I. Параметры

Брегг: $\theta_B = 7.93^o$;

Толщина: $d = 0.65 \cdot 10^{-3}$ м; Формула расчета: $d_{33} = \frac{d \cdot \Delta \theta}{U \tan(\theta_B)}$

II. Травление

В качестве травителя взят раствор HNO3 – H2O в концентрации 1-1 соответственно.

Температура: $50^{\circ}C$

Общее время травления: 30 мин.

III. Эскизы

В колличествое 6 штук.

Рис. 1: Эскиз образцов

IV. Напыление

Нанесение электродов осуществлялось в НИЦ КИ на установке магнетронного напыления. Была сделана подложка диаметром 151 мм, к которой особым образом крепились образцы (Рис. 2):

Рис. 2: A)Подложка B)Маска для напыления электродов

Рис. 3: Результат напыления и КДО

V. Выбор метода

Чтобы продемонстрировать пьзоэффект в кристалле, давайте встанем в произвольную точку на кривой дифракционного отражения, другими словами выведем интенсивность детектора из максимума отражения в точку на склоне кривой (Рис. 4).

Рис. 4: Выбор точки на КДО(справа), интенсивность сигнала детектора

Теперь включим электрическое поле поочередно в разных направлениях (Рис. 5В).

Наблюдаем смещение кривой (Рис. 5С), т.е. прямое изменение интенсивности на детекторе (Рис. 5А).

Рис. 5: А) Интенсивность детектора; В) Разность потенциалов на поверхности кристалла; С) Положение КДО

Таким образом представлется возможным отследить перемещение выбранного количества точек на КДО в момент подачи поля на кристал. Это позволит нам оценить искомый модуль (d33) обратного пьезоэффекта. Исключить "паразитные" вклады в смещение кривой и сократить ошибку. Так например кристал LBO имеет коэффициент теплового

расширения в 7 раз превышающий величину для кристаллов кварца и кремния (2:14), ниже будет показано влияние температуры на отражение. К тому же, наблюдается уширение кривой, а так же смещения в связи с неизвестными нам эффектами, но к нашему везению, время действия пьезоэффекта на порядок меньше времени тех процессов которые были перечислены (покажем это ниже). Подробный список наблюдений, оказывающих ряд трудностей для измерения - приведен в приложении А. Избежать дополнительных эффектов удалось, проводя разовые эксперименты, с промежуточными перерывами в 1 час.

VI. Эксперимент

Колличество измерений проведенного для оценки модуля d_{33} - 1000.

A. 1200 B

Величина такого смещения составляет: $\delta\theta = 2.60\pm0.01$ уг. сек (Рис 6).

Рис. 6: На рисунке представлено смещение КДО в результате обратного пьезоэффекта. Красным - в отсутствии поля, черным - в присутствии поля, 1200В

B. -1200 B

Измерения проводились независимым образом, с промежутком в 1 час $\delta\theta=-3.62\pm0.36$ уг. сек.(Рис 7); $d_{33}=34\cdot10^{-12}$

C. 1000 B

 $\delta\theta = 2.594 \pm 0.013$ уг. сек.(Рис 8)

D. 800 B

 $\delta \theta = 2.4 \pm 0.5 {\rm yr.}$ сек.(Рис 9) Измерения проводились независимым образом, с промежутком в 1 час

Рис. 7: На рисунке представлено смещение КДО в результате обратного пьезоэффекта. Красным - в отсутствии поля, черным - в присутствии поля, - 1200В

Рис. 8: На рисунке представлено смещение КДО в результате обратного пьезоэффекта. Красным - в отсутствии поля, черным - в присутствии поля, 1000В

Рис. 9: На рисунке представлено смещение КДО в результате обратного пьезоэффекта. Красным - в отсутствии поля, черным - в присутствии поля, 800В

VII. Обычный эксперимент

A. 500 B

Момент включения прослеживается на графике полуширины и интенсивности в пике. Ниже приводится зависимость от времени.

B. 1000 B

Ниже приводится зависимость от времени. Также видно влияние кондиционера на положение пика.

Интенсивность в пике

C. -500 B, -1500B

Ниже приводится зависимость от времени. Также видно влияние кондиционера на положение пика.

Приложение А

- Происходит движение кривой при изменении температуры;
- Кривая начинается уширяться после 3 сек с момента включения поля
- Растет пиковая интенсивность
- Наблюдается зависимость предыдущих измерений, так например если подавать импульс напряжения в одном направлении (-1000) кривая смещается вправо (например), изменив напряжение на противоположенное (+1000): 1 импульс КДО движется влево (правильное направление), 2-8 импульс так же происходит смещение в влево, но величина смещения уменьшатся до нуля и мы снова (9-10-.. импульс) наблюдаем смещение вправо.
- Иногда наблюдается борьба каких-то эффектов, подаем поле резкое движение в одну сменяется на противоположенное(зигзаг)
- Если подавать "большое" напряжение, кривая (форма) может не вернуться с свое первоначальное состояние (останется уширенной, завышенная пиковая интенсивность), времена релаксации в пределах 1 часа.
- Возможно есть предел на сжатие 2.6 сек

Приложение Б

• Перед каждым измерением вставать в максимум, либо снимать КДО полностью, т.к возникает дополнительная ошибка из - за изменение в пиковой интенсивности от измерения к измерению (время от времени)

Проверить

- Для $+1200\mathrm{B}$ смещение вправо, для $+800\mathrm{B}$ влево
- Зависимость от температуры

1