Linear Algebra

Soham Gadhave

 $5^{\rm th}$ September 2021

1 Field

Let F be non-empty set. Let '+' and '.' be two binary operations. Then, $\implies (F, +)$ must be an Abelian group

- a Closure: For all $x, y \in F, x + y = z \in F$
- b **Associative:** For all $x, y, z \in F$, (x + y) + z = x + (y + z)
- c **Identity:** For all $x \in F$, there exists an element $e \in F$ such that x + e = e + x = x
- d **Inverse:** For all $x \in F$, there exists an element $y \in F$ such that x + y = e
- e Commutative: For all $x, y \in F$, x + y = y + x

First Four properties forms a group and all the five properties forms an Abelian group on '+'

- \implies (F,*) must be an Abelian group
 - a Closure: For all $x, y \in F, x \cdot y = z \in F$
 - b **Associative:** For all $x, y, z \in F$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - c **Identity:** For all $x \in F$, there exists an element $e \in F$ such that $x \cdot e = e \cdot x = x$
 - d Inverse: For every non-zero element $x \in F$, there exists an element $y \in F$ such that $x \cdot y = e$
 - e Commutative: For all $x, y \in F$, $x \cdot y = y \cdot x$

First Four properties forms a group and all the five properties forms an Abelian group on '.'

Note: Identity is the property of the set F and Inverse is the property of the elements of the set F

\implies Distributve Laws:

- 1. $a \cdot (b+c) = a \cdot b + a \cdot c$
- $2. (b+c) \cdot a = b \cdot a + c \cdot a$

6th September 2021

2 Vector Space

Let V be a non empty set and F be a field. Let '+' and '.' be two binary operations.

Vector Addition:

- For all $\vec{u}, \vec{v} \in V$, $\vec{u} + \vec{v} \in V$.
- For all $\vec{u}, \vec{v}, \vec{w} \in V$, $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}) \in V$.
- For all $\vec{u} \in V$, there exists an $\vec{e} \in V$ such that $\vec{u} + \vec{e} = \vec{u} = \vec{e} + \vec{u}$.
- For all $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that u + v = v + u = e.
- For all $\vec{u}, \vec{v} \in V$, $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Scalar Multiplication:

- Let $\vec{u} \in V$ and $k \in F$, then $ku \in V$.
- Let $\vec{u} \in V$ and $k_1, k_2 \in F$, then $(k_1 + k_2)\vec{u} = k_1\vec{u} + k_2\vec{u}$
- Let $\vec{u}, \vec{v} \in V$ and $k \in F$, then $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$
- Let $k_1, k_2 \in F$ and $\vec{u} \in V$, then $(k_1 k_2) \vec{u} = k_1 (k_2 \vec{u})$
- There exists $1 \in F$ such that for all $\vec{u} \in V$, $1 \cdot \vec{u} = \vec{u}$

If a non empty set V satisfies all these properties over the Field F under the binary operations '+' and '.', then V is said to be a Vector space over field F.

Notations:

- $\mathbb{R} = (-\infty, \infty)$
- $\bullet \mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}\$
- $\bullet \ \mathbb{R}^3 = \{(x,y,z) \mid x,y,z \in \mathbb{R}\}$
- $\mathbb{R}^n = \{(x_1, x_2, \cdots, x_n) \mid x_1, x_2, \cdots, x_n \in \mathbb{R}\}$

3 Vector Subspaces

7th September 2021

Definition 3.1. Let V be a vector space over the field F and W be its subset. W is called the subspace of V if W is itself a vector space over the same field F with the same binary operations as of V.

OR

Definition 3.2. Let V be a vector space over the field F and W be its subset. W is called the subspace of V over the same field F with the same binary operations if for all $\alpha, \beta \in F$ and u, v in W.

$$\alpha \cdot \boldsymbol{u} + \beta \cdot \boldsymbol{v} \in W$$

OR

Definition 3.3. Let V be a vector space over the field F and W be its subset. W is called the subspace of V over the same field F with the same binary operations if for all $u, v \in W$ and $\alpha \in F$.

$$\boldsymbol{u} + \boldsymbol{v} \in W$$
 and $\alpha \boldsymbol{u} \in W$

3.1 Examples

1. Let V be a set of all functions from S to F. Is V a vector space under the binary operations (f+g)(x) = f(x) + g(x) and $(cf)(x) = c \cdot f(x)$ where S is a non-empty set.

$$V = \{f \mid f: S \to V\}, \, S \neq \phi$$

Vector Addition:

a Closure: Let $f, g \in V \implies f: S \to F, g: S \to F$

$$(f+q)(x) = f(x) + q(x) \ \forall x \in S$$

and since

$$f(x), g(x) \in F, f(x) + g(x) \in F$$

therefore

$$(f+q): S \to F \implies (f+q) \in V$$

b Association: For all $x \in S$

$$((f+g)+h)(x) = (f(x)+g(x))+h(x) = f(x)+(g(x)+h(x)), \text{ since } f(x), g(x), h(x) \in F = f+(g+h)(x)$$

c Identity: For all f we have to find an e (if it exists) such that

$$f + e = f$$

or

$$f(x) + e(x) = f(x), \ \forall x \in S$$

which implies

$$e(x) = 0 \ \forall x \in S$$

e(x) = 0 is the Identity element.

d Inverse: For every f there must exist g such that

$$f + g = e$$

$$\implies f(x) + g(x) = e(x), \ \forall x \in S$$

$$\implies g(x) = 0 - f(x)$$

$$\implies g(x) = -f(x)$$

There exist g = -f for every f in V.

e Commutative: For all $x \in S$

$$(f+g)(x) = f(x) + g(x)$$

$$= g(x) + f(x), \text{ since } f(x), g(x) \in F$$

$$= (q+f)(x)$$

Scalar Multiplication:

a Let $f \in V$ and $k \in F$, then as per definition, for $x \in S$

$$(k \cdot f)(x) = k \cdot f(x)$$

since $k, f(x) \in F$ therefore $k \cdot f(x) \in F$. This implies $c \cdot f \in V$

b Let $f \in V$ and $k_1, k_2 \in F$, then for all x

$$((k_1 + k_2) \cdot f)(x) = (k_1 + k_2) \cdot f(x)$$

= $k_1 \cdot f(x) + k_2 \cdot f(x)$
= $(k_1 \cdot f)(x) + (k_2 \cdot f)(x)$

Therefore $(k_1 + k_2) \cdot f = k_1 \cdot f + k_2 \cdot f$

c Let $f \in V$ and $k_1, k_2 \in F$, then for all x

$$((k_1k_2) \cdot f)(x) = (k_1k_2) \cdot f(x)$$

= $k_1(k_2 \cdot f(x))$, since $k_1, k_2, f(x) \in F$
= $k_1(k_2 \cdot f)(x)$

which implies $(k_1k_2) \cdot f = k_1(k_2 \cdot f)$.

d Let $f, g \in V$ and $k \in F$, then for all x

$$(k \cdot (f+g))(x) = k \cdot (f(x) + g(x))$$

= $k \cdot f(x) + k \cdot g(x)$, since $k, f(x), g(x) \in F$
= $(k \cdot f)(x) + (k \cdot g)(x)$

e Let $f \in V$, $1 \in F$ then for all x

$$1 \cdot f(x) = f(x)$$

which implies $1 \cdot f = f$

Hence V is a vector space.

