# Intruders and viruses

# Intrusion Detection Systems

- ☐ Firewalls allow traffic only to legitimate hosts and services
- □ Traffic to the legitimate hosts/services can have attacks
  - CodeReds on IIS
- □ Solution?
  - Intrusion Detection Systems
  - Monitor data and behavior
  - Report when identify attacks

# <u>Definition of Intrusion Detection</u> <u>System (IDS)</u>

The art of detecting inappropriate, incorrect, or anomalous activity. ID systems that operate on a host to detect malicious activity on that host are called host-based ID systems, and ID systems that operate on network data flows are called network-based ID systems.



# Signature-based IDS

#### Characteristics

 Uses known pattern matching to signify attack

#### Advantages?

- Widely available
- Fairly fast
- Easy to implement
- Easy to update

#### Disadvantages?

- Cannot detect attacks for which it has no signature
- False positives
- Maintenance/tweaking
- Not very hard to evade



# Signature-based IDS

Attack signatures - describe action patterns that may pose a security threat. Typically, they are presented as a time-dependent relationship between series of activities that may be interlaced with neutral ones.

 Selected text strings - signatures to match text strings which look for suspicious action (for example calling /etc/passwd).

# Signature-based IDS

```
T A A S 10 20 6668 IRC:XDCC /5Bxdcc/5Dslt
                SEARCH STRING
           EVENT NAME
        PORT
      COMPARE BYTES
                                             Snort has ~1900
     DYNAMIC LOG
                                                signatures
                                            Dragon has ~1700
   BINARY OR STRING
                                                signatures
  PROTECTED NETWORKS
 DIRECTION
                           http://www.snort.org/docs/
PROTOCOL
```

# Anomaly-based IDS

#### Characteristics

- Uses statistical model or machine learning engine to characterize normal usage behaviors
- Recognizes departures from normal as potential intrusions

#### Advantages?

- OCan detect attempts to exploit new and unforeseen vulnerabilities
- O Can recognize authorized usage that falls outside the normal pattern

#### □ Disadvantages?

- OGenerally slower, more resource intensive compared to signature-based IDS
- Greater complexity, difficult to configure
- Higher percentages of false alerts

# Anomaly-based IDS

- Threshold detection: This approach involves defining the thresholds, independent of users, for the frequency of occurrence of various events. If the count surpasses what is considered a reasonable number that one might expect to occur, then intrusion is assumed.
  - A lot of false positives due to a large difference in behavior of different users.
- □ Profile based: A profile of the activity of each user is developed and used to detect changes in the behavior of individual accounts.

### Audit Records used in IDS

Audit records provide input to the profile-based IDS.

Each audit record (Dorothy Denning) contains the following fields:

Subject: Initiators of actions, e.g, users, processes.

Action: operation performed by the subject on or with an object, e.g., login, read, ...

Object: receptors of actions, e.g. programs, messages, ..

Exception-Condition: exception condition is raised on return

Resource-Usage: amoutn of used resources.

Time-stamp: unigque time-and -date stamp identifying when the unity action took place.

### Metrics Used in Profile-based IDS

- Counter: A count of certain event types is kept over a particular period of time, e.g. number of logins by single user during an hour.
- □ Gauge: A measure of the current value of some entity, e.g., number of logical connections assigned to a user application.
- □Interval timer: The length of time between two related events.
- Resource utilization: Quantity of resources consumed during a specified period, e.g., total time consumed by a program execution.

#### ■ Mean and standard deviation:

Statistical test is to measure the mean and standard deviation of a parameter over some historical period. This gives a reflection of the average behavior and its variability.

#### ■Multivariate:

- OBased on the correlations between two or more variables. Intruder behavior may be characterized with greather confidence.
  - Frequency login and session elapse time

#### Markov Process:

- Establish transtion probabilities among various states
  - Transistion between various commands

#### □Time Series:

Look for events that happens too rapidly or too quickly

#### □Operational:

Based on a judgement of what is considered abnormal, rather than an automated analysis of past audit records.

