

Relaciones binarias de equivalencia

Cristina Jordán Lluch

Instituto de Matemática Multidisciplinar Departamento de Matemática Aplicada Universitat Politècnica de València

"Tener la misma forma que"

A tiene la misma forma que A

A tiene la misma forma que B

B tiene la misma forma que A

A tiene la misma forma que B y

B tiene la misma forma que C _____

A tiene la misma forma que C

Propiedades de la relaciones binarias

```
(En \mathbb{C}: \forall A,B \in \mathbb{C} A R B si A tiene la misma forma que B)
Sea R una relación en CxC.
Se dice que
R es reflexiva si
                       ∀x∈C
                                   x R x
                                                   (A tiene la misma forma que A)
R es simétrica si
                        \forall x,y \in C  x R y entonces y R x
                                                   (A tiene la misma forma que B entonces
                                                                  B tiene la misma forma que A)
R es transitiva si
                            \forall x,y,z \in C  x R y y y R z entonces x R z
                                                  (A tiene la misma forma que B y
                                                   B tiene la misma forma que C entonces
                                                                  A tiene la misma forma que C)
```

Definición

Sea R una relación en CxC.

Se dice que R es relación binaria de equivalencia si es reflexiva simétrica y transitiva.

Sea el conjunto C y la relación "tener la misma forma que "

Llamamos

Clase = conjunto formado por todas las figuras de C que tienen la misma forma que

Clase \star = conjunto formado por todas las figuras de C que tienen la misma forma que \star

Clase = conjunto formado por todas las figuras de C que tienen la misma forma que

Clase ◆ = conjunto formado por todas las figuras de C que tienen la misma forma que ◆

Relación binaria de equivalencia

Sea R una relación en CxC.

Se dice que R es relación binaria de equivalencia si es reflexiva simétrica y transitiva.

Sea R una relación de equivalencia en C.

Llamamos clase de equivalencia del elemento $a \in C$ respecto de R al subconjunto de C formado por todos los elementos x de C tal que x R a ó a R x

Notación $[a] = [a]_R = \bar{a}$

Representación simbólica de la definición [a] = $\{ x \in C / x R a \}$

Sea el conjunto C y la relación "tener la misma forma que "

Llamamos

Clase = conjunto formado por todas las figuras de C que tienen la misma forma que

Clase \star = conjunto formado por todas las figuras de C que tienen la misma forma que \star

Clase = conjunto formado por todas las figuras de C que tienen la misma forma que

Clase ◆ = conjunto formado por todas las figuras de C que tienen la misma forma que ◆

El conjunto {Clase ▲, Clase ★, Clase ●, Clase ◆ }
se llama conjunto cociente de C respecto de
la relación R= tener la misma forma que

Relación binaria de equivalencia

Sea R una relación en CxC.

Se dice que R es relación binaria de equivalencia si es reflexiva simétrica y transitiva.

Sea R una relación de equivalencia en C.

Llamamos clase de equivalencia del elemento $a \in C$ respecto de R al subconjunto de C formado por todos los elementos x de C tal que x R a ó a R x

Notación $[a] = [a]_R = \bar{a}$

Representación simbólica de la definición [a] = $\{ x \in C / x R a \}$

➤ Al conjunto formado por todas las clases de equivalencia de la relación R, se le denomina conjunto cociente y se denota por

Notación C/R

Representación simbólica de la definición $C/R = \{ [a] / a \in C \}$

Observamos

Dados dos elementos de C,

- Si tienen la misma forma están en la misma caja y si están en la misma caja tienen la misma forma

Propiedades de una RBE

Sea R una relación binaria de equivalencia en CxC.

