(1) Publication number:

0 005 129 A1

(12)

EUROPEAN PATENT APPLICATION

(1) Application number: 79850022.9

(5) trit. Cl.²: C 07 D 403/12 A 61 K 31/44

(22) Date of filing: 03.04.79

30) Priority: 14.04.78 SE 7804231

(4) Date of publication of application: 31.10.79 Bulletin 79/22

Designated Contracting States:
BE CH DE FR GB IT LU NL SE

7) Applicant: Aktiebolaget Hässle Fack S-431 20 Mölndal 1(SE)

(72) Inventor: Junggren, Ulf Krister Dammvägen 7 . S-435 00 Mölniycke(SE)

(7) Inventor: Sjöstrand, Sven Erik Dragsnäs L3 S-641 00 Katrineholm(SE)

Representative: Wurm, Bengt Runio et al, Patent and Trade Mark Department Ab Astra S-151 85 Södertälje(SE)

- Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation.
- 3 The present invention relates to novel compounds of the formula

wherein R¹ and R² are same or different and are each hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, or alkanoyl, R⁶ is hydrogen, methyl or ethyl, R³, R⁴ and R⁵ are same or different and are each hydrogen, methyl, methoxy, ethoxy, methoxyethoxy or ethoxyethoxy whereby R³, R⁴ and R⁶ are not all hydrogen, and whereby when two of R³, R⁴ and R⁵ are hydrogen the third of R³, R⁴ and R⁶ is not methyl. The compounds are potent gastric acid secretion inhibitors.

AB HÄSSLE Mölndal/SWEDEN

Inventors: U Junggren and S E Sjöstrand

KH 575-1 79-03-07 UI/LB/EMH

Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation

The present invention relates to new compounds having valuable properties in affecting gastric acid secretion in mammals, including man, as well as the process for their preparation, method of affecting gastric acid secretion and pharmaceutical preparations containing said novel compounds.

The object of the present invention is to obtain compounds which affect gastric acid secretion, and which inhibit exogenously or endogenously stimulated gastric acid secretion. These compounds can be used in the treatment of peptic ulcer disease.

It is previously known that compounds of the formulas I and II

$$R^{1} \xrightarrow{R^{2}} N \xrightarrow{0} S - R^{4} \xrightarrow{N} N$$
(11)

wherein R¹ and R² are each selected from the group consisting of hydrogen, alkyl, halogen, cyano, carboxy, carboxyalkyl, carboalkoxy, carboalkoxyalkyl, carbamoyl, carbamoyl-15 oxy, hydroxy, alkoxy, hydroxyalkyl, trifluoromethyl and acyl in any position, R³ is selected from the group consisting of hydrogen, alkyl, acyl, carboalkoxy, carbamoyl, alkylcarbámoyl, dialkylcarbamoyl, alkylcarbonylmethyl, alkoxycarbonylmethyl, and alkylsulphonyl, and ${\ensuremath{\mathsf{R}}}^4$ is selected 20 from the group consisting of straight and branched alkylene groups having 1 to 4 carbon atoms, whereby at most one methylene group is present between S and the pyridyl group, and whereby the pyridyl group may be further substituted with alkyl or halogen, possess inhibiting effect of gastric 25 acid secretion.

The second of th

5

10

30

It has now, however, surprisingly been found that the compounds defined below possess a still greater inhibiting effect than those given above.

Compounds of the invention are those of the general formula III . $\ensuremath{\mathsf{R}}^4$

35
$$R^{1} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{4}$$

$$R^{1} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{4}$$

$$R^{1} \longrightarrow R^{2} \longrightarrow R^{4} \longrightarrow R^{5}$$

$$R^{1} \longrightarrow R^{4} \longrightarrow R^{5} \longrightarrow R^{4} \longrightarrow R^{5}$$

wherein R^1 and R^2 are same or different and are each selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, and alkanoyl, R^6 is selected from the group consisting of hydrogen, methyl, and ethyl, and R^3 , R^4 and R^5 are same or different and are each selected from the group consisting of hydrogen, methyl, methoxy, ethoxy, methoxyethoxy and ethoxyethoxy whereby R^3 , R^4 , and R^5 are not all hydrogen, and whereby when two of R^3 , R^4 , and R^5 are hydrogen, the third of R^3 , R^4 and R^5 is not methyl.

