امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

ست مسابقة في مادة الرياضيات المسلم	
سالقه کے مادہ ان ناصبات	
المانية عن المانية عن المانية عن المانية	عدد المسائل: ،
عدد الاسم:	
المدة: أربع ساعات الله قراء	
الرقم	

ملاحظة: :يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (1,5 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

		Réponses			
N°	Questions	a	b	С	d
1	$z = -2e^{-i\frac{\pi}{6}}.$ Un argument de z est :	$\frac{-\pi}{6}$	$\frac{\pi}{6}$	$\frac{7\pi}{6}$	$\frac{5\pi}{6}$
2	$\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^{12} =$	1	$2\sqrt{2}$	2^6	-1
3	$C_n^0 + C_n^1 + C_n^2 + + C_n^n =$	2 ⁿ	n!	n ²	2n
4	a est un entier naturel. Soit les propositions : $p: a \text{ est pair.}$ $q: a \geq 20.$ La proposition $\gamma(p \wedge q) \text{ est :}$	a est impair et a < 20	a est impair et a≥20	a est impair ou a < 20	a est pair ou a < 20
5	si $F(x) = \int_{1}^{x} \sqrt{1+t^2} dt$, alors $\lim_{x \to 1} \frac{F(x)}{x-1} =$	1	0	$\sqrt{2}$	+∞

II- (2,5points)

Dans l'espace rapporté à un repère orthonormé direct (O; i, j, k), on donne le plan (P) d'équation 2x + y - 2z - 2 = 0 et les points A(-1; 1; 3), B(1; 2; 1) et C(0; 4; 1).

- 1) Montrer que la droite (AB) est perpendiculaire en B au plan (P).
- 2) Soit (T) le cercle dans le plan (P) de centre B et de rayon $\sqrt{5}$. Montrer que le point C appartient à (T).
- 3) Ecrire une équation du plan (Q) déterminé par A, B et C.
- 4) On désigne par (d) la droite perpendiculaire en C au plan (Q).
 - a- Donner un système d'équations paramétriques de (d).
 - b- Calculer la distance de A à (d).
 - c- Démontrer que la droite (d) est tangente au cercle (T).

III- (3 points)

Dans un plan orienté on donne un carré direct ABCD

de centre O tel que
$$(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} (2\pi)$$
.

Soit r la rotation de centre O et d'angle $\frac{\pi}{2}$ et

h l'homothétie de centre C et de rapport 2 et on désigne par S la transformation $r \circ h$.

- 1) Déterminer la nature de S et préciser son rapport et son angle.
- 2) On désigne par W le centre de S.
 - a- Montrer que S(C) = D et que S(O) = B.
 - b- Donner une construction du point W et préciser les étapes de cette construction.
- 3) Le plan est rapporté au repère orthonormé (A; AB, AD).
 - a- Ecrire la forme complexe de S et déduire l'affixe du centre W.
 - b- Déterminer le transformé par S du carré ABCD.

IV- (2 points)

Une urne contient dix boules : cinq boules blanches, deux rouges et trois vertes.

1) On tire simultanément et au hasard trois boules de cette urne.

Calculer la probabilité de chacun des événements suivants :

- A : « tirer trois boules de la même couleur »
- B: « tirer au moins une boule rouge »
- 2) On tire au hasard et successivement deux boules de la façon suivante :

On tire une première boule ; si elle est blanche on la remet dans l'urne et on en tire une seconde boule.

Si elle n'est pas blanche, on la garde à l'extérieur de l'urne et on tire une seconde boule. On désigne par X la variable aléatoire égale au nombre de boules blanches tirées.

- a- Montrer que $P(X = 1) = \frac{19}{36}$.
- b- Déterminer la loi de probabilité de X.

V- (3,5 points)

Dans le plan rapporté à un repère orthonormé (O; i, j), on considère le point F(-2; 0) et la droite (d) d'équation x = 1.

