Tutorial 7

Problem 1 Let $\{1, \sin x, \cos x\}$) be a subset of the vector space $C^{\infty}(\mathbf{R})$ and let T: Span($\{1, \sin x, \cos x\}$) \longrightarrow Span($\{1, \sin x, \cos x\}$) be a linear transformation defined by $T(1) = 1 + 2\sin x + 3\cos x$, $T(\sin x) = 2\sin x + 3\cos x$, and $T(\cos x) = 2\cos x$.

- (a) Find the eigenvalues and eigenvectors of T
- (b) Determine whether the given linear mapping is diagonalizable. If it is diagonalizable, find a basis of $\text{Span}(\{1, \sin x, \cos x\})$ consisting of eigenvectors.

Problem 2 Let
$$V = \text{span}\{(1, 1, -1, 1), (1, 0, 0, -1)\}.$$

- (a) Find the orthogonal complement, V^{\perp} .
- (b) Find an orthogonal basis for V^{\perp} .
- (c) Find an orthonormal basis for V^{\perp} .