2. Let V be the set of all polynomials from $F \to F$. Is V a vector space over the field F?

$$V = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots \mid a_i \in F \ \forall i\}$$

Vector Addition:

- Let $p, q \in V$, then $p + q \in V$
- Let $p, q, r \in V$, then (p+q) + r = p + (q+r)
- Let $p \in V$, then for $q = \mathbf{0} \in V$, p + q = p
- Let $p \in V$, then for $q = -p \in V$, p + q = 0

• Let $p, q \in V$, then p + q = q + p

Scalar Multiplication:

- Let $p \in V, k \in F$, then $k \cdot f \in V$
- Let $p \in V$ and $k_1, k_2 \in F$, then $(k_1 + k_2) \cdot p = k_1 \cdot p + k_2 \cdot p$
- Let $p \in V$ and $k_1, k_2 \in F$, then $(k_1k_2) \cdot p = k_1(k_2 \cdot p)$
- Let $p, q \in V$ and $k \in F$, then $k \cdot (p+q) = k \cdot p + k \cdot q$
- Let $p \in V$ and $1 \in F$, then $1 \cdot p = p$
- **3.** Let V be the set of all polynomials of degree n. Is V a vector space?

V is not a vector space because the following properties fails:

• Closure: Consider the polynomials $p = x^n + x + 1$ and $q = -x^n + x + 1$, then

$$p + q = 2x + 1$$

which doesn't belong to V because it degree is not n.

- **Identity:** The degree of the polynomial p=0 is not defined, but it is certainly doesn't belong to V
- **4.** V is the set of all polynomials whose degree is at n.

$$V = \{a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k \mid a_i \in F \ \forall i \ \text{and} \ k \le n\}$$

It is a vector space over F because it satisfies all the properties of vector space and for that of the identity element $\mathbf{0}$, it belongs to V (if we put $a_i = 0$ for all i's)

5. V is the set of all polynomials whose degree is at least n.

Same as Ex #3

6. V is the set of all $m \times n$ matrices.

Yes V is a vector space

9th September

7. $W_1 = \{ f \in V | f \text{ is a continous function} \}$

 $W_1 \subseteq V$, where V is the vector space of all functions $f: S \to F$. We know that

 $\mathbf{0}(x) = 0$ for all $x \in S$, hence $\mathbf{0}$ in W_1 . Now for f and $g \in W_1$ consider

$$(\alpha f + \beta g)(x)$$
, for all $x \in S$

This function is continuous because it is the sum of two constinuous functions. Hence $(\alpha f + \beta g)(x)$ is also in W_1 . Therefore W_1 is a subspace

8. $W_3 = \{ f \in V \mid f(-x) = f(x) \quad \forall x \in S \}$

= set of all even functions

 $\mathbf{0}(x) = 0$, for all $x \in S$, hence $\mathbf{0}(x) = \mathbf{0}(-x)$ and therefore $\mathbf{0} \in W_3$. Now Let

$$h(x) = (\alpha \cdot f + \beta \cdot g)(x)$$
 for all $x \in S$

Then

$$h(x) = (\alpha \cdot f)(x) + (\beta \cdot g)(x)$$

$$= \alpha f(x) + \beta g(x)$$

$$= \alpha f(-x) + \beta g(-x)$$

$$= (\alpha \cdot f)(-x) + (\beta \cdot g)(-x)$$

$$= (\alpha \cdot f + \beta \cdot g)(-x)$$

$$= h(-x)$$

which implies $(\alpha \cdot f + \beta \cdot g)$ is an even function. Therefore $(\alpha \cdot f + \beta \cdot g) \in W_3$ and W_3 is a subspace.

9.
$$W_4 = \{ f \in V \mid f(x) = -f(-x) \quad \forall x \in S \}$$

= set of all odd functions

 $\mathbf{0}(x) = 0$, for all $x \in S$, hence $\mathbf{0}(x) = -\mathbf{0}(-x)$ and therefore $\mathbf{0} \in W_4$. Now Let

$$h(x) = (\alpha \cdot f + \beta \cdot g)(x)$$
 for all $x \in S$

Then

$$h(x) = (\alpha \cdot f)(x) + (\beta \cdot g)(x)$$

$$= \alpha f(x) + \beta g(x)$$

$$= \alpha f(-x) + \beta g(-x)$$

$$= -(\alpha \cdot f)(-x) - (\beta \cdot g)(-x)$$

$$= -(\alpha \cdot f + \beta \cdot g)(-x)$$

$$= -h(-x)$$

which implies $(\alpha \cdot f + \beta \cdot g)$ is an odd function. Therefore $(\alpha \cdot f + \beta \cdot g) \in W_4$ and W_4 is a subspace

10. $V = \mathbb{R}^2, F = \mathbb{R}$ and

$$W = \{(x,y)|x,y \in \mathbb{R} \text{ and } x \ge 0\}$$

 $(0,0) \in W$. Let u = (1,1) and $\alpha = -1$, therefore $\alpha \cdot u \notin W$ because (-1,-1) has its x component is negative and W is not a subspace.

11. $W_5 = \{A = M_{n \times n}(F) \mid a_{ij} = a_{ji} \text{ for all } i, j\}$

 $W_5 \text{ is the set of all } n \times n \text{ symmetric matrices, hence for all } A \in W_5, A = A^{\mathsf{T}}.$ $\text{Null matrix} = \mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}. \text{ It is clear that } \mathbf{0} = \mathbf{0}^{\mathsf{T}}. \text{ Hence } \mathbf{0} \in W_5.$

Let $C = \alpha A + \beta B$, where $A, B \in W_5$ and $\alpha, \beta \in F$, then

$$C^{\mathsf{T}} = (\alpha A + \beta B)^{\mathsf{T}}$$

$$= (\alpha A)^{\mathsf{T}} + (\beta B)^{\mathsf{T}}$$

$$= \alpha A^{\mathsf{T}} + \beta B^{\mathsf{T}}$$

$$= \alpha A + \beta B$$

$$= C$$

which implies $C = C^{\mathsf{T}}$ for all $A, B \in W_6$ and $\alpha, \beta \in F$, and hence $C \in W_6$. W_6 is a subspace

12. $W_6 = \{A = M_{n \times n}(F) \mid a_{ij} = -a_{ji} \text{ for all } i, j\}$

 W_6 is the set of all $n \times n$ symmetric matrices, hence for all $A \in W_6, A = -A^{\mathsf{T}}$.

