Multivariable Calculus Integration

Spring 2024

Double integral over rectangle R

Definition

The double integral of f over the rectangle R is

$$\iint_{R} f(x,y) dA = \lim_{\substack{m \to \infty \\ n \to \infty}} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) \cdot \operatorname{Area}(R_{ij})$$

if this limit exists. Here, (x_i^*, y_j^*) is a point inside $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$.

1

Let $f(x,y) = x^2y$. Set up a Riemann sum for this function with 3×4 sub-regions inside the domain $[2,6] \times [1,4]$, (x_i^*,y_j^*) is the upper right corner of each box.

Fubini Theorem

Let
$$R = [a, b] \times [c, d]$$
. If $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous on R , then

$$\iint_R f(x,y)dA = \int_a^b \left[\int_c^d f(x,y) \, dy \right] dx = \int_c^d \left[\int_a^b f(x,y) \, dx \right] dy.$$