ESI Décembre 2019

Contrôle intermédiaire ANAD: 2CSSIT et 2CSSIL. Durée: 2heures

Questions de cours (4pts): Veuillez donner des réponses claires

1- Donner la différence entre l'ACP, L'AFC et l'AFCM.1pt

L'ACP: Réduction de dimensionnalité et visualisation des données quantitatives

L'AFC: Analyse de données qualitatives réparties dans un tableau de contingence

L'AFCM: Analyse de questionnaire (ensemble de questions qualitatives posées à n individus):

- 2- En AFCM que doit t'on éviter pour que les modalités aient des parts d'inerties équivalentes? (voir cours).0.5pt
- 3- En AFCM que signifie la proximité entre deux modalités d'une même variable et celles de deux variables différentes? (Voir cours) 0.5+0.5pt
- 4- Supposons qu'on a obtenu ces 6 valeurs propres après une AFCM comment calcule t'on les taux d'inerties modifiés? (Voir cours) 0.5pt
- 5- Le tableau de Burt est un tableau:
- a- Disjonctif complet
- b- Quantitatif
- c- Contingence XX 0.25pt
- Comment est il obtenu? 0.25pt

 $B = Z^{t}Z$ où Z est un tableau disjonctif.

6- Lorsqu'on effectue l'AFC du tableau de Burt, nous obtenons la projection des individus et des modalités sur les axes factoriels. Vrai ou Faux? Justifiez

Vrai: On obtient ceux des individus en les considérant comme éléments supplémentaires dans le tableau de Burt. 0.5pt

Exercice1 (10pts): Nous aimerions visualiser à l'aide d'une ACP le tableau de données olympique donnant les performances des athlètes en décathlon (hommes) aux jeux olympiques de 1988. Le décathlon est composé de 10 épreuves: Saut en longueur, Javelot, Perche, Saut en hauteur, 100m, 110m haies, 400m, 1500m, Lancer de disque et Lancer de poids. Quelques résultats de L'ACP donné par R sont donnés ci-après:

<u>Moyennes</u>: 11.19636 7.133333 13.97636 1.982727 49.27667 15.04879 42.35394 4.739394 59.43879 276.0385

Val propres	3.418	2.606	0.943	0.878	0.557	0.491	0.431	0.307	0.267	0.102
% d'inertie	34.182	26.064	9.433	8.780	5.566	4.912	4.306	3.068	2.669	1.019
% d'inertie Cum	34.182	60.246	69.679	78.459	84.026	88.938	93.244	96.312	98.98	1 100

Variables:

variables.									
	Dim.1	ctr	cos2	Dim.2	ctr	cos2	Dim.3	ctr	cos2
100	-0.769	17.296	0.591	0.240	2.214	0.058	0.260	7.154	0.067
Long	0.729	15.528	0.531	-0.246	2.313	0.060	0.164	2.854	0.027
Poid	0.498	7.242	0.248	0.781	23.381	0.609	-0.096	0.971	0.009
Haut	0.392	4.506	0.154	0.045	0.078	0.002	0.830	73.100	0.690
400	-0.658	12.663	0.433	0.569	12.402	0.323	0.184	3.591	0.034
110	-0.801	18.791	0.642	0.112	0.484	0.013	0.123	1.592	0.015

Disq	0.325	3.090	0.106	0.813	25.335	0.660 -0.045	0.213	0.002
Perc	0.710	14.752	0.504	0.241	2.237	0.058 -0.133	1.873	0.018
Jave	0.333	3.238	0.111	0.600	13.835	0.361 0.187	3.699	0.035
1500	-0.315	2.895	0.099	0.680	17.721	0.462 -0.216	4.953	0.047

Questions:

1- D'après vous, est ce que les données ont été normalisées? Justifiez. 0.5pt

Réponse: Oui, car les performances dans les épreuves ont des unités de mesures différentes (100 (sec), Disque(m),....)

2- Quel est le nombre d'axes à retenir? Quelles sont les qualités de représentation du premier et du deuxième plan factoriel.1pt

Réponse: On retient 5 axes correspondant à un taux d'inerties cumulées de 84.026%

$$I_{12} = \frac{\lambda_1 + \lambda_2}{\sum \lambda_{\alpha}} x 100 = 60,24\%, \qquad I_{13} = \frac{\lambda_1 + \lambda_3}{\sum \lambda_{\alpha}} x 100 = 43.61\%.$$

3- Quelles sont les variables qui contribuent le plus à la construction de l'axe 1? Donner une signification à cet axe.

Réponse : Les variables qui contribuent le plus sont:

Cet axe oppose les performances des athlètes en sprint (100 et 110 m haies) à celles des athlètes en saut en longueurs et perche. 1pt

4- Quelles sont les variables qui contribuent le plus à la construction de l'axe 2? Donner une signification à cet axe.

Réponse : Les variables qui contribuent le plus sont:

Poids (+), Disq(+)0.5pt

Cet axe mesure les performances des athlètes en lancer de poids et de disque. 1pt

5- Quelles sont les variables qui contribuent le plus à la construction de l'axe 3? Donner une signification à cet axe.

Réponse : Les variables qui contribuent le plus sont:

Haut(+)0.5pt

Cet axe mesure les performances des athlètes en saut en hauteur (Haut).0.5pt

6- Quelles sont les variables qui sont bien représentées par le 1er plan? 1pt

Nous calculons la contribution relative de chaque variable sur le plan par:

$$C_{re}(j) = \cos_1^2(j) + \cos^2_2(j)$$
.

Le résultat est:

100	Long	poids	haut	400	110	disq	Perc	jave	1500
0.648	0.591	0.856	0.156	0.756	0.654	0.765	0.562	0.471	0.560

Donc les variables les mieux représentées par le plan sont: Poids, 400, disq. 0.5pt

7- Par quel plan, la variable "Haut" est-elle bien représentée?

Sur le premier plan sa contribution est de 0.156 (voir la question précédente) 0.25pt

Sur le deuxième plan (1,3): $C_{re}(haut) = cos_1^2(haut) + cos_3^2(haut) = 0.15403795 + 0.689551577 = 0.8435895, 0.25pt$

Sur le troisième plan (2,3): $C_{re}(haut) = \cos_2^2(haut) + \cos^2_3(haut) = 0.689551577 + 0.002 = 0.691 \cdot 0.25pt$.

Elle est largement donc bien représentée sur le deuxième plan factoriel. 0.25pt

8- Selon la représentation des individus/variables, qui sont les athlètes qui contribuent le plus à la construction de l'axe1, caractérisez les. Même question pour l'axe 2.

Réponse:

Axe 1: Ceux qui contribuent le plus sont ceux qui sont les plus éloignés de l'origine: Ind2, Ind6, Ind 4 qui ont de bonnes performances en saut (longueur et perche). et Ind 32, Ind 31, Ind33 qui sont plutôt bon en sprint . 1pt

Axe 2: Ceux qui contribuent le plus sont ceux qui sont les plus éloignés de l'origine: Ind17, Ind18, qui ont de bonnes performances en lancer de poids et disque et Ind 19, Ind 27 qui ont des performances au dessous de la moyenne dans ces deux épreuves. 1pt

Exercice2 (**6pts**) : Soit la répartition de 47 individus selon leur réponses à 2 questions; X=" Le programme réalisé correspond au programme annoncé" et Y=" Le volume horaire prévu dans l'UE a été respecté". Les réponses (modalités des deux variables sont: Tout à fait d'accord (TD), D'accord (D), Pas d'accord (PaD), En total désaccord (TDS).

	Q1TD	Q1D	Q1PaD	Q1TDS
Q2TD	10	5	1	0
Q2D	5	13	2	0
Q2PaD	0	2	4	1
Q2TDS	0	0	0	4

Les résultats de l'AFC avec le logiciel R sont comme suit:

 Vps
 0.822
 xxx
 0.108

 % d'inertie.
 67.305
 23.865
 xxx

 % d'inertie Cumulée
 67.305
 91.171
 100.000

Résultats ligne:

	Dim.1	ctr	cos2	Dim.2	ctr	cos2	Dim.3	ctr	cos2
Q2_TD	-0.411	6.995	0.352	-0.443	XXX	0.410	0.338	36.011	0.238
Q2_D	-0.355	6.517	0.492	0.036	0.186	0.005	-0.359	50.744	0.238
Q2_PaD	0.319	1.847	0.065	1.176	70.618	0.877	0.303	12.642	0.058
Q2_TDS	2.860	84.642	0.974	-0.463	6.245	0.025	-0.087	0.603	0.001

