Zusammenfassung Numerik von PDEs

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

 $\mathbf{Def.} \ \mathrm{Sei} \ \Omega \subseteq \mathbb{R}^n$ offen. Eine DGL der Form

$$F(x, u, Du, \dots, D^k u) = 0$$

heißt partielle DGL/PDE der Ordnung $k \geq 1$, wobei

$$F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k} \to \mathbb{R}$$

eine gegebene Funktion und $u:\Omega\to\mathbb{R}$ gesucht ist.

Def (Klassifikation von PDEs).

• Die PDE heißt linear, wenn sie die Form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f(x)$$

mit Funktionen $a_{\alpha}, f: \Omega \to \mathbb{R}$ besitzt.

• Die PDE heißt semilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x)D^{\alpha}u + a_0(x, u, D_u, \dots, D^{k-1}u) = 0$$

besitzt, wobei $a_{\alpha}: \Omega \to \mathbb{R}$ und $a_0: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k} \to \mathbb{R}$ gegeben sind.

• Die PDE heißt quasilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x, u, Du, \dots, D^{k-1}u) D^{\alpha}u + a_{0}(x, u, Du, \dots, D^{k-1}u) = 0$$

hat, wobei $a_{\alpha}, a_0: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k}$ gegeben sind.

 Die PDE heißt nichtlinear, falls die Ableitungen der höchsten Ordnung nicht linear vorkommen.

Def. Sei $\Omega \subseteq \mathbb{R}^n$ offen und $F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ eine gegebene Funktion. Eine PDE der Form

$$F(x, u, \partial_{x_1} u, \dots, \partial_{x_n} u, \partial_{x_1} \partial_{x_1} u, \dots, \partial_{x_n} \partial_{x_n} u, \dots, \partial_{x_n} \partial_{x_n} u) = 0$$

heißt PDE zweiter Ordnung.

Notation. $p_i := \partial_{x_i} u, p_{ij} := \partial^2_{x_i x_j} u$

$$M(x) := \begin{pmatrix} \frac{\partial F}{\partial p_{11}} & \cdots & \frac{\partial F}{\partial p_{1n}} \\ \vdots & & \vdots \\ \frac{\partial F}{\partial p_{n1}} & \cdots & \frac{\partial F}{\partial p_{nn}} \end{pmatrix} = M(x)^{T}.$$

Def (Typeneinteilung für PDEs der 2. Ordnung). Obige PDE zweiter Ordnung heißt

- elliptisch in x, falls die Matrix M(x) positiv o. definit ist.
- parabolisch in x, falls genau ein EW von M(x) gleich null ist und alle anderen dasselbe Vorzeichen haben.
- hyperbolisch in x, falls genau ein EW ein anderes Vorzeichen als die anderen EWe hat.

Lösungstheorie elliptischer PDEs

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt.

• $\mathcal{C}(\overline{\Omega}, \mathbb{R}^m) := \{u : \overline{\Omega} \to \mathbb{R}^m \mid u \text{ stetig}\}, \, \mathcal{C}(\overline{\Omega}) := \mathcal{C}(\overline{\Omega}, \mathbb{R}), \text{ mit Norm}\}$

$$||u||_{\mathcal{C}(\overline{\Omega},\mathbb{R}^m)} = \sup_{x \in \overline{\Omega}} ||u(x)||.$$
 (Supremumsnorm)

• $C^k(\overline{\Omega}, \mathbb{R}^m)$, $k \in \mathbb{N}$ ist der Raum aller auf Ω k-mal stetig diff'baren Funktionen $u: \Omega \to \mathbb{R}^m$, die zusammen mit ihren Ableitungen bis zur Ordnung k stetig auf $\overline{\Omega}$ fortgesetzt werden können.

$$||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{\mathcal{C}(\overline{\Omega},\mathbb{R}^m)}$$

• Sei $\alpha \in [0,1)$. $C^{0,\alpha}(\overline{\Omega},\mathbb{R}^m) = \{u \in C(\overline{\Omega},\mathbb{R}^m) \mid H_{\alpha}(u,\overline{\Omega}) < \infty\}$ mit

$$H_{\alpha}(u,\overline{\Omega}) := \sup_{x,y \in \overline{\Omega}, x \neq y} \frac{\|u(x) - u(y)\|}{\|x - y\|^{\alpha}}$$
 (Hölder-Koeffizient)

heißt Raum der glm. Hölder-stetigen Fktn zum Exponent α . Der Hölder-Koeffizient ist dabei eine Seminorm auf $\mathcal{C}^{0,\alpha}(\overline{\Omega},\mathbb{R}^m)$.

• $C^{k,\alpha}(\overline{\Omega}, \mathbb{R}^m) := \{ u \in C^k(\overline{\Omega}, \mathbb{R}^m) \mid \forall |\gamma| = k : D^{\gamma}u \in C^{0,\alpha}(\overline{\Omega}, \mathbb{R}^m) \}$ heißt **Hölder-Raum**. Eine Norm ist gegeben durch

$$||u||_{\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m)} := ||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} + \sum_{|\gamma|=k} H_{\alpha}(D^{\gamma}u,\overline{\Omega}).$$

Bem. • Jede Hölder-stetige Funktion ist gleichmäßig stetig.

- $C^{0,1}(\overline{\Omega}, \mathbb{R}^m)$ heißt Raum der Lipschitz-stetigen Funktionen.
- \bullet \mathcal{C} , \mathcal{C}^k und $\mathcal{C}^{k,\alpha}$ sind Banach-Räume mit den jeweiligen Normen.

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt. Das Gebiet Ω gehört zur Klasse $\mathcal{C}^{k,\alpha}$, wenn in jedem Punkt $x \in \partial \Omega$ eine Umgebung in $\partial \Omega$ existiert, die sich in einem geeigneten Koordinatensystem als ein Graph einer Funktion aus $\mathcal{C}^{k,\alpha}$ darstellen lässt und Ω lokal immer auf einer Seite von $\partial \Omega$ liegt.

Satz (Gauß'scher Integralsatz). Sei $\Omega \subset \mathbb{R}^n$ ein Lipschitz-Gebiet und $u \in \mathcal{C}(\overline{\Omega}, \mathbb{R}^n) \cap \mathcal{C}^1(\Omega, \mathbb{R}^n)$. Dann gilt

$$\int_{\Omega} \operatorname{div} u \, \mathrm{d}x = \int_{\Omega} \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}} \, \mathrm{d}x = \int_{\partial \Omega} \sum_{i=1}^{n} u_{i} \nu_{i} \, \mathrm{d}\rho(x) = \int_{\partial \Omega} u \cdot \nu \, \mathrm{d}\rho(x),$$

wobei ν der äußere Normalenvektor an an den Rand von Ω ist.

Problem. Wir betrachten das Randwertproblem

(RWP)
$$\left\{ \begin{array}{lcl} \mathcal{L}u & = & f & \text{in } \Omega & \text{(PDE)} \\ \mathcal{R}u & = & g & \text{auf } \partial\Omega & \text{(Randbedingung)} \end{array} \right.$$

wobei \mathcal{L} der lineare Differentialoperator

$$\mathcal{L}u = -\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u$$

mit Fktn $a_{ij}, b_i, c, f: \Omega \to \mathbb{R}, g: \partial \Omega \to \mathbb{R}$ ist, sodass $A(x) := (a_{ij}(x))$ symmetrisch ist. Als Randbedingung (RB) verlangen wir:

Dirichlet-RB:
$$u = g$$
 auf $\partial\Omega$,
Neumann-RB: $(A(x)\nabla u) \cdot \nu = g$ auf $\partial\Omega$ oder
Robin-RB: $(A(x)\nabla u) \cdot \nu + \delta u = g$ auf $\partial\Omega$.

Bem. Man kann auch auf verschiedenen Teilstücken des Randes verschiedene Bedingungen stellen.

Bem. Falls die Funktionen a_{ij} differenzierbar sind, so kann \mathcal{L} in **Divergenzform** geschrieben werden:

$$\mathcal{L}u = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} \underbrace{\left(\left(\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} a_{ij}(x) \right) + b_{i}(x) \right)}_{\tilde{b}(x) :=} \frac{\partial u}{\partial x_{i}} + c(x)u$$

Voraussetzung. Wir nehmen im Folgenden an:

• L ist gleichmäßig elliptisch, d.h.

 $= -\operatorname{div}(A(x)\nabla u) + \tilde{b}(x) \cdot \nabla u + c(x)$

$$\exists \lambda_0 > 0 : \forall \xi \in \mathbb{R}^n : \forall x \in \Omega : \xi^T A(x) \xi \ge \lambda_0 \|\xi\|^2$$

Dabei heißt λ_0 Elliptizitätskonstante.

• $a_{ij}, b_i, c, f \in \mathcal{C}(\overline{\Omega}), g \in \mathcal{C}(\partial \Omega)$

Bem. $\mathcal{L} = f$ ist elliptisch auf $\Omega \iff A(x) > 0$ (spd) für alle $x \in \Omega$

Def. Eine Fkt $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ heißt klassische Lsg vom (RWP) mit $\mathcal{R}u := u$, wenn die beiden Gleichungen in (RWP) in jedem Punkt von Ω bzw. des Randes $\partial \Omega$ erfüllt sind.

Satz (Maximumsprinzip). Sei $\Omega \subset \mathbb{R}^n$ offen, zshgd u. beschränkt. Sei $u \in \mathcal{C}^2(\omega) \cap \mathcal{C}(\overline{\Omega})$ eine Lösung vom (RWP), $f \leq 0$ in Ω und $c \equiv 0$. Dann nimmt u sein Maximum auf dem Rand $\partial \Omega$ an, d. h.

$$\sup_{x \in \overline{\Omega}} u(x) = \sup_{x \in \partial \Omega} u(x) = \sup_{x \in \partial \Omega} g(x)$$

 $\mathbf{Kor.} \ \ \mathrm{Sei} \ c \geq 0 \ \mathrm{und} \ f \leq 0. \ \mathrm{Dann} \ \mathrm{gilt} \ \sup_{x \in \overline{\Omega}} u(x) \leq \max \{ \sup_{x \in \partial \Omega} u(x), 0 \}.$

Kor (Vergleichsprinzip). Für $u_1, u_2 \in C^2(\Omega) \cap C(\overline{\Omega})$ und $c \geq 0$ gelte $\mathcal{L}u_1 < \mathcal{L}u_2$ in Ω und $u_1 < u_2$ auf $\partial\Omega$. Dann gilt $u_1 < u_2$ auf $\overline{\Omega}$.

Kor (Eindeutigkeit). Sei $c \ge 0$. Dann hat (RWP) höchstens eine Lösung $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$.

Satz. Sei Ω ein beschr. Lipschitz-Gebiet, $a_{ij}, b_i, c, f \in \mathcal{C}(\overline{\Omega}), c \geq 0$, $g \in \mathcal{C}(\partial\Omega)$. Dann besitzt (RWP) genau eine Lsg $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$.

Achtung. Es muss aber nicht $u \in \mathcal{C}^2(\overline{\Omega})$ gelten!

