Familles et bases

William Hergès ¹

31 janvier 2025

Table des matières

1	Familles	2
2	Base	2

Familles

Soit (v_1,\ldots,v_p) une famille de vecteurs dans \mathbb{R}^p . La famille est dite liée s'il existe $(\lambda_1,\ldots,\lambda_p)\in\mathbb{R}^p$ non tous nuls tel que :

$$\sum_{i=1}^{p} \lambda_i v_i = 0$$

Définition 2

Si une famille n'est pas liée, alors elle est libre.

Le vecteur nul est toujours dans une famille liée!

Théorème 2.1

La famille $A=(v_1,\ldots,v_q)$ est libre si et seulement si $\operatorname{rg}(A)=q.$

Définition 3

Une famille $A=(v_1,\dots,v_q)$ dans E, un ev de \mathbb{K} , est génératrice si et seulement si : $\forall b\in E, \quad \exists (\lambda_1,\dots,\lambda_q)\in \mathbb{K}^q, \quad \sum_{i=1}^q \lambda_i v_i = b$

$$\forall b \in E, \quad \exists (\lambda_1, \dots, \lambda_q) \in \mathbb{K}^q, \quad \sum_{i=1}^q \lambda_i v_i = b$$

Avec une famille génératrice, on peut générer tout l'espace.

Base

Définition 4

Une base de E est une famille libre et génératrice.

On note $\dim(E)$ le cardinal d'une base de E.

 $\dim(E)$ est unique.

Soit A une famille de vecteurs de cardinal q.

Si le rang de A vaut $\dim(E)$, alors A est génératrice (i.e. $\forall b \in E, \exists X, \quad AX = A$

(Rappel) Si le rang de A vaut q, alors A est libre (i.e. $\exists ! X, \quad AX = 0$).

Une matrice A carrée de \mathcal{M}_n est une base si et seulement si son rang vaut n.

On remarque donc que A est une base s'il existe des opérations élémentaires permettant d'écrire une multiplication des opérations élémentaires successives par Aégal à I_n . Cela montre que A est inversible et que A^{-1} est la multiplication des opérations élémentaires successives.

Pour trouver l'inverse, on fait le pivot de Gauss sur la matrice et sur la matrice identité correspondante.

Technique pour trouver l'inverse

$$\begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 2 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & -5 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2/5 & -1/5 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -1/5 & 3/5 & 0 \\ 0 & 1 & 0 & | & 2/5 & -1/5 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

 $\begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 2 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & -5 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2/5 & -1/5 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -1/5 & 3/5 & 0 \\ 0 & 1 & 0 & | & 2/5 & -1/5 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$ Ainsi, on a que la matrice $\begin{pmatrix} -1/5 & 3/5 & 0 \\ 2/5 & -1/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ est l'inverse de la première matrice}$

NLDR: les étapes sont foireuses mais on a la marche à suivre