Кривая Филлипса и индексы цен

Зубарев Андрей Витальевич 1

¹PAHXиГС

январь 2018

Мотивация

- Кривая Фиилипса описывает инфляционные процессы в экономике.
- Она является частью многих больших моделей (DSGE), использующихся для прогнозирования.
- Также уравнение кривой Филлпса используется центральными банками для понимания инфляционных процессов и проведения денежно-кредитной политики.
- Ошибочные представления об инфляционных процессах вообще и структуре ожиданий экономических агентов в частности могут привести к ошибкам при принятии решений в контексте денежно-кредитной политики. Отсюда возможное снижение доверия к денежным властям и рост неопределённости.

Кривая Филлипса: начало

Rate of change of money wage rates (percent per year)

Кривая Филлипса: начало

• Предыдущий график представляет соответствует модели, оцененной Филлипсом на данных по UK за период 1861-1913. Филлипс обнаружил негативную корреляция между изменением номинальных зарплат и безработицей.

$$\log(\Delta w_t + 0.9) = 0.984 - 1.394 \log U_t$$

- Логика нелинейного характера зависимости: многие работники не согласны на урезание зарплаты при высокой безработице.
- Филлипс использовал именно номинальные зарплаты, так как в тот момент бытовало мнение, что цены должны оставаться более или менее постоянными, несмотря на некоторые колебания импортных цен.

Кривая Филлипса: второй этап

- Небезызвестные товарищи Самуэльсон и Солоу отметили, что использование обнаруженной зависимости в рамках экономической политики если вообще возможно, то только в краткосрочном периоде.
 Фридман также утверждал, кто долгосрочной связи быть не может.
- Фелпс в статье 1967 года написал, что РС сдвигается вверх на один пункт в ответ на каждое 1%-е увеличение ожидаемого уровня цен. Это также отвергает возможность долгосрочный соотношений.
- Фелпс ввел в модель ожидания (адаптивные) и связал безработицу с изменением инфляции:

$$\pi_t = \pi_t^e - \alpha U_t = \pi_{t-1} - \alpha U_t$$
$$\Delta \pi_t = -\alpha U_t$$

• Далее была постулирована концепция "естественного" (не разгоняющего инфляцию) уровня безработицы:

$$\Delta \pi_t = -\alpha (U_t - U_t^N)$$

Рациональные ожидания

- Lucas (1973) и Sargent and Wallece (1975): ДКП может повлиять на выпуск в краткосрочном периоде лишь посредством неожиданных изменений уровня цен.
- При рациональных ожиданиях (в отличие от адаптивных) ошибки прогноза (роста денежной массы) не могут быть устойчивыми (иметь сильную положительную атвокорреляцию), значит влияние ДКП на выпуск и безработицу ограничено.
- Gordon (1982) говорил об инерции инфляции, проистекающей из длительности контрактов (по зарплатам и ценам).
- Taylor (1980) с помощью модели со "staggered contracts" (контракты пересматриваются постепенно и частично зависят от заключённых ранее контрактов) показал, что ДКП может иметь длительный куполообразный эффект на выпуск.

Номинальные жесткости

 Calvo(1983) и Rotemberg (1982) предложили концепцию жестких цен и заработных плат. Данные модели с частичными микроэкономическими обоснованиями позволяют явным образом вывести NKPC:

$$\pi_t = \beta E_t \pi_{t+1} + \gamma x_t$$

где x_t есть отклонение цены фирмы от оптимальной цены (из-за наличия издержек) в модели Rotemberg (1982) либо излишний спрос в модели Calvo(1983).

 Из модели с ценообразованием по Calvo и монополистической конкуренцией среди фирм можно также вывести вариант NKPC с предельными издержками (в отклонении от равновесного уровня):

$$\pi_t = \beta E_t \pi_{t+1} + \gamma m c_t$$

• Таким образом, инфляция в рамках данных моделей является исключительно вперед-смотрящей переменной, то есть отсутствует наблюдаемая инерция инфляции и не подразумевается никакой задержки в реакции инфляции на шоки ДКП.

