Graphs

Definition ((c_e, c_v) -graph): We define a (c_e, c_v) -graph to be a simple undirected graph where each vertex and edge is assigned a colour from $[c_e], [c_v]$ respectively.

Definition (Isomorphism): A function $f:V(G)\to V(H)$ for G,H (c_e,c_v) -graphs is an isomorphism if it is a classic graph isomorphism and preserves colours. We write $G\cong H.$

Definition (Graph Family): If \mathbb{G}^{c_e,c_v} is the class of all (c_e,c_v) -graphs then a **graph family** $\mathcal{G}\subseteq\mathbb{G}^{c_e,c_v}$ is just some subclass.

Flags

The choice of $\mathcal G$ informs all the following definitions.

Modified from (Silva, Filho, Sato - 2016: Flag Algebras: A First Glance).

Definition (Type): A type of size $k \in \mathbb{N}_0$ is some $\sigma \in \mathcal{G}$ with $V(\sigma) = [k]$. We write $|\sigma|$ for the size of the type.

Definition (Embedding): An **embedding** of a type σ of size k into $F \in \mathcal{G}$ is an injective function $\theta: [k] \to V(F)$ such that θ is an isomorphism between σ and $F[\operatorname{im} \theta]$.

Definition (Flag): A pair (F,θ) where $F \in \mathcal{G}$ and θ is an embedding of σ into F is a σ -flag.

Notation: We denote the collection of all σ -flags with \mathcal{G}^{σ} .

Definition (Labelled): We refer to a vertex in (F,θ) as labelled if it is in the image of θ , and often call $\operatorname{im} \theta$ the *labelled part of* F.

Definition (Flag Isomorphism): $f:V(F)\to V(F')$ is a σ -flag isomorphism from $(F,\theta)\to (F',\theta')$ if it is an isomorphism $F\to F'$ which preserves labels, meaning $f(\theta(i))=\theta'(i)\;\forall\;i\in[|\sigma|].$ We can write $(F,\theta)\cong (F',\theta')$ if such an f exists.

Empty-flags: If $\sigma=\emptyset$, the empty graph then flags are just graphs with trivial embeddings. We usually just write F rather than (F,θ) and treat graphs as implicit \emptyset -flags.

Induced Count

Definition (Induced Count): Fix two σ -flags $(F,\theta),(G,\eta)$. We define the induced count of (F,θ) in (G,η) written $c((F,\theta);(G,\eta))$ (abbreviated as c(F,G) if θ,η are implicit) as the number of induced copies of F in G s.t. the labelled part of F maps to the labelled part of G.

Specifically this is the number of subsets $\operatorname{im}(\eta) \subseteq U \subseteq V(G)$ such that $(F,\theta) \cong (G[U],\eta)$. Clearly c(F,G) = 0 if |G| < |F|.

Extension to multiple flags: Take a finite number of σ -flags $(F_i,\theta_i), i \in [t]$ and another σ -flag (G,η) . We now define $c(F_1,\ldots,F_t;G)$ as the number of t-tuples of induced copies of F_1,\ldots,F_t in G which are disjoint except precisely at the labelled part of G.

Precisely this is the number of subsets $U_1, \ldots, U_t \subseteq V(G)$ such that $\operatorname{im} \eta = U_i \cap U_j \ \forall \ i,j \in [t]$ where $i \neq j$ and $(F_i,\theta_i) \cong (G[U_i],\eta)$ for all $i \in [t]$.

Definition (Fit): Note that if $c(F_1,\ldots,F_t;G)>0$ then $|G|-|\sigma|\geq \sum_{i=1}^t |F_i|-|\sigma|$. If this holds we say F_1,\ldots,F_t fit in G.

Classic Density

This is the classic density used in Razborov's flag algebras: (Razborov - 2007).

