

ARL-TR-7727 ● JULY 2016

The Examination of the Aluminum Alloy 7017 as a Replacement for the Aluminum Alloy 7039 in Lightweight Armor Systems

by Tyrone L Jones and Brian E Placzankis

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

The Examination of the Aluminum Alloy 7017 as a Replacement for the Aluminum Alloy 7039 in Lightweight Armor Systems

by Tyrone L Jones and Brian E Placzankis
Weapons and Materials Research Directorate (ARL)

REPORT D	OCUMENTATIO	N PAGE		Form Approved OMB No. 0704-0188
data needed, and completing and reviewing the collect burden, to Department of Defense, Washington Head	etion information. Send commen quarters Services, Directorate for y other provision of law, no pers	its regarding this burden estion Information Operations at son shall be subject to any poor to be subject to be subject to any poor to be subject to be subject to any poor to be subject to be subject to any poor to be subject to any poor to be subject to be subjec	mate or any other asp nd Reports (0704-018	instructions, searching existing data sources, gathering and maintaining the ect of this collection of information, including suggestions for reducing the 8), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, mply with a collection of information if it does not display a currently valid
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
July 2016	Final			August 2014–November 2015
4. TITLE AND SUBTITLE	1 mu			5a. CONTRACT NUMBER
	um Allow 7017 og o	Danlagament for	the	Ja. CONTRACT NOWDER
The Examination of the Aluminum Alloy 7017 as a Replacement for the Aluminum Alloy 7039 in Lightweight Armor Systems			ruie	Ch. CDANT NUMBER
Adminium Anoy 7039 in Light	veight Aimor Syste	1115		5b. GRANT NUMBER
				5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)			5d. PROJECT NUMBER	
Tyrone L Jones and Brian E Place	czankis			
				5e. TASK NUMBER
				Je. IASK NOWBER
				EC MODIC HAUT AND ADED
				5f. WORK UNIT NUMBER
7 DEDECORATION NAME	F/C) AND ADDRESS/FS)			O DEDECORATING ODC ANIZATION DEPORT NUMBER
7. PERFORMING ORGANIZATION NAMI	1(3) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Research Laboratory ATTN: RDRL-WMP-E				ARL-TR-7727
Aberdeen Proving Ground, MD	21005-5066			ARL-1R-//2/
Aberdeen Froving Ground, WD	21003-3000			
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRE	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
·		. ,		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATE	MENT			
Approved for public release; dis		2d		
Approved for public release, dis	dibudon is uniffic	.a.		
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
	has been recognize	d og o gomriooghl		allow for years. However, the inharent stress
• , ,	_			alloy for years. However, the inherent stress AA7017 (aluminum-zinc-magnesium) was
				use in ground vehicle applications. Ballistic
				train-rate loading. These experiments
				plications. This report focused on the
				lates, assessment of the penetration
resistance, and the selection of a				
		•		·
45 CURIECT TERMS				
15. SUBJECT TERMS	A 7 0 1 7 A 4 7 0 2 0 3	W. DEL 22525	MIL DEL 1	COCOTI 1 1'1
lightweight armor, aluminum, A	A7017, AA7039, N	/IIL-DTL-32505,	MIL-DTL-4	6063H, ground vehicle
16. SECURITY CLASSIFICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON

OF

PAGES

76

Tyrone L Jones

410-278-6223

19b. TELEPHONE NUMBER (Include area code)

OF

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

ABSTRACT

UU

Contents

List	of Figures	iv
List	of Tables	iv
Ack	nowledgments	v
1.	Introduction	1
2.	Experimental Procedures	2
3.	Armor Piercing and Fragment-Simulating Projectiles	3
4.	Results and Analysis	5
5.	Conclusion	11
6.	References	12
Арј	pendix. Raw Data	13
List	of Symbols, Abbreviations, and Acronyms	65
Dis	tribution List	67

List of Figures

Fig. 1	Typical test setup
Fig. 2	AP projectiles
Fig. 3	FSP projectiles
Fig. 4	Ballistic penetration resistance of 0.30-cal. APM2 vs. AA7017 at 30°
Fig. 5	Ballistic penetration resistance of 0.30-cal. APM2 vs. AA7017 at 0°3
Fig. 6	Ballistic penetration resistance of 0.50-cal. APM2 vs. AA7017 plate at 0°
Fig. 7	Ballistic penetration resistance of 14.5-mm BS41 vs. AA7017 plate at 0°
Fig. 8	Ballistic penetration resistance of 0.50-cal. FSP vs. AA7017 plate at 0°
Fig. 9	Ballistic penetration resistance of 20-mm FSP vs. AA7017 plate at 0°
	r .l.l
List of	lables
Table 1	Chemical composition, weight percent
Table 2	Minimum mechanical properties
Table 3	AP projectiles' physical characteristics
Table 4	The 0.30-cal. APM2, 30° obliquity V_{50} ballistic limits for AA7017
Table 5	The 0.30-cal. APM2, 0° obliquity V_{50} ballistic limits for AA7017
Table 6	The 0.50-cal. APM2, 0° obliquity V_{50} ballistic limits for AA7017
Table 7	The 14-mm BS41, 0° obliquity V_{50} ballistic limits for AA7017
Table 8	The 0.50-cal. FSP, 0° obliquity V_{50} ballistic limits for AA7017
Table 9	The 20-mm FSP, 0° obliquity V ₅₀ ballistic limits for AA7017

Acknowledgments

The author wishes to thank the outstanding contributions from the following people who made this work possible: Messrs William "Randy" Everett and Rino Imperiale of the US Army Research, Development and Engineering Command Technology Office and Mr Robert "Gun Bob" Thompson from the Office of the Secretary of Defense Comparative Technology Office, Office of the Deputy Assistant Secretary of Defense for Emerging Capability and Prototyping.

INTENTIONALLY LEFT BLANK.

1. Introduction

The use of aluminum alloys that demonstrate a combination of high strength, weldability, and corrosion resistance for vehicle structural applications has always been of interest to the Department of Defense. While aluminum alloy (AA) 7039 has been recognized as a weldable armor plate alloy for many years,¹ the inherent stress corrosion cracking susceptibility of AA7039² has led to a need for a replacement. Alcan Inc. addressed this issue further with a slightly stronger and more corrosion-resistant AA7017.³

This alloy has been successfully fielded on British and German armored ground systems and therefore became the basis for a fiscal year 2012 Office of the Deputy Assistant Secretary of Defense funded Foreign Comparative Test program to validate and ultimately transition AA7017 for availability in US acquisition. AA7017 (aluminum-zinc-magnesium) has demonstrated an excellent combination of mechanical properties, both quasi-static and at high strain rates.⁴ The AA7039 and AA7017 chemical composition limits and mechanical property minimums^{1,4} are listed in Tables 1 and 2, respectively. The enhanced properties make AA7017 a potential replacement for AA7039 and an aluminum alloy of interest for ground vehicle structural application. The ultimate goal of this study was to establish dynamic penetration performance for AA7017 when used in ballistic applications.

Table 1 Chemical composition, weight percent

Elements	Symbol	7017 alloy	7039 alloy
Silicon	Si	0.35	0.30
Iron	Fe	0.45	0.40
Copper	Cu	0.20	0.10
Manganese	Mn	0.05 – 0.50	0.10-0.40
Magnesium	Mg	2.0-3.0	2.3-3.3
Chromium	Cr	0.35	0.15-0.25
Nickel	Ni	0.10	N/A
Zinc	Zn	4.0-5.2	3.5-4.5
Titanium	Ti	0.15	0.10
Zirconium	Zr	0.10-0.25	Not applicable
Other, min	(Mn + Cr)	0.15	Not applicable
Other, max. Each		0.05	0.05
Other, max. Total		0.15	0.15
Aluminum	Al	Remainder	Remainder

Note: Where single units are shown (except for Mn + Cr), these indicate the maximum amounts permitted.

Table 2 Minimum mechanical properties

Thickness (mm)	Tensile strength (MPa)		Yield strength, 0.2% offset (MPa)		Elongation (%)	
	7017	7039	7017	7039	7017	7039
12.7–38.1, including	434	414	365	352	9	9
38.125–101.6, including	414	393	345	331	8	8

All experiments of AA7017 were conducted in accordance with V_{50} Ballistic Test for Armor (MIL-STD-662F).⁵ This test methodology has been used for years to determine penetration resistance for aluminum alloys in ground vehicle applications.

2. Experimental Procedures

The V_{50} is defined as the impact velocity at which the projectile is equally as likely to penetrate the target as it is to arrest. A 0.51-mm (0.020-inch) 2024 T3 aluminum witness plate is positioned 152 mm (6 inches) behind the target to determine the outcome of each shot. An impact is regarded as a complete penetration (CP), or loss, if the projectile or a resulting target fragment from impact creates a hole in the witness plate through which light can be observed. If an impact does not result in a CP, it is considered a partial penetration (PP), or win. To keep results as consistent as possible, only shots conforming to the following conditions were used to determine the V₅₀: The projectile must be unyawed; less than 2° of total yaw for armor-piercing (AP) rounds and less than 5° of total yaw for fragment-simulating projectiles (FSPs); and strike the target at least 2 projectile diameters from any previous impact or damage or the edge of the target. Total yaw is defined as the vector sum of the projectile's pitch and yaw and is listed as "Gamma" in the raw data in the Appendix. The V₅₀ is calculated by the arithmetic mean of an equal number of CPs and PPs within an 18-m/s (60 ft/s)-spread for a $2 + 2 V_{50}$; a 27-m/s (90 ft/s)-spread for a 3 + 3 V₅₀; and as small of a spread as attainable for a 5 + 5 V_{50}^{5}

Projectile velocities for the determination of the V_{50} were measured using 1 of 2 methods as shown in Fig. 1. The first method is an orthogonal flash X-ray system as described in detail by Grabarek and Herr,⁶ which also measures pitch and yaw. The second method uses 3 infrared (IR) break screens and a chronograph. The velocity is calculated using the first and third screens with the middle screen used to check for bad readings. The flash X-ray method was used in situations with

projectiles that historically exhibit excessive yaw or if space did not allow for the use of the IR break screens. When the IR break screens and chronograph were used, the projectile velocity was corrected to the target-impact location using a correction factor based on an initial flash X-ray reading at the impact location. The correction was made using Eqs. 1 and 2 in lieu of utilizing air-drag factors.

$$\frac{\text{(X-ray velocity)}}{\text{(chronograph velocity)}} = \text{(correction factor)}.$$
 (1)

$$(correction factor) \times (chronograph velocity) = (corrected velocity).$$
 (2)

Fig. 1 Typical test setup⁷

3. Armor Piercing and Fragment-Simulating Projectiles

The US 0.30-cal. APM2, 0.50-cal. APM2, and the Soviet 14.5-mm BS41 are the 3 AP projectiles that were used in this study. Cross sections of these projectiles are shown in Fig. 2. The APM2 projectiles have hardened steel cores with hardness of Rockwell C61–66, whereas the BS41 has a tungsten carbide core. The physical characteristics of these projectiles are listed in Table 3. Additionally, a few experiments were repeated with the 0.30-cal. APM2 Test Parts Kit (0.30-cal. kit) round. This round is a US Army-authorized replacement for the historical 0.30-cal. APM2 due to the significant depletion of APM2 supply.