Differenzenverfahren

Verfahren (DV). Am Beispiel des Poisson-Problems

$$(\text{RWP}_1) \ \left\{ \begin{array}{c} -\Delta u = f & \text{in } \Omega = (0,1) \\ u(0) = g_0, u(1) = g_1 & \text{auf } \partial \Omega \end{array} \right.$$

Wir führen folgende Schritte durch:

1. Diskretisierung: Wähle $n \in \mathbb{N}$, setze $h := \frac{1}{n}$ und

$$\begin{split} \Omega_h &\coloneqq \{x_i \coloneqq ih \,|\, i=1,\dots,n-1\} \qquad \text{(innere Gitterpunkte)} \\ \partial \Omega_h &\coloneqq \{x_0=0,x_n=1\} \qquad \qquad \text{(Randpunkte)} \end{split}$$

2. Approx. der Ableitungen durch Differenzenquotienten (DQ)

$$\begin{array}{ll} u'(x_i) \approx \frac{1}{h} \left(u(x_i + h) - u(x_i) \right) & \text{(Vorwärts-DQ)} \\ u'(x_i) \approx \frac{1}{h} \left(u(x_i) - u(x_i - h) \right) & \text{(Rückwärts-DQ)} \\ u'(x_i) \approx \frac{1}{2h} \left(u(x_i + h) - u(x_i - h) \right) & \text{(zentraler DQ)} \end{array}$$

Für die zweite Ableitung ergibt sich

$$\begin{split} u''(x_i) &= (u'(x_i))' \approx \frac{1}{h} \left(u'(x_i + h) - u'(x_i) \right) \approx \\ &\approx \frac{1}{h} \cdot \left(\frac{1}{h} \left(u(x_i + h) - u(x_i) \right) - \frac{1}{h} \left(u(x_i) - u(x_i - h) \right) \right) \\ &= \frac{1}{h^2} \left(u(x_i + h) - 2 \cdot u(x_i) + u(x_i - h) \right) =: \Delta_h u \end{split}$$

Dabei heißt Δ_h der diskrete eindim. Laplace-Operator. Das diskretisierte Randwertproblem ist nun

$$(\mathrm{RWP}_1)_{\mathbf{h}} \ \left\{ \begin{array}{c} -\Delta_h u_h = f & \text{in } \Omega_h, \\ u_h(0) = g_0, u_h(1) = g_1 & \text{auf } \partial \Omega_h. \end{array} \right.$$

3. Aufstellen des linearen Gleichungssystems

$$\begin{split} \frac{1}{h^2} \left(2u_h(x_1) - u_h(x_2) \right) &= f(x_1) + \frac{g_0}{h^2} \qquad (i = 1) \\ \frac{1}{h^2} \left(-u_h(x_{i-1}) + u_h(x_i) - u_h(x_{i+1}) \right) &= f(x_i) \quad (i = 2, ..., n-2) \\ \frac{1}{h^2} \left(-u_h(x_{n-2}) + 2u_h(x_{n-1}) \right) &= f(x_{n-1}) + \frac{g_1}{h^2} \left(i = n-1 \right) \end{split}$$

Als lineares Gleichungssystem: $-\tilde{\Delta}_h \tilde{u}_h = \tilde{f}_h$ mit

$$-\tilde{\Delta}_{h} = \frac{1}{h^{2}} \begin{pmatrix} 2 & -1 & & & & 0 \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ 0 & & & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{(n-1)\times(n-1)}, \qquad \begin{aligned} & = R_{h}\mathcal{L}u(x) - \mathcal{L}_{h}R_{h}u(x) \\ & = R_{h}\mathcal{L}u(x) - \mathcal{L}_{h}R_{h$$

$$\tilde{u}_h = \begin{pmatrix} u_h(x_1) \\ \vdots \\ u_h(x_{n-1}) \end{pmatrix}, \quad \tilde{f}_h = \begin{pmatrix} f(x_1) + \frac{g_0}{h^2} \\ f(x_2) \\ \vdots \\ f(x_{n-2}) \\ f(x_{n-1}) + \frac{g_1}{h^2} \end{pmatrix}$$

Ziel. Herausfinden, was die Lösung u_h von (RWP)_h (die man durch Lösen von (LGS) erhält) mit der Lösung u zum ursprünglichen Problem (RWP) zu tun hat. Ist etwa u_h die Einschränkung von u_h oder zumindest annäherungsweise? Wenn ja, wie klein muss man hwählen, damit die Approximation gut wird?

$$(\text{RWP}) \ \left\{ \begin{array}{l} -\mathcal{L}u = f & \text{in } \Omega, \\ u = g & \text{auf } \partial \Omega \end{array} \right.$$

$$(\text{RWP})_{\text{h}} \ \left\{ \begin{array}{l} -\mathcal{L}_h u = f_h & \text{in } \Omega_h, \\ u_h = g_h & \text{auf } \partial \Omega_h \end{array} \right.$$

$$(\text{LGS}) \ \tilde{\mathcal{L}}_h \tilde{u}_h = \tilde{f}_h$$

Notation. $U_h := \{\Omega_h \to \mathbb{R}\}, \quad R_h : \mathcal{C}(\overline{\Omega}) \to U_h, \quad u \mapsto u|_{\Omega_h}$

Def. Das Differenzenverfahren (RWP)_b heißt

• konvergent von der Ordnung p, falls C > 0, $h_0 > 0$ existieren, sodass für die Lösung u von (RWP) und die Lösung u_h von (RWP)_h gilt:

$$||u_h - R_h u||_h \le Ch^p$$
 für alle $0 < h \le h_0$,

wobei $\|-\|_h$ eine Norm zu U_h ist, wie z.B. $\|u_h\|_h := \max_{n \in \mathbb{N}} |u_h(x)|$.

• konsistent von der Ordnung p, falls

$$\|\mathcal{L}_h R_h u - R_h \mathcal{L} u\|_h \le ch^p \|u\|_{\mathcal{C}^{p+2}(\overline{\Omega})} \quad \forall u \in \mathcal{C}^{p+2}(\overline{\Omega}).$$

• stabil, falls \tilde{L}_h invertierbar ist und ein $h_0 > 0$ existiert mit

$$\sup_{0< h \leq h_0} \|\tilde{\mathcal{L}}_h^{-1}\|_h < \infty, \quad \text{wobei } \|\tilde{\mathcal{L}}_h^{-1}\|_h \coloneqq \sup_{f \neq 0} \frac{\|\tilde{\mathcal{L}}_h^{-1}f\|_h}{\|f\|_h}.$$

Bem. Die ind. Matrixnorm ist $\|\tilde{\mathcal{L}}_h^{-1}\|_h = \|\tilde{\mathcal{L}}_h^{-1}\|_\infty = \max_{1 \le i \le n} \sum_{i=1}^n |l_{ij}|$.

Satz. Ist das DV (RWP)_h konsistent und stabil, so auch konvergent. Genauer gilt: Ist (RWP) $_h$ stabil und konsistent von der Ordnung pund $u \in \mathcal{C}^{p+2}(\overline{\Omega})$, dann ist (RWP)_h konvergent von der Ordnung p.

Beweis. Setze $w_h := u_h - R_h u$. Für $x \in \partial \Omega_h$ gilt dann $w_h(x) = 0$ und für $x \in \Omega_h$ gilt

$$\begin{split} \tilde{\mathcal{L}}_h w_h(x) &= \mathcal{L}_h w_h(x) = \mathcal{L}_h u_h(x) - \mathcal{L}_h R_h u(x) \\ &= f_h(x) - \mathcal{L}_h R_h u(x) = R_h f(x) - \mathcal{L}_h R_h u(x) \\ &= R_h \mathcal{L}u(x) - \mathcal{L}_h R_h u(x) \end{split}$$

$$\|w_h\|_h = \|\tilde{\mathcal{L}}_h^{-1} (R_h \mathcal{L}u - \mathcal{L}_h R_h u)\| \le \|\tilde{\mathcal{L}}_h^{-1}\|_h \cdot \|R_h \mathcal{L}u - \mathcal{L}_h R_h u\|_h$$
$$\le c_1 \cdot c_2 \cdot h^p \cdot \|u\|_{\mathcal{C}^{p+2}(\overline{\Omega})} \le Ch^p \qquad \text{für } 0 < h \le h_0.$$

Lem. Das DV (RWP₁)_h ist konsistent von der Ordnung 2. Es gilt

$$\|\Delta_h R_h u - R_h \Delta u\|_h \le \frac{1}{12} \|u\|_{\mathcal{C}^4(\overline{\Omega})} h^2 \quad \forall u \in \mathcal{C}^4(\overline{\Omega}).$$

Bem. Um zu zeigen, dass (RWP₁)_h konvergent ist, müssen wir noch zeigen, dass $\tilde{L}_h = -\tilde{\Delta}_h$ invertierbar ist und sup $\|\tilde{\Delta}_h\| < \infty$.

Def. Eine Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ heißt M-Matrix, falls

- a) $a_{ii} > 0$ für i = 1, ..., n, b) $a_{ij} \le 0$ für $i \ne j, i, j = 1, ..., n$,
- c) A invertierbar ist und d) für $A^{-1} =: B = (b_{ij})$ gilt $b_{ij} \ge 0$.

Lem. Erfülle $A \in \mathbb{R}^{n \times n}$ die Bedingungen a) und b). Zerlege A = D + L + R in eine Diagonalmatrix und strikte untere/obere Dreiecksmatrizen. Dann ist A genau dann eine M-Matrix wenn $\rho(D^{-1}(L+R)) < 1.$

Bem. Es gilt folgende Monotonie-Eigenschaft für M-Matrizen:

$$x \le y \implies A^{-1}x \le A^{-1}y.$$

Def. Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt **reduzibel** (oder zerlegbar), wenn es eine Permutationsmatrix $P \in \mathbb{R}^{n \times n}$ gibt, sodass

$$PAP^{T} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$
 mit $A_{11} \in \mathbb{R}^{k \times k}$, $0 < k < n$.

Lem (Gerschgorin). Alle EWe einer Matrix $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ liegen in der Menge

$$\bigcup_{i=1}^{n} \overline{B_{r_i}(a_{ii})} \quad \text{mit} \quad r_i := \sum_{j=1}^{n} |a_{ij}|.$$

Falls A irreduzibel ist, so liegen sie sogar in

$$\left(\bigcup_{i=1}^{n} B_{r_i}(a_{ii})\right) \cup \left(\bigcap_{i=1}^{n} \partial B_{r_i}(a_{ii})\right)$$

Def. Sei $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ eine Matrix.

• A heißt schwach diagonaldominant, falls

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \le |a_{ii}| \quad \text{für } i = 1, \dots, n$$

und ein i_0 existiert, sodass die Ungleichung strikt ist.

• A heißt diagonaldominant, falls

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| < |a_{ii}| \quad \text{für } i = 1, \dots, n$$

• A heißt irreduzibel diagonaldominant, falls A irreduzibel und schwach diagonaldominant ist.

Lem. Sei $A = (a_{i,i}) \in \mathbb{R}^{n \times n}$ eine Matrix mit $a_{i,i} > 0, i = 1, \dots, n$ und $a_{i,j} < 0, i, j = 1, \ldots, n, i \neq j$, die diagonaldominant oder irreduzibel diagonal
dominant ist. Dann ist A eine M-Matrix.

Bem. $-\tilde{\Delta}_h$ ist irreduzibel diagonal dominant, also eine M-Matrix.

Lem. Sei A eine irreduzible M-Matrix. Dann gilt $A^{-1} > 0$.

Lem. Sei $A \in \mathbb{R}^{n \times n}$ eine M-Matrix und es existiere ein Vektor v, sodass $(Av)_i \ge 1, j = 1, ..., n$. Dann gilt $||A^{-1}||_{\infty} \le ||v||_{\infty}$.

Lem.
$$\|\tilde{\Delta}_h^{-1}\|_{\infty} \leq \frac{1}{8}$$

Satz. Das DV (RWP₁)_h ist konvergent von der Ordnung 2, falls die Lösung von (RWP₁) zu $\mathcal{C}^4([0,1])$ gehört. Es gilt die Abschätzung

$$||u_h - R_h u||_{\infty} \le \frac{h^2}{96} ||u||_{\mathcal{C}^4([0,1])}.$$

Problem. Wir betrachten nun

$$(\mathrm{RWP}_2) \left\{ \begin{array}{rcl} -\Delta u & = & f & \text{in } \Omega = (0,1) \times (0,1) \\ u & = & g & \text{auf } \partial \Omega \end{array} \right.$$

1. Diskretisierung: Setze $h := \frac{1}{n}, n \in \mathbb{N}$ und

$$\begin{split} &\Omega_h \coloneqq \{(x,y) \in \Omega \,|\, x = ih, y = jh, i, j = 1, \dots, n-1\} \\ &\partial \Omega_h \coloneqq \{(x,y) \in \partial \Omega \,|\, x = ih, y = jh, i, j = 1, \dots, n-1\} \end{split}$$

2. Approximation der Ableitungen

$$\begin{split} -\Delta u(x,y) &= -\frac{\partial^2 u}{\partial x^2}(x,y) - \frac{\partial^2 u}{\partial y^2}(x,y) \\ &\approx -\frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{h^2} - \frac{u(x,y+h) - 2u(x,y) + u(x,y-h)}{h^2} \\ &= -\frac{u(x+h,y) + u(x-h,y) - 4u(x,y) + u(x,y+h) + u(x,y-h)}{h^2} =: -\Delta_h u \end{split}$$

Dabei hat der diskrete Laplace-Operator Δ_h die Form eines Differenzensterns. Gesucht ist die Lsg $u_h: \Omega_h \cup \partial \Omega_h \to \mathbb{R}$ von

$$(RWP_2)_h \left\{ \begin{array}{rcl} -\Delta_h u_h & = & f_h & \text{in } \Omega_h \\ u_h & = & g & \text{auf } \partial \Omega_h. \end{array} \right.$$

3. Aufstellen des linearen Gleichungssystems $-\tilde{\Delta}_h \tilde{u}_h = f_h$:

$$\tilde{u}_h = \begin{pmatrix} u_{11} \\ u_{12} \\ \vdots \\ u_{n-1,n-2} \\ u_{n-1,n-1} \end{pmatrix} \in \mathbb{R}^{(n-1)^2},$$

$$-\tilde{\Delta}_{h} = \frac{1}{h^{2}} \begin{pmatrix} A & -I & & & 0 \\ -I & A & -I & & & \\ & \ddots & \ddots & \ddots & \\ & & -I & A & -I \\ 0 & & & -I & A \end{pmatrix} \in \mathbb{R}^{(n-1)^{2} \times (n-1)^{2}},$$

$$A = \begin{pmatrix} 4 & -1 & & & 0 \\ -1 & 4 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 4 & -1 \\ 0 & & & -1 & 4 \end{pmatrix} \in \mathbb{R}^{n-1 \times n-1}$$

 $\boldsymbol{Lem.}\,$ Das DV $(RWP_2)_h$ ist konsistent von der Ordnung 2. Es gilt

$$\|\Delta_h R_h u - R_h \Delta u\|_h \le \frac{1}{6} \|u\|_{\mathcal{C}^r(\overline{\Omega})} h^2.$$

Lem. Das DV (RWP₂)_h ist stabil. Es gilt $\|\tilde{D}_h^{-1}\|_{\infty} \leq 1/8$.

 $\bf Satz.$ Das DV (RWP2)_h ist konvergent von der Ordnung 2, falls die Lösung von (RWP2) zu $C^4(\overline\Omega)$ gehört. Es gilt

$$||u_h - R_h u||_h \le 1/48||u||$$

Bem. Durch die Einbeziehung weiterer Gitterpunkte zur Approximation des Differentialoperators lässt sich die Konvergenzordnung erhöhen:

$$\begin{split} -\Delta_h^{(9)}u(x,y) &= \frac{1}{12h^2}\left(u(x-2h,y) - 16u(x-h,y) + 30u(x,y) \right. \\ &\quad -16u(x+h,y) + u(x+2h,y) + u(x,y-2h) - 16u(x,y-h) \\ &\quad +30u(x,y) - 16u(x,y+h) + u(x,y+2h) \approx -\Delta u(x,y) \end{split}$$

Damit erreicht man die Konsistenzordnung 4.

Situation. Sei $\Omega \subset \mathbb{R}^2$ beschränkt.

Def. • $\Omega_h := \{x, y \in \Omega \mid x/h, y/h \in \mathbb{Z}\}$ heißen innere Gitterpkte.

- Ein Punkt $z_R \in \partial \Omega$ heißt **Randgitterpunkt** (notiert $z_R \in \partial \Omega_h$), falls es einen inneren Gitterpunkt $z \in \Omega_h$ gibt, sodass $z_R = r + \alpha h e_1$ oder $z_R = z + \alpha h e_2$ mit $|\alpha| \leq 1$. Die Nachbarn N(x,y) eines Punktes (x,y) sind $(x+s_rh,y), (x-s_lh,y), (x,y+y_oh), (x,y-s_uh)$, falls $s_r,s_l,s_o,s_u \in (0,1]$ und die Verbindungsstrecken zu (x,y) in Ω liegen.
- Ein Punkt $(x, y) \in \Omega_h$ heißt **randnah**, falls (x, y) die Nachbarn $(x s_l h, y), (x + s_r h, y), (x, y s_u h), (x, y + s_o h)$ hat mit mindestens einem $s_i < 1$. Ansonsten heißt (x, y) **randfern**.

Notation. Wir haben eine Einteilung $\Omega_h = \Omega_h^{\rm rn} \sqcup \Omega_h^{\rm rf}$ der Gitterpunkte in randnahe und randferne Punkte.

Lem (Dividierte Differenzen von Newton). Für $u \in C^3([x_l, x_r]), x \in (x_l, x_r)$ gilt

$$u''(x) = \frac{2}{x_r - x_l} \left(\frac{u(x_r) - u(x)}{x_r - x} - \frac{u(x) - u(x_l)}{x - x_l} \right) + \mathcal{O}(x_r - x_l)$$

$$= \frac{2}{x_r - x_l} \left(\frac{1}{x_r - x} u(x_r) + \frac{1}{x - x_l} u(x_l) \right) - \frac{2}{(x_r - x)(x - x_l)} u(x)$$

Verfahren (Shortley-Weller-Diskretisierung).

Dadurch inspiriert approximieren wir den Laplace-Operator durch

$$\mathcal{D}_{h}u(x,y) = \frac{1}{h^{2}} \left(\frac{2u(x - s_{l}h, y)}{s_{l}(s_{r} + s_{l})} + \frac{2u(x + s_{r}h, y)}{s_{r}(s_{r} + s_{l})} + \frac{2u(x, y - s_{u}h)}{s_{u}(s_{o} + s_{u})} + \frac{2u(x, y + s_{o}h)}{s_{o}(s_{o} + s_{u})} - \left(\frac{2}{s_{l}s_{r}} + \frac{2}{s_{o}s_{u}} \right) u(x, y) \right)$$

wobe
i $x_r-x=s_rh,\ x-x_l=s_lh,\ y_o-y=s_oh,\ y-y_u=s_uh.$ Wir betrachten nun

$$(\text{RWP}_2)'_{\text{h}} \begin{cases} -\mathcal{D}_h u_h &= f_h & \text{in } \Omega_h \\ u_h &= g & \text{auf } \partial \Omega_h \end{cases}$$

$$(\text{LGS}_2)', \begin{cases} -\tilde{\mathcal{D}}_h \tilde{u}_h &= \tilde{f}_h \\ \tilde{f}_h &= f_h + g_h \end{cases}$$

$$\text{mit } g_h(x,y) = \frac{1}{h^2} \sum_{\substack{(x_N,y_N) \in N(x,y) \cap \partial \Omega_h}} S_{x_N,y_N} g(x_N,y_N)$$

wobei

$$S_{x_N,y_N} \coloneqq \begin{cases} 2/s_r(s_l + s_r) & \text{falls } (x_N, y_N) = (x + s_r h, y), \\ 2/s_o(s_o + s_u) & \text{falls } (x_N, y_N) = (x, y + s_o h), \\ 2/s_u(s_o + s_u) & \text{falls } (x_N, y_N) = (x, y - s_u h), \end{cases}$$

$$-\tilde{\mathcal{D}}_h = (d_{ij}) \quad \text{mit} \quad d_{ii} = 1/h^2 \left(\frac{2}{s_{il}s_{ir}} + \frac{2}{s_{iu}s_{io}} \right) \quad \text{und}$$

$$d_{ij} = 1/h^2 \begin{cases} -2/s_{il}(s_{il} + s_{ir}) & \text{falls } j \text{ der linke Nachbar von } i \text{ ist,} \\ -2/s_{iu}(s_{iu} + s_{io}) & \text{falls } j \text{ der untere Nachbar von } i \text{ ist,} \\ -2/s_{io}(s_{iu} + s_{io}) & \text{falls } j \text{ der obere Nachbar von } i \text{ ist,} \end{cases}$$

Lem. • Die Matrix $-\tilde{\mathcal{D}}_h$ ist eine M-Matrix.

Sei Ω ⊂ ℝ² beschränkt und gehöre zu dem Streifen
 (x₀, x₀ + d) × ℝ oder ℝ × (y₀, y₀ + d). Dann gilt ||Ď_b⁻¹|| ≤ d²/s.

Bem. Das DV (RWP₂)'_h hat in den randnahen Punkten nur die Konsistenzordnung 1. Dennoch gilt:

Satz. Sei $\Omega \subset \mathbb{R}^3$ beschränkt und Teilmenge des Streifens $(x_0, x_0 + d) \times \mathbb{R}$ oder $\mathbb{R} \times (y_0, y_0 + d)$. Dann ist das Verfahren (RWP₂)'_h konvergent von der Ordnung 2. Es gilt

$$||u_h - R_h u||_h \le (1/3h^3 + d^2/48h^2) ||u||_{\mathcal{C}^4(\overline{\Omega})}.$$

Idee. Bestimme den Wert von u bei randnahen Punkten (x,y) durch lineare Interpolation:

•
$$u(x,y) \approx \frac{s_r}{s_r + s_l} u(x - s_l h, y) + \frac{s_l}{s_r + s_l} u(x + s_r h, y)$$

•
$$u(x,y) \approx \frac{s_o}{s_u + s_o} u(x, y - s_u h) + \frac{s_u}{s_u + s_o} u(x, y + s_o h)$$

$$(RWP_2)^{"}_{h} \begin{cases} -\mathcal{D}_h u = f_h & \text{in } \Omega_h \\ u_h = g & \text{auf } \partial \Omega_h \end{cases}$$
$$(LGS_2)^{"} - \tilde{\mathcal{D}}_h \tilde{u}_h = \tilde{f}_h$$

Lem. Dieses Verfahren besitzt Konsistenzordnung (und somit Konvergenzordnung) 2.

Problem. Wir betrachten nun

(RWP₃)
$$\begin{cases} -\mathcal{L}u &= f & \text{in } \Omega = (0,1) \times (0,1) \\ u &= q & \text{auf } \partial \Omega \end{cases}$$

mit

$$-\mathcal{L}u = -(a_{11}(x, y)u_{xx} + 2a_{12}(x, y)u_{xy} + a_{22}(x, y)u_{yy})$$
$$+ b_1(x, y)u_x + b_2(x, y)u_y + c(x, y)u$$

wobei $c(x, y) \leq 0, \, \xi^T A(x, y) \xi \geq \lambda_0 \|\xi\|^2, \, \lambda_0 > 0$ und

$$A(x,y) = \begin{pmatrix} a_{11}(x,y) & a_{12}(x,y) \\ a_{21}(x,y) & a_{22}(x,y) \end{pmatrix}$$

Verfahren. 1. Diskretisierung: h = 1/n, Ω_h , $\partial \Omega_h$ wie früher.

2. Approximation:

$$u_x(x,y) \approx \frac{u(x+h,y)-u(x-h,y)}{2h}, \qquad u_y(x,y) \approx \dots$$

$$u_{xx}(x,y) \approx \frac{u(x+h,y)-2u(x,y)+u(x-h,y)}{h^2}, \quad u_{yy}(x,y) \approx \dots$$

Für die Approx. von u_{xy} haben wir mehrere Möglichkeiten: Wir könnten etwa den zentralen DQ in x- und y-Richrung verwenden und erhalten

$$\begin{split} u_{xy}(x,y) &\approx \frac{1}{4h^2} \left(u(x+h,y+h) - u(x+h,y-h) \right. \\ &\left. - u(x-h,y+h) + u(x-h,y-h) \right) \end{split}$$

Diese Annäherung hat allerdings den Nachteil, dass sie zu keiner M-Matrix führt. Stattdessen nehmen wir

$$u_{xy}(x,y) \approx \frac{1}{2h^2} \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix} \frac{1}{2h^2} \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\text{für } a_{12} \ge 0 \qquad \text{für } a_{12} < 0.$$

Wir fassen diese Approx. in folgendem 7-Stern zusammen:

$$-\mathcal{L}_h u := \frac{1}{h^2} \begin{pmatrix} a_{12}^- & |a_{12}| - a_{22} & a_{12}^+ \\ |a_{12}| - a_{11} & 2(a_{11} + a_{22} - |a_{12}|) & |a_{12}| - a_{11} \\ -a_{12}^+ & |a_{12}| - a_{22} & a_{12} \end{pmatrix}$$

$$+ \frac{1}{h} \begin{pmatrix} -b_2 \\ -b_1 & 0 & b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} c \\ \end{pmatrix}$$

Dabei ist $a_{ij}^+ \coloneqq \max(a_{ij}, 0)$ und $a_{ij}^- \coloneqq \min(a_{ij}, 0)$.

$$(RWP_3)_h \begin{cases} -\mathcal{L}_h u_h &= f_h & \text{in } \Omega_h \\ u_h &= g & \text{auf } \partial \Omega_h \end{cases}$$

$$(LGS_3) - \tilde{\mathcal{L}}_h \tilde{u}_h = \tilde{f}_h$$

Satz. Sei $|a_{12}| \leq \min(a_{11}, a_{22}), c \geq 0$ in Ω , \mathcal{L} gleichmäßig elliptisch. Falls $a_{ii} > |a_{12}| + \frac{h}{2}|b_i|$ für i = 1, 2 in Ω und $u \in \mathcal{C}^4(\overline{\Omega})$, so ist das DV (RWP₃)_h konvergent von der Ordnung 2.

Problem. (RWP₄)
$$\begin{cases} u_t(x,t) - \Delta_x u(x,t) &= f(x,t) \text{ in } \Omega = (0,1) \times (0,T) \\ u(x,0) &= g(x) \text{ für } x \in (0,1) \\ u(0,t) &= g_0(t) \text{ für } t \in [0,T] \\ u(1,t) &= g_1(t) \text{ für } t \in [0,T] \end{cases}$$

Verfahren. 1. Diskretisierung mit n Raum- und m Zeitschritten:

$$x_i = ih$$
, $h = 1/n$, $t_k = k\tau$, $\tau = T/m$, $u(x_i, t_k) \approx u_i^k$

2. Approximation der Ableitungen:

$$u_{xx}(x,t) \approx \frac{1}{h^2} (u(x-h,t) - 2u(x,t) + u(x+h,t)) =: \Delta_h u(x,t)$$

Wir wollen nun eine Lösung von

$$\begin{cases} \dot{u}_h(t) - \tilde{\Delta}_h u_h(t) &= f_h(t) \\ u_h(0) &= g_h \end{cases}$$

für alle Zeiten t mit

$$u_h(t) = \begin{pmatrix} u_h(h,t) \\ u_h(2h,t) \\ \vdots \\ u_h(1-h,t) \end{pmatrix}, \quad f_h(t) = \begin{pmatrix} f(h,t) + \frac{1}{h^2}g_0(t) \\ f(2h,t) \\ \vdots \\ f(1-h,t) + \frac{1}{h^2}g_1(t) \end{pmatrix}$$

berechnen. Dazu verwenden wir ein Einschrittverfahren, wie das expl./impl. Gauß-Verfahren oder das Crank-Nicolson-Verfahren:

(EEV)
$$\begin{cases} \frac{1}{\tau} (u_i^{k+1} - u_i^k) - \tilde{\Delta}_h u_i^k = f_i^k \\ u_i^0 = g_h \end{cases}$$
(IEV)
$$\begin{cases} \frac{1}{\tau} (u_i^{k+1} - u_i^k) - \tilde{\Delta}_h u_i^{k+1} = f_i^{k+1} \\ u_i^0 = g_h \end{cases}$$
(CNV)
$$\begin{cases} \frac{1}{\tau} (u_i^{k+1} - u_i^k) - \frac{1}{2} \tilde{\Delta}_h (u_i^k + u_i^{k+1}) = f(x_i, t_k + \frac{\tau}{2}) \\ u_i^0 = g_h \end{cases}$$

Lem. Sei $f(x,-) \in \mathcal{C}^1([0,T])$ für alle $x \in [0,1]$. Dann gilt für die Approximation von (RWP₄):

- Die Verfahren (EEV) und (IEV) besitzen einen Konsistenzfehler von $\mathcal{O}(h^2 + \tau)$, falls $u \in \mathcal{C}^4([0, 1] \times [0, T])$
- Das Verfahren (CNV) besitzt einen Konsistenzfehler von $\mathcal{O}(h^2 + \tau^2)$, falls $u \in \mathcal{C}^4([0,1] \times [0,T])$.

Lem. Es gelte $2\tau \le h^2$ für (EEV). Die Verfahren (EEV), (IEV) und (CNV) sind stabil.

Problem. Wellengleichung

$$\begin{cases} \partial_{tt}u - c^2 \partial_{xx} u = f(x,t) & \text{in } \Omega = (0,1) \times [0,T] \\ u(0,t) = g_0(t), u(1,t) = g_1(t) & \text{für } t \in [0,T] \\ u(x,0) = g_0(x), u_t(x,0) = g_1(x) & \text{für } x \in (0,1) \end{cases}$$

Verfahren. 1. Diskretisierung: $x_i = ih$, $h = \frac{1}{n}$, $t_k = k\tau$, $\tau = \frac{T}{m}$ 2. Approximation:

$$\begin{split} \partial_{xx} u(x_i, t_k) &\approx \frac{1}{h^2} \left(u(x_{i-1}, t_k) - 2u(x_i, t_k) + u(x_{i+1}, t_k) \right) \\ \partial_{tt} u(x_i, t_k) &\approx \frac{1}{\tau^2} \left(u(x_i, t_{k-1}) - 2u(x_i, t_k) + u(x_i, t_{k+1}) \right) \\ \partial_t u(x_i, 0) &\approx \frac{1}{2\tau} (u(x_i, t_1) - u(x_i, t_{-1})) \end{split}$$

Wir erhalten das lineare Gleichungssystem

$$\left\{ \begin{array}{l} \frac{1}{\tau^2}(u_i^{k-1}-2u_i^k+u_i^{k+1})-\frac{c^2}{h^2}(U_{i-1}^k-2u_i^k+u_{i+1}^k)=f_i^k \\ \qquad \qquad \qquad \text{ für } i=1,\ldots,n-1 \text{ und } k=0,\ldots,m. \\ u_0^k=g_0^k=g_0(t_k),\quad u_n^k=g_1^k=g_1(t_k), \\ u_i^0=q_{0,i}=q_0(x_i),\quad \frac{1}{2\tau}(u_i^1-u_i^{-1})=q_{1,i}=q_1(x_i) \end{array} \right.$$

Bem. Das Differenzenverfahren ...

- ① ... ist einfach in der Herleitung und Implementierung.
- (2) ... besitzt eine gute Konvergenz (z. B. Ordnung 2) bei genügend glatter Lösung.
- 😊 ... ermöglicht Adaptivität bzw. unregelm. Gitter nur schwer.

Schwache Lsgstheorie für elliptische DGLn

Def. Der L^p -Raum ist für $1 \le p < \infty$ definiert durch

$$L^p(\Omega) \coloneqq \{v: \Omega \to \mathbb{R} \,|\, \|v\|_p < \infty\} \quad \text{mit} \ \left\|v\right\|_p \coloneqq \left(\int\limits_{\Omega} |v(x)|^p \,\mathrm{d}x\right)^{1/p},$$

für $p = \infty$ durch

$$L^{\infty}(\Omega) \coloneqq \{v: \Omega \to \mathbb{R} \, | \, \|v\|_{\infty} < \infty\} \quad \text{mit} \ \ \|v\|_{\infty} \coloneqq \underset{x \in \Omega}{\operatorname{ess \, sup}} |v(x)|.$$

 $\begin{array}{ll} \textit{Bem. } (L^p(\Omega), \| - \|_p) \text{ ist ein Banachraum, für } p = 2 \text{ sogar ein} \\ \text{Hilbertraum mit Skalarprodukt } \langle u, v \rangle_{L^2(\Omega)} \coloneqq \int\limits_{\Omega} u(x) v(x) \, \mathrm{d}x. \end{array}$

Satz (Höldersche Ungleichung). Sei $u \in L^p(\Omega)$ und $v \in L^q(\Omega)$ mit $1 \le p, q, r < \infty$ und $1/p + 1/q = \frac{1}{r}$. Dann ist $uv \in L^r(\Omega)$ mit

$$||uv||_r \le ||u||_p \cdot ||v||_q$$
.

 $\bf Def.$ Die Menge aller k-malstetig differenzierbaren Funktionen auf Ω mit kompaktem Träger ist

$$\mathcal{C}^k_0(\Omega) \coloneqq \{\varphi \in \mathcal{C}^k(\Omega) \mid \operatorname{supp}(\varphi) \coloneqq \overline{\{x \in \Omega \mid \varphi(x) \neq 0\}} \text{ ist kompakt}\}.$$

Def. $\mathcal{D}(\Omega) := \mathcal{C}_0^{\infty}(\Omega)$ heißt Raum der **Testfunktionen** in Ω .

Lem (Partielle Intgration). Für $u, v \in C^1(\overline{\Omega})$ gilt

$$\int_{\Omega} v(x) \mathcal{D}_i u(x) dx = \int_{\partial \Omega} v(x) u(x) \eta_i(x) dx - \int_{\Omega} \mathcal{D}_i v(x) u(x) dx.$$

Für $u \in \mathcal{C}^k(\overline{\Omega}), \varphi \in \mathcal{C}_0^k(\Omega)$ und $\alpha = (\alpha_1, \dots, \alpha_n), |\alpha| \le k$ gilt

$$\int\limits_{\Omega} \varphi(x) \mathcal{D}^{\alpha} u(x) \, \mathrm{d}x = (-1)^{|\alpha|} \int\limits_{\Omega} \mathcal{D}^{\alpha} \varphi(x) u(x) \, \mathrm{d}x.$$

Def. $L^1_{loc}(\Omega) := \{v : \Omega \to \mathbb{R} \mid v|_K \in L^1(K) \text{ für jedes kpkte } K \subset \Omega\}$ heißt Raum der lokal integrierbaren Funktionen.

Def. Sei $u \in L^1_{\mathrm{loc}}(\Omega)$ und $\alpha \in \mathbb{N}^n$. Eine Funktion $v \in L^1_{\mathrm{loc}}(\Omega)$ heißt schwache (partielle) Ableitung von u der Ordung α (oder die Ableitung von u im distributionellen Sinn), wenn

$$\int\limits_{\Omega} \!\! \mathcal{D}^{\alpha} \varphi(x) \, \mathrm{d}x = (-1)^{|\alpha|} \int\limits_{\Omega} \!\! v(x) \, \mathrm{d}\varphi(x) x \quad \text{für alle } \varphi \in \mathcal{D}(\Omega).$$

Bem. Ist eine Funktion im klassischen Sinne diff'bar, so auch im schwachen mit derselben Ableitung.

Lem (Fundamentallemma der Variationsrechung).

Sei $u \in L^1_{loc}$ und $\int_{\Omega} u(x)\varphi(x) dx = 0$ für alle $\varphi \in \mathcal{D}(\Omega)$.

Dann gilt u(x) = 0 für fast alle $x \in \Omega$.

Kor. Die schwache Ableitung ist eindeutig bestimmt, d. h. sind $v,w\in L^1_{\mathrm{loc}}(\Omega)$ schwache Ableitungen von u, so gilt v=w f. ü. in Ω .

Bsp. Die schw. Abl. von u(x) = |x| ist $v(x) = \mathbbm{1}_{(0,\infty)} - \mathbbm{1}_{(-\infty,0)}$.

Lem. •
$$\mathcal{D}^{\alpha}(u + \lambda v) = \mathcal{D}^{\alpha}u + \lambda \mathcal{D}^{\alpha}v$$
 • $\mathcal{D}^{\alpha+\beta}u = \mathcal{D}^{\alpha}(\mathcal{D}^{\beta}u)$

Def. Der Sobolev-Raum für $1 \le p < \infty$ ist

$$W^{k,p}(\Omega) = \left\{ u \in L^p(\Omega) \mid \exists \text{ schwache Ableitung } \mathcal{D}^{\alpha} u \in L^p(\Omega) \right\}$$

$$\|u\|_{k,p} := \left(\sum_{|\alpha| \le k} \|\mathcal{D}^{\alpha} u\|_p^p\right)^{1/p}.$$

Notation. $H^k(\Omega) := W^{k,2}(\Omega)$

Satz. $(W^{k,p}(\Omega), \|-\|_{k,p})$ ist ein Banachraum.

Bem. • Auf $H^k(\Omega)$ wird durch

$$\langle u, v \rangle_{H^k(\Omega)} := \int_{\Omega} \sum_{\alpha \le k} D^{\alpha} u D^{\alpha} v \, \mathrm{d}x$$

ein Skalarprodukt definiert, das die Norm $\|-\|_{k,2}$ induziert.

• $(H^k(\Omega), \langle -, - \rangle_{H^k(\Omega)})$ ist ein Hilbertraum.

Satz ("H = W"). $W^{k,p}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ liegt dicht in $W^{k,p}(\Omega)$, d. h.

$$\overline{W^{k,p}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)}^{\|-\|_{k,p}} = W^{k,p}(\Omega).$$

Def.
$$W_0^{k,p}(\Omega) := \overline{\mathcal{D}(\Omega)}^{\|-\|_{k,p}}, \quad H_0^1(\Omega) := W_0^{1,2}(\Omega)$$

Satz. Sei Ω ein beschränktes \mathcal{C}^1 -Gebiet und $1 \leq p < \infty$. Dann existiert eine lineare stetige Abbildung $\tau: W^{1,p}(\Omega) \to L^p(\partial\Omega)$, sodass für alle $u \in W^{1,p}(\Omega) \cap \mathcal{C}(\overline{\Omega})$ gilt: $\tau(u) = u|_{\partial\Omega}$.

Def. Die Abbildung τ heißt **Spuroperator**, $\tau(u)$ heißt die **Spur** von $u \in W^{1,p}(\Omega)$ auf $\partial \Omega$.

Satz. Sei Ω ein beschränktes \mathcal{C}^1 -Gebiet. Dann gilt

$$W_0^{1,p}(\Omega) = \{ v \in W^{1,p}(\Omega) \, | \, \tau(v) = 0 \}.$$

 $\mathbf{Def.}\ \mathrm{Sei}\ (U,\left\|-\right\|_{U})$ ein Banachraum.

Der **Dualraum** von U ist $(U', ||-||_{U'})$ mit

$$U' := \{ \text{lineare, stetige Abbildungen } \psi : U \to \mathbb{R} \}$$

$$\|\psi\|_{U'} \coloneqq \sup_{u \in U \setminus \{0\}} \frac{|\psi(u)|}{\|u\|_U}.$$

Bsp. Gelte 1/p + 1/q = 1 mit $p, q \in (0, \infty)$ Die Abbildung

$$j: L^q(\Omega) \to (L^p(\Omega))', \quad f \mapsto (g \mapsto \int_{\Omega} f(x)g(x) dx)$$

ist ein isometrischer Isomorphismus.

Notation. $\langle \psi, u \rangle_{U',U} := \psi(u)$ für $\psi \in U', u \in U$.

Satz (Riesz'scher Darstellungssatz).

Sei $(H, \langle -, - \rangle_H)$ ein Hilbertraum. Dann ist $j: H \to H', \quad \psi \mapsto (\phi \mapsto \langle \psi, \phi \rangle_H)$

ein isometrischer Isomorphismus.

Def. $W^{-1,q} := (W_0^{1,p}(\Omega))', \quad H^{-1}(\Omega) := (H_0^1(\Omega))'.$

Situation. Sei $\Omega \subset \mathbb{R}^d$ beschränkt. Wir betrachten nun wieder

$$(RWP_1) \begin{cases} \mathcal{L}u = f & \text{in } \Omega \\ u = 0 & \text{auf } \partial\Omega \end{cases}$$

mit
$$\mathcal{L}u = -\sum_{i=1}^{d} \mathcal{D}_i (\sum_{j=1}^{d} a_{ij}(x)\mathcal{D}_j u) + \sum_{i=1}^{d} b_i(x)\mathcal{D}_i u + c(x)u$$

= $-\operatorname{div}(A(x)\mathcal{D}u) + b(x) \cdot \mathcal{D}u + c(x)u$.

Sei u eine Lsg von (RWP₁) und $\phi \in \mathcal{D}(\Omega)$. Dann gilt

$$\int_{\Omega} f(x)\phi(x) dx = \int_{\Omega} \mathcal{L}u\phi dx$$

$$= -\int_{\Omega} \operatorname{div}(A(x)\mathcal{D}u(x))\phi(x) dx + \int_{\Omega} (b(x) \cdot \mathcal{D}u(x) + c(x)u(x)) \cdot \phi(x) dx$$

$$= \int_{\Omega} A(x)\mathcal{D}u(x) \cdot \mathcal{D}\phi(x) dx + \int_{\Omega} (b(x) \cdot \mathcal{D}u(x) + c(x)u(x)) \cdot \phi(x) dx$$

Def. Die Funktion $u \in H_0^1(\Omega)$ heißt schwache Lösung von (RWP₁), wenn u folgende Variationsgleichung erfüllt:

$$\int_{\Omega} A(x) \mathcal{D}u(x) \cdot \mathcal{D}\phi(x) + b(x) \cdot \mathcal{D}u(x)\phi(x) + c(x)u(x)\phi(x) dx$$

$$= \int_{\Omega} f(x)\phi(x) dx \quad \text{für alle } \phi \in H_0^1(\Omega). \tag{VGL}_1$$

Problem (Allgemeines Variationsproblem). Seien Abb. $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ und $l: H_0^1(\Omega) \to \mathbb{R}$ gegeben. Gesucht: $u \in H_0^1(\Omega)$, sodass $B(u, \phi) = l(\phi)$ für alle $\phi \in H_0^1(\Omega)$.

Bem. Im obigen Setting ist $l(\phi) := \int_{\Omega} f(x)\phi(x) dx$,

$$B(u,\phi) := \int_{\Omega} A(x) \mathcal{D}u(x) \cdot \mathcal{D}\phi(x) + b(x) \cdot \mathcal{D}u(x)\phi(x) + c(x)u(x)\phi(x) \,dx$$

Def. Sei X ein Banachraum. Eine Abb. $B: X \times X \to X$ heißt

- **positiv**, falls B(u, u) > 0 für alle $u \in X \setminus \{0\}$,
- stark positiv (oder koerziv), falls $\lambda > 0$ existiert, sodass

$$\forall u \in X : B(u, u) \ge \lambda ||u||_X^2,$$

• beschränkt, falls ein $\mu > 0$ existiert, sodass

$$\forall u, \phi \in X : |B(u, \phi)| \le \mu ||u||_{Y} ||\phi||_{Y}.$$

Lem. • Die Abbildung B in (VGL_1) ' ist bilinear und beschränkt.

• Die Abbildung l in (VGL₁)' linear und stetig.

Satz. Sei Ω ein beschr. Lipschitz-Gebiet. Dann ist jede klassische Lsg $u \in \mathcal{C}^2 \cap \mathcal{C}^1(\partial \Omega)$ von (RWP₁) eine schwache Lsg von (VGL₁)'.

Satz (Lax-Milgram). Sei H ein Hilbertraum, $B: H \times H \to H$ eine beschränkte, koerzitive Bilinearform. Dann gibt es für jedes $l \in H'$ eine eindeutige Lösung $u \in H$ von $\forall \phi \in H : B(u, \phi) = l(\phi)$. Es gilt $\|u\|_H \leq 1/\lambda \|l\|_{H'}$

Lem (Poincaré-Ungleichung). Sei $\Omega \subset \mathbb{R}^d$ beschränkt. Dann existiert eine Konstante C > 0, sodass

$$\|u\|_{L^2(\Omega)} \leq C \|\nabla u\|_{L^2(\Omega,\mathbb{R}^d)} = C \left(\int_{\Omega} \sum_i |\mathcal{D}_i u|^2 \, \mathrm{d}x \right)^{1/2} \quad \forall \, u \in H^1_0(\Omega)$$

Kor. Mit
$$C_1 := (1 + C^2)^{-1/2}$$
 und $C_2 := 1$ gilt f. a. $u \in H_0^1(\Omega)$

$$C_1 \|u\|_{H^1(\Omega)} \le \|\nabla u\|_{L^2(\Omega,\mathbb{R}^d)} \le C_2 \|u\|_{H^1(\Omega)}.$$

Lem. Falls b(x) = 0 und c(x) > 0 in Ω , so ist B in (VGL₁)' koerziv.

Satz. Sei $\Omega \subset \mathbb{R}^d$ beschränkt und sei $\mathcal{L}u = -\operatorname{div}(A(x)\mathcal{D}u) + c(x)u$ glm. elliptisch, $c(x) \geq 0$ in Ω , $a_{ij}, c_i \in L^{\infty}(\Omega)$, $f \in L^2(\Omega)$. Dann besitzt (VGL₁)' eine eindeutige Lösung $u \in H_0^1(\Omega)$. Außerdem existiert ein $\hat{C} > 0$, sodass $||u||_{H'(\Omega)} \leq \hat{C}||f||_{L^2(\Omega)}$.

Bemn. • Sei $f \in H^{-1}(\Omega)$. Eine Fktn $u \in H_0^1(\Omega)$ heißt schw. Lsg von (RWP₁), falls $B(u, \phi) = \langle f, \phi \rangle_{H^{-1}(\Omega), H'_0(\Omega)} \ \forall \phi \in H'_0(\Omega)$. Gelte $b = 0, c \ge 0$, glm. Elliptizität, $c, a_{ij} \in L^{\infty}(\Omega)$. Dann ex. nach Lax-Milgram genau ein $u \in H_0^1(\Omega)$ mit

$$B(u,\phi) = \langle f, \phi \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}$$
 für alle ϕ .

• Es existiert ein $\mu_0 > 0$, sodass für alle $\mu > \mu_0$ das RWP

(RWP)
$$\begin{cases} \mathcal{L}u + \mu u = f & \text{in } \Omega \\ u = 0 & \text{auf } \partial \Omega \end{cases}$$

für alle $f \in H^{-1}(\Omega)$ eine eindeutige Lsg $u \in H_0^1(\Omega)$ besitzt.

