CISC452/CMPE452/COGS 400 Radial Basis Functions and Polynomial Networks

Ch. 4 - Text book

Farhana Zulkernine

Radial Basis Function (RBF)

- Good for cases where all samples of one class are clustered together.
- Possible to solve using a
 FF network with
 sigmoidal function with
 one hidden layer having
 multiple nodes RBF
 is simpler.
- Instead of 4 or 5 hidden nodes only one node that approximates a circle can be used.
 - The closer a point is to the center, the greater should the output be.
 - $\rho(||x-c||) = e^{-\gamma||x-c||}$

Radial Basis Function (RBF)

- A function is radially symmetric (is an RBF) if its output depends on the distance of the input vector from a stored vector specific to that function.
- Neural networks whose node functions are radially symmetric functions are referred as RBF-nets.
- Typically, RBF-nets use as RBF a non-increasing function ρ of a distance measure u, with $\rho(u1) >= \rho(u2)$ whenever u1 < u2.
- The Gaussian function most widely used in RBF is

$$\rho(u) \propto e^{-u/\sigma^2}$$

Radial Basis Function (cont...)

- RBF function ρ is applied to the Euclidean distance $d = || \phi i ||$, between the center or stored vector ϕ and the input vector i.
- The key idea is that within a given radius (some distance from the stored vector) the output of the node is high and outside it is low i.e., $\rho(d) \propto 1/d$
- RBF-nets are generally called upon *for use in function* approximation problems, particularly for interpolation.

General Gaussian Function

- Small $\sigma =>$ very small neighbourhood of interpolation (circle is small).
- Large $\sigma =>$ large circle encompassing all training samples => stored value becomes average of all.
- Euclidean distance is +ve. So, we consider the –ve part of the graph for which μ =0.
- Thus we may use the Gaussian to control the extent to which predicted values depend on the individual training trials.

The shape of the Gaussian is controlled by the parameter σ for $f(x) = a \exp(-(x-\mu)/2\sigma^2)$

Linear Interpolation

- In many function approximation problems, we need to determine the behaviour of a function at a new input, given the behaviour of the function at training samples. Such problems are often solved by linear interpolation.
 - Given $f(x_1)$ and $f(x_2)$, we need to determine $f(x_0)$ where x_1 and x_2 are one dimensional input samples (training data) and x_0 is the new data point that lies in between x_1 and x_2 .

Example

- 1-D interpolation with 2 known points x_1 and x_2 , whose output values are $f(x_1)$ and $f(x_2)$. x_0 is in between x_1 and x_2 .
- What will be the value of $f(x_0)$?

$$f(\mathbf{x}_0) = f(\mathbf{x}_1) + \mathbf{z}$$

$$f(x_0) = f(x_1) + \frac{x_0 - x_1}{x_2 - x_1} (f(x_2) - f(x_1))$$

$$\frac{\mathbf{z}}{\mathbf{x}_0 - \mathbf{x}_1} = \frac{\mathbf{f}(\mathbf{x}_2) - \mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_1}$$

Example (cont...)

$$f(x_0) = f(x_1) + \frac{(x_0 - x_1)}{(x_2 - x_1)} (f(x_2) - f(x_1)) = \frac{f(x_1)(x_2 - x_0) - f(x_2)(x_1 - x_0)}{(x_2 - x_0) - (x_1 - x_0)}$$

$$= \frac{D_1^{-1} f(x_1) + D_2^{-1} f(x_2)}{D_1^{-1} + D_2^{-1}}$$

$$= \frac{f(x_1)(x_2 - x_0) - f(x_2)(x_1 - x_0)}{(x_2 - x_0) - (x_1 - x_0)}$$

$$= \frac{f(x_1)(x_2 - x_0) - f(x_2)(x_1 - x_0)}{(x_2 - x_0) - (x_1 - x_0)}$$

where $D_n = || x_0 - x_i ||$ is Euclidean distance of the new point x_0 from the training samples and $f(x_i)$ is the desired output for training sample x_i .

$$= \frac{f(x_1)(x_2 - x_0) - f(x_2)(x_1 - x_0)}{(x_2 - x_0) - (x_1 - x_0)}$$

$$= \frac{\frac{f(x_1)}{(x_1 - x_0)} - \frac{f(x_2)}{(x_2 - x_0)}}{\frac{1}{(x_1 - x_0)} - \frac{1}{(x_2 - x_0)}}$$

$$= \frac{D_1^{-1} f(x_1) + D_2^{-1} f(x_2)}{D_1^{-1} + D_2^{-1}}$$
where $D_i^{-1} = \frac{1}{\|x_0 - x_i\|}$

Linear Interpolation (cont...)

