

WIFI 5GHz Template: Release October 03rd, 2016

TEST REPORT

N°: 145064-694081E Version : 01

Subject Radio spectrum matters

tests according to standards: 47 CFR Part 15.407 (DFS Only)₽

Issued to SAGEMCOM BROADBAND SAS

250 Route de l' Empereur 92500 – RUEIL MALMAISON

FRANCE

Apparatus under test

♦ Product DGCI384 UHD Alt US

♦ Trade mark
SAGEMCOM
♦ Manufacturer
SAGEMCOM

♦ Model under test TheBox (253697282)

♦ Serial number
 ♦ FCC ID
 616400107098
 ♦ W3DGCI384

Test date : November 7, 2016 to December 14, 2016

Test location Fontenay Aux Roses & Ecuelles

Composition of document 91 pages

Document issued on January 9, 2017

Written by:
Mathieu CERISIER
Tests operator

Approved by:

Stéphane PHOUDIAH
LABORATOIRE CENTRAL DES
LABORATOIRE CENTRAL DES
LABORATOIRE CENTRAL DES
LABORATOIRE GENTRAL DES
S.A.S au capital de 15.745,984 €
RCS Nanterre B 40R 363 174
33 avenue du General Leclerc
F - 92206 FUNTENAY AUX ROSES

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas 33, Av du Général Leclerc 92266 Fontenay Aux Roses FRANCE Tél: +33 1 40 95 60 60 contact@lcie.fr www.lcie.fr

/ N° SIRET 408 363 174 00017

PUBLICATION HISTORY

Version	Date	Author	Modification
01	January 6, 2017	Mathieu CERISIER	Creation of the document

SUMMARY

1.	TEST PROGRAM	4
2.	EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
3. LOAE	DFS DETECTION THRESHOLDS DETERMINATION, REFERENCE NOISE LEVEL & CHANNEL	21
4. DETE	DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL AVAILABILITY CHECK & DFS	29
5.	DYNAMIC FREQUENCY SELECTION (DFS): U-NII DETECTION BANDWIDTH	34
6.	DYNAMIC FREQUENCY SELECTION (DFS): STATISTICAL PERFORMANCE CHECK	39
7. CHAN	DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL CLOSING TRANSMISSION TIME & NNEL MOVE TIME	45
8.	DYNAMIC FREQUENCY SELECTION (DFS): NON-OCCUPANCY PERIOD	49
9.	ANNEX 1: U-NII DETECTION BANDWIDTH DATA SHEET	53
10.	ANNEX 2: STATISTICAL PERFORMANCE CHECK DATA SHEET	55
11.	ANNEX 3: RADAR TEST SIGNAL TYPE 5 & 0	61
12.	UNCERTAINTIES CHART	91

1. TEST PROGRAM

References

- > 47 CFR Part 15.407 (DFS requirements)
- KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
- > KBD 905462 D04 Test Mode New Rules v01
- KDB 905462 D03 Client Without DFS New Rules v01r01
- > KDB 905462 D06 802.11 Channel Plans New Rules v02
- KDB905462 D07 Overview UNII Rules v01

Radio requirement:

Clause (47CFR Part 15.407) Test Description	Test result - Comments			
Channel Availability Check Time & DFS Detection Threshold ₽	☑ PASS	□ FAIL	□ NA(1)(2)	□ NP(3)
U-NII Detection Bandwidth №	☑ PASS	□ FAIL	□ NA(1)	□ NP(3)
Statistical Performance Check & DFS Detection Threshold 🏱	☑ PASS	□ FAIL	□NA	□ NP(3)
Channel Closing Transmission Time & Channel Move Time 🏱	☑ PASS	□ FAIL	□NA	□ NP(3)
Non-occupancy period №	☑ PASS	□ FAIL	□ NA(1)	□ NP(3)
This table is a summary of test report, see conclusion of each clause of this test report for detail.				

- (1): Client without radar detection
- (2): Client with radar detection
- (3): Limited program

2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT): SAGEMCOM TheBox (253697282)

Serial Number: 616400107098

Equipment Under Test

Equipment Under Test

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
1	Power Supply	-				-

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Wireless AC1750 Dual Band	DLINK DIR-868L	RZ641E8004888	FCC ID:RRK2012060056-1
Gigabit Cloud Router	DEINK DIK-606L	KZ041E0004688	IC ID: 4833A-WMCA01A1
Laptop			Use to set the EUT & the
Гартор	-	1	communication traffic
Laptop			Use to set the EUT & the
Сартор	_	-	communication traffic
Power supply°1	NBS60C120500M2	16366C25200017	P/N:191363252-xx
Power supply°2	LPL-C060120500ZS	1637215590020	P/N:191363559-XX
Power supply°3	MSA-Z5000IS12.0- 60A-P	H16386E6950010	P/N:191363695-XX
Power supply°4	A15-060P1A	16413K72800092	P/N:191363728

Equipment information:

<u>Equipment informations</u>								
Type:	WIFI							
Frequency band:	☑ 5150MHz-5250MHz ☑ 5250MHz-			∑ 5	470MHz-5725MHz			
riequency band.	☑ 5725MHz-5850MHz							
	☑ 802.11a		☑ 802.11n HT20		☑ 802.11n HT40			
Standard:	☑ 802.11ac VHT20		☑ 802.11ac VHT40		☑ 802.11ac VHT80			
		□ 802.11ac VHT160						
Spectrum Modulation:			☑ 0	FDM				
Channel bandwidth:	☑ 20MHz		☑ 40MHz	☑ 80MH	Z	□ 160MHz		
Antenna Type:	✓ Integra	al	☐ Exte	rnal		□ Dedicated		
Antenna connector:			□ N	0		Temporary for test		
Transmit chains:	□ 1		□ 2	□ 3		☑ 4		
	□ 5		□ 6	□ 7		□ 8		
TPC:		✓ Yes			□ No			
Receiver chains	□ 1 = =	□ 2		□ 3		☑ 4		
	□ 5	□ 6		□ 7		□ 8		
Type of equipment:	☑ Stand-al		☐ Plug			☐ Combined		
	Tmin: □ -20°C		☑ 0°C		□X°C			
Operating temperature range:	Tnom:		20°C					
	Tmax:		□ 35°C	□ 55°C		☑ 45 °C		
Type of power source:	☑ AC power supply		☐ DC powe	er supply	□ B	attery Battery Type		
Operating voltage range:	Vnom:		☑ 120V/60Hz		□ X Vdc			
Mode:	☑ Master		☐ Slave with radar detection		☐ Slave without radar detection			
		☑ Bridge	!	☐ Mesh		/lesh		
Fixed outdoor P to P/M application:	□ Yes			☑ No				
System architectures:	☑ IP based ☐ Frame based				ie based			
Time require for EUT to complete its power cycle on	X s							
User access restriction:	☑ Yes (The manufacturer declares that information regarding the parameters of the detected Radar Waveforms is not available to the end user)		□ No					

Antenna Characteristic				
Antenna assembly	enna assembly Gain (dBi) Frequency Band (MHz)		Impedance(Ω)	
1	2dBi (worst case and assumed to be equal)	5180-5825	50	
2	2dBi (worst case and assumed to be equal)	5180-5825	50	
3	2dBi (worst case and assumed to be equal)	5180-5825	50	
4	2dBi (worst case and assumed to be equal)	5180-5825	50	
Accumulated	8dBi for correlated signals as defined in KDB662911, page 6 F.2.d.i overall product positions in elevation and angle	5180-5825	50	

	CHANNEL PLAN				
	802.11a / 802.11n HT20/ 802.11ac VHT20				
Channel	Frequency (MHz)	Available Channel			
36	5180				
40	5200	\blacksquare			
44	5220				
48	5240				
52	5260	Ø			
56	5280				
60	5300				
C6=64	5320	\square			
C7=100	5500	\blacksquare			
104	5520				
108	5540	\square			
112	5560	\square			
116	5580				
120	5600	Ø			
124	5620	\square			
128	5640	Ø			
132	5660				
136	5680				
140	5700				
149	5745				
153	5765				
157	5785				
161	5805	Ø			
165	5825	Ø			

	CHANNEL PLAN					
	802.11n HT40/ 802.11ac VHT40					
Channel	Channel Frequency (MHz) A					
36+40	5190	Ø				
44+48	5230					
52+56	5270	Ø				
C17=60+64	5310	Ø				
C18=100+104	5510					
108+112	5550	Ø				
116+120	5590					
124+128	5630					
132+136	5670	Ø				
140+144	5710	Ø				
149+153	5755	Ø				
157+161	5795	V				

CHANNEL PLAN						
	802.11ac VHT80					
Channel Frequency (MHz) Available Chann						
36+40+44+48	5210	\square				
C25=52+56+60+64	5290					
C26=100+104+108+112	5530					
116+120+124+128	5610					
132+136+140+144	5690					
149+153+157+161	5775					

No DFS Channel				
I	DFS Channel			
ĺ	Weather DFS Channel			

DATA RATE						
	802.11a					
Data Rate (Mbps)	Modulation Type	Modulation Worst Case				
6	BPSK	V				
9	BPSK					
12	QPSK					
18	QPSK					
24	16-QAM					
36	16-QAM					
48	64-QAM					
54	64-QAM					

