Accepted Manuscript

Erythrocytes as a biological model for screening of xenobiotics toxicity

Mayada Ragab Farag, Mahmoud Alagawany

PII: S0009-2797(17)30848-7

DOI: 10.1016/j.cbi.2017.11.007

Reference: CBI 8143

To appear in: Chemico-Biological Interactions

Received Date: 2 August 2017

Revised Date: 24 October 2017

Accepted Date: 7 November 2017

Please cite this article as: M.R. Farag, M. Alagawany, Erythrocytes as a biological model for screening of xenobiotics toxicity, *Chemico-Biological Interactions* (2017), doi: 10.1016/j.cbi.2017.11.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Erythrocytes as a biological model for screening of xenobiotics toxicity	1
Mayada Ragab Farag ^{1*} , Mahmoud Alagawany ² *	2
¹ Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig	3
University, Zagazig 44511, Egypt; ² Poultry Department, Agriculture Faculty, Zagazig	4
University, Zagazig 44511, Egypt	5
*Corresponding authors: mragabfa@zu.edu.eg, mmalagwany@zu.edu.eg	6
	7
Abstract	8
Erythrocytes are the main cells in circulation. They are devoid of internal membrane	9
structures and easy to be isolated and handled providing a good model for different	10
assays. Red blood cells (RBCs) plasma membrane is a multi-component structure that	11
keeps the cell morphology, elasticity, flexibility and deformability. Alteration of	12
membrane structure upon exposure to xenobiotics could induce various cellular	13
abnormalities and releasing of intracellular components. Therefore the morphological	14
changes and extracellular release of haemoglobin [hemolysis] and increased content of	15
extracellular adenosine triphosphate (ATP) [as signs of membrane stability] could be	16
used to evaluate the cytotoxic effects of various molecules. The nucleated RBCs from	17
birds, fish and amphibians can be used to evaluate genotoxicity of different xenobiotics	18
using comet, DNA fragmentation and micronucleus assays. The RBCs could undergo	19
programmed cell death (eryptosis) in response to injury providing a useful model to	20
analyze some mechanisms of toxicity that could be implicated in apoptosis of nucleated	21
cells. Erythrocytes are vulnerable to peroxidation making it a good biological membrane	22

model for analyzing the oxidative stress and lipid peroxidation of various xenobiotics.	23
The RBCs contain a large number of enzymatic and non-enzymatic antioxidants. The	24
changes of the RBCs antioxidant capacity could reflect the capability of xenobiotics to	25
generate reactive oxygen species (ROS) resulting in oxidative damage of tissue. These	26
criteria make RBCs a valuable in vitro model to evaluate the cytotoxicity of different	27
natural or synthetic and organic or inorganic molecules by cellular damage measures.	28
Keywords: Erythrocytes, xenobiotic, toxicity, ROS, eryptosis, blood.	29
1. Introduction	30
Red blood cells (RBCs) represent the main cells in the body circulatory system, and they	31
act as oxygen transporters. The RBCs of mammals are devoid of nucleus and other	32
cellular organelles while non-mammalian RBCs (birds, fish and amphibians) are	33
nucleated cells however, both types of RBCs have a plasma membrane with specific	34
composition and structure which is highly correlated to their biological functions [1,2].	35
The main component in the RBCs membrane is protein which represents about 39.5%	36
followed by lipids [35.1%] then water [19.5%] and finally carbohydrates [5.8%] [3]. The	37
structure of RBCs membrane resembles that of other eukaryotic cells. It contains a	38
phospholipids bilayer, integral proteins stabilized in the lipid leaflet by covalent bonds	39
and hydrophobic bonds and a membrane skeleton which is a multi-protein complex	40
composed of some structural proteins including spectrin [α and β], actin, ankyrin and	41
protein 4.1. [4]. The interaction between the membrane components make it elastic and	42
soft and enable its fluctuations and thus provide RBC with elasticity, flexibility and	43
deformability which are very important for RBC to keep its structural integrity and	44
original shape and to protect it from the force of the circulating fluid applied on it during	45

their passage into the microcirculation [5]. This interaction is metabolically active and	46
need [occur in] the presence of Adenosine Triphosphate [ATP] which is important to	47
protect the cells from fragmentation and the membrane from vesiculation [6, 7]. The	48
cytoskeleton is also very important to keep the cellular components particularly,	49
haemoglobin [Hb] which is the major protein in RBC and it is responsible for	50
transporting oxygen [O2] and carbon dioxide [CO2] to and from tissues. Therefore, the	51
level of intra cellular haemoglobin could be used for determining the cytoplasmic	52
viscosity. Meanwhile, the fluidity of membrane lipids depends generally on the type of	53
phospholipids, the acyl chain length, the degree of fatty acid saturation, the presence of	54
free or esterified cholesterol in addition to some amphipathic compounds such as	55
lisophosphatides [8, 9]. Therefore, the changes in the RBCs membrane could be used as	56
indicators for the cell physiological conditions or their possible alterations. The RBCs	57
could be isolated and handled easily so that they could provide a good model for many	58
assays [10, 11]. The application of in vitro cytotoxicity assays in RBCs could be used as	59
alternative tools to screen and evaluate the toxicity of different xenobiotic [12].	60
Additionally, the high concentration of polyunsaturated fatty acids in RBCs membrane,	61
the high oxygen tension, and redox active hemoglobin molecules [the source of reactive	62
oxygen species in RBC] make them a good biological lipid membrane model especially	63
for screening the oxidative stress conditions induced by xenobiotic [13].	64
Exposure of erythrocytes to oxidative stress lead to lipid peroxidation that could alter the	65
membranes of RBCs inducing membrane protein conformation and protein cross-linking	66
by decreasing membrane protein content and consequently lead to abnormal cell	67
morphology and hemolysis that could disturb the microcirculation [14, 15]. Xenobiotics	68

including oxidants could trigger the RBCs programmed death which is known as eryptosis and exhaust their antioxidant defense mechanism [16]. Some cysteine proteases-caspases present in RBCs could be also activated after exposure to oxidative stress such as caspase 8 which is a mediator bounded to RBC membrane that could initiate the cellular cascade for apoptosis and caspase 3 which is an effector mediator causing proteolysis of cellular proteins [17]. Energy depletion in the cell beside osmotic shock could also trigger eryptosis [18]. This review is an overview on the different changes that could occur to RBCs in response to different xenobiotics and the role of these alterations in understanding the different mechanisms of xenobiotics toxic actions with an enumeration of some methods for determination of such effects used in previous studies depended on RBCs as a biological model for cytotoxicity assays.

2. Erythrocyte cellular abnormalities

The hematological changes serve as an early indicator for screening the toxic impacts of xenobiotics on tissues [19]. Toxic substances could induce either direct or indirect damage to the RBC cytoskeleton and disturb cell metabolism and ion permeability of RBCs, thus lead to abnormalities in the cellular morphology [20].

The nucleated RBCs from birds, fish and amphibians considered as important models for studying cellular abnormalities. The abnormality in RBCs morphology of such species could be classified in to two main categories: the first one is nuclear abnormalities [ENA] which include: binucleates [BN], lobed nuclei [LB], notched [NT], nuclear bud [NBu] and vacuolated nuclei [VN] according to the identification of Fenech et al. [21]. The second category is cytoplasmic abnormalities [ECAs] such as acanthocytes [AC], echinocytes [EC], vacuolated cytoplasm [VC], notched cytoplasm [NC] and microcytes

[MC] [22]. The shape of RBCs from different animal species and structure of RBCs	92
membrane are represented in Figures (1) and (2).	93
Most of erythrocytes abnormalities were detected after exposure to toxic substances such	94
as pesticides, metals, chemical agents, irradiation and some types of drugs [8]. Immature	95
pycnotic and mitotic RBCs and with severe anemia were observed in chicken after lead	96
poisoning and poikilocytosis and anisocytosis in swans [23]. Anisocytosis, Poikilocytosis	97
and altered hematocrit and mean corpuscular volume with changes in hemoglobin were	98
also observed in rats exposed to lead [24]. Exposure to lead shot changes nuclear	99
morphology in the blood of domestic fowl (young chickens) [increased RBCs with	100
pycnotic nuclei, enucleated RBCs and reticulocytes] [25]. Exposure of Swiss albino mice	101
to lead during gestation and lactation led to various hematological disorders in RBCs of	102
neonates and abnormal types and sizes [Macrocytosis] and reduced their life span	103
resulting in anemia [26].	104
Fragmented RBCs [schistocytes] and RBCs with larger sizes were reported after	105
exposure to phenylhydrazine in calf and aluminum in rats [27]. Comelekoglu et al. [28]	106
stated that some pesticides may cause alterations in surface shapes and size of human	107
RBCs. Zeni et al. [29] reported the occurrence of echinocytes in Ictalurus melas after	108
exposure to the anionic detergent [sodium dodecyl benzene sulphonate] as a result of	109
adaptation of the cellular physiological parameters required for shape maintenance. In	110
addition, Koc et al. [30] reported changes in surface shapes and structural defects of	111
RBCs of rats exposed to malathion and endosulfan. Suwalsky et al. [31] have reported	112
that human RBCs when incubated with aqueous extract of Aristotelia chilensis showed	113
morphological alterations represented by echinocytic form. Chlorpyrifos provoked	114

alterations in the cytoskeleton [protein and lipids] of RBCs from Wistar rats thus	115
affecting the cell surface area [32].	116
3. Characterization of erythrocyte morphology and size	117
Isolation of RBCs occurs by centrifugation of heparinized blood at 4 °C for 10 minutes at	118
3000 rpm, and then buffy coat and plasma were discarded. The erythrocytes were	119
pelleted by centrifugation after being washed once with 0.9% NaCl solution and twice	120
with ice-cold phosphate buffered saline [PBS] [33].	121
The abnormalities of RBCs morphology could be detected by smearing of pelleted RBCs	122
on glass slides and left to dry then the slides were fixed in absolute methanol for 15	123
minutes and stained with freshly prepared Giemsa stain and examined under microscope	124
as described by Sharma et al. [26]. The morphological abnormalities of RBCs could be	125
also detected by examining the packed erythrocytes under scanning electron microscope	126
[SEM] after fixation with glutaraldehyde according to method of Agrawal and Sultana	127
[34]. While, alterations in the relative size of RBCs could be determined using flow	128
cytometry using forward scatter [FSC] correlating with cell volume and size [35].	129
4. Haemolysis, osmotic fragility and protein content in the hemolysate	130
The in vitro haemolytic assay using spectrophotometer represents an effective and easy	131
test for the quantitative measuring of haemolysis [36]. The in vitro haemolytic activity	132
test has been reported to be an alternative method in screening for the cytotoxicity of	133
various compounds. It is rapid, reproducible and costless test so it could decrease the use	134
of experimental animals for in vivo testing [37]. Many researchers have used the	135
haemolysis assay for evaluating the cytotoxicity of some herbal plants, mushrooms [36,	136

