Returns to Education

Philipp Eisenhauer

I heavily draw on the material presented in:

► Heckman, J. J., Lochner, L. J., and Todd, P. E. (2006a). Earnings functions, rates of return and treatment effects: The mincer equation and beyond. In Hanushek, E. A. and Welch, F., editors, Handbook of the Economics of Education, volume 1, pages 307–458. North-Holland Publishing Company

We will look at two papers that explore reduced-form estimations of the returns to education .

- Carneiro, P. and Heckman, J. J. (2002). The evidence on credit constraints in post-secondary schooling. *The Economic Journal*, 112(482):705–734
- ▶ Bhuller, M., Mogstad, M., and Salvanes, K. G. (2017). Life cycle earnings, education premiums and internal rates of return. Journal of Labor Economics, 35(4):993–1030

We will look at two papers that explore structural estimations of the returns to education .

- Cunha, F., Heckman, J. J., and Navarro, S. (2005). Separating uncertainty from heterogeneity in life cycle earnings. Oxford Economic Papers, 57(2):191–261
- Eisenhauer, P., Heckman, J. J., and Mosso, S. (2015). Estimation of dynamic discrete choice models by maximum likelihood and the simulated method of moments. *International Economic Review*, 56(2):331–357

Why are returns to education important?

- help explain wage inequality
- judge relative profitability of investment in education?
- **.**

Mincer Equation

$$\ln Y(s,x) = \alpha + \rho_s s + \beta_0 x + \beta_1 x^2 + \epsilon$$

 \Rightarrow How to interpret the *Mincer Coefficient* ρ_s ?

Conceptual Frameworks

- compensating differences model
- accounting-identity model

Compensating Differences Model

$$V(s) = Y(s) \int_{s}^{T} e^{-rt} dt = \frac{Y(s)}{r} (e^{-rs} - e^{-rT})$$

Equalizing present value of earnings across schooling levels:

$$\ln Y(s) = \ln Y(0) + rs + \ln \left(\frac{1 - e^{-rs}}{1 - e^{-r(T-s)}} \right)$$

 $\Rightarrow \rho_s$ equals the market interest rate and the internal rate of return to schooling by construction.

Model Features:

- identical abilities and opportunities
- no credit constraints
- perfect certainty
- no direct cost of schooling
- no nonpecuniary benefits of school and work

Model Features:

- identical abilities and opportunities
- no credit constraints
- perfect certainty
- no direct cost of schooling
- no nonpecuniary benefits of school and work

Accounting-Identity Model

$$P_t \equiv P_{t-1}(1 + k_{t-1}\rho_{t-1}) \equiv \prod_{i=0}^{t-1} (1 + \rho_j k_j) P_0$$

$$\ln P_t \equiv \ln P_0 + s \ln(1+
ho_s) + \sum_{j=s}^{t-1} \ln(1+
ho_0 k_j)$$

$$\approx \ln P_0 + s
ho_s +
ho_0 \sum_{j=s}^{t-1} k_j$$

Assuming linearly declining rate of post-school investment:

$$k_{s+x} = \kappa \left(1 - \frac{x}{T}\right)$$
, where $x = t - s$

Figure: Post-School Investment

$$\ln P_{x+s} \approx \ln P_0 + s \frac{3}{4s} + P_0 \sum_{i=1}^{x} \kappa \left(1 - \frac{j}{T} \right) \tag{1}$$

further decomposing experience addition

$$P_0 \sum_{j=1}^{x} \kappa \left(1 - \frac{j}{T} \right) = P_0 \sum_{j=1}^{x} \kappa - P_0 \sum_{j=1}^{x} \left(\frac{j}{T} \right)$$
$$= P_0 \kappa x - \frac{P_0}{T} \sum_{j=1}^{x} j$$

using result on sum of arithmetic series

$$= P_0 \kappa x - \frac{P_0}{T} x \left(\frac{1+x}{2}\right) = P_0 \kappa x - \frac{P_0}{2T} x - \frac{P_0}{2T} x^2$$
$$= \left(P_0 \kappa - \frac{P_0}{2T}\right) x - \frac{P_0}{2T} x^2$$

substituting back into (1)

$$\ln P_{x+s} \approx \ln P_0 + s\rho_s + \left(\rho_0 \kappa + \frac{\rho_0 \kappa}{2T}\right) x - \frac{\rho_0 \kappa}{2T} x^2$$

