Here's a lemma that I think clarifies the key step in the proof.

Lemma 1. Let (A, \mathfrak{m}) be a Noetherian local ring, and let $f_1, \ldots, f_r \in \mathfrak{m}$ with $V(f_1, \ldots, f_r) = \{\mathfrak{m}\}$. Let $\mathfrak{p} \subseteq \mathfrak{m}$ be a prime with no prime strictly contained between \mathfrak{p} and \mathfrak{m} . Then there exist $g_1, \ldots, g_r \in \mathfrak{m}$ for which

- (1) $V(g_1, \ldots, g_r) = \{\mathfrak{m}\}$ and
- (2) \mathfrak{p} contains and is a minimal prime of (g_1,\ldots,g_{r-1}) .

In "geometric" terms, let Z be a closed irreducible subset of $\operatorname{Spec}(A)$ that is minimal among the closed irreducible sets that properly contain $\{\mathfrak{m}\}$. Then we may find g_1, \ldots, g_r for which $V(g_1, \ldots, g_r) = \{\mathfrak{m}\}$ and for which Z is an irreducible component of $V(g_1, \ldots, g_{r-1})$.

Proof. Since \mathfrak{m} is the unique prime ideal containing (f_1, \ldots, f_r) , we may assume after reindexing f_1, \ldots, f_r as necessary that $f_r \notin \mathfrak{p}$. Then the ideal $\mathfrak{p} + (f_r)$ strictly contains \mathfrak{p} and is contained in \mathfrak{m} ; our hypotheses on \mathfrak{p} imply that \mathfrak{m} is the only prime ideal containing $\mathfrak{p} + (f_r)$, i.e., that $V(\mathfrak{p} + (f_r)) = {\mathfrak{m}}$, or that $\operatorname{rad}(\mathfrak{p} + (f_r)) = \mathfrak{m}$. In particular, for each $1 \le i \le r - 1$ we may find n_i for which $f_i^{n_i} \in \mathfrak{p} + (f_r)$, say

$$f_i^{n_i} = g_i + z_i f_r$$
 with $g_i \in \mathfrak{p}, z_i \in A$.

We claim that the conclusion of the lemma is now satisfied with g_1, \ldots, g_{r-1} as above and $g_r := f_r$:

- (1) The above equation shows that any prime \mathfrak{q} that contains $g_1, \ldots, g_{r-1}, f_r$ also contains $f_i^{n_i}$ and hence f_i for $1 \leq i \leq r$, hence $\mathfrak{q} = \mathfrak{m}$. Thus $V(g_1, \ldots, g_r) = {\mathfrak{m}}$.
- (2) It's clear by construction that \mathfrak{p} contains (g_1,\ldots,g_{r-1}) . There is thus a minimal prime \mathfrak{p}' of (g_1,\ldots,g_{r-1}) contained in \mathfrak{p} ; we must verify that $\mathfrak{p}=\mathfrak{p}'$. (Geometrically, \mathfrak{p}' corresponds to an irreducible component Z' of $V(g_1,\ldots,g_{r-1})$ containing Z.) To see this, consider the quotient ring $\overline{A}:=A/(g_1,\ldots,g_{r-1})$. Let

$$\overline{\mathfrak{m}} \supsetneq \overline{\mathfrak{p}} \supseteq \overline{\mathfrak{p}'}$$
 (1)

denote the chain of primes in \overline{A} given by the image of $\mathfrak{m} \supseteq \mathfrak{p}' \supseteq \mathfrak{p}' \supseteq (g_1, \ldots, g_{r-1})$. Then $(\overline{A}, \overline{\mathfrak{m}})$ is a Noetherian local ring, and our task is equivalent to showing that $\overline{\mathfrak{p}} = \overline{\mathfrak{p}'}$. Let $f \in \overline{A}$ denote the image of f_r . The primes of \overline{A} containing f are in bijection with the primes of f denote the image of f are in bijection with the primes of f denote the image of f denoted f denoted f denoted f denoted f denoted f denoted f

We now deduce Theorem ??. We must show that if \mathfrak{p} is a minimal prime of (f_1,\ldots,f_r) , then $\operatorname{height}(\mathfrak{p}) \leq r$. We may assume without loss of generality (replacing A with $A_{\mathfrak{p}}$ and \mathfrak{p} with $\mathfrak{p}_{\mathfrak{p}}$, which doesn't change the height of or minimality assumption on the latter) that (A,\mathfrak{p}) is a Noetherian local ring with $V(f_1,\ldots,f_r)=\{\mathfrak{p}\}$; we must show then that $\operatorname{height}(\mathfrak{p})\leq r$. We do this by induction on r. The case r=1 is given by Krull's principal ideal theorem, so suppose r>1. Let $\mathfrak{q}\subsetneq \mathfrak{p}$ be a maximal element of the set of primes strictly contained in \mathfrak{p} ;

it will suffice then to show that $\operatorname{height}(\mathfrak{q}) \leq r-1$. By Lemma 1, we may assume without loss of generality that \mathfrak{q} is a minimal prime of (f_1, \ldots, f_{r-1}) ; the required inequality then follows from our inductive hypothesis.

References