

Final Project Report

1. **Introduction**

- 1.1. Project overviews
- 1.2. Objectives

2. **Project Initialization and Planning Phase**

- 2.1. Define Problem Statement
- 2.2. Project Proposal (Proposed Solution)
- 2.3. Initial Project Planning

3. Data Collection and Preprocessing Phase

- 3.1. Data Collection Plan and Raw Data Sources Identified
- 3.2. Data Quality Report
- 3.3. Data Exploration and Preprocessing

4. Model Development Phase

- 4.1. Feature Selection Report
- 4.2. Model Selection Report
- 4.3. Initial Model Training Code, Model Validation and Evaluation Report

5. **Model Optimization and Tuning Phase**

- 5.1. Hyperparameter Tuning Documentation
- 5.2. Performance Metrics Comparison Report
- 5.3. Final Model Selection Justification

6. **Results**

- 6.1. Output Screenshots
- 7. Advantages & Disadvantages
- 8. Conclusion
- 9. **Future Scope**
- 10. Appendix
 - 10.1. Source Code
 - 10.2. GitHub & Project Demo Link

Customer Segmentation Using Machine Learning

1. Introduction

1.1 Project overviews

Customer segmentation is the process of dividing a customer base into distinct groups based on shared characteristics such as demographics, behaviors, or purchasing habits. The goal of this project is to categorize customers into actionable segments, allowing for personalized marketing, sales, and service strategies. By leveraging data-driven techniques, the project will identify key segments, understand their behaviors and preferences, and tailor approaches to meet their unique needs.

The project will involve data collection, analysis, and segmentation using methods such as clustering, RFM analysis, and behavioral profiling. The insights gained will guide the development of targeted strategies that can boost customer engagement, improve retention, and drive overall business growth.

This will enable the company to improve marketing efficiency, enhance customer satisfaction, and increase revenue by focusing on high-value segments.

1.2 Objectives

The objectives of customer segmentation are to identify distinct customer groups based on shared characteristics, improve marketing efficiency by tailoring campaigns to each segment, enhance customer experience through personalized products and services, increase sales and revenue by focusing on high-value customer segments, optimize resource allocation by concentrating efforts on the most profitable groups, boost customer retention with targeted loyalty programs and offers, and enable data-driven decision-making by aligning business strategies with customer needs and behaviors.

Identify distinct customer groups based on shared characteristics to tailor marketing strategies more effectively. Enhance customer experience and optimize resource allocation by focusing on the most valuable segments.

2. Project Initialization and Planning Phase

2.1 <u>Define Problem Statements (Customer Problem Statement):</u>

The challenge of customer segmentation in modern business lies in the vast amount of data and the difficulty of accurately identifying distinct customer groups. Traditional methods often fail to capture nuanced behaviors, preferences, and demographics, leading to suboptimal marketing and service strategies. These issues affect customer engagement, retention, and overall satisfaction. By leveraging machine learning algorithms, we can automate the segmentation process, identifying meaningful patterns within customer data to offer personalized services. Our goal is to deliver a tailored, data-driven approach to improve customer experience and business outcomes.

I am	I am trying to	But	Because	Which makes me feel
A new customer	Explore product range	Overwhelmed by choices	Large product catalog and complex UI	Confused and frustrated

Problem Statement (PS)	I am (Custom er)	I'm trying to	But	Because	Which makes me feel
PS-1	A new customer	Explore product range	Overwhe lmed by choices	Large product catalog and	Confused and frustrated

				comple x UI	
PS-2	A loyal customer	Received personaliz ed offers	Disappoi nted by generic promotio ns	I have been shoppin g here for years	Undervalued and overlooked

2.2 Project Proposal (Proposed Solution) template:

This project proposal aims to implement customer segmentation by analyzing demographic, behavioral, and transactional data to identify distinct customer groups. By understanding these segments, we can tailor marketing strategies, personalize communication, and optimize product offerings for each group.

Project Overview	neation, and optimize product offerings for each group.
Objective	To develop a customer segmentation tool that enables businesses to classify their customers into distinct groups based on demographics, behavior, and purchasing habits, leading to more targeted marketing strategies.
Scope	This project will focus on building the customer segmentation module, which includes data input, analysis, and visualization tools. It will integrate with existing CRM systems and cover segmentation based on location, age, gender, buying behavior, and other relevant factors.
Problem Statement	
Description	Many companies lack an effective method to segment their customers, resulting in generalized marketing efforts that don't account for the diverse needs and preferences of different customer groups.
Impact	By solving this, businesses can target customers more effectively, leading to improved engagement, personalized experiences, and increased sales. It will also reduce marketing costs by eliminating inefficient, broad-spectrum campaigns.

Proposed Solution	
Approach	The project will use machine learning algorithms to analyze customer data and automatically segment customers into distinct groups. The solution will offer a user interface for customization and exploration of these segments. Data visualization tools will allow users to monitor segment performance over time.
Key Features	Data-driven customer grouping based on demographics, behavior, and preferences. segmentation filters and criteria. br> - Integration with existing CRM and marketing tools. br> - Visual analytics dashboard for tracking segment performance and trends.

