变送器

变送器的功能与构成

变送器的组成,工作原理,零点、量程调整方法

模拟差压变送器

差压变送器组成,工作原理,电路分析,零点、量程调整方法

模拟温度变送器

温度变送器组成,工作原理,电路分析,零点、量程调整方法

变送器

定义: 将各种过程量转换为标准电信号的装置。

变送器

液位控制系统工艺流程图

1、变送器构成

图3-1 变送器的构成原理和输入输出特性

推导y~x关系
$$y = \frac{K}{1 + K\beta} (Cx + Z_0) \approx \frac{1}{\beta} (Cx + Z_0)$$

2、变送器参数调整

(1) 量程调整

$$y = \frac{1}{\beta}(Cx + Z_0)$$

 $当x=x_{max}$ 时,调整量程机构(β),使 $y=y_{max}$ 的过程。

思考: III温度变送器,将温 度转换为4~20mA信号。

分别画出温度测量范围为

0~500°C和0~1000°C的

Y-X曲线。

图3-2 量程调整

$$y = \frac{1}{\beta}(Cx + Z_0)$$

(2) 零点调整 $y = \frac{1}{\beta}(Cx + Z_0)$ 当 x_{min} =0时,调整零点机构(Z_0),使 $y = y_{min}$ 的过程。

思考

DDZ-III压力变送器

测量范围0~10MPa,输出

电流1~5V。

画出输出特性曲线。

说明如何调零。

当P=0MPa时,调整零点机构 (**Z₀**),使**V=1V**的过程。

图3-3 零点调整

(3) 零点迁移

$$y = \frac{1}{\beta}(Cx + Z_0)$$

 $\exists x_{min} \neq 0$ 时,调整零点机构(Z_0),使 $y=y_{min}$ 的过程。

零点正迁移

$$x_{\min} > 0$$
,调整 Z_0 使 $y = y_{\min}$

零点负迁移

$$x_{\min} < 0$$
,调整 Z_0 使 $y = y_{\min}$

思考

DDZ-III温度变送器,测量范围 50~150°C,输出电流4~20 mA。

测量范围-50~50°C,输出电流4~20 mA。 画出输出特性曲线。说明如何迁移。

图3-4 零点调整与迁移

讨论

$$y = \frac{1}{\beta}(Cx + Z_0)$$

当x_{min}=0时,调整零点机构(Z₀),使y=y_{min}。

正迁移: $X=X_{min}>0$,使 $Y=y_{min}$ 。如何调整 Z_0 。 Z_0 减小

负迁移: $X=X_{min}<0$,使 $Y=y_{min}$ 。如何调整 Z_0 。 Z_0 增大

零点调整与量程调整相互有无影响,怎样调较?

零点调整与量程调整相互有影响。

在输入0%, 25%, 50%, 75%, 100%之处反复调较

3.1 变送器的构成

练习1

工业锅炉温度测量范围0~1000℃,对应输出电流为4~20mADC。

- (1) 画出输出电流 I_0 与温度t的关系曲线。
- (2) 写出输入与输出的关系式。
- (3) 温度为750 °C, 输出电流=? 输出电流为12mADC时, 测量温度=?
- (4) 温度测量范围为 $100\sim1000$ °C时,画出输出电流 I_0 与温度t的关系曲线。
- (5) 温度测量范围为100~1000℃时,输出电流为16mADC时,测量温度=?

