MTH 9831 Assignment 1 (9/02 - 9/09).

Read Lecture 1. Some additional references for this material are:

- 1. J. Jacod, Ph. Protter, Probability Essentials, Chapter 16.
- 2. S. Shreve, Stochastic Calculus for Finance II, Chapter 3.
- 3. A. Etheridge, A Course in Financial Calculus, Chapter 3.

Rules of the game: When solving these problems you are allowed to use (with a proper reference) any statement from lecture notes, even if it was given without a proof. Citing a convenient theorem from some other source and deriving your solution from it is not allowed.

Solve:

(1) The characteristic functions of X and Y are given by

$$\varphi_X(t) = \exp(2e^{it} - 2), \quad \varphi_Y(t) = \left(\frac{3}{4}e^{it} + \frac{1}{4}\right)^{10}.$$

Assume that X and Y are independent and find

(a)
$$E(XY)$$
; (b) $P(XY = 0)$; (c) $P(X + Y = 2)$.

- (2) Show that if X and Y are independent normal random variables with the same variance then X + Y and X Y are also independent.
- (3) Let $(B(t))_{t\geq 0}$ be a Brownian motion and $\alpha \in (0,1)$. Find the conditional density of $B(\alpha t)$ given that B(t) = y. Clearly specify the type of the distribution and its parameters.
- (4) Let $B(t) = (B_1(t), B_2(t)), t \ge 0$, be a two dimensional Brownian motion (assume that the coordinates are independent). Find the distribution of the distance from B(t) to the origin.
- (5) Let $B(t) = (B_1(t), B_2(t)), t \ge 0$, be a two dimensional Brownian motion (assume that the coordinates are independent), and $\rho \in [-1, 1]$. Is the process $X(t) = \rho B_1(t) + \sqrt{1 \rho^2} B_2(t)$ a Brownian motion? What is the correlation between X(t) and $B_1(t)$?
- (6) Let $(B(t))_{t\geq 0}$ be a Brownian motion. Determine, which of the following processes are Brownian motions. Justify your answers.
 - (a) $(-B(t))_{t>0}$;
 - (b) $(cB(t/c^2)_{t>0})$, where c>0 is a constant;
 - (c) $(\sqrt{t}B(1))_{t>0}$;
 - (d) $(B(2t) B(t))_{t>0}$;
 - (e) $(B(s) B(s-t))_{0 \le t \le s}$, where s is fixed.
- (7) Let $(B(t))_{t\geq 0}$ be a Brownian motion. Define $B^*(t) := \max_{0\leq s\leq t} B(s)$. For $0\leq a\leq x$ calculate $P(B^*(t)\geq a,\ B(t)\leq x)$.