Package 'VaRES'

April 22, 2023

Type	Package
	Computes Value at Risk and Expected Shortfall for over 100 Parametric Distributions
Versio	on 1.0.2
Date	2023-04-20
Depei	nds R (>= 2.15.0)
	ription Computes Value at risk and expected shortfall, two most popular measures of financial risk, for over one hundred parametric distributions, including all commonly known distributions. Also computed are the corresponding probability density function and cumulative distribution function. See Chan, Nadarajah and Afuecheta (2015) <doi:10.1080 03610918.2014.944658=""> for more details.</doi:10.1080>
Licen	se GPL (>= 2)
Needs	sCompilation no
BugR	Reports https://github.com/lbelzile/VaRES/issues/
	or Leo Belzile [cre] (https://orcid.org/0000-0002-9135-014X), Saralees Nadarajah [aut], Stephen Chan [aut], Emmanuel Afuecheta [aut] (https://orcid.org/0000-0002-9223-0799)
Main	tainer Leo Belzile <belzilel@gmail.com></belzilel@gmail.com>
Repos	sitory CRAN
Date/	Publication 2023-04-22 00:42:37 UTC
R to	opics documented:
	VaRES-package 2 aep 2 arcsine 6 ast 8 asylaplace 9 asypower 1 beard 1

betaburr																		15
betaburr7																		16
betadist																		17
betaexp																		19
betafrechet																		20
betagompertz .																		21
betagumbel															•		•	23
betagumbel2																•	•	24
betalognorm																•	•	25
betalomax																•	•	27
betanorm																	•	28
betapareto																	•	29
betaweibull																	•	31
																	•	32
																		32 33
burr7																		34
Cauchy																		36
chen																		37
clg																		38
compbeta																		40
dagum																		41
dweibull																		42
expexp																		44
expext																		45
expgeo																		46
explog																		47
explogis																		49
exponential																		50
exppois																		51
exppower																		52
expweibull																		54
F																		55
FR															 •	•	•	57
frechet															 •	•	•	58
Gamma													• •	•	 •	•	•	59
														•	 •	•	•	61
genbeta2															•	•	•	62
0																•	•	
geninvbeta		 •	 •					 •	 ٠	 •	 •	•		•	 •	•	•	63
genlogis		 •	 ٠	 •				 ٠	 •	 ٠	 ٠	•		•	 •	٠	•	65
genlogis3		 ٠													 •	٠	•	66
genlogis4		 •													 •	•	•	67
genpareto		 •	 ٠	 •	•	 •	 ٠	 •	 ٠	 •	 •	٠		٠	 •	٠	•	69
genpowerweibull	•	 •	 •				 •		 •	 •	 •	•		٠	 •		•	70
genunif												•		•			•	71
gev																		72
gompertz																		74
gumbel																		75
gumbel2																		76

nalfcauchy	. 78
nalflogis	. 79
nalfnorm	. 80
nalfT	. 81
HBlaplace	
Hlogis	
nvbeta	
nvexpexp	
nvgamma	
cum	
xumburr7	
xumexp	
tumgamma	
tumgumbel	
cumhalfnorm	
rumloglogis	
xumnormal	
cumpareto	
xumweibull	
aplace	
fr	
_Nbeta	
ogbeta	
ogcauchy	
oggamma	
ogisexp	
ogisrayleigh	
ogistic	
oglaplace	
oglog	
oglogis	
ognorm	
omax	
Mlaplace	
noexp	
noweibull	. 126
MRbeta	. 127
nakagami	. 128
normal	. 130
pareto	. 131
paretostable	. 132
PCTAlaplace	. 133
perks	. 135
ower1	. 136
oower2	. 138
juad	. 139
gamma	140

4			aep
	RS		142
	schabe		143
	secant		144
	stacygamma		145
	T		146
	TL		148
	TL2		149
	triangular		150
	tsp		152
	uniform		154
	weibull		155
	xie		157
Index			159
VaRE	S-package	Computes value at risk and expected shortfall for over 100 parametr distributions	ric

Description

4

Computes Value at risk and expected shortfall, two most popular measures of financial risk, for over one hundred parametric distributions, including all commonly known distributions. Also computed are the corresponding probability density function and cumulative distribution function.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

aep 5

Description

Computes the pdf, cdf, value at risk and expected shortfall for the asymmetric exponential power distribution due to Zhu and Zinde-Walsh (2009) given by

$$f(x) = \begin{cases} \frac{\alpha}{\alpha^*} K\left(q_1\right) \exp\left[-\frac{1}{q_1} \left| \frac{x}{2\alpha^*} \right|^{q_1} \right], & \text{if } x \leq 0, \\ \frac{1-\alpha}{1-\alpha^*} K\left(q_2\right) \exp\left[-\frac{1}{q_2} \left| \frac{x}{2-2\alpha^*} \right|^{q_2} \right], & \text{if } x > 0, \\ \alpha Q\left(\frac{1}{q_1} \left(\frac{|x|}{2\alpha^*}\right)^{q_1}, \frac{1}{q_1}\right), & \text{if } x \leq 0, \end{cases} \\ F(x) = \begin{cases} \alpha Q\left(\frac{1}{q_1} \left(\frac{|x|}{2\alpha^*}\right)^{q_1}, \frac{1}{q_1}\right), & \text{if } x \geq 0, \\ 1-(1-\alpha)Q\left(\frac{1}{q_2} \left(\frac{|x|}{2-2\alpha^*}\right)^{q_2}, \frac{1}{q_2}\right), & \text{if } x > 0, \end{cases} \\ VaR_p(X) = \begin{cases} -2\alpha^* \left[q_1Q^{-1} \left(\frac{p}{\alpha}, \frac{1}{q_1}\right)\right]^{\frac{1}{q_1}}, & \text{if } p \leq \alpha, \end{cases} \\ 2\left(1-\alpha^*\right) \left[q_2Q^{-1} \left(\frac{1-p}{1-\alpha}, \frac{1}{q_2}\right)\right]^{\frac{1}{q_2}}, & \text{if } p > \alpha, \end{cases} \\ ES_p(X) = \begin{cases} -\frac{2\alpha^*}{p} \int_0^\alpha \left[q_1Q^{-1} \left(\frac{v}{\alpha}, \frac{1}{q_1}\right)\right]^{\frac{1}{q_1}} dv, & \text{if } p \leq \alpha, \end{cases} \\ +\frac{2\left(1-\alpha^*\right)}{p} \int_\alpha^\alpha \left[q_2Q^{-1} \left(\frac{1-v}{1-\alpha}, \frac{1}{q_2}\right)\right]^{\frac{1}{q_2}} dv, & \text{if } p > \alpha \end{cases} \end{cases}$$

for $-\infty < x < \infty, \ 0 < p < 1, \ 0 < \alpha < 1$, the scale parameter, $q_1 > 0$, the first shape parameter, and $q_2 > 0$, the second shape parameter, where $\alpha^* = \alpha K\left(q_1\right)/\left\{\alpha K\left(q_1\right)+\left(1-\alpha\right)K\left(q_2\right)\right\}$, $K(q) = \frac{1}{2q^{1/q}\Gamma(1+1/q)}, \ Q(a,x) = \int_x^\infty t^{a-1}\exp\left(-t\right)dt/\Gamma(a)$ denotes the regularized complementary incomplete gamma function, $\Gamma(a) = \int_0^\infty t^{a-1}\exp\left(-t\right)dt$ denotes the gamma function, and $Q^{-1}(a,x)$ denotes the inverse of Q(a,x).

Usage

```
daep(x, q1=1, q2=1, alpha=0.5, log=FALSE)
paep(x, q1=1, q2=1, alpha=0.5, log.p=FALSE, lower.tail=TRUE)
varaep(p, q1=1, q2=1, alpha=0.5, log.p=FALSE, lower.tail=TRUE)
esaep(p, q1=1, q2=1, alpha=0.5)
```

Arguments

x scaler or vector of values at which the pdf or cdf needs to be computed

p scaler or vector of values at which the value at risk or expected shortfall needs to be computed

alpha the value of the scale parameter, must be in the unit interval, the default is 0.5

6 arcsine

q1	the value of the first shape parameter, must be positive, the default is 1
q2	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
daep(x)
paep(x)
varaep(x)
esaep(x)
```

arcsine

Arcsine distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the arcsine distribution given by

$$f(x) = \frac{1}{\pi\sqrt{(x-a)(b-x)}},$$

$$F(x) = \frac{2}{\pi}\arcsin\left(\sqrt{\frac{x-a}{b-a}}\right),$$

$$\operatorname{VaR}_p(X) = a + (b-a)\sin^2\left(\frac{\pi p}{2}\right),$$

$$\operatorname{ES}_p(X) = a + \frac{b-a}{p} \int_0^p \sin^2\left(\frac{\pi v}{2}\right) dv$$

for $a \le x \le b, 0 , the first location parameter, and <math>-\infty < a < b < \infty$, the second location parameter.

arcsine 7

Usage

```
darcsine(x, a=0, b=1, log=FALSE)
parcsine(x, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
vararcsine(p, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
esarcsine(p, a=0, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the first location parameter, can take any real value, the default is zero
b	the value of the second location parameter, can take any real value but must be greater than a, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
darcsine(x)
parcsine(x)
vararcsine(x)
esarcsine(x)
```

Generalized asymmetric Student's t distribution

ast

Description

ast

Computes the pdf, cdf, value at risk and expected shortfall for the generalized asymmetric Student's t distribution due to Zhu and Galbraith (2010) given by

$$f(x) = \begin{cases} \frac{\alpha}{\alpha^*} K\left(\nu_1\right) \left[1 + \frac{1}{\nu_1} \left(\frac{x}{2\alpha^*}\right)^2\right]^{-\frac{\nu_1 + 1}{2}}, & \text{if } x \leq 0, \\ \frac{1 - \alpha}{1 - \alpha^*} K\left(\nu_2\right) \left[1 + \frac{1}{\nu_2} \left(\frac{x}{2\left(1 - \alpha^*\right)}\right)^2\right]^{-\frac{\nu_2 + 1}{2}}, & \text{if } x > 0, \end{cases}$$

$$F(x) = 2\alpha F_{\nu_1} \left(\frac{\min(x, 0)}{2\alpha^*}\right) - 1 + \alpha + 2(1 - \alpha)F_{\nu_2} \left(\frac{\max(x, 0)}{2 - 2\alpha^*}\right),$$

$$\text{VaR}_p(X) = 2\alpha^* F_{\nu_1}^{-1} \left(\frac{\min(p, \alpha)}{2\alpha}\right) + 2\left(1 - \alpha^*\right) F_{\nu_2}^{-1} \left(\frac{\max(p, \alpha) + 1 - 2\alpha}{2 - 2\alpha}\right),$$

$$\text{ES}_p(X) = \frac{2\alpha^*}{p} \int_0^p F_{\nu_1}^{-1} \left(\frac{\min(v, \alpha)}{2\alpha}\right) dv + \frac{2\left(1 - \alpha^*\right)}{p} \int_0^p F_{\nu_2}^{-1} \left(\frac{\max(v, \alpha) + 1 - 2\alpha}{2 - 2\alpha}\right) dv$$

for $-\infty < x < \infty$, $0 , <math>0 < \alpha < 1$, the scale parameter, $\nu_1 > 0$, the first degree of freedom parameter, and $\nu_2 > 0$, the second degree of freedom parameter, where $\alpha^* = \alpha K\left(\nu_1\right) / \left\{\alpha K\left(\nu_1\right) + (1-\alpha)K\left(\nu_2\right)\right\}$, $K(\nu) = \Gamma\left((\nu+1)/2\right) / \left[\sqrt{\pi\nu}\Gamma(\nu/2)\right]$, $F_{\nu}(\cdot)$ denotes the cdf of a Student's t random variable with ν degrees of freedom, and $F_{\nu}^{-1}(\cdot)$ denotes the inverse of $F_{\nu}(\cdot)$.

Usage

```
dast(x, nu1=1, nu2=1, alpha=0.5, log=FALSE)
past(x, nu1=1, nu2=1, alpha=0.5, log.p=FALSE, lower.tail=TRUE)
varast(p, nu1=1, nu2=1, alpha=0.5, log.p=FALSE, lower.tail=TRUE)
esast(p, nu1=1, nu2=1, alpha=0.5)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
alpha	the value of the scale parameter, must be in the unit interval, the default is 0.5
nu1	the value of the first degree of freedom parameter, must be positive, the default is $\boldsymbol{1}$
nu2	the value of the second degree of freedom parameter, must be positive, the default is $\boldsymbol{1}$
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

8

asylaplace 9

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dast(x)
past(x)
varast(x)
esast(x)
```

10 asylaplace

Description

Computes the pdf, cdf, value at risk and expected shortfall for the asymmetric Laplace distribution due to Kotz et al. (2001) given by

$$f(x) = \begin{cases} \frac{\kappa\sqrt{2}}{\tau\left(1+\kappa^2\right)} \exp\left(-\frac{\kappa\sqrt{2}}{\tau}\left|x-\theta\right|\right), & \text{if } x \geq \theta, \\ \frac{\kappa\sqrt{2}}{\tau\left(1+\kappa^2\right)} \exp\left(-\frac{\sqrt{2}}{\kappa\tau}\left|x-\theta\right|\right), & \text{if } x < \theta, \\ 1 - \frac{1}{1+\kappa^2} \exp\left(\frac{\kappa\sqrt{2}(\theta-x)}{\tau}\right), & \text{if } x \geq \theta, \end{cases}$$

$$F(x) = \begin{cases} \theta - \frac{\tau}{\sqrt{2}\kappa} \log\left[\left(1-p\right)\left(1+\kappa^2\right)\right], & \text{if } x < \theta, \\ \theta + \frac{\kappa\tau}{\sqrt{2}} \log\left[\left(1-p\right)\left(1+\kappa^2\right)\right], & \text{if } p \geq \frac{\kappa^2}{1+\kappa^2}, \end{cases}$$

$$VaR_p(X) = \begin{cases} \theta - \frac{\tau}{\sqrt{2}\kappa} \log\left[\left(1+\kappa^2\right)\right], & \text{if } p < \frac{\kappa^2}{1+\kappa^2}, \end{cases}$$

$$\theta + \frac{\kappa\tau}{\sqrt{2}} \log\left[\left(1+\kappa^2\right)\right], & \text{if } p < \frac{\kappa^2}{1+\kappa^2}, \end{cases}$$

$$ES_p(X) = \begin{cases} \frac{\theta}{p} + \theta - \frac{\tau}{\sqrt{2}\kappa} \log\left(1+\kappa^2\right) + \frac{\sqrt{2}\tau\left(1+2\kappa^2\right)}{2\kappa\left(1+\kappa^2\right)p} \log\left(1+\kappa^2\right) - \frac{\sqrt{2}\tau\kappa \log\kappa}{\left(1+\kappa^2\right)p} - \frac{\theta\kappa^2}{\left(1+\kappa^2\right)p} + \frac{\tau\left(1-\kappa^4\right)}{\sqrt{2}\kappa\left(1+\kappa^2\right)p} - \frac{\tau\left(1-p\right)}{\sqrt{2}\kappa p} + \frac{\tau\left(1-p\right)}{\sqrt{2}\kappa p} \log(1-p), & \text{if } p > \frac{\kappa^2}{1+\kappa^2}, \end{cases}$$

$$\theta + \frac{\kappa\tau}{\sqrt{2}} \log\left(1+\kappa^{-2}\right) + \frac{\kappa\tau}{\sqrt{2}} (\log p - 1), & \text{if } p < \frac{\kappa^2}{1+\kappa^2}, \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \theta < \infty$, the location parameter, $\kappa > 0$, the first scale parameter, and $\tau > 0$, the second scale parameter.

Usage

```
dasylaplace(x, tau=1, kappa=1, theta=0, log=FALSE)
pasylaplace(x, tau=1, kappa=1, theta=0, log.p=FALSE, lower.tail=TRUE)
varasylaplace(p, tau=1, kappa=1, theta=0, log.p=FALSE, lower.tail=TRUE)
esasylaplace(p, tau=1, kappa=1, theta=0)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the location parameter, can take any real value, the default is zero
kappa	the value of the first scale parameter, must be positive, the default is 1

asypower 11

tau	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(cdf)$ are returned and quantiles are computed for $\exp(p)$

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

lower.tail

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dasylaplace(x)
pasylaplace(x)
varasylaplace(x)
esasylaplace(x)
```

12 asypower

Description

Computes the pdf, cdf, value at risk and expected shortfall for the asymmetric power distribution due to Komunjer (2007) given by

$$f(x) = \begin{cases} \frac{\delta^{1/\lambda}}{\Gamma(1+1/\lambda)} \exp\left[-\frac{\delta}{a^{\lambda}}|x|^{\lambda}\right], & \text{if } x \leq 0, \\ \frac{\delta^{1/\lambda}}{\Gamma(1+1/\lambda)} \exp\left[-\frac{\delta}{(1-a)^{\lambda}}|x|^{\lambda}\right], & \text{if } x > 0, \\ a - a\mathcal{I}\left(\frac{\delta}{a^{\lambda}}\sqrt{\lambda}|x|^{\lambda}, 1/\lambda\right), & \text{if } x \leq 0, \end{cases}$$

$$F(x) = \begin{cases} a - (1-a)\mathcal{I}\left(\frac{\delta}{(1-a)^{\lambda}}\sqrt{\lambda}|x|^{\lambda}, 1/\lambda\right), & \text{if } x > 0, \\ a - (1-a)\mathcal{I}\left(\frac{\delta}{(1-a)^{\lambda}}\sqrt{\lambda}|x|^{\lambda}, 1/\lambda\right), & \text{if } x > 0, \end{cases}$$

$$VaR_{p}(X) = \begin{cases} -\left[\frac{a^{\lambda}}{\delta\sqrt{\lambda}}\right]^{1/\lambda}\left[\mathcal{I}^{-1}\left(1-\frac{p}{a},\frac{1}{\lambda}\right)\right]^{1/\lambda}, & \text{if } p \leq a, \\ -\left[\frac{(1-a)^{\lambda}}{\delta\sqrt{\lambda}}\right]^{1/\lambda}\int_{0}^{p}\left[\mathcal{I}^{-1}\left(1-\frac{1-p}{1-a},\frac{1}{\lambda}\right)\right]^{1/\lambda}dv, & \text{if } p > a, \end{cases}$$

$$ES_{p}(X) = \begin{cases} -\frac{1}{p}\left[\frac{a^{\lambda}}{\delta\sqrt{\lambda}}\right]^{1/\lambda}\int_{0}^{a}\left[\mathcal{I}^{-1}\left(1-\frac{v}{a},\frac{1}{\lambda}\right)\right]^{1/\lambda}dv, & \text{if } p \geq a, \end{cases}$$

$$-\frac{1}{p}\left[\frac{(1-a)^{\lambda}}{\delta\sqrt{\lambda}}\right]^{1/\lambda}\int_{0}^{a}\left[\mathcal{I}^{-1}\left(1-\frac{v}{a},\frac{1}{\lambda}\right)\right]^{1/\lambda}dv, & \text{if } p > a \end{cases}$$

for $-\infty < x < \infty, \ 0 < p < 1, \ 0 < a < 1$, the first scale parameter, $\delta > 0$, the second scale parameter, and $\lambda > 0$, the shape parameter, where $\mathcal{I}(x,\gamma) = \frac{1}{\Gamma(\gamma)} \int_0^{x\sqrt{\gamma}} t^{\gamma-1} \exp(-t) dt$.

Usage

```
dasypower(x, a=0.5, lambda=1, delta=1, log=FALSE)
pasypower(x, a=0.5, lambda=1, delta=1, log.p=FALSE, lower.tail=TRUE)
varasypower(p, a=0.5, lambda=1, delta=1, log.p=FALSE, lower.tail=TRUE)
esasypower(p, a=0.5, lambda=1, delta=1)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the first scale parameter, must be in the unit interval, the default is 0.5
delta	the value of the second scale parameter, must be positive, the default is 1
lambda	the value of the shape parameter, must be positive, the default is 1

beard 13

log if TRUE then log(pdf) are returned

log.p if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dasypower(x)
pasypower(x)
varasypower(x)
esasypower(x)
```

beard

Beard distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Beard distribution due to Beard (1959) given by

$$f(x) = \frac{a \exp(bx) \left[1 + a\rho\right]^{\rho^{-1/b}}}{\left[1 + a\rho \exp(bx)\right]^{1 + \rho^{-1/b}}},$$

$$F(x) = 1 - \frac{\left[1 + a\rho\right]^{\rho^{-1/b}}}{\left[1 + a\rho \exp(bx)\right]^{\rho^{-1/b}}},$$

$$\operatorname{VaR}_{p}(X) = \frac{1}{b} \log \left[\frac{1 + a\rho}{a\rho(1 - p)^{\rho^{1/b}}} - \frac{1}{a\rho}\right],$$

$$\operatorname{ES}_{p}(X) = \frac{1}{pb} \int_{0}^{p} \log \left[-\frac{1}{a\rho} + \frac{1 + a\rho}{a\rho(1 - v)^{\rho^{1/b}}}\right] dv$$

for $x > 0, \, 0 0$, the first scale parameter, b > 0, the second scale parameter, and $\rho > 0$, the shape parameter.

14 beard

Usage

```
dbeard(x, a=1, b=1, rho=1, log=FALSE)
pbeard(x, a=1, b=1, rho=1, log.p=FALSE, lower.tail=TRUE)
varbeard(p, a=1, b=1, rho=1, log.p=FALSE, lower.tail=TRUE)
esbeard(p, a=1, b=1, rho=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be positive, the default is 1
b	the value of the second scale parameter, must be positive, the default is 1
rho	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dbeard(x)
pbeard(x)
varbeard(x)
esbeard(x)
```

betaburr 15

betaburr

Beta Burr distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Burr distribution due to Parana\'iba et al. (2011) given by

$$\begin{split} f(x) &= \frac{ba^{bd}}{B(c,d)x^{bd+1}} \left[1 + (x/a)^{-b} \right]^{-c-d}, \\ F(x) &= I_{\frac{1}{1+(x/a)^{-b}}}(c,d), \\ \operatorname{VaR}_p(X) &= a \left[I_p^{-1}(c,d) \right]^{1/b} \left[1 - I_p^{-1}(c,d) \right]^{-1/b}, \\ \operatorname{ES}_p(X) &= \frac{a}{p} \int_0^p \left[I_v^{-1}(c,d) \right]^{1/b} \left[1 - I_v^{-1}(c,d) \right]^{-1/b} dv \end{split}$$

for $x>0,\,0< p<1,\,a>0$, the scale parameter, b>0, the first shape parameter, c>0, the second shape parameter, and d>0, the third shape parameter, where $I_x(a,b)=\int_0^x t^{a-1}(1-t)^{b-1}dt/B(a,b)$ denotes the incomplete beta function ratio, $B(a,b)=\int_0^1 t^{a-1}(1-t)^{b-1}dt$ denotes the beta function, and $I_x^{-1}(a,b)$ denotes the inverse function of $I_x(a,b)$.

Usage

```
dbetaburr(x, a=1, b=1, c=1, d=1, log=FALSE)
pbetaburr(x, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
varbetaburr(p, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
esbetaburr(p, a=1, b=1, c=1, d=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the scale parameter, must be positive, the default is 1
b	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
d	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

16 betaburr7

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetaburr(x)
pbetaburr(x)
varbetaburr(x)
esbetaburr(x)
```

betaburr7

Beta Burr XII distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Burr XII distribution given by

$$f(x) = \frac{kcx^{c-1}}{B(a,b)} \left[1 - (1+x^c)^{-k} \right]^{a-1} (1+x^c)^{-bk-1},$$

$$F(x) = I_{1-(1+x^c)^{-k}}(a,b),$$

$$\operatorname{VaR}_p(X) = \left\{ \left[1 - I_p^{-1}(a,b) \right]^{-1/k} - 1 \right\}^{1/c},$$

$$\operatorname{ES}_p(X) = \frac{1}{p} \int_0^p \left\{ \left[1 - I_v^{-1}(a,b) \right]^{-1/k} - 1 \right\}^{1/c} dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, b > 0, the second shape parameter, c > 0, the third shape parameter, and k > 0, the fourth shape parameter.

Usage

```
dbetaburr7(x, a=1, b=1, c=1, k=1, log.p=FALSE)
pbetaburr7(x, a=1, b=1, c=1, k=1, log.p=FALSE, lower.tail=TRUE)
varbetaburr7(p, a=1, b=1, c=1, k=1, log.p=FALSE, lower.tail=TRUE)
esbetaburr7(p, a=1, b=1, c=1, k=1)
```

Arguments

- x scaler or vector of values at which the pdf or cdf needs to be computed
- p scaler or vector of values at which the value at risk or expected shortfall needs to be computed
- a the value of the first shape parameter, must be positive, the default is 1

betadist 17

b	the value of the second shape parameter, must be positive, the default is 1
С	the value of the third shape parameter, must be positive, the default is 1
k	the value of the fourth shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetaburr7(x)
pbetaburr7(x)
varbetaburr7(x)
esbetaburr7(x)
```

betadist

Beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta distribution given by

$$f(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)},$$

$$F(x) = I_x(a,b),$$

$$VaR_p(X) = I_p^{-1}(a,b),$$

$$ES_p(X) = \frac{1}{p} \int_0^p I_v^{-1}(a,b) dv$$

for 0 < x < 1, 0 , <math>a > 0, the first parameter, and b > 0, the second shape parameter.