Fig. 2 AP projectiles

Table 3 AP projectiles' physical characteristics⁸

Projectile type	Length (mm)	Projectile diameter (mm)	Weight (g)	Length (mm)	Core diameter (mm)	Weight (g)
0.30-cal. APM2	35.3	7.85	10.8	27.4	6.2	5.3
0.50-cal. APM2	58.7	12.98	45.9	47.5	6.2	25.9
14.5-mm BS41	52.6	14.94	63.2	32.3	10.9	25.9

FSPs (Fig. 3) are a family of projectiles that are flat-nosed, right circular steel cylinders manufactured to MIL-DTL-46593B (MR). These projectiles are used in material evaluations and acceptance testing to simulate performance against fragments produced from improvised explosive devices and artillery. Both 0.50-cal. and 20-mm FSPs were used for the evaluation of AA7039.

Fig. 3 FSP projectiles⁷

4. Results and Analysis

The results of the AA7017 ballistic evaluation were compared with the required ballistic limit acceptance curve of AA7039 published in MIL-DTL-46063H as a reference point. The experimental matrix for the penetration analysis is shown in Tables 4–9. The individual shot records are provided in the Appendix. Tables 4–9 provide the AA7017 experimental data generated.

Table 4 The 0.30-cal. APM2, 30° obliquity V_{50} ballistic limits for AA7017

Plate identification (ID)	Alloy temper	Nominal thickness (mm)	Actual thickness (mm)	V ₅₀ (m/s)	Standard deviation (m/s)
495867-3A1	Т6	12.70	12.88	476	6
459867-3A1a	T6	12.70	12.88	477	11
495867-1A2 ^a	T6	12.70	12.88	485	9
495867-1A2	T6	12.70	12.88	490	10
K889 T7651	T7	12.70	13.21	479	10
495871-5G1	T6	19.05	19.33	631	7
495871-1G2	T6	19.05	19.30	641	10
K889 T7651	T7	19.05	19.96	633	10

^a0.30-cal. kit

Table 5 The 0.30-cal. APM2, 0° obliquity V_{50} ballistic limits for AA7017

Plate ID	Alloy temper	Nominal thickness (mm)	Actual thickness (mm)	V ₅₀ (m/s)	Standard deviation (m/s)
495871-1G2	Т6	19.05	19.30	558	6
495871-5G1	T6	19.05	19.32	564	7
K889	T7	19.05	19.95	569	11
495880-4E2	T6	25.40	25.52	659	10
495880-4E2a	T6	25.40	25.53	653	7
495880-4B1a	T6	25.40	25.48	660	6
495880-4B1	T6	25.40	25.48	650	7
495892-1E1a	T6	38.10	38.40	857	7
495892-1E1	T6	38.10	38.40	833	5
495892-1B2a	T6	38.10	38.31	847	7
495892-1B2	T6	38.10	38.31	833	4
K889	Т7	38.10	38.93	827	6

^a0.30-cal kit

Table 6 The 0.50-cal. APM2, 0° obliquity V_{50} ballistic limits for AA7017

Plate ID	Alloy temper	Nominal thickness (mm)	Actual thickness (mm)	V ₅₀ (m/s)	Standard deviation (m/s)
495892-1E1	T6	38.10	38.38	626	6
K889-T7651	T7	38.10	38.91	625	8
495905-2F1	T6	50.80	51.13	727	6
495905-2G2	T6	50.80	51.08	725	5
K889-T7651	T7	50.80	52.39	731	6
495930-2H1	T6	63.50	63.98	839	9
495930-2K1	T6	63.50	63.98	831	8
495935-1D1	T6	76.20	76.66	920	7
495935-1D2	T6	76.20	76.68	931	6
K889-T7651	T7	76.20	74.86	899	5

Table 7 The 14-mm BS41, 0° obliquity V_{50} ballistic limits for AA7017

Plate ID	Alloy temper	Nominal thickness (mm)	Actual thickness (mm)	V ₅₀ (m/s)	Standard deviation (m/s)
495935-1D1	T6	76.20	76.65	864	8
495935-1D2	T6	76.20	76.68	859	6
K889-T7651	T7	76.20	74.86	837	5
495953-1E1	T6	88.90	89.47	948	8
495953-1E2	T6	88.90	89.52	941	10
495959-1G1	T6	101.60	102.65	1015 ^a	
495959-1G2	T6	101.60	102.46	1014 ^a	
K889-T7651	T7	101.60	99.02	984	5

^aTesting halted; reached max firing velocity of gun; high PP

Table 8 The 0.50-cal. FSP, 0° obliquity V_{50} ballistic limits for AA7017

Plate ID	Alloy temper	Nominal thickness (mm)	Actual thickness (mm)	V ₅₀ (m/s)	Standard deviation (m/s)
495871-1G2	T6	19.05	19.29	660	8
495871-5G1	T6	19.05	19.30	625	5
K889-T7651	T7	19.05	19.89	650	8
495880-4E2	T6	25.40	25.50	1049	8
495880-4B1	T6	25.40	25.48	1093	9

Table 9 The 20-mm FSP, 0° obliquity V_{50} ballistic limits for AA7017

Plate ID	Alloy temper	Nominal thickness (mm)	Actual thickness (mm)	V ₅₀ (m/s)	Standard deviation (m/s)
K889 T7651, 469280A2	Т7	19.05	19.95	346	21
495880-4B1	T6	25.40	25.48	462	9
495880-4E2	T6	25.40	25.50	463	5
495892-1E1	T6	38.10	38.38	903	7
495892-1B2	T6	38.10	38.30	877	5
K889 T7651, 46950640	Т6	38.10	38.93	903	19
495905-2F1	T6	50.80	51.13	1301	8

Figures 4–9 showed the AA7017 experimental data generated compared with the AA7039 minimum V_{50} s. The AA7017 data displayed are the plots of V_{50} as a function of the plate thickness. A line depicting the $V_{50-2\sigma}$ for AA7017 was plotted for comparison to the AA7039 acceptance requirement from the specification. This line represents a V_{02} (2% probability that the plate will be defeated) rather than a V_{50} (50% probability that the plate will be defeated). To ensure successful protection at a given thickness, the lower band of the 2σ distribution (V_{02} line) is used to define minimum-acceptable performance. An experimental V_{50} falling below this line is considered unacceptable.

Fig. 4 Ballistic penetration resistance of 0.30-cal. APM2 vs. AA7017 at 30°

Fig. 5 Ballistic penetration resistance of 0.30-cal. APM2 vs. AA7017 at 0°

Fig. 6 Ballistic penetration resistance of 0.50-cal. APM2 vs. AA7017 plate at 0°

Fig. 7 Ballistic penetration resistance of 14.5-mm BS41 vs. AA7017 plate at 0°

Fig. 8 Ballistic penetration resistance of 0.50-cal. FSP vs. AA7017 plate at 0°

Fig. 9 Ballistic penetration resistance of 20-mm FSP vs. AA7017 plate at 0°

The data collected by the US Army Research Laboratory were then used to generate acceptance tables for MIL-DTL-32505. The acceptance velocities were calculated by fitting the V_{50} data minus 2 standard deviations.

5. Conclusion

A dynamic experimental evaluation was performed on the AA7017 in the T6 and T7 tempers. This report has compared the performance of AA7017 against existing AA7039 military specification, aluminum-armor material. AA7017 outperformed AA7039 against both AP and FSP projectiles. The only exception is 0.50-cal. APM2 performance above 2.000 inches, where AA7039 exhibits a slightly higher performance. This report has also documented the calculations used to derive the acceptance tables included in the new military specification, MIL-DTL-32505. As a result of this research, AA7017 has been recommended as a replacement.

6. References

- 1. MIL-DTL-46063H. Armor plate, aluminum alloy, 7039. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 1998 Sep 14.
- 2. Rinnovatore JV, Rorabaugh DT, Zalcmann A. Correlation determinations between stress corrosion characteristics of wrought 7039 aluminum armor and other alloy characteristics ballistic performance, yield strength, and electrical conductivity. Frankford Arsenal (PA): Army Armament Command (US); 1975 Apr. Report No.: FA-TR-75026.
- 3. Alcan Inc. Registration Record Series. Teal Sheets. International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys. Alexandria (VA): The Aluminum Association, Inc.; 2015 Jan.
- 4. MIL-DTL-32505. Armor plate, aluminum, alloy 7017 weldable and 7020 applique. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2014 Nov 13.
- 5. MIL-STD-662F. V₅₀ ballistic test for armor. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 1997 Dec 18.
- 6. Grabarek C, Herr L. X-ray multi-flash system for measurement of projectile performance at the target. Aberdeen Proving Ground (MD): Army Ballistic Research Laboratory (US); 1966 Sep. Report No.: BRL-TN-1634.
- 7. Gallardy D. Ballistic evaluation of 6055 aluminum. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2015 Sep. Report No.: ARL-MR-0904.
- 8. Mascianica F. Ballistic technology of lightweight armor. Watertown (MA): Army Materials Research Agency (US); 1964 Sep. Report No.: AMRA MS 64-07.
- 9. MIL-DTL-46593B (MR). Projectile, calibers .22, .30, .50, and 20 mm fragment-simulating. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2008 Aug 11.

Appendix. Raw Data

This appendix appears in its original form, without editorial change.

0.30-cal APM2 Legacy

Target:	AA7017-	T6		Date:	25-Mar-13					
Plate #:	495867-1	A2		Test Site:	EF-106					
Lot#:	1A2									
Avg. Thickness:	0.507	"	12.878	mm						
Hardness:	137	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:			2024(0.020"	<u>'</u> ')						
Velocity Measure	ement:	Chrono								
Low CP:		m/s	1607							
High PP:		m/s	1624							
V50:		m/s	1608			# shots:	6			
Std Dev:		m/s		ft/s		Spread:	26	m/s	85	ft/s
ZMR:	5	m/s	16	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
490	1607		-	-	PP	Yes	-	12467		
521	1709				CP	No		12468		
514	1686				CP	No		12469		
516	1692				CP	No		12470		
495	1624	-		-	CP	Yes		12471		
471	1545	-		-	PP	Yes		12472		
492	1614	-		-	CP	Yes		12473		
497	1630		-	-	СР	Yes		12474		
496	1627		-	-	PP	Yes		12475		

Target:	AA7017-	Т6		Date:	18-Mar-13					
Plate #:	495867-3	A1		Test Site:	EF-106					
Lot#:	3A1									
Avg. Thickness:	0.507	"	12.884	mm						
Hardness:	137	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:	AA7017-	Air(6")-AA)						
Velocity Measure	ement:	Chrono								
Low CP:		m/s	1568							
High PP:		m/s	1548							
V50:		m/s	1560			# shots:	6			
Std Dev:	6	m/s	20	ft/s		Spread:	14	m/s	46	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
445	1460				PP	No		12439		
469	1538	-	-	-	PP	Yes	-	12440		
497	1630				CP	No		12441		
493	1617				CP	No		12442		
449	1473				PP	No		12443		
491	1610				CP	No		12444		
472	1548	-	-	-	PP	Yes		12445		
494	1620				CP	No		12446		
483	1584	-	-	-	CP	Yes		12447		
478	1568		-		CP	Yes		12448		

Target:	AA7017-1	Γ 7		Date:	14-Oct-10					
Plate #:	K889 T76	51		Test Site:	EF-106					
Lot#:	T7651									
Avg. Thickness:	0.520	"	13.214	mm						
Hardness:	134	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:	AA7017-A	\ \ir(6")-AA:	2024(0.020")							
Velocity Measur	rement:	Chrono								
Low CP:	486	m/s	1594	ft/s						
High PP:	471	m/s	1545	ft/s						
V50:	479	m/s	1570	ft/s		# shots:	4			
Std Dev:	10	m/s	31	ft/s		Spread:	18	m/s	59	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
470	1542	_	-	1.12	PP	Yes	-	9931		
486	1594	-	-	-	CP	Yes	_	9932		
465	1525				PP	No		9933		
471	1545	-	-	_	PP	Yes	_	9934		
488	1601	_	_	_	СР	Yes	_	9935		

Target:	AA7017-T	6		Date:	26-Mar-13					
Plate #:	495871-50	G1		Test Site:	EF-106					
Lot#:	5G1									
Avg. Thickness:	0.761	"	19.317	mm						
Hardness:	137	HBN								
Obliquity:	0°	TIDIY								
Projectile:		APM2	Lot #:	TW18035						
Setup:	AA7017-A	\ \ir(6")-AA2	2024(0.020")							
Velocity Measure		Chrono								
Low CP:	566	m/s	1856	ft/s						
High PP:	559	m/s	1834	ft/s						
V50:	564	m/s	1851	ft/s		# shots:	4			
Std Dev:	7	m/s	24	ft/s		Spread:	16	m/s	52	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
550	1804				PP	No		12482		
574	1883	-	-	-	CP	Yes	-	12483		
558	1830	-	-	-	PP	Yes	-	12484		
566	1856	-	-	-	CP	Yes		12485		
554	1817				PP	No		12486		
559	1834		_		PP	Yes	_	12487		

Target:	AA7017-T6	;		Date:	26-Mar-13					
Plate #:	495871-1G	2		Test Site:	EF-106					
Lot#:	1G2									
Avg. Thickness:	0.760	"	19.304	mm						
Hardness:	134	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Lot #:	TW 18035						
Setup:	AA7017-Ai	r(6")-AA20	024(0.020")							
Velocity Measure		Chrono	, , ,							
		_								
Low CP:		m/s	1843							
High PP:		m/s	1814							
V50:		m/s	1830			# shots:	_			
Std Dev:	-	m/s		ft/s		Spread:	13	m/s	43	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
585	1919				CP	No		12476		
533	1748				PP	No		12477		
552	1811				PP	Yes		12477		
565	1853				CP	Yes		12478		
553	1814	-	_		PP	Yes	_	12480		
562	1843	_			CP	Yes	_	12481		

Target:	AA7017-t7			Date:	12-Oct-10					
Plate #:	K889			Test Site:	EF-106					
Lot#:	K889									
Avg. Thickness:	0.786	"	19.952	mm						
Hardness:	128	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:	AA7017-Ai	r(6")-AA20	024(0.020")							
Velocity Measur	rement:	Chrono								
Low CP:		m/s	1889	ft/s						
High PP:	566	m/s	1856	ft/s						
V50:	569	m/s	1867	ft/s		# shots:	6			
Std Dev:	11	m/s	36	ft/s		Spread:	25	m/s	82	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
580	1902	-	-	-	СР	Yes	-	9915		
500	1640				PP	No		9916		
547	1794				PP	No		9917		
559	1834	-	-	-	PP	Yes		9918		
566	1856	-	-	-	PP	Yes		9919		
580	1902	-	-	-	СР	Yes		9920		
555	1820	-	-	-	PP	Yes		9921		
576	1889	_	-		CP	Yes		9922		

Target:	AA7017-	Т6		Date:	3-Apr-13					
Plate #:	495871-1	G2		Test Site:	EF-106					
Lot#:	1G2									
Avg. Thickness:	0.760	"	19.304	mm						
Hardness:	134	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:	AA7017-	Air(6")-AA	2024(0.020")						
Velocity Measure	ement:	Chrono								
Low CP:		m/s	2080							
High PP:		m/s	2106							
V50:	641	m/s	2103	ft/s		# shots:	6			
Std Dev:	10	m/s	34	ft/s		Spread:	24	m/s	79	ft/s
ZMR:	8	m/s	26	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
626	2053				PP	No		12521		
660	2165				CP	No		12522		
634	2080	-	-	_	CP	Yes		12523		
633	2076	-	-	_	PP	Yes		12524		
662	2171				CP	No		12525		
642	2106	-	-	_	PP	Yes		12526		
631	2070	-	-	-	PP	Yes		12527		
655	2148	-	-	-	CP	Yes		12528		
652	2139	_	_	-	CP	Yes		12529		

Target:	AA7017-T6			Date:	2-Apr-13					
Plate #:	495871-5G1			Test Site:	EF-106					
Lot#:	5G1									
Avg. Thickness	0.761	"	19.329	mm						
Hardness:	137	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Lot #:	TW 18035						
Setup:	AA7017-Air(6")-AA202	4(0.020")							
Velocity Measu	rement:	Chrono								
Low CP:	634	m/s	2080	ft/s						
High PP:	629	m/s	2063	ft/s						
V50:	631	m/s	2069	ft/s		# shots:	4			
Std Dev:	7	m/s	23	ft/s		Spread:	16	m/s	52	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
629	2063				PP	Yes		12514		
649	2129				CP	No		12515		
645	2116				CP	No		12516		
622	2040	-		-	PP	Yes	-	12517		
646	2119				CP	No		12518		
634	2080	-		-	СР	Yes	-	12519		
638	2093	_			CP	Yes		12520		

Target:	AA7017	-T7		Date:	13-Oct-10					
Plate #:	K889 T7	7651		Test Site:	EF-106					
Lot#:	T7651									
Avg. Thickness:	0.786	"	19.964	mm						
Hardness:	128	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:	AA7017	-Air(6")-A	A2024(0.020	")						
Velocity Measur	rement:	Chrono								
Low CP:		m/s	2096							
High PP:		m/s	2080	ft/s						
V50:		m/s	2075			# shots:	6			
Std Dev:		m/s		ft/s		Spread:	24	m/s	79	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
594	1948				PP	No		9923		
619	2030		-	-	PP	Yes		9924		
660	2165				CP	No		9925		
639	2096		-	-	CP	Yes		9926		
634	2080		-	-	PP	Yes		9927		
620	2034		-	-	PP	Yes		9928		
643	2109		-	-	CP	Yes		9929		
640	2099	_	-	-	CP	Yes		9930		

Target:	AA7017	-T6		Date:	27-Mar-13					
Plate #:	495880-	4E2		Test Site:	EF-106					
Lot#:	4E2									
Avg. Thickness:	1.005	II .	25.521	mm						
Hardness:	126	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:			A2024(0.020	")						
Velocity Measure	ment:	Chrono								
Low CP:		m/s	2155							
High PP:		m/s	2142							
V50:		m/s	2160			# shots:	6			
Std Dev:		m/s		ft/s		Spread:	24	m/s	79	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
672	2204		_	-	СР	Yes	-	12488		
635	2083				PP	No		12489		
657	2155		_	-	CP	Yes		12490		
648	2125		_	-	PP	Yes		12491		
652	2139	-	-	-	PP	Yes	-	12492		
648	2125				PP	No		12493		
653	2142	-	-	-	PP	Yes	-	12494		
681	2234				CP	No		12495		
669	2194	-	-	-	CP	Yes		12496		

Target:	AA7017-	T6		Date:	2-Apr-13					
Plate #:	495880-4	IB1		Test Site:	EF-106					
Lot#:	4B1									
Avg. Thickness:	1.003	"	25.476	mm						
Hardness:	131	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:	AA7017-	Air(6")-AA	2024(0.020'	<u> </u> ')						
Velocity Measure	ment:	Chrono								
Low CP:	654	m/s	2145	ft/s						
High PP:	656	m/s	2152	ft/s						
V50:	650	m/s	2131	ft/s		# shots:	4			
Std Dev:	7	m/s	22	ft/s		Spread:	15	m/s	49	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
654	2145	-	_	-	СР	Yes	-	12510		
641	2102	-	-		PP	Yes		12511		
648	2125	-	-		PP	Yes		12512		
656	2152	-	_		CP	Yes	-	12513		

