COMP 446 / 546 ALGORITHM DESIGN AND ANALYSIS

LECTURE 3 DIVIDE AND CONQUER ALPTEKİN KÜPÇÜ

Based on slides of Shafi Goldwasser, David Luebke, George Kollios, Roger Crawfis, and Cevdet Aykanat

RECAP

- What have we seen?
 - Worst-case vs. average-case analysis
 - Stable Marriage Problem
 - Fun problem applicable to many scenarios
 - Algorithm design must take into account the goals
 - Simple correctness proofs
 - Insertion Sort
 - A daily algorithm (sorting a deck of cards)
 - Merge Sort
 - Analyzing recurrence relations
 - Divide-and-Conquer paradigm
- Let's remember:
 - Binary Search

MULTIPLYING LARGE INTEGERS

- Given two n-bit integers a and b, compute c=ab
- Naive (grade-school) algorithm
- Cost?
- Total work Θ(n²)

MULTIPLYING LARGE INTEGERS: DIVIDE AND CONQUER

Divide: Write
$$a = A_1 2^{n/2} + A_0$$

 $b = B_1 2^{n/2} + B_0$

for A_0 , A_1 , B_0 , B_1
 $n/2$ bit integers
Assume $n=2^k$ w.l.o.g.

Conquer:
$$ab = A_1B_1 \ 2^n + A_1B_0 \ 2^{n/2} + B_1A_0 \ 2^{n/2} + A_0B_0$$

= $A_1B_1 \ 2^n + (A_1B_0 + B_1A_0) \ 2^{n/2} + A_0B_0$

Reduces to 4 multiplications of n/2-bit integers (done recursively), plus 3 additions and 2 shifts.

Additions and shifts cost $\Theta(n)$.

MULTIPLYING LARGE INTEGERS: DIVIDE AND CONQUER

- □ Case 1 of Master Theorem
- \Box T(n)= Θ (n²)

No better than the grade school algorithm???

MULTIPLYING LARGE INTEGERS: KARATSUBA'S ALGORITHM

Compute $x = A_1B_1$, $y = A_0B_0$, $z = (A_0+A_1)(B_0+B_1)$ Let $ab = x 2^n + (z-y-x) 2^{n/2} + y$

Multiply (n,a,b)

- a and b are n-bit integers
- assume n is a power of 2 for simplicity
- 1. If n<2 then use grade-school algorithm else
- 2. $A_1 \leftarrow a \text{ div } 2^{n/2}$; $B_1 \leftarrow b \text{ div } 2^{n/2}$
- 3. $A_1 \leftarrow a \mod 2^{n/2}$; $B_1 \leftarrow b \mod 2^{n/2}$
- 4. \times MULTIPLY (n/2, A₁, B₁)
- 5. y MULTIPLY $(n/2, A_0, B_0)$
- 6. z MULTIPLY $(n/2, A_0 + A_1, B_0 + B_1)$
- 7. Output $x 2^n + (z-x-y) 2^{n/2} + y$

MULTIPLYING LARGE INTEGERS: KARATSUBA'S ALGORITHM

- □ Case 1 of Master Theorem
- \Box T(n)= $\Theta(n^{\log_2 3} = n^{1.58496})$

Much better. But can we do even better??

WHY STOP HERE?

- We can obtain a sequence of asymptotically faster integer multiplication algorithm by splitting the inputs into more pieces.
- If we split A and B into k equal parts than the corresponding multiplication algorithm is obtained from an interpolation-based polynomial multiplication algorithm of two degree k-1 polynomials.
- Since the product is of degree 2(k-1), we need to evaluate 2k-1 points. Thus there are 2k-1 multiplications each of size n/k and time for splitting and adding is still O(n).
- T(n) = $(2k-1)T(\frac{n}{k})$ +cn = $\Theta(n^{\log_k 2k-1}) \approx n^{\varepsilon}$ for any $\varepsilon > 1$
- Fastest: $T(n) = \Theta$ (n log n log log n)
 - Based on the Fast Fourier Transform

