Problem 16

We will start this problem with an easy corollary to the theorem we have about all intervals in \mathbb{R} being connected:

Corollary 1. Let $I \subseteq \mathbb{R}$, and let $a, b \in \mathbb{R}$. Then, the spaces $\{(a, y) : y \in I\}$ and $\{(a, y) : y \in I\}$ are connected.

Proof. Define $f: I \to \{(a,y) : y \in I\}$ by f(y) = (a,y). Clearly f is continuous. Since I is connected, the topological invariance of connectedness tells us that f(I) is connected. Since $f(I) = \{(a,y) : y \in I\}$, we have that $\{(a,y) : y \in I\}$ is connected. The argument for $\{(a,y) : y \in I\}$ is nearly identical.

Theorem 1. For some $z \in \mathbb{R}^2$, the space $\mathbb{R}^2 \setminus seg[0, z]$ is connected.

Proof. Let $z \in \mathbb{R}^2$, and let |z| = d(0, z) denote the distance between the origin and z. Then, via a rotation about the origin, $\mathbb{R}^2 \backslash [0, z]$ is homeomorphic to $\mathbb{R}^2 \backslash [0, 0]$. Thus, by the topological invariance of connectedness, it will suffice to show that $\mathbb{R}^2 \backslash [0, 0]$ is connected.

Let $A_r = \{(x,r) : x \in \mathbb{R}\}$ be a horizontal line for $r \in \mathbb{R} \setminus \{0\}$. Let $L = \{(x,0) \in \mathbb{R}^2 : x < 0\}$, and let $R = \{(x,0) \in \mathbb{R}^2 : x > |z|\}$. Define $H = \{A : A = A_r \text{ for some } r \in \mathbb{R} \setminus \{0\} \lor A = L \lor A = R\}$. We have constructed H in such a way that

$$\bigcup_{A \in H} A = \mathbb{R}^2 \backslash \operatorname{seg}[(0,0),(|z|,0)].$$

By Corollary 1, we have that A is connected for all $A \in H$. Taking advantage of Corollary 1 once more, we define two connected sets:

$$v_1 = \{(-1, y) : y \in \mathbb{R}\}\$$

$$v_2 = \{(|z| + 1, y) : y \in \mathbb{R}\}.$$

We have $v_1 \cap A \neq \emptyset$ for all $A \in H \setminus \{R\}$, and we have $v_2 \cap A \neq \emptyset$ for all $A \in H \setminus \{L\}$. Thus, as we proved in class, $v_1 \cup A$ is connected for all $A \in H \setminus \{L\}$. Define

$$F_1 = \{v_1 \cup A : A \in H \setminus \{R\}\}$$
$$F_2 = \{v_2 \cup A : A \in H \setminus \{L\}\}.$$

By construction, $A \cap B \neq \emptyset$ for all $A, B \in F_1$, and $A \cap B \neq \emptyset$ for all $A, B \in F_2$. Thus, for

$$F_3 = \bigcup_{A \in F_1} A$$
, and $F_4 = \bigcup_{A \in F_2} A$,

we have F_3, F_4 are connected. In a similar manner, we have that $F_3 \cap F_4 \neq \emptyset$, since, for example, $A_1 \subseteq F_3$ and $A_1 \subseteq F_4$. Therefore, $F_3 \cup F_4$ is connected. By design, we have

$$F_3 \cup F_4 = \mathbb{R}^2 \setminus \text{seg}[(0,0),(|z|,0)],$$

which leads us to conclude that $\mathbb{R}^2 \setminus \text{seg}[(0,0),(|z|,0)]$ is connected.

Remark 1. The intuition behind this proof is breaking $\mathbb{R}^2 \setminus \text{seg}[(0,0),(|z|,0)]$ into connected horizontal lines, and then joining them together in such a way to show $\mathbb{R}^2 \setminus \text{seg}[(0,0),(|z|,0)]$ is connected. This method is laborious, though fairly straightforward.

Problem 17

Theorem 2. Let X, Y be topological spaces and let $f: X \to Y$ be a continuous mapping. Then f(C(x)) is not, in general, a component of f(x) if C(x) is a component of x.

Proof. Let $(a,b) \subseteq \mathbb{R}$ be an interval, and consider the function $f:(a,b) \to \mathbb{R}$, defined by f(x) = x. We have that f is continuous (let $\delta = \epsilon$, and continuity follows). Also, (a,b) is a maximal connected subset of (a,b). Let $x \in (a,b)$. Then, (a,b) = C(x). By design, f((a,b)) = (a,b) is a connected set containing f(x). However, \mathbb{R} is a connected set containing f(x), $f((a,b)) \subseteq \mathbb{R}$, and $f((a,b)) \neq \mathbb{R}$. Therefore, by our theorem on component facts, f(C(x)) is not a component of f(x).

October 8, 2021

Problem 18

Theorem 3. \mathbb{R} and \mathbb{R}^2 are not homeomorphic.

Proof. Suppose, for the sake of contradiction, that there exists a homeomorphism $f: \mathbb{R} \to \mathbb{R}^2$. Let $x \in \mathbb{R}$. Since f^{-1} is continuous, $f^{-1}|_{\mathbb{R}^2 \setminus \{f(x)\}}$ is also continuous. We have $f^{-1}(\mathbb{R}^2 \setminus \{f(x)\}) = \mathbb{R} \setminus \{x\}$. By Theorem 1, $\mathbb{R}^2 \setminus \{f(x)\}$ is connected. Since $\mathbb{R} \setminus \{x\}$ is not an interval, it is not connected. Therefore, we have a continuous function mapping a connected space to a non-connected space, which is a contradiction. From this, we can conclude that \mathbb{R} and \mathbb{R}^2 are not homeomorphic.

October 8, 2021 2