

1) Dataset

2) LSTM : Long-Short-

3) TCN:

Temporal Convolution Networks

Conclusion

Modeling time series using LSTMs and TCNs

Hajar Hajji

INRAE/IECL

Supervisors : Gabriel Destouet, Marianne Clausel, Emilie Joetzjer

Table of contents

1) Dataset

2) LSTM: Long-Short-

Temporal Convolutio

Conclusion

- 1) Dataset
- 2) LSTM : Long-Short-Term-Memory
- 3) TCN: Temporal Convolutional Networks

1) Dataset

2) LSTM : Long-Short-

3) TCN :

Temporal Convolutiona Networks

Conclusion

1) Dataset

1) Dataset

2) LSTM: Long-Short

3) TCN :

Convolution Networks

Variable	Description
GPP	Quantity of CO2 assimilated by the forest through photosynthesis
SWC	Soil water content
VPD	Vapor pressure deficit
Time	format : YYYY-MM-DD HH:MM:SS

Table 1: Variable Descriptions

GPP decomposition

1) Dataset

2) LSTM

Term-Memo

3) TCN :

Convolution Networks

Conclusion

Mathematical formula:

$$GPP_t = \overline{GPP_t^{365d}} + \overline{GPP_t - GPP_t^{365d}^{24h}} + GPP_t$$

where

$$\overline{GPP}^{T} = \frac{1}{N} \sum_{k=1}^{N} GPP_{t+kT}$$

GPP decomposition

1) Dataset

• Mathematical formula:

$$GPP_t = \overline{GPP_t^{365d}} + \overline{GPP_t - GPP_t^{365d}^{24h}} + GPP_t$$

where

$$\overline{GPP}^{T} = \frac{1}{N} \sum_{k=1}^{N} GPP_{t+kT}$$

- \overline{GPP}_t^{365d} : Annual mean calculated with N=2. $\overline{GPP_t-GP_t^{365d}^{24h}}$: Day-and-night cycle calculated with N=7.
- G♠P+: Anomalies.

GPP Decomposition

1) Dataset

2) LSTM:

3) TC

Temporal Convolution Networks

Fig. 1: GPP Decomposition

Time fetaures

1) Dataset

2) LSTM: Long-Short-

3) TCN

Temporal Convolution Networks

Conclusion

Fig. 2: Day time signal

Fig. 3: Year time signal

7/31

Section

Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN: Temporal Convolutional Networks

Conclusion

2) LSTM: Long-Short-Term-Memory

LSTM Inputs & Outputs

2) LSTM: Long-Short-Term-Memory

Inputs : Sequences

INRA LSTM Inputs & Outputs

2) LSTM: Long-Short-Term-Memory

Inputs : Sequences

- Annual GPP
- Day-and-night cycle GPP
- Anomalies
- Time features

from t - L to tL: Sequence length

INRA LSTM Inputs & Outputs

2) LSTM: Long-Short-Term-Memory

Inputs : Sequences

- Annual GPP

- Day-and-night cycle GPP

- Anomalies

- Time features

from t - L to tL: Sequence length

Output :

INRALSTM Inputs & Outputs

2) LSTM: Long-Short-Term-Memory

Inputs : Sequences

```
- Annual GPP
- Day-and-night cycle GPP 

- Anomalies from t-L to t

L: Sequence length
- Time features
```

Output :

- Annual GPP - Day-and-night cycle GPP $\left.\begin{array}{c} \\ \\ \\ \end{array}$ at t+1

1) Datacet

2) LSTM : Long-Short-Term-Memory

3) TCN: Temporal Convolutiona

Layer (type)	Output	Shape	Param #		
lstm (LSTM)	(None,	128)	69632		
dense (Dense)	(None,	3)	387		
Fotal params: 70,019 Trainable params: 70,019 Non-trainable params: 0					

Fig. 4: Model architecture

Hyperparameters

1) Dataset

2) LSTM: Long-Short-Term-Memory

Temporal Convolutio

- Sequence length = 365 (7days)
- Features = 7
- Hidden units = 128
- Optimizer = Adam
- Learning rate = 0.001
- Batch size = 32

Cross year average

1) Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN : Temporal

Fig. 5: Training loss VS Validation loss: Cross year average

Day-and-night cycle

1) Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN:
Temporal

Fig. 6: Training loss VS Validation loss: Day-and-night cycle

Anomalies

1) Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN:
Temporal
Convolution

Fig. 7: Training loss VS Validation loss: Anomalies

Hyperparameters

1) Dataset

2) LSTM: Long-Short-Term-Memory

Temporal Convolution Networks

- Sequence length = 700 (2weeks)
- Features = 7
- Hidden units = 128
- Optimizer = Adam
- Learning rate = 0.001
- Batch size = 32

Cross year average

1) Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN :

Fig. 8: Training loss VS Validation loss: Cross year average

Day-and-night cycle

1) Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN:
Temporal
Convolution

Fig. 9: Training loss VS Validation loss : Day-and-night cycle

Anomalies

1) Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN: Temporal

Fig. 10: Training loss VS Validation loss: Anomalies

2) LSTM: Long-Short-Term-Memory

Layer (type)	Output Shape	Param #
lstm_2 (LSTM)	(None, 365, 64)	18432
dropout_2 (Dropout)	(None, 365, 64)	0
lstm_3 (LSTM)	(None, 64)	33024
dropout_3 (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 3)	195
Total params: 51,651 Trainable params: 51,651		

Non-trainable params: 0

Fig. 11: Model architecture

Anomalies

1) Dataset

2) LSTM: Long-Short-Term-Memory

3) TCN: Temporal Convolutio Networks

Conclusion

Learning rate = 0.0001

Optimizer: Adam

Optimizer: AdamW

Section

Dataset

2) LSTM : Long-Short-

3) TCN: Temporal Convolutional Networks

Conclusion

3) TCN: Temporal Convolutional Networks

Introducing TCNs

1) Dataset

2) LSTM : Long-Short-

3) TCN: Temporal Convolutional Networks

Conclusion

Why privilege TCNs over RNNs?