EXPONENTIATION

- Problem: compute an, where n is in N.
- Naive algorithm: Compute a¹, a², a³, ..., an Complexity: Θ(n) multiplications
- Divide-and-Conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if n is even} \\ a^{n-1/2} \cdot a^{n-1/2} \cdot a & \text{if n is odd} \end{cases}$$

$$T(n) = T(n/2) + c => T(n) = \Theta(\log n)$$
 multiplications

TIPLICATION

$$\begin{bmatrix} c_{11} & c_{12} & \dots & \dots & c_{1n} \\ \vdots & c_{22} & \ddots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ \vdots & a_{22} & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \dots & \dots & b_{1n} \\ \vdots & b_{22} & \ddots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & \cdots & b_{nn} \end{bmatrix}$$

$$\mathbf{c}_{ij} = \sum_{1 \le k \le n} \mathbf{a}_{ik} \cdot \mathbf{b}_{kj}$$

STANDART ALGORITHM

```
for i \leftarrow 2 to length[A]

do for j \leftarrow 1 to n

do c_{ij} \leftarrow 0

for k \leftarrow 1 to n

do c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}
```

Running time = $\Theta(n^3)$ unit multiplications and additions

Non-square matrices?

DIVIDE AND CONQUER ALGORITHM

Idea: n x n matrix = 2 x 2 matrix of (n/2) x (n/2) submatrices

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$$

$$c_{11} = a_{11} b_{11} + a_{12} b_{21}$$

$$c_{12} = a_{11} b_{12} + a_{12} b_{22}$$

$$c_{21} = a_{21} b_{11} + a_{22} b_{21}$$

$$c_{22} = a_{21} b_{21} + a_{22} b_{22}$$

- 8 mults of (n/2) x (n/2) submatrices
- 4 adds of (n/2) x (n/2) submatrices

ANALYSIS OF D&C ALGORITHM

- ☐ Case 1 of Master Theorem
- $\Box T(n) = \Theta(n^{\log_2 8} = n^3)$

No better than the standard algorithm??

STRASSEN'S IDEA

- Same Idea: n x n matrix = 2 x 2 matrix of (n/2) x (n/2) submatrices
- But multiply 2 x 2 matrices with only 7 recursive mults

•
$$P_1 = a_{11} \times (b_{12} - b_{22})$$

•
$$P_2 = (a_{11} + a_{12}) \times b_{22}$$

•
$$P_3 = (a_{21} + a_{22}) \times b_{11}$$

•
$$P_4 = a_{22} \times (b_{21} - b_{11})$$

•
$$P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22})$$

•
$$P_6 = (a_{11} - a_{22}) \times (b_{21} + b_{22})$$

•
$$P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12})$$

•
$$C_{11} = P_5 + P_4 - P_2 + P_6$$

•
$$C_{12} = P_1 + P_2$$

•
$$C_{21} = P_4 + P_3$$

•
$$C_{22} = P_5 + P_1 - P_3 - P_7$$

7 mults18 adds/subs

ANALYSIS OF STRASSEN'S ALGORITHM

- ☐ Case 1 of Master Theorem
- \Box T(n)= $\Theta(n^{\log_2 7} = n^{2.81})$

Beats the standard algorithm for n > 30.

Best known today: $\Theta(n^{2.376})$ [Coppersmith-Winograd] only of theoretical interest.

CONCLUSIONS

- Divide and conquer is just one of several powerful techniques for algoritm design.
 - Can lead to more efficient algorithms.
- Divide and conquer algorithms can be analyzed using recurrence relations.
 - So practice this math.

QUICKSORT

- Proposed by C.A.R. Hoare in 1962.
- Divide and conquer algorithm but the work is in divide rather than in combine
- Different versions:
 - Basic: Good in average case (for a random input)
 - Randomized: good for all inputs in expectation (Randomized Las Vegas algorithm)
- Sorts in place (like insertation sort, but unlike merge sort).
- Very practical (even though asymptotically not optimal).

IDEA: DIVIDE AND CONQUER

- Quicksort an n-element array A:
- Divide:
 - 1. Pick a pivot element x in A
 - Partition the array into three sub-arrays
 L(elements < x), E(elements = x), G(elements > x)

Conquer: Recursively sort sub-arrays L and G

Combine: Do nothing.

