$\operatorname{LinDatAlg}$ - Projekt C

Alexander Husted - wqg382@alumni.ku.dk - Hold 13

13. juni 2023

Indhold

1																										2
	1.1	a																		 						2
	1.2	b																		 						3
	1.3	\mathbf{c}																		 						3
	1.4	d																		 						4
	1.5	e																		 						5
2																										6
	2.1	a			 															 						6
	2.2	b			 															 						7
	2.3	\mathbf{c}																		 						8
	2.4	d																		 						9
	2.5	e			 •															 						10
3																										11
	3.1	a			 															 						11
	3.2	b																		 						12
	3.3	c			 									_						 						13

1

1.1 a

Opgave 1 (25%)

Betragt matricen

$$\mathbf{A} = \begin{pmatrix} -5 & 1 & 1 \\ 2 & 8 & 8 \\ 2 & -6 & -13 \\ -4 & 12 & -16 \end{pmatrix}.$$

(a) Bestem en QR-faktorisering af A.

Lad $\mathcal{U} = span\{u_1, u_2, u_3\}$. Herfra anvendes gram-schmidt til at finde den ortogonale basis for \mathcal{U} :

$$q_1 = \frac{u_1}{||u_1||} = \frac{1}{7} \begin{bmatrix} -5\\2\\2\\-4 \end{bmatrix}$$

Vi beregner nu:

$$q_2' = u_2 - (u_2 \cdot q_1)q_1 = \begin{bmatrix} 1 \\ 8 \\ -6 \\ 12 \end{bmatrix} - (\begin{bmatrix} 1 \\ 8 \\ -6 \\ 12 \end{bmatrix} \cdot \frac{1}{7} \begin{bmatrix} -5 \\ 2 \\ 2 \\ -4 \end{bmatrix}) \cdot \frac{1}{7} \begin{bmatrix} -5 \\ 2 \\ 2 \\ -4 \end{bmatrix} = \begin{bmatrix} -4 \\ 10 \\ -4 \\ 8 \end{bmatrix}$$

Dermed har vi:

$$q_2 = \frac{q_2'}{||q_2'||} = \frac{1}{14} \begin{bmatrix} -4\\10\\-4\\8 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -2\\5\\-2\\4 \end{bmatrix}$$

Endelig beregnes:

$$q_{3}' = u_{3} - (u_{3} \cdot q_{1})q_{1} - (u_{3} \cdot q_{2})q_{2} =$$

$$\begin{bmatrix} 1 \\ 8 \\ -13 \\ -16 \end{bmatrix} - (\begin{bmatrix} 1 \\ 8 \\ -13 \\ -16 \end{bmatrix} \cdot \frac{1}{7} \begin{bmatrix} -5 \\ 2 \\ 2 \\ -4 \end{bmatrix}) \cdot \frac{1}{7} \begin{bmatrix} -5 \\ 2 \\ 2 \\ -4 \end{bmatrix} - (\begin{bmatrix} 1 \\ 8 \\ -13 \\ -16 \end{bmatrix} \cdot \frac{1}{7} \begin{bmatrix} -2 \\ 5 \\ -2 \\ 4 \end{bmatrix}) \cdot \frac{1}{7} \begin{bmatrix} -2 \\ 5 \\ -2 \\ 4 \end{bmatrix} =$$

$$\begin{bmatrix} 6 \\ 6 \\ -15 \\ -12 \end{bmatrix}$$

Dermed har vi:

$$q_3 = \frac{q_3'}{||q_3'||} = \frac{1}{21} \begin{bmatrix} 6\\6\\-15\\-12 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2\\2\\-5\\-4 \end{bmatrix}$$

Herved fås matricen:

$$Q = \begin{bmatrix} -\frac{5}{7} & -\frac{2}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{5}{7} & \frac{7}{2} \\ \frac{2}{7} & -\frac{2}{7} & -\frac{5}{7} \\ -\frac{4}{7} & \frac{4}{7} & -\frac{4}{7} \end{bmatrix}$$

Vi har at:

$$Q^T = \begin{bmatrix} -\frac{5}{7} & \frac{2}{7} & \frac{2}{7} & -\frac{4}{7} \\ -\frac{2}{7} & \frac{5}{7} & -\frac{2}{7} & \frac{4}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{5}{7} & -\frac{4}{7} \end{bmatrix}$$

