

FÍSICA COMPUTACIONAL

Homework #1

Due to October 9

Please solve the following problems and email your solutions in a comprehensive pdf file to both Prof. Florez and Prof. Carquín

Juan Manuel Florez y Edson Carquín juanmanuel.florez@usm.cl; edson.carquin@usm.cl

Table of Contents

1.	Problem #1	page 2
2.	Problem #2	page 2
3.	Problem #3	page 3
4.	Problem #4	page 3
5.	Problem #5	page 3
6.	Problem #6	page 3

Problem #1:

Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an *inversion* of A.

- a. List the five inversions of the array (2, 3, 8, 6, 1).
- **b.** What array with elements from the set $\{1, 2, ..., n\}$ has the most inversions? How many does it have?
- c. What is the relationship between the running time of insertion sort and the number of inversions in the input array? Justify your answer.
- d. Give an algorithm that determines the number of inversions in any permutation on n elements in $\Theta(n \lg n)$ worst-case time. (Hint: Modify merge sort.)

Problem #2:

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	$\boldsymbol{\mathit{B}}$	0	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
b.	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					

Problem #3:

a. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

b. Give an example of a single nonnegative function f(n) such that for all functions $g_i(n)$ in part (a), f(n) is neither $O(g_i(n))$ nor $\Omega(g_i(n))$.

Problem #4:

Write pseudocode for the brute-force method of solving the maximum-subarray problem. Your procedure should run in $\Theta(n^2)$ time.

Problem #5:

Use the following ideas to develop a nonrecursive, linear-time algorithm for the maximum-subarray problem. Start at the left end of the array, and progress toward the right, keeping track of the maximum subarray seen so far. Knowing a maximum subarray of A[1..j], extend the answer to find a maximum subarray ending at index j+1 by using the following observation: a maximum subarray of A[1..j+1] is either a maximum subarray of A[1..j] or a subarray A[i..j+1], for some $1 \le i \le j+1$. Determine a maximum subarray of the form A[i..j+1] in constant time based on knowing a maximum subarray ending at index j.

Problem #6:

How would you modify Strassen's algorithm to multiply $n \times n$ matrices in which n is not an exact power of 2? Show that the resulting algorithm runs in time $\Theta(n^{\lg 7})$.