0xa1,Common Output Mode Select:0xc0,此时行范围从上到下 0、63……2、1(相对于反向安装后的方向而言),列范围是从左到右4 - 131(相对于反向安装后的方向而言)。本部分的模块结构图中的说明是针对正向安装模块而言的!

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0	正常
										1	反向

9. Display Normal/Reverse

本命令可以在不重新向显示 RAM 写数据的情况下,使显示 RAM 中的数据取反,从而实现显示反白的效果。 复位后默认为正常显示。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0	正常显示
										1	反白显示

10. Display All Points ON/OFF

本命令用来实现全屏显示,不管显示 RAM 中的数据是什么。显示 RAM 中的数据在命令执行后被立即改写,执行本命令后,将一直是全屏显示状态,不能改写显示 RAM 里面的数据。本命令的优先级高于"Display Normal/Reverse"命令。复位后为 Normal mode

5	Setting	D0	D1	D2	D3	D4	D5	D6	D7	RW (/WR)	E (/RD)	AO
ıode	Normal mod	0	0	1	0	0	1	0	1	0	1	0
oints ON	Display All Poin	1										

当同时执行"全屏显示模式(命令 10)"和"显示关闭"命令时,模块进入省电模式,详细情况参考"省电模式" 里的说明。

11, LCD Bias Set

本命令设置 LCD 的偏压比,本模块中,偏压固定为 1/9.复位后即为 1/9 偏压。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Select Status
0	1	0	1	0	1	0	0	0	1	0	1/9 bias
										1	1/7 bias

12, Read/Modify/Write

本命令和 "END"命令是成对使用的。当本命令执行后,读取显示 RAM 中的数据时,列地址(column address)不变,仅写入数据时才使列地址自动加一,这种方式将维持到"END"命令执行以后。当"END"命令执行后,列地址将回到 Read/Modify/Write 命令执行时的列地址。当在某个特定区域

内有循环变化的数据时,可以用这个功能用来降低用户 MPU 的负担。例如有一个光标。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

注意:在本模式下除 column address set 命令不能使用外,其他命令均可以使用。 光标显示时序:

13, END

本命令用来结束 read/modify/write 模式,列地址(Column address)返回到进入 read/modify/write 模式时的值。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

14、 RESET

本命令初始化:显示起使行,列地址,页地址,ADC,内部分压电阻比等。read/modify/write 和 test 模式被释放。但是不会影响显示 RAM 中的数据。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

系统上电时,必须在/RESET 脚上加一个复位信号。才能进行其它的操作。

15, Common Output Mode Select

当命令 15: "Common Output Mode Select"选择 normal 时,模块的下端为第 0 行,往上依次为 63、62......2、1;当"Common Output Mode Select"选择 reverse 时,模块的上端为第 0 行,往下是 63、62......2、1;因此当模块正向安装时应当设置命令 15 为 reverse 状态。本命令的作用是在模块安装方向反向时,与命令 8 一起来调换显示起始位置,参看命令 8。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Selec	t Status	
0	1	0	1	1	0	0	0	*	*	*	Normal: COM1	COM63	COM0
							1				Reverse: COM0	COM63	COM1

16, Power Controller Set

本命令用来设置开关内部电路的电源。本模块中应设置成 0X2F;

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Selected Mode
0	1	0	0	0	1	0	1	0			Booster circuit: OFF
								1			Booster circuit: ON
									0		Voltage regulator circuit: OFF
									1		Voltage regulator circuit: ON
										0	Voltage follower circuit: OFF
										1	Voltage follower circuit: ON

17, Vo Voltage Regulator Internal Resistor Ration Set

本命令用来设置内部分压电阻的值,以给 LCD 产生合适的驱动电压。作用是用来调节 LCD 的显示对比度。对本模块来说,在 5V 电压模式下,选择 0X24 是比较合适的。实际相当于粗调对比度,与命令 18 一起调节显示效果。命令 18 相当于细调对比度。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	0	0	1	0	0	0	0	0	Small
								0	0	1	
								0	1	0	
								1	1	0	
								1	1	1	Large

18. The Electronic Volume (Double Byte Command)

本命令用来调节 LCD 的亮度。这是一个双字节命令 ,一个进入 Electronic Volume Mode 的命令 0X81 , 紧接着写入设定值。两个命令必须按先后顺序依次写入。相当于细调对比度。

