1 HP97

The Hodrick and Prescott (1997, HP) Filter can be expressed in State Space Form (SSF) using the following Unobserved Component (UC) model structure:

$$y_t = y_t^* + y_t^c \tag{1a}$$

$$\Delta^2 y_t^* = \varepsilon_{1t} \tag{1b}$$

$$y_t^c = \phi \varepsilon_{2t},$$
 (1c)

where y_t is (100 times) the log of GDP, and ε_{1t} and ε_{2t} are i.i.d. N(0,1) and mutually uncorrelated. The standard deviation ϕ is the (square root of the) smoothing parameter, commonly set to 40 for quarterly macroeconomic data, implying a value of ' λ ' of 1600.

The 'numbered shock' to 'named shock' mapping is:

$$\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} = \begin{bmatrix} \varepsilon_t^* \\ \varepsilon_t^c \end{bmatrix}, \tag{2}$$

where ε_t^* is the trend (or permanent) shock and ε_t^c is the cycle (or transitory) shock.

2 Shock recovery

2.1 State Space Models with lagged states

Kurz (2018) adopts the following general SSF with lagged states in the measurement:

Measurement :
$$Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$$
 (3a)

State:
$$X_t = AX_{t-1} + C\varepsilon_t$$
, (3b)

where $\varepsilon_t \sim MN(0_m, I_m)$, D_1, D_2, A, R are C are conformable system matrices, Z_t the observed variable and X_t the latent state variable, and m is the number of shocks $\{\varepsilon_{it}\}_{i=1}^2$.

2.2 HP97 in 'shock recovery' SSF

To assess shock recovery, write the model in (1) in 'shock recovery' SSF by collecting all observable variables in Z_t and all shocks (and other latent state variables) in X_t . Differencing y_t and y_t^c twice, and re-arranging the relations in (1) then yields:

$$\Delta^{2} y_{t} = \Delta^{2} y_{t}^{*} + \Delta^{2} y_{t}^{c}$$

$$= \varepsilon_{1t} + \phi \Delta^{2} \varepsilon_{2t}$$

$$= \varepsilon_{1t} + \phi \varepsilon_{2t} - 2\phi \varepsilon_{2t-1} + \phi \varepsilon_{2t-2},$$
(4)

where $\Delta^2 y_t$ is the only observed variable.

The Measurement and State equations of the 'shock recovery' SSF corresponding to the relations in (4) are then given by:

Measurement :
$$Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$$

 $\Leftrightarrow \Delta^2 y_t = \varepsilon_{1t} + \phi \varepsilon_{2t} - 2\phi \varepsilon_{2t-1} + \phi \varepsilon_{2t-2}$ (5a)

$$Z_{t} = \underbrace{\begin{bmatrix} 1 & \phi & 0 \end{bmatrix}}_{D_{1}} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{2t-1} \end{bmatrix}}_{X_{t}} + \underbrace{\begin{bmatrix} 0 & -2\phi & \phi \end{bmatrix}}_{D_{2}} \underbrace{\begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2t-2} \end{bmatrix}}_{X_{t-1}} + \underbrace{\begin{bmatrix} 0 & 0 \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}}_{\varepsilon_{t}}$$
(5b)

State: $X_t = AX_{t-1} + C\varepsilon_t$,

$$\underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{2t-1} \end{bmatrix}}_{X_t} = \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2t-2} \end{bmatrix}}_{X_{t-1}} + \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}}_{\varepsilon_t}.$$
(5c)

2.3 Shock recovery

The diagonal of the steady-state variance/covariance matrix of the smoothed and filtered states X_t denoted by $P_{t|T}^*$ and $P_{t|t}^*$, respectively, are:

$$\begin{array}{c|cccc}
 & P_{t|T}^* & P_{t|t}^* \\
\hline
\varepsilon_{1t} & 0.9439 & 0.9995 \\
\varepsilon_{2t} & 0.0561 & 0.2006
\end{array}$$
(6)

indicating that the trend (or permanent) shock $\varepsilon_{1t} = \varepsilon_t^*$ cannot be recovered ($P^* \approx 1$), while the cycle shock $\varepsilon_{2t} = \varepsilon_t^c$ appears to be recoverable ($P^* \approx 0$). In Figure 1, simulated states and estimated Kalman smoothed states are plotted for the two shocks of interest.

The correlation between the true (simulated) and estimated Kalman smoothed shocks can be analyzed by simply computing $Corr(X_t, \hat{X}_{t|T})$, where $X_t = \begin{bmatrix} \varepsilon_{1t} & \varepsilon_{2t} & \varepsilon_{2t-1} \end{bmatrix}'$ and $\hat{X}_{t|T} = E_T X_t = E_T \begin{bmatrix} \varepsilon_{1t} & \varepsilon_{2t} & \varepsilon_{2t-1} \end{bmatrix}'$, yielding (for the first two elements of X_t):

$$\frac{\operatorname{Corr}(X_{t}, \hat{X}_{t|T})}{\varepsilon_{1t} \qquad 0.2368} \\
\varepsilon_{2t} \qquad 0.9713 \tag{7}$$

As can be seen from (7), the estimated permanent shock ε_{1t} is only weakly correlated (0.2368) with the true value, while the estimated cyclical shock ε_{2t} is highly correlated (0.9713). These facts can also be seen from Figure 1 below.

Figure 1: Comparison of true shocks and Kalman Smoothed estimates $\varepsilon_{t|T}$.

2.4 Shock Identities

Kalman Filter estimates of the permanent and transitory shocks ε_{1t} and ε_{2t} are linked by the identity:

$$E_t \varepsilon_{2t} = \phi E_t \varepsilon_{1t}, \tag{8}$$

and the corresponding Kalman Smoother estimates are linked by the *dynamic* identity:

$$\Delta^2 E_T \varepsilon_{1t} = \frac{1}{\phi} E_T \varepsilon_{2t-2}. \tag{9}$$

The filtered and smoothed estimates of the contemporaneous correlations are, respectively:

$Corr(\hat{X}_{t t}, \hat{X}_{t t})$				$Corr(\hat{X}_{t })$			_
	ε_{1t}	ε_{2t}	and		ε_{1t}	ε_{2t}	
ε_{1t}	1.0000	1.0000	anu	ε_{1t}	1.0000	-0.1907	•
ε_{2t}	1.0000	1.0000		ε_{2t}	-0.1907	1.0000	

Note that ε_{1t} and ε_{2t} were generated as *i.i.d.* N(0,1) and mutually uncorrelated.

Running regressions corresponding to (8) and (9) obtained from the simulated data (without an intercept) yields regression coefficient of 40 and 0.025 = 1/40 when the smoothing parameter was set to $\lambda = 1600 = 40^2$ in the simulation. The regression fit is perfect, yielding an R^2 of 1 and a residual sum of squares of exactly 0 (see Panels (a) and (b) in Table 1, respectively). The file HP97 m replicates the output summarized here.

Variable	Estimate	stderr(HAC)	t-stat(HAC)	p-value			
Etε1(t)	40.000000	0.000000	619573092194908800.000000	0.000000			
R-squared	:			1.000000	No. of Regressors	:	1.00000
Rbar-squar	ed :			1.000000	Plus Const.(if exist)	:	1.000000
SE of regr	ession :			0.000000	Mean(y)	:	0.00470
Sum Square	d Errors :			0.000000	Stdev(y)	:	0.898496
Log-likeli	hood :			355982.354905	AIC	:	-74.034148
F-statisti	c :		3838708165719609501651610	46978854912.000000	AICc	:	-74.034148
Pr(F-stati	stic) :			0.000000	BIC	:	-74.033427
No. of obs	ervations :			10000.000000	HQIC	:	-74.033904
Std.err.ML	E (div by T) :			0.000000	DW-stat.	:	2.016162
Include Pr	e-whitening :			0.000000	HAC Trunct.Lag.	:	12.000000

(a) Kalman Filter

/ariable	Estimate	stderr(HAC)	t-stat(HAC)	p-value			
EΤε2(t-2)	0.025000	0.000000	20042737735416592.000000	0.000000			
R-squared	:			1.000000	No. of Regressors	:	1.000000
Rbar-squared	:			1.000000	Plus Const.(if exist)	:	1.000000
SE of regress	sion :			0.000000	Mean(y)	:	-0.000006
Sum Squared E	Errors :			0.000000	Stdev(y)	:	0.024396
Log-likelihoo	od :			353018.214591	AIC	:	-73.455443
F-statistic	:	4	0171133593069214801350865	6627712.000000	AICc	:	-73.455443
Pr(F-statisti	ic) :			0.000000	BIC	:	-73.454722
No. of observ	vations :			9998.000000	HQIC	:	-73.455199
Std.err.MLE ((div by T) :			0.000000	DW-stat.	:	3.659113
Include Pre-v	whitening :			0.000000	HAC Trunct.Lag.	:	12.000000

(b) Kalman Smoother

Table 1: Shock identity regressions using Kalman filter and smoother estimates.

Since $\varepsilon_{1t} = \Delta^2 y_t^*$ and $\varepsilon_{2t} = \frac{1}{\phi} y_t^c$, this implies that the output from the standard HP–Filter will give the corresponding idenity to (9) as:

$$\Delta^{2} \underbrace{E_{T} \varepsilon_{1t}}_{\Delta^{2} y_{t}^{*}} = \frac{1}{\phi} \underbrace{E_{T} \varepsilon_{2t-2}}_{\frac{1}{\phi} y_{t-2}^{c}}$$

$$\Leftrightarrow \qquad \Delta^{4} y_{t}^{*} = \frac{1}{\phi^{2}} y_{t-2}^{c},$$

$$\Leftrightarrow \qquad \Delta^{4} \text{HP-trend}_{t} = \frac{1}{\phi^{2}} \text{HP-cycle}_{t-2},$$

so that a regression of the fourth differenced HP–trend on a twice lagged HP–cycle will give a coefficient estimate of $\frac{1}{40^2} = \frac{1}{1600} = 0.000625$. The HP-Filter appears to be able to recover the transitory cyclical shock $\varepsilon_{2t} = \varepsilon_t^c$, but not the permanent shock. HP-Filter estimates of ε_{1t} and ε_{2t} induce a negative correlation between trend-cycle shocks, ie., $Corr(E_T\varepsilon_{1t}, E_T\varepsilon_{2t}) = -0.1907$, despite being generated with zero correlation.