

[Chapter 9]
Computational Complexity
and Intractability: An
Introduction to the Theory
of NP

Scenario from Garey and Johnson (1979)

- Task of finding an efficient algorithm for Problem X.
- No headway at all toward an efficient algorithm.
- Your boss threatens to fire you.
 - You reply that perhaps it is not because you're stupid but it is not possible.
 - Your boss gives you another month to prove your claim.
- No proof that it is not possible.
 - On the verge of being fired, you come to think of the fact that nobody developed an efficient algorithm for TSP.
 - Now you see one last glimmer of hope.
 - Can you prove that Algorithm X can produce an efficient algorithm for TSP?
- No firing, but promotion!!

Intractability

Polynomial-time algorithm

- $W(n) \in O(p(n))$
- That is, if n is the input size, there exits a polynomial p(n)
- (e.g.) $2n,3n^3 + 4n,5n + n^{10}, n \lg n$
- (e.g.) $-2^n, 2^{0.01n}, 2^{\sqrt{n}}, n!$

Problem X is "intractable"

- If it is impossible to solve it with a polynomial-time algorithm.
- It is a property of a problem.
- It is not a property of any algorithm for that problem.
- (e.g.) chain of matrix multiplication is tractable.

Intractability (Cont'd)

- Suppose n=10^6
 - $n^{10} = 10^{60}$ vs $2^{0.00001n} = 2^{10} = 1.024$
 - Sometimes, many algorithms whose worst-case time complexities are not polynomials have efficient running times for many practical instances.
 - (e.g.) Decision algorithm for Presburger arithmetic is proven to be $2^{2^{cn}}$ or $2^{2^{2cn}}$
 - William Pugh, *The Omega test: a fast and practical integer programming algorithm for dependence analysis*, 1991.

Intractability: 3 general categories

- Problems for which polynomial-time algorithms have been found.
- Problems that have been proven to be intractable.
- Problems that have not been proven to be intractable, but for which polynomial-time algorithms have never been found.
 - Almost all meaningful problems in computer science fall into either the first or the third.

4

Input Size Revisited

- Prime number check
 - while (i <= floor(sqrt(n)))
 if (n % i == 0) return ("not prime")</pre>
- Time complexity $\Theta(n^{1/2})$?
- Hmm, I don't think so, because n is not an input size. It is simply an input value.
- Definition
 - For a given algorithm, the input size is defined as the number of characters it takes to write the input.
 - (e.g.) a positive integer $x \rightarrow \lg x + 1$
 - \bullet 31 = 11111₂

Input Size Revisited (Cont'd)

Definition

- For a given algorithm, W(s) is defined as the maximum number of steps done by the algorithm for an input size of s. W(s) is called the worst-case time complexity of the algorithm.
- (e.g.) Prime check: time complexity analysis using $s = \lg n$ instead of n. (binary encoding)

$$\Theta(n^{1/2}) = \Theta(2^{s/2})$$

- Exercise for ExchangeSort() in terms of s
 - The number of inc & branch:
 - The number of comparisons:
 - The number of assignments:

Three General Problem Categories

- Problems for which polynomial-time algorithms have been found
 - Most of problems from Chaps. 1-6
- Problems that have not been proven to be intractable but for which polynomial-time algorithms have never been found.
 - 0/1 Knapsack, TSP, m-coloring problem, Hamiltonian circuit problem, ...
 - Even though we don't know about its lower bound yet, there
 is a close and interesting relationship among these problems.

Three General Problem Categories

- Problems that have been proven to be intractable
 - Case 1: impractical problem
 (e.g.) Determining all Hamiltonian circuits in a complete graph: (n-1)!
 - Case 2: Practical case: surprisingly very rare!
 - Undecidable problem

 (e.g.) Halting problem in a Turing machine.
 - Decidable problem
 - Decidably intractable problem by Grzegorczyk (1953)
 - Another one by Hartmanis & Sterns (1965)
 - Decision problem for Presburger Arithmetic by Fisher & Rabin in 1974 for double exponential and by Oppen in 1978 for triple exponential ones, respectively.