MS-E2148 Dynamic optimization Lecture 1

Topics

- 1. Continuous-time problem, Calculus of Variations [K4]
- 2. Transversality conditions, solutions with corners [K4]
- 3. Solving optimal control problem using CoV [K5]
- 4. Minimum principle [K 5], ∞-horizon problem [KS15-16]
- 5. Minimum time and minimum control-effort problems [K5]
- 6. Discrete time problem, DP algorithm [B1.2-1.3]
- 7. DP and finite states, applications [B2.1-2.2, 4.4]
- 8. Continuous-time problem revisited, HJB equation [B3.1-3.2, K3.11]
- 9. Stationary, discounted problems, numerical methods
- (B = Bertsekas vol 1, K = Kirk, KS = Kamien/Schwartz)

Dynamic optimization

- Dynamic: something that changes in "time", sequential
- Optimization: finding the best

- We will examine two types of problems:
- Continuous-time problems (Lectures 1-5, 8)
 - Calculus of Variations (CoV), Euler equation (1750)
 - Differential calculus for functionals
 - Optimal control problems (1950)
- Discrete-time problems (Lectures 6, 7, 9)
 - Dynamic Programming (DP) algorithm
 - ► Bellman equation (1950)

Classification of problems

- Discrete vs. continuous time
- Discrete/finite state vs continuous/infinite state
- Finite vs. infinite time horizon

- ► Machine repair problem (DP)
- Brachistochrone problem (CoV)
- Goddard rocket problem (optimal control)
- Flight path/trajectory optimization
- Path from A to B in minimal time/fuel consumption
- Forestry management

Basic discrete time problem

Bertsekas, Ch 1.1.-1.2.

Discrete time, dynamic (stochastic) system

$$X_{k+1} = f_k(X_k, u_k, w_k)$$
 $k = 0, 1, ..., N-1$

- k is step or time or some index representing recursion
- ▶ State $x_k \in S_k$ is some relevant factor of the system
 - lnitial state x_0 , final state x_N
- ▶ Control $u_k \in C_k$
- ▶ Random parameter $w_k \in D_k$ can be noise, also disturbance or error
- Observation $z_k = h_k(x_k, u_{k-1}, v_k)$, where v_k observation disturbance

Inventory control

$$x_{k+1} = x_k + u_k - w_k$$

- \triangleright State x_k is stock available at stage k
- Control u_k is stock ordered at stage k
- Random parameter w_k is demand during stage k
- ▶ Purchase cost *cu_k*, *c* unit cost
- ► Holding/shortage cost $r(x_k + u_k w_k)$, r unit cost

Continuous-time optimal control problem

Dynamic system

The dynamic system is of the form,

$$\dot{x}(t) = f(x(t), u(t), t), \qquad 0 \le t \le T, \tag{1}$$

where initial state x(0) and final time T are known, and $x(t), \dot{x}(t) \in R^n, u(t) \in U \subseteq R^m, f : R^{n+m+1} \mapsto R^n$

- The state variable x, its time derivative x, and control u are vectors; the system equations (1) are first-order differential equations (n equations)
- Assume that f_i are continuously differentiable in x and continuous in u

Controls

- The admissible controls are piecewise continuous functions $\{u(t)|t \in [0,T]\}$ s.t. $u(t) \in U$ for $t \in [0,T]$
- ► The controls are also called *control trajectories*
- Assume that the differential equations (1) have solution for any admissible control; these give the state trajectories

Cost function

➤ The objective is to find the admissible control that minimizes the cost function,

$$h(x(T), T) + \int_0^T g(x(t), u(t), t) dt$$
 (2)

- \triangleright g is the (instant t) cost function, h is the final/terminal cost
- ► Functions *h* and *g* are continuously differentiable in *x* and *g* is continuous in *u*

Example

- ▶ Mass m = 1 moves on a line under force u
- $ightharpoonup x_1(t)$ is the location of the mass, $x_2(t)$ is its speed at time t
- The problem is to move the mass from given $(x_1(0), x_2(0))$ to the vicinity of the target point (\bar{x}_1, \bar{x}_2) at time T, and minimize

$$|x_1(T) - \bar{x}_1|^2 + |x_2(T) - \bar{x}_2|^2$$
 (3)