Definition (Induced Density): For σ -flags (F,θ) and (G,η) define $p((F,\theta),(G,\eta))$ (abbreviated as p(F,G)) as the proportion of subsets $\operatorname{im} \eta \subseteq U \subseteq V(G)$ such that $(F,\theta) \cong (G[U],\eta)$:

$$p(F;G) = rac{c(F;G)}{inom{|G|-|\sigma|}{|F|-|\sigma|}}.$$

Extension to finite set of flags: As with c(F,G) we can extend to a finite collection of flags $(F_i,\theta_i),\ i\in[t]$ where we normalise $c(F_1,\ldots,F_t;G)$ by the total number of possible subsets $U_1,\ldots,U_t\subseteq V(G)$ such that $U_i\cap U_j=\operatorname{im}\eta\ \forall i\neq j.$

$$p(F_1,\ldots,F_t;G) = rac{c(F_1,\ldots,F_t;G)}{inom{|G|-|\sigma|}{|F_1|-|\sigma|,\ldots,|F_t|-|\sigma|,R}}$$

using multinomial coefficient notation where $R = (|G| - |\sigma|) - \sum_{i=1}^t |F_i| - |\sigma|$.

Probabilistic Interpretation: You can interpret $p(F_1, \ldots, F_t; G)$ as the probability that a uniformly random tuple $U_1, \ldots, U_t \subseteq V(G)$ such that $U_i \cap U_j = \operatorname{im} \eta \ \forall \ i \neq j$ has the property that $(F_i, \theta_i) \cong (G[U_i], \eta) \ \forall \ i \in [t].$

Lemma (Chain Rule): If F_1, \ldots, F_t are σ -flags which fit in G then for all $1 \le s \le t$ and every n such that F_1, \ldots, F_s fit into a σ flag of size n and a σ -flag and F_{s+1}, \ldots, F_t fit in G we have:

$$p(F_1,\ldots,F_t;G) = \sum_{F \in \mathcal{G}_n^\sigma} p(F_1,\ldots,F_s;F) p(F,F_{s+1},\ldots,F_t;G).$$

Local Flags

⊙ Todo

Needs an example of a density hard to describe with classic flags. Maybe something like paths of length 2 in a Δ -regular graph.

⊘ Todo

Highlight that Δ being the max degree is not actually required for these definitions to make sense. All that's required is that the $\Delta\text{-parameter}$ bounds "degrees of freedom" in some way.

Consider the class of Δ -regular graphs. Usually we can WLOG assume a graph is Δ -regular where Δ is the max degree.

Assume $\Delta > 0$.

Definition (Local Density): Rather than normalising the induced count of σ -flags $c((F,\theta);(G,\eta))$ by $\binom{|G|-|\sigma|}{|F|-|\sigma|}$ we instead normalise by $\binom{\Delta}{|F|-|\sigma|}$.

$$ho(F;G) = rac{c(F;G)}{inom{\Delta}{|F|-|\sigma|}}.$$

Note the $\rho \neq p$ notation.

Because of our choice of "normalisation" we are no longer guaranteed a [0,1] codomain. The full range for ρ is $\mathbb{R}_{>0}$.

⊙ Todo

Example of why ρ can be unbounded.

This unboundedness is undesirable. We will now define a restricted subset of the classic flags to the case where we do not have this divergent behaviour.

Once again these definitions are relative to some fixed family of graphs \mathcal{G} .

⊘ Todo

Needs an elucidatory example of a family of graphs ${\cal G}$ where we describe which structures have divergent density and which do not.

Definition (Local Type): A type σ is a **local type** if the function $\mathcal{G} \to \mathbb{R}_{\geq 0}$ given by $G \mapsto \rho(\sigma; G)$ is bounded $(\in O(1))$.

Definition (Local Flag): Let σ be a local type. Then (F,θ) is a local σ -flag if we have the following properties:

- 1. $(G,\eta) \to \rho((F,\theta),(G,\eta))$ is a bounded function.
- 2. If we label any of F's unlabelled vertices we get another local flag.

⊘ Todo

Is this second property always implied by the first?

What we're trying to capture here is that any "subflag" of F is also a local flag, meaning we can pin down F's vertices and continue to get bounded local behaviour.

⊙ Todo

Formalise this in terms of type extensions, inductive definition etc.

Notation: Write \mathcal{L}_n^{σ} to be the set of all local σ -flags of size n. Write \mathcal{L}^{σ} for all σ -flags. If $\sigma = \emptyset$ then we can drop the σ superscript.