Minimum Cut and Minimum k-Cut in Hypergraphs via Branching Contractions

Kyle Fox

joint with

Debmalya Panigrahi and Fred ZhangDuke University

• A (short) lecture, some recent work, and a new result...

- A (short) lecture, some recent work, and a new result...
 - 1. Minimum cuts in graphs via branching random contractions [Karger, Stein '96]

- A (short) lecture, some recent work, and a new result...
 - 1. Minimum cuts in graphs via branching random contractions [Karger, Stein '96]
 - 2. Minimum cuts in hypergraphs via serial random contractions

[Ghaffari et al. '17; Chandrasekharan et al. '18]

- A (short) lecture, some recent work, and a new result...
 - 1. Minimum cuts in graphs via branching random contractions [Karger, Stein '96]
 - 2. Minimum cuts in hypergraphs via serial random contractions
 - [Ghaffari et al. '17; Chandrasekharan et al. '18]
 - 3. Faster minimum cuts in hypergraphs via *branching* contractions [FPZ]

 A cut is a set of edges whose removal creates at least 2 connected components; a k-cut creates at least k components

- A cut is a set of edges whose removal creates at least 2 connected components; a k-cut creates at least k components
- A *minimum* (*k*-)*cut* has as few edges as possible

- A cut is a set of edges whose removal creates at least 2 connected components; a k-cut creates at least k components
- A *minimum* (*k*-)*cut* has as few edges as possible

- A cut is a set of edges whose removal creates at least 2 connected components; a k-cut creates at least k components
- A *minimum* (*k*-)*cut* has as few edges as possible

• We'll focus on finding minimum (2-)cuts (*i.e.*, minimum cuts)

- We'll focus on finding minimum (2-)cuts (i.e., minimum cuts)
- Given a graph with n vertices and m edges...

- We'll focus on finding minimum (2-)cuts (i.e., minimum cuts)
- Given a graph with n vertices and m edges...
 - ► Compute *n* 1 minimum *s*,*t*-cuts in O(*mn*²) time

- We'll focus on finding minimum (2-)cuts (i.e., minimum cuts)
- Given a graph with n vertices and m edges...
 - ► Compute *n* 1 minimum *s*,*t*-cuts in O(*mn*²) time
 - Guess an edge outside a minimum cut (uniformly at random) and contract...

Edge Contraction

Identify endpoints and remove loops

Edge Contraction

- Identify endpoints and remove loops
- Like committing to not separating the endpoints with a cut

Contractions Preserve Cuts (Probably)

 Lemma: For any minimum cut C, we contract an edge of C with probability ≤ 2 / n

Contractions Preserve Cuts (Probably)

- Lemma: For any minimum cut C, we contract an edge of C with probability ≤ 2 / n
 - ► Each vertex is incident to at least |C| edges

Contractions Preserve Cuts (Probably)

- Lemma: For any minimum cut C, we contract an edge of C with probability ≤ 2 / n
 - ► Each vertex is incident to at least |C| edges
 - ► So there are at least |C| (n / 2) edges

- Repeatedly contract until two vertices remain
- Surviving edges form a cut

It Works!

 For any minimum cut C, we contract an edge of C with probability ≤ 2 / n

It Works!

 For any minimum cut C, we contract an edge of C with probability ≤ 2 / n

induction...

It Works!

 For any minimum cut C, we contract an edge of C with probability ≤ 2 / n

induction...

• Minimum cut C survives the entire process with probability $\Omega(1/n^2)$

Try, Try Again

- One run of the repeated contraction process finds a minimum cut with probability $\Omega(1/n^2)$
- Run it $O(n^2)$ times to succeed with constant probability
- Or O(n² log n) times to succeed with high probability (probability ≥ 1 - 1 / n)
- Takes $O(n^2)$ time to fully contract once, so $O(n^4 \log n)$ time total

Probably for one run to succeed is too low!

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain
- Make two copies of contracted graph, recurse, and return the smaller cut

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain
- Make two copies of contracted graph, recurse, and return the smaller cut

Branching Contractions [Karger, Stein '96]

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain
- Make two copies of contracted graph, recurse, and return the smaller cut

Branching Contractions [Karger, Stein '96]

- Probably for one run to succeed is too low!
- To boost probability, contract until $\lceil n/\sqrt{2} \rceil$ vertices remain
- Make two copies of contracted graph, recurse, and return the smaller cut

Still Fast

- A single try has the runtime recurrence $T(n) = 2T(n/\sqrt{2}) + O(n^2)$
- So $O(n^2 \log n)$ time per run

But More Accurate

 For any minimum cut C, probability we contract any edge in C before recursion is ≤ 1 / 2

But More Accurate

 For any minimum cut C, probability we contract any edge in C before recursion is ≤ 1 / 2

nasty induction...

But More Accurate

 For any minimum cut C, probability we contract any edge in C before recursion is ≤ 1 / 2

nasty induction...

• We return a minimum cut with probability $\Omega(1 / \log n)$

 One run of the branching contraction process finds a minimum cut with probability Ω(1 / log n)

- One run of the branching contraction process finds a minimum cut with probability Ω(1 / log n)
- Run it O(log² n) times to succeed with high probability

- One run of the branching contraction process finds a minimum cut with probability Ω(1 / log n)
- Run it O(log² n) times to succeed with high probability
- $O(n^2 \log^3 n)$ time total!

- One run of the branching contraction process finds a minimum cut with probability Ω(1 / log n)
- Run it O(log² n) times to succeed with high probability
- $O(n^2 \log^3 n)$ time total!
- Faster than known deterministic algorithms when the graph is dense

- One run of the branching contraction process finds a minimum cut with probability Ω(1 / log n)
- Run it O(log² n) times to succeed with high probability
- $O(n^2 \log^3 n)$ time total!
- Faster than known deterministic algorithms when the graph is dense
- Can easily modify algorithm to find minimum k-cuts in $O(n^{2k-2} \log^2 n)$ time (best known algorithm)

 A hypergraph is a collection of vertices and arbitrary subsets of vertices called hyperedges

- A hypergraph is a collection of vertices and arbitrary subsets of vertices called hyperedges
- A minimum (k-)cut is still a minimum cardinality set of hyperedges whose removal creates at least k components

- A hypergraph is a collection of vertices and arbitrary subsets of vertices called hyperedges
- A minimum (k-)cut is still a minimum cardinality set of hyperedges whose removal creates at least k components

- A hypergraph is a collection of vertices and arbitrary subsets of vertices called hyperedges
- A minimum (k-)cut is still a minimum cardinality set of hyperedges whose removal creates at least k components

Hyperstrategies

• Again, focus on finding minimum (2-)cuts

Hyperstrategies

- Again, focus on finding minimum (2-)cuts
- Given a hypergraph with n vertices, m hyperedges, and total hyperedge size p

Hyperstrategies

- Again, focus on finding minimum (2-)cuts
- Given a hypergraph with n vertices, m hyperedges, and total hyperedge size p
 - Guess a hyperedge outside a minimum cut and contract...?

- n 1 distinct edges of size n 1, all containing vertex v
- Two copies of a path spanning over every vertex except v

- n 1 distinct edges of size n 1, all containing vertex v
- Two copies of a path spanning over every vertex except v
- Minimum cut contains every hyperedge, but there is a ≥
 1/3 probability of contracting a hyperedge each round

Really Bad

- Minimum cut survives all contractions with probability exponentially low in maximum hyperedge size [Kogan, Krauthgamer '15]
- Need to bias selection away from large hyperedges

 Should contract each hyperedge e with probability proportional to (1 - |e| / n) [Chandrasekaran, Xu, Yu '18]

- Should contract each hyperedge e with probability proportional to (1 - |e| / n) [Chandrasekaran, Xu, Yu '18]
- Minimum cut survives all contractions with probability $\Omega(1/n^2)!$

- Should contract each hyperedge e with probability proportional to (1 - |e| / n) [Chandrasekaran, Xu, Yu '18]
- Minimum cut survives all contractions with probability $\Omega(1/n^2)!$
- Can perform all contractions in O(p log n) time total [Ghaffari, Karger, Panigrahi '17]

- Should contract each hyperedge e with probability proportional to (1 - |e| / n) [Chandrasekaran, Xu, Yu '18]
- Minimum cut survives all contractions with probability $\Omega(1/n^2)!$
- Can perform all contractions in O(p log n) time total [Ghaffari, Karger, Panigrahi '17]
- So compute a minimum cut with high probability in $O(p \, n^2 \, \log^2 n) = O(m n^3 \, \log^2 n)$ time

- Should contract each hyperedge e with probability proportional to (1 - |e| / n) [Chandrasekaran, Xu, Yu '18]
- Minimum cut survives all contractions with probability $\Omega(1/n^2)!$
- Can perform all contractions in O(p log n) time total [Ghaffari, Karger, Panigrahi '17]
- So compute a minimum cut with high probability in $O(p \, n^2 \, \log^2 n) = O(m n^3 \, \log^2 n)$ time
- Minimum k-cut ($k \ge 3$) with high probability in $O(p \, n^{2k-1} \log n) = O(mn^{2k} \log n)$ time

Karger and Stein branch at carefully chosen graph orders

- Karger and Stein branch at carefully chosen graph orders
- Branch too early, and the number of recursive subproblems becomes too large

- Karger and Stein branch at carefully chosen graph orders
- Branch too early, and the number of recursive subproblems becomes too large
- Branch too late, and the probability of success becomes too small

- Karger and Stein branch at carefully chosen graph orders
- Branch too early, and the number of recursive subproblems becomes too large
- Branch too late, and the probability of success becomes too small
- Large hyperedges make it impossible to branch at the same time they do

 Same example as before, but replace the paths with two hyperedges containing every vertex except v

 Same example as before, but replace the paths with two hyperedges containing every vertex except v

- Same example as before, but replace the paths with two hyperedges containing every vertex except v
- Minimum cut contains every green hyperedge;
 contraction preserves cut with probability ≤ 2 / (n + 1)

- Same example as before, but replace the paths with two hyperedges containing every vertex except v
- Minimum cut contains every green hyperedge;
 contraction preserves cut with probability ≤ 2 / (n + 1)
- Need $\Omega(n)$ independent contractions

A Smoother Procedure

 Larger hyperedges means we need more branches, but how many?

A Smoother Procedure

- Larger hyperedges means we need more branches, but how many?
- Math works out easiest if we could do a fractional number of branches before each contraction

A Smoother Procedure

- Larger hyperedges means we need more branches, but how many?
- Math works out easiest if we could do a fractional number of branches before each contraction
- Can achieve this ideal in expectation by branching with a probability dependent on the size of present hyperedges

Probabilistic Branching [FPZ]

 Before every contraction, we flip coins to decide whether or not to copy the current hypergraph and recursively call our algorithm

Probabilistic Branching [FPZ]

- Before every contraction, we flip coins to decide whether or not to copy the current hypergraph and recursively call our algorithm
- The larger the hyperedges, the more likely we are to branch

 Previous work biased hyperedge selection away from large hyperedges; meanwhile, we want large hyperedges to induce more branching

- Previous work biased hyperedge selection away from large hyperedges; meanwhile, we want large hyperedges to induce more branching
- Our algorithm moves all bias against large hyperedges into deciding whether or not to branch

- Previous work biased hyperedge selection away from large hyperedges; meanwhile, we want large hyperedges to induce more branching
- Our algorithm moves all bias against large hyperedges into deciding whether or not to branch
- First, we select a hyperedge uniformly at random and commit to contracting it

- Previous work biased hyperedge selection away from large hyperedges; meanwhile, we want large hyperedges to induce more branching
- Our algorithm moves all bias against large hyperedges into deciding whether or not to branch
- First, we select a hyperedge uniformly at random and commit to contracting it
- But before contraction, we copy the hypergraph with probability based on the selected hyperedge's size

 Intuitively, we want to balance the probability of contracting a minimum cut's hyperedge with the probability of branching

- Intuitively, we want to balance the probability of contracting a minimum cut's hyperedge with the probability of branching
- Then, in expectation, we preserve one copy of the minimum cut in either the contracted hypergraph or the copy we create before contraction

• **Lemma**: For *any* minimum cut C, an edge chosen uniformly at random is in C with probability $\leq \frac{1}{m} \sum_{e} \frac{|e|}{n}$

- **Lemma**: For *any* minimum cut C, an edge chosen uniformly at random is in C with probability $\leq \frac{1}{m} \sum_{e} \frac{|e|}{n}$
- So if we select hyperedge e, we branch with probability
 |e| / n

That Looks Familiar...

We branch with probability |e| / n; Chandrasekaran et al. would have selected hyperedge e with probability proportional to (1 - |e| / n)

That Looks Familiar...

- We branch with probability |e| / n; Chandrasekaran et al. would have selected hyperedge e with probability proportional to (1 |e| / n)
- Their algorithm is the same as selecting a hyperedge e uniformly at random, and then redoing the selection with probability |e| / n

The Algorithm

 Maintain a set S of hyperedges we believe belong to the a minimum cut in hypergraph H

The Algorithm

 Maintain a set S of hyperedges we believe belong to the a minimum cut in hypergraph H

BranchingContract(H, S):

Add each spanning hyperedge to S and remove it from H If H has no edges, return S

Select hyperedge *e* uniformly at random
With probability |*e*| / *n*, return the smaller of the cuts
BranchingContract(*H* / *e*, *S*) and
BranchingContract(*H*, *S*)
Otherwise, return BranchingContract(*H* / *e*, *S*)

Computation Tree

 Visualize the algorithm's execution as a rooted tree over hypergraphs; input hypergraph H is the root, each time we perform a contraction, that node gets a child

Computation Tree

Our computation tree is probabilistic while Karger-Stein's is deterministic

Computation Tree

- Our computation tree is probabilistic while Karger-Stein's is deterministic
- They have more branches per level in exception

Just As Accurate

 We randomly select a hyperedge to contract and branch probabilistically

Just As Accurate

 We randomly select a hyperedge to contract and branch probabilistically

tedious induction...

Just As Accurate

 We randomly select a hyperedge to contract and branch probabilistically

tedious induction...

• We return a minimum cut with probability $\geq 1 / (2H_n - 2)$ where $H_n = 1 + 1/2 + ... + 1 / n = \Theta(\log n)$

• **Lemma**: Given a hypergraph of order n, the computation tree contains expected $O((n / n_0)^2)$ hypergraphs of order n_0

- **Lemma**: Given a hypergraph of order n, the computation tree contains expected $O((n / n_0)^2)$ hypergraphs of order n_0
- We give a method to contract any hyperedge e in O(m(n |e| + 1)) time

- **Lemma**: Given a hypergraph of order n, the computation tree contains expected $O((n / n_0)^2)$ hypergraphs of order n_0
- We give a method to contract any hyperedge e in O(m(n |e| + 1)) time
- Sum over all n₀ to get a total running time of O(mn² log n) for BranchingContract

- **Lemma**: Given a hypergraph of order n, the computation tree contains expected $O((n / n_0)^2)$ hypergraphs of order n_0
- We give a method to contract any hyperedge e in O(m(n |e| + 1)) time
- Sum over all n₀ to get a total running time of O(mn² log n) for BranchingContract
- Can compute a minimum cut with high probability in $O(mn^2 \log^3 n)$ time, a nearly $\Omega(n)$ improvement

• Rank r of a hypergraph is the maximum hyperedge size

- Rank r of a hypergraph is the maximum hyperedge size
- We give a method to contract any hyperedge in $O(n^{r-1})$ time when r is a constant

- Rank r of a hypergraph is the maximum hyperedge size
- We give a method to contract any hyperedge in $O(n^{r-1})$ time when r is a constant
- Can compute a minimum cut with high probability in $O(n^r \log^2 n)$ time when $r \ge 3$

- Rank r of a hypergraph is the maximum hyperedge size
- We give a method to contract any hyperedge in $O(n^{r-1})$ time when r is a constant
- Can compute a minimum cut with high probability in $O(n^r \log^2 n)$ time when $r \ge 3$
- Nearly optimal for dense hypergraphs (and we match Karger-Stein when r = 2)

Minimum k-cut

• Branch more often when $k \ge 3$

Minimum k-cut

- Branch more often when $k \ge 3$
- Minimum k-cut with high probability in $O(mn^{2k-2} \log^2 n)$ time for any $k \ge 3$

Minimum k-cut

- Branch more often when $k \ge 3$
- Minimum k-cut with high probability in $O(mn^{2k-2} \log^2 n)$ time for any $k \ge 3$
- Minimum k-cut with high probability in $O(n^{2k-2} \log^3 n)$ time if r = 2k 2 and $O(n^{\max\{r,2k-2\}} \log^2 n)$ time otherwise for any constant $k, r \ge 2$

Thanks!