

Soil Compaction

흙의 다짐

- ❖ 동적 또는 정적 하중을 가하여 흙의 밀도를 높인다²
- ❖ 흙의 강도증가 및 침하량 감소³
- ❖ 고속도로, 흙 댐, 제방, 철도, 택지조성 등... ^⁴
- ❖ 성토사면 안정성 증대
- ❖ 강륜(smooth-wheel), 양족(sheepsfoot)로울러⁵
- ❖ 공기고무타이어 로울러, 진동 로울러⁶
- ❖ 바이브로플로테이션(vibroflotation) 7

1. General Principles of Compaction

❖다짐의 원리²

- 흙 속의 간극(공기) 제거에 의한 체적압축 ³
- 중량은 불변⁴
- 흙의 다짐 정도는 건조단위중량으로 평가⁵
- 다짐 시 물을 흙에 첨가 → 물은 윤활유 역할 → 흙 입자들은 서로 미끄러져서 조밀해짐
- 함수비가 증가함에 따라 다져진 흙의 건조단위중량 증가

1. General Principles of Compaction

$$\omega = 0$$
; $\gamma = \gamma_d = \gamma_1^2$

■ 함수비가 증가되는 상태에서 동일한 다짐에너지 → 단위 부피당 흙 무게 증가 ³

$$\omega = \omega_1$$
; $\gamma = \gamma_2$ $\gamma_{d(\omega = \omega_1)} = \gamma_{d(\omega = 0)} + \Delta \gamma_d$

- 임의 함수비 초과하면 함수비가 증가함에 따라 건조단위중량 감소 ⁵
- 고체입자들로 채워져 ⁶ 있던 공간 → 물이 차지
- 최대건조단위중량 γ_{d(max)}
 (Maximum dry unit weight)

최적함수비 (OMC; Optimum moisture content)

2. Standard Proctor Test

- ❖ 표준다짐시험 (ASTM D-698; A방법)²
- ❖ 몰드부피(V): 943.3cm³, 몰드직경(D): 101.6mm³
- ❖ 다짐 층수(L): 3층, 각 층당 다짐횟수(#): 25회⁴
- ❖ 햄머무게(W): 5.5 lb (2.5kg)⁵
- ❖ 햄머의 낙하높이(H): 12"(304.8mm)⁶

A

2. 표준다짐시험

- ❖ ASTM (D-698)⁴ 1999년
- ❖습윤단위중량

$$\gamma = \frac{W}{V_{(m)}}$$

Figure 5.2 Standard Proctor test equipment: (a) mold; (b) hammer; (c) photograph of laboratory equipment used for test

2. Standard Proctor test

》이론적 최대건조단위중량²

- 만극사이에 공기가 존재하지³
 않을 경우 → 포화도 100%
- 영 공기 간극(zero air void)

$$\gamma_{\rm d} = \frac{\gamma}{1 + \frac{\omega(\%)}{100}}$$

Maximum Dry Unit Weight $\gamma_{d(max)}$

Optimum Moisture Content (OMC) ω_{opt}

$$\gamma_{\text{d(theory)}} = \gamma_{\text{zav}} = \frac{G_{\text{s}} \cdot \gamma_{\text{w}}}{1 + e} = \frac{G_{\text{s}} \cdot \gamma_{\text{w}}}{1 + \omega \cdot G_{\text{s}}} = \frac{\gamma_{\text{w}}}{\frac{1}{G_{\text{s}}} + \omega}$$

Figure 5.3 Standard Proctor compaction test results for a silty clay 7

3. Factors affecting Compaction

- ❖ 다짐에 영향을 주는 요소들³
 - 함수비
 - 흙의 종류
 - 다짐에너지
 - 기타...
- ❖ 흙의 종류에 따른 영향
 - 입도분포
 - 입자모양
 - 흙고체의 비중
 - 흙 입자의 형태
 - 점토성분의 종류 및 양

Figure 5.4 Typical compaction curves for four soils (ASTM D-698)

3. Factors affecting Compaction

- ❖ 흙의 종류에 따른 영향
- **❖** ASTM(D-698)
- Lee & Suedkamp(1972)
- ❖ 35개 흙 시료

일반적인 경우 - (a) 액성한계 30% 이하 – (b), (c) 액성한계 70% 이상 – (c), (d)

