

COMPOSITE FUNCTIONS

- **(a)** Let z = f(x, y) and $x = \Phi(t)$, $y = \Psi(t)$ so that z is function of x, y and x, y are function of third variable t.
- \clubsuit The three relations define z as a function of t. In such cases z is called a **composite function of** t.
- ***e.g. (i)** $z = x^2 + y^2$, $x = at^2$, y = 2at
- **(ii)** $z = x^2y + xy^2$, x = acost, y = bsint define z as a composite function of t
- **Differentiation:** Let z = f(x, y) posses continuous first order partial derivatives and $x = \Phi(t), y = \Psi(t)$ posses continuous first order derivatives then, $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$

$$\Leftrightarrow$$
 If $u = x^2y^3$, $x = \log t$, $y = e^t$, find $\frac{du}{dt}$

Solution:
$$u = x^2y^3$$
, $x = \log t$, $y = e^t$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial v} \cdot \frac{dy}{dt}$$

$$(2xy^3)^{\frac{1}{t}} + (3x^2y^2)e^t$$

 \clubsuit Substituting x and y,

$$\stackrel{du}{dt} = 2(\log t)e^{3t} \cdot \frac{1}{t} + 3(\log t)^2 e^{2t} \cdot e^t$$

$$= \frac{2}{t} \log t \, e^{3t} + 3(\log t)^2 e^{3t}$$

- \Leftrightarrow If u = xy + yz + zx where $x = \frac{1}{t}$, $y = e^t$, $z = e^{-t}$, find $\frac{du}{dt}$
- **Solution:** u = xy + yz + zx, $x = \frac{1}{t}$, $y = e^t$, $z = e^{-t}$

$$= (y+z)\left(-\frac{1}{t^2}\right) + (x+z)e^t + (y+x)(-e^{-t})$$

 \diamondsuit Substituting x, y and z,

$$\stackrel{du}{dt} = -\frac{1}{t^2} (e^t + e^{-t}) + \left(\frac{1}{t} + e^{-t}\right) e^t - \left(e^t + \frac{1}{t}\right) e^{-t}$$

$$= \frac{1}{t^2} (e^t + e^{-t}) + \frac{1}{t} (e^t - e^{-t})$$

If
$$z = e^{xy}$$
, $x = t \cos t$, $y = t \sin t$, find $\frac{dz}{dt}$ at $t = \frac{\pi}{2}$

Solution:
$$z = e^{xy}$$
, $x = t \cos t$, $y = t \sin t$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

$$= e^{xy}y(\cos t - t\sin t) + e^{xy}x(\sin t + t\cos t)$$

At
$$t = \frac{\pi}{2}$$
, $x = 0$, $y = \frac{\pi}{2}$

$$\Rightarrow$$
 Hence, $\frac{dz}{dt}\Big|_{t=\frac{\pi}{2}} = e^0 \left[\frac{\pi}{2} \left(0 - \frac{\pi}{2} \right) + 0 \right] = -\frac{\pi^2}{4}$

COMPOSITE FUNCTIONS

- **\(\phi\)** (b) Let z = f(x, y) and $x = \Phi(u, v)$, $y = \Psi(u, v)$ so that z is function of x, y and x, y are function of u, v.
- \clubsuit The three relations define z as a function of u, v. In such cases z is called a **composite function of** u, v.
- **\differsigner e.g.** (i) z = xy, $x = e^{u} + e^{-v}$, $y = e^{-u} + e^{v}$
- **\(\ldot\)** (ii) $z = x^2 y^2$, x = 2u 3v, y = 3u + 2v
- \diamond define z as a composite function of u and v
- **Differentiation:** Let z = f(x, y) possess continuous first order partial derivatives and $x = \Phi(u, v)$, $y = \Psi(u, v)$ possess continuous first order partial derivatives then,

VIDYAVIHAR UNIVERSITY K J Somaiya College of Engineering EXAMPLE-14

If
$$x^2 = au + bv$$
, $y^2 = au - bv$ and $z = f(x, y)$, Prove that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2\left(u\frac{\partial z}{\partial u} + v\frac{\partial z}{\partial v}\right).$$

