Chapitre 3

Trigonométrie

1 Congruences

Définition 1.1 (Congruences)

Soient $a, b, \alpha \in \mathbb{R}$. Les réels a et b sont congrus modulo α s'il existe $k \in \mathbb{Z}$ tel que $a - b = k\alpha$. On note alors $a \equiv b \mod \alpha$.

Proposition 1.2 (Ensemble des valeurs vérifiant une congruence)

Soit $a, \alpha \in \mathbb{R}$. Alors

$$\{x, x \equiv a \mod \alpha\} = \{a + k\alpha, k \in \mathbb{Z}\} = \{\dots, a - 2\alpha, a - \alpha, a, a + \alpha, a + 2\alpha, \dots\}.$$

Méthode 1.3 (Congruences et cercle trigonométrique)

Pour placer sur un cercle trigonométrique des valeurs x vérifiant une relation du type $x \equiv a \mod r\pi$, où $a \in \mathbb{R}$ et $r \in \mathbb{Q}$, on place a, puis on ajoute $r\pi$, puis $2r\pi$, etc.., jusqu'à ce qu'on retombe sur a, mais modulo 2π seulement, cf les exemples.

Proposition 1.4

Soient $a, b, a', b', \alpha \in \mathbb{R}$ tels que $a \equiv b \mod \alpha$, $a' \equiv b' \mod \alpha$. Alors $a + a' \equiv b + b' \mod \alpha$.

Remarque.

Attention : en général, $aa' \not\equiv bb' \mod \alpha$.

Proposition 1.5

Soient $a, b, t, \alpha \in \mathbb{R}$ tels que $a \equiv b \mod \alpha$. Alors $ta \equiv tb \mod t\alpha$, et si $t \neq 0$, $a/t \equiv b/t \mod \alpha/t$.

Remarque.

Si $x \equiv y \mod \alpha$, et $n \in \mathbb{N}^*$, alors $x \equiv y \mod \frac{\alpha}{n}$. Être congrus modulo α est plus précis qu'être congrus modulo $\frac{\alpha}{n}$.

Méthode 1.6

Pour résoudre une équation avec des congruences, on utilise les propositions 1.4 et 1.5 pour arriver à une valeur de l'inconnue modulo un réel. Par exemple, si $x \in \mathbb{R}$,

$$\frac{2x}{3} \equiv \frac{\pi}{2} \mod \pi \iff x \equiv \frac{3\pi}{4} \mod \frac{3\pi}{2},$$

et l'ensemble des solutions est donc

$$\left\{\frac{3\pi}{4} + k\frac{3\pi}{2}, \ k \in \mathbb{Z}\right\} = \left\{\dots, -\frac{9\pi}{4}, -\frac{3\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \dots\right\}.$$

2 Fonctions sinus et cosinus

Dans ce paragraphe, nous rappelons les propriétés essentielles des fonctions trigonométriques sinus et cosinus.

2.1 Définitions

Les fonctions sinus et cosinus sont définies sur \mathbb{R} , à valeurs dans [-1,1], et 2π -périodiques, *i.e.* pour tout $x \in \mathbb{R}$, on a

$$cos(x + 2\pi) = cos(x)$$
 et $sin(x + 2\pi) = sin(x)$.

La fonction cosinus est paire, et la fonction sinus est impaire, i.e. pour tout $x \in \mathbb{R}$, on a

$$cos(-x) = cos(x), \qquad sin(-x) = -sin(x).$$

Elles sont dérivables et $\sin' = \cos$, $\cos' = -\sin$.

Voici les graphes de ces fonctions :

Voici quelques valeurs remarquables, qu'il est essentiel de savoir placer sur un cercle trigonométrique.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	

2.2 Formules de trigonométrie

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x), \qquad \sin\left(\frac{\pi}{2} - x\right) = \cos(x),$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin(x), \qquad \sin\left(\frac{\pi}{2} + x\right) = \cos(x),$$

$$\cos(\pi - x) = -\cos(x), \qquad \sin(\pi - x) = \sin(x),$$

$$\cos(\pi + x) = -\cos(x), \qquad \sin(\pi + x) = -\sin(x).$$

Pour tous $a, b \in \mathbb{R}$, on a

$$\sin^2(a) + \cos^2(a) = 1, \qquad \sin^2(a) = \frac{1 - \cos(2a)}{2}, \qquad \cos^2(a) = \frac{1 + \cos(2a)}{2},$$
$$\sin(2a) = 2\sin(a)\cos(a), \qquad \cos(2a) = 2\cos^2(a) - 1 = \cos^2(a) - \sin^2(a) = 1 - 2\sin^2(a).$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), \qquad \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b),$$

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a), \qquad \sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a),$$

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right), \qquad \cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right),$$

$$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right), \qquad \sin(a) - \sin(b) = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right).$$

Voic les graphes des fonctions sinus et cosinus :