| Measure                                    | Model                       | Type of Intrusion Detected                                                                                  |  |  |
|--------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Login and Session Activity                 |                             |                                                                                                             |  |  |
| Login frequency by day and time            | Mean and standard deviation | Intruders may be likely to log in during off-hours.                                                         |  |  |
| Frequency of login at different locations  | Mean and standard deviation | Intruders may log in from a location that a particular user rarely or never uses.                           |  |  |
| Time since last login                      | Operational                 | Break-in on a "dead" account.                                                                               |  |  |
| Elapsed time per session                   | Mean and standard deviation | Significant deviations might<br>indicate masquerader.                                                       |  |  |
| Quantity of output to location             | Mean and standard deviation | Excessive amounts of data<br>transmitted to remote locations<br>could signify leakage of sensitive<br>data. |  |  |
| Session resource utilization               | Mean and standard deviation | Unusual processor or I/O levels could signal an intruder.                                                   |  |  |
| Password failures at login                 | Operational                 | Attempted break-in by password guessing.                                                                    |  |  |
| Failures to login from specified terminals | Operational                 | Attempted break-in.                                                                                         |  |  |

| Command or Program Execution Activity |                             |                                                                                                                                                                 |  |
|---------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Execution frequency                   | Mean and standard deviation | May detect intruders, who are likely to use different commands, or a successful penetration by a legitimate user, who has gained access to privileged commands. |  |
| Program resource utilization          | Mean and standard deviation | An abnormal value might suggest injection of a virus or Trojan horse, which performs side-effects that increase I/O or processor utilization.                   |  |
| Execution denials                     | Operational model           | May detect penetration attempt<br>by individual user who seeks<br>higher privileges.                                                                            |  |

| File Access Activity                          |                             |                                                                                                         |  |  |
|-----------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Read, write, create, delete frequency         | Mean and standard deviation | Abnormalities for read and write<br>access for individual users may<br>signify masquerading or browsing |  |  |
| Records read, written                         | Mean and standard deviation | Abnormality could signify an<br>attempt to obtain sensitive data<br>by inference and aggregation.       |  |  |
| Failure count for read, write, create, delete | Operational                 | May detect users who persistently<br>attempt to access unauthorized<br>files.                           |  |  |
| File resource exhaustion counter              | Operational                 |                                                                                                         |  |  |

### Rule-based IDS

- ☐ Historical audit records are analyzed to identify usage patterns and to generate automatically rules that describe the patterns.
- Rules may represent past behavior patterns of users, programs, privileges, ...
- □ Current behavior is then observed, and each transaction is matched against the set of rules to determine if it conforms to any historically observed pattern of behavior.

# Network-based IDS

- Characteristics
  - NIDS examine raw packets in the network passively and triggers alerts
- Advantages?
  - Easy deployment
  - Unobtrusive
  - Difficult to evade if done at low level of network operation
- Disadvantages?
  - Fail Open
  - Different hosts process packets differently
  - NIDS needs to create traffic seen at the end host
  - Need to have the complete network topology and complete host behavior



# Host-based IDS

#### Characteristics

- Runs on single host
- Can analyze audit-trails, logs, integrity of files and directories, etc.

### Advantages

- More accurate than NIDS
- Less volume of traffic so less overhead

### Disadvantages

- Deployment is expensive
- What happens when host get compromised?



# Viruses

□ Virus is the common term to describe malicious programs.

# Taxonomy of Malicious Programs



# Trap Doors

- □ A secret entry point into a gprogam that allows someone that is aware of the trap door to gain access without going through the usual security access procedures.
- □ Used legitimately for many years by programmers to debug and test programs.
- Become threats when they are used by unscrupoulus programmers to gain unauthorized access.

# Logic Bomb

- Oldest types of program threats
- □ Coded embedded in some legitimate program that is set to "explode" when certain conditions are met.
  - Particular day of the week
  - Famous cases: employee ID number, library systems

# Trojan Horses

- Program or command procedure containing hidden code that when invoked, performas some unwanted or harmful functions.
- □ Gain access to files of another user on a shared system by changing permission when the unawared user run the Trojan horse program disguised as the normal program.
  - ols, ps
- Data destruction

## <u>Viruses</u>

□ A virus is a program that can "infect" other programs by modifying them; the modification includes a copy of the virus program, which can then go on to infect other programs.

We will discuss shortly in details.

