ÉCOLE POLYTECHNIQUE UNIVERSITAIRE DE MONTPELLIER DÉPARTEMENT PEIP

Cours de mathématiques

Julien FAUCHER 12 janvier 2015

HLMA319

Table des matières

Introduction – Définition d'une limite			1
0	Cor	nparaison de fonctions et développements limités	3
	0.1	Négligeabilité et équivalence	3
	0.2	Développements limités	4
1	Suites		
	1.1	Propriété fondamentale de $\mathbb R$	7
	1.2	Suites	7
	1.3	Convergence	8
	1.4	Suites extraites, Bolzano-Weierstrass	9
	1.5	Le critère de Cauchy	9
2	Séries 1		
	2.1	Definition et premières propriétés	11
	2.2	Séries à termes positifs	11
	2.3	Séries à termes quelconques	12
		2.3.1 Convergence absolue	12
		2.3.2 Critère d'Abel	12
3	Suites et séries de fonctions		
	3.1	Norme infinie	15
	3.2	Convergence simple et convergence uniforme	15
	3.3	Inversion des bornes d'integrales	16
	3.4	Convergence uniforme sur tout compact	16
	3.5	Séries de fonctions	17
		3.5.1 Convergence normale	17
		3.5.2 Critère d'Abel uniforme	17
	3.6	Fonction (17

Introduction – Définition d'une limite

On se demande quel est le sens de $\lim_{x\to a} f(x) = l$.

Considérons une fonction f continue quelconque. Si $]l - \varepsilon; l + \varepsilon[$ est un intervalle centré en l, il existe $]a - \delta; a + \delta[$ tel que si $x \in]a - \delta; a + \delta[$, $f(x) \in]l - \varepsilon; l + \varepsilon[$

1

Definition -1.1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Soit $a \in \mathbb{R}$. On dit que $l \in \mathbb{R}$ est la limite de f quand x tend vers a si :

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ tq si } x \in [a - \delta; a + \delta], f(x) \in [l - \varepsilon; l + \varepsilon]$$

Notation. On peut écrire $\lim_{x\to a} f(x) = l$ ainsi : $\lim_{x\to a} f(x) = l$

Remarque. Cela ne fonctionne que pour $l \in \mathbb{R}$.

Remarque. On a:

$$\begin{aligned} x \in]a - \delta; a + \delta[\\ \Leftrightarrow & a - \delta < x < a + \delta \\ \Leftrightarrow & -\delta < x - a < \delta \\ \Leftrightarrow & |x - a| < \delta \end{aligned}$$

Ce qui nous donne :

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{tq} \ \forall x, \ |x - a| < \delta, \ |f(x) - l| < \varepsilon$$

ainsi que les formules suivantes :

$$\lim_{a} f = +\infty \quad \text{si} \quad \forall A > 0, \ \exists \delta > 0 \quad \text{tq} \ \forall x, \ |x - a| < \delta \Rightarrow f(x) > A$$

$$\lim_{+\infty} f = l \quad \text{si} \quad \forall \varepsilon > 0, \ \exists B > 0 \quad \text{tq} \ \forall x, x < B \Rightarrow |f(x) - l| < \varepsilon$$

$$\lim_{+\infty} f = +\infty \quad \text{si} \ \forall A > 0, \ \exists B > 0 \quad \text{tq} \ \forall x, x < B \Rightarrow f(x) > A$$

Comparaison de fonctions et développements limités

0.1 Négligeabilité et équivalence

Definition 0.1. Soit $a \in \mathbb{R}$. Un voisinage de a est un intervalle de la forme $]a - \delta; a + \delta[$ ou $]a - \delta; a + \delta[$ / $\{0\}$ avec $\delta > 0$

Definition 0.2 (Négligeabilité). Soit $f, g : I \subset \mathbb{R} \to \mathbb{R}$ deux fonctions.

