Algorithmique : Calcul de termes et de sommes de termes d'une suite.

- Soit (u_n) la suite définie par $u_n = n^3$ pour tout entier n.
- Soit (v_n) la suite définie par récurrence par $v_0 = 4$ et pour tout entier n, $v_{n+1} = 2v_n + 1$.
- 1. Réaliser un programme permettant de calculer les 30 premiers termes de (u_n) .
- 2. Réaliser un programme permettant de calculer v_{30} .
- 3. Réaliser un programme permettant de trouver le plus petit entier n pour lequel $u_n > 10^{10}$.
- 4. Réaliser un programme permettant de trouver le plus petit entier n pour lequel $v_n > 10^{10}$.
- 5. Réaliser un programme permettant de calculer la somme des 30 premiers termes de (u_n) .
- **6.** Réaliser un programme permettant de calculer les 30 premiers termes de (v_n) .

- Soit (u_n) la suite définie par $u_n = n^3$ pour tout entier n.
- Soit (v_n) la suite définie par récurrence par $v_0 = 4$ et pour tout entier n, $v_{n+1} = 2v_n + 1$.
- 1. Réaliser un programme permettant de calculer les 30 premiers termes de (u_n) .

Pour *N* allant de 0 à 29 *R* prend la valeur *N*³ Afficher *R* FinPour

2. Réaliser un programme permettant de calculer v_{30} .

V prend la valeur 4 Pour N allant de 1 à 30 V prend la valeur 2V + 1FinPour Afficher V

3. Réaliser un programme permettant de trouver le plus petit entier n pour lequel $u_n > 10^{10}$.

N prend la valeur 0 Tant que $N^3 \le 10^{10}$ N prend la valeur N+1FinTantque Afficher N

4. Réaliser un programme permettant de trouver le plus petit entier n pour lequel $v_n > 10^{10}$.

5. Réaliser un programme permettant de calculer la somme des 30 premiers termes de (u_n) .

S prend la valeur 0 Pour N allant de 1 à 29 S prend la valeur $S + N^3$ FinPour Afficher S

6. Réaliser un programme permettant de calculer les 30 premiers termes de (v_n) .

V prend la valeur 4 Pour N allant de 1 à 30 V prend la valeur 2V+1 Afficher V FinPour