18 betadist

Usage

```
dbetadist(x, a=1, b=1, log=FALSE)
pbetadist(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varbetadist(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esbetadist(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be positive, the default is 1
b	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dbetadist(x)
pbetadist(x)
varbetadist(x)
esbetadist(x)
```

betaexp 19

betaexp

Beta exponential distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta exponential distribution due to Nadarajah and Kotz (2006) given by

$$f(x) = \frac{\lambda \exp(-b\lambda x)}{B(a,b)} [1 - \exp(-\lambda x)]^{a-1},$$

$$F(x) = I_{1-\exp(-\lambda x)}(a,b),$$

$$\operatorname{VaR}_{p}(X) = -\frac{1}{\lambda} \log [1 - I_{p}^{-1}(a,b)],$$

$$\operatorname{ES}_{p}(X) = -\frac{1}{p\lambda} \int_{0}^{p} \log [1 - I_{v}^{-1}(a,b)] dv$$

for x>0, 0< p<1, a>0, the first shape parameter, b>0, the second shape parameter, and $\lambda>0$, the scale parameter, where $I_x(a,b)=\int_0^x t^{a-1}(1-t)^{b-1}dt/B(a,b)$ denotes the incomplete beta function ratio, $B(a,b)=\int_0^1 t^{a-1}(1-t)^{b-1}dt$ denotes the beta function, and $I_x^{-1}(a,b)$ denotes the inverse function of $I_x(a,b)$.

Usage

```
dbetaexp(x, lambda=1, a=1, b=1, log=FALSE)
pbetaexp(x, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varbetaexp(p, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esbetaexp(p, lambda=1, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

20 betafrechet

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetaexp(x)
pbetaexp(x)
varbetaexp(x)
esbetaexp(x)
```

betafrechet

Beta Frechet distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Fr\'echet distribution due to Barreto-Souza et al. (2011) given by

$$\begin{split} f(x) &= \frac{\alpha \sigma^{\alpha}}{x^{\alpha+1} B(a,b)} \exp\left\{-a \left(\frac{\sigma}{x}\right)^{\alpha}\right\} \left[1 - \exp\left\{-\left(\frac{\sigma}{x}\right)^{\alpha}\right\}\right]^{b-1}, \\ F(x) &= I_{\exp\left\{-\left(\frac{\sigma}{x}\right)^{\alpha}\right\}}(a,b), \\ \operatorname{VaR}_p(X) &= \sigma \left[-\log I_p^{-1}(a,b)\right]^{-1/\alpha}, \\ \operatorname{ES}_p(X) &= \frac{\sigma}{p} \int_0^p \left[-\log I_v^{-1}(a,b)\right]^{-1/\alpha} dv \end{split}$$

for x > 0, 0 , <math>a > 0, the first shape parameter, $\sigma > 0$, the scale parameter, b > 0, the second shape parameter, and $\alpha > 0$, the third shape parameter.

Usage

```
dbetafrechet(x, a=1, b=1, alpha=1, sigma=1, log=FALSE)
pbetafrechet(x, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varbetafrechet(p, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
esbetafrechet(p, a=1, b=1, alpha=1, sigma=1)
```

Arguments

x scaler or vector of values at which the pdf or cdf needs to be computed

p scaler or vector of values at which the value at risk or expected shortfall needs to be computed

betagompertz 21

sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is $\boldsymbol{1}$
alpha	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetafrechet(x)
pbetafrechet(x)
varbetafrechet(x)
esbetafrechet(x)
```

betagompertz

Beta Gompertz distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Gompertz distribution due to Cordeiro et al. (2012b) given by

$$\begin{split} f(x) &= \frac{b\eta \exp(bx)}{B(c,d)} \exp\left(d\eta\right) \exp\left[-d\eta \exp(bx)\right] \left\{1 - \exp\left[\eta - \eta \exp(bx)\right]\right\}^{c-1}, \\ F(x) &= I_{1 - \exp\left[\eta - \eta \exp(bx)\right]}(c,d), \\ \mathrm{VaR}_p(X) &= \frac{1}{b} \log\left\{1 - \frac{1}{\eta} \log\left[1 - I_p^{-1}(c,d)\right]\right\}, \\ \mathrm{ES}_p(X) &= \frac{1}{pb} \int_0^p \log\left\{1 - \frac{1}{\eta} \log\left[1 - I_v^{-1}(c,d)\right]\right\} dv \end{split}$$

for x > 0, 0 , <math>b > 0, the first scale parameter, $\eta > 0$, the second scale parameter, c > 0, the first shape parameter, and d > 0, the second shape parameter.

22 betagompertz

Usage

```
dbetagompertz(x, b=1, c=1, d=1, eta=1, log=FALSE)
pbetagompertz(x, b=1, c=1, d=1, eta=1, log.p=FALSE, lower.tail=TRUE)
varbetagompertz(p, b=1, c=1, d=1, eta=1, log.p=FALSE, lower.tail=TRUE)
esbetagompertz(p, b=1, c=1, d=1, eta=1)
```

Arguments

Х	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the first scale parameter, must be positive, the default is 1
eta	the value of the second scale parameter, must be positive, the default is 1
С	the value of the first shape parameter, must be positive, the default is 1
d	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dbetagompertz(x)
pbetagompertz(x)
varbetagompertz(x)
esbetagompertz(x)
```

betagumbel 23

he	tag	rıım	he	1
υe	La⊱	ζUIII	nυc	т

Beta Gumbel distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel distribution due to Nadarajah and Kotz (2004) given by

$$\begin{split} f(x) &= \frac{1}{\sigma B(a,b)} \exp\left(\frac{\mu - x}{\sigma}\right) \exp\left[-a \exp\frac{\mu - x}{\sigma}\right] \left\{1 - \exp\left[-\exp\frac{\mu - x}{\sigma}\right]\right\}^{b-1}, \\ F(x) &= I_{\exp\left[-\exp\frac{\mu - x}{\sigma}\right]}(a,b), \\ \operatorname{VaR}_p(X) &= \mu - \sigma \log\left[-\log I_p^{-1}(a,b)\right], \\ \operatorname{ES}_p(X) &= \mu - \frac{\sigma}{p} \int_0^p \log\left[-\log I_v^{-1}(a,b)\right] dv \end{split}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dbetagumbel(x, a=1, b=1, mu=0, sigma=1, log=FALSE)
pbetagumbel(x, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varbetagumbel(p, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esbetagumbel(p, a=1, b=1, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

24 betagumbel2

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetagumbel(x)
pbetagumbel(x)
varbetagumbel(x)
esbetagumbel(x)
```

betagumbel2

Beta Gumbel 2 distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel II distribution given by

$$f(x) = \frac{abx^{-a-1}}{B(c,d)} \exp\left(-bdx^{-a}\right) \left[1 - \exp\left(-bx^{-a}\right)\right]^{c-1},$$

$$F(x) = I_{1-\exp(-bx^{-a})}(c,d),$$

$$\operatorname{VaR}_p(X) = b^{1/a} \left\{-\log\left[1 - I_p^{-1}(c,d)\right]\right\}^{-1/a},$$

$$\operatorname{ES}_p(X) = \frac{b^{1/a}}{p} \int_0^p \left\{-\log\left[1 - I_v^{-1}(c,d)\right]\right\}^{-1/a} dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, b > 0, the scale parameter, c > 0, the second shape parameter, and d > 0, the third shape parameter.

Usage

```
dbetagumbel2(x, a=1, b=1, c=1, d=1, log=FALSE)
pbetagumbel2(x, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
varbetagumbel2(p, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
esbetagumbel2(p, a=1, b=1, c=1, d=1)
```

Arguments

x	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the scale parameter, must be positive, the default is 1
a	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
d	the value of the third shape parameter, must be positive, the default is 1

betalognorm 25

log if TRUE then log(pdf) are returned

 $\log . \, p \qquad \qquad \text{if TRUE then log(cdf) are returned and quantiles are computed for } \exp(p)$

lower.tail if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetagumbel2(x)
pbetagumbel2(x)
varbetagumbel2(x)
esbetagumbel2(x, a = 2)
```

betalognorm

Beta lognormal distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta lognormal distribution due to Castellares et al. (2013) given by

$$\begin{split} f(x) &= \frac{1}{\sigma x B(a,b)} \phi\left(\frac{\log x - \mu}{\sigma}\right) \Phi^{a-1}\left(\frac{\log x - \mu}{\sigma}\right) \Phi^{b-1}\left(\frac{\mu - \log x}{\sigma}\right), \\ F(x) &= I_{\Phi\left(\frac{\log x - \mu}{\sigma}\right)}(a,b), \\ \operatorname{VaR}_p(X) &= \exp\left[\mu + \sigma \Phi^{-1}\left(I_p^{-1}(a,b)\right)\right], \\ \operatorname{ES}_p(X) &= \frac{\exp(\mu)}{p} \int_0^p \exp\left[\sigma \Phi^{-1}\left(I_v^{-1}(a,b)\right)\right] dv \end{split}$$

for $x>0,\,0< p<1,\,-\infty<\mu<\infty$, the location parameter, $\sigma>0$, the scale parameter, a>0, the first shape parameter, and b>0, the second shape parameter, where $\phi(\cdot)$ denotes the pdf of a standard normal random variable, and $\Phi(\cdot)$ denotes the cdf of a standard normal random variable.

26 betalognorm

Usage

```
dbetalognorm(x, a=1, b=1, mu=0, sigma=1, log=FALSE)
pbetalognorm(x, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varbetalognorm(p, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esbetalognorm(p, a=1, b=1, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dbetalognorm(x)
pbetalognorm(x)
varbetalognorm(x)
esbetalognorm(x)
```

betalomax 27

betalomax

Beta Lomax distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Lomax distribution due to Lemonte and Cordeiro (2013) given by

$$f(x) = \frac{\alpha}{\lambda B(a,b)} \left(1 + \frac{x}{\lambda} \right)^{-b\alpha - 1} \left[1 - \left(1 + \frac{x}{\lambda} \right)^{-\alpha} \right]^{a - 1},$$

$$F(x) = I_{1 - \left(1 + \frac{x}{\lambda} \right)^{-\alpha}}(a,b),$$

$$\operatorname{VaR}_{p}(X) = \lambda \left[1 - I_{p}^{-1}(a,b) \right]^{-1/\alpha} - \lambda,$$

$$\operatorname{ES}_{p}(X) = \frac{\lambda}{p} \int_{0}^{p} \left[1 - I_{v}^{-1}(a,b) \right]^{-1/\alpha} dv - \lambda$$

for x > 0, 0 , <math>a > 0, the first shape parameter, b > 0, the second shape parameter, $\alpha > 0$, the third shape parameter, and $\lambda > 0$, the scale parameter.

Usage

```
dbetalomax(x, a=1, b=1, alpha=1, lambda=1, log=FALSE)
pbetalomax(x, a=1, b=1, alpha=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varbetalomax(p, a=1, b=1, alpha=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
esbetalomax(p, a=1, b=1, alpha=1, lambda=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
a	the value of the first scale parameter, must be positive, the default is 1
b	the value of the second scale parameter, must be positive, the default is 1
alpha	the value of the third scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

28 betanorm

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetalomax(x)
pbetalomax(x)
varbetalomax(x)
esbetalomax(x)
```

betanorm

Beta normal distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta normal distribution due to Eugene et al. (2002) given by

$$\begin{split} f(x) &= \frac{1}{\sigma B(a,b)} \phi\left(\frac{x-\mu}{\sigma}\right) \Phi^{a-1}\left(\frac{x-\mu}{\sigma}\right) \Phi^{b-1}\left(\frac{\mu-x}{\sigma}\right), \\ F(x) &= I_{\Phi\left(\frac{x-\mu}{\sigma}\right)}(a,b), \\ \mathrm{VaR}_p(X) &= \mu + \sigma \Phi^{-1}\left(I_p^{-1}(a,b)\right), \\ \mathrm{ES}_p(X) &= \mu + \frac{\sigma}{p} \int_0^p \Phi^{-1}\left(I_v^{-1}(a,b)\right) dv \end{split}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dbetanorm(x, mu=0, sigma=1, a=1, b=1, log=FALSE)
pbetanorm(x, mu=0, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varbetanorm(p, mu=0, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esbetanorm(p, mu=0, sigma=1, a=1, b=1)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
a	the value of the first shape parameter, must be positive, the default is 1

betapareto 29

b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetanorm(x)
pbetanorm(x)
varbetanorm(x)
esbetanorm(x)
```

betapareto

Beta Pareto distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Pareto distribution due to Akinsete et al. (2008) given by

$$f(x) = \frac{aK^{ad}x^{-ad-1}}{B(c,d)} \left[1 - \left(\frac{K}{x}\right)^a \right]^{c-1},$$

$$F(x) = I_{1-\left(\frac{K}{x}\right)^a}(c,d),$$

$$\operatorname{VaR}_p(X) = K \left[1 - I_p^{-1}(c,d) \right]^{-1/a},$$

$$\operatorname{ES}_p(X) = \frac{K}{p} \int_0^p \left[1 - I_v^{-1}(c,d) \right]^{-1/a} dv$$

for $x \ge K$, 0 , <math>K > 0, the scale parameter, a > 0, the first shape parameter, c > 0, the second shape parameter, and d > 0, the third shape parameter.

30 betapareto

Usage

```
dbetapareto(x, K=1, a=1, c=1, d=1, log=FALSE)
pbetapareto(x, K=1, a=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
varbetapareto(p, K=1, a=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
esbetapareto(p, K=1, a=1, c=1, d=1)
```

Arguments

Х	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
K	the value of the scale parameter, must be positive, the default is 1
a	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
d	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dbetapareto(x)
pbetapareto(x)
varbetapareto(x)
esbetapareto(x)
```

betaweibull 31

	٠		-	-
betawe	7	hı	ıl	- 1

Beta Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Weibull distribution due to Cordeiro et al. (2012b) given by

$$\begin{split} f(x) &= \frac{\alpha x^{\alpha - 1}}{\sigma^{\alpha} B(a, b)} \exp\left\{-b \left(\frac{x}{\sigma}\right)^{\alpha}\right\} \left[1 - \exp\left\{-\left(\frac{x}{\sigma}\right)^{\alpha}\right\}\right]^{a - 1}, \\ F(x) &= I_{1 - \exp\left\{-\left(\frac{x}{\sigma}\right)^{\alpha}\right\}}(a, b), \\ \operatorname{VaR}_{p}(X) &= \sigma \left\{-\log\left[1 - I_{p}^{-1}(a, b)\right]\right\}^{1/\alpha}, \\ \operatorname{ES}_{p}(X) &= \frac{\sigma}{p} \int_{0}^{p} \left\{-\log\left[1 - I_{v}^{-1}(a, b)\right]\right\}^{1/\alpha} dv \end{split}$$

for x > 0, 0 , <math>a > 0, the first shape parameter, b > 0, the second shape parameter, $\alpha > 0$, the third shape parameter, and $\sigma > 0$, the scale parameter.

Usage

```
dbetaweibull(x, a=1, b=1, alpha=1, sigma=1, log=FALSE)
pbetaweibull(x, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varbetaweibull(p, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
esbetaweibull(p, a=1, b=1, alpha=1, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
alpha	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

32 BS

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dbetaweibull(x)
pbetaweibull(x)
varbetaweibull(x)
esbetaweibull(x)
```

BS

Birnbaum-Saunders distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Birnbaum-Saunders distribution due to Birnbaum and Saunders (1969a, 1969b) given by

$$f(x) = \frac{x^{1/2} + x^{-1/2}}{2\gamma x} \phi\left(\frac{x^{1/2} - x^{-1/2}}{\gamma}\right),$$

$$F(x) = \Phi\left(\frac{x^{1/2} - x^{-1/2}}{\gamma}\right),$$

$$\operatorname{VaR}_{p}(X) = \frac{1}{4} \left\{ \gamma \Phi^{-1}(p) + \sqrt{4 + \gamma^{2} \left[\Phi^{-1}(p)\right]^{2}} \right\}^{2},$$

$$\operatorname{ES}_{p}(X) = \frac{1}{4p} \int_{0}^{p} \left\{ \gamma \Phi^{-1}(v) + \sqrt{4 + \gamma^{2} \left[\Phi^{-1}(v)\right]^{2}} \right\}^{2} dv$$

for x > 0, $0 , and <math>\gamma > 0$, the scale parameter.

Usage

```
dBS(x, gamma=1, log=FALSE)
pBS(x, gamma=1, log.p=FALSE, lower.tail=TRUE)
varBS(p, gamma=1, log.p=FALSE, lower.tail=TRUE)
esBS(p, gamma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
gamma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

burr 33

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dBS(x)
pBS(x)
varBS(x)
esBS(x)
```

burr

Burr distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Burr distribution due to Burr (1942) given by

$$f(x) = \frac{ba^b}{x^{b+1}} \left[1 + (x/a)^{-b} \right]^{-2},$$

$$F(x) = \frac{1}{1 + (x/a)^{-b}},$$

$$\operatorname{VaR}_p(X) = ap^{1/b}(1-p)^{-1/b},$$

$$\operatorname{ES}_p(X) = \frac{a}{p} B_p \left(1/b + 1, 1 - 1/b \right)$$

for $x>0,\,0< p<1,\,a>0$, the scale parameter, and b>0, the shape parameter, where $B_x(a,b)=\int_0^x t^{a-1}(1-t)^{b-1}dt$ denotes the incomplete beta function.