Soit (C) un cercle variable de centre M tel que :

- La droite (d) est tangente en M' à (C).
- (FT) est tangente à (C) en T.
- L'angle TFM reste égale à 30°.
- 1) Démontrer que $\frac{MF}{MM'}$ =2 et déduire que

M décrit une conique (H) dont on précisera la nature, le foyer, la directrice et l'excentricité.

- 2) Vérifier que les points O et A (4 ; 0) sont les sommets de (H) et en déduire le centre et le second foyer de (H).
- 3) a- Ecrire une équation de (H) et déterminer ses asymptotes.
 - b- Vérifier que le point B (6 ; 6) est un point de (H) et écrire une équation de la tangente (Δ) en B à (H).
 - c- Tracer (Δ) et (H).
- 4) Soit (D) le domaine limité par la conique (H), la tangente (Δ) et la droite d'équation x = 4. Calculer le volume engendré par la rotation de (D) autour de l'axe des abscisses.

VI- (7,5 points)

- A- Soit g la fonction définie sur IR par $g(x)=3x+\sqrt{9x^2+1}$ et (G) sa courbe représentative dans un repère orthonormé.
 - 1) a- Calculer $\lim_{x\to +\infty} g(x)$ et montrer que la droite d'équation y=6x est une asymptote à (G).
 - b- Montrer que l'axe des abscisses est une asymptote à (G) en $-\infty$.
 - 2) Vérifier que g est strictement croissante sur IR.
 - 3) Tracer la courbe (G).
- B- Soit f la fonction donnée par $f(x) = \ln(g(x))$ et (C) sa courbe représentative dans un autre repère orthonormé (O; i, j).
 - 1) a- Justifier que le domaine de définition de f est IR.
 b- Calculer f(x) + f(-x) et prouver que O est un centre de symétrie de (C).
 - 2) a- Vérifier que f'(x)= $\frac{3}{\sqrt{9x^2+1}}$.
 - b-Ecrire une équation de la tangente (d) en O à (C).
 - c- Montrer que O est un point d'inflexion de (C).
 - 3) a- Calculer $\lim_{x \to +\infty} f(x)$ et vérifier que $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

Déduire
$$\lim_{x \to -\infty} f(x)$$
 et $\lim_{x \to -\infty} \frac{f(x)}{x}$.

- b- Dresser le tableau de variations de f.
- 4) a- Tracer la droite (d) et la courbe (C).
 - b- L'équation f(x) = x admet trois racines dont l'une α est positive. Montrer que $2,7 < \alpha < 2,9$.
- 5) a- Démontrer que la fonction f admet sur son domaine de définition une fonction réciproque h et tracer sa courbe représentative (H) dans le repère (O; i, j).
 - b- Montrer que $h(x) = \frac{1}{6} (e^x e^{-x})$.
- 6) On suppose que $\alpha = 2.8$.

Calculer l'aire des deux régions du plan limitées par les deux courbes (C) et (H).

PREMIERE SESSION 2006 MATHEMATIQUES SG

I	Eléments des réponses		Notes
	$Z = -2 e^{-i\frac{\pi}{6}} = 2e^{i(-\frac{\pi}{6} + \pi)} = 2e^{i\frac{5\pi}{6}}$	d	
2	$\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^{12} = \left(e^{i\frac{\pi}{4}}\right)^{12} = e^{i(3\pi)} = -1$	d	
3	$C_n^0 + C_n^1 + \dots + C_n^n = (1+1)^n = 2^n$	a	3
4		c	
5	$\lim_{x \to 1} \frac{F(x)}{x - 1} = \lim_{x \to 1} \frac{F(x) - F(1)}{x - 1} = F'(1) = f(1) = \sqrt{2} \text{ avec } f(x) = \sqrt{1 + x^2}.$ $ \Rightarrow \text{OU}: \lim_{x \to 1} \frac{F(x)}{x - 1} = \frac{0}{0} \text{ ; D'après la règle de l'Hôspital ; } \lim_{x \to 1} \frac{F(x)}{x - 1} = F'(1) = f(1) = \sqrt{2}.$	С	

II	Eléments des réponses	Notes
1	$\overrightarrow{AB}(2;1;-2)$, $\overrightarrow{N}_P(2;1;-1)$ donc $\overrightarrow{AB} = \overrightarrow{N}_P$ avec B est un point de (P) car $2x_B + y_B - 2z_B - 2 = 0$	1/2
2	$C \in (P) \text{ car } 2x_C + y_C - 2z_C - 2 = 0;$ $\rightarrow BC (-1; 2; 0); BC = \sqrt{5} = R \text{ donc } C \in (T).$	1
3	$\overrightarrow{AM}.(\overrightarrow{AB} \land \overrightarrow{AC}) = 0 \; ; \; \begin{vmatrix} x+1 & y-1 & z-3 \\ 2 & 1 & -2 \\ 1 & 3 & -2 \end{vmatrix} = 0 \; ; \; (Q) \; : \; 4x+2y+5z-13=0.$	1
4.a	$\overrightarrow{CM} = t \overrightarrow{N}_{Q}$; (d): $x = 4t$, $y = 2t + 4$, $z = 5t + 1$.	1/2
4b	(d) \perp (ABC) donc (d) \perp (AC) et d(A; (d)) = AC = $\sqrt{14}$.	1
4.c		1

III	Eléments des réponses	Notes
1	S = r o h S est la composée d'une homothétie positive (de rapport 2) et d'une rotation (d'angle $\frac{\pi}{2}$), c'est donc une similitude de rapport 2 et d'angle $\frac{\pi}{2}$.	1
2.a	$S(C) = r \circ h(C) = r(h(C)) = r(C) = D$; $S(O) = r \circ h(O) = r(A) = B$.	1
2.b	$\overrightarrow{(WC,WD)} = \frac{\pi}{2}$ et $\overrightarrow{(WO,WB)} = \frac{\pi}{2}$ d'où W est un point commun aux deux cercles de diamètres respectifs [DC] et [OB] ; ces deux cercles ont en commun deux points dont l'un d'eux est O, or S(O) \neq O onc le centre W est le second point.	1 ½
3.a	$z' = az + b \text{ avec } a = 2e^{i\frac{\pi}{2}} = 2i ; z' = 2iz + b$ or S(C) = D donc $z_D = 2iz_C + b \; ; i = 2i(1+i) + b \; ; b = -i + 2 d'où z' = 2iz + 2 - i.$ $z_W = 2iz_W + 2 - i \; ; z_W = \frac{2 - i}{1 - 2i} = \frac{4}{5} + \frac{3}{5}i.$	1 1/2
3.b	S(C) = D et $S(O) = B$. Le transformé du carré ABCD est le carré direct de centre B et dont l'un des sommets est D. \rightarrow OU: $S(A) = A'$ avec $z_{A'} = 2 - i$; $S(B) = B'$ avec $z_{B'} = 2 + i$ $S(C) = D$ et $S(D) = D'$ avec $z_{D'} = -i$. le transformé de ABCD est A' B' D D'.	1

IV	Eléments des réponses	Notes
	$P(A) = P(BBB) + P(VVV) = \frac{C_5^3 + C_3^3}{C_{10}^3} = \frac{11}{120}.$	
1	$P(B) = P(R\overline{R}\overline{R}) + P(RR\overline{R}) = \frac{C_2^1.C_8^2 + C_2^2.C_8^1}{C_{10}^3} = \frac{64}{120} = \frac{8}{15}.$	1 ½
	→OU: P(B) = 1 - P(\overline{R} \overline{R} \overline{R}) = 1 - $\frac{C_8^3}{C_{10}^3}$ = 1 - $\frac{56}{120}$ = $\frac{8}{15}$.	
2.a	$\frac{1/2}{B} = \frac{1/2}{1/2}$	
	$P(X = 1) = p(B \cap \overline{B}) + p(\overline{B} \cap B) = \frac{1}{4} + \frac{5}{18} = \frac{19}{36}$ $1/2 \qquad \overline{B} \qquad \overline{B} \qquad \overline{B}$	1
	x _i 0 1 2	
2.b	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 ½

VI	Eléments des réponses	Notes
1	$\frac{MF}{MM'} = \frac{MF}{MT}; \text{ le triangle MTF est semi-équilatéral donc } \frac{MF}{MT} = \frac{1}{\sin \hat{F}} = \frac{1}{1/2} = 2, \text{ d'où}$ $\frac{MF}{MM'} = 2 \text{ et M décrit l'hyperbole (H) de foyer F, de directrice (d) et d'excentricité 2.}$	1 1/2
2.a	(OF) est l'axe focal; $\frac{OF}{OK} = \frac{AF}{AK} = 2$ (K : intersection de (d) avec x'x)donc O et A sont les sommets de (H). Le centre I est le milieu de [OA] d'où I(2;0). I est le milieu de [FF'] d'où F'(6;0).	1 ½
3.a	M(x; y), M'(1; y), F(-2; 0) M∈(H) ssi $\frac{MF}{MM'}$ = 2; MF ² = 4 MM' ² ; (x + 2) ² + y ² = 4(x - 1) ² ; 3x ² - y ² - 12x = 0 →OU: 2a = OA = 4; a = 2; 2c = FF' = 8; c = 4 donc b ² = c ² - a ² = 12 I(2; 0) est le centre de (H), donc (H): $\frac{(x-2)^2}{4} - \frac{y^2}{12} = 1$ Asymptotes: $\frac{(x-2)^2}{4} - \frac{y^2}{12} = 0$; $y = \sqrt{3}$ (x - 2) ou $y = -\sqrt{3}$ (x - 2).	1
3.b	Pour x = 6 et y = 6 on a $\frac{(6-2)^2}{4} - \frac{6^2}{12} = 1$, d'où B est un point de (H). Equation de (Δ): $\frac{(x-2)(x_B-2)}{4} - \frac{yy_B}{12} = 1$; $y = 2x - 6$. \Rightarrow OU: $6x - 2yy' - 12 = 0$; $y' = \frac{3(x-2)}{y}$; $y'_B = 2$; $y - y_B = 2$ ($x - x_B$); $y = 2x - 6$.	1
3c	j 4	1
4	$V = \pi \int_{4}^{6} [4(x-3)^{2} - (3x^{2} - 12x)]dx = \pi \left[\frac{4}{3}(x-3)^{3} - x^{3} + 6x^{2}\right]_{4}^{6} = \frac{8\pi}{3}u^{3}.$	1

VI	Eléments des réponses	Notes
A.1.a	$g(x) = 3x + \sqrt{9x^2 + 1}$ $\lim_{x \to +\infty} g(x) = +\infty \text{ ; lorsque } x \to +\infty \text{ , } g(x) \text{ se comporte comme } y = 3x + 3 x \text{ c.à.d}$ $y = 6x \text{ donc la droite d'équation } y = 6x \text{ est une asymptote à (G).}$ $\Rightarrow \mathbf{OU} : \lim_{x \to +\infty} (g(x) - 6x) = \lim_{x \to +\infty} (\sqrt{9x^2 + 1} - 3x) = \lim_{x \to +\infty} \frac{9x^2 + 1 - 9x^2}{\sqrt{9x^2 + 1} + 3x} = 0.$	1
A.1.b	$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \frac{(3x + \sqrt{9x^2 + 1})(3x - \sqrt{9x^2 + 1})}{3x - \sqrt{9x^2 + 1}} = \lim_{x \to -\infty} \frac{-1}{3x - \sqrt{9x^2 + 1}} = 0.$ D'où l'axe des abscisses est une asymptote à (G). $ \rightarrow \mathbf{OU} : \text{lorsque } x \to -\infty , g(x) \text{ se comporte comme } y = 3x + 3 x \text{ c.à.d } y = 0 $	1
A.2	g'(x) = $3 + \frac{9x}{\sqrt{9x^2 + 1}}$ g '(x) = 0 pour $\frac{9x}{\sqrt{9x^2 + 1}}$ = -3 c.à.d $81x^2 = 9(9x^2 + 1)$ avec $x \le 0$, soit $0 = 9$ ce qui est impossible. g '(x) est continue sur IR et ne s'annulant pas, garde un signe constant celui de g '(0) = 3, donc g '(x) > 0 pour tout réel x. \rightarrow OU: pour $x \ge 0$, g '(x) > 0 pour tout réel x. \rightarrow OU: pour $x \ge 0$, g '(x) > 0 pour tout réel x. d'où g '(x) > 0 pour tout réel x et g est strictement croissante.	1
A.3		1
B.1.a	g(x) > 0 pour tout x car (G) est au-dessus de l'axe des abscisses d'où f est définie sur IR.	1/2
B.1.b	$f(x) + f(-x) = \ln(3x + \sqrt{9x^2 + 1}) + \ln(-3x + \sqrt{9x^2 + 1})$ $= \ln(9x^2 + 1 - 9x^2) = \ln 1 = 0.$ $f(-x) = -f(x) \text{ d'où f est impaire et O est un centre de symétrie de (C).}$	1
B.2.a	$f'(x) = \frac{g'(x)}{g(x)} = \frac{3\sqrt{9x^2 + 1} + 9x}{\sqrt{9x^2 + 1}} \times \frac{1}{3x + \sqrt{9x^2 + 1}} = \frac{3}{\sqrt{9x^2 + 1}}.$	1/2

B.2.b	y = x f'(0) = 3x	1/2
B.2.c	$f''(x) = \frac{-27x}{(9x^2 + 1)\sqrt{9x^2 + 1}}$; f''(x) s'annule pour x = 0 en changeant de signe, O est un point d'inflexion de (C).	1
B.3.a	$\lim_{x \to +\infty} f(x) = \ln(+\infty) = +\infty \; ; \; \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{f'(x)}{1} = \lim_{x \to +\infty} \frac{3}{\sqrt{9x^2 + 1}} = 0$ $\lim_{x \to -\infty} f(x) = -\infty \text{ et } \lim_{x \to -\infty} \frac{f(x)}{x} = 0 \text{ car O est un centre de symétrie de (C)}.$	1
B.3.b	$f'(x) > 0$ $x \mid -\infty \qquad +\infty$ $f(x) \qquad +$ $f(x) \qquad +\infty$	1/2
4.a	(C)	1 1/2
4.b	$f(2,7) = 2,78 > 2$, 7 et $f(2,9) = 2,85 < 2,9$ donc $2,7 < \alpha < 2,9$ car f est continue et strictement croissante sur R.	1
B.5.a	f est continue et strictement croissante sur R, elle admet une fonction réciproque h.	1
B.5.b	$6y = e^{x} - \frac{1}{e^{x}}; e^{2x} - 6ye^{x} - 1 = 0; (e^{x} - 3y)^{2} = 9y^{2} + 1; e^{x} = 3y + \sqrt{9y^{2} + 1} (> 0)$ ou $e^{x} = 3y - \sqrt{9y^{2} + 1} < 0$ (impossible); $x = \ln(3y + \sqrt{9y^{2} + 1}) = f(y)$	1
6.	A = 4(aire comprise entre (H) et les droites d'équations $y = x$, $x = 0$ et $x = \alpha$). $A = 4 \int_{0}^{2.8} \left[x - \frac{1}{6} (e^{x} - e^{-x}) \right] dx = 4 \left[\frac{x^{2}}{2} - \frac{1}{6} (e^{x} + e^{-x}) \right]_{0}^{2.8}$ $= 4 \left[\frac{(2.8)^{2}}{2} - \frac{1}{6} (e^{2.8} + e^{-2.8}) + \frac{1}{3} \right] \approx 6,009 \text{ u}^{2}.$	1 1/2