Analyse II: Intégration

Pr. L. EZZAKI

Ecole Supérieure de l'Education et de Formation Université Ibn Zohr - Agadir

30 Mars 2020

Chapitre III : Equations différentielles

Défintion 1

Soit $n \in \mathbb{N}^*$, on appelle équation différentielle d'ordre n et d'inconnue y toute relation de la forme

$$y^{(n)}(x) = f(x; y(x); y'(x); ...; y(n-1)(x))$$
 (1)

avec les conditions initiales

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots y^{(n-1)}(x_0) = y_{n-1}$$
 (2)

où f est une fonction définie sur une partie de \mathbb{R}^{n+1} , $(x_0; y_0; ...; y_{n-1})$ est vecteur fixé dans \mathbb{R}^{n+1} et l'inconnue est une fonction y de classe C^n définie sur un intervalle ouvert de \mathbb{R} contenant x_0 .

Défintion 2

On appelle solution d'une équation différentielle toute fonction y de classe C^n définie sur un intervalle ouvert contenant x_0 et vérifiant l'équation (1) ainsi que les conditions initiales (2).

La solution est dite maximale si l'intervalle ouvert est maximal.

Exemple 1:

y' = y + x avec y(0) = 0 est une équation différentielle du premier ordre. lci, nous avons bien entendu

$$f(x;y(x))=y(x)+x$$

On peut vérifier que toute fonction de la forme $y(x) = Ke^x - x - 1$, avec K constante arbitraire, est une solution de l'équation et que $y(x) = e^x - x - 1$ est une solution qui vérifie la condition initiale y(0) = 0. Il s'agit de la solution maximale qui vérifie la condition initiale donnée car elle est définie sur \mathbb{R} .

Equations à variables séparables

Définition 4

Une équation différentielle du premier ordre

$$y'(x) = f(x; y(x)) \tag{3}$$

est dite à variables séparables si elle peut être ramenée à la forme suivante

$$g(y(x))y'(x) = h(x)$$
(4)

où g et h sont deux fonctions définies sur un intervalle ouvert et continues.

Exemple 2:

L'équation $y'(x) = x^2y(x) + x^2$ avec y(0) = 1 est à variables séparables. En effet, on peut la ramener à la forme

$$\frac{y'(x)}{y(x)+1}=x^2$$

par suite, en passant aux primitives, on a

$$\ln|y+1| = \frac{1}{3}x^3 + K$$

ce qui conduit à

$$y(x) = K_1 e^{\frac{1}{3}x^3} - 1$$

K étant une constante arbitraire non nulle. La condition initiale y(0) = 1entraine $K_1 = 2$.

Exemple 3:

L'équation (x^2+1) $y'(x)=y^2-1$ est à variables séparables. On a $\frac{y'}{y^2-1}=\frac{1}{x^2+1}$ $\frac{y}{2(y-1)}-\frac{y}{2(y+1)}=\frac{1}{x+1}$

En intégrant, les deux membres, et après simplification, on trouve

$$\ln\left|\frac{y-1}{y+1}\right| = 2\operatorname{Arctan}(x) + K$$

et il sera possible d'exprimer y en fonction de x.

Equations différentielles du premier ordre

Equations différentielles linéaires du premier ordre

Définition 5

On appelle équation différentielle linéaire du premier ordre toute équation différentielle de la forme

$$y'(x) = a(x)y(x) + b(x)$$
 (5)

où a et b sont deux fonctions supposées définies et continues sur un intervalle ouvert donné de \mathbb{R} . L'équation y'(x) = a(x)y(x) est dite équation homogène associée ou équation sans second membre. Elle sera souvent notée "ssm".

Théorème 6

Soit y_0 une solution particulière de l'équation avec second membre, alors y est solution de l'équation avec second membre si et seulement si $(y-y_0)$ est solution de l'équation sans second membre.

Preuve:

On a d'une part, y_0 vérifie

$$y_0'(x) = a(x)y_0(x) + b(x)$$

d'autre part, si y est une solution quelconque de l'équation avec second membre, y vérifie

$$y'(x) = a(x)y(x) + b(x)$$

ceci équivaut en soustrayant membre à membre les deux équations à

$$(y - y_0)(x) = a(x)[(y - y_0)(x)]$$

Ce qui prouve le théorème.

