Quantum errors and error correction tecniques

Alessio Delli Colli

September 2024

Permette di affrontare problemi computazionali "difficili"

Permette di affrontare problemi computazionali "difficili"

• problemi di ricerca con l'algoritmo di Grover

Permette di affrontare problemi computazionali "difficili"

• problemi di ricerca con l'algoritmo di Grover

• fattorizzazione e calcolo del logaritmo discreto con l'algoritmo di Shor.

Permette di affrontare problemi computazionali "difficili"

• problemi di ricerca con l'algoritmo di Grover

• fattorizzazione e calcolo del logaritmo discreto con l'algoritmo di Shor.

Ma presenta delle criticità...

Permette di affrontare problemi computazionali "difficili"

problemi di ricerca con l'algoritmo di Grover

• fattorizzazione e calcolo del logaritmo discreto con l'algoritmo di Shor.

Ma presenta delle criticità... gli errori.

Qubits

• semplici sistemi quantistici

Qubits

- semplici sistemi quantistici
- modellati da uno spazio di Hilbert 2-dimensionale

Qubits

- semplici sistemi quantistici
- modellati da uno spazio di Hilbert 2-dimensionale
- il loro stato può essere rappresentato in vari modi:

Vettore di stato

$$\alpha |0\rangle + \beta |1\rangle$$

le due rappresentazioni sono legate dalla seguente relazione:

$$|\psi\rangle = \cos\frac{\theta}{2}\,|0\rangle + e^{i\phi}\sin\frac{\theta}{2}\,|1\rangle$$

Sfera di Bloch

• i qubit sono fatti interagire grazie a delle porte.

- i qubit sono fatti interagire grazie a delle porte.
- queste modificano lo stato applicando ad esso un operatore unitario.

- i qubit sono fatti interagire grazie a delle porte.
- queste modificano lo stato applicando ad esso un operatore unitario.
- possono essere viste come rotazioni della sfera di Bloch.

- i qubit sono fatti interagire grazie a delle porte.
- queste modificano lo stato applicando ad esso un operatore unitario.
- possono essere viste come rotazioni della sfera di Bloch.
- vengono composte a formare reti

- i qubit sono fatti interagire grazie a delle porte.
- queste modificano lo stato applicando ad esso un operatore unitario.
- possono essere viste come rotazioni della sfera di Bloch.
- vengono composte a formare reti
- le porte più comuni sono:

Full adder quantistico $|c_{out}\rangle$

Radice quadrata del not

Interferometro di Ramsey

Interferometro di Ramsey

Generatore degli stati di Bell

Correzione degli errori su sistemi classici e quantistici

Calcolatore digitale

finiti stati, finite sindromi

Correzione degli errori su sistemi classici e quantistici

Calcolatore digitale

finiti stati, finite sindromi

Calcolatore analogico

infiniti stati, infinite sindromi

Correzione degli errori su sistemi classici e quantistici

Calcolatore digitale

finiti stati, finite sindromi

Calcolatore analogico

infiniti stati, infinite sindromi

Calcolatore quantistico

infiniti stati, finite sindromi

Codice di correzione di bit-flip a 3 qubit

Codice di correzione di bit-flip a 3 qubit

Codice di correzione di phase-flip a 3 qubit

Codice di Shor

Codice di Shor

$|0\rangle$ $|\overline{\psi}\rangle$ $|0\rangle$

Codice di Steane

Teorema di soglia per la computazione quantistica

Porta Hadamard sul codice di Steane

Teorema di soglia per la computazione quantistica

Porta Hadamard sul codice di Steane

Teorema di soglia

 $a|0_L\rangle + b|1_L\rangle \begin{cases} -H \\ -H \\ -H \end{cases} \begin{cases} \frac{a+b}{\sqrt{2}}|0_L\rangle + \frac{a-b}{\sqrt{2}}|1_L\rangle \\ -H \\ -H \end{cases} \begin{cases} a\frac{a+b}{\sqrt{2}}|0_L\rangle + \frac{a-b}{\sqrt{2}}|1_L\rangle \\ -H \\ -H \end{cases} \begin{cases} a\frac{a+b}{\sqrt{2}}|0_L\rangle + \frac{a-b}{\sqrt{2}}|1_L\rangle \\ -H \\ -H \\ -H \end{cases} \begin{cases} a\frac{a+b}{\sqrt{2}}|0_L\rangle + \frac{a-b}{\sqrt{2}}|1_L\rangle \\ -H \\ -H \\ -H \end{cases} \begin{cases} a\frac{a+b}{\sqrt{2}}|0_L\rangle + \frac{a-b}{\sqrt{2}}|1_L\rangle \\ -H \\ -H \\ -H \\ -H \end{cases} \end{cases}$

Grazie per l'attenzione.