

AHCAL test beam 2012 SPS

TDC calibration and data analysis

Sebastian Laurien, Erika Garutti, Marco Ramilli

- The AHCAL setup in 2012
- Status of SPS 2012 analysis
- MC digitalization
- TDC pedestal shift

AHCAL prototype 2012

4D calorimetry provides precise and high resolution time stamping for

 Detailed investigation of hadronic showers and their simulation

• Improved event separation for future detectors

SPS 2012 (50 GeV 180 GeV Pions, 180 GeV Muons)

One layer behind W-DHCAL prototype

• 4 HBU (ITEP tiles) with **576** channels

• Trigger as normal channel:

2012: ITEP tile

The readout chip - Spiroc2b

Time measurement:

- Analogue ADC samples two voltage ramps
 - → needs calibration of analogue components

The Spoiroc2b:

- 16 analogue memory cells per channel
- Designed to run in sync with accelerator (ILC)
- 4 µs ramp with 4096 TDC bins
 - → ~ 1.6 ns bin

TDC schematics

Self triggered r/o chip:

- Signal from fast shaper over threshold
- ADC values from slow shaper stored
 - → analogue memory: 16 different pedestals
- TDC ramps is sampled and stored
 - → analogue memory: 16 different pedestals

 $A^{TDC} = TDC$ signal amplitude

 $A^{ADC} = ADC$ signal amplitude

 $f_{ramp} = \text{Ramp function}_{(\text{Chip}, \text{Cycle})}: 32$

 $K_{mem} = Memory cell offset_{(Chip, Channel, Cell)}:9216$

Ts = Time slew correction : 1

 $P^{ADC} = ADC \text{ pedestal}_{(Chip,Channel,Cell)}:9216$

TDC calibration

Charge injection in the lab with pulse generator (16 chips, 1 channel each)

$$t[ns] = f_{ramp}(A^{TDC}) + K_{mem} + Ts(A^{ADC} - P^{ADC})$$

Charge injection in the lab Two ramps per chip:

- Ramps are not linear
 - → must be defined for every chip (look up table)

Difference between two triggered channels

→ 2ns : best achievable RMS with electronics only!

- \bullet Test beam inter run ADC pedestals \boldsymbol{P}^{ADC}
- Fitted with simple exp function
- Assumed to be identical for all channels and memory cells

- Up to 5 ns correction for signals < 2 MIP
- High ADC signals need further investigation

→ Table top measurement (charge injection) not practicable for a big number of channels (576 channels)

Electron test beam @ DESY II:

- High rate (kHz) / millions of events
- Instantaneous EM showers (Al target) with multiple hits

• Different beam positions to cover all chips

EM shower event:

Data driven digitization

Implement digitization in MC G4 QGSP BERT HP

- ADC calibration
 - → rough chip-wise
- Correct error estimation for trigger thresholds
 - → smear 0.5 MIP cut in simulation
- Time resolution
 - → smear simulation by 6 ns
- Noise description
 - \rightarrow 1 µs tail in data (SiPM noise)

MIP calibration

Energy scale is equalized for ITEP tiles :

- Response equalized via bias voltage
- ADC scale equalized via pre amplifiers

→ Chip wise calibration feasible

Impact of rough MIP calibration

 MIP threshold in MC is varied by 10 - 50 % of 0.5 MIP

→ Mean calibration and rough 0.5 MIP threshold is sufficient

17.09.2014

Muons: Data / MC Comparison

→ detector effect, needs to be properly understood

TDC pedestal shift

New correction step required

- Clearly electronics effect
- Common for all runs with instantaneous physics

Fe: DESY II, 2 X₀ iron

ebeam: DESY II, 7 X₀ Al

Muons: 180 GeV SPS

MC: not more than 10 hits with physics

TDC pedestal shift correction

For every hits extract A_{ped}^{TDC} for $T_{Hit} = 0$ versus **HitBits per chip** Linear fit used for correction

 $A^{TDC} = TDC$ signal amplitude

 $A^{ADC} = ADC$ signal amplitude

 $f_{ramp} = \text{Ramp function}_{(\text{Chip, Cycle})}: 32$

 $K_{mem} = Memory cell offset_{(Chip, Channel, Cell)}:9216$

Ts = Time slew correction : 1

 $P^{ADC} = ADC \, pedestal_{(Chip, Channel, Cell)}: 9216$

n = triggers per chip

 $A_{podestal}^{TDC} = TDC$ pedestal correction

$$t[ns] = f_{ramp}(A^{TDC} - A_{Pedestal}^{TDC}(n)) + K_{mem} + Ts(A^{ADC} - P^{ADC})$$

TDC pedestal shift correction

After correction

- Pedestal shift corrected
- Time resolution (RMS)
- worsens with occupancy

SPS Muons

→ TDC pedestal shift correction improves data/ MC comparison

Summary

 Successful data taking in 2012 with one layer prototype

TDC calibration

- Promising results from first layer
 - → Electronics resolution ~2ns
 - → Time resolution on physics ~7ns

Data / MC comparison

- Proper understanding of Muon data necessary
- New feature: TDC shift depending on chip occupancy
- Time resolution increases from 6 ns to 40 ns depending on chip occupancy

