What are we weighting for?

A mechanistic model for probability weighting

Ole Peters Alexander Adamou Yonatan Berman Mark Kirstein

D-TEA 2020, 16 June 2020

Main Resul

viain Resul

Ergodicity

Estimation

Conclusio

- 1 inverse-S shape can be explained by difference in uncertainty
- 2 cautious estimation of probabilities generates such differences

► PW K&T 1979

Definition of Probability Weighting (PW)

(Tversky and Kahneman 1992, p. 310, Fig. 1. relabelled axes)

- low probabilities treated as higher: high probabilities treated as lower
- stable empirical pattern: inverse-S shape

Received wisdom:

 PW = maladaptive irrational cognitive bias

In search of a mechanism

- → How does this pattern emerge?
- (rather than fit a function)?

Main Resul

Ergodicity Question

Estimatio

C

Task: model payout, x, of a gamble as a random variable.

Disinterested Observer (DO)

DO assigns probabilities p(x)CDF $F_p(x)$

Decision Maker (DM)

DM assigns different probabilities w(x) (decision weights) CDF $F_w(x)$

Mark Kirstein

Main Resu

Ergodicity

Estimation

Conclusio

Possible model differences

Main Resul

Ergodicit

Estimatio

Conclusion

0.8

0.4

0.2

0.0

ODFs ...

0.8

0.4

0.2

0.0

ODFs ...

0.8

0.4

0.2

0.0

ODFs ...

F_o(x)

F_w(x)

0.8

0.4

0.2

0.0

ODFs ...

0.8

0.4

0.2

0.0

ODFs ...

F_o(x)

F_w(x)

0.8

0.4

0.2

0.0

ODFs ...

0.8

0.4

0.2

0.0

ODFs ...

Main Posul

Probability

Ergodicity

Estimatio

. .

0.8

0.4

0.2

0.0

ODFs ...

F_o(x)

F_w(x)

Numerically easy for any pair of distributions (models):

- 1 list values of DO's CDF, $F_p(x)$, at set x_i
- 2 list values of DM's CDF, $F_w(x)$, at same x_i
- 3 plot $F_w(x)$ vs. $F_p(x)$

Probability

Ergodicity Question

Estimatio

Conclusio

Asymmetry from different locations

Mark Kirsteir

Main Resu

Weighting

Question

Estimation

Conclusi

Interim conclusion

- DM's greater scale gives inverse-S shape (unimodal distributions)
- difference in locations gives asymmetry
- reproduces observations of probability weighting

Job done. Thank you for your attention;)

► Functional Forms

The Ergodicity Question

Probability

Ergodicity Question

. . .

Conclusi

Typical DO concern

What happens on average to the ensemble of subjects?

Typical DM concern

What happens to me on average over time?

Why DM's greater scale?

- iviain Kesui
- Ergodicity
- Estimatio

. . .

- DM has no control over experiment
- experiment may be unclear to DM
- DM may not trust DO
- . .

Experiencing probabilities

- Ergodicity Question
- Estimation

- probabilities are not observable
- probabilities encountered as
 - known frequency in ensemble of experiments (DO)
 - frequencies estimated over time (DM)
- → estimates have uncertainties cautious DM accounts for these

Estimating probabilities

Rare Event

- p(x) = 0.001
- 100 observations
- \sim 99.5% of such time series will contain 0 or 1 events
- Naïve estimation: $\hat{p}(x) = 0$ or $\hat{p}(x) = 0.01$
- \hookrightarrow 1000% error in $\hat{p}(x)$

Common Event

- p(x) = 0.5
- 100 observations
- \sim 99.5% of time series would contain between 35 and 65 events,
- Naïve estimation: $0.35 < \hat{p}(x) < 0.65$

 \hookrightarrow < 50% error in $\hat{p}(x)$

 \hookrightarrow small p(x), small count \hookrightarrow small count, big uncertainty

Relative estimation error is large for rare events

Asymptotic probability	Most likely count	Standard error in count	Standard error in probability	Relative error in probability
0.1	1000	32	0.003	3%
0.01	100	10	0.001	10%
0.001	10	3	0.0003	30%
0.0001	1	1	0.0001	100%

Table: $T=10\,000$, assuming Poisson statistics, relative estimation errors $\sim 1/\sqrt{count}$

 \hookrightarrow small p(x), small count \hookrightarrow small count, big uncertainty

DMs don't like surprises

To avoid surprises, let's say DMs add estimation uncertainty $\varepsilon[p(x)]$ to every estimated probability, then normalize, s.t.

$$w(x) = \frac{p(x) + \varepsilon \left[p(x) \right]}{\int \left(p(s) + \varepsilon \left[p(s) \right] \right) ds}$$

This allows us to derive a functional form, e.g. for the Gaussian case

$$w(p) = p^{\frac{1}{\alpha^2}} \frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha} ,$$

where DM's scale is $\alpha\sigma$

- $\alpha < 1 \rightarrow \mathsf{S}$ shape
- $\alpha > 1 o \text{inverse-S shape}$

Main Resu

Ergodicity

Mark Kirstein

Main Resul

Ergodicity

Estimatio

Conclusio

Estimating probabilities for two Gaussians

ToDo: Make inverse-S more pronounced

Main Resul

Ergodicity

Estimatio

Ergodicity Economics and probability weighting

- inverse-S shape appears as neutral indicator of a difference in opinion
- reported observations consistent with DM's extra uncertainty
- may arise from DM estimating probabilities over time
- → Probability weighting is rational cautious behaviour under uncertainty over time
 - Manuscript at https://www.researchers.one/article/2020-04-14
 - Interactive code at https://bit.ly/lml-pw-count-b

Main Resul

Ergodicity Question

Estimatio

Conclusio

Ergodicity Economics and probability weighting

- inverse-S shape appears as neutral indicator of a difference in opinion
- reported observations consistent with DM's extra uncertainty
- may arise from DM estimating probabilities over time
- \hookrightarrow Probability weighting is rational cautious behaviour under uncertainty over time
 - Manuscript at https://www.researchers.one/article/2020-04-14
- Interactive code at https://bit.ly/lml-pw-count-b

Thank you for your attention!

Back Up References

BACK UP

Back Up

Probability Weighting as an Estimation Issue

"It is important to distinguish overweighting, which refers to a property of decision weights, from the overestimation that is commonly found in the assessment of the probability of rare events. [...] In many real-life situations, overestimation and overweighting may both operate to increase the impact of rare events." (Kahneman and Tversky 1979, p. 281)

- - uncertainty estimation and
 - "weighting"

we analyse the former and find very good agreement with the empirical inverse-S pattern

→ How big is the residual "probability weighting" after accounting for uncertainty estimation?

Estimation Error Explains 99% of Probability Weighting

0.2

• similar fits of Gaussian & t-distributed model

 $CDF F_p$

0.6

0.4

0.8

Tversky & Kahneman (1992)

→ How big is the residual "probability weighting" after accounting for estimation errors?

1.0

0.0

0.0

Back Up

Functional Forms Gaussian

Tversky and Kahneman (1992, $\gamma=$ 0.68)

$$\tilde{F}_{w}^{TK}\left(F_{\rho};\gamma\right) = \left(F_{\rho}\right)^{\gamma} \frac{1}{\left[\left(F_{\rho}\right)^{\gamma} + \left(1 - F_{\rho}\right)^{\gamma}\right]^{1/\gamma}} \tag{1}$$

Lattimore, Baker, and Witte (1992)

$$\tilde{F}_{w}^{L}\left(F_{p};\delta,\gamma\right) = \frac{\delta F_{p}^{\gamma}}{\delta F_{p}^{\gamma} + \left(1 - F_{p}\right)^{\gamma}}\tag{2}$$

We derive decision weight as a function of probability with $(\alpha\sigma)^2$ as the DM's scale

$$w(p) = \rho^{\frac{1}{\alpha^2}} \frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha} , \qquad (3)$$

which is a power law in p with a pre-factor to ensure normalisation

Back Up
References

Kahneman, Daniel and Amos Tversky (1979). "Prospect Theory: An Analysis of Decision under Risk". *Econometrica* 47 (2), pp. 263–291. DOI:10.2307/1914185 (cit. on p. 29).

Lattimore, Pamela K., Joanna R. Baker, and A. Dryden Witte (1992). "Influence of Probability on Risky Choice: A Parametric Examination". *Journal of Economic Behavior and Organization* 17 (3), pp. 377–400. DOI:10.1016/S0167-2681(95)90015-2 (cit. on p. 31).

Tversky, Amos and Daniel Kahneman (1992). "Advances in Prospect Theory: Cumulative Representation of Uncertainty". *Journal of Risk and Uncertainty* 5 (4), pp. 297–323. DOI:10.1007/BF00122574 (cit. on pp. 3, 31).