

Robótica Móvel

Mestrado em Robótica e Sistemas Inteligentes

Ano letivo 2023/2024

Nuno Lau, Vitor Santos

EKF for Online SLAM

 Using Extended Kalman Filter for Online SLAM

$$p(x_t, m \mid z_{1:t}, u_{1:t})$$

Extended Kalman Filter

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

- 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- 3: $\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$
- 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
- 5: $\mu_t = \bar{\mu}_t + K_t(z_t h(\bar{\mu}_t))$
- 6: $\Sigma_t = (I K_t H_t) \bar{\Sigma}_t$
- 7: return μ_t, Σ_t

EKF SLAM

- Application of EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

$$x_t = (\underbrace{x, y, \theta}_{\text{robot's pose}}, \underbrace{m_{1,x}, m_{1,y}}_{\text{landmark 1}}, \dots, \underbrace{m_{n,x}, m_{n,y}}_{\text{landmark n}})^T$$

EKF SLAM: State Representation

- Map with n landmarks:
 - Dimension of state vector = (3+2n)
- Belief is represented by

EKF SLAM: State Representation

More compactly:

EKF SLAM: Filter Cycle

- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

EKF SLAM: State Prediction

EKF SLAM: Measurement Prediction

EKF SLAM: Obtained Measurement

EKF SLAM: Data Association and Difference Between h(x) and z

EKF SLAM: Update Step

EKF SLAM: Example

Setup

- Robot moves in the 2D plane
- Velocity-based motion model
- Robot observes point landmarks
- Range-bearing sensor
- Known data association
- Known number of landmarks

Initialization

- Robot starts in its own reference frame
- All landmarks unknown
- State with 2N+3 dimensions

$$\Sigma_0 = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \infty & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \infty \end{pmatrix}$$

Algorithm

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

- $2: \quad \bar{\mu}_t = g(u_t, \mu_{t-1})$
- 3: $\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$
- 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
- 5: $\mu_t = \bar{\mu}_t + K_t(z_t h(\bar{\mu}_t))$
- 6: $\Sigma_t = (I K_t H_t) \bar{\Sigma}_t$
- 7: return μ_t, Σ_t

Prediction Step (Motion)

- Goal:
 - Update state space based on the robot's motion
- Robot motion in 2D plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

$$g_{x,y,\theta}(u_t,(x,y,\theta)^T)$$

How to map that to the 2N+3 dim space?

Update the State Vector

From the motion in 2D plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

to the 2N+3 dimensional space

$$\begin{pmatrix} x' \\ y' \\ \theta' \\ \vdots \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \\ \vdots \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 \dots 0 \\ 0 & 1 & 0 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \end{pmatrix}^{T} \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \theta + \frac{v_{t}}{\omega_{t}} \sin(\theta + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \theta - \frac{v_{t}}{\omega_{t}} \cos(\theta + \omega_{t} \Delta t) \\ \omega_{t} \Delta t \end{pmatrix}$$

$$g(u_{t}, x_{t})$$

Algorithm

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2:
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$
 DONE

3:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$$

4:
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

7: return μ_t, Σ_t

Update Covariance

 The function g() only affects the robot's motion and not the landmarks

Jacobian of the motion (3x3)
$$G_t = \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix}$$
 Identity (2N x 2N)

Jacobian of the Motion

$$G_t^x = \frac{\partial}{\partial(x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right]$$

$$= I + \frac{\partial}{\partial(x, y, \theta)^T} \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

$$= I + \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 1 & -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 1 \end{pmatrix}$$

This leads to the Update

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2:
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$
 Apply & DONE
3: $\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$

$$\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$$

$$= \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{xx} & \Sigma_{xm} \\ \Sigma_{mx} & \Sigma_{mm} \end{pmatrix} \begin{pmatrix} (G_t^x)^T & 0 \\ 0 & I \end{pmatrix} + R_t$$

$$= \begin{pmatrix} G_t^x \Sigma_{xx} (G_t^x)^T & G_t^x \Sigma_{xm} \\ (G_t^x \Sigma_{xm})^T & \Sigma_{mm} \end{pmatrix} + R_t$$

EKF Prediction Step

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, c_t, R_t$):

2:
$$F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix}$$

3:
$$\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

4:
$$G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R_t}$$

Algorithm

- 1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ Done
- 3: $\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$ DONE
- 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
- 5: $\mu_t = \bar{\mu}_t + K_t(z_t h(\bar{\mu}_t))$
- 6: $\Sigma_t = (I K_t H_t) \bar{\Sigma}_t$
- 7: return μ_t, Σ_t

EKF SLAM: Correction Step

- Known data association
- $c_t^i = j$: i-th measurement at time t observes the landmark with index j
- Initialize landmark if unobserved
- Compute the expected observation
- Compute the Jacobian of h
- Proceed with computing the Kalman gain

Range-Bearing Observation

- Range-Bearing observation $z_t^i = (r_t^i, \phi_t^i)^T$
- If landmark has not been observed

$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$$

observed estimated location of robot's landmark j location

relative measurement

Expected Observation

 Compute expected observation according to the current estimate

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

$$q = \delta^T \delta$$

$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \text{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

$$= h(\bar{\mu}_t)$$

Based on

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

$$q = \delta^T \delta$$

$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

Compute the Jacobian

$$\det^{\mathrm{low}} H_t^i = \frac{\partial h(ar{\mu_t})}{\partial ar{\mu_t}}$$
 $\det^{\mathrm{low}} = \frac{\partial h(ar{\mu_t})}{\partial ar{\mu_t}}$
 $\det^{\mathrm{low}} = \frac{\partial h(ar{\mu_t})}{\partial ar{\mu_t}}$

Based on

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

$$q = \delta^T \delta$$

$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

We obtain

$$\frac{\partial \sqrt{q}}{\partial x} = \frac{1}{2} \frac{1}{\sqrt{q}} 2 \delta_x (-1)$$
$$= \frac{1}{q} (-\sqrt{q} \delta_x)$$

Based on

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

$$q = \delta^T \delta$$

$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

Compute the Jacobian

$$low H_t^i = \frac{\partial h(\bar{\mu}_t)}{\partial \bar{\mu}_t} \\
= \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Use the computed Jacobian

$$low H_t^i = \frac{\partial h(\bar{\mu}_t)}{\partial \bar{\mu}_t} \\
= \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Map it to the high dimensional space

$$H_t^i = \lim_{t \to \infty} H_t^i F_{x,j}$$

$$F_{x,j} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 & 0 & 0 & \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 & 0 & 0 & \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 0 & 1 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 0 & 1 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix}$$

Algorithm

- 1: Extended_Kalman_filter $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$:
- 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ DONE
- 3: $\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$ Done
- 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ Apply & DONE
- 5: $\mu_t = \bar{\mu}_t + K_t(z_t h(\bar{\mu}_t))$ Apply & DONE
- 6: $\Sigma_t = (I K_t H_t) \bar{\Sigma}_t$ Apply & DONE
- 7: \longrightarrow return μ_t, Σ_t

EKF Correction (1/2)

EKF_SLAM_Correction

6:
$$Q_{t} = \begin{pmatrix} \sigma_{r}^{2} & 0 \\ 0 & \sigma_{\phi}^{2} \end{pmatrix}$$
7: for all observed features $z_{t}^{i} = (r_{t}^{i}, \phi_{t}^{i})^{T}$ do
8: $j = c_{t}^{i}$
9: if landmark j never seen before
10:
$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_{t}^{i} \cos(\phi_{t}^{i} + \bar{\mu}_{t,\theta}) \\ r_{t}^{i} \sin(\phi_{t}^{i} + \bar{\mu}_{t,\theta}) \end{pmatrix}$$
11: endif
12:
$$\delta = \begin{pmatrix} \delta_{x} \\ \delta_{y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$
13: $q = \delta^{T} \delta$
14:
$$\hat{z}_{t}^{i} = \begin{pmatrix} \sqrt{q} \\ \tan 2(\delta_{y}, \delta_{x}) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

EKF Correction (2/2)

15:
$$F_{x,j} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 &$$

Implementation Notes

- Measurement update in a single step requires only one full belief update
- Always normalize the angular components
- You may not need to create the F matrices explicitly

Loop Closing

- Loop closing means recognizing an already mapped area
- Data association under
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

Loop Closing

Before Loop Closing

Courtesy of K. Arras

Loop Closing

After Loop Closing

Courtesy of K. Arras