Do Judges Flip A Coin

Sai Zhang

November 28, 2022

Outline

- 1 Introduction
- 2 Prediction: Lower Court
- 3 Prediction: Appeal Court
- 4 Impact Evaluation
- 5 Next Step

Inspiration

Introduction

Immigration court ruling

Inspiration

Introduction

Immigration court ruling

Inspiration

Introduction

Immigration court ruling

■ High stake: granted asylum or deported

Immigration court ruling

- High stake: granted asylum or deported
- Simple structure: lower court and appeal court

Introduction 00000

Immigration court ruling

- High stake: granted asylum or deported
- Simple structure: lower court and appeal court
- Idiosyncratic decisions: one single judge makes the decision

Introduction 00000

Immigration court ruling

- High stake: granted asylum or deported
- Simple structure: lower court and appeal court
- Idiosyncratic decisions: one single judge makes the decision

Are judges doing their job careful enough?

Introduction

I focus on the inattention of lower court judges, and

Introduction

I focus on the inattention of lower court judges, and

Introduction

I focus on the inattention of lower court judges, and

Prediction Impact Lower court decisions: are judges predictable? Appeal results: how they react to reverse

Introduction

I focus on the inattention of lower court judges, and

Prediction Impact Lower court decisions: are judges predictable? Appeal results: how they react to reverse

Introduction

I focus on the inattention of lower court judges, and

Prediction

- Lower court decisions: are judges predictable?
- Appeal results: how they react to reverse

Impact

- The heterogeneity in judicial inattention
- Can we nudge judges to pay more atention?

Introduction

■ Judges are not that attentive: lower-court decisions can be predicted after a particular judge is assigned, but prior to judicial inquiry into the case

Introduction

- Judges are not that attentive: lower-court decisions can be predicted after a particular judge is assigned, but prior to judicial inquiry into the case
- There is evdience of behavioral anomalies: judges show different level of early predictability

Introduction

- Judges are not that attentive: lower-court decisions can be predicted after a particular judge is assigned, but prior to judicial inquiry into the case
- There is evdience of behavioral anomalies: judges show different level of early predictability
- Attentiveness can be proxied: leveraging appeal court decisions, I create a proxy for attentiveness of lower court judges

- Judges are not that attentive: lower-court decisions can be predicted after a particular judge is assigned, but prior to judicial inquiry into the case
- There is evdience of behavioral anomalies: judges show different level of early predictability
- Attentiveness can be proxied: leveraging appeal court decisions, I create a proxy for attentiveness of lower court judges
- Judicial inattention can be improved: observational evidence suggests several channels for further nudging RCTs

Data

Introduction

Figure 1: Data Structure

- Total cases: 602500 cases (35% granted)
- Appeal cases: 242466
 appeals (32.4%
 successful) after removing
 recent appeals and appeal
 by the government

From Chen, Moskowitz, and Shue (2016) and Dunn, Sagun, Şirin, and Chen (2017)

Descriptive Evidence: Case Informaion Matters

Descriptive Evidence: Court Informaion Matters

Descriptive Evidence: Other Predictors

Top 7 Countries by Applicants

Country	Count	Percentage	Grant Rate
China	107964	19%	53%
Haiti	42013	7.4%	16%
El Salvador	41626	7.4%	8.7%
Guatemala	34705	6.1%	11%
Colombia	27713	4.9%	35%
India	19161	3.4%	37%
Mexico	19031	3.4%	7.3%
Nicaragua	15987	2.8%	20%
Albania	12036	2.1%	52%
Indonesia	11399	2%	32%

Prediction: A Random Forest Model

Category	Weight
Case Information	20%
Court Information	7%
Judge Information	10%
News Trend	7%
Ruling Trend	49%
Weather	2%

Early Predictability of Judges

Model	Accuracy	ROC AUC
Judge ID	71%	0.74
Judge ID & Nationality	76%	0.82
Judge ID & Opening Date	73%	0.77
Judge ID & Nationality & Opening Date	78%	0.84
Full model at case completion	82%	0.88

Early Prediction and Inattention

Prediction: Appeal Court

Appeal Grant Rate: By Appeal Year

Appeal Grant Rate: By Appeal Judge

Appeal Grant Rate: By Nationality

Prediction: A Random Forest Model

Category	Weight
Time Information	37.78%
Judge Information	27.71%
Respondent	17.79%
Trend Features	7.45%
Proceeding Features	6.05%
Location Features	4.26%

