

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТІ	EΤ	«Информатика и системы управления»	
КАФЕЛРА	«П	рограммное обеспечение ЭВМ и информационные технологии»	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Макетирование и визуализация загородной местности»

Студент <u>ИУ7-56Б</u> (Группа)	(Подпись, дата)	Вольняга М. Ю (И. О. Фамилия)
Руководитель курсовой работы	(Подпись, дата)	<u>Мальцева Д. Ю.</u> (И. О. Фамилия)

СОДЕРЖАНИЕ

O	ПРЕДЕЛЕНИЯ	3
O	БОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	4
В	ведение	5
1	Аналитический раздел	6
	1.1 Способы определения моделей	6
	1.2 Методы представления трехмерных поверхностей	7
2	Конструкторский раздел	10
3	Технологический раздел	11
4	Исследовательская часть	12
	4.1 Вывод	12
3.	АКЛЮЧЕНИЕ	13
\mathbf{C}	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14
П	РИЛОЖЕНИЕ А	15

ОПРЕДЕЛЕНИЯ

В настоящей расчетно-пояснительной записке применяют следующие термины с соответствующими определениями.

Бикубический — это термин, который указывает на то, что уравнения, описывающие координаты точек поверхности, содержат две пары параметров с показателями степени, не превышающими третьей [1]

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящей расчетно-пояснительной записке применяют следующие сокращения и обозначения.

Программное обеспечение — ΠO

ВВЕДЕНИЕ

ПО для макетирования и визуализации загородной местности может применяться в ландшафтном дизайне, архитектуре и планировании территории. Визуализация при планировании местности улучшает коммуникацию и снижает риск недопонимания между заказчиком и исполнителем [2].

Цель работы — разработка программного обеспечения для макетирования и визуализации загородной местности.

Для достижения поставленной цели требуется решить следующие задачи:

- формально описать структуру объектов;
- выбрать алгоритмы трехмерной графики для визуализации сцены и объектов;
- формально записать выбранные алгоритмы;
- выбрать структуры данных для объектов сцены;
- выбрать язык программирования;
- реализовать выбранные алгоритмы;
- разработать программное обеспечение для макетирования и визуализации загородной местности.

1 Аналитический раздел

В данном разделе описаны способы описания моделей,

1.1 Способы определения моделей

В системах трехмерного моделирования используются каркасные, поверхностные и объемные твердотельные модели. Правильный выбор метода определения моделей на сцене определяет размер и визуализацию модели на сцене.

Каркасная модель — это простейшая модель трехмерного объекта, представляющая собой совокупность вершин, соединенных между собой ребрами [1].

Главным недостатком данной модели является отсутствие информации о поверхности объекта, что делает невозможным разграничение внутренних и внешних граней, например, как на рисунке 1.1. Каркасная модель занимает меньше памяти и эффективна для простых задач [3].

Рисунок 1.1 – Пример каркасной модели

Поверхностная модель, в отличие от каркасной, включает в себя не только вершины и ребра, но также поверхности, создавая визуальный контур объекта [1]. Каждый объект в данной модели обладает внутренней и внешней частью, как на рисуноке 1.2.

В основу поверхностной модели положены два основных математических положения:

– любую поверхность можно аппроксимировать многогранником, где каждая грань представляет собой простейший плоский многоугольник [3]; в модели допускаются не только плоские многоугольники, но и поверхности второго порядка, а также аналитически неописываемые поверхности [3].

Рисунок 1.2 – Пример поверхностной модели

Недостаток поверхностной модели — отсутствует информация, о том, с какой стороны поверхности находится материал, а с какой пустота.

Твердотельная модель отличается от поверхностной тем, что включает информацию о расположение материала с обеих сторон поверхности [3].

Выбор определения моделей

В данной задаче наиболее оптимальными являются поверхностные модели объектов, так как каркасные модели недостаточно полно представляют форму объекта, а твердотельные модели избыточны.

1.2 Методы представления трехмерных поверхностей

Метод полигональной сетки представляет объект в виде связанной между собой сетки плоских многоугольников [1], как показано на рисунке 1.3.

Метод параметрических бикубических кусков использует математические формулы, описывающие координаты поверхностей. Этот подход обеспечивает высокую точность при описании поверхности и требует меньше элементов для представления сложных форм, в сравнении с полигональными сетками. Однако алгоритмы, работающие с бикубическими кусками сложнее [1].

В рамках данной задачи выбран метод полигональной сетки. Этот выбор обоснован геометрической простотой объектов сцены и отсутствием необходимости использования сложных математических формул. Использование полигональной сетки позволит применять более простые алгоритмы для обработки объектов [1].

Рисунок 1.3 – Пример полигональной сетки, изображающей кролика

Способы описания полигональных сеток

Наиболее распространенные методы представления полигональных сеток, рассматриваются в [4].

- 1) Список граней распространенный метод представления трехмерных моделей, описывает объект как множество граней и вершин, где каждая грань имеет минимум 3 вершины. Преимущества: простота поиска вершин грани, динамическое обновление формы без изменения связности граней. Недостатки: трудности при операциях разрыва и объединения граней, а также проблемы с поиском граней.
- 2) Вершинное представление это метод представления модели через множества вершин, которые связаны между собой. В качестве *преимущества* можно выделить его простату. К *недостаткам*: отсутствие явной информации о гранях и ребрах, а также редкое использование в современных системах визуализации.
- 3) «Крылатое» представление метод, представляющий модель как упорядоченное множество граней вокруг ребра. *Преимущество*: решение проблемы перехода от ребра к ребру через упорядоченное множество граней. *Недостаток*: высокие требования к памяти из-за увеличивающейся сложности структуры

Выбор способа описания полигональной сетки

Для работы выбран метод представления моделей через список граней, обеспечивающий ясное описание и удобный доступ к элементам сетки. Этот подход упрощает модификацию моделей, включая добавление, удаление и изменение граней и вершин.

Вывод

Анализ подходов к заданию трехмерных моделей привел к выбору поверхностных моделей, метода полигональных сеток в качестве способа представления трехмерных поверхностей. Для удаления невидимых ребер применен алгоритм Z-буфера. Модификация Z-буфера использована для построения теней, обеспечивая совместимость и упрощенную интеграцию.

2 Конструкторский раздел

Вывод

Ы

3 Технологический раздел

Вывод

- 4 Исследовательская часть
- **4.1** Вывод

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Лисяк В. В. Основы геометрического моделирования. 2022.
- 2. Lovett A. Appleton K. W.-K. B. Using 3D visualization methods in landscape planning: An evaluation of options and practical issues // Landscape and Urban Planning. -2015. C. 85-94.
- 3. Донченко В. Ю. Ч. Е. Н. Обзор и анализ методов построения геометрических моделей сложных конструкций. 2014.
- 4. $A.B.~Kuceлев~\Gamma.~B.~$ Способы представления и размещения трехмерных моделей для прототипирования ювелирных изделий // Материалы VI Международной научно-практической конференции (школы-семинара) молодых ученых. 2020. C. 840—842.

приложение а