3. Factors affecting Compaction

- ❖ 다짐 에너지에 의한 영향²
 - 다짐에너지

$$E = \frac{W_h \cdot H_h \cdot N_l \cdot N_c}{V_m} = 594 \sim 600 \text{kN} \cdot \text{m/m}$$

- ❖ Weight of hammer(W_h)
- Height of drop of hammer(H_h)
- ♦ Number of layer(N_I)
- Number of blows per layer(N_c)
- Volume of mold(V_m) ⁵

- ❖ 수정 다짐시험(Modified Proctor Test) ²
 - 다짐기계의 대형화 및 다짐상태의 개선 → 현장조건에 근접한³
 실내 다짐시험 모색
 - ASTM 시험(D-1557): 4.54kg hammer, 5 layer, 25 blows 4

Compaction method	A	В	С	D	E
Weight of hammer	2.5kgf	2.5kgf	4.5kgf	4.5kgf	4.5kgf
Diameter of mold	10cm	15cm	10cm	15cm	15cm
Number of layers	3	3	5	5	3
Number of blows per layer	25	55	25	55	92
Maximum allowable grain size	19mm	37.5mm	19mm	19mm	37.5mm

- ❖ Omar et al.(2003)-311개¹
 - 자갈 45개
 - 사질토 264개
 - 점토 2개
 - ASTM 1557 C방법
- $\rho_{d(max)}$
- $\omega_{(opt)}$

Figure 5.7 Range of grain-size distribution of all soils tested by Omar, et al. (2003) 4

 $\rho_{d(max)} = [4,804,574G_s - 195.55LL^2 + 156,971(R#4)^{0.5} - 9,527,830]^{0.5}$

Omar et al.(2003)-311기 생 3

- ▶ 자갈 45개
- 사질토 264개
- 점토 2개
- ASTM 1557 C방법

$$\ln(\omega_{\text{opt}}) = 1.195 \times 10^{-4} \text{LL}^2 - 1.964 G_s - 6.617 \times 10^5 (R#4) + 7.651^2$$

Omar et al.(2003) 3

5. Structure of Compacted Cohesive Soil*

❖ 다짐을 받은 점성토의 구조³

- A, E: 낮은 함수비상태: 점토입자를 둘러싸고 있는 확산이중층 발달 부진 → 입자간 인력 부진
- B: 함수비 증가: 입자 주위에 확산이중층 발달 → 입자간 인력 증가 → 면모화 발달 → 높은 건조단위중량
- C: 높은 함수비로 부피 팽창 → 배열성 크게함 → 분산구조화 → 단위중량 감소
- D: 일정 함수비 상태에서 높은 다짐에너지 → 점토입자 배열이 평행한 상태로 되려는 경향 → 구조교란 → 분산구조

5. Structure of Compacted Cohesive Soil

- Lambe(1958) 3
- Boston blue clay
- ❖ 함수비에 따른 입자배열
- Seed & Chan(1959) 5

6. Effect of Compaction on Cohesive Soil Properties

❖ 투수계수에 미치는 영향-점토 ❖ 압축강도에 미치는 영향-점토 ³

7. Characteristics of Compaction Curves

❖ 다짐곡선의 성질²

- $\gamma_{\rm d(max)}$ 가 클수록 $\omega_{\rm opt}$ 은 작음 3
- 사질토는 $\gamma_{d(max)}$ 가 크고, 다짐곡선의 기울기가 급함 4
- 점성토는 $\gamma_{d(max)}$ 가 작고, 다짐곡선의 기울기가 완만 5
- 다짐에너지가 클수록 $\gamma_{d(max)}$ 가 크고 ω_{opt} 는 작아짐 6
- 자갈 및 모래 함유량이 많을수록 $\gamma_{d(max)}$ 가 크고 ω_{opt} 는 작아짐 7

