C5a-Rezeptor-Antagonisten

Die vorliegende Erfindung betrifft Antagonisten des C5a-Rezeptors sowie Verwendungen derselben.

Stand der Technik

Neben dem adaptiven Immunsystem gibt es ein stammesgeschichtlich deutlich älteres System zur Abwehr von Infektionen. Dieses System wird Komplementsystem genannt und besteht aus mehr als 30 löslichen und membrangebundenen Proteinen. Das Komplementsystem kann zusammen mit der adaptiven Immunantwort oder eigenständig aktiv werden, um z.B. pathogene Bakterien zu töten. Eine überschiessende Aktivierung bzw. nicht hinreichende Regulierung des Komplementsystems wird mit einer großen Zahl von entzündlichen Erkrankungen in Verbindung gebracht wie z.B. septischer Schock, Reperfusionsschaden, rheumatoide Arthritis, Transplantatabstossung, Akutes Lungenversagen (adult respiratory distress syndrome, ARDS), Systemischer Lupus erythematodes (SLE) und Glomerulonephritis. Übersichten über die Beziehungen zwischen dem Komplementsystem und Erkrankungen sind in großer Zahl publiziert worden (z.B.: Kirschfink 1997 Immunopharmacology 38: 51-62; Markides 1998 Pharmacological Reviews 50: 59-87, Walport 2001 The New England Journal of Medicine 344: 1058-66).

Die Aktivierung des Komplementsystems kann über drei unterschiedliche Wege stattfinden. Diese werden klassischer, alternativer und Mannose-binding Lectin (MBL)-Weg genannt. Alle Wege verlaufen über die sequentielle Prozessierung – und damit Aktivierung – von inaktiven Proformen von Proteasen. Da die jeweils aktivierte Protease die nächste Proform aktivieren kann, erhält man eine Verstärkung der auslösenden Reaktion vergleichbar mit der Gerinnungskaskade. Ein Überblick über das Komplementsystem ist bei Sim und Laich (2000 Biochemical Society Transactions 28: 545-550) zu finden.

Zu den wichtigsten Proteinen, die während der Komplementaktivierung entstehen, zählen C3a, C3b, C5a und C5b, auf die im Folgenden näher eingegangen wird.

2

C3b ist entscheidender Bestandteil einer zentralen Protease der Komplementkaskade, der C5-Convertase. C3b ist Bestandteil der C5-Convertase sowohl des klassischen als auch des alternativen Weges. Der MLB-Weg führt ebenfalls über die Konvertasen des klassischen Weges. Die C5-Konvertase ist verantwortlich für den Fortgang der Komplementkaskade und katalysiert die Spaltung von C5. Zudem wird C3b kovalent an die Oberfläche von z.B. Bakterien gebunden, die dadurch bevorzugt von Makrophagen aufgenommen werden können. Ähnliches gilt auch für die Klärung von Immunkomplexen.

C3a ist das kleine Fragment, das neben C3b durch die Spaltung von C3 entsteht. C3a ist ein verhältnismäßig schwaches Chemokin und zählt zu den Anaphylatoxinen.

C5b entsteht durch Spaltung von C5. Das Spaltprodukt ist der Ausgangspunkt für die Bildung des Membrane-Attack-Complex (MAC). Der MAC bildet eine Pore, durch die die Plasmamembran von Bakterien aber auch körpereigenen Zellen perforiert werden kann. Dadurch kann es zur Lyse der perforierten Zellen kommen.

C5a ist das 74 Aminosäuren große, N-terminale Spaltprodukt der α-Kette des Plasmaproteins C5 und wird durch die Aktivität der C5-Konvertase freigesetzt. C5a wird von seinem Rezeptor, der als C5aR oder auch CD88 bezeichnet wird, mit hoher Affinität gebunden und löst eine Vielzahl proinflammatorischer Effekte aus. Es ist eines der stärksten Chemokine und gehört wie C3a zu den Anaphylatoxinen. Der C5aR ist auf einer Vielzahl von Zellen zu finden. Insbesondere auf Neutrophilen, Makrophagen, Zellen der glatten Muskulatur und Endothelzellen findet man den Rezeptor.

Die Freisetzung von C5a wird direkt oder indirekt für eine Vielzahl von Erkrankungen verantwortlich gemacht. Beispiele hierfür sind Sepsis (Huber-Lang et al. 2001 Faseb Journal 15: 568-570), Multiple Sklerose (Mullerladner et al. 1996 Journal of Neurological Science 144: 135-141), Reperfusionsschaden (Riley et al. 2000 Journal of Thoriacic and Cardiovascular Surgery 120: 350-358), Psoriasis (Bergh et al. 1993 Archives of Dermatological Research 285: 131-134), rheumatoide Arthritis (Woodruff et al. 2002 Arthritis and Rheumattism 46: 2476-85) und Immunkomplex assoziierte Erkrankungen (Heller et al. 1999 Journal of Immunology 163: 985-994). Einen Überblick über inflammatorische Erkrankungen, an denen C5a beteiligt ist, bietet Köhl (2001 Molecular Immunology 38: 51-62).

3

Obwohl C5a offensichtlich für viele Symptome bei entzündlichen Erkrankungen verantwortlich ist, gibt es bis zum heutigen Tag kein zugelassenes Medikament, das direkt an der Wechselwirkung zwischen Rezeptor und Ligand angreift. Der C5aR stellt einen besonders interessanten Angriffspunkt dar. Dies liegt insbesondere an der Tatsache, dass Mäuse, denen der Rezeptor fehlt, keinen auffälligen Phänotyp besitzen (Hopken et al. 1996 Nature 383: 86-89). Das bedeutet, dass die Komplementkaskade mit ihren nützlichen Funktionen zur Abwehr von Krankheitserregern (MAC-Bildung) und dem Abbau von Immunkomplexen auch bei vollständiger Inaktivierung des Rezeptors ungehindert ablaufen kann.

Zur Entwicklung eines spezifischen C5a-Rezeptor-Antagonisten, hierin auch als C5aR-Antagonist bezeichnet, gab es in der Vergangenheit eine Reihe von Versuchen. Unter anderem wurde nach kleinen Molekülen gesucht. Als Beispiele für derartige Moleküle sind unter anderem L-156602 (Merck), RPR120033 (Rhone-Poulenc), W-54011 (Mitsubishi Pharma) und NGD 2000-1 (Neurogen) bekannt geworden. Alle bisher bekannten Inhibitoren mit einem Molekulargewicht von < 500 g/mol haben zumindest einen der folgenden Nachteile: eine geringe Spezifität, agonistische Wirkung, zu niedrige Affinität, schlechte Löslichkeit, unzureichende metabolische Stabilität oder Inhibierung von P450 Enzymen.

Ein anderer Weg zur Entwicklung von C5aR-Antagonisten wurde durch die Verwendung von rekombinanten Proteinen beschritten. Beispiele für derartige Antagonisten auf Protein-Basis sind CGS 32359 (Ciba-Geigy, Pellas et al. 1998 Journal of Immunology 160: 5616-5621), ΔpIII-A8 (Heller et al. 1999 Journal of Immunology 163: 985-994) bzw. Antikörper, die rekombinant oder nicht-rekombinanten Ursprungs sein können (Huber-Lang et al. 2001 Faseb Journal 15: 568-570). Diese C5aR-Antagonisten sind Proteine und entsprechend kostspielig herzustellen. Sie zeichnen sich durch eine verhältnismäßig hohe Affinität und Spezifität aus, haben aber den Nachteil einer hohen Immunogenität. Zudem sind Proteine nur durch aufwendige Verfahren wie z.B. Injektionen effizient zu verabreichen.

Die Sequenzinformation aus dem C-terminalen Bereich von C5a wurde zur Entwicklung von peptidischen Antagonisten verwendet. Peptide als therapeutisch nutzbare Antagonisten des C5aRs haben den Vorteil der geringeren Produktionskosten, keiner Immunogenität sowie hoher Plasmastabilität im Vergleich zu Proteintherapeutika und sind zudem spezifischer als die meisten der bisher bekannten kleinen Moleküle. Peptidische Antagonisten sind in großer Zahl beschrieben. Gemeinsames Merkmal fast aller peptidischer C5aR-Antagonisten ist ihr Ursprung

4

im C-Terminus von C5a. Beispiele für peptidische C5aR-Antagonisten bzw. partielle Agonisten sind unter anderem in folgenden Patentanmeldungen bzw. Patenten beschrieben: US 4,692,511, US 5,663,148, WO 90/09162, WO 92/11858, WO 92/12168, WO 92/21361, WO 94/07518, WO 94/07815, WO 95/25957, WO 96/06629, WO 99/00406 und WO 99/13899, WO 03/033528. Bei De Martino et al. (1995 Journal of Biological Chemistry 270: 15966-15969) wird ein erster struktureller Erklärungsversuch für die Bedeutung des C-terminalen Arginins in peptidischen C5aR-Liganden unternommen. Auf Seite 15967 wird verdeutlicht, dass das C-terminale Arginin für die Affinität und Aktivität der beschriebenen Peptide von großer Bedeutung ist. Es wird darauf hingewiesen, dass es sowohl die positive Ladung der Guanidino-Gruppe, als auch die negative Ladung der Carboxy-Gruppe sind, die für die affinitätssteigernde Eigenschaft des Arginins verantwortlich sind. Der Beitrag dieser beiden Gruppen wird zusätzlich genauer charakterisiert (S. 15966), wobei die Guanidino-Gruppe für den energiefreisetzenden Kontakt mit dem Rezeptor verantwortlich ist, während das freie Carboxylat die Interferenz mit dem Arg-206 des Rezeptors annuliert.

Fast alle bisher beschriebenen Peptide, die an den C5aR binden, tragen C-terminal die positiv geladene Aminosäure Arginin. Sequenzen dieser Peptide wurden sowohl in der wissenschaftlichen Literatur (Finch et al. 1999 Journal of Medicinical Chemistry 42: 1965-1974; Wong et al. 1999 IDrugs 2: 686-693; Psczkowski et al. 1999 Pharmacology 128: 1461-1466) als auch in den oben zitierten Patenten und Patentanmeldungen offenbart.

In WO 90/09162 werden 38 peptidische Inhibitoren mit ihren IC₅₀-Werten vorgestellt (Beispiele 2, 13, 23, 31, 91, 106, 111, 117, 131, 150, 165, 182, 188, 202, 213, 220, 229, 245, 247, 249, 279, 282, 295, 296, 305, 316, 338, 348, 377, 402, 404, 409, 421, 424, 432, 445, 455, 460). Davon haben 37 Peptide ein C-terminales Arginin und lediglich ein Peptid trägt eine andere C-terminale Aminosäure (Tyrosin, Beispiel 305). Die Sequenz von Beispiel 305 aus WO 90/09162 lautet Ac-Phe-Lys-Ala-Cha-Ala-Leu-ala-Tyr-OH und es wird ein IC₅₀-Wert für die Bindung von 0,17 μM beschrieben, was weniger als einem Zehntel der Aktivität anderer beschriebener Peptide mit einem C-terminalen Arginin entspricht (z.B. Ac-Phe-Lys-Ala-Cha-Ala-Leu-N-Methyl(D)ala-Arg-OH (Beispiel 296) und (N-Ethyl)Phe-Lys-Ala-Cha-Ala-Leu- N-Methyl(D)ala-Arg-OH (Beispiel 402) mit einem IC₅₀-Wert von 0.012 μM bzw. 0.011 μM). In einem funktionellen Assaysystem, welches in der vorliegenden Anmeldung verwendet wird, zeigt diese tyrosinhaltige Verbindung sogar nur einen IC₅₀-Wert von lediglich 1,3 μM. Funktionelle Assaysysteme haben i.d.R. eine höhere prädiktive Aussage für Aktivität *in vivo* als Bindungsassays. Damit wird klar,

5

dass die Verwendung eines C-terminalen Tyrosins nicht zu einer Verbindung führte, die zu der Entwicklung eines therapeutisch nutzbaren C5aR-Antagonisten genutzt werden kann. Dies ist möglicherweise auch der Grund dafür, daß die Autoren keine weiteren Tyrosin-haltigen Peptide mit einem Wert für die Aktivität beschrieben haben.

In WO 92/12168 werden weitere 20 Peptide mit ihren IC₅₀-Werten (Bindung an C5aR) beschrieben. Davon haben 19 ein endständiges Arginin, das sowohl in der D- als auch der L-Form vorliegen kann. Ein Peptid trägt C-terminal einen Phenylbutanoyl-Rest, der eine hydrophobe Wechselwirkung eingehen könnte. Dieses Peptid (Beispiel 170) hat die Sequenz (N-Methyl)Phe-Lys-Pro-cha-Phe-Phenylbutanoyl und wird mit einem IC₅₀-Wert von lediglich 2,6 μM angegeben, was für eine Verwendung als Medikament nicht aussichtsreich erscheint. Ein direkter Vergleich zwischenm C-terminalem Argininyl und Phenylbutanoyl ist in dieser Anmeldung nur ansatzweise möglich, da nicht die direkt vergleichbare Struktur mit einem C-terminalen Arginin offenbart wurde. Beispiel 105 aus WO 92/12168 ((N-Methyl)Phe-Lys-Pro-cha-ψ{CH₂-N(CH₂C6H₅)}-Arg-OH) ist am ehesten für den Vergleich mit Beispiel 170 geeignet. Der IC₅₀-Wert für dieses Hexamer beträgt 0.36 μM. Die Substitution von Arg führt also auch bei diesen Beispielen zu einem deutlichen Aktivitätsabfall.

Von den 22 Beispielen aus WO 94/07518, zu denen IC₅₀-Werte angegeben wurden, tragen alle Peptide ein C-terminales Arginin.

Die in den genannten internationalen Anmeldungen WO 90/09162, WO 92/12168 und WO 94/07518 angegebenen IC₅₀-Werte sind durch Messungen mit isolierten Membranen polymorphkerniger neutrophiler Granulozyten (PMN-Membranen) entstanden, da zum Zeitpunkt der Durchführung der Experimente keine C5aR überexprimierenden Zellen hergestellt werden konnten. Die so entstandenen Werte spiegeln nicht die Affinität der Verbindung an ganzen Zellen wider. Die Verbindungen zu Rezeptoren auf ganzen Zellen sind deutlich weniger affin (Kawai et al. 1991 Journal of Medicinical Chemistry 34: 2068-71; Rollins et al. 1988 Journal of Biological Chemistry 263: 520-526). Es ist aber aussagekräftiger, anstelle der Bindung der Antagonisten an die Rezeptoren deren biologische Aktivität zu messen. Häufig werden derartige funktionelle Assays für G Protein gekoppelte Rezeptoren verwendet.

Auch die in den internationalen Patentanmeldungen WO 95/25957 und WO 96/06629 angegebenen Beispiele, zu denen IC50-Werte bekannt sind, sind ausnahmslos Peptide, die C-

terminal ein Arginin tragen. Das gleiche gilt für Veröffentlichungen von Wong et al. (Wong et

al. 1998 Journal of Medicinal Chemistry 41: 3417-3425) und Finch et al. (Finch et al. 1999 Journal of Medicinal Chemistry 42: 1965-1974), in denen 6 bzw. 31 lineare und cyclische 6- und 7-mere Peptide beschrieben sind.

WO 99/00406 beschreibt eine Reihe zyklischer und linearer peptidischer Inhibitoren, deren gemeinsames Merkmal das C-terminale Arginin ist. Innerhalb eines in WO 99/00406 dargelegten Modells des Pharmakophors wird explizit auf die notwendige positive Ladung, die beispielsweise durch Arginin realisiert wird, eingegangen (WO 99/00406 Seite 12, Zeile 13ff).

Auch im natürlichen Liganden C5a ist das C-terminale Arginin von entscheidender Bedeutung für die Aktivität. Wird dieses Arginin durch Carboxypeptidasen abgespalten (C5a-desArg), erhält man einen in Abhängigkeit des verwendeten Testsystems 10-1000 fach geringer aktiven Agonisten (Gerard und Gerard 1994 Annual Reviews in Immunology 12: 775-808).

In WO 03/033528 wird von Einzelsubstitutionen verschiedener Aminosäuren im Molekül Ac-Phe[Orn-Pro-cha-Trp-Arg] (Verbindung 1) berichtet. Es wird angegeben, dass z.B. der Austausch von Arginin in Verbindung 1 gegen Homoarginin (Verbindung 44), Citrullin (Verbindung 45), Lysin (Verbindung 47) oder Canavanin (Verbindung 48) zu einer Verschlechterung der Affinität zum C5a-Rezeptor und der antagonistischen Eigenschaften führt. Die angegebenen IC50-Werte als Maß für die Bindung betragen 1,36 μM (44), 6 μM (45) bzw. 24 μM (47). Für Canavanin ist kein Wert angegeben. Dies bedeutet einen deutlichen Abfall der Affinität zum C5a-Rezeptor für diese Arginin-Substitutionen (der IC50 von 1 ist 0.45 μM). Neben den Effekten geladener Arginin-Substitutionen (Homoarginin und Lysin) ist hier insbesondere der starke Abfall der Bindungsstärke beim Austausch des geladenen Arginins (0,45 μ M) durch das ungeladene Citrullin (6 μ M) bemerkenswert. Die antagonistische Aktivität verringert sich sogar noch stärker (Arg: 0,028 μ M, Cit: 0,690 μ M). Da die Guanidino- (Arg) und die Harnstoff-Gruppe (Cit) Bioisostere sind und einen ähnlichen Raumbedarf haben, wurde somit deutlich die Wichtigkeit einer positiven Ladung belegt. Gleichzeitig zeigt dieses, daß die Größe der Substituenten kein ausreichendes Kriterium für die Vorhersage der Aktivität ist. In WO 03/033528 wird zwar dargelegt, dass die Arginin-Substitution von 1 (Arginin) zu 45 (Citrullin) eine Verbindung ergebe, die angeblich eine bemerkenswerte antagonistische Aktivität aufweise (S. 44, Zeile 28ff.). Jedoch ist die Grenze dessen, was als bemerkenswert eingestuft wird, beliebig gewählt und der deutliche Abfall der antagonistischen Aktivität um den Faktor 24 unterstreicht die im Stand der Technik bekannte Bedeutung des Arginins an der C-terminalen Position von peptidischen C5aR Antagonisten. Das Citrullin enthaltende Peptid 45 ist im übrigen das einzige Peptid, das keine positive Nettoladung unter physiologischen Bedingungen trägt und für das ein Wert für die Bindung und die antagonistische Aktivität in WO 03/033528 beschrieben ist.

In einem Übersichtsartikel von Morikis und Lambris (2002 Biochemical Society Transactions 30: 1026-1036) wird ebenfalls die Bedeutung des Arginins für die Affinität von Antagonisten und Agonisten zum C5a Rezeptor betont.

Es wird deutlich, dass gemäß der technischen Lehre des Standes der Technik für peptidische und peptidomimetische C5a-Liganden nennenswerter inhibitorischer Aktivität ($IC_{50} < 200 \text{ nM}$) eine C-terminal lokalisierte positive Ladung verlangt wird. Diese Ladung wird in der Regel durch Arginin realisiert.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Antagonisten des C5a-Rezeptors bereitzustellen. Eine weitere der vorliegenden Erfindung zugrundeliegende Aufgabe besteht darin, dass Medikamente bereitgestellt werden, die bei der Behandlung von Krankheitsbildern verwendet werden können, an denen kausal, indirekt oder symptomatisch der C5a-Rezeptor beteiligt ist.

In einem ersten Aspekt wird die Aufgabe erfindungsgemäß gelösut durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, mit der folgenden Struktur:

, wobei

X1 ein Radikal mit einer Masse von etwa 1-300 ist und wobei X1 bevorzugterweise ausgewählt ist aus der Gruppe, die R5-, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-SO₂-, R5-N(R6)-SO₂

N(R6)-, R5-N(R6)-CS-, R5-N(R6)-C(NH)-, R5-CS-, R5-P(O)OH-, R5-B(OH)-, R5-CH=N-O-CH₂-CO- umfasst, wobei R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, F, Hydroxy, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Arylalkyl, substituiertes Arylalkyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Acyl, substituiertes Acyl, Alkoxy, Alkoxyalkyl, substituiertes Alkoxyalkyl, Aryloxyalkyl und substituiertes Aryloxyalkyl umfasst,

X2 ein Radikal ist, das die biologischen Bindungseigenschaften einer Phenylalanin-Einheit mimikt,

X3 und X4 einzeln und unabhängig voneinander ein Spacer ist, wobei der Spacer bevorzugterweise aus der Gruppe ausgewählt ist, die Aminosäuren, Aminosäure-Analoga und Aminosäure-Derivate umfasst,

X5 ein Radikal ist, das die biologischen Bindungseigenschaften einer Cyclohexylalanin- oder Homoleucin-Einheit mimikt,

X6 ein Radikal ist, das die biologischen Bindungseigenschaften einer Tryptophan-Einheit mimikt,

X7 ein Radikal ist, das die biologischen Bindungseigenschaften einer Norleucin- oder Phenylalanin-Einheit mimikt,

eine chemische Bindung zwischen X3 und X7 ausgebildet ist, und

die Verbindungslinien – in Formel (I) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen umfasst.

In einer Ausführungsform sind X3 und X7 jeweils eine Aminosäure, ein Aminosäurederivat oder ein Aminosäureanalogon ist, wobei die chemische Bindung zwischen X3 und X7 unter Beteiligung von jeweils mindestens einem Molekülteil von X3 und X7 ausgebildet ist, und die Molekülteile für X3 und X7 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die den C-Terminus, den N-Terminus und die jeweilige Seitenkette der Aminosäure umfasst.

In einer Ausführungsform ist vorgesehen, dass

X1 ein Radikal mit einer Masse von etwa 1-300 ist, wobei das Radikal bevorzugterweise ausgewählt ist aus der Gruppe, die R5, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-C(NH)-, umfasst, wobei bevorzugtererweise R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl und substituiertes Aryl enthält;

X2 und X6 jeweils und unabhängig voneinander eine aromatische Aminosäure, ein Derivat oder ein Analogon davon sind;

X5 und X7 einzeln und unabhängig voneinander eine hydrophobe Aminosäure, ein Derivat oder ein Analogon davon sind.

In einer Ausführungsform ist vorgesehen, dass X2, X5, X6 und X7 einzeln und unabhängig voneinander die folgende Struktur aufweisen:

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist, R1 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >S=O, >C=NH, >C=N-CN, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst;

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CH₃, CF₃, Alkyl und substituiertes Alkyl umfasst;

und die Bindung von Struktur (III) an die Molekülbestandteile X1 und X3, X4 und X6, X5 und X7, und X6 und X3 bevorzugt über R1 und R2 erfolgt;

für X2 und für X6 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aromatische Gruppe enthält und ausgewählt ist aus der Gruppe, die Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Heteroarylalkyl, substituiertes Heteroarylalkyl, Alkyloxy-Alkyl, substituiertes Alkyloxy-Alkyl, Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Cycloalkyl, Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst; und

für X5 und für X7 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aliphatische oder aromatische Gruppe enthält und bevorzugterweise ausgewählt ist aus der Gruppe, die Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, substituiertes Heteroarylalkyl, Heteroarylalkyl, Arylalkyl, Arylalkyl, substituiertes substituiertes Cycloalkylalkyl, Heterocyclylalkyl, substituiertes Cycloalkylalkyl, Heterocyclylalkyl, Alkyloxy-Alkyl, substituiertes Alkyloxy-Alkyl, Alkyloxy-Cycloalkyl,

substituiertes Alkyloxy-Cycloalkyl, Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Heterocyclyl, Alkyloxy-Aryl, substituiertes Alkyloxy-Aryl, Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst.

In einer bevorzugten Ausführungsform ist unter Beteiligung von R3 und R4 ein Ring ausgebildet.

In einer Ausführungsform ist vorgesehen, dass für X2 und für X6 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die Phenyl, substituiertes Phenyl, Benzyl, substituiertes Benzyl, 1,1-Diphenylmethyl, substituiertes 1,1-Diphenylmethyl, Naphthylmethyl, substituiertes Naphthylmethyl, Thienylmethyl, substituiertes Thienylmethyl, Benzothienylmethyl, substituiertes Benzothienylmethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.

In einer Ausführungsform ist vorgesehen, dass für X5 und für X7 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die C3-C5-Alkyl, substituiertes C3-C5-Alkyl, C5-C7-Cycloalkyl, substituiertes C5-C7-Cycloalkylmethyl, substituiertes C5-C7-Cycloalkylmethyl, Cycloalkylethyl, substituiertes Cycloalkylethyl, Benzyl, substituiertes Benzyl, Phenylethyl, Naphthylmethyl, Thienylmethyl, Propenyl, Propinyl, Methylthioethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.

In einer Ausführungsform ist X1 ausgewählt aus der Gruppe, die H, Acetyl, Propanoyl, Butanoyl, Benzoyl, Fluormethylcarbonyl, Difluormethylcarbonyl, Phenyl, Oxycarbonyl, Methyloxycarbonyl, Phenyl-aminocarbonyl, Methyl-aminocarbonyl, Phenyl-sulfonyl, 2,6-Dioxohexahydro-pyrimidine-4-carbonyl und Methyl-sulfonyl umfasst.

In einer Ausführungsform ist vorgesehen, dass

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin, 1-Naphtylalanin, 2-

12

Thienylalanin, 3-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige Derivate davon umfasst;

oder X2 und X1 zusammengenommen PhCH2CH2CO- oder PhCH2- sind;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Tryptophan, Phenylalanin, Tyrosin, Histidin, 1-Naphtylalanin, Benzothienylalanin, 2-Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein, Cystein(Me), Cystein(Et), Cystein(Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin, Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

In einer Ausführungsform weist X1 und/oder X4 eine oder mehrere die Wasserlöslichkeit verbessernde Gruppen auf, wobei die die Wasserlöslichkeit verbessernde Gruppe ausgewählt ist aus der Gruppe, die Hydroxy, Keto, Carboxamido, Ether, Harnstoff, Carbamat, Amino, substituiertes Amino, Guanidino, Pyridyl und Carboxyl umfasst.

In einem zweiten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X3 und X5-X7 definiert sind, wie gemäß dem ersten Aspekt und wobei

X4 eine zyklische oder eine nichtzyklische Aminosäure ist, wobei die zyklische Aminosäure ausgewählt ist aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-carbonsäure, 1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, cis-Hyp und trans-Hyp umfasst, und die nichtzyklische Aminosäure ausgewählt aus der Gruppe, die Ser, Gln, Asn, Cys(O₂CH₂CH₂CONH₂), Arg, Hyp(COCH₂OCH₂CH₂OCH₂CH₂OCH₃), Hyp(CONH-CH₂CH(OH)-CH₂OH) und jeweilige Derivate davon und jeweilige Analoga davon umfasst; und

die Verbindungslinien – in Formel (I) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen und Aminotriazin-Bindungen umfasst.

In einer Ausführungsform ist die durch X4 dargestellte Aminosäure bevorzugt ausgewählt aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-3-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-carbonsäure, 1-Azabicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, Hyp, Ser, Gln, Asn, Cys(O₂CH₂CONH₂) und Arg umfasst.

In einer Ausführungsform ist vorgesehen, dass

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin, 1-Naphtylalanin, 2-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige

14

oder X2 und X1 zusammengenommen PhCH2CH2CO- oder PhCH2- sind;

Derivate davon umfasst;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Tryptophan, Phenylalanin, Tyrosin, Histidin, 1-Naphtylalanin, Benzothienylalanin, 2-Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein, Cystein(Me), Cystein(Et), Cystein(Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin, Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

In einem dritten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X2 und X4-X7 definiert sind, wie in Aspekt 1 und/oder 2 der vorliegenden Erfindung und wobei

X3 folgende Struktur aufweist

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist, R1ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylakyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst;

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CF₃, Alkyl und substituiertes Alkyl umfasst;

die Bindung von Struktur (IV) an die Molekülbestandteile X2 und X4 bevorzugt über R1 und R2 erfolgt;

R3 ein Radikal ist, das ausgewählt ist aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl,

substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Cycloalkylalkyl, substituiertes Cycloalkylalkyl, Heterocyclylalkyl, substituiertes Heterocyclylalkyl, Arylalkyl, substituiertes Arylalkyl, Heteroarylalkyl und substituiertes Heteroarylalkyl umfasst.

Y optional vorhanden ist und wenn Y vorhanden ist, Y ein Radikal ist, das ausgewählt ist aus der Gruppe, die -N(YB)-, -O-, -S-, -S-S-, -CO-, -C=N-O-, -CO-N(YB)- und

umfasst, wobei YB, YB1 und YB2 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylakyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst.

In einer Ausführungsform ist vorgesehen, dass

R3 ein Radikal ist, das ausgewählt ist aus der Gruppe, die Methyl, Ethyl, Propyl, Butyl, Benzyl und

$$-C$$
 N $-$

umfasst;

Y optional vorhanden ist und wenn Y vorhanden ist, Y ein Radikal ist, das ausgewählt ist aus der Gruppe, die –N(YB)-, -O-, -S- und -S-S- umfasst, und YB bevorzugterweise wie in Anspruch 14 definiert ist.

In einer Ausführungsform ist vorgesehen, dass

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige Derivate davon umfasst;

oder X2 und X1 zusammengenommen PhCH₂CH₂CO- oder PhCH₂- sind;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Tryptophan, Phenylalanin, Tyrosin, Histidin, 1-Naphtylalanin, Benzothienylalanin, 2-Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein, Cystein(Me), Cystein(Et), Cystein(Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin, Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

In einer Ausführungsform der Aspekte eins bis drei der vorliegenden Erfindung ist vorgesehen, dass X3 ein Aminosäurederivat einer Aminosäure ist, wobei die Aminosäure ausgewählt ist aus der Gruppe, die alpha-amino-Glycin, alpha-beta-Diaminopropionsäure (Dap), alpha-gamma-diaminobuttersäure (Dab), Ornithin, Lysin, Homolysin, Phe(4-NH2), 2-amino-3-(4-piperidinyl)propionsäure und 2-amino-3-(3-piperidinyl)propionsäure umfasst, und die Aminosäure an der Seitenkette derivatisiert ist.

In einem vierten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, bevorzugtererweise nach einem der Aspekte eins bis vier der vorliegenden Erfindung, mit folgender Struktur:

, wobei

A ausgewählt ist aus der Gruppe, die H, NH2, NHAlkyl, NAlkyl2, NHAcyl und OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2(Aryl), CH(Aryl)2, CH2(Heteroaryl), substituiertes CH2(Aryl), Aryl, substituiertes Aryl und Heteroaryl umfaßt,

C1 und C2 einzeln und unabhängig ausgewählt sind aus der Gruppe, die Alkyl und substituiertes Alkyl umfaßt, wobei optional zwischen C1 und C2 eine Bindung ausgebildet sein kann,

D ausgewählt ist aus der Gruppe, die Alkyl, Cycloalkyl, CH2(Cycloalkyl), CH2CH2(Cycloalkyl), CH2Ph(2-Me) und CH2-S-Alkyl umfaßt,

E ausgewählt ist aus der Gruppe, die CH2(Aryl), substituiertes CH2(Aryl) und CH2(Heteroaryl) umfaßt,

F ausgewählt ist aus der Gruppe, die Alkyl, CH2-S-Alkyl, CH2CH2-S-Me, CH2CH=CH2, CH-CCH, Cyclohexyl, CH2Cyclohexyl, CH2Ph, CH2Naphtyl, CH2Thienyl umfaßt,

Z1 ausgewählt ist aus der Gruppe, die (CH2)nNH mit n = 1, 2, 3, 4, (CH2)3O, (CH2)2O, (CH2)4, (CH2)3, CH2Ph(4-NH) und CH2(4-Piperidinyl) umfasst, und

Z3 optional vorhanden ist, und wenn Z3 vorhanden ist, dann ausgewählt ist aus der Gruppe, die CO und CH2 umfaßt.

Die einzelnen Molekülteile dieser Ausführungsform der erfindungsgemäßen Verbindung, wie dargestellt in Formel (V) kann zu den Molekülteilen der erfindungsgemäßen Verbindungen gemäß Formel (I) wie folgt in Beziehung gesetzt werden:

In einer Ausführungsform des vierten Aspektes ist vorgesehen, dass

A ausgewählt ist aus der Gruppe, die H, NH2, NHEt, NHAc, OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(4-F), CH(Ph)2, CH2Thienyl, CH2Naphtyl, Ph(4-F) und Thienyl umfaßt,

C1 ausgewählt ist aus der Gruppe, die H und Methyl umfaßt, C2 ausgewählt ist aus der Gruppe, die Methyl und CH2OH umfaßt, oder wenn C1 und C2 durch eine Bindung verbunden sind, die sich daraus ergebende Struktur aus der Gruppe ausgewählt ist, die –(CH2)2-, –(CH2)3-, – (CH2)4- und -CH2CH(OH)CH2- umfasst.

D ausgewählt ist aus der Gruppe, die CH2CH2iPr, CH2iPr, Cyclohexyl, CH2Cyclohexyl, CH2CH2Cyclohexyl, CH2Ph(2-Me), CH2-S-tBu und CH2-S-iPr umfaßt,

E ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(2-Cl), CH2Ph(3-Cl), CH2Ph(4-Cl), CH2Ph(2-F), CH2Ph(3-F), CH2Ph(4-F), CH2Indolyl, CH2Thienyl, CH2Benzothienyl und CH2Naphtyl umfaßt,

F ausgewählt ist aus der Gruppe, die (CH2)3CH3, (CH2)2CH3, (CH2)2-iPr, CH2-iPr, iPr, CH2-S-Et, CH2CH2-S-Me, CH2CH=CH2, CH2-CCH und Cyclohexyl umfaßt,

Z1 ausgewählt ist aus der Gruppe, die (CH2)nNH mit n=1, 2, 3, 4, (CH2)3O, CH2Ph(4-NH) und CH2(4-Piperidinyl) umfasst, und

Z3 optional vorhanden ist, und wenn Z3 vorhanden ist, dann ausgewählt ist aus der Gruppe, die CO und CH2 umfaßt.

In einem fünsten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, wobei die Verbindung

die folgende Struktur aufweist:

wobei d1, d2, d3 und d4 die Abstände von A, B, C und D in wenigstens einem energetisch zugänglichen Konformer der Verbindung bezeichnen und die folgenden Werte aufweisen:

$$d1 = 5.1 \pm 1.0 \text{ Å}$$

$$d2 = 11.5 \pm 1.0 \text{ Å}$$

$$d3 = 10.0 \pm 1.5 \text{ Å}$$

$$d4 = 6.9 \pm 1.5 \text{ Å}$$

A und C einzeln und unabhängig voneinander ein hydrophobes Radikal sind, wobei das hydrophobe Radikal ausgewählt ist aus der Gruppe, die Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl umfasst;

B und D einzeln und unabhängig voneinander ein aromatisches oder heteroaromatisches Radikal sind, wobei bevorzugterweise das aromatische Radikal Aryl ist, und bevorzugterweise das heteroaromatische Radikal Heteroaryl ist.

In einer Ausführungsform ist vorgesehen, dass A und C einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die C3-C6-Alkyl, C5-C7-Cycloalkyl, Methylthioethyl, Methylthio-tert-butyl, Indolyl, Phenyl, Naphtyl, Thienyl, Propenyl, Propinyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst;

B ausgewählt ist aus der Gruppe, die Phenyl, substituiertes Phenyl, Naphthyl, Thienyl, Benzothienyl, Hydroxyphenyl, Indolyl, und Imidazolyl umfasst; und

D ausgewählt ist aus der Gruppe, die Phenyl, Naphthyl, Thienyl, Thiazolyl, Furanyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst.

In einem sechsten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist,

mit folgender Struktur:

, wobei

A, B, C und D die C-alpha-Atome in Aminosäuren, Aminosäure-Analoga oder Aminosäure-Derivaten bezeichnen,

23

d1, d2, d3 und d4 die Abstände zwischen A, B, C und D in wenigstens einem energetisch zugänglichen Konformer der Verbindung bezeichnen und die folgenden Werte aufweisen:

$$d1 = 3.9 \pm 0.5 \text{ Å}$$

$$d2 = 3.9 \pm 0.5 \text{ Å}$$

$$d3 = 9.0 \pm 1.5 \text{ Å}$$

$$d4 = 9.0 \pm 1.5 \text{ Å};$$

wobei die Aminosäuren, deren alpha-Atome durch A und C dargestellt sind, einzeln und unabhängig voneinander eine hydrophobe Aminosäure-Seitenkette aufweisen, die eine Alkyl-, Cycloalkyl, Cycloalkylalkyl, Heterocyclyl, Aryl, Arylalkyl, Heteroaryl, Heteroarylalkyl oder Methylthio-tert-butyl-Gruppe umfasst.

wobei die Aminosäuren, deren alpha-Atome durch B und D dargestellt sind, einzeln und unabhängig voneinander eine aromatische oder heteroaromatische Aminosäure-Seitenkette aufweisen, die eine Aryl, Arylalkyl, Heteroaryl oder Heteroarylalkyl-Gruppe umfasst.

In einer Ausführungsform ist vorgesehen, dass

die Aminosäure, dessen alpha-Atom durch A dargestellt ist, ausgewählt ist aus der Gruppe, die C3-C6-Alkyl, Methylthioethyl, Propenyl, Propinyl, R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das ausgewählt ist aus der Gruppe, die C5-C7-Cycloalkyl, Phenyl, substituiertes Phenyl, Hydroxyphenyl, Indolyl, Imidazolyl, Naphtyl und Thienyl umfasst;

die Aminosäure, dessen alpha-Atom durch B dargestellt ist, ausgewählt ist aus der Gruppe, die R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das ausgewählt ist aus der Gruppe, die Phenyl, substituiertes Phenyl, Naphtyl, Thienyl, Benzothienyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst;

die Aminosäure, dessen alpha-Atom durch C dargestellt ist, ausgewählt ist aus der Gruppe, die C3-C6-Alkyl, R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das aus der

Gruppe ausgewählt ist, die C5-C7-Cycloalkyl, Phenyl, 1-Methyl-Phenyl, 2-Methyl-Phenyl, 3-Methyl-Phenyl und S-tBu umfasst; und

die Aminosäure, dessen alpha-Atom durch D dargestellt ist, ausgewählt ist aus der Gruppe, die R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das ausgewählt ist aus der Gruppe, die Phenyl, Naphthyl, Thienyl, Thiazolyl, Furanyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst.

In einem siebten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, mit der folgenden Struktur:

, wobei

X1 ein Radikal mit einer Masse von etwa 1-300 ist und wobei X1 bevorzugterweise ausgewählt ist aus der Gruppe, die R5-, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-SO₂-, R5-N(R6)-CS-, R5-N(R6)-C(NH)-, R5-CS-, R5-P(O)OH-, R5-B(OH)-, R5-CH=N-O-CH₂-CO- umfasst, wobei R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, F, Hydroxy, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Arylalkyl, substituiertes Arylalkyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Acyl, substituiertes Acyl, Alkoxy, Alkoxyalkyl, substituiertes Alkoxyalkyl, Aryloxyalkyl und substituiertes Aryloxyalkyl umfasst,

X2 ein Radikal ist, das die biologischen Bindungseigenschaften einer Phenylalanin-Einheit mimikt,

X3 und X4 einzeln und unabhängig voneinander ein Spacer ist, wobei der Spacer bevorzugterweise aus der Gruppe ausgewählt ist, die Aminosäuren, Aminosäure-Analoga und Aminosäure-Derivate umfasst,

X5 ein Radikal ist, das die biologischen Bindungseigenschaften einer Cyclohexylalanin- oder Homoleucin-Einheit mimikt,

25

X6 ein Radikal ist, das die biologischen Bindungseigenschaften einer Tryptophan-Einheit mimikt,

X7 ein Radikal ist, das die biologischen Bindungseigenschaften einer Norleucin- oder Phenylalanin-Einheit mimikt,

X8 ein Radikal ist, wobei das Radikal optional in Struktur II enthalten ist und wenn es enthalten ist, ausgewählt ist aus der Gruppe, die H, NH₂, OH, NH-OH, NH-OAlkyl, Amino, substituiertes Amino, Alkoxy, substituiertes Alkoxy, Hydrazino, substituiertes Hydrazino, Aminooxy, substituiertes Aminooxy, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Aryl, substituiertes Aryl, Aminosäure, Aminosäurederivat und Aminosäureanalogon umfasst;

die Verbindungslinien – in Formel (II) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen und Aminotriazin-Bindungen umfasst.