18-1 The Electronic Volume Mode Set

本命令执行以后,Electronic Volume Register Set 命令允许使用。其他任何命令无效。Electronic Volume Register Set 执行完毕后,The Electronic Volume Mode Set 失效。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

18-2 , Electronic Volume Register Set

用本命令设置 6 位数据到 electronic volume register 中,共 64 级。本模块中,在 5V 电源模式下,理想值是 0X20 左右。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	V0
0	1	0	*	*	0	0	0	0	0	1	Small
0	1	0	*	*	0	0	0	0	1	0	
0	1	0	*	*	0	0	0	0	1	1	
0	1	0	*	*	1	1	1	1	1	0	
0	1	0	*	*	1	1	1	1	1	1	Large

Note: * Inactive bit. When the electronic volume function is not used, set this to (1,0,0,0,0,0)

18-3, The Electronic Volume Register Set Sequence

19、 Static Indicator (双字节命令)

Static Indicator ON/OFF,

_			<u> </u>									
	AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	V0
	0	1	0	1	0	1	0	1	1	0	0	OFF
				1	0	1	0	1	1	0	1	ON

Static Indicator Register Set

• • • • • • • • • • • • • • • • • • • •	·										
AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	V0
0	1	0	*	*	*	*	*	*	0	0	关闭
									0	1	以大约 1S 的间隔闪烁
									1	0	以大约 0.5S 的间隔闪烁
									1	1	完全显示,部闪烁

^{*}设置为0

在模块设计时,此项功能没有使用,因此,本命令也就没有意义,为省电计,直接在初始化时关闭即可。

20, The Booster Ratio (Double Byte Command)

本命令用来选择 internal booster circuit 的倍压比。双字节命令,先用 Booster Ratio Select Mode Set 进入设置模式,然后用 Booster Ratio Register Set 来选择合适的倍压比。两个命令按先后顺序依次写入。

20-1 Booster Ratio Select Mode Set

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	1	1	0	0	0

20-2、Booster Ratio Register Set 用此命令来设置倍压比,本模块固定为 4X。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0	Blinking Page
0	1	0	*	*	*	*	*	*	0	0	2 × ,3 × 4 ×
			*	*	*	*	*	*	0	1	5 ×
			*	*	*	*	*	*	1	1	6 ×

20-3, The Booster Ratio Register Set Sequence

21, Power Save (Compound Command)

当 display all points ON 和 display OFF 同时作用时,进入省电模式。如果进入省电模式时,第 19 项 STATIC INDICATOR 为 ON 时,系统是待机模式(Standby Mode),如果进入省电模式时,第 19 项 STATIC INDICATOR 为 OFF,那么系统将是睡眠模式(Sleep Mode),睡眠模式比待机模式要更省电。由于本模块的 STATIC INDICATOR 没有使用,因此在初始化时将第 19 项设置为 OFF 即可。要退出省电模式并显示数据,需要 执行 display all points OFF 和 display ON 两个命令。

