```
In [4]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [5]: df=pd.read\_csv("17\_student\_marks.csv")
df

## Out[5]:

|    | Student_ID | Test_1 | Test_2 | Test_3 | Test_4 | Test_5 | Test_6 | Test_7 | Test_8 | Test_9 | Test_10 |
|----|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 0  | 22000      | 78     | 87     | 91     | 91     | 88     | 98     | 94     | 100    | 100    | 100     |
| 1  | 22001      | 79     | 71     | 81     | 72     | 73     | 68     | 59     | 69     | 59     | 60      |
| 2  | 22002      | 66     | 65     | 70     | 74     | 78     | 86     | 87     | 96     | 88     | 82      |
| 3  | 22003      | 60     | 58     | 54     | 61     | 54     | 57     | 64     | 62     | 72     | 63      |
| 4  | 22004      | 99     | 95     | 96     | 93     | 97     | 89     | 92     | 98     | 91     | 98      |
| 5  | 22005      | 41     | 36     | 35     | 28     | 35     | 36     | 27     | 26     | 19     | 22      |
| 6  | 22006      | 47     | 50     | 47     | 57     | 62     | 64     | 71     | 75     | 85     | 87      |
| 7  | 22007      | 84     | 74     | 70     | 68     | 58     | 59     | 56     | 56     | 64     | 70      |
| 8  | 22008      | 74     | 64     | 58     | 57     | 53     | 51     | 47     | 45     | 42     | 43      |
| 9  | 22009      | 87     | 81     | 73     | 74     | 71     | 63     | 53     | 45     | 39     | 43      |
| 10 | 22010      | 40     | 34     | 37     | 33     | 31     | 35     | 39     | 38     | 40     | 48      |
| 11 | 22011      | 91     | 84     | 78     | 74     | 76     | 80     | 80     | 73     | 75     | 71      |
| 12 | 22012      | 81     | 83     | 93     | 88     | 89     | 90     | 99     | 99     | 95     | 85      |
| 13 | 22013      | 52     | 50     | 42     | 38     | 33     | 30     | 28     | 22     | 12     | 20      |
| 14 | 22014      | 63     | 67     | 65     | 74     | 80     | 86     | 95     | 96     | 92     | 83      |
| 15 | 22015      | 76     | 82     | 88     | 94     | 85     | 76     | 70     | 60     | 50     | 58      |
| 16 | 22016      | 83     | 78     | 71     | 71     | 77     | 72     | 66     | 75     | 66     | 61      |
| 17 | 22017      | 55     | 45     | 43     | 38     | 43     | 35     | 44     | 37     | 45     | 37      |
| 18 | 22018      | 71     | 67     | 76     | 74     | 64     | 61     | 57     | 64     | 61     | 51      |
| 19 | 22019      | 62     | 61     | 53     | 49     | 54     | 59     | 68     | 74     | 65     | 55      |
| 20 | 22020      | 44     | 38     | 36     | 34     | 26     | 34     | 39     | 44     | 36     | 45      |
| 21 | 22021      | 50     | 56     | 53     | 46     | 41     | 38     | 47     | 39     | 44     | 36      |
| 22 | 22022      | 57     | 48     | 40     | 45     | 43     | 36     | 26     | 19     | 9      | 12      |
| 23 | 22023      | 59     | 56     | 52     | 44     | 50     | 40     | 45     | 46     | 54     | 57      |
| 24 | 22024      | 84     | 92     | 89     | 80     | 90     | 80     | 84     | 74     | 68     | 73      |
| 25 | 22025      | 74     | 80     | 86     | 87     | 90     | 100    | 95     | 87     | 85     | 79      |
| 26 | 22026      | 92     | 84     | 74     | 83     | 93     | 83     | 75     | 82     | 81     | 73      |
| 27 | 22027      | 63     | 70     | 74     | 65     | 64     | 55     | 61     | 58     | 48     | 46      |
| 28 | 22028      | 78     | 77     | 69     | 76     | 78     | 74     | 67     | 69     | 78     | 68      |
| 29 | 22029      | 55     | 58     | 59     | 67     | 71     | 62     | 53     | 61     | 67     | 76      |
| 30 | 22030      | 54     | 54     | 48     | 38     | 35     | 45     | 46     | 47     | 41     | 37      |
| 31 | 22031      | 84     | 93     | 97     | 89     | 86     | 95     | 100    | 100    | 100    | 99      |
| 32 | 22032      | 95     | 100    | 94     | 100    | 98     | 99     | 100    | 90     | 80     | 84      |
