1. Définition

f est une fonction définie sur un intervalle I de \mathbb{R} .

On appelle **primitive** de f sur I toute fonction F dérivable sur I dont la dérivée F' est égale à f. Pour tout nombre réel f de f de

2. Théorèmes

- Toute fonction dérivable sur un intervalle / admet des primitives sur /.
- Si F est une primitive de f sur l'intervalle I, alors toutes les primitives de f sur I sont les fonctions G définies sur I par G(x) = F(x) + C où C désigne un nombre réel arbitraire.
- Si f admet des primitives sur l'intervalle I, alors il existe une et une seule primitive G de f telle que $G(x_0) = y_0$; x_0 et y_0 donnés.

3. Les résultats à connaître pour déterminer les primitives d'une fonction

Linéarité

F et G sont des primitives respectives de f et g sur un intervalle I; k est un nombre réel. Alors, F+G est une primitive de f+g sur I et kF est une primitive de kf sur I.

· Primitives usuelles

Dans les tableaux suivants, C désigne un nombre réel arbitraire.

Fonction f	Primitives F	Fonction f	Primitives F
f(x) = a; a réel	F(x) = ax + C	$f(x) = e^x$	$F(x) = e^x + C$
$f(x) = \frac{1}{x} (x > 0)$	$F(x) = \ln x + C$	$f(x) = \sin x$	$F(x) = -\cos x + C$
1	1	$f(x) = \cos x$	$F(x) = \sin x + C$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + C$	$f(x) = \sin(ax + b)$	$F(x) = -\frac{1}{a}\cos(ax + b) + C$
$f(x) = \frac{1}{\sqrt{x}} (x > 0)$	$F(x) = 2\sqrt{x} + C$	$f(x) = \sin(ax + b)$ $(a \neq 0)$	
$f(x) = x^n$ (n entier relatif; $n \neq -1$)	$F(x) = \frac{x^{n+1}}{n+1} + C$	$f(x) = \cos(ax + b)$ $(a \neq 0)$	$F(x) = \frac{1}{a}\sin(ax + b) + C$

Fonction f	Primitives F	
$f(x) = (u(x))^n \times u'(x)$ (n entier relatif; $n \neq -1$)	$F(x) = \frac{(u(x))^{n+1}}{n+1} + C$	
$f(x) = \frac{u'(x)}{u(x)} (u(x) > 0)$	$F(x) = \ln (u(x)) + C$	
$f(x) = e^{u(x)} \times u'(x)$	$F(x) = e^{u(x)} + C$	