预测本轮疫情造成全国社会消费 品零售总额-基于 ARIMA 模型

摘要

自2020 第一波新冠疫情后,我国遭受重创的经济在过去一年逐渐复苏,并稳中向好发展。但今年二月起,吉林与上海相继陷入长时间封锁,对我国经济再度造成打击。而社会消费品零售总额是衡量人们消费水平的重要指标,也是国民经济体系中的一个重要指标。通过对历年月度的社会消费品零售总额的分析,选择用 ARIMA 时间序列模型预测未来数月的无疫情影响下的总额。在预测在疫情影响下的总额,通过二者的对比,预测出由于本轮疫情造成的总额的损失。并通过 R 语言进行建模和计算以及绘图。

关键词: 社会消费品零售总额, ARIMA, 时间序列分析

目 录

一、数据	居分析	1
1.1	数据来源	1
1.2	季节性分解	2
二、数据	居检验	3
2.1	时序平稳性检验	3
2.2	数据随机性检验	4
三、模型	型建立	5
3.1	无季节性的 ARIMA 模型建立	5
3.2	季节性的 ARIMA 模型	6
3.3	参数估计	6
3.4	残差检验	8
3.5	预测	10
四、干预	页分析模型的建立	11
4.1	模型建立	11
4.2	残差检验	11
4.3	预测 2022 年的损失	12

一、 数据分析

1.1 数据来源

tess 本次建模采用的数据为 2012 年 1 月起至 2022 年 3 月的月度数据,来自国家统计局。由于在 1-2 月只有总和的数据,在此简单假设两月每天的零售总额相同,则一月份总额在 1-2 月总和的占比在闰年和平年的占比分别为 51.7%,52.5%,得到表格如下:

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1	17171.0	19866.4	21563.2	25216.7	26984.3	30453.8	31151.7	34712.0	27390.6	36641.8	37957.3
2	16497.6	17943.4	20717.5	22775.8	25926.0	27505.9	29930.1	31352.0	24739.2	33095.0	36468.7
3	15650.2	17641.2	19800.6	22722.8	25114.1	27863.7	29193.6	31725.7	26449.9	35484.1	34233.1
4	15603.1	17600.3	19701.2	22386.7	24645.8	27278.5	28541.9	30586.1	28177.8	33152.6	
5	16714.8	18886.3	21249.8	24194.8	26610.7	29459.2	30359.1	32955.7	31972.8	35945.1	
6	16584.9	18826.7	21166.4	24280.3	26857.4	29807.6	30841.6	33878.1	33525.9	37585.8	
7	16314.9	18513.2	20775.8	24338.8	26827.4	29609.8	30733.7	33073.3	32202.5	34925.1	
8	16658.9	18886.2	21133.9	24893.4	27539.6	30329.7	31542.3	33896.3	33570.6	34394.9	
9	18226.6	20653.3	23042.4	25270.6	27976.4	30870.3	32005.4	34494.9	35294.7	36833.0	
10	18933.8	21491.3	23967.2	28278.9	31119.2	34240.9	35534.4	38104.3	38576.5	40453.9	
11	18476.7	21011.9	23474.7	27937.3	30958.5	34108.2	35259.7	38093.8	39514.2	41043.2	
12	20334.2	23059.7	25801.3	28634.6	31757.0	34734.1	35893.5	38776.7	40566.0	41268.9	

表 1-1: 社会商品零售总额月度数据(单位: 亿元)

根据表格中所给数据,选择 2022 年 1, 2, 3 月作为测试集,剩余数据作为训练集, 以时间为横轴,绘出折线图如下:

图 1-1: 社会消费品零售总额 2012-2022

1.2 季节性分解

可以看出社会消费品零售总额的变化呈明显的季节波动,并且呈现逐年上升趋势, 所以考虑通过 STL 算法用 Loess 平滑化后将时间序列数据分解为趋势因子 (trend compoents),季节因子 (season compoents),和随机误差因子 (remmainder compoents)^[1]:

$$Y_t = T_t + S_t + R_t \tag{1}$$

得到分解图如下:

图 1-2: 按加法模型分解后

从趋势因子来看,总体趋势稳步提升直至 2020 疫情爆发前,到 2020 年末基本恢复 正常发展水平,持续稳步发展到 2022 年 2 月。

从季节因子来看,在春节前,即年末 12 月份,消费达到顶峰,之后逐步下降至四月份到达最低点,之后开始逐步攀升直至 12 月份。

二、 数据检验

2.1 时序平稳性检验

若时间序列 X_t 满足如下条件:

- (1) 均值 $E(X_t) = \mu$, 均值 μ 是与时间 t 无关的常数
- (2) 方差 $Var(X_t) = \sigma^2$, 方差 σ 是与时间 t 无关的常数
- (3) 协方差 $Cov(X_t, X_t + k) = \gamma^2$, 协方差只与间隔 t 有关则称时间序列 X_t 是平稳的。

由表1-1中可明显看出均值随时间 t 增长,可以猜测原序列应为非平稳序列。采用 ADF 检验原序列的平稳性,ADF 检验通过一下三个模型检验:

$$\Delta X_t = \delta X_{t-1} + \sum_{i=1}^m \beta_i X_{t-i} + \epsilon_t$$

$$\Delta X_t = \alpha + \delta X_{t-1} + \sum_{i=1}^m \beta_i X_{t-i} + \epsilon_t$$

$$\Delta X_t = \alpha + \beta_t + \delta X_{t-1} + \sum_{i=1}^m \beta_i X_{t-i} + \epsilon_t$$
(2)

三个模型原假设都是 $H_0:\delta=0$ 若拒绝 H_0 则为平稳序列,否则为非平稳序列。通过 ADF 临界值表判断是否接受 H_0

为验证猜想对原序列做 ADF 检验, 得到结果如下:

表 2-2: Add caption

Augmented Dickey-	Fuller Test
Lag Order:	1
Dickey-Fuller:	0.3394
P Value	0.7218

由于 p-value > 0.05 所以无法拒绝原假设,因此原序列是非平稳的。为了将原序列转化为平稳序列处理,因为从图1-1看出原序列应该有随时间线性增加的趋势,考虑对原序列做一阶差分 $^{[2]}$,得到新序列 \hat{X}_t 如下图:

图 2-3: 对原序列做一阶差分后

在对差分后的序列做 ADF 检验:

表 2-3: ADF 检验

Augmented Dickey	-Fuller Test
Lag Order:	1
Dickey-Fuller:	-7.5267
P Value	0.01

由于 p < 0.05 所以拒绝原假设,差分后的序列是平稳的,即通过一阶差分去掉了原序列线性的趋势因子。

2.2 数据随机性检验

尽管 \hat{x}_t 为平稳序列,但是如白噪声等纯随机序列也是平稳序列,若 \hat{X}_t 是纯随机序列,则没有建模研究价值价值,于是采用 Ljung-Box 检验随机性

假设 $H_0: \rho_1 = \rho_2 = \cdots = \rho_n = 0$ 则对所有的 k > 0, 样本的自相关系数服从:

$$\hat{\rho}_k \approx N(0, \frac{1}{n}) \tag{3}$$

其中 n 为样本量, 通过检验统计量:

$$Q_{LB}(m) = n(n+2) \sum_{k=1}^{m} \frac{\hat{\rho_k}^2}{n-k} \chi^2(m)$$
 (4)

得到的 Ljung - Box 检验结果为:

表 2-4: Ljung - Box 检验

Ljung-Box test								
X-squared	494.39							
df	6							
p-value	< 2.2e-16							

由于 p < 0.05 所以拒绝原假设,则 \hat{X}_t 为非随机序列,可进行下一步建模。

三、 模型建立

3.1 无季节性的 ARIMA 模型建立

给定一个差分 d 阶的时间序列 y_t , ARIMA(p,d,q) 模型如下:

$$y_t' = c + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t$$
 (5)

其中 ε_t 是白噪声序列, p 是自回归的阶数, q 是移动平均的阶数。

平稳序列的自相关函数 ACF 与时间间隔 k 有关, 并通过 ACF 相关系数决定 q:

$$\rho_h = \rho(y_t, y_{t+k}) = \frac{Cov(y_t, y_{t+k})}{\sigma_t \sigma_{t+k}}$$
(6)

ACF 图显示了 y_t 与 y_{t-k} 之间相关性,但是滞后阶数 $1,2,\cdots,k-1$ 之间存在依赖关系,例如若 y_t 与 y_{t-1} 自相关,那么 y_t 与 y_{t-2} 一定自相关,因为他们都通过与 y_{t-1} 直接相关,而间接自相关,为了分离 $y_{t-1},y_{t-2},\cdots,y_{t-k+1}$ 的干扰,直接得到 y_t 与 y_{t-k} 之间的相关性, y_{t-k} 之间的向通过 PACF 估计 P 值,由于历史白噪声 ε_{t-k} 通过影响历史观测值来间接影响当前 y_t 所以用 ACF 估计 q 值,绘出一阶差分后 \hat{X}_t 的 ACF 和 PACF 图(临界值 $\frac{\pm 1.96}{T}$ 以用虚线标出):