10

Alkyl R^1 and R^2 of formula III are suitably alkyl having up to 7 carbon atoms, preferably up to 4 carbon atoms. Thus, alkyl R may be methyl, ethyl, n-propyl, isopropyl, n-butyl or isobutyl.

Halogen R^1 and R^2 is chloro, bromo, fluoro, or iodo.

Alkoxy R¹ and R² are suitably alkoxy groups having up to 5 carbon atoms, preferably up to 3 carbon atoms, as methoxy, ethoxy, n-propoxy, or isopropoxy.

Alkanoyl R^1 and R^2 have preferably up to 4 carbon atoms and are e.g. formyl, acetyl, or propionyl, preferably acetyl.

25

A preferred group of compounds of the general formula III are those wherein R^1 and R^2 are the same or different and are each selected from the group consisting of hydrogen, alkyl, carbomethoxy, alkoxy, and alkanoyl, whereby R^1 and R^2 are not both hydrogen, R^6 is hydrogen, and R^3 , R^4 , and R^5 are the same or different and are each selected from the group consisting of hydrogen, methyl, methoxy, and ethoxy, whereby R^3 , R^4 , and R^5 are not all hydrogen, and whereby when two of R^3 , R^4 , and R^5 are hydrogen the third of R^3 , R^4 , and R^5 is not methyl.

A second preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, and alkanoyl, R⁵ is selected from the group consisting of hydrogen, methyl, and ethyl, R³ is methyl, R⁴ is methoxy, and R⁵ is methyl.

A third preferred group of compounds of the general formula III are those wherein R^1 and R^2 are the same or different and are each selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy and alkanoyl, R^6 is selected from the group consisting of hydrogen, methyl and ethyl, and R^3 is hydrogen, R^4 is methoxy and R^5 is methyl or R^3 is methyl, R^4 is methoxy and R^5 is hydrogen.

The state of the s

The second secon

15

A fourth preferred group of compounds of the general formula III are those wherein \mathbb{R}^1 and \mathbb{R}^2 are the same or different and are each selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, and alkanoyl, \mathbb{R}^6 is selected from the group consisting of hydrogen, methyl and ethyl, \mathbb{R}^3 and \mathbb{R}^5 are hydrogen and \mathbb{R}^4 is methoxy.

A fifth preferred group of compounds of the general formula III are those wherein R^1 and R^2 are the same or different and are each selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, and alkanoyl, R^6 is selected from the group consisting of hydrogen, methyl and ethyl, and R^3 and R^5 are methyl and R^4 is hydrogen.

A sixth preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, and alkanoyl, R⁶ is selected from the group consisting of hydrogen, methyl and ethyl, R³ and R⁵ are hydrogen and R⁴ is ethoxy, methoxy-ethoxy or ethoxyethoxy.

A seventh preferred group of compounds of the general formula III are those wherein R^1 and R^2 are the same or different and are each selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, alkoxy, and alkanoyl, R^6 is selected from the group consisting of hydrogen, methyl, and ethyl, R^3 , R^4 , and R^5 are all methyl.

Compounds of formula III above may be prepared according to the following methods:

a) oxidizing a compound of formula IV

10

25

wherein R^1 , R^2 , R^6 , R^3 , R^4 , and R^5 have the meanings given, 20 to the formation of a compound of formula III.

b) reacting a compound of the formula V

$$R^{1} \xrightarrow{R^{2}} N \xrightarrow{0} S - CH - M$$

$$R^{1} \xrightarrow{R^{1}} R^{1} G$$

30 wherein R^1 , R^2 , and R^6 have the meanings given above and M is a metal selected from the group consisting of K, Na and Li, with a compound of formula VI.

$$R^{3} \xrightarrow{R^{4}} R^{5}$$
 (VII)

wherein R^3 , R^4 , and R^5 have the same meanings as given above, Z is a reactive esterified hydroxy group, to the formation of a compound of formula III;

5 c) reacting a compound of the formula VII

$$R^{\frac{1}{N}} = Z^{\frac{1}{N}}$$
(VII)

wherein R^1 , and R^2 have the same meanings as given above and Z^1 is SH or a reactive esterified hydroxy group, with 5 a compound of the formula VIII

$$z^{2-CH} \xrightarrow{R^{4}} R^{5}$$
(VIII)

