Name: Ghazi Najeeb Al-Abbar

ID: 2181148914

Numerical Computations

Assignment #7

Question #1:

Step 1: Put our Constraints and minimization function in a matrix;

$$\begin{bmatrix}
 2 & 1 & 8 \\
 1 & 2 & 8 \\
 3 & 9 & 1
 \end{bmatrix}$$

Step 2: Take the transpose of that matrix;

Step 3: Turn the minimization ProPlem to a maximization ProPlem using the dat from the matrix:

Maximize: 8 x, +8 x = c

Constraints:

$$2 \times_{1} + \times_{2} \leq 3$$

 $\times_{1} + 2 \times_{2} \leq 9$

Now, We introduce the slack variables:

$$-8X_1 - 8X_2 + C = 0$$

$$2X_1 + X_2 + S_1 = 3$$

 $X_1 + 2X_2 + S_2 = 9$

Now, we add all the data in a matrix:

$$\begin{cases} 2 & 1 & 1 & 0 & 0 & 3 \\ 1 & 2 & 0 & 1 & 0 & 9 \\ -8 & -8 & 0 & 0 & 1 & 0 \\ \end{cases}$$

Now, we find the Smallest number in the bottom row, and try to kind a Pivot Point:

-8 Was Chosen, and the data Shows that: $\frac{3}{1} < \frac{9}{2}$ So the Pivot Point is Row [1] Coloumn [2] Now We turn everything under it to Zeros using gauss elimination:

$$\begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 3 \\ 1 & 2 & 0 & 1 & 0 & 9 \\ -8 & -8 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\frac{R_{2}=-2R_{1}+R_{2}}{R_{3}-8R_{1}+R_{3}} = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 3 \\ -3 & 0 & -2 & 1 & 0 & 3 \\ +8 & 0 & 8 & 0 & 1 & 24 \end{bmatrix}$$

Since the bottom row does not contain and negative numbers, then the maximization is done

$$2X_{1} + X_{2} + S_{1} = 3$$

 $-3X_{4} - 2S_{1} + S_{2} = 3$
 $8X_{1} + 8S_{1} + C = 24$

.. For the minimization Problem:

$$X_1 = S_1 = 8$$
, $X_2 = S_2 = 0$ \Rightarrow $X_1 = 8$, $X_2 = 0$

To test: 3(8)+9(0)=24

Duestion #2:

$$(x) = a_1 x^2 + b_1 x + c_1, \quad 2 \le x \le 3$$

$$f_2(x) = a_2 x^2 + b_2 x + C_2, 3 \le x \le 4$$

$$f_3(x) = a_3 x^2 + b_3 x + C_3, 4 \le x \le 5$$

ince We have 9 cunknowns, then we need 9 equations

: Bd substituting the wax x values for the Equations:

OW We get the equations When functions meet at one Point:

... at
$$X = 3$$
: $f_1(x_3) = f_2(3) - b + b_1 = 6a_2 + b_2$

$$= b + 6a_1 + b_1 - 6a_2 - b_2 = 0$$

: at
$$X = 4$$
: $f_2'(4) = f_3'(4) = 0$ $8a_2 + b_2 = 8a_3 + b_3$
 $3a_2 + b_2 - 8a_3 - b_3 = 0$

Now, We get One more equation from either the starting Point or the end. It is chosen by which Δx is less. Since $\Delta x = 1$ for all Points, then the last equatio Will be:

$$\alpha_i = 0$$

: if we Plug all equations in a matrix, we get:

14	2	t	O	0	O	O	0	0	1 5	
9	3	-(0	0	0	0	0	0	3	
0	0	0	9	3	1	0	0	0	8	
0	0	0	16	4	1	0	0	0	14	
0	0	0	0	0 -	0	16	4	- (14	-
0	0	0	0	0	0	25	5	1	20	
6	1	O	-6	-1, -	0	0	0	0	0	
0	0	0	8	l	0	- 8	-1	0	0	
	0	0	0	0	O	0	0	0	0	

We get that:

$$a_1 = 0$$
, $b_1 = 3$, $c_1 = -1$

$$a_2 = 3$$
, $b_2 = -15$, $c_2 = 26$

$$a_3 = -3$$
, $b_3 = 33$, $c_3 = -70$

.. The equations are:

$$f_{1}(x) = 3x + -1$$
, $2 \le x \le 3$

$$f_2(x) = 3x^2 - 15x + 26$$
, $3 \le x \le 4$

$$f_3(X) = -3X^2 + 33X - 70^*, \ 4 \le X \le 5$$