数学专题 neuacm-2024Training

Pujx

东北大学 计算机科学与工程学院

2024年8月5日

• 如果存在某个整数 k, 使得 $a = k \cdot d$, 则称 $d \mid a (d 整除 a)$.

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.
- d 是 a 的约数, a 是 d 的倍数.

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.
- d 是 a 的约数, a 是 d 的倍数.

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.
- d 是 a 的约数, a 是 d 的倍数.

整除的性质

• $a \mid b \Leftrightarrow -a \mid b, a \mid -b, -a \mid -b, |a| \mid |b|$.

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.
- d 是 a 的约数, a 是 d 的倍数.

- $a \mid b \Leftrightarrow -a \mid b, a \mid -b, -a \mid -b, |a| \mid |b|$.
- $a \mid b, b \mid c \Rightarrow a \mid c$.

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.
- d 是 a 的约数, a 是 d 的倍数.

- $a \mid b \Leftrightarrow -a \mid b, a \mid -b, -a \mid -b, |a| \mid |b|$.
- $a \mid b, b \mid c \Rightarrow a \mid c$.
- $a \mid b, a \mid c \Leftrightarrow \forall x, y \in \mathbb{Z}, a \mid (bx + cy).$

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.
- d 是 a 的约数, a 是 d 的倍数.

- $a \mid b \Leftrightarrow -a \mid b, a \mid -b, -a \mid -b, |a| \mid |b|$.
- $a \mid b, b \mid c \Rightarrow a \mid c$.
- $a \mid b, a \mid c \Leftrightarrow \forall x, y \in \mathbb{Z}, a \mid (bx + cy).$
- $m \neq 0$, $a \mid b \Leftrightarrow ma \mid mb$.

- 如果存在某个整数 k, 使得 a = k ⋅ d, 则称 d | a (d 整除 a).
- | 是整除符号.
- d 是 a 的约数, a 是 d 的倍数.

- $a \mid b \Leftrightarrow -a \mid b, a \mid -b, -a \mid -b, |a| \mid |b|$.
- $a \mid b, b \mid c \Rightarrow a \mid c$.
- $a \mid b, a \mid c \Leftrightarrow \forall x, y \in \mathbb{Z}, a \mid (bx + cy).$
- $m \neq 0$, $a \mid b \Leftrightarrow ma \mid mb$.
- $a \mid b, b \mid a \Leftrightarrow b = \pm a$.

质数 (素数)

• 大于 1 的自然数中,除了 1 和本身以外,不再有其他因数的数.

质数 (素数)

- 大于 1 的自然数中,除了 1 和本身以外,不再有其他因数的数.
- 合数: 大于1的自然数中,除了能被1和本身整除外,还能 被其他数整除的数.

质数 (素数)

- 大于 1 的自然数中,除了 1 和本身以外,不再有其他因数的数.
- 合数: 大于1的自然数中,除了能被1和本身整除外,还能被其他数整除的数.
- 1 既不是质数, 也不是合数.

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_i$ (i < j).

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_j$ (i < j).

若 a 为合数, 则 ∃p | a, p ≤ √a.

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_j$ (i < j).

- 若 a 为合数, 则 ∃p | a, p ≤ √a.
- 判断 n 是否为质数: 枚举 $1 \sim \sqrt{n}$ 判断是否为因数, 复杂度 $\mathcal{O}(\sqrt{n})$.

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_j$ (i < j).

- 若 a 为合数, 则 ∃p | a, p ≤ √a.
- 判断 n 是否为质数: 枚举 $1 \sim \sqrt{n}$ 判断是否为因数, 复杂度 $\mathcal{O}(\sqrt{n})$.
- 因数个数公式: $d(n) = \prod_{i=1}^{k} (\alpha_i + 1)$.

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_j$ (i < j).

- 若 a 为合数, 则 ∃p | a, p ≤ √a.
- 判断 n 是否为质数: 枚举 $1 \sim \sqrt{n}$ 判断是否为因数, 复杂度 $\mathcal{O}(\sqrt{n})$.
- 因数个数公式: $d(n) = \prod_{i=1}^{k} (\alpha_i + 1)$.
- 因数和公式: $\sigma(n) = \prod_{i=1}^{k} \sum_{j=0}^{\alpha_i} p_i^j$.

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_j$ (i < j).

Question.1

如何证明质数的个数是无穷的?

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_j$ (i < j).

Question.1

如何证明质数的个数是无穷的?

Question.2

如何估算小于等于 n 的质数个数 $\pi(n)$? (自行上网查阅)

唯一分解定理

对于 $\forall a \in \mathbb{Z}, a > 1$, 能够唯一地写成 $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 其中 p_i 是质数, $\alpha_i > 0$, $i = 1, \dots, k$, 且 $p_i < p_j$ (i < j).

Question.1

如何证明质数的个数是无穷的?

Question.2

如何估算小于等于 n 的质数个数 $\pi(n)$? (自行上网查阅) $\pi(n)$ 的下界为 $\log_2(\log_2 n)$, $\pi(n)$ 的上界为 $\frac{n}{\ln n}$.

问题

求 1 到 n 内的所有质数. $1 \le n \le 10^6$.

东北大学 计算机科学与工程学院

问题

求 1 到 n 内的所有质数. $1 \le n \le 10^6$.

• 考虑朴素算法, 即逐个判断每个数是否为质数.

问题

求 1 到 n 内的所有质数. $1 \le n \le 10^6$.

- 考虑朴素算法, 即逐个判断每个数是否为质数.
- 时间复杂度 $\sum_{i=1}^{n} \sqrt{i} = \mathcal{O}(n\sqrt{n})$.

埃氏筛 (Sieve of Eratosthenes)

用质数把质数的倍数筛掉.

埃氏筛 (Sieve of Eratosthenes)

用质数把质数的倍数筛掉.

埃氏筛 (Sieve of Eratosthenes)

用质数把质数的倍数筛掉.

● 时间复杂度: $\mathcal{O}(n\log(\log n))$ (Mertens' 2nd theorem).

埃氏筛 (Sieve of Eratosthenes)

用质数把质数的倍数筛掉.

```
void sieve(int n) {
   for (int i = 2; i <= n; i++)
      if (!not_prime[i]) {
        prime[++tot] = i;
        for (int j = 2 * i; j <= n; j += i)
            not_prime[j] = 1;
      }
}</pre>
```

- 时间复杂度: $\mathcal{O}(n\log(\log n))$ (Mertens' 2nd theorem).
- 改进思路: 有些数会被多个因子筛除, 例如 6, 会被 2,3 各筛 一次.

欧拉筛 (Euler Sieve)

每个合数只需要被其最小的质因子筛掉.

欧拉筛 (Euler Sieve)

每个合数只需要被其最小的质因子筛掉.

```
void sieve(int n) {
    for (int i = 2; i <= n; i++) {
        if (!not_prime[i]) prime[++tot] = i;
        for (int j = 1; j <= tot && i * prime[j] <= n; j++) {</pre>
            not_prime[i * prime[j]] = 1;
            if (i % prime[j] == 0) break;
```

欧拉筛 (Euler Sieve)

每个合数只需要被其最小的质因子筛掉.

```
void sieve(int n) {
   for (int i = 2; i <= n; i++) {
      if (!not_prime[i]) prime[++tot] = i;
      for (int j = 1; j <= tot && i * prime[j] <= n; j++) {
          not_prime[i * prime[j]] = 1;
          if (i % prime[j] == 0) break;
      }
   }
}</pre>
```

• 时间复杂度: O(n).

Prime Distance (POJ 2689)

求 [L, R] 区间中, 距离最近的一对和最远的一对质数. 多组询问. $1 \le L < R \le 2147483647, \sum (R - L + 1) \le 10^6$.

GCD 和 LCM

• $d \in \mathbb{Z}$, $a_1, a_2 \in \mathbb{Z}$.

GCD 和 LCM

- $d \in \mathbb{Z}$, $a_1, a_2 \in \mathbb{Z}$.
- 如果 $d \mid a_1, d \mid a_2$, 则称 d 为 a_1, a_2 的公因数.

GCD 和 LCM

- $d \in \mathbb{Z}$, $a_1, a_2 \in \mathbb{Z}$.
- 如果 $d \mid a_1, d \mid a_2$, 则称 d 为 a_1, a_2 的公因数.
- 如果 $a_1 \mid d, a_2 \mid d$, 则称 d 为 a_1, a_2 的公倍数.

- $d \in \mathbb{Z}$, $a_1, a_2 \in \mathbb{Z}$.
- 如果 $d \mid a_1, d \mid a_2$, 则称 d 为 a_1, a_2 的公因数.
- 如果 $a_1 \mid d, a_2 \mid d$, 则称 d 为 a_1, a_2 的公倍数.
- a₁, a₂ 的所有公因数中最大的称为最大公因数 (Greatest Common Divisor), 记为 (a₁, a₂).

- $d \in \mathbb{Z}$, $a_1, a_2 \in \mathbb{Z}$.
- 如果 $d \mid a_1, d \mid a_2$, 则称 d 为 a_1, a_2 的公因数.
- 如果 $a_1 \mid d, a_2 \mid d$, 则称 d 为 a_1, a_2 的公倍数.
- a₁, a₂ 的所有公因数中最大的称为最大公因数 (Greatest Common Divisor), 记为 (a₁, a₂).
- a₁, a₂ 的所有公倍数中最小的称为最小公倍数 (Leatest Common Multiple), 记为 [a₁, a₂].

- $d \in \mathbb{Z}$, $a_1, a_2 \in \mathbb{Z}$.
- 如果 $d \mid a_1, d \mid a_2$, 则称 d 为 a_1, a_2 的公因数.
- 如果 $a_1 \mid d, a_2 \mid d$, 则称 d 为 a_1, a_2 的公倍数.
- a₁, a₂ 的所有公因数中最大的称为最大公因数 (Greatest Common Divisor), 记为 (a₁, a₂).
- a₁, a₂ 的所有公倍数中最小的称为最小公倍数 (Leatest Common Multiple), 记为 [a₁, a₂].
- $[a_1, a_2] = \frac{a_1 a_2}{(a_1, a_2)}$.