Hermed kan vi finde R, ved at indsætte på formlen $Q^T A = R$:

$$\begin{bmatrix} -\frac{5}{7} & \frac{2}{7} & \frac{2}{7} & -\frac{4}{7} \\ -\frac{2}{7} & \frac{5}{7} & -\frac{5}{7} & -\frac{4}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{5}{7} & -\frac{4}{7} \end{bmatrix} \cdot \begin{bmatrix} -5 & 1 & 1 \\ 2 & 8 & 8 \\ 2 & -6 & -13 \\ -4 & 12 & -16 \end{bmatrix} = \begin{bmatrix} 7 & -7 & 7 \\ 0 & 14 & 0 \\ 0 & 0 & 21 \end{bmatrix}$$

1.2 b

Betragt nu underrummet (hyperplanen) $\mathcal{U} \subseteq \mathbb{R}^4$ udspændt af søjlerne i matricen **A**.

(b) Bestem projektionsmatricen **P** for underrummet \mathcal{U} .

Det gælder at projektionsmatricen er givet ved $P = QQ^T$, her anvendes Q fra opgave 1.a:

$$P = \begin{bmatrix} -\frac{5}{7} & -\frac{2}{7} & -\frac{2}{7} \\ \frac{2}{7} & \frac{5}{7} & \frac{2}{7} \\ \frac{2}{7} & -\frac{2}{7} & -\frac{5}{7} \\ -\frac{4}{7} & \frac{4}{7} & -\frac{4}{7} \end{bmatrix} \cdot \begin{bmatrix} -\frac{5}{7} & \frac{2}{7} & \frac{2}{7} & -\frac{4}{7} \\ -\frac{2}{7} & \frac{5}{7} & -\frac{2}{7} & \frac{4}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{5}{7} & -\frac{4}{7} \end{bmatrix} = \begin{bmatrix} \frac{33}{49} & -\frac{16}{49} & \frac{4}{49} \\ -\frac{16}{49} & \frac{349}{49} & -\frac{16}{49} & \frac{4}{49} \\ -\frac{16}{49} & \frac{16}{49} & \frac{33}{49} & \frac{4}{49} \\ \frac{4}{49} & \frac{4}{49} & \frac{4}{49} & \frac{4}{49} \end{bmatrix}$$

1.3 c

(c) Betragt vektoren $\mathbf{x} = (1, 1, 1, 0)^T \in \mathbb{R}^4$.

Bestem den ortogonale projektion af \mathbf{x} på underrummet \mathcal{U} .

Bestem spejlingen af x i underrummet \mathcal{U} .

$$Proj_{\mathcal{U}}(v) = \frac{v \cdot u_{1}}{||u_{1}||} u_{1} + \frac{v \cdot u_{2}}{||u_{2}||} u_{2} + \frac{v \cdot u_{3}}{||u_{3}||} u_{3} = \frac{1}{||u_{1}||} \left[\frac{-\frac{5}{7}}{\frac{2}{7}} \right] \left[\frac{-\frac{5}{7}}{\frac{1}{9}} \right] \left[\frac{-\frac{5}{7}}{\frac{2}{7}} \right] \left[\frac{\frac{2}{7}}{\frac{2}{7}} \right] \left[\frac{\frac{1}{99}}{\frac{1}{49}} \right] \left[\frac{\frac{2}{7}}{\frac{2}{7}} \right] \left[\frac{\frac{2}{7}}{\frac{2}{7}} \right] \left[\frac{\frac{1}{99}}{\frac{1}{49}} \right] \left[$$

Hermed har vi at den ortogonale projektion af x på underrummet $\mathcal U$ er:

$$Proj_{\mathcal{U}}(v) = \begin{bmatrix} \frac{1}{49} \\ -\frac{1}{49} \\ -\frac{1}{49} \\ -\frac{12}{49} \end{bmatrix}$$

Spejlingen af v i \mathcal{U} er givet ved:

$$refl_{\mathcal{U}} = 2 \cdot proj_{\mathcal{U}}(v) - v \Rightarrow$$

$$refl_{\mathcal{U}} = 2 \cdot \begin{bmatrix} \frac{1}{49} \\ -\frac{1}{49} \\ -\frac{1}{49} \\ -\frac{1}{6} \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{47}{49} \\ -\frac{47}{49} \\ -\frac{47}{49} \\ \frac{24}{19} \end{bmatrix}$$

1.4 d

(d) Bestem en ortonormal basis for underrummet \mathcal{U}^{\perp} (det ortogonale komplement til \mathcal{U}).

