661. Доказать, что какова бы ни была последовательность функций

$$f_1(x), f_2(x), \ldots, f_n(x), \ldots (x_0 < x < +\infty),$$

можно построить функцию f(x), которая при $x \to +\infty$ растет быстрее, чем каждая из функций $f_n(x)$ $(n=1,2,\ldots)$.

§ 7. Непрерывность функции

1°. Непрерывность функции. Функция f(x) называется непрерывной при $x = x_0$ (или в точке x_0), если

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{1}$$

т. е. если функция f(x) определена при $x=x_0$ и для каждого $\varepsilon>0$ существует $\delta=\delta$ (ε , ε) > 0 такое, что при $|\varepsilon-x_0|<\delta$ для всех значений f(x), имеющих смысл, выполнено неравенство

$$|f_{\epsilon}(x) - f_{\epsilon}(x_0)| < \varepsilon.$$

Функция f(x) называется непрерывной на данном множестве $X = \{x\}$ (интервале, сегменте н т. п.), если эта функция непре-

рывна в каждой точке множества X.

Если при некотором значении $x=x_0$, принадлежащем области определения $X=\{x\}$ функции f(x) или являющемся предельной точкой этого множества, равенство (1) не выполнено (т. е. нлн (а) не существует число $f(x_0)$, иными словами, функция не определена в точке $x=x_0$, или (б) не существует $\lim_{x\to\infty} f(x)$,

нли (в) обе части формулы (1) имеют смысл, но равенство между ними не имеет места), то x_0 называется *точкой разрыва* функции f(x).

Различают: 1) *точки х_в разрыва первого рода*, для которых существуют конечные односторонние пределы:

$$f(x_0 - 0) = \lim_{x \to x_0 - 0} f(x) \text{ if } f(x_0 + 0) = \lim_{x \to x_0 + 0} f(x)$$

13 2) точки разрыва второго рода — все остальные. Разность $f(x_0 + 0) - f(x_0 - 0)$

называется скачком функции в точке x_0 .

Если выполнено равенство

$$f(x_0-0)=f(x_0+0).$$

то точка разрыва x_0 называется устранимой. Если по меньшей мере один из пределов $f(x_0-0)$ или $f(x_0+0)$ равен символу ∞ , то x_0 называется точкой бесконечного разрыва.

Если выполнено равенство

$$f(x_0 - 0) = f(x_0)$$
 (или $f(x_0 + 0) = f(x_0)$),

то говорят, что функция $f(x_0)$ непрерывна слева (справа) в точке x_0 . Для непрерывности функции f(x) в точке x_0 необходимо и достаточно равенство трех чисел:

$$t(x_0-0)=t(x_0+0)=t(x_0).$$