22、 NOP 空操作指令

AC	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

23, TEST

TEST 是进行 IC 测试的命令,用户禁用。通过在/RESET 引脚加复位信号或加一个 NOP 命令可以清除 TEST 模式。

AO	E (/RD)	RW (/WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	1	1	1	*	*

24、命令汇总

Instruction	A0 I	RD W	/R	DB7	DB6	DB:	5 DB4	DB3	DB2 I	DB1 DI	30	Function
1.Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD display ON /OFF,
											1	0: OFF 1: ON
2.Display start line set	0	1	0	0	1		Displ	ay sta	ırt add	ress		Sets the display RAM display
												start line address.
3.Page address set	0	1	0	1	0	1	1	F	Page a	ddress		Sets the display RAM page
												address.
4.Column address set upper	0	1	0	0	0	0	1	M	ost sig	gnifica	nt	Sets the most significant 4 bits
bit								co	lumn	addres	S	of the display RAM column
Column address set lower												address
bit	0	1	0	0	0	0	0	Le	east sig	gnifica	nt	
								co	lumn	addres	S	Sets the least significant 4 bits
												of the display RAM column
												address
5.Status read	0	0	1		Statı	ıs		0	0	0	0	Reads the status data
6.Display data write	1	1	0				Wri	te dat	a			Writes to the display RAM
7.Display data read	1	0	1				Rea	ıd data			Reads from the display RAM	
8.ADC select	0	1	0	1	0	1	0	0	0	0	0	Sets the display RAM address
											1	SEG output correspondence.
												0: normal 1: reverse
9.Display normal/reverse	0	1	0	1	0	1	0	0	1	1	0	Sets the LCD display
											1	normal/reverse
												0: normal 1: reverse
10.Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0	Display all points
											1	0: normal display 1: all points
												ON
11. LCD bias set	0	1	0	1	0	1	0	0	0	1	0	Sets the LCD driver voltage
											1	bias.
												0:1/9 1: 1/7
12.Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment
												At write: +1 At read: 0
13.End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
14.Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
15.Common output mode	0	1	0	1	1	0	0	0	*	*	*	Select COM output scan
select								1				direction
												0: normal direction
												1: reverse direction
16.Power control set	0	1	0	0	0	1	0	1	Opera	iting m	ode	Select internal power supply
												operating mode

17.V5 voltage regulator	0	1	0	0	0	1	0	0	Resis	stor rat	io	Select internal resist or ratio
internal resistor ratio set												(Rb /Ra) mode
18.Electronic volume mode	0	1	0	1	0	0	0	0	0	0	1	Set the V0 output voltage
set												electronic volume register
Electronic volume register set	0	1	0	0	0]	Electr	onic v	rolume value			
19.Static indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0	0: OFF
Static indicator register set											1	1: ON
	0	1	0	0	0	0	0	0	0	0 M	ode	Set the flashing mode
20.Booster ratio set	0	1	0	1	1	1	1	1	0	0	0	Select booster ratio
	0	1	0	0	0	0	0	0	0 st	ep-up	value	00:2 × , 3 × , 4 ×
												01:5 x
												11:6 x
21.Power saver												Display OFF and display all
												points ON compound
												command
22.NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
23.Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not
				1	1	0	1	0	1	0	0	use this command

Note: * Disabled bit.

9.出厂测试报告

V_{DD}=3V Ta=25

Item	Condition	Standard	Note
High temp. storage	80 ,120 hrs	Appearance without defect	
Low temp. storage	- 30 ,120 hrs	Appearance without defect	
High temp. operation	70 ,240 hrs	Appearance without defect	
Low temp. storage	-20 ,240 hrs	Appearance without defect	
High temp. & humi. storage	50 ,90% RH,120 hrs	Appearance without defect	
High temp .& humi. operation	40 ,90% RH,120 hrs	Appearance without defect	
Thermal shock	-20 , 30mi n +25	Annagrange without defect	10
	,5min +60 ,30min	Appearance without defect	cycles

10. 接口说明

J1 或 J2

Pin No	Symbol	Level	Function
1	DB0	H/L	
2	DB1	H/L	并行方式时的数据接口 DB0-DB7
3	DB2	H/L	
4	DB3	H/L	串行模式时 DB6(SCL)是串行时钟端
5	DB4	H/L	
6	DB5	H/L	DB7(SID)是串行数据端
7	DB6 (SCL)	H/L	
8	DB7 (SID)	H/L	
9	VDD	2.8-5.5V	逻辑电源输入端
10	VSS	0V	逻辑电源地
11	*LED+	3.0-5.0V	背光输入端
12	/CS	L	芯片选通端,低有效
13	/RES	L	复位输入端,低有效
14	A0	H/L	命令数据选择端,高电平:数据,低电平:命令
15	/WR (R/W)	L	80 时序时作为写信号,68 时序时是读或写信号选择端,低电平时写数据,高电
			平时读数据,串行模式下无用。
16	/RD (E)	L	80 时序时作为读信号,68 时序时作为使能信号,下降沿锁存。串行模式下无用

逻辑电源 VDD 是宽电压范围,在 2.8 - 5.5V 之间即可。背光电源 LED+有多种,具体参考第一页的列表

如果要改变时序方式,请按照下面的配置修改

R1 (P)	R2(S)	R4(80)	R5 (68)	时序方式
0	NC	0	NC	80 时序方式
0	NC	NC	0	68 时序方式
NC	0	Х	Х	串行时序方式

