Bài 7: Ngôn ngữ tân từ

Nội dung

- 1. Giới thiệu
- 2. Cú pháp
- 3. Các định nghĩa
- 4. Diễn giải của một công thức
- 5. Quy tắc lượng giá công thức
- 6. Ngôn ngữ tân từ có biến là n bộ
- 7. Ngôn ngữ tân từ có biến là miền giá trị

1. Giới thiệu

Ngôn ngữ tân từ là ngôn ngữ truy vấn hình thức do Codd đề nghị (1972-1973) được Lacroit, Proix và Ullman phát triển, cài đặt trong một số ngôn ngữ như QBE, ALPHA...

• Đặc điểm:

- Ngôn ngữ phi thủ tục
- Rút trích cái gì chứ không phải rút trích như thế nào
- Khả năng diễn đạt tương đương với đại số quan hệ

Có hai loại:

- Có biến là n bộ
- Có biến là miền giá trị

2. Cú pháp

- (): biểu thức trong ngoặc
- Biến: dùng chữ thường ở cuối bộ ký tự: x,y,z,t,s...
- Hằng: dùng chữ thường ở đầu bộ ký tự: a,b,c,...
- **Hàm**: là một ánh xạ từ một miền giá trị vào tập hợp gồm 2 giá trị: đúng hoặc sai. Thường dùng chữ thường ở giữa bộ ký tự: h,g,f,...
- ◆ **Tân từ**: là một biểu thức được xây dựng dựa trên biểu thức logic. Dùng chữ in hoa ở giữa bộ ký tự P,Q,R...
- Các phép toán logic: phủ định (¬), kéo theo (⇒), và (∧), hoặc (∨).
- Các lượng từ: với mọi (∀), tồn tại (∃)

3. Các định nghĩa (1)

Định nghĩa 1: Tân từ 1 ngôi

- Tân từ 1 ngôi được định nghĩa trên tập X và biến x có giá trị chạy trên các phần tử của X.
- Với mỗi giá trị của x, tân từ P(x) là một mệnh đề logic, tức là nó có giá trị đúng (Đ) hoặc sai (S)

Ví dụ

- P(x), x là biến chạy trên X, là một tân từ
- P(gt), $gt \in X$ là một mệnh đề, $X = \{Nguyen Van A, Tran Thi B\}$
- Với tân từ NỮ(x) được xác định: "x là người nữ". Khi đó
- Mệnh đề NỮ (Nguyen Van A): cho kết quả Sai
- NỮ (Tran Thi B): cho kết quả Đúng

3. Các định nghĩa (2)

• Định nghĩa 2: Tân từ n ngôi

- Tân từ n ngôi được định nghĩa trên các tập X₁, X₂, ..., X_n và n biến x₁, x₂, ..., x_n lấy giá trị trên các tập X_i tương ứng.
- Với mỗi giá trị $a_i \in X_i$, $x_i = a_i$. Tân từ n ngôi là một mệnh đề.
- Ký hiệu: P(x₁, x₂, ..., x_n)
- Ví dụ: $CHA(x_1,x_2)$: " x_1 là CHA của x_2 "
- **■** Chú ý:
 - Các X_i không nhất thiết phải là rời nhau
 - Với $x_i=a_i$, $P(x_1, x_2, ..., a_i, ..., x_n)$ là tân từ n-1 ngôi

3. Các định nghĩa (3)

Định nghĩa 3: Từ

- Từ là một hằng hay là một biến
- Nếu f(t₁, t₂, ..., t_n) là hàm n ngôi thì f là một từ

Định nghĩa 4: Công thức

- Công thức nguyên tố: $P(t_1, t_2, ..., t_n)$, t_i là các từ
- Nếu F_1 , F_2 là các công thức thì các biểu thức sau cũng là các công thức: $F_1 \lor F_2$, $F_1 \land F_2$, $F_1 = \gt F_2$, $\neg F_1$
- Nếu F_1 là một công thức thì \forall : F_1 , $\exists x$: F_1 cũng là các công thức
- Nếu F₁ là công thức thì (F₁) cũng là một công thức

3. Các định nghĩa (4)

• Định nghĩa 4:

- Công thức đóng là công thức nếu mọi biến đều có kèm với lượng từ. (khẳng định Đ, S)
- Công thức *mở* là công thức tồn tại 1 biến không kèm lượng từ. (tìm kiếm thông tin)

Ví dụ:

- C_1 : $\forall x \exists t \forall y (P(x,y,a) \Rightarrow \exists z (Q(y,z,t) \land R(x,t))$ là công thức đóng vì các biến x,y,z,t đều có kèm lượng từ \forall , \exists
- C_2 : $\forall x \exists t (P(x,y,a) \Rightarrow \exists z (Q(y,z,t) \land R(x,t))$ là công thức mở vì biến y không có lượng từ \forall , \exists

4. Diễn giải của một công thức

Gồm 4 phần:

- Miền giá trị của các biến của công thức (ký hiệu là tập M)
- Sử dụng các hằng, các tân từ (ý nghĩa tân từ, xác định được quan hệ n ngôi)
- Ý nghĩa của công thức
- ◆ Xác định 1 quan hệ n ngôi trên tập Mⁿ

5. Quy tắc lượng giá công thức

Lượng giá tân từ: xét tân từ bậc n: P(x₁,x₂,...x_n) và liên kết với quan hệ R, n ngôi.

$$P(a_1,a_2,...,a_n) : D \Leftrightarrow (a_1,a_2,...,a_n) \in R$$

$$P(a_1,a_2,...,a_n) : S \Leftrightarrow (a_1,a_2,...,a_n) \notin R$$

- Các phép toán ∧,∨,¬,⇒ dùng bảng chân trị
- Lượng từ ∃: gọi x là biến. Công thức ∃x F(x) là đúng khi có ít nhất một a_i∈M/F(a_i):Đ

$$M = \{a_1, a_2, ..., a_n\} \equiv \lor F(a_i), a_i \in M$$

◆ Lượng từ \forall : x là biến, \forall x F(x): D với \forall $a_i \in M/F(a_i)$:D

$$M = \{a_1, a_2, \dots, a_n\} \equiv \land F(a_i), a_i \in M$$

6. Ngôn ngữ tân từ có biến là n bộ

- 6.1 Qui tắc
- 6.2 Định nghĩa
- 6.3 Công thức an toàn
- 6.4 Biểu diễn các phép toán

6.1 Quy tắc (1)

- 1. Biến là 1 bộ của quan hệ
- 2. Từ: hằng, biến hoặc biểu thức có dạng s[C], s: biến, C: tập các thuộc tính của quan hệ được gọi là từ chiếu.
- 3. Công thức:
 - Rs (R là quan hệ, s là biến) được gọi là từ. Miền giá trị sẽ định nghĩa miền biến thiên của s.
 - t₁θ a , t₁θ t₂ ở đây t₁,t₂ là các từ chiếu, còn a là một hàng, θ là toán tử so sánh được gọi là công thức nguyên tố

6.1 Quy tắc (2)

- 4. Một *công thức nguyên tố* là một công thức
- 5. F_1 và F_2 là công thức: $F_1 \lor F_2$, $F_1 \land F_2$, $F_1 \Rightarrow F_2$, $\neg F_1$ là công thức
- 6. F là công thức, s là biến ∃sF, ∀sF là công thức
- 7. F là công thức, (F) là công thức

6.2 Định nghĩa

- Một câu hỏi trong ngôn ngữ tân từ có biến là n bộ được biểu diễn như sau: {s | F}. Trong đó s là biến n bộ, F là một công thức chỉ có một biến tự do là s.
- ◆ Ví dụ: BIENGIOI(nuoc,tinhtp). Phép toán quan hệ BIENGIOI[nuoc] được chuyển thành câu hỏi trong ngôn ngữ tân từ có biến là bộ: {s[nuoc] BIENGIOI s}

6.3 Công thức an toàn

F là công thức an toàn: nếu nó thoả mãn 3 điều kiện sau:

i) Nếu s là bộ n thỏa: F(s) là đúng thì mọi thành phần của s
 là phần tử của DOM(F):

$$(F_s:Dung) \rightarrow s \in DOM(F)$$

ii) F' là công thức con của F:

$$\exists sF'_{S}, F'_{S}: D\acute{u}ng \rightarrow s \in DOM(F')$$

iii) $\forall sF'_{S}, F'_{S}: D\acute{u}ng \rightarrow s \notin DOM(F')$

6.4 Biểu diễn các phép toán (1)

1. Phép hội

- Q₁,Q₂ là các quan hệ n chiều
- F₁, F₂ là các công thức ứng với Q₁, Q₂
- Công thức của $Q = Q_1 \cup Q_2$
- $\bullet F_s = F_{1s} \lor F_{2s}$

• 2. Phép trừ

- Q₁,Q₂ là các quan hệ n chiều
- F₁, F₂ là các công thức ứng với Q₁, Q₂
- Công thức của $Q = Q_1 Q_2$
- $F_s = F_1 \land \neg F_{2s}$

6.4 Biểu diễn các phép toán (2)

• 3. Phép tích

- $\mathbf{Q}_1(\mathbf{x}_1,...,\mathbf{x}_m), \, \mathbf{Q}_2(\mathbf{y}_1,...,\mathbf{y}_n)$
- F₁, F₂ là các công thức ứng với Q₁, Q₂
- Công thức của $Q = Q_1 \times Q_2$

$$F_s: s(x_1,...,x_m, y_1,...,y_n)$$

$$F_{s}=(\exists v) (\exists p) (F_{1v} \land F_{2p} \land s_{1}=v_{1} \land ... s_{m}=v_{m} \land s_{m+1}=p_{1} \land ... s_{m+n}=p_{n})$$

6.4 Biểu diễn các phép toán (3)

• 4. Phép chiếu

- $Q_1(x_1,...,x_n)$, F_1 là các công thức ứng với Q_1
- Công thức của $Q = Q_1 [x_{i1}, x_{i2},...,x_{ik}]$ $F_s = (\exists v) (F_{1v} \land s_1 = v_{i1} \land s_2 = v_{i2} \land ... s_k = v_{ik})$

• 5. Phép chọn

- Q₁ là quan hệ n chiều, F₁ là công thức ứng với Q₁
- Công thức Q=Q₁:điều kiện ĐK (ĐK: $x_i\theta x_j$ hoặc $x_i\theta a$) $F_s = F_{1s} \wedge s_i \theta s_j \text{ hoặc } F_{1s} \wedge s_i \theta a \quad (1 \le i, j \le n, i \ne j)$

7. Ngôn ngữ tân từ có biến là miền giá trị

- 7.1 Quy tắc
- 7.2 Biểu diễn câu hỏi
- 7.3 Công thức an toàn
- 7.4 Biểu diễn các phép toán

7.1 Quy tắc

- 1. Từ: là hằng hoặc biến
- 2. Công thức nguyên tố
 - $Q(t_1,t_2,...,t_n)$: t_i là các từ, Q là quan hệ
 - $t_i \theta t_j$, $t_i \theta$ a với t_i là từ, a là một hằng, θ là phép toán
- 3. Một *công thức nguyên tố* là một công thức
- 4. F_1 và F_2 là công thức: $F_1 \lor F_2$, $F_1 \land F_2$, $F_1 \Rightarrow F_2$, $\neg F_1$ là công thức
- 5. F là công thức, t:biến tự do, ∃sF,∀sF cũng công thức
- 6. F là công thức, (F) là công thức

7.2 Biểu diễn câu hỏi

$$\{(x_1,x_2,...,x_n) \mid F(x_1,x_2,...,x_n)\}$$

- x_i là các biến tự do của F
- ◆ Q= { $(x_1,x_2,...,x_n)$ | $F(x_1,x_2,...,x_n)$ } nên $(x_1,x_2,...,x_n)$ ∈ Q ⇒ $F(x_1,x_2,...,x_n)$:Đúng

7.3 Công thức an toàn

F là công thức an toàn: nếu nó thoả mãn 3 điều kiện sau:

i) Nếu s là bộ n thỏa: F(s) là đúng thì mọi thành phần của s
 là phần tử của DOM(F):

$$(F(x_1,...,x_n):D\acute{u}ng) \rightarrow x_i \in DOM(F), i=1,...,n$$

ii) F' là công thức con của F:

$$\exists xF': Dung \rightarrow x \in DOM(F')$$

iii)
$$\forall xF': D\acute{u}ng \rightarrow \exists x \notin DOM(F')$$

 $(F(x_1,...,x_n): D\acute{u}ng) \rightarrow \exists x_i \notin DOM(F), i=1,...,n$

7.4 Biểu diễn các phép toán (1)

1. Phép hội

- Q₁,Q₂ là các quan hệ n chiều
- F₁, F₂ là các công thức ứng với Q₁, Q₂
- Công thức của $Q = Q_1 \cup Q_2$
- $F=F_1 \lor F_2$

2. Phép trừ

- Q₁,Q₂ là các quan hệ n chiều
- F₁, F₂ là các công thức ứng với Q₁, Q₂
- Công thức của $Q = Q_1 Q_2$
- $F=F_1 \land \neg F_2$

7.4 Biểu diễn các phép toán (2)

• 3. Phép tích

- $\mathbf{Q}_1(\mathbf{x}_1,...,\mathbf{x}_m), \mathbf{Q}_2(\mathbf{y}_1,...,\mathbf{y}_n)$
- F_1 , F_2 là các công thức ứng với Q_1 , Q_2
- Công thức của $Q=Q_1 \times Q_2$ $F(x_1,...,x_m,y_1,...,y_n)=F_1(x_1,...,x_m)\wedge F_2(y_1,...,y_n)$

7.4 Biểu diễn các phép toán (3)

4. Phép chiếu

- $Q_1(x_1,...,x_n)$, $F_1(x_1,...,x_n)$ là các công thức ứng với Q_1
- Công thức của Q= Q₁ [$x_{i1}, x_{i2},...,x_{ik}$] $F_s(x_{i1}, x_{i2},...,x_{ik}) = (\exists x_{ji})(\exists x_{jz})...(\exists x_{jn-k})(F_1(x_1,...,x_n))$ trong đó ($x_{i1}, x_{i2},...,x_{ik}$) \cup ($x_{i1}, x_{i2},...,x_{in-k}$)=($x_1, x_2,...,x_n$)

5. Phép chọn

- $Q_1(x_1,...,x_n)$, $F_1(x_1,...,x_n)$ là các công thức ứng với Q_1
- Công thức Q=Q₁:điều kiện ĐK (ĐK: $x_i\theta x_j$ hoặc $x_i\theta a$) $F_1(x_1,...,x_n) = F_1(x_1,...,x_n) \wedge x_i \theta x_j \text{ hoặc}$ $= F_1(x_1,...,x_n) \wedge x_i \theta a$