In einer Ausführungsform ist vorgesehen, dass

X1 ein Radikal mit einer Masse von etwa 1-300 ist, wobei das Radikal bevorzugterweise ausgewählt ist aus der Gruppe, die R5, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-C(NH)-, umfasst, wobei bevorzugtererweise R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl und substituiertes Aryl enthält;

X2 und X6 jeweils und unabhängig voneinander eine aromatische Aminosäure, ein Derivat oder ein Analogon davon ist;

X5 und X7 einzeln und unabhängig voneinander eine hydrophobe Aminosäure, ein Derivat oder ein Analogon davon sind.

In einer Ausführungsform ist vorgesehen, dass X2, X5, X6 und X7 einzeln und unabhängig voneinander die folgende Struktur aufweisen:

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist,ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >S=O, >C=NH, >C=N-CN, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst;

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CH₃, CF₃, Alkyl und substituiertes Alkyl umfasst;

und die Bindung von Struktur (III) an die Molekülbestandteile X1 und X3, X4 und X6, X5 und X7, und X6 und X8 bevorzugt über R1 und R2 erfolgt;

27

für X2 und für X6 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aromatische Gruppe enthält und ausgewählt ist aus der Gruppe, die Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Heteroarylalkyl, substituiertes Heteroarylalkyl, Alkyloxy-Alkyl, substituiertes Alkyloxy-Alkyl, Alkyloxy-Cycloalkyl, substituiertes Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst; und

für X5 und für X7 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aliphatische oder aromatische Gruppe enthält und bevorzugterweise ausgewählt ist aus der Gruppe, die Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, Heteroarylalkyl, substituiertes Heteroarylalkyl, Arylalkyl, substituiertes substituiertes Cycloalkylalkyl, substituiertes Cycloalkylalkyl, Heterocyclylalkyl, Alkyloxy-Alkyl, substituiertes Alkyloxy-Alkyl, Alkyloxy-Cycloalkyl, Heterocyclylalkyl, Alkyloxy-Cycloalkyl, Alkyloxy-Heterocyclyl, substituiertes Alkyloxysubstituiertes Heterocyclyl, Alkyloxy-Aryl, substituiertes Alkyloxy-Aryl, Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst.

In einer Ausführungsform ist vorgesehen, dass unter Beteiligung von R3 und R4 ein Ring ausgebildet wird.

In einer Ausführungsform ist vorgesehen, dass für X2 und für X6 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die Phenyl, substituiertes Phenyl, Benzyl, substituiertes Benzyl, 1,1-Diphenylmethyl, substituiertes 1,1-Diphenylmethyl, Naphthylmethyl, substituiertes Naphthylmethyl, Thienylmethyl, substituiertes Thienylmethyl, Benzothienylmethyl, substituiertes Benzothienylmethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.

In einer Ausführungsform ist vorgesehen, dass für X5 und für X7 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die C3-C5-Alkyl, substituiertes C3-C5-Alkyl,

C5-C7-Cycloalkyl, substituiertes C5-C7-Cycloalkyl, C5-C7-Cycloalkylmethyl, substituiertes C5-C7-Cycloalkylmethyl, Cycloalkylethyl, substituiertes Cycloalkylethyl, Benzyl, substituiertes Benzyl, Phenylethyl, Naphthylmethyl, Thienylmethyl, Propenyl, Propinyl, Methylthioethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.

In einer Ausführungsform eines jeglichen Aspektes und insbesondere des siebten Aspektes der vorliegenden Erfindung ist vorgesehen, dass X8 ausgewählt ist aus der Gruppe, die H, OR1 und NR1R2 umfasst, wobei R1 und R2 einzeln und unabhängig voneinander aus der Gruppe ausgewählt sind, die H, Alkyl, Aryl, Cycloalkyl und Arylalkyl umfasst.

In einer Ausführungsform des siebten Aspektes ist vorgesehen, dass X1 ausgewählt ist aus der Gruppe, die H, Acetyl, Propanoyl, Butanoyl, Benzoyl, Fluormethylcarbonyl, Difluormethylcarbonyl, Oxycarbonyl, Methyl-oxycarbonyl, Phenyl-aminocarbonyl, Methyl-aminocarbonyl, Phenyl-sulfonyl, 2,6-Dioxo-hexahydro-pyrimidine-4-carbonyl und Methyl-sulfonyl umfasst.

In einer Ausführungsform des siebten Aspektes ist vorgesehen, dass X1 und/oder X4 eine oder mehrere die Wasserlöslichkeit verbessernde Gruppen aufweisen, wobei die die Wasserlöslichkeit verbessernde Gruppe ausgewählt ist aus der Gruppe, die Hydroxy, Keto, Carboxamido, Ether, Harnstoff, Carbamat, Amino, substituiertes Amino, Guanidino, Pyridyl und Carboxyl umfasst.

In einem achten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X3 und X5-X8 definiert sind, wie gemäß dem siebten Aspekt der vorliegenden Erfindung und wobei

X4 eine zyklische oder eine nichtzyklische Aminosäure ist, wobei die zyklische Aminosäure ausgewählt ist aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-

carbonsäure, 1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, cis-Hyp und trans-Hyp umfasst und die nichtzyklische Aminosäure ausgewählt aus der Gruppe, die Ser, Gln, Asn, Cys(O₂CH₂CH₂CONH₂), Arg, Hyp(COCH₂OCH₂CH₂OCH₂CH₂OCH₃), Hyp(CONH-CH₂CH(OH)-CH₂OH) und jeweilige Derivate davon und jeweilige Analoga davon umfasst; und

die Verbindungslinien – in Formel (I) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen und Aminotriazin-Bindungen umfasst.

In einer Ausführungsform gemäß dem achten Aspekt der vorliegenden Erfindung ist vorgesehen, dass die durch X4 dargestellte Aminosäure bevorzugt ausgewählt ist aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-3-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-carbonsäure, 1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, Hyp, Ser, Gln, Asn, Cys(O₂CH₂CONH₂) und Arg umfasst.

In einem neunten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X2 und X4-X8 definiert sind gemäß dem siebten und achten Aspekt der vorliegenden Erfindung und wobei

X3 folgende Struktur aufweist:

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist, R1 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, substituiertes Heteroaryl, substituiertes Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst;

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CF₃, Alkyl und substituiertes Alkyl umfasst;

die Bindung von Struktur (IV) an die Molekülbestandteile X2 und X4 bevorzugt über R1 und R2 erfolgt;

R3 ein Radikal ist, das aus der Gruppe ausgewählt ist, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Cycloalkylalkyl, substituiertes Cycloalkylalkyl, Heterocyclyl, substituiertes Heterocyclyl, Heterocyclylalkyl, substituiertes Heterocyclylalkyl, Aryl, substituiertes Aryl, Arylalkyl, substituiertes Arylalkyl, Heteroaryl, substituiertes Heteroaryl, substituiertes Heteroarylalkyl, Acyl, substituiertes Acyl, Alkoxyalkyl, substituiertes Alkoxyalkyl, Aryloxyalkyl, substituiertes Aryloxyalkyl, Sulfhydrylalkyl, substituiertes Sulfhydrylalkyl, Hydroxyalkyl, substituiertes Hydroxyalkyl,

Carboxyalkyl, substituiertes Carboxyalkyl, Carboxamidoalkyl, substituiertes Carboxamidoalkyl, Carboxyhydrazinoalkyl, Ureidoalkyl Aminoalkyl, substituiertes Aminoalkyl, Guanidinoalkyl und substituiertes Guanidinoalkyl umfasst.

Y optional vorhanden ist und wenn Y vorhanden ist, Y ein Radikal ist, das ausgewählt ist aus der Gruppe, die H, -N(YB1)-CO-YB2, -N(YB1)-CO-N(YB2)(YB3), -N(YB1)-C(N-YB2)-N(YB3)(YB4), -N(YB1)(YB2), -N(YB1)-SO₂-YB2, O-YB1, S-YB1, -CO-YB1, -CO-N(YB1)(YB2) und -C=N-O-YB1 umfasst, wobei YB1, YB2, YB3 und YB4 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, CN, NO₂, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylakyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst.

In einer Ausführungsform des neunten Aspektes ist vorgesehen, dass

R3 ein Radikal ist mit der Struktur

-(CH₂)_m-Y (VII) oder -(CH₂)_m-C₆H₄-Y (VIII) ist

. wobei

m 1, 2, 3 oder 4 ist;

Y N(R3b)(R3c) oder -N(YB1)-C(N-YB2)-N(YB3)(YB4) ist, wobei R3b, R3c, YB1, YB2, YB3 und YB4 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, CN und Alkyl umfasst.

In einer Ausführungsform des neunten Aspektes ist vorgesehen, dass ein Ring zwischen jeweils zwei Molekülteilen der Verbindung ausgebildet ist, wobei die Molekülteile einzeln und unabhängig voneinander aus der Gruppe ausgewählt sind, die YB1, YB2, YB3 und YB 4 umfasst.

In einer bevorzugten Ausführungsform des neunten Aspektes ist vorgesehen, dass der Ring unter Beteiligung von YB2 und YB3 ausgebildet ist.

In einer Ausführungsform des neunten Aspektes ist vorgesehen, dass Y
-NH₂

In einer Ausführungsform gemäß dem siebten bis neunten Aspekt der vorliegenden Erfindung ist vorgesehen, dass

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige Derivate davon umfasst;

oder X2 und X1 zusammengenommen PhCH2CH2CO- oder PhCH2- sind;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Tryptophan, Phenylalanin, Tyrosin, Histidin, 1-Naphtylalanin, Benzothienylalanin, 2-Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein, Cystein(Me), Cystein(Et), Cystein(Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin, Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

In einer Ausführungsform gemäß dem siebten bis neunten Aspekt der vorliegenden Erfindung ist vorgesehen, dass X3 ein Aminosäurederivat einer Aminosäure ist, wobei die Aminosäure ausgewählt ist aus der Gruppe, die alpha-amino-Glycin, alpha-beta-Diaminopropionsäure (Dap), alpha-gamma-diaminobuttersäure (Dab), Ornithin, Lysin, Homolysin, Phe(4-NH2), 2-amino-3-(4-piperidinyl)propionsäure und 2-amino-3-(3-piperidinyl)propionsäure umfasst, und die Aminosäure an der Seitenkette derivatisiert ist.

In einem zehnten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verbindung, bevorzugterweise einen C5a-Rezeptor-Antagonist, bevorzugtererweise gemäß dem siebten bis neunten Aspekt der vorliegenden Erfindung, mit folgender Struktur:

, wobei

A ausgewählt ist aus der Gruppe, die H, NH2, NHAlkyl, NAlkyl2, NHAcyl, substituiertes NHAcyl und OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2(Aryl), CH(Aryl)2, CH2(Heteroaryl) und substituiertes CH2(Aryl) umfaßt,

C1 und C2 einzeln und unabhängig ausgewählt sind aus der Gruppe, die Alkyl und substituiertes Alkyl umfaßt, wobei optional zwischen C1 und C2 eine Bindung ausgebildet sein kann,

D ausgewählt ist aus der Gruppe, die Alkyl, Cycloalkyl, CH2(Cycloalkyl), CH2CH2(Cycloalkyl), CH2Ph(2-Me) und CH2-S-Alkyl umfaßt,

E ausgewählt ist aus der Gruppe, die CH2(Aryl), substituiertes CH2(Aryl) und CH2(Heteroaryl) umfaßt.

F ausgewählt ist aus der Gruppe, die Alkyl, CH2-S-Alkyl, CH2CH2-S-Me, CH2CH=CH2, CH-CCH, Cyclohexyl, CH2Cyclohexyl, CH2Ph, CH2Naphtyl, CH2Thienyl umfaßt, und

Z2 -R3-Y- ist, wobei R3 ausgewählt ist aus der Gruppe, die H, Alkyl, Arylalkyl umfaßt, und Y optional vorhanden ist, und wenn Y vorhanden ist, Y ausgewählt ist aus der Gruppe, die H, N(YB1)(YB2), N(YB1)C(N-YB2)-N(YB3)(YB4),

umfaßt, wobei YB1, YB2, YB3 und YB4 einzeln und unabhängig ausgewählt sind aus der Gruppe, die H, CN und Alkyl umfasst und optional ein Ring unter Beteiligung von wenigstens zwei von YB1, YB2, YB3 und YB4 ausgebildet ist, und

G ausgewählt ist aus der Gruppe, die H, OR1 und NR1R2 umfasst, wobei R1 und R2 einzeln und unabhängig voneinander aus der Gruppe ausgewählt sind, die H, Alkyl, Aryl, Cycloalkyl und Arylalkyl umfasst.

In einer Ausführungsform des zehnten Aspektes ist vorgesehen, dass

A ausgewählt ist aus der Gruppe, die H, NH2, NHEt, NHAc, OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(4-F), CH(Ph)2, CH2Thienyl und CH2Naphtyl umfaßt,

C1 ausgewählt ist aus der Gruppe, die H und Methyl umfaßt, C2 ausgewählt ist aus der Gruppe, die Methyl und CH2OH umfaßt, oder wenn C1 und C2 durch eine Bindung verbunden sind, die sich daraus ergebende Struktur aus der Gruppe ausgewählt ist, die –(CH2)2-, –(CH2)3-, – (CH2)4- und -CH2CH(OH)CH2- umfasst.

D ausgewählt ist aus der Gruppe, die CH2CH2iPr, CH2iPr, Cyclohexyl, CH2Cyclohexyl, CH2CH2Cyclohexyl, CH2Ph(2-Me), CH2-S-tBu und CH2-S-iPr umfaßt,

E ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(2-Cl), CH2Ph(3-Cl), CH2Ph(4-Cl), CH2Ph(2-F), CH2Ph(3-F), CH2Ph(4-F), CH2Indolyl, CH2Thienyl, CH2Benzothienyl und CH2Naphtyl umfaßt,

F ausgewählt ist aus der Gruppe, die (CH2)3CH3, (CH2)2CH3, (CH2)2-iPr, CH2-iPr, iPr, CH2-S-Et, CH2CH2-S-Me, CH2CH=CH2, CH2-CCH und Cyclohexyl umfaßt,

Z2 -R3-Y- ist, wobei R3 ausgewählt ist aus der Gruppe, die CH2, (CH2)2, (CH2)3, (CH2)4 und CH2-C6H4 umfaßt, und Y ausgewählt ist aus der Gruppe, die NH2, NHEt, N(Et)2,

G ausgewählt ist aus der Gruppe, die NH2, NHMe, OH, und H umfaßt.

Die einzelnen Molekülteile dieser Ausführungsformen der erfindungsgemäßen Verbindung, wie dargestellt in Formel (VI) kann zu den Molekülteilen der erfindungsgemäßen Verbindungen gemäß Formel (II) wie folgt in Beziehung gesetzt werden:

und X8 ist G.

In einer Ausführungsform des ersten bis zehnten Aspektes ist vorgesehen, dass die Verbindung eine der folgenden Verbindungen ist:

Nr.	Verbindung
1	Ac-Phe-[Orn-Pro-cha-Trp-Phe]
2	Ac-Phe-[Om-Hyp-cha-Trp-Phe]
3	HOCH ₂ (CHOH) ₄ -C=N-O-CH ₂ -CO-Phe-[Orn-Pro-cha-Trp-
	Nle]
4	X-Phe-[Orn-Pro-cha-Trp-Nle]; X = 2-Acetamido-1-Methyl-
	Glucuronyl
5	Ac-Phe-[Orn-Hyp(COCH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃)-cha-
	Trp-Nle]
6	Ac-Phe-[Orn-Hyp(CONH-CH ₂ CH(OH)-CH ₂ OH)-cha-Trp-
	Nle]
20	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]
28	Ac-Phe-[Orn-Pro-cha-Trp-Nle]
29	Ac-Phe-[Orn-Pro-cha-Trp-Met]
31	Ac-Phe-[Orn-Pro-cha-Trp-Nva]
32	Ac-Phe-[Orn-Pro-cha-Trp-Hle]
33	Ac-Phe-[Orn-Pro-cha-Trp-Eaf]
34	Ac-Phe-[Orn-Pro-cha-Trp-Ebd]
35	Ac-Phe-[Orn-Pro-cha-Trp-Eag]
36	Ac-Phe-[Orn-Pro-cha-Trp-Pmf]
37	Ac-Phe-[Orn-Pro-cha-Trp-2Ni]
38	Ac-Phe-[Orn-Pro-cha-Trp-Thi]
41	Ph-CH ₂ -CH ₂ -CO-[Orn-Pro-cha-Trp-Nle]
42	H-Phe-[Orn-Pro-cha-Trp-Nle]
43	Ac-Lys-Phe-[Orn-Pro-cha-Trp-Nle]
44	H-Phe-[Orn-Ser-cha-Trp-Nle]
51	Ac-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
52	Ac-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
53	Ac-Phe-Orn-Pro-cha-Bta-2Ni-NH ₂
54	Ac-Phe-Orn-Pro-cha-Bta-Cha-NH ₂
55	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH ₂
56	Ph-CH ₂ -[Orn-Pro-cha-Trp-Nle]
57	Ph-CH ₂ -[Orn-Pro-cha-Trp-Phe]

WO 2005/010030

58	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]
59	Ph-CH(OH)-CH ₂ -CO-[Om-Pro-cha-Trp-Nle]
61	Ac-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
62	Ac-Phe-Om-Pro-cha-Bta-Phe-NH ₂
64	Ac-Phe-Orn-Pro-cha-Trp-2Ni-NH ₂
65	Ac-Phe-Om-Pro-cha-Trp-Cha-NH ₂
66	Ac-Thi-Orn-Aze-cha-Bta-Phe-NH ₂
67	Ac-Thi-Orn-Pip-cha-Bta-Phe-NH ₂
68	Ac-Phe-Orn-Pro-cha-Trp-Eap-NH ₂
69	Me ₂ -Phe-Orn-Pro-cha-Trp-Phe-NH ₂
70	Ph ₂ -CH-CH ₂ -CO-Orn-Pro-cha-Trp-Phe-NH ₂
71	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH ₂
72	Ac-Phe-Om-Pro-cha-Trp-NH-CH ₂ -CH ₂ -Ph
73	Ac-Phe-Orn-Aze-cha-Bta-NH-CH ₂ -CH ₂ -Ph
74	H-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
75	H-Me-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
76	Bu-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
77	Ac-Thi-Orn-Pro-cha-Trp-Phe-NH ₂
78	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH ₂
79	Ac-Phe-Orn-Ala-cha-Trp-Phe-NH ₂
80	Ac-Phe-Orn-Pro-cha-Trp-Thi-NH ₂
81	Ac-Phe-Orn-Aze-cha-Pcf-Phe-NH ₂
82	Ac-Phe-Orn(Ac)-Pro-cha-Trp-Phe-NH ₂
83	Ac-Phe-Orn-Aze-cha-Trp-Phe-NH ₂
84	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH ₂
85	Ph-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
86	Bu-O-CO-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
87	Ac-Phe-Lys-Pro-cha-Trp-Phe-NH ₂
88	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH ₂
89	Ac-Phe-Gln-Pro-cha-Trp-Phe-NH ₂
92	Ac-Phe-Om-Pip-cha-Trp-Phe-NH ₂
93	Ac-Phe-Orn-Hyp-cha-Trp-Phe-NH ₂
94	Ac-Phe-Orn-Pro-cha-Trp-1Ni-NH ₂

95	Ac-Phe-Orn-Aze-cha-Bta-Phe-NH-Me
96	CH ₃ -SO ₂ -Phe-Orn-Aze-cha-Bta-Phe-NH ₂
99	Ac-Phe-Orn-Aze-cha-Pff-Phe-NH ₂
100	Ac-Phe-Orn-Aze-cha-Mcf-Phe-NH ₂
101	Ac-Phe-Orn(Ac)-Aze-cha-Bta-Phe-NH ₂
102	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH ₂
103	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH ₂
104	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH ₂
105	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH ₂
106	3PP-Orn-Aze-cha-Bta-Phe-NH ₂
107	Ac-Phe-Om-Tic-cha-Trp-Phe-NH ₂
108	Ac-Phe-Orn-Ser-cha-Trp-Phe-NH ₂
109	Ac-Phe-Orn-Pro-chg-Trp-Phe-NH ₂
110	Ac-Phe-Orn-Pro-hch-Trp-Phe-NH ₂
111	Ac-Phe-Orn-Pro-cha-Trp-Phg-NH ₂
112	Ac-Phe-Bta-Aze-cha-Bta-Phe-NH ₂
113	Ac-Phe-Trp-Pro-cha-Bta-Phe-NH ₂
115	Ac-Phe-Orn-Pip-cha-Trp-Phe-OH
116	Ac-Phe-Om-Tic-cha-Trp-Phe-OH
117	Ac-Phe-Orn-Ser-cha-Trp-Phe-OH
118	Ac-Phe-Orn-Pro-chg-Trp-Phe-OH
119	Ac-Phe-Eec-Pro-cha-Bta-Phe-NH ₂
120	Ac-Phe-Nle-Pro-cha-Bta-Phe-NH ₂
121	Ac-Phe-Har-Pro-cha-Bta-Phe-NH ₂
122	Ac-Phe-Arg-Pro-cha-Bta-Phe-NH ₂
123	Ac-Phe-Cys(Acm)-Pro-cha-Bta-Phe-NH ₂
124	Ac-Phe-Mpa-Pro-cha-Bta-Phe-NH ₂
125	Ac-Eby-Om-Pro-cha-Bta-Phe-NH ₂
126	Ac-Phg-Orn-Pro-cha-Bta-Phe-NH ₂
127	Ac-Phe-Paf-Pro-cha-Bta-Phe-NH ₂
128	H ₂ N-CO-Phe-Om-Pro-cha-Bta-Phe-NH ₂
129	Me-O-CO-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
130	(-CO-CH ₂ -NH-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH ₂

132	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH
133	(-CO-CH ₂ -CH ₂ -CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
134	Bu-CO-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
135	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
136	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
137	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
138	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
139	Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
140	Ac-Guf-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
141	Ac-Dab-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
142	FH ₂ C-CO-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
143	Ac-Phe-Orn(Et ₂)-Pro-cha-Trp-Phe-NH ₂
144	Ac-Phe-[Orn-Hyp-cha-Trp-Nle]
145	3PP-[Orn-Hyp-cha-Trp-Nle]
146	Ac-Phe-[Orn-Pro-cha-Trp-Tyr]
147	Ac-Phe-[Orn-Pro-omf-Trp-Nle]
149	Ac-Phe-Orn-Pro-hle-Bta-Phe-NH ₂
150	Ac-Phe-Arg(CH ₂ -CH ₂)-Pro-cha-Bta-Phe-NH ₂
151	Ac-Ala-Phe-Orn-Aze-cha-Bta-Phe-NH2
152	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH2
153	Ac-Cit-Phe-Orn-Aze-cha-Bta-Phe-NH2
154	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH2
155	Ac-Gly-Phe-Orn-Aze-chg-Bta-Phe-NH2
156	Ac-Gly-Phe-Orn-Aze-hch-Bta-Phe-NH2
157	Ac-Gly-Thi-Orn-Aze-cha-Bta-Phe-NH2
158	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH2
159	Ac-Hyp-Phe-Orn-Aze-cha-Bta-Phe-NH2
160	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH2
161	Ac-Mff-Orn-Pro-cha-Bta-Phe-NH2
162	Ac-Mff-Orn-Pro-hle-Bta-Phe-NH2
163	Ac-Mff-Orn-Pro-hle-Mcf-Mff-NH2
164	Ac-Mmy-Orn-Pro-hle-Pff-Phe-NH2
165	Ac-NMF-Om-Pro-cha-Bta-Phe-NH2

166	Ac-Off-Orn-Pro-cha-Bta-Phe-NH2
167	Ac-Off-Orn-Pro-hle-Bta-Phe-NH2
168	Ac-Orn-Phe-Orn-Aze-cha-Bta-Phe-NH2
169	Ac-Pff-Orn-Pro-cha-Bta-Phe-NH2
170	Ac-Pff-Orn-Pro-hle-Bta-Phe-NH2
171	Ac-Pff-Orn-Pro-hle-Mcf-Pff-NH2
172	Ac-Phe-[Cys-Pro-cha-Bta-Phe-Cys]-NH2
173	Ac-Phe-[Om-Asn-cha-Trp-Nle]
174	Ac-Phe-[Orn-Aze-cha-Trp-Nle]
175	Ac-Phe-[Orn-Chy-cha-Trp-Nle]
176	Ac-Phe-[Orn-HyA-cha-Trp-Phe]
177	Ac-Phe-[Orn-Hyp-hle-Bta-Phe]
178	Ac-Phe-[Orn-Hyp-hle-Mcf-Phe]
179	Ac-Phe-[Orn-Hyp-hle-Pff-Nle]
180	Ac-Phe-[Orn-Hyp-hle-Pff-Phe]
181	Ac-Phe-[Om-Hyp-hle-Trp-Phe]
182	Ac-Phe-[Orn-Hyp-Mmf-Trp-Nle]
183	Ac-Phe-[Orn-Hyp-Mmf-Trp-Phe]
184	Ac-Phe-[Orn-NMD-cha-Trp-Nle]
185	Ac-Phe-[Orn-Pip-hle-Bta-Phe]
186	Ac-Phe-[Orn-Pro-cha-Pff-Nle]
187	Ac-Phe-[Orn-Pro-cha-Pff-Phe]
188	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]
189	Ac-Phe-[Orn-Pro-cha-Trp-Cha]
190	Ac-Phe-[Orn-Pro-cha-Trp-Chg]
192	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]
193	Ac-Phe-[Orn-Pro-cha-Trp-Leu]
194	Ac-Phe-[Orn-Pro-cha-Trp-nle]
195	Ac-Phe-[Orn-Pro-cha-Trp-Phe]
196	Ac-Phe-[Orn-Pro-hle-Bta-Nle]
197	Ac-Phe-[Om-Pro-hle-Bta-Phe]
198	Ac-Phe-[Orn-Pro-hle-Pff-Phe]
199	Ac-Phe-[Orn-Pro-hle-Trp-Nle]

200	Ac-Phe-[Orn-Ser-cha-Trp-Nle]
201	Ac-Phe-[Orn-Ser-cha-Trp-Nle]
202	Ac-Phe-[Orn-Ser-hle-Trp-Nle]
203	Ac-Phe-[Orn-Thr-cha-Trp-Nle]
204	Ac-Phe-[Orn-Tic-cha-Trp-Nle]
205	Ac-Phe-[Orn-Tic-cha-Trp-Nle]
206	Ac-Phe-Ala-Pro-cha-Bta-Phe-NH2
207	Ac-Phe-Arg-Pro-hle-Bta-Phe-NH2
208	Ac-Phe-Arg-Pro-hle-Mcf-Phe-NH2
209	Ac-Phe-Cit-Hyp-hle-Bta-Phe-NH2
210	Ac-Phe-Cit-Pro-cha-Bta-Phe-NH2
211	Ac-Phe-Cit-Pro-hle-Bta-Phe-NH2
212	Ac-Phe-Cit-Ser-hle-Bta-Phe-NH2
213	Ac-Phe-Dab-Aze-cha-Bta-Phe-NH2
214	Ac-Phe-Dab-Aze-hle-Bta-Phe-NH2
215	Ac-Phe-Dab-Pro-cha-Bta-Phe-NH2
216	Ac-Phe-Dap-Pro-cha-Bta-Phe-NH2
217	Ac-Phe-Ech-Pro-cha-Bta-Phe-NH2
218	Ac-Phe-Eep-Pro-cha-Bta-Phe-NH2
219	Ac-Phe-Fcn-Aze-cha-Bta-Phe-NH2
220	Ac-Phe-Fcn-Pro-cha-Bta-Phe-NH2
221	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2
222	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2
223	Ac-Phe-Fcp-Aze-cha-Bta-Phe-NH2
224	Ac-Phe-Ffa-Aze-cha-Bta-Phe-NH2
225	Ac-Phe-Ffa-Pro-cha-Bta-Phe-NH2
226	Ac-Phe-Ffa-Pro-hle-Bta-Phe-NH2
227	Ac-Phe-G23-Pro-cha-Bta-Phe-NH2
228	Ac-Phe-Guf-Pro-cha-Bta-Phe-NH2
229	Ac-Phe-Har-Aze-cha-Bta-Phe-NH2
230	Ac-Phe-His-Pro-cha-Bta-Phe-NH2
231	Ac-Phe-L22-Pro-cha-Bta-Phe-NH2
232	Ac-Phe-OrA-Pro-cha-Bta-Phe-NH2

233	Ac-Phe-OrE-Pro-cha-Bta-Phe-NH2
234	Ac-Phe-Om-Aze-hle-Bta-Phe-NH2
235	Ac-Phe-Orn-Chy-cha-Bta-Phe-NH2
236	Ac-Phe-Orn-Chy-hle-Pff-Phe-NH2
237	Ac-Phe-Orn-G24-cha-Bta-Phe-NH2
238	Ac-Phe-Orn-G25-cha-Bta-Phe-NH2
239	Ac-Phe-Orn-G26-cha-Bta-Phe-NH2
240	Ac-Phe-Orn-G27-cha-Bta-Phe-NH2
241	Ac-Phe-Orn-G30-cha-Bta-Phe-NH2
242	Ac-Phe-Orn-G31-cha-Bta-Phe-NH2
243	Ac-Phe-Orn-Hse-cha-Bta-Phe-NH2
244	Ac-Phe-Orn-Hyp-hle-Bta-Phe-NH2
245	Ac-Phe-Orn-Hyp-hle-Pff-Phe-NH2
246	Ac-Phe-Orn-NMA-cha-Bta-Phe-NH2
247	Ac-Phe-Orn-NMS-cha-Bta-Phe-NH2
248	Ac-Phe-Orn-Pro-cha-1Ni-Phe-NH2
249	Ac-Phe-Orn-Pro-cha-Bta-1Ni-NH2
250	Ac-Phe-Orn-Pro-cha-Bta-Bhf-NH2
251	Ac-Phe-Om-Pro-cha-Bta-Dff-NH2
252	Ac-Phe-Orn-Pro-cha-Bta-Eaa-NH2
253	Ac-Phe-Orn-Pro-cha-Bta-L19
254	Ac-Phe-Om-Pro-cha-Bta-Mcf-NH2
255	Ac-Phe-Orn-Pro-cha-Bta-Mff-NH2
256	Ac-Phe-Orn-Pro-cha-Bta-NH-CH(CH2OH)-CH2-Ph
257	Ac-Phe-Orn-Pro-Cha-Bta-NH-NBn-CO-NH2
258	Ac-Phe-Om-Pro-cha-Bta-Opa-NH2
259	Ac-Phe-Orn-Pro-cha-Bta-Pcf-NH2
260	Ac-Phe-Om-Pro-cha-Bta-Pmf-NH2
261	Ac-Phe-Orn-Pro-cha-Bta-Thi-NH2
262	Ac-Phe-Orn-Pro-cha-Otf-Phe-NH2
263	Ac-Phe-Orn-Pro-ctb-Bta-Phe-NH2
264	Ac-Phe-Orn-Pro-ctb-Eaa-Phe-NH2
265	Ac-Phe-Om-Pro-ctb-Mcf-Phe-NH2

	Ac-Phe-Orn-Pro-ctb-Pff-Phe-NH2
267	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH
268	Ac-Phe-Orn-Pro-hle-1Ni-Phe-NH2
269	Ac-Phe-Orn-Pro-hle-6FW-Phe-NH2
270	Ac-Phe-Orn-Pro-hle-Bta-1Ni-NH2
271	Ac-Phe-Orn-Pro-hle-Bta-2Ni-NH2
272	Ac-Phe-Orn-Pro-hle-Bta-5Ff-NH2
273	Ac-Phe-Orn-Pro-hle-Bta-Aic-NH2
274	Ac-Phe-Orn-Pro-hle-Bta-Cha-NH2
275	Ac-Phe-Orn-Pro-hle-Bta-Chg-NH2
276	Ac-Phe-Orn-Pro-hle-Bta-Eaa-NH2
277	Ac-Phe-Orn-Pro-hle-Bta-Egy-NH2
278	Ac-Phe-Orn-Pro-hle-Bta-Pcf-NH2
279	Ac-Phe-Orn-Pro-hle-Bta-Pff-NH2
280	Ac-Phe-Orn-Pro-hle-Bta-Phe-NH2
281	Ac-Phe-Orn-Pro-hle-Bta-phe-OH
282	Ac-Phe-Orn-Pro-hle-Bta-Tyr-NH2
283	Ac-Phe-Orn-Pro-hle-Dff-Phe-NH2
284	Ac-Phe-Om-Pro-hle-Eaa-Phe-NH2
285	Ac-Phe-Orn-Pro-hle-Egc-Phe-NH2
286	Ac-Phe-Orn-Pro-hle-Egy-Phe-NH2
287	Ac-Phe-Orn-Pro-hle-Egz-Phe-NH2
288	Ac-Phe-Orn-Pro-hle-Mcf-2Ni-NH2
289	Ac-Phe-Orn-Pro-hle-Mcf-Cha-NH2
290	Ac-Phe-Om-Pro-hle-Mcf-Pff-NH2
291	Ac-Phe-Orn-Pro-hle-Mcf-Phe-NH2
292	Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2
293	Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2
294	Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2
295	Ac-Phe-Orn-Pro-hle-Off-Phe-NH2
296	Ac-Phe-Orn-Pro-hle-Otf-Phe-NH2
297	Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2
298	Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2

PCT/EP2004/008057

299	Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2
300	Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2
301	Ac-Phe-Om-Pro-hle-Pff-Pff-NH2
302	Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2
304	Ac-Phe-Om-Pro-hle-Phe-Phe-NH2
305	Ac-Phe-Orn-Pro-hle-Tff-Phe-NH2
306	Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2
307	Ac-Phe-Om-Pro-ile-Trp-Phe-NH2
308	Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2
309	Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2
310	Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2
311	Ac-Thi-[Orn-Pro-hle-Bta-Phe]
312	Ac-Thi-Orn-Pro-cha-Bta-Phe-NH2
313	Ac-Thi-Orn-Pro-cha-Bta-Thi-NH2
314	Ac-Thr-Phe-Orn-Aze-cha-Bta-Phe-NH2
315	Bzl-[Orn-Pro-cha-Bta-Nle]
316	CH3CH2CO-Phe-Orn-Pro-cha-Bta-Phe-NH2
317	Def-[Orn-Ser-hle-Trp-Nle]
318	Eby-Phe-[Orn-Hyp-cha-Trp-Phe]
319	Eth-Phe-[Orn-Pro-hle-Pff-Nle]
320	FAc-Phe-Fib-Aze-cha-Bta-Phe-NH2
321	FAc-Phe-Orn-Aze-cha-Bta-Phe-NH2
322	FAc-Phe-Orn-Pro-cha-Bta-Phe-NH2
323	Fai-Phe-[Orn-Hyp-cha-Trp-Phe]
324	Faz-Orn-Pro-cha-Bta-Phe-NH2
325	Fbi-Phe-[Orn-Pro-cha-Trp-Nle]
326	Fbn-Phe-[Orn-Hyp-cha-Trp-Phe]
327	Fbn-Phe-[Orn-Pro-cha-Trp-Nle]
328	Fbn-Phe-[Orn-Pro-cha-Trp-Nle]
329	Fbn-Phe-Cit-Pro-hle-Bta-Phe-NH2
330	Fbo-Phe-[Orn-Pro-cha-Trp-Nle]
331	Fbp-[Orn-Pro-cha-Trp-Nle]
332	Fci-[Phe-Orn-Hyp-cha-Trp-Phe]

333	Fck-[Phe-Orn-Pro-cha-Trp-Nle]
334	Fck-Phe-[Orn-Pro-cha-Trp-Nle]
335	Fha-Phe-[Orn-Hyp-cha-Trp-Phe]
336	Fhb-[Phe-Orn-Hyp-cha-Trp-Phe]
337	Fhi-Phe-[Orn-Hyp-cha-Trp-Phe]
338	Fhu-Phe-[Orn-Pro-hle-Pff-Nle]
339	Fhu-Phe-Orn-Pro-cha-Bta-Phe-NH2
340	Fid-Phe-Orn-Pro-cha-Bta-Phe-NH2
341	H-Amf-[Orn-Aze-hle-Pff-Nle]
342	H-Bal-Phe-[Orn-Hyp-hle-Trp-Nle]
343	H-Bal-Phe-[Orn-Pro-hle-Pff-Nle]
344	H-Eby-[Om-Hyp-hle-Trp-Nle]
345	H-Gly-Phe-Orn-Pro-cha-Bta-Phe-NH2
346	H-Nip-Phe-Cit-Pro-hle-Bta-Phe-NH2
347	Hoo-Phe-[Orn-Hyp-hle-Pff-Nle]
348	Hoo-Phe-Cit-Pro-hle-Pff-Phe-NH2
349	Hoo-Phe-Orn-Hyp-hle-Pff-Phe-NH2
350	Hoo-Phe-Orn-Pro-hle-Bta-Phe-NH2
351	Hoo-Phe-Orn-Pro-hle-Mcf-Phe-NH2
352	Hoo-Phe-Orn-Pro-hle-Pff-Phe-NH2
353	H-Phe-[Lys-Hyp-hle-Pff-Nle]
354	H-Phe-[Orn-Hym-hle-Mcf-Nle]
355	H-Phe-[Orn-Hym-hle-Pff-Phe]
356	H-Phe-[Orn-Hyp-cha-Trp-Nle]
357	H-Phe-[Orn-Hyp-cha-Trp-Phe]
358	H-Phe-[Orn-Hyp-ctb-Pff-Nle]
359	H-Phe-[Om-Hyp-ctb-Trp-Nle]
360	H-Phe-[Orn-Hyp-ctb-Trp-Phe]
361	H-Phe-[Orn-Hyp-hle-Mcf-Leu]
362	H-Phe-[Om-Hyp-hle-Pff-Chg]
363	H-Phe-[Om-Hyp-hle-Pff-Hle]
364	H-Phe-[Orn-Hyp-hle-Pff-Leu]
365	H-Phe-[Orn-Hyp-hle-Pff-Nle]

366	H-Phe-[Orn-Hyp-hle-Pff-Phe]
367	H-Phe-[Orn-Hyp-hle-Trp-Hle]
368	H-Phe-[Orn-Hyp-hle-Trp-Leu]
369	H-Phe-[Orn-Hyp-hle-Trp-Nle]
370	H-Phe-[Orn-Hyp-hle-Trp-Nva]
371	H-Phe-[Orn-Hyp-hle-Trp-Phe]
372	H-Phe-[Orn-NMS-cha-Trp-Nle]
373	H-Phe-[Orn-NMS-hle-Pff-Phe]
374	H-Phe-[Orn-Pro-cha-Pff-Nle]
375	H-Phe-[Orn-Pro-cha-Pff-Phe]
376	H-Phe-[Orn-Pro-cha-Trp-Nle]
377	H-Phe-[Orn-Pro-hle-Mcf-Phe]
378	H-Phe-[Orn-Pro-hle-Ocf-Phe]
379	H-Phe-[Orn-Pro-hle-Pff-Nle]
380	H-Phe-[Orn-Pro-hle-Pff-Phe]
381	H-Phe-[Orn-Pro-hle-Trp-Nle]
382	H-Phe-[Orn-Ser-cha-Trp-Nle]
383	H-Phe-[Orn-Ser-cha-Trp-Phe]
384	H-Phe-[Orn-Ser-hle-Eaa-Nle]
385	H-Phe-[Orn-Ser-hle-Mcf-Leu]
386	H-Phe-[Orn-Ser-hle-Ocf-Nle]
387	H-Phe-[Om-Ser-hle-Pff-Leu]
388	H-Phe-[Om-Ser-hle-Pff-Nle]
389	H-Phe-[Orn-Ser-hle-Pff-Phe]
390	H-Phe-[Orn-Ser-hle-Trp-Nle]
391	H-Phe-Cit-Pro-hle-Bta-Phe-NH2
392	Ohf-[Orn-Hyp-hle-Trp-Nle]
393	Tmg-Phe-[Om-Hyp-cha-Trp-Phe]

In einem elften Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine pharmazeutische Formulierung umfassend mindestens eine Verbindung gemäß einem der vorangehenden Ansprüchen und zusätzlich ein pharmazeutisch akzeptables Trägermittel.

In einem zwölften Aspekt wird die Aufgabe erfindungsgemäß gelöst durch eine Verwendung mindestens einer Verbindung nach dem ersten bis zehnten Aspekt der vorliegenden Erfindung zur Herstellung eines Medikamentes.

In einer Ausführungsform des zwölften Aspektes ist vorgesehen, dass das Medikament für die Prävention und/oder Behandlung einer Erkrankung verwendet wird, bei der das Komplementsystem aktiviert ist und/oder bei der die Inhibierung des Komplementsystems eine Linderung der Symptome hervorruft.