- $d \in \mathbb{Z}$, $a_1, a_2 \in \mathbb{Z}$.
- 如果 $d \mid a_1, d \mid a_2$, 则称 d 为 a_1, a_2 的公因数.
- 如果 $a_1 \mid d, a_2 \mid d$, 则称 d 为 a_1, a_2 的公倍数.
- a₁, a₂ 的所有公因数中最大的称为最大公因数 (Greatest Common Divisor), 记为 (a₁, a₂).
- a₁, a₂ 的所有公倍数中最小的称为最小公倍数 (Leatest Common Multiple), 记为 [a₁, a₂].
- $\bullet \ [a_1,a_2] = \frac{a_1 a_2}{(a_1,a_2)}.$
- $(a_1, a_2) = 1 \Leftrightarrow a_1, a_2$ 互质.

问题

给定整数 a, b, 计算 (a, b). $1 \le a, b \le 10^{18}$.

问题

给定整数 a, b, 计算 (a, b). $1 \le a, b \le 10^{18}$.

朴素算法: 从大到小枚举每个数, 判断是否为 GCD.
 ②(min{a, b}).

问题

给定整数 a, b, 计算 (a, b). $1 \le a, b \le 10^{18}$.

• 朴素算法: 从大到小枚举每个数, 判断是否为 GCD. $\mathcal{O}(\min\{a,b\})$.

辗转相减法

$$(a, b) = (b, a - b).$$

问题

给定整数 a, b, 计算 (a, b). $1 \le a, b \le 10^{18}$.

欧几里得算法 (辗转相除法)

$$(a, b) = (b, a\% b).$$

问题

给定整数 a, b, 计算 (a, b). $1 \le a, b \le 10^{18}$.

欧几里得算法 (辗转相除法)

```
(a, b) = (b, a % b).
int gcd(int a, int b) {
    return !b ? a : gcd(b, a % b);
}
```

问题

给定整数 a, b, 计算 (a, b). $1 \le a, b \le 10^{18}$.

欧几里得算法 (辗转相除法)

• 时间复杂度: $\mathcal{O}(\log(\min\{a,b\}))$.

裴蜀定理

对任意整数 a, b (a, b 不全为 0), 一定存在整数 x, y, 使不定方程 ax + by = (a, b) 成立. (证明略)

东北大学 计算机科学与工程学院

问题

问题

•
$$ax + by = (a, b),$$

问题

- ax + by = (a, b),
- bx' + (a% b)y' = (b, a% b),

问题

- ax + by = (a, b),
- bx' + (a% b)y' = (b, a% b),
- $\pm (a, b) = (b, a\% b), a\% b = a \left\lfloor \frac{a}{b} \right\rfloor b,$

问题

- ax + by = (a, b),
- bx' + (a% b)y' = (b, a% b),
- $\pm (a,b) = (b,a\%b), a\%b = a \left\lfloor \frac{a}{b} \right\rfloor b,$
- 可得 $bx' + \left(a \left\lfloor \frac{a}{b} \right\rfloor b\right) y' = (a, b),$

问题

- ax + by = (a, b),
- bx' + (a% b)y' = (b, a% b),
- $\pm (a,b) = (b,a\%b), a\%b = a \left\lfloor \frac{a}{b} \right\rfloor b,$
- 可得 $bx' + \left(a \left\lfloor \frac{a}{b} \right\rfloor b\right) y' = (a, b),$
- 整理得 $ay' + b\left(x' \left\lfloor \frac{a}{b} \right\rfloor y'\right) = (a, b),$

问题

- ax + by = (a, b),
- bx' + (a% b)y' = (b, a% b),
- 可得 $bx' + \left(a \left\lfloor \frac{a}{b} \right\rfloor b\right) y' = (a, b),$
- 整理得 $ay' + b\left(x' \left\lfloor \frac{a}{b} \right\rfloor y'\right) = (a, b),$
- 带回原方程可得 $x = y', y = x' \left| \frac{a}{b} \right| y'$, 递归求解即可.

问题

```
int exgcd(int a, int b, int& x, int& y) {
   if (!b) return x = 1, y = 0, a;
   int r = exgcd(b, a % b, y, x);
   y -= (a / b) * x;
   return r;
}
```

问题

给定整数 a, b (a, b 不全为 0), 求不定方程 ax + by = (a, b) 的整数解.

```
int exgcd(int a, int b, int& x, int& y) {
   if (!b) return x = 1, y = 0, a;
   int r = exgcd(b, a % b, y, x);
   y -= (a / b) * x;
   return r;
}
```

时间复杂度: 𝒪(log(min{a, b})).

问题

给定整数 a, b (a, b 不全为 0), 求不定方程 ax + by = (a, b) 的整数解.

• 求出的为方程的特解 (x_0, y_0) , 通解为

$$\left(x_0+k\frac{b}{(a,b)},y_0-k\frac{a}{(a,b)}\right).$$

问题

给定整数 a, b (a, b 不全为 0), 求不定方程 ax + by = (a, b) 的整数解.

• 求出的为方程的特解 (x_0, y_0) , 通解为

$$\left(x_0+k\frac{b}{(a,b)},y_0-k\frac{a}{(a,b)}\right).$$

• ax + by = d 当且仅当 $(a, b) \mid d$. 可转换为方程 $ax' + by' = (a, b), k = \frac{d}{(a, b)}, x' = \frac{x}{k}, y' = \frac{y}{k}$ 计算.

青蛙的约会 (POJ 1061)

周长为 L 的圆, 坐标为 [0, L-1].

两只青蛙在圆上, 初始坐标为 x,y, 都向顺时针方向跳, 每次跳动的距离为 m,n, 求他们第一次相遇时跳了多少次, 或者不能相遇输出 Impossible.

 $x \neq y < 2 \times 10^9, 0 < m, n < 2 \times 10^9, 0 < L < 2.1 \times 10^9.$

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 为模 m 同余, 记为 $a = b \pmod{m}$.

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 为模 m 同余, 记为 $a = b \pmod{m}$.

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 为模 m 同余, 记为 $a = b \pmod{m}$.

同余的性质

• $a \equiv a \pm m \pmod{m}$.

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 对模 m 同余, 记为 $a \equiv b \pmod{m}$.

- $a \equiv a \pm m \pmod{m}$.
- $a \pm b \equiv (a \mod m) \pm (b \mod m) \pmod m$.

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 为模 m 同余, 记为 $a = b \pmod{m}$.

- $a \equiv a \pm m \pmod{m}$.
- $a \pm b \equiv (a \mod m) \pm (b \mod m) \pmod m$.
- $a \times b \equiv (a \mod m) \times (b \mod m) \pmod m$.

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 对模 m 同余, 记为 $a \equiv b \pmod{m}$.

- $a \equiv a \pm m \pmod{m}$.
- $a \pm b \equiv (a \mod m) \pm (b \mod m) \pmod m$.
- $a \times b \equiv (a \mod m) \times (b \mod m) \pmod m$.
- $a \not\in b$ 的倍数 $\Leftrightarrow a \equiv 0 \pmod{b}$.

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 为模 m 同余, 记为 $a = b \pmod{m}$.

- $a \equiv a \pm m \pmod{m}$.
- $a \pm b \equiv (a \mod m) \pm (b \mod m) \pmod m$.
- $\bullet \ a \times b \equiv (a \mod m) \times (b \mod m) \pmod m.$
- $a \not\in b$ 的倍数 $\Leftrightarrow a \equiv 0 \pmod{b}$.
- 对于只含有 +, -, × 的运算, 可以在任何时刻对其中的数取模, 其结果和原来的式子都是同余的.

• a, b 两个整数, 对于一个正模数 m, 如果满足 a% m = b% m, 则称 a = b 对模 m 同余, 记为 $a \equiv b \pmod{m}$.

- $a \equiv a \pm m \pmod{m}$.
- $a \pm b \equiv (a \mod m) \pm (b \mod m) \pmod m$.
- $a \times b \equiv (a \mod m) \times (b \mod m) \pmod m$.
- $a \not\in b$ 的倍数 $\Leftrightarrow a \equiv 0 \pmod{b}$.
- 对于只含有 +, −, × 的运算, 可以在任何时刻对其中的数取模, 其结果和原来的式子都是同余的.
- $a \div b \equiv (a \mod m) \div (b \mod m) \pmod m$?

问题

问题

计算 $a^b \mod m$, $0 \le b \le 10^{18}$.

朴素算法: O(b), 代价太高.

问题

- 朴素算法: 𝒪(b), 代价太高.
- 快速幂: 二进制取幂.

问题

- 朴素算法: 𝒪(b), 代价太高.
- 快速幂: 二进制取幂.
- 以 5^{27} 为例, $27 = (11011)_2$, $5^{27} = 5^1 \times 5^2 \times 5^8 \times 5^{16}$.

问题

- 朴素算法: 𝒪(b), 代价太高.
- 快速幂: 二进制取幂.
- 以 5^{27} 为例, $27 = (11011)_2$, $5^{27} = 5^1 \times 5^2 \times 5^8 \times 5^{16}$.

 int ksm(int a, int b, int m) {
 int ans = 1;
 for (; b; a = 111 * a * a % m, b >>= 1)
 if (b & 1) ans = 111 * ans * a % m;
 return ans;
 }

快速幂

问题

计算 $a^b \mod m$, $0 \le b \le 10^{18}$.

- 朴素算法: O(b), 代价太高.
- 快速幂: 二进制取幂.
- 以 5^{27} 为例, $27 = (11011)_2$, $5^{27} = 5^1 \times 5^2 \times 5^8 \times 5^{16}$.

```
int ksm(int a, int b, int m) {
   int ans = 1;
   for (; b; a = 111 * a * a % m, b >>= 1)
       if (b & 1) ans = 111 * ans * a % m;
   return ans;
}
```

● 时间复杂度: O(log n).

逆元

● a÷b 在同余式中应当如何计算?

逆元

• a ÷ b 在同余式中应当如何计算?

逆元

如果 $a, b \in \mathbb{Z}_m$, 满足 $ab \equiv 1 \pmod{m}$, 则称 $b \in a$ 的逆元, 记作 a^{-1} .

逆元

● a ÷ b 在同余式中应当如何计算?

逆元

如果 $a, b \in \mathbb{Z}_m$, 满足 $ab \equiv 1 \pmod{m}$, 则称 $b \in a$ 的逆元, 记作 a^{-1} .

• 如何判定在 \mathbb{Z}_m 中, a 是否有逆元? 如果有, 如何计算 a^{-1} ?

• *ab* = *km* + 1, 扩展欧几里得算法 (exgcd).

东北大学 计算机科学与工程学院

- ab = km + 1, 扩展欧几里得算法 (exgcd).
- 有逆元 (不定方程有解) 当且仅当 (a, m) = 1.

- ab = km + 1, 扩展欧几里得算法 (exgcd).
- 有逆元 (不定方程有解) 当且仅当 (a, m) = 1.
- 如果 m 为质数,则任意 0 < a < m, a 均有逆元.

费马小定理

设 p 为质数, 如果 $p \nmid a$, 那么 $a^{p-1} \equiv 1 \pmod{p}$.

费马小定理

设 p 为质数, 如果 $p \nmid a$, 那么 $a^{p-1} \equiv 1 \pmod{p}$.

• 设 p 为质数, $a \in \mathbb{Z}_p$, 0 < a < p, 则有 $a^{-1} \equiv a^{p-2} \pmod{p}$.

费马小定理

设 p 为质数, 如果 $p \nmid a$, 那么 $a^{p-1} \equiv 1 \pmod{p}$.

- 设 p 为质数, $a \in \mathbb{Z}_p$, 0 < a < p, 则有 $a^{-1} \equiv a^{p-2} \pmod{p}$.
- 快速幂实现, 时间复杂度 $\mathcal{O}(\log n)$.

费马小定理

设 p 为质数, 如果 $p \nmid a$, 那么 $a^{p-1} \equiv 1 \pmod{p}$.

- 设 p 为质数, $a \in \mathbb{Z}_p$, 0 < a < p, 则有 $a^{-1} \equiv a^{p-2} \pmod{p}$.
- 快速幂实现, 时间复杂度 $\mathcal{O}(\log n)$.
- 缺点:模数限制较大,只能为质数.

欧拉函数

欧拉函数 $\varphi(n)$ 为正整数 n 与序列 $1, 2, \cdots, n-1, n$ 中互质的数的个数. 即 $\varphi(n) = \sum_{i=1}^{n} [(i, n) = 1].$

欧拉函数

欧拉函数 $\varphi(n)$ 为正整数 n 与序列 $1, 2, \dots, n-1, n$ 中互质的数的个数. 即 $\varphi(n) = \sum_{i=1}^{n} [(i, n) = 1].$

• 设
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
, 则

$$\varphi(n) = \prod_{i=1}^{k} (p_i - 1) p_i^{\alpha_i - 1}.$$

• 求单点的欧拉函数值 $\varphi(n)$. 在求质因子的基础上略加修改.

• 求单点的欧拉函数值 $\varphi(n)$. 在求质因子的基础上略加修改.

```
int get_phi(int n) {
    int phi = 1;
   for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            phi *= (i - 1), n /= i;
            while (n \% i == 0) phi *= i, n /= i;
        }
    }
    if (n > 1) phi *= (n - 1);
   return phi;
```

• 求 $\varphi(1), \varphi(2), \cdots, \varphi(n)$ 的值. 在欧拉筛的基础上略加修改.

• 求 $\varphi(1), \varphi(2), \dots, \varphi(n)$ 的值. 在欧拉筛的基础上略加修改.

```
void init_phi(int n) {
    phi[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!not_prime[i]) prime[++tot] = i, phi[i] = i - 1;
        for (int j = 1; j <= tot && i * prime[j] <= n; j++) {
            not_prime[i * prime[j]] = 1;
            if (i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break:
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
```

欧拉定理

如果 (a, m) = 1, 那么 $a^{\varphi(m)} \equiv 1 \pmod{m}$.

欧拉定理

如果 (a, m) = 1, 那么 $a^{\varphi(m)} \equiv 1 \pmod{m}$.

• 设 m 为正整数, $a \in \mathbb{Z}_m$, (a, m) = 1, 则有 $a^{-1} \equiv a^{\varphi(m)-1} \pmod{m}$.

问题

计算 1 到 n 在模数为质数 p 意义下的逆元. $1 \le n \le 10^7$.

东北大学 计算机科学与工程学院

问题

计算 1 到 n 在模数为质数 p 意义下的逆元. $1 \le n \le 10^7$.

