!!! WRITE YOUR NAME, STUDENT ID. BELOW !!!

NAME:

PURDUE ID:

- (XXY) * Z = (2/6+4)) * Z
- (1) Define the following operation on \mathbb{R} . x * y = 2(x + y). Which is the following statement is true for this operation
 - (a) associative, commutative, there is an identity element.
 - (b) associative, commutative, there is no identity element.
 - (c) not associative, commutative, there is an identity element.
 - (d) not associative, commutative, there is no identity element.
- (2) Which of the following operations defines a group structure on \mathbb{R} :

 - (a) x * y = xy + 1. (b) x * y = x + y + 100. (c) x * y = -x y.
- (3) Suppose G is a non-abelian group. Solve the following equations in G(a, b, c)are different elements in G with no relations):

$$x^3a = b, \quad x^4 = c.$$

$$(a) x = ab^{-1}c.$$

$$x^{3}a = b, \quad x^{4} = c.$$

$$\chi^{3} = b \quad x^{-3} = a \quad b^{-1} \quad \chi = a \quad b^{$$

- (c) $x = b^{-1}ac$.
- (4) Suppose we have two functions $f:A\to B$ and $g:B\to C$. Which of the following statement is true?
 - (a) If $g \circ f$ is injective, then g is injective.
 - (b) If $g \circ f$ is surjective, then g is surjective.
 - (c) If $g \circ f$ is bijective, then both f and g are bijective.

(5) Let S_A denote the permutation group on the set A. Which of the following permutations $f \in S_A$ is **NOT** of finite order:

(a)
$$A = \mathbb{Z}_{10}$$
, $f(x) = x + \overline{2}$.
(b) $A = \mathbb{R} - \{1\}$, $f(x) = \frac{x}{x-1}$.
(c) $A = \mathbb{R} - \{0\}$, $f(x) = x^{1/3}$.

$$f'(x) = \int_{\mathbb{R}} f(x) = \frac{x}{x-1} = \frac{x}{x-1} = x = id(x) \Rightarrow id($$

- (6) What are the products of cycles: $(1234567)^4$ and (123)(234)(456)(567).
 - (a) (1473625), (1234567).
 - (b) (1642753), (1234567).
 - (c) (1526374), (12)(345)(67).
- (7) Which of the following two groups are **NOT** isomorphic:
 - $|(a)|\mathbb{Z}_2 \times \mathbb{Z}_4$, and \mathbb{Z}_8 .
 - (b) S_3 , and the symmetry group of equilateral triangle.
 - (c) (\mathbb{Z}_5^*, \times) , and $(\mathbb{Z}_4, +)$.

(ab)k=e \(\alpha \k = b^{-5k} = e \)

- (8) Let G be an abelian group. Which of the follow statement is true:

 (a) If $\operatorname{ord}(a) = 2$ and $\operatorname{ord}(b) = 5$, then $\operatorname{ord}(ab) = 10$.

 (b) If $\operatorname{ord}(a) = 10$, then $\operatorname{ord}(a^6) = 10$.

 (c) If $\operatorname{ord}(a) = 10$, then $\operatorname{ord}(a^k) = 10$ if k is odd.

 (a) $\operatorname{ord}(a^k) = 10$.

 (b) $\operatorname{ord}(a) = 10$, then $\operatorname{ord}(a^k) = 10$ if k is odd.

 (b) $\operatorname{ord}(a) = 10$. by exclusion (a) If ord(a) = 2 and ord(b) = 5, then ord(ab) = 10.

(9) Which of the following is **NOT** an isomorphism of groups?

(c) $S_3/\langle (123)\rangle \cong \mathbb{Z}_2$.

