Predicting Popularity of Songs Using Spotify Data

Ritu Bahuguna

Problem Statement

- Spotify is a Sweden based audio streaming platform.
- Spotify has audio tracks that are purchased from record/label producers and independent artists (β version)
- Operates on Freemium model.
- Our business problem:

'Predicting a track as Popular or Not Popular on Spotify'

 Our objective is to build a predictive model that can be used by Spotify to predict whether a track will be popular among users after its release ("Hit") or not ("Not Hit").

How will this help?

- Economize the royalties paid to the Labels/Production houses.
 - "Save money by making better deals for popular songs."
- Filter new songs for Spotify for Artists ™.
 - "Filter new songs just by prediction, without manual listening"
- Increase discoverability for a new to-be-hit song.
 - "Let user reach quickly to to-be-hit predicted song over Spotify"
- To cluster/group old songs on Spotify.
 - "Generate new playlists like popular-in-70s, popular-in-80s etc"

Dataset Information and Procedure

- Spotify provides Web-API^[1] using which track/song information can be crawled.
- We have used dataset crawled from April 2019 using the API shared on Kaggle^[2].
- Data set info:
 - o CSV format
 - o 1,30,326 tracks
 - Audio features^[3] such as acousticness,danceability,loudness, tempo etc
- Other data set considered: Million song dataset^[4]
 - o 41 Features
 - 1 Million songs
 - 280 GB , H5 file format

- [1] https://developer.spotify.com/documentation/web-api/
- [2] https://www.kaggle.com/tomigelo/spotify-audio-features
- $[3]_{\underline{\text{https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/2}}$

Exploratory Data Analysis

^{*} Analyzed and conclusion drawn with visualizations.

Three most prominent features:

Loudne Danceabilit ss v

Energy

^{*} Conclusion : All the variables are indispensable for model building.

Prominent Features

Energy: measure of intensity and activity, value ranges between 0 to 1 Highest percentage(28.58%) of the popular tracks lie within a range of 0.603 - 0.775. The most popular, energy value is 0.666, 248 songs have this energy value, of which 175 of those songs are not popular and 73 are popular.

Danceability: Suitability of a track is for dancing, ranges between 0 to 1.

Maximum chance for a track being popular on basis of danceability is when it falls in range 0.605-0.727. 27% of songs in this range are popular, which is highest in amongst Quartile range

Loudness: overall loudness of a track in decibels (dB), range between -60dB and 0dB. Highest chance for a track being popular on basis of loudness is when it falls in range -5.684 to 0 db. 34% of songs in this range are popular, which is highest in amongst Quartile range

Multivariate Analysis and Observations

Inferences for Popular songs:

- have higher values of danceability, loudness, energy and tempo.
- are less acoustic.
- are less popular with increase in *liveliness*.
- are 'happy' than 'sad'. [f:Valence]

Indetermental: *Tempo, Duration, Instrumentalness, Speechiness* were identified as weak features for popularity as the spread of data for these features was similar for both classes.

Feature Engineering

- Categorical Feature (Artist name) was converted to numerical variable using the concept of supervised ratio.
- A feature generating mechanism where each Artist name is represented as ratio of popular tracks by total tracks of that artist

$$SR_i = \frac{P_i}{N_i + P_i}$$

- Eg: An artist(YG) was represented as 0.75 (15 popular songs over 20 total songs).
- Highly correlated feature with 0.8511 correlation coefficient with *Popularity*.

Data Preprocessing

* We applied RFECV to find the feature importance for model building and VIF Factor to check the presence of multicollinearity.

RFECV Ranking	Feature
1	('popularity_class', 'mean')
2	speechiness
3	danceability
4	instrumentalness
5	liveness
6	energy
7	acousticness
8	loudness
9	Valencence
10	time_signature
11	mode
12	key
13	tempo
14	duration_ms

features	VIF Factor	
acousticness	3.84	0
danceability	15.77	1
duration_ms	4.02	2
energy	16.19	3
instrumentalness	2.07	4
key	3.17	5
liveness	2.65	6
loudness	8.56	7
mode	2.60	8
speechiness	2.08	9
tempo	15.98	10
time_signature	41.58	11
valence	5.53	12
popularity_class	4.79	13
(popularity_class, mean)	5.30	14

Algorithms Considered

Algorithm	Strength	Weakness	
Logistic Regression	* Easy to interpret, efficient implementation	* Ineffective with non-linear boundaries.	
Decision Tree	* Can handle non-linear features. * Gives importance to strong features.	* High bias towards training dataset. May overfit.	
Random Forest	* Reduces drawbacks of DT by bagging.	`* Complex to interpret and explain.	
AdaBoost	* Able to learn difficult samples by assigning them weights		
KNN	* Fastest to train.	* Equal weightage to each feature.	

Solution Architecture

Platform	Python on Jupyter Notebook	
Libraries Viz Libraries	Pandas, Numpy, Sklearn (ML Toolkit) Seaborn, Matplot	
Hardware	Intel Pentium Core i5 8th Gen/8GB/500GB	

	* CSV operations using Pandas.
	* EDA using Pandas, Numpy
	* EDA visualizations using Seaborn and Matplotlib
	* Feature Engg. done on Pandas dataframe.
	* Data preprocessing using Sklearn.StdScalar
Procedure	* ML Models using Sklearn toolkit: -KNeighborsClassifier -GaussianNB -LogisticRegression -DecisionTreeClassifier -RandomForestClassifier -BaggingClassifier -AdaBoostClassifier * Model Hyperparameter tuning using:
	-GridSearchCV * Metrics using Sklearn.metrics:
	- roc_auc_score
	* Cross Validation using: - cross_val_score
	- KFold (splits = 10)

Results

Model	Hyperparameter (with values)	ROC AUC Score	Variance
Logistic Regression	default	0.9766691661	0.001670378457
Naive Bayes	default	0.9534619438	0.003125650566
Decision Tree	criterion='entropy',max_depth=5	0.9779546699	0.001217149749
Random Forest	n_estimators=573,criterion='entropy'	0.9785095052	0.001277885704
Bagged DT	n_estimators=10	0.9671752292	0.001908651161
AdaBoost	n_estimators=50	0.9784513987	0.001277365226
XGBoost	n_estimators=2600	0.9777651716	0.001353769988
KNN	n_neighbors=11,weights='distance'	0.9558930322	0.002562895114

Model To Production

- 1. First we *dump* our best model (RF) into .pkl file using Pickle^[1] library.
- 2. Then in a different python file, we *load* our model using previous saved file.
- 3. We then import Flask^[2] and Sklearn^[3] library in our python file, connect them and start the server.
- 4. We get request to flask server from browser.
- 5. We fire *model.predict(<parameters>)* on our model and get the results.
- 6. Results are then returned back to the browser on the same request.
- [1]https://docs.python.org/3/library/pickle.html
- [2] https://palletsprojects.com/p/flask/
- [3] https://scikit-learn.org/stable/

Conclusion And Way Forward

Conclusion:

- Random Forest is the best performing predictive model for the assigned problem statement.
- Similar performance from AdaBoost, but we choose Random Forest as it is a simpler model than AdaBoost.
- With the best model, we were able to predict "popular" and "not-popular" track with high accuracy and low variance.

Limitations:

- If a new artist is introduced without any past hits in the dataset, model will be unable to predict as it cannot encode the artist name.
- Model will not be able to perform in a different environment other than the training one. Eg: Introduction of new features

Way Forward:

 More features can be crawled from the Spotify API example number of followers, genre of the song ,etc to increase/optimize model performance.

Thanks!