Grafos

Algoritmo de Kruskall

Prof. Edson Alves

Faculdade UnB Gama

Proponente

Joseph Bernard Kruskall, Jr. (1962)

•

* O algoritmo de Kruskall encontra uma MST usando uma abordagem gulosa

 \star O algoritmo de Kruskall encontra uma MST usando uma abordagem gulosa

* As arestas são ordenadas, ascendentemente, por peso

 \star O algoritmo de Kruskall encontra uma MST usando uma abordagem gulosa

* As arestas são ordenadas, ascendentemente, por peso

* Inicialmente os vértices formam uma floresta de vértices isolados

- \star O algoritmo de Kruskall encontra uma MST usando uma abordagem gulosa
- * As arestas são ordenadas, ascendentemente, por peso
- * Inicialmente os vértices formam uma floresta de vértices isolados
- \star Na ordem estipulada, cada aresta que una dois componentes conectados fará parte da MST e unirá estes componentes distintos

- * O algoritmo de Kruskall encontra uma MST usando uma abordagem gulosa
- * As arestas são ordenadas, ascendentemente, por peso
- * Inicialmente os vértices formam uma floresta de vértices isolados
- \star Na ordem estipulada, cada aresta que una dois componentes conectados fará parte da MST e unirá estes componentes distintos
 - \star Complexidade: $O(E \log V)$

Pseudocódigo

Entrada: um grafo ponderado G(V,E)

Saída: uma MST de G

- 1. Faça $M=\emptyset$ e seja $F(V,\emptyset)$ uma floresta de vértices isolados
- 2. Ordene E ascendentemente, por peso
- 3. Para cada $(u,v,w)\in E$, se u e v estão em componentes distintos de F:
 - (a) Una estes componentes em F
 - (b) Inclua (u,v,w) no conjunto M
- 4. Retorne M

E1 2 3 1 4 5 2 4 1 2 1 5 3 3 4 4 2 1 5 3 1 7 3 6 8 6 5

E

- 1 2 3 🗸 1 4 5 🗸
- 2 4 1 🗸
- 2 1 5 🗶
- 3 3 4 🗸
- 4 2 1 5 3 1
- 7 3 6 8 6 5

- 1 2 3 **~** 1 4 5 **~**
- 2 4 1 🗸
- 2 1 5 🗶
- 3 3 4 🗸
- 4 2 1 🗙
- 5 3 1
- 7 3 6 8 6 5

\boldsymbol{E}

- 1 2 3 **~** 1 4 5 **~**
- 2 4 1 🗸
- 2 1 5 🗶
- 3 3 4 🗸
- 4 2 1 **x** 5 3 1 **x**
- 7 3 6 8 6 5

E

- 1 2 3 🗸 1 4 5 🗸
- 2 4 1 🗸
- 2 1 5 🗶
- 3 3 4 🗸
- 4 2 1 🗶
- 5 3 1 🗶 7 3 6 🗸
- 8 6 5

E

- 1 2 3 **~** 1 4 5 **~**
- 2 4 1 🗸
- 2 1 5 🗶
- 3 3 4 **✓** 4 2 1 **×**
- 5 3 1 **x**
- 7 3 6 **~** 8 6 5 **x**

```
int kruskal(int N, vector<edge>& es)
{
    sort(es.begin(), es.end());
    int cost = 0;
    UnionFind ufds(N);
    for (auto [w, u, v] : es)
        if (not ufds.same_set(u, v))
            cost += w;
            ufds.union_set(u, v);
    return cost;
```

Problemas sugeridos

- 1. Codeforces Round #179 (Div. 1) Problem B: Greg and Graph
- 2. LightOJ Travel Company
- 3. OJ 104 Arbitrage
- 4. OJ 10171 Meeting Prof. Miguel...

Referências

- 1. CP-Algorithm. Minimum spanning tree Kruskall's algorithm, acesso em 24/08/2021.
- 2. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 3. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 4. Wikipédia. Joseph Kruskal, acesso em 24/08/2021.
- 5. Wikipédia. Kruskal's algorithm, acesso em 24/08/2021.