

planetmath.org

Math for the people, by the people.

dual category

Canonical name DualCategory

Date of creation 2013-03-22 12:28:44 Last modified on 2013-03-22 12:28:44

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Definition Classification msc 18A05

Synonym opposite category

Synonym opposite

Synonym opposite morphism

Related topic OppositeRing
Defines opposite functor
Defines opposite arrow

Let \mathcal{C} be a category. The dual category \mathcal{C}^* of \mathcal{C} is the category which has the same objects as \mathcal{C} , but in which all morphisms are "reversed". That is to say if A, B are objects of \mathcal{C} and we have a morphism $f: A \to B$, then we formally define an arrow $f^*: B \to A$ in \mathcal{C}^* . f^* is called the *opposite arrow*, or *opposite morphism* of f. The composition $f^* \circ g^*$ is then defined to be $(g \circ f)^*$. The dual category is sometimes called the *opposite category* and is denoted \mathcal{C}^{op} .

The category of Hopf algebras over a field k is (equivalent to) the opposite category of affine group schemes over spec k.

Categorical properties of \mathcal{C} lead directly to categorical properties of \mathcal{C}^{op} ; constructions on \mathcal{C} become constructions on \mathcal{C}^{op} . Usually such a construction is indicated with the prefix "co-". For example, a coproduct is a product on the opposite category; this can be seen by looking at the commutative diagram that completely specifies a coproduct, and noting that it is the same as the diagram specifying a product with the arrows reversed. More generally, an inverse limit is a direct limit on the opposite category; for this reason, it is sometimes called a colimit. A cokernel is a kernel in the opposite category. Many other similar concepts exist.

If F is a covariant functor from \mathcal{C} to some other category \mathcal{D} , then we can define, in a natural way, a contravariant functor F^{op} from C^{op} to D, called the *opposite functor* of F. In fact, this is often how contravariant functors are defined, and it is why most categorical theorems and constructions need not explicitly consider both cases.