▶ so that the control is restricted to $|u(t)| \le 1 \forall t \in [0, T]$

Example

Dynamic system (1) is

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = u(t)$$

and cost (2)

$$h(x(T), T) = |x_1(T) - \bar{x}_1|^2 + |x_2(T) - \bar{x}_2|^2$$

$$g(x(t), u(t), t) = 0, \quad \forall t \in [0, T]$$

- Local analysis of functionals
 - \Rightarrow Try to find functions that minimize or maximize some functional locally
- We do not consider control problems yet; they will be handled as an extension later (constrained problem)
- Functionals for the basic problem in calculus of variations are of the form

$$J(x) = \int_{t_0}^{t_f} g(x, \dot{x}, t) dt$$

Normed vector space

- ▶ X is an arbitrary normed function space, i.e., vector space whose elements are functions $x \in X$
- Norm ||x|| satisfies:
 - 1. ||x|| > 0 and ||x|| = 0 iff x = 0
 - 2. $\|\alpha \mathbf{x}\| = |\alpha| \cdot \|\mathbf{x}\|$ for all scalars α
 - 3. $||x + y|| \le ||x|| + ||y||$
- ▶ Distance between two functions: ||x y||
- For example, $||x|| = \max_{t_0 \le t \le t_f} |x(t)|$

Functional

- ▶ Cost $J: X \mapsto R$ is a functional that maps function $x \in X$ into a real number. Usually $X = C[t_0, t_f]$, the vector space of continuous functions in the interval $[t_0, t_f]$.
- Linear functional is
 - ► Homogenous: $J(\alpha x) = \alpha J(x)$
 - Additive: J(x + y) = J(x) + J(y)
- For example:

 - ∫_{t0}^{tf} xdt is linear
 ∫_t^{tf} x²dt is not linear

The increment of a functional is

$$\Delta J(x, \delta x) \equiv J(x + \delta x) - J(x) \tag{4}$$

where δx is a an addition of the function x

▶ E.g. the increment of functional $J(x) = \int_{t_0}^{t_f} x^2 dt$ is

$$\Delta J = J(x + \delta x) - J(x)$$

$$= \int_{t_0}^{t_f} (x + \delta x)^2 dt - \int_{t_0}^{t_f} x^2 dt$$

$$= \int_{t_0}^{t_f} (2x\delta x + (\delta x)^2) dt$$

Variation of a functional

The increment and the variation in the CoV have exactly the same meaning as the difference and differential in ordinary calculus.

▶ If the increment (4) of a functional as a function of δx can be written with the linear functional $\delta J(x, \delta x)$:

$$\Delta J(x, \delta x) = \delta J(x, \delta x) + \varepsilon(x, \delta x) \|\delta x\|$$
 (5)

where $\lim_{\|\delta x\| \to 0} |\varepsilon(x, \delta x)| = 0$, then J is differentiable in x and δJ is called the (first) **variation** of J with function x

Variation of a functional: example

► The increment of functional $J = \int_0^1 (x^2 + 2x) dt$ is

$$\Delta J(x, \delta x) = J(x + \delta x) - J(x)$$

$$= \int_0^1 ((x + \delta x)^2 + 2(x + \delta x)) dt - \int_0^1 (x^2 + 2x) dt$$

$$= \int_0^1 ((2x + 2)\delta x) dt + \int_0^1 (\delta x)^2 dt$$

▶ The second term can be written in form $\varepsilon(x, \delta x) \|\delta x\|$, and $\lim_{\|\delta x\| \to 0} |\varepsilon(x, \delta x)| = 0$ (show this!), the variation of a functional J is then

$$\delta J(x,\delta x) = \int_0^1 ((2x+2)\delta x) dt$$

Analogy between variation and differential

- ▶ Variation δJ is a *linear approximation* for the difference of the functional values of two functions x and $x + \delta x$
- ▶ If $\|\delta x\|$ is small (the functions are close to each other), variation is good approximation for the increment

Extremum of functional

Functional J has a local extremum (or extremal) x^* if there is $\epsilon > 0$ so that for all x with $||x - x^*|| < \epsilon$, the increment of the functional has the same sign

- ▶ If $\Delta J = J(x) J(x^*) \ge 0$, it is a local minimum
- ▶ If $\Delta J = J(x) J(x^*) \le 0$, it is a local maximum

▶ If x^* is an extremum, $J(x^*)$ is the extremal value

Fundamental theorem

▶ If x^* is extremum, the variation of J vanishes, i.e.,

$$\delta J(x^*, \delta x) = 0$$
 for all $\delta x \in X$ (6)

