HLMA408: Traitement des données

Loi normale / gaussienne

Joseph Salmon

http://josephsalmon.eu

Université de Montpellier

Sommaire

Loi normale

Cas unidimensionnel

Cas bidimensionnel

Diagramme quantiles-quantiles: qq-plo

Sommaire

Loi normale

Cas unidimensionnel

Cas bidimensionnel

Diagramme quantiles-quantiles: qq-plo

Loi normale standard (ou centrée-réduite)

▶ Une variable aléatoire (v.a.) réelle X suit une "loi normale" ou "loi gaussienne" ou "loi de Laplace-Gauss" si sa densité (ﷺ: probability density function, pdf) vaut:

$$\forall x \in \mathbb{R}, \qquad \boxed{\varphi(x) = \varphi_{0,1}(x) := \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}}$$

- Notation: $X \sim \mathcal{N}(0,1)$
- ► Propriétés:

$$\left\{ \begin{array}{ll} \mathbb{E}(X) &=& 0 \\ \mathbb{V}\mathrm{ar}(X) &=& \mathbb{E}(X-\mathbb{E}(X))^2 = 1 \end{array} \right. \text{ (espérance nulle)}$$

Loi normale

▶ Une v.a. Y suit une loi normale de paramètres μ et σ^2 si

$$Y = \mu + \sqrt{\sigma^2}X$$

où $X \sim \mathcal{N}(0,1)$, c'est-à-dire si sa densité vaut:

$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Notation: $Y \sim \mathcal{N}\left(\underbrace{\mu}_{\text{Espérance}}, \underbrace{\sigma^2}_{\text{Variance}}\right)$

Propriétés:

$$\begin{cases} \mathbb{E}(Y) &= \mu & (\textbf{Espérance}) \\ \mathbb{V}\mathrm{ar}(Y) &= \mathbb{E}(Y - \mathbb{E}(Y))^2 = \sigma^2 & (\textbf{Variance}) \end{cases}$$

Sommaire

Loi normale

Cas unidimensionne

Cas bidimensionnel

Diagramme quantiles-quantiles: qq-plo

Vecteurs gaussiens (hors programme)

Densité à deux paramètres: $\varphi_{\mu,\Sigma}: \mathbb{R}^p \mapsto \mathbb{R}$

- le vecteur d'espérance: $\mu \in \mathbb{R}^p$
- la matrice de **covariance** $\Sigma \in \mathbb{R}^{p \times p}$ est symétrique

$$\varphi_{\mu,\Sigma}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{p}{2}} \sqrt{\det(\Sigma)}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu)\right\}.$$

Rem: $\det(\Sigma)$ est le déterminant de Σ , *i.e.*, le produit des valeurs propres de Σ . On parle de cas dégénéré quand $\det(\Sigma) = 0$

 Σ : Σ doit être supposée définie positive (*i.e.*, toutes ses valeurs propres \geq 0) pour être une matrice de covariance

Loi normale

- Rôle central en statistique
- ▶ De nombreuses données suivent (approx.) cette loi
- ► Le théorème central limite (TCL) assure que certaines variables aléatoires suivent (approx.) cette loi si n est grand

TCL:
$$\frac{\bar{x}_n - \mu}{\sigma / \sqrt{n}} = \sqrt{n} \left(\frac{\bar{x}_n - \mu}{\sigma} \right) \to \mathcal{N}(0, 1)$$

si x_1, \ldots, x_n i.i.d. d'espérance μ et de variance σ^2

Lien histogramme-densité et TCL

- Si des données suivent approximativement une loi normale, alors l'histogramme des données standardisées doit ressembler à la courbe ci-dessous
- ▶ Standardiser les données x_1, \ldots, x_n : $\frac{x_i \bar{x}_n}{s_n}$, $i = 1, \ldots, n$ (retrancher la moyenne, diviser par l'écart-type)

Comparaison: histogramme / loi normale

- Les données semblent être bien représentées par une loi normale
- On peut alors utiliser cette loi pour répondre à des questions statistiques

