O Algoritmo de Ponto Proximal para Minimização de Funções Convexas de Uma Variável Real a Valores Reais

Herinson Barbosa Rodrigues¹, Rogério Azevedo Rocha ²

¹Curso de Ciência da Computação – Universidade Federal do Tocantins (UFT) Palmas-TO

²Bacharel em Ciência da Computação – Universidade Federal do Tocantins (UFT)
Palmas - TO

{herinson.br,azevedo}@uft.edu.br

Resumo. Neste trabalho, apresentamos o algoritmo de ponto proximal para minimização de funções convexas de uma variável real a valores reais. Mais especificamente, apresentamos as principais propriedades das sequências geradas pelo algoritmo e testamos o algoritmo através de experimentos numéricos utilizando o software livre Octave.

1. Introdução

Dentre os algoritmos existentes na Programação não linear, destacamos o clássico algoritmo de ponto proximal (APP) para resolver problemas de otimização irrestrito

$$MINIMIZE\{f(x) \mid x \in \mathbb{R}^n\}$$
 (1)

onde a função objetivo $f: \mathbb{R}^n \to \mathbb{R}$ é convexa e continuamente diferenciável. Este APP gera uma sequência $\{x^k\} \subset \mathbb{R}^n$ através do seguinte procedimento iterativo: dado um ponto inicial $x^0 \in \mathbb{R}^n$, então

$$x^{k+1} \in \operatorname{argmin}\{f(x) + \lambda_k ||x - x^k||^2 : x \in \mathbb{R}^n\},$$
 (2)

onde λ_k é uma sequência de números reais positivos e $\|.\|$ é a norma usual.

Este APP desenvolvido e estudado por Rockafellar (1976). Como divulgação deste APP no Brasil, destacamos o trabalho de Iusem (1995) que foi apresentado no 20° colóquio brasileiro de Matemática. Como recentes trabalhos envolvendo do APP, destacamos: Apolinário et al. (2015) e Rocha et al. (2017).

Destaca-se que este APP já surgiu aplicado a funções $f:\mathbb{R}^n \to \mathbb{R}$ e assim, para sua análise de convergência se faz necessário o conhecimento de conteúdos avançados como análise no \mathbb{R}^n e análise convexa, entre outros. Neste sentido, somente os acadêmicos a nível de mestrado e/ou doutorado que cursarem estas disciplinas possuem os pré-requisitos necessários para um desejável entendimento deste algoritmo.

Com base no exposto acima e com o objetivo de divulgar o APP entre os acadêmicos de diversos cursos de graduação, tais como, matemática, engenharias e ciência da computação, propomos um estudo completo deste APP, aplicado a funções $f:\mathbb{R}\to\mathbb{R}$, isto é, vamos considerar n=1. Neste sentido, tem-se como pré-requisitos para um bom entendimento do algoritmo, o conhecimento de análise convexa em \mathbb{R} e análise real.

2. O algoritmo de ponto proximal em \mathbb{R}

Nesta seção, vamos apresentar e expor algumas propriedades do algoritmo de ponto proximal (APP), denotado por APP real, que resolve o problema de minimização irrestrita

$$\min \{ f(x) \mid x \in \mathbb{R} \}, \tag{3}$$

onde $f: \mathbb{R} \to \mathbb{R}$ é uma função convexa e continuamente derivável.

O APP gera uma sequência $\{x^k\} \subset \mathbb{R}$ como segue:

APP real

- 1. Escolha $x^0 \in \mathbb{R}$.
- 2. Dado x^k , se $x^k \in \operatorname{argmin} \{ f(x) \mid x \in \mathbb{R} \}$, então $x^{k+p} = x^k, \forall p \geq 1$.
- 3. Dado x^k , se $x^k \notin \operatorname{argmin} \{f(x) \mid x \in \mathbb{R}\}$, então, tome como próxima iterada, qualquer x^{k+1} tal que

$$x^{k+1} = \operatorname{argmin} \left\{ f(x) + \lambda_k (x - x^k)^2 \mid x \in \mathbb{R} \right\}, \tag{4}$$

onde $0 < \lambda_k < \bar{\lambda}$, para algum $\bar{\lambda} > 0$.

Em seguida, enunciamos uma Proposição que nos informa que a sequência $\{x^k\}$ gerada pelo APP real é bem definida. A demonstração desta Proposição e de todas as outras dessa Seção, podem ser encontrada em Iusem (1995). Segue o resultado.

Proposição 2.1 Seja $f: \mathbb{R} \to \mathbb{R}$ convexa e continuamente derivável. Suponha que o conjunto U de minimizadores de f sobre \mathbb{R} é não vazio. Então o APP real sempre gera uma única sequência.

O próximo resultado nos fornece um critério de parada para o APP real.

Proposição 2.2 Seja $\{x^k\}$ uma sequência gerada pelo APP real. Se $x^{k+1} = x^k$ então $x^k \in \operatorname{argmin}\{f(x) \mid x \in \mathbb{R}\}.$

Observação 2.1 É importante observar que, devido aos erros de aproximação computacional, este critério de parada é quase impossível de ser atingido nos testes numéricos (conf. seção 3). Neste sentido, para os testes numéricos utilizaremos o critério de parada ($|x^{k+1} - x^k| < tol$) que é justificado pela Proposição 2.3 [item b)].

Abaixo segue importantes propriedades das sequências geradas pelo APP real.

Proposição 2.3 Seja $f: \mathbb{R} \to \mathbb{R}$ convexa e continuamente derivável. Se $\{x^k\}$ for uma sequência gerada pelo APP real, então:

a)
$$\{x^k\}$$
 é limitada; b) $\lim_{k\to\infty}(x^{k+1}-x^k)=0$;

c) $\{f(x^k)\}\$ é não crescente e convergente.

Neste momento, estamos prontos para enunciar o resultado principal deste trabalho, ele nos informa que qualquer sequência $\{x^k\}$ gerada pelo APP real, converge para uma solução do problema (3).

Teorema 2.1 Seja $f: \mathbb{R} \to \mathbb{R}$ convexa e continuamente derivável. Suponha que o conjunto U de minimizadores de f sobre \mathbb{R} é não vazio. Então qualquer sequência $\{x^k\}$ gerada pelo APP real converge para um ponto $x^* \in U$.

3. Experimentos numéricos

Nesta seção, implementamos o APP real (seção 2). O nosso principal interesse é testar a convergência do APP real. O código-fonte foi escrito com o auxilio do software livre Octave e todos os experimentos numéricos foram executados utilizando um notebook com processador Intel Core i7 5500U, 8GB de RAM e sistema operacional Windows 10 64 bits. Testamos o APP real considerando três funções $f: \mathbb{R} \to \mathbb{R}$ que possuem um único ponto de mínimo global e cujas leis de formação, gráficos e seus respectivos pontos de mínimos são descritos na tabela e figura abaixo.

Função	Ponto de mínimo
$f_1(x) = x^4 - 9x^3 + 31x^2 - 48x + 29$	2
$f_2(x) = -x/e^x$	1
$f_3(x) = x/(1+x^2)$	-1

Tabela 1. Funções Testes para o APP real

Tabela 2. Funções teste para o APP real

Função	Ponto de mínimo
$f_1(x) = x^4 - 9x^3 + 31x^2 - 48x + 29$	2
$f_2(x) = -x/e^x$	1
$f_3(x) = x/(1+x^2)$	-1

Figura 1. Gráficos das funções testes

Nas tabelas abaixo, tol denota a tolerância em relação ao critério de parada $|x^k-x^{k+1}| \leq tol; \ \lambda_k$ é uma sequência de parâmetros reais satisfazendo $0 < \lambda_k < \bar{\lambda}$.

Além disto, em 100 experimentos, com iterações iniciais escolhidas aleatoriamente, \bar{k} representa o número médio de iterações do APP real, \bar{T} representa o tempo médio de convergência, \bar{x}^k a média aritmética das soluções aproximadas obtidas e $|\bar{x}^k - x^*|$ a distância entre a solução mínimo global exato (x^*) e a média aritmética das soluções aproximadas.

Os resultados numéricos para as funções f_1 , f_2 e f_3 são demonstrados nas tabelas abaixo.

Tabela 3. Testes numéricos para $f_1(x) = x^4 - 9x^3 + 31x^2 - 48x + 29$

No.	tol	λ_k	\overline{k}	\bar{T}	$ar{x_k}$	$ \bar{x_k} - x^* $
1	10^{-3}	1 + 1/k	12.77	0.0155383277	1.9998870878	0.0001129122
2	10^{-4}	1 + 1/k	16.33	0.0205769658	2.0000006092	0.0000006092
3	10^{-5}	1 + 1/k	19.98	0.0260537243	1.9999983445	0.0000016555
4	10^{-3}	1/k	6.82	0.0083272767	1.9999313711	0.0000686289
5	10^{-4}	1/k	8.17	0.0114696145	1.9999979519	0.0000020481
6	10^{-5}	1/k	9.21	0.0151207972	2.0000004529	0.0000004529
7	10^{-3}	1	11.64	0.0150487661	1.9998661842	0.0001338158
8	10^{-4}	1	14.77	0.0190531445	1.9999886244	$10^{-5}13756$
9	10^{-5}	1	17.83	0.0242376137	1.9999988578	0.0000011422
10	10^{-3}	2 - 1/k	15.38	0.0182235932	1.9998100032	0.0001899968
11	10^{-4}	2 - 1/k	21.50	0.0279188633	1.9999645410	0.0000354590
12	10^{-5}	2 - 1/k	26.91	0.0356755161	1.9999971947	0.0000028053

