Integers

Number Representation

Decimal, Binary, Hexadecimal

$$1209_{[10]} = 1 \times 10^3 + 2 \times 10^2 + 0 \times 10^1 + 9 \times 10^0$$

$$100101_{[2]} = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$B0A_{[16]} = B \times 16^2 + 0 \times 16^1 + A \times 16^0$$

base

position of digit

Hexadecimal

• 0 _[16]	0000[2]	0 _[10]	• 8 _[16]	1000 _[2]	8 _[10]
• 1 _[16]	0001[2]	1 _[10]	• 9 _[16]	1001[2]	9 _[10]
• 2 _[16]	0010[2]	2 _[10]	• A _[16]	1010[2]	10[10]
• 3 _[16]	0011[2]	3 _[10]	• B _[16]	1011[2]	11 _[10]
• 4 _[16]	0100[2]	4 _[10]	• C _[16]	1100[2]	12 _[10]
• 5 _[16]	0101[2]	5 _[10]	• D _[16]	1101 _[2]	13 _[10]
• 6 _[16]	0110[2]	6 _[10]	• E _[16]	1110[2]	14 _[10]
• 7 _[16]	0111 _[2]	7 _[10]	• F _[16]	1111 _[2]	15 _[10]

Fixed-size Number Representation

Binary Arithmetic

• What if we have only 4 binary digits to represent integers?

111100

(60)

Binary Arithmetic ... on 4-bit Words

$$\begin{array}{c|cccc}
 & 1 & \\
 & 1010 & (10) \\
 & + & 1010 & (10) \\
\hline
 & 10100 & (20)
\end{array}$$

$$\begin{array}{c|cccc}
 & 110 & (6) \\
 & \times & 1010 & (10) \\
\hline
 & 0 & \\
 & 110 & \\
 & 0 & \\
 & + & 110 & \\
\hline
 & 111100 & (60) & \\
\end{array}$$

4 bits ???

Fixed-size Representation

32 bits in C0

- Allows efficient operations in hardware
- We have to handle overflow
 - Raise error/exception
 - Something else ...

Handling Overflow as Error

```
L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_B) if L_M_BV_32 > 32767 then
    P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#; elsif L_M_BV_32 < -32768 then
    P_M_DERIVE(T_ALG.E_BV) := 16#8000#; else
    P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(7) end if;
P_M_DERIVE(T_ALG.E_BH) :=
    UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M))
```

Ariane 5

Handling Overflow as Error

Hard to reason about code

```
\circ n + (n - n) and (n + n) - n are equal in math ...
```

- ... but with fixed size numbers,
 - \circ n + (n n) always equal to n
 - \circ (n + n) n may overflow

We want to be able to use the laws of arithmetic

Modular Arithmetic

4 bits

111100

(60)

Integers Modulo 16

- From number line to a number circle
- Addition is moving clockwise
- Arithmetic mod 16
 (= 2⁴),
 corresponds to a
 fictional machine
 with word size 4

Laws of Modular Arithmetic

X + y = y + X	Commutativity of addition	
(x + y) + z = x + (y + z)	Associativity of addition	
X + O = X	Additive unit	
x * y = y * x	Commutativity of multiplication	
(x * y) * z = x * (y * z)	Associativity of multiplication	
x * 1 = x	Multiplicative unit	
x * (y + z) = x * y + x * z	Distributivity	
x * 0 = 0	Annihilation	

Same laws as traditional arithmetic!

Reasoning about int`s

```
string foo(int x) {
    int z = 1+x;
    if (x+1 == z)
        return "Good";
    else
        return "Bad";
    }
    ... so foo always returns "Good"
```

What about the Negatives?

Subtraction

- x y is stepping y times counter-clockwise from x
- Define -x = 0 x
- Then,

$$x + (-x) = 0$$
 Additive inverse
 $-(-x) = x$ Cancelation

Same laws as traditional arithmetic!

Two's Complement

-16 -15 -2 -14 -3 -13 -12 -4 -5 -11 -6 -10 -7 -9 -8

Rendering

- How should the computer print back to us 0100?
 4? 20? -12?
- What about 1101?13? 29? -3?

Two's Complement

Two's Complement

- With k bits
 - \circ int_max = 2k 1
 - \circ int_min = -2k
- Off by one because of 0
- We can now talk about ordering

$$\bigcirc x < y, x \le y, \dots$$

Reasoning about int`s

```
string bar(int x) {

if (x+1 > x)

return "Good";

else

return "Strange";
}
```

Division and Modulus

- In calculus, (x/y) is z such that y * z = x
- Introduce a new operation to pick up the slack: modulus

$$(x/y) * y + (x\%y) = x$$

$$\triangleright$$
 0 <= |x % y| < |y|

- x/y rounds down for positive x and y
- What should (x/y) round down to for negative numbers?
 - C0 rounds "down" to 0
 - Python rounds towards -∞

But there is

no int z

such that 2 * z = 3

This doesn't work for the integers

Safety Requirements

- Division by 0 is undefined (same for modulus)
 - Any time we have x/y in a program, we must have a reason to believe that y != 0
 - This is a safety requirement
 - x/y and x%y have preconditions

```
//@requires y != 0;
//@requires !(x == int_min() && y == -1);
```

> because chips raise errors on these inputs

Bit Patterns

Bit Patterns

- use int to represent data other than numbers
 - o pixels
 - network packets
 - 0 ...
- New set of operations to manipulate them
 - bitwise operators
 - o shifts

Pixels as 32-bit int's (ARGB)

Example: Pixel

Background

Bitwise Operations

and

&	0	1
0	0	0
1	0	1

OI

r		0	1
	0	0	1
	1	1	1

xor

•	٨	0	1
	0	0	1
	1	1	0

not

~	0	1
	1	0

Bitwise Operations

Apply to int's, position by position
 examples with just 4 bits

Related to & & and | | but not interchangeable
 take int's as input, not bool's

Bitwise Operations

b			
٨	0	1	
0	0	1	
1	1	0	
same	as b	invers	se of b

~	0	1
	1	0

Clearing Bits

Background

Isolating Red


```
int make_red(int p) {
  int red = p & 0x00FF00000;
  return red;
}
```


Background

Example: Opacify


```
int opacify(int p) {
return p | 0xFF000000;
}
```


What does this Function do?


```
int franken_pixel(int p, int q) {
  int p_green = p & 0x0000FF00;
  int q_others = q & 0xFFFF00FF;
  return p_green | q_others;
}
```

- shifts x by k bits to the right
 - k rightmost bits are dropped
 - k leftmost bits are a *copy* of the leftmost bit➤ sign extension
- 0101 >> 1 = 0010
- \bullet 0101 >> 3 = 0000
- 1010 >> 1 = 1101
- 1010 >> 3 = 1111

Shifts: Moving Bits Around

Left shift: $x \ll k$

- shifts x by k bits to the left
 - k leftmost bits are dropped
 - k rightmost bits are 0

- 0101 << 1 = 1010</p>
- \bullet 0101 << 3 = 1000

Right shift: $x \gg k$

- shifts x by k bits to the right
 - k rightmost bits are dropped
 - k leftmost bits are a copy of the leftmost bit
 - > sign extension
- 0101 >> 1 = 0010
- \bullet 0101 >> 3 = 0000
- 1010 >> 1 = 1101
- 1010 >> 3 = 1111

Preconditions: //@requires 0 <= k && k < 32;

Red Everywhere


```
int red_everywhere(int p) {
  int alpha = p & 0xFF000000;
  int red = p & 0x00FF0000;
  return alpha | red | (red >> 8) | (red >> 16);
}
```


red_everywhere

Background

Swapping the Alpha and Red Channels


```
int BAD_swap_alpha_red(int p) {
  int new_alpha = (p & 0x00FF00000) << 8;
  int new_red = (p & 0xFF0000000) >> 8;
  int old_green = p & 0x0000FF00;
  int old_blue = p & 0x00000FF;
  return new_alpha | new_red | old_green | old_blue;
}

Why is this function bad?
```

Background

Backg

Swapping the Alpha and Red Channels


```
int swap_alpha_red(int p) {
  int new_alpha = (p << 8) & 0xFF000000;
  int new_red = (p >> 8) & 0x00FF0000; // fixed
  int old_green = p & 0x0000FF00;
  int old_blue = p & 0x00000FF;
  return new_alpha | new_red | old_green | old_blue;
}
```


Background