MA1242 Hilary 2018

Tutorial 1

Problem 1. K. & K., Ex. 6.6.

Cars B and C are at rest with their brakes off. Car A plows into B at high speed, pushing B into C. If the collisions are completely inelastic, what fraction of the initial kinetic energy is dissipated when C is struck. The cars are identical initially.

Problem 2. A smooth sphere A (mass m) collides with a smooth sphere B (mass 2m). The initial velocity of sphere A is \vec{v}_A , while sphere B is initially at rest. The collision is inelastic, and the line connecting the centers of the spheres makes an angle $\theta = 0.5$ rad with \vec{v}_A at the moment of collision. The velocity of sphere B after the collision, \vec{v}_B , has magnitude $0.3 v_A$, and makes (of course) an angle $\theta = 0.5$ rad with \vec{v}_A .

- 1. Determine the center of mass velocity \vec{V} expressed in \vec{v}_A .
- 2. Determine the initial velocity \vec{v}_{Bc} of B in the center of mass coordinate system.
- 3. Determine the magnitude of the final velocity \vec{v}'_{Bc} of B in the center of mass coordinate system.
- 4. Determine the magnitude of the final velocity \vec{v}'_A of A.