Introduction to the Method of Moments

Mohamed Kamal AbdElrahman

November 10, 2019

This is an introduction the basic aspects of the Method of Moments (MOM).

Review

Given g(x), find f(x) in the interval $\Omega = [0,1]$ satisfying

$$-\frac{d^2f}{dx^2} = g(x), \quad \Omega$$

$$f = 0 \quad \partial\Omega$$
(1)

This is a boundary value problem of the form Lf = g for which

$$L = -\frac{d^2f}{dx^2} \tag{2}$$

The operator *L* is hermitian and positive-definite

$$\langle Lf \mid g \rangle = \langle f \mid Lg \rangle \tag{3}$$

$$\langle Lf \mid f \rangle \ge 0 \tag{4}$$

The inverse of operator L can be obtained with the help of standard Green's function techniques

$$f(x) = L^{-1}(g) = \int_0^1 G(x, x')g(x')dx'$$
 (5)

where G is the Green's function

$$G(x,x) = \begin{cases} x(1-x') & x < x' \\ (1-x)x' & x > x' \end{cases}$$
 (6)

The operator L^{-1} is also Hermitian and positive-definite. Note that the boundary conditions must be specified for the domain of L, however, they are not required for L^{-1} (Green functions already accounts for them).

Method of Moments

Consider the steady state equation

$$Lf = g (7)$$

where L is a linear operator, g is a known excitation and the response f is to be found. Let f be expanded as a superposition of a set of basis functions $|v_i\rangle$ with unknown expansion coefficients c_i

$$f = \sum_{i} c_i | v_i \rangle \tag{8}$$

For approximate solutions, (7) is truncated to a finite summation. Substituting (8) in (7), and using the linearity of L, we have

$$\sum_{i} c_{i} L |v_{i}\rangle = g \tag{9}$$

Taking the inner product of (9) with a set of test functions w_m , where $m = 1, 2, \dots$

$$\sum_{i} c_{i} \langle w_{m} | L v_{i} \rangle = \langle w_{m} | g \rangle \tag{10}$$

Once the basis and test functions are chosen, Equation (10) becomes a standard linear system of algebraic equations. The procedure is similar to the method of wighted residual commonly used for finite element methods (but instead of a differential operator we have an integral operator) and the particular choice $w_i = v_i$ is known as Galerkin method.

The Collocation Method

The idea of the collocation method is to demand the satisfaction of (9) at a number of discrete points in the region of interest. The collocation method can be also seen as taking Dirac delta functions as testing functions.