0 表示焊接 0 电阻; NC表示不焊接; X表示任意。

11. 外形尺寸图纸

12. 使用说明

12.1 液晶显示模块

▼液晶显示模块在操作过程中的注意事项

我们在出厂前已经针对液晶显示模块进行了精确的装配和调试,因此在客户使用操作时请注意以下几点:

- (1) 液晶显示模块避免受到强烈的震动。
- (2) 液晶显示模块避免扭动,拆卸金属钮角.
- (3) 液晶显示模块避免在印有线路的工作平台上操作.
- (4) 除了液晶显示模块的焊盘(输入/输出接线处), 禁止在线路板上的其它地方焊接.
- (5) 避免接触,调整,修改导电橡胶.

▼严防静电

液晶显示模块的控制,驱动电路是 CMOS 电路,极易被静电击穿,因此我们在制造和运输整个过程中都采取了严格的防静电措施.请在使用过程中小心,要严防静电,以保持 CMOS IC 的正常工作状态.

(1) 在装配使用液晶显示模块前,请不要将其从包装袋中取出.

液晶显示模块所使用的包装袋是经过防静电处理的特殊包装袋.因此在焊接模块连线之前请不要将其从包装袋中取出.在储存液晶显示模块时也要带有包装袋储存,或者储存在做过防静电处理的容器中.或者放在能充分接地的容器中储存.

(2) 在操作液晶显示模块时,要始终保持操作人充分接地.

将液晶模块从防静电袋里取出时必须保持操作人的充分接地,使人体和液晶模块保持同一电位.从防静电袋里取出的液晶显示模块需要挪动时,应将其放在能充分接地的容器中进行挪动.

此外,操作时应避免穿化学纤维的工作服,最好穿棉的或者经过抗静电处理的工作服.

(3)使用绝缘的,良好接地的电烙铁进行焊接液晶显示模块.

焊接使用的电烙铁必须良好接地,没有漏电.

(4) 在操作过程中所需的设备要充分接地.

在操作液晶显示模块时需要的设备,尤其是驱动器,必须良好接地,没有漏电,以避免干扰.

(5) 使操作台同一电位等干接地。

如果操作台用铝或钢作为接地材料,由于它们抗阻太低,所以可能损坏液晶显示模块或者产生电震. 因此,操作台应使用橡胶垫.

(6) 应慢慢揭去液晶显示模块保护膜.

液晶模块表面都有一层保护膜,目的在于避免造成 LCD 的偏光片划伤,沾染污渍等.如果快速揭去保护膜都将产生静电,因此要慢慢揭去保护膜.

(7) 注意厂房的湿度

厂房湿度范围: 50~60%RH

▼焊接液晶显示模块时的注意事项:

在焊接液晶显示模块时应注意以下事项:

液晶显示模块上只有输入/输出连线处可以焊接.

焊接所需的烙铁必须绝缘.

(1) 焊接时所需条件:

电铁的温度: 280 ± 10

焊接时间: < 3-4S

焊接材料: 低熔点,可充分熔化的焊锡

避免使用融化后易流动的焊锡,因为在焊接时易渗透到液晶显示模块里面,在清理时易对液晶模块造成污染.此外,为了避免焊接时焊锡对液晶显示模块的污染,应在焊接完成后再揭去液晶显示模块的保护膜.

(2) 重复焊接时注意事项:

由于连接线是穿过模块的焊盘与模块焊接的,所以在拆除时需等到焊锡完全熔化时再移动连接线.若焊锡未能完全熔化就用力移动连接线,就极易造成焊盘损坏或脱落.在拆除连接线时最好使用"吸枪".此外还应注意.重复焊接不得超过 3 次.

▼长时间储存时注意事项:

当液晶显示模块需要长时间储存时,应遵循以下原则:

如果储存方法不当,将影响偏光片的质量,使显示效果不佳;还容易造成焊盘的氧化,不容易焊接.