In einer Ausführungsform des zwölften Aspektes ist vorgesehen, dass das Medikament für die Prävention und/oder Behandlung einer Erkrankung verwendet wird, bei der die Inhibierung der Aktivierung des C5a Rezeptors allein und/oder in Kombination mit anderen Therapeutika eine Linderung der Symptome hervorruft.

In einer Ausführungsform des zwölften Aspektes ist vorgesehen, dass die Krankheit und/oder die zu behandelnden Symptome ausgewählt sind aus der Gruppe Autoimmunerkrankungen, akute inflammatorischer Erkrankungen, Traumata, lokale Entzündungen, Schock, Verbrennungen.

In einer Ausführungsform des zwölften Aspektes ist vorgesehen, dass die Erkrankungen ausgewählt sind aus der Gruppe umfassend rheumatoide Arthritis, ankylose Spondylitis, Sarkoidose, systemischer Lupus erythematodes, multiple Sklerose, Psoriasis, septischer Schock, hämorrhagischer Schock, SIRS (septic inflammatory response syndrom), MOF (Multiorganversagen), Asthma, Vaskulitis, Myokarditis, Dermatomyositis, entzündliche Darmerkrankungen (IBD: inflammatory bowel disease), Pemphigus, Myasthenia gravis, Glomerulonephritis, akute respiratorische Insuffizienz. Gehirnschlag, Herzinfarkt, Reperfusionsschaden, neurokognitive Dysfunktionen, Antiphospholipid-Syndrom, Verbrennungen, entzündliche Erkrankungen des Auges, lokale Manifestationen systemischer Erkrankungen, entzündliche Gefäßerkrankungen und akute Verletzungen des zentralen Nervensystems.

In einer Ausführungsform des zwölften Aspektes ist vorgesehen, dass die entzündliche Erkrankung des Auges aus der Gruppe ausgewählt ist, die Uveitis, altersabhängige Makulardegenration, diabetische Retinopathie, diabetisches makulares Ödem, okularen

Pemphigoid, Keratoconjunctivitis, Stevens-Johnson Syndrom und Graves Ophthalmophatie umfasst.

In einer Ausführungsform des zwölften Aspektes ist vorgesehen, dass die Erkrankung eine lokale Manifestation systemischer Erkrankungen ist, wobei die systemische Erkrankung aus der Gruppe ausgewählt ist, die Rheuma, SLE und Typ I und Typ II Diabetis umfasst.

In einer bevorzugten Ausführungsform des zwölften Aspektes ist vorgesehen, dass die Manifestationen ausgewählt sind aus der Gruppe die Manifestationen am Auge, am oder im Gehirn, an den Gefäßen, am Herzen, an der Lunge, an den Nieren, an der Leber, des gastrointestinalen Traktes, der Milz, der Haut, am Knochensystem, am lyphatischen System und im Blut ausgewählt ist.

In einer Ausführungsform des zwölften Aspektes ist vorgesehen, dass die entzündliche Gefäßerkrankung aus der Gruppe ausgewählt ist, die Vaskulitis, vascular leakage und Artherosklerose umfasst.

In einem dreizehnten Aspekt wird die Aufgabe erfindungsgemäß gelöst durch die Verwendung mindestens einer Verbindung gemäß dem ersten bis zehnten Aspekt der vorliegenden Erfindung zur Prävention und/oder Unterstützung chirurgischer Eingriffe, insbesondere zur Herstellung eines hierfür geeigneten Medikamentes.

In einer Ausführungsform des zwölften und dreizehnten Aspektes der vorliegenden Erfindung ist vorgesehen, dass das Medikament zur Prävention und/oder Unterstützung chirurgischer Eingriffe verwendet werden.

In einer Ausführungsform des zwölften und dreizehnten Aspektes der vorliegenden Erfindung ist vorgesehen, dass das Medikament zur Unterstützung und/oder zur Prävention und/oder Nachsorge eines chirurgischen Eingriffs verwendet werden, wobei der chirurgische Eingriff ausgewählt ist aus der Gruppe, die CABG, PACT, PTA, MidCAB, OPCAB, Thrombolyse, Organtransplantation und Gefäßverschluss (clamping) umfasst.

In einer Ausführungsform des zwölften und dreizehnten Aspektes der vorliegenden Erfindung ist vorgesehen, dass das Medikament für die thrombolytische Behandlung verwendet wird.

In einer Ausführungsform des zwölften und dreizehnten Aspektes der vorliegenden Erfindung ist vorgesehen, dass das Medikament im Rahmen einer Dialyse-Behandlung, gegebenenfalls vor, während oder danach, verwendet wird.

In einer Ausführungsform des zwölften und dreizehnten Aspektes der vorliegenden Erfindung ist vorgesehen, dass das Medikament zur Vorbeugung von Schädigungen eines transplantierten und/oder zu transplantierenden Organs verwendet wird.

In einer Ausführungsform des zwölften und dreizehnten Aspektes der vorliegenden Erfindung ist vorgesehen, dass das Medikament zur Vorbeugung oder Behandlung von Organabstossungsreaktionen verwendet wird.

In einem noch weiteren Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Behandlung von Patienten, wobei das Verfahren die Verabreichung einer oder mehrerer der erfindungsgemäßen Verbindungen umfasst. Die Behandlung kann dabei eine Behandlung im engeren Sinne sein, schließt jedoch auch eine präventive Behandlung und eine Nachfolgebehandlung ein. In einer Ausführungsform des Verfahrens ist die Behandlung von CPB (Cardiopulmunary Bypass) Patienten, die vor neurokognitiven Dysfunktionen durch eine präventive Gabe der erfindungsgemäßen Inhibitoren geschützt werden sollen, vorgesehen.

Bei dem zu behandelnden Patienten handelt es sich bevorzugterweise um ein Säugetier, bevorzugtererweise um landwirtschaftliche Nutztiere, Sport- und Haustiere, und bevorzugtesterweise um den Menschen. In einer bevorzugten Ausführungsform ist der Patient ein solcher, der einer Behandlung bedarf. In einer weiteren bevorzugten Ausführungsform leidet der Patient unter einer der vorstehenden Erkrankungen, für deren Behandlung und/oder Prävention die erfindungsgemäßen Verbindungen verwendet werden können.

Damit stellt die vorliegende Erfindung erstmals solche Antagonisten des C5a-Rezeptors bereit, die die inhärenten pharmakologischen Nachteile der mit positiver Ladung versehenen antagonistisch aktiven Peptide des Standes der Technik überwinden.

Der vorliegenden Erfindung liegt die überraschende Erkenntnis zugrunde, dass im Gegensatz zur Lehre des Standes der Technik, auch Antagonisten des C5a-Rezeptors erhalten werden können,

WO 2005/010030 PCT/EP2004/008057 51

die unter physiologischen Bedingungen, insbesondere bei einem pH von 7.4, keine positive Nettoladung tragen und/oder deren C-terminale Aminosäure unter physiologischen Bedingungen keine positive Ladung aufweist.

Die positive Ladung in Peptiden kann nach Auffassung der vorliegenden Erfinder aus pharmakologischer Sicht sehr nachteilig sein. So können positive Ladungen z.B. zu Histamin-Freisetzung führen und geringere Membrangängigkeit verursachen (vgl. hierzu Beispiel 15). Es ist deshalb besonders wünschenswert, einen peptidischen Antagonisten, der keine positive Nettoladung besitzt (im folgenden auch als Verbindung bezeichnet), zu entwickeln.

Die Vermeidung einer C-terminalen positiven Ladung kann darüber hinaus weitere positive Effekte haben. So können Rezeptor-Spezifität oder *in vivo* bedeutsame Parameter wie Pharmakokinetik, Plasma Protein Bindung oder Mutagenität positiv beeinflußt werden.

Die in der vorliegenden Erfindung genannten Verbindungen wurden in einem primären Test auf ihre IC₅₀-Werte in einem funktionellen Testsystem geprüft. Bevorzugterweise gelten alle Verbindungen, Peptide und Peptidomimetika als im Sinne der vorliegenden Erfindung nennenswert inhibitorisch aktiv, die einen IC₅₀-Wert von weniger als 200 nM in einem funktionellen Assay, wie er in Beispiel 1 beschreiben ist, zeigen.

Insbesondere handelt es sich bei den erfindungsgemäßen Verbindungen um Antagonisten des C5a-Rezeptors. Noch bevorzugterweise sind diese als Peptide oder Peptidomimetika ausgebildet. Weiterhin liegt der vorliegenden Erfindung die überraschende Erkenntnis zugrunde, dass die erfindungsgemäß als Antagonisten des C5a-Rezeptors zu verwendenden Verbindungen eine ungeladene C-terminale Aminosäure, Aminosäurederivat oder Aminosäureanalogon tragen.

Besonders bevorzugte Verbindungen und Antagonisten gemäß der vorliegenden Erfindung sind die nachfolgenden cyclischen Verbindungen.

Nr.	Verbindung
1	Ac-Phe-[Orn-Pro-cha-Trp-Phe]
2	Ac-Phe-[Orn-Hyp-cha-Trp-Phe]
	HOCH2(CHOH)4-C=N-O-CH2-CO-Phe-[Orn-Pro-cha-Trp-
3	Nle]

	X-Phe-[Orn-Pro-cha-Trp-Nle]; X = 2-Acetamido-1-Methyl-
4	Glucuronyl
	Ac-Phe-[Orn-Hyp(COCH2OCH2CH2OCH2CH2OCH3)-
5	cha-Trp-Nle]
	Ac-Phe-[Om-Hyp(CONH-CH2CH(OH)-CH2OH)-cha-Trp-
6	Nle]
20	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]
28	Ac-Phe-[Orn-Pro-cha-Trp-Nle]
29	Ac-Phe-[Orn-Pro-cha-Trp-Met]
31	Ac-Phe-[Orn-Pro-cha-Trp-Nva]
32	Ac-Phe-[Orn-Pro-cha-Trp-Hle]
33	Ac-Phe-[Orn-Pro-cha-Trp-Eaf]
34	Ac-Phe-[Orn-Pro-cha-Trp-Ebd]
35	Ac-Phe-[Orn-Pro-cha-Trp-Eag]
36	Ac-Phe-[Orn-Pro-cha-Trp-Pmf]
37	Ac-Phe-[Orn-Pro-cha-Trp-2Ni]
38	Ac-Phe-[Orn-Pro-cha-Trp-Thi]
41	Ph-CH2-CH2-CO-[Orn-Pro-cha-Trp-Nle]
42	H-Phe-[Orn-Pro-cha-Trp-Nle]
43	Ac-Lys-Phe-[Orn-Pro-cha-Trp-Nle]
44	H-Phe-[Orn-Ser-cha-Trp-Nle]
56	Ph-CH2-[Orn-Pro-cha-Trp-Nle]
57	Ph-CH2-[Orn-Pro-cha-Trp-Phe]
58	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]
59	Ph-CH(OH)-CH2-CO-[Orn-Pro-cha-Trp-Nle]
144	Ac-Phe-[Orn-Hyp-cha-Trp-Nle]
145	3PP-[Orn-Hyp-cha-Trp-Nle]
146	Ac-Phe-[Orn-Pro-cha-Trp-Tyr]
147	Ac-Phe-[Orn-Pro-omf-Trp-Nle]
172	Ac-Phe-[Cys-Pro-cha-Bta-Phe-Cys]-NH2
173	Ac-Phe-[Orn-Asn-cha-Trp-Nle]
174	Ac-Phe-[Orn-Aze-cha-Trp-Nle]

175	Ac-Phe-[Orn-Chy-cha-Trp-Nle]
176	Ac-Phe-[Orn-HyA-cha-Trp-Phe]
177	Ac-Phe-[Orn-Hyp-hle-Bta-Phe]
178	Ac-Phe-[Orn-Hyp-hle-Mcf-Phe]
179	Ac-Phe-[Orn-Hyp-hle-Pff-Nle]
180	Ac-Phe-[Orn-Hyp-hle-Pff-Phe]
181	Ac-Phe-[Orn-Hyp-hle-Trp-Phe]
182	Ac-Phe-[Orn-Hyp-Mmf-Trp-Nle]
183	Ac-Phe-[Orn-Hyp-Mmf-Trp-Phe]
184	Ac-Phe-[Orn-NMD-cha-Trp-Nle]
185	Ac-Phe-[Orn-Pip-hle-Bta-Phe]
186	Ac-Phe-[Orn-Pro-cha-Pff-Nle]
187	Ac-Phe-[Orn-Pro-cha-Pff-Phe]
188	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]
189	Ac-Phe-[Orn-Pro-cha-Trp-Cha]
190	Ac-Phe-[Orn-Pro-cha-Trp-Chg]
192	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]
193	Ac-Phe-[Orn-Pro-cha-Trp-Leu]
194	Ac-Phe-[Orn-Pro-cha-Trp-nle]
195	Ac-Phe-[Orn-Pro-cha-Trp-Phe]
196	Ac-Phe-[Orn-Pro-hle-Bta-Nle]
197	Ac-Phe-[Orn-Pro-hle-Bta-Phe]
198	Ac-Phe-[Orn-Pro-hle-Pff-Phe]
199	Ac-Phe-[Orn-Pro-hle-Trp-Nle]
200	Ac-Phe-[Orn-Ser-cha-Trp-Nle]
201	Ac-Phe-[Orn-Ser-cha-Trp-Nle]
202	Ac-Phe-[Orn-Ser-hle-Trp-Nle]
203	Ac-Phe-[Orn-Thr-cha-Trp-Nle]
204	Ac-Phe-[Orn-Tic-cha-Trp-Nle]
205	Ac-Phe-[Orn-Tic-cha-Trp-Nle]
311	Ac-Thi-[Orn-Pro-hle-Bta-Phe]
315	Bzl-[Orn-Pro-cha-Bta-Nle]

317	Def-[Om-Ser-hle-Trp-Nle]
318	Eby-Phe-[Orn-Hyp-cha-Trp-Phe]
319	Eth-Phe-[Orn-Pro-hle-Pff-Nle]
323	Fai-Phe-[Orn-Hyp-cha-Trp-Phe]
325	Fbi-Phe-[Orn-Pro-cha-Trp-Nle]
326	Fbn-Phe-[Orn-Hyp-cha-Trp-Phe]
327	Fbn-Phe-[Orn-Pro-cha-Trp-Nle]
328	Fbn-Phe-[Orn-Pro-cha-Trp-Nle]
330	Fbo-Phe-[Orn-Pro-cha-Trp-Nle]
331	Fbp-[Orn-Pro-cha-Trp-Nle]
332	Fci-[Phe-Orn-Hyp-cha-Trp-Phe]
333	Fck-[Phe-Orn-Pro-cha-Trp-Nle]
334	Fck-Phe-[Orn-Pro-cha-Trp-Nle]
335	Fha-Phe-[Orn-Hyp-cha-Trp-Phe]
336	Fhb-[Phe-Orn-Hyp-cha-Trp-Phe]
337	Fhi-Phe-[Orn-Hyp-cha-Trp-Phe]
338	Fhu-Phe-[Orn-Pro-hle-Pff-Nle]
341	H-Amf-[Orn-Aze-hle-Pff-Nle]
342	H-Bal-Phe-[Orn-Hyp-hle-Trp-Nle]
343	H-Bal-Phe-[Orn-Pro-hle-Pff-Nle]
344	H-Eby-[Orn-Hyp-hle-Trp-Nle]
347	Hoo-Phe-[Orn-Hyp-hle-Pff-Nle]
353	H-Phe-[Lys-Hyp-hle-Pff-Nle]
354	H-Phe-[Orn-Hym-hle-Mcf-Nle]
355	H-Phe-[Orn-Hym-hle-Pff-Phe]
356	H-Phe-[Orn-Hyp-cha-Trp-Nle]
357	H-Phe-[Orn-Hyp-cha-Trp-Phe]
358	H-Phe-[Orn-Hyp-ctb-Pff-Nle]
359	H-Phe-[Orn-Hyp-ctb-Trp-Nle]
360	H-Phe-[Orn-Hyp-ctb-Trp-Phe]
361	H-Phe-[Orn-Hyp-hle-Mcf-Leu]
362	H-Phe-[Orn-Hyp-hle-Pff-Chg]

363	H-Phe-[Orn-Hyp-hle-Pff-Hle]
364	H-Phe-[Om-Hyp-hle-Pff-Leu]
365	H-Phe-[Om-Hyp-hle-Pff-Nle]
366	H-Phe-[Orn-Hyp-hle-Pff-Phe]
367	H-Phe-[Orn-Hyp-hle-Trp-Hle]
368	H-Phe-[Orn-Hyp-hle-Trp-Leu]
369	H-Phe-[Orn-Hyp-hle-Trp-Nle]
370	H-Phe-[Orn-Hyp-hle-Trp-Nva]
371	H-Phe-[Orn-Hyp-hle-Trp-Phe]
372	H-Phe-[Orn-NMS-cha-Trp-Nle]
373	H-Phe-[Orn-NMS-hle-Pff-Phe]
374	H-Phe-[Orn-Pro-cha-Pff-Nle]
375	H-Phe-[Orn-Pro-cha-Pff-Phe]
376	H-Phe-[Orn-Pro-cha-Trp-Nle]
377	H-Phe-[Orn-Pro-hle-Mcf-Phe]
378	H-Phe-[Orn-Pro-hle-Ocf-Phe]
379	H-Phe-[Orn-Pro-hle-Pff-Nle]
380	H-Phe-[Orn-Pro-hle-Pff-Phe]
381	H-Phe-[Orn-Pro-hle-Trp-Nle]
382	H-Phe-[Orn-Ser-cha-Trp-Nle]
383	H-Phe-[Om-Ser-cha-Trp-Phe]
384	H-Phe-[Orn-Ser-hle-Eaa-Nle]
385	H-Phe-[Orn-Ser-hle-Mcf-Leu]
386	H-Phe-[Orn-Ser-hle-Ocf-Nle]
387	H-Phe-[Orn-Ser-hle-Pff-Leu]
388	H-Phe-[Orn-Ser-hle-Pff-Nle]
389	H-Phe-[Orn-Ser-hle-Pff-Phe]
390	H-Phe-[Orn-Ser-hle-Trp-Nle]
392	Ohf-[Orn-Hyp-hle-Trp-Nle]
393	Tmg-Phe-[Orn-Hyp-cha-Trp-Phe]

Im Rahmen der vorliegenden Erfindung wurde jedoch auch überraschenderweise gefunden, dass lineare, also strukturell flexible Peptide ebenso potente Inhibitoren sein können, wie strukturell fixierte zyklische Peptide. Ursache dafür kann die Substitution des C-terminalen geladenen Arginins durch hydrophobe Aminosäuren, Aminosäure-Derivate oder Aminosäure-Analoga sein. Beispiele für derartige lineare erfindungsgemäße peptidische Inhibitoren sind insbesondere die in der folgenden Tabelle aufgeführten Verbindungen:

Ac-Phe-Orn-Pro-cha-Trp-Phe-NH2
Ac-Phe-Orn-Aze-cha-Bta-Phe-NH2
Ac-Phe-Orn-Pro-cha-Bta-2Ni-NH2
Ac-Phe-Orn-Pro-cha-Bta-Cha-NH2
Ac-Phe-Orn-Pip-cha-Trp-Phe-NH2
Ac-Phe-Orn-Pro-cha-Trp-Phe-NH2
Ac-Phe-Orn-Pro-cha-Bta-Phe-NH2
Ac-Phe-Orn-Pro-cha-Trp-2Ni-NH2
Ac-Phe-Orn-Pro-cha-Trp-Cha-NH2
Ac-Thi-Orn-Aze-cha-Bta-Phe-NH2
Ac-Thi-Orn-Pip-cha-Bta-Phe-NH2
Ac-Phe-Orn-Pro-cha-Trp-Eap-NH2
Me2-Phe-Orn-Pro-cha-Trp-Phe-NH2
Ph2-CH-CH2-CO-Orn-Pro-cha-Trp-Phe-NH2
Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH2
Ac-Phe-Orn-Pro-cha-Trp-NH-CH2-CH2-Ph
Ac-Phe-Orn-Aze-cha-Bta-NH-CH2-CH2-Ph
H-Phe-Orn-Pro-cha-Trp-Phe-NH2
H-Me-Phe-Orn-Pro-cha-Trp-Phe-NH2
Bu-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH2
Ac-Thi-Orn-Pro-cha-Trp-Phe-NH2
Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH2
Ac-Phe-Orn-Ala-cha-Trp-Phe-NH2
Ac-Phe-Orn-Pro-cha-Trp-Thi-NH2

81	Ac-Phe-Orn-Aze-cha-Pcf-Phe-NH2
82	Ac-Phe-Orn(Ac)-Pro-cha-Trp-Phe-NH2
83	Ac-Phe-Om-Aze-cha-Trp-Phe-NH2
84	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH2
85	Ph-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH2
86	Bu-O-CO-Phe-Orn-Pro-cha-Trp-Phe-NH2
87	Ac-Phe-Lys-Pro-cha-Trp-Phe-NH2
88	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH2
89	Ac-Phe-Gln-Pro-cha-Trp-Phe-NH2
90	Ac-Phe-Ser-Pro-cha-Trp-Phe-NH2
91	Ac-Phe-Glu-Pro-cha-Trp-Phe-NH2
92	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH2
93	Ac-Phe-Orn-Hyp-cha-Trp-Phe-NH2
94	Ac-Phe-Orn-Pro-cha-Trp-1Ni-NH2
95	Ac-Phe-Orn-Aze-cha-Bta-Phe-NH-Me
96	CH3-SO2-Phe-Orn-Aze-cha-Bta-Phe-NH2
99	Ac-Phe-Orn-Aze-cha-Pff-Phe-NH2
100	Ac-Phe-Orn-Aze-cha-Mcf-Phe-NH2
101	Ac-Phe-Orn(Ac)-Aze-cha-Bta-Phe-NH2
102	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH2
103	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH2
104	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH2
105	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH2
106	3PP-Orn-Aze-cha-Bta-Phe-NH2
107	Ac-Phe-Orn-Tic-cha-Trp-Phe-NH2
108	Ac-Phe-Orn-Ser-cha-Trp-Phe-NH2
109	Ac-Phe-Orn-Pro-chg-Trp-Phe-NH2
110	Ac-Phe-Orn-Pro-hch-Trp-Phe-NH2
111	Ac-Phe-Orn-Pro-cha-Trp-Phg-NH2
112	Ac-Phe-Bta-Aze-cha-Bta-Phe-NH2
113	Ac-Phe-Trp-Pro-cha-Bta-Phe-NH2
115	Ac-Phe-Orn-Pip-cha-Trp-Phe-OH

116	Ac-Phe-Orn-Tic-cha-Trp-Phe-OH
117	Ac-Phe-Orn-Ser-cha-Trp-Phe-OH
118	Ac-Phe-Orn-Pro-chg-Trp-Phe-OH
119	Ac-Phe-Eec-Pro-cha-Bta-Phe-NH2
120	Ac-Phe-Nle-Pro-cha-Bta-Phe-NH2
121	Ac-Phe-Har-Pro-cha-Bta-Phe-NH2
122	Ac-Phe-Arg-Pro-cha-Bta-Phe-NH2
123	Ac-Phe-Cys(Acm)-Pro-cha-Bta-Phe-NH2
124	Ac-Phe-Mpa-Pro-cha-Bta-Phe-NH2
125	Ac-Eby-Orn-Pro-cha-Bta-Phe-NH2
126	Ac-Phg-Orn-Pro-cha-Bta-Phe-NH2
127	Ac-Phe-Paf-Pro-cha-Bta-Phe-NH2
128	H2N-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2
129	Me-O-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2
130	(-CO-CH2-NH-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH2
132	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH
133	(-CO-CH2-CH2-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH2
134	tBu-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2
135	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH2
136	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH2
137	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH2
138	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH2
139	Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2
140	Ac-Guf-Phe-Orn-Aze-cha-Bta-Phe-NH2
141	Ac-Dab-Phe-Orn-Aze-cha-Bta-Phe-NH2
142	FH2C-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2
143	Ac-Phe-Orn(Et2)-Pro-cha-Trp-Phe-NH2
148	Ac-Phe-N(nBu)-CH2-CO-Pro-cha-Trp-Phe-NH2
149	Ac-Phe-Om-Pro-hle-Bta-Phe-NH2
150	Ac-Phe-Arg(CH2-CH2)-Pro-cha-Bta-Phe-NH2
151	Ac-Ala-Phe-Orn-Aze-cha-Bta-Phe-NH2
152	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH2

153	Ac-Cit-Phe-Orn-Aze-cha-Bta-Phe-NH2
154	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH2
155	Ac-Gly-Phe-Orn-Aze-chg-Bta-Phe-NH2
156	Ac-Gly-Phe-Orn-Aze-hch-Bta-Phe-NH2
157	Ac-Gly-Thi-Orn-Aze-cha-Bta-Phe-NH2
158	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH2
159	Ac-Hyp-Phe-Orn-Aze-cha-Bta-Phe-NH2
160	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH2
161	Ac-Mff-Orn-Pro-cha-Bta-Phe-NH2
162	Ac-Mff-Orn-Pro-hle-Bta-Phe-NH2
163	Ac-Mff-Orn-Pro-hle-Mcf-Mff-NH2
164	Ac-Mmy-Orn-Pro-hle-Pff-Phe-NH2
165	Ac-NMF-Orn-Pro-cha-Bta-Phe-NH2
166	Ac-Off-Orn-Pro-cha-Bta-Phe-NH2
167	Ac-Off-Orn-Pro-hle-Bta-Phe-NH2
168	Ac-Orn-Phe-Orn-Aze-cha-Bta-Phe-NH2
169	Ac-Pff-Om-Pro-cha-Bta-Phe-NH2
170	Ac-Pff-Om-Pro-hle-Bta-Phe-NH2
171	Ac-Pff-Om-Pro-hle-Mcf-Pff-NH2
206	Ac-Phe-Ala-Pro-cha-Bta-Phe-NH2
207	Ac-Phe-Arg-Pro-hle-Bta-Phe-NH2
208	Ac-Phe-Arg-Pro-hle-Mcf-Phe-NH2
209	Ac-Phe-Cit-Hyp-hle-Bta-Phe-NH2
210	Ac-Phe-Cit-Pro-cha-Bta-Phe-NH2
211	Ac-Phe-Cit-Pro-hle-Bta-Phe-NH2
212	Ac-Phe-Cit-Ser-hle-Bta-Phe-NH2
213	Ac-Phe-Dab-Aze-cha-Bta-Phe-NH2
214	Ac-Phe-Dab-Aze-hle-Bta-Phe-NH2
215	Ac-Phe-Dab-Pro-cha-Bta-Phe-NH2
216	Ac-Phe-Dap-Pro-cha-Bta-Phe-NH2
217	Ac-Phe-Ech-Pro-cha-Bta-Phe-NH2
218	Ac-Phe-Eep-Pro-cha-Bta-Phe-NH2

219	Ac-Phe-Fcn-Aze-cha-Bta-Phe-NH2
220	Ac-Phe-Fcn-Pro-cha-Bta-Phe-NH2
221	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2
222	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2
223	Ac-Phe-Fcp-Aze-cha-Bta-Phe-NH2
224	Ac-Phe-Ffa-Aze-cha-Bta-Phe-NH2
225	Ac-Phe-Ffa-Pro-cha-Bta-Phe-NH2
226	Ac-Phe-Ffa-Pro-hle-Bta-Phe-NH2
227	Ac-Phe-G23-Pro-cha-Bta-Phe-NH2
228	Ac-Phe-Guf-Pro-cha-Bta-Phe-NH2
229	Ac-Phe-Har-Aze-cha-Bta-Phe-NH2
230	Ac-Phe-His-Pro-cha-Bta-Phe-NH2
231	Ac-Phe-L22-Pro-cha-Bta-Phe-NH2
232	Ac-Phe-OrA-Pro-cha-Bta-Phe-NH2
233	Ac-Phe-OrE-Pro-cha-Bta-Phe-NH2
234	Ac-Phe-Orn-Aze-hle-Bta-Phe-NH2
235	Ac-Phe-Orn-Chy-cha-Bta-Phe-NH2
236	Ac-Phe-Orn-Chy-hle-Pff-Phe-NH2
237	Ac-Phe-Orn-G24-cha-Bta-Phe-NH2
238	Ac-Phe-Orn-G25-cha-Bta-Phe-NH2
239	Ac-Phe-Orn-G26-cha-Bta-Phe-NH2
240	Ac-Phe-Orn-G27-cha-Bta-Phe-NH2
241	Ac-Phe-Orn-G30-cha-Bta-Phe-NH2
242	Ac-Phe-Orn-G31-cha-Bta-Phe-NH2
243	Ac-Phe-Orn-Hse-cha-Bta-Phe-NH2
244	Ac-Phe-Orn-Hyp-hle-Bta-Phe-NH2
245	Ac-Phe-Orn-Hyp-hle-Pff-Phe-NH2
246	Ac-Phe-Orn-NMA-cha-Bta-Phe-NH2
247	Ac-Phe-Orn-NMS-cha-Bta-Phe-NH2
248	Ac-Phe-Orn-Pro-cha-1Ni-Phe-NH2
249	Ac-Phe-Orn-Pro-cha-Bta-1Ni-NH2
250	Ac-Phe-Orn-Pro-cha-Bta-Bhf-NH2

251	Ac-Phe-Orn-Pro-cha-Bta-Dff-NH2
252	Ac-Phe-Orn-Pro-cha-Bta-Eaa-NH2
253	Ac-Phe-Orn-Pro-cha-Bta-L19
254	Ac-Phe-Orn-Pro-cha-Bta-Mcf-NH2
255	Ac-Phe-Orn-Pro-cha-Bta-Mff-NH2
256	Ac-Phe-Orn-Pro-cha-Bta-NH-CH(CH2OH)-CH2-Ph
257	Ac-Phe-Orn-Pro-Cha-Bta-NH-NBn-CO-NH2
258	Ac-Phe-Orn-Pro-cha-Bta-Opa-NH2
259	Ac-Phe-Orn-Pro-cha-Bta-Pcf-NH2
260	Ac-Phe-Orn-Pro-cha-Bta-Pmf-NH2
261	Ac-Phe-Orn-Pro-cha-Bta-Thi-NH2
262	Ac-Phe-Orn-Pro-cha-Otf-Phe-NH2
263	Ac-Phe-Orn-Pro-ctb-Bta-Phe-NH2
264	Ac-Phe-Orn-Pro-ctb-Eaa-Phe-NH2
265	Ac-Phe-Orn-Pro-ctb-Mcf-Phe-NH2
266	Ac-Phe-Orn-Pro-ctb-Pff-Phe-NH2
267	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH
268	Ac-Phe-Orn-Pro-hle-1Ni-Phe-NH2
269	Ac-Phe-Orn-Pro-hle-6FW-Phe-NH2
270	Ac-Phe-Orn-Pro-hle-Bta-1Ni-NH2
271	Ac-Phe-Orn-Pro-hle-Bta-2Ni-NH2
272	Ac-Phe-Orn-Pro-hle-Bta-5Ff-NH2
273	Ac-Phe-Orn-Pro-hle-Bta-Aic-NH2
274	Ac-Phe-Orn-Pro-hle-Bta-Cha-NH2
275	Ac-Phe-Orn-Pro-hle-Bta-Chg-NH2
276	Ac-Phe-Orn-Pro-hle-Bta-Eaa-NH2
277	Ac-Phe-Orn-Pro-hle-Bta-Egy-NH2
278	Ac-Phe-Orn-Pro-hle-Bta-Pcf-NH2
279	Ac-Phe-Om-Pro-hle-Bta-Pff-NH2
280	Ac-Phe-Orn-Pro-hle-Bta-Phe-NH2
281	Ac-Phe-Orn-Pro-hle-Bta-phe-OH
282	Ac-Phe-Orn-Pro-hle-Bta-Tyr-NH2

284 Ac-Phe-Om-Pro-hle-Eaa-Phe-NH2 285 Ac-Phe-Om-Pro-hle-Egc-Phe-NH2 286 Ac-Phe-Om-Pro-hle-Egy-Phe-NH2 287 Ac-Phe-Om-Pro-hle-Egy-Phe-NH2 288 Ac-Phe-Om-Pro-hle-Mcf-2Ni-NH2 289 Ac-Phe-Om-Pro-hle-Mcf-Phe-NH2 290 Ac-Phe-Om-Pro-hle-Mcf-Phe-NH2 291 Ac-Phe-Om-Pro-hle-Mff-Phe-NH2 292 Ac-Phe-Om-Pro-hle-Mff-Phe-NH2 293 Ac-Phe-Om-Pro-hle-Off-Phe-NH2 294 Ac-Phe-Om-Pro-hle-Off-Phe-NH2 295 Ac-Phe-Om-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Om-Pro-hle-Pff-2Ni-NH2 297 Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 298 Ac-Phe-Om-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 302 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Om-Pro-hle-Tff-Phe-NH2 305 Ac-Phe-Om-Pro-hle-Tff-Phe-NH2	
286 Ac-Phe-Om-Pro-hle-Egy-Phe-NH2 287 Ac-Phe-Om-Pro-hle-Egz-Phe-NH2 288 Ac-Phe-Om-Pro-hle-Mcf-2Ni-NH2 289 Ac-Phe-Om-Pro-hle-Mcf-Cha-NH2 290 Ac-Phe-Om-Pro-hle-Mcf-Pff-NH2 291 Ac-Phe-Om-Pro-hle-Mcf-Phe-NH2 292 Ac-Phe-Om-Pro-hle-Mff-Phe-NH2 293 Ac-Phe-Om-Pro-hle-Ocf-Phe-NH2 294 Ac-Phe-Om-Pro-hle-Off-Phe-NH2 295 Ac-Phe-Om-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Om-Pro-hle-Pff-2Ni-NH2 297 Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 298 Ac-Phe-Om-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Om-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Om-Pro-hle-Phe-Phe-NH2	
287 Ac-Phe-Om-Pro-hle-Egz-Phe-NH2 288 Ac-Phe-Om-Pro-hle-Mcf-2Ni-NH2 289 Ac-Phe-Om-Pro-hle-Mcf-Cha-NH2 290 Ac-Phe-Om-Pro-hle-Mcf-Pff-NH2 291 Ac-Phe-Om-Pro-hle-Mcf-Phe-NH2 292 Ac-Phe-Om-Pro-hle-Mff-Phe-NH2 293 Ac-Phe-Om-Pro-hle-Ocf-Phe-NH2 294 Ac-Phe-Om-Pro-hle-Off-Phe-NH2 295 Ac-Phe-Om-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Om-Pro-hle-Pff-2Ni-NH2 297 Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 298 Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 299 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 300 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 302 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Om-Pro-hle-Phe-Phe-NH2	
288 Ac-Phe-Orn-Pro-hle-Mcf-2Ni-NH2 289 Ac-Phe-Orn-Pro-hle-Mcf-Cha-NH2 290 Ac-Phe-Orn-Pro-hle-Mcf-Pff-NH2 291 Ac-Phe-Orn-Pro-hle-Mcf-Phe-NH2 292 Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2 293 Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2 294 Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2 295 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 297 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 298 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
289 Ac-Phe-Orn-Pro-hle-Mcf-Cha-NH2 290 Ac-Phe-Orn-Pro-hle-Mcf-Pff-NH2 291 Ac-Phe-Orn-Pro-hle-Mcf-Phe-NH2 292 Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2 293 Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2 294 Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2 295 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 297 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 298 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
290 Ac-Phe-Orn-Pro-hle-Mcf-Pff-NH2 291 Ac-Phe-Orn-Pro-hle-Mcf-Phe-NH2 292 Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2 293 Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2 294 Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2 295 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 297 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 298 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 299 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 300 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
Ac-Phe-Orn-Pro-hle-Mcf-Phe-NH2 Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2 Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2	
Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2 293 Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2 294 Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2 295 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Orn-Pro-hle-Otf-Phe-NH2 297 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 298 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 299 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2	
Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2 Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2	
Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2 Ac-Phe-Orn-Pro-hle-Off-Phe-NH2 296 Ac-Phe-Orn-Pro-hle-Otf-Phe-NH2 297 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 298 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 299 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Orn-Pro-hle-Pff-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2	
Ac-Phe-Om-Pro-hle-Off-Phe-NH2 Ac-Phe-Om-Pro-hle-Otf-Phe-NH2 Ac-Phe-Om-Pro-hle-Pff-2Ni-NH2 Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 Ac-Phe-Om-Pro-hle-Pff-Eaa-NH2 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Om-Pro-hle-Pff-NH2 Ac-Phe-Om-Pro-hle-Pff-Pff-NH2 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2	
Ac-Phe-Orn-Pro-hle-Otf-Phe-NH2 Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2 Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Orn-Pro-hle-Pff-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
297 Ac-Phe-Om-Pro-hle-Pff-2Ni-NH2 298 Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 299 Ac-Phe-Om-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Om-Pro-hle-Pff-NH2 302 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Om-Pro-hle-Phe-Phe-NH2	
Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 Ac-Phe-Om-Pro-hle-Pff-Eaa-NH2 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Om-Pro-hle-Pff-NH2 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2	
299 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
300 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
301 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	
305 Ac-Phe-Orn-Pro-hle-Tff-Phe-NH2	
306 Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2	
307 Ac-Phe-Orn-Pro-ile-Trp-Phe-NH2	
308 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2	
309 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2	
310 Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	
312 Ac-Thi-Orn-Pro-cha-Bta-Phe-NH2	
313 Ac-Thi-Orn-Pro-cha-Bta-Thi-NH2	
314 Ac-Thr-Phe-Orn-Aze-cha-Bta-Phe-NH2	
316 CH3CH2CO-Phe-Orn-Pro-cha-Bta-Phe-NH2	
320 FAc-Phe-Fib-Aze-cha-Bta-Phe-NH2	

321	FAc-Phe-Orn-Aze-cha-Bta-Phe-NH2	
322	FAc-Phe-Orn-Pro-cha-Bta-Phe-NH2	
324	Faz-Orn-Pro-cha-Bta-Phe-NH2	
329	Fbn-Phe-Cit-Pro-hle-Bta-Phe-NH2	
339	Fhu-Phe-Orn-Pro-cha-Bta-Phe-NH2	
340	Fid-Phe-Orn-Pro-cha-Bta-Phe-NH2	
345	H-Gly-Phe-Orn-Pro-cha-Bta-Phe-NH2	
346	H-Nip-Phe-Cit-Pro-hle-Bta-Phe-NH2	
348	Hoo-Phe-Cit-Pro-hle-Pff-Phe-NH2	
349	Hoo-Phe-Orn-Hyp-hle-Pff-Phe-NH2	
350	Hoo-Phe-Orn-Pro-hle-Bta-Phe-NH2	
351	Hoo-Phe-Orn-Pro-hle-Mcf-Phe-NH2	
352	Hoo-Phe-Orn-Pro-hle-Pff-Phe-NH2	
391	H-Phe-Cit-Pro-hle-Bta-Phe-NH2	

Die aus dem Stand der Technik, beispielsweise Finch et al. 1999 Journal of Medicinical Chemistry 42: 1965-1974; Wong et al. 1999 IDrugs 2: 686-693, US 4,692,511, US 5,663,148, WO 90/09162, WO 92/11858, WO 92/12168, WO 92/21361, WO 94/07518, WO 94/07815, WO 95/25957, WO 96/06629, WO 99/00406 und WO 99/13899, bekannten linearen Peptide sind in der Regel deutlich schlechtere Antagonisten von C5a als zyklische Peptide, wie die in WO 99/00406 beschriebenen (z.B. Ac-Phe-[Lys-Pro-cha-Trp-arg], Ac-Phe-[Orn-Pro-cha-Trp-arg], Ac-Phe-[Orn-Pro-cha-Trp-Arg], Ac-Phe-[Lys-Pro-cha-Trp-Arg]). Das hinsichtlich seiner antagonistischen Eigenschaften aktivste in WO 99/00406 beschriebene lineare Peptid weist die Sequenz Me-Phe-Lys-Pro-cha-Trp-arg auf und zeigt einen IC₅₀-Wert von 0,085 μM (gemessen mit dem zellulären Myeloperoxidase-Freisetzungs Assay mit humanen PMNs). Dagegen zeigt das vergleichbare zyklische Peptid Ac-Phe-[Lys-Pro-cha-Trp-arg] (ebenfalls aus WO 99/00406) einen IC₅₀-Wert von 0,012 μM. In WO 99/00406 wird ausgeführt, dass eine geringere strukturelle Flexibilität des zyklischen Peptids zu einer Verringerung, d. h. Verbesserung, des IC₅₀-Wertes führt. Dies spiegelt sich letztendlich in der Entwicklung von zyklischen – also am wenigsten flexiblen - Inhibitoren wie Ac-Phe-[Lys-Pro-cha-Trp-arg] und Ac-Phe-[Orn-Pro-cha-Trp-Arg] wider.

Hinsichtlich zumindest eines Aspektes der vorliegenden Erfindung haben sich die Erfinder somit bewusst von der im Stand der Technik vorherrschenden Auffassung gelöst und damit eine neue Klasse von Verbindungen, die als C5aR-Antagonisten verwendet werden können, bereitgestellt.

Die vorliegende Erfindung beschreibt somit erstmals peptidische bzw. peptidomimetische C5aR-Antagonisten mit inhibitorischen Aktivitäten mit einem IC₅₀ < 200 nM, die unter physiologischen pH-Werten (pH 7.4) keine positive Nettoladung tragen und/oder deren C-terminale Aminosäure keine positive Ladung trägt. Der IC-Wert wird dabei mit einem funktionellen Test bestimmt (Köhl 1997 The Anaphylatoxins. In: Dodds, A.W., Sim, R.B. (Eds.), Complement: A Practical Approach. Oxford, pp. 135-163). Die erfindungsgemäßen Verbindungen können somit als C5aR-Antagonisten, insbesondere auch unter physiologischen Bedingungen verwendet werden.

Durch die erfindungsgemäßen Verbindungen wird deutlich, dass eine geeignete hydrophobe Substitution sowohl von aliphatischer als auch von aromatischer oder heteroaromatischer Natur das C-terminale Arginin in C5aR bindenden Peptiden ersetzen kann.

Ein weiteres Kennzeichen der erfindungsgemäßen Verbindungen, insbesondere der erfindungsgemäßen Peptide und Peptidomimetika, ist das Fehlen einer agonistischen Aktivität in einem zellulären Assay bis zu einer Konzentration von mindestens 1430 nM. Beispiel 12 zeigt beispielhaft die Ergebnisse von Messungen einer Auswahl der erfindungsgemäßen Peptide mittels eines Verfahrens, mit dem der Agonismus bzgl. des C5aR bestimmt wird. Es ist offensichtlich, dass die erfindungsgemäßen Verbindungen bis zur der maximal eingesetzten Konzentration keine agonistische Aktivität zeigen. Im Rahmen der vorliegenden Erfindung stellen die nachfolgenden erfindungsgemäßen Verbindungen Beispiele für erfindungsgemäße Peptide dar, die reine Antagonisten sind: HOCH₂(CHOH)₄-C=N-O-CH₂-CO-Phe-[Orn-Pro-cha-Trp-Nle], Ph-CH₂-CH₂-CO-[Orn-Pro-cha-Trp-Nle], Ac-Phe-[Orn-Hyp-cha-Trp-Phe], H-Phe-[Orn-Pro-cha-Trp-Phe], Ac-Phe-[Orn-Pro-cha-Trp-Phe], Ac-Lys-Phe-[Orn-Pro-cha-Trp-Nle], H-Phe-[Orn-Pro-cha-Trp-Nle], H-Phe-[Orn-Ser-cha-Trp-Nle], Ac-Phe-[Orn-Pro-cha-Trp-Eaf], Ac-Phe-Orn-Pro-cha-Trp-Phe-NH₂, Ac-Phe-Orn-Pro-cha-Bta-Phe-NH₂, Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH₂, Ac-Phe-Orn-cha-cha-Bta-Phe-NH₂, Ac-Phe-Arg-Pro-cha-Trp-Phe-NH₂, Ac-Phe-Orn-Pip-cha-Trp-Phe-NH₂, Ac-Phe-Orn-Aze-cha-Trp-Phe-NH₂, Ac-Phe-Trp-Pro-cha-Trp-Phe-NH₂, Ac-Thi-Orn-Pip-cha-Bta-Phe-NH₂, Ac-Phe-Orn-Pro-hle-Bta-Phe-NH₂, Ac-Phe-Arg(CH₂-CH₂)-Pro-cha-Bta-Phe-NH₂.

Zur genaueren Analyse des C5aR-Antagonismus und der Entwicklung eines Pharmakophor-Modells der Verbindung Ac-Phe-[Orn-Pro-cha-Trp-Arg] wurden die Aminosäuren Phe, Trp und Arg dieses Peptids durch L-Alanin ausgetauscht, Pro durch NMe-Ala und die Aminosäure cha durch D-Alanin (Einzelsubstitutionen). Diese Peptide wurden anschließend in einem funktionellen Assay auf ihren C5aR-Antagonismus hin untersucht (Beispiel 11). In diesem Versuch wurde deutlich, dass die Substitutionen der Aminosäureseitenketten von Trp, cha und Phe durch Methylgruppen zu einem deutlichen Aktivitätsverlust führen (IC50-Werte >30 μ M. Dagegen ist die Aktivität des Antagonisten Ac-Phe-[Orn-Pro-cha-Trp-Arg] vergleichbar mit der Aktivität des am Pro mit NMeAla substituierten Moleküls (IC50 = 20 nM gegenüber 25 nM). Die Substitution von Arg mit Ala führt ebenfalls zu einem deutlichen Aktivitätsverlust (IC50-Wert von 20 nM auf 5,6 μ M), der jedoch geringer ausfällt als bei der Substitution von Trp und Phe.

Weitere Substitutionen am Peptid Ac-Phe-[Orm-Pro-cha-Trp-Arg] und ähnlicher Verbindungen an der Position des Arg führten zu einer Reihe von Peptiden bzw. peptidomimetischen Verbindungen, die überraschenderweise eine nennenswerte inhibitorische Aktivität aufweisen (Beispiel 11). Insbesondere folgende Peptide sind nennenswert inhibitorisch aktiv: Ac-Phe-[Orm-Pro-cha-Trp-Phe], Ac-Phe-[Orm-Pro-cha-Trp-Phe], Ac-Phe-[Orm-Pro-cha-Trp-Phe], Ac-Phe-[Orm-Pro-cha-Trp-Phe], Ac-Phe-[Orm-Pro-cha-Trp-Nle], Ac-Phe-[Orm-Pro-cha-Trp-Nle], Ac-Phe-[Orm-Pro-cha-Trp-Hle], Ac-Phe-[Orm-Pro-cha-Trp-Hle], Ac-Phe-[Orm-Pro-cha-Trp-Eaf], Ac-Phe-[Orm-Pro-cha-Trp-Ead], Ac-Phe-[Orm-Pro-cha-Trp-Phe], Ac-Phe-[Orm-Pro-cha-Trp-Nle], Ac-Phe-Irp-Nle], Ac-Phe-Ir

Die orale Aufnahme von Peptiden wird durch verschiedene Faktoren wie Größe, Ladung und Hydrophobizität beeinflusst. Dennoch lässt sich die orale Verfügbarkeit eines Peptids nicht a priori vorhersagen. In der Regel gelten Peptide als schlecht oral verfügbar (Burton et al. 1996 Journal of Pharmaceutical Sciences 85: 1337-1340). Ein Modell zur Abschätzung der oralen

Absorption stellt die Messung der AB-Permeabilität durch eine Monolayer-Schicht von Darmepithelzellen (z.B. CaCo2 oder TC-7) dar (Beispiel 15, Lennernäs 1997 Journal of Pharmacy and Pharmacology 49: 627-38). Die erfindungsgemäßen Verbindungen, die als C5aR Antagonisten verwendet werden können, weisen durch die hydrophobe Substitution des Cterminalen Arginins eine deutlich verbesserte AB-Permeabilität auf. Beispielsweise zeigt der Antagonist Ac-Phe-[Orn-Hyp-cha-Trp-Phe] eine überraschend gute Permeabilität von 14.3x10-6 cm/s gegenüber der schlechten Permeabilität von 0.52x10-6 cm/s des geladenen Antagonisten Ac-Phe-[Orn-Pro-cha-Trp-Arg]. Die hohe Permeabilität liegt zahlenmäßig in einem Bereich, der nahe an den für oral gut verfügbare Substanzen heranreicht. Ein Beispiel für eine oral sehr gut verfügbare Verbindung ist Propanolol, das in diesem Test von Lennernäs eine AB-Permeabilität von 31.1 10-6 cm/s zeigt.

Es ist ebenfalls im Rahmen der vorliegenden Erfindung, dass die erfindungsgemäßen Verbindungen solche sind, die so ausgestaltet sind, dass bei ihnen an X1 und/oder X4 zusätzlich die Wasserlöslichkeit verbessernde Gruppen eingefügt sind. Besonders günstig zur Verbesserung der Wasserlöslichkeit ist die Einführung von Gruppen, die starke Wechselwirkungen mit Wasser eingehen und stark solvatisiert werden. Häufig verwendete Beispiele sind: Hydroxy, Keto, Carboxamido, Ether, Harnstoff, Carbamat, Amino, substituiertes Amino, Guanidino, Pyridyl, Carboxyl. Die beschriebenen Gruppen können ausdrücklich an allen Positionen von X1 und/oder X4 eingeführt werden und es können sowohl eine als auch mehrere der die Wasserlöslichkeit verbessernden Gruppen eingefügt werden. Beispiele für die Einführung mehrerer Gruppen sind die Anknüpfung von Kohlenhydratresten oder Ethylenglykolen.

Die vorliegende Erfindung umfasst daher insbesondere auch peptische bzw. peptidomimetische C5aR Antagonisten, insbesondere gemäß der vorliegenden Erfindung, deren Löslichkeit durch zusätzliche Modifikationen verbessert wurde. Derartige Modifikationen sind dem Fachmann bekannt und umfassen beispielsweise die Einführung der vorstehend genannten, die Wasserlöslichkeit verbessernden Gruppen. Dass dies eine wirksame Maßnahme ist bzw. zu hochwirksamen Antagonisten führt, sei an den folgenden Beispielen demonstriert.

Verbindung 1 löst sich gemäß Beispiel 13 zu 8% in wässerigem HEPES-Puffer (pH 7.4). Dagegen ist die Verbindung 40 zu 94% in HEPES-Puffer löslich. Die Verbindung 2, die im Vergleich zu Verbindung 1 eine zusätzliche OH-Gruppe trägt, ist zu 13 % löslich. Durch Anfügen komplexerer hydrophiler Gruppen, wie für Verbindung 4 gezeigt, wird die Löslichkeit

von 22 % (Verbindung 28) auf 84 % (Verbindung 4) gesteigert. Dies ist der Fall obwohl Verbindung 4 nicht geladen ist. Damit ist gewährleistet, dass die erfindungsgemäßen Peptide und Peptidomimetika trotz ihres hydrophoben Charakters in eine gut wasserlösliche Form umgewandelt werden können.

Nachfolgend werden einige Begrifflichkeiten angegeben, deren Bedeutung für Ausführungsformen der vorliegenden Erfindung, insbesondere jene, wie sie detaillierter hierin angegeben sind, herangezogen werden sollen. Obwohl diese Begrifflichkeiten gelegentlich als Definitionen bezeichnet werden, ist der Begriffsinhalt der verschiedenen Begriffe nicht notwendigerweise darauf beschränkt.

Der Begriff "enthält" bedeutet in bevorzugten Ausführungsformen, daß das jeweilige Strukturelement enthalten ist, aber die Struktur nicht darauf beschränkt ist.

Der Begriff "substituiert" bedeutet in bevorzugten Ausführungsformen, dass ein oder mehrere Wasserstoffatome einer Gruppe oder Verbindung die substituiert ist, durch ein anderes Atom, eine Gruppe von Atomen, ein Molekül oder eine Molekülgruppe ersetzt ist. Ein solches Atom, Gruppe von Atomen, Moleküle, sowie Molekülgruppen wird/werden hierbei selbst als Substituenten oder Substitutionen bezeichnet. Bei der Substitution ist vorrausgesetzt, daß die normale Valenz des jeweiligen Atomes nicht überschritten wird und daß die Substitution in einer stabilen Verbindung resultiert. Durch die Substitution zweier Wasserstoff-Atome kann eine Carbonyl-Gruppe (C=O) entstehen. Carbonyl-Substituenten sind bevorzugterweise nicht innerhalb von aromatischen Einheiten enthalten.

Substituenten oder Substitutionen können bevorzugt einzeln oder in beliebiger Kombination aus der Gruppe ausgewählt sein die Hydroxyl, Alkoxyl, Mercapto, Alkyl, Alkenyl, Alkynyl, Alkoxy, Alkylthio, Alkylsulfinyl, Cycloalkyl, Heterocyclyl, Aryl, Arylalkyl, Arylalkoxy, Heteroaryl, Aryloxy, Halogen, Trifluormethyl, Difluormethyl, Cyano, Nitro, Azido, Amino, Aminoalkyl, Carboxamido, -C(O)H, Acyl, Oxyacyl, Carboxyl, Carbamat, Trialkylsilyl, Sulfonyl, Sulfonamid und Sulfuryl umfasst. Jeder Substituent kann wiederum selbst durch einen oder mehrere weitere Substituenten substituiert sein. Dies gilt speziell für Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl und Aryloxy. Weiterhin gelten jegliche hierin angegebenen Definitionen auch für Substituenten.

Unter dem Begriff "Alkyl" versteht man in einer Ausführungsform der vorliegenden Erfindung ein gesättigtes aliphatisches Radikal bestehend aus 1-10 Kohlenstoffatomen oder ein einfach oder mehrfach ungesättigtes aliphatisches Kohlenwasserstoffradikal, welches zwischen 2 und 12 Kohlenstoffatome sowie mindestens eine Doppel- oder Dreifachbindung enthält. Der Begriff "Alkyl" schließt sowohl geradkettige als auch verzweigte Alkylreste ein. Bevorzugt sind geradkettige Alkylreste mit 1 bis 8 Kohlenstoffatomen. Besonders bevorzugt sind geradkettige Alkylreste mit 1 bis 6 Kohlenstoffatomen sowie verzweigte Alkylreste mit 3 bis 6 Kohlenstoffatomen. Weiterhin beinhaltet der Begriff "Alkyl" jegliche Analoga die sich aus Kombinationsbezeichnungen der Vorsilben "Alk" oder "Alkyl" zusammensetzen lassen.

Beispielsweise beschreibt der Begriff "Alkoxy" oder "Alkylthio" eine Alkylgruppe die über einen Sauerstoff bzw. einen Schwefel gebunden ist. Unter "Alkanoyl" versteht man eine Alkylgruppe, die über eine Carbonylgruppe (C=O) gebunden ist.

Unter dem Begriff "Cycloalkyl" versteht man in einer Ausführungsform der vorliegenden Erfindung zyklische Derivate einer Alkylgruppe nach obiger Definition, optional ungesättigt Bevorzugt sind gesättigte Cycloalkylgruppen, insbesondere und/oder substituiert. Besonders bevorzugt sind 3 8 Kohlenstoffatomen. Cycloalkylgruppen mit bis Cycloalkylgruppen, die 3 bis 6 Kohlenstoffatome enthalten.

Der Begriff "Aryl" bezeichnet in einer Ausführungsform der vorliegenden Erfindung einen aromatischen Rest mit 6 bis 14 Kohlenstoffatomen wobei "substituiertes Aryl" für Arylreste steht, die einen oder mehrere Substituenten tragen.

Jede der obig definierten Gruppen "Alkyl", "Cycloalkyl", und "Aryl" schließt die jeweiligen halogenierten Derivate mit ein, die ein oder mehrere Halogenatome tragen können. Die halogenierten Derivate beinhalten jegliches Halogenradikal nach der folgenden Definition.

"Halogen" bezeichnet in einer Ausführungsform der vorliegenden Erfindung ein Halogenradikal aus der Gruppe Fluor, Chlor, Brom und Jod. Bevorzugt hierbei sind Fluor, Chlor und Brom.

Der Begriff "Heteroaryl" bezeichnet in einer Ausführungsform der vorliegenden Erfindung ein 5- bis 8-gliedriges, bevorzugt 5- bis 6-gliedriges, monozyklisches oder 8- bis 11-gliedriges

bizyklisches, aromatisches, heterozyklisches Radikal, wobei jeder Heterozyklus sowohl aus Kohlenstoffatomen, sowie 1-4 Heteroatomen aus der Reihe N, O oder S bestehen kann. Der Heterozyklus kann durch jedes Atom des Zyclus' verbunden sein, so dass eine stabile Struktur resultiert. Bevorzugte Heteroarylradikale im Rahmen dieser Erfindung sind beispielsweise Furyl, Thienyl, Pyrrolyl, Oxazolyl, Thiazolyl, Imidazolyl, Pyrazolyl, Isoxazolyl, Oxadiazolyl, Triazolyl, Tetrazolyl, Thiadiazolyl, Pyridinyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Indolizinyl, Indolyl, Isoindolyl, Benzofuranyl, Benzothienyl, Indazolyl, Benzimidazolyl, Benzthiazolyl, Benzoxazolyl, Purinyl, Quinolizinyl, Quinolinyl, Isoquinolinyl, Cinnolinyl, Phthalazinyl, Quinazolinyl, Quinoxalinyl, Naphthridinyl, Pteridinyl, Carbazolyl, Acridinyl, Phenazinyl, Phenothiazinyl und Phenoxazinyl.

Unter dem Begriff "Heterocyclyl" versteht man in einer Ausführungsform der vorliegenden Erfindung ein 5- bis 8-gliedriges, bevorzugt 5- bis 6-gliedriges, monozyklisches oder 8- bis 11gliedriges bizyklisches, heterozyklisches Radikal, welches entweder gesättigt oder ungesättigt, jedoch nicht aromatisch ist. Jeder Heterocyclus besteht sowohl aus Kohlenstoffatomen, sowie 1-4 Heteroatomen aus der Reihe N, O oder S. Der Heterocyclus kann durch jedes Atom des Cyclus verbunden sein, so dass eine stabile Struktur resultiert. Bevorzugte Heteroarylradikale im Rahmen dieser Erfindung sind beispielsweise Pyrrolinyl, Pyrrolidinyl, Pyrazolinyl, Pyrazolidinyl, Piperidinyl, Morpholinyl, Thiomorpholinyl, Pyranyl, Thiopyranyl, Piperazinyl, Indolinyl. Azetidinyl. Tetrahydropyranyl, Tetrahydrothiopyranyl, Tetrahydrofuranyl, Hexahydropyrimidinyl, Hexahydropyridazinyl, 2,5-Dioxo-hexahydro-pyrimidin-4-yl, 2,6-Dioxopiperidin-4-yl, 2-Oxo-hexahydro-pyrimidin-4-yl, 2,6-Dioxo-hexahydro-pyrimidin-4-yl, 3,6-Dioxo-piperazin-2-yl, 1,4,5,6-Tetrahydropyrimidin-2-ylamin, Dihydro-oxazolyl, 1,2-thiazinyl-1,1-dioxid, 1,2,6-Thiadiazinanyl-1,1-dioxid, Isothiazolidinyl-1,1-dioxid und Imidazolidinyl-2,4dion.

Werden die Begriffe "Heterocyclyl", "Heteroaryl" und "Aryl" zusammen mit anderen Ausdrücken oder Begriffen benutzt gelten weiterhin obige Definitionen. Zum Beispiel beschreibt der Begriff "Aroyl" einen Phenyl- oder Naphthylrest, der an eine Carbonylgruppe (C=O) gebunden ist.

Jede Aryl- oder Heteroarylverbindung beinhaltet außerdem die teilweise oder vollständig hydrierten Derivate. Zum Beispiel kann Quinolyl auch Decahydroquinolinyl und

Tetrahydroquinolinyl einschließen. Naphthyl kann auch die hydrierten Derivate wie beispielsweise Tetrahydronaphthyl mit einschließen.

Im Rahmen dieser Erfindung sind mit den Ausdrücken "Stickstoff" oder "N" und "Schwefel" oder "S" auch jegliche oxidierten Derivate des Stickstoffs wie Nitrone, N-Oxide oder des Schwefels wie Sulfoxide, Sulfone und quarternierte Formen basischen Stickstoffs wie HCl- oder TFA-Salze mit eingeschlossen.

Radikale können sowohl Mono-, als auch Di-, Tri- oder Tetraradikale sein. Dadurch ist es möglich, daß sich auch die Bedeutung verschiedener Begriffe leicht ändert. So bedeutet ein Diradikal, das als "Propyl" beschrieben wird, automatisch "Propyplen" (z.B. -(CH₂)₃-).

Beschreibungen, die die Grenzen eines Bereichs wie beispielsweise "1 bis 5" spezifizieren, bedeuten jede ganze Zahl von 1 bis 5. Im einzelnen 1, 2, 3, 4 und 5. Mit anderen Worten beinhaltet jeder Bereich, der durch zwei ganze Zahlen beschrieben ist, sowohl die beiden ganzen Zahlen der Definitionsgrenzen, als auch alle ganzen Zahlen innerhalb dieses Bereichs.

Die vorliegende Erfindung beinhaltet alle Isotope von Atomen in den beschriebenen Verbindungen. Isotope sind Atome, die die gleiche Ordnungszahl aber verschiedene Massenzahl haben. Beispielsweise sind das Tritium und das Deuterium Isotope von Wasserstoff, Beispiele für Kohlenstoff-Isotope sind ¹¹C, ¹³C und ¹⁴C.

Mit dem Begriff "energetisch zugängliches Konformer" ist jegliches Konformer einer Verbindung gemeint, das innerhalb eines 20 kcal/mol-Fensters oberhalb der Konformation mit der niedrigsten Energie fällt. Hier kann z.B. eine Monte Carlo oder systematische Konformationssuche mittels MM2-, MM3- oder MMFF-Kraftfeldern, die in Molecular-Modeling-Programmen wie MacroModel® v 7.0, Schrödinger Inc. Portland, Oregon, USA (http://www.schrodinger.com) implementiert sind, verwendet werden.

Aminosäuren sind dem Fachmann bekannt und dadurch definiert, daß in einem Molekül sowohl eine Amino- als auch eine Carboxylgruppe vorhanden ist. Dabei können sowohl natürliche als auch unnatürliche Aminosäuren gemeint sein. Beispiele sind α -, β -, und -Aminosäuren, wobei bevorzugt α -Aminosäuren, besonders bevorzugt α -L-Aminosäuren eingesetzt werden können.

Wenn eine Aminosäure nicht genauer spezifiziert ist (z.B. "Tryptophan"), dann ist sowohl die Lals auch die D-Form gemeint.

Eine natürliche Aminosäure ist eine L-Aminosäure ausgewählt aus der Gruppe Glycin, Leucin, Isoleucin, Valin, Alanin, Phenylalanin, Tyrosin, Tryptophan, Asparaginsäure, Asparagin, Glutaminsäure, Glutamin, Cystein, Methionin, Arginin, Lysin, Prolin, Serin, Threonin und Histidin.

Eine unnatürliche Aminosäure ist eine nicht-proteinogene Aminosäure, die beinhaltet, aber nicht beschränkt ist auf D-Aminosäuren, N-Alkyl-Aminosäuren, Homo-Aminosäuren, α,α -Disubstituierte Aminosäuren, Dehydro-Aminosäuren.

Aminosäure-Derivate sind Verbindungen, die aus Aminosäuren dadurch entstehen, daß diese am N- und/oder C-Terminus modifiziert werden. Nicht limitierende Beispiele sind Umsetzungen der Carboxylgruppe zu Salzen, Estern, Acylhydraziden, Hydroxamsäuren oder Amiden und der Amino-Gruppe zu Amiden, Harnstoffen, Thioharnstoffen, Thioamiden, Sulfonamiden, Phosphorsäureamiden, Borsäureamiden oder Alkylaminen. Teile von Verbindungen, die durch Modifizierungen von Aminosäuren am C- und/oder N-Terminus entstehen, können auch als Aminosäure-Einheiten bezeichnet werden. Darüber hinaus können, die Aminosäuren auch an ihren Seitenketten derivatisiert sein. Sofern eine derivatisierte Aminosäure eine solche ist, bei der die Seitenkette einfach oder mehrerfach derivatisiert ist, wird auf diese Art der Derivatisierung üblicherweise hierin speziell hingewiesen. Eine bevorzugte Derivatisierung der Seitenkette kann insbesondere dort erfolgen, wo die Seitenkette eine funktionelle Gruppe trägt. Eine bevorzugte funktionelle Gruppe ist beispielsweise eine Aminogruppe, Carboxylgruppe, Thiolgruppe oder Alkoholgruppe.

Aminosäure-Analoga sind Verbindungen, die aus Aminosäuren dadurch entstehen, daß die Amino- und/oder Carboxylgruppe durch andere Gruppen, die diese mimiken können, ersetzt werden. Nicht limitierende Beispiele sind der Einbau von Thioamiden, Harnstoffen, Thioharnstoffen, Acylhydraziden, Estern, Alkylaminen, Sulfonamiden, Phosphorsäureamiden, Ketonen, Alkoholen, Boronsäureamiden, Benzodiazepinen und anderen aromatischen oder nichtaromatischen Heterocyclen (für eine Übersicht siehe M. A. Estiarte, D. H. Rich in Burgers Medicinal Chemistry, 6th Edition, Volume 1, Part 4, John Wiley & Sons, New York, 2002).

Aromatische Aminosäuren sind Aminosäuren, die Aryl- oder Heteroaryl-Gruppen enthalten. Nicht limitierende Beispiele sind Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-2-Chlor-Phenylalanin, 3-Chlor-Phenylalanin, Fluor-Phenylalanin, 4-Chlor-Phenylalanin, Tyrosin, Histidin, Tryptophan, Homo-Phenylalanin, Homo-Tyrosin, Homo-Histidin, Homo-Tryptophan, 1-Naphtylalanin, 2-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin, Benzothienylalanin, Furylalanin, Thiazolylalanin, Pyridylalanin, Tetrahydroisochinolin-2-Carbonsäure, 2-Aminoindan-2-carbonsäure, Biphenylalanin, 3,3-Diphenylalanin und entsprechende D- und β -Aminosäuren.

Hydrophobe Aminosäuren sind Aminosäuren, die hydrophobe Alkyl-, Cycloalkyl-, Heterocyclyl, Aryl- oder Heteroaryl-Gruppen enthalten. Nicht limitierende Beispiele sind Leucin, Isoleucin, Valin, Phenylalanin, Tyrosin, Histidin, Cystein, Cystein(iPr), Cystein(tBu), Methionin, Prolin, Tryptophan, Norleucin, Norvalin, Homoleucin, Cyclohexylalanin, Cyclopentylalanin, 1-Naphtylalanin, 2-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin, Benzothienylalanin, Allylglycin, Propargylglycin, 2-Methyl-Phenylalanin, 3-Methyl-Phenylalanin, 4-Methyl-Phenylalanin, Homo-Cyclohexylalanin, Cyclohexylglycin, N-Cyclohexylglycin, Octahydroindol-2-carbonsäure und entsprechende D- und β-Aminosäuren.

Die biologischen Bindungseigenschaften einer Aminosäureeinheit sind dabei jene Bindungseigenschaften, die die jeweilige Aminosäure bei der Wechselwirkung mit einem biologischen Molekül aufweist. Dabei sind biologische Moleküle insbesondere solche, die eine biologische Funktion ausüben. Beispiele für derartige biologische Moleküle, aber nicht darauf beschränkt, sind beispielsweise Protein- oder Peptid-basierte Rezeptoren.

Gruppen oder Einheiten, die die biologischen Bindungseigenschaften einer Aminosäure mimiken oder nachahmen, sind definiert als Gruppen, die mindestens eine gleiche oder ähnliche Wechselwirkung mit einem Rezeptor oder Wechselwirkungspartner, bevorzugterweise einem biologischen Rezeptor oder biologischen Wechselwirkungspartner eingehen können wie die Aminosäure selbst. Bei der Auswahl solcher Gruppen ist es bevorzugt, die verbreitetsten im Sinne von bevorzugtesten Wechselwirkungen der infragestehenden Aminosäure mit biologischen Rezeptoren zu betrachten. So ist das Sauerstoffatom der Carbonylgruppe einer Aminosäure befähigt, als Wasserstoffbrücken-Akzeptor zu fungieren, wohingegen das NH-Proton Wechselwirkungen als Wasserstoffbrücken-Donor eingehen kann. Zusätzlich können Aminosäuren Wechselwirkungen mit Rezeptoren über Ihre Seitenketten eingehen. Phenylalanin

und Tryptophan können sowohl hydrophobe Wechselwirkungen über die Seitenketten-Methylengruppe oder die aromatischen Gruppen als auch π - π -Wechselwirkungen über die aromatischen Gruppen eingehen. Zusätzlich kann die Indolgruppe des Tryptophans über die NH-Gruppe als Wasserstoffbrücken-Donor fungieren. Cyclohexylalanin und Norleucin können grundsätzlich hydrophobe Wechselwirkungen mit biologischen Rezeptoren über ihre Alkylbzw. Cycloalkyl-Seitenketten eingehen. Bei allen Aminosäuren können nicht nur die gesamte Seitenkette, sondern auch Teile davon grundsätzlich wichtige Wechselwirkungen eingehen.

Wenn eine Gruppe oder eine Einheit, die die biologische Bindungseigenschaft einer Aminosäure mimiken oder nachahmen soll bzw. diese Eigenschaft aufweisen soll, mindestens eine der vorstehenden Wechselwirkungen der jeweiligen Aminosäure eingehen kann, so kann sie deren biologische Bindungseigenschaften mimiken.

Bei den hierin angegebenen Gruppendefinitionen bezeichnet der Begriff "und jeweilige Derivate davon", dass alle Derivate der in der Gruppe angeführten Einzelverbindungen, Gruppen von Verbindungen, Molekülteile, Radikale oder chemische Gruppen jeweils als Derivate vorliegen können.

Die Begrifflichkeit "einzeln und unabhängig voneinander" bezeichnet hierin, dass die zwei oder mehr angeführten Substituenten so ausgebildet werden können, wie in der entsprechenden Passage beschrieben. Die Formulierung "einzeln und unabhängig voneinander" soll dabei lediglich unnötige Wiederholungen vermeiden und offenbart, dass ein jeglicher der angesprochenen Substituenten die beschriebene Ausgestaltung aufweisen kann, wobei die Ausgestaltung für jeden einzelnen Substituenten für sich erfolgt oder vorliegt und nicht durch die Auswahl einer oder mehrerer der anderen Substituenten beeinflusst wird.

Es ist allgemein im Rahmen der vorliegenden Erfindung, dass die für die einzelnen erfindungsgemäßen Verbindungen, insbesondere die generischen Strukturen, angegebenen Substituenten für alle generische Formeln mit den entsprechenden Substituenten gelten, sofern nichts gegenteiliges ausgeführt wird.

Spacer wie sie hierin verwendet werden, sind in bevorzugten Ausführungsformen, sofern im Einzelfall nicht anders angegeben, organische Radikale mit einer Masse von etwa 1-300, welche eine kovalente Verknüpfung verschiedener chemischer Gruppen ermöglichen. Beispiele sind einfache Gruppen wie

oder auch komplexere Einheiten wie

Dabei ist R, einzeln und unabhängig für eine jede Substitution, ein Rest mit einer Masse von etwa 1-300. Bevorzugterweise ist R ein Radikal, das aus der Gruppe ausgewählt ist, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, Substituiertes Cycloalkyl, Cycloalkylalkyl, substituiertes Cycloalkylalkyl, Heterocyclyl, substituiertes Heterocyclyl, Heterocyclylalkyl, substituiertes Heterocyclylalkyl, Aryl, substituiertes Aryl, Arylalkyl, substituiertes Arylalkyl, Heteroaryl, substituiertes Heteroaryl, Heteroarylalkyl, substituiertes Heteroarylalkyl, Acyl, substituiertes Acyl, Alkoxyalkyl, substituiertes Alkoxyalkyl, Aryloxyalkyl, substituiertes Aryloxyalkyl, Sulfhydrylalkyl, substituiertes Sulfhydrylalkyl, Hydroxyalkyl substituiertes Hydroxyalkyl, Carboxyalkyl, substituiertes Carboxyalkyl, Carboxyalkyl, substituiertes Carboxamidoalkyl, Carboxyhydrazinoalkyl, Ureidoalkyl Aminoalkyl, substituiertes Aminoalkyl, Guanidinoalkyl, substituiertes Guanidinoalkyl enthält.

Bevorzugterweise werden Spacer aus folgender Gruppe ausgewählt:

R ist bevorzugterweise ein Radikal, das aus der Gruppe ausgewählt ist, die H, Alkyl, substituiertes Alkyl, Arylalkyl, substituiertes Arylalkyl, Heteroarylalkyl, substituiertes Heteroarylalkyl enthält.

Peptide, die eine positive Nettoladung tragen, können eine Histaminfreisetzung verursachen (Jasani et al. 1979 Biochemical Journal 181: 623-632). Insbesondere eine subkutane Applikation bzw. das Setzen von subkutanen Depots ist mit derartigen Verbindungen nicht möglich. Bei oral verabreichten Medikamenten ist die Resorption der Pharmaka besonders wichtig, Geladene Moleküle werden bei sonst gleichen Randbedingungen in der Regel schlechter resorbiert als ungeladene (Veber et al. 2002 Journal of Medicinal Chemistry 45: 2615-2623). Aufgrund der fehlenden Nettoladung der erfindungsgemäßen Verbindungen eignen sich diese auch für die Verwendung als oral applizierbares Medikament. Die erfindungsgemäßen Verbindungen können für die Herstellung von Medikamenten, insbesondere für die Herstellung von Medikamenten für die Prävention und/oder Behandlung von immuno-inflammatorischen Erkrankungen herangezogen werden. Hierzu gehören insbesondere die folgenden Erkrankungen: Autoimmunerkrankungen, akute inflammatorische Erkrankungen, Traumata, lokale Entzündungen, septischer und hämorrhagischer Schock. In bevorzugten Ausführungsformen sind diese Erkrankungen ausgewählt aus der Gruppe, die rheumatoide Arthritis, systemischer Lupus erythematodes, multiple Sklerose, Psoriasis, septischer Schock, Asthma, Vaskulitis, Dermatomyositis, entzündliche Darmerkrankungen (IBD: inflammatory bowel disease), Pemphigus, Myasthenia gravis, Glomerulonephritis, akute respiratorische Insuffizienz, Gehirnschlag, Herzinfarkt, Reperfusionsschaden, neurokognitive Dysfunktionen, Antiphospholipid-Syndrom, Verbrennungen, entzündliche Erkrankungen des Auges wie z.B. Uveitis, altersabhängige Makulardegeneration (engl.: age related macular degenarition), diabetische Retinopathie, lokale Manifestationen systemischer Erkrankungen wie Rheuma, SLE, Diabetis am Auge, dem Gehirn, den Gefäßen, am Herzen, an der Luge, den Nieren, der Leber, des gastrointestinalen Trakts, der Milz, der Haut oder anderen Organsystemen, entzündliche Gefäßerkrankungen wie z.B. Vaskulitis, Artheriosklerose, und akute Verletzungen des zentralen Nervensystems umfasst.. Alle diese Erkrankungen bzw. Krankheitsbilder entstammen Gruppe der immuno-inflammatorischen bzw. hauptsächlich der inflammatorischen Erkrankungen, wobei die inflammatorischen Reaktionen bei diesen Erkrankungen entweder ursächlich oder als Folgereaktion auftreten.

Die vorliegende Erfindung betrifft auch Formulierungen, insbesondere pharmazeutische Formulierungen, die zumindest eine der erfindungsgemäßen Verbindungen enthalten. Häufig werden pharmazeutische Wirkstoffe mit anderen pharmazeutisch akzeptablen Bestandteilen gemischt, um eine verbesserte Wirkung wie beispielsweise verbesserten Transport, Haltbarkeit, zeitliches Verhalten bei der Freisetzung und dergleichen zu gewährleisten. Dem Fachmann ist entsprechender Formulierungen bekannt. Als Bestandteile derartiger Formulierungen anderem sind unter inerte Verdünnungsmittel, Calciumcarbonat, Natriumcarbonat, Lactose, Calciumphosphat, Natriumphosphat, Stärke, Alginate, Gelatine, Magnesiumstearat und Talk bekannt. Bestimmte Bestandteile können beigefügt werden, um eine zeitverzögerte Freisetzung der pharmazeutischen Wirkstoffe zu ermöglichen. Beispiele dafür sind Glycerolmonostearat und Glyceroldistearat. Zur oralen Applikation werden insbesondere Hartgelatinekapseln verwendet, wobei der pharmazeutisch aktive Bestandteil Calciumcarbonat, Calciumphosphat oder Kaolin gemischt wird. Bei Weichgelatinekapseln werden die pharmazeutisch aktiven Wirkstoffe z.B. mit Ölen gemischt (Erdnussöl, flüssiges Paraffin, Olivenöl). Für die Applikation in wässerigen Lösungen können die pharmazeutisch wirksamen Bestandteile insbesondere mit folgenden Bestandteilen gemischt werden: Carboxymethylcellulose, Methylcellulose, Hydropropylmethylcellulose, Natriumalgenat, Polyvinylpyrrolidon, Lecithin, Polymerisierungsprodukte von Alkylenoxiden und Fettsäuren wie beispielsweise Polyoxyethylenstearat, Heptadecaethylenoxycetanol, Polyoxyethylensorbitolmonooleat und Polyoxyethylensorbitanmonooleat. Zur Konservierung können verschiedene Zusatzstoffe zum Einsatz kommen. Beispiele dafür sind Ethyl- oder n-Propyl-p-hydroxybenzonat.

Bestimmte Formulierungen werden eingesetzt, um spezielle Applikationsformen zu ermöglichen. Beispiele für Applikationsformen von erfindungsgemäßen Verbindungen sind orale, subkutane, intravenöse, topische, intramuskulare, rektale und inhalative Applikationen. Die erfindungsgemäßen Verbindungen können dabei als pharmazeutisch akzeptable Salze vorliegen.

Die Erfindung wird nun anhand der folgenden Figuren und Beispiele näher erläutert werden, aus denen sich weitere Merkmale, Ausführunsformen und Vorteile ergeben. Dabei zeigt

Fig.1 ein Balkendiagramm, das das Einströmen von Neutrophilen bei der Immunkomplex vermittelten Peritonitis, ausgedrückt als durchschnittliche Zahl der polymorphkernigen

Zellen/Feld, bei Gabe von Verbindung 149 im Vergleich zur Gabe des Vehikels alleine darstellt; und

Fig. 2 einen Graph, der die C5a-induzierte Neutropänie in Ratten ausgedrückt als % Neutrophile über die Zeit bei Gabe von Verbindunge 149 bzw. Gabe des Vehikels darstellt.

Beispiele

Beispiel 1: Material und Methoden

Die im Folgenden beschriebenen Materialien und Methoden sowie allgemeinen Arbeitsvorschriften wurden im Rahmen der hierin beschriebenen weiteren Beispiele durchgeführt.

Lösungsmittel:

Alle verwendeten Lösungsmittel wurden in der angegebenen Qualität ohne weitere Reinigung eingesetzt:

Acetonitril (Gradient grade, J.T. Baker); Dichlormethan (zur Synthese, Merck Eurolab); Diethylether (zur Synthese, Merck Eurolab); N,N-Dimethylformamid (LAB, Merck Eurolab); Dioxan (zur Synthese, Aldrich); Methanol (zur Synthese, Merck Eurolab).

Wasser wurde unter Verwendung einer Vollentsalzungsanlage (Milli-Q Plus, Millipore) entmineralisiert.

Reagenzien:

Die verwendeten Reagenzien wurden von den Firmen Advanced ChemTech (Bamberg, Deutschland), Sigma-Aldrich-Fluka (Deisenhofen, Deutschland), Bachem (Heidelberg, Deutschland), J.T. Baker (Phillipsburg, USA), Lancaster (Mühlheim/Main, Deutschland), Merck Eurolab (Darmstadt, Deutschland), Neosystem (Strassburg, Frankreich), Novabiochem (Bad Soden, Deutschland, ab 2003 Merck Biosciences, Darmstadt, Deutschland) und Acros (Geel,

Belgien, Vertriebsgesellschaft Fisher Scientific GmbH, Schwerte, Deutschland), Peptech (Cambridge, MA, USA), Synthetech (Albany, OR, USA), Pharmacore (High Point, NC, USA), Anaspec (San Jose, CA, USA) bezogen und ohne weitere Aufreinigung verwendet. Nicht kommerziell erhältliche unnatürliche Aminosäuren oder Carbonsäuren zur N-terminalen Modifizierung wurden nach Standardvorschriften hergestellt. So erhielt man Fmoc-cis-Hyp-OH durch Umsetzung von H-cis-Hyp-OH mit Fmoc-OSu [Paquet et al. 1982 Canadian Journal of Chemistry 60: 976-980A]. Fmoc-Phe(4-STrt-Amidino)-OH synthetisierte man durch eine bekannte Vorschrift [Pearson et al. 1996 Journal of Medicinal Chemistry 39:1372-1382]. Seitenketten-modifizierte Cystein-Derivate wurden durch Alkylierung von Fmoc-Cystein-OH mit Alkylhalogeniden dargestellt.

Bei den Konzentrationen der Reagenzien in Prozent handelt es sich, sofern nicht anders angegebenen, um Volumenprozent (v/v).

RP-HPLC-MS-Analysen:

Analytische Chromatographie erfolgte unter Verwendung eines Hewlett Packard Serie 1100-Systems (Entgaser G1322A, quaternäre Pumpe G1311A, automatischer Probengeber G1313A, thermostatiertes Säulenfach G 1316A, Variabler UV-Detektor G1314A) und gekoppelter ESI-MS (Finnigan LCQ Ion-Trap-Massenspektrometer). Dazu wurde eine Steuersoftware der Firma Finnigan verwendet (Navigator Ver 1.1 sp1). Als Stossgas in der Ionenfalle diente Helium. Die Trennung erfolgte an RP-18-Säulenmaterial (Vydac 218 TP5215, 2,1 x 150 mm, 5 μm, C18, 300 A mit Vorsäule (Merk)) bei 30°C und einem Fluss von 0,3 ml/min unter Anwendung eines linearen Gradienten für alle Chromatogramme (5-95 % B innerhalb von 25 min, wobei A: 0,05 % TFA in Wasser und B: 0,05 % TFA in CH₃CN). Die UV-Detektion erfolgte bei λ = 220 nm. Retentionszeiten (R_t) sind im Dezimalsystem angegeben (z.B. 1,9 min = 1 min 54 sec) und beziehen sich auf die Detektion im Massenspektrometer. Die Totzeit zwischen Injektion und UV-Detektion (HPLC) betrug 1,65 min, zwischen UV-Detektion und Massendetektion 0,21 min. Die Genauigkeit des Massenspektrometers beträgt ca. ± 0,2 amu.

Analytik mittels HPLC-MS, Injektion von 5 μl, Gradient linear von 95:5 zu 5:95 in 9.5 min (A; Wasser mit 0,05% TFA, B: Acetonitril mit 0,05% TFA), RP-Säule der Firma Phenomenex, Typ Luna (C-18), 3um, 50x2.00 mm, Fluss 0,3 ml, bei Raumtemperatur HPLC; ThermoFinnigan Surveyor mit PDA-Detektor (210-350 nm), MS; ThermoFinnigan Advantage bzw. LCQ-Classic

(beide Iontrap), ESI-Ionisation, als Stossgas in der Ionenfalle diente Helium. Excalibur Vers. 1.3 bzw. 1.2. Retentionszeiten (Rt) werden im Dezimalsystem angegeben (z.B. 1,9 min = 1 min 54 sec).

Präparative HPLC:

Präparative HPLC-Trennungen wurden auf Vydac R18-RP-Säulen mit Gradienten folgender Lösungsmittel durchgeführt: A: 0,05 % TFA in Wasser und B: 0,05 % TFA in CH₃CN).

Tabelle 1: Verwendete Abkürzungen:

Abb. Abbildung

AAV Allgemeine Arbeitsvorschrift

Ac Acetyl

Acm Acetamidomethyl

Ac Acetyl

d Dublett

DCM Dichlormethan

DIC Diisopropylcarbodiimid

DIPEA N,N-Diisopropylethylamin

DMF N.N-Dimethylformamid

DMEM Dulbecco's Modified Eagle Medium

DMSO Dimethylsulfoxid

eq. Äquivalent(e)

Fmoc 9-Fluorenylmethyloxycarbonyl

h Stunde(n)

HATU O-(7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium-Hexafluorophosphat

HBTU O-(Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-Hexafluorophosphat

HEPES N-2-2-Hydroxyethyl-1-piperazin-N'-2-ethanolsulfonsäure

HOBt 1-Hydroxybenzotriazol

HPLC high-pressure liquid chromatography

m Multiplett

Me Methyl

min Minute(n)

ml Mililiter N-Methylimidazol **NMI** NMP *N*-Methylpyrrolidon **NMR** nuclear magnetic resonance Ph Phenyl Singulett S ^tBu tert-Butyl THF Tetrahydrofuran

Trifluoressigsäure

TFA

Tabelle 2: Für proteinogene Aminosäuren wurde der Drei-Buchstaben-Code verwendet:

3-Buchstaben-Code	Aminosäure	3-Buchstaben-Code	Aminosäure
Ala	Alanin	Met	Methionin
Cys	Cystein	Asn	Asparagin
Asp	Asparaginsäure	Pro	Prolin
Glu	Glutaminsäure	Gln	Glutamin
Phe	Phenylalanin	Arg	Arginin
Gly	Glycin	Ser	Serin
His	Histidin	Thr	Threonin
Ile	Isoleucin	Val	Valin
Lys	Lysin	Trp	Tryptophan
Leu	Leucin	Tyr	Tyrosin

Tabelle 3: Für nicht-proteinogene Aminosäuren wird ein Dreibuchstabencode verwendet, bei dem der erste Buchstabe die Stereochemie des C-alpha-Atoms beschreibt. Ein großer erster Buchstabe steht für die L-Form, ein kleiner erster Buchstabe für die D-Form der jeweiligen Aminosäure.

1Ni	1-Naphthylalanin
2Ni	2-Naphthylalanin
3PP	3-Phenylpropionyl

5Ff	Pentafluorophenylalanin
6FW	6-Fluoro-DL-Tryptophan
Aic	2-Aminoindan-2-carbonsäure
Amf	alpha-methyl-phenylalanin
Aoa	Aminooxyessigsäure
Aoc	1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure
Aze	Azetidin-2-carbonsäure
Bal	beta-Alanin
Bhf	beta-Homophenylalanin
Bta	Benzothienylalanin
Bzl	Benzyl
Cha	Beta-Cyclohexylalanin
Chg	Cyclohexylglycin
Chy	cis-Hydroxyprolin
Cit	Citrullin
Ctb	Cys(tBu)
Dab	2,4-Diaminobuttersäure
Dap	2,3-Diaminopropionsäure
Def	N,N-Diethyl-Phenylalanin
Dff	Phe(3,4-F)
Eaa	Phe(3,4-Cl)
Eaf	Allylglycin
Eag	2-Propargylglycine
Eap	Phe(4-tBu)
Eay	(2S,4S)-4-Phenyl-pyrrolidin-2-carbonsäure
Ebd	Cys(Et)
Ebo	Cys(4-picolyl)
Ebu	Cys(3-picolyl)
Ebw	3,3-Diphenylalanin
Eby	(S)-3-Amino-3-phenylpropansäure
Ecf	Cys(O-3-picolyl)
Ecg	Cys(2-picolyl)
Ecp	His(tau-4-Methoxybenzyl)

Ecr	His(tau-methyl)
Edn	Cys(CH ₂ -CH ₂ -4-Pyridyl)
Eec	Cys(1-Methylen-1H-benzotriazol)
Eep	Cys(O2-Acm); 3-(Acetylamino-methanesulfonyl)-2-amino-propansäure
Eew	Arg(NO ₂)
Egc	DL-Trp(5-Me)
Egy	Phe(2,4-Cl)
Egz	Phe(3-NO2)
Eth	Ethyl
FAc	F-CH2-CO-
Fai	-CONH2
Faz	3-Phenylpropionyl
Fbi	2-(4-Pyridyl)acetyl
Fbn	Nicotinoyl
Fbo	Morpholine-4-carbonyl
Fbp	N,N-Dimethyl-Phenylalanin
Fci	Piperidine-3-carbonyl
Fck	HO-CH2-(CHOH)4-C=N-O-CH2-CO-
Fcn	norArg(CH2CH2); 2-Amino-4-(4,5-dihydro-1H-imidazol-2-ylamino)-
	buttersäure
Fco	bisnorArg(CH2CH2); 2-Amino-3-(4,5-dihydro-1H-imidazol-2-ylamino)-
	propionsäure
Fcp	2-Amino-5-[bis-(4,5-dihydro-1H-imidazol-2-yl)-amino]-pentanoic acid
Ffa	Arg(CH2CH2); 2-Amino-5-(4,5-dihydro-1H-imidazol-2-ylamino)-pentansäure
Fha	2-Morpholin-4-yl-acetyl
Fhb	N-(2,3-Dihydroxy-propyl)-formamidyl
Fhi	2-[2-(2-Methoxy-ethoxy)-ethoxy]-acetyl
Fhu	-C(NH)-NH2
Fib	Arg(4xMe), [(4-Amino-4-carboxy-butylamino)-dimethylamino-methylene]-
	dimethyl-ammonium
Fid	Methoxyoxalyl
G23	Orn(SO2Me)
G24	N-(n-Propyl)-Glycin

G25	N-(CH2CH2OCH3)-Glycin
G26	N-(CH2Furyl)-Glycin
G27	N-(CH2Pyridyl)-Glycin
G30	N-(CH2CH2CH2(2-Oxo-pyrrolidin-1-yl))-Glycin
G31	N-(CH2CH2(3,4-Dimethoxyphenyl))-Glycin
Guf	Phe(4-guanidin)
Har	Homoarginin
Har	Homo-Arginin
Hch	Homo-Cyclohexylalanin
Hci	Homo-Citrullin
Hle	Homo-Leucin
Hoo	Hydroorotic acid; (S)-2,6-Dioxo-hexahydro-pyrimidine-4-carbonyl
Hse	Homoserin
НуА	Hyp(Ac)
Hym	Hyp(Me)
Нур	trans-Hydroxyprolin
L19	1-(Methoxymethyl)-2-phenyl-ethylamino
L22	norArg
Mcf	Phe(3-Cl)
Mff	Phe(3-F)
Mmf	Phe(3-Me)
Mmy	Phe(3-OMe)
Mpa	3-(3-Pyridyl)-alanin
Nip	Nipecotinsäure
Nle	Norleucin
NMA	N-Me-Alanin
NMD	N-Me-Asparagin
NMF	N-Me-Phenylalanin
NMS	N-Me-Serin
Nva	Norvalin
Ocf	Phe(2-Cl)
Off	Phe(2-F)
Ohf	(S)-2-Hydroxy-3-phenyl-propionyl

Oic	Octahydroindol-2-carbonsäure .
Omf	Phe(2-Me)
Opa	3-(2-Pyridyl)-alanin
OrA	Om(Ac)
OrE	Om(Et2); 2-Amino-5-diethylamino-pentanoic acid
Om	Omithin
Otf	Phe(2-CF3)
Paf	Phe(4-NH ₂)
Pcf	Phe(4-Cl)
Pff	Phe(4-F)
Phg	Phenylglycin
Pip	Pipecolinsäure
Pmf	Phe(4-Me)
Ppa	3-(4-Pyridyl)-alanin
Tff	Phe(3,4,5-F)
Thi	2-Thienylalanin
Tic	1,2,3,4-Tetrahydroisochinolin-3-carbonsäure
Tiq	Tetrahydroisochinolin-1-carbonsäure
Tmg	=C(NMe2)-NMe2
XX1	2-Amino-3-(4-piperidinyl)propionsäure
XX2	4-Guanidyl-piperidinyl-Alanin

Die Aktivität von Verbindungen wird durch folgende Konvention vereinfacht beschrieben:

$1C_{50} < 5 \text{ nM}$:	Α
$5 \text{ nM} < \text{IC}_{50} \leq 10 \text{ nM}:$	В
$10 \text{nM} < \text{IC}_{50} \le 20 \text{nM}$:	C
$20 \text{ nM} < IC_{50} \leq 50 \text{ nM}$:	D
$50 \text{nM} < \text{IC}_{50} \leq 200 \text{nM}$:	E
$200 \text{ nM} < IC_{50} \le 2000 \text{ nM}$:	F
2000 nM < IC ₅₀	G

Allgemeine Arbeitsvorschrift (AAV) 1: Synthese linearer Peptide

Lineare Peptide wurden nach der Fmoc-Bu-Strategie im Batch-Verfahren synthetisiert. Dabei führte man entweder eine manuelle Synthese in Polypropylen-Spritzen mit Fritten durch oder setzte automatische Synthesizer (Syro der Fa. Multisyntech, Witten oder Sophas der Fa. Zinsser, Frankfurt) ein.

Zur Herstellung von Peptiden mit C-terminaler Carbonsäure wurde die C-terminale Aminosäure entweder an Tritylchlorid-Harz angeknüpft (ca. 200 mg Harz; Beladung reaktiver Gruppen ca. 1,5 mmol/g; Anknüpfung durch Umsetzung mit 0,8 eq. Fmoc-Aminosäure und 3,0 eq. DIPEA in CH₂Cl₂ für 2 Stunden; erhaltene Beladung der Aminosäure ca. 0,2-0,4 mmol/g) oder es erfolgte eine Anknüpfung an Wang-Harz (200-500 mg Harz; Beladung reaktiver Gruppen ca. 0,6 mmol/g; Anknüpfung durch Umsetzung mit 4 eq. Fmoc-Aminosäure und 4 eq. DIC und 3 eq. NMI in DMF für 3 Stunden; erhaltene Beladung der Aminosäure ca. 0,2-0,6 mmol/g).

Bei der Herstellung von Peptiden mit C-terminalem Carboxamid wurde die erste Aminosäure durch Fmoc-Abspaltung von Fmoc-Rinkamid-Harz (ca. 200 mg Harz; Fmoc-Abspaltung mit 20 % Piperidin in DMF für 20 min) und anschließende Kupplung der Fmoc-Aminosäure (einmalige oder mehrmalige Umsetzung mit 5 eq. Fmoc-Aminosäure; 5 eq. HBTU und 15 eq. DIPEA in DMF für 30-60 min) angeknüpft.

Nach Anknüpfung der ersten Aminosäure wurde das gewünschte Peptid durch eine je nach Bedarf wiederholte Sequenz aus Fmoc-Abspaltung und Anknüpfung der jeweils benötigten Fmoc-Aminosäure oder Carbonsäure hergestellt. Zur Abspaltung der Fmoc-Schutzgruppe wurde dabei das Harz mit 20 % Piperidin in DMF für 20 min umgesetzt. Kupplungen erfolgten durch einmalige oder mehrmalige Umsetzung mit 5 eq. der Aminosäure, 5 eq. HBTU und 15 eq. DIPEA in DMF für 30-60 min). Zur Einführung N-terminaler Acetylgruppen setzte man das N-terminal freie harzgebundene Peptid mit 10 % Essigsäureanhydrid und 20 % DIPEA in DMF für 20 min um.

Zur Abspaltung des fertig synthetisierten Peptids vom Harz und zur Entfernung von Seitenschutzgruppen setzte man ein Gemisch aus 95 % TFA, 2,5 % Wasser, 2,5 %TIPS oder eine ähnliche saure Lösung ein. Anschließend wurde das TFA am Rotationsverdampfer entfernt

oder das erhaltene Peptid mit Methyl-Butyl-Ether bei 0 °C gefällt und nach Zentrifugation und Dekantieren der überstehenden Lösung isoliert. Zur Überführung eventuell erhaltener Trifluoracetat-Salze in die entsprechenden HCl-Salze wurde das Peptid mit einem Gemisch aus 2 N HCl und MeCN gelöst und lyophilisiert.

Peptide mit C-terminalem Carboxamid wurden direkt einer Reinigung per HPLC unterzogen. Peptide mit C-terminaler Carbonsäure wurden dagegen in der Regel als Rohprodukt nach AAV2 cyclisiert.

Allgemeine Arbeitsvorschrift (AAV) 2: Cyclisierung von Peptiden mit C-terminaler Carbonsäure

Zur Cyclisierung wurden ca. 80 mg des nach AAV1 synthetisierten linearen Peptids in 5 ml DMF und 5 ml CH₂Cl₂ gelöst. Anschließend stellte man mit N-Ethylmorpholin einen pH-Wert von ca. 8 ein und setzte 1 eq. HOBt sowie 10 eq. DIC zu. Nach 2-16stündigem Rühren bei Raumtemperatur wurde das Lösungsmittel am Rotationsverdampfer entfernt und das erhaltene Rohprodukt per HPLC gereinigt.

Allgemeine Arbeitsvorschrift (AAV) 3: Reduktive Alkylierung von N-terminal freien Harzgebundenen Peptiden

Das nach AAV1 synthetisierte lineare Peptid mit freiem N-Terminus wurde vor der Abspaltung vom Harz mit 10 eq. des entsprechenden Aldehyds in 5 %iger Essigsäure und 5 %igem Trimethylorthoformiat in THF umgesetzt. Nach ca. 4 Stunden wurde das erhaltene Imin mit 5 eq. Natriumcyanoborhydrid über Nacht reduziert.

Nach Abspaltung des fertig synthetisierten Peptids vom Harz gemäß AAV1 konnte das erhaltene Rohprodukt gemäß AAV2 cyclisiert werden. Neben der gewünschten Cyclisierung trat hier in der Regel auch eine unerwünschte Cyclisierung auf das N-terminale sekundäre Amin auf. Das hierdurch entstandene Nebenprodukt ließ sich aber problemlos per HPLC abtrennen.

Beispiel 2: Synthese von Ac-Phe-[Orn-Pro-cha-Trp-Phe] (1)

Nach linearer Peptidsynthese gemäß AAV 1, Cyclisierung gemäß AAV 2 und anschließender Reinigung per HPLC erhielt man 50,9 mg des gewünschten Produkts Ac-Phe-[Orn-Pro-cha-Trp-Phe] als weißen Feststoff.

MS (ESI): $m/z = 888,3 [(M+H)^{+}].$

Beispiel 3: Synthese von Ac-Phe-[Orn-Hyp-cha-Trp-Phe] (2)

Das lineare Peptid Ac-Phe-Orn-Hyp-cha-Trp-Phe-OH wurde nach linearer Peptidsynthese gemäß AAV 1 hergestellt und nach AAV 2 cyclisiert. Aufgrund der höheren Nucleophilizität von Aminen gegenüber Alkoholen entstand dabei neben dem gewünschtem cyclisierten Produkt kein Produkt durch unerwünschte Veresterung der Hyp-OH-Gruppe mit der C-terminalen Carboxylgruppe. Reinigung des erhaltenen Rohproduktes durch HPLC führte zu 26,9 mg des gewünschten weißen Feststoffes Ac-Phe-[Orn-Hyp-cha-Trp-Phe] (2).

MS (ESI): $m/z = 903,5 [(M+H)^{+}].$

Beispiel 4: Synthese von Ph-CH₂-[Orn-Pro-cha-Trp-Nle] (56)

Das harzgebundene Peptid H-Orn-Pro-cha-Trp-Nle-Trityl-Harz wurde nach linearer Peptidsynthese gemäß AAV 1 hergestellt und gemäß AAV 3 einer reduktiven Alkylierung mit Benzaldehyd unterzogen. Cyclisierung gemäß AAV 2 und anschließende Reinigung per HPLC führten zu 0,9 mg des gewünschten Produkts 56 als weißen Feststoff.

MS (ESI): m/z = 753,4 [(M+H)⁺].

Beispiel 5: Synthese von HOCH₂(CHOH)₄-C=N-O-CH₂-CO-Phe-[Orn-Pro-cha-Trp-Nle] (3)

Das lineare Peptid H-Aoa-Phe-Orn-Pro-cha-Trp-Nle-OH wurde gemäß AAV 1 hergestellt, in 24 ml MeCN/Natriumacetatpuffer (0.2 M, pH = 4) 1:1 gelöst und mit 58 mg (10 eq.) D-Glucose versetzt. Nach 4-tägigem Rühren wurde zum quenchen von nicht umgesetztem Aminooxyessigsäure-Peptid mit 2,4 ml Aceton versetzt und nach 5 min das Lösungsmittel im Vakuum entfernt. Das erhaltene Rohprodukt wurde per HPLC gereinigt und anschließend nach AAV 2 cyclisiert. Reinigung des erhaltenen Rohproduktes durch HPLC führte zu 1,9 mg des gewünschten weißen Feststoffes 3.

MS (ESI): $m/z = 1046,5 [(M+H)^{+}].$

Beispiel 6: Synthese von 2-Acetamido-1-Methyl-Glucuronyl-Phe-[Orn-Pro-cha-Trp-Nle] (4)

Das harzgebundene Peptid H-Phe-Orn-Pro-cha-Trp-Nle-Trityl-Harz wurde nach linearer Peptidsynthese gemäß AAV 1 hergestellt und mit 39,8 mg (2,0 eq.) 2-Acetamido-1-Methyl-Glucuronsäure (Schämann et al. 2003 European Journal of Organic Chemistry: 351-358), 60,8 mg (2,0 eq.) HATU und 105,7 μl (10 eq.) 2,4,6-Collidin in 1,6 ml DMF umgesetzt. Nach 1,5-stündigem Rühren wurde das Harz mit DMF (5x), MeOH (5x) und CH₂Cl₂ (3x) gewaschen und das Peptid mit einem Gemisch aus 95 % TFA, 2,5 % Wasser und 2,5 %TIPS vom Harz abgespalten. Cyclisierung gemäß AAV 2 und anschließende Reinigung per HPLC führten zu 29,0 mg des gewünschten Produkts 4 als weißen Feststoff.

MS (ESI): $m/z = 1043,0 [(M+H)^{+}].$

Beispiel 7: Synthese von Ac-Phe-[Orn-Hyp(COCH₂OCH₂OCH₂CH₂OCH₃)-cha-Trp-Nle] (5)

Das lineare Peptid Ac-Phe-Orn-Hyp-cha-Trp-Nle-OH wurde gemäß AAV 1 hergestellt, nach AAV 2 cyclisiert und das entstandene zyklisierte Peptid Ac-Phe-[Orn-Hyp-cha-Trp-Nle] per

HPLC gereinigt. 35,4 μ l (40 eq.) 2-(2-(2-Methoxyethoxy)ethoxy)essigsäure wurden für 15 min bei 40 °C mit 50,3 μ l (120 eq.) Thionylchlorid umgesetzt. Nach Entfernung des Lösungsmittels im Vakuum setzte man 78,8 ml (80 eq.) DIPEA, 1 ml CH₂Cl₂ und 5,0 mg der Verbindung Ac-Phe-[Orn-Hyp-cha-Trp-Nle] zu. Man rührte für 3 Tage bei Raumtemperatur und reinigte per HPLC. Dieses führte zu 1,6 mg des gewünschten weißen Feststoffes 5.

MS (ESI): $m/z = 1029,6 [(M+H)^{+}].$

Beispiel 8: Synthese von Ac-Phe-[Orn-Hyp(CONH-CH₂CH(OH)-CH₂OH)-cha-Trp-Nle] (6)

Das lineare Peptid Ac-Phe-Orn-Hyp-cha-Trp-Nle-OH wurde gemäß AAV 1 hergestellt, nach AAV 2 cyclisiert und das entstandene zyklisierte Peptid Ac-Phe-[Orn-Hyp-cha-Trp-Nle] per HPLC gereinigt. Anschließend setzte man 5,0 mg des Peptids mit 26,1 mg 4-Isocyanatomethyl-2,2-dimethyl-[1,3]dioxolan und 1,88 μ l (2,0 eq.) DIPEA in 0,3 ml MeCN um. Nach 3-tägigem Rühren bei 40 °C wurde das Lösungsmittel am Rotationsverdampfer entfernt und das erhaltene Rohprodukt per HPLC gereinigt. Man erhielt 0,22 mg des gewünschten weißen Feststoffes 6.

MS (ESI): $m/z = 986,5 [(M+H)^{+}].$

Beispiel 9: Synthese von Ac-Phe-[Orn-Pro-cha-Trp-Arg(CH₂CH₂)] (7)

Man stellte das lineare Peptid Ac-Phe-Orn-Pro-cha-Trp-Orn-OH gemäß AAV 1 her, cyclisierte nach AAV 2 und reinigte das entstandene zyklisierte Peptid Ac-Phe-[Orn-Pro-cha-Trp-Orn] per HPLC. Anschließend setzte man 2,6 mg des Peptids mit 22,6 mg (30 eq.) 2-(Methylmercapto)-2-imidazolin-Hydroiodid und 29,7 μ l (60 eq.) DIPEA in 260 μ l MeOH um. Nach 2-tägigem Rühren bei 50 °C wurde das Lösungsmittel am Rotationsverdampfer entfernt und das erhaltene Rohprodukt per HPLC gereinigt. Man erhielt 0,86 mg des gewünschten weißen Feststoffes 7.

MS (ESI): $m/z = 922,8 [(M+H)^{+}].$

Beispiel 10: Synthese von Ph-CH₂-CH₂-CO-[Orn-Pro-cha-Trp-Nle] (41)

Das Peptid Ph-CH₂-CH₂-CO-Orn-Pro-cha-Trp-Nle-OH wurde nach linearer Peptidsynthese gemäß AAV 1 hergestellt, wobei 3-Phenylproionsäure als N-terminale Carbonsäure eingesetzt wurde. Man cyclisierte gemäß AAV 2 und reinigte das erhaltene Rohprodukte per HPLC. Man erhielt 3,13 mg des gewünschten weißen Feststoffes 41.

MS (ESI): $m/z = 796,5 [(M+H)^{+}].$

Beispiel 11: Bestimmung des IC₅₀ Wertes in einem Enzymfreisetzungsassay

Die Durchführung des Assays ist bei Köhl (Köhl 1997 The Anaphylatoxins. In: Dodds, A.W., Sim, R.B. (Eds.), Complement: A Practical Approach. Oxford, pp. 135-163) beschrieben. Basophile Leukämie-Zellen aus Ratten (RBL), die den humanen C5aR (CD88) exprimieren, werden in DMEM mit 10% fötalem Kälberserum, 100 U/ml Penicillin, 100µg/ml Streptomycin und 2 mM Glutamin (alle Medienbestandteile Biochrome, Berlin) bis zur Konfluenz bei 37°C und 10% CO₂ angezogen. Alle folgenden Angaben beziehen sich auf eine Kulturflasche mit 75 cm² Fläche. Verbrauchtes Medium wird abgegossen. Zellen werden mit 10 ml PBS (Dulbecco's PBS, Biochrome) gewaschen und anschließend mit 3 ml Cell Dissociation Solution (CDS, Sigma) überschichtet. Zellen werden bei RT 1 min inkubiert. Anschließend wird die CDS entfernt und die Zellen werden weitere 10-15 min bei 37°C zum Ablösen inkubiert. Im Assay werden 20 µl Lösung der zu testenden Verbindung verwendet. Die Assaylösung darf nicht mehr als 2,8 % DMSO enthalten. In Verdünnungsreihen wird in 1/3 oder 1/2 Schritten verdünnt. Zu den 20 ul Lösungen der Verbindungen werden 75 ul folgendermaßen behandelter RBL-Zellen gegeben: Nach der Ablösephase werden die Zellen heftig abgeklopft und in 10 ml auf 37°C temperierten HAG-CM aufgenommen (20 mM HEPES; 125 mM NaCl, 5mM KCl, 1 mM CaCl₂. 1mM MgCl₂, 0,5 mM Glucose, 0,25% BSA. HEPES-Herstellung:: 2,3 g/l HEPES-Salz + 2,66 g/l HEPES Säure). Zellen werden gezählt und zentrifugiert (200g, 10 min). Das Zellpellet wird mit vorgewärmten HAG-CM (d.h. Hepes-gepufferte NaCl-Glucose-Lösung mit Calcium und Magnesium) aufgenommen, und die Zelldichte auf 2x106 Zellen/ml eingestellt. Die Zellen werden bei 37°C für 5 min inkubiert. Zu den Zellen kommen pro ml Zellsuspension 27µl einer Cytochalasin B-Lösung (100µg/ml in DMSO, Sigma). Die Zellen werden weitere 3 min bei 37°C inkubiert. 75 µl Zellsuspension werden zu den 20 µl Lösung mit der zu testenden Verbindung gegeben. Damit ergibt sich ein Volumen von 95 μl pro Well. Die Zellen werden 10 min bei 37°C inkubiert. Dann werden pro Well 10 μl hrC5a (10,5 nM in HAG-CM, Sigma) gegeben. Es folgt eine Inkubation für 5 min bei 37°C. Anschließend werden die Platten auf Eis gestellt und bei 1200xg und 4°C für 3 min zentrifugiert. 75 μl des Überstands werden zu 100 μl Substrat-Lösung (2,7 mg/ml p-Nitrophenyl-N-acetyl-b-D-Glucosaminide (Sigma) in 42,5 mM Na-Acetat pH 4.5) gegeben. Die Platte wird für 1 h bei 37°C inkubiert. Pro Well werden 75 μl 0,4 M Glycin pH 10.4 gegeben. Die Platte kann anschließend bei 405 nm gemessen werden. Der IC50-Wert wird durch die Lösung der 4-Parametergleichung y=((A-D)/(1+(x/C)^B))+D bestimmt.

Die Ergebnisse des Tests zur Bestimmung der IC₅₀-Werte sind in Tabelle 4 dargestellt.

Tabelle 4: Daten zur antagonistischen Aktivität repräsentativer erfindungsgemäßer Verbindungen

		(M+H)+	T
		im MS	Aktivität
Nr.	Verbindung	[amu]	(klassifiziert)
1	Ac-Phe-[Om-Pro-cha-Trp-Phe]	888,3	D
2	Ac-Phe-[Orn-Hyp-cha-Trp-Phe]	903,5	D
	HOCH2(CHOH)4-C=N-O-CH2-CO-Phe-[Orn-Pro-cha-		
3	Trp-Nle]	1046,5	E
	X-Phe-[Orn-Pro-cha -Trp-Nle]; X = 2-Acetamido-1-		
4	Methyl-Glucuronyl	1043,0	D
-	Ac-Phe-[Orn-Hyp(COCH2OCH2CH2OCH2CH2OCH3)-		
5	cha-Trp-Nle]	1029,6	E
	Ac-Phe-[Orn-Hyp(CONH-CH2CH(OH)-CH2OH)-cha-		
6	Trp-Nle]	986,5	E
7	Ac-Phe-[Orn-Pro-cha-Trp-Arg(CH2CH2)]	922,8	F
8	Ac-Phe-[Orn-Pro-cha-Trp-Har]	910,7	F

9	Ac-Phe-[Orn-Pro-cha-Trp-Guf]	944,6	[F
10	Ac-Phe-[Orn-Pro-cha-Trp-Cit]	897,5	F
11	Ac-Phe-[Orn-Pro-cha-Trp-Eew]	941,5	F
12	Ac-Phe-[Orn-Pro-cha-Trp-arg]	896,7	F
13	Ac-Phe-[Orn-Pro-cha-Trp-Hci]	911,6	F
14	Ac-Phe-[Orn-Pro-cha-Trp-Paf]	902,7	D
15	Ac-Phe-[Orn-Pro-cha-Trp-Ebo]	934,6	F
16	Ac-Phe-[Orn-Pro-cha-Trp-Ecf]	950,6	F
17	Ac-Phe-[Orn-Pro-cha-Trp-Ebu]	934,7	F
18	Ac-Phe-[Orn-Pro-cha-Trp-Ecg]	934,6	F
19	Ac-Phe-[Orn-Pro-cha-Trp-Edn]	948,6	F
20	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]	891,7	Е
21	Ac-Phe-[Orn-Pro-cha-Trp-Phe(4-Amidin)]	929,7	F
22	Ac-Phe-[Orn-Pro-cha-Trp-Lys]	868,6	G
23	Ac-Phe-[Orn-Pro-cha-Trp-Ppa]	888,6	E
24	Ac-Phe-[Orn-Pro-cha-Trp-Arg(Me2)]	924,7	E
25	Ac-Phe-[Orn-Pro-cha-Trp-Dab]	840,4	E
26	Ac-Phe-[Orn-Pro-cha-Trp-Ecp]	997,7	F
27	Ac-Phe-[Orn-Pro-cha-Trp-XX1]	894,6	G
28	Ac-Phe-[Orn-Pro-cha-Trp-Nle]	852,6	D
29	Ac-Phe-[Orn-Pro-cha-Trp-Met]	871,6	E
30	Ac-Phe-[Orn-Pro-cha-Trp-XX2]	936,5	G
31	Ac-Phe-[Orn-Pro-cha-Trp-Nva]	839,5	С
32	Ac-Phe-[Orn-Pro-cha-Trp-Hle]	867,5	D
33	Ac-Phe-[Orn-Pro-cha-Trp-Eaf]	837,5	В
34	Ac-Phe-[Orn-Pro-cha-Trp-Ebd]	871,5	D
35	Ac-Phe-[Orn-Pro-cha-Trp-Eag]	835,5	В
36	Ac-Phe-[Orn-Pro-cha-Trp-Pmf]	901,6	D
37	Ac-Phe-[Orn-Pro-cha-Trp-2Ni]	937,5	Е
38	Ac-Phe-[Orn-Pro-cha-Trp-Thi]	893,5	D
39	Ac-Phe-[Orn-Pro-cha-Trp-Ala]	811,7	G
40	Ac-Phe-[Orn-Pro-cha-Trp-Arg]	896,6	C

WO 2005/010030		PCT/EP2004/008057
	93	

41	Ph-CH2-CH2-CO-[Orn-Pro-cha-Trp-Nle]	796,5	C
42	H-Phe-[Orn-Pro-cha-Trp-Nle]	811,5	C
43	Ac-Lys-Phe-[Orn-Pro-cha-Trp-Nle]	1015,7	D
44	H-Phe-[Orn-Ser-cha-Trp-Nle]	843,5	D
45	Ac-Ala-[Orn-Pro-cha-Trp-Arg]	820,6	G
46	Ac-Phe-[Orn-NMeAla-cha-Trp-Arg]	884,8	D
47	Ac-Phe-[Orn-Pro-ala-Trp-Arg]	814,8	G
48	Ac-Phe-[Orn-Pro-cha-Ala-Arg]	781,8	G
49	Ac-Phe-[Orn-Pro-cha-Trp-Ala]	811,7	G
56	Ph-CH2-[Orn-Pro-cha-Trp-Nle]	753,4	D
57	Ph-CH2-[Orn-Pro-cha-Trp-Phe]	787,5	D
58	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]	937,7	D
59	Ph-CH(OH)-CH2-CO-[Orn-Pro-cha-Trp-Nle]	812,4	D
144	Ac-Phe-[Orn-Hyp-cha-Trp-Nle]	868,6	С
145	3PP-[Orn-Hyp-cha-Trp-Nle]	811,6	D
146	Ac-Phe-[Orn-Pro-cha-Trp-Tyr]	902,7	D
147	Ac-Phe-[Orn-Pro-omf-Trp-Nle]	860,6	С
172	Ac-Phe-[Cys-Pro-cha-Bta-Phe-Cys]-NH2	1011.6	E
173	Ac-Phe-[Orn-Asn-cha-Trp-Nle]	871	E
174	Ac-Phe-[Orn-Aze-cha-Trp-Nle]	839.5	Е
175	Ac-Phe-[Orn-Chy-cha-Trp-Nle]	869.5	Е
176	Ac-Phe-[Orn-HyA-cha-Trp-Phe]	945.6	E
177	Ac-Phe-[Orn-Hyp-hle-Bta-Phe]	894.7	E
178	Ac-Phe-[Orn-Hyp-hle-Mcf-Phe]	874.2	E
179	Ac-Phe-[Orn-Hyp-hle-Pff-Nle]	823.1	Е
180	Ac-Phe-[Orn-Hyp-hle-Pff-Phe]	857	E
181	Ac-Phe-[Orn-Hyp-hle-Trp-Phe]	877.9	D
182	Ac-Phe-[Orn-Hyp-Mmf-Trp-Nle]	877.5	E
183	Ac-Phe-[Orn-Hyp-Mmf-Trp-Phe]	911.8	E
184	Ac-Phe-[Orn-NMD-cha-Trp-Nle]	885.5	E
185	Ac-Phe-[Orn-Pip-hle-Bta-Phe]	892.7	E
186	Ac-Phe-[Orn-Pro-cha-Pff-Nle]	833.3	E

187	Ac-Phe-[Orn-Pro-cha-Pff-Phe]	867.4	E
188	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]	937.7	E
189	Ac-Phe-[Orn-Pro-cha-Trp-Cha]	893.6	E
190	Ac-Phe-[Orn-Pro-cha-Trp-Chg]	879.7	Е
191	Ac-Phe-[Orn-Pro-cha-Trp-Cit]	897.5	F
192	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]	891.7	D
193	Ac-Phe-[Orn-Pro-cha-Trp-Leu]	853.5	Е
194	Ac-Phe-[Orn-Pro-cha-Trp-nle]	853.5	Е
195	Ac-Phe-[Orn-Pro-cha-Trp-Phe]	887.7	D
196	Ac-Phe-[Orn-Pro-hle-Bta-Nle]	844.7	Е
197	Ac-Phe-[Orn-Pro-hle-Bta-Phe]	879.5	Е
198	Ac-Phe-[Orn-Pro-hle-Pff-Phe]	840.9	E
199	Ac-Phe-[Orn-Pro-hle-Trp-Nle]	828.1	D
200	Ac-Phe-[Orn-Ser-cha-Trp-Nle]	843.5	Е
201	Ac-Phe-[Orn-Ser-cha-Trp-Nle]	843.5	Е
202	Ac-Phe-[Orn-Ser-hle-Trp-Nle]	817.5	Е
203	Ac-Phe-[Orn-Thr-cha-Trp-Nle]	858.2	Е
204	Ac-Phe-[Orn-Tic-cha-Trp-Nle]	915.5	Е
205	Ac-Phe-[Orn-Tic-cha-Trp-Nle]	915.5	Е
311	Ac-Thi-[Orn-Pro-hle-Bta-Phe]	884.8	Е
315	Bzl-[Orn-Pro-cha-Bta-Nle]	771.8	Е
317	Def-[Orn-Ser-hle-Trp-Nle]	831.9	E
318	Eby-Phe-[Orn-Hyp-cha-Trp-Phe]	1008.9	E
319	Eth-Phe-[Orn-Pro-hle-Pff-Nle]	792.4	E
323	Fai-Phe-[Orn-Hyp-cha-Trp-Phe]	904.4	Е
325	Fbi-Phe-[Orn-Pro-cha-Trp-Nle]	930.5	E
326	Fbn-Phe-[Orn-Hyp-cha-Trp-Phe]	966.8	E
327	Fbn-Phe-[Orn-Pro-cha-Trp-Nle]	916.5	E
328	Fbn-Phe-[Orn-Pro-cha-Trp-Nle]	916.5	C
330	Fbo-Phe-[Orn-Pro-cha-Trp-Nle]	924.5	E
331	Fbp-[Orn-Pro-cha-Trp-Nle]	839.4	E
332	Fci-[Phe-Orn-Hyp-cha-Trp-Phe]	973.1	Е

333	Fck-[Phe-Orn-Pro-cha-Trp-Nle]	1046.4	E
334	Fck-Phe-[Orn-Pro-cha-Trp-Nle]	1047.1	Е
335	Fha-Phe-[Orn-Hyp-cha-Trp-Phe]	988.9	Е
336	Fhb-[Phe-Orn-Hyp-cha-Trp-Phe]	979.1	Е
337	Fhi-Phe-[Orn-Hyp-cha-Trp-Phe]	1022	E
338	Fhu-Phe-[Orn-Pro-hle-Pff-Nle]	807	E
341	H-Amf-[Orn-Aze-hle-Pff-Nle]	750.9	Е
342	H-Bal-Phe-[Orn-Hyp-hle-Trp-Nle]	872.5	Е
343	H-Bal-Phe-[Orn-Pro-hle-Pff-Nle]	836	E
344	H-Eby-[Orn-Hyp-hle-Trp-Nle]	801.9	Е
347	Hoo-Phe-[Orn-Hyp-hle-Pff-Nle]	921	E
353	H-Phe-[Lys-Hyp-hle-Pff-Nle]	795.2	E
354	H-Phe-[Orn-Hym-hle-Mcf-Nle]	811.4	Е
355	H-Phe-[Orn-Hym-hle-Pff-Phe]	829.1	E
356	H-Phe-[Orn-Hyp-cha-Trp-Nle]	828.1	D
357	H-Phe-[Orn-Hyp-cha-Trp-Phe]	862.1	D
358	H-Phe-[Orn-Hyp-ctb-Pff-Nle]	813.2	E
359	H-Phe-[Orn-Hyp-ctb-Trp-Nle]	834.2	D
360	H-Phe-[Orn-Hyp-ctb-Trp-Phe]	868	D
361	H-Phe-[Orn-Hyp-hle-Mcf-Leu]	796.4	E
362	H-Phe-[Orn-Hyp-hle-Pff-Chg]	807	E
363	H-Phe-[Orn-Hyp-hle-Pff-Hle]	795.1	E
364	H-Phe-[Orn-Hyp-hle-Pff-Leu]	781.2	Е
365	H-Phe-[Orn-Hyp-hle-Pff-Nle]	781.1	E
366	H-Phe-[Orn-Hyp-hle-Pff-Phe]	815	E
367	H-Phe-[Orn-Hyp-hle-Trp-Hle]	815.9	E
368	H-Phe-[Orn-Hyp-hle-Trp-Leu]	802.1	D .
369	H-Phe-[Orn-Hyp-hle-Trp-Nle]	801.5	D
370	H-Phe-[Orn-Hyp-hle-Trp-Nva]	787.3	Е
371	H-Phe-[Orn-Hyp-hle-Trp-Phe]	835.6	D
372	H-Phe-[Orn-NMS-cha-Trp-Nle]	816.1	Е
373	H-Phe-[Orn-NMS-hle-Pff-Phe]	802.7	Е

