Probabilidade e Estatística Matemática I

Parte 1: Probabilidade

Silva, J.L.P.

Junho de 2022

Apresentação da disciplina

Ementa

- Parte I (Probabilidade). Profs: José Luiz Padilha e Anderson Ara
 - Probabilidade e variáveis aleatórias, funções de probabilidade, densidade probabilidade.
 - Vetores aleatórios, distribuição conjunta, marginal e condicional.
 - Esperança, variância e covariância.
 - Principais distribuições de probabilidade univariada e multivariadas.
 - Funções de variáveis aleatórios, função geradora de momentos, cumulantes e característica.
 - Desigualdades, convergência de variáveis aleatórios e teorema do limite central.
- Parte II (Inferência). Profs: Wagner Bonat e Paulo Justiniano
 - Modelagem estatística e inferência.
 - Método da máxima verossimilhança e suas propriedades.
 - Inferência Bayesiana.

Procedimentos Didáticos e Avaliação

- Disciplina dividida em 4 partes: 2 partes cobrindo Probabilidade e 2 partes cobrindo Inferência.
- Serão feitas 4 avaliações, sendo uma avaliação por professor.
- Teremos listas de exercícios que servirão como preparativos para a prova.
- O formato da disciplina será híbrido, com aulas online e avaliações presenciais.

As datas das aulas de Probabilidade serão:

- Padilha: 08/06 e 10/06; 15/06 e 17/06; 21/06 e 24/06 [AV1].
- **Ara:** 29/06 e 01/07; 06/07 e 08/07; 13/07 e 15/07 [AV2].

Bibliografia

Wood, S. (2015). Core Statistics. Cambridge: Cambridge University Press.

Silvey, S. D. (1970). Statistical Inference. London: Chapman & Hall.

De Groot, M. H. and M. J. Schervish. (2002). *Probability and statistics*. Boston: Addison-Wesley.

Cox, D. R. and D. V. Hinkley. (1974). *Theoretical Statistics*. London: Chapman & Hall.

Mood, A. M.; Graybill, F. A. and Boes, D. C. (1974). *Introduction to the theory of Statistics*. McGraw-Hill.

Magalhães, M. N. (2015). Probabilidade e variáveis aleatórias. Edusp.

Tipos de probabilidade

Definição clássica (a priori)

Definição Se um experimento aleatório pode resultar em n resultados mutuamente exclusivos e igualmente prováveis e se n_A destes resultados têm um atributo A, então a *probabilidade* de A é a fração n_A/n .

Exemplo Um dado comum é lançado - há seis resultados possíveis - e um dentre os seis números pode aparecer na face superior. Se o dado é *honesto*, os seis resultados são *igualmente prováveis* (é esperado que cada face aparecerá com igual frequência relativa em lançamentos repetidos).

Assim, a probabilidade de sair um número par será 3/6 ou 1/2.

Algumas dificuldades:

- Como podemos definir probabilidades se o dado não for honesto?
- Qual a probabilidade de uma pessoa morrer antes dos 50 anos?

Definição frequentista (a posteriori)

Considera frequências relativas em repetições independentes como o valor da probabilidade.

Voltemos ao exemplo do dado e imagine que repetimos o experimento de lançar o dado de forma independente e registrar a face virada para cima.

0.169 0.171 0.165 0.161 0.168 0.166

Definição frequentista (a posteriori)

Note como as frequências relativas se aproximam do valor real 1/6. A probabilidade é tomada como o *limite* das frequências relativas.

Probabilidade axiomática

Teoria de conjuntos

Cada elemento em uma coleção de objetos será chamado de *ponto* ou *elemento*. A totalidade de pontos é chamada de *espaço*, *universo*, ou *conjunto universal* e será chamado de Ω . Seja ω um elemento ou ponto em Ω .

Exemplo $\Omega = R^2$, em que R^2 é a coleção de pontos ω no plano e $\omega = (x, y)$ é qualquer par de números reais x e y.

Exemplo $\Omega = \{ \text{todos os alunos da UFPR} \}.$

Se ω é um ponto ou elemento do conjunto A, escrevemos $\omega \in A$; se ω não é um elemento de A, escrevemos $\omega \not\in A$.

Teoria de conjuntos: Definições

Definição Subconjunto Se todo elemento de um conjunto A é também um elemento de um conjunto B, então dizemos que A é um *subconjunto* de B, e denotamos por $A \subset B$ ou $B \supset A$.

Definição Conjuntos equivalentes Dois conjuntos A e B são *equivalentes*, ou *iguais*, se $A \subset B$ e $B \subset A$, o que será indicado por A = B.

Definição Conjunto vazio Se A não contém pontos, será chamado de conjunto *vazio*, e denotado por ϕ .