Null matrix = $\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$. It is clear that $\mathbf{0} = \mathbf{0}^{\mathsf{T}}$. Hence $\mathbf{0} \in W_6$.

Let $C = \alpha A + \beta B$, where $A, B \in W_6$ and $\alpha, \beta \in F$, then

$$C^{\mathsf{T}} = (\alpha A + \beta B)^{\mathsf{T}}$$

$$= (\alpha A)^{\mathsf{T}} + (\beta B)^{\mathsf{T}}$$

$$= -\alpha A^{\mathsf{T}} - \beta B^{\mathsf{T}}$$

$$= -(\alpha A + \beta B)$$

$$= -C$$

which implies $C = -C^{\intercal}$ for all $A, B \in W_6$ and $\alpha, \beta \in F$, and hence $C \in W_6$. W_6 is a subspace

13. $W_7 = \{A = M_{n \times n}(F) \mid A = A^{\theta}\}$

Null matrix =
$$\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
. It is clear that $\mathbf{0} = \mathbf{0}^{\theta}$. Hence $\mathbf{0} \in W_7$.

Let $C = \alpha A + \beta B$, where $A, B \in W_7$ and $\alpha, \beta \in F$, then

$$C^{\theta} = (\alpha A + \beta B)^{\theta}$$

$$= (\overline{\alpha A} + \overline{\beta B})^{\top}$$

$$= (\overline{\alpha A})^{\mathsf{T}} + (\overline{\beta B})^{\mathsf{T}}$$

$$= \overline{\alpha} \overline{A}^{\mathsf{T}} + \overline{\beta} \overline{B}^{\mathsf{T}}$$

$$= \overline{\alpha} A^{\theta} + \overline{\beta} B^{\theta}$$

$$= \overline{\alpha} A + \overline{\beta} B$$

which is not equal to C for all $\alpha, \beta \in F$. For $F = \mathbb{R}$, W_7 is vector subpace but for $F = \mathbb{C}$, W_7 is not a subspace

Null matrix = $\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$. It is clear that $\mathbf{0} = -\mathbf{0}^{\theta}$. Hence $\mathbf{0} \in W_7$. Let $C = \alpha A + \beta B$ where A = B**14.** $W_7 = \{A = M_{n \times n}(F) \mid A = -A^{\theta}\}$

Let $C = \alpha A + \beta B$, where $A, B \in W_7$ and $\alpha, \beta \in F$, then

$$C^{\theta} = (\alpha A + \beta B)^{\theta}$$

$$= (\overline{\alpha A} + \overline{\beta B})^{\mathsf{T}}$$

$$= (\overline{\alpha A})^{\mathsf{T}} + (\overline{\beta B})^{\mathsf{T}}$$

$$= \overline{\alpha} \overline{A}^{\mathsf{T}} + \overline{\beta} \overline{B}^{\mathsf{T}}$$

$$= \overline{\alpha} A^{\theta} + \overline{\beta} B^{\theta}$$

$$= -(\overline{\alpha} A + \overline{\beta} B)$$

which is not equal to C for all $\alpha, \beta \in F$. For $F = \mathbb{R}$, W_7 is vector subjace but for $F = \mathbb{C}$, W_7 is not a subspace

10th September 2021

3.2 Intersection of two subspaces

Theorem 3.1. Let V be a vector space over the field F and W_1 and W_2 be two subspaces of the vector space V. Then $W = W_1 \cap W_2$ is also a subspace of V.

Proof. W_1 and W_2 are subspaces of W. Hence

$$\mathbf{0} \in W_1 \text{ and } \mathbf{0} \in W_2$$

 $\Longrightarrow \mathbf{0} \in W_1 \cap W_2$
 $\Longrightarrow W = (W_1 \cap W_2) \neq \phi$

Let $\alpha, \beta \in F$ and $u, v \in W$. Since $u, v \in W$, then $u, v \in W_1$ and $u, v \in W_2$ which implies $\alpha u + \beta v \in W_1$ and $\alpha u + \beta v \in W_2$, because W_1 and W_2 are subspaces. Since $\alpha u + \beta v \in W_1$ and $\alpha u + \beta v \in W_2$, $\alpha u + \beta v \in W$ for all $\alpha, \beta \in F$ and hence $W = W_1 \cap W_2$ is a subspace.

Corollary 3.1.1. Let V be a vector space over the field F and W_i the be arbitrary subspaces of the vector space V where $i \in \mathbb{N}$. Then $W = \bigcap_{i=1}^{\infty} W_i$ is also a subspace of V.

3.3 Union of two subspaces

Theorem 3.2. Union of two subspaces of the same vector space is a subspace if and only if one of them is contained in another.

Proof. Let V be a vector space over the field F and W_1 and W_2 be two subspaces of the vector space V.

• Forward: $W = W_1 \cup W_2$ is a subspace (Hypothesis)

(Proof by contradiction) Let us assume that one doesn't contain other $(W_1 \not\subseteq W_2 \text{ and } W_2 \not\subseteq W_1)$. $W_1 \not\subseteq W_2$ and $W_2 \not\subseteq W_1$

There exists a $x \in W_1$ such that $x \notin W_2$, which implies $x \in W = W_1 \cup W_2$

There exists a $y \in W_2$ such that $y \notin W_1$, which implies $y \in W = W_1 \cup W_2$

 $\therefore W$ is a subspace $\therefore x + y \in W$

$$x + y \in W$$
, then either

 $x+y\in W_1$ and $x\in W_1$ $\because W_1$ is a subspace $(x+y)-x\in W_1$, that is $y\in W_1$, which is a contradiction because $y\in W_2$ and $y\notin W_1$. $x + y \in W_2$ and $y \in W_2$ $\therefore W_2$ is a subspace $(x + y) - y \in W_2$, that is $x \in W_2$, which is a contradiction because $x \in W_1$ and $x \notin W_2$.

Hence our assumption that one subspace doesn't contain other is false.