Resource Requirements

Resource Type	Description	Specification/Allocation			
Hardware					
Computing Resources	CPU/GPU specifications, number of cores	2 x NVIDIA V100 GPUs			
Memory	RAM specifications	8 GB			
Storage	Disk space for data, models, and logs	1 TB SSD			

Software		
Frameworks	Python frameworks	Flask
Libraries	Additional libraries	scikit-learn, pandas, numpy
Development Environment	IDE, version control	Jupyter Notebook, Git
Data		
Data	Source, size, format	Kaggle dataset, 10,000 images

2.3 <u>Initial Project Planning Template:</u>

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Priority	Team Members	Sprint Start date	Sprint End Date (Planned)
Sprint -1	Customer Segmentatio n Setup	USN-1	As a user, I can input customer data to segment users based on demographics.	High	Yuvaraju Nagasai	23/09/2024	26/09/2024
Sprint -1	Customer Segmentation Setup	USN-2	As a user, I can segment customers based on geographic location.	Medium	Yuvaraju Nagasai	23/09/2024	26/09/2024
Sprint -2	Advanced Segmentation	USN-3	As a user, I can segment customers based on purchasing behavior.	High	Komali	27/09/2024	30/09/2024
Sprint -2	Advanced Segmentation	USN-4	As a user, I can create custom segments based on user-defined criteria.	Medium	Komali	27/09/2024	30/09/2024
Sprint -3	Segmentation Analysis	USN-5	As a user, I can view analytics and reports for eachcustomer segment.	High	Purnachandra Rao	27/09/2024	30/09/2024
Sprint -3	Segmentation Export	USN-6	As a user, I can export customer segments in CSV format for	Low	Sri Deepthi Prasanna	27/09/2024	30/09/2024

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Priority	Team Members	Sprint Start date	Sprint End Date (Planned)
			marketing purposes.				
Sprint -4	Segmentation Optimization	USN-7	As a user, I can optimize the segmentation model for better accuracy.	High	Sri Deepthi Prasanna	01/10/2024	05/10/2024
Sprint -4	Segmentation Optimization	USN-8	As a user, I can apply clustering algorithms for better customer segmentation.	Medium	Purnachandra Rao	01/10/2024	05/10/2024
Sprint -5	Integration and Testing	USN-9	As a user, I can integrate segmentation insights with marketing platforms.	High	Yuvaraju Nagasai	01/10/2024	05/10/2024

3 Data Collection and Preprocessing Phase

3.1 <u>Data Collection Plan & Raw Data Sources</u> <u>Identification Template:</u>

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

Data Collection Plan:

Section	Description
Project Overview	The customer segmentation project aims to group customers into distinct segments based on behavioral and demographic characteristics. Using features such as age, income, spending habits, and location, the objective is to develop a model that identifies segments for targeted marketing, personalized offerings, and improved customer retention.
Data Collection Plan	 Search for datasets related to customer demographics and purchasing behavior. Prioritize datasets that include diverse customer profiles, including age, income, occupation, and spending patterns.
Raw Data Sources Identified	The raw data sources for this project include datasets obtained from Kaggle and other data repositories that offer customer behavior insights. The dataset comprises variables such as age, income, spending scores, and region, allowing for in-depth segmentation analysis.

Raw Data Sources Report:

Source Name	Description	Location/U RL	Format	Size	Access Permissions
Kaggle Dataset	This dataset includes customer demographics, purchase patterns, and behavior for segmentation	https://www .kaggle.com /datasets/ro dsaldanha/a rketing- customer- segmentatio n	CSV	26 MB	Public
UCI	This data focuses on customer purchases, with a variety of behavioral attributes.	https://archi ve.ics.uci.ed u/ml/dataset s/Wholesale +customers	CSV	18 KB	Public
UCI	This dataset contains customer transactions and behavioral data, used for segmenting retail customers.	Kaggle CLV Dataset	CSV	67 MB	public

3.2 <u>Data Quality Report Template:</u>

The Data Quality Report Template will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	Resolution Plan
Customer segmentat ion dataset	Missing values in the Age,Income,Spending_S core,And gender columns.	Moderate	Use mean/median imputation
Customer segmentat ion dataset	Categorical data in the gender, Occupation,and Region columns.	Moderate	Encoding has to be done (one-hot or label encoding).
Customer segmentat ion dataset	Outliners in Income and Spending_Score columns	High	Use outlinerer detection methods (e.g.IQR OR Z-score).

3.3 <u>Data Exploration and Preprocessing Report:</u>

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning willaddress missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Description
Data Overview	2000RowsX8Columns ID Sex Marital status Age Education Income Occupation Settlement size 0 100000001 0 0 67 2 124670 1 2 1 100000002 1 1 22 1 150773 1 2 2 100000003 0 0 49 1 80210 0 0 3 100000004 0 0 45 1 171565 1 1 4 100000005 0 0 53 1 149031 1 1
Univariate Analysis	Age Distribution 400 400 200 300 40e Age Age Age
Bivariate Analysis	Age vs. Income 250000 - 200000 - 150000 - 150000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 1000000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 -

4 Model Development Phase Template

4.1 Feature Selection Report Template:

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Selected (Yes/No)	Reasoning
Custome r ID	Unique identifier for each customer	No	Not required for segmentation; used only for identification.
Age	Age of the customer	Yes	Age influences purchasing behavior and preferences.
Gender	Customer's gender	Yes	Gender-based segmentation can help tailor marketing strategies.

