Statistik och Dataanalys I

Föreläsning 19 - Inferens i linjär regression - populationsmodell och samplingfördelning

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Inferens i enkel linjär regression
- Regression som sannolikhetsmodell
- Samplingfördelning regression

Samband - hälsovårdsbudget och livslängd

Källa: boken 'Regression and other stories' och OECD.

Regression - hälsovårdsbudget och livslängd

Anpassad regressionslinje och tolkning

Skattad regressionslinje hälsobudget $(x) \rightarrow$ livslängd (y)

$$\mathsf{lifespan} = 76.035 + 1.03757 \cdot \mathsf{spending}$$

$$\hat{y} = \underbrace{76.035}_{b_0} + \underbrace{1.038}_{b_1} \cdot x$$

- Tolkning intercept b_0 : genomsnittlig livslängd är ca 76 år om spending = 0.
- Tolkning lutning b_1 : genomsnittlig livslängd ökar med 1.038 år om spending ökar med 1 (tusen US dollar per capita).

Inflytelserika observationer

■ Med USA

 ${\rm lifespan} = 76.035 + 1.038 \cdot {\rm spending}$

Utan USA

lifespan = $74.164 + 1.763 \cdot \text{spending}$

Minsta-kvadrat-metoden

■ Anpassat värde/prediktion för *i*:te observationen

$$\hat{y}_i = b_0 + b_1 x_i$$

Residual

$$e_i = y_i - \hat{y}_i$$

Minsta-kvadrat-skattning: välj b_0 och b_1 som minimerar

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Regression i R

```
> librarv(sda123)
> lifespan_no_usa = lifespan[1:29,] # remove the outlier USA
> model = lm(lifespan ~ spending, data = lifespan no usa)
> summarv(model)
Call:
lm(formula = lifespan ~ spending. data = lifespan no usa)
Residuals:
   Min
            10 Median 30
                                  Max
-3.3108 -0.7016 -0.0507 1.1458 3.8860
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.1639 0.8782 84.45 < 2e-16 ***
spending 1.7629 0.2890 6.10 1.63e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.678 on 27 degrees of freedom
Multiple R-squared: 0.5795, Adjusted R-squared: 0.5639
F-statistic: 37.21 on 1 and 27 DF. p-value: 1.626e-06
```

Residualvarians

Residualvariansen - hur bra regressionslinjen passar data:

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

■ Kom ihåg: stickprovsvariansen delar med n-1 eftersom vi måste beräkna \bar{y} först:

$$s_y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}$$

- Residualvariansen delar med n-2 eftersom vi måste beräkna både b_0 och b_1 först. **Väntevärdesriktig**.
- Residualstandardavvikelsen (residual standard error i R)

$$s_e = \sqrt{s_e^2}$$

■ Hälsobudgetdata

$$s_{\rm e}^2 = rac{76.056}{29-2} pprox 2.817$$
 $s_{
m e} = \sqrt{2.817} pprox 1.678 \, {
m ar}$

Regression som sannolikhetsmodell

Populationsmodell för enkel regression:

$$Y = \beta_0 + \beta_1 x + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

- β_0 är interceptet i populationen/modellen.
- lacksquare eta_1 är lutningen på regressionslinjen i populationen.
- Regressionlinjen i populationen är ett betingat väntevärde:

$$E(Y|x) = \beta_0 + \beta_1 x$$

- β_1 : hur Y förändras i genomsnitt när x ökar med en enhet.
- \blacksquare "i genomsnitt" = (betingat) väntevärde.
- Responsvariabeln y kommer avvika från populationens regressionslinje med en slumpmässig "felterm" ε .

Regression som modell för betingad fördelning

Regression som sannolikhetsmodell

■ Populationsmodell för hela stickprovet:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma_{\varepsilon})$$

■ Stickprov/datamaterial med *n* observationspar

$$(y_1, x_1), \ldots, (y_n, x_n)$$

■ I regression antar vi att x-variabeln inte är slumpmässig.

