Лекция 3

СОДЕРЖАНИЕ

- оптимизация нагрузки GPU;
- иерархия памяти;
- объединение запросов к глобальной памяти (coalescing);

Оптимальное количество блоков и нитей в блоках (сокрытие латентности)

Кол-во варпов % 32 ==0 && Кол-во варпов / 32 > 1 Кол-во блоков >= Кол-во мультипроцессоров

Для архитектуры Fermi:

- максимальное кол-во варпов, выполняемых одновременно на одном мультипроцессоре равно 48;
- максимальное кол-во блоков выполняемых одновременно на одном мультипроцессоре равно 8;

Пример.

32 нити в блоке, 512 блоков в гриде: Кол-во одновременно выполняемых нитей=32*8, Максимальное кол-во=48*32, Заполняемость=32*8/48*32=1/6=16.(6)%.

512 нитей в блоке, 32 блока в гриде: Кол-во одновременно выполняемых нитей=512*8, Максимальное кол-во=48*32, Заполняемость=512*8/48*32=266.(6)%.

Оптимальное кол-во нитей в блоке (для Fermi): 48*32/8=192

Профилирование метрик

```
.../Lab3> nvprof -m achieved_occupancy ./Lab3
==11929== NVPROF is profiling process 11929, command: ./Lab3
qTest1 took 3.56662
gTest2 took 2.41971
==11929== Profiling application: ./Lab3
==11929== Profiling result:
==11929== Metric result:
Invocations
                            Metric Name
                                                      Metric Description
                    Min
                                Max
                                           Avg
Device "GeForce GTX 560 Ti (0)"
    Kernel: gTest1(float*)
                                                      Achieved Occupancy
                    achieved_occupancy
                 0.702714 0.702714 0.702714
    Kernel: gTest2(float*)
                    achieved occupancy
     1
                                                      Achieved Occupancy
                 2.426397 2.426397 2.426397
```

>nvvp ./Lab3

Определение реальной заполняемости GPU

Table 14. Technical Specifications per Compute Capability

	Compute Capability										
Technical Specifications	3.0	3.2	3.5	3.7	5.0	5.2	5.3	6.0	6.1	6.2	7.0
Maximum number of resident blocks per multiprocessor	16				32						
Maximum number of resident warps per multiprocessor	64										
Maximum number of resident threads per multiprocessor	2048										
Number of 32-bit registers per multiprocessor	64 K			128 K	64 K						
Maximum number of 32-bit registers per thread block	64 K	32 K 64			1 K		32 K	64 K		32 K	64 K
Maximum number of 32-bit registers per thread	63	63 255									
Maximum amount of shared memory per multiprocessor		48 KB		112 KB	64 KB	96 KB	64	64 KB 9		64 KB	96 KB
Maximum amount of shared memory per thread block	48 KB 96 KB										96 KB ²⁰

Иерархия памяти графического процессора (Fermi, Kepler)

Иерархия памяти устройства CUDA

CUDA C Best Practices Guid, Nvidia, october 2012

Объединение запросов к глобальной памяти (coalescing)

Запросы на чтение и запись к глобальной памяти нитями одного варпа (*a warp*) объединяются в транзакции, количество которых равно количеству необходимых для выполнения запросов блоков данных (*cache lines*) L1 кэша размером в 128 байт. **COMPUTE CAPABILITIES 2.*!**

Hapywehue coalescing'a (пример)

```
global void gTest1(float* a){
int i=threadIdx.x+blockIdx.x*blockDim.x;
int j=threadIdx.y+blockIdx.y*blockDim.y;
int I=gridDim.x*blockDim.x;
//int J=gridDim.y*blockDim.y;
a[i+j*l]=(float)(threadIdx.x+blockDim.y*blockIdx.x);
 global void gTest2(float* a){
int i=threadIdx.x+blockIdx.x*blockDim.x;
int j=threadIdx.y+blockIdx.y*blockDim.y;
//int I=gridDim.x*blockDim.x;
int J=gridDim.y*blockDim.y;
a[j+i*J]=(float)(threadIdx.y+threadIdx.x*blockDim.y);
```

Спасибо за внимание