Localización de landmarks cefalométricos por medio de técnicas de few-shot learning y análisis de redes convolucionales

Alejandro Borrego Megías

Tutores: Pablo Mesejo Santiago, Javier Merí de la Maza

Universidad de Granada, España

November 21, 2022

Índice Primera Parte

Análisis de redes convolucionales

- Introducción
- Modelización
- Invarianza por traslaciones
- Conclusiones

Índice Primera Parte

- Introducción

Redes Neuronales Convolucionales

- Buen rendimiento, comprobable empíricamente.
- Vía de estudio abierta en lo que se refiere a la modelización matemática y la justificación teórica de estos resultados.

Destacamos:

Invarianza frente a pequeñas deformaciones

Invarianza por traslaciones

Trabajamos sobre el espacio de funciones $L^2(\mathbb{R}^d)$.

Definición de traslación

Sea $f \in L^2(\mathbb{R}^d)$, $L_c f(x) = f(x-c)$ es la traslación de f por $c \in \mathbb{R}^d$.

Invarianza por traslaciones de un operador Φ

Decimos que un operador Φ sobre $L^2(\mathbb{R}^d)$, es invariante por traslaciones si $\Phi(L_c f(x)) = \Phi(f)$ para todo $f \in L^2(\mathbb{R}^d)$ y para todo $c \in \mathbb{R}^d$.

Invarianza frente a pequeñas deformaciones

Deformación ⇒ Difeomorfismo

Deformaciones pequeñas ⇒ Difeomorfismo cercanos a traslaciones

Definición

Denotemos $L_{\tau}f(x) = f(x - \tau(x))$ como la acción del difeomorfismo $1 - \tau$ sobre f.

Donde τ es el campo de desplazamiento.

Invarianza frente a pequeñas deformaciones

Lipschitz-continuidad frente a la acción de difeomorfismos

Invarianza frente a pequeñas deformaciones

Condición de Lipschitz clásica

Sea $f: M \to N$ una función entre dos espacios métricos M y N con sus respectivas distancias d_M y d_N . Se dice que f satisface la condición de Lipschitz si $\exists C > 0$ tal que:

$$d_N(f(x), f(y)) \le Cd_M(x, y), \forall x, y \in M$$

En nuestro caso:

$$\|\Phi(f) - \Phi(L_{\tau}f)\| \le \|f\| d(1, 1 - \tau) \tag{1}$$

Necesitamos una definición para la distancia entre dichos difeomorfismos.

Invarianza frente a pequeñas deformaciones

Distancia entre $1-\tau$ y 1

Se define una distancia entre $1-\tau$ y 1 en cualquier subconjunto compacto Ω de \mathbb{R}^d como

$$d_{\Omega}(1, 1 - \tau) = \sup_{x \in \Omega} |\tau(x)| + \sup_{x \in \Omega} |\nabla \tau(x)| + \sup_{x \in \Omega} |H\tau(x)|$$
 (2)

La invarianza frente a pequeñas deformaciones de un operador Φ invariante por traslaciones viene determinada por:

$$\|\Phi(f) - \Phi(L_{\tau}f)\| \le C\|f\|(\|\nabla \tau\|_{\infty} + \|H\tau\|_{\infty}). \tag{3}$$

Con $f \in L^2(\mathbb{R}^d)$ y C > 0.

Próximos pasos

¿Qué operador Φ tomar que cumpla todo lo anterior?

Índice Primera Parte

- Modelización

Módulo de la transformada de Fourier

Vamos a probar con el módulo de la transformada de Fourier:

$$\Phi(f)=|\widehat{f}|f\in L^2(\mathbb{R}^2)$$

Con este operador observamos que:

- Es invariante por traslaciones.
- No es Lipschitz continuo frente a pequeñas deformaciones.

Debemos buscar otro operador.

Alternativa: Ondeletas

Ondeleta Madre

Una ondeleta madre escalada por un factor 2^{j} con $j \in \mathbb{Z}$ y rotada por $r \in G$ siendo G el grupo finito de rotaciones, se escribe:

$$\psi_{2^{j}r}(x) = 2^{j}\psi(2^{j}r^{-1}x).$$

Usaremos ondeletas madre del tipo:

$$\psi(x) = e^{i\eta x} \Theta(x) \tag{4}$$

donde $\Theta(x)$ es una función real con soporte en una bola de baja frecuencia en x = 0, cuyo radio es del orden de π .

Con esta generamos la siguiente base ortonormal de ondeletas:

$$\{\psi_{\lambda}(x)\}_{\lambda=2^{j}r\in2^{\mathbb{Z}}\times G} \tag{5}$$

transformada de Littlewood-Paley

$$\forall x \in \mathbb{R}^d \ W[\lambda]f(x) = f * \psi_{\lambda}(x) = \int f(u)\psi_{\lambda}(x-u)du. \tag{6}$$

donde $\lambda \in 2^j r \in 2^{\mathbb{Z}} \times G$

Problema: La escala

Fijada una escala 2^J $J \in \mathbb{Z}$, se establece un umbral tal que solo se mantienen las ondeletas de escala $2^{j} > 2^{-J}$.

Problema: La escala

Surge la necesidad de promediar las frecuencias no cubiertas por el factor de escala fijado:

$$A_J f = f * \phi_{2^J} \text{ con } \phi_{2^J}(x) = 2^{-J} \phi(2^{-J} x).$$
 (7)

Así, los coeficientes obtenidos, fijada una escala son:

$$W_J f = \{A_J f, (W[\lambda]f)_{\lambda \in \Lambda_J}\}$$

con $\Lambda_I = \{ \lambda = 2^j r : r \in G^+, 2^j > 2^{-J} \}.$

Coeficientes unitarios

Condición W_I unitario

Para cualquier $J \in \mathbb{Z}$ o $J = \infty$, W_J es unitario en el espacio de funciones reales o complejas de $L^2(\mathbb{R}^d)$ si y solo si para casi todo $\omega \in \mathbb{R}^d$ se cumple:

$$\beta \sum_{j=-\infty}^{\infty} \sum_{r \in G} |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2 = 1 \ y \ |\widehat{\phi}(\omega)|^2 = \beta \sum_{j=-\infty}^{0} \sum_{r \in G} |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2, \quad (8)$$

donde $\beta = 1$ para funciones complejas y $\beta = \frac{1}{2}$ para funciones reales.

Convenios

Tranajaremos con funciones reales.

- W₁ es unitario.
- $\widehat{\phi}(\omega)$ es real y simétrica, por lo que ϕ también lo será y $\phi(rx) = \phi(x) \ \forall r \in G.$
- Las derivadas de ϕ pertenecen a $L^1(\mathbb{R}^d)$.

Operador de dispersión

Operador de dispersión

Sea \mathcal{P}_{∞} el conjunto de todos los caminos finitos. La transformada de dispersión de $f \in L^1(\mathbb{R}^d)$ se define para cualquier camino $p \in \mathcal{P}_{\infty}$ como:

$$\overline{S}f(p) = \int_{\mathbb{R}^d} U[p]f(x)dx \tag{9}$$

Siendo $\overline{S}f(p)$ invariante a traslaciones para un f fijo.

Operador de dispersión

Operador de dispersión

Sea \mathcal{P}_{∞} el conjunto de todos los caminos finitos. La transformada de dispersión de $f \in L^1(\mathbb{R}^d)$ se define para cualquier camino $p \in \mathcal{P}_{\infty}$ como:

$$\overline{S}f(p) = \int_{\mathbb{R}^d} U[p]f(x)dx \tag{10}$$

Siendo $\overline{S}f(p)$ invariante a traslaciones para un f fijo.

Propagador de dispersión

El operador $W[\lambda]f = f * \psi_{\lambda}$ es Lipschitz-continuo bajo la acción de difeomorfismos para $f \in L^2(\mathbb{R}^d)$ fijo.

¿Pero invariante a traslaciones?

Condición para coeficientes I.T.

Si $U[\lambda]$ es un operador definido en $L^2(\mathbb{R}^d)$, no necesariamente lineal pero que conmuta con traslaciones, entonces $\int_{\mathbb{R}^d} U[\lambda] f(x) dx$ es invariante a traslaciones si es finito.

Pero como $\int_{\mathbb{R}^d} \psi(x) dx = 0 \implies \int_{\mathbb{R}^d} f * \psi(x) dx = 0.$

Propagador de dispersión

Para obtener coeficientes invariantes por traslaciones.

$$U[\lambda]f = M[\lambda]W[\lambda]$$

El operador más sencillo que garantiza coeficientes invariantes por traslaciones y Lipschitz-continuidad frente a difeomorfismos es:

Definición del operador $U[\lambda]$

$$U[\lambda]f = M[\lambda]W[\lambda]f = |f * \psi_{\lambda}| = \left| \int_{\mathbb{R}^d} f(u)\psi_{\lambda}(x-u)du \right|$$

Operador de dispersión

Operador de dispersión

Sea \mathcal{P}_{∞} el conjunto de todos los caminos finitos. La transformada de dispersión de $f \in L^1(\mathbb{R}^d)$ se define para cualquier camino $p \in \mathcal{P}_{\infty}$ como:

$$\overline{S}f(p) = \int_{\mathbb{R}^d} U[p]f(x)dx \tag{11}$$

Siendo $\overline{S}f(p)$ invariante a traslaciones para un f fijo.

