Lecture 15: Linear Dimensionality Reduction Methods

Instructor: Sergei V. Kalinin

Reminder: dimensionality is a problem

Suppose we have 5000 points:

- In 1d we have to explore 0.001 on average to capture 5 NN
- In 2d, on average we must explore 0:031 units along both dimensions to get 5 nearest neighbors points (about 3% of the whole cube).
- In 3d, on average we must go 10% of the total (unit) length in each of the 3 dimensions
- In 4d, we must explore 17:7% of unit length
- In 10d, we must go 50.1% of unit length along each dimension

From "Curse of Dimensionality", Lecture Notes for Big Data Analytics, Faizad Ullah, February 2019

Reminder: dimensionality is a problem

$\dim m$	volume of m -ball	volume of m -cube	ratio
2	π	2^{2}	~ 0.785
3	$4/3\pi$	2^{3}	~ 0.523
4	$\pi^2/2$	2^{4}	~ 0.308
6	$\pi^{3}/6$	2^{6}	~ 0.080
\overline{m}	$\frac{\pi^{m/2}}{m/2!}$	2^m	$\rightarrow 0$

From "Curse of Dimensionality", Lecture Notes for Big Data Analytics, Faizad Ullah, February 2019

Reminder: dimensionality is a problem

However if a dataset exhibit this phenomenon that the issue has be overcome by getting a larger training set (exponential in m). One way to look at this is as follows.

To cover $[-1,1]^m$ with $B_{m,1}$'s, the number of balls n must be

$$n \ge \frac{2^m}{V_m(1)} = \frac{2^m}{\pi^{m/2}/m/2!} = \frac{m/2! \ 2^m}{\pi^{m/2}} \quad \stackrel{m \to \infty}{\sim} \quad \sqrt{m\pi} \left(\frac{m2^{m/2}}{2\pi e}\right)^{m/2}$$

For m = 16 (a very small number) this n is substantially larger than 2^{58}

- In higher dimensions all the volume is in `corners'
- Points in high dimensional spaces are isolated (empty surrounding)
- The probability that a randomly generated point is within r radius of q approaches o as dimensionality increases
- The probability of a close nearest neighbor in a data set is very small

From "Curse of Dimensionality", Lecture Notes for Big Data Analytics, Faizad Ullah, February 2019

High Dimensional Data – what should we do?

Examples of high D data:

- Face recognition
- Image compression
- Gene expression analysis
- Spectroscopy
- 4D STEM
- X-Ray scattering

What do we want to accomplish?

- Reduce number of dimensions in data
- Find patterns in high-dimensional data
- Visualize data of high dimensionality

High D data in materials science?

Mo-V-Ta complex oxide

Low-loss EELS spectra

Q. He et al, ACS Nano 9, 3470-3478

A.Y. Borisevich et al., Phys. Rev. Lett. 105, 087204 (2010).

- How many dimensions are in this data?
- Are all these dimensions necessary?
- For given acquisition time, how would the noise and signal balance?
- How do we extract "useful" information?

High Dimensional Data is often redundant

- We often need a method to simplify data on a large number of variables, and believe that there is some redundancy in those variables.
- Redundancy means that some of the variables are correlated with one another, possibly because they are measuring the same object or phenomenon.
- Because of redundancy, we believe that it should be possible to reduce the observed variables into a smaller number of artificial variables that will account for most of the variance in the observed variables.

Dimensionality Reduction Methods

- PCA (Principal Component Analysis):
 - Find projection that maximize the variance
- ICA (Independent Component Analysis):
 - Very similar to PCA except that it assumes non-Guassian features
- Multidimensional Scaling:
 - Find projection that best preserves inter-point distances
- LDA(Linear Discriminant Analysis):
 - Maximizing the component axes for class-separation
- Bayesian Linear Unmixing
 - Linear unmixing, non-negative, sum to one
- ... constrained linear unmixing methods

Manifold Hypothesis!

Simple Example

Reduce data from 2D to 1D

Simple Example

Another Simple Example

Reduce data from 3D to 2D

Generalize the problem

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Variance and covariance

1D: Variance=(Standard deviation)²

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{(n-1)}$$

2D: Covariance: measures the correlation between X and Y

- \circ Cov(X,Y)=0: independent
- \circ Cov(X,Y)>0: move in the same direction
- o Cov(X,Y)<0: move in opposite direction

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

positive covariance

negative covariance

Multidimensional data: covariance matrix

Contains covariance values between all possible dimensions (=attributes):

$$C^{nxn} = (c_{ij} \mid c_{ij} = \text{cov}(Dim_i, Dim_j))$$

• Example for three attributes (x,y,z):

$$C = \begin{pmatrix} cov(x, x) & cov(x, y) & cov(x, z) \\ cov(y, x) & cov(y, y) & cov(y, z) \\ cov(z, x) & cov(z, y) & cov(z, z) \end{pmatrix}$$

- Eigenvalues of covariance matrix contain information on the independent factors of variability
- Eigenvectors of covariance matrix provide the information on directions

Principal Component Analysis

- Center the data (subtract the mean $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$ from each data point)
- Compute the $D \times D$ covariance matrix **S** using the centered data matrix **X** as

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X} \qquad \text{(Assuming } \mathbf{X} \text{ is arranged as } N \times D\text{)}$$