Det gælder fra Theorem 4.10 at:

$$(col A)^{\perp} = null A^T$$

Herfra beregnes:

$$A^T = \begin{bmatrix} -5 & 2 & 2 & -4 \\ 1 & 8 & -6 & 12 \\ 1 & 8 & -13 & -16 \end{bmatrix}$$

For at finde nulrumemt af ${\cal A}^T$ sættes den på reduceret række-echelonform.

1.
$$r_1 = -\frac{r_1}{5}$$

2.
$$r_2 = r_2 - r_1$$

3.
$$r_3 = r_3 - r_1$$

4.
$$r_2 = \frac{5r_2}{42}$$

5.
$$r_1 = r_1 + \frac{2r_2}{5}$$

6.
$$r_3 = r_3 - \frac{42r_2}{5}$$

7.
$$r_3 = -\frac{r_3}{7}$$

8.
$$r_1 = r_1 + \frac{2r_3}{3}$$

9.
$$r_2 = r_2 + \frac{2r_3}{3}$$

Hvilket giver matricen:

$$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

Hermed fås løsningen

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = t \begin{bmatrix} -4 \\ -4 \\ -4 \\ 1 \end{bmatrix}$$

Altså har vi følgende ortogonale komplement til \mathcal{U} :

$$\begin{bmatrix} -4 \\ -4 \\ -4 \\ 1 \end{bmatrix}$$

1.5 e

Lad $\mathbf{Q} = (\mathbf{q}_1 | \mathbf{q}_2 | \mathbf{q}_3)$ være Q-matricen i QR-faktoriseringen fra delspørgsmål (a) og lad $\{\mathbf{q}_4\}$ være den ortonormale basis for underrummet \mathcal{U}^{\perp} fundet i delspørgsmål (d). Betragt så matricen

$$\textbf{B} = (\textbf{q}_1|\textbf{q}_2|\textbf{q}_3|\textbf{q}_4) \qquad \text{samt vektoren} \qquad \textbf{v} = \begin{pmatrix} \sqrt{2} \\ \sqrt{5} \\ \sqrt{7} \\ \sqrt{11} \end{pmatrix}.$$

(e) Bestem \mathbf{B}^{-1} , altså den inverse til matricen \mathbf{B} .

Bestem ||Bv||, altså normen af vektoren Bv.

(Vink: Man behøver ikke at regne ret meget.)

Bestem den inverse af B

$$B = \begin{bmatrix} -\frac{5}{7} & -\frac{2}{7} & \frac{2}{7} & -4\\ \frac{2}{7} & \frac{5}{7} & \frac{2}{7} & -4\\ \frac{2}{7} & -\frac{2}{7} & -\frac{5}{7} & -4\\ -\frac{4}{7} & \frac{4}{7} & -\frac{4}{7} & 1 \end{bmatrix}$$

Vi kontrollere om matricen er ortogonal, med henhold til defination 4.9. Hvis dette er tilfældet gælder det at $B^{-1} = B^{T}$:

$$B^{T} = \begin{pmatrix} -\frac{5}{7} & \frac{2}{7} & \frac{2}{7} & -\frac{4}{7} \\ -\frac{2}{7} & \frac{5}{7} & -\frac{2}{7} & \frac{4}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{5}{7} & -\frac{4}{7} \\ -4 & -4 & -4 & 1 \end{pmatrix}, \qquad B^{T}B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Altså har vi at:

$$B^{-1} = B^{T} = \begin{pmatrix} -\frac{5}{7} & \frac{2}{7} & \frac{2}{7} & -\frac{4}{7} \\ -\frac{2}{7} & \frac{5}{7} & -\frac{2}{7} & \frac{4}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{5}{7} & -\frac{4}{7} \\ -4 & -4 & -4 & 1 \end{pmatrix}$$

Bestem normen af Bv

Da vi nu ved at vi har med en ortogonal matrix at gøre kan Theorem 4.7 anvendes til at finde ||Bv||

$$||Bv|| = ||v|| = \sqrt{\sqrt{2}^2 + \sqrt{5}^2 + \sqrt{7}^2 + \sqrt{11}^2} = \sqrt{25} = 5$$

2

2.1 a

Lad A være matricen

$$\mathbf{A} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}.$$

(a) Bestem samtlige egenværdier for A og indtegn dem i den komplekse plan.

