

## Australian National University

# An Automated System for 3D Modelling and Feature Extraction of Small-scale Objects; Combining Computer Vision and Deep Learning

Student: Hengjia Li

u5629478@anu.edu.au Email:

# Scope

The project aims to produce:

- an image-based 3D modelling system for small-scale objects, for example insects
- a CNN-based framework that implements visual attribute grounding i.e. for indicating important features of target images

### **Previous Work**

A 3D nature-color capturing device [1] and DISC3D [3] are existing solutions for performing the digitization of small-scale objects.



Figure 1: Previous work of image based 3D modelling systems. Left: 3D Nature-Colour Capturing Device [1]. Right: DISC3D [3]

CAM and Grad-CAM [2] are two example applications that localize important regions of an image, reflecting the network's decision.



Figure 2: CAM [2] and visual attribute grounding visualizations.

# Methodology

We implemented our own 3D modelling setup in the lab.





Core components:

- A Canon EOS DSLR camera with a macro lens
- A motorized macro-rail
- Two rotatory turntable



A inbuilt controller

- A PC and MATLAB





Figure 3: Experiment setup. Figure (A), (B) and (C): pictures of the 3D modelling system. (D): schematic setup

#### **Image Blending**

1. Calibration by dot matrix

2A. Compare local saliency maps and then model. perform weighted-sum for fusion

2B. Run guided filter to optimize the local framework saliency maps, then perform weighted sum activations of last convolutional-layer for fusion.

#### **Visual Attribute Grounding**

1. Finetune pre-trained Resnet-50

2. Develop a Bayesian Inference that accumulates filters, when the target attribute is fed in.

Supervisor: Dr. Chuong Nguyen,

Dr. Marnie Shaw

### Examiner: Results

**Image Acquisition** 



Figure 4: Image Blending Output

We compared different blending methods to visually and numerically test their performance:







Figure 5: Comparison of blending output from simple saliency measurement (left), saliency measurement with dilation (middle) and guided filtering approach (right)

|                                  | $Q_{MI}$ | rSFe    | $N^{AB/F}$ | <b>Processing Time</b> |
|----------------------------------|----------|---------|------------|------------------------|
| Saliency measurement Method      | 1.0471   | -0.1513 | 0.0765     | 49.916s                |
| Saliency Measurement Method with | 1.0699   | -0.3090 | 0.0446     | 55.163s                |
| dilation                         |          |         |            |                        |
| Guided Filtering Method          | 1.3150   | -0.0717 | 0.0045     | 101.595s               |

Table 1: Numerical comparison between blending methods.  $Q_{MI}$ : indicate mutual information between source and blended images; rSFe: quality of blended image according to spatial frequency;  $N^{AB/F}$ : fusion artifacts.

#### **Visual Attribute Grounding**









Figure 6: Grounding at blue chest

Factors that may effect detection performance:

- The natural shapes of wings/legs make these attributes harder to detect.
- The latent patterns that exist in training images. Human beings typically do not visually observe these patterns, but CNNs detect them. The vector angles between pattern-space activations were computed to prove the existence of latent patterns.

#### Potential solutions:

- Refine the CUB labels.
- Monitor the vector angles to detect latent patterns and the corresponding filters.

# Conclusion

This research produces a proof of concept prototype for an image-based 3D digitization system, which is also capable of targeting important features of capture images. Further improvements include:

- Using a tilt-shift lens to reduce vibration during camera motion
- Investigating vector angles between pattern space activations to improve performance of feature detection

### References

- [1] Nguyen, C. V., Lovell, D. R., Adcock, M. & Salle, J. L., 2014. Capturing Natural-Colour 3D Models of Insects for Species Discovery and Diagnostics. [Online] Available at: <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094346">https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094346</a> [Accessed 28 March 2019]
- [2] Selvaraju, R. R. et al., 2016. https://arxiv.org/abs/1512.04150. [Online] Available at: <a href="https://arxiv.org/abs/1610.02391">https://arxiv.org/abs/1610.02391</a> [Accessed 26 March 2019]
- [3] Ströbel, B., Schmelzle, S., Blüthgen, N. & Heethoff, M., 2018. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multiview imaging. [Online]

Available at: <a href="https://zookeys.pensoft.net/article/24584/element/4/430//">https://zookeys.pensoft.net/article/24584/element/4/430//</a> [Accessed 28 March 2019]

Research School of Electrical, Energy and Materials Engineering ANU College of Engineering & Computer Science