(d) $S_4/\langle (1234)\rangle \cong \mathbb{Z}_6$. $\langle (1234)\rangle = \{e, (1234), (13)(24), (1432)\}$ is not normal in S_4

(12) (13)(24) (12) = (14)(23) \neq (1234)

(b)
$$\mathbb{Z} \times \mathbb{Z} \xrightarrow{f} \mathbb{Z}$$
, $\ker(f) \cong \mathbb{Z}$
 $(a,b) \longmapsto a-b$ $\langle (1,0) \rangle$
 $\mathbb{Z} \times \mathbb{Z} / \langle (1,1) \rangle \cong \mathbb{Z}$ by (FTH)

- (10) Which of the following H is **NOT** a normal subgroup of G?
 - (a) $G = \mathbb{Z}_2 \times \mathbb{Z}_4$, $H = \langle (1,1) \rangle$.
 - (b) G is the symmetry group of a square. H is the cyclic subgroup generated by a reflection.
 - (c) G is any group. $H = \{x; xy = yx \text{ for any } y \in G\}.$
 - (d) $G = S_{10}$ and $H = A_{10} = \{$ all even permutations $\}$.
- (11) Which of the following statements is **NOT** true (up to isomorphism):
 - (a) There is no non-abelian group of order 4.
 - (b) There is only one group of order 5.
 - (c) There is only one abelian group of order 4. Z4, Z2XZ2
- (12) In the product ring $\mathbb{Z} \times \mathbb{Z}$, which of the following subsets are ideals?

$$I_1 = \{(2m, 3m); m \in \mathbb{Z}\}$$
 (2,3)·(1,0)=(2,0) \(\xi\) I, does not about $I_2 = \{(2m, 3n); m, n \in \mathbb{Z}\}$ products.
$$I_3 = \{(m, 0); m \in \mathbb{Z}\}$$

- (a) I_1 and I_3 are ideals.
- (b) I_2 and I_3 are ideals.
- (c) I_1 , I_2 and I_3 are all ideals.
- (13) In the ring \mathbb{Z} , consider the subset

$$I = \{40m + 24n; m, n \in \mathbb{Z}\}.$$

Which of the following statements is true:

- (a) I is a principal ideal generated by 4.
- (b) I is a principal ideal generated by 8. g(d(40,24)=8
- $\widehat{\text{(c)}}$ I is a principal ideal generated by 120.
- (d) I is not a principal ideal

(14) In the ring \mathbb{Z} , consider the subset

$$I = \{n; 40 | n \text{ and } 24 | n\}.$$

Which of the following statements is true:

- (a) I is a principal ideal generated by 4.
- (b) I is a principal ideal generated by 8.
- (c) I is a principal ideal generated by 120. lcm(40, 24) = 120
- (d) I is not a principal ideal

(15) Consider the following rings

$$A_1 = \mathbb{Z}_9, \quad A_2 = \mathbb{Z}_2 \times \mathbb{Z}_3, \quad A_3 = \mathbb{Z}, \quad A_4 = \mathbb{Q}.$$

Which rings are integral domains (list all)?

- (a) Only A_1 and A_4 .
- (b) Only A_2 and A_3 .
- (c) Only A_3 and A_4 .
- (d) Only A_2 , A_3 and A_4 .

(16) Which of the following statements is NOT true?

- (a) \mathbb{Z}_{37} is an integral domain
- (b) Z35 is a field 35=5×7 5-7=0 = 5,7 not investible
- (c) Any finite field is an integral domain
- (d) Any finite integral domain is a field

(17) Which of the following map $f: A \to B$ is a homomorphism of RINGS?

- (a) $A = \mathbb{Z}, B = 2\mathbb{Z}, f(x) = 2x$.
- (b) $A = \mathbb{R}, f(x) = x^2$.
- C $A = \mathbb{Z}_5$, $f(x) = x^5$. $(x+y)^5 = x^5 + y^5$ because 5 is prime

(d)
$$A = \mathbb{Z}_4$$
, $f(x) = x^4$.

$$(\bar{t} + \bar{t})^4 = \bar{t}^4 = \bar{t} + \bar{t} = \bar{t}$$

(18) Let A be a finite integral domain with characteristic 2.	Which of the following
statements is NOT true:	, mon or one renewing

(a)
$$8a = 0$$
 for every $a \in A$.

