Photo album multiobjective QAP Master's Degree first year project

Supervisors : F. Teytaud, S. Verel. Jérôme Buisine, *IT Student at ULCO Calais*.

ULCO Calais, June 2017

Table of Contents

- Problem presentation
 - QAP definitions
 - Photo album mQAP
- Algorithms studied
 - Random walk
 - Pareto Local Search
 - MOEA/D
 - Two-Phase Local Search
- Algorithms comparisons
 - Test context
 - Landscapes
 - Features
- Web platform
- Conclusion

- Problem presentation
 - QAP definitions
 - Photo album mQAP
- 2 Algorithms studied
- Algorithms comparisons
- Web platform
- Conclusion

Jérôme Buisine

- Problem presentation
 - QAP definitions
 - Photo album mQAP
- 2 Algorithms studied
- Algorithms comparisons
- Web platform
- Conclusion

Origin

QAP was introduced by Koopmans and Beckmann in 1957

Origin

QAP was introduced by Koopmans and Beckmann in 1957

Explanation

• NP-Hard problem

Origin

QAP was introduced by Koopmans and Beckmann in 1957

Explanation

- NP-Hard problem
- Assign a set of facilities to a set of locations

Origin

QAP was introduced by Koopmans and Beckmann in 1957

Explanation

- NP-Hard problem
- Assign a set of facilities to a set of locations
- Minimize the total assignment cost

Figure: Page 1 Figure: Page 2

Example

 $p = \{7, 3, 1, 2, 8, 5, 6, 4\}$

Solution definitions

• $N = \{1, 2, ..., n\}$, the solution representation

Jérôme Buisine Photo album mQAP ULCO, June 2017 7 / 34

Solution definitions

- $N = \{1, 2, ..., n\}$, the solution representation
- $S_n = \phi : N \to N$, the set of all permutations

7 / 34

Solution definitions

- $N = \{1, 2, ..., n\}$, the solution representation
- $S_n = \phi : N \to N$, the set of all permutations
- V(N), set of neighbor solutions

7 / 34

Solution definitions

- $N = \{1, 2, ..., n\}$, the solution representation
- $S_n = \phi : N \to N$, the set of all permutations
- V(N), set of neighbor solutions

Matrix of QAP

- $S = (s_{ij})$ is an $n \times n$ matrix where s_{ij} is the computed similarity distance between photos i and j.
- $D = (d_{ij})$ is an $n \times n$ matrix where d_{ij} is the euclidean distance between photos i and j.

Solution definitions

- $N = \{1, 2, ..., n\}$, the solution representation
- $S_n = \phi : N \to N$, the set of all permutations
- V(N), set of neighbor solutions

Matrix of QAP

- $S = (s_{ii})$ is an $n \times n$ matrix where s_{ij} is the computed similarity distance between photos i and j.
- $D = (d_{ii})$ is an $n \times n$ matrix where d_{ii} is the euclidean distance between photos i and i.

Single objective function to minimize

$$\min_{\phi \in S_n} \sum_{i=1}^n \sum_{j=1}^n s_{ij}.d_{\phi(i)\phi(j)}$$

- Problem presentation
 - QAP definitions
 - Photo album mQAP
- 2 Algorithms studied
- Algorithms comparisons
- Web platform
- Conclusion

1.2. Photo album mQAP

Multiobjective function to minimize with $k \in [1, 2]$

$$\min f_1(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^1.d_{\phi(i)\phi(j)}$$

$$\min f_2(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^2 . d_{\phi(i)\phi(j)}$$

9 / 34

Jérôme Buisine Photo album mQAP ULCO, June 2017

1.2. Photo album mQAP

Multiobjective function to minimize with $k \in [1, 2]$

$$\min f_1(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^1.d_{\phi(i)\phi(j)}$$

$$\min f_2(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^2 . d_{\phi(i)\phi(j)}$$

Domination definition

$$\phi \prec \phi'$$
, if $f_k(\phi') <= f_k(\phi)$ for all $k \in [1,2]$

9 / 34

Jérôme Buisine Photo album mQAP ULCO, June 2017

- Problem presentation
- Algorithms studied
 - Random walk
 - Pareto Local Search
 - MOEA/D
 - Two-Phase Local Search
- 3 Algorithms comparisons
- Web platform
- Conclusion

- Problem presentation
- Algorithms studied
 - Random walk
 - Pareto Local Search
 - MOEA/D
 - Two-Phase Local Search
- 3 Algorithms comparisons
- Web platform
- Conclusion

2.1. Random walk

Algorithm 1: Random walk

Input: nbEval evaluation stopping criteria

```
Output: A
```

```
\mathbf{1} A := \theta;
```

2 evaluation := 0;

3 repeat

4 s :=select randomly a solution;

A := A + s;

A := getNonDominated(A);

evaluation := evaluation + 1;

8 until evaluation >= nbEval;

- Problem presentation
- Algorithms studied
 - Random walk
 - Pareto Local Search
 - MOEA/D
 - Two-Phase Local Search
- 3 Algorithms comparisons
- Web platform
- Conclusion

2.2. Pareto Local Search

Algorithm 2: Pareto Local Search

Input: A₀ an initial set of non dominated solutions, **nbEval** evaluation stopping criteria

```
Output: A
1 A := A_0;
2 explored := A_0;
3 evaluation := 0:
4 repeat
      s := select randomly a solution \notin A;
      foreach s' \in V(s) do
          if s' \notin explored then
              A := A + s':
              A := getNonDominated(A);
              evaluation := evaluation + 1;
10
          end
11
          explored := explored +s';
12
      end
13
14 until evaluation >= nbEval;
```


- Problem presentation
- Algorithms studied
 - Random walk
 - Pareto Local Search
 - MOEA/D
 - Two-Phase Local Search
- 3 Algorithms comparisons
- Web platform
- Conclusion

2.3. MOEA/D - Weighted sum

Multiobjective Evolutionary Algorithm Based on Decomposition

Method which decomposes multiobjective problems into a number of scalar sub problems and optimizes them simultaneously.

2.3. MOEA/D - Weighted sum

Multiobjective Evolutionary Algorithm Based on Decomposition

Method which decomposes multiobjective problems into a number of scalar sub problems and optimizes them simultaneously.

Weighted sum single objective scalarizing method

$$g_{\lambda}(x) = \lambda_1.f_1(x) + \lambda_2.f_2(x)$$

where $x \in S_n$ is a candidate solution, and $\lambda = (\lambda_1, \lambda_2)$ is a weighting coefficient vector.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

16 / 34

Jérôme Buisine Photo album mQAP ULCO, June 2017

2.3. MOEA/D - Tchebycheff

Multiobjective Evolutionary Algorithm Based on Decomposition

Method which decomposes multiobjective problems into a number of scalar sub problems and optimizes them simultaneously.

Tchebycheff single objective scalarizing method

$$g_{\lambda}(x) = \min \left\{ \lambda_1 * |f_1(x) - r_1|, \lambda_2 * |f_2(x) - r_2| \right\}$$

where r is a reference point in the objective space, as example r(0,0).

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Jérôme Buisine Photo album mQAP ULCO, June 2017

2.3. MOEA/D

Algorithm 3: Multiobjective Evolutionary Algorithm Based on Decomposition

Input: N the number of sub problem, T the number of the weight vectors in the neighborhood of each weight vector, g the single objective scalarizing approach, nbEval evaluation stopping criteria

```
Output: EP
```

- 1 $EP := \theta$;
- 2 $\lambda := computeWeightVectors(N);$
- 3 B:= generating with $B(i)=\{i_1,...,i_T\}$ where $\lambda_{i1},...,\lambda_{iT}$ are the closest weight vectors to λ_i ;
- 4 $P := \text{initial population } x_1, ..., x_N \text{ of each sub problem set randomly;}$
- 5 FV := matrix which contains objective values of each P solution where FV_i is the F-Value of x_i represented as $FV_i = F(x_i)$;
- 6 z := reference point generating with min value of each objective found so far into FV; 7 evaluation := 0;

```
8 repeat 9 | for i := 0 to N do
```

11

12 13

14

16

17

18

21 22

23

```
k, l := \text{random indexes from } B(i);

s := \text{new solution from } \{x_{\nu}, x_{\ell}\} \text{ usi}
```

 $s := \text{new solution from } \{x_k, x_l\} \text{ using genetic operators;}$

 $s' := \mathsf{new}$ solution produce from s using improvement heuristic;

z:= set min value of each objective found so far into FV to update reference point z;

```
For j := 0 to T do

if g(s') < g(P(j)) then

P(j) := s';

FV_j := F(s');

EP := EP + P(j);

EP := getNonDominated(EP);

end

evaluation := evaluation + 1;
```