# Worms

- □ Network worm programs use network connections to spread from system to system.
  - Electronic mail: A worm mails a copy of itself to other systems.
  - Remote execution capability (rcp): A worm executes a copy of itself on another system.
  - Remote login capability: A worm logs onto a remote system as a user and then uses command to copy itself from one system to the other.
- □ Worm can behave as a computer virus or bacteria or it could implant Trojan horse programs or perform any number of distruptive or destructive actions.

# <u>Bacteria</u>

- Bacteria are programs that do not explicitly damage any file.
- Typical bacterial program dupicate itself simultaneously, or create new files, each of which is a copy of the original source file of the bacterial program.
- The process continues and eventually takes up all the processor capacity, memory, or disk space, denying users access to those resources.

# Nature of Viruses

- Typical virus goes through the following four stages:
  - Dormant phase: Virus is idle.
    - Activated by some event, such as a date.
  - Propagation phase: places an identical copy of itself onto other programs or into certain system areas on the disk.
  - Triggering phase: The virus is activated to perform the function for which it was intended.
    - Activated by a varity of system events.
  - Execution phase: The function is performed. The function may be harmless, such as a message on the screen, or damaging, such as the destruction of program and data files.

# Structure of a simple virus

- A virus can be prepended or postpended to an executable program.
- When the infected program is invoked, it will first execute the virus code and then execute the original code of the program.

## Structure of a simple virus

```
program V :=
{goto main;
      1234567;
         subroutine infect-executable :=
             {loop:
             file := get-random-executable-file;
             if (first-line-of-file = 1234567)
                   then goto loop
                   else prepend V to file; }
         subroutine do-damage :=
             {whatever damage is to be done}
         subroutine trigger-pulled :=
             {return true if some condition holds}
         main-program :==
main:
             {infect-executable;
            if trigger-pulled then do-damage;
            goto next;
next:
```

# Detecting simple virus

☐ It is easy to detect the simple virus by simply comparing the size of the original and the infected program.

# Compression virus

- 1. For each uninfected file P2 that is found, the virus first compresses that file to produces P2', which is shorter than the original program by the size of the virus.
- 2. A copy of the virus is prepended to the compressed program.
- The compressed version of the original infected program, P1', is uncompressed.
- 4. The uncompressed original program is executed.

# Structure of a compression virus

```
program CV :=
{goto main;
     01234567;
       subroutine infect-executable :=
                  {loop:
                         file := get-random-executable-file;
                  if (first-line-of-file = 01234567) then goto loop;
                  compress file;
            (1)
                  prepend CV to file;
main: main-program :=
                   {if ask-permission then infect-executable;
                  uncompress rest-of-file;
            (3)
                  run uncompressed file;}
            (4)
```

## Structure of a compression virus



# Types of Viruses

- Parasitic virus: Most common form of virus. A parasitic virus attaches itself to executable files and replicates, when the infected program is executed, by finding other executable files to infect.
- Memory-resident virus: Lodges in main memory as part of a resident system program. From that point on, the virus infects every program that executes.
- Boot sector virus: Infects a master boot record or boot record and spreads when a system I booted from the disk containing the virus.
- Stealth virus: A form of virus explicitly designed to hide itself from detection by antivirus software.
- Polymorphic virus: A virus that muates with every infection, making detection by the "signature" of the virus impossible.

## Macro-viruses

- Platform independent, hence spread quickly.
- Macro virus infect documents, not executable portions of code.
- □ Very easy to spread, usually by electronic mail.

## Macro-viruses

#### □ In Microsoft word:

- Autoexecute: if a macro named AutoExec is in the "normal.dot" template or in a global template stored in Word's start up directory, it is executed whenever Word is started.
- Automacro: An automacro executes when a defined event occurs, such as opening or closing a document.
- Command macro: If a macro in a global macrofile or a macro attached to a document has the name of an existing Word command, it is executed whenever the user invokes that command (e.g File Save).

# Antivirus Approaches:

- Detection
- Identification
- Removal
- First-generation: simple scanner:
  - Identify signature of a virus
- Second-generation: Heuristic rules to search for probable virus infection.
  - Looks for fragments of code that are often associated with virus.
  - E.g. encryption loop in compression virus.
- Third-generation: Program are memory-resident which actively identify a virus by its actions rather than its structure in an infected program.
- Fourth-generation: contain a mix of first, second, and third generations.