د)

دانشکدهی برق و کامپیوتر

تمرین شمارهی ۴ تجزیه و تحلیل سیگنالها و سیستمها

این سیگنال a_k این سیگنال و تنها ضرایب غیرصفرسری فوریه a_k این سیگنال x(t) الف) اگر بدانیم $a_1=a_{-1}^*=1+j2$, $a_3=a_{-3}=3$

ضابطهی سیگنال x(t) را به سه شکل مختلف بنویسید.

ب) ضرائب سری فوریهی سیگنال $a_k(t) = x(t-t_0) - x(t+t_0)$ چه رابطهای با ضرائب $y(t) = x(t-t_0) - x(t+t_0)$ دارند؟

۲ ضرایب سری فوریهی سیگنالهای متناوب زیر را بدست آورید. (T دورهی تناوب اصلی سیگنال است) لوریه $x(t)=2sin\left(\frac{3}{2}t\right)+cos\left(t+\frac{\pi}{4}\right)+1$ بو T=3 و x(t)=2t , $-1\leq t\leq 2$ الف) ج

۳ یک سیستم LTI و علّی توصیفشده توسط معادلهی دیفرانسیل زیر را در نظر بگیرید:

$$\frac{d}{dt}y(t) + 4y(t) = x(t)$$

، مطلوب است محاسبه ی ضرایب سری فوریه سیگنال خروجی y(t) در پاسخ به سیگنال ورودی

$$x(t) = 1 + \cos(3\pi t) + \sin(8\pi t + \frac{\pi}{3})$$

؛ اگر x(t) یک سیگنال متناوب با دورهی تناوب اصلی t=4 و ضرایب سری فوریه a_k باشد و بدانیم که:

.
$$a_k=0$$
 ، $|k|>1$ به ازای ۲

ا. x(t) حقیقی و فرد است.

سیگنالهای ممکن برای x(t) را تعیین کنید.

 $\int_{1}^{9} |x(t)|^{2} = 2$.

ه دست x(t) دارای تبدیل فوریهی $X(j\omega)$ است. تبدیل فوریهی هریک از سیگنالهای زیر را بر حسب $X(j\omega)$ به دست آورید.

$$\int_{t-2}^{t+2} x(\tau)d\tau \qquad \qquad (ب \qquad \qquad e^{jt}x(4t-1)$$
 الف)

۶ تبدیل فوریهی هر یک از سیگنالهای زیر را محاسبه کنید.

$$x(t) = \begin{cases} 0 & , & |t| > 1 \\ \frac{t+1}{2}, & |t| \leq 1 \end{cases}$$
 (الف)

$$x(t) = t(\frac{\sin t}{\pi t})^2 \qquad (\dot{}$$

ج)

۷ برای هر یک از تبدیل فوریههای زیر، سیگنال زمانی متناظر را به دست آورید.

$$X(j\omega) = \frac{d}{d\omega} \left\{ \frac{\sin 3\omega - j\cos 3\omega}{\frac{1}{2} + j\omega} \right\}$$
 (ف)

$$X(j\omega) = \frac{1-j\omega}{(1+j\omega)^2}$$
 (ب

$$X(j\omega) = \cos(2\omega + \frac{\pi}{6})$$

۸ در شکل زیر:

اگر $H_1(j\omega)=\begin{cases} -4\omega^2, & |\omega|<8 \\ 0, & 8<|\omega| \end{cases}$ به ترتیب پاسخ فر کانسی سیستم های اول و دوم باشند، $H_1(j\omega)=\begin{cases} -4\omega^2, & |\omega|<8 \\ 0, & 8<|\omega| \end{cases}$ خروجی y(t) را به ازای ورودی $y(t)=3+2\cos(2t+\frac{\pi}{4})$ به دو روش زیر بدست آورید.

الف) با تحلیل در حوزهی فر کانس