For P input samples where each sample is an n-dimensional point on a hyperplane, the equation would become

$$f(\mathbf{x}_0) = \frac{(D_1^{-1} f(\mathbf{x}_1) + \dots + D_p^{-1} f(\mathbf{x}_p))}{(D_1^{-1} + \dots + D_p^{-1})} \propto (1/P) \sum_{p=1..P} \mathbf{d}_p \rho(||\mathbf{x}_0 - \mathbf{x}_p||)$$

Where

 x_p is a sample of n-dimensional training data points considering a total of P nearby points, x_0 is the new data (test data) and $f(x_0)$ is its projection $f(x_p) = d_p$ is the desired outputs for the input sample x_p $D_p^{-1} \approx \rho(D_p) = \rho(||x_0-x_p||)$ output of the RBF function

Finding Nearest Neighbours

- If there is only one dimension upon which we must interpolate, we know immediately which nearby values need to be considered.
- But with more dimensions it becomes difficult to determine how relevant each of the neighbouring point might be.
- So generally some fixed number of nearest neighbours are used.
- Otherwise for simplicity just use all of the training samples.

RBF (cont...)

Figure 4.7: D_j is the Euclidean distance between x_j and x_0 . $(x_5:8)$ indicates that $f(x_5)=8$. The four nearest observations can be used for interpolation at x_0 , giving $(8D_2^{-1}+9D_3^{-1}+3D_4^{-1}+8D_5^{-1})/(D_2^{-1}+D_3^{-1}+D_4^{-1}+D_5^{-1})$

 $ho_n(D_n) = D_n^{-1}$.

RBF (cont...)

$$\frac{(1/.3 * 10) + (1/.4 * 5) + (1/.1 * 6) + (1/.1 * 3)}{1/.3 + 1/.4 + 1/.1 + 1/.1} = 5.258$$

$$P = 4$$

The RBF Network

- Example: Network function f: $R^2 \rightarrow R$ and 4 training samples
- As many nodes as there are training samples \rightarrow too large metwork

RBF (cont...)

For network size to be reasonably small, we cannot have one node to represent each x_p . Hence similar training samples are clustered together, and output

$$o = \frac{1}{N} \sum_{i=1}^{N} \varphi_i \rho(||\mu_i - x||)$$

where N is the number of clusters, μ_i is the center of the ith cluster, and φ_i is the desired mean output of all samples of the ith cluster.

Training involves learning the values of

$$w_1 = \frac{\varphi_1}{N}, ..., w_N = \frac{\varphi_N}{N}, \mu_1, ..., \mu_N$$

minimizing

$$E = \sum_{p=1}^{P} E_p = \sum_{p=1}^{P} (d_p - o_p)^2$$

Learning in RBF Networks

The specific update rules are now:

$$\Delta w_i = \eta_i (d_p - o_p) \exp\left(\frac{-\left(\left\|\mathbf{x}_p - \mathbf{\mu}_i\right\|^2\right)^2}{\sigma^2}\right)$$
and

$$\Delta \mu_{i,j} = -\eta_{i,j} w_i (d_p - o_p) (x_{p,j} - \mu_{i,j}) \exp\left(\frac{-\left(\left\|\mathbf{x}_p - \mathbf{\mu}_i\right\|^2\right)^2}{\sigma^2}\right)$$

where the (positive) learning rates η_i and $\eta_{i,j}$ could be chosen individually for each parameter w_i and $\mu_{i,j}$.

As usual, we can start with random parameters and then iterate these rules for learning until a given error threshold is reached.

- Problem: Requires considerable computation to train for both μ and w
- Better approach: partially offline training

Learning in RBF Networks

- Apply some clustering procedure to estimate cluster centers μ_i , and their spreads (standard deviations) σ_i .
- Use one node per cluster with fixed μ_i
- Gradient descent method as described above is used to determine the weights w_i.

Corner Detection using RBF

Polynomial Networks

- Many practical problems require computing or approximating functions that are polynomials of the input variables, a task that can require many nodes and extensive training if familiar node functions (sigmoids, Gaussians, etc.) are employed.
- Networks whose node functions allow them to directly compute polynomials and functions of polynomials are referred to as "polynomial networks".

Polynomial Networks (cont...)

- A single non-input node is sufficient for twoclass classification when separating surface is a quadratic or cubic function rather than a hyperplane.
- A polynomial network for approximating a quadratic function would be much smaller than a network using only sigmoid functions.
- Different kinds of polynomial networks have been suggested in the literature.

Supervised Function Approximation

• Obviously, the polynomial of degree 2 provides the most plausible fit.