

(a)

(b)

Figure I
Attachment of Ligands Through Primer Region

(a)

X = Nuclear Localisation Signal

Y = fusogenic peptide

(b)

Figure 2
Attachment of Ligands by Incorporation of Modified Nucleotide Precursors

— = DNA
— = RNA

Synthesis of RNA using lactyl-UTP and Allylamine-UTP precursors

Attachment of fusogenic peptide through allylamine linkage

- 1) attachment of construct to cell surface
- 2) endocytosis of construct
- 3) release of construct from endosome by means of fusogenic peptide
- 4) Elimination of RNA moieties by RNaseH
- 5) Synthesis of complimentary DNA strand

Figure 3
Incorporation of Ligands through Modified Ribonucleotides

Figure 4

Attachment of Ligands through a 3' tail

Figure 5
Preparation of Gapped Circle

Figure 6
Attachment of Ligands through hybridization to a 3' tail

Figure 7**RNA with Ligands on Primer**

(Continued in Figure 8)

Continued from Figure 7

Figure 8
RNA with Ligands on Primer (Continued)

(Continued in Figure 10)

Figure 9
RNA with Ligands on Multiple Primers

Continued from Figure 9

Figure 10

RNA with Ligands on Multiple Primers (Continued)

(Continued in Figure 12)

Figure 11
Single-stranded DNA with attached Ligands

Continued from Figure 11

Figure 12

Single-stranded DNA with attached Ligands (continued)

Figure 13

Linear Double-stranded DNA with attached Moieties on each strand

© 1992 MIT Technology Review

Figure 14

Enhanced Delivery of Retroviral Vector
to Haematopoietic Stem Cell

Figure 15

**Enhanced Delivery of Vector
DNA to Haematopoietic Stem Cell**

Figure 16
Covalent Attachment of vector DNA to Dimeric Antibody

Figure 17
Covalent attachment of Modified DNA
to a Monovalent Antibody

Figure 18
Modified DNA used as a Binder

(continued in Figure 20)

Figur 19
Synthetic Steps for Creation of Antibodies
With Nucleic Acid Moieties Attached

(Continued from Figure 19)

20/51

Figure 20
Continuation of Synthetic Steps

F(ab')₂ Antibody
to HIV p24
Antigen

F(ab')₂ Antibody
with Nucleic Acid
homopolymer

(a)

(b)

Multimerization of
F(ab')₂ Antibodies
by hybridization of
Nucleic Acid
homopolymers

Figure 21

Enhanced Binding of Antibodies to Antigens by Multimerization

Figure 22
High Affinity Multi-Insulin Soluble Complex

Figure 23

Multimerization of Insulin molecules by hybridization to discrete Sequences

(A) - - - - **TGCTCTCTAAAGGGTCTACTC** - - -
 ↓
 ACGAGAGATTCCCCAGATGAG - - -

T7 RNA Polymerase Sequence

The diagram illustrates a pre-mRNA sequence with two conserved motifs: the Splice Donor Site (CTCTAAGGTAAATAT) and the Splice Acceptor site (TGTATTTCAGATTCAA). The sequence is flanked by dashed lines. Two arrows point downwards from the labels to the respective motifs.

SV40 Intron Sequence

(C) - - - **TGCTCTCTAAGGTAAATAT** - - - - - TGTATTTTAGGGTCTACTC
- - - **ACGAGAGATTCCATTTATA** - - - - - ACATAAAATC**CCAGATGAG** - - -