Accounting for the difference in potential and observed earnings:

$$\ln Y(s,x) = \ln P_{x+s} - \kappa \left(1 - \frac{x}{T}\right)$$
$$= \left[\ln P_0 - \kappa\right] + \rho_s s + \left(\rho_0 \kappa + \frac{\rho_0 \kappa}{2T} + \frac{\kappa}{T}\right) x - \frac{\rho_0 \kappa}{2T} x^2$$

 $\Rightarrow \rho_{\rm S}$ is the average earnings increase with schooling

Standard Mincer Equation

$$\ln Y(s,x) = \alpha + \rho_s s + \beta_0 x + \beta_1 x^2,$$

where

$$\alpha = \ln P_0 - \kappa$$

$$\beta_0 = \left(\rho_0 \kappa + \frac{\rho_0 \kappa}{2T} + \frac{\kappa}{T}\right)$$

$$\beta_1 = -\frac{\rho_0 \kappa}{2T}$$

Random Coefficient Version

$$\ln Y(s_i, x_i) = \alpha_i + \rho_{si}s_i + \beta_{0i}x_i + \beta_{1i}x_i^2$$

and let

$$ar{\alpha} = \mathrm{E}[\alpha_i]$$
 $ar{\rho}_s = \mathrm{E}[\rho_{si}]$ $ar{\beta}_0 = \mathrm{E}[\beta_{0i}]$ $ar{\beta}_1 = \mathrm{E}[\beta_{1i}]$

Dropping individual subscripts ...

$$\ln Y(s,x) = \bar{\alpha} + \bar{\rho}_s s + \bar{\beta}_0 x + \bar{\beta}_1 x^2 + \underbrace{\left[(\alpha - \bar{\alpha}) + (\rho_s - \bar{\rho}_s) s + (\beta_0 - \bar{\beta}_0) x + (\beta_1 - \bar{\beta}_1) x^2 \right]}_{\epsilon}$$

 \Rightarrow If the schooling decision is determined by individual returns, then we are back in the case of a correlated random coefficient model (Heckman et al., 2006b).

Table 2: Estimated Coefficients from Mincer Log Earnings Regression for Men

		Wł	ites	Blacks		
		Coefficient	Std. Error	Coefficient	Std. Erro	
1940	Intercept	4.4771	0.0096	4.6711	0.0298	
	Education	0.1250	0.0007	0.0871	0.0022	
	Experience	0.0904	0.0005	0.0646	0.0018	
	Experience-Squared	-0.0013	0.0000	-0.0009	0.0000	
1950	Intercept	5.3120	0.0132	5.0716	0.0409	
	Education	0.1058	0.0009	0.0998	0.0030	
	Experience	0.1074	0.0006	0.0933	0.0023	
	Experience-Squared	-0.0017	0.0000	-0.0014	0.0000	
1960	Intercept	5.6478	0.0066	5.4107	0.0220	
	Education	0.1152	0.0005	0.1034	0.0016	
	Experience	0.1156	0.0003	0.1035	0.0011	
	Experience-Squared	-0.0018	0.0000	-0.0016	0.0000	
1970	Intercept	5.9113	0.0045	5.8938	0.0155	
	Education	0.1179	0.0003	0.1100	0.0012	
	Experience	0.1323	0.0002	0.1074	0.0007	
	Experience-Squared	-0.0022	0.0000	-0.0016	0.0000	
1980	Intercept	6.8913	0.0030	6.4448	0.0120	
	Education	0.1023	0.0002	0.1176	0.0009	
	Experience	0.1255	0.0001	0.1075	0.0005	
	Experience-Squared	-0.0022	0.0000	-0.0016	0.0000	
1990	Intercept	6.8912	0.0034	6.3474	0.0144	
	Education	0.1292	0.0002	0.1524	0.0011	
	Experience	0.1301	0.0001	0.1109	0.0006	
	Experience-Squared	-0.0023	0.0000	-0.0017	0.0000	

Notes: Data taken from 1940-90 Decennial Censuses. See Appendix B for data description.