• Backward: $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$ (Hypothesis)

$$W_1 \subseteq W_2$$
 or $W = W_1 \cup W_2 = W_2 \ (\because W_1 \subseteq W_2)$, hence W is subspace

$$W_2\subseteq W_1 \\ W=W_1\cup W_2=W_1 \ (\because W_2\subseteq W_1), \text{ hence} \\ \text{W is subspace}$$

3.4 Sum of two subspaces

Theorem 3.3. Let V be a vector space over the field F and W_1 and W_2 be two subspaces of the vector space V. Then $W = W_1 + W_2$ is also a subspace of V.

Proof. $W = W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1 \text{ and } w_2 \in W_2\}$. $\mathbf{0} \in W_1$ and W_2 , hence $\mathbf{0} + \mathbf{0} = \mathbf{0}$ which also belongs to $W \neq \phi$. For all $\alpha, \beta \in F$ and $x, y \in W$ consider

$$\alpha \cdot x + \beta \cdot y = \alpha \cdot (u+v) + \beta \cdot (p+q)$$

where x = u + v for some $u \in W_1$ and $v \in W_2$ and y = p + q for some $p \in W_1$ and $q \in W_2$. Therefore

$$\alpha \cdot x + \beta \cdot y = (\alpha u + \beta p) + (\alpha v + \alpha q)$$

since $u, p \in W_1$ and $v, q \in W_2$

$$\alpha x + \beta y = s + t$$

where $s \in W_1$ and $t \in W_2$ and therefore $\alpha x + \beta y \in W$ for all $\alpha, \beta \in F$ and $x, y \in W$. Hence W is subspace of V

4 Linear Dependency and Independency

4.1 Linear Combination

Definition 4.1. Let v be a vector of the vector space V. Then v is a linear combination of $u_1, u_2 \in V$ if there exist $c_1, c_2 \in F$ such that

$$v = c_1 u_1 + c_2 u_2$$

Generalized form: For $u_1, u_2, \dots, u_n \in V$ v $\in V$ is Linear Combination of u_1, u_2, \dots, u_n if there exist $c_1, c_2, \dots, c_n \in F$ such that

$$v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$$

Theorem 4.1. Set of all possible linear combinations of $u_1, u_2, \dots, u_n \in V$, forms a subspace of V over the field F

Proof. The set
$$S = \{c_1u_1 + c_2u_2 + \dots + c_nu_n \in V \mid c_i \in F, \forall i's\} = \left\{\sum_{i=1}^n c_iu_i \mid c_i \in F, \forall i's\right\}.$$

Putting $c_i = 0$ for all i, we get the **0** vector, implying **0** \in S. Consider $u, v \in S$, then there exists $\alpha_1, \alpha_2, \dots, \alpha_n$ and $\beta_1, \beta_2, \dots, \beta_n \in F$ such that

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n$$

$$v = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n$$

Then

$$u + v = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n + \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n$$

= $(\alpha_1 + \beta_1)u_1 + (\alpha_2 + \beta_2)u_2 + \dots + (\alpha_n + \beta_n)u_n$

since $\alpha_i, \beta_i \in F$ for all i's $\implies \alpha_i + \beta_i \in F$ for all i's and hence $u + v \in S$. Let $\alpha \in F$, then

$$\alpha u = \alpha(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n)$$

= $(\alpha \alpha_1) u_1 + (\alpha \alpha_2) u_2 + \dots + (\alpha \alpha_n) u_n$

also belongs in S because for all $\alpha_1, \alpha_2, \dots, \alpha_n$ and $\alpha \in F$, $\alpha \alpha_i \in F$ for all *i*'s. Therefore S is subspace by Definition (3.3).

4.2 Span

Definition 4.2. Let V be a vector space over the field F and $S \subseteq V$. Then the set of all possible linear combinations of the set S is called the span of that set or the spanning set of S and is written as $\operatorname{span}(S)$.

$$S = \{v_1, v_2, \dots, v_n\}$$

$$\operatorname{span}(S) = \{c_1 v_1 + c_2 v_2 + \dots + c_n v_n | c_i \in F, v_i \in S\}$$

$$= \left\{ \sum_{i=1}^n c_i v_i \mid c_i \in F, v_i \in S \right\}$$

$$OR$$

Definition 4.3. Span S is the intersection of all subspaces of V containing S.

Corollary 4.1.1. Let V be a vector space over the field F and $S \subseteq V$, then Span(S) is a subspace of V.

Proof. For $S = \phi$, from definition (4.3) S is subspace of V and for $S \neq \phi$, from Definition (4.2) and Theorem (4.1) S is a subspace of V.

4.3 Linearly Independent (L.I) and Linearly Dependent (L.D)

Definition 4.4. Let V be a vector space and $S = \{v_1, v_2, \dots, v_n\}$ be a subset of V. Then the set S is linearly independent if

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0 \implies c_i = 0$$
 for all i's

where $v_1, v_2, \dots, v_n \in S$ and $c_1, c_2 \dots, c_n \in F$. If it is not linearly independent then its **linearly** dependent, i.e there exists at least one $c_i \neq 0$ when $c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$.

Theorem 4.2. Let V be a vector space over the field F and S be a non empty subset of V. S is linearly dependent if and only if atleast one vector of S can be written as a linear combination of others.

Proof. Let $S = \{v_1, v_2, \dots v_n\}$ be non-empty subset of V.

Forward: S is linearly dependent. There exists a $c_i \neq 0$ such that

$$c_1v_1 + \dots + c_{j-1}v_{j-1} + c_jv_j + c_{j+1}v_{j+1} + \dots + c_nv_n = 0$$

Without loss of generality we assume $c_j \neq 0$.

$$c_j v_j = -c_1 v_1 - \dots - c_{j-1} v_{j-1} - c_{j+1} v_{j+1} - \dots - c_n v_n$$

$$v_j = -\frac{c_1}{c_j} v_1 - \dots - \frac{c_{j-1}}{c_j} v_{j-1} - \frac{c_{j+1}}{c_j} v_{j+1} - \dots - \frac{c_n}{c_j} v_n$$

$$v_j = k_1 v_1 + \dots + k_{j-1} v_{j-1} + k_{j+1} v_{j+1} + \dots + k_n v_n$$

which says that v_j is the linear combination of the remaining vectors of S.

Backward: At least one vector of S can be written as remaining others. This implies that

$$v_i = c_1 v_1 + \dots + c_{i-1} v_{i-1} + c_{i+1} v_{i+1} + \dots + c_n v_n$$

$$\implies c_1 v_1 + \dots + c_{i-1} v_{i-1} + (-1) v_i + c_{i+1} v_{i+1} + \dots + c_n v_n = 0$$

Let $c_i = -1$, then the linear combination of the vectors of S is 0 for at least one $c_j \neq 0$, $(c_i = -1)$ and hence S is linearly dependent.