38] and extracts from different algae [39] to exclude the natural or synthetic products	137
with possible cytotoxic impact which has been prepared for pharmaceutical uses [40].	138
The changes in osmotic pressure of RBCs could also change their osmotic fragility and	139
cell integrity so it is could be also used as a diagnostic tool in hemolytic conditions [41].	140
The in vitro osmotic fragility of erythrocytes could be determined by the method of	141
Chikezie [42].	142
The RBCs membrane resistance has been used by many authors as tool in assessment of	143
toxicity for example chlorpyrifos [43], fluoride [44] and 2,4-dichlorophenoxyacetic [45]	144
toxicities in rat RBCs. The haemolytic assay is based on measuring the release of	145
haemoglobin from RBCs suspended in solution with gradual reducing the concentration	146
and detecting the cells that showed osmotic lysis [concentration-response]. The	147
concentration of released hemoglobin [protein] is correlated to the percentage of lysed	148
cells. Hemoglobin and protein contents in the hemolysate could be determined	149
photometrically at 540 nm. The absorption of the hemolysate of RBCs lysed in distilled	150
H ₂ O was defined as being 100% haemolysis. The percentage of haemolysis could be	151
calculated by the following equation:	152

Haemolysis (%):
$$\frac{Abs_{sample}}{Abs_{erythrocytes in water}} \times 100$$

154

5. Changes in cellular energy [ATP]

The ATP is used by RBCs to maintain osmotic stability and keep submembrane skeletalnetwork proteins thereby maintain membrane shape and control deformation [46]. Meyers
and Hendricks [47] reported that cellular injuries decreased the oxidative phosphorylation
process inside the cell resulting in reduced ATP content which consequently forces cells to

show vacuolization and lead also to unequal distributed hemoglobin which resulted in	159
RBCs cytoplasmic vacuoles [48]. Exposure of rat RBCs to lead [Pb] shortened their	160
lifespan due to inhibition of the Na-K-ATPase and loss of membrane integrity [49]. A	161
more recent study on cyadox suggested its role in induction of energy depletion in isolated	162
rabbit RBCs by decreasing their ATP contents [50]. Sikora et al. [51] stated that the only	163
source of extracellular ATP is cell lysis. So determination of ATP content of RBCs can	164
give idea about the status of their membrane integrity and energy charge as well.	165
Measurement of the ATP and determination of erythrocytes energy charge: The	166
measurement of the ATP content could be performed according to the method developed	167
by Adams [52] with ATP expressed as µmol/g Hb or through measuring the intracellular	168
ATP content using luciferin-luciferase assay kit. To determine the adenylates contents,	169
ADP and AMP were measured as the difference after their enzymatic conversion to	170
ATP [53]. The adenylate energy charge [EC] was calculated by the equation; EC =	171
[[ATP] + 1/2[ADP]]/[[ATP] + [ADP] + [AMP]] [54].	172
6. Erythrocytes as a tool in genotoxicity assays	173
Screening for genotoxic impact is of great importance during the evaluation of xenobiotic	174
cytotoxicity as the genotoxic potential is usually implicated in carcinogenic and	175
reproductive toxicities as a primary risk factor therefore; genotoxicity testing are helpful	176
for describing the ability of different xenobiotics to damage the cellular genetic	177
information and to induce mutation. For analyzing the effect of a genotoxic molecule,	178
DNA damage in cells exposed should be evaluated. The DNA damage can be in the form	179

of single-strand, double-strand breaks, cross-linking, loss of excision repair, point

180

mutations, alkali-labile sites and chromosomal aberrations [structural and numerical]	181
[55].	182
Genotoxic effect of xenobiotics on isolated RBCs could be evaluated using different	183
assays including micronucleus assay, comet assay and DNA fragmentation assay as	184
follow:	185
The micronucleus assay [MN]: The MN is an easy test used as a marker of genotoxic	186
effect of different pollutants in bio-monitoring studies for assessing of their	187
cytogenotoxic potential in field and in laboratory conditions. The appearance of	188
micronucleus in a cell indicated the occurrence of chromosomal aberrations during	189
mitosis [numerical or structural] [21]. The MN assay was performed earlier on the	190
mammalian RBCs [especially rodents], then it has been widely used along with other	191
cellular abnormalities [ENA and ECA] as endpoints in several species of fish and other	192
aquatic organisms [56] and also in different species of birds [57] exposed to various	193
toxicants. Tan et al. [58] reported that there is a positive correlation between the	194
frequencies of MN and other nuclear abnormalities. The MN test was helpful in	195
evaluating genotoxicity of CdCl ₂ in gill cells and haemocytes of <i>Dreissena polymorpha</i>	196
[59]. The MN was observed in RBCs of chickens exposed to endosulfan [57]. To detect	197
micronuclei in erythrocytes, few drops of whole blood were directly smeared on clean	198
slides. The slides were left for 24 h to dry, fixed for 10 min in methanol, stained by 10%	199
Giemsa, then analyzed using a 1000· oil-immersion lens [60].	200
The comet assay: The comet assay is rapid, potent and economic test for studying DNA	201
damage induced by chemical and physical agents [61]. This assay is sensitive in	202
detecting DNA damage even if the level of damage is low, and could be performed on	203

small number of cells and could generate data at individual cell level. It has been widely	204
employed in environmental cytogenotoxicity monitoring in a variety of fish species.	205
Comet assay in RBCs was helpful in detecting cadmium chloride induced genotoxicity	206
and cytotoxicity in freshwater fish <i>Labeo rohita</i> [35].	207
DNA fragmentation assay: The DNA fragmentation of the RBCs could be isolated	208
according to the method developed by Weil et al. [62]. Then the fragmented DNA was	209
analyzed by agarose gel electrophoresis at 40 V for 5 h using agarose gel [1%]	210
then examined and photographed as described by Wang et al. [63].	211
7. Erythrocyte programmed death [Eryptosis]	212
The death of RBCs caused by injury is a more complex process than haemolysis and it	213
resembles the apoptosis [suicidal death of nucleated cells] which is important for the	214
disposal of deformed cells without rupturing the cellular membranes [18]. Apoptosis of	215
nucleated cells has been used for evaluating the toxic effects of various xenobiotics that	216
could be implicated in disrupting the cell function and tissue destruction [64]. Apoptosis	217
occurs through a chain of events, including nuclear condensation and shrinkage, DNA	218
fragmentation, mitochondrial depolarization, cell membrane blebbing and exposure of	219
phosphatidyl serine on the plasma membrane [breakdown of phosphatidylserine	220
asymmetry of the plasma membrane] [65].	221
Several researches showed that mammalian RBCs however lack nuclei they have the	222
ability to undergo a programmed death [eryptosis] upon exposure to injurious materials	223
and endogenous challenges which affect the cell integrity and arrest their life cycle [39,	224
66]. Therefore, eryptosis could be used as a model for analyzing different mechanisms	225
that are of the same importance for the apoptosis of nucleated cells. Simpson and Kling	226

[67] reported that erythrobiasts of dogs exposed to phenymydrazine snowed denucleation	221
without condensation of chromatin. The RBCs of embryonic and newly hatched chickens	228
exposed to cycloheximide or staurosporine showed DNA fragmentation and pycnosis	229
[62]. The RBCs of human respond to lead by surface exposure of phosphatidylserine and	230
shrinkage of cells [68].	231
During apoptosis, caspases function either as initiators such as caspase-8 and -9 (the	232
membrane-bound mediator initiates the cellular cascade for apoptosis) in response to	233
proapoptotic signals or as effectors such as caspase-3 (the effector mediator leading to	234
cellular proteins proteolysis) . Mature erythrocytes contain considerable amounts of	235
caspase-3 and caspase-8 whereas other essential components of the mitochondrial	236
apoptotic cascade such as caspase-9, Apaf-1 and cytochrome c are absent [69]. Eryptosis	237
could be triggered by osmotic shock and energy depletion in RBCs [17]. Generation of	238
ROS, depletion of antioxidants and formation of adducts are important factors promote	239
death process and lead to the cell disintegration [70]. Chronic arsenic exposure led to	240
ROS generation in the RBCs of rats and consequently led to the activation of caspase 3	241
[71]. The significant increase in caspase 3 and 8 were also observed in rabbit erythrocytes	242
exposed to cyadox [50].	243
Some toxic substances can lead to formation of ceramid in RBCs of some animals like rat	244
and mice [44, 72]. This could be returned to the activation of Gardos channel. The	245
Garods channel activation induces the shrinkage of RBCs and consequently activates the	246
sphingomyelinase [aSMase] and enhance more ceramid generation which triggers	247
suicidal erythrocyte death [73]. Ceramid formation has been also reported to help the	248
super aggregation [capping] of Fas receptors [translocated to lipid raft of RBCs	249

membrane] and are highly essential for formation of death inducing signaling complex	250
[DISC] and other downstream events associated with Fas induced apoptosis [74]. So,	251
determination of caspase activities, ceramid formation, Garods channel activation,	252
aSMase activity and Fas aggregation could be used to evaluate the apoptotic effects of	253
xenobiotics on RBCs.	254
Determining the lifespan of RBCs : Survival of RBC could be measured from the half-	255
life of erythrocyte over time according to the standard method of Sen et al. [75].	256
Determination of ceramide formation: Ceramide contents in RBCs could be	257
determined by antibody based fluorimetric method [76].	258
Determination of Gardos channel activity: Gardos channel activity could be	259
determined by the method of Wolff et al. [77].	260
Determination of aSMase activity in RBCs: aSMase activity could be quantified	261
according to the method of Petrache et al. [78].	262
Fas aggregation on erythrocyte membrane: For determination of Fas aggregation, the	263
lipid raft should be firstly isolated and this could be done by the method of discontinuous	264
density gradient ultracentrifugation according to Muppidi and Siegel [79], then Fas	265
aggregation [translocation of Fas to lipid raft] could be determined by	266
immunohistochemistry with Fas antibody [74].	267
Determination of caspase activities: The proteolytic activity of caspase8 and caspase 3	268
could be measured in RBCs lysate as described in Mukherjee et al. [72].	269
8. Erythrocytes as an initial screen for oxidative stress	270

Erythrocytes have been extensively used as a biological membrane model to analyse the	271
oxidative damage as they are highly vulnerable to peroxidation owing to the high content	272
of polyunsaturated fatty acid [PUFA] in their membrane, their role as O2 and CO2	273
transporters and the presence of redox active hemoglobin molecule, which is a potent	274
source of reactive oxygen species [ROS]. They also contain heme-iron which is ferrous	275
hemoglobin essential for the hydrogen peroxide-stimulated oxidation of lipids in the	276
RBCs membrane [13, 80]. Redox regulation in RBCs is shown in Figure (3).	277
Oxidative damage to RBCs after exposure to xenobiotics [chemicals, drugs, metals,	278
pesticides, and irradiations] induced alterations in morphology of cells, membrane protein	279
conformation, protein cross-linking, lipid peroxidation and consequently hemolysis of	280
RBCs [14, 15]. Oxyhemoglobin and autoxidation are the main sources of intracellular	281
ROS in the RBCs [81]. Oxidative stress impairs oxygen delivery and induces RBCs aging	282
[82]. Different effects of xenobiotics on erythrocytes are shown in Figure (4).	283
Erythrocytes are protected against oxidative damage by various biological mechanisms	284
including antioxidant enzymes as superoxide dismutase [SOD] and catalase [CAT] [83].	285
SOD and CAT protect cells by scavenging the free radicals and ROS elimination. SOD	286
converts the highly reactive superoxide anion to a less reactive species, H_2O_2 and to O_2 .	287
SOD contains zinc to keep its stability and copper to maintain its activity [84].	288
Concerning CAT, more than 98% of blood CAT is present in the RBCs and it is able to	289
remove extra and intra-cellular H ₂ O ₂ giving protecting for tissues deficient in CAT	290
activity [85]. Therefore, blood CAT activity could be used as a good bioindicator for the	291
overall protection against the diffusible H_2O_2 .	292

