

VII ENCONTRO BRASILEIRO DE MENSURAÇÃO FLORESTAL

24 A 26 DE SETEMBRO 2025

SENSIBILIDADE DE EQUAÇÕES VOLUMÉTRICAS AJUSTADAS PARA FLORESTA ESTACIONAL SEMIDECIDUAL

Fernanda Beatriz Rocha Fernandes¹; Juliana Fonseca Cardoso¹; Debyson Gabriel de Jesus Paim¹; Evellyn Tinum Lima¹; Josiane Silva Costa Bruzinga¹; Marcio Leles Romarco de Oliveira¹

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brasil. e-mail: fernanda.rocha@ufvjm.edu.br

Introdução

A adoção de equações volumétricas ajustadas a partir de dados regionais de inventario florestal, permite estimativas mais precisas e representativas, para a fitofisionomia local.

Entre as equações, destaca-se a do CETEC (1995), amplamente utilizada como referencia para regiões de Floresta Estacional Semidecidual (FES), em Minas Gerais. No entanto, a aplicação de equações generalistas em áreas com características distintas pode gerar distorções nas estimativas. Diante disso, o objetivo desse estudo foi comparar quatro equações de volume ajustadas especificamente para FES, com a equação proposta pelo CETEC.

Material e Método

Com os dados de diâmetro (D) e altura total (H), das medições (2023 e 2025), considerando todos os indivíduos com $D \ge 5.0$ cm, e diâmetro equivalente ($D_{\rm e}$) para indivíduos bifurcados, estimamos o volume dos fustes para as diferentes equações (Tabela 1), em um fragmento de FES. A comparação das equações com a do CETEC foi realizada por meio do teste F de Graybill a 5%, de significância.

Tabela 1 - Equações ajustadas, para estimativa de volume do fuste (m³), em um fragmento de Floresta Estacional Semidecidual.

Equação de referencia

	$Vf = 0,000038857 * D^{1,70764} * H^{1,32032}$	0,989	CETEC	
			(1995)	
	Equação de comparação			
N°	Equação	R ²	Autor	
1	$Vf = 0.000070 * D^{2,204301} * H^{0,563185}$	0,970	∧ moro	
2	$Vf = 0.000031 * (D^2 * H)^{1.027050}$	0,958	Amaro	
3	$Vf = 0.000041 * (D^2 * H)$	0,958	(2010)	
4	Ln(Vf) = -9,8302960482 + 1,7422298449 *	0,947	Scolforo	
	Ln(D) + 1,1389295494 * Ln(H)		(2008)	

Em que: N° = número da equação; Vf = volume fuste com casca, em m³; H = altura total, em metros; D = diâmetro a 1,30 m do solo, em cm; Ln = logaritmo neperiano.

Resultados

A medição de 2025 expressa volumes mais elevados para todas as equações, indicando crescimento dos indivíduos. As equações 1, 2 e 3 apresentam tendência de superestimação, enquanto a equação 4 subestimou os volumes, quando comparadas a estimativa do volume pelo CETEC, para as classes de maior tamanho, em 2023 e 2025 (Figura 1).

Figura 1 - Volume médio estimado para quatro equações desenvolvidas para Floresta Estacional Semidecidual, por classe diamétrica, em comparação a estimativa pelo CETEC (1995), para medição 2023 e 2025, em Gouveia-MG.

O teste F de Graybill demonstrou que o volume foi significativo a 95% de probabilidade, para todas as equações e para as duas medições (Tabela 2).

Tabela 2 – Comparação dos volumes entre as equações estimadas e o volume de referência CETEC (1995), por meio do teste F de Graybill.

Eguaçãos	Medição 2023		Medição 2025	
Equações	MAPE (%)	F _{calculado}	MAPE (%)	F _{calculado}
CETEC – Equação 1	19,27	5,55*	18,34	6,37*
CETEC – Equação 2	13,62	7,68*	13,09	8,82*
CETEC – Equação 3	9,38	7,07*	8,85	8,05*
CETEC – Equação 4	6,72	5,07*	6,54	5,27*

Em que: MAPE (%) = diferença percentual média absoluta, em %; Fcalculado = valor do teste F de Graybill calculado, * = significantes pelo teste, ao nível de significância de 5%.

Conclusão

As análises demonstraram que todas as equações ajustadas especificamente para a Floresta Estacional Semidecidual diferem significativamente da equação do CETEC (1995), sobretudo nas classes diamétricas superiores.

Agradecimentos:

 \mathbb{R}^2

Autor