Caminos de frecuencias

Ondeleta Madre

Una secuencia ordenada $p = (\lambda_1, \lambda_2, \dots, \lambda_m)$ con $\lambda_k \in \Lambda_\infty = 2^{\mathbb{Z}} \times G^+$ se denomina **camino**. Al camino vacío se le denota por $p = \emptyset$.

Usaremos caminos de frecuencias descendentes $p = (\lambda_k)_{k \le m}$ en el cual $|\lambda_{k+1}| \le |\lambda_k|$. Pues el propagador $U[\lambda]$ progresivamente lleva la energía de la señal a frecuencias cada vez menores.

Invarianza por traslaciones

- Invarianza por traslaciones

Índice Primera Parte

- **Conclusiones**

Localización de landmarks cefalométricos por medio de técnicas de few-shot learning

- 6 Introducción
- 6 Fundamentos Teóricos
- Estado del arte
- 8 Experimentos
- 9 Conclusiones
- Examples
- Conclusion

- 6 Introducción
- 6 Fundamentos Teóricos
- Estado del arte
- 8 Experimentos
- Conclusiones
- Examples
- Conclusion

- 6 Introducción
- 6 Fundamentos Teóricos
- Estado del arte
- 8 Experimentos
- 9 Conclusiones
- Examples
- Conclusion

- 6 Introducción
- 6 Fundamentos Teóricos
- Estado del arte
- 8 Experimentos
- 9 Conclusiones
- Examples
- Conclusion

- 6 Introducción
- 6 Fundamentos Teóricos
- Estado del arte
- 8 Experimentos
- Conclusiones
- Examples
- Conclusion

- 6 Introducción
- 6 Fundamentos Teóricos
- Estado del arte
- 8 Experimentos
- Occident

 Occ
- Examples
- Conclusion

Example frame 1

This is the first frame.

- You can set the blue bar vertical using the option \usetheme[verticalbar=true] {tud}.
- Set the aspect ratio to 4:3 with the documentclass option
- aspectratio=43. Use aspectratio=169 for wide screen (16:9).

- 6 Introducción
- 6 Fundamentos Teóricos
- Estado del arte
- 8 Experimentos
- Examples
- Conclusion

Example frame 2

Block

- item 1
- item 2

Example

- Sugar in a stirred cup of tea gathers in the middle.
- 2 Rivers often take a detour through flat terrain.

Alert

Rivers and sweet tea do unexpected things.¹

In: Die Naturwissenschaften 14.11, pp. 223-224. DOI: 10.1007/bf01510300

¹A. Einstein (Mar. 1926). "Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes".

columns

first column

- 6 Introducción
- 6 Fundamentos Teóricos
- 7 Estado del arte
- 8 Experimentos
- Conclusiones
- 10 Examples
- Conclusion

uncovered...

Using only:1 Using onslide:1 Using pause:

- uncovered...
- one...

Using only:2 Using onslide: 2 Using pause:

animation

Some commands take optional arguments in the form of $\langle x-y \rangle$, where x is the first 'sub-frame' on which the context is shown, and y is the last. x or y can be replaced by +, referring to 'the next sub-frame'.

- uncovered...
- one...
- 6 by...

- Using only:3
- Using onslide: 3
- Using pause:

- uncovered...
- one...
- **3** by...
- one.

Using only:

Using onslide:

- uncovered...
- one...
- **3** by...
- one.

Using only:

Using onslide:

- uncovered...
- one...
- **3** by...
- one.

Using only:

Using onslide:

- uncovered...
- one...
- **3** by...
- one.

Using only:

Using onslide:

- uncovered...
- one...
- **3** by...
- 4 one.

Using only:

Using onslide:

Using pause:123

For more advanced animations, see §14 of the manual:

https://www.ctan.org/pkg/beamer

Thanks for your attention.

A digital version of this presentation can be found here:

https://gitlab.com/novanext/tudelft-beamer

Bibliography I

Einstein, A. (Mar. 1926). "Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes". In: *Die Naturwissenschaften* 14.11, pp. 223–224. DOI: 10.1007/bf01510300.

