

Professor:

Disciplina: CÁLCULO DIFERENCIAL E INTEGRAL Me. CARLOS CASTRO

Centro Universitário UniAteneu

CÁLCULO DIFERENCIAL E INTEGRAL – BACHARELADO EM ENGENHARIA DE SOFTWARE

Funções injetoras, Sobrejetora e Bijetoras. Função Inversa. Função Exponencial. Função Logarítmica.

Prof. :Me. Carlos Castro

As funções injetora, sobrejetora e bijetora têm aplicações fundamentais na computação, especialmente em áreas como estrutura de dados, algoritmos, criptografia e bancos de dados.

1. Função Injetora (Injetividade)

- ullet Uma função f:A o B é injetora se elementos distintos em A possuem imagens distintas em B.
- Ou seja, se $f(x_1) = f(x_2)$ implica que $x_1 = x_2$.

Aplicações na Computação:

- Endereçamento em Memória: Garantir que diferentes variáveis ou registros tenham endereços distintos.
- Compressão de Dados sem Perda: Algoritmos de compressão injetores garantem que os dados podem ser descomprimidos sem ambiguidades.
- Criptografia: Em cifragem, funções injetoras ajudam a garantir que mensagens distintas tenham diferentes criptogramas.

2. Função Sobrejetora (Sobrejetividade)

- ullet Uma função f:A o B é sobrejetora se para todo y em B existe pelo menos um x em A tal que f(x)=y.
- ullet Ou seja, todo elemento do conjunto de chegada B tem uma pré-imagem em A.

Aplicações na Computação:

- Distribuição de Carga (Load Balancing): Assegura que todas as máquinas ou processadores recebam tarefas, evitando que fiquem ociosos.
- Geração de Endereços IP: Mapear corretamente identificadores únicos para dispositivos.
- Bancos de Dados: Em consultas SQL, funções sobrejetoras garantem que todos os registros possíveis sejam acessíveis.

3. Função Bijetora (Bijetividade)

- Uma função é bijetora se é **simultaneamente injetora e sobrejetora**, ou seja, há uma correspondência um para um entre os elementos dos conjuntos A e B.
- ullet Isso significa que cada elemento de B tem exatamente um correspondente único em A.

Aplicações na Computação:

- Criptografia Reversível: Funções bijetoras são essenciais para cifragem e decifragem seguras.
- Indexação de Dados: Mapear chaves primárias para registros de forma única.
- Estruturas de Dados Eficientes: Em tabelas hash perfeitas, onde não há colisões de chaves.
- Codificação e Decodificação: Como em transformações bijetoras usadas em compressão de dados (exemplo: algoritmo de Huffman).

Essas funções são fundamentais para garantir eficiência, segurança e correção em diversos sistemas computacionais.

Funções injetoras

Definição: Uma função $f: A \rightarrow B$ é chamada de função injetora se não existem dois elementos do domínio com uma mesma imagem.

Isto quer dizer que , para quaisquer $x_1, x_2 \in A$, é válido que, sempre que:

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Elementos diferentes do domínio possuem imagens diferentes.

Ou, de forma equivalente,

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Se dois elementos do domínio possuem a mesma imagem, então eles são iguais.

Exemplos

Teste da reta horizontal

Teste: Se alguma reta horizontal intercepta o gráfico da função em mais de um ponto, então esta função não é injetora.

Existe um mesmo elemento da imagem relacionado a mais de um elemento do domínioe, portanto, a função não é injetora!

Três elementos diferentes do domínio com a mesma imagem!

Funções sobrejetoras

Definição: Uma função $f \colon A \to B$ é chamada de função sobrejetora se o contradomínio é igual a imagem, isto é, se $Im\ (f) = B$.

Isto quer dizer que , para cada $y \in B$, existe pelo menos um $x \in A$ tal que f(x) = y.

Exemplos

Funções bijetoras

Definição: Uma função $f \colon A \to B$ é chamada de função bijetora se ela é injetora e sobrejetora.

Isto quer dizer que , para cada $y \in B$, existe um único $x \in A$ tal que f(x) = y.

Exemplos5) Determine se a função a seguir é bijetora.

É bijetora, pois é injetora e sobrejetora.