Reduced glutathione [GSH] is a non-enzymatic antioxidant that protects lipids and	293
proteins in RBCs membrane and keeps its stability, enhances the RBCs survival against	294
oxidative injury and provides the primary antioxidant defense for the stored RBCs [86].	295
GSH protects important proteins in RBCs against oxidation and acts as vital sulfhydryl	296
buffer, which keeps SH groups in enzymes and Hb in the reduced state [84]. Therefore,	297
GSH depletion could increase oxidative stress and modify the RBCs components.	298
4-Hydroxynonenal [4-HNE], is one of the major alpha beta unsaturated aldehydes formed	299
in erythrocytes as a result of peroxidation of membrane lipids after oxidative injury. 4-	300
HNE induced reduction of intracellular GSH by forming GSH-HNE adducts in cytosol	301
and interacted with cytosolic and membrane proteins forming HNE-protein adducts.	302
These adducts resulted in depletion and modulation of antioxidant activities, increasing	303
production of ROS and disruption of RBCs redox status [87]. HNE-protein adducts	304
formations were observed in erythrocytes of rats after exposure to chronic arsenic toxicity	305
[71]. While GSH-HNE adducts were used as a tool to detect lead toxicity on mice RBCs	306
by Mukherjee et al. [72].	307
Lipid peroxidation [LPO] is one of the consequences of oxidative damage, and it is one	308
of the chief mechanism for cell injury and death [i.e., hemolysis] [84]. Malondialdehyde	309
[MDA], the well-characterized product of the LPO of RBCs, is a highly reactive	310
bifunctional molecule, that could impair various membrane functions by cross-linking the	311
RBCs proteins and phospholipids leading to diminished survival and death [induce	312
hemolysis] [88, 89]. Moreover, LPO of RBCs may be implicated in cell aging, and	313
variable pathological conditions. The determination of MDA level provides a good	314
measure of LPO [90].	315

Additionally, erythrocytes SOD contains copper and zinc [CuZn-SOD]. The interaction	316
between CuZn-SOD and MDA modified the residues of histidine amino acid and	317
produced protein-protein cross-linked derivatives therefore each type of ROS exhibits a	318
different pattern of protein oxidation. So the protein carbonyl content could be used as an	319
indicator of protein oxidation in erythrocytes as reported by Reddy et al. [91].	320
Erythrocytes were proved to be a good tool for analyzing the oxidative stress and lipid	321
peroxidation as mechanism of toxic action in various studies. RBCs help in assessing the	322
toxicity of arsenic [71] and 2, 4-dichlorophenoxyacetic [45] in rats; lead toxicity in mice	323
[72] and Lambda-cyhalothrin [92] and cyadox [50] in rabbits.	324
Some toxic substances could induce pronounced changes in the fatty acid profiles of	325
RBCs membrane due to free radical generation which transferred the both types of	326
membrane fatty acids [saturated and unsaturated] from superficial neutral lipids into	327
phosphatidylethanolamine. For example 2,4-dichlorophenoxyacetic induced cellular	328
deterioration through peroxidation of PUFA ,degradation of membrane phospholipids	329
and increasing the index of fatty acid unsaturation [SFA to UFA ratio] [45]. Alterations	330
of fatty acid composition of RBCs membrane could result in changing the membrane	331
viscosity [93]. Exposure of erythrocytes to ROS generated during arsenic toxicity could	332
result in alterations of membrane proteins [71].	333
A- Oxidative stress parameters	334
Preparation of RBCs membrane [erythrocyte ghosts]: erythrocyte ghost could be	335
prepared by the method of Dodge et al. [94].	336

Fatty acid composition of erythrocytes: The fatty acid composition of erythrocyte was	337
analyzed by gas chromatography after trans-esterification following the method of	338
Giacometti et al. [95]	339
Electrophoresis of membrane proteins: polyacrylamide gel electrophoresis with	340
dodecyl sulphate [SDS-PAGE] of RBCs membrane proteins could be determined	341
according to Laemmli [96].	342
Assessment of lipid hydroperoxide content in RBCs membrane: could be estimated	343
using the FOX2 method [97].	344
Determination of RBCs redox potential: Redox potential in RBC could be determined	345
by the protocol of Biswas et al. [98] from the ratios of pyridine nucleotides. Redox	346
potential was assayed from NADH/[NAD++ NADH] and NADPH/[NADP++NADPH]	347
ratios.	348
Estimation of intracellular reactive oxygen species [ROS]: The ROS content of RBCs	349
cold be measured by incubating with fluorescent probes dihydroethidium [DHE] and	350
2',7'-dichlorofluorescein diacetate [DCFDA] according to Lopez-Revuelta et al. [99];	351
and Zhao et al. [100], then fluorescent-positive cells were detected by flow cytometer	352
according to [101].	353
The H ₂ O ₂ and O ₂ -•concentrations of RBCs: could be determined by the method of	354
Qian et al. [102]. While sulfhydryl group [SH] groups could be measured in RBCs after	355
reaction with 5, 50-dithiobis-[2-nitrobenzoic acid] using the method of Ellman [103].	356
Measurement of lipid peroxidation of erythrocytes: There are many different methods	357
that could be used for measuring the lipid peroxidation in RBCs. Malondialdehyde	358

[MDA], a product of lipid peroxidation was measured at 532 nm by using 2-	359
thiobarbituric acid [2, 6-dihydroxypyrimidine-2-thiol; TBA] [104] where MDA	360
concentration was expressed either as nmol/mg protein for the membranes or nmol/gHb	361
for whole erythrocytes. Lipid peroxidation could be assessed indirectly through	362
measurement of the thiobarbituric acid [TBA] reaction [105] where MDA values were	363
expressed as pmol/g Hb. MDA levels could be also measured by the method of Bartosz	364
[106] using the thiobarbituric acid [TBA] method, after the reaction with TBA, the	365
reaction product was measured spectrophotometrically at 535mm where the MDA level	366
was expressed in M/gHb. The method of Tedesco et al. [107] could be also used to	367
measure the level of Lipid peroxidation in RBCs in terms of MDA equivalents using the	368
thiobarbituric acid reaction.	369
Protein oxidation: Protein carbonyl content is used as a marker of protein oxidation in	370
RBCs and it could be measured using the method described by Uchida and	371
Stadtman[108] or according to Jiang et al109].]	372
Measurement of GSH-HNE and HNE-protein adduct formation: GSH-HNE adduct	373
could be measured using Mass spectrometry as described by Biswas et al. [71]. While	374
HNE-protein adduct formation could by analyzed according to Arguelles et al. [110].	375
B- Determination of erythrocyte antioxidants	376
Reduced glutathione [GSH] and oxidized glutathione [GSSG] estimation: GSH	377
content in RBCs could be detected by different methods. It could be measured at 25 °C	378
according to the standard methods using DTNB as described by Tietze [111] where GSH	379
content was expressed as Imol/g Hb or by the method of Dise and Goodman [112]	380

where GSH was expressed as nmol GSH per mg of hemoglobin. While, intra-cellular	381
GSSG content could be measured at 340 nm as described by Beutler [113].	382
Glutathione peroxidase [GSH-Px], Glutathione-s-transferase [GST] and glutathione	383
reductase [GR] activities: The GSH-Px could be evaluated using Ransel reagents based	384
on the method of Paglia and Valentine [114]. Results were expressed in U/g Hgb. While	385
GST activity was measured spectrophotometrically by the method of Habig et al. [115]	386
using S-2,4-dinitro phenyl glutathione [CDNB] as a substrate. The activity of GST was	387
expressed in terms of nmol/mg protein. The glutathione reductase GR activity was	388
assayed using reagent from Randox Laboratories [GR 2368]; the assay was adapted from	389
the method of Beutler [113]. Results were expressed in U/g Hgb.	390
SOD and CAT activity: The SOD activity could be determined according to the method	391
of Marklund and Marklund [116] by measuring the inhibition of pyrogallol autoxidation.	392
One unit of SOD was defined as the amount of enzyme that inhibits the rate of pyrogallol	393
autoxidation in 50%. The SOD activity in RBCs could be also determined by using the	394
classical NBT method [117] where SOD activity expressed as U/mg Hb. while CAT	395
activity in erythrocyte lysate could be determined according to the method of Aebi [118].	396
The method is based on the decomposition of H ₂ O ₂ by catalase. Enzyme activity was	397
expressed as units per mg of Hb [U/mg Hb].	398
Types of damage resulted from interaction of some xenobiotics and RBCs from different	399
animal species are illustrated in Table 1.	400
Conclusion	401

This review shows that erythrocytes could be considered as a valuable model in studying	402
the cytotoxic effect of xenobiotics owing to its particular structure and the important	403
components of their plasma membrane especially lipids and proteins. The disturbance of	404
plasma membrane integrity leads haemoglobin to be released extracellular so the	405
hemolytic activity of RBCs could provide useful information about the interaction of	406
different molecules and the biological activities on the cell level and could be used to	407
exclude the pharmaceutical products with possible cytotoxic effects. The RBCs	408
membrane could be altered and deformed in response to injurious xenobiotics resulting in	409
cellular abnormalities in morphology and size which could be used as initial testing for	410
cytotoxicity. ATP content of RBCs can give idea about the status of their membrane	411
integrity and energy charge as the only source of extracellular ATP is lysis of cells.	412
Exposure of the body to different physical and chemical agents can result in genotoxic	413
and DNA damaging effects and lead to carcinogenic and reproductive toxicities. RBCs	414
can be used for evaluating the genotoxic impacts of different xenobiotics using different	415
assays including micronucleus assay, comet assay and DNA fragmentation assay.	416
The RBCs however lack nuclei they have the ability to undergo a programmed death	417
[eryptosis] upon exposure to injurious materials and endogenous challenges. Therefore,	418
eryptosis could be used as a model for analyzing different mechanisms that are of the	419
same importance for the apoptosis of nucleated cells. Erythrocytes were proved to be a	420
good biological membrane model for analyzing the oxidative stress and lipid	421
peroxidation as possible mechanisms of toxic action of various xenobotics because of	422
their vulnerability to peroxidation as RBCs contain polyunsaturated fatty acid [PUFA] in	423
their membrane and hemoglobin which is a source of ROS and due to its capacity to	424

transport O ₂ and CO ₂ . Oxidative damage could alter the membrane lipid and protein	425
structure and cellular morphology and induce lipid peroxidation and hemolysis therefore;	426
lipid peroxidation could be also of value in understanding the mechanism of action of	427
various xenobiotics. The RBCs are well equipped by various biological mechanisms of	428
antioxidants including enzymes and non-enzymatic antioxidants which also could be	429
altered by oxidative damage. The changes of component of RBCs, the structure of plasma	430
membrane and the antioxidant capacity of RBCs could be used as good indicators of the	431
ROS generating activity of xenobiotics and their oxidative damaging effects on tissues.	432
All these findings make the RBCs a valuable in vitro initial screening model for the	433
evaluation of cytotoxic mechanisms of various substances and prove their ability to be	434
used as alternative testing methods to decrease animal experimentation, helping reach the	435
goal of reducing, refining and replacing studies conducted with animals which requires	436
major ethical and financial regulations.	437
Acknowledgement	438
All the authors of the manuscript thank and acknowledge their respective universities and	439
institutions	440
Competing interests:	441
Authors declare that there are no competing interests.	442
Author contributions:	443
MRF and MA wrote, revised and reviewed the manuscript.	444
References	445
NCICI CHUCS	443
	446

1. Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeleton on red cell	447
deformability, membrane material properties, and shape. Sem Hematol 1983; 20:	448
225–242.	449
2. De Oliveira S, Saldanha C. An overview about erythrocyte membrane. Clin Hemorheol	450
Micro 2010; 44: 6.	451
3. Bruno-Franco M, Mazzei C. The red blood cell membrane: structure and functions.	452
Blood Transf 2004; 2, 160–180.	453
4. Mohandas N, Gallagher PG. 2008. Red cell membrane: past, present, and future.	454
Blood; 112: 3939–3948	455
5. Park Y, Best CA, Badizadegan K, 2010. Measurement of red blood cell mechanics	456
during morphological changes. Proc Natl Acad Sci; 107: 6731-6736.	457
6. Mohandas N, Evans E. 1994. Mechanical properties of the red cell membrane in	458
relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct	459
23: 787–818.	460
7. Betz T, Lenz M, Joanny J-F, Sykes C. ATP-dependent mechanics of red blood cells.	461
Proc Natl Acad Sci 2009; 106: 15320–15325.	462
8. Mohandas N, Chasis J. 1993. Red blood cell deformability, membrane material	463
properties and shape: regulation by transmembrane, skeletal and cytosolic proteins	464
and lipids. Sem Hematol; 30: 171–192	465
9. Plasenzotti R, Windberger U, Ulberth F, Osterode W, Losert U. 2007 Influence of	466
fatty acid composition in mammalian erythrocytes on cellular aggregation. Clin	467
Hemorheol Micro: 37: 237–243.	468

10.	Alagawany M., M.R. Farag, M.S. El-Kholy, S.A.A. El-Sayed and K. Dhama 2016.	469
	Effect of resveratrol, cinnamaldehyde and their combinations on the antioxidant	470
	defense system and ATP release of rabbit erythrocytes: in vitro study. Asian J Anim	471
	Sci Vet Adv 12,1-9.	472
11.	Alagawany M., M.R. Farag, Mohamed Ezzat Abd El-Hack, Elisabetta Casalino,	473
	Vincenzo Tufarelli, Maryam Sayab and Kuldeep Dhama 2016. Assessment of cyadox	474
	effects on the antioxidant defense system and hemolysis of isolated rabbit	475
	erythrocytes. Int J Pharmacol 13, 183-190.	476
12.	Pagano M. and Faggio C. The use of erythrocyte fragility to assess xenobiotic	477
	cytotoxicity. cell biochemistry and function. Cell Biochem Funct. 2015; DOI:	478
	10.1002/cbf.3135	479
13.	Shiva, S., Subramanyam, M.V., Vani, R., Asha, D., 2007. In vitro models of	480
	oxidative stress in rat erythrocytes: effect of antioxidant supplements. Toxicol. In	481
	Vitro 21, 1355–1364.	482
14.	Okamoto, K., Maruyama, T., kaji, Y., Harada, M., Mawatari, S., Fujino, T., Uyesaka,	483
	N., 2004. Verapamil prevents impairment in filterability of human erythrocytes	484
	exposed to oxidative stress. Japanese Journal of Physiology 54, 39–46.	485
15.	Asha, D.S., Subramanyam, M.V.V., Vani, R., Jeevaratnam, K., Adaptations of the	486
	antioxidant system in erythrocytes of trained adult rats: Impact of intermittent	487
	hypobaric-hypoxia at two altitudes. Comparative Biochemistry and Physiology. Part	488
	C 2005; 140: 59–67.	489

16. Lang, F., Gulbins, E., Lang, P.A., Ceramide in suicidal death of erythrocytes.	Cell 490
Physiol Biochem 2010; 26: 21–28.	491
17. Mandal, S., Mukherjee, S., Chowdhury, K. D., Sarkar, A., Basu, K., Paul, S., Karm	nakar, 492
D., Chatterjee, M., Biswas, T., Chandr, G., khan, S., Sen, G. 2012 S-allyl cystei	ine in 493
combination with clotrimazole downregulates Fas induced apoptotic even	its in 494
erythrocytes of mice exposed to lead. Biochim Biophys Acta 1820: 9–23.	495
18. Lang E, Qadri SM, Lang F. 2012. Killing me softly – suicidal erythrocyte death.	. Int J 496
Biochem Cell Biol; 44: 1236–1243.	497
19. Paprika MV and Sharma BB. Effect of oral administration of herbicide diclofe	op on 498
some hematological parameters in mouse. J. Cell Tissue Res. 2003; 3: 12-17.	499
20. Nikinmaa M. How does environmental pollution affect red cell in fish?	Aquat 500
Toxicol 1992; 22: 227-238.	501
21. Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Par	ry, J., 502
Norppa, H., Eastmond, D.A., Tucker, J.D., Thomas, P., 2011. Molecular mechan	nisms 503
of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalia	n and 504
human cells. Mutagenesis 26, 125–132.	505
22. Harabawy, A.S.A., Mosleh, Y.Y.I., 2014. The role of vitamins A, C, E and sele	enium 506
as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead	d and 507
zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicol. Environ	. Saf. 508
104, 28–35.	509

23.	Ochiai, K., Jin, K., Itakura, C., Goryo, M., Yamashita, K., Mizuno, N., Fujinaga, T.,	510
	Tsuzuki, T., 1992. Pathological study of lead poisoning in whooper swans Cygnus	511
	cygnus in Japan. Avian Diseases 36, 313–323.	512
24.	Gurer H, Ozgunes H, Neal R, Spitz D R, Erçal N. 1998. Antioxidant effects of N-	513
	acetylcysteine and succimer in red blood cells from lead-exposed rats, Toxicology;	514
	128,3:181–189	515
25.	Hirag T., Kei Ohyama, Ayano Hashigay, Tomoya Ishikawa, Wakana Muramoto,	516
	Hiroshi Kitagaw, Naoharu Mizun, Hiroki Teraoka 2008 Lead exposure induces	517
	pycnosis and enucleation of peripheral erythrocytes in the domestic fowl. The	518
	Veterinary Journal 178 2008 109–114.	519
26.	Sharma R., Khushbu Panwar and Sheetal Mogra. 2013 Alterations in developing	520
	RBCs after prenatal and postnatal exposure to lead acetate and vitamins. International	521
	Journal of Pharmaceutical Sciences and Research 48:3214-3224.	522
27.	Vittori D, Nesse A, Perez G, Garbossa G. 1999. Morphologic and functional	523
	alterations of erythroid cells induced by long-term ingestion of aluminium. J	524
	Inorganic Biochem 76: 113-120.23.	525
28.	Comelekoglu U, Mazmanci B, Arpaci A. 2000 Investigation of the liver functions in	526
	agricultural workers chronically exposed to pesticides. Turk J Biol 24: 461-466.	527
29.	Zeni C, Bovolenta MR, Stagni A. 2002. Occurrence of echinocytosis in circulating	528
	RBC of black bullhead, Ictalurus melas Rafinesque, following exposure to an	529
	anionic detergent at sublethal concentrations. Aquat Toxicol; 57: 217-224.	530

30. Koc ND, Muslu MN, Sesal C, Kayhan FE. 2008. Histopathological effects o	f 531
malathion and endosulfan on blood cells of Wistar albino rats Rattus norvegicus .	J 532
Appl Biol Sci; 2: 105-108.	533
31. Suwalsky M, Vargas P, Avello M, Villena F, Sotomayor CF. 2008. Human	n 534
erythrocytes are affected in vitro by flavonoids of Aristotelia chilensis Maqu	i 535
leaves. International J Pharmaceutics; 363: 85-9033.	536
32. Tripathi S, Srivastav A. 2010. Alterations in the profile of blood cells of wistar rate	s 537
induced by long-term ingestion of chlorpyrifos. International Journal of Pharma and	538
Bio Sciences 1, B-322 ref.39	539
33. Yang, H.L., Chen, S.C., Chang, N.W., Chang, J.M., Lee, M., Tsai, P.C., Fu, H.H.	, 540
Kao, W.W., Chiang, H.C., Wang, H.H., Hseu, Y.C. 2006 Protection from oxidative	e 541
damage using Bidenspilosa extracts in normal human erythrocytes. Food Chen	n 542
Toxicol 44: 1513–1521.	543
34. Agrawal D., P. Sultana, [1993] Biochemical and structural alterations in ra	t 544
erythrocytes due to hexachlorocyclohexane exposure. Food Chem Toxicol., 33	1 545
443–448.	546
35. Jindal R and S Verma 2015 In vivo genotoxicity and cytotoxicity assessment of	f 547
cadmium chloridein peripheral erythrocytes of Labeo rohita Hamilton	n 548
Ecotoxicology and Environmental Safety 118 2015 1-10	549
36. Kumar G, Karthik L, Rao KVB. 2011. Hemolytic activity of Indian medicinal plants	s 550
towards human erythrocytes: an in vitro study. Elixir Appl Botany; 40: 5534–5537.	551

37. Orsine JVC, Costa R, Silva R, Santos M, Novaes M. The acute cytotoxicity and lethal	1 552
concentration LC50 of Agaricus sylvaticus through hemolytic activity on human	553
erythrocyte. Int J Nutr Met 2012; 4:19–23.	554
38. Budan A., Tessier N., Saunier M., 2013 Effect of several saponin containing plant	t 555
extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep	556
erythrocytes. J Food Agric Environ 11, 576–582.	557
39. Faggio C, Morabito M, Armeli Minicante S, Lo Piano G, Pagano M, Genovese G	. 558
2015; Potential use of polysaccharides from the brown alga Undaria pinnatifida as	s 559
anticoagulant. Braz Arch Biol Tecnol 58, 798–804.	560
40. Faggio C, Pagano M, Morabito M, Minicante Armeli S, Arfuso F, Genovese G. 2014	. 561
In vitro assessment of the effect of Undaria pinnatifida extracts on erythrocytes	562
membrane and blood coagulation parameters of Equus caballus. J Coast Life Med; 2,	, 563
614–616.	564
41. Kolanjiappana K, Manoharana S, Kayalvizhib M. 2002. Measurement of erythrocyte	e 565
lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer	r 566
patients. Clin Chim Acta. 326:143–149.34.	567
42. Chikezie PC Osmotic fragility index of HbAA red blood cells in the presence of	f 568
aqueous extracts of three medicinal plants Aframomum melegueta, Garina kola, and	l 569
Cymbopogon Citracus Global J. Pure Applied Sci. 2007; 13, 496-499	570
43. Mansour S.A., Abdel-Tawab H. Mossa. [2009] Lipid peroxidation and oxidative	e 571
stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc	. 572
Pesticide Biochemistry and Physiology 93 34–39	573

