Math 136 - Linear Algebra

Winter 2016

Lecture 27: March 11, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

27.1 Determinants

Definition 27.1 Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We define the determinant of A to be ad - bc and write

$$det A = ad - bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Definition 27.2 Let A bs an $n \times n$ matrix with n > 1. Let A(i,j) be the $(n-1) \times (n-1)$ matrix obtained from A by deleting the i-th row and the j-th column. the cofactor a_{ij} is

$$C_{ij} = (-1)^{i+j} det A(i,j)$$

Definition 27.3 If A is the 1×1 matrix A = [a], then det A = a. If A is an $n \times n$ matrix with $n \ge 2$, then the **determinant** of A is defined to be

$$det A = \sum_{j=1}^{n} a_{1j} C_{1j}$$

Remarks:

- 1. The Determinant of am $n \times n$ matrix is defined in terms of cofactors which are determinants of $(n-1) \times (n-1)$
- 2. We often repersent the determinant of a matrix with vertical straight lines.

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Theorem 27.4 Let A be an $n \times n$ matrix, For any i with $1 \le i \le n$

$$detA = \sum_{k=1}^{n} a_{ik} C_{ik}$$

is called the cofactor expansion across the i-th row, Or for any j with $1 \le j \le n$

$$det A = \sum_{k=1}^{n} a_{kj} C_{kj}$$

is called the cofactor expansion across the j-th column

End of Lecture Notes Notes by: Harsh Mistry