Exemplos6) Determine se a função a seguir é bijetora.

Não é bijetora, pois não é sobrejetora.

Exemplos7) Determine se a função a seguir é bijetora.

Não é bijetora, pois não é injetora nem sobrejetora.

Exemplos 8) Determine se a função a seguir é bijetora.

Não é bijetora, pois não é injetora.

EXERCITANDO 01

Indique quais das funções abaixo é injetora, sobrejetora ou bijetora:

Exercitando 02

Para as funções em reais abaixo representadas, qual é injetora, sobrejetora e

Respostas

Exercitando 01:

- a) Injetora
- **b)** Sobrejetora
- c) Bijetora
- d) Não é injetora nem sobrejetora. Exercitando 02:
- a) Injetora
- b) Bijetora
- c) Sobrejetora
- d) Não é injetora nem sobrejetora.

Função Inversa

As funções inversas têm diversas aplicações na computação, especialmente em algoritmos, criptografia, aprendizado de máquina e análise de dados. Aqui estão algumas das principais aplicações:

1. Função Inversa na Computação

A função inversa $f^{-1}(x)$ reverte os efeitos de uma função original f(x). Algumas aplicações incluem:

- Desfazer transformações: Em compressão de dados e criptografia, muitas operações precisam ser revertidas para recuperar informações originais. Por exemplo, em criptografia assimétrica, as chaves pública e privada se baseiam em funções inversas.
- Cálculo de coordenadas e ajustes em gráficos computacionais: Transformações geométricas, como escalonamento e rotação em gráficos 3D, podem exigir funções inversas para determinar coordenadas originais.
- Processamento de imagens: Operações como ajuste de brilho e contraste podem ser revertidas usando funções inversas.

Função inversa

Em uma função bijetora se pode definir uma função ${\it g}$ com domínio igual a ${\it B}$ e contra domínio igual a ${\it A}$ que faz as relações inversas das relações determinadas pela função ${\it f}$.

A função g acima é chamada de função inversa da função f, e é denotada por f^{-1} .

Domínio: *A* Imagem: *B*

Domínio: *B* Imagem: *A*

Função inversa

Observação: Note que f^{-1} possui domínio igual a B e contradomínio igual a A.

"o que era domínio vira imagem e o que era imagem vira domínio".

$$f^{-1}:B\to A$$

Observação: Somente funções bijetoras possuem inversa. Por este motivo, as funções bijetoras são ditas funções inversíveis.

Para determinar a lei de formação da função inversa de uma função bijetora, basta seguir os passos:

- 1) Substitua x por y e y por x na lei de formação da função y = f(x).
- 2) Isole a variável y na equação obtida no passo anterior.
- 3) O resultado obtido será a função inversa $y = f^{-1}(x)$.

Exemplos

9) Determine a função inversa de f(x) = 2x + 4.

Solução:

Seguindo os passos para encontrar a função inversa, tem-se:

1) Substitua x por y e y por x na lei de formação da função y = f x.

$$x = 2y + 4$$

2) Isole a variável y na equação obtida no passo anterior.

$$x = 2y + 4$$

$$2y = x - 4$$

$$y = \frac{x-4}{2}$$

Portanto, a função inversa é dada por:

$$f^{-1}(x) = \frac{x-4}{2}.$$

Exemplos

10) Determine a função inversa de $f(x) = x^3 - 5$.

Solução:

Seguindo os passos para encontrar a função inversa, tem-se:

1) Substitua x por y e y por x na lei de formação da função y = f x.)

$$x = y^3 - 5$$

2) Isole a variável y na equação obtida no passo anterior.

$$x = y^3 - 5$$

$$y^3 = x + 5$$

$$y=\sqrt[3]{x+5}$$

Portanto, a função inversa é dada por:

$$f^{-1}(x) = \sqrt[3]{x+5}.$$

Gráfico da função inversa

Para obter a função inversa de uma função bijetora, o processo consiste em "inverter os papéis de x e y" na lei de formação da função.

Desta inversão, resulta que os gráficos das funções f e f^{-1} são simétricos em relação à reta y=x.

(y = x, bissetriz dos quadrantes ímpares).

