

Figure 1

Figure 2

D. α ' stable transfection: ¹²⁵l-leptin degradation

CHO-vector **J** CHO-α' 160 (gm/gq) bəbsıgəb nitqəl-l³²¹ S 8 4 CHO-vector Kd = 1.3 nMr = 0.834 Lineweaver-Burk 0.009 1/free (pM)¹

2000

1500

90

Cell-associatd 1251-leptin (pg/ng)

200

126|-leptin (ng/ml)

8

126|-leptin (ng/m!)

A. ¹²⁵I-leptin binding

B. ¹²⁵I-leptin degradation

C. Schematic diagram of human LSR protein motifs

ة | anti LSR (93A)

anti LSR (81B)

41.5 %

Events

33.2 %

stnev3

2.6 %

#19-46ight F178

Figure 4

Figure 5

20 Leptin (ng/m!)

Figure 6

7A. Rat hepatocytes

Figure 7

Figure 8

Figure 9

10/54

Figure 1(

Effect of mouse leptin (A) or leptin peptide (B) on postprandial plasma TG response in ob/ob mice.

Figure 11

Effect of test meal with and without leptin injection on postheparin lipolytic activity in db^{Pas}/db^{Pas} mice

n lipolytic n <i>db^{Pas}/db^{Pas}</i> A/ml/h)
1
) ns
7 ns
-

ns = not significant).

Figure 12

S S S S Q Q X V T G L D F I P G L H P I L Homo sapiens S S S A R Q R V T G L D F I P G L H P I L Mus musculus S S S A R Q R V T G L D F I P G L H P I L Rattus norvegicus S S S S R Q R V T G L D F I P G L H P I L Battus norvegicus S S S S R Q R V T G L D F I P G L H P I L B S taurus S S S S R Q R V T G L D F I P G L H P I L Gallus gallus S S S S R Q R V T G L D F I P G L H P I L Gallus gallus S S S S R Q R V T G L D F I P G L H P I L Gallus gallus S S S S R Q R V T G L D F I P G L H P I L Ganis familiaris S S S S R Q R V T G L D F I P G L H P I L Gorilla gorilla S S S S R Q R V T G L D F I P G L H P I L Gorilla gorilla S S S S R Q R V T G L D F I P G L H P I L D Anacaca mulatta S S S S R Q R V T G L D F I P G L H P I L Pan troglodytes S S S S R Q R V T G L D F I P G L H P I L P D R D R D R D R D R D R D R D R D R D	POTS GLETLDS LGGVLEASGY Homosapiens POTS GLOKPESLDGVLEASLY Musmusculus POTS GLOKPESLDGVLEASLY Musmusculus POTS GLOKPESLDGVLEASLY Satus norvegicus POARALESLLESLGGVLEASLY BOS taurus POTS GLOKPESLDGVLEASLY BOS taurus POTS GLOKPESLDGVLEASLY CANIS and FRANCESLOKPESSLY CANIS familiaris POARALESLESLGGVLEASLY CANIS familiaris PWASGLETLDSLGGVLEASLY CANIS familiaris PWASGLETLDSLGGVLEASLY Macaca mulata PWASGLETLDSLGGVLEASGY PORTOROPOYTES PWASGLETLDSLGGVLEASGY PORTOROPOYTES	
C G F L W L W P Y L F Y V Q A V P I Q K V Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W S Y L S Y V Q A V P I Q K V Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W S Y L S Y V Q A V P I M R V Q D D T K T L I K T I V T R I N D I S H T Q S Y R F L W L W P Y L S Y V B A V P I M R V Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W P Y L S Y V B A V P I M R V Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W S Y L S Y V Q A V P I R R V Q D D T K T L I K T I V T R I N D I S H T C S C R F L W L W S Y L S Y V Q A V P I R R V Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W P P Y L D X Y Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W P P Y L D X V Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W P P Y L P Y V Q D D T K T L I K T I V T R I N D I S H T Q S C R F L W L W P P Y L P Y V Q D D T K T L I K T I V T R I N D I S H T Q S C C C C C C C C C C C C C C C C C C	0 T L A V Y Q Q I L T S M P S R N V I Q I S N D L E N L R D L L H L L A F S K S C H L P Q T L A V Y Q Q V L T S L P S Q N V L Q I A N D L E N L R D L L H L L L A F S K S C S L P Q T L A I Y Q Q I L T S L P S Q N V L Q I A H D L E N L R D L L H L L L A F S K S C S L P Q T L A I I Y Q Q I L T S L P S R N V I Q I S N D L E N L R D L L H L L L A F S K S C P L P Q T L A I I Y Q Q I L T S L P S R N V V L Q I A N D L E N L R D L L H L L L A A S C P L P Q T L A I I Y Q Q I L T S L P S G N V L Q I A N D L E N L R D L L H L L A A S S C P L P Q T L A I I Y Q Q I L T S M P S R N V L Q I S N D L E N L R D L L H L L L A S S C P L P Q T L A I I Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H L L L A F S K S C P L P Q T L A I Y Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H L L L A F S K S C P L L P Q T L A I Y Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H L L L A F S K S C P L D Q T L A V Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H V L A F S K S C P L D Q T L A V Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H V L A F S K S C P L D R Q T L A V Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H V L A F S K S C P L D R Q T L A V Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H V L A F S K S C P L D R Q T L A V Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H V L A F S K S C P L D R Q T L A V Y Q Q I L T S M P S R N M I Q I S N D L E N L R D L L H V L A F S K S C P L D R Q T L A V Y Q Q I L T S M P S R N W I Q I S N D L E N L R D L L H V L A F S K S C P L D R Q T L A V Y Q Q I L T T S M P S R N W I Q I S N D L E N L R D L L H V L A F S K S C P L D R Q T L A V Y Q Q I L T T S M P S R N W I Q I S N D L E N L R D L L H V L D F S K S C P L D R D L D L R D L L R D L L R D L L R D L L R D L L R D L L L D R D L L L D R D L L L D R D L L L L	LSRLQGSLQDMLWQLDLSPGC Homosapiens LSRLQGSLQDILQQLDVSPEC Mus musculus LSRLQGSLQDILQQLDVSPEC Rattus morvegicus LSRLQGSLQDMLRQLDLSPGC Sus scrofa LSRLQGSLQDMLRQLDLSPGC Sus scrofa LSRLQGSLQDMLRQLDLSPGC Bos taurus LSRLQGSLQDMLRRQLDLSPGC Qallus gallus LSRLQGSLQDMLRRLDDLSPGC Qanis familiaris LSRLQGSLQDMLWQLDLSPGC Canis familiaris LSRLQGSLQDMLWQLDLSPGC Gorilla gorilla LSRLQGSLQDMLWQLDLSPGC Macaca mulata LSRLQGSLQDMLWQLDLSPGC Pan troglodytes LSRLQGSLQDMLWQLDLSPGC Pan troglodytes
	71	141 S T E V V A 141 S T E V V A 120 S T E V V A 120 S T E V V A 141 S T E V V A 140 S T E V V A

Figure 1.

Figure 14

.

Plan for creation of truncated forms of LSR

Figure 15

16B

90.00 80.00 70.00

Uptake of LDL in DN transfected PLC cells

3 m/gn JdJ 2 00 02 4 8 02 0 0

0.2 0.4 0.6 Oleate mM

16C

Figure 16

16A

250.00 250.00 250.00 150.00 50.00 200.00

1 Sol LDL ng/relative

0.8

0.4 0.6 Oleate mM

0.2

17A

Degradation of LDL in PLC cells transienctly transfected with D/N contructs 5 & 6

17B

17C

7)

Figure 17

18/54

Figure 18

Figure 19

Figure 20

Figure 21

Figure 23

Figure 24

25/54

Characteristics of recombinant ZFPs directed toward LSR sequences.

Table

Target Sequence	AAGGTCGCCtatGGTGCAGAC (SEQ ID NO:102)	GTGGGAGCCegGGGGCTGGA (SEQ ID NO:103)	TGGGGGTGGGCGGGGG (SEQ ID NO:104)	CCGGGAGTGegCAGGGGGTA (SEQ ID NO:105)	GTGGCTGCACAAGGTCGCC (SEQ ID NO:106)
Kd (nM)	0.10	0.05	0.02	0.02	0.30
Fold Activation	21.5	8.7	8.4	6.5	29.7
ZFP	2B-1A	4A-3A	6A-5A	8A-7B	1A-7B
#0	5182	5183	5185	5186	5205

Figure 25

Figure 26A

Figure 26B

Figure 26C

Figure 26D

Figure 26E

```
pSBS5182-N
LOCUS
                         6319 bp
                                    DNA
                                          CIRCULAR SYN
DEFINITION
            Ligation of 5182 into NVF (KpnI, BamHI)
            pSBS5182-N
ACCESSION
              (bases 1 to 6319)
REFERENCE
FEATURES
                     Location/Qualifiers
     CDS
                     956..1003
                     /gene="NLS"
                     /product="Nuclear Localization Signal"
     CDS
                     1004..1597
                     /gene="ZFP"
                     /product="LSR 2B-1A"
     CDS
                     1598..1840
                     /gene="VP16"
                     /product="VP16 activation domain"
     CDS
                     1841..1867
                     /gene="FLAG"
                     /product="FLAG epitope"
     CDS
                     3064..3947
                     /gene="Neo"
                     /product="neomycin resistance"
     CDS
                     complement (5321..6181)
                     /gene="Amp "
                     /product="Ampcillin resistance"
BASE COUNT
               1451 a
                        1683 c
                                 1651 g
                                          1534 t
ORIGIN
        1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
       61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
      121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC
      181 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT
      241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
      301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
      361 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
      421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT
      481 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
      541 ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
      601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG
      661 ACTCACGGGG ATTTCCAAGT CTCCACCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
      721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG
      781 GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
      841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
      901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
      961 CCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
     1021 CTGCCACATC CAGGGCTGTG GTAAAGTTTA CGGCGACCGC TCCAACCTGA CCCGCCACCT
     1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
     1141 CACCCAGTCC GGCGACCTGA CCCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTTGC
     1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGAT GTCCCACCAC CTGTCCCGCC ACATCAAGAC
     1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGTGGCCGT CGCGGTGCCG GTTCTGGCAA
     1321 GAAGAAGCAG CACATCTGCC ACATCCAGGG CTGTGGTAAA GTTTACGGCG AGCGCGGCGA
     1381 CCTGACCCGC CACCTGCGCT GGCACACCGG CGAGAGGCCT TTCATGTGTA CATGGTCCTA
     1441 CTGTGGTAAA CGCTTCACCG ACCCGGGCGC CCTGGTGCGC CACAAGCGTA CCCACACCGG
```

