Neural Network

Reconfigurable Computing

Dataset

Architecture

NeuralNetStream

About the sigmoid function

Table 3: PLAN approximation equations

Operation	Condition
Y = 1	<i>X</i> ≥ 5
$Y = 0.03125 \cdot X + 0.84375$	$2.375 \le X < 5$
$Y = 0.125 \cdot X + 0.625$	$1 \le X < 2.375$
$Y = 0.25 \cdot X + 0.5$	$0 \le X < 1$

feed_forward_unit

 $Output = sig(W^*X + b)$

mat_mult

dot_product(N)

dot_product

fixed_mult

fixed_sum(N)

```
// precomputed value:
#define K (1 << (Q - 1))
// saturate to range of int16 t
int16_t sat16(int32_t x)
   if (x > 0x7FFF) return 0x7FFF;
   else if (x < -0x8000) return -0x8000;
   else return (intl6 t)x;
int16_t q_mul(int16_t a, int16_t b)
   int16_t result;
   int32_t temp;
    temp = (int32_t)a * (int32_t)b; // result type is operand's type
   // Rounding; mid values are rounded up
   temp += K;
   // Correct by dividing by base and saturate result
   result = sat16(temp >> Q);
   return result;
```

Hardware

- Matrix operations
- Fixed point operations
- Sigmoid function
- Displays

Software

- Image reception through UART
- Send image to hardware
- Receiving hardware output
- Selection highest probability
- Send it to displays