Exemplos

- 11) Determine a função inversa de $f(x) = x^3$.
- (a) Determine a lei de formação de f^{-1} ;

(b) Esboce os gráficos de f e f^{-1} ;

Solução:

(a) Determinando a função f^{-1} :

$$y = x^3$$

$$x = y^3$$

$$y = \sqrt[3]{x}$$

$$f^{-1}(x) = \sqrt[3]{x}$$

(b) Esboçando os gráficos:

EXERCITANDO 02

1) Determine a lei da função inversa às seguintes funções:

$$(a)y = x + 3$$

(b)
$$y = 6x$$

$$(c)y = 2x - 1$$

(d)
$$y = \frac{x+2}{x-2}$$
, $para x \neq 2$

- 2) Dada a função f(x) = 5x + 11, calcule $f^{-1}(6)$.
- 3) Calcule $f^{-1}(2) + f^{-1}(3)$, sabendo que f(x) = 2x 2.

Respostas

Exercício 1:

a)
$$y^{-1} = x - 3$$

b)
$$y^{-1} = \frac{\lambda}{6}$$

c)
$$y^{-1} = \frac{x+1}{2}$$

a)
$$y^{-1} = x - 3$$

b) $y^{-1} = \frac{x}{6}$
c) $y^{-1} = \frac{x+1}{2}$
d) $y^{-1} = \frac{2x+2}{x-1}$

Exercício 2:

$$f^{-1}(6) = -1$$

Exercício 3:

$$f^{-1}(2) + f^{-1}(3) = \frac{9}{2}$$

Função logarítmica e função exponencial

As funções exponenciais e logarítmicas têm diversas aplicações na computação, sendo fundamentais para algoritmos, criptografia, aprendizado de máquina, modelagem de dados e muito mais.

1. Função Exponencial na Computação

A função exponencial tem a forma geral $f(x)=a^x$, onde a é uma constante positiva. Ela é usada em diversas áreas da computação, incluindo:

- Criptografia: Algoritmos como RSA e Diffie-Hellman utilizam exponenciação modular para gerar chaves seguras.
- Análise de Algoritmos: Alguns algoritmos têm complexidade exponencial, como a força bruta para resolver o problema do caixeiro-viajante.
- Redes Neurais e Aprendizado de Máquina: A função de ativação Softmax (usada em redes neurais para classificação) e a função Exponential Linear Unit (ELU) utilizam funções exponenciais.
- Crescimento Exponencial de Dados: O armazenamento de dados e a capacidade computacional muitas vezes seguem um crescimento exponencial (Lei de Moore).
- Processamento de Imagens e Gráficos Computacionais: O modelo de iluminação de Phong usa funções exponenciais para simular efeitos de brilho realistas.

2. Função Logarítmica na Computação

A função logarítmica é a inversa da função exponencial e tem a forma $f(x) = \log_a(x)$. Suas aplicações incluem:

- Complexidade Computacional: Muitos algoritmos eficientes possuem complexidade $O(\log n)$, como a busca binária e algumas estruturas de dados (árvores balanceadas, tabelas hash).
- Criptografia: O problema do logaritmo discreto é a base da segurança de algoritmos como o protocolo Diffie-Hellman e o ECC (Elliptic Curve Cryptography).
- Compressão de Dados: Algoritmos como o JPEG usam transformadas logarítmicas para reduzir a quantidade de dados necessários para representar imagens.
- Aprendizado de Máquina: A função de custo da regressão logística usa logaritmos para modelar probabilidades.
- Computação Científica e Análise de Dados: O logaritmo é útil para normalizar dados que variam em escalas muito amplas (exemplo: dados financeiros e bioinformáticos).

Em resumo, funções exponenciais e logarítmicas são essenciais para tornar os sistemas computacionais mais eficientes e seguros.

Função logarítmica e função exponencial

Observação: A inversa da função exponencial de base a é a função logarítmica de mesma base.

Em outras palavras, função exponencial de base a

é bijetora, e sua função inversa é a função logarítmica de base a.

$$f(x) = a^x$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$

$$f^{-1}(x) = \log_a x$$

$$f^{-1}: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

Exemplos

12) Em cada caso, determine a função inversa da função dada.