Usage

```
dburr(x, a=1, b=1, log=FALSE)
pburr(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varburr(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esburr(p, a=1, b=1)
```

34 burr7

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the scale parameter, must be positive, the default is 1
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dburr(x)
pburr(x)
varburr(x)
esburr(x)
```

burr7

Burr XII distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Burr XII distribution due to Burr (1942) given by

$$f(x) = \frac{kcx^{c-1}}{(1+x^c)^{k+1}},$$

$$F(x) = 1 - (1+x^c)^{-k},$$

$$VaR_p(X) = \left[(1-p)^{-1/k} - 1 \right]^{1/c},$$

$$ES_p(X) = \frac{1}{p} \int_0^p \left[(1-v)^{-1/k} - 1 \right]^{1/c} dv$$

for x > 0, 0 , <math>c > 0, the first shape parameter, and k > 0, the second shape parameter.

burr7

Usage

```
dburr7(x, k=1, c=1, log=FALSE)
pburr7(x, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
varburr7(p, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
esburr7(p, k=1, c=1)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
k	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dburr7(x)
pburr7(x)
varburr7(x)
esburr7(x)
```

36 Cauchy

Cauchy

Cauchy distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Cauchy distribution given by

$$\begin{split} f(x) &= \frac{1}{\pi} \frac{\sigma}{(x - \mu)^2 + \sigma^2}, \\ F(x) &= \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x - \mu}{\sigma}\right), \\ \mathrm{VaR}_p(X) &= \mu + \sigma \tan\left(\pi\left(p - \frac{1}{2}\right)\right), \\ \mathrm{ES}_p(X) &= \mu + \frac{\sigma}{p} \int_0^p \tan\left(\pi\left(v - \frac{1}{2}\right)\right) dv \end{split}$$

for $-\infty < x < \infty, \, 0 < p < 1, \, -\infty < \mu < \infty$, the location parameter, and $\sigma > 0$, the scale parameter.

Usage

```
dCauchy(x, mu=0, sigma=1, log=FALSE)
pCauchy(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varCauchy(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esCauchy(p, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

chen 37

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dCauchy(x)
pCauchy(x)
varCauchy(x)
esCauchy(x)
```

chen

Chen distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Chen distribution due to Chen (2000) given by

$$f(x) = \lambda b x^{b-1} \exp\left(x^b\right) \exp\left[\lambda - \lambda \exp\left(x^b\right)\right],$$

$$F(x) = 1 - \exp\left[\lambda - \lambda \exp\left(x^b\right)\right],$$

$$\operatorname{VaR}_p(X) = \left\{\log\left[1 - \frac{\log(1-p)}{\lambda}\right]\right\}^{1/b},$$

$$\operatorname{ES}_p(X) = \frac{1}{p} \int_0^p \left\{\log\left[1 - \frac{\log(1-v)}{\lambda}\right]\right\}^{1/b} dv$$

for x > 0, 0 , <math>b > 0, the shape parameter, and $\lambda > 0$, the scale parameter.

Usage

```
dchen(x, b=1, lambda=1, log=FALSE)
pchen(x, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varchen(p, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
eschen(p, b=1, lambda=1)
```

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dchen(x)
pchen(x)
varchen(x)
eschen(x)
```

clg

Compound Laplace gamma distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the compound Laplace gamma distribution given by

$$f(x) = \frac{ab}{2} \left\{ 1 + b | x - \theta | \right\}^{-(a+1)},$$

$$F(x) = \begin{cases} \frac{1}{2} \left\{ 1 + b | x - \theta | \right\}^{-a}, & \text{if } x \le \theta, \\ 1 - \frac{1}{2} \left\{ 1 + b | x - \theta | \right\}^{-a}, & \text{if } x > \theta, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \theta - \frac{1}{b} - \frac{(2p)^{-1/a}}{b}, & \text{if } p \le 1/2, \\ \theta - \frac{1}{b} + \frac{(2(1-p))^{-1/a}}{b}, & \text{if } p > 1/2, \end{cases}$$

$$\text{ES}_p(X) = \begin{cases} \theta - \frac{1}{b} - \frac{(2p)^{-1/a}}{b(1-1/a)}, & \text{if } p \le 1/2, \\ \theta - \frac{1}{b} - \frac{[2(1-p)]^{1-1/a}}{2pb(1-1/a)}, & \text{if } p > 1/2 \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \theta < \infty$, the location parameter, b > 0, the scale parameter, and a > 0, the shape parameter.

clg 39

Usage

```
dclg(x, a=1, b=1, theta=0, log=FALSE)
pclg(x, a=1, b=1, theta=0, log.p=FALSE, lower.tail=TRUE)
varclg(p, a=1, b=1, theta=0, log.p=FALSE, lower.tail=TRUE)
esclg(p, a=1, b=1, theta=0)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the location parameter, can take any real value, the default is zero
b	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dclg(x)
pclg(x)
varclg(x)
esclg(x)
```

40 compbeta

compbeta

Complementary beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the complementary beta distribution due to Jones (2002) given by

$$\begin{split} f(x) &= B(a,b) \left\{ I_x^{-1}(a,b) \right\}^{1-a} \left\{ 1 - I_x^{-1}(a,b) \right\}^{1-b}, \\ F(x) &= I_x^{-1}(a,b), \\ \mathrm{VaR}_p(X) &= I_p(a,b), \\ \mathrm{ES}_p(X) &= \frac{1}{p} \int_0^p I_v(a,b) dv \end{split}$$

for 0 < x < 1, 0 , <math>a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dcompbeta(x, a=1, b=1, log=FALSE)
pcompbeta(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varcompbeta(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
escompbeta(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

dagum 41

Examples

```
x=runif(10,min=0,max=1)
dcompbeta(x)
pcompbeta(x)
varcompbeta(x)
escompbeta(x)
```

dagum

Dagum distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Dagum distribution due to Dagum (1975, 1977, 1980) given by

$$f(x) = \frac{acb^{a}x^{ac-1}}{[x^{a} + b^{a}]^{c+1}},$$

$$F(x) = \left[1 + \left(\frac{b}{x}\right)^{a}\right]^{-c},$$

$$VaR_{p}(X) = b\left(1 - p^{-1/c}\right)^{-1/a},$$

$$ES_{p}(X) = \frac{b}{p} \int_{0}^{p} \left(1 - v^{-1/c}\right)^{-1/a} dv$$

for $x>0,\,0< p<1,\,a>0,$ the first shape parameter, b>0, the scale parameter, and c>0, the second shape parameter.

Usage

```
ddagum(x, a=1, b=1, c=1, log=FALSE)
pdagum(x, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
vardagum(p, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
esdagum(p, a=1, b=1, c=1)
```

Х	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the scale parameter, must be positive, the default is 1
a	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

42 dweibull

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
ddagum(x)
pdagum(x)
vardagum(x)
esdagum(x)
```

dweibull

Double Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the double Weibull distribution due to Balakrishnan and Kocherlakota (1985) given by

$$f(x) = \frac{c}{2\sigma} \left| \frac{x - \mu}{\sigma} \right|^{c-1} \exp\left\{ -\left| \frac{x - \mu}{\sigma} \right|^{c} \right\},$$

$$F(x) = \begin{cases} \frac{1}{2} \exp\left\{ -\left(\frac{\mu - x}{\sigma} \right)^{c} \right\}, & \text{if } x \leq \mu, \\ 1 - \frac{1}{2} \exp\left\{ -\left(\frac{x - \mu}{\sigma} \right)^{c} \right\}, & \text{if } x > \mu, \end{cases}$$

$$\text{VaR}_{p}(X) = \begin{cases} \mu - \sigma \left[-\log \left(2p \right) \right]^{1/c}, & \text{if } p \leq 1/2, \\ \mu + \sigma \left[-\log \left(2(1 - p) \right) \right]^{1/c}, & \text{if } p > 1/2, \end{cases}$$

$$\text{ES}_{p}(X) = \begin{cases} \mu - \frac{\sigma}{p} \int_{0}^{p} \left[-\log 2 - \log v \right]^{1/c} dv, & \text{if } p \leq 1/2, \end{cases}$$

$$+ \frac{\sigma}{p} \int_{1/2}^{1/2} \left[-\log 2 - \log v \right]^{1/c} dv, & \text{if } p > 1/2, \end{cases}$$

dweibull 43

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, and c > 0, the shape parameter.

Usage

```
ddweibull(x, c=1, mu=0, sigma=1, log=FALSE)
pdweibull(x, c=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
vardweibull(p, c=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esdweibull(p, c=1, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
С	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
ddweibull(x)
pdweibull(x)
vardweibull(x)
esdweibull(x)
```

44 expexp

expexp

Exponentiated exponential distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponentiated exponential distribution due to Gupta and Kundu (1999, 2001) given by

$$\begin{split} f(x) &= a\lambda \exp(-\lambda x) \left[1 - \exp(-\lambda x)\right]^{a-1}, \\ F(x) &= \left[1 - \exp(-\lambda x)\right]^a, \\ \operatorname{VaR}_p(X) &= -\frac{1}{\lambda} \log\left(1 - p^{1/a}\right), \\ \operatorname{ES}_p(X) &= -\frac{1}{p\lambda} \int_0^p \log\left(1 - v^{1/a}\right) dv \end{split}$$

for x > 0, 0 0, the shape parameter and $\lambda > 0$, the scale parameter.

Usage

```
dexpexp(x, lambda=1, a=1, log=FALSE)
pexpexp(x, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
varexpexp(p, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
esexpexp(p, lambda=1, a=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(\text{cdf})$ are returned and quantiles are computed for $\exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

expext 45

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dexpexp(x)
pexpexp(x)
varexpexp(x)
esexpexp(x)
```

expext

Exponential extension distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponential extension distribution due to Nadarajah and Haghighi (2011) given by

$$f(x) = a\lambda(1 + \lambda x)^{a-1} \exp\left[1 - (1 + \lambda x)^{a}\right],$$

$$F(x) = 1 - \exp\left[1 - (1 + \lambda x)^{a}\right],$$

$$\operatorname{VaR}_{p}(X) = \frac{\left[1 - \log(1 - p)\right]^{1/a} - 1}{\lambda},$$

$$\operatorname{ES}_{p}(X) = -\frac{1}{\lambda} + \frac{1}{\lambda p} \int_{0}^{p} \left[1 - \log(1 - v)\right]^{1/a} dv$$

for x > 0, 0 , <math>a > 0, the shape parameter and $\lambda > 0$, the scale parameter.

Usage

```
dexpext(x, lambda=1, a=1, log=FALSE)
pexpext(x, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
varexpext(p, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
esexpext(p, lambda=1, a=1)
```

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

46 expgeo

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dexpext(x)
pexpext(x)
varexpext(x)
esexpext(x)
```

expgeo

Exponential geometric distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponential geometric distribution due to Adamidis and Loukas (1998) given by

$$\begin{split} f(x) &= \frac{\lambda \theta \exp(-\lambda x)}{\left[1 - (1 - \theta) \exp(-\lambda x)\right]^2}, \\ F(x) &= \frac{\theta \exp(-\lambda x)}{1 - (1 - \theta) \exp(-\lambda x)}, \\ \operatorname{VaR}_p(X) &= -\frac{1}{\lambda} \log \frac{p}{\theta + (1 - \theta)p}, \\ \operatorname{ES}_p(X) &= -\frac{\log p}{\lambda} - \frac{\theta \log \theta}{\lambda p (1 - \theta)} + \frac{\theta + (1 - \theta)p}{\lambda p (1 - \theta)} \log \left[\theta + (1 - \theta)p\right] \end{split}$$

for $x > 0, \, 0 , the first scale parameter, and <math>\lambda > 0$, the second scale parameter.

Usage

```
dexpgeo(x, theta=0.5, lambda=1, log=FALSE)
pexpgeo(x, theta=0.5, lambda=1, log.p=FALSE, lower.tail=TRUE)
varexpgeo(p, theta=0.5, lambda=1, log.p=FALSE, lower.tail=TRUE)
esexpgeo(p, theta=0.5, lambda=1)
```

explog 47

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the first scale parameter, must be in the unit interval, the default is 0.5
lambda	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dexpgeo(x)
pexpgeo(x)
varexpgeo(x)
esexpgeo(x)
```

48 explog

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponential logarithmic distribution due to Tahmasbi and Rezaei (2008) given by

$$f(x) = -\frac{b(1-a)\exp(-bx)}{\log a \left[1 - (1-a)\exp(-bx)\right]},$$

$$F(x) = 1 - \frac{\log\left[1 - (1-a)\exp(-bx)\right]}{\log a},$$

$$VaR_p(X) = -\frac{1}{b}\log\left[\frac{1 - a^{1-p}}{1 - a}\right],$$

$$ES_p(X) = -\frac{1}{bp} \int_0^p \log\left[\frac{1 - a^{1-v}}{1 - a}\right] dv$$

for x > 0, 0 , <math>0 < a < 1, the first scale parameter, and b > 0, the second scale parameter.

Usage

```
dexplog(x, a=0.5, b=1, log=FALSE)
pexplog(x, a=0.5, b=1, log.p=FALSE, lower.tail=TRUE)
varexplog(p, a=0.5, b=1, log.p=FALSE, lower.tail=TRUE)
esexplog(p, a=0.5, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be in the unit interval, the default is 0.5
b	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

explogis 49

Examples

```
x=runif(10,min=0,max=1)
dexplog(x)
pexplog(x)
varexplog(x)
esexplog(x)
```

explogis

Exponentiated logistic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponentiated logistic distribution given by

$$\begin{split} f(x) &= (a/b) \exp(-x/b) \left[1 + \exp(-x/b) \right]^{-a-1}, \\ F(x) &= \left[1 + \exp(-x/b) \right]^{-a}, \\ \operatorname{VaR}_p(X) &= -b \log \left[p^{-1/a} - 1 \right], \\ \operatorname{ES}_p(X) &= -\frac{b}{p} \int_0^p \log \left[v^{-1/a} - 1 \right] dv \end{split}$$

for $-\infty < x < \infty$, 0 , <math>a > 0, the shape parameter, and b > 0, the scale parameter.

Usage

```
dexplogis(x, a=1, b=1, log=FALSE)
pexplogis(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varexplogis(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esexplogis(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

50 exponential

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dexplogis(x)
pexplogis(x)
varexplogis(x)
esexplogis(x)
```

exponential

Exponential distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponential distribution given by

$$\begin{split} f(x) &= \lambda \exp(-\lambda x), \\ F(x) &= 1 - \exp(-\lambda x), \\ \operatorname{VaR}_p(X) &= -\frac{1}{\lambda} \log(1-p), \\ \operatorname{ES}_p(X) &= -\frac{1}{p\lambda} \left\{ \log(1-p)p - p - \log(1-p) \right\} \end{split}$$

for x > 0, $0 , and <math>\lambda > 0$, the scale parameter.

Usage

```
dexponential(x, lambda=1, log=FALSE)
pexponential(x, lambda=1, log.p=FALSE, lower.tail=TRUE)
varexponential(p, lambda=1, log.p=FALSE, lower.tail=TRUE)
esexponential(p, lambda=1)
```

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

exppois 51

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dexponential(x)
pexponential(x)
varexponential(x)
esexponential(x)
```

exppois

Exponential Poisson distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponential Poisson distribution due to Kus (2007) given by

$$\begin{split} f(x) &= \frac{b\lambda \exp\left[-bx - \lambda + \lambda \exp(-bx)\right]}{1 - \exp(-\lambda)}, \\ F(x) &= \frac{1 - \exp\left[-\lambda + \lambda \exp(-bx)\right]}{1 - \exp(-\lambda)}, \\ \mathrm{VaR}_p(X) &= -\frac{1}{b} \log\left\{\frac{1}{\lambda} \log\left[1 - p + p \exp(-\lambda)\right] + 1\right\}, \\ \mathrm{ES}_p(X) &= -\frac{1}{bp} \int_0^p \log\left\{\frac{1}{\lambda} \log\left[1 - v + v \exp(-\lambda)\right] + 1\right\} dv \end{split}$$

for x > 0, 0 , <math>b > 0, the first scale parameter, and $\lambda > 0$, the second scale parameter.

Usage

```
dexppois(x, b=1, lambda=1, log=FALSE)
pexppois(x, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varexppois(p, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
esexppois(p, b=1, lambda=1)
```

52 exppower

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the first scale parameter, must be positive, the default is 1
lambda	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dexppois(x)
pexppois(x)
varexppois(x)
esexppois(x)
```

exppower 53

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponential power distribution due to Subbotin (1923) given by

$$f(x) = \frac{1}{2a^{1/a}\sigma\Gamma(1+1/a)} \exp\left\{-\frac{|x-\mu|^a}{a\sigma^a}\right\},$$

$$F(x) = \begin{cases} \frac{1}{2}Q\left(\frac{1}{a}, \frac{(\mu-x)^a}{a\sigma^a}\right), & \text{if } x \leq \mu, \\ 1 - \frac{1}{2}Q\left(\frac{1}{a}, \frac{(x-\mu)^a}{a\sigma^a}\right), & \text{if } x > \mu, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \mu - a^{1/a}\sigma\left[Q^{-1}\left(\frac{1}{a}, 2p\right)\right]^{1/a}, & \text{if } p \leq 1/2, \\ \mu + a^{1/a}\sigma\left[Q^{-1}\left(\frac{1}{a}, 2(1-p)\right)\right]^{1/a}, & \text{if } p > 1/2, \end{cases}$$

$$\text{ES}_p(X) = \begin{cases} \mu - \frac{a^{1/a}\sigma}{p} \int_0^p \left[Q^{-1}\left(\frac{1}{a}, 2v\right)\right]^{1/a} dv, & \text{if } p \leq 1/2, \end{cases}$$

$$+ \frac{a^{1/a}\sigma}{p} \int_{1/2}^{1/2} \left[Q^{-1}\left(\frac{1}{a}, 2v\right)\right]^{1/a} dv, & \text{if } p > 1/2 \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, and a > 0, the shape parameter.

Usage

```
dexppower(x, mu=0, sigma=1, a=1, log=FALSE)
pexppower(x, mu=0, sigma=1, a=1, log.p=FALSE, lower.tail=TRUE)
varexppower(p, mu=0, sigma=1, a=1, log.p=FALSE, lower.tail=TRUE)
esexppower(p, mu=0, sigma=1, a=1)
```

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

54 expweibull

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dexppower(x)
pexppower(x)
varexppower(x)
esexppower(x)
```

expweibull

Exponentiated Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponentiated Weibull distribution due to Mudholkar and Srivastava (1993) and Mudholkar et al. (1995) given by

$$\begin{split} &f(x) = a\alpha\sigma^{-\alpha}x^{\alpha-1}\exp\left[-(x/\sigma)^{\alpha}\right]\left\{1 - \exp\left[-(x/\sigma)^{\alpha}\right]\right\}^{a-1},\\ &F(x) = \left\{1 - \exp\left[-(x/\sigma)^{\alpha}\right]\right\}^{a},\\ &\operatorname{VaR}_{p}(X) = \sigma\left[-\log\left(1 - p^{1/a}\right)\right]^{1/\alpha},\\ &\operatorname{ES}_{p}(X) = \frac{\sigma}{p}\int_{0}^{p}\left[-\log\left(1 - v^{1/a}\right)\right]^{1/\alpha}dv \end{split}$$

for x > 0, 0 , <math>a > 0, the first shape parameter, $\alpha > 0$, the second shape parameter, and $\sigma > 0$, the scale parameter.

Usage

```
dexpweibull(x, a=1, alpha=1, sigma=1, log=FALSE)
pexpweibull(x, a=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varexpweibull(p, a=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
esexpweibull(p, a=1, alpha=1, sigma=1)
```

F 55

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
alpha	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

F

```
x=runif(10,min=0,max=1)
dexpweibull(x)
pexpweibull(x)
varexpweibull(x)
esexpweibull(x)
```

56 F

Description

Computes the pdf, cdf, value at risk and expected shortfall for the F distribution given by

$$f(x) = \frac{1}{B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1 + \frac{d_1}{d_2}x\right)^{-\frac{d_1 + d_2}{2}},$$

$$F(x) = I_{\frac{d_1 x}{d_1 x + d_2}} \left(\frac{d_1}{2}, \frac{d_2}{2}\right),$$

$$\operatorname{VaR}_p(X) = \frac{d_2}{d_1} \frac{I_p^{-1}\left(\frac{d_1}{2}, \frac{d_2}{2}\right)}{1 - I_p^{-1}\left(\frac{d_1}{2}, \frac{d_2}{2}\right)},$$

$$\operatorname{ES}_p(X) = \frac{d_2}{d_1 p} \int_0^p \frac{I_v^{-1}\left(\frac{d_1}{2}, \frac{d_2}{2}\right)}{1 - I_v^{-1}\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} dv$$

for $x \ge K$, $0 , <math>d_1 > 0$, the first degree of freedom parameter, and $d_2 > 0$, the second degree of freedom parameter.

Usage

```
dF(x, d1=1, d2=1, log=FALSE)

pF(x, d1=1, d2=1, log.p=FALSE, lower.tail=TRUE)

varF(p, d1=1, d2=1, log.p=FALSE, lower.tail=TRUE)

esF(p, d1=1, d2=1)
```

Arguments

х	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
d1	the value of the first degree of freedom parameter, must be positive, the default is $\boldsymbol{1}$
d2	the value of the second degree of freedom parameter, must be positive, the default is $\boldsymbol{1}$
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

FR 57

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dF(x)
pF(x)
varF(x)
esF(x)
```

FR

Freimer distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Freimer distribution due to Freimer et al. (1988) given by

$$VaR_{p}(X) = \frac{1}{a} \left[\frac{p^{b} - 1}{b} - \frac{(1 - p)^{c} - 1}{c} \right],$$

$$ES_{p}(X) = \frac{1}{a} \left(\frac{1}{c} - \frac{1}{b} \right) + \frac{p^{b}}{ab(b+1)} + \frac{(1 - p)^{c+1} - 1}{pac(c+1)}$$

for 0 , <math>a > 0, the scale parameter, b > 0, the first shape parameter, and c > 0, the second shape parameter.

Usage

```
varFR(p, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE) esFR(p, a=1, b=1, c=1)
```

p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the scale parameter, must be positive, the default is 1
b	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

58 frechet

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
varFR(x)
esFR(x)
```

frechet

Frechet distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Fr\'echet distribution due to Fr\'echet (1927) given by

$$\begin{split} f(x) &= \frac{\alpha \sigma^{\alpha}}{x^{\alpha + 1}} \exp\left\{-\left(\frac{\sigma}{x}\right)^{\alpha}\right\}, \\ F(x) &= \exp\left\{-\left(\frac{\sigma}{x}\right)^{\alpha}\right\}, \\ \operatorname{VaR}_{p}(X) &= \sigma\left[-\log p\right]^{-1/\alpha}, \\ \operatorname{ES}_{p}(X) &= \frac{\sigma}{p}\Gamma\left(1 - 1/\alpha, -\log p\right) \end{split}$$

for $x>0,\,0< p<1,\,\alpha>0$, the shape parameter, and $\sigma>0$, the scale parameter, where $\Gamma(a,x)=\int_x^\infty t^{a-1}\exp\left(-t\right)dt$ denotes the complementary incomplete gamma function.

Usage

```
dfrechet(x, alpha=1, sigma=1, log=FALSE)
pfrechet(x, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varfrechet(p, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
esfrechet(p, alpha=1, sigma=1)
```

Gamma 59

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
sigma	the value of the scale parameter, must be positive, the default is 1
alpha	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dfrechet(x)
pfrechet(x)
varfrechet(x)
esfrechet(x)
```

Gamma

Gamma distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the gamma distribution given by

$$f(x) = \frac{b^{a}x^{a-1}\exp(-bx)}{\Gamma(a)},$$

$$F(x) = \frac{\gamma(a, bx)}{\Gamma(a)},$$

$$VaR_{p}(X) = \frac{1}{b}Q^{-1}(a, 1 - p),$$

$$ES_{p}(X) = \frac{1}{bp}\int_{0}^{p}Q^{-1}(a, 1 - v)dv$$

60 Gamma

for $x>0,\,0< p<1,\,b>0$, the scale parameter, and a>0, the shape parameter, where $\gamma(a,x)=\int_0^x t^{a-1}\exp\left(-t\right)dt$ denotes the incomplete gamma function, $Q(a,x)=\int_x^\infty t^{a-1}\exp\left(-t\right)dt/\Gamma(a)$ denotes the regularized complementary incomplete gamma function, $\Gamma(a)=\int_0^\infty t^{a-1}\exp\left(-t\right)dt$ denotes the gamma function, and $Q^{-1}(a,x)$ denotes the inverse of Q(a,x).