Efficient parallelism.

Introducing TCNs

1) Dataset

2) LSTM : Long-Short-

3) TCN: Temporal Convolutional Networks

Conclusion

Why privilege TCNs over RNNs?

- Efficient parallelism.
- Stable gradients (preventing vanishing/exploding gradients..)

Introducing TCNs

1) Dataset

2) LSTM : Long-Short-

3) TCN: Temporal Convolutional Networks

Conclusion

Why privilege TCNs over RNNs?

- Efficient parallelism.
- Stable gradients (preventing vanishing/exploding gradients..)
- Vision across the sequence => Flexible length inputs.

1) Dataset

2) LSTM: Long-Short

3) TCN : Temporal Convolutional

Networks

The architecture of TCN consists of :

• Residual Blocks.

1) Dataset

2) LSTM : Long-Short-Term-Memo

3) TCN: Temporal Convolutional Networks

. . .

- Residual Blocks.
 - Each residual block consists of two causal convolutional layers with the same dilation factor.

1) Dataset

2) LSTM : Long-Short-Term-Memo

3) TCN: Temporal Convolutional Networks

Conclusio

- Residual Blocks.
 - Each residual block consists of two causal convolutional layers with the same dilation factor.
 - Introduce complexity to each layer (Activation, Normalization, Regularization)

1) Dataset

2) LSTM:

3) TCN: Temporal Convolutional Networks

Conclusio

- Residual Blocks.
 - Each residual block consists of two causal convolutional layers with the same dilation factor.
 - Introduce complexity to each layer (Activation, Normalization, Regularization)
 - The output of the convolutional layers is added to the input of the residual block through a residual connection.

1) Dataset

2) LSTM: Long-Short

3) TCN : Temporal Convolutional Networks

Conclusio

- Residual Blocks.
 - Each residual block consists of two causal convolutional layers with the same dilation factor.
 - Introduce complexity to each layer (Activation, Normalization, Regularization)
 - The output of the convolutional layers is added to the input of the residual block through a residual connection.
- Sequential arrangement of residual blocks with increasingly dilations (with blocks).

Residual blocks

1) Dataset

2) LSTM:

Term-Mem
3) TCN:

Temporal

Convolutional Networks

Conclusion

(a) Causal convolutional layer

(b) Residual block

Fig. 13: Residual blocks

1) Dataset

2) LSTM: Long-Short

3) TCN:

Temporal Convolutional Networks

Fig. 14: The entire model

Data preprocessing

1) Datase

2) LSTM: Long-Short-

3) TCN: Temporal Convolutional Networks

Conclusion

 Remove the first year (2014) and last year (2022) (due to too many SWC missing values).

Fig. 15: Missing SWC values on September 2016

Data preprocessing

1) Datase

2) LSTM: Long-Short-

3) TCN : Temporal Convolutional Networks

- Remove the first year (2014) and last year (2022) (due to too many SWC missing values).
- Filling SWC gaps using interpolation and sometimes backward filling.

Fig. 15: Missing SWC values on September 2016

Data preprocessing

1) Datase

2) LSTM : Long-Short

3) TCN: Temporal Convolutional Networks

- Remove the first year (2014) and last year (2022) (due to too many SWC missing values).
- Filling SWC gaps using interpolation and sometimes backward filling.
- Penalize the loss function based on the number of SWC values that have been filled.

Fig. 15: Missing SWC values on September 2016

TCN Inputs &Outputs

3) TCN: Temporal

Convolutional Networks

Inputs : Sequences

TCN Inputs &Outputs

1) Dataset

2) LSTM : Long-Short-

3) TCN:

Temporal Convolutional Networks

Conclusion

Inputs : Sequences

- Time features

from t - L to t

 $L: {\sf Sequence\ length}$

TCN Inputs &Outputs

3) TCN: Temporal

Convolutional Networks

Inputs : Sequences

from t - L to t

L: Sequence length

• Output : GPP at t+1

Hyperparameters

- 1) Dataset
- 2) LSTM: Long-Short-
- 3) TCN: Temporal Convolutional Networks
- Conclusion

- Sequence length = 400 (>one year)
- Features = 7
- \bullet Channels = [32, 64, 128]
- Kernel size = 3
- Learning rate = 0.001
- Dropout = 0.2
- Batch size = 32
- Loss function : MSE (with penalization)

1) Dataset

2) LSTM :

3) TCN :

Temporal Convolutional Networks

Fig. 16: Training loss VS Validation loss using TCN

1) Dataset

2) LSTM : Long-Short-

3) TCN: Temporal Convolutional

Conclusion

Conclusion

1) Dataset

Long-Short-Term-Memory

Temporal

Conclusion

Overall good performance of TCN.

Perks:

- Fast &optimal convergence.
- Not time-consuming.
- No need for manual GPP decomposition.
- Interpretability.

Drawbacks:

Requires long sequences to capture temporal patterns
 significant computational resources.