Premier University

Lab Report

Report no	03
Report Title	Find Minimum Spanning Tree Using Kruskal's Algorithm in C++ Programming Language
Course Code	CSE 226
Course Title	Algorithm Design and Analysis Laboratory
Date of Performance	03-01-24
Date of Submission	10-01-24
Submitted to	
Fairuz Bilquis Khan	
Lecturer Department of CSE	
Submitted by	
Name	Mohammad Hafizur Rahman Sakib
ID	0222210005101118
Section	С
Semester	4th
Session	Fall 2023

```
#include <bits/stdc++.h>
 using namespace std;
 int root[50];
bool root_find(int u, int v)
      if (root[u] == root[v])
          return true;
      return false;
10void union_(int u, int v, int vertex)
11{
      int tmp = root[u];
      for (int i = 0; i < vertex; i++)</pre>
     {
          if (root[i] == tmp)
              root[i] = root[v];
          }
      3
20}
21int main()
22{
      int vertex, edge, w, u, v, tot_cost = 0;
      cin >> vertex >> edge;
      for (int i = 1; i <= vertex; i++)</pre>
          root[i] = i;
      pair<int, pair<int, int>> p[edge + 5];
      for (int i = 0; i < edge; i++)</pre>
          cin >> w >> u >> v;
          p[i] = \{w, \{u, v\}\};
      sort(p + 0, p + edge);
      for (int i = 0; i < edge; i++)</pre>
      {
          int x = p[i].second.first;
          int y = p[i].second.second;
          if (!root_find(x, y))
              union_(x, y, vertex);
              tot_cost += p[i].first;
          }
      cout << "Total Cost : " << tot_cost << endl;</pre>
```

```
SAKIB Problem Solving

cd "c:\PU Projects\LearnCPP\
6 9
2 4 5
2 5 6
3 2 3
3 3 5
5 2 4
4 3 4
5 4 6
7 1 2
8 1 3
Total Cost : 17

SAKIB Problem Solving

SAKIB Problem Solving

SAKIB Problem Solving

SAKIB Problem Solving
```