(a)
$$f(x) = \log_5 x$$

(b)
$$f(x) = 4^x$$

Solução:

(a)
$$f^{-1}(x) = 5^x$$

A inversa da função logarítmica de base 5 é a função exponencial de base 5.

$$(b) f^{-1}(x) = \log_4 x$$

A inversa da função exponencial de base 4 é a função logarítmica de base 4.

Exemplos

13) Determine a função inversa da função exponencial $f_-(x)=2^x$ e esboce os gráficos de f_- e f_- 1

Solução:

 $\log_2 x$.

A função inversa da função exponencial $f(x) = 2^x$ é a função $f^{-1}(x) = 2^x$

Observação: As funções trigonométricas não são bijetoras em todo os seus domínios.

O teste da reta horizontal comprova, por exemplo, que a função seno não é bijetora em todo o seu domínio, pois a reta intercepta o gráfico da função mais de uma vez.

Gráfico da função seno

As funções trigonométricas inversas (arco seno, arco cosseno, arco tangente, arco cotangente, arco secante e arco cossecante) são as funções inversas de restrições convenientes das funções trigonométricas.

Definição: A função arco seno é a função inversa da restrição da função seno ao intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

Restrição da função seno:

$$f(x) = \sin x$$
, $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1,1]$$

Função arco seno

$$f^{-1}$$
: $[-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$f^{-1}(x) = \arcsin x$$
, $\forall x \in [-1,1]$

$$\sin(\arcsin x) = x, \forall x \in [-1,1]$$

$$\arcsin(\sin x) = x, \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Definição: A função arco cosseno é a função inversa da restrição da função cosseno ao intervalo $[0,\pi]$.

Função arco cosseno

$$f^{-1}$$
: $[-1,1] \rightarrow [0,\pi]$

$$f^{-1}(x) = \arccos x, \forall x \in [-1,1]$$

$$\cos(\arccos x) = x, \forall x \in [-1,1]$$

Definição: A função arco tangente é a função inversa da restrição da função tangente ao intervalo, $(-\pi/2,\pi/2)$

Restrição da função tangente:

Função arco tangente

$$f^{-1}(x) = \arctan x, \forall x \in (-\infty, +\infty)$$

$$tan(\arctan x) = x, \forall x \in (-\infty, +\infty)$$

$$\arctan(\tan x) = x, \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

EXERCITANDO 03

Nas funções seguintes classifique em:

- (I) Injetora,(II) Sobrejetora,(III) Bijetora,(IV) Não é sobrejetora nem injetora.
- a) f: $\mathbb{R} \to \mathbb{R}$ tal que f(x) = 2x + 1
- b) g: $\mathbb{R} \to \mathbb{R}_+$ tal que $g(x) = 1 x^2$
- c) h: $\mathbb{R} \to \mathbb{R}_+$ tal que h(x) = |x 1|
- d) m: $\mathbb{N} \to \mathbb{N}$ tal que m(x) = 3x + 2
- e) p: $\mathbb{R}^* \to \mathbb{R}^*$ tal que $p(x) = \frac{1}{x}$
- f) q: $\mathbb{R} \to \mathbb{R}$ tal que $q(x) = x^3$

EXERCITANDO 04

Nas funções bijetoras abaixo, de \mathbb{R} em \mathbb{R} , obtenha a lei de correspondência que define a função inversa.

(a)
$$g(x) = \frac{4x-1}{3}$$

(b)
$$h(x) = x^3 + 2$$

$$(c)p(x) = (x-1)^3 + 2$$

$$(d)r(x) = \sqrt[3]{x-1}$$

(e)
$$s(x) = \sqrt[3]{1-x^3}$$

Respostas

Exercício 6:

a) (III)

d) (I)

b) (IV)

e) (III)

c) (II)

f) (III)

Exercício 7:

a)
$$g^{-1} = \frac{3x+1}{4}$$

b)
$$h^{-1} = \sqrt[3]{x-2}$$

c)
$$p^{-1} = 1 + \sqrt[3]{x-2}$$

d)
$$r^{-1} = x^3 + 1$$

e)
$$s^{-1} = \sqrt[3]{1 - x^3}$$

Baixar o Geogebra. www.geogebra.org

Assistir o tutorial

https://youtu.be/HPhsJ_BXVgQ

Obrigado!

carlos.castro@professor.uniateneu.edu.br