- (1) 储存时尽可能使用出厂时的原包装.
- (2) 储存散装的液晶显示模块时,应先装入防静电袋里,封口严密.置放在免受太阳光,日光灯照射的地方储存.
- (3) 储存时应保持低湿度,储存温度最佳范围: 0 ~35 储存时应查阅说明书,根据不同模块的最佳储存温度和储存湿度进行储存.
- ▼关于电流保护装置

液晶显示模块上没有装电流保护装置,因此,在使用时应预备好电流保护装置,

12.2 液晶显示模块在使用过程中的注意事项

- (1) 防止受到振荡.冲击.
- (2) 防止用较硬的材料擦拭液晶显示屏表面.
- (3) 防止受到挤压.
- (4) 防止施加直流电.
- (5) 防止太阳光或日光灯的长时间照射.
- (6) 避免在高温,高湿度的环境中储存.
- (7) 长时间储存时,温度应高于 40 ,湿度应低于 60%.
- (8) 液晶显示屏中的液晶材料是有害物质,当不慎溅落到手,身体,衣服等处时,绝对避免入口, 应尽快冲洗干净.

13、硬件连接方式

1.直接访问方式

2.模拟时序及串行访问方式

14.程序设计

```
以下程序包含三种驱动方式的程序。
//12864 , 芯片 7565R
//环境:51 单片机,24M 晶振。P2 口做数据线。
//图片取模方式:字模 21,参数:纵向取模,字节倒序
//采用软件调节对比度方式
#include <reg52.h>
#include <intrins.h>
a0 = P1^3;
sbit
sbit
  wr_rw=P1^5;
  cs1=P1^0;
sbit
sbit
  rd EN=P1^4;
sbit
  rst=P1^6;
sbit c86=P1^1;//80,68 时序选择
sbit ps=P1^2;//串并口选择
//这两个信号只针对引出 C86 和 PS 的模块,用来设置时序,对固定时序的模块无效
sbit
  sclk=P2^6;
  di=P2^7;
sbit
unsigned char *p;
unsigned char *q;
unsigned char *s;
unsigned char flag;
         /*定义空指令*/
#define nop()
      _nop_()
unsigned char code niu[1024]={
```


0x00.0x00.0x00.0x00.0x00.0x0F.0x1F.0xFD.0xE9.0x01.0x00.0x00.0x00.0x00.0x38.0x000x00,0x00,0x00,0x00,0x00,0xF8,0xFE,0xFF,0x1F,0x0F,0x03,0x03,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x0C,0xF8,0xF8,0x30,0x60,0x7F,0x43,0x47,0x5C,0xF8,0xFF,0x0F,0x1E,0x38,0x70,0xC7,0xFC,0x81,0x83,0x8E,0x5C,0x78,0x70,0xE0,0xC0, 0xC0,0x8F,0xFF,0xFE,0xF8,0xE0,0xC0,0xC0,0xE0,0xF8,0xFF,0x00,0x00,0xC0,0xE0,0x60, 0x70,0x70,0x30,0xF0,0xF8,0xFC,0x06,0x03,0x01,0x01,0x01,0x41,0x73,0x32,0x86,0xFC, 0x7C,0x8E,0x02,0x73,0x41,0x41,0x01,0x01,0x02,0x06,0xFC,0x78,0x70,0x70,0x60,0x60,0xF3,0xFF,0x7F,0x3F,0x7F,0x7C,0xF8,0xF0,0xE1,0xC7,0x9F,0xBF,0xFF,0x00,0x00,0x00, 0x00,0x00,0x00,0x0F,0x7C,0xFC,0x78,0x70,0xC1,0xCF,0xFE,0xE0,0x8E,0x10,0x1D,0x33, 0x0F,0x07,0x87,0xEF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0 0x00,0x00,0x04,0x3F,0x67,0xC7,0x8F,0xFE,0x1E,0x06,0x26,0xC6,0x82,0x03,0x01,0x00,0x00,0x01,0x83,0xC2,0x66,0x06,0x66,0xFE,0x9E,0x8F,0xC7,0x6F,0x3E,0x08,0x00,0x00,0x00,0x01,0x01,0x00,0x00,0x07,0x07,0x8F,0xFF,0xFF,0x07,0x0F,0x6F,0x67,0xEF,0xFF, 0x67,0x67,0x7F,0x7E,0x7F,0x5F,0x00,0x00,0x01,0x03,0xFF,0xFF,0xFF,0x00,0x00,0x00,0xC0,0x80,0x00,0x01,0x12,0x70,0x70,0x70,0x10,0x00,0x00,0x00,0x80,0xC0,0xE0,0xF0,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x0F,0x3C,0xE0,0x80,0x00,0x07,0x1F,0x3F,0x3E, $0x3F_{0}x3F_{0}x0F_{0}x03_{0}x80_{0}xE0_{0}x38_{0}x0F_{0}x01_{0}x00_{0}x00_{0}x00_{0}x00_{0}x00_{0}x00_{0}x00_{0}x00_{0}$

};

北京集粹电子设备制造有限公司

```
//写命令.80 时序
/******************/
void w_com80(unsigned char x)
{
    a0=0;//命令
    cs1=0;
    rd EN=1;//读无效
    wr_rw=0;//写有效
    nop();
    P2=x;//送出数据
    nop();
    wr_rw=1;
}
//写数据,80时序
void wdata80(unsigned char dat)
{
    a0=1;//数据
    cs1=0;
    rd EN=1;
    wr rw=0;//写
    nop();
    P2=dat;
    nop();
    wr rw=1;
```



```
//写命令,68时序
/******************/
void w com68(unsigned char x)
     cs1=0:
     a0=0;//命令
     wr rw=0;//写
     rd EN=1;//ENABLE
     nop();
     P2=x;
     nop();
     rd_EN=0;
/******************/
//写数据,68时序
void wdata68(unsigned char dat)
{
        cs1=0;
        a0=1;//数据
        wr_rw=0;//写
        rd EN=1;
        nop();
        P2=dat;
        nop();
        rd_EN=0;
}
//串行模式发送数据
void data_send(unsigned char dat)
{
     unsigned char s,temp;
     int i;
     sclk=0;
     s=dat;
     for(i=8;i>0;i--)
        {sclk=0;
```



```
nop();
        nop();
        temp=s & 0x80;
        if(temp)
        {di=1;}
        else \{di=0;\}
        sclk=1;
        s=s<<1;
        }
}
/******************/
//写命令,串行模式
/**********************************
void w_coms(unsigned char x)
     a0=0;
     cs1=0;
     data_send(x);
/**********************
//写数据,串行模式
/******************/
void wdatas(unsigned char dat)
        a0=1;
        cs1=0;
        data_send(dat);
//写命令,通过 P3.0 和 P3.1 选择用何种驱动程序
/******************/
void w_com(unsigned char x)
{
     unsigned char temp;
     temp=P3&0X03;
     switch(temp)
        case 3:
        c86=0;//80 时序
```



```
ps=1;//并口
          w_com80(x);
          break;
          case 2:
          c86=1;//68 时序
          ps=1;//并口
          w_com68(x);
          break;
          default:
          c86=0;//串口模式下无效
          ps=0;//串口方式
          w_coms(x);
          break;
      }
//写数据
/******************/
void wdata(unsigned char dat)
      unsigned char temp;
      temp=P3&0X03;
      switch(temp)
          case 3:
        c86=0;
          ps=1;
          wdata80(dat);
          break;
          case 2:
        c86=1;
          ps=1;
          wdata68(dat);
          break;
          default:
        c86=0;
          ps=0;
          wdatas(dat);
          break;
```



```
void display map(unsigned char *p)//P 是图片数据的首地址
      unsigned char seg;
      unsigned char page;
              for(page=0xb0;page<0xb9;page++) //写页地址共 8 页 0xb0----0xb8
                     w_com(page);
                     w com(0x10); //列地址,高低字节两次写入,从第0列开始
                     w_{com}(0x00);
                     for(seg=0;seg<128;seg++)//写 128 列
                     { wdata(*p++); }
              }
/**********************************
/*主程序
/******************/
void main(void)
       rst=0;
      nop();
          nop();
       rst=1;
       w com(0xaf);
                         //ON DISPLAY
       w com(0x40);
                          //STAR DISPLAY
       w_{com}(0xa0);
                          //ADC NORMAL
       w_{com}(0xa6);
                          //CLEAR
       w com(0xa4);
       w_{com}(0xa2);
                         //1/9BIAS
       w_{com}(0xc8);
                         //COMMON OUTPUT DIRECTION
       w_{com}(0x2f);
                         //POWER CONTROL
       w com(0x24);
                        //RESISTER RATIO
                         //VOLUM MODE SET
       w com(0x81);
       w com(0x24);
                         //RESISTER RATIO
while(1)
                //START
 {
                                                  //显示一副 SCH 图案
       display map(&niu);
```