Secure Replicas and Nomad Sessions with CCNxKE

July 17, 2016

Session-Based Communication in CCN

• Problem:

 A client and server (replica) want to establish a secure session in which all messages will be encrypted

One approach:

- Use CCNx-KE a TLS-like key exchange protocol tailored for CCN
- Clients authenticate the server (and vice versa) and the parties establish a shared forward-secure session key
- The session key is used to encrypt all subsequent traffic carrying application data

Standard CCN Session Communication

Standard CCN Session Communication

Session Relocation

Session Relocation

Problems to Address

- 1. What is the trust relationship between the producer and the replica?
 - Same or different owner?
- 2. How is the session transferred from the producer or the replica?
 - Are tokens stateful or stateless?

Trust Model #1

- The producer and replica are owned by the same entity
 - They can share a key that's frequently rotated

Trust Model #2

- The producer and replica have some relationship
 - The producer pays for replica services
 - A MNO distributes users to the best replica
 - The authentication server passes the user to a load balancer (via a move token)
- The producer and replicate create a session and re-key on a regular basis

Relocation Approach

- Session relocation requires the traffic secret to be recovered at the replica
- Trust model #1 (easy):
 - Tokens are stateful
 - Consumer tokens prove nothing
- Trust model #2 (hard):
 - Consumer tokens must prove that they came from the producer

Move Token Usage

Move Token Construction

Move challenge

```
Y = H(X), for some X \leftarrow \{0,1\}^{128}
```

Move token

```
T = k_{ID} \mid | Enc_k(Y \mid | traffic\_secret)
```

Move proof

X

Move Token Construction

Move challenge

```
Y = H(X), for some X \leftarrow \{0,1\}^{128}
```

Move token

```
T = k_{ID} \mid | Enc_k(Y \mid | traffic\_secret)
```

Move proof

X

Replica check:

- 1. If k_{ID} not valid, drop
- 2. Y | | traffic_secret = $Dec_k(T)$
- 3. If H(X) != Y, drop

Properties

- k_{ID} is a key that's routinely refreshed between the producer and replica (e.g., on a daily basis).
- Replica work is minimized:
 - no public-key crypto
 - single symmetric decryption and hash computation
- Two round trips before data can be retrieved
 - 1) Authenticate with the producer (2)
 - 2) Start a new session with the replica and get the first chunk of data (0)

Summing Up

- CCNx-KE is used to separate authentication and authorization from the retrieval of actual application data.
- Producers can upload encrypted data to a replica that only authorized consumers can decrypt.
- The replica session is used as a form of "transport encryption."

Session Identifiers and Secrets

- Traffic secrets are bound to a session identifier
- Session identifiers are bound to a name prefix
- CCNxKE handshakes can establish bidirectional session identifiers
 - Consumer to producer
 - Producer to consumer

Nomad Sessions

- If names are location-agnostic, consumers and producers can move freely without reestablishing sessions
 - Contrast to TCP-based TLS sessions
- If either end-host moves we want to minimize or prevent re-keying
 - How? Generalize move tokens

Nomad Example #1 (soft handoff)

```
Consumer (stationary)
                 Producer (migrating)
       /nameA, (normal interest)
    +---->| (interest)
     (data), (MoveToken,/nameB,MoveTag)
    |<----+ (content)</pre>
/nameB, (normal interest), (MoveToken, MoveTag, Proof)
    +---->| (interest)
         (data), (SessionID)
                                 (content)
```

Nomad Example #2 (soft handoff)

```
Consumer (migrating)
                                     Producer (stationary)
           /prefixA, (normal interest)
                    (data)
       /nameA, (MoveToken,/prefixB,MoveTag)
                                              (interest)
               (ACK data response)
                                              (content)
 /prefixB, (normal interest), (MoveToken, MoveTag, Proof)
    <----+ (interest)
               (data), (SessionID)
                                               (content)
```

Don't Reinvent the Wheel

- RFC 5169: Handover Key Management and Re-Authentication Problem Statement
- RFC 6696: EAP Extensions for the EAP Reauthentication Protocol (ERP)
- RFC 6697: Handover Keying (HOKEY)
 Architecture Design
- Mobile DTLS (draft-barrett-mobile-dtls-00)