图 3-4: ACF 和 PACF

3.2 季节性的 ARIMA 模型

通过图3-4发现在滞后阶数 lag 值很高时才出现拖尾,会导致参数过多发生过拟合现象,而且通过图1-2得到消费总额应该是呈现明显季节波动所以考虑将一阶差分序列 \hat{X}_t 分解为季节部分和剩下的非季节部分:

ARIMA
$$(p, d, q)$$
 $(P, D, Q)_m$

其中 m=12 为观测周期,可以将模型写成季节部分与非季节部分的乘积,例如对于 $ARIMA(1,1,1)(1,1,1)_m$ 模型:

$$(1 - \phi_1 B) (1 - \Phi_1 B^{12}) (1 - B) (1 - B^4) y_t = (1 + \theta_1 B) (1 + \Theta_1 B^4) \varepsilon_t$$
 (7)

3.3 参数估计

为先消除季节型波动,对一阶差分后 \hat{X}_t 做季节性差分,得到 $X_t' = \hat{X}_t - \hat{X}_{t-12)}$,绘出相关图像:

图 3-5: 季节差分后 ACF 和 PACF

模型的选择

从相关系数图看出相比于图3-4, 相关系数的的衰减速度加快很多,对于季节部分的 ACF 和 PACF 图(即 Lag=12n,二者都认为在滞后系数 Lag=12 后产生拖尾。可确定3.2中的相应系数 P=1,Q=1

但对于非季节部分的 ACF 和 PACF 图较难判断在何种滞后系数后产生拖尾,因此利用 AIC,AICc,BIC 准则定量的确定在何种系数下的模型最优:

$$AIC = -2log(L) + 2(p + q + k + 1)$$

其中 L 是似然数据的似然函数,最后一项为参数个数 (包含了余项的方差)k=0 若 c=0,k=1 若 $c\neq 0$ 对于 ARIMA 模型而言,修正过的 AIC 值可以被表示为:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$

并且贝叶斯信息准则 (BIC) 如下:

$$BIC = AIC + [\log(T) - 2](p + q + k + 1)$$

通过枚举 p,q 的值得到相应模型 AIC,AICc,BIC 如下:

表 3-5: 不同系数对应检测值

相应的 ARIMA 模型	AIC	AICc	BIC
(0,1,0)(1,1,1)[12]	1858.76	1858.99	1866.81
(0,1,1)(1,1,1)[12]	1860.45	1860.84	1871.18
(0,1,2)(1,1,1)[12]	1859.87	1860.46	1873.28
(0,1,3)(1,1,1)[12]	1857.89	1858.72	1873.98
(1,1,0)(1,1,1)[12]	1860.53	1860.92	1871.26
(1,1,1)(1,1,1)[12]	1853.79	1854.38	1867.2
(1,1,2)(1,1,1)[12]	1855.14	1855.98	1871.24
(1,1,3)(1,1,1)[12]	1857.04	1858.16	1875.81
(1,1,4)(1,1,1)[12]	1859.01	1861.57	1883.87
(2,1,1)(1,1,1)[12]	1855.09	1855.92	1871.19
(2,1,2)(1,1,1)[12]	1856.44	1857.56	1875.21
(2,1,3)(1,1,1)[12]	1858.1	1858.18	1875.83
(3,1,1)(1,1,1)[12]	1857.06	1858.18	1875.83

从表3-5中看出, $ARIMA(1,1,1)(1,1,1)_{12}$ 是最优的 ARIMA 模型。

3.4 残差检验

为说明残差纯随机变量,对残差做 Ljung-Box test 检验:

表 3-6: 残差 Ljung – Box 检验结果

p>0.05 无法拒绝原假设,所得残差为白噪声序列,残差之间不存在自相关性。并且得到的残差图3-6,残差基本符合正态分布要求:

图 3-6: ARIMA(1,1,1)(1,1,1)₁₂ 的残差图

为进一步说明,绘出正态 Q-Q 图3-7,所以残差符合正态分布要求:

图 3-7: ARIMA(1,1,1)(1,1,1)₁₂ 的残差 Q-Q 图

3.5 预测

选取的训练集为表1-1中 2022 年 2 月以前 (包括二月). 用得到的 ARIMA 模型对训练集进行拟合,以 12 个月划分序列。通过所有之前的数据拟合当前年份的数据 (起始两年除外),拟合得到的 12 步拟合结果图3-8:

图 3-8: ARIMA 模型得到的 12 步拟合值

图 3-9: 2020 年社会消费品零售总额的损失

从图像上看, 出去 2020 年初有所偏差外, 其余部分都能较好拟合。由此也能从图中得出 2020 年疫情带来的社会消费品零售总额的损失为 47934.05(亿元), 为图3-9中阴影部分。最终用此模型预测自 2022 年 3 月起 6 个月的预测结果如下, 并给出 80%和95% 的置信区间。