For at finde egenværdierne skal man bruge det karakteristiske polynoumium fra defination 6.2:

$$\begin{split} p(\lambda) &= \det(\lambda I - A) \Rightarrow \\ p(\lambda) &= \det(\begin{bmatrix} \lambda - \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \lambda - \frac{1}{2} \end{bmatrix}) \Rightarrow \\ p(\lambda) &= \lambda^2 - \lambda + \frac{1}{2} \end{split}$$

Herfra løses den karakteristiske ligning:

$$p(\lambda) = 0$$

Formelen for andengradsligninger anvendes:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot \frac{1}{2}}}{2} = \frac{1 \pm i}{2} = \begin{cases} \lambda_1 = \frac{1}{2} + i\frac{1}{2} \\ \lambda_2 = \frac{1}{2} - i\frac{1}{2} \end{cases}$$

2.2 b

(b) Bestem for hver egenværdi λ det tilhørende egenrum E_{λ} .

Vi starter med at bestemme egenrummet for λ_1

$$(A - \lambda I)x = 0 \Rightarrow$$

$$(A - \frac{1}{2} + i\frac{1}{2})x = 0$$

Dette er det samme som:

$$null(A-\frac{1}{2}+i\frac{1}{2})$$

Vi stater med at bringe totalmatricen på reduceret rækkeechelonform

$$\begin{bmatrix} \frac{1}{2} - (\frac{1}{2} + i\frac{1}{2}) & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} - (\frac{1}{2} + i\frac{1}{2}) \end{bmatrix}$$

1.
$$r_1 = 2ir_1$$

2.
$$r_2 = r_2 + \frac{r_1}{2}$$

$$\begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix}$$

Herved fås løsningen:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = t \begin{bmatrix} -i \\ 1 \end{bmatrix}$$

Herved har vi at egenrummet til egenværdien λ_1 er $\begin{bmatrix} -i \\ 1 \end{bmatrix}$

Egenværdien for λ_2 udregnes i Maple og er $\begin{bmatrix}i\\1\end{bmatrix}$

2.3 c

(c) Bestem komplekse tal α og β som opfylder:

$$\mathbf{v} = \alpha \begin{pmatrix} i \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -i \\ 1 \end{pmatrix}.$$

Totalmatricen opstilles med egenrummene på venstresiden og vektoren v på højresiden.

$$\left[\begin{array}{cc|c}i & -i & 1\\1 & 1 & 1\end{array}\right]$$

- 1. $r_1 = -ir_1$
- 2. $r_2 = r_2 r_1$
- 3. $r_2 = \frac{r_2}{2}$
- 4. $r_1 = r_1 + r_2$

$$\left[\begin{array}{cc|c} 1 & 0 & \frac{1}{2} + i\frac{1}{2} \\ 0 & 1 & \frac{1}{2} - i\frac{1}{2} \end{array} \right]$$

Altså har vi:

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

2.4 d

(d) Skitsér vektorerne v, $\mathbf{A}\mathbf{v}$, $\mathbf{A}^2\mathbf{v}$ og $\mathbf{A}^3\mathbf{v}$ i XY-planen.

Hvilken vinkel synes der at være mellem v og Av, mellem Av og A^2v , og mellem A^2v og A^3v ?

2.5 e

(e) Brug (c) til at vise, at der for et vilkårligt $k \in \mathbb{Z}$ gælder:

$$\mathbf{A}^{k}\mathbf{v} = \frac{1}{(\sqrt{2})^{k-1}} \begin{pmatrix} \sin((k+1)\pi/4) \\ \cos((k+1)\pi/4) \end{pmatrix}.$$

[Vink: Vis formlen:

$$\left(\frac{1\pm i}{\sqrt{2}}\right)^{k+1} = \cos((k+1)\pi/4) \pm i\sin((k+1)\pi/4)$$

ved at bruge Theorem 8.4 i lærebogen og benyt den senere i udregningen!]

Vi starter med at vise formelen. Vi har at polarformen af $\frac{1\pm i}{\sqrt{2}}$ er:

$$cos(\frac{\pi}{4}) \pm i sin(\frac{\pi}{4})$$

Det gælder ifølge Theorem 8.4 at:

$$(\cos(\frac{\pi}{4}) \pm i sin(\frac{\pi}{4}))^{k+1} = \cos((k+1)\frac{\pi}{4}) \pm i sin((k+1)\frac{\pi}{4})$$

Altså må det gælde at:

$$(\frac{1 \pm i}{\sqrt{2}})^{k+1} = \cos((k+1)\frac{\pi}{4}) \pm i\sin((k+1)\frac{\pi}{4})$$

Nu hvor formelen er vist kan opgaven løses:

$$A^k v = \alpha A^k \begin{bmatrix} i \\ 1 \end{bmatrix} + \beta A^k \begin{bmatrix} -i \\ 1 \end{bmatrix}$$

Det gælder at $A^k v = \lambda^k v$ og vi viste i opgave c at $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$:

$$A^k v = \alpha \lambda_1^k \begin{bmatrix} i \\ 1 \end{bmatrix} + \beta \lambda_2^k \begin{bmatrix} -i \\ 1 \end{bmatrix} \Rightarrow$$

$$A^kv=\lambda_1^{k+1}\begin{bmatrix}i\\1\end{bmatrix}+\lambda_2^{k+1}\begin{bmatrix}-i\\1\end{bmatrix}$$

 $\lambda_1=\frac{1}{2}+i\frac{1}{2}$ og $\lambda_2=\frac{1}{2}-i\frac{1}{2}$ omskrives til polarform. Hvorfra vi får: $\lambda_1=\frac{\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4})}{\sqrt(2)}$ og $\lambda_2=\frac{\cos(\frac{\pi}{4})-i\sin(\frac{\pi}{4})}{\sqrt(2)}$

$$A^{k}v = \left(\frac{\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})}{\sqrt{2}}\right)^{k+1} \begin{bmatrix} i \\ 1 \end{bmatrix} + \left(\frac{\cos(\frac{\pi}{4}) - i\sin(\frac{\pi}{4})}{\sqrt{2}}\right)^{k+1} \begin{bmatrix} -i \\ 1 \end{bmatrix} \Rightarrow$$

$$A^{k}v = \frac{\cos((k+1)\frac{\pi}{4}) + i\sin((k+1)\frac{\pi}{4})}{\sqrt{2}^{k}} \begin{bmatrix} i \\ 1 \end{bmatrix} + \frac{\cos((k+1)\frac{\pi}{4}) - i\sin((k+1)\frac{\pi}{4})}{\sqrt{2}^{k}} \begin{bmatrix} -i \\ 1 \end{bmatrix} \Rightarrow$$

$$A^{k}v = \frac{1}{(\sqrt{2})^{k-1}} \begin{bmatrix} \sin(k+1)\frac{\pi}{4} \\ \cos(k+1)\frac{\pi}{4} \end{bmatrix}$$

3

3.1 a

(a) Benyt mindste kvadraters metode (eng: method of least squares) til at bestemme forskriften for den bedste rette linie, $\ln y \simeq at + b$, gennem punkterne $(t, \ln y)$ fra TABEL 2.

(Vink: Se §4.4.1 Example 4 i lærebogen. Det er i orden at benytte fx en af funktionerne fra Projekt A til matrixmultiplikation.)

Den stiplede graf på FIGUR 2 er grafen for den lineære funktion $t \mapsto at + b$, hvor a og b er de konstanter, som er bestemt ovenfor.

Vi tager værdierne i tabel 2 og indsætter i ligningen ln(y) = at + b og får dermed følgende ligningssystem:

$$(S) = \begin{cases} b + 2010a = 35.481 \\ \vdots \\ b + 2023a = 43.056 \end{cases}$$

Lad herfra Ax=b være matrix formen af (S), hvor:

$$A = \begin{bmatrix} 1 & 2010 \\ 1 & 2011 \\ 1 & 2012 \\ 1 & 2013 \\ 1 & 2016 \\ 1 & 2018 \\ 1 & 2020 \\ 1 & 2022 \\ 1 & 2023 \end{bmatrix}, \qquad x = \begin{bmatrix} b \\ a \end{bmatrix}, \qquad b = \begin{bmatrix} 35.381 \\ 36.891 \\ 37.331 \\ 38.061 \\ 39.071 \\ 39.345 \\ 40.568 \\ 42.140 \\ 43.056 \end{bmatrix}$$

