

人工智能技术及应用

Artificial Intelligence and Application

Deep learning

Deep learning attracts lots of attention.

 I believe you have seen lots of exciting results before.

Deep learning trends at Google. Source: SIGMOD 2016/Jeff Dean

Ups and downs of Deep Learning

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition
- 2015.2: Image recognition surpassing human-level performance
- 2016.3: Alpha GO beats Lee Sedol
- 2016.10: Speech recognition system as good as humans

Three Steps for Deep Learning

Deep Learning is so simple

Neural Network

Network parameter θ : all

Parallel Universes

• In different universes, we use the same model, but obtain different f^{\ast}

Linear models are too simple ... we need more sophisticated modes.

Linear models have severe limitation. *Model Bias*We need a more flexible model!

All Piecewise Linear Curves

= constant + sum of a set of

More pieces require more

Beyond Piecewise Linear?

To have good approximation, we need sufficient pieces.

red curve = constant + sum of a set of

How to represent this function?

Hard Sigmoid

 x_1

Sigmoid Function

$$y = c \frac{1}{1 + e^{-(b + wx_1)}}$$

$$= c sigmoid(b + wx_1)$$

New Model: More Features

$$y = b + wx_1$$

$$y = b + \sum_{i} c_{i} sigmoid(b_{i} + w_{i}x_{1})$$

$$y = b + \sum_{j} w_{j} x_{j}$$

$$y = b + \sum_{i} c_{i} sigmoid \left(\underbrace{b_{i} + \sum_{j} w_{ij} x_{i}}_{j} \right)$$

$$y = b + \sum_{i} c_{i} \ sigmoid \left(b_{i} + \sum_{j} w_{ij} x_{j}\right) \ i: 1,2,3$$
 no. of features $i: 1,2,3$

 $r_1 = b_1 + w_{11}x_1 + w_{12}x_2 + w_{13}x_3 + \cdots + w_{1n}x_{1n} + w_{1n}x_{1n}$

 w_{ij} : weight for x_j for i-th sigmoid

$$r_2 = b_2 + w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

$$r_3 = b_3 + w_{31}x_1 + w_{32}x_2 + w_{33}x_3$$

$$y = b + \sum_{i} c_{i} \operatorname{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right) \quad i: 1, 2, 3$$
$$j: 1, 2, 3$$

$$r_1 = b_1 + w_{11}x_1 + w_{12}x_2 + w_{13}x_3$$

$$r_2 = b_2 + w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

$$r_3 = b_3 + w_{31}x_1 + w_{32}x_2 + w_{33}x_3$$

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$|r| = |b| + |w|$$

$$y = b + \sum_{i} c_{i} sigmoid \left(b_{i} + \sum_{j} w_{ij} x_{j}\right)$$
 i: 1,2,3 j: 1,2,3

$$|r| = |b| + |w| x$$

$$y = b + \sum_{i} \frac{c_{i}}{sigmoid} \left(\frac{b_{i}}{b_{i}} + \sum_{j} w_{ij} x_{j} \right)$$
 i: 1,2,3 j: 1,2,3

$$a_{1} \leftarrow \int \leftarrow r_{1} \leftarrow r_{1} + v_{11}$$

$$a_{1} = sigmoid(r_{1}) = \frac{1}{1 + e^{-r_{1}}}$$

$$a_{2} \leftarrow \int \leftarrow r_{2} \leftarrow r_{2}$$

$$a_{3} \leftarrow \int \leftarrow r_{3} \leftarrow r_{3}$$

$$a_{1} = \sigma(r_{1})$$

$$a_{3} \leftarrow \int \leftarrow r_{3} \leftarrow r_{3}$$

$$y = b + \sum_{i} c_{i} \operatorname{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$
 i: 1,2,3 j: 1,2,3

Function with unknown parameters

$$y = b + c^T \sigma(b + W x)$$

x feature

Unknown parameters

W b

 c^T b

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix} 1\\-1\end{bmatrix}\right) = \begin{bmatrix} 0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix} 0\\0\end{bmatrix}\right) = \begin{bmatrix} 0.51\\0.85\end{bmatrix}$$

Given network structure, define *a function set*

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Output Layer as Multi-Class Classifier

Feature extractor replacing feature engineering

Example Application

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

 Q: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

Sigmoid → ReLU

How to represent this function?

 $\longrightarrow x_1$

Rectified Linear Unit (ReLU)

 $c \max(0, b + wx_1)$

 $c' max(0, b' + w'x_1)$

Sigmoid → ReLU

$$y = b + \sum_{i} c_{i} \underline{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$

Activation function

$$y = b + \sum_{i=1}^{\infty} c_i \max\left(0, b_i + \sum_{j=1}^{\infty} w_{ij} x_j\right)$$

Which one is better?

Three Steps for Deep Learning

Loss

- \triangleright Loss is a function of parameters $L(\theta)$
- > Loss means how good a set of values is.

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} l^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u>

parameters θ^* that minimize total loss L

Three Steps for Deep Learning

Optimization of New Model

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

$$m{ heta} = egin{bmatrix} heta_1 \\ heta_2 \\ heta_3 \\ heta_3 \end{bmatrix}$$

(Randomly) Pick initial values $oldsymbol{ heta}^0$

$$egin{aligned} oldsymbol{g} & egin{aligned} rac{\partial L}{\partial heta_1} |_{oldsymbol{ heta} = oldsymbol{ heta}^0} \ rac{\partial L}{\partial heta_2} |_{oldsymbol{ heta} = oldsymbol{ heta}^0} \end{aligned}$$

$$\boldsymbol{g} = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \\ \frac{\partial L}{\partial \theta_2} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \end{bmatrix} \quad \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \end{bmatrix} \leftarrow \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \\ \vdots \end{bmatrix} - \begin{bmatrix} \boldsymbol{\eta} \frac{\partial L}{\partial \theta_1} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \\ \boldsymbol{\eta} \frac{\partial L}{\partial \theta_2} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \end{bmatrix}$$
 gradient

$$\boldsymbol{g} = \nabla L(\boldsymbol{\theta}^0)$$

$$\boldsymbol{\theta}^1 \leftarrow \boldsymbol{\theta}^0 - \boldsymbol{\eta} \boldsymbol{g}$$

Optimization of New Model

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

- \succ (Randomly) Pick initial values $oldsymbol{ heta}^0$
- ightharpoonup Compute gradient $oldsymbol{g} =
 abla L(oldsymbol{ heta}^0)$

$$\boldsymbol{\theta}^1 \leftarrow \boldsymbol{\theta}^0 - \boldsymbol{\eta} \boldsymbol{g}$$

ightharpoonup Compute gradient $oldsymbol{g} = \nabla L(oldsymbol{ heta}^1)$

$$\theta^2 \leftarrow \theta^1 - \eta g$$

ightharpoonup Compute gradient $oldsymbol{g}=
abla L(oldsymbol{ heta}^2)$

$$\theta^3 \leftarrow \theta^2 - \eta g$$

Gradient Descent

Gradient Descent

Backpropagation

• Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

libdnn

Three Steps for Deep Learning

Deep Learning is so simple

It is not *fancy* enough.

Let's give it a *fancy* name!

Neural Network This mimics human brains ... (???)

Many layers means **Deep** Deep Learning

Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, more parameters, better performance

Seide Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

(next lecture)

Backpropagation

Gradient Descent

Network parameters $\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$

Starting Parameters

$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \dots$$

Parameters
$$\nabla L(\theta)$$

$$= \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix}$$
 Compute
$$\nabla L(\theta^0)$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$
 Millions of parameters
$$\nabla L(\theta)/\partial b_1 = \int_{\theta} \Delta L(\theta)/\partial b_2 = \int_{\theta}$$

Compute
$$\nabla L(\theta^0)$$
 $\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$

Compute
$$\nabla L(\theta^1)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

we use **backpropagation**.

Chain Rule

Case 1

$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta s = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

Backpropagation

$$L(\theta) = \sum_{n=1}^{N} l^{n}(\theta) \qquad \qquad \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial l^{n}(\theta)}{\partial w}$$

Backpropagation

$$\frac{\partial l}{\partial w} = ? \quad \frac{\partial z}{\partial w} \frac{\partial l}{\partial z}$$
(Chain rule)

Compute $\partial z/\partial w$ for all parameters

Backward pass:

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

$$\frac{\partial z}{\partial w_1} = ? x_1$$

$$\frac{\partial z}{\partial w_2} = ? x_2$$

The value of the input connected by the weight

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

Backpropagation - Backward pass

Backpropagation - Backward pass

Backpropagation – Backward pass

Backpropagation – Backward pass

Backpropagation - Backward pass

Backpropagation - Backward pass

Compute $\partial l/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Backpropagation – Backward pass

Compute $\partial l/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Backpropagation – Backward pass

Backpropagation – Backward Pass

Compute $\partial l/\partial z$ for all activation function inputs z Compute $\partial l/\partial z$ from the output layer

Backpropagation — Backward Pass

Compute $\partial l/\partial z$ for all activation function inputs z Compute $\partial l/\partial z$ from the output layer

Backpropagation – Summary

Forward Pass

Backward Pass

for all w