Lecture 6: Image Video QA, and Reasoning

Papers for Lecture 6 (Image/ Video QA, and Reasoning)

P6-1: Image QA and Reasoning: Presenter: Wu Yihang; Reader: Cheng Yi

- (Classic SOTA-1) P Anderson, X He, C Buehler, D Teney, M Johnson, S Gould, & L Zhang. Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering. CVPR 2018.
- (Classic SOTA-2) J Lu, J Yang, D Batra, et al. Hierarchical Question-Image Co-Attention for Visual Question Answering. NeurIPS 2016.
- (Popular Dataset, To-Read) D A Hudson & C D Manning. GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. CVPR 2019.

P6-2: Video QA and Reasoning: Presenter: He Yingzhi; Reader: Yannis Mohamed Christian Montreuil

- (Must-Read) A J Piergiovanni, K Morton, W Kuo, et al. Video Question Answering with Iterative Video-Text Co-Tokenization. ECCV 2022.
- (Must-Read) A Yang, A Miech, J Sivic, I Laptev & C Schmid. Just Ask: Learning to Answer Questions from Millions of Narrated Videos. CVPR 2021.
- (Survey: To-Read): Y Zhong, W Ji, J Xiao, Y Li, W Deng & TS Chua. Video Question Answering: Datasets, Algorithms and Challenges. EMNLP 2022.
- (First Dataset, Must-Read): J Xiao, X Shang, A Yao & TS Chua. NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions. CVPR 2021

From Visual Classification to Captioning and QA

VQA, towards Al-compete visual understanding

(A) Classification

(B) Detection

(C) Segmentation

A man sits on bench with cat and dogs besides him.

- How many dogs are there? 2.
 - What color is the cat on the right of the man? Brown.
 - Is there an old man on the bench? Yes.
- Where is on the man's left hand? A black dog.

(F) VQA

- - - '

- These are mostly factoid QA
- Like text-QA, the main challenges are to go towards temporal, reasoning-based and generative QA

+ Count

Attributes
+ Relation

Recognition
- + Relation

Segmentation

+ Relation

Detection

VQA Definition

 VQA aims to leverage advanced visual and linguistic analytics, as well as external knowledge, to provide precise answers to user's natural language questions about the visual contents [1,2].

Problem Formulation:

- Input: Video, Question.
- Output: (Video) Answer
- **Task Settings**: Classification (Multiple-choice & Open-ended)

$$a^* = \arg \max_{\{a \in A\}} P(a \mid v, q; \theta)$$

What was behind the lady when she was bent down?

A0 A painting

A1 A couch

A2 A metal shelf

A3 A file cabinet

A4 A car

How many times does the cat touch the dog? 4

What action does the cat do 4 times? Touch dog

Types of QA and VQA

- Text-based QA has been a hot research topic since 2000.
- Evolution of text-based QA:
 - Factoid QA
 - Knowledge-based QA, Definition QA, List QA
 - Reasoning (what-if), Temporal, Opinion QA etc.
 - Interactive QA & Dialogue
- Visual QA follows the same evolution path:
 - Factoid VQA: most current systems
 - Temporal and reasoning VQA current trends
 - Multimodal Dialogue emerging development, will accelerate following ChatGPT

Image and Video QA

ImageQA

(Example from Antol et al. ICCV 2015)

What color is her mustache? Yellow What is the mustache made of? Banana

Can I use this to buy something? Yes

VideoQA

(Example from Jang et al. CVPR 2017, and Xiao et al. 2021)

How many times did the cat touch the dog? 4 What action does the cat do 4 times? Touch dog

Why did the toddler in red cry at the end of the video? Fell backwards.

VQA Methods

ImageQA:

VideoQA:

Visual-Text Interaction

- Hierarchical attention (word/ phrase/ sentence)
- Co-attention (img2qns, qns2img)
- Stack attention (multi-turn).
- Bottom-up & top-down attention (region proposals & partiallycompleted sequence output)

Also incorporate additional info

Video Embedding

- Spatial-temporal attention.
- Appearance & motion feature.
- Multi-granularity (frame/clip/video).

A Study of SOTA Methods on Temporal & Causal Questions

Analysis of performance:

- NExT-QA dataset: 48% causal(C),
 29% temporal (T) and 23%
 descriptive (D) questions
- Multiple-choice questions: Performances are good (≥ 43% in accuracy); gap between C&T vs. D questions is ≈10%

(a) Distribution of question types

- Open questions: Performances are bad for SOTA methods, especially for C&T questions, marginally better than blindQA; gap between C & T vs. D questions is > 30%
- Current SOTA methods are weak on C&T questions, and do not have good understanding of language & visual content
- Recent approaches formulate VQA as a ranking problem

Methods	Acc_C	Acc_T	Acc_D	Acc
EVQA [2]	43.27	46.93	45.62	44.92
STVQA [17]	45.51	47.57	54.59	47.64
CoMem [11]	45.85	50.02	54.38	48.54
HCRN [24]	<u>47.07</u>	<u>49.27</u>	54.02	48.89
HME [9]	46.76	48.89	<u>57.37</u>	<u>49.16</u>
HGA [19]	48.13	49.08	57.79	50.01

Table 5: Results of multi-choice QA on test set. All are based on fine-tuned BERT representation.