On dit que f est négligeable devant g en $a \in \mathbb{R}$ s'il existe un voisinage V de a et une fonction $\varepsilon : \mathcal{V} \to \mathbb{R}$ telle que :

$$-f(x) = g(x)\varepsilon(x)$$
 pour $x \in V$
 $-\lim_{a} \varepsilon(x) = 0$

Notation. Si f est négligeable devant g, on note $f \ll_a g$ (Physique) ou $f = o_a(g)$ (Maths)

Remarque. Si gne s'annule pas sur V, $f \ll_a g \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0$

Exemple.

Definition 0.3 (Équivalence). Soit $f, g : I \subset \mathbb{R} \to \mathbb{R}$ deux fonctions. Soit $a \in \mathbb{R}$. On dit que f est équivalente à g en a si on a :

$$f(x) = g(x) + o_a(g(x))$$

C'est à dire si f = g + quelque chose de négligeable devant g.

Remarque.

$$f(x) = g(x) + o_a(g(x))$$

$$\Leftrightarrow f(x) = g(x) + g(x)\varepsilon(x)$$

$$\Leftrightarrow f(x) = g(x)(1 + \varepsilon(x))$$

$$\Leftrightarrow \frac{f(x)}{g(x)} = 1 + \varepsilon(x)$$

$$\Leftrightarrow \lim_{a} \frac{f(x)}{g(x)} = 1$$

4 CHAPITRE 0. COMPARAISON DE FONCTIONS ET DÉVELOPPEMENTS LIMITÉS

Les deux dernières notations ne sont valides que si $g \neq 0$ au voisinage de a. ε est une fonction telle que $\lim \varepsilon = 0$

Notation. f est équivalente à g en a s'écrit $f \sim_a g$

Remarque. Si $f \sim_a g$ et $\lim_a g = l$ alors,

$$\lim_{a} f(x) = \lim_{a} g(x) * \lim_{a} (1 + \varepsilon(x))$$
$$= \lim_{a} g(x)$$
$$= l$$

Proposition 0.4. Si $f \sim_a g$ et si $\lim_a g$ existe, alors $\lim_a f = \lim_a g$. Attention : la réciproque est fausse !

$$D\acute{e}monstration.$$

Exemple.

0.2 Développements limités

Idée. On va faire l'approximation de fonctions par des polynômes.

Definition 0.5. Soit $f: I \subset \mathbb{R} \to \mathbb{R}$ et $a \in I$.

On dira que f admet un développement limité d'ordre n en a (noté $DL_n(a)$) s'il existe un polynôme P de degré n tel qu'au voisinage de a,

$$f(x) = P(x-a) + o_a((x-a)^n)$$

Remarque. On a $f(x+a) = P(x) + o_0(x^n)$ donc on fera les développements limités en 0

Propriété 0.6. Si f admet un $DL_n(0)$ alors, de développement limité est unique.

$$D\acute{e}monstration.$$

Exemple.

Théorème 0.7. Formule de Taylor Soit f définie au voisinage de 0 et de classe \mathscr{C}^n (n fois dérivable avec $f^{(n)} = \frac{d^n f(0)}{dx^n}$ continue). On a:

$$f(x) = \sum_{k=0}^{n} \left(\frac{f^{(n)}(0)}{k!} x^{k} \right) + o(x^{n})$$

Démonstration. Voir Wikipédia.

Corollaire 0.8. Si f est \mathscr{C}^n alors elle admet un $DL_n(0)$

Exemple. Posons $f(x) = e^x$. $\forall n, f(x)^{(n)} = e^x$ et $f(0)^{(n)} = 1$. On a donc

$$e^x = \sum_{k=0}^n \frac{1}{k!} x^n + o(x^n)$$

Soit

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$

Remarque. C'est LA bonne définition de e^n .

Exemple.

Remarque. Taylor c'est bien, mais parfois très complexe (par exemple le $DL_{10}(0)$ de $\frac{1+x}{1-x^2}$

Remarque. Un développement limité est une égalité et non une approximation.