Prediction Accuracy Driven by Lower Court Judges

Model	Accuracy	ROC AUC
Judge ID	67.5%	0.625
Judge ID & Nationality	70.4%	0.701
Judge ID & Nationality & Year	74.1%	0.765
Full model	79.2%	0.840

	Predicted denial	Predicted success
Actual denial	195223	65798
Actual success	73269	104406
	$Accuracy = 68.3^{\circ}$	/ 6
	F1 = 0.6	

Shock of Surprising Reverses

Predicted denial

Predicted success

Actual denial Actual success

Shock of Surprising Reverses

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success		reverse and predicted reverse

Shock of Surprising Reverses

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success	reverse but predicted affirm	reverse and predicted reverse

Shock of Surprising Reverses

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success	reverse but predicted affirm	reverse and predicted reverse

reverse: denial asylum in the lower court, but grant asylum in the appeal court

Shock of Surprising Reverses

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success	reverse but predicted affirm	reverse and predicted reverse

- reverse: denial asylum in the lower court, but grant asylum in the appeal court
- surprising reverse: predicted affirm, but actually reversed

Event Study: around Surprising Reverses

An event study design around the surprising reverse shock:

$$\bar{y}_{i,s,t} = \alpha D_{s,k} + \beta \mathbf{1} \left(\text{Surprising Reverse} \right)_s + \gamma D_{s,k} \times \mathbf{1} \left(\text{Surprising Reverse} \right)_s + \mu_t + \nu_c + \varepsilon_{i,s,t}$$

where:

- lacksquare $\bar{y}_{i,s,t}$: the leave-out average grant rate of judge i, for case s
- lacksquare μ_t : appeal decision year and month fixed effects
- $\mathbf{\nu}_c$: court fixed effects
- $k \in \{T-6, T-5, T-4, T-3, T-2, T-1, T, T+1, T+2, T+3, T+4, T+5, T+6\}$, where T is the time when the appeal decision is made.

Event Study: Robustness to Granular Dependent Variable Construction

Event Study: Construct A Measure of Attentiveness

$$\begin{split} \bar{y}_{i,s,t} = & \alpha D_{s,k} \\ &+ \beta \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ &+ \gamma D_{s,k} \times \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ &+ \mu_t + \nu_c + \varepsilon_{i,s,t} \end{split}$$

Event Study: Construct A Measure of Attentiveness

$$egin{aligned} ar{y}_{i,s,t} = & \alpha D_{s,k} \\ & + \beta \mathbf{1} \left(\mathsf{Surprising Reverse} \right)_s \\ & + \gamma D_{s,k} \times \mathbf{1} \left(\mathsf{Surprising Reverse} \right)_s \\ & + \mu_t + \nu_c + \varepsilon_{i,s,t} \end{aligned}$$

Now, limit to a smaller window and re-pool data: $k\in\{T'-1,T',T'+1\}$, and extract γ as attentiveness of judges

Event Study: Construct A Measure of Attentiveness

$$egin{aligned} ar{y}_{i,s,t} = & \alpha D_{s,k} \\ & + eta \mathbf{1} \left(\mathsf{Surprising Reverse} \right)_s \\ & + \gamma D_{s,k} imes \mathbf{1} \left(\mathsf{Surprising Reverse} \right)_s \\ & + \mu_t + \nu_c + arepsilon_{s,t} \end{aligned}$$

Now, limit to a smaller window and re-pool data: $k\in\{T'-1,T',T'+1\}$, and extract γ as attentiveness of judges

Variation in Attentiveness of Judges

Validity of the Attentiveness Measure: Judges' Effort

Validity of the Attentiveness Measure: Judges' Errors

Validity of the Attentiveness Measure: Early Predictability

Generate a residualized, leave-out judge leniency measure following Dobbie et al. (2018):

Generate a residualized, leave-out judge leniency measure following Dobbie et al. (2018):

■ Step 1: Regression lower court decisions on court-by-year-by-month FEs

Generate a residualized, leave-out judge leniency measure following Dobbie et al. (2018):

- Step 1: Regression lower court decisions on court-by-year-by-month FEs
- **Step 2**: Extract the residuals

Generate a residualized, leave-out judge leniency measure following Dobbie et al. (2018):

- Step 1: Regression lower court decisions on court-by-year-by-month FEs
- Step 2: Extract the residuals
- Step 3: Calculate the leave-out average grant rate in the lower court

Generate a residualized, leave-out judge leniency measure following Dobbie et al. (2018):