Methods	$WUPS_C$	$WUPS_T$	$WUPS_D$	WUPS
Popular	12.19	10.79	31.94	16.12
BlindQA	14.87	18.35	45.78	22.66
STVQA [17]	15.24	18.03	47.11	23.04
HCRN [24]	16.05	17.68	49.78	23.92
HME [9]	15.78	<u>18.40</u>	50.03	24.06
UATT [54]	<u>16.73</u>	18.68	48.42	24.25
HGA [19]	17.98	17.95	50.84	25.18

Table 7: Results of open-ended QA on test set. We provide two reference answers for half of the test questions, and report the highest WUPS score between them.

Xiao et al. NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions. CVPR 2021.

Current Trends in VQA research

The impact of LLM:

- Towards enhancing LLM with multimodal capabilities: Multimodal Foundation Model
 - Use LLM as the brain for Multimodal QA and Conversation
 - General idea: adapt frozen instruction-tuned LLMs to understand multimodal inputs and generate multimodal outputs
 - Move towards aligning text or image with multimodalities
 For example: ImageBind, ChatBridge, PandaGPT, NExT_GPT, etc.

Current Trends in VQA research

The impact of LLM:

- LLM-Enhanced Multimodal Framework for QA and Conversation
 - Support multimodal input and multimodal output
 - LLM performs reasoning and determines the best media as answers (the generation)
 - Many remaining challenges

Project: https://next-gpt.github.io; Paper: https://arxiv.org/pdf/2309.05519

Short Idea/ Opinion 1

Topic:

Can LFM (Large Foundation Model) use public data for training and content generation: what are the issues and guidelines?

Requirements for the Paper:

Deadline: 16 Feb @1700

Thanks all for submitting on time

hts. It must also solution and your
ences).

Grading Guidelines:

- I am looking for new angles into the issues, as well as innovative ideas, insights and solutions.
- I will award a **B** if the paper covers most points above, and **A** for innovative ideas and insightful solution.

Deadlines:

Article 1: 16 Feb @1700 (Submit-Article1)

Requirements for Brave-New-Idea (BNI) papers

Key Deadlines for BMI Papers:

- Submission of title and Abstract: 24 Feb (Sat), @Submit-BNI-Abstract
- Final paper Due: 5 Apr (Fri) @ 1700
- Presentation to Class (5 mins each): 9 Apr (1100-1200) & 16 Apr (1000-1200)

Guidelines:

- Must be in multimedia and is expected to have a high component of novelty
- Should address an understudied, open problem in multimedia, while the ideas should be supported with sufficient scientific argumentation, experimentation and/or proof.
- The paper should contain ideas not previously submitted nor published.
- Should be within **5 pages**, excluding references, in ACM 2-column format.

Grading Criteria:

Novelty; Conceptual leap; Depth of Impact; Breadth of impact

Papers for Lecture 7 (Diffusion Models for MM Generation)

- P7-1: Diffusion Models for Image Generation: Presenter: Xing Naili; Reader: Chai Zenghao (Must-Read) J Ho, A Jain & P Abbeel. Denoising Diffusion Probabilistic Models. NeurIPS 2020 (Must-Read) J Song, C Meng & S Ermon. Denoising Diffusion Implicit Models. ICLR 2021. (To-Read) Y Song, et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021.
- P7-2: Condition-based Diffusion Models: Presenter: Chen Xihao; Reader: Nguyen Thong Thanh
 (Must-Read) X Shen, et al. Fine Tuning Text-to-Image Diffusion Models for Fairness. ICLR 2024.
 (Must-Read) R Rombach, et al. High-Res Image Synthesis with Latent Diffusion Models. CVPR 2022.
 (To-Read, Best Paper) L Zhang, et al. Adding Conditional Control to Text-to-Image Diffusion Models. ICCV 2023.
- P7-3: Image/Video Editing & Personalization: Presenter: Lin Xinyu; Reader: Zheng Jingnan (Must-Read) A Hertz, et al. Prompt-to-Prompt Image Editing with Cross Attention Control. ICLR 2023.
 - (To-Read) H Ouyang, et al. CoDeF: Content Deformation Fields for Temporally Consistent Video Processing. arXiv 2023.
 - (Must-Read) N Ruiz, et al. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. CVPR 2023.