Risk-Evaluation: Breast Cancer Royston-Altman

Jose Tamez

2023-04-28

Contents

1	\mathbf{Eva}	luation of RISK survival models
	1.1	The libraries
	1.2	Breast Cancer Royston-Altman data
	1.3	Cox Modeling
	1.4	Cox Model Performance
	1.5	Performance on the external data set
	1.6	Logistic Model
	1.7	Logistic Model Performance
	1.8	Logistic Model Poisson Calibration
	1.9	Comparing the COX and Logistic Models on the Independent Data.

1 Evaluation of RISK survival models

This document highlights the use of

- RRPlot(),
- CoxRiskCalibration(), and
- CalibrationProbPoissonRisk(),

for the evaluation (RRPlot), and calibration of cox models (CoxRiskCalibration) or logistic models (CalibrationProbPoissonRisk) of survival data.

Furthermore, it can be used to evaluate any Risk index that reruns the probability of a future event on external data-set.

This document will use the survival::rotterdam, and survival::gbsg data-sets to train and predict the risk of cancer recurrence after surgery. Both Cox and Logistic models will be trained and evaluated.

Here are some sample plots returned by the evaluated functions:

1.1 The libraries

```
library(survival)
library(FRESA.CAD)

## Loading required package: Rcpp

## Loading required package: stringr
```

Loading required package: miscTools

```
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
       format.pval, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
#source("~/GitHub/FRESA.CAD/R/RRPlot.R")
#source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")
op <- par(no.readonly = TRUE)</pre>
pander::panderOptions('digits', 3)
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1.2 Breast Cancer Royston-Altman data

1.2.1 data(gbsg, package="survival") and data(rotterdam, package="survival")

```
gbsgdata <- gbsg
rownames(gbsgdata) <- gbsgdata$pid</pre>
gbsgdata$pid <- NULL</pre>
odata <-rotterdam
rownames(odata) <- odata$pid
odata$pid <- NULL
odata$rfstime <- odata$rtime
odata$status <- odata$recur
odata$rtime <- NULL
odata$recur <- NULL
odata <- odata[,colnames(odata) %in% colnames(gbsgdata)]</pre>
odata$size <- 10*(odata$size=="<=20") +
  35*(odata\$size=="20-50") +
  60*(odata$size==">50")
data <- as.data.frame(model.matrix(Surv(rfstime,status)~.*.,odata))</pre>
data$`(Intercept)` <- NULL</pre>
dataBrestCancerTrain <- cbind(time=odata[rownames(data), "rfstime"], status=odata[rownames(data), "status"]</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),":","_")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain)," ","")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),"\\.","_")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),"-","_")</pre>
```

```
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),">","_")
dataBrestCancerTrain$time <- dataBrestCancerTrain$time/365 ## To years

pander::pander(table(odata[rownames(data),"status"]),caption="rotterdam")</pre>
```

Table 1: rotterdam

0	1
1464	1518

1.2.2 data(gbsg, package="survival") data conditioning

```
gbsgdata <- gbsgdata[,colnames(odata)]
data <- as.data.frame(model.matrix(Surv(rfstime,status)~.*.,gbsgdata))

data$`(Intercept)` <- NULL

dataBrestCancerTest <- cbind(time=gbsgdata[rownames(data),"rfstime"],status=gbsgdata[rownames(data),"st

colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),":","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"","")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"\\.","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"\\.","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"-","_")
dataBrestCancerTest$time <- dataBrestCancerTest$time/365

pander::pander(table(odata[rownames(data),"status"]), caption="gbsg")</pre>
```

Table 2: gbsg

0	1
499	183

1.3 Cox Modeling

```
ml <- BSWiMS.model(Surv(time,status)~.,data=dataBrestCancerTrain,loops=1,NumberofRepeats = 5)</pre>
```

