

Indice

1	Abstract State Machines				
	1.1	Formalismo			
		1.1.1	Vocabolario	4	
		1.1.2	Costanti	4	
		1.1.3	Funzioni statiche	4	
		1.1.4	Fuzioni dinamiche	4	
		1.1.5	Stato ASM	4	
		1.1.6	Domini ASM	5	
		1.1.7	Termini ASM	5	

Capitolo 1

Abstract State Machines

Le ASM sono delle FSM (*Final State Machines*) con stati generalizzati; rappresentano la forma matematica di macchine che estendono la nozione di FSM, ampliando la definzione di stato e modificando la forma delle transizioni.

Stati

Gli stati di controllo non strutturati vengono sostituiti da stati (strutturati) che modellano:

- dati complessi arbitrati (con domini di base e funzioni per la struttura)
- operazioni per la manipolazione di dati

Possiamo definire gli stati come delle algebre.

CurrTime: Real
DisplayTime: Real

Delta: Real

+ : Real x Real -> Real

Transizioni

Le transizione sono "regole" che descrivono il cambiamento di funzioni da uno stato al successivo; permettono di modificare la struttura algebrica durante l'esecuzione della ASM.

 $if\ condition\ then\ Updates$

Negli FSM le transizioni sono rappresentate con delle frecce.

Le ASM sono dotate di un ambiente di tool per:

- editing
- simulazione
- validazione
- verifica
- generazioni di casi di test

Un modello ASM può essere visto come pseudocodice su strutture dati astratte.

Da FSM a ASM

Domini: Stati: insieme degli stati Closed click complete click Funzioni: Opening ctl_state: Stati click click: boolean complete click complete: boolean StayOpen timeout: boolean Regole di transizione: if ctl_state = Closing and complete if ctl_state = Opering and click then ctl_state:= Closed ctl_state:= Closing Inizializzazione: if ctl_state = Closing and click State = {Opening, Closing, Open,} then ctl_state = Open ctl_state:= Opening

Possiamo definire ASM = (header, body, main rule, inizialization)

```
asm FSM
Domini:
                                                                           header
                                       import StandardLibrary
State: insieme degli stati
                                       signature:
                                          controlled ctl_State: String
Funzioni:
                                          monitored input: String
ctl_State: State
                                          out output: String
input: String
output: String
                                       definitions:
                                                                                          body
                                       rule r_s1_1 = if ctl_ = "s1" and input = "1" then
Regole di transizione:
                                                       par ctl_State:= "s1", output:= "o" endpar
r_s1_1 = if ctl_State = s1 and
            input = "1"
                                       rule r_s1_o = if ctl_State = "s1" and input = "o" then ...
        then
                                       rule r_s2_1 = ...
            ctl_State:= "s1"
                                       rule r_s2_o = ...
            output:= "o"
r_s1_o =
                                       main rule r_Main = par r_s1_1, r_s1_0, r_s2_1, r_s2_0 endpar
r_s2_1 = ...
                     main rule
r_s2_o = ...
                                       default init so:
                 initialization
                                             function currentState = "s1"
```

1.1 Formalismo

1.1.1 Vocabolario

<u>DEF:</u> Un vocabolario Σ è una collezione finita di nomi di funzioni.

Le funzioni possono essere dinamiche o statiche, a seconda che l'interpretazione del nome della funzione cambia o no da uno stato al successivo (funzioni in senso matematico).

1.1.2 Costanti

Le funzioni statiche di arietà zero sono dette **costanti**. Ogni vocabolario contiene sempre le costanti *undef, true, false*. Ad esempio:

- i numeri sono costanti numeriche
- voto = 30

1.1.3 Funzioni statiche

Le funzioni statiche (arietà > 0) sono definite tramite una legge fissa. Ad esempio:

- operazioni tra numeri (+, -, ...)
- operazioni tra booleani (AND, OR, ...)
- max(m, n)

1.1.4 Fuzioni dinamiche

Le funzioni dinamiche di arietà zero sono le variabili dei linguaggi di programmazione.

1.1.5 Stato ASM

<u>DEF:</u> Fissato un vocabolario Σ , uno **stato** A del vocabolario Σ è un insieme non vuoto X, detto *superuniverso di* A, con le interpretazioni dei nomi delle funzioni di Σ .

Da questa definizione, segue che:

- se f è un nome di funzione n-aria di Σ , allora la sua interpretazione f^A è una funzione da X^n a X
- \bullet Se c è un nome di costante di $\Sigma,$ allora la sua interpretazione c^A è un elemento di X

Possiamo definire il superuniverso come un "dominio di interpretazione"; i simboli del vocabolario, presi singoralmente, sono soltanto simboli.

1.1.6 Domini ASM

Il superuniverso di uno stato ASM è suddiviso in *universi*, rappresentati dalle loro funzioni caratteristiche.

Se A è un sottoinsieme dell'insieme X, la funzione caratteristica di A è quella funzione da X all'insieme $\{0,1\}$ che sull'elemento $x \in X$ vale 1 se x appartiene ad A, e vale 0 in caso contrario.

Ogni universo rappresenta un dominio. In base a questa rappresentazione degli insiemi in termini di funzioni caratteristiche, uno stato di una ASM consente di modellare **domini eterogenei**.

Alcuni esempi di domini:

- predefiniti, come Interi, String, ...
- definiti dall'utente, come tipi astratti o a partire da altri domini

Esempio

Dominio $X = \{1, 2, a, b, mario, pippo\}$, ripartito in domini:

- $Interi = \{1.2\}$
- $Char = \{a, b\}$
- $String = \{mario, pippo\}$

1.1.7 Termini ASM

<u>DEF:</u> i termini di Σ sono espressioni sintattiche così costruite:

- 1. Variabili v_0, v_1, v_2, \ldots sono termini
- 2. Costanti c di Σ sono termini
- 3. Se f è un nome di funzione n-aria di Σ e t_1, \ldots, t_n sono termini $\Rightarrow f(t_1, \ldots, t_n)$ è un termine

Ad esempio:

- $v_0 + v_1$
- $1 + (v_2 * 0)$

Un termine che non contiene variabili è detto chiuso. I termini sono oggetti sintattici. Assumono significato (o semantica) nello stato; il suo valore è l'interpretazione del termine in A.