Quantum Many-Body Simulations of Double Dot System

Alocias Mariadason

Institute of Physics

Contents

- 1 Introduction
- 2. Methods
- 3. Wavefunction
- 4. Implementation
- 5. Summary and Conclusion

Introduction

Quantum-Dot

- Small semiconductor nanostructures
- ullet 2-10 nanometers with 10-50 particles

- Schrödinger equation
 - $\bullet \ \mathcal{H} \left| \psi \right\rangle = E \left| \psi \right\rangle$

- Schrödinger equation
 - $\mathcal{H} |\psi\rangle = E |\psi\rangle$
- Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

Schrödinger equation

•
$$\mathcal{H} |\psi\rangle = E |\psi\rangle$$

Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

- Born-Oppenheimer Approximation
 - Ignore Nuclei
 - $\sum_{k=1}^{\infty} \frac{\nabla_k^2}{M_k}$ gone
 - $\sum_{k=1}^{K} g(R_k, R_l)$ constant

- Schrödinger equation
 - $\mathcal{H} |\psi\rangle = E |\psi\rangle$
- Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{j} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

- Born-Oppenheimer Approximation
 - Ignore Nuclei
 - $\sum_{k=1}^{\infty} \frac{\nabla_k^2}{M_k}$ gone
 - $\sum_{k=1}^{n} g(R_k, R_l)$ constant
 - $\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) + V(\mathbf{R}, \mathbf{r})$

- Interaction
 - $f(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{|\mathbf{r}_i \mathbf{r}_j|}$

- Interaction: Coulomb repulsion
 - $f(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{|\mathbf{r}_i \mathbf{r}_j|}$
- Confinement: Harmonic Oscillator¹, Double-Well²

$$V(\mathbf{r}) = \frac{1}{2}\omega mr^{2} \qquad V(\mathbf{R}, \mathbf{r}) = \frac{1}{2}m\omega^{2}(r^{2} - \delta R|\mathbf{x}| + R^{2})$$

Multistability, Dynamical Polarization, Criticality, and Entanglement". In: *Phys. Rev. B* 89 (19 2014), p. 195310.

¹S. Kvaal. "Harmonic Oscillator Eigenfunction Expansions, Quantum dots, and Effective Interactions". In: *Phys. Rev. B* 80 (4 2009), p. 045321.

²M. J. A. Schuetz et al. "Nuclear Spin Dynamics in Double Quantum Dots:

Methods

Hartree-Fock Variational Monte-Carlo

Methods: Variational Principle

$$E_0 \leq \frac{\left<\Psi\right|\mathcal{H}\left|\Psi\right>}{\left<\Psi\right|\Psi\right>}$$

Methods: Slater Determinant and Energy Functional

• Pauli Principle

Methods: Slater Determinant and Energy Functional

- Pauli Principle
- Slater Determinant

•
$$\Psi_T^{\mathsf{AS}} = \frac{1}{\sqrt{N!}} \sum_P (-1)^p \mathscr{P}_P \prod_i \psi_i$$

$$\begin{split} \bullet \ \ \Psi^{\mathsf{AS}}_{T} &= \frac{1}{\sqrt{N!}} \sum_{P} (-1)^{P} \mathcal{P}_{P} \prod_{i} \psi_{i} \\ \bullet \ \ \Psi^{\mathsf{S}}_{T} &= \sqrt{\prod\limits_{i=1}^{N} \frac{n_{i}!}{N!}} \sum_{P} \mathcal{P}_{P} \prod_{i} \psi_{i} \end{split}$$

Methods: Slater Determinant and Energy Functional

- Pauli Principle
- Slater Determinant

$$\bullet \ \Psi^{\mathsf{AS}}_{\mathsf{T}} = \tfrac{1}{\sqrt{N!}} \sum_{\mathsf{P}} (-1)^{\mathsf{P}} \mathscr{P}_{\mathsf{P}} \prod_{\mathsf{i}} \psi_{\mathsf{i}}$$

•
$$\Psi_T^{S} = \sqrt{\frac{\prod\limits_{i=1}^{N} n_i!}{N!}} \sum_{P} \mathscr{P}_P \prod_i \psi_i$$

$$\bullet \ E\left[\Psi\right] = \frac{\langle\Psi|\mathcal{H}|\Psi\rangle}{\langle\Psi|\Psi\rangle} = \sum_{p} \langle p|\mathcal{H}_{0}|p\rangle + \frac{1}{2} \sum_{p,q} \left[\langle pq|f_{12}|pq\rangle \pm \langle pq|f_{12}|qp\rangle \right]$$

$$\bullet \mathcal{H}_0 = -\frac{1}{2} \sum_i \nabla_i^2 + V(r)$$

- Assumptions
 - The Born-Oppenheimer approximation holds.
 - All relativistic effects are negligible.
 - The wavefunction can be described by a single Slater determinant.
 - The Mean Field Approximation holds.

- Assumptions
 - The Born-Oppenheimer approximation holds.
 - All relativistic effects are negligible.
 - The wavefunction can be described by a single Slater determinant.
 - The Mean Field Approximation holds.

• Constrained minimization

- Constrained minimization
 - ullet Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$

- Constrained minimization
 - Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - Lagrange Multiplier method

- Constrained minimization
 - Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - Lagrange Multiplier method
 - Fock-operator: $\mathscr{F} \equiv \mathscr{H}_0 + \mathscr{J} \pm \mathscr{K}$

•
$$\mathcal{J} \equiv \langle \psi_k^* | f_{12} | \psi_k \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi_k(\mathbf{r}) d\mathbf{r}$$

•
$$\mathcal{K} \equiv \langle \psi_k^* | f_{12} | \psi \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi(\mathbf{r}) d\mathbf{r}$$

•
$$\mathscr{F}|\psi\rangle = \varepsilon|\psi\rangle, \varepsilon = (\varepsilon_0, ..., \varepsilon_N)$$

- Constrained minimization
 - Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - Lagrange Multiplier method
 - Fock-operator: $\mathscr{F} \equiv \mathscr{H}_0 + \mathscr{J} \pm \mathscr{K}$
 - $\mathcal{J} \equiv \langle \psi_k^* | f_{12} | \psi_k \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi_k(\mathbf{r}) d\mathbf{r}$
 - $\mathcal{K} \equiv \langle \psi_k^* | f_{12} | \psi \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi(\mathbf{r}) d\mathbf{r}$
 - $\mathscr{F}|\psi\rangle = \varepsilon|\psi\rangle, \varepsilon = (\varepsilon_0, ..., \varepsilon_N)$
 - ullet N+1 equations to be solved.

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$
- Expand: $\phi_i(\mathbf{r}) = \sum_{p=1}^{L} C_{pi} \chi_p(\mathbf{r})$

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$
- Expand: $\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$
- Roothan-Hall: $FC_i = \varepsilon SC_i$
 - $F_{pq} = h_{pq} + \sum_{pq} \rho_{pq} \left(2D_{prqs} \pm D_{prsq} \right)$
 - $h_{pq} \equiv \langle p | h | q \rangle$
 - $\bullet \ \rho_{pq} \equiv \sum_{i=1}^{\frac{N}{2}} C_{pi} C_{qi}^*$
 - $D_{pqrs} \equiv \langle pq | f_{12} | rs \rangle$
 - $S_{pq} \equiv \langle p | q \rangle$
- Poople-Nesbet: $F^+C^+ = \varepsilon SC^+$, $F^-C^- = \varepsilon^-SC^-$
 - $\bullet \ \ F^{\pm}_{pq} = h_{pq} + \sum_{k_{\pm}} \sum_{rs} C^{\pm \dagger}_{rk_{\pm}} C^{\pm \dagger}_{sk_{\pm}} \left[D_{prqs} D_{prsq} \right] + \sum_{k_{\mp}} \sum_{rs} C^{\mp \dagger}_{rk_{\mp}} C^{\mp \dagger}_{sk_{\mp}} D_{prqs}$

• Variational Principle

- Variational Principle
- Rewrite expectation value: $\frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int \frac{\Psi^* \mathcal{H} \Psi}{\int \Psi^* \Psi dr} dr = \int \frac{|\Psi|^2 E_L}{\int \Psi^* \Psi dr} dr$
 - $E_L(R; \alpha) \equiv \frac{1}{\Psi} \mathcal{H} \Psi$
 - $P(R) \equiv \frac{|\psi_T|^2}{\langle \Psi_T | \Psi_T \rangle}$

- Variational Principle
- Rewrite expectation value: $\frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int \frac{\Psi^* \mathcal{H} \Psi}{\int \Psi^* \Psi dr} dr = \int \frac{|\Psi|^2 E_L}{\int \Psi^* \Psi dr} dr$
 - $E_L(R; \alpha) \equiv \frac{1}{\Psi} \mathcal{H} \Psi$
 - $P(R) \equiv \frac{|\psi_T|^2}{\langle \Psi_T | \Psi_T \rangle}$
- Metropolis-Hastings Algorithm
 - $r^{\text{new}} = r^{\text{old}} + \Delta t \xi$
 - $A_{i \to j} = \min\left(\frac{P_{i \to j}}{P_{j \to i}} \frac{T_{i \to j}}{T_{j \to i}}, 1\right)$

- Variational Principle
- Rewrite expectation value: $\frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int \frac{\Psi^* \mathcal{H} \Psi}{\int \Psi^* \Psi dr} dr = \int \frac{|\Psi|^2 E_L}{\int \Psi^* \Psi dr} dr$
 - $E_L(\mathbf{R}; \boldsymbol{\alpha}) \equiv \frac{1}{\Psi} \mathcal{H} \Psi$
 - $P(R) \equiv \frac{|\psi_T|^2}{\langle \Psi_T | \Psi_T \rangle}$
- Metropolis-Hastings Algorithm
 - $r^{\text{new}} = r^{\text{old}} + \Delta t \xi$
 - $A_{i \to j} = \min \left(\frac{P_{i \to j}}{P_{j \to i}} \frac{T_{i \to j}}{T_{j \to i}}, 1 \right)$
 - Importance Sampling
 - $r^{\text{new}} = r^{\text{old}} + D\Delta t F^{\text{old}} + \sqrt{\Delta t} \xi$
 - $F = \frac{2}{\Psi} \nabla \Psi$
 - $\bullet \quad \frac{T(b,a,\Delta t)}{T(a,b,\Delta t)} = \sum_{i} \exp \left(-\frac{\left(r_{i}^{(b)} r_{i}^{(a)} D\Delta t F_{i}^{(a)}\right)^{2}}{4D\Delta t} + \frac{\left(r_{i}^{(a)} r_{i}^{(b)} D\Delta t F_{i}^{(b)}\right)^{2}}{4D\Delta t} \right)$

Wavefunction

Wavefunction

$$\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$$

Wavefunction

$$\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$$

Wavefunction: Integral Elements

$$\langle \phi_i(\mathbf{r}) | \phi_j(\mathbf{r}) \rangle$$

$$\langle \phi_i(\mathbf{r}) | x_d^k | \phi_j(\mathbf{r}) \rangle$$

$$\langle \phi_i(\mathbf{r}) | \nabla^2 | \phi_j(\mathbf{r}) \rangle$$

$$\langle \phi_i(\mathbf{r}_1) \phi_j(\mathbf{r}_2) | f_{12} | \phi_k(\mathbf{r}_1) \phi_l(\mathbf{r}_2) \rangle$$

• Hermite Function:
$$\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{w} x_d) \exp\left(-\frac{w}{2} x_d^2\right)$$

- Hermite Function: $\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{w} x_d) \exp\left(-\frac{w}{2} x_d^2\right)$
- Solution in polar³

³E. Anisimovas and A. Matulis. "Energy spectra of few-electron quantum dots". In: *Journal of Physics: Condensed Matter* (1998).

- Hermite Function: $\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{w} x_d) \exp\left(-\frac{w}{2} x_d^2\right)$
- Solution in polar⁴
- $\psi_n(\mathbf{r}) = \prod_d N_d \sum_{l=1}^{n_d} C_{n_d l}^{\text{Hermite}} g_l(\frac{\omega}{2}, \mathbf{r}, \mathbf{0})$

⁴E. Anisimovas and A. Matulis. "Energy spectra of few-electron quantum dots". In: *Journal of Physics: Condensed Matter* (1998).

- Hermite Function: $\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{w} x_d) \exp\left(-\frac{w}{2} x_d^2\right)$
- Solution in polar⁵

•
$$\psi_n(\mathbf{r}) = \prod_d N_d \sum_{l=1}^{n_d} C_{n_d l}^{\text{Hermite}} g_l(\frac{\omega}{2}, \mathbf{r}, \mathbf{0})$$

• Solution in Cartesian⁶

$$\langle g_{i}(\mathbf{r}) | g_{j}(\mathbf{r}) \rangle$$

$$\langle g_{i}(\mathbf{r}) | x_{d}^{k} | g_{j}(\mathbf{r}) \rangle$$

$$\langle g_{i}(\mathbf{r}) | \nabla^{2} | g_{j}(\mathbf{r}) \rangle$$

$$\langle g_{i}(\mathbf{r}_{1}) g_{i}(\mathbf{r}_{2}) | f_{12} | g_{k}(\mathbf{r}_{1}) g_{i}(\mathbf{r}_{2}) \rangle$$

⁵E. Anisimovas and A. Matulis. "Energy spectra of few-electron quantum dots". In: *Journal of Physics: Condensed Matter* (1998).

⁶J. Olsen T. Helgaker P. Jørgensen. *Molecular Electronic-Structure Theory*. Wiley, 2014. isbn: 978-0-47-196755-2. doi: 10.1002/9781119019572.

Wavefunction: Single-Well Integral Elements

• Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$

- Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$
- Expand in HO-functions: $\left|\psi_{p}^{\text{DW}}\right\rangle = \sum_{l} C_{lp}^{\text{DW}} \left|\psi_{l}^{\text{HO}}\right\rangle$

- Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$
- Expand in HO-functions: $\left|\psi_{p}^{\text{DW}}\right\rangle = \sum_{l} C_{lp}^{\text{DW}} \left|\psi_{l}^{\text{HO}}\right\rangle$
- Eigenvalue equation: $\mathbf{H}^{\mathrm{DW}}\mathbf{C}^{\mathrm{DW}} = \mathbf{e}^{\mathrm{DW}}\mathbf{C}^{\mathrm{DW}}$

•
$$H_{ij}^{DW} = \varepsilon_i^{HO} \delta_{ij} + \left\langle \psi_i^{HO} \middle| V_n^{DW} \middle| \psi_j^{HO} \right\rangle$$

- Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$
- Expand in HO-functions: $\left|\psi_{p}^{\text{DW}}\right\rangle = \sum_{l} C_{lp}^{\text{DW}} \left|\psi_{l}^{\text{HO}}\right\rangle$
- Eigenvalue equation: $H^{\mathrm{DW}}C^{\mathrm{DW}} = \epsilon^{\mathrm{DW}}C^{\mathrm{DW}}$

•
$$H_{ij}^{\text{DW}} = \varepsilon_i^{\text{HO}} \delta_{ij} + \left\langle \psi_i^{\text{HO}} \middle| V_n^{\text{DW}} \middle| \psi_j^{\text{HO}} \right\rangle$$

Integral-Elements

$$\begin{split} \left\langle \psi_{p}^{\text{DW}} \left| \psi_{q}^{\text{DW}} \right\rangle &= \delta_{pq} \varepsilon_{p}^{\text{DW}} \delta_{pq} \\ \left\langle \psi_{p}^{\text{DW}} \left| h^{\text{DW}} \right| \psi_{q}^{\text{DW}} \right\rangle &= \varepsilon_{p}^{\text{DW}} \delta_{pq} \\ \left\langle \psi_{p}^{\text{DW}} \psi_{q}^{\text{DW}} \left| \frac{1}{r_{12}} \left| \psi_{r}^{\text{DW}} \psi_{s}^{\text{DW}} \right\rangle &= \sum_{tuvw}^{ijkl} C_{tp}^{\text{DW}} C_{vq}^{\text{DW}} C_{vr}^{\text{DW}} C_{ws}^{\text{DW}} \left\langle \psi_{t}^{\text{HO}} \psi_{u}^{\text{HO}} \right| \frac{1}{r_{12}} \left| \psi_{v}^{\text{HO}} \psi_{w}^{\text{HO}} \right\rangle \end{split}$$

Implementation

Summary and Conclusion

Questions?

Questions

Questions?