R verifica las siguientes propiedades:

1.
$$\forall$$
 a, b \in C a R b \Leftrightarrow [a] = [b]

Si tienen la misma forma están en la misma caja y si están en la misma caja tienen la misma forma es decir,

A misma forma que $B \Leftrightarrow$ "caja de A"="caja de B"

Observamos

Dados dos elementos de C,

- Si tienen la misma forma están en la misma caja y si están en la misma caja tienen la misma forma
- la "caja" en la está A es la misma que la "caja" en que está B

la "caja" de A y la de B no tienen ningún elemento en común

Propiedades de una RBE

Sea R una relación binaria de equivalencia en CxC.

R verifica las siguientes propiedades:

- 1. \forall a, b \in C a R b \Leftrightarrow [a] = [b]
- 2. $\forall a, b \in C$ [a] = [b] \lor [a] \cap [b] = \emptyset

si considero A y B,

la "caja" en la está A es la misma que la "caja" en que está B

la "caja" de A y la de B no tienen ningún elemento en común

Observamos

Dados dos elementos de C,

- Si tienen la misma forma están en la misma caja y si están en la misma caja tienen la misma forma
- la "caja" en la está A es la misma que la "caja" en que está B o la "caja" de A y la de B no tienen ningún elemento en común
- Cada uno de los elementos está en una "caja" (i.e., la unión de las cajas da el conjunto total C), ningún elemento está en dos "cajas", y no hay ninguna "caja" vacía.

Propiedades de una RBE

Sea R una relación binaria de equivalencia en CxC.

R verifica las siguientes propiedades:

1.
$$\forall$$
 a, b \in C a R b \Leftrightarrow [a] = [b]

2.
$$\forall a, b \in C$$
 [a] = [b] \lor [a] \cap [b] = \emptyset

3. El conjunto cociente es una partición de C

(es decir, i)
$$\bigcup_{x \in C} [x] = C$$

ii) $\forall [a], [b] \in C/R$ $[a] \cap [b] = \emptyset$
iii) $\forall x \in C$ $[x] = \emptyset$

Cada uno de los elementos de C está en una "caja" (i.e., la unión de las cajas da el conjunto total C), ningún elemento de C está en dos "cajas", y no hay ninguna "caja" vacía

Resumiendo

Si dos elementos están en la misma "caja"

- \forall a, b ∈ C a R b \Leftrightarrow [a] = [b] Tienen la misma forma

- \forall a, b \in C [a] = [b] \lor [a] \cap [b] = ϕ Tienen forma distinta a cualquier otro que esté fuera de su "caja"

El conjunto cociente es una partición de C

La unión de los elementos de las distintas

"cajas" es el conjunto C,

ningún elemento de C está en dos "cajas",

y no hay ninguna "caja" vacía

Ejemplo de RBE: Congruencia

Dado un número entero positivo m definimos, en el conjunto de los números enteros Z, la siguiente relación binaria:

$$a R b \leftrightarrow a - b es un múltiplo de m$$

R es una relación de equivalencia, a la que se denomina relación de congruencia módulo m.

Notación Al conjunto cociente Z/R lo denotaremos por Z_m

Si [a] es la clase de equivalencia del número entero a, entonces

$$Z_{m} = \{ [0], [1], [2], ..., [m-1] \}$$

Notación Para esta relación, en lugar de a R b se escribe

$$a \equiv b (m)$$
 o $a \equiv b (mod m)$

y se lee «a es congruente con b módulo m».

Ejemplos de relaciones binarias de equivalencia

Cristina Jordán Lluch

Instituto de Matemática Multidisciplinar Departamento de Matemática Aplicada Universitat Politècnica de València

Recordemos

Sea R una relación en CxC. Se dice que

- ightharpoonup R es **reflexiva** si $\forall x \in C$ $x \in R$
- ightharpoonup R es **simétrica** si $\forall x, y \in C$ x R y entonces y R x
- ightharpoonup R es **transitiva** si \forall x, y, z \in C x R y \land y R z entonces x R z

Recordemos

Sea R una relación en CxC.

- Se dice que R es relación binaria de equivalencia si es reflexiva simétrica y transitiva.
- Sea R una relación de equivalencia en C.

