Applied Machine Learning Homework 5: NLP

Due May 2,2023 (Tuesday) 11:59PM EST

Instructions

- 1) Please push the .ipynb and .pdf to Github Classroom prior to the deadline, .py file is optional (not needed).
- 2) Please include your Name and UNI below.

Name: Shruti Agarwal

UNI: sa4136

Natural Language Processing

We will train a supervised training model to predict if a tweet has a positive or negative sentiment.

Dataset loading & dev/test splits

1.1) Load the twitter dataset from NLTK library

```
In [1]: import nltk
        nltk.download('twitter samples')
        from nltk.corpus import twitter samples
        nltk.download('punkt')
        nltk.download('stopwords')
        import warnings
        warnings.filterwarnings("ignore")
        from nltk.corpus import stopwords
        stop = stopwords.words('english')
        import pandas as pd
        import string
        import re
        from sklearn.model selection import train test split
        from nltk.stem import PorterStemmer
        from nltk.tokenize import word tokenize
        from sklearn.feature extraction.text import CountVectorizer
        from sklearn.linear model import LogisticRegression
        from sklearn.feature extraction.text import TfidfVectorizer
        from sklearn.metrics import classification report, accuracy score
        import numpy as np
        # Feel free to import any other packages you need
        [nltk data] Downloading package twitter samples to
                        /Users/shrutiagarwal/nltk data...
        [nltk data]
        [nltk_data] Unzipping corpora/twitter_samples.zip.
        [nltk data] Downloading package punkt to
        [nltk data] /Users/shrutiagarwal/nltk data...
        [nltk_data] Package punkt is already up-to-date!
        [nltk data] Downloading package stopwords to
        [nltk data] /Users/shrutiagarwal/nltk data...
        [nltk_data] Package stopwords is already up-to-date!
```

1.2) Load the positive & negative tweets

```
In [2]: all_positive_tweets = twitter_samples.strings('positive_tweets.json')
    all_negative_tweets = twitter_samples.strings('negative_tweets.json')
```

1.3) Make a data frame that has all tweets and their corresponding labels

```
In [3]: # Your Code Here
all_tweets = all_negative_tweets + all_positive_tweets

# Create a list of labels
labels = ["negative"] * len(all_negative_tweets) + ["positive"] * len(all_pc

# Create a dataframe with two columns: "tweet" and "label"
df = pd.DataFrame({"Tweet": all_tweets, "Label": labels})

# Print the dataframe
df
```

	Tweet	Label
0	hopeless for tmr :(negative
1	Everything in the kids section of IKEA is so c	negative
2	@Hegelbon That heart sliding into the waste ba	negative
3	"@ketchBurning: I hate Japanese call him "bani	negative
4	Dang starting next week I have "work" :(negative
•••		
9995	@chriswiggin3 Chris, that's great to hear :) D	positive
9996	@RachelLiskeard Thanks for the shout-out :) It	positive
9997	@side556 Hey! :) Long time no talk	positive
9998	@staybubbly69 as Matt would say. WELCOME TO AD	positive
9999	@DanielOConnel18 you could say he will have eg	positive

Out[3]:

1.4) Look at the class distribution of the tweets

```
In [4]: # Your Code Here

    class_dist = df["Label"].value_counts()
    class_dist

Out[4]: negative    5000
    positive    5000
    Name: Label, dtype: int64
```

1.5) Create a development & test split (80/20 ratio):

```
In [5]: # Your Code Here

# split the dataframe into development and test sets
dev_set, test_set = train_test_split(df, test_size=0.2, random_state=42)

# print the sizes of the resulting sets
print("Development set size:", len(dev_set))
print("Test set size:", len(test_set))
```

Development set size: 8000 Test set size: 2000

Data preprocessing

We will do some data preprocessing before we tokenize the data. We will remove # symbol, hyperlinks, stop words & punctuations from the data. You can use the package in python to find and replace these strings.

1.6) Replace the # symbol with " in every tweet

```
In [6]: # Your Code Here

# define a function to remove the '#' symbol from a string
def remove_hashtags(text):
    return re.sub(r'#', '', text)

# apply the function to every tweet in the dataframe
dev_set["Tweet"] = dev_set["Tweet"].apply(remove_hashtags)
test_set["Tweet"] = test_set["Tweet"].apply(remove_hashtags)

# print the resulting dataframe
dev_set
```

Out[6]:		Tweet	Label
	9254	Friday!:) http://t.co/HUoq4txhmb	positive
	1561	sorry for always changing my layout :(negative
	1670	<3 <3 awsme song <3 :-* :-(:-(:'(h	negative
	6087	@bwoyblunder @rajudasonline Sorted :). Thanks	positive
	6669	@narrhallamarsch Good Flight! :)	positive
	•••		
	5734	@ChaSilveo follow @jnlazts & http://t.co/	positive
	5191	Hi BAM! @BarsAndMelody \nCan you follow my be	positive
	5390	@hostclubhowell no prob!:)	positive
	860	@dullandwicked @_GrahamPatrick @JohnBoyStyle H	negative
	7270	Unreal training boys!\nAwesome work Zaine, Zac	positive