					DATA R	ATE			
		1	1		802.11n	HT20	2.0	. (84)	
Available for EUT	MCS Index	Spatial streams		Modulation			(GI = 800ns)	ate (Mbps) (GI = 400ns)	Worst Case Modulation
	0	Streams		BPS	SK		6.5	7.2	Wodulation
\square	1	1		QPS			13	14.4	
✓	2	1		QPS			19.5	21.7	
✓	3	1		16-Q			26	28.9	
✓	4	1		16-Q			39	43.3	
✓	5	11		64-Q			52	57.8	
✓	6	1 1	+	64-Q 64-Q			58.5 65	65 72.2	
	8	2	+	BPS			13	14.4	✓
<u> </u>	9	2		QPS			26	28.9	
✓	10	2		QPS			39	43.3	
☑	11	2		16-Q			52	57.8	
✓	12	2		16-Q			78	86.7	
✓	13	2		64-Q			104	115.6	
✓	14	2		64-Q			117	130.3	
✓	15 16	3	 	64-Q BPS			130 19.5	144.4 21.7	
∀	17	3		QPS			39	43.3	
∀	18	3	+	QPS			58.5	65	
<u> </u>	19	3	1	16-Q			78	86.7	
<u> </u>	20	3	1	16-Q			117	130	
	21	3		64-Q	AM		156	173.3	
✓	22	3		64-Q			175.5	195	
✓	23	3	1	64-Q			195	216.7	
✓	24	4		BPS			26	28.9	<u> </u>
✓	25	4	1	QPS			52	57.8	
✓	26 27	4	+	QPS 16-Q			78 104	86.7 115.6	
✓	28	4	+	16-Q			156	173.3	
<u> </u>	29	4	+	64-Q			208	231.1	
<u> </u>	30	4		64-Q			234	260	
✓	31	4		64-Q			260	288.9	
	32	1	BPSK	-	-	-	-	-	
	33	2	16-QAM	QPSK	-	-	39	43.3	
	34	2	64-QAM	QPSK	-	-	52	57.8	
	35	2	64-QAM	16-QAM	-	-	65	72.2	
	36 37	2 2	16-QAM 64-QAM	QPSK QPSK	-	-	58.5 78	65 86.7	
	38	2	64-QAM	16-QAM	-	-	97.5	108.3	
	39	3	16-QAM	QPSK	QPSK	-	52	57.8	
	40	3	16-QAM	16-QAM	QPSK	-	65	72.2	
	41	3	64-QAM	QPSK	QPSK	-	65	72.2	
	42	3	64-QAM	16-QAM	QPSK	-	78	86.7	
	43	3	64-QAM	16-QAM	16-QAM	-	91	101.1	
	44	3	64-QAM	64-QAM	QPSK	-	91	101.1	
	45	3	64-QAM	64-QAM	16-QAM	-	104	115.6	
	46 47	3	16-QAM 16-QAM	QPSK 16-QAM	QPSK QPSK	-	78 97.5	86.7 108.3	
	47	3	64-QAM	QPSK	QPSK	-	97.5 97.5	108.3	
	49	3	64-QAM	16-QAM	QPSK	-	117	130	
	50	3	64-QAM	16-QAM	16-QAM	-	136.5	151.7	
	51	3	64-QAM	64-QAM	QPSK	-	136.5	151.7	
	52	3	64-QAM	64-QAM	16-QAM	-	156	173.3	
	53	4	16-QAM	QPSK	QPSK	QPSK	65	72.2	
	54	4	16-QAM	16-QAM	QPSK	QPSK	78	86.7	
	55	4	16-QAM	16-QAM	16-QAM	QPSK	91	101.1	
	56 57	4	64-QAM 64-QAM	QPSK 16-QAM	QPSK QPSK	QPSK QPSK	78 91	86.7 101.1	
	58	4	64-QAM	16-QAM	16-QAM	QPSK	104	115.6	
	59	4	64-QAM	16-QAM	16-QAM	16-QAM	117	130	
	60	4	64-QAM	QPSK	QPSK	QPSK	104	115.6	
	61	4	64-QAM	16-QAM	16-QAM	QPSK	117	130	
	62	4	64-QAM	16-QAM	16-QAM	16-QAM	130	144.4	
	63	4	64-QAM	64-QAM	64-QAM	QPSK	130	144.4	
	64	4	64-QAM	64-QAM	64-QAM	16-QAM	143	158.9	
	65	4	16-QAM	QPSK 16 OAM	QPSK	QPSK	97.5	108.3	
	66 67	4	16-QAM 16-QAM	16-QAM 16-QAM	QPSK 16-QAM	QPSK QPSK	117 136.5	130 151.7	
	68	4	64-QAM	QPSK	QPSK	QPSK	117	130	
	69	4	64-QAM	16-QAM	QPSK	QPSK	136.5	151.7	
	70	4	64-QAM	16-QAM	16-QAM	QPSK	156	173.3	
	71	4	64-QAM	16-QAM	16-QAM	16-QAM	175.5	195	
	72	4	64-QAM	64-QAM	QPSK	QPSK	156	173.3	
	73	4	64-QAM	64-QAM	16-QAM	QPSK	175.5	195	
	74	4	64-QAM	64-QAM	16-QAM	16-QAM	195	216.7	
	75 76	4	64-QAM	64-QAM	64-QAM	QPSK 16 OAM	195	216.7	
	76	4	64-QAM	64-QAM	64-QAM	16-QAM	214.5	238.3	