 В начале своей работы Гали и Гертлер выводят NKPC из модели с ценообразованием по Кальво:

$$\pi_t = \lambda m c_t + \beta E_t \{ \pi_{t+1} \}$$

• $Y_t = A_t K_t^{\alpha_k} N_t^{\alpha_n}$, $MC_t = (W_t/P_t)(\partial Y_t/\partial N_t)$, $S_t = W_t N_t/P_t Y_t$, $\Rightarrow MC_t = \frac{S_t}{\alpha_N}$ или в процентном отклонении $mc_t = s_t$. Следовательно, получаем эквивалентное уравнение с s_t (labour income share/unit labour cost):

$$\pi_t = \lambda s_t + \beta E_t \{ \pi_{t+1} \}$$

где $\lambda = (1-\theta)(1-\beta\theta)/\theta$, θ - параметр модели Кальво.

• Оценка происходит методом GMM; моментное условие:

$$E_t\{(\pi_t - \lambda s_t - \beta \pi_{t+1})z_t\} = 0$$

GMM

• Уравнение кривой Филлипса:

$$\pi_t = \lambda s_t + \gamma_f E(\pi_{t+1}|F_t) + \gamma_b \pi_{t-1} + \epsilon_t$$

• Перепишем его в виде:

$$\pi_t = \lambda s_t + \gamma_f \pi_{t+1} + \gamma_b \pi_{t-1} + e_t$$
$$e_t = \epsilon_t - \gamma_f \eta_{t+1}$$

где $\eta_{t+1} = \pi_{t+1} - \gamma_f \mathrm{E}(\pi_{t+1} | \mathrm{F}_t)$ есть ошибка прогноза.

• Если предположить, что $s_t = s_{t-1} + \nu_t$, то решая уравнение для инфляции вперёд, получим:

$$\pi_t = \alpha s_t + \delta_b \pi_{t-1} + u_t$$

Зубарев (РАНХиГС)

GMM

 В таком случае, можно выразить ошибку прогноза инфляции следующим образом :

$$\eta_{t+1} = \alpha \nu_{t+1} + \frac{1}{1\gamma_f \delta} \epsilon_t$$

• Следовательно получаем:

$$e_t = \epsilon_t - \gamma_f (\alpha \nu_{t+1} + \frac{1}{1\gamma_f \delta} \epsilon_t)$$

• Тогда справедливо моментное условие:

$$E[(\pi_t - \lambda s_t - \gamma_f \pi_{t+1} - \gamma_b \pi_{t-1}) Z_t] = 0$$

где
$$Z_t \in \mathrm{F}_t ackslash \{\pi_t\}$$

Зубарев (РАНХиГС)

- Квартальные данные 1960:1-1997:4 по США. Инструменты: 4 лага инфляции, labor income share, разрыва выпуска, спрэд между краткосрочными и долгосрочными процентными ставками, темп роста зарплат и инфляции на сырьевые товары. Инфляция процентное изменение дефлятора ВВП.
- Оценка уравнения в приведённой (оценивается λ) форме:

$$\pi_t = \underset{(0.012)}{0.023} s_t + \underset{(0.045)}{0.942} \mathbf{E}_t \{ \pi_{t+1} \}$$

 Попытка заменить предельные издержки на разрыв выпуска приводит к противоречивым результатам:

$$\pi_t = -0.016x_t + 0.988 E_t \{\pi_{t+1}\}\$$

 Оценка уравнения в структурной форме методом GMM со следующими моментными условиями:

$$E_t\{(\theta\pi_t - (1-\theta)(1-\beta\theta)s_t - \theta\beta\pi_{t+1})\mathbf{z}_t\} = 0$$

$$E_t\{(\pi_t - \theta^{-1}(1-\theta)(1-\beta\theta)s_t - \beta\pi_{t+1})\mathbf{z}_t\} = 0$$

• Оценки также производятся с ограничением на дисконт-фактор:

$$\beta = 1$$

• К примеру, оценка $\theta = 0.83$ говорит о том, что цены фиксированы примерно 5-6 кварталов.

	heta	β	λ
GDP deflator			
(1)	0.829 (0.013)	0.926 (0.024)	0.047 (0.008)
(2)	0.884 (0.020)	0.941 (0.018)	0.021 (0.007)
Restricted β		, ,	
(1)	0.829 (0.016)	1.000	0.035 (0.007)
(2)	(2) 0.915 (0.035)		0.007 (0.006)
NFB deflator			
(1)	0.836 (0.015)	0.957 (0.018)	0.038 (0.008)
(2)	0.884 (0.023)	0.967 (0.016)	0.018 (0.008)

• Гали и Гертлер рассматривают модель с ценами по Calvo (1983): с вероятность $1-\theta$ агенты меняют свои цены в каждом периоде и лишь $1-\omega$ меняют их оптимально. Авторы вывели гибридную NKPC из теоретической модели:

$$\pi_t = \lambda m c_t + \gamma_f E_t \{ \pi_{t+1} \} + \gamma_b \pi_{t-1} + \varepsilon_t$$
 где $\lambda = (1 - \omega)(1 - \theta)(1 - \beta\theta)\phi^{-1}$, $\gamma_f = \beta\theta\phi^{-1}$, $\gamma_b = \omega\phi^{-1}$, $\phi = \theta + \omega[1 - \theta(1 - \beta)]$

- Предполагаются рациональные ожидания и ε_t i.i.d. Используется GMM с аналогичными моментными условиями.
- Результаты: 1) коэфф. λ значимо положителен; 2) γ_b значимо положителен \Rightarrow полностью вперед смотрящая модель отвергается; 3) Вперед смотрящая часть является доминантной.

14 / 29

	ω	θ	β	γь	$\gamma_{\rm f}$	λ
GDP deflator						
(1)	0.265 (0.031)	0.808 (0.015)	0.885 (0.030)	0.252 (0.023)	0.682 (0.020)	0.037 (0.007)
(2)	0.486 (0.040)	0.834 (0.020)	0.909 (0.031)	0.378 (0.020)	0.591 (0.016)	0.015 (0.004)
Restricted β						
(1)	0.244 (0.030)	0.803 (0.017)	1.000	0.233 (0.023)	0.766 (0.015)	0.027 (0.005)
(2)	0.522 (0.043)	0.838 (0.027)	1.000	0.383 (0.020)	0.616 (0.016)	0.009 (0.003)
NFB deflator						
(1)	0.077 (0.030)	0.830 (0.016)	0.949 (0.019)	0.085 (0.031)	0.871 (0.018)	0.036 (0.008)
(2)	0.239 (0.043)	0.866 (0.025)	0.957 (0.021)	0.218 (0.031)	0.755 (0.016)	0.015 (0.006)

Gali et al. (2005)

- Gali et al. (2005) переоценивают РС из своих предыдущих работ и аргументированно отвергают всю критику.
- Оценивается уравнение $E_{t-1}\{(\pi_t \lambda mc_t \gamma_f \pi_{t+1} \gamma_b \pi_{t-1})\mathbf{z}_{t-1}\}$, где \mathbf{z}_{t-1} суть все переменные в момент t-1 и ранее.

Критика

 Rudd and Whelan (2005) написали, что при оценке приведённой формы получаются иные результаты:

$$\pi_t = \lambda \sum_{k=0}^{\infty} E_t \beta^k \{ mc_{t+k} \} + \phi \pi_{t-1}$$

• Товарищи Rudd и Whelan заблуждались: такая форма допускает лишь чисто вперёд смотрящую PC, в то время как оригинальная работа предполагала гибридную форму PC. Решая вперёд гибридную PC, Gali получил некоторую функциональную зависимость коэффициентов приведенной формы от параметров γ_f и γ_b :

$$\pi_t = \frac{\lambda}{\delta_2 \gamma_f} \sum_{k=0}^{\infty} E_t \left(\frac{1}{\delta_2}\right)^k \left\{ m c_{t+k} \right\} + \delta_1 \pi_{t-1}$$

где δ_1, δ_2 есть функции от γ_f и γ_b .

4□ > 4□ > 4 = > 4 = > = 90

Результаты

Parameters	Marginal	cost		Detrended	Detrended output		
	γь	$\gamma_{\mathbf{f}}$	λ	γь	$\gamma_{\mathbf{f}}$	λ	
Baseline GMM	0.349 (0.041)	0.635 (0.042)	0.013	0.325	0.684 (0.043)	-0.005 (0.003)	
$\gamma_b + \gamma_f = 1$		0.653	0.009 (0.0051)		0.672 (0.040)	-0.004 $_{(0.002)}$	
Closed form GMM	0.374	0.618	0.013	0.882	-0.000	0.016	
$\gamma_b + \gamma_f = 1$		0.627	0.010		0.460	0.002	
NLIV	0.260	0.738	0.013	0.216	0.811 (0.116)	-0.010 (0.005)	
$\gamma_b + \gamma_f = 1$		0.740 (0.090)	0.013 (0.007)		0.776 (0.114)	-0.009 (0.005)	

Note: in all cases the dependent variable is quarterly inflation measured using GDP deflator. Sample period: 1960:I–1997:IV. Standard errors are shown in brackets. Instrument set includes two lags of detrended output, real marginal costs and wage inflation and four lags of price inflation. The *F*-test of the joint significance of the instruments in the first stage regression is 63.31 with *p*-value 0.000.

Открытая экономика Batini et al. 2005

- Как переход к открытой экономике влияет на PC? 1) RMC (реальные предельные издержки) зависят от цен импортных промежуточных товаров. 2) От уровня внешней конкуренции на рынке торгуемых товаров зависит mark up.
- RMC для производства добавленной стоимости доли расходов на труд $s_{L,t}$ и отношения цен импортных промежуточных товаров $p_{m,t}$ к price of value added p_t (дефлятор ВВП).

$$rmc_t = -\ln \alpha + s_{L,t} + \mu_3(p_{m,t} - p_t)$$

Открытая экономика Gali and Monacelli 2005

• Разница между вперёд смотрящей NKPC и GMNKPC для открытой экономики: инфляция внутренних товаров отличается от инфляции по ИПЦ на изменения в условиях торговли:

$$\pi_{H,t} = \lambda m c_t + \beta E_t \{ \pi_{H,t+1} \}$$

$$\pi_t = \pi_{H,t} + \alpha \Delta s_t$$

• Тогда GMNKPC выглядит как

$$\pi_t = \lambda mc_t + \beta E_t \{ \pi_{t+1} \} + \alpha [\Delta s_t - E_t \{ \Delta s_{t+1} \}]$$

ullet При абсолютном переносе обменного курса $q_t \sim s_t$, тогда

$$\pi_t = \lambda mc_t + \beta E_t \{ \pi_{t+1} \} + \alpha' [\Delta q_t - E_t \{ \Delta q_{t+1} \}]$$

- Стандартными подходом при оценке кривой Филлипса является использование инфляции, построенной при помощи дефлятора ВВП либо ИПЦ. Однако эти переменные характеризуют несколько больше, чем внутреннюю инфляцию в экономике, так как включают в себя динамику цен экспортных либо импортных товаров.
- Важная идея данной работы состоит в использовании дефлятора ВВП за вычетом экспорта. Теоретические модели, лежащие в основе кривой Филлипса, предполагают наличие товарных рынков с монополистической конкуренцией и жесткими ценам. В данных моделях динамическое уравнение кривой Филлипса описывает постепенную подстройку цен к изменению предельных издержек. Выполнение данных предпосылок более релевантно для цен отечественных товаров, идущих на внутреннее потребление.

21 / 29

Модель

• Основная спецификация модели.

$$\pi_t = \lambda gap_t + \beta_f E \pi_{t+1} + \beta_b \pi_{t-1} + \varepsilon_t$$

- Используются данные за период 2000q1–2014q3. Ограничение на период вызвано переходом к новому режиму ДКП, что могло привести к изменению структуры инфляционных процессов.
- Основной метод оценивания CUE (непрерывно обновляющийся GMM). Важным преимуществом данного метода по сравнению с двухшаговым GMM является меньшее смещение на малых выборках, а также большая валидность статистики J-теста Хансена на сверхидентификацию.
- Следуя логике работы [Cogley, Sbordone, 2008] о возможном изменении равновесного уровня инфляции во времени, было решено включать в уравнения кривой Филлипса не уровень инфляции, а её отклонение от тренда.