Definição Complemento O *complemento* de um conjunto A em relação ao espaço Ω , denotado por \bar{A}, A^c , ou $\Omega - A$, é o conjunto de todos os pontos que estão em Ω mas não em A.

Teoria de conjuntos: Definições

Sejam A e B dois subconjuntos de Ω .

Definição União A *união* de A e B, denotada por $A \cup B$, define o conjunto que consiste de todos os pontos que estão em A ou B ou ambos.

Definição Intersecção A *intersecção* de A e B, denotada por $A \cap B$ ou AB, define o conjunto de todos dos pontos que estão simultaneamente em A e B.

Definição Diferença O *conjunto diferença*, denotado por A - B, é definido como o conjunto de todos os pontos em A que não estão em B.

Exemplo Seja $\Omega = \{(x, y) : 0 \le x \le 1 \text{ e } 0 \le y \le 1\}$. Defina os seguintes conjuntos:

$$A_{1} = \{(x, y) : 0 \le x \le 1; \ 0 \le y \le 1/2\},$$

$$A_{2} = \{(x, y) : 0 \le x \le 1/2; \ 0 \le y \le 1\},$$

$$A_{3} = \{(x, y) : 0 \le x \le y \le 1\},$$

$$A_{4} = \{(x, y) : 0 \le x \le 1/2; \ 0 \le y \le 1/2\}.$$

Temos:

$$A_4 \subset A_1$$
; $A_4 \subset A_2$; $A_1 \cap A_2 = A_4$;
 $A_2 \cup A_3 = A_4 \cup A_3$; $A_1^c = \{(x, y) : 0 \le x \le 1; \ 1/2 < y \le 1\}$;
 $A_1 - A_4 = \{(x, y) : 1/2 < x \le 1; \ 0 \le y \le 1/2\}$

Sejam Ω, A_1, A_2 e A_3 conforme mostrados nos diagramas de Venn a seguir.

Figura 1: Fonte: Mood et. al (1974)

Figura 2: Fonte: Mood et. al (1974)

Figura 3: Fonte: Mood et. al (1974)

Teoria de conjuntos: Teoremas

Teorema Leis comutativas $A \cup B = B \cup A$ e $A \cap B = B \cap A$.

Teorema Leis associativas
$$A \cup (B \cup C) = (A \cup B) \cup C$$
 e $A \cap (B \cap C) = (A \cap B) \cap C$.

Teorema Leis distributivas
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 e $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Teorema
$$(A^c)^c = A$$
.

Teoria de conjuntos: Teoremas

Teorema $A \cap \Omega = A$; $A \cup \Omega = \Omega$; $A \cap \phi = \phi$; $A \cup \phi = A$.

Teorema $A \cap A^c = \phi$; $A \cup A^c = \Omega$; $A \cap A = A$; $A \cap A = A$.

Teorema Leis de Morgan $(A \cup B)^c = A^c \cap B^c$ e $(A \cap B)^c = A^c \cup B^c$.

Teorema $A - B = A \cap B^c$.

Teoria de conjuntos: Demonstração

Como ilustração de demonstração dos teoremas, mostraremos que $(A \cup B)^c = A^c \cap B^c$, conhecida como Lei de Morgan. Por definição, dois conjuntos são iguais se um está contido no outro.

- (ida) Mostremos que $(A \cup B)^c \subset A^c \cap B^c$. Se $\omega \in (A \cup B)^c$ implica $\omega \notin A \cup B$, que implica $\omega \notin A$ e $\omega \notin B$; isto é $\omega \in A^c$ e $\omega \in B^c$, ou seja, $\omega \in A^c \cap B^c$.
- (volta) Mostremos que $A^c \cap B^c \subset (A \cup B)^c$. Seja $\omega \in A^c \cap B^c$ que significa que ω pertence a ambos A^c e B^c . Então $\omega \not\in A \cup B$, pois, se pertencesse, ω deveria pertencer a pelo menos um dentre A ou B, contradizendo o fato de que ω percente a ambos A^c e B^c . Contudo, $\omega \not\in A \cup B$ significa $\omega \in (A \cup B)^c$, completando a prova.

Teoria de conjuntos: Definições

Definição União e intersecção de conjuntos Seja Λ um conjunto de índices e $\{A_{\lambda}: \lambda \in \Lambda\} = \{A_{\lambda}\}$ uma coleção de subconjuntos de Ω indexados por Λ .

- O conjunto que consiste de todos os pontos que pertencem a A_{λ} para pelo menos um λ é chamado de *união* dos conjuntos $\{A_{\lambda}\}$ e é denotado por $\bigcup_{\lambda \in A_{\lambda}} A_{\lambda}$.
- O conjunto que consiste de todos os pontos que pertencem a A_{λ} para todo λ é chamado de *intersecção* dos conjuntos $\{A_{\lambda}\}$ e é denotado por $\bigcap_{\lambda \in A_{\lambda}} A_{\lambda}$.