March March Mediusters						DATA R	ATE			
			1	1		802.11n	HT40			
B					Modulation					
C					BPS	SK			` '	
20			1							
E			_							
Dec Color										
R				+						
State				1						
E										
S	\checkmark	8	2							
S										
B										
Description				+						
S				+						
□ 16 3 BPSK 40.5 48 □ □ □ □ □ □ □ □ □										
S			2						300	
9 18 3										
B										
S				+						
21 3										
B				1						
S	\checkmark	22			64-Q	AM				
B										
S										
				1						
S				+						
E 29 4 64-OAM 486 540 □ E 31 4 64-OAM 540 600 □ E 31 4 64-OAM 540 600 □ □ 32 1 BPSK - - 60 6.7 □ □ 33 2 16-OAM OPSK - - 81 900 □ □ 38 2 16-OAM OPSK - - 181 900 □ □ 36 2 16-OAM OPSK - - 1121 155 □ □ □ 38 2 16-OAM OPSK - - 102 185 □ □ 38 2 16-OAM OPSK - 108 122 □ □ □ 40 3 16-OAM OPSK - 108 120 □ □										
□ 32			4		64-Q	AM				
□ 33 2 116-QAM QPSK			_		64-Q	AM				
□ 34					-					
□ 35										
□ 36 2 16-OAM QPSK										
□ 37						_	_			
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			2			-	-	162	180	
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□										
□ 42 3 64-QAM 16-QAM QPSK - 162 180 □ □ 43 3 3 64-QAM 64-QAM QPSK - 189 210 □ □ 44 3 3 64-QAM 64-QAM QPSK - 189 210 □ □ 45 3 64-QAM 64-QAM QPSK - 189 210 □ □ 46 3 16-QAM 64-QAM QPSK - 189 210 □ □ 46 3 16-QAM 64-QAM QPSK - 162 180 □ □ 47 3 16-QAM 16-QAM QPSK - 202.5 225 □ □ 48 3 64-QAM 16-QAM QPSK - 202.5 225 □ □ 49 3 64-QAM 16-QAM QPSK - 202.5 225 □ □ 50 3 64-QAM 16-QAM QPSK - 243 270 □ □ 51 3 64-QAM 64-QAM QPSK - 283.5 315 □ □ 51 3 64-QAM 64-QAM QPSK - 324 360 □ □ 52 3 64-QAM 64-QAM QPSK - 324 360 □ □ 53 4 16-QAM QPSK QPSK - 324 360 □ □ 55 4 16-QAM QPSK QPSK 135 150 □ □ 55 4 16-QAM QPSK QPSK QPSK 189 210 □ □ 55 4 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 55 4 4 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 55 4 4 16-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 55 4 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 55 4 4 64-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 55 4 4 64-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 65 4 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 56 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 56 4 64-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 56 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 56 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 66 4 64-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 66 4 64-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 64 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 65 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 67 4 16-QAM 16-QAM 16-QAM 270 300 □ □ 68 4 64-QAM 16-QAM 16-QAM 270 300 □ □ 68 4 64-QAM 16-QAM 16-QAM 270 300 □ □ 67 4 16-QAM 16-QAM 16-QAM 270 300 □ □ 67 4 16-QAM 16-QAM 16-QAM 270 300 □ □ 67 4 16-QAM 16-QAM 16-QAM 270 300 □ □ 67 4 16-QAM 16-QAM 16-QAM 270 300 □ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
□										
□ 466 3 16-QAM QPSK QPSK - 162 180 □ 47 3 16-QAM 16-QAM QPSK - 202.5 225 □ 48 3 64-QAM QPSK QPSK - 202.5 225 □ 48 3 64-QAM QPSK QPSK - 202.5 225 □ 64 49 3 64-QAM 16-QAM QPSK - 243 270 □ 65 0 3 64-QAM 16-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM 64-QAM QPSK - 283.5 315 □ 65 0 3 64-QAM QPSK QPSK - 283.5 315 □ 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						QPSK	-			
□ 47 3 16-QAM 16-QAM QPSK - 202.5 225 □ 48 3 64-QAM 16-QAM QPSK - 202.5 225 □ 50 49 3 64-QAM 16-QAM 16-QAM - 283.5 315 □ 51 3 64-QAM 64-QAM QPSK - 283.5 315 □ 51 3 64-QAM 64-QAM 16-QAM - 324 360 □ 52 3 64-QAM 16-QAM 16-QAM - 324 360 □ 53 4 16-QAM QPSK QPSK QPSK 135 150 □ 54 4 16-QAM 16-QAM QPSK QPSK 135 150 □ 55 4 16-QAM 16-QAM QPSK QPSK 135 150 □ 55 4 16-QAM 16-QAM QPSK QPSK 189 210 □ 55 4 16-QAM 16-QAM QPSK QPSK 162 180 □ 55 4 16-QAM 16-QAM QPSK QPSK 162 180 □ 55 4 16-QAM 16-QAM QPSK QPSK 162 180 □ 55 4 16-QAM 16-QAM QPSK QPSK 162 180 □ 55 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 55 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 55 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 56 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 57 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 57 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 58 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 58 4 64-QAM 16-QAM QPSK QPSK 162 180 □ 58 4 64-QAM 16-QAM QPSK QPSK 216 240 □ 59 4 64-QAM 16-QAM 16-QAM 243 270 □ 50 60 4 64-QAM 16-QAM 16-QAM 275 243 270 □ 60 64 4 64-QAM 16-QAM 16-QAM 275 300 □ 60 64 64-QAM 64-QAM 16-QAM 275 300 □ 60 64 64-QAM 64-QAM 16-QAM 275 300 □ 60 64 64-QAM 64-QAM 64-QAM 16-QAM 2770 300 □ 60 64 64-QAM 64-QAM 64-QAM 16-QAM 2770 300 □ 60 65 4 64-QAM 64-QAM 64-QAM 275 300 □ 60 66 6 4 16-QAM 64-QAM 64-QAM 275 300 □ 60 66 6 4 16-QAM 64-QAM 64-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 16-QAM 275 300 □ 60 66 6 4 16-QAM 364-QAM										
□ 48 3 64-OAM OPSK QPSK - 202.5 225 □ □ 49 3 64-OAM 16-OAM 16-OAM QPSK - 243 270 □ □ 50 3 64-OAM 18-OAM 16-OAM - 283.5 315 □ □ 51 3 64-OAM 64-OAM QPSK - 283.5 315 □ □ 52 3 64-OAM 64-OAM (64-OAM 16-OAM - 324 380 0 □ □ 52 3 4 16-OAM 16-OAM 16-OAM - 324 380 □ □ 53 4 16-OAM 16-OAM 16-OAM - 324 380 □ □ 55 4 16-OAM 16-OA										
□ 49 3 64-QAM 16-QAM QPSK - 243 270 □ □ 50 3 64-QAM 16-QAM 16-QAM - 283.5 315 □ □ 51 3 64-QAM 64-QAM QPSK - 283.5 315 □ □ 52 3 64-QAM 64-QAM 16-QAM - 324 360 □ □ 52 3 64-QAM QPSK QPSK QPSK 135 150 □ □ 53 4 16-QAM QPSK QPSK QPSK 135 150 □ □ 54 4 16-QAM 16-QAM QPSK QPSK 140 150 1 150 □ □ 55 4 4 16-QAM 16-QAM QPSK QPSK 162 180 □ □ 55 4 16-QAM 16-QAM QPSK QPSK 162 180 □ □ 56 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 56 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 57 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 57 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 57 4 64-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 58 4 64-QAM 16-QAM 16-QAM 16-QAM 2PSK 216 240 □ □ 60 4 64-QAM 16-QAM 16-QAM 16-QAM 2PSK 216 240 □ □ 60 4 64-QAM 16-QAM 16-QAM 16-QAM 243 270 □ □ 60 4 64-QAM 16-QAM 16-QAM 243 270 □ □ 60 4 64-QAM 16-QAM QPSK QPSK 216 240 □ □ 61 4 64-QAM 16-QAM 16-QAM QPSK 216 240 □ □ 61 4 64-QAM 16-QAM QPSK QPSK 216 240 □ □ 61 64 64-QAM 64-QAM 16-QAM QPSK 220 250 □ 63 4 64-QAM 64-QAM 16-QAM QPSK 220 250 □ 66 4 64-QAM 64-QAM 64-QAM QPSK 220 250 □ 66 4 64-QAM 64-QAM QPSK QPSK 220 300 □ □ 64 4 64-QAM 64-QAM QPSK QPSK 220 300 □ □ 64 4 64-QAM 64-QAM QPSK QPSK 220 300 □ □ 65 4 16-QAM QPSK QPSK 243 270 □ □ 66 6 4 16-QAM QPSK QPSK 243 270 □ □ 66 6 4 16-QAM QPSK QPSK 243 270 □ □ 66 6 4 16-QAM QPSK QPSK 243 270 □ □ 66 6 4 16-QAM QPSK QPSK 243 270 □ □ 66 6 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 243 270 □ □ 67 4 16-QAM QPSK QPSK 243 243 260 □ □ 70 4 64-QAM 16-QAM QPSK QPSK 243 243 260 □ □ 70 4 64-QAM 64-QAM 16-QAM QP										
□ 50 3 64-QAM 16-QAM 16-QAM - 283.5 315 □ □ 51 3 64-QAM 64-QAM QPSK - 283.5 315 □ □ 52 3 64-QAM 84-QAM 16-QAM - 324 360 □ □ 53 4 16-QAM QPSK QPSK QPSK 135 150 □ □ 54 4 16-QAM 16-QAM QPSK QPSK 162 180 □ □ 55 4 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 56 4 64-QAM QPSK QPSK QPSK 189 210 □ □ 57 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 58 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 57 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 58 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 58 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 59 4 64-QAM 16-QAM 16-QAM QPSK QPSK 189 210 □ □ 60 4 64-QAM 16-QAM 16-QAM 16-QAM 243 270 □ □ 60 4 64-QAM 16-QAM 16-QAM 16-QAM 243 270 □ □ 61 4 64-QAM 16-QAM 16-QAM 16-QAM 243 270 □ □ 62 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 63 4 64-QAM 16-QAM 16-QAM 16-QAM 270 300 □ □ 64 4 64-QAM 64-QAM 16-QAM 16-QAM 270 300 □ □ 65 4 16-QAM 64-QAM 64-QAM 16-QAM 270 300 □ □ 66 4 4 64-QAM 64-QAM 64-QAM 16-QAM 270 300 □ □ 67 4 16-QAM 16-QAM 16-QAM 270 300 □ □ 68 4 16-QAM 64-QAM 64-QAM 16-QAM 270 300 □ □ 69 4 16-QAM 16-QAM 16-QAM 270 300 □ □ 66 4 16-QAM 16-QAM 16-QAM 270 300 □ □ 67 4 16-QAM 16-QAM 16-QAM 285K 283.5 315 □ □ 68 4 64-QAM 16-QAM 16-QAM 285K 283.5 315 □ □ 67 4 16-QAM 16-QAM 16-QAM 285K 283.5 315 □ □ 67 4 16-QAM 16-QAM 16-QAM 285K 283.5 315 □ □ 67 4 16-QAM 16-QAM 16-QAM 384.5 405 □ □ 70 4 64-QAM 16-QAM 16-QAM 384.5 405 □ □ 71 4 64-QAM 16-QAM 16-QAM 384.5 405 □ □ 72 4 4 64-QAM 16-QAM 16-QAM 384.5 405 □ □ 73 4 64-QAM 16-QAM 16-QAM 384.5 405 □ □ 74 4 64-QAM 16-QAM 16-QAM 16-QAM 384.5 405 □ □ 75 4 64-QAM 64-QAM 16-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 16-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 16-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 16-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 16-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 16-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 64-QAM 64-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 64-QAM 64-QAM 405 4450 □ □ 75 4 64-QAM 64-QAM 64-QAM 64-QAM 405 4450 □										
□ 51 3 64-QAM 64-QAM — 283.5 315 □ □ 52 3 64-QAM 64-QAM 16-QAM 1-324 360 □ □ 53 4 16-QAM QPSK QPSK 135 150 □ □ 54 4 16-QAM 16-QAM QPSK QPSK 180 □ □ 55 4 16-QAM 16-QAM 16-QAM 16-QAM 189 210 □ □ 56 4 64-QAM 16-QAM 16-QAM 189 210 □ 56 4 64-QAM 16-QAM 189 210 □ □ 57 4 64-QAM 16-QAM 16-QAM 189 210 □ □ 59 4 64-QAM 16-QAM 16-QAM 18-QAM 18-QAM 216 240 □ □ 64-QAM 16-QAM 16-QAM 18-QAM 216 240 □ □ 64-QAM<										
53		51	3	64-QAM		QPSK	-	283.5	315	
□ 54										
□ 55 4 16-QAM 16-QAM QPSK 189 210 □ □ 566 4 64-QAM QPSK QPSK QPSK 189 210 □ □ 566 4 64-QAM QPSK QPSK QPSK 189 210 □ □ □ 557 4 64-QAM 16-QAM QPSK QPSK QPSK 189 210 □ □ □ 58 4 64-QAM 16-QAM QPSK QPSK 216 240 □ □ □ 69 4 64-QAM 16-QAM 16-QAM 16-QAM 243 270 □ □ □ 61 4 64-QAM 16-QAM 16-QAM 16-QAM 270 □ □ 0 □ 0 □ 0 □ 0 □ 0 □ 0 0 □ 0 0 □ 0 0 □ 0 0 0 0 0 0										
□ 56 4 64-QAM QPSK QPSK QPSK 162 180 □ □ 57 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 58 4 64-QAM 16-QAM 16-QAM QPSK 216 240 □ □ 59 4 64-QAM 16-QAM 16-QAM 243 270 □ □ 60 4 64-QAM QPSK QPSK QPSK 216 240 □ □ 61 4 64-QAM 16-QAM 16-QAM QPSK 29SK 243 270 □ □ 62 4 64-QAM 16-QAM 16-QAM 270 300 □ □ 663 4 64-QAM 64-QAM 64-QAM 297 330 □ □ 664 4 64-QAM 64-QAM 64-QAM 297 330 □ □ 666 4 16-QAM										
□ 57 4 64-QAM 16-QAM QPSK QPSK 189 210 □ □ 58 4 64-QAM 16-QAM QPSK 216 240 □ □ 59 4 64-QAM 16-QAM 16-QAM 243 270 □ □ 60 4 64-QAM QPSK QPSK QPSK 216 240 □ □ 61 4 64-QAM QPSK QPSK QPSK 216 240 □ □ 61 4 64-QAM QPSK QPSK QPSK 216 240 □ □ 61 4 64-QAM QPSK QPSK 243 270 □ □ 66 240 □ □ 66 240 □ □ 66 240 □ □ 66 240 □ □ 0 □ 0 0 □ 0 □ 0 □ 0 □ 0 □ 0 0 <										
□ 58 4 64-QAM 16-QAM 16-QAM 216 240 □ □ 59 4 64-QAM 16-QAM 16-QAM 243 270 □ □ 60 4 64-QAM QPSK QPSK QPSK 216 240 □ □ 61 4 64-QAM 16-QAM 16-QAM QPSK 243 270 □ □ 62 4 64-QAM 16-QAM 16-QAM 270 300 □ □ 63 4 64-QAM 64-QAM 16-QAM 270 300 □ □ 64 4 64-QAM 64-QAM 64-QAM 270 300 □ □ 65 4 16-QAM 64-QAM 16-QAM 297 330 □ □ 66 4 16-QAM QPSK QPSK 202.5 225 □ □ 67 4 16-QAM 16-QAM										
□ 60 4 64-QAM QPSK QPSK QPSK 216 240 □ □ 61 4 64-QAM 16-QAM 16-QAM QPSK 243 270 □ □ 62 4 64-QAM 16-QAM 16-QAM 270 300 □ □ 63 4 64-QAM 64-QAM 16-QAM 270 300 □ □ 64 4 64-QAM 64-QAM 16-QAM 297 330 □ □ 65 4 16-QAM 69-SK QPSK 202.5 225 □ □ 66 4 16-QAM QPSK QPSK 202.5 225 □ □ 67 4 16-QAM 16-QAM QPSK 283.5 315 □ □ 68 4 64-QAM 16-QAM QPSK 283.5 315 □ □ 69 4 64-QAM 16-QAM		58	4	64-QAM	16-QAM	16-QAM	QPSK	216	240	
□ 61 4 64-QAM 16-QAM 16-QAM QPSK 243 270 □ □ 62 4 64-QAM 16-QAM 16-QAM 270 300 □ □ 63 4 64-QAM 64-QAM QPSK 270 300 □ □ 64 4 64-QAM 64-QAM 16-QAM 297 330 □ □ 65 4 16-QAM QPSK QPSK 202.5 225 □ □ 66 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM 16-QAM QPSK 283.5 315 □ □ 68 4 64-QAM QPSK QPSK 243 270 □ □ 69 4 64-QAM QPSK QPSK 283.5 315 □ □ 70 4 64-QAM 16-QAM QPSK										
□ 62 4 64-QAM 16-QAM 16-QAM 270 300 □ □ 63 4 64-QAM 64-QAM QPSK 270 300 □ □ 64 4 64-QAM 64-QAM 16-QAM 297 330 □ □ 65 4 16-QAM QPSK QPSK QPSK 202.5 225 □ □ 66 4 16-QAM QPSK QPSK QPSK 225 □ □ □ 67 4 16-QAM QPSK QPSK 283.5 315 □ □ 68 4 64-QAM QPSK QPSK QPSK 243 270 □ □ □ 69 4 64-QAM QPSK QPSK QPSK 283.5 315 □ □ □ 0 □ 0 □ 0 □ 0 □ 0 □ 0 0 □ 0 0										
□ 63 4 64-QAM 64-QAM 64-QAM 270 300 □ □ 64 4 64-QAM 64-QAM 16-QAM 297 330 □ □ 65 4 16-QAM QPSK QPSK 202.5 225 □ □ 66 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM 16-QAM QPSK 283.5 315 □ □ 68 4 64-QAM QPSK QPSK 243 270 □ □ 68 4 64-QAM QPSK QPSK 283.5 315 □ □ 69 4 64-QAM QPSK QPSK 283.5 315 □ □ 70 4 64-QAM 16-QAM QPSK 283.5 315 □ □ 71 4 64-QAM 16-QAM QPSK 324 <										
□ 64 4 64-QAM 64-QAM 16-QAM 297 330 □ □ 65 4 16-QAM QPSK QPSK 202.5 225 □ □ 66 4 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM 16-QAM QPSK 283.5 315 □ □ 68 4 64-QAM QPSK QPSK 283.5 315 □ □ 69 4 64-QAM 16-QAM QPSK QPSK 283.5 315 □ □ 70 4 64-QAM 16-QAM QPSK 283.5 315 □ □ 71 4 64-QAM 16-QAM QPSK 324 360 □ □ 71 4 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 72 4 64-QAM 64-QAM QPSK										
□ 65 4 16-QAM QPSK QPSK QPSK 202.5 225 □ □ 66 4 16-QAM 16-QAM QPSK QPSK 243 270 □ □ 67 4 16-QAM 16-QAM QPSK 283.5 315 □ □ 68 4 64-QAM QPSK QPSK QPSK 243 270 □ □ 69 4 64-QAM 16-QAM QPSK QPSK 283.5 315 □ □ 70 4 64-QAM 16-QAM QPSK 324 360 □ □ 71 4 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 72 4 64-QAM 64-QAM QPSK 364.5 405 □ □ 73 4 64-QAM 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 75										
□ 67 4 16-QAM 16-QAM QPSK 283.5 315 □ □ 68 4 64-QAM QPSK QPSK QPSK 243 270 □ □ 69 4 64-QAM 16-QAM QPSK 283.5 315 □ □ 70 4 64-QAM 16-QAM QPSK 324 360 □ □ 71 4 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 72 4 64-QAM 64-QAM QPSK 324 360 □ □ 73 4 64-QAM 16-QAM QPSK 324 360 □ □ 73 4 64-QAM 16-QAM QPSK 364.5 405 □ □ 74 4 64-QAM 16-QAM 16-QAM 405 450 □ □ 75 4 64-QAM 64-QAM QPSK		65	4	16-QAM	QPSK		QPSK	202.5	225	
□ 68 4 64-QAM QPSK QPSK QPSK 243 270 □ □ 69 4 64-QAM 16-QAM QPSK QPSK 283.5 315 □ □ 70 4 64-QAM 16-QAM QPSK 324 360 □ □ 71 4 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 72 4 64-QAM QPSK QPSK 324 360 □ □ 73 4 64-QAM 64-QAM QPSK 364.5 405 □ □ 74 4 64-QAM 64-QAM 16-QAM 16-QAM 405 450 □ □ 75 4 64-QAM 64-QAM 64-QAM QPSK 405 450 □										
□ 69 4 64-QAM 16-QAM QPSK QPSK 283.5 315 □ □ 70 4 64-QAM 16-QAM 16-QAM QPSK 324 360 □ □ 71 4 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 72 4 64-QAM 64-QAM QPSK 324 360 □ □ 73 4 64-QAM 64-QAM 16-QAM QPSK 364.5 405 □ □ 74 4 64-QAM 64-QAM 16-QAM 16-QAM 405 450 □ □ 75 4 64-QAM 64-QAM 64-QAM QPSK 405 450 □										
□ 70 4 64-QAM 16-QAM QPSK 324 360 □ □ 71 4 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 72 4 64-QAM 64-QAM QPSK 324 360 □ □ 73 4 64-QAM 64-QAM 16-QAM QPSK 364.5 405 □ □ 74 4 64-QAM 64-QAM 16-QAM 16-QAM 405 450 □ □ 75 4 64-QAM 64-QAM 64-QAM QPSK 405 450 □										
□ 71 4 64-QAM 16-QAM 16-QAM 364.5 405 □ □ 72 4 64-QAM 64-QAM QPSK 324 360 □ □ 73 4 64-QAM 16-QAM QPSK 364.5 405 □ □ 74 4 64-QAM 64-QAM 16-QAM 16-QAM 405 450 □ □ 75 4 64-QAM 64-QAM 64-QAM QPSK 405 450 □										
□ 72 4 64-QAM 64-QAM QPSK 324 360 □ □ 73 4 64-QAM 64-QAM QPSK 364.5 405 □ □ 74 4 64-QAM 64-QAM 16-QAM 405 450 □ □ 75 4 64-QAM 64-QAM QPSK 405 450 □										
□ 73 4 64-QAM 64-QAM 16-QAM QPSK 364.5 405 □ □ 74 4 64-QAM 64-QAM 16-QAM 405 450 □ □ 75 4 64-QAM 64-QAM 64-QAM QPSK 405 450 □		72	4		64-QAM	QPSK	QPSK	324	360	
□ 75 4 64-QAM 64-QAM 64-QAM QPSK 405 450 □										
16 4 64 ()AM 64 ()AM 64 ()AM 46 ()AM 44E 40E		75 76	4	64-QAM 64-QAM	64-QAM 64-QAM	64-QAM 64-QAM	QPSK 16-QAM	405 445.5	450 495	