374	H-Phe-[Orn-Pro-cha-Pff-Nle]	790.7	E
375	H-Phe-[Orn-Pro-cha-Pff-Phe]	825.2	Е
376	H-Phe-[Orn-Pro-cha-Trp-Nle]	811.5	Е
377	H-Phe-[Orn-Pro-hle-Mcf-Phe]	815.3	D
378	H-Phe-[Orn-Pro-hle-Ocf-Phe]	815.3	E
379	H-Phe-[Orn-Pro-hle-Pff-Nle]	765.3	Е
380	H-Phe-[Orn-Pro-hle-Pff-Phe]	799.2	D
381	H-Phe-[Orn-Pro-hle-Trp-Nle]	786.1	D
382	H-Phe-[Orn-Ser-cha-Trp-Nle]	802.1	D
383	H-Phe-[Orn-Ser-cha-Trp-Phe]	835.4	D
384	H-Phe-[Orn-Ser-hle-Eaa-Nle]	805.7	Е
385	H-Phe-[Orn-Ser-hle-Mcf-Leu]	771.5	Е
386	H-Phe-[Orn-Ser-hle-Ocf-Nle]	771.3	E
387	H-Phe-[Orn-Ser-hle-Pff-Leu]	755.2	E
388	H-Phe-[Orn-Ser-hle-Pff-Nle]	754.8	D
389	H-Phe-[Orn-Ser-hle-Pff-Phe]	788.7	E
390	H-Phe-[Orn-Ser-hle-Trp-Nle]	775.7	D
392	Ohf-[Orn-Hyp-hle-Trp-Nle]	802.4	E
393	Tmg-Phe-[Orn-Hyp-cha-Trp-Phe]	959.9	Е

50	Ac-Phe-Orn-Pro-cha-Trp-Arg-NH2	913,3	Е
51	Ac-Phe-Orn-Pro-cha-Trp-Phe-NH2	904,5	D
52	Ac-Phe-Orn-Aze-cha-Bta-Phe-NH2	907,5	С
53	Ac-Phe-Orn-Pro-cha-Bta-2Ni-NH2	954,4	D
54	Ac-Phe-Orn-Pro-cha-Bta-Cha-NH2	910,5	Е
55	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH2	941,3	D
60	Ac-Phe-Lys-Ala-Cha-Ala-Leu-ala-Tyr-OH	978,9	F
61	Ac-Phe-Orn-Pro-cha-Trp-Phe-NH2	904,9	D
62	Ac-Phe-Orn-Pro-cha-Bta-Phe-NH2	921,8	D
64	Ac-Phe-Orn-Pro-cha-Trp-2Ni-NH2	954,9	D
65	Ac-Phe-Orn-Pro-cha-Trp-Cha-NH2	911,1	E

66	Ac-Thi-Orn-Aze-cha-Bta-Phe-NH2	913,5	C
67	Ac-Thi-Orn-Pip-cha-Bta-Phe-NH2	941,3	D
68	Ac-Phe-Orn-Pro-cha-Trp-Eap-NH2	960,9	F
69	Me2-Phe-Orn-Pro-cha-Trp-Phe-NH2	890,8	Е
70	Ph2-CH-CH2-CO-Om-Pro-cha-Trp-Phe-NH2	923,7	F
71	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH2	980,8	F
72	Ac-Phe-Om-Pro-cha-Trp-NH-CH2-CH2-Ph	861,8	F
73	Ac-Phe-Orn-Aze-cha-Bta-NH-CH2-CH2-Ph	864,7	F
74	H-Phe-Orn-Pro-cha-Trp-Phe-NH2	862,7	E
75	H-Me-Phe-Orn-Pro-cha-Trp-Phe-NH2	876,7	E
76	Bu-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH2	961,8	F
77	Ac-Thi-Om-Pro-cha-Trp-Phe-NH2	910,7	E
78	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH2	980,8	E
79	Ac-Phe-Orn-Ala-cha-Trp-Phe-NH2	878,7	Е
80	Ac-Phe-Orn-Pro-cha-Trp-Thi-NH2	910,7	Е
81	Ac-Phe-Orn-Aze-cha-Pcf-Phe-NH2	885,7	F
82	Ac-Phe-Orn(Ac)-Pro-cha-Trp-Phe-NH2	946,9	Е
83	Ac-Phe-Orn-Aze-cha-Trp-Phe-NH2	890,9	D
84	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH2	976,5	E
85	Ph-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH2	981,7	E
86	Bu-O-CO-Phe-Orn-Pro-cha-Trp-Phe-NH2	963,2	F
87	Ac-Phe-Lys-Pro-cha-Trp-Phe-NH2	918,4	Е
88	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH2	946,4	D
89	Ac-Phe-Gln-Pro-cha-Trp-Phe-NH2	918,4	F
90	Ac-Phe-Ser-Pro-cha-Trp-Phe-NH2	877,3	F
91	Ac-Phe-Glu-Pro-cha-Trp-Phe-NH2	919,3	F
92	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH2	919,8	Е
93	Ac-Phe-Orn-Hyp-cha-Trp-Phe-NH2	920,3	F
94	Ac-Phe-Orn-Pro-cha-Trp-1Ni-NH2	934,5	D
95	Ac-Phe-Om-Aze-cha-Bta-Phe-NH-Me	921,6	F
96	CH3-SO2-Phe-Orn-Aze-cha-Bta-Phe-NH2	943,9	D
99	Ac-Phe-Orn-Aze-cha-Pff-Phe-NH2	869,7	E

100	Ac-Phe-Orn-Aze-cha-Mcf-Phe-NH2	885,7	E
101	Ac-Phe-Om(Ac)-Aze-cha-Bta-Phe-NH2	921,7	D
102	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH2	980,8	E
103	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH2	876,5	E
104	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH2	946,4	E
105	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH2	919,8	E
106	3PP-Orn-Aze-cha-Bta-Phe-NH2	850,8	E
107	Ac-Phe-Orn-Tic-cha-Trp-Phe-NH2	966,3	Е
108	Ac-Phe-Orn-Ser-cha-Trp-Phe-NH2	894,5	D
109	Ac-Phe-Orn-Pro-chg-Trp-Phe-NH2	890,4	E
110	Ac-Phe-Orn-Pro-hch-Trp-Phe-NH2	918,5	D
111	Ac-Phe-Orn-Pro-cha-Trp-Phg-NH2	890,4	F
112	Ac-Phe-Bta-Aze-cha-Bta-Phe-NH2	996,6	D
113	Ac-Phe-Trp-Pro-cha-Bta-Phe-NH2	993,7	E
115	Ac-Phe-Orn-Pip-cha-Trp-Phe-OH	919,4	F
116	Ac-Phe-Orn-Tic-cha-Trp-Phe-OH	967,7	F
117	Ac-Phe-Orn-Ser-cha-Trp-Phe-OH	895,7	F
118	Ac-Phe-Orn-Pro-chg-Trp-Phe-OH	891,8	F
119	Ac-Phe-Eec-Pro-cha-Bta-Phe-NH2	1041,7	E
120	Ac-Phe-Nle-Pro-cha-Bta-Phe-NH2	920,5	Е
121	Ac-Phe-Har-Pro-cha-Bta-Phe-NH2	978,0	D
122	Ac-Phe-Arg-Pro-cha-Bta-Phe-NH2	964,0	D
123	Ac-Phe-Cys(Acm)-Pro-cha-Bta-Phe-NH2	981,5	F
124	Ac-Phe-Mpa-Pro-cha-Bta-Phe-NH2	955,7	E
125	Ac-Eby-Orn-Pro-cha-Bta-Phe-NH2	921,7	D
126	Ac-Phg-Orn-Pro-cha-Bta-Phe-NH2	907,8	E ·
127	Ac-Phe-Paf-Pro-cha-Bta-Phe-NH2	969,6	F
128	H2N-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2	922,8	D
129	Me-O-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2	937,8	E
130	(-CO-CH2-NH-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH2	962,9	E
132	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH	919,8	E
133	(-CO-CH2-CH2-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH2	961,9	F

134	tBu-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2	963,9	E
135	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH2	1036,0	С
136	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH2	965,0	D
137	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH2	1064,1	D
138	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH2	1045,0	E
139	Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	995,0	E
140	Ac-Guf-Phe-Orn-Aze-cha-Bta-Phe-NH2	1112,1	Е
141	Ac-Dab-Phe-Orn-Aze-cha-Bta-Phe-NH2	1008,0	E
142	FH2C-CO-Phe-Orn-Pro-cha-Bta-Phe-NH2	939,8	D
143	Ac-Phe-Orn(Et2)-Pro-cha-Trp-Phe-NH2	960,9	Е
148	Ac-Phe-N(nBu)-CH2-CO-Pro-cha-Trp-Phe-NH2	920,8	F
149	Ac-Phe-Orn-Pro-hle-Bta-Phe-NH2	895,4	С
150	Ac-Phe-Arg(CH2-CH2)-Pro-cha-Bta-Phe-NH2	990,1	В
151	Ac-Ala-Phe-Orn-Aze-cha-Bta-Phe-NH2	978.8	D
152	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH2	1063.8	D
153	Ac-Cit-Phe-Orn-Aze-cha-Bta-Phe-NH2	1064.7	D
154	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH2	964.7	C
155	Ac-Gly-Phe-Orn-Aze-chg-Bta-Phe-NH2	950-3	Е
156	Ac-Gly-Phe-Orn-Aze-hch-Bta-Phe-NH2	978.3	Е
157	Ac-Gly-Thi-Orn-Aze-cha-Bta-Phe-NH2	971	D
158	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH2	1044.3	E
159	Ac-Hyp-Phe-Orn-Aze-cha-Bta-Phe-NH2	1020.7	D
160	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH2	1035.8	D
161	Ac-Mff-Orn-Pro-cha-Bta-Phe-NH2	939.5	E
162	Ac-Mff-Orn-Pro-hle-Bta-Phe-NH2	913.4	E
163	Ac-Mff-Orn-Pro-hle-Mcf-Mff-NH2	909.9	E
164	Ac-Mmy-Orn-Pro-hle-Pff-Phe-NH2	888	E
165	Ac-NMF-Orn-Pro-cha-Bta-Phe-NH2	935.5	E
166	Ac-Off-Orn-Pro-cha-Bta-Phe-NH2	940	D
167	Ac-Off-Orn-Pro-hie-Bta-Phe-NH2	913.4	D
168	Ac-Orn-Phe-Orn-Aze-cha-Bta-Phe-NH2	1043.8	E
169	Ac-Pff-Orn-Pro-cha-Bta-Phe-NH2	940	D

170	Ac-Pff-Orn-Pro-hle-Bta-Phe-NH2	913.4	E
171	Ac-Pff-Orn-Pro-hle-Mcf-Pff-NH2	909.6	E
206	Ac-Phe-Ala-Pro-cha-Bta-Phe-NH2	878.5	E
207	Ac-Phe-Arg-Pro-hle-Bta-Phe-NH2	937.7	Е
208	Ac-Phe-Arg-Pro-hle-Mcf-Phe-NH2	915.9	Е
209	Ac-Phe-Cit-Hyp-hle-Bta-Phe-NH2	954.7	E
210	Ac-Phe-Cit-Pro-cha-Bta-Phe-NH2	964.7	E
211	Ac-Phe-Cit-Pro-hle-Bta-Phe-NH2	939	D
212	Ac-Phe-Cit-Ser-hle-Bta-Phe-NH2	928.7	E
213	Ac-Phe-Dab-Aze-cha-Bta-Phe-NH2	894	D
214	Ac-Phe-Dab-Aze-hle-Bta-Phe-NH2	868.1	D
215	Ac-Phe-Dab-Pro-cha-Bta-Phe-NH2	907.9	С
216	Ac-Phe-Dap-Pro-cha-Bta-Phe-NH2	893.7	E
217	Ac-Phe-Ech-Pro-cha-Bta-Phe-NH2	1033.7	E
218	Ac-Phe-Eep-Pro-cha-Bta-Phe-NH2	1013.5	E
219	Ac-Phe-Fcn-Aze-cha-Bta-Phe-NH2	961.9	С
220	Ac-Phe-Fcn-Pro-cha-Bta-Phe-NH2	975.9	С
221	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2	935.8	D
222	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2	962	E
223	Ac-Phe-Fcp-Aze-cha-Bta-Phe-NH2	1444	D
224	Ac-Phe-Ffa-Aze-cha-Bta-Phe-NH2	976	D
225	Ac-Phe-Ffa-Pro-cha-Bta-Phe-NH2	990	D
226	Ac-Phe-Ffa-Pro-hle-Bta-Phe-NH2	964	С
227	Ac-Phe-G23-Pro-cha-Bta-Phe-NH2	1000.3	E
228	Ac-Phe-Guf-Pro-cha-Bta-Phe-NH2	1011.9	D
229	Ac-Phe-Har-Aze-cha-Bta-Phe-NH2	964.1	С
230	Ac-Phe-His-Pro-cha-Bta-Phe-NH2	944.3	Е
231	Ac-Phe-L22-Pro-cha-Bta-Phe-NH2	949.8	C
232	Ac-Phe-OrA-Pro-cha-Bta-Phe-NH2	963.6	Е
233	Ac-Phe-OrE-Pro-cha-Bta-Phe-NH2	977.8	E
234	Ac-Phe-Orn-Aze-hle-Bta-Phe-NH2	881.9	D
235	Ac-Phe-Orn-Chy-cha-Bta-Phe-NH2	937.4	E

236	Ac-Phe-Orn-Chy-hle-Pff-Phe-NH2	873.8	E
237	Ac-Phe-Orn-G24-cha-Bta-Phe-NH2	923.8	E
238	Ac-Phe-Orn-G25-cha-Bta-Phe-NH2	939.8	E
239	Ac-Phe-Om-G26-cha-Bta-Phe-NH2	961.8	E
240	Ac-Phe-Orn-G27-cha-Bta-Phe-NH2	972.7	E
241	Ac-Phe-Om-G30-cha-Bta-Phe-NH2	1006.8	E
242	Ac-Phe-Om-G31-cha-Bta-Phe-NH2	1045.9	E
243	Ac-Phe-Orn-Hse-cha-Bta-Phe-NH2	925.9	E
244	Ac-Phe-Orn-Hyp-hle-Bta-Phe-NH2	911.7	Е
245	Ac-Phe-Orn-Hyp-hle-Pff-Phe-NH2	874	Е
246	Ac-Phe-Orn-NMA-cha-Bta-Phe-NH2	909.8	Е
247	Ac-Phe-Orn-NMS-cha-Bta-Phe-NH2	925.8	E
248	Ac-Phe-Orn-Pro-cha-1Ni-Phe-NH2	916	Е
249	Ac-Phe-Orn-Pro-cha-Bta-1Ni-NH2	971.9	Е
250	Ac-Phe-Om-Pro-cha-Bta-Bhf-NH2	935.9	D
251	Ac-Phe-Orn-Pro-cha-Bta-Dff-NH2	957.7	D
252	Ac-Phe-Orn-Pro-cha-Bta-Eaa-NH2	933.9	E
253	Ac-Phe-Om-Pro-cha-Bta-L19	979.1	Е
254	Ac-Phe-Orn-Pro-cha-Bta-Mcf-NH2	955.9	E
255	Ac-Phe-Orn-Pro-cha-Bta-Mff-NH2	939.8	С
256	Ac-Phe-Orn-Pro-cha-Bta-NH-CH(CH2OH)-CH2-Ph	964.6	Е
257	Ac-Phe-Orn-Pro-Cha-Bta-NH-NBn-CO-NH2	922.8	E
258	Ac-Phe-Orn-Pro-cha-Bta-Opa-NH2	922.9	E
259	Ac-Phe-Orn-Pro-cha-Bta-Pcf-NH2	956.1	D
260	Ac-Phe-Orn-Pro-cha-Bta-Pmf-NH2	935.8	D
261	Ac-Phe-Orn-Pro-cha-Bta-Thi-NH2	927.8	С
262	Ac-Phe-Orn-Pro-cha-Otf-Phe-NH2	933.9	E
263	Ac-Phe-Orn-Pro-ctb-Bta-Phe-NH2	927.4	D
264	Ac-Phe-Orn-Pro-ctb-Eaa-Phe-NH2	940.2	D
265	Ac-Phe-Orn-Pro-ctb-Mcf-Phe-NH2	906.3	E
266	Ac-Phe-Orn-Pro-ctb-Pff-Phe-NH2	890.1	D
267	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH	919.8	E

268	Ac-Phe-Orn-Pro-hle-1Ni-Phe-NH2	889.7	D
269	Ac-Phe-Om-Pro-hle-6FW-Phe-NH2	897	E
270	Ac-Phe-Orn-Pro-hle-Bta-1Ni-NH2	945.8	Е
271	Ac-Phe-Orn-Pro-hle-Bta-2Ni-NH2	946	E
272	Ac-Phe-Orn-Pro-hle-Bta-5Ff-NH2	985.7	E
273	Ac-Phe-Orn-Pro-hle-Bta-Aic-NH2	908	E
274	Ac-Phe-Orn-Pro-hle-Bta-Cha-NH2	902	E
275	Ac-Phe-Orn-Pro-hle-Bta-Chg-NH2	888	Е
276	Ac-Phe-Orn-Pro-hle-Bta-Eaa-NH2	964.4	Е
277	Ac-Phe-Orn-Pro-hle-Bta-Egy-NH2	964.4	E
278	Ac-Phe-Orn-Pro-hle-Bta-Pcf-NH2	930.2	E
279	Ac-Phe-Orn-Pro-hle-Bta-Pff-NH2	913.7	Е
280	Ac-Phe-Orn-Pro-hle-Bta-Phe-NH2	895.8	D
281	Ac-Phe-Orn-Pro-hle-Bta-phe-OH	897	E
282	Ac-Phe-Orn-Pro-hle-Bta-Tyr-NH2	911.5	Е
283	Ac-Phe-Orn-Pro-hle-Dff-Phe-NH2	875.4	Е
284	Ac-Phe-Orn-Pro-hle-Eaa-Phe-NH2	907.4	Е
285	Ac-Phe-Orn-Pro-hle-Egc-Phe-NH2	892.8	Е
286	Ac-Phe-Orn-Pro-hle-Egy-Phe-NH2	908.3	Е
287	Ac-Phe-Orn-Pro-hle-Egz-Phe-NH2	885	E
288	Ac-Phe-Orn-Pro-hle-Mcf-2Ni-NH2	924.3	E
289	Ac-Phe-Orn-Pro-hle-Mcf-Cha-NH2	880.3	D
290	Ac-Phe-Orn-Pro-hle-Mcf-Pff-NH2	892.1	E
291	Ac-Phe-Orn-Pro-hle-Mcf-Phe-NH2	874.2	E
292	Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2	857.9	Е
293	Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2	870.1	E
294	Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2	874.1	E
295	Ac-Phe-Orn-Pro-hle-Off-Phe-NH2	857.9	E
296	Ac-Phe-Orn-Pro-hle-Otf-Phe-NH2	907.8	E
297	Ac-Phe-Orn-Pro-hle-Pff-2Ni-NH2	908.1	Е
298	Ac-Phe-Orn-Pro-hle-Pff-Cha-NH2	864	E
299	Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2	926.3	E

300	Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2	888.1	E
301	Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2	876	E
302	Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2	857.7	Е
304	Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2	839.7	E
305	Ac-Phe-Orn-Pro-hle-Tff-Phe-NH2	893.8	E
306	Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2	878.9	E
307	Ac-Phe-Orn-Pro-ile-Trp-Phe-NH2	864.5	В
308	Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2	929.8	Е
309	Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2	912	D
310	Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	994.7	С
312	Ac-Thi-Orn-Pro-cha-Bta-Phe-NH2	927.8	D
313	Ac-Thi-Orn-Pro-cha-Bta-Thi-NH2	933.8	D
314	Ac-Thr-Phe-Orn-Aze-cha-Bta-Phe-NH2	1008.7	D
316	CH3CH2CO-Phe-Orn-Pro-cha-Bta-Phe-NH2	935.9	D
320	FAc-Phe-Fib-Aze-cha-Bta-Phe-NH2	1023.9	Е
321	FAc-Phe-Orn-Aze-cha-Bta-Phe-NH2	925.7	D
322	FAc-Phe-Orn-Pro-cha-Bta-Phe-NH2	939.8	D
324	Faz-Orn-Pro-cha-Bta-Phe-NH2	864.7	E
329	Fbn-Phe-Cit-Pro-hle-Bta-Phe-NH2	1001.9	E
339	Fhu-Phe-Orn-Pro-cha-Bta-Phe-NH2	921.8	E
340	Fid-Phe-Orn-Pro-cha-Bta-Phe-NH2	966.6	E
345	H-Gly-Phe-Orn-Pro-cha-Bta-Phe-NH2	936.7	E
346	H-Nip-Phe-Cit-Pro-hle-Bta-Phe-NH2	1007.7	E
348	Hoo-Phe-Cit-Pro-hle-Pff-Phe-NH2	999	Е
349	Hoo-Phe-Orn-Hyp-hle-Pff-Phe-NH2	971.8	E
350	Hoo-Phe-Orn-Pro-hle-Bta-Phe-NH2	994.2	D
351	Hoo-Phe-Orn-Pro-hle-Mcf-Phe-NH2	972.3	D
352	Hoo-Phe-Orn-Pro-hle-Pff-Phe-NH2	956	D
391	H-Phe-Cit-Pro-hle-Bta-Phe-NH2	896.7	Е

Beispiel 12: Bestimmung des EC₅₀-Wertes in einem Enzymfreisetzungsassay

Die Bestimmung des EC₅₀-Wertes verläuft vergleichbar mit dem in Beispiel 11 beschriebenen Vorgehen. Einziger Unterschied ist, dass 30 µl der zu testenden Substanzen mit 75 µl der unter Beispiel 11 beschriebenen Zellsuspension gemischt werden. Es erfolgt keine Vorinkubation und keine Zugabe von C5a zur Stimulation der Enzymfreisetzung. Die Ergebnisse für die getesteten Verbindungen sind in Tabelle 5 wiedergegeben.

Tabelle 5: Daten zur agonistischen Aktivität repräsentativer erfindungsgemäßer Verbindungen

Nr.	Verbindung	EC ₅₀
		(nM)
-	hrC5a	2,4
3	HOCH2(CHOH)4-C=N-O-CH2-CO-	»1430
	Phe[OP-dCha-W-Nle]	
41	Ph-CH ₂ -CH ₂ -CO-[Orn-Pro-cha-Trp-Nle]	. »1430
2	Ac-Phe-[Orn-Hyp-cha-Trp-Phe]	»1430
42	H-Phe-[Orn-Pro-cha-Trp-Nle]	»1430
1	Ac-Phe-[Orn-Pro-cha-Trp-Phe]	»1430
43	Ac-Lys-Phe-[OP-dCha-W-Nle]	»1430
28	H-Phe-[Orn-Pro-cha-Trp-Nle]	»1430
44	H-Phe-[Orn-Ser-cha-Trp-Nle]	»1430
33	Ac-Phe-[Orn-Pro-cha-Trp-Eaf]	»1430
61	Ac-Phe-Orn-Pro-cha-Trp-Phe-NH ₂	>100000
62	Ac-Phe-Orn-Pro-cha-Bta-Phe-NH ₂	>100000
71	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH ₂	>100000
88	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH ₂	>100000
55	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH ₂	>100000
83	Ac-Phe-Orn-Aze-cha-Trp-Phe-NH ₂	>100000
84	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH ₂	>100000
67	Ac-Thi-Orn-Pip-cha-Bta-Phe-NH ₂	>100000

Beispiel 13: Bestimmung der Löslichkeit von ausgewählten C5aR-Antagonisten

Die Löslichkeit von Verbindungen wurde folgendermaßen bestimmt: 20 µl einer 10 mM Stammlösung (in DMSO) der Verbindung werden in 980 µl des zu untersuchenden Lösungsmittels verdünnt. Nach 24 h Inkubation bei RT unter Schütteln werden die Proben bei 11.000 rpm in einer Eppendorfzentrifuge zentrifugiert. Der Überstand wird photometrisch quantifiziert. Die optische Dichte der Probe und eines Kontrollwertes in 60% MeOH dient als Maß der Löslichkeit. Substanzen, die sich ähnlich gut in dem zu untersuchenden Lösungsmittel wie in der Kontrolle lösen, werden wie folgt auf ihre maximale Löslichkeit untersucht. Dazu werden 10 mg/ml Verbindung in den Lösungsmitteln der Wahl gelöst. Der nicht gelöste Anteil wird nach 24 h durch Zentrifugation (s.o.) abgetrennt. Der Überstand wird photometrisch gemessen und auf einen entsprechenden Kontrollwert (60% MeOH) bezogen. Die Löslichkeit für einige der erfindungsgemäßen Verbindungen sind in Tabelle 6 angegeben.

Tabelle 6: Löslichkeit repräsentativer Vertreter erfindungsgemäßer Verbindungen

Nr.	Verbindung	Löslichkeit in 20 mM HEPES pH 7.4 (% von 200 μM)
1	Ac-Phe-[Orn-Pro-cha-Trp-Phe]	8
2	Ac-Phe-[Orn-Hyp-cha-Trp-Phe]	13
28	Ac-Phe-[Orn-Pro-cha-Trp-Nle]	22
42	H-Phe-[Orn-Pro-cha-Trp-Phe]	45
4	X-Phe-[Orn-Pro-cha -Trp-Nle]; X = 2- Acetamido-1-Methyl-Glucuronyl	84
40	Ac-Phe-[Orn-Pro-cha-Trp-Arg]	94
43	Ac-Lys-Phe-[Orn-Pro-cha-Trp-Nle]	93

Beispiel 14: Entwicklung des den Antagonisten zugrundeliegenden Pharmakophor-Modelles

Ein Austausch des Arginins in der Verbindung 40 mit Alanin (39) unterstreicht die Bedeutung der Seitenkette an dieser Position für die Wirksamkeit des Peptids als Inhibitor. Ersetzt man

Arginin durch die positiv geladene Aminosäure Lysin (22)so findet man überraschenderweise einen sehr deutlichen Anstieg des IC₅₀-Wertes (von 20 nM auf 8700 nM). Dies bedeutet, dass die positive Ladung für die Antagonistische Wirkung allein nicht ausreichend ist. Verwendet man dagegen C-terminal die Aminosäure 4-Aminophenylalanin (Paf) 14, findet man einen IC₅₀-Wert von 30 nM. Die Aminogruppe von Paf hat einen ähnlichen Abstand vom Cα-Atom wie die des Lysins. Erfolgt nun ein Austausch der Aminosäure Arginin aus der Verbindung 40 gegen das ungeladene und sehr hydrophobe Phenylalanin, erhält man die Verbindung 1, die überraschenderweise einem der Verbindung 40 vergleichbaren IC₅₀-Wert von 23 nM zeigt. Damit ist offensichtlich, dass überraschenderweise nicht die positiv geladene Seitenkette des Arginins bzw. von Paf die entscheidende Wechselwirkung mit dem C5aR eingeht, sondem der hydrophobe Bereich von Paf oder Phe bzw. der aliphatischen Seitenkette des Arginins hierfür verantwortlich ist. Es ist möglich, weitere hydrophobe Substitutionen des Arginins durchzuführen, ohne dabei eine deutliche Erhöhung des IC₅₀-Wertes gegenüber der Verbindung 40 in Kauf nehmen zu müssen. Beispiele für derartige Substitutionen sind unter anderem die Verbindungen (1, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38).

Der Austausch weiterer Aminosäuren in 40 durch Ala, N-Me-Ala oder d-Ala zeigte, daß die Seitenketten der folgenden Aminosäuren wichtig für die antagonistische Wirkung sind: Phe, cha, Trp.

Aufbauend auf den Struktur-Aktivitäts-Beziehungen dieser und weiterer Peptide wurde ein Pharmakophor-Modell entwickelt. Hierbei sagte man den Abstand der für die Aktivität kritischen Gruppen (2 hydrophobe und zwei aromatische Gruppen) nach folgender Methode vorher:

Das Pharmakophor-Modell wurde auf der Grundlage einer 2 ns langen Moleküldynamik-Simulation (Schrittweite 2 fs) der Verbindung 28 erstellt. Die Simulation erfolgte unter Verwendung des AMBER94-Kraftfeldes sowie eines expliziten Wassermodells (TIP3) und periodischen Randbedingungen. Die statistische Analyse der Snapshots aus der letzten Nanosekunde der Trajektorie (1000 Strukturen) führte auf die unten angegebenen Abstände zwischen den Massenschwerpunkten der pharmakophoren Gruppen. Die Startstruktur für die Moleküldynamik-Simulation resultiert aus Ensemble-Dynamik-Berechnungen mit sieben sich gegenseitig strukturell einschränkenden, im unteren nanomolaren Bereich (IC₅₀) aktiven zyklischen Peptiden.

Beispiel 15: Bestimmung der AB-Permeabilität in einem TC-7 basierten Assaysystem

Zu testende Verbindungen werden auf eine Konzentration von 50 μM in HBSS-MES (5 mM, pH 6.5) eingestellt (aus einer 10 mM Stammlösung in 100% DMSO). ¹⁴C-Mannitol (ca. 4 μM) wird zu der Probe gemischt. Diese Lösung wird anschließend zentrifugiert und der Überstand wird zur apikalen Seite einer TC-7 Zellkultur gegeben (Passage 15, in 24 Well Transwell Platte) so dass sich eine DMSO-Konzentration von 1% einstellt. Auf der basolatheralen Seite befindet sich HBSS-HEPES (5mM, pH 7.4). Anschließend werden die Zellen 120 min bei 37°C inkubiert. Die Integrität der TC-7 Zellschicht wird über das zugegebene Mannitol geprüft (Papp <2.5 10-6 cm/s). Die Permeabilität Papp [cm/s] ist gleich (V_RxC_{R120})/(ΔtxAx(C_{D,mid}-C_{R,mid})) wobei V_R das Volumen der Aufnahmekammer (engl. receiver chamber), C_{R120} die Konzentration der Testverbindung in der Aufnahmekammer nach 120 min, Δt die Inkubationszeit, A die Fläche der TC-7 Zellschicht, C_{D,mid} die midpoint Konzentration der Testsubstanz in der donor chamber und C_{R,mid} die Konzentration der Testverbindung in der receiver chamber ist.

Verbindung	AB-Permebilität [cm/s]
Ac-Phe[Orn-Pro-cha-Trp-Arg]	0.52
Ac-Phe[Orn-Hyp-cha-Trp-Phe]	14.25

Beispiel 16: Synthese von Ac-Phe-Orn-Pro-cha-Trp-Phe-NH₂ (51)

Nach linearer Peptidsynthese gemäß AAV 1 und anschließender Reinigung per HPLC erhielt man 10,0 mg des gewünschten Produkts 51 als weißen Feststoff.

MS (ESI): $m/z = 904,5 [(M+H)^{+}].$

Beispiel 17: Synthese von Ac-Phe-Orn-Aze-cha-Bta-Phe-NH₂ (52)

Das lineare Peptid 52 wurde nach linearer Peptidsynthese gemäß AAV 1 hergestellt und per HPLC gereinigt. Man erhielt 10,5 mg der Verbindung 52 als weißen Feststoff.

MS (ESI): $m/z = 907,5 [(M+H)^{+}].$

Beispiel 18: Synthese von Ac-Phe-Orn-Pro-cha-Trp-NH-CH₂-CH₂-Ph (72)

200 mg Brom-(4-methoxyphenyl)methylpolystyrolharz wird mit 5 ml einer 50%igen Lösung von Phenylethylamin in THF (v/v) bei Raumtemperatur für 18 h inkubiert. Anschliessend wird das Harz gewaschen (DMF; 3 x 5,0 ml, MeOH; 3 x 5,0 ml, DCM; 3 x 5,0 ml) und das Peptid nach AAV 1 synthetisert. Nach HPLC-Reinigung erhält man 4,1 der Verbindung 72 als weißen Feststoff.

MS (ESI): $m/z = 861,8 [(M+H)^{+}].$

Beispiel 19: Synthese von Ac-Phe-Orn-Aze-cha-Bta-Phe-NH-Me (95)

4,5 g 4-(4-Formyl-3-methoxy-phenoxy)-butansäure-Polystyrol-Harz wurde für 15 min in THF aufgeschwämmt. Man filtrierte und setzte das Harz um mit einem Gemisch aus 3,04 g (10 eq.) Methylamin-Hydrochlorid, 2,7 ml Essigsäure, 2,7 ml Trimethylorthoformiat und 90 ml THF. Nach einstündigem Rühren wurden 45 ml DMF und 2,83 g (10 eq.) Natriumcyanoborhydrid zugesetzt. Man rührte über Nacht bei Raumtemperatur, filtrierte und wusch das Harz mit DMF (5x), MeOH (5x) und CH₂Cl₂ (5x). Anschließend führte man eine Aminosäurekupplung mit 968 mg (5 eq.) Fmoc-Phe-OH, 950 mg (5 eq.) HATU und 3,75 ml DIPEA in 10 ml DMF für 2 Stunden durch. Man filtrierte und wusch mit DMF (5x), MeOH (5x) und CH₂Cl₂ (5x). Mit 200 mg des erhaltenen Harzes führte man eine lineare Peptidsynthese nach AAV 1 durch und nach anschließender Reinigung per HPLC erhielt man 10,0 mg des gewünschten Produktes 95 als weißen Feststoff.

MS (ESI): $m/z = 921,6 [(M+H)^{+}].$

WO 2005/010030 PCT/EP2004/008057

Beispiel 20: Synthese von CH₃-SO₂-Phe-Orn-Aze-cha-Bta-Phe-NH₂ (96)

Nach linearer Peptidsynthese gemäß AAV 1, bei der CH₃-SO₂-Cl statt einer N-terminalen Aminosäure eingesetzt wurde, und anschließender Reinigung per HPLC erhielt man 5,5 mg des gewünschten Produktes 96 als weißen Feststoff.

MS (ESI): $m/z = 943,9 [(M+H)^{\dagger}].$

Beispiel 21: Synthese von H₂N-CO-Phe-Orn-Pro-cha-Bta-Phe-NH₂ (128)

Das harzgebundene Peptid H-Phe-Orn-Pro-cha-Bta-Phe-Rink-Amid-Harz wurde gemäß AAV 1 hergestellt. Anschließend setzte man Diphenylmethylisocyanat (5 eq.) sowie DIPEA (10 eq.) in DMF zu und agitierte für 2 Stunden. Nach Abspaltung vom Harz mit einem Gemisch aus 95 % TFA, 2,5 % Wasser und 2,5 %TIPS wurde per HPLC gereinigt. Man erhielt 0,92 mg der Verbindung als weißen Feststoff.

MS (ESI): $m/z = 922.8 [(M+H)^{+}].$

Beispiel 22: Synthese von (-CO-CH₂-NH-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH₂ (130)

Das harzgebundene Peptid H-Gly-Phe-Orn-Pro-cha-Bta-Phe-Rink-Amid-Harz wurde gemäß AAV 1 hergestellt. Anschließend setzte man Disuccinimidylcarbonat (3 eq.) und DIPEA (3 eq.) in DMF zu und agitierte für 3 Stunden. Anschließend wurden weitere 3 eq. DIPEA zugegeben und man agitierte zusätzliche 5 Stunden bei Raumtemperatur. Nach Abspaltung vom Harz mit einem Gemisch aus 95 % TFA, 2,5 % Wasser und 2,5 %TIPS wurde per HPLC gereinigt. Man erhielt 3,8 mg der Verbindung als weißen Feststoff.

MS (ESI): $m/z = 962,9 [(M+H)^{+}].$

Beispiel 23: Synthese von (-CO-CH₂-CH₂-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH₂ (133)

Das harzgebundene Peptid H-Phe-Orn-Pro-cha-Bta-Phe-Rink-Amid-Harz wurde gemäß AAV 1 hergestellt. Anschließend setzte man Succinanhydrid (5 eq.) sowie DIPEA (10 eq.) in DMF zu und agitierte für 2 Stunden. Man filtrierte und wusch mit DMF (5x), MeOH (5x) und CH₂Cl₂ (5x). Anschließend wurde das Harz mit HBTU (5 eq.) und DIPEA (10 eq.) in DMF für 1 Tag umgesetzt. Man spaltete das Peptid mit einem Gemisch aus 95 % TFA, 2,5 % Wasser und 2,5 %TIPS vom Harz ab und reinigte per HPLC, wodurch man 0,47 mg der Verbindung als weißen Feststoff erhielt.

MS (ESI): $m/z = 961,9 [(M+H)^{+}].$

Beispiel 24: Synthese von FH₂C-CO-Phe-Orn-Pro-cha-Bta-Phe-NH₂ (142)

Nach linearer Peptidsynthese gemäß AAV 1, bei der Fluoressigsäure statt einer N-terminalen Aminosäure eingesetzt wurde, und anschließender Reinigung per HPLC erhielt man 0,90 mg des gewünschten Produktes 142 als weißen Feststoff.

MS (ESI): $m/z = 939,8 [(M+H)^{+}].$

Beispiel 25: Synthese von Ac-Phe-Orn(Et₂)-Pro-cha-Trp-Phe-NH₂ (143)

Nach linearer Peptidsynthese gemäß AAV 1 und anschließender Reinigung per HPLC erhielt man 10,0 mg der Verbindung 51. 5,0 mg dieser Verbindung wurden in 5 ml THF gelöst und mit 1 ml Acetaldehyd versetzt. Nach Zugabe von 100 mg (Polystyrolmethyl)trimethylammoniumcyanoborhydrd (3 mmol/g) wurde 12 h bei Raumtemperatur langsam gerührt, anschliessend das Harz abfiltriert und zur Trockene eingeengt. Nach HPLC-Reinigung erhielt man 1,2 mg des gewünschten Produktes 143.

MS (ESI): $m/z = 960,9 [(M+H)^{+}].$

WO 2005/010030 PCT/EP2004/008057

Beispiel 26: Synthese von Ac-Phe-N("Bu)-CH2-CO-Pro-cha-Trp-Phe-NH2 (144)

Die Synthese des Peptids H-Pro-cha-Trp-Phe-Rink-Amid-Harz erfolgte nach AAV 1. Die freie Aminogruppe wurde mit 4 ml einer 0,4 M Lösung von Bromessigsäureanhydrid in DCM acyliert (2x 15 min). Das Harz wurde gewaschen (DMF; 3 x 5,0 ml, MeOH; 3 x 5,0 ml, DCM; 3 x 5,0 ml) und für 2x 30 min mit 4 ml einer 5 M Lösung von "Butylamin versetzt. Nach Waschen des Harzes (DMF; 3 x 5,0 ml, MeOH; 3 x 5,0 ml, DCM; 3 x 5,0 ml) erfolgte die restliche Synthese des Peptomers nach AAV1.

Beispiel 27: Synthese von Ac-Phe-Arg(CH₂CH₂)-Pro-cha-Bta-Phe-NH₂ (150)

Nach linearer Peptidsynthese gemäß AAV 1 erhielt man 700 mg der Verbindung Ac-Phe-Orn-Pro-cha-Bta-Phe-NH₂ (62) als Rohprodukt. 15 mg dieses Rohproduktes (0,016 mmol) wurde mit 39,7 mg (10 eq.) 2-Methylthio-2-imidazolin-Hydroiodid und 55,4 μ l (20 eq.) DIPEA in 1 ml MeCN versetzt und für einen Tag bei 40 °C gerührt. Nach Entfernen des Lösungsmittels am Rotationsverdampfer reinigte man per HPLC, lyophilisierte nach Zusatz von 1 ml 0,1 N HCl und 0,5 ml MeCN und erhielt 0,7 mg der Verbindung 150 als weißen Feststoff.

MS (ESI): $m/z = 960,9 [(M+H)^{+}].$

Beispiel 28: Effektivität der Verbindung 149 in einem Modell der Immunkomplex vermittelten Peritonitis

Die Immunkomplex vermittelte Peritonitis ist Teil des pathologischen Geschehens im Zusammenhang mit Immunkomplex vermittelten Erkrankungen wie z.B. Vasculitis, Nephritis, Arthritis oder Farmerlunge. Das dazugehörige Modell wurde von Heller et al. (1999 Journal of Immunology 163: 985-994) beschrieben und beruht auf der proinflammatirische Wirkung der Immunkomplexbildung aus i.v. gegebenem Antigen und i.p. gegebenem Antikörper.