```
sm <- summary(ml)
pander::pander(sm$coefficients)</pre>
```

Table 3: Table continues below

	Estimate	lower	$_{ m HR}$	upper	u.Accuracy	r.Accuracy
age_nodes	0.000716	1.001	1.001	1.001	0.626	0.600
$\mathbf{size} \mathbf{_grade}$	0.005649	1.005	1.006	1.006	0.598	0.623
\mathbf{nodes}	0.086582	1.082	1.090	1.099	0.637	0.642
${f size}$	0.006888	1.005	1.007	1.009	0.595	0.641
${\bf size_nodes}$	-0.000378	1.000	1.000	1.000	0.624	0.643

	Estimate	lower	HR	upper	u.Accuracy	r.Accuracy
age_size	-0.000149	1.000	1.000	1.000	0.567	0.627
${f grade}$	0.204934	1.146	1.227	1.314	0.565	0.637
age	-0.003113	0.996	0.997	0.998	0.513	0.628
${\it grade_nodes}$	-0.013784	0.981	0.986	0.992	0.635	0.645

Table 4: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI	NRI
age_nodes	0.632	0.630	0.601	0.634	0.03040	0.4594
\mathbf{size} grade	0.632	0.599	0.626	0.634	0.01868	0.3914
\mathbf{nodes}	0.643	0.640	0.643	0.644	0.00745	0.0564
${f size}$	0.643	0.595	0.642	0.644	0.01447	0.3587
${f size_nodes}$	0.643	0.629	0.644	0.644	0.00346	0.3430
$\mathbf{age}\mathbf{_size}$	0.632	0.568	0.630	0.634	0.00635	0.1935
${f grade}$	0.643	0.561	0.638	0.644	0.00926	0.2069
age	0.643	0.513	0.628	0.644	0.00416	0.0917
${\bf grade_nodes}$	0.643	0.639	0.646	0.644	0.00207	-0.0910

	z.IDI	z.NRI	Delta.AUC	Frequency
age_nodes	12.81	14.37	0.033056	1
${f size_grade}$	9.82	11.29	0.007947	1
nodes	8.33	1.66	0.000148	1
\mathbf{size}	8.05	9.97	0.001322	1
${f size_nodes}$	7.25	9.57	-0.000377	1
$\mathbf{age}\mathbf{_size}$	5.95	5.36	0.004078	1
${f grade}$	5.88	6.31	0.005344	1
age	5.27	2.51	0.015465	1
${f grade_nodes}$	5.03	-2.55	-0.002609	1

1.4 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.4.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years timeinterval <- 5 # Five years</pre>

```
h0 <- sum(dataBrestCancerTrain$status & dataBrestCancerTrain$time <= timeinterval)
h0 <- h0/sum((dataBrestCancerTrain$time > timeinterval) | (dataBrestCancerTrain$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 6: Initial Parameters

h0	timeinterval
0.429	5

Cumulative vs. Observed: Train: Breast Cancer

Decision Curve Analysis: Train: Breast Cancer

Relative Risk: Train: Breast Cancer

ROC: Train: Breast Cancer

Time vs. Events: Train: Breast Cancer

Kaplan-Meier: Train: Breast Cancer

As we can see the Observed probability as well as the Time vs. Events are not calibrated.

1.4.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$OERatio),caption="0/E Ratio")

Table 7: O/E Ratio

est	lower	upper
1.13	1.07	1.19

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 8: O/E Ratio

mean	50%	2.5%	97.5%
1.13	1.13	1.12	1.14

pander::pander(t(rrAnalysisTrain\$OAcum95ci), caption="0/Acum Ratio")

Table 9: O/Acum Ratio

mean	50%	2.5%	97.5%
1.34	1.34	1.34	1.34

pander::pander(rrAnalysisTrain\$c.index\$cstatCI, caption="C. Index")

mean.C Index	median	lower	upper
0.676	0.677	0.663	0.69

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 11: ROC AUC

est	lower	upper
0.694	0.675	0.713

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 12: Sensitivity

est	lower	upper
0.299	0.276	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 13: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 14: Probability Thresholds

90%	80%
0.459	0.389

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 15: Risk Ratio

est	lower	upper
1.69	1.59	1.8

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 16: Logrank test Chisq = 465.079317 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1985	816	1144	93.9	385.7
class=1	396	248	177	28.0	31.8
class=2	601	454	197	336.3	391.3