			DATA RATE: 802.11ac VHT20				
Available for EUT	MCS Index	Nbr of spatial streams	Modulation (Stream 1/2/3/4)	Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
Available for Lot	0	Noi oi spatiai streams					✓
<u>V</u>		<u> </u>	BPSK	1/2	6,5	7,2	
<u> </u>	1	<u> </u>	QPSK	1/2	13	14,4	
<u>V</u>	2		QPSK	3/4	19,5	21,7	
<u>V</u>	3 4	<u>1</u> 1	16-QAM	1/2 3/4	26 39	28,9	
<u>V</u>		<u> </u>	16-QAM	2/3		43,3	
	5		64-QAM		52	57,8	
<u> </u>	6	1	64-QAM	3/4	58,5	65	
7	7	1	64-QAM	5/6	65	72,2	
<u> </u>	8	1	256-QAM	3/4	78	86,7	
	9	11	256-QAM	5/6	N/A	N/A	
<u> </u>	10	2	BPSK	1/2	13	14,4	☑
✓	11	2	QPSK	1/2	26	28,8	
✓	12	2	QPSK	3/4	39	43,4	
✓	13	2	16-QAM	1/2	52	57,8	
✓	14	2	16-QAM	3/4	78	86,6	
✓	15	2	64-QAM	2/3	104	115,6	
\checkmark	16	2	64-QAM	3/4	117	130	
V	17	2	64-QAM	5/6	130	144,4	
V	18	2	256-QAM	3/4	156	173,4	
V	19	2	256-QAM	5/6	N/A	N/A	
<u> </u>	20	3	BPSK	1/2	19,5	21,6	<u> </u>
<u> </u>	21	3	QPSK	1/2	39	43,2	
<u> </u>	22	3	QPSK	3/4	58,5	65,1	
<u> </u>	23	3	16-QAM	1/2	78	86,7	
<u>✓</u>	24	3	16-QAM	3/4	117	129,9	
<u>✓</u>	25	3	64-QAM	2/3	156	173,4	
<u> </u>	26	3	64-QAM	3/4	175,5	173,4	
<u>V</u>	27	<u> </u>	64-QAM	5/6	175,5	216,6	
<u>V</u>	28	<u> </u>	256-QAM	3/4	234	260,1	
<u>V</u>				3/4 5/6			
<u>V</u>	29	3	256-QAM		N/A	N/A	
	30	4	BPSK	1/2	26	28,8	
<u> </u>	31	4	QPSK	1/2	52	57,6	
<u> </u>	32	4	QPSK	3/4	78	86,8	
7	33	4	16-QAM	1/2	104	115,6	
	34	4	16-QAM	3/4	156	173,2	
✓	35	4	64-QAM	2/3	208	231,2	
✓	36	4	64-QAM	3/4	234	260	
✓	37	4	64-QAM	5/6	260	288,8	
✓	38	4	256-QAM	3/4	312	346,8	
✓	39	4	256-QAM	5/6	N/A	N/A	
	40	5	BPSK	1/2	32,5	36	
	41	5	QPSK	1/2	65	72	
	42	5	QPSK	3/4	97,5	108,5	
	43	5	16-QAM	1/2	130	144,5	
	44	5	16-QAM	3/4	195	216,5	
	45	5	64-QAM	2/3	260	289	
	46	5	64-QAM	3/4	292,5	325	
	47	5	64-QAM	5/6	325	361	
	48	5	256-QAM	3/4	390	433,5	
	49	5	256-QAM	5/6	N/A	N/A	
	50	6	BPSK	1/2	39	43,2	
	51	6	QPSK	1/2	78	86,4	
	52	6	QPSK	3/4	117	130,2	
	53	6	16-QAM	1/2	156	173,4	
	54	6	16-QAM	3/4	234	259,8	
	55	6	64-QAM	2/3	312	346,8	
	56	6	64-QAM	3/4	351	390	
	57	6	64-QAM	5/6	390	433,2	
	58	6	256-QAM	3/4	468	520,2	
	59	6	256-QAM 256-QAM	5/6	N/A	520,2 N/A	
	60	7	BPSK	1/2	45,5	50,4	
		7					
	61		QPSK	1/2	91	100,8	
	62	7	QPSK	3/4	136,5	151,9	
	63	7	16-QAM	1/2	182	202,3	
	64	7	16-QAM	3/4	273	303,1	
	65	7	64-QAM	2/3	364	404,6	
	66	7	64-QAM	3/4	409,5	455	
	67	7	64-QAM	5/6	455	505,4	
	68	7	256-QAM	3/4	546	606,9	
	69	7	256-QAM	5/6	N/A	N/A	
	70	8	BPSK	1/2	52	57,6	
	71	8	QPSK	1/2	104	115,2	
	72	8	QPSK	3/4	156	173,6	
	73	8	16-QAM	1/2	208	231,2	
	74	8	16-QAM	3/4	312	346,4	
	75	8	64-QAM	2/3	416	462,4	
	76	8	64-QAM	3/4	468	520	
	77	8	64-QAM	5/6	520	577,6	
	78	8	256-QAM	3/4	624	693,6	
				5/6	N/A	N/A	

			DATA DATE: 000 44 \(\(\text{U} \) T40				
Available for EUT	MCS Index	Nbr of spatial streams	DATA RATE: 802.11ac VHT40 Modulation (Stream 1/2/3/4)	Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
Available for EUT	0	1	BPSK	1/2	13,5	15	Worst Case Modulation ☑
<u>✓</u>	1	1	QPSK	1/2	27	30	
<u> </u>	2	1	QPSK	3/4	40,5	45	
V	3	1	16-QAM	1/2	54	60	
V	4	1	16-QAM	3/4	81	90	
✓	5	1	64-QAM	2/3	108	120	
V	6	1	64-QAM	3/4	121,5	135	
	7	1	64-QAM	5/6	135	150	
✓	8	1	256-QAM	3/4	162	180	
✓	9	1	256-QAM	5/6	180	200	
<u> </u>	10	2	BPSK	1/2	27	30	
✓	11	2	QPSK	1/2	54	60	
✓	12 13	2 2	QPSK 16-QAM	3/4 1/2	81 108	90 120	
✓	14	2	16-QAM	3/4	162	180	
<u> </u>	15	2	64-QAM	2/3	216	240	
<u> </u>	16	2	64-QAM	3/4	243	270	
<u> </u>	17	2	64-QAM	5/6	270	300	
V	18	2	256-QAM	3/4	324	360	
V	19	2	256-QAM	5/6	360	400	
\checkmark	20	3	BPSK	1/2	40,5	45	✓
V	21	3	QPSK	1/2	81	90	
V	22	3	QPSK	3/4	121,5	135	
✓	23	3	16-QAM	1/2	162	180	
✓	24	3	16-QAM	3/4	243	270	
✓	25	3	64-QAM	2/3	324	360	
<u> </u>	26	3	64-QAM	3/4	364,5	405	
✓	27	3	64-QAM	5/6	405	450	
	28	3	256-QAM	3/4	486	540	
<u> </u>	29	3 4	256-QAM	5/6	540 54	600	
<u>v</u>	30 31	4	BPSK QPSK	1/2 1/2	108	60 120	
<u> </u>	32	4	QPSK	3/4	162	180	
<u>✓</u>	33	4	16-QAM	1/2	216	240	
<u>✓</u>	34	4	16-QAM	3/4	324	360	
<u>✓</u>	35	4	64-QAM	2/3	432	480	
✓	36	4	64-QAM	3/4	486	540	
<u> </u>	37	4	64-QAM	5/6	540	600	
<u> </u>	38	4	256-QAM	3/4	648	720	
V	39	4	256-QAM	5/6	720	800	
	40	5	BPSK	1/2	67,5	75	
	41	5	QPSK	1/2	135	150	
	42	5	QPSK	3/4	202,5	225	
	43	5	16-QAM	1/2	270	300	
	44	5	16-QAM	3/4	405	450	
	45	5	64-QAM	2/3	540	600	
	46	5	64-QAM	3/4	607,5	675	
	47	5	64-QAM	5/6	675	750	
	48	5	256-QAM	3/4	810	900	
	49	5	256-QAM	5/6	900	1000	
	50	6	BPSK	1/2	81	90	
	51 52	6	QPSK QPSK	1/2 3/4	162 243	180 270	
	53	6	16-QAM	1/2	324	360	
	54	6	16-QAM	3/4	486	540	
	55	6	64-QAM	2/3	648	720	
	56	6	64-QAM	3/4	729	810	
	57	6	64-QAM	5/6	810	900	
	58	6	256-QAM	3/4	972	1080	
	59	6	256-QAM	5/6	1080	1200	
	60	7	BPSK	1/2	94,5	105	
	61	7	QPSK	1/2	189	210	
	62	7	QPSK	3/4	283,5	315	
	63	7	16-QAM	1/2	378	420	
	64	7	16-QAM	3/4	567	630	
	65	7	64-QAM	2/3	756	840	
	66	7	64-QAM	3/4	850,5	945	
	67	7	64-QAM	5/6	945	1050	
	68	7	256-QAM	3/4	1134	1260	
	69	7	256-QAM	5/6	1260	1400	
	70	8	BPSK	1/2	108	120	
	71	8	QPSK	1/2	216	240	
	72 73	8	QPSK 16 OAM	3/4	324	360 480	
	73	8	16-QAM	1/2	432		
	74 75	8	16-QAM 64-QAM	3/4 2/3	648 864	720 960	
	75	8	64-QAM	3/4	972	1080	
	77	8	64-QAM	5/6	1080	1200	
	78	8		3/4	1296	1440	
	/ A	8 '	256-QAM	3/4		11440	1.1