4.3.1 Properties

- 1. $S = \phi$ is a Linearly Independent set.
- 2. $S = \{v\}$ is a singleton set, then
 - (a) If $v \neq 0$, then $c \cdot v \implies c = 0$.
 - (b) If v = 0, then $c \cdot v \implies c = 0$ for all values of c.

Hence S is linearly independent if $v \neq 0$ else linearly dependent.

3. If S is linearly dependent set in V, then subset of S may or may not be linearly dependent.

Ex. $S = \{(0,1), (1,0), (1,1), (2,2)\}$

Consider $W_1 = \{(0,1),(1,0)\} \subseteq S$ and $W_2 = \{(1,1),(2,2)\} \subseteq S$. W_1 is linearly independent and W_2 is linearly dependent

4. If S is linearly dependent set in V, then superset of S is also linearly dependent.

Proof. Suppose $S = \{v_1, v_2, \cdots, v_m\}$, and $W = \{v_1, \cdots, v_m, v_{m+1}, \cdots, v_n\}$ Clearly $W \supseteq S$. Now consider the linear combination of the vectors in W.

$$\underbrace{c_1v_1 + c_2v_2 + \dots + c_mv_m}_{= 0 \text{ for at least one } c_i \neq 0} + c_{m+1}v_{m+1} + c_{m+2}v_{m+2} + \dots + c_nv_n$$

Therefore

$$c_1v_1 + c_2v_2 + \dots + c_mv_m + c_{m+1}v_{m+1} + c_{m+2}v_{m+2} + \dots + c_nv_n = 0$$

implies there exists at least one $c_i = c_i \neq 0$. Hence $W \supseteq S$ is linearly dependent.

5. If S is a linearly independent set in V then any subset of S is also linearly independent.

Proof. (Proof by contradiction) Let us assume that a subset T of S is linearly dependent, then the linear combination

$$c_1v_1 + c_2v_2 + \dots + c_mv_m = 0 \implies \text{that there exist at least one } c_i \neq 0, 1 \leq i \leq m$$
 (1)

Now consider the original set S which is linearly independent. The equation

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0$$

implies that $c_i = 0$ for all i's. Lets inspect the linear combination more carefully.

$$\underbrace{c_1v_1 + c_2v_2 + \dots + c_mv_m}_{= 0 \implies \text{there exist a } c_j \neq 0} + \underbrace{c_{m+1}v_{m+1} + c_{m+2}v_{m+2} + \dots + c_nv_n}_{= 0 \text{ if we put } c_i = 0 \text{ for all } i > n}_{= 0}$$

Hence

$$c_1v_1 + c_2v_2 + \dots + c_mv_m + c_{m+1}v_{m+1} + c_{m+2}v_{m+2} + \dots + c_nv_n = 0$$

implies there exist a $c_j \neq 0$. This shows that S is a linearly dependent set which contradicts with our assumption and proves T is a linearly independent set.

6. If S is a linearly independent set in V, then the superset of S may or may not be linearly independent.

9

Ex. $S = \{(-1,0)\}$ and $T_1 = \{(-1,0),(0,1)\}$ and $T_1 = \{(-1,0),(-2,0)\}$ then, T_1 is linearly independent and T_2 is linearly dependent

5 Basis

- \implies span S is the subspace of V
- \implies span $\phi = 0$
- \implies span S is the intersection of all subspace of V containing S
- \implies If S is a subspace of V, then span S = S
- \implies span(span S) = span S, span(span(\cdots span(S) \cdots)) = span S
- \implies If S is a subspace, then span(span(\cdots span(S) \cdots)) = span S

Definition 5.1. Let V be a vector space over the field F and B be non empty subset of V. Then B is called the basis of V if

- (a) B is linearly independent
- (b) $\operatorname{span}(B) = V$

Dimension of a Basis: The number of elements in the basis is called the dimension of that basis.

OR

The cardinality of the basis is called its dimension.

 $C(B) < \infty \implies V$ is a finite dimensional vector space

 $C(B) \not< \infty \implies V$ is an infinite dimensional vector space

Number of Basis of any vector space can be infinite but dimension of a vector space is unique.

5.1 Properties

Let S be a subset of V and span(S) = V

- 1. For any $w \in V$, $S = \{u_1, u_2, \dots, u_n\}$ then $S \cup \{w\}$ also spans V, i.e span $(S \cup \{w\}) = V$
- 2. If any u_i is a linear combination of u_1, u_2, \dots, u_{i-1} then $S \setminus \{u_i\}$ also spans V, i.e

$$\operatorname{span}\left(S\setminus\{u_i\}\right)=V$$

3. Standard basis of the Euclidean space \mathbb{R}^n is

$$\{(1,0,\cdots,0),(0,1,\cdots,0),\cdots,(0,0,\cdots,1)\}$$

4. $P[x] = \{a_0, a_1x + \dots + a_nx_n + \dots \mid a_i \in F \text{ for all } i\}.$ Then

$$B = \{1, x, x^2, \cdots, x^n, \cdots\}$$

is the basis for P[x]

5. Let W be the set of all solution of the second order differential equation

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0 \tag{2}$$

Then W is forms a subspace.

Proof.

$$W = \left\{ y(x) \mid \frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0 \right\}$$

y(x) = 0 satisfies equation (2). Hence y(x) = 0 is a solution of the differential equation. Let $y_1(x)$ and $y_2(x)$ be two solutions of (2), then consider $\alpha y_1 + \beta y_2$.

$$\frac{d^{2}(\alpha y_{1} + \beta y_{2})}{dx^{2}} + P(x) \frac{d(\alpha y_{1} + \beta y_{2})}{dx} + Q(x)(\alpha y_{1} + \beta y_{2})$$

$$= \left(\alpha \frac{d^{2} y_{1}}{dx^{2}} + \alpha P(x) \frac{dy_{1}}{dx} + \alpha Q(x) y_{1}\right) + \left(\beta \frac{d^{2} y_{2}}{dx^{2}} + \beta P(x) \frac{dy_{2}}{dx} + \beta Q(x) y_{2}\right)$$

$$= \alpha \left(\frac{d^{2} y_{1}}{dx^{2}} + P(x) \frac{dy_{1}}{dx} + Q(x) y_{1}\right) + \beta \left(\frac{d^{2} y_{2}}{dx^{2}} + P(x) \frac{dy_{2}}{dx} + Q(x) y_{2}\right)$$

$$= 0 + 0 = 0$$

Hence W is a subspace The general solution y of the above differential equation is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x) \tag{3}$$

where $y_1(x)$ and $y_2(x)$ are two solutions of (2). From (3) we can say that any solution can be written as the linear combination of y_1 and y_2 . Hence y_1 and y_2 spans W and since (3) is the general solution y_1 and y_2 are linearly independent. Therefore $B = \{y_1, y_2\}$ is the basis for W whose dimension is 2.

Generalization: Let W be the set of all solutions of the differential equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{dy}{dx} + \dots + a_0(x)y = 0$$
 (4)

Then W forms a subspace(vector space?) and its basis is given by $B = \{y_1, y_2, \dots, y_n\}$ with dimension equal to the order of the D.E = n and where y_1, y_2, \dots, y_n are the solutions of (4) and they form the general solution of (4), that is

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$$

Theorem 5.1. Let V be finite dimensional vector space over the field F and let L be the set of linearly independent vectors in V and S be spanning set of V, then cardinality of L is less than or equal to cardinality of span(S).

Proof. span(S) = V and S can be either linearly independent or linearly dependent. If S is linearly independent then by definition S becomes the basis for V. If S is not linearly independent then its linearly dependent and at least one vector of S can be written as linear combination of other vectors of S say v_1 . Since S spans V, any vector $v \in V$ can be written as linear combination of vectors in S.

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

$$= c_1 (k_1 v_2 + k_2 v_3 + \dots + k_{n-1} v_n) + c_2 v_2 + \dots + c_n v_n$$

$$= (c_1 k_1 + c_2) v_2 + (c_1 k_2 + c_3) v_3 + \dots + (c_1 k_{n-1} + c_n) v_n$$

$$= \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n$$

which implies there exists α_i for every $v \in V$ such that v can be written as a linear combination of vectors in S. Hence $\operatorname{span}(S) = V$

Theorem 5.2. Let V be a **finite dimensional vector space**, with dimension of V equal to n, then any subset of V with (n+1) or more vectors is a linearly dependent set (it cannot form a basis for V).

Notes:

Let V be a finite dimensional vector space, with dim V = n and B be a subset of V with n number of vectors, then

If $\operatorname{span}(B) = V$, then B is a basis of V.

OR

If B is linearly independent, then B is a basis of V

That is for checking whether a subset B of V with n vectors is a basis of V either check if it is Linearly Independent or if it spans V

Also the vector space $V = \{0\}$ has the set $B = \phi$ as its basis

Theorem 5.3. Let V be a **finite dimensional vector space** over the field F and B be a subset of V. The set B is a basis for V if and only if every vector of V can be written as a unique linear combination of the vectors in B.

Proof. Forward direction: $B = \{u_1, u_2, \dots, u_n\}$ is a basis for V.

Let's assume that there exist two distinct set of scalars $\{c_1, c_2, \dots, c_n\}$ and $\{k_1, k_2, \dots, k_n\}$ for any vector $v \in V$ such that

$$v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$$

$$v = k_1 u_1 + k_2 u_2 + \dots + k_n u_n$$
.

Substracting one from another, we get

$$(c_1 - k_1)u_1 + (c_2 - k_2)u_2 + \dots + (c_n - k_n)u_n = 0$$

since the vectors from the basis are all linearly independent we have $c_i = k_i$ for all i's, which is a contradiction because they are suppose to be different from our assumption.

Backward direction: every vector of V can be written as a unique linear combination of the vectors in B

There exists a unique set of scalars c_1, c_2, \dots, c_n for every vector $v \in V$ such that

$$v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$$

That is B spans V. Now we have to show that the vectors in B are linearly independent, for that consider the 0 vector.

$$0 = 0 \cdot u_1 + 0 \cdot u_2 + \dots + 0 \cdot u_n.$$

Since this combination is unique, there is no other way of writing the 0 vector. This states that the equation

$$c_1 u_1 + c_2 u_2 + \dots + c_n u_n = 0$$

has only one solution and that is $c_i = 0$ for all i's. Hence B is a basis for V

5.2 How to check whether a set is a basis?

Suppose dimension of V is n and S is a subset of V to be checked for basis.

dim
$$V = n$$
 and $S \subseteq V$

If |S| < n, then S can never span V and hence S is not a basis of V

If |S| = n, then check either S is linearly independent a basis of V L.D and hence S cannot form or span(S) = V for it to be a basis of V

Theorem 5.4. Let V be a finite dimensional vector space over the field F, and W be its subspace, then $\dim W \leq \dim V$

5.3 Ordered basis and Direct Sum

Coordinate vector: Let V be a finite dimensional vector space over the field F and B be a basis of V $(B = \{v_1, v_2, \dots, v_n\})$. Then for any $v \in V$,

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

and

$$[oldsymbol{v}]_B = egin{bmatrix} c_1 \ c_2 \ dots \ c_n \end{bmatrix}$$

where $[v]_B$ is called the coordinate vector of v w.r.t the basis B.

Direct Sum: Let W_1 and W_2 be two sub-spaces of a vector space V, then $W_1 + W_2$ is called the direct sum of V if every member of V can be uniquely expressed as $w_1 + w_2$, where $w_1 \in W_1$ and $w_2 \in W_2$. The direct sum of V is denoted by $W_1 \bigoplus W_2$

Examples of finding the basis:

Theorem 5.5. Let W_1 and W_2 be two subspaces of V, then $W_1 + W_2$ is said to be the direct sum of V if and only if $W_1 \cap W_2 = \{0\}$

Example: Let $V = \mathbb{R}^3$ and $W_1 = \{(0, y, z) : y, z \in \mathbb{R}\}$ and $W_2 = \{(x, y, 0) : x, y \in \mathbb{R}\}$. Is V the direct sum of W_1 and W_2 .

Solution: $W_1 \cap W_2 = \{(0, y, 0) : y \in \mathbb{R}\}$. V is not a direct sum of W_1 and W_2 . Also there is no unique sum for every element of V. That is

$$(1, -2, 1) = (0, -2, 1) + (1, 0, 0)$$

= $(0, -1, 1) + (1, -1, 0)$

Note:

- $\dim(\mathbb{C}^n(\mathbb{R})) = 2n$
- $\dim(\mathbb{C}^n(\mathbb{C})) = n$

$$\dim(W_1 \cup W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$$

6 Linear Transformation

Definition 6.1. Let V and W be two vector spaces over the same field F. Then $T: v \to W$ is said to be a linear transformation if

- (a) For all $u, v \in V$, T(u + v) = T(u) + T(v)
- (b) For all $\alpha \in F$ and $u \in V$, $T(\alpha u) = \alpha T(u)$

OR

For all $\alpha, \beta \in F$ and $u, v \in V$, $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$

Note:

(i) If $T(0) \neq 0$, then the map T is not a linear transformation, where $0 \in V$ and W

6.1 Special Transformations

1 Identity Transformation: Let V be a vector space over the field F, define $I: V \to V$ such that

$$T(v) = v$$

for all $v \in V$, then I is a linear transformation

Proof. Consider $\alpha, \beta \in F$ and $v, u \in I$, then

$$I(\alpha u + \beta v) = \alpha u + \beta v \text{ since } \alpha u + \beta v \in V$$

= $\alpha I(u) + \beta I(v)$

Therefore I is a linear transformation.