Tabela 4. Testes numéricos para $f_2(x) = -x/e^x$

No.	tol	λ_k	\bar{k}	$ar{T}$	$ar{x_k}$	$ \bar{x_k} - x^* $
1	10^{-3}	1 + 1/k	39.54	0.0147391129	1.0054561798	0.0054561798
2	10^{-4}	1 + 1/k	56.29	0.0245152712	1.0005311419	0.0005311419
3	10^{-5}	1 + 1/k	67.60	0.0338211274	1.0000501158	0.0000501158
4	10^{-3}	1/k	12.07	0.0053561139	1.0006011480	0.0006011480
5	10^{-4}	1/k	13.68	0.0064319849	1.0000470621	0.0000470621
6	10^{-5}	1/k	15.87	0.0080986309	1.0000034568	0.0000034568
7	10^{-3}	1	37.43	0.0158728194	1.0051425972	0.0051425972
8	10^{-4}	1	49.96	0.0233298469	1.0005108309	0.0005108309
9	10^{-5}	1	65.55	0.0300751972	1.0000490117	0.0000490117
10	10^{-3}	2 - 1/k	60.31	0.0227115870	1.0104120161	0.0104120161
11	10^{-4}	2 - 1/k	83.70	0.0339471507	1.0010403909	0.0010403909
12	10^{-5}	2 - 1/k	112.98	0.0493660355	1.0001060289	0.0001060289

Tabela 5. Testes numéricos para $f_3(x) = x/(1+x^2)$

No.	tol	λ_k	\overline{k}	$ar{T}$	$ar{x_k}$	$ \bar{x_k} - x^* $
1	10^{-3}	1 + 1/k	21.99	0.0105577016	-0.9962839759	0.0037160241
2	10^{-4}	1 + 1/k	33.15	0.0179727459	-0.9996491517	0.0003508483
3	10^{-5}	1 + 1/k	42.93	0.0230763221	-0.9999632092	0.0000367908
4	10^{-3}	1/k	9.42	0.0048436260	-0.9996637392	0.0003362608
5	10^{-4}	1/k	11.29	0.0062542629	-0.9999589841	0.0000410159
6	10^{-5}	1/k	12.91	0.0079756856	-0.9999977567	0.0000022433
7	10^{-3}	1	19.79	0.0093966603	-0.9965583548	0.0034416452
8	10^{-4}	1	30.00	0.0157112122	-0.9996581210	0.0003418790
9	10^{-5}	1	40.38	0.0214852524	-0.9999638656	0.0000361344
10	10^{-3}	2 - 1/k	28.88	0.0128493166	-0.9929166213	0.0070833787
11	10^{-4}	2 - 1/k	47.80	0.0236166167	-0.9992612286	0.0007387714
12	10^{-5}	2 - 1/k	67.57	0.0360856295	-0.9999256445	0.0000743555

Observação 3.1 Os resultados contidos nas tabelas acima confirmam a convergência do APP real para os pontos de mínimo global das respectivas funções.

4. Conclusões

Neste trabalho, apresentamos o clássico algoritmo de ponto proximal (APP) para minimização de funções convexas $f: \mathbb{R}^n \to \mathbb{R}$, considerando n=1. A restrição n=1

permite que a análise de convergência do algoritmo seja acessível aos alunos de gradação dos cursos de matemática, engenharias e computação.

5. Referências

Apolinário, H. C. F. (2015) Papa Quiroz, E. A.; Oliveira, P. R. A scalarization proximal point method for quasiconvex multiobjective minimization. Journal of Global Optimization (Dordrecht. Online) 64, 79-96.

Iusem, A.N. (1995) Métodos de Ponto Proximal em Otimização. 20º coloquio Brasileiro de Matemática, 24 a 28 de julho.

Rocha, R.A.; Oliveira, P.R.; Gregório, R.M.; Michael, S. (2016) A Proximal Point Algorithm with Quasi-distance in Multi-objective Optimization. Journal of Optimization Theory and Applications (Dordrecht. Online) 171, 964-979.

Rockafellar, R.T. (1976) Monotone operators and the proximal point algorithm. SIAM Journal of Control and Optimization 14 (5), 877-898.