Zoom

Rem: noter que l'abscisse est sans unité et varie de -4 à 4

Calcul des probabilités

La probabilité d'être plus petit qu'un nombre z correspond à l'aire sous la courbe φ entre $-\infty$ et z

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$

Ф est la fonction de répartition d'une loi normale
 (≥ Cumulative distribution function, cdf)

Quelques propriétés de Φ

$$\Phi(-x) = 1 - \Phi(x)$$
 (symétrie):

Quelques propriétés de Φ

$$\Phi(-x) = 1 - \Phi(x)$$
 (symétrie):

• $\Phi(0) = \frac{1}{2}$ (0 est la médiane):

Visualisation de la fonction de répartition

Exemple de la taille de la mère:

$$\mathbb{P}[\mathsf{Taille} \leq 168] = \mathbb{P}\left[\frac{\mathsf{Taille} - \bar{x}_n}{s_n} \leq \frac{168 - \bar{x}_n}{s_n}\right] \approx \Phi(0.82) = 0.79$$

on calcule la moyenne ($\bar{x}_n=162.7$) et l'écart-type ($s_n=6.428$) de l'échantillon pour obtenir ce nombre

Rem: cf. notebook GaussianDistribution.ipynb

TABLE C.1. Cumulative normal distribution—values of P corresponding to z_p for the

1.1 .86 1.2 .88		.5080							
2 57' 3 61' 4 655 5 69 6 72: 7 755 8 78: 9 81: 1.0 84 1.1 86 1.2 88			.5120	.5160	.5199	.5239	.5279	.5319	.5359
3 .61' 4 .65. 5 .69 .6 .72: .7 .75: .8 .78: .9 .81: 1.0 .84 1.1 .86- 1.2 .88-	98 .5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
4 .65. 5 .69 6 .72. 7 .75. 8 .78. 9 .81. 1.0 .84 1.1 .86 1.2 .88	93 .5832		.5910	.5948	.5987	.6026	.6064	.6103	.6141
5 .69 .6 .72: .7 .75: .8 .78: .9 .81: 1.0 .84 1.1 .86: 1.2 .88:	79 .6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.6 .72: .7 .75: .8 .78: .9 .81: 1.0 .84 1.1 .86: 1.2 .88:	54 .6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.7 .75 8 .78 9 .81: 1.0 .84 1.1 .86 1.2 .88	15 .6950	.6985	.7019	.7054	.7088	.7123	.7157	.719	.7224
.8 .78 .9 .81: 1.0 .84 1.1 .86 1.2 .88	57 .7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
9 .81: 1.0 .84 1.1 .86 1.2 .88	80 .7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
1.0 .84 1.1 .86 1.2 .88	81 .7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
1.1 .86 1.2 .88	59 .8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.2 .88	13 .8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
	43 .8665	.8686	.8708	.8729	.8749	.8707	.8790	.8810	.8830
	49 .8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3 .90:	32 .9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4 .91	92 .9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5 .93	32 .9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	9441
1.6 .94	52 .9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	9545
1.7 .95	54 .9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8 .96	41 .9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9 .97	13 .9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0 .97	72 .9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1 .98	21 .9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2 .98	61 .9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3 .98	93 .9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4 .99	18 .9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5 .99	38 .9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6 .99.	53 .9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7 .99	65 .9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	9974
2.8 .99	74 .9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9 .99	81 .9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0 .99	87 .9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1 .99	90 .9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2 .99	93 .9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3 .99									999
3.4 .99	95 .9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	

TABLE C.1. Cumulative normal distribution—values of P corresponding to z_p for the standard normal curve

