Used Car Price Prediction

So called Second hand's car have a huge market base. Many consider to buy a Used Car intsead of buying of new one, as it's is feasible and a better investment.

The main reason for this huge market is that when you buy a New Car and sale it just another day without any default on it, the price of car reduces by 30%.

There are also many frauds in the market who not only sale wrong but also they could mislead to wrong price.

So we have built a model that predicts the price of any used car.

```
# Importing necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.n

train_data = pd.read_csv('/content/drive/MyDrive/AIDS MP/train-data.csv')
test_data = pd.read_csv('/content/drive/MyDrive/AIDS MP/test-data.csv')
```

The info() method prints information about the DataFrame.

```
train data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6019 entries, 0 to 6018
    Data columns (total 14 columns):
                          Non-Null Count Dtype
     #
        Column
     0
        Unnamed: 0
                         6019 non-null
                                          int64
     1
         Name
                          6019 non-null
                                          object
     2
        Location
                         6019 non-null
                                         object
     3
        Year
                          6019 non-null
                                         int64
        Kilometers_Driven 6019 non-null
     4
                                         int64
     5
                         6019 non-null
                                         object
        Fuel Type
                        6019 non-null
     6
        Transmission
                                          object
                          6019 non-null
     7
         Owner_Type
                                          object
                          6017 non-null
                                          object
     8
        Mileage
     9
                          5983 non-null
                                          object
         Engine
     10 Power
                           5983 non-null
                                          object
                           5977 non-null
                                          float64
     11 Seats
     12 New_Price
                           824 non-null
                                          object
```

13 Price 6019 non-null float64

dtypes: float64(2), int64(3), object(9)

memory usage: 658.5+ KB

The head() function is used to get the first n rows.

train_data.head()

	Unnamed:	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual
1	1	Hyundai Creta 1.6 CRDi SX	Pune	2015	41000	Diesel	Manual
4							+

The tail() method returns a specified number of last rows.

train_data.tail()

		Unnamed: 0	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission
	6014	6014	Maruti Swift VDI	Delhi	2014	27365	Diesel	Manua
	6015	6015	Hyundai Xcent 1.1 CRDi S	Jaipur	2015	100000	Diesel	Manua
			Mahindra					
4								>

The iloc() function in python is defined in the Pandas module that helps us to select a specific row or column from the data set.

```
train_data = train_data.iloc[:,1:]
train_data.head()
```

The describe() function is used to get a descriptive statistics summary of a given dataframe.

train_data.describe()

	Year	Kilometers_Driven	Seats	Price
count	6019.000000	6.019000e+03	5977.000000	6019.000000
mean	2013.358199	5.873838e+04	5.278735	9.479468
std	3.269742	9.126884e+04	0.808840	11.187917
min	1998.000000	1.710000e+02	0.000000	0.440000
25%	2011.000000	3.400000e+04	5.000000	3.500000
50%	2014.000000	5.300000e+04	5.000000	5.640000
75%	2016.000000	7.300000e+04	5.000000	9.950000
max	2019.000000	6.500000e+06	10.000000	160.000000

The shape of a DataFrame is a tuple of array dimensions that tells the number of rows and columns of a given DataFrame.

```
train_data.shape
(6019, 13)
```

The value_counts() return a Series containing counts of unique values.

```
train_data['Kilometers_Driven'].value_counts()
     60000
               82
     45000
               70
     65000
               68
     50000
               61
     55000
              60
               . .
     28937
               1
     82085
               1
     68465
               1
     63854
     27365
     Name: Kilometers Driven, Length: 3093, dtype: int64
```

The unique() function returns the unique values present in a dataset.

```
# Looking at the unique values of Categorical Features
print(train_data['Location'].unique())
print(train_data['Fuel_Type'].unique())
```

The isnull().sum() returns the sum of NULL values for individual colum

```
train_data.isnull().sum()
    Name
                            0
    Location
                            0
    Year
                            0
    Kilometers_Driven
                            0
    Fuel Type
                            0
    Transmission
                            0
    Owner_Type
                            0
                            2
    Mileage
                           36
    Engine
                           36
    Power
    Seats
                           42
    New_Price
                         5195
    Price
    dtype: int64
```

Let's Drop sum Rows which contains NULL values.

NOTE: We are ignoring New_Price Column as it contains many cells which contains NULL value which will drastically shrink our train dataset.

The notna() function detects existing/ non-missing values in the dataframe.

```
print("Shape of train data Before dropping any Row: ",train_data.shape)
train_data = train_data[train_data['Mileage'].notna()]
print("Shape of train data After dropping Rows with NULL values in Mileage: ",train_data.s
train_data = train_data[train_data['Engine'].notna()]
print("Shape of train data After dropping Rows with NULL values in Engine : ",train_data.s
train_data = train_data[train_data['Power'].notna()]
print("Shape of train data After dropping Rows with NULL values in Power : ",train_data.s
train_data = train_data[train_data['Seats'].notna()]
print("Shape of train data After dropping Rows with NULL values in Seats : ",train_data.s

Shape of train data Before dropping any Row: (6019, 13)
    Shape of train data After dropping Rows with NULL values in Mileage: (6017, 13)
    Shape of train data After dropping Rows with NULL values in Engine : (5981, 13)
    Shape of train data After dropping Rows with NULL values in Power : (5981, 13)
    Shape of train data After dropping Rows with NULL values in Power : (5981, 13)
    Shape of train data After dropping Rows with NULL values in Seats : (5975, 13)
```

Now here in total we have 5975 Rows to work forward with. We have droped 44 rows.

Now after using .notna() function, we have many absent indexes (Eg: If row no 47 was droped then after 46 we have 48 index), so we will reset the index and droping the present index.

```
train_data = train_data.reset_index(drop=True)
train_data.head()
```

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	Firs
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	Firs
4							>

Feautre Engineering

There are many different data which could be extarcted from present. And, that's where Feature Engineering comes.

Following block of code creates a new alternate column for every existing column where in we are spliting the data in the cell in order to get only the first integer part.

```
for i in range(train_data.shape[0]):
    train_data.at[i, 'Company'] = train_data['Name'][i].split()[0]
    train_data.at[i, 'Mileage(km/kg)'] = train_data['Mileage'][i].split()[0]
    train_data.at[i, 'Engine(CC)'] = train_data['Engine'][i].split()[0]
    train_data.at[i, 'Power(bhp)'] = train_data['Power'][i].split()[0]
train_data.head()
```

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	Firs
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	Firs

The astype() function is used to convert the column from string/int to float

```
train_data['Mileage(km/kg)'] = train_data['Mileage(km/kg)'].astype(float)
train_data['Engine(CC)'] = train_data['Engine(CC)'].astype(float)
Audi A4
```

At this point when we tried to change Power(bhp) to float an error occured (Can't convert str to float : null).

This is because some cell where having values: 'null bhp'

```
train_data['Power'][76]
    'null bhp'
```

Following block of code returns us with the total count of the NULL-value cells along with their indices

```
count = 0
position = []
for i in range(train_data.shape[0]):
    if train_data['Power(bhp)'][i]=='null':
        count = count + 1
        position.append(i)

print(count)
print(position)

103
    [76, 79, 89, 120, 143, 225, 242, 259, 304, 305, 383, 421, 425, 440, 469, 572, 628, 64
```

Dropping the NULL-value cells of power(bhp) column

```
train_data = train_data.drop(train_data.index[position])
train_data = train_data.reset_index(drop=True)
```

The new shape of training data is:

```
train_data.shape
(5872, 17)
```

Now the power column is successfully converted to float

```
train_data['Power(bhp)'] = train_data['Power(bhp)'].astype(float)
```

train_data.head()

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	Firs
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	Firs
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	Firs
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	Firs
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second
4							•

Here we are splitting the cell data of New_Price column and storing the splitted integer data into the new column named New_car_Price

```
for i in range(train_data.shape[0]):
    if pd.isnull(train_data.loc[i,'New_Price']) == False:
        train_data.at[i,'New_car_Price'] = train_data['New_Price'][i].split()[0]

train_data.head()
```

