

普里姆(Prim)算法

□ 问题

- 应 G=(V, E)是一个具有n个顶点的带权连通无向图
- □ T=(U, TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集

□ 由G构造最小生成树T的步骤

- (1)初始化U={v},v到其他顶点的所有边为候选边;
- (2) 重复以下步骤n-1次,在U中加入其他n-1个顶点
 - ① 从候选边中挑选权值最小的边加入TE,设该边在V-U中的顶点是k,将k加入U中;
 - ② 考察当前V-U中的所有顶点i,修改候选边:若(k,i)的权值小于原来和顶点k关联的候选边,则用(k,i)取代后者作为候选边。

Robert Clay Prim 1957年提出

普里姆算法过程演示

int lowcost[MAXV]; //记录从U到U-V的边的最小权值 int closest[MAXV]; //记录最小权值的边对应的顶点

再例:普里姆算法过程


```
int min;
void Prim(MGraph g,int v)
                               int closest[MAXV],i,j,k;
                               for (i=0; i<g.n; i++)
  //变量声明及初始化
  for (i=1; i<g.n; i++)
                                 lowcost[i]=g.edges[v][i];
                                 closest[i]=v;
    //找权值最小的邻接点k
    min=INF;
    for (j=0; j<g.n; j++)
      if (lowcost[j]!=0 && lowcost[j]<min)
        min=lowcost[j];
        k=j;
    printf("边(%d,%d): %d\n",closest[k],k,min);
    //调整lowcost和closest
    lowcost[k]=0;
    for (j=0; j<g.n; j++)
      if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
        lowcost[j]=g.edges[k][j];
        closest[j]=k;
```

int lowcost[MAXV];

١	0	6	1	5	∞	8	
	6	0	5	∞	3	8	
	1	5	0	5	6	4	
	5	∞	5	0	∞	2	
	∞	3	6	∞	0	6	
	∞	∞	4	5 ∞ 5 0 ∞ 2	6	$0 \rfloor$	

closest

101	reose	Closest		
[0]	0	[0]	0	
[1]	5	[1]	2	
[2]	0	[2]	0	
[3]	5	[3]	0	
[4]	6	[4]	2	
[5]	4	[5]	2	

lowcost

.