HEYTING ALGEBRAS ONE STEP AT A TIME

Rodrigo Nicolau Almeida – ILLC-UvA – University of Birmimgham TCS Seminar Friday 4, 2025

Structure of this talk

1. Some open problems of intuitionistic logic.

Structure of this talk

- 1. Some open problems of intuitionistic logic.
- 2. A particular technical problem I have worked on related to free Heyting algebras.

Structure of this talk

- 1. Some open problems of intuitionistic logic.
- 2. A particular technical problem I have worked on related to free Heyting algebras.
- 3. Some hopes for these, and related, techniques in furthering the theory concerning those open problems.

Intuitionistic Logic and its

Extensions

Intuitionistic Logic – IPC – is an attempt to capture the "constructive" fragment of logic. This makes it suitable for many computational applications.

Intuitionistic Logic – IPC – is an attempt to capture the "constructive" fragment of logic. This makes it suitable for many computational applications.

Its algebraic models are also mathematically quite natural:

Definition

An algebra $(H, \land, \lor, \rightarrow, 0, 1)$ is called a Heyting algebra if:

- 1. $(H, \land, \lor, 0, 1)$ is a (distributive) lattice.
- 2. The following law holds for all $a, b, c \in H$:

$$a \wedge c \leq b \iff c \leq a \rightarrow b$$
.

Intuitionistic Logic – IPC – is an attempt to capture the "constructive" fragment of logic. This makes it suitable for many computational applications.

Its algebraic models are also mathematically quite natural:

Definition

An algebra $(H, \land, \lor, \rightarrow, 0, 1)$ is called a *Heyting algebra* if:

- 1. $(H, \land, \lor, 0, 1)$ is a (distributive) lattice.
- 2. The following law holds for all $a, b, c \in H$:

$$a \land c \le b \iff c \le a \to b$$
.

For example, given a topological space (X, τ) , the topology defines a Heyting algebra with Heyting implication given by $int(X - U \cup V)$ for U, V open sets. Such algebras are called topological Heyting algebras.

Intuitionistic Logic – IPC – is an attempt to capture the "constructive" fragment of logic. This makes it suitable for many computational applications.

Its algebraic models are also mathematically quite natural:

Definition

An algebra $(H, \land, \lor, \rightarrow, 0, 1)$ is called a *Heyting algebra* if:

- 1. $(H, \land, \lor, 0, 1)$ is a (distributive) lattice.
- 2. The following law holds for all $a, b, c \in H$:

$$a \land c \le b \iff c \le a \to b$$
.

For example, given a topological space (X, τ) , the topology defines a Heyting algebra with Heyting implication given by $int(X-U\cup V)$ for U,V open sets. Such algebras are called topological Heyting algebras. As a special example, if (P, \leq) is a poset, Up(P) the upwards closed sets of P, are a Heyting algebra. Also every locale is a (complete) Heyting algebra.

Studying classes of Logics

Often we are interested not just in a single logic, but in the class of its extensions:

Definition

Let L be a set of formulas in the language \mathcal{L}_{IPC} of intuitionistic logic. We say that L is a superintuitionistic logic if IPC $\subseteq L$ and L is closed under Modus Ponens and Uniform Substitution.

We denote by $\Lambda(IPC)$ the lattice of extensions of IPC.

On the algebraic side we dually have $\Lambda(HA)$, the lattice of subvarieties of Heyting algebras.

Studying classes of Logics

Often we are interested not just in a single logic, but in the class of its extensions:

Definition

Let L be a set of formulas in the language \mathcal{L}_{IPC} of intuitionistic logic. We say that L is a superintuitionistic logic if IPC $\subseteq L$ and L is closed under Modus Ponens and Uniform Substitution.

We denote by $\Lambda(IPC)$ the lattice of extensions of IPC.

On the algebraic side we dually have $\Lambda(HA)$, the lattice of subvarieties of Heyting algebras.

Studying extensions as a whole gives much deeper insight into the logical system and into the uniqueness of certain extensions and of the properties.