Proof: Kirk Section 4.1

Basic problem

- Let us derive the necessary condition for the variation to vanish in the basic problem
- Let x be a scalar function, and $g(x, \dot{x}, t)$ is twice continuously differentiable both in x and \dot{x}
- We try to find on a closed interval $[t_0, t_f]$ the x that satisfies the boundary conditions $x(t_0) = x_0$ and $x(t_f) = x_f$ and is a local extremum for the functional

$$J(x) = \int_{t_0}^{t_f} g(x, \dot{x}, t) dt. \tag{7}$$

Basic problem

Let us formulate a condition for the vanishing of variation on the optimal x with the help of the increment:

$$\Delta J(x,\delta x) = J(x+\delta x) - J(x)$$

$$= \int_{t_0}^{t_f} g(x+\delta x,\dot{x}+\delta \dot{x},t)dt - \int_{t_0}^{t_f} g(x,\dot{x},t)dt$$
(8)

What is the first term on the right side? Let us use the Taylor expansion:

$$g(x + \delta x, \dot{x} + \delta \dot{x}, t) = g(x, \dot{x}, t) + g_x(x, \dot{x}, t) \delta x + g_{\dot{x}}(x, \dot{x}, t) \delta \dot{x} + o(\delta x, \delta \dot{x})$$
(9)

Basic problem

- ▶ In (9) it holds for the second and higher order terms, $o(\delta x, \delta \dot{x}) \to 0$, for $\|\delta x\|, \|\delta \dot{x}\| \to 0$.
- Let us substitute (9) into the increment (8) and take the terms that are linear in δx and $\delta \dot{x}$:

$$\delta J(x,\delta x) = \int_{t_0}^{t_f} \left[g_x(x,\dot{x},t)\delta x + g_{\dot{x}}(x,\dot{x},t)\delta \dot{x} \right] dt \qquad (10)$$

Note that

$$\delta x = \int_{t_0}^t \delta \dot{x} dt + \delta x(t_0)$$

Basic problem

► The variation can be expressed in the following form with partial integration:

$$\delta J(x,\delta x) = g_{\dot{x}}(x,\dot{x},t)\delta x\Big|_{t_0}^{t_f} + \int_{t_0}^{t_f} \left[g_x(x,\dot{x},t) - \frac{d}{dt}g_{\dot{x}}(x,\dot{x},t)\right]\delta xdt$$
(11)

The first term of the right-hand side of equation (11) vanishes, since all x must satisfy the boundary conditions: $\delta x(t_0) = \delta x(t_f) = 0$

Basic problem

- According to the fundamental theorem, we need $\delta J(x, \delta x) = 0$ for all δx ; what does this mean for the integral term in equation (11)?
- ▶ **Fundamental lemma**: if it holds for a continuous function h(t) that $\int_0^T h(t) \delta x(t) dt = 0$ for arbitrary continuous $\delta x(t)$ and $\delta x(0) = \delta x(T) = 0$, then h(t) = 0 for all $t \in [0, T]$
- Thus, we get the necessary condition for the extremal x* based on the fundamental lemma

$$g_{x}(x^{*},\dot{x}^{*},t)-\frac{d}{dt}g_{\dot{x}}(x^{*},\dot{x}^{*},t)=0 \qquad \forall t\in[t_{0},t_{f}]$$
 (12)

Basic problem

- Equation (12) is the Euler-Lagrange or Euler equation
- The total derivative(*) $\frac{d}{dt}$ means that there can be terms of \ddot{x}
- Euler equation is a second-order differential equation and usually nonlinear and time dependent
- Caratheodory developed sufficient condition for CoV in 1920/30s

$$(*) \frac{d}{dt} f(t, x(t)) = f_t + f_x \dot{x}$$

- ▶ The inventory size is x(t), production speed $\dot{x}(t) \ge 0$
- The cost consists of production and inventory costs:

$$J(x, \dot{x}) = \int_0^T \left[C_1 \dot{x}^2 + C_2 x \right] dt$$
 (13)

- ▶ Boundary conditions: x(0) = 0, x(T) = B
- ▶ What is the optimal inventory size $x^*(t)$?