24 until evaluation >= nbEval:

- Problem presentation
- Algorithms studied
 - Random walk
 - Pareto Local Search
 - MOEA/D
 - Two-Phase Local Search
- 3 Algorithms comparisons
- 4 Web platform
- Conclusion

2.4. Two-Phase Local Search

Algorithm 4: Two-phase Local Search

Input: N the number of sub problem, T the number of the weight vectors in the neighborhood of each weight vector, g the single objective scalarizing approach, nbEvalMOEAD MOEAD evaluation stopping criteria, nbEvalPLS PLS evaluation stopping criteria

Output: A

- 1 $A := MOEAD_Algo(nbEvalMOEAD, N, T, g);$
- $a := PLS_Algo(nbEvalPLS, A);$

- Problem presentation
- 2 Algorithms studied
- 3 Algorithms comparisons
 - Test context
 - Landscapes
 - Features
- Web platform
- Conclusion

- Problem presentation
- Algorithms studied
- 3 Algorithms comparisons
 - Test context
 - Landscapes
 - Features
- Web platform
- Conclusion

Language

All algorithms source code is in Scala multi paradigm language. Scala has been selected to get benefit of its functional paradigm for this mQAP.

Test platform

The platform used for test suites is a Cloud platform solution with 1 vCPU and 1.7 GB of RAM

Album photo size and disposition

• $N = \{1, 2, ..., 16\}$

Jérôme Buisine Photo album mQAP ULCO, June 2017 24 / 34

Album photo size and disposition

- $N = \{1, 2, ..., 16\}$
- 4 pages which each contains a 2 per 2 photos matrix.

Jérôme Buisine Photo album mQAP ULCO, June 2017 24 / 34

Album photo size and disposition

- $N = \{1, 2, ..., 16\}$
- 4 pages which each contains a 2 per 2 photos matrix.

Multiobjective function to minimize with $k \in [1, 2]$

$$\min f_1(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^1.d_{\phi(i)\phi(j)}$$

$$\min f_2(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^2 . d_{\phi(i)\phi(j)}$$

Jérôme Buisine Photo album mQAP ULCO, June 2017 24 / 34

Album photo size and disposition

- $N = \{1, 2, ..., 16\}$
- 4 pages which each contains a 2 per 2 photos matrix.

Multiobjective function to minimize with $k \in [1, 2]$

$$\min f_1(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^1.d_{\phi(i)\phi(j)}$$

$$\min f_2(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^2 . d_{\phi(i)\phi(j)}$$

Criteria choice

 $ullet f_1 o \mathsf{Grey} \; \mathsf{AVG}$

Album photo size and disposition

- $N = \{1, 2, ..., 16\}$
- 4 pages which each contains a 2 per 2 photos matrix.

Multiobjective function to minimize with $k \in [1, 2]$

$$\min f_1(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^1 . d_{\phi(i)\phi(j)}$$

$$\min f_2(\phi) = \sum_{i=1}^n \sum_{j=1}^n s_{ij}^2 . d_{\phi(i)\phi(j)}$$

Criteria choice

- $f_1 \rightarrow \mathsf{Grey} \ \mathsf{AVG}$
- $f_2 \rightarrow \mathsf{Common\ Tags}$

- Problem presentation
- Algorithms studied
- 3 Algorithms comparisons
 - Test context
 - Landscapes
 - Features
- Web platform
- Conclusion

3.2. Landscapes

Common Tags

12 13

Common Tags

- Problem presentation
- 2 Algorithms studied
- 3 Algorithms comparisons
 - Test context
 - Landscapes
 - Features
- Web platform
- Conclusion

3.3. Features - Dominated feature

3.3. Features - Non dominated

3.3. Features - (HVL - HV)

30 / 34

- Problem presentation
- Algorithms studied
- Algorithms comparisons
- Web platform
- Conclusion

Jérôme Buisine Photo album mQAP ULCO, June 2017 31 / 34

4. Web platform

Jérôme Buisine Photo album mQAP ULCO, June 2017 32

- Conclusion

33 / 34

Jérôme Buisine Photo album mQAP

5. Conclusion

- Two-phase Local Search a good compromised
- Algorithm complexity

- Other programming language
- Client customization