

® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

[®] Off nl gungsschrift[®] DE 199 36 780 A 1

(1) Aktenzeichen:(2) Anmeldetag:

199 36 780.9 9. 8. 1999

(3) Offenlegungstag:

15. 2.2001

(5) Int. Cl.⁷:

C 07 D 401/06

C 07 D 401/12 C 07 D 401/14 C 07 D 403/12 C 07 D 409/12 C 07 D 409/14

C 07 D 417/12 C 07 D 471/04 C 07 D 487/04 // (C07D 401/06, 213:72,223:20)C07D

223/20,243/10

199 36 780

(7) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Kling, Andreas, Dr., 68239 Mannheim, DE; Geneste, Herve, Dr., 67141 Neuhofen, DE; Lange, Udo, Dr., 68163 Mannheim, DE; Lauterbach, Arnulf, Dr., 67067 Ludwigshafen, DE; Graef, Claudia Isabella, Dr., 68161 Mannheim, DE; Subkowski, Thomas, Dr., 68526 Ladenburg, DE; Holzenkamp, Uta, Dr., 67245 Lambsheim, DE; Mack, Helmut, Dr., 67067 Ludwigshafen, DE; Sadowski, Jens, Dr., 67117 Limburgerhof, DE; Hornberger, Wilfried, Dr., 67434 Neustadt, DE; Laux, Volker, Dr., 55128 Mainz, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (3) Neue Antagonisten von Integrinrezeptoren
- Die Erfindung betrifft neue Verbindungen, die an Integrinrezeptoren binden, deren Herstellung und deren Verwendung als Arzneimittel.

Beschreibung

Die Erfindung betrifft neue Verbindungen, die an Integrinrezeptoren binden, deren Herstellung und Verwendung.

Integrine sind Zelloberflächen-Glycoproteinrezeptoren, die Wechselwirkungen zwischen gleichartigen und unterschiedlichen Zellen sowie zwischen Zellen und extrazellulären Matrixproteinen vermitteln. Sie sind an physiologischen Prozessen, wie z. B. Embryogenese, Hämostase, Wundheilung, Immunantwort und Bildung/Aufrechterhaltung der Gewebearchitektur beteiligt.

Störungen in der Genexpression von Zelladhäsionsmolekülen sowie Funktionsstörungen der Rezeptoren können zur Pathogenese vieler Erkrankungen, wie beispielsweise Tumore, thromboembolische Ereignisse, kardiovaskuläre Erkrankungen, Lungenkrankheiten, Erkrankungen des ZNS, der Niere, des Gastrointestinaltraktes oder Entzündungen beitragen.

Integrine sind Heterodimere aus jeweils einer α - und einer β -Transmembran-Untereinheit, die nicht-kovalent verbunden sind. Bisher wurden 16 verschiedene α - und 8 verschiedene β -Untereinheiten und 24 verschiedene Kombinationen identifiziert.

Integrin α,β₃, auch Vitronectinrezeptor genannt, vermittelt die Adhäsion an eine Vielzahl von Liganden – Plasmaproteine, extrazelluläre Matrixproteine, Zelloberflächenproteine –, von denen der Großteil die Aminosäuresequenz RGD enthält (Cell, 1986, 44, 517–518; Science 1987, 238, 491–497), wie beispielsweise Vitronectin, Fibrinogen, Fibronectin, von Willebrand-Faktor, Thrombospondin, Osteopontin, Laminin, Collagen, Thrombin, Tenascin, MMP-2, bone-sialo-Protein II, verschiedene virale, parasitäre und bakterielle Proteine, natürliche Integrin-Antagonisten wie Disintegrine, Neurotoxine – Mambin – und Blutegelproteine – Decorsin, Ornatin – sowie einige nicht-RGD-Liganden, wie beispielsweise Cyr-61, PECAM (L. Piali, J. Cell Biol. 1995, 130, 451–460; Buckley, J. Cell Science 1996, 109, 437–445, J. Biol. Chem. 1998, 273, 3090–3096).

Mehrere Integrinrezeptoren zeigen Kreuzreaktivität mit Liganden, die das RGD-Motiv enthalten. So erkennt Integrin $\alpha_{IIb}\beta_3$, auch Plättchen-Fibrinogen-Rezeptor genannt, Fibronectin, Vitronectin, Thrombospondin, von Willebrand-Faktor und Fibrinogen.

Integrin $\alpha_v \beta_3$ ist u. a. exprimiert auf Endothelzellen, Blutplättchen, Monocyten/Makrophagen, Glattmuskelzellen, einigen B-Zellen, Fibroblasten, Osteoclasten und verschiedenen Tumorzellen, wie beispielsweise Melanome, Glioblastome, Lungen-, Brust-, Prostata- und Blasenkarzinome, Osteosarkome oder Neuroblastome.

Eine erhöhte Expression beobachtet man unter verschiedenen pathologischen Bedingungen, wie beispielsweise im prothrombotischen Zustand, bei Gefäßverletzung, Tumorwachstum oder -metastasierung oder Reperfusion und auf aktivierten Zellen, insbesondere auf Endothelzellen, Glattmuskelzellen oder Makrophagen.

Eine Beteiligung von Integrin $\alpha_v \beta_3$ ist unter anderem bei folgenden Krankheitsbildern nachgewiesen:

Kardiovaskuläre Erkrankungen wie Arteriosklerose, Restenose nach Gefäßverletzung, und Angioplastie (Neointimabildung, Glattmuskelzellmigration und Proliferation) (J. Vasc. Surg. 1994, 19, 125–134; Circulation 1994, 90, 2203–2206), akutes Nierenversagen (Kidney Int. 1994, 46, 1050–1058; Proc. Natl. Acad. Sci. 1993, 90, 5700–5704; Ridney Int. 1995, 48, 1375–1385),

Angiogenese-assoziierte Mikroangiopathien wie beispielsweise diabetische Retinopathie oder rheumatische Arthritis (Ann. Rev. Physiol 1987, 49, 453–464; Int. Ophthalmol. 1987, 11, 41–50; Cell 1994, 79, 1157–1164; J. Biol. Chem. 1992, 267, 10931–10934),

40 arterielle Thrombose,

Schlaganfall (Phase-II-Studien mit ReoPro, Centocor Inc., 8th annual European Stroke Meeting), Krebserkrankungen, wie beispielsweise bei der Tumormetastasierung oder beim Tumorwachstum (tumorinduzierte Angiogenese) (Cell 1991, 64, 327–336; Nature 1989, 339, 58–61; Science 1995, 270, 1500–1502),

Osteoporose (Knochenresorption nach Proliferation, Chemotaxis und Adhäsion von Osteoclasten an Knochenmatrix) (FASEB J. 1993, 7, 1475–1482; Exp. Cell Res. 1991, 195, 368–375, Cell 1991, 64, 327–336),

Bluthochdruck, Psoriasis, Hyperparathyroismus, Paget'sche Erkrankung, maligne Hypercalcemie, metastatische osteolytische Läsionen, Entzündung, Herzinsuffizienz, CHF, sowie bei

anti-viraler, anti-parasitärer oder anti-bakterieller Therapie und Prophylaxe (Adhäsion und Internalisierung).

Aufgrund seiner Schlüsselrolle sind pharmazeutische Zubereitungen, die niedermolekulare Integrin- $\alpha_v \beta_3$ -Antagonisten enthalten, u. a. in den genannten Indikationen von hohem therapeutischem bzw. diagnostischem Nutzen.

Vorteilhafte $\alpha_v \beta_3$ -Integrinrezeptorantagonisten binden an den Integrin- $\alpha_v \beta_3$ -Rezeptor mit einer erhöhten Affinität.

Besonders vorteilhafte $\alpha_v \beta_3$ -Integrinrezeptorantagonisten weisen gegenüber dem Integrin $\alpha_v \beta_3$ zusätzlich eine erhöhte Selektivität auf und sind bezüglich des Integrins $\alpha_{IIb}\beta_3$ mindestens um den Faktor 10 weniger wirksam, bevorzugt mindestens um den Faktor 100.

Für eine Vielzahl von Verbindungen, wie anti-α_vβ₃-monoklonale Antikörper, Peptide, die die RGD-Bindungssequenz enthalten, natürliche, RGD-enthaltenden Proteine (z. B. Disintegrine) und niedermolekulare Verbindungen ist eine Integrin-α_vβ₃-antagonistische Wirkung gezeigt und ein positiver in-vivo-Effekt nachgewiesen worden (FEBS Letts 1991, 291, 50–54; J. Biol. Chem. 1990, 265, 12267–12271; J. Biol. Chem. 1994, 269, 20233–20238; J. Cell Biol 1993, 51, 206–218; J. Biol. Chem. 1987, 262, 17703–17711; Bioorg. Med. Chem. 1998, 6, 1185–1208).

Ferner sind $\alpha_{\nu}\beta_{3}$ -Antagonisten mit einem tricyclischen Molekülgerüst bekannt.

WO 9915508-A1, WO 9830542-A1 und WO 9701540-A1 beschreiben Dibenzocycloheptan-Derivate, WO 9911626-A1 beschreibt Dibenzo-[1,4]oxazepin-Derivate und WO 9905107-A1 Benzocycloheptan-Derivate.

Der Erfindung lag die Aufgabe zugrunde, neue Integrinrezeptorantagonisten mit vorteilhaften Eigenschaften zur Verfügung zu stellen.

Dementsprechend wurden Verbindungen der Formel I gefunden:

B-G-L I

wobei B, G und L folgende Bedeutung haben: L ein Strukturelement der Formel I_L

-U-T IL

5

wobei

T eine Gruppe COOH oder einen zu COOH hydrolisierbaren Rest und

-U-- $(X_L)_a$ - $(CR_L^1R_L^2)_b$ -, - CR_L^1 = CR_L^2 -, Ethinylen oder = CR_L^1 - bedeuten, wobei a 0 oder 1,

b 0, 1 oder 2

10

20

cloalkyl-, -CO-NH(C₁-C₆-Alkyl)-, -CO-N(C₁-C₆-Alkyl)₂- oder C₁-C₄-Alkoxyrest, einen gegebenenfalls substituierten Rest C₁-C₂-Alkylen-T, C₂-Alkenylen-T oder C₂-Alkinylen-T, einen gegebenenfalls substituierten Aryl- oder Arylalkylrest oder jeweils unabhängig voneinander zwei Reste R_L¹ und R_L² oder R_L³ und R_L⁴ oder gegebenenfalls R_L¹ und R_L³ zusammen einen, gegebenenfalls-substituierten 3- bis 7-gliedrigen gesättigten oder ungesättigten Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche-Heteroatome O, N, S enthalten kann,

RL⁵, RL⁶, RL⁷ unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₃-C₇-Cycloalkyl-, CO-O-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl- oder CO-C₁-C₆-Alkyl-est oder einen, gegebenenfalls substituierten CO-O-Alkylen-Aryl-, SO₂-Aryl-, CO-Aryl-, SO₂-Alkylen-Aryl- oder CO-Alkylen-Arylrest. bedeuten,

G ein Strukturelement der Formel IG

25 IG 30

der Einbau des Strukturelements G in beiden Orientierungen erfolgen kann und

X_G Stickstoff oder CR_G¹ für den Fall, daß Strukturelement G mit Strukturelement L oder B über X_G über eine Einfachbindung verbunden ist oder

Kohlenstoff für den Fall, daß Strukturelement G mit Strukturelement L über XG über eine Doppelbindung verbunden ist, Y_G CO, CS, C=NR_G² oder CR_G³R_G⁴,

wobei

R_G¹ Wasserstoff, Halogen, eine Hydroxy-Gruppe oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl- oder C1-C4-Alkoxyrest,

R_G² Wasserstoff, eine Hydroxy-Gruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy-, C₃-C₇-Cycloalkyl- oder -O-C₃-C₇-Cycloalkylrest oder einen gegebenenfalls substituierten Aryl-, -O-Aryl-, Arylalkyl- oder -O-Alkylen-Arylrest und

R_G³, R_G⁴ unabhängig voneinander Wasserstoff oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder C₁-C₄-Alkoxyrest oder beide Reste R_G³ und R_G⁴ zusammen ein cyclisches Acetal -O-CH₂-CH₂-O- oder -CH₂-O- oder beide Reste R_G³ und R_G⁴ zusammen einen, gegebenenfalls substituierten C3-C7-Cycloalkylrest,

bedeuten, R_G⁵, R_G⁶, R_G⁷, R_G⁸ unabhängig voneinander Wasserstoff, eine Amino- oder Hydroxygruppe, einen Rest HN-CO-R_G⁹, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl- oder C1-C4-Alkoxyrest, einen gegebenfalls substituierten Aryl- oder Arylalkylrest oder unabhängig voneinander jeweils zwei Reste R_G⁵ und R_G⁶ oder R_G⁷ und R_G⁸ zusammen einen, gegebenenfalls substituierten, anelierten, ungesättigten oder aromatischen 3- bis 6-gliedrigen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, und

R_G einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest oder einen gegebenenfalls substituierten Aryl-, Hetaryl-, Arylalkyl- oder Hetarylalkylrest bedeuten,

B ein Strukturelement, enthaltend mindestens ein Atom das unter physiologischen Bedingungen als Wasserstoff-Akzeptor Wasserstoffbrücken ausbilden kann, wobei mindestens ein Wasserstoff-Akzeptor-Atom entlang des kürzestmöglichen Weges entlang des Strukturelementgerüstes einen Abstand von 4 bis 13 Atombindungen zu Strukturelement Gauf-

sowie die physiologisch verträglichen Salze, Prodrugs und die enantiomerenreinen oder diastereomerenreinen und tau-

In Strukturelement L wird unter T eine Gruppe COOH oder ein zu COOH hydrolisierbarer Rest verstanden. Unter einem zu COOH hydrolisierbaren Rest wird ein Rest verstanden, der nach Hydrolyse in eine Gruppe COOH übergeht. Beispielhaft sei für einen zu COOH hydrolisierbaren Rest T die Gruppe

10

15

25

45

- erwähnt, in der R¹ die folgende Bedeutung hat:
 - a) OM, wobei M ein Metallkation, wie ein Alkalimetallkation, wie Lithium, Natrium, Kalium, das Äquivalent eines Erdalkalinietallkations, wie Calcium, Magnesium und Barium oder ein umweltverträgliches organisches Ammoniumion wie beispielsweise primäres, sekundäres, tertiäres oder quartäres C₁-C₄-Alkylammonium oder Ammoniumion sein kann, wie beispielsweise ONa, OK oder OLi,
 - b) ein verzweigter oder unverzweigter, gegebenenfalls mit Halogen substituierter C₁-C₈-Alkoxyrest, wie beispielsweise Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, insbesondere Methoxy, Ethoxy, 1-Methylethoxy, Pentoxy, Hexoxy, Heptoxy, Octoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy oder Pentafluorethoxy,
 - c) ein verzweigter oder unverzweigter, gegebenenfalls mit Halogen substituierten C₁-C₄-Alkylthiorest wie Methylthio, Ethylthio, Propylthio, 1-Methylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthiorest,
 - d) ein gegebenenfalls substituierter -O-Alkylen-Arylrest, wie beispielsweise -O-Benzyl,
- e) R¹ ferner ein Rest -(O)_m-N(R¹8)(R¹9), in dem m für 0 oder 1 steht und R¹8 und R¹9, die gleich oder unterschiedlich sein können, die folgende Bedeutung haben:
 Wasserstoff,
 - einen verzweigten oder unverzweigten, gegebenenfalls substituierten
 - C₁-C₆-Alkylrest, wie beispielsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl oder 1-Ethyl-2-methylpropyl oder die entsprechenden substituierten Reste, vorzugsweise Methyl, Ethyl, Propyl, Butyl oder i-Butyl,
- C₂-C₆-Alkenylrest, wie beispielsweise Vinyl, 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-3-butenyl, 1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl
- butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butenyl oder 3-Methyl-2-pentenyl oder die entsprechenden substituierten Reste,

 C₂-C₆-Alkinylrest, wie beispielsweise Ethinyl, 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl,
 - 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, vorzugsweise 2-Propinyl, 2-Butinyl, 1-Methyl-2-propinyl oder 1-Methyl-2-butinyl oder die entsprechenden substituierten Reste, C₃-C₈-Cycloalkyl, wie beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl, Cycloctyl oder die entsprechenden substituierten Reste,
- oder einen Phenylrest, gegebenenfalls ein- oder mehrfach, beispielsweise ein- bis dreifach substituiert durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio wie beispielsweise 2-Fluorphenyl, 3-Chlorphenyl, 4-Bromphenyl, 2-Methylphenyl, 3-Nitrophenyl, 4-Cyanophenyl, 2-Trifluornethylphenyl, 3-Methoxyphenyl, 4-Trifluorethoxyphenyl, 2-Methylthiophenyl, 2,4-Dichlorphenyl, 2-Methylphenyl, 2,4-Dichlorphenyl, 2-Methoxy-3-methylphenyl, 2,4-Dimethoxyphenyl, 2-Nitro-5-cyanophenyl, 2,6-Difluorphenyl,
- oder R¹⁸ und R¹⁹ hilden gemeinsam eine zu einem Cyclus geschlossene, gegebenenfalls substituierte, z. B. durch C₁-C₄-Alkyl substituierte C₄-C₇-Alkylenkette, die ein Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, enthalten kann wie beispielsweise -(CH₂)₄-, -(CH₂)₅-, -(CH₂)₆-, -(CH₂)₇-, -(CH₂)₂-O-(CH₂)₂-, -CH₂-S-(CH₂)₃-, -(CH₂)₃-, -NH-(CH₂)₃-, -CH₂-NH-(CH₂)₂-, -CH₂-CH=CH-CH₂-, -CH=CH-(CH₂)₃-, -CO-(CH₂)₂-CO- oder -CO-(CH₂)₃-CO-.
 - Bevorzugte Reste T sind -COOH, -CO-O-C₁-C₈-Alkyl oder -CO-O-Benzyl.
 - Der Rest -U- in Strukturelement L stellt einen Spacer, ausgewählt aus der Gruppe - $(X_L)_a$ - $(CR_L^1R_L^2)_b$ -, - CR_L^1 - $(CR_L^1R_L^2)_b$ -, - CR_L^1 Ethinylen oder = CR_L^1 dar. Im Fall des Restes = CR_L^1 ist das Strukturelement L mit dem Strukturelement G über eine Doppelbindung verknüpft.
- X_L bedeutet vorzugsweise den Rest CR_L³R_L⁴, NR_L⁵, Sauerstoff oder Schwefel.
 - Bevorzugte Reste -U- sind die Reste = CR_L^{1-} oder - $(X_L)_a$ - $(CR_L^{1}R_L^{2})_b$ -, wobei X_L vorzugsweise $CR_L^{3}R_L^{4}$ (a = 0 oder 1) oder Sauerstoff (a = 1) bedeutet.
 - Besonders bevorzugte Reste -U- sind die Reste - $(X_L)_a$ - $(CR_L^1R_L^2)_b$ -, wobei X_L vorzugsweise $CR_L^3R_L^4$ (a = 1) oder

Sauerstoff (a = 1) bedeutet.

Unter einem Halogenrest wird unter R_L¹, R_L², R_L³ oder R_L⁴ in Strukturelement L beispielsweise F, Cl, Br oder I, vorzugsweise F verstanden.

Unter einem verzweigten oder unverzweigten C1-C6-Alkylrest werden unter RL1, RL2, RL3 oder RL4 in Strukturelement L beispielsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl oder 1-Ethyl-2methylpropyl, vorzugsweise verzweigte oder unverzweigte C1-C4-Alkylreste wie beispielsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1,1-Dimethylethyl, besonders bevorzugt Methyl verstan-

10

20

30

45

55

Unter einem verzweigten oder unverzweigten C2-C6-Alkenylrest werden unter R1, R2, R1, oder R1, in Strukturelement L beispielsweise Vinyl, 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, nyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-entenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butcnyl, 3-Methyl-2-butenyl oder 3-Methyl-2-pentenyl verstanden.

Unter einem verzweigten oder unverzweigten C2-C6-Alkinylrest werden unter RL1, RL2, RL3 oder RL4 in Strukturelement L beispielsweise Ethinyl, 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, vorzugsweise Ethinyl, 2-Propinyl, 2-Butinyl, 1-Methyl-2-propinyl oder 1-Methyl-2-butinyl verstanden.

Unter einem verzweigten oder unverzweigten C₃-C₇-Cycloalkylrest werden unter R_L¹, R_L², R_L³ oder R_L⁴ in Strukturelement L beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl verstanden.

Unter einem verzweigten oder unverzweigten C₁-C₄-Alkoxyrest werden unter R_L¹, R_L², R_L³ oder R_L⁴ in Strukturelement L beispielsweise Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy verstanden.

Die Reste -CO-NH(C₁-C₆-Alkyl), -CO-N(C₁-C₆-Alkyl)₂ stellen sekundäre bzw. tertiäre Amide dar und setzten sich aus der Amidbindung und den entsprechenden C₁-C₆-Alkylresten wie vorstehend für R_L¹, R_L², R_L³ oder R_L⁴ beschrieben

Die Reste R_L¹, R_L², R_L³ oder R_L⁴ können weiterhin einen Rest

C₁-C₂-Alkylen-T, wie beispielsweise Methylen-T oder Ethylen-T, C₂-Alkenylen-T, wie beispielsweise Ethenylen-T oder C₂-Alkinylen-T, wie beispielsweise Ethinylen-T,

einen Arylrest, wie beispielsweise Phenyl, 1-Naphthyl oder 2-Naphthyl oder

einen Arylalkylrest, wie beispielsweise Benzyl oder Ethylenphenyl (Homobenzyl)

darstellen, wobei die Reste gegebenenfalls substituiert sein können.

Ferner können jeweils unabhängig voneinander zwei Reste R_L^1 und R_L^2 oder R_L^3 und R_L^4 oder gegebenenfalls R_L^1 und R_L³ zusammen einen, gegebenenfalls substituierten 3 bis 7 gliedrigen gesättigten oder ungesättigten Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, darstellen. Alle Reste für R_L^1 , R_L^2 , R_L^3 oder R_L^4 können gegebenenfalls substituiert sein. Für die Reste R_L^1 , R_L^2 , R_L^3 oder R_L^4

und alle weiteren, nachstehenden substituierten Reste der Beschreibung kommen, wenn die Substituenten nicht näher spezifiziert sind, unabhängig voneinander bis zu 5 Substituenten, beispielsweise ausgewählt aus der folgenden Gruppe in Frage:

-NO₂, -NH₂, -OH, -CN, -COOH, -O-CH₂-COOH, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₄-Alkyl-, wie beispielsweise Methyl, CF₃, C₂F₅ oder CH₂F, -CO-O-C₁-C₄-Alkyl-, C₃-C₆-Cycloalkyl-, C1-C4 Alkoxy-, C1-C4-Thioalkyl-, -NH-CO-O-C1-C4-Alkyl, -O-CH2-COO-C1-C4-Alkyl, -NH-CO-C1-C4-Alkyl, -CO- $NH-C_1-C_4-Alkyl$, $-NH-SO_2-C_1-C_4-Alkyl$, $-SO_2-NH-C_1-C_4-Alkyl$, $-N(C_1-C_4-Alkyl)_2$, $-NH-C_1-C_4-Alkyl$, $-O(C_1-C_4-Alkyl)_2$ C₄-Alkylrest, wie beispielsweise -SO₂-CF₃, einen gegebenfalls substituierten -NH-CO-Aryl-, -CO-NH-Aryl-, -NH-CO-O-Aryl-, -NH-CO-O-Alkylen-Aryl-, -NH-SO₂-Aryl-, -SO₂-NH-Aryl-, -CO-NH-Benzyl-, -NH-SO₂-Benzyl- oder -SO₂-NH-Benzylrest, einen gegebenenfalls substituierten Rest -SO₂-NR²R³ oder -CO-NR²R³, wobei die Reste R² und R³ unabhängig voneinander die Bedeutung wie nachstehend R_L⁵ haben können oder beide Reste R² und R³ zusammen einen 3bis 6-gliedrigen, gegebenenfalls substituierten, gesättigten ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu drei weitere verschiedene oder gleiche Heteroatome O, N, S enthalten kann, und gegebenenfalls zwei an diesem Heterocyclus substituierte Reste zusammen einen anelierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann darstellen und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter Cyclus ankondensiert sein kann.

Wenn nicht näher spezifiziert, können bei allen endständig gebundenen, substituierten Hetarylresten der Beschreibung zwei Substituenten einen anellierten 5- bis 7-gliedrigen, ungesättigten oder aromatischen Carbocyclus bilden.
Bevorzugte Reste R_L¹, R_L², R_L³ oder R_L⁴ sind unabhängig voneinander Wasserstoff, Halogen, ein verzweigter oder

unverzweigter, gegebenenfalls substituierter C1-C4-Alkyl-, C1-C4-Alkoxy-, oder C3-C7-Cycloalkylrest oder der Rest -

Besonders bevorzugte Reste R_L¹, R_L², R_L³ oder R_L⁴ sind unabhängig voneinander Wasserstoff, Fluor oder ein ver $zweigter\ oder\ unverzweigter,\ gegebenen falls\ substituierter\ C_1-C_4-Alkylrest,\ vorzugsweise\ Methyl.$

Die Reste RL⁵, RL⁶, RL⁷ in Strukturelement L bedeuten unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten

C₁-C₆-Alkylrest, beispielsweise wie vorstehend für R₁¹ beschrieben,

C₃-C₇-Cycloalkylrest, beispielsweise wie vorstehend für R_L¹ beschrieben,

CO-O-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl- oder CO-C₁-C₆-Alkylrest, der sich aus der Gruppe CO-O, SO₂ oder CO und beispielsweise aus den vorstehend für R_L¹ beschriebenen C₁-C₆-Alkylresten zusammensetzt,

oder einen, gegebenenfalls substituierten CO-O-Alkylen-Aryl-, SO₂-Aryl-, SO₂-Alkylen-Aryl- oder CO-Alkylen-Arylrest, der sich aus der Gruppe CO-O, SO2, oder CO und beispielsweise aus den vorstehend für RL1 beschriebenen Aryloder Arylalkylresten zusammensetzt.

Bevorzugte Reste für RL⁶ in Strukturelement L sind Wasserstoff, ein verzweigter oder unverzweigter, gegebenenfalls substituierter C₁-C₄-Alkyl-, CO-O-C₁-C₄-Alkyl-, CO-C₁-C₄-Alkyl- oder SO₂-C₁-C₄-Alkylrest oder ein gegebenenfalls substituierter CO-O-Benzyl-, SO₂-Aryl-, SO₂-Alkylen-Aryl- oder CO-Arylrest.

Bevorzugte Reste für R_L⁷ in Strukturelement L sind Wasserstoff oder ein verzweigter oder unverzweigter, gegebenenfalls substituierter C₁-C₄-Alkylrest.

Bevorzugte Strukturelemente L setzen sich aus den bevorzugten Resten des Strukturelementes zusammen.

Besonders bevorzugte Strukturelemente L setzen sich aus den besonders bevorzugten Resten des Strukturelementes

G stellt ein Strukturelement der Formel IG dar,

wobei der Einbau des Strukturelementes G in beiden Orientierungen erfolgen kann. Der Fall, daß XG über eine Doppelbindung mit dem nächsten Strukturelement verbunden ist, gilt nur für die Orientierung, bei der das Strukturelement G über X_G über eine Doppelbindung mit Strukturelement L verbunden ist. Im Fall einer Einfachbindung kann der Einbau des Strukturelements G in beiden Orientierungen erfolgen.

Für den Fall, daß Strukturelement G mit Strukturelement L oder B über XG über eine Einfachbindung verbunden ist, bedeutet X_G Stickstoff oder CR_G¹.

Für den Fall, daß Strukturelement G mit Strukturelement L über XG über eine Doppelbindung verbunden ist, bedeutet X_G Kohlenstoff.

Y_G in Strukturelement G bedeutet CO, CS, C=NR_G² oder CR_G³R_G⁴, vorzugsweise CO, C=NR_G² oder CR_G³R_G⁴.

RG1 in Strukturelement G bedeutet Wasserstoff, Halogen, wie beispielsweise, Cl, F, Br oder I, eine Hydroxy-Gruppe oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl-, vorzugsweise C1-C4-Alkyloder C₁-C₄-Alkoxyrest beispielsweise wie jeweils vorstehend für R_L¹ beschrieben.

Besonders bevorzugte Reste für R_G^{-1} sind Wasserstoff, Methoxy oder Ethoxy.

 ${
m R_G}^2$ in Strukturelement G bedeutet Wasserstoff, eine Hydroxy-Gruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy- oder C₃-C₇-Cycloalkylrest, beispielsweise wie jeweils vorstehend für R_L¹ beschrieben,

einen gegebenenfalls substituierten -O-C₃-C₇-Cycloalkylrest, der sich aus einer Ethergruppe und beispielsweise aus dem vorstehend für R_L¹ beschriebenen C₃-C₇-Cycloalkylrest zusammensetzt,

einen gegebenenfalls substituierten Aryl- oder Arylalkylrest, beispielsweise wie jeweils vorstehend für R_L¹ beschrieben

einen gegebenenfalls substituierten -O-Aryl oder -O-Alkylen-Arylrest, der sich aus einer Gruppe -O- und beispielsweise aus den vorstehend für R_L¹ beschriebenen Aryl- bzw. Arylalkylresten zusammensetzt.

 $\label{thm:continuous} \mbox{Unter verzweigten, gegebenenfalls substituierten C_1-C_6-Alkyl-, C_2-C_6-Alkinyl-, C_2-C_6-Alkinyl-, C_2-C_6-Alkinyl-, C_3-C_6-Alkinyl-, C_4-C_6-Alkinyl-, C_4-C_6-Alkinyl-, C_5-C_6-Alkinyl-, C_5-C_6 oder C₁-C₄-Alkoxyresten werden für R_G³ oder R_G⁴ in Strukturelement G unabhängig voneinander, beispielsweise die entsprechenden jeweils vorstehend für R_L¹ beschriebenen Reste verstanden.

Ferner können beide Reste R_G³ und R_G⁴ zusammen ein cyclisches Acctal, wie beispielsweise -O-CH₂-CH₂-O- oder -

O-CH2-O-bilden.

Weiterhin können beide Reste R_G^3 und R_G^4 zusammen einen gegebenenfalls substituierten C_3 - C_7 -Cycloalkylrest bil-

Bevorzugte Reste für R_G^3 oder R_G^4 sind unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy.

Unter verzweigten oder unverzweigten, gegebenenfalls substituierten C_1 - C_6 -Alkyl- oder C_1 - C_4 -Alkoxyresten und gegebenfalls substituierten Aryl- oder Arylalkylresten werden für $R_G^{\,5}$, $R_G^{\,6}$, $R_G^{\,7}$ oder $R_G^{\,8}$ in Strukturelement G unabhängig voneinander beispielsweise die entsprechenden jeweils vorstehend für $R_L^{\,1}$ beschriebenen Reste verstanden. Ferner können unabhängig voneinander jeweils zwei Reste $R_G^{\,5}$ und $R_G^{\,6}$ oder $R_G^{\,7}$ und $R_G^{\,8}$ zusammen einen, gegebensche verstanden von der verstanden versche verstanden van der versche verstanden versche verstanden versche verstanden versche verstanden versche versc

nenfalls substituierten, anelierten, ungesättigten oder aromatischen 3- bis 6-gliedrigen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, bilden.

Bevorzugte Reste für R_G⁵, R_G⁶, R_G⁷ oder R_G⁸ sind unabhängig voneinander Wasserstoff oder gegebenfalls substitu-

ierte Arylreste, vorzugsweise Phenyl oder Arylalkylreste, vorzugsweise Benzyl sowie jeweils zwei Reste R₆5 und R₆6 oder R_G⁷ und R_G⁸ zusammen ein, gegebenenfalls substituierter, anelierter, ungesättigter oder aromatischer 3- bis 6-gliedriger Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann.

Bei besonders bevorzugten Resten für R_G^5 , R_G^6 , R_G^7 oder R_G^8 bilden unabhängig voneinander jeweils zwei Reste R_G^5 und R_G⁶ oder R_G⁷ und R_G⁸ zusammen einen, gegebenenfalls substituierten, anelierten, ungesättigten oder aromatischen 3- bis 6-gliedrigen Carbocyclus oder Heterocyclus ausgewählt aus einer der folgenden zweifach gebundenen Struktur-

10

15

20

Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl- oder C1-C4-Alkoxyrest und einem gegebenenfalls substituierten Aryl- oder Arylalkylrest werden für R₆9 beispielsweise die entsprechenden vorstehend für R_L¹ beschriebenen Reste verstanden.

Unter einem Hetarylrest für R_G⁹ werden beispielsweise Reste wie 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Furyl, 3-Furyl, 2-Pyrrolyl, 3-Pyrrolyl, 2-Thienyl, 3-Thienyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Pyrimidyl, 4-Pyrimidyl, 5-Pyrimidyl, 6-Pyrimidyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 3-Pyridazinyl, 4-Pyridazinyl, 5-Pyridazinyl, 6-Pyridazinyl, 3-Isoxazol, 4-Isoxazol, 5-Isoxazol, Thiadiazol, Oxadiazol oder Triazin verstanden.

Unter substituierten Hetarylresten für R_G⁹ werden, wie vorstehend allgemein für endständige, substituierte Hetarylreste beschrieben, auch anellierte Derivate der vorstehend erwähnten Hetarylreste verstanden, wie beispielsweise Indazol, Indol, Benzothiophen, Benzofuran, Indolin, Benzimidazol, Benzthiazol, Benzoxazol, Chinolin oder Isochinolin.

Unter einem Hetarylalkylrest werden für R_G9 Reste verstanden, die sich beispielsweise aus den vorstehend beschriebenen C1-C6-Alkylresten und aus den vorstehend beschriebenen Hetarylresten zusammensetzen, wie vorzugsweise die Reste -CH₂-2-Pyridyl, -CH₂-3-Pyridyl, -CH₂-4-Pyridyl, -CH₂-2-Thienyl, -CH₂-3-Thienyl, -CH₂-2-Thiazolyl, -CH₂-4-Pyridyl, -CH Thiazolyl, CH₂-5-Thiazolyl, -CH₂-CH₂-2-Pyridyl, -CH₂-CH₂-3-Pyridyl, -CH₂-CH₂-4-Pyridyl, -CH₂-CH₂-2-Thienyl, -CH₂-CH₂-3-Thienyl, -CH₂-CH₂-2-Thiazolyl, -CH₂-CH₂-4-Thiazolyl, oder -CH₂-CH₂-5-Thiazolyl.

Bevorzugte Strukturelemente G setzen sich aus den bevorzugten Resten des Strukturelementes zusammen.

Besonders bevorzugte Strukturelemente G setzen sich aus den besonders bevorzugten Resten des Strukturelementes

Unter Strukturelement B wird ein Strukturelement verstanden, enthaltend mindestens ein Atom das unter physiologischen Bedingungen als Wasserstoff-Akzeptor Wasserstoffbrücken ausbilden kann, wobei mindestens ein Wasserstoff-Akzeptor-Atom entlang des kürzestmöglichen Weges entlang des Strukturelementgerüstes einen Abstand von 4 bis 13 Atombindungen zu Strukturelement G aufweist. Die Ausgestaltung des Strukturgerüstes des Strukturelementes B ist weit

Als Atome, die unter physiologischen Bedingungen als Wasserstoff-Akzeptoren Wasserstoffbrücken ausbilden können, kommen beispielsweise Atome mit Lewisbaseneigenschaften in Frage, wie beispielsweise die Heteroatome Stickstoff, Sauerstoff oder Schwefel.

Unter physiologischen Bedingungen wird ein pH-Wert verstanden, der an dem Ort in einem Organismus herrscht, an dem die Liganden mit den Rezeptoren in Wechselwirkung treten, Im vorliegenden Fall weisen die physiologischen Bedingungen einen pH-Wert von beispielsweise 5 bis 9 auf.

In einer bevorzugten Ausführungsform bedeutet das Strukturelement B ein Strukturelement der Formel IR

A-E- IB 45

wobei A und E folgende Bedeutung haben:

A ein Strukturelement ausgewählt aus der Gruppe:

ein 5- bis 7-gliedriger monocyclischer gesättigter, ungesättigter oder aromatischer Ring mit 0 bis 4 Heteroatomen, ausgewählt aus der Gruppe O, N oder S, wobei jeweils unabhängig voneinander der gegebenenfalls enthaltene Ring-Stickstoff oder alle Kohlenstoffe substituiert sein können, mit der Maßgabe daß mindestens ein Heteroatom, ausgewählt aus der Gruppe O, N oder S im Strukturelement A enthalten ist, oder

ein 9- bis 14-gliedriges polycyclisches gesättigtes, ungesättigtes oder aromatisches System mit bis zu 6 Heteroatomen, ausgewählt aus der Gruppe N, O oder S, wobei jeweils unabhängig voneinander der gegebenenfalls enthaltene Ring-Stickstoff oder alle Kohlenstoffe substituiert sein können, mit der Maßgabe daß mindestens ein Heteroatom, ausgewählt aus der Gruppe O, N oder S im Strukturelement A enthalten ist, oder ein Rest

 $Z_A^{\ 1}$ Sauerstoff, Schwefel oder gegebenenfalls substituierter Stickstoff und $Z_A^{\ 2}$ gegebenenfalls substituierten Stickstoff, Sauerstoff oder Schwefel

bedeuten, und

E ein Spacer-Strukturelement, das Strukturelement A mit dem Strukturelement G kovalent verbindet, wobei die Anzahl der Atombindungen entlang des kürzestmöglichen Weges entlang des Strukturelementgerüstes E 4 bis 12 beträgt.

7

60

In einer besonders bevorzugten Ausführungsform bedeutet das Strukturelement A ein Strukturelement ausgewählt aus der Gruppe der Strukturelemente der Formeln $I_A^{\ l}$ bis $I_A^{\ l8}$,

wobei

50

m, p, q unabhängig voneinander 1, 2 oder 3,

R_A¹, R_A² unabhängig voneinander Wasserstoff, CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder CO-C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, Hetarylalkyl- oder C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴ O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶, CO-NR_A¹⁵R_A¹⁶ oder SO₂NR_A¹⁵R_A¹⁶ oder beide Reste R_A¹ und R_A² zusammen einen anellierten, gegebenenfalls substituierten, 5- oder 6-gliedrigen, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus der bis zu drei Heteroatome, ausgewählt aus der Gruppe O. N. oder S enthalten kann.

der Gruppe O, N, oder S enthalten kann,

R_A¹³, R_A^{13*} unabhängig voneinander Wasserstoff, CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylrest oder oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴, O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶ wobei

R_A¹⁴ Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, Alkylen-C₁-C₄-Alkoxy-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder Alkylen-Cycloalkylrest oder einen gegebenfalls substituierten C₃-C₇-Cy-

cloalkyl-, Aryl-, Arylalkyl-, Hetaryl- oder Hetarylalkylrest,

S R_A¹⁵, Ř_A¹⁶, unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, CO-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl-, COO-C₁-C₆-Alkyl-, Arylalkyl-, COO-Alkylen-Aryl-, SO₂-Alkylen-Aryl- oder Hetarylalkylrest oder einen gegebenenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, CO-Aryl-, SO₂-Aryl-, Hetaryl- oder CO-Hetarylrest bedeuten,

R_A³, R_A⁴ unabhängig voneinander Wasserstoff, -(CH₂)_n-(X_A)_j-R_A¹², oder beide Reste zusammen einen 3- bis 8-gliedrigen, gesättigten, ungesättigten oder aromatischen N-Heterocyclus der zusätzlich zwei weitere, gleiche oder verschiedene Heteroatome O, N, oder S enthalten kann, wobei der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann, wobei n 0, 1, 2 oder 3, 5 j 0 oder 1, X_A -SO₂-, -S-, -O-, -CO-, -CO-O-, -CO-O-, -CO-N(R_A^{12})-, -N(R_A^{12})-CO-, -N(R_A^{12})-SO₂- oder -SO₂-N(R_A^{12})- und R_A^{12} Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C_1 - C_6 -Alkyl-, C_1 - C_4 -Alkoxy, -O-Alkylen-Aryl- oder -O-Aryl-, einen primär oder gegebenenfalls sekundär oder tertiär substituierten Aminorest, einen gegebenenfalls mit C₁-C₄-Alkyl oder Aryl substituierten C₂-C₆-Alkinyl- oder C₂-C₆-Alkenylrest oder einen mit bis zu drei gleichen oder verschiedenen Resten substituierten, 3-6 gliedrigen, gesättigten oder ungesättigten Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, C₃-C₇-Cycloalkyl-, Aryl- oder Heteroarylrest, wobei zwei Reste zusammen einen anelierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, darstellen können und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann, R_A⁵ einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, Arylalkyl-, C₃-C₇-Cycloalkyloder C1-C6-Alkyl-C3-C7-Cycloalkylrest oder einen gegebenenfalls substituierten Arylrest, RA6, RA6* Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C4-Alkyl-, -CO-O-C1- C_4 -Alkyl-, Arylalkyl-, -CO-O-Alkylen-Aryl-, -CO-O-Allyl-, -CO- C_1 - C_4 -Alkyl-, -CO-Alkylen-Aryl-, C_3 - C_7 -Cycloalkyl-oder -CO-Allylrest oder in Strukturelement I_A beide Reste R_A and R_A are zusammen einen gegebenen falls substituierten, gesättigten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu zwei weitere verschiedene oder gleiche Heteroatome O, N, S enthalten kann, R_A⁷ Wasserstoff, -OH, -CN, -CONH₂, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₃-C₇-Cycloalkyl- oder -O-CO-C₁-C₄-Alkylrest, oder einen gegebenenfalls substituierten Arylalkyl-, -O-Alkylen-Aryl-, -O-CO-Aryl-, -O-CO-Alkylen-Aryl- oder -O-CO-Allylrest, oder beide Reste R_A^6 und R_A^7 zusammen einen gegebenenfalls substituierten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu zwei weitere verschiedene oder gleiche Heteroatome O, N, S enthalten kann, RA⁸ Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₄-Alkyl-, CO-C₁-C₄-Alkyl-, SO₂-C₁-C₄-Alkyl- oder CO-O-C₁-C₄-Alkylrest oder einen gegebenenfalls substituierten Aryl-, CO-Aryl-, SO₂-Aryl-, CO-O-Aryl-, CO-Alkylen-Aryl-, SO₂-Alkylen-Aryl-, CO-O-Alkylen-Aryl- oder Alkylen-Arylrest, R_A⁹, R_A¹⁰ unabhängig voneinander Wasserstoff, -CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴, O-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶, oder beide Reste R_A⁹ und R_A¹⁰ zusammen in Strukturelement I_A¹⁴ einen 5- bis 7-gliedrigen gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann und gegebenenfalls mit bis zu drei gleichen oder verschiedenen Resten substituiert ist, R_A¹¹ Wasserstoff, -CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴, O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶, R_A¹⁷ zusammen in Struktureleinent I_A¹⁶ beide Reste R_A⁹ und R_A¹⁷ zusammen einen 5- bis 7-gliedrigen gesättigten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann und gegebenenfalls mit bis zu drei gleichen oder verschiedenen Resten substituiert ist, Z¹, Z², Z³, Z⁴ unabhängig voneinander Stickstoff, C-H, C-Halogen oder einen verzweigten oder unverzweigten, gegebenenfalls substituieren C-C₁-C₄-Alkyl- oder C-C₁-C₄-Alkoxyrest, 45 Z⁵ NR_A⁸, Sauerstoff oder Schwefel bedeuten. Unter Halogen werden für R_A¹ oder R_A² in den Strukturelementen I_A¹, I_A², I_A³ oder I_A¹⁷ unabhängig voneinander Fluor, Chlor, Brom oder Iod verstanden. Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylrest werden für R_A¹ oder R_A² unabhängig voneinander beispielsweise die entsprechenden vorstehend für R_L¹ beschriebenen Reste, vorzugsweise Methyl oder Trifluormethyl verstanden. Der verzweigte oder unverzweigte, gegebenenfalls substituierte Rest CO- C_1 - C_6 -Alkyl setzt sich für $R_A{}^1$ oder $R_A{}^2$ in den Strukturelementen $I_A{}^1$, $I_A{}^2$, $I_A{}^3$ oder $I_A{}^{17}$ beispielsweise aus der Gruppe CO und den vorstehenden für $R_A{}^1$ oder $R_A{}^2$ beschrieben, verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkylresten zusammen. Unter gegebenenfalls substituierten Aryl-, Arylalkyl- oder C3-C7-Cycloalkylresten werden für RA1 oder RA2 unabhängig voneinander beispielsweise die entsprechenden, vorstehend für R_L1 beschriebenen Reste verstanden. Unter gegebenenfalls substituierten Hetaryl- oder Alkylhetarylresten werden für $R_A^{\ 1}$ oder $R_A^{\ 2}$ in den Strukturelementen $I_A^{\ 1}$, $I_A^{\ 2}$, $I_A^{\ 3}$ oder $I_A^{\ 17}$ unabhängig voneinander beispielsweise die entsprechenden, vorstehend für $R_G^{\ 9}$ beschriebenen Reste verstanden.

Die gegebenenfalls substituierten Reste CO-O-R_A¹⁴, O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶, CO-NR_A¹⁵R_A¹⁶ oder SO₂NR_A¹⁵R_A¹⁶ setzten sich für R_A¹ oder R_A² beispielsweise aus den Gruppen CO-O, O, S, N, CO-N bzw. SO₂-N und den nachstehend näher beschriebenen Resten R_A¹⁴, R_A¹⁵ bzw. R_A¹⁶ zusammen.

Ferner können beide Reste R_A¹ und R_A² zusammen einen anellierten, gegebenenfalls substituierten, 5- oder 6-gliedrigen, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus der bis zu drei Heteroatome, ausgewählt aus der Gruppe O, N, oder S enthalten kann, bilden.

R_A¹³ und R_A^{13*} bedeuten unabhängig voneinander Wasserstoff, CN, Halogen, wie beispielsweise Fluor, Chlor, Brom oder Iod,

einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylrest, wie beispielsweise vorstehend für

R_A¹ oder R_A² beschrieben, vorzugsweise Methyl oder Trifluormethyl oder

einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl- oder C_3 - C_7 -Cycloalkylrest oder einen Rest CO-O- R_A^{14} , $O-R_A^{14}$, $S-R_A^{14}$, $NR_A^{15}R_A^{16}$ oder CO- $NR_A^{15}R_A^{16}$ wie jeweils vorstehend für R_A^{1} oder R_A^{2} beschrieben.

Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₃-C₇-Cycloalkyl-, C₂-C₆-Alkenyl- oder C₂-C₆-Alkinylrest werden für R_A¹⁴ in Strukturelement A beispielsweise die entsprechenden, vorstehend für R₁ beschriebenen Reste verstanden.

Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten Alkylen-Cycloalkylrest oder Alkylen-C1-C4-Alkoxyrest werden für RA14 in Strukturelement A beispielsweise Reste verstanden die sich aus den vorstehend für R_L¹ beschriebenen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylresten und den gegeben $falls\ substituierten\ C_3\text{-}C_7\text{-}Cycloalkylresten\ bzw.\ C_1\text{-}C_4\text{-}Alkoxyresten\ zusammensetzen.}$

Unter gegebenfalls substituierten Aryl-, Arylalkyl-, Hetaryl- oder Alkylhetarylresten werden für R_A^{14} in Strukturelement A beispielsweise die entsprechenden, vorstehend für R_A^{1} oder R_A^{2} beschriebenen Reste verstanden.

Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl- oder Arylalkylrest oder einem gegebenenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, Hetaryl- oder Hetarylalkylrest werden für R_A¹⁵ oder R_A¹⁶ unabhängig voneinander beispielsweise die entsprechenden, vorstehend für R_A¹⁴ beschriebenen Reste verstanden.

Die verzweigten oder unverzweigten, gegebenenfalls substituierten CO-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl-, COO-C₁- C_6 -Alkyl-, COO-Alkylen-Aryl- oder SO_2 -Alkylen-Arylreste oder die gegebenenfalls substituierten CO-Aryl-, SO_2 -Aryl- oder CO-Hetarylreste setzten sich für R_A^{15} oder R_A^{16} beispielsweise aus den entsprechenden Gruppen -CO-, -SO2-, -COO- und den entsprechend, vorstehend beschriebenen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl- oder Arylalkylresten oder den entsprechenden gegebenenfalls substituierten Aryl- oder Heteroarylre-

Unter einem Rest - $(CH_2)_n$ - $(X_A)_j$ - R_A^{12} wird für R_A^{3} oder R_A^{4} unabhängig voneinander ein Rest verstanden, der sich aus den entsprechenden Resten - $(CH_2)_n$ - $(X_A)_i$ und R_A^{12} zusammensetzt. Dabei kann n: 0, 1, 2 oder 3 und j: 0 oder 1 bedeu-

XA stellt einen zweifach gebundenen Rest, ausgewählt aus der Gruppe -SO2-, -S-, -O-, -CO-, -CO-, -CO-, -CO- $N(R_A^{12})$ -, $-N(R_A^{12})$ -CO-, $-N(R_A^{12})$ -SO₂- und -SO₂- $N(R_A^{12})$ - dar. R_A^{12} bedeutet Wasserstoff,

einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl- oder C1-C4-Alkoxy, wie vorstehend für R_L¹ beschrieben,

einen gegebenenfalls substituierten -O-Alkylen-Aryl- oder -O-Arylrest, wobei die Arylalkyl- oder Arylreste beispielsweise die vorstehend für R_L¹ beschriebene Bedeutung haben und gegebenenfalls substituiert sein können, einen primär oder gegebenenfalls sekundär oder tertiär substituierten Aminorest, wie beispielsweise -NH2, -NH(C1-C6-Alkyl) oder -N(C₁-C₆-Alkyl)₂ oder bei einem endständigen, einfach gebundenen Rest R_A¹² auch beispielsweise die entsprechenden cyclischen Amine wie beispielsweise N-Pyrrolidinyl, N-Piperidinyl, N-Hexahydroazepinyl, N-Morpholinyl oder N-Piperazinyl, wobei bei Heterocyclen die freie Aminprotonen tragen, wie beispielsweise N-Piperazinyl die freien Aminprotonen durch gängige Aminschutzgruppen, wie beispielsweise Methyl, Benzyl, Boc (tert.-Butoxycarbonyl), Z (Benzyloxycarbonyl), Tosyl, -SO₂-C₁-C₄-Alkyl, -SO₂-Phenyl oder -SO₂-Benzyl ersetzt sein können,

einen gegebenenfalls mit C1-C4-Alkyl oder Aryl substituierten C2-C6-Alkinyl- oder C2-C6-Alkenylrest, wie beispielsweise vorstehend für R_L¹ beschrieben,

oder einen mit bis zu drei gleichen oder verschiedenen Resten substituierten, 3-6 gliedrigen, gesättigten oder ungesättigten Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, wie beispielsweise 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Furyl, 3-Furyl, 2-Pyrrolyl, 3-Pyrrolyl, 2-Thienyl, 3-Thienyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Pyrimidyl, 4-Pyrimidyl, 5-Pyrimidyl, 6-Pyrimidyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 3-Pyridazinyl, 4-Pyridazinyl, 5-Pyridazinyl, 6-Pyridazinyl, 2-(1,3,4-Thiadiazolyl), 2-(1,3,4)-Oxadiazolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, Triazinyl.

Die verschiedenen Reste können, wie vorstehend allgemein beschrieben, ein anelliertes System bilden.

C₃-C₇Cycloalkyl-, Aryl- oder Heteroarylrest, wie beispielsweise vorstehend für R_A¹³ beschrieben, wobei zwei Reste zusammen einen anelierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, darstellen können und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann.

R_A³ und R_A⁴ können ferner zusammen einen 3- bis 8-gliedrigen, gesättigten, ungesättigten oder aromatischen N-Heterocyclus der zusätzlich zwei weitere, gleiche oder verschiedene Heteroatome O, N, oder S enthalten kann, bilden, wobei der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann,

 $R_A{}^5$ bedeutet einen verzweigten oder unverzweigten, gegebenenfalls substituierten C_1 - C_6 -Alkyl-, Arylalkyl- oder C_3 - C_7 -Cycloalkylrest wie beispielsweise vorstehend für $R_L{}^1$ beschrieben oder einen C_1 - C_6 -Alkyl- C_3 - C_7 -Cycloalkylrest der sich

beispielsweise aus den entsprechenden vorstehend beschriebenen Resten zusammensetzt. R_A^{6} und R_A^{6*} bedeuten unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C4-Alkylrest, wie beispielsweise gegebenenfalls substituiertes Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1,1-Dimethylethyl,

-CO-O-C₁-C₄-Alkyl- oder -CO-C₁-C₄-Alkylrest wie beispielsweise aus der Gruppe -CO-O- bzw. -CO- und den vorstehend beschriebenen C1-C4-Alkylresten zusammengesetzt,

Arylalkylrest, wie vorstehend für R_L¹ beschrieben,

-CO-O-Alkylen-Aryl- oder -CO-Alkylen-Arylrest wie beispielsweise aus der Gruppe -CO-O- bzw. -CO- und den vorstehend beschriebenen Arylalkylresten zusammengesetzt,

-CO-O-Allyl- oder -CO-Allylrest,

oder C_3 - C_7 -Cycloalkylrest, wie beispielsweise vorstehend für R_L^{-1} beschrieben. Ferner können beide Reste R_A^{-6} und R_A^{-6} in Strukturelement I_A^{-7} zusammen einen gegebenenfalls substituierten, gesättigten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu zwei weitere verschiedene oder gleiche Heteroatome O, N, S enthalten kann, bilden.

R_A⁷ bedeutet Wasserstoff, -OH, -CN, -CONH₂, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C4-Alkylrest, beispielsweise wie vorstehend für RA6 beschrieben, C1-C4-Alkoxy-, Arylalkyl- oder C3-C7-Cycloalkylrest, beispielsweise wie vorstehend für R_L¹ beschrieben, einen verzweigten oder unverzweigten, gegebenenfalls substituierten -O-CO-C1-C4-Alkylrest, der sich aus der Gruppe -O-CO- und beispielsweise aus den vorstehend erwähnten C1-C4-Alkylresten zusammensetzt oder einen gegebenenfalls substituierten -O-Alkylen-Aryl-, -O-CO-Aryl-, -O-CO-Alkylen-Aryl- oder -O-CO-Allylrest der sich aus den Gruppen -O- bzw. -O-CO- und beispielsweise aus den entsprechenden

vorstehend für R_L^{-1} beschriebenen Resten zusammensetzt. Ferner können beide Reste R_A^{-6} und R_A^{-7} zusammen einen gegebenenfalls substituierten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu zwei weitere verschiedene oder gleiche Heteroatome O, N, S enthalten kann, bilden.

Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C4-Alkylrest oder einen gegebenenfalls substituierten Aryl- oder Arylalkylrest werden für RA8 in Strukturelement A beispielsweise die entsprechenden, vorstehend für R_A¹⁵ beschriebenen Reste verstanden, wobei sich die Reste CO-C₁-C₄-Alkyl, SO₂-C₁-C₄-Alkyl, CO-O-C1-C4-Alkyl, CO-Aryl, SO2-Aryl, CO-O-Aryl, CO-Alkylen-Aryl, SO2-Alkylen-Aryl oder CO-O-Alkylen-Aryl analog zu den anderen zusammengesetzten Resten aus der Gruppe CO, SO₂ oder COO und beispielsweise aus dem entsprechenden vorstehend für R_A¹⁵ beschriebenen C₁-C₄-Alkyl-, Aryl- oder den Arylalkylresten zusammensetzten und diese Reste gegebenenfalls substituiert sein können.

Unter Halogen, werden für R_A9 oder R_A10 unabhängig voneinander Fluor, Chlor, Brom oder Iod verstanden.

Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl- oder C₃-C₇-Cycloalkylrest werden jeweils für R_A⁹ oder R_A¹⁰ unabhängig voneinander beispielsweise die entsprechenden, vorstehend für R_A¹⁴ beschriebenen Reste verstanden, vorzugsweise Methyl oder Trifluormethyl.

Unter einem Rest CO-O-R_A¹⁴, O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶ werden jeweils für R_A⁹ oder R_A¹⁰ unabhängig voneinander beispielsweise die entsprechenden, vorstehend für R_A¹³ beschriebenen Reste verstanden. Ferner können beide Reste R_A⁹ und R_A¹⁰ zusammen in Strukturelement I_A¹⁴ einen 5- bis 7-gliedrigen gesättigten, un-

gesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann und gegebenenfalls mit bis zu drei gleichen oder verschiedenen Resten substituiert ist, bilden.

Unter Substituenten werden in diesem Fall insbesondere Halogen, CN, ein verzweigter oder unverzweigter, gegebenenfalls substituierter C₁-C₄-Alkylrest, wie beispielsweise Methyl oder Trifluormethyl oder die Reste O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶, CO-NR_A¹⁵R_A¹⁶ oder -((R_A⁸)HN)C=N-R_A⁷ verstanden.

Unter Halogen, werden für R_A¹¹ beispielsweise Fluor, Chlor, Brom oder Iod verstanden.

Unter einem verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkylrest oder einem gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, C₃-C₇-Cycloalkylrest oder einem Rest CO-O-R_A¹⁴, O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶ werden für R_A¹¹ beispielsweise die entsprechenden, vorstehend für R_A⁹ beschriebenen Reste verstanden.

Ferner können in Strukturelement IA 16 beide Reste RA 9 und RA 17 zusammen einen 5- bis 7-gliedrigen gesättigten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann und gegebenenfalls mit bis zu drei gleichen oder verschiedenen Resten substituiert ist, bilden.

Z¹, Z², Z³, Z⁴ bedeuten unabhängig voneinander Stickstoff, C-H, C-Halogen, wie beispielsweise C-F, C-Cl, C-Br oder C-I oder einen verzweigten oder unverzweigten, gegebenenfalls substituieren C-C₁-C₄-Alkylrest, der sich aus einem Kohlenstoffrest und beispielsweise einem vorstehend für R_A⁶ beschriebenen C₁-C₄-Alkylrest zusammensetzt oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C-C1-C4-Alkoxyrest, der sich aus einem Kohlenstoffrest und beispielsweise einem vorstehend für R_A^7 beschriebenen C_1 - C_4 -Alkoxyrest zusammensetzt.

Z⁵ bedeutet Sauerstoff, Schwefel oder einen Rest NR_A⁸.

Bevorzugte Strukturelemente A setzen sich aus den bevorzugten Resten des Strukturelementes zusammen.

Besonders bevorzugte Strukturelemente A setzen sich aus den besonders bevorzugten Resten des Strukturelementes zusammen.

In einer bevorzugten Ausführungsform wird unter dem Spacerstrukturelement E ein Strukturelement verstanden, das aus einem verzweigten oder unverzweigten, gegebenenfalls substituierten und Heteroatome enthaltenden aliphatischen C2-C30-Kohlenwasserstoffrest und/oder aus einem 4- bis 20-gliedrigen, gegebenenfalls substituierten und Heteroatome enthaltenden, aliphatischen oder aromatischen mono- oder polycyclischen Kohlenwasserstoffrest besteht.

In einer besonders bevorzugten Ausführungsform setzt man das Spacer-Strukturelement E aus zwei bis vier Teilstrukturelementen, ausgewählt aus der Gruppe E¹ und E² zusammen, wobei die Reihenfolge der Verknüpfung der Teilstrukturelemente beliebig ist und E1 und E2 folgende Bedeutung haben: E¹ ein Teilstrukturelement der Formel I_{E1}

$$-(X_E)_i-(CH_2)_c-CR_E^1R_E^2-(CH_2)_d-(Y_E)_i-I_{EL}$$

E² ein Teilstrukturelement der Formel I_{E2}

 $-(NR_E^3)_e$ - $(CR_E^4R_E^5)_f$ - $(Q_E)_k$ - $(CR_E^6R_E^7)_g$ - $(NR_E^8)_h$ - I_{E2}

65

60

wobci

c, d, f, g unabhängig voneinander 0, 1 oder 2,

e, h, i, k, l, unabhängig voneinander 0 oder 1,

X_E, Q_E unabhängig voncinander CO, CO-NR_E⁹, S, SO, SO₂, SO₂NR_E⁹, CS, CS-NR_E⁹, CS-O, CO-O, O-CO, O, Ethinyl, CR_E¹⁰-O-CR_E¹¹, CR_E¹⁰R_E¹¹, C(=CR_E¹⁰R_E¹¹), CR_E¹⁰=CR_E¹¹, CR_E¹⁰(OR_E¹²)-CR_E¹¹, CR_E¹⁰-CR_E¹¹(OR_E¹²) oder einen gegebenfalls substituierten 4 bis 11-gliedrigen mono- oder polycyclischen aliphatischen oder aromatischen Kohlenwasserstoff, der bis zu 6 Doppelbindungen und bis zu 6 Heteroatome, ausgewählt aus der Gruppe N, O, S, enthalten kann, Y_E-CO₂-NR_E⁹-CO₃-NR_E⁹-SO₃-NR_E⁹-SO₃-NR_E⁹-CS₃-NR_E⁹-CS₃-O-CS₃-O-CC₃-O-

Y_E-CO-, -NR_E⁹-CO-, -SO-, -SO₂-, -NR_E⁹-SO₂-, -CS-, -NR_E⁹-CS-, -O-CS- oder -O-CO-R_E¹, R_E², R_E⁴, R_E⁵, R_E⁶, R_E⁷ unabhängig voneinander Wasserstoff, Halogen, eine Hydroxygruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder Alkylen-Cycloalkylrest, einen Rest -(CH₂)W-R_E¹³, einen gegebenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, Arylakyl-, Hetaryl-, Hetarylakyl-, O-Aryl- oder O-Alkylen-Arylrest, oder unabhängig voneinander jeweils zwei Reste R_E¹ und R_E² oder R_E⁶ und R_E⁷ zusammen einen 3- bis 7-gliedrigen, gegebenenfalls substituierten, gesättigten oder ungesättigten Carbocyclus, wobei

15 w 0, 1, 2, 3 oder 4 bedeutet,

R_E³, R_E⁸, R_E⁹ unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, CO-C₁-C₆-Alkyl-, CO-O-C₁-C₆-Alkyl- oder SO₂-C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten C₃-C₇-Cycloalkyl-, CO-O-Alkylen-Aryl-, CO-Alkylen-Aryl-, CO-Aryl-, SO₂-Aryl-, CO-Hetaryl- oder SO₂ -Alkylen-Arylrest.

R_E¹⁰, R_E¹¹ unabhängig voneinander Wasserstoff, eine Hydroxygruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder Alkylen-Cycloalkylrest oder einen gegebenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, Arylalkyl-, Hetaryl- oder Hetarylalkylrest,

R_E¹² Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder Alkylen-Cycloalkylrest oder einen gegebenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, Arylalkyl-

5, Hetaryl- oder Hetarylalkylrest,

R_E¹³ Wasserstoff, eine Hydroxygruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy-, -Arylalkyl, -O-Alkylen-Aryl- oder -O-Arylrest, einen primär oder gegebenenfalls sekundär oder tertiär substituierten Aminorest, einen gegebenenfalls mit C₁-C₄-Alkyl oder Aryl substituierten C₂-C₆-Alkinyl- oder C₂-C₆-Alkenylrest, einen C₅-C₁₂-Bicycloalkyl-, C₆-C₁₈-Tricycloalkylrest, einen Rest CO-O-R_A¹⁴, oder einen mit bis zu drei gleichen oder verschiedenen Resten substituierten, 3- bis 6-gliedrigen, gesättigten oder ungesättigten Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, C₃-C₇-Cycloalkyl-, Aryl- oder Heteroarylrest, wobei zwei Reste zusammen einen anellierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, darstellen können und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann,

bedeuten. In einer noch bevorzugteren Ausführungsform wird als Spacer-Strukturelement E ein Strukturelement der Formel I_{E1E2}

40 -E₂-E₁- I_{E1E2}

verwendet

Unter einem gegebenfalls substituierten 4- bis 11-gliedrigen mono- oder polycyclischen aliphatischen oder aromatischen Kohlenwasserstoff, der bis zu 6 Doppelbindungen und bis zu 6 Heteroatome, ausgewählt aus der Gruppe N, O, S, enthalten kann, werden für Q_E und X_E unabhängig voneinander vorzugsweise gegebenenfalls substituiertes Aryl, wie beispielsweise gegebenenfalls substituiertes Phenyl oder Naphthyl, gegebenfalls substituiertes Hetaryl wie beispielsweise die Reste

sowie deren substituierte Derivate, oder Reste der Formeln Ig1 bis Ig11 verstanden,

65

25 30

35

55

wobei der Einbau der Reste in beiden Orientierungen erfolgen kann.

Z⁶ und Z⁷ bedeuten unabhängig voneinander CH oder Stickstoff.

Z⁸ bedeutet Sauerstoff, Schwefel oder NH.

Z⁹ bedeutet Sauerstoff, Schwefel oder NR_E¹⁶.

r und t bedeuten unabhängig voneinander 0, 1, 2 oder 3.

s und u bedeuten unabhängig voneinander 0, 1 oder 2.

Bevorzugte Reste für Q_E sind die Reste CO, CO-NR_E⁹, S, SO, SO₂, SO₂NR_E⁹, CS, CS-NR_E⁹, CS-O, CO-O, O-CO, O, Ethinyl, CR_E¹⁰-O-CR_E¹¹, CR_E¹⁰R_E¹¹, C(=CR_E¹⁰R_E¹¹), CR_E¹⁰=CR_E¹¹, CR_E¹⁰(OR_E¹²)-CR_E¹¹, CR_E¹⁰CR_E¹¹), substituiertes Aryl oder Hetaryl, wie vorstehend beschrieben oder die Reste der Formeln I_E¹ bis I_E¹¹.

Besonders bevorzugte Reste für Q_E sind die Reste CO, CO-NR_E⁹, S, SO, SO₂, SO₂NR_E⁹, CS, CS-NR_E⁹, CS-O, CO-O, O-CO, O, Ethinyl, CR_E^{10} -O-CR_E¹¹, $CR_E^{10}R_E^{11}$, $CR_E^{10}R_E^{11}$, CR_E^{10} -CR_E¹¹, CR_E^{10} -CR_E $CR_{E}^{11}(OR_{E}^{12})$, substituiertes Aryl oder Hetaryl, wie vorstehend beschrieben oder die Reste der Formeln I_{E}^{1} , I_{E}^{10}

Bevorzugte Reste für X_E sind die Reste CO, CO-NR_E⁹, S, SO₂NR_E⁹, CS, CS-NR_E⁹, CO-O, O-CO, O, Ethinyl, CR_E¹⁰-O-CR_E¹¹, CR_E¹⁰R_E¹¹ oder CR_E¹⁰=CR_E¹¹, besonders bevorzugt sind CO, CO-NR_E⁹, SO₂NR_E⁹, O, Ethinyl, CR_E¹⁰-O-CR_E¹⁰, CR_E¹⁰-O-CR_E¹⁰-CR CR_E^{11} oder $CR_E^{10}R_E^{11}$.

Bevorzugte Reste für Re¹ sind Wasserstoff, Fluor, Chlor oder ein Rest -(CH₂)_w-Re¹³, wobei w 0, 1, 2, 3 oder 4 bedeu-

Bevorzugte Reste für R_E² sind Wasserstoff, Halogen, besonders bevorzugt Chlor oder Fluor, eine Hydroxygruppe oder ein verzweigter oder unverzweigter, gegebenenfalls substituierter C1-C6-Alkyl- oder C1-C4-Alkoxyrest, besonders bevorzugt Methyl oder Ethyl.

In einer weiteren bevorzugten Ausführungsform bilden die zwei Reste RE1 und RE2 zusammen einen 3- bis 7-gliedrigen, gegebenenfalls substituierten, gesättigten, ungesättigten oder aromatischen Carbocyclus.

Die bevorzugten und besonders bevorzugten Reste für R_E^4 und R_E^6 sowie für R_E^5 und R_E^7 sind unabhängig voneinander jeweils die gleichen wie vorstehend für R_E¹ bzw. R_E² erwähnten, entsprechenden Reste.

Auch hier können, in einer bevorzugten Ausführungsform, die Reste $R_E^{\ 4}$ und $R_E^{\ 5}$ oder $R_E^{\ 6}$ und $R_E^{\ 7}$ zusammen einen 3- bis 7-gliedrigen, gegebenenfalls substituierten Carbocyclus bilden.

Bevorzugte Reste für Re3 sind Wasserstoff oder ein verzweigter oder unverzweigter, gegebenenfalls substituierter C1-C₆-Alkylrest, besonders bevorzugt Methyl.

Bevorzugte Reste für Re⁸ und Re⁹ sind unabhängig voneinander Wasserstoff, ein verzweigter oder unverzweigter, gegebenenfalls substituierter C1-C4-Alkyl-, C3-C7-Cycloalkyl-, CO-C1-C4-Alkyl-, CO-O-Alkylen-Aryl-, besonders bevorzugt CO-O-Benzyl-, CO-Alkylen-Aryl-, besonders bevorzugt CO-Phenyl-, CO-O-C₁-C₄-Alkyl-, SO₂-C₁-C₄-Alkyl-, SO₂-Aryl-, besonders bevorzugt Tosyl oder SO₂-Alkylen-Arylrest.

Bevorzugte Reste für Re¹⁰ und Re¹¹ sind unabhängig voneinander Wasserstoff, eine Hydroxygruppe, ein verzweigter oder unverzweigter, gegebenenfalls substituierter C1-C6-Alkyl-, besonders bevorzugt C1-C4-Alkyl-, oder C1-C4-Alkoxyrest oder ein gegebenfalls substituierter Aryl-, Arylalkyl-, Hetaryl- oder Hetarylalkylrest.

Bevorzugte Reste für Re¹² sind unabhängig voneinander Wasserstoff, ein verzweigter oder unverzweigter, gegebenenfalls substituierter C₁-C₆-Alkylrest oder ein gegebenfalls substituierter Arylalkyl- oder Hetarylalkylrest.

Unter einem verzweigten oder unverzweigten C₁-C₆-Alkylrest wird unter R_E¹³ beispielsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl oder 1-Ethyl-2-methylpropyl, bevorzugt Methyl, Ethyl, Propyl, Butyl, iso-Propyl, sec-Butyl und tert-Butyl verstanden.

Unter einem verzweigten oder unverzweigten C_1 - C_4 -Alkoxyrest wird unter R_E^{13} beispielsweise Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy, insbesondere Me-

thoxy, Ethoxy oder 1-Methylethoxy verstanden.

10

-O-Alkylen-Aryl- oder -O-Arylreste sind beispielsweise -O-Phenyl, -O-1-Naphthyl, -O-2-Naphthyl oder -O-Benzyl. Die C₁-C₆-Alkyl-, C₁-C₄-Alkoxyreste von R_E¹³ können mit bis zu fünf gleichen oder unterschiedlichen Substituenten, wie eingangs beschrieben substituiert sein.

Unter substituierten -O-Alkylen-Aryl- oder -O-Arylresten werden beispielsweise die vorstehend erwähnten -O-Alkylen-Aryl- oder -O-Arylreste verstanden, wobei der Arylteil mit bis zu drei gleichen oder verschiedenen Substituenten,

wie eingangs beschrieben substituiert sein kann.

Unter einem primär oder gegebenenfalls sekundär oder tertiär substituierten Aminorest wird unter R_E^{13} in Strukturelement L ein primärer Aminorest -NH₂, ein sekundärer Aminorest -NH(R_E^{131}) oder ein tertiärer Aminorest -N(R_E^{131})(R_E^{132}) verstanden, wobei R_E^{131} und R_E^{132} unabhängig voneinander C_1 - C_4 -Alkyl oder C_3 - C_6 -Cycloalkyl, wie vorstehend erwähnt, gegebenenfalls substituiertes Aryl, vorzugsweise Phenyl, Arylalkyl, vorzugsweise Benzyl, -CO- C_1 - C_4 -Alkyl, vorzugsweise -CO-CH₃ oder -CO-Aryl, vorzugsweise -CO-Phenyl sein können.

Cyclische Aminoreste ergeben sich für den Fall, daß R_E¹³ einen der nachstehend beschriebenen Heterocyclen darstellt

der über den Ringstickstoff gebunden ist.

Unter einem gegebenenfalls mit C₁-C₄-Alkyl oder Aryl substituierten C₂-C₆-Alkinyl- oder C₂-C₆-Alkenylrest, werden unter R_E¹³ beispielsweise C₂-C₆-Alkinylreste, wie beispielsweise Ethinyl, 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-, 2-Propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl oder 1-Ethyl-1-methyl-2-propinyl, vorzugsweise 2-Propinyl oder Ethinyl

oder C_2 - C_6 -Alkenylrest, wie beispielsweise Vinyl, 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-3-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl oder 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl oder Vinyal

verstanden, die mit gegebenenfalls substituierten C₁-C₄-Alkylresten, oder Arylresten wie vorstehend erwähnt, vorzugsweise Phenyl, substituiert sein können, wie vorzugsweise Phenylethinyl oder Phenylethenyl.

Unter einem C_5 - C_{12} -Bicycloalkylrest werden für R_E^{13} beispielsweise Indanyl, Norbornyl oder Camphyl, unter einem C_6 - C_{18} -Tricycloalkylrest beispielsweise Adamantyl verstanden.

Der Rest CO-O-R_A¹⁴ setzt sich, wie vorstehend mehrfach erwähnt aus der Gruppe CO-O und dem vorstehend für Strukturelement A beschriebenen Rest R_A¹⁴ zusammen.

Unter einem mit bis zu drei gleichen oder verschiedenen Resten substituierten, 3-6-gliedrigen, gesättigten oder ungesättigten Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, C₃-C₈-Cycloalkyl, Aryl- oder Heteroarylrest, wobei zwei Reste zusammen einen anellierten, 3- bis 7-gliedrigen, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome S, N, S enthalten kann, darstellen können und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann, werden für R_E¹³ beispielsweise

3- bis 6-gliedrige, gesättigte oder ungesättigten Heterocyclen, die bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten können wie N-Pyrrolidinyl, N-Piperidinyl, N-Hexahydroazepinyl, N-Morpholinyl oder N-Piperazinyl, wobei bei Heterocyclen die freie Aminprotonen tragen, wie beispielsweise N-Piperazinyl die freien Aminprotonen durch gängige Aminschutzgruppen, wie beispielsweise Methyl, Benzyl, Boc (tert.-Butoxycarbonyl), Z (Benzyloxycarbonyl), Tosyl, -SO₂-C₁-C₄-Alkyl, -SO₂-Phenyl oder -SO₂-Benzyl ersetzt sein können, C₃-C₇-Cycloalkylreste, wie vorstehend für R_L¹ beschrieben,

Arylreste, wie beispielsweise Phenyl, 1-Naphthyl oder 2-Naphthyl oder

Heteroarylreste, wie beispielsweise 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Furyl, 3-Furyl, 2-Pyrrolyl, 3-Pyrrolyl, 2-Thienyl, 3-Thienyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Pyrimidyl, 4-Pyrimidyl, 4-Pyrimidyl, 5-Pyrazolyl, 3-Pyrazolyl, 3-Pyrazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 2-Imidazolyl, 4-Pyridazinyl, 4-Pyridazinyl, 5-Pyridazinyl, 6-Pyridazinyl, 2-(1,3,4-Thiadiazolyl), 2-

5 (1,3,4)-Oxadiazolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl oder Triazinyl, vorzugsweise 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Thiazolyl, 4-Thiazolyl oder 5-Thiazolyl, wobei die Heterocyclen-, C₃-C₇-Cycloalkyl-, Aryl- und Heteroarylreste gegebenenfalls mit bis zu drei gleichen oder ver-

schiedenen Resten substituiert sein können.

Bevorzugte Substituenten der Heterocyclen-, C₃-C₈-Cycloalkyl-, Aryl- und Heteroarylreste für R_E¹³ sind C₁-C₄-Alkyl-, -COOH, -COOMe, -CF₃, -CN, C₁-C₄-Alkoxy-, -SCH₃, -O-CH₂-COOH, -Phenyl, -SO₂CH₃, -NO₂, -OH, -NH₂, -N-Pyrrolidinyl-, -N-Piperidinyl, -N-Piperidinyl, -N-Piperazinyl, -NH-C₁-C₄-Alkyl, -N(C₁-C₄-Alkyl)₂, F, Cl, Br oder I.

Bei den Hetarylresten können auch zwei Reste zusammen, wie vorstehend allgemein beschrieben, ein anelliertes System bilden.

Bevorzugte Substituenten der Heterocyclen-, C₃-C₈-Cycloalkyl-, Aryl- und Heteroarylreste für R_E¹³, bei denen zwei Reste zusammen einen anellierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann darstellen und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter Cyclus ankondensiert sein kann, sind folgende, zweifach gebundene Strukturelemente:

15

20

25

30

40

10

Beispiele für die sich ergebenden kondensierten Cyclussysteme für R_E¹³ sind beispielsweise die entsprechenden Dioxolanyle, Benzopyrrolyle, Benzofuryle, Benzothienyle oder Fluorenyle.

Bevorzugte Strukturelemente E setzen sich aus den bevorzugten Resten für Strukturelement E zusammen.

Bevorzugte Strukturelemente B setzen sich aus den bevorzugten Strukturelementen A und E zusammen.

Die Verbindungen der Formel I und auch die Zwischenprodukte zu ihrer Herstellung, können ein oder mehrere asymmetrische substituierte Kohlenstoffatome besitzen. Die Verbindungen können als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung vorliegen. Bevorzugt ist die Verwendung einer enantiomerenreinen Verbindung als Wirkstoff.

Die Verbindungen der Formel I können auch in Form von physiologisch verträglichen Salzen vorliegen.

Die Verbindungen der Formel I können auch als Prodrugs in einer Form vorliegen, in der die Verbindungen der Formel I unter physiologischen Bedingungen freigesetzt werden. Beispielhaft sei hier auf die Gruppe T in Strukturelement L verwiesen, die teilweise Gruppen enthält, die unter physiologischen Bedingungen zur freien Carbonsäuregruppe hydrolisierbar sind. Es sind auch derivatisierte Strukturelemente B, bzw. A geeignet, die das Strukturelement B bzw. A unter physiologischen Bedingungen freisetzen.

Bei bevorzugten Verbindungen der Formel I weist jeweils eines der drei Strukturelemente B, G oder L den bevorzugten Bereich auf, während die restlichen Strukturelemente weit variabel sind.

Bei besonders bevorzugten Verbindungen der Formel I weisen jeweils zwei der drei Strukturelemente B, G oder L den bevorzugten Bereich auf, während die restlichen Strukturelemente weit variabel sind.

Bei ganz besonders bevorzugten Verbindungen der Formel I weisen jeweils alle drei Strukturelemente B, G oder L den bevorzugten Bereich auf, während das restliche Strukturelement weit variabel ist.

Bevorzugte Verbindungen der Formel I weisen beispielsweise das bevorzugte Strukturelement G auf, während die Strukturelemente B und L weit variabel sind.

Bei besonders bevorzugten Verbindungen der Formel I ist beispielsweise B durch das Strukturelement A-E- ersetzt und die Verbindungen weisen beispielsweise das bevorzugte Strukturelement G und das bevorzugte Strukturelement A auf, während die Strukturelemente E und L weit variabel sind.

Weitere besonders bevorzugte Verbindungen weisen beispielsweise das bevorzugte Strukturelement G und das bevorzugte Strukturelement A auf, während die Strukturelement E und L weit variabel sind.

Ganz bevorzugte Verbindungen der Formel I bei denen A-E- für B-steht sind in der folgenden Tabelle aufgelistet, wobei "Verbindung" für die Nummer einer individualisierten Verbindungen der Formel I steht, und die Bedeutung der Abkürzungen der Strukturelemente nach der Tabelle erläutert wird.

55

60

		Struktur lement A-E-G-L
1	1	2pmhs-am2-pheac-es
5	2	2pmhs-dibema2-ph c-gs
	3	2pmhs-edia2-phec-es
 	4	2py-25thima2-pheaz-es
10	5	2py-25thima2-phec-es
	6	2py-35thima2-pheaz-es
l	7	2py-35thima2-phec-es
15	8	2py-42thiaz2-pheaz-es
ľ	9	2py-42thiaz2-phec-es
	10	2py-aaf-pheaz-es
20	11	2py-aaf-phec-es
-	12	2py-am2-8mephec-es
ľ	13	2py-am2-8mephec-gs
25	14	2py-am2-8mephec-ps
Ī	15	2py-am2-deophec-es
Ī	16	2py-am2-deophec-gs
30	17	2py-am2-deophec-ps
t	18	2py-am2-pheaz-es
Ī	19	2py-am2-pheaz-ps
35	20	2py-am2-phec-es
	21	2py-am2-phec-gs
	22	2py-am2-phec-ps
40	23	2py-am2-thioph-es
Ì	24	2py-am2-thioph-gs
	25	2py-am2-thioph-ps
45	26	2py-aof-pheaz-es
	27	2py-aof-phec-es
	28	2py-buta-pheaz-es
50	29	2py-buta-phec-es

Verbindung	Strukturelemente A-E-G-L
30	2py-ch x2-pheaz-es
31	2py-chex2-ph c-es
32	2py-dibema2-23dimephec-es
33	2py-dibema2-27dimeophec-es
34	2py-dibema2-2mephec-es
35	2py-dibema2-49dimeophec-es
36	2py-dibema2-5claz-es
37	2py-dibema2-69dimeophec-es
38	2py-dibema2-69dimephec-es
39	2py-dibema2-78diclphec-es
40	2py-dibema2-78dimeophec-es
41	2py-dibema2-8mephec-es
42	2py-dibema2-8mephec-gs
43	2py-dibema2-8mephec-ps
44	2py-dibema2-8mepyaz-es
45	2py-dibema2-9clphec-es
46	2py-dibema2-benz-es
47	2py-dibema2-cl2phec-es
48	2py-dibema2-deophec-es
49	2py-dibema2-deophec-gs
50	2py-dibema2-deophec-ps
51	2py-dibema2-deothioph-es
52	2py-dibema2-dimepy-es
53	2py-dibema2-dimepyaz-es
54	2py-dibema2-dimethio-es
55	2py-dibema2-dmaphec-es
56	2py-dibema2-imon-es
57	2py-dibema2-meoaz-es
58	2py-dibema2-meophe-es
59	2py-dibema2-meophe-nes
60	2py-dibema2-meophe-f2es
61	2py-dibema2-mephe-gs
62	2py-dibema2-pheaz-es
63	2py-dibema2-pheaz-ps
64	2py-dibema2-phec-es
65	2py-dibema2-phec-gs
66	2py-dibema2-phec-ps
67	2py-dibema2-ph c-pms
68	2py-dibema2-phec-ms
0.0	shi-arrenar buce me

Verbindung Struktur lemente A-E-G-L 69 2py-dibema2-phec-mals 70 2py-dibema2-ph db-as 71 2py-dibema2-phepyra- s 72 2py-dibema2-pyphc-es 74 2py-dibema2-sulfo-es 74 2py-dibema2-thiomet-es 75 2py-dibema2-thioph-gs 77 2py-dibema2-thioph-ps 78 2py-dibema2-thioph2-es 80 2py-edia2-thiophaz-es 80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs 82 2py-edia2-deophec-es 83 2py-edia2-deophec-es 84 2py-edia2-deophec-es 85 2py-edia2-pheaz-es 87 2py-edia2-pheaz-es 87 2py-edia2-phec-es 89 2py-edia2-phec-es 89 2py-edia2-phec-ps 90 2py-edia2-phec-mals 40 2py-edia2-phec-mals 20 2py-edia2-thioph-es	
71 2py-dibema2-phepyra- s 72 2py-dibema2-pyphc-es 73 2py-dibema2-sulfo-es 74 2py-dibema2-thiomet-es 75 2py-dibema2-thioph-es 76 2py-dibema2-thioph-gs 77 2py-dibema2-thioph-ps 78 2py-dibema2-thioph2-es 79 2py-dibema2-thioph2-es 80 2py-edia2-smephec-es 81 2py-edia2-smephec-es 81 2py-edia2-mephec-ps 82 2py-edia2-deophec-ps 83 2py-edia2-deophec-gs 84 2py-edia2-deophec-ps 85 2py-edia2-pheaz-es 87 2py-edia2-pheaz-es 89 2py-edia2-phec-es 90 2py-edia2-phec-ps 90 2py-edia2-phec-ps	
72 2py-dibema2-pyphc-es 73 2py-dibema2-sulfo-es 74 2py-dibema2-thiomet-es 75 2py-dibema2-thioph-es 76 2py-dibema2-thioph-es 77 2py-dibema2-thioph-ps 78 2py-dibema2-thioph-ps 78 2py-dibema2-thioph2-es 20 79 2py-dibema2-thiophaz-es 80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-ps 84 2py-edia2-deophec-gs 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-es 88 2py-edia2-phec-es 89 2py-edia2-phec-es 90 2py-edia2-phec-ps 90 2py-edia2-phec-ps	
73	
73	
75 2py-dibema2-thioph-es 76 2py-dibema2-thioph-gs 77 2py-dibema2-thioph-ps 78 2py-dibema2-thioph2-es 79 2py-dibema2-thiopha2-es 80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-ps 84 2py-edia2-deophec-gs 20 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 90 2py-edia2-phec-ps 90 2py-edia2-phec-ps 91 2py-edia2-phec-mals	
76 2py-dibema2-thioph-gs 77 2py-dibema2-thioph-ps 78 2py-dibema2-thioph2-es 20 79 2py-dibema2-thiophaz-es 80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs 25 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-es 84 2py-edia2-deophec-gs 20 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 28 2py-edia2-phec-es 29 2py-edia2-phec-gs 30 2py-edia2-phec-ps	
77 2py-dibema2-thioph-ps 78 2py-dibema2-thioph2-es 79 2py-dibema2-thiophaz-es 80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-es 84 2py-edia2-deophec-gs 20 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 29 2py-edia2-phec-es 29 2py-edia2-phec-ps 20 2py-edia2-phec-ps 20 2py-edia2-phec-ps 20 2py-edia2-phec-ps 20 2py-edia2-phec-ps 20 2py-edia2-phec-ps	
78 2py-dibema2-thioph2-es 79 2py-dibema2-thiophaz-es 80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-es 84 2py-edia2-deophec-gs 20 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 90 2py-edia2-phec-gs 20 2py-edia2-phec-gs 21 2py-edia2-phec-gs 22 2py-edia2-phec-gs 23 2py-edia2-phec-ps 24 2py-edia2-phec-ps 25 2py-edia2-phec-ps 26 2py-edia2-phec-ps 27 2py-edia2-phec-ps	
20 79 2py-dibema2-thiophaz-es 80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs 25 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-es 84 2py-edia2-deophec-gs 20 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 29 2py-edia2-phec-gs 90 2py-edia2-phec-ps 20 2py-edia2-phec-ps 21 2py-edia2-phec-ps 22 2py-edia2-phec-ps 23 2py-edia2-phec-ps 24 2py-edia2-phec-mals	
80 2py-edia2-8mephec-es 81 2py-edia2-8mephec-gs	
81 2py-edia2-8mephec-gs 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-es 84 2py-edia2-deophec-gs 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 89 2py-edia2-phec-gs 90 2py-edia2-phec-ps 40 91 2py-edia2-phec-mals	
25 82 2py-edia2-8mephec-ps 83 2py-edia2-deophec-es 84 2py-edia2-deophec-gs 30 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 35 88 2py-edia2-phec-es 2py-edia2-phec-gs 90 2py-edia2-phec-ps 40 91 2py-edia2-phec-mals	_
83 2py-edia2-deophec-es 84 2py-edia2-deophec-gs 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 89 2py-edia2-phec-gs 90 2py-edia2-phec-ps 40 91 2py-edia2-phec-mals	
84 2py-edia2-deophec-gs 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 89 2py-edia2-phec-gs 90 2py-edia2-phec-ps 40 91 2py-edia2-phec-mals	\neg
30 85 2py-edia2-deophec-ps 86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 35 88 2py-edia2-phec-es 89 2py-edia2-phec-gs 90 2py-edia2-phec-ps 40 91 2py-edia2-phec-mals	
86 2py-edia2-pheaz-es 87 2py-edia2-pheaz-ps 88 2py-edia2-phec-es 89 2py-edia2-phec-gs 90 2py-edia2-phec-ps 40 91 2py-edia2-phec-mals	
87	
88 2py-edia2-phec-es 89 2py-edia2-phec-gs 90 2py-edia2-phec-ps 40 91 2py-edia2-phec-mals	
89 2py-edia2-phec-gs 90 2py-edia2-phec-ps 2py-edia2-phec-mals	
90 2py-edia2-phec-ps 91 2py-edia2-phec-mals	
91 2py-edia2-phec-mals	
40	
92 2py-edia2-thioph-es	
93 2py-edia2-thioph-gs	
94 2py-edia2-thioph-ps	
95 2py-edia2-23dimephec-es	
96 2py-edia2-27dimeophec-es	
97 2py-edia2-2mephec-es	
98 2py-edia2-49dimeophec-es	
99 2py-edia2-5claz-es	
100 2py-edia2-69dimeophec-es	
101 2py-edia2-69dimephec-es	
102 2py-edia2-78diclphec-es	
103 2py-edia2-78dimeophec-es	
104 2py-edia2-8mepyaz-es	
105 2py-edia2-9clphec-es	
106 2py-edia2-benz-es	
107 2py-edia2-cl2phec- s	

Verbindung	Struktur lemente A-E-G-L	
108	2py-edia2-deothioph-es	
109	2py-edia2-dim py-es	
110	2py-edia2-dimepyaz-es	
111	2py-edia2-dimethio-es	
112	2py-edia2-dmaphec-es	
113	2py-edia2-imon-es	
114	2py-edia2-meoaz-es	
115	2py-edia2-meophe-es	
116	2py-edia2-meophe-nes	
117	2py-edia2-meophe-f2es	
118	2py-edia2-mephe-gs	
119	2py-edia2-phec-pms	†
120	2py-edia2-phec-ms	
121	2py-edia2-phedb-as	
122	2py-edia2-phepyra-es	
123	2py-edia2-pyphc-es	
123	2py-edia2-sulfo-es	
125	2py-edia2-thiomet-es	
126	2py-edia2-thioph2-es	
127	2py-edia2-thiophaz-es	
128	2py-edia2-6pyme-pheaz-es	
128	2py-edia2-6pyme-phec-es	
130	2py-edia3-pheaz-es	
131	2py-edia3-phec-es	
	2py-edia3-phec-es 2py-edia3-6pyme-pheaz-es	
132	2py-edia3-6pyme-phec-es	
133	2py-edia4-2oxaz-pheaz-es	
134		
135	2py-edia4-2oxaz-phec-es	
136	2py-edia4-2thiaz-pheaz-es	
137	2py-edia4-2thiaz-phec-es	
138	2py-ediammebz-pheaz-es	
139	2py-ediammebz-phec-es	
140	2py-ediapmebz-pheaz-es	
141	2py-ediapmebz-phec-es	
142	2py-hexa-pheaz-es	-
143	2py-hexa-phec-es	1
144	2py-inda2-pheaz-es	1
145	2py-inda2-phec- s	
146	2py-me25thima2-pheaz-es)

	Verbindung	Struktur lemente A-E-G-L
	147	2py-me25thima2-phec-es
5	148	2py-me35thima2-pheaz-es
	149	2py-me35thima2-phec-es
	150	2py-me42thiaz2-pheaz-es
10	151	2py-me42thia22-phec-es
	152	2py-mea26pyme-pheaz-es
		2py-mea26pyme-phec-es
15	153	
15	154	2py-mea3-pheaz-es
	155	2py-mea3-phec-es
	156	2py-mea36pyme-pheaz-es
20	157	2py-mea36pyme-phec-es
	158	2py-mea42oxaz-pheaz-cs
	159	2py-mea42oxaz-phec-es
25	160	2py-mea42thiaz-pheaz-es
	161	2py-mea42thiaz-phec-es
	162	2py-meammebz-pheaz-es
30	163	2py-meammebz-phec-es
	164	2py-meapmebz-pheaz-es
	165	2py-meapmebz-phec-es
35	166	2py-mepipe2-pheaz-es
	167	2py-mepipe2-phec-es
	168	2py-mepyma2-pheaz-es
40	169	2py-mepyma2-phec-es
	170	2py-penta-8mephec-es
	171	2py-penta-8mephec-gs
45	172	2py-penta-8mephec-ps
75	173	2py-penta-deophec-es
	174	2py-penta-deophec-gs
50	175	2py-penta-deophec-ps
50	176	2py-penta-pheaz-es
	177	2py-penta-pheaz-ps
	178	2py-penta-phec-es
55	179	2py-penta-phec-gs
	180	2py-penta-phec-ps
	181	2py-penta-thioph-es
60	182	2py-p nta-thioph-gs
	183	2py-penta-thioph-ps
	184	2py-pipa2-ph az-es
65	185	2py-pipa2-phec-es
		-E1 E-E E

Struktur lem nte A-E-G-L
2py-pipeme2-pheaz-es
2py-pipeme2-phec-es
2py-pyma2-pheaz- s
2py-pyma2-phec-es
3pmhs-am2-pheac-es
3pmhs-dibema2-phec-gs
3pmhs-edia2-phec-es
4pmhs-am2-pheac-es
4pmhs-dibema2-phec-gs
4pmhs-edia2-phec-es
agua-am2-pheac-es
agua-dibema2-phec-gs
agua-edia2-phec-es
am2py-am2-8mephec-ps
am2py-am2-8mephec-gs
am2py-am2-8mephec-es
am2py-am2-pheac-es
am2py-am2-pheaz-ps
am2py-am2-pheaz-gs
am2py-am2-pheaz-es
am2py-am2-phec-ps
am2py-am2-phec-gs
am2py-am2-phec-es
am2py-am2-phec-es
am2py-am2-phec-gs
am2py-am2-thioph-ps
am2py-am2-thioph-gs
am2py-am2-thioph-es
am2py-mea42thiaz-8mephec-ps
am2py-mea42thiaz-8mephec-gs
am2py-mea42thiaz-8mephec-es
am2py-mea42thiaz-pheaz-ps
am2py-mea42thiaz-pheaz-gs
am2py-mea42thiaz-pheaz-es
am2py-mea42thiaz-phec-ps
am2py-mea42thiaz-phec-gs
am2py-mea42thiaz-phec-es
am2py-mea42thiaz-thioph-ps

	V rbindung	Strukturelemente A-E-G-L
	225	am2py-mea42thiaz-thioph-es
5	226	am4py-am2-pheac-es
	227	am4py-dibema2-ph c-gs
	228	am4py-edia2-phec-es
10	229	amhyd-am2-pheac-es
	230	amhyd-am2-phec-es
	231	amhyd-am2-phec-gs
15	232	amim-am2-pheac-es
	233	amim-am2-phec-es
	234	amim-am2-phec-gs
20	235	amthiz-am2-pheac-es
	236	amthiz-dibema2-phec-gs
	237	amthiz-edia2-phec-es
25	238	amtriz-am2-pheac-es
	239	amtriz-dibema2-phec-gs
	240	amtriz-edia2-phec-es
30	241	bgua-am2-pheac-es
	242	bgua-dibema2-phec-gs
	243	bgua-edia2-phec-es
35	244	bhs-25thima2-phec-gs
	245	bhs-35thima2-phec-gs
	246	bhs-42thiaz2-phec-gs
40	247	bhs-aaf-phec-gs
	248	bhs-am2-8mephec-es
	249	bhs-am2-8mephec-gs
45	250	bhs-am2-8mephec-ps
	251	bhs-am2-deophec-es
	252	bhs-am2-deophec-gs
50	253	bhs-am2-deophec-ps
50	254	bhs-am2-pheaz-es
	255	bhs-am2-pheaz-ps
55	256	bhs-am2-phec-es
55	257	bhs-am2-phec-gs
	258	bhs-am2-phec-ps
60	259	bhs-am2-thioph-es
60	260	bhs-am2-thioph-gs
	261	bhs-am2-thioph-ps
4.5	262	bhs-aof-phec-gs
65	263	bhs-buta-ph c-gs

Verbindung	Strukturelemente A-E-G-L
264	bhs-chex2-phec-gs
265	bhs-dibema2-23dimephec-es
266	bhs-dibema2-27dime phec-es
267	bhs-dibema2-2mephec-es
268	bhs-dibema2-49dimeophec-es
269	bhs-dibema2-5claz-es
270	bhs-dibema2-69dimeophec-es
271	bhs-dibema2-69dimephec-es
272	bhs-dibema2-78diclphec-es
273	bhs-dibema2-78dimeophec-es
274	bhs-dibema2-8mephec-es
275	-bhs-dibema2-8mephec-gs
	bhs-dibema2-8mephec-ps
276	bhs-dibema2-8mepyaz-es
277	bhs-dibema2-9clphec-es
278	bhs-dibema2-benz-es
279	
280	bhs-dibema2-cl2phec-es
281	bhs-dibema2-deophec-es
282	bhs-dibema2-deophec-gs
283	bhs-dibema2-deophec-ps
284	bhs-dibema2-deothioph-es
285	bhs-dibema2-dimepy-es
286	bhs-dibema2-dimepyaz-es
287	bhs-dibema2-dimethio-es
288	bhs-dibema2-dmaphec-es
289	bhs-dibema2-imon-es
290	bhs-dibema2-meoaz-es
291	bhs-dibema2-meophe-es
292	bhs-dibema2-meophe-nes
293	bhs-dibema2-meophe-f2es
294	bhs-dibema2-mephe-gs
295	bhs-dibema2-pheaz-es
296	bhs-dibema2-pheaz-ps
297	bhs-dibema2-phec-es
298	bhs-dibema2-phec-gs
299	bhs-dibema2-ph c-ps
300	bhs-dibema2-ph c-pms
301	bhs-dibema2-phec-ms
302	bhs-dibema2-ph c-mals

	Verbindung	Strukturelemente A-E-G-L
	303	bhs-dibema2-phedb-as
5	304	bhs-dibema2-phepyra-es
	305	bhs-dibema2-pyphc-es
	306	bhs-dibema2-sulfo-es
10	307	bhs-dibema2-thiomet-es
	308	bhs-dibema2-thioph-es
	309	bhs-dibema2-thioph-gs
15	310	bhs-dibema2-thioph-ps
	311	bhs-dibema2-thioph2-es
	312	bhs-dibema2-thiophaz-es
20	313	bhs-edia2-8mephec-es
	314	bhs-edia2-8mephec-gs
	315	bhs-edia2-8mephec-ps
25	316	bhs-edia2-deophec-es
	317	bhs-edia2-deophec-gs
	318	bhs-edia2-deophec-ps
30	319	bhs-edia2-pheaz-es
	320	bhs-edia2-pheaz-ps
	321	bhs-edia2-phec-es
35	322	bhs-edia2-phec-gs
	323	bhs-edia2-phec-ps
	324	bhs-edia2-thioph-es
40	325	bhs-edia2-thioph-gs
	326	bhs-edia2-thioph-ps
	327	bhs-edia26pyme-phec-gs
45	328	bhs-edia3-phec-gs
	329	bhs-edia36pyme-phec-gs
	330	bhs-edia42oxaz-phec-gs
50	331	bhs-edia42thiaz-phec-gs
	332	bhs-ediammebz-phec-gs
	333	bhs-ediapmebz-phec-gs
55	334	bhs-hexa-phec-gs
	335	bhs-inda2-phec-gs
	336	bhs-me25thima2-phec-gs
60	337	bhs-me35thima2-phec-gs
	338	bhs-me42thiaz2-phec-gs
	339	bhs-mea26pyme-phec-gs
65	340	bhs-mea3-phec-gs
•	341	bhs-mea36pyme-phec-gs

Verbindung	Strukturel ment A-E-G-L
342	bhs-mea42oxaz-phec-gs
343	bhs-mea42thiaz-phec-gs
344	bhs-meammebz-phec-gs
345	bhs-meapmebz-phec-gs
346	bhs-mepipe2-phec-gs
347	bhs-mepyma2-phec-gs
348	bhs-penta-8mephec-es
349	bhs-penta-8mephec-gs
350	bhs-penta-8mephec-ps
351	bhs-penta-deophec-es
352	bhs-penta-deophec-gs
-353	bhs-penta-deophec-ps
354	bhs-penta-pheaz-es
355	bhs-penta-pheaz-ps
356	bhs-penta-phec-es
357	bhs-penta-phec-gs
358	bhs-penta-phec-ps
359	bhs-penta-thioph-es
360	bhs-penta-thioph-gs
361	bhs-penta-thioph-ps
362	bhs-pipa2-phec-gs
363	bhs-pipeme2-phec-gs
364	bhs-pyma2-phec-gs
365	bim-25thima2-pheaz-es
366	bim-35thima2-pheaz-es
367	bim-42thiaz2-pheaz-es
368	bim-aaf-pheaz-es
369	bim-am2-23dimephec-gs
370	bim-am2-27dimeophec-gs
371	bim-am2-2mephec-gs
372	bim-am2-49dimeophec-gs
373	bim-am2-69dimeophec-gs
374	bim-am2-69dimephec-gs
375	bim-am2-78diclphec-gs
376	bim-am2-78dimeophec-gs
377	bim-am2-8mephec-es
378	bim-am2-8mephec-gs
379	bim-am2-8mephec-ps
380	bim-am2-9clphec-gs

	Verbindung	Strukturelement A-E-G-L
	381	bim-am2-cl2ph c-gs
5	382	bim-am2-deophec-es
	383	bim-am2-deophec-gs
	384	bim-am2-deophec-ps
10	385	bim-am2-deothioph-gs
	386	bim-am2-dimepy-gs
	387	bim-am2-dimethio-gs
15	388	bim-am2-dmaphec-gs
	389	bim-am2-imon-gs
	390	bim-am2-meophe-nes
20	391	bim-am2-meophe-f2es
	392	bim-am2-mephe-gs
	393	bim-am2-pheaz-es
25	394	bim-am2-pheaz-ps
	395	bim-am2-phec-es
	396	bim-am2-phec-gs
30	397	bim-am2-phec-ps
	398	bim-am2-phec-pms
	399	bim-am2-phec-ms
35	400	bim-am2-phec-mals
	401	bim-am2-phedb-as
	402	bim-am2-phepyra-gs
40	403	bim-am2-pyphc-gs
	404	bim-am2-sulfo-gs
	405	bim-am2-thiomet-gs
45	406	bim-am2-thioph-es
•••	407	bim-am2-thioph-gs
	408	bim-am2-thioph-ps
50	409	bim-am2-thioph2-gs
50	410	bim-aof-pheaz-es
	411	bim-buta-pheaz-es
<i></i>	412	bim-chex2-pheaz-es
55	413	bim-dibema2-8mephec-es
	414	bim-dibema2-8mephec-gs
	415	bim-dibema2-8mephec-ps
60	416	bim-dibema2-deophec-es
	417	bim-dibema2-deoph c-gs
	418	bim-dibema2-deoph c-ps
65	419	bim-dibema2-pheaz- s

Verbindung	Strukturelem nte A-E-G-L
420	bim-dibema2-pheaz-ps
421	bim-dibema2-phec-es
422	bim-dibema2-phec-gs
423	bim-dibema2-phec-ps
424	bim-dibema2-thioph-es
425	bim-dibema2-thioph-gs
426	bim-dibema2-thioph-ps
427	bim-edia2-8mephec-es
428	bim-edia2-8mephec-gs
429	bim-edia2-8mephec-ps
430	bim-edia2-deophec-es
431	bim-edia2-deophec-gs
432	bim-edia2-deophec-ps
433	bim-edia2-pheaz-es
434	bim-edia2-pheaz-ps
435	bim-edia2-phec-es
436	bim-edia2-phec-gs
437	bim-edia2-phec-ps
438	bim-edia2-thioph-es
439	bim-edia2-thioph-gs
440	bim-edia2-thioph-ps
441	bim-edia26pyme-pheaz-es
442	bim-edia3-pheaz-es
443	bim-edia36pyme-pheaz-es
444	bim-edia42oxaz-pheaz-es
445	bim-edia42thiaz-pheaz-es
446	bim-ediammebz-pheaz-es
447	bim-ediapmebz-pheaz-es
448	bim-hexa-pheaz-es
449	bim-inda2-pheaz-es
450	bim-me25thima2-pheaz-es
451	bim-me35thima2-pheaz-es
452	bim-me42thiaz2-pheaz-es
453	bim-mea26pyme-pheaz-es
454	bim-mea3-pheaz-es
455	bim-mea36pyme-pheaz-es
456	bim-mea42oxaz-ph az- s
457	bim-mea42thiaz-pheaz-es
	bim-meammebz-pheaz-es
458	DIM-me dimiens - Puegs - co

	Verbindung	Strukturelemente A-E-G-L
5	459	bim-meapmebz-pheaz-es
	460	bim-mepipe2-pheaz-es
	461	bim-mepyma2-pheaz-es
	462	bim-penta-8mephec-es
10	463	bim-penta-8mephec-gs
	464	bim-penta-8mephec-ps
	465	bim-penta-deophec-es
15	466	bim-penta-deophec-gs
	467	bim-penta-deophec-ps
	468	bim-penta-pheaz-es
20	469	bim-penta-pheaz-ps
	470	bim-penta-phec-es-
	471	bim-penta-phec-gs
25	472	bim-penta-phec-ps
	473	bim-penta-thioph-es
	474	bim-penta-thioph-gs
30	475	bim-penta-thioph-ps
	476	bim-pipa2-pheaz-es
	477	bim-pipeme2-pheaz-es
35	478	bim-pyma2-pheaz-es
	479	dhim-am2-pheac-es
	480	dhim-dibema2-phec-gs
40	481	dhim-edia2-phec-es
	482	dhpyrr-am2-pheac-es
	483	dhpyrr-dibema2-phec-gs
45	484	dhpyrr-edia2-phec-es
	485	dhthi-am2-pheac-es
	486	dhthi-dibema2-phec-gs
50	487	dhthi-edia2-phec-es
30	488	dimethpym-am2-pheac-es
	489	dimethpym-dibema2-phec-gs
55	490	dimethpym-edia2-phec-es
33	491	gua-am2-pheac-es
60	492	gua-dibema2-phec-gs
	493	gua-edia2-phec-es
	494	hs-am2-pheac-es
	495	hs-dibema2-phec-gs
	496	hs-edia2-phec-es
65	497	hts-am2-pheac- s

Verbindung	Strukturelemente A-E-G-L
498	hts-dibema2-phec-gs
499	hts-edia2-ph c- s
500	hyd-am2-pheac- s
501	hyd-dibema2-phec-gs
502	hyd-edia2-phec-es
503	ibhs-am2-pheac-es
	ibhs-dibema2-phec-gs
504	ibhs-edia2-phec-es
505	
506	im-am2-pheac-es
507	im-dibema2-phec-gs
508	im-edia2-phec-es
-509	imhs-am2-pheac-es
510	imhs-dibema2-phec-gs
511	imhs-edia2-phec-es
512	impy-am2-8mephec-es
513	impy-am2-8mephec-gs
514	impy-am2-8mephec-ps
515	impy-am2-deophec-es
516	impy-am2-deophec-gs
517	impy-am2-deophec-ps
518	impy-am2-pheaz-es
519	impy-am2-pheaz-ps
520	impy-am2-phec-es
521	impy-am2-phec-gs
522	impy-am2-phec-ps
523	impy-am2-thioph-es
524	impy-am2-thioph-gs
525	impy-am2-thioph-ps
526	impy-dibema2-8mephec-es
527	impy-dibema2-8mephec-gs
528	impy-dibema2-8mephec-ps
529	impy-dibema2-deophec-es
530	impy-dibema2-deophec-gs
531	impy-dibema2-deophec-ps
532	impy-dibema2-pheaz-es
533	impy-dibema2-ph az-ps
	impy-dibema2-ph d2 pb
534	impy-dibema2-ph c-gs
535	
536	impy-dibema2-phec-ps

	V rbindung	Strukturelemente A-E-G-L
	537	impy-dibema2-thioph-es
5	538	impy-dibema2-thioph-gs
	539	impy-dibema2-thioph-ps
	540	impy-edia2-8mephec-es
10	541	impy-edia2-8mephec-gs
	542	impy-edia2-8mephec-ps
	543	impy-edia2-deophec-es
15	544	impy-edia2-deophec-gs
	545	impy-edia2-deophec-ps
	546	impy-edia2-pheaz-es
20	547	impy-edia2-pheaz-ps
-	548	impy-edia2-phec-es
	549	impy-edia2-phec-gs
25	550	impy-edia2-phec-ps
	551	impy-edia2-thioph-es
	552	impy-edia2-thioph-gs
30	553	impy-edia2-thioph-ps
	554	impy-penta-8mephec-es
	555	impy-penta-8mephec-gs
35	556	impy-penta-8mephec-ps
	557	impy-penta-deophec-es
	558	impy-penta-deophec-gs
40	559	impy-penta-deophec-ps
	560	impy-penta-pheaz-es
	561	impy-penta-pheaz-ps
45	562	impy-penta-phec-es
	563	impy-penta-phec-gs
	564	impy-penta-phec-ps
50	565	impy-penta-thioph-es
	566	impy-penta-thioph-gs
	567	impy-penta-thioph-ps
55	568	mam2py-am2-pheac-es
55	569	mam2py-dibema2-phec-gs
60	570	mam2py-edia2-phec-es
	571	nmhs-am2-pheac-es
	572	nmhs-dibema2-phec-gs
	573	nmhs-edia2-phec- s
(5	574	pippy-am2-pheac-es
65	575	pippy-am2-phec-es

Verbindung	Strukturelement A-E-G-L
576	pippy-am2-phec-gs
577	piraz-am2-pheac-es
578	piraz-am2-phec- s
579	piraz-am2-phec-gs
580	ppy-am2-pheac-es
581	ppy-dibema2-phec-gs
582	ppy-edia2-phec-es
583	sabhs-am2-pheac-es
584	sabhs-dibema2-phec-gs
585	sabhs-edia2-phec-es
586	thazep-am2-pheac-es
-587	-thazep-dibema2-phec-gs
588	thazep-edia2-phec-es
589	thiz-am2-pheac-es
590	thiz-dibema2-phec-gs
591	thiz-edia2-phec-es
592	thpy-am2-pheac-es
593	thpy-dibema2-phec-gs
594	thpy-edia2-phec-es
595	thpym-am2-pheac-es
596	thpym-dibema2-phec-gs
597	thpym-edia2-phec-es
598	ur-am2-pheac-es
599	ur-dibema2-phec-gs
600	ur-edia2-phec-es

In der rechten Spalte der vorstehenden Tabelle steht jede Zeile für eine Verbindung. Die Abkürzungen der rechten Spalte stehen getrennt durch einen Bindungsstrich jeweils für ein Strukturelement A, E G und L, wobei die Abkürzungen folgende Bedeutung haben:

1	A =	Abkürzung	A =	Abkürzung
5	N	2ру	NH	thpym
10	N N N N N N N N N N N N N N N N N N N	dhim	HZ =0	nmhs
15	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	bim	0=0	4pmhs
20	HZ ZH	imhs	O H ₂ N	hs
25	AL O	bhs	O NH	sabhs
30 35	NH H₂N	gua	NH NH	bgua
40	N H	2pmhs	(N)	dhpyrr
45	N N N N N N N N N N N N N N N N N N N	impy	O HN O	ur
50	ON	hyd		ibhs
55 ;	N N	3pmhs	H ₂ N N H ₂ N	agua

,,

A =	Abkürzung	A =	Abkürzung	
	dhthi	X - N	dimethpym	5
	thazep	H ₂ N	hts	10
HN	mam2py		рру	1.5
	thpy	TN N	<u>i</u> m	2 0
H ₂ N N	am2py	H ₂ N S	amthiz	2.5 30
THE NAME OF THE PARTY OF THE PA	pippy	H ₂ N	am4py	35
H ₂ N N	amim	HN	piraz	40
S	thiz	HN N O	amhyd	45
H ₂ N N N N N N N N N N N N N N N N N N N	amtriz			so

ſ	E =	Abkürzung	grand the E. H. Carlotte	Abkürzung
5	H N	edia2	N N N O	mepipe2
10	Z Z O	рута2	NH O	am2
20		pipa2	N N O	inda2
25	S N	25thima2	S O	35thima2
30 35	S O	me35thima2	s n	me25thima2
40		dibema2	H	penta
45	T N	edia3	/H	aof
	, H	buta	, N	hexa
50	_H	aaf		me a 2
55	S N H	42thiaz2	NH NH	pipeme2
65		chex2	S N H	m 42thiaz2

B. Trick Take	Abkürzung	· · · · · · · · · · · · · · · · · · ·	Abkürzung
	mepyma2	NH O	mea3
	edia42- thiaz	NH SN	mea42- thiaz
H N N N N N N N N N N N N N N N N N N N	edia42- oxaz	NH SNN	mea42oxaz
H O	ediapmebz	THAT IN THE SECOND SECO	ediammebz
NH CONTRACTOR OF THE PROPERTY	meapmebz		meammebz
The second secon	edia26- pyme	H N N N N N N N N N N N N N N N N N N N	edia36- pyme
NH N	mea26pyme	NH Z	mea36pyme

[Abkürzung	Control Go = Talking A	Abkürzung
10		2mephec	O N	8mephec
20		meophe		23dimephec
35 40	Z CI	9clphec		78dimeophec
45 50 55	O CH ₃	69dimeophec	CI	78diclphec

e (State Green State Green	Abkürzung	G = 3-1	Abkürzung	
O	69dimephec		49dimeophec	5
				15
O HN NH	imon		dimepy	20
S N N N N N N N N N N N N N N N N N N N	dimethio	HN-SO ₂	sulfo	30
	рурћс	O S S	thioph	40 45
	pheaz	O N OH	thiomet	50 55
			<u></u>	J

[General General Control	Abkürzung	G =	Abkürzung
10	OH N-N	phepyra		benz
20	O N	phec		dimepyaz
30 35		8mepyaz		meoaz
45	0	phedb	O S N N N N N N N N N N N N N N N N N N	5claz
55	o S N	thiophaz	O CH ₃	mephe

Γ	koggi ji G ≔ jilom sa	Abkürzung -	G = E G	Abkürzung
	CI	c12phec	0	27dimeophec
		deophec		thioph2
	S	deothioph	N O O	dmaphec

	. og krag i nger grader i	Abkürzung	L. C. Art. L. C.	Abkürzung
5	ОН	es	OH	ps
10	OH	дв	OH	ms
15	OH			
20		pms	HN O	nes
25	F OH	f2es	ОН	as
35	ОН	mals		
	но			

Verbindungen der allgemeinen Formel I und die zu ihrer Herstellung verwendeten Ausgangsstoffe lassen sich generell nach dem Fachmann bekannten Methoden der organischen Chemie herstellen, wie es in Standardwerken wie z. B. Houben-Weyl, "Methoden der Organischen Chemie", Thieme-Verlag, Stuttgart, oder March "Advanced Organic Chemistry", 4th Edition, Wiley & Sons, beschrieben ist. Weitere Herstellungsmethoden sind auch in R. Labrock, "Comprehensive Organic Transformations", Weinheim, 1989, beschrieben, insbesondere die Herstellung von Alkenen, Alkinen, Halogeniden, Aminen, Ethern, Alkoholen, Phenolen, Aldehyden, Ketonen, Nitrilen, Carbonsäuren, Estern, Amiden und Säurechloriden.

Die allgemeine Synthese von Verbindungen der Formel I, wobei A-E-für B steht, ist in den Schemata 1-7 beschrieben. Sofern nicht anders angegeben sind sämtliche Ausgangsmaterialien und Reagenzien käuflich, oder lassen sich aus käuflich erhältlichen Vorprodukten nach gängigen Methoden herstellen.

Schema 1 beschreibt allgemein den Aufbau von Verbindungen der Formel I.

65

60

Schema 1

Bausteine des Typs II (für X_G gleich CH) sind bekannt und lassen sich nach bekannten Methoden ausgehend von entsprechend substituierten oder anellierten 1H-Azepin-2,5-dionen darstellen, wie es exemplarisch z. B. in J. Med. Chem. 1986, 29, 1877–1888 oder DE 15 68 217 beschrieben ist. 1H-Azepin-2,5-dione, die zur Darstellung von Verbindungen des Typs I verwendet werden, sind entweder käuflich oder lassen sich gemäß folgender Publikationen darstellen:

40

45

5H-Dibenzo[b,e]azepin-6,11-dion bzw. substituierte Varianten nach J. Med. Chem. 1965, 8, 74, oder Gazz. Chim. Ital. 1953, 83, 533 und 1954, 84, 1135; 5H-Pyrido[3,2-c][1]benzazepin-5,11(6H)-dion nach Liebigs Ann. Chem. 1989, 469-476; 4H-Thieno[3,2-c][1]benzazepin-4,10(5H)-dion nach Eur. J. Med. Chem. Ther. 1981, 16, 391-398.

Die Umsetzung zu III wird durch Hydrierung der Doppelbindung unter Standardbedingungen durchgeführt. Dabei kann auch von an sich bekannten, hier nicht erwähnten Varianten Gebrauch gemacht werden. Bevorzugt wird die Hydrierung in Gegenwart eines Edelmetallkatalysators, wie z. B Pd auf Aktivkohle, Pt, PtO₂, Rh auf Al₂O₃ in einem inerten Lösungsmittel bei einer Temperatur von 0-150°C und einem Druck von 1-200 bar durchgeführt; der Zusatz einer Säure wie z. B. Essigsäure oder Salzsäure kann vorteilhaft sein. Besonders bevorzugt ist die Hydrierung in Gegenwart von 5-10% Pd auf Aktivkohle.

Als Lösungsmittel können alle gängigen inerten Lösungsmittel verwendet werden wie beispielsweise Kohlenwasserstoffe wie Hexan, Heptan, Petrolether, Toluol, Benzol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform, Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Methyl-tert.butylether, Diisopropylether, Tetrahydrofuran, Dioxan; Glycol-ether wie Ethylenglycolmonomethylether oder -monoethyl-ether, Ethylenglycoldimethylether; Ketone wie Aceton, Butanon; Amide wie Dimethylformamid (DMF), Dimethylacetamid oder Acetamid; Sulfoxide wie Dimethylsulfoxid, Sulfolan; Pyridin, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon (DMPU), 1,3-Dimethyl-2-imidazolidinon, Wasser oder Gemische der genannten Lösungsmittel.

Die Darstellung von Verbindungen des Typs IV erfolgt durch Umsetzung mit Verbindungen der allgemeinen Formel A-E-U_E (VI), wobei der Rest U_E für eine übliche Abgangsgruppe steht, beispielsweise Halogen wie Chlor, Brom, Iod oder für einen, gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl substituierten Aryl- oder Alkylsulfonyloxy-Rest, wie beispielsweise Toluolsulfonyloxy, Trifluormethansulfonyloxy und Methylsulfonyloxy oder eine andere äquivalente Abgangsgruppe.

Die Reaktion findet bevorzugt in einem inerten Lösungsmittel statt unter Zusatz einer geeigneten Base, d. h. einer Base, die eine Deprotonierung des Zwischenproduktes III bewirkt, in einem Temperaturbereich von –40°C bis zum Siedepunkt des entsprechenden Lösungsmittels statt.

Als Base kann ein Alkali- oder Erdalkalimetallhydrid wie Natriumhydrid, Kaliumhydrid oder Calciumhydrid, ein Car-

bonat wie Alkalimetallearbonat, z. B. Natrium- oder Kaliumearbonat, ein Alkali- oder Erdalkalimetallhydroxid wie Natrium- oder Kaliumhydroxid, ein Alkoholat wie z. B. Natriummethanolat, Kaliumtert.butanolat, eine metallorganische Verbindung wie Butyllithium oder Alkaliamide wie Lithiumdiisopropylamid, Lithium-, Natrium- oder Kalium-bis-(trimethylsilyl)-amid dienen.

Abspaltung der Schutzgruppe SG1 nach Standardbedingungen (s. unten) führt zu den Verbindungen der allgemeinen Formel I. Für den Fall SG1 gleich C₁-C₄-Alkyl oder Benzyl entsprechen die Verbindungen der allgemeinen Formel IV direkt den Verbindungen des Typs I.

Alternativ zu dieser Synthesestrategie lassen sich Verbindungen des Typs I auch über V als Zwischenprodukt herstellen, wobei auch hier Reaktionsbedingungen verwendet werden, wie sie dem Fachmann bekannt und in Standardwerken beschrieben sind. Die Herstellung der Verbindung V erfolgt durch Umsetzung von Verbindungen des Typs III mit Verbindungen der allgemeinen Formel D_E -E- U_E (VII) unter Reaktionsbedingungen, wie sie für die Darstellung von IV schon beschrieben wurden. U_E steht für eine geeignete Abgangsgruppe, wie vorstehend beschrieben und D_E für CN, oder eine geschützte Amino- oder Säurefunktion der allgemeinen Formel NSG3 oder COOSG2. Der Aufbau der Fragmente D_E -E bzw. A-E erfolgt – abhängig von der eigentlichen Struktur von E – durch Abspaltung der Schutzgruppen und Ankopplung der restlichen Fragmente nach Standardmethoden, z. B. Amidkupplungen. Die Einführung von A erfolgt dann analog zu den in den Schemata 3–7 beschriebenen Umsetzungen.

Verbindungen des Typs I, in denen X_G für N steht, lassen sich gemäß Schema 2 herstellen.

Schema 2

Ausgangspunkt der Synthese sind Verbindungen des Typs VIII, die entweder bekannt sind bzw. dem Fachmann nach bekannten Methoden zugänglich sind, wie es z. B. in Pharmazie 45 (8), 1990, 555-559 beschrieben ist. Alkylierung mit einer Verbindung der allgemeinen Formel XI (U_U = übliche Abgangsgruppe, wie vorstehend für U_E beschrieben) unter Reaktionsbedingungen, wie sie für die Herstellung von Substanzen des Typs IV beschrieben sind, führt zu IX. Die weiteren Umsetzungen zu I über X verlaufen analog Schema 1.

Die Kupplung der einzelnen Fragmente und die Abspaltung der Schutzgruppen kann nach bekannten Verfahren erfolgen (s. Larock, "Comprehensive Organic Transformations; Schutzgruppen: Greene und Wuts, T., "Protective Groups in Organic Synthesis", New York 1991), im Falle von Amidbindungen auch analog den Methoden der Peptidsynthese, wie in Standardwerken z. B. in Bodanszky "The Practice of Peptide Synthesis", 2nd Edition, Springer-Verlag 1994, und Bodanszky "Principles of Peptide Synthesis", Springer-Verlag 1984, beschrieben ist. Eine allgemeine Übersicht der gängigen Methoden zur Peptidsynthese und eine Auflistung geeigneter Reagenzien ist weiterhin zu finden in NOVABIO-CHEM 1999 "Catalog and Peptide Synthesis Handbook".

Die genannten Amidkupplungen können mithilfe gängiger Kupplungsreagenzien unter Verwendung von geeignet geschützten Amino- und Carbonsäure-Derivaten durchgeführt werden. Eine andere Methode besteht in der Verwendung voraktivierter Carbonsäure-Derivate, vorzugsweise von Carbonsäure-Halogeniden, symmetrischen oder gemischten Anhydriden oder sogenannter Aktivester, die üblicherweise zur Acylierung von Aminen verwendet werden. Diese aktivierten Carbonsäure-Derivate können auch in-situ hergestellt werden. Die Kupplungen lassen sich in der Regel in inerten Lösungsmitteln in Gegenwart eines säurebindenden Mittels durchführen, vorzugsweise einer organischen Base wie z. B. Triethylamin, Pyridin, Diisopropylethylamin, N-Methylmorpholin, Chinolin; auch der Zusatz eines Alkali- oder Erdalkalimetallhydroxids, -carbonats oder -hydrogencarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums, Calciums oder Caesiums kann günstig sein.

Die Reaktionszeit liegt je nach verwendeten Bedingungen zwischen Minuten und 14 Tagen, die Reaktionstemperatur zwischen -40°C und 140°C, vorzugsweise zwischen -20°C und 100°C.

Als inerte Lösungsmittel eignen sich z. B. Kohlenwasserstoffe wie Hexan, Heptan, Petrolether, Toluol, Benzol oder

Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform, Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Methyl-tert.butylether, Diisopropylether, Tetrahydrofuran, Dioxan; Glycolether wie Ethylenglycolmonomethylether oder -monoethylether, Ethylenglycoldimethylether; Ketone wie Aceton, Butanon; Amide wie Dimethylformamid (DMF), Dimethylacetamid oder Acetanid; Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid, Sulfolan; N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon (DMPU), 1,3-Dimethyl-2-imidazolidinon, Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat (Essigester); Wasser, oder Gemische der genannten Lösungsmittel.

Als Schutzgruppen SG können alle dem Fachmann aus der Peptidsynthese bekannten und gängigen Schutzgruppen verwendet werden, wie sie auch in den oben genannten Standardwerken beschrieben sind.

Die Abspaltung der Schutzgruppen in den Verbindungen der Formel IV, V, VI und VII erfolgt ebenfalls nach Bedingungen, wie sie dem Fachmann bekannt sind und z. B. von Greene und Wuts in "Protective Groups in Organic Synthesis", 2nd Edition, Wiley & Sons, 1991, beschrieben sind.

Bei Schutzgruppen wie SG₃ handelt es sich um sogenannte N-terminale Aminoschutzgruppen; bevorzugt sind hier Boc, Fmoc, Benzyloxycarbonyl (Z), Acetyl oder Mtr.

 SG_1 und SG_2 stehen für sogenannte C-terminale Hydroxyschutzgruppen, bevorzugt sind hier C_1 - C_4 -Alkyl wie z. B. Methyl, Ethyl, tert-Butyl, oder auch Benzyl oder Trityl, oder auch polymer gebundene Schutzgruppen in Form der handelsüblichen Polystyrol-Harze wie z. B. 2-Chlortritylchloridharz oder Wang-Harz (Fa. Bachem, Fa. Novablochem).

Die Abspaltung säurelabiler Schutzgruppen (z. B. Boc, tert.Butyl, Mtr, Trityl) kann – je nach verwendeter Schutzgruppe – mit organischen Säuren wie Trifluoressigsäure (TFA), Trichloressigsäure, Perchlorsäure, Trifluorethanol; aber auch anorganischen Säuren wie Salzsäure oder Schwefelsäure, Sulfonsäuren wie Benzol- oder p-Toluolsulfonsäure erfolgen, wobei die Säuren generell im Überschuß eingesetzt werden. Im Falle von Trityl kann der Zusatz von Thiolen wie z. B. Thioanisol oder Thiophenol vorteilhaft sein. Die Anwesenheit eines zusätzlichen inerten Lösungsmittels ist möglich, aber nicht immer erforderlich. Als inerte Lösungsmittel eignen sich vorzugsweise organische Lösungsmittel, beispielsweise Carbonsäuren wie Essigsäure; Ether wie THF oder Dioxan; Amide wie DMF oder Dimethylacetamid; halogenierte Kohlenwasserstoffe wie Dichlormethan; Alkohole wie Methanol, Isopropanol; oder Wasser. Es kommen auch Gemische der genannten Lösungsmittel in Frage.

Die Reaktionstemperatur für diese Umsetzungen liegt zwischen 10°C und 50°C, vorzugsweise arbeitet man in einem Bereich zwischen 0°C und 30°C.

Basenlabile Schutzgruppen wie Fmoc werden durch Behandlung mit organischen Aminen wie Dimethylamin, Diethylamin, Morpholin, Piperidin als 5-50% Lösungen in CH₂Cl₂ oder DMF gespalten. Die Reaktionstemperatur für diese Umsetzungen liegt zwischen 10°C und 50°C, vorzugsweise arbeitet man in einem Bereich zwischen 0°C und 30°C.

Säureschutzgruppen wie Methyl oder Ethyl werden bevorzugt durch basische Hydrolyse in einem inerten Lösungsmittel gespalten. Als Basen werden bevorzugt Alkali- oder Erdalkalimetallhydroxide, vorzugsweise NaOH, KOH oder LiOH verwendet.

Als Lösungsmittel kommen alle gängigen inerten Lösungsmittel wie z. B. Kohlenwasserstoffe wie Hexan, Heptan, Petrolether, Toluol, Benzol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlor-kohlenstoff, Chloroform, Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Methyl-tert.butylether, Diisopropylether, Tetrahydrofuran, Dioxan; Glycolether wie Ethylenglycolmonomethylether oder -monoethylether, Ethylen-glycol-dimethylether; Ketone wie Aceton, Butanon; Amide wie Dimethylformamid (DMF), Dimethylacetamid oder Acetamid; Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid, Sulfolan; N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon (DMPU), 1,3-Di-methyl-2-imidazolidinon; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Wasser oder Gemische der genannten Lösungsmittel zum Einsatz. Der Zusatz eines Phasen-Transferkatalysators kann – je nach verwendetem Lösungsmittel bzw. -gemischs von Vorteil sein. Die Reaktionstemperatur für diese Umsetzungen liegt generell zwischen –10°C und 100°C.

Hydrogenolytisch abspaltbare Schutzgruppen wie Benzyloxycarbonyl (Z) oder Benzyl können z. B. durch Hydrogenolyse in Gegenwart eines Katalysators (z. B. eines Edelmetall-Katalysators auf Aktivkohle als Träger) abgespalten werden. Als Lösungsmittel eignen sich die oben angegebenen, insbesondere Alkohole wie Methanol, Ethanol; Amide wie DMF oder Dimethylacetamid; Ester wie Ethylacetat. Die Hydrogenolyse wird in der Regel bei einem Druck von 1 bis 200 bar und Temperaturen zwischen 0°C und 100°C durchgeführt; der Zusatz einer Säure wie z. B. Essigsäure oder Salzsäure kann vorteilhaft sein. Als Katalysator wird bevorzugt 5 bis 10% Pd auf Aktivkohle verwendet.

Der Aufbau von Bausteinen des Typs E erfolgt generell nach dem Fachmann bekannten Methoden; die verwendeten Bausteine sind entweder käuflich oder nach literaturbekannten Methoden zugänglich. Die Synthese einiger dieser Bausteine ist exemplarisch im experimentellen Teil beschrieben.

Für den Fall, daß die in den Verbindungen des Typs V und VI enthaltenden Fragmente Q_E bzw. X_E für einen Hetaryl-Rest stehen, so kann der Rest E über Verbindungen des Typs VI-VII ausgehend von Amino-Hetarylcarbonsäuren, Amino-Hetarylcarbonsäureestern bzw. Nitrilen nach dem Fachmann bekannten und beschriebenen Methoden aufgebaut werden. Eine Vielzahl Herstellungsmethoden sind in Houben-Weyls "Methoden der organischen Chemie" ausführlich beschrieben (Bd. E6: Furane, Thiophene, Pyrrole, Indole, Benzothiophene, -furane, -pyrrole; Bd. E7: Chinoline, Pyridine, Bd. E8: Isoxazole, Oxazole, Thiazole, Pyrazole, Imidazole und deren benzoannellierte Vertreter, sowie Oxadiazole, Thiadiazole und Triazole; Bd. E9: Pyridazine, Pyrimidine, Triazine, Azepine und deren benzoannelierte Vertreter sowie Purine). Auch die Verknüpfung dieser Fragmente zu E kann, je nach Struktur von E, über die Amino- oder Säurefunktion nach Methoden erfolgen, die dem Fachmann bekannt sind.

Entsprechende Hetaryl-Derivate sind entweder käuflich oder analog den folgenden Publikationen herstellbar:

- 5-(Aminomethyl)-2-pyridinecarbonitril nach WO 95/25426,
- 5-(Aminomethyl)-3-thiophene-carbonitril nach WO 98/06741,
- 5-(Aminomethyl)-2-thiophenecarbonitril in WO 95/23609,
- 2-(Aminomethyl)-1,3-thiazole-4-carbonitril analog zu WO 98/06741,

65

10

15

20

3-Oxo-5-isoindolin-carbonsäure nach WO 97/37655,

3-Amino-2-pyrrolidon nach WO 98/44797,

Spirocyclen wie [8-(Aminomethyl)-2-oxa-3-azaspiro[4.5]dec-3-en-4-yl]acetat und [7-(aminomethyl)-2-oxa-3-azaspiro[4.4]non-3-en-4-yl]acetat nach WO 97/33887,

5 [5-(2-Aminoalkyl)-4,5-dihydro-3-isoxazolyl]carbonsäure bzw. -acetat, [3-(2-Aminoalkyl)-4,5-dihydro-5-isoxazo-lyl]carbosäure bzw. -acetat nach WO 96/37492,

1-(3-Aminoalkyl)-1H-indazole-5-carbonsäure nach WO 97/23480;

- 2-Amino-1,3-thiazol-5-carbonsäureethylester in Kushner et al., J. Org. Chem. 1948, 13, 834ff;
- 2-Amino-4-pyridincarbonsäuremethylester in Podany et al. J. Org. Chem. 1986, 51, 2988-2994;
- 5-Amino-3-pyridincarbonsäuremethylester in Hawkins et al., J. Org. Chem. 1949, 14, 328-332;

4-Amino-2-pyrimidincarbonsäuremethylester in DE 28 48 912,

6-Amino-4-pyrimidincarbonsäuremethylester in Zh. Org. Khim. 1981, 17, 312-317;

- 5-Amino-1,3-thiazol-2-carbonsäureethylester in Adams et al., J. Chem. Soc. 1956, 1870-1873;
- 4-(Aminomethyl)-2-thiophencarbonsauremethylester in Peschke et al., Bioorg. Med. Chem, Lett. 1997, 7, 1969-1972;
- 15 2-Amino-1,3-oxazol-4-carbonsäure in Foulis et al., J. Med. Chem. 1971, 14, 1075–1077;
 - 4-Aminopyridin-2-carbonsäuremethylester in Mostier et al., J. Org. Chem. 1955, 20, 283-285; 2-Amino-pyrimidin-3-carbonsäuremethylester in Liebigs Ann. Chem. 1965, 209-211;

5-Amino-1,3,4-thiadiazol-5-carbonsäure in Liebigs Ann. Chim. 1963, 3;

5-Amino-1,3,4-triazol-5-carbonsäure in US 3023210;

4-Aminopyrrol-2-carbonsäure in J. Med. Chem. 1983, 26, 1042;

- 1-Methyl-3-aminopyrazol-5-carbonsäure in Acta Chem. Scand. 1990, 44, 74;
- 1-Methyl-5-amino-3-carbonsaure in Lee et al., J. Org. Chem. 1989, 54, 428. Die Überführung von Verbindungen der allgemeinen Formel XI und XII

25
$$HNR_E^3$$
- $(CR_E^4R_E^5)_f$ - $(QE)_k$ - $(CR_E^6R_E^7)_g$ - W_E (XI)

$$NC-(CR_E^4R_E^5)_{f-1}-(QE)_k-(CR_E^6R_E^7)_g-W_E$$
 (XII)

in Verbindungen der allgemeinen Formel:

$$A-NR_E^3-(CR_E^4R_E^5)_{f^*}(QE)_{k^*}-(CR_E^6R_E^7)_{g^*}W_E$$
 (XIII)

$$A-(CR_E^4R_E^5)_{f-1}-(QE)_k-(CR_E^6R_E^7)_g-W_E$$
 (XIV),

wobei WF COOSG2 oder NSG3 bedeutet,

kann nach dem Fachmann bekannten Methoden erfolgen, die z.B. in WO 97/08145 beschrieben sind. Diese Bausteine können dann entweder direkt – im Fall der entsprechenden freien Amine bzw. Carbonsäuren – oder nach Abspaltung der Schutzgruppen – zu Verbindungen der allgemeinen Formel I (Schema 1) umgesetzt werden.

Prinzipiell kann A jedoch auch, wie in Schema 1 beschrieben, in Verbindungen des Typs V eingeführt werden, wobei die angeführten Reaktionsbedingungen genauso wie hier nicht beschriebene Varianten zum Einsatz kommen können. In den Schemata 3-7 sind eine Reihe der Methoden zur Einführung von A exemplarisch beschrieben, wobei jeweils Reaktionsbedingungen verwendet wurden, wie sie für die jeweiligen Umsetzungen bekannt und geeignet sind. Dabei

kann auch von an sich bekannten, hier nicht erwähnten Varianten Gebrauch gemacht werden.

45

30

50

55

60

Schema 3

Harnstoffe bzw. Thioharnstoffe (AE-1 bis AE-3) lassen sich nach gängigen Methoden der organischen Chemie herstellen, z. B. durch Umsetzung eines Isocyanats bzw. eines Thioisocyanats mit einem Amin, gegebenenfalls in einem inerten Lösungsmittel unter Erwärmen (Houben-Weyl Band VIII, 157ff.) (Schema 3).

Schema 4 zeigt beispielhaft die Darstellung von Verbindungen des Typs AE-4, wie es z. B. von Blakemoore et al. in Eur. J. Med. Chem. 1987 (22) 2, 91–100, oder von Misra et al. in Bioorg. Med, Chem. Lett. 1994 4 (18), 2165–2170 beschrieben ist.

Schema 4

AE-4

Unsubstituierte oder cycl. Guanidin-Derivate der allgemeinen Formel AE-5 und AE-6 lassen sich mittels käuflicher oder einfach zugänglichen Reagenzien herstellen, wie z. B. in Synlett 1990, 745, J. Org. Chem. 1992, 57, 2497, Bioorg. Med. Chem. 1996, 6, 1185–1208; Bioorg. Med. Chem. 1998, 1185, oder Synth. Comm. 1998, 28, 741–746, beschrieben.

65

35

50

55

60

Die Darstellung von Verbindungen der allgemeinen Formel AE-7 kann analog zu US 3,202,660, Verbindungen der Formel AE-9, AE-10, AE-11 und AE-12 analog zu WO 97/08145 erfolgen. Verbindungen der Formel AE-8 lassen sich, wie in Schema 6 gezeigt, z. B. gemäß der von Perkins et al., Tetrahedron Lett. 1999, 40, 1103–1106, beschriebenen Methode herstellen. Schema 6 gibt eine Übersicht über die Synthese der genannten Verbindungen:

Verbindungen der allgemeinen Formel AE-13 lassen sich analog zu Froeyen et al., Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 283-293, AE-14 analog zu Yoneda et al., Heterocycles 1998, 15 N°-1, Spec. Issue, 341-344 (Schema 7)

herstellen. Die Darstellung entsprechender Verbindungen kann auch analog WO 97/36859 erfolgen.

Verbindungen der allgemeinen Formel AE-15 lassen sich wie in Synthesis 1981, 963-965 bzw. Synth. Comm. 1997, 27 (15), 2701-2707, AE-16 analog zu J. Org. Chem. 1991, 56 (6), 2260-2262 herstellen (Schema 7).

Die Erfindung betrifft ferner die Verwendung des Strukturelements der Formel I_{GL}

-G-L I_{GL}

5

10

15

zur Herstellung von Verbindungen, die an Integrinrezeptoren binden.

Weiterhin betrifft die Erfindung Arzneimittel, enthaltend das Strukturelement der Formel IGL.

Die Erfindung betrifft ferner Arzneimittelzubereitungen zur peroralen und parenteralen Anwendung, enthaltend neben den üblichen Arzneimittelhilfsstoffen mindestens eine Verbindung der Formel I.

AE2-15

Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperotoneal) verabreicht werden. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis zwischen etwa 0,5 und 50 mg/kg Körpergewicht bei oraler Gabe und zwischen etwa 0,1 und 10 mg/kg Körpergewicht bei parenteraler Gabe.

Die neuen Verbindungen können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z. B. als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1991). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 0,1 bis 90 Gew.-%.

Ferner betrifft die Erfindung die Verwendung der Verbindungen der Formel I zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten. Die Verbindungen der Formel I können zur Behandlung von humanen und tierischen Krankheiten verwendet werden. Die Verbindungen der Formel I binden an Integrinrezeptoren. Sie eignen sich deshalb vorzugsweise als Integrin-Rezeptorliganden und zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten in denen eine Integrinrezeptor involviert ist.

Vorzugsweise können sie zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten verwendet werden, bei denen beispielsweise die Wechselwirkung zwischen Integrinen und ihren natürlichen Liganden überhöht ist.

Bevorzugt binden die Verbindungen der Formel I an den $\alpha_v \beta_3$ -Integrinrezeptor und können somit besonders bevorzugt als Liganden des $\alpha_v \beta_3$ -Integrinrezeptors und zur Behandlung von Krankheiten, in die der $\alpha_v \beta_3$ -Integrinrezeptor involviert ist, verwendet werden.

Vorzugsweise können sie zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten verwendet werden, bei denen beispielsweise die Wechselwirkung zwischen dem α,β₃-Integrinrezeptor und seinen natürlichen Liganden überhöht ist.

Die Verbindungen der Formel I werden bevorzugt zur Beeinflussung von Stoffwechselvorgängen oder Regulationsmechanismen verwendet die bestimmten Krankheiten zugrunde liegen, wie beispielsweise die Inhibierung der Angiogenese oder zur Behandlung folgender Krankheiten verwendet:

Kardiovaskuläre Erkrankungen wie Arteriosklerose, Restenose nach Gefäßverletzung, und Angioplastie (Neointimabildung, Glattmuskelzellmigration und Proliferation), akutes Nierenversagen.

Angiogenese-assoziierte Mikroangiopathien wie beispielsweise diabetische Retinopathie oder rheumatische Arthritis,

Blutplättchen vermittelter Gefäßverschluß, arterielle Thrombose,

Schlaganfall, Reperfusionsschäden nach Myokardinfarkt oder Schlaganfall,

Krebserkrankungen, wie beispielsweise bei der Tumormetastasierung oder beim Tumorwachstum (tumorinduzierte Angiogenese),

Osteoporose (Knochenresorption nach Proliferation, Chemotaxis und Adhäsion von Osteoclasten an Knochenmatrix), Bluthochdruck, Psoriasis, Hyperparathyroismus, Paget'sche Erkrankung, maligne Hypercalcemie, metastatische osteolytische Läsionen, Entzündung, Wundheilung, Herzinsuffizienz, CHF sowie bei

5

LO

15

20

25

30

35

40

45

50

60

anti-viraler, anti-parasitärer oder anti-bakterieller Therapie und Prophylaxe (Adhäsion und Internalisierung).

Die folgenden Beispiele erläutern die Erfindung, wobei die Auswahl dieser Beispiele nicht limitierend ist.

I. Synthesebeispiele

1. A Vorstufen

Darstellung der Bausteine

(E,Z)-Methyl-[5-(2-tert-Butoxy-2-oxoethyl)-6-oxo-5,6-dihydro-11H-dibenzo[b,e]azepin-11-ylidene]acetat (1)

Zu einer Suspension von 4,7 g NaH (60%; entölt mit n-Pentan) in 400 ml DMF wurde bei 0°C eine Lösung von (E,Z)-Methyl-6-oxo-5,6-dihydro-11H-dibenzo[b,e]azepin-11-yliden)acetat (27 g, 96,7 mmol) in 100 ml DMF zugetropft und zur vollständigen Bildung des Anions ca. 30 min. gerührt. Anschließend wurde Bromessigsäuretert.-butylester (18,9 g, 96,7 mmol) zugesetzt und ca. 1,5 h bei 0°C nachgerührt. Zur Aufarbeitung wurde die Mischung mit wäßr. NH4Cl-Lösung versetzt, aufkonzentriert, der Rückstand in CH₂Cl₂ aufgenommen und mit ges. NaCl-Lsg. gewaschen. Trocknen und Einengen der CH₂Cl₂-Phase ergaben 40,5 g Festkörper, die anschließend mit Pentan verrührt und bei 30°C im Vakuum getrocknet wurden.

31,6 g; ESI-MS [M-tBu+H $^+$] = 338;

¹H-NMR (DMSO-d6, 200 MHz) E/Z-Gemisch: δ (ppm) 7,65–7,1 (m, 8H), 6,3/6,25 (s, 1H), 4,5 (m, 2H), 3,6 (s, 3H), 1,35 (s, 9H).

Methyl-(5-(2-tert-Butoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat (2)

(E,Z)-Methyl-[5-(2-tert-Butoxy-2-oxoethyl)-6-oxo-5,6-dihydro-11H-dibenzo[b,e]azepin-11-ylidene]acetat 1 (41 g, 104,2 mmol) wurde in 1 l CH₃OH/Ethylacetat 1 : 1 aufgenommen, mit 3,1 g Katalysator (10% Pd auf Kohle) versetzt, und die Mischung 21 h lang bei 50° C und einem Druck von 120 bar hydriert. Filtration über Celite, Waschen mit CH₃OH und Eindampfen der vereinigten Phasen ergaben 41,1 g des Hydrierproduktes als weißen Schaum. ESI-MS [M-tBu+H+] = 340,05; 1 H-NMR (DMSO-d6, 270 MHz) Diastereomerengemisch: δ (ppm) 7,70–7,1 (m, 8H), 4,8–4,6 (m, 3H), 3,65/3,35 (s, 3H), 3,05 (m, 2H), 1,5/1,45 (s, 9H).

[11-(2-Methoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]-azepin-5-yl]acetat (3)

Methyl-[5-(2-tert-Butoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat 2 (30,5 g, 77,5 mmol) wurden in 100 ml CH_2Cl_2 aufgenommen, bei 0°C mit 150 ml TFA versetzt und ca. 1 h bei 0°C und dann bei RT gerührt. Nach beendeter Reaktion wurde die Mischung eingedampft, $2\times$ mit Toluol versetzt und erneut eingedampft. Als Rohprodukt wurden 33,6 g eines gelblichen Öls erhalten, Kristallisation aus Aceton ergab 14,8 g weißen Festkörper. ESI-MS [M+H+] = 340;

¹H-NMR (DMSO-d6, 400 MHz) Diastercomerengemisch: δ(ppm) 7,7-7,05 (m, 8H), 4,85-4,6 (m, 2H), 4,45 (m, 1H), 3,6/3,45 (s, 3H), 3,3 (m, 1H), 3,1/3,05 (dd, 1H).

tert.Butyl-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)-acetat (4)

a) (E,Z)-Methyl-(6-oxo-5,6-dihydro-11H-dibenzo[b,e]azepin-11-yliden)acetat (62 g, 279,2 mmol) wurden in 1,8 l Dioxan mit 3,2 g Pd (10% auf Kohle) bei 60°C und 130 bar 60 h lang hydriert. Filtration über Celite und Einengen des Filtrats ergaben 62,3 g weiße Festkörper, die anschließend mit n-Pentan verrührt wurden. 58,7 g; ESI-MS [M+H+] = 282;

b) Methyl-(6-oxo-5,6-dihydro-11H-dibenzo[b,e]azepin-11-yl)acetat (25 g, 88,7 mmol) wurden in 145 ml Dioxan/H₂O 4:1 gelöst, 4,98 g KOH zugegeben und auf Rückfluß erhitzt. Nach 2 h wurden erneut 2,5 g KOH zugesetzt. Nach beendeter Reaktion wurde die Reaktionsmischung aufkonzentriert, mit H₂O versetzt, mit 2 n HCl ein pH von 2 eingestellt und anschließend 2× mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingeengt. Das so erhaltene Rohprodukt wurde mit n-Pentan verrührt und getrocknet.

21.5 g, ESI-MS [M+H+] = 268.05

c) (6-Oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)acetat (18,8 g; 70,34 mmol) wurden in 80 ml Benzol suspendiert und auf Rückfluß erhitzt. Über einen Zeitraum von 1 h wurden 5,3 eq. Dimethylformamid-di-tert.butylacetal (75,9 g) zugetropft. Nach beendeter Reaktion wurde eingedampft, der Rückstand in CH₂Cl₂ aufgenommen, mit NaHCO₃- und ges. NaCl-Lsg. gewaschen, getrocknet und eingeengt. Der so erhaltene braune Feststoff wurde durch Verrühren mit Methyl-tert.Butylether gereinigt.

26.9 g; ESI-MS [M-1Bu+H+] = 268.05;

¹H-NMR (270 MHz, DMSO-d6): d (ppm) 10,55 (s, 1H), 7,8-7,0 (m, 8H), 4,35 (m, 1H), 2,75 (d, 2H), 1,2 (s, 9H).

Ethyl-3-[11-(2-tert-butoxy-2-oxocthyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,c]azepin-5-yl]propanoate (5)

tert.Buryl-(6-oxo-6,11-dihydro-5H-dibenzo|b,e]azepin-11-yl)acetat 4 (2 g, 6,18 mmol) wurde in 25 ml trockenem DMF gelöst, bei 10°C 2,1 cq. KOtBu (1,5 g) zugesetzt und ca. 20 min. nachgerührt. Anschließend wurden bei RT 2,5 g Brompropionsäureethyl-ester zugetropft, 1 h bei RT nachgerührt, und erneut KOtBu (0,2 g) und Brompropionsäureethyl-ester (0,8 g) zugegeben. Nach weiteren 2 h wurde die Mischung mit CH₂Cl₂ verdünnt, mit H₂O gewaschen, getrocknet und eingeengt. Chromatographie an Kieselgel (CH₂Cl₂/CH₃OH 1 bis 25%) ergab 1,2 g des gewünschten Produkts und 2.0 g nicht umgesetztes Edukt. ESI-MS [M+H+] = 424,15

10

20

25

30

35

3-[11-(2-tert-Butoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-5-yl]propanoate (6)

Ethyl-3-[11-(2-tert-butoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-5-yl]propanoate 6,02 mmol) wurde in 15 ml Dioxan/H2O 2:1 gelöst, 0,17 g LiOH zugesetzt und bei RT gerührt. Nach beendeter Reaktion wurde mit 2 n HCl angesäuert, mit CH2Cl2 versetzt, mit ges. NaCl-Lsg. gewaschen, getrocknet und eingeengt. 2,35 g; ESI-MS [M-tBu+H+] = 340,15;

¹H-NMR (DMSO-d6, 200 MHz) Diastereomerengemisch: d (ppm) 7,75-7,05 (m, 8H), 4,8-3,8 (m, 3H), 3,5-3,1 (m, überlagert mit H₂O), 2,75 (m, 2H, 1,3/1,2 (s, 9H).

tert-Butyl[6-(4,5-Dihydro-1H-imidazol-2-yl)-3-pyridinyl]methylcarbamat (7)

a) 4-(Aminomethyl)benzonitril (50 g; 295 mmol; Herstellung nach WO 96/25426) wurde in 800 ml THF vorgelegt, nacheinander 114,3 g DIPEA, 18 g DMAP und 64,4 g Ditert.butyl-carbonat gelöst in 70 ml THF- zugesetzt und ca. 48 h bei RT gerührt. Die Mischung wurde eingeengt, der Rückstand mit 600 ml Ethylacetat versetzt und 3× mit 100 ml 20% Citronensäure-, 2 × mit 100 ml ges. NaHCO3- und 1 × 100 ml ges. NaCl-Lsg. gewaschen. Nach Einengen der org. Phase wurde der Rückstand aus 150 ml Diisopropylether kristallisiert, abgesaugt und getrocknet. b) Zu tert-Butyl 4-cyanobenzylcarbamat (5 g; 21,43 mmol) in 300 ml CH₃OH wurden 3,66 ml einer 30% NaOCH₃-Lsg. gegeben und 1 h lang bei Raumtemperatur gerührt. Nach Zugabe von 2,62 g 1,2-Ethylendiamin-bishydrochlorid wurde über Nacht weitergerührt. Die Reaktionsmischung wurde eingedampft, der erhaltene Rückstand mit einer Mischung aus 100 ml CH₂Cl₂ und 1 ml CH₃OH verrührt, vom Rückstand abgesaugt und das Filtrat erneut eingeengt. Das so erhaltene Rohprodukt wurde in 100 ml H₂O aufgenommen, 2 × mit 50 ml CH₂Cl₂ extrahiert, und die wäßr. Phase dann lyophilisiert.

5,34 g; ESI-MS [M+H+] = 277,1;

¹H-NMR (270 MHz; DMSO-d6) d (ppm) 11,05 (s, breit, 1H), 8,75 (m 1H), 8,25 (m 1H), 7,95 (m 1H), 7,65 (m 1H), 4,30 (m, 2H), 3,85 (s, 4H), 1,35 (s, 9H).

Das zur weiteren Umsetzung benötigte Amin wurde durch Abspaltung der Boc-Gruppe mit TFA (unter Standardbedingungen) erhalten; die isolierten TFA-Salze wurden dann direkt in den entsprechenden Kupplungen eingesetzt.

tert-Butyl-1H-Benzimidazol-2-ylmethylcarbamat (8)

40

50

Zu tert-Butylcyanomethylcarbamat (3 g; 19,21 mmol) in 20 ml CH₃OH wurden 3,32 g einer 30% NaOCH₃-Lsg, gegeben und 1 h lang bei Raumtemperatur gerührt. Nach Zugabe von 3,4 g g-1,2-Phenylendiamin-bis-hydrochlorid wurde über Nacht weitergerührt, dann die Reaktionsmischung auf 100 ml H₂O gegeben, filtriert und der so erhaltene Feststoff im Vakuum getrocknet.

3,45 g; ESI-MS[M+H+] = 248,15;

¹H-NMR (270 MHz; DMSO-d6) d (ppm) 12,60 (s, 1H), 7,30–7,15 (m 3H), 7,05 (m 2H), 4,15 (d, 2H), 1,29 (s, 9H).

Das zur weiteren Umsetzung benötigte Amin wurde durch Abspaltung der Boc-Gruppe mit TFA (unter Standardbedingungen) erhalten; die isolierten TFA-Salze wurden dann direkt in den entsprechenden Kupplungen eingesetzt.

tert-Butyl-3H-imidazo[4,5-b]pyridin-2-ylmethylcarbamat (9)

Eine Mischung aus tert-Butylcyanomethylcarbamat (1,61 g; 10 mmol), 2,3-Diaminopyridin (0,56 g; 5 mmol), N-Acetyl-Cystein (1,68 g; 10 mmol) in 10 ml CH₃OH wurde für 89 h auf 50°C erhitzt.

Anschließend wurde eingeengt, der Rückstand in wenig CH₃OH aufgenommen und über sauren Ionenaustauscher (Acetat auf polymeren Träger) filtriert. Erneutes Einengen und Chromatographic an Kieselgel (CH₂Cl₂/CH₃OH 5%) ergaben 1,09 g des gewünschten Produkts;

ESI-MS $[M+H^+] = 249,15$

¹H-NMR (270 MHz; DMSO-d6) d (ppm) 8,30 (m, 1H), 7,90 (m, 1H), 7,45 (m, breit, 1H), 7,20 (m 1H), 4,40 (d, 2H), 1,0

Das zur weiteren Umsetzung benötigte Amin wurde durch Abspaltung der Boc-Gruppe mit TFA (unter Standardbedingungen) erhalten; die isolierten TFA-Salze wurden dann direkt in den entsprechenden Kupplungen eingesetzt.

[1-(3-Pyridinyl)-4-piperidinyl]methanamin (10)

a) tert.Butyloxycarbonyl-4-(aminomethyl)-1-piperidin (14 g; 65,33 mmol; Darstellung nach Prugh et al., Synthetic 65 Communications 22 (16), 2361-2365 (1992)) wurde in 50 ml THF gelöst, bei 5°C N-Methylmorpholin (6,6 g) und Chlorameisensäurebenzylester (12,6 g) zugesetzt und ca. 2 h lang nachgerührt. Die Mischung wurde eingeengt, der Rückstand in CH₂Cl₂ aufgenommen, mit ges. NaCl-Lsg. gewaschen, getrocknet und filtriert. Nach dem Einengen

verblieben 23,5 g eines gelben Öls, das aus Methyl-tert.butylether kristallisiert wurde. 18 g; ESI-MS [M+H+] = 293,15

b) Zu tert-Butyloxycarbonyl-4-({[(benzyloxy)carbonyl]amino}-methyl)-1-piperidin 10a (15 g; 43,05 mmol) in 125 ml CH₂Cl₂ wurde bei 0°C 25 ml TFA gegeben, 20 min. bei 10°C und dann bei RT gerührt. Einengen der Mischung und Kristallisation des erhaltenen Rückstands aus Diethylether ergaben 14,5 g des freien Amins als TFA-Salz (ESI-MS [M+H⁺] = 249,25; Smp.: 109–110°C).

5 g des TFA-Salzes und 2,79 g Ethyldiisopropylamin (DIPEA) wurden in 15 ml 2-Fluorpyridin auf Rückfluß erhitzt. Nach beendeter Umsetzung wurde eingeengt, der Rückstand in Ethylacetat aufgenommen und 4 × mit H₂O und ges. NaCl-Lsg. gewaschen. Trocknen, Filtration und Einengen ergaben 4,49 g eines hellbraunen Öls, das aus n-Pentan kristallisiert wurde.

4.02 g; ESI-MS [M+H+] = 362.15

c) 3,9 g (10b) in 150 ml CH₃OH wurden mit 0,2 g Pd (10% auf Kohle) unter Standardbedingungen hydriert. Filtration der Reaktionsmischung über Celite und Einengen ergaben 2,3 g; ESI-MS [M+H+] = 192,15;

¹H-NMR (270 MHz; DMSO-d6) d (ppm) 8,1 (m, 1H), 7,5 (m, 1H), 6,8 (m, 1H), 6,55 (m, 1H), 4,3 (m, 2H), 2,7 (m 1H), 2,45 (m, 2H), 1,75 (m 2H), 1,5 (m 1H), 1,05 (m 2H).

tert-Butyloxycarbonyl-4-[(2-pyridinylamino)methyl]-1-piperidin (11)

tert.Butyloxycarbonyl-4-(aminomethyl)-1-piperidin (3 g; 14 mmol) und 10 ml 2-Fluorpyridin wurden für 4 h auf Rückfluß erhitzt. Einengen und Verrühren des Rohprodukts in n-Pentan ergaben 3 g eines weißen Feststoffes, Smp: 126-130°C;

ESI-MS [M+H+] = 292,15.

Das zur weiteren Umsetzung benötigte Amin wurde durch Abspaltung der Boc-Gruppe mit TFA (unter Standardbedingungen) erhalten; die isolierten TFA-Salze wurden dann direkt in den entsprechenden den Kupplungen eingesetzt.

N-[4-(Aminomethyl)benzyl]-2-pyridinamin (12)

a) 20 g 2-Aminopyridin wurden in 100 ml CH₃OH gelöst, mit isopropanolischer HCl auf pH 6 eingestellt und mit 36 g p-Cyanobenzaldehyd versetzt. 9,35 g Natriumcyanoborhydrid wurden portionsweise in 1 h zugegeben und über Nacht gerührt. Zur Aufarbeitung wurde die Suspension eingeengt, der Rückstand in 100 ml Wasser aufgenommen und mit KOH auf pH > 10 eingestellt. Die wäßrige Phase wurde mit NaCl gesättigt und 3×mit Diethylether extrahiert. Die Etherphase wurde nach Filtration eines Niederschlags noch 3×mit FeSO₄-Lösung gewaschen, getrocknet und eingeengt. Reinigung des Rückstands durch Chromatographie an Kieselgel (Heptan Ethylacetat 1: 1) ergab 28,15 g 4-[(2-Pyridinyl-amino)methyl]benzonitril.

b) 10 g 4-[(2-Pyridinyl-amino)methyl]benzonitril wurden in 280 ml ammoniakalischem Methanol gelöst, mit 10 g Raney-Nickel versetzt und 24 h hydriert. Es wurde abfiltriert, eingeengt und der Rückstand an Kieselgel (Ethylacetat/Ethanol 1:3) chromatographiert.

5,18 g, ESI-MS: [M+H+] = 214.

tert-Butyl[4-(1H-benzimidazol-2-yl)-1,3-thiazol-2-yl]methylcarbamat (13)

Analog zur Herstellung von 8 wurden zu tert-Butyl-(4-cyano-1,3-thiazol-2-yl)methylcarbamat (2,5 g; 10,45 mmol) in 25 ml CH₃OH 1,89 g einer 30% NaOCH₃-Lsg. gegeben und 2 h lang bei Raumtemperatur gerührt. Nach Zugabe von 1,9 g 1,2-Phenylendiamin-bis-hydrochlorid wurde über Nacht weitergerührt, dann die Reaktionsmischung auf 100 ml H₂O gegeben, filtriert und der so erhaltene Feststoff im Vakuum getrocknet. 3,0 g; ESI-MS: [M+H+] = 331,15,

¹H-NMR (400 MHz; DMSO-d6) d (ppm) 8,25 (s, 1H), 7,95 (m, 1H), 7,65 (m, 1H), 7,55 (m, 1H), 7,2 (m, 2H), 4,55 (m, 2H), 1,45 (s, 9H).

Das zur weiteren Umsetzung benötigte Amin wurde durch Abspaltung der Boc-Gruppe mit TFA (unter Standardbedingungen) erhalten; die isolierten TFA-Salze wurden dann direkt in den entsprechenden Kupplungen eingesetzt.

Di(tert-Butyl)4-(1H-benzimidazol-2-yl)benzylimidodicarbonat (14)

Di(tert-Butyl)4-cyanobenzylimidodicarbonat (10 g; 30,1 mmol) wurde in 200 ml Pyridin gelöst, 45 ml Triethylamin zugesetzt, bei 0°C 1,5 h lang H₂S eingeleitet und über Nacht bei RT gehalten. Die Reaktionsmischung wurde im Vakuum eingedampft und mit Toluol zweimal koevaporiert. Verrühren des erhaltenen Rückstands in Diethylether ergab 8,5 g als weißer Feststoff.

Das Thioamid (6 g; 16,37 mmol) wurde in 40 ml CH₂Cl₂ suspendiert, mit 22,3 g CH₃I versetzt und über Nacht bei RT gerührt. Anschließend wurde die Mischung eingedampft, in 20 ml CH₃OH aufgenommen, 1,2-Phenylendiamin (1,95 g; 18,01 mmol) zugesetzt und erneut über Nacht bei RT gerührt. Einengen der Mischung ergab 6,9 g als gelben Feststoff. ESI-MS [M+H+] = 242,25.

Das zur weiteren Umsetzung benötigte Amin wurde durch Abspaltung der Boc-Gruppe mit TFA (unter Standardbedingungen) erhalten; die isolierten TFA-Salze wurden dann direkt in den entsprechenden Kupplungen eingesetzt.

65

10

25

Beispiele I.B

Synthesebeispiele für Verbindungen der Formel I (B-G-L)

Beispiel I.B.1

[6-Oxo-5-(2-oxo-2-{[2-(2-pyridinylamino)ethyl]amino}ethyl]-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat (15)

a) 11-(2-Methoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo-[b,e]azepin-5-yl]acetat 3 (0,45 g; 1,33 mmol) wurde in 25 ml CH₂Cl₂ gelöst und bei 0°C 1,1 eq. N'-(Dimethylamino-propyl)-N-ethylcarbodiimid) (0,28 g) und 1,03 eq. N-Methylmorpholin (0,15 ml) zugegeben. Nach ca. 40 min. wurde N-(2-Pyridinyl)-1,2-ethandiamin (0,18 g; 1,33 mmol) zugesetzt und bei RT gerührt. Nach beendeter Reaktion (ca. 2 h) wurde mit CH₂Cl₂ verdünnt, mit ges. NaCl-Lsg. gewaschen, getrocknet und eingeengt. Der verbliebene Rückstand (0,49 g) wurde durch Chromatographie an Kieselgel (CH₂Cl₂/CH₃OH 3 bis 10%) gereinigt.

0,36 g; ESI-MS [M+H+] = 459.

5

10

15

20

25

30

35

40

45

b) Methyl-[6-oxo-5-(2-oxo-2-{[2-(2-pyridinylamino)ethyl]-amino}ethyl)-6,11-dihydro-5H-di-benzo[b,e]azepin-11-yl]acetat (0,34 g; 0,74 mmol) wurde in 15 ml CH₃OH und 2 ml H₂O gelöst, insgesamt 2 eq. KOH (0,085 g) zugesetzt und auf Rückfluß erhitzt. Nach beendeter Reaktion wurde die Mischung eingedampft, das erhaltene Rohprodukt durch MPLC gereinigt (Kieselgel: Fa. Bischoff Prontoprep 60-2540-C18E, 32 μm; Fließmittel: CH₃CN/H₂O + 0,1% Essigsäure) und anschließend lyophilisiert.

0,11 g; ESI-MS [M+H+] = 445,1;

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 8,3 (m, 1H), 7,95 (m, 1H), 7,65-7,1 (m, 9H), 6,65-6,30 (m, 3H), 4,8-4,2 (m, 4H), 3,55-3,1 (m, 4H), 3,85 (1H).

Beispiel I.B.2

(6-Oxo-5-{2-oxo-2-[4-(2-pyridinyl)-1-piperazinyl]ethyl}-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)acetat (16)

a) 11-(2-Methoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]-azepin-5-yl]acetat 3 (1,2 g; 3,54 mmol) wurde in 25 ml CH₂Cl₂ gelöst, bei 0°C 1,1 eq. N'-(Dimethylamino-propyl)-N-ethylcarbodiimid) (0,8 g) und 1,0 eq. DIPEA (Ethyldiisopropylamin) (0,45 g) und nach ca. 2 h (2-Pyridinyl)piperazine (0,57 g; 3,54 mmol) zugegegeben. Anschließend wurde bei RT gerührt. Nach beendeter Reaktion (ca. 2 h) wurde mit CH₂Cl₂ verdünnt, mit ges. NaCl-Lsg. gewaschen, getrocknet und eingeengt. Der verbliebene Rückstand (2,03 g) wurde durch Chromatographie an Kieselgel (CH₂Cl₂/CH₃OH 2 bis 8%) gereinigt.

0.57g; ESI-MS [M+H⁺] = 485,25;

b) Methyl-(6-oxo-5-{2-oxo-2-[4-(2-pyridinyl)-1-piperazinyl]-ethyl}-6,11-dihydro-5H-dibenzo-[b,e]azepin-11-yl)acetat (0,485 g; 1,18 mmol) wurde in 30 ml Dioxan/ H_2O 5:1 gelöst, 1,5 eq. KOH (0,1 g) zugesetzt und auf Rückfluß erhitzt. Nach beendeter Reaktion wurde die Mischung eingedampft, das erhaltene Rohprodukt durch MPLC gereinigt (Kieselgel: Fa. Bischoff Prontoprep 60-2540-C18E, 32 μ m; Fließmittel: CH₃CN/ H_2O + 0,1% Essigsäure) und anschließend lyophilisiert.

0,21 g; ESI-MS $[M+H^+]$ = 471,15;

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 12,2–11,8 (breit, 1H), 8,15 (m, 1H), 7,7–7,05 (m, 9H), 6,85 (m, 1H), 6,7 (m, 1H), 5,25–4,25 (4H), 3,75–3 (m, überlagert durch H₂O), 2,85 (m, 1H).

Beispiel I.B.3

 $\{5-[2-(\{[6-(1H-Benzimidazol-2-yl)-3-pyridinyl]methyl\}amino)-2-oxoethyl]-6-oxo-6,11-dihydro-5H-dibenzo[b,e]aze-pin-11-yl\}acetat (17)$

- 11-(2-Methoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]-azepin-5-yl]acetat 3 (0,56 g; 1,66 mmol) wurde in 15 ml CH₂Cl₂ gelöst und bei 0°C 1,2 eq. N'-(Dimethylamino-propyl)-N-ethylcarbodiimid) (0,37 g) und 4,4 eq. DIPEA (0,95 g) zugegeben. Nach ca. 50 Minuten wurde [6-(1H-Benzimidazol-2-yl)-3-pyridinyl]methanamin × 2TFA (0,94 g; 1,66 mmol) gelöst in 15 ml DMF zugesetzt und bei RT gerührt. Nach beendeter Reaktion (ca. 2 h) wurde mit CH₂Cl₂ verdünnt, mit ges. NaCl-Lsg. gewaschen, getrocknet und eingeengt.
- Das erhaltene Rohprodukt (1,4 g) wurde ohne weitere Aufreinigung direkt umgesetzt. ESI-MS [M+H+] = 546,25.

Methyl-({5-[2-([[6-(1H-benzimidazol-2-yl)-3-pyridinyl]methyl}-amino)-2-oxoethyl]-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}acetat (1,4 g) wurde in 30 ml Dioxan/H2O 5:1 gelöst, 2,15 eq. KOH (0,2 g) zugesetzt und auf Rückfluß erhitzt. Nach beendeter Reaktion (12 h) wurde die Mischung eingedampft, das erhaltene Rohprodukt durch MPLC gereinigt (Kieselgel: Fa. Bischoff Prontoprep 60-2540-C18E, 32 μm; Fließmittel: CH₃CN/H₂O + 0,1% Essigsäure) und anschließend lyophilisiert.

0,45 g; ESI-MS [M+H+] = 532,15

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 12,9 (s, 1H), 8,95 (m, 1H), 8,70 (m, 1H), 8,30 (m, 1H), 7,85 (m, 1H), 7,8–7,05 (m 12H), 4,85–4,25 (m, 4H), 3,75–3,0 (m, überlagert mit H_2O), 2,90 (m, 1H).

65 Analog wurden hergestellt:

Beispiel I.B.4

{10-Oxo-11-[2-oxo-2-({4-[(2-pyridinylamino)methyl]benzyl}amino)-ethyl]-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl}acetat (18)	
Kupplung mit N-[4-(Aminomethyl)benzyl]-2-pyridinamin (12) und anschließende Verseifung des Methylesters ergaben 0,3 g;	5
ESI-MS [M+H+] = 521,25; 1 H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 8,70 (m, 1H), 7,95 (m, 1H), 7,70–6,95 (m, 15H), 6,45 (m,2H), 4,85–4,2 (m 8H), 2,8 (m 1H).	10
Beispiel IB.5	
[5-(2-{[2-(4,5-Dihydro-1H-imidazol-2-ylamino}ethyl]amino}-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat (19)	1.5
Kupplung mit N^1 -(4,5-Dihydro-1H-imidazol-2-yl)-1,2-ethandiamin und anschließende Verseifung des Methylesters ergaben 0,42 g; ESI-MS [M+H ⁺] = 436,1.	
Beispiel I.B.6	20
2-{5-[({[11-(Carboxymethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]-azepin-5-yl]acetyl}amino)methyl]-2-pyridinyl}-4,5-dihydro-1H-imidazol-1-ium-acetat (20)	26
Kupplung mit 2-[5-(Aminomethyl)-2-pyridinyl]-4,5-dihydro-1H-imidazol und anschließende Verseifung des Methylesters ergaben 0,3 g als Acetat;	25
ESI-MS [M+H ⁺] = 502,15; 1 H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 9,15–8.80 (m, 2H), 8,65 (m, 1H), 8,1–7,05 (m 10H), 4,8–3,75 (m überlagert mit H ₂ O), 3,4 (m 2H), 2,80 (m, 2H), 1,85 (s, 3H).	30
Beispiel I.B.7	
{6-Oxo-5-[2-oxo-2-({[1-(2-pyridinyl)-4-piperidinyl]methyl}amino)-cthyl]-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}acetat (21)	35
Kupplung mit [1-(2-Pyridinyl)-4-piperidinyl]methanamin und anschließende Verseifung des Methylesters ergaben 0,4 g;	
$^{0.7}$ ESI-MS [M+H ⁺] = 499,25; 1 H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 12,15 (breit), 8,2 (m 1H), 8,15 (m 1H), 7,75–7,05 (m, 9H), 6,85 (m 1H), 6,6 (m, 1H), 4,8–4,2 (m 4–5H), 3,65–2,7 (m überlagert mit H ₂ O), 1,70 (m 3H), 1,2 (m, 2H).	40
Beispiel I.B.8	
2-[({[11-(Carboxymethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]-azepin-5-yl]acetyl}amino)methyl]-1H-benzimidazol-1-ium-acetat (22)	45
Kupplung mit 1H-Benzimidazol-2-ylmethanamin und anschließende Verseifung des Methylesters ergaben 0,48 g als Acetat; ESI-MS [M+H ⁺] = 455,15;	50
¹ H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 12,1 breit, 8,95 (m 1H), 7,75–7,05 (m 12H), 4,85–4,30 (m, 6H), 2,85 (m 1H), 1,95 (s, 3H).	
Beispiel I.B.9	55
2-[({[11-(Carboxymethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]-azepin-5-yl]acetyl}amino)methyl]-3H-imidazo[4,5-b]pyridin-3-ium acetat (23)	
Kupplung mit 2-(Aminomethyl)-3H-imidazo[4,5-b]pyridin-3- und anschließende Verseifung des Methylesters ergaben 0,24 g als Acetat; ESI-MS [M+H*] = 456,15; H-NMR (200 MHz; DMSO-d6) Diastercomerengemisch: δ (ppm) 9,8/9,25 (breit), 8,25 (m 1H), 7,95 (m 1H), 7,65-6,8 (m 2.01), 4.75 4.40 (m 4H), 4.0.20 (m itherlessed prit H O), 1.80 (c. 21D)	60
(m 8–9H), 4,75–4,40 (m 4H), 4,0–2,9 (m überlagert mit H_2O), 1,80 (s, 3H).	

Beispiel I.B.10

[6-Oxo-5-(3-oxo-3-{[2-(2-pyridinylamino)ethyl]amino}propyl)-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat (24)

Kupplung von 3-[11-(2-tert-Butoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-5-yl]propanoat (6), anschließend Spaltung des tert.Butylesters mit TFA und Aufreinigung durch MPLC ergaben 40 mg; ESI-MS [M+H*] = 459,15;

¹H-NMR (200 MHz; DMSO-d6) Diastercomerengemisch: δ (ppm) 8,15 (m 1H), 7,95 (m 1H), 7,70–7,15 (m, 11H), 6,65 (breit, 1H), 6,45 (m 2H), 4,70 (m 1H), 4,40 (m 2H), 4,25–2,6 (m, überlagert mit H₂O).

10

Beispiel I.B.11

(6-Oxo-5-{3-oxo-3-{4-(2-pyridinyl)-1-piperazinyl]propyl}-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)acetat (25)

Analog zu Beispiel 10 wurden 85 mg erhalten:

ESI-MS $[M+H^+] = 485,25;$

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: d (ppm)) 8,15 (m, 1H), 7,5–7,05 (m 9H), 6,85 (m 1H), 6,70 (m 1H), 4,85–3,85 (m, 4H), 3,65–3,15 (m, überlagert mit H₂O), 3,05–2,7 (m 3H).

20

Beispiel I.B.12

{5-[3-({[4-(1H-Benzimidazol-2-yl)-2-thienyl]methyl}amino)-3-oxopropyl]-6-oxo-6,11-dihydro-5H-dibenzo[b,e]aze-pin-11-yl}-acetic-acid (26)

Analog zu Beispiel 10 wurden 20 mg erhalten: ESI-MS [M+H+] = 551,15;

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 12,2 (breit), 8,70 (m 1H), 8,10 (m, 1H), 7,80-6,95 (m, 13H), 4,70 (m 1H), 4,60-3,90 (m, 5H), 3,55-2,85 (m überlagert mit H₂O).

30

Beispiel I.B.13

[6-Oxo-5-[2-oxo-2-([[1-(2-pyridinyl)-4-piperidinyl]methyl]-amino)ethyl]-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}acetat (27)

Kupplung mit [1-(3-Pyridinyl)-4-piperidinyl]methanamin (10) und anschließende Verseifung des Methylesters ergaben 0,4 g;

ESI-MS $[M+H^+] = 499,25;$

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 12,3 (s, breit), 8,20 (m 1H), 8,10 (m, 1H), 7,70–7,05 (m, 9H), 7,80 (m, 1H), 6,55 (m, 1H), 4,70 (m, 2H), 4,25 (m 2H), 3,70–2,60 (m, überlagert mit H₂O), 1,70 (m, 2H), 1,10 (m 2H).

Beispiel I.B.14

2-{[(1-{[11-(Carboxymethyl)-6-oxo-6,11-dihydro-5H-dibenzo-[b,e]azepin-5-yl]acetyl}-4-piperidinyl)methyl]amino}pyridinium acetat (28)

Kupplung mit N-(4-Piperidinylmethyl)-2-pyridinamin 11 und anschließende Verseifung des Methylesters ergaben 65 mg;

ESI-MS $[M+H^+] = 499.25$;

1H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 8,05 (m, 1H), 7,80-7,15 (m, 9H), 6,70 (m, 1H), 6,55 (m, 2H), 5,35-4,80 (m 3H), 4,70-4,0 (m, 3H), 3,75-2,80 (m, überlagert mit H₂O), 2,05 (s, 3H), 2,80 (m, 3H), 1,25 (m 2H).

Beispiel I.B.15

55

45

[5-(2-{4-[(Benzylamino)carbonyl]-1-piperazinyl}-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat (29)

- a) 11-(2-Methoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]-azepin-5-yl]acetat 3 (2,5 g; 7,37 mmol) wurde in 40 ml CH₂Cl₂ gelöst und wie vorstehend beschrieben durch Zugabe von 1,2 eq. N'-(Dimethylamino-propyl)-N-ethylcarbodiimid) (1,15 g) und 1,2 eq. DIPEA (1,15 g) "voraktiviert". Nach 1 h wurde Boc-Piperazin (1,37 g) zugesetzt und 1 h bei 0°C und dann bei RT nachgerührt. Zur Aufarbeitung wurde mit CH₂Cl₂ verdünnt, mit ges. NaCl-Lsg. gewaschen, getrocknet und eingeengt. Das erhaltene Rohprodukt (3,2 g) wurde durch Chromatographic an Kieselgel (CH₂Cl₂/CH₃OH 1 bis 3% + 0,1% Essigsäure) gereinigt.
- 65 1,7 g; ESI-MS [M+H+] = 508,2;
 - b) $(5-\{2-[4-(\text{tert-Butoxycarbonyl})-1-\text{piperazinyl}]-2-\text{oxoethyl}\}-6-\text{oxo-}6,11-\text{dihydro-}5H-\text{dibenzo}[b,e]azepin-11-yl)acetat (1,7 g) wurden in 20 ml CH₂Cl₂ gelöst und bei <math>0^{\circ}$ C mit 10 ml TFA versetzt. Nach beendeter Reaktion wurde eingeengt und $2 \times \text{mit}$ Toluol coevaporiert (1,75 g; ESI-MS [M+H+] = 408,15). Das TFA-Salz wurde dann in

30 ml Toluol/Dioxan 1 : 1 gelöst, mit 2 eq. DIPEA (0,4 g) und 1 eq. Benzylisocyanat (0,2 g) versetzt und auf Rückfluß erhitzt. Nach beendeter Umsetzung wurde die Mischung eingeengt, in CH_2Cl_2 aufgenommen, mit 1 n HCl-Lsg. und dann ges. NaCl-Lsg. gewaschen, getrocknet und eingerlampft (0,81 g; ESI-MS [M+II+] = 541,25). Zur Verseifung wurde in 25 ml Dioxan/H $_2O$ 2,1 g gelöst, 1,5 eq. KOH (0,13 g) zugegeben und auf Rückfluß erhitzt. Anschließend wurde die Mischung aufkonzentriert, mit 2 n HCl angesäuert und 2 × mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden dann mit ges. NaCl-Lsg. gewaschen, getrocknet, erneut eingeengt und der erhaltene Rückstand mit Methyl-tert.butylether verrührt.

0.36 g; ESI-MS [M+H+] = 527.15;

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 7,7-7,1 (m, 14H), 5,25-4,1 (4H), 3,7-3,1 (m, überlagert mit H₂O), 2,95 (m, 1H).

10

1.5

35

40

45

55

60

65

Beispiel I.B.16

{5-[2-({[5-(1H-Benzimidazol-2-yl)-2-thienyl]methyl}amino)-2-oxoethyl]-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}acetat (30)

a) 11-(2-Methoxy-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo-[b,e]azepin-5-yl]acetat 3 (4 g; 11,8 mmol) wurde in 30 ml CH_2Cl_2 gelöst und – wie vorstehend beschrieben – durch Zugabe von 1,15 eq. N'-(Dimethylamino-propyl)-N-ethylcarbodiimid) (2,6 g) und 1,6 eq. DIPEA (2,5 g) "voraktiviert". Nach 1 h wurde 5-(Aminomethyl)-3-thiophencarbonitril (1,92 g) – gelöst in 35 ml DMF – und erneut 1 ml DIPEA zugesetzt, und 1 h bei 0°C und dann bei RT nachgerührt. Die übliche Aufarbeitung ergab 6,6 g gelbes Öl, das durch Chromatographie an Kieselgel $(CH_2Cl_2/CH_3OH - 1)$ bis 3%) gereinigt wurde.

4.1 g; ESI-MS [M+H+] = 460.15;

b) Methyl-[10-(2-{[(5-cyano-2-thienyl)methyl]amino}-2-oxoethyl)-11-oxo-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl]-acetat (0,85 g; 1,85 mmol) wurde in 15 ml Pyridin gelöst, bei 0°C 1,76 g Triethylamin zugesetzt und 90 Minuten lang H_2S eingeleitet. Nach 1 h bei RT wurde die Reaktionsmischung eingeengt, $2 \times \min CH_2Cl_2$ versetzt und erneut eingedampft (0,9 g gelber Schaum).

Das Thioamid wurde anschließend in 20 ml CH₂Cl₂ gelöst, 5 eq. CH₃I (1,3 g) zugesetzt und über Nacht bei RT gerührt. Die Mischung wurde eingedampft, der Rückstand in 25 ml CH₃OH aufgenommen, mit 1,2-Phenylendiamin (0,197 g) versetzt und 3 h bei RT gerührt. Einengen der Mischung ergab 1,35 g Rohprodukt, das durch Chromatographie an Kieselgel (CH₂Cl₂/CH₃OH) gereinigt wurde 0,46 g;

ESI-MS [M+H+] = 551,15.

Die Verseifung des Methylester erfolgte analog den schon beschriebenen Beispielen in 20 ml Dioxan/ H_2O 3:1 mit 80 mg KOH bei RT. Aufarbeitung und Reinigung des Rohprodukts durch MPLC (Kieselgel: Fa. Bischoff Prontoprep 60-2540-C18E, 32 µm; Fließmittel: $CH_3CN/H_2O + 0.1\%$ Essigsäure) ergaben 0,22 g des gewünschten Produktes. ESI-MS [M+H+) = 537,15;

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 8,85 (m, 1H), 7,75–7,2 (m, 14H), 4,85–4,3 (m, 6H), 3,5–3,1 (m, überlagert mit H₂O), 2,95 (m, 1H).

Beispiel I.B.17

(5-{2-[({4-[Amino(imino)methyl]-2-thienyl}methyl)amino]-2-oxoethyl}-6-oxo-6,11-dihydro-5H-dibenzo(b,e)azepin-11-yl)acetat (31)

Methyl- $(5-(2-\{[(4-cyano-2-thienyl)methyl]amino)-2-oxoethyl)-6-oxo-6,11-dihydro-5H-di-benzo-[b,e)azepin-11-yl]acetat und das entsprechende Thioamid wurden analog zu Beispiel 16 dargestellt. Methyl-<math>\{5-[2-(\{[4-(aminocarbot-hioyl)-2-thienyl]methyl\}amino)-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat (2,3 g; 4,66 mmol) in 30 ml CH₂Cl₂ wurde mit 5 eq. CH₃I (3,3 g) über Nacht bei RT gerührt. Die Mischung wurde eingedampft, der Rückstand in 20 ml CH₃OH aufgenommen, mit 0,27 g Ammoniumacetat versetzt und erneut über Nacht gerührt. Einengen der Mischung ergab 1,44 g des Rohprodukts (ESI-MS [M+H+] = 477,15).$

Der Methylester wurde in 10 ml Dioxan aufgenommen und nach Zugabe von 15 ml 2 n HCl 6 h auf Rückfluß erhitzt. Anschließend wurde die Mischung eingedampft und der erhaltene Rückstand durch MPLC (Kieselgel: Fa. Bischoff Prontoprep 60-2540-C18E, 32 μm; Fließmittel: CH₃CN/H₂O + 0,1% Essigsäure) gereinigt. 0,12 g; ESI-MS [M+H⁺] = 463,05;

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 10,5–9,1 (breit), 9,05/8,8 (m, 1H), 8,35 (m, 1H), 7,7–7,0 (m, 10H), 4,95–4,15 (m, 6H), 3,6–2,90 (m, überlagert mit H₂O), 2,70 (m, 1H).

Beispiel I.B.18

{5-[2-({[4-(1H-Benzimidazol-2-yl)-2-thienyl)methyl}amino)-2-oxoethyl]-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}acetat (32)

Methyl-[5-(2-{[(4-cyano-2-thienyl)methyl]amino}-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo-[b,e)azepin-11-yl]acetat (0,5 g; 1,09 mmol) in 30 ml CH₃OH wurde mit 0,2 ml Natriummethylat-Lsg. (30% in CH₃OH) 7 h auf Rückfluß erhitzt. Anschließend wurden 0,2 g 1,2-Phenylen-di-aminbishydrochlorid zugesetzt und erneut für ca. 8 h refluxiert. Nach beendeter Umsetzung wurde die Mischung eingeengt und der verbliebene Rückstand durch Chromatographie an Kieselgel (CH₂Cl₂/CH₃OH 1 bis 3%) gereinigt.

0.13 g; ESI-MS [M+H+] = 551,15;

Verseifung in 15 ml Dioxan/H₂O 3 : 1 mit 1,5 eq. KOH (0,02 g) und Reinigung des Rohprodukts durch MPLC (Kieselgel: Fa. Bischoff Prontoprep 60-2540-C18E, 32 μ m; Fließmittel: CH₃CN/H₂O + 0,1% Essigsäure). 0,03 g; ESI-MS [M+H+] = 537,15;

5 ¹H-NMR (200 MHz; DMSO-d6) Diastercomerengemisch: δ (ppm) 9,0/8,8 (m, 1H), 8,15 (m, 1H), 7,75–7,0 (m, 14H), 4,85–4,20 (m, 6H), 3,75–2,8 (m, überlagert mit H₂O).

Beispiel I.B.19

10 {5-[2-({[4-(3H-Imidazo[4,5-b]pyridin-2-yl)-2-thienyl]methyl}-amino)-2-oxoethyl]-6-oxo-6,11-dihydro-5H-diben-zo[b,e]azepin-11-yl}acetat (33)

Analog durch Umsetzung mit 2,3-Pyridinamin:

32 mg; ESI-MS [M+H⁺] = 538,4;

¹H-NMR (200 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 8,95–8,8 (m, 1H), 8,0 (m, 1H), 7,8–7,05 (m, 13H), 4,75–4,1 (m, 6H), 2,95 (m, 1H).

Beispiel I.B.20

20 [5-(2-{[4-(1H-Benzimidazol-2-yl)benzyl]amino}-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]acetat (34)

Analog durch Umsetzung mit [4-(1H-Benzimidazol-2-yl)benzylmethylamin aus Baustein 13: 40 mg; ESI-MS [M+H⁺] = 531,15

25 1H-NMR (400 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 8,95-8,8 (m, 1H), 8,0 (m, 1H), 7,8-7,05 (m, 13H), 4,75-4,1 (m, 6H), 2,95 (m, 1H).

Beispiel I.B.21

30 {5-[2-({[4-(1H-benzimidazol-2-yl)-1,3-thiazol-2-yl]methyl}-amino)-2-oxoethyl]-6-oxo-6,11-dihydro-5H-diben-zo[b,e]azepin-11-yl}acetat (35)

Analog durch Umsetzung mit [4-(1H-Benzimidazol-2-yl)-1,3-thiazol-2-yl]methylamin: 430 mg; ESI-MS [M+H⁺] = 538,15;

¹H-NMR (360 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 9,4/9,3 (m, 1H); 8,9 (m, 1H), 7,8–7,15 (m, 13H), 4,95–4,35 (m, 5H), 3,2 (m, überlagert mit H₂O), 2,95 (m, 1H).

Beispiel I.B.22

40 (5-(2-(4-(1H-Benzimidazol-2-yl)anilino)-2-oxoethyl)-6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)acetat (36)

Analog durch Umsetzung mit 4-(1H-Benzimidazol-2-yl)anilin: 100 mg; ESI-MS [M+H+] = 517,15;

¹H-NMR (360 MHz; DMSO-d6) Diastereomerengemisch: δ (ppm) 12,75 (breit), 10,6 (m 1H), 8,2 (m, 2H), 7,9–7,1 (m 14H), 4,8–4,75 (m, 2H), 4,4 (m 1H), 3,75–3,0 (m, überlagert mit H₂O), 2,8 (m, 1H).

II. Biologische Beispiele

Beispiel 1

50

60

65

Integrin-α_vβ₃-Assay

Zur Identifizierung und Bewertung von Integrin- $\alpha_v \beta_3$ -Antagonisten wurde ein Testsystem verwendet, das auf einer Kompetition zwischen dem natürlichen Integrin- $\alpha_v \beta_3$ -Liganden Vitronectin und der Testsubstanz um die Bindung an Festphasen-gebundenes Integrin $\alpha_v \beta_3$ basiert.

Durchführung

- Microtiterplatten beschichten mit 250 ng/ml Integrin α,β3 in 0,05 M NaHCO3 pH 9,2; 0,1 ml/well;
- Absättigen mit 1% Milchpulver/Assaypuffer; 0,3 ml/well; 0,5 h/RT
- 3 x Waschen mit 0,05% Tween 20/Assaypuffer
- Testsubstanz in 0,1% Milchpulver/Assaypuffer, 50 μl/well + 0 μg/ml bzw. 2 μg/ml human Vitronectin (Boehringer Ingelheim T007) in 0,1% Milchpulver/Assaypuffer, 50 μl/well; 1 h/RT
- 3 x Waschen mit 0,05% Tween 20/Assaypuffer
- 1 µg/ml anti-human-Vitronectin-Antikörper gekoppelt an Peroxidase (Rordia SAVN-APHRP) in 0,1% Milchpulver/Assaypuffer; 0,1 ml/well; 1 h/RT
 - 3 × Waschen mit 0,05% Tween 20/Assaypuffer
 - 0,1 ml/well Peroxidasesubstrat

- Reaktion stoppen mit 0,1 ml/well 2 M H₂SO₄
- Messung der Absorption bei 450 nm

Integrin- $\alpha_{\nu}\beta_3$: Human-Placenta wird mit Nonidet solubilisiert und Integrin- $\alpha_{\nu}\beta_3$ an einer GRGDSPR-Matrix affinitätsgereinigt (Elution mit EDTA). Verunreinigungen durch Integrin $\alpha_{llb}\beta_3$ und humanes Serumalbumin sowie das Detergens und EDTA werden durch Anionenaustauschchromatographie entfernt.

Assaypuffer: 50 mM Tris pH 7,5; 100 mM NaCl; 1 mM CaCl₂; 1 mM MgCl₂; 10 µM MnCl₂.

Peroxidasesubstrat: 0,1 ml TMB-Lösung (42 mM TMB in DMSO) und 10 ml Substratpuffer (0,1 m Na-Acetat pH 4,9) mischen, dann Zusatz von 14,7 μl 3% H₂O₂.

In dem Assay werden verschiedene Verdünnungen der Testsubstanzen eingesetzt und die IC₅₀-Werte bestimmt (Konzentration des Antagonisten, bei der 50% des Liganden verdrängt werden).

Dabei zeigte die Verbindung 34 das beste Ergebnis.

Beispiel 2

Integrin-α_{Πb}β₃-Assay

Der Assay basiert auf einer Kompetition zwischen dem natürlichen Integrin- $\alpha_{IIb}\beta_3$ -Liganden Fibrinogen und der Testsubstanz um Bindung an Integrin $\alpha_{IIb}\beta_3$.

Durchführung

- Microtiterplatten beschichten mit 10 μg/ml Fibrinogen (Calbiochem 341578) in 0,05 M NaHCO₃ pH 9,2; 0,1 ml/well:
- Absättigen mit 1% BSA/PBS; 0,3 ml/well; 30 min/RT
- 3 × Waschen mit 0,05% Tween 20/PBS
- Testsubstanz in 0,1% BSA/PBS; 50 μl/well + 200 μg/ml Integrin- $\alpha_{\Pi b}\beta_3$ (Kordia) in 0,1% BSA/PBS; 50 μl/well; 2 bis 4 h/RT
- 3 × Waschen wie oben
- biotinylierter anti-Integrin- $\alpha_{IIb}\beta_3$ -Antikörper (Dianova CBL 130 B); 1 : 1000 in 0,1% BSA/PBS; 0,1 ml/well; 2 30 bis 4 h/RT
- 3 × Waschen wie oben
- Streptavidin-Peroxidase-Komplex (B.M. 1089153) 1:10000 in 0,1% BSA/PBS; 0,1 ml/well; 30 min/RT
- $-3 \times Waschen wie oben$
- 0,1 ml/well Peroxidasesubstrat
- Reaktion stoppen mit 0,1 ml/well 2 M H₂SO₄
- Messung der Absorption bei 450 nm

Peroxidasesubstrat: 0,1 ml TMB-Lösung (42 mM TMB in DMSO) und 10 ml Substratpuffer (0,1 M Na-acetat pH 4,9) mischen, dann Zusatz von 14,7 μ l 3% H_2O_2

In dem Assay werden verschiedene Verdünnungen der Testsubstanzen eingesetzt und die IC₅₀-Werte bestimmt (Konzentration des Antagonisten, bei der 50% des Liganden verdrängt werden). Durch Vergleich der IC₅₀-Werte im Integrin- $\alpha_{\text{IIb}}\beta_3$ - und Integrin- $\alpha_{\text{v}b_3}$ -Assay kann die Selektivität der Substanzen bestimmt werden.

Beispiel 3

CAM-Assay

Der CAM(Chorioallantoinmembran)Assay dient als allgemein anerkanntes Modell zur Beurteilung der in-vivo-Aktivität von Integrin- $\alpha_{\nu}\beta_3$ -Antagonisten. Er beruht auf der Inhibition von Angiogenese und Neovaskularisation von Tumorgewebe (Am. J. Pathol. 1975, 79, 597–618; Cancer Res. 1980, 40, 2300–2309; Nature 1987, 329, 630). Die Durchführung erfolgt analog zum Stand der Technik. Das Wachstum der Hühnerembryo-Blutgefäße und des transplantierten Tumorgewebes ist gut zu verfolgen und zu bewerten.

Beispiel 4

Kaninchenaugen-Assay

In diesem in-vivo-Modell kann analog zu Beispiel 3 die Inhibition 1 der Angiogenese und Neovaskularisation in Gegenwart von Integrin- $\alpha_v \beta_3$ -Antagonisten verfolgt und bewertet werden. Das Modell ist allgemein anerkannt und beruht auf dem Wachstum der Kaninchenblutgefäße ausgehend vom Rand in die Cornea des Auges (Proc. Natl. Acad. Sci. USA. 1994, 91, 4082–4085; Science 1976, 193, 70–72). Die Durchführung erfolgt analog zum Stand der Technik.

Patentansprüche

1. Verbindungen der Formel I

B-G-L I

57

10

15

20

25

35

40

45

45

55

wobei B, G und L folgende Bedeutung haben: L ein Strukturelement der Formel I₁:

5 -U-T IL

wobei

T eine Gruppe COOH oder einen zu COOH hydrolisierbaren Rest und -U- - $(X_L)_a$ - $(CR_L^1R_L^2)_b$ -, - CR_L^1 = CR_L^2 -, Ethinylen oder = CR_L^1 - bedeuten, wobei

b 0, 1 oder 2

10

15

25

30

40

50

55

60

65

X_L CR_L³R_L⁴, NR_L⁵, Sauerstoff oder Schwefel, R_L¹, R_L², R_L³, R_L⁴ unabhängig voneinander Wasserstoff, -T, -OH, -NR_L⁶R_L⁷, -CO-NH₂, einen Halogenrest, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl-, C2-C6-Alkenyl-, C2-C6-Alkinyl-, C3-C7-Cycloalkyl-, -CO-NH(C1-C6-Alkyl)-, -CO-N(C1-C6-Alkyl)2- oder C1-C4-Alkoxyrest, einen gegebenenfalls substituierten Rest C₁-C₂-Alkylen-T, C₂-Alkenylen-T oder C₂-Alkinylen-T, einen gegebenenfalls substituierten Aryloder Arylalkylrest oder jeweils unabhängig voneinander zwei Reste R_L¹ und R_L² oder R_L³ und R_L⁴ oder gegebenenfalls R_L¹ und R_L³ zusammen einen, gegebenenfalls substituierten 3- bis 7-gliedrigen gesättigten oder ungesättigten Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann,

RL5, RL6 RL7 unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substi-20 tuierten C₁-C₆-Alkyl-, C₃-C₇-Cycloalkyl-, CO-O-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl- oder CO-C₁-C₆-Alkylrest oder einen, gegebenenfalls substituierten CO-O-Alkylen-Aryl-, SO₂-Aryl-, CO-Aryl-, SO₂-Alkylen-Aryl- oder CO-Alkylen-Arylrest,

bedeuten,

G ein Strukturelement der Formel IG

IG

35 wobei

der Einbau des Strukturelements G in beiden Orientierungen erfolgen kann und

 X_G Stickstoff oder CR_G^1 für den Fall, daß Strukturelement G mit Strukturelement L oder B über X_G über eine Einfachbindung verbunden ist oder

Kohlenstoff für den Fall, daß Strukturelement G mit Strukturelement L über XG über eine Doppelbindung verbunden ist,

Y_G CO, CS, C=NR_G² oder CR_G³R_G⁴,

R_G¹ Wasserstoff, Halogen, eine Hydroxy-Gruppe oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest,

R_G² Wasserstoff, eine Hydroxy-Gruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-45 C₆-Alkyl-, C₁-C₄-Alkoxy-, C₃-C₇-Cycloalkyl- oder -O-C₃-C₇-Cycloalkylrest oder einen gegebenenfalls substituierten Aryl-, -O-Aryl-, Arylalkyl- oder -O-Alkylen-Arylrest und

R_G³, R_G⁴ unabhängig voneinander Wasserstoff oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder C₁-C₄-Alkoxyrest oder beide Reste R_G³ und R_G⁴ zusammen ein cyclisches Acetal -O-CH₂-CH₂-O- oder -O-CH₂-O- oder beide Reste R_G³ und R_G⁴ zusammen einen, gegebenenfalls substituierten C3-C7-Cycloalkylrest, bedeuten,

R_G⁵, R_G⁶, R_G⁷, R_G⁸ unabhängig voneinander Wasserstoff, eine Amino- oder Hydroxygruppe, einen Rest HN-CO-R_G9, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest, einen gegebenfalls substituierten Aryl- oder Arylalkylrest oder unabhängig voneinander jeweils zwei Reste R_G⁵ und R_G⁶ oder R_G⁷ und R_G⁸ zusammen einen, gegebenenfalls substituierten, anellierten, ungesättigten oder aromatischen 3- bis 6-gliedrigen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, und

R_G⁹ einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest oder einen gegebenenfalls substituierten Aryl-, Hetaryl-, Arylalkyl- oder Hetarylalkylrest

B ein Strukturelement, enthaltend mindestens ein Atom, das unter physiologischen Bedingungen als Wasserstoff-Akzeptor Wasserstoffbrücken ausbilden kann, wobei mindestens ein Wasserstoff-Akzeptor-Atom entlang des kürzestmöglichen Weges entlang des Strukturelementgerüstes einen Abstand von 4 bis 13 Atombindungen zu Strukturelement G aufweist,

sowie die physiologisch verträglichen Salze, Prodrugs und die enantiomerenreinen oder diastereomerenreinen und tautomeren Formen.