Llamamos clase de equivalencia del elemento $a \in C$ respecto de R al subconjunto de C formado por todos los elementos x de C tal que x R a o o o R o

Notación
$$[a] = [a]_R = \bar{a}$$

Representación simbólica de la definición $[a] = \{ x \in C / x R a \}$

Al conjunto formado por todas las clases de equivalencia de la relación R, se le denomina conjunto cociente y se denota por

Notación C/R

Representación simbólica de la definición $C/R = \{ [a] / a \in C \}$

Sea $A = \{1, 2, 3, 4, 5\}.$

En A consideramos la relación

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (2, 4), (4, 2)\}$$

- a) ¿Es relación binaria de equivalencia?
- b) En caso afirmativo determina su conjunto cociente

Solución

No es relación binaria de equivalencia porque no es simétrica, ya que existe el par (1,3) y no el (3,1)

Sea $A = \{1, 2, 3, 4, 5\}.$

En A consideramos la relación

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (2, 4), (2, 5), (3, 1), (4, 2), (5,2)\}$$

- a) ¿Es relación binaria de equivalencia?
- b) En caso afirmativo determina su conjunto cociente

Solución

No es relación binaria de equivalencia porque no es transitiva, ya que existen los pares (4,2) y (2,5) y no el (4,5)

Sea
$$A = \{1, 2, 3, 4, 5\}.$$

En A consideramos la relación

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (3, 1), (2, 4), (4, 2)\}$$

- a) ¿Es relación binaria de equivalencia?
- b) En caso afirmativo determina su conjunto cociente

Solución

La relación es reflexiva, simétrica y transitiva, por lo tanto es de equivalencia

Clases:
$$[1]=\{1,3\}=[3]$$

 $[2]=\{2,4\}=[4]$
 $[5]=\{5\}$

Conjunto cociente A/R= {[1], [2], [5]}

Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8\}.$

En A consideramos la relación

 $\forall x, y \in A \quad x R y \longleftrightarrow x e y tienen el mismo número de divisores$

- a) ¿Es relación binaria de equivalencia?
- b) En caso afirmativo determina su conjunto cociente

Solución

La relación es reflexiva, simétrica y transitiva, por lo tanto es de equivalencia

1 tiene 1 divisor
2 tiene 2 divisores
3 tiene 2 divisores
4 tiene 3 divisores
5 tiene 2 divisores
6 tiene 4 divisores
7 tiene 2 divisores
8 tiene 4 divisores

Clases

Conjunto cociente

Relaciones de congruencia

Cristina Jordán Lluch

Instituto de Matemática Multidisciplinar Departamento de Matemática Aplicada Universitat Politècnica de València

¿Qué es la división entera de a entre m?

Ejemplo 1

Si a=14 y m=3 la división entera de 14 entre 3 da como resultado un cociente entero c_{14} y resto r_{14} , es decir,

14
$$\underline{3}$$
 14 = 4.3 + 2 4 ϵ Z, 2 ϵ N, 0 ϵ 2 ϵ 3-1 2 4 ϵ Z, $r_a \epsilon$ N, 0 ϵ R ϵ M-1

Ejemplo 2

Si a=-14 y m=3 la división de -14 entre 3 da como resultado un cociente entero c_{-14} y resto r_{-14} , es decir,

-14
$$\underline{13}$$
 -14 = (-4).3 + (-2) $\underline{} 4 \in \mathbb{Z}$,
-2 -4 $a = c_a \cdot m + r_a \quad c_a \in \mathbb{Z}$

A fin de que la expresión de a tenga el mismo aspecto que la del ejemplo 1 a sumamos y restamos -3 al segundo miembro

$$-14 = (-4).3 + (-2) = (-4).3 + (-3) + (-2) - (-3) = = (-5).3 + 1$$

Si llamamos $c_a = -5$, $r_a = 1$ podemos escribir $a = c_a \cdot m + r_a$ $c_a \in Z$, $r_a \in N$, $0 \le r_a \le m-1$

