Méthode de Newton pour Navier-Stokes (proposé par ChatGPT)

Objectif : résoudre le système stationnaire de Navier-Stokes avec flottabilité et gravité, en formulant les équations sous forme faible, puis en les discrétisant et en résolvant par la méthode de Newton.

1. Formulation faible continue

On considère les formes faibles suivantes :

— Incompressibilité :

$$a_{\rm inc}(\mathbf{u}, q) = \int_{\Omega} (\nabla \cdot \mathbf{u}) \, q \, dx$$

— Quantité de mouvement :

$$a_{\text{mom}}(\mathbf{u}, p, T; \mathbf{v}) = \int_{\Omega} \left[(\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} + \mu \nabla \mathbf{u} : \nabla \mathbf{v} - p \nabla \cdot \mathbf{v} - g(\beta T + 1) \mathbf{e}_y \cdot \mathbf{v} \right] dx$$

— Énergie thermique :

$$a_{\text{ener}}(\mathbf{u}, T; s) = \int_{\Omega} \left[(\mathbf{u} \cdot \nabla T) \, s + k_f \nabla T \cdot \nabla s \right] dx$$

2. Espaces discrets

On choisit des espaces d'éléments finis compatibles :

— Vitesse : $V_h \subset [H^1]^2$, typiquement \mathbb{P}_2

— Pression : $Q_h \subset L^2$, typiquement \mathbb{P}_1

— Température : $W_h \subset H^1$, souvent \mathbb{P}_1

3. Bases discrètes

On construit des bases finies :

$$-\{\phi_i^{(u_x)}\}_{i=1}^{N_u}, \{\phi_i^{(u_y)}\}_{i=1}^{N_u} \text{ pour } \mathbf{u}$$

$$- \{\psi_j\}_{j=1}^{N_p} \text{ pour } p$$

—
$$\{\eta_k\}_{k=1}^{N_T}$$
 pour T

4. Représentation des inconnues

Les champs sont approchés par :

$$\mathbf{u}_h = \sum_{i=1}^{N_u} u_i^{(x)} \phi_i^{(u_x)} + u_i^{(y)} \phi_i^{(u_y)}, \quad p_h = \sum_{j=1}^{N_p} p_j \psi_j, \quad T_h = \sum_{k=1}^{N_T} T_k \eta_k$$

Le vecteur global d'inconnues est :

$$u = \begin{bmatrix} \mathbf{u} \\ p \\ T \end{bmatrix} \in \mathbb{R}^{2N_u + N_p + N_T}$$

5. Linéarisation

Les formes a_{mom} et a_{ener} sont non linéaires. On linéarise autour de $u^{(k)}$, en construisant :

- Le résidu $F(u^{(k)})$
- La jacobienne $F'(u^{(k)})$

6. Assemblage de F(u)

On construit $F(u) \in \mathbb{R}^{2N_u + N_p + N_T}$ en testant les formes discrètes avec les fonctions de base :

$$F(u) = \begin{bmatrix} F_{\text{mom}}(\mathbf{u}, p, T) \in \mathbb{R}^{2N_u} \\ F_{\text{inc}}(\mathbf{u}) \in \mathbb{R}^{N_p} \\ F_{\text{ener}}(\mathbf{u}, T) \in \mathbb{R}^{N_T} \end{bmatrix}$$

7. Méthode de Newton

À chaque itération k, on effectue :

Résolution : $F'(u^{(k)})\delta^{(k+1)}=-F(u^{(k)})$ Mise à jour : $u^{(k+1)}=u^{(k)}+\delta^{(k+1)}$

 ${f Remarque}$: Ce cadre est valable pour de nombreuses équations couplées en mécanique des fluides ou thermique, et l'opérateur F représente simplement le résidu discret des équations testées par les bases.