Лекция 17 от 25.01.2016

Овеществление и комплексификация

Пусть V — векторное пространство над \mathbb{C} .

Определение. Овеществление пространства V — это то же пространство V, рассматриваемое как пространство над \mathbb{R} . Обозначение: $V_{\mathbb{R}}$.

Операция умножения на элементы \mathbb{R} в V уже есть, так как \mathbb{R} — подполе в \mathbb{C} .

Пример. $\mathbb{C}_{\mathbb{R}} = \mathbb{R}^2$.

Предложение. V — векторное пространство над $\mathbb C$, $\dim V < \infty$. Тогда $\dim V_{\mathbb R} = 2\dim V$.

Доказательство. Пусть e_1, \ldots, e_n — базис в V. Тогда $V = \{z_1e_1 + \ldots + z_ne_n \mid z_k \in \mathbb{C}\}$, причём такая запись единственная в силу определения базиса. Пусть $z_k = a_k + ib_k$, причём такая запись тоже единственная. Тогда будем иметь

$$V = \{(a_1 + ib_1) e_1 + \ldots + (a_n + ib_n) e_n \mid a_k, b_k \in \mathbb{R}\} =$$

= $\{a_1e_1 + \ldots + a_ne_n + b_1ie_1 + \ldots + b_nie_n \mid a_k, b_k \in \mathbb{R}\}$

И причём такая запись тоже единственная. Выходит, что $e_1, e_2, \dots, e_n, ie_1, ie_2, \dots, ie_n$ — базис в $V_{\mathbb{R}}$, в котором $2n=2\dim V$ элементов.

Определение. Комплексификация пространства $W - \mathfrak{m}o$ множество $W \times W = W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\}$ с операциями $(u_1,v_1)+(u_2,v_2)=(u_1+u_2,v_1+v_2), (a,b)(u,v)=(au-bv,av+bu).$

 $\mathbf{\Pi}$ ример. $\mathbb{R}^{\mathbb{C}} = \mathbb{R}$.

Утверждение. В нём выполняются все 8 аксиом векторного пространства над \mathbb{C} .

W отождествляется подмножеством $\{(u,0) \mid u \in W\}$. Действительно

$$w \in W \Leftrightarrow (w,0) \in W^{\mathbb{C}}; \ i(w,0) = (0,w) \in W^{\mathbb{C}}$$

В итоге $\forall (u,v) \in W^{\mathbb{C}}$ представим в виде

$$(u,v) = (u,0) + (0,v) = (u,0) + i(v,0) = u + iv$$

To есть $W^{\mathbb{C}} = \{u + iv \mid u,v \in W\}.$

Предложение. $\dim W^{\mathbb{C}} = \dim W$

Замечание. $3 decb \ W^{\mathbb{C}} - npocmpancmbo \ нad \ \mathbb{C}, \ a \ W - нad \ \mathbb{R}.$

Доказательство. Пусть e_1, \ldots, e_n — базис в W. Тогда

$$W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\} = \{(a_1e_1 + a_2e_2 + \ldots + a_ne_n, b_1e_1 + b_2e_2 + \ldots + b_ne_n) \mid a_k,b_k \in \mathbb{R}\} = \{(a_1e_1,b_1e_1) + \ldots + (a_ne_n,b_ne_n)\} = \{(a_1+ib_1)e_1 + \ldots + (a_n+ib_n)e_n\} = \{z_1e_1 + \ldots + z_ne_n \mid z_k \in \mathbb{C}\}$$

То есть выходит, что e_1,\ldots,e_n — базис в $W^{\mathbb{C}}.$

Сумма подпространств

Пусть V — конечномерное векторное пространство, а U и W — подпространства (в качестве упражнения лектор предлагает доказать, что их пересечение — тоже подпространство).

Определение. Сумма подпространств $U\ u\ W\ -\$ это множество.

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Замечание. $\dim (U \cap W) \leq \dim U \leq \dim (U + W)$

Пример. Двумерные плоскости в пространстве \mathbb{R}^3 содержат общую прямую.

Теорема. dim $(U \cap W)$ = dim U + dim W – dim (U + W)

Доказательство. Положим $p=\dim(U\cap W),\ k=\dim U,\ m=\dim W.$ Выберем базис $a=\{a_1,\ldots,a_p\}$ в пересечении. Его можно дополнить до базиса W и до базиса U. Значит $\exists b=\{b_1,\ldots,b_{k-p}\}$ такой, что $a\cup b$ — базис в U и $\exists c=\{c_1,\ldots,c_{m-p}\}$ такой, что $a\cup c$ — базис в W. Докажем, что $a\cup b\cup c$ — базис в U+W.

Во-первых, докажем, что U+W порождается множеством $a\cup b\cup c$.

$$v \in U + W \Rightarrow \exists u \in U, w \in W \colon v = u + w$$

$$u \in U = \langle a \cup b \rangle \subset \langle a \cup b \cup c \rangle$$

$$w \in W = \langle a \cup c \rangle \subset \langle a \cup b \cup c \rangle$$

$$\Rightarrow v = u + w \in \langle a \cup b \cup c \rangle \Rightarrow U + W = \langle a \cup b \cup c \rangle$$

Во-вторых, докажем линейную независимость векторов из $a \cup b \cup c$.

Пусть скаляры $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{k-p}, \gamma_1, \ldots, \gamma_{m-p}$ таковы, что:

$$\underbrace{\alpha_1 a_1 + \ldots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}}_{y} + \underbrace{\gamma_1 c_1 + \ldots + \gamma_{m-p} c_{m-p}}_{z} = 0$$

$$x + y + z = 0$$

$$z = -x - y$$

$$z \in W$$

$$-x - y \in U \cap W$$

$$\Rightarrow \exists \lambda_1, \ldots, \lambda_p \in F \colon z = \lambda_1 a_1 + \ldots + \lambda_p a_p$$

Тогда $\lambda_1 a_1 + \ldots + \lambda_p a_p - \gamma_1 c_1 - \ldots - \gamma_{m-p} c_{m-p} = 0$. Но $a \cup c$ — базис W. Следовательно, $\lambda_1 = \ldots = \lambda_p = \gamma_1 = \ldots = \gamma_{m-p} = 0$. Но тогда $0 = x + y = \alpha_1 a_1 + \ldots + \alpha_p a_p + \beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}$. Но $a \cup b$ — базис $U + W \Rightarrow \alpha_1 = \ldots = \alpha_p = \beta_1 = \ldots = \beta_{k-p} = 0$. Итого, все коэффициенты равны нулю и линейная независимость тем самым доказана. То есть $a \cup b \cup c$ — базис U + W.

$$\dim(U+W) = |a \cup b \cup c| = |a| + |b| + |c| = p + k - p + m - p = k + m - p =$$

$$= \dim U + \dim W - \dim(U \cap W)$$

Определение. Если $U \cap W = \{0\}$, то U + W называется прямой суммой.

Следствие. В таком случае $\dim (U+W) = \dim U + \dim W$.

Пример. U - nлоскость, W - nрямая в \mathbb{R}^3 .

Переход к новому базису

Пусть V — векторное пространство, $\dim V = n, e_1, \dots, e_n$ — базис. То есть

$$\forall v \in V \quad \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_{1} = c_{11}e_{1} + c_{21}e_{2} + \dots + c_{n1}e_{n}$$

$$e'_{2} = c_{12}e_{2} + c_{22}e_{2} + \dots + c_{n2}e_{n}$$

$$\vdots$$

$$e'_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$$

Обозначим матрицу $C = (c_{ij})$. Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$.

Предложение. e_1',\ldots,e_n' образуют базис тогда и только тогда, когда $\det C \neq 0$.

Доказательство.

 $[\Rightarrow] e'_1, \dots, e'_n$ — базис, а значит $\exists C' \in M_n$:

$$(e_1, \dots, e_n) = (e'_1, \dots, e'_n) C' = (e_1, \dots, e_n) C' C$$

$$E = CC'$$

$$C' = C^{-1} \Leftrightarrow \exists C^{-1} \Leftrightarrow \det C \neq 0$$

 $[\Leftarrow] \det C \neq 0 \Rightarrow \exists C^{-1}$. Покажем, что e_1', \dots, e_n' в таком случае линейно независимы. Пусть $x_1e_1' + x_2e_2' + \dots + x_ne_n' = 0$. Тогда можно записать

$$(e'_1, e'_2, \dots, e'_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

$$(e_1, \dots, e_n) C \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

Поскольку (e_1,\dots,e_n) — базис, то $C\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}=0$. Умножая слева на обратную матрицу, получаем, что $x_1=x_2=\dots=x_n=0$