Residualerna e_i skattar populationens ε_i

Residualer:

$$e_i = y_i - \hat{y}_i$$

Mer om detta på SDA2.

De fyra antaganden om populationen i regression

1 Sambandet mellan y och x är linjärt

$$E(Y|x) = \beta_0 + \beta_1 x$$

2 Feltermerna ε_i är oberoende

3 Feltermerna har samma standardavvikelse (homoskedastisk)

$$SD(\varepsilon_i) = \sigma_{\varepsilon}$$

4 Feltermerna är normalfördelade

$$\varepsilon_1, \ldots, \varepsilon_n \stackrel{\text{ober}}{\sim} N(0, \sigma_{\varepsilon})$$

Residualanalys för att undersöka de 4 antagandena

Residualer:

$$e_i = y_i - \hat{y}_i$$

1 Linjärt samband?

Plotta y_i mot x_i . Ser linjärt ut? Plotta e_i mot x_i . Konstant, eller mönster kvar?

2 Oberoende ε ?

Plotta residualer e_i mot anpassade värden \hat{y}_i . Tidsserier: plotta e_i mot tid (observationsnummer).

3 Homoskedastiska ε ?

Plotta residualer e_i mot x_i . Liknande spridning för alla x_i ?

$$SD(\varepsilon_i) = \sigma_{\varepsilon}$$

4 Normalfördelade ε ?

Histogram, boxplot, QQ-plot för residualer e_i .

Residualanalys lifespan - sda123-paketet

> model = lm(lifespan ~ spending, data = lifespan_no_usa) > reg_residuals(model) 79 fitted value theoretical o.o residuals observation number

Residualer simulerade data - alla antaganden OK

Trouble in paradise 1 - heteroscedastisk varians

Trouble in paradise 2 - icke-normala ε (outliers)

Trouble in paradise 3 - icke-normala och hetero ε

Trouble in paradise 4 - ej oberoende ε

Minsta-kvadrat-skattningar är väntevärdesriktiga

Minsta-kvadrat-estimatorerna:

$$b_1 = rac{s_{xy}}{s_x^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

■ Väntevärdesriktiga

$$E(b_0) = \beta_0$$

$$E(b_1) = \beta_1$$

$$E(s_0^2) = \sigma_s^2$$

Standardfel för b₁

Estimatorn för lutningskoefficienten

$$b_1 = \frac{s_{xy}}{s_x^2}$$

■ Hur b₁ varierar mellan olika stickprov:

$$\sigma_{b_1} = SD(b_1) = \frac{\sigma_{\varepsilon}}{\sqrt{n-1}s_{\mathsf{x}}}$$

 σ_{b_1} skattas med standardfelet

$$s_{b_1} = SE(b_1) = \frac{s_e}{\sqrt{n-1}s_x}$$

- Formel för $SE(b_0)$ slipper ni på SDA1.
- lifespan data [sd(spending) = 1.097516]

$$s_{b_1} = \frac{1.678}{\sqrt{29 - 1} \cdot 1.097516} \approx 0.289$$

Standardfel för b_1 i R

```
> library(sda1)
> lifespan no usa = lifespan[1:29.] # ta bort outliern USA
> model = lm(lifespan ~ spending, data = lifespan_no_usa)
> summarv(model)
Call:
lm(formula = lifespan ~ spending, data = lifespan no usa)
Residuals:
   Min
            10 Median 30
                                  Max
-3.3108 -0.7016 -0.0507 1.1458 3.8860
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.1639
                        0.8782
                                84.45 < 2e-16 ***
spendina
             1.7629
                        0.2890
                                 6.10 1.63e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.678 on 27 degrees of freedom
Multiple R-squared: 0.5795. Adjusted R-squared: 0.5639
F-statistic: 37.21 on 1 and 27 DF, p-value: 1.626e-06
```

Samplingfördelning i regression - interaktivt