(2) 输入与输出的关系式

$$I_0 = \frac{I_{0\text{max}} - I_{0\text{min}}}{t_{\text{max}} - t_{\text{min}}} (t - t_{\text{min}}) + I_{0\text{min}}$$

$$I_0 = \frac{20 - 4}{1000} t + 4 = \frac{16}{1000} t + 4$$

(3)
$$I_0 = \frac{16}{1000} \times 750 + 4 = 16mA$$

$$t = \frac{1000}{16}(I_0 - 4) = \frac{1000}{16}(12 - 4) = 500^{\circ}C$$

(5)

$$I_0 = \frac{20 - 4}{1000 - 100}t + 4 = \frac{16}{900}t + 4$$
$$t = \frac{900}{16}(I_0 - 4) = \frac{900}{16}(16 - 4) = 675^{\circ}C$$

练习2: 敞口容器或密闭容器(无冷凝液),差压变送器 安装位置与最低液位在同一水平线上,变送器负端通大气。 液位范围0~5m,水的比重密度1000kg/m³,g=9.8m/s²。

(1) 如何调零,如何调量程?

3.1

- (2) 变送器输出为8mA时,液位多高?
- (3) 液位为2m时,变送器输出电流为多少?

3.1

变送器的构成

$$\Delta P = \rho g h$$

(1) 调零 $h_{min} = 0, \Delta P_{min} = 0$, 调零机构, $I_0 = 4mA$ 调量程

$$h = 5m$$
, $\Delta P_{imax} = 1000 \times 9.8 \times 5 = 49KN$, 调量程机构, $I_0 = 20$ mA

$$I_0 = \frac{16}{5} \times h + 4 = 3.2 \times h + 4$$
 $I_0 = 8mA, h = 1.25m$

$$h = 2m, I_0 = 10.4mA$$

3.1 变送器的构成

练习3: 敞口容器或密闭容器(无冷凝液),差压变送器 安装位置与最低液位在同一水平线上,变送器负端通大气。 液位范围1~5m,水的比重密度1000kg/m³, g=9.8m/s²。

- (1) 如何调零,如何调量程?
- (2) 变送器输出为8mA时,液位多高?
- (3) 液位为4m时,变送器输出电流为多少?

(1) 调零 $h_{min} = 1m, \Delta P_{min} = 9.8KN$,调零机构, $I_0 = 4mA$ 调量程 $h = 5m, \Delta P_{imax} = 1000 \times 9.8 \times 5 = 49KN$,调量程机构, $I_0 = 20mA$

(2)
$$I_0 = \frac{16}{5-1} \times (h-1) + 4 = 4 \times (h-1) + 4 = 8$$
 $h = 2m$

(3)
$$I_0 = 4 \times (h-1) + 4 = 4 \times (4-1) + 4 = 16mA$$

电容式差压变送器

1、变送器组成框图

图3-5 变送器组成框图

3.2

电容式差压变送器

$$2$$
、测量部件 $\Delta P_{\rm i}
ightarrow rac{C_{i2}-C_{i1}}{C_{i2}+C_{i1}}$

图3-6 测量部件结构图

测量膜片 $\Delta d = K_1 \Delta P_1$

思考
$$\frac{C_{i2} - C_{i1}}{C_{i2} + C_{i1}} \sim \Delta P_{i}$$

隔离膜片和硅油的作用。

差动电容器
$$C_{i1} = \frac{\varepsilon A}{d_0 + \Delta d}$$
 $C_{i2} = \frac{\varepsilon A}{d_0 - \Delta d}$

$$\frac{C_{i2} - C_{i1}}{C_{i2} + C_{i1}} = \frac{\Delta d}{d_0} = \frac{K_1}{d_0} \Delta P_i = K_1 K_2 \Delta P_i$$

隔离膜片:防腐蚀 硅油:准确传递压力。

电容式差压变送器

3、信号转换放大电路

$$I_0 = \frac{K}{\beta} \Delta P_i + \frac{I_0'}{\beta}$$
 $I_i = K \Delta P_i$ $I_f = \beta I_0$

$$I_i = K\Delta P_i \quad I_f = \beta I_0$$

4、信号转换电路(电容一电流转换电路)

$$I_{i} = K_{3} \frac{C_{i2} - C_{i1}}{C_{i2} + C_{i1}} = K_{3} K_{1} K_{2} \Delta P_{i} = K \Delta P_{i}$$

