Contribuições à modelagem e controle de manipuladores paralelos

André Garnier Coutinho

Escola Politécnica da Universidade de São Paulo

Novembro de 2019

Influência da topologia do robô

Influência da topologia do robô

Seriais

Modelagem Dinâmica

Influência da topologia do robô

- Seriais
 - Cadeia aberta
 - Juntas ativas de 1 gl
 - N° de coord. gen. = N° atuadores = mobilidade
 - Conjunto mínimo de coord. generalizadas
 - Cinemática direta simples
 - Cinemática inversa complexa
 - Dinâmica direta Sistema de EDOs
 - Dinâmica inversa Sistema linear
 - Algoritmos recursivos para mod. dinâmica

Influência da topologia do robô

Paralelos

Modelagem Dinâmica

Influência da topologia do robô

- Paralelos
 - Cadeia fechada
 - Juntas de 1, 2 ou 3 gl, ativas ou passivas
 - Grande número de elos
 - Grande quantidade de variáveis cinemáticas
 - Variáveis independentes e dependentes
 - Cinemática direta complexa
 - Cinemática inversa "simples"
 - Dinâmica direta Sistema de EDAs ou EDOs
 - Dinâmica inversa Sistema não linear
 - Coord. gen. ind.: coord. dos atuadores ou do efetuador

Modelagem Dinâmica

Dinâmica direta - EDAs

$$\mathbb{M} \ddot{\mathbf{q}} + \mathbb{A}^{\mathsf{T}} \lambda = \mathbf{q} \tag{2.1}$$

$$\bar{\mathbf{q}}(\mathbf{q},t) = \mathbf{0} \tag{2.2}$$

Sendo

$$\mathbb{A}(\mathbf{q},t) = \frac{\partial \bar{\mathbf{q}}}{\partial \mathbf{q}} \tag{2.3}$$

Modelagem Dinâmica

Dinâmica direta - EDOs

$$\underbrace{\begin{bmatrix}
\mathbb{M} & \mathbb{A}^{\mathsf{T}} \\
\mathbb{A} & \mathbb{0}
\end{bmatrix}}_{\mathbb{Y}} \begin{bmatrix}
\ddot{q} \\
\mathbb{A}
\end{bmatrix} = \begin{bmatrix}
\mathfrak{n} \\
-\mathbb{b}
\end{bmatrix}$$
(2.4)

Sendo

$$\mathbb{b} = \frac{\partial (\mathbb{A}\dot{q})}{\partial q} \dot{q} + 2 \frac{\partial \mathbb{A}}{\partial t} \dot{q} + \frac{\partial^2 \bar{q}}{\partial t^2}$$
 (2.5)

Modelagem Dinâmica

Dinâmica direta - EDOs

$$\underbrace{\begin{bmatrix} M & A^{\mathsf{T}} \\ A & \emptyset \end{bmatrix}}_{\mathbb{Y}} \begin{bmatrix} \ddot{\mathsf{q}} \\ \mathbb{\lambda} \end{bmatrix} = \begin{bmatrix} \mathsf{n} \\ -\mathsf{b} \end{bmatrix}$$
(2.4)

Sendo

$$\mathbb{b} = \frac{\partial (\mathbb{A}\dot{q})}{\partial q} \dot{q} + 2 \frac{\partial \mathbb{A}}{\partial t} \dot{q} + \frac{\partial^2 \bar{q}}{\partial t^2}$$
 (2.5)

Método estabilização de Baumgarte

$$\mathbb{b}' = \mathbb{b} + 2\hat{\alpha}\dot{\bar{q}} + \hat{\beta}^2\bar{q} \tag{2.6}$$

Propósito

• Simulação

- Simulação
 - Projeto/Dimensionamento do mecanismo/manipulador
 - Grau de detalhamento do modelo depende da aplicação
 - Não necessita rodar em tempo real

- Simulação
 - Projeto/Dimensionamento do mecanismo/manipulador
 - Grau de detalhamento do modelo depende da aplicação
 - Não necessita rodar em tempo real
- Controle

Modelagem Dinâmica

- Simulação
 - Projeto/Dimensionamento do mecanismo/manipulador
 - Grau de detalhamento do modelo depende da aplicação
 - Não necessita rodar em tempo real
- Controle
 - Projeto do controlador
 - Compensação de não linearidades
 - Modelos demasiadamente complexos dificultam o projeto e podem aumentar o custo computacional
 - Modelos muito simplistas podem comprometer o desempenho
 - Muitas vezes precisa rodar em tempo real