Studying classes of Logics

Often we are interested not just in a single logic, but in the class of its extensions:

Definition

Let L be a set of formulas in the language \mathcal{L}_{IPC} of intuitionistic logic. We say that L is a superintuitionistic logic if IPC $\subseteq L$ and L is closed under Modus Ponens and Uniform Substitution.

We denote by $\Lambda(IPC)$ the lattice of extensions of IPC.

On the algebraic side we dually have $\Lambda(HA)$, the lattice of subvarieties of Heyting algebras.

Studying extensions as a whole gives much deeper insight into the logical system and into the uniqueness of certain extensions and of the properties.

An example:

Theorem

There are exactly seven superintuitionistic logics with the interpolation property; equivalently seven varieties of Heyting algebras with the amalgamation property.

Duality

Definition

An ordered topological space (X, \leq, τ) is called a Priestley space if it is compact and whenever $x \nleq y$ there is a clopen upwards closed set (upset) $x \in U \not\ni y$. It is called Esakia if whenever U is clopen, then $\downarrow U = \{x \in X : \exists y \in U, x \leq y\}$ is clopen.

Figure 1: Hilary Priestley (info missing); Leo Esakia (1934-2010)

Definition

A given order-preserving map $p: X \to Y$ between partial orders is called a p-morphism if whenever $p(x) \le y$ there is some $x' \ge x$ such that p(x') = y.

Duality (cont.d)

Theorem

There is a dual equivalence between **DL** distributive lattices and **Pries** the category of Priestley spaces with order-preserving continuous functions. This restricts to a dual equivalence between **HA**, Heyting algebras and their homomorphisms, and **Esa**, Esakia spaces with continuous p-morphisms.

Duality (cont.d)

Theorem

There is a dual equivalence between **DL** distributive lattices and **Pries** the category of Priestley spaces with order-preserving continuous functions. This restricts to a dual equivalence between **HA**, Heyting algebras and their homomorphisms, and **Esa**, Esakia spaces with continuous p-morphisms.

All finite posets are Esakia spaces. Moreover, given a class $\mathcal K$ of Esakia spaces we can look at their logic: it is the logic of the dual Heyting algebras.

What we know that we don't know

The extensions of IPC have been extensively studied for more than 60 years. Nevertheless some longstanding open problems have remained open.

What we know that we don't know

The extensions of IPC have been extensively studied for more than 60 years. Nevertheless some longstanding open problems have remained open.

I will briefly mention three such problems which are old and have revealed themselves quite sticky.

Consider the family of finite posets of topless Boolean algebras:

Figure 2: Medvedev frames

Let ML be the logic of these infinitely many posets.

Consider the family of finite posets of topless Boolean algebras:

Figure 2: Medvedev frames

Let ML be the logic of these infinitely many posets.

Question: can you recursively axiomatize this logic?

Consider the family of finite posets of topless Boolean algebras:

Figure 2: Medvedev frames

Let ML be the logic of these infinitely many posets.

Question: can you recursively axiomatize this logic?

Other question: is this the only intermediate logic which is structurally complete and has the disjunction property?

Consider the family of finite posets of topless Boolean algebras:

Figure 2: Medvedev frames

Let ML be the logic of these infinitely many posets.

Question: can you recursively axiomatize this logic?

Other question: is this the only intermediate logic which is structurally complete and has the disjunction property?

This logic appears very naturally elsewhere: it can be formulated as a logic of finite problems; it is the natural model of inquisitive logic; etc.

2. Kuznetsov's Completeness Problem

Given an intermediate logic L, sometimes we do not need all (or most) algebras of L:

- 1. L is tabular if L = Log(A) for a single finite algebra;
- 2. L has the FMP if L is the logic of a class of finite algebras;
- L is Kripke complete if its class of algebras Alg(L) is generated by the algebras of the form Up(L);
- 4. L is topologically complete if it is generated by its topological Heyting algebras;
- 5. L is locallically complete if it is generated by its locales.

