Introduction to regression

SUPERVISED LEARNING WITH SCIKIT-LEARN

George Boorman
Core Curriculum Manager, DataCamp

Predicting blood glucose levels

```
import pandas as pd
diabetes_df = pd.read_csv("diabetes.csv")
print(diabetes_df.head())
```

	pregnancies	glucose	triceps	insulin	bmi	age	diabetes
0	6	148	35	0	33.6	50	1
1	1	85	29	0	26.6	31	0
2	8	183	0	0	23.3	32	1
3	1	89	23	94	28.1	21	0
4	0	137	35	168	43.1	33	1

Creating feature and target arrays

```
X = diabetes_df.drop("glucose", axis=1).values
y = diabetes_df["glucose"].values
print(type(X), type(y))
```

```
<class 'numpy.ndarray'> <class 'numpy.ndarray'>
```

Making predictions from a single feature

```
X_bmi = X[:, 3]
print(y.shape, X_bmi.shape)
```

(752,) (752,)

```
X_bmi = X_bmi.reshape(-1, 1)
print(X_bmi.shape)
```

(752, 1)

Plotting glucose vs. body mass index

```
import matplotlib.pyplot as plt
plt.scatter(X_bmi, y)
plt.ylabel("Blood Glucose (mg/dl)")
plt.xlabel("Body Mass Index")
plt.show()
```

Plotting glucose vs. body mass index

Fitting a regression model

```
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_bmi, y)
predictions = reg.predict(X_bmi)
plt.scatter(X_bmi, y)
plt.plot(X_bmi, predictions)
plt.ylabel("Blood Glucose (mg/dl)")
plt.xlabel("Body Mass Index")
plt.show()
```

Fitting a regression model

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

The basics of linear regression

SUPERVISED LEARNING WITH SCIKIT-LEARN

George Boorman
Core Curriculum Manager, DataCamp

Regression mechanics

- y = ax + b
 - Simple linear regression uses one feature
 - y = target
 - x = single feature
 - a, b = parameters/coefficients of the model slope, intercept
- How do we choose a and b?
 - Define an error function for any given line
 - Choose the line that minimizes the error function
- Error function = loss function = cost function

Ordinary Least Squares

$$RSS = \sum_{i=1}^n (y_i - \hat{y_i})^2$$

Ordinary Least Squares (OLS): minimize RSS

Linear regression in higher dimensions

$$y = a_1 x_1 + a_2 x_2 + b$$

- To fit a linear regression model here:
 - \circ Need to specify 3 variables: $a_1,\ a_2,\ b$
- In higher dimensions:
 - Known as multiple regression
 - \circ Must specify coefficients for each feature and the variable b

$$y = a_1x_1 + a_2x_2 + a_3x_3 + ... + a_nx_n + b$$

- scikit-learn works exactly the same way:
 - Pass two arrays: features and target

Linear regression using all features

R-squared

- ullet R^2 : quantifies the variance in target values explained by the features
 - Values range from 0 to 1
- High R^2 :

• Low \mathbb{R}^2 :

R-squared in scikit-learn

reg_all.score(X_test, y_test)

0.356302876407827

Mean squared error and root mean squared error

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y_i})^2$$

ullet MSE is measured in target units, squared

$$RMSE = \sqrt{MSE}$$

ullet Measure RMSE in the same units at the target variable

RMSE in scikit-learn

```
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred, squared=False)
```

24.028109426907236

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Cross-validation

SUPERVISED LEARNING WITH SCIKIT-LEARN

George Boorman
Core Curriculum Manager, DataCamp

Cross-validation motivation

- Model performance is dependent on the way we split up the data
- Not representative of the model's ability to generalize to unseen data
- Solution: Cross-validation!

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test Data

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Training Data

Test Data

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Metric 1

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	

Split 1Fold 1Fold 2Fold 3Fold 4Fold 5Metric 1Split 2Fold 1Fold 2Fold 3Fold 4Fold 5

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1	
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2	
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3	
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4	
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5	

Cross-validation and model performance

- 5 folds = 5-fold CV
- 10 folds = 10-fold CV
- k folds = k-fold CV
- More folds = More computationally expensive

Cross-validation in scikit-learn

```
from sklearn.model_selection import cross_val_score, KFold
kf = KFold(n_splits=6, shuffle=True, random_state=42)
reg = LinearRegression()
cv_results = cross_val_score(reg, X, y, cv=kf)
```

Evaluating cross-validation peformance

```
print(cv_results)
```

```
[0.70262578, 0.7659624, 0.75188205, 0.76914482, 0.72551151, 0.73608277]
```

```
print(np.mean(cv_results), np.std(cv_results))
```

0.7418682216666667 0.023330243960652888

```
print(np.quantile(cv_results, [0.025, 0.975]))
```

array([0.7054865, 0.76874702])

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Regularized regression

SUPERVISED LEARNING WITH SCIKIT-LEARN

George Boorman

Core Curriculum Manager, DataCamp

Why regularize?

- Recall: Linear regression minimizes a loss function
- It chooses a coefficient, a, for each feature variable, plus b
- Large coefficients can lead to overfitting
- Regularization: Penalize large coefficients

Ridge regression

Loss function = OLS loss function +

$$lpha * \sum_{i=1}^n {a_i}^2$$

- Ridge penalizes large positive or negative coefficients
- α : parameter we need to choose
- ullet Picking lpha is similar to picking ${f k}$ in KNN
- Hyperparameter: variable used to optimize model parameters
- ullet lpha controls model complexity
 - \circ α = 0 = OLS (Can lead to overfitting)
 - \circ Very high α : Can lead to underfitting

Ridge regression in scikit-learn

```
from sklearn.linear_model import Ridge
scores = []
for alpha in [0.1, 1.0, 10.0, 100.0, 1000.0]:
    ridge = Ridge(alpha=alpha)
    ridge.fit(X_train, y_train)
    y_pred = ridge.predict(X_test)
    scores.append(ridge.score(X_test, y_test))
print(scores)
```

```
[0.2828466623222221, 0.28320633574804777, 0.2853000732200006, 0.26423984812668133, 0.19292424694100963]
```

Lasso regression

Loss function = OLS loss function +

$$lpha*\sum_{i=1}^n|a_i|$$

Lasso regression in scikit-learn

```
from sklearn.linear_model import Lasso
scores = []
for alpha in [0.01, 1.0, 10.0, 20.0, 50.0]:
    lasso = Lasso(alpha=alpha)
    lasso.fit(X_train, y_train)
    lasso_pred = lasso.predict(X_test)
    scores.append(lasso.score(X_test, y_test))
print(scores)
```

```
[0.99991649071123, 0.99961700284223, 0.93882227671069, 0.74855318676232, -0.05741034640016]
```

Lasso regression for feature selection

- Lasso can select important features of a dataset
- Shrinks the coefficients of less important features to zero
- Features not shrunk to zero are selected by lasso

Lasso for feature selection in scikit-learn

```
from sklearn.linear_model import Lasso
X = diabetes_df.drop("glucose", axis=1).values
y = diabetes_df["glucose"].values
names = diabetes_df.drop("glucose", axis=1).columns
lasso = Lasso(alpha=0.1)
lasso_coef = lasso.fit(X, y).coef_
plt.bar(names, lasso_coef)
plt.xticks(rotation=45)
plt.show()
```

Lasso for feature selection in scikit-learn

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

