Seria zadań nr 4 z Metod Numerycznych

Michał Bernardelli

Zadanie 1

Podać przykłady funkcji i punktów startowych, dla których:

- metoda siecznych jest zbieżna,
- metoda siecznych nie jest zbieżna,
- metoda stycznych jest zbieżna,
- metoda stycznych jest rozbieżna,
- metoda Newtona zapętla się (w arytmetyce dokładnej).

Odpowiedzi uzasadnić.

Zadanie 2

Zaimplementować metodę Newtona, która jako paramery przyjmie:

- funkcję,
- punkt startowy,
- maksymalną liczbę iteracji,
- dokładność, z jaką ma zostać obliczone rozwiązanie.

W obliczeniach nalezy zastosować przybliżenie pochodnej funkcji. Przetestować jej działanie dla funkcji cos(x)=0 i różnych punktów startowych, np. $x_0\in\{-1,\ 0,\ 0.1,\ 1.5,\ 2,\ 3\}$. Porównać działanie zaimplementowanej metody z działaniem metody Newtona z pochodną funkcji jako dodatkowym parametrem.

Zadanie 3

W zależności od parametru α , gdzie $0 < \alpha \le 1$, zbadać szybkość zbieżności do $x^* = 0$ metody Newtona dla funkcji

$$f(x) = x + x^{1+\alpha}.$$

Zadanie 4

Niech a > 0. Znaleźć stałą C > 0 taką, żeby była spełniona nierówność

$$|x_{k+1} - x^*| < C|x_k - x^*|^2$$
,

gdzie $x^* = \sqrt[3]{a}$, zaś ciąg x_k stanowią kolejne przybliżenia uzyskane w wyniku obliczeń metodą iteracyjną Newtona dla funkcji $f(x) = x^3 - a$.

Czy dwie iteracje metody Newtona wystarczą, by policzyć przybliżenie $\sqrt[3]{a}$ z dokładnością bezwzględną 10^{-12} jeżeli wiadomo, że

$$|\sqrt[3]{a} - x_0| \le 10^{-3}$$
?

Zadanie 5

Udowodnić, że funkcja $f(x) = e^x + x - 7$ ma dokładnie jedno miejsce zerowe x^* . Czy dla $x_0 = -18$ metoda Newtona wygeneruje ciąg przybliżeń zbieżny do x^* ? Odpowiedź uzasadnić.

Zadanie 6

W celu obliczenia przybliżenia wartości $\sqrt[3]{a}$, gdzie $3 < a \in \mathbb{R}$, stosujemy kolejno dwie metody iteracyjne: bisekcji i Newtona do wyznaczenia miejsca zerowego funkcji $f(x) = x^3 - a$.

W pierwszym etapie znajdujemy dobre przybliżenie x_0 (punkt startowy) dla metody Newtona wykorzystując w tym celu metodę bisekcji, tak żeby

$$\left| \sqrt[3]{a} - x_0 \right| \le 10^{-3}$$

Następnie wykonujemy iteracje metodą Newtona rozpoczynając iterowanie od punktu x_0 .

- 1. Napisz wzór na kolejną iterację metody Newtona zastosowanej dla powyższej funkcji.
- 2. Ile kroków metody bisekcji należy wykonać, żeby osiągnąć podawane wyżej przybliżenie x_0 (punktu startowego dla metody Newtona), jeżeli początkowy przedział poszukiwań to [0,a]?
- 3. Ile kroków metody Newtona należy wykonać, żeby rozpoczynając iteracje od wyżej obliczonej wartości x_0 zachodziło

$$|\sqrt[3]{a} - x_k| \le 10^{-15}$$
,

jezeli x_k jest przybliżeniem otrzymanym w k kroku metody Newtona?