2 Zero Transformation: Let V, W be two subspaces of the vector space V over the field F, then the map $O: V \to W$ where

$$O(v) = 0$$

is called the linear transformation.

Proof. Consider $\alpha, \beta \in F$ and $v, u \in O$, then

$$O(\alpha u + \beta v) = 0 \quad \text{since} \quad \alpha u + \beta v \in V$$

$$\alpha O(v) + \beta O(u) = \alpha 0 + \beta 0$$

$$= 0$$

$$\therefore O(\alpha u + \beta v) = \alpha u + \beta v$$

Hence O is a linear transformation.

6.2 Null Space (Kernel) and Range Space of T

Definition 6.2. Let T be a linear transformation from V to W, $T: V \to W$. Then

$$N(T) = \ker(T) = \{x \in V \mid T(x) = 0\}$$

is called the Null Space or Kernel of T

Note: Null space of any linear transformation is always non empty because T(0) is always equal to 0 for any linear transformation T.

Theorem 6.1. Let V and U be vector spaces over the same field F. Let $T:V\to W$ be a linear transformation, then N(T) is a subspace of V

Proof. Since T is a linear transformation, T(0) = 0, hence $0 \in N(T)$ and $N(T) \neq \phi$ and also $N(T) \subseteq V$. Now consider $\alpha, \beta \in F$ and $u, v \in N(T)$, then T(u) = T(v) = 0.

$$T(\alpha u + \beta v) = \alpha \cdot T(u) + \beta \cdot T(v)$$
$$= \alpha \cdot 0 + \beta \cdot 0$$
$$= 0$$

Therefore $\alpha u + \beta v$ also belongs to N(T), which implies N(T) is a subspace of V

Nullity of T: The dimension of the Null Space of any L.T T is called the nullity of T, It is represented as $\eta(T)$

For a finite dimensional vector space V, $\dim(N(T)) \leq \dim(V)$

Definition 6.3. Let V and W be finite dimensional vector spaces over the same field F and $T:V\to W$ be a linear transformation, then

$$R(T) = \{ w \in W \mid \exists \ v \in V, T(v) = w \}$$

is called the Range Space of T

Theorem 6.2. Let $T: V \to W$ be a linear transformation where V and W are finite dimensional vector spaces over same field F, then the range space of T, R(T) is a subpace of W. i.e $R(T) \leq W$

Proof. Very simple, similar to null space being a subspace of V

Note: The dimension of range space of T is denoted as $\rho(T)$

6.3 Linear Transformation Examples

1
$$T: P_4(x) \to P_3(x)$$
 and $T(p(x)) = \int_0^x p(t)dt$

The linear transformation is not well defined, all polynomials of degree ≥ 3 lie outside of the codomain

2
$$T: P(x) \to P(x)$$
 and $T(p(x)) = \int_0^x p(t)dt$

$$T(\alpha p + \beta q) = \int_0^x (\alpha p(t) + \beta q(t)) dt$$
$$= \alpha \int_0^x p(t) dt + \beta \int_0^x q(t) dt$$
$$= \alpha T(p) + \beta T(q)$$

3 $T: P(x) \rightarrow P(x)$ and T(p(x)) = p''(x)

It is a linear transformation.

4 $T: P(x) \rightarrow P(x)$ and T(p(x)) = p'(x)

It is a linear transformation.

5
$$T: P(x) \to P(x)$$
 and $T(p(x)) = p''(x) + p(x)$

It is a linear transformation.

Theorem 6.3. Let $T: V \to W$ be a linear transformation, where V and W are vector spaces over a same field F. If $S = \{v_1, v_2, \cdots, v_n\}$ be a spanning set of V, then the set $\{T(v_1), T(v_2), \cdots, T(v_n)\}$, say R is the spanning set of the range space of T.

Proof. Range space of $T = \{w \in W \mid \exists v \in V, w = T(v)\}$ and since span(S) = V, for every $v \in V$ there exists scalars c_1, c_2, \dots, c_n from the field F such that

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

$$T(v) = T(c_1 v_1 + c_2 v_2 + \dots + c_n v_n)$$

$$w = c_1 T(v_1) + c_2 T(v_2) + \dots + c_n T(v_n)$$

Hence $R = \{T(v_1), T(v_2), \dots, T(v_n)\}$ spans the range space of T.

Theorem 6.4. Let $T: V \to W$ be a linear transformation, where V and W are vector spaces over a same field F and $S = \{v_1, v_2, \dots, v_n\}$ be a subset of V. If the set $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is linearly independent set, then S is also a linearly independent set.

П

Proof. Consider the equation

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$$

where c_i 's are scalars from the field F. Then

$$T(c_1v_1 + c_2v_2 + \dots + c_nv_n) = T(0)$$

$$c_1T(v_1) + c_2T(v_2) + \dots + c_nT(v_n) = 0$$

since $\{T(v_1), T(v_2), \cdots, T(v_n)\}$ is an L.I set, $c_1 = c_2 = \cdots = c_n = 0$. We just showed that

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0 \implies c_1 = c_2 = \dots = c_n = 0$$

. Hence $\{v_1, v_2, \cdots, v_n\}$ is linearly independent.

Theorem 6.5. Let V and W be two finite dimensional vector spaces over F and $\{v_1, v_2, \dots, v_n\}$ be a basis for V and u_1, u_2, \dots, u_n be any vectors in W. Then there exists a **unique** Linear Transformation from V to W such that $T(v_i) = u_i$ for $1 \le i \le n$

Proof. Lenghty, hence skipped.

Theorem 6.6. Rank Nullity Theorem Let $T: V \to W$ be a linear transformation and V is a finite dimensional vector space. Then

$$\eta(T) + \rho(T) = \dim V$$

OR

$$\dim N(T) + \dim R(T) = \dim V$$

Proof. skipped.

