On Homogeneous Spiking Neural P System Variants

Ren Tristan A. de la Cruz¹, Francis George C. Cabarle^{1,2}, Iva Cedric H. Macababayao¹, Henry N. Adorna¹, and Xiangxiang Zeng³

¹Algorithms and Complexity Laboratory
Department of Computer Science, University of the Philippines - Diliman
Diliman 1101, Quezon City, Philippines

²Shenzhen Research Institute of Xiamen University
Xiamen University, Shenzhen 518000, Guangdong, China.

³ School of Information Science and Engineering
Hunan University 410082, Changsha, China
radelacruz@up.edu.ph, fccabarle@up.edu.ph, ivan.cedric10@gmail.com,
hnadorna@dcs.upd.edu.ph, zxxhust@gmail.com

Abstract. (ABSTRACT)

Keywords: Membrane Computing, Spiking Neural P Systems, Homogeneous Neurons, Structural Plasticity

- 1 Introduction
- 2 Spiking Neural P System and Some Variants
- 3 Homogenization of Spiking Neural P Systems

A state transition diagram will be used to represent the activities of a neuron. A state is a set of spike counts. For example, the state $\{4,5\}$ represents spike counts 4 and 5, the state $\{0,2,4,8,\ldots\}$ represents even spike counts, and the state $\{15,20,25,30,35,\ldots\}$ represents spike counts that are multiples of 5 starting from 15

If a neuron has n spikes, the neuron is said to be in state S if $n \in S$. For example, let n = 10 be the number spikes in the neuron and $S_a = \{1\}$, $S_b = \{2, 4, 9, 10, ...\}$, $S_c = \{5, 10, 15, 20, ...\}$ be states, the neuron is not in state S_a since $n \notin S_a$ but it is in state S_b and S_c since $n \in S_a$ and $n \in S_b$. States can intersect since they are sets which means a neuron can be in multiple states at the same time.

Most states that are associated with a given neuron represent the regular expressions of the rules in the neuron. For example, in Figure 1, neuron 1 have the rules $r_1: a/a \to \lambda$ and $r_2: a^3(a^2)^*/a^2 \to a$. The state $S_a = \{1\}$ represents the regular expression a of rule r_1 while the state $S_b = \{3, 5, 7, 9, 11, ...\}$ represents the regular expression $a^3(a^2)^*$ of rule r_2 . The state $S_c = \{0, 2, 4, 6, 8, ...\}$, the set

of even spike counts, is also associated with neuron 1 even though it does not represent a regular expression of any of the rules in neuron 1. State S_c is relevant to neuron 1 because neuron 1 can be in state S_c . For example, if neuron 1 starts with 0 spike and only receives even number of spikes, then neuron 1 will stay in state S_3 .

For neuron 2 in Figure 1, it has the single rule $r_3: a^3/a^3 \to a$ which means $S_z = \{3\}$ is associated with the neuron and it represents the regular expression a^3 of rule r_3 . Neuron 2 only has one incoming synapse so it can only receive one spike at a time assuming the use of non-extended/standard spiking rules. The only other relevant states for neuron 2 are $S_w = \{0\}$, $S_x = \{1\}$, $s_y = \{2\}$. If neuron 2 starts with 0 spike, it will be state S_w . Neuron 2 will be in state S_x after receiving a spike, in state S_y after receiving a total of 2 spikes, and in state S_z after receiving a total of 3 spikes. At state S_z , neuron 2 will use rule r_3 consuming 3 spikes and returning to state S_w . Only states S_w , S_x , S_y , S_z are relevant to neuron 2 since it can only reach the spike counts in those states.

Fig. 1. Example Neurons

Fig. 2. Example Neurons