2. Kuznetsov's Completeness Problem

Given an intermediate logic *L*, sometimes we do not need all (or most) algebras of *L*:

- 1. L is tabular if L = Log(A) for a single finite algebra;
- 2. L has the FMP if L is the logic of a class of finite algebras;
- L is Kripke complete if its class of algebras Alg(L) is generated by the algebras of the form Up(L);
- 4. L is topologically complete if it is generated by its topological Heyting algebras;
- 5. L is locallically complete if it is generated by its locales.

Question: Is every logic *L* topologically/locallically complete?

2. Kuznetsov's Completeness Problem

Given an intermediate logic *L*, sometimes we do not need all (or most) algebras of *L*:

- 1. L is tabular if L = Log(A) for a single finite algebra;
- 2. L has the FMP if L is the logic of a class of finite algebras;
- L is Kripke complete if its class of algebras Alg(L) is generated by the algebras of the form Up(L);
- 4. L is topologically complete if it is generated by its topological Heyting algebras;
- 5. L is locallically complete if it is generated by its locales.

Question: Is every logic L topologically/locallically complete?

This establishes a link between propositional and First-order intuitionistic logic.

3. Pitts-Pataraia Problem

Given an elementary topos \mathcal{E} , the subobjects of the terminal object Sub(1) form a Heyting algebra.

Question: Can every Heyting algebra arise in this way?

3. Pitts-Pataraia Problem

Given an elementary topos \mathcal{E} , the subobjects of the terminal object Sub(1) form a Heyting algebra.

Question: Can every Heyting algebra arise in this way?

This establishes a link with Propositional Higher-order logic, i.e., with particular models of the lambda calculus.

Free Heyting Algebras

A Tale of Nice Algebras

Mantra

Every logic L is generated by its free algebras. Hence understanding the free algebras gives us crucial information about the structure of L.

A Tale of Nice Algebras

Mantra

Every logic L is generated by its free algebras. Hence understanding the free algebras gives us crucial information about the structure of L.

Example

1. Free Boolean algebras are very well-understood: for a set *X* they can be described as the duals of

2^X

understood as the X-fold product of the discrete space with two elements.

2. Similarly, for Distributive Lattices, the description of the free algebras is similarly straightforward: for a set *X*,

2^x

understood as the product of X-many copies of 2_{\bullet} , the two element poset 0 < 1, with the pointwise order and topology.

A Tale of Nice Algebras

Mantra

Every logic L is generated by its free algebras. Hence understanding the free algebras gives us crucial information about the structure of L.

Example

1. Free Boolean algebras are very well-understood: for a set *X* they can be described as the duals of

2^X

understood as the X-fold product of the discrete space with two elements.

2. Similarly, for Distributive Lattices, the description of the free algebras is similarly straightforward: for a set *X*,

2

understood as the product of X-many copies of 2_{\bullet} , the two element poset 0 < 1, with the pointwise order and topology.

Having a good grasp of free algebras is intimately related to having a good grasp of colimits of these algebras. Logically, this has several natural desirable applications: interpolation, conservativity, etc.

A beautiful disaster

Figure 3: Rieger-Nishimura Lattice

Intuitionistic Monsters (Cont.d)

Free n-generated Heyting algebras for n>1 are very complex, in all the ways this can happen.

Intuitionistic Monsters (Cont.d)

Free n-generated Heyting algebras for n>1 are very complex, in all the ways this can happen.

The consequence of this complexity is that a number of natural related constructions which would otherwise be at our disposal have not been considered within the reasonable toolkit:

- 1. Coproducts of Heyting algebras (except for some locally finite subvarieties);
- 2. Pushouts of Heyting algebras;
- 3. Heyting subalgebras generated by a given subset;
- 4. Etc.

