FORMULÁRIO

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\cos(a+b) = \sin(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) - \sin(a)\cos(b)$$

$$\sin(a+b) = \sin$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \qquad \sinh(x) = \frac{e^x - e^{-x}}{2} \qquad \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\cosh(-x) = \cosh(x) \qquad \sinh(-x) = -\sinh(x) \qquad \tanh(-x) = -\tanh(x)$$

$$\cosh^2(x) - \sinh^2(x) = 1 \qquad \cosh^2(x) + \sinh^2(x) = \cosh(2x) \qquad 2\cosh(x)\sinh(x) = \sinh(2x)$$

$$\arg \cosh(x) = \ln\left(x + \sqrt{x^2 - 1}\right) \qquad \arg \sinh(x) = \ln\left(x + \sqrt{x^2 + 1}\right) \qquad \arg \tanh(x) = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right)$$

D(f)	f	D(f')	f'
$]-\infty,0[$	x^{α}	$]-\infty,0[$	$\alpha x^{\alpha-1}$
\mathbb{R}	e^x	\mathbb{R}	e^x
$\mathbb{R}\setminus\{0\}$	$\ln(x)$	$\mathbb{R}\setminus\{0\}$	$\frac{1}{x}$
\mathbb{R}	$\sin(x)$	\mathbb{R}	$\cos(x)$
\mathbb{R}	$\cos(x)$	\mathbb{R}	$-\sin(x)$
$\mathbb{R} - \{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \}$	tan(x)	$\mathbb{R} - \{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \}$	$1 + \tan^2(x)$
[-1, 1]	$\arcsin(x)$] - 1, 1[$\frac{1}{\sqrt{1-x^2}}$
[-1, 1]	$\arccos(x)$]-1,1[$-\frac{1}{\sqrt{1-x^2}}$
\mathbb{R}	$\arctan(x)$	\mathbb{R}	$\frac{1}{1+x^2}$
\mathbb{R}	$\sinh(x)$	\mathbb{R}	$\cosh(x)$
\mathbb{R}	$\cosh(x)$	\mathbb{R}	$\sinh(x)$
\mathbb{R}	tanh(x)	\mathbb{R}	$1 - \tanh^2(x)$
\mathbb{R}	arg sinh(x)	\mathbb{R}	$\frac{1}{\sqrt{1+x^2}}$
$[1, +\infty]$	$arg \cosh(x)$	$]1,+\infty[$	$\frac{1}{\sqrt{x^2-1}}$
] - 1,1[arg tanh(x)]-1,1[$\frac{1}{1-x^2}$