- Step 1: Regression lower court decisions on court-by-year-by-month FEs
- Step 2: Extract the residuals
- **Step 3**: Calculate the leave-out average grant rate in the lower court

This will give us a leniency measure

Risk Ranking of Judges: Appeal Courts

Implicit Risk Ranking and Inattention

Risk Ranking of Judges: Asian Applicants

Risk Ranking of Judges: Government Experience

Risk Ranking of Judges: Workload

Judges' Inattention: Experience Heterogeneity

Judges' Inattention: Experience Heterogeneity

Judges' Inattention: The Influence of Weather

Judges' Inattention: The Influence of Weather

Judges' Inattention: The Influence of Weather

Following Arnold et al. (2018), consider for asylum applicants of country c_i , and for judge i

- α_c^j : pretrial grant rates at the margin
- w^j : weight across all judges $j=1,\cdots,J$

Following Arnold et al. (2018), consider for asylum applicants of country c, and for judge j

- lacksquare α_c^j : pretrial grant rates at the margin
- lacksquare w^j : weight across all judges $j=1,\cdots,J$
- t_c^j : judge j's threshold for granding asylum

Following Arnold et al. (2018), consider for asylum applicants of country c, and for judge j

- lacksquare α_c^j : pretrial grant rates at the margin
- w^j : weight across all judges $j=1,\cdots,J$
- $ullet t_c^j$: judge j's threshold for granding asylum

Weighted average of the treatment effects for asylum applicants of country c at the margin of granting asylum across all judges is

$$\alpha_c^{w,*} = \sum_{i=1}^J w^j \alpha_c^j = \sum_{i=1}^J w^j t_c^j$$

To estimate the average bias among judges

$$D_{c_1,c_2}^{w,*} = \sum_{j=1}^{J} w^j \left(t_{c_1}^j - t_{c_2}^j \right) = \sum_{j=1}^{J} w^j t_{c,1}^j - \sum_{j=1}^{J} w^j t_{c,2}^j = \alpha_{c,1}^{w,*} - \alpha_{c,2}^{w,*}$$

- 2 strategies could be considered:
 - IV: use judge leave-out leniency as the instrument

To estimate the average bias among judges

$$D_{c_1,c_2}^{w,*} = \sum_{j=1}^{J} w^j \left(t_{c_1}^j - t_{c_2}^j \right) = \sum_{j=1}^{J} w^j t_{c,1}^j - \sum_{j=1}^{J} w^j t_{c,2}^j = \alpha_{c,1}^{w,*} - \alpha_{c,2}^{w,*}$$

2 strategies could be considered:

- IV: use judge leave-out leniency as the instrument
- MTE: following the framework developed by Heckman and Vytlacil (2005)

Potential RCTs

- Judges' side:
 - individual nudging scheme: inspection, record keeping
 - ruling scheme improvement: group ruling by multiple judges

Potential RCTs

■ Judges' side:

- individual nudging scheme: inspection, record keeping
- ruling scheme improvement: group ruling by multiple judges

■ Applicants' side:

 information provision: design a prediction app to prepare applicants for their potential grant rates

Potential RCTs

■ Judges' side:

- individual nudging scheme: inspection, record keeping
- ruling scheme improvement: group ruling by multiple judges

■ Applicants' side:

- information provision: design a prediction app to prepare applicants for their potential grant rates

■ Appeal court:

- encourage appealing: by aiding appeals after lower court asylum rejection to increase the *pressure* on judges

- Arnold, D., Dobbie, W., & Yang, C. S. (2018). Racial bias in bail decisions. The Quarterly Journal of
- Chen, D. L., Moskowitz, T. J., & Shue, K. (2016), Decision making under the gambler's fallacy: Evidence from asylum judges, loan officers, and baseball umpires. The Quarterly Journal of Economics, 131(3).
- Dobbie, W., Goldin, J., & Yang, C. S. (2018). The effects of pretrial detention on conviction, future crime, and employment: Evidence from randomly assigned judges. American Economic Review, 108(2), 201-40.
- Dunn, M., Sagun, L., Sirin, H., & Chen, D. (2017), Early predictability of asylum court decisions, In *Proceedings* of the 16th edition of the international conference on articial intelligence and law (pp. 233–236).
- Heckman, J. J., & Vytlacil, E. (2005). Structural equations, treatment effects, and econometric policy evaluation 1. Econometrica, 73(3), 669-738.

Thank you!