SIMPLIFICATION of CFG and NORMAL FORMS

Chap. 6

Summary

- The issues of membership and parsing for CFL.
 - The exhaustive parsing is always possible, but inefficient and impractical

 A need of more efficient methods in the real application, e.g.) compiler
- Cause: the unrestricted form of the right side of a production in CFG:

$$A \rightarrow x$$
, where $A \in V$ and $x \in (V \cup T)^*$.

- → restrict the right side without reducing the power of the grammar ? Resolution: Let's show how we need not worry about certain types of productions.
 - For a production with λ on the right in CFG, find an equivalent grammar without λ -productions.
 - Remove *unit-productions* that have only a single variable on the right.
 - Remove useless productions that cannot ever occur in the derivation of a string.
- Normal Forms
 - Grammatical forms that are very restricted.
 - But, any CFG has an equivalent in normal form.
 - One can define many kinds of normal forms; two of the most useful ones
 - Chomsky normal form and Greibach normal form.

Learning Objectives

- Simplify a Context Free Grammar (CFG) by removing useless productions.
- Simplify a CFG by removing λ -productions.
- Simplify a CFG by removing unit-productions.
- Determine whether or not a CFG is in Chomsky Normal Form (CNF).
- Transform a CFG into an equivalent grammar in Chomsky Normal Form (CNF).
- Determine whether or not a CFG is in *Greibach Normal Form* (GNF).
- Transform a CFG into an equivalent grammar in Greibach Normal Form (GNF).

Methods for Transforming Grammars

- The definition of a CFG imposes no restrictions on the right side of a production.
 - $A \rightarrow x$, where $A \in V$ and $x \in (V \cup T)^*$.
- In some cases, it is convenient to restrict the form of the right side of all productions.
- Simplifying a grammar involves eliminating certain types of productions while producing an equivalent grammar, but does not necessarily result in a reduction of the total number of productions.
- For simplicity, we focus on languages that do not include the empty string.
 - For a CFG G = (V, T, S, P), a new CFG G' for $L(G') = L(G) \{\lambda\}$.
 - In G', V' = V \cup {S₀} with P' = P \cup {S₀ \rightarrow S | λ }.

A Useful Substitution Rule

Theorem 6.1: Let G=(V, T, S, P) be a CFG.
P contains a production of the form A→x₁Bx₂.
Assume that A≠B and that B→y₁|y₂|···|y_n is the set of all productions in P that have B as the left side.
Let G' = (V, T, S, P') be the grammar in which P' is constructed by deleting A→x₁Bx₂ from P, and adding to it

 $A \to x_1 y_1 x_2 | x_1 y_2 x_2 | \cdots | x_1 y_n x_2$

Then, L(G') = L(G).

Proof)

If A and B are distinct variables, a production of the form
 A → uBv can be replaced by a set of productions in which B is
 substituted by all strings B derives in one step.

A Useful Substitution Rule (cont.)

L(G') = L(G).

Proof) \leftarrow) Suppose $w \in L(G)$, so $S \stackrel{*}{\Rightarrow}_{G} w$.

If $S \stackrel{*}{\Rightarrow}_{G} w$ doesn't involve a production $A \rightarrow x_{1}Bx_{2}$, then $S \stackrel{*}{\Rightarrow}_{G'} w$.

If it does, then look at the derivation the first time $A \rightarrow x_1 B x_2$ is used.

$$\stackrel{*}{S} \stackrel{*}{\Rightarrow}_{G} u_{1}Au_{2} \Rightarrow_{G} u_{1}x_{1}Bx_{2}u_{2} \Rightarrow_{G} u_{1}x_{1}y_{1}x_{2}u_{2}.$$

But with G', we get $S \Rightarrow_{G'} u_1 A u_2 \Rightarrow_{G'} u_1 x_1 y_1 x_2 u_2$.

So, we reach the same sentential from with G and G'.

If $A \rightarrow x_1 B x_2$ is used again, we can repeat the argument.

So, by Math. induction on the *number of times the production is* $\stackrel{*}{applied}$, $S \stackrel{*}{\Rightarrow}_{G'} w$. Thus, if $w \in L(G)$, then $w \in L(G')$.

 \rightarrow) Similarly, we can show that if $w \in L(G')$, then $w \in L(G)$.

A Useful Substitution Rule

• Example 6.1:

```
Consider the grammar G = (V, T, A, P) where V = \{A, B\}, T = \{a, b, c\}, and productions A \rightarrow a \mid aaA \mid abBc, B \rightarrow abbA \mid b.
```

By replacing $A \to abBc$ with two productions that replace B (in red), we get an equivalent grammar G' with productions P' $A \to a \mid aaA \mid ababbAc \mid abbc$, $B \to abbA \mid b$.

The new grammar $G' \equiv G$.

For w = aaabbc, A $\Rightarrow_G aaA \Rightarrow_G aaabbc \Rightarrow_G aaabbc in G$, while A $\Rightarrow_{G'} aaA \Rightarrow_{G'} aaabbc in G'$.

Useless Productions

- Definition 6.1: Let G=(V, T, S, P) be a CFG.
 A variable A∈V is useful iff there is at least one w ∈ L(G)
 s.t. S⇒*xAy⇒*w, with x, y ∈ (V ∪ T)*.
 i.e. it occurs in the derivation of at least one derivation.
- Otherwise, the variable and any productions in which it appears is considered *useless*.
- A variable is useless if:
 - No terminal strings can be derived from the variable.
 - The variable symbol can *not* be *reached* from S.
- Example 6.2: In the grammar below, B can never be reached from the start symbol S and is therefore considered useless and so is a production $B \rightarrow bA$.

 $S \rightarrow A$, $A \rightarrow aA \mid \lambda$, $B \rightarrow bA$.

Removing Useless Productions

Theorem 6.2: Let G=(V, T, S, P) be a CFG.

Then, there exists an equivalent grammar G'=(V', T', S, P') without any useless symbol and production.

Proof) Step 1: Construct an intermediate $G_1 = (V_1, T_1, S, P_1)$ with the useful variables only.

- 1. Let V_1 be the set of *useful variables*: initially, $V_1 = \{S\}$.
- 2. Repeat for every $A \in V$,

Add a variable A to V_1 if there is a production of the form $A \rightarrow x_1 x_2 ... x_n$, $\forall x_i \in V_1 \cup T$

Until nothing else can be added to V₁

3. Take P_1 by eliminating any productions from P containing variables not in V_1 .

Removing Useless Productions (cont.)

Theorem 6.2: Let G=(V, T, S, P) be a CFG.

Then, there exists an equivalent grammar G'=(V', T', S, P') without any useless symbol and production.

Proof (cont.)) Step 2: Get the final G' from G₁.

- 4. Using a dependency graph from G₁,
 - a) Identify and eliminate the variables that are unreachable from S. -- the final V'.
 - b) Eliminate the productions involving those variables in a).– the final P'.
 - c) Eliminate any terminal that doesn't occur in any production of P'. -- the final T'.

So, G' doesn't contain any useless symbols or productions.

Removing Useless Productions (cont.)

Theorem 6.2: Let G=(V, T, S, P) be a CFG.

Then, there exists an equivalent grammar G'=(V', T', S, P') without any useless symbol and production.

Proof (cont.)) Step 3: Show that G are G' are equivalent, L(G)=L(G').

 \rightarrow) For each $w \in L(G)$, there is a derivation: $S \Rightarrow^* xAy \Rightarrow^* w$.

Since the construction of G' retains A and all associated productions, P' of G' makes the derivation $S \Rightarrow_{G'}^* xAy \Rightarrow_{G'}^* w$.

Thus, $L(G) \subseteq L(G')$.

←)

Since G' is constructed from G by the removal of productions, $P' \subseteq P$. Consequently, $L(G') \subseteq L(G)$. Therefore, L(G') = L(G).

Thus, G are G' are equivalent: $G \equiv G'$. Q.E.D.

Example 6.3: Removing Useless Productions

- Consider the CFG G = (V, T, S, P) where V={S, A, B, C}, T={a,b}, and P = { $S \rightarrow aS \mid A \mid C$, $A \rightarrow a$, $B \rightarrow aa$, $C \rightarrow aCb$ }.
- In step 2: Add variables A, B and S to V₁, so V₁ = {S, A, B}
 the set of variables that can lead to terminal string
- Step 3: Since C is useless, any production containing C is eliminated from P, so $P_1 = \{ S \rightarrow aS \mid A, A \rightarrow a, B \rightarrow aa \}$.
- Step 4.(a): B is unreachable from S, so B is useless: V₁ = {S, A} = V'
- Step 4.(b): Any production containing B is eliminated from P₁.

$$P_1 = \{ S \rightarrow aS \mid A, A \rightarrow a \} = P'.$$

• Step 4.(c): Since the terminal b doesn't occur in any P', eliminate it from T_1 . Thus, the final equivalent G' = (V', T', S, P') is with

$$\mathsf{V}'=\{S,\,A\},\ \mathsf{T}'=\{a\},\ P'=\{S\to aS\mid A,\ A\to a\}.$$

λ -Productions

• Definition 6.2:

A production of a CFG of the form $A \to \lambda$ is called a λ -production. A variable A is called *nullable* if there is a sequence of derivations that produces λ from A, i.e. $A \Rightarrow^* \lambda$.

- If a grammar generates a language not containing λ , any λ -production can be removed.
- Example 6.4: In the grammar G below, S₁ is nullable:

$$S \rightarrow aS_1b$$
, $S_1 \rightarrow aS_1b \mid \lambda$.

Since the language L(G) = $\{a^nb^n | n \ge 1\}$ is λ -free, the λ -production $S_1 \to \lambda$ can be removed *after adding new productions* by substituting λ for S_1 where it occurs on the right. Thus,

$$S \rightarrow aS_1b \mid ab$$
, $S_1 \rightarrow aS_1b \mid ab$.

Removing λ -Productions

Theorem 6.3: Let G be any CFG with $\lambda \notin L(G)$.

Then, there exists an equivalent CFG G'=(V, T, S, P') without λ -productions.

Proof) Step 1: Find V_N of all *nullable variables*.

- 1. Let V_N be the set of *nullable variables*: initially, $V_N = \emptyset$.
- 2. Repeat for all productions

Add a variable A to V_N if there is a production of the forms: $A \rightarrow \lambda$ or

 $A \rightarrow A_1 A_2 ... A_n$ where $A_i \in V_N$

Until no further variables can be added to V_N

- 3. Eliminate λ -productions from P.
- 4. Add the new productions in which *nullable variables* are replaced by λ in all possible combinations. -- the new P'.

<u>Step 2</u>: Show that G are G' are equivalent. -- similar to Th^m. 6.2 The final G'=(V, T, S, P') is equivalent to G.

Example: Removing λ -Productions

- Example 6.5: Consider the CFG G with productions $S \rightarrow ABaC$, $A \rightarrow BC$, $B \rightarrow b \mid \lambda$, $C \rightarrow D \mid \lambda$, $D \rightarrow d$.
- In step 2: The nullable variables B, C, and A (in that order) are added to V_N . So, $V_N = \{B, C, A\}$.
- In step 3: λ -productions, B $\rightarrow \lambda$, C $\rightarrow \lambda$ are removed from P. {S $\rightarrow ABaC$, A $\rightarrow BC$, B $\rightarrow b$, C $\rightarrow D$, D \rightarrow d}.
- In step 4: the new productions replacing nullable symbols with λ in all possible combinations,

```
P' = \{ S \rightarrow ABaC \mid BaC \mid AaC \mid ABa \mid aC \mid Aa \mid Ba \mid a \\ A \rightarrow BC \mid B \mid C, \\ B \rightarrow b, \\ C \rightarrow D, \\ D \rightarrow d \} \quad \text{with } V_N = \{A, B, C\}.
```

Unit-Productions

- <u>Definition 6.3</u>: A production of a CFG of the form $A \rightarrow B$ where $A, B \in V$ is called a *unit-production*.
- Unit-productions increase the unnecessary complexity to a grammar and can usually be removed by simple substitution.
- Theorem 6.4: Any CFG without λ -productions has an equivalent CFG without unit-productions.
- The procedure for eliminating unit-productions assumes that all λ -productions have been previously removed.

Removing Unit-Productions

- Draw a dependency graph with an edge from A
 to B corresponding to every A → B production in
 the grammar.
- 2. Construct a new grammar that includes all the productions from the original grammar, except for the unit-productions.
- 3. Whenever there is a path from A to B in the dependency graph, replace B using the substitution rule from Theorem 6.1, but using only the productions in the new grammar.

Example: Removing Unit-Productions

• Example 6.6: Consider the grammar:

$$S \rightarrow Aa \mid B$$

 $A \rightarrow a \mid bc \mid B$
 $B \rightarrow A \mid bb$

The dependency graph contains paths from S to A, S to B, B to A, and A to B

 After removing unit-productions and adding the new productions (in red), the resulting grammar is

```
S \rightarrow Aa \mid a \mid bc \mid bb

A \rightarrow a \mid bc \mid bb

B \rightarrow a \mid bc \mid bb.
```

• The removal of the unit-productions has made *B* and the associated productions useless.

Simplification of Grammars

- Theorem 6.5: For any CFL that does not include λ , there exists a CFG without useless, λ -, or unit-productions.
- Since the removal of one type of production may introduce productions of another type, undesirable productions should be removed in the following order:
 - 1. Remove λ -productions.
 - 2. Remove unit-productions.
 - 3. Remove useless productions.

Chomsky Normal Form (CNF)

- In Chomsky Normal Form (CNF), the number of symbols on the right side of a production is strictly limited.
- <u>Definition 6.4</u>: A CFG is in Chomsky Normal Form (CNF)
 if all of its productions are of the form
 - $A \rightarrow BC$ or
 - A $\rightarrow a$ where A, B, C \in V, $a \in$ T.
- Example 6.7: The grammar below
 - $S \rightarrow AS \mid a$
 - $A \rightarrow SA \mid b$ is in Chomsky Normal Form.
- But, $S \rightarrow AS \mid AAS$, $A \rightarrow SA \mid aa$ is not in CNF, since both $S \rightarrow AAS$ and $A \rightarrow aa$ violate the conditions

Transforming a CFG into Chomsky Normal Form (CNF)

For any CFG that does *not* generate λ , it is possible to find an equivalent grammar in CNF:

- 1. Copy any productions of the form $A \rightarrow a$.
- 2. For other productions containing a terminal symbol x on the right side, replace x with a variable X and add the production $X \rightarrow x$.
- 3. Introduce additional variables to reduce the lengths of the right sides of productions as necessary, replacing long productions with productions of the form $W \rightarrow YZ$ (W, Y, Z are variables).

Example: Conversion to CNF

 <u>Example 6.8</u>: Consider the CFG which is clearly not in Chomsky Normal Form

$$S \rightarrow ABa$$

 $A \rightarrow aab$
 $B \rightarrow Ac$

 After replacing terminal symbols with new variables and adding new productions (in red), the resulting grammar is

```
S \rightarrow AC, C \rightarrow BX, X \rightarrow a

A \rightarrow XD, D \rightarrow XY, Y \rightarrow b

B \rightarrow AZ, Z \rightarrow c.
```

Greibach Normal Form (GNF)

- In Greibach Normal Form, there are restrictions on the positions of terminal and variable symbols
- Definition 6.5: A CFG is in Greibach Normal Form (GNF)
 if all productions have the form A → ax where a∈T, x∈V*.
 i.e. the right side of any production consists of single
 terminal followed by any number of variables.
- Example 6.9: The grammar

```
S \rightarrow aAB \mid bBB \mid bB

A \rightarrow aA \mid bB \mid b

B \rightarrow b is in Greibach Normal Form.
```

Transforming a Grammar into GNF

- Theorem 6.7: For any CFG with λ∉L(G), it is possible to find an equivalent grammar in Greibach normal form.
- Example 6.10: Consider the grammar which is clearly not in GNF, $S \rightarrow abSb \mid aa$.
- After replacing terminal symbols with new variables and adding new productions (in red), the resulting grammar is

```
S \rightarrow aBSB \mid aA

A \rightarrow a

B \rightarrow b
```