Problem. Wir untersuchen nun das inhomogene Randwertproblem

$$(RWP_2) \begin{cases} \mathcal{L}u = f & \text{in } \Omega, \\ u = g & \text{auf } \partial\Omega \end{cases}$$

Angenommen, $q:\partial\Omega\to\mathbb{R}$ besitzt eine Fortsetzung $\tilde{q}:\overline{\Omega}\to\mathbb{R}$ mit $\tilde{q}|_{\partial\Omega}=q$. Dann ist $u\in\mathcal{C}^2(\Omega)\cap\mathcal{C}(\overline{\Omega})$ genau dann eine Lösung von (RWP₂), wenn $v := u - \tilde{g} \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ eine Lösung von

(RWP₂),
$$\begin{cases} \mathcal{L}v = f - \mathcal{L}\tilde{g} & \text{in } \Omega, \\ v = 0 & \text{auf } \partial\Omega \end{cases}$$

ist. Schwache Formulierung von (RWP₂)': Ges. ist $v \in H'_0(\Omega)$ mit

$$\int_{\Omega} (A(x)\mathcal{D}v(x) \cdot \mathcal{D}\phi(x) + b(x) \cdot \mathcal{D}v(x)\phi(x) + c(x)v(x)\phi(x)) dx$$

$$= \int_{\Omega} f \cdot \phi dx + \int_{\Omega} (A(x)\mathcal{D}\tilde{g} \cdot \mathcal{D}\phi + b \cdot \mathcal{D}\tilde{g}\phi + c\tilde{g}\phi) dx \quad \forall \phi \in H_0^1(\Omega).$$

Voraussetzungen: $a_{ij}, b_i, c \in L^{\infty}(\Omega), f \in L^2(\Omega), \tilde{g} \in \mathcal{C}(\overline{\Omega}) \cap H^1(\Omega).$ Gesucht ist also ein $u \in U := \{w \in H^1(\Omega) \mid \tau(w) = q\}$ mit

$$\underbrace{\int\limits_{\Omega} A(x)\mathcal{D}u\cdot\mathcal{D}\phi + b\mathcal{D}u\phi + cu\phi\,\mathrm{d}x}_{B(u,\phi):=} = \underbrace{\int\limits_{\Omega} f\phi\,\mathrm{d}x}_{l(\phi):=} \quad \forall\,\phi\in H^1_0(\Omega). \quad (\mathrm{VGL}_2) \quad B_n(u_n,\phi) = \sum_{i=1}^{d_n} \gamma_i B(w_i,\phi)$$

Satz. Sei $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ beschränkt und koerziv. Dann besitzt (VGL₂) genau dann eine eindeutige Lösung $u \in U$, wenn ein $u_0 \in H^1(\Omega)$ existiert, sodass $\tau(u_0) = g$.

Problem. Wir betrachten nun die Randbedingung

(RWP₃)
$$\begin{cases} \mathcal{L}u &= f \text{ in } \Omega, \\ A(x)\mathcal{D}u \cdot \nu + \mu u &= g \text{ auf } \partial\Omega \end{cases}$$

Falls $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ ein Lösung ist und $\phi \in \mathcal{C}^{\infty}(\overline{\Omega})$, so gilt

$$\int_{\Omega} f \phi \, dx = -\int_{\Omega} \operatorname{div}(A(x)\mathcal{D}u)\phi + b\mathcal{D}u\phi + cu\phi \, dx$$

$$= -\int_{\partial\Omega} A(x)\mathcal{D}u \cdot \nu\phi \,\mathrm{d}s + \int_{\Omega} A(x)\mathcal{D}u\mathcal{D}\phi \,\mathrm{d}x + \int_{\Omega} b(x)\mathcal{D}u\phi \,\mathrm{d}x + \int_{\Omega} cu\phi \,\mathrm{d}x.$$

Aus der Randbedingung bekommen wir

$$\int_{\partial\Omega} A(x) \mathcal{D}u \cdot \nu \phi \, \mathrm{d}s + \mu \int_{\partial\Omega} u \phi \, \mathrm{d}s = \int_{\partial\Omega} g \phi \, \mathrm{d}s.$$

Zusammengesetzt erhalten wir die Variationsgleichung

$$\mu \int\limits_{\partial\Omega} u\phi \,\mathrm{d}s + \int\limits_{\Omega} A(x) \mathcal{D}u \mathcal{D}\phi + b(x) \cdot \mathcal{D}u\phi + c(x) u\phi \,\mathrm{d}x = \int\limits_{\Omega} f\phi \,\mathrm{d}x + \int\limits_{\partial\Omega} g\phi \,\mathrm{d}s.$$

Wegen Dichtheit gilt diese Gleichung nicht nur für $\phi \in C^{\infty}(\overline{\Omega})$ sondern allgemeiner für $\phi \in H^1(\Omega)$.

Def. Sei $\mu \in \mathbb{R}$, $f \in L^2(\Omega)$, $g \in L^2(\partial \Omega)$. Eine Fktn $u \in H^1(\Omega)$ heißt schwache Lösung von (RWP₃), falls sie folgende Gleichung erfüllt:

$$\mu \smallint_{\partial\Omega} u\phi \,\mathrm{d}s + \smallint_{\Omega} A \mathcal{D}u \mathcal{O}\phi + b \mathcal{D}u\phi + cu\phi \,\mathrm{d}x = \smallint_{\Omega} f\phi \,\mathrm{d}x + \smallint_{\partial\Omega} g\phi \,\mathrm{d}s \quad \forall \, \phi \in H^1(\Omega)$$

Gegeben: Hilbertraum $H, B: H \times H \to \mathbb{R}$ eine beschränkte, koerzive Bilinearform, $l: H \to \mathbb{R}$ linear, stetig.

Gesucht: ist $u \in H$ mit $\forall \phi \in H$: $B(u, \phi) = l(\phi)$ (VGL).

Idee: Seien $U_n \subset H$ ein normierter Raum mit $\dim(U_n) = d_n < \infty$, $B_n: U_n \times U_n \to \mathbb{R}$ eine beschränkte, koerzive Bilinearform, $l_n \in U_n'$ Gesucht ist $u_n \in U_n$ mit $\forall \phi \in U_n : B(u_n, \phi) = l_n(\phi)$ (VGL)_n

Fragen: Wie wählt man U_n , B_n und l_n so, dass $u_n \xrightarrow[n \to \infty]{} u$, wobei u die Lösung von (VGL) ist? Wie berechnet man die Lösung u_n von $(VGL)_n$?

Def. Die Approximation von (VGL) mittels (VGL)_n mit $U_n \subset H$ und $B_n = B|_{U_n \times U_n}$ heißt konforme Approximation von (VGL). Eine solche Methode wird als Verfahren von Ritz bezeichnet.

Sei $\{w_1, \ldots, w_{d_n}\}$ eine Basis von U_n und sei u_n eine Lösung von (VGL)_n.

$$u_n = \sum_{i=1}^{d_n} \gamma_i w_i$$

$$B_n(u_n,\phi) = \sum_{i=1}^{d_n} \gamma_i B(w_i,\phi)$$

$$\sum_{j=1}^{d_n} \gamma_j B(w_j, w_i) = l(w_i) \text{ für } i = 1, \dots, d_n$$

$$\hat{B}\gamma = \hat{l} \text{ mit } \hat{B} = (B_{ij}) \text{ mit } B_{ij} = B(w_j, w_i),$$

 $\hat{l} = (l_n(w_1), \dots, l_n(w_{d_n}))^T \text{ (Galerkin-Gleichung)}$

Satz. Für die Lösungen u_n der konformen Approximation (VGL)_n und die Lösung u von (VGL) gilt

$$||u_n - u||_H \le c \left(\inf_{v \in U_n} ||u - v||_H + ||l_n - l||_{U'_n} \right)$$

Folgerung. Es genügt, U_n und l_n so zu wählen, dass

•
$$\forall u \in H : \inf_{v_n \in U_n} ||u - v_n||_H \xrightarrow[n \to \infty]{} 0$$
 und

•
$$||l_n - l||_{U'_n} \xrightarrow[n \to \infty]{} 0.$$

Wahl von U_n :

• Eigenfunktionen: $\mathcal{L}w_i = \lambda_i w_i$

Bsp.

$$\begin{cases}
-u_{xx} = f & \text{in } \Omega = (0,1) \\
u(u) = u(1) = 0
\end{cases}$$

Die Eigenfunktionen sind $w_j(x) = \sin(\pi j x)$ für j > 0. Wir setzen $U_n = \text{span}\{w_i \mid j = 1, \dots, n\}.$

3)
$$0 = x_0 < x_1 < \ldots < x_n < x_{n+1} = 1$$
 $h = \frac{1}{n+1}$, $x_i = ih$. $U_n = \{v \in \mathcal{C}(0,1) \mid v \mid_{[x_{i-1},x_i]} \in \mathbb{P}_1[X], i = 1,\ldots,n+1, v(0) = v(1) = 0\}$

Hutfunktionen:

$$w_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{h} & \text{falls } x \in (x_{j-1}, x_{j}] \\ \frac{x_{j+1} - x}{h} & \text{falls } x \in [x_{j}, x_{j+1}) \\ 0 & \text{sonst.} \end{cases}$$

$$\hat{B} = \frac{1}{h} \begin{pmatrix} 2 & -1 & & & & 0 \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ 0 & & & & -1 & 2 \end{pmatrix}, \quad l_n(w_j) = hf(x_j)$$

Wenn wir also die Hutfunktionen als Basisfunktionen wählen, so erhalten wir das finite-Differenzen-Verfahren.

Methode der finiten Elementen

$$(VGL) \begin{cases} B(u,\phi) &= l(\phi) & \forall \phi \in H \\ u &\in H \end{cases}$$
$$(VGL)_n \begin{cases} B_n(u_n,\phi) &= l_n(\phi) & \forall \phi \in U_n \subset H \\ u_n &\in U_n \end{cases}$$

Idee. Wähle als Ansatzfunktionen zur Approximation von (VGL) mittels (VGL)_n eine Zusammensetzung von auf endlich vielen Teilstücken von Ω definierten Funktionen.

Bem. Als Teilgebiete verwendet man in \mathbb{R}^1 regelmäßige Teilintervalle, in \mathbb{R}^2 Dreiecke oder Rechtecke und in \mathbb{R}^3 Tetraeder. Als lokale Ansatzfunktionen über den Teilgebieten verwenden wir Polynome. Globale Ansatzf
ktn über Ω sind lokale Ansatzfktn mit best. Glattheitsbedingungen am Rand der Teilgebiete.

Def. Ein finites Element in \mathbb{R}^d ist ein Tripel (K, P, Σ) mit

- $K \subset \mathbb{R}^d$ ist kompakt, ∂K ist Lipschitz-stetig.
- P ist ein endlichdim. lin. Raum von Funktionen $p \in \mathcal{C}^s(K,\mathbb{R})$
- $\Sigma = \{b_1, \ldots, b_m\}$ mit $b_i \in (\mathcal{C}^s(K, \mathbb{R}))'$ ist *P*-unisolvent, d. h.

$$\forall \alpha \in \mathbb{R}^m : \exists! p \in P : b_i(p) = \alpha_i, j = 1, \dots, m$$

Bem. Σ ist genau dann P-unisolvent, falls Σ eine Basis von $P' \subset (\mathcal{C}^s(K,\mathbb{R}))'$ ist.

Bemn. • Sei $\Sigma = \{b_1, \ldots, b_m\}$ P-unisolvent. Dann sind $b_1, \ldots b_m$ linear unabhängig.

- Sei $p_j \in P$ so gewählt, dass $b_i(p_j) = \delta_{ij}$. Dann ist $\{p_1, \dots, p_m\}$ eine Basis von P.
- Sei $\{p_1, \ldots, p_m\}$ eine Basis von P und seien $b_i \in (\mathcal{C}^s(K, \mathbb{R}))'$ mit $b_i(p_j) = \delta_{ij}, i, j = 1, \dots, m$. Dann ist $\{b_1, \dots, b_m\}$ P-unisolvent.

Def. Seien $a_1, \ldots, a_{d+1} \in \mathbb{R}^d$. Dann heißt

$$K = \{x = \sum_{j=1}^{d+1} \mu_j a_j \mid 0 \le \mu_j \le 1, \ j = 1, \dots, d+1, \mu_1 + \dots + \mu_{d+1} = 1\} \subset \mathbb{R}^d$$

$$\bullet \ \partial \Omega = \bigcup_{i=1}^N K_i, \ K_i \ \text{ist ein d-Simplex}$$

$$\bullet \ \text{int}(K_i) \cap \text{int}(K_j) = \emptyset \ \text{für } i \ne j$$

ein d-Simplex mit Ecken a_1, \ldots, a_{d+1} . Dabei heißen μ_1, \ldots, μ_{d+1} baryzentrische Koordinaten von x. Der d-Simplex K heißt nicht entartet, falls a_1, \ldots, a_{d+1} affin unabhängig sind.

 $K = \text{Dreieck mit den Ecken } a_1, a_2, a_3 \in \mathbb{R}^2$ $P = \{ \gamma_1 x_1 + \gamma_2 x_2 + \gamma_3 \mid \gamma_i \in \mathbb{R}, (x_1, x_2)^T \in K \} \Sigma = \{ b_1, b_2, b_3 \} \text{ mit }$ $b_1(p) = p(a_1), b_2(p) = p(a_2), b_3(p) = p(a_3)$ Wenn K nicht entartet ist, so ist Σ *P*-unisolvent.

Def. Das Simplex mit den Ecken $a_{d+1} = 0$, $a_i = e_i \in \mathbb{R}^d$, $j = 1, \dots, d$ heißt d-Einheitssimplex.

Lem. Jedes nicht entartete d-Simplex K ist affin äquivalenz zum d-Einheitssimplex \hat{K} , d. h. es gibt genau eine Abbidung $F: \hat{K} \to K, \ \hat{x} \mapsto A_K \hat{x} + b_K$ mit einer invertierbaren Matrix A_K , sodass $F(e_i) = a_i$ und $F(0) = a_{d+1}$.

Def. (K, P, Σ) heißt simpliziales finites Element vom Lagrange-Typ, falls

- K ist eine d-Simplex.
- $P = P_k$ ist die Menge aller Polynome zum Grad k in d Variablen.
- $\Sigma = \{b : P \to \mathbb{R} \mid b(p) = p(a)\}$ mit

$$a \in \mathcal{K}_k = \{x = \sum_{j=1}^{d+1} \mu_j a_j \mid \sum \mu_j = 1, \ \mu_j \in \{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\} \}$$

 $\hat{x} = (x_1, x_2)^T = \mu_1(\hat{x})\hat{a}_1 + \mu_2(\hat{x})\hat{a}_2 + \mu_3(\hat{x})\hat{a}_3$ Es gilt

$$\begin{split} \mu_1(\hat{x}) &= x_1 = \hat{p}_1(\hat{x}), \\ \mu_2(\hat{x}) &= x_2 = \hat{p}_2(\hat{x}), \\ \mu_3(\hat{x}) &= 1 - \mu_1(\hat{x}) - \mu_2(\hat{x}) = 1 - x_1 - x_2 = \hat{p}_3(\hat{x}). \end{split}$$

Allgemein: $\mathcal{K}_1 = \{\hat{a}_1, \dots, \hat{a}_{d+1}\}$

$$\hat{x} = (\mu_1(\hat{x}), \dots, \mu_d(\hat{x}))^T = (x_1, \dots, x_d)^T \text{ mit } \sum_{i=1}^{d+1} \mu_j(\hat{x}) = 1$$

$$\hat{p}_j(\hat{x}) := \mu_j(\hat{x}), \ j = 1, \dots, d+1$$

$$\hat{p}_j(\hat{a}_i) = \delta_{ij}, \ i, \ j = 1, \dots, d+1$$

Dann ist $\{\hat{p}_1, \dots, \hat{p}_{d+1}\}$ die kanonische Basis von $P = P_1$.

Allgemein:
$$\mathcal{K}_2 = \{\hat{a}_i | i = 1, \dots, d+1\} \cup \{\frac{\hat{a}_i + \hat{a}_j}{2} | 1 \le i < j \le d+1\}$$

$$\hat{x} = \sum_{i=1}^{d+1} \mu_j(\hat{x})\hat{a}_j \text{ mit } \mu_{d+1}(\hat{x}) = 1 - \mu_1(\hat{x}) - \dots - \mu_d(\hat{x})$$

Dann ist $\hat{p}_j(\hat{x}) = \mu_j(\hat{x})(2\mu_j(\hat{x}) - 1), j = 1, \dots, d + 1,$ $\hat{p}_{ij}(\hat{x}) = 4\mu_i(\hat{x})\mu_j(\hat{x}), 1 \le i < j \le d+1$ eine Basis von $P = P_2$

Ziel. Finde endlichdimensionalen Raum U_n und eine Basis davon.

Def. Sei $\Omega \subset \mathbb{R}^d$ ein beschränktes, polygonal berandetes Gebiet. Eine **Triangulierung** von Ω mit simplizialen Elementen vom Lagrange-Typ ist eine endliche Menge $T(\partial\Omega) = \{(K_i, P(K_i), \Sigma(K_i)) | i = 1, \dots, N\}$ mit

- Jeder Rand von K_i , d. h. jedes (d+1)-dimensionale Simplex mit d Eckpunkten von K_i ist entweder Teil des Gebietrandes $\partial\Omega$ oder der vollständige Rand eines anderen Simplex K_i .

Def. Ein Raum der linearen finiten Elemente zu einer Triangulierung $T(\partial\Omega)$ ist definiert durch

$$U_n = \{ v \in \mathcal{C}(\partial\Omega) \mid v |_{K_i} \in \mathbb{P}_1(K_i) \text{ für } i = 1, \dots, N \}.$$

Satz (Lineare Finite Elemente).

- Sei K ein nichtentarteter d-Simplex mit Ecken a_1, \ldots, a_{d+1} . Dann ist durch die Vorgabe von $p(a_i)$, j = 1, ..., d + 1 ein Polynom $p \in \mathbb{P}_1(K)$ eindeutig bestimmt. Für alle $p \in \mathbb{P}_1(K)$ gilt $p(x) = \sum_{j=1}^{d+1} p(a_j)\mu_j, x \in K.$
- Sind $\tilde{a}_i \in \mathcal{K}_1, j = 1, \ldots, n$ die Knoten der Triangulierung, so ist eine Funktion $v \in U_n$ durch die Vorgabe von Funktionswerten $v(\tilde{a}_i)$ eindeutig definiert. Es gilt $U_1 \subset H^1(\Omega)$.

• Eine Basis von U_n ist gegeben durch die Funktionen $p_i \in U_n$ mit $p_i(\tilde{a}_i) = \delta_{i,i}$ für $i, j = 1, \dots, n$. Insbesondere gilt dim $U_n = n$.

Bem. Sei K ein d-Simplex mit Ecken $a_1, \ldots, a_{d+1} \in \mathbb{R}^d$,

$$\mathcal{K}_2 = \{ x = \sum_{j=1}^{d+1} \mu_j a_j \mid \sum_{j=1}^{d+1} \mu_j = 1, \ \mu_j \in \{0, \frac{1}{2}, 1\} \} =$$

 $\{a_1,\ldots,a_{d+1}\}\cup\{a_{ij}:=\frac{a_i+a_j}{2}\mid 1\leq i< j\leq d+1\}$. Dann ist $p\in\mathbb{P}_2(K)$ eindeutig bestimmt durch seine Werte an den Knotenpunkten aus K_2 . Somit gilt

$$\dim(\mathcal{K}_2) = (d+1) + {d+1 \choose 2} = \frac{1}{2}(d+1)(d+2)$$

Satz (Allgemeiner Finite-Elemente-Raum). Sei $T(\partial\Omega) = \{(K_i, P(K_i), \Sigma(K_i)) \mid i = 1, \dots, N\}$ eine zulässige

Triangulierung und $\mathcal{K}_k = \bigcup_{i=1}^{N} \mathcal{K}_k(K_i) = \{\tilde{a}_i \mid i=1,\ldots,N\}$ das

Lagrange-Gitter k-ter Ordnung, wobei

$$\mathcal{K}_k = \{ x = \sum_{j=1}^{d+1} \mu_j a_j^i \mid \sum_{j=1}^{d+1} \mu_j = 1, \ \mu_j \in \{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\} \}$$

und a_i^i die Eecken von K_i sind. Dann ist durch Vorgabe von $v|_{\mathcal{K}_k}$ eindeutig ein $v \in U_n \subset H^1(\Omega)$ mit $U_n = \{v \in \mathcal{C}(\partial\Omega) \mid v|_{K_i} \in \mathbb{P}_k(K_i), i = 1, \dots, N\}$ bestimmt. Eine Basis von U_n ist durch $p_j \in U_n$ mit $p_j(\tilde{a}_i) = \tilde{b}_{ij}$, $i, j = 1, \ldots, n$ gegeben.

- 1. Eingabe und Beschreibung des RWPs.
- 2. Generierung eines Gitters (Zerlegung des Gebiets Ω)
- 3. Erzeugung eines endlich-dimensionalen Problems, d. h. Bereitstellung der Koeffizientenmatrix und der rechten Seite (der Galerkin-Gleichung) im Ritz-Verfahren
- 4. Lösung der Galerkin-Gleichung
- 5. Bewertung des Ergebnisses (Fehlerabschätzungen) und eventuell Wiederholung der Schritte 2-5.
- 6. Aufbereitung der erhaltenen Ergebnisse, graphische Darstellung

Sei $u \in H$ die schwache Lösung von $B(u, \phi) = l(\phi) \ \forall \phi \in H$, $u_n \in U_n$ die Näherungslösung mit $B_n(u_n, \phi) = l_n(\phi) \ \forall \phi \in U_n$. Wir wissen bereits: $||u - u_n||_H \le c(\inf_{v \in U_n} ||u - v|| + ||l_n - l||_{U'_n}).$

Problem: Wir suchen $v \in U_n$, sodass $||u - v||_{U_n}$ möglichst klein ist, wobei wir $u \in H$ nicht kennen.

Idee: Betrachte den Operator $\pi: H \to U_n, \ w \mapsto \pi w$, sodass $||w - \pi w||_H$ klein für alle $w \in H$ ist

Def. Sei (K, P, Σ) ein finites Element. Dann heißt $\pi_K w$ *P*-Interpolierende eine Funktion $w \in \mathcal{C}^s(K)$, falls

- $\pi_K w \in P$
- $b_i(\pi_K w) = b_i(w)$

Bem. • Für Lagrange-FE ist s = 0.

- $w(\tilde{a}_i) = b_i(w) = b_i(\pi_K w) = \pi_K w(\tilde{a}_i)$
- $\{p_1, \ldots, p_m\}$ ist eine Basis von P, d. h. $b_i(p_i) = \delta_{ij}$. Folglich ist $\pi_K w = \sum_{i=1}^m b_i(w) p_i$ $\bullet \ \forall p \in P : \pi_K p = p$

Def. Sei U_n ein FE-Raum zu einer Triangulierung $T(\Omega)$ und sei $\{p_1,\ldots,p_n\}$ die kanonische Basis von U_n , d. h. $b_i(p_i)=\delta_{ij}$. Dann heißt $\Pi \omega U_n$ -Interpolierend von $\omega \in \mathcal{C}^s(\partial \Omega)$, falls

$$\Pi\omega = \sum_{i=1}^{n} b_i(\omega) p_i \in U_n.$$

Lem. Für alle $K_i \in T(\partial\Omega)$ und alle $\omega \in \mathcal{C}^3(\partial\Omega)$ gilt $\begin{array}{l} (\Pi\omega)|_K = \Pi_{K_i}\omega|_{K_i} \text{ und somit} \\ \|\omega - \Pi\omega\|_{H'(\Omega)} = \sum_{K_i \in T(\partial\Omega)} \|\omega - \Pi_{K_i}\omega\|_{H'(K_i)}. \end{array}$

Lem. Sei $F: \hat{K} \to K$ mit $F(\hat{x}) = A\hat{x} + b$, mit A invertierbar. Dann gilt für alle $l \in \mathbb{N}$:

• Es existiert eine Konstante c > 0, sodass

$$|v \circ F|_{H^l(\hat{K})} \le c ||A||_2^l \frac{1}{\sqrt{|\det(A)|}} |v|_{H^l(K)}$$

$$|\hat{v} \circ F^{-1}|_{H^l(K)} \le c ||A^{-1}||_2^l \sqrt{|\det(A)|} |\hat{v}|_{H^l(\hat{K})}$$

für alle $v \in H^l(K)$ bzw. $\hat{v} \in H^l(\hat{K})$ gibt, wobei

$$|v|_{H^1(K)} \coloneqq \left(\int_K \sum_{|\alpha|=l} \|\mathcal{D}^{\alpha} v\|^2 \, \mathrm{d}x \right)^{1/2}.$$

• $v \in H^l(K) \iff \hat{v} \in H^l(\hat{K})$

Def. Sei K ein d-Simplex mit den Ecken a_1, \ldots, a_{d+1} .