Now $g(x, \dot{x}, t) = C_1 \dot{x}^2 + C_2 x$, and

$$g_{x}=C_{2}, \qquad g_{\dot{x}}=2C_{1}\dot{x}, \qquad \frac{d}{dt}g_{\dot{x}}=2C_{1}\ddot{x}$$

Euler:

$$g_{x} - \frac{d}{dt}g_{\dot{x}} = C_{2} - 2C_{1}\ddot{x} = 0$$

$$\Rightarrow \ddot{x} = \frac{C_{2}}{2C_{1}}$$

➤ This is non-homogeneous (right-hand side not zero), linear second-order differential equation with constant coefficients (not time dependent), but a special case since the right-hand side is a constant

We get a candidate for the extremum by integrating twice:

$$x^*(t) = \frac{C_2}{4C_1}t^2 + K_1t + K_2$$

where K_1 and K_2 are integration constants that are solved from the boundary conditions:

$$x(0) = 0 \Rightarrow K_2 = 0$$

 $x(T) = B \Rightarrow \frac{C_2}{4C_1}T^2 + K_1T = B \Rightarrow K_1 = \frac{B}{T} - \frac{C_2}{4C_1}T$

Thus, the optimal inventory is

$$x^*(t) = \frac{C_2}{4C_1}t(t-T) + \frac{Bt}{T}$$

that satisfies the constraint $\dot{x}^* \geq 0$ if $B \geq \frac{C_2 T^2}{4C_1}$

▶ We found a solution to the problem whose optimality depends on if B is big enough compared to T and if the inventory cost C₂ is small enough to the production cost C₁

- ▶ The necessary condition $2C_1\ddot{x} = C_2$ can be interpreted:
 - ► $C_1 \dot{x}^2$ is the production cost at time t, i.e., $2C_1 \dot{x}$ is the marginal production cost, and $2C_1 \ddot{x}$ is its rate of change
 - ... which needs to be in balance with the marginal inventory cost C₂

► The Euler equation for a functional of a form

$$J(x_1,...,x_n) = \int_{t_0}^{t_f} g(x_1,...,x_n,\dot{x}_1,...,\dot{x}_n,t)dt$$

with boundary conditions $x_i(t_0) = x_{i0}$, $x_i(t_f) = x_{if}$, $\forall i = 1, ..., n$, generalizes to the system of n Euler equations:

$$g_{x_i}(x_1^*,...,x_n^*,\dot{x}_1^*,...,\dot{x}_n^*,t) - \frac{d}{dt}g_{\dot{x}_i}(x_1^*,...,x_n^*,\dot{x}_1^*,...,\dot{x}_n^*,t) = 0$$
 for all $i = 1,...,n$

Euler equation

Special cases

1) If $g = g(\dot{x})$, i.e., it depends only on \dot{x} , the Euler equation is:

$$g_{\dot{x}\dot{x}}\ddot{x}^*=0$$

either $g_{\dot{x}\dot{x}}=0$ or $\dot{x}^*=C$. If g is linear in \dot{x} , Euler is an identity that is satisfied for all x^*

2) If $g = g(\dot{x}, t)$, i.e., there is no dependency on x, we get

$$g_{\dot{x}}=C$$

► E.g.: $g = 3\dot{x} - t\dot{x}^2$, Euler: $3 - 2t\dot{x} = C \Rightarrow \dot{x} = \frac{3 - C}{2t}$ which is solved with one integration

Euler equation

Special cases

3) If $g = g(x, \dot{x})$, i.e., there is no dependency on t, we get:

$$g - \dot{x}g_{\dot{x}} = C$$

which can be solved with one integration (e.g. Brachistochrone problem in exercises)

4) If g = g(x, t), i.e., no dependency on \dot{x} , we get:

$$g_x = 0$$

which is not a differential equation and the solution does not contain integration constant. Then x^* is a solution only if it happens to satisfy the boundary conditions.

Euler equation

Special cases

5) If g is linear in \dot{x} , i.e., $g = a(x, t) + b(x, t)\dot{x}$, Euler is:

$$a_x(x,t)=b_t(x,t)$$

which is not a differential equation. Then x^* may satisfy the boundary conditions and Euler. Usually this is not the case, and Euler is identity that is satisfied by any x^* .

▶ E.g.: $g = \dot{x}$, Euler: 0 = 0 that is satisfied by all x^*

Summary

- Refresh: differential equations, partial derivatives, Taylor expansion, partial integration etc.
- Functional
- Increment
- Variation
- Fundamental theorem in calculus of variations
- Euler equation