

Change is Key! An introduction to lexical semantic change

Nina Tahmasebi, Associate Professor & Simon Hengchen, Phd

University of Gothenburg

October 2022, KBR

Digital Heritage Seminar Series: Lexical Semantic Change

- 6 years
- 6 partner universities
- Members from 4 countries
- With advisors, 6 countries
- 13 people including PM and SE

Word meaning change

In different contexts (at the same time)

main CHALLENGES for computational models of meaning and change

Computational models of meaning and change

Handle languages with smaller amounts of data

Generalize to multiple languages

Sense-aware models

Find out WHAT changed, HOW and WHEN

Language level change

Historical Linguistics

Language level change

Lexicography

Societal level change

Analytical Sociology

Societal level change

Gender Studies

Societal level change

Literary Studies

Our societal contribution

Meaning for everyone

Change Is Key!

University of Gothenburg University of Stuttgart Queen Mary University of London **Lund University** Linköping University **KU** Leuven

Change is Key! is a research program in which we aim to create computational tools to turn text into a story of both our language, our societies and culture and how these have changed over time.

Firstly, we will develop corpus-based methods for detecting semantic change (over time) and variation (across social groups and media types). This will create general tools for the study and detection of language change at large-scale and directly benefit historical linguistics and lexicography. Secondly, in collaboration with researchers from each field, we aim to answer research questions in social sciences, gender studies, and literary studies.

The program spans six years (2022 - 2027) with a total of 11 researchers, one research engineer and six partner universities.

We co-organized the third International Workshop on Computational Approaches to Historical Language Change 2022 (LChange'22) held end of May 2022 in Dublin.

This research program is funded by the Riksbankens Jubileumsfond under reference number M21-0021 for a total of 33.5 Million SEK.

Changeiskey.org

Methods for computational semantic change

Explicit, count-based vector representations

Nina Tahmasebi | KBR DH seminar

Statistical, learned vector representations

Nina Tahmasebi | KBR DH seminar

From Mikolov et al. (2013a)

Pipeline

signal change

signal topic, cluster, vector...

Nina Tahmasebi | KBR DH seminar

Change type

Change

Sense-differentiated

Single-sense

Difficulty: What does a word mean? When are two meanings the same?

Word-level semantic change

- embeddings / context-based methods
- neural embeddings
- dynamic embeddings

Context-based method

Sagi et al. GEMS 2009

BUT: 1.

No discrimination between senses

2.

No alignment of senses over time!

Word embedding-based models

Kulkarni et al. WWW'15

Project a word onto a vector/point (POS, frequency and embeddings)

Track vectors over time

Kim et al. LACSS 2014

Basile et al. CLiC-it 2016

Hamilton et al. ACL 2016

LSC – individually trained embedding spaces

Track an individual word w over time

Change point/degree detection

multiple time points align

Single-point embedding space t.

3 Change degree/ point

2 Alignment

1 Embedding space

Vector space image: Nieto Pina and Johansson, RANLP'15

LSC – dynamic embedding spaces

Track an individual word w over time

Change point/degree detection

Align while training

Dynamic Embeddings

Share data across all time points

Avoids aligning

Bamler & Mandt:

Bayesian Skip-gram

Yao et al:

PPMI embeddings

Rudolph & Blei:

 Exponential family embeddings (Beronoulli embeddings)

Sharing data is **highly beneficial!**

Temporal Referencing

Share contexts across all time points
Indivudal vectors for words for each bin
Avoids aligning

Dubossarsky et al

- SGNS
- PPMI embeddings


```
change 2017
change 2013
diaghtronic change 2016
change 2012 change 2010
relevant lexical change 2016
change 2012 change 2010
relevant lexical change 2016
relevan
```


Sharing data is **highly beneficial!**

Sense-differentiated semantic change

- topic models
- word sense induction
- contextual embeddings

Topic-based methods

- 1 Topic model (HDP)
- 2 Assign topics to all instances of a word.
- If a word sense WS_i is assigned to collection 2 but not 1 then WS_i is a **novel** word sense.

BUT:

- Only two time points (typically there is much noise!)
- B No alignment of senses over time!

Lau et al. Wijaya & Yeniterzi

EACL 2014 DETECT '11

Cook et al. Frermann & Lapata

Coling 2014 TACL 2016

Downsides topic models

Word sense induction

Word sense induction (curvature clustering) individual time slices

Detecting stable senses

→ units

Relating units

→ Paths

Complexity

Type-based embedding methods

Nina Tahmasebi | KBR DH seminar October, 2022

Token-based embedding methods

Nina Tahmasebi | KBR DH seminar October, 2022

Evaluation

Evaluation

Nina Tahmasebi | KBR DH seminar

Evaluation

Pre-determined list of:

Top/bottom results

Controlled data

- Positive examples
- Negative examples

SemEval 2020 Task 1:

Organized by dschlechtweg - Curren

Previous

Evaluation

Feb. 19, 2020, 10 p.m. UTC

Summary of methods

- Most co-occurrence methods
 - are outperformed by typeembeddings
- Type-embeddings
 - average embeddings
 - need alignment across corpora
 - need very much data
- Dynamic embeddings
 - 'remember' too much historical

- Topic-based method
 - have little correspondence to senses
 - (and run badly on too large datasets)
- WSI-based method
 - have typically too low coverage
- Contextual embeddings
 - need to be clustered into senses

Detecting semantic change in historical texts

A case study on Flemish socialist newspapers using LDA

Simon Hengchen, PhD KBR Digital Heritage Seminar – October 18th 2022

https://iguanodon.ai

- Currently working at my company
- Steering Committee member of *Change is Key!*
- ... also formally a guest researcher (gästforskare) at Språkbanken Text within the University of Gothenburg
- ... also a lecturer at the Université de Genève

... but the work presented here was done during my PhD at the Université libre de Bruxelles, as part of the BELSPO BRAIN-BE project TIC-Belgium (coordinated by UGent), with data provided by AMSAB-ISG and computational power by the FNRS.

Context

- Words change meaning
- This makes historical interpretation more complicated
- Historians in the project discussed the need for a way to detect those words

We want to detect cases of semantic change:

- that are relevant
 - within a context
 - within a theme
- that are minute
 - maybe within a specific context only
- that we can see examples of

Issues:

- people from the past are dead, so we can't ask them
- usual caveats of working with digitised, historical data:
 - quality
 - representativity (socio-cultural, geographical, availability, segmentation)
- working 'in the wild', meaning there is no evaluation data (unlike common NLP/ML scenarios)
- NLP methods aren't usually explainable nor do they allow for humanistic input/guiding

LDA

LDA stands for latent Dirichlet allocation (Blei et al 2003):

- unsupervised algorithm
- processes sets of documents (what a document is is for you to choose)
- each document contains a mixture of topics, in different probabilities
- each topic is a distribution over words

Example:

- Document #1 is 83% likely to be topic #21 AND 5% to be topic #2 AND ...
- Topic #21 is elephant (.3) visit (.2) lion (.2) zebra (.15) ...
- Topic #2 is ...

Method

Advantages:

- easy enough
- focussed on a topic of interest
- intellectual overview at each step of the process

Limitations:

- takes some time
- not fully-automated → as human input is required, any iteration needs to be evaluated manually (see eg Tahmasebi and Hengchen 2019 for more on this)
- domain knowledge is required

Case study: Vooruit, a Flemish socialist newspaper

- Daily from the region of Ghent
- $-1884 \rightarrow 1950$
- 445M words
- Digitised by two institutions:
 - $1884 \rightarrow 1889 \text{ and } 1911 \rightarrow 1950$: KBR
 - 1890 → 1910: Amsab-ISG

Unsupervised approach validated by a human

#24 0.03662 koncert orkest radio muziek gramofoonplaten dansmuziek concert programma hilversum lichte dagblad gesproken parijs gramofoonmuziek leiding gramofoon berichten zang londen

#29 0.20378 arbeiders moeten staking jaar werden patroons werk loonen groote toestandigledenoalgemeene plaats nieuwe belgië belgische vergadering werklieden tusschen

#29 0.20378 arbeiders moeten staking jaar werden patroons werk loonen groote toestand leden algemeene plaats nieuwe belgië belgische vergadering werklieden tusschen

→ Workers' rights, Blank (1999)'s "sociocultural change", one of his httlmotivations for semantic change

Human choice of time periods:

- Historically-aware choice:
 - Relevant for chosen theme
- Pragmatic choices:
 - Enough data for intrinsically valid LDA model

https://iguanodon.ai

syndikaat (modern: syndicaat):

- consortium, group of people with the same (professional goal). ≃ society,
 trade association
- trade union

Case study: validation

syndikaat (modern: syndicaat):

- consortium, group of people with the same (professional goal). ≃ society,
 trade association
- trade union..
 - first recorded use is in 1914:

"Vereniging van vaklieden, vakbond" in het socialistisch syndikaat van pelswerkers (1914; WNT pels)

Philippa, M., et al (2003-2009). Etymologisch Woordenboek van het Nederlands. Amsterdam University Press.

Case study: validation

Concordance analysis

Table III.6: Distribution in % of the received meanings of *syndikaat*

	Trade Union	Unclear	Trade Association	Duplicates
Subset 1	l .	8	23	5
Subset 2	81.7	3.4	7.7	7.2
Subset 3	85.3	0.9	8.3	5.5

https://iguanodon.ai

- Method seems to be working
- Method is unsupervised but requiring supervision
- Method is not a "put data in, get results out" pipeline

Caveats:

- Only shown to work in a specific context
- ... with one example
- No standard evaluation set, but human evaluation

More on computational approaches to semantic change

Tahmasebi, N., Borin, L., Jatowt, A., Hengchen, S. (Eds). Computational approaches to semantic change. 2021, Language Science Press.

https://langsci-press.org/catalog/book/303

