Первый курс, весенний семестр Практика по алгоритмам #14: Быстрое преобразование Фурье

Contents

Новые задачи	2
Домашнее задание	3
Обязательная часть	3
Дополнительная часть	3

Новые задачи

1. Возведение в степень.

За какое время можно посчитать 2^n в десятичной системе счисления?

2. Поиск с ошибками.

Даны текст t и строка s над алфавитом размера k. Для каждого из |t| - |s| + 1 наложений s на t узнать количество ошибок. Время $\mathcal{O}(k|t|\log|t|)$.

3. Поиск с ошибками и шаблоном.

Апгрейд предыдущей задачи. И в тексте, и в строке допустимы символы "?".

4. Дуэль!

В каждой клетки полоски $1 \times n$ или растёт дерево, или нет. За $\mathcal{O}(n \log n)$ найдите количество троек деревьев, подходящих для дуэли (два дуэлянта и секундант). Тройка подходит для дуэли, если расстояния равны.

5. Уравнение.

Даны n и m. Найдите количество троек (x, y, z), решений уравнения $x^n + y^n \equiv z^n \mod m$

6. Два в одном!

На паре у нас было FFT над многочленами с комплексными коэффициентами. Пусть на самом деле коэффициенты – вещественные числа. Например, так будет, если мы пишем длинную арифметику в целых числах. Сделайте два Фурье в одном. Подсказка: $c_j = a_j + i \cdot b_j$, осталось понять, как FFT(a) и FFT(b) выразить через FFT(c).

7. Динамика по дереву.

Сколько способов вырезать из полного бинарного дерева глубины k поддерево размера s, содержащее корень исходного?

8. (*) Задача о рюкзаке.

Даны n предментов и запросы "можно ли набрать вес w_i , используя только предметы с номерами от l_i до r_i ". При этом все $w_i \leq s$. Сделайте предподсчёт за $\mathcal{O}(ns \log s)$ так, чтобы на запрос можно было бы в online ответить за $\mathcal{O}(s \log s \log n)$.

9. (*) Пентоганальная теорема Эйлера.

Собственно теорема заключается в том, что $\prod_{k=1}^{\infty} (1-x^k) = \sum_{q=-\infty}^{\infty} (-1)^q x^{(3q^2+q)/2}$. Рассмотрим $P(x) = p_0 + x p_1 + x^2 p_2 + \ldots$, где p_n – число разбиений числа n на возрастающие слагаемые. Заметим, что $P(x) = \prod_{k=1}^{\infty} (1-x^k)$. Используя эти знания и FFT за $\mathcal{O}(n \log n)$, найдите количество разложений числа n на возрастающие слагаемые по модулю $3 \cdot 2^{18} + 1$ (простое). Предложите, как найти само число, а не только остаток от деления. $\mathcal{O}(mn \log n + m^2)$, где m – длина ответа.

Домашнее задание

Обязательная часть

1. (4) Обратное по модулю.

Найти к числу x ($0 \le x < m$) обратное по модулю m за $\mathcal{O}(\log^2 m)$.

2. **(4)** AVL деревья.

Найти количество AVL деревьев глубины h из n вершин по модулю $3 \cdot 2^{18} + 1$ за $\mathcal{O}(nh + n \log n)$.

3. (3) Циклические сдвиги.

Даны A, B, |A| = |B| = n. Найти D – такой циклический сдвиг B, что скалярное произведение A и D максимально.

4. (3) Поиск подкартинки.

Даны две картины, заданные 256 оттенками серого. То есть даны матрицы целых чисел a и b. a по обоим размерам больше b. Найти такое наложение матрицы b на a, что суммарное квадратичное отклонение цветов минимально.

То есть найти такие i, j, что $\sum_{x,y} (a[x,y] - b[x+i,y+j])^2 \to \min$.

5. (3) Одно FFT через несколько FFT.

Сведите вычисление FFT последовательности размера pn к p вычислениям FFT от последовательностей размера n и $\mathcal{O}(p^2n)$ дополнительных операций.

Дополнительная часть

- 1. (4) Перевод из системы счисления в другую быстрее квадрата.
- 2. (5) Интерполяция быстрее квадрата.
- 3. (5) С помощью FFT за $\mathcal{O}^*(2^n)$ найдите покраску вершин неорграфа в k цветов.
- 4. (5) Количество счастливых билетов из 2n цифр за $\mathcal{O}(n \log n)$ операций с числами порядка ответа.
- 5. (4) Даны строка и текст. Оба могут содержать вопросы.

Найти точное совпадение за $\mathcal{O}(1)$ вызовов Фурье. Алфавит – не константа!