Ved kontrol i Maple ser vi at rank A = 2, derfor har systemet en unik løsningen givet ved:

$$\bar{x} = \begin{bmatrix} \bar{b} \\ \bar{a} \end{bmatrix} = (A^T A)^{-1} A^T B$$

$$A^T A = \begin{bmatrix} 18145 & 9 \\ 36582527 & 18145 \end{bmatrix}, \qquad (A^T A)^{-1} = \begin{bmatrix} -\frac{18145}{1718} & \frac{36582527}{1718} \\ \frac{9}{1718} & -\frac{18145}{1718} \end{bmatrix}, \qquad A^T b = \begin{pmatrix} 351.844 \\ 709452.45 \end{pmatrix}$$

$$(A^T A)^{-1} A^T B = \begin{bmatrix} -966.8031210 \\ 0.4989348 \end{bmatrix} = \begin{bmatrix} \bar{b} \\ \bar{a} \end{bmatrix}$$

Herved fås føgende tilnærmede forskrift:

$$ln(y) = 0.4989348t - 966.8031210$$

3.2 b

(b) Begrund, at der gælder følgende tilnærmede forskrift for funktionen y = y(t):

$$y = y(t) \simeq 4.56 \cdot 10^{15} \cdot e^{0.499(t - 2010)}$$
 (*)

(*Vink*: Man har tilnærmelsen $\ln y \simeq at + b$ for de i delspørgsmål (a) fundne konstanter a og b. Tag nu eksponentialfunktionen på begge sider af lighendstegnet. Regn med alle decimaler.)

Den stiplede graf på Figur 1 er grafen for eksponentialfunktionen $t\mapsto 4.56\cdot 10^{15}\cdot e^{0.499(t-2010)}$ fundet i (*) ovenfor.

$$e^{\ln(y)} = e^{0.498t - 966.803} \Rightarrow$$

 $y = e^{0.498t - 966.803}$

Der kontrolleres med forskellige værdier af t, for at se hvor tæt de to forskrifter er på hindanden. Dette gøres i Excel hvor l1 er den oversående forskrift og l2 er forskriften fra opgaven (*):

t	l1	12
2010	4,56E+15	4,56E+15
2011	7,51E+15	7,51E+15
2012	1,24E+16	1,24E+16
2013	2,04E+16	2,04E+16
2014	3,35E+16	3,36E+16
2015	5,52E+16	5,53E+16
2016	9,10E+16	9,10E+16
2017	1,50E+17	1,50E+17
2018	2,47E+17	2,47E+17
2019	4,06E+17	4,07E+17
2020	6,69E+17	6,70E+17
2021	1,10E+18	1,10E+18
2022	1,82E+18	1,82E+18
2023	2,99E+18	2,99E+18
2024	4,93E+18	4,93E+18

t	I1	12
2010	4,559E+15	4,560E+15
2011	7,508E+15	7,511E+15
2012	1,237E+16	1,237E+16
2013	2,037E+16	2,038E+16
2014	3,354E+16	3,356E+16
2015	5,524E+16	5,528E+16
2016	9,098E+16	9,104E+16
2017	1,498E+17	1,500E+17
2018	2,468E+17	2,470E+17
2019	4,065E+17	4,068E+17
2020	6,694E+17	6,700E+17
2021	1,103E+18	1,104E+18
2022	1,816E+18	1,818E+18
2023	2,991E+18	2,994E+18
2024	4,925E+18	4,931E+18

De to tabeller viser y-værdierne i rundet til henholdsvis 2 og 3 decimaler. Vi ser at forskrifterne forudsiger tilnærmelsesvis de samme værdier.

Excel koden for l1 og l2 er:

l1: = EKSP((0,498934807916181)*D3 - 966,803121071013)

 $12: = 4,56 * 10^15 * EKSP(0,499 * (D3 - 2010))$

3.3 c

(c) Benyt tilnærmelsen (*) til at give et estimat på hvor mange FLOPS verdens bedste supercomputer kunne præstere i år 2000.

Det historiske faktum er, at verdens bedste supercomputer i år 2000 var IBM ASCI White, og denne kunne præstere $7.226 \cdot 10^{12}$ FLOPS.

Benyt tilnærmelsen (*) til at give et estimat på hvor mange FLOPS verdens bedste supercomputer kan præstere i år 2030.

Her genanvendes tabellen fra opgave b, der skal dog udelukkende fokuseres på 12, da det er tilnærmelsen (*)

t		l1	12	
	2000	3,105	5E+13	3,103E+13
	2030	9,830	DE+19	9,845E+19