- Do an eigen decomposition of the covariance matrix S (many methods exist)
- Take top K < D leading eigvectors $\{w_1, w_2, ..., w_K\}$ with eigen values $\{\lambda_1, \lambda_2, ..., \lambda_K\}$
- The K-dimensional projection/embedding of each input is $\mathbf{z}_n \approx \mathbf{W}_K^{\mathsf{T}} \mathbf{x}_n$
- Where $\mathbf{W}_{K} = [\mathbf{w}_{1}, \mathbf{w}_{2}, ..., \mathbf{w}_{K}]$ is projection matrix of size $D \times K$

Singular Value Decomposition

• If we just use the top $K < \min\{N, D\}$ singular values, we get a rank-K SVD

- Fact: SVD gives the best rank-*K* approximation of a matrix
- PCA is done by doing SVD on the covariance matrix S (left and right singular vectors are the sai and become eigenvectors, singular values become eigenvalues)

Principal Component Analysis

PCA: orthogonal transformation converting possibly correlated variables into linearly uncorrelated *principal components*

- PCA was invented by Karl Pearson in 1901, however the Singular Value Decomposition was independently derived some half a century earlier in Italy, Germany and France
- PCA transforms the data such that the greatest variance by any projection lies on the first coordinate
- Reveals internal structure of the data that best explains variance in the data set
- Since data often moves in clusters, PCA reveals those variables that drive the variance

Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points is Space". *Philosophical Magazine Series* 6 **2** (11): 559–572

PCA: Eigenvalues

Eigenvalues λ_j are used for calculation of [% of total variance] (V_j) for each component j:

$$V_j = 100 \cdot \frac{\lambda_j}{\sum_{x=1}^n \lambda_x}$$
 $\sum_{x=1}^n \lambda_x = n$

PCA: Components

- The first PC retains the greatest amount of variation in the sample
- The k^{th} PC retains the k^{th} greatest fraction of the variation in the sample
- The k^{th} largest eigenvalue of the correlation matrix C is the variance in the sample along the k^{th} PC

 The least-squares view: PCs are a series of linear least squares fits to a sample, each orthogonal to all previous ones

PCA Components and Loadings

- Technique useful for compression and classification of data
- Find new descriptors smaller than original variables
- Retain most of sample's information correlation between original variables
- New descriptors are principal components (PCs)
- Loadings represent the "fraction" of PCs in initial data
- Uncorrelated, and ordered by fraction of total information retained in each PC

PCA in scikit-learn

sklearn.decomposition.PCA

[source]

class sklearn.decomposition.**PCA**(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)

Methods

<pre>fit(X[, y])</pre>	Fit the model with X.	
<pre>fit_transform(X[, y])</pre>	Fit the model with X and apply the dimensionality reduction on X.	
<pre>get_covariance()</pre>	Compute data covariance with the generative model.	
<pre>get_feature_names_out([input_features])</pre>	Get output feature names for transformation.	
<pre>get_metadata_routing()</pre>	Get metadata routing of this object.	
<pre>get_params([deep])</pre>	Get parameters for this estimator.	
<pre>get_precision()</pre>	Compute data precision matrix with the generative model.	
inverse_transform(X)	Transform data back to its original space.	
score(X[, y])	Return the average log-likelihood of all samples.	
score_samples(X)	Return the log-likelihood of each sample.	
<pre>set_output(*[, transform])</pre>	Set output container.	
set_params(**params)	Set the parameters of this estimator.	
transform(X)	Apply dimensionality reduction to X.	
4		

Examples: Eigenfaces

- When viewed as vectors of pixel values, face images are extremely high dimensional. Image of 100x100 pixels has 10,000 dimensions.
- However, very few of 100x100 vectors are valid face images
- We want to effectively represent the subspace of face images

Adapted form Fereshteh Sadeghi slide by Derek Hoiem

Examples: Eigenfaces

Top eigenvectors: u₁,...u_k

Mean: µ

Adapted from Fereshteh Sadeghi slide by Derek Hoiem

Representation and reconstruction

• Face **x** in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$
$$= w_1, \dots, w_k$$

Reconstruction:

Reconstruction

We can represent faces well by 400 components – rather then 10,000!

Limitations of PCA

PCA will make no difference between these examples

Non linear projection of a horseshoe

Non-linear PCA

- Suppose that instead of using the points \mathbf{x}_i as is, we wanted to go to some different feature space $\phi(\mathbf{x}_i) \in \Re^N$
- E.g. using polar coordinates instead of cartesian coordinates would help us deal with the circle
- In the higher dimensional space, we can then do PCA
- The result will be non-linear in the original data space!
- Similar idea to support vector machines

Kernel PCA

Kernel PCA is an unsupervised manifold learning technique that maps data points to a generally lower-dimensional space. It generalizes the Principal Components Analysis approach to non-linear transformations using the kernel trick (Schölkopf, Smola and Müller, 1996; Schölkopf, Smola and Müller, 1998; Schölkopf, Burges and Smola, 1999). The algorithm implicitly finds the leading eigenvectors and eigenvalues of the covariance of the projection $\phi(x)$ of the data in "feature space", where $\phi(x)$ is such that the kernel $K_n(x,y) = \phi(x) \cdot \phi(y)$ (i.e. K_n must not have negative eigenvalues). If the data is

(http://research.microsoft.com/users/Cambridge/nicolasl/papers/eigen_dimred.pdf)