44.	Agalakova N., Gennadii P. Gusev. 2011 Fluoride-induced death of rat erythrocytes	574
	in vitro. Toxicology in Vitro, 25 1609–1618.	575
45.	Wafa T, Nakbi Amela, Chargui Issama, Cheraief Imed a, Miled Abdelhedib ,	576
	Hammami Mohamed 2011 Subacute effects of 2,4-dichlorophenoxyacetic herbicide	577
	on antioxidant defensesystem and lipid peroxidation in rat erythrocytesq. Pesticide	578
	Biochemistry and Physiology 99 2011 256–264	579
46.	Rendell, M., Luu, T., Quinlan, E., Knox, S., Fox, M., Kelly, S., Kahler, K. 1992 Red	580
	cell filterability determined using the cell transit timeanalyzer CTTA: effects of ATP	581
	depletion and change in calciumconcentration. Biochim Biophys Acta 1133: 293-	582
	300.	583
47.	Meyers, T.R., Hendricks, J.D., 1985. Histopathology In: Rand, G.M., Petrocelli, S.R.	584
	Eds., Fundamentals of Aquatic Toxicity: Methods and Applications. Hemi sphere	585
	Publishing Corporation, Washington, USA, pp. 283–331.	586
48.	Mekkawy, I.A., Mahmoud, U.M., Sayed, A.ED.H., 2011. Effects of 4-nonylphenol	587
	on blood cells of the African catfish Clarias gariepinus Burchell, 1822 Tissue Cell	588
	43, 223–229.	589
49.	Teijon C, Delsocorro JM, Martin JA, Lozano M, Bernardo V, Blaco D. 2000 Lead	590
	accumulation in rats at non acute doses and short periods of time. Hepatic, renal and	591
	hematological effects. Ecotoxico Environm Restor 3, 36 –41.	592
50.	Farag MR, Mahmoud Alagawany & Vincenzo Tufarelli 2017 In vitro antioxidant	593
	activities of resveratrol, cinnamaldehyde and their synergistic effect against cyadox-	594

	induced cytotoxicity in rabbit erythrocytes, Drug and Chemical Toxicology, 40 2	595
	:196-205.	596
51.	Sikora, J.; Sergei N. O., Furuya, K. and Grygorczyk, R. 2014. Hemolysis is a	597
	primary ATP-release mechanism in human erythrocytes. Blood, 124: 2150-2157.	598
52.	Adams, H. 1963 In: Bergmeyer, H.U. Ed. Methods Enzymatic Analysis. Academic	599
	Press, New York, pp. 539–543.43.	600
53.	Yoshino M, Chikashi Y, Keiko M, 1992 Stabilization of the adenylate energy charge	601
	in erythrocytes of rats and humans at high altitude hypoxia. Comp Biochem Physiol	602
	A Comp Physiol 101:65–68.	603
54.	Atkinson DE, Walton GM. 1967 Adenosine triphosphate conservation in metabolic	604
	regulation. Rat liver citrate cleavage enzyme, J Biol Chem 242, 3239–3241.	605
55.	Kim S, Ryu DY. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and	606
	apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78-89.	607
56.	Bolognesi, C., Hayashi, M., 2011. Micronucleus assay in aquatic animals.	608
	Mutagenesis 26, 205–213.	609
57.	Farag MR., Mahmoud M. Alagawany and Kuldeep Dhama. 2014. Antidotal effect of	610
	turmeric Curcuma longa against endosulfan-induced cytogenotoxicity and	611
	immunotoxicity in broiler chicks. International journal of Pharmacology, , 10 8 :	612
	429-439.	613
58.	Tan, D., Li, L., Wang, S., Wei, B., Zhang, X., Sun, B., Ji, S., 2013. The cytogenetic	614
	effectsof acrylamide on Carassius auratus periperial blood cells. Food Chem. Toxicol.	615
	62, 318–322.	616

59.	Vincent-Hubert, F., Arini, A., Gourlay-France, C., 2011. Early genotoxic effects in	617
	gill cells and haemocytes of Dreissena polymorpha exposed to cadmium, B a P and a	618
	combination of B a P and Cd. Mutat. Res. 723, 26–35.	619
60.	Holden, E.H., Jenness, B.M., Debbie, S.A., 1997. Direct comparison of mouse and rat	620
	bone marrow and blood as target tissues in the micronucleus assay. Mutagen	621
	Research/Genetic Toxicology and the Environmental Mutagen 391, 87–90.	622
61.	Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L., 1988. A simple technique for	623
	quantitation of low levels of DNA damage in individual cells. Exp. Cell Res.	624
	175,184–191.	625
62.	Weil, M., Jacobson, M.D., Raff, M.C., 1998. Are caspases involved in the death	626
	ofcells with a transcriptionally inactive nucleus ?Sperm and chicken erythrocytes	627
	Journal of Cell Science 111, 2707–2715.	628
63.	Wang YC, Chaung RH, Tung L. 2004 . Comparison of the cytotoxicity induced	629
	by different exposure to sodium arsenite in two fish cell lines. Aquatic	630
	Toxicology, 69, 67-79.	631
64.	Orrenius S, Nicotera P, Zhivotovsky B. 2011. Cell death mechanisms and their	632
	implications in toxicology. Toxicol Sci., 119:3–19.	633
65.	Webb, S.J., Harrison, D.J., Wyllie, A.H., 1997. Apoptosis: an overview of the process	634
	and its relevance in disease. In: Kaufmann, S.H. Ed, .Apoptosis: Pharmacological	635
	Implications and Therapeutic Opportunities, Advances in Pharmacology, vol. 41.	636
	Academic Press, San Diego,pp. 1–34.	637

66. Jacobi J, Lang E, Bissinger R, 2014. Stimulation of erythrocyte cell membrane	638
scrambling by mitotane. Cell Physiol Biochem; 33: 1516–1516.	639
67. Simpson, C.F., Kling, J.M., 1967. The mechanism of denucleation in circulating	640
erythroblasts. Journal Cell Biology 35, 237–245.	641
68. Kempe, D.S., Lang, P.A., Eisele, K., Klarl, B.A., Wieder, T., Huber, S.M Duranton,	642
C., Lang, F., 2005. Stimulation of erythrocyte phosphatidylserine exposure by lead	643
ions. American Journal of Physiology Cell Physiology 288, C396–C402.	644
69. Berg, C.P., Engels, I.H., Rothbart, A., Lauber, K., Renz, A., Schlosser, S.F., Schulze-	645
Osthoff, K., Wesselborg, S. 2001 Human mature red blood cells express caspase-3	646
and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death	647
Differ 8, 1197-1206.	648
70. Bejarano, I., Lozano, G.M., Ortiz, A., Garcia, J.F., Paredes, S.D., Rodriguez, A.B.,	649
Pariente, J.A., 2008. Caspase 3 activation in human spermatozoa in response to	650
hydrogen peroxide and progesterone. Fertil. Steril. 90, 1340–1347.	651
71. Biswas D, Gargi Sen, Tuli Biswas 2010 Reduced cellular redox status induces 4-	652
hydroxynonenal-mediated caspase 3 activation leading to erythrocyte death during	653
chronic arsenic exposure in rats. Toxicology and Applied Pharmacology 244, 315-	654
327	655
72. Mukherjee S., Kaustav Dutta Chowdhury, Avik Sarkara, Kankana Basu, Soumosish	656
Paulb, Debasish Karmakarb, Mahasweta Chatterjee , Puli Biswas Gobinda, Chandra	657
Sadhukhan, Gargi Sen 2012 S-allyl cysteine in combination with clotrimazole	658

	downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead.	659
	Samir Mandal Biochimica et Biophysica Acta 1820 9–23.	660
73.	Senapati S.K., S. Dey, S.K. Dwivedi, D. Swarup, 2001 Effect of garlic Allium	661
	sativum L. extract on tissue lead level in rats, J. Ethnopharmacol. 76 229–232.	662
74.	Cremesti A., F.O. Paris, H. Grassme, N. Holler, J. Tschopp, Z. Fuksi, E. Gulbins, R.	663
	Kolesnick, 2001 Ceramide enables Fas to cap and kill. J. Biol. Chem. 276, 23954–	664
	23961.	665
75.	Sen G., D. Biswas, M. Ray, T. Biswas, 2007 Albumin-quercetin combination offers	666
	a therapeutic advantage in the prevention of reduced survival of erythrocytes in	667
	visceral leishmaniasis, Blood Cells Mol. Dis. 39 245–254.	668
76.	Chowdhury K.D., G. Sen, A. Sarkar, T. Biswas, 2011 Role of endothelial	669
	dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis,	670
	Biochim. Bio-phys. Acta 1810, 652–665.	671
77.	Wolff D., X. Cecchi, A. Spalvins, M. Canessa, 1988 Charybdotoxin blocks with	672
	high affinity the Ca-activated K+channel of Hb A and Hb S red cells: individual	673
	differences in the number of channels, J. Membr. Biol. 106, 243–252.	674
78.	Petrache I., V. Natarajan, L. Zhen, T.R. Medler, A.T. Richter, C. Cho, W.C. Hubbard,	675
	E.V. Berdyshev, R.M. Tuder, 2005 Ceramide up regulation causes pulmonary cell	676
	apoptosis and emphysema-like disease in mice, Nat. Med. 11 491–498.	677
79.	Muppidi J.R., R.M. Siegel, 2004 Ligand-independent redistribution of Fas CD95	678
	into lipid rafts mediates clonotypic T cell death, Nat. Immunol. 5 182–189.	679

