International Rectifier

IRF8714PbF

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	Qg
30V	8.7 m Ω @ $V_{GS} = 10V$	8.1nC

Applications

- Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
- Control MOSFET for Isolated DC-DC Converters in Networking Systems

Benefits

- Very Low Gate Charge
- Very Low R_{DS(on)} at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- 20V V_{GS} Max. Gate Rating
- 100% tested for Rg
- Lead-Free

Description

The IRF8714PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the industry standard SO-8 package. The IRF8714PbF has been optimized for parameters that are critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors for Notebook and Netcom applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	14	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	11	A
I _{DM}	Pulsed Drain Current ①	110	1
P _D @T _A = 25°C	Power Dissipation	2.5	W
P _D @T _A = 70°C	Power Dissipation	1.6	
	Linear Derating Factor	0.02	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units		
$R_{\theta JL}$	Junction-to-Drain Lead ®		20	°C/W		
$R_{\theta JA}$	Junction-to-Ambient 45		50	1		

Notes ① through ⑤ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}/\Delta \mathrm{T_{J}}$	Breakdown Voltage Temp. Coefficient		0.021		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		7.1	8.7	mΩ	V _{GS} = 10V, I _D = 14A ③
			10.9	13	1	V _{GS} = 4.5V, I _D = 11A ③
V _{GS(th)}	Gate Threshold Voltage	1.35	1.80	2.35	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.0		mV/°C	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150		V _{DS} = 24V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	1	V _{GS} = -20V
gfs	Forward Transconductance	71			S	$V_{DS} = 15V, I_{D} = 11A$
Q_g	Total Gate Charge		8.1	12		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		1.9			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.0		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		3.0			I _D = 11A
Q _{godr}	Gate Charge Overdrive		2.2		1	See Figs. 15 & 16
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		4.0		1	
Q _{oss}	Output Charge		4.8		nC	V _{DS} = 16V, V _{GS} = 0V
R_g	Gate Resistance		1.6	2.6	Ω	
t _{d(on)}	Turn-On Delay Time		10			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		9.9			I _D = 11A
t _{d(off)}	Turn-Off Delay Time		11		ns	$R_G = 1.8\Omega$
t _f	Fall Time		5.0		1	See Fig. 18
C _{iss}	Input Capacitance		1020			$V_{GS} = 0V$
C _{oss}	Output Capacitance		220		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		110		1	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		65	mJ
I _{AR}	Avalanche Current ①		11	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			3.1		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current	_		110		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	٧	$T_J = 25$ °C, $I_S = 11A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		14	21	ns	$T_J = 25$ °C, $I_F = 11A$, $V_{DD} = 15V$
Q_{rr}	Reverse Recovery Charge		15	23	nC	di/dt = 300A/µs ③
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

International IOR Rectifier

IRF8714PbF

1000 VGS 10V 5.0V 4.5V 3.5V 3.0V I_D, Drain-to-Source Current (A) 100 воттом 10 ⊴60μs PULSE WIDTH = 150°C 0.1 0.1 10 100 1000 V_{DS}, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

I_D = 14A

1.5

(Normalized) 0.

V_{GS} = 10V

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International
Rectifier

5.0 I_D= 11Å V_{DS}= 24V V_{GS}, Gate-to-Source Voltage (V) 4.0 V_{DS}= 15V 3.0 2.0 1.0 0.0 2 4 6 8 10 Q_{G} , Total Gate Charge (nC)

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International TOR Rectifier

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Unclamped Inductive Test Circuit and Waveform

6

Fig 15. Gate Charge Test Circuit

Fig 16. Gate Charge Waveform

International TOR Rectifier

IRF8714PbF

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

International

TOR Rectifier

DIM	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
V	0"	8"	0.	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 1.1mH, $R_G = 25\Omega$, $I_{AS} = 11$ A.
- ③ Pulse width \leq 400µs; duty cycle \leq 2%.
- When mounted on 1 inch square copper board.
- ⑤ R_{θ} is measured at T_J of approximately 90°C.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.08/2007