

# **Logistic Regression 2**

Lecture 20

**STA 371G** 

#### Last time

- The OkCupid data set contains information about 59946 profiles from users of the OkCupid online dating service.
- We predicted sex (as a binary categorical variable) from height using logistic regression, and came up with the prediction equation:

logodds = 
$$\log \left( \frac{P(\text{male})}{1 - P(\text{male})} \right) = -44.45 + 0.66 \cdot \text{height.}$$

or, solving for P(male),

$$\widehat{P(\text{male})} = \frac{e^{-44.45 + 0.66 \cdot \text{height}}}{1 + e^{-44.45 + 0.66 \cdot \text{height}}}$$

#### 1. Evaluating the model

Checking assumptions

Logistic regression with 2+ predictors

Interactions in logistic regression

5. Other applications of logistic regression

#### How good is our model?

• Unfortunately, the typical  $R^2$  metric isn't available for logistic regression.

#### How good is our model?

- Unfortunately, the typical  $R^2$  metric isn't available for logistic regression.
- However, there are many "pseudo-R<sup>2</sup>" metrics that indicate model fit.

#### How good is our model?

- Unfortunately, the typical  $R^2$  metric isn't available for logistic regression.
- However, there are many "pseudo-R<sup>2</sup>" metrics that indicate model fit.
- But: most of these pseudo-R<sup>2</sup> metrics are difficult to interpret, so we'll focus on something simpler to interpret and communicate.

We could use our model to make a prediction of sex based on the probability. Suppose we say that our prediction is:

Prediction = 
$$\begin{cases} \text{male,} & \text{if } \widehat{P(\text{male})} \ge 0.5, \\ \text{female,} & \text{if } \widehat{P(\text{male})} < 0.5. \end{cases}$$

We could use our model to make a prediction of sex based on the probability. Suppose we say that our prediction is:

Prediction = 
$$\begin{cases} \text{male,} & \text{if } \widehat{P(\text{male})} \ge 0.5, \\ \text{female,} & \text{if } \widehat{P(\text{male})} < 0.5. \end{cases}$$

Now we can compute the fraction of people whose sex we correctly predicted:

```
predicted.male <- (predict(model, type="response") >= 0.5)
actual.male <- (my.profiles$male == 1)
sum(predicted.male == actual.male) / nrow(my.profiles)
[1] 0.83</pre>
```

83% sounds pretty good—what should we compare it against?

83% sounds pretty good—what should we compare it against?

We should compare 83% against what we would have gotten if we just predicted the most common outcome (male) for everyone, without using any other information:

83% sounds pretty good—what should we compare it against?

We should compare 83% against what we would have gotten if we just predicted the most common outcome (male) for everyone, without using any other information:

```
sum(actual.male) / nrow(my.profiles)
[1] 0.6
```

83% sounds pretty good—what should we compare it against?

We should compare 83% against what we would have gotten if we just predicted the most common outcome (male) for everyone, without using any other information:

```
sum(actual.male) / nrow(my.profiles)
[1] 0.6
```

In other words, our model provided a "lift" in accuracy from 60% to 83%.

#### The confusion matrix

Sometimes it is useful to understand what kinds of errors our model is making:

- True positives: predicting male for someone that is male
- True negatives: predicting female for someone that is female
- False positives: predicting male for someone that is female
- False negatives: predicting female for someone that is male

(If we had designated female as 1 and male as 0, these would have switched!)

#### The confusion matrix

```
table(predicted.male, actual.male)
             actual.male
predicted.male FALSE TRUE
        FALSE 19466 5494
        TRUE 4623 30243
prop.table(table(predicted.male, actual.male), 2)
             actual.male
predicted.male FALSE TRUE
        FALSE 0.81 0.15
        TRUE 0.19 0.85
```

- 1. Evaluating the mode
- 2. Checking assumptions

3. Logistic regression with 2+ predictors

Interactions in logistic regression

5. Other applications of logistic regression

# Checking assumptions

- Independence
- Linearity
- Normality of residuals X
- Homoscedasticity / Equal variance X

With logistic regression, we don't need to check the last two assumptions (since Y is binary).

#### Checking assumptions: Independence

Like with linear regression, we check independence by thinking about the data conceptually: are the predictions the model makes likely to be independent from each other?

# Checking assumptions: Independence

Like with linear regression, we check independence by thinking about the data conceptually: are the predictions the model makes likely to be independent from each other?

✓ Yes! Each case is a completely different person whose heights and genders are unrelated.

#### Checking assumptions: Linearity

Look at the logistic regression model:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X + \epsilon$$

We need an approximately linear relationship between the log odds of success and X, or, equivalently, a linear relationship between the log odds of success and what is predicted from our linear model on the right side of the equation.

# Checking assumptions: Linearity

To do this, we segment the predicted log odds into groups by deciles (bottom 10%, next 10%, up until the highest 10%):

```
quantile(predict(model), probs=seq(0, 1, 0.1))

0% 10% 20% 30% 40% 50% 60% 70%

-8.04 -2.75 -1.42 -0.76 -0.10 0.56 1.88 2.55

80% 90% 100%

3.21 3.87 8.50
```

#### Checking assumptions: linearity

Then we'll calculate the empirical log odds within each group:

| Predicted log odds | # males | Total | p = P(male) | Log odds     |
|--------------------|---------|-------|-------------|--------------|
| [-8.04, -2.75]     | 256     | 7182  | 0.04        | <b>—</b> 3.3 |
| [-2.75, -1.42]     | 1090    | 7659  | 0.14        | <b>—</b> 1.8 |
| [-1.42,-0.76]      | 1579    | 4759  | 0.33        | <b>-</b> 0.7 |
|                    |         |       |             |              |
| [3.87, 8.5]        | 5168    | 5208  | 0.99        | 4.85         |

Then we'll plot the empirical log odds against the mean of each decile; we'd like to see approximately the line y = x; this is called an empirical logit plot.

# Checking assumptions: Linearity



### Checking assumptions: Linearity





Predicted log odds

 $\sqrt{\text{Yes!}}$  This is approximately along the line *y* = *x*.

- 1. Evaluating the model
- 2. Checking assumptions
- 3. Logistic regression with 2+ predictors

Interactions in logistic regression

5. Other applications of logistic regression

#### Adding another predictor

- Just like with a linear regression model, we can add additional predictors to the model.
- Our interpretation of the coefficients in multiple logistic regression is similar to multiple linear regression, in the sense that each coefficient represents the predicted effect of one X on Y, holding the other X variables constant.

#### Adding another predictor

Let's add sexual orientation as a second predictor of gender, in addition to height:

```
model2 <- glm(male ~ height + orientation,
  data=my.profiles, family=binomial)</pre>
```

The orientation variable has three categories:

```
table(my.profiles$orientation)
bisexual gay straight
2763 5568 51495
```

```
Call:
glm(formula = male ~ height + orientation, family = binomial,
   data = my.profiles)
Deviance Residuals:
   Min
           10 Median
                          30
                                Max
-3.620 -0.481 0.198 0.530
                              4.022
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  -46.08076
                              0.37167 -124.0 <2e-16 ***
height
                  0.66535 0.00537 124.0 <2e-16 ***
               2.09556 0.07209 29.1 <2e-16 ***
orientationgay
orientationstraight 1.39972
                              0.06068 23.1 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 80654 on 59825 degrees of freedom
```

Residual deviance: 43722 on 59822 degrees of freedom

AIC: 43730

Number of Fisher Scoring iterations: 6

Our prediction equation is:

$$\log\left(\frac{p}{1-p}\right) = -46.08 + 0.67 \cdot \text{height} + 2.1 \cdot \text{gay} + 1.4 \cdot \text{straight}.$$

#### This means that:

 Our predicted log odds of being male for someone who is bisexual and has a height of 0" is -46.08 (the intercept).

Our prediction equation is:

$$\log\left(\frac{p}{1-p}\right) = -46.08 + 0.67 \cdot \text{height} + 2.1 \cdot \text{gay} + 1.4 \cdot \text{straight}.$$

#### This means that:

- Our predicted log odds of being male for someone who is bisexual and has a height of 0" is —46.08 (the intercept).
- Among people with the same sexual orientation, each additional inch of height corresponds to an increase in 95% in predicted odds of being male (i.e., multiplied by  $e^{0.67} = 1.95$ ).

$$\log\left(\frac{p}{1-p}\right) = -46.08 + 0.67 \cdot \text{height} + 2.1 \cdot \text{gay} + 1.4 \cdot \text{straight}.$$

• Among people of the same height, being gay increases the predicted odds of being male by 713% (i.e., multiplied by  $e^{2.1} = 8.13$ ) compared to being bisexual.

$$\log\left(\frac{p}{1-p}\right) = -46.08 + 0.67 \cdot \text{height} + 2.1 \cdot \text{gay} + 1.4 \cdot \text{straight}.$$

- Among people of the same height, being gay increases the predicted odds of being male by 713% (i.e., multiplied by  $e^{2.1} = 8.13$ ) compared to being bisexual.
- Among people of the same height, being straight increases the predicted odds of being male by 305% (i.e., multiplied by  $e^{1.4} = 4.05$ ) compared to being bisexual.

# Understanding what's going on

```
crosstabs <- table(my.profiles$sex, my.profiles$orientation)
crosstabs

  bisexual gay straight
  f 1994 1586 20509
  m 769 3982 30986</pre>
```

barplot(prop.table(crosstabs, 2), col=c("pink", "lightblue"),
 legend=T)



### Converting back to probabilities

Because there is a nonlinear relationship between probability and odds, a particular percentage increase in odds does not correspond to a fixed change in probability. But it can be useful sometimes to compute some exemplar predicted probabilities to get a sense of the relationships:

|          | Height |       |       |       |  |  |
|----------|--------|-------|-------|-------|--|--|
|          | 60"    | 64"   | 68"   | 72"   |  |  |
| bisexual | 0.002  | 0.029 | 0.302 | 0.861 |  |  |
| gay      | 0.017  | 0.197 | 0.779 | 0.981 |  |  |
| straight | 0.008  | 0.109 | 0.637 | 0.962 |  |  |

We can also visualize this by plotting the three curves for straight (yellow), gay (green), and bisexual (blue) OkCupid users:



Where will the curve for bisexual OkCupid users be?

We can also visualize this by plotting the three curves for straight (yellow), gay (green), and bisexual (blue) OkCupid users:



- 1. Evaluating the model
- 2. Checking assumptions

- 3. Logistic regression with 2+ predictors
- 4. Interactions in logistic regression

5. Other applications of logistic regression

#### What would interactions do?

- In linear regression, an interaction between two predictors  $X_1$  and  $X_2$  means that the slope of  $X_1$  will depend on the value of  $X_2$ .
- In other words, there will be differently-sloped regression lines predicting Y from  $X_1$  depending on what the value of  $X_2$  is.



28/34

#### What would interactions do?

- We can add interactions to logistic regression and the interpretation is the same: the effect of X<sub>1</sub> on the probability of being male depends on the value of X<sub>2</sub>.
- Let's try this out with  $X_1$  = height and  $X_2$  = orientation.

```
int.model <- glm(male ~ height * orientation, data=my.profiles, family=binomial)</pre>
summary(int.model)
Call:
qlm(formula = male ~ height * orientation, family = binomial,
    data = my.profiles)
Deviance Residuals:
   Min
           10 Median
                           30
                                  Max
-3.655 -0.470 0.194 0.521
                               4.064
Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
(Intercept)
                          -35.3027
                                      1.4050 -25.13 < 2e-16 ***
                                       0.0206 24.67 < 2e-16 ***
height
                           0.5076
```

```
-6.2727
                                 1.8365 -3.42 0.00064 ***
orientationgay
orientationstraight -10.2887
                                1.4596 -7.05 1.8e-12 ***
height:orientationgay 0.1218
                                 0.0271 4.49 7.1e-06 ***
height:orientationstraight 0.1712
                                 0.0214 8.01 1.2e-15 ***
```

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

#### The interaction model is:

$$\log\left(\frac{p}{1-p}\right) = -35.3 + 0.51 \cdot \text{height} - 6.27 \cdot \text{gay} - 10.29 \cdot \text{straight} + 0.12 \cdot \text{height} \cdot \text{gay} + 0.17 \cdot \text{height} \cdot \text{straight}.$$

Let's graph the equation for gay (green), straight (yellow), and bisexual (blue) users:



- 1. Evaluating the model
- 2. Checking assumptions
- Logistic regression with 2+ predictors

- Interactions in logistic regression
- 5. Other applications of logistic regression

### What else can we use logistic regression for?

- Finance: Predicting which customers are most likely to default on a loan
- Advertising: Predicting when a customer will respond positively to an advertising campaign
- Marketing: Predicting when a customer will purchase a product or sign up for a service