12 Fonction logarithme népérien

I – Définition et premières propriétés

Définition 12.1 – La fonction **logarithme népérien**, notée ln, est **la** primitive sur $]0, +\infty[$ de la fonction $x \mapsto \frac{1}{x}$ qui prend la valeur 0 lorsque x = 1.

Proposition 12.2

De cette définition résulte trois conclusions immédiates :

- La fonction logarithme népérien est définie sur l'intervalle $]0,+\infty[$.
- La fonction logarithme népérien s'annule lorsque x = 1, i.e. ln(1) = 0.
- Pour tout réel strictement positif $x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x}$.

Proposition 12.3 – Propriété fondamentale du logarithme

Pour tous nombres réels strictement positifs $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+^*$,

$$\ln(a \times b) = \ln(a) + \ln(b).$$

Corollaire 12.4

De cette propriété algébrique fondamentale découle plusieurs conséquences.

- Pour tout nombre réel strictement positif $a \in \mathbb{R}_+^*$, $\ln\left(\frac{1}{a}\right) = -\ln(a)$.
- Pour tous nombres réels strictement positifs $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+^*$, $\ln\left(\frac{a}{h}\right) = \ln(a) \ln(b)$.
- Pour tout nombre réel strictement positif $a \in \mathbb{R}_+^*$ et tout entier relatif $n \in \mathbb{Z}$, $\ln(a^n) = n \ln(a)$.
- Pour tout nombre réel strictement positif $a \in \mathbb{R}_+^*$, $\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$.

Démonstration.

• Grâce à la proposition précédente, je sais que $\ln\left(\frac{1}{a} \times a\right) = \ln\left(\frac{1}{a}\right) + \ln(a)$.

Cependant
$$\frac{1}{a} \times a = 1$$
 donc $\ln \left(\frac{1}{a} \times a \right) = \ln(1) = 0$.
Ainsi $\ln \left(\frac{1}{a} \right) + \ln(a) = 0$ et donc $\ln \left(\frac{1}{a} \right) = -\ln(a)$.

• Je raisonne de la même manière pour les trois autres points.

Exemple 12.5 – Soient $x \in \mathbb{R}_+^*$ et $y \in \mathbb{R}_+^*$. Simplifier le plus possible les expressions suivantes.

1.
$$\ln(x^2) - \ln(x)$$

= $2\ln(x) - \ln(x) = \ln(x)$

2.
$$\ln(2x) - \ln(x)$$

= $\ln(2) + \ln(x) - \ln(x) = \ln(2)$

3.
$$\ln(x) - \ln\left(\frac{1}{x}\right)$$
$$= \ln(x) + \ln(x) = 2\ln(x)$$

4.
$$2\ln(x^3) + \ln\left(\frac{1}{x^3}\right)$$

= $6\ln(x) - 3\ln(x) = 3\ln(x)$

5.
$$\ln(1) + \ln\left(\frac{1}{x}\right) + \ln\left(\frac{1}{x^2}\right)$$
$$= 0 - \ln(x) - 2\ln(x) = -3\ln(x)$$

6.
$$\ln\left(\frac{x}{y}\right) + \ln\left(\frac{y}{x}\right)$$

= $\ln(x) - \ln(y) + \ln(y) - \ln(x) = 0$

II – Étude de la fonction logarithme népérien

1 – Ensemble de définition

Proposition 12.6

La fonction logarithme népérien est définie pour tout $x \in \mathbb{R}_+^*$, *i.e.* sur $]0, +\infty[$, et a ses valeurs dans \mathbb{R} .

Ainsi dans le cas d'une fonction de la forme $f = \ln(u)$, l'ensemble de définition est donné par les solutions de l'inéquation u(x) > 0.

Exemple 12.7 – Déterminer l'ensemble de définition de la fonction f définie par $f(x) = \ln(x^2 - 3x + 2)$.

Je cherche pour quelle valeur de x l'inéquation $x^2 - 3x + 2 > 0$ est vérifiée.

Je calcule le discriminant : $\Delta = (-3)^2 - 4 \times 1 \times 2 = 9 - 8 = 1 = 1^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{3-1}{2} = 1$$
 et $x_2 = \frac{3+1}{2} = 2$.