| 33 | 22033      | 64     | 61     | 63     | 73     | 63     | 68     | 64     | 58     | 50     | 51      |
| 34 | 22034      | 76     | 79     | 73     | 77     | 83     | 86     | 95     | 89     | 90     | 95      |

|    | Student_ID | Test_1 | Test_2 | Test_3 | Test_4 | Test_5 | Test_6 | Test_7 | Test_8 | Test_9 | Test_10 |
|----|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 35 | 22035      | 78     | 71     | 61     | 55     | 54     | 48     | 41     | 32     | 41     | 40      |
| 36 | 22036      | 95     | 89     | 91     | 84     | 89     | 94     | 85     | 91     | 100    | 100     |
| 37 | 22037      | 99     | 89     | 79     | 87     | 87     | 81     | 82     | 74     | 64     | 54      |
| 38 | 22038      | 82     | 83     | 85     | 86     | 89     | 80     | 88     | 95     | 87     | 93      |
| 39 | 22039      | 65     | 56     | 64     | 62     | 58     | 51     | 61     | 68     | 70     | 70      |
| 40 | 22040      | 100    | 93     | 92     | 86     | 84     | 76     | 82     | 74     | 79     | 72      |
| 41 | 22041      | 78     | 72     | 73     | 79     | 81     | 73     | 71     | 77     | 83     | 92      |
| 42 | 22042      | 98     | 100    | 100    | 93     | 94     | 92     | 100    | 100    | 98     | 94      |
| 43 | 22043      | 58     | 62     | 67     | 77     | 71     | 63     | 64     | 73     | 83     | 76      |
| 44 | 22044      | 96     | 92     | 94     | 100    | 99     | 95     | 98     | 92     | 84     | 84      |
| 45 | 22045      | 86     | 87     | 85     | 84     | 85     | 91     | 86     | 82     | 85     | 87      |
| 46 | 22046      | 48     | 55     | 46     | 40     | 34     | 29     | 37     | 34     | 39     | 41      |
| 47 | 22047      | 56     | 52     | 54     | 47     | 40     | 35     | 43     | 44     | 40     | 39      |
| 48 | 22048      | 42     | 44     | 46     | 53     | 62     | 59     | 57     | 53     | 43     | 35      |
| 49 | 22049      | 64     | 54     | 49     | 59     | 54     | 55     | 57     | 59     | 63     | 73      |
| 50 | 22050      | 50     | 44     | 37     | 29     | 37     | 46     | 53     | 57     | 55     | 61      |
| 51 | 22051      | 70     | 60     | 70     | 62     | 67     | 67     | 68     | 67     | 72     | 69      |
| 52 | 22052      | 63     | 73     | 70     | 63     | 60     | 67     | 61     | 59     | 52     | 58      |
| 53 | 22053      | 92     | 100    | 100    | 100    | 100    | 100    | 92     | 87     | 94     | 100     |
| 54 | 22054      | 64     | 55     | 54     | 61     | 63     | 57     | 47     | 37     | 44     | 48      |
| 55 | 22055      | 60     | 66     | 68     | 58     | 49     | 47     | 39     | 29     | 39     | 44      |

## In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 56 entries, 0 to 55
Data columns (total 13 columns):

| #  | Column     | Non-Null Count | Dtype |
|----|------------|----------------|-------|
|    |            |                |       |
| 0  | Student_ID | 56 non-null    | int64 |
| 1  | Test_1     | 56 non-null    | int64 |
| 2  | Test_2     | 56 non-null    | int64 |
| 3  | Test_3     | 56 non-null    | int64 |
| 4  | Test_4     | 56 non-null    | int64 |
| 5  | Test_5     | 56 non-null    | int64 |
| 6  | Test_6     | 56 non-null    | int64 |
| 7  | Test_7     | 56 non-null    | int64 |
| 8  | Test_8     | 56 non-null    | int64 |
| 9  | Test_9     | 56 non-null    | int64 |
| 10 | Test_10    | 56 non-null    | int64 |
| 11 | Test_11    | 56 non-null    | int64 |
| 12 | Test_12    | 56 non-null    | int64 |
|    |            |                |       |

dtypes: int64(13)
memory usage: 5.8 KB

#### In [7]: df.describe()

### Out[7]:

|       | Student_ID   | Test_1     | Test_2     | Test_3     | Test_4     | Test_5     | Test_6     |    |
|-------|--------------|------------|------------|------------|------------|------------|------------|----|
| count | 56.000000    | 56.000000  | 56.000000  | 56.000000  | 56.000000  | 56.000000  | 56.000000  | 5  |