Por tanto en general

si a es un número entero y m es un número natural se verifica que

$$a = c_a.m + r_a$$
 para algún $c_a \in Z$, $r_a \in N$, $0 \le r_a \le m-1$

Consideremos en el conjunto de los números enteros Z, la siguiente relación binaria:

a R b \leftrightarrow a y b tienen el mismo resto al dividir por 3

(i.e.,
$$a \ \underline{3} \ r \ c_a$$
 $y \ b \ \underline{3}$)

Observaciones

$$a = c_a.3 + r_a$$
 para algún $c_a \in Z$, $r_a \in N$, $0 \le r_a \le 3-1 = 2$

$$b = c_b.3 + r_b$$
 para algún $c_b \in Z$, $r_b \in N$, $0 \le r_b \le 3-1 = 2$

Luego los únicos restos posibles en este caso son 0, 1 y 2

Recordemos

Sea R una relación en CxC.

- Se dice que R es relación binaria de equivalencia si es reflexiva simétrica y transitiva.
- Sea R una relación de equivalencia en C.

Llamamos clase de equivalencia del elemento $a \in C$ respecto de R al subconjunto de C formado por todos los elementos x de C tal que x R a o o o R o

Notación
$$[a] = [a]_R = \bar{a}$$

Representación simbólica de la definición $[a] = \{ x \in C / x R a \}$

Al conjunto formado por todas las clases de equivalencia de la relación R, se le denomina conjunto cociente y se denota por

Notación C/R

Representación simbólica de la definición $C/R = \{ [a] / a \in C \}$

Consideremos en el conjunto de los números enteros Z, la siguiente relación binaria:

a R b ↔ a y b tienen el mismo resto al dividir por 3

(i.e.,
$$a \ \underline{3} \ y \ b \ \underline{3}$$
)
$$r \ c_a \ r \ c_b$$

- R es una relación de equivalencia
- Clases de equivalencia

 \triangleright Conjunto cociente Z/R (lo denotamos con Z₃)

$$Z_3 = \{ [0], [1], [2] \}$$

Propiedad

Si a y b son dos números enteros, a > b, y m, es un número natural se verifica que a y b tienen el mismo resto al dividir por m si y sólo si $\exists k \in \mathbb{Z}$ tal que a - b = km

Sabemos que:

Si a es un número entero y m es un número natural, se verifica que la división entera de a entre m da a como resultado un cociente entero ca y resto ra, es decir,

$$a \quad \underline{m}$$
 c_a

$$a = c_a.m + r_a$$
 $c_a \in Z$, $r_a \in N$, $0 \le r_a \le m-1$

Análogamente con un entero b tendríamos

$$b = c_b \cdot m + r_b$$
 $c_b \in Z$, $r_b \in N$, $0 \le r_b \le m-1$

Por tanto,

$$a - b = c_a \cdot m + r_a - c_b \cdot m + r_b = (c_a - c_b) \cdot m + (r_a - r_b)$$
 con $c_a - c_b \in Z$, $r_a - r_b \in N$

$$c_a - c_b \in Z$$
, $r_a - r_b \in N$

Es decir, podemos afirmar que

$$a - b = (c_a-c_b) \cdot m + (r_a - r_b)$$
 con $c_a - c_b \in Z$, $r_a - r_b \in N$

Propiedad

Si a y b son dos números enteros, a > b, y m es un número natural se verifica que

a y b tienen el mismo resto al dividir por m si y sólo si $\exists k \in \mathbb{Z}$ tal que a - b = km

Demostración

Por la transparencia anterior sabemos que si

$$a = c_a.m + r_a$$
 $c_a \in Z$, $r_a \in N$, $0 \le r_a \le m-1$ y

$$b = c_b.m + r_b$$
 $c_b \in Z$, $r_b \in N$, $0 \le r_b \le m-1$ entonces

$$a - b = (c_a - c_b) \cdot m + (r_a - r_b)$$
 con $c_a - c_b \in Z$, $r_a - r_b \in N$