BALB/c Mäuse (6-8 Wo alt) wurden i.v. mit erfindungsgemäßer Verbindung 149 (1 mg/kg Körpergewicht in 200 µl Vehikel) 15 min vor der Initiation der reversen passiven Arthus

WO 2005/010030 PCT/EP2004/008057

Reaktion behandelt. Die Arthus Reaktion wurde ausgelöst durch die Applikation von OSA (20 mg/kg i.v. in 200 µl PBS) und polyklonalem anti-OVA Ab (rabbit; 800 µg/Maus i.p). Nach 6h wurde eine Peritoenallavage mit 2ml PBS 0.1% BSA durchgeführt. Die gewonnenen PE-Zellen wurden mittels DIFF-Quick gefärbt. Es wurden mindestens 20 Gesichtsfelder (100x Vergrösserung) mikroskopisch in Bezug auf die Präsenz von Granulozyten analysiert.

Aus Fig. 1 wird deutlich, dass die Gabe der Verbindung 149 zu einer deutlichen Reduktion des Einwanderns proinflammatorischer Zellen in die Bauchhöhle führt.

Beispiel 29: Effektivität der Verbindung 149 in einem Modell der C5a-induzierten Neutropänie

Die C5a induzierte Neutropänie ist ein Modell für schockartige Erkrankungen (septischer Schock), in denen u.a. die systemische Wirkung von C5a wie z.B. Blutdruckabfall und Neutropänie, eine wichtige Rolle spielt. Das durch C5a ausgelöste Anheften der Neutrophilen an die Gefäßwand ist der Grund für die Abnahme der Neutrophilenzahl im zirkulierenden Blut (Neutropänie). Dieser Prozess des Rekrutierens von Neutrophilen spielt aber auch bei vielen anderen Erkrankungen eine entscheidende Rolle wie z.B. beim Reperfusionsschaden. Das Modell wurde u.a. auch von Short et al. (1999 British Journal of Pharmacology 125: 551-554) beschrieben.

Weibliche Wistar-Ratten werden i.p. mit Ketamine (80 mg/kg) und Xylazine (12 mg/kg) betäubt. Die Ratten werden intubiert und ein Katheter wird in die Jugular Vene eingeführt und es schließt sich die folgende Behandlung an:

- 1. Die Ratten werden vorbehandelt mit Vehikel oder erfindungsgemäßer Verbindung 149 mittels i.v. Infusion. Eine Blutprobe wird eine Minute vorher entnommen.
- 2. 10 min nach der Infusion der Verbindungen werden die Ratten mit 2 μ g/kg hrC5a i.v. behandelt (2 μ g/kg, 1 min).

113

Blutproben werden kurz vor der hrC5a-Gabe und zu verschiedenen Zeitpunkten danach genommen.

3. Blutproben (ca. 0.2 ml) werden in Lithium-Heparin Röhrchen aus der Jugular vene entnommen. Aus den Blutproben werden Diffentialblutbilder gewonnen.

Weiße Blutkörperchen:

Weiße Blutkörperchen werden mit einem Hämatologie-Cell-Counter bestimmt.

Differentialblutbild:

Blut-Ausstriche werden aus den heparinisierten Blutproben hergestellt. Jede Probe wird vor der Färbung mit Methanol dehydriert. Nach der Fixierung wird jeder Objekträger mit May Grünwald Färbung für 5 min inkubiert. Danach werden die Objektträger mit Aqua dest. gespült. Anschließend wird mit Giemsa Färbung für 2 min gefärbt und die Objektträger werden für ein weiteres Mal in destilliertem Wasser gewaschen.

Die differentielle Zellzahl wird als Summe von Neutrophilen, Eosinophilen, Easophilen, Lymphocyten and Monocyten aus 100 Zellen bestimmt. Dann wird der Prozentsatz der Neutrophilen an der Zahl aller Weißen Blutkörperchen bestimmt.

Das Ergebnis ist in Fig. 2 dargestellt und zeigt, dass die Gabe der Verbindung 149 die C5ainduzierte Neutropänie deutlich vermindert und so die gewünschte antiinflammatorische Wirkung in diesem Entzündungsmodell hat.

Beispiel 30: Vergleich der Aktivität von Peptiden mit unterschiedlicher C-terminaler Aminosäure

Mit dem in Beispiel 11 beschriebenen Assaysystem wurden folgende Aktivitäts-Werte für die Verbindungen 10 und 40 ermittelt:

10	Ac-Phe-[Orn-Pro-cha-Trp-Cit]	897,5	F
40	Ac-Phe-[Orn-Pro-cha-Trp-Arg]	896,6	С

Bemerkenswert ist der starke Abfall der Aktivität beim Austausch des geladenen Arginins (Aktivitätsklasse C, d.h. <=20 nM) durch das ungeladene Citrullin (Aktivitätsklasse F, d.h. >200 nM).

Da die Guanidino-Gruppe (Arg) und die Harnstoff-Gruppe (Cit) Bioisostere sind und einen ähnlichen Raumbedarf haben, wird somit die Wichtigkeit einer positiven Ladung deutlich, wie sie auch der bisherige Stand der Technik beschreibt, so z.B. WO 03/033528. Gleichzeitig zeigt dieses Ergebnis, dass die Größe der Substituenten kein ausreichendes Kriterium für die Vorhersage der Aktivität ist

Ein weiterer wichtiger Aspekt ist hier, daß Citrullin unter physiologischen Bedingungen zwar ungeladen, aber trotzdem polar ist, wenn auch weniger polar als ein geladenes Guanidin. Dies wird z.B. durch die berechneten logP-Werte verschiedener Aminosäure-Derivate deutlich, wie in der folgenden Übersicht dargestellt:

Der logP-Wert gibt das Verteilungsverhältnis einer Verbindung zwischen einer Wasser- und einer Octanol-Phase an und ist umso niedriger, je polarer eine Verbindung ist. Die logP-Werte wurden mit dem Programm Chemdraw (erhältlich von der Fa. CambridgeSoft, Cambridge, Großbritannien) vorhergesagt.

Aufgrund des bereits starken Abfalls der Aktivität vom sehr polaren Guanidin zum mittel polaren Harnstoff liegt es deshalb für den Fachmann fern, eine noch unpolarere, oder gar

WO 2005/010030 PCT/EP2004/008057

hydrophobe Substitution anstelle des Arginins einzusetzen, da dann eine noch geringere Aktivität erwartet würde.

Die in der vorangehenden Beschreibung, den Ansprüchen und den Zeichnungen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination zur Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

WO 2005/010030 PCT/EP2004/008057

Ansprüche

1. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, mit der folgenden Struktur:

, wobei

X1 ein Radikal mit einer Masse von etwa 1-300 ist und wobei X1 bevorzugterweise ausgewählt ist aus der Gruppe, die R5-, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-SO₂-, R5-N(R6)-CS-, R5-N(R6)-C(NH)-, R5-CS-, R5-P(O)OH-, R5-B(OH)-, R5-CH=N-O-CH₂-CO- umfasst, wobei R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, F, Hydroxy, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Arylalkyl, substituiertes Arylalkyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Acyl, substituiertes Acyl, Alkoxy, Alkoxyalkyl, substituiertes Alkoxyalkyl, Aryloxyalkyl und substituiertes Aryloxyalkyl umfasst,

X2 ein Radikal ist, das die biologischen Bindungseigenschaften einer Phenylalanin-Einheit mimikt.

X3 und X4 einzeln und unabhängig voneinander ein Spacer ist, wobei der Spacer bevorzugterweise aus der Gruppe ausgewählt ist, die Aminosäuren, Aminosäure-Analoga und Aminosäure-Derivate umfasst,

X5 ein Radikal ist, das die biologischen Bindungseigenschaften einer Cyclohexylalanin- oder Homoleucin-Einheit mimikt,

X6 ein Radikal ist, das die biologischen Bindungseigenschaften einer Tryptophan-Einheit mimikt,

X7 ein Radikal ist, das die biologischen Bindungseigenschaften einer Norleucin- oder Phenylalanin-Einheit mimikt,

eine chemische Bindung zwischen X3 und X7 ausgebildet ist, und

die Verbindungslinien – in Formel (I) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen und Aminotriazin-Bindungen umfasst.

2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, dass X3 und X7 jeweils eine Aminosäure, ein Aminosäurederivat oder ein Aminosäureanalogon ist, wobei die chemische Bindung zwischen X3 und X7 unter Beteiligung von jeweils mindestens einem Molekülteil von X3 und X7 ausgebildet ist, und die Molekülteile für X3 und X7 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die den C-Terminus, den N-Terminus und die jeweilige Seitenkette der Aminosäure umfasst.

3. Verbindung nach Anspruch 1 oder 2, wobei

X1 ein Radikal mit einer Masse von etwa 1-300 ist, wobei das Radikal bevorzugterweise ausgewählt ist aus der Gruppe, die R5, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-C(NH)-, umfasst, wobei bevorzugtererweise R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl und substituiertes Aryl enthält;

X2 und X6 jeweils und unabhängig voneinander eine aromatische Aminosäure, ein Derivat oder ein Analogon davon ist;

X5 und X7 einzeln und unabhängig voneinander eine hydrophobe Aminosäure, ein Derivat oder ein Analogon davon sind.

4. Verbindung nach einem der Ansprüche 1 bis 3, wobei X2, X5, X6 und X7 einzeln und unabhängig voneinander die folgende Struktur aufweisen:

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist, R1 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >S=O, >C=NH, >C=N-CN, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst;

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CH₃, CF₃, Alkyl und substituiertes Alkyl umfasst;

und die Bindung von Struktur (III) an die Molekülbestandteile X1 und X3, X4 und X6, X5 und X7, und X6 und X3 bevorzugt über R1 und R2 erfolgt;

für X2 und für X6 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aromatische Gruppe enthält und ausgewählt ist aus der Gruppe, die Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl,

substituiertes Heteroarylalkyl, Alkyloxy-Alkyl, substituiertes Alkyloxy-Alkyl, Alkyloxy-Cycloalkyl, substituiertes Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Aryl, Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst; und

für X5 und für X7 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aliphatische oder aromatische Gruppe enthält und bevorzugterweise ausgewählt ist aus der Gruppe, die Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Heteroarylalkyl, substituiertes Heteroarylalkyl, Arylalkyl, substituiertes Arylalkyl, substituiertes substituiertes Cycloalkylalkyl, Heterocyclylalkyl, Cycloalkylalkyl, substituiertes Alkyloxy-Alkyl, Alkyloxy-Cycloalkyl, Heterocyclylalkyl, Alkyloxy-Alkyl, Alkyloxy-Heterocyclyl, substituiertes Alkyloxysubstituiertes Alkyloxy-Cycloalkyl, Heterocyclyl, Alkyloxy-Aryl, substituiertes Alkyloxy-Aryl, Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst.

- 5. Verbindung nach Anspruch 4, dadurch gekennzeichnet, dass unter Beteiligung von R3 und R4 ein Ring ausgebildet ist.
- 6. Verbindung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass für X2 und für X6 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die Phenyl, substituiertes Phenyl, Benzyl, substituiertes Benzyl, 1,1-Diphenylmethyl, substituiertes 1,1-Diphenylmethyl, Naphthylmethyl, substituiertes Naphthylmethyl, Thienylmethyl, substituiertes Thienylmethyl, Benzothienylmethyl, substituiertes Benzothienylmethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.
- 7. Verbindung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass für X5 und für X7 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die C3-C5-Alkyl, substituiertes C3-C5-Alkyl, C5-C7-Cycloalkyl, substituiertes C5-C7-Cycloalkyl, c5-C7-Cycloalkylmethyl, substituiertes C5-C7-Cycloalkylmethyl, Cycloalkylethyl, substituiertes Cycloalkylethyl, Benzyl, substituiertes Benzyl, Phenylethyl, Naphthylmethyl, Thienylmethyl,

Propenyl, Propinyl, Methylthioethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.

- 8. Verbindung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass X1 ausgewählt ist aus der Gruppe, die H, Acetyl, Propanoyl, Butanoyl, Benzoyl, Fluormethylcarbonyl, Difluormethylcarbonyl, Phenyl, Oxycarbonyl, Methyl-oxycarbonyl, Phenyl-aminocarbonyl, Methyl-aminocarbonyl, Phenyl-sulfonyl, 2,6-Dioxo-hexahydropyrimidine-4-carbonyl und Methyl-sulfonyl umfasst.
- 9. Verbindung nach einem der Ansprüche 1 bis 8, wobei

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige Derivate davon umfasst;

oder X2 und X1 sind zusammengenommen PhCH₂CH₂CO- oder PhCH₂-;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Tryptophan, Phenylalanin, Tyrosin, Histidin, 1-Naphtylalanin, Benzothienylalanin, 2-Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein (Me), Cystein (Et), Cystein (Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin,

Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

- 10. Verbindung nach einem der Ansprüche 1 bis 9, wobei X1 und/oder X4 eine oder mehrere die Wasserlöslichkeit verbessernde Gruppen aufweisen, wobei die die Wasserlöslichkeit verbessernde Gruppe ausgewählt ist aus der Gruppe, die Hydroxy, Keto, Carboxamido, Ether, Harnstoff, Carbamat, Amino, substituiertes Amino, Guanidino, Pyridyl und Carboxyl umfasst.
- 11. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X3 und X5-X7 definiert sind, wie in einem der Ansprüche 1 bis 10 und wobei

X4 eine zyklische oder eine nichtzyklische Aminosäure ist, wobei die zyklische Aminosäure ausgewählt ist aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-carbonsäure, 1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, cis-Hyp und trans-Hyp umfasst, und die nichtzyklische Aminosäure ausgewählt aus der Gruppe, die Ser, Gln, Asn, Cys(O₂CH₂CH₂CONH₂), Arg, Hyp(COCH₂OCH₂CH₂OCH₂CH₂OCH₃), Hyp(CONH-CH₂CH(OH)-CH₂OH) und jeweilige Derivate davon und jeweilige Analoga davon umfasst; und

die Verbindungslinien – in Formel (I) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung

eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen und Aminotriazin-Bindungen umfasst.

- 12. Verbindung nach Anspruch 11, dadurch gekennzeichnet, dass die durch X4 dargestellte Aminosäure bevorzugt ausgewählt ist aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-3-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-carbonsäure, 1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, Hyp, Ser, Gln, Asn, Cys(O₂CH₂CONH₂) und Arg umfasst.
- 13. Verbindung nach einem der Ansprüche 11 bis 12, wobei

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige Derivate davon umfasst;

oder X2 und X1 sind zusammengenommen PhCH2CH2CO- oder PhCH2-;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Tryptophan, Phenylalanin, Tyrosin, Histidin, 1-Naphtylalanin, Benzothienylalanin, 2-Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein (Me), Cystein (Et), Cystein (Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin,

Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

14. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X2 und X4-X7 definiert sind, wie in einem der Ansprüche 1 bis 13 und wobei

X3 folgende Struktur aufweist

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist, R1ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylakyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst;

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CF₃, Alkyl und substituiertes Alkyl umfasst;

die Bindung von Struktur (IV) an die Molekülbestandteile X2 und X4 bevorzugt über R1 und R2 erfolgt;

R3 ein Radikal ist, das ausgewählt ist aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heterocyclylalkyl, substituiertes Heterocyclylalkyl, Substituiertes Cycloalkylalkyl, Heterocyclylalkyl, substituiertes Heterocyclylalkyl, Arylalkyl, substituiertes Arylalkyl, Heterocyclylalkyl und substituiertes Heterocyclylalkyl umfasst.

Y optional vorhanden ist und wenn Y vorhanden ist, Y ein Radikal ist, das ausgewählt ist aus der Gruppe, die -N(YB)-, -O-, -S-, -S-S-, -CO-, -C=N-O-, -CO-N(YB)- und

umfasst, wobei YB, YB1 und YB2 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylakyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst.

15. Verbindung nach Anspruch 14, dadurch gekennzeichnet, dass

R3 ein Radikal ist, das ausgewählt ist aus der Gruppe, die Methyl, Ethyl, Propyl, Butyl, Benzyl und

$$-C$$
 N $-$

umfasst;

Y optional vorhanden ist und wenn Y vorhanden ist, Y ein Radikal ist, das ausgewählt ist aus der Gruppe, die -N(YB)-, -O-, -S- und -S-S- umfasst, und YB bevorzugterweise wie in Anspruch 14 definiert ist.

16. Verbindung nach einem der Ansprüche 14 bis 15, wobei

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die Phenylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige Derivate davon umfasst;

oder X2 und X1 sind zusammengenommen PhCH2CH2CO- oder PhCH2-;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Tryptophan, Phenylalanin, Tyrosin, Histidin, 1-Naphtylalanin, Benzothienylalanin, 2-Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein (Me), Cystein (Et), Cystein (Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin,

Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

- 17. Verbindung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass X3 ein Aminosäurederivat einer Aminosäure ist, wobei die Aminosäure ausgewählt ist aus der Gruppe, die alpha-amino-Glycin, alpha-beta-Diaminopropionsäure (Dap), alpha-gamma-diaminobuttersäure (Dab), Ornithin, Lysin, Homolysin, Phe(4-NH2), 2-amino-3-(4-piperidinyl)propionsäure und 2-amino-3-(3-piperidinyl)propionsäure umfasst, und die Aminosäure an der Seitenkette derivatisiert ist.
- 18. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, bevorzugtererweise nach einem der vorangehenden Ansprüche, mit folgender Struktur:

, wobei

A ausgewählt ist aus der Gruppe, die H, NH2, NHAlkyl, NAlkyl2, NHAcyl und OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2(Aryl), CH(Aryl)2, CH2(Heteroaryl), substituiertes CH2(Aryl), Aryl, substituiertes Aryl und Heteroaryl umfaßt,

C1 und C2 einzeln und unabhängig ausgewählt sind aus der Gruppe, die Alkyl und substituiertes Alkyl umfaßt, wobei optional zwischen C1 und C2 eine Bindung ausgebildet sein kann,

D ausgewählt ist aus der Gruppe, die Alkyl, Cycloalkyl, CH2(Cycloalkyl), CH2CH2(Cycloalkyl), CH2Ph(2-Me) und CH2-S-Alkyl umfaßt,

E ausgewählt ist aus der Gruppe, die CH2(Aryl), substituiertes CH2(Aryl) und CH2(Heteroaryl) umfaßt,

F ausgewählt ist aus der Gruppe, die Alkyl, CH2-S-Alkyl, CH2CH2-S-Me, CH2CH=CH2, CH-CCH, Cyclohexyl, CH2Cyclohexyl, CH2Ph, CH2Naphtyl, CH2Thienyl umfaßt,

Z1 ausgewählt ist aus der Gruppe, die (CH2)nNH mit n = 1, 2, 3, 4, (CH2)3O, (CH2)2O, (CH2)4, (CH2)3, CH2ph(4-nH) und CH2(4-ph(4-nH) umfasst, und

Z3 optional vorhanden ist, und wenn Z3 vorhanden ist, dann ausgewählt ist aus der Gruppe, die CO und CH2 umfaßt.

19. Verbindung nach Anspruch 18, dadurch gekennzeichnet, dass

A ausgewählt ist aus der Gruppe, die H, NH2, NHEt, NHAc, OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(4-F), CH(Ph)2, CH2Thienyl, CH2Naphtyl, Phenyl, Ph(4-F) und Thienyl umfaßt,

C1 ausgewählt ist aus der Gruppe, die H und Methyl umfaßt, C2 ausgewählt ist aus der Gruppe, die Methyl und CH2OH umfaßt, oder wenn C1 und C2 durch eine Bindung verbunden sind, die sich daraus ergebende Struktur aus der Gruppe ausgewählt ist, die –(CH2)2-, –(CH2)3-, – (CH2)4- und -CH2CH(OH)CH2- umfasst.

D ausgewählt ist aus der Gruppe, die CH2CH2iPr, CH2iPr, Cyclohexyl, CH2Cyclohexyl, CH2CH2Cyclohexyl, CH2CH2Cyclohexyl, CH2Ph(2-Me), CH2-S-tBu und CH2-S-iPr umfaßt,

E ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(2-Cl), CH2Ph(3-Cl), CH2Ph(4-Cl), CH2Ph(2-F), CH2Ph(3-F), CH2Ph(4-F), CH2Indolyl, CH2Thienyl, CH2Benzothienyl und CH2Naphtyl umfaßt,

F ausgewählt ist aus der Gruppe, die (CH2)3CH3, (CH2)2CH3, (CH2)2-iPr, CH2-iPr, iPr, CH2-S-Et, CH2CH2-S-Me, CH2CH=CH2, CH2-CCH und Cyclohexyl umfaßt,

Z1 ausgewählt ist aus der Gruppe, die (CH2)nNH mit n=1, 2, 3, 4, (CH2)3O, CH2Ph(4-NH) und CH2(4-Piperidinyl) umfasst, und

Z3 optional vorhanden ist, und wenn Z3 vorhanden ist, dann ausgewählt ist aus der Gruppe, die CO und CH2 umfaßt.

20. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, wobei die Verbindung die folgende Struktur aufweist:

wobei d1, d2, d3 und d4 die Abstände von A, B, C und D in wenigstens einem energetisch zugänglichen Konformer der Verbindung bezeichnen und die folgenden Werte aufweisen:

$$d1 = 5.1 \pm 1.0 \text{ Å}$$

$$d2 = 11.5 \pm 1.0 \text{ Å}$$

 $d3 = 10.0 \pm 1.5 \text{ Å}$

 $d4 = 6.9 \pm 1.5 \text{ Å}$

A und C einzeln und unabhängig voneinander ein hydrophobes Radikal sind, wobei das hydrophobe Radikal ausgewählt ist aus der Gruppe, die Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl umfasst;

B und D einzeln und unabhängig voneinander ein aromatisches oder heteroaromatisches Radikal sind, wobei bevorzugterweise das aromatische Radikal Aryl ist, und bevorzugterweise das heteroaromatische Radikal Heteroaryl ist.

21. Verbindung nach Anspruch 20, wobei A und C einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die C3-C6-Alkyl, C5-C7-Cycloalkyl, Methylthioethyl, Methylthio-tert-butyl, Indolyl, Phenyl, Naphtyl, Thienyl, Propenyl, Propinyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst;

B ausgewählt ist aus der Gruppe, die Phenyl, substituiertes Phenyl, Naphthyl, Thienyl, Benzothienyl, Hydroxyphenyl, Indolyl, und Imidazolyl umfasst; und

D ausgewählt ist aus der Gruppe, die Phenyl, Naphthyl, Thienyl, Thiazolyl, Furanyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst.

22. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist,

mit folgender Struktur:

, wobei

A, B, C und D die C-alpha-Atome in Aminosäuren, Aminosäure-Analoga oder Aminosäure-Derivaten bezeichnen,

d1, d2, d3 und d4 die Abstände zwischen A, B, C und D in wenigstens einem energetisch zugänglichen Konformer der Verbindung bezeichnen und die folgenden Werte aufweisen:

$$d1 = 3.9 \pm 0.5 \text{ Å}$$

$$d2 = 3.9 \pm 0.5 \text{ Å}$$

$$d3 = 9,0 \pm 1,5 \text{ Å}$$

$$d4 = 9,0 \pm 1,5 \text{ Å};$$

wobei die Aminosäuren, deren alpha-Atome durch A und C dargestellt sind, einzeln und unabhängig voneinander eine hydrophobe Aminosäure-Seitenkette aufweisen, die eine Alkyl-, Cycloalkyl, Cycloalkylalkyl, Heterocyclyl, Aryl, Arylalkyl, Heteroaryl, Heteroarylalkyl oder Methylthio-tert-butyl-Gruppe umfasst.

wobei die Aminosäuren, deren alpha-Atome durch B und D dargestellt sind, einzeln und unabhängig voneinander eine aromatische oder heteroaromatische Aminosäure-Seitenkette aufweisen, die eine Aryl, Arylalkyl, Heteroaryl oder Heteroarylalkyl-Gruppe umfasst.

23. Verbindung nach Anspruch 22, wobei

wobei die Aminosäure, dessen alpha-Atom durch A dargestellt ist, ausgewählt ist aus der Gruppe, die C3-C6-Alkyl, Methylthioethyl, Propenyl, Propinyl, R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das ausgewählt ist aus der Gruppe, die C5-C7-Cycloalkyl, Phenyl, substituiertes Phenyl, Hydroxyphenyl, Indolyl, Imidazolyl, Naphtyl und Thienyl umfasst;

wobei die Aminosäure, dessen alpha-Atom durch B dargestellt ist, ausgewählt ist aus der Gruppe, die R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das ausgewählt ist aus der Gruppe, die Phenyl, substituiertes Phenyl, Naphtyl, Thienyl, Benzothienyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst;

wobei die Aminosäure, dessen alpha-Atom durch C dargestellt ist, ausgewählt ist aus der Gruppe, die C3-C6-Alkyl, R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das aus der Gruppe ausgewählt ist, die C5-C7-Cycloalkyl, Phenyl, 1-Methyl-Phenyl, 2-Methyl-Phenyl, 3-Methyl-Phenyl und S-tBu umfasst; und

wobei die Aminosäure, dessen alpha-Atom durch D dargestellt ist, ausgewählt ist aus der Gruppe, die R5, Methyl-R5 und Ethyl-R5 umfasst, wobei R5 ein Radikal ist, das ausgewählt ist aus der Gruppe, die Phenyl, Naphthyl, Thienyl, Thiazolyl, Furanyl, Hydroxyphenyl, Indolyl und Imidazolyl umfasst.

24. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, mit der folgenden Struktur:

, wobei

X1 ein Radikal mit einer Masse von etwa 1-300 ist und wobei X1 bevorzugterweise ausgewählt ist aus der Gruppe, die R5-, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-SO₂-, R5-N(R6)-CS-, R5-N(R6)-C(NH)-, R5-CS-, R5-P(O)OH-, R5-B(OH)-, R5-CH=N-O-CH₂-CO- umfasst, wobei R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, F, Hydroxy, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Arylalkyl, substituiertes Arylalkyl, Aryl, substituiertes

Aryl, Heteroaryl, substituiertes Heteroaryl, Acyl, substituiertes Acyl, Alkoxy, Alkoxyalkyl, substituiertes Alkoxyalkyl, Aryloxyalkyl und substituiertes Aryloxyalkyl umfasst,

X2 ein Radikal ist, das die biologischen Bindungseigenschaften einer Phenylalanin-Einheit mimikt.

X3 und X4 einzeln und unabhängig voneinander ein Spacer ist, wobei der Spacer bevorzugterweise aus der Gruppe ausgewählt ist, die Aminosäuren, Aminosäure-Analoga und Aminosäure-Derivate umfasst,

X5 ein Radikal ist, das die biologischen Bindungseigenschaften einer Cyclohexylalanin- oder Homoleucin-Einheit mimikt,

X6 ein Radikal ist, das die biologischen Bindungseigenschaften einer Tryptophan-Einheit mimikt,

X7 ein Radikal ist, das die biologischen Bindungseigenschaften einer Norleucin- oder Phenylalanin-Einheit mimikt,

X8 ein Radikal ist, wobei das Radikal optional in Struktur II enthalten ist und wenn es enthalten ist, ausgewählt ist aus der Gruppe, die H, NH₂, OH, NH-OH, NH-OAlkyl, Amino, substituiertes Amino, Alkoxy, substituiertes Alkoxy, Hydrazino, substituiertes Hydrazino, Aminooxy, substituiertes Aminooxy, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Substituiertes Arylalkyl, Aryl, substituiertes Aryl, Aminosäure, Aminosäurederivat und Aminosäureanalogon umfasst;

die Verbindungslinien – in Formel (II) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-

Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen und Aminotriazin-Bindungen umfasst.

25. Verbindung nach Anspruch 24, wobei

X1 ein Radikal mit einer Masse von etwa 1-300 ist, wobei das Radikal bevorzugterweise ausgewählt ist aus der Gruppe, die R5, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO₂-, R5-N(R6)-C(NH)-, umfasst, wobei bevorzugtererweise R5 und R6 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl und substituiertes Aryl enthält;

X2 und X6 jeweils und unabhängig voneinander eine aromatische Aminosäure, ein Derivat oder ein Analogon davon ist;

X5 und X7 einzeln und unabhängig voneinander eine hydrophobe Aminosäure, ein Derivat oder ein Analogon davon sind.

26. Verbindung nach einem der Ansprüche 24 bis 25, wobei X2, X5, X6 und X7 einzeln und unabhängig voneinander die folgende Struktur aufweisen:

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist,ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl,

substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >S=O, >C=NH, >C=N-CN, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst;

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CH₃, CF₃, Alkyl und substituiertes Alkyl umfasst;

und die Bindung von Struktur (III) an die Molekülbestandteile X1 und X3, X4 und X6, X5 und X7, und X6 und X8 bevorzugt über R1 und R2 erfolgt;

für X2 und für X6 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aromatische Gruppe enthält und ausgewählt ist aus der Gruppe, die Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, substituiertes Arylalkyl, Heteroarylalkyl, substituiertes Heteroarylalkyl, Alkyloxy-Alkyl, substituiertes Alkyloxy-Alkyl, Alkyloxy-Cycloalkyl, substituiertes Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst; und

für X5 und für X7 einzeln und unabhängig voneinander R3 ein Radikal ist, wobei das Radikal eine aliphatische oder aromatische Gruppe enthält und bevorzugterweise ausgewählt ist aus der Gruppe, die Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylalkyl, Heteroarylalkyl, substituiertes Heteroarylalkyl, Arylalkyl, substituiertes substituiertes Cycloalkylalkyl, Heterocyclylalkyl, Cycloalkylalkyl, substituiertes substituiertes Alkyloxy-Alkyl, Alkyloxy-Cycloalkyl, Alkyloxy-Alkyl, Heterocyclylalkyl, Alkyloxy-Heterocyclyl, substituiertes Alkyloxy-Alkyloxy-Cycloalkyl, substituiertes Heterocyclyl, Alkyloxy-Aryl, substituiertes Alkyloxy-Aryl, Alkyloxy-Heteroaryl, substituiertes Alkyloxy-Heteroaryl, Alkylthio-Alkyl, substituiertes Alkylthio-Alkyl, Alkylthio-Cycloalkyl und substituiertes Alkylthio-Cycloalkyl umfasst.

- 27. Verbindung nach Anspruch 26, dadurch gekennzeichnet, dass unter Beteiligung von R3 und R4 ein Ring ausgebildet wird.
- 28. Verbindung nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass für X2 und für X6 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die Phenyl, substituiertes Phenyl, Benzyl, substituiertes Benzyl, 1,1-Diphenylmethyl, substituiertes 1,1-Diphenylmethyl, Naphthylmethyl, substituiertes Naphthylmethyl, Thienylmethyl, substituiertes Thienylmethyl, Benzothienylmethyl, substituiertes Benzothienylmethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.
- 29. Verbindung nach einem der Ansprüche 24 bis 28, insbesondere nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, dass für X5 und für X7 einzeln und unabhängig voneinander R3 aus der Gruppe ausgewählt ist, die C3-C5-Alkyl, substituiertes C3-C5-Alkyl, C5-C7-Cycloalkyl, substituiertes C5-C7-Cycloalkyl, c5-C7-Cycloalkylmethyl, substituiertes C5-C7-Cycloalkylmethyl, Cycloalkylethyl, substituiertes Cycloalkylethyl, Benzyl, substituiertes Benzyl, Phenylethyl, Naphthylmethyl, Thienylmethyl, Propenyl, Propinyl, Methylthioethyl, Imidazolylmethyl, substituiertes Imidazolylmethyl, Indolylmethyl und substituiertes Indolylmethyl umfasst.
- 30. Verbindung nach einem der vorhergehenden Ansprüche, insbesondere nach einem der Ansprüche 24 bis 29, dadurch gekennzeichnet, dass X8 ausgewählt ist aus der Gruppe, die H, OR1 und NR1R2 umfasst, wobei R1 und R2 einzeln und unabhängig voneinander aus der Gruppe ausgewählt sind, die H, Alkyl, Aryl, Cycloalkyl und Arylalkyl umfasst.
- 31. Verbindung nach einem der Ansprüche 24 bis 30, dadurch gekennzeichnet, dass X1 ausgewählt ist aus der Gruppe, die H, Acetyl, Propanoyl, Butanoyl, Benzoyl, Fluormethylcarbonyl, Difluormethylcarbonyl, Phenyl, Oxycarbonyl, Methyl-oxycarbonyl, Phenyl-aminocarbonyl, Methyl-aminocarbonyl, Phenyl-sulfonyl, 2,6-Dioxo-hexahydropyrimidine-4-carbonyl und Methyl-sulfonyl umfasst.
- 32. Verbindung nach einem der Ansprüche 24 bis 31, wobei X1 und/oder X4 eine oder mehrere die Wasserlöslichkeit verbessernde Gruppen aufweisen, wobei die die Wasserlöslichkeit

verbessernde Gruppe ausgewählt ist aus der Gruppe, die Hydroxy, Keto, Carboxamido, Ether, Harnstoff, Carbamat, Amino, substituiertes Amino, Guanidino, Pyridyl und Carboxyl umfasst.

33. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X3 und X5-X8 definiert sind, wie in einem der Ansprüche 24 bis 32 und wobei

X4 eine zyklische oder eine nichtzyklische Aminosäure ist, wobei die zyklische Aminosäure ausgewählt ist aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-carbonsäure, 1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, cis-Hyp und trans-Hyp umfasst und die nichtzyklische Aminosäure ausgewählt aus der Gruppe, die Ser, Gln, Asn, Cys(O₂CH₂CH₂CONH₂), Arg, Hyp(COCH₂OCH₂CH₂OCH₂OCH₃), Hyp(CONH-CH₂CH(OH)-CH₂OH) und jeweilige Derivate davon und jeweilige Analoga davon umfasst; und

die Verbindungslinien – in Formel (I) chemische Bindungen bezeichnen, wobei die chemische Bindung einzeln und unabhängig bevorzugt aus der Gruppe ausgewählt ist, die kovalente Bindungen, ionische Bindungen und koordinative Bindungen umfasst, wobei bevorzugterweise die Bindung eine chemische Bindung ist und noch bevorzugtererweise die chemische Bindung eine solche Bindung ist, die ausgewählt ist aus der Gruppe, die Amid-Bindungen, Disulfid-Bindungen, Ether-Bindungen, Thioether-Bindungen, Oxim-Bindungen und Aminotriazin-Bindungen umfasst.

- 34. Verbindung nach Anspruch 33, dadurch gekennzeichnet, dass die durch X4 dargestellte Aminosäure bevorzugt ausgewählt ist aus der Gruppe, die Prolin, Pipecolinsäure, Azetidin-2-carbonsäure, Tetrahydroisochinolin-3-carbonsäure, Tetrahydroisochinolin-1-carbonsäure, Octahydroindol-2-carbonsäure, 1-Aza-bicyclo-[3.3.0]-octan-2-carbonsäure, 4-Phenyl-pyrrolidin-2-carbonsäure, Hyp, Ser, Gln, Asn, Cys(O₂CH₂CONH₂) und Arg umfasst.
- 35. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, mit der Struktur

, wobei X1-X2 und X4-X8 definiert sind wie in einem der Ansprüche 24 bis 34 und wobei

X3 folgende Struktur aufweist:

worin

X C(R4) oder N ist,

R1 optional vorhanden ist und wenn R1 vorhanden ist, R1 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >N-R1B, >C(R1B)(R1D) und >O umfasst, wobei R1B und R1D unabhängig voneinander ausgewählt sind aus der Gruppe, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst;

R2 optional vorhanden ist und wenn R2 vorhanden ist, R2 ein Radikal ist, das ausgewählt ist aus der Gruppe, die >C=O, >C=S, >SO₂, >PO(OH), >B(OH), >CH₂, >CH₂CO, >CHF und >CF₂ umfasst:

R4 ein Radikal ist, wobei das Radikal ausgewählt ist aus der Gruppe, die H, F, CF₃, Alkyl und substituiertes Alkyl umfasst;

die Bindung von Struktur (IV) an die Molekülbestandteile X2 und X4 bevorzugt über R1 und R2 erfolgt;

138

R3 ein Radikal ist, das aus der Gruppe ausgewählt ist, die H, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkylalkyl, Cycloalkylalkyl, substituiertes Cycloalkylalkyl, Heterocyclyl, substituiertes Heterocyclyl, Heterocyclylalkyl, substituiertes Heterocyclylalkyl, Aryl, substituiertes Aryl, Arylalkyl, substituiertes Arylalkyl, Heteroaryl, substituiertes Heteroaryl, substituiertes Acyl, Alkoxyalkyl, substituiertes Alkoxyalkyl, Aryloxyalkyl, substituiertes Aryloxyalkyl, Sulfhydrylalkyl, substituiertes Sulfhydrylalkyl, Hydroxyalkyl, substituiertes Hydroxyalkyl, Carboxyalkyl, substituiertes Carboxyalkyl, Carboxyalkyl, substituiertes Carboxamidoalkyl, Carboxyhydrazinoalkyl, Ureidoalkyl Aminoalkyl, substituiertes Aminoalkyl, Guanidinoalkyl und substituiertes Guanidinoalkyl umfasst.

Y optional vorhanden ist und wenn Y vorhanden ist, Y ein Radikal ist, das ausgewählt ist aus der Gruppe, die H, -N(YB1)-CO-YB2, -N(YB1)-CO-N(YB2)(YB3), -N(YB1)-C(N-YB2)-N(YB3)(YB4), -N(YB1)(YB2), -N(YB1)-SO₂-YB2, O-YB1, S-YB1, -CO-YB1, -CO-N(YB1)(YB2) und -C=N-O-YB1 umfasst, wobei YB1, YB2, YB3 und YB4 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, CN, NO₂, Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Heterocyclyl, substituiertes Heterocyclyl, Aryl, substituiertes Aryl, Heteroaryl, substituiertes Heteroaryl, Arylakyl, substituiertes Arylalkyl, Cycloalkylalkyl und substituiertes Cycloalkylalkyl umfasst.

36. Verbindung nach Anspruch 35, dadurch gekennzeichnet, dass

R3 ein Radikal ist mit der Struktur

, wobei

m 1, 2, 3 oder 4 ist;

Y N(R3b)(R3c) oder -N(YB1)-C(N-YB2)-N(YB3)(YB4) ist, wobei R3b, R3c, YB1, YB2, YB3 und YB4 einzeln und unabhängig voneinander ausgewählt sind aus der Gruppe, die H, CN und Alkyl umfasst.

- Verbindung nach Anspruch 35 oder 36, dadurch gekennzeichnet, dass ein Ring zwischen 37. jeweils zwei Molekülteilen der Verbindung ausgebildet ist, wobei die Molekülteile einzeln und unabhängig voneinander aus der Gruppe ausgewählt sind, die YB1, YB2, YB3 und YB 4 umfasst.
- Verbindung nach Anspruch 37, dadurch gekennzeichnet, dass der Ring unter Beteiligung 38. von YB2 und YB3 ausgebildet ist.
- Verbindung nach einem der Ansprüche 35 bis 38, dadurch gekennzeichnet, dass Y 39. -NH₂

40. Eine Verbindung nach einem der Ansprüche 24 bis 39, wobei

X2 ein Aminosäurederivat einer Aminosäure ist, das ausgewählt ist aus der Gruppe, die 2-4-Fluor-Phenylalanin, 3-Fluor-Phenylalanin, 2-Fluor-Phenylalanin, Phenylalanin, 1-Naphtylalanin, 2-4-Chlorphenylalanin, 3-Chlorphenylalanin, Chlorphenylalanin. Thienylalanin, 3-Thienylalanin, 3,3-Diphenylalanin, Tyrosin, Tryptophan, Histidin und jeweilige Derivate davon umfasst;

oder X2 und X1 zusammengenommen PhCH2CH2CO- oder PhCH2- sind;

X6 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die 1-Naphtylalanin, Benzothienylalanin, 2-Tyrosin, Histidin, Tryptophan, Phenylalanin, Aminoindan-2-carbonsäure, 2-Thienylalanin, 3-Thienylalanin, 2-Fluor-Phenylalanin, 3-FluorPhenylalanin, 4-Fluor-Phenylalanin, 2-Chlorphenylalanin, 3-Chlorphenylalanin, 4-Chlorphenylalanin und jeweilige Derivate davon umfasst;

X5 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die D-Cyclohexylalanin, D-Cyclohexylglycin, D-Homo-Cyclohexylalanin, D-Homoleucin, D-Cystein(tBu), D-Cystein(iPr), Octahydroindol-2-carbonsäure, 2-Methyl-D-Phenylalanin und jeweilige Derivate davon umfasst; und

X7 ein Aminosäurederivat einer Aminosäure ist, die ausgewählt ist aus der Gruppe, die Norvalin, Norleucin, Homo-Leucin, Leucin, Isoleucin, Valin, Cystein, Cystein(Me), Cystein(Et), Cystein(Pr), Methionin, Allylglycin, Propargylglycin, Cyclohexylglycin, Cyclohexylalanin, Phenylalanin, Tyrosin, Tryptophan, Histidin, 1-Naphtylalanin, 2-Thienylalanin, 3-Thienylalanin und jeweilige Derivate davon umfasst.

