

Análisis de Componentes Principales Con Python

Jose Luis Paniagua Jaramillo jlpaniagua@uao.edu.co

- Reducción de Dimensionalidad
 - PCA

- 2 Implementacion en Python
 - Desde cero
 - Usando la librería scikit-learn

Referencias

- Reducción de Dimensionalidad
 - PCA

- Implementacion en Pythor
 - Desde cero
 - Usando la librería scikit-learn
- Referencias

Reducción de Dimensionalidad

Figura: [1]

El problema de la dimensionalidad

- alta probabilidad de presentarse sobre entrenamiento (overfitting).
- dificultades para la visualización.
- afecta la velocidad en el proceso de entrenamiento.

- Reducción de Dimensionalidad
 - PCA

- 2 Implementacion en Python
 - Desde cero
 - Usando la librería scikit-learn

Referencias

Principal Component Analysis - PCA I

original 3D dataset

Figura: [1]

2D dataset after projection

Figura: [1]

Principal Component Analysis - PCA II

- se debe seleccionar el eje (hiperplano) que preserve la mayor varianza.
- mayor varianza, implica menos perdida de información.
- el obejtivo es proyectar sobre los ejes que minimicen la distancia entre los datos originales y su proyección.

- Reducción de Dimensionalidad
 - PCA
- Implementacion en Python
 - Desde cero
 - Usando la librería scikit-learn
- Referencias

- Reducción de Dimensionalidad
 - PCA

- Implementacion en Python
 - Desde cero
 - Usando la librería scikit-learn

Referencias

Calculo de los Componentes Principales I

Singular Value Decomposition (SVD)

SVD es una técnica estándar de factorización de matrices.

$$X = U\Sigma V^T$$

- ullet U y V son matrices unitarias.
- Σ es una matriz diagonal con $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$

Calculo de los Componentes Principales II

¿Qué imagen enviaría?

Figura: source[2]

Calculo de los Componentes Principales III

The Singular Value Decomposition (SVD) separa cualquier matriz en piezas sencillas (escalado y rotación)

Figura: source: wikipedia

Calculo de los Componentes Principales IV

Transformación Lineal = Matriz

$$M=egin{bmatrix} 2 & 0 \ 3 & 4 \end{bmatrix}$$

$$(1,0)$$
 $(2,3)$ $(1,0)$ $(2,3)$

Calculo de los Componentes Principales V

SVD

$$M = U\Sigma V'$$

$$\begin{bmatrix} 2 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$$

- U and V' are unitary.
- Σ is diagonal with $\sigma_1 > \sigma_2 > \sigma_3 \cdots > 0$

Calculo de los Componentes Principales VI

Calculo de los Componentes Principales VII

1	1	1	1	1

Calculo de los Componentes Principales VIII

Figura: source:[3]

Calculo de los Componentes Principales IX

V contiene los vectores unitarios que definen los componentes principales.

$$V = \begin{bmatrix} | & | & & | \\ c_1 & c_2 & \dots & c_n \\ | & | & & | \end{bmatrix}$$

Proyección

Reduccion de Dimensionalidad

Después de identificar los componentes principales, es posible realizar la reducción de dimensional proyectando la matriz X en el hiperplano definido por las primeros d componentes principales.

$$X_{d-proj} = XW_d$$

Ejemplo: iris dataset

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

- Reducción de Dimensionalidad
 - PCA
- Implementacion en Python
 - Desde cero
 - Usando la librería scikit-learn
- Referencias

Ejemplo: iris dataset

- Reducción de Dimensionalidad
 - PCA

- 2 Implementacion en Pythor
 - Desde cero
 - Usando la librería scikit-learn
- Referencias

Referencias

Aurélien Géron.

Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O'Reilly Media, 2019.

Steven L Brunton and J Nathan Kutz.

Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2019.

Luis Serrano.

Grokking Machine Learning.

Simon and Schuster, 2021.

https://towardsdatascience.com/

principal-component-analysis-pca-from-scratch-in-python-7f3e2a540c51

https://scikit-learn.org/stable/index.html