WORKSHOP 1: §1.1-5 JANUARY 12, 2017

Namo		
Name:		

- (1) Determine the truth value of $p \land \neg q \lor r$ given the truth values p: T, q: F, r: F. (Make sure to use the correct order of operations.)
- (2) Consider the statement "If today is Thanksgiving, then tomorrow is Friday."
 - (a) Is this a proposition?
 - (b) Is it true or false?
 - (c) What is its converse? Is that true or false?
 - (d) What is its inverse? Is that true or false?
 - (e) What is its contrapositive? Is that true or false?
 - (f) What is its negation? Is that true or false?
- (3) Why is the proposition "if Ben owns a unicorn, then 0 = 1" true?
- (4) Let h be "John is healthy," w be "John is wealthy," and s be "John is wise." Rewrite each of the following using the symbols $\neg, \land, \lor, \rightarrow, h, w, s$:
 - (a) John is healthy and wealthy but not wise.
 - (b) John is not wealthy but he is healthy and wise.
 - (c) John is neither healthy, wealthy, nor wise.
 - (d) John is neither wealthy nor wise, but he is healthy.
 - (e) John is wealthy, but he is not both healthy and wise.
 - (f) John is wise only if he is healthy.
 - (g) John's being healthy and wise is sufficient to make him wealthy.
- (5) (a) Complete the following truth table.

p	q	r	$q \vee r$	$p \land (q \lor r)$	$p \wedge q$	$p \wedge r$	$(p \land q) \lor (p \land r)$	$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$
\overline{T}	Τ	T						
\mathbf{T}	${\rm T}$	F						
${ m T}$	\mathbf{F}	T						
\mathbf{T}	F	F						
F	${\rm T}$	T						
F	${\rm T}$	\mathbf{F}						
F	\mathbf{F}	T						
\mathbf{F}	\mathbf{F}	\mathbf{F}						

- (b) Is the last proposition above a tautology, a contradiction, or neither?
- (c) What does that say about the propositions $p \wedge (q \vee r)$ and $(p \wedge q) \vee (p \wedge r)$? (You've just finished proving one of §1.5's Laws of Logic.)
- (6) In our order of operations, we didn't specify whether $p \lor q \lor r$ should mean $(p \lor q) \lor r$ or $p \lor (q \lor r)$. Why not?
- (7) (Smullyan's Knights and Knaves, adapted) An island consists of a tribe of Honest people who always tell the truth and a tribe of Liars who always lie. You meet there Alice and Bob. Alice says to you "Bob is Honest," and Bob tells you "Alice and I are from opposite tribes." Can you determine which tribes Alice and Bob are from?

You can do this using a truth table and cleverly chosen propositions. Let p be the proposition "Alice is Honest" and q be the proposition "Bob is Honest." The key idea is that the truth value of p is the same as the truth value of Alice's statement (if Alice is Honest, then her statement is true; if Alice is a Liar, then her statement is false). When you complete an appropriate truth table, that fact (and the analogous fact about Bob) will rule out some of the possible rows.

A linguistics professor was lecturing to his class one day. "In English," he said, "a double negative forms a positive. In some languages though, such as Russian, a double negative is still a negative.

"However," he pointed out, "there is no language wherein a double positive can form a negative."

A voice from the back of the room piped up, "Yeah, right."