1.4.3 Cox Calibration

h0	Gain	DeltaTime
0.698	1.35	6.97

1.4.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Cal. Train: Breast Cancer

Decision Curve Analysis: Cal. Train: Breast Cancer

Relative Risk: Cal. Train: Breast Cancer

ROC: Cal. Train: Breast Cancer

Time vs. Events: Cal. Train: Breast Cancer

Kaplan-Meier: Cal. Train: Breast Cancer

0

1.4.5 Calibrated Train Performance

0.551 <= Risk < 0.632

High Risk >= 0.632

396 601

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 18: O/E Ratio

est	lower	upper
0.998	0.949	1.05

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 19: O/E Ratio

mean	50%	2.5%	97.5%
0.977	0.977	0.969	0.985

pander::pander(t(rrAnalysisTrain\$OAcum95ci), caption="0/Acum Ratio")

Table 20: O/Acum Ratio

mean	50%	2.5%	97.5%
1.01	1.01	1.01	1.01

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.676	0.677	0.663	0.689

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 22: ROC AUC

est	lower	upper
0.694	0.675	0.713

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 23: Sensitivity

est	lower	upper
0.299	0.276	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 24: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 25: Probability Thresholds

90%	80%
0.632	0.551

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 26: Risk Ratio

est	lower	upper
1.69	1.59	1.8

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 27: Logrank test Chisq = 465.079317 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1985	816	1144	93.9	385.7
class=1	396	248	177	28.0	31.8
class=2	601	454	197	336.3	391.3

1.5 Performance on the external data set

index <- predict(ml,dataBrestCancerTest)</pre>

pp <- predictionStats_binary(cbind(dataBrestCancerTest\$status,index),plotname="Breast Cancer")</pre>

par(op)

Cumulative vs. Observed: Test: Breast Cancer

Decision Curve Analysis: Test: Breast Cancer

Relative Risk: Test: Breast Cancer

Time vs. Events: Test: Breast Cancer

Kaplan-Meier: Test: Breast Cancer

0

par(op)

Survival probability

1.5.1 External Data Report

82

0.551 <= Risk < 0.632

High Risk >= 0.632

pander::pander(t(rrCoxTestAnalysis\$OERatio),caption="0/E Ratio")

Table 28: O/E Ratio

est	lower	upper
1.33	1.19	1.49

pander::pander(rrCoxTestAnalysis\$c.index,caption="C. Index")

• C Index: 0.664

• **Dxy**: 0.328 • **S.D.**: 0.0311

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

Concordant: 176737Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.664	0.663	0.634	0.693

pander::pander(t(rrCoxTestAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 30: ROC AUC

est	lower	upper
0.66	0.619	0.7

pander::pander((rrCoxTestAnalysis\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 31: Sensitivity

est	lower	upper
0.328	0.275	0.384

pander::pander((rrCoxTestAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 32: Specificity

est	lower	upper
0.873	0.836	0.905

pander::pander(t(rrCoxTestAnalysis\$thr_atP),caption="Probability Thresholds")

Table 33: Probability Thresholds

90%	80%
0.632	0.551

pander::pander(t(rrCoxTestAnalysis\$RR_atP),caption="Risk Ratio")

Table 34: Risk Ratio

est	lower	upper
1.79	1.53	2.09

pander::pander(rrCoxTestAnalysis\$surdif,caption="Logrank test")

Table 35: Logrank test Chisq = 81.471750 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	457	164	221.4	14.888	58.181
class=1	82	37	33.2	0.438	0.494
class=2	147	98	44.4	64.710	77.254

1.5.2 Calibrating the index on the test data

h0	Gain	DeltaTime
0.535	0.925	4.87

Cumulative vs. Observed: Cal. Test: Breast Cancer

Decision Curve Analysis: Cal. Test: Breast Cancer

Relative Risk: Cal. Test: Breast Cancer

ROC: Cal. Test: Breast Cancer

Time vs. Events: Cal. Test: Breast Cancer

Kaplan-Meier: Cal. Test: Breast Cancer

1.5.3 After Calibration Report

High Risk >= 0.585

pander::pander(t(rrAnalysis\$0ERatio), caption="0/E Ratio")

