UMA204: Introduction to Basic Analysis

Naman Mishra

January 2024

Contents

	Ordered Fields with LUB		6
		Cauchy's Construction	
Definition 0.1 (Exponentiation). The recursion principle guarantees the existence of pow : $\mathbb{Z} \times \mathbb{N} \to \mathbb{N}$ such that for all $n, m \in \mathbb{N}$,			03 Jan '24

 $pow(m, n + 1) = m \cdot pow(m, n)$

pow(m,0) = 1

We extend this to pow :
$$\mathbb{Q}^* \times \mathbb{Z} \to \mathbb{Q}$$
 as follows.

$$\operatorname{pow}\left(\frac{a}{b}, m\right) \coloneqq \begin{cases} a^m/b^m & \text{if } m \in \mathbb{N} \\ b^m/a^m & \text{if } -m \in \mathbb{N} \end{cases}$$

We write z^n to denote pow(z, n).

Remarks. Note that we have defined 0^0 to be 1, but we don't really care.

Proposition 0.2. Exponentiation is well-defined.

Proof. Let $a/b = \tilde{a}/\tilde{b} \in \mathbb{Q}$. That is, $a\tilde{b} = b\tilde{a} \in \mathbb{Z}$. For $m \in \mathbb{N}$, thus $a^m \tilde{b}^m = b^m \tilde{a}^m$ (easily proved by induction).

Similarly if
$$-m \in \mathbb{N}$$
.

Theorem 0.3. There exists no
$$x \in \mathbb{Q}$$
 such that $x^2 = 2$.

We first make note of the following lemma.

Lemma 0.4. Let $x \in \mathbb{Q}$. Then there exists $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ such that x = p/q.

In particular, if x > 0, then x = p/q for some $p \in \mathbb{N}$, $q \in \mathbb{N}^*$.

Proof. Let x = a/b. If $b \in \mathbb{N}$, we are done. Otherwise, x = -a/-b and $-b \in \mathbb{N}$.

We will make use of the well-ordered property of (\mathbb{N}, \leq) proved below in theorem 0.5.

Proof of theorem 0.3. Suppose there exists such an x. By the field properties, $(-x)^2 = x^2$. Thus we may assume $x \ge 0$. Let x = p/q for some $q \in \mathbb{N}^*$. Since $x \ge 0$, we have $p \ge 0 \iff p \in \mathbb{N}$.

Let $A = \{q \in \mathbb{N}^* \mid x = p/q \text{ for some } p \in \mathbb{N}\}$. A is non-empty.

By the well-ordering principle, A has a least element q_0 . Let $p_0 \in \mathbb{N}$ such that $x = p_0/q_0$.

We know that 1 < x < 2 [why? because $(\cdot)^2$ is an increasing function on positive reals (why? difference of squares)] and so $0 < p_0 - q_0 < q_0$. Now

$$\frac{2q_0 - p_0}{p_0 - q_0} = \frac{2 - x}{x - 1}$$

$$= \frac{(2 - x)(x + 1)}{x^2 - 1}$$

$$= 2x + 2 - x^2 - x$$

$$= x,$$

in contradiction to the minimality of q_0 .

Theorem 0.5 (Well-ordering principle). Every non-empty subset of $\mathbb N$ has a least element.

Proof. Let $S \subseteq \mathbb{N}$ be non-empty. We define P(n) to be "if $n \in S$, then S has a least element". Clearly P(0) holds.

Suppose P(k) holds for all $k \leq n \in \mathbb{N}$.

If $n+1 \notin S$, P(n+1) holds vacuously.

If $\exists m \in S(m < n + 1)$, then P(n + 1) holds by virtue of P(m).

Otherwise $n+1 \in S$ and $\forall m \in S(n+1 \leq m)$, so that n+1 is the least element of S.

In any case, P(n+1) holds.

Theorem 0.6. Let

$$A = \{x \in \mathbb{Q} \mid x^2 < 2\}$$

$$B = \{x \in \mathbb{Q} \mid x^2 > 2, x > 0\}$$

Then A has no largest element and B has no smallest element.

Proof. Let $a \in A$. a > -2 since otherwise $a^2 \ge 4$. Let $c = a + \frac{2-a^2}{2+a}$. Clearly c > a. Now

$$c = \frac{2a+2}{2+a}$$

$$c^2 = \frac{4a^2+8a+4}{4+4a+a^2}$$

$$c^2 - 2 = \frac{2a^2-4}{(2+a)^2} < 0$$

Thus $c \in A$.

For B, let $c = b + \frac{2-b^2}{2+b} = \frac{2b+2}{2+b}$. Clearly 0 < c < b and $c^2 - 2 = \frac{2b^2 - 4}{(2+b)^2} > 0$. Thus $c \in B$.

Corollary 0.7. (\mathbb{Q}, \leq) does not have the least upper bound property.

Proof. Let b be an upper bound of A. Clearly b > 0. b cannot be in A since A has no largest element. b cannot have square 2 by theorem 0.3. Thus $b \in B$. But since B has no smallest element, there is a $b' \in B$ which is less than b.

For any $a \in A$, if a < 0 then a < b'. Otherwise, $0 < (b')^2 - a^2 = (b' - a)(b' + a)$ and so a < b'. Thus b' is an upper bound of A which is less than b.

Since b was arbitrary, A cannot have a least upper bound. \Box

0.1 Ordered Fields with LUB

(Recall from UMA101 Lecture 6) Given an ordered set (X, \leq) , a subset $S \subseteq X$ is said to be bounded above (resp. below) if there exists $x \in X$ such that for all $s \in S$, $s \leq x$ (resp. $x \leq s$), and any such x is called an upper (resp. lower) bound of S.

A (The) supremum or least upper bound of S is an element $x \in X$ such that x is an upper bound of S and for all upper bounds y of S, $x \leq y$. Similarly, infimum or greatest lower bound.

 (X, \leq) is said to have the least upper bound property if every non-empty bounded above subset of X admits a supremum.

Proposition 0.8. (\mathbb{Q}, \leq) does not have the least upper bound property.

Proof. From theorem 0.6, we know that A has no largest element and B has no smallest element.

Let s be a supremum of A. Since there is no largest element in $A, s \notin A$. From theorem 0.3, we know that $s^2 \neq 2$. Thus by trichotomy, $s^2 > 2$ and so $s \in B$. But then there is an $s' \in B$ which is less than s but also an upper bound of A. This is a contradiction.

Theorem 0.9. Every ordered field F "contains" \mathbb{Q} , *i.e.*, there exists an injective map $f: \mathbb{Q} \to F$ that respects +, \cdot and \leq .

We will notate this statement as $\mathbb{Q} \subseteq F$.

Proof. Let $f: \mathbb{Z} \to F$ be defined as

$$f(n) = \begin{cases} 0_F & \text{if } n = 0\\ 1_F + \dots + 1_F & \text{if } n > 0\\ \underbrace{(-1_F) + \dots + (-1_F)}_{n \text{ times}} & \text{if } n = -m, m > 0 \end{cases}$$

Note that f(-n) = -f(n) for all $n \in \mathbb{N}$. Let us show that f(n+m) = f(n) + f(m) for all $n, m \in \mathbb{Z}$.

Case 1: n = 0 or m = 0. Immediate.

Case 2: n > 0 and m > 0. Then

$$f(n+m) = \underbrace{1_F + \dots + 1_F}_{n+m \text{ times}}$$

$$= \underbrace{1_F + \dots + 1_F}_{n \text{ times}} + \underbrace{1_F + \dots + 1_F}_{m \text{ times}}$$

$$= f(n) + f(m)$$

Case 3: n < 0 and m < 0. Then f(n+m) = -f((-n) + (-m)) = -(f(-n) + f(-m)) = f(n) + f(m).

Case 4: nm < 0. WLOG, let m < 0 < n. Suppose 0 < n + m. Then f(n+m) + f(-m) = f(n+m-m) = f(n) from case 2. Now suppose

n+m < 0. Then f(n) + f(-n-m) = f(n-n-m) = -f(m) from case 3. In either case, f(n+m) = f(n) + f(m).

Now consider f(nm). If nm = 0, then $f(nm) = 0_F = f(n)f(m)$. If 0 < n, m, then

$$f(nm) = \overbrace{1_F + \dots + 1_F}^{nm \text{ times}}$$

$$= \underbrace{(1_F + \dots + 1_F) + \dots + (1_F + \dots + 1_F)}_{m \text{ times}}$$

$$= \underbrace{(1_F + \dots + 1_F) \cdot \dots + (1_F + \dots + 1_F)}_{n \text{ times}}$$

$$= f(n)f(m)$$

If either of n, m is negative, then we take the negative sign out and use the above case.