Income	Annual income of the customer	Yes	Income level affects spending capacity and product preferences.
Marital Status	Marital status of the customer	Yes	Marital status can influence purchasing habits and needs.
Educatio n	Highest level of education	Yes	Education can be a factor in determining lifestyle and purchasing decisions.
Location	Geographic location of the customer	Yes	Location helps in targeting regional promotions and offers.
Purchas e History	Details of past purchases	Yes	Purchase history reveals customer preferences and loyalty.

Spendi	Score based	Yes	Useful for identifying high-
ng	on spending		value customers and their
Score	habits		spending patterns.
Interests	Specific interests or hobbies	Yes	Helps in personalizing offers and marketing based on customer interests.

4.2 Model Selection Report:

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model	Description	Hyperpar ameters	Performance Metric (e.g., Accuracy, F1 Score)
KNN	A neural network model designed for tabular data; captures complex patterns, suitable for high-dimensional data.		Accuracy=84%
Decision Tree	A neural network model designed for tabular data; captures complex patterns, suitable for high-dimensional data.		Accuracy=89%
Random Forset	Ensemble of decision trees; reduces overfitting, handles complex relationships, and provides feature importance.		Accuracy=78%
XGBoos t	An optimized gradient boosting model; handles large datasets, reduces overfitting, and delivers high accuracy.		Accuracy82%

4.3 <u>Initial Model Training Code, Model Validation and Evaluation Report:</u>

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion

matrices for multiple models, presented through

Initial Model Training Code:

respective screenshots.

```
from sklearn.ensemble import RandomForestClassifier
from sklearn import tree
import xgboost

rand_model = RandomForestClassifier()
tree_model = tree. DecisionTreeClassifier()
xgb_model = xgboost.XGBClassifier()

rand_model.fit(x_train,y_train)
tree_model.fit(x_train,y_train)
xgb_model.fit(x_train,y_train)
```

```
pred = rand_model.predict(x_train)
pred1 = tree_model.predict(x_train)
pred2 = xgb_model.predict(x_train)
```

```
print(metrics.accuracy_score (pred, y_train))
print(metrics.accuracy_score(pred1,y_train))
print(metrics.accuracy_score(pred2,y_train))
```



```
from sklearn.metrics import accuracy_score
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
dt = DecisionTreeClassifier()
rf = RandomForestClassifier()
knn = KNeighborsClassifier()
xg = XGBClassifier()
dt.fit(x_train,y_train)
rf.fit(x_train,y_train)
knn.fit(x_train,y_train)
xg.fit(x_train,y_train)
Show hidden output
pred1=dt.predict(x_train)
pred2=rf.predict(x_train)
pred3=knn.predict(x_train)
pred4=xg.predict(x_train)
xgb_model = xgboost.XGBClassifier()
xgb_model.fit(x_train,y_train)
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
KNN	XDNN Classification Report:	Accuracy:0.9975	Confusion Matrix for KNN 0 - 85

Decision Tree	Decision Tree Classification Report:	Accuracy:0.9975	Confusion Matrix for Decision Tree 0 - 84 1 0 208 0 N - 0 0 107 0 1 2 Predicted Label
Random Forest	Random Forest Classification Report:	Accuracy:0.9975	Confusion Matrix for Random Forest 0 - 84 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XGBoost	XGBoost Classification Report: precision recall f1-score support 0 1.00 0.99 0.99 85 1 1.00 1.00 1.00 288 2 1.00 1.00 1.00 107 accuracy 1.00 1.00 1.00 400 macro avg 1.00 1.00 1.00 400 weighted avg 1.00 1.00 1.00 400 XGBoost Accuracy: 0.9975	Accuracy:0.9975	Confusion Matrix for XGBoost 0 - 84 1 0 1 0 0 0 107 0 1 2 Predicted Label

5 Model Optimization and Tuning Phase Template

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing

performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

5.1 **Hyperparameter Tuning Documentation (6 Marks):**

Model	Tuned Hyperparameters	Optimal Values
KNN	<pre>knn = KNeighborsClassifier() # K-Nearest Neighbors knn_params = { 'n_neighbors': [3, 5, 7, 9], 'weights': ['uniform', 'distance'], 'metric': ['euclidean', 'manhattan'] }</pre>	Best parameters for ISMI: {metric'; 'euclidean', 'n_neighbors'; 3, 'weights'; 'distance'} KNN Accuracy: 1.0
Decisio n Tree	<pre># DecisionTreeClassifier() # Decision Tree dt_params = { 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	Bet practers for Decision Tree Accuracy: 0.9975


