

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Week 9: ARIMA models

AR(1) model

$$y_t = c + \phi_1 y_{t-1} + \varepsilon_t$$
$$(1 - \phi_1 B) y_t = c + \varepsilon_t$$

- When ϕ_1 = 0, y_t is **equivalent to WN** (with mean c)
- When ϕ_1 = 1 and c = 0, y_t is **equivalent to a RW**
- When ϕ_1 = 1 and $c \neq 0$, y_t is **equivalent to a RW with drift**
- When ϕ_1 < 0, y_t tends to oscillate between positive and negative values.

Autoregressive models

A multiple regression with **lagged values** of y_t as predictors.

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

= $c + (\phi_1 B + \phi_2 B^2 + \dots + \phi_p B^p) y_t + \varepsilon_t$

Autoregressive models

A multiple regression with **lagged values** of y_t as predictors.

$$y_{t} = c + \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + \dots + \phi_{p}y_{t-p} + \varepsilon_{t}$$

$$= c + (\phi_{1}B + \phi_{2}B^{2} + \dots + \phi_{p}B^{p})y_{t} + \varepsilon_{t}$$

$$(1 - \phi_{1}B - \phi_{2}B^{2} - \dots - \phi_{p}B^{p})y_{t} = c + \varepsilon_{t}$$

$$\phi(B)y_{t} = c + \varepsilon_{t}$$

- lacksquare ε_t is white noise.
- $\phi(B) = (1 \phi_1 B \phi_2 B^2 \cdots \phi_p B^p)$

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the parameters are needed.

General condition for stationarity

Complex roots of $\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the parameters are needed.

General condition for stationarity

Complex roots of $\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

- For p = 1: $-1 < \phi_1 < 1$.
- For p = 2: $-1 < \phi_2 < 1$ $\phi_2 + \phi_1 < 1$ $\phi_2 \phi_1 < 1$.
- More complicated conditions hold for $p \ge 3$.
- fable takes care of this.

Moving Average (MA) models

A multiple regression with **past** errors as predictors.

$$y_{t} = c + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}$$

$$= c + (1 + \theta_{1}B + \theta_{2}B^{2} + \dots + \theta_{q}B^{q})\varepsilon_{t}$$

$$= c + \theta(B)\varepsilon_{t}$$

Moving Average (MA) models

A multiple regression with **past** errors as predictors.

$$y_{t} = c + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}$$

$$= c + (1 + \theta_{1}B + \theta_{2}B^{2} + \dots + \theta_{q}B^{q})\varepsilon_{t}$$

$$= c + \theta(B)\varepsilon_{t}$$

- lacksquare ε_t is white noise.
- $\bullet \theta(B) = (1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q)$

Invertibility

General condition for invertibility

Complex roots of $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

(

Invertibility

General condition for invertibility

Complex roots of $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

- For q = 1: $-1 < \theta_1 < 1$.
- For q = 2: $-1 < \theta_2 < 1$ $\theta_2 + \theta_1 > -1$ $\theta_1 \theta_2 < 1$.
- More complicated conditions hold for $q \ge 3$.
- fable takes care of this.

6

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags — 1, 2, 3, . . . , k-1 — are removed.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = k th partial autocorrelation coefficient
 = equal to the estimate of ϕ_k in regression:
 y_t = c + $\phi_1 y_{t-1}$ + $\phi_2 y_{t-2}$ + \cdots + $\phi_k y_{t-k}$ + ε_t .

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = k th partial autocorrelation coefficient
 = equal to the estimate of ϕ_k in regression:
 y_t = c + $\phi_1 y_{t-1}$ + $\phi_2 y_{t-2}$ + \cdots + $\phi_k y_{t-k}$ + ε_t .

- Varying number of terms on RHS gives α_k for different values of k.
- $\alpha_1 = \rho_1$
- same critical values of $\pm 1.96/\sqrt{T}$ as for ACF.

ACF and PACF interpretation

AR(p)

- ACF dies out in an exponential or damped sine-wave manner
- PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when

- the ACF is exponentially decaying or sinusoidal
- there is a significant spike at lag p in PACF, but none beyond p

ACF and PACF interpretation

MA(q)

- PACF dies out in an exponential or damped sine-wave manner
- ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when

- the PACF is exponentially decaying or sinusoidal
- there is a significant spike at lag q in ACF, but none beyond q

ARIMA models

```
ARIMA(p, d, q) model: \phi(B)(1 - B)^d y_t = c + \theta(B)\varepsilon_t
```

AR: p = order of the autoregressive part

I: d =degree of first differencing involved

MA: q = order of the moving average part.

ARIMA models

ARIMA(p, d, q) model: $\phi(B)(1 - B)^d y_t = c + \theta(B)\varepsilon_t$

AR: p = order of the autoregressive part

I: d = degree of first differencing involved

MA: q = order of the moving average part.

- Conditions on AR coefficients ensure stationarity.
- Conditions on MA coefficients ensure invertibility.
- White noise model: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with const.
- \blacksquare AR(p): ARIMA(p,0,0)
- \blacksquare MA(q): ARIMA(0,0,q)

R model

Intercept form

$$(1 - \phi_1 B - \cdots - \phi_p B^p) y_t' = c + (1 + \theta_1 B + \cdots + \theta_q B^q) \varepsilon_t$$

Mean form

$$(1 - \phi_1 B - \dots - \phi_p B^p)(y_t' - \mu) = (1 + \theta_1 B + \dots + \theta_q B^q)\varepsilon_t$$

- $y_t' = (1 B)^d y_t$
- \blacksquare μ is the mean of y'_t .
- $c = \mu(1 \phi_1 \cdots \phi_p).$
- fable uses intercept form

1

Understanding ARIMA models

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If c = 0 and d = 2, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 0, the long-term forecasts will go to the mean of the data.
- If $c \neq 0$ and d = 1, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 2, the long-term forecasts will follow a quadratic trend.

Understanding ARIMA models

Forecast variance and *d*

- The higher the value of *d*, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Cyclic behaviour

- For cyclic forecasts, $p \ge 2$ and some restrictions on coefficients are required.
- If p = 2, we need ϕ_1^2 + 4 ϕ_2 < 0. Then average cycle of length

$$(2\pi)/\left[\arccos(-\phi_1(1-\phi_2)/(4\phi_2))\right]$$