Multi-Agent Area Coverage Control Using Reinforcement Learning

Adekunle Adepegba, Suruz Miah, Davide Spinello Summarized by Simon Hu

November 21, 2019

Outline

- 1 Introduction
- 2 Optimal Strategy
- 3 Reinforcement Learning Solution
- 4 Simulation Results
- 5 Conclusion

Problem Statement

• Given a group of N homogeneous agents moving in an environment $\Omega \subset \mathbb{R}^2$, find a configuration $p = (p_1, p_2, \ldots, p_N) \in \mathbb{R}^{2^N}$ of these agents that maximizes

$$\mathcal{H}(p,t) = \int_{\Omega} \max_{i=1,2,...,N} f_i(\|q - p_i\|) \phi(q,t) \, dq.$$
 (1)

- $f_i: \Omega \to \mathbb{R}_{\geq 0}$ is Lesbegue measurable, non-increasing, and is a function of the distance between p_i and q. We will consider $f(x) = -x^2$.
- $\phi: \Omega \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is the *risk density*. It measures our belief in an event happening at point q at time t.
- Applications: harbor patrol, search and rescue operations, ocean data collection.

Voronoi Tesselations

- A collection $S = (S_1, S_2, \dots, S_M)$ is a partition of Ω if each pair of S_i have disjoint interior and their union is Ω .
- The Voronoi partition is a particular partition given by $\mathcal{V} = (\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_L)$ where

$$V_i = \{q \in \Omega \mid ||q - p_i|| \le ||q - p_j||, \forall j \ne i\}.$$

 \blacksquare $c_{\mathcal{V}_i}$ and $m_{\mathcal{V}_i}$ are the centroid and mass of the i-th cell.

Voronoi Tesselations

lacksquare If we partition Ω according to $\mathcal V$ we can rewrite the cost as

$$\mathcal{H}(p,t) = \sum_{i=1}^{N} \int_{\mathcal{V}_i} f_i(\|q - p_i\|) \phi(q,t) \, dq.$$

Each agent only needs information from its neighbors to compute its contribution to the global cost. Any algorithm taking advantage of this is spatially distributed.

Optimal Strategy

 (Cortés et al. 2004). The control strategy where each agent moves towards the centroid of its Voronoi cell locally solves the area coverage control problem.

Reinforcement Learning Approach

■ Let $e_i = c_{\mathcal{V}_i} - p_i$. The authors consider the value function

$$V(e_i) = \sum_{\kappa=k}^{\infty} e_i^T Q e_i + u_i^T R u_i$$

where $Q, R \in \mathbb{R}^{2 \times 2}$ are positive definite.

Perform the standard trick to write this as the HBJ

$$V^*(e_i) = \min_{u_i} \left[e_i^T Q e_i + u_i^T R u_i + V^{next}(e_i) \right].$$

 \blacksquare Now we approximate the Value function $V(e_i)$ and policy u_i as neural networks.

Soft Actor-Critic Method

- The authors basically use the SAC DDPG algorithm we implemented in homework 4, with slight modifications.
 - They use least-squares loss instead of MSE.
 - Soft updates don't use the update rule

$$w_{target} \leftarrow \alpha w_{target} + (1 - \alpha) w_{source}$$
 (2)

but use the weights from the policy networks to update the weights from the Value function network.

- Since they use least-squares loss, they actually compute the analytical form, which involves taking inverses.
- We will use the update rule (2), use MSE loss, and actually implement the network.

Good, Bad, and the Ugly

■ Good:

- RL methods are robust to changes in the environment. In many applications your environment is dynamic.
- PD Feedback Controllers are OK for handling changes but may not be good at learning the dynamics of the environment.

Bad:

- You can just implement a really finely tuned PD controller to solve this problem.
- Ugly:
 - Each agent keeps track of its OWN target and source, actor and critic networks. This is not very scalable!