```
rf = RandomForestClassifier()
            ‡ Random Forest
Random
             rf_params = {
                 'n estimators': [100, 200, 300],
Forest
                 'max_depth': [None, 10, 20, 30],
                 'min_samples_split': [2, 5, 10],
                 'min samples leaf': [1, 2, 4]
                                                          Random Forest Accuracy: 0.9975
            xg = XGBClassifier()
                                                          Best paraeters for KBoost: | colsaiple bytwel: 8.7, learning ratel: 8.1, hax deptil: 7, 'n estimators': 20
XGBoos
            xg_params = {
t
                 'learning_rate': [0.01, 0.1, 0.2]
                 'max_depth': [3, 5, 7],
                 'n_estimators': [100, 200, 300],
                                                          XGBoost Accuracy: 0.9975
                 'colsample_bytree': [0.3, 0.7]
```

5.2 Performance Metrics Comparison Report (2 Marks):

	Basic	
Model		Optimized Metric
KNN		KNN Confusion Matrix: [[85 0 0] [0 208 0] [0 0 107]]

	KNN Classification Report:
Decision Tree	 Decision Tree Confusion Matrix: [[84
Random Forest	 Random Forest Confusion Matrix: [[84

	XGBoost Co [[84	0] 0]	Matri	x:	
	XGBoost Classi	ification Ren	ort:		
XGBoost	 NSCOOL CIUSS	precision		f1-score	support
	0	1.00	0.99	0.99	85
	1	1.00	1.00	1.00	208
	2	1.00	1.00	1.00	107
	accuracy			1.00	400
	macro avg		1.00	1.00	400
	weighted avg	1.00	1.00	1.00	400

5.3 Final Model Selection Justification (2 Marks):

Final Model	Reasoning
KNN	The K-Nearest Neighbors (KNN) classifier is a great choice for customer segmentation due to its simplicity and ease of understanding, making it accessible for stakeholders. It doesn't assume any specific distribution for customer data, allowing it to handle diverse attributes like demographics and purchasing behavior effectively. KNN can quickly adapt to new data without needing retraining, making it suitable for dynamic markets where customer preferences change frequently. Additionally, it performs well with small to medium-sized datasets and can classify customers into multiple segments. Its straightforward nature also enables easy

6 Results

6.1 Outputs screenshots:

Output for person is a potential customer

Output for person is not a potential customer:

Output for person is highly potential customer:

7 Advantages & Disadvantages

Advantages:

- 1. Targeted Marketing: Enables businesses to creattailored campaigns for specific customer groups, improving the relevance and effectiveness of messaging.
- 2. Improved Customer Retention: Personalized offers and experiences for different segments increase customer satisfaction and loyalty, reducing churn rates.
- 3. Higher Conversion Rates: Focusing on the unique needs and preferences of each segment leads to more efficient sales strategies and higher conversion rates.
- 4. Better Product Development: Insights from segmentation help businesses align product offerings with the preferences of different customer groups, leading to better product-market fit.
- 5. Enhanced Customer Experience: Segmentation enables personalized interactions, improving the overall customer journey and satisfaction.

Disadvantages:

- 1. Complexity in Implementation: Segmenting customers requires significant time and resources to gather and analyze data, which can be challenging for smaller companies.
- 2. High Costs: Advanced analytics tools, technology, and skilled personnel are often required to perform effective segmentation, leading to increased costs.
- 3. Data Privacy Concerns: Collecting and analyzing customer data for segmentation can raise privacy concerns and require compliance with data protection regulations (e.g., GDPR).
- 4. Over-Segmentation Risk: Creating too many small segments can dilute marketing efforts, making it difficult to effectively cater to each group or produce actionable insights.
- 5. Potential for Misinterpretation: Incorrectly interpreting data can lead to which may result in misguided marketing strategies and lost opportunities.

8 Conclusion:

Customer segmentation is a powerful strategy that enables businesses to understand and categorize their customers based on shared characteristics, leading to more personalized marketing and enhanced customer experiences. While it offers significant advantages such as improved targeting, better resource allocation, and higher conversion rates, it also presents challenges like implementation complexity and the risk of over-segmentation. When executed effectively, customer segmentation allows companies to align their offerings with customer needs, driving growth, loyalty, and long-term success.

Customer segmentation is a vital business strategy that involves dividing a customer base into distinct groups based on shared characteristics such as demographics, behavior, or purchasing patterns. This approach allows businesses to gain deeper insights into customer needs and preferences, enabling them to create personalized marketing strategies that resonate with specific segments. By understanding these distinct groups, companies can improve their ability to connect with customers and develop more effective campaigns that increase engagement and brand loyalty.

One of the primary benefits of customer segmentation is the ability to optimize resource allocation. By focusing efforts on high-value customer segments, businesses can tailor their products, services, and communication to meet the specific needs of these groups, maximizing the return on investment (ROI). Segmentation also enhances product development by providing insights into the preferences and behaviors of different customer groups, enabling businesses to refine their offerings to better meet market demands. This targeted approach ultimately leads to more efficient marketing, improved customer satisfaction, and higher conversion rates.

However, customer segmentation comes with its own set of challenges. Implementing an effective segmentation strategy can be complex and costly, requiring substantial data collection, analysis tools, and skilled personnel. Additionally, there is a risk of over-segmentation, where dividing the customer base into too many small groups dilutes the impact of marketing efforts. Businesses must also be mindful of data privacy concerns and evolving regulations that govern the use of customer data, ensuring compliance while maintaining customer trust.

9 Future Scope

- 1. AI and Machine Learning Integration: Advanced algorithms will enable realtime analysis and segmentation of customer data, offering more precise and dynamic customer groups.
- 2. Hyper-Personalization: AI-driven insights will allow businesses to deliver highly individualized experiences within segments, increasing customer satisfaction and loyalty.
- 3. Predictive Analytics: Future segmentation will focus on forecasting customer behaviors, enabling proactive strategies to address emerging needs, preferences, and potential churn.
- 4. Real-Time Segmentation: Businesses will be able to adjust segmentation on the fly based on live data inputs, improving adaptability to changing customer behaviors.
- 5. Omnichannel Segmentation: Integrating data from multiple channels (online, offline, social, mobile) will provide a holistic view of customers, enabling consistent and personalized experiences across platforms.
- 6. Behavioral and Emotional Segmentation: Future segmentation will focus more on emotional drivers and behavioral patterns, allowing businesses to connect with customers on a deeper, more meaningful level.
- 7. Micro-Segmentation: Businesses will increasingly focus on smaller, more specific customer groups to provide even more personalized offers, services, and experiences.
- 8. Ethical and Privacy Considerations: As data collection expands, maintaining customer privacy and compliance with regulations (e.g., GDPR) will be critical for effective segmentation.
- 9.Integration with IoT and Wearable Data: Data from Internet of Things (IoT) devices and wearables will provide new insights, enabling more detailed and real-time segmentation based on lifestyle and usage patterns.
- 10. Augmented Reality (AR) and Virtual Reality (VR) Data: AR and VR technologies will offer new opportunities to segment customers based on their interactions and preferences in virtual environments.

10 Appendix

10.1 Source Code:

#IMPORTING NECESSARY LIBRARIES

111111

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import plotly.express as px

import numpy as np

from sklearn import preprocessing

import pickle

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from imblearn.over_sampling import SMOTE

from imblearn.combine import SMOTETomek

from sklearn.preprocessing import StandardScaler

import pandas as pd

from sklearn.preprocessing import minmax_scale

Import the necessary library

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

from sklearn.model selection

import train test split

from sklearn.ensemble import RandomForestClassifier

from sklearn import tree

import xgboost

from sklearn import metrics

from sklearn.metrics import accuracy_score

from xgboost import XGBClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from xgboost import XGBClassifier


