The research questions are the following:

RQ1: What is the frequency distribution of the number of releases across various apps?

What is the frequency distribution of the number of days, weeks or months of appreleases on Github?

RQ2: How do you do a cluster analysis and model your topics based on the data provided to you?

# Midterm Presentation



Suchina Parihar

Sourish Roy

#### **Analysis Design Sheet**



An example of The Data set comprising of commit id, commit date and commit message:

|                                          | •                         |                                                      |
|------------------------------------------|---------------------------|------------------------------------------------------|
| commit id                                | commit date               | commit message<br>initial commit                     |
| 95901b8b60cb29c6c9d3cffdb7150cb65e34389e | 2012-03-14 18:09:51-07:00 | clipping bugfix                                      |
| fbae248ff3262162204cfdba784f242d9e2c68bc | 2012-03-15 20:47:21-07:00 |                                                      |
| f8fce7d26fbdab6d52db4cf6082c4ed9ab424a50 | 2012-03-15 21:43:31-07:00 | sexy focus polish                                    |
| 3714cafd3fcf9c3582a7fa0686e390a5c684cabe | 2012-03-15 22:38:35-07:00 | condense train display by destination                |
| 789a7a9cdd9ff317c354bf81b52b789ac92984e2 | 2012-03-16 17:35:55-07:00 | route response parsing                               |
| 0c9d7cdbd684fec8c18df277b96c3fbde6f6e31a | 2012-03-16 19:09:57-07:00 | initial route display                                |
| 228b41568dc7bf2027fe9e0b782a5dfd5996d967 | 2012-03-19 01:27:20-07:00 | route display, special schedule and warning messages |
| cb355cd071f187d188314f36c7ccd4208d467440 | 2012-03-19 19:41:10-07:00 | tweak                                                |
| 8a30db365c34c525daca6df7d83aaca0802946dd | 2012-03-25 00:05:04-07:00 | special message display and animations               |
| f4da1b1075c6aa0d4b6472ccc2d01dd91017da0b | 2012-03-25 21:40:28-07:00 | visual refinements and sjxp inclusion                |
| ceadb1ad22e9baf637dd98e4e494cd939d3d2a6e | 2012-03-25 21:40:20 07:00 | add sjxp javadoc                                     |
|                                          |                           | properly link to sjxp in eclipse project setting     |
| 7fc935e849b548dbad39fd2dfe9a60e062febf5f | 2012-03-25 21:46:06-07:00 | icon                                                 |
| bdbcfde194c5a325dd7af0aa6be115f30011630f | 2012-03-25 21:54:14-07:00 | Merge pull request #1 from Miserlou/master Icon v1 3 |
| d9188b723c557e61f6a4410bef27a5c5eaa85bd5 | 2012-03-25 21:57:53-07:00 |                                                      |

### Observations

- We observe that the frequency of release is considerably small for apps with large number of releases.
- If we dig deeper it is clear from the data provided to us, that apps with less than 40 total releases tend to have higher frequencies.
- Lets see the following graph for 30 total releases. For clarity we've scaled the y axis to show a frequency of up to 150 apps and the x axis up to 30 releases.









# PIE CHART SHOWING PERCENTAGE OF FREQUENCY DISTRIBUTION OF TIME INTERVAL IN DAYS BETWEEN SEVERAL APP RELEASES ON GIT HUB





#### A word Cloud for our messages

add api bugfix check class commit data date display event expired fix handling hide icon improved initial input install leaking libs local logging master merge messages notification onresume pull recent refactor remove request response route station test text theactivity timer touch train tweaks update usher usherservice view

# **Data Preprocessing**

- 1. PDF to TXT conversion
- 2. Text tokenization
- 3. Text normalization
  - Upper to lower case
- 4. Lemmatization
- 5. Feature selection
- 6. Serialization
  - Dictionary
  - Bag-of-word model