Note:

- For homogeneous systems $\dim(R(T)) = n r$
- For non-homogeneous systems $\dim(R(T)) = n r + 1$

where r is the rank of the coefficient matrix and n is the number of variables (from the order $m \times n$)

6.4 Algebra of Linear Transformation

Theorem 6.7. Let $T: V \to W$ and $S: V \to W$ be two linear transformation, then their sum T+S and the scalar multiplication $cT, c \in F$ are also linear transformations. V, W, F, c have their regular meanings.

Corollary 6.7.1. Let $\operatorname{Hom}(V,W)$ be the set of all linear transformations from vector spaces $V \to W$ over the same field F, then $\operatorname{Hom}(V,W)$ forms a subspace of the vector space of all functions or maps.

If
$$\dim(V) = m$$
, $\dim(W) = n$, then $\dim(\operatorname{Hom}(V, W)) = mn$

Theorem 6.8. Let $T: V \to W$ and $S: W \to V$ be two linear transformations, then $T \circ S$ and $S \circ T$ are also linear transformations from W to W and V to V respectively.

Proof. For all $u, v \in V$ and $\alpha, \beta \in F$ the expression

```
(T \circ S)(\alpha u + \beta v) = T(S(\alpha u + \beta v))
= T(S(\alpha u) + S(\beta v))
= T(\alpha S(u) + \beta S(v))
= T(S(\alpha u)) + T(S(\beta v))
= \alpha T(S(u)) + \beta T(S(v))
= \alpha (T \circ S)(u) + \beta (T \circ S)(v)
```

Definition 6.4. Singular Map: Let V and W be vector subspaces over the same field F and $T:V\to W$ be a linear transformation then T is called a singular map if there exists a non zero vector $x\in V$ such that T(x)=0

Definition 6.5. Non-Singular Map: Let V and W be vector subspaces over the same field F and $T:V\to W$ be a linear transformation then T is called a singular map if there does not exist a non zero vector $x\in V$ such that T(x)=0

Note: if $\eta(T) > 0$, then T is a singular map and if $\eta(T) = 0$ then T is a non-singular map

6.5 Invertible Maps

Theorem 6.9. Let $T: V \to V$ be a linear transformation where V is a **finite dimensional vector** space, then

$$\begin{split} \ker(T) &= 0 \iff T \text{ is one-one} \\ &\iff T \text{ is onto} \\ &\iff T \text{ is bijective} \\ &\iff T \text{ is invertible} \\ &\iff T \text{ is non singular} \end{split}$$

Note: For the linear transformation $T: V \to W$

1. If $\dim(V)$ is finite, then

$$\ker(T) = 0 \iff T \text{ is one-one}$$

$$\iff T \text{ is non singular}$$

2. If $\dim(V) = \dim(W)$, then

$$\ker(T) = 0 \iff T \text{ is one-one}$$
 $\iff T \text{ is onto}$
 $\iff T \text{ is bijective}$
 $\iff T \text{ is invertible}$
 $\iff T \text{ is non singular}$

6.6 Matrix Representation

Definition 6.6. $T: V \to V$ be a Linear Transformation where V is a **finite dimensional vector** space. Let $\{v_1, v_2, \cdots, v_n\}$ be a basis of V. Then matrix representation of T with respect to B is given as $[T]_B$

$$T(v_1) = a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n$$

$$T(v_2) = a_{21}v_1 + a_{22}v_2 + \dots + a_{2n}v_n$$

$$\dots$$

$$T(v_n) = a_{n1}v_1 + a_{n2}v_2 + \dots + a_{nn}v_n$$

$$[T]_B = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}^\intercal$$

$$[T]_{B_1} \sim [T]_{B_2} \sim \cdots [T]_{B_n} \sim \cdots$$

By similar we mean the matrix representations have same eigen values, trace, determinant (for a linear operator, i.e a transformation from V to V)

6.7 Change of Basis

Definition 6.7. Let $T: V \to V$ be a linear transformation and B_1 and B_2 be two bases of V. $B_1 = \{v_1, v_2, \dots, v_n\}$ and $B_2 = \{u_1, u_2, \dots, u_n\}$. Then

$$v_1 = a_{11}u_1 + a_{12}u_2 + \dots + a_{1n}u_n$$

$$v_2 = a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n$$

$$\vdots$$

$$v_n = a_{n1}u_1 + a_{n2}u_2 + \dots + a_{nn}u_n$$

and

$$[T]_{B_2}^{B_1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}^\mathsf{T}$$

is called the change of basis matrix from B_1 to B_2

OF

Definition 6.8. Let $T: V \to W$ be a linear transformation and B_1 and B_2 be the bases of V and W respectively. $B_1 = \{v_1, v_2, \cdots, v_m\}$ and $B_2 = \{u_1, u_2, \cdots, u_n\}$. Then

$$T[v_1] = a_{11}u_1 + a_{12}u_2 + \dots + a_{1n}u_n$$

$$T[v_2] = a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n$$

$$\vdots$$

$$T[v_m] = a_{m1}u_1 + a_{m2}u_2 + \dots + a_{mn}u_n$$

and

$$[T]_{B_2}^{B_1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^\mathsf{T}$$

is called the change of basis matrix from B_1 to B_2

Basically change of basis gives us a matrix which maps coordinate vectors from one basis to another, that is $[T]_{B_2}^{B_1}$ maps coordinate vector of vector in B_1 basis to coordinate vector of the same vector in B_2 basis

Note: If $P = [T]_{B_1}^{B_2}$ and $Q = [T]_{B_2}^{B_1}$, then

- \bullet P and Q are invertible matrices
- \bullet P and Q are inverses of each other

$$P^{-1} = Q$$
 and $Q^{-1} = P$ and $PQ = I = QP$

• $[T]_{B_1}^{B_2} = [u_1u_2\cdots u_n]$ where B_1 is a standard basis and $B_2 = \{u_1, u_2, \cdots u_n\}$ is any other basis.

7 Eigen Values and Eigen Vectors

Definition 7.1. Let $T: V \to V$. If for a non zero vector $v \in V$ there exists a scalar $\lambda \in F$, such that

$$T(v) = \lambda v$$

, then λ is called the eigen value of T and v is called the eigen vector of T corresponding to the eigen value λ .

7.1 How to find Eigen Values?

We know that $T(v) = \lambda v \implies (T - \lambda I)v = 0$. Find the null space of the transformation $(T - \lambda I)$. OR.

Since $T: V \to V$, take any matrix representation of T w.r.t to any basis B, i.e $[T]_B = A$ and then plug it in the equation $(T - \lambda I)v = 0$. We are looking for non zero v's, if any exists, hence for that we should make the matrix $A - \lambda I$ singular. Solve $\det(A - \lambda I)$ for λ