Derivatives of Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\lim_{\theta \to 0} \frac{\sin \, \theta}{\theta} = 1$$

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$

EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest position and released at time t = 0. (See Figure 5 and note that the downward direction is positive.) Its position at time t is

$$s = f(t) = 4 \cos t$$

Find the velocity and acceleration at time *t* and use them to analyze the motion of the object.

The Chain Rule

$$F(x) = \sqrt{x^2 + 1}$$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

The Chain Rule If g is differentiable at x and f is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at x and F' is given by the product

$$F'(x) = f'(g(x)) \cdot g'(x)$$

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$\frac{d}{dx} \quad f \quad (g(x)) \quad = \quad f' \quad (g(x)) \quad \cdot \quad g'(x)$$
outer function
evaluated at inner function
derivative of outer at inner function
function

EXAMPLE 1 Find
$$F'(x)$$
 if $F(x) = \sqrt{x^2 + 1}$.

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed F as $F(x) = (f \circ g)(x) = f(g(x))$ where $f(u) = \sqrt{u}$ and $g(x) = x^2 + 1$. Since

$$f'(u) = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}}$$
 and $g'(x) = 2x$

we have

$$F'(x) = f'(g(x)) \cdot g'(x)$$

$$= \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x = \frac{x}{\sqrt{x^2 + 1}}$$

SOLUTION 2 (using Equation 3): If we let $u = x^2 + 1$ and $y = \sqrt{u}$, then

$$F'(x) = \frac{dy}{du}\frac{du}{dx} = \frac{1}{2\sqrt{u}}(2x) = \frac{1}{2\sqrt{x^2 + 1}}(2x) = \frac{x}{\sqrt{x^2 + 1}}$$

EXAMPLE 2 Differentiate (a) $y = \sin(x^2)$ and (b) $y = \sin^2 x$.

$$\frac{dy}{dx} = \frac{d}{dx} \underbrace{\sin}_{\substack{\text{outer} \\ \text{function}}} \underbrace{(x^2)}_{\substack{\text{evaluated} \\ \text{at inner} \\ \text{function}}} = \underbrace{\cos}_{\substack{\text{derivative} \\ \text{of outer} \\ \text{function}}} \underbrace{(x^2)}_{\substack{\text{evaluated} \\ \text{at inner} \\ \text{function}}} \cdot \underbrace{2x}_{\substack{\text{derivative} \\ \text{of inner} \\ \text{function}}}$$

$$\frac{dy}{dx} = \frac{d}{dx} \frac{(\sin x)^2}{(\sin x)^2} = \underbrace{2 \cdot (\sin x)}_{\substack{\text{derivative of outer function}}} \cdot \underbrace{\cos x}_{\substack{\text{derivative function}}} \cdot \underbrace{\cos x}_{\substack{\text{derivative function}}}$$

The Power Rule Combined with the Chain Rule If n is any real number and u = g(x) is differentiable, then

$$\frac{d}{dx}\left(u^{n}\right)=nu^{n-1}\frac{du}{dx}$$

Alternatively,

$$\frac{d}{dx} [g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

EXAMPLE 3 Differentiate $y = (x^3 - 1)^{100}$.

Taking $u = g(x) = x^3 - 1$ and n = 100 in $\boxed{4}$, we have

$$\frac{dy}{dx} = \frac{d}{dx} (x^3 - 1)^{100} = 100(x^3 - 1)^{99} \frac{d}{dx} (x^3 - 1)$$
$$= 100(x^3 - 1)^{99} \cdot 3x^2 = 300x^2(x^3 - 1)^{99}$$

EXAMPLE 5 Find the derivative of the function

$$g(t) = \left(\frac{t-2}{2t+1}\right)^9$$

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

$$= 9\left(\frac{t-2}{2t+1}\right)^8 \frac{(2t+1)\cdot 1 - 2(t-2)}{(2t+1)^2} = \frac{45(t-2)^8}{(2t+1)^{10}}$$

EXAMPLE 6 Differentiate $y = (2x + 1)^5(x^3 - x + 1)^4$.

$$\frac{dy}{dx} = (2x+1)^5 \frac{d}{dx} (x^3 - x + 1)^4 + (x^3 - x + 1)^4 \frac{d}{dx} (2x+1)^5$$

$$= (2x+1)^5 \cdot 4(x^3 - x + 1)^3 \frac{d}{dx} (x^3 - x + 1)$$

$$+ (x^3 - x + 1)^4 \cdot 5(2x+1)^4 \frac{d}{dx} (2x+1)$$

$$= 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1) + 5(x^3 - x + 1)^4 (2x+1)^4 \cdot 2$$

EXAMPLE 7 Differentiate $y = e^{\sin x}$.

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\sin x} \right) = e^{\sin x} \frac{d}{dx} \left(\sin x \right) = e^{\sin x} \cos x$$

$$\frac{d}{dx}(a^x) = a^x \ln a$$

$$\frac{d}{dx}(2^x) =$$

EXAMPLE 8 If $f(x) = \sin(\cos(\tan x))$, then

If $f(x) = \sin(\cos(\tan x))$, then

$$f'(x) = \cos(\cos(\tan x)) \frac{d}{dx} \cos(\tan x)$$

$$= \cos(\cos(\tan x)) [-\sin(\tan x)] \frac{d}{dx} (\tan x)$$

$$= -\cos(\cos(\tan x)) \sin(\tan x) \sec^2 x$$

EXAMPLE 9 Differentiate $y = e^{\sec 3\theta}$.

$$\frac{dy}{d\theta} = e^{\sec 3\theta} \frac{d}{d\theta} (\sec 3\theta)$$

$$= e^{\sec 3\theta} \sec 3\theta \tan 3\theta \frac{d}{d\theta} (3\theta)$$

$$= 3e^{\sec 3\theta} \sec 3\theta \tan 3\theta$$