8. Field Compaction

- ❖ 현장다짐²
 - 실험실 → 표준다짐, 수정다짐시험, Hammer에 의한 다짐
 - 현장 → 실내 다짐시험에 근거 → 건설기계, Roller에 의한 다짐
 - 토질종류, 상태에 따라 다짐기계 선택
- ❖ 강륜롤러(Smooth wheel roller, Drum roller) ⁴
 - 사질토, 점성토로 구성된 성토의 마무리 작업, 두꺼운 성토에 부적합5
- ❖ 공기 타이어 롤러(Pneumatic rubber tired roller) ⁶
 - ▶ 사질토, 점성토 지반 다지기, 압축작용과 반죽작용 ⁷
- ❖ 양족롤러(Sheepsfoot roller) ⁸
 - 드럼 표면에 돌기를 부착, 점성토 다짐에 효과⁹
- ❖ 진동롤러(Vibration roller) ¹⁰
 - 드럼에 진동기 부착, 사질토 다짐에 효과 11

- ❖ 강륜롤러(Smooth wheel roller, Drum roller) ¹
 - 사질토/점성토 성토의 마무리 작업, 두꺼운 성토에 부적합(31~38Mg/m²) ²

Figure 5.19 Smooth-wheel roller (Courtesy of David A. Carroll, Austin, Texas) 4

- ❖ 공기 타이어 롤러(Pneumatic rubber tired roller) ¹
 - 사질토, 점성토 지반 다지기, 압축작용과 반죽작용 (58.5~69Mg/m²) ²

Figure 5.20 Pneumatic rubber-tired roller (Courtesy of David A. Carroll, Austin, Texas) 4

- ❖ 양족롤러(Sheepsfoot roller)²
 - 드럼 표면에 돌기를 부착, 점성토 다짐에 효과 (138~690Mg/m²) ³

Figure 5.21 Sheepsfoot roller (Courtesy of David A. Carroll, Austin, Texas) 5

- ❖ 진동롤러(Vibration roller)¹
 - 드럼에 진동기 부착, 사질토에 가장 다짐에 효과가 크다 ²

Figure 5.22 Principles of vibratory rollers 6

8. Field Compaction

❖ 롤러 통과 횟수에 의한 다짐의 영향 (10~15회)²

9. Specification for Field Compaction

- ❖ 현장 다짐에 관한 규정²
 - 현장에서의 다짐도 \rightarrow 실내 다짐시험시 최대 건조단위중량의 90~95% 3
 - 상대다짐도(RC; Relative Compaction) $R(\%) = \frac{\gamma_{d(field)}}{\gamma_{d(lab)}} \times 100^{-4}$

10. Determination of Field Unit Weight of Compaction

- ❖ 현장에서 단위중량 결정¹
 - 현장에서 다짐작업시 규정된 단위중량에 도달했는지 확인 필요
 - 모래 치환법(Sand cone method), 고무 풍선법(Rubber balloon method), 핵 밀도기 사용법(Use of a nuclear density meter)

❖ 모래 치환법³

$$\begin{split} W_{(\text{hole \& cone})} = & W_{(\text{full bottle})} \text{-}W_{(\text{remain bottle})} \\ V = & \frac{W_{(\text{hole \& cone})} \text{-}W_{(\text{cone})}}{\gamma_{d(\text{sand})}} \\ W_{d(\text{soil})} = & \frac{W_{t(\text{soil})}}{1 + \frac{\omega_{(\text{soil})}(9/0)}{100}} \\ \gamma_{d(\text{soil})} = & \frac{W_{d(\text{soil})}}{V} \end{split}$$

11. Special Compaction Techniques

❖ 특수한 다짐 기술²

- 바이브로 플로테이션(Vibroflotation) ³
- 지반 심층부 다짐 (현장에서 널리 사용되는 기술) 4
- 느슨하고 두꺼운 조립토층의 다짐, 바이브로 플로트를 분사현상(quick ocondition)을 이용 지반에 관입하여 사질토를 주입하고 진동시키면서 상승

11. Special Compaction Techniques

❖ 특수한 다짐 기술²

- 동적 다짐(Dynamic Compaction) ³
- 느슨한 사질 지반의 다짐, 무거운 추를 반복적으로 지반에 낙하 ightarrow 사질토 채움
- 발파공법 → 조립토의 밀도증대, 토층두께의 2/3 지점에 폭약 설치