Thus f respects + and \cdot .

Suppose that m < n. Then $f(n) - f(m) = f(n) + f(-m) = f(n-m) = (n-m)1_F$ (where $z1_F$ is notation for 1_F added z times). n-m is positive, but 1_F added to itself a positive number of times must be positive. This is because $0_F < 1_F$ (UMA101) and so $k1_F < (k+1)1_F$ for all $k \in \mathbb{N}^+$. Induction gives $0_F < k1_F$ for all $k \in \mathbb{N}^+$. Thus f(m) < f(n) and so f respects < (and hence \le).

Finally, injectivity of f follows from order preservation.

We extend f to \mathbb{Q} by defining $f(a/b) = f(a)f(b)^{-1}$. This continues to be an isomorphism.

Lecture 04: Wed
10 Jan
'24

Definition 0.10 (Archimedean property). An ordered field F is said to have the *Archimedean property* if for every x, y > 0, there exists an $n \in \mathbb{N} \subseteq F$ such that nx > y.

Theorem 0.11. \mathbb{Q} has the Archimedean property.

Proof. Let x, y > 0 be rationals. If x > y, n = 1 works. Suppose $x \le y$. It suffices to show that $\exists n \in \mathbb{N}(nr > 1)$, where r = x/y. Since r is positive, we have $p, q \in \mathbb{N}^*$ such that r = p/q. Let n = 2q. This gives nr > 1.

Remarks. Not all ordered fields have the Archimedean property.

Theorem 0.12. Let F be an ordered field with the LUB property. Then F has the Archimedean property.

Proof. Let x, y > 0. Suppose $\forall n \in \mathbb{N} (nx \leq y)$. Let $A = \{nx \mid n \in \mathbb{N}\}$. Clearly A is non-empty and bounded above. Then $\sup A$ exists and so there exists an $m \in \mathbb{N}$ such that $\sup A - x < mx$. Thus $\sup A < (m+1)x \in A$, a contradiction.

Theorem 0.13. Let F be an ordered field with the LUB property. Then \mathbb{Q} is dense in F, *i.e.*, given $x < y \in F$, there exists a rational $r \in \mathbb{Q}$ such that x < r < y.

Proof. Follows from theorem 0.11 and problem 4 on assignment 1.

0.2 The Reals

Theorem 0.14 (Dedekind/Cauchy). There exists a unique (up to isomorphism) ordered field with the LUB property.

Proof of uniqueness. Let F and G be OFWLUB. Let h be identity on $\mathbb{Q} \subseteq F, G$. Let $z \in F$ and

$$A_z = \{ w \in \mathbb{Q} \mid w \leq_F z \}.$$

Claim: A_z is non-empty and bounded above when viewed as a subset of G. First, A_z is non-empty by density applied to $z - 1_F$, z or Archimedean applied to -z. Secondly, by Archimedean (or density) there exists a rational upper bound q of A_z in F. Thus A_z has a supremum in G.

We define $h(z) = \sup_G A_z$.

We check that h preserves order. Let $z < w \in F$. By density of \mathbb{Q} in F, there exist rationals r, s, t such that z < r < s < t < w. Then $A_z \subsetneq A_w$ as subsets of F and hence of G. Thus

$$h(z) = \sup_{G} A_z \le_G r < s < t \le_G \sup_{G} A_w = h(w).$$

0.2.1 Dedekind's Construction

Definition 0.15 (Dedekind cut). A *Dedekind cut* is a non-empty proper subset $A \subseteq \mathbb{Q}$ such that

- (i) if $a \in A$, then $b \in A$ for all $b \in \mathbb{Q}$ with b < a.
- (ii) if $a \in A$, then there exists a $c \in A$ such that a < c.

Definition 0.16 (\mathbb{R}). We define

$$\mathbb{R} := \{ A \in 2^{\mathbb{Q}} \mid A \text{ is a Dedekind cut} \}.$$

Further,

- (i) $A \leq B \iff A \subseteq B$;
- (ii) $A+B=\{a+b\mid a\in A,b\in B\}.$ The additive identity $0=\{x\in\mathbb{Q}\mid x<0\};$
- (iii) for A, B > 0,

$$A \cdot B = \{ q \in \mathbb{Q} \mid q < rs \text{ for some } r \in A, s \in B \}.$$

If A < 0 but B > 0, then $A \cdot B = -((-A) \cdot B)$. If B < 0 but A > 0, then $A \cdot B = -(A \cdot (-B))$. If A < 0 and B < 0, then $A \cdot B = (-A) \cdot (-B)$.