z_p	rd norma	.01	.02	.03	.04	.05	.06	.07	.08	.09
0	.5000	.5040	.5080	.5120	.5160	5199	.5239	5279	.5319	5359
.1	.5398	.5438	.5478	.5517	.5557	5596	5636	5675	5714	5753
2	.5793	.5832	5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
3	.6179	.6212	255	.6293	.6331	.6368	.6406	.6443	640	.651
A	.6554	6	628	.6664	.6700	.6736	.6772	6808	44	.6879
5	.6915	7	85	.7019	.7054	.7088	.7123	.0.	.719	.7224
		1	N.			.7422	.7123	7486		
.6	.7257	7	, ,	.7357	.7389			.7794	.7517 .7823	.7549
.7	.7580	.79				.7734	051	.8078		.7852
.8	.8159	.8186		.7967 8238	.7995 .8264		.8315	.8340	.8106 .8365	.8389
1.0	.8413	.8438		185	.8264	Δĺ	.8554	.8577	.8599	.8621
			\	85	.85					
1.1	.8643	.8665	\ .			.8749	.8707	.8790	.8810	.8830
1.2	.8849	.8869	.8.		4	.8944	.8962	.8980	.8997	.901:
1.3	.9032	.9049	.906		(99	.9115	.9131	.9147	.9162	9177
1.4	.9192	.9207	.9222			.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.935			.9394	.9406	.9418	.9429	9441
1.6	.9452	.9463		46.		105	.9515	.9525	.9535	9545
1.7	.9554	.9564		.9582	(.9608	.9616	.9625	.9633
1.8	.9641	.964		.9664	.90		9686	.9693	.9699	.9706
1.9	.9713	.9		.9732	.9738		50	.9756	.9761	.9767
2.0	.9772	/	.83	.9788	.9793	S		.9808	.9812	.9817
2.1	.9821		830	.9834	.9838	.98		.9850	.9854	.985
2.2	.9861		9868	.9871	.9875	.9878		9884	.9887	.9890
2.3	.989		.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.99		.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.99	40	.9941	.9943	.9945	.9946	.9948	.9949	.9951	9952
2.6	9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9990	.9991	.9991	.9991	.9992	.9994	.9992	.9992	.9995	.9995
3.3	.9995	.9995	.9994	.9994	.9994	.9994	.9996	.9995	.9995	.999
3.4	.9997	.9997	.9997	.9996	.9996	.9996	.9997	.9996	.9996	.9998

Quantiles gaussiens

Utiliser plutôt:

En Python: (Percent Point Function, ppf)

```
>>> from scipy.stats import norm
>>> norm.ppf(0.95, 0, 1)
1.6448536269514722
```

En R:

```
>>> qnorm(.95,mean=0,sd=1)
1.6448536269514722
```

Tirages / échantillons gaussiens: cas 1D

Cas 1D

Tirages / échantillons gaussiens: cas 2D

► Cas 2D (et plus):

Tirages gaussiens

Sommaire

Loi normale

Diagramme quantiles-quantiles: qq-plot

Diagramme quantile-quantile⁽¹⁾: exemple

⁽¹⁾ M. B. Wilk and R. Gnanadesikan. "Probability plotting methods for the analysis for the analysis of data". In: *Biometrika* 55.1 (1968), pp. 1–17.

Diagrammes quantiles-quantiles (qq-plots)

- Représentation graphique comparant des distributions de type:
 - observées vs observées
 - observées vs théoriques
 - théoriques vs théoriques
- Utilité des gg-plots:
 - Vérifier si les données suivent une loi particulière
 - Vérifier si deux jeux de données ont la même loi
- Construction pour le cas gaussien: on ordonne l'échantillon x_1, \ldots, x_n en $x_{(1)} \leq \cdots \leq x_{(n)}$ et on affiche les points de coordonnées

$$\left(\underbrace{\Phi^{-1}\left(\frac{i}{n+1}\right)}_{\text{quantile th\'eorique quantile empirique}}\right), \text{ pour } i=1,\ldots,n$$

Rem: détails en TD / TP

Interprétation de qq-plot: poids à la naissance vs loi normale

- ▶ Si les observations étaient $\mathcal{N}(0,1)$ alors le nuage de points se concentrerait autour de la droite y=x
- ▶ Si le nuage de points se concentre autour d'une droite mais pas y = x, disons y = ax + b
 - ► Si $b \neq 0 \Longrightarrow$ Translation
 - ► Si $a \neq 1 \Longrightarrow$ Changement d'échelle

Quelques qq-plots pathologiques (vs. loi normale)

Bibliographie I

Wilk, M. B. and R. Gnanadesikan. "Probability plotting methods for the analysis for the analysis of data". In: *Biometrika* 55.1 (1968), pp. 1–17.