Target:	AA7017-	T6		Date:	1-Apr-13					
Plate #:	495892-1	E1		Test Site:	EF-108					
Lot#:	1E2									
Avg. Thickness:	1.512	"	38.398	mm						
Hardness:	137	HBN								
Obliquity:	0°									
Projectile:	_	APM2	Lot #:	TW 18035						
Setup:	AA7017-	Air(6")-AA	 2024(0.020")						
Velocity Measure	ement:	Chrono								
Low CP:	837	m/s	2745	ft/s						
High PP:	832	m/s	2729	ft/s						
V50:	833	m/s	2733	ft/s		# shots:	4			
Std Dev:	5	m/s	16	ft/s		Spread:	10	m/s	33	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
837	2745	-	_	-	СР	Yes	-	11269		
785	2575				PP	No		11270		
809	2654				PP	No		11271		
817	2680				PP	No		11272		
827	2713	-	-	-	PP	Yes	-	11273		
837	2745	-	-	-	CP	Yes		11274		
832	2729	-		-	PP	Yes		11275		

Target:	AA7017-T6		Date:	4-Apr-13						
Plate #:	495871-1	B2		Test Site:	EF-108					
Lot#:	1B2									
Avg. Thickness:	1.508	"	38.310	mm						
Hardness:	137	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Lot #:	TW18035						-
Setup:	AA7017-	Air(6")-AA	2024(0.020"	')						
Velocity Measure	ement:	Chrono								-
Low CP:	833	m/s	2732	ft/s						
High PP:	836	m/s	2742	ft/s						
V50:	833	m/s	2731			# shots:	4			
Std Dev:	4	m/s	13	ft/s		Spread:	9	m/s	30	ft/s
ZMR:	3	m/s	10	ft/s						-
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					-
834	2736			-	СР	Yes		11281		
820	2690				PP	No		11282		
827	2713	-	-	-	PP	Yes	-	11283		
836	2742	-	-	-	PP	Yes	-	11284		
833	2732	-			CP	Yes		11285		

Target:	AA7017-	Г7		Date:	7-Oct-10					
Plate #:	K889			Test Site:	EF-106					
Lot#:	K889									
Avg. Thickness:	1.533	"	38.932	mm						
Hardness:	124	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Lot #:	TW18035						
Setup:	AA7017-	Air(6")-AA	2024(0.020")						
Velocity Measure	ement:	Chrono								
Low CP:		m/s	2722							
High PP:		m/s	2699							
V50:		m/s	2713			# shots:	4			
Std Dev:	-	m/s		ft/s		Spread:	14	m/s	46	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
959	3146				СР	No		9906		
757	2483				PP	No		9907		
809	2654				PP	No		9908		
858	2814				CP	No		9909		
841	2758				CP	No		9910		
821	2693		-		PP	Yes		9911		
835	2739	-	-	-	CP	Yes		9912		
830	2722		-		CP	Yes		9913		
823	2699	_	_		PP	Yes	-	9914		

0.30-cal APM2 Kit

Target:	AA7017-T6		Date:	20-Mar-13						
Plate #:	495867-1A2			Test Site:	EF-106					
Projectile Lot#:	LC11J94	5S001								
Avg. Thickness:	0.507	"	12.878	mm						
Hardness:	137	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Kit							
Setup:	AA7017-	 Air(6")-AA	2024(0.020	')						
Velocity Measure		Chrono								
Low CP:	485	m/s	1591	ft/s						
High PP:		m/s	1597							
V50:		m/s	1591			# shots:	6			
Std Dev:	9	m/s	30	ft/s		Spread:	27	m/s	89	ft/s
ZMR:	2	m/s	7	ft/s		•				
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity		1411	Gainna	Result	for V50	Comments	#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)	101 700				
400	1001				20			40450		
488	1601	-	-	-	CP	Yes	-	12459		
458	1502				PP	No		12460		
478	1568	-	-	-	PP	Yes		12461		
469	1538				PP	No		12462		
487	1597	-	-	-	PP	Yes		12463		-
500	1640	-	-	-	CP	Yes	-	12464		
473	1551	-	-	-	PP	Yes	-	12465		
485	1591		_		CP	Yes	-	12466		

Target:	AA7017-	T6		Date:	19-Mar-13					
Plate #:	495867-3	A1		Test Site:	EF-106					
Projectile Lot#:	LC11J94	5S001								
Avg. Thickness:	0.507	"	12.878	mm						
Hardness:	137	HBN								
Obliquity:	30°									
Projectile:	30cal	APM2	Kit							
Setup:	AA7017-	Air(6")-AA	2024(0.020	<u>'</u> ')						
Velocity Measure	ement:	Chrono								
Low CP:		m/s	1588							
High PP:		m/s	1561							
V50:		m/s	1563			# shots:	6			
Std Dev:		m/s		ft/s		Spread:	24	m/s	79	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
463	1519		-	-	PP	Yes	-	12449		
492	1614				CP	No	-	12450		
485	1591	-	-	-	CP	Yes	-	12451		
476	1561	-	-	-	PP	Yes	-	12452		
451	1479				PP	No		12453		
427	1401				PP	No		12454		
484	1588	-		-	CP	Yes	-	12455		
487	1597	-	-	_	CP	Yes	-	12456		
453	1486				PP	No		12457		
464	1522		_		PP	Yes	-	12458		

Target:	AA7017-	T6		Date:	27-Mar-13					
Plate #:	495880-4	E2		Test Site:	EF-106					
Projectile Lot#:	LC11J94	5S001								
Avg. Thickness:	1.005	"	25.527	mm						
Hardness:	137	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Kit							
Setup:	AA7017-	Air(6")-A <i>A</i>	.2024(0.020'	 ')						
Velocity Measure	ement:	Chrono								
Low CP:	656	m/s	2152	ft/s						
High PP:	648	m/s	2125	ft/s						
V50:	653	m/s	2143	ft/s		# shots:	4			
Std Dev:		m/s		ft/s		Spread:	15	m/s	49	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
665	2181				СР	No		12497		
648	2125	-	-	-	PP	Yes	-	12498		
662	2171	-	-	-	CP	Yes	-	12499		
656	2152	-		-	CP	Yes	-	12500		
647	2122	-	_		PP	Yes	_	12501		

Target:	AA7017-	Т6		Date:	1-Apr-13					
Plate #:	495880-4	4B1		Test Site:	EF-106					
Projectile Lot#:	LC11J94	15S001								
Avg. Thickness:	1.003	"	25.476	mm						
										-
Hardness:	131	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2								
Setup:	AA7017-	·Air(6")-AA	2024(0.020	")						
Velocity Measure		Chrono								
Low CP:	659	m/s	2162	ft/s						
High PP:	656	m/s	2152	ft/s						
V50:		m/s	2164	ft/s		# shots:	4			
Std Dev:	6	m/s	21	ft/s		Spread:	14	m/s	46	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
659	2162		_	_	СР	Yes	_	12502		
632	2073				PP	No		12503		
635	2083				PP	No		12504		
656	2152	-	-	-	PP	Yes	-	12505		
655	2148	-	-	-	PP	Yes		12506		
681	2234				PP	No		12507		
651	2135				CP	No		12508		
669	2194	_	_		CP	Yes		12509		

Target:	AA7017-	T6		Date:	28-Mar-13					
Plate #:	495892-1	E1		Test Site:	EF-108					
Projectile Lot#:	LC11J94	5S001								
Avg. Thickness:	1.512	"	38.398	mm						
Hardness:	137	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	Kit							
Setup:	AA7017-	 Air(6")-A <i>P</i>	2024(0.020'	<u>'</u> ')						
Velocity Measure	ement:	Chrono								
Low CP:	860	m/s	2821	ft/s						
High PP:	852	m/s	2795	ft/s						
V50:	857	m/s	2811	ft/s		# shots:	4			
Std Dev:	7	m/s	24	ft/s		Spread:	16	m/s	52	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
843	2765				PP	No		11264		
866	2840	-			CP	Yes		11265		
860	2821	-			CP	Yes		11266		
852	2795	-	-	-	PP	Yes	-	11267		
850	2788		-		PP	Yes	-	11268		

Target:	AA7017-	T6		Date:	3-Apr-13					
Plate #:	495892-1	B2		Test Site:	EF-108					
Projectile Lot#:	LC11J94	5S001								
Avg. Thickness:	1.508	"	38.310	mm						
Hardness:	137	HBN								
Obliquity:	0°									
Projectile:	30cal	APM2	M2 Kit							
Setup:	AA7017-	Air(6")-A <i>A</i>	.2024(0.020'	 ')						
Velocity Measure	ement:	Chrono								
Low CP:	845	m/s	2772	ft/s						
High PP:		m/s	2788	ft/s						
V50:	847	m/s	2779	ft/s		# shots:	4			
Std Dev:		m/s		ft/s		Spread:	16	m/s	52	ft/s
ZMR:	5	m/s	16	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
857	2811				СР	No		11276		
839	2752	-			PP	Yes		11277		
850	2788	-	-	-	PP	Yes	-	11278		
855	2804	-		-	CP	Yes	-	11279		
845	2772	-	_		CP	Yes	_	11280		

0.50-cal APM2

Target:	AA7017-	T6		Date:	11-Mar-13					
Plate #:	495892			Test Site:	EF-110G					
Lot#:	1E1									
Avg. Thickness:	1.511	"	38.379	mm						
Hardness:	137	HBN								
Obliquity:	0°									
Projectile:	0.50cal	APM2				16.68083				
Setup:			2024(0.020")						
Velocity Measu	rement:	Xray								
Low CP:	630	m/s	2066	ft/s						
High PP:	622	m/s	2040	ft/s						
V50:	626	m/s	2052	ft/s		# shots:	4			
Std Dev:	6	m/s	19	ft/s		Spread:	12	m/s	39	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
615	2017			0.25	PP	No		14263		
622	2040		-	0.50	PP	Yes		14264		
619	2030		-	0.00	PP	Yes		14265		
630	2066		-	0.00	CP	Yes		14266		
631	2070			0.75	CP	Yes		14267		