Heyting Algebras from Distributive Lattices

Describing the freely generated algebras amounts to studying the adjunction:

$$HA \xleftarrow{Free} Set$$

Figure 4: Free-Forgetful Adjunction

Heyting Algebras from Distributive Lattices

Describing the freely generated algebras amounts to studying the adjunction:

$$HA \xrightarrow{Free} Set$$

Figure 4: Free-Forgetful Adjunction

Instead of studying it directly, we "split" this adjunction:

Figure 5: Split Free Forgetful Adjunction

Key Intuition: We think of generating Heyting algebras as adding infinitely many layers of implications to a distributive lattice step-by-step.

Heyting Algebras from Distributive Lattices, algebraically

Let $\mathcal D$ be a distributive lattice, and X a set of generators. Let $F_{DL}(X)$ be the free distributive lattice on X.

Let \mathcal{D} be a distributive lattice, and X a set of generators. Let $F_{DL}(X)$ be the free distributive lattice on X.

Let $\mathcal{D}_0 = \mathcal{D}$. Then set

$$\mathcal{D}_1 = F_{DL}(\{a \to b : a, b \in D\})/\Theta$$

where ⊖ contains:

- 1. Axioms of Heyting algebras;
- 2. Axioms enforcing elements of the form 1 \rightarrow a, for $a \in D$, to behave like the elements from D.

This gives us one-step.

Let \mathcal{D} be a distributive lattice, and X a set of generators. Let $F_{DL}(X)$ be the free distributive lattice on X.

Let $\mathcal{D}_0 = \mathcal{D}$. Then set

$$\mathcal{D}_1 = F_{DL}(\{a \to b : a, b \in D\})/\Theta$$

where Θ contains:

- 1. Axioms of Heyting algebras;
- 2. Axioms enforcing elements of the form 1 \rightarrow a, for $a \in D$, to behave like the elements from D.

This gives us one-step.

We set the map $i_1: \mathcal{D}_0 \to \mathcal{D}_1$ sending a to $[1 \to a]$, which is a homomorphism by force. We then iterate; but for \mathcal{D}_2 we need to also add one more rule to Θ :

3. Axioms ensuring that if $a, b \in D$, then:

$$1 \to_{D_2} (a \to_{D_1} b) \equiv (1 \to_{D_1} a) \to_{D_2} (1 \to_{D_2} b).$$

This is how we define \mathcal{D}_2 , and i_2 is defined similarly.

We then iterate infinitely:

- 1. $\mathcal{D}_{n+1} = F_{DL}(\{a \to b : a, b \in D_n\})/\Theta$, where Θ is defined as above;
- 2. $i_n: \mathcal{D}_n \to \mathcal{D}_{n+1}$ sends a to $[1 \to a]$.

Problem: We would like to say that the free Heyting algebra generated by \mathcal{D} is the union of all of these. But we do not know whether this is a chain of embeddings, or really anything about this construction.

We then iterate infinitely:

- 1. $\mathcal{D}_{n+1} = F_{DL}(\{a \to b : a, b \in D_n\})/\Theta$, where Θ is defined as above;
- 2. $i_n: \mathcal{D}_n \to \mathcal{D}_{n+1}$ sends a to $[1 \to a]$.

Problem: We would like to say that the free Heyting algebra generated by \mathcal{D} is the union of all of these. But we do not know whether this is a chain of embeddings, or really anything about this construction.

For this we turn to duality.

One-step dual constructions

The idea of dual one-step constructions is not-new, and well-studied in Modal Logic. In the case where we generate from finite Heyting algebras, this was studied by Ghilardi (1992), generalizing previous work of Urquhart (1973); Bezhanishvili and Gehrke (2009) gave a detailed outline of this method for various classes.

Vietoris Spaces

Let (X, \leq, τ) be a Priestley space (compact, totally order-disconnected space). We denote by $(V(X), \supseteq)$ the Vietoris Hyperspace of X with reverse inclusion.

Vietoris Spaces

Let (X, \leq, τ) be a Priestley space (compact, totally order-disconnected space). We denote by $(V(X), \supseteq)$ the Vietoris Hyperspace of X with reverse inclusion.

V(X) is the set of closed subsets of X; it has a basis consisting of sets:

$$[U] = \{C \in V(X) : C \subseteq U\} \text{ and } \langle V \rangle = \{C \in V(X) : C \cap V \neq \emptyset\}$$

where $U, V \in Clop(X)$. It is always a Priestley space.

Definition

Let X,Y,Z be Priestley spaces, and $g:X\to Y$ and $f:Z\to X$ be Priestley morphisms. We say that f is open relative to g (g-open for short) if it satisfies the following:

$$\forall a \in \mathcal{Z}, \forall b \in \mathcal{X}, (f(a) \leq b \implies \exists a' \in \mathcal{Z}, (a \leq a' \& g(f(a')) = g(b)). \tag{*}$$

Given $S \subseteq X$ a closed subset, we say that S is g-open (understood as a poset with the restricted partial order relation) if the inclusion is itself g-open.

Definition

Let X, Y be a Priestley spaces, $g: X \to Y$ Priestley morphism. We denote by $V_r(X)$ the set of closed and rooted subsets of X. We denote by $V_g(X)$ the set of closed, rooted and g-open subsets of X.

This is a Priestley space as well.

We can now proceed with the main construction:

Definition

Let $g: X \to Y$ be a Priestley morphism. The g-Vietoris complex over X ($V^g_{ullet}(X), \leq_{ullet}$), is a sequence

$$(V_0(X), V_1(X), ..., V_n(X))$$

connected by morphisms $r_i: V_{i+1}(X) \to V_i(X)$ such that:

- 1. $V_0(X) = X$;
- 2. $r_0 = g$
- 3. For $i \geq 0$, $V_{i+1}(X) := V_{r_i}(V_i(X))$;
- 4. $r_{i+1} = r_{r_i} : V_{i+1}(X) \to V_i(X)$ is the root map.

We can now proceed with the main construction:

Definition

Let $g: X \to Y$ be a Priestley morphism. The g-Vietoris complex over X ($V^g_{ullet}(X), \leq_{ullet}$), is a sequence

$$(V_0(X), V_1(X), ..., V_n(X))$$

connected by morphisms $r_i: V_{i+1}(X) \to V_i(X)$ such that:

- 1. $V_0(X) = X$;
- 2. $r_0 = g$
- 3. For $i \ge 0$, $V_{i+1}(X) := V_{r_i}(V_i(X))$;
- 4. $r_{i+1} = r_{r_i} : V_{i+1}(X) \to V_i(X)$ is the root map.

We denote the projective limit of this family by $V_{\rm G}^g(X)$, and omit g when this is the terminal map to 1.

Then one can show that $V_G^g(X)$ is always an Esakia space.

By considering maps appropriately, one can use this to prove:

Corollary

The assignment V_G is a functor mapping **Pries** of Priestley spaces and Priestley morphisms, to the category **Esa** of Esakia spaces and p-morphisms. It is the right adjoint of the inclusion.

By considering maps appropriately, one can use this to prove:

Corollary

The assignment V_G is a functor mapping **Pries** of Priestley spaces and Priestley morphisms, to the category **Esa** of Esakia spaces and p-morphisms. It is the right adjoint of the inclusion.

In the short term we could capitalize on this construction and associated ideas for several results:

- 1. In (A., 2025, preprint available), I presented this theory as well as a similar adjunction for image-finite posets and profinite Heyting algebras;
- In (A., Bezhanishvili, 2024 and A., Dukic, 2025), we applied this to coalgebraic representations of intuitionistic modal logic, resolving an open problem in the field;
- 3. In (A. 2025, forthcoming), we obtained a proof of uniform interpolation using a dual representation of coproducts of Heyting algebras.

Step by Step as a technique

Free Heyting Algebras and Regularization

Consider the functor:

 $\text{Reg}: \mathbf{HA} \to \mathbf{BA};$

Free Heyting Algebras and Regularization

Consider the functor:

Reg :
$$HA \rightarrow BA$$
;

this functor has a left adjoint (by categorical magic). What does it look like?

Free Heyting Algebras and Regularization

Consider the functor:

Reg :
$$HA \rightarrow BA$$
;

this functor has a left adjoint (by categorical magic). What does it look like? One considers a specific Vietoris complex:

Let $M_{\infty}(Y) = V_G^r(V_{max}(Y))$. Explicitly, this is the inverse limit of the sequence:

$$V(Y) \xleftarrow{r_1} V_{\mathsf{max}}(Y) \xleftarrow{r_2} V_2(Y) \xleftarrow{r_3} ...$$

where $V_{n+1}(Y) = V_{r_n}(V_n(Y))$.

Proposition

The functor FreeM : Stone \to Esa assigning each Stone space X to $M_{\infty}(X)$ is right adjoint to max : Esa \to Stone.

(N-)Regular Heyting Algebras

A Heyting algebra is said to be regular if it is generated by its regularization.

Theorem

Given a Stone space X, $M_{\infty}(X)$ is always a regular Esakia space, and moreover, regular Esakia spaces are the coalgebras for the comonad induced by this functor.

Theorem

The logic ML is precisely the logic of all the spaces V(X) for X a Stone space.

Hope: Understanding the role of Medevedev spaces in relation to general Esakia spaces might allow us to eventually find a way to mechanically axiomatize Medvedev logic, as well as understand how the disjunction property and admissibility of it work.

Conservativity and Kuznetsov

Definition

Let (H, \Box) be a Heyting algebra with an operator. We say that this is a **KM**-algebra if \Box satisfies for every $a, b \in H$:

- 1. (K axiom) \Box ($a \rightarrow b$) $\leq \Box a \rightarrow \Box b$;
- 2. (Lax) $a \leq \Box a$;
- 3. (Strictness) $\Box a \leq b \lor b \rightarrow a$;
- 4. (WF) $\Box a \rightarrow a \leq a$.

Heyting algebras admit a KM-algebra structure uniquely. But not every HA admits such a structure (e.g., the 2-generated free Heyting algebra).

Conservativity and Kuznetsov

Definition

Let (H, \Box) be a Heyting algebra with an operator. We say that this is a **KM**-algebra if \Box satisfies for every $a, b \in H$:

- 1. (K axiom) \Box ($a \rightarrow b$) $\leq \Box a \rightarrow \Box b$;
- 2. (Lax) $a \leq \Box a$;
- 3. (Strictness) $\Box a \leq b \lor b \rightarrow a$;
- 4. (WF) $\Box a \rightarrow a \leq a$.

Heyting algebras admit a KM-algebra structure uniquely. But not every HA admits such a structure (e.g., the 2-generated free Heyting algebra).

Question: Which logics are generated by their KM-algebras?

'Little' Kuznetsov

Kuznetsov, in an inaccessible paper, proved that:

Theorem

Every superintuitionistic logic L is generated by its **KM**-algebras.

A recent (2025) algebraic proof was obtained by Jibladze and Kuznetsov (no relation).

'Little' Kuznetsov

Kuznetsov, in an inaccessible paper, proved that:

Theorem

Every superintuitionistic logic L is generated by its **KM**-algebras.

A recent (2025) algebraic proof was obtained by Jibladze and Kuznetsov (no relation).

We have been able to dualize this proof; a scary picture:

Figure 6:

'Big' Kuznetsov

The interest of this is that to solve Kuznetsov's localic problem in the positive the minimal requirements go through generalizing the ideas of Jibladze and Kuznetsov:

- Turning a Heyting algebra into a KM-algebra in the same variety, one adds for each a ∈ H a given "fronton", which is represented by the filter of dense elements over a;
- To "complete" a Heyting algebra in the same variety, one should at least be able to add for each S ⊆ H a given join to this subset, which is represented by the filter of upper bounds of S.

Pitts-Pataraia Problem

Look upon the board.

Thank you! Questions?