Theorem 0.17. \mathbb{R} has the least upper bound property.

Lecture 05: Thu 11 Jan '24

Proof. Let α be a non-empty subset of \mathbb{R} that is bounded above. We claim that $S = \bigcup_{A \in \alpha} A$ is the supremum of α .

s is a cut: Since S is a union of a non-empty set of non-empty sets, it is non-empty. Since S is bounded above, say by some cut C, we have $S \subseteq C \subsetneq \mathbb{Q}$ and so $S \neq \mathbb{Q}$. If $a \in S$, then $a \in A$ for some $A \in \alpha$. Since A is a cut, every rational smaller than a is contained in A and thereby in S. Moreover, there exists an $a' \in A$ which is larger than a. Thus $a' \in S$ is larger than a.

upper bound: $A \subseteq S$ for all $A \in \alpha$.

least upper bound: For any $D \subsetneq S$, let $b \in S \setminus D$. But since $b \in A$ for some $A \in \alpha$, D is not an upper bound of α .

Dedekind's construction is an "order completion". Thus all the order properties (LUB, density) are nice, but arithmetic is ugly.

0.2.2 Cauchy's Construction

There seem to be sequences in \mathbb{Q} that "should" have a limit (e.g., a monotone and bounded sequence) but do not (within \mathbb{Q}). We construct equivalence classes of sequences which "converge" to the same number, and define reals by those classes.

Definition 0.18 (Sequence). A sequence of rational numbers is a $f: \mathbb{N} \to \mathbb{Q}$. We usually denote f(k) by a_k and call it the k-th term of the sequence. The function f is usually written as $(a_k)_{k \in \mathbb{N}}$.

Definition 0.19. A sequence $(a_k)_{k\in\mathbb{N}}\subseteq\mathbb{Q}$ is said to be

- (i) \mathbb{Q} -bounded if there exists an $M \in \mathbb{Q}$ such that $|a_k| \leq M$ for all $k \in \mathbb{N}$.
- (ii) Q-Cauchy if for every rational $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_m a_n| < \epsilon$ for all $m, n \geq N$.
- (iii) convergent in \mathbb{Q} if there exists an $L \in \mathbb{Q}$ such that for all (rational) $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n L| < \varepsilon$ for all n > N.

Exercise 0.20. Show that if a sequence is convergent in \mathbb{Q} , then it is \mathbb{Q} -Cauchy, and if it is \mathbb{Q} -Cauchy, then it is \mathbb{Q} -bounded.

Remarks. From UMA101, we know that if a sequence is convergent in \mathbb{Q} , the limit is unique. We also know arithmetic laws of limits (which we proved over \mathbb{R} , but they hold over \mathbb{Q} as well).

Definition 0.21. Two sequences $a = (a_n)_{n \in \mathbb{N}}$ and $b = (b_n)_{n \in \mathbb{N}}$ are said to be *equivalent* if their difference converges to 0.

Proposition 0.22. Let \mathcal{C} denote the space of \mathbb{Q} -cauchy sequences. Then \sim given by $a \sim b$ if a and b are equivalent (as per the previous definition) is an equivalence relation.

Proof. Reflixivity and symmetry are immediate. Transitivity follows from the triangle inequality. \Box

Definition 0.23 (\mathbb{R}). We define

$$\mathbb{R} \coloneqq \mathcal{C}/\sim$$
.

Further,

- (i) $[a] +_{\mathbb{R}} [b] := [a+b].$
- (ii) The additive identity $0 = [(0)_{n \in \mathbb{N}}].$
- (iii) $[a] \cdot_{\mathbb{R}} [b] \coloneqq [a \cdot b].$
- (iv) $[a] >_{\mathbb{R}} 0$ if there exists a rational c > 0 and an $N \in \mathbb{N}$ such that $a_n > c$ for all $n \ge N$. From positivity, we can define order as $[a] >_{\mathbb{R}} [b]$ iff there is some [d] > 0 such that [a] + [d] = [b].