Target:	AA7017-	T7		Date:	28-Jul-10					
Plate #:	K889-T76	651		Test Site:	EF-108					
Lot#:	T7651									
Avg. Thickness:	1.532	"	38.913	mm						
Hardness:	124	HBN								
Obliquity:	0°									
Projectile:	0.50cal	APM2	Lot #:	RA5735						
Setup:	AA7017-	Air(6")-AA		<u>'</u>						
Velocity Measur	rement:	Xray								
Low CP:	624	m/s	2047	ft/s						
High PP:	628	m/s	2060	ft/s						
V50:	625	m/s	2049	ft/s		# shots:	6			
Std Dev:	8	m/s	25	ft/s		Spread:	20	m/s	66	ft/s
ZMR:	4	m/s	13	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
633	2076		-	-	СР	Yes		9250		
570	1870				PP	No		9251		
624	2047	-		-	CP	Yes	-	9252		
607	1991				PP	No		9253		
628	2060	-		-	PP	Yes	-	9254		
631	2070	-		-	CP	Yes	-	9255		
629	2063				CP	No	Disregard	9256		
613	2011	-	-	-	PP	Yes	_	9257		
619	2030	_		_	PP	Yes	_	9258		

			V50 Sur	nmary Sh	eet				
Date: 3/2	7/2013		Engineer:	Tyrone Jo	nes	Techniciar	s: Koch/	Walter	
Contract Nu	ımber								
Test Facility	y: EF110	G							
Target Desc	cription: A	 \A 7017-T6	Plate ID #	495905 H	leat ID#2F	1			
Penetrator:	.50 CAL	AP M2			Weapon:	AB21 .5	0 CAL		
Requiremen	its (ft/sec):				Temp/Hum	midity	F/	%	
	Prop Type		Xray or Ch			Chrono Co	rrection		
		37mm		X-Ray				Remarks	
Shot #	Prop Wt:		Vel (f/s)	Vel (m/s)	PP / CP		Proj. Wt		Gamma
14299		168	2438	743		CP	STD		0.25
14300 *		158	2357	718		PP	STD		0.35
14301 *		161	2380	726		PP	STD		0.90
14302		164	2400	732		CP CP	STD		0.56
14303 *		161	2394	730		LP_	STD		0
									0.0:-
BHN	131						Thickness		2.013
		m/s 730			Vel Spread				
High Partial		m/s 726	* - 6' '			f/s 0		Δ	0.040
	f/s 2383	m/s 727	" = Shots	used for V50)			Avg	2.013
Std Dev	f/s 19	m/s 6							

			V50 Sur	nmary Sh	eet				
Date: 3/2	27/2013		Engineer:	Tyrone Jo	ones	Technicia	ns: Koch/	Walter	
Contract N	lumber								
Test Facili	ity: EF110	G							
Target Des	scription: /	AA 7017-T	6 Plate ID	#495905	Heat ID #20	32			
Penetrator	: .50 CAL	AP M2			Weapon:	AB21 .	50 CAL		
Requireme	ents (ft/sec):				Temp/Hum	midity	F/	%	
requireme	JIII (11/300).				TCITIP/TTUIT	imaity	1,	70	
	Prop Type		Xray or Ch	irono		Chrono C	orrection		
		37mm		X-Ray				Remarks	
Shot #		Grains	Vel (f/s)	Vel (m/s)	PP / CP		Proj. Wt		Gamma
14304 *	_	161	2370	722		PP	STD		0.56
14305 *		163	2389	728		CP	STD		0.50
14306 * 14307 *		162	2364	720	1	PP CP	STD		0.35
14307		164	2400	730		CP	סוט		0.35
	+								-
	1								
	+								
	1								
	1							ļ	
BHN	131	,					Thickness		2.011
Low CP	f/s 2389	m/s 728			Vel Spread				
	al f/s 2370	m/s 722	1.		ZMR	f/s 0			-
V50	f/s 2381	m/s 725	* = Shots	used for V50)			Avg	2.011
Std Dev	f/s 17	m/s 5							

Target:	AA7017-	T7		Date:	26-Jul-10					
Plate #:	K889-T7	651		Test Site:	EF-108					
Lot#:	T7651									
Avg. Thickness:	2.063	"	52.388	mm						
Hardness:		HBN								
Obliquity:	0°									
Projectile:	0.50cal	APM2	Lot #:	RA5735						
Setup:	AA7017-	Air(6")-AA	2024(0.020"	')						
Velocity Measur	rement:	Xray					18.973666			
Low CP:	734	m/s	2408	ft/s						
High PP:	729	m/s	2391	ft/s						
V50:	731	m/s	2399	ft/s		# shots:	4			
Std Dev:	6	m/s	20	ft/s		Spread:	14	m/s	46	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
734	2408	-	-	0.56	СР	Yes		9243		
715	2345			0.56	PP	No		9244		
724	2375	-		0.56	PP	Yes	-	9245		
738	2421	-		0.71	CP	Yes		9246		
714	2342			1.03	PP	No		9247		
716	2348			1.12	PP	No		9248		
729	2391			0.35	PP	Yes		9249		

			V50 Sun	nmary Sh	eet						
			V 30 3ui	lillary Sir	CCI						
Date: 3/2	8/2013		Engineer:	Tyrone Jo	nes	Technician	s: Koch	/Walter			
Contract Nu	ımher										
est Facility	y: EF110	G									
arget Desc	ription: A	A 7017-T6	Plate ID	495930	Heat ID #2H	-11					
enetrator:	.50 CAL	AP M2			Weapon:	AB21 .50	CAL				
Requiremer	nts (ft/sec):				Temp/Hum	nmidity F	-/	%			
	Prop Type		Xray or Ch	rono		Chrono Co	rrection				
	, ,,,,,	37mm		X-Ray				Remarks			
Shot #	Prop Wt:	Grains	Vel (f/s)	Vel (m/s)	PP / CP		Proj. Wt		Gamma		
14308	-,	186	2671	814	, <u>, , , , , , , , , , , , , , , , , , </u>	PP	STD		0.35		
14309 *		194	2730	832		PP	STD		0.25		
14310		196	2831	863		CP	STD		0.56		
14311 *		195	2776	846		CP	STD		1.06		
14312		194	2808	856		CP	STD	1	1.50		
14313 *		189	2719	829		PP	STD	1	0.75		
14314		191	2661	811		PP	STD		1.82		
14315 *		198	2780	847		CP	STD		1.41		
				• • • •							
			1								
									-		
			1					<u> </u>			
			1					†			
			1					 			
								 			
BHN	134						Thickness		2.519		
ow CP		m/s 846			Vel Spread						
ligh Partia		m/s 832	1		ZMR	f/s 0					
/50	f/s 2751	m/s 839	* = Shots	used for V50				Avg	2.519		
Std Dev	f/s 31	m/s 9	5					9		,	

			V50 Sur	nmary Sh	eet				
Date: 4/1/	2013		Engineer:	Tyrone Jo	ones	Technicia	ns: Koch/	Walter	
Contract No	umber								
F (F 11)	FF440								
Test Facilit	y: EF110	G							
Target Des	cription: A	A 7017-T6	Plate ID	#495930	Heat ID #2k	(1			
Penetrator:	.50 CAL	AP M2			Weapon:	AB21 .5	50 CAL		
	. (5.1				_ "				
Requiremer	nts (ft/sec):				Temp/Hum	midity	F/	%	
	Prop Type		Xray or Ch	rono		Chrono C	orrection		
		37mm		X-Ray				Remarks	
Shot #	Prop Wt:	Grains	Vel (f/s)	Vel (m/s)	PP / CP		Proj. Wt		Gamma
14316		193	2678	816		PP	STD		1.60
14317 *		198	2761	842		CP	STD		0.25
14318 *		196	2710	826		PP	STD		0
14319		197	2769	846		CP	STD		0.35
14320		195	2766	843		CP	STD		1.82
14321		192	2645	806		PP	STD		1.35
14322 *		192	2734	833		CP	STD		1.25
14323 *		191	2705	825		PP	STD		1.27
]						
								<u> </u>	
BHN	134						Thickness		2.519
Low CP	f/s 2734	m/s 833			Vel Spread				
High Partia	l f/s 2710	m/s 826			ZMR	f/s 0			
V50	f/s 2727	m/s 831	* = Shots	used for V50)			Avg	2.519
Std Dev	f/s 26	m/s 8							

Date: 4/1/	/2013								
	2013		Engineer:	Tyrone Jo	ones	Technicia	ns: Koch/	Walter	
Controot Nic	ımbar								
Contract Nu	imber								
Test Facility	/: EF110	G							
F 1 D		A 7047 TO	DistriB	"405005	LL ID #4D	4			
arget Desc	ription: P	AA 7017-16	Plate ID	#495935	Heat ID #1D	1			
Penetrator:	.50 CAL	AP M2			Weapon:	AB21 .5	0 CAL		
Requiremen	ts (ft/sec):				Temp/Hum	midity I	F/	%	
	Prop Type		Xray or Ch	rono		Chrono C	orrection		
	тор туро	37mm	ray or or	X-Ray		OTHER C		Remarks	
	Prop Wt:	Grains	Vel (f/s)	Vel (m/s)	PP / CP		Proj. Wt		Gamma
14324 *		212	2983	909		PP	STD		0.25
14325 *		217	3040	927		CP	STD		0.71
14326 * 14327 *		215 213	3021 3020	921 921		CP PP	STD		0.25
14321		213	3020	921		PP	310		U
							ļ		
							-		
				1					
			1	<u> </u>					
	137						Thickness		3.018
	f/s 3021	m/s 921			Vel Spread				
High Partial		m/s 921			ZMR	f/s 0			
/50	f/s 3016 f/s 24	m/s 920 m/s 7	* = Shots	used for V50)			Avg	3.018

			V50 Sur	nmary Sh	eet				
Date: 4/2	/2013		Engineer:	Tyrone Jo	ones	Technicia	ns: Koch/	Walter	
Contract No	umber								
Test Facilit	y: EF110	G							
Target Des	cription: A	AA 7017-T6	Plate ID	#495935	Heat ID #10	02			
Penetrator:	.50 CAL	AP M2			Weapon:	AB21 .	50 CAL		
	. (6)				T (1)			2,	
Requiremen	nts (ft/sec):				Temp/Hum	midity	F/	%	
	Prop Type		Xray or Ch	rono		Chrono C	orrection		
		37mm	, tu, c. c.	X-Ray		00		Remarks	
Shot #	Prop Wt:	Grains	Vel (f/s)	Vel (m/s)	PP / CP		Proj. Wt		Gamma
14328		213	2998	914		PP	STD		0.25
14329 *		216	3051	930		PP	STD		0.35
14330 *		216	3027	923		PP	STD		0.25
14331 *		219	3069	935		CP	STD		1.03
14332 *		219	3065	934		CP	STD		0.35
			1						
BHN	134						Thickness		3.019
Low CP	f/s 3065	m/s 934			Vel Spread				
High Partia		m/s 930			ZMR	f/s 0			<u> </u>
V50	f/s 3053	m/s 931	* = Shots	used for V50)			Avg	3.019
Std Dev	f/s 19	m/s 6							