```
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
from sklearn.preprocessing import StandardScaler
"""#Importing the Dataset"""
df = pd.read csv("/content/segmentation data (1).csv")
df.head()
df
"""#Analysing the data"""
df.head()
df.describe()
df.info()
#Uni-variate analysis
# Plotting the figure
plt.figure(figsize=(8, 6))
sns.histplot(df['Age'], kde=True, bins=10)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
#Bivariate analysis
```



```
# Plotting the count plot
plt.figure(figsize=(8, 6))
sns.scatterplot(x='Age', y='Income', data=df)
plt.title('Age vs. Income')
plt.xlabel('Age')
plt.ylabel('Income')
plt.show()
# Plotting count plots with subplots
plt.figure(figsize=(20, 5))
#Multivariate analysis
sns.lmplot(x='Age', y='Income', hue='Education', data=df, height=6,
aspect=1.5)
plt.title('Age vs. Income by Education Level')
plt.xlabel('Age')
plt.ylabel('Income')
plt.show()
#Descriptive analysis
data.describe()
"""#Handling Missing Values"""
data.info()
```



```
df.isnull().sum()
#Balancing the dataset
smote tomek = SMOTETomek(sampling strategy='auto')
# Load your data into a pandas DataFrame.
# Replace 'your data.csv' with the actual file path.
original df = pd.read csv('/content/segmentation data (1).csv') # This
line is added
original df=original df.drop(columns=['ID'],axis=1)
# Scale the DataFrame
scaler = MinMaxScaler(feature range=(0, 1))
df scaled = scaler.fit transform(original df.values)
# Create a new DataFrame with the scaled values and original column
names
df = pd.DataFrame(df scaled, columns=original df.columns)
# Scaling the Data
import pandas as pd
from sklearn.preprocessing import minmax scale
```


Import the necessary library

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt # Import matplotlib for plotting

Assuming 'data' is your DataFrame or NumPy array

WCSS = []

for i in range(1, 11): # Use KMeans directly from sklearn.cluster

kmeans = KMeans(n clusters=i, init='k-means++', random state=0)

kmeans.fit(df)

WCSS.append(kmeans.inertia) # Append to WCSS, not wess

Plot the WCSS values after the loop completes

plt.plot(range(1, 11), WCSS)

Calculate correlation matrix

plt.figure(figsize=(8, 6)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5) plt.title('Correlation Matrix for Customer Segmentation') plt.show()

Splitting data into train and test

from sklearn.model selection import train test split

x train,x test,y train,y test =

train test split(x,y,test size=0.2,random state=0)

Model Building

Random forest model

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, classification_report,
accuracy_score