Résultats Colonne

	Dim.1	ctr	cos2	Dim.2	ctr	cos2	Dim.3	3 ctr	cos2
Q1TD	-0.433	7.264	0.330	-0.525	30.211	0.487	0.322	30.610	0.183
Q1D	-0.332	XXX	0.454	0.055	0.448	0.013	-0.361	51.278	0.534
Q1PaD	0.025	0.011	0.000	1.146	67.065	0.909	0.361	18.031	0.090
Q1TDS	2.593	87.004	0.991	-0.250	2.276	0.009	-0.029	0.081	0.000

Questions:

1- Calculer la distance du KHI2 entre les 2 profils colonnes Q1TD et Q1D. Calculer la distance entre leur projections. Que constatez vous?

$$d_{KHI2}^{2}(Q1TD,Q1D) = \sum_{i} \frac{1}{f_{i.}} \left(\frac{K_{i1}}{K_{.1}} - \frac{K_{i2}}{K_{.2}}\right)^{2} = \frac{47}{16} \left(\frac{10}{15} - \frac{5}{20}\right)^{2} + \dots + \frac{47}{4} \left(\frac{0}{15} - \frac{0}{20}\right)^{2} = 0.509 + 0.235 + 0.0671 = 0.811 \cdot \frac{0.75pt}{0.75pt}$$

$$d^{2}(V(Q1TD), V(Q1D)) = (-0.433 + 0.332)^{2} + (-0.525 - 0.055)^{2} = 0.346 \cdot 0.5pt$$

Les deux distances sont différentes ce qui indique qu'il y a une perte d'information concernant la proximité de ces deux modalités dans la représentation faite sur le 1er plan factoriel (1,2), 0.25pt 2- Donner les poids des PLS et des PCS.

Lignes 0.25pt

Q2_TD Q2_D Q2_PaD Q2_TDS 0.34042553 0.42553191 0.14893617 0.08510638

Colonnes 0.25pt

O1PaD O1TD O1D O1TDS

0.3191489 0.4255319 0.1489362 0.1063830

3- Compléter les vides. 1.25pt

3- Compléter les vides. 1.25pt
Nous avons
$$I_2 = \frac{\lambda_2}{\sum \lambda_{\alpha}} \Rightarrow \lambda_2 = \frac{\lambda_1 + \lambda_3}{1 - I_2} = 0.292$$
, $I_2 = \frac{\lambda_3}{\sum \lambda_{\alpha}} x 100 = I_{123} - I_{12} = 13,829\%$, $C_{ab}^2(Q2TD) = f_1. \frac{Y_2^2(Q2TD)}{\lambda_2} = 0.186$, $C_{ab}^1(Q1D) = f_1. \frac{Y_1^2(Q1D)}{\lambda_1} = 5,720$.
$$C_{re}^3(Q1TDS) = \frac{V_3^2(Q1TDS)}{d_{KHI2}^2(Q1TDS, g_p)} = \frac{(0.029)^2}{d_{KHI2}^2(Q1TDS, g_p)} = 0.0001238$$

telle que
$$d_{KHI2}^2(Q1TDS, g_p) = \sum_i \frac{1}{f_i} \left(\frac{K_{i4}}{K_{i4}} - f_{i.} \right)^2$$

4- Donner une signification à l'axe1 et à l'axe2.

Nous comparons les contributions absolues des profils à leurs poids, pour ressortir ceux qui contribuent le plus:

Axe1: 1pt

PLs	Cs
Q1TDS (+)	Q2TDS(+)

signification: l'axe 1 représente ceux qui sont ont total désaccord sur le fait que le programme réalisé correspond à l'énoncé et que le volume horaire est respecté.

Axe2: 1pt

PLs	Cs
Q1PaD (+)	Q2PaDS(+)

signification: l'axe 2 représente ceux qui ne sont pas d'accord sur le fait que le programme réalisé correspond à l'énoncé et que le volume horaire est respecté.

5- Soit une ligne supplémentaire (1,4,0,3) , quelle est sa projection sur l'axe1.
$$\frac{0.5pt}{V_1(5)} = \frac{1}{\sqrt{\lambda_1}} \sum \frac{K_{5j}}{K_{5.}} V_1(j) = \frac{1}{\sqrt{0.822}} \sum \frac{K_{5j}}{8} V_1(j) = \frac{0.75}{\sqrt{0.822}} = 0.827$$

6- Quelles sont les lignes et les colonnes les mieux représentées et par quels axes.0.5pt Par l'axe 1: Q2TDS et Q1TDS, par l'axe2: Q2PaD et Q1PaD, car leurs contributions relatives sur les axes respectives sont proches de 1.