Target:	AA7017-	T7		Date:	23-Jul-10					
Plate #:	K889-T7	651		Test Site:	EF-108					
Lot#:	T7651									
Avg. Thickness:	2.947	"	74.860	mm						
Hardness:	128	HBN								
Obliquity:	0°									
Projectile:	0.50cal	APM2	Lot #:	RA5735						
Setup:	AA7017-	Air(6")-AA	2024(0.020')						
Velocity Measu	rement:	Xray								-
Low CP:	902	m/s	2959	ft/s						
High PP:	895	m/s	2936	ft/s						
V50:	899	m/s	2947	ft/s		# shots:	4			
Std Dev:	5	m/s	17	ft/s		Spread:	11	m/s	36	ft/s
ZMR:	0	m/s	0	ft/s						-
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					-
895	2936	-	_	0.25	PP	Yes	-	9238		
904	2965	-	-	0.5	CP	Yes		9239		
885	2903			1.03	PP	No		9240		
902	2959	-	-	0.5	CP	Yes		9241		
893	2929	-	-	-	PP	Yes	-	9242		

14.5 mm BS41

Target:	AA7017-	Т6		Date:	20-Feb-13					
Plate #:	495935-1	D1		Test Site:	EF-108					
Projectile Lot#:	ARL-02-0	C-0105								
Avg. Thickness:	3.018	"	76.651	mm						
Hardness:	137	HBN								
Obliquity:	0°									
Projectile:	14.5mm									
Setup:	ΔΔ7017-	Δir(6")-ΔI :	2024(0.020'	<u> </u>						
Velocity Measur		Xray	-0.020	,						
Low CP:		m/s	2854							
High PP:		m/s	2814							
V50:		m/s	2832			# shots:	4			
Std Dev:		m/s		ft/s		Spread:	14	m/s	46	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
778	2552			0.56	PP	No		11165		
848	2781	-		0.00	PP	No	-	11166		
898	2945			1.46	CP	No	-	11167		
870	2854	-	-	1.25	СР	Yes	-	11168		
858	2814	-	-	1.46	PP	Yes	-	11169		
856	2808	-	-	0.50	PP	Yes	-	11170		

Target:	AA7017-1	T 6		Date:	25-Feb-13					
Plate #:	495935-1	D2		Test Site:	EF-108					
Projectile Lot#:	ARL-02-0	-0105								
Avg. Thickness:	3.019	"	76.676	mm						
Hardness:	134	HBN								
Obliquity:	0°									
Projectile:	14.5mm	BS41								
Setup:	AA7017-A	 \air(6")-AL 2	: :024(0.020")						
Velocity Measur	rement:	Xray								
Low CP:	858	m/s	2814	ft/s						
High PP:	859	m/s	2818	ft/s						
V50:	859	m/s	2816	ft/s		# shots:	4			
Std Dev:	6	m/s	20	ft/s		Spread:	15	m/s	49	ft/s
ZMR:	1	m/s	3	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
872	2860			1.41	CP	No		11172		
859	2818	-	-	1.46	PP	Yes	_	11173		
858	2814		-	1.58	CP	Yes	-	11174		
866	2840		-	1.03	CP	Yes	_	11175		
868	2847			1.77	CP	No		11176		
851	2791	-		1.82	PP	Yes	-	11177		

Target:	AA7017-	T7		Date:	22-Feb-13					
Plate #:	K889-T7	651		Test Site:	EF-108					
Projectile Lot#:	ARL-02-	C-0105								
Avg. Thickness:	2.947	"	74.860	mm						
Hardness:	128	HBN								
Obliquity:	0°									
Projectile:	14.5mm	BS41								
Setup:	AA7017-	·Air(6")-AA	2024(0.020	")						
Velocity Measu			·							
Low CP:	836	m/s	2742	ft/s						
High PP:		m/s	2745							
V50:		m/s	2745			# shots:	4			
Std Dev:	5	m/s	18	ft/s		Spread:	13	m/s	43	ft/s
ZMR:	1	m/s	3	ft/s		· ·				
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
813	2667			0.56	PP	No		9377		
870	2854			0.25	CP	No		9378		
837	2745		-	0.90	PP	Yes		9379		
836	2742		-	0.56	СР	Yes	-	9380		
844	2768			0.79	CP	Yes		9381		
831	2726			0.35	PP	Yes		9382		

Target:	AA7017-T	6		Date:	26-Feb-13					
Plate #:	495953-1E	1		Test Site:	EF-108					
Projectile Lot#:	ARL-02-C-	0105								
Avg. Thickness:	3.523	п	89.472	mm						
Hardness:	140	HBN								
Obliquity:	0°									
Projectile:	14.5mm	BS41								
Setup:	AA7017-A	ir(6")-AL 20)24(0.020")							
Velocity Measu	ement:	Xray								
Low CP:	951	m/s	3119	ft/s						
High PP:		m/s	3096	ft/s						
V50:	948	m/s	3108	ft/s		# shots:	4			
Std Dev:	8	m/s	25	ft/s		Spread:	17	m/s	56	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
926	3037			1.06	PP	No		11178		
951	3119			1.52	CP	Yes		11179		
962	3155			0.71	CP	No		11180		
956	3136			0.79	СР	Yes		11181		
957	3139			3.81	CP	No		11182		
924	3031			1.00	PP	No		11183		
939	3080			1.82	PP	Yes		11184		
926	3037			0.56	PP	No		11185		
944	3096			0.25	PP	Yes	-	11186		

Target:	AA7017-	Γ6		Date:	27-Feb-13					
Plate #:	495953-1	E2		Test Site:	EF-108					
Projectile Lot#:	ARL-02-0	C-0105								
Avg. Thickness:	3.524	"	89.516	mm						
Hardness:	134	HBN								
Obliquity:	0°									
Projectile:	14.5mm	BS41								
Setup:	AA7017-	\ \air(6")-AA2	2024(0.020	")						
Velocity Measu	rement:	Xray								
Low CP:	938	m/s	3077	ft/s						
High PP:	941	m/s	3086	ft/s						
V50:	941	m/s	3087	ft/s		# shots:	6			
Std Dev:	10	m/s	33	ft/s		Spread:	24	m/s	79	ft/s
ZMR:	3	m/s	10	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
932	3057			0.50	PP	Yes	-	11187		
941	3086			1.03	PP	Yes		11188		
938	3077			0.71	СР	Yes		11189		
930	3050			0.75	PP	Yes		11190		
952	3123			1.00	СР	Yes		11191		
954	3129			0.71	CP	Yes	-	11192		

Target:	AA7017-	Г6		Date:	4-Mar-13					
Plate #:	495959-1	G1		Test Site:	EF-108					
Projectile Lot#:	ARL-02-0	C-0105								
Avg. Thickness:	4.042	"	102.654	mm						
Hardness:	121	HBN								
Obliquity:	0°	TIDIA								
Projectile:	14.5mm	BS41								
Setup:	AA7017-	 Air(6")-AA2	2024(0.020"	<u>'</u>)						
Velocity Measu	rement:	Xray								
Low CP:		m/s	0	ft/s						
High PP:	1015	m/s	3329	ft/s						
V50:	0	m/s		ft/s		# shots:	1			
Std Dev:	0	m/s	0	ft/s		Spread:	0	m/s	0	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
986	3234		-	0.79	PP	No	_	11193		
995	3264		-	1.03	PP	No	-	11194		
1015	3329		-	2.06	PP	No	-	11195		
		*Halted te	sting - ma	ximum sa	fe load for g	gun				

Target:	AA7017-	T6		Date:	4-Mar-13				
Plate #:	495959-1	G2		Test Site:	EF-108				
Projectile Lot#:	ARL-02-	C-0105							
Avg. Thickness:	4.034	"	102.46	mm					
Hardness:		HBN							
Obliquity:	0°								
Projectile:	14.5mm	BS41							
Setup:	AA7017-	Air(6")-AA	2024(0.020	")					
Velocity Measur	ement:	Xray							
Low CP:	0	m/s	0	ft/s					
High PP:	1014	m/s	3326	ft/s					
V50:	0	m/s	0	ft/s		# shots:	1		
Std Dev:	0	m/s	0	ft/s		Spread:	0	m/s	0 ft/s
ZMR:	0	m/s	0	ft/s					
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot	
Velocity	Velocity					for V50		#	
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)				
1019	3342			8.62	PP	No	High gamma	11196	
995	3264			2.00	PP	No		11197	
1014	3326		-	1.52	PP	Yes		11198	
		*Halted te	sting - ma	ximum sa	fe load for g	านท			

Target:	AA7017-	Γ7		Date:	23-Sep-10					
Plate #:	K889-T76	551		Test Site:	EF-108					
Projectile Lot#:	ARL-02-0	C-0105								
Avg. Thickness:	3.898	"	99.016	mm						
Hardness:	121	HBN								
Obliquity:	0°									
Projectile:	14.5mm	BS41								
Setup:	AA7017-	\ \air(6")-AA2	024(0.020")						
Velocity Measu	rement:	Xray								
Low CP:		m/s	3224							
High PP:		m/s	3228							
V50:		m/s	3226			# shots:				
Std Dev:		m/s		ft/s		Spread:	11	m/s	36	ft/s
ZMR:	1	m/s	3	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity			,, ,	(DD (OD)	for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
950	3116			0.58	PP	No		9383		
1002	3287			0.71	CP	No		9384		
984	3228		-	0.35	PP	Yes	-	9385		
1000	3280			0.25	CP	No		9386		
989	3244	-	-	0.35	СР	Yes	-	9387		
983	3224	-	-	0.56	СР	Yes	-	9388		
993	3257			0.00	CP	No		9389		
978	3208	-	-	0.25	PP	Yes		9390		