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	Firs
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	Firs
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	Firs

Converting New_car_Price column from string to float datatype

```
train_data['New_car_Price'] = train_data['New_car_Price'].astype(float)
```

Now,

Let's delete all the redudant features (Features that are not going to help us further).

```
train_data.drop(["Name"],axis=1,inplace=True)
train_data.drop(["Mileage"],axis=1,inplace=True)
train_data.drop(["Engine"],axis=1,inplace=True)
train_data.drop(["Power"],axis=1,inplace=True)
train_data.drop(["New_Price"],axis=1,inplace=True)
```

DATA VISUALIZATION

Data visualization is the best way to find out how a data looks like.

The info() method prints information about the DataFrame

<class 'pandas.core.frame.DataFrame'>

```
train_data.info()
```

```
RangeIndex: 5872 entries, 0 to 5871
Data columns (total 13 columns):
   Column
                    Non-Null Count Dtype
___
                     -----
    Location
                                   object
0
                     5872 non-null
1 Year
                     5872 non-null
                                   int64
2 Kilometers_Driven 5872 non-null int64
    Fuel_Type
                     5872 non-null
3
                                    object
4
   Transmission
                    5872 non-null
                                    object
5
    Owner Type
                    5872 non-null
                                    object
6
    Seats
                     5872 non-null
                                    float64
7
    Price
                     5872 non-null
                                   float64
8
    Company
                     5872 non-null
                                    object
    Mileage(km/kg)
9
                    5872 non-null
                                    float64
                     5872 non-null
                                    float64
10 Engine(CC)
11 Power(bhp)
                     5872 non-null
                                    float64
```

```
12 New_car_Price 823 non-null float64 dtypes: float64(6), int64(2), object(5) memory usage: 596.5+ KB
```

The describe() method returns description of the data in the DataFrame

```
train_data['New_car_Price'].describe()
С⇒
    count
             823.000000
    mean
              20.328906
    std
              20.209032
    min
               1.000000
    25%
               7.840000
    50%
              11.390000
    75%
              24.010000
    max
              99.920000
    Name: New_car_Price, dtype: float64
```

Price

First let's have a look over our target column

The distplot() function is used to plot the distplot. The distplot represents the univariate distribution of data i.e. data distribution of a variable against the density distribution.

```
f, ax = plt.subplots(figsize=(15,8))
sns.distplot(train_data['New_car_Price'])
plt.xlim([0,160])
```


Fuel Type

train_data['Fuel_Type'].describe()

count 5872 unique 4 top Diesel freq 3152

0.04

Name: Fuel_Type, dtype: object

```
var = 'Fuel_Type'
data = pd.concat([train_data['New_car_Price'], train_data[var]], axis=1)
f, ax = plt.subplots(figsize=(12, 8))
fig = sns.boxplot(x=var, y="New_car_Price", data=data)
fig.axis(ymin=0, ymax=165);
```


Diseal car would cost followed Petrol.

```
var = 'Fuel_Type'
fig, ax = plt.subplots()
fig.set_size_inches(11.7, 8.27)
sns.swarmplot(x = var, y = 'New_car_Price', data = train_data)
```


Owner Type

```
var = 'Owner_Type'
fig, ax = plt.subplots()
fig.set_size_inches(11.7, 8.27)
sns.swarmplot(x = var, y = 'New_car_Price', data = train_data)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f857aae1a50>

Company

```
var = "Company"
plt.figure(figsize=(20, 10))
sns.catplot(x=var, kind="count", palette="ch:.25", height=8, aspect=2, data=train_data);
plt.xticks(rotation=90);
```

<Figure size 1440x720 with 0 Axes>

Cleary Maruti is most comman brand followed by Hyundai

Working with Categorical Data

As for now we have left with only 5 categorical features:

Location Fuel_Type Transmission Owner_Type Company For hadeling categorical data. We modtly use these 2 path:

OneHotEncoder LabelEncoder Where OneHotEncoder is used where data are not in any order and LabelEncoder when data is in order.

So, for each Features we will use plots to find out what to be used there.

Working for Location

Bangalore

Ahmedabad

