

# MACHINE LEARNING ACCELERATOR

Negin Safari 810197525

Dr. Navvabi

#### Accelerators

- Higher performance
- Higher speed
- Higher throughput
- Lower power

# Convolution

| 1/9 | 1/9 | 1/9 |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |

### Matlab blurring using convolution









```
rgb = imread('yelsev.png');
gray = rgb2gray(rgb);
subplot(1,2,1), imshow(gray);
result = zeros(size(gray));
wgray = zeros(size(gray) + 2*floor(m/2));
wgray((floor(m/2) + 1):(28+floor(m/2)),(floor(m/2) + 1):(28+floor(m/2))) = gray;
k = k/(m*m);
y = 0;
ik = 0; jk=0;
=  for row = (floor(m/2) + 1):(28+floor(m/2)) %2 
    for col = (floor(m/2) + 1):(28+floor(m/2)) %3
       y = 0;
       ik = 0;
        for i = (row - floor(m/2)): (row + floor(m/2)) %1 - 3
         for j = (col - floor(m/2)): (col + floor(m/2)) %2 - 4
           jk = jk + 1;
           y = y + k(ik,jk) * wgray(i,j);
         jk = 0;
        result(row-floor(m/2),col-floor(m/2)) = y;
tt = uint8(result);
subplot(1,2,2),imshow(uint8(result));
```

#### Input, kernel and output matrices

|                                      | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 1 |
|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| 1                                    | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 |   |
| 2                                    | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 |   |
| 3                                    | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 |   |
| 4                                    | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 145 | 67  | 67  | 67  |   |
| 5                                    | 196 | 196 | 196 | 196 | 196 | 196 | 151 | 1   | 0   | 0   | 0   |   |
| 6                                    | 196 | 196 | 196 | 196 | 196 | 196 | 167 | 23  | 22  | 22  | 22  |   |
| 7                                    | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 |   |
| 8                                    | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 |   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 196 | 196 | 196 | 196 | 196 | 196 |     | 1   | 2   | 3   | 4   |   |

| 0.1111 | 0.1111 | 0.1111 |
|--------|--------|--------|
| 0.1111 | 0.1111 | 0.1111 |
| 0.1111 | 0.1111 | 0.1111 |

| 8  | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196      | 196      | 196      | 196      |          |          |          |          |         |
|----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|----------|----------|----------|----------|---------|
| 9  | 196 | 196 | 196 | 196 | 196 | 196 |     | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9       |
| 10 | 196 | 196 | 196 | 196 | 196 | 196 | 1   | 87.1111  | 130.6667 | 130.6667 | 130.6667 | 130.6667 | 130.6667 | 130.6667 | 130.6667 | 130.666 |
| 11 | 196 | 196 | 196 | 196 | 196 | 196 | 2   | 130.6667 | 196.0000 |          |          | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.000 |
| 12 | 196 | 196 | 196 | 196 | 196 | 196 | 2   |          |          |          |          |          |          |          |          |         |
| 13 | 196 | 196 | 196 | 196 | 196 | 196 | 3   | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 190.3333 | 176      | 161.666 |
| 14 | 196 | 196 | 196 | 196 | 196 | 196 | 4   | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 191.0000 | 163.6667 | 127.5556 | 96.444  |
| 15 | 196 | 196 | 196 | 196 | 196 | 196 | 5   | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 187.7778 | 141.2222 | 85.7778  | 38.555  |
| 16 | 196 | 196 | 196 | 196 | 196 | 196 | 6   | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 187.7778 | 146.8889 | 105.7778 | 72.888  |
|    |     |     |     |     |     |     | 7   | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 192.7778 | 173.5556 | 154.2222 | 138.111 |
|    |     |     |     |     |     |     | 8   | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.000 |
|    |     |     |     |     |     |     | 9   | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.000 |
|    |     |     |     |     |     |     | 10  | 130.6667 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.0000 | 196.000 |

## Registers



#### Calculation



# Convolution with one multiplier

## Data path



#### Control unit



#### Wave form

• Number of cycles: 9440



# Convolution with nine multiplier

## Data path



#### Control unit



#### Wave forms



Number of cycles: 840



# Lower accuracy multipliers

#### 1: Round to nearest power of two





#### 2: Round down to nearest power of two





#### 3: Round up to nearest power of two





#### 4: Rounding-Based Approximate Multiplier(ROBA)





## Lower accuracy multipliers

| multiplier | RMSE    | area |
|------------|---------|------|
| 1          | 21.9665 | 100  |
| 2          | 74.8395 | 82   |
| 3          | 21.9665 | 91   |
| 4          | 27.0707 | 170  |

Area of a combinational 8 bit multiplier: 103

#### Processor and off-chip accelerator communication



### Thank you for your attention