- 41. Verbindung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass X3 ein Aminosäurederivat einer Aminosäure ist, wobei die Aminosäure ausgewählt ist aus der Gruppe, die alpha-amino-Glycin, alpha-beta-Diaminopropionsäure (Dap), alpha-gamma-diaminobuttersäure (Dab), Ornithin, Lysin, Homolysin, Phe(4-NH2), 2-amino-3-(4-piperidinyl)propionsäure und 2-amino-3-(3-piperidinyl)propionsäure umfasst, und die Aminosäure an der Seitenkette derivatisiert ist.
- 42. Verbindung, bevorzugterweise ein C5a-Rezeptor-Antagonist, bevorzugtererweise nach einem der vorangehenden Ansprüche, mit folgender Struktur:

, wobei

A ausgewählt ist aus der Gruppe, die H, NH2, NHAlkyl, NAlkyl2, NHAcyl, substituiertes NHAcyl und OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2(Aryl), CH(Aryl)2, CH2(Heteroaryl) und substituiertes CH2(Aryl) umfaßt,

C1 und C2 einzeln und unabhängig ausgewählt sind aus der Gruppe, die Alkyl und substituiertes Alkyl umfaßt, wobei optional zwischen C1 und C2 eine Bindung ausgebildet sein kann,

D ausgewählt ist aus der Gruppe, die Alkyl, Cycloalkyl, CH2(Cycloalkyl), CH2CH2(Cycloalkyl), CH2Ph(2-Me) und CH2-S-Alkyl umfaßt,

E ausgewählt ist aus der Gruppe, die CH2(Aryl), substituiertes CH2(Aryl) und CH2(Heteroaryl) umfaßt,

F ausgewählt ist aus der Gruppe, die Alkyl, CH2-S-Alkyl, CH2CH2-S-Me, CH2CH=CH2, CH-CCH, Cyclohexyl, CH2Cyclohexyl, CH2Ph, CH2Naphtyl, CH2Thienyl umfaßt, und

Z2 -R3-Y- ist, wobei R3 ausgewählt ist aus der Gruppe, die H, Alkyl, Arylalkyl umfaßt, und Y optional vorhanden ist, und wenn Y vorhanden ist, Y ausgewählt ist aus der Gruppe, die H, N(YB1)(YB2), N(YB1)C(N-YB2)-N(YB3)(YB4),

umfaßt, wobei YB1, YB2, YB3 und YB4 einzeln und unabhängig ausgewählt sind aus der Gruppe, die H, CN und Alkyl umfasst und optional ein Ring unter Beteiligung von wenigstens zwei von YB1, YB2, YB3 und YB4 ausgebildet ist, und

G ausgewählt ist aus der Gruppe, die H, OR1 und NR1R2 umfasst, wobei R1 und R2 einzeln und unabhängig voneinander aus der Gruppe ausgewählt sind, die H, Alkyl, Aryl, Cycloalkyl und Arylalkyl umfasst.

43. Verbindung nach Anspruch 42, dadurch gekennzeichnet, dass

A ausgewählt ist aus der Gruppe, die H, NH2, NHEt, NHAc, OH umfaßt,

B ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(4-F), CH(Ph)2, CH2Thienyl und CH2Naphtyl umfaßt,

C1 ausgewählt ist aus der Gruppe, die H und Methyl umfaßt, C2 ausgewählt ist aus der Gruppe, die Methyl und CH2OH umfaßt, oder wenn C1 und C2 durch eine Bindung verbunden sind, die sich daraus ergebende Struktur aus der Gruppe ausgewählt ist, die –(CH2)2-, –(CH2)3-, – (CH2)4- und -CH2CH(OH)CH2- umfasst.

D ausgewählt ist aus der Gruppe, die CH2CH2iPr, CH2iPr, Cyclohexyl, CH2Cyclohexyl, CH2CH2Cyclohexyl, CH2Ph(2-Me), CH2-S-tBu und CH2-S-iPr umfaßt,

E ausgewählt ist aus der Gruppe, die CH2Ph, CH2Ph(2-Cl), CH2Ph(3-Cl), CH2Ph(4-Cl), CH2Ph(2-F), CH2Ph(3-F), CH2Ph(4-F), CH2Indolyl, CH2Thienyl, CH2Benzothienyl und CH2Naphtyl umfaßt,

F ausgewählt ist aus der Gruppe, die (CH2)3CH3, (CH2)2CH3, (CH2)2-iPr, CH2-iPr, iPr, CH2-S-Et, CH2CH2-S-Me, CH2CH=CH2, CH2-CCH und Cyclohexyl umfaßt,

Z2 -R3-Y- ist, wobei R3 ausgewählt ist aus der Gruppe, die CH2, (CH2)2, (CH2)3, (CH2)4 und CH2-C6H4 umfaßt, und Y ausgewählt ist aus der Gruppe, die NH2, NHEt, N(Et)2,

G ausgewählt ist aus der Gruppe, die NH2, NHMe, OH, und H umfaßt.

44. Verbindung nach einem der vorhergehenden Ansprüche, wobei die Verbindung eine der folgenden Verbindungen ist:

Nr.	Verbindung
1	Ac-Phe-[Orn-Pro-cha-Trp-Phe]
2	Ac-Phe-[Orn-Hyp-cha-Trp-Phe]
3	HOCH ₂ (CHOH) ₄ -C=N-O-CH ₂ -CO-Phe-[Orn-Pro-cha-Trp-
	Nle]
4	X-Phe-[Orn-Pro-cha-Trp-Nle]; X = 2-Acetamido-1-Methyl-
	Glucuronyl
5	Ac-Phe-[Orn-Hyp(COCH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃)-cha-
·	Trp-Nle]
6	Ac-Phe-[Orn-Hyp(CONH-CH ₂ CH(OH)-CH ₂ OH)-cha-Trp-
	Nle]
20	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]
28	Ac-Phe-[Orn-Pro-cha-Trp-Nle]
29	Ac-Phe-[Orn-Pro-cha-Trp-Met]
31	Ac-Phe-[Orn-Pro-cha-Trp-Nva]
32	Ac-Phe-[Orn-Pro-cha-Trp-Hle]
33	Ac-Phe-[Orn-Pro-cha-Trp-Eaf]
34	Ac-Phe-[Orn-Pro-cha-Trp-Ebd]
35	Ac-Phe-[Orn-Pro-cha-Trp-Eag]
36	Ac-Phe-[Orn-Pro-cha-Trp-Pmf]
37	Ac-Phe-[Orn-Pro-cha-Trp-2Ni]
38	Ac-Phe-[Orn-Pro-cha-Trp-Thi]
41	Ph-CH ₂ -CH ₂ -CO-[Orn-Pro-cha-Trp-Nle]
42	H-Phe-[Orn-Pro-cha-Trp-Nle]
43	Ac-Lys-Phe-[Orn-Pro-cha-Trp-Nle]
44	H-Phe-[Orn-Ser-cha-Trp-Nle]
51	Ac-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
52	Ac-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
53	Ac-Phe-Orn-Pro-cha-Bta-2Ni-NH ₂

54	Ac-Phe-Orn-Pro-cha-Bta-Cha-NH ₂
55	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH ₂
56	Ph-CH ₂ -[Orn-Pro-cha-Trp-Nle]
57	Ph-CH ₂ -[Orn-Pro-cha-Trp-Phe]
58	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]
59	Ph-CH(OH)-CH ₂ -CO-[Orn-Pro-cha-Trp-Nle]
61	Ac-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
62	Ac-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
64	Ac-Phe-Om-Pro-cha-Trp-2Ni-NH ₂
65	Ac-Phe-Om-Pro-cha-Trp-Cha-NH ₂
66	Ac-Thi-Om-Aze-cha-Bta-Phe-NH ₂
67	Ac-Thi-Om-Pip-cha-Bta-Phe-NH ₂
68	Ac-Phe-Orn-Pro-cha-Trp-Eap-NH ₂
69	Me ₂ -Phe-Orn-Pro-cha-Trp-Phe-NH ₂
70	Ph ₂ -CH-CH ₂ -CO-Orn-Pro-cha-Trp-Phe-NH ₂
71	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH ₂
72	Ac-Phe-Orn-Pro-cha-Trp-NH-CH ₂ -CH ₂ -Ph
73	Ac-Phe-Orn-Aze-cha-Bta-NH-CH ₂ -CH ₂ -Ph
74	H-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
75	H-Me-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
76	Bu-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
77	Ac-Thi-Orn-Pro-cha-Trp-Phe-NH ₂
78	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH ₂
79	Ac-Phe-Om-Ala-cha-Trp-Phe-NH ₂
80	Ac-Phe-Orn-Pro-cha-Trp-Thi-NH ₂
81	Ac-Phe-Om-Aze-cha-Pcf-Phe-NH ₂
82	Ac-Phe-Om(Ac)-Pro-cha-Trp-Phe-NH ₂
83	Ac-Phe-Orn-Aze-cha-Trp-Phe-NH ₂
84	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH ₂
85	Ph-NH-CO-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
86	Bu-O-CO-Phe-Orn-Pro-cha-Trp-Phe-NH ₂
87	Ac-Phe-Lys-Pro-cha-Trp-Phe-NH ₂
88	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH ₂

89	Ac-Phe-Gln-Pro-cha-Trp-Phe-NH ₂
92	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH ₂
93	Ac-Phe-Orn-Hyp-cha-Trp-Phe-NH ₂
94	Ac-Phe-Orn-Pro-cha-Trp-1Ni-NH ₂
95	Ac-Phe-Orn-Aze-cha-Bta-Phe-NH-Me
96	CH ₃ -SO ₂ -Phe-Om-Aze-cha-Bta-Phe-NH ₂
99	Ac-Phe-Orn-Aze-cha-Pff-Phe-NH ₂
100	Ac-Phe-Orn-Aze-cha-Mcf-Phe-NH ₂
101	Ac-Phe-Orn(Ac)-Aze-cha-Bta-Phe-NH ₂
102	Ac-Ebw-Orn-Pro-cha-Trp-Phe-NH ₂
103	Ac-Phe-Trp-Pro-cha-Trp-Phe-NH ₂
104	Ac-Phe-Arg-Pro-cha-Trp-Phe-NH ₂
105	Ac-Phe-Orn-Pip-cha-Trp-Phe-NH₂
106	3PP-Orn-Aze-cha-Bta-Phe-NH ₂
107	Ac-Phe-Orn-Tic-cha-Trp-Phe-NH ₂
108	Ac-Phe-Orn-Ser-cha-Trp-Phe-NH ₂
109	Ac-Phe-Orn-Pro-chg-Trp-Phe-NH ₂
110	Ac-Phe-Orn-Pro-hch-Trp-Phe-NH ₂
111	Ac-Phe-Orn-Pro-cha-Trp-Phg-NH ₂
112	Ac-Phe-Bta-Aze-cha-Bta-Phe-NH ₂
113	Ac-Phe-Trp-Pro-cha-Bta-Phe-NH ₂
115	Ac-Phe-Orn-Pip-cha-Trp-Phe-OH
116	Ac-Phe-Orn-Tic-cha-Trp-Phe-OH
117	Ac-Phe-Orn-Ser-cha-Trp-Phe-OH
118	Ac-Phe-Orn-Pro-chg-Trp-Phe-OH
119	Ac-Phe-Eec-Pro-cha-Bta-Phe-NH ₂
120	Ac-Phe-Nle-Pro-cha-Bta-Phe-NH ₂
121	Ac-Phe-Har-Pro-cha-Bta-Phe-NH ₂
122	Ac-Phe-Arg-Pro-cha-Bta-Phe-NH ₂
123	Ac-Phe-Cys(Acm)-Pro-cha-Bta-Phe-NH ₂
124	Ac-Phe-Mpa-Pro-cha-Bta-Phe-NH ₂
125	Ac-Eby-Orn-Pro-cha-Bta-Phe-NH ₂
126	Ac-Phg-Orn-Pro-cha-Bta-Phe-NH ₂

127	Ac-Phe-Paf-Pro-cha-Bta-Phe-NH ₂
128	H ₂ N-CO-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
129	Me-O-CO-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
130	(-CO-CH ₂ -NH-CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
132	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH
133	(-CO-CH ₂ -CH ₂ -CO-)-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
134	^t Bu-CO-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
135	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
136	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
137	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
138	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
139	Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
140	Ac-Guf-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
141	Ac-Dab-Phe-Orn-Aze-cha-Bta-Phe-NH ₂
142	FH ₂ C-CO-Phe-Orn-Pro-cha-Bta-Phe-NH ₂
143	Ac-Phe-Orn(Et ₂)-Pro-cha-Trp-Phe-NH ₂
144	Ac-Phe-[Orn-Hyp-cha-Trp-Nie]
145	3PP-[Orn-Hyp-cha-Trp-Nle]
146	Ac-Phe-[Orn-Pro-cha-Trp-Tyr]
147	Ac-Phe-[Orn-Pro-omf-Trp-Nle]
149	Ac-Phe-Orn-Pro-hle-Bta-Phe-NH ₂
150	Ac-Phe-Arg(CH ₂ -CH ₂)-Pro-cha-Bta-Phe-NH ₂
151	Ac-Ala-Phe-Orn-Aze-cha-Bta-Phe-NH2
152	Ac-Arg-Phe-Orn-Aze-cha-Bta-Phe-NH2
153	Ac-Cit-Phe-Orn-Aze-cha-Bta-Phe-NH2
154	Ac-Gly-Phe-Orn-Aze-cha-Bta-Phe-NH2
155	Ac-Gly-Phe-Orn-Aze-chg-Bta-Phe-NH2
156	Ac-Gly-Phe-Orn-Aze-hch-Bta-Phe-NH2
157	Ac-Gly-Thi-Orn-Aze-cha-Bta-Phe-NH2
158	Ac-His-Phe-Orn-Aze-cha-Bta-Phe-NH2
159	Ac-Hyp-Phe-Orn-Aze-cha-Bta-Phe-NH2
160	Ac-Lys-Phe-Orn-Aze-cha-Bta-Phe-NH2
161	Ac-Mff-Orn-Pro-cha-Bta-Phe-NH2

162	Ac-Mff-Orn-Pro-hle-Bta-Phe-NH2
163	Ac-Mff-Orn-Pro-hle-Mcf-Mff-NH2
164	Ac-Mmy-Orn-Pro-hle-Pff-Phe-NH2
165	Ac-NMF-Orn-Pro-cha-Bta-Phe-NH2
166	Ac-Off-Orn-Pro-cha-Bta-Phe-NH2
167	Ac-Off-Orn-Pro-hle-Bta-Phe-NH2
168	Ac-Orn-Phe-Orn-Aze-cha-Bta-Phe-NH2
169	Ac-Pff-Orn-Pro-cha-Bta-Phe-NH2
170	Ac-Pff-Orn-Pro-hle-Bta-Phe-NH2
171	Ac-Pff-Orn-Pro-hle-Mcf-Pff-NH2
172	Ac-Phe-[Cys-Pro-cha-Bta-Phe-Cys]-NH2
173	Ac-Phe-[Orn-Asn-cha-Trp-Nle]
174	Ac-Phe-[Orn-Aze-cha-Trp-Nle]
175	Ac-Phe-[Orn-Chy-cha-Trp-Nle]
176	Ac-Phe-[Orn-HyA-cha-Trp-Phe]
177	Ac-Phe-[Orn-Hyp-hle-Bta-Phe]
178	Ac-Phe-[Orn-Hyp-hle-Mcf-Phe]
179	Ac-Phe-[Om-Hyp-hle-Pff-Nle]
180	Ac-Phe-[Orn-Hyp-hle-Pff-Phe]
181	Ac-Phe-[Orn-Hyp-hle-Trp-Phe]
182	Ac-Phe-[Orn-Hyp-Mmf-Trp-Nle]
183	Ac-Phe-[Orn-Hyp-Mmf-Trp-Phe]
184	Ac-Phe-[Orn-NMD-cha-Trp-Nle]
185	Ac-Phe-[Orn-Pip-hle-Bta-Phe]
186	Ac-Phe-[Orn-Pro-cha-Pff-Nle]
187	Ac-Phe-[Orn-Pro-cha-Pff-Phe]
188	Ac-Phe-[Orn-Pro-cha-Trp-1Ni]
189	Ac-Phe-[Orn-Pro-cha-Trp-Cha]
190	Ac-Phe-[Orn-Pro-cha-Trp-Chg]
192	Ac-Phe-[Orn-Pro-cha-Trp-Ecr]
193	Ac-Phe-[Orn-Pro-cha-Trp-Leu]
194	Ac-Phe-[Orn-Pro-cha-Trp-nle]
195	Ac-Phe-[Orn-Pro-cha-Trp-Phe]

196	Ac-Phe-[Om-Pro-hle-Bta-Nle]
197	Ac-Phe-[Orn-Pro-hle-Bta-Phe]
198	Ac-Phe-[Orn-Pro-hle-Pff-Phe]
199	Ac-Phe-[Orn-Pro-hle-Trp-Nle]
200	Ac-Phe-[Orn-Ser-cha-Trp-Nle]
201	Ac-Phe-[Orn-Ser-cha-Trp-Nle]
202	Ac-Phe-[Orn-Ser-hle-Trp-Nle]
203	Ac-Phe-[Orn-Thr-cha-Trp-Nle]
204	Ac-Phe-[Orn-Tic-cha-Trp-Nle]
205	Ac-Phe-[Orn-Tic-cha-Trp-Nle]
206	Ac-Phe-Ala-Pro-cha-Bta-Phe-NH2
207	Ac-Phe-Arg-Pro-hle-Bta-Phe-NH2
208	Ac-Phe-Arg-Pro-hle-Mcf-Phe-NH2
209	Ac-Phe-Cit-Hyp-hle-Bta-Phe-NH2
210	Ac-Phe-Cit-Pro-cha-Bta-Phe-NH2
211	Ac-Phe-Cit-Pro-hle-Bta-Phe-NH2
212	Ac-Phe-Cit-Ser-hle-Bta-Phe-NH2
213	Ac-Phe-Dab-Aze-cha-Bta-Phe-NH2
214	Ac-Phe-Dab-Aze-hle-Bta-Phe-NH2
215	Ac-Phe-Dab-Pro-cha-Bta-Phe-NH2
216	Ac-Phe-Dap-Pro-cha-Bta-Phe-NH2
217	Ac-Phe-Ech-Pro-cha-Bta-Phe-NH2
218	Ac-Phe-Eep-Pro-cha-Bta-Phe-NH2
219	Ac-Phe-Fcn-Aze-cha-Bta-Phe-NH2
220	Ac-Phe-Fcn-Pro-cha-Bta-Phe-NH2
221	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2
222	Ac-Phe-Fco-Pro-cha-Bta-Phe-NH2
223	Ac-Phe-Fcp-Aze-cha-Bta-Phe-NH2
224	Ac-Phe-Ffa-Aze-cha-Bta-Phe-NH2
225	Ac-Phe-Ffa-Pro-cha-Bta-Phe-NH2
226	Ac-Phe-Ffa-Pro-hle-Bta-Phe-NH2
227	Ac-Phe-G23-Pro-cha-Bta-Phe-NH2
228	Ac-Phe-Guf-Pro-cha-Bta-Phe-NH2

WO 2005/010030

229	Ac-Phe-Har-Aze-cha-Bta-Phe-NH2
230	Ac-Phe-His-Pro-cha-Bta-Phe-NH2
231	Ac-Phe-L22-Pro-cha-Bta-Phe-NH2
232	Ac-Phe-OrA-Pro-cha-Bta-Phe-NH2
233	Ac-Phe-OrE-Pro-cha-Bta-Phe-NH2
234	Ac-Phe-Orn-Aze-hle-Bta-Phe-NH2
235	Ac-Phe-Orn-Chy-cha-Bta-Phe-NH2
236	Ac-Phe-Orn-Chy-hle-Pff-Phe-NH2
237	Ac-Phe-Orn-G24-cha-Bta-Phe-NH2
238	Ac-Phe-Orn-G25-cha-Bta-Phe-NH2
239	Ac-Phe-Orn-G26-cha-Bta-Phe-NH2
240	Ac-Phe-Orn-G27-cha-Bta-Phe-NH2
241	Ac-Phe-Orn-G30-cha-Bta-Phe-NH2
242	Ac-Phe-Orn-G31-cha-Bta-Phe-NH2
243	Ac-Phe-Orn-Hse-cha-Bta-Phe-NH2
244	Ac-Phe-Orn-Hyp-hle-Bta-Phe-NH2
245	Ac-Phe-Orn-Hyp-hle-Pff-Phe-NH2
246	Ac-Phe-Orn-NMA-cha-Bta-Phe-NH2
247	Ac-Phe-Orn-NMS-cha-Bta-Phe-NH2
248	Ac-Phe-Orn-Pro-cha-1Ni-Phe-NH2
249	Ac-Phe-Orn-Pro-cha-Bta-1Ni-NH2
250	Ac-Phe-Orn-Pro-cha-Bta-Bhf-NH2
251	Ac-Phe-Orn-Pro-cha-Bta-Dff-NH2
252	Ac-Phe-Orn-Pro-cha-Bta-Eaa-NH2
253	Ac-Phe-Orn-Pro-cha-Bta-L19
254	Ac-Phe-Orn-Pro-cha-Bta-Mcf-NH2
255	Ac-Phe-Orn-Pro-cha-Bta-Mff-NH2
256	Ac-Phe-Orn-Pro-cha-Bta-NH-CH(CH2OH)-CH2-Ph
257	Ac-Phe-Orn-Pro-Cha-Bta-NH-NBn-CO-NH2
258	Ac-Phe-Orn-Pro-cha-Bta-Opa-NH2
259	Ac-Phe-Orn-Pro-cha-Bta-Pcf-NH2
260	Ac-Phe-Orn-Pro-cha-Bta-Pmf-NH2
261	Ac-Phe-Orn-Pro-cha-Bta-Thi-NH2

PCT/EP2004/008057 WO 2005/010030 150

262	Ac-Phe-Orn-Pro-cha-Otf-Phe-NH2
263	Ac-Phe-Orn-Pro-ctb-Bta-Phe-NH2
264	Ac-Phe-Orn-Pro-ctb-Eaa-Phe-NH2
265	Ac-Phe-Orn-Pro-ctb-Mcf-Phe-NH2
266	Ac-Phe-Orn-Pro-ctb-Pff-Phe-NH2
267	Ac-Phe-Orn-Pro-hch-Trp-Phe-OH
268	Ac-Phe-Orn-Pro-hle-1Ni-Phe-NH2
269	Ac-Phe-Orn-Pro-hle-6FW-Phe-NH2
270	Ac-Phe-Orn-Pro-hle-Bta-1Ni-NH2
271	Ac-Phe-Orn-Pro-hle-Bta-2Ni-NH2
272	Ac-Phe-Orn-Pro-hle-Bta-5Ff-NH2
273	Ac-Phe-Orn-Pro-hle-Bta-Aic-NH2
274	Ac-Phe-Orn-Pro-hle-Bta-Cha-NH2
275	Ac-Phe-Orn-Pro-hle-Bta-Chg-NH2
276	Ac-Phe-Orn-Pro-hle-Bta-Eaa-NH2
277	Ac-Phe-Orn-Pro-hle-Bta-Egy-NH2
278	Ac-Phe-Orn-Pro-hle-Bta-Pcf-NH2
279	Ac-Phe-Orn-Pro-hle-Bta-Pff-NH2
280	Ac-Phe-Orn-Pro-hle-Bta-Phe-NH2
281	Ac-Phe-Orn-Pro-hle-Bta-phe-OH
282	Ac-Phe-Orn-Pro-hle-Bta-Tyr-NH2
283	Ac-Phe-Orn-Pro-hle-Dff-Phe-NH2
284	Ac-Phe-Orn-Pro-hle-Eaa-Phe-NH2
285	Ac-Phe-Orn-Pro-hle-Egc-Phe-NH2
286	Ac-Phe-Orn-Pro-hle-Egy-Phe-NH2
287	Ac-Phe-Orn-Pro-hle-Egz-Phe-NH2
288	Ac-Phe-Orn-Pro-hle-Mcf-2Ni-NH2
289	Ac-Phe-Orn-Pro-hle-Mcf-Cha-NH2
290	Ac-Phe-Orn-Pro-hle-Mcf-Pff-NH2
291	Ac-Phe-Orn-Pro-hle-Mcf-Phe-NH2
292	Ac-Phe-Orn-Pro-hle-Mff-Phe-NH2
293	Ac-Phe-Orn-Pro-hle-Mmy-Phe-NH2
294	Ac-Phe-Orn-Pro-hle-Ocf-Phe-NH2

296 Ac-Phe-Om-Pro-hle-Otf-Phe-NH2 297 Ac-Phe-Om-Pro-hle-Pff-2Ni-NH2 298 Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 299 Ac-Phe-Om-Pro-hle-Pff-Eaa-NH2 300 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Om-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Om-Pro-hle-Tff-Phe-NH2 305 Ac-Phe-Om-Pro-hle-Trp-Phe-NH2 306 Ac-Phe-Om-Pro-ile-Trp-Phe-NH2 307 Ac-Phe-Om-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Om-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Om-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Om-Aze-cha-Bta-Phe-NH2 311 Ac-Thi-[Om-Pro-hle-Bta-Phe]	
Ac-Phe-Om-Pro-hle-Pff-Cha-NH2 Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2 Ac-Phe-Orn-Pro-hle-Tff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2 Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2 Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2 Ac-Phe-Orn-Pro-ile-Trp-Phe-NH2 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2	
Ac-Phe-Orn-Pro-hle-Pff-Eaa-NH2 Ac-Phe-Orn-Pro-hle-Pff-Mmy-NH2 Ac-Phe-Orn-Pro-hle-Pff-Pff-NH2 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2 Ac-Phe-Orn-Pro-hle-Tff-Phe-NH2 Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2 Ac-Phe-Orn-Pro-ile-Trp-Phe-NH2 Ac-Phe-Orn-Pro-ile-Trp-Phe-NH2 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2	
300 Ac-Phe-Om-Pro-hle-Pff-Mmy-NH2 301 Ac-Phe-Om-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Om-Pro-hle-Phe-Phe-NH2 305 Ac-Phe-Om-Pro-hle-Tff-Phe-NH2 306 Ac-Phe-Om-Pro-hle-Trp-Phe-NH2 307 Ac-Phe-Om-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Om-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Om-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Om-Aze-cha-Bta-Phe-NH2	
301 Ac-Phe-Om-Pro-hle-Pff-Pff-NH2 302 Ac-Phe-Om-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Om-Pro-hle-Phe-Phe-NH2 305 Ac-Phe-Om-Pro-hle-Tff-Phe-NH2 306 Ac-Phe-Om-Pro-hle-Trp-Phe-NH2 307 Ac-Phe-Om-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Om-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Om-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Om-Aze-cha-Bta-Phe-NH2	
302 Ac-Phe-Orn-Pro-hle-Pff-Phe-NH2 304 Ac-Phe-Orn-Pro-hle-Phe-Phe-NH2 305 Ac-Phe-Orn-Pro-hle-Tff-Phe-NH2 306 Ac-Phe-Orn-Pro-hle-Trp-Phe-NH2 307 Ac-Phe-Orn-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	
304 Ac-Phe-Om-Pro-hle-Phe-NH2 305 Ac-Phe-Om-Pro-hle-Tff-Phe-NH2 306 Ac-Phe-Om-Pro-hle-Trp-Phe-NH2 307 Ac-Phe-Om-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Om-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Om-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Om-Aze-cha-Bta-Phe-NH2	
305 Ac-Phe-Om-Pro-hle-Tff-Phe-NH2 306 Ac-Phe-Om-Pro-hle-Trp-Phe-NH2 307 Ac-Phe-Om-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Om-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Om-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Om-Aze-cha-Bta-Phe-NH2	
306 Ac-Phe-Om-Pro-hle-Trp-Phe-NH2 307 Ac-Phe-Om-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Om-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Om-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Om-Aze-cha-Bta-Phe-NH2	
307 Ac-Phe-Orn-Pro-ile-Trp-Phe-NH2 308 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	
308 Ac-Phe-Orn-Pro-omf-Bta-Phe-NH2 309 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	
309 Ac-Phe-Orn-Ser-cha-Bta-Phe-NH2 310 Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	
310 Ac-Ser-Phe-Orn-Aze-cha-Bta-Phe-NH2	
311 Ac-Thi-[Orn-Pro-hle-Bta-Phe]	
1	
312 Ac-Thi-Orn-Pro-cha-Bta-Phe-NH2	
313 Ac-Thi-Orn-Pro-cha-Bta-Thi-NH2	
314 Ac-Thr-Phe-Orn-Aze-cha-Bta-Phe-NH2	
315 Bzl-[Orn-Pro-cha-Bta-Nle]	
316 CH3CH2CO-Phe-Orn-Pro-cha-Bta-Phe-NH2	
317 Def-[Orn-Ser-hle-Trp-Nle]	
318 Eby-Phe-[Orn-Hyp-cha-Trp-Phe]	
319 Eth-Phe-[Orn-Pro-hle-Pff-Nle]	
320 FAc-Phe-Fib-Aze-cha-Bta-Phe-NH2	
321 FAc-Phe-Orn-Aze-cha-Bta-Phe-NH2	
322 FAc-Phe-Orn-Pro-cha-Bta-Phe-NH2	
323 Fai-Phe-[Orn-Hyp-cha-Trp-Phe]	
324 Faz-Orn-Pro-cha-Bta-Phe-NH2	
325 Fbi-Phe-[Orn-Pro-cha-Trp-Nle]	
326 Fbn-Phe-[Orn-Hyp-cha-Trp-Phe]	
327 Fbn-Phe-[Orn-Pro-cha-Trp-Nle]	
328 Fbn-Phe-[Orn-Pro-cha-Trp-Nle]	

329	Fbn-Phe-Cit-Pro-hle-Bta-Phe-NH2
330	Fbo-Phe-[Orn-Pro-cha-Trp-Nle]
331	Fbp-[Orn-Pro-cha-Trp-Nle]
332	Fci-[Phe-Orn-Hyp-cha-Trp-Phe]
333	Fck-[Phe-Orn-Pro-cha-Trp-Nle]
334	Fck-Phe-[Orn-Pro-cha-Trp-Nle]
335	Fha-Phe-[Orn-Hyp-cha-Trp-Phe]
336	Fhb-[Phe-Orn-Hyp-cha-Trp-Phe]
337	Fhi-Phe-[Orn-Hyp-cha-Trp-Phe]
338	Fhu-Phe-[Orn-Pro-hle-Pff-Nle]
339	Fhu-Phe-Orn-Pro-cha-Bta-Phe-NH2
340	Fid-Phe-Orn-Pro-cha-Bta-Phe-NH2
341	H-Amf-[Orn-Aze-hle-Pff-Nle]
342	H-Bal-Phe-[Orn-Hyp-hle-Trp-Nle]
343	H-Bal-Phe-[Orn-Pro-hle-Pff-Nle]
344	H-Eby-[Orn-Hyp-hle-Trp-Nle]
345	H-Gly-Phe-Om-Pro-cha-Bta-Phe-NH2
346	H-Nip-Phe-Cit-Pro-hle-Bta-Phe-NH2
347	Hoo-Phe-[Orn-Hyp-hle-Pff-Nle]
348	Hoo-Phe-Cit-Pro-hle-Pff-Phe-NH2
349	Hoo-Phe-Orn-Hyp-hle-Pff-Phe-NH2
350	Hoo-Phe-Orn-Pro-hle-Bta-Phe-NH2
351	Hoo-Phe-Orn-Pro-hle-Mcf-Phe-NH2
352	Hoo-Phe-Orn-Pro-hle-Pff-Phe-NH2
353	H-Phe-[Lys-Hyp-hle-Pff-Nle]
354	H-Phe-[Orn-Hym-hle-Mcf-Nle]
355	H-Phe-[Orn-Hym-hle-Pff-Phe]
356	H-Phe-[Orn-Hyp-cha-Trp-Nle]
357	H-Phe-[Orn-Hyp-cha-Trp-Phe]
358	H-Phe-[Orn-Hyp-ctb-Pff-Nle]
359	H-Phe-[Orn-Hyp-ctb-Trp-Nle]
360	H-Phe-[Orn-Hyp-ctb-Trp-Phe]
361	H-Phe-[Orn-Hyp-hle-Mcf-Leu]

WO 2005/010030 PCT/EP2004/008057

362	H-Phe-[Orn-Hyp-hle-Pff-Chg]
363	H-Phe-[Orn-Hyp-hle-Pff-Hle]
364	H-Phe-[Orn-Hyp-hle-Pff-Leu]
365	H-Phe-[Orn-Hyp-hle-Pff-Nle]
366	H-Phe-[Orn-Hyp-hle-Pff-Phe]
367	H-Phe-[Orn-Hyp-hle-Trp-Hle]
368	H-Phe-[Orn-Hyp-hle-Trp-Leu]
369	H-Phe-[Orn-Hyp-hle-Trp-Nle]
370	H-Phe-[Orn-Hyp-hle-Trp-Nva]
371	H-Phe-[Orn-Hyp-hle-Trp-Phe]
372	H-Phe-[Orn-NMS-cha-Trp-Nle]
373	H-Phe-[Orn-NMS-hle-Pff-Phe]
374	H-Phe-[Orn-Pro-cha-Pff-Nle]
375	H-Phe-[Orn-Pro-cha-Pff-Phe]
376	H-Phe-[Orn-Pro-cha-Trp-Nle]
377	H-Phe-[Orn-Pro-hle-Mcf-Phe]
378	H-Phe-[Orn-Pro-hle-Ocf-Phe]
379	H-Phe-[Orn-Pro-hle-Pff-Nle]
380	H-Phe-[Orn-Pro-hle-Pff-Phe]
381	H-Phe-[Orn-Pro-hle-Trp-Nle]
382	H-Phe-[Orn-Ser-cha-Trp-Nle]
383	H-Phe-[Orn-Ser-cha-Trp-Phe]
384	H-Phe-[Orn-Ser-hle-Eaa-Nle]
385	H-Phe-[Orn-Ser-hle-Mcf-Leu]
386	H-Phe-[Orn-Ser-hle-Ocf-Nle]
387	H-Phe-[Orn-Ser-hle-Pff-Leu]
388	H-Phe-[Om-Ser-hle-Pff-Nle]
389	H-Phe-[Orn-Ser-hle-Pff-Phe]
390	H-Phe-[Orn-Ser-hle-Trp-Nle]
391	H-Phe-Cit-Pro-hle-Bta-Phe-NH2
392	Ohf-[Orn-Hyp-hle-Trp-Nle]
393	Tmg-Phe-[Orn-Hyp-cha-Trp-Phe]

- 45. Pharmazeutische Formulierung umfassend mindestens eine Verbindung gemäß einem der vorangehenden Ansprüchen und zusätzlich ein pharmazeutisch akzeptables Trägermittel.
- 46. Verwendung mindestens einer Verbindung nach einem der vorangehenden Ansprüche zur Herstellung eines Medikamentes.
- 47. Verwendung nach Anspruch 46, dadurch gekennzeichnet, dass das Medikament für die Prävention und/oder Behandlung einer Erkrankung verwendet wird, bei der das Komplementsystem aktiviert ist und/oder bei der die Inhibierung des Komplementsystems eine Linderung der Symptome hervorruft.
- 48. Verwendung nach Anspruch 46, dadurch gekennzeichnet, dass das Medikament für die Prävention und/oder Behandlung einer Erkrankung verwendet wird, bei der die Inhibierung der Aktivierung des C5a Rezeptors allein und/oder in Kombination mit anderen Therapeutika eine Linderung der Symptome hervorruft.
- 49. Verwendung nach Anspruch 46, 47 oder 48, dadurch gekennzeichnet, dass die Krankheit und/oder die behandelnden ausgewählt zu Symptome sind aus der Gruppe Autoimmunerkrankungen, akute inflammatorischer Erkrankungen, Traumata, lokale Entzündungen, Schock und Verbrennungen.
- 50. Verwendung nach Anspruch 49, dadurch gekennzeichnet, dass die Erkrankungen ausgewählt sind aus der Gruppe umfassend rheumatoide Arthritis, ankylose Spondylitis, Sarkoidose, systemischer Lupus erythematodes, multiple Sklerose, Psoriasis, septischer Schock, hämorrhagischer Schock. SIRS (septic inflammatory response syndrom), MOF (Multiorganversagen), Asthma, Vaskulitis, Myokarditis, Dermatomyositis, entzündliche Darmerkrankungen (IBD: inflammatory bowel disease), Pemphigus, Myasthenia gravis, Glomerulonephritis. akute respiratorische Insuffizienz, Gehirnschlag, Herzinfarkt. Reperfusionsschaden. neurokognitive Dysfunktionen. Antiphospholipid-Syndrom, Verbrennungen, entzündliche Erkrankungen des Auges, lokale Manifestationen systemischer

WO 2005/010030 PCT/EP2004/008057

Erkrankungen, entzündliche Gefäßerkrankungen und akute Verletzungen des zentralen Nervensystems.

155

- 51. Verwendung nach Anspruch 50, dadurch gekennzeichnet, dass die entzündliche Erkrankung des Auges aus der Gruppe ausgewählt ist, die Uveitis, altersabhängige Makulardegenration, diabetische Retinopathie, diabetisches makulares Ödem, okularen Pemphigoid, Keratoconjunctivitis, Stevens-Johnson Syndrom und Graves Ophthalmophatie umfasst.
- 52. Verwendung nach Anspruch 50, dadurch gekennzeichnet, dass die Erkrankung eine lokale Manifestation systemischer Erkrankungen ist, wobei die systemische Erkrankung aus der Gruppe ausgewählt ist, die Rheuma, SLE und Typ I und Typ II Diabetis umfasst.
- 53. Verwendung nach Anspruch 52, dadurch gekennzeichnet, dass die Manifestationen ausgewählt sind aus der Gruppe die Manifestationen am Auge, am oder im Gehirn, an den Gefäßen, am Herzen, an der Lunge, an den Nieren, an der Leber, des gastrointestinalen Traktes, der Milz, der Haut, am Knochensystem, am lyphatischen System und im Blut ausgewählt ist.
- 54. Verwendung nach Anspruch 50, dadurch gekennzeichnet, dass die entzündliche Gefäßerkrankung aus der Gruppe ausgewählt ist, die Vaskulitis, vascular leakage und Artherosklerose umfasst.
- 55. Verwendung mindestens einer Verbindung nach einem der vorangehenden Ansprüche zur Prävention und/oder Unterstützung chirurgischer Eingriffe, bevorzugtererweise zur Herstellung eines Medikamentes zu diesem Zweck.
- 56. Verwendung nach einem der Ansprüche 46 bis 55, dadurch gekennzeichnet, dass das Medikament zur Prävention und/oder Unterstützung chirurgischer Eingriffe verwendet werden.
- 57. Verwendung nach einem der Ansprüche 46 bis 55, dadurch gekennzeichnet, dass das Medikament zur Unterstützung und/oder zur Prävention und/oder Nachsorge eines chirurgischen Eingriffs verwendet werden, wobei der chirurgische Eingriff ausgewählt ist aus der Gruppe, die

156

- CABG, PACT, PTA, MidCAB, OPCAB, Thrombolyse, Organtransplantation und Gefäßverschluss (clamping) umfasst.
- 58. Verwendung nach einem der Ansprüche 46 bis 55, dadurch gekennzeichnet, dass das Medikament für die thrombolytische Behandlung verwendet wird.
- 59. Verwendung nach einem der Ansprüche 46 bis 55, dadurch gekennzeichnet, dass das Medikament im Rahmen einer Dialyse-Behandlung, gegebenenfalls vor, während oder danach, verwendet wird.
- 60. Verwendung nach einem der Ansprüche 46 bis 55, dadurch gekennzeichnet, das Medikament zur Vorbeugung von Schädigungen eines transplantierten und/oder zu transplantierenden Organs verwendet wird.
- 61. Verwendung nach einem der Ansprüche 46 bis 55, dadurch gekennzeichnet, das Medikament zur Vorbeugung oder Behandlung von Organabstossungsreaktionen verwendet wird.

WO 2005/010030 PCT/EP2004/008057

1/1

Fig: 1:

Fig. 2:

