MODELLI E METODI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (9 punti) Si applichi l'algoritmo ungherese a un problema con questa tabella dei costi

$$T_0 = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 \\ a_1 & 7 & 1 & 2 & 5 & 7 \\ a_2 & 3 & 2 & 1 & 3 & 3 \\ a_3 & 8 & 1 & 2 & 6 & 8 \\ a_4 & 6 & 2 & 1 & 8 & 9 \\ a_5 & 9 & 1 & 2 & 9 & 5 \end{bmatrix}$$

Di quanto cambia la limitazione inferiore iniziale se il costo di (a_1, b_1) scende a 6? E se il costo di (a_1, b_2) scende a 0?

ESERCIZIO 2. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4\}$$

$$A = \{(1,2), (1,3), (1,4), (2,4), (3,2), (3,4)\}$$

con i seguenti costi unitari di trasporto c_{ij} (le capacità sono infinite)

arco	(1, 2)	(1,3)	(1,4)	(2,4)	(3, 2)	(3, 4)
c_{ij}	4	2	8	2	1	6

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4
b_i	2	0	0	-2

Stabilire con il metodo due fasi che il problema ammette soluzioni ammissibili e risolverlo a partire dalla base ottenuta al termine della prima fase.

ESERCIZIO 3. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson per la risoluzione del problema di flusso massimo e quello di taglio a costo minimo.

ESERCIZIO 4. (6 punti) Si illustri l'algoritmo per la minimizzazione del ritardo massimo T_{max} su macchina singola, dimostrandone la correttezza e la complessità.