StockMixer: A Simple Yet Strong MLP-Based Architecture for Stock Price Forecasting

Jinyong Fan, Yanyan Shen

Shanghai Jiao Tong University

N Outline

- Background
- Motivation
- Method
- Experiments
- Conclusion

Background

- Stock price forecasting is a fundamental task in the field of quantitative investment.
- As the stock market is highly *volatile* and *chaotic*, achieving high forecasting accuracy remains an open question.
- There exist three correlations in stock price data:

Motivation

Existing deep learning methods

- (1) take parts of the three correlations into account.
- (2) adopt hybrid neural architectures, which increases the model complexity and may further hurt the model's generalization ability.

Could we develop a simple neural architecture that is easy to optimize and enjoys strong predictive performance by modeling the above-mentioned correlations effectively?

Motivation: MLP-based Mixing

Feature Mixing on dimension D₂

For inputs $x \in \mathbb{R}^{D_1 \times D_2}$, we calculate the embedding \hat{x} mixed on dimension D_2 :

$$\hat{x}^T = x^T + W_2 \sigma(W_1 \text{LayerNorm}(x^T))$$

Insight: The MLP-based mixing

- (1) could exchange information in any dimension by matrix transposition.
- (2) possess architectural simplicity and linear computational efficiency.

Method: Overview of the proposed StockMixer

- Inputs: $X = \{X_1, ..., X_N\}, X_i \in R^{T \times F}$
- Indicator & Time Mixing:

 $h_i = \text{Indicator\&TimeMixing}(X_i)$

• StockMixing: $H = \{h_1, \dots, h_N\}$

 $\widehat{H} = \text{concat}(H, \text{StockMixing}(H))$

Loss function:

$$L = L_{MSE} + \alpha \sum_{i=1}^{N} \sum_{j=1}^{N} \max(0, -(\hat{r}_i^t - \hat{r}_j^t)(r_i^t - r_j^t))$$

StockMixer: Indicator Mixing

Indicator Mixing is consistent with standard MLP-based mixing.

We calculate the new embedding of a single stock $x \in R^{T \times F}$ by:

$$\hat{x}^T = x^T + W_2 \sigma(W_1 \text{LayerNorm}(x^T))$$

StockMixer: Time Mixing

Standard Mixing (left) vs Time Mixing (right)

Replace the weights with upper triangular matrix U_1, U_2 realizes the process:

$$h = \hat{x} + \mathbf{U}_2 \sigma(\mathbf{U}_1 \text{LayerNorm}(\hat{x})),$$

Segment time sequence into subsequence-level patches and mix features at k scales.

$$\begin{split} x^{(k)} &= \operatorname{Avgpool}(x)_{\operatorname{kernel}=k}, k \in \{\frac{T}{2}, \frac{T}{4}, \dots, 1\}, \\ h^{(k)} &= \operatorname{TimeMixing}(\operatorname{IndicatorMixing}(x^{(k)})), \\ h &= \operatorname{FC}(\operatorname{concat}(h^{(k)})), k \in \{\frac{T}{2}, \frac{T}{4}, \dots, 1\}. \end{split}$$

StockMixer: Stock Mixing

- Direct information exchange among stocks \rightarrow Stock-to-Market and Market-to-Stock
- Replace the hidden dimension of standard mixing related to stocks with a hyperparameter *m* :

$$\hat{H} = H + \mathbf{M}_2 \sigma(\mathbf{M}_1 \text{LayerNorm}(H))$$

• Datasets: NASDAQ, NYSE, S&P500

Comparison methods:

1.RNN-based: LSTM, ALSTM

2.GNN-based: RGCN, GAT, RSR-I

3.HGNN-based: STHAN-SR, ESTIMATE

4.MLP-based: Linear

	NASDAQ	NYSE	S&P500
# Stocks	1026	1737	474
Start Time	13-01-02	13-01-02	16-01-04
End Time	17-12-08	17-12-08	22-05-25
Train Days	756	756	1006
Val Days	252	252	253
Test Days	273	273	352

Table 1: Statistics of datasets.

Evaluation metrics:

1. Rank-based: Information Coefficient (IC), Rank Information Coefficient (RIC)

2. Accuracy-based: Precision@N

3. Return-based: Sharpe Ratio(SR)

Experiments: Comparison Performance

Our method achieves the best results across metrics IC, RIC and SR and fetches an average performance gain of 7.6%, 10.8% and 10.9%.

Model	NASDAQ			NYSE			S&P500					
	IC	RIC	prec@N	SR	IC	RIC	prec@N	SR	IC	RIC	prec@N	SR
LSTM	0.032	0.354	0.514	0.892	0.024	0.256	0.512	0.857	0.031	0.186	0.531	1.332
ALSTM	0.035	0.371	0.522	0.941	0.023	0.276	0.519	0.764	0.029	0.181	0.532	1.298
RGCN	0.034	0.382	0.516	1.054	0.025	0.275	0.517	0.932	0.028	0.175	0.528	1.359
GAT	0.035	0.377	0.530	1.233	0.025	0.297	0.521	1.070	0.034	0.191	0.541	1.484
RSR-I	0.038	0.398	0.531	1.238	0.026	0.284	0.519	0.098	0.033	0.200	0.542	1.437
STHAN-SR	0.039	0.451	0.543	1.416	0.029	0.344	0.542	1.228	0.037	0.227	0.549	1.533
ESTIMATE	0.037	0.444	0.539	1.307	0.030	0.327	0.536	1.115	0.035	0.241	0.553	1.547
Linear	0.019	0.188	0.505	0.517	0.015	0.163	0.497	0.625	0.016	0.156	0.520	0.674
StockMixer	0.043	0.501	0.545	1.465	0.029	0.351	0.539	1.454	0.041	0.262	0.551	1.586

Experiments: Ablation Study

- Ablation study for indicator, time and stock mixings.
- Three mixings jointly contribute to the performance and the time mixing matters most.

Ablation	NAS	DAQ	NYSE		
Model Component	IC	RIC	IC	RIC	
LSTM	0.032	0.354	0.024	0.256	
w.o.Indicator Mixing	0.040	0.465	0.027	0.291	
w.o.Time Mixing	0.018	0.164	0.016	0.161	
w.o.Stock Mixing	0.037	0.376	0.026	0.285	
LSTM + Stock Mixing	0.041	0.476	0.030	0.307	
STHAN-SR	0.039	0.451	0.029	0.344	
StockMixer	0.043	0.501	0.029	0.351	

Experiments: Hyperparameter Sensitivity

We focus on the most important hyperparameters and select IC as metric.

Conclusion

- ➤ We propose **StockMixer**, a simple yet strong architecture with enhanced MLP blocks for stock price forecasting.
- ➤ We devise the time mixing to exchange multi-scale time patch information and realize the stock mixing by exploiting stock-to-market and market-to-stock influences explicitly.
- Code: https://github.com/SJTU-Quant/StockMixer
- > Email: weizhili@sjtu.edu.cn

Thank you!

