Modiles des graphes réguliers | aléatoires (2) Graphes d-réguliers déaboires à N sommets (N -> 50) - End modèle de permulations (d pair) (Friedman) -> P modèle de configuration (Bollobas) · 42 < d première valeur propre non trivièle $2\sqrt{d-1}-O\left(\frac{1}{(\log N)^2}\right) \leq \mu_2 \leq 2\sqrt{d-1}+\epsilon$ Alon-Boppana

Friedman

avec P_ 1 (Friedman) h(GN) constante de Cheeger $i^*(d) + o(1) \leq h(G_N) \leq \frac{d}{c} + O(\frac{1}{N})$ and P-1 1 toujours (Rollobas)

 $\#B(x_0, R) = 1 + d + d(d-1) + \cdots + d(d-1)$ = $1 + \frac{d(d-1)^R - 1}{d-2}$ Csq: pour un graphe d-régulier à N sommets, $1 + \frac{d(d-1)-1}{d-2} > N$ où D diamètre du graphe Dunc D > loy N + c(d). Bollobas - De La Vega 1982: pour les graphes aléatoires, avec IP-11, diam (GN) = logd-1N+logd-1(logN)+O(1). · Lien entre tron spectal et drametre Proposition: diam $(G_N) \subseteq \frac{\log N}{\log \frac{d}{r^2}}$. Preuve: A matrice d'adjacence. Pour toutes forctions forgo; V(GN) - C orthogonalis anx forchans constantes pow $\langle f,g \rangle = \frac{7}{N} \sum_{x \in V} f(x) g(x)$

· Diamètre : dans l'arbre (infini) d-régulier

alors
$$\left| \left\langle \left(\frac{A}{d} \right)^n f_{\delta}, g_{\delta} \right\rangle \right| \leq \left(\frac{N^2}{d} \right)^n \|f_{\delta}\| \|g_{\delta}\|$$
 f,g quelconques: on pox $f_{\delta} = f - \langle f \rangle, g_{\delta} = g - \langle g \rangle$

on $\langle f \rangle = \frac{1}{N} \sum_{\alpha \in V} f(\alpha)$. Alors on a

 $\left| \left\langle \left(\frac{A}{d} \right)^n f_{\delta}, g \right\rangle - \langle f \rangle \langle g \rangle \right| \leq \left(\frac{N^2}{d} \right)^n \|f\| \|g\|$
 $x, y \in Sommets \ tq \ dish (x, y) = diam (G_N), on pose $f = S_X, g = S_Y, n = D - 1$.

On a $\left(\left(\frac{A}{d} \right)^n S_X, S_Y \right) = 0$. Deplus,

 $\left| \left(\frac{A}{d} \right)^n S_X, S_Y \right| = 0$. Deplus,

 $\left| \left(\frac{A}{d} \right)^n S_X \right| = \frac{1}{N}, donc \frac{1}{N^2} \langle \frac{1}{N} \langle \frac{N^2}{d} \rangle$

Systele (longueur de la plus petite géodéxique fermée):

On definit le rayon d'injectivité$

pinj (z) = sup 4 R ty B_{GN} (3, R) suit un arbre}.

Pow tout z,
$$P(inj(x) \le log_{d-1}(N) + \tilde{c}(d)$$

On an diduit systole $(G_N) \le 2 log_{d-1}(N) + \tilde{c}(d)$

Endős - Sachs: construction deterministe de grapher avec systole $(G_N) \ge log_{d-1}(N) + O(1)$

Lubotzky - Phillips - Sarnak: syst $(G_N) \ge \frac{4}{3} log_{d-1}(N) + O(1)$.

Remarqu: les graphes aleatoires ont une petite systole.

Théorème (Bollobas) pour le modile de configuration, chant donné $l \ge 2$, $\frac{la}{2} p(\lambda e)$, ou

 $elant$ donné $l \ge 2$, $elant$ $elant$

$$\lambda_{\ell} = \frac{(d-1)^{\ell}}{2\ell}$$
Autrement dit, $\forall k$, $P(Y_{\ell} = k) \longrightarrow e^{-\lambda_{\ell}}$

$$k!$$

Preuve: methode des moments factoriels. Pour mentier IF / [Ye (/e - 1) - - - (/e - m + 1)] moment factoriel d'orde m. On va montrer que ce moment converge vers 2, m (moment factoriel de la loi de Poisson). En parkoulier, En (Ye) ~ le Rappel sur le modèle de config. appariement "par fait" des demi-arêtes is deux à deux Soit V < N. On appelle sons-configuration H avec e arêtes sur les sommets numéroles (1, -, v) (à donnée d'un appariement partiel de le demi-arêtes. De monière équivalente, on a un graphe It de sommets {1,-,v} àvec e arêtes, et des "étique ites" qui indiquent de quelle demi-anêtes elles proviennent.

Si (21, -724) r-uplet de sommets distincts de (1,--, N), on note $\overline{H}(x_1,-,x_r)$ (a mêre configuration sur les sommets $\{x_1,-,x_r\}$. IE, (hb de configurations du modèle P_{N,d} isomorpher à H) = D PN (H(x1,-, xv) est réalisée). (x_1, x_1) $2 \stackrel{?}{\sim} 2 \stackrel{?}{\sim} 1 \stackrel{?}{\sim} 1$ (Nal -1)!! Danc $\mathbb{F}[--] = N(N-1) - -(N-V+1) \frac{(Nd-2e-1)!!}{(Nd-1)!!}$ 0 (* v-e = 1-b(H) invariant topologique du graph, où b(H) = rang cyclique du graphe H
= nb minimum d'arêtes à retirer pour obtenir
un arbre.

* si H connexe

= IF[nb de grod. Simples fernies de longueur
$$\ell$$
) + $O(\frac{1}{N})$
= $\frac{1}{2\ell} \left(d(d-1) \right) \frac{1}{d\ell} N^{c} = \frac{(d-1)^{\ell}}{2\ell}$.

up 9, epidocites borgippes bang peni-sigles

Calculs analogues pour les moments factoriels supérieurs. $V_{\ell}(Y_{\ell-1})$ -- $(Y_{\ell-m+1})$ = nb de m-uplets $(Y_{\ell-1}, Y_{\ell-m})$ où $Y_{\ell-1}$ géodisière fernée de longueur ℓ .

IE[Ye (Ye-1) --- (Ye-m+1)]

qui ne se croisent pas entre elles] + $O(\frac{1}{N})$ $\frac{1}{N-100}\left(\frac{(d-1)^{\ell}}{2\ell}\right)^{m} = \lambda_{\ell}^{m}.$

Por les nêmes techniques, pour la < l2 <--- < lr,

(Yh, , ---, Yer) Loi Prosson

Ale parametre 2 Or peut donc conditionner par apport à $\frac{1}{2} = 0$ (par exemple).

Modèle de revêtement alatoire (de graphe) G graphe fini. On fait N copies de G Pour chaque arêle on live de hisvol un elèment de 6 (i,1) G, values propres 2, , -, 2, volumes propres 2, , -, 2, volumes propres 2, , -, 2, volumes propres 2, volumes propres 2, , -, 2, volumes propres 2, volumes 2 Thm (Bordenave - Collins) Suit & >0. $P_{N}\left(dist\left(\lambda_{i}^{New},\sigma(\widetilde{G})\right)\leq\varepsilon\right) \longrightarrow 1$

P (dist (1. mew)
$$\sigma(\tilde{G})$$
) $\leq \varepsilon$) \longrightarrow 1

N \longrightarrow ∞

On \tilde{G} revêtement universel de G . ε_{x} : s_{1} G est d -régulier, \tilde{G} est d -régulier aussi et $\sigma(\tilde{G}) = [-2|d-1]$

Surfaces hyperboliques aléatoires 1) Modile de Brooks-Makover (2004) -, nodèle calqué sur les graphes 3-réguliers aleatoires trangle hyperbolique idéal: (nargle entre 3 points - N triangles ideaux (orientés), N pair On recolle les bords au hasard de manière compatible avec l'orientation, et en faisant coincider les bases des hanteurs (les points marqués ci-dessons en exemple)

5° d'aire TT, non On obtient une surface hypobolique compacte, avec des cusps.

Si on vent des sur faces compactes, on proude comme sunt: au voisinage d'un cusp on introduit de nouvelles cartes qui "compactifient" le cup, et on gorde les votes d'origine en-dehors des curps. On obtient 5° surface de Riemann compacte avec des points pripe et 5°/4 pripely est dans la même classe conforme que s'

5° possède une unique mêtrique de courbure K= 7 1 si sphère -1 si 97,8 Théorème (Brooks-Makover) avec P-1, S'est connexe de genre N N 100

donc porte une mêtrique hyperbolique.

On pent montrer aussi l'existènce de
$$C_1$$
, $C_2 > 0$ to

 $P(h(S^c) \ge C_1) \longrightarrow 1$
 $N \ge \infty$
 $P(h(S^c) \ge C_2) \longrightarrow 1$
 $N \ge \infty$
 $P(h(S^c) \ge C_2) \longrightarrow 1$
 $P(h(S^c) \ge C_1) \longrightarrow 1$
 $P(h(S^c) \ge C_2) \longrightarrow 1$
 $P(h(S^c) \ge C_1) \longrightarrow 1$
 $P(h(S^c) \ge C_2) \longrightarrow 1$
 $P(h(S^c) \ge C_1) \longrightarrow 1$
 $P(h(S^c) \ge C_2) \longrightarrow 1$
 $P(h(S^c) \ge C_1) \longrightarrow 1$
 $P(h(S^c) \ge C_1$

diam(S)
$$\leq \frac{2}{1-S} \log Vol(S) + \frac{4}{1-\delta} \log \log Vol(S)$$

 $+ \frac{4}{1-\delta} \left(O(\log cl) + O(1)\right)$
Borne de Huber (cf. Alon-Boppana-Friedman pour les graphes)
 $\lambda_1 \leq \frac{1}{4} + O\left(\frac{1}{(\log g)^2}\right)$
Cheeger = $h(S) \leq 1 + O\left(\frac{1}{(\log g)^2}\right)$

Budzinshi - Curien - Petri: $\forall S$ hyperbolique en tirant
"an hasard" une partition S = ALIB, $h(S) \leq \frac{2}{\pi} + o(1)$ $g \to \infty$ Théorème (Petri): soit a < b. $Y = \# géodésiques formées de langueurs <math>\in [a,b]$

Diamètre S de genre g, Aire = 4 Ti(g-1) diam (59) > logaire(5) + O(1) "burne triviale" Thm (Budzinshi-Curien-Petá) Pour le modèle de Brooks-Makover, diam(S) ~ 2 log Aire(S). Un autre modèle de surfaces abatoins aussi fondi sur les graphes 3-réguliers et qui optimise le diamètre est donné por un recollement aleatoire de pantalons hyperboliques (sans tivists) a fixé (et grand) Dans ce cas, avec grande proba quand $N\rightarrow\infty$, diam(s) $\leq (1+E(a))\log(Aire(s))$

Généralisation (Joffrey Mathien): a est pris aleatoirement et on ajoute des twistr aleatoires.