Modelagem Dinâmica

Principais formulações

- Formalismo de Newton-Euler (Arian et al., 2017; Zhang et al., 2014)
- Formalismo de Lagrange (Singh e Santhakumar, 2015; Yao *et al.*, 2017)
- Princípio dos Trabalhos/Potências Virtuais (Gallardo-Alvarado et al., 2018; Li e Staicu, 2012)
- Formulação Lagrange-D'Alambert (Cheng *et al.*, 2001; Yen e Lai, 2009)
- Método de Kane (Ben-Horina et al., 1998; Shukla e Karki, 2014)
- Formalismo de Boltzmann-Hammel (Abdellatif e Heimann, 2009; Altuzarra *et al.*, 2015)
- Formulação do Complemento Ortogonal Natural (Akbarzadeh *et al.*, 2013; Khan *et al.*, 2005)

Principais técnicas

- Controle Proporcional-Integral-Derivativo
- Controle por Torque Computado (Shang e Cong, 2009; Yen e Lai, 2009)
- Controle por Torque Computado com pré-alimentação (Siciliano et al., 2010; Spong et al., 2006)
- Controle por Torque Computado Estendido (Zubizarreta et al., 2013; Zubizarreta et al., 2012)
- Controle Preditivo Baseado em Modelo (Duchaine et al., 2007; Vivas e Poignet, 2005)
- Controle Adaptativo (Chemori et al., 2013; Honegger et al., 2000)
- Controle por Modos Deslizantes (Hu e Woo, 2006; Sadati e Ghadami, 2008)

Controle Proporcional-Integral-Derivativo (PID)

- Técnica de controle linear descentralizado
- Não baseado no modelo dinâmico do mecanismo
- Simples implementação
- Baixo custo computacional
- Desempenho bastante limitado

Controle por Torque Computado (CTC)

- Técnica de controle não linear multivariável
- Baseado no modelo dinâmico do mecanismo
- Possui uma malha interna de compensação de não linearidades por realimentação e uma malha externa de PID
- Desempenho superior ao PID simples, porém bastante dependente da qualidade do modelo dinâmico
- Implementação mais complexa
- Maior custo computacional

Controle por Torque Computado com pré-alimentação (CTCp)

- Lei de controle similar ao CTC
- Realiza compensação de não linearidades por pré-alimentação
- Menor custo computacional em relação ao CTC
- Implementação mais simples que o CTC
- Menor robustez em relação ao CTC

Controle por Torque Computado Estendido (CTCe)

- Lei de controle similar ao CTC
- Realiza compensação de não linearidades por realimentação
- Utiliza informação redundante obtida pelo sensoriamento de juntas passivas na lei de controle
- Maior robustez a incertezas paramétricas

Controle Preditivo Baseado em Modelo (CPM)

- Técnica de controle multi-variável baseado em modelo
- Muito utilizado no controle de processos industriais
- Realiza otimização em tempo real de uma função custo que envolve o erro e o esforço de controle em tempo futuro
- Custo computacional bastante dependente da complexidade do modelo
- Boa robustez a incertezas paramétricas

Controle Adaptativo (CA)

- Técnica de controle baseado em modelo
- Estimação em tempo real de parâmetros do sistema
- Baixa sensibilidade a incertezas paramétricas
- Necessita de modelo dinâmico linear em relação aos parâmetros
- Alternativamente pode realizar a estimação de termos não lineares de compensação dinâmica
- Custo computacional adicional relativo a integração das leis de adaptação
- Maior complexidade de projeto e implementação

Controle por Modos Deslizantes (CMD)

- Técnica de controle não linear robusto
- Alta robustez em relação a incertezas estruturadas e não estuturadas
- Desempenho menos dependente da qualidade do modelo dinâmico
- Utiliza funções descontínuas na lei de controle, o que pode causar chattering
- Bastante utilizado em combinação com lógica fuzzy e redes neurais (Begon et al., 1995; Ertugrul e Kaynak, 2000; Hu e Woo, 2006; Sadati e Ghadami, 2008)

Técnicas de controle combinadas

- "PD-SMC"(Ouyang, Acob, Pano, 2014)
 - Lei de controle combinada não baseada em modelo
 - Simulação
 - Mecanismo serial prismático (PPP)
- "PD-SMC"(Li, Ghasemi, Xie, Gao, 2018)
 - Lei de controle combinada não baseada em modelo
 - Experimento (movimento lento, trajetória de 150s, controle por câmera)
 - Mecanismo serial de 6 gl
- "Hybrid PD-SMC"(Acob, 2015)
 - Lei de controle combinada não baseada em modelo
 - Simulação
 - Mecanismo serial de 3 gl e mecanismo paralelo de 2 gl

Técnicas de controle combinadas

- "PD-SMC-GA" (Mahmoodabadi, Taherkhorsandi, Talebipour, Castilho-Villar, 2015)
 - Lei de controle combinada baseada em modelo
 - Simulação
 - Pêndulo invertido
- "NN-SMC"(Truong, Tran, Ahn, 2019)
 - Lei de controle baseada em modelo
 - Experimento (movimento lento, ciclo de 10s)
 - Mecanismo serial hidráulico de 3 gl
 - Rede neural realiza a sintonização em tempo real dos ganho do controlador

Metodologia da Pesquisa

Metodologia da Pesquisa

Modelagem

Desenvolvimento e implementação de algoritmo genérico para modelagem dinâmica de mecanismos paralelos translacionais

Metodologia da Pesquisa

Modelagem

Desenvolvimento e implementação de algoritmo genérico para modelagem dinâmica de mecanismos paralelos translacionais

Controle

Estudo, síntese, e simulação de leis de controle não linear robusto de alto desempenho para mecanismos paralelos

Metodologia da Pesquisa

Modelagem

Desenvolvimento e implementação de algoritmo genérico para modelagem dinâmica de mecanismos paralelos translacionais

Controle

Estudo, síntese, e simulação de leis de controle não linear robusto de alto desempenho para mecanismos paralelos

Experimento

Contrução de um protótipo de manipulador paralelo translacional e realização de ensaios experimentais com o intuito de:

- Validar a eficácia da utilização do modelo gerado pelo algoritmo em leis de controle baseadas em modelo
- Comparar o desempenho das leis de controle propostas com leis de controle já consagradas pela literatura

Algoritmo de Modelagem Cadeias seriais

Cadeias seriais

Elementos

- Elos
- Juntas
- Atuadores

Cadeias seriais

Elementos

- Elos
- Juntas
- Atuadores

Descrição Topológica

- Parâmetros de Denavit-Hartenberg
- Coordenadas dos centros de massa dos elos nos sistemas móveis

Cadeias seriais

Elementos

- Elos
- Juntas
- Atuadores

Descrição Topológica

- Parâmetros de Denavit-Hartenberg
- Coordenadas dos centros de massa dos elos nos sistemas móveis

Efeitos considerados

- Ação da gravidade
- Inércia distribuída
- Atritos
- Esforço e dinâmica dos atuadores

Algoritmo de Modelagem Manipulador paralelo

Manipulador paralelo

Efetuador

- Subsistema \mathscr{B}_0
- Sistema de coordenadas móvel B
- Sistema de coordenadas fixo \mathbb{N}_0

Manipulador paralelo

Efetuador

- Subsistema \mathscr{B}_0
- Sistema de coordenadas móvel B
- Sistema de coordenadas fixo \mathbb{N}_0

Cadeias seriais

- Subsistemas $\mathcal{B}_1, \mathcal{B}_2, ..., \mathcal{B}_n$
- Sistemas de coordenadas fixos $N_1, N_2, ..., N_n$

Manipulador paralelo

Efetuador

- − Subsistema 𝒯₀
- Sistema de coordenadas móvel B
- Sistema de coordenadas fixo \mathbb{N}_0

Cadeias seriais

- Subsistemas $\mathcal{B}_1, \mathcal{B}_2, ..., \mathcal{B}_n$
- Sistemas de coordenadas fixos $N_1, N_2, ..., N_n$

Coordenadas generalizadas

- $-\mathbb{Q}^*$: Coordenadas x, y, z do CM do efetuador \mathcal{B}_0 no sistema \mathbb{N}_0
- q_i : Deslocamentos relativos das juntas da cadeia \mathscr{B}_i
- q[⋄]: Concatenação de todos q_i
- q: Concatenação de q* com q[♦]

Manipulador paralelo

Cinemática das cadeias seriais

- $\varkappa_i(\mathfrak{q}_i)$: Coordenadas x, y, z do efetuador de \mathscr{B}_i no sistema \mathbb{N}_i
- $-v_i(q_i,\dot{q}_i)$: Velocidade linear do efetuador de \mathscr{B}_i no sistema N_i
- $\, \sigma_i(q_i,\dot{q}_i,\ddot{q}_i)$: Aceleração linear do efetuador de \mathcal{B}_i no sistema N_i
- $-\omega_i(\mathbf{q}_i,\dot{\mathbf{q}}_i)$: Velocidade angular do efetuador de \mathscr{B}_i no sistema \mathbf{N}_i
- $-\dot{\omega}_i(\mathbf{q}_i,\dot{\mathbf{q}}_i,\ddot{\mathbf{q}}_i)$: Aceleração angular do efetuador de \mathcal{B}_i no sistema \mathbf{N}_i

Manipulador paralelo

Cinemática das cadeias seriais

- $\varkappa_i(q_i)$: Coordenadas x, y, z do efetuador de \mathscr{B}_i no sistema N_i
- $v_i(q_i, \dot{q}_i)$: Velocidade linear do efetuador de \mathcal{B}_i no sistema N_i
- $\, \sigma_i(q_i,\dot{q}_i,\ddot{q}_i)$: Aceleração linear do efetuador de \mathcal{B}_i no sistema N_i
- $-ω_i(q_i,\dot{q}_i)$: Velocidade angular do efetuador de \mathscr{B}_i no sistema N_i
- $-\dot{\omega}_i(\mathbf{q}_i,\dot{\mathbf{q}}_i,\ddot{\mathbf{q}}_i)$: Aceleração angular do efetuador de \mathcal{B}_i no sistema \mathbf{N}_i

$$\begin{split} v(\textbf{q}^{\diamond},\dot{\textbf{q}}^{\diamond}) &= \mathbb{J}_{v}(\textbf{q}^{\diamond}) \cdot \dot{\textbf{q}}^{\diamond} \\ \textbf{g}(\textbf{q}^{\diamond},\dot{\textbf{q}}^{\diamond},\ddot{\textbf{q}}^{\diamond}) &= \mathbb{J}_{v}(\textbf{q}^{\diamond}) \cdot \ddot{\textbf{q}}^{\diamond} + \underline{\textbf{g}}(\textbf{q}^{\diamond},\dot{\textbf{q}}^{\diamond}) \\ \textbf{w}(\textbf{q}^{\diamond},\dot{\textbf{q}}^{\diamond}) &= \mathbb{J}_{w}(\textbf{q}^{\diamond}) \cdot \dot{\textbf{q}}^{\diamond} \\ \dot{\textbf{w}}(\textbf{q}^{\diamond},\dot{\textbf{q}}^{\diamond},\ddot{\textbf{q}}^{\diamond}) &= \mathbb{J}_{w}(\textbf{q}^{\diamond}) \cdot \ddot{\textbf{q}}^{\diamond} + \underline{\dot{\textbf{w}}}(\textbf{q}^{\diamond},\dot{\textbf{q}}^{\diamond}) \end{split}$$

Manipulador paralelo

Vínculos de posição

Vinculando o efetuador de cada cadeia \mathcal{B}_i ao efetuador \mathcal{B}_0 :

$$q^* = d_i + \mathbb{E}_i \, \varkappa_i(q_i), \ i = 1, ..., n$$

$$d_i = [o_i]_{N_0} - [\mathbf{1}]_{N_0 \mid B} [p_i]_{B}$$
(5.13)

Manipulador paralelo

Vínculos de posição

Definindo vínculos afins adicionais (se necessário):

$$\mathbb{D}_{\oplus} \cdot q^* = d_{\oplus} + \mathbb{F}_{\oplus} \cdot q^{\diamond} \tag{5.15}$$

Manipulador paralelo

Vínculos de posição

Definindo vínculos afins adicionais (se necessário):

$$\mathbb{D}_{\oplus} \cdot q^* = d_{\oplus} + \mathbb{F}_{\oplus} \cdot q^{\diamond} \tag{5.15}$$

Juntando todas as equações vinculares obtidas:

$$\begin{bmatrix} \mathbb{1} \\ \vdots \\ \mathbb{1} \\ \mathbb{D}_{\oplus} \end{bmatrix} \cdot \mathbb{q}^* = \begin{bmatrix} \mathbb{d}_1 \\ \vdots \\ \mathbb{d}_n \\ \mathbb{d}_{\oplus} \end{bmatrix} + \begin{bmatrix} \mathbb{E}_1 & \dots & \mathbb{0} \\ \vdots & \ddots & \vdots \\ \mathbb{0} & \dots & \mathbb{E}_n \\ \mathbb{0} & \dots & \mathbb{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbb{x}_1(\mathbb{q}_1) \\ \vdots \\ \mathbb{x}_n(\mathbb{q}_n) \end{bmatrix} + \begin{bmatrix} \mathbb{0} \\ \vdots \\ \mathbb{0} \\ \mathbb{F}_{\oplus} \end{bmatrix} \cdot \mathbb{q}^{\diamond} \quad (5.16)$$

Manipulador paralelo

Vínculos de posição

Definindo vínculos afins adicionais (se necessário):

$$\mathbb{D}_{\oplus} \cdot q^* = d_{\oplus} + \mathbb{F}_{\oplus} \cdot q^{\diamond} \tag{5.15}$$

Juntando todas as equações vinculares obtidas:

$$\begin{bmatrix} \mathbb{1} \\ \vdots \\ \mathbb{1} \\ \mathbb{D}_{\oplus} \end{bmatrix} \cdot \mathbf{q}^* = \begin{bmatrix} \mathbf{d}_1 \\ \vdots \\ \mathbf{d}_n \\ \mathbf{d}_{\oplus} \end{bmatrix} + \begin{bmatrix} \mathbb{E}_1 & \dots & \mathbb{0} \\ \vdots & \ddots & \vdots \\ \mathbb{0} & \dots & \mathbb{E}_n \\ \mathbb{0} & \dots & \mathbb{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x}_1(\mathbf{q}_1) \\ \vdots \\ \mathbf{x}_n(\mathbf{q}_n) \end{bmatrix} + \begin{bmatrix} \mathbb{0} \\ \vdots \\ \mathbb{0} \\ \mathbb{F}_{\oplus} \end{bmatrix} \cdot \mathbf{q}^{\diamond} \quad (5.16)$$

Assim, temos:

$$\therefore \overline{q}(q) = \mathbb{D} \cdot q^* - d - \mathbb{E} \cdot x(q) - \mathbb{F} \cdot q^{\diamond} = 0$$
 (5.17)

Manipulador paralelo

Vínculos de quasi-velocidades

$$\overline{\mathbb{p}}(\textbf{q},\dot{\textbf{q}}) = \begin{bmatrix} \dot{\overline{\textbf{q}}}(\textbf{q},\dot{\textbf{q}}) \\ \overline{\omega}(\textbf{q},\dot{\textbf{q}}) \end{bmatrix} = \begin{bmatrix} \mathbb{D} \cdot \dot{\textbf{q}}^* - \mathbb{E} \cdot \mathbb{J}_{\textbf{v}}(\textbf{q}^{\diamond}) \cdot \dot{\textbf{q}}^{\diamond} - \mathbb{F} \cdot \dot{\textbf{q}}^{\diamond} \\ -\mathbb{Q} \cdot \mathbb{J}_{\textbf{w}}(\textbf{q}^{\diamond}) \cdot \dot{\textbf{q}}^{\diamond} \end{bmatrix} = \mathbf{0} \qquad (5.32)$$

Manipulador paralelo

Vínculos de quasi-velocidades

$$\overline{\mathbb{p}}(\mathbf{q},\dot{\mathbf{q}}) = \begin{bmatrix} \dot{\overline{\mathbf{q}}}(\mathbf{q},\dot{\mathbf{q}}) \\ \overline{\omega}(\mathbf{q},\dot{\mathbf{q}}) \end{bmatrix} = \begin{bmatrix} \mathbb{D} \cdot \dot{\mathbf{q}}^* - \mathbb{E} \cdot \mathbb{J}_{\mathbf{v}}(\mathbf{q}^{\diamond}) \cdot \dot{\mathbf{q}}^{\diamond} - \mathbb{F} \cdot \dot{\mathbf{q}}^{\diamond} \\ -\mathbb{Q} \cdot \mathbb{J}_{\mathbf{w}}(\mathbf{q}^{\diamond}) \cdot \dot{\mathbf{q}}^{\diamond} \end{bmatrix} = \mathbb{0}$$
 (5.32)

$$\therefore \overline{\mathbb{p}}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{A}(\mathbf{q})\dot{\mathbf{q}} = \mathbb{0} \tag{5.34}$$

Sendo

$$\mathbb{A}(\mathbf{q}) = \begin{bmatrix} \mathbb{D} & -(\mathbb{E} \cdot \mathbb{J}_{\mathbf{v}}(\mathbf{q}^{\diamond}) + \mathbb{F}) \\ \mathbb{0} & -\mathbb{Q} \cdot \mathbb{J}_{\mathbf{w}}(\mathbf{q}^{\diamond}) \end{bmatrix}$$
(5.35)

Manipulador paralelo

Vínculos de quasi-acelerações

$$\begin{split} \dot{\overline{\mathbb{p}}}(\textbf{q},\dot{\textbf{q}},\ddot{\textbf{q}}) &= \begin{bmatrix} \ddot{\overline{\textbf{q}}}(\textbf{q},\dot{\textbf{q}},\ddot{\textbf{q}}) \\ \dot{\overline{\textbf{w}}}(\textbf{q},\dot{\textbf{q}},\ddot{\textbf{q}}) \end{bmatrix} = \begin{bmatrix} \mathbb{D} \cdot \ddot{\textbf{q}}^* - \mathbb{E} \cdot (\mathbb{J}_{\textbf{v}}(\textbf{q}^\diamond) \cdot \ddot{\textbf{q}}^\diamond + \underline{\textbf{p}}(\textbf{q},\dot{\textbf{q}})) - \mathbb{F} \cdot \ddot{\textbf{q}}^\diamond \\ -\mathbb{Q} \cdot (\mathbb{J}_{\textbf{w}}(\textbf{q}^\diamond) \cdot \ddot{\textbf{q}}^\diamond + \dot{\underline{\textbf{w}}}(\textbf{q},\dot{\textbf{q}})) \end{bmatrix} \\ &= \mathbb{0} \\ (5.36) \end{split}$$

Manipulador paralelo

Vínculos de quasi-acelerações

$$\begin{split} \dot{\overline{p}}(\textbf{q},\dot{\textbf{q}},\ddot{\textbf{q}}) &= \begin{bmatrix} \ddot{\overline{q}}(\textbf{q},\dot{\textbf{q}},\ddot{\textbf{q}}) \\ \dot{\overline{\omega}}(\textbf{q},\dot{\textbf{q}},\ddot{\textbf{q}}) \end{bmatrix} = \begin{bmatrix} \mathbb{D} \cdot \ddot{\textbf{q}}^* - \mathbb{E} \cdot (\mathbb{J}_v(\textbf{q}^\diamond) \cdot \ddot{\textbf{q}}^\diamond + \underline{\omega}(\textbf{q},\dot{\textbf{q}})) - \mathbb{F} \cdot \ddot{\textbf{q}}^\diamond \\ -\mathbb{Q} \cdot (\mathbb{J}_w(\textbf{q}^\diamond) \cdot \ddot{\textbf{q}}^\diamond + \dot{\underline{\omega}}(\textbf{q},\dot{\textbf{q}})) \end{bmatrix} = \mathbb{D} \end{split}$$

$$= \mathbb{D}$$

$$(5.36)$$

$$\therefore \frac{\dot{\mathbb{p}}}{\mathbb{p}}(\mathbb{q}, \dot{\mathbb{q}}, \ddot{\mathbb{q}}) = \mathbb{A}(\mathbb{q})\ddot{\mathbb{q}} + \mathbb{b}(\mathbb{q}, \dot{\mathbb{q}}) = \mathbb{0}$$
 (5.39)

Sendo

$$\mathbb{b}(\mathbf{q}, \dot{\mathbf{q}}) = -\begin{bmatrix} \mathbb{E} \cdot \underline{\mathfrak{g}}(\mathbf{q}, \dot{\mathbf{q}}) \\ \mathbb{Q} \cdot \dot{\underline{\psi}}(\mathbf{q}, \dot{\mathbf{q}}) \end{bmatrix}$$
(5.40)