ALGORITMI ŞI SCHEME LOGICE

- > Caracteristicile algoritmilor
- **►Iterativitate și recursivitate**
- > Reprezentarea algoritmilor
- > Descrierea structurilor fundamentale
- >Structurarea algoritmilor
- **≻**Erorile în algoritmi
- >Proiectarea algoritmilor

Caracteristicile algoritmilor

- Generalitate
- Determinare (claritate)

Exemplul 1: ecuația de grad 2

Exemplul 2:

- Suma elementelor impare dintr-un şir
- Suma elementelor pare dintr-un şir
- Finitudine

Clase de algoritmi:

♠ Algoritmi cu număr finit de paşi, a priori cunoscut

Produs scalar între două mulțimi

- ♠ Algoritmi cu număr finit de paşi, a posteriori cunoscut
 - CMMDC între două numere
 - Numerele prime până la o limită dată
- ▲ Algoritmi cu număr infinit de pași
- Rezolvarea unei ecuații transcendente
- Numărarea unor elemente care îndeplinesc o condiție dată

Iterativitate și recursivitate

Iterativitate

- **X** Produs vectorial
- **X** Pătratele elementelor unui șir
- **X** Creare vectori

Recursivitate

- **X**Suma elementelor unui şir
- **X** Produsul elementelor unui șir
- **X** Produs scalar
- **X** Maxim (minim) dintr-un şir
- **X** Cmmdc dintre două numere

formula iterativă

- formula de start
- formula recursivă

Reprezentarea algoritmilor prin scheme logice

Blocul START

START

Blocul STOP

STOP

Blocul de citire

Citește date_de_intrare_/ Blocul de scriere

Scrie date_de_ieșire_/

Blocul de atribuire

$$\mathbf{v} = \mathbf{e}$$

$$\mathbf{v} \leftarrow \mathbf{e}$$

Blocul de ramificare

$$c_1 \lor c_2 \lor \dots \lor c_n = 1$$

$$c_i \land c_j = 0, \forall i \neq j; i, j = 1, n$$

Pentru cazul n=2

Structurile fundamentale din programarea structurată

Structura secvențială (liniară)

Structurile alternative - selecția simplă

Structurile alternative - pseudoalternativa

s.l.s.

pseudocod

if c then s1 endif arbore

analitic

IF-THEN (c,s1)

s.l.s.

Structura alternativă multiplă

analitic

CASE-OF (i,s1,s2,...,sn,s)

pseudocod

case of i
i=v1: s1;
i=v2: s2;
...
i=vn: sn
else s
endcase

Structurile repetitive

Structura repetitivă condiționată anterior

pseudocod

arbore

analitic

WHILE-DO(c,s)

Structură PRIVILEGIATĂ!

Structura repetitivă condiționată posterior

until c

Structura repetitivă cu numărător

Structurarea algoritmilor

Mulțimea structurilor privilegiate

S = (BLOCK, IF-THEN-ELSE, WHILE-DO)

Mulțimea structurilor fundamentale

S' = (BLOCK, IF-THEN-ELSE, IF-THEN, CASE-OF, WHILE-DO, DO-UNTIL, DO-FOR)

• Un algoritm este S structurat (sau S' structurat) dacă este format numai din elemente din mulțimea S (respectiv S').

Teorema fundamentală de structură (Boem-Jacopini)

• Fie P un algoritm nestructurat, format dintr-o mulțime A de acțiuni (operații) și o mulțime C de condiții. Dacă se adaugă un număr finit de acțiuni și/sau de condiții, se obține un algoritm structurat, echivalent cu P.

Corolarul top-down

- Un algoritm P structurat este echivalent cu un algoritm pus sub una din următoarele forme:
 - P = BLOCK(s1, s2,...,sn)
 - P = IF-THEN-ELSE(c,s1,s2)
 - P = WHILE-DO(c,s)

Metode de structurare a algoritmilor

- * Metoda dublării codurilor
 - structurarea secvențelor alternative
 - structurarea secvențelor repetitive

- * Metoda folosirii de variabile booleene
 - structurarea secvențelor repetitive

Erorile în algoritmi

- ☐ Erori în datele inițiale:
 - erori de observare
 - erori datorate numerelor iraționale
- □Erori de rotunjire
- ☐Erori de metodă
- **□**Erori reziduale

Proiectarea algoritmilor

- Proiectarea, codificarea și testarea top-down
- Proiectarea modularizată
- Proiectarea structurată