图 3-10: ARIMA(1,1,1)(1,1,1)₁₂ 模型对从 3 月起 6 个月的预测

四、干预分析模型的建立

4.1 模型建立

假设疫情对经济的影响是突然开始,并且持续的,对持续性干预变量

$$S_t^T = \begin{cases} 0 & \text{疫情发生前 t=T} \end{cases}$$

设 ω 为干预未知的干预系数, Y_t 为疫情干预后的时间序列,B为滞后算子,通过一阶差分获得平稳序列,则干预后的模型可写为

$$Y_t = \frac{\omega S_t^T}{\delta Y_{t-1}} \ 0 < \delta < 1 \tag{8}$$

经过变换,实际上为1阶自回归模型

$$Y_t = \delta Y_{t-1} + \omega$$

通过 2020 年的损失的社会消费品零售总额的数据3-9,用最小二乘法的到参数的估计值, $\delta = 0.8191, \omega = -134.2268$

4.2 残差检验

绘出拟合图像和残差图如下:

图 4-11: 2020 年社会消费品零售总额的损失图 (红色为回归结果)

图 4-12: 回归结果的残差图

从残差分布曲线看,残差基本符合正态分布要求,且通过 Ljung-Box 检验。

4.3 预测 2022 年的损失

假设 5 月份经济损失有望得到改善,即四月份为损失最严重的时期,那么且疫情不在反弹。那么预测从今年三月份开始到年末的社会消费品零售总额损失如下:

表 4-7: 2022 年 3 月起社会消费品零售总额的损失

月份	3	4	5	6	7	8	9	10	11	12
损失	3924	8587	7168	6006	5054	4274	3635	3111	2683	2332

绘出社会消费品零售总额的损失如下:

图 4-13: 2022 年 3 月起社会消费品零售总额的损失

图 4-14: 红色面积为预测损失

参考文献

- [1] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. Stl: A seasonal-trend decomposition[J]. J. Off. Stat, 1990, 6(1): 3-73.
- [2] HYNDMAN R J, ATHANASOPOULOS G. For further information on stationarity and differencing see[M]. [S.l.: s.n.].

附录

程序一: MATLAB 算道路车辆通行能力:

```
x=[ 37 2 1 3 0.5 1.72 1112 47 3 2.5 3.5 0.6 2.41 1835 48 3 2.5 3.25 1.2
 2.475 2034 442 2.5 3.25 1 2.26 1477 46 3 2.5 3 1.2 2.27 1648 53 2 2.5
 3.5 1.2 2.498 195 254 3 3.5 3.5 2 2.5 22 49 59 3 3.5 3.5 0.7 2.634 18
 93 59 3 3.5 3.25 0.2 2.642 22 45 48 3 2.5 3.25 0.3 2.46 20 35 50 3 4.5
 3.5 0.3 2.52 2318 56 3 3.5 3.25 0.9 2.617 2203 57 2 2.5 3.5 0.8 2.625
 2034 58 2 2.5 3 0.6 2.641 2178 68 4 3.5 3.25 0.9 3.05 2468 59 3 4.5
 ];
for i=1:100
      if x(i,2)==1
     a1=1;
         end
         if x(i,2)==2
         a1=1.87;
               end
         if x(i,2)==3
             a1=2.6;
                   end
         if x(i,2)==4
        a1=3.2;
        end
      if x(i,4) < 3
   a2=0.52;
   else if x(i,4) < 3.25
a2 = 0.56;
else if x(i,4) < 3.5
a2 = 0.84;
else if x(i,4)<3.75&&x(i,3)<1.5
a2=1:
    if x(i,4)<3.75&&x(i,4)>3.5&&x(i,3)<2.5&&x(i,3)>1.5
       a2=1.16;
    if x(i,4)<3.75&&x(i,4)>3.5&&x(i,3)<3.5&&x(i,3)>2.5
       a2=1.32;
           if x(i,4)<3.75&&x(i,4)>3.5&&x(i,3)>=4.5
              a2=1.45;
                         end
                    end
              end
           end
        end
```

```
end
end
    if x(:,1)<=80
       if x(i,7)<1400
         a3=2;
         else if x(i,7) < 2800
           a3=3.5;
             if x(i,7)>=2800
           a3=3;
         end
       end
    end
end
    if x(i,1)<=60
       if x(i,7)<1200
          a3=3;
            else if x(i,7)<2400
             a3=5;
               if x(i,7)>=2400
             a3=4;
           \quad \text{end} \quad
         end
       end
    end
 a3=8;
   if x(i,7)>=2000
    a3=7;
    end
    end
   end
end
A(i)=(1000*x(i,1)*a1*a2*a3*0.95)./(5+x(i,1).*x(i,6)+x(i,1).*x(i,5));
end
程序 2 MATLAB 求解路
m=2;% 为影响范围内主要路 段的个数,一般应包括干和次为影响范围内主要路 段的个数,
 一般应包括干和次以及较重要的支路。
f=1;% 为影响范围内交叉口的个数
a=0;
KS=0;
b=0;
KC = 0;
I1=[2875,2875];
I2=[1589,1589];
I3=[7642,7642];
```

```
I4=[6356,6356];
BS=[4909,4909];
BC=[19636,19636];
  for i=1:m
     a=a+I2(i)/BS(i);
       end
         for j=1:m
            KS=KS+((I2(j)/BS(j))/a)*((I1(j)-I2(j))/BS(j))
               end
         for i=1:f
             b=b+I4(i)/BC(i);
                end
         for j=1:f
     KC=KC+((I4(j)/BC(j))/b)*((I3(j)-I4(j))/BC(j))
   end
n=0.29207;
K=KS*(n/(1+n))+KC*(1+(1+n))
```

程序二: C++ 求解路网正体影响度:

```
//-----
// Name
          : Sudoku.cpp
// Author
          : wzlf11
// Version
          : a.0
// Copyright : Your copyright notice
// Description : Sudoku in C++.
//----
#include "graphics.h"
#define LEFT 0
#define TOP 0
#define RIGHT 639
#define BOTTOM 479
#define LINES 400
#define MAXCOLOR 15
main()
   int driver, mode, error;
   int x1,y1;
   int x2,y2;
   int dx1,dy1,dx2,dy2,i=1;
   int count=0;
   int color=0;
```

```
driver=VGA;
    mode=VGAHI;
    initgraph(&driver,&mode,"");
    x1=x2=y1=y2=10;
    dx1=dy1=2;
    dx2=dy2=3;
    while(!kbhit())
        line(x1,y1,x2,y2);
        x1+=dx1;y1+=dy1;
        x2+=dx2;y2+dy2;
           if(x1<=LEFT||x1>=RIGHT)
            dx1 = -dx1;
           if(y1<=TOP||y1>=BOTTOM)
                 dy1 = -dy1;
           if(x2<=LEFT||x2>=RIGHT)
                 dx2 = -dx2;
           if(y2<=TOP||y2>=BOTTOM)
                 dy2 = -dy2;
           if(++count>LINES)
        {
                 setcolor(color);
                 color=(color>=MAXCOLOR)?0:++color;
        }
    }
    closegraph();
}
main()
{
    int i,j,k,x0,y0,x,y,driver,mode;
    float a;
    driver=CGA; mode=CGAC0;
    initgraph(&driver,&mode,"");
    setcolor(3);
    setbkcolor(GREEN);
    x0=150; y0=100;
    circle(x0,y0,10);
    circle(x0,y0,20);
    circle(x0,y0,50);
    for(i=0;i<16;i++)</pre>
        a=(2*PAI/16)*i;
        x=ceil(x0+48*cos(a));
        y=ceil(y0+48*sin(a)*B);
```

```
setcolor(2); line(x0,y0,x,y);
}
setcolor(3); circle(x0,y0,60);
/* Make 0 time normal size letters */
settextstyle(DEFAULT_FONT, HORIZ_DIR, 0);
outtextxy(10,170,"press a key");
getch();
setfillstyle(HATCH_FILL,YELLOW);
floodfill(202,100,WHITE);
getch();
for(k=0;k<=500;k++)</pre>
    setcolor(3);
    for(i=0;i<=16;i++)</pre>
    {
            a=(2*PAI/16)*i+(2*PAI/180)*k;
            x=ceil(x0+48*cos(a));
            y=ceil(y0+48+sin(a)*B);
            setcolor(2); line(x0,y0,x,y);
    }
    for(j=1;j<=50;j++)</pre>
    {
            a=(2*PAI/16)*i+(2*PAI/180)*k-1;
            x=ceil(x0+48*cos(a));
            y=ceil(y0+48*sin(a)*B);
            line(x0,y0,x,y);
    }
}
restorecrtmode();
```

数据表格

表格数据:

表 A-1: 附表 1 数据

样本编 号	车速	车道 数	侧向净 宽	车道宽	司机反应时间	车辆南止耗 时	交通量
1	37	2	1	3	0.5	1.72	1112
2	47	3	2.5	3.5	0.6	2.41	1835
3	48	3	2.5	3.25	1.2	2.475	2034
4	44	2	2.5	3.25	1	2.26	1477
5	46	3	2.5	3	1.2	2.27	1648
6	53	2	2.5	3.5	1.2	2.498	1952
7	54	3	3.5	3.5	2	2.5	2249
8	59	3	3.5	3.5	0.7	2.634	1893
9	59	3	3.5	3.25	0.2	2.642	2245
10	48	3	2.5	3.25	0.3	2.46	2035
11	50	3	4.5	3.5	0.3	2.52	2318
12	56	3	3.5	3.25	0.9	2.617	2203
13	57	2	2.5	3.5	0.8	2.625	2034
14	58	2	2.5	3	0.6	2.641	2178
15	68	4	3.5	3.25	0.9	3.05	2468
16	59	3	4.5	3.75	0.6	2.975	2406
17	75	4	4.5	3.75	0.7	3.15	2648
18	22	1	1	3	1.1	1.45	800
19	27	4	0.5	3	0.6	1.5	903
20	75	1	2.5	3.5	0.6	1.46	1010
21	76	1	3.5	3.5	0.2	1.63	1069
22	46	2	1.5	3.25	1.9	2.3	1682
23	46	2	2.5	3.25	1	2.32	1734
24	46	2	2.5	3.75	0.2	2.4	1826
25	47	3	2.5	3.25	1.2	2.37	1625
26	77	3	4.5	3.5	0.2	2.475	2148
27	48	3	4.5	3.25	0.3	2.47	2278
28	80	3	2.5	3.5	0.5	2.58	2177
29	66	2	3.5	3.5	1	2.72	2249
30	67	4	3.5	3.75	0.9	2.975	2484
31	25	3	1.5	3.5	0.6	1.3	846
32	34	2	4.5	3.5	0.8	1.52	1152
33	47	3	2.5	3.25	0.3	2.42	1753
34	48	4	2.5	3.75	0.3	2.34	1924
35	79	3	2.5	3.25	1.1	2.53	2159
36	55	3	0.5	3.5	0.9	2.62	1568
37	78	2	1	3.5	0.9	2.618	2148
38	59	3	1	3.5^{20}	1	2.64	2272
39	19	1	0	3	1.2	1.4	513
40	10	2	2.5	3 25	1	1 35	810

 ${f z}$ A-2: 小区开放前 VISSIM 正常行驶仿真数据记录表 1

样本编 号	车速	车道 数	侧向净 宽	车道宽	司机反应时间	车辆南止耗 时	交通量
47	67	1	0.5	3.75	0.2	2.83	2249
48	67	4	3.5	3.25	0.6	2.815	2463
49	75	2	3.5	3.5	0.6	3.21	2748
50	34	2	1.5	3	1	1.48	957
51	39	2	2.5	3.5	0.8	1.97	1364
52	40	3	2.5	3.25	0.5	2	1359
53	50	3	2.5	3.5	1	2.51	2264
54	55	2	3.5	3.25	1.2	2.6	1978
55	55	3	3.5	3.5	0.6	2.61	2218
56	59	3	0.5	3	0.2	2.638	1974
57	63	4	2.5	3.5	1.1	2.78	2384
58	67	3	2.5	3.75	0.8	2.83	2384
59	75	3	4.5	3.5	0.3	3.2	2801
60	77	2	4.5	3.5	0.2	3.18	2845
61	23	1	0	3	0.5	1.44	458
62	75	2	1	3	0.2	1.625	1065
63	46	2	2.5	3.5	1	2.43	1752
64	61	2	0.5	3	1.2	2.71	1890
65	36	3	2.5	3.5	1	1.67	1233
66	38	2	3.5	3	1.7	1.9	1246
67	55	1	0.5	3.5	0.3	2.615	1763
68	74	2	1.5	3.75	0.7	3.05	2349
69	79	4	2.5	3.75	0.4	3.17	2694
70	38	2	3.5	3	1.1	1.86	1343
71	61	3	1.5	3.25	0.3	2.68	2006
72	79	3	3.5	3.5	2.1	3.48	2948
73	27	2	1	3.75	0.8	1.48	928
74	28	1	1	3	0.9	1.47	947
75	34	2	1	3	0.3	1.49	998
76	44	3	2.5	3.25	0.3	2.24	1520
77	78	3	4.5	3.5	0.7	3.09	2648
78	73	3	3.5	3.5	1.2	3.19	2741
80	37	4	1	3	1.7	1.87	1265
81	37	2	3.5	3.5	1.5	1.84	1325
82	38	2	2.5	3	1.2	1.95	1233
83	38	2	1	3	2.1	1.97	1249
84	40	2	1.5	$\frac{3}{3.75}$	0.4	2.12	1366
85	42	3	4.5	3.75^{21}	0.4	2.16	1638
86	40	3	1.5	3.25	0.8	2.43	1384
97	41	2	1.5	2.5	1 1	2.05	1/2/

样本编 号	车速	车道 数	侧向净 宽	车道宽	司机反应时间	车辆南止耗 时	交通量
47	67	1	0.5	3.75	0.2	2.83	2249
48	67	4	3.5	3.25	0.6	2.815	2463
49	75	2	3.5	3.5	0.6	3.21	2748
50	34	2	1.5	3	1	1.48	957
51	39	2	2.5	3.5	0.8	1.97	1364
52	40	3	2.5	3.25	0.5	2	1359
53	50	3	2.5	3.5	1	2.51	2264
54	55	2	3.5	3.25	1.2	2.6	1978
55	55	3	3.5	3.5	0.6	2.61	2218
56	59	3	0.5	3	0.2	2.638	1974
57	63	4	2.5	3.5	1.1	2.78	2384
58	67	3	2.5	3.75	0.8	2.83	2384
59	75	3	4.5	3.5	0.3	3.2	2801
60	77	2	4.5	3.5	0.2	3.18	2845
61	23	1	0	3	0.5	1.44	458
62	75	2	1	3	0.2	1.625	1065
63	46	2	2.5	3.5	1	2.43	1752
64	61	2	0.5	3	1.2	2.71	1890
65	36	3	2.5	3.5	1	1.67	1233
66	38	2	3.5	3	1.7	1.9	1246
67	55	1	0.5	3.5	0.3	2.615	1763
68	74	2	1.5	3.75	0.7	3.05	2349
69	79	4	2.5	3.75	0.4	3.17	2694
70	38	2	3.5	3	1.1	1.86	1343
71	61	3	1.5	3.25	0.3	2.68	2006
72	79	3	3.5	3.5	2.1	3.48	2948
73	27	2	1	3.75	0.8	1.48	928
74	28	1	1	3	0.9	1.47	947
75	34	2	1	3	0.3	1.49	998
76	44	3	2.5	3.25	0.3	2.24	1520
77	78	3	4.5	3.5	0.7	3.09	2648
78	73	3	3.5	3.5	1.2	3.19	2741
80	37	4	1	3	1.7	1.87	1265
81	37	2	3.5	3.5	1.5	1.84	1325
82	38	2	2.5	3	1.2	1.95	1233
83	38	2	1	3	2.1	1.97	1249
84	40	2	1.5	$\frac{3}{3.75}$	0.4	2.12	1366
85	42	3	4.5	3.75^{22}	0.4	2.16	1638
86	40	3	1.5	3.25	0.8	2.43	1384
97	41	2	1.5	2.5	1 1	2.05	1/2/

表 A-4: 小区开放前 VISSIM 正常行驶仿真数据记录表 3

数据 P.C.	时间 (进入)	时间 (离开)	车辆编号	速度 (m/s)	车辆长度 (m)
1	9.34	-1	4	14.7	4.76
1	-1	9.67	4	14.7	4.76
7	19.34	-1	3	14.7	4.76
7	-1	19.66	3	14.8	4.76
6	20.35	-1	4	14	4.76
6	-1	20.69	4	14	4.76
1	21.49	-1	11	14.8	4.61
2	21.43	-1	5	15.9	4.55
1	-1	21.8	11	14.9	4.61
2	-1	21.72	5	15.9	4.55
5	22.36	-1	6	15.4	4.61
5	-1	22.66	6	15.4	4.61
2	25.81	-1	7	13.8	4.11
2	-1	26.11	7	13.8	4.11
2	27.19	-1	8	14.1	10.21
2	-1	27.92	8	14.2	10.21
7	29.24	-1	10	15.1	4.76
7	-1	29.55	10	15.1	4.76
6	32.23	-1	11	14.5	4.61
6	-1	32.55	11	14.6	4.61
5	35.38	-1	12	14.8	4.55
5	-1	35.68	12	14.9	4.55
7	36.42	-1	13	14.5	4.55
7	-1	36.73	13	14.5	4.55
1	38.87	-1	16	15.4	4.61
1	-1	39.16	16	15.4	4.61
6	49.09	-1	16	15.1	4.61
6	-1	49.4	16	15.1	4.61
1	49.91	-1	24	15.1	4.55
1	-1	50.21	24	15.2	4.55
5	50.59	-1	17	15.3	4.55
5	-1	50.89	17	15.3	4.55
3	56.27	-1	14	15.8	4.76
3	-1	56.57	14	15.9	4.76
7	57.12	-1	23	15.9	4.76
7	-1	57.42	23	15.8	4.76
6	60.56	-1	$\frac{24}{23}$	14.6	4.55
6	-1	60.87	$\overset{23}{24}$	14.7	4.55
3	63.02	-1	18	15.1	4.11

