BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Department of Electrical and Electronic Engineering

Course No: EEE 414 Group No: 2

Course Title: Electrical Service Design Section: A1

Project Report

ID & Name:

1906002 – Muzakkir Ahmed

1906003 – Neha Rahman

1906016 – Md. Rowatul Jannat Rafi

1906019 – Dibbo Dey

1906024 – Md. Tareq Mahmud Rakib

1906025 – Md. Abdullah

1906028 – Mithon Rahman

Submitted To:

1.Mrinmoy Kundu 2. Md. Nure-Alam-Dipu

Lecturer Adjunct Lecturer (PT)

Objective:

The project aims to achieve the following objectives:

- Gain familiarity with floor-planning for multi-storied residential buildings.
- Understand the use of various fittings and fixtures in different compartments of the building.
- Learn to systematically draw conduit layouts for the building.
- Understand and create switchboard connections, including emergency setups.
- Calculate and place appropriate components in switchboard diagrams, such as circuit breakers, transformers, and generators, based on specific ratings.
- Learn the electrical design process for a lightning protection system.

Design Steps:

The project followed these design steps:

- 1. Ground floor, basement, and typical floor plan of a ten-storied two-unit building.
- 2. Calculation and design of fittings and fixtures for each floor.
- 3. Conduit layout planning for each floor.
- 4. Switchboard and distribution board diagram.
- 5. Lightening protection system (LPS) design.

Typical Floor Plan of a 10 storey Residential Building (5th Floor)

Figure: Ground layout

Figure: Ground layout with normal conduit

Figure: Ground Floor with Emergency conduit

Figure: Basement layout

Figure: Basement with normal conduit

Figure: Roof plan

Figure: Basement with Emergency conduit

Typical Floor Plan of a 10 storey Residential Building (5th Floor)

Typical Floor Plan of a 10 storey Residential Building (5th Floor)

Fittings and Fixture:

Fixture Legend:

Description	Height	Caption	Symbol
Wall Mounted Light	Lintel	LL	-0
Ceiling Light	Ceiling	CL	0
Wall Mounted Tube Light	Lintel	TL	⊢
Fan (56" diameter)	Ceiling	F	
Switch Board	Mid wall	SB	
Sub Distribution Board	Mid wall	SDB	\boxtimes
Main Distribution Board	Mid wall	MDB	

Description	Height	Caption	Symbol
Exhaust Fan (8" diameter)	Lintel	E	\otimes
2 Pin Socket	Mid wall	SS	⇒ 22
2 Pin TV Socket	Lower	TS	21
Antenna Socket	Skirting	Т	Θ
3 Pin Socket 20A	Lintel	S	€ z

Abbreviations:

Symbol	Description
L (in meters)	Room length
W (in meters)	Room width
F (lumen)	Average luminous flux from each light source
E (lux)	Luminance level required
	Utilization factor (allowance for light distribution of the luminaire and
	the room surfaces)
UF	C = Ceiling factor
	W = Wall factor
	F = Floor Factor
MF	Maintenance factor (allowance for reduced light output due to
IVIT	deterioration)

Formula:

Symbol	Formula
Number of lights required, (N)	$N = \frac{E * L(meter) * W(meter)}{F * UF * MF}$
Number of fans required, (M)	$M = \frac{L(ft) * W(ft)}{100}$
Mounting Height	Mounting height(meter) = Luminaire height – Work plane height
Room Index, (RI)	$RI = \frac{L(meter) * W(meter)}{Mounting \ Height \ (meter) * (L + W)}$
Total Lumen (N* F)	$N * F = \frac{E * L(meter) * W(meter)}{UF * MF}$

Calculations for light bulbs and fans:

Formula for light bulbs: $E = \frac{n \times N \times F \times UF \times LLF}{A}$ (A in m²)

Formula for Fan = $\frac{A}{100}$ (A in sqft)

Bedroom 1:

Area = 12'-7" x 11' = 138.42 sqft = 12.86 m^2

Illuminance, E= 150 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tubelight

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{150 \times 12.86}{1 \times 1250 \times 0.7} = 2.2044 \approx 3$$

So, total 3 lights are needed.

We are choosing 1 light bulb and 2 tube lights for this requirement.

Number of Fans =
$$\frac{A}{100}$$
 (A in sqft) = $\frac{138.42}{100}$ = 1.3842 ≈ 1

So, 1 fan is enough for this room.

	Bedroom-1														
	Area Area Compength Width (ft2) (m2) Lux UF Lumen onent Quantity Power Power Current Current Wire Sb10														
Length	Width	(ft2)	(m2)	Lux	UF	Lumen	onent	Quantity	Power	Power	Current	Current	Wire	Sb10	
12'7"	11'	138.4167	12.8593	150		1250	LED	1	40		0.259				
				150		1250	TL	2	20		0.129				
							Fan	1	100		0.64935				
							2-pin	1	100	260	0.64935	1.6883		C11	

Bedroom 2:

Area = 13' x 11' = 143 sqft = 13.2847
$$m^2$$

Illuminance, E= 150 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tubelight

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{150 \times 13.2847}{1 \times 1250 \times 0.7} = 2.2773 \approx 3$$

So, total 3 lights are needed.

We are choosing 2 light bulbs and 1 tube light for this requirement.

Number of Fans =
$$\frac{A}{100}$$
 (A in sqft) = $\frac{143}{100}$ = 1.43 ≈ 1

So, 1 fan is enough for this room.

	Bedroom-2														
Length	Width	Area (ft2)	Area (m2)	Lux	UF		Compo -nent		Power	Total Power	Current	Total Current	Wire	SB3 to SDB	
13'	11'	143	13.2851	150		1250	LED	2	40		0.259				
				150		1250	TL	1	20		0.129				
							Fan	1	100		0.64935				
							2-pin	1	100	260	0.64935	1.6883		C13,19	

Bedroom 3:

Area = 11' x 10'- 10" = 119.17 sqft = 11.07
$$m^2$$

Illuminance, E= 150 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent tube light

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{150 \times 11.07}{1 \times 1250 \times 0.7} = 1.9 \approx 2$$

So, total 2 lights are needed.

We are choosing 2 tube lights for this requirement.

Number of Fans =
$$\frac{A}{100}$$
 (A in sqft) = $\frac{119.17}{100}$ = 1.1917 ≈ 1

So, 1 fan is enough for this room.

						Bedi	oom-3	3					
Length	Width	Area (m2)		UF	Lumen	Compo -nent	Quantity	Power	Total Power	Current	Total Current	Wire	SB7 TO SB8
			150		1250	TL	2	40		0.259			
						Fan	1	100		0.64935			
						2-pin	1	100		0.64935	1.558		

Drawing Room:

Area = 11'-11" x 9'-8" = 115.19 sqft = 10.7 m^2

Illuminance, E= 150 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent tube light

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{150 \times 10.7}{1 \times 1250 \times 0.7} = 1.83 \approx 2$$

So, total 2 lights are needed.

We are choosing 2 tube lights for this requirement.

Number of Fans =
$$\frac{A}{100}$$
 (A in sqft) = $\frac{115.19}{100}$ = 1.1519 ≈ 1

So, 1 fan is enough for this room.

	Drawing Room														
Length	Width	Area (ft2)	Area (m2)	Lux	UF	Lumen	Compo -nent	Quantity	Power	Total Power	Current	Total Current	Wire	SB9 to SDB	
11'11"	9'8"	115.194	10.7019	150		1250	LED	0	0		0				
				150		1250	TL	2	40		0.259				
							Fan	1	100		0.6493				
							2-pin	1	100	240	0.6493	1.558		C11	

Dining Room:

Area = 22'-2" x 15'-6" = 343.58 sqft = 31.91
$$\text{m}^2$$

Illuminance, E= 150 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F₁= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tubelight)

Let, Number of lights, $N_1 = 3$

Flux, F₂= 3000 Lumen (30 W CFL light)

Let, Number of lights, $N_2 = 1$

Now,

$$N1 \times n \times F1 \times UF \times LLF + N2 \times n \times F2 \times UF \times LLF = E \times A$$

=> $3 \times 1 \times 1250 \times 0.7 + 1 \times 1 \times 3000 \times 0.7 = 150 \times 31.91$
=> $4725 \approx 4786.5$

So, total 4 lights are needed as specified above.

We are choosing 2 light bulbs and 1 tube light both of 20W (1250 Lumen) and 1 CFL light (30W - 3000 Lumen) for this requirement.

Number of Fans =
$$\frac{A}{100}$$
 (A in sqft) = $\frac{343.58}{100}$ = 3.4358 ≈ 3

So, 3 fan is enough for this room.

	Dining Room														
Length	Width	Area (ft2)	Area (m2)	Lux	UF	Lumen	Compo -nent	Quantity	Power	Total Power	Current	Total Current	Wire	to	SB10 to SDB
22'2"	15'6"	343.583	31.92				LED	2	40		0.259				
							TL	1	20		0.13				
							Fan	3	300		1.948				
							2-pin	1	100		0.6493				
							CL	1	20	480	0.13	3.117		C11	C11

Kitchen:

Area = 7'-6" x 9' = 67.5 sqft =
$$6.271 \text{ m}^2$$

Illuminance, E= 200 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tubelight

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$
$$=> N = \frac{300 \times 6.271}{1 \times 1250 \times 0.7} = 2.15 \approx 3$$

So, total 3 lights are needed.

We are choosing 3 light bulbs for this requirement.

Toilet 1:

Area = 7'-2" x 11' = 78.833 sqft = 7.3238
$$m^2$$

Illuminance, E= 200 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tube light

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{200 \times 7.3238}{1 \times 1250 \times 0.7} = 1.674 \approx 2$$

So, 2 lights are needed.

We are choosing 2 light bulbs for this requirement.

							Toilet-1	_						
										Total		Total		SB2 to
Length	Width	Area(ft2)	Area(m2)	Lux	UF	Lumen	Component	Quantity	Power	Power	Current	Current	Wire	SB1
7'2"	11'	78.833	7.3238				LED	2	20	40	0.259	0.259		C11

Toilet 2:

Area = 7'-6" x
$$6$$
' = 45 sqft = 4.1806 m²

Illuminance, E= 100 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tubelight

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{100 \times 4.18}{1 \times 1250 \times 0.7} = 0.477 \approx 1$$

So, 1 light is needed.

We are choosing 1 light bulb for this requirement.

							Toilet-2	2						
														SB4
										Total		Total		то
Length	Width	Area(ft2)	Area(m2)	Lux	UF	Lumen	Component	Quantity	Power	Power	Current	Current	Wire	SB3
7'6"	6'	45	4.1806				LED	1	20	20	0.129	0.129		C11

Toilet 3:

Area = 5'-6" x 5'-6" =
$$30.25 \text{ sqft} = 2.8103 \text{ m}^2$$

Illuminance, E= 100 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tubelight

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{100 \times 2.8103}{1 \times 1250 \times 0.7} = 0.32 \approx 1$$

So, 1 light is needed.

We are choosing 1 light bulb for this requirement.

	Toilet-3														
141-	\A/: J+l-	Area	Area			•	6	0	D	Total	C	Total	\A/:	SB8 TO	
Length	wiatn	(Tt2)	(m2)	Lux	UF	Lumen	Component	Quantity	Power	Power	Current	Current	wire	SDB	
5'6"	5'6"	30.25	2.8103				LED	1	20	20	0.129	0.129		C9,10,20	

Guard Bedroom:

Area = 10' x 8' = 80 sqft =
$$7.432 \text{ m}^2$$

Illuminance, E= 150 lux

Light loss factor and Utilization factor, LLFxUF=0.7

Number of lights per illuminaire, n=1

Flux, F= 1250 Lumen (20 W Energy saving bulb and Fluorescent Tube light

Number of lights, N=?

$$N = \frac{E \times A}{n \times F \times UF \times LLF}$$

$$=> N = \frac{150 \times 7.432}{1 \times 1250 \times 0.7} = 1.27 \approx 2$$

So, total 2 lights are needed.

We are choosing 2 light bulbs and 1 tube light for this requirement.

Number of Fans =
$$\frac{A}{100}$$
 (A in sqft) = $\frac{80}{100}$ = 0.8 ≈ 1

So, 1 fan is enough for this room.

	Guard Room												
Length	Width	Area (ft2)	Area (m2)	Lux	UF	Lumen	Component	Quantity	Power	Total Power	Current	Total Current	Wire
7'6"	9'6"	71.25	6.6193				LED	1	20		0.129		
							TL	1	20		0.129		
							Fan	1	100		0.649		
							2-pin	1	100	240	0.649	1.556	

Similarly, Calculations of Guard Toilet, Corridor-1 and Corridor-2 have been brought.

	Guard Toilet													
Length	Width	Area(ft2)	Area(m2)	Lux	UF	Lumen	Component	Quantity	Power	Total Power	Current	Total Current	Wire	
5'	6'6"	32.5	3.0193				LED	1	20	20	0.129	0.129		

	Corridor-1 and Corridor-2													
Area Area Compo (Per Total Total to Length Width (ft2) (m2) Lux UF Lumen -nent Unit) Power Power Current Current Riser														
														Corridor
12'6"	5'9"	71.875	6.6774				LED	1	20		0.129			- 1
													Corridor	
8'6"	2'	17	1.5793				LED	1	20	40	0.129	0.259	C11	- 2

Conduit Legend:

Symbol	Containing Power Cable + ECC	Conduit Size (Diameter)	Current Rating
C1	2 x 1.5 rm BYM	3/4"	5A
C2	4 x 1.5 rm BYM	3/4"	5A
C3	6 x 1.5 rm BYM	3/4"	5A
C4	8 x 1.5 rm BYM	1"	5A
C5	10 x 1.5 rm BYM	1"	5A
C6	2 x 1.5 rm BYM + 1.5 rm BYA ECC	3/4"	5A
С7	2 x 4 rm BYM + 4 rm BYA ECC	3/4"	15A
C8	2 x 6 rm BYM + 6 rm BYA ECC	1"	20A
C9	2 x 70 rm BYM + 70 rm BYA ECC	1.25"	100A
C10	2 x 16 rm BYM + 16 rm BYA ECC	1.25"	40A

Calculations for Conduits:

Formula for Ampere Rating, $I = \frac{P}{V \times pf}(A)$

Pf = 0.7 is considered on average.

Energy Saving Bulb, P = 20W

Tube Light, P = 20W

Ceiling Fan, P = 100W

Switchboard 2pin Socket, P = 100W(max)

Ceiling Light, P = 20W

All internal wiring was below 5A rating. So, $2 \times 1.5 \, rm$ BYM is used in all internal wiring.

For Switchboard-to-switchboard connections 2 × 1.5 rm BYM + 1.5 rm BYA ECC are used.

To Sub Distribution Board (SDB)

CKT1 Rating

Estimated Power, $P_{est} = P \times Diversity Factor = 650 \times 0.7 = 455W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{455}{0.7 \times 220} = 2.9545 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT2 Rating

Total Power, P = 20 + 100 + 20 = 140W

Estimated Power, $P_{est} = P \times Diversity Factor = 140 \times 0.7 = 98W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{98}{0.7 \times 220} = 0.6363 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

To Emergency Sub Distribution Board (ESDB)

CKT1 Rating

Total Power, P = 100+20+100+20+100+20+100+20+100+20+20 = 620W

Estimated Power, $P_{est} = P \times Diversity Factor = 620 \times 0.7 = 434W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{434}{0.7 \times 220} = 2.8181 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT2 Rating

Total Power, P = 20 + 100 + 20 + 20 + 100 + 100 + 20 = 380W

Estimated Power, $P_{est} = P \times Diversity Factor = 380 \times 0.7 = 266W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{266}{0.7 \times 220} = 1.7272 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

Calculations for SDB (Typical Floor):

SDB load = Total Load×0.7 + Total P Socket load×0.5 + Total Q Socket load×0.3

Total Load = CKT1 load + CKT2 load = 650 + 140 = 790W

Total P Socket load = $5 \times 3000 = 15$ kW (Each P Socket load is considered 3000W)

Total Q Socket load = $3 \times 4000 = 12$ kW (Each Q Socket load is considered 4000W)

SDB load = $790 \times 0.7 + 15000 \times 0.5 + 12000 \times 0.3 = 11653$ W

SDB Current,
$$I = \frac{\text{SDB load}}{pf \times V} = \frac{11653}{0.7 \times 220} = 74.6688 \, A < 100A$$

So, 100A SP MCCB is needed from SDB to MDB.

 $2 \times 70 \, rm \, BYM + 70 \, rm \, BYA \, ECC$ are used for this connection.

Summary of Typical Floor:

Circuit No.	Room Name	Switch Board	Fixture	Power (W)	Estimated Power(W)	Current Rating (A)	Breaker to SDB Rating (A)	
	Bedroom- 1	SB1	TL1(Tube Light)	20				
			TL2(Tube Light)	20				
	Toilet-1	SB2	LL3(Bulb)	20				
	Dining Room	SB4	LL11(Bulb)	20				
			F5	100				
			TL8	20				
		SB5	LL12	20				
CKT1			F7	100	455	2.954545455	5A	
			SS3	100				
	Bedrrom- 2	SB3	TL3	20				
			LL5	20				
	Kitchen	SB6	LL7	20				
			LL9	20				
			SS4	100				
			E1	50				
	Total Power		,	650				
	Dining Room	SB8	TL7	20				
CVT2			SS6	100	0.0	0.62626264	5A	
CKT2	Bedroom-	SB7	TL4	20	98	0.6363636364	ЭA	
	Total Power			140				

Calculations for ESDB (Typical Floor):

ESDB load = Total Load×0.7 + Total P Socket load×0.5 + Total Q Socket load×0.3

Total Load = CKT1 load + CKT2 load = 620 + 380 = 1000W

There is no P and Q Socket Load in emergency.

ESDB load = $1000 \times 0.7 + 0 \times 0.5 + 0 \times 0.3 = 700$ W

ESDB Current,
$$I = \frac{\text{ESDB load}}{pf \times V} = \frac{700}{0.7 \times 220} = 4.5454 \, A < 5A$$

So, 5A SP MCCB is needed from ESDB to EMDB.

Summary for Emergency Floor:

		Emergen	cy Sub Dis	tribution E	Board (ESDB) Fi	xtures	
Circuit No.	Room Name	Switch Board	Fixture	Power (W)	Estimated Power(W)	Current Rating (A)	Breaker to SDB Rating (A)
		ESB1	F1	100			
	Bedroom-1		LL1	20			
			SS1	100			
	Toilet-1	ESB2	LL2	20			
	Dl		F2	100			
CVT4	Bedroom- 2	ESB3	LL4	20	434	2.818181818	5A
CKT1	2		SS2	100			
	Toilet-2	ESB4	LL6	20			
	Dining	CODE	F6	100			
	Room	ESB5	CL5	20			
	Kitchen	ESB6	LL8	20			
	Total Power	•	<u>'</u>	620			
		ESB10	B1	20			
	Drawing Room	ECDO	F4	100			
	ROOM	ESB9	TL6	20			
CVT2	Toilet-3	ESB8	LL10	20	200	4 72727272	5A
CKT2			F3	100	266	1.727272727	5A
	Bedroom-3	ESB7	SS5	100			
			TL5	20			
	Total Power			380			

Calculations for SDB(Ground floor):

CKT1 Rating

Total Power, P = 20 + 20 + 20 + 20 + 100 + 100 + 100 = 380W

Estimated Power, $P_{est} = P \times Diversity Factor = 380 \times 0.7 = 266W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{266}{0.7 \times 220} = 1.7272 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT2 Rating

Total Power, P = 20+20+20 = 60W

Estimated Power, $P_{est} = P \times Diversity Factor = 60 \times 0.7 = 42W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{42}{0.7 \times 220} = 0.2727 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT3 Rating

Total Power, P = 20 + 20 + 20 + 50 = 110W

Estimated Power, $P_{est} = P \times Diversity Factor = 110 \times 0.7 = 77W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{77}{0.7 \times 220} = 0.5A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

SDB Current,
$$I = \frac{\text{SDB load}}{pf \times V} = \frac{385}{0.7 \times 220} = 2.5 \text{ A} < 5A$$

Summary for Typical Ground Floor:

	Sub Distribution Board (SDB0) Fixtures											
Circuit No.	Room Name	Switch Board	Fixture	Power (W)	Estimated Power(W)	Current Rating (A)	Breaker to SDB Rating (A)					
	Ramp		LL4	20								
	Entranco	SB0.3	CL14	20	385	2.5						
	Entrance		CL16	20								
CKT1	\\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	CDO 2	LL3	20			5A					
	Waiting Room	SB0.2	SS2	100								
	Cuand Dage	CDO 1	SS1	100								
	Guard Room	SB0.1	TL1	20								
CVT2	Darking	CDO 4	CL3	20								
CKT2	Parking	SB0.4	CL1	20								

			CL7	20
	Generator Room		CL10	20
CKT3	LT Panel room	SB0.5	CL5	20
			E2	50
	Transformer Room		TL3	20
	ROOM			
Total Power				550

Calculations for ESDB(Ground floor):

CKT1 Rating

Total Power, P = 20 + 20 + 20 + 100 + 100 = 260W

Estimated Power, $P_{est} = P \times Diversity Factor = 260 \times 0.7 = 182W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{182}{0.7 \times 220} = 1.1818A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT2 Rating

Total Power, P = 20+20+20+20+20+20 = 120W

Estimated Power, $P_{est} = P \times Diversity Factor = 120 \times 0.7 = 84W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{84}{0.7 \times 220} = 0.5454 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT3 Rating

Total Power, P = 20 + 20 + 20 = 60W

Estimated Power, $P_{est} = P \times Diversity Factor = 60 \times 0.7 = 42W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{42}{0.7 \times 220} = 0.2727 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT4 Rating

Total Power, P = 20 + 20 + 20 = 60W

Estimated Power, $P_{est} = P \times Diversity Factor = 60 \times 0.7 = 42W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{42}{0.7 \times 220} = 0.2727A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT5 Rating

Total Power, P = 50 + 20 + 20 = 90W

Estimated Power, $P_{est} = P \times Diversity Factor = 120 \times 0.7 = 63W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{63}{0.7 \times 220} = 0.40909 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

ESDB Current,
$$I = \frac{\text{ESDB load}}{pf \times V} = \frac{413}{0.7 \times 220} = 2.6818 \, A < 5A$$

5A SP MCCB is needed from ESDB to EMDB.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

Summary for Emergency Ground Floor:

	E	mergency S	ub Distrib	ution Boa	rd (ESDB0) Fixt	tures		
Circuit No.	Room Name	Switch Board	Fixture	Power (W)	Estimated Power(W)	Current Rating (A)	Breaker to SDB Rating (A)	
	Waiting Room	ESB0.3	TL2	20				
	Waiting Room	E3BU.3	F2	100				
CKT1	Toilet	ESB0.2	LL2	20				
	Guard Room	ESB0.1	LL1	20				
	Guaru Koom	E3BU.1	F1	100				
			CL15	20				
	Entrance		CL18	20				
CKT2	Entrance	ESB0.4	CL17	20				
CKIZ		L300.4	CL12	20	413	2.681818182		
	Stair		CL19	20			5A	
	Stall		CL20	20				
		ESB0.5	CL2	20				
CKT3	Parking		CL6	20				
			CL8	20				
	Parking		CL4	20				
CKT4	raikiiig	ESB0.6	CL19	20				
	Transformer Room		CL11	20				
	Transformer		CL13	20				
	Room	ESB0.7	E3	50				
CKT5	Generator Room	2020.7	TL4	20				
Total Po	ower			590				

Calculations for SDB (Basement):

CKT1 Rating

Total Power, P = 20 + 20 + 20 + 20 = 80W

Estimated Power, $P_{est} = P \times Diversity Factor = 80 \times 0.7 = 56W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{56}{0.7 \times 220} = 0.3636 < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT2 Rating

Total Power, P = 20+20+20+20+20=100W

Estimated Power, $P_{est} = P \times Diversity Factor = 100 \times 0.7 = 70W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{70}{0.7 \times 220} = 0.4545 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT3 Rating

Total Power, P = 20 + 20 = 40W

Estimated Power, $P_{est} = P \times Diversity Factor = 40 \times 0.7 = 28W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{28}{0.7 \times 220} = 0.1818 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \ rm \ BYM + 1.5 \ rm \ BYA \ ECC$ are used for this connection.

ESDB Current,
$$I = \frac{\text{ESDB load}}{pf \times V} = \frac{154}{0.7 \times 220} = 1A < 5A$$

So, 5A SP MCCB is needed from SDB to MDB.

So, $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

Summary for Typical Basement:

	Sub Distribution Board (SDBB) Fixtures										
Circuit No.	Room Name	Switch Board	Fixture	Power (W)	Estimated Power(W)	Current Rating (A)	Breaker to SDB Rating (A)				
			CL1	20		4					
CVT1	Dacament	CD1	CL2	20	154		ΕΛ				
CKT1	Basement	SB1	CL3	20	154	1	5A				
			CL4	20	_						

Total Power				220
CKT3		SB3	LL3	20
CVT2		CDO	LL1	20
			CL17	20
			CL12	20
CKT2		SB2	CL11	20
			CL10	20
			CL9	20

Calculations for ESDB (Basement):

CKT1 Rating

Total Power, P = 20 + 20 + 20 + 20 = 80W

Estimated Power, $P_{est} = P \times Diversity Factor = 80 \times 0.7 = 56W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{56}{0.7 \times 220} = 0.3636 < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

CKT2 Rating

Total Power, P = 20+20+20+20=80W

Estimated Power, $P_{est} = P \times Diversity\ Factor = 80 \times 0.7 = 56W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{56}{0.7 \times 220} = 0.3636 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \ rm \ BYM + 1.5 \ rm \ BYA \ ECC$ are used for this connection.

CKT3 Rating

Total Power, P = 20 + 20 = 40W

Estimated Power, $P_{est} = P \times Diversity Factor = 40 \times 0.7 = 28W$

$$I = \frac{\text{Pest}}{pf \times V} = \frac{28}{0.7 \times 220} = 0.1818 \, A < 5A$$

So, Breaker to SDB wire rating 5A.

 $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

ESDB Current,
$$I = \frac{\text{ESDB load}}{pf \times V} = \frac{140}{0.7 \times 220} = \frac{0.9090A}{0.9090A} < 5A$$

5A SP MCCB is needed from SDB to MDB.

So, $2 \times 1.5 \, rm \, BYM + 1.5 \, rm \, BYA \, ECC$ are used for this connection.

Summary for Emergency Basement:

	Emergency Sub Distribution Board (ESDB) Fixtures											
Circuit No.	Room Name	Switch Board	Fixture	Power (W)	Estimated Power(W)	Current Rating (A)	Breaker to SDB Rating (A)					
			CL5	20								
CKT1			ECD1	CL6	20							
CKII		ESB1	CL7	20			50					
			CL8	20								
			CL13	20								
CKT2	Basement	LCDO	CL14	20	140	0.000000001						
CKIZ		ESB2	CL15	20	140	0.9090909091	5A					
			CL16	20								
			LL2	20								
CKT3		ESB3	LL4	20								
Total Po	wer			200								

Calculation for EMDB:

EMDB load = Total ESDB load \times 0.7 + *Lift Load X*0.7 + Total ground ESDB Load + Total Basement ESDB Load + Rooftop Load

Total ESDB Load = 20X ESDB load

EMDB Current =
$$\frac{EMDB\ Load}{Voltage*pf}$$

Power Factor, pf = 0.7

ESDB Load = 700W

Lift Load =
$$5kW$$

EMDB load =
$$20*700 + 5kW * 0.7 + 413 + 154 + 2*20 = 18.107kW$$

EMDB Current =
$$\frac{18.107}{3*220*0.7}$$
 = 39.192 A < 40 A

So, 40A TP MCCB is needed from EMDB to MDB

A 20kW Generator is used to supply the EMDB Load through an ATS.

Calculations of Generator:

Table 8.1.24: Recommended Area for Standby Generator Room

Capacity (kW)	Area (m²)
1 × 25	20
1 × 48	24
1 × 100	30
1 × 150	36
1 × 300	48
1 × 500	56

We used 17.93 m² area for our 20 kW generator.

Calculation for MDB:

MDB Load = Total SDB Load*0.7 + EMDB*0.7 + Ground SDB Load + Basement SDB Load

Total SDB Load = 20*SDB Load = 20*11653 W = 233.06kW

EMDB Load = 18.107kW

Ground SDB Load = 385W

Basement SDB Load = 140W

MDB Load = 20*11653 + 18107 + 385 + 140 = 251.692kW

MDB Current =
$$\frac{251.692}{3*220*0.7}$$
 = 544.7878A

So, 600 A TP MCCB is needed from MDB to Main Line.

Calculations of Transformer:

$$S = 3VI = 3*220*544.78778 = 359.559kVA$$

So, 11/0.415 kV, 50Hz, 360kVA, DYN 11, Oil Immersed Transformer with 4-6% Impedence is needed.

Table 8.1.23:	Recommended	Area	for	Transformer	and	Substation	of	Different
Canacities								

Capacity of Transformer Ar Transformer (m²) (kVA)		ea Total Substation Area (with HT, LT Panels & Transformer Room but without Generators), (m²)				
1 × 150	12	45				
1 × 250	13	48				
2 × 250	26	100				
1 × 400	13	48				
2 × 400	30	100				
3 × 400	40	135				
2 × 630	26	100				
3 × 630	40	190				
2 × 1000	40	180				
3 × 1000	45	220				

Our 360kVA transformer we used in total 47.86m² area.

Calculations of Lift:

Total Lift Load = 5 kW

Lift Load Current =
$$\frac{5000}{sqrt(3)*220*0.7} = 10.822A$$

So, 15 A TP MCCB is needed to connect with EMDB.

Calculations of Pump:

Pump Power = 3kW

Current =
$$\frac{3000}{sqrt(3)*220*0.7} = 11.24A$$

So, 15 A TP MCCB is needed to connect with EMDB.

Lightning Protection System (LPS) Design:

LPS Design Parameters:

Lightning Arrestor:

Rod Height = 2m

Roof Perimeter = $2 \times (40 + 70) = 220 \text{ft}$

If we place arrestors 25ft apart, the number of required arrestors will be -

So, total L.A needed= $220/25=8.8\approx9$

We will place 1 conductor for the first 80 sq.m and 1 conductor per 100 sq.m for the rest.

Number of required down conductors = $(80/80) + ((260.12-80)/100) = 2.8 \approx 3$

Thus, we use total of 3 down conductors as well as ground electrodes. Earth termination resistance of ground electrodes is less than 10 ohms. Roof Conductors Roof conductors are placed 6" away from the roof railing connecting all the lightning arrestors to the down conductors.

Switch Board Legend:

Description	Symbol			
Switch				
Single Pole Circuit Breaker (SP MCCB)	\bigcirc			
Triple Pole Circuit Breaker (TP MCCB)	\in $\stackrel{\circ}{\leftarrow}$ $\stackrel{\circ}{\leftarrow}$ $\stackrel{\circ}{\leftarrow}$			
Delta to Wye Transformer				
Generator	G			
Busbar	0000000			

Conclusion: In this project, we undertook the design of a ten-storey, two-unit building, including floor plans, electrical fixtures, and conduit layouts. Additionally, we created switchboard connection diagrams illustrating the distribution of incoming electric power throughout the building. These diagrams featured wire schedules and protective equipment like circuit breakers. To safeguard against electrical surges from lightning strikes, we incorporated a lightning protection system into the design. Through this project, we gained valuable experience in designing electrical services for residential buildings.

TYPICAL FLOOR SWITCH BOARD DIAGRAM

TYPICAL FLOOR EMERGENCY SWITCH BOARD DIAGRAM

Figure: EMDB Diagram

Figure: MDB Diagram

For All the Common Appliances of Different Floor

For Typical Floor

