Question 1

A linear, first-order system with zero initial conditions experiences a unit step input $u(t) = 1_{+}(t)$. The system's response looks as follows:

Figure 1: System-response to a unit step input with annotations

(a)

Find the values of the DC gain and time constant of this system

Solution

The form of a first-order system transfer function is:

$$G(s) = \frac{\alpha}{\tau s + 1}$$

The DC gain is the value of y as $t \to \infty$. From the graph, we see that the DC gain is

$$G(0) = 0.5$$

$$\implies \alpha = 0.5$$

The time constant is the time it takes for the system to reach 63.2% of its final value.

$$y(\tau) = 0.632 \cdot 0.5$$

$$\implies y(\tau) = 0.316$$

From the graph,

$$\tau = 0.2$$

(b)

Give the transfer function G(s) of this system

Solution

Since $\alpha = 0.5$ and $\tau = 0.2$,

$$G(s) = \frac{0.5}{0.2s + 1}$$

Question 2

The mass is M=1 kg, but the values of the damper D and spring K are unknown. In order to identify these, a 10 N amplitude step input $u(t)=10[1_+(t)]$ is applied to the system initially at rest. The resulting (underdamped) response y(t) is plotted below, showing the peak and steady-state values:

Figure 2: Second-order system response to a unit step input with annotations

(a)

Calculate the values of ζ and ω_n for this system

Solution

The transfer function of this system, as given in the notes (p. 53) is:

$$G(s) = \frac{1/M}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\omega_n = \sqrt{\frac{K}{M}}$$

$$\zeta = \frac{D}{2\sqrt{MK}}$$
(1)

Converting the transfer function to standard form, we get:

$$G(s) = \frac{1}{K} \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

The response is:

$$Y(s) = \underbrace{\frac{10}{K}}_{\alpha} \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

For a standard second-order system (p. 59),

$$\omega_n = \frac{\pi}{t_p \sqrt{1 - \zeta^2}}$$
$$\zeta = \sqrt{\frac{\ln^2(M_p)}{\pi^2 + \ln^2(M_p)}}$$

From the graph, we see that $t_p = 1.8138$, $y(t_p) = 2.9076$, and $y_{\infty} = 2.5$.

$$M_p = \frac{y(t_p) - y_\infty}{y_\infty}$$
$$= \frac{2.9076 - 2.5}{2.5}$$
$$= 0.16304$$

$$\zeta = \sqrt{\frac{\ln^2(0.16304)}{\pi^2 + \ln^2(0.16304)}}$$

$$= 0.4999918 \approx 0.5$$

$$\omega_n = \frac{\pi}{1.8138\sqrt{1 - 0.5^2}}$$

$$= 1.9999993 \approx 2$$

(b)

Using the information from (a), find the values of D and K Solution From Eq. (1),

$$K = M\omega_n^2$$
$$= 1 \cdot 2^2$$
$$= \boxed{4}$$

From Eq. (2),

$$D = 2\sqrt{MK}\zeta$$
$$= 2\sqrt{1 \cdot 4} \cdot 0.5$$
$$= \boxed{2}$$

Question 3

Consider the transfer function

$$G(s) = \frac{s+1}{s^2 + 2s + 3}$$

(a)

By hand, obtain a state-space realization of this transfer function.

Solution

From Y(s) = G(s)U(s),

$$Y(s) = (s+1) \underbrace{\frac{1}{s^2 + 2s + 3} U(s)}_{:=V(s)}$$

Define an intermediate signal V(s). This leads to:

$$\ddot{v} + 2\dot{v} + 3v = u$$

$$Y(s) = (s+1)V(s) \implies u = \dot{v} + v$$

Let $x_1 = v$ and $x_2 = \dot{v}$. Then,

$$\dot{x_1} = x_2$$

 $\dot{x_2} = -3x_1 - 2x_2 + u$
 $y = x_2 + x_1$

In state-space form,

$$\dot{x} = \underbrace{\begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{B} u$$

$$y = \underbrace{\begin{bmatrix} 1 & 1 \end{bmatrix}}_{C} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{0}_{D}$$

(b)

Use MATLAB to obtain a (different) realization of the system

Solution

From Matlab,

A =

B =

1

0

C =

1 1

D =

0

The code used to generate this is:

```
clc; clear; close all;
[A, B2, C, D] = tf2ss([1 1], [1 2 3])
```

(c)

Demonstrate that the realizations in (a) and (b) both correspond to the same G(s). Note you can employ MATLAB's symbolic toolbox for this.

Solution

Recall the definition of the transfer function:

$$G(s) = C(sI - A)^{-1}B + D$$

Define the hand solution as $G_1(s)$ and the Matlab solution as $G_2(s)$. Then from Matlab,

G1 =

```
s/(s^2 + 2*s + 3) + 1/(s^2 + 2*s + 3)
```

G2 =

$$s/(s^2 + 2*s + 3) + 1/(s^2 + 2*s + 3)$$

It is clear that
$$G_1(s) = G_2(s)$$

The code used to generate this is:

```
clc; clear; close all;
A1 = [0 1; -3 -2];
B1 = [0; 1];
C1 = [1 1];
D1 = 0;
[A2, B2, C2, D2] = tf2ss([1 1], [1 2 3]);

syms s
G1 = C1*inv(s*eye(2) - A1)*B1 + D1
G2 = C2*inv(s*eye(2) - A2)*B2 + D2
```

Question 4

Recall the analog circuit from Assignment #1

As we saw in Assignment #1, the state-space form of the system is:

$$A = \begin{bmatrix} -1/(R_1C) & 0\\ 0 & -R_2/L \end{bmatrix}, \quad B = \begin{bmatrix} 1/(R_1C)\\ 1/L \end{bmatrix}$$
$$C = [0, R_2], \quad D = 0$$

Computing the transfer function in Matlab,

G =

$$R2/(R2 + L*s)$$

Since size(A) = 2, deg(G(s)) = 1, the system is not minimal as 2 > 1

The code used to generate this is:

```
clc; clear; close all;
syms s R1 R2 C L
A = [-1/(R1*C) 0; 0 -R2/L];
B = [1/(R1*C); 1/L];
c = [0 R2];
D = 0;
% Transfer function
G = c*inv(s*eye(2)-A)*B + D
```