1 62.20

表 A-5: 小区开放前 VISSIM 正常行驶仿真数据记录表 1

数据 P.C.	时间(进	时间 (离开)	车辆编号	速度 (m/s)	车辆长度 (m)
	人)				
5	-1	80.44	35	15	4.55
7	84.64	-1	37	14.5	10.21
7	-1	85.35	37	14.4	10.21
3	89.77	-1	31	14.7	4.76
3	-1	90.09	31	14.8	4.76
2	90.42	-1	32	15.2	4.11
2	-1	90.69	32	15.2	4.11
1	90.84	-1	40	1.7	11.54
3	93.85	-1	34	13.9	4.76
3	-1	94.19	34	14	4.76
1	-1	98.34	40	1.8	11.54
1	101.18	-1	44	3.5	4.4
2	101.41	-1	29	14.6	4.61
2	-1	101.73	29	14.5	4.61
1	-1	101.8	44	4.3	4.4
3	103.39	-1	36	14.5	4.76
3	-1	103.72	36	1.5	4.76
2	109.33	-1	39	15.7	4.76
2	-1	109.63	39	15.7	4.76
1	113.78	-1	52	3.3	4.11
1	-1	114.75	52	5.6	4.11
6	116.66	-1	46	15	4.4
6	-1	116.96	46	15	4.4
4	117.67	-1	1	2	0.44
4	-1	117.89	1	2	0.44
6	119.37	-1	44	14.2	4.4
6	-1	119.68	44	14.1	4.4
1	127.94	-1	56	1.2	0.34
1	-1	128.22	56	1.2	0.34
3	128.54	-1	45	12.7	4.34
3	-1	128.87	45	13	4.34
4	128.86	-1	38	3.4	1.45
4	-1	129.28	38	3.5	1.45
6	132.61	-1	52	14.2	4.11
1	132.94	-1	60	1.6	4.4
1	101.18	-1	44	3.5	4.4
2	101.41	-1	29	14.6	4.61
2	-1	101.73	$\frac{24}{29}$	14.5	4.61
1	-1	101.8	44	4.3	4.4

102 20

 ${f z}$ A-6: 小区开放前 VISSIM 正常行驶仿真数据记录表 2

数据 P.C.	时间 (进 人)	时间 (离开)	车辆编号	速度(m/s)	车辆长度 (m)
1	127.94	-1	56	1.2	0.34
1	-1	128.22	56	1.2	0.34
3	128.54	-1	45	12.7	4.34
3	-1	128.87	45	13	4.34
4	128.86	-1	38	3.4	1.45
4	-1	129.28	38	3.5	1.45
2	-1	90.69	32	15.2	4.11
1	90.84	-1	40	1.7	11.54
3	93.85	-1	34	13.9	4.76
3	-1	94.19	34	14	4.76
1	-1	98.34	40	1.8	11.54
1	101.18	-1	44	3.5	4.4
2	101.41	-1	29	14.6	4.61
2	-1	101.73	29	14.5	4.61
1	-1	101.8	44	4.3	4.4
3	103.39	-1	36	14.5	4.76
3	-1	103.72	36	1.5	4.76
2	109.33	-1	39	15.7	4.76
2	-1	109.63	39	15.7	4.76
1	113.78	-1	52	3.3	4.11
1	-1	114.75	52	5.6	4.11
6	116.66	-1	46	15	4.4
6	-1	116.96	46	15	4.4
4	117.67	-1	1	2	0.44
4	-1	117.89	1	2	0.44
6	119.37	-1	44	14.2	4.4
6	-1	119.68	44	14.1	4.4
1	127.94	-1	56	1.2	0.34
1	-1	128.22	56	1.2	0.34
3	128.54	-1	45	12.7	4.34
3	-1	128.87	45	13	4.34
4	128.86	-1	38	3.4	1.45
4	-1	129.28	38	3.5	1.45
6	132.61	-1	52	14.2	4.11
1	132.94	-1	60	1.6	4.4
1	101.18	-1	44	3.5	4.4
2	101.41	-1	29	14.6	4.61
2	-1	101.73	$\overset{25}{29}$	14.5	4.61
1	-1	101.8	44	4.3	4.4

2 102.20 1