```
def randomforest(X_train, X_test, y_train, y_test):
  rf = RandomForestClassifier()
  rf.fit(X train, y train)
  y pred = rf.predict(X test)
  print("*** Random Forest Classifier ***")
  print("Confusion matrix:")
  print(confusion matrix(y test, y pred))
  print("Classification report:")
  print(classification_report(y_test, y_pred))
  print("Accuracy Score: {}".format(accuracy score(y test,
y pred)))
randomforest(X_train, X_test, y_train, y_test)
##Decision tree model
from sklearn.tree import DecisionTreeClassifier
```


from sklearn.metrics import confusion_matrix, classification_report, accuracy score

```
def decisionTree(X train, X test, y train, y test):
  dt = DecisionTreeClassifier()
  dt.fit(X_train, y_train)
  y pred = dt.predict(X test)
  print("**Decision Tree Classifier**")
  print("Confusion matrix")
  print(confusion_matrix(y_test, y_pred))
  print("Classification report")
  print(classification report(y test, y pred))
  print("Accuracy Score: {}".format(accuracy score(y test,
y pred)))
decisionTree(X train, X test, y train, y test)
##XGBoost
def xgboost model(X train, X test, y train, y test):
  # Initialize the XGBoost classifier
  xgb = XGBClassifier(use label encoder=False,
eval metric='mlogloss')
```



```
# Fit the model on the training data
  xgb.fit(X_train, y_train)
  # Make predictions on the test data
  y pred = xgb.predict(X test)
  # Print evaluation metrics
  print("**XGBoost Classifier**")
  print("Confusion matrix:")
  print(confusion_matrix(y_test, y_pred))
  print("Classification report:")
  print(classification report(y test, y pred))
  print("Accuracy Score: {}".format(accuracy_score(y_test,
y_pred)))
# Call the XGBoost model function
xgboost model(X train, X test, y train, y test)
##KNN
```



```
def knn model(X_train, X_test, y_train, y_test, n_neighbors=3): #
Initialize the KNN classifier knn =
KNeighborsClassifier(n neighbors=n neighbors) # Fit the model on
the training data knn.fit(X_train, y_train) # Make predictions on the
test data y pred = knn.predict(X test) # Print evaluation metrics
print("**K-Nearest Neighbors Classifier**") print("Confusion
matrix:") print(confusion matrix(y test, y pred)) print("Classification
report:") print(classification report(y test, y pred)) print("Accuracy
Score: {}".format(accuracy score(y test, y pred))) # Call the KNN
model function knn model(X train, X test, y train, y test,
n neighbors=3)
# Comparing the models
rand model = RandomForestClassifier()
tree model = tree. DecisionTreeClassifier()
xgb_model = xgboost.XGBClassifier()
rand model.fit(x train,y train)
tree model.fit(x train,y train)
xgb model.fit(x train,y train)
pred = rand model.predict(x train)
pred1 = tree model.predict(x train)
pred2 = xgb model.predict(x train)
ypred = rand model.predict(x test)
```



```
ypred1 = tree model.predict(x test)
ypred2 = xgb model.predict(x test)
print(metrics.accuracy_score (pred, y_train))
print(metrics.accuracy score(pred1,y train))
print(metrics.accuracy score(pred2,y train))
print(metrics.accuracy score (y test,ypred))
print(metrics.accuracy score(y test,ypred1))
print(metrics.accuracy score(y test,ypred2))
dt = DecisionTreeClassifier()
rf = RandomForestClassifier()
knn = KNeighborsClassifier()
xg = XGBClassifier()
dt.fit(x train,y train)
rf.fit(x train,y train)
knn.fit(x train,y train)
xg.fit(x train,y train)
pred1=dt.predict(x train)
pred2=rf.predict(x train)
pred3=knn.predict(x train)
pred4=xg.predict(x train)
```



```
y pred1=dt.predict(x test)
y pred2=rf.predict(x test)
y pred3=knn.predict(x test)
y_pred4=xg.predict(x_test)
print('Decision Tree:',accuracy score(y train,pred1))
print('Random Forest:',accuracy score(y train,pred2))
print('KNN:',accuracy score(y train,pred3))
print('XGBoost:',accuracy score(y train,pred4))
xgb model = xgboost.XGBClassifier()
xgb model.fit(x train,y train)
#Hyperparameter tuning of models
from sklearn.model selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
from sklearn.metrics import accuracy score, confusion matrix,
classification_report
```

Define hyperparameter grids for each model


```
# Decision Tree
dt_params = {
  'max_depth': [None, 10, 20, 30],
  'min_samples_split': [2, 5, 10],
  'min_samples_leaf': [1, 2, 4]
}
# Random Forest
rf_params = {
  'n_estimators': [100, 200, 300],
  'max_depth': [None, 10, 20, 30],
  'min_samples_split': [2, 5, 10],
  'min_samples_leaf': [1, 2, 4]
}
# K-Nearest Neighbors
knn\_params = \{
  'n_neighbors': [3, 5, 7, 9],
  'weights': ['uniform', 'distance'],
```