```
var = 'Location'
train_data[var].value_counts()
     Mumbai
                  775
     Hyderabad
                  718
     Kochi
                  645
     Coimbatore
                  629
     Pune
                  594
     Delhi
                  545
     Kolkata
                  521
     Chennai
                  476
     Jaipur
                  402
```

Name: Location, dtype: int64

347 220

From above values, we could judge that Mubmai has most number of cars to be sold followed by others.

We will be using One-hot-encoding here

```
Location = train_data[[var]]
Location = pd.get_dummies(Location,drop_first=True)
Location.head()
```

LPG

	Location_Bangalore	Location_Chennai	Location_Coimbatore	Location_Delhi	Locati
0	0	0	0	0	
1	0	0	0	0	
Working	g for Fuel_Type				
3	U	1	U	U	
	Fuel_Type' ata[var].value_counts	5()			
	esel 3152 trol 2655 3 55				

Name: Fuel_Type, dtype: int64

10

Again we will be using One-hot-encoding

```
Fuel_t = train_data[[var]]
Fuel_t = pd.get_dummies(Fuel_t,drop_first=True)
Fuel_t.head()
```

	Fuel_Type_Diesel	Fuel_Type_LPG	Fuel_Type_Petrol
0	0	0	0
1	1	0	0
2	0	0	1
3	1	0	0
4	1	0	0

Working with Transmission

```
var = 'Transmission'
train_data[var].value_counts()
```

Manual 4170 Automatic 1702

Name: Transmission, dtype: int64

No, order so One-hot-encoding

```
Transmission = train_data[[var]]
Transmission = pd.get_dummies(Transmission,drop_first=True)
Transmission.head()
```

	Transmission_Manual
0	1
1	1
2	1
3	1
4	0

Working with Owner_Type

```
var = 'Owner_Type'
train_data[var].value_counts()
```

First 4839
Second 925
Third 101
Fourth & Above 7

Name: Owner_Type, dtype: int64

As Owner_Type column has ordered data so we will be using Label Encoding Finally

```
train_data.replace({"First":1,"Second":2,"Third": 3,"Fourth & Above":4},inplace=True)
train_data.head()
```

	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Seats	P
0	Mumbai	2010	72000	CNG	Manual	1	5.0	
1	Pune	2015	41000	Diesel	Manual	1	5.0	•
2	Chennai	2011	46000	Petrol	Manual	1	5.0	
3	Chennai	2012	87000	Diesel	Manual	1	7.0	
4	Coimbatore	2013	40670	Diesel	Automatic	2	5.0	
4								•

Working with Company

```
var = 'Company'
train_data[var].value_counts()
```

Maruti	1175
Hyundai	1058
Honda	600
Toyota	394
Mercedes-Benz	316
Volkswagen	314
Ford	294
Mahindra	268
BMW	262
Audi	235

Tata	183	
Skoda	172	
Renault	145	
Chevrolet	120	
Nissan	89	
Land	57	
Jaguar	40	
Mitsubishi	27	
Mini	26	
Fiat	23	
Volvo	21	
Porsche	16	
Jeep	15	
Datsun	13	
Force	3	
ISUZU	2	
Ambassador	1	
Isuzu	1	
Bentley	1	
Lamborghini	1	
Names Company	d+\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	:

Name: Company, dtype: int64

A lot of variation so let's drop them

```
train_data.drop(["Company"],axis=1,inplace=True)
```

final_train= pd.concat([train_data,Location,Fuel_t,Transmission],axis=1)
final_train.head()

	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Seats	P
0	Mumbai	2010	72000	CNG	Manual	1	5.0	
1	Pune	2015	41000	Diesel	Manual	1	5.0	
2	Chennai	2011	46000	Petrol	Manual	1	5.0	
3	Chennai	2012	87000	Diesel	Manual	1	7.0	
4	Coimbatore	2013	40670	Diesel	Automatic	2	5.0	

5 rows × 26 columns

final_train.drop(["Location","Fuel_Type","Transmission","New_car_Price"],axis=1,inplace=Tr
final_train.head()

	Year	Kilometers_Driven	Owner_Type	Seats	Price	Mileage(km/kg)	<pre>Engine(CC)</pre>	Pov
	0 2010	72000	1	5.0	1.75	26.60	998.0	
•	1 2015	41000	1	5.0	12.50	19.67	1582.0	
final_	train.sh	ape						
·	5872, 22 4 2013	2) 40670	2	5.0	17.74	15.20	1968.0	

We are Done with Training data, so now work on Test Data

Prepare Test Data

