SARSOP

Team

- Archit Jain (2019101053)
- Pulkit Gupta (2019101078)

Description

Roll number	2019101078
Prob_to_move_up	0.1
Prob_to_move_down	0.1
Prob_to_move_right	0.1
Prob_to_move_left	0.1
Prob_to_move_stay	0.6
Prob_to_make_call	0.5
Prob_to_call_off	0.1
Х	1 - (((1078)%30 + 1)/100) = 0.71
Prob_to_move_desired	0.71
Prob_to_move_opposite	0.29
Reward_each_step	-1 (not for action stay)
Reward_reach_target_call_on	48
discout_factor	0.5

• Grid

(1,0) 4	(1,1) 5	(1,2) 6	(1,3) 7
(0,0) 0	(0,1) 1	(0,2) 2	(0,3) 3

Mapping the grid from (x,y) to $4*x + y$		

- Each POMDP state is represented as tuple (Agent Position, Target Position, Call)
- Total Number of states: 8*(8*2) = 128
- These states can be mapped as (A, T, C) = 16A + 2T + C

SOLUTIONS

Solution 1

Initial Condition

- Target is at (1,0) = 4
- Observation is o6 (when the target is not in the 1 cell neighbourhood of the agent.)

Deduced

- Agent can be at -> (0,1) = 1; (1,2) = 6; (0,2) = 2; (1,3) = 7; (0,3) = 3
- Call -> 0 (off); 1 (on)
- POMDP states possible ->

1.	((0,1), (1,0), 0)	(1, 4, 0)	24
2.	((0,1), (1,0), 1)	(1, 4, 1)	25
3.	((1,2), (1,0), 0)	(6, 4, 0)	104
4.	((1,2), (1,0), 1)	(6, 4, 1)	105
5.	((0,2), (1,0), 0)	(2, 4, 0)	40
6.	((0,2), (1,0), 1)	(2, 4, 1)	41
7.	((1,3), (1,0), 0)	(7, 4, 0)	120
8.	((1,3), (1,0), 1)	(7, 4, 1)	121
9.	((0,3), (1,0), 0)	(3, 4, 0)	56
10.	((0,3), (1,0), 1)	(3, 4, 1)	57

These states are possible with equal probability 1/10. All other states have initial belief state = 0

Solution 2

Initial Condition

- Agent is at (1,1) = 5
- Call -> 0

Deduced

- Target can be at -> (1,0) = 4; (1,1) = 5; (0,1) = 1; (1,2) = 6
- POMDP states possible ->

1.	((1,1), (1,0), 0)	(5, 4, 0)	88
2.	((1,1), (1,1), 0)	(5, 5, 0)	90
3.	((1,1), (0,1), 0)	(5, 1, 0)	82
4.	((1,1), (1,2), 0)	(5, 6, 0)	92

These states are possible with equal probability 1/4. All other states have initial belief state = 0

Solution 3

Expectations were calculated by using the --simLen 50 --simNum 500 --policy-file flag with pomdpsil pomdpsol.

• For q1, Expected Utility = 7.02887

```
Loading the model ...
 input file : ../../pulkit/2019101078.pomdp
Loading the policy ...
 input file : ../../pulkit/2019101078.policy
Simulating ...
 action selection : one-step look ahead
#Simulations | Exp Total Reward
50
              6.5194
100
              6.3065
150
              6.52897
200
              6.98051
250
              7.10652
300
              7.11886
350
              7.20643
400
              7.01956
450
              7.16071
              7.02887
```

Finishing ...

#Simulations	Exp Total Reward	95% Confidence Interval
500	7.02887	(6.52925, 7.5285)

• For q2, Expected Utility = 17.6657

```
Loading the model ...
input file : ../../pulkit/2019101078_b.pomdp

Loading the policy ...
input file : ../../pulkit/2019101078_b.policy

Simulating ...
action selection : one-step look ahead
```

#Simulations	Exp Total Reward
50	17.7864
100	17.4281
150	17.5706
200	17.4942
250	17.4508
300	17.4938
350	17.5747
400	17.5289
450	17.62
500	17.6657

Finishing ...

#Simulations	Exp Total Reward	95% Confidence Interval
500	17.6657	(17.3531, 17.9782)

Solution 4

Inital Condition

• Agent is at ->

	(x,y)	Mapped state	Probablity
1.	(0,0)	0	0.4

	(x,y)	Mapped state	Probablity
2.	(1,3)	7	0.6

• Target is at ->

(x,y)	Mapped state	Probablity
(0,1)	1	0.25
,	2	0.25
. , ,	_	0.25
,	6	0.25
	(x,y) (0,1) (0,2) (1,1) (1,2)	(0,1) 1 (0,2) 2 (1,1) 5

Call can be ->

	Call value	Probability
1.	0	0.5
2.	1	0.5

Observations

	(A,T,C)	Probability	Observation		
1.	(0, 1, 0)	0.4*(0.25*0.5) = 0.05	o2		
2.	(0, 2, 0)	0.4*(0.25*0.5) = 0.05	06		
3.	(0, 5, 0)	0.4*(0.25*0.5) = 0.05	06		
4.	(0, 6, 0)	0.4*(0.25*0.5) = 0.05	06		
5.	(7, 1, 0)	0.6*(0.25*0.5) = 0.75	06		
6.	(7, 2, 0)	0.6*(0.25*0.5) = 0.75	06		
7.	(7, 5, 0)	0.6*(0.25*0.5) = 0.75	06		
8.	(7, 6, 0)	0.6*(0.25*0.5) = 0.75	04		
9.	(0, 1, 1)	0.4*(0.25*0.5) = 0.05	o2		
10.	(0, 2, 1)	0.4*(0.25*0.5) = 0.05	06		
11.	(0, 5, 1)	0.4*(0.25*0.5) = 0.05	06		
12.	(0, 6, 1)	0.4*(0.25*0.5) = 0.05	06		
13.	(7, 1, 1)	0.6*(0.25*0.5) = 0.75	06		

	(A,T,C)	Probability	Observation	
14.	(7, 2, 1)	0.6*(0.25*0.5) = 0.75	06	
15.	(7, 5, 1)	0.6*(0.25*0.5) = 0.75	06	
16.	(7, 6, 1)	0.6*(0.25*0.5) = 0.75	04	

- Observation o2 = 0.05*2 = 0.1
- Observation o4 = 0.75*2 = 1.5
- Observation o6 = 0.056 + 0.756 = 0.3 + 4.5 = 4.8
- Observation o6 is most likely to be observed as it has the maximum probability.

Solution 5

On running pompdsol for Q4 we get,

Time	#Trial	#Backup	LBound	UBound	Precision	#Alphas	#Beliefs
0.08	35	299	11.8972	11.8982	0.0009728	96	60

Number of Policy trees = $|A|^N$ where |A| = actions, N = Number of nodes in a tree. N = $(|O|^T - 1)/(|O| - 1)$ Horizon In our case:

- |A| = 5
- |O| = 6
- T = 35 (We use #trial as T value)
- $N = (6^35 1)/(6-1)$
- $|A|^N = 5^{(6^35 1)/(6-1)}$ is approx number of policy trees obtained.

Number of trees is dependent on the horizon T. The value of Policy trees increases with increase in the