```
'metric': ['euclidean', 'manhattan']
}
#XGBoost
xg_params = {
  'learning_rate': [0.01, 0.1, 0.2],
  'max_depth': [3, 5, 7],
  'n_estimators': [100, 200, 300],
  'colsample bytree': [0.3, 0.7]
}
# Initialize models
dt = DecisionTreeClassifier()
rf = RandomForestClassifier()
knn = KNeighborsClassifier()
xg = XGBClassifier()
# Perform GridSearchCV for each model
dt_grid = GridSearchCV(dt, dt_params, cv=5, scoring='accuracy')
rf_grid = GridSearchCV(rf, rf_params, cv=5, scoring='accuracy')
```



```
knn grid = GridSearchCV(knn, knn_params, cv=5,
scoring='accuracy')
xg grid = GridSearchCV(xg, xg params, cv=5, scoring='accuracy')
# Fit models with hyperparameter tuning
dt_grid.fit(x_train, y_train)
rf grid.fit(x train, y train)
knn grid.fit(x train, y train)
xg grid.fit(x train, y train)
# Get the best estimators from the grid search
dt best = dt grid.best estimator
rf_best = rf_grid.best_estimator_
knn_best = knn_grid.best_estimator_
xg best = xg grid.best estimator
# Predict on the test set
dt pred = dt best.predict(x test)
rf pred = rf best.predict(x test)
knn pred = knn best.predict(x test)
```


xg_pred = xg_best.predict(x_test)

```
# Calculate and print accuracy
print("Decision Tree Accuracy:", accuracy_score(y_test, dt_pred))
print("Random Forest Accuracy:", accuracy score(y test, rf pred))
print("KNN Accuracy:", accuracy score(y test, knn pred))
print("XGBoost Accuracy:", accuracy score(y test, xg pred))
# Generate and print confusion matrices
print("\nDecision Tree Confusion Matrix:\n",
confusion matrix(y test, dt pred))
print("\nRandom Forest Confusion Matrix:\n",
confusion matrix(y test, rf pred))
print("\nKNN Confusion Matrix:\n", confusion matrix(y test,
knn pred))
print("\nXGBoost Confusion Matrix:\n", confusion matrix(y test,
xg pred))
# Generate and print classification reports
print("\nDecision Tree Classification Report:\n",
classification report(y test, dt pred))
```



```
print("\nRandom Forest Classification Report:\n",
classification_report(y_test, rf_pred))
print("\nKNN Classification Report:\n", classification report(y test,
knn pred))
print("\nXGBoost Classification Report:\n",
classification report(y test, xg pred))
print("Best parameters for Decision Tree:", dt grid.best params )
print("Best parameters for Random Forest:", rf grid.best params )
print("Best parameters for KNN:", knn grid.best params )
print("Best parameters for XGBoost:", xg grid.best params)
# Get the best estimators from the grid search
dt best = dt grid.best estimator
rf best = rf grid.best estimator
knn best = knn grid.best estimator
xg best = xg grid.best estimator
# Predict on the test set
dt pred = dt best.predict(x test)
rf pred = rf best.predict(x test)
```



```
knn pred = knn best.predict(x test)
xg pred = xg best.predict(x test)
# Calculate and print accuracy
print("\nDecision Tree Accuracy:", accuracy score(y test, dt pred))
print("Random Forest Accuracy:", accuracy score(y test, rf pred))
print("KNN Accuracy:", accuracy score(y test, knn pred))
print("XGBoost Accuracy:", accuracy score(y test, xg pred))
# Generate and print confusion matrices
print("\nDecision Tree Confusion Matrix:\n",
confusion matrix(y test, dt pred))
print("\nRandom Forest Confusion Matrix:\n",
confusion matrix(y test, rf pred))
print("\nKNN Confusion Matrix:\n", confusion matrix(y test,
knn pred))
print("\nXGBoost Confusion Matrix:\n", confusion matrix(y test,
xg pred))
# Generate and print classification reports
```



```
print("\nDecision Tree Classification Report:\n",
classification report(y test, dt pred))
print("\nRandom Forest Classification Report:\n",
classification report(y test, rf pred))
print("\nKNN Classification Report:\n", classification report(y test,
knn pred))
print("\nXGBoost Classification Report:\n",
classification report(y test, xg pred))
#Model Selection
"""After checking the performace of all models after Evaluation KNN
is giving good results so choosing KNN as our final models"""
model = KNeighborsClassifier(n neighbors=5, algorithm='auto',
metric='minkowski') # Fit the model on the training data
model.fit(X train, y train)
#pickle files
import pickle
pickle.dump(xgb model, open("xgbmodel.pkl", 'wb'))
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
pickle.dump(sc,open('scaling.pkl','wb'))
#Checking user input values for prediction
```


#scaled input values

```
model = KNeighborsClassifier(n_neighbors=5, algorithm='auto', metric='minkowski') model.fit(X_train_scaled, y_train) # User input values (scaled input values) input_values = [[-1.809367, -1.157049, -0.697003, -1.550111, -0.315501, -0.428375, -0.532097, -0.825588, 0.268167, -1.581910, 0.087535]] # Scale the input values using the same scaler input_scaled = sc.transform(input_values) # Make the prediction prediction = model.predict(input_scaled) # Output the prediction print("Predicted Customer Segment:", prediction[0])
```