(2) 转换过程

① 调制

$$i_1 = C_{i1} \frac{du}{dt} \qquad i_2 = C_{i2} \frac{du}{dt}$$

2 解调

$$I_{2} = \frac{1}{T} \int_{0}^{\frac{T}{2}} i_{2} dt = fC_{i2} \int_{0}^{\frac{T}{2}} du = fC_{i2} \int_{0}^{\pi} dV_{m} \cos \theta = -fC_{i2} V_{PP}$$

$$I_{1} = \frac{1}{T} \int_{\frac{T}{2}}^{T} i_{1} dt = fC_{i1} \int_{\frac{T}{2}}^{T} du = fC_{i1} \int_{\pi}^{2\pi} dV_{m} \cos \theta = fC_{i1} V_{PP}$$

电容式差压变送器

③差动输出

$$\begin{split} I_{i} &= I_{2} - I_{1} = fV_{PP}(C_{i2} - C_{i1}) = fV_{PP}(C_{i2} + C_{i1}) \frac{(C_{i2} - C_{i1})}{C_{i2} + C_{i1}} \\ &= (I_{1} + I_{2}) \frac{C_{i2} - C_{i1}}{C_{i1} + C_{i2}} = K_{3} \frac{C_{i2} - C_{i1}}{C_{i1} + C_{i2}} = K\Delta P_{i} \end{split}$$

3.2

电容式差压变送器

5、整机零点与量程调整

$$I_0 = \frac{K}{\beta} \Delta P_i + \frac{I_0}{\beta}$$

调零 $\Delta P_i = 0$, 调整调零机构,变 I_0 , 使 $I_0 = 4mA$

零点正迁移

 $\Delta P_{i\min} > 0$, 调整调零机构使 j_0 减小,使 $I_0 = 4mADC$

零点负迁移

 $\Delta P_{i,\text{min}} < 0$, 调整调零机构使 j_0 增大,使 $I_0 = 4mADC$

量程调整 $\Delta P_i = \Delta P_{\text{imax}}$,调整量程机构,变 β ,使 $I_0 = 20mA$

思考:如何增大量程,如何减小量程。

电容式差压变送器

$$I_0 = \frac{K}{\beta} \Delta P_i + \frac{I_0}{\beta}$$

电容式差压变送器测量压力,假设压力差测量范围为0.0~5.0MPa,原来变送器已经调校好。现在测量范围为1~6MPa,再次调校变送器。

当 ΔP =1MPa时,调整调零装置使 I'_0 _____,使输出电流 I_0 = _____。

当 Δ P=6MPa时,调整调零装置使β_____,使输出电流 I_0 = _____。

1、硅膜片的结构与制作

图 3-7压阻式压力传感器结构简图

2、工作原理

$$\Delta P \xrightarrow{\begin{subarray}{c} egin{subarray}{c} egin{subarray}{c} egin{subarray}{c} egin{subarray}{c} egin{subarray}{c} egin{subarray}{c} \Delta R \\ eta \end{array} \xrightarrow{\begin{subarray}{c} egin{subarray}{c} egin{subarray}{c} egin{subarray}{c} AR \\ R \end{array} \xrightarrow{\begin{subarray}{c} egin{subarray}{c} egin{subarray}{c} egin{subarray}{c} egin{subarray}{c} AR \\ R \end{array} \xrightarrow{\begin{subarray}{c} egin{subarray}{c} egin{subarray}{c}$$

3、电路原理分析

(1) 惠斯通电桥电路

图 3-8 恒流源供电惠斯顿电桥

$$U_0 = I\Delta R = IRK_1\sigma = IRK_1K_2\Delta P = K\Delta P$$

(2) 恒流源产生电路

图3-9 恒流源电路

3.3 扩散硅压力变送器

$$V_0 = G(V_{i1} - V_{i2}) + kV_{VZ1}$$

图3-10 放大器电路

调零

调 W_2 变K使 $\triangle P = \triangle P_{min}$ 时, $V_0 = 1V DC$ 。

调量程

调 R_{S_0} 变G,使 $\triangle P = \triangle P_{max}$ 时, $V_0 = 5V DC$ 。

电容式智能压力变送器

图 3-11 电容式智能变送器组成框图

3.4

温度变送器

功能:

将温度线性地转换为4~20mADC信号。

线路组成

图 3-12 温度变送器组成框图

热电偶温度变送器

图 3-13 热电偶温度变送器框图

热电阻温度变送器

3.4

图 3-14 热电阻温度变送器框图

- 3.4
- 1、热电偶温度变送器
 - (1) 量程单元

功能: 信号综合, 零点调整, 冷端温度补偿, 线性化。

图 3-15 热电偶温度变送器量程单元

①冷端补偿电路

功能: T_0 变化, E_T 变化, V_T 不变,达到补偿。

图 3-16 冷端补偿电路

双铜电阻电路输出电压增 量补偿热电偶冷端温度变 化增量,实现某一温度段 冷端温度补偿。

3.4

推导出

$$\Delta V_{AE} = I_1 \left(\frac{R_{cu}^2}{R_{103} + 2R_{cu}} - \frac{R_{cu0}^2}{R_{103} + 2R_{cu0}} \right)$$

$$\approx I_1 \frac{R_{cu0}^2}{R_{103}} \left(2\alpha_0 \Delta t + \alpha_0^2 (\Delta t)^2 \right) > 0$$

思考:为何采用双铜电阻补偿。

 ΔE_t 与 Δt 成平方关系,要求 ΔV_t 与 Δt 也成平方关系。

②信号的综合

$$V_T = V_F$$
 $E_T + V_{AE} = V_f + V_Z$

$$I_0 = \frac{E_T}{\beta} + \frac{V_{AE} - V_Z}{\beta}$$

③ 线性化

图3-18 线性化电路框图

图3-19 线性化后输入输出响应曲线

设计原则

根据不同热电偶特性曲线形状,设计反馈回路,用折线代替曲线。使反馈回路特性曲线与热电偶特性曲线相一致。

图3-20 热电偶特性曲线

图3-21 反馈回路特性曲线

2、放大单元

图3-22 放大单元电路组成框图

3.4

(1) 调制 $I_0 \rightarrow I_1$ 、 I_2 正半波等效电路

负半波等效电路

$$b \circ V_{b0}$$
 $I_2 \square Z_{L2}$
 $V_i \longrightarrow V_1, V_2$
 $R \square 0 \longrightarrow 0$

思考: 电流值 | 和 | 取决什么参数。供电电源是何种电源?

3.4

温度变送器

(2) 隔离输出

变压器互感耦合实现 \mathbf{I}_1 、 $\mathbf{I}_2 \rightarrow \mathbf{i}_L$ 。

(3) 解调 i_L→I₀

经过桥式整流、电容滤波、输出直流电流,输出电流在250Ω电阻上输出电压。

图3-24 热电阻温度变送器框图

1、热电阻温度变送器量程单元

(1) 线性化

图3-25 线性化电路原理图

$$R_{T} = R_{0}(1 + \alpha t)$$

$$t \uparrow \rightarrow \alpha \downarrow \rightarrow \frac{dR_{T}}{dt} \downarrow$$

$$V_{t} = I_{t}R_{T} \qquad t \uparrow \rightarrow \frac{dI_{t}}{dt} \uparrow$$

$$V_{t} \sim t$$

$$V_{t} \sim t$$

$$R_{t}$$

$$I_{t}$$

$$0$$

$$\mathbf{S3-26}$$
图 3-26

$$V_{t} = -I_{t}R_{t}$$

$$V_{F} = \frac{R_{17}}{R_{16} + R_{17}}V_{Z} - \frac{R_{16}(R_{19} + R_{t})}{R_{16} + R_{17}}I_{t}$$