8000 rows × 2 columns

1.7) Replace hyperlinks with "in every tweet

```
In [7]: # Your Code Here

def remove_hyperlinks(text):
    return re.sub(r'http\S+', '', text)

# apply the function to every tweet in the dataframe
dev_set["Tweet"] = dev_set["Tweet"].apply(remove_hyperlinks)
test_set["Tweet"] = test_set["Tweet"].apply(remove_hyperlinks)

# print the resulting dataframe
dev_set
```

	Tweet	Label
9254	Friday!:)	positive
1561	sorry for always changing my layout :(negative
1670	<3 <3 awsme song <3 :-* :-(:-(:'(negative
6087	@bwoyblunder @rajudasonline Sorted :). Thanks	positive
6669	@narrhallamarsch Good Flight! :)	positive
•••		
5734	@ChaSilveo follow @jnlazts & follow u ba	positive
5191	Hi BAM! @BarsAndMelody \nCan you follow my be	positive
5390	@hostclubhowell no prob!:)	positive
860	@dullandwicked @_GrahamPatrick @JohnBoyStyle H	negative
7270	Unreal training boys!\nAwesome work Zaine, Zac	positive

Out[7]:

1.8) Remove all stop words

```
In [8]: # Your Code Here

# define a function to remove stop words from a string
def remove_stopwords(text):
        stop_words = set(stopwords.words('english'))
        words = text.split()
        filtered_words = [word for word in words if word.lower() not in stop_wor
        return ' '.join(filtered_words)

# apply the function to every tweet in the dataframe
dev_set["Tweet"] = dev_set["Tweet"].apply(remove_stopwords)
test_set["Tweet"] = test_set["Tweet"].apply(remove_stopwords)

# print the resulting dataframe
dev_set
```

	Tweet	Label
9254	Friday!:)	positive
1561	sorry always changing layout :(negative
1670	<3 <3 awsme song <3 :-* :-(:-(:'(negative
6087	@bwoyblunder @rajudasonline Sorted :). Thanks	positive
6669	@narrhallamarsch Good Flight! :)	positive
•••		
5734	@ChaSilveo follow @jnlazts & follow u back :)	positive
5191	Hi BAM! @BarsAndMelody follow bestfriend @969 positi	
5390	@hostclubhowell prob!:) positiv	
860	@dullandwicked @_GrahamPatrick @JohnBoyStyle n	negative
7270	Unreal training boys! Awesome work Zaine, Zac	positive

Out[8]:

1.9) Remove all punctuations

```
In [9]: # Your Code Here

# define a function to remove punctuation from a string
def remove_punctuation(text):
    return re.sub(r'[^\w\s]', '', text)

# apply the function to every tweet in the dataframe
dev_set["Tweet"] = dev_set["Tweet"].apply(remove_punctuation)
test_set["Tweet"] = test_set["Tweet"].apply(remove_punctuation)
# print the resulting datafram
dev_set
```

	Tweet	Label
9254	Friday	positive
1561	sorry always changing layout	negative
1670	lt3 lt3 awsme song lt3	negative
6087	bwoyblunder rajudasonline Sorted Thanks Daaru	positive
6669	narrhallamarsch Good Flight	positive
•••		
5734	ChaSilveo follow jnlazts amp follow u back po	
5191	Hi BAM BarsAndMelody follow bestfriend 969Hor positive	
5390	hostclubhowell prob positive	
860	dullandwicked _GrahamPatrick JohnBoyStyle nobo	negative
7270	Unreal training boys Awesome work Zaine Zac Is	positive

Out[9]:

1.10) Apply stemming on the development & test datasets using Porter algorithm

```
In [10]: # Your Code Here

porter = PorterStemmer()
dev_set['stemmed_tweet'] = dev_set['Tweet'].apply(lambda x: ' '.join([porter test_set['stemmed_tweet'] = test_set['Tweet'].apply(lambda x: ' '.join([port dev_set
```

