Teoria de la Informació GCED-UPC curs 2019/20 Problemes; full número 3

16 d'octubre de 2019

3.1. Sigui X_1, X_2, \ldots una successió de variables aleatòries i.i.d. Calculeu

$$\lim_{n\to\infty} \sqrt[n]{p(X_1, X_2, \dots, X_n)},$$

digueu quant val aquest límit si la distribució de les variables és Ber(p) i dibuixeu la gràfica dels seus valors per a $p \in [0, 1]$.

3.2. En un procés estacionari la incertesa coneixent el passat és la mateixa que coneixent el futur. Sigui $(X_i)_{i\in\mathbb{Z}}=\ldots,X_{-3},X_{-2},X_{-1},X_0,X_1,X_2,X_3,\ldots$ un procés estocàstic estacionari:

$$\Pr(X_i, X_{i+1}, \dots, X_{i+n-1} = x^n) = \Pr(X_j, X_{j+1}, \dots, X_{j+n-1} = x^n),$$

per a tot $x^n \in \mathcal{X}^n$, tot enter $n \ge 1$ i tot parell d'enters $i, j \in \mathbb{Z}$.

Demostreu que

$$H(X_0|X_{-1}, X_{-2}, \dots, X_{-n}) = H(X_0|X_1, X_2, \dots, X_n)$$

i doneu una fórmula anàloga per a les entropies condicionades d'una de les variables respecte les n anteriors i les n posteriors.

- **3.3.** Sigui $n \ge 3$. Siguin X_1, \ldots, X_{n-1} variables aleatòries binàries independents amb distribució uniforme. Sigui $X_n = 1$ si $\sum_{i=1}^{n-1} X_i$ és senar i $X_n = 0$ si és parell.
 - 1. Vegeu que X_i i X_j són independents per a tot parell $i \neq j$ amb $1 \leq i, j \leq n$.
 - 2. Calculeu $H(X_i, X_i)$ si $i \neq j$.
 - 3. Calculeu $H(X_1, \ldots, X_n)$.
- **3.4.** Es considera un passeig aleatori sobre els enters de la forma següent: es comença al zero i en el primer pas es va a la dreta o l'esquerra amb la mateixa probabilitat; en els passos següents s'avança en la mateixa direcció amb probabilitat 0.9 i es canvia de direcció amb probabilitat 0.1. Sigui $X_0 = 0, X_1, X_2, X_3, \ldots, X_n, \ldots$ la successió de variables aleatòries que donen la posició sobre \mathbb{Z} quan s'han fet n passos.

- 1. Comproveu que els X_i són una cadena de Markov d'ordre 2.
- 2. És estacionària?
- 3. Calculeu $H(X_1, X_2, ..., X_n)$.
- 4. Calculeu l'entropia del procés.
- 5. Calculeu el nombre esperat de passos abans de canviar de direcció.
- **3.5.** Considereu una cadena de Markov X_1, X_2, \ldots d'ordre 1 amb variables que prenen valors al conjunt $\mathcal{X} = \{0, 1, 2\} = \mathbb{Z}_3$, on X_1 té distribució uniforme i la matriu de transició entre estats és

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

Considereu també el procés estocàstic Z_1, Z_2, \ldots amb $Z_1 = X_1$ i $Z_i = X_i - X_{i-1} \pmod{3}$ per a $i \ge 2$.