			DATA DATE: 002 44cc VIIT00				
Available for EUT	MCS Indox	Nbr of spatial streams	DATA RATE: 802.11ac VHT80 Modulation (Stream 1/2/3/4)	Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
Available for Lot	0	1		1/2			✓
<u>V</u>		1	BPSK		29.3	32.5	
<u>V</u>	1	1	QPSK	1/2	58.5	65	
<u>V</u>	2	·	QPSK	3/4	87.8	97.5	
<u>V</u>	3 4	<u> </u>	16-QAM 16-QAM	1/2 3/4	117 175.5	130 195	
<u>V</u>		1					
	5		64-QAM	2/3	234	260	
V	6	1	64-QAM	3/4	263.3	292.5	
V	7	1	64-QAM	5/6	292.5	325	
✓	8	11	256-QAM	3/4	351	390	
<u> </u>	9	1	256-QAM	5/6	390	433.3	
<u> </u>	10	2	BPSK	1/2	58.6	65	I
\checkmark	11	2	QPSK	1/2	117	130	
✓	12	2	QPSK	3/4	175.6	195	
	13	2	16-QAM	1/2	234	260	
	14	2	16-QAM	3/4	351	390	
✓	15	2	64-QAM	2/3	468	520	
\checkmark	16	2	64-QAM	3/4	526.6	585	
\checkmark	17	2	64-QAM	5/6	585	650	
✓	18	2	256-QAM	3/4	702	780	
V	19	2	256-QAM	5/6	780	866.6	
	20	3	BPSK	1/2	87.9	97.5	✓
V	21	3	QPSK	1/2	175.5	195	
V	22	3	QPSK	3/4	263.4	292.5	
<u> </u>	23	3	16-QAM	1/2	351	390	
<u> </u>	24	3	16-QAM	3/4	526.5	585	
<u> </u>	25	3	64-QAM	2/3	702	780	
<u> </u>	26	3	64-QAM	3/4	789.9	877.5	
<u> </u>	27	3	64-QAM	5/6	877.5	975	
<u>v</u>	28	3	256-QAM	3/4	1053	1170	
<u> </u>	29	3	256-QAM	5/6	1170	1299.9	
<u> </u>	30	4	BPSK	1/2	117.2	130	<u> </u>
<u> </u>	31	4	QPSK	1/2	234	260	
<u>V</u>		4					
<u>V</u>	32		QPSK	3/4	351.2	390	
	33	4	16-QAM	1/2	468	520	
V	34	4	16-QAM	3/4	702	780	
V	35	4	64-QAM	2/3	936	1040	
7	36	4	64-QAM	3/4	1053.2	1170	
V	37	4	64-QAM	5/6	1170	1300	
	38	4	256-QAM	3/4	1404	1560	
	39	4	256-QAM	5/6	1560	1733.2	
	40	5	BPSK	1/2	146.5	162.5	
	41	5	QPSK	1/2	292.5	325	
	42	5	QPSK	3/4	439	487.5	
	43	5	16-QAM	1/2	585	650	
	44	5	16-QAM	3/4	877.5	975	
	45	5	64-QAM	2/3	1170	1300	
	46	5	64-QAM	3/4	1316.5	1462.5	
	47	5	64-QAM	5/6	1462.5	1625	
	48	5	256-QAM	3/4	1755	1950	
	49	5	256-QAM	5/6	1950	2166.5	
	50	6	BPSK	1/2	175.8	195	
	51	6	QPSK	1/2	351	390	
	52	6	QPSK	3/4	526.8	585	
	53	6	16-QAM	1/2	702	780	
	54	6	16-QAM	3/4	1053	1170	
	55	6	64-QAM	2/3	1404	1560	
	56	6	64-QAM	3/4	1579.8	1755	
	57	6	64-QAM	5/6	1755	1950	
	58	6	256-QAM	3/4	2106	2340	
	59	6	256-QAM	5/6	2340	2599.8	
	60	7	BPSK	1/2	205.1	227.5	
	61	7	QPSK	1/2	409.5	455	
	62	7	QPSK	3/4	614.6	682.5	
	63	7	16-QAM	1/2	819	910	
	64	7	16-QAM	3/4	1228.5	1365	
	65	7	64-QAM	2/3	1638	1820	
	66	7	64-QAM	3/4	1843.1	2047.5	
	67	7	64-QAM	5/6	2047.5	2275	
	68	7	256-QAM	3/4	2457	2730	
		7					
	69		256-QAM	5/6	2730	3033.1	
	70	8	BPSK	1/2	234.4	260	
	71	8	QPSK	1/2	468	520	
	72	8	QPSK	3/4	702.4	780	
	73	8	16-QAM	1/2	936	1040	
	74	8	16-QAM	3/4	1404	1560	
	75	8	64-QAM	2/3	1872	2080	
	76	8	64-QAM	3/4	2106.4	2340	
	77	8	64-QAM	5/6	2340	2600	
	78	8	256-QAM	3/4	2808	3120	
	79	8	256-QAM	5/6	3120	3466.4	

Test report reference: N°145064-694081D

rest report reference. N 143004-034001D					
802.11a					
Channel	C2				
EIRP TPC Max (dBm)	19.6				
EIRP TPC Min (dBm)	14.2				
Occupied Bandwidth (MHz)	16.9				

802.11n HT20/ac VHT20				
Channel	C2			
EIRP TPC Max (dBm)	19.1			
EIRP TPC Min (dBm)	14.5			
Occupied Bandwidth (MHz)	18.02			

802.11n HT40/ac VHT40				
Channel	C4			
EIRP TPC Max (dBm)	21.0			
EIRP TPC Min (dBm)	15.1			
Occupied Bandwidth (MHz)	36.29			

802.11ac VHT80				
Channel	C6			
EIRP TPC Max (dBm)	21.5			
EIRP TPC Min (dBm)	15.3			
Occupied Bandwidth (MHz)	75.58			

2.2. RUNNING MODE

The EUT is set in the following modes during tests:

- Emission-reception with a duty cycle above 17% in the data rate that produced the highest output power

Following commands with the specific test software "TERATERM" are used to set the product:

- See document: "EMTA62-3_FCC setup_DFS_Nat_20161110.docx" for the command used during test

-System testings is performed with iperf test software in udp mode from the Master Device to the Client Device on the test channel. The data traffic is performed Laptop 2 to Laptop 1

2.3. **EQUIPMENT LABELLING**

Power supply n° 1

Power supply n° 2

Power supply n° 4

FCC ID: VW3DGCI384

Sagemcom

eflauter MAC

Wi-Fi Network Configuration Network name (SSID)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

Segurity key

Example of the final labelling plate

2.4. EQUIPMENT MODIFICATION

✓ None
✓ Modification:

3. DFS DETECTION THRESHOLDS DETERMINATION, REFERENCE NOISE LEVEL & CHANNEL LOADING

3.1. TEST CONDITIONS

Test performed by : Mathieu CERISIER

Date of test : December 9, 2016 to December 14, 2016

Ambient temperature : 22 °C Relative humidity : 44 %

3.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Detection Thresholds Determination, Reference Noise Level, Channel Loading

3.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	KEITHLEY	2000	A1241084	2016/05	2018/05
EMI receiver/ Spectrum analyzer	ROHDE & SCHWARZ	ESR 7	A2642023	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329663	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329664	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329665	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329668	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329669	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329670	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329672	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329673	2016/05	2018/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2016/05	2018/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2016/05	2018/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

3.4. RESULTS

Channel	C7
Applicable Level (dBm)	-64
Lowest Antenna Gain (dBi)	2
DFS Detection Thresholds (dBm)	-62
Additional Level (dB)	1
Radar Level (dBm)	-61

Channel	C7
EIRP (See test report from FCC ID: RRK2012060056-1)	338,065mW
DFS Detection thresholds applied	-64dBm
Additional Level (dB)	1
DFS Detection thresholds applied	-63dBm

4. DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL AVAILABILITY CHECK & DFS DETECTION THRESHOLD

4.1. TEST CONDITIONS

Test performed by : Mathieu CERISIER Date of test : December 12, 2016

Ambient temperature : 25 °C Relative humidity : 41 %

4.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

 \square In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for Channel Availability Check Time & DFS Detection Threshold

4.3. LIMIT

Channel Availability Check Time shall exceed 60 seconds Radard burst must be detected at the start & the end of Channel Availability Check Time

4.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	KEITHLEY	2000	A1241084	2016/05	2018/05
EMI receiver/ Spectrum analyzer	ROHDE & SCHWARZ	ESR 7	A2642023	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329663	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329664	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329665	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329668	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329669	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329670	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329672	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329673	2016/05	2018/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2016/05	2018/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2016/05	2018/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION ☑ None □ Divergence:

TEST REPORT

N° 145064-694081E

Version : 01

Page 31/91

4.6. RESULTS

4.7. CONCLUSION

Channel Availability Check Time & DFS Detection Threshold measurement performed on the sample of the product **SAGEMCOM TheBox (253697282)**, SN: **616400107098**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.407** limits.

5. DYNAMIC FREQUENCY SELECTION (DFS): U-NII DETECTION BANDWIDTH

5.1. TEST CONDITIONS

Test performed by : Mathieu CERISIER Date of test : December 9, 2016

Ambient temperature : 25 °C Relative humidity : 42 %

5.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for U-NII Detection Bandwidth

5.3. LIMIT

Minimum 100% of the U-NII 99% transmission power bandwidth

5.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	KEITHLEY	2000	A1241084	2016/05	2018/05
EMI receiver/ Spectrum analyzer	ROHDE & SCHWARZ	ESR 7	A2642023	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329663	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329664	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329665	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329668	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329669	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329670	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329672	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329673	2016/05	2018/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007		calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2016/05	2018/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2016/05	2018/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

5.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None	□ Divergence:	

TEST REPORT
N° 145064-694081E
Version : 01
Page 36/91

5.6. RESULTS

802.11a				
Channel	C7			
FL (MHz)	5490			
FH (MHz)	5510			
U- NII Detection bandwidth (MHz)	20			
99% Occupied bandwidth (MHz)	16,9			
U- NII Detection Bandwidth (%)	118,3			

802.11n HT20				
Channel	C7			
FL (MHz)	5490			
FH (MHz)	5510			
U- NII Detection bandwidth (MHz)	20			
99% Occupied bandwidth (MHz)	18,02			
U- NII Detection Bandwidth (%)	111,0			

802.11n HT40				
Channel	C18			
FL (MHz)	5490			
FH (MHz)	5530			
U- NII Detection bandwidth (MHz)	40			
99% Occupied bandwidth (MHz)	36,29			
U- NII Detection Bandwidth (%)	110,2			

802.11ac VHT80				
Channel	C26			
FL (MHz)	5490			
FH (MHz)	5570			
U- NII Detection bandwidth (MHz)	80			
99% Occupied bandwidth (MHz)	75,58			
U- NII Detection Bandwidth (%)	105,8			

5.7. CONCLUSION

U-NII Detection Bandwidth measurement performed on the sample of the product **SAGEMCOM TheBox** (253697282), SN: 616400107098, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.407 limits.