Out[10]:		Tweet	Label	stemmed_tweet
	9254	Friday	positive	friday

9254	Friday	positive	friday
1561	sorry always changing layout	negative	sorri alway chang layout
1670	lt3 lt3 awsme song lt3	negative	lt3 lt3 awsm song lt3
6087	bwoyblunder rajudasonline Sorted Thanks Daaru	positive	bwoyblund rajudasonlin sort thank daaru parti
6669	narrhallamarsch Good Flight	positive	narrhallamarsch good flight
•••			
5734	ChaSilveo follow jnlazts amp follow u back	positive	chasilveo follow jnlazt amp follow u back
5191	Hi BAM BarsAndMelody follow bestfriend 969Hor	positive	hi bam barsandmelodi follow bestfriend 969hora
5390	hostclubhowell prob	positive	hostclubhowel prob
860	dullandwicked _GrahamPatrick JohnBoyStyle nobo	negative	dullandwick _grahampatrick johnboystyl nobodi
7270	Unreal training boys Awesome work Zaine Zac Is	positive	unreal train boy awesom work zain zac isaac oss

In [11]:	test_set

ut[11]:		Tweet	Label	stemmed_tweet
,	6252	Malan_Sanjaya yes switched back lap optimized	positive	malan_sanjaya ye switch back lap optim window
	4684	MTAP tomorrow means sleep early tonight	negative	mtap tomorrow mean sleep earli tonight
	1731	Gotham3 sad view	negative	gotham3 sad view
	4742	Jessica calls quits power abs 515	negative	jessica call quit power ab 515
	4521	like cant actually put pressure ankle hop arou	negative	like cant actual put pressur ankl hop around h
	•••			
	6412	Agree Phone WiFi LifeStyle QatarDay	positive	agre phone wifi lifestyl qatarday
	8285	RI191459Alex Hey thank following	positive	rl191459alex hey thank follow
	7853	See yah Sunday carmenkvarnen	positive	see yah sunday carmenkvarnen
	1095	didnt took photos	negative	didnt took photo
	6929	LondonLycra see legs lycra p	positive	londonlycra see leg lycra p

Model training

1.11) Create bag of words features for each tweet in the development dataset

```
In [28]: # Your Code Here

vectorizer = CountVectorizer(stop_words='english', ngram_range=(1,2), max_fe
bow_features = vectorizer.fit_transform(dev_set['stemmed_tweet'])
bow_features = bow_features.toarray()

print(bow_features)

[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
```

1.12) Train a Logistic Regression model on the development dataset

1.13) Create TF-IDF features for each tweet in the development dataset

```
In [30]: # Your Code Here

tfidf_vectorizer = TfidfVectorizer(max_df=0.90, min_df=2, max_features=1000,
    tfidf_features = tfidf_vectorizer.fit_transform(dev_set['stemmed_tweet'])

print(tfidf_features.toarray())

[[0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]]
```

1.14) Train the Logistic Regression model on the development dataset with TF-IDF features

1.15) Compare the performance of the two models on the test dataset using a classification report and the scores obtained. Explain the difference in results obtained.

```
In [32]: # Your Code Here
         bow_test_features = vectorizer.transform(test_set['stemmed_tweet'])
         bow_test_features = bow_test_features.toarray()
         y pred bow = 1r model bow.predict(bow test features)
         print("Accuracy on Test set: ", lr_model_bow.score(bow_test_features, test_s
         print(classification_report(test_set["Label"], y_pred_bow))
         Accuracy on Test set: 0.729
                       precision recall f1-score
                                                      support
             negative
                           0.72
                                     0.77
                                               0.74
                                                         1012
             positive
                           0.75
                                     0.69
                                               0.71
                                                          988
             accuracy
                                               0.73
                                                         2000
                          0.73
                                               0.73
                                                         2000
            macro avg
                                     0.73
         weighted avg
                           0.73
                                     0.73
                                               0.73
                                                         2000
In [33]: tfidf test features = tfidf vectorizer.transform(test set['stemmed tweet'])
         y pred tfidf = lr model tfidf.predict(tfidf test features)
         print("Accuracy on Test set: ", lr model tfidf.score(tfidf test features, te
         print(classification_report(test_set['Label'], y_pred_tfidf))
         Accuracy on Test set: 0.738
                       precision recall f1-score
                                                      support
             negative
                           0.72
                                     0.78
                                               0.75
                                                         1012
                           0.75
                                     0.70
             positive
                                               0.72
                                                          988
                                               0.74
                                                         2000
             accuracy
                           0.74
                                     0.74
                                                         2000
            macro avg
                                               0.74
         weighted avg
                          0.74
                                    0.74
                                               0.74
                                                         2000
```

^{*}Explanation here

The performance of the TF-IDF model is expected to be better than the BOW model because it can capture more meaningful features and reduce the impact of noise caused by common words.

The bag-of-words approach represents a text document as a bag of words, without considering their order or context. It counts the frequency of each word in the document and constructs a feature vector for each document based on the frequency of each word. It lacks the ability to capture the semantic relationship between words and treats all words equally.

On the other hand, the TF-IDF approach considers the importance of words in a document relative to their frequency in the entire corpus. It reduces the weight of common words and increases the weight of rare words that are more informative. Therefore, it can capture the semantic meaning of words and their importance in a document.

In []: