Lecture #23 | GEOG 510 GIS & Spatial Analysis in Public Health

Varun Goel

Outline

- Spatial regression
 - Spatial Lag and Error models
 - A bit more...
 - Review of pattern vs process
 - Example
 - Geographically Weighted Regression

Varun Goel, GEOG 510 #23, SPATIAL REGRESSION Slide 2

Comparing Variables

- Correlation
 - Tells us about relationship between two variables
 - Direction and strength
- Regression
 - Tells us about relationship among variables
 - Direction, strength, and magnitude

Residual Autocorrelation

- Regression residuals should not be spatially autocorrelated
 - Residuals should be randomly distributed (independent)
 - To test, join residuals back to spatial data features
 - Run a Moran's I analysis using the residual as the variable
 - We hope to get "null" results (high *p* value), meaning a random distribution!

Residual Autocorrelation

- Potential fixes...
 - Find missing independent variable
 - Spatial regression approaches
 - Spatial Lag Model
 - Spatial Error Model
 - Spatial filtering
 - Removes spatial autocorrelation from input variables (prior to regression)

Spatial Dependence

- Nuisance
 - Something to get rid of
 - Involves model residuals only
 - Spatial Error Model
- Substantive
 - Value of interest
 - Involves neighbors of Y
 - Spatial Lag Model

- Spatial regression approaches
 - Spatial Lag Models
 - Similar, in thought, to a 2^{nd} order spatial process (spillover)
 - Spatial Error Models
 - Similar, in thought, to a 1st order spatial process (underlying driver)

Pattern and Process

- Simple difference
 - A spatial pattern is generally the result of some spatial process
 - We map/observe patterns
 - We aim to understand processes
- Process is the "real life" action or interaction happening
 - Requires us to think about how real life is expressed via data

Pattern and Process

- Thinking about "why" we observe geographic variation in our data...
 - e.g., why is disease prevalence or incidence higher here than there?
 - The geographic variation that we map is the pattern
 - The real life actions/interactions are the process that result in the geographic variation

Spatial Processes

- First order effects
 - Observed spatial variation is due to an extrinsic (external) factor (or factors)
 - For example
 - Disease cases and population counts
 - Health outcomes and poverty
 - Often, we use correlation/regression based methods to capture first order effects

Spatial Processes

- Second order effects
 - Spatial variation is due to interaction or intrinsic factors
 - For example
 - Directly transmittable disease (cases spawn more cases)
 - Some retail behavior (competition),
 Dispersion

- Linking process with models...
 - 2nd order spatial process
 - Geographic variation in outcome variable driven by intrinsic (internal) factors
 - Understanding or characterizing spatial dependence (in the outcome variable), because it helps to explain process
 - Spatial lag model

$$Y = \beta_0 + \beta X + \rho Wy + \epsilon$$

Spatial Lag Model

$$Y = \beta_0 + \beta X + \rho Wy + \epsilon$$

- Considers potential autocorrelation in the Y variable
 - Neighbor weight (W)
 - y is the neighbor's value of Y
 - Estimates, ρ , which is very much similar to a regression coefficient

Spatial Lag Model

OLS estimates are *biased*, and thus inferences based on an OLS model will be incorrect

Spatial Lag Model

$$Y = \beta_0 + \beta X + \rho Wy + \epsilon$$

- Maximum Likelihood Estimator
 - Returns similar results to OLS regression
 - Coefficients, SEs, p-values
 - Some software provides a pseudo R²

- Linking process with models...
 - 1st order spatial process
 - Geographic variation in outcome variable driven by extrinsic (external) factors
 - Removing spatial dependence in the residuals, because process not fully captured (by factors)
 - Spatial error model

$$Y = \beta_0 + \beta X + e$$
 where, $e = \lambda W \mu + \epsilon$

Spatial Error Model

$$Y = \beta_0 + \beta X + e$$
 where, $e = \lambda W \mu + \epsilon$

- Considers potential autocorrelation in the error of the model
 - e Ü autocorrelated residuals from non-spatial model
 - Neighbor weight (W)
 - μ is the "unobserved variable"
 - Estimates, λ , which is very much similar to a regression coefficient

Spatial Error Model

Dependence amongst the errors
OLS estimates become *inefficient*

Spatial Error Model

$$Y = \beta_0 + \beta X + e$$
 where, $e = \lambda W \mu + \epsilon$

- Maximum Likelihood Estimator
 - Returns similar results to OLS regression
 - Coefficients, SEs, p-values
 - Some software provides a pseudo R²

- If residuals from OLS are correlated,
 - How do I know whether to use a Lag or Error model?
 - Theory!
 - Diagnostics (in GeoDa)

- Diagnostics
 - Lagrange Multiplier (LM) tests
 - LM error and LM lag
 - Robust LM error and LM lag
 - Start with non-robust tests
 - If one is significant (low p value) and the other not, then use one that is significant
 - If both significant, move to Robust versions (interpret similarly to above)
 - If both highly significant, go with lowest p

- Neighbor definition and weights
 - May affect the regression model results
 - Similar to autocorrelation tests
 - Good to conduct sensitivity analysis

Varun Goel, GEOG 510 #23, SPATIAL REGRESSION Slide 23

- In practice, using real data...
 - Almost always messy and rarely a straightforward procedure
 - Do your best to ensure regression assumptions are met
 - Interpret with caution

Spatial Processes

- Relationships among factors often assumed to be static across space
 - e.g., effects of precipitation and temperature on mosquito density
 - Not always the case
 - Relationships themselves can vary across space
 - Spatially varying process

GWR

- Geographic Weighted Regression
- Global regression
 - Assumes that relationships (βs) are stationary across space
 - Invariant from place to place (global)
- GW Regression
 - Assumes that relationships (βs) are nonstationary (across space)
 - Vary from place to place (local)

GWR

- Basically, numerous "local" regressions
 - Provides β for every observation
 - Variation in the effect over space
 - Provides R² for every observation
- Take care in using for inference
 - Interesting results... but trustworthy?

Varun Goel, GEOG 510 #23, SPATIAL REGRESSION Slide 27

Regression

- What's available?
 - GeoDa
 - OLS, Spatial Lag, Spatial Error
 - GeoDaSpace
 - OLS, Spatial Lag, Spatial Error, SpLE
 - With standard error corrections (for heteroscedasticity)
 - ArcGIS
 - OLS, GWR

Keywords

- Residual autocorrelation
- Spatial Lag
- Spatial Error
- First and Second order processes
- LM tests
- Spatially varying process
- GWR