Figure 26F

			CGGAATGTCC			
			AGAACAAGAA			
			TAGACGGCGA			
			TGTTGGGGGA			
			GCGCTCTGGA			
			ACGAGTACGG			
			AGAGGGCCCG			
			GTTGTTTGCC			
			TCCTAATAAA			
			GGTGGGGTGG		_	
			GATGCGGTGG			
2161	GCTGGGGCTC	TAGGGGGTAT	CCCCACGCGC	CCTGTAGCGG	CGCATTAAGC	GCGGCGGGTG
2221	TGGTGGTTAC	GCGCAGCGTG	ACCGCTACAC	TTGCCAGCGC	CCTAGCGCCC	GCTCCTTTCG
2281	CTTTCTTCCC	TTCCTTTCTC	GCCACGTTCG	CCGGCTTTCC	CCGTCAAGCT	CTAAATCGGG
2341	GCATCCCTTT	AGGGTTCCGA	TTTAGTGCTT	TACGGCACCT	CGACCCCAAA	AAACTTGATT
2401	AGGGTGATGG	TTCACGTAGT	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	CCTTTGACGT
2461	TGGAGTCCAC	GTTCTTTAAT	AGTGGACTCT	TGTTCCAAAC	TGGAACAACA	CTCAACCCTA
2521	TCTCGGTCTA	TTCTTTTGAT	TTATAAGGGA	TTTTGGGGAT	TTCGGCCTAT	TGGTTAAAAA
2581	ATGAGCTGAT	TTAACAAAAA	TTTAACGCGA	ATTAATTCTG	TGGAATGTGT	GTCAGTTAGG
2641	GTGTGGAAAG	TCCCCAGGCT	CCCCAGGCAG	GCAGAAGTAT	GCAAAGCATG	CATCTCAATT
2701	AGTCAGCAAC	CAGGTGTGGA	AAGTCCCCAG	GCTCCCCAGC	AGGCAGAAGT	ATGCAAAGCA
2761	TGCATCTCAA	TTAGTCAGCA	ACCATAGTCC	CGCCCTAAC	TCCGCCCATC	CCGCCCTAA
2821	CTCCGCCCAG	TTCCGCCCAT	TCTCCGCCCC	ATGGCTGACT	AATTTTTTTT	ATTTATGCAG
2881	AGGCCGAGGC	CGCCTCTGCC	TCTGAGCTAT	TCCAGAAGTA	GTGAGGAGGC	TTTTTTGGAG
2941	GCCTAGGCTT	TTGCAAAAAG	CTCCCGGGAG	CTTGTATATC	CATTTTCGGA	TCTGATCAAG
3001	AGACAGGATG	AGGATCGTTT	CGCATGATTG	AACAAGATGG	ATTGCACGCA	GGTTCTCCGG
3061	CCGCTTGGGT	GGAGAGGCTA	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	GGCTGCTCTG
			TCAGCGCAGG			
3181	TGTCCGGTGC	CCTGAATGAA	CTGCAGGACG	AGGCAGCGCG	GCTATCGTGG	CTGGCCACGA
3241	CGGGCGTTCC	TTGCGCAGCT	GTGCTCGACG	TTGTCACTGA	AGCGGGAAGG	GACTGGCTGC
3301	TATTGGGCGA	AGTGCCGGGG	CAGGATCTCC	TGTCATCTCA	CCTTGCTCCT	GCCGAGAAAG
3361	TATCCATCAT	GGCTGATGCA	ATGCGGCGGC	TGCATACGCT	TGATCCGGCT	ACCTGCCCAT
3421	TCGACCACCA	AGCGAAACAT	CGCATCGAGC	GAGCACGTAC	TCGGATGGAA	GCCGGTCTTG
3481	TCGATCAGGA	TGATCTGGAC	GAAGAGCATC	AGGGGCTCGC	GCCAGCCGAA	CTGTTCGCCA
3541	GGCTCAAGGC	GCGCATGCCC	GACGGCGAGG	ATCTCGTCGT	GACCCATGGC	GATGCCTGCT
3601	TGCCGAATAT	CATGGTGGAA	AATGGCCGCT	TTTCTGGATT	CATCGACTGT	GGCCGGCTGG
3661	GTGTGGCGGA	CCGCTATCAG	GACATAGCGT	TGGCTACCCG	TGATATTGCT	GAAGAGCTTG
3721	GCGGCGAATG	GGCTGACCGC	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	GATTCGCAGC
3781	GCATCGCCTT	CTATCGCCTT	CTTGACGAGT	TCTTCTGAGC	GGGACTCTGG	GGTTCGAAAT
3841	GACCGACCAA	GCGACGCCCA	ACCTGCCATC	ACGAGATTTC	GATTCCACCG	CCGCCTTCTA
3901	TGAAAGGTTG	GGCTTCGGAA	TCGTTTTCCG	GGACGCCGGC	TGGATGATCC	TCCAGCGCGG
3961	GGATCTCATG	CTGGAGTTCT	TCGCCCACCC	CAACTTGTTT	ATTGCAGCTT	ATAATGGTTA
			CAAATTTCAC			
4081	TTGTGGTTTG	TCCAAACTCA	TCAATGTATC	TTATCATGTC	TGTATACCGT	CGACCTCTAG
			GGTCATAGCT			
			CCGGAAGCAT			
4261	GAGCTAACTC	ACATTAATTG	CGTTGCGCTC	ACTGCCCGCT	TTCCAGTCGG	GAAACCTGTC
4321	GTGCCAGCTG	CATTAATGAA	TCGGCCAACG	CGCGGGGAGA	GGCGGTTTGC	GTATTGGGCG
4381	CTCTTCCGCT	${\tt TCCTCGCTCA}$	CTGACTCGCT	GCGCTCGGTC	GTTCGGCTGC	GGCGAGCGGT

Figure 26G

//

33/54

```
4441 ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA
4501 GAACATGTGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC
4561 GTTTTTCCAT AGGCTCCGCC CCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG
4621 GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT
4681 GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG
4741 AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG
4801 CTCCAAGCTG GGCTGTGCC ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG
4861 TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC
4921 TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG
4981 GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT
5041 TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG
5101 TGGTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC
5161 TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT
5281 TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG
5341 TGAGGCACCT ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT
5401 CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC
5461 GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC
5521 CGAGCGCAGA AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG
5581 GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC AACGTTGTTG CCATTGCTAC
5641 AGGCATCGTG GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG
5701 ATCAAGGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC
5761 TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT
5821 GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC
5881 AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAT
5941 ACGGGATAAT ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC
6001 TTCGGGGCGA AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC
6061 TCGTGCACCC AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA
6121 AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT
6181 CATACTCTTC CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG
6241 ATACATATTT GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG
6301 AAAAGTGCCA CCTGACGTC
```

Figure 26H

```
pSBS5183-N
LOCUS
                         6319 bp
                                          CIRCULAR SYN
                                    DNA
DEFINITION
           Ligation of 5183 into NVF (KpnI, BamHI)
ACCESSION
            pSBS5183-N
REFERENCE
              (bases 1 to 6319)
FEATURES
                     Location/Qualifiers
     CDS
                     956..1003
                     /gene="NLS"
                     /product="Nuclear Localization Signal"
     CDS
                     /gene="ZFP"
                     /product="LSR 4A-3A"
     CDS
                     1598..1840
                     /gene="VP16"
                     /product="VP16 activation domain"
     CDS
                     1841..1867
                     /gene="FLAG"
                     /product="FLAG epitope"
     CDS
                     3064..3947
                     /gene="Neo"
                     /product="neomycin resistance"
     CDS
                     complement (5321..6181)
                     /gene="Amp "
                     /product="Ampcillin resistance"
BASE COUNT
               1446 a
                        1683 c
                                 1655 g
                                          1535 t
ORIGIN
        1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
       61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
      121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC
      181 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT
      241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
      301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
      361 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
      421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT
      481 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
      541 ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
      601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG
      661 ACTCACGGGG ATTTCCAAGT CTCCACCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
      721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG
      781 GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
      841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
      901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
      961 CCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
     1021 CTGCCACATC CAGGGCTGTG GTAAAGTTTA CGGCCAGTCC GGCCACCTGG CCCGCCACCT
     1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
     1141 CACCACCTCC GGCGAGCTGG TGCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTTGC
     1201 TTGTCCGAA TGTCCGAAGC GCTTCATGCG TTCCGACCAC CTGTCCCGTC ACATCAAGAC
     1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGTGGCCGT CGCGGTGGCG GTTCTGGCAA
     1321 GAAGAAGCAG CACATCTGCC ACATCCAGGG CTGTGGTAAA GTTTACGGCG AGCGCGGCGA
     1381 CCTGACCCGC CACCTGCGCT GGCACACCGG CGAGAGGCCT TTCATGTGTA CATGGTCCTA
```

Figure 26I

		CGCTTCACCC				
		TTTGCTTGTC				
		AAGACCCACC				
		GAGCTCCACT				
		GATCTGGACA				
1741	CCACGACTCC	GCCCCCTACG	GCGCTCTGGA	TATGGCCGGC	TTCGAGTTTG	AGCAGATGTT
		CTTGGAATTG				
		TCTCGAGTCT				
1921	CTTCTAGTTG	CCAGCCATCT	GTTGTTTGCC	CCTCCCCGT	GCCTTCCTTG	ACCCTGGAAG
1981	GTGCCACTCC	CACTGTCCTT	TCCTAATAAA	ATGAGGAAAT	TGCATCGCAT	TGTCTGAGTA
2041	GGTGTCATTC	TATTCTGGGG	GGTGGGGTGG	GGCAGGACAG	CAAGGGGGAG	GATTGGGAAG
2101	ACAATAGCAG	GCATGCTGGG	GATGCGGTGG	GCTCTATGGC	TTCTGAGGCG	GAAAGAACCA
2161	GCTGGGGCTC	TAGGGGGTAT	. CCCCACGCGC	CCTGTAGCGG	CGCATTAAGC	GCGGCGGGTG
2221	TGGTGGTTAC	GCGCAGCGTG	ACCGCTACAC	TTGCCAGCGC	CCTAGCGCCC	GCTCCTTTCG
2281	CTTTCTTCCC	TTCCTTTCTC	GCCACGTTCG	CCGGCTTTCC	CCGTCAAGCT	CTAAATCGGG
		AGGGTTCCGA				
2401	AGGGTGATGG	TTCACGTAGT	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	CCTTTGACGT
		GTTCTTTAAT				
		TTCTTTTGAT				
		TTAACAAAAA				
		TCCCCAGGCT				
2701	AGTCAGCAAC	CAGGTGTGGA	AAGTCCCCAG	GCTCCCCAGC	AGGCAGAAGT	ATGCAAAGCA
		TTAGTCAGCA				
		TTCCGCCCAT				
		CGCCTCTGCC				
		TTGCAAAAAG				
		AGGATCGTTT				
		GGAGAGGCTA				
		GTTCCGGCTG				
		CCTGAATGAA				
		TTGCGCAGCT				
		AGTGCCGGGG				
		GGCTGATGCA				
		AGCGAAACAT				
		TGATCTGGAC				-
		GCGCATGCCC				
		CATGGTGGAA				
		CCGCTATCAG				
		GGCTGACCGC				
		CTATCGCCTT				
		GCGACGCCCA				
		GGCTTCGGAA				
		CTGGAGTTCT				
		AATAGCATCA				
		TCCAAACTCA				
		GCGTAATCAT				
		AACATACGAG				
		ACATTAATTG				
		CATTAATGAA				
		TCCTCGCTCA				
4441	ATCAGCTCAC	TCAAAGGCGG	TAATACGGTT	ATCCACAGAA	TCAGGGGATA	ACGCAGGAAA

Figure 26J

4501	GAACATGTGA	GCAAAAGGCC	AGCAAAAGGC	CAGGAACCGT	AAAAAGGCCG	CGTTGCTGGC
4561	GTTTTTCCAT	AGGCTCCGCC	CCCCTGACGA	GCATCACAAA	AATCGACGCT	CAAGTCAGAG
4621	GTGGCGAAAC	CCGACAGGAC	TATAAAGATA	CCAGGCGTTT	CCCCCTGGAA	GCTCCCTCGT
4681	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC	TCCCTTCGGG
4741	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	TAGGTATCTC	AGTTCGGTGT	AGGTCGTTCG
4801	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG
4861	TAACTATCGT	CTTGAGTCCA	ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC
4921	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG
4981	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC	TGAAGCCAGT
5041	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA	CAAACCACCG	CTGGTAGCGG
5101	TGGTTTTTTT	GTTTGCAAGC	AGCAGATTAC	GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC
5161	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	AACTCACGTT	AAGGGATTTT
5221	GGTCATGAGA	TTATCAAAAA	GGATCTTCAC	CTAGATCCTT	${\tt TTAAATTAAA}$	AATGAAGTTT
5281	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	GCTTAATCAG
5341	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	ATAGTTGCCT	GACTCCCCGT
5401	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	CCCAGTGCTG	CAATGATACC
5461	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	AACCAGCCAG	CCGGAAGGGC
5521	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	CAGTCTATTA	ATTGTTGCCG
5581	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	AACGTTGTTG	CCATTGCTAC
5641	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	TTCAGCTCCG	GTTCCCAACG
5701	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	GTGCAAAAAA	GCGGTTAGCT	CCTTCGGTCC
5761	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGTGTTATCA	CTCATGGTTA	TGGCAGCACT
		CTTACTGTCA		AAGATGCTTT	TCTGTGACTG	GTGAGTACTC
		TTCTGAGAAT		GCGACCGAGT	TGCTCTTGCC	CGGCGTCAAT
5941		ACCGCGCCAC				
6001		AAACTCTCAA		GCTGTTGAGA	TCCAGTTCGA	TGTAACCCAC
6061		AACTGATCTT		TACTTTCACC	AGCGTTTCTG	GGTGAGCAAA
6121	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	ACACGGAAAT	GTTGAATACT
6181			ATTATTGAAG	0111 - 1111 0110	0011111010	TCATGAGCGG
		GAATGTATTT	AGAAAAATAA	ACAAATAGGG	GTTCCGCGCA	CATTTCCCCG
6301	AAAAGTGCCA	CCTGACGTC				

```
pSBS5185-N
LOCUS
                         6295 bp
                                    DNA
                                          CIRCULAR SYN
DEFINITION
           Ligation of 5185 into NVF (KpnI, BamHI)
ACCESSION
            pSBS5185-N
REFERENCE
            1 (bases 1 to 6295)
FEATURES
                     Location/Qualifiers
     CDS
                     956..1003
                     /gene="NLS"
                     /product="Nuclear Localization Signal"
     CDS
                     1004..1573
                     /gene="ZFP"
                     /product="LSR 6A-5A"
     CDS
                     1574..1816
                     /gene="VP16"
                     /product="VP16 activation domain"
     CDS
                     1817..1843
                     /gene="FLAG"
                     /product="FLAG epitope"
     CDS
                     3040..3923
                     /gene="Neo"
                     /product="neomycin resistance"
     CDS
                     complement (5297..6157)
                     /gene="Amp "
                     /product="Ampcillin resistance"
                                 1635 g
BASE COUNT
               1452 a
                        1682 c
                                          1526 t
ORIGIN
        1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
       61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
      121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC
      181 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT
      241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
      301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
      361 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
      421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT
      481 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
      541 ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
      601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG
      661 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
      721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG
      781 GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
      841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
      901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
      961 CCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
     1021 CTGCCACATC CAGGGCTGTG GTAAAGTTTA CGGCCGCTCC GACCACCTGG CCCGCCACCT
     1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
     1141 CACCCGCTCC GACGAGCTGC AGCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTTGC
     1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGCG CTCCGACGAG CGCAAGCGCC ACATCAAGAC
     1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGCAAGAAG AAGCAGCACA TCTGCCACAT
     1321 CCAGGGCTGT GGTAAAGTTT ACGGCCGCTC CGACCACCTG ACCACCCACC TGCGCTGGCA
     1381 CACCGGCGAG AGGCCTTTCA TGTGTACATG GTCCTACTGT GGTAAACGCT TCACCCGCTC
```

Figure 26L

1441	CGACCACCTG	ACCCGCCACA	AGCGTACCCA	CACCGGTGAG	AAGAAATTTG	CTTGTCCGGA
1501	ATGTCCGAAG	CGCTTCATGC	GCTCCGACCA	CCTGACCACC	CACATCAAGA	CCCACCAGAA
					GGGGACGAGC	
1621	CGGCGAGGAC	GTGGCGATGG	CGCATGCCGA	CGCGCTAGAC	GATTTCGATC	TGGACATGTT
1681	GGGGGACGGG	GATTCCCCGG	GGCCGGGATT	TACCCCCCAC	GACTCCGCCC	CCTACGGCGC
1741	TCTGGATATG	GCCGGCTTCG	AGTTTGAGCA	GATGTTTACC	GATGCCCTTG	GAATTGACGA
1801	GTACGGTGGG	GGCAGCGACT	ACAAGGACGA	CGATGACAAG	TAAGCTTCTC	GAGTCTAGAG
1861	GGCCCGTTTA	AACCCGCTGA	TCAGCCTCGA	CTGTGCCTTC	TAGTTGCCAG	CCATCTGTTG
1921	TTTGCCCCTC	CCCCGTGCCT	TCCTTGACCC	TGGAAGGTGC	CACTCCCACT	GTCCTTTCCT
1981	AATAAAATGA	GGAAATTGCA	TCGCATTGTC	TGAGTAGGTG	TCATTCTATT	CTGGGGGGTG
2041	GGGTGGGGCA	GGACAGCAAG	GGGGAGGATT	GGGAAGACAA	TAGCAGGCAT	GCTGGGGATG
2101	CGGTGGGCTC	TATGGCTTCT	GAGGCGGAAA	GAACCAGCTG	GGGCTCTAGG	GGGTATCCCC
2161	ACGCGCCCTG	TAGCGGCGCA	TTAAGCGCGG	CGGGTGTGGT	GGTTACGCGC	AGCGTGACCG
2221	CTACACTTGC	CAGCGCCCTA	GCGCCCGCTC	CTTTCGCTTT	CTTCCCTTCC	TTTCTCGCCA
2281	CGTTCGCCGG	CTTTCCCCGT	CAAGCTCTAA	ATCGGGGCAT	CCCTTTAGGG	TTCCGATTTA
2341	GTGCTTTACG	GCACCTCGAC	CCCAAAAAAC	TTGATTAGGG	TGATGGTTCA	CGTAGTGGGC
2401	CATCGCCCTG	ATAGACGGTT	TTTCGCCCTT	TGACGTTGGA	GTCCACGTTC	TTTAATAGTG
2461	GACTCTTGTT	CCAAACTGGA	ACAACACTCA	ACCCTATCTC	GGTCTATTCT	TTTGATTTAT
2521	AAGGGATTTT	GGGGATTTCG	GCCTATTGGT	TAAAAAATGA	GCTGATTTAA	CAAAAATTTA
2581	ACGCGAATTA	ATTCTGTGGA	ATGTGTGTCA	GTTAGGGTGT	GGAAAGTCCC	CAGGCTCCCC
2641	AGGCAGGCAG	AAGTATGCAA	AGCATGCATC	TCAATTAGTC	AGCAACCAGG	TGTGGAAAGT
2701	CCCCAGGCTC	CCCAGCAGGC	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG	TCAGCAACCA
2761	TAGTCCCGCC	CCTAACTCCG	CCCATCCCGC	CCCTAACTCC	GCCCAGTTCC	GCCCATTCTC
2821	CGCCCCATGG	CTGACTAATT	TTTTTTTTTT	ATGCAGAGGC	CGAGGCCGCC	TCTGCCTCTG
2881	AGCTATTCCA	GAAGTAGTGA	GGAGGCTTTT	TTGGAGGCCT	AGGCTTTTGC	AAAAAGCTCC
2941	CGGGAGCTTG	TATATCCATT	TTCGGATCTG	ATCAAGAGAC	AGGATGAGGA	TCGTTTCGCA
3001	TGATTGAACA	AGATGGATTG	CACGCAGGTT	CTCCGGCCGC	TTGGGTGGAG	AGGCTATTCG
3061	GCTATGACTG	GGCACAACAG	ACAATCGGCT	GCTCTGATGC	CGCCGTGTTC	CGGCTGTCAG
3121	CGCAGGGGCG	CCCGGTTCTT	TTTGTCAAGA	CCGACCTGTC	CGGTGCCCTG	AATGAACTGC
3181	AGGACGAGGC	AGCGCGGCTA	TCGTGGCTGG	CCACGACGGG	CGTTCCTTGC	GCAGCTGTGC
3241	TCGACGTTGT	CACTGAAGCG	GGAAGGGACT	GGCTGCTATT	GGGCGAAGTG	CCGGGGCAGG
					CATCATGGCT	
3361	GGCGGCTGCA	TACGCTTGAT	CCGGCTACCT	GCCCATTCGA	CCACCAAGCG	AAACATCGCA
3421	TCGAGCGAGC	ACGTACTCGG	ATGGAAGCCG	GTCTTGTCGA	TCAGGATGAT	CTGGACGAAG
3481	AGCATCAGGG	GCTCGCGCCA	GCCGAACTGT	TCGCCAGGCT	CAAGGCGCGC	ATGCCCGACG
3541	GCGAGGATCT	CGTCGTGACC	CATGGCGATG	CCTGCTTGCC	GAATATCATG	GTGGAAAATG
3601	GCCGCTTTTC	TGGATTCATC	GACTGTGGCC	GGCTGGGTGT	GGCGGACCGC	TATCAGGACA
					CGAATGGGCT	
3721	TCGTGCTTTA	CGGTATCGCC	GCTCCCGATT	CGCAGCGCAT	CGCCTTCTAT	CGCCTTCTTG
3781	ACGAGTTCTT	CTGAGCGGGA	CTCTGGGGTT	CGAAATGACC	GACCAAGCGA	CGCCCAACCT
3841	GCCATCACGA	GATTTCGATT	CCACCGCCGC	CTTCTATGAA	AGGTTGGGCT	TCGGAATCGT
3901					CTCATGCTGG	
3961	CCACCCCAAC	TTGTTTATTG	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	GCATCACAAA
					${\tt GGTTTGTCCA}$	
4081	TGTATCTTAT	CATGTCTGTA	TACCGTCGAC	CTCTAGCTAG	${\tt AGCTTGGCGT}$	AATCATGGTC
4141	ATAGCTGTTT	CCTGTGTGAA	${\tt ATTGTTATCC}$	${\tt GCTCACAATT}$	CCACACAACA	TACGAGCCGG
4201	AAGCATAAAG	TGTAAAGCCT	GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT
4261	GCGCTCACTG	CCCGCTTTCC	AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG
4321	CCAACGCGCG	GGGAGAGGCG	GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA
					GCTCACTCAA	
4441	ACGGTTATCC	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	ATGTGAGCAA	AAGGCCAGCA

```
4501 AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCC
4561 TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA
4621 AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC
4681 GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCAATGCTC
4741 ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA
4801 ACCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC
4861 GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG
4921 GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG
4981 GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG
5041 CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA
5101 GATTACGCGC AGAAAAAAG GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA
5161 CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT
5221 CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA
5281 GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG
5341 TCTATTTCGT TCATCCATAG TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA
5401 GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC
5461 AGATTTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC
5521 TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTCGCC
5581 AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC
5641 GTTTGGTATG GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC
5701 CATGTTGTGC AAAAAAGCGG TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT
5761 GGCCGCAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC
5821 ATCCGTAAGA TGCTTTTCTG TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG
5881 TATGCGGCGA CCGAGTTGCT CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG
5941 CAGAACTTTA AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT
6001 CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC
6061 ATCTTTTACT TTCACCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA
6121 AAAGGGAATA AGGGCGACAC GGAAATGTTG AATACTCATA CTCTTCCTTT TTCAATATTA
6181 TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA
6241 AAATAAACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG ACGTC
```

11

```
LOCUS
            pSBS5186-N
                         6319 bp
                                    DNA
                                           CIRCULAR SYN
DEFINITION
            Ligation of 5186 into NVF (KpnI, BamHI)
ACCESSION
            pSBS5186-N
REFERENCE
              (bases 1 to 6319)
FEATURES
                     Location/Qualifiers
     CDS
                     956..1003
                     /gene="NLS"
                     /product="Nuclear Localization Signal"
     CDS
                     1004..1597
                     /gene="ZFP"
                     /product="LSR 8A-7B"
     CDS
                     1598..1840
                     /gene="VP16"
                     /product="VP16 activation domain"
     CDS
                     1841..1867
                     /gene="FLAG"
                     /product="FLAG epitope"
     CDS
                     3064..3947
                     /gene="Neo"
                     /product="neomycin resistance"
     CDS
                     complement (5321..6181)
                     /gene="Amp "
                     /product="Ampcillin resistance"
BASE COUNT
                        1687 c
                                 1651 g
               1449 a
                                          1532 t
ORIGIN
        1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
       61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
      121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC
      181 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT
      241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
      301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
      361 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
      421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT
      481 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
      541 ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
      601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG
      661 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
      721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG
      781 GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
      841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
      901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
      961 CCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
     1021 CTGCCACATC CAGGGCTGTG GTAAAGTTTA CGGCCAGTCC GGCGCCCTGA CCCGCCACCT
     1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
     1141 CACCCGCTCC GACCACCTGA CCCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTTGC
     1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGCG CTCCGACAAC CTGCGCGAGC ACAACAAGAC
     1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGTGGCCGT CGCGGTGGCG GTTCTGGCAA
     1321 GAAGAAGCAG CACATCTGCC ACATCCAGGG CTGTGGTAAA GTTTACGGCC GCTCCTCCGC
```