Usage

```
dGamma(x, a=1, b=1, log=FALSE)
pGamma(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varGamma(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esGamma(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the scale parameter, must be positive, the default is 1
a	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dGamma(x)
pGamma(x)
varGamma(x)
esGamma(x)
```

genbeta 61

αon	beta	_
gen	טפני	

Generalized beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized beta distribution given by

$$f(x) = \frac{(x-c)^{a-1}(d-x)^{b-1}}{B(a,b)(d-c)^{a+b-1}},$$

$$F(x) = I_{\frac{x-c}{d-c}}(a,b),$$

$$\operatorname{VaR}_p(X) = c + (d-c)I_p^{-1}(a,b),$$

$$\operatorname{ES}_p(X) = c + \frac{d-c}{p} \int_0^p I_v^{-1}(a,b) dv$$

for $c \le x \le d$, 0 , <math>a > 0, the first shape parameter, b > 0, the second shape parameter, $-\infty < c < \infty$, the first location parameter, and $-\infty < c < d < \infty$, the second location parameter.

Usage

```
dgenbeta(x, a=1, b=1, c=0, d=1, log=FALSE)
pgenbeta(x, a=1, b=1, c=0, d=1, log.p=FALSE, lower.tail=TRUE)
vargenbeta(p, a=1, b=1, c=0, d=1, log.p=FALSE, lower.tail=TRUE)
esgenbeta(p, a=1, b=1, c=0, d=1)
```

Arguments

x	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
С	the value of the first location parameter, can take any real value, the default is zero
d	the value of the second location parameter, can take any real value but must be greater than c , the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

62 genbeta2

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgenbeta(x)
pgenbeta(x)
vargenbeta(x)
esgenbeta(x)
```

genbeta2

Generalized beta II distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized beta II distribution given by

$$f(x) = \frac{cx^{ac-1} (1 - x^c)^{b-1}}{B(a, b)},$$

$$F(x) = I_{x^c}(a, b),$$

$$VaR_p(X) = \left[I_p^{-1}(a, b)\right]^{1/c},$$

$$ES_p(X) = \frac{1}{p} \int_0^p \left[I_v^{-1}(a, b)\right]^{1/c} dv$$

for 0 < x < 1, 0 < p < 1, a > 0, the first shape parameter, b > 0, the second shape parameter, and c > 0, the third shape parameter.

Usage

```
dgenbeta2(x, a=1, b=1, c=1, log=FALSE)
pgenbeta2(x, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
vargenbeta2(p, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
esgenbeta2(p, a=1, b=1, c=1)
```

- x scaler or vector of values at which the pdf or cdf needs to be computed
- p scaler or vector of values at which the value at risk or expected shortfall needs to be computed
- a the value of the first shape parameter, must be positive, the default is 1

geninvbeta 63

b	the value of the second shape parameter, must be positive, the default is 1
С	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgenbeta2(x)
pgenbeta2(x)
vargenbeta2(x)
esgenbeta2(x)
```

geninvbeta

Generalized inverse beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized inverse beta distribution given by

$$f(x) = \frac{ax^{ac-1}}{B(c,d)(1+x^a)^{c+d}},$$

$$F(x) = I_{\frac{x^a}{1+x^a}}(c,d),$$

$$\operatorname{VaR}_p(X) = \left[\frac{I_p^{-1}(c,d)}{1-I_p^{-1}(c,d)}\right]^{1/a},$$

$$\operatorname{ES}_p(X) = \frac{1}{p} \int_0^p \left[\frac{I_v^{-1}(c,d)}{1-I_v^{-1}(c,d)}\right]^{1/a} dv$$

for $x>0,\,0< p<1,\,a>0$, the first shape parameter, c>0, the second shape parameter, and d>0, the third shape parameter.

64 geninvbeta

Usage

```
dgeninvbeta(x, a=1, c=1, d=1, log=FALSE)
pgeninvbeta(x, a=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
vargeninvbeta(p, a=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
esgeninvbeta(p, a=1, c=1, d=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
d	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dgeninvbeta(x)
pgeninvbeta(x)
vargeninvbeta(x)
esgeninvbeta(x)
```

genlogis 65

genlogis

Generalized logistic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized logistic distribution given by

$$f(x) = \frac{a \exp\left(-\frac{x-\mu}{\sigma}\right)}{\sigma \left\{1 + \exp\left(-\frac{x-\mu}{\sigma}\right)\right\}^{1+a}},$$

$$F(x) = \frac{1}{\left\{1 + \exp\left(-\frac{x-\mu}{\sigma}\right)\right\}^{a}},$$

$$\operatorname{VaR}_{p}(X) = \mu - \sigma \log\left(p^{-1/a} - 1\right),$$

$$\operatorname{ES}_{p}(X) = \mu - \frac{\sigma}{p} \int_{0}^{p} \log\left(v^{-1/a} - 1\right) dv$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, and a > 0, the shape parameter.

Usage

```
dgenlogis(x, a=1, mu=0, sigma=1, log=FALSE)
pgenlogis(x, a=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
vargenlogis(p, a=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esgenlogis(p, a=1, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

66 genlogis3

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgenlogis(x)
pgenlogis(x)
vargenlogis(x)
esgenlogis(x)
```

genlogis3

Generalized logistic III distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized logistic III distribution given by

$$\begin{split} f(x) &= \frac{1}{\sigma B(\alpha, \alpha)} \exp\left(\alpha \frac{x - \mu}{\sigma}\right) \left\{1 + \exp\left(\frac{x - \mu}{\sigma}\right)\right\}^{-2\alpha}, \\ F(x) &= I_{\frac{1}{1 + \exp\left(-\frac{x - \mu}{\sigma}\right)}}(\alpha, \alpha), \\ \operatorname{VaR}_p(X) &= \mu - \sigma \log \frac{1 - I_p^{-1}(\alpha, \alpha)}{I_p^{-1}(\alpha, \alpha)}, \\ \operatorname{ES}_p(X) &= \mu - \frac{\sigma}{p} \int_0^p \log \frac{1 - I_v^{-1}(\alpha, \alpha)}{I_v^{-1}(\alpha, \alpha)} dv \end{split}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, and $\alpha > 0$, the shape parameter.

Usage

```
dgenlogis3(x, alpha=1, mu=0, sigma=1, log=FALSE)
pgenlogis3(x, alpha=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
vargenlogis3(p, alpha=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esgenlogis3(p, alpha=1, mu=0, sigma=1)
```

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
alpha	the value of the shape parameter, must be positive, the default is 1

genlogis4 67

log if TRUE then log(pdf) are returned
log.p if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgenlogis3(x)
pgenlogis3(x)
vargenlogis3(x)
esgenlogis3(x)
```

genlogis4

Generalized logistic IV distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized logistic IV distribution given by

$$\begin{split} f(x) &= \frac{1}{\sigma B(\alpha, a)} \exp\left(-\alpha \frac{x - \mu}{\sigma}\right) \left\{1 + \exp\left(-\frac{x - \mu}{\sigma}\right)\right\}^{-\alpha - a}, \\ F(x) &= I_{\frac{1}{1 + \exp\left(-\frac{x - \mu}{\sigma}\right)}}(\alpha, a), \\ \operatorname{VaR}_p(X) &= \mu - \sigma \log \frac{1 - I_p^{-1}(\alpha, a)}{I_p^{-1}(\alpha, a)}, \\ \operatorname{ES}_p(X) &= \mu - \frac{\sigma}{p} \int_0^p \log \frac{1 - I_v^{-1}(\alpha, a)}{I_v^{-1}(\alpha, a)} dv \end{split}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, $\alpha > 0$, the first shape parameter, and a > 0, the second shape parameter.

68 genlogis4

Usage

```
dgenlogis4(x, a=1, alpha=1, mu=0, sigma=1, log=FALSE)
pgenlogis4(x, a=1, alpha=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
vargenlogis4(p, a=1, alpha=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esgenlogis4(p, a=1, alpha=1, mu=0, sigma=1)
```

Arguments

Х	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
alpha	the value of the first shape parameter, must be positive, the default is 1
а	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dgenlogis4(x)
pgenlogis4(x)
vargenlogis4(x)
esgenlogis4(x)
```

genpareto 69

genpareto

Generalized Pareto distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized Pareto distribution due to Pickands (1975) given by

$$f(x) = \frac{1}{k} \left(1 - \frac{cx}{k} \right)^{1/c - 1},$$

$$F(x) = 1 - \left(1 - \frac{cx}{k} \right)^{1/c},$$

$$VaR_p(X) = \frac{k}{c} \left[1 - (1 - p)^c \right],$$

$$ES_p(X) = \frac{k}{c} + \frac{k(1 - p)^{c + 1}}{pc(c + 1)} - \frac{k}{pc(c + 1)}$$

for x < k/c if c > 0, x > k/c if c < 0, x > 0 if c = 0, 0 , <math>k > 0, the scale parameter and $-\infty < c < \infty$, the shape parameter.

Usage

```
dgenpareto(x, k=1, c=1, log=FALSE)
pgenpareto(x, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
vargenpareto(p, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
esgenpareto(p, k=1, c=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
k	the value of the scale parameter, must be positive, the default is 1
С	the value of the shape parameter, can take any real value, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(\text{cdf})$ are returned and quantiles are computed for $\exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

70 genpowerweibull

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgenpareto(x)
pgenpareto(x)
vargenpareto(x)
esgenpareto(x)
```

genpowerweibull

Generalized power Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized power Weibull distribution due to Nikulin and Haghighi (2006) given by

$$f(x) = a\theta x^{a-1} \left[1 + x^a \right]^{\theta-1} \exp\left\{ 1 - \left[1 + x^a \right]^{\theta} \right\},$$

$$F(x) = 1 - \exp\left\{ 1 - \left[1 + x^a \right]^{\theta} \right\},$$

$$\operatorname{VaR}_p(X) = \left\{ \left[1 - \log(1 - p) \right]^{1/\theta} - 1 \right\}^{1/a},$$

$$\operatorname{ES}_p(X) = \frac{1}{p} \int_0^p \left\{ \left[1 - \log(1 - v) \right]^{1/\theta} - 1 \right\}^{1/a} dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, and $\theta > 0$, the second shape parameter.

Usage

```
dgenpowerweibull(x, a=1, theta=1, log.p=FALSE)
pgenpowerweibull(x, a=1, theta=1, log.p=FALSE, lower.tail=TRUE)
vargenpowerweibull(p, a=1, theta=1, log.p=FALSE, lower.tail=TRUE)
esgenpowerweibull(p, a=1, theta=1)
```

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the first shape parameter, must be positive, the default is 1
theta	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

genunif 71

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgenpowerweibull(x)
pgenpowerweibull(x)
vargenpowerweibull(x)
esgenpowerweibull(x)
```

genunif

Generalized uniform distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized uniform distribution given by

$$f(x) = hkc(x-a)^{c-1} \left[1 - k(x-a)^c\right]^{h-1},$$

$$F(x) = 1 - \left[1 - k(x-a)^c\right]^h,$$

$$\operatorname{VaR}_p(X) = a + k^{-1/c} \left[1 - (1-p)^{1/h}\right]^{1/c},$$

$$\operatorname{ES}_p(X) = a + \frac{k^{-1/c}}{p} \int_0^p \left[1 - (1-v)^{1/h}\right]^{1/c} dv$$

for $a \le x \le a + k^{-1/c}$, $0 , <math>-\infty < a < \infty$, the location parameter, c > 0, the first shape parameter, k > 0, the scale parameter, and k > 0, the second shape parameter.

Usage

```
dgenunif(x, a=0, c=1, h=1, k=1, log=FALSE)
pgenunif(x, a=0, c=1, h=1, k=1, log.p=FALSE, lower.tail=TRUE)
vargenunif(p, a=0, c=1, h=1, k=1, log.p=FALSE, lower.tail=TRUE)
esgenunif(p, a=0, c=1, h=1, k=1)
```

72 gev

Arguments

х	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the location parameter, can take any real value, the default is zero
k	the value of the scale parameter, must be positive, the default is 1
С	the value of the first scale parameter, must be positive, the default is 1
h	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dgenunif(x)
pgenunif(x)
vargenunif(x)
esgenunif(x)
```

gev 73

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized extreme value distribution due to Fisher and Tippett (1928) given by

$$f(x) = \frac{1}{\sigma} \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-1/\xi - 1} \exp \left\{ -\left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-1/\xi} \right\},$$

$$F(x) = \exp \left\{ -\left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-1/\xi} \right\},$$

$$\operatorname{VaR}_{p}(X) = \mu - \frac{\sigma}{\xi} + \frac{\sigma}{\xi} (-\log p)^{-\xi},$$

$$\operatorname{ES}_{p}(X) = \mu - \frac{\sigma}{\xi} + \frac{\sigma}{p\xi} \int_{0}^{p} (-\log v)^{-\xi} dv$$

for $x \ge \mu - \sigma/\xi$ if $\xi > 0$, $x \le \mu - \sigma/\xi$ if $\xi < 0$, $-\infty < x < \infty$ if $\xi = 0$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, and $-\infty < \xi < \infty$, the shape parameter.

Usage

```
dgev(x, mu=0, sigma=1, xi=1, log=FALSE)
pgev(x, mu=0, sigma=1, xi=1, log.p=FALSE, lower.tail=TRUE)
vargev(p, mu=0, sigma=1, xi=1, log.p=FALSE, lower.tail=TRUE)
esgev(p, mu=0, sigma=1, xi=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
xi	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

74 gompertz

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgev(x)
pgev(x)
vargev(x)
esgev(x)
```

gompertz

Gompertz distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Gompertz distribution due to Gompertz (1825) given by

$$\begin{split} f(x) &= b\eta \exp(bx) \exp\left[\eta - \eta \exp(bx)\right], \\ F(x) &= 1 - \exp\left[\eta - \eta \exp(bx)\right], \\ \operatorname{VaR}_p(X) &= \frac{1}{b} \log\left[1 - \frac{1}{\eta} \log(1 - p)\right], \\ \operatorname{ES}_p(X) &= \frac{1}{pb} \int_0^p \log\left[1 - \frac{1}{\eta} \log(1 - v)\right] dv \end{split}$$

for x > 0, 0 , <math>b > 0, the first scale parameter and $\eta > 0$, the second scale parameter.

Usage

```
dgompertz(x, b=1, eta=1, log=FALSE)
pgompertz(x, b=1, eta=1, log.p=FALSE, lower.tail=TRUE)
vargompertz(p, b=1, eta=1, log.p=FALSE, lower.tail=TRUE)
esgompertz(p, b=1, eta=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the first scale parameter, must be positive, the default is 1
eta	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

gumbel 75

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgompertz(x)
pgompertz(x)
vargompertz(x)
esgompertz(x)
```

gumbel

Gumbel distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Gumbel distribution given by due to Gumbel (1954) given by

$$f(x) = \frac{1}{\sigma} \exp\left(\frac{\mu - x}{\sigma}\right) \exp\left[-\exp\left(\frac{\mu - x}{\sigma}\right)\right],$$

$$F(x) = \exp\left[-\exp\left(\frac{\mu - x}{\sigma}\right)\right],$$

$$VaR_p(X) = \mu - \sigma \log(-\log p),$$

$$ES_p(X) = \mu - \frac{\sigma}{p} \int_0^p \log(-\log v) dv$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, and $\sigma > 0$, the scale parameter.

Usage

```
dgumbel(x, mu=0, sigma=1, log=FALSE)
pgumbel(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
vargumbel(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esgumbel(p, mu=0, sigma=1)
```

76 gumbel2

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dgumbel(x)
pgumbel(x)
vargumbel(x)
esgumbel(x)
```

gumbel2

Gumbel II distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Gumbel II distribution

$$\begin{split} f(x) &= abx^{-a-1} \exp\left(-bx^{-a}\right), \\ F(x) &= 1 - \exp\left(-bx^{-a}\right), \\ \operatorname{VaR}_p(X) &= b^{1/a} \left[-\log(1-p)\right]^{-1/a}, \\ \operatorname{ES}_p(X) &= \frac{b^{1/a}}{p} \int_0^p \left[-\log(1-v)\right]^{-1/a} dv \end{split}$$

for x > 0, 0 , <math>a > 0, the shape parameter, and b > 0, the scale parameter.

gumbel2 77

Usage

```
dgumbel2(x, a=1, b=1, log=FALSE)
pgumbel2(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
vargumbel2(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esgumbel2(p, a=1, b=1)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the scale parameter, must be positive, the default is 1
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dgumbel2(x)
pgumbel2(x)
vargumbel2(x)
esgumbel2(x)
```

78 halfcauchy

halfcauchy

Half Cauchy distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the half Cauchy distribution given by

$$f(x) = \frac{2}{\pi} \frac{\sigma}{x^2 + \sigma^2},$$

$$F(x) = \frac{2}{\pi} \arctan\left(\frac{x}{\sigma}\right),$$

$$VaR_p(X) = \sigma \tan\left(\frac{\pi p}{2}\right),$$

$$ES_p(X) = \frac{\sigma}{p} \int_0^p \tan\left(\frac{\pi v}{2}\right) dv$$

for x > 0, $0 , and <math>\sigma > 0$, the scale parameter.

Usage

```
dhalfcauchy(x, sigma=1, log=FALSE)
phalfcauchy(x, sigma=1, log.p=FALSE, lower.tail=TRUE)
varhalfcauchy(p, sigma=1, log.p=FALSE, lower.tail=TRUE)
eshalfcauchy(p, sigma=1)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

halflogis 79

Examples

```
x=runif(10,min=0,max=1)
dhalfcauchy(x)
phalfcauchy(x)
varhalfcauchy(x)
eshalfcauchy(x)
```

halflogis

Half logistic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the half logistic distribution given by

$$\begin{split} f(x) &= \frac{2\lambda \exp\left(-\lambda x\right)}{\left[1 + \exp\left(-\lambda x\right)\right]^2}, \\ F(x) &= \frac{1 - \exp\left(-\lambda x\right)}{1 + \exp\left(-\lambda x\right)}, \\ \mathrm{VaR}_p(X) &= -\frac{1}{\lambda} \log \frac{1 - p}{1 + p}, \\ \mathrm{ES}_p(X) &= -\frac{1}{\lambda} \log \frac{1 - p}{1 + p} + \frac{1}{\lambda p} \log \left(1 - p^2\right) \end{split}$$

for x > 0, $0 , and <math>\lambda > 0$, the scale parameter.

Usage

```
dhalflogis(x, lambda=1, log=FALSE)
phalflogis(x, lambda=1, log.p=FALSE, lower.tail=TRUE)
varhalflogis(p, lambda=1, log.p=FALSE, lower.tail=TRUE)
eshalflogis(p, lambda=1)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

80 halfnorm

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dhalflogis(x)
phalflogis(x)
varhalflogis(x)
eshalflogis(x)
```

halfnorm

Half normal distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for Half normal distribution given by

$$\begin{split} f(x) &= \frac{2}{\sigma} \phi \left(\frac{x}{\sigma} \right), \\ F(x) &= 2\Phi \left(\frac{x}{\sigma} \right) - 1, \\ \mathrm{VaR}_p(X) &= \sigma \Phi^{-1} \left(\frac{1+p}{2} \right), \\ \mathrm{ES}_p(X) &= \frac{\sigma}{p} \int_0^p \Phi^{-1} \left(\frac{1+v}{2} \right) dv \end{split}$$

for x > 0, $0 , and <math>\sigma > 0$, the scale parameter.

Usage

```
dhalfnorm(x, sigma=1, log=FALSE)
phalfnorm(x, sigma=1, log.p=FALSE, lower.tail=TRUE)
varhalfnorm(p, sigma=1, log.p=FALSE, lower.tail=TRUE)
eshalfnorm(p, sigma=1)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed

sigma the value of the scale parameter, must be positive, the default is 1

log if TRUE then log(pdf) are returned

log.p if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dhalfnorm(x)
phalfnorm(x)
varhalfnorm(x)
eshalfnorm(x)
```

halfT

Half Student's t distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the half Student's t distribution given by

$$f(x) = \frac{2\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}},$$

$$F(x) = I_{\frac{x^2}{x^2+n}} \left(\frac{1}{2}, \frac{n}{2}\right),$$

$$VaR_p(X) = \sqrt{\frac{nI_p^{-1}\left(\frac{1}{2}, \frac{n}{2}\right)}{1 - I_p^{-1}\left(\frac{1}{2}, \frac{n}{2}\right)}},$$

$$ES_p(X) = \frac{\sqrt{n}}{p} \int_0^p \sqrt{\frac{I_v^{-1}\left(\frac{1}{2}, \frac{n}{2}\right)}{1 - I_v^{-1}\left(\frac{1}{2}, \frac{n}{2}\right)}} dv$$

for $-\infty < x < \infty$, 0 , and <math>n > 0, the degree of freedom parameter.

82 halfT

Usage

```
dhalfT(x, n=1, log=FALSE)
phalfT(x, n=1, log.p=FALSE, lower.tail=TRUE)
varhalfT(p, n=1, log.p=FALSE, lower.tail=TRUE)
eshalfT(p, n=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
n	the value of the degree of freedom parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dhalfT(x)
phalfT(x)
varhalfT(x)
eshalfT(x)
```

HBlaplace 83

HBlaplace

Holla-Bhattacharya Laplace distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Holla-Bhattacharya Laplace distribution due to Holla and Bhattacharya (1968) given by

$$f(x) = \begin{cases} a\phi \exp\left\{\phi\left(x-\theta\right)\right\}, & \text{if } x \leq \theta, \\ (1-a)\phi \exp\left\{\phi\left(\theta-x\right)\right\}, & \text{if } x > \theta, \\ a\exp\left(\phi x - \theta\phi\right), & \text{if } x \leq \theta, \end{cases}$$

$$F(x) = \begin{cases} a\exp\left(\phi x - \theta\phi\right), & \text{if } x > \theta, \\ 1 - (1-a)\exp\left(\theta\phi - \phi x\right), & \text{if } x > \theta, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \theta + \frac{1}{\phi}\log\left(\frac{p}{a}\right), & \text{if } p \leq a, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \theta - \frac{1}{\phi}\log\left(\frac{1-p}{1-a}\right), & \text{if } p > a, \end{cases}$$

$$\text{ES}_p(X) = \begin{cases} \theta - \frac{1}{\phi} + \frac{1}{\phi}\log\frac{p}{a}, & \text{if } p \leq a, \end{cases}$$

$$\frac{1}{p}\left[\theta(1+p-a) + \frac{p-2a-(1-a)\log a}{\phi} + \frac{1-p}{\phi}\log\frac{1-p}{1-a}\right], & \text{if } p > a \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \theta < \infty$, the location parameter, 0 < a < 1, the first scale parameter, and $\phi > 0$, the second scale parameter.