问题

计算 1 到 n 在模数为质数 p 意义下的逆元. $1 \le n \le 10^7$.

$$\bullet \Rightarrow \left\lfloor \frac{p}{i} \right\rfloor i + p \% i \equiv 0 \pmod{p}$$

问题

计算 1 到 n 在模数为质数 p 意义下的逆元. $1 \le n \le 10^7$.

$$\bullet \Rightarrow \left| \frac{p}{i} \right| i + p \% i \equiv 0 \pmod{p}$$

$$\bullet \Rightarrow i^{-1} \equiv -\left\lfloor \frac{p}{i} \right\rfloor (p \% i)^{-1} \pmod{p}.$$

《孙子算经》

今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?

《孙子算经》

今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?

• 答案: 23.

《孙子算经》

今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?

- 答案: 23.
- $x \equiv 23 \pmod{105}$.

中国剩余定理

方程组
$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_k \pmod{m_k} \end{cases} (\forall i \neq j, (m_i, m_j) = 1) 的解$$

中国剩余定理

方程组
$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_k \pmod{m_k} \end{cases} (\forall i \neq j, (m_i, m_j) = 1) \text{ 的解为}$$

$$x \equiv \sum_{i=1}^k M_i' M_i a_i \pmod{M}$$

其中
$$M=m_1m_2\cdots m_k$$
, $M_i=\frac{M}{m_i}$, $M_i'M_i\equiv 1\pmod{m_i}$.

扩展中国剩余定理 (exCRT)

扩展中国剩余定理

求方程组
$$\begin{cases} x \equiv \mathsf{a}_1 \pmod{m_1} \\ x \equiv \mathsf{a}_2 \pmod{m_2} \\ \vdots \\ x \equiv \mathsf{a}_k \pmod{m_k} \end{cases}$$
的解.

 加法原理: 做某件事情有几种选择,每种选择的方案数之和 就是做这件事情的方案数.

- 加法原理: 做某件事情有几种选择,每种选择的方案数之和 就是做这件事情的方案数.
- 乘法原理: 做某件事情分为几步,每步的方案数是独立的,则 它们的积就是做这件事情的方案数.

- 加法原理: 做某件事情有几种选择,每种选择的方案数之和 就是做这件事情的方案数.
- 乘法原理: 做某件事情分为几步,每步的方案数是独立的,则 它们的积就是做这件事情的方案数.

Question.3

求满足 $x + y \le n$ 的正整数解的数量.

- 加法原理: 做某件事情有几种选择,每种选择的方案数之和 就是做这件事情的方案数.
- 乘法原理: 做某件事情分为几步,每步的方案数是独立的,则 它们的积就是做这件事情的方案数.

Question.3

求满足 $x + y \leq n$ 的正整数解的数量.

Question.4

证明: 因数个数公式: $d(n) = \prod_{i=1}^{k} (\alpha_i + 1)$.

排列数

排列

从 n 个不同元素中取出 $m(m \le n)$ 个元素, 按照一定的顺序排成一列, 叫做从 n 个元素中取出 m 个元素的一个排列. 所有不同的排列的个数称为排列数, 记作 P_n^m 或 A_n^m . 特别地, 当 m = n 时, 这个排列被称作全排列.

排列数

排列

从 n 个不同元素中取出 $m(m \le n)$ 个元素, 按照一定的顺序排成一列, 叫做从 n 个元素中取出 m 个元素的一个排列. 所有不同的排列的个数称为排列数, 记作 P_n^m 或 A_n^m . 特别地, 当 m = n 时, 这个排列被称作全排列.

• 下降幂: $n^{\underline{r}} = n(n-1)(n-2)\cdots(n-r+1)$, $n^{\underline{0}} = 1$.

排列数

排列

从 n 个不同元素中取出 $m(m \le n)$ 个元素,按照一定的顺序排成一列,叫做从 n 个元素中取出 m 个元素的一个排列. 所有不同的排列的个数称为排列数,记作 P_n^m 或 A_n^m . 特别地,当 m=n 时,这个排列被称作全排列.

- 下降幂: $n^{\underline{r}} = n(n-1)(n-2)\cdots(n-r+1)$, $n^{\underline{0}} = 1$.
- 上升幂: $n^{\overline{r}} = n(n+1)(n+2)\cdots(n+r-1)$, $n^{\overline{0}} = 1$.

排列数

排列

从 n 个不同元素中取出 $m(m \le n)$ 个元素,按照一定的顺序排成一列,叫做从 n 个元素中取出 m 个元素的一个排列. 所有不同的排列的个数称为排列数,记作 P_n^m 或 A_n^m . 特别地,当 m=n 时,这个排列被称作全排列.

- 下降幂: $n^{\underline{r}} = n(n-1)(n-2)\cdots(n-r+1)$, $n^{\underline{0}} = 1$.
- 上升幂: $n^{\overline{r}} = n(n+1)(n+2)\cdots(n+r-1)$, $n^{\overline{0}} = 1$.
- 阶乘: $n! = n(n-1)\cdots 1$, 0! = 1.

排列数

排列

从 n 个不同元素中取出 $m(m \le n)$ 个元素, 按照一定的顺序排成一列, 叫做从 n 个元素中取出 m 个元素的一个排列. 所有不同的排列的个数称为排列数, 记作 P_n^m 或 A_n^m . 特别地, 当 m = n 时, 这个排列被称作全排列.

- 下降幂: $n^r = n(n-1)(n-2)\cdots(n-r+1)$, $n^0 = 1$.
- 上升幂: $n^{\overline{r}} = n(n+1)(n+2)\cdots(n+r-1), n^{\overline{0}} = 1.$
- 阶乘: $n! = n(n-1)\cdots 1$, 0! = 1.
- 排列数: $A_n^m = \frac{n!}{(n-m)!} = n^{\underline{m}}$.

组合

从 n 个不同的元素中取出 $m(m \le n)$ 个元素为一组,叫做从 n 个元素中取出 m 个元素的一个组合. 所有不同的组合的个数称为组合数, 记作 C_n^m 或 $\binom{n}{m}$.

组合

从 n 个不同的元素中取出 $m(m \le n)$ 个元素为一组, 叫做从 n 个元素中取出 m 个元素的一个组合. 所有不同的组合的个数称为组合数, 记作 C_n^m 或 $\binom{n}{m}$.

• 组合数:
$$\binom{n}{m} = \frac{n!}{m!} = \frac{n!}{(n-m)!m!}$$
.

组合

从 n 个不同的元素中取出 $m(m \le n)$ 个元素为一组, 叫做从 n 个元素中取出 m 个元素的一个组合. 所有不同的组合的个数称为组合数, 记作 C_n^m 或 $\binom{n}{m}$.

• 组合数:
$$\binom{n}{m} = \frac{n!}{m!} = \frac{n!}{(n-m)!m!}$$
.

•
$$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$$
. (递推求组合数).

组合

从 n 个不同的元素中取出 $m(m \le n)$ 个元素为一组,叫做从 n 个元素中取出 m 个元素的一个组合. 所有不同的组合的个数称为组合数, 记作 C_n^m 或 $\binom{n}{m}$.

• 组合数:
$$\binom{n}{m} = \frac{n!}{m!} = \frac{n!}{(n-m)!m!}$$
.

•
$$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$$
. (递推求组合数).

$$\bullet \ \binom{n}{m} = \frac{n}{m} \binom{n-1}{m-1}.$$

组合

从 n 个不同的元素中取出 $m(m \le n)$ 个元素为一组, 叫做从 n 个元素中取出 m 个元素的一个组合. 所有不同的组合的个数称为组合数, 记作 C_n^m 或 $\binom{n}{m}$.

• 组合数:
$$\binom{n}{m} = \frac{n!}{m!} = \frac{n!}{(n-m)!m!}$$
.

•
$$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$$
. (递推求组合数).

$$\bullet \binom{n}{m} = \frac{n}{m} \binom{n-1}{m-1}.$$

$$\bullet \ \binom{n}{m} = \frac{n-m+1}{m} \binom{n}{m-1}.$$

$$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}, \binom{n}{0} = 1$$

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10
0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
2	1	2	1	0	0	0	0	0	0	0	0
3	1	3	3	1	0	0	0	0	0	0	0
4	1	4	6	4	1	0	0	0	0	0	0
5	1	5	10	10	5	1	0	0	0	0	0
6	1	6	15	20	15	6	1	0	0	0	0
7	1	7	21	35	35	21	7	1	0	0	0
8	1	8	28	56	70	56	28	8	1	0	0
9	1	9	36	84	126	126	84	36	9	1	0
10	1	10	45	120	210	252	210	120	45	10	1

不定方程解的数量

不定方程解的数量

$$\bullet \binom{n-1}{k-1}.$$

不定方程解的数量

- $\bullet \binom{n-1}{k-1}.$
- $x_i \geqslant a_i$?

不定方程解的数量

- $\bullet \binom{n-1}{k-1}.$
- $x_i \geqslant a_i$?
- $x_1 + x_2 + \cdots + x_k \leq n$?

网络路径计数问题

在 $n \times m$ 的网格图上, 从 (0,0) 走到 (n,m), 每次只能向右走或向上走, 求方案数.

网络路径计数问题

在 $n \times m$ 的网格图上, 从 (0,0) 走到 (n,m), 每次只能向右走或向上走, 求方案数.

• 组合数学,
$$\binom{n+m}{n}$$
.

网络路径计数问题

在 $n \times m$ 的网格图上, 从 (0,0) 走到 (n,m), 每次只能向右走或向上走, 求方案数.

- 组合数学, $\binom{n+m}{n}$.
- → 动态规划, dp[i][j] = dp[i-1][j] + dp[i][j-1], 可以处理有障碍物的情况.

第二类斯特林数

第二类斯特林数表示将 n 个不同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 $S_2(n,k)$ 或 n k

第二类斯特林数

第二类斯特林数表示将 n 个不同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 $S_2(n,k)$ 或 n k

• 插入 1 个小球时, 有两种方案:

第二类斯特林数

第二类斯特林数表示将 n 个不同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 $S_2(n,k)$ 或 $\begin{cases} n \\ k \end{cases}$

- 插入 1 个小球时, 有两种方案:
 - 将小球单独放入一个空盒子中,有 $\begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}$ 种方案;

第二类斯特林数

第二类斯特林数表示将 n 个不同的小球, 放入 k 个相同的盒子 中,每个盒子至少放 1 个小球的不同的方案数,记作 $S_2(n,k)$ 或

- 插入 1 个小球时, 有两种方案:
 - ① 将小球单独放入一个空盒子中,有 $\binom{n-1}{k-1}$ 种方案; ② 将小球放入一个现有的非空盒子中,有 $k \binom{n-1}{k}$ 种方案.

第二类斯特林数

第二类斯特林数表示将 n 个不同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 $S_2(n,k)$ 或 $\begin{cases} n \\ k \end{cases}$

- 插入 1 个小球时, 有两种方案:
 - 4 将小球单独放入一个空盒子中,有 $\begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}$ 种方案;
 - ② 将小球放入一个现有的非空盒子中, 有 $k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}$ 种方案.
- 递推式: $\begin{Bmatrix} n \\ k \end{Bmatrix} = \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix} + k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}, \begin{Bmatrix} n \\ 0 \end{Bmatrix} = [n=0].$

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix} + k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}, \begin{Bmatrix} n \\ 0 \end{Bmatrix} = [n=0]$$

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10
0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0	0	0
3	0	1	3	1	0	0	0	0	0	0	0
4	0	1	7	6	1	0	0	0	0	0	0
5	0	1	15	25	10	1	0	0	0	0	0
6	0	1	31	90	65	15	1	0	0	0	0
7	0	1	63	301	350	140	21	1	0	0	0
8	0	1	127	966	1701	1050	266	28	1	0	0
9	0	1	255	3025	7770	6951	2646	462	36	1	0
10	0	1	511	9330	34105	42525	22827	5880	750	45	1

k 部分拆数

k 部分拆数

k 部分拆数表示将 n 个相同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 p(n,k).

k 部分拆数

k 部分拆数表示将 n 个相同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 p(n,k).

• k 部分拆数是下面方程的解的个数.

$$n - k = x_1 + x_2 + \cdots + x_k, x_1 \ge x_2 \ge \cdots \ge x_k \ge 0$$

k 部分拆数

k 部分拆数表示将 n 个相同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 p(n,k).

• k 部分拆数是下面方程的解的个数.

$$n - k = x_1 + x_2 + \dots + x_k, x_1 \ge x_2 \ge \dots \ge x_k \ge 0$$

者其中有 i 个数非零, 恰好有 p(n − k, i) 个解.

k 部分拆数

k 部分拆数表示将 n 个相同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 p(n,k).

● k 部分拆数是下面方程的解的个数.

$$n - k = x_1 + x_2 + \dots + x_k, x_1 \ge x_2 \ge \dots \ge x_k \ge 0$$

- 者其中有 i 个数非零, 恰好有 p(n − k, i) 个解.
- 可以得到 $p(n,k) = \sum_{i=0}^{k} p(n-k,i)$.

k 部分拆数

k 部分拆数表示将 n 个相同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 p(n,k).

•
$$p(n,k) = \sum_{i=0}^{k} p(n-k,i).$$

k 部分拆数

k 部分拆数表示将 n 个相同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 p(n,k).

•
$$p(n,k) = \sum_{i=0}^{k} p(n-k,i).$$

•
$$p(n-1, k-1) = \sum_{i=0}^{k-1} p(n-k, i).$$

k 部分拆数

k 部分拆数表示将 n 个相同的小球, 放入 k 个相同的盒子中, 每个盒子至少放 1 个小球的不同的方案数, 记作 p(n,k).

•
$$p(n,k) = \sum_{i=0}^{k} p(n-k,i).$$

•
$$p(n-1, k-1) = \sum_{i=0}^{k-1} p(n-k, i).$$

• 两式相减得递推式: p(n,k) = p(n-1,k-1) + p(n-k,k), p(n,0) = [n=0].

球与盒子问题

球与盒子

n 个相同/不同的小球, 放入 k 个相同/不同的盒子, 每个盒子可以/不可以为空, 求方案数.

球与盒子问题

球与盒子

n 个相同/不同的小球, 放入 k 个相同/不同的盒子, 每个盒子可以/不可以为空, 求方案数.

	k 个盒子	盒子可以为空	盒子不可以为空
有标号	有标号	, k ⁿ	$k!S_{2}\left(n,k\right)$
有标号	无标号	$\sum_{i=1}^{k} S_2(n,i)$	$S_2(n,k)$
无标号	有标号	$\binom{n-1}{k-1}$	$\binom{n-1}{k-1}$
无标号	无标号	p(n+k,k)	p(n, k)

Thanks!