Занятие № 9. Двумерные (дискретные) случайные векторы и их числовые характеристики.

 \bigcirc Составитель: ∂ .ф.-м.н., проф. Рябов П.Е.

Желательно (а для некоторых студентов обязательно), там, где есть ответ, придумать способ док-ва статистической устойчивости полученного ответа.

9.1. Найдите распределение случайной величины Z = X + Y и $\mathbb{E}(Z)$, если известно распределение случайного дискретного вектора (X,Y)

	X = 3	X=4	X = 5	
Y = -3	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{6}$	
Y = -2	$\frac{5}{24}$	$\frac{1}{12}$	$\frac{1}{3}$	

9.2. Найдите распределение случайной величины $Z = \min(6, X - Y)$ и $\mathbb{E}(Z)$, если известно распределение дискретного случайного вектора (X,Y)

	X = 3	X=4	X = 5	
Y = -2	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{8}$	
Y = -1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{12}$	

9.3. Для случайного дискретного вектора (X, Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	$\frac{1}{28}$	$\frac{3}{14}$	$\frac{1}{28}$,
Y = 0	$\frac{3}{14}$	$\frac{13}{28}$	$\frac{1}{28}$	

выясните, зависимы или нет события $A = \{X \cdot Y \neq 0\}$ и $B = \{X + Y = 0\}$.

- **9.4.** Подбрасываются две симметричные игральное кости. Случайная величина X принимает два значения: 0, если сумма выпавших чисел нечетная и 1, если сумма четная. Случайная величина Y также принимает два значения: 0, если произведение выпавших чисел нечетное и 1, если произведение четное. Найдите ковариационную матрицу случайного вектора (X,Y).
- **9.5.** На отрезке [0;5] случайным независимым образом выбирается n точек. Пусть X число точек, попавших в промежуток [0;2], а Y число точек, попавших в промежуток [1;4]. Найдите коэффициент корреляции $\rho(X;Y)$.
- **9.6.** Дискретная случайная величина X принимает только целые значения 1; 2; 3; 4; 5 и 6, при этом вероятности $\{X=k\}$ пропорциональны принимаемым значениям, т.е. $\mathbb{P}(X=k) = A \cdot k, k = 1, \ldots, 6$. Пусть Y_n остаток от деления X на n (n=2 или n=3). Найдите: 1) распределение ($Y_2; Y_3$); 2) Ковариационную и коррелляционную матрицы.