Equations différentielles du premier ordre

Remarque : En pratique, pour résoudre l'équation avec second membre, il suffit d'ajouter une solution particulière de l'équation avec second membre à la solution générale de l'équation sans second membre.

Méthode de la variation de la constante

Pour avoir une solution particulière de l'équation avec second membre, la méthode de la variation de la constante est d'une grande utilité. A partir de la solution générale de l'équation ssm

$$y(x) = Ke^{\int a(x)dx}$$

la méthode consiste à considérer K comme une fonction de x et à remplacer dans l'équation avec second membre. On aura

$$y'(x) = K'(x)e^{\int a(x)dx} + a(x)K(x)e^{\int a(x)dx}$$

Méthode de la variation de la constante

Pour avoir une solution particulière de l'équation avec second membre, la méthode de la variation de la constante est d'une grande utilité.

A partir de la solution générale de l'équation ssm

$$y(x) = Ke^{\int a(x)dx}$$

la méthode consiste à considérer K comme une fonction de x et à remplacer dans l'équation avec second membre. On aura

$$y'(x) = K'(x)e^{\int a(x)dx} + a(x)K(x)e^{\int a(x)dx}$$

En reportant dans l'équation avec second membre, on obtient

$$K'(x) = b(x)e^{-\int a(x)dx}$$

Par suite, on a $K(x) = \int b(x)e^{-\int a(x)dx}dx$ et il suffit de trouver une seule fonction K pour déduire une solution particulière de l'équation avec second membre.

Exemple 4:

Considérons l'équation différentielle $xy'(x) = -y(x) + x^2$ avec la condition initiale y(0) = 0. On peut noter que, dans la forme donnée, l'équation différentielle n'impose pas la condition $x \neq 0$. Pour la résoudre, on peut noter que c'est une équation differentielle linéaire du premier ordre dont l'équation ssm associée à variables séparables

$$\frac{y'(x)}{y(x)} = -\frac{1}{x}$$

Exemple 4:

Considérons l'équation différentielle $xy'(x) = -y(x) + x^2$ avec la condition initiale y(0) = 0. On peut noter que, dans la forme donnée, l'équation différentielle n'impose pas la condition $x \neq 0$. Pour la résoudre, on peut noter que c'est une équation differentielle linéaire du premier ordre dont l'équation ssm associée à variables séparables

$$\frac{y'(x)}{y(x)} = -\frac{1}{x}$$

Cette forme suppose $x_0 \neq 0$ et $y_0 \neq 0$, et la résolution donne les solutions $y(x) = K\frac{1}{x}$, K étant une constante qui dépend des conditions initiales. La solution de l'équation complète est

$$y(x) = K\frac{1}{x} + \frac{1}{3}x^2$$

Cette solution est définie sur \mathbb{R}_+^* ou \mathbb{R}_-^* selon la condition initiale.

Equations homogènes du premier ordre

Ce sont les équations du type

$$y'(x) = f(\frac{y(x)}{x}) \tag{6}$$

Pour résoudre ce genre d'équations, le changement de variable $y(x) = x\alpha(x)$, où α est une fonction à déterminer, permet de transformer l'équation initiale en une équation du premier ordre à variables séparables.

Exemple

$$x^{2}y'(x) = y^{2}(x) + xy(x) + x^{2}$$

est une équation homogène. En effet, elle peut être ramenée à la forme

$$y'(x) = \frac{y^2(x)}{x^2} + \frac{y(x)}{x} + 1$$

dans ce cas, f est la fonction vérifiant $f(t) = t^2 + t + 1, \forall x \in \mathbb{R}$. Après simplication, le changement de variable précédent permet d'obtenir

$$\alpha'(x)x + \alpha(x) = \alpha^2(x) + \alpha(x) + 1$$
 c'est à dire $\frac{\alpha'(x)}{\alpha^2(x) + 1} = \frac{1}{x}$

D'où $\alpha(x) = \tan(\ln|x| + K)$, et par suite, $y(x) = x \tan(\ln|x| + K)$

Equations de Bernoulli

Ce sont les équations différentielles du premier ordre de la forme

$$y'(x) + a(x)y(x) + b(x)y^{n}(x) = 0$$
, avec $n \ge 2$

où a et b sont des fonctions définies sur un intervalle ouvert de $\mathbb R$ et supposées continues. La méthode de résolution consiste à diviser par y^n ce qui conduit, modulo un changement de variable, à une équation différentielle linéaire du premier ordre. En effet, on

$$\frac{y'(x)}{y^n(x)} + \frac{a(x)}{y^{n-1}(x)} + b(x) = 0$$

Si on pose $z(x) = \frac{1}{y^{n-1}(x)}$, on a

$$\frac{1}{1-n}z'(x) + a(x)z(x) + b(x) = 0$$

Exemple

 $y'(x) + x^2y(x) + x^5y^2(x) = 0$ avec y(0) = 1 est de Bernoulli. On pose donc $z(x) = \frac{1}{y(x)}$ et on obtient l'équation

$$-z'(x) + x^2 z(x) + x^5 = 0$$

La résolution de l'équation ssm donne $z(x) = Ke^{x^3/3}$, et la variation de la constante donne $K'(x) = x^5e^{-x^3/3}$.

A l'aide d'une intégration par parties, on obtient

$$K(x) = (-x^3 - 3) e^{-x^3/3}$$
, par suite $z(x) = Ke^{x^3/3} - x^3 - 3$, et finalement $y(x) = \frac{1}{Ke^{x^3/3} - x^3 - 3}$, ou la constante K est à déterminer selon la condition initiale. Dans notre cas, on a

$$y(x) = \frac{1}{4e^{x^3/3} - x^3 - 3}$$

Pr. EZZAKI Analyse II: Intégration

Equation de Riccati

Ce sont les équations différentielles du premier ordre de la forme

$$y'(x) = a(x)y^{2}(x) + b(x)y(x) + c(x)$$

où a,b et c sont des fonctions définies sur un intervalle ouvert de $\mathbb R$ et supposées continues. Quand on connait une solution particulière y_0 de cette équation, on fait le changement de variable $z=y-y_0$ L'intérêt est que nous obtenons une équation qui est de Bernoulli en z

$$z'(x) = a(x)z^{2}(x) + (2a(x)y_{0}(x) + b(x))z(x)$$

Equations différentielles linéaires du second ordre à coefficients constants

Ce sont les équations différentielles linéaires de la forme

$$y''(x) + ay'(x) + by(x) = c(x)$$
, avec $n \ge 2$ (7)

où a et b sont deux constantes réelles et c une fonction supposée continue sur un intervalle ouvert de \mathbb{R} . c'est le second membre de l'équation.

Comme pour les équations différentielles linéaires du premier ordre, on a le résultat suivant :

Théorème

Soit y_0 une solution particulière de l'équation avec second membre, alors y est solution de l'équation avec second membre si et seulement si $(y-y_0)$ est solution de l'équation sans second membre.

Comme pour les équations différentielles linéaires du premier ordre, on a le résultat suivant :

Théorème

Soit y_0 une solution particulière de l'équation avec second membre, alors y est solution de l'équation avec second membre si et seulement si $(y-y_0)$ est solution de l'équation sans second membre.

Remarque:

En pratique, pour résoudre l'équation avec second membre, il suffit d'ajouter une solution particulière de l'équation avec second membre à la solution générale de l'équation sans second membre.

Pr. EZZAKI Analyse II: Intégration Pour résoudre l'équation l'équation ssm, on a besoin de définir l'équation caractéristique.

Définition

L'équation caractéristique associée à l'équation différentielle linéaire du second ordre est $r^2 + ar + b = 0$

Le théorème suivant permet de donner un algorithme de résolution.

Théorème

On pose $\Delta = a^2 - 4b$

• Si $\Delta > 0$ et si λ_1 et λ_2 sont les deux racines réelles distinctes de l'équation caractéristique alors la solution générale de l'équation ssm est donnée par $y(x) = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$, K_1 et K_2 étant deux constantes réelles.

Le théorème suivant permet de donner un algorithme de résolution.

Théorème

On pose $\Delta = a^2 - 4b$

- Si $\Delta > 0$ et si λ_1 et λ_2 sont les deux racines réelles distinctes de l'équation caractéristique alors la solution générale de l'équation ssm est donnée par $y(x) = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$, K_1 et K_2 étant deux constantes réelles.
- Si $\Delta=0$ et si λ_0 est la racine double de l'équation caractéristique, alors la solution générale de l'équation ssm est donnée par $y(x)=(K_1x+K_2)\,e^{\lambda_0x},\,K_1$ et K_2 étant deux constantes réelles.

Le théorème suivant permet de donner un algorithme de résolution.

Théorème

On pose $\Delta = a^2 - 4b$

- Si $\Delta > 0$ et si λ_1 et λ_2 sont les deux racines réelles distinctes de l'équation caractéristique alors la solution générale de l'équation ssm est donnée par $y(x) = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$, K_1 et K_2 étant deux constantes réelles.
- Si $\Delta=0$ et si λ_0 est la racine double de l'équation caractéristique, alors la solution générale de l'équation ssm est donnée par $y(x)=(K_1x+K_2)\,e^{\lambda_0x},\,K_1$ et K_2 étant deux constantes réelles.
- Si $\Delta < 0$ et si $\alpha + i\beta, \alpha i\beta$ sont les deux racines complexes conjuguées, alors la solution générale de l'équation ssm est donnée par $y(x) = (K_1 \cos(\beta x) + K_2 \sin(\beta x)) e^{\alpha x} K_1$ et K_2 étant deux constantes réelles.

Preuve:

On suppose b = 0. L'équation devient

$$y''(x) + ay'(x) = 0$$

Dans ce cas, le changement de variable z=y' transforme l'équation initiale en une équation différentielle du premier ordre ssm à coefficients constants. En effet, on obtient

$$z'(x) + az(x) = 0$$

dont la solution générale est de la forme $z(x) = Ke^{-ax}$ où K est une constante réelle dépendant des conditions initiales.

Preuve:

On suppose b = 0. L'équation devient

$$y''(x) + ay'(x) = 0$$

Dans ce cas, le changement de variable z=y' transforme l'équation initiale en une équation différentielle du premier ordre ssm à coefficients constants. En effet, on obtient

$$z'(x) + az(x) = 0$$

dont la solution générale est de la forme $z(x) = Ke^{-ax}$ où K est une constante réelle dépendant des conditions initiales. Ainsi, en revenant à la fonction y, on a

$$y'(x) = Ke^{-ax}$$

Cette dernière équation admet la solution générale suivante

$$y(x) = -Ke^{-ax} + K_0$$

 K_0 étant une nouvelle constante d'intégration. Nous avons bien établi le théorème dans le cas oú b est nul. En effet, dans ce cas, les deux solutions réelles sont $\lambda_1=-a$ et $\lambda_2=0$

On suppose à présent $b \neq 0$ et on introduit la variable $z = y' + \gamma y$ où γ est un réel que nous allons préciser. En reportant dans l'équation (*), on a

$$z'(x) + (a - \gamma)z(x) + (\gamma^2 - a\gamma + b)y(x) = 0$$

Si $a^2-4b>0$, et $si\lambda_1=(1/2)(a+\sqrt{a^2-4b})$ et $\lambda_2=(1/2)(a-\sqrt{a^2-4b})$ sont les deux racines réelles, pour le choix $\gamma=\lambda_1$, on a

$$z'(x) + \lambda_2 z(x) = 0$$

et pour le choix $\gamma = \lambda_2$ on

$$z'(x) + \lambda_1 z(x) = 0$$

On obtient, comme solution générale, respectivement

$$z(x) = Ke^{-\lambda_2 x} \operatorname{et} z(x) = Ke^{-\lambda_1 x}$$

Pr. EZZAKI Analyse II: Intégration

Le premier cas donnera

$$z(x) = y'(x) + \lambda_1 y(x) = Ke^{-\lambda_2 x}$$

et le second

$$z(x) = y'(x) + \lambda_2 y(x) = Ke^{-\lambda_1 x}$$

Nous reconnaissons deux équations différentielles linéaires du premier ordre à coefficients constants et qui admettent le même ensemble de solutions

$$y(x) = K_1 e^{-\lambda_1 x} + K_2 e^{-\lambda_2 x}$$

Il faut remarquer pour finir que $-\lambda_1$ et $-\lambda_2$ sont les deux racines réelles de l'équation caractéristique.

Pr. EZZAKI Analyse II: Intégration

Il reste à étudier le cas $\Delta = a^2 - 4b < 0$. Dans ce cas nous avons deux racines complexes conjuguées pour l'équation

$$\alpha^2 - a\alpha + b = 0$$

et l'idée de la démonstration consiste à chercher les solution à valeurs dans \mathscr{X} puis à déduire toutes les solutions possibles à valeurs réelles. Dans ce cas, nous obtenons de la même manière

$$z(x) = Ke^{-\lambda_2 x}$$
 et $z(x) = Ke^{-\lambda_1 x}$

où , cette fois-ci, λ_1 et λ_2 sont les deux racines complexes conjuguées de l'équation

$$\gamma^2 - a\gamma + b = 0$$

et K une constante complexe. Par suite, on a les solutions correspondantes

$$y(x) = K_1 e^{-\lambda_1 x} + K_2 e^{-\lambda_2 x}$$

où K_1 et K_2 sont deux constantes complexes arbitraires. Si nous voulons déduire toutes les solutions réelles possibles, K_1 et K_2 doivent être complexes conjugées. Par suite, si on pose

$$\lambda_1 = \alpha + i\beta, \lambda_2 = \alpha - i\beta, K_1 = \eta + i\delta, \text{ et } K_2 = \eta - i\delta$$

y sera nécessairement de la forme

$$y(x) = [2\eta\cos(\beta x) - 2\delta\sin(\beta x)]e^{\alpha x}$$

Finalement, si on pose $K_1 = 2\eta$ et $K_2 = -2\delta$, on retrouve le résultat annoncé.

Proposition

L'ensemble des solutions d'une équation différentielle linéaire du second ordre à coefficients constants est un espace vectoriel sur \mathbb{R} de dimension 2 dont une base est $\{y_1, y_2\}$ avec :

- $y_1(x) = e^{\lambda_1 x}$, $y_2(x) = e^{\lambda_2 x}$ si on a deux racines réelles distinctes λ_1 et λ_2 ;
- $y_1(x)=e^{\lambda_0 x}, y_2(x)=xe^{\lambda_0 x}$ si on a une racine double λ_0 ;
- $y_1(x) = \cos(\beta x)e^{\alpha x}$, $y_2(x) = \sin(\beta x)e^{\alpha x}$ si on a deux racines complexes conjuguées $\alpha + i\beta$ et $\alpha i\beta$.

Exemples

1. Pour trouver les solutions de y'' + y' - 2y = 0, on commence par écrire l'équation caractéristique

$$r^2 + r - 2 = 0$$

qui admet deux solutions réelles distinctes $\lambda_1=1$ et $\lambda_2=-2$. La solution générale de cette équation est donc de la forme

$$y(x) = K_1 e^x + K_2 e^{-2x}$$

Exemples

1. Pour trouver les solutions de y'' + y' - 2y = 0, on commence par écrire l'équation caractéristique

$$r^2 + r - 2 = 0$$

qui admet deux solutions réelles distinctes $\lambda_1 = 1$ et $\lambda_2 = -2$. La solution générale de cette équation est donc de la forme

$$y(x) = K_1 e^x + K_2 e^{-2x}$$

2. Afin de résoudre l'équation y'' - 4y' + 4y = 0, on écrit d'abord l'équation caractéristique

$$r^2 - 4r + 4 = 0$$

Analyse II: Intégration

qui a une solution réelle double $\lambda_0=2$, alors la solution générale de cette équation est

$$y(x) = (K_1x + K_2)e^{2x}$$

qui a une solution réelle double $\lambda_0=2$, alors la solution générale de cette équation est

$$y(x) = (K_1x + K_2)e^{2x}$$

3. Pour trouver les solutions de y''-2y'+2y=0, on commence par écrire l'équation caractéristique $r^2-2r+2=0$ qui admet deux solutions complexes conjuguées $\lambda_1=1+i$ et $\lambda_2=1-i$.

La solution générale de cette équation est donc de la forme

$$y(x) = (K_1 \cos x + K_2 \sin x) e^x$$

qui a une solution réelle double $\lambda_0=2$, alors la solution générale de cette équation est

$$y(x) = (K_1x + K_2)e^{2x}$$

3. Pour trouver les solutions de y''-2y'+2y=0, on commence par écrire l'équation caractéristique $r^2-2r+2=0$ qui admet deux solutions complexes conjuguées $\lambda_1=1+i$ et $\lambda_2=1-i$. La solution générale de cette équation est donc de la forme

$$y(x) = (K_1 \cos x + K_2 \sin x) e^x$$

Pour compléter l'étude, il reste à ajouter une solution particulière de l'équation avec second membre. Pour cela, on va adapter la méthode de la variation de la constante aux équations linéaires du second ordre.

Méthode de recherche d'une solution particulière de l'équation avec second membre

Dans chacun des trois cas qui peuvent se présenter, la solution générale est de la forme

$$y(x) = K_1 y_1(x) + K_2 y_2(x)$$

La méthode consiste à considérer K_1 et K_2 comme des fonctions de x. Par suite, on pose

$$y(x) = K_1(x)y_1(x) + K_2(x)y_2(x)$$

De plus, comme il suffit de trouver une solution particulière, nous allons imposer une restriction. Nous allons chercher une solution particulière de la forme

$$y(x) = K_1 y_1(x) + K_2 y_2(x)$$

avec la condition

$$K_1'(x)y_1(x) + K_2'(x)y_2(x) = 0$$

Maintenant, si on cherche y'(x), y''(x) puis on reporte dans l'équation (7) on obtient l'équation

$$K'_1(x)y'_1(x) + K'_2(x)y'_2(x) = c(x)$$

où c(x) est le second membre de l'équation différentielle. Nous avons donc à résoudre le système suivant

$$\begin{cases} K'_1(x)y_1(x) + K'_2(x)y_2(x) = 0 \\ K'_1(x)y'_1(x) + K'_2(x)y'_2(x) = c(x) \end{cases}$$

Si on note

$$W(y_1, y_2)(x) = \det \begin{pmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{pmatrix}$$

alors on déduit

$$K'_1(x) = \frac{-y_2(x)c(x)}{W(y_1, y_2)((x))}$$
 et $K'_2(x) = \frac{y_1(x)c(x)}{W(y_1, y_2)(x)}$

On cherchera alors à trouver une primitive K_1 et une primitive K_2 .

Si on note

$$W(y_1, y_2)(x) = \det \begin{pmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{pmatrix}$$

alors on déduit

$$K'_1(x) = \frac{-y_2(x)c(x)}{W(y_1, y_2)((x))}$$
 et $K'_2(x) = \frac{y_1(x)c(x)}{W(y_1, y_2)(x)}$

On cherchera alors à trouver une primitive K_1 et une primitive K_2 . (La fonction $W(y_1, y_2)$ s'appelle le wronskien de y_1 et de y_2 .)

Si on note

$$W(y_1, y_2)(x) = \det \begin{pmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{pmatrix}$$

alors on déduit

$$K'_1(x) = \frac{-y_2(x)c(x)}{W(y_1, y_2)((x))}$$
 et $K'_2(x) = \frac{y_1(x)c(x)}{W(y_1, y_2)(x)}$

On cherchera alors à trouver une primitive K_1 et une primitive K_2 . (La fonction $W(y_1, y_2)$ s'appelle le wronskien de y_1 et de y_2 .)

Remarque:

On peut noter que dans chacun des trois cas possibles, le wronskien des fonctions correspondantes ne s'annule en aucun point.

Exemple

On se propose de résoudre l'équation différentielle suivante

$$y'' + y = \frac{1}{\sin(x)}$$

Nous savons d'après l'exemple précédent que la solution générale de l'équation ssm est

$$y(x) = K_1 \cos(x) + K_2 \sin(x)$$

Dans ce cas, on a

$$W\left(y_{1},y_{2}\right)\left(x\right)=1$$

D'après la méthode de la variation de la constante, et aprés calcul, on doit résoudre

$$K'_1(x) = -1$$
, et $K'_2(x) = \frac{\cos(x)}{\sin(x)}$

Exemple (suite)

On obtient alors

$$K_1(x) = -x$$
, et $K_2(x) = \ln|\sin(x)|$

Une solution particulière de l'équation avec second membre est

$$y_0(x) = -x\cos(x) + \sin(x)\ln|\sin(x)|$$

On en déduit donc la solution générale de l'équation avec second membre

$$y(x) = K_1 \cos(x) + K_2 \sin(x) + y_0(x)$$