

Gambar 4.3. Variasi Gerbang 1

- 2. Fungsi Boolean : $L1 = \overline{L2 + L2} = \overline{L2}$
- 3. Tabel kebenaran

SW1	L2	L1
0	0	1
1	1	0

4. Diagram waktu

5. Kesimpulan:

Gerbang NOR pada Gambar 4.3 membentuk logika dari gerbang ... NOT

Percobaan 2 : Substituti Pengganti Gerbang Logika

Buat rangkaian padaGambar 4.4!

Buat dengan menggunakan gerbang NOR (IC 4001), SW-SPDT, dan logic p Pilih VCC dan ground dari terminal mode.

Gambar 4.4. Variasi Gerbang 2

- 2. Fungsi Boolean :L3 = $\overline{L1 + L2}$ = L1 + L2
- 3. Tabel kebenaran

SW1	SW2	L1	L2	To
0	0	0	0	0
1	0	1	0	-
0	1	0	1	1
1	1	-	1	1

4. Diagram waktu

5. Kesimpulan:

Gerbang NOR pada Gambar 4.4 membentuk logika dari gerbang. OR

Percobaan 3 : Substituti Pengganti Gerbang Logika

1. Buat rangkaian pada Gambar 4.5!

Buat dengan menggunakan gerbang NOR (IC 4001), SW-SPDT, dan logic probe VCC dan ground dari terminal mode.

Gambar 4.5. Variasi Gerbang 3

2. Fungsi Boolean : $L3 = \overline{L1 + \overline{L2}} = \underline{L_1 \cdot L_2}$

3. Tabel kebenaran

SW1	SW2	LI	L2	L3
0	0	0	0	0
1	0	1	0	0
0	1	0	1	0
1	1	(1	1

4. Diagram waktu

LI		1		1
	0		0	
L2			(1
	0	0		
L3_				1
	0	0	0	

5. Kesimpulan:

Gerbang NOR pada Gambar 4.5 membentuk logika dari gerbang ... AND

Percobaan 4 : Substituti Pengganti Gerbang Logika

1. Buat rangkaian pada Gambar 4.6!

Buat dengan menggunakan gerbang AND, NOT, OR, SW-SPDT, dan logic probe VCC dan ground dari terminal mode.

Gambar 4.6. Variasi Gerbang 4

2. Fungsi Boolean :L3 = $\overline{L1L2}$ + L1 L2 = $\overline{L1L2}$ +

Tabel kebenaran

SW1	SW2	LI	L2	L3
0	0	0	0	1
1	0	1	0	0
0	1	0	1	0
1	1	1	1	1

Diagram waktu

LI				1
	0		0	
L2			1	1
Liza	0	0		
L3	١			1
		0	0	

Kesimpulan:

Kombinasi gerbang pada gambar 4.6 membentuk logika dari gerbang ...XNOQ

Percobaan 5 : Merancang fungsi Boolean ke dalam rangkaian

Buat kombinasi gerbang logika berdasarkan Fungsi Boolean L3 = $\overline{L1}$ L2+ L1 $\overline{L2}$

Gambar kombinasi gerbang logika nya!

Gambar dari fungsi $L3 = \overline{L1} L2 + L1 \overline{L2} = L10L2$

Tabel kebenaran

SW1	SW2	L1	L2	L3
0	0	0	0	0
1	0	1	0	1
0	1	0	1	1
1	1	1	1	0

4. Diagram waktu

5. Kesimpulan:

Kombinasi gerbang akan membentuk logika dari gerbangXOR