

Professor Thiago de Paulo Faleiros Departamento de Ciência da Computação – CIC Universidade de Brasília – UnB

Brasília, 27 de abril de 2017

- Um problema de coloração em grafos consiste em atribuir cores a certos elementos do grafo sujeito a determinadas condições.
- Exemplo: coloração dos vértices.

Definição

Sejam G(V,E) um grafo e $C=\{c_i,1\leq i\leq n\}$ um conjunto de cores. Uma coloração de vértices de G é uma atribuição de cores de C para os vértices de maneira que os nós adjacentes são atribuídas cores diferentes.

Uma k-coloração é uma coloração que consiste de k cores diferentes.

Definição

Dado um grafo G, o número n para o qual existe uma n-coloração desse grafo é denominado índice cromatico de G e é denotado por $\chi(G)$. Logo se $\chi(G)=k$, G é k-cromático.

- $\chi(G) = 1$ se e somente se G é um grafo nulo.
- $\chi(G) = 2$ se e somente se G é um grafo bipartido.

Problema da coloração de vértices mínima:

Encontrar uma coloração válida de um grafo não-dirigido com o menor número de cores possível.

Problema da coloração de vértices mínima:

Encontrar uma coloração válida de um grafo não-dirigido com o menor número de cores possível.

- Não foi descoberto nenhum algoritmo rápido que resolva o problema da coloração para qualquer grafo não-dirigido.
- Vamos tratar apenas de algumas heurísticas simples, que produzem uma coloração válida usando um número de cores que pode ser muito maior que o necessário, mas às vezes não é muito grande.

• Francis Guthrie (1852): Qualquer mapa político pode ser colorido com no máximo quatro cores?

Francis Guthrie

- 1977 Appel e Haken resolvem o problema: Todo mapa no plano pode ser colorido com no máximo 4 cores.
- A demonstração gerou um debate na matemática por envolver uso de computadores.
- Os autores definiram 1936 configurações que deveriam ser verificadas por computador, usando aproximadamente 1200 horas de computação.

Teorema das Quatro Cores

Teorema das Quatro Cores [Appel e Haken, 1977]

Todo grafo planar possui uma coloração de vértices com no máximo quatro cores.

Aplicação – Separação de Produtos explosivos

- Os vértices representam produtos químicos necessários em algum processo de produção.
- Existe uma aresta ligando cada par de produtos que podem explodir, se combinados.
- O número cromático representa o número mínimo de compartimentos para guardar estes produtos químicos em segurança.

Aplicações – Atribuição de frequência de rádio

- Os vértices representam os transmissores das estações de rádio
- Duas estações são adjacentes quando suas áreas de transmissão se sobrepõem, o que resultaria em interferência se elas usassem a mesma frequência.
- Cada cor contém estações que podem receber a mesma frequência.

Aplicação – Agendamento de Provas

- Queremos agendar os exames de uma universidade de modo que duas disciplinas com estudantes em comum não tenham seus exames agendados para o mesmo horário?
- Qual o número mínimo de horários necessários para agendar os exames?

Aplicação - Sudoku

- O sudoku é uma variação da coloração de vértices.
- Cada célula representa um vértice e existe uma aresta entre dois vértices se eles estão em uma mesma linha, mesma coluna ou no mesmo bloco.

	6		1	4		5		9	6	3	1	7	4	2	5	8
		8	3	5	6			1	7	8	3	2	5	6	4	9
							1	2	5	4	6	8	9	7	3	1
8			4	7			6	8	2	1	4	3	7	5	9	6
		6			3			4	9	6	8	5	2	3	1	7
7			9	1			4	 7	3	5	9	6	1	8	2	4
5							2	5	8	9	7	1	3	4	6	2
		7	2	6	9			3	1	7	2	4	6	9	8	5
	4		5	8		7		6	4	2	5	9	8	1	7	3

Aplicação – Semáforos

• Existem oito pistas de tráfego no cruzamento de duas ruas. Um semáforo está localizado na interseção. Durante cada fase do semáforo, somente os carros em pistas para as quais a luz está verde podem prosseguir com segurança. Qual é o número mínimo de fases necessárias de modo que, eventualmente, todos os carros possam prosseguir através do cruzamento?

- Pouco pode afirmar sobre o número cromático $\chi(G)$ de um grafo arbitrário.
 - O que se pode afirmar é que

$$\chi(G) \leq n$$

Ou ainda,

$$\chi(G) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}}$$

 Aqui, vamos considerar um grafo planar e provar o teorema das 5-cores!

Teorema das 5 cores

Teorema

Todo grafo planar é "5-colorível".

Teorema das 5 cores

Teorema

Todo grafo planar é "5-colorível".

Teorema [Grotzsch 1959]

Todo grafo planar que não contém um triângula é "3-colorível"

Algoritmo para Colorir vértices

- (Garey e Johnson, 1974): O problema de achar o número cromático de um grafo é NP-difícil.
 - O algoritmo de força bruta busca por uma k-coloração de G considerando cada uma das kⁿ atribuições possíveis e checa se cada uma delas é correta.
 - Inviável para grandes instâncias!
- Solução: heurística!

Algoritmo para Colorir vértices

Algorithm Algoritmo Guloso para coloração de vértices

Input: Vértices de G listados em ordem v_1, v_2, \dots, v_n . Conjunto de cores disponíveis $C = \{1, 2, \dots, n\}$.

Output: Uma coloração própria dos vértices de G.

- 1: **for** i := 1 **to** n **do**
- O vértice v_i recebe a menor cor disponível que ainda não foi atribuída a nenhum de seus vizinhos já coloridos.
- 3: end for

Algoritmo para Colorir Vértices

- Limite superior: $\Delta(G) + 1$, onde $\Delta(G)$ é o grau máximo do grafo G.
 - Esses valores s\u00e3o bons para grafos completos e com ciclo de tamanho \u00e1mpar!
- Pode ser horrível para grafos bipartidos!

Algoritmo para colorir grafos Bipartidos


```
Function GraphTwoColors(Grafo G):
cor[v] = -1 para todo vértice v \in V
for Vértice v \in V do
   if cor[v] == -1 then
       if DfsColor(G,v,0) == FALSE then
          return FALSE
       end
   end
end
return True:
```

Algoritmo para colorir grafos Bipartidos


```
Function DfsColor(Grafo G, vértice v, int c):
cor[v] = c
for vértice w adjacente a v do
    if cor[w] == -1 then
       if DfsColor(G,w,1-cor) == FALSE then
           return FALSE
        end
    end
    else
       if cor[w] == c then
 return FALSE
    end
return True
```

Algoritmo para colorir Grafos bipartidos

- A seguinte função decide se um grafo não-dirigido admite bipartição.
- A função tenta produzir uma bicoloração fazendo uma busca em profundidade.
 - Se tiver sucesso, exibe uma bicoloração dos vértices.

A corretudo do algoritmo está relacionado com o seguinte teorema:

Teorema

Um grafo não-dirigido é bipartido se e somente se não tem circuitos ímpares.

Algoritmo "6-colorível" para grafos planares

- Procedimentos de um algoritmo "6-colorível"para grafos planares
 - Verifique se o algoritmo de duas cores é suficiente. Se sim, colorir o grafo com duas cores!
 - ② Caso contrário, encontre um vértice $u \in V$ não colorido com grau no máximo 5
 - Remova u e todos suas arestas adjacentes e dê cores a grafo restante recursivamente.
 - Finalmente, insira *u* e suas arestas adjacentes de volta no grafo e dê cores para um com uma cor que nenhum dos seus vizinhos tenha.