Smartphone Cryptography

A comparison of techniques for encrypted data communication

Overview

- Presentation ~15min
 - Introduction
 - Next steps & research
 - Design & Implementation
 - Analysis
 - Results conclusion
 - Further work & improvements
 - Conclusion of the project

Overview

- Demonstration ~5min
 - Key Exchange Protocol
 - Smartphone test results

Overview

- Questions ~5min

Introduction

Problem -

- Increased popularity of smartphones
- Importance of keeping personal data safe
- SMS style of encrypted data or message exchange

Introduction

Project Basics -

- Do applications that perform this function exist?
- How do they work?
- What is the performance of these style of applications?
- How could they be improved upon?

Research & Next Steps

- Currently available applications
- Cryptographic techniques
- Relevant Factors to compare and analyse
- System design

Currently available applications

- Standard SMS messaging
 - Not completely secure

- Cloak SMS Free
 - Developed by Hamish Medlin
 - AES symmetric key encryption
- RSA Cipher Cat
 - Developed by Miasoft
 - RSA symmetric key encryption

Cryptographic techniques

- Symmetric Key
 - AES
- Asymmetric Key
 - o RSA
 - o ECC

Comparison Factors

- Difficulty of techniques required to break encryption
- Key size
- Data usage
- Time required for key generation
- Time required for Encryption and Decryption

Basic System design

Design & Implementation

- Main System
- Cryptographic Schemes
- Data Communication

Main System

Server

- Allows connection from P.C and Android based clients via sockets
- Accesses the database
- Acts as a trusted third party with its own public/private keys
- Facilitates the sending and receiving of messages between registered clients

Main System

- Database
 - My SQL database management system
 - Stores the users:
 - Unique ID (primary key)
 - I.P address
 - Public Key Location
 - Message locations
 - File locations for key exchange protocol

Main System

Clients

- Connects to the server via sockets
- Generate and store its own keys
- Specify which other client the user wishes to send data to
- Complete the key exchange protocol required
- Send user inputted data messages to the server

Cryptographic Techniques

- AES Advanced Encryption Scheme
 - Symmetric- key algorithm
 - Input: Block of plaintext and a key
 - Applies several rounds of transformations
 - Output: Ciphertext block
 - Decryption is done by reversing the process

AES

Plaintext block of size 128 bits (16 bytes) in a 4x4 byte array

Key of size 128, 192 or 256 bits (16, 24 or 32 bytes)

Key size determines the number of transformation rounds

16 byte key - 10 rounds

24 byte key - 12 rounds

32 byte key - 14 rounds

AES

1. Key Expansion

Expands the key to provide a 4x4 byte Round Key for each round

16 byte key - 4 words Expanded to 44 words (176) Provides 11, 4 word round keys

2. Initial Round AddRoundKey

3. Round 1 to N-1

SubBytes ShiftRows MixColumns AddRoundKey

4. Final Round

SubBytes ShiftRows AddRoundKey

AES - SubBytes

			115							200					
63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
b7	fd	93	26	36	3f	£7	CC	34	a5	e5	f1	71	d8	31	15
04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
70	3е	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
e1	f8	98	11	69	d9	8e	94	9b	1e	87	e 9	се	55	28	df
8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

AES - ShiftRows

AES - MixColumns

$$\begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix}.$$

AES - AddRoundKey

Only stage which makes use of the key Other stages provide confusion, diffusion and nonlinearity

Cryptographic Techniques

RSA - Rivest-Shamir-Aldeman

Based upon the difficulty of factoring large integers

RSA - Key Generation

- 1. Choose two distinct prime numbers p and q
- 2. Calculate n = pq
- 3. Calculate $\Phi(n) = (p-1)(q-1)$, where $\Phi(n)$ is the number of coprime integers k such that $1 \le k \le n$.
- 4. Choose e such that $1 \le k \le n$ and $\Phi(n)$ are coprime
- 5. Determine $d = e^{-1} \mod \Phi(n)$, where d is the multiplicative inverse of e mod $\Phi(n)$

Private Key - (d,n)

Public Key - (e,n)

RSA - Encryption/Decryption

Encryption: $C = M^e \mod (n)$

Decryption: $M = C^d \mod (n)$

 $M = C^d \mod (n) = (M^e)^d \mod (n) = M^{ed} \mod (n) = M$

It is infeasible to determine d given e and n

Cryptographic Techniques

ECC - Elliptic Curve Cryptography

Based upon the difficulty of finding the discrete logarithm of a random elliptic curve element, with respect to a publicly known base point

ECC - Elliptic Curves over Real Numbers

Plane curve with points satisfying

$$y^2 = x^3 + ax + b$$
 E(a,b)

ECC - Elliptic Curves over Z_D

Elliptic curves in which the variables and coefficients are restricted to elements of $Z_{\scriptscriptstyle D}$

$$y^2 \mod p = (x^3 + ax + b) \mod p$$

 $E_p(a,b)$

ECC - Cryptography

$$Q = kP$$

$$E_p(a,b)$$

$$k = ?$$

ECC - Cryptography

- 1. Global Public Elements -
 - E_a(a,b) , q prime
 - G, point with order n (large)
- 2. User A Key Generation -
 - ∘ Private: n_A < n</p>
 - Public: $P_A = n_A \times G$
- 3. User B Key Generation -
 - Private: n_B < n
 - Public: $P_B = n_B \times G$

ECC - Cryptography

- 4. Encryption -
 - Message m encoded as a point P_m
 - A chooses a random positive k
 - $_{\circ}$ $C_{m} = \{ kG, P_{m} + kP_{B} \}$

5. Decryption -

$$P_{m} + kP_{B} - n_{B}(kG) = P_{m} + k(n_{B}G) - n_{B}(kG) = P_{m}$$

Data Communication

Exchanging keys between client users

Sending and receiving encrypted messages

Alice

Bob

Bob

New User

- New user to the system
- Generates their own public and private keys
- Registers their public key with Trent
- Receives and stores Trents own public key
- Allows encrypted communication

 ${N_B,Alice}K_A^{-1}$

Encrypted message sending

Analysis

Test Results

Comparison of cryptographic schemes

Test Results

Key Exchange Protocol (using RSA)

Section	Cost (bytes)
Part 1	1146
Part 2	1413
Part 3	563
Part 4	291
Total (Protocol)	3413
Sending a message	289
Receiving a message	293
Total (Send/Receive)	582

Test Results

Smartphone App - Comparison

	AES	RSA
Generate Keys (milliseconds)	2	781
Encryption (milliseconds)	4	5
Decryption (milliseconds)	9	45
Pre Encryption file size (bytes)	182	182
Post Encryption file size (bytes)	192	256

Comparison of cryptographic schemes

Key Size (bits):

AES	RSA	ECC
56	512	112
128	3072	256
192	7680	384
256	15360	512

512 bit ECC key provides the same security as a 15360 bit RSA key

For equal key lengths, computational effort is similar

Results conclusion

Average computational power and data usage allowance per client

Combination of AES and ECC would provide the best form of security

RSA is more widely used in place of ECC

RSA is an established scheme, but the required key sizes are becoming bigger

ECC provides smaller key sizes and lower energy usage

Further work & Improvements

User testing

Other uses for this system

Conclusion of the project

- Positives
- Negatives
- What I have learnt

Positives

Achievements within the project

Project outcome

Skills and knowledge learnt

Negatives

Astounding size of the cryptographic field

Learning of new software languages and mathematical material

Personal time management

What I have learnt

Personal time management

Better coding and software development practices

Increased knowledge of mathematics and computer science

Demonstration

 Message communication including key exchange protocol

Android app for analysis

Questions?