J'en déduis le tableau de signe suivant :

X	$-\infty$		1		2		+∞
$x^2 - 3x + 2$		+	0	-	0	+	

Et donc la fonction f est définie sur $]-\infty,1[\cup]2,+\infty[$.

2 - Variations

Proposition 12.8

La fonction logarithme népérien est **continue** et **strictement croissante** sur $]0, +\infty[$.

Démonstration. La fonction logarithme népérien est dérivable sur $]0,+\infty[$ donc continue sur cet intervalle. La dérivée de la fonction logarithme népérien est la fonction définie sur $]0, +\infty[$ par $\ln'(x) = \frac{1}{x}$.

Or si x > 0, alors $\frac{1}{x} > 0$. Donc la dérivée de la fonction est strictement positive et la fonction logarithme népérien est strictement croissante sur $]0, +\infty[$.

Proposition 12.9

Pour tous réels strictement positifs $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+^*$,

$$ln(a) = ln(b) \iff a = b$$
 et $ln(a) > ln(b) \iff a > b$.

Exemple 12.10 – Résoudre dans l'intervalle *I* les équations et inéquations suivantes.

1. $\ln(x+2) = 2\ln(x) \text{ sur } I =]0, +\infty[$ $\ln(x+2) = 2\ln(x) \iff \ln(x+2) = \ln(x^2) \iff x+2 = x^2 \iff x^2 - x - 2 = 0$ Je calcule alors le discriminant : $\Delta = (-1)^2 - 4 \times 1 \times (-2) = 1 + 8 = 9 = 3^2 > 0$.
Il y a donc deux racines

$$x_1 = \frac{1-3}{2} = -1$$
 et $x_2 = \frac{1+3}{2} = 2$.

Je ne garde que la solution qui est dans l'intervalle $I =]0, +\infty[$, *i.e.* x = 2.

2. $\ln(2x-3) + \ln(3) = 2\ln(x)$ sur $I = \left[\frac{3}{2}, +\infty\right[$ $\ln(2x-3) + \ln(3) = 2\ln(x) \iff \ln\left((2x-3) \times 3\right) = \ln(x^2) \iff \ln(6x-9) = \ln(x^2)$ $\iff 6x-9=x^2 \iff x^2-6x+9=0$

Je calcule alors le discriminant : $\Delta = (-6)^2 - 4 \times 1 \times 9 = 36 - 36 = 0$. Il y a donc une unique racine

$$x_0 = -\frac{(-6)}{2 \times 1} = 3.$$

De plus, 3 est bien dans l'intervalle $\left| \frac{3}{2}, +\infty \right|$ donc l'unique solution de l'équation est x = 3.

3. $\ln(x) + \ln(x+2) = \ln(9x-12)$ sur $I = \left[\frac{4}{3}, +\infty\right[$ $\ln(x) + \ln(x+2) = \ln(9x-12)$ $\iff \ln(x(x+2)) = \ln(9x-12)$ $\iff \ln(x^2+2x) = \ln(9x-12)$ $\iff x^2 + 2x = 9x - 12$ $\iff x^2 - 7x + 12 = 0$

Je calcule le discriminant : $\Delta = (-7)^2 - 4 \times 1 \times 12 = 49 - 48 = 1 = 1^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{7-1}{2} = 3$$
 et $x_2 = \frac{7+1}{2} = 4$.

 \iff $3x-1=2x \iff x-1=0 \iff x=1$

Ces deux racines sont dans l'intervalle $\left[\frac{4}{3}, +\infty\right[$ donc l'équation considérée admet deux solutions x = 3 et x = 4.

4. $\ln(3x-1) - \ln(x) = \ln(2)$ sur $I = \left[\frac{1}{3}, +\infty\right[$ $\ln(3x-1) - \ln(x) = \ln(2)$ \iff $\ln(3x-1) = \ln(2)$ \iff $\ln(3x-1) = \ln(2x)$

Or 1 est bien dans l'intervalle $\left[\frac{1}{3}, +\infty\right[$ donc l'équation considérée admet x = 1 comme unique solution.

