Problem R-10N. Below is a proton decoupled 470.4 MHz ¹⁹F NMR spectrum of vinyl fluoride and several deuterated isotopomers. Analyze the spectrum. (Morton *J. Am. Chem. Soc.* **1992**, *114*, 7127)

(a) Draw below the compounds which give the signals between -115.9 and -115.6 ppm. Report couplings and chemical shifts. Briefly explain your assignments.

(b) Draw below the compounds which give the signals between -116.5 and -116.1 ppm. Report couplings and chemical shifts.

(c) From the information collected above calculate the gem, trans and cis F-H couplings of vinyl fluoride. Show your work.

(d) Estimate the ¹⁹F chemical shift of the trideutero isotopomer.

10

6

Problem R-10N. Below is a proton decoupled 470.4 MHz ¹⁹F NMR spectrum of vinyl fluoride and several deuterated isotopomers. Analyze the spectrum. (Morton J. Am. Chem. Soc. 1992, 114, 7127)

(a) Draw below the compounds which give the signals between -115.9 and -115.6 ppm. Report couplings and chemical shifts. Briefly explain your assignments.

These are the mono-deuterated vinyl fluorides

 δ -115.67 1:1:1 t, ${}^3J_{FD}$ = 2.9 Hz, smallest J and smallest $\Delta\delta$ (0.40 ppm), F/D cis δ -115.78 1:1:1 t, ${}^{3}J_{FD}$ = 8.5 Hz, $J_{trans} > J_{cis}$, medium $\Delta\delta$ (0.51 ppm), F/D trans δ -115.88 1:1:1 t, ${}^{2}J_{FD}$ = 13.2 Hz, 2-bond will be largest $\Delta\delta$ (0.61 ppm), F/D gem Assignment of the two largest couplings (trans and gem) is not simple - after

all, in alkenes ²J_{HH} is the smallest of the three couplings. It is the size of the deuterium isotope shift that allows a firm assignment (2-bond shift > trans 3-bond > *cis* 3-bond)

(b) Draw below the compounds which give the signals between -116.5 and -116.1 ppm. Report couplings and chemical shifts.

These are the di-deuterated vinyl fluorides

$$\delta$$
 -116.18 1:1:1 t of 1:1:1 t, δ -116.29 1:1:1 t of 1:1:1 t, $^3J_{\text{FD}} = 8.5$ (trans), 3 (cis) Hz, $^2J_{\text{FD}} = 13$, $^3J_{\text{FD}}$ (cis) = 3 Hz two smallest J and $\Delta\delta$

$$δ$$
 -116.29 1:1:1 t of 1:1:1 t, ${}^2J_{FD}$ = 13, ${}^3J_{FD}$ (cis) = 3 Hz

$$\delta$$
 -116.40 1:1:1 t of 1:1:1 t, $^2J_{\rm FD}$ = 13, $^3J_{\rm FD}$ (trans) = 8.5 Hz, two largest J and $\Delta\delta$

$$F \xrightarrow{D} H$$

(c) From the information collected above calculate the cis, trans and gem F-H couplings of vinyl fluoride. Show your work.

(d) Estimate the ¹⁹F chemical shift of the trideutero isotopomer.

$$\delta_{\text{gem}} = 115.88 - 115.27 = 0.61$$
 $F = \frac{D}{D} + \delta_{\text{gem}} = F = \frac{D}{D}$
 $\delta_{\text{gem}} = 116.18 + 0.61 = 116.79$

PLT ex-3-2010 And aga plus uming the isotope shifts are additive, which is nearly correct.