118

Table 37: O/E Ratio

est	lower	upper
1.23	1.09	1.37

pander::pander(rrAnalysis\$c.index,caption="C. Index")

• C Index: 0.664

• **Dxy**: 0.328 • **S.D.**: 0.0311

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

• Concordant: 176737

• Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.664	0.664	0.633	0.691

pander::pander(t(rrAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 39: ROC AUC

est	lower	upper
0.66	0.619	0.7

pander::pander((rrAnalysis\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 40: Sensitivity

est	lower	upper
0.264	0.215	0.318

pander::pander((rrAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 41: Specificity

est	lower	upper
0.899	0.865	0.927

pander::pander(t(rrAnalysis\$thr_atP),caption="Probability Thresholds")

Table 42: Probability Thresholds

90%	80%
0.585	0.484

pander::pander(t(rrAnalysis\$RR_atP),caption="Risk Ratio")

Table 43: Risk Ratio

est	lower	upper
1.74	1.48	2.05

pander::pander(rrAnalysis\$surdif,caption="Logrank test")

Table 44: Logrank test Chisq = 80.835092 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	482	173	232.4	15.20	69.5
class=1	86	47	32.0	7.02	7.9
class=2	118	79	34.6	57.14	65.4

1.6 Logistic Model

Here we train a logistic model on the same data set

```
## Only label subjects that present event withing five years

dataBrestCancerR <- subset(dataBrestCancerTrain, time>=5 | status==1)

dataBrestCancerR$status <- dataBrestCancerR$status * (dataBrestCancerR$time < 5)

dataBrestCancerR$time <- NULL

#ml <- BSWiMS.model(status~1, data=dataBrestCancerR, loops=20, NumberofRepeats = 5)

mlog <- BSWiMS.model(status~1, data=dataBrestCancerR, loops=1, NumberofRepeats = 5)</pre>
```

```
sm <- summary(mlog)
pander::pander(sm$coefficients)</pre>
```

Table 45: Table continues below

	Estimate	lower	OR	upper	u.Accuracy	r.Accuracy
size_nodes	1.05e-03	1.001	1.001	1.001	0.669	0.571
\mathbf{nodes}	4.33e-02	1.040	1.044	1.048	0.676	0.634
${f grade_nodes}$	1.50e-02	1.014	1.015	1.016	0.682	0.637
age_nodes	1.06e-03	1.001	1.001	1.001	0.678	0.653
${f size_grade}$	1.75e-03	1.001	1.002	1.002	0.632	0.682
$\mathbf{age}\mathbf{_size}$	8.73e-05	1.000	1.000	1.000	0.608	0.682
grade	2.27e-01	1.168	1.254	1.347	0.571	0.683
age_meno	-6.04e-03	0.992	0.994	0.996	0.571	0.676
age_pgr	-5.42e-06	1.000	1.000	1.000	0.571	0.686
age_grade	-1.65e-03	0.997	0.998	0.999	0.574	0.690
${ m meno_grade}$	1.02e-01	1.045	1.107	1.173	0.571	0.683
$nodes_hormon$	-1.38e-02	0.979	0.986	0.994	0.587	0.688
${f size}$	3.94e-03	1.002	1.004	1.006	0.611	0.693
$meno_pgr$	3.19e-04	1.000	1.000	1.001	0.571	0.687
pgr	-1.07e-04	1.000	1.000	1.000	0.571	0.689
$meno_nodes$	-2.60e-02	0.955	0.974	0.994	0.640	0.686
${f grade_pgr}$	-3.51e-05	1.000	1.000	1.000	0.571	0.669
meno_size	2.34e-03	1.000	1.002	1.004	0.604	0.691

Table 46: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI
size_nodes	0.668	0.627	0.500	0.628	0.11233

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI
nodes	0.690	0.639	0.621	0.662	0.07110
${f grade_nodes}$	0.686	0.649	0.624	0.655	0.06580
${f age_nodes}$	0.686	0.642	0.621	0.657	0.03346
${f size_grade}$	0.686	0.626	0.646	0.655	0.01787
$\mathbf{age}\mathbf{_size}$	0.686	0.577	0.649	0.657	0.01534
${f grade}$	0.690	0.500	0.653	0.662	0.01340
age_meno	0.686	0.500	0.645	0.657	0.00782
${f age_pgr}$	0.686	0.500	0.656	0.657	0.00512
${f age_grade}$	0.690	0.507	0.661	0.662	0.00454
${f meno_grade}$	0.686	0.500	0.652	0.657	0.00425
${f nodes_hormon}$	0.686	0.526	0.658	0.655	0.00280
${f size}$	0.690	0.618	0.663	0.662	0.00507
${f meno_pgr}$	0.686	0.500	0.657	0.657	0.00316
pgr	0.686	0.500	0.659	0.655	0.00257
${f meno_nodes}$	0.686	0.595	0.656	0.657	0.00264
${f grade_pgr}$	0.668	0.500	0.627	0.628	0.00241
$meno_size$	0.690	0.578	0.663	0.662	0.00185

	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
size_nodes	0.63654	17.86	18.870	0.128490	1
${f nodes}$	0.57106	14.13	16.179	0.040494	1
${f grade_nodes}$	0.54866	13.66	15.650	0.031087	1
${f age_nodes}$	0.21312	9.39	5.710	0.035896	1
${f size_grade}$	0.29411	6.74	7.728	0.008648	1
$\mathbf{age}\mathbf{_size}$	0.29152	6.41	7.652	0.007600	1
${f grade}$	0.19036	6.20	4.983	0.008461	1
age_meno	0.08057	4.76	2.337	0.012065	1
${f age_pgr}$	0.00745	4.11	0.194	0.000417	1
${f age_grade}$	0.11372	3.60	2.960	0.000315	1
${f meno_grade}$	0.20428	3.47	5.343	0.004441	1
${f nodes_hormon}$	0.45522	3.44	12.150	-0.002853	1
${f size}$	0.21050	3.42	5.600	-0.001075	1
${f meno_pgr}$	0.05977	3.35	1.558	-0.000429	1
pgr	0.19759	2.64	5.745	-0.004123	1
${f meno_nodes}$	-0.06329	2.59	-1.645	0.000631	1
${f grade_pgr}$	0.17471	2.55	5.058	0.001252	1
$meno_size$	0.10227	2.43	2.662	-0.001378	1

1.7 Logistic Model Performance

Cumulative vs. Observed: Logistic Train: Breast Cancer

Decision Curve Analysis: Logistic Train: Breast Cancer

Relative Risk: Logistic Train: Breast Cancer

ROC: Logistic Train: Breast Cancer

Time vs. Events: Logistic Train: Breast Cancer

Kaplan-Meier: Logistic Train: Breast Cancer

Number at risk

Low Risk < 0.431	1975	1268	399	23	0
0.431 <= Risk < 0.542	364	160	47	2	0
High Risk $>= 0.542$	643	143	37	1	0

par(op)

Survival probability

1.7.1 Training Report

pander::pander(t(rrAnalysisTrain\$0ERatio),caption="0/E Ratio")

Table 48: O/E Ratio

est	lower	upper
0.957	0.91	1.01

pander::pander(rrAnalysisTrain\$c.index,caption="C. Index")

• C Index: 0.68

• Dxy: 0.36

• **S.D.**: 0.014

• n: 2982

• missing: θ

• uncensored: 1518

• Relevant Pairs: 6184528

Concordant: 4206592Uncertain: 2703838

• cstatCI:

mean.C Index	median	lower	upper
0.68	0.68	0.666	0.693

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 50: ROC AUC

est	lower	upper
0.695	0.677	0.714

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 51: Sensitivity

est	lower	upper
0.327	0.303	0.351

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 52: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 53: Probability Thresholds

90%	80%
0.542	0.431

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 54: Risk Ratio

est	lower	upper
1.77	1.66	1.88

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 55: Logrank test Chisq = 543.347175 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1975	804	1145	101.5	418.9
class=1	364	218	169	14.1	15.9
class=2	643	496	204	418.2	490.7

1.7.2 Results on the validation set using Logistic model

Cumulative vs. Observed: Logistic Test: Breast Cancer

Decision Curve Analysis: Logistic Test: Breast Cancer

Relative Risk: Logistic Test: Breast Cancer

ROC: Logistic Test: Breast Cancer

Time vs. Events: Logistic Test: Breast Cancer

Kaplan-Meier: Logistic Test: Breast Cancer

Number at risk

Low Risk < 0.431	369	274	154	29	0
0.431 <= Risk < 0.542	134	96	46	6	0
High Risk $>= 0.542$	183	89	29	1	0

par(op)

Survival probability

1.7.3 Validation Report

pander::pander(t(rrAnalysis\$0ERatio),caption="0/E Ratio")

Table 56: O/E Ratio

est	lower	upper
1.13	1	1.26

pander::pander(rrAnalysis\$c.index,caption="C. Index")

• C Index: 0.669

Dxy: 0.338S.D.: 0.0309

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

Concordant: 178115Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.669	0.669	0.64	0.698

pander::pander(t(rrAnalysis\$ROCAnalysis\$aucs), caption="ROC AUC")

Table 58: ROC AUC

est	lower	upper
0.669	0.628	0.709

pander::pander((rrAnalysis\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 59: Sensitivity

est	lower	upper
0.395	0.339	0.453

pander::pander((rrAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 60: Specificity

est	lower	upper
0.832	0.791	0.868

pander::pander(t(rrAnalysis\$thr_atP),caption="Probability Thresholds")

Table 61: Probability Thresholds

90%	80%
0.542	0.431

pander::pander(t(rrAnalysis\$RR_atP), caption="Risk Ratio")

Table 62: Risk Ratio

est	lower	upper
1.8	1.54	2.11

pander::pander(rrAnalysis\$surdif,caption="Logrank test")

Table 63: Logrank test Chisq = 92.507991 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	369	121	181.7	20.2997	52.3868
class=1	134	60	61.7	0.0479	0.0604
class=2	183	118	55.5	70.2342	88.0195

1.8 Logistic Model Poisson Calibration

h0	Gain	DeltaTime
0.676	1.31	7.14

Cumulative vs. Observed: Cal. Logistic Train: Breast Cancer

Decision Curve Analysis: Cal. Logistic Train: Breast Cancer

Relative Risk: Cal. Logistic Train: Breast Cancer

ROC: Cal. Logistic Train: Breast Cancer

Time vs. Events: Cal. Logistic Train: Breast Cancer

Kaplan-Meier: Cal. Logistic Train: Breast Cancer

Number at risk

Low Risk < 0.521	1975	1268	399	23	0
0.521 <= Risk < 0.639	364	160	47	2	0
High Risk >= 0.639	643	143	37	1	0

par(op)

Survival probability

1.8.1 Report of the calibrated logistic: training

pander::pander(t(rrAnalysisTrain\$0ERatio),caption="0/E Ratio")

Table 65: O/E Ratio

est	lower	upper
1.02	0.974	1.08

pander::pander(rrAnalysisTrain\$c.index,caption="C. Index")

• C Index: 0.68

• **Dxy**: 0.36

• **S.D.**: 0.014

• **n**: 2982

• missing: θ

• uncensored: 1518

• Relevant Pairs: 6184528

Concordant: 4206586Uncertain: 2703838

• cstatCI:

mean.C Index	median	lower	upper
0.68	0.68	0.666	0.694

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 67: ROC AUC

est	lower	upper
0.695	0.677	0.714

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 68: Sensitivity

est	lower	upper
0.327	0.303	0.351

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 69: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 70: Probability Thresholds

90%	80%
0.639	0.521

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 71: Risk Ratio

est	lower	upper
1.77	1.66	1.88

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 72: Logrank test Chisq = 543.347175 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1975	804	1145	101.5	418.9
class=1	364	218	169	14.1	15.9
class=2	643	496	204	418.2	490.7

Cumulative vs. Observed: Cal. Logistic Test: Breast Cancer

Decision Curve Analysis: Cal. Logistic Test: Breast Cancer

Relative Risk: Cal. Logistic Test: Breast Cancer

ROC: Cal. Logistic Test: Breast Cancer

Time vs. Events: Cal. Logistic Test: Breast Cancer

Kaplan-Meier: Cal. Logistic Test: Breast Cancer

par(op)

