

Regression modelling using I-priors

NUS Department of Statistics & Data Science Seminar

Haziq Jamil

Mathematical Sciences, Faculty of Science, UBD https://haziqj.ml

Wednesday, 16 November 2022

Overview

Regression using I-priors Reproducing kernel Hilbert spaces The Fisher information The I-prior

Reproducing kernel Hilbert spaces

Assumption: $f \in \mathcal{F}$ where \mathcal{F} is an RKHS with kernel h over \mathcal{X} .

Definition 1 (Hilbert spaces)

A *Hilbert space* \mathcal{F} is a vector space equipped with a positive definite inner product $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$.

Definition 2 (Reproducing kernels)

A symmetric, bivariate function $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *kernel*, and it is a *reproducing kernel* of \mathcal{F} if h satisfies

- i. $\forall x \in \mathcal{X}, h(\cdot, x) \in \mathcal{F};$
- ii. $\forall x \in \mathcal{X}$ and $\forall f \in \mathcal{F}$, $\langle f, h(\cdot, x) \rangle_{\mathcal{F}} = f(x)$.

In particular, $\forall x, x' \in \mathcal{F}$, $h(x, x') = \langle h(\cdot, x), h(\cdot, x') \rangle_{\mathcal{F}}$.

Reproducing kernel Hilbert spaces (cont.)

Theorem 3 (Moore-Aronszajn, etc.)

There is a bijection between

- i. the set of positive semidefinite functions; and
- ii. the set of RKHSs.

$$h(x,x') = 1$$
 (constant)

$$h(x, x') = \langle x, x' \rangle_{\mathcal{X}}$$
 (linear)

$$h(x, x') = -\frac{1}{2}(\|x - x'\|_{\mathcal{X}}^{2\gamma} - \|x\|_{\mathcal{X}}^{2\gamma} - \|x'\|_{\mathcal{X}}^{2\gamma}) \text{ (fBm)}$$

$$h(x,x') = \exp\left(-\frac{\|x-x'\|_{\mathcal{X}}^{2s}}{2s^{2}}\right) \text{ (Gaussian)}$$

Building more complex RKHSs

We can build complex RKHSs by adding and multiplying kernels:

- $\mathcal{F} = \mathcal{F}_1 \oplus \mathcal{F}_2$ is an RKHS defined by $h = h_1 + h_2$.
- $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$ is an RKHS defined by $h = h_1 h_2$.

Example 4 (ANOVA RKHS)

Consider RKHSs \mathcal{F}_k with kernel h_k , $k=1,\ldots,p$. The ANOVA kernel over the set $\mathcal{X}=\mathcal{X}_1\times\cdots\times\mathcal{X}_p$ defining the ANOVA RKHS \mathcal{F} is

$$h(x, x') = \prod_{k=1}^{p} (1 + h_k(x, x')).$$

For p=2 let \mathcal{F}_k be linear RKHS of functions over \mathbb{R} . Then $f\in\mathcal{F}$ where $\mathcal{F}=\mathcal{F}_{\emptyset}\oplus\mathcal{F}_{1}\oplus\mathcal{F}_{2}\oplus\mathcal{F}_{1}\otimes\mathcal{F}_{2}$ are of the form

$$f(x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2.$$

The Fisher information

For the regression model (??), the log-likelihood of f is given by

$$\ell(f|y) = \text{const.} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} (y_i - \langle f, h(\cdot, x_i) \rangle_{\mathcal{F}}) (y_j - \langle f, h(\cdot, x_j) \rangle_{\mathcal{F}})$$

Lemma 5 (Fisher information for regression function)

The Fisher information for f is

$$\mathcal{I}_f = - \operatorname{E} \nabla^2 \ell(f|y) = \sum_{i=1}^n \sum_{j=1}^n \psi_{ij} h(\cdot, x_i) \otimes h(\cdot, x_j)$$

where ' \otimes ' is the tensor product of two vectors in \mathcal{F} .

The Fisher information (cont.)

It's helpful to think of \mathcal{I}_f as a bilinear form $\mathcal{I}_f: \mathcal{F} \times \mathcal{F} \to \mathbb{R}$, making it possible to compute the Fisher information on linear functionals $f_g = \langle f, g \rangle_{\mathcal{F}}, \ \forall g \in \mathcal{F}$ as $\mathcal{I}_{f_g} = \langle \mathcal{I}_f, g \otimes g \rangle_{\mathcal{F} \otimes \mathcal{F}}$.

In particular, between two points $f_x := f(x)$ and $f_{x'} := f(x')$ [since $f_x = \langle f, h(\cdot, x) \rangle_{\mathcal{F}}$] we have:

$$\mathcal{I}_{f}(x, x') = \left\langle \mathcal{I}_{f}, h(\cdot, x) \otimes h(\cdot, x') \right\rangle_{\mathcal{F} \otimes \mathcal{F}}$$

$$= \left\langle \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} h(\cdot, x_{i}) \otimes h(\cdot, j), h(\cdot, x) \otimes h(\cdot, x') \right\rangle_{\mathcal{F} \otimes \mathcal{F}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} \left\langle h(\cdot, x), h(\cdot, x_{i}) \right\rangle_{\mathcal{F}} \left\langle h(\cdot, x'), h(\cdot, x_{j}) \right\rangle_{\mathcal{F}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} h(x, x_{i}) h(x', x_{j}) =: k(x, x')$$

(1)

The I-prior

Lemma 6

The kernel (1) induces a finite-dimensional RKHS $\mathcal{F}_n < \mathcal{F}$, consisting of functions of the form $\tilde{f}(x) = \sum_{i=1}^n h(x, x_i) w_i$ (for some real-valued w_i s) equipped with the squared norm

$$\|\tilde{f}\|_{\mathcal{F}_n}^2 = \sum_{i,j=1}^n \psi_{ij}^- w_i w_j,$$

where ψ_{ii}^- is the (i,j)th entry of Ψ^{-1} .

- Let \mathcal{R} be the orthogonal complement of \mathcal{F}_n in \mathcal{F} . Then $\mathcal{F} = \mathcal{F}_n \oplus \mathcal{R}$, and any $f \in \mathcal{F}$ can be uniquely decomposed as $f = \tilde{f} + r$, with $\tilde{f} \in \mathcal{F}_n$ and $r \in \mathcal{R}$.
- The Fisher information for g is zero iff $g \in \mathcal{R}$. The data only allows us to estimate $f \in \mathcal{F}$ by considering functions in $\tilde{f} \in \mathcal{F}_n$.

The I-prior (cont.)

Theorem 7 (I-prior)

Let ν be a volume measure induced by the norm above, and let

$$\tilde{p} = rg \max_{p} \left\{ -\int_{\mathcal{F}_n} p(f) \log p(f) \, \nu(\mathrm{d}f) \right\}$$

subject to the constraint

$$\mathsf{E}_{f \sim p} \| f - f_0 \|_{\mathcal{F}_n}^2 = \mathsf{constant}, \qquad f_0 \in \mathcal{F}.$$

Then \tilde{p} is the Gaussian with mean f_0 and covariance function k(x, x').

Equivalently, under the l-prior, f can be written in the form

$$f(x) = f_0(x) + \sum_{i=1}^{n} h(x, x_i) w_i, \qquad (w_1, \dots, w_n)^{\top} \sim N(0, \Psi)$$

References