

What did we learn from module 3.1?

What did we learn from module 3.1?

4 min

- Each on your own
- Populate with ideas, concepts, examples...

6 min

- All together
- Cluster similar ideas, enrich board, prepare to tell your story

What did we learn from module 3.1?

- You will be working in teams:
 - TEAM 1 (Mónica):
 - Daniel Rey
 - Laura Martín
 - Samuel Carballo
 - Mauricio Asperti
 - Marcelo Araujo
 - Isabel Hita
 - TEAM 2 (Juan):
 - Marcos García
 - Ignacio Cifuentes
 - María Dolores Carmena
 - Fernando Rodríguez
 - Ayose Sosa Guerra

- TEAM 3 (Miguel):
 - Vittoria Reale
 - Rubén Farias
 - José Pascual
 - Ángel Moya
 - Kay Kozaronek
 - Miguel García

facilitator -> timing, everybody speaks, go,go,go!

presenter -> summarizes results

Module 3 Summary

SESSION	TITLE	TEACHER
1	ML Foundations	Juan
2	Regression Introduction and Practice	Juan
3	Classification Introduction and Practice	Carlos
4	Feature Engineering and Selection for ML	Carlos
5	Advanced Supervised Models 1	Carlos
6	Advanced Supervised Models 2	Carlos
7	Hands-on Practice	Carlos

Supervised ML

Module 3.2

Types of machine learning

Supervised vs. Unsupervised learning

Supervised Learning

Unsupervised Learning

Supervised vs. Unsupervised learning

Western Digital.

Regression vs. Classification

https://vas3k.com/blog

Simple Linear Regression

- Quantitative predictions
- Single input variable
- $Y \approx \beta_0 + \beta_1 X$
- β_0, β_1 :
 - Constant and unknown
 - Coefficients/parameters
- $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
- $\hat{\beta}_0$, $\hat{\beta}_1$:
 - Calculated from training data
 - Reduce closeness

Estimate Coefficients

LEAST SQUARES

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

ith residual > $e_i = y_i - \hat{y}_i$

Residual Sum of Squares:

RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2$$

= $(y_1 - \hat{\beta}_0 + \hat{\beta}_1 x_1)^2 + \dots + (y_n - \hat{\beta}_0 + \hat{\beta}_1 x_n)^2$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Estimate Coefficients

LEAST SQUARES MATRIX APPROACH

$$X\beta = y$$

$$\mathbf{X} = egin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \ X_{21} & X_{22} & \cdots & X_{2p} \ dots & dots & \ddots & dots \ X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix}, \qquad oldsymbol{eta} = egin{bmatrix} eta_1 \ eta_2 \ dots \ eta_p \end{bmatrix}, \qquad \mathbf{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

$$\hat{oldsymbol{eta}} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$$

Estimate Coefficients

- This diagram shows how different values for each regression coefficient determine RSS value.
- We can see how there is a single solution for the global minimum of the loss function

SciKit-Learn

Free machine learning library for Python

- Community driven project, however institutional and private grants help to assure its sustainability
- Used for data modeling, not loading, manipulating, summarizing...
- Focuse on usability, medium scale projects
- Who uses SciKit-Learn?

Accuracy Assesment

LEFT: Population regression line vs. one ramdom sample least squares line

RIGHT: Population regression line vs. 10 random samples least squares lines.

Population regression line Least squares line

Example: Mean Accuracy Assesment

Sample mean is equal to:

$$\hat{\mu} = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

To find the standard error of the sample mean, we find its variance first:

$$Var(\hat{\mu}) = Var\left(\frac{1}{n}\sum_{i=1}^{n} y_i\right) = \frac{1}{n^2}\sum_{i=1}^{n} Var(y_i) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

• To find the **standard error** of the sample mean, we find its variance first:

$$SE(\hat{\mu}) = \sqrt{Var(\hat{\mu})} = \frac{\sigma}{\sqrt{n}}$$

Coefficient Accuracy Assesment

Same approach for least squares coefficients:

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \qquad SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\operatorname{SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

...where: $\sigma^2 = \operatorname{Var}(\epsilon)$

We can estimate σ^2 from data:

$$\sigma = RSE = \sqrt{\frac{RSS}{n-2}}$$

(residual standard error)

Coefficient Accuracy Assesment

- If $\beta_1 = 0 \Rightarrow Y = \beta_0 + \epsilon$ and therefore there is no relationship between Y and X
- Test **null hypothesis** of:

 H_0 : There is no relationship between X and Y -> β_1 =0

 H_a : There is some relationship between X and Y -> $\beta_1 \neq 0$

• t-statistic: $t = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$

- If β_1 =0, t will have a **t-distribution** with n-2 **degrees of** freedom
- Probability of observing any number equal to |t| or larger in absolute value -> p-value

https://en.wikipedia.org/wiki/Student%27s_t-distribution

Coefficient Accuracy Assesment

The lower the probability (p-value), the higher the evidence against the null hypothesis

Typical p-value cutoffs: 5%-1%

Student distribution

Model Accuracy Assesment

RSE (residual standard error)

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$

- Estimate of the standard deviation of ϵ
- Average amount the response will deviate from true regression line
- Measured in response units
- Lack of fit of the model

R2

$$R^{2} = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$
$$\text{TSS} = \sum (y_{i} - \bar{y})^{2}$$

- TSS > (total sum of squares) total variance in the response Y
- RSS > amount of variability that is left unexplained after performing the regression
- R2 > proportion of variability in Y that can be explained using X

Multiple Linear Regression

- Linear regression extensión
- Multiple input variables:

•
$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- β_j > average effect on Y of a one unit increase in X_i
- Least squares coefficient estimation:

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

Regression Extensions

- Extensions of the linear model:
 - Removing the additive assumption:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon.$$

Removing the linear assumption -> polynomial regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \ldots + \beta_d x_i^d + \epsilon_i$$

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

References

[1] G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2017.

[2] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical: Data Mining, Inference and Prediction. Springer, 2009.