$$V_{t} = V_{F}$$

$$I_{t} = \frac{gV_{Z}}{1 - gR_{t}}$$

$$g = \frac{R_{17}}{R_{16}R_{19}}$$

$$t \uparrow \rightarrow \frac{dI_{t}}{dt} \uparrow \qquad t \uparrow \rightarrow \frac{dR_{T}}{dt} \downarrow$$

$$V_{t} = -I_{t}R_{t} \quad V_{t} \sim t$$

图3-27 引线补偿电路

两线制接入

$$V_{t}' = V_{t} - 2I_{t}r$$

导线误差

三线制接入

$$egin{aligned} i eta R_{24} & eta I_{c} = I_{t} \quad V_{C} = I_{C} \mathbf{r} \\ V_{t}^{'} = V_{t} - I_{t} \mathbf{r} \\ V_{F} & = \frac{1}{4} (\mathbf{V}_{t}^{'} + \mathbf{V}_{c} + \mathbf{V}_{z}^{'} + \mathbf{V}_{f}) \\ & = \frac{1}{4} (\mathbf{V}_{t} + \mathbf{V}_{z}^{'} + \mathbf{V}_{f}) \\ & \qquad \qquad \mathring{\mathbf{1}} \mathbf{除 导线误 } \mathbf{E} \end{aligned}$$

3、热电阻温度变送器整机输出表达式

$$V_{t} + V_{z}' + V_{f} \approx 0$$

$$-I_{t}R_{t} + V_{z}' + \beta I_{0} = 0$$

$$I_{0} = \frac{I_{t}}{\beta}R_{t} - \frac{V_{z}'}{\beta}$$

4、调零调量程

调零: $t = t_{\min}$, $R_t = R_{t\min}$, 调 V_Z 使 $I_0 = 4$ mADC

量程: $t = t_{\text{max}}, R_t = R_{t\text{max}}$,调 β 使 $I_0 = 20\text{mA}DC$

3.4

温度℃	X型镍铬-镍硅(镍铬-镍铝)热电动势(mV) (JJG 351-84)参考端温度为0℃									
	0	1	2	3	4	5	6	7	8	9
-50	-1. 889	-1. 925	-1. 961	-1. 996	-2.032	-2.067	-2. 102	-2. 137	-2. 173	-2. 208
-40	-1.527	-1. 563	-1. 600	-1. 636	-1. 673	-1.709	-1.745	-1. 781	-1.817	-1.853
-30	-1. 156	-1. 193	-1. 231	-1. 268	-1. 305	-1.342	-1.379	-1. 416	-1. 453	-1.490
-20	-0.777	-0.816	-0. 854	-0.892	-0. 930	-0. 968	-1.005	-1. 043	-1. 081	-1. 118
-10	-0. 392	-0. 431	-0. 469	-0. 508	-0. 547	-0. 585	-0. 624	-0. 662	-0.701	-0. 739
-0	0	-0. 039	-0.079	0. 118	-0. 157	-0. 197	0. 236	-0. 275	-0. 314	-0. 353
0	0	0. 039	0.079	0. 119	0. 158	0. 198	0. 238	0. 277	0.317	0.357
10	0. 397	0. 437	0. 477	0. 517	0. 557	0. 597	0. 637	0.677	0.718	0.758
20	0.798	0. 838	0.879	0. 919	0. 960	1.000	1. 041	1. 081	1. 122	1. 162
30	1. 203	1. 244	1. 285	1. 325	1. 366	1. 407	1. 448	1. 489	1. 529	1. 570
40	1. 611	1. 652	1. 693	1. 734	1.776	1. 817	1. 858	1. 899	1. 940	1. 981
50	2. 022	2. 064	2. 105	2. 146	2. 188	2. 229	2. 270	2. 312	2. 353	2. 394
60	2. 436	2. 477	2. 519	2. 560	2. 601	2. 643	2. 684	2. 726	2. 767	2. 809
70	2. 850	2. 892	2. 933	2. 875	3. 016	3. 058	3. 100	3. 141	3. 183	3. 224
80	3. 266	3. 307	3. 349	3. 390	3. 432	3. 473	3. 515	3. 556	3. 598	3. 639
90	3. 681	3. 722	3. 764	3. 805	3. 847	3. 888	3. 930	3. 971	4. 012	4. 054
温度℃	0	1	2	3	4	5	6	7	8	9
100	4. 095	4. 137	4. 178	4. 219	4. 261	4. 302	4. 343	4. 384	4. 426	4. 467
110	4. 508	4. 549	4. 590	4. 632	4. 673	4.714	4. 755	4. 796	4. 837	4. 878
120	4. 919	4. 960	5. 001	5. 042	5. 083	5. 124	5. 164	5. 205	5. 246	5. 287