- 5. $\ln(2x) < \ln(x+7) \text{ sur } I =]0, +\infty[$ $\ln(2x) < \ln(x+7) \iff 2x < x+7 \iff x < 7$ Il faut donc que x < 7 et que x soit dans l'intervalle $]0, +\infty[$. Finalement $\mathcal{S} =]0,7[$.
- 6. $\ln(3x+1) \ln(x+1) \ge \ln(2) \text{ sur } I = \left] -\frac{1}{3}, +\infty \right[\\ \ln(3x+1) \ln(x+1) \ge \ln(2) \iff \ln(3x+1) \ge \ln(2) + \ln(x+1) \iff \ln(3x+1) \ge \ln(2(x+1)) \\ \iff 3x+1 \ge 2x+2 \iff x \ge 1$

Il faut donc que $x \ge 1$ et que x soit dans l'intervalle $\left] -\frac{1}{3}, +\infty \right[$. Finalement $\mathcal{S} = [1, +\infty[$.

Corollaire 12.11

En particulier, puisque ln(1) = 0, pour tout réel strictement positif $x \in \mathbb{R}_+^*$,

$$ln(x) = 0 \iff x = 1$$
, $ln(x) > 0 \iff x > 1$ et $ln(x) < 0 \iff 0 < x < 1$.

ATTENTION!

La fonction logarithme est définie sur \mathbb{R}_+^* mais prend des valeurs négatives!

3 - Limites

Proposition 12.12

La fonction logarithme népérien a pour limite $+\infty$ en $+\infty$, *i.e.*

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

La fonction logarithme népérien a pour limite $-\infty$ en 0^+ , *i.e.*

$$\lim_{x \to 0^+} \ln(x) = -\infty.$$

L'axe des ordonnées est **asymptote verticale** à la courbe d'équation $y = \ln(x)$.

Exemple 12.13 – Calculer
$$\lim_{x \to +\infty} \ln \left(\frac{2x-1}{x-3} \right)$$
, $\lim_{x \to 3^+} \ln \left(\frac{2x-1}{x-3} \right)$ et $\lim_{x \to \frac{1}{2}^-} \ln \left(\frac{2x-1}{x-3} \right)$.

• Je calcule la limite du quotient puis la limite de la fonction composée :

$$\lim_{x \to +\infty} \frac{2x-1}{x-3} = \lim_{x \to +\infty} \frac{2x}{x} = \lim_{x \to +\infty} 2 = 2$$

$$\lim_{X \to 2} \ln(X) = \ln(2)$$
Par composition,
$$\lim_{x \to +\infty} \ln\left(\frac{2x-1}{x-3}\right) = \ln(2).$$

• Je calcule la limite du quotient puis la limite de la fonction composée :

$$\lim_{\substack{x \to 3^+ \\ \lim_{x \to 3^+}}} 2x - 1 = 5$$

$$\lim_{\substack{x \to 3^+ \\ \lim_{x \to 3^+}}} x - 3 = 0^+$$
Par quotient,
$$\lim_{\substack{x \to 3^+ \\ \lim_{x \to 3^+}}} \frac{2x - 1}{x - 3} = +\infty.$$

$$\lim_{\substack{x \to 3^+ \\ X \to +\infty}} \frac{2x-1}{x-3} = +\infty$$

$$\lim_{\substack{X \to +\infty \\ X \to +\infty}} \ln(X) = +\infty$$
Par composition,
$$\lim_{\substack{x \to 3^+ \\ X \to 3^+}} \ln\left(\frac{2x-1}{x-3}\right) = +\infty.$$

• Je calcule la limite du quotient puis la limite de la fonction composée :

$$\lim_{x \to \frac{1}{2}^{-}} 2x - 1 = 0^{-}$$

$$\lim_{x \to \frac{1}{2}^{-}} x - 3 = -\frac{5}{2}$$
 Par quotient,
$$\lim_{x \to \frac{1}{2}^{-}} \frac{2x - 1}{x - 3} = 0^{+}.$$

$$\lim_{x \to \frac{1}{2}^{-}} \frac{2x-1}{x-3} = 0^{+}$$

$$\lim_{X \to 0^{+}} \ln(X) = -\infty$$
Par composition,
$$\lim_{x \to \frac{1}{2}^{-}} \ln\left(\frac{2x-1}{x-3}\right) = -\infty.$$

4 – Nombre *e*

D'après les résultats des paragraphes précédents, la fonction logarithme népérien présente le tableau de variation suivant :

On en déduit donc l'allure de la courbe de la fonction logarithme.

