

DATASET

APPROACHS 1. Gamma transform 2. Gamma for augmentation 3. Only Normal sample 4. crop

CROSS VALIDATION

- Use StratifiedKFold
- 5 FOLDS
- Save weights of best cross-validation
- ResNet50 classifier
- Loss function: sparse categorical crossentropy
- Optimizer: SGD
- Learning rate: Cosine Decay with Warm-Up
 - weight_decay=5e-4,
 - o momentum=0.9
- Train for 12 epochs
- gamma_value = 1.5

MAIN MODEL Load best weights from cross-validation Use whole dataset for train Loss function: sparse categorical crossentropy Optimizer: SGD Learning rate: fixe(0.01)

• Train for 5 epochs

GAMMA FOR AUGMENTATION

- Apply gamma on all dataset
- add new images to dataset
- Dataset contain normal images + gamma version
- gamma_value = 1.5

CROSS VALIDATION

- Use StratifiedKFold
- 5 FOLDS
- Save weights of best cross-validation
- ResNet50 classifier
- Loss function: sparse categorical crossentropy
- Optimizer: SGD
- Learning rate: Cosine Decay with Warm-Up
 - weight_decay=5e-4,
 - o momentum=0.9
- Train for 12 epochs

MAIN MODEL Load best weights from cross-validation • Use whole dataset for train

- Loss function: sparse categorical crossentropy
- Optimizer: SGD
- Learning rate: Cosine Decay with Warm-Up
 - weight_decay=5e-4,
 - o momentum=0.9
- Train for <u>15</u> epochs

CROSS VALIDATION

- Use StratifiedKFold
- 5 FOLDS
- Save weights of best cross-validation
- ResNet50 classifier
- Loss function: sparse categorical crossentropy
- Optimizer: SGD
- Learning rate: Cosine Decay with Warm-Up
 - weight_decay=5e-4,
 - o momentum=0.9
- Train for 20 epochs

CROP