20

10

The second secon

wherein R^6 , R^3 , R^4 , and R^5 have the same meanings as given above, and Z^2 is a reactive esterified hydroxy group or SH, to the formation of an intermediate of formula IV above, which then is oxidized to give a compound of formula III;

d) reacting a compound of the formula IX

$$R^{\frac{1}{1}} = \frac{NH_2}{NH_2}$$
 (IX)

wherein $\ensuremath{\mathsf{R}}^1$ and $\ensuremath{\mathsf{R}}^2$ have the same meanings as given above with a compound of the formula X

5

20

•

$$R^3$$
 R^5
 R^5
(X)

wherein R^6 , R^3 , R^4 , and R^5 have the same meanings as given above, to the formation of an intermediate of formula IV above, which then is oxidized to give a compound of formula III, which compound may be converted to its therapeutically acceptable salts, if so desired.

In the reactions above, Z, Z^1 , and Z^2 may be a reactive, esterified hydroxy group which is a hydroxy group esterified 15 with strong, inorganic or organic acid, preferably a hydrohalogen acid, such as hydrochloric acid, hydrobromic acid, or hydroiodic acid. also sulfuric acid or a strong organic sulfonic acid as a strong aromatic acid, e.g. benzenesulfonic acid, 4-bromobenzenesulfonic acid or 4-toluenesulfonic acid.

The oxidation of the sulfur atom in the chains above to sulfinyl (S→0) takes place in the presence of an oxidizing agent selected from the group consisting of nitric acid, hydrogen peroxide, peracids, peresters, ozone, dinitrogen-25 tetraoxide, iodosobenzene, N-halosuccinimide, l-chlorobenzotriazole, t-butylhypochlorite, diazobicyclo-[2,2,2]-octane bromine complex, sodium metaperiodate, selenium dioxide, manganese dioxide, chromic acid, cericammonium nitrate, bromine, chlorine, and sulfuryl chloride. The oxidation 30 usually takes place in a solvent wherein the oxidizing agent is present in some excess in relation to the product to be oxidized.

Depending on the process conditions and the starting mater-35 ials, the end product is obtained either as the free base or in the acid addition salt, both of which are included within the scope of the invention. Thus, basic, neutral or or mixed salts may be obtained as well as hemi, mono, sesqui

0005129

or polyhydrates. The acid addition salts of the new compounds may in a manner known per se be transformed into free base using basic agents such as alkali or by ion exchange. On the other hand, the free bases obtained may 5 form salts with organic or inorganic acids. In the preparation of acid addition salts preferably such acids are used which form suitable therapeutically acceptable salts. Such acids include hydrohalogen acids, sulfonic, phosphoric, nitric, and perchloric acids; aliphatic, alicyclic, aromatic, 10 heterocyclic carboxy or sulfonic acids, such as formic, acetic, propionic, succinic, glycolic, lactic, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, pyruvic, phenylacetic, benzoic, p-aminobenzoic, antranilic, p-hydroxybenzoic, salicylic or p-aminosalicylic acid, 15 embonic, methanesulfonic, ethanesulfonic, hydroxyethanesulfonic, ethylenesulfonic, halogenbenzenesulfonic, toluene sulfonic, naphtylsulfonic or sulfanilic acids; methionine, tryptophane, lysine or arginine.

The state of the s

These or other salts of the new compounds, as e.g. picrates, may serve as purifying agents of the free bases obtained.

Salts of the bases may be formed, separated from solution, and then the free base can be recovered from a new salt solution in a purer state. Because of the relationship between the new compounds in free base form and their salts, it will be understood that the corresponding salts are included within the scope of the invention.

Some of the new compounds may, depending on the choice of starting materials and process, be present as optical isomers or recemate, or if they contain at least two asymmetric carbon atoms, be present as an isomer mixture (racemate mixture).

35 The isomer mixtures (racemate mixtures) obtained may be separated into two stereoisomeric (diastereomeric) pure racemates by means of chromatography or fractional crystal-

lization.

The racemates obtained can be separated according to known methods, e.g. recrystallization from an optically active solvent, use of microorganisms, reactions with optically active acids forming salts which can be separated, separation based on different solubilities of the diastereomers. Suitable optically active acids are the L- and D-forms of tartaric acid, di-o-tolyl-tartaric acid, malic acid, mandelic acid, camphorsulfonic acid or quinic acid, Preferably the more active part of the two antipodes is isolated.

The starting materials are known or may, if they should be new, be obtained according to processes known per se.