80.	Ahmad, S., Beg, Z.H. 2013 Alleviation of plasma, erythrocyte and liver lipidemic-	680
	oxidative stress by by thymoquinone and limonene in atherogenic suspension fed rats.	681
	J Functional Foods 5, 251-259.	682
81.	Nagababu, E., Rifkind, J.M., 2000. Reaction of hydrogen peroxide with	683
	ferrylhemoglobin: superoxide production and heme degradation. Biochemistry 39,	684
	12503–12511.	685
82.	Mohanty J.G., Enika Nagababu, and Joseph M. Rifkind 2014. Red blood cell	686
	oxidative stress impairs oxygen delivery and induces red blood cell aging. Frontiers	687
	in Physiology .; 5: 84.	688
83.	Rossen van, M.E.E., Sluiter, W., Bonthuis, F., Jeekel, H., Marquet, R.L., Van Eijck,	689
	C.H.J .2000.Scavenging of reactive oxygen species leads to diminished peritoneal	690
	tumor recurrence. Cancer Res. 60, 5625–5629.	691
84.	Çimen, M., 2008. Free radical metabolism in human erythrocytes. Clinica	692
	Chimica Acta 390, 1–11.	693
85.	Goth, L., Vitai, M., 2003. The effects of hydrogen peroxide promoted by homocys-	694
	teine and inherited catalase deficiency on human hypocatalasemic patients. Free	695
	Radic. Biol. Med. 35, 882–888.	696
86.	Yamamoto, Y., Niki, E., Eguchi, J., Kamiya, Y., Shimasaki, H., 1985. Oxidation of	697
	biological membranes and its inhibition. Free radical chain oxidation of erythrocyte	698
	ghost membranes by oxygen. Biochimica et Biophysica Acta 819, 29–36.	699

87. Carini, M., Aldini, G., Facino, R.M., 2004. Mass spectrometry for detection of 4-	700
hydroxy-trans-2-nonenal HNE adducts with peptides and proteins. Mass Spectrom.	701
Rev. 23, 281–305.	702
88. Hebbel R.P., A. Leung, N. Mohandas, 1990 Oxidation-induced changes in	703
microrheologic properties of the red blood cell membrane, Blood 76 1015–1020.	704
89. Sugihara, T.,Rawicz, W.E.A., Hebbel, R.P. 1991 Lipid hydroperoxides permit	705
deformation-dependent leak of monovalent cation from erythrocytes. Blood 77:	706
2757–2763.	707
90. Sadowska-Wodaa I., Barbara Sychtaa, Marta Rachelb, Edyta Bieszczad-Bedrejczuka.	708
2010 Protective effect of desloratadine against oxidative stress inhuman erythrocytes	709
in vitro. Environmental Toxicology and Pharmacology 30 141-146	710
91. Reddy C.S. Shiva Shankar a ,M.V.V. Subramanyam b ,R. Vania ,S. Asha Devia 2007	711
In vitro models of oxidative stress in rat erythrocytes: Effect of antioxidant	712
supplements. Toxicology in Vitro 21 1355–1364	713
92. El-Demerdash F.M. 2007 Lambda-cyhalothrin-induced changes in oxidative stress	714
biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants.	715
Toxicology in Vitro 21, 392–397.	716
93. Lukivskaya O.Y., A.A. Maskevish, V.U. Buko, 2001 Effect of ursodeoxycholic acid	717
on prostaglandin metabolism and microsomal membranes in alcoholic fatty liver.	718
Alcohol 25 99–105.	719

94. Dodge, J.T., Mitchell, C., Hanahan, D.J., 1963. The preparation and chemical	720
characteristics of hemoglobin free ghosts of human erythrocytes. Arch. Biochem.	721
Biophys. 100, 119–130.	722
95. Giacometti J., A. Miloševic, C *. Milin, 2002 Gas chromatography determination of	723
fatty acids contained in different classes after their separation by solid-phase	724
extraction, J. Chromatogr. A 976 47–54.	725
96. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head	726
of bacteriophage T4. Nature 227 5259, 680–685.	727
97. Wolff, S.P., 1994. Ferrous ion oxidation in presence of ferric ion indicator xylenol	728
orange for measurement of hydroperoxides. Methods Enzymol 233 Part C , 182–189.	729
98. Biswas, D., Banerjee, M., Sen, G., Das, J.K., Banerjee, A., Sau, T.J., Pandit, S., Giri,	730
A.K,.Biswas, T., 2008. Mechanism of erythrocyte death in human population exposed	731
to arsenic through drinking water. Toxicol. Appl. Pharmacol. 230, 57-66.	732
99. Lopez-Revuelta, A., Sanchez-Gallego, J.I., Hernandez-Hernandez, A., Sanchez-	733
Yague, J., Llanillo, M., 2005. Increase in vulnerability to oxidative damage in	734
cholesterol-modified erythrocytes exposed to t-BuOOH. Biochim. Biophys. Acta	735
1734, 74–85.	736
100. Zhao, H., Joseph, J., Fales, H.M., Sokoloski, E.A., Levine, R.L., Vasquez-Vivar, J.,	737
Kalyanaraman, B., 2005 Detection and characterization of the product of	738
hydroethidium and intracellular superoxide by HPLC and limitations of fluores-cence.	739
Proc. Natl. Acad. Sci. 102, 5727–5732.	740

101. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., Nagano, T., 2003.	741
Development of novel fluorescence probes that can reliably detect reactive oxygen	742
species and distinguish specific species. J. Biol. Chem. 278 5, 3170–3175.	743
102. Qian, H., Chen, W., Li, J., Wang, J., Zhou, Z., Liu, W., Fu, Z., 2009. The	744
effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella	745
vulgaris. Aquatic Toxicology 92, 250–257.103.	746
103. Ellman, G.L. 1959 Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70–77.	747
104. Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides inanimal tissues	748
by thiobarbituric acid reaction. Analytical Biochem-istry 95, 351-358.	749
105. Yagi, K., 1984. Assay for blood plasma or serum. Methods in Enzymology 105,	750
328–331.	751
106. Bartosz, G. 2004 Druga twarztlenu. Wolnerodnikiw przyrodzie, Wyd.Nauk. PWN,	752
Warszawa.	753
107. Tedesco, S., Doyle, H., Blasco, J., Redmond, G., Sheehan, D., 2010. Oxidative stress	754
and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology 100,178-	755
186.	756
108. Uchida, K., Stadtman, E.R. 1993. Covalent attachment of 4-hydroxy- nonenal to	757
glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 268, 6388–6393.	758
109. Jiang, W.D., Wu, P., Kuang, S.Y., Liu, Y., Jiang, J., Hu, K., Li, S.H., Tang,	759
L., Feng, L., Zhou, X.Q., 2011. Myo-inositol prevents copper-inducedoxidative	760
damage andchanges in antioxidant capacity in various organs and the	761

enterocytes of juvenileJian carp Cyprinus carpio var. Jian Aquatic Toxicology 105,	762
543–551.	763
110. Arguelles, S., Machado, A., Ayala, A., 2009 Adduct formation of 4-	764
hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo.	765
Free Radic. Biol. Med. 47, 324–330.	766
111. Tietze, F., 1969. Enzymatic method for quantitative determination of nanogram	767
amounts of total and oxidized glutathione: applications to mammalian blood and	768
other tissues. Anal. Biochem. 27 3, 502–522.	769
112. Dise CA, Goodman DBP 1986. t-Butyl hydroperoxide alters fatty acid	770
incorporation into erythrocyte membrane phospholipid. Biochim Biophys Acta	771
859:69–78	772
113. Beutler, E., 1971. In: Beutler, E. Ed., Red Cell Metabolism. A Manual of	773
Biochemical Methods. Grune and Stratton Inc., New York.	774
114. Paglia D.E., W.N.J. Valentine, 1967 Studies on the quantitative and qualitative	775
characterization of erythrocyte glutathione peroxidase, Lab. Clin. Med. 70 158–169.	776
115. Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases. The first	777
enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249,	778
7130–7139.	779
116. Marklund, S.L., Marklund, G., Involvement of the superoxide anion radical in the	780
autoxidation of pirogallol and a convenient assay for superoxide dismutase. Eur. J.	781
Biochem. 1974; 47: 469–474.	782

117. Spitz, D.R., Oberley, L.W., An assay for superoxide dismutase activity in	783
mammalian tissue homogenates. Analytical Biochemistry 1989; 179: 8–18.	784
118. Aebi, H.E. Catalase in vitro. Method Enzymol 1984; 105:121–126.	785
119. Simpson, C.F., Damron, B.L., Harms, R.H., 1970. Abnormalities of erythrocytes	786
and renal tubules of chickens poisoned with lead. American Journal of Veterinary	787
Research 31, 515–523.	788
120. Monteiroa V., D.G.S.M. Cavalcantea, M.B.F.A. Vilélaa, S.H. Sofiab, C.B.R.	789
Martineza 2011. In vivo and in vitro exposures for the evaluation of the	790
genotoxic effects of lead on the Neotropical freshwater fish Prochilodus	791
lineatus. Aquatic Toxicology 104 291–298.	792
121. A. Rendo ´n-Ramı´reza, J. Cerbo ´n-Solo ´ rzano, M. Maldonado-Vega, M.A.	793
Quintanar-Escorza, J.V. Caldero ´n-Salinas, Vitamin-E reduces the oxidative damage	794
on δ -aminolevulinic dehydratase induced by lead intoxication in rat erythrocytes.	795
Toxicology in Vitro 21 (2007) 1121–1126	796
122. Mousa, H.M., Al-Qarawi, A.A., Ali, B.H., Abdel-Rahman, H.A., ElMougy, S.A.,	797
2002. Effect of lead exposure on the erythrocytic antioxidant levels in goats. Journal	798
of Veterinary Medicine, Series A Physiology, Pathology, Clinical Medicine 49, 531-	799
534.	800
123. L.E. Eriksson, H. Beving, Calcium- and lead-activated morphological changes in	801
human erythrocytes: a spin label study of the cytoplasm, Arch. Biochem. Biophys.	802
303 (1993) 296–301.	803
124. M. Shields, R. Grygorczyk, G.F. Fuhrmann, W. Schwarz, H. Passow, Lead-induced	804

activation and inhibition of potassium-selective channels in the human red blood cell,	805
Biochim. Biophys. Acta. 815 (1985) 223–232.	806
125. Ferraro M.V.M., Fenocchio A.S., Mantovani M.S., Ribeiro C.O. andCestari M.M.	807
(2004) Mutagenic effects of tributyltin and in-organic lead (Pb II) on the fish H.	808
Malabaricus as evaluatedusing the comet assay and piscine micronucleus and chro-	809
mosome aberration tests. Genet Mol Biol 27:103-107.	810
126. S. Kousar, M. Javed, 2015. Studies on induction of nuclear abnormalities in	811
peripheral blood erythrocytes of fish exposed to copper. Turkish Journal of Fisheries	812
and Aquatic Sciences 15: 879-886 (2015).	813
127. Çavas T., Garanko N.N., Arkhipchuk V.V. (2005) Induction ofmicronuclei and	814
binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium	815
chlorid and copper sulphate. Food Chem Toxicol 43:569-574.	816
128. Harabawy A.S.A., Mosleh Y.Y.I., 2014. The role of vitamins A, C, E and selenium	817
as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and	818
zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicol. En-viron. Saf.	819
104, 28–35.	820
129. Nepomuceno, J.C., Ferrari, I., Spano, M.A., Centeno, A.J., 1997. Detection of	821
micronuclei in peripheral erythrocytes of Cyprinus carpio exposed to metallic	822
mercury.Environ. Mol. Mutagen. 30, 293–297.	823
130. Guilherme, S., Valega, M., Pereira, M.E., Santos, M.A., Pacheco, M., 2008.	824
Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an	825

environmental mercury contamination gradient. Ecotoxicol. Environ. Saf. 70, 411-	826
421.	827
131. L. Stana, A. Trif, L.G. Stana, S. Petrovici, C. Gravila, comparative study of the	828
potassium dichromate effect on the osmotic resistance of rat erythrocyte membrane.	829
Animal Science and Biotechnologies 43 (1), 425-428.	830
132. D. Biswas, G. Sen, A. Sarkar, T. Biswas, Atorvastatin acts synergistically with N-	831
acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte	832
apoptosis during chronic arsenic exposure in rats, Toxicol. Appl. Pharmacol. 250	833
(2011) 39–53.	834
133. P. F. Zatta, D. Cervellin, P. Zambenedetti. Effects of the Aluminium Speciation on	835
the Morphology of Rabbit Erythrocytes: a Toxicological Model Toxicology in Vitro,	836
12 (1998) 287±293	837
134. Abou-Seif, M.A., 1998. Oxidative stress of vanadium-mediated oxygen free radical	838
generation stimulated by aluminium on human erythrocytes. Ann. Clin. Biochem. 35,	839
254–260.	840
135. Rice-evans, C., Baysal, E., 1987. Iron-mediated oxidative stress in	841
erythrocytes. Bio-chemical Journal 244, 191–196.	842
136. M. Sinha, P. Manna, P.C. Sil, A 43 k D protein from the herb, Cajanus indicus L.,	843
protects against fluoride induced oxidative stress in mice erythrocytes,	844
Pathophysiology 14 (2007) 47–54.	845

137. A. Scibior, Halina Zaporowska, Effects of combined vanadate and magnesium	846
treatmenton erythrocyte antioxidant defence system in rats. Environmental	847
Toxicology and Pharmacology 30 (2010) 153–161.	848
138. Heller, K.B., Jahn, B., Deuticke, B., 1987. Peroxidative membrane damage in	849
human erythrocytes induced by a concerted action of iodoacetate, vanadate and	850
ferricyanide. Biochim. Biophys. Acta 901, 67–77.	851
139. Cavas, T. and Ergene-Gozukara, S. (a) (2003) Evaluation of the genotoxic potential	852
of lambda-cyhalothrin using nuclear and nucleolar biomarkers on fish cells. Mutat.	853
Res., 534, 93–99.	854
140. H. Fetoui, E.M. Garoui, F. Makni-Ayadi, N. Zeghal, Oxidative stress induced by	855
lambda-cyhalotrhrin (LTC) in rat erythrocytes and brain: attenuation by vitamin C,	856
Environ. Toxicol. Pharmacol. 26 (2008) 225–231.	857
141. Fulya Dilek Gökalp Muranli, Utku Güner, Induction of micronuclei and nuclear	858
abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure	859
to the pyrethroid insecticide lambda-cyhalothrin Mutation Research 726 (2011) 104-	860
108.	861
142. Campana, M.A., Panzeri, A.M., Moreno, V.J. and Dulout, F.N., 1999. Genotoxic	862
evaluation of the pyrethroid lambda-cyhalothrin using the micronucleus test in	863
erythrocytes of the fish Cheirodon interruptus. Mutat. Res., 438: 155-61.	864
143. Gul-e-Zehra Naqvi, Nafisa Shoaib, Aisha Majid Ali, genotoxic potential of	865
pesticides in the peripheral blood erythrocytes of fish (Oreochromis mossambicus).	866
Pakistan I. Zool. vol. 48(6), pp. 1643-1648, 2016	867

144. M. Kale, N. Rathore, S. John, D. Bhatnagar, Lipid peroxidative damage on	868
pyrethroid exposure and alterations in antioxidant status in rat RBCs: a possible	869
involvement of reactive oxygen species, Toxicol. Lett. 105 (1999) 197–205.	870
145. B. Bukowska, B. Rychlik, A. Krokosz, J. Michalowicz, Phenoxyherbicides induce	871
production of free radicals in human erythrocytes: oxidation of dichlorofluorescine	872
and dihydrorhodamine 123 by 2,4-D-Na and MCPA-Na, Food Chem. Toxicol. 46	873
(2008) 359–367.	874
146. B. Bukowska, Jaromir Michalowicz, Aneta Wojtaszek, Agnieszka Marczak2,	875
Comparison of the effect of phenoxyherbicides on human erythrocyte membrane (in	876
vitro). Biologia, 66(2): 379—385, 2011.	877
147. Ateeq B, Farah MA, Ali MN, Ahmad W (2002) Induction of micronuclei and	878
erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic	879
acid and butachlor. Mutat Res 518:135-144.	880
148. Ateeq, B., Abul Farah, M. and Ahmad, W. (2005) Detection of DNAdamage by	881
alkaline single cell gel electrophoresis in 2,4-dichlorophenoxy-acetic-acid- and	882
butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicol. Environ. Saf., 62,	883
348–354	884
149. Ali D, Nagpure NS, Kumar S, Kumar R, Kushwaha B., Genotoxicity assessment of	885
acute exposure of chlorpyrifos to freshwater fish Channa punctatus (Bloch) using	886
micronucleus assay and alkaline single-cell gel electrophoresis. Chemosphere. 2008	887
71(10):1823-31.	888

150. A.C.D. Bainy, A.C.M. Arisi, L.A. Azzalis, K. Simizu, S.B.M. Barios, L.A. Videla,	889
V.B.C. Jungueira, Differential effects of short-term lindane administration on	890
parameters related to oxidative stress in rat liver and erythrocytes, J. Biochem.	891
Toxicol. 8 (1993) 187–194.	892
151. Prasanthi, K., Muralidhara, Rajini, P.S., 2005. Morphological and biochemical	893
perturbations in rat erythrocytes following in vitro exposure to Fenvalerate and its	894
metabolite. Toxicology in Vitro 19, 449–456.	895
152. Tolga C avas, Serpil Ko "nen., Detection of cytogenetic and DNA damage in	896
peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate	897
formulation using the micronucleus test and the comet assay Mutagenesis, 22: 4 263-	898
268, 2007.	899
153. Clements, C., Ralph, S., Pertas, M. (1997) Genotoxicity of select herbicides in Rana	900
catesbeiana tadpoles using the alkaline single-cell gelDNA electrophoresis (comet)	901
assay. Environ. Mol. Mutagen., 29, 277–288.	902
154. Pallavi Srivastava and Ajay Singh 2015. Evidence of micronuclei in fish blood as a	903
biomarker of genotoxicity due to surface run off agriculture fungicide	904
(Propiconazole) Journal of toxicology and environmental health sciences, 7 (1): 4-8,	905
2015.	906
155. Cavaş T1, Ergene-Gözükara S., (b) Micronuclei, nuclear lesions and interphase	907
silver-stained nucleolar organizer regions (AgNORs) as cyto-genotoxicity indicators	908
in Oreochromis niloticus exposed to textile mill effluent. Mutat Res. 2003 8, 538(1-	909
2):81-91.	910

156. Çavas T and Ergene-Gözükara S (2005) Induction of micronuclei and nuclear	911
abnormalities in Oreochromis niloticos following exposure to petroleum refinery and	912
chromium processing plant effluents. Aquat Toxicol 74:264-271.	913
157. Da Silva Souza, T., Fontanetti, C. S. (2006) Micronucleus test and observation of	914
nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by	915
refinery effluent. Mutat. Res., 605, 87–93.	916
158- Belinda C. Go 'mez-Meda, Ana L. Zamora-Perez, Jaime Luna-Aguirre, Andre 's	917
Gonza ´ lez-Rodrı ´guez, M. Luisa Ramos-Ibarra, Olivia Torres-Bugarı ´n, Cecilia M.	918
Batista-Gonza´lez Guillermo M. Zu ´n iga-Gonza´lez, Nuclear abnormalities in	919
erythrocytes of parrots (Aratinga canicularis) related to genotoxic damage. Avian	920
Pathology (2006) 35(3), 206-210.	921
159. Winter M.J., Ellis, L.C.J., Hutchinson, T.H., 2007. Formation of micronuclei in	922
erythrocytes of the fathead minnow (Pimephales promelas) after acute treatment	923
withmitomycin C or cyclophosphamide. Mutat. Res. 629, 89–99.	924
160.Toni P. Galindo and Lília M. Moreira. Evaluation of genotoxicity using the	925
micronucleus assay and nuclear abnormalities in the tropical sea fish Bathygobius	926
soporator (Valenciennes, 1837) (Teleostei, Gobiidae).Genetics and Molecular	927
Biology, 32, 2, 394-398 (2009).	928
161. Zun iga-Gonza lez, G.M., Torres-Bugarı 'n, O., Zamora-Perez, A., Go 'mez-Meda,	929
B.C., Ramos-Ibarra, M.L., Gallegos-Arreola, M.P., Flores-Garcı ´a, A. & Lo ´pez-	930
Uribe, A. (2003b). Induction of micro-nucleated erythrocytes in mouse peripheral	931

blood after cutaneous application of 5-fluorouracil. Archives of Medical Research, 34	932
141-144.	933
162.Masuda S1, Deguchi Y, Masuda Y, Watanabe T, Nukaya H, Terao Y, Takamura	934
T, Wakabayashi K, Kinae N.Genotoxicity of 2-[2-(acetylamino)-4-[bis(2-	935
hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H- enzotriazole	936
(PBTA-6) and 4-amino-3,3'-dichloro-5,4'-dinitro-biphenyl (ADDB) in goldfish	937
(Carassius auratus) using the micronucleus test and the comet assay. Mutat Res. 2004	938
9, 560(1):33-40.	939
163. Bolognesi C., Perrone E, Roggieri P, Pampanin DMand Sciutto A (2006)	940
Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to	941
xenobiotics under controlled conditions. Aquat Toxicol 78S:S93-S98.	942
164. Teles M, Pacheco M and Santos MA (2003) Anguilla anguilla L.Liver	943
ethoxyresorufin O-deethylation, glutathione S-tranferase, erythrocytic nuclear	944
abnormalities, and endocrine responses to naphthalene and β -naphthoflavone.	945
Ecotoxicol. Environ. Saf. 55:98-107	946
165. Hooftman, R. N., de Raat, W. K. (1982) Induction of nuclear anomalies	947
(micronuclei) in the peripheral blood erythrocytes of the eastern mudminnow Umbra	948
pygmaea by ethyl methanesulphonate. Mutat. Res.,104, 147–152.	949
166. I. Dobrzyn ´ ska, B. Szachowicz-Petelska, J. Ostrowska, E. Skrzydlewska, Z.	950
Figaszewski, Protective effect of green tea on erythrocyte membrane of different age	951
rats intoxicated with ethanol, Chem. Biol. Interact. 156 (2005) 41–53.	952

167- Ajila C., Prasadarao, U., 2008. Protection against hydrogen peroxide induced	953
oxida-tive damage in rat erythrocytes by Mangifera indica L. peel extract.	954
Food andChemical Toxicology 46, 303–309.	955
168- Kim, Yu-Kyung, Kwon, Eun-Hee, Kim, Dong-Hyun, Won, Dong-I, Shin, Sehyun,	956
Suh, Jang-Soo, Susceptibility of oxidative stress on red blood cells exposed to gamma	957
rays: Hemorheological evaluation . Clinical Hemorheology and Microcirculation 40,	958
4, 315-324, 2008.	959
169. Gustavino, B., Scornajenghi, K.A., Minissi, S., Ciccotti, E., 2001. Micronuclei	960
inducedin erythrocytes of Cyprinus carpio (teleostei, pisces) by X-rays and	961
colchicines. Mutat. Res. 494, 151–159.	962
	963

Figure 1. A, erythrocytes of mammals (rounded, non-nucleated). B, erythrocytes of camel (oval, non-nucleated). C, erythrocytes of birds, fish and amphibians (oval, nucleated). D, the structure of erythrocyte membrane (Figures are collected from the internet)

Figure 2. Erythrocytes as a model for evaluating the cytogenotoixc effects of xenobiotics

Glucose

Glu

Figure 3. Redox regulation in RBCs

Figure 4. Different effects of xenobiotics on erythrocytes

Table 1. Type of damage resulted from interaction of some xenobiotics and RBCs from different animal species.