HOW TO CHOOSE PIVOT X

Basic Quick Sort:

Pivot is the first element: X = A[1]

Time: worst case O(n²) time

O(n log n) time for average input

Randomized Quick Sort:

X is chosen at random from the array A (recursively each time a random choice)

Time: Expected O(n log n) for all inputs

Randomness gives us more control over runtime.

PSEDOCODE FOR BASIC QUICKSORT

```
QUICKSORT (A,p,r) 
if p < r then q \leftarrow PARTITION(A,p,r) \\ QUICKSORT(A,p,q-1) \\ QUICKSORT(A,q+1,r)
```

- p and r denote beginning and ending indices
- Initial call: QUICKSORT(A,1,n)

TWO PARTITIONING ALGORTIHMS

 Hoare's algorithm: Partitions around the first element of subarray (pivot x = A[p]). Partitions grow in opposite directions.

2. Lomuto's algorithm: Partitions around the last element of subarray (pivot x = A[r]). Partitions grow in the same direction.

HOARE PARTITIONING

Pick first element as pivot

- Partition array into sub-arrays:
 - Less than the pivot
 - Greater than the pivot
 - At the end, put pivot into the middle

22

1. While data[too_big_index] <= data[pivot] ++too_big_index

1. While data[too_big_index] <= data[pivot] ++too_big_index

25

1. While data[too_big_index] <= data[pivot] ++too_big_index

- 1. While data[too_big_index] <= data[pivot]
 ++too_big_index</pre>
- 2. While data[too_small_index] > data[pivot]--too_small_index

27

- 1. While data[too_big_index] <= data[pivot]
 ++too_big_index</pre>
- 2. While data[too_small_index] > data[pivot]--too_small_index

28

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.

31

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot]
 ++too_big_index</pre>
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

PARTITION RESULT

RUNTIME: O(n)

RECURSION: QUICKSORT SUB-ARRAYS

ANOTHER EXAMPLE OF PARTITIONING

• choose pivot: 436924312189356

• search: 436924312189356

• swap: <u>4 3 3 9 2 4 3 1 2 1 8 9 6 5 6</u>

• search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

• swap: <u>4 3 3 1 2 4 3 1 2 9 8 9 6 5 6</u>

• search: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

• swap: <u>4 3 3 1 2 2 3 1 4 9 8 9 6 5 6</u>

• search: <u>4 3 3 1 2 2 3 1 4 9 8 9 6 5 6</u>

• swap with pivot: 133122344989656

ANOTHER PARTITIONING SUBROUTINE

```
Partition(A, p, q) \triangleright A[p . . q]
    x \leftarrow A[p] \triangleright pivot = A[p]
                                                   Running time
    i \leftarrow p
                                                    = O(n) for n
    for j \leftarrow p + 1 to q
                                                    elements.
        do if A[j] \leq x
                 then i \leftarrow i + 1
                          exchange A[i] \leftrightarrow A[j]
    exchange A[p] \leftrightarrow A[i]
    return i
```

Invariant:

51

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
—— i					j		

Alptekin Küpçü

62

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
2	5	3	6	8	13	10	11

LOMUTO PARTITIONING

- Select the last element A[r] in the subarray A[p..r] as the pivot.
- The array is partitioned into four (possibly empty) regions.
 - 1. A[p..i] All entries in this region are < pivot.
 - 2. A[i+1..j-1] All entries in this region are > pivot.
 - 3. A[r] = pivot
 - 4. A[j..r-1] Not known how they compare to *pivot*.
- These hold before each iteration of the for loop, and constitute a loop invariant.

- Use loop invariant.
- Initialization:
 - Before first iteration
 - A[p..i] and A[i+1..j 1] are empty
 - r is the index of the pivot
- Maintenance:
 - Use inductive hypothesis

- 1. A[p..i] < pivot
- 2. A[i+1..j-1] > pivot
- 3. A[r] = pivot

```
\begin{aligned} & \underline{Partition}(A, p, r) \\ & x := A[r], i := p - 1; \\ & \textbf{for } j := p \textbf{ to } r - 1 \textbf{ do} \\ & & \textbf{ if } A[j] \leq x \textbf{ then} \\ & & i := i + 1; \\ & & A[i] \leftrightarrow A[j]; \\ & A[i + 1] \leftrightarrow A[r]; \\ & \textbf{ return } i + 1; \end{aligned}
```

Case 1: A[j] > x Increment j only.

- 1. A[p..i] < pivot
- 2. A[i+1..j-1] > pivot
- 3. A[r] = pivot

66

- <u>Case 2:</u> *A*[*j*] ≤ *x*
 - Increment i
 - Swap A[i] and A[j]
 - Increment j

- 1. A[p..i] < pivot
- 2. A[i+1..j-1] > pivot
- 3. A[r] = pivot

67

Termination:

- When the loop terminates, j = r, so all elements in A are partitioned into one of the three cases:
 - A[p..i] ≤ pivot
 - A[i+1..j-1] > pivot
 - A[r] = pivot
- At last, swap A[i+1] and A[r].
 - Before swap A[i+1] > pivot
 - After swap pivot moves from the end of the array to between the two subarrays.
 - Thus, procedure partition correctly performs the divide step.

ANALYZING QUICKSORT

- What will be the worst case for the algorithm?
- What will be the best case for the algorithm?
- Which one is more likely?
- · Will any particular input cause the worst case?

ANALYZING QUICKSORT

- What will be the worst case for the algorithm?
 - Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which one is more likely?
 - Balanced, except...
- Will any particular input cause the worst case?
 - Yes: Already-sorted or reverse-sorted input

WORST CASE

Depth Partition Time 0 n 1 n-1 ... n-1 1

- Total: n + (n + 1) + + 2 + 1
- Thus, the worst-case running time of quicksort is $O(n^2)$

WORST-CASE RECURSION TREE

$$T(n) = T(0) + T(n-1) + cn$$

WORST-CASE RECURSION TREE

$$T(n) = T(1) + T(n-1) + cn$$

$$T(n) = \Theta(n) + \Theta(n^2) = \Theta(n^2)$$

BEST-CASE

- Partition into two halves
 - T(n) = 2 T(n/2) + cn
 - $T(n) = \Theta(n \log n)$

BEST-CASE

- Partition into two halves
 - T(n) = 2 T(n/2) + cn
 - $T(n) = \Theta(n \log n)$

- What if the split is always $\frac{1}{10}:\frac{9}{10}$?
 - T(n) = ?

BEST-CASE

- Partition into two halves
 - T(n) = 2 T(n/2) + cn
 - $T(n) = \Theta(n \log n)$

- What if the split is always $\frac{1}{10}:\frac{9}{10}$?
 - $T(n) = T(\frac{1}{10}n) + T(\frac{9}{10}n) + cn$

INTUTION FOR AVERAGE CASE

- Assumption: All permutations equally likely (realistic??)
- Unlikely: Splits always the same way at every level
- Expectation: Some splits will be reasonably balanced.

 Some splits will be fairly unbalanced.
- Average case: A mix of good and bad splits.
 Good and bad splits distributed randomly through the tree.
 Good and bad splits occur in the alternate levels of the tree.
- Good split: Best-case split (n/2 and n/2)
- Bad split: Worst-case split (1 and n-1)

INTUTITION FOR AVERAGE CASE

- Two successive levels of average-case produce a half-and-half split.
- Same result as a single level of the best case.
- Thus, after spending $\Theta(n) + \Theta(n-1) = \Theta(n)$ partitioning cost, we reach the best case.
- Total tree height doubles (2 log n).
- Runtime still ⊖(n log n)

CONCLUSIONS

- Average-case analysis
 - Hard in general
 - Need to make assumptions on the input distribution or workload
 - May not represent the real scenario
 - Somewhere between best- and worst- cases
 - May be as bad as the worst case (e.g., insertion sort)
 - Or as good as the best case (e.g., quicksort)

Next: What if we can enforce input distribution?