0.50-cal FSP

Target:	AA7017-T	6		Date:	21-Feb-13					
Plate #:	495871-10	32		Test Site:	EF-110G					
Lot#:	495871									
Avg. Thickness:	0.7595	"	19.291	mm						
Hardness:	134	HBN								
Obliquity:	0°									
Projectile:	0.50cal	FSP								
Setup:	AA7017-A	ir(6")-AA20))24(0.020")							
Velocity Measu	rement:	Xray								
Low CP:		m/s	2158							
High PP:	656	m/s	2152	ft/s						
V50:	660	m/s	2164	ft/s		# shots:	4			
Std Dev:	8	m/s		ft/s		Spread:	17	m/s	56	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
765	2509				СР	No	No x-rays, Velocity measured by hand	14211		
676	2217	-0.75	-0.50	0.90	CP	No	'	14212		
648	2125	-0.50	0.50	0.71	PP	No		14213		
593	1945				CP	No	No x-rays, Velocity measured by hand	14214		
658	2158	0.50	0.75	0.90	CP	Yes		14215		
656	2152	-0.25	0.50	0.56	PP	Yes		14216		
654	2145	0.00	1.00	1.00	PP	Yes		14217		
671	2201	-0.50	0.00	0.50	CP	Yes		14218		

Target:	AA7017	-T6		Date:	21-Feb-13					
Plate #:	495871-	5G1		Test Site:	EF-110G					
Lot#:	495871									
Avg. Thickness:	0.760	"	19.304	mm						
Hardness:	127	HBN								
Obliquity:	0°	IIDIA								
Projectile:	0.50cal	FSP								
Setup:		-Air(6")-AA	2024(0.020)")						
Velocity Measu	rement:	Xray								
Low CP:	622	m/s	2040	ft/s						
High PP:	623	m/s	2043	ft/s						
V50:	625	m/s	2050	ft/s		# shots:	4			
Std Dev:	5	m/s	15	ft/s		Spread:	10	m/s	33	ft/s
ZMR:	1	m/s	3	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity	•				for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
646	2119	0.50	1.00	1.12	CP	No		14219		
654	2145	0.00	1.50	1.50	CP	No		14220		
642	2106	-0.50	0.50	0.71	CP	No		14221		
632	2073	0.00	0.50	0.50	CP	Yes	-	14222		
612	2007	0.00	0.50	0.50	PP	No		14223		
623	2043	0.25	0.25	0.35	CP	Yes	-	14224		
623	2043	0.25	-0.25	0.35	PP	Yes	-	14225		
622	2040	0.50	0.50	0.71	PP	Yes	_	14226		

Target:	AA7017-	T7		Date:	29-Oct-10					
Plate #:	K889-T7	651		Test Site:	EF-108					
Lot#:	T7651									
Avg. Thickness:	0.783	"	19.888	mm						
Hardness:		HBN								
Obliquity:	0°									
Projectile:	0.50cal	FSP								
Setup:	AA7017-	Air(6")-AA2	2024(0.020'	')						
Velocity Measur	rement:	Xray								
Low CP:	655	m/s	2148	ft/s						
High PP:	645	m/s	2116	ft/s						
V50:	650	m/s	2130	ft/s		# shots:	4			
Std Dev:	8	m/s	25	ft/s		Spread:	16	m/s	52	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
607	1991			0.58	PP	No		9464		
657	2155	_	-	0.71	CP	Yes	-	9469		
634	2080			0.35	PP	No		9470		
655	2148	-	-	0.25	CP	Yes		9471		
641	2102	_	-	0.35	PP	Yes		9472		
645	2116	_		0.56	PP	Yes		9473		

Target:	AA7017-	T6		Date:	24-Feb-13					
Plate #:	495880-4	E2		Test Site:	EF-110G					
Lot#:	495880									
Avg. Thickness:	1.004	"	25.502	mm						
J										
Hardness:		HBN								
Obliquity:	0°									
Projectile:	0.50cal	FSP								
Setup:	AA7017-	 Air(6")-AA2	2024(0.020"	')						
Velocity Measur		Xray		ĺ						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,								
Low CP:	1055	m/s	3460	ft/s						
High PP:	1042	m/s	3418	ft/s						
V50:	1049	m/s	3441	ft/s		# shots:	4			
Std Dev:	8	m/s	27	ft/s		Spread:	15	m/s	49	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity		1011	Gaiiiiia	Result	for V50	Comments	#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)	101 430				
(111/3)	(103)	(ueg)	(ueg)	(ueg)	(FF/GF)					
							No x-rays, Velocity			
948	3109			0.71	PP	No	measured by hand	14195		
956	3136			0.35	PP	No		14196		
972	3188			0.56	PP	No		14197		
							No x-rays, Velocity			
998	3273		-	0.75	PP	No	measured by hand	14198		
1038	3405			0.25	PP	No		14199		
							High gamma, bad			
							yaw used because it			
1055	3460	-	-	10.28	CP	Yes	is a CP	14200		
1042	3418	-	-	0.90	PP	Yes	-	14201		
1067	3500			0.79	CP	No		14202		
1105	3624			0.90	CP	No		14203		
1057	3467	-	-	0.75	CP	Yes		14204		
							No x-rays, Velocity			
1223	4011				CP	No	measured by hand	14205		
946	3103			0.35	PP	No		14206		
1042	3418			1.25	PP	Yes		14207		

Target:	AA7017	-T6		Date:	26-Feb-13					
Plate #:	495880-	4B1		Test Site:	EF-110G					
Lot#:	495880									
Avg. Thickness:	1.003	"	25.476	mm						
Hardness:	131	HBN								
Obliquity:	0°									
Projectile:	0.50cal	FSP								
Setup:	AA7017	-Air(6")- <i>A</i>	AA2024(0.020	")						
Velocity Measu	rement:	Xray								
Low CP:	1100	m/s	3608	ft/s						
High PP:	1086	m/s	3562	ft/s						
V50:	1093	m/s	3583	ft/s		# shots:	4			
Std Dev.	9	m/s	31	ft/s		Spread:	18	m/s	59	ft/s
ZMR:	0	m/s	0	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity	/				for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
1100	3608	-	-	0.25	СР	Yes	-	14227		
1004	3293			1.27	PP	No		14228		
1038	3405			0.50	PP	No		14229		
1057	3467			0.50	PP	No		14230		
1105	3624			0.00	CP	No		14231		
1036	3398			0.79	PP	No		14232		
1058	3470			0.50	PP	No		14233		
1083	3552	_	-	1.06	PP	Yes	-	14234		
1086	3562	-		0.25	PP	Yes	-	14235		
1101	3611			0.25	CP	Yes		14236		

20 mm FSP

Target:	AA7017-	Т7		Date:	5-Aug-10					
Plate #:	K889 T76	551, 469280)A2	Test Site:	EF-108					
Lot#:	469280A	2								
Avg. Thickness:	0.786	"	19.952	mm						
Hardness:	128	HBN								
Obliquity:	0°									
Projectile:	20mm	FSP								
Setup:	AA7017-	 Air(6")-AA2	2024(0.020"))						
Velocity Measu		Xray	,							
Low CP:	330	m/s	1082	ft/s						
High PP:		m/s	1187							
V50:		m/s	1135			# shots:	10			
Std Dev:		m/s		ft/s		Spread:	50	m/s	164	ft/s
ZMR:		m/s	105	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity		1411	Guiiiiiu	rtoourt	for V50	Commonic	#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
(, 5)	(-2-5)	(== 5)	(== 5)	(5)	(,					
300	984			1.03	PP	No		9267		
316	1036			0.50	PP	No		9268		
354	1161			1.75	CP	Yes		9269		
330	1082			2.76	CP	Yes	-	9270		
316	1036			2.93	PP	Yes	-	9271		
318	1043			2.15	PP	Yes	-	9272		
325	1066			1.03	PP	Yes	-	9273		
362	1187			2.50	PP	Yes	-	9274		
380	1246			2.51	CP	No		9275		
365	1197		-	0.35	CP	Yes		9276		
360	1181			1.82	PP	Yes	-	9277		
363	1191		-	0.25	CP	Yes		9278		
366	1200	-	_	0.90	CP	Yes		9279		

Target:	AA7017-T	6		Date:	31-Jan-13					
Plate #:	495880-4	31		Test Site:	EF-110E					
Lot#:	495880									
Avg. Thickness:	1.003	"	25.476	mm						
Hardness:	131	HBN								
Obliquity:	0°									
Projectile:	20mm	FSP								
Setup:	AA7017-A	ir(6")-AA20) 024(0.020")							
Velocity Measu	rement:	Xray								
Low CP:		m/s	1486							
High PP:		m/s	1502							
V50:		m/s	1517			# shots:				
Std Dev:	-	m/s		ft/s		Spread:	20	m/s	66	ft/s
ZMR:	5	m/s	16	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
444	1456	1.00	-1.00	1.41	PP	No		1916		
367	1204	0.00	1.00	1.00	PP	No		1917		
408	1338	-0.25	0.25	0.35	PP	No		1918		
421	1381	0.25	-0.25	0.35	PP	No		1919		
440	1443	0.00	0.25	0.25	PP	No		1920		
458	1502	-0.50	-0.25	0.56	PP	Yes		1921		
487	1597	-0.50	-0.25	0.56	CP	No		1922		
473	1551	-0.25	0.00	0.25	CP	No		1923		
472	1548	0.25	-0.50	0.56	СР	Yes	-	1924		
453	1486	-0.50	0.00	0.5	СР	Yes	-	1925		
456	1496	-0.25	0.25	0.35	PP	Yes		1926		

Target:	AA7017-T	6		Date:	4-Feb-13					
Plate #:	495880-4	E2		Test Site:	EF-110E					
Lot#:	495880									
Avg. Thickness:	1.004	"	25.502	mm						
Hardness:	126	HBN								
Obliquity:	0°									
Projectile:	20mm	FSP								
Setup:	AA7017-A	\ir(6")-AA20)24(0.020")							
Velocity Measur	rement:	Xray								
Low CP:	462	m/s	1515	ft/s						
High PP:		m/s	1519	ft/s						
V50:		m/s	1519			# shots:	_			
Std Dev:	_	m/s		ft/s		Spread:	12	m/s	39	ft/s
ZMR:	1	m/s	3	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
462	1515	0.25	-0.25	0.35	СР	Yes	-	1927		
447	1466	0.25	0.75	0.79	PP	No		1928		
458	1502	0.00	0.25	0.25	PP	Yes	-	1929		
463	1519	0.25	-0.25	0.35	PP	Yes	-	1930		
470	1542	0.00	0.25	0.56	CP	Yes	_	1931		

897	2942	-0.25	-0.25	0.35	PP	Yes	-	1937		
913	2995	0.25	-0.75	0.79	CP	Yes	-	1936		
902	2959	-0.25	0.25	0.35	CP	Yes	-	1935		
900	2952	0.25	-0.25	0.35	PP	Yes	-	1934		
862	2827	0.00	-0.50	0.50	PP	No		1933		
821	2693	-1.50	-0.50	1.58	PP	No		1932		
(1117-5)	(143)	(ucg)	(ucg)	(ucg)	(11701)					
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)	.5. 750		TT .		
Velocity	Velocity			Junnia	riodait	for V50	2307113	#		
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
ZMR:	0	m/s	0	ft/s						
Std Dev:	7	m/s	23	ft/s		Spread:	16	m/s	52	ft/s
V50:	903	m/s	2962	ft/s		# shots:	4			
High PP:	900	m/s	2952	ft/s						
Low CP:	902	m/s	2959	ft/s						
Velocity Measu	lement.	Alay								
Setup:		-Air(6")-AA Xray	2024(0.020	") 						
0.1	4 4 7047	A: (OII) A A	0004/0 000							
Projectile:	20mm	FSP								
Obliquity:	0°									
Hardness:		HBN								
Avg. Thickness:	1.511	"	38.379	mm						
Lot#:	495892									
Plate #:	495892-	1E1		Test Site:	EF-110E					
Farget:	AA7017			Date:	5-Feb-13					

Target:	AA7017-	T6		Date:	12-Feb-13					
Plate #:	495892-1	B2		Test Site:	EF-110E					
Lot#:	1B2									
Avg. Thickness:	1.508	"	38.303	mm						
Hardness:		HBN								
Obliquity:	0°									
Projectile:	20mm	FSP								
Setup:	AA7017-	 Air(6")-AA2	2024(0.020")						
Velocity Measu		Xray	,							
Low CP:	872	m/s	2860	ft/s						
High PP:		m/s	2890							
V50:		m/s	2877	ft/s		# shots:	4			
Std Dev:	5	m/s	15	ft/s		Spread:	9	m/s	30	ft/s
ZMR:	9	m/s	30	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
910	2985	0.25	0.25	0.35	CP	No		1939		
906	2972	0.25	1.00	1.03	CP	No		1940		
916	3004	-0.75	0.00	0.75	CP	No		1941		
912	2991	0.00	-0.50	0.50	CP	No		1942		
906	2972	-0.50	0.25	0.56	CP	No		1943		
888	2913	0.00	-0.25	0.25	CP	No		1944		
848	2781	0.25	0.00	0.25	PP	No		1945		
842	2762	0.25	0.00	0.25	PP	No		1946		
858	2814	-0.50	-0.25	0.56	PP	No		1947		
872	2860	0.00	0.00	0.00	CP	Yes		1948		
881	2890	0.00	-0.50	0.50	CP	Yes		1949		
874	2867	-0.25	-0.50	0.56	PP	Yes		1950		
881	2890	-1.25	0.25	1.25	PP	Yes		1951		

Target:	AA7017-T	7		Date:	5-Aug-10					
Plate #:	46950640	-K889 & T7	651	Test Site:	EF-108					
Lot#:	K889 & T	7651								
Avg. Thickness:	1.533	"	38.932	mm						
Hardness:	124	HBN								
Obliquity:	0°									
Projectile:	20mm	FSP								
Setup:	AA7017-A	ir(6")-AA20)24(0.020")							
Velocity Measur	ement:	Xray								
Low CP:	868	m/s	2847	ft/s						
High PP:	914	m/s	2998	ft/s						
V50:	903	m/s	2962	ft/s		# shots:	10			
Std Dev:	19	m/s	62	ft/s		Spread:	57	m/s	187	ft/s
ZMR:	46	m/s	151	ft/s						
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot		
Velocity	Velocity					for V50		#		
(m/s)	(ft/s)	(deg)	(deg)	(deg)	(PP/CP)					
868	2847			1.82	СР	Yes	-	9280		
839	2752			1.58	PP	No		9281		
852	2795			2.02	PP	No		9282		
860	2821			2.85	PP	No		9283		
863	2831			3.25	PP	No		9284		
874	2867			3.04	PP	No		9285		
879	2883			2.50	PP	Yes		9286		
877	2877			2.80	PP	No		9287		
895	2936			3.04	PP	Yes		9288		
891	2922			1.06	PP	Yes		9289		
910	2985		-	0.35	PP	Yes		9290		
925	3034			2.80	CP	Yes		9291		
915	3001		-	0.35	CP	Yes		9292		
918	3011		-	0.25	CP	Yes		9293		
916	3004			2.50	CP	Yes		9294		
914	2998			2.00	PP	Yes		9295		

Target:	AA7017-T6			Date:	18-Jun-13				
Plate #:	495905-2F1			Test Site:	EF-110G				
Projectile Lot#:									
Avg. Thickness	2.013	"	51.130	mm					
Hardness:	131	HBN							
Obliquity:	0°								
Projectile:	20mm	FSP							
-									
Setup:	AA7017-Air	6")-AA202	4(0.020")						
Velocity Measu		Xray	. ,						
Low CP:	1299	m/s	4263	ft/s					
High PP:	1297	m/s	4255	ft/s					
V50:	1301	m/s	4269	ft/s		# shots:	4		
Std Dev:	8	m/s	27	ft/s		Spread:	18	m/s	60 ft/s
ZMR:	0	m/s	0	ft/s					
Striking	Striking	Pitch	Yaw	Gamma	Result	Used	Comments	Shot	
Velocity	Velocity					for V50		#	
(ft/s)	(m/s)	(deg)	(deg)	(deg)	(PP/CP)				
4625	1410			0.56	CP	No		14451	
4025	1326			1.00	CP	No		14451	
4300	1320			1.00	UP	INO		14452	
							*DISREGARD Shot for V ₅₀ ;		
							Witness broke from debris		
							flying thru crack at back of		
4058	1237			0.56	CP	No	target	14453	
4058	1237			1.50	PP	No		14454	
4043	1232			0.00	PP	No		14455	
4105	1251			1.75	PP	No		14456	
4131	1259		-	0.25	PP	No		14457	
4263	1299	-	-	2.30	CP	Yes	-	14458	
4203	1281			0.75	PP	No		14459	
4248	1295	-	-	0.56	PP	Yes	-	14460	
4255	1297	-	-	2.51	PP	Yes	-	14461	
4308	1313		-	0.50	CP	Yes		14462	

INTENTIONALLY LEFT BLANK.

List of Symbols, Abbreviations, and Acronyms

AA aluminum alloy

AP armor-piercing

CP complete penetration

FSP fragment-simulating projectile

ID identification

IR infrared

PP partial penetration

2	DEFENSE TECHNICAL INFORMATION CTR DTIC OCA DIRECTOR US ARMY RESEARCH LAB RDRL CIO L IMAL HRA MAIL & RECORDS MGMT	8 (PDF)	TARDEC A SOCKS J PEREZ F RICKERT C FILAR R TRANCYGIER M MCDONNEL M ROGERS D TZELEPIS
1 (PDF)	GOVT PRINTG OFC A MALHOTRA	2 (PDF)	PEO GCS T DEAN D SPENSER
3 (PDF)	ALCOA R KANE D MOOY J CARATELLI	1 (PDF)	OSHKOSH DEFENSE M RICHMOND
1 (PDF)	ALERIS L KRAMER	2 (PDF)	RDECOM W EVERETT R IMPERIALE
	CONSTELLIUM P KOBE M NIEDZINSKI M PHILBROOK	2 (PDF)	OFC OF THE DPTY ASSIST SECY OF DEFNS FOR EMERGING CAPIBILITY & PROTOTYPING E WYATT
(PDF)	KAISER J SCHEURING		R THOMPSON
1	NSWC R PETERSON	1 (PDF)	US NAVY RSRCH LAB J MORAN
4	BAE SYSTEMS J DORSCH	1 (PDF)	NSWC CARDEROCK DIV E TRUEMAN
(121)	B KARIYA D SCHADE M MIDDIONE	2 (PDF)	DOD CORROSION POLICY AND OVERSIGHT OFC R HAYS D DUNMIRE
1 (PDF)	GDLS W HERMAN TECHVEN PARTNERS	1 (PDF)	OFC OF THE DIR DEFNS RSRCH AND ENGRG L SLOTER
(PDF)	M LAGRONE C CUMMINGS	1 (PDF)	USMC CORROSION PREVENTION AND CNTRL
	WA GOOCH CONSULTING INC W GOOCH		A SHEETZ
2	ATEC K BEAVERS J WHITE	2 (PDF)	PEO SOLDIER J ZHENG V HALLS

- 1 USSOCOM
- (PDF) C LOVELL
 - 3 NSRDEC
- (PDF) J KIREJCZYK
 - D COLANTO
 - J WARD
- 25 DIR USARL
- (PDF) RDRL WM
 - M ZOLTOSKI
 - RDRL WML
 - P PEREGINO
 - RDRL WML H
 - L MAGNESS
 - T EHLERS
 - J NEWILL
 - RDRL WMM
 - R DOWDING
 - M VANLANDINGHAM
 - RDRL WMM C
 - **B PLACZANKIS**
 - RDRL WMM D
 - **B CHEESEMAN**
 - R SQUILLACIOTI
 - R CARTER
 - M KORNECKI
 - RDRL WMM F
 - K DOHERTY
 - J CHINELLA
 - E KLIER
 - S GRENDAHL
 - **RDRL WMP**
 - D LYON
 - RDRL WMP D
 - J RUNYEON
 - D PETTY
 - RDRL WMP E
 - M BURKINS
 - D GALLARDY
 - T JONES
 - P SWOBODA
 - RDRL WMP F
 - N GNIAZDOWSKI
 - **RDRL WMS**
 - H MAUPIN

INTENTIONALLY LEFT BLANK.