15

In clinical use the compounds of the invention are administered orally, rectally or by injection in the form of a
pharmaceutical preparation which contains an active component
either as a free base or as a pharmaceutically acceptable,

20 non-toxic acid addition salt, such as hydrochloride, lactate,
acetate, sulfamate, in combination with a pharmaceutically
acceptable carrier. The carrier may be in the form of a
solid, semisolid or liquid diluent, or a capsule. These
pharmaceutical preparations are a further object of the

25 invention. Usually the amount of active compound is between
0.1 to 95 % by weight of the preparation, between 0.5 to 20
% by weight in preparations for injection and between 2 and
50 % by weight in preparations for oral administration.

In the preparation of pharmaceutical preparations containing a compound of the present invention in the form of dosage units for oral administration the compound selected may be mixed with a solid, pulverulent carrier, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives or gelatin, as well as with an antifriction agent such as magnesium stearate, calcium stearate, and polyethyleneglycol waxes. The mixture is then pressed

into tablets. If coated tablets are desired, the above prepared core may be coated with a concentrated solution of sugar, which may contain gum arabic, gelatin, talc, titanium dioxide or with a lacquer dissolved in volatile organic solvent or mixture of solvents. To this coating various dyes may be added in order to distinguish among tablets with different active compounds or with different amounts of the active compound present.

10 Soft gelatin capsules may be prepared which capsules contain a mixture of the active compound or compounds of the invention and vegetable oil. Hard gelatin capsules may contain granules of the active compound in combination with a solid, pulverulent carrier as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, cellulose derivatives or gelatin.

and the state of t

Dosage units for rectal administration may be prepared in the form of suppositories which contain the active substance in a mixture with a neutral fat base, or they may be prepared in the form of gelatin-rectal capsules which contain the active substance in a mixture with a vegetable oil or paraffin oil.

25 Liquid preparations for oral administration may be prepared in the form of syrups or suspensions, e.g. solutions containing from 0.2 % to 20 % by weight of the active ingredient and the remainder consisting of sugar and a mixture of ethanol, water, glycerol and propylene glycol. If desired, such liquid preparations may contain colouring agents, flavouring agents, saccharin and carboxymethylcellulose as a thickening agent.

Solutions for parenteral administration by injection may be prepared as an aqueous solution of a watersoluble pharmaceutically acceptable salt of the active compound, preferably in a concentration from 0.5 % to 10 % by weight. These solutions may also contain stabilizing agents and/or

buffering agents and may be manufactured in different dosage unit ampoules.

....

Pharmaceutical tablets for oral use are prepared in the 5 following manner: The solid substances are ground or sieved to a certain particle size, and the binding agent is homogenized and suspended in a suitable solvent. The therapeutically active compounds and auxiliary agents are mixed with the binding agent solution. The resulting mixture is 10 moistened to form a uniform suspension having the consistency of wet snow. The moistening causes the particles to aggregate slightly, and the resulting mass is pressed through a stainless steel sieve having a mesh size of approximately 1 mm. The layers of the mixture are dried in carefully 15 controlled drying cabinets for approximately ten hours to obtain the desired particle size and consistency. The granules of the dried mixture are sieved to remove any powder. To this mixture, disintegrating, antifriction and antiadhesive agents are added. Finally, the mixture is pressed into tablets using a machine with the appropriate 20 punches and dies to obtain the desired tablet size. The pressure applied affects the size of the tablet, its strength and its ability to dissolve in water. The compression pressure used should be in the range 0.5 to 5 tons. Tablets 25 are manufactured at the rate of 20.000 to 200.000 per hour. The tablets, especially those which are rough or bitter, may be coated with a layer of sugar or some other palatable substance. They are then packaged by machines having electronic counting devices. The different types of packages 30 consist of glass or plastic gallipots, boxes, tubes and specific dosage adapted packages.

The typical daily dose of the active substance varies according to the individual needs and the manner of administration. In general, oral dosages range from 100 to 400 mg/day of active substance and intravenous dosages range from 5 to 20 mg/day.

The following illustrates a preferred embodiment of the invention without being limited thereto. Temperature is given in degrees Centigrade.

The starting materials in the examples found below were prepared in accordance with the following methods:

(1) a 1,2-diamino compound, such as o-phenylenediamine was reacted with potassium ethylxanthate (according to Org. Synth. Vol. 30, p. 56) to