B.2 Table of *z*-Transforms

 $\mathcal{F}(s)$ is the Laplace transform of f(t) and F(z) is the z transform of f(kT). Unless otherwise noted, f(t)=0, t<0 and the region of convergence of F(z) is outside a circle r<|z| such that all poles of F(z) are inside r.

Table B.2

Table B.2		_	
Number	$\mathcal{F}(\mathbf{s})$	f(kT)	F(z)
1 2	<u> </u>	1. $k = 0$; 0. $k \neq 0$ 1. $k = m$; 0. $k \neq m$	1 3-m
3	$\frac{1}{s}$	1(kT)	$\frac{z}{z-1}$
4	$\frac{\frac{1}{s^2}}{\frac{1}{s^3}}$	kT	$\frac{Tz}{(z-1)^2}$
5	$\frac{1}{s^3}$	$\frac{1}{2!}(kT)^2$	$\frac{T^2}{2} \frac{z(z+1)}{(z-1)^3}$
6	$\frac{1}{s^4}$	$\frac{1}{3!}(kT)^3$	$\frac{T^3}{6} \frac{z(z^2 + 4z + 1)}{(z - 1)^4}$
7	$\frac{1}{s^m}$	$\lim_{n \to 0} \frac{(-1)^{m-1}}{(m-1)!} \frac{\partial^{m-1}}{\partial a^{m-1}} e^{-akT}$	$\lim_{a \to 0} \frac{(-1)^{m-1}}{(m-1)!} \frac{\partial^{m-1}}{\partial a^{m-1}} \frac{z}{z - e^{-a}}$
8	$\frac{1}{s+a}$	$e^{-ak^{\gamma}}$	$\frac{z}{z-e^{-aI}}$
9	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
10	$\frac{1}{(s+a)^3}$	$\frac{1}{2} (kT)^2 e^{-akT}$	$\frac{T^2}{2}e^{-aT}\frac{z(z+e^{-aT})}{(z-e^{-aT})^3}$
11	$\frac{1}{(s+a)^m}$	$\frac{(-1)^{m-1}}{(m-1)!} \frac{\partial^{m-1}}{\partial a^{m-1}} (e^{-akT})$	$\frac{(-1)^{m-1}}{(m-1)!} \frac{\partial^{m-1}}{\partial a^{m-1}} \frac{z}{z - e^{-aT}}$
12	s(s+a)	$1 - e^{-akF}$	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$

Table R 2

Number	$\mathcal{F}(s)$	f(kT)	F(z)
13	$\frac{a}{s^2(s+a)}$	$\frac{1}{a}(akT - 1 + e^{-akT})$	$\frac{z[(aT-1+e^{-aT})z+(1-e^{-aT}-aTe^{-aT})]}{a(z-1)^2(z-e^{-aT})}$
14	$\frac{b-a}{(s+a)(s+b)}$	$(e^{-akT}-e^{-bkT})$	$\frac{(e^{-uT} - e^{-tT})z}{(z - e^{-uT})(z - e^{-bT})}$
15	$(s + a)^{-}$	$(1 - akT)e^{-akT}$	$\frac{z(z - e^{-aT}(1 + aT))}{(z - e^{-aT})^2}$
16	$\frac{a^2}{s(s+a)^2}$	$1 - e^{-akT}(1 + akT)$	$\frac{z[z(1-e^{-aT}-aTe^{-aT})+e^{-2aT}+e^{-aT}+aTe^{-a}}{(z-1)(z-e^{-aT})^2}$
17	$\frac{(b-a)s}{(s+a)(s+b)}$	$be^{-bkT} - ae^{-akT}$	$\frac{z[z(b-a) - (be^{-aT} - ae^{-bT})]}{(z - e^{-aT})(z - e^{-bT})}$
18	$\frac{a}{s^2 + a^2}$	sin akT	$\frac{z \sin aT}{z^2 - (2\cos aT)z + 1}$
19	$\frac{s}{s^2 + a^2}$	cos akT	$\frac{z(z - \cos aT)}{z^2 - (2\cos aT)z + 1}$
20	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-akT}\cos bkT$	$\frac{z(z - e^{-aT}\cos bT)}{z^2 - 2e^{-aT}(\cos bT)z + e^{-2aT}}$
21	$\frac{b}{(s+a)^2+b^2}$		$\frac{ze^{-aT}\sin bT}{z^2 - 2e^{-aT}(\cos bT)z + e^{-2aT}}$
22	$\frac{a^2 + b^2}{s((s+a)^2 + b^2)}$	$1 - e^{-akT} \left(\cos bkT + \frac{a}{b} \sin bkT \right)$	$\frac{z(Az+B)}{(z-1)(z^2-2e^{-aT}(\cos bT)z+e^{-2aT})}$
			$A = 1 - e^{-aT} \cos bT - \frac{a}{b} e^{-aT} \sin bT$
			$B = e^{-2aT} + \frac{a}{b}e^{-aT}\sin bT - e^{-aT}\cos bT$