APPRENTISSAGE AUTOMATIQUE

Apprentissage automatique

- Approches symboliques
- Approches statistiques
 - Représentation numérique des données par un ensemble de caractéristiques
 - Utilisation d'algorithmes d'apprentissage statistique
 - Acquérir une connaissance sur les données : combinaison entre algorithme et données d'apprentissage
- Apprentissages
 - Supervisé
 - □ Non-supervisé
 - Par renforcement

Types d'apprentissage

- Apprentissage supervisé
 - À partir de données annotées (par des humains)
 - Apprendre pour annoter de nouvelles données
 - Problèmes de classification, régression ou de segmentation/étiquetage
- Apprentissage non supervisé
 - À partir de données non annotées
 - Apprendre pour créer des annotations sur ces données
 - Problèmes de clustering

Types d'apprentissage

- □ Apprentissage semi-supervisé
 - À partir de données annotées et non-annotées
 - Apprendre pour annoter de nouvelles données
 - Problème de classification et de clustering
- Apprentissage par renforcement
 - À partir d'une situation donnée, d'un ensemble d'expérience et d'un ensemble d'actions possibles
 - Évaluer la meilleure décision à prendre (récompense)

Apprentissage supervisé

- Deux types de techniques:
 - Inductives
 - Apprentissage : Construction d'un modèle
 - Transductives
 - Sans apprentissage : Classement effectué en fonction des données déjà classées
 - Manipulation de toutes les données lors d'un nouveau classement

Apprentissage automatique

- Trois grands temps
 - À partir d'un ensemble de données
 - Description pertinente des données
 - Mise en œuvre efficace d'un algorithme
 - Fonction du type de problème à résoudre
 - Evaluation et/ou analyse des résultats obtenus
 - Fonction de l'application visée

Les Données

Qu'est-ce qu'une donnée?

- Instance de la population caractérisée par un ensemble de descripteurs
- Représentation plus formelle
 - x une donnée de l'ensemble des données X
 - chaque donnée x est définie par p descripteurs
 - chaque descripteur d prend sa valeur dans Vd
 - Toute donnée appartient alors à un espace euclidien à p dimensions

Types de descripteurs (1/2)

- Descripteurs qualitatifs
 - Variable discrète
 - Ensemble de valeurs prédéfinies
 - Pas d'application d'opérations arithmétiques habituels
 - Exemples:
 - une couleur, une marque, une ville, ...
 - Nature de la valeur :
 - nominale
 - Ensemble de valeurs arbitraires, incomparables a priori
 - Ex couleur : rose et orange

Types de descripteurs (2/2)

- Descripteurs quantitatifs
 - Type : entier, réel, date
 - ≠ numérique et réciproquement
 - Possibilité d'appliquer des opérateurs arithmétiques habituels
 - □ Nature de la valeur :
 - Ordinale
 - Ensemble de valeurs arbitraires mais comparables SELON une unité de mesure
 - Absolue
 - Ensemble de valeurs non arbitraires

Sélection des descripteurs

- Pertinence
 - Importance de la sélection des descripteurs en fonction de l'application visée
 - → Définir le problème et les objectifs
- □ Préparation des données
 - Inventaire, collecte et intégration
 - Sélection
 - Suppression d'individus
 - Suppressions de descripteurs
 - Création de descripteurs

Sélection des descripteurs

- □ Fiabilité
 - Représentation complète
 - Tous les descripteurs pour toutes les données ?
 - Validité des valeurs des descripteurs
 - Une donnée peut être ? bruitée ?
- Quantité
 - Peu : apprentissage simplifié... performance?
 - Beaucoup: apprentissage complexe... performance?

Organisation des données

- □ CORPUS : Ensemble des données disponibles
- Corpus d'apprentissage (APP)
 - Entraînement du modèle
- Corpus de développement (DEV) (facultatif)
 - Optimisation des paramètres d'ajustement du modèle (si nécessaire)
- Corpus de test (TEST)
 - Évaluation des performances du modèle en généralisation
- !! La taille est critique ...

L'algorithme – La construction du modèle

Apprentissage supervisé

- Création automatique d'un modèle à partir d'un corpus de données d'apprentissage annotées
 - □ Prédire une classe par donnée « connue »
 - □ Généraliser : Prédiction sur une donnée non connue
- → Modèle permettant d'associer à toute donnée correctement décrite une valeur définie

Classification supervisée

Plus formellement:

- Ensemble de couples donnée/classe : (x_i,y_i)
 - \blacksquare Avec $x_i \in X$, l'ensemble des données d'apprentissage
 - \square Avec $y_i \in Y$, l'ensemble des classes à prédire
 - Tel que : $y_i = f(x_i) + w_i$ (w_i bruit de mesure)
- Construction d'un modèle
 - lacktriangle Déterminer la représentation compacte de f par g appelée fonction de prédiction.
 - □ Tel que : $y_i = g(x_i) + ε_i$, $ε_i$ erreur de prédiction

Classification supervisée

Apprentissage

Classification supervisée

Classement (ou test)

Domaine de définition des classes

- □ Y est un ensemble fini : Problème de Classification
 - Associer une donnée à une valeur discrète parmi plusieurs classes prédéfinies
 - lacksquare Classification binaire : ¥ $\{0,1\}$
 - $lue{}$ Classification multi-classes : $lack{}$ $\{0,1,...,I\}$
- □ Y est un ensemble infini : Problème de régression
 - Associer une donnée à une valeur continue
 - lue Régression : Y $\subseteq \mathfrak{R}$

Classification multi-classes:

Cas particulier

- Possibilité d'associer plusieurs classes à une seule donnée
 - □ Ensemble de classes discrètes non exclusives

$$Y = \{a,b,c,d,\ldots\}$$

- □ Si une donnée n'est associée qu'à une seule classe
 - Classification uni-label
- Si une donnée peut être associée à plusieurs classes
 - Classification multi-labels
- Cas proposé par peu d'algorithmes
- Correspond souvent à plusieurs classifications binaires.

À propos du modèle

- Peut-être considéré comme une boite noire
 - Simple utilisateur... mais
- Selon l'algorithme choisi :
 - Différentes représentations possibles
 - Différents paramètres à ajuster
- → Meilleur choix et optimisation de l'apprentissage si on connaît l'algorithme

L'évaluation

Validation classique des résultats

- Cas classique : Assez de données annotées
 - Ex : 1 APP (70%) et 1 TEST (30%)
 - Estimation de l'erreur de prédiction
 - Évaluation du modèle sur l'APP
 - Taux de mauvaise classification sur l'APP
 - Estimation de l'erreur de généralisation
 - Evaluation du modèle sur le TEST
 - Taux de mauvaise classification sur le TEST
- □ Remarque : mise en production
 - Ré-apprentissage du modèle sur TOUT le corpus annoté

Mesures de performance du modèle

- □ Évaluation de l'erreur
 - □ Soit le couple (x_i,y_i), y_i classe de **référence**
 - Soit le modèle g
 - Soit l'hypothèse $y'_i = g(x_i)$

Est-ce que $y'_{i} = y_{i}$?

- □ Comment évaluer l'erreur?
 - Dépend de l'objectif de l'application visée

Matrice de confusion

- Aussi appelée Tableau de contingence
- Représentation des données en fonction de leur association à la classe... mais laquelle?
- □ Alignement des données REF et HYP
 - Hypothèse : HYP
 - □ Référence : REF
- Remplir par comptage un tableau
 - Chaque donnée doit appartenir à l'effectif d'une case

Mesures classiques globales

Taux de bonne classification

$$Acc = \frac{\# \text{ instances bien class\'ees}}{\# \text{ instances class\'ees}}$$

Taux d'erreur (mauvaise classification)

$$CER = \frac{\# \text{ instances mal class\'ees}}{\# \text{ instances class\'ees}}$$
(Classication Error Rate)

Problème de sur-apprentissage

Que signifie MEILLEUR choix des paramètres?

Quand « arrêter » d'apprendre?

Comment choisir la représentation ?

Problème de sur-apprentissage

- □ Deux critères à considérer
 - Erreur de prédiction
 - Erreur de généralisation
- Quand « arrêter » d'apprendre?
 - Erreur de prédiction diminue ET l'erreur de généralisation augmente
- □ Comment faire?
 - Taille du corpus d'apprentissage
 - □ Paramètres d'ajustement du modèle

Problème de sur-apprentissage

Confiance dans l'estimation de l'erreur?

