Countdown (5pts, 7pts)

 Attempts
 Penalties
 PenaltyTime
 Points
 Points

 9
 0
 00:00:00
 —
 —

Practice Submissions

You have not attempted this problem.

Competitive Submissions

Attempt 9	Sample Failed: RE	02:58:01	0	•
Attempt 8	Sample Failed: RE	02:51:38	0	ı
Attempt 7	Sample Failed: RE	02:49:44	0	
Attempt 6	Sample Failed: RE	02:49:18	0	
Attempt 5	Sample Failed: RE	02:42:34		*

Last updated: May 17 2020, 23:40

Problem

Avery has an array of ${\bf N}$ positive integers. The i-th integer of the array is ${\bf A_{i}}$.

A contiguous subarray is an *m-countdown* if it is of length m and contains the integers m, m-1, m-2, ..., 2, 1 in that order. For example, [3, 2, 1] is a 3-countdown.

Can you help Avery count the number of $\mathbf{K}\text{-}\mathrm{countdowns}$ in her array?

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow. Each test case begins with a line containing the integers **N** and **K**. The second line contains **N** integers. The i-th integer is **A**_i.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the number of K-countdowns in her array.

Limits

Time limit: 20 seconds per test set.

Memory limit: 1GB.

 $1 \leq \boldsymbol{T} \leq 100.$

 $2 \leq \textbf{K} \leq \textbf{N}.$

 $1 \leq \textbf{A}_{\boldsymbol{i}} \leq 2 \times 10^5$, for all i.

Test set 1

 $2 \le N \le 1000$.

Test set 2

 $2 \leq N \leq 2 \times 10^5$ for at most 10 test cases. For the remaining cases, $2 \leq N \leq$ 1000.

Sample

Input	Output
3	
12 3	
1 2 3 7 9 3 2 1 8 3 2 1	Case #1: 2
4 2	Case #2: 0
101 100 99 98	Case #3: 1
9 6	
100 7 6 5 4 3 2 1 100	

In sample case #1, there are two 3-countdowns as highlighted below.

- 12379**321**8321
- 123793218**321**

In sample case #2, there are no 2-countdowns.

In sample case #3, there is one 6-countdown as highlighted below.

• 100 7 **6 5 4 3 2 1** 100