 \longrightarrow) Supongamos que a y b tienen el mismo resto al dividir por m, es decir, $r_a = r_b$, entonces

$$a - b = (c_a - c_b) . m$$

Como c_a , $c_b \in Z$ entonces $c_a - c_b \in Z$,

si llamamos $k = c_a - c_b$,

Obtenemos el resultado buscado $\exists k \in \mathbb{Z}$ tal que a - b = k m

Propiedad

Si a y b son dos números enteros, a > b, y m es un número natural se verifica que a y b tienen el mismo resto al dividir por m si y sólo si $\exists k \in \mathbb{Z}$ tal que a - b = kmDemostración

Por la transparencia anterior sabemos que si

$$\begin{split} a &= c_a.m + r_a & c_a \, \epsilon \, \, Z, \ \, r_a \, \epsilon \, \, N, \quad 0 \, \leqslant \, r_a \, \leqslant \, m\text{-}1 \quad y \\ \\ b &= c_b.m \, + \, r_b & c_b \, \epsilon \, \, Z, \ \, r_b \, \epsilon \, \, N, \quad 0 \, \leqslant \, r_b \, \leqslant \, m\text{-}1 \, \, \text{entonces} \\ \\ a &- b \, = \, (c_a\text{-}c_b) \, . \, \, m \, + (r_a \, - \, r_b) & \text{con} \quad c_a\text{-}c_b \, \epsilon \, \, Z, \quad r_a \, - \, r_b \, \epsilon \, \, N \end{split}$$

 \leftarrow Supongamos que $\exists k \in \mathbb{Z}$ tal que a - b = km, entonces podemos afirmar que

k.m =
$$(c_a - c_b) \cdot m + (r_a - r_b)$$
 de donde
$$(k - (c_a - c_b)) \cdot m = r_a - r_b \quad \text{con} \quad k - (c_a - c_b) \in Z, \ 0 \le r_a \le m-1, \ 0 \le r_b \le m-1$$

Propiedad

Si a y b son dos números enteros, a > b, y m es un número natural se verifica que a y b tienen el mismo resto al dividir por m si y sólo si $\exists k \in \mathbb{Z}$ tal que a - b = kmDemostración

 \leftarrow) Supongamos que $\exists k \in \mathbb{Z}$ tal que a - b = km, entonces podemos afirmar que

Por tanto,

 $r_a - r_b = 0$, es decir,

 $r_a = r_b$

Hemos obtenido el resultado buscado, a y b tienen el mismo resto al dividir por m

Consideremos en el conjunto de los números enteros Z, la siguiente relación binaria:

a R b \leftrightarrow a y b tienen el mismo resto al dividir por 3

(i.e.,
$$a \quad 3 \quad y \quad b \quad 3$$
)
 $r \quad c_a \quad r \quad c_b$

$$\leftrightarrow$$
 a – b es múltiplo de 3 (i.e., $\exists k \in Z$ tal que a – b = 3.k)

Relaciones de congruencia

Dado un número entero positivo m, m>1, definimos, en el conjunto de los números enteros Z, la siguiente relación binaria:

```
a \mathbf{R} b \leftrightarrow a y b tienen el mismo resto al dividir por m \leftrightarrow a - b es un múltiplo de m (i.e., \exists k \in \mathbb{Z} tal que a-b=km)
```

R es una relación de equivalencia, a la que se denomina relación de congruencia módulo m.

Notación

Al conjunto cociente Z/R lo denotamos por Z_m Si [a] es la clase de equivalencia del número entero a, entonces

$$Z_{m} = \{ [0], [1], [2], ..., [m-1] \}$$

Para esta relación, en lugar de a R b se escribe

$$a \equiv b (m) o a \equiv b (mod m)$$

y se lee «a es congruente con b módulo m».

