Решение уравнения Абловица-Ладика с помощью алгоритма Шура

Губкин Павел Васильевич ПОМИ РАН

gubkinpavel@pdmi.ras.ru

Соавторы: Бессонов Роман Викторович

Секция: Комплексный анализ

Рассмотрим аналитическую функцию f, действующую из единичного круга $\mathbb D$ в себя. Для нее можно определить последовательность функций $f_0 = f$, f_1 , f_2 , . . . удовлетворяющих соотношениям

$$zf_{n+1} = \frac{f_n - f_n(0)}{1 - \overline{f_n(0)}f_n}, \quad n \ge 0,$$

при этом каждая из функций f_n будет снова действовать из $\mathbb D$ в $\mathbb D$. Алгоритмом Шура называется построение последовательности $\{f_n(0)\}_{n\geq 0}$ по функции f, такая последовательность может быть любой последовательностью комплексных чисел из единичного круга. На докладе мы обсудим вопросы, связанные с устойчивостью алгоритма Шура и то, как это построение позволяет решать дифференциальное уравнение Абловица-Ладика

$$\frac{\partial}{\partial t}q(t,n)=i\big(1-|q(t,n)|^2\big)\big(q(t,n-1)+q(t,n+1)\big), \qquad n\in\mathbb{Z}.$$

Доклад основан на результатах, полученных в работе [1].

[1] Bessonov R. V., Gubkin P. V. Stability of Schur's iterates and fast solution of the discrete integrable NLS //arXiv preprint arXiv:2402.02434. – 2024.