MATHEMATICS FOR COMPUTER SCIENCE (WHAT YOU SHOULD KNOW)

Table of Contents

Chapter 1: Limits and Continuity	
Chapter 2: Progressions and Sequences	1
Chapter 3: Matrix Algebra	1
3.1 The Transpose of a matrix	
3.2 The Determinant	

Chapter 1: Limits and Continuity

Chapter 2: Progressions and Sequences

Special Progressions/Combined Progressions (you could get this by trying to add them).

$$1 + 2 + 3 + 4 + \dots + n = n/2(n + 1)$$

 $1^2 + 2^2 + 3^2 + \dots + n^2 = n/6(n + 1)((2n + 1))$
 $1^3 + 2^3 + 3^3 + \dots + n^3 = n^2/4(n + 1)^2$

Chapter 3: Matrix Algebra

3.1 The Transpose of a matrix

Transpose

Let A be an $m \times n$ matrix. The transsose of A, denoted A^T , is the $n \times m$ matrix whose columns are the respective rows of A.

A diagonal matrix is an n x n matrix in which the only nonzero entries lie on the diagonal.

An **upper(lower) triangular matrix** is a matrix in which all nonzero entries lie above(below) the diagonal.

Properties of the Matrix Transpose

Let A and B be matrices where the following operations are defined. Then:

1.
$$(A + B)^T = A^T + B^T$$
 and $(A - B)^T = A^T - B^T$

2.
$$(kA)^T = kA^T$$

3.
$$(AB)^T = B^T A^T$$

4.
$$(A^{-1})^T = (A^T)^{-1}$$

5.
$$(A^T)^T = A$$

3.2 The Determinant

Determinant of 2 × 2 Matrices

Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

The determinant of A, denoted by

$$\det(A) \text{ or } \begin{vmatrix} a & b \\ c & d \end{vmatrix},$$

is ad - bc.

$$\begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{bmatrix}$$

$$= a_{1} \begin{bmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{bmatrix} - b_{1} \begin{bmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{bmatrix} + c_{1} \begin{bmatrix} a_{3} & b_{2} \\ a_{3} & b_{3} \end{bmatrix}$$

Determinant Properties

Let A and B be $n \times n$ matrices and let k be a scalar. The following are true:

1.
$$\det(kA) = k^n \cdot \det(A)$$

2.
$$det(A^T) = det(A)$$

3.
$$det(AB) = det(A) det(B)$$

4. If A is invertible, then

$$\det\left(A^{-1}\right) = \frac{1}{\det\left(A\right)}.$$

5. A matrix A is invertible if and only if $det(A) \neq 0$.