On observe graphiquement qu'il existe un point unique de la courbe qui a pour ordonnée 1.

Son abscisse est voisine de 2.7.

Au-delà de cette observation graphique, l'existence d'un unique antécédent de 1 repose sur la variation de la fonction logarithme népérien qui est strictement croissante sur $]0,+\infty[$ et qui prend chaque valeur réelle une fois et une seule quand x varie dans l'intervalle $]0,+\infty[$.

Il existe donc un et un seul réel x tel que ln(x) = 1.

Définition 12.14 – e est le nombre réel défini par l'équation ln(e) = 1.

Remarque 12.15 – Une valeur approchée (à connaître) de e est donnée par $e \approx 2.72$.

5 - Croissances comparées

Il existe aussi quelques limites remarquables, qui font intervenir la fonction logarithme. On étudie ce que l'on appelle des résultats de *croissances comparées*.

- **Proposition 12.16** -

Pour tout entier naturel non nul n,

$$\lim_{x \to 0^+} x^n \ln(x) = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0.$$

En particulier lorsque n = 1,

$$\lim_{x \to 0^+} x \ln(x) = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0.$$

Remarque 12.17 - Ces limites sont normalement des formes indéterminées.

Pour lever de telles indéterminations, on applique les résultats de *croissances comparées*. On retient que les puissances "l'emportent" sur le logarithme.

Exemple 12.18 – Calculer
$$\lim_{x \to 0^+} x^3 \ln(x) = 0$$
 et $\lim_{x \to +\infty} x^2 - \ln(x)$.

Par croissances comparées, et en réécrivant $x^2 - \ln(x) = x^2 \left(1 - \frac{\ln(x)}{x^2}\right)$, alors

$$\lim_{x\to 0^+} x^3 \ln(x) = 0 \qquad \text{et} \qquad \lim_{x\to +\infty} x^2 - \ln(x) = \lim_{x\to +\infty} x^2 \left(1 - \frac{\ln(x)}{x^2}\right) = +\infty.$$

III – Étude d'une fonction de la forme ln(u)

Proposition 12.19

Soit u une fonction dérivable et **strictement positive** sur un intervalle I. La fonction composée $f = \ln \circ u$, définie sur I par

$$\forall x \in I, \quad f(x) = \ln(u(x))$$

est dérivable sur I et

$$\forall x \in I, \quad f'(x) = \frac{u'(x)}{u(x)}.$$

Exemple 12.20 – Soit f la fonction définie sur $]2, +\infty[$ par $f(x) = \ln(x^2 - 3x + 2)$. Calculer f'(x). La fonction f est de la forme $f = \ln(u)$ avec $u(x) = x^2 - 3x + 2$. Alors u'(x) = 2x - 3 et donc

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{2x-3}{x^2-3x+2}.$$

Exemple 12.21 – Soit f la fonction définie par $f(x) = \ln(x^2 - 5x + 6)$.

1. Déterminer l'ensemble de définition de la fonction f.

La fonction f est définie lorsque $x^2 - 5x + 6 > 0$. Je résous l'inéquation $x^2 - 5x + 6 > 0$. Le discriminant vaut $\Delta = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1 = 1^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

J'en déduis le tableau de signe suivant :

x	-∞		2		3		+∞
$x^2 - 5x + 6$		+	0	-	0	+	

Et donc la fonction f est définie sur $]-\infty,2[\cup]3,+\infty[$.