- □ Erreur = variable aléatoire
 - Après classification, 2 valeurs possibles pour la donnée
 bien ou mal classé
 - Erreur = probabilité de l'événement « mal classé »
 - En déterminer la moyenne? Un intervalle?
- □ CER : Calcul de l'Erreur sur *1* corpus de test
 - □ Sur 100 exemples de test, 15 sont faux
 - Le taux d'erreur du système est de 15%?

Intervalle de confiance

- Estimation du taux d'erreur réel E du système à partir du taux d'erreur observé CER sur un ensemble de test T
 - Approximation de la loi binomiale par la loi normale Intervalle de confiance à 95%
 - On estime l'erreur par l'intervalle de confiance :

$$CER \pm 1.96 \sqrt{\frac{CER.(1-CER)}{\# instances\ class\'{e}es}}$$

!! Nombre d'exemples du jeu de test suffisant

Mesures en Recherche d'Information

□ Précision : pourcentage de documents pertinents

$$\text{précision}_i = \frac{\# \text{ instances correctement classées i}}{\# \text{ instances classées i}}$$

$$précision = \frac{\sum_{i} précision_{i}}{nombre de classes}$$

□ Précision élevée, moins de bruit

Mesures en Recherche d'Information

 Rappel : pourcentage de documents pertinents retrouvés

$$\text{rappel}_i = \frac{\# \text{ instances correctement class\'ees i}}{\# \text{ instances r\'eellement i}}$$

$$rappel = \frac{\sum_{i} rappel_{i}}{nombre de classes}$$

□ Rappel élevé, moins de silence

Mesures en Recherche d'Information

□ F-mesure : combinaison de la précision et du rappel

$$fmesure = \frac{(1+\beta^2)rappel*précision}{\beta^2(rappel+précision)}$$

généralement $\beta=1$

Données d'apprentissage

- □ Le point sensible de l'apprentissage automatique
 - Nécessité suffisamment de données annotées
 - □ Suffisamment? Dépend de :
 - La difficulté de la tâche
 - La complexité de représentation des données
- □ Problème:
 - L'annotation du corpus d'apprentissage/test est humaine
 - → Coût très élevé
- Mais les méthodes ont fait leurs preuves!

Validation croisée

- □ Problème : manque de données annotées
- Approche par « leave one out »
 - □ Soit un ensemble de P données annotées
 - Construction de P modèles différents sur (APP-1 donnée)
 - Test de chacun des modèles sur la donnée mise de côté
- Généralisation au « N-fold »
 - Découpage de l'APP en N sous-ensembles distincts
 - Apprentissage sur N-1 fold et test sur le fold restant
- Erreur: moyenne des erreurs de chaque fold

Difficultés inhérentes à l'apprentissage

- □ Données en entrées ...
 - Nombre d'exemples trop faible p/r nombre de descripteurs
 - Ensemble des descripteurs incomplet pour caractériser les concepts
 - Données « bruitées » : fausses ou mal étiquetées
- □ L'algorithme d'apprentissage fonctionne mal ...
 - Mauvais paramétrage du système
 - Impossibilité d'apprendre les concepts
- L'évaluation n'est pas satisfaisante ...

Conclusion

- □ Beaucoup de choix ...
 - Choix de la représentation des données
 - Choix de l'algorithme utilisé
 - Choix de la répartition des données, de la méthode d'évaluation
- □ Tout ceci dépend de l'application visée
 - Bien définir le problème, les objectifs, les ressources
- ça marche souvent bien ... encore faut-il avoir suffisamment de données d'apprentissage de qualité suffisante

Quelques sources

Livres:

« Apprentissage artificiel, concepts et algorithmes »,
 A.Cornéjuols et L.Miclet

Cours sur le web :

- \neg http://www.grappa.univ-lille3.fr/ \sim ppreux/fouille/
- □ http://www.dsi.unive.it/~marek/files/06%20-%20datamining.pdf
- □ http://www.public.asu.edu/~jye02/
- http://freedownloadb.com/ppt/data-mining-data-warehousing-lecture-notes