Iterated Exponential Growth

Shubham Tiwari

Section: A

Semester: 6

Department of Mathematics

Dyal Singh College

Introduction

For a large class of transcendental entire functions, including exponential and trigonometric functions, points in the fast escaping set are characterised as those whose orbits exhibit iterated exponential growth.

Let us define $F: [0, \infty) \to [0, \infty)$ by $F(t) = \exp(t) - 1$. Then F(t) > t for t > 0, and hence the sequence $F^n(t)$ tends to

Then F(t) > t for t > 0, and hence the sequence F''(t) tends to infinity.

We are interested in the rate at which these orbits grow.

Definition 2.1

(Iterated Exponential Growth)

A sequence $(a_n)_{n=0}^{\infty}$ of non-negative real numbers has iterated exponential growth if

$$0 < \liminf_{n \to \infty} F^{-n}(a_n) \le \limsup_{n \to \infty} F^{-n}(a_n) < \infty.$$

The specific function F is not relevant; any exponentially growing function gives rise to the same notion of iterated exponential growth.

Proposition 2.2

(Properties of Iterated Exponential Growth)

- (a) Let $\delta > 0$ and define $\Omega_{\delta}(t) := \exp(\delta t)$ for $t \in \mathbb{R}$. Let t_0 be such that $\Omega_{\delta}(t) > t$ for $t \geq t_0$. Then the sequence $(\Omega_{\delta}^n(t_0))_{n=0}^{\infty}$ has iterated exponential growth.
- (b) Let C > 1. A sequence $(a_n)_{n=0}^{\infty}$ has iterated exponential growth if and only if the sequence $(a_n^C)_{n=0}^{\infty}$ has iterated exponential growth.