

Housekeeping

- Materials posted on BB (waiting for library)
- Will grade first 2 HWs this week

Correlation and Causation

- Correlation is a statistical measure of association that describes how strongly and in what direction two variables are related.
- Correlation ≠ Causation

Recap

- Pearson's r linear, continuous data
- Spearman's ρ rank-based, monotonic
- Kendall's τ concordant/discordant pairs, robust in small samples
- Point-Biserial continuous vs. binary
- Partial Correlation controls for confounders

Correlation in Data Science

- Guides feature selection & redundancy checks
- Identifies candidate relationships for models
 - Remember inference vs exploration
- Helps spot spurious associations
- Sets up the move toward causal reasoning

Beyond Classical Correlation

- Why More Measures?
 - Pearson, Spearman, Kendall → continuous / rank data
 - But... data often comes as categories or sets
 - Need similarity metrics for:
 - Recommender systems
 - Text analysis
 - Categorical survey data

Jaccard Similarity Index/Tanimoto

- Range: 0 = no overlap →
 1 = perfect overlap
 - Examples:
 - Users who liked movie X and movie Y
 - Shared words between two documents

$$J(A,B) = rac{|A\cap B|}{|A\cup B|}$$

Example

- User A liked {Star Wars, Titanic, Inception, Avatar}
- User B liked {Titanic, Inception, Matrix}
- Intersection = {Titanic, Inception} = 2
- Union = {Star Wars, Titanic, Inception, Avatar, Matrix} = 5
- Tanimoto = 2 / 5 = 0.4

Categorical Correlation: Cramér's V

- Definition: Association between two categorical variables
- k = # of columns, r = # of rows
- Range: 0 = no association, 1 = perfect association
- Based on Chi-square test of independence
- Example: Gender × Favorite Ice Cream Flavor

$$V=\sqrt{rac{\chi^2/n}{\min(k-1,r-1)}}$$

Cramer's V Example

$$V = \sqrt{rac{\chi^2/n}{\min(k-1,r-1)}}$$

• $\chi^2 \approx 0.67$ and Cramér's V ≈ 0.289

Measures of Association

- Jaccard/Tanimoto: set similarity, sparse binary features, recommendations, text mining
- Cramér's V: categorical × categorical relationships, survey/experimental data
- Complements Pearson/Spearman by handling non-numeric data

Causation in Data Science

Correlation to Causation

- Correlation: two variables move together.
- Causation: changing one variable changes the other (very hard to measure, this is more conceptual)
- In real data, relationships can be misleading because of:
 - Confounders (hidden common causes)
 - Mediators (indirect causal paths)
 - Colliders (common effects that distort correlations)

Confounders

- A confounder is a variable that influences both X and Y.
- Creates a spurious association between X and Y.
- Key: If we don't account for confounders, we may wrongly conclude X causes Y.

Confounder Generalizable Logic

- Confounder must:
 - Be associated with the independent variable (X).
 - Be associated with the dependent variable (Y).
 - Not lie on the causal pathway from $X \rightarrow Y$.

Confounder Example

- Observed: People who carry lighters are more likely to get lung cancer.
- Hidden confounder: Smoking.
- Smoking → people carry lighters.
- Smoking → higher lung cancer risk.
- So the lighter–cancer correlation is spurious.

Naive View: Lighter ↔ Cancer?

How are we going to do this?

Partial Correlation

- Naive correlation (Lighter ←→ Cancer): 0.22
- Partial correlation (Lighter ←→ Cancer | Smoking):
 0.01
- Interpretation: once we control for Smoking, the lighter—cancer link disappears.
- Smoking is the real cause, lighters are just correlated because of the confounder.

Mediator

- A mediator explains how causality flows and usually should not be adjusted away if you care about the total effect.
 - Be caused by the independent variable (X).
 - Be associated with the dependent variable (Y).
 - Lie on the causal pathway from $X \rightarrow Y$.

Mediator Example

- Does higher education lead to higher income — and if so, is the effect direct, or does it work through the kinds of jobs people get?
- Education → better jobs → higher income.
- The effect of education on income is partly explained through job type

What will the partial correlation show?

Partial Correlation: Mediator Example

- Naive correlation (Education ← Income): 0.50
- Partial correlation (Education → Income | Job Type): 0.33
- Interpretation: part of Education's effect on Income flows through Job Type.
- The correlation weakens **but doesn't vanish** → evidence of mediation.

Collider

- A collider is a variable that:
 - Is influenced by both X and Y.
 - Conditioning on Z
 produces an artificial
 association between X
 and Y.

Collider Example

- Among admitted students, why do we see that higher GPA applicants seem less athletic — is there really a trade-off, or is this a statistical artifact of how admissions decisions are made?
- Why? Admissions depends on both GPA and athletics.
 - GPA → Admission
 - Athletics → Admission
- If we condition on "admitted students" (the collider), GPA and athletics appear negatively correlated, even if they aren't in the full population.
 - Among admitted students:
 - If a student has a low GPA, they probably got in because of strong athletics.
 - If a student has weak athletics, they probably got in because of a high GPA.
 - This creates an artificial negative correlation between GPA and athletics in the admitted group.

What will the partial correlation show?

Collider Partial Correlation

- Scenario: GPA & Athletics, with Admission as a collider
- Naive correlation (GPA ← Athletics, whole population): ≈ 0.01
- Partial correlation (GPA ← Athletics | Admission): ≈ –0.19
- Interpretation:
 - GPA and Athletics are independent in the population.
 - When we control for Admission (the collider), a false negative correlation is created.
 - Conditioning on a collider can introduce bias instead of removing it.

Summary

- Confounder: must be controlled to avoid false inference.
- Mediator: don't block it if you want the total effect.
- Collider: never control for it it creates bias.

Summary

Partial Correlation Outcomes

Scenario	Naive Correlation	Partial Correlation	Interpretation
Confounder (Lighter– Cancer)	~0.22	~0.01	Effect vanishes → confounder explained the spurious link.
Mediator (Education– Income)	~0.50	~0.33	Effect weakens \rightarrow mediator explains part of the effect.
Collider (GPA–Athletics)	~0.01	~-0.19	Effect appears → conditioning on collider creates a false link.

Moving Forward

Partial Correlation

- Measures the relationship between X and Y after removing the influence of Z.
- Extends correlation to "control for" one or more variables.
- Useful for conceptual understanding before regression.
- Regression (coming soon)
 - Estimates how much Y changes when X changes, while holding other variables constant.
 - Provides coefficients, significance tests, and predictions.
 - More flexible for multiple confounders and complex models.
- Takeaway:
 - Partial correlation gives a statistical snapshot of adjusted relationships.
 - Regression generalizes this idea and will be our main tool going forward.