Teoria de conjuntos: Teorema

Teorema De Morgan Seja Λ um conjunto de índices e $\{A_{\lambda}\}$ uma coleção de subconjuntos de Ω indexado por Λ . Então

①

$$\left(\bigcup_{\lambda\in A_{\lambda}}A_{\lambda}\right)^{c}=\bigcap_{\lambda\in A_{\lambda}}A_{\lambda}^{c}.$$

$$\left(\bigcap_{\lambda\in\mathcal{A}_{\lambda}}\mathcal{A}_{\lambda}\right)^{c}=\bigcup_{\lambda\in\mathcal{A}_{\lambda}}\mathcal{A}_{\lambda}^{c}.$$

Teoria de conjuntos: Definições e Teorema

Definição Disjuntos ou mutualmente exclusivos Os subconjuntos A e B de Ω são mutualmente exclusivos ou disjuntos se $A \cap B = \phi$. Os subconjuntos A_1, A_2, \ldots são mutualmente exclusivos se $A_i \cap A_j = \phi$, para todo $i \neq j$.

Teorema Se A e B são subconjuntos de Ω , então (i) $A = (A \cap B) \cup (A \cap B^c)$, e (ii) $(A \cap B) \cap (A \cap B^c) = \phi$.

Prova: (i)
$$A = A \cap \Omega = A \cap (B \cup B^c) = (A \cap B) \cup (A \cap B^c)$$
. (ii) $(A \cap B) \cap (A \cap B^c) = (A \cap A) \cap (B \cap B^c) = A\phi = \phi$.

Teorema Se $A \subset B$, então $A \cap B = A$, e $A \cup B = B$.

Definições de espaço amostral e evento

Espaço amostral e evento

Definição O *espaço amostral*, denotado por Ω , é a coleção de todos os resultados possíveis de um experimento.

Definição Um *evento* é um subconjunto de um espaço amostral. A classe de todos os eventos associados com um dado experimento é definido como o *espaço de evento*.

O espaço de eventos é denotado por uma letra latina, geralmente $\mathcal{A},~\mathcal{B}$ ou $\mathcal{F}.$

Espaço amostral e evento: exemplo

Exemplo No lançamento de um dado há seis resultados para a face virada para cima.

Assim

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

Seja o evento $A = \{\text{sai número par}\} = \{2, 4, 6\}.$

Para este experimento o espaço amostral é finito e o espaço de eventos compreende todos os subconjuntos de Ω . Há $2^6=64$ eventos em \mathcal{A} .

Espaço amostral e evento: exemplo

Exemplo O experimento é registrar o número de mortes no trânsito no estado do Paraná no próximo ano.

Qualquer número não negativo é um resultado plausível para este experimento, assim $\Omega=\{0,1,2,\ldots\}$.

 $A = \{\text{menos de 500 mortes}\} = \{0, 1, 2, \dots, 499\}$ é um evento. $A = \{\text{exatamente } i \text{ mortes}\}, i = 0, 1, \dots$ é um evento elementar.

Há um número infinito de pontos no espaço amostral, e cada ponto é um evento (elementar). Cada subconjunto de Ω é um evento.

Espaço amostral e evento: exemplo

Exemplo Selecione uma lâmpada e registre o tempo em horas que ela fica acesa antes de queimar.

Qualquer número não negativo é um resultado plausível deste experimento, e assim $\Omega=\{x:x\geq 0\}$. Para este espaço amostral nem todos os subconjuntos de Ω são eventos.

Contudo, qualquer subconjunto que possa ser exibido será um evento. Por exemplo, seja

 $A = \{a \mid \text{lâmpada funciona por pelo menos } k \mid \text{horas mas queima antes de } m \mid \text{horas} \}.$ = $\{x : k \le x \le m\},$

então A é um evento para qualquer $k \le x \le m$.

Álgebra de eventos: definição

Embora não definimos formalmente até aqui quais subconjuntos de Ω constituem nosso espaço de eventos \mathcal{A} , destacamos algumas propriedades necessárias de \mathcal{A} .

Uma classe de subconjuntos de Ω é uma álgebra de eventos se satisfaz as seguintes propriedades

- $\mathbf{0}$ $\Omega \in \mathcal{A}$.
- 0 Se $A \in \mathcal{A}$, então $A^c \in \mathcal{A}$.
- lacktriangle Se A_1 e $A_2 \in \mathcal{A}$, então $A_1 \cup A_2 \in \mathcal{A}$.

Note que a coleção de todos os subconjuntos de Ω satisfaz as propriedades acima.

Álgebra de eventos: exemplo

Exemplo Considere $\Omega = \{1, 2, 3\}$ e as seguintes coleções de subconjuntos:

$$\begin{split} \mathcal{F}_1 = & \{\phi, \Omega, \{1\}, \{2, 3\}\}; \\ \mathcal{F}_2 = & \{\phi, \Omega, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}\}. \end{split}$$

Vamos verificar que \mathcal{F}_1 é uma álgebra:

- $\Omega \in \mathcal{F}_1$, logo a propriedade (i) está atendida.
- ullet Todos os complementares estão em \mathcal{F}_1 , pois

$$\phi_c = \Omega$$
; $\Omega^c = \phi$; $\{1\}^c = \{2,3\} \in \{2,3\}^c = \{1\}$.

Logo \mathcal{F}_1 satisfaz (ii).

• Verificamos que todas as uniões possíveis e seus complementos estão em \mathcal{F}_1 . Note que $\{1\} \cup \{2,3\} = \Omega \in \mathcal{F}_1$. Logo, (iii) está atendida e \mathcal{F}_1 é uma álgebra.

Álgebra de eventos: teoremas

Teorema

$$\phi \in \mathcal{A}$$
.

Prova Pela propriedade (i) $\Omega \in \mathcal{A}$; por (ii) $\Omega^c \in \mathcal{A}$; mas $\Omega^c = \phi$, logo $\phi \in \mathcal{A}$.

Teorema Se A_1 e $A_2 \in \mathcal{A}$, então $A_1 \cap A_2 \in \mathcal{A}$.

Prova A_1^c e $A_2^c \in \mathcal{A}$; logo $A_1^c \cup A_2^c$ e $(A_1^c \cup A_2^c)^c \in \mathcal{A}$, mas $(A_1^c \cup A_2^c)^c = A_1 \cap A_2$ pela Lei de Morgan.

Teorema Se $A_1, A_2, \ldots, A_n \in \mathcal{A}$, então $\bigcup_{i=1}^n A_i \in \mathcal{A}$ e $\bigcap_{i=1}^n A_i \in \mathcal{A}$.

Prova Segue por indução.

Definição de probabilidade

Função de probabilidade: definição

Definição Uma função de probabilidade $P(\cdot)$ é uma função de conjuntos com domínio na álgebra de eventos \mathcal{A} e contradomínio no intervalo [0,1] que satisfaz os seguintes axiomas de Kolmogorov:

- $P(\Omega) = 1.$
- Se A_1, A_2, \ldots é uma sequência de eventos mutualmente exclusivos¹ em \mathcal{A} e se $A_i \cup A_2 \cup \ldots = \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, então

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i}).$$

¹isto é, $A_i \cap A_i = \phi$ para $i \neq j$; i, j = 1, 2, ...

Função de probabilidade: observação

Muitos autores assumem que o domínio da função de conjuntos é uma sigma-álgebra (σ -álgebra) ao invés de simplesmente álgebra.

Para uma álgebra, temos a propriedade

se
$$A_1$$
 e $A_2 \in \mathcal{A}$, então $A_1 \cup A_2 \in \mathcal{A}$.

Numa σ -álgebra, a propriedade acima é substituída por

Se
$$A_1,A_2,\ldots,A_n,\ldots\in\mathcal{A}$$
, então $\bigcup\limits_{i=1}^{\infty}A_i\in\mathcal{A}.$

Uma σ -álgebra é uma álgebra, mas não vale necessariamente o oposto.

Função de probabilidade: observação

Se o domínio de uma função de probabilidade é uma σ -álgebra, então o axioma (iii) acima pode ser simplificado por

se A_1,A_2,\ldots é uma sequência de eventos mutualmente exclusivo em \mathcal{A} , então $P\left(igcup_{i=1}^{\infty}A_i\right)=\sum\limits_{i=1}^{\infty}P(A_i).$

Um importante teorema, chamado *Teorema da Extensão de Caratheodory*, afirma que se uma função de probabilidade é definida em uma álgebra, então ela pode ser estendida para uma σ -álgebra conveniente.

Importante: \mathcal{A} não pode ser tomada sempre como o conjunto das partes de Ω . A razão é que para Ω suficientemente grande é impossível definir uma função de probabilidade consistente com os axiomas acima.

Propriedades de $P(\cdot)$

Teorema

$$P(\phi) = 0.$$

Prova Tome $A_1 = \phi, A_2 = \phi, A_3 = \phi, \dots$ Pelo axioma (iii)

$$P(\phi) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} P(\phi),$$

que só é válido se $P(\phi) = 0$.

Teorema Se A_1, \ldots, A_n são eventos mutualmente exclusivos em \mathcal{A} , então

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i).$$

Prova Tome $A_{n+1} = \phi, A_{n+2} = \phi, \dots$ Então

$$P\left(\bigcup_{i=1}^n A_i\right) = P\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P(A_i) = \sum_{i=1}^n P(A_i).$$

Teorema Se A é um evento em A, então

$$P(A^c) = 1 - P(A).$$

Prova
$$A \cup A^c = \Omega$$
 e $A \cap A^c = \phi$, logo $P(\Omega) = 1 = P(A \cup A^c) = P(A) + P(A^c)$.

Teorema Se
$$A$$
 e $B \in \mathcal{A}$, então $P(A) = P(A \cap B) + P(A \cap B^c)$ e $P(A - B) = P(A \cap B^c) = P(A) - P(A \cap B)$.

Prova
$$A = (A \cap B) \cup (A \cap B^c)$$
 e $(A \cap B) \cap (A \cap B^c) = \phi$. Logo $P(A) = P(A \cap B) + P(A \cap B^c)$.

Teorema Para quaisquer dois eventos A e $B \in \mathcal{A}$, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ De forma geral, para eventos $A_1, A_2, \ldots, A_n \in \mathcal{A}$

$$P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{j=1}^n P(A_j) - \sum_{i < j} \sum_{k < j < k} P(A_i \cap A_j) + \sum_{i < j < k} \sum_{k < j < k} P(A_i \cap A_j \cap A_k) - ... + (-1)^{n+1} P(A_1 \cap A_2 ... \cap A_n).$$

Prova $A \cup B = A \cup (A^c \cap B)$ e $A \cap (A^c \cap B) = \phi$, logo $P(A \cup B) = P(A) + P(A^c \cap B) = P(A) + P(B) - P(A \cap B)$. A forma geral segue por indução.

Teorema Se A e $B \in \mathcal{A}$ e $A \subset B$, então $P(A) \leq P(B)$.

Prova $B = (B \cap A) \cup (B \cap A^c)$ e $B \cap A = A$. Assim, $B = A \cup (B \cap A^c)$, e $A \cap (B \cap A^c) = \phi$; logo $P(B) = P(A) + P(B \cap A^c)$. A conclusão segue pois $P(B \cap A^c) \ge 0$.

Teorema (desigualdade de Boole) Se $A_1, A_2, \ldots, A_n \in \mathcal{A}$, então $P(A_1 \cup A_2 \cup \ldots A_n) \leq P(A_1) + P(A_2) + \ldots + P(A_n)$.

Prova $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) \le P(A_1) + P(A_2)$. A prova deve ser completada usando indução.

Espaço de probabilidade: definição

Definição Um *espaço de probabilidade* é a trinca $(\Omega, \mathcal{A}, P(\cdot))$, em que Ω é um espaço amostral, \mathcal{A} é uma álgebra de eventos, e $P(\cdot)$ é uma função de probabilidade com domínio \mathcal{A} .

Os três componentes estão relacionados. \mathcal{A} é uma coleção de subconjuntos de Ω , e $P(\cdot)$ é é uma função que tem \mathcal{A} como domínio.

Espaço amostral finito com pontos igualmente prováveis: exemplo

Exemplo Considere o exemplo de lançar dois dados (ou um dado duas vezes). Seja $\Omega = \{(i_1, i_2) : i_1 = 1, \dots, 6; i_2 = 1, \dots, 6\}$. Aqui $i_1 =$ número na face superior do primeiro dado, e $i_2 =$ número na face superior do segundo dado. Há $6 \times 6 = 36$ pontos amostrais. Atribuiremos probabilidade 1/36 a cada ponto. (Ω pode ser mostrado como um *lattice* figura a seguir.)

Defina N(A) como o tamanho, ou número de pontos, de A e seja $A_7 =$ evento em que a soma vale 7, então $A_7 = \{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$. Logo, $N(A_7) = 6$ e $P(A_7) = N(A_7)/N(\Omega) = 6/36 = 1/6$.

Similarmente $P(A_j)$ pode ser calculado para $A_j = \text{total vale } j, j = 1, 2, ..., 12$. Como o número de pontos no evento A pode ser facilmente contado, P(A) pode ser calculada para qualquer evento A.

Espaço amostral finito com pontos igualmente prováveis: exemplo

Figura 4: Fonte: Mood et. al (1974)

Espaço amostral finito sem pontos igualmente prováveis: exemplo

Exemplo Considere um experimento com N resultados, digamos $\omega_1, \omega_2, \ldots, \omega_N$, em que sabe-se que o resultado ω_{j+1} tem o dobra da probabilidade do resultado ω_j , $j=1,\ldots,N-1$, isto é, $p_{j+1}=p_j$, em que $p_i=P(\{\omega_i\})$.

Encontre $P(A_k)$, em que $A_k = \{\omega_1, \omega_2, \dots, \omega_k\}$. Como

$$\sum_{i=1}^{N} p_{j} = \sum_{i=1}^{N} 2^{j-1} p_{1} = p_{1}(1+2+2^{2}+\ldots+2^{N-1}) = p_{1}(2^{N}-1),$$

temos $p_1 = \frac{1}{2^N - 1}$ e $p_j = 2^{j-1}/(2^N - 1)$. Logo,

$$P(A_k) = \sum_{j=1}^k p_j = \sum_{j=1}^k \frac{2^{j-1}}{2^N - 1} = \frac{2^k - 1}{2^N - 1}.$$

Probabilidade condicional e independência

Probabilidade condicional: definição

Assuma um espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$. Dados dois eventos A e B, queremos definir a probabilidade condicional do evento A dado que o evento B ocorreu.

Definição Sejam A e B dois eventos em \mathcal{A} definidos no mesmo espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$. A probabilidade condicional do evento A dado o evento B, denotada por P(A|B), é definida por

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, se $P(B) > 0$,

e não especificada se P(B) = 0.

Probabilidade condicional: exemplo

Exemplo Seja Ω um espaço amostral finito, \mathcal{A} a coleção de todos os subconjuntos de Ω e $P(\cdot)$ a função de probabilidade em que todos os N pontos amostrais $\omega_1, \omega_2, \ldots, \omega_n$ de Ω são igualmente prováveis, ou seja, $P(\{\omega_1\}) = P(\{\omega_2\}) = \ldots = P(\{\omega_N\})$.

Seja $N = N(\Omega)$ o tamanho do conjunto Ω . Para eventos A e B,

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{N(A \cap B)/N}{N(B)/N},$$

em que N(B) é o tamanho do conjunto B.

Para qualquer espaço finito com pontos amostrais igualmente prováveis, os valores de P(A|B) são definidos para quaisquer dois eventos A e B sempre que P(B) > 0.

$P(\cdot|B)$ satisfaz os axiomas

Para um dado evento B para o qual P(B) > 0, $P(\cdot|B)$ é uma função de probabilidade tendo \mathcal{A} como domínio e satisfaz os três axiomas:

- Se A_1, A_2, \ldots é uma sequência de eventos mutualmente exclusivos em \mathcal{A} e se $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, então

$$P\left(\bigcup_{i=1}^{\infty} A_i | B\right) = \frac{P\left(\left(\bigcup_{i=1}^{\infty} A_i\right) \cap B\right)}{P(B)} = \frac{P\left(\bigcup_{i=1}^{\infty} (A_i \cap B)\right)}{P(B)}$$
$$= \frac{\sum_{i=1}^{\infty} P(A_i \cap B)}{P(B)} = \sum_{i=1}^{\infty} P(A_i | B).$$

Teorema

$$P(\phi|B)=0.$$

Teorema Se A_1, \ldots, A_n são eventos mutualmente exclusivos em \mathcal{A} , então

$$P(A_1 \cup \ldots \cup A_n|B) = \sum_{i=1}^n P(A_i|B).$$

Teorema Se A é um evento em A, então

$$P(A^c|B) = 1 - P(A|B).$$

Teorema Se A_1 e $A_2 \in \mathcal{A}$, então $P(A_1|B) = P(A_1 \cap A_2|B) + P(A_1 \cap A_2^c|B)$.

Teorema Para quaisquer dois eventos A_1 e $A_2 \in \mathcal{A}$, então $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) - P(A_1 \cap A_2 | B)$.

Teorema Se A_1 e $A_2 \in \mathcal{A}$ e $A_1 \subset A_2$, então $P(A_1|B) \leq P(A_2|B)$.

Teorema Se $A_1, A_2, \dots, A_n \in \mathcal{A}$, então $P(A_1 \cup A_2 \cup \dots \cup A_n | B) \leq \sum_{i=1}^n P(A_i | B)$.

Teorema de probabilidade total

Teorema Para um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, se B_1, B_2, \ldots, B_n é uma coleção de eventos mutuamente disjuntos em \mathcal{A} satisfazendo $\Omega = \bigcup_{j=1}^n B_j$ e $P(B_j) > 0$ para $j = 1, \ldots, n$, então para todo $A \in \mathcal{A}$,

$$P(A) = \sum_{j=1}^{n} P(A|B_j)P(B_j).$$

Corolário Para um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, seja $B \in \mathcal{A}$ satisfazendo 0 < P(B) < 1, então para todo $A \in \mathcal{A}$,

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c).$$

Obs: o teorema acima é válido se $n = \infty$.

Teorema de Bayes

Teorema Para um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, se B_1, B_2, \ldots, B_n é uma coleção de eventos mutuamente disjuntos em \mathcal{A} satisfazendo $\Omega = \bigcup_{j=1}^n B_j$ e $P(B_j) > 0$ para $j = 1, \ldots, n$, então para todo $A \in \mathcal{A}$ para o qual P(A) > 0,

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum\limits_{j=1}^n P(A|B_j)P(B_j)}.$$

Obs: o teorema é válido se $n = \infty$.

Teorema de Bayes

Corolário Para um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, sejam A e $B \in \mathcal{A}$ satisfazendo P(A) > 0 e 0 < P(B) < 1, então

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}.$$

Teorema de Bayes: exemplo (DeGroot e Schervich; Magalhães)

Exemplo Considere o problema de avaliar a eficiência de um teste para detectar uma doença. Chamamos de *falso-positivo* ao erro em que o teste indica positivo para um paciente que não tem a doença, e *falso-negativo* se o teste não aponta a doença num paciente doente.

Imagine um teste que resulta positivo para não doentes com probabilidade 0,1. Também com probabilidade 0,1 o teste será negativo para pacientes doentes. Se a incidência da doença na população é de 1 para cada 10 mil habitantes, qual é a probabilidade de uma pessoa estar realmente doente se o teste deu positivo?

Note que, estando ou não doente, existe uma probabilidade não nula do teste indicar a presença da doença.

Teorema de Bayes: exemplo (DeGroot e Schervich; Magalhães)

Exemplo (cont) Sejam os eventos

D : a pessoa está doente;

A : o teste é positivo.

Temos as informações: P(D) = 0,0001; $P(A|D^c) = 0,1$ e $P(A^c|D) = 0,1$. E, assim, $P(D^c) = 0,9999$ e P(A|D) = 0,9. Pelo Teorema de Bayes,

$$P(D|A) = \frac{P(A|D)P(D)}{P(A|D)P(D) + P(A|D^c)P(D^c)} = \frac{0.9 \times 0.0001}{0.9 \times 0.0001 + 0.1 \times 0.9999} = 0.0009.$$

Embora pequena, esta probabilidade (cerca de 1 em mil) é cerca de dez vezes a probabilidade da doença na população (1 em 10 mil).

Regra da multiplicação

Teorema Para um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, sejam A_1, A_2, \ldots, A_n eventos em \mathcal{A} para os quais $P(A_1 \cap A_2 \cap \ldots \cap A_n) > 0$, então

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_n|A_1 \cap ... \cap A_{n-1}).$$

Independência de eventos

Definição Para um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, sejam $A \in B$ dois eventos em \mathcal{A} . Dizemos que os eventos $A \in B$ são *independentes* se, e somente se, qualquer uma das seguintes condições é satisfeita

- ① $P(A \cap B) = P(A)P(B)$.
- ① P(A|B) = P(A) se P(B) > 0.
- ① P(B|A) = P(B) se P(A) > 0.

Independência de eventos: demonstração

Prova Para mostrar a igualdade das três condições, basta mostrar que (i) implica (ii), (ii) implica (iii), e (iii) implica (i).

P(A)P(B)/P(B) = P(A), para P(B) > 0; assim (i) implica (ii). • Se P(A|B) = P(A), então P(B|A) = P(A|B)P(B)/P(A) =

• Se $P(A \cap B) = P(A)P(B)$, então $P(A|B) = P(A \cap B)/P(B) =$

- Se P(A|B) = P(A), então P(B|A) = P(A|B)P(B)/P(A) = P(A)P(B)/P(A) = P(B), para P(A) > 0 e P(B) > 0; assim (ii) implica (iii).
- Se P(B|A) = P(B), então $P(A \cap B) = P(B|A)P(A) = P(B)P(A)$, para P(A) > 0; assim (iii) implica (i).

Note que $P(A \cap B) = P(A)P(B)$, se P(A) = 0 ou P(B) = 0.

Independência de eventos: exemplo

Exemplo Considere o experimento de lançar dois dados. Sejam os eventos $A = \{ \text{o total \'e impar} \}$, $B = \{ \text{sai o n\'umero 1 no primeiro lançamento} \}$, e $C = \{ \text{o total \'e sete} \}$.

- A e B são independentes?
- A e C são independentes?
- B e C são independentes?

Temos P(A|B) = 1/2 = P(A), $P(A|C) = 1 \neq P(A) = 1/2$, e P(C|B) = 1/6 = P(C) = 1/6. Assim, $A \in B$ são independentes, A não é independente de C, e $B \in C$ são independentes.

Independência de eventos: teorema

Teorema Se A e B são dois eventos definidos em um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, então A e B^c são independentes, A^c e B são independentes, e A^c e B^c são independentes.

Prova
$$P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A)P(B) = P(A)[1 - P(B)] = P(A)P(B^c)$$

De forma similar para os outros.

Exemplo Suponha que uma máquina produza itens defeituosos com probabilidade p (0) e não defeituosos com probabilidade <math>q igual a 1 - p. Considere que foram selecionados 6 itens aleatoriamente da produção e os resultados são independentes. Vamos obter, inicialmente, a probabilidade de dois dentre os 6 itens serem defeituosos.