2. Verbindungen gemäß Anspruch 1, dadurch gekennzeichnet, daß das Strukturelement B ein Strukturelement der

√-፲- I ^B	
ocdeutet, wobei A und E folgende Bedeutung haben: A ein Strukturelement ausgewählt aus der Gruppe: ein 5- bis 7-gliedriger monocyclischer gesättigter, ungesättigter oder aromatischer Ring mit 0 bis 4 Heteroatomen,	:
nusgewählt aus der Gruppe O, N oder S, wobei jeweils unabhängig voneinander der gegebenenfalls enthaltene Ring-Stickstoff oder alle Kohlenstoffe substituiert sein können, mit der Maßgabe daß mindestens ein Heteroatom, ausgewählt aus der Gruppe O, N oder S im Strukturelement A enthalten ist, oder	10
ein 9- bis 14-gliedriges polycyclisches gesättigtes, ungesättigtes oder aromatisches System mit bis zu 6 Heteroato- nen, ausgewählt aus der Gruppe N, O oder S, wobei jeweils unabhängig voneinander der gegebenenfalls enthaltene Ring-Stickstoff oder alle Kohlenstoffe substituiert sein können,	
nit der Maßgabe daß mindestens ein Heteroatom, ausgewählt aus der Gruppe O, N oder S im Strukturelement A enthalten ist, oder sie Strukturelement A ein Rest	1.5
	20
wobei Z_A^{-1} Sauerstoff, Schwefel oder gegebenenfalls substituierter Stickstoff und Z_A^{-2} gegebenenfalls substituierten Stickstoff, Sauerstoff oder Schwefel bedeuten, und	25
E ein Spacer-Strukturelement, das Strukturelement A mit dem Strukturelement G kovalent verbindet, wobei die An- ahl der Atombindungen entlang des kürzestmöglichen Weges entlang des Strukturelementgerüstes E 4 bis 12 be- rägt. 5. Verbindungen gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet daß man als Strukturelement A ein	30
Strukturelement, ausgewählt aus der Gruppe der Strukturelemente der Formeln I _A ¹ bis I _A ¹⁸ verwendet,	
	35
	40
	45
	50
	55
	60
	50

wobei

55

60

65

m, p, q unabhängig voneinander 1, 2 oder 3, 50

RA¹, RA² unabhängig voneinander Wasserstoff, CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder CO-C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetarylalkyl- oder C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴, O-R_A¹⁴, NR_A¹⁵R_A¹⁶, CO-NR_A¹⁵R_A¹⁶ oder SO₂NR_A¹⁵R_A¹⁶ oder beide Reste R_A¹ und R_A² zusammen einen anellierten, gegebenenfalls substituierten, 5- oder 6-gliedrigen, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus der bis zu drei Heteroatome, ausgewählt aus der Gruppe O, N, oder S enthalten kann,

R_A¹³, R_A^{13*} unabhängig voneinander Wasserstoff, CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴, O-R_A¹⁴, S-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶

R_A¹⁴ Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, Alkylen-C₁-C₄-Alkoxy-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder Alkylen-Cycloalkylrest oder einen gegebenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, Arylalkyl-, Hetaryl- oder Hetarylalkylrest,

R_A¹⁵, R_A¹⁶, unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substitu-

ierten C₁-C₆-Alkyl-, CO-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl-, COO-C₁-C₆-Alkyl-, Arylalkyl-, COO-Alkylen-Aryl-, SO₂-Alkylen-Aryl- oder Hetarylalkylrest oder einen gegebenenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, CO-Aryl-, SO₂-Aryl, Hetaryl oder CO-Hetarylrest bedeuten, R_A³, R_A⁴ unabhängig voneinander Wasserstoff, -(CH₂)_n-(X_A)_j-R_A¹² oder beide Reste zusammen einen 3- bis 8-

gliedrigen, gesättigten, ungesättigten oder aromatischen N-Heterocyclus der zusätzlich zwei weitere, gleiche oder verschiedene Heteroatome O, N, oder S enthalten kann, wobei der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann,

wobei

n 0, 1, 2 oder 3,

i 0 oder 1,

 $X_{A} = SO_2$, -S-, -O-, -CO-, -CO-, -CO-O-, -CO-N(R_A^{12})-, -N(R_A^{12})-CO-, -N(R_A^{12})-SO₂- oder -SO₂-N(R_A^{12})- und R_A¹² Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy, -O-Alkylen-Aryl- oder -O-Aryl-, einen primär oder gegebenenfalls sekundär oder tertiär substituierten Aminorest, einen gegebenenfalls mit C1-C4-Alkyl oder Aryl substituierten C2-C6-Alkinyl- oder C2-C6-Alkenylrest oder einen mit bis zu drei gleichen oder verschiedenen Resten substituierten, 3-6 gliedrigen, gesättigten oder ungesättigten Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, C₃-C₇-Cycloalkyl-, Aryl- oder Heteroarylrest, wobei zwei Reste zusammen einen anellierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, darstellen können und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann,

R_A⁵ einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, Arylalkyl-, C₃-C₇-Cycloalkyl- oder C₁-C₆-Alkyl-C₃-C₇-Cycloalkylrest oder einen gegebenenfalls substituierten Arylrest,

RA6, RA6* Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C4-Alkyl-, -CO-O-C₁-C₄-Alkyl-, Arylalkyl-, -CO-O-Alkylen-Aryl-, -CO-O-Allyl-, -CO-C₁-C₄-Alkyl-, -CO-Alkylen-Aryl-, C₃-C₇-Cycloalkyl- oder -CO-Allylrest oder in Strukturelement I_A⁷ beide Reste R_A⁶ und R_A^{6*} zusammen einen gegebenenfalls substituierten, gesättigten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu zwei weitere verschiedene oder gleiche Heteroatome O, N, S enthalten kann,

R_A⁷ Wasserstoff, -OH, -CN, -CONH₂, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₃-C₇-Cycloalkyl- oder -O-CO-C₁-C₄-Alkylrest, oder einen gegebenenfalls substituierten Arylalkyl-, -O-Alkylen-Aryl-, -O-CO-Aryl-, -O-CO-Alkylen-Aryl- oder -O-CO-Allylrest, oder beide Reste RA und R_A⁷ zusammen einen gegebenenfalls substituierten, ungesättigten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu zwei weitere verschiedene oder gleiche Heteroatome O, N, S enthalten kann,

RA8 Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C4-Alkyl-, CO-C1-C4-Alkyl-, SO₂-C₁-C₄-Alkyl- oder CO-O-C₁-C₄-Alkylrest oder einen gegebenenfalls substituierten Aryl-, CO-Aryl-, SO₂-Aryl-, CO-O-Aryl-, CO-Alkylen-Aryl-, SO₂-Alkylen-Aryl-, CO-O-Alkylen-Aryl- oder Alkylen-Arylrest, R_A⁹, R_A¹⁰ unabhängig voneinander Wasserstoff, -CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴, O-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶, oder beide Reste R_A⁹ und R_A¹⁰ zusammen in Strukturelement I_A¹⁴ einen 5- bis 7-gliedrigen gesättigten, ungesättigten oder aromatischen

Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann und gegebenenfalls mit bis zu drei gleichen oder verschiedenen Resten substituiert ist,

RA 11 Wasserstoff, -CN, Halogen, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkylrest oder einen gegebenenfalls substituierten Aryl-, Arylalkyl-, Hetaryl-, C₃-C₇-Cycloalkylrest oder einen Rest CO-O-R_A¹⁴, O-R_A¹⁴, NR_A¹⁵R_A¹⁶ oder CO-NR_A¹⁵R_A¹⁶, R_A¹⁷ in Strukturelement I_A¹⁶ beide Reste R_A⁹ und R_A¹⁷ zusammen einen 5- bis 7-gliedrigen gesättigten, ungesättig-

ten oder aromatischen Heterocyclus, der zusätzlich zum Ringstickstoff bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann und gegebenenfalls mit bis zu drei gleichen oder verschiedenen Resten substituiert

Z¹, Z², Z³, Z⁴ unabhängig voneinander Stickstoff, C-H, C-Halogen oder einen verzweigten oder unverzweigten, gegebenenfalls substituieren C-C1-C4-Alkyl- oder C-C1-C4-Alkoxyrest, Z⁵ NR_A⁸, Sauerstoff oder Schwefel

bedeuten.

4. Verbindungen gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet daß man das Spacer-Strukturelement E aus zwei bis vier Teilstrukturelementen, ausgewählt aus der Gruppe E¹ und E² zusammensetzt, wobei die Reihenfolge der Verknüpfung der Teilstrukturelemente beliebig ist und E¹ und E² folgende Bedeutung haben: E¹ ein Teilstrukturelement der Formel I_{E1}

$$-(X_E)_i-(CH_2)_c-CR_E^1R_E^2-(CH_2)_d-(Y_E)_1-I_{E1}$$

55

45

5

E² ein Teilstrukturelement der Formel I_{E2}

$$-(NR_{E}^{3})_{c}-(CR_{E}^{4}R_{E}^{5})_{f}-(Q_{E})_{k}-(CR_{E}^{6}R_{E}^{7})_{g}-(NR_{E}^{8})_{h}-I_{E2},$$

c, d, f, g unabhängig voneinander 0, 1 oder 2,

e, h, i, k, l, unabhängig voneinander 0 oder 1,

 $X_{\rm E}, Q_{\rm E}$ unabhängig voneinander CO, CO-NR_E⁹, S, SO, SO₂, SO₂NR_E⁹, CS, CS-NR_E⁹, CS-O, CO-O, O-CO, O, Elhinyl, $CR_{\rm E}^{10}$ -O- $CR_{\rm E}^{11}$, $CR_{\rm E}^{10}$ -Q- $CR_{\rm E}^{11}$, $CR_{\rm E}^{10}$ -Q- $CR_{\rm E}^{11}$, $CR_{\rm E}^{10}$ -CR_E¹¹, $CR_{\rm E}^{10}$ -CR_E¹², $CR_{\rm E}^{10}$ -CR_E¹³(OR_E¹²) oder einen gegebenfalls substituierten 4- bis 11-gliedrigen mono- oder polycyclischen aliphatischen oder aromatischen Kohlenwasserstoff, der bis zu 6 Doppelbindungen und bis zu 6 Heteroatome, ausgewählt aus der Gruppe N,

O, S, enthalten kann,

Y_E -CO-, -NR_E⁹-CO, -SO-, -SO₂-, -NR_E⁹-SO₂-, -CS-, -NR_E⁹-CS-, -O-CS- oder -O-CO-R_E¹, R_E², R_E⁴, R_E⁵, R_E⁶, R_E⁷ unabhängig voneinander Wasserstoff, Halogen, eine Hydroxygruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder Alkylen-Cycloalkylrest, einen Rest -(CH₂)_w-R_E¹³, einen gegebenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, Arylalkyl-, Hetarylalkyl-, O-Aryl- oder O-Alkylen-Arylrest, oder unabhängig voneinander jeweils zwei Reste R_E¹ und R_E² oder R_E⁴ und R_E⁵ oder R_E⁶ und R_E⁷ zusammen einen 3- bis 7-gliedrigen, gegebenenfalls substituierten, gesättigten oder ungesättigten Carbocyclus, wohei

10

5

w 0, 1, 2, 3 oder 4 bedeutet, R_E^3 , R_E^8 , R_E^9 unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, CO-C₁-C₆-Alkyl-, CO-O-C₁-C₆-Alkyl- oder SO₂-C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten C₃-C₇-Cycloalkyl-, CO-Alkylen-Aryl-, CO-Alkylen-Aryl-, CO-Aryl-, SO₂-Aryl-, CO-Hetaryloder SO₂-Alkylen-Arylrest,

R_E¹⁰, R_E¹¹ unabhängig voneinander Wasserstoff, eine Hydroxygruppe, einen verzweigten oder unverzweigten, ge-15 gebenenfalls substituierten C1-C6-Alkyl-, C1-C4-Alkoxy-, C2-C6-Alkenyl-, C2-C6-Alkinyl- oder Alkylen-Cycloalkylrest oder einen gegebenfalls substituierten C3-C7-Cycloalkyl-, Aryl-, Arylalkyl-, Hetaryl- oder Hetarylalkylrest, R_E¹² Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₂-C₆-Alkenyl-, C2-C6-Alkinyl- oder Alkylen-Cycloalkylrest oder einen gegebenfalls substituierten C3-C7-Cycloalkyl-, Aryl-, 20

Arylalkyl-, Hetaryl- oder Hetarylalkylrest,

R_E¹³ Wasserstoff, eine Hydroxygruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C6-Alkyl-, C1-C4-Alkoxy-, -Arylalkyl-, -O-Alkylen-Aryl- oder -O-Arylrest, einen primär oder gegebenenfalls sekundär oder tertiär substituierten Aminorest, einen gegebenenfalls mit C₁-C₄-Alkyl oder Aryl substituierten C₂-C₆-Alkinyl- oder C2-C6-Alkenylrest, einen C5-C12-Bicycloalkyl-, C6-C18-Tricycloalkylrest, einen Rest CO-O-RA oder einen mit bis zu drei gleichen oder verschiedenen Resten substituierten, 3- bis 6-gliedrigen, gesättigten oder

25 ungesättigten Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, C3-C7-Cycloalkyl-, Aryl- oder Heteroarylrest, wobei zwei Reste zusammen einen anellierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, darstellen können und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann, bedeu-

ten.

5. Verbindungen gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man als Spacer-Strukturelement E ein Strukturelement der Formel IE1E2 verwendet:

35 -E₂-E₁- I_{E1E2}

30

65

und E¹ und E² folgende Bedeutung haben: El ein Teilstrukturelement der Formel I_{E1}

40 $-(X_E)_i-(CH_2)_c-CR_E^1R_E^2-(CH_2)_d-(Y_E)_1-I_{E1}$:

E² ein Teilstrukturelement der Formel I_{E2}:

45 $-(NR_E^3)_e - (CR_E^4R_E^5)_f - (Q_E)_k - (CR_E^6R_E^7)_g - (NR_E^8)_h - I_{E2}$

wobei

c, d, f, g unabhängig voneinander 0, 1 oder 2,

e, h, i, k, l, unabhängig voneinander 0 oder 1,

 $X_{\rm E}, Q_{\rm E}$ unabhängig voneinander CO CO-NR_E⁹, S, SO, SO₂, SO₂NR_E⁹, Cs, CS-NR_E⁹, CS-O, CO-O, O-CO, O, Ethinyl, $CR_{\rm E}^{10}$ -O- $CR_{\rm E}^{11}$, $CR_{\rm E}^{10}R_{\rm E}^{11}$, $CR_{\rm E}^{10}R_{\rm E}^{11}$, $CR_{\rm E}^{10}$ -CR_E¹⁰-CR_E¹¹, $CR_{\rm E}^{10}$ -CR_E¹¹, $CR_{\rm E}^{10}$ -CR_E¹²-CR_E¹³-CR_E¹³-CR_E¹⁴-CR_E¹⁵ 50 oder einen gegebenfalls substituierten 4- bis 11-gliedrigen mono- oder polycyclischen aliphatischen oder aromatischen Kohlenwasserstoff, der bis zu 6 Doppelbindungen und bis zu 6 Heteroatome, ausgewählt aus der Gruppe N, O, S, enthalten kann,

Y_E -CO₋, -NR_E⁹CO₋, -SO₋, -SO₂-, -NR_E⁹-SO₂-, -CS₋, -NR_E⁹-CS₋, -O-CS₋ oder -O-CO₋ 55 $R_E^{\ 1}, R_E^{\ 2}, R_E^{\ 4}, R_E^{\ 5}, R_E^{\ 6}, R_E^{\ 7}$ unabhängig voneinander Wasserstoff, Halogen, eine Hydroxygruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C_1 - C_6 -Alkyl-, C_1 - C_4 -Alkoxy-, C_2 - C_6 -Alkenyl-, C_2 - C_6 -Alkinyl- oder Alkylen-Cycloalkylrest, einen Rest - $(CH_2)_w$ - R_E^{13} , einen gegebenfalls substituierten C_3 - C_7 -Cycloalkyl-,

Aryl-, Arylalkyl-, Hetaryl-, Hetarylalkyl-, O-Aryl- oder O-Alkylen-Arylrest, oder unabhängig voneinander jeweils zwei Reste R_E^1 und R_E^2 oder R_E^4 und R_E^5 oder R_E^6 und R_E^7 zusammen einen 3- bis 7-gliedrigen, gegebenenfalls 60 substituierten, gesättigten oder ungesättigten Carbocyclus, wobei

w 0, 1, 2, 3 oder 4 bedeutet, R_E^3 , R_E^5 , R_E^9 unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, CO-C₁-C₆-Alkyl-, CO-O-C₁-C₆-Alkyl- oder SO₂-C₁-C₆-Alkylrest oder einen gegebenenfalls substituierten C3-C7-Cycloalkyl-, CO-O-Alkylen-Aryl-, CO-Alkylen-Aryl-, CO-Aryl-, SO2-Aryl-, CO-Hetaryloder SO2-Alkylen-Arylrest,

R_E¹⁰, R_E¹¹ unabhängig voncinander Wasserstoff, eine Hydroxygruppe, einen verzweigten oder unverzweigten, ge $gebenenfalls\ substitutierten\ C_1-C_6-Alkyl-,\ C_1-C_4-Alkoxy-,\ C_2-C_6-Alkenyl-,\ C_2-C_6-Alkinyl-\ oder\ Alkylen-Cycloal-leading and the substitutierten\ C_1-C_6-Alkyl-,\ C_1-C_4-Alkoxy-,\ C_2-C_6-Alkenyl-,\ C_2-C_6-Alkinyl-\ oder\ Alkylen-Cycloal-leading and the substitutierten\ C_1-C_6-Alkyl-,\ C_1-C_4-Alkoxy-,\ C_2-C_6-Alkenyl-,\ C_2-C_6-Alkinyl-\ oder\ Alkylen-Cycloal-leading and the substitutierten\ C_1-C_6-Alkyl-,\ C_1-C_4-Alkoxy-,\ C_2-C_6-Alkenyl-,\ C_2-C_6-Alkinyl-\ oder\ Alkylen-Cycloal-leading and the substitutierten\ C_1-C_6-Alkyl-,\ C_1-C_6-Alkyl-,\ C_1-C_6-Alkyl-,\ C_2-C_6-Alkinyl-\ oder\ Alkylen-Cycloal-leading and the substitutierten\ C_1-C_6-Alkyl-,\ C_1-$

kylrest oder einen gegebenfalls substituierten C₃-C₇-Cycloalkyl-, Aryl-, Arylalkyl-, Hetaryl- oder Hetarylalkylrest, R_E¹² Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₂-C₆-Alkenyl-, C2-C6-Alkinyl- oder Alkylen-Cycloalkylrest oder einen gegebenfalls substituierten C3-C7-Cycloalkyl-, Aryl-, Arylalkyl-, Hetaryl- oder Hetarylalkylrest,

R_E¹³ Wasserstoff, eine Hydroxygruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₁-C₄-Alkoxy-, Arylalkyl-, -O-Alkylen-Aryl- oder -O-Arylrest, einen primär oder gegebenenfalls sekundär oder tertiär substituierten Aminorest, einen gegebenenfalls mit C₁-C₄-Alkyl oder Aryl substituierten C₂-C₆-Alkinyl- oder C2-C6-Alkenylrest, einen C5-C12-Bicycloalkyl-, C6-C18-Tricycloalkylrest, einen Rest CO-O-RA oder einen mit bis zu drei gleichen oder verschiedenen Resten substituierten, 3- bis 6-gliedrigen, gesättigten oder ungesättigten Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, C₃-C₇-Cycloalkyl-, Aryl- oder Heteroarylrest, wobei zwei Reste zusammen einen anellierten, gesättigten, ungesättigten oder aromatischen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, darstellen können und der Cyclus gegebenenfalls substituiert oder an diesem Cyclus ein weiterer, gegebenenfalls substituierter, gesättigter, ungesättigter oder aromatischer Cyclus ankondensiert sein kann, bedeuten.

15

20

25

60

6. Verwendung des Strukturelements der Formel IGL:

-G-L I_{GL}

zur Herstellung von Verbindungen, die an Integrinrezeptoren binden, wobei G und L folgende Bedeutung haben: L ein Strukturelement der Formel L

-U-T I_L

T eine Gruppe COOH oder einen zu COOH hydrolisierbaren Rest und $-U - (X_L)_a - (CR_L^1 R_L^2)_b -$, $-CR_L^1 = CR_L^2 -$, Ethinylen oder $-CR_L^1$ bedeuten, wobei

b 0, 1 oder 2 30

X_L CR_L³R_L⁴, NR_L⁵, Sauerstoff oder Schwefel, R_L¹, R_L², R_L³, R_L⁴ unabhängig voneinander Wasserstoff, -T, -OH, -NR_L⁶R_L⁷, -CO-NH₂, einen Halogenrest, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl-, C2-C6-Alkenyl-, C2-C6-Alkinyl-, C3-C7-Cycloalkyl-, -CO-NH(C1-C6-Alkyl)-, -CO-N(C1-C6-Alkyl)2- oder C1-C4-Alkoxyrest, einen gegebenenfalls substituierten Rest C₁-C₂-Alkylen-T, C₂-Alkenylen-T oder C₂-Alkinylen-T, einen gegebenenfalls substituierten Aryloder Arylalkylrest oder jeweils unabhängig voneinander zwei Reste R_L¹ und R_L² oder R_L³ und R_L⁴ oder gegebenenfalls R_L^1 und R_L^3 zusammen einen, gegebenenfalls substituierten 3 bis 7 gliedrigen gesättigten oder ungesättigten Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, RL5, RL6 RL7 unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₃-C₇-, Cycloalkyl- CO-O-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl- oder CO-C₁-C₆-Alkylrest oder einen, gegebenenfalls substituierten CO-O-Alkylen-Aryl-, SO₂-Aryl-, CO-Aryl-, SO₂-Alkylen-Aryl- oder CO-Al-

kylen-Arylrest, bedeuten,

G ein Strukturelement der Formel IG

45 IG 50

wobei der Einbau des Strukturelements G in beiden Orientierungen erfolgen kann und

X_G Stickstoff oder CR_G¹ für den Fall, daß Strukturelement G mit Strukturelement L oder B über X_G über eine Einfachbindung verbunden ist oder

Kohlenstoff für den Fall, daß Strukturelement G mit Strukturelement L über X_G über eine Doppelbindung verbun-

Y_G CO, CS, C=NR_G² oder CR_G⁹R_G⁴, wobei

R_G¹ Wasserstoff, Halogen, eine Hydroxy-Gruppe oder einen verzweigten oder unverzweigten, gegebenenfalls sub-

stituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest, R_G² Wasserstoff, eine Hydroxy-Gruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-

C₆-Alkyl-, C₁-C₄-Alkoxy-, C₃-C₇-Cycloalkyl- oder -O-C₃-C₇-Cycloalkylrest oder einen gegebenenfalls substituierten Aryl-, -O-Aryl-, Arylalkyl- oder -O-Alkylen-Arylrest und

R_G³, R_G⁴ unabhängig voneinander Wasserstoff oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₂-C₆-Alkenyl-, C₂-C₆-Alkinyl- oder C₁-C₄-Alkoxyrest oder beide Reste R_G³ und R_G⁴ zusammen ein cyclisches Acetal -O-CH₂-Cl₂-O- oder -O-CH₂-O- oder beide Reste R_G³ und R_G⁴ zusammen einen ge-

gebenenfalls substituierten C₃-C₇-Cycloalkylrest, bedeuten,

R_G⁵, R_G⁶, R_G⁷, R_G⁸ unabhängig voneinander Wasserstoff, eine Amino- oder Hydroxygruppe, einen Rest HN-CO-R_G⁹, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest, einen gegebenfalls substituierten Aryl- oder Arylalkylrest oder unabhängig voneinander jeweils zwei Reste R_G⁵ und R_G^6 oder R_G^7 und R_G^8 zusammen einen, gegebenenfalls substituierten, anellierten, ungesättigten oder aromatischen 3- bis 6-gliedrigen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, und

 R_G^9 einen verzweigten oder unverzweigten, gegebenenfalls substituierten C_1 - C_6 -Alkyl- oder C_1 - C_4 -Alkoxyrest oder einen gegebenenfalls substituierten Aryl-, Hetaryl-, Arylalkyl- oder Hetarylalkylrest darstellen.

7. Arzneimittel enthaltend das Strukturelement der Formel I_{GL}:

-G-L I_{GL}

5

10

15

20

25

30

35

40

45

50

60

wobei G und L folgende Bedeutung haben:

L ein Strukturelement der Formel I.

-U-T I_L

wobei

T eine Gruppe COOH oder einen zu COOH hydrolisierbaren Rest und -U-- $(X_L)_a$ - $(CR_L^1R_L^2)_b$ -, - CR_L^1 = CR_L^2 -, Ethinylen oder = CR_L^1 bedeuten, wobei a 0 oder 1, b 0, 1 oder 2

X_L CR_L³R_L⁴, NR_L⁵, Sauerstoff oder Schwefel, R_L¹, R_L², R_L³, R_L⁴ unabhängig voneinander Wasserstoff, -T, -OH, -NR_L⁶R_L⁷, -CO-NH₂, einen Halogenrest, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C1-C6-Alkyl-, C2-C6-Alkenyl-, C2-C6-Alkinyl-, C3-C7-Cycloalkyl-, -CO-NH(C1-C6-Alkyl)-, -CO-N(C1-C6-Alkyl)2- oder C1-C4-Alkoxyrest, einen gegebenenfalls substituierten Rest C₁-C₂-Alkylen-T, C₂-Alkenylen-T oder C₂-Alkinylen-T, einen gegebenenfalls substituierten Aryloder Arylalkylrest oder jeweils unabhängig voneinander zwei Reste R_L¹ und R_L² oder R_L³ und R_L⁴ oder gegebenen $falls \ R_L^{\ 1} \ und \ R_L^{\ 3} \ zusammen \ einen, gegebenen falls \ substituierten \ 3-bis \ 7-gliedrigen \ gesättigten \ oder \ ungesättigten$ Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, R_L⁵, R_L⁶ R_L⁷ unabhängig voneinander Wasserstoff, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl-, C₃-C₇-Cycloalkyl-, CO-O-C₁-C₆-Alkyl-, SO₂-C₁-C₆-Alkyl- oder CO-C₁-C₆-Alkylrest oder einen, gegebenenfalls substituierten CO-O-Alkylen-Aryl-, SO₂-Aryl-, CO-Aryl-, SO₂-Alkylen-Aryl- oder CO-Alkylen-Arylrest,

bedeuten, G ein Strukturelement der Formel IG

der Einbau des Strukturelements G in beiden Orientierungen erfolgen kann und

 I_{G}

 X_G Stickstoff oder CR_G^1 für den Fall, daß Strukturelement G mit Strukturelement L oder B über X_G über eine Einfachbindung verbunden ist oder

Kohlenstoff für den Fall, daß Strukturelement G mit Strukturelement L über XG über eine Doppelbindung verbun-

Y_G CO, C=NR_G² oder CR_G³R_G⁴, wobei

R_G¹ Wasserstoff, Halogen, eine Hydroxy-Gruppe oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest,

R_G² Wasserstoff, eine Hydroxy-Gruppe, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-55 C₆-Alkyl-, C₁-C₄-Alkoxy-, C₃-C₇-Cycloalkyl- oder -O-C₃-C₇-Cycloalkylrest oder einen gegebenenfalls substituierten Aryl-, -O-Aryl-, Arylalkyl- oder -O-Alkylen-Arylrest und

R_G³, R_G⁴ unabhängig voneinander Wasserstoff oder einen verzweigten oder unverzweigten, gegebenenfalls substituierten C_1 - C_6 -Alkyl-, C_2 - C_6 -Alkenyl-, C_2 - C_6 -Alkinyl- oder C_1 - C_4 -Alkoxyrest oder beide Reste R_G^3 und R_G^4 zusammen ein cyclisches Acetal -O-CH₂-CH₂-O- oder -O-CH₂-O- oder beide Reste R_G^3 und R_G^4 zusammen einen,

gegebenenfalls substituierten C_3 - C_7 -Cycloalkylrest bedeuten, R_G^5 , R_G^6 , R_G^7 , R_G^8 unabhängig voneinander Wasserstoff, eine Amino- oder Hydroxygruppe, einen Rest HN-CO-R_G⁹, einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest, einen gegebenfalls substituierten Aryl- oder Arylalkylrest oder unabhängig voneinander jeweils zwei Reste R_G⁵ und R_G⁶ oder R_G⁷ und R_G⁸ zusammen einen, gegebenenfalls substituierten, anellierten, ungesättigten oder aromatischen 3- bis 6-gliedrigen Carbocyclus oder Heterocyclus, der bis zu drei verschiedene oder gleiche Heteroatome O, N, S enthalten kann, und

R_G⁹ einen verzweigten oder unverzweigten, gegebenenfalls substituierten C₁-C₆-Alkyl- oder C₁-C₄-Alkoxyrest

oder einen gegebenenfalls substituierten Aryl-, Hetaryl-, Arylalkyl- oder Hetarylalkylrest darstellen.

- 8. Arzneimittelzubereitungen zur peroralen und parenteralen Anwendung, enthaltend neben den üblichen Arzneimittelhilfsstoffen mindestens eine Verbindung gemäß einem der Ansprüche 1 bis 5.
- 9. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 5 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten.
- 10. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 5 als Integrin-Rezeptorliganden.
- 11. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 5 nach Ansprüch 10 als Liganden des $\alpha_V \beta_3$ -Integrinrezeptors.
- 12. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 5 nach Ansprüch 9 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen die Wechselwirkung zwischen Integrinen und ihren natürlichen Liganden überhöht ist.
- 13. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 5 nach Anspruch 12 zur Behandlung von Krankheiten, bei denen die Wechselwirkung zwischen $\alpha_V \beta_3$ -Integrin und seinen natürlichen Liganden überhöht ist.
- 14. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 5 nach Ansprüch 13 zur Behandlung von Arteriosklerose, Restenose nach Gefäßverletzung, Angioplastie, akutes Nierenversagen, Angiogenese-assoziierte Mikroangiopathien, arterielle Thrombose, Schlaganfall, Angiogenese, Tumorwachstum und -metastase, Krebs, Osteoporose, Bluthochdruck, Psoriasis oder viralen, parasitären oder bakteriellen Erkrankungen, Entzündungen, Hyperparathyroismus, Paget'scher Erkrankung, maligne Hypercalcemie oder metastatische osteolytische Läsionen.

- Leerseite 5