Solution:
$$z = f(x, y), \quad x^2 = au + bv, \quad y^2 = au - bv$$

$$v \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{bv}{2x} - \frac{\partial z}{\partial y} \cdot \frac{bv}{2y}$$

❖ Adding Eqs. (1) and (2),

$$u \frac{\partial z}{\partial u} + v \frac{\partial z}{\partial v}$$

$$ightharpoonup ext{If } u = \log(x^2 + y^2)$$
 , $v = \frac{y}{x}$, prove that $x \frac{\partial z}{\partial y} - y \frac{\partial z}{\partial x} = (1 + v^2) \frac{\partial z}{\partial v}$

Solution:
$$z = f(u, v), u = \log(x^2 + y^2), v = \frac{y}{x},$$

Hence,
$$x \frac{\partial y}{\partial y} - y \frac{\partial y}{\partial x} = \frac{\partial y}{\partial v} + \frac{y}{x^2} \frac{\partial y}{\partial v} = (1 + v^2) \frac{\partial y}{\partial y}$$

.....(1)

.....(2)

If
$$u = f(x^2 - y^2, y^2 - z^2, z^2 - x^2)$$
, prove that $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z} = 0$.

Solution: Let
$$l = x^2 - y^2$$
, $m = y^2 - z^2$, $n = z^2 - x^2$

$$rightharpoonup rac{\partial l}{\partial y} = -2y, \quad rac{\partial m}{\partial y} = 2y, \quad rac{\partial n}{\partial y} = 0$$

$$riangledown rac{\partial l}{\partial z} = 0, \qquad rac{\partial m}{\partial z} = -2z, \quad rac{\partial n}{\partial z} = 2z$$

$$u = f(x^2 - y^2, y^2 - z^2, z^2 - x^2) = f(l, m, n)$$

If $x = e^u cosec v$, $y = e^u \cot v$ and z is a function of x and y, prove that

Solution: $z = f(x, y), x = e^u cosec v, y = e^u \cot v$

$$= \frac{\partial z}{\partial x} e^u cosec v + \frac{\partial z}{\partial y} e^u \cot v$$

$$= \frac{\partial z}{\partial x} (-e^u cosec \ v \cot v) + \frac{\partial z}{\partial y} (-e^u cosec \ v)$$

* R.H.S =
$$e^{-2u} \left[\left(\frac{\partial z}{\partial u} \right)^2 - \sin^2 v \left(\frac{\partial z}{\partial v} \right)^2 \right]$$

$$e^{-2u} \left[\left(\frac{\partial z}{\partial x} \right)^2 e^u cosec^2 v + \left(\frac{\partial z}{\partial y} \right)^2 e^{2u} \cot^2 v + 2 \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} e^{2u} cosec v \cot v \right]$$

$$+(-\sin^2 v)\left(\frac{\partial z}{\partial x}\right)^2\left(e^{2u}cosec^2 v\cot^2 v\right) +$$

$$(-\sin^2 v) \left(\frac{\partial z}{\partial y}\right)^2 e^{2u} \csc^4 v + (-\sin^2 v) 2 \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} e^{2u} \csc^3 v \cot v \right]$$

$$= \left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \text{L.H.S.}$$

- **Solution:** Adding the given results, $2x = 2e^{\theta}(\cos \Phi + i \sin \Phi)$
- $x : x = e^{\theta} \cdot e^{i\Phi} = e^{\theta + i\Phi}$
- and subtracting results, $2y = 2e^{\theta}(\cos \Phi i \sin \Phi)$
- $\mathbf{\dot{v}} : \mathbf{v} = e^{\theta i\Phi}$
- \bullet Now, u is a function of x, y and x, y are functions of θ and Φ

$$= x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial y} + y \frac{\partial u}{\partial y} \qquad \dots (3)$$

: Adding the two results, (5) and (6) we get,

.....(6)