O espaço amostral é composto por todas as sequências dos 6 itens, em que cada item pode ser defeituoso ou não. Represente por D_i e N_i se o item i é defeituoso ou não, respectivamente. Por exemplo, a sequência $(N_1D_2N_3N_4D_5N_6)$ indica itens defeituosos na segunda e quinta seleção e não defeituosos nas demais.

Pela independência entre os resultados, temos que

$$P(N_1D_2N_3N_4D_5N_6) = p^2q^4.$$

Exemplo (cont) Essa probabilidade é a mesma para qualquer sequência com dois itens defeituosos, logo:

$$P(\text{dois defeituosos}) = \binom{6}{2} p^2 q^4.$$

Suponha que p é desconhecida mas toma um dos dois valores p=0,01 (operação normal) ou p=0,40 (operação fora do padrão). Sejam B_1 e B_2 os eventos correspondentes aos funcionamentos normal e fora do padrão, respectivamente.

Logo, para qualquer item i,

$$P(D_i|B_1) = 0.01$$
 e $P(D_i|B_2) = 0.40$.

Exemplo (cont) A independência entre os resultados se torna independência condicional. Em particular, dada a ocorrência de B_1 , temos

$$P(N_1D_2N_3N_4D_5N_6|B_1) = P(N_1|B_1)P(D_2|B_1)\cdots P(N_6|B_1).$$

Assim,

$$P(\text{dois defeituosos}|B_1) = \binom{6}{2}0,01^20,99^4 = 1,44 \times 10^{-3};$$

 $P(\text{dois defeituosos}|B_2) = \binom{6}{2}0,40^20,60^4 = 0,311.$

Exemplo (cont) Considere agora que atribuímos probabilidades às escolhas de p. Isso é o que chamamos de probabilidade à *priori* para p. Essas probabilidades expressam nosso conhecimento quanto ao comportamento da máquina e são baseadas, em geral, na experiência anterior.

Assuma que as probabilidades de funcionamento normal e fora do padrão são, respectivamente, $P(B_1) = 0,90$ e $P(B_2) = 0,10$.

Se na amostra de 6 itens dois foram defeituosos, qual seria a *probabilidade* posterior para o evento B_1 ? Em outras palavras, qual a probabilidade de a máquina estar funcionando normalmente se observarmos 2 itens defeituosos?

Exemplo (cont) Pelo teorema de Bayes

$$\begin{split} P(B_1|\text{dois defeituosos}) &= \frac{P(\text{dois defeituosos}|B_1)P(B_1)}{\sum\limits_{i=1}^2 P(\text{dois defeituosos}|B_i)P(B_i)} \\ &= \frac{1,44\times 10^{-3}\times 0,9}{1,44\times 10^{-3}\times 0,9+0,311\times 0,1} = 0,040. \end{split}$$

Observe o efeito da informação da amostra:

- A probabilidade à priori de B₁ era 0,90.
- A probabiliade à posteriori foi consideravelmente reduzida para 0,040.
- Isso reflete o fato da ocorrência de dois itens defeituosos ser muito mais provável quando B_2 acontece, do que quando ocorre o evento B_1 .

Independência de vários eventos: definição

Definição Para um dado espaço de probabilidade $(\Omega, \mathcal{A}, P(\cdot))$, sejam A_1, A_2, \ldots, A_n eventos em \mathcal{A} . Dizemos que os eventos A_1, A_2, \ldots, A_n são *independentes* se, e somente se,

$$P(A_i \cap A_j) = P(A_i)P(A_j), \quad \text{para } i \neq j$$
 $P(A_i \cap A_j \cap A_k) = P(A_i)P(A_j)P(A_k), \quad \text{para } i \neq j, j \neq k, i \neq k$
 \vdots
 $P\left(\bigcap_{i=1}^n A_i\right) = \prod_{i=1}^n P(A_i).$

Independência dois a dois não implica independência

Exemplo Considere o experimento de lançar dois dados. Sejam os eventos $A_1 = \{\text{face impar no primeiro dado}\}, A_2 = \{\text{face impar no segundo dado}\}, e <math>A_3 = \{\text{o total \'e impar}\}.$

Temos

- $P(A_1)P(A_2) = 1/2 \times 1/2 = P(A_1 \cap A_2)$,
- $P(A_1)P(A_3) = 1/2 \times 1/2 = P(A_3|A_1)P(A_1) = P(A_1 \cap A_3)$, e
- $P(A_2)P(A_3) = 1/4 = P(A_2 \cap A_3)$.

Assim, A_1 , A_2 e A_3 são independentes dois a dois. Contudo,

 $P(A_1 \cap A_2 \cap A_3) = 0 \neq 1/8 = P(A_1)P(A_2)P(A_3)$. Logo, A_1 , A_2 e A_3 não são independentes.