6. DYNAMIC FREQUENCY SELECTION (DFS): STATISTICAL PERFORMANCE CHECK

6.1. TEST CONDITIONS

Test performed by : Mathieu CERISIER

Date of test : December 12, 2016 to December 14, 2016

Ambient temperature : 25 °C Relative humidity : 41 %

6.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for Statistical Performance Check

6.3. LIMIT

Short Pulse Radar Test Waveform						
Radar Type	Pulse Width (µsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Sucessful Detection	Minimum Number of Trials	
1	1	See pulse sequence	(1/360)*(19*10^6/3066)	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
	Aggregate Ra	80%	120			

Long Pulse Radar Test Waveform							
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses	Number of Bursts	Minimum Percentage of Sucessful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Frequency Hopping Radar Test Waveform							
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Sucessful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

6.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	KEITHLEY	2000	A1241084	2016/05	2018/05
EMI receiver/ Spectrum analyzer	ROHDE & SCHWARZ	ESR 7	A2642023	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329663	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329664	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329665	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329668	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329669	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329670	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329672	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329673	2016/05	2018/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2016/05	2018/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2016/05	2018/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

6.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None □ Divergence:

6.6. RESULTS

802.11a					
Short Pulse Radar					
Channel	C7				
Detection Radar Type 1 (%)	96,7				
Detection Radar Type 2 (%)	83,3				
Detection Radar Type 3 (%)	86,7				
Detection Radar Type 4 (%)	80				
Aggregate Radar Type 1-4 (%)	86,675				
Long Puls	Long Pulse Radar				
Detection Radar Type 5 (%)	100				
Frequency Hopping Radar					
Detection Radar Type 6 (%) 100					

802.11n HT20					
Short Pulse Radar					
Channel C7					
Detection Radar Type 1 (%)	96,7				
Detection Radar Type 2 (%)	90				
Detection Radar Type 3 (%)	76,7				
Detection Radar Type 4 (%)	76,7				
Aggregate Radar Type 1-4 (%)	85,025				
Long Pul	Long Pulse Radar				
Detection Radar Type 5 (%)					
Frequency H	opping Radar				
Detection Radar Type 6 (%)	100				

802.11n HT40				
Short Pulse Radar				
Channel	C18			
Detection Radar Type 1 (%)	100,0			
Detection Radar Type 2 (%)	73,3			
Detection Radar Type 3 (%)	83,3			
Detection Radar Type 4 (%)	73,3			
Aggregate Radar Type 1-4 (%)	82,5			
Long Pul	se Radar			
Detection Radar Type 5 (%)	100			
Frequency Hopping Radar				
Detection Radar Type 6 (%)				

802.11ac VHT80					
Short Pulse Radar					
Channel	C26				
Detection Radar Type 1 (%)	93,3				
Detection Radar Type 2 (%)					
Detection Radar Type 3 (%)	70,0				
Detection Radar Type 4 (%)	80,0				
Aggregate Radar Type 1-4 (%)	85,0				
Long Pulse Radar					
Detection Radar Type 5 (%) 100					
Frequency Hopping Radar					
Detection Radar Type 6 (%)					

6.7. CONCLUSION

Statistical Performance Check measurement performed on the sample of the product **SAGEMCOM TheBox (253697282)**, SN: **616400107098,** in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 limits.

7. DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL CLOSING TRANSMISSION TIME & CHANNEL MOVE TIME

7.1. TEST CONDITIONS

Test performed by : Mathieu CERISIER Date of test : December 12, 2016

Ambient temperature : 25 °C Relative humidity : 41 %

7.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

 \square In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Channel Closing Transmission Time & Channel Move Time

7.3. **LIMIT**

Channel Closing Transmission Time shall not exceed 0.26second Channel Move Time shall not exceed 10seconds

7.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	KEITHLEY	2000	A1241084	2016/05	2018/05
EMI receiver/ Spectrum analyzer	ROHDE & SCHWARZ	ESR 7	A2642023	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329663	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329664	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329665	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329668	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329669	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329670	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329672	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329673	2016/05	2018/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	Verified with or receiver/ Spec before	trum analyzer
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079	Verified with multimeter b	n calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2016/05	2018/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2016/05	2018/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

7.5.	DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

TEST REPORT
N° 145064-694081E
Version : 01
Page 47/91

7.6. RESULTS

7.7. CONCLUSION

Channel Closing Transmission Time & Channel Move Time measurement performed on the sample of the product **SAGEMCOM TheBox (253697282)**, SN: **616400107098**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 limits.

8. DYNAMIC FREQUENCY SELECTION (DFS): NON-OCCUPANCY PERIOD

8.1. TEST CONDITIONS

Test performed by : Mathieu CERISIER Date of test : December 12, 2016

Ambient temperature : 25 °C Relative humidity : 41 %

8.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Non-Occupancy Period

8.3. LIMIT

Non-Occupancy Period shall exceed 1800 seconds

8.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	KEITHLEY	2000	A1241084	2016/05	2018/05
EMI receiver/ Spectrum analyzer	ROHDE & SCHWARZ	ESR 7	A2642023	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329663	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329664	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329665	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329668	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329669	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329670	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329672	2016/05	2018/05
RF cable	Télédyne	920-0202-024	A5329673	2016/05	2018/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2016/05	2018/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2016/05	2018/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2016/05	2018/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2016/05	2018/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2016/05	2018/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2016/05	2018/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

8.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION ☑ None □ Divergence:

TEST REPORT

N° 145064-694081E

Version : 01

Page 51/91

8.6. RESULTS

8.7. CONCLUSION

Non-Occupancy period measurement performed on the sample of the product **SAGEMCOM TheBox (253697282)**, SN: **616400107098**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 limits.

9. ANNEX 1: U-NII DETECTION BANDWIDTH DATA SHEET

	Cha	annel		5500	MHz						
802.11a		U-NII Detection Bandwidth									
		Trial: Detection=1 & No Detection=0									
Radar Frequency (MHz)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Detection (%)
5490	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1 1 1 1 1 1 1 1 1 100									
5510	1	1	1	1	1	1	1	1	1	1	100

	Cha	annel		5500	MHz						
802.11n HT20		U-NII Detection Bandwidth									
		Trial: Detection=1 & No Detection=0									
Radar Frequency (MHz)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Detection (%)
5490	1	1	1	1	1	1	1	0	1	1	90
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100

	Cha	annel		5510	MHz						
802.11n HT40		U-NII Detection Bandwidth									
		Trial: Detection=1 & No Detection=0									
Radar Frequency (MHz)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Detection (%)
5490	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530	1	1	1	1	1	1	1	1	1	1	100

	Cha	nnel		5530	MHz							
802.11ac VHT80		U-NII Detection Bandwidth										
	Trial: Detection=1 & No Detection=0											
Radar Frequency (MHz)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Detection (%)	
5490	1	1	1	1	1	1	1	1	1	1	100	
5495	1	1	1	1	1	1	1	1	1	1	100	
5500	1	1	1	1	1	1	1	1	1	1	100	
5505	1	1	1	1	1	1	1	1	1	1	100	
5510	1	1	1	1	1	1	1	1	1	1	100	
5515	1	1	1	1	1	1	1	1	1	1	100	
5520	1	1	1	1	1	1	1	1	1	1	100	
5525	1	1	1	1	1	1	1	1	1	1	100	
5530	1	1	1	1	1	1	1	1	1	1	100	
5535	1	1	1	1	1	1	1	1	1	1	100	
5540	1	1	1	1	1	1	1	1	1	1	100	
5545	1	1	1	1	1	1	1	1	1	1	100	
5550	1	1	1	1	1	1	1	1	1	1	100	
5555	1	1	1	1	1	1	1	1	1	1	100	
5560	1	1	1	1	1	1	1	1	1	1	100	
5565	1	1	1	1	1	1	1	1	1	1	100	
5570	1	1	1	1	1	1	1	1	1	1	100	

10. ANNEX 2: STATISTICAL PERFORMANCE CHECK DATA SHEET

RAD	AR TYPE	1		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (μs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	102	1	518	1	1	1	1
2	99	1	538	1	1	1	1
3	95	1	558	1	1	1	1
4	92	1	577	1	1	1	1
5	89	1	598	1	1	1	1
6	86	1	618	1	1	1	1
7	83	1	638	1	1	1	1
8	81	1	658	1	1	1	1
9	78	1	678	1	1	1	1
10	74	1	718	1	1	1	1
11	72	1	738	1	1	1	1
12	70	1	758	1	1	1	1
13	68	1	778	1	1	1	1
14	67	1	797	1	1	1	1
15	65	1	818	1	1	1	1
16	88	1	600	1	1	1	1
17	76	1	700	1	1	1	1
18	66	1	800	1	1	1	1
19	53	1	1000	1	1	1	1
20	44	1	1200	1	1	1	1
21	38	1	1400	1	1	1	1
22	33	1	1600	1	1	1	1
23	30	1	1800	1	1	1	1
24	27	1	2000	1	1	1	1
25	24	1	2200	1	1	1	1
26	22	1	2400	1	1	1	1
27	21	1	2600	1	1	1	1
28	19	1	2800	0	1	1	0
29	19	1	2900	1	0	1	1
30	18	1	3000	1	1	1	0
Statistic	al Performan	ce Check (%)	96,7	96,7	100,0	93,3

RAD	AR TYPE	2		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (μs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	27	3	206	1	1	1	1
2	25	1,9	154	0	0	1	1
3	25	1,6	171	0	1	1	1
4	27	4,6	222	1	1	1	1
5	26	3,4	150	1	1	1	1
6	23	4,1	165	1	1	1	1
7	23	3,7	194	1	1	1	1
8	26	4,1	219	1	1	1	1
9	29	3,9	212	1	1	1	1
10	24	1,6	207	1	0	0	1
11	25	2,1	194	1	1	1	1
12	28	2,3	185	0	1	0	1
13	25	1,8	221	1	1	0	1
14	28	1,5	228	1	1	1	1
15	28	1,9	183	1	0	1	1
16	28	2,2	163	1	1	1	1
17	24	4,7	178	1	1	0	1
18	27	3,3	165	1	1	1	1
19	26	3,3	153	1	1	0	0
20	26	5	169	1	1	1	1
21	24	1,1	209	1	1	1	1
22	28	3,1	154	0	1	0	1
23	27	2,7	222	1	1	0	1
24	23	2,2	211	0	1	1	1
25	28	2,6	172	1	1	1	1
26	24	1,9	152	1	1	1	1
27	28	4,2	157	1	1	0	1
28	27	1,5	227	1	1	1	1
29	27	3,3	164	1	1	1	1
30	26	1,6	170	1	1	1	1
Statistic	al Performan	ce Check (%)	83,3	90,0	73,3	96,7

RAD	AR TYPE	3		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (μs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	18	6,2	483	1	1	1	1
2	16	6,6	487	1	1	0	1
3	17	9,2	441	1	1	1	0
4	18	9	283	1	0	1	1
5	16	9,7	391	1	1	0	0
6	16	6,3	419	1	1	1	1
7	16	7,3	315	0	1	1	1
8	16	8,8	494	1	0	1	0
9	18	8,3	277	1	1	0	1
10	18	6,1	452	1	1	1	1
11	16	6,8	274	0	1	1	1
12	17	9,8	488	1	0	1	0
13	17	9,8	387	1	1	0	1
14	16	9,5	385	1	1	0	1
15	17	9,2	372	1	1	1	0
16	18	7,2	337	1	1	1	1
17	17	7,1	465	1	1	1	0
18	17	8,9	258	1	0	1	1
19	16	8	292	1	0	1	1
20	17	6,1	332	1	1	1	1
21	17	10	477	0	1	1	1
22	17	6,7	468	1	1	1	1
23	17	8,9	299	1	1	1	0
24	18	7,7	383	0	1	1	1
25	17	6,7	429	1	1	1	1
26	17	8,2	490	1	1	1	0
27	17	7,6	421	1	1	1	1
28	18	6,4	387	1	1	1	1
29	17	6,5	258	1	0	1	1
30	16	6,3	357	1	0	1	0
Statistic	cal Performan	ce Check (%)	86,7	76,7	83,3	70,0

