Exercise 14.2

1. In $\triangle ABC$ as shown in the figure, \overrightarrow{CD} bisects $\angle C$ and meets \overrightarrow{AB} at D, \overrightarrow{mBD} is equal to a) 5 b) 16 c) 10 d) 18

Ans.
$$\frac{\overline{\text{mBD}}}{\overline{\text{mDA}}} = \frac{\overline{\text{mBC}}}{\overline{\text{mCA}}}$$
$$\frac{\overline{\text{mBD}}}{6} = \frac{10}{12}$$
$$\overline{\text{mBD}} = \frac{10}{12} \times 6 = 5$$

2. In $\triangle ABC$ as shown in the figure, \overline{CD} bisects $\angle C$. If $m\overline{AC} = 3$, $m\overline{CB} = 6$ and $m\overline{AB} = 7$, then find $m\overline{AD}$ and $m\overline{DB}$.

Ans.
$$\overline{mAD} = x$$
 $\overline{mBD} = 7 - x$
 $\overline{mAD} = \overline{mAC}$
 $\overline{mDB} = \overline{mCB}$

$$\frac{x}{7-x} = \frac{3}{6}$$

$$\frac{x}{7-x} = \frac{1}{2}$$

$$2x = 1(7-x)$$

$$2x = 7 - x$$

$$3x = 7 \implies x = \frac{7}{3}$$
 $\overline{mAD} = \frac{7}{3}$
 $\overline{mDB} = 7 - x$

$$=7 - \frac{7}{3}$$

$$= \frac{21 - 7}{3} = \frac{14}{3}$$

Show that in any correspondence 3. of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangles are similar.

To Prove:

ΔABC~ΔDEF

Proof:

Statements	Reasons	
$m\angle B + m\angle C + m\angle A = 180^{\circ}(i)$	Sum of interior angles of triangle is 180°	
$m\angle E + m\angle F + m\angle D = 180^{\circ}(ii)$	Given	
$m\angle B + m\angle C + m\angle D = 180^{\circ}(iii)$ $m\angle A - m\angle D = 0$ $m\angle A = m\angle D$	Subtracting (i) from (ii)	
All Angles of ΔDEF and ΔABC are congruent Thus $\Delta ABC \sim \Delta DEF$.		

If line segments \overline{AB} and are \overline{CD} intersecting at point X and $\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$ 4.

show that $\triangle AXC$ and $\triangle BXD$ are similar.

Given:

AB and CD intersect each other at point x and

$$\frac{\overline{mAX}}{\overline{mXB}} = \frac{\overline{mCX}}{\overline{mXD}}$$

To Prove:

 $\Delta AXC \sim \Delta BXD$

	Statements	Reasons
In	ΔAXC and ΔBXD	
	∠1≅∠2	Vertical angles
	$\frac{\overline{MAX}}{\overline{MXB}} = \frac{\overline{MCX}}{\overline{MXD}}$	Given
Then	ACIIBD	
	∠4≅ <i>∠</i> 3	Alternate angles
	∠6≅∠5	i e
Thus	$\frac{m\overline{AX}}{m\overline{AX}} = \frac{m\overline{CX}}{m\overline{AC}} = \frac{m\overline{AC}}{m\overline{AC}}$	
	$m\overline{X}\overline{B}$ $m\overline{X}\overline{D}$ $m\overline{D}\overline{B}$	
Hence	$\triangle \Delta AXC$ and ΔBXD are similar.	

5. Which of the following are true and which are false?

i.	Congruent triangles are of same size and shape.	True
ii.	Similar triangles are of same shape but different sizes.	True
iii.	Symbol used for congruent is '~'.	False
iv.	Symbol used for similarity is '≅'.	False
v.	Congruent triangles are similar.	True
vi.	Similar triangles are congruent.	False
vii.	A line segment has only one mid point.	True
viii.	One and only one line can be drawn through two points.	True
ix.	Proportion is non-equality of two ratios.	False
x.	Ratio has no unit.	True

6. In $\triangle LMN$ show in the figure, $\overline{MN} \parallel \overline{PQ}$.

- i) If $m\overline{LM} = 5$ cm, $m\overline{LP} = 2.5$ cm, $m\overline{LQ} = 2.3$ cm, then find $m\overline{LN}$.
- ii) If $m\overline{LM} = 6$ cm, $m\overline{LQ} = 2.5$ cm, $m\overline{QN} = 5$ cm, then find $m\overline{LP}$.

In ALMN, MN || PQ

 $\overline{\text{mLM}} = 5\text{cm}, \overline{\text{mLP}} = 2.5\text{cm}, \overline{\text{mLQ}} = 2.3\text{cm}$

Proof:

Statements	Reasons
$\frac{\overline{mLN}}{mLQ} = \frac{\overline{mLM}}{mLP}$	PQIIMN (Given)

$$\frac{\overline{\text{mLN}}}{2.3} = \frac{5}{2.5}$$

$$\overline{\text{mLN}} = \frac{5 \times 2.3}{2.5}$$

$$= \frac{5 \times 23}{25}$$

$$= 4.6 \text{cm}$$

Putting Values

(ii)

Given: ALMN, MNIIPQ

 $\overline{mQN} = 5cm, \overline{mLQ} = 2.5cm, \overline{mLM} = 6cm.$

To prove: Proof:

$$m\overline{LP} = ?$$

$$\frac{\overline{mLP}}{\overline{mLM}} = \frac{\overline{mLQ}}{\overline{mLN}}$$

$$\frac{\overline{mLP}}{\overline{mLM}} = \frac{\overline{mLQ}}{\overline{mLQ} + \overline{mQN}}$$

$$\frac{\overline{mLP}}{6} = \frac{2.5}{2.5 + 5}$$

$$\overline{mLP} = \frac{2.5}{7.5} \times 6$$

$$\overline{mLP} = \frac{1}{3} \times 6$$

$$= 2cm.$$

7. In the shown figure, let $\overline{mPA} = 8x - 7$, $\overline{mPB} = 4x - 3$, $\overline{mAQ} = 5x - 3$, $\overline{mBR} = 3x - 1$. Find the value of x if $\overline{AB} \parallel \overline{QR}$.

If
$$\overline{AB} \parallel \overline{QR}$$
 then
$$\frac{\overline{mPA}}{\overline{mAQ}} = \frac{\overline{mPB}}{\overline{mBR}}$$

Putting values

$$\frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$$

$$(8x-7)(3x-1) = (5x-3)(4x-3)$$

$$24x^2 - 8x - 21x + 7 = 20x^2 - 15x - 12x + 9$$

$$24x^2 - 29x + 7 = 20x^2 - 27x + 9$$

$$24x^2 - 20x^2 - 29x + 27x + 7 - 9 = 0$$

$$4x^2 - 2x - 2 = 0$$

$$2x^2 - x - 1 = 0$$

$$2x^2 - 2x + x - 1 = 0$$

$$2x(x-1) + 1(x-1) = 0$$

$$2x + 1 = 0 \text{ or } x - 1 = 0$$

$$2x = -1 \qquad x = 1$$

$$x = \frac{-1}{2}$$

8. In $\triangle LMN$ shown in the figure \overline{LA} bisects $\angle L$. If $\overline{mLN} = 4$, $\overline{mLM} = 6$, $\overline{mMN} = 8$, then find \overline{mMA} and \overline{mAN} .

Given: In \triangle LMN, \overrightarrow{LA} is angle bisector of \angle L.

 $\overline{mLM} = 6cm, \overline{mLN} = 4cm, \overline{mMN} = 8cm.$

To Prove: $\overline{\text{mMA}} = ?$, $\overline{\text{mAN}} = ?$

Let $\overline{MAN} = xcm$ $\overline{MMA} = 8 - xcm$ $\overline{MMA} = \frac{mLM}{mLN}$

Putting values

$$\frac{8-x}{x} = \frac{6}{4}$$

$$4(8-x) = 6x$$

$$32-4x = 6x$$

$$32 = 6x + 4x$$

$$10x = 32$$

$$x = \frac{32}{10} = 3.2$$

 \therefore m $\overline{AN} = 3.2$ cm.

 $m\overline{MA} = 8 - x$ = 8 - 3.2 = 4.8cm.

9. In Isosceles $\triangle PQR$ shown in the figure, find the value of x and y.

Given:

In $\triangle PQR$, $\overrightarrow{PQ} \cong \overrightarrow{PR}$ and $\overrightarrow{PL} \perp \overrightarrow{QR}$.

To Prove: x = ? y = ?

Proof:

In ΔPRL and ΔPQL

 $m\overline{PQ} = m\overline{PR}...(i)$ Isosceles triangle $m\angle PLQ = m\angle PLR$ Each of right angle

 $m\overline{PL} = m\overline{PL}$ Common $\Delta PQL \cong \Delta PRL$ H.S. \cong H.S

 $m\overline{Q}\overline{L} = m\overline{L}\overline{R}$

6 = y

 \Rightarrow y = 6cm.

From (i) x = 10cm.