Contents

1 Cla	asses		
1.1	poly.r	ing - polyi	nomial rings
	1.1.1		ialRing – ring of polynomials
		1.1.1.1	getInstance – classmethod
		1.1.1.2	$\operatorname{getCoefficientRing}$
		1.1.1.3	getQuotientField
		1.1.1.4	issubring
		1.1.1.5	issuperring
		1.1.1.6	getCharacteristic
		1.1.1.7	createElement
		1.1.1.8	gcd
		1.1.1.9	isdomain
		1.1.1.10	iseuclidean
		1.1.1.11	isnoetherian
		1.1.1.12	ispid
		1.1.1.13	isufd
	1.1.2	Rational	FunctionField – field of rational functions
		1.1.2.1	getInstance – classmethod
		1.1.2.2	createElement
		1.1.2.3	getQuotientField
		1.1.2.4	issubring
		1.1.2.5	issuperring
		1.1.2.6	unnest
		1.1.2.7	gcd
		1.1.2.8	isdomain
		1.1.2.9	iseuclidean
		1.1.2.10	isnoetherian
		1.1.2.11	ispid
		1.1.2.12	isufd
	1.1.3	Polynom	ialIdeal – ideal of polynomial ring
		1.1.3.1	reduce
		1.1.3.2	issubset
		=	issunereet

Chapter 1

Classes

- 1.1 poly.ring polynomial rings
 - Classes
 - PolynomialRing
 - $\ {\bf Rational Function Field}$
 - PolynomialIdeal

1.1.1 PolynomialRing - ring of polynomials

A class for uni-/multivariate polynomial rings. A subclass of **CommutativeR-ing**.

Initialize (Constructor)

```
 \begin{array}{ll} \textbf{PolynomialRing}(\texttt{coeffring:} & \textit{CommutativeRing}, \texttt{ number\_of\_variables:} \\ & \textit{integer}{=}1) \\ & \rightarrow \textit{PolynomialRing} \end{array}
```

coeffring is the ring of coefficients. number_of_variables is the number of variables. If its value is greater than 1, the ring is for multivariate polynomials.

Attribute

zero:

zero of the ring.

one:

one of the ring.

Methods

1.1.1.1 getInstance – classmethod

 ${\tt getInstance} ({\tt coeffring:}\ Commutative Ring, \ {\tt number_of_variables:}\ integer)$

 $\rightarrow PolynomialRing$

return the instance of polynomial ring with coefficient ring coeffring and number of variables number_of_variables.

1.1.1.2 getCoefficientRing

 $getCoefficientRing() \rightarrow CommutativeRing$

1.1.1.3 getQuotientField

 $getQuotientField() \rightarrow Field$

1.1.1.4 issubring

 $issubring(other: Ring) \rightarrow bool$

1.1.1.5 issuperring

 $issuperring(other: Ring) \rightarrow bool$

1.1.1.6 getCharacteristic

 $getCharacteristic() \rightarrow integer$

1.1.1.7 createElement

$createElement(seed) \rightarrow polynomial$

Return a polynomial. seed can be a polynomial, an element of coefficient ring, or any other data suited for the first argument of uni-/multi-variate polynomials.

1.1.1.8 gcd

$gcd(a, b) \rightarrow polynomial$

Return the greatest common divisor of given polynomials (if possible). The polynomials must be in the polynomial ring. If the coefficient ring is a field, the result is monic.

- 1.1.1.9 isdomain
- 1.1.1.10 iseuclidean
- 1.1.1.11 isnoetherian
- 1.1.1.12 ispid
- 1.1.1.13 isufd

 ${\bf Inherited\ from\ {\color{red}{\bf Commutative Ring}}}.$

1.1.2 RationalFunctionField – field of rational functions Initialize (Constructor)

 $\begin{aligned} \textbf{RationalFunctionField(field: } \textit{Field}, \texttt{number_of_variables: } \textit{integer}) \\ &\rightarrow \textit{RationalFunctionField} \end{aligned}$

A class for fields of rational functions. It is a subclass of **QuotientField**.

field is the field of coefficients, which should be a Field object. number_of_variables is the number of variables.

Attribute

zero:

zero of the field.

one

one of the field.

Methods

1.1.2.1 getInstance – classmethod

```
{f getInstance}({f coefffield:}\ Field, {f number\_of\_variables:}\ integer) \ 
ightarrow RationalFunctionField
```

return the instance of RationalFunctionField with coefficient field coefffield and number of variables number_of_variables.

1.1.2.2 createElement

```
{\tt createElement(*seedarg: \it list, **} {\tt seedkwd: \it dict)} 
ightarrow {\tt \it RationalFunction}
```

1.1.2.3 getQuotientField

```
\operatorname{getQuotientField}() 	o 	extit{Field}
```

1.1.2.4 issubring

```
issubring(other: Ring) \rightarrow bool
```

1.1.2.5 issuperring

```
issuperring(other: Ring) \rightarrow bool
```

1.1.2.6 unnest

```
\mathrm{unnest}() 	o \mathit{RationalFunctionField}
```

If self is a nested RationalFunctionField i.e. its coefficient field is also a RationalFunctionField, then the method returns one level unnested RationalFunctionField. For example:

Examples

```
>>> RationalFunctionField(RationalFunctionField(\mathbb{Q}, 1), 1).unnest() RationalFunctionField(\mathbb{Q}, 2)
```

1.1.2.7 gcd

```
\gcd(\mathtt{a} \colon RationalFunction, \mathtt{b} \colon RationalFunction) 	o RationalFunction
```

Inherited from Field.

- 1.1.2.8 isdomain
- 1.1.2.9 iseuclidean
- 1.1.2.10 isnoetherian
- 1.1.2.11 ispid
- 1.1.2.12 isufd

Inherited from CommutativeRing.

1.1.3 PolynomialIdeal – ideal of polynomial ring

A subclass of Ideal represents ideals of polynomial rings.

Initialize (Constructor)

$\begin{aligned} \textbf{PolynomialIdeal(generators: } \textit{list}, \, \texttt{polyring: } \textit{PolynomialRing)} \\ &\rightarrow \textit{PolynomialIdeal} \end{aligned}$

Create an object represents an ideal in a polynomial ring polyring generated by generators.

Operations

operator	explanation
in	membership test
==	same ideal?
!=	different ideal?
+	addition
*	multiplication

Methods

1.1.3.1 reduce

```
reduce(\texttt{element:}\ polynomial) 	o polynomial
```

Modulo element by the ideal.

1.1.3.2 issubset

 $issubset(other: \mathit{set}) \rightarrow \mathit{bool}$

1.1.3.3 is superset

 $issuperset(other: \mathit{set}) \rightarrow \mathit{bool}$

Bibliography