2.3Propriétés et équations

Proposition 2.1 (Équations élémentaires)

Soient $a, b \in \mathbb{R}$. Alors

$$\sin(a) = \sin(b) \iff (a \equiv b \mod 2\pi \text{ ou } a \equiv \pi - b \mod 2\pi),$$
 (1)

$$\cos(a) = \cos(b) \iff \left(a \equiv b \mod 2\pi \text{ ou } a \equiv -b \mod 2\pi\right),$$
 (2)

$$\cos(a) = \cos(b) \iff \left(a \equiv b \mod 2\pi \text{ ou } a \equiv -b \mod 2\pi\right), \tag{2}$$

$$\begin{cases} \cos(a) = \cos(b) \\ \sin(a) = \sin(b) \end{cases} \iff a \equiv b \mod 2\pi. \tag{3}$$

Théorème 2.2

Soient $a, b \in \mathbb{R}$ tels que $a^2 + b^2 = 1$. Il existe un unique $\theta \in [0, 2\pi[$ tel que $a = \cos(\theta)$ et $b = \sin(\theta)$.

Remarque.

On peut remplacer l'intervalle $[0, 2\pi]$ par n'importe quel intervalle semi-ouvert de longueur 2π , comme par exemple $]-\pi,\pi].$

Proposition 2.3

Soient $a, b \in \mathbb{R}$. Il existe $R \in \mathbb{R}_+$ et $\varphi \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, \ a\cos(x) + b\sin(x) = R\cos(x - \varphi).$$

Remarque.

On peut bien entendu obtenir $R\cos(x+\varphi_1)$ ou $R\sin(x-\varphi_2)$ ou $R\sin(x+\varphi_3)$.

Méthode 2.4

Pour déterminer R et φ , on procède exactement comme dans la démonstration.

Méthode 2.5 (Résolution d'équations/inéquations)

1. Pour résoudre une équation du type $\sin(tx) = a$ ou $\cos(tx) = a$, $x, t, a \in \mathbb{R}$, on vérifie tout d'abord que $a \in [-1,1]$ (sinon, il n'y a aucune solution). Puis, on écrit $a = \sin(\alpha)$ ou $a = \cos(\alpha)$ pour un $\alpha \in \mathbb{R}$ bien choisi. On conclut alors avec la proposition 2.1. Utilisez le cercle trigonométrique!

- 2. Pour résoudre une inéquation trigonométrique du type $\sin(x) < a$ ou $\cos(x) \leqslant a$ (attention à la rigeur : "<" et " \leqslant ", ce n'est pas pareil), on écrit de même $a = \sin(\alpha)$ (si $a \in [-1,1]$), puis on s'aide du cercle trigonométrique pour trouver les angles correspondants, tout d'abord sur un intervalle de longueur 2π (on peut prendre $[0,2\pi]$, mais parfois il est plus simple d'en choisir un autre, par exemple $]-3\pi/2,\pi/2]$ pour $\sin(x) < a,]-\pi,\pi]$ pour $\cos(x) > a$), puis on donne l'ensemble des solutions par 2π -périodicité.
- 3. Pour résoudre une inéquation trigonométrique du type $\sin(ax + b) < \alpha$ ou $\cos(ax + b) \le \alpha$ (attention à la rigeur : "<" et "\le ", ce n'est pas pareil) avec $a, b \in \mathbb{R}, a \neq 0$, on procède ainsi :
 - On cherche la plus petite période strictement positive T de l'inéquation.
 - On pose t = ax + b et on résout l'inégalité avec cette variable t comme en 1, mais juste sur un intervalle de longueur 2π .
 - On résout l'inequation donnée par ax + b est dans l'ensemble de solutions obtenu précédemment.
 - On détermine l'ensemble des solutions par T-périodicité.

3 Fonction tangente

3.1 Définition

Définition 3.1 (Fonction tangente)

La fonction tangente, notée tan, est la fonction à valeurs réelles, définie pour tout $x \in \mathbb{R}$ tel que $x \not\equiv \frac{\pi}{2} \mod \pi$, par

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Remarque.

On rappelle que pour $x \in \mathbb{R}$, $\cos(x) = 0 \iff x \equiv \frac{\pi}{2} \mod \pi$. La fonction tangente est donc bien définie en tout réel non congru à $\pi/2$ modulo π .

Voici quelques valeurs remarquables :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\tan(x)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ind.

Méthode 3.2 (Tangente et cercle trigonométrique)

Pour déterminer la tangente d'un angle θ à l'aide du cercle trigonométrique, on trace la droite d'équation x = 1, que l'on oriente vers le haut, l'origine étant le point de coordonnées (1,0). La distance algébrique du point d'intersection de cette droite avec le rayon d'angle θ .

Remarque.

Soit dans un repère orthonormal du plan une droite D d'équation y = px + m. Le coefficient directeur p (la pente de la droite) est la tangente de l'angle (orienté) formé par l'axe des abscisses et la droite D.