RADA	AR TYPE	4		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (μs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	16	17,4	252	1	1	1	0
2	12	14,1	229	0	0	0	1
3	15	16,5	229	1	0	1	1
4	15	17,4	270	1	1	1	1
5	15	16,9	360	0	1	1	0
6	12	17,1	362	1	1	1	1
7	14	12,1	296	0	1	1	1
8	12	12	482	1	0	1	1
9	14	17,9	220	1	1	0	1
10	15	13,1	391	1	1	1	1
11	12	13,7	396	1	1	0	1
12	13	13	355	1	1	1	0
13	15	16,9	405	1	1	0	1
14	12	16,1	241	1	1	0	1
15	13	19,8	388	1	0	1	1
16	14	17	386	1	1	1	1
17	12	12,7	497	1	1	1	0
18	15	14,2	432	1	1	0	1
19	14	11,4	320	0	1	1	1
20	12	16,9	478	1	0	1	1
21	15	13,6	314	0	1	0	0
22	12	20	467	0	1	1	1
23	16	13,8	398	1	0	1	1
24	16	19,8	459	1	1	0	0
25	15	17,4	399	1	1	1	1
26	15	16,9	226	1	0	1	1
27	13	16,9	345	1	1	1	1
28	12	13,7	404	1	1	1	1
29	15	15	295	1	1	1	1
30	15	14,5	313	1	1	1	1
Statistic	al Performan	ce Check (%)	80,0	76,7	73,3	80,0

RADA	R TYPE 5	802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	See Annex	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	Trial 1	1	1	1	1
2	Trial 2	1	1	1	1
3	Trial 3	1	1	1	1
4	Trial 4	1	1	1	1
5	Trial 5	1	1	1	1
6	Trial 6	1	1	1	1
7	Trial 7	1	1	1	1
8	Trial 8	1	1	1	1
9	Trial 9	1	1	1	1
10	Trial 10	1	1	1	1
11	Trial 11	1	1	1	1
12	Trial 12	1	1	1	1
13	Trial 13	1	1	1	1
14	Trial 14	1	1	1	1
15	Trial 15	1	1	1	1
16	Trial 16	1	1	1	1
17	Trial 17	1	1	1	1
18	Trial 18	1	1	1	1
19	Trial 19	1	1	1	1
20	Trial 20	1	1	1	1
21	Trial 21	1	1	1	1
22	Trial 22	1	1	1	1
23	Trial 23	1	1	1	1
24	Trial 24	1	1	1	1
25	Trial 25	1	1	1	1
26	Trial 26	1	1	1	1
27	Trial 27	1	1	1	1
28	Trial 28	1	1	1	1
29	Trial 29	1	1	1	1
30	Trial 30	1	1	1	1
Statistica	l Performance Check (%)	100,0	100,0	100,0	100,0

RADAR TYPE 6		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	http://ntiacsd.ntia.doc.gov/dfs/HopFreqInRla nBW.txt	Detection (1=yes/0=n o)	Detection (1=yes/0=n o)	Detection (1=yes/0=n o)	Detection (1=yes/0=n o)
1	Burst 0	1	1	1	1
2	Burst 1	1	1	1	1
3	Burst 2	1	1	1	1
4	Burst 3	1	1	1	1
5	Burst 4	1	1	1	1
6	Burst 5	1	1	1	1
7	Burst 6	1	1	1	1
8	Burst 7	1	1	1	1
9	Burst 8	1	1	1	1
10	Burst 9	1	1	1	1
11	Burst 10	1	1	1	1
12	Burst 11	1	1	1	1
13	Burst 12	1	1	1	1
14	Burst 13	1	1	1	1
15	Burst 14	1	1	1	1
16	Burst 15	1	1	1	1
17	Burst 16	1	1	1	1
18	Burst 17	1	1	1	1
19	Burst 18	1	1	1	1
20	Burst 19	1	1	1	1
21	Burst 20	1	1	1	1
22	Burst 21	1	1	1	1
23	Burst 22	1	1	1	1
24	Burst 23	1	1	1	1
25	Burst 24	1	1	1	1
26	Burst 25	1	1	1	1
27	Burst 26	1	1	1	1
28	Burst 27	1	1	1	1
29	Burst 28	1	1	1	1
30	Burst 29	1	1	1	1
Statistical Perform	mance Check (%)	100,0	100,0	100,0	100,0

11. ANNEX 3: RADAR TEST SIGNAL TYPE 5 & 0

TYPE 5 PARAMETER SHEET

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 1

Bursts in	Bursts in Trial: 8							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	83	8			1028		
2	2	89,2	20	928		137		
3	2	51,3	13	1091		1139		
4	3	74,1	20	1114	1237	1423		
5	2	81,3	15	1828		714		
6	2	64,5	7	1706		1035		
7	3	87	18	1045	954	1492		
8	2	79,6	19	1047		577		
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 2

Rurete in Trial 9

Bursts in Trial: 9								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	84,8	7			1057		
2	2	69,4	8	1611		744		
3	2	52,8	7	1026		294		
4	2	58,4	11	1001		596		
5	3	87,9	17	1130	923	432		
6	1	79,1	7			812		
7	1	68	20			702		
8	3	66,3	15	1213	1920	301		
9	2	86	8	1066		430		
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 3

Bursts in	Bursts in Trial: 10							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	3	98,2	9	1535	1372	264		
2	3	73,6	18	985	1379	670		
3	2	96	9	931		1069		
4	2	95,1	7	1755		457		
5	2	75,7	9	1863		543		
6	2	71,7	15	1452		84		
7	2	74,5	17	1126		525		
8	3	80,6	14	1615	1146	967		
9	2	56,5	19	1319		291		
10	3	55,2	15	993	1070	1016		
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 4

Bursts in	Bursts in Trial: 11								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	1	91,3	7			70			
2	2	96,1	20	1397		244			
3	2	92,9	8	1222		569			
4	1	93,7	9			1024			
5	3	73,3	15	1243	1066	815			
6	3	88,1	13	1133	1652	549			
7	2	93,7	14	920		1027			
8	1	99,1	6			834			
9	3	88,6	17	1511	1909	600			
10	2	92,5	10	1050		314			
11	2	53,7	17	1624		7			
12									
13									
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 5

bursts in	Bursts in Trial: 12							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	51,8	20			641		
2	2	80,1	8	1641		875		
3	2	88,2	8	1852		33		
4	2	71,8	10	1048		476		
5	2	91,8	6	1778		910		
6	2	56,8	19	1212		570		
7	1	69,6	13			637		
8	2	94,6	13	1595		347		
9	3	52,7	18	1682	1384	483		
10	2	65,5	5	1082		39		
11	3	68,6	17	1467	1397	337		
12	1	94,1	14			378		
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 6

Dui StS II	bursts III Trial. 13							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	2	80,3	8	1655		381		
2	2	54,5	5	1022		363		
3	3	68,3	12	967	1634	209		
4	3	64	18	1382	1616	337		
5	3	73,2	20	1339	1044	432		
6	2	77,8	20	1441		910		
7	1	57,2	13			137		
8	3	77,3	15	1284	1888	320		
9	2	72,4	10	1040		349		
10	2	83,9	5	1843		849		
11	2	95	13	1021		352		
12	1	63,3	10			583		
13	2	60,3	11	1658		285		
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 7

Dui StS II	Bursts in Trial: 14							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	60,8	19			487		
2	2	91	14	1147		817		
3	1	57,8	9			597		
4	1	77,6	8			20		
5	2	66,3	13	1151		92		
6	1	97,5	7			569		
7	1	90,1	10			716		
8	1	53	6			403		
9	3	50,5	17	1524	1311	397		
10	1	55,8	10			121		
11	2	73,7	12	1777		285		
12	3	55,3	12	968	1848	240		
13	2	79,8	7	1709		178		
14	3	84,3	6	1627	1577	180		
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 8

Bursts in	Bursts in Trial: 15								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	65,3	10	1635		169			
2	2	90,7	9	1682		356			
3	1	87,7	18			265			
4	1	82,7	6			216			
5	1	85,2	20			370			
6	2	67,9	6	1090		639			
7	3	61,6	11	1413	990	778			
8	2	73,1	7	1591		519			
9	3	51,6	15	1882	1340	551			
10	1	83,4	12			743			
11	2	93,1	5	1741		660			
12	2	88,6	7	1004		746			
13	3	91,9	19	1291	1892	313			
14	2	90,7	20	1628		362			
15	1	52,4	17			37			
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 9

Dui StS III	Bursts in Trial: 16								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	84,1	7	1896		659			
2	2	69,1	7	1696		266			
3	1	71,7	7			703			
4	1	83	20			631			
5	2	96,8	11	1232		567			
6	2	61,1	11	1241		647			
7	1	70,1	5			418			
8	2	62,5	19	1144		149			
9	2	78,3	13	1703		296			
10	2	97,4	15	1728		700			
11	3	88,9	17	1759	1060	246			
12	3	91	13	1606	1572	468			
13	3	76,5	11	1082	1896	231			
14	1	64,5	12			182			
15	2	60,2	18	1314		311			
16	3	90,4	14	1415	1474	705			
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 10

Dui StS II	bursts III Trial. 17							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	2	66,2	20	1769		164		
2	1	83	8			264		
3	2	99,6	18	1270		570		
4	3	98,4	14	1283	1283	221		
5	3	55,6	13	1939	1733	185		
6	2	97,5	20	1492		485		
7	1	55,5	17			652		
8	3	77,4	5	1637	1876	182		
9	1	77,6	15			610		
10	2	71,9	15	1457		246		
11	3	80	15	1005	1786	413		
12	1	65,2	11			118		
13	2	92	8	1265		519		
14	3	68,6	18	1138	1708	457		
15	1	94,3	8			451		
16	2	70,7	18	1093		207		
17	2	63,4	8	1080		132		
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 11

Bursts in Trial: 18									
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	79,7	5	1563		647			
2	2	59,3	19	1693		423			
3	2	52,1	13	1625		110			
4	1	93,8	19			194			
5	2	93	6	1550		97			
6	2	87,6	14	1233		448			
7	3	62	7	1063	1503	144			
8	3	95,4	19	1430	1577	282			
9	1	82,8	7			514			
10	3	51,2	15	1404	1885	187			
11	2	81	8	1554		392			
12	3	81,6	5	1254	1055	387			
13	2	62,1	14	1006		291			
14	2	82	13	1003		435			
15	2	60,9	18	1027		508			
16	1	58,2	10			230			
17	2	80,6	6	1027		468			
18	2	65,7	15	1878		279			
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 12

Bursts in Trial: 19									
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	78,6	10	1208		558			
2	3	93,2	11	1743	1155	475			
3	2	86	13	1719		70			
4	1	76,4	13			529			
5	1	84,4	10			144			
6	1	68,4	5			422			
7	2	65,1	11	1250		524			
8	2	58,6	13	1372		384			
9	3	68,6	15	1499	1321	476			
10	3	91,8	13	1201	1475	19			
11	3	88,4	7	1274	1510	451			
12	2	91,2	20	1331		469			
13	3	87,7	11	1356	1716	214			
14	3	61,1	13	1718	957	29			
15	3	77,1	11	1257	1093	477			
16	2	81,7	7	1792		256			
17	3	53,6	13	1304	1449	246			
18	1	68,2	19			237			
19	1	93,8	20			57			
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 13

