ΑΝΑΦΟΡΑ ΕΡΓΑΣΤΗΡΙΟΥ 4

ΚΟΝΟΦΑΟΣ ΓΕΩΡΓΙΟΣ 2018030175

ΠΑΥΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 2018030139

ΧΑΡΑΛΑΜΠΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ 2018030181

4.1. Πειραματική διαδικασία

- i) Έχοντας V_s = 0 μετρήθηκαν V_B = -8V, V_C = 6.52V, V_E = -8.591V
- ii) Κυματομορφές εισόδου (V_s) και εξόδου (V_0)

$$V_{S rms} = 7.071 \text{mV}$$

$$V_{0 \text{ rms avg}} = 6.887 \text{mV}$$

iii) Κυματομορφές εισόδου (V_s) και εξόδου (V_0)

$$Vs_{rms} = 7.071mV$$

$$V_{0 \text{ rms avg}} = 3.439 \text{mV}$$

4.1. Αναφορά

1)

	Πειραματικές τιμές	Θεωρητικές τιμές
V_{B}	-8V	3.89V
V _C	6.52V	1.92V
V _E	-8.591V	3.19V
$ m V_{CE}$	15.111V	-1.27V
I_{B}	7.062μA	10.9μΑ
I_{C}	0.845mA	1.308mA
$I_{\rm E}$	0.854mA	1.319mA

ΠΕΙΡΑΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ

4.11 Department unadquetion:

$$I_{c} = \frac{Vcc - Vc}{Rc} = \frac{15 - 6.525}{10.10^{3}}$$

$$= 8.435 \cdot 10^{-14} = \boxed{0.847 \text{ mA}}$$

$$I_{B} = \frac{I_{c}}{R} = \frac{9.475.10^{-14}}{120} = 0.030625.10^{44}$$

$$= \frac{1.062 \cdot 10^{-6}}{120} = \boxed{1.062 \text{ mA}}$$

$$I_{C} = I_{B} + \boxed{1.062 \text{ mA}}$$

$$I_{C} = 0.847 \cdot 10^{-3} + 0.00306.10^{-3}$$

$$= 0.854.10^{-3} = \boxed{0.854 \text{ mA}}$$

ΘΕΩΡΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ

(Orwpathia)

$$15v - Vc - Vce - Ve - (-10v) = 0$$
 $\Rightarrow 15v - Rc Tc - Vce - Tefe + 10v = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,08v - Vce - 13,19 + 10 = 0$
 $\Rightarrow 15v - 13,19 + 10 = 0$
 \Rightarrow

Παρατηρούμε ότι οι θεωρητικές μετρήσεις απέχουν πολύ από τις πειραματικές.

g_{m}	0.052
$\Gamma_{ m e}$	19.09Ω
r_{π}	2.279kΩ
r_0	75.48kΩ

3) Ολικό κέρδος τάσης ανοικτού κυκλώματος: Δεν εχουμε κερδος διότι η Rl είναι άπειρο.

Ολικό κέρδος τάσης όταν R_{L} =10k Ω : 523

$$A = \frac{\delta e}{re} = \frac{10 \cdot 10^{3}}{19.09} = 5.23 \cdot 10^{2} = 523$$

4.2. Πειραματική διαδικασία

$R_{l}(k\Omega)$	$\mathbf{V}_{\mathbf{R}\mathbf{x}}$	\mathbf{V}_{Rl}	$V_{CQ1}(mV)$	$ m V_{CQ2}$
1	2.284	2.24	616.40	12.76V
4	2.284	8.95	616.40	6.04V
5	2.284	11.19	616.40	3.8V
6.9	2.284	14.89	616.10	113.6mV
7.9	2.285	14.93	616.05	74.82mV
11	2.287	14.95	612.86	48.76mV
36	2.292	14.97	608.43	25.47mV
82	2.293	14.98	607.20	21.13mV
100	2.293	14.98	607.02	20.54mV

4.2. Αναφορά

1)

R_{l}	I _L (mA)
1	2.239
4	2.238
5	2.238
6.9	2.158
7.9	1.889

11	1.359
36	0.416
82	0.183
100	0.145

Πειραματικό διάγραμμα του ρεύματος φορτίου σε συνάρτηση με την αντίσταση φορτίου RL

2) Το κύκλωμα είναι καθρέπτης ρεύματος. Δηλαδή τα χαρακτηριστικά του ενός ρεύματος κλονοποιούνται και στον άλλο κλάδο. Επίσης, λειτουργεί και ως ενισχυτής ρεύματος.