Insertion of SV40 Intron into polymerase coding sequence

(D)

mRNA transcript containing intron

(E) **-----UGCUCUCUAAGGGUCUACUC-----**

mRNA transcript after splicing has normal T7 Sequence

Figure 24

Fusion of Intron into T7 RNA Polymerase Coding Sequence

Figure 25
Construction of T7 Expression Vector

A) Synthesis of pieces

B) Oligomers used for synthesis

TSP-1	GGA ATT CGT CTC GAG CTC TGA TCA CCA CCA TGG ACA CGA TTA ACA TCG C
TSP-2	GAC TAG TTG GTC TCG TCT CTT TTT TGG AGG AGT GTC GTT CTT AGC GAT GTT AAT C
TSP-3	GGA ATT CGT CTC GGA GAA AGG TAA AAT TCT CTG ACA TCG AAC TGG C
TSP-4	GAC TAG TGG TCT CCC CTT AGA GAG CAT GTC AGC
TSP-5	GGA ATT CGG TCT CGG GTC TAC TCG GTG GCG AGG
TSP-6	GAC TAG TCG TTA CGC GAA CGC AAA GTC
INT-1	GGA ATT CGT CTC TAA GGT AAA TAT AAA ATT TTT AAG
INT-2	GAC TAG TCG TCT CTG ACC CTA AAA TAC ACA AAC AAT TAG A

Figure 26
Synthesis of Pieces for Construction of
T7 RNA Polymerase with Intron

Formation of Nuclear Localisation Signal by Fusion of TSP1/TSP2 Product to Clone with PCR #1 product

Annealing of TSP1 with TSP2

TSP1

5' GG AAT TCG TCT CGA GCT CTG ATC ACC ACC ATT AAC ACG ATT AAC ATC GC 3'
 3' CC TTA AGC AGA GCT CGA GAC GTC TAA TAG TAC CTC TGA TCA TGC TAA TAG CGA TCA TCC TGT ACT CCT CGT GAT CAG 5'
 TSP2

Extension of TSP1/TSP2 by polymerase

5' GG AAT TCG TCT CGA GCT CTG ATC ACC ACC ATT AAC ACG ATT AAC ATC GCT AAG AAC GAC ACT CCT CCA AAA AAG AGA CGA GAC CGA CTA GTC 3'
 3' CC TTA AGC AGA GCT CGA GAC GTC TAA TAG TAC CTC TGA TCA TGC TAA TAG CGA TCA TCC TGT ACT CCT CGT GAT CAG 5'
 Bsa I

Digestion of TSP1/TSP2 product with Bsa I

Digestion of PCR #1 clone (pL-1) with BsmB I

Bsm B1
 5' GGA ATT CGT CTC G GAGA AAG GTC AAA TTC TCT GAC ATC GAA CTG GC-----
 CCT TAA GCA GAG CCGCTTC CAT TTT AAG AGA CGA TGA TCA GGA GGT TTT TTC TCT

Ligation of Bsa I digested TS1/TS2 product to BsmB I digested PCR#1 clone

5' GG AAT TCG TCT CGA GCT CTG ATC ACC ACC ATT AAC ACG ATT AAC ATC GCT AAG AAC GAC ACT CCT CCA AAA AAG AGA AAG GTC AAA TTC
 3' CC TTA AGC AGA GCT CGA GAC GTC TAA TAG TAC CTC TGA TCA TGC TAA TAG CGA TCA TCC TGT ACT CCT CGT GAT CAG TTT AAG
 TCT GAC ATC GAA CGT GAC ac-----
 AGA CGT TAG . CTT GAC CG-----

Figure 27

**Comparison of the 5' ends of the Nucleotide Sequences of Wild Type
and Modified T7 RNA Polymerase**

Wild Type T7 nucleic and amino acid sequence

ATG	GAC	ACG	ATT	AAC	ATC	GCT	AAG	AAC	GAC	TTC	TCT	GAC	ATC	GAA	CCTG	GC-----	
TAC	CTG	TGC	TAA	TTC	TAG	CGA	TCA	TTC	CTG	TGA	AAG	AGA	CTG	TAG	CTT	GAC	CG-----
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		

**Modified T7 nucleic and amino acid sequence
with Nuclear Localisation Signal (NLS) insertion**

ATG	GAC	ACG	ATT	AAC	ATC	GCT	AAG	AAC	GAC	ACT	CCT	CCA	AAA	AAG	AGA	AAG	GTA	AAA	TTC	TCT	GAC	ATC	GAA	CCTG	GC-----
TAC	CTG	TGC	TAA	TTC	TAG	CGA	TCA	TTC	CTG	TGA	GGA	GGT	TTT	TTC	TCT	CAT	TTT	AAG	AGA	CTG	TAG	CTT	GAC	CG-----	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16										

Figure 28

Figure 29

Fusion of PCR Pieces to Construct
T7 RNA Polymerase with an Intron

(A) Oligomers

HTA-1	GAT CAT TAG ACC AGA TCT GAG CCT GGG AGC TCT CTG GCT AAC TAG GGA ACC CAC TGCTTA AGC CTC AAG
HTA-2	GAT CCT TGA GGC TTA AGC AGT GGG TTC CCT AGT TAG CCA GAG AGC TCC CAG GCT CAG ATC TGG TCT AAT
HTB-1	GAT CAC CTT AGG CTC TCC TAT GGC AGG AAG CGG AGA CAG CGA CGA AGA CCT CCT CAA G
HTB-2	GAT CCT TGA GGA GGT CTT CGT CGC TGT CTC CGC TTC CTG CCA TAG GAG AGC CTA AGG T
HTC-1	GAT CAT AGT GAA TAG AGT TAG GCA GGG ATA CTC ACC ATT ATC GTT TCA GAC CCA CCT CCC AG
HTC-2	GAT CCT GGG AGG TGG GTC TGA AAC GAT AAT GGT GAG TAT CCC TGC CTA ACT CTA TTC ACT AT
TER-1	AAT CTA GAG CTA ACA AAG CCC GAA AGG AAG
TER-2	TTC TGC AGA TAT AGT TCC TCC TTT CAG C

(B) Cloning of AS and Terminator sequences
into vector with T7 Promoter

Figure 30
Insertion of Anti-Sense Sequences into
T7 Directed Transcription Units

Figure 31
Construct with T7 RNA polymerase and
Anti-Sense directed from a T7 Promoter

A) Oligomers for introduction of T7 signals and polylinker

PL-1 TCG AGC CAT GGC TTA AGG ATC CGT ACG TCC GGA GCT AGC GGG CCC ATC GAT ACT
AGT TAA ATG CAG ATC T

PL-2 CTA GAG ATC TGC ATT TAA CTA GTA TCG ATG GGC CCG CTA GCT CCG GAC GTA CGG
ATC CTT AAG CCA TGG C

Figure 32

Introduction of Poly-Linker for Creation of Protein Expression Vector

Figure 33
Final steps for construction of Expression Vector

Figure 34

Construct that produces single-stranded Anti-Sense DNA

Continued from Figure 34

(Structure 34e)

Nicking by RNase H

Extension by RT and digestion by RNase H

(Structure 35h)

(Structure 35i)

(Structure 35j)

(Structure 35k)

Extension by RT and displacement generates Single-Stranded DNA and a mostly Double-stranded DNA molecule

Figure 35

Continuation of Process from Figure 34

Figure 36

Construct that produces RNA that is Reverse Transcribed to create Secondary DNA Constructs capable of directing transcription

(Structure 37a)

(Continued in Figure 38)

Figure 37
Construct which Propagates a Double Hairpin Production Center

In this Example, the sequence F' E' D' is a promoter, the sequence G H J K is an Anti-Sense sequence and X Y Z is a Poly A signal

Figure 38
 Continuation of process from Figure 37

Figure 39

Construct which propagates a Production Center capable of Inducible Suicide

The sequence A B C defines a promoter

The sequence D E F defines an Anti-Sense sequence

The sequence G H defines a poly A addition site

The sequence defined by Y defines a primer binding site for tRNA primer #1

The sequence defined by X' defines a primer binding site for tRNA primer #2

(Structure 40a)

Priming by tRNA #1

Extension from tRNA primer

(Structure 40b)

Degradation of RNA by RNaseH

(Structure 40c)

Extension from tRNA primer

(Structure 40d)

Figure 40

Use of tRNA primers to create a DNA construct for secondary production of transcripts

Figure 41

Excision of Sequences from U1 Transcript Region
and Replacement with Novel Sequences

(A) Anti-sense oligomers

HVA-1 GAT CCG GAT TGA GGC TTA AGC AGT GGG TTC CCT AGT TAG CCA GAG AGC TCC CAG GCT CAG ATC TGG TCT AAT
HVA-2 CCG GAT TAG ACC AGA TCT GAG CCT GGG AGC TCT CTG GCT AAC TAG GGA ACC CAC TGC TTA AGC CTC AAT CCG

HVB-1 GAT CCG GAC CTT GAG GAG GTC TTC GTC GCT GTC TCC GCT TCT TCC TGC CAT AGG AGA GCC TAA GGT
HVB-2 CCG GAC CTT AGG CTC TCC TAT GGC AGG AAG AAG CGG AGA CAG CGA CGA AGA CCT CCT CAA GGT CCG

HVC-1 GAT CCG GAT GGG AGG TGG GTC TGA AAC GAT AAT GGT GAG TAT CCC TGC CTA ACT CTA TTC ACT AT
HVC-2 CCG GAT AGT GAA TAG AGT TAG GCA GGG ATA CTC ACC ATT ATC GTT TCA GAC CCA CCT CCC ATC CG

HVD-1 GAT CAG CAT GCC TGC AGG TCG ACT CTA GAC CCG GGT ACC GAG CTC GCC CTA TAG TGA GT C GTA TTAT
HVD-2 CCG GAT AAT ACG ACT CAC TAT AGG GCG AGC TCG GTA CCC GGG TCT AGA GTC GAC CTG CAG GCA TGCT

(B) Replacement of U1 sequences with HIV Anti-sense sequences

DECODED BY GENETIC CODE

Figure 42
Insertion of Anti-Sense Sequences into U1Operons

Figure 43

Predicted Secondary structures for U1
Transcripts with Anti-sense Substitutions

Figure 44
Construction of U1 Multiple Operon Clone

Figure 45
Construction of T7 Triple Operon

pNDU1(A,B,C)

Triple U1 Operon Construct with HIV Anti-Sense

TRI 101

Triple T7 Operon Construct with HIV Anti-Sense

Figure 46

Structures of Triple Operon Constructs
from Figures 44 and 45

Figure 47
Construction of Multiple T7 Operons in Vector coding for T7 RNA Polymerse

Figure 48

Flow cytometry data measuring binding of anti-CD4+ antibody to HIV resistant U037 cells

49/51

Figure 49

PCR amplification of gag region
indicating absence of HIV in
viral resistant cell line (2.10.16)
after challenge

Figure 50

Clone with target-lacZ fusion will have reduced expression of lacZ after transfection by HIV Anti-sense construct

Enzyme activity as expressed by A_{420} readings
in extracts prepared from

	2.5×10^4 cells	5×10^4 cells	1.0×10^5 cells
U 937 [untransfected]	0.018	0.023	0.034
U 937 [HIV A clone]	0.154	0.277	0.566
U937 [HIV A / Anti-A]	0.010	0.017	0.027
U 937 [HIV A/Anti-ABC]	0.013	0.021	0.035
U 937 [HIV A / Null DNA]	0.120	0.212	0.337

[B] Expression of Beta-galactosidase activity by *In situ* assay :

U 937 [untransfected] no blue spots in cells

U 937 [HIV A clone] blue spots in cells

U 937 [HIV A/Anti A] no blue spots in cells

U 937 [HIV A/Anti ABC] no blue spots in cells

U 937 [HIV A / Null DNA] blue spots in cells

Figure 51

Expression of Beta-galactosidase activity
in extracts