Esercizio 1)

Determinare il valore di V_x e V_y.

[$V_x=2.4 V, V_y=3.3 V$]

Esercizio 2)

Determinare V_o.

Esercizio 3)

Determinare la potenza erogata dal generatore.

$$[p(t) = 90 W]$$

Esercizio 4)

Determinare i_x.

$$[i_x=1.4 A]$$

Esercizio 5)

Determinare la tensione V_x.

$[V_x=5.7V]$

Esercizio 6)

Determinare I_x.

[I_x=4 A]

Esercizio 7)

Usando il principio di sovrapposizione degli effetti, determinare I_x e V_x .

$$[I_x=11/10 A, V_x=-18/5 V]$$

Esercizio 8)

Determinare I_x.

Esercizio 9)

Nel circuito in figura, la tensione v_2 è di 10 V. Qual è il valore del resistore R_2 ?

 $[R_2=10 \text{ ohm }]$

Esercizio 10)

Per il circuito in figura, determinare i_2 e la tensione del generatore v_2 , sapendo che v_3 = 6 V.

$$[i_2 = -1 A, v_2 = 7 V]$$

Esercizio 11)

Nel circuito in figura, il resistore R₁ assorbe una potenza di 6 W. Qual è il valore del generatore di tensione?

$$[v_s = 14 V]$$

Esercizio 12)

Determinare la potenza assorbita dai ciascuno dei resistori nel circuito in figura.

[
$$p_{R1}$$
 = 24 W, p_{R2} = 100 W, p_{R3} = 72 W]

Esercizio 13)

Determinare la potenza erogata da ciascun generatore di corrente nel circuito in figura.

$$[p_{i1} = -6 \text{ mW}, p_{i2} = 7 \text{ mW}]$$

Esercizio 14)

Determinare la potenza erogata da ciascun generatore di tensione nel circuito in figura.

[
$$p_{v1}$$
 = -6 mW, p_{v2} = 2 mW]

Esercizio 15)

Determinare le tensioni v_a e v_c e le correnti i_b e i_d nel circuito in figura.

[
$$v_a = -2 \text{ V}, v_c = 6 \text{ V}, i_b = -16 \text{ mA}, i_d = 2 \text{ mA}]$$

Esercizio 16)

Determinare i_x.

$$[i_x = 0.5 \text{ mA}]$$

Esercizio 17)

Nel circuito in figura, i tre resistori sono di uguale valore R, ed il generatore eroga una potenza di 1920 W. Qual è il valore di R?

[R = 45 ohm]

Esercizio 18)

Determinare i_x.

 $[i_x = -5/6 A]$

Esercizio 19)

Determinare il valore della resistenza equivalente e del generatore equivalente di Thevenin per i circuiti in figura.

a)

[R_{eq} =3 ohm, V_{eq} =5 V]

b)

[R_{eq} =4 ohm, V_{eq} =20 V]

c)

[R_{eq} =4 ohm, V_{eq} =0 V]

d)

[R_{eq} =2 ohm, V_{eq} =10 V]

e)

[R_{eq} =4/3 ohm, V_{eq} =10/3 V]

f)

[R_{eq} =2/3 ohm, V_{eq} =5/3 V]

g)

[R_{eq} =15 ohm, V_{eq} =150 V]

h)

[R_{eq} =1/2 ohm, V_{eq} =15 V]

i)

[R_{eq} =4 ohm, V_{eq} =6 V]

Esercizio 20)

Determinare il valore della resistenza equivalente e del generatore equivalente di Norton per i circuiti in figura.

a)

[R_{eq} =3 ohm, I_{eq} =5/3 A]

b)

[R_{eq} =4 ohm, I_{eq} =7 A]

c)

[R_{eq} =4 ohm, I_{eq} =0 A]

d)

[R_{eq} =2 ohm, I_{eq} =10 A]

e)

[R_{eq} =4/3 ohm, I_{eq} =5/2 A]

f)

[R_{eq} =2/3 ohm, I_{eq} =5/2 A]

g)

[R_{eq} =20 ohm, I_{eq} =7.5 A]

h)

[R_{eq} =1/2 ohm, I_{eq} =30 A]

i)

 $[\ R_{eq}\text{=4 ohm, }I_{eq}\text{=3/2 A }]$