### **PCA**

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.datasets import load_diabetes
    from sklearn.preprocessing import StandardScaler
    from sklearn.decomposition import PCA
    plt.style.use('ggplot')
```

## Out[10]:

|   | age       | sex       | bmi       | bp        | s1        | s2        | s3        | s4        | s                |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------------|
| 0 | 0.038076  | 0.050680  | 0.061696  | 0.021872  | -0.044223 | -0.034821 | -0.043401 | -0.002592 | 0.01990          |
| 1 | -0.001882 | -0.044642 | -0.051474 | -0.026328 | -0.008449 | -0.019163 | 0.074412  | -0.039493 | -0.06833         |
| 2 | 0.085299  | 0.050680  | 0.044451  | -0.005671 | -0.045599 | -0.034194 | -0.032356 | -0.002592 | 0.00286          |
| 3 | -0.089063 | -0.044642 | -0.011595 | -0.036656 | 0.012191  | 0.024991  | -0.036038 | 0.034309  | 0.02269          |
| 4 | 0.005383  | -0.044642 | -0.036385 | 0.021872  | 0.003935  | 0.015596  | 0.008142  | -0.002592 | -0.03199         |
| 5 | -0.092695 | -0.044642 | -0.040696 | -0.019442 | -0.068991 | -0.079288 | 0.041277  | -0.076395 | <b>-</b> 0.04118 |
| 4 |           |           |           |           |           |           |           |           | •                |

#### Стандартизация данных

Нам нужно масштабировать наши переменные перед проведением анализа, чтобы избежать вводящих в заблуждение результатов РСА из-за различий в единицах измерения. Для масштабирования наших данных до единиц измерения со средним значением в 0 и отклонениями в 1.

```
In [11]: #Сначала мы создадим объект класса StandardScaler,
#затем используем его для подгонки к нашей матрице данных и преобразуем данные
#В результате мы получим двумерный массив NumPy
scaler = StandardScaler()
scaler.fit(df)
Diabetes_scaled = scaler.transform(df)
```

### Out[22]:

|   | age       | sex       | bmi       | bp        | s1        | s2        | s3        | s4        | S        |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| 0 | 0.800500  | 1.065488  | 1.297088  | 0.459840  | -0.929746 | -0.732065 | -0.912451 | -0.054499 | 0.41855  |
| 1 | -0.039567 | -0.938537 | -1.082180 | -0.553511 | -0.177624 | -0.402886 | 1.564414  | -0.830301 | -1.43655 |
| 2 | 1.793307  | 1.065488  | 0.934533  | -0.119218 | -0.958674 | -0.718897 | -0.680245 | -0.054499 | 0.06020  |
| 3 | -1.872441 | -0.938537 | -0.243771 | -0.770658 | 0.256292  | 0.525397  | -0.757647 | 0.721302  | 0.47707  |
| 4 | 0.113172  | -0.938537 | -0.764944 | 0.459840  | 0.082726  | 0.327890  | 0.171178  | -0.054499 | -0.67258 |
| 5 | -1.948811 | -0.938537 | -0.855583 | -0.408747 | -1.450445 | -1.666931 | 0.867796  | -1.606102 | -0.86576 |

In []: \_\_Идеальное количество компонент\_\_ Одной из альтернатив подбора идеального количества компонент является проведен После применения РСА визуализируем процент объясненной дисперсии, используя гр На основе графика можно выбрать оптимальное количество.

```
In [23]: #Запустим наш РСА для десяти компонентов!

pca = PCA(n_components=10)

pca.fit_transform(Diabetes_scaled)
```

In [32]: #Как только мы выполним наш PCA, мы можем извлечь объясненную долю дисперсии и prop\_var = pca.explained\_variance\_ratio\_eigenvalues = pca.explained\_variance\_print(prop\_var, eigenvalues, sep = '\n')

```
[0.40242142 0.14923182 0.12059623 0.09554764 0.06621856 0.06027192 0.05365605 0.04336832 0.00783199 0.00085605]
[4.03333938 1.49570218 1.20869692 0.957643 0.66368713 0.60408592 0.53777715 0.43466661 0.07849751 0.00857994]
```

```
In [33]: PC_numbers = np.arange(pca.n_components_) + 1
         plt.plot(PC_numbers,
                  prop var,
                   'ro-')
         plt.title('Figure 1: Scree Plot', fontsize=8)
         plt.ylabel('Доля отклонения', fontsize=8)
         plt.show()
```



Метод локтя Метод интерпретации схемы осыпи заключается в использовании правила изгиба. Этот метод заключается в поиске формы "изгиба" на кривой и сохранении всех компонентов до точки, где кривая выравнивается.

Предполагая, что первые 2 компонента должны сохраняться с учетом правила локтя, мы можем повторно запустить РСА и интерпретировать результаты для первых двух компонентов.

### Вычисление основных компонентов и интерпретация результата

```
In [16]:
         pca = PCA(n_components=2)
         PC = pca.fit_transform(Diabetes_scaled)
```

# Out[17]:

```
        PC1
        PC2

        0
        0.587208
        -1.946828

        1
        -2.831612
        1.372085

        2
        0.272148
        -1.634898

        3
        0.049310
        0.382253

        4
        -0.756451
        0.811968

        5
        -3.966355
        -0.381059
```

```
In [34]:
         #Способ визуализации данных на 2D модель
         def biplot(score,coef,labels=None):
             xs = score[:,0]
             ys = score[:,1]
             n = coef.shape[0]
             scalex = 1.0/(xs.max() - xs.min())
             scaley = 1.0/(ys.max() - ys.min())
             plt.scatter(xs * scalex,ys * scaley,
                          s=5,
                          color='orange')
             for i in range(n):
                 plt.arrow(0, 0, coef[i,0],
                            coef[i,1],color = 'purple',
                            alpha = 0.5)
                 plt.text(coef[i,0]* 1.15,
                           coef[i,1] * 1.15,
                           labels[i],
                           color = 'darkblue',
                           ha = 'center',
                           va = 'center')
             plt.xlabel("PC{}".format(1))
             plt.ylabel("PC{}".format(2))
             plt.figure()
```



<Figure size 640x480 with 0 Axes>

In [ ]: