Fundamentals of AI and KR - Module 3

2. Bayesian network representation

Paolo Torroni

Fall 2023

Notice

Credits

The present slides are largely an adaptation of existing material, including:

- slides from Russel & Norvig
- slides by Daphne Koller on Probabilistic Graphical Models
- slides by Fabrizio Riguzzi on Data Mining and Analytics

I am especially grateful to these authors.

Downloading and sharing

A copy of these slides can be downloaded from virtuale and stored for personal use only. Please do not redistribute.

Table of Contents

- Independence
- Bayesian network representation

Independence

Independence

WIT, Cat, GV)

A and B are independent, denoted $P \models (A \perp B)$, iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

Cavity
Toothache Catch
Weather

Toothache Catch

Cavity

Weather

P(Toothache, Catch, Cavity, Weather)

 $= \mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

32 entries reduced to 12; for n independent biased coins, 2^n

Absolute (marginal) independence powerful but rare.

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1)
$$P(catch|toothache, cavity) = P(catch|cavity)$$

The same independence holds if I haven't got a cavity:

(2)
$$P(\operatorname{catch}|\operatorname{toothache}, \neg \operatorname{cavity}) = P(\operatorname{catch}|\neg \operatorname{cavity})$$

Catch is conditionally independent of Toothache given Cavity:

$$P(Catch|Toothache, Cavity) = P(Catch|Cavity)$$

Equivalent statements:

- P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
- P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Notation: $P \models (Catch \perp Toothache \mid Cavity)$

Fall 2023

2

Conditional independence

i.e., 2 + 2 + 1 = 5 independent numbers

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Toothache Catch, Cavity)P(Catch Cavity)P(Cavity)

= P(Toothache Cavity)P(Catch Cavity)P(Cavity)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Baves' Rule

Product rule
$$P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$$

$$\Rightarrow \text{Bayes' rule} P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

or in distribution form

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause | Effect) = \frac{P(Effect | Cause)P(Cause)}{P(Effect)}$$

Example of diagnosis using Bayes' Rule

Say 1 individual in 50,000 suffers from meningitis, 1% from a stiff neck, and 70% of the times meningitis causes a stiff neck. What is the probability that an individual with a stiff neck has meningitis?

Example of diagnosis using Bayes' Rule

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

Say 1 individual in 50,000 suffers from meningitis, 1% from a stiff neck, and 70% of the times meningitis causes a stiff neck. What is the probability that an individual with a stiff neck has meningitis?

Let M be meningitis and S be stiff neck.

$$P(m) = 1/50,000, P(s) = 0.01, P(s|m) = 0.7.$$

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times 1/50,000}{0.01} = 0.0014$$

Note: posterior probability of meningitis still very small!

2

Bayes' Rule and conditional independence

Bayes' Rule and conditional independence

This is an example of a naive Bayes model:

$$P(Cause, Effect_1, ..., Effect_n) = P(Cause) \prod_i P(\underline{Effect_i | Cause})$$

Total number of parameters is $\underbrace{\text{linear}}_{n}$ in n

Summary so far

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools

Bayesian network representation

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions.

Syntax:

KNOWN A, C and B are & independent

- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a <u>conditional distribution</u> for each node given its parents: $P(X_i|Parents(X_i))$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example P(B)P(E)Burglary Earthquake 0.001 .002 В Ε P(A|B,E).95 .94 Alarm .29 .001 P(J|A)P(M|A)A MaryCalls **JohnCalls** .90 .70 .05 .01

A student's grade depends on intelligence and on the difficulty of the course SAT scores are correlated with intelligence. A professor writes recommendation letters by only looking at grades.

The student network

A student's grade depends on intelligence and on the difficulty of the course. SAT scores are correlated with intelligence. A professor writes recommendation letters by only looking at grades.

• Causal: will George get a strong reference letter? (prediction)

• Causal: will George get a strong reference letter? (prediction)

• Causal: will George get a strong reference letter? (prediction)

MINISTER STATE OF THE STATE OF

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)
- Intercausal: why did George score low/high? (explaining away)

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)
- Intercausal: why did George score low/high? (explaining away)

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)
- Intercausal: why did George score low/high? (explaining away)

PROBABILISTIC GRAPHICAL MODELS

- Causal: will George get a strong reference letter? (prediction)
- Evidential: is George a good potential recruit? (explanation)
- Intercausal: why did George score low/high? (explaining away)

Compactness

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5 - 1 = 31$)

For student net, 1+1+8+2+3=15 numbers (vs. $2^4 \times 3 - 1 = 47$)

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

e.g.,
$$P(j \land m \land a \land (\neg b) \land \neg e)$$

$$P(j|a)P(m|a)P(a|7b,e)P(7b)P(e)$$

$$P(j|a,m,7b,e)P(a|m,7b,e)P(...$$

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$

Basic independences in the Student network

What independences?

•
$$P \models (G \perp \dots ?)$$

• $P \models (I \perp \dots ?)$

$$\mathbf{P} \models (I \perp \dots ?)$$

$$\mathbf{P} \models (D \perp \dots)$$

$$P \models (LLS \mid I)$$

PROBABILISTIC GRAPHICAL MODELS MARKEN IN THE PROBABILISTIC CONTROL OF THE

Basic independences in the Student network

Flow of probabilistic influence

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Flow of probabilistic influence: active trails

Consider a longer trail $X_1 \rightleftharpoons \cdots \rightleftharpoons X_n$.

For influence to flow from X_1 to X_n , it needs to flow through every single node on the trail

This is true if and only if every two-edge trail $X_{i-1} \rightleftharpoons X_i \rightleftharpoons X_{i+1}$ along the trail allows influence to flow

Definition (active trail)

Let Z be a subset of observed variables.

The trail $X_{i-1} \rightleftharpoons X_i \rightleftharpoons X_{i+1}$ |s active given **Z** if

- $\forall X_{i-1} \to X_i \leftarrow X_{i+1}, (X_i)$ or one of its descendants are in **Z**
- no other node along the trail is in Z

PROBABILISTIC GRAPHICAL MODELS AMERICA OR TOO BISS BOARD TO A COMMON TO BE A COM

Flow of probabilistic influence: direct separation

Definition (d-separation)

Two sets of nodes X, Y are d-separated given Z if there is no active trail between any $X \in X$ and $Y \in Y$ given Z

To determine if X and Y are independent given Z:

- traverse the graph bottom-up marking all nodes in Z or having descendants in given Z
- 2 traverse the graph from (X) stopping if we get to a blocked node
- if we can't reach Y, then X and Y are independent

A node is blocked if either the middle of an unmarked v-structure, or in **Z** (not both)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

What independences?

•
$$P \models (C \perp D)$$
? \bigcap_{A}

THERE IS AN ACTIVE TRAIL

What independences?

•
$$P \models (C \perp D)$$
?

•
$$P \models (C \perp D | A)$$
?

15 ACTIVE BUT

ONE NOT

What independences?

•
$$P \models (C \perp D)$$
?

•
$$P \models (C \perp D|A)$$
?

•
$$P \models (C \perp D \mid A, B)$$
? yes

What independences?

• $\mathbf{P} \models (C \perp D)$?

Fundamentals of AI and KR - Module 3

- $P \models (C \perp D|A)$?
- $P \models (C \perp D | A, B)$?
- $P \models (C \perp D | A, B, J)$?

What independences?

- $P \models (C \perp D)$?
- $P \models (C \perp D|A)$?
- **P** \models (*C* \perp *D*|*A*, *B*)?
- $P \models (C \perp D | A, B, J)$?
- $P \models (C \perp D | A, B, E, J)$? yes

Local semantics

Local semantics: each node is conditionally independent of its

nondescendants given its parents

Theorem: Local semantics ⇔ global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Questions?