- $h(K) := \max |a_i a_j|$ heißt **Durchmesser** von K
- $\rho(K) = 2\sup\{R > 0 \mid \exists x \in K : B_R(x) \subseteq K\}$ heißt Innendurchmesser von K.
- $\sigma(K) = h(K)/\rho(K)$

Lem. Sei K affin äquivalent zu \hat{K} vermöge $F: \hat{K} \to K$ mit $F(\hat{x}) = A\hat{x} + b$. Dann gilt:

$$||A||_2 \le h(K)/\rho(\hat{K}), \quad ||A^{-1}||_2 \le h(\hat{K})/\rho(K).$$

Lem. Sei $k \geq 0$. Dann existiert eine Konstante c > 0, sodass

$$\inf_{\hat{p} \in P_k(\hat{K})} \|\hat{v} - \hat{p}\|_{H^{k+1}(\hat{K})} \le c|\hat{v}|_{H^{k+1}(\hat{K})}.$$

Satz (Abschätzung des lokalen Interpolationsfehlers). Seien $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$ ein finites Element vom Lagrange-Typ. Dann existiert eine Konstante $c_K > 0$, sodass für alle zu $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$ affin äquivalente Elemente $(K, P(K), \Sigma(K))$ und für alle $v \in H^{k+1}(K)$ gilt:

$$|v - \Pi_k v|_{H^r(K)} \le c_K \frac{h(K)^{k+1}}{\rho(K)^r} |v|_{H^{k+1}(K)}$$

falls $0 \le r \le k+1$ und $H^{k+1}(\hat{K}) \hookrightarrow \mathcal{C}^s(\hat{K})$ $(s \le k+1-\frac{d}{2})$, $\mathbb{P}_k(\hat{K}) \subseteq P(\hat{K}) \subset H^r(\hat{K}).$

Im Beweis des Satzes wird klar: Π_k ist der P_K -Interpolationsoperator, da $\Pi_K v \in P(K)$, $b_i(\Pi_k v) = b_i(v).$

Kor. Seien die Voraussetzungen des letzten Satzes für das finite Element $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$ erfüllt. Sei eine Familie von finiten affin äquivalenten Elementen $(K, P(K), \Sigma(K))$ gegeben. Dann existiert eine Konstante $\tilde{c}_K > 0$, sodass für alle Elemente der Familie $h(K) \leq 1$ und für alle $v \in H^{k+1}(K)$ gilt:

$$||v - \Pi_k v||_{H^{k+1}(K)} \le \tilde{c}_K \frac{h_(K)^{k+1}}{\rho(K)^r} |v|_{H^{k+1}(K)}$$
$$= \tilde{c}_K \sigma(K)^r h(K)^{k+1-r} |v|_{H^{k+1}(K)}.$$

Bsp.

	k = 1	k=2
Lagrange FEM $(s=0)$	Lagrange-Typ (1)	Lagrange-Typ (2)
Regularität für v	$H^2(K)$	$H^3(K)$
Beschr. für $d < 2(k+1)$	$d \leq 3$	$d \leq 5$
Beschr. für r	$0 \le r \le 2$	$0 \le r \le 3$
$ v - \Pi v _{H^r(K)}$	$O(h^{2-r})$	$O(h^{3-r})$

 $H'_0(\Omega) \subseteq U \subseteq H^1(\Omega)$, U ist der Lösungsraum Voraussetzungen:

- $\partial\Omega$ ist ein Polyeder und \mathcal{T} ist eine Familie von Triangulierungen $T_n(\partial\Omega)$, wobei $\partial\Omega = \bigcup K$. Es sei \mathcal{T} regulär, d. h. es $K \in T_n(\partial \Omega)$ existiert eine Konstante $\sigma > 0$ (unabhängig von h), sodass $\frac{h(K)}{\rho(K)} \leq \sigma$ für alle $K \in T_n(\partial\Omega)$ und $h_n = \max_{K \in T_n(\partial\Omega)} h(K) \xrightarrow[n \to \infty]{} 0.$
- Alle FE $(K, P(K), \Sigma(K))$ der Familie \mathcal{T} sind affin äquivalent zu einem Referenzelement $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$
- Sei $U_n \subset \mathcal{C}(\partial\Omega)$ ein FE-Funktionenraum
- Für k+1 > r > 0 gilt $H^{k+1}(\hat{K}) \hookrightarrow \mathcal{C}(\hat{K})$, $\mathbb{P}_K(\hat{K}) \subseteq P(\hat{K}) \subset H^k(\hat{K}).$

Satz. Seien obige Voraussetzungen erfüllt. Sei Π_n der zur Triangulierung $T_n(\partial\Omega)$ gehörende globale Interpolationsoperator. Dann existert eine Konstante c > 0, sodass für alle $v \in H^{k+1}(\Omega) \cap U$

$$\left(\sum_{K \in T_n(\partial \Omega)} \|v - \Pi v\|_{H^l(K)}^2\right)^{1/2} \le ch_n^{k+1-l} |v|_{H^{k+1}(\Omega)}$$

Bemn. • Für r=0 gilt $U_n\subset L^2(\Omega)$ (da $U_n\subset C(\Omega)$ und Ω beschränkt). Es folgt $\Pi_n v \in L^2(\Omega)$, also

$$\|v - \Pi_n v\|_{L^2(\Omega)} = \left(\int\limits_{\Omega} |v - \Pi_n v|^2 \,\mathrm{d}x\right)^{1/2} = \sum\limits_{K \in T_n(\partial \Omega)} \|v - \Pi_K v\|_{L^2(K)}^2 \underbrace{\text{Triangulierung von}}_{N} \|v\|_{H^{k+1}(\Omega)}$$

• Für r=1 gilt $U_n\subset H^1(\Omega)$, folglich $\Pi_n v\in H^1(\Omega)$. Somit

$$\|v - \Pi v\|_{H^1(\Omega)} = \left(\sum_{K \in T_n(\partial \Omega)} \|v - \Pi_K v\|_{H^1(K)}^2\right)^{1/2} \le ch_n^k |v|_{H^{k+1}(\Omega)}$$
• $\operatorname{int}(K_i) \cap \operatorname{int}(K_j) = \emptyset$ für $i \ne j$
• $\operatorname{Jede Seite von } K_i$ ist entweder ein Teil von $\partial \Omega$ oder die Seite von

Satz (Konvergenz der konformen Approximation). Seien die Voraussetzungen (V1)-(V3) und (V4) mit r=1 erfüllt. Dann gilt für die Lösung u von (VGL) und die Lösung u_n der konformen Approximation $(VGL)_n$ mit $l_n = l|_{U_n}$ die Abschätzung $||u - u_n||_{H^1(\Omega)} \le c_0 h_n^k |u|_{H^{k+1}(\Omega)}$ für ein $c_0 > 0$, falls $u \in H^{k+1}(\Omega)$.

Bem. Für $k=1, u\in H^2(\Omega)$ ist die Konvergenzordnung 1.

Bem.
$$||u - u_n||_{L^2(\Omega)} \le ||u - u_n||_{H^1(\Omega)} \le c_0 h_n^k |u|_{H^{k+1}(\Omega)}$$

 $||u - \Pi_n u||_{L^2(\Omega)} \le C h_n^{k+1} |u|_{H^{k+1}(\Omega)}$

 \mathbf{Satz} (Lemma von Aubin-Nitsche). Seien U und H Hilberträume mit einer stetigen injektiven Einbettung $E: U \to H, U_n \subset U$ ein endlichdim. Teilraum. Sei $B: U \times U \to \mathbb{R}$ eine beschränkte, koerzitive Bilinearfor und $l \in U'$. Sind $u \in U$, $u_n \in U_n$ Lösungen von

$$B(u, \phi) = l(\phi) \,\forall \phi \in U, \quad B(u_n, \phi) = l_n(\phi) \,\forall \phi \in U_n,$$

so gilt

$$||E(u-u_n)||_H \le c_B ||u-u_n||_U \sup_{r \in H\setminus\{0\}} \frac{\inf_{w \in U_n} ||w(r)-w||_U}{||r||_H},$$

wobei $w(r) \in U$ die Lösung des adjungierten Problems

$$B(\phi, w(r)) = \langle r, E(\phi) \rangle_{\mathcal{H}} \ \forall \phi \in U$$

ist.

Kor. Seien die Voraussetzungen aus dem Satz zur Konvergenz der konformen Approximation erfüllt. Zusätzlich existiere eine Konstante $ic_a > 0$, sodass für alle $r \in L^2(\Omega)$ die Lösung w(r) vom adjungierten Problem

$$B(\phi, w(r)) = \int_{\Omega} r \phi \, \mathrm{d}x \, \forall \phi \in H_1(\Omega)$$

die Abschätzung $\|w(r)\|_{H^2(\Omega)} \le c_a \|r\|_{L^2(\Omega)}$ erfüllt. Dann gibt es eine Konstante c > 0, sodass

$$||u - u_n||_{L^2(\Omega)} \le ch_n^{k+1} |u|_{H^{k+1}(\Omega)},$$

falls $u \in H^{k+1}(\Omega)$.

Def. $(K, P(K), \Sigma(K))$ ist ein rechteckiges Element vom Lagrange-Typ, falls

- $K = \{x \in \mathbb{R}^d \mid c_i \le x_i \le c_i + r_i, c_i, r_i \in \mathbb{R}, j = 1, ..., d\}$ ist ein
- $P(K) = \mathbb{Q}_k(K) = \{p(x) = \sum_{\alpha \in \mathbb{N}^d, 0 \le \alpha_i \le k} \lambda_\alpha x_1^{\alpha_1} \cdot \ldots \cdot x_d^{\alpha_d}\} \subset$

•
$$\Sigma(K) = \{b : P(K) \to \mathbb{R}, p \mapsto p(a) \mid a \in \mathcal{K}_k\}$$
, wobei $\mathcal{K}_k = \{(c_1 + i_1 \frac{r_1}{k}, \dots, c_d + i_d \frac{r_d}{k}) \mid i_j \in \{0, \dots, k\}, j = 1, \dots, d\}$

Satz. Jedes Polynom $p \in \mathbb{Q}_k(K)$ ist eindeutig durch die Werte auf der Knotenmenge \mathcal{K}_k definiert.

Def. $T_n(\partial\Omega) := \{(K_i, P(K_i), \Sigma(K_i)) | i = 1, \dots, N\}$ heißt Triangulierung von $\partial\Omega$ mit rechteckigen FE vom Lagrange-Typ,

- $\partial\Omega = \bigcup^{N} K_i$
- $\operatorname{int}(K_i) \cap \operatorname{int}(K_i) = \emptyset$ für $i \neq j$
- einem anderen K_i

Def. Ein Finite-Element-Raum ist definiert durch

$$U_n = \{ v \in \mathcal{C}(\partial\Omega) \mid v | K_i \in \mathbb{Q}_k(K_i), i = 1, \dots, N \}$$

Satz. • $U_n \subset H^1(\Omega)$

• Eine Basis von U_n ist durch Polynome $p_i \in U_n$ mit $p_i(a_i) = \partial_{ij}$ für alle $ia_i \in \mathcal{K}_k$ gegeben.