Usage

```
dHBlaplace(x, a=0.5, theta=0, phi=1, log=FALSE)
pHBlaplace(x, a=0.5, theta=0, phi=1, log.p=FALSE, lower.tail=TRUE)
varHBlaplace(p, a=0.5, theta=0, phi=1, log.p=FALSE, lower.tail=TRUE)
esHBlaplace(p, a=0.5, theta=0, phi=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the location parameter, can take any real value, the default is zero
a	the value of the first scale parameter, must be in the unit interval, the default is 0.5
phi	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(\text{cdf})$ are returned and quantiles are computed for $\exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

84 HL

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dHBlaplace(x)
pHBlaplace(x)
varHBlaplace(x)
esHBlaplace(x)
```

HL

Hankin-Lee distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Hankin-Lee distribution due to Hankin and Lee (2006) given by

$$VaR_p(X) = \frac{cp^a}{(1-p)^b},$$

$$ES_p(X) = \frac{c}{p}B_p(a+1, 1-b)$$

for 0 0, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
varHL(p, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
esHL(p, a=1, b=1, c=1)
```

Hlogis 85

Arguments

p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
С	the value of the scale parameter, must be positive, the default is 1
a	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
varHL(x)
esHL(x)
```

Hlogis

Hosking logistic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Hosking logistic distribution due to Hosking (1989, 1990) given by

$$f(x) = \frac{(1 - kx)^{1/k - 1}}{\left[1 + (1 - kx)^{1/k}\right]^2},$$

$$F(x) = \frac{1}{1 + (1 - kx)^{1/k}},$$

$$VaR_p(X) = \frac{1}{k} \left[1 - \left(\frac{1 - p}{p}\right)^k\right],$$

$$ES_p(X) = \frac{1}{k} - \frac{1}{kp}B_p(1 - k, 1 + k)$$

86 Hlogis

for x < 1/k if k > 0, x > 1/k if k < 0, $-\infty < x < \infty$ if k = 0, and $-\infty < k < \infty$, the shape parameter.

Usage

```
dHlogis(x, k=1, log=FALSE)
pHlogis(x, k=1, log.p=FALSE, lower.tail=TRUE)
varHlogis(p, k=1, log.p=FALSE, lower.tail=TRUE)
esHlogis(p, k=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
k	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dHlogis(x)
pHlogis(x)
varHlogis(x)
esHlogis(x)
```

invbeta 87

invbeta

Inverse beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the inverse beta distribution given by

$$f(x) = \frac{x^{a-1}}{B(a,b)(1+x)^{a+b}},$$

$$F(x) = I_{\frac{x}{1+x}}(a,b),$$

$$VaR_p(X) = \frac{I_p^{-1}(a,b)}{1-I_p^{-1}(a,b)},$$

$$ES_p(X) = \frac{1}{p} \int_0^p \frac{I_v^{-1}(a,b)}{1-I_v^{-1}(a,b)} dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dinvbeta(x, a=1, b=1, log=FALSE)
pinvbeta(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varinvbeta(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esinvbeta(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

88 invexpexp

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dinvbeta(x)
pinvbeta(x)
varinvbeta(x)
esinvbeta(x)
```

invexpexp

Inverse exponentiated exponential distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the inverse exponentiated exponential distribution due to Ghitany et al. (2013) given by

$$f(x) = a\lambda x^{-2} \exp\left(-\frac{\lambda}{x}\right) \left[1 - \exp\left(-\frac{\lambda}{x}\right)\right]^{a-1},$$

$$F(x) = 1 - \left[1 - \exp\left(-\frac{\lambda}{x}\right)\right]^{a},$$

$$\operatorname{VaR}_{p}(X) = \lambda \left\{-\log\left[1 - (1 - p)^{1/a}\right]\right\}^{-1},$$

$$\operatorname{ES}_{p}(X) = \frac{\lambda}{p} \int_{0}^{p} \left\{-\log\left[1 - (1 - v)^{1/a}\right]\right\}^{-1} dv$$

for x > 0, 0 , <math>a > 0, the shape parameter and $\lambda > 0$, the scale parameter.

Usage

```
dinvexpexp(x, lambda=1, a=1, log=FALSE)
pinvexpexp(x, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
varinvexpexp(p, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
esinvexpexp(p, lambda=1, a=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
a	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

invgamma 89

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dinvexpexp(x)
pinvexpexp(x)
varinvexpexp(x)
esinvexpexp(x)
```

invgamma

Inverse gamma distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the inverse gamma distribution given by

$$\begin{split} f(x) &= \frac{b^a \exp(-b/x)}{x^{a+1} \Gamma(a)}, \\ F(x) &= Q(a,b/x), \\ \operatorname{VaR}_p(X) &= b \left[Q^{-1}(a,p) \right]^{-1}, \\ \operatorname{ES}_p(X) &= \frac{b}{p} \int_0^p \left[Q^{-1}(a,v) \right]^{-1} dv \end{split}$$

for x > 0, 0 , <math>a > 0, the shape parameter, and b > 0, the scale parameter.

Usage

```
dinvgamma(x, a=1, b=1, log=FALSE)
pinvgamma(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varinvgamma(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esinvgamma(p, a=1, b=1)
```

90 kum

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the scale parameter, must be positive, the default is 1
b	•
a	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dinvgamma(x)
pinvgamma(x)
varinvgamma(x)
esinvgamma(x)
```

kum

Kumaraswamy distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy distribution due to Kumaraswamy (1980) given by

$$f(x) = abx^{a-1} (1 - x^a)^{b-1},$$

$$F(x) = 1 - (1 - x^a)^b,$$

$$VaR_p(X) = \left[1 - (1 - p)^{1/b}\right]^{1/a},$$

$$ES_p(X) = \frac{1}{p} \int_0^p \left[1 - (1 - v)^{1/b}\right]^{1/a} dv$$

for 0 < x < 1, 0 , <math>a > 0, the first shape parameter, and b > 0, the second shape parameter.

kum 91

Usage

```
dkum(x, a=1, b=1, log=FALSE)
pkum(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varkum(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
eskum(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dkum(x)
pkum(x)
varkum(x)
eskum(x)
```

92 kumburr7

kumburr7

Kumaraswamy Burr XII distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy Burr XII distribution due to Paranal'iba et al. (2013) given by

$$f(x) = \frac{abkcx^{c-1}}{(1+x^c)^{k+1}} \left[1 - (1+x^c)^{-k} \right]^{a-1} \left\{ 1 - \left[1 - (1+x^c)^{-k} \right]^a \right\}^{b-1},$$

$$F(x) = 1 - \left\{ 1 - \left[1 - (1+x^c)^{-k} \right]^a \right\}^b,$$

$$\operatorname{VaR}_p(X) = \left[\left\{ 1 - \left[1 - (1-p)^{1/b} \right]^{1/a} \right\}^{-1/k} - 1 \right]^{1/c},$$

$$\operatorname{ES}_p(X) = \frac{1}{p} \int_0^p \left[\left\{ 1 - \left[1 - (1-v)^{1/b} \right]^{1/a} \right\}^{-1/k} - 1 \right]^{1/c} dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, b > 0, the second shape parameter, c > 0, the third shape parameter, and k > 0, the fourth shape parameter.

Usage

```
dkumburr7(x, a=1, b=1, k=1, c=1, log=FALSE)
pkumburr7(x, a=1, b=1, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
varkumburr7(p, a=1, b=1, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
eskumburr7(p, a=1, b=1, k=1, c=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
С	the value of the third shape parameter, must be positive, the default is 1
k	the value of the fourth shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

kumexp 93

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dkumburr7(x)
pkumburr7(x)
varkumburr7(x)
eskumburr7(x)
```

kumexp

Kumaraswamy exponential distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy exponential distribution due to Cordeiro and de Castro (2011) given by

$$f(x) = ab\lambda \exp(-\lambda x) \left[1 - \exp(-\lambda x)\right]^{a-1} \left\{1 - \left[1 - \exp(-\lambda x)\right]^{a}\right\}^{b-1},$$

$$F(x) = 1 - \left\{1 - \left[1 - \exp(-\lambda x)\right]^{a}\right\}^{b},$$

$$\operatorname{VaR}_{p}(X) = -\frac{1}{\lambda} \log \left\{1 - \left[1 - (1 - p)^{1/b}\right]^{1/a}\right\},$$

$$\operatorname{ES}_{p}(X) = -\frac{1}{p\lambda} \int_{0}^{p} \log \left\{1 - \left[1 - (1 - v)^{1/b}\right]^{1/a}\right\} dv$$

for x > 0, 0 0, the first shape parameter, b > 0, the second shape parameter, and $\lambda > 0$, the scale parameter.

Usage

```
dkumexp(x, lambda=1, a=1, b=1, log=FALSE)
pkumexp(x, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varkumexp(p, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
eskumexp(p, lambda=1, a=1, b=1)
```

Arguments

- x scaler or vector of values at which the pdf or cdf needs to be computed
- p scaler or vector of values at which the value at risk or expected shortfall needs to be computed

94 kumgamma

lambda	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dkumexp(x)
pkumexp(x)
varkumexp(x)
eskumexp(x)
```

kumgamma

Kumaraswamy gamma distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy gamma distribution due to de Pascoa et al. (2011) given by

$$f(x) = cdb^{a}x^{a-1} \exp(-bx) \frac{\gamma^{c-1}(a, bx)}{\Gamma^{c}(a)} \left[1 - \frac{\gamma^{c}(a, bx)}{\Gamma^{c}(a)} \right]^{d-1},$$

$$F(x) = 1 - \left[1 - \frac{\gamma^{c}(a, bx)}{\Gamma^{c}(a)} \right]^{d},$$

$$\operatorname{VaR}_{p}(X) = \frac{1}{b}Q^{-1} \left(a, 1 - \left[1 - (1 - p)^{1/d} \right]^{1/c} \right),$$

$$\operatorname{ES}_{p}(X) = \frac{1}{bp} \int_{0}^{p} Q^{-1} \left(a, 1 - \left[1 - (1 - v)^{1/d} \right]^{1/c} \right) dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, b > 0, the scale parameter, c > 0, the second shape parameter, and d > 0, the third shape parameter.

kumgamma 95

Usage

```
dkumgamma(x, a=1, b=1, c=1, d=1, log=FALSE)
pkumgamma(x, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
varkumgamma(p, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
eskumgamma(p, a=1, b=1, c=1, d=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
d	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(\text{cdf})$ are returned and quantiles are computed for $\exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dkumgamma(x)
pkumgamma(x)
varkumgamma(x)
eskumgamma(x)
```

96 kumgumbel

kumgumbel

Kumaraswamy Gumbel distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy Gumbel distribution due to Cordeiro et al. (2012a) given by

$$f(x) = \frac{ab}{\sigma} \exp\left(\frac{\mu - x}{\sigma}\right) \exp\left[-a \exp\left(\frac{\mu - x}{\sigma}\right)\right] \left\{1 - \exp\left[-a \exp\left(\frac{\mu - x}{\sigma}\right)\right]\right\}^{b-1},$$

$$F(x) = 1 - \left\{1 - \exp\left[-a \exp\left(\frac{\mu - x}{\sigma}\right)\right]\right\}^{b},$$

$$\operatorname{VaR}_{p}(X) = \mu - \sigma \log\left\{-\log\left[1 - (1 - p)^{1/b}\right]^{1/a}\right\},$$

$$\operatorname{ES}_{p}(X) = \mu - \frac{\sigma}{p} \int_{0}^{p} \log\left\{-\log\left[1 - (1 - v)^{1/b}\right]^{1/a}\right\} dv$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dkumgumbel(x, a=1, b=1, mu=0, sigma=1, log=FALSE)
pkumgumbel(x, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varkumgumbel(p, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
eskumgumbel(p, a=1, b=1, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
a	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

kumhalfnorm 97

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dkumgumbel(x)
pkumgumbel(x)
varkumgumbel(x)
eskumgumbel(x)
```

kumhalfnorm

Kumaraswamy half normal distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy half normal distribution due to Cordeiro et al. (2012c) given by

$$f(x) = \frac{2ab}{\sigma} \phi\left(\frac{x}{\sigma}\right) \left[2\Phi\left(\frac{x}{\sigma}\right) - 1\right]^{a-1} \left\{1 - \left[2\Phi\left(\frac{x}{\sigma}\right) - 1\right]^{a}\right\}^{b-1},$$

$$F(x) = 1 - \left\{1 - \left[2\Phi\left(\frac{x}{\sigma}\right) - 1\right]^{a}\right\}^{b},$$

$$VaR_{p}(X) = \sigma\Phi^{-1}\left(\frac{1}{2} + \frac{1}{2}\left[1 - (1 - p)^{1/b}\right]^{1/a}\right),$$

$$ES_{p}(X) = \frac{\sigma}{p} \int_{0}^{p} \Phi^{-1}\left(\frac{1}{2} + \frac{1}{2}\left[1 - (1 - v)^{1/b}\right]^{1/a}\right) dv$$

for x > 0, $0 , <math>\sigma > 0$, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dkumhalfnorm(x, sigma=1, a=1, b=1, log=FALSE)
pkumhalfnorm(x, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varkumhalfnorm(p, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
eskumhalfnorm(p, sigma=1, a=1, b=1)
```

98 kumloglogis

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dkumhalfnorm(x)
pkumhalfnorm(x)
varkumhalfnorm(x)
eskumhalfnorm(x)
```

kumloglogis 99

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy log-logistic distribution due to de Santana et al. (2012) given by

$$f(x) = \frac{ab\beta\alpha^{\beta}x^{a\beta-1}}{(\alpha^{\beta} + x^{\beta})^{a+1}} \left[1 - \frac{x^{a\beta}}{(\alpha^{\beta} + x^{\beta})^{a}} \right]^{b-1},$$

$$F(x) = \left[1 - \frac{x^{a\beta}}{(\alpha^{\beta} + x^{\beta})^{a}} \right]^{b},$$

$$VaR_{p}(X) = \alpha \left\{ \left[1 - (1 - p)^{1/b} \right]^{1/a} - 1 \right\}^{-1/\beta},$$

$$ES_{p}(X) = \frac{\alpha}{p} \int_{0}^{p} \left\{ \left[1 - (1 - v)^{1/b} \right]^{1/a} - 1 \right\}^{-1/\beta} dv$$

for x > 0, $0 , <math>\alpha > 0$, the scale parameter, $\beta > 0$, the first shape parameter, a > 0, the second shape parameter, and b > 0, the third shape parameter.

Usage

```
dkumloglogis(x, a=1, b=1, alpha=1, beta=1, log=FALSE)
pkumloglogis(x, a=1, b=1, alpha=1, beta=1, log.p=FALSE, lower.tail=TRUE)
varkumloglogis(p, a=1, b=1, alpha=1, beta=1, log.p=FALSE, lower.tail=TRUE)
eskumloglogis(p, a=1, b=1, alpha=1, beta=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
alpha	the value of the scale parameter, must be positive, the default is 1
beta	the value of the first shape parameter, must be positive, the default is 1
а	the value of the second shape parameter, must be positive, the default is 1
b	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

100 kumnormal

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dkumloglogis(x)
pkumloglogis(x)
varkumloglogis(x)
eskumloglogis(x)
```

kumnormal

Kumaraswamy normal distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for Kumaraswamy normal distribution due to Cordeiro and de Castro (2011) given by

$$f(x) = \frac{ab}{\sigma} \phi \left(\frac{x - \mu}{\sigma} \right) \Phi^{a-1} \left(\frac{x - \mu}{\sigma} \right) \left[1 - \Phi^a \left(\frac{x - \mu}{\sigma} \right) \right]^{b-1},$$

$$F(x) = 1 - \left[1 - \Phi^a \left(\frac{x - \mu}{\sigma} \right) \right]^b,$$

$$\operatorname{VaR}_p(X) = \mu + \sigma \Phi^{-1} \left(\left[1 - (1 - p)^{1/b} \right]^{1/a} \right),$$

$$\operatorname{ES}_p(X) = \mu + \frac{\sigma}{p} \int_0^p \Phi^{-1} \left(\left[1 - (1 - v)^{1/b} \right]^{1/a} \right) dv$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, $\sigma > 0$, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dkumnormal(x, mu=0, sigma=1, a=1, b=1, log=FALSE)
pkumnormal(x, mu=0, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varkumnormal(p, mu=0, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
eskumnormal(p, mu=0, sigma=1, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
	to be computed

mu the value of the location parameter, can take any real value, the default is zero

kumpareto 101

sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dkumnormal(x)
pkumnormal(x)
varkumnormal(x)
eskumnormal(x)
```

kumpareto

Kumaraswamy Pareto distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy Pareto distribution due to Pereira et al. (2013) given by

$$f(x) = abcK^{c}x^{-c-1} \left[1 - \left(\frac{K}{x}\right)^{c} \right]^{a-1} \left\{ 1 - \left[1 - \left(\frac{K}{x}\right)^{c} \right]^{a} \right\}^{b-1},$$

$$F(x) = 1 - \left\{ 1 - \left[1 - \left(\frac{K}{x}\right)^{c} \right]^{a} \right\}^{b},$$

$$\operatorname{VaR}_{p}(X) = K \left\{ 1 - \left[1 - (1-p)^{1/b} \right]^{1/a} \right\}^{-1/c},$$

$$\operatorname{ES}_{p}(X) = \frac{K}{p} \int_{0}^{p} \left\{ 1 - \left[1 - (1-v)^{1/b} \right]^{1/a} \right\}^{-1/c} dv$$

for $x \ge K$, 0 , <math>K > 0, the scale parameter, c > 0, the first shape parameter, a > 0, the second shape parameter, and b > 0, the third shape parameter.

102 kumpareto

Usage

```
dkumpareto(x, K=1, a=1, b=1, c=1, log=FALSE)
pkumpareto(x, K=1, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
varkumpareto(p, K=1, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
eskumpareto(p, K=1, a=1, b=1, c=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
K	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
С	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dkumpareto(x)
pkumpareto(x)
varkumpareto(x)
eskumpareto(x)
```

kumweibull 103

١.,	ımw₽	:	L .	٠٦	7
кı	$\Pi\Pi W \leftarrow$		m		

Kumaraswamy Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy Weibull distribution due to Cordeiro et al. (2010) given by

$$f(x) = \frac{ab\alpha x^{\alpha - 1}}{\sigma^{\alpha}} \exp\left[-\left(\frac{x}{\sigma}\right)^{\alpha}\right] \left\{1 - \exp\left[-\left(\frac{x}{\sigma}\right)^{\alpha}\right]\right\}^{a - 1} \left[1 - \left\{1 - \exp\left[-\left(\frac{x}{\sigma}\right)^{\alpha}\right]\right\}^{a}\right]^{b - 1},$$

$$F(x) = 1 - \left[1 - \left\{1 - \exp\left[-\left(\frac{x}{\sigma}\right)^{\alpha}\right]\right\}^{a}\right]^{b},$$

$$\operatorname{VaR}_{p}(X) = \sigma \left[-\log\left\{1 - \left[1 - (1 - p)^{1/b}\right]^{1/a}\right\}\right]^{1/\alpha},$$

$$\operatorname{ES}_{p}(X) = \frac{\sigma}{p} \int_{0}^{p} \left[-\log\left\{1 - \left[1 - (1 - v)^{1/b}\right]^{1/a}\right\}\right]^{1/\alpha} dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, b > 0, the second shape parameter, $\alpha > 0$, the third shape parameter, and $\sigma > 0$, the scale parameter.

Usage

```
dkumweibull(x, a=1, b=1, alpha=1, sigma=1, log=FALSE)
pkumweibull(x, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varkumweibull(p, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
eskumweibull(p, a=1, b=1, alpha=1, sigma=1)
```

Arguments

x	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
sigma	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
alpha	the value of the third shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

104 laplace

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dkumweibull(x)
pkumweibull(x)
varkumweibull(x)
eskumweibull(x)
```

laplace

Laplace distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Laplace distribution due to due to Laplace (1774) given by

$$f(x) = \frac{1}{2\sigma} \exp\left(-\frac{|x-\mu|}{\sigma}\right),$$

$$F(x) = \begin{cases} \frac{1}{2} \exp\left(\frac{x-\mu}{\sigma}\right), & \text{if } x < \mu, \\ 1 - \frac{1}{2} \exp\left(-\frac{x-\mu}{\sigma}\right), & \text{if } x \ge \mu, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \mu + \sigma \log(2p), & \text{if } p < 1/2, \\ \mu - \sigma \log\left[2(1-p)\right], & \text{if } p \ge 1/2, \end{cases}$$

$$\text{ES}_p(X) = \begin{cases} \mu + \sigma \left[\log(2p) - 1\right], & \text{if } p \ge 1/2, \\ \mu + \sigma - \frac{\sigma}{p} + \sigma \frac{1-p}{p} \log(1-p) + \sigma \frac{1-p}{p} \log 2, & \text{if } p \ge 1/2, \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, and $\sigma > 0$, the scale parameter.

Usage

```
dlaplace(x, mu=0, sigma=1, log=FALSE)
plaplace(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varlaplace(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
eslaplace(p, mu=0, sigma=1)
```

105

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
	to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dlaplace(x)
plaplace(x)
varlaplace(x)
eslaplace(x)
```

1fr

Linear failure rate distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the linear failure rate distribution due to Bain (1974) given by

$$\begin{split} f(x) &= (a+bx) \exp\left(-ax - bx^2/2\right), \\ F(x) &= 1 - \exp\left(-ax - bx^2/2\right), \\ \text{VaR}_p(X) &= \frac{-a + \sqrt{a^2 - 2b \log(1-p)}}{b}, \\ \text{ES}_p(X) &= -\frac{a}{b} + \frac{1}{bp} \int_0^p \sqrt{a^2 - 2b \log(1-v)} dv \end{split}$$

for x > 0, 0 , <math>a > 0, the first scale parameter, and b > 0, the second scale parameter.

106

Usage

```
dlfr(x, a=1, b=1, log=FALSE)
plfr(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varlfr(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
eslfr(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be positive, the default is 1
b	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dlfr(x)
plfr(x)
varlfr(x)
eslfr(x)
```

LNbeta 107

LNbeta

Libby-Novick beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Libby-Novick beta distribution due to Libby and Novick (1982) given by

$$f(x) = \frac{\lambda^a x^{a-1} (1-x)^{b-1}}{B(a,b) \left[1 - (1-\lambda)x\right]^{a+b}},$$

$$F(x) = I_{\frac{\lambda x}{1+(\lambda-1)x}}(a,b),$$

$$\operatorname{VaR}_p(X) = \frac{I_p^{-1}(a,b)}{\lambda - (\lambda-1)I_p^{-1}(a,b)},$$

$$\operatorname{ES}_p(X) = \frac{1}{p} \int_0^p \frac{I_v^{-1}(a,b)}{\lambda - (\lambda-1)I_v^{-1}(a,b)} dv$$

for $0 < x < 1, 0 < p < 1, \lambda > 0$, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

Usage

```
dLNbeta(x, lambda=1, a=1, b=1, log=FALSE)
pLNbeta(x, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varLNbeta(p, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esLNbeta(p, lambda=1, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

108 logbeta

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dLNbeta(x)
pLNbeta(x)
varLNbeta(x)
esLNbeta(x)
```

logbeta

Log beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the log beta distribution given by

$$f(x) = \frac{(\log d - \log c)^{1-a-b}}{xB(a,b)} (\log x - \log c)^{a-1} (\log d - \log x)^{b-1},$$

$$F(x) = I_{\frac{\log x - \log c}{\log d - \log c}}(a,b),$$

$$VaR_p(X) = c \left(\frac{d}{c}\right)^{I_p^{-1}(a,b)},$$

$$ES_p(X) = \frac{c}{p} \int_0^p \left(\frac{d}{c}\right)^{I_v^{-1}(a,b)} dv$$

for $0 < c \le x \le d$, 0 , <math>a > 0, the first shape parameter, b > 0, the second shape parameter, c > 0, the first location parameter, and d > 0, the second location parameter.

Usage

```
dlogbeta(x, a=1, b=1, c=1, d=2, log=FALSE)
plogbeta(x, a=1, b=1, c=1, d=2, log.p=FALSE, lower.tail=TRUE)
varlogbeta(p, a=1, b=1, c=1, d=2, log.p=FALSE, lower.tail=TRUE)
eslogbeta(p, a=1, b=1, c=1, d=2)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
С	the value of the first location parameter, must be positive, the default is 1
d	the value of the second location parameter, must be positive and greater than c,

logcauchy 109

a	the value of the first scale parameter, must be positive, the default is 1
b	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dlogbeta(x)
plogbeta(x)
varlogbeta(x)
eslogbeta(x)
```

logcauchy

Log Cauchy distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the log Cauchy distribution given by

$$f(x) = \frac{1}{x\pi} \frac{\sigma}{(\log x - \mu)^2 + \sigma^2},$$

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{\log x - \mu}{\sigma}\right),$$

$$\operatorname{VaR}_p(X) = \exp\left[\mu + \sigma \tan\left(\pi p\right)\right],$$

$$\operatorname{ES}_p(X) = \frac{\exp(\mu)}{p} \int_0^p \exp\left[\sigma \tan\left(\pi v\right)\right] dv$$

for x > 0, $0 , <math>-\infty < \mu < \infty$, the location parameter, and $\sigma > 0$, the scale parameter.

110 logcauchy

Usage

```
dlogcauchy(x, mu=0, sigma=1, log=FALSE)
plogcauchy(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varlogcauchy(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
eslogcauchy(p, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dlogcauchy(x)
plogcauchy(x)
varlogcauchy(x)
eslogcauchy(x)
```

loggamma 111

loggamma

Log gamma distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the log gamma distribution due to Consul and Jain (1971) given by

$$f(x) = \frac{a^r x^{a-1} (-\log x)^{r-1}}{\Gamma(r)},$$

$$F(x) = Q(r, -a \log x),$$

$$\operatorname{VaR}_p(X) = \exp\left[-\frac{1}{a} Q^{-1}(r, p)\right],$$

$$\operatorname{ES}_p(X) = \frac{1}{p} \int_0^p \exp\left[-\frac{1}{a} Q^{-1}(r, v)\right] dv$$

for x > 0, 0 , <math>a > 0, the first shape parameter, and r > 0, the second shape parameter.

Usage

```
dloggamma(x, a=1, r=1, log=FALSE)
ploggamma(x, a=1, r=1, log.p=FALSE, lower.tail=TRUE)
varloggamma(p, a=1, r=1, log.p=FALSE, lower.tail=TRUE)
esloggamma(p, a=1, r=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be positive, the default is 1
r	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

112 logisexp

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dloggamma(x)
ploggamma(x)
varloggamma(x)
esloggamma(x)
```

logisexp

Logistic exponential distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the logistic exponential distribution due to Lan and Leemis (2008) given by

$$f(x) = \frac{a\lambda \exp(\lambda x) \left[\exp(\lambda x) - 1\right]^{a-1}}{\left\{1 + \left[\exp(\lambda x) - 1\right]^{a}\right\}^{2}},$$

$$F(x) = \frac{\left[\exp(\lambda x) - 1\right]^{a}}{1 + \left[\exp(\lambda x) - 1\right]^{a}},$$

$$\operatorname{VaR}_{p}(X) = \frac{1}{\lambda} \log \left[1 + \left(\frac{p}{1-p}\right)^{1/a}\right],$$

$$\operatorname{ES}_{p}(X) = \frac{1}{p\lambda} \int_{0}^{p} \log \left[1 + \left(\frac{v}{1-v}\right)^{1/a}\right] dv$$

for x > 0, 0 , <math>a > 0, the shape parameter and $\lambda > 0$, the scale parameter.

Usage

```
dlogisexp(x, lambda=1, a=1, log=FALSE)
plogisexp(x, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
varlogisexp(p, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
eslogisexp(p, lambda=1, a=1)
```

Arguments

Х	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1

logisrayleigh 113

а	the value of the snape parameter, must be positive, the default is I
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dlogisexp(x)
plogisexp(x)
varlogisexp(x)
eslogisexp(x)
```

logisrayleigh

Logistic Rayleigh distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the logistic Rayleigh distribution due to Lan and Leemis (2008) given by

$$f(x) = a\lambda x \exp\left(\lambda x^2/2\right) \left[\exp\left(\lambda x^2/2\right) - 1\right]^{a-1} \left\{ 1 + \left[\exp\left(\lambda x^2/2\right) - 1\right]^a \right\}^{-2},$$

$$F(x) = \frac{\left[\exp\left(\lambda x^2/2\right) - 1\right]^a}{1 + \left[\exp\left(\lambda x^2/2\right) - 1\right]^a},$$

$$\operatorname{VaR}_p(X) = \sqrt{\frac{2}{\lambda}} \sqrt{\log\left[1 + \left(\frac{p}{1-p}\right)^{1/a}\right]},$$

$$\operatorname{ES}_p(X) = \frac{\sqrt{2}}{p\sqrt{\lambda}} \int_0^p \left\{ \log\left[1 + \left(\frac{v}{1-v}\right)^{1/a}\right] \right\}^{1/2} dv$$

for x > 0, 0 , <math>a > 0, the shape parameter, and $\lambda > 0$, the scale parameter.

114 logisrayleigh

Usage

```
dlogisrayleigh(x, a=1, lambda=1, log=FALSE)
plogisrayleigh(x, a=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varlogisrayleigh(p, a=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
eslogisrayleigh(p, a=1, lambda=1)
```

Arguments

x	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dlogisrayleigh(x)
plogisrayleigh(x)
varlogisrayleigh(x)
eslogisrayleigh(x)
```

logistic 115

logistic

Logistic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the logistic distribution given by

$$\begin{split} f(x) &= \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right) \left[1 + \exp\left(-\frac{x-\mu}{\sigma}\right)\right]^{-2}, \\ F(x) &= \frac{1}{1 + \exp\left(-\frac{x-\mu}{\sigma}\right)}, \\ \operatorname{VaR}_p(X) &= \mu + \sigma \log\left[p(1-p)\right], \\ \operatorname{ES}_p(X) &= \mu - 2\sigma + \sigma \log p - \sigma \frac{1-p}{p} \log(1-p) \end{split}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \mu < \infty$, the location parameter, and $\sigma > 0$, the scale parameter.

Usage

```
dlogistic(x, mu=0, sigma=1, log=FALSE)
plogistic(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varlogistic(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
eslogistic(p, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(\text{cdf})$ are returned and quantiles are computed for $\exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

116 loglaplace

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dlogistic(x)
plogistic(x)
varlogistic(x)
eslogistic(x)
```

loglaplace

Log Laplace distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the log Laplace distribution given by

$$f(x) = \begin{cases} \frac{abx^{b-1}}{\delta^b(a+b)}, & \text{if } x \leq \delta, \\ \frac{ab\delta^a}{x^{a+1}(a+b)}, & \text{if } x > \delta, \\ \frac{ax^b}{\delta^b(a+b)}, & \text{if } x \leq \delta, \end{cases}$$

$$F(x) = \begin{cases} \frac{ab}{\delta^a} & \text{if } x \leq \delta, \\ 1 - \frac{b\delta^a}{x^a(a+b)}, & \text{if } x \geq \delta, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \delta \left[p \frac{a+b}{a} \right]^{1/b}, & \text{if } p \leq \frac{a}{a+b}, \\ \delta \left[(1-p) \frac{a+b}{a} \right]^{-1/a}, & \text{if } p > \frac{a}{a+b}, \end{cases}$$

$$\text{ES}_p(X) = \begin{cases} \frac{\delta b}{b+1} \left[p \frac{a+b}{a} \right]^{1/b}, & \text{if } p > \frac{a}{a+b}, \\ \frac{a\delta}{p(1+1/b)(a+b)} + \frac{a^{1/a}b^{1-1/a}\delta}{p(a+b)(1-1/a)} - \frac{\delta(1-p)}{p(1-1/a)} \left[\frac{a}{(a+b)(1-p)} \right]^{1/a}, & \text{if } p > \frac{a}{a+b} \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>\delta > 0$, the scale parameter, a > 0, the first shape parameter, and b > 0, the second shape parameter.

loglaplace 117

Usage

```
dloglaplace(x, a=1, b=1, delta=0, log=FALSE)
ploglaplace(x, a=1, b=1, delta=0, log.p=FALSE, lower.tail=TRUE)
varloglaplace(p, a=1, b=1, delta=0, log.p=FALSE, lower.tail=TRUE)
esloglaplace(p, a=1, b=1, delta=0)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
delta	the value of the scale parameter, must be positive, the default is 1
а	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dloglaplace(x)
ploglaplace(x)
varloglaplace(x)
esloglaplace(x)
```

118 loglog

loglog

Loglog distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Loglog distribution due to Pham (2002) given by

$$f(x) = a \log(\lambda) x^{a-1} \lambda^{x^a} \exp\left[1 - \lambda^{x^a}\right],$$

$$F(x) = 1 - \exp\left[1 - \lambda^{x^a}\right],$$

$$\operatorname{VaR}_p(X) = \left\{\frac{\log\left[1 - \log(1 - p)\right]}{\log \lambda}\right\}^{1/a},$$

$$\operatorname{ES}_p(X) = \frac{1}{p(\log \lambda)^{1/a}} \int_0^p \left\{\log\left[1 - \log(1 - v)\right]\right\}^{1/a} dv$$

for x > 0, 0 , <math>a > 0, the shape parameter, and $\lambda > 1$, the scale parameter.

Usage

```
dloglog(x, a=1, lambda=2, log=FALSE)
ploglog(x, a=1, lambda=2, log.p=FALSE, lower.tail=TRUE)
varloglog(p, a=1, lambda=2, log.p=FALSE, lower.tail=TRUE)
esloglog(p, a=1, lambda=2)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be greater than 1, the default is 2
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

loglogis 119

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dloglog(x)
ploglog(x)
varloglog(x)
esloglog(x)
```

loglogis

Log-logistic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the log-logistic distribution given by

$$f(x) = \frac{ba^b x^{b-1}}{\left(a^b + x^b\right)^2},$$

$$F(x) = \frac{x^b}{a^b + x^b},$$

$$\operatorname{VaR}_p(X) = a\left(\frac{p}{1-p}\right)^{1/b},$$

$$\operatorname{ES}_p(X) = \frac{a}{p} B_p\left(1 + \frac{1}{b}, 1 - \frac{1}{b}\right)$$

for x>0, 0< p<1, a>0, the scale parameter, and b>0, the shape parameter, where $B_x(a,b)=\int_0^x t^{a-1}(1-t)^{b-1}dt$ denotes the incomplete beta function.

Usage

```
dloglogis(x, a=1, b=1, log=FALSE)
ploglogis(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varloglogis(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esloglogis(p, a=1, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the scale parameter, must be positive, the default is 1
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

lognorm

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dloglogis(x)
ploglogis(x)
varloglogis(x)
esloglogis(x)
```

lognorm

Lognormal distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the lognormal distribution given by

$$\begin{split} f(x) &= \frac{1}{\sigma x} \phi \left(\frac{\log x - \mu}{\sigma} \right), \\ F(x) &= \Phi \left(\frac{\log x - \mu}{\sigma} \right), \\ \mathrm{VaR}_p(X) &= \exp \left[\mu + \sigma \Phi^{-1}(p) \right], \\ \mathrm{ES}_p(X) &= \frac{\exp(\mu)}{p} \int_0^p \exp \left[\sigma \Phi^{-1}(v) \right] dv \end{split}$$

for $x > 0, 0 , the location parameter, and <math>\sigma > 0$, the scale parameter.

Usage

```
dlognorm(x, mu=0, sigma=1, log=FALSE)
plognorm(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varlognorm(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
eslognorm(p, mu=0, sigma=1)
```

lomax 121

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dlognorm(x)
plognorm(x)
varlognorm(x)
eslognorm(x)
```

lomax

Lomax distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Lomax distribution due to Lomax (1954) given by

$$f(x) = \frac{a}{\lambda} \left(1 + \frac{x}{\lambda} \right)^{-a-1},$$

$$F(x) = 1 - \left(1 + \frac{x}{\lambda} \right)^{-a},$$

$$\operatorname{VaR}_{p}(X) = \lambda \left[(1-p)^{-1/a} - 1 \right],$$

$$\operatorname{ES}_{p}(X) = -\lambda + \frac{\lambda - \lambda (1-p)^{1-1/a}}{p - p/a}$$

for x > 0, 0 , <math>a > 0, the shape parameter, and $\lambda > 0$, the scale parameter.

lomax

Usage

```
dlomax(x, a=1, lambda=1, log=FALSE)
plomax(x, a=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varlomax(p, a=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
eslomax(p, a=1, lambda=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the scale parameter, must be positive, the default is 1
a	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dlomax(x)
plomax(x)
varlomax(x)
eslomax(x)
```

Mlaplace 123

Mlaplace

McGill Laplace distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the McGill Laplace distribution due to McGill (1962) given by

$$f(x) = \begin{cases} \frac{1}{2\psi} \exp\left(\frac{x-\theta}{\psi}\right), & \text{if } x \leq \theta, \\ \frac{1}{2\phi} \exp\left(\frac{\theta-x}{\phi}\right), & \text{if } x > \theta, \\ \frac{1}{2} \exp\left(\frac{x-\theta}{\psi}\right), & \text{if } x \leq \theta, \end{cases}$$

$$F(x) = \begin{cases} 1 - \frac{1}{2} \exp\left(\frac{\theta-x}{\psi}\right), & \text{if } x > \theta, \\ 1 - \frac{1}{2} \exp\left(\frac{\theta-x}{\psi}\right), & \text{if } x > \theta, \end{cases}$$

$$VaR_p(X) = \begin{cases} \theta + \psi \log(2p), & \text{if } p \leq 1/2, \\ \theta - \phi \log\left(2(1-p)\right), & \text{if } p > 1/2, \end{cases}$$

$$ES_p(X) = \begin{cases} \psi + \theta \log(2p) - \theta p, & \text{if } p \leq 1/2, \\ \theta + \phi + \frac{\psi - \phi - 2\theta}{2p} + \frac{\phi}{p} \log 2 - \phi \log 2 \\ + \frac{\phi}{p} \log(1-p) - \phi \log(1-p), & \text{if } p > 1/2 \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \theta < \infty$, the location parameter, $\phi > 0$, the first scale parameter, and $\psi > 0$, the second scale parameter.

Usage

```
dMlaplace(x, theta=0, phi=1, psi=1, log=FALSE)
pMlaplace(x, theta=0, phi=1, psi=1, log.p=FALSE, lower.tail=TRUE)
varMlaplace(p, theta=0, phi=1, psi=1, log.p=FALSE, lower.tail=TRUE)
esMlaplace(p, theta=0, phi=1, psi=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the location parameter, can take any real value, the default is zero
phi	the value of the first scale parameter, must be positive, the default is 1
psi	the value of the second scale parameter, must be positive, the default is 1

124 moexp

log if TRUE then log(pdf) are returned

if TRUE then log(cdf) are returned and quantiles are computed for exp(p) log.p

if FALSE then 1-cdf are returned and quantiles are computed for 1-p lower.tail

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dMlaplace(x)
pMlaplace(x)
varMlaplace(x)
esMlaplace(x)
```

moexp

Marshall-Olkin exponential distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Marshall-Olkin exponential distribution due to Marshall and Olkin (1997) given by

$$f(x) = \frac{\lambda \exp(\lambda x)}{[\exp(\lambda x) - 1 + a]^2},$$

$$F(x) = \frac{\exp(\lambda x) - 2 + a}{\exp(\lambda x) - 1 + a},$$

$$\operatorname{VaR}_p(X) = \frac{1}{\lambda} \log \frac{2 - a - (1 - a)p}{1 - p},$$

$$\operatorname{ES}_p(X) = \frac{1}{\lambda} \log [2 - a - (1 - a)p] - \frac{2 - a}{\lambda (1 - a)p} \log \frac{2 - a - (1 - a)p}{2 - a} + \frac{1 - p}{\lambda p} \log(1 - p)$$

$$\operatorname{ES}_p(X) = \frac{1}{\lambda} \log [2 - a - (1 - a)p] - \frac{2 - a}{\lambda (1 - a)p} \log \frac{2 - a - (1 - a)p}{2 - a} + \frac{1 - p}{\lambda p} \log(1 - p)$$

for x > 0, 0 , <math>a > 0, the first scale parameter and $\lambda > 0$, the second scale parameter.

moexp 125

Usage

```
dmoexp(x, lambda=1, a=1, log=FALSE)
pmoexp(x, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
varmoexp(p, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
esmoexp(p, lambda=1, a=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be positive, the default is 1
lambda	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dmoexp(x)
pmoexp(x)
varmoexp(x)
esmoexp(x)
```

126 moweibull

moweibull

Marshall-Olkin Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Marshall-Olkin Weibull distribution due to Marshall and Olkin (1997) given by

$$f(x) = b\lambda^b x^{b-1} \exp\left[(\lambda x)^b\right] \left\{ \exp\left[(\lambda x)^b\right] - 1 + a \right\}^{-2},$$

$$F(x) = \frac{\exp\left[(\lambda x)^b\right] - 2 + a}{\exp\left[(\lambda x)^b\right] - 1 + a},$$

$$\operatorname{VaR}_p(X) = \frac{1}{\lambda} \left[\log\left(\frac{1}{1-p} + 1 - a\right) \right]^{1/b},$$

$$\operatorname{ES}_p(X) = \frac{1}{\lambda p} \int_0^p \left[\log\left(\frac{1}{1-v} + 1 - a\right) \right]^{1/b} dv$$

for x > 0, 0 0, the first scale parameter, b > 0, the shape parameter, and $\lambda > 0$, the second scale parameter.

Usage

```
dmoweibull(x, a=1, b=1, lambda=1, log=FALSE)
pmoweibull(x, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varmoweibull(p, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
esmoweibull(p, a=1, b=1, lambda=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the first scale parameter, must be positive, the default is 1
lambda	the value of the second scale parameter, must be positive, the default is 1
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

MRbeta 127

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dmoweibull(x)
pmoweibull(x)
varmoweibull(x)
esmoweibull(x)
```

MRbeta

McDonald-Richards beta distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the McDonald-Richards beta distribution due to McDonald and Richards (1987a, 1987b) given by

$$f(x) = \frac{x^{ar-1} \left(bq^r - x^r\right)^{b-1}}{\left(bq^r\right)^{a+b-1} B(a,b)},$$

$$F(x) = I_{\frac{x^r}{bq^r}}(a,b),$$

$$\operatorname{VaR}_p(X) = b^{1/r} q \left[I_p^{-1}(a,b)\right]^{1/r},$$

$$\operatorname{ES}_p(X) = \frac{b^{1/r} q}{p} \int_0^p \left[I_v^{-1}(a,b)\right]^{1/r} dv$$

for $0 \le x \le b^{1/r}q$, 0 , <math>q > 0, the scale parameter, a > 0, the first shape parameter, b > 0, the second shape parameter, and r > 0, the third shape parameter.

Usage

```
\label{eq:dmRbeta} \begin{array}{llll} \text{dMRbeta}(x, a=&1, b=&1, r=&1, q=&1, log=&\text{FALSE}) \\ \text{pMRbeta}(x, a=&1, b=&1, r=&1, q=&1, log.p=&\text{FALSE}, lower.tail=&\text{TRUE}) \\ \text{varMRbeta}(p, a=&1, b=&1, r=&1, q=&1, log.p=&\text{FALSE}, lower.tail=&\text{TRUE}) \\ \text{esMRbeta}(p, a=&1, b=&1, r=&1, q=&1) \end{array}
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
q	the value of the scale parameter, must be positive, the default is 1
a	the value of the first shape parameter, must be positive, the default is 1
b	the value of the second shape parameter, must be positive, the default is 1

128 nakagami

r the value of the third shape parameter, must be positive, the default is 1 log if TRUE then log(pdf) are returned

log.p if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dMRbeta(x)
pMRbeta(x)
varMRbeta(x)
esMRbeta(x)
```

nakagami

Nakagami distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Nakagami distribution due to Nakagami (1960) given by

$$f(x) = \frac{2m^m}{\Gamma(m)a^m} x^{2m-1} \exp\left(-\frac{mx^2}{a}\right),$$

$$F(x) = 1 - Q\left(m, \frac{mx^2}{a}\right),$$

$$\operatorname{VaR}_p(X) = \sqrt{\frac{a}{m}} \sqrt{Q^{-1}(m, 1 - p)},$$

$$\operatorname{ES}_p(X) = \frac{\sqrt{a}}{p\sqrt{m}} \int_0^p \sqrt{Q^{-1}(m, 1 - v)} dv$$

for x > 0, 0 , <math>a > 0, the scale parameter, and m > 0, the shape parameter.

nakagami 129

Usage

```
dnakagami(x, m=1, a=1, log=FALSE)
pnakagami(x, m=1, a=1, log.p=FALSE, lower.tail=TRUE)
varnakagami(p, m=1, a=1, log.p=FALSE, lower.tail=TRUE)
esnakagami(p, m=1, a=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the scale parameter, must be positive, the default is 1
m	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dnakagami(x)
pnakagami(x)
varnakagami(x)
esnakagami(x)
```

normal

normal

Normal distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the normal distribution due to de Moivre (1738) and Gauss (1809) given by

$$f(x) = \frac{1}{\sigma} \phi \left(\frac{x - \mu}{\sigma} \right),$$

$$F(x) = \Phi \left(\frac{x - \mu}{\sigma} \right),$$

$$VaR_p(X) = \mu + \sigma \Phi^{-1}(p),$$

$$ES_p(X) = \mu + \frac{\sigma}{p} \int_0^p \Phi^{-1}(v) dv$$

for $-\infty < x < \infty, \ 0 < p < 1, \ -\infty < \mu < \infty$, the location parameter, and $\sigma > 0$, the scale parameter, where $\phi(\cdot)$ denotes the pdf of a standard normal random variable, and $\Phi(\cdot)$ denotes the cdf of a standard normal random variable.