Implications

Log-earnings profiles are parallel across schooling levels.

$$\frac{\partial \ln Y(s,x)}{\partial s \partial x} = 0$$

Log-earnings age profiles diverge with age across schooling levels.

$$\frac{\partial \ln Y(s,x)}{\partial s \partial t} = \frac{\rho_0 \kappa}{T} > 0$$

► The variance of earnings over the life cycle has a U-shaped pattern.

Figure: Mincerian Experience Profiles

Figure: Mincerian Age Profiles

Figure: Mincerian Variance Profiles

Empirical Evidence

Figure 1a: Experience-Earnings Profiles, 1940-1960

Table 1: Tests of Parallelism in Log Earnings Experience Profiles for Men

		Estimated Difference Between College and High						
	Experience	Schoo	l Log E	arnings a	t Differen	t Experier	nce Levels	
Sample	Level	1940	1950	1960	1970	1980	1990	
Whites	10	0.54	0.30	0.46	0.41	0.37	0.59	
	20	0.40	0.40	0.43	0.49	0.45	0.54	
	30	0.54	0.27	0.46	0.48	0.43	0.52	
	40	0.58	0.21	0.50	0.45	0.27	0.30	
	p-value	0.32	0.70	< 0.001	< 0.001	< 0.001	< 0.001	
Blacks	10	0.20	0.58	0.48	0.38	0.70	0.77	
	20	0.38	0.05	0.25	0.22	0.48	0.69	
	30	-0.11	0.24	0.08	0.33	0.36	0.53	
	40	-0.20	0.00	0.73	0.26	0.22	-0.04	
	p-value	0.46	0.55	0.58	0.91	< 0.001	< 0.001	

Notes: Data taken from 1940-90 Decennial Censuses without adjustment for inflation. Because there are very few blacks in the 1940 and 1950 samples with college degrees, especially at higher experience levels, the test results for blacks in those years refer to a test of the difference between earnings for high school graduates and persons with 8 years of education. See Appendix B for data description. See Appendix C for the formulae used for the test statistics.

Figure 2: Age-Earnings Profiles, 1940,1960,1980

Figure 3: Experience-Variance Log Earnings

In the end, Heckman et al. (2006a) conclude:

In common usage, the coefficient on schooling in a regression of log earnings on years of schooling is often called a rate of return. In fact, it is a price of schooling from a hedonic market wage equation. It is a growth rate of market earnings with years of schooling and not an internal rate of return measure, except under stringent conditions which we specify, test and reject in this chapter.

Appendix

References

- Bhuller, M., Mogstad, M., and Salvanes, K. G. (2017). Life cycle earnings, education premiums and internal rates of return. *Journal of Labor Economics*, 35(4):993–1030.
- Carneiro, P. and Heckman, J. J. (2002). The evidence on credit constraints in post-secondary schooling. *The Economic Journal*, 112(482):705–734.
- Carneiro, P., Heckman, J. J., and Vytlacil, E. J. (2011). Estimating marginal returns to education. *American Economic Review*, 101(6):2754–2781.

- Cunha, F., Heckman, J. J., and Navarro, S. (2005). Separating uncertainty from heterogeneity in life cycle earnings. *Oxford Economic Papers*, 57(2):191–261.
- Eisenhauer, P., Heckman, J. J., and Mosso, S. (2015). Estimation of dynamic discrete choice models by maximum likelihood and the simulated method of moments. *International Economic Review*, 56(2):331–357.
- Heckman, J. J., Lochner, L. J., and Todd, P. E. (2006a). Earnings functions, rates of return and treatment effects: The mincer equation and beyond. In Hanushek, E. A. and Welch, F., editors, *Handbook of the Economics of Education*, volume 1, pages 307–458. North-Holland Publishing Company.

- Heckman, J. J., Urzua, S., and Vytlacil, E. J. (2006b). Understanding instrumental variables in models with essential heterogeneity. *The Review of Economics and Statistics*, 88(3):389–432.
- Mincer, J. (1974). Schooling, Experience and Earnings. National Bureau of Economic Research, New York, NY.
- Mincer, J. A. (1958). Investment in human capital and personal income distribution. *Journal of Political Economy*, 66(4):281–302.