				•		
1381	CCTGACCCGC	CACCTGCGCT	GGCACACCGG	CGAGAGGCCT	TTCATGTGTA	CATGGTCCTA
1441	CTGTGGTAAA	CGCTTCACCC	AGCGCGCCCA	CCTGGAGCGC	CACAAGCGTA	CCCACACCGG
1501	TGAGAAGAAA	TTTGCTTGTC	CGGAATGTCC	GAAGCGCTTC	ATGCGCTCCG	ACACCCTGCG
1561	CGAGCACATC	AAGACCCACC	AGAACAAGAA	GGGTGGATCC	GCCCCCCGA	CCGATGTCAG
1621	CCTGGGGGAC	GAGCTCCACT	TAGACGGCGA	GGACGTGGCG	ATGGCGCATG	CCGACGCGCT
1681	AGACGATTTC	GATCTGGACA	TGTTGGGGGA	CGGGGATTCC	CCGGGGCCGG	GATTTACCCC
1741	CCACGACTCC	GCCCCTACG	GCGCTCTGGA	TATGGCCGGC	TTCGAGTTTG	AGCAGATGTT
1801	TACCGATGCC	CTTGGAATTG	ACGAGTACGG	TGGGGGCAGC	GACTACAAGG	ACGACGATGA
1861	CAAGTAAGCT	TCTCGAGTCT	AGAGGGCCCG	TTTAAACCCG	CTGATCAGCC	TCGACTGTGC
1921	CTTCTAGTTG	CCAGCCATCT	GTTGTTTGCC	CCTCCCCCGT	GCCTTCCTTG	ACCCTGGAAG
1981	GTGCCACTCC	CACTGTCCTT	TCCTAATAAA	ATGAGGAAAT	TGCATCGCAT	TGTCTGAGTA
2041	GGTGTCATTC	TATTCTGGGG	GGTGGGGTGG	GGCAGGACAG	CAAGGGGGAG	GATTGGGAAG
2101	ACAATAGCAG	GCATGCTGGG	GATGCGGTGG	GCTCTATGGC	TTCTGAGGCG	GAAAGAACCA
2161	GCTGGGGCTC	TAGGGGGTAT	CCCCACGCGC	CCTGTAGCGG	CGCATTAAGC	GCGGCGGGTG
2221	TGGTGGTTAC	GCGCAGCGTG	ACCGCTACAC	TTGCCAGCGC	CCTAGCGCCC	GCTCCTTTCG
2281	CTTTCTTCCC	TTCCTTTCTC	GCCACGTTCG	CCGGCTTTCC	CCGTCAAGCT	CTAAATCGGG
2341	GCATCCCTTT	AGGGTTCCGA	TTTAGTGCTT	TACGGCACCT	CGACCCCAAA	AAACTTGATT
2401	AGGGTGATGG	TTCACGTAGT	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	CCTTTGACGT
2461	TGGAGTCCAC	GTTCTTTAAT	AGTGGACTCT	TGTTCCAAAC	TGGAACAACA	CTCAACCCTA
2521	TCTCGGTCTA	TTCTTTTGAT	TTATAAGGGA	TTTTGGGGAT	TTCGGCCTAT	TGGTTAAAAA
					TGGAATGTGT	
2641	GTGTGGAAAG	TCCCCAGGCT	CCCCAGGCAG	GCAGAAGTAT	GCAAAGCATG	CATCTCAATT
					AGGCAGAAGT	
					TCCGCCCATC	
					AATTTTTTTT	
					GTGAGGAGGC	
					CATTTTCGGA	
					ATTGCACGCA	
					ACAGACAATC	
					TCTTTTTGTC	
					GCTATCGTGG	
					AGCGGGAAGG	
					CCTTGCTCCT	
					TGATCCGGCT	
					TCGGATGGAA	
					GCCAGCCGAA	
					GACCCATGGC	
					CATCGACTGT	
					TGATATTGCT	
					CGCCGCTCCC	
					GGGACTCTGG	
					GATTCCACCG	
					TGGATGATCC	
					ATTGCAGCTT	
					TTTTTTTCAC	
					TGTATACCGT	
					TGAAATTGTT	
					GCCTGGGGTG	
					TTCCAGTCGG	
					GGCGGTTTGC	
1 - 2 1	CIGCONGCIG	CITTERIONA	LOUCCARCO	ADADOOOO	0000011100	CIMITOGGG

```
4381 CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT
4441 ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA
4501 GAACATGTGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC
4561 GTTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG
4621 GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT
4681 GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG
4741 AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG
4801 CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG
4861 TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC
4921 TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG
4981 GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT
5041 TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG
5101 TGGTTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC
5161 TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT
5281 TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG
5341 TGAGGCACCT ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT
5401 CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC
5461 GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC
5521 CGAGCGCAGA AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG
5581 GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC AACGTTGTTG CCATTGCTAC
5641 AGGCATCGTG GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG
5701 ATCAAGGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC
5761 TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT
5821 GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC
5881 AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAT
5941 ACGGGATAAT ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC
6001 TTCGGGGCGA AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC
6061 TCGTGCACCC AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA
6121 AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT
6181 CATACTCTTC CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG
6241 ATACATATTT GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG
6301 AAAAGTGCCA CCTGACGTC
```

11

```
pSBS5205-N
                         6295 bp
                                    DNA
                                          CIRCULAR SYN
           Ligation of 5205 into NVF (KpnI, BamHI)
DEFINITION
ACCESSION
            pSBS5205-N
REFERENCE
              (bases 1 to 6295)
FEATURES
                     Location/Qualifiers
     CDS
                     956..1003
                     /gene="NLS"
                     /product="Nuclear Localization Signal"
     CDS
                     1004..1573
                     /gene="ZFP"
                     /product="LSR 1A-7B"
     CDS
                     1574..1816
                     /gene="VP16"
                     /product="VP16 activation domain"
     CDS
                     1817..1843
                     /gene="FLAG"
                     /product="FLAG epitope"
     CDS
                     3040..3923
                     /gene="Neo"
                     /product="neomycin resistance"
     CDS
                     complement (5297..6157)
                     /gene="Amp "
                     /product="Ampcillin resistance"
BASE COUNT
                        1677 c
                                 1643 q
ORIGIN
        1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
       61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
      121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC
      181 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT
      241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
      301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
      361 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
      421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT
      481 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
      541 ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
      601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG
      661 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
      721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG
      781 GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
      841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
      901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
      961 CCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
     1021 CTGCCACATC CAGGGCTGTG GTAAAGTTTA CGGCGAGCGC GGCGACCTGA CCCGCCACCT
     1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
     1141 CACCGACCG GGCGCCCTGG TGCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTTGC
     1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGCG CTCCGACAAC CTGACCCAGC ACATCAAGAC
     1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGCAAGAAG AAGCAGCACA TCTGCCACAT
     1321 CCAGGGCTGT GGTAAAGTTT ACGGCCAGTC CGGCACCCTG ACCCGCCACC TGCGCTGGCA
```

1381	CACCGGCGAG	AGGCCTTTCA	TGTGTACATG	GTCCTACTGT	GGTAAACGCT	TCACCCAGTC
1441	CTCCGACCTG	CAGCGCCACA	AGCGTACCCA	CACCGGTGAG	AAGAAATTTG	CTTGTCCGGA
1501	ATGTCCGAAG	CGCTTCATGC	GCTCCGACGC	CCTGGCCCGC	CACATCAAGA	CCCACCAGAA
1561	CAAGAAGGGT	GGATCCGCCC	CCCCGACCGA	TGTCAGCCTG	GGGGACGAGC	TCCACTTAGA
1621	CGGCGAGGAC	GTGGCGATGG	CGCATGCCGA	CGCGCTAGAC	GATTTCGATC	TGGACATGTT
1681	GGGGGACGGG	GATTCCCCGG	GGCCGGGATT	TACCCCCCAC	GACTCCGCCC	CCTACGGCGC
1741	TCTGGATATG	GCCGGCTTCG	AGTTTGAGCA	GATGTTTACC	GATGCCCTTG	GAATTGACGA
1801	GTACGGTGGG	GGCAGCGACT	ACAAGGACGA	CGATGACAAG	TAAGCTTCTC	GAGTCTAGAG
1861	GGCCCGTTTA	AACCCGCTGA	TCAGCCTCGA	CTGTGCCTTC	TAGTTGCCAG	CCATCTGTTG
1921	TTTGCCCCTC	CCCCGTGCCT	TCCTTGACCC	TGGAAGGTGC	CACTCCCACT	GTCCTTTCCT
	AATAAAATGA					
	GGGTGGGGCA					
	CGGTGGGCTC					
	ACGCGCCCTG					
	CTACACTTGC					
	CGTTCGCCGG					
	GTGCTTTACG					
	CATCGCCCTG					
	GACTCTTGTT					
	AAGGGATTTT					
	ACGCGAATTA					
	AGGCAGGCAG					
	CCCCAGGCTC					
	TAGTCCCGCC					
	CGCCCCATGG					
	AGCTATTCCA					
	CGGGAGCTTG					
	TGATTGAACA					
	GCTATGACTG					
	CGCAGGGGCG					
	AGGACGAGGC					
	TCGACGTTGT					
	ATCTCCTGTC					
	GGCGGCTGCA					
	TCGAGCGAGC					
	AGCATCAGGG					
						GTGGAAAATG
	GCCGCTTTTC					-
	TAGCGTTGGC					
	TCGTGCTTTA					
	ACGAGTTCTT					
	GCCATCACGA					
	TTTCCGGGAC					
	CCACCCCAAC TTTCACAAAT					
	TGTATCTTAT					
	ATAGCTGTTT					
	AAGCATAAAG					
	GCGCTCACTG					
4321	CCAACGCGCG	GGGAGAGGCG	GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA

```
4381 CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT
4441 ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA
4501 AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCC
4561 TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA
4621 AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC
4681 GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCAATGCTC
4741 ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA
4801 ACCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC
4861 GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG
4921 GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG
4981 GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG
5041 CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTTTGTTT GCAAGCAGCA
5101 GATTACGCGC AGAAAAAAG GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA
5161 CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT
5221 CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA
5281 GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG
5341 TCTATTCGT TCATCCATAG TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA
5401 GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC
5461 AGATTTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC
5521 TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTCGCC
5581 AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC
5641 GTTTGGTATG GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC
5701 CATGTTGTGC AAAAAAGCGG TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT
5761 GGCCGCAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC
5821 ATCCGTAAGA TGCTTTTCTG TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG
5881 TATGCGGCGA CCGAGTTGCT CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG
5941 CAGAACTTTA AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT
6001 CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC
6061 ATCTTTACT TTCACCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA
6121 AAAGGGAATA AGGGCGACAC GGAAATGTTG AATACTCATA CTCTTCCTTT TTCAATATTA
6181 TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA
6241 AAATAAACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG ACGTC
```

//

Figure 27

% Increase of LSR Transcription in Hepa 1-6 cells

Transfected with selected ZFP-NVF plasmids

28.50%

30.00%

20.00%

15.00%

25.00%

10.00%

2.00%

0.00%

5186 NVF

47/54

■ % increase

Figure 29

Figure 30

Figure 31

51/54

Figure 32

52/54

Figure 33

53/54

Figure 34

54/54

Figure 35