The xenobiotic	The type of damage to RBC	The species of the RBC	Referenc es
Lead	Oxidative stress, apoptotic events (Fas aggregation in lipid rafts led to Fas-dependant death of RBCs) GSH and GSH–HNE adduct Gardos channel Ceramid formation inhibition of acid sphingomyelinase (aSMase)	Mice	[17]
	poikilocytosis and anisocytosis	Whooper swans (Cygnus Cygnus)	[23]
	Anisocytosis, Poikilocytosis, changes in hemoglobin and oxidative damage	Rats	[24]
	Pycnosis and enucleation of peripheral erythrocytes	Chicken	[25]
	shortened lifespan, inhibited Na- K-ATPase and loss of membrane integrity	Rat	[49]
	Stimulation of phosphatidylserine exposure at the erythrocyte surface	Human	[68]
	Fas induced apoptotic events in erythrocytes	Mice	[72]
	Abnormalities of RBCs	Chickens	[119]
	genotoxicity (micronuclei and other nuclear abnormalities	Freshwater fish Prochilodus lineatus	[120]
	oxidative damage	Rat	[121]
	Decreased antioxidant levels	Goats	[122]
	Morphological changes	Human	[123]
	Altered activity of potassium- selective channels	Human	[124]
	Induction of micronucleus	The fish H. Malabaricus	[125]
Copper	Genotoxicity (increased micronuclei and other nuclear abnormalities)	Freshwater fish species viz. Labeo rohita, Cirrhina mrigala, Catla catla and Ctenopharyngodon idella	[126]
Cadmium chloride and copper sulphate	d micronuclei and binuclei	Fish Common carp (<i>Cyprinus carpio</i>), Prussian carp (<i>Carassius gibelio</i>)	[127]

		and Peppered	
		cory(Corydoras	
		paleatus)	
Cadmium chloride	genotoxicity and cytotoxicity	Fresh water fish	[35]
Cadmium emoride	cellular abnormalities and DNA	Labeo rohita	[33]
		(Hamilton)	
	damage Genotoxic effects	Dreissena	[50]
	Genotoxic effects		[59]
G. L. L.	Constant in the state in the	polymorpha	[120]
Cadmium, copper, lead	Genotoxicity and cytotoxicity	Nile tilapia,	[128]
and zinc		(Oreochromis	
Manager	Induction of micronuclei	niloticus)	[120]
Mercury		Cyprinus carpio	[129]
	Nuclear abnormalities	Wild and caged fish	[130]
	1 1 2 22	(Liza aurata)	121
Potassium	hemolytic effect	Rats	131
dichromat			
Arsenic	Fas-activated erythrocyte apoptosis	Rats	[132]
	Reduced cellular redox status,	Rats	[71]
	induced 4- hydroxynonenal-		
	mediated caspase 3 activation,		
	erythrocyte death		
	erythrocyte death	Human	[98]
Aluminium	Morphologic and functional		[27]
7 Halling III	alterations		
	Alter Morphology	Rabbit	[133]
Vanadium	Oxidative stress	II	[124]
v anadium aluminium	Oxidative stress	Human	[134]
aiuminium			
Iron	oxidative stress	Human	[135]
non	Oxidative stress	Truman	[133]
Fluoride	Apoptosis, altered membrane	Rat	[44]
Tuoride	integrity, altered cell morphology	Kai	[44]
	and size, induced moderate		
	ceramide formation,		
	ceramide formation,		
	Oxidative stress	Mice	[136]
Vanadate and	Attenuated defence system	Wistar rats	[137]
magnesium	Attenuated defence system	Wistai Tats	[137]
magnesium			
Iodoacetate, vanadate	Peroxidative membrane damage	human	[138]
and ferri	1 of oxidative memorane damage	naman	[130]
cyanide			
Lambda-cyhalothrin	Genotoxicity (micronucleus)	Fish (Garra rufa	[139]
Lamoua-cynaioumm	Genotoxicity (interoflucious)	(Pisces:	
		Cyprinidae)	
		уриниас)	
	Oxidative stress	Rat	[140]
	Oxidative stress	Rabbit	[92]
	decrease the activity of		[]
		l	l .

	acetylcholinesterase (AChE)		
	Micronuclei and nuclear	Mosquito fish	[141]
	abnormalities	(Gambusia affinis)	[]
	Micronucleus	Erythrocytes of the fish (<i>Cheirodon</i> interruptus)	[142]
Organophosphate pesticides (chlorpyrifos and malathion), synthetic pyrethroid pesticide (cypermethrin, lambda- cyhalothrin)	Genotoxicity (micronuclei)	Fish (Oreochromis mossambicus)	[143]
Pyrethroid	Lipid peroxidative damage and alterations in antioxidant status	Rat	[144]
Phenoxyherbicides	Production of free radicals	Human	[145]
Phenoxyherbicides (e.g., 2,4-dichlorophenoxyacetic acid (2,4-D-Na), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T-Na) and 4-chloro-2-methylphenoxyacetic acid (MCPA-Na)	Altered erythrocyte membrane fluidity and changed membrane proteins content	Erythrocytes	[146]
2,4- dichlorophenoxyacetic herbicide	Attenuated antioxidant defense system and induced lipid peroxidation	Rat	[45]
2,4- dichlorophenoxyacetic acid and butachlor.	Induced micronuclei and erythrocyte alterations	Catfish (Clarias batrachus)	[147]
-2,4-dichlorophenoxy acetic-acid- and butachlor	DNA damage by alkaline single cell gel electrophoresis	Catfish (Clarias batrachus)	[148]
Chlorpyrifos	Alterations in the profile of blood cells, alterations in the cytoskeleton [protein and lipids] of RBCs from wistar rats thus affecting the cell surface area	Wistar rats	[32]
	Lipid peroxidation and oxidative stress	Rat	[43]
	Genotoxicity, micronucleus	Freshwater fish (Channa punctatus)	[149]
Lindane	Oxidative stress	Rat	[150]
hexachlorocyclohexane	Biochemical and structural	Rat	[34]

	alterations		
Fenvalerate and its metabolite.	Morphological and biochemical perturbations	Rat	[151]
Endosulfan	The MN was observed in RBCs of chickens exposed to endosulfan	Chicks	[57]
Malathion and endosulfan	Changes in surface shapes and structural defects of RBCs of exposed to malathion and endosulfan	Rats	[30]
The herbicide (Roundup)	Micronuclei, nuclear abnormalities and DNA damage	Freshwater goldfish (Carassius auratus)	[152]
The herbicides AAtrex Nine-O-, Dual-960E-, Roundup-, and Sencor- 500F	DNA damage by comet (DNA fragmentation)	Erythrocytes from Rana catesbeiana (bullfrog) tadpoles	[153]
The fungicide (Propiconazole)	Genotoxicity (micronuclei)	Fresh water fish (Clarias batrachus)	[154]
Tributyltin	genotoxicity (micronucleus)	The fish <i>H</i> . <i>Malabaricus</i>	[125]
Anionic detergent	Echinocytosis	Bullhead, Ictalurus melas Rafinesque	[9]
Textile mill effluent	Micronuclei and other nuclear abnormalities	Oreochromis niloticus	[155]
Petroleum refinery and chromium processing plant effluents	Micronuclei and nuclear abnormalities	Oreochromis niloticus	[156]
Waters affected by refinery effluent	Micronucleus test and observation of nuclear alterations	Nile tilapia	[157]
Mitomycin-C (cytotoxic antineoplastic agent)	Nuclear abnormalities (micronuclei and nuclear buds)	Parrots (Aratinga canicularis)	[158]
Mitomycin C and cyclophosphamide	Micronuclei	Fathead minnow (Pimephales promelas)	[159]
Cyclophosphamide	Genotoxicity using the micronucleus assay and nuclear abnormalities	The tropical sea fish (Bathygobius soporator)	[160]
5-Fuorouracil	Micronuclei	Mouse	[161]
Cyadox	Altered antioxidant defense system and induced hemolysis	Rabbit	[11]

	Induced energy depletion by decreasing their ATP contents	Rabbit	[50]
2-[2-(acetylamino)-4- [bis(2- hydroxyethyl)amino]-5- methoxyphenyl]-5- amino-7-bromo-4- chloro-2H- benzotriazole (PBTA-6) and 4-amino-3,3'- dichloro-5,4'-dinitro- biphenyl (ADDB)	Genotoxicity DNA damage	Goldfish (Carassius auratus)	[162]
Dialkyl phthalate, bisphenol A, tetrabromodiphenyl ether	Micronuclei	Fish (Scophthalmus maximus)	[163]
Tert-Butyl hydroperoxide	Alters fatty acid incorporation into erythrocyte membrane phospholipid.	Human	[112]
4-nonylphenol	ATP content which consequently forces cells to show vacuolization and lead also to unequal distributed hemoglobin which resulted in RBCs cytoplasmic vacuoles	African catfish (Clarias gariepinus Burchell)	[48]
acrylamide	Cytogenetic effects	Carassius auratus	[58]
Naphthalene and β- naphthoflavone	Erythrocytic nuclear abnormalities	Anguilla anguilla L.	[164]
Ethyl methane sulphonate	Nuclear anomalies (micronuclei)	Fish (eastern mudminnow Umbra pygmaea	[165]
Ethanol	erythrocyte membrane	Rats	[166]
Hydrogen peroxide	Oxidative damage	Rat	[167]
Irradiation (gamma-ray)	Induced biochemical changes, generate reactive oxygen species (ROS), deformability, lipid peroxidation	Human	[168]
X-rays and colchicines	Micronuclei induced	Cyprinus carpio (teleostei, pisces)	[169]
Flavonoids of Aristotelia chilensis Maqui leaves	Morphological alterations represented by echinocytic form	Human	[31]

Highlights

- Exposure of the body to xenobiotics results in cytotoxicity and genotoxicity
- Erythrocytes contain specific structure and antioxidant system
- Erythrocytes with its structure are valuable in screening of xenobiotics toxicity