Exercises in Physics Assignment

Date Given: April 8, 2022 Date Due: April 14, 2022

P1. (1 point) With v = (1,1) and w = (1,5) find a number c so that w - cv is perpendicular to v.

Solution: $(\boldsymbol{w} - c\boldsymbol{v}) \cdot \boldsymbol{v} = 0$. Therefore $\boldsymbol{v} \cdot \boldsymbol{w} = c\boldsymbol{v} \cdot \boldsymbol{v}$. Therefore $c = (\boldsymbol{v} \cdot \boldsymbol{w})/(\boldsymbol{v} \cdot \boldsymbol{v}) = 6/2 = 3$. Note that $c\boldsymbol{v}$ is the "projection" of \boldsymbol{w} onto the line through vector \boldsymbol{v} .)

P2. (1 point) What are the cosines of the angles α, β, γ between the vector $\mathbf{v} = (1, 0, -1)$ and the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ along the axes?

Solution: First, find $|v| = \sqrt{v \cdot v} = \sqrt{2}$.

- (a) $\mathbf{i} \cdot \mathbf{v} = (1,0,0) \cdot (1,0,-1) = 1$. On the other hand, $\mathbf{i} \cdot \mathbf{v} = |\mathbf{i}| |\mathbf{v}| \cos \alpha \Longrightarrow \cos \alpha = 1/\sqrt{2}$.
- (b) $\boldsymbol{j} \cdot \boldsymbol{v} = (0, 1, 0) \cdot (1, 0, -1) = 0$. On the other hand, $\boldsymbol{j} \cdot \boldsymbol{v} = |\boldsymbol{j}| |\boldsymbol{v}| \cos \beta \Longrightarrow \cos \beta = 0$.
- (c) $\mathbf{k} \cdot \mathbf{v} = (0,0,1) \cdot (1,0,-1) = -1$. On the other hand, $\mathbf{k} \cdot \mathbf{v} = |\mathbf{k}| |\mathbf{v}| \cos \gamma \Longrightarrow \cos \gamma = -1/\sqrt{2}$.
- **P3.** (3 points) Assume that three unit vectors a, b, c are such that a+b+c=0. Compute $a \cdot b + b \cdot c + c \cdot a$.

Solution: It follows from a+b+c=0 that vectors a,b,c form a triangle. Since the vectors are unit (|a|=|b|=|c|=1), the triangle is equilateral. Therefore, the angles between the sides of the equilateral triangle are $\pi/3$, and the angles between the vectors are $\pi-\pi/3=2\pi/3$. Then $a\cdot b+b\cdot c+c\cdot a=|a|\,|b|\cos\frac{2\pi}{3}+|b|\,|c|\cos\frac{2\pi}{3}+|c|\,|a|\cos\frac{2\pi}{3}=3\cos\frac{2\pi}{3}=-3/2$.

- **P4.** (3 points) Compute $a \times b$ for
 - (a) a = i j + k and b = -i + j k
 - (b) a = 6i + j and b = 3i 2j
 - (c) $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{j}$

Solution:

(a) $\mathbf{a} \times \mathbf{b} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$

Note that we can get this result immediately by noticing that a = -b (and therefore a and b are on the same line).

- (b) $\mathbf{a} \times \mathbf{b} = 0\mathbf{i} + 0\mathbf{j} 15\mathbf{k}$
- (c) $\boldsymbol{a} \times \boldsymbol{b} = -1\boldsymbol{i} + 0\boldsymbol{j} + 1\boldsymbol{k}$
- **P5.** (2 points) Assume that three-dimensional vectors \boldsymbol{a} and \boldsymbol{b} are not collinear (do not lie on a single straight line). Find a scalar λ such that the vectors $\lambda \boldsymbol{a} + \boldsymbol{b}$ and $3\boldsymbol{a} + \lambda \boldsymbol{b}$ are collinear.

Solution: If two vectors are collinear their cross product is zero vector. Therefore, from $(\lambda a + b) \times (3a + \lambda b) = \lambda a \times (3a + \lambda b) + b \times (3a + \lambda b) = 3\lambda a \times a + \lambda^2 a \times b + 3b \times a + \lambda b \times b = \lambda^2 a \times b + 3b \times a = 0$ one obtains $\lambda^2 a \times b = 3a \times b$ and define $\lambda = \pm \sqrt{3}$.