CUE

- Оригинальная статья Hansen, Heaton and Yaron (1996), где авторы описывают Continuously Updating GMM.
- Минимизируется функционал

$$J = ng_n(\delta)'S(\delta)^{-1}g_n(\delta)$$

 Асимптотически данный методэквивалентне стандартным процедурам GMM. Однако CUE собеспечивает наименьшее смещение оценок на конечных выборках.

Инфляция

Ифнляция по дефлятору

Инфляция по дефлятору за вычетом экспорта

Разрыв выпуска

Инфляция по дефлятору

	p	r	S	rp	rs	ps	rsp
beta_f	0.69***	0.74***	0.72***	0.69***	0.72***	0.76***	0.73***
	(0.04)	(0.06)	(0.04)	(0.04)	(0.03)	(0.04)	(0.03)
beta_b	0.65***	0.58***	0.59***	0.66^{***}	0.60^{***}	0.35^{**}	0.61***
	(0.05)	(0.06)	(0.05)	(0.04)	(0.03)	(0.13)	(0.03)
lambda	0.02	0.07^{*}	-0.05	0.02	-0.05	-0.21*	-0.05
	(0.02)	(0.03)	(0.03)	(0.02)	(0.03)	(0.10)	(0.03)
J-Test p-valu	ıe 0.61	0.45	0.67	0.79	0.84	0.72	0.86
Num. obs.	55	55	55	55	55	55	55

Инфляция ИПЦ

		110000					
	p	r	S	rp	rs	ps	rsp
beta_f	1.60***	1.28***	1.32***	1.78***	1.41***	1.33***	1.37***
	(0.32)	(0.27)	(0.21)	(0.33)	(0.22)	(0.17)	(0.18)
beta_b	0.34***	0.41^{***}	0.39***	0.43***	0.39***	0.39***	0.38***
	(0.10)	(0.09)	(0.09)	(0.11)	(0.09)	(0.08)	(0.07)
lambda	-0.09**	-0.07**	-0.06**	-0.11**	-0.08**	-0.07**	-0.07**
	(0.03)	(0.02)	(0.02)	(0.04)	(0.03)	(0.02)	(0.02)
J-Test p-valu	ie 0.21	0.68	0.89	0.22	0.88	0.34	0.32
Num. obs.	55	55	55	55	55	55	55

Инфляция по дефлятору без экспорта

	p	r	S	rp	rs	ps	rsp
beta_f	0.71***	0.70***	0.72***	0.69***	0.69***	0.68***	0.69***
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
beta_b	0.50***	0.52***	0.52***	0.53***	0.52***	0.53***	0.53***
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
lambda	0.03**	0.04***	-0.03	0.04^{***}	0.04***	0.07^{**}	0.04^{***}
	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)	(0.02)	(0.01)
J-Test p-valu	ue 0.19	0.27	0.48	0.40	0.37	0.29	0.60
Num. obs.	55	55	55	55	55	55	55

Выводы

- Инфляция, рассчитанная при помощи дефлятора ВВП за вычетом экспорта, наилучшим образом согласуется с уравнением кривой Филлипса по сравнению с инфляцией по дефлятору или по ИПЦ. Это обусловлено тем, что в такой мере инфляции не отражены в явном виде цены импортных и экспортных товаров.
- Разрыв выпуска получился значимым и положительно влияющим на инфляцию, что полностью соответствует теоретическим результатам.
- Показатель реальных издержек на единицу труда в большинстве случаев получился незначимым. Причиной этого может быть высокая жесткость российского рынка труда к изменению занятости в совокупности с возможностью легко влиять на реальные заработные платы в случае кризисной ситуации.
- Несколько больший вес ожидаемой инфляции по сравнению её лаговым значением во всех рассмотренных моделях.