Bursts in	Bursts in Trial: 20								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	67,2	11	1581		422			
2	2	64,9	13	1929		404			
3	2	88,1	10	1131		298			
4	2	75,5	18	1884		18			
5	3	69,9	9	1348	1175	523			
6	2	80,4	9	1074		12			
7	2	55	9	1831		4			
8	2	70,1	11	988		320			
9	3	98,8	17	1502	1211	35			
10	3	58,8	12	1019	1687	83			
11	2	67,9	8	1268		285			
12	1	85,6	7			410			
13	2	93,5	19	1574		134			
14	3	58,4	10	968	1893	168			
15	1	73,8	17			266			
16	3	95	19	922	1739	183			
17	3	63,6	5	1267	1251	146			
18	2	74,8	10	1175		336			
19	2	62,9	5	1110		131			
20	1	72,8	15			496			

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 14

Bursts in	Bursts in Trial: 8								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	3	64,2	19	1609	1360	1089			
2	2	88,4	17	1751		1357			
3	1	51,1	14			1003			
4	3	63,6	15	963	962	1376			
5	1	84,3	11			937			
6	3	90,7	5	1098	986	1068			
7	2	93	20	1130		1124			
8	2	67,4	12	1308		574			
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 15

Bursts in Trial: 9							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	1	62,3	5			128	
2	3	76,5	8	1019	1323	486	
3	2	82,5	5	1183		911	
4	2	54	10	1805		972	
5	3	94,7	18	1565	1079	46	
6	3	53,9	19	1625	1139	570	
7	3	55,6	13	1623	1927	1143	
8	2	68,3	13	1890		1163	
9	3	99,8	8	1857	1735	249	
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 16

Dui StS II	Bursts in Trial: 10								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	54,1	5	1152		389			
2	2	78,9	13	1150		881			
3	1	77,6	13			980			
4	1	85,8	14			40			
5	3	74,8	15	1596	976	418			
6	1	99,2	5			129			
7	3	71,5	6	1454	1858	947			
8	1	67,5	5			413			
9	2	68,7	9	1840		1060			
10	3	81,2	13	1604	1132	803			
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 17

Bursts in	Bursts in Trial: 11								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	1	78,5	8			441			
2	1	60,8	9			62			
3	1	96,8	11			942			
4	2	65,9	17	1306		1079			
5	3	95,3	6	1571	1562	269			
6	2	67	17	962		44			
7	2	92,9	19	1635		503			
8	3	74,3	14	1463	1896	264			
9	3	77,7	10	1875	1453	115			
10	2	75,1	6	1036		465			
11	1	94,8	19			676			
12									
13									
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 18

Dui StS II	Bursts III Trial. 12							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	2	53,1	8	1042		583		
2	2	59,6	13	989		824		
3	3	72,4	5	1686	1217	658		
4	2	66,6	17	1726		663		
5	3	57,3	6	1791	1191	602		
6	1	51,9	18			955		
7	1	56,1	13			900		
8	2	96,1	6	1368		599		
9	1	93,4	18			634		
10	1	97,3	11			534		
11	3	50,5	7	1103	1061	599		
12	2	67,1	18	1036		489		
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 19

Bursts in	Bursts in Trial: 8							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	2	61,4	18	1761		1229		
2	3	69,1	7	1759	1639	1136		
3	3	56,5	8	961	1228	508		
4	1	87,2	19			993		
5	2	96	7	1852		1374		
6	3	51,8	15	1295	1517	522		
7	3	71,8	17	1651	1422	1394		
8	2	54,3	20	1296		952		
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 20

Bursts in	Bursts in Trial: 9							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	84,5	6			890		
2	2	89,4	8	1712		681		
3	2	86,5	13	1634		839		
4	2	57,4	18	1601		1217		
5	2	95,7	5	1062		798		
6	3	94,5	5	1745	1189	216		
7	2	70,5	12	1385		548		
8	2	69,9	11	1924		134		
9	2	96	13	1778		692		
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 21

Bursts in	Bursts in Trial: 10							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	2	61,1	18	1731		841		
2	1	69,6	17			421		
3	2	80,5	7	1015		29		
4	2	51,3	14	1021		657		
5	2	52,7	14	1046		790		
6	2	63,3	20	1279		230		
7	1	63,9	12			310		
8	3	52,2	9	1109	1579	593		
9	2	63,6	14	1519		807		
10	3	56	17	1375	1076	205		
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 22

Bursts in Trial: 11							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	1	85,3	9			517	
2	1	60,9	19			1056	
3	3	65,2	7	1138	1571	1076	
4	3	53,5	8	1862	1214	174	
5	2	55,8	13	1101		639	
6	2	64,9	7	1630		809	
7	2	84,3	19	1556		686	
8	2	60,8	13	981		363	
9	3	86,7	14	1450	1851	531	
10	3	82,4	17	1139	1862	239	
11	3	58,1	18	1102	1299	307	
12							
13							
14							
15							
16							
17							
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 23

Bursts in	Bursts in Trial: 12							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	65,7	8			549		
2	1	81,7	6			6		
3	2	61,8	5	1257		610		
4	2	99,5	7	1559		681		
5	2	75,5	20	1196		923		
6	2	77,7	15	1495		99		
7	2	56	7	1268		285		
8	2	78,5	9	1892		142		
9	2	96,7	17	1834		977		
10	2	85,6	13	1022		478		
11	1	88,1	19			212		
12	2	86,8	17	1007		483		
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 24

bursts ii	Bursts In Trial: 13								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	1	79,5	20			383			
2	3	88,7	20	1519	1294	340			
3	2	64,6	5	1619		597			
4	2	65,1	17	1365		367			
5	2	56,2	20	1095		229			
6	3	50,7	11	1637	1159	633			
7	3	87,7	14	944	1559	719			
8	3	65,6	9	1644	1834	745			
9	2	81,4	13	1455		898			
10	1	90,7	15			382			
11	2	85,6	9	1419		461			
12	2	88,3	17	1801		103			
13	2	59	14	1701		698			
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 25

Duistail	Dui sta ili i i i i i i					
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)
1	2	90,3	20	1361		325
2	2	63,8	10	1434		802
3	1	68,6	5			129
4	1	69,6	13			410
5	3	75,2	13	1208	1604	189
6	2	82,1	18	1766		131
7	2	92,5	18	1688		91
8	2	65,1	17	1648		822
9	3	99,6	18	1235	1393	742
10	2	81,9	18	1280		705
11	2	82,3	12	1255		849
12	1	94,3	5			19
13	2	55,9	15	1784		741
14	3	83,1	15	1226	1329	205
15						
16						
17						
18						
19						
20	_					

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 26

Bursts in	Bursts in Trial: 15							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	3	87,6	9	1547	1025	642		
2	2	82,5	10	1377		607		
3	3	56,5	9	1437	994	231		
4	2	99	6	1240		478		
5	1	79,6	5			695		
6	2	87,7	18	1830		633		
7	3	60,5	18	1504	1118	258		
8	3	97,1	18	1587	1144	394		
9	3	79,3	14	1071	1272	450		
10	1	56,6	7			322		
11	2	93,2	19	967		6		
12	2	85,7	5	1861		603		
13	2	90	8	1177		109		
14	2	67	20	1690		441		
15	2	90,9	9	1469		138		
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 27

Dui StS II	Bursts in Trial: 16						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	2	80,7	5	1043		405	
2	3	61,7	9	1412	1823	24	
3	1	63,1	9			261	
4	2	67	5	1819		532	
5	1	58,3	13			172	
6	1	71,3	12			40	
7	2	94,2	10	1776		347	
8	2	75,3	12	1395		397	
9	2	91,3	11	1908		163	
10	3	66,5	14	1133	1814	711	
11	2	68	13	1780		518	
12	3	72,4	6	1796	1266	180	
13	3	98,4	14	955	1835	64	
14	2	81	6	1065		635	
15	2	57,2	18	1274		676	
16	2	99,1	18	1873		740	
17							
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 28

bursts ii	Bursts in Trial: 17						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	3	78,2	15	1832	1762	213	
2	2	66,4	8	1589		177	
3	2	79,5	5	1417		52	
4	3	71	13	1906	1049	75	
5	1	85,5	9			515	
6	2	56,2	14	1332		209	
7	2	82,3	12	1444		296	
8	2	55,9	18	1519		49	
9	2	73,5	6	1892		371	
10	1	94,9	10			184	
11	3	59,7	13	974	1059	240	
12	1	84	20			593	
13	2	87,4	9	1647		77	
14	1	97,5	13			567	
15	2	74,8	7	1235		518	
16	2	90	19	1543		266	
17	2	53,9	9	1207		557	
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 29

Dursts II	Bursts in Trial: 18						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	2	68,2	13	1691		590	
2	3	84,7	6	1099	1764	138	
3	3	52,7	13	1147	1362	205	
4	2	52,5	15	1254		96	
5	2	87,6	8	1432		346	
6	3	99,6	17	1038	1096	435	
7	1	55,1	12			471	
8	1	91,7	10			315	
9	2	86,6	9	1755		225	
10	2	76,2	13	1067		200	
11	3	70,3	20	1773	1044	612	
12	2	79,5	11	1328		6	
13	2	73,8	5	1213		61	
14	1	93,8	10			657	
15	3	98,9	20	1284	1416	297	
16	3	85,5	8	1732	1580	54	
17	2	65,2	19	1483		368	
18	1	74	20			297	
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 30

Bursts in	Bursts in Trial: 19						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	3	92,9	13	1390	1002	447	
2	2	89,7	11	979		5	
3	3	59,1	13	1015	1601	394	
4	2	66,4	17	1571		415	
5	1	81,2	18			172	
6	3	52,3	17	1727	1599	460	
7	2	95,1	19	1074		366	
8	3	55,3	7	975	1524	92	
9	2	70,2	14	1322		193	
10	3	78,9	13	1252	1503	235	
11	1	54	7			171	
12	2	81,3	20	1439		67	
13	2	77,2	13	1747		520	
14	3	78,3	20	1714	1589	317	
15	2	75,6	15	1838		199	
16	2	87,3	7	1050		319	
17	1	97,8	17			377	
18	3	76,3	17	1183	952	557	
19	3	66,4	9	1031	1586	608	
20							

TYPE 0						
Pulses per Burst	Pulse Width (µsec)	PRI (μs)				
18	1	1428				

12. UNCERTAINTIES CHART

47 CFR Part 15.209 & 15.207 Kind of test	Wide uncertainty laboratory (k=2) ±x(dB) / (Hz)/ ms	Uncertainty limit
Measurement of conducted disturbances in voltage on the AC power port (9 kHz – 150 kHz)	2,67	3.8
Measurement of conducted disturbances in voltage on the AC power port (150 kHz - 30 MHz)	2,67	3.4
Measurement of conducted disturbances in voltage on the telecommunication port. (AAN)	3,67	5.0
Measurement of conducted disturbances in current (current clamp)	2,73	2.9
Measurement of disturbance power	2,67	4.5
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC V01	4,48	1
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC C01	4,48	1
Measurement of radiated electric field from 30 to 1000MHz in horizontal position on the OATS (Ecuelles)	4,88	6.3
Measurement of radiated electric field from 1 to 18GHz on the Ecuelles site	5.16	1
Measurement of radiated electric field from 30 to 1000MHz in vertical position on the OATS (Ecuelles)	4,99	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC C01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC C01	5,16	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC V01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC V01	5,15	6.3
Measurement of radiated electric field from 1 to 6 GHz C01	5,1	5.2
Measurement of radiated electric field from 1 to 6 GHz V01	4,85	5.2
Measurement of radiated magnetic field from 10kHz to 30MHz on the OATS (Ecuelles)	4,48	1

The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report