- 1. La cadena X_i , és estacionària?
- 2. Calculeu la seva entropia.
- 3. Calculeu $H(Z_1,\ldots,Z_n)$.
- 4. Calculeu $H(X_n)$ i $H(Z_n)$.
- 5. Calculeu $H(Z_n|Z_{n-1})$.
- 6. Les variables Z_n i Z_{n-1} , són independents?
- **3.6.** Siguin X_i variables binaries i.i.d. amb distribució Ber(p). Considereu el procés Y_1, Y_2, \ldots tal que Y_n dóna el nombre d'uns seguits que apareixen fins a X_n . Per exemple, si $X^n = 1011100110\ldots$ aleshores $Y^n = 1012300120\ldots$ Calculeu les entropies d'aquests dos processos.
- **3.7.** Una font binària emet dígits de forma independent amb probabilitats p(1) = 0.005 i p(0) = 0.995. Es codifiquen les seqüències emeses per la font en blocs de 100 dígits de la manera següent: les seqüències que contenen tres o menys uns es codifiquen amb un 1 seguit d'una paraula binària de longitud fixada el més curta possible. Les seqüències que tenen més de tres uns es codifiquen amb un 0 seguit de la seqüència sencera.
 - 1. Calculeu l'entropia de la font. Quants bits s'haurien de fer servir per codificar les seqüències de longitud 100 de manera òptima?
 - 2. Calculeu el nombre esperat de bits que es fan servir per codificar les seqüències segons l'esquema proposat.
 - 3. Seria millor estratègia codificar les paraules amb dos uns com a màxim? amb un 1 com a màxim?
 - 4. Seria millor estratègia codificar amb paraules curtes les seqüències típiques?
- **3.8.** Exàmen gener 19. Digueu si les afirmacions següents són certes o falses, justificant la resposta:

1. Si el procés estocàstic X_1, X_2, X_3, \ldots té taxa d'entropia H aleshores es compleix:

$$\lim_{n\to\infty} H(X_n) = H.$$

2. La taxa d'entropia d'una cadena de Markov estacionària amb matriu de transició de probabilitats

$$P = \begin{pmatrix} 4/5 & 1/5 & 0\\ 0 & 4/5 & 1/5\\ 1/5 & 0 & 4/5 \end{pmatrix}$$

és igual a $\log 5 - \frac{8}{5}$.

- **3.9.** AEP. Es genera una seqüència de dígits binaris independents amb distribució Ber(p). Escriviu una funció de Python que, agafant com a paràmetres la probabilitat p, un enter n > 1 i un nombre $\epsilon > 0$ calculi:
 - 1. El cardinal $|A_{\epsilon}^{(n)}|$ i Pr $(A_{\epsilon}^{(n)})$ del conjunt de seqüències típiques

$$A_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : 2^{-n(H+\epsilon)} \leqslant p(x^n) \leqslant 2^{-n(H-\epsilon)} \right\} \subseteq \mathcal{X}^n.$$

La fita demostrada a teoria assegura que $e = \Pr(A_{\epsilon}^{(n)}) \ge 1 - \epsilon$.

2. El cardinal $|B_{\epsilon}^{(n)}|$ del mínim conjunt de probabilitat $> 1 - \epsilon$:

$$B_{\epsilon}^{(n)} \subseteq \mathcal{X}^n$$
 amb $\Pr(B_{\epsilon}^{(n)}) \geqslant 1 - \epsilon$ tal que $|B_{\epsilon}^{(n)}|$ és mínim.

3. El cardinal $|B_e^{(n)}|$ del mínim conjunt de probabilitat $\geqslant e = \Pr(A_{\epsilon}^{(n)})$:

$$B_e^{(n)} \subseteq \mathcal{X}^n$$
 amb $\Pr(B_e^{(n)}) \geqslant e$ tal que $|B_e^{(n)}|$ és mínim.

És a dir, el conjunt mínim de seqüències que tenen la mateixa probabilitat que el conjunt de les seqüències típiques per a l' ϵ donat.

4. El nombre de bits per símbol usats en codificar les seqüències de longitud n segons el mètode explicat a classe de teoria en cadascun dels casos: usant el conjunt de seqüències típiques $A_{\epsilon}^{(n)}$ o bé usant els conjunts mínims $B_{\epsilon}^{(n)}$ i $B_{e}^{(n)}$ de probabilitat alta donada $1 - \epsilon$ o e dels apartats 2 i 3.

Usant aquesta funció compareu els valors de $|A_{\epsilon}^{(n)}|$ i $\Pr(A_{\epsilon}^{(n)})$ que obteniu a l'apartat 1 amb les fites sobre aquests valors demostrades a classe de teoria, i experimenteu variant els paràmetres per entendre millor la propietat d'equipartició asimptòtica.