Балансировка

Лисицын Сергей ФРКТ МФТИ 2020 г.

Замедление ускорения

$$T_p = t_{calc} + t_{send}$$

$$T_{2p} = 0.5 * t_{calc} + 2 * t_{send}$$

$$S = \frac{T_p}{T_{2p}}$$

Стена Фокса (пример с лекций М.В. Якобовского)

Статическая балансировка

поставленный кирпич

 можно поставить без взаимодействия

нельзя поставить без взаимодействия

- взаимодействие

Проблемы балансировки вычислительной нагрузки:

• структура распределенной задачи неоднородна

• структура вычислительного комплекса (например, кластера) неоднородна

• структура межузлового взаимодействия неоднородна

Статическая балансировка

- отображение задач до начала выполнения задачи
- борьба с неоднородностями при помощи эвристик и опыта предыдущих запусков

Динамическая балансировка

- отображение задач происходит до и во время выполнения задачи
- борьба с неоднородностями при помощи постоянного (пере)распределения задач

Динамическая балансировка

подзадачи

••••• результаты

Динамическая балансировка

RCL – стратегия переноса нагрузки:

•случайный алгоритм (random, R)

•алгоритм, основанный на коммуникациях (communication, C)

•алгоритм, основанный на вычислении нагрузки (load, L)

Длинная арифметика (сложение)

_	21	43	76	54
+	4	55	24	02
			0-	⊢ 56
		1•	— 1 00	
	0	– 99		
	25	99	00	56

Спекулятивные вычисления

	21	43	76	54	53	09	12	94	11	23	08	05
+	4	55	24	45	85	75	25	41	54	25	08	97
			0•	– 99			1-	← 1 35			1	— 1 02
			1•	— 1 00			1	— 1 36			1	— 1 02
		1•	- 1 00			0<	- 38			0	- 17	
		1	- 1 01			0	- 38			0	- 17	
	0+	– 99			0	— 84			0	— 48		
	0+	- 99			0	- 84			0	- 48		
	25				1 38				65			
	25				1 38				65			
	25	99	00	99	38	84	38	35	65	48	17	02
	25	99	01	00	38	84	38	36	65	48	17	02

Спекулятивные вычисления

	21	43	76	54	53	09	12	94	11	23	08	05
+	4	55	24	45	85	75	25	41	54	25	80	97
·			0•	– 99			1-	← 1 35			1<	— 1 02
			1	— 1 00			1	─ 1 36			1	— 102
		1•	— 1 00			0<	- 38			0<	— 17	
		1*	1 01			0<	— 38			0<	— 17	
	0+	– 99			0	- 84			0	– 48		
ı.	04	— 99			0<	— 84			04	— 48		
	25				138				65			
	25				138				65			
	25	99	00	99	38	84	38	35	65	48	17	02
	25	99	01	00	38	84	38	36	65	48	17	02

Суммирование старших разрядов

	21	43	76	54	53	09	12	94	11	23	08	05
+	4	55	24	45	85	75	25	41	54	25	08	97
			0	- 99	1 38		1<	— 1 35	65		1•	— 1 02
			1•	- 1 00	1 39		1	— 136	66		1	— 102
		1	— 100			0	— 38			0	— 17	
		1*	1 01			0	— 38			0	— 17	
	04	- 99			0•	- 84			0	— 48		
	0+	– 99			0<	— 84			0<	— 48		
	25				1 38				65			
	25				138				65			
	25	99	00	99	38	84	38	35	65	48	17	02
	25	99	01	00	38	84	38	36	65	48	17	02 13

Суммирование старших разрядов

	21	43	76	54	14	09	12	94	11	23	08	05
+	4	55	24	45	85	75	25	41	54	25	08	97
			0	– 99	_ 99		1-	⊢ 135	65		1<	— 1 02
			1•	— 1 00	100		1	— 136	66		1<	— 102
		1	— 100			0	– 38			0<	— 17	
		1	1 01			0	— 38			0	— 17	
	0+	– 99			0	— 84			0•	– 48		
	0+	- 99			0<	— 84			0<	— 48		
	25				99				65			
	25				100				65			
	25	99	00	99	99	84	38	35	65	48	17	02
	25	99	01	00	99	84	38	36	65	48	17	02

- 1000 цифр
- 10 процессов

$$T_1 = 1000 * t$$
 $T_{10} = 100 * 2t + 9T_{sel} + T_{gether}^*$
 $T_{10}^* = 101 * t + T_{sel} + T_{gether}$
 $T_{10}^{**} = 100.01 * t + T_{sel} + T_{gether}$

Динамическая балансировка

Исполнитель, $oldsymbol{t}_0$							3	2	1
Исполнитель, $oldsymbol{t}_1$						3	3 +	2	1
Исполнитель, $oldsymbol{t}_2$					1	3	3 +	2	1+
Первое число	32 разряда	24 разряда							
Второе число	32 разряда	24 разряда							
Результат (0)							32 разряда		24 разряда
Результат (1)							32 разряда		24 разряда
Перенос разряда (0)							1 разряд		1 разряд
Перенос разряда (1)							1 разряд		1 разряд

Длинное сложение

\$ mpirun -n [processes] ./add [input file] [output file]

- Во входном файле 3 строки (длина чисел, первое число, второе число)
- Root-ом считать файл, разбить числа
- Разослать, посчитать локально, перенести разряды, собрать в root-e
- Организовать выдачу блоков для подсчёта, посчитать блоки локально, собрать в root-e, перенести разряды
- В выходном файле root-ом записать результат суммирования
- Вывести время работы алгоритма

Длинное сложение

Input:

18

568432054987453034

984532106480023443

Output:

1552964161467476477

Ограничения:

- Количество процессов 2^k+1
- Количество цифр 9*2^m, (m >= k)