Proposition 3.3

La fonction tangente est impaire et π -périodique.

Proposition 3.4

La fonction tangente est dérivable sur son ensemble de définition, et on a

$$\tan' = 1 + \tan^2 = \frac{1}{\cos^2}.$$

Proposition 3.5 (Limites)

On a

$$\tan(x) \xrightarrow[x \to \frac{\pi}{2}^{-}]{} + \infty \qquad \tan(x) \xrightarrow[x \to \frac{\pi}{2}^{+}]{} - \infty$$

$$\tan(x) \xrightarrow[x \to -\frac{\pi}{2}^{+}]{} - \infty \qquad \tan(x) \xrightarrow[x \to -\frac{\pi}{2}^{-}]{} + \infty$$

Remarque.

On en déduit, par π -périodicité, les limites de tan en $\frac{\pi}{2} + k\pi$ pour $k \in \mathbb{Z}$, par valeurs supérieures et inférieures :

$$\tan(x) \xrightarrow[x \to (\frac{\pi}{2} + k\pi)^{-}]{} + \infty \qquad \tan(x) \xrightarrow[x \to (\frac{\pi}{2} + k\pi)^{+}]{} - \infty$$

$$\tan(x) \xrightarrow[x \to (-\frac{\pi}{2} + k\pi)^{+}]{} - \infty \qquad \tan(x) \xrightarrow[x \to (-\frac{\pi}{2} + k\pi)^{-}]{} + \infty$$

Voici le graphe de la fonction tangente (on notera les asymptotes verticales d'équations $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$):

Proposition 3.6

Soit $x \in \mathbb{R}$.

- 1. Si $x \not\equiv \frac{\pi}{2} \mod \pi$, alors $\pi x \not\equiv \frac{\pi}{2} \mod \pi$ et $\tan(\pi x) = -\tan(x)$.
- 2. Si $x \not\equiv 0 \mod \frac{\pi}{2}$, alors $x \not\equiv \frac{\pi}{2} \mod \pi$, $\frac{\pi}{2} x \not\equiv \frac{\pi}{2} \mod \pi$, $\frac{\pi}{2} + x \not\equiv \frac{\pi}{2} \mod \pi$, $\tan(x) \not\equiv 0$ et

$$\tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan(x)}, \qquad \tan\left(\frac{\pi}{2} + x\right) = -\frac{1}{\tan(x)}.$$

Proposition 3.7 (Quelques équations avec la tangente)

Soit $x \in \mathbb{R}$. Alors

$$\tan(x) = 0 \iff x \equiv 0 \mod \pi$$

$$\tan(x) = 1 \iff x \equiv \frac{\pi}{4} \mod \pi$$

$$\tan(x) = -1 \iff x \equiv -\frac{\pi}{4} \mod \pi.$$

3.2 Formules de trigonométrie pour la tangente

Proposition 3.8

Soit $x \in \mathbb{R}$, $x \not\equiv \frac{\pi}{2} \mod \pi$. Alors

$$1 + \tan^2(x) = \frac{1}{\cos^2(x)}.$$

Proposition 3.9

Soient $a, b \in \mathbb{R}$ non congrus à $\pi/2$ modulo π . Alors

$$a + b \equiv \pi/2 \mod \pi \iff \tan(a)\tan(b) = 1.$$

Proposition 3.10 (Formule d'addition pour la tangente)

Soient $a,b\in\mathbb{R}$ non congrus à $\pi/2$ modulo π . Si $a+b\not\equiv\pi/2\mod\pi$, on a

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)},$$

et si $a - b \not\equiv \pi/2 \mod \pi$, on a

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}.$$

Proposition 3.11 (Tangente de l'angle moitié)

Soit $x \in \mathbb{R}$ tel que $x \not\equiv \pi \mod 2\pi$. Soit

$$t = \tan\left(\frac{x}{2}\right)$$
.

Alors
$$\sin(x) = \frac{2t}{1+t^2}$$
, $\cos(x) = \frac{1-t^2}{1+t^2}$, et si $x \not\equiv \frac{\pi}{2} \mod \pi$, $\tan(x) = \frac{2t}{1-t^2}$.

Proposition 3.12 (Équations élémentaires)

Soient $a, b \in \mathbb{R}$, $a, b \not\equiv \frac{\pi}{2} \mod \pi$. Alors

$$tan(a) = tan(b) \iff a \equiv b \mod \pi.$$

Méthode 3.13

Les résolutions d'équations et d'inéquations du type $\tan(x) = a$ ou $\tan(x) < a$ se résolvent en écrivant que $a = \tan(\alpha)$ (ceci est toujours possible : la droite d'équation y = a coupe la courbe représentative de la fonction tangente). Pour une équation, on conclut avec la proposition 3.12, et pour les inéquations, on se sert du cercle trigonométrique.