2. Calculer les limites de f aux bornes de son ensemble de définition.

Je dois calculer les limites de f en $-\infty$, 2^- , 3^+ et $+\infty$.

$$\lim_{x \to -\infty} x^2 - 5x + 6 = \lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} \ln(X) = +\infty$$
Par composition,
$$\lim_{x \to -\infty} \ln(x^2 - 5x + 6) = +\infty.$$

$$\lim_{x \to 2^-} x^2 - 5x + 6 = 0^+$$

$$\lim_{x \to 0^+} \ln(X) = -\infty$$
Par composition,
$$\lim_{x \to 2^-} \ln(x^2 - 5x + 6) = -\infty.$$

$$\lim_{x \to 3^+} x^2 - 5x + 6 = 0^+$$

$$\lim_{x \to 3^+} \ln(X) = -\infty$$
Par composition,
$$\lim_{x \to 3^+} \ln(x^2 - 5x + 6) = -\infty.$$

$$\lim_{x \to +\infty} x^2 - 5x + 6 = \lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} \ln(X) = +\infty$$
Par composition,
$$\lim_{x \to +\infty} \ln(x^2 - 5x + 6) = +\infty.$$

$$\lim_{x \to +\infty} \ln(X) = +\infty$$
Par composition,
$$\lim_{x \to +\infty} \ln(x^2 - 5x + 6) = +\infty.$$

3. Étudier les variations de la fonction f.

Pour étudier les variations de la fonction f, il faut connaître la dérivée f' puis étudier son signe. La fonction f est de la forme $f = \ln(u)$ avec $u(x) = x^2 - 5x + 6$. Alors u'(x) = 2x - 5 et donc

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{2x - 5}{x^2 - 5x + 6}.$$

Je connais déjà le signe de x^2-5x+6 , positif sur tout l'ensemble de définition. J'étudie maintenant le signe de 2x-5: $2x-5\geqslant 0 \iff 2x\geqslant 5 \iff x\geqslant \frac{5}{2}$. J'en déduis alors le tableau de signe de f'(x) et le tableau de variation de f:

X	$-\infty$	2	$\frac{5}{2}$		3	+∞
2x-5	_	_	0	+		+
$x^2 - 5x + 6$	+	0 –		-	0	+
f'(x)	_					+
f	+∞				$-\infty$	+∞

4. Tracer l'allure de la courbe de la fonction f.

IV - Primitives et fonction logarithme

La fonction logarithme népérien étant désormais connue, on peut compléter le tableau des primitives usuelles en y ajoutant les deux lignes suivantes :

f est définie sur I par	une primitive F est donnée par		
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$		
$f = \frac{u'}{u}$	$F = \ln(u)$		

Remarque 12.22 – On rappelle qu'une primitive est définie sur un intervalle.

Il suffit donc de regarder le signe de la fonction u sur l'intervalle pour retirer la fonction valeur absolue. Majoritairement u(x) > 0 sur l'intervalle proposé.

Exemple 12.23 – Calculer les primitives des fonctions suivantes sur l'intervalle donné.

1.
$$f(x) = \frac{2}{3x} \operatorname{sur} I = \left]0, +\infty\right[$$
 2. $f(x) = \frac{1}{x} - \frac{1}{x+1} \operatorname{sur} I = \mathbb{R}^*_+$ 3. $f(x) = \frac{x}{x^2+1} \operatorname{sur} I = \mathbb{R}$

2.
$$f(x) = \frac{1}{x} - \frac{1}{x+1} \operatorname{sur} I = \mathbb{R}_+^*$$

3.
$$f(x) = \frac{x}{x^2 + 1} \text{ sur } I = \mathbb{R}$$

- 1. La fonction f est de la forme $f = \frac{2}{3} \times \frac{1}{x}$, donc une primitive est donnée par $F(x) = \frac{2}{3} \times \ln(x)$. La valeur absolue n'est pas nécessaire ici puisque x > 0 sur $I =]0, +\infty[$.
- 2. La fonction f est la somme de deux fonctions dont je peux calculer une primitive. En effet, sur $I =]0, +\infty[$, une primitive de $f_1(x) = \frac{1}{x}$ est donnée par $F_1(x) = \ln(x)$ et une primitive de $f_2(x) = \frac{1}{x+1}$ est donnée par $F_2(x) = \ln(x+1)$. Donc une primitive de f est donnée par

$$F(x) = \ln(x) - \ln(x+1) = \ln\left(\frac{x}{x+1}\right).$$

3. La fonction f semble être de la forme $\frac{u'}{u}$ avec $u(x) = x^2 + 1$. Puisque u'(x) = 2x, alors

$$\frac{u'(x)}{u(x)} = \frac{2x}{x^2 + 1} = 2f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{2} \ln(|u(x)|) = \frac{1}{2} \ln(x^2 + 1).$$