What Is Claimed Is:

1	1. A method for selectively monitoring load instructions to support	
2	transactional execution of a process, comprising:	
3	encountering a load instruction during transactional execution of a block	
4	of instructions in a program, wherein changes made during the transactional	
5	execution are not committed to the architectural state of a processor until the	
6	transactional execution successfully completes;	
7	determining whether the load instruction is a monitored load instruction or	
8	an unmonitored load instruction;	
9	if the load instruction is a monitored load instruction,	
10	performing a corresponding load operation, and	
11	load-marking a cache line associated with the load	
12	instruction to facilitate subsequent detection of an interfering data	
13	access to the cache line from another process; and	
14	if the load instruction is an unmonitored load instruction, performing the	
15	corresponding load operation without load-marking the cache line.	
1	2. The method of claim 1, wherein prior to executing the program, the	
2	method further comprises generating the instructions for the program, wherein	
3	generating the instructions involves:	
4	determining whether load operations that take place during transactional	
5	execution need to be monitored;	
6	generating monitored load instructions for load operations that need to be	
7	monitored; and	
8	generating unmonitored load instructions for load operations that do not	
9	need to be monitored.	

1	3.	The method of claim 2, wherein determining whether a load
2	operation nee	ds to be monitored can involve examining a data structure associated
3	with the load	operation to determine whether the data structure is a "protected"
4	data structure	for which loads need to be monitored, or an "unprotected" data
5	structure for v	which loads do not need to be monitored.
1	4.	The method of claim 2, wherein determining whether a load
2	operation nee	ds to be monitored can involve determining whether the load
3	operation is directed to a heap, wherein loads from the heap need to be monitored	
4	and loads from	m outside the heap do not need to be monitored.
1	5.	The method of claim 2, wherein determining whether a load
2	operation nee	ds to be monitored can involve allowing a programmer to determine
3	if the load ope	eration needs to be monitored.
1	6.	The method of claim 1, determining whether the load instruction is
2	a monitored le	oad instruction involves examining an op code of the load
3	instruction.	
1	7.	The method of claim 1, determining whether the load instruction is
2	a monitored le	oad instruction involves examining an address associated with the
3	load instruction	on to determine whether the address falls within a range of addresses
4	for which load	ds are monitored.

The method of claim 7, wherein examining the address involves

comparing the address with one or more boundary registers.

1

2

8.

I	9. The method of claim 7, wherein examining the address involves
2	examining a Translation Lookaside Buffer (TLB) entry associated with the
3	address.
1	10. The method of claim 1, wherein if an interfering data access from
2	another process is encountered during transactional execution of the block of
3	instructions, the method further comprises:
4	discarding changes made during the transactional execution; and
5	attempting to re-execute the block of instructions.
1	11. The method of claim 1, wherein if transactional execution of the
2	block of instructions completes without encountering an interfering data access
3	from another process, the method further comprises:
4	committing changes made during the transactional execution to the
5	architectural state of the processor; and
6	resuming normal non-transactional execution of the program past the
7	block of instructions.
1	12. The method of claim 1, wherein an interfering data access can
2	include:
3	a store by another process to a cache line that has been load-marked by the
4	process; and
5	a load or a store by another process to a cache line that has been store-
6	marked by the process.

1	13. The method of claim 1, wherein the cache line is load-marked in	
2	level 1 (L1) cache.	
1	 An apparatus that selectively monitors load instructions to support 	
2	transactional execution of a process, comprising:	
3	an execution mechanism within a processor;	
4	wherein the execution mechanism is configured to support transactional	
5	execution of a block of instructions in a program, wherein changes made during	
6	the transactional execution are not committed to the architectural state of a	
7	processor until the transactional execution successfully completes;	
8	wherein upon encountering a load instruction during transactional	
9	execution, the execution mechanism is configured to,	
10	determine whether the load instruction is a monitored load	
11	instruction or an unmonitored load instruction,	
12	if the load instruction is a monitored load instruction, to	
13	perform a corresponding load operation, and to load-mark a cache	
14	line associated with the load instruction to facilitate subsequent	
15	detection of an interfering data access to the cache line from	
16	another process; and	
17	if the load instruction is an unmonitored load instruction, to	
18	perform the corresponding load operation without load-marking	
19	the cache line.	
1	15. The apparatus of claim 14, further comprising an instruction	
2	generation mechanism configured to:	
3	determine whether load operations that take place during transactional	
4	execution need to be monitored:	

5	generate monitored load instructions for load operations that need to be
6	monitored; and to
7	generate unmonitored load instructions for load operations that do not
8	need to be monitored.
1	16. The apparatus of claim 15, wherein the instruction generation
2	mechanism is configured to determine whether a load operation needs to be
3	monitored by examining a data structure associated with the load operation to
4	determine whether the data structure is a "protected" data structure for which
5	loads need to be monitored, or an "unprotected" data structure for which loads do
6	not need to be monitored.
1	17. The apparatus of claim 15, wherein the instruction generation
2	mechanism is configured to determine whether a load operation needs to be
3	monitored by determining whether the load operation is directed to a heap,
4	wherein loads from the heap need to be monitored and loads from outside the
5	heap do not need to be monitored.
1	18. The apparatus of claim 15, wherein the instruction generation
2	mechanism is configured to determine whether a load operation needs to be
3	monitored by allowing a programmer to determine if the load operation needs to
4	be monitored.
1	19. The apparatus of claim 14, wherein the execution mechanism is
2	configured to determine whether the load instruction is a monitored load
3	instruction by examining an op code of the load instruction.

1	20.	The apparatus of claim 14, wherein the execution mechanism is		
2	configured to	determine whether the load instruction is a monitored load		
3	instruction by	instruction by examining an address associated with the load instruction to		
4	determine wh	determine whether the address falls within a range of addresses for which loads		
5	are monitored	l.		
1	21.	The apparatus of claim 20, wherein the execution mechanism is		
2	configured to examine the address by comparing the address with one or more			
3	boundary regi	sters.		
1	22.	The apparatus of claim 20, wherein the execution mechanism is		
2	configured to examine the address by examining a Translation Lookaside Buffer			
3	(TLB) entry a	associated with the address.		
1	23.	The apparatus of claim 14, wherein if an interfering data access		
2		process is encountered during transactional execution of the block of		
3	instructions, t	the execution mechanism is configured to:		
4	discar	d changes made during the transactional execution; and to		
5	attem	pt to re-execute the block of instructions.		
1	24.	The apparatus of claim 14, wherein if transactional execution of		
2		nstructions completes without encountering an interfering data		
3		nother process, the execution mechanism is configured to:		
4		nit changes made during the transactional execution to the		
5		state of the processor; and to		
6		te normal non-transactional execution of the program past the block		
7	of instruction			

l	25. The apparatus of claim 14, wherein an interfering data access can
2	include:
3	a store by another process to a cache line that has been load-marked by the
4	process; and
5	a load or a store by another process to a cache line that has been store-
6	marked by the process.
1	26. The apparatus of claim 14, wherein the cache line is load-marked
2	in level 1 (L1) cache.
1	27. An computer system that selectively monitors load instructions to
2	support transactional execution of a process, comprising:
3	a processor;
4	a memory;
5	an execution mechanism within the processor;
6	wherein the execution mechanism is configured to support transactional
7	execution of a block of instructions in a program, wherein changes made during
8	the transactional execution are not committed to the architectural state of a
9	processor until the transactional execution successfully completes;
10	wherein upon encountering a load instruction during transactional
11	execution, the execution mechanism is configured to,
12	determine whether the load instruction is a monitored load
13	instruction or an unmonitored load instruction,
14	if the load instruction is a monitored load instruction, to
15	perform a corresponding load operation, and to load-mark a cache
16	line associated with the load instruction to facilitate subsequent

17	detection of an interfering data access to the cache line from
18	another process; and
19	if the load instruction is an unmonitored load instruction, to
20	perform the corresponding load operation without load-marking
21	the cache line.