```
app.py
 # app.py
import numpy as np
import pandas as pd
import pickle
import joblib
import time
import matplotlib.pyplot as plt
from flask import Flask, request, jsonify, render template
import os
app = Flask( name )
# Load the model and scaler (assuming they're in the correct locations)
model = pickle.load(open('xgbmodel2.pkl', 'rb'))
scale = pickle.load(open("scaler model2.pkl", 'rb'))
@app.route('/')
```



```
def home():
  return render template('index.html')
@app.route('/predict', methods=["POST", "GET"])
def predict():
  input feature = [float(x) for x in request.form.values()]
  features values = [np.array(input feature)]
  names = ['sex', 'Marital status', 'Age', 'Education', 'Income', 'Occupation', 'Settlement size']
  value = pd.DataFrame(features values, columns=names)
  value = scale.transform(value)
  prediction = model.predict(value)
  if prediction[0] == 0:
    prediction1 = "Not a potential customer"
    return render template("nopotential.html", predict=prediction1)
  elif prediction[0] == 1:
    prediction1 = "Potential customer"
    return render template("potential.html", predict=prediction1)
  else:
    prediction1 = "Highly potential customer"
  return render_template("highlypot.html", predict=prediction1)
if name == " main ":
  port = int(os.environ.get('PORT', 5000))
  app.run(port=port, debug=True, use reloader=True)
```


home.html

```
<!DOCTYPE html>
<html>
<head>
  <meta charset="UTF-8">
  <title>Customer Segmentations</title>
  <style>
    body {
       background-image: url("https://img.freepik.com/premium-vector/online-world-
concept-illustration_86047-635.jpg?w=826");
       background-color: black;
     }
    .login {
       text-align: left;
     }
    label {
       display: inline-block;
      width: 150px;
    }
  </style>
</head>
<body>
  <div class="login">
    <center>
       <h1>Customer Segmentation</h1>
```



```
Main Input For Main Input Receiving Query
       <form action="{{ url for('predict') }}" method="post">
         <h1>Please enter the following details</h1>
         <label for="Sex">Sex:</label>
         <select id="Sex" name="Sex">
           <option value="0">Female</option>
           <option value="1">Male</option>
         </select>
         <br>><br>>
         <label for="Marital status">Marital status:</label>
         <select id="Marital status" name="Marital status">
           <option value="0">Single</option>
           <option value="1">Married</option>
         </select>
         <br/>br><br/>>
         <label for="Age">Age:</label>
         <input type="number" id="Age" name="Age" min="20" max="80"</pre>
placeholder="Age required" required />
         <br/>br><br/>>
         <label for="Education">Education:</label>
         <select id="Education" name="Education">
           <option value="0">High School</option>
           <option value="1">Bachelor's Degree</option>
           <option value="2">Master's Degree</option>
           <option value="3">Ph.D.</option>
         </select>
         <br/>br><br/>>
         <label for="Income">Income:</label>
         <input type="number" id="Income" name="Income" min="0"</pre>
placeholder="Income" required />
         <br/>br><br/>>
```



```
<label for="Occupation">Occupation:</label>
         <select id="Occupation" name="Occupation">
           <option value="0">Not Working</option>
            <option value="1">Working</option>
            <option value="2">Business</option>
         </select>
         <br/>br><br/>>
         <label for="Settlement size">Settlement size:</label>
         <select id="Settlement size" name="Settlement size">
            <option value="0">0</option>
           <option value="1">1</option>
            <option value="2">2</option>
         </select>
         <br/>br><br/>><br/>
         <button>predict</button>
       </form>
       <br/>br>
       <br/>br>
       <br/>br>
       <div>The Customer is :{{predict}}</div>
    </center>
  </div>
</body>
</html>
```


Ouput1.html

```
<!DOCTYPE html>
<html>
<head>
  <style>
    body {
      margin: 0;
      padding: 0;
      height: 80vh;
      width: 100vw;
      background: url('/static/image.png') no-repeat center center fixed;
      background-size: contain;
    }
  </style>
</head>
<body>
</body>
</html>
Ouput2.html
<!DOCTYPE html>
<html>
<head>
  <style>
    body {
      margin: 0;
      padding: 0;
      height: 80vh;
```



```
width: 100vw;
       background: url('/static/not potential.png') no-repeat center center fixed;
       background-size: contain;
    }
  </style>
</head>
<body>
</body>
</html>
Ouput3.html
<!DOCTYPE html>
<html>
<head>
  <style>
    body {
       margin: 0;
       padding: 0;
       height: 80vh;
       width: 100vw;
       background: url('/static/potential.png') no-repeat center center fixed;
       background-size: contain;
     }
  </style>
</head>
<body>
</body>
</html>
```


10.2 GitHub & Project Demo Link:

https://github.com/yuvaraju4541/Customer-Segmentation-using-Machine-Learning

10.3 Demonstration video link:

https://drive.google.com/file/d/16o96skMd8UROSC8A2fZExy5HogLlKuwh/view?usp=drivesdk