```
test_data.head()
```

	Unnamed:	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	01
0	0	Maruti Alto K10 LXI CNG	Delhi	2014	40929	CNG	Manual	
		Maruti Alto 800						
4	1	2016	Coimhatara	2012	E4402	Dotrol	Manual	•

We will have to prepare this test data with performing all the steps agaon for test data

```
test_data = test_data.iloc[:,1:]
print("Shape of test data Before dropping any Row: ",train_data.shape)
test_data = test_data[test_data['Mileage'].notna()]
print("Shape of test data After dropping Rows with NULL values in Mileage: ",test data.sha
test_data = test_data[test_data['Engine'].notna()]
print("Shape of test data After dropping Rows with NULL values in Engine: ",test_data.sha
test_data = test_data[test_data['Power'].notna()]
print("Shape of test data After dropping Rows with NULL values in Power : ",test_data.sha
test_data = test_data[test_data['Seats'].notna()]
print("Shape of test data After dropping Rows with NULL values in Seats : ",test_data.sha
print('Droping null done')
test_data = test_data.reset_index(drop=True)
print('Index reset done')
for i in range(test_data.shape[0]):
    test_data.at[i, 'Mileage(km/kg)'] = test_data['Mileage'][i].split()[0]
    test_data.at[i, 'Engine(CC)'] = test_data['Engine'][i].split()[0]
    test_data.at[i, 'Power(bhp)'] = test_data['Power'][i].split()[0]
print('Split Done')
test_data['Mileage(km/kg)'] = test_data['Mileage(km/kg)'].astype(float)
```

```
test_data['Engine(CC)'] = test_data['Engine(CC)'].astype(float)
print('casting 1 Done')
position = []
for i in range(test_data.shape[0]):
    if test_data['Power(bhp)'][i]=='null':
        position.append(i)
test_data = test_data.drop(test_data.index[position])
test_data = test_data.reset_index(drop=True)
test_data['Power(bhp)'] = test_data['Power(bhp)'].astype(float)
print('casting 2 Done')
for i in range(test_data.shape[0]):
    if pd.isnull(test_data.loc[i, 'New_Price']) == False:
        test_data.at[i,'New_car_Price'] = test_data['New_Price'][i].split()[0]
test_data['New_car_Price'] = test_data['New_car_Price'].astype(float)
test_data.drop(["Name"],axis=1,inplace=True)
test_data.drop(["Mileage"],axis=1,inplace=True)
test_data.drop(["Engine"],axis=1,inplace=True)
test_data.drop(["Power"],axis=1,inplace=True)
test_data.drop(["New_Price"],axis=1,inplace=True)
var = 'Location'
Location = test_data[[var]]
Location = pd.get_dummies(Location,drop_first=True)
Location.head()
var = 'Fuel_Type'
Fuel_t = test_data[[var]]
Fuel_t = pd.get_dummies(Fuel_t,drop_first=True)
Fuel t.head()
var = 'Transmission'
Transmission = test data[[var]]
Transmission = pd.get_dummies(Transmission,drop_first=True)
Transmission.head()
test_data.replace({"First":1,"Second":2,"Third": 3,"Fourth & Above":4},inplace=True)
test_data.head()
final_test= pd.concat([test_data,Location,Fuel_t,Transmission],axis=1)
final_test.head()
final_test.drop(["Location", "Fuel_Type", "Transmission", "New_car_Price"], axis=1, inplace=Tru
final test.head()
print("Final Test Size: ",final_test.shape)
     Shape of test data Before dropping any Row: (5872, 12)
     Shape of test data After dropping Rows with NULL values in Mileage: (1234, 12)
     Shape of test data After dropping Rows with NULL values in Engine: (1224, 12)
```

```
Shape of test data After dropping Rows with NULL values in Power : (1224, 12)
Shape of test data After dropping Rows with NULL values in Seats : (1223, 12)
Droping null done
Index reset done
Split Done
casting 1 Done
casting 2 Done
Final Test Size: (1201, 21)
```

final_test.head()

	Year	Kilometers_Driven	Owner_Type	Seats	Mileage(km/kg)	Engine(CC)	Power(bhp)
0	2014	40929	1	4.0	32.26	998.0	58.20
1	2013	54493	2	5.0	24.70	796.0	47.30
2	2017	34000	1	7.0	13.68	2393.0	147.80
3	2014	29000	1	5.0	18.50	1197.0	82.8
4	2016	85609	2	7.0	16.00	2179.0	140.00
5 rc	ws × 2	1 columns					
4							>

Final Features Selection

As our train and test data are ready so now we have to only look for features on which we have to work.

```
final_train.columns
     Index(['Year', 'Kilometers_Driven', 'Owner_Type', 'Seats', 'Price',
             'Mileage(km/kg)', 'Engine(CC)', 'Power(bhp)', 'Location_Bangalore',
             'Location_Chennai', 'Location_Coimbatore', 'Location_Delhi',
             'Location_Hyderabad', 'Location_Jaipur', 'Location_Kochi',
             'Location_Kolkata', 'Location_Mumbai', 'Location_Pune', 'Fuel_Type_Diesel', 'Fuel_Type_LPG', 'Fuel_Type_Petrol',
             'Transmission_Manual'],
            dtype='object')
X = final_train.loc[:,['Year', 'Kilometers_Driven', 'Owner_Type', 'Seats',
        'Mileage(km/kg)', 'Engine(CC)', 'Power(bhp)',
        'Location_Bangalore', 'Location_Chennai', 'Location_Coimbatore',
        'Location_Delhi', 'Location_Hyderabad', 'Location_Jaipur',
       'Location_Kochi', 'Location_Kolkata', 'Location_Mumbai',
        'Location_Pune', 'Fuel_Type_Diesel', 'Fuel_Type_LPG',
        'Fuel Type Petrol', 'Transmission Manual']]
X.shape
     (5872, 21)
y = final_train.loc[:,['Power(bhp)']]
y.head()
```

	Power(bhp)
0	58.16
1	126.20
2	88.70
3	88.76
4	140.80

```
from sklearn.ensemble import ExtraTreesRegressor
selection= ExtraTreesRegressor()
selection.fit(X,y)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: DataConversionWarning
This is separate from the ipykernel package so we can avoid doing imports until
ExtraTreesRegressor()

Build it (Model)

First we are spliting the data to train and test for the model

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state =
```

Now lets try the Random Forest Regressor

```
#Now we will be using Random Forest Regressor (for better accuracy)

from sklearn.ensemble import RandomForestRegressor
rf_reg = RandomForestRegressor()
rf_reg.fit(X_train, y_train)
y_pred= rf_reg.predict(X_test)
print("Accuracy on Traing set: ",rf_reg.score(X_train,y_train))
print("Accuracy on Testing set: ",rf_reg.score(X_test,y_test))

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: DataConversionWarning
    """
    Accuracy on Traing set: 0.9999346196941928
    Accuracy on Testing set: 0.9999243664535357

**

X_test.head()
rf_reg.predict([[2016,47000,1,7.0,12.80,2494.0,102.00,0,0,0,0,0,0,0,0,0,1,1,0,0,1]])
```

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h

"X does not have valid feature names, but"

array([102.])

Conclusion: The increased prices of new cars and the financial incapability of the customers to buy them, Used Car sales are on a global increase. Therefore, there is an urgent need for a Used Car Price Prediction system which effectively determines the worthiness of the car using a variety of features. The proposed system will help to determine the accurate price of used car price prediction.

Colab paid products - Cancel contracts here

✓ 0s completed at 11:57 PM

X