Survival probability

1.8.2 Report of the calibrated validation

pander::pander(t(rrAnalysisTestLogistic\$0ERatio),caption="0/E Ratio")

Table 73: O/E Ratio

est	lower	upper
1.22	1.08	1.36

pander::pander(rrAnalysisTestLogistic\$c.index,caption="C. Index")

• C Index: 0.669

High Risk >= 0.639

• **Dxy**: 0.338 • **S.D.**: 0.0309

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

Concordant: 178115Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.669	0.669	0.639	0.701

pander::pander(t(rrAnalysisTestLogistic\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 75: ROC AUC

est	lower	upper
0.669	0.628	0.709

pander::pander((rrAnalysisTestLogistic\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 76: Sensitivity

est	lower	upper
0.395	0.339	0.453

pander::pander((rrAnalysisTestLogistic\$ROCAnalysis\$specificity), caption="Specificity")

Table 77: Specificity

est	lower	upper
0.832	0.791	0.868

pander::pander(t(rrAnalysisTestLogistic\$thr_atP),caption="Probability Thresholds")

Table 78: Probability Thresholds

90%	80%
0.639	0.521

pander::pander(t(rrAnalysisTestLogistic\$RR_atP),caption="Risk Ratio")

Table 79: Risk Ratio

est	lower	upper
1.8	1.54	2.11

pander::pander(rrAnalysisTestLogistic\$surdif,caption="Logrank test")

Table 80: Logrank test Chisq = 92.507991 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	369	121	181.7	20.2997	52.3868
class=1	134	60	61.7	0.0479	0.0604
class=2	183	118	55.5	70.2342	88.0195

1.9 Comparing the COX and Logistic Models on the Independent Data

pander::pander(t(rrCoxTestAnalysis\$OAcum95ci))

mean	50%	2.5%	97.5%
0.841	0.841	0.839	0.842

pander::pander(t(rrAnalysisTestLogistic\$0Acum95ci))

mean	50%	2.5%	97.5%
0.791	0.791	0.791	0.792

pander::pander(t(rrCoxTestAnalysis\$0E95ci))

mean	50%	2.5%	97.5%
1.07	1.07	1.04	1.1

pander::pander(t(rrAnalysisTestLogistic\$0E95ci))

mean	50%	2.5%	97.5%
0.955	0.955	0.925	0.986

```
plot(rrCoxTestAnalysis$CumulativeOvs$Observed,
     rrCoxTestAnalysis$CumulativeOvs$Cumulative-
       rrCoxTestAnalysis$CumulativeOvs$Observed,
     main="Cumulative Risk Difference",
     xlab="Observed",
     vlab="Cumulative Risk - Observed",
     type="1",
     lty=1)
{\tt lines(rrAnalysisTestLogistic\$CumulativeOvs\$0bserved,}
     rrAnalysisTestLogistic$CumulativeOvs$Cumulative-
       rrAnalysisTestLogistic$CumulativeOvs$Observed,
     1ty=2,
     col="red")
legend("topleft",legend = c("Cox","Logistic"),
       col=c("black","red"),
       lty=c(1,2),
       cex=0.75
```

Cumulative Probability

Cumulative Risk Difference


```
cex=0.75
plot(rrCoxTestAnalysis$0EData$0bserved,
     rrCoxTestAnalysis$OEData$Expected-
       rrCoxTestAnalysis$OEData$Observed,
     main="Expected vs Observed Difference",
     xlab="Observed",
     ylab="Cumulative - Observed",
     type="1",
     lty=1)
lines(rrAnalysisTestLogistic$0EData$0bserved,
     {\tt rrAnalysisTestLogistic\$0EData\$Expected-}
       rrAnalysisTestLogistic$OEData$Observed,
     lty=2,col="red")
legend("bottomleft",legend = c("Cox","Logistic"),
       col=c("black", "red"),
       lty=c(1,2),
       cex=0.75
)
```

Expected over Time

Expected vs Observed Difference

par(op)