

PolarHT[™] Power MOSFET

IXTQ69N30P IXTT69N30P

$$V_{DSS} = 300 V_{DSS} = 69 A_{DS(on)} \le 49 m\Omega$$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Rating			
V _{DSS} V _{DGR}	$T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}$ $T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	300 300	V V		
V _{GSS} V _{GSM}	Continuous Transient	±20 ±30	V V		
I _{D25}	T _c =25°C	69	Α		
I _{DM}	$\rm T_{_{\rm C}}$ = 25° C, pulse width limited by $\rm T_{_{\rm JM}}$	200	Α		
I _{AR}	T _c =25°C	69	Α		
E _{AR}	T _c =25°C	50	mJ		
E _{AS}	T _c =25°C	1.5	J		
dv/dt	$I_{s} \leq I_{DM}$, di/dt ≤ 100 A/ μs , $V_{DD} \leq V_{DSS}$, $T_{J} \leq 150^{\circ}$ C, $R_{g} = 4 \Omega$	10	V/ns		
P_{D}	T _c =25°C	500	W		
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C		
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 s	300 260	°C		
M _d	Mounting torque (TO-3P)	1.13/10	Nm/lb.in.		
Weight	TO-3P TO-268	5.5 5.0	g g		

Symbol (T _J = 25° C,	Test Conditions unless otherwise specified)		Ch Min.	aracter Typ.	istic Va Max	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		300			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 250\mu A$		2.5		5.0	V
GSS	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125° C			25 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ Pulse test, t ≤300 µs, duty	cycle d ≤ 2 %			49	mΩ

TO-3P (IXTQ)

TO-268 (IXTT)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- ¹ International standard packages
- Unclamped Inductive Switching (UIS) rated
- 1 Low package inductance
 - easy to drive and to protect

Advantages

- ^I Easy to mount
- Space savings
- High power density

Symbo		Characteristic Values T _J = 25° C, unless otherwise specified)		
	Min.	∣Typ.	Max.	
g _{fs}	V_{DS} = 10 V; I_{D} = 0.5 I_{D25} , pulse test 30	48	S	
C _{iss})	4960	pF	
Coss	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	760	pF	
C _{rss}	J	190	pF	
$\mathbf{t}_{\text{d(on)}}$		25	ns	
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = I_{D25}$	25	ns	
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 4 \Omega $ (External)	75	ns	
t _f	J	27	ns	
$\mathbf{Q}_{\mathrm{g(on)}}$)	156	180 nC	
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$	32	nC	
\mathbf{Q}_{gd}	J	79	nC	
R_{thJC}			0.25° C/W	
\mathbf{R}_{thCS}	(TO-3P)	0.21	° C/W	

Source-Drain Diode

Characteristic Values (T, = 25°C, unless otherwise specified)

Symbol	Test Conditions Mi	n.	Тур.	Max.	
Is	V _{GS} = 0 V			69	Α
I _{sm}	Repetitive			200	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Pulse test, t ≤300 μ s, duty cycle d≤ 2 %			1.5	V
$\left\{egin{array}{c} T_{rr} \ Q_{RM} \end{array}\right\}$	$I_F = 25 \text{ A}, -\text{di/dt} = 100 \text{ A/}\mu\text{s}$ $V_R = 100 \text{ V}, V_{GS} = 0 \text{ V}$		250 3.0		ns μC

SYM	INCH	IES	MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	.185	.193	4.70	4.90	
A1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
Ь	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
С	.022	.031	0.55	0.80	
D	.780	.799	19.80	20.30	
D1	.665	.677	16.90	17.20	
Ε	.610	.622	15.50	15.80	
E1	.531	.539	13.50	13.70	
е	.215 BSC		5.45	BSC	
L	.779	.795	19.80	20.20	
L1	.134	.142	3.40	3.60	
ØΡ	.126	.134	3.20	3.40	
øP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5.10	

Fig. 1. Output Characteristics @ 25 Deg. C

Fig. 3. Output Characteristics @ 125 Deg. C

Fig. 5. $R_{DS(on)}$ Normalized to I_{D25} Value vs. I_{D}

Fig. 2. Extended Output Characteristics

Fig. 4. $R_{DS(on)}$ Normalized to I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Resistance