(a)
$$8a = 0$$
 for every $a \in A$.
(b) $(a+b)^4 = a^4 + b^4$ for every $a, b \in A$. $(a+b)^2 = a^2 + b^2$, $(a+b)^4 = (a^2 + b^2)^2 = a^4 + b^4$.
(c) There can be no nonzero element a such that $5a = 0$.
(d) There is such a ring A with only b elements.

$$(a+b)^{2k} = a^{2k} + b^{2k}$$

(d) There is such a ring A with only 6 elements. (finite integral chamain is a finite field. Any timber

(19) What are the complete solutions to the following two Diophantine equation: feld has order (i) $16x \equiv 32 \pmod{28}$, (ii) $16x \equiv 30 \pmod{28}$. pk, kal. (12)

(a) (i)
$$x \equiv 2 \pmod{14}$$
, (ii) no solutions

(b) (i) no solutions, (ii)
$$x \equiv 2 \pmod{14}$$

(c) (i)
$$x \equiv 2 \pmod{7}$$
, (ii) no solutions (gd(16, 28)=4, 4/30)

(d) (i)
$$x \equiv 2 \pmod{14}$$
, (ii) $x \equiv 2 \pmod{14}$

(20) What are the complete solutions of the following Diophantine equation: $16(x+1)^2 \equiv 32 \pmod{28}$.

$$(a)$$
 $x \equiv 2 \pmod{7}$ and $x \equiv 3 \pmod{7}$.

(b)
$$x \equiv 2 \pmod{14}$$
 and $x \equiv 3 \pmod{14}$.

(c)
$$x \equiv 3 \pmod{7}$$
 and $x \equiv 4 \pmod{7}$.

(d)
$$x \equiv 3 \pmod{14}$$
 and $x \equiv 4 \pmod{14}$.

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2} \text{ in } Z_7$$

$$\Leftrightarrow \overline{(x+1)^2} = \overline{4}^{-1}.8 = \overline{2}.\overline{1} = \overline{2}.\overline{1} = \overline{2}.\overline{1}$$

(21) Let $a(x) \in \mathbb{R}[x]$ and $b(x) \in \mathbb{R}[x]$ be defined as:

$$a(x) = x^3 - 2x + 2$$
, $b(x) = x - 1$.

What is the quotient q(x) and remainder r(x) when a(x) is divided by b(x)?

(a)
$$q(x) = x^2 + x$$
, $r(x) = -x + 2$.

(b)
$$q(x) = x^2 + x - 1$$
, $r(x) = -1$

(c)
$$q(x) = x^2 + x$$
, $r(x) = x - 2$.

(d)
$$q(x) = x^2 - x + 1$$
, $r(x) = -1$.

(22) Let $a(x) \in \mathbb{Z}_5[x]$ and $b(x) \in \mathbb{Z}_5[x]$ be defined as:

$$a(x) = x^3 + \overline{3}x + \overline{2}, \quad b(x) = x + \overline{4}.$$

What is the quotient q(x) and remainder r(x) when a(x) is divided by b(x)?

(a)
$$q(x) = x^2 + x + \overline{4}, \quad r(x) = \overline{1}.$$

(b)
$$q(x) = x^2 + x$$
, $r(x) = \bar{4}x + \bar{2}$.

(c)
$$q(x) = x^2 + x$$
, $r(x) = x + \bar{3}$.
(d) $q(x) = x^2 + \bar{4}x + 1$, $r(x) = \bar{3}$.

(d)
$$q(x) = x^2 + \bar{4}x + 1$$
, $r(x) = \bar{3}$.

$$x^{2} + 4x + 1, \quad r(x) = 3.$$

$$x^{2} + x + 4$$

$$x^{3} + 0 \cdot x^{2} + 3x + 2$$

$$x^{3} + 4x^{2}$$

$$-x^{2} + 3x$$

$$x^{2} + 4x + 7$$

$$-x^{2} + 3x$$

$$x^{2} + 4x$$

$$x^{2} + 4x$$

$$-x^{2} + 4x$$

$$x^{2} +$$