# The results are as follows. As you can see, each topic is made up of a mixture of terms. Thus Topic Modelling is done:

- i.  $2016-11-06\ 19:19:18,162: INFO: topic \#0\ (0.200): 0.045*"usher" + 0.040*"service" + 0.036*"usherservice" + 0.035*"initial" + 0.031*"updaterouteresponsewithetd" + 0.030*"route" + 0.027*"view" + 0.026*"bugfix" + 0.024*"timers" + 0.024*"leaking"$
- ii.  $2016-11-06\ 19:19:18,163:INFO: topic\ \#1\ (0.200):\ 0.038*"->" + 0.037*"train" + 0.034*"bart" + 0.033*"new" + 0.033*"special" + 0.032*"refactor" + 0.032*"display" + 0.031*"fix" + 0.028*"destination" + 0.028*"usherservice"$
- iii. 2016-11-06 19:19:18,163 : INFO : topic #2 (0.200): 0.040\*"notification" + 0.036\*"stations" + 0.035\*"main" + 0.033\*"begin" + 0.032\*"route" + 0.028\*"response" + 0.027\*"recent" + 0.026\*"about" + 0.026\*"messages" + 0.025\*"tweakin"
- iv. 2016-11-06 19:19:18,164 : INFO : topic #3 (0.200): 0.041\*"from" + 0.041\*"add" + 0.040\*"icon" + 0.034\*"service" + 0.033\*"improved" + 0.031\*"merge" + 0.029\*"handling" + 0.029\*"crittercism" + 0.026\*"update" + 0.024\*"response"
- v. 2016-11-06 19:19:18,164 : INFO : topic #4 (0.200): 0.050\*"service" + 0.038\*"visual" + 0.037\*"check" + 0.030\*"remove" + 0.030\*"sjxp" + 0.027\*"properly" + 0.026\*"timer" + 0.024\*"test" + 0.023\*"install" + 0.023\*"allow"

- Top 5 terms for topic #0: usher, service, usherservice, initial, updaterouteresponsewithetd
- Top 5 terms for topic #1: ->, train, bart, new, special
- Top 5 terms for topic #2: notification, stations, main, begin, route
- Top 5 terms for topic #3: from, add, icon, service, improved
- Top 5 terms for topic #4: service, visual, check, remove, sjxp

### The K Means Graph(gives us K=5) and generated clusters





# Manifold Learning

• LSI uses a Singular Value Decomposition (SVD) of the term-document matrix X to identify a linear subspace (so-called latent semantic space) that captures most of the variance in the data set. [1]

• PLSI models each word in a document as a sample from a mixture model, where the mixture components are multinomial random variables that can be viewed as representations of "topics." [1]

• We need to use LapPLSI, in order to visualize the hidden topics in the document. [1]

# PCA graph (Topics)



#### Network Analysis by increasing the no. of topics to 10



## Step 11: Hierarchical cluster Analysis (BART app)



### RQ3

- RQ3 →
- What? Can we define lifecycle stages of an app based on the topics after the topic modelling process?
- Why? Would help us get a sense of the Software Development Lifecycle Process followed by the apps.
- Challenge? The topics modelled follow an unsupervised LDA machine learning technique, so how should we label the topics. [2]
- RQ4 (Future possibility) →
- Does popularity correlate with characteristics of a repository like number of commits? [5]

#### References

- [1] Modeling Hidden Topics on Document Manifold (Deng Cai, Qiaozhu Mei, Jiawei Han, Chengxiang Zhai)
- [2] Automated topic naming to support analysis of software maintenance activities (Abram Hindle ,Neil A. Ernst, Michael W. Godfrey ,John Mylopoulos)
- [3] What's hot and what's not: Windowed developer topic analysis. (A. Hindle, M. W. Godfrey, and R. C. Holt)
- [4] <a href="https://radimrehurek.com/gensim/">https://radimrehurek.com/gensim/</a>

- [5] Understanding the Factors that Impact the Popularity of GitHub Repositories (Hudson Borges, Andre Hora, Marco Tulio Valente)
- [6] The key technology of topic detection based on K-means (Shengdong Li; Xueqiang Lv; Tao Wang; Shuicai Shi)