3.4

温度变送器

图1为热电偶温度变送器电气接线图。图2为热电偶温度变送器调校图。回答下列问题。

- (1) 热电偶温度变送器接入电路的方式, 传输的信号。
- (2) 如何调校热电偶温度变送器。
- (3) 如果将此变送器应用在煤矿等场合,还应加何种措施。

热电偶温度变 送器调校 (C) E 毫伏电压 Ε. 发生器 0 ⑱ (F) 零点 量程 1 4 V₀ 1-5V 2 (5) 8 In 4~20mA 3 6 0 C) 24V

图1热电偶温度变送器电气接线图

图2 热电偶温度变送器调校图。

- (1) 热电偶温度变送器接入电路的方式为两线制串联接入。传输的4~20mA直流信号。
- (2)根据热电偶温度变送器实际测量范围及热电偶的规格型号,查热电偶分度表确定温度零点与量程时对应的热电势值。
- 将温度零点对应的热电势值输入热电偶温度变送器,调整零点机构,使变送器输出为4mA。
- 将温度量程对应的热电势值输入热电偶温度变送器,调整量程机构,使变送器输出为20mA。
- (3)如果将此变送器应用在煤矿等场合,还应在变送器与调节器之间加安全栅。防止安全测的高能信号进入危险侧。

变送器作业

- 1、何谓量程调整、零点调整和零点迁移,举例说明。
- 2、下图所示变送器应该如何进行零点迁移?

3、如下图所示,利用III型差压变送器测量液位。已知。

$$\rho = 1000 \text{kg} / m^3$$
, $g = 9.8 m / S^2$, $h_{\text{min}} = 1 m$, $h_{\text{max}} = 5 m$ 求变送器的满量程量及零点迁移量。

变送器作业

4、如下图所示,利用差压变送器测量液位。已知。

$$\rho_1 = 1200 \text{kg}/m^3$$
, $\rho_2 = 950 \text{kg}/m^3$, $g = 9.8 m/S^2$, $h_1 = 1 m$, $h_2 = 5 m$

液位变化范围为0~2.5m,求变送器的满量程量及零点迁移量。

变送器习题

- 5、电容式差压变送器如何实现差压-电容和电容-电流转换?分析测量部件和各部分电路作用。
- 6、电容式差压变送器如何实现零点和量程调整?
- 7、简述简述扩散硅差压变送器的工作原理。
- 8、四线制温度变送器是如何实现使输出信号和温度信号之间 呈线性关系的?
- 9、简述热电偶温度变送器和热电阻温度变送器的线性化原理。
- 10、一台温度变送器,输入变化范围为20~120°C,输出变化范围为4~20mA,求60°C时的电流量。

- 11、一台温度变送器,测量范围为0-600°C,现使用温度在400-600°C,试求仪表的使用范围,使用量程,迁移量是多少?说明是正迁移还是负迁移?
- 12、简述喷嘴与挡板结构和功率放大器的作用原理。
- 13、温度变送器为何采用隔离式供电和隔离式输出电路?
- 14、简述电/气转换器的结构和动作过程。