IMOSL N4

March 21, 2025

Problem. Let $p \ge 5$ be a prime number. Prove that there exists an integer a with $1 \le a \le p-2$ such that neither $a^{p-1}-1$ nor $(a+1)^{p-1}-1$ is divisible by p^2 .

Solution. Note that if p = 5, we choose a = 2, therefore we can assume $p \ge 7$

Lemma. For all x we have $(x+p)^p \equiv x^p \mod p^2$

Proof. Note that $(x+p)^p \equiv \sum_{i=0}^{i=p} {p \choose i} p^i x^{p-i} \equiv x^p + {p \choose 1} p x^{p-1} \equiv x^p \mod p^2$

Note that the given condition is equivalent to finding a number a such that neither $a-a^p$ nor $(a+1)-(a+1)^p$ is divisible by p^2 . Let $f(a)=a-a^p$ then note that

$$f(a) + f(p - a) = p + (a^p - (a - p)^p)$$

Therefore $f(a) + f(p - a) \equiv p \mod p^2$

Hence at least one of f(a) or f(p-a) is not divisible by p^2 .

Let's suppose for the sake of contradiction that there exists a prime p for which there exists no such a s.t. both f(a) and f(a+1) are not divisible by p^2 for all $1 \le a \le p-2$. Now if for some $t, 1 \le t \le p-2$ both f(t) and f(t+1) are divisible by p^2 then this implies both of f(p-t) and f(p-t-1) are not divisible by p^2 which is a contradiction, hence only one of f(t) and f(t+1) are divisible by p^2 . Hence the divisibility by p^2 alternates and as we have f(1) = 0, this implies $f(a) \equiv 0 \mod p^2$ for all odd a s.t. $1 \le a \le p-1$. As $f(a) + f(p-a) \equiv p \mod p^2$, we get $f(a) \equiv p \mod p^2$ for all even a s.t. $1 \le a \le p-1$. Therefore we have

 $f(2)\equiv p\mod p^2$, hence $2^p\equiv 2-p$ and $f(3)\equiv 0\mod p^2$, hence $3^p\equiv 3\mod p^2$ and $f(6)\equiv p\mod p^2$, hence $6^p\equiv 6-p$. So we have

 $2^p \cdot 3^p \equiv 6 - p \mod p^2 , hence$

 $3(2-p)\equiv 6-p\mod p^2$ so $2p\equiv 0\mod p^2$ which is a contradiction. Hence our original claim was true. QED

Exploration. Lots of primitive root thinking, but simply adding in reverse works

Tags. NT, Number Theory, modulo