Лабораторная работа №3

1. Синтезировать нерекурсивный симметричный фильтр порядка *N*=2*M* (КИХ-фильтр с линейной фазой типа I, с ЧХ (4.1) [1, стр.213] с заданной в таблице вариантов полосой пропускания, аналогично решению примера 4.2 [1, стр.218]. Построить амплитудно-частотную и фазочастотную характеристики. Сравнить полученную АЧХ с идеальной.

Для синтеза фильтра можно использовать шаблон кода (task1.m).

- 2. Реализовать в MATLAB функцию синтеза фильтра (т.е. нахождения коэффициентов {bk} (k=0,..., 2M)), которая обеспечивает наилучшее равномерное приближение заданной АЧХ по методу на основе частотной выборки [1, стр.217] и принимает в качестве аргументов:
 - а. Положение полосы пропускания проектируемого фильтра на оси ω
 - b. Положение полосы подавления проектируемого фильтра на оси ω
 - с. Параметр М

С помощью реализованной функции синтезировать фильтр того же порядка N=2M, что и в п. 1.

Сравнить полученную АЧХ с идеальной и с АЧХ, найденной в п. 1. Для решения задачи оптимизации, возникающей при синтезе КИХ-фильтра на основе частотной выборки, можно использовать

встроенные функции MATLAB, например, fmincon, fminsearch.

Для синтеза фильтра можно использовать шаблон кода (task2.m)

- 3. Проверить, удовлетворяет ли фильтр, синтезированный в п. 2, требованиям к неравномерности АЧХ в полосах пропускания и подавления при заданных параметрах δ_p и δ_s . Определить минимальный порядок фильтра (N=2M), удовлетворяющего данным требованиям.
- 4. С помощью синтезированного в п. 2 фильтра обработать сигналы $x(n) = \sin(\omega n)$ для указанных в таблице вариантов значений ω . Определить задержку α гармонического колебания на выходе фильтра.

5. С помощью синтезированного в п. 3 фильтра провести фильтрацию тестового изображения - матрицы I из лабораторной работы 1 (согласно варианту). Для этого профильтровать последовательно каждую строку, затем каждый столбец изображения. Воспроизвести полученное изображение J и объяснить полученный результат.

В заданиях 1-4 амплитуду на графиках АЧХ необходимо также выражать в дБ, т.е помимо графиков зависимости $|K(\omega)|$, нужно приводить график $20 |g|K(\omega)|$. Для этого значения АЧХ в точках, где $|K(\omega)| \le 10^{\circ}(-7)$, принять равным $10^{\circ}(-7)$.

Варианты заданий

№ варианта	М	Полоса пропускания	Полоса подавления	δρ	δs	w
1	5	[0; 0,6π]	[0,8π; π]	0,0125	0,015	$\{0,3\pi;0,5\pi\}$
2	6	[0; 0,4π]	[0,5π; π]	0,0275	0,020	$\{0,2\pi;0,35\pi\}$
3	7	[0; 0,55π]	$[0,7\pi;\pi]$	0,010	0,060	$\{0,2\pi;0,45\pi\}$
4	8	[0; 0,35π]	$[0,5\pi;\pi]$	0,0075	0,030	$\{0,15\pi;0,3\pi\}$

Контрольные вопросы

- 1. Дать определение ЛДФ
- 2. Каковы основные характеристики линейных дискретных систем?
- 3. Показать взаимосвязь передаточной и импульсной характеристик.
- 4. Каков физический смысл АЧХ и ФЧХ?
- 5. Сформулировать задачу синтеза ЛДФ.
- 6. Сформулировать задачу оптимизации, возникающую при синтезе фильтра по методу на основе частотной выборки.

Литература

1. Умняшкин С.В. Основы теории цифровой обработки сигналов.