Usage

```
dnormal(x, mu=0, sigma=1, log=FALSE)
pnormal(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varnormal(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esnormal(p, mu=0, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu	the value of the location parameter, can take any real value, the default is zero
sigma	the value of the scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

pareto 131

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dnormal(x)
pnormal(x)
varnormal(x)
esnormal(x)
```

pareto

Pareto distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Pareto distribution due to Pareto (1964) given by

$$f(x) = cK^{c}x^{-c-1},$$

$$F(x) = 1 - \left(\frac{K}{x}\right)^{c},$$

$$VaR_{p}(X) = K(1-p)^{-1/c},$$

$$ES_{p}(X) = \frac{Kc}{p(1-c)}(1-p)^{1-1/c} - \frac{Kc}{p(1-c)}$$

for $x \ge K$, 0 , <math>K > 0, the scale parameter, and c > 0, the shape parameter.

Usage

```
dpareto(x, K=1, c=1, log=FALSE)
ppareto(x, K=1, c=1, log.p=FALSE, lower.tail=TRUE)
varpareto(p, K=1, c=1, log.p=FALSE, lower.tail=TRUE)
espareto(p, K=1, c=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
р	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
K	the value of the scale parameter, must be positive, the default is 1
С	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(\text{cdf})$ are returned and quantiles are computed for $\exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

132 paretostable

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dpareto(x)
ppareto(x)
varpareto(x)
espareto(x)
```

paretostable

Pareto positive stable distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Pareto positive stable distribution due to Sarabia and Prieto (2009) and Guillen et al. (2011) given by

$$f(x) = \frac{\nu\lambda}{x} \left[\log\left(\frac{x}{\sigma}\right) \right]^{\nu-1} \exp\left\{ -\lambda \left[\log\left(\frac{x}{\sigma}\right) \right]^{\nu} \right\},$$

$$F(x) = 1 - \exp\left\{ -\lambda \left[\log\left(\frac{x}{\sigma}\right) \right]^{\nu} \right\},$$

$$\operatorname{VaR}_{p}(X) = \sigma \exp\left\{ \left[-\frac{1}{\lambda} \log(1-p) \right]^{1/\nu} \right\},$$

$$\operatorname{ES}_{p}(X) = \frac{\sigma}{p} \int_{0}^{p} \exp\left\{ \left[-\frac{1}{\lambda} \log(1-v) \right]^{1/\nu} \right\} dv$$

for $x>0,\,0< p<1,\,\lambda>0$, the first scale parameter, $\sigma>0$, the second scale parameter, and $\nu>0$, the shape parameter.

Usage

```
dparetostable(x, lambda=1, nu=1, sigma=1, log=FALSE)
pparetostable(x, lambda=1, nu=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varparetostable(p, lambda=1, nu=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
esparetostable(p, lambda=1, nu=1, sigma=1)
```

PCTAlaplace 133

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the first scale parameter, must be positive, the default is 1
sigma	the value of the second scale parameter, must be positive, the default is 1
nu	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dparetostable(x)
pparetostable(x)
varparetostable(x)
esparetostable(x)
```

134 PCTAlaplace

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Poiraud-Casanova-Thomas-Agnan Laplace distribution due to Poiraud-Casanova and Thomas-Agnan (2000) given by

$$f(x) = \begin{cases} a (1-a) \exp \{(1-a) (x-\theta)\}, & \text{if } x \leq \theta, \\ a (1-a) \exp \{a (\theta-x)\}, & \text{if } x > \theta, \\ a \exp \{(1-a) (x-\theta)\}, & \text{if } x \leq \theta, \end{cases}$$

$$F(x) = \begin{cases} 1 - (1-a) \exp \{a (\theta-x)\}, & \text{if } x > \theta, \\ 1 - (1-a) \exp \{a (\theta-x)\}, & \text{if } p \leq a, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \theta + \frac{1}{1-a} \log \left(\frac{p}{a}\right), & \text{if } p \leq a, \\ \theta - \frac{1}{a} \log \left(\frac{1-p}{1-a}\right), & \text{if } p > a, \end{cases}$$

$$\text{ES}_p(X) = \begin{cases} \theta - \frac{\log a}{1-a} + \frac{\log p - 1}{(1-a)p}, & \text{if } p \leq a, \\ \theta - \frac{1}{a} + \frac{1}{p} - \frac{a}{(1-a)p} + \frac{1-p}{ap} \log \left(\frac{1-p}{1-a}\right), & \text{if } p > a \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \theta < \infty$, the location parameter, and a > 0, the scale parameter.

Usage

```
dPCTAlaplace(x, a=0.5, theta=0, log.p=FALSE)
pPCTAlaplace(x, a=0.5, theta=0, log.p=FALSE, lower.tail=TRUE)
varPCTAlaplace(p, a=0.5, theta=0, log.p=FALSE, lower.tail=TRUE)
esPCTAlaplace(p, a=0.5, theta=0)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the location parameter, can take any real value, the default is zero
a	the value of the scale parameter, must be in the unit interval, the default is 0.5
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

perks 135

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dPCTAlaplace(x)
pPCTAlaplace(x)
varPCTAlaplace(x)
esPCTAlaplace(x)
```

perks

Perks distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Perks distribution due to Perks (1932) given by

$$\begin{split} f(x) &= \frac{a \exp(bx) \left[1 + a \right]}{\left[1 + a \exp(bx) \right]^2}, \\ F(x) &= 1 - \frac{1 + a}{1 + a \exp(bx)}, \\ \mathrm{VaR}_p(X) &= \frac{1}{b} \log \frac{a + p}{a(1 - p)}, \\ \mathrm{ES}_p(X) &= -\left(1 + \frac{a}{p} \right) \frac{\log a}{b} + \frac{(a + p) \log(a + p)}{bp} + \frac{(1 - p) \log(1 - p)}{bp} \end{split}$$

for x > 0, 0 , <math>a > 0, the first scale parameter and b > 0, the second scale parameter.

Usage

```
dperks(x, a=1, b=1, log=FALSE)
pperks(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varperks(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esperks(p, a=1, b=1)
```

power1

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be positive, the default is 1
b	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dperks(x)
pperks(x)
varperks(x)
esperks(x)
```

power1

Power function I distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the power function I distribution given by

$$f(x) = ax^{a-1},$$

 $F(x) = x^a,$
 $VaR_p(X) = p^{1/a},$
 $ES_p(X) = \frac{p^{1/a}}{1/a + 1}$

for 0 < x < 1, 0 , and <math>a > 0, the shape parameter.

power1 137

Usage

```
dpower1(x, a=1, log=FALSE)
ppower1(x, a=1, log.p=FALSE, lower.tail=TRUE)
varpower1(p, a=1, log.p=FALSE, lower.tail=TRUE)
espower1(p, a=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dpower1(x)
ppower1(x)
varpower1(x)
espower1(x)
```

138 power2

power2

Power function II distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the power function II distribution given by

$$f(x) = b(1-x)^{b-1},$$

$$F(x) = 1 - (1-x)^{b},$$

$$VaR_p(X) = 1 - (1-p)^{1/b},$$

$$ES_p(X) = 1 + \frac{b\left[(1-p)^{1/b+1} - 1\right]}{p(b+1)}$$

for 0 < x < 1, 0 , and <math>b > 0, the shape parameter.

Usage

```
dpower2(x, b=1, log=FALSE)
ppower2(x, b=1, log.p=FALSE, lower.tail=TRUE)
varpower2(p, b=1, log.p=FALSE, lower.tail=TRUE)
espower2(p, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

quad 139

Examples

```
x=runif(10,min=0,max=1)
dpower2(x)
ppower2(x)
varpower2(x)
espower2(x)
```

quad

Quadratic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the quadratic distribution given by

$$f(x) = \alpha(x - \beta)^{2},$$

$$F(x) = \frac{\alpha}{3} \left[(x - \beta)^{3} + (\beta - a)^{3} \right],$$

$$\operatorname{VaR}_{p}(X) = \beta + \left[\frac{3p}{\alpha} - (\beta - a)^{3} \right]^{1/3},$$

$$\operatorname{ES}_{p}(X) = \beta + \frac{\alpha}{4p} \left\{ \left[\frac{3p}{\alpha} - (\beta - a)^{3} \right]^{4/3} - (\beta - a)^{4} \right\}$$

for $a \leq x \leq b, 0 , the first location parameter, and <math>-\infty < a < b < \infty$, the second location parameter, where $\alpha = \frac{12}{(b-a)^3}$ and $\beta = \frac{a+b}{2}$.

Usage

```
dquad(x, a=0, b=1, log=FALSE)
pquad(x, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
varquad(p, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
esquad(p, a=0, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a	the value of the first location parameter, can take any real value, the default is zero
b	the value of the second location parameter, can take any real value but must be greater than a, the default is $\boldsymbol{1}$
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

140 rgamma

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dquad(x)
pquad(x)
varquad(x)
esquad(x)
```

rgamma

Reflected gamma distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the reflected gamma distribution due to Borgi (1965) given by

$$f(x) = \frac{1}{2\phi\Gamma(a)} \left| \frac{x - \theta}{\phi} \right|^{a - 1} \exp\left\{-\left| \frac{x - \theta}{\phi} \right| \right\},$$

$$F(x) = \begin{cases} \frac{1}{2}Q\left(a, \frac{\theta - x}{\phi}\right), & \text{if } x \le \theta, \\ 1 - \frac{1}{2}Q\left(a, \frac{x - \theta}{\phi}\right), & \text{if } x > \theta, \end{cases}$$

$$\text{VaR}_{p}(X) = \begin{cases} \theta - \phi Q^{-1}(a, 2p), & \text{if } p \le 1/2, \\ \theta + \phi Q^{-1}(a, 2(1 - p)), & \text{if } p > 1/2, \end{cases}$$

$$\text{ES}_{p}(X) = \begin{cases} \theta - \frac{\phi}{p} \int_{0}^{p} Q^{-1}(a, 2v) \, dv, & \text{if } p \le 1/2, \end{cases}$$

$$\text{ES}_{p}(X) = \begin{cases} \theta - \frac{\phi}{p} \int_{0}^{1/2} Q^{-1}(a, 2v) \, dv + \frac{\phi}{p} \int_{1/2}^{p} Q^{-1}(a, 2(1 - v)) \, dv, & \text{if } p > 1/2 \end{cases}$$

for $-\infty < x < \infty$, $0 , <math>-\infty < \theta < \infty$, the location parameter, $\phi > 0$, the scale parameter, and a > 0, the shape parameter.

rgamma 141

Usage

```
drgamma(x, a=1, theta=0, phi=1, log=FALSE)
prgamma(x, a=1, theta=0, phi=1, log.p=FALSE, lower.tail=TRUE)
varrgamma(p, a=1, theta=0, phi=1, log.p=FALSE, lower.tail=TRUE)
esrgamma(p, a=1, theta=0, phi=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the location parameter, can take any real value, the default is zero
phi	the value of the scale parameter, must be positive, the default is 1
а	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
drgamma(x)
prgamma(x)
varrgamma(x)
esrgamma(x)
```

Ramberg-Schmeiser distribution

RS

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Ramber-Schmeiser distribution due to Ramberg and Schmeiser (1974) given by

$$VaR_p(X) = \frac{p^b - (1-p)^c}{d},$$

$$ES_p(X) = \frac{p^b}{d(b+1)} + \frac{(1-p)^{c+1} - 1}{pd(c+1)}$$

for 0 0, the first shape parameter, c > 0, the second shape parameter, and d > 0, the scale parameter.

Usage

```
varRS(p, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE) esRS(p, b=1, c=1, d=1)
```

Arguments

p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
d	the value of the scale parameter, must be positive, the default is 1
b	the value of the first shape parameter, must be positive, the default is 1
С	the value of the second shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $\log(\text{cdf})$ are returned and quantiles are computed for $\exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

schabe 143

Examples

```
x=runif(10,min=0,max=1)
varRS(x)
esRS(x)
```

schabe

Schabe distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Schabe distribution due to Schabe (1994) given by

$$f(x) = \frac{2\gamma + (1 - \gamma)x/\theta}{\theta(\gamma + x/\theta)^2},$$

$$F(x) = \frac{(1 + \gamma)x}{x + \gamma\theta},$$

$$VaR_p(X) = \frac{p\gamma\theta}{1 + \gamma - p},$$

$$ES_p(X) = -\theta\gamma - \frac{\theta\gamma(1 + \gamma)}{p}\log\frac{1 + \gamma - p}{1 + \gamma}$$

for $x > 0, 0 , the first scale parameter, and <math>\theta > 0$, the second scale parameter.

Usage

```
dschabe(x, gamma=0.5, theta=1, log=FALSE)
pschabe(x, gamma=0.5, theta=1, log.p=FALSE, lower.tail=TRUE)
varschabe(p, gamma=0.5, theta=1, log.p=FALSE, lower.tail=TRUE)
esschabe(p, gamma=0.5, theta=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
gamma	the value of the first scale parameter, must be in the unit interval, the default is 0.5
theta	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

144 secant

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dschabe(x)
pschabe(x)
varschabe(x)
esschabe(x)
```

secant

Hyperbolic secant distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the hyperbolic secant distribution given by

$$f(x) = \frac{1}{2} \operatorname{sech}\left(\frac{\pi x}{2}\right),$$

$$F(x) = \frac{2}{\pi} \arctan\left[\exp\left(\frac{\pi x}{2}\right)\right],$$

$$\operatorname{VaR}_{p}(X) = \frac{2}{\pi} \log\left[\tan\left(\frac{\pi p}{2}\right)\right],$$

$$\operatorname{ES}_{p}(X) = \frac{2}{\pi p} \int_{0}^{p} \log\left[\tan\left(\frac{\pi v}{2}\right)\right] dv$$

for $-\infty < x < \infty$, and 0 .

Usage

```
dsecant(x, log=FALSE)
psecant(x, log.p=FALSE, lower.tail=TRUE)
varsecant(p, log.p=FALSE, lower.tail=TRUE)
essecant(p)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

stacygamma 145

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dsecant(x)
psecant(x)
varsecant(x)
essecant(x)
```

stacygamma

Stacy distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for Stacy distribution due to Stacy (1962) given by

$$\begin{split} f(x) &= \frac{cx^{c\gamma-1} \exp\left[-(x/\theta)^c\right]}{\theta^{c\gamma} \Gamma(\gamma)}, \\ F(x) &= 1 - Q\left(\gamma, \left(\frac{x}{\theta}\right)^c\right), \\ \operatorname{VaR}_p(X) &= \theta \left[Q^{-1}(\gamma, 1-p)\right]^{1/c}, \\ \operatorname{ES}_p(X) &= \frac{\theta}{p} \int_0^p \left[Q^{-1}(\gamma, 1-v)\right]^{1/c} dv \end{split}$$

for x > 0, $0 , <math>\theta > 0$, the scale parameter, c > 0, the first shape parameter, and $\gamma > 0$, the second shape parameter.

Usage

```
dstacygamma(x, gamma=1, c=1, theta=1, log=FALSE)
pstacygamma(x, gamma=1, c=1, theta=1, log.p=FALSE, lower.tail=TRUE)
varstacygamma(p, gamma=1, c=1, theta=1, log.p=FALSE, lower.tail=TRUE)
esstacygamma(p, gamma=1, c=1, theta=1)
```

146 T

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the scale parameter, must be positive, the default is 1
С	the value of the first scale parameter, must be positive, the default is 1
gamma	the value of the second scale parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dstacygamma(x)
pstacygamma(x)
varstacygamma(x)
esstacygamma(x)
```

T 147

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Student's t distribution due to Gosset (1908) given by

$$\begin{split} f(x) &= \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, \\ F(x) &= \frac{1 + \mathrm{sign}(x)}{2} - \frac{\mathrm{sign}(x)}{2} I_{\frac{n}{x^2 + n}} \left(\frac{n}{2}, \frac{1}{2}\right), \\ \mathrm{VaR}_p(X) &= \sqrt{n} \mathrm{sign} \left(p - \frac{1}{2}\right) \sqrt{\frac{1}{I_a^{-1}\left(\frac{n}{2}, \frac{1}{2}\right)} - 1}, \\ \text{where } a &= 2p \text{ if } p < 1/2, \, a = 2(1-p) \text{ if } p \geq 1/2, \\ \mathrm{ES}_p(X) &= \frac{\sqrt{n}}{p} \int_0^p \mathrm{sign} \left(v - \frac{1}{2}\right) \sqrt{\frac{1}{I_a^{-1}\left(\frac{n}{2}, \frac{1}{2}\right)} - 1} dv, \\ \text{where } a &= 2v \text{ if } v < 1/2, \, a = 2(1-v) \text{ if } v \geq 1/2 \end{split}$$

for $-\infty < x < \infty$, 0 , and <math>n > 0, the degree of freedom parameter.

Usage

```
dT(x, n=1, log=FALSE)
pT(x, n=1, log.p=FALSE, lower.tail=TRUE)
varT(p, n=1, log.p=FALSE, lower.tail=TRUE)
esT(p, n=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
n	the value of the degree of freedom parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

148 TL

Examples

```
x=runif(10,min=0,max=1)
dT(x)
pT(x)
varT(x)
esT(x)
```

 TL

Tukey-Lambda distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Tukey-Lambda distribution due to Tukey (1962) given by

$$\operatorname{VaR}_{p}(X) = \frac{p^{\lambda} - (1-p)^{\lambda}}{\lambda},$$

$$\operatorname{ES}_{p}(X) = \frac{p^{\lambda+1} + (1-p)^{\lambda+1} - 1}{p\lambda(\lambda+1)}$$

for $0 , and <math>\lambda > 0$, the shape parameter.

Usage

```
varTL(p, lambda=1, log.p=FALSE, lower.tail=TRUE)
esTL(p, lambda=1)
```

Arguments

p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

TL2 149

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
varTL(x)
esTL(x)
```

TL2

Topp-Leone distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Topp-Leone distribution due to Topp and Leone (1955) given by

$$f(x) = 2b(x(2-x))^{b-1}(1-x),$$

$$F(x) = (x(2-x))^{b},$$

$$VaR_{p}(X) = 1 - \sqrt{1 - p^{1/b}},$$

$$ES_{p}(X) = 1 - \frac{b}{p}B_{p^{1/b}}\left(b, \frac{3}{2}\right)$$

for x > 0, 0 , and <math>b > 0, the shape parameter.

Usage

```
dTL2(x, b=1, log=FALSE)
pTL2(x, b=1, log.p=FALSE, lower.tail=TRUE)
varTL2(p, b=1, log.p=FALSE, lower.tail=TRUE)
esTL2(p, b=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

150 triangular

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dTL2(x)
pTL2(x)
varTL2(x)
esTL2(x)
```

triangular 151

Description

Computes the pdf, cdf, value at risk and expected shortfall for the triangular distribution given by

$$f(x) = \begin{cases} 0, & \text{if } x < a, \\ \frac{2(x-a)}{(b-a)(c-a)}, & \text{if } a \le x \le c, \\ \frac{2(b-x)}{(b-a)(b-c)}, & \text{if } c < x \le b, \\ 0, & \text{if } b < x, \\ 0, & \text{if } x < a, \end{cases}$$

$$F(x) = \begin{cases} (x-a)^2 \\ (b-a)(c-a), & \text{if } a \le x \le c, \end{cases}$$

$$1 - \frac{(b-x)^2}{(b-a)(b-c)}, & \text{if } c < x \le b, \\ 1, & \text{if } b < x, \\ 1, & \text{if } b < x, \end{cases}$$

$$VaR_p(X) = \begin{cases} a + \sqrt{p(b-a)(c-a)}, & \text{if } 0
$$ES_p(X) = \begin{cases} a + \frac{2}{3}\sqrt{p(b-a)(c-a)}, & \text{if } 0$$$$

for $a \le x \le b$, $0 , <math>-\infty < a < \infty$, the first location parameter, $-\infty < a < c < \infty$, the second location parameter, and $-\infty < c < b < \infty$, the third location parameter.

Usage

```
dtriangular(x, a=0, b=2, c=1, log=FALSE)
ptriangular(x, a=0, b=2, c=1, log.p=FALSE, lower.tail=TRUE)
vartriangular(p, a=0, b=2, c=1, log.p=FALSE, lower.tail=TRUE)
estriangular(p, a=0, b=2, c=1)
```

Arguments

x scaler or vector of values at which the pdf or cdf needs to be computed

p scaler or vector of values at which the value at risk or expected shortfall needs to be computed

a the value of the first location parameter, can take any real value, the default is zero

152 tsp

С	the value of the second location parameter, can take any real value but must be greater than a, the default is 1
b	the value of the third location parameter, can take any real value but must be greater than $c, the default$ is 2
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dtriangular(x)
ptriangular(x)
vartriangular(x)
estriangular(x)
```

tsp 153

Description

Computes the pdf, cdf, value at risk and expected shortfall for the two sided power distribution due to van Dorp and Kotz (2002) given by

$$f(x) = \begin{cases} a\left(\frac{x}{\theta}\right)^{a-1}, & \text{if } 0 < x \leq \theta, \\ a\left(\frac{1-x}{1-\theta}\right)^{a-1}, & \text{if } \theta < x < 1, \end{cases}$$

$$F(x) = \begin{cases} \theta\left(\frac{x}{\theta}\right)^{a}, & \text{if } 0 < x \leq \theta, \\ 1-(1-\theta)\left(\frac{1-x}{1-\theta}\right)^{a}, & \text{if } \theta < x < 1, \end{cases}$$

$$\text{VaR}_p(X) = \begin{cases} \theta\left(\frac{p}{\theta}\right)^{1/a}, & \text{if } 0
$$\text{ES}_p(X) = \begin{cases} \frac{a\theta}{a+1}\left(\frac{p}{\theta}\right)^{1/a}, & \text{if } \theta
$$\text{ES}_p(X) = \begin{cases} \frac{a\theta}{a+1}\left(\frac{p}{\theta}\right)^{1/a}, & \text{if } \theta
$$1-\frac{\theta}{p}+\frac{a(2\theta-1)}{(a+1)p}+\frac{a(1-\theta)^2}{(a+1)p}\left(\frac{1-p}{1-\theta}\right)^{1+1/a}, & \text{if } \theta$$$$$$$$

for 0 < x < 1, 0 < p < 1, a > 0, the shape parameter, and $-\infty < \theta < \infty$, the location parameter.

Usage

```
dtsp(x, a=1, theta=0.5, log=FALSE)
ptsp(x, a=1, theta=0.5, log.p=FALSE, lower.tail=TRUE)
vartsp(p, a=1, theta=0.5, log.p=FALSE, lower.tail=TRUE)
estsp(p, a=1, theta=0.5)
```

Arguments

Χ	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
theta	the value of the location parameter, must take a value in the unit interval, the default is 0.5
a	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

154 uniform

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
dtsp(x)
ptsp(x)
vartsp(x)
estsp(x)
```

uniform

Uniform distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the uniform distribution given by

$$\begin{split} f(x) &= \frac{1}{b-a}, \\ F(x) &= \frac{x-a}{b-a}, \\ \mathrm{VaR}_p(X) &= a + p(b-a), \\ \mathrm{ES}_p(X) &= a + \frac{p}{2}(b-a) \end{split}$$

for $a < x < b, 0 < p < 1, -\infty < a < \infty$, the first location parameter, and $-\infty < a < b < \infty$, the second location parameter.

