Restricting rotation of triple bond through π -stacking interactions in molecular hinges

S. Sankararaman

Department of Chemistry
Indian Institute of Technology Madras
Chennai 600036, INDIA
sanka@iitm.ac.in

Organic stereochemistry is dominated by stereochemistry of C-C and C=C

Rotational barrier = 78 kJ/mole

Vollhardt, K. P. C.; Chem. Commun., 2005, 2606.

R = 4-Me, 4-*i*-Pr, 4-*t*-Bu

Activation barrier: 45-51 kJ/mole

Toyota, S., et.al., *Tetrahedron Lett*, **2003**, *44*, 7775; *Bull. Chem. Soc. Jpn*, **2005**, *78*, 917.

For various X and Y activation barrier range from 42-79 kJ/mole

Vögtle, F., et.al., Angew. Chem. Int. Ed., **1979**, 18, 159. Toyota, S., et.al., Bull. Chem. Soc. Jpn, **2000**, 73, 205 and 2591. Toyota, S., et.al., Tetrahedron Lett., **2001**, 57, 3521.

Moore, J. S., et.al., J. Am. Chem. Soc., 1995, 117, 10662.

Restricting rotations and freezing conformations through weak bondings.

Activation barrier for rotation 30 kJ/mole , 12 times more than diphenylethyne Yang, X. et.al; *chem. commun.*, **2003**, 56; *J. Am. Chem. Soc.*, **2004**, *126*, 3148

extended H-bonding

Hamilton, A. D. et.al., J. Am. Chem. Soc. 2009, 131, 4566.

Covalent bond mediated restriction of conformational mobility

E. Bosch, et. al., J. Org. Chem. 2008, 73, 3931-3934

Why not use weak non-covalent forces instead of repulsion to restrict bond rotation?

The concept of stabilization through π – π interaction

Inter-locked π -Stacking System

multiple π -stacked systems

Questions to be addressed:

- Can π-stacking interaction stabilize rotational isomers?
- Can multiple π -stacking interactions lead to restricted rotation of the acetylenic bond?
- How much is the stabilization arising due to π-stacking interaction?
- What is the population distribution of the conformational isomers arising out of restricted rotation of the acetylenic bond?
- What are the geometric factors that can result in strong π stacking interactions leading to isolation of rotational isomers?
- Can atropisomers be resolved in acetylenic systems?

chiral

TARGETS WITH ETHYNYLPYRENE ARMS

Two more targets with *p*-phenylene spacer as probes

Why pyrene?

Pyrene – prototypical fluorescent molecule

Pyrene derivatives - widely used fluorescent probe

Pyrene template - used in supramolecular chemistry

Photophysical properties - well understood

-monomer and excimer emission – well characterized

Applications – sensors – molecular photonics devices

Static excimer – preorganization in the ground state – π – π stacking in the GS Dynamic excimer – interaction in the excited state after diffusional encounter

SYNTHESIS

Orientation of the ethynylpyrene units

Packing of 1 in the crystal lattice

Distance between adjacent parallel pyrene planes = 3.202 Å

Temperature dependence of chemical shift of H-9 proton of pyrene

Temperature dependence of fluorescence emission

SYNTHESIS

Red = A, Blue = B (CH_2CI_2), Brown = B (solid state)

Is there an equilibrium between the OPEN and CLOSED forms?

Conformational isomers arising out of acetylenic bond rotation

The first example of structural characterization!

open form

closed form

X-ray structure of the OPEN form

Triclinic, P-1

X-ray structure of the CLOSED form

Orthorhombic, Pbcn

Distance between pyrene planes = 3.34 Å

How about in solution?

Temperature dependence of chemical shift of pyrene protons

Temperature dependence of chemical shift of pyrene protons

Two more targets with *p*-phenylene spacer as probes

SYNTHESIS

t-Bu

- a) Pd(PPh₃)₂Cl₂, CuI, Et₃N rt, 2h, 83 %
- b) Pd(PPh₃)₂Cl₂, Cul, pip 60 °C, 8 h, 86 %
- c) K₂CO₃, MeOH, THF rt, 1 h, 93 %
- d) 1-iodopyrene, Pd(PPh₃)₂Cl₂, CuI Et₃N, 60 $^{\circ}$ C, 4 h, 60 $^{\circ}$

S. Sankararaman, unpublished work

d v

Excitation (λ_{em} 445 nm) (____) fluorescence emission (λ_{ex} 334 nm) (____), CH, 1 x 10⁻⁷ M

SYNTHESIS OF A TETRA PYRENYL HINGE

Br

Br

$$CHO$$
 OHC $C(Me)_3$ CHO OHC A Br Br Br $C(Me)_3$ $C(Me)_3$ $C(Me)_3$ $C(Me)_3$

(a) CBr₄, Ph₃P, Zn, CH₂Cl₂, 25 °C, 75%.

Br

·Br

Br

C(Me)₃

R. Nandy, J. Org. Chem. 2007, 72, 938-944

Excitation (λ_{em} 463 nm) (-----) fluorescence emission (λ_{ex} 347 nm) (_____) (1 x 10⁻⁵ M in CH₂Cl₂)

7.7

T (°C)

R. Nandy, J. Org. Chem. 2007, 72, 938-944

How about triphenylene as an aromatic unit?

Triphenylene is very different from pyrene

It does not form π -stacked dimer in the ground state

In solution no excimer emission

How about triphenylene in constrained environments?

Excimer emission in solid state

Excimer emission in derivatives that form organogels

(Ikeda, M.; Takeuchi, M.; Shinkai, S. Chem. Commun, 2003, 1354–1355).

R. Nandy, Org. Biomol. Chem., 2010, 8, 2260-2266.

R. Nandy, Org. Biomol. Chem., 2010, 8, 2260-2266.

Fluorescence emission spectrum of 10^{-5} M solution of $\bf 1$ in CH_2Cl_2 (red), in cyclohexane (blue) and $\bf 2$ in CH_2Cl_2 (black) and of $\bf 1$ in solid state (brown). λ_{ex} 310 nm.

Comparison of ¹H NMR spectra of 1 (top) and 2 (bottom) in CDCl₃.

VT-1NMR spectra of

Effect of temperature on chemical shift of H-4 and H-8 protons of 1

"NOTHING EVOLVES IN ISOLATION"

Dr. G. Venkataramana, Dr. R. Nandy

Dr. M. S. Moni, SAIF, IIT Madras (NMR data)
Dr. B. Varghese, SAIF, IIT Madras (X-ray crystallography)

A. Mohan (NMR) and Shantha Nair, Esakki Muthu (ESI-MS) V. Ramkumar (XRD)

Department of Chemistry and SAIF, IIT Madras

DST (New Delhi), CSIR (New Delhi)

Thank you