| mean  | 22027.500000 | 70.750000  | 69.196429  | 68.089286  | 67.446429  | 67.303571  | 66.000000  | 6  |
| std   | 16.309506    | 17.009356  | 17.712266  | 18.838333  | 19.807179  | 20.746890  | 21.054043  | 2  |
| min   | 22000.000000 | 40.000000  | 34.000000  | 35.000000  | 28.000000  | 26.000000  | 29.000000  | 2  |
| 25%   | 22013.750000 | 57.750000  | 55.750000  | 53.000000  | 54.500000  | 53.750000  | 50.250000  | 4  |
| 50%   | 22027.500000 | 70.500000  | 68.500000  | 70.000000  | 71.500000  | 69.000000  | 65.500000  | 6  |
| 75%   | 22041.250000 | 84.000000  | 83.250000  | 85.000000  | 84.000000  | 85.250000  | 83.750000  | 8  |
| max   | 22055.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 10 |
|       |              |            |            |            |            |            |            |    |

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x26122843340>



In [8]: sns.displot(df['Test\_12'])

Out[8]: <seaborn.axisgrid.FacetGrid at 0x242362290d0>



In [9]: df1=df.drop(['Student\_ID'],axis=1)
df1

## Out[9]:

|    | Test_1 | Test_2 | Test_3 | Test_4 | Test_5 | Test_6 | Test_7 | Test_8 | Test_9 | Test_10 | Test_11 | Tes |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|-----|
| 0  | 78     | 87     | 91     | 91     | 88     | 98     | 94     | 100    | 100    | 100     | 100     |     |
| 1  | 79     | 71     | 81     | 72     | 73     | 68     | 59     | 69     | 59     | 60      | 61      |     |
| 2  | 66     | 65     | 70     | 74     | 78     | 86     | 87     | 96     | 88     | 82      | 90      |     |
| 3  | 60     | 58     | 54     | 61     | 54     | 57     | 64     | 62     | 72     | 63      | 72      |     |
| 4  | 99     | 95     | 96     | 93     | 97     | 89     | 92     | 98     | 91     | 98      | 95      |     |
| 5  | 41     | 36     | 35     | 28     | 35     | 36     | 27     | 26     | 19     | 22      | 27      |     |
| 6  | 47     | 50     | 47     | 57     | 62     | 64     | 71     | 75     | 85     | 87      | 85      |     |
| 7  | 84     | 74     | 70     | 68     | 58     | 59     | 56     | 56     | 64     | 70      | 67      |     |
| 8  | 74     | 64     | 58     | 57     | 53     | 51     | 47     | 45     | 42     | 43      | 34      |     |
| 9  | 87     | 81     | 73     | 74     | 71     | 63     | 53     | 45     | 39     | 43      | 46      |     |
| 10 | 40     | 34     | 37     | 33     | 31     | 35     | 39     | 38     | 40     | 48      | 44      |     |
| 11 | 91     | 84     | 78     | 74     | 76     | 80     | 80     | 73     | 75     | 71      | 79      |     |
| 12 | 81     | 83     | 93     | 88     | 89     | 90     | 99     | 99     | 95     | 85      | 75      |     |
| 13 | 52     | 50     | 42     | 38     | 33     | 30     | 28     | 22     | 12     | 20      | 19      |     |
| 14 | 63     | 67     | 65     | 74     | 80     | 86     | 95     | 96     | 92     | 83      | 75      |     |
| 15 | 76     | 82     | 88     | 94     | 85     | 76     | 70     | 60     | 50     | 58      | 49      |     |
| 16 | 83     | 78     | 71     | 71     | 77     | 72     | 66     | 75     | 66     | 61      | 61      |     |
| 17 | 55     | 45     | 43     | 38     | 43     | 35     | 44     | 37     | 45     | 37      | 45      |     |
| 18 | 71     | 67     | 76     | 74     | 64     | 61     | 57     | 64     | 61     | 51      | 51      |     |
| 19 | 62     | 61     | 53     | 49     | 54     | 59     | 68     | 74     | 65     | 55      | 60      |     |
| 20 | 44     | 38     | 36     | 34     | 26     | 34     | 39     | 44     | 36     | 45      | 35      |     |
| 21 | 50     | 56     | 53     | 46     | 41     | 38     | 47     | 39     | 44     | 36      | 43      |     |
| 22 | 57     | 48     | 40     | 45     | 43     | 36     | 26     | 19     | 9      | 12      | 22      |     |
| 23 | 59     | 56     | 52     | 44     | 50     | 40     | 45     | 46     | 54     | 57      | 52      |     |
| 24 | 84     | 92     | 89     | 80     | 90     | 80     | 84     | 74     | 68     | 73      | 81      |     |
| 25 | 74     | 80     | 86     | 87     | 90     | 100    | 95     | 87     | 85     | 79      | 85      |     |
| 26 | 92     | 84     | 74     | 83     | 93     | 83     | 75     | 82     | 81     | 73      | 70      |     |
| 27 | 63     | 70     | 74     | 65     | 64     | 55     | 61     | 58     | 48     | 46      | 46      |     |
| 28 | 78     | 77     | 69     | 76     | 78     | 74     | 67     | 69     | 78     | 68      | 65      |     |
| 29 | 55     | 58     | 59     | 67     | 71     | 62     | 53     | 61     | 67     | 76      | 75      |     |
| 30 | 54     | 54     | 48     | 38     | 35     | 45     | 46     | 47     | 41     | 37      | 30      |     |
| 31 | 84     | 93     | 97     | 89     | 86     | 95     | 100    | 100    | 100    | 99      | 100     |     |
| 32 | 95     | 100    | 94     | 100    | 98     | 99     | 100    | 90     | 80     | 84      | 75      |     |
| 33 | 64     | 61     | 63     | 73     | 63     | 68     | 64     | 58     | 50     | 51      | 56      |     |
| 34 | 76     | 79     | 73     | 77     | 83     | 86     | 95     | 89     | 90     | 95      | 100     |     |

|    | Test_1 | Test_2 | Test_3 | Test_4 | Test_5 | Test_6 | Test_7 | Test_8 | Test_9 | Test_10 | Test_11 | Tes |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|-----|
| 35 | 78     | 71     | 61     | 55     | 54     | 48     | 41     | 32     | 41     | 40      | 48      |     |
| 36 | 95     | 89     | 91     | 84     | 89     | 94     | 85     | 91     | 100    | 100     | 100     |     |
| 37 | 99     | 89     | 79     | 87     | 87     | 81     | 82     | 74     | 64     | 54      | 51      |     |
| 38 | 82     | 83     | 85     | 86     | 89     | 80     | 88     | 95     | 87     | 93      | 90      |     |
| 39 | 65     | 56     | 64     | 62     | 58     | 51     | 61     | 68     | 70     | 70      | 63      |     |
| 40 | 100    | 93     | 92     | 86     | 84     | 76     | 82     | 74     | 79     | 72      | 79      |     |
| 41 | 78     | 72     | 73     | 79     | 81     | 73     | 71     | 77     | 83     | 92      | 97      |     |
| 42 | 98     | 100    | 100    | 93     | 94     | 92     | 100    | 100    | 98     | 94      | 97      |     |
| 43 | 58     | 62     | 67     | 77     | 71     | 63     | 64     | 73     | 83     | 76      | 86      |     |
| 44 | 96     | 92     | 94     | 100    | 99     | 95     | 98     | 92     | 84     | 84      | 84      |     |
| 45 | 86     | 87     | 85     | 84     | 85     | 91     | 86     | 82     | 85     | 87      | 84      |     |
| 46 | 48     | 55     | 46     | 40     | 34     | 29     | 37     | 34     | 39     | 41      | 31      |     |
| 47 | 56     | 52     | 54     | 47     | 40     | 35     | 43     | 44     | 40     | 39      | 47      |     |
| 48 | 42     | 44     | 46     | 53     | 62     | 59     | 57     | 53     | 43     | 35      | 37      |     |
| 49 | 64     | 54     | 49     | 59     | 54     | 55     | 57     | 59     | 63     | 73      | 78      |     |
| 50 | 50     | 44     | 37     | 29     | 37     | 46     | 53     | 57     | 55     | 61      | 64      |     |
| 51 | 70     | 60     | 70     | 62     | 67     | 67     | 68     | 67     | 72     | 69      | 64      |     |
| 52 | 63     | 73     | 70     | 63     | 60     | 67     | 61     | 59     | 52     | 58      | 56      |     |
| 53 | 92     | 100    | 100    | 100    | 100    | 100    | 92     | 87     | 94     | 100     | 94      |     |
| 54 | 64     | 55     | 54     | 61     | 63     | 57     | 47     | 37     | 44     | 48      | 54      |     |
| 55 | 60     | 66     | 68     | 58     | 49     | 47     | 39     | 29     | 39     | 44      | 39      |     |

In [10]: sns.heatmap(df1.corr())

# Out[10]: <AxesSubplot:>



In [11]: from sklearn.model\_selection import train\_test\_split
 from sklearn.linear\_model import LinearRegression

```
In [12]: y=df['Test_12']
x=df1.drop(['Test_12'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
print(x_train)
```

|    | Test_1 | Test_2 | Test_3 | Test_4 | Test_5 | Test_6 | Test_7 | Test_8 | Test_9 | ١ |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|
| 34 | 76     | 79     | 73     | 77     | 83     | 86     | 95     | 89     | 90     |   |
| 7  | 84     | 74     | 70     | 68     | 58     | 59     | 56     | 56     | 64     |   |
| 14 | 63     | 67     | 65     | 74     | 80     | 86     | 95     | 96     | 92     |   |
| 22 | 57     | 48     | 40     | 45     | 43     | 36     | 26     | 19     | 9      |   |
| 5  | 41     | 36     | 35     | 28     | 35     | 36     | 27     | 26     | 19     |   |
| 53 | 92     | 100    | 100    | 100    | 100    | 100    | 92     | 87     | 94     |   |
| 6  | 47     | 50     | 47     | 57     | 62     | 64     | 71     | 75     | 85     |   |
| 26 | 92     | 84     | 74     | 83     | 93     | 83     | 75     | 82     | 81     |   |
| 2  | 66     | 65     | 70     | 74     | 78     | 86     | 87     | 96     | 88     |   |
| 15 | 76     | 82     | 88     | 94     | 85     | 76     | 70     | 60     | 50     |   |
| 12 | 81     | 83     | 93     | 88     | 89     | 90     | 99     | 99     | 95     |   |
| 48 | 42     | 44     | 46     | 53     | 62     | 59     | 57     | 53     | 43     |   |
| 30 | 54     | 54     | 48     | 38     | 35     | 45     | 46     | 47     | 41     |   |
| 13 | 52     | 50     | 42     | 38     | 33     | 30     | 28     | 22     | 12     |   |
| 8  | 74     | 64     | 58     | 57     | 53     | 51     | 47     | 45     | 42     |   |
| 19 | 62     | 61     | 53     | 49     | 54     | 59     | 68     | 74     | 65     |   |
| 16 | 83     | 78     | 71     | 71     | 77     | 72     | 66     | 75     | 66     |   |
| 54 | 64     | 55     | 54     | 61     | 63     | 57     | 47     | 37     | 44     |   |
| 44 | 96     | 92     | 94     | 100    | 99     | 95     | 98     | 92     | 84     |   |
| 24 | 84     | 92     | 89     | 80     | 90     | 80     | 84     | 74     | 68     |   |
| 17 | 55     | 45     | 43     | 38     | 43     | 35     | 44     | 37     | 45     |   |
| 21 | 50     | 56     | 53     | 46     | 41     | 38     | 47     | 39     | 44     |   |
| 47 | 56     | 52     | 54     | 47     | 40     | 35     | 43     | 44     | 40     |   |
| 46 | 48     | 55     | 46     | 40     | 34     | 29     | 37     | 34     | 39     |   |
| 37 | 99     | 89     | 79     | 87     | 87     | 81     | 82     | 74     | 64     |   |
| 35 | 78     | 71     | 61     | 55     | 54     | 48     | 41     | 32     | 41     |   |
| 42 | 98     | 100    | 100    | 93     | 94     | 92     | 100    | 100    | 98     |   |
| 10 | 40     | 34     | 37     | 33     | 31     | 35     | 39     | 38     | 40     |   |
| 23 | 59     | 56     | 52     | 44     | 50     | 40     | 45     | 46     | 54     |   |
| 1  | 79     | 71     | 81     | 72     | 73     | 68     | 59     | 69     | 59     |   |
| 27 | 63     | 70     | 74     | 65     | 64     | 55     | 61     | 58     | 48     |   |
| 41 | 78     | 72     | 73     | 79     | 81     | 73     | 71     | 77     | 83     |   |
| 9  | 87     | 81     | 73     | 74     | 71     | 63     | 53     | 45     | 39     |   |
| 18 | 71     | 67     | 76     | 74     | 64     | 61     | 57     | 64     | 61     |   |
| 20 | 44     | 38     | 36     | 34     | 26     | 34     | 39     | 44     | 36     |   |
| 25 | 74     | 80     | 86     | 87     | 90     | 100    | 95     | 87     | 85     |   |
| 4  | 99     | 95     | 96     | 93     | 97     | 89     | 92     | 98     | 91     |   |
| 33 | 64     | 61     | 63     | 73     | 63     | 68     | 64     | 58     | 50     |   |
| 31 | 84     | 93     | 97     | 89     | 86     | 95     | 100    | 100    | 100    |   |
|    |        |        |        |        |        |        |        |        |        |   |

|    | Test_10 | Test_11 |
|----|---------|---------|
| 34 | 95      | 100     |
| 7  | 70      | 67      |
| 14 | 83      | 75      |
| 22 | 12      | 22      |
| 5  | 22      | 27      |
| 53 | 100     | 94      |
| 6  | 87      | 85      |
| 26 | 73      | 70      |
| 2  | 82      | 90      |
| 15 | 58      | 49      |
| 12 | 85      | 75      |
| 48 | 35      | 37      |
| 30 | 37      | 30      |
| 13 | 20      | 19      |
| 8  | 43      | 34      |

```
19
          55
                    60
16
          61
                    61
          48
                    54
54
                    84
44
          84
24
          73
                    81
17
          37
                    45
21
          36
                    43
47
          39
                    47
          41
                    31
46
37
          54
                    51
                    48
35
          40
42
          94
                    97
10
          48
                    44
23
          57
                    52
1
          60
                    61
27
          46
                    46
                    97
41
          92
9
          43
                    46
18
          51
                    51
20
          45
                    35
25
          79
                    85
          98
                    95
4
          51
                    56
33
31
          99
                   100
```

```
In [13]: model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_
```

Out[13]: 11.318980474413117

```
In [14]: coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff
```

#### Out[14]:

|         | Coefficient |
|---------|-------------|
| Test_1  | -0.286420   |
| Test_2  | -0.243268   |
| Test_3  | 0.070534    |
| Test_4  | 0.400448    |
| Test_5  | 0.128242    |
| Test_6  | -0.252525   |
| Test_7  | 0.046514    |
| Test_8  | 0.090669    |
| Test_9  | 0.087198    |
| Test_10 | 0.014463    |
| Test_11 | 0.812570    |

```
In [15]: prediction=model.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x2423ba8d400>



```
In [16]: model.score(x_test,y_test)
```

Out[16]: 0.7952303140941104

```
In [17]: from sklearn.linear_model import Ridge,Lasso
```

Out[18]: Ridge(alpha=10)

```
In [19]: rr.score(x_test,y_test)
```

Out[19]: 0.7959672706801898

Out[20]: Lasso(alpha=10)

```
In [21]: la.score(x_test,y_test)
```

Out[21]: 0.8041605064556866

In [ ]: