* Name Origin:

Latin: sulfur (brimstone).

* Sources:

Found in pure form and in ores like cinnabar, galena, sphalerite and stibnite.

* Uses:

Used in matches, gunpowder, fireworks, batteries, vulcanization of rubber, medicines, permanent wave lotion and pesticides. Also for making sulfuric acid (H_2SO_4) .

* Additional Notes:

Known to the ancients: referred to in Genesis as brimstone. Sulfur is found in meteorites. A dark area near the crater Aristarchus on the moon has been studied by R. W. Wood with ultraviolet light. This study suggests strongly that it is a sulfur deposit. Sulfur occurs native in the vicinity of volcanoes and hot springs. It is widely distributed in nature as iron pyrites, galena, sphalerite, cinnabar, stibnite, gypsum, Epsom salts, celestite, barite,etc. Sulfur is commercially recovered from wells sunk into the salt domes along the Gulf Coast of the U.S. It is obtained from these wells by the Frasch process, which forces heated water into the wells to melt the sulfur, which is then brought to the surface. Sulfur also occurs in natural gas and petroleum crudes and must be removed from these products. Formerly this was done chemically, which wasted the sulfur. New processes now permit recovery, and these sources promise to be very important. Large amounts of sulfur are being recovered from Alberta gas fields. Sulfur is a pale yellow, odorless, brittle solid, which is insoluble in water but soluble in carbon disulfide. In every state, whether gas, liquid or solid, elemental sulfur occurs in more than one allotropic form or modification; these present a confusing multitude of forms whose relations are not yet fully understood. Amorphous or "plastic" sulfur is obtained by fast cooling of the crystalline form. X-ray studies indicate that amorphous sulfur may have a helical structure with eight atoms per spiral. Crystalline sulfur seems to be made of rings, each containing eight sulfur atoms, which fit together to give a normal X-ray pattern. Seventeen isotopes of sulfur are now recognized. Four occur in natural sulfur, none of which is radioactive. A finely divided form of sulfur, known as flowers of sulfur, is obtained by sublimation. Sulfur readily forms sulfides with many elements. Sulfur is a component of black gunpowder, and is used in the vulcanization of natural rubber and a fungicide. It is also used extensively is making phosphatic fertilizers. A tremendous tonnage is used to produce sulfuric acid, the most important manufactured chemical. It is used in making sulfite paper and other papers, as a fumigant, and in the bleaching of dried fruits. The element is a good electrical insulator. Organic compounds containing sulfur are very important. Calcium sulfate, ammonium sulfate, carbon disulfide, sulfur dioxide, and hydrogen sulfide are but a few of the many other important compounds of sulfur. Sulfur is essential to life. It is a minor constituent of fats, body fluids, and skeletal minerals. Carbon disulfide, hydrogen sulfide, and sulfur dioxide should be handled carefully. Hydrogen sulfide in small concentrations can be metabolized, but in higher concentrations it quickly can cause death by respiratory paralysis. It is insidious in that it quickly deadens the sense of smell. Sulfur dioxide is a dangerous component in atmospheric air pollution. In 1975, University of Pennsylvania scientists reported

synthesis of polymeric sulfur nitride, which has the properties of a metal, although it contains no metal atoms. The material has unusual optical and electrical properties.