Local Tangent Space Alignment Symbol Glossary

Thomas Cohn June 13, 2019

\mathcal{F}	The data manifold. \mathcal{F} is a parameterizable d-manifold in \mathbb{R}^m , with $d < m$.
d	The underlying dimension of the data manifold \mathcal{F} , i.e., the "feature" space.
\overline{m}	The dimension of the higher dimensional "input" space.
f	$f: C \subset \mathbb{R}^d \to \mathbb{R}^m$ is a smooth map which parameterizes \mathcal{F} .
C	$C \subset \mathbb{R}^d$ is a compact subset of \mathbb{R}^d .
x_i	$x_1, \ldots, x_N \in \mathbb{R}^m$ are the data points in the higher dimensional space.
$ au_i$	$\tau_1, \ldots, \tau_N \in \mathbb{R}^d$ are the corresponding feature space coordinates of the x_i 's, where
	$x_i = f(\tau_i) + \epsilon_i.$
ϵ_i	$\epsilon_1, \ldots, \epsilon_N \in \mathbb{R}^d$ is the added noise to $f(\tau_i)$ to obtain x_i .
X	$X = \begin{bmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_N \end{bmatrix}$ is the matrix form of the data
	$X = \begin{bmatrix} x_1 & \cdots & x_N \\ x_1 & \cdots & x_N \end{bmatrix} \text{ is the matrix form of the data.}$
J_f	$I_{c}(\tau) = \begin{bmatrix} \sigma_{J_{1}}/\sigma\tau_{1} & \cdots & \sigma_{J_{1}}/\sigma\tau_{d} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$ is the Jacobi matrix of f at τ
	$J_f(\tau) = \begin{bmatrix} \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial \tau_1} & \cdots & \frac{\partial f_m}{\partial \tau_d} \end{bmatrix} \text{ is the Jacobi matrix of } f \text{ at } \tau.$
$\overline{ au}$	$\overline{\tau}$ is some point near τ used for the following approximation via Taylor expansion:
	$f(\overline{\tau}) = f(\tau) + J_f(\tau) \cdot (\overline{\tau} - \tau) + O(\overline{\tau} - \tau ^2).$
$\overline{\mathcal{T}_{ au}}$	$\mathcal{T}_{\tau} = \operatorname{span}(J_f(\tau))$ is the tangent space of f at τ .
$ \begin{array}{c} \mathcal{T}_{\tau} \\ Q_{\tau} \\ \theta_{\tau}^{*} \\ P_{\tau} \end{array} $	Q_{τ} is a matrix forming some orthonormal basis of \mathcal{T}_{τ} , allowing us to write $J_f(\tau)(\overline{\tau} - \tau) = Q_{\tau}\theta_{\tau}^*$.
$\theta_{ au}^*$??? Possibly defined by $Q_{\tau}\theta_{\tau}^{*} = f(\overline{\tau}) - f(\tau)$?
P_{τ}	Defined by $\theta_{\tau}^* = Q_{\tau}^T J_f(\tau)(\tau - \overline{\tau}) \equiv P_{\tau}(\overline{\tau} - \tau)$. The mapping from τ to θ_{τ}^* is a local affine transformation. θ_{τ} is the orthogonal projection of
$\theta_{ au}$	The mapping from τ to θ_{τ}^* is a local affine transformation. θ_{τ} is the orthogonal projection of
0()	$f(\overline{\tau}) - f(\tau) \text{ onto } \mathcal{T}_{\tau}. \ \theta_{\tau} \equiv Q_{\tau}^{T}(f(\overline{\tau}) - f(\tau)) = \theta_{\tau}^{*} + O(\overline{\tau} - \tau ^{2}) \approx \theta_{\tau}^{*}.$
$\Omega(\tau)$	$\Omega(\tau)$ defines the neighborhood of τ .
X_i	$X_i = \begin{bmatrix} 1 & \cdots & 1 & 1 \\ x_{i_1} & \cdots & x_{i_k} & 1 \end{bmatrix}$ is a matrix consisting of the k -nearest neighbors of x_i .
x	x is part of the minimization problem
	$\left \min_{x,\Theta,Q} \sum_{j=1}^{\kappa} \left \left x_{i_j} - (x + Q\theta_j) \right \right _2^2 = \min_{x,\Theta,Q} \left \left X_i - (xe^T + Q\Theta) \right \right _2^2.$
	The optimal x is \overline{x}_i – the mean of all the x_{i_j} 's.
Q	Q is another term in the minimization (but what is it????). It is of d columns. Optimal Q is
	given by the d singular vectors of $X_i(I - ee^T/k)$ corresponding with the d largest singular
	values.
Θ	$\Theta = \begin{bmatrix} \theta_1 & \cdots & \theta_k \\ & & \end{bmatrix}$ is a matrix consisting of the orthogonal projections of each $x_{i_j} - x$ onto \mathcal{T}_{x_i} . Θ is
	given by $\Theta_i = Q_i^T X_i (I - \frac{1}{k} e e^T) = \begin{bmatrix} \theta_1^{(i)} & \cdots & \theta_k^{(i)} \\ 1 & \cdots & \theta_k^{(i)} \end{bmatrix}, \theta_j^{(i)} = Q_i^T (x_{i_j} - \overline{x}_i).$
$\xi_j^{(i)}$	$\xi_j^{(i)} = (I - Q_i Q_i^T)(x_{i_j} - \overline{x}_i)$ is the global reconstruction error of x_{i_j} , with $x_{i_j} = \overline{x}_i + Q_i \theta_i^{(i)} + \xi_i^{(i)}$.
$ au_{i_j}$	$\xi_j^{(i)} = (I - Q_i Q_i^T)(x_{i_j} - \overline{x}_i)$ is the global reconstruction error of x_{i_j} , with $x_{i_j} = \overline{x}_i + Q_i \theta_j^{(i)} + \xi_j^{(i)}$. τ_{i_j} is the feature space coordinate of x_{i_j} . We want $\tau_{i_j} = \overline{\tau}_i + L_i \theta_j^{(i)} + \epsilon_j^{(i)}$, for $j \in \{1, \dots, k\}$ and
	$i \in \{1, \dots, N\}.$
$\overline{\tau_i}$	$\overline{\tau_i}$ is the mean of the τ_{i_j} , for $j \in \{1, \dots, k\}$.
L_i	L_i is the local affine transformation for τ_i .
E_i	$E_i = \begin{bmatrix} \epsilon_1^{(i)} & \cdots & \epsilon_k^{(i)} \\ \vdots & \vdots & \vdots \end{bmatrix}$ is the matrix form of the local reconstruction error.
e	$e = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^T$ is a column vector of all ones of dimension k .
T_i	$T_i = \begin{bmatrix} 1 & \cdots & 1 \\ \tau_i & \cdots & \tau_k \\ 1 & \cdots \end{bmatrix}$ is the matrix form of the feature space coordinates. It satisfies
	$T_i = \frac{1}{k}T_i ee^T + L_i\Theta_i + E_i$, so $E_i = T_i(I_k - \frac{1}{k}ee^T) - L_i\Theta_i$.
S_i	$T_i = \frac{1}{k}T_i e e^T + L_i\Theta_i + E_i$, so $E_i = T_i(I_k - \frac{1}{k}ee^T) - L_i\Theta_i$. S_i is the 0-1 selection matrix such that $TS_i = T_i$.
S	$S = [S_1 \mid \cdots \mid S_n].$
W_i	$W_i = (I_k - \frac{1}{k}ee^T)(I - \Theta_i^+\Theta_i).$

W	$W = \operatorname{diag}(W_1, \dots, W_N) = \begin{bmatrix} W_1 & 0 & \dots & 0 \\ 0 & W_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \dots & W_N \end{bmatrix}.$
T	We want to find T to minimize the overall reconstruction error $\sum E_i _F^2 = TSW _F^2$.
	To determine T , we require $TT^T = I_d$.
B	$B \equiv SWW^TS^T$ has eigenvector e corresponding to eigenvalue 0. Thus, optimal T is given by the
	d eigenvectors corresponding to the 2nd to $d+1$ st smallest eigenvalues.