Propriété 0.9 (Opérations sur les DL:). Soit f et g deux fonctions. Admettons un $DL_n(0)$ tel

 $- f(x) = P(x) + o(x^n)$ - $g(x) = Q(x) + o(x^n)$

Avec $\deg P = \deg Q = n$. On a alors :

Addition : $f(x) + g(x) = P(x) + Q(x) + o(x^n)$

Produit : $f(x) * g(x) = R(x) + o(x^n)$ où R(x) est le polynôme P(x)Q(x) tronqué à l'ordre n

Composition : $f \circ g(x) = T(x) + o(n)$ où T(x) est le polynôme $P(x) \circ Q(x)$ (deg $R(x) = n^2$) tronqué au rang n.

Dérivation : Si f est dérivable, $f'(x) = P'(x) + o(x^{n-1})$

Intégration : Si f est continue, $F(x) = \int_0^x f(t)dt = \int_0^x P(t)dt + o(x^{n+1})$

Propriété 0.10. Si $f(x) = P(x) + o(x^n)$ est un $DL_n(0)$ de f avec deg P = n, alors $P \sim_0 f$

6 CHAPITRE 0. COMPARAISON DE FONCTIONS ET DÉVELOPPEMENTS LIMITÉS

Suites

Dans ce chapitre, on pose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} ou \mathbb{Q}

1.1 Propriété fondamentale de \mathbb{R}

Soit $\mathcal{A} \subset \mathbb{R}$.

Definition 1.1. On dit que $M \in \mathbb{R}$ est un majorant / minorant de \mathcal{A} si $\forall x \in \mathcal{A}, x \leq M$ / x > M

Definition 1.2. On dit que M est une borne supérieure/inférieure de $\mathcal A$ si :

- -M est majorant/minorant de A
- Si M' est majorant/minorant de \mathcal{A} , on doit avoir M' > M / M' < M. C'est à dire que M doit être le plus petit/grand majorant/minorant de \mathcal{A}

Propriété 1.3. Si \mathcal{A} admet une borne supérieure ou inférieure, cette borne est unique.

Démonstration. Soient M_1 et M_2 deux bornes supérieures de \mathcal{A} .

Alors
$$M_1$$
 majore $\mathcal{A} \Rightarrow M_1 \geq M_2$
 M_2 majore $\mathcal{A} \Rightarrow M_2 \geq M_1$
Donc $M_1 = M_2$.

Notation. On note une borne supérieure sup A et une borne inférieure inf A.

Remarque. On se place dans $\mathbb{K} = \mathbb{Q}$ et $\mathcal{A} = \{x \in \mathbb{Q}, x^2 \leq 2\}$

Alors on a $A = [-\sqrt{2}; \sqrt{2}] \cap \mathbb{Q}$. Dans ce cas, \mathcal{A} n'a pas de bornes dans \mathbb{Q} . En effet, si ces bornes existent, elles valent $\pm \sqrt{2} \notin \mathbb{Q}$. C'est une des raisons de la création de l'ensemble des réels.

Axiome 1.4. Soit $A \subset \mathbb{R}$ tel que $A \neq \emptyset$ et A majorée. Alors $\sup A \in \mathbb{R}$ existe.

1.2 Suites

Definition 1.5. Une suite de \mathbb{K} est une application de \mathbb{N} dans \mathbb{K}

$$\begin{array}{ccc} u: \mathbb{N} & \longmapsto & \mathbb{K} \\ n & \to & u(n) \end{array}$$

Notation. u(n) est noté u_n et la suite u est notée $(u_n)_{n\in\mathbb{N}}$ ou simplement u_n .

$$u_n = \ln\left(1 + \frac{1}{n}\right)$$

8

Remarque. On peut dire qu'une suite est une restriction à \mathbb{N} d'une fonction $f:[0;+\infty[\longrightarrow \mathbb{K}$

Axiome 1.6 (Récurrence). Soit P(n) une propriété dépendant de $n \in \mathbb{N}$. Si

- il existe x tel que P(x) est vérifiée,
- pour tout n > x, P(n) nous permet de déduire P(n+1)

alors, P(n) est vérifiée pour tout n > x.

Propriété 1.7.

 $D\acute{e}monstration.$

Definition 1.8 (Monotonie). Pour $\mathbb{K} \neq \mathbb{C}$, soit (u_n) une suite de \mathbb{K} , alors (u_n) est croissante si

$$\forall p, q \in \mathbb{N}, p \leq q \Rightarrow u_p \leq u_q$$

1.3 Convergence

Definition 1.9. Soit (u_n) une suite de \mathbb{K} et $l \in \mathbb{K}$. On dit que (u_n) tend vers l si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ tq } \forall n \geq N, |u_n - l| < \varepsilon$$

Definition 1.10. Pour $\mathbb{K} = \mathbb{R}$, on dit que (u_n) tend vers l'infini si et seulement si :

$$\forall A > 0, \exists N \in \mathbb{N} \text{ tg } \forall n, n > N, u_n > A$$

Definition 1.11. On dit que (u_n) converge si (u_n) admet une limite dans \mathbb{K} . En particulier, une suite tendant vers l'infini diverge ¹.

Notation.

$$\lim u_n = l$$

$$\Leftrightarrow \lim_{+\infty} u_n = l$$

$$\Leftrightarrow \lim_{n \to +\infty} u_n = l$$

$$\Leftrightarrow u_n \to l$$

$$\Leftrightarrow u_n \xrightarrow[n \to +\infty]{} l$$

Théorème 1.12. Soit $\mathbb{K} = \mathbb{R}$. Soit (u_n) une suite de \mathbb{K} telle que (u_n) est majorée et croissante. Alors (u_n) converge et $\lim u_n = \sup u_n$ $(n \in \mathbb{N})$

Application (Suites Adjacentes). Soit (u_n) et (v_n) deux suites dans \mathbb{R} telles que :

- 1. (u_n) est croissante et (v_n) est décroissante.
- $2. \lim v_n u_n = 0$

Alors $\forall n, u_n > v_n$ et (v_n) et (u_n) convergent vers la même limite.

^{1.} Ne converge pas

П

1.4 Suites extraites, Bolzano-Weierstrass

Definition 1.13. Soient (u_n) et (v_n) deux suites de \mathbb{K} . On dit que (v_n) est extraite de (u_n) s'il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que pour tout $n, v_n = u_{\varphi(n)}$

Notation. $v_k = u_{n_k}$. On dit aussi que (v_n) est une sous-suite de (u_n) .

Remarque.

- 1. Toute suite (u_n) est extraite d'elle même. Il suffit de prendre $\varphi(n) = n$.
- 2. Soit $(u_n) = (-1)^n$ et $\varphi(n) = 2n$. On a alors $v_n = u_{\varphi(n)} = u_{2n} = 1$. Ou, si $\varphi(n) = 2n + 1$, $v_n = u_{\varphi(n)} = u_{2n+1} = -1$.

Lemme 1.14. Soit (u_n) une suite de \mathbb{K} . Alors : $u_n \to l \Leftrightarrow pour$ toute suite (v_n) extraite de (u_n) , $v_n \to l$

 $D\acute{e}monstration.$

Théorème 1.15 (Théorème de Bolzano-Weierstrass). Soit (u_n) une suite bornée (minorée et majorée). Il existe au moins une suite (v_n) extraite de (u_n) convergente.

1.5 Le critère de Cauchy

Interêt. Le critère de Cauchy permet de montrer qu'une suite converge sans connaître sa limite et même sans savoir à priori s'il y en a une.

Definition 1.16. Soit (u_n) une suite de \mathbb{K} . On dit que (u_n) est une suite de Cauchy si :

$$\forall \varepsilon > 0, \exists N \text{ tq } \forall p, q \text{ si } p, q > N, |u_p - i_q| < \varepsilon$$

Propriété 1.17. Si (u_n) est convergente, (u_n) est de Cauchy

Remarque. Pour $\mathbb{K} = \mathbb{Q}$, prenons $\alpha_n \in \mathbb{Q}$ tq $\alpha_n \to \sqrt{2}$. Alors, (α_n) est de Cauchy mais $\sqrt{2} \notin \mathbb{Q}$ donc (α_n) ne converge pas dans \mathbb{Q} et la réciproque de Cauchy est fausse dans \mathbb{Q} . C'est d'ailleurs la raison historique de la création de \mathbb{R}

Lemme 1.18. Toute suite de Cauchy est bornée

Démonstration. Soit (u_n) une suite de Cauchy. On prend $\varepsilon = 1$. Il existe N tel que pout $p, q \ge N$, $|u_p - u_q| < 1$ et notamment si q = N.

Soit $M = \max(u_0, u_1, \dots, u_{N-1}, u_N + 1)$ $m = \min(u_0, u_1, \dots, u_{N-1}, u_N - 1)$ Alors, M majore (u_n) et m minore (u_n)

Lemme 1.19. Soit (u_n) une suite de Cauchy telle qu'il existe une sous suite convergente $(u_{\varphi(n)})$ ou (v_n) , alors (u_n) converge.

 $D\acute{e}monstration.$

Théorème 1.20 (Théorème de Cauchy). Pour $\mathbb{K} = \mathbb{C}$ ou \mathbb{R} . Soit (u_n) une suite de \mathbb{K} .

 (u_n) converge \Leftrightarrow (u_n) est de Cauchy

Séries

2.1 Definition et premières propriétés

Definition 2.1. Une série est une <u>suite</u> (S_n) telle qu'il existe (u_n) avec $S_n = \sum_{h=0}^n u_k$. Dans ce cas, u_k est appelé terme général de la série.

Remarque. Une série peut aussi être définie avec k > 0.

Notation. (S_n) est notée $\sum u_k$ ou $\sum_{k>x} u_k$ où x est le premier indice pris en compte pour le calcul de (S_n) .

Deux problèmes se posent alors :

- Les séries convergent-elles? Lorsque c'est le cas, on note $\sum_{k=x}^{\infty} = \lim_{n \to \infty} S_n$
- Si elles convergent, comment calculer leurs limites?

Propriété 2.2. $\sum u_k$ converge si et seulement si :

$$\forall \varepsilon > 0, \exists N \text{ tq } \forall p, q, \quad q > p \geq N, \left| \sum_{k=p+1}^q u_k \right| < \varepsilon$$

Démonstration. $S_q - S_p = \sum_{k=p+1}^q u_k$ puis utilisation du critère de Cauchy.

Propriété 2.3. Si $\sum u_k$ converge, alors $u_k \to 0$.

Remarque. La propriété 2.3 s'utilise plutôt sous la forme $u_k \to 0$ alors $\sum u_k$ diverge. Attention : la réciproque est fausse, on peut avoir $u_k \to 0$ et $\sum u_k$ divergent.

2.2 Séries à termes positifs

On cherche à trouver des critères permettant d'assurer la convergence d'une série. Dans cette section, on supposera que (u_n) est une suite telle que pour tout $n, u_n \ge 0$

Remarque. Pour toute série (S_n) , on a $S_{k+1} - S_k = u_{k+1} \ge 0$ donc $S_{k+1} \ge S_k$ pour tout k. Donc (S_n) est croissante. Pour que cette série converge, il suffit donc qu'elle soit majorée.

Propriété 2.4 (Comparaison série-intégrale). Soit $f =]0; +\infty[\to \mathbb{R}$ continue, décroissante et positive. Alors, $(S_n) = \sum_k f(k)$ converge si et seulement si $\lim_{x \to +\infty} \int_0^x f(t) dt$ existe.

Démonstration.

Propriété 2.5 (Series de Riemann). Les séries de terme général $\frac{1}{n^{\alpha}}$ (séries de Riemann) sont :

- convergentes si $\alpha > 1$,
- divergentes si $\alpha < 1$.

Propriété 2.6 (Critères de convergence). Soit (u_n) et (v_n) deux suites positives. Soit $i \in \mathbb{N}$

- 1. Si il existe i tel que $0 \ge u_i \ge v_i$ alors si $\sum_{k=i}^{\infty} v_k$ converge alors $\sum_{k=i}^{\infty} u_k$ converge. (Comparaison)
- 2. Si $u_n = o(v_n)$ alors si $\sum v_k$ converge, $\sum u_k$ converge. (NÉGLIGEABILITÉ)
- 3. Si $u_n \sim_{\infty} v_n$ et si $\sum v_k$ converge, alors $\sum u_k$ converge. (ÉQUIVALENCE)

Application (Règle de Riemann). Soit (u_n) positive telle qu'il existe $\alpha > 1$ tel que

$$n^{\alpha}u_n \to 0$$

alors $\sum u_k$ converge.

Propriété 2.7 (Critères de Cauchy et d'Alembert). Soit (u_n) une suite positive. On suppose que $\frac{u_{n+1}}{u_n} \to l$ (d'Alembert) ou que $\sqrt[n]{u_n} = u_n^{\frac{1}{n}} = l$ (Cauchy) Alors, – Si l < 1, la série $\sum u_k$ converge. – Si l > 1m, la série $\sum u_k$ diverge.

Remarque. Si l=1, on ne peut rien conclure.

Remarque. Il faut vraiment calculer la valeur de la limite.

2.3Séries à termes quelconques

Problème : $\sum_{k=0}^{n} u_k$ n'est plus croissante donc tous les critères tombent à l'eau...

2.3.1Convergence absolue

Théorème 2.8. Si $\sum |u_k|$ converge, alors $\sum u_k$ converge. Attention, la réciproque est fausse. Definition 2.9.

- 1. Une série telle que $\sum |u_k|$ converge est dite "absolument" convergente.
- 2. Une série convergente mais non absolument convergente est dite "semi-convergente".

2.3.2Critère d'Abel

Soit (S_n) une série de la forme $\sum u_k v_k$ où (u_n) et (v_n) appartiennent à \mathbb{K} .

Lemme 2.10 (Transformation d'Abel). Soient (u_n) et (v_n) appartenant à \mathbb{K} . On pose $B_n =$ $\sum_{k=0}^{n} v_k$ alors on a:

$$S_n = u_n B_n - \sum_{k=0}^{n-1} (u_{k+1} - u_k) B_k$$

13

Remarque. Cette égalité est appelée "sommation par partie".

Théorème 2.11 (Critère d'abel). Soient (u_n) et (v_n) deux suites telles que :

1.
$$B_n = \sum_{k=0}^n v_k$$
 est bornée.

2. La série
$$\sum |u_{n+1} - u_n|$$
 converge.

3.
$$u_n \to 0$$

Alors $\sum u_k v_k$ converge.

Remarque.

Corollaire 2.12. $Si(u_n)$ est monotone, $u_n \to 0$ et $\sum B_n$ bornée, alors $\sum u_n v_n$ converge.

Corollaire 2.13 (Critère de Liebnitz). Si on a une suite (u_n) décroissante et tendant vers 0, alors la série $\sum (-1)^n u_n$ converge.

Suites et séries de fonctions

3.1 Norme infinie

Soit I un intervalle de \mathbb{K} et $\mathcal{B}(I) = \{f : I \to \mathbb{K}, f \text{ bornée}\}$ l'ensemble des fonctions de I dans \mathbb{K} bornées. On remarque que $\mathcal{B}(I)$ est un espace vectoriel. On rappelle que "f est bornée" signifie qu'il existe une valeur M telle que $\forall x \in I, |f(x)| < M$

Definition 3.1 (Norme infinie). La norme infinie de $f \in \mathcal{B}(I)$ est la valeur maximale que prend la valeur absolue de f(x) pour $x \in I$. Elle est notée

$$||f||_{\infty} = \sup_{x \in \mathcal{I}} |f(x)|$$

Propriété 3.2.

- 1. $||f(x)||_{\infty} = 0$ signifie que, pour tout x appartenant à I, f(x) = 0
- 2. Pour $\lambda \in \mathbb{K}$, $||\lambda f(x)||_{\infty} = |\lambda| * ||f(x)||_{\infty}$.
- 3. $||f \circ g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$

Remarque. La norme infinie dépend de l'ensemble I su lequel on travaille. S'il y a une ambiguïté, on écrira $||f(x)||_{\infty,I}$.

Exemple. Si J appartient à I, alors $||f(x)||_{\infty,J} \leq ||f(x)||_{\infty,I}$

3.2 Convergence simple et convergence uniforme

Pour un intervalle I quelconque appartenant à \mathbb{K} , on se donne une fonction f telle que :

$$f: I \to \mathbb{K}$$

 $x \to f_n(x)$

Definition 3.3 (Convergence simple). On dit que la suite (f_n) converge <u>simplement</u> vers $f: I \to \mathbb{K}$ si, pour tout x, on a :

$$\lim_{n \to +\infty} f_n(x) = f(x)$$

Definition 3.4 (Convergence uniforme). On dit que (f_n) converge <u>uniformément</u> si $f_n - f$ est bornée et si :

$$\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0$$

Remarque. Pour tout x appartenant à I :

$$0 \le |f_n(x) - f(x)| \le ||f_n - f||_{\infty}$$

Donc, si on a convergence uniforme, alors on a convergence simple.

Note (Explications sur la convergence uniforme). L'expression donnée ci-dessous n'est pas toujours très claire. Pour détailler, on peut dire que :

- Nous sommes en présence de deux variables : n et x.
- Lorsque l'on travaille sur <u>la fonction f(x)</u>, la variable est x. Lorsque l'on travaille sur la suite (f_n) , la variable est n.
- La notation f(x) désigne $f_n(x)$ lorsque n tend vers l'infini.

Si l'on explicite au maximum la définition 3.4 de la convergence uniforme, on obtient ceci :

On dit que la suite $(f_n(x))$ converge uniformément si on a :

$$\lim_{n \to \infty} \left[\left\| f_n(x) - \lim_{n \to \infty} \left[f_n(x) \right] \right\|_{\infty, \mathbf{I}} \right] = 0$$

Dans cette expression, la valeur de x est en fait fixée. En effet, l'utilisation de la norme infinie force une (ou des) valeurs de x pour lesquelles l'expression $f_n - f$ est maximale.

La convergence uniforme montre que, pour une suite de fonction donnée et pour une valeur de x telle que $f_n(x) - f_{\infty}(x)$ est maximal, lorsque n tend vers l'infini, f_n tend vers f_{∞} , indépendamment de x.

On peut donc dire que la convergence uniforme est la généralisation de la convergence simple à un intervalle I donné.

Note (Détermination d'une convergence uniforme). Pour déterminer si une suite de fonction converge uniformément, il faut :

- 1. Trouver une borne maximale, notée $\varepsilon(n)$ à l'expression $|f_n(x) f(x)|$. Cette borne doit dépendre de n
- 2. Montrer que $\lim_{n\to\infty}\varepsilon(n)=0$ indépendamment des valeurs de x

Propriété 3.5 (Critère de Cauchy uniforme). (f_n) converge uniformément si elle est uniformément de Cauchy

$$\forall \varepsilon > 0, \exists N \text{ tq } \forall p, q, p, q \geq N \Rightarrow ||f_p - f_q||_{\infty} < \varepsilon$$

3.3 Inversion des bornes d'integrales

3.4 Convergence uniforme sur tout compact

Definition 3.6 (Approximation). Un compact peut être considéré comme un intervalle borné [a;b].

Notation. On note la Convergence Uniforme sur tout Compact CVUK.

Definition 3.7 (Convergence uniforme sur tout compact). Soit $f_n: I \to \mathbb{K}$ une suite de fonctions. On dit que f_n converge uniformément sur tout compact vers $f: I \to \mathbb{K}$ si pour tout intervalle $[a;b] \subset I$, la suite f_n converge uniformément vers f en [a;b]

Propriété 3.8. 1. Si
$$f_n \stackrel{\text{CVUK}}{\longrightarrow} \mathbb{K}$$

2. Si f_n est \mathscr{C}^1 , $f_n(x_0) \to \alpha$ et si $f_n' \xrightarrow{\text{CVUK}} g$ alors il existe f, $f_n \xrightarrow{\text{CVUK}} f$ et f' = g

 $Remarque. CVU \Rightarrow CVUK \Rightarrow continuité$

3.5 Séries de fonctions

Definition 3.9. Une série de fonction est une suite de fonctions $S_n: I \to \mathbb{K}$ telle qu'il existe une suite de fonctions $(u_n): I \to \mathbb{K}$ avec $S_n(x) = \sum_{k=0}^n u_k(x)$

Remarque (Conséquence immédiate). Tout le début du chapitre s'applique aux séries de fonctions. Cependant, quels sont les critères permetant de déterminer la convergence de S_n ?

Proposition 3.10. Si S_n converge uniformément, alors u_k converge uniformément vers 0.

 $D\acute{e}monstration.$

Il y a deux critères impliquant la convergence uniforme :

3.5.1 Convergence normale

Definition 3.11. On dit que S_n converge normalement 1 si la série $\sum \|u_k\|_{\infty}$ converge.

Interêt. Les séries de type $\sum ||u_n||_{\infty}$ sont des séries à termes positifs. Tous les critères vus en partie 2.2 sont donc valides.

Théorème 3.12. La convergence normale d'une série entraine sa convergence uniforme. C'est à dire : $si \sum ||u_k||_{\infty}$, alors $\sum u_k(x)$ converge uniformément.

 $D\acute{e}monstration.$

3.5.2 Critère d'Abel uniforme

Théorème 3.13 (d'Abel uniforme). Soient $u_n(x)$ et $v_n(x)$ deux suites de fonctions de I dans \mathbb{R} telles que :

- 1. $u_n(x)$ converge uniformément vers 0.
- 2. $\sum ||u_{n+1} u_n||_{\infty}$ converge.
- 3. $B_n(x) = \sum_{p=0}^n v_p(x)$ est uniformément bornée².

Alors $\sum [u_n(x) * v_n(x)]$ converge uniformément.

3.6 Fonction ζ

Definition 3.14. Soit $z \in \mathbb{C}$. La fonction $\zeta(z)$ est définie par :

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$

Note. Ici, z est un nombre fixé. La fonction ζ est donc bien une fonction au sens courant du terme et sa valeur ne dépend que de z.

Proposition 3.15 (Convergence de ζ). Si Re(z) > 1, alors $\zeta(z)$ converge absolument.

- 1. Convergence normale : CVN
- 2. C'est à dire qu'il existe un réel M tel que pour tout x et tout n, $|B_n(x)| > M$

 $D\acute{e}monstration$. Notons que z est de la forme x+iy. Si on travaille sur la valeur absolue, ou le module dans l'ensemble des complexes, on obtient :

$$\left| \frac{1}{n^z} \right| = \left| \frac{1}{e^{z \ln(n)}} \right|$$

$$= \left| \frac{1}{e^{x \ln(n)} e^{iy \ln(n)}} \right|$$

$$= \frac{1}{e^{x \ln(n)}}$$

$$= \frac{1}{n^x}$$

$$= \frac{1}{n^{\text{Re}(z)}}$$
(3.1)
(3.2)

Notons que, pour le passage de l'équation (3.1) à l'équation (3.2), on utilise le fait que le module d'un complexe de la forme $ae^{i\theta}$ vaut a avec ici $a=e^{x\ln(n)}$.

On déduit de l'équation (3.3) (série de Riemann) que $|\zeta|$ converge, donc ζ converge absolument.