# Parallel Programming Exercise Chpater 10 – 10.4

| Author:    | 張瀚文(b07505027@ntu.edu.tw)                 |  |  |  |
|------------|-------------------------------------------|--|--|--|
| Student ID | B07505027                                 |  |  |  |
| Department | Engineering Science and Ocean Engineering |  |  |  |

(If you and your team member contribute equally, you can use (co-first author), after each name.)

### 1 Problem and Proposed Approach

(Brief your problem, and give your idea or concept of how you design your program.) 題目要算一個立方體如果被從某個角到對角挖了一個圓柱體(軸為x=y=z)後.跟原本的體積比.還剩下多少的比例。

此問題可以用蒙地卡羅法估算:隨機取 total =  $n^3$  個在立方體中的點·計算 remain 為有多少點不在圓柱體內 ( 距離 x = y = z 不為 d )·則 remain / total 則為答案。 隨機生成法採用獨立來源法,每個 process 選用不同的種子。

## 2 Theoretical Analysis Model

(Try to give the time complexity of the algorithm, and analyze your program with isoefficiency metrics)

計算點的個數 + Reduce p 個 processes

$$\frac{n^3}{p}\chi + p(\lambda + \frac{4}{\beta})$$

#### 3 Performance Benchmark

(Give your idea or concept of how you design your program.)

Table 1. The execution time

| lable 1. The execution time |         |          |          |          |          |          |          |  |  |
|-----------------------------|---------|----------|----------|----------|----------|----------|----------|--|--|
| Processors                  | 1       | 2        | 4        | 8        | 16       | 32       | 64       |  |  |
| Real                        |         |          |          |          |          |          |          |  |  |
| execution                   |         |          |          |          |          |          |          |  |  |
| time                        | 0.13848 | 0.069388 | 0.056418 | 0.025463 | 0.020974 | 0.016998 | 0.015276 |  |  |
| Estimate                    |         |          |          |          |          |          |          |  |  |
| execution                   |         |          |          |          |          |          |          |  |  |
| time                        | 0.1385  | 0.0692   | 0.0346   | 0.0173   | 0.0087   | 0.0043   | 0.0022   |  |  |
| Speedup                     | 1.0000  | 1.9957   | 2.4545   | 5.4385   | 6.6025   | 8.1468   | 9.0652   |  |  |
| Karp-flatt<br>metrics       | #DIV/0! | 0.0021   | 0.2099   | 0.0673   | 0.0949   | 0.0944   | 0.0962   |  |  |

Figure 1. The performance of diagram



#### 4 Conclusion and Discussion

(Discuss the following issues of your program

- 1. What is the speedup respect to the number of processors used?
- 2. How can you improve your program further more
- 3. How does the communication and cache affect the performance of your program?
- 4. How does the Karp-Flatt metrics and Iso-efficiency metrics reveal?
- 1. 與預期差不多,是很適合平行化的問題。
- 2. 因問題本身簡單,且目前結果又與預期相當,所以並無特別可優化之處。
- 3. 似乎有一點影響,但影響不太大
- 4. 前面的 e 還滿不正常的,但後面 8<=p<=16 時成長,到 16<=p<=64 時 又似乎是定值,所以猜 e 應該是定值,溝通影響小。

# 5 Appendix(optional):

(If something else you want to append in this file, like picture of life game) p = 64 時的結果

n^3: 100^3 = 1000000
remain volumn: 7.156736
original volumn: 8.000000
remain / original: 894592 / 1000000 = 0.89459

Process number: 64 Max time: 0.015276