Overview

Data Science projects since 2014: Pharma, Utility, Predictive Maintenance, Services 10 years US onsite: business process, ERP/BPM, management

	Tabular data		Text		
ML	1.	Reducing call center load (ARIMA) Failure prediction (survival)	 2. 	Measuring project health (polarity & valence) Azure helpdesk chatbot (cloud)	
	3.	Optimizing project staffing (RF)			
ب	1.	Securing edge devices (T-CNN	1.	FLR improvement helpdesk tickets (TFHub, DBSCAN)	
DI		Auto Encoder)	2.	Asset reuse (Word2Vec)	
			3.	Preventing revenue leakage (LSTM & BERT)	

Calculated output:

Silhouette score, # of

clusters, ticket-clusters,

cluster keywords

Assign new ticket

right cluster,

cosine distance

Cluster plot,

matplotlib

keywords per

embeddings

clustering,

DBSCAN

Ticket description

to text

embedding, TF &

matpl tlib

Pharma helpdesk left shift:

50% SME effort reduction

20 % improveme nt in FLR

Whitepaper

Reducing call center load, ARIMA

BPO: project health measure tor \$17Bn projects


```
HOME DATA DISCUSSION SCRIPTS SUBMISSION LEADERBOARD

28. Bala Kesavan 0.96127
```

```
Preventing revenue leakage
```

Obligations extraction from contracts

Proxy data, hackathon entry

Text classifier: BERT + TF2.0, LSTM + Keras

```
#definining a bi-directional LSTM
inp = Input(shape=(maxlen,))
x = Embedding(max_features, embed_size, weights=[embedding_matrix])(inp)
x = Bidirectional(LSTM(50, return_sequences=True, dropout=0.05, recurrent_dropout=0.05))(x)
x = Bidirectional(LSTM(50, return_sequences=True, dropout=0.05, recurrent_dropout=0.05))(x)
x = GlobalMaxPoollD()(x)
x = Dense(50, activation="relu")(x)
x = Dropout(0.1)(x)
x = Dropout(0.1)(x)
x = Dense(10, activation="sigmoid")(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

label	precision	recall	fscore	support
0	0.94	0.91	0.93	598
1	0.78	0.80	0.79	99
2	0.93	0.93	0.93	395
3	0.96	0.96	0.96	196
4	0.92	0.93	0.92	492
5	0.83	0.89	0.86	482
6	0.87	0.86	0.87	118
7	0.78	0.73	0.75	162
8	0.92	0.73	0.81	151
9	0.75	0.86	0.80	154

Azure helpdesk chatbot:

Employee experience

Time to roll out

Edge device failure prediction

These are	the failur	es for mode	el WDC WD320	OBEKT:	
	removed	observed o	ensored er	ntrance a	t_risk
event_at					
0.0	0	0	0	2	2
8.0	1	1	0	0	2
20.0	1	0	1	0	1

$$\hat{S} = \prod_{t_i < t} \frac{n_i - d_i}{n_i}$$

Day	Number of devices at risk	Number of devices that failed	Survival probability (product of terms)
0	2	0	(2-0)/2 = 1
8	2	1	$\{(2-0)/2\}x\{(2-1)/2\} = 0.5$
20	1	0	${(2-0)/2}x{(2-1)/2}x{(1-0)/1} = 0.5$

Statistical methods for automated generation of service engagement staffing plans

J. Hu B. K. Ray M. Singh

Optimizing project staffing:

Benchmark similar + well run projects

Layer (type)	Output	Shape	Param #
convld_3 (ConvlD)	(None,	24, 64)	30784
dropout_4 (Dropout)	(None,	24, 64)	0
convld_4 (ConvlD)	(None,	12, 32)	12320
dropout_5 (Dropout)	(None,	12, 32)	0
convld_5 (ConvlD)	(None,	6, 16)	3088
convld_transpose_4 (ConvlDTr	(None,	12, 16)	1552
dropout_6 (Dropout)	(None,	12, 16)	0
convld_transpose_5 (ConvlDTr	(None,	24, 32)	3104
dropout_7 (Dropout)	(None,	24, 32)	0
convld_transpose_6 (ConvlDTr	(None,	48, 64)	12352
convld_transpose_7 (ConvlDTr	(None,	48, 80)	30800
Total params: 94,000 Trainable params: 94,000 Non-trainable params: 0			

Securing edge devices (T-CNN Auto Encoder), anomaly detection