Usage

```
duniform(x, a=0, b=1, log=FALSE)
puniform(x, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
varuniform(p, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
esuniform(p, a=0, b=1)
```

Arguments

x scaler or vector of values at which the pdf or cdf needs to be computed

p scaler or vector of values at which the value at risk or expected shortfall needs to be computed

a the value of the first location parameter, can take any real value, the default is zero

weibull 155

b	the value of the second location parameter, can take any real value but must be greater than a, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

```
x=runif(10,min=0,max=1)
duniform(x)
puniform(x)
varuniform(x)
esuniform(x)
```

weibull

Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Weibull distribution due to Weibull (1951) given by

$$\begin{split} f(x) &= \frac{\alpha x^{\alpha - 1}}{\sigma^{\alpha}} \exp\left\{-\left(\frac{x}{\sigma}\right)^{\alpha}\right\}, \\ F(x) &= 1 - \exp\left\{-\left(\frac{x}{\sigma}\right)^{\alpha}\right\}, \\ \operatorname{VaR}_p(X) &= \sigma \left[-\log(1 - p)\right]^{1/\alpha}, \\ \operatorname{ES}_p(X) &= \frac{\sigma}{p} \gamma \left(1 + 1/\alpha, -\log(1 - p)\right) \end{split}$$

for x > 0, $0 , <math>\alpha > 0$, the shape parameter, and $\sigma > 0$, the scale parameter.

156 weibull

Usage

```
dWeibull(x, alpha=1, sigma=1, log=FALSE)
pWeibull(x, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varWeibull(p, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
esWeibull(p, alpha=1, sigma=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed	
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed	
sigma	the value of the scale parameter, must be positive, the default is 1	
alpha	the value of the shape parameter, must be positive, the default is 1	
log	if TRUE then log(pdf) are returned	
log.p	if TRUE then $log(cdf)$ are returned and quantiles are computed for $exp(p)$	
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p	

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dWeibull(x)
pWeibull(x)
varWeibull(x)
esWeibull(x)
```

xie 157

xie Xie distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Xie distribution due to Xie et al. (2002) given by

$$\begin{split} f(x) &= \lambda b \left(\frac{x}{a}\right)^{b-1} \exp\left[(x/a)^b\right] \exp\left(\lambda a\right) \exp\left\{-\lambda a \exp\left[(x/a)^b\right]\right\}, \\ F(x) &= 1 - \exp\left(\lambda a\right) \exp\left\{-\lambda a \exp\left[(x/a)^b\right]\right\}, \\ \operatorname{VaR}_p(X) &= a \left\{\log\left[1 - \frac{\log(1-p)}{\lambda a}\right]\right\}^{1/b}, \\ \operatorname{ES}_p(X) &= \frac{a}{p} \int_0^p \left\{\log\left[1 - \frac{\log(1-v)}{\lambda a}\right]\right\}^{1/b} dv \end{split}$$

for x > 0, 0 , <math>a > 0, the first scale parameter, b > 0, the shape parameter, and $\lambda > 0$, the second scale parameter.

Usage

```
dxie(x, a=1, b=1, lambda=1, log=FALSE)
pxie(x, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varxie(p, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
esxie(p, a=1, b=1, lambda=1)
```

Arguments

X	scaler or vector of values at which the pdf or cdf needs to be computed
p	scaler or vector of values at which the value at risk or expected shortfall needs to be computed
а	the value of the first scale parameter, must be positive, the default is 1
lambda	the value of the second scale parameter, must be positive, the default is 1
b	the value of the shape parameter, must be positive, the default is 1
log	if TRUE then log(pdf) are returned
log.p	if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail	if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

158 xie

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

```
x=runif(10,min=0,max=1)
dxie(x)
pxie(x)
varxie(x)
esxie(x)
```

Index

* package VaRES-package, 4	dbetaburr7 (betaburr7), 16 dbetadist (betadist), 17
	dbetaexp (betaexp), 19
aep, 4	dbetafrechet (betafrechet), 20
arcsine, 6	dbetagompertz (betagompertz), 21
ast, 8	dbetagumbel (betagumbel), 23
asylaplace, 9	dbetagumbel2 (betagumbel2), 24
asypower, 11	dbetalognorm (betalognorm), 25
	dbetalomax (betalomax), 27
beard, 13	dbetanorm (betanorm), 28
betaburr, 15	dbetapareto (betapareto), 29
betaburr7, 16	dbetaweibull (betaweibull), 31
betadist, 17	dBS (BS), 32
betaexp, 19	dburr (burr), 33
betafrechet, 20	dburr7 (burr7), 34
betagompertz, 21	dCauchy (Cauchy), 36
betagumbel, 23	dchen (chen), 37
betagumbel2, 24	dclg (clg), 38
betalognorm, 25	dcompbeta (compbeta), 40
betalomax, 27	ddagum (dagum), 41
betanorm, 28 betapareto, 29	ddweibull (dweibull), 42
betaweibull, 31	dexpexp (expexp), 44
BS, 32	dexpext (expext), 45
burr, 33	dexpgeo (expgeo), 46
burr7, 34	dexplog (explog), 47
buil 1, 34	dexplogis (explogis), 49
Cauchy, 36	dexponential (exponential), 50
chen, 37	dexppois (exppois), 51
clg, 38	dexppower (exppower), 52
compbeta, 40	dexpweibull (expweibull), 54
	dF (F), 55
daep (aep), 4	dfrechet (frechet), 58
dagum, 41	dGamma (Gamma), 59
darcsine (arcsine), 6	dgenbeta (genbeta), 61
dast (ast), 8	dgenbeta2 (genbeta2), 62
dasylaplace (asylaplace), 9	dgeninvbeta (geninvbeta), 63
dasypower (asypower), 11	dgenlogis (genlogis), 65
dbeard (beard), 13	dgenlogis3 (genlogis3), 66
dbetaburr (betaburr), 15	dgenlogis4 (genlogis4), 67

dgenpareto (genpareto), 69	dPCTAlaplace (PCTAlaplace), 133
dgenpowerweibull (genpowerweibull), 70	dperks (perks), 135
dgenunif (genunif), 71	dpower1 (power1), 136
dgev (gev), 72	dpower2 (power2), 138
dgompertz (gompertz), 74	dquad (quad), 139
dgumbel (gumbel), 75	drgamma (rgamma), 140
dgumbel2 (gumbel2), 76	dschabe (schabe), 143
dhalfcauchy (halfcauchy), 78	dsecant (secant), 144
dhalflogis (halflogis), 79	dstacygamma (stacygamma), 145
dhalfnorm (halfnorm), 80	dT (T), 146
dhalfT (halfT), 81	dTL2 (TL2), 149
dHBlaplace (HBlaplace), 83	dtriangular (triangular), 150
dHlogis (Hlogis), 85	dtsp (tsp), 152
dinvbeta (invbeta), 87	duniform (uniform), 154
dinvexpexp (invexpexp), 88	dWeibull (weibull), 155
dinvgamma (invgamma), 89	dweibull, 42
dkum (kum), 90	dxie (xie), 157
dkumburr7 (kumburr7), 92	
dkumexp (kumexp), 93	esaep (aep), 4
dkumgamma (kumgamma), 94	esarcsine (arcsine), 6
dkumgumbel (kumgumbel), 96	esast (ast), 8
dkumhalfnorm (kumhalfnorm), 97	esasylaplace (asylaplace), 9
dkumloglogis (kumloglogis), 98	esasypower (asypower), 11
dkumnormal (kumnormal), 100	esbeard (beard), 13
dkumpareto (kumpareto), 101	esbetaburr (betaburr), 15
dkumweibull (kumweibull), 103	esbetaburr7 (betaburr7), 16
dlaplace (laplace), 104	esbetadist (betadist), 17
dlfr (lfr), 105	esbetaexp (betaexp), 19
dLNbeta (LNbeta), 107	esbetafrechet (betafrechet), 20
dlogbeta (logbeta), 108	esbetagompertz (betagompertz), 21
dlogcauchy (logcauchy), 109	esbetagumbel (betagumbel), 23
dloggamma (loggamma), 111	esbetagumbel2 (betagumbel2), 24
dlogisexp (logisexp), 112	esbetalognorm (betalognorm), 25
dlogisrayleigh (logisrayleigh), 113	esbetalomax (betalomax), 27
dlogistic (logistic), 115	esbetanorm (betanorm), 28
dloglaplace (loglaplace), 116	esbetapareto (betapareto), 29
dloglog (loglog), 118	esbetaweibull (betaweibull), 31
dloglogis (loglogis), 119	esBS (BS), 32
	esburr (burr), 33
dlognorm (lognorm), 120	esburr7 (burr7), 34
dlomax (lomax), 121	esCauchy (Cauchy), 36
dMlaplace (Mlaplace), 123	eschen (chen), 37
dmoexp (moexp), 124	esclg (clg), 38
dmoweibull (moweibull), 126	escompbeta (compbeta), 40
dMRbeta (MRbeta), 127	esdagum (dagum), 41
dnakagami (nakagami), 128	esdweibull (dweibull), 42
dnormal (normal), 130	esexpexp (expexp), 44
dpareto (pareto), 131	esexpext (expext), 45
dparetostable (paretostable), 132	esexpgeo (expgeo), 46

esexplog (explog), 47	esloggamma (loggamma), 111
esexplogis (explogis), 49	eslogisexp(logisexp), 112
esexponential (exponential), 50	eslogisrayleigh (logisrayleigh), 113
esexppois (exppois), 51	eslogistic (logistic), 115
esexppower (exppower), 52	esloglaplace (loglaplace), 116
esexpweibull (expweibull), 54	esloglog (loglog), 118
esF (F), 55	esloglogis (loglogis), 119
esFR (FR), 57	eslognorm(lognorm), 120
esfrechet (frechet), 58	eslomax (lomax), 121
esGamma (Gamma), 59	esMlaplace (Mlaplace), 123
esgenbeta (genbeta), 61	esmoexp (moexp), 124
esgenbeta2 (genbeta2), 62	esmoweibull (moweibull), 126
esgeninvbeta (geninvbeta), 63	esMRbeta (MRbeta), 127
esgenlogis (genlogis), 65	esnakagami (nakagami), 128
esgenlogis3 (genlogis3), 66	esnormal (normal), 130
esgenlogis4 (genlogis4), 67	espareto (pareto), 131
esgenpareto (genpareto), 69	esparetostable (paretostable), 132
esgenpowerweibull (genpowerweibull), 70	esPCTAlaplace (PCTAlaplace), 133
esgenunif (genunif), 71	esperks (perks), 135
esgev (gev), 72	espower1 (power1), 136
esgompertz (gompertz), 74	espower2 (power2), 138
esgumbel (gumbel), 75	esquad (quad), 139
esgumbel2 (gumbel2), 76	esrgamma (rgamma), 140
eshalfcauchy (halfcauchy), 78	esRS (RS), 142
eshalflogis (halflogis), 79	esschabe (schabe), 143
eshalfnorm(halfnorm), 80	essecant (secant), 144
eshalfT (halfT), 81	esstacygamma (stacygamma), 145
esHBlaplace (HBlaplace), 83	esT (T), 146
esHL (HL), 84	esTL (TL), 148
esHlogis (Hlogis), 85	esTL2 (TL2), 149
esinvbeta(invbeta), 87	estriangular (triangular), 150
esinvexpexp (invexpexp), 88	estsp (tsp), 152
esinvgamma (invgamma), 89	esuniform (uniform), 154
eskum (kum), 90	esWeibull (weibull), 155
eskumburr7 (kumburr7), 92	esxie (xie), 157
eskumexp (kumexp), 93	expexp, 44
eskumgamma (kumgamma), 94	expext, 45
eskumgumbel (kumgumbel), 96	expgeo, 46
eskumhalfnorm(kumhalfnorm), 97	explog, 47
eskumloglogis (kumloglogis), 98	explogis, 49
eskumnormal (kumnormal), 100	exponential, 50
eskumpareto (kumpareto), 101	exppois, 51
eskumweibull (kumweibull), 103	exppower, 52
eslaplace (laplace), 104	expweibull, 54
eslfr(lfr), 105	
esLNbeta (LNbeta), 107	F, 55
eslogbeta (logbeta), 108	FR, 57
eslogcauchy (logcauchy), 109	frechet, 58

Gamma, 59	loglogis, 119
genbeta, 61	lognorm, 120
genbeta2, 62	lomax, 121
geninvbeta, 63	
genlogis, 65	Mlaplace, 123
genlogis3,66	moexp, 124
genlogis4, 67	moweibull, 126
genpareto, 69	MRbeta, 127
genpowerweibull, 70	
genunif, 71	nakagami, 128
gev, 72	normal, 130
gompertz, 74	
gumbel, 75	paep (aep), 4
gumbel2, 76	parcsine (arcsine), 6
	pareto, 131
halfcauchy, 78	paretostable, 132
halflogis, 79	past (ast), 8
halfnorm, 80	pasylaplace (asylaplace), 9
halfT, 81	pasypower (asypower), 11
HBlaplace, 83	pbeard (beard), 13
HL, 84	pbetaburr (betaburr), 15
Hlogis, 85	pbetaburr7 (betaburr7), 16
112825, 65	pbetadist (betadist), 17
invbeta, 87	pbetaexp (betaexp), 19
invexpexp, 88	pbetafrechet (betafrechet), 20
invgamma, 89	pbetagompertz (betagompertz), 21
2117 Samma, 05	pbetagumbel (betagumbel), 23
kum, 90	pbetagumbel2 (betagumbel2), 24
kumburr7, 92	pbetalognorm (betalognorm), 25
kumexp, 93	pbetalomax (betalomax), 27
kumgamma, 94	pbetanorm (betanorm), 28
kumgumbel, 96	pbetapareto (betapareto), 29
kumhalfnorm, 97	pbetaweibull (betaweibull), 31
kumloglogis, 98	pBS (BS), 32
kumnormal, 100	pburr (burr), 33
kumpareto, 101	pburr7 (burr7), 34
kumweibull, 103	pCauchy (Cauchy), 36
	pchen (chen), 37
laplace, 104	pclg(clg), 38
1fr, 105	pcompbeta (compbeta), 40
LNbeta, 107	PCTAlaplace, 133
logbeta, 108	pdagum (dagum), 41
logcauchy, 109	pdweibull (dweibull), 42
loggamma, 111	perks, 135
logisexp, 112	pexpexp (expexp), 44
logisrayleigh, 113	pexpext (expext), 45
logistic, 115	pexpgeo (expgeo), 46
loglaplace, 116	pexplog (explog), 47
loglog, 118	pexplogis (explogis), 49
00, ***	F

pexponential (exponential), 50	ploglaplace (loglaplace), 116
pexppois (exppois), 51	ploglog (loglog), 118
pexppower (exppower), 52	ploglogis (loglogis), 119
pexpweibull (expweibull), 54	plognorm (lognorm), 120
pF (F), 55	plomax (lomax), 121
pfrechet (frechet), 58	pMlaplace (Mlaplace), 123
pGamma (Gamma), 59	pmoexp (moexp), 124
pgenbeta (genbeta), 61	pmoweibull (moweibull), 126
pgenbeta2 (genbeta2), 62	pMRbeta (MRbeta), 127
pgeninvbeta (geninvbeta), 63	pnakagami (nakagami), 128
pgenlogis (genlogis), 65	pnormal (normal), 130
pgenlogis3 (genlogis3), 66	power1, 136
pgenlogis4 (genlogis4), 67	power2, 138
pgenpareto (genpareto), 69	ppareto (pareto), 131
pgenpowerweibull (genpowerweibull), 70	pparetostable (paretostable), 132
pgenunif (genunif), 71	pPCTAlaplace (PCTAlaplace), 133
pgev (gev), 72	pperks (perks), 135
pgompertz (gompertz), 74	ppower1 (power1), 136
pgumbel (gumbel), 75	ppower2 (power2), 138
pgumbel2 (gumbel2), 76	pquad (quad), 139
phalfcauchy (halfcauchy), 78	prgamma (rgamma), 140
phalflogis (halflogis), 79	pschabe (schabe), 143
phalfnorm (halfnorm), 80	psecant (secant), 144
phalfT (halfT), 81	pstacygamma (stacygamma), 145
pHBlaplace (HBlaplace), 83	pT (T), 146
pHlogis (Hlogis), 85	pTL2 (TL2), 149
pinvbeta (invbeta), 87	ptriangular (triangular), 150
pinvexpexp (invexpexp), 88	ptsp (tsp), 152
pinvgamma (invgamma), 89	puniform (uniform), 154
pkum (kum), 90	pWeibull (weibull), 155
pkumburr7 (kumburr7), 92	pxie (xie), 157
pkumexp (kumexp), 93	quad, 139
pkumgamma (kumgamma), 94	quau, 137
pkumgumbel (kumgumbel), 96	rgamma, 140
pkumhalfnorm (kumhalfnorm), 97	RS, 142
pkumloglogis (kumloglogis), 98	
pkumnormal (kumnormal), 100	schabe, 143
pkumpareto (kumpareto), 101	secant, 144
pkumweibull (kumweibull), 103	stacygamma, 145
plaplace (laplace), 104	T 146
plfr (lfr), 105	T, 146
pLNbeta (LNbeta), 107	TL, 148
plogbeta (logbeta), 108	TL2, 149
plogcauchy (logcauchy), 109	triangular, 150
ploggamma (loggamma), 111	tsp, 152
plogisexp (logisexp), 112	uniform, 154
plogisrayleigh (logisrayleigh), 113	GIIII OI III, 157
plogistic (logistic), 115	varaep (aep), 4

vararcsine (arcsine), 6	vargenpareto (genpareto), 69
varast (ast), 8	vargenpowerweibull (genpowerweibull), 70
varasylaplace (asylaplace), 9	vargenunif(genunif),71
varasypower (asypower), 11	vargev (gev), 72
varbeard (beard), 13	vargompertz (gompertz), 74
varbetaburr (betaburr), 15	vargumbel(gumbel),75
varbetaburr7 (betaburr7), 16	vargumbel2(gumbel2), 76
varbetadist (betadist), 17	varhalfcauchy (halfcauchy), 78
varbetaexp (betaexp), 19	varhalflogis (halflogis), 79
varbetafrechet (betafrechet), 20	varhalfnorm (halfnorm), 80
varbetagompertz (betagompertz), 21	varhalfT(halfT), 81
varbetagumbel (betagumbel), 23	varHBlaplace (HBlaplace), 83
varbetagumbel2 (betagumbel2), 24	varHL (HL), 84
varbetalognorm (betalognorm), 25	varHlogis(Hlogis), 85
varbetalomax (betalomax), 27	varinvbeta (invbeta), 87
varbetanorm (betanorm), 28	varinvexpexp (invexpexp), 88
varbetapareto (betapareto), 29	varinvgamma (invgamma), 89
varbetaweibull (betaweibull), 31	varkum (kum), 90
varBS (BS), 32	varkumburr7 (kumburr7), 92
varburr (burr), 33	varkumexp (kumexp), 93
varburr7 (burr7), 34	varkumgamma (kumgamma), 94
varCauchy (Cauchy), 36	varkumgumbel (kumgumbel), 96
varchen (chen), 37	varkumhalfnorm (kumhalfnorm), 97
varclg (clg), 38	varkumloglogis (kumloglogis), 98
varcompbeta (compbeta), 40	varkumnormal (kumnormal), 100
vardagum (dagum), 41	varkumpareto (kumpareto), 101
vardweibull (dweibull), 42	varkumweibull (kumweibull), 103
VaRES (VaRES-package), 4	varlaplace (laplace), 104
VaRES-package, 4	varlfr (lfr), 105
varexpexp (expexp), 44	varLNbeta (LNbeta), 107
varexpext (expext), 45	varlogbeta (logbeta), 108
varexpgeo (expgeo), 46	varlogcauchy (logcauchy), 109
varexplog (explog), 47	varloggamma (loggamma), 111
varexplogis (explogis), 49	varlogisexp (logisexp), 112
varexponential (exponential), 50	varlogisrayleigh (logisrayleigh), 113
varexppois (exppois), 51	varlogistic (logistic), 115
varexppower (exppower), 52	varloglaplace (loglaplace), 116
varexpweibull (expweibull), 54	varloglog (loglog), 118
varF (F), 55	varloglogis (loglogis), 119
varFR (FR), 57	varlognorm (lognorm), 120
varfrechet (frechet), 58	varlomax (lomax), 121
varGamma (Gamma), 59	varMlaplace (Mlaplace), 123
vargenbeta (genbeta), 61	varmoexp (moexp), 124
vargenbeta2 (genbeta2), 62	varmoweibull (moweibull), 126
vargeninvbeta (geninvbeta), 63	varMRbeta (MRbeta), 127
vargenlogis (genlogis), 65	varnakagami (nakagami), 128
vargenlogis3 (genlogis3), 66	varnormal (normal), 130
vargenlogis4 (genlogis4), 67	varpareto (pareto), 131
· ··· · · · · · · · · · · · · · · · ·	

```
varparetostable (paretostable), 132
varPCTAlaplace (PCTAlaplace), 133
varperks (perks), 135
varpower1 (power1), 136
varpower2 (power2), 138
varquad (quad), 139
varrgamma (rgamma), 140
varRS (RS), 142
varschabe (schabe), 143
varsecant (secant), 144
varstacygamma \, (stacygamma), \, 145 \,
varT (T), 146
varTL (TL), 148
varTL2 (TL2), 149
vartriangular (triangular), 150
vartsp (tsp), 152
varuniform \, (uniform), \, 154
varWeibull (weibull), 155
varxie (xie), 157
weibull, 155
xie, 157
```