Subgrid Scales and Neuron Nets Eugene Kazantsev, INRIA, AirSea, Grenoble

Barotropic equation

$$\frac{\partial \omega(x, y, t)}{\partial t} + J(\psi, \omega + \beta y) = \mu \Delta \omega, \quad \Delta \psi = \omega$$

In a square box $L=1000 \mathrm{km}$, with $\beta=2\times 10^{-11} s^{-1}$, $\mu=10\frac{m^2}{s}$. Impermeability and slip boundary conditions ($\psi=\omega\mid_{\mathrm{bnd}}=0$) 200 days spin-up from 4 different vortices. Resolution 500×500 (2 km)

Initial relative vorticity ω

Energy and enstrophy evolution during 600 days

Barotropic Vorticity

Examples

Relative vorticity ω on 403 day

Relative vorticity ω on 428 day

HR and LR Grids

• Consider a 2 km grid and a 10 km grid

a

a

HR and LR Grids

- Consider a 2 km grid and a 10 km grid
- take 16 values on the 10 km grid

_

HR and LR Grids

- Consider a 2 km grid and a 10 km grid
- take 16 values on the 10 km grid
- and try to reconstruct 36 values in the central cell by learning model data.

$$Output_{36} = NN(Input_{16})$$

Neuron net

- Fully connected NN
- with 16 inputs + bias and 36 outputs
- Between 1 and 4 hidden layers
- Between 16 and 72 neurons in each hidden layer,
- Sigmoid, Linear, ReLu, Leaky ReLu activations in various combinations.

Data and procedure

Data Sets

- for every x_i from 10 km to 990 km by 10 km (99)
- for every y_j from 10 km to 990 km by 10 km (99)
- for every t_k from 0 to 600 days by 3 hours (4800)

47 000 000 data sets

Procedure

- Learn all data sets:
- Test on 500 000 supplementary sets (t_k from 600 to 660)

$$Err_{NN} = |NN(Input_{16}) - Model_{36}|$$

• Compare with Bicubic interpolation

$$Err_{Int} = |Int(Input_{16}) - Model_{36}|$$
 All $Input_{16}$ and $Model_{36}$ are scaled to be in $[-0.5, 0.5]$

$$Input_{16} = 0.5 \frac{Input_{16}}{\max_{16} |Input|}, \quad Model_{36} = 0.5 \frac{Model_{36}}{\max_{16} |Input|}$$

Typical convergence and error distribution.

Convergence of Err_{NN} during learning

PDFs of NN error and Interpolation error Average ErrNN: 0.0342 Average ErrInetrp: 0.0521

Example: errors in an instantaneous field

$$Model_{2km} \Longrightarrow Coarse grid_{10km} \Longrightarrow NN(Model_{10km})$$

$$\omega_{2km}(t = 200 \text{ days})$$

From -8×10^{-6} to 8×10^{-6}

$$\omega_{2km}(t=200)$$
 - NN($\omega_{10km}(t=200)$)
From -8×10^{-7} to 1×10^{-6}

First Zoom

Difference Model—interpolation From -8×10^{-7} to 8×10^{-7}

Difference Model—Neuron Net Approx. From -8×10^{-7} to 8×10^{-7}

Big gradients, big errors, NN is more efficient.

Second Zoom

Difference Model—interpolation From -3×10^{-9} to 3×10^{-9}

Difference Model—Neuron Net Approx. From -1×10^{-9} to 3×10^{-8}

Small gradients, small errors, a lot of noise in NN.

Conclusions — Questions

We have a Neuron Net that gives a slightly better approximation of the model solution on a fine grid than bicubic interpolation.

- Is it sufficient?
- How to improve?
 - Use NN in high gradient regions and interpolation elsewhere.
 - Use more sophisticated scalar product during learning $\langle A(NN-Truth), NN-Truth \rangle$ to measure the error norm.
 - Something else?

Used Techniques

- Between 1 and 4 hidden layers,
- Between 16 and 72 neurons in hidden layers,
- With or without bias,
- Original 16 or Interpolated values used as input $Err_{NN} = |NN(Input_{16}) Model_{36}|$ $Err_{NN} = |NN(Int(Input_{16})) - Model_{36}|$
- Sigmoid, Linear, ReLu, Leaky ReLu activations in various combinations, ^a
- Simple gradient descent or using momentum impact, ^b

- Using Adam method, ^a
- Gradient vanishing compensation^b
- Enhanced learning for the most difficult cases (more iterations for big errors),
- Neuron dropout ^c
- Multiple use of data sets,
- Working with uniformely scaled data,
- Learning rate decrease. ^d

 $[^]a\mathrm{Diederik}$ P. Kingma and Jimmy Lei Ba. Adam : A method for stochastic optimization. 2014. arXiv:1412.6980v9

 $[^]b$ R.Pascanu et al , On the difficulty of training Recurrent Neural Networks, 2012, arXiv:1211.5063

^cN. Srivastava, et al, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research; 15(56):1929-1958, 2014.

dRuder, Sebastian (2017). "An Overview of Gradient Descent aR.Praiit et al. Searching for Activation Functions, arXiv eprinto 1741.05294. Algorithms". arXiv:1609.04747

^bQian, N. (1999). On the momentum term in gradient descent learning

^{◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900}