Book 3 Proposition 16

A (straight-line) drawn at right-angles to the diameter of a circle, from its end, will fall outside the circle. And another straight-line cannot be inserted into the space between the (aforementioned) straight-line and the circumference. And the angle of the semi-circle is greater than any acute rectilinear angle whatsoever, and the remaining (angle is) less (than any acute rectilinear angle).

Let ABC be a circle around the center D and the diameter AB. I say that the (straight-line) drawn from A, at right-angles to AB [Prop 1.11], from its end, will fall outside the circle.

For (if) not then, if possible, let it fall inside, like CA (in the figure), and let DC have been joined.

Since DA is equal to DC, angle DAC is also equal to angle ACD [Prop. 1.5]. And DAC (is) a right-angle. Thus, ACD (is) also a right-angle. So, in triangle ACD, the two angles DAC and ACD are equal to two right-angles. The very thing is impossible [Prop. 1.17]. Thus, the (straight-line) drawn from point A, at right-angles to BA, will not fall inside the circle. So, similarly, we can show that neither (will it fall) on the circumference. Thus, (it will fall) outside (the circle).

Let it fall like AE (in the figure). So, I say that another straight-line cannot be inserted into the space between the straight-line AE and the circumference CHA.

For, if possible, let it be inserted like FA (in the figure), and let DG have been drawn from point D, perpendicular to FA [Prop. 1.12]. And since AGD is a right-angle, and DAG (is) less than a right-angle, AD (is) thus greater than DG [Prop. 1.19]. And DA (is) equal to DH. Thus, DH (is) greater than DG, the lesser than the greater. The very thing is impossible. Thus, another straight-line cannot be inserted into the space between the straight-line (AE) and the circumference.

And I also say that the semi-circular angle contained by the straight-line BA and the circumference CHA is greater than any acute rectilinear angle whatsoever, and the remaining (angle) contained by the circumference CHA and the straight-line AE is less than any acute rectilinear angle whatsoever.

For if any rectilinear angle is greater than the (angle) contained by the straight-line BA and the circumference CHA, or less than the (angle) contained by the circumference CHA and the straight-line AE, then a

straight-line can be inserted into the space between the circumference CHA and the straight-line AE—anything which will make (an angle) contained by straight-lines greater than the angle contained by the straight-line BA and the circumference CHA, or less than the (angle) contained by the circumference CHA and the straight-line AE. But (such a straight-line) cannot be inserted. Thus, an acute (angle) contained by straight-lines cannot be greater than the angle contained by the straight-line BA and the circumference CHA, neither (can it be) less than the (angle) contained by the circumference CHA and the straight-line AE.

Corollary

So, from this, (it is) manifest that a (straight-line) drawn at right-angles to the diameter of a circle, from its extremity, touches the circle [and that the straight-line touches the circle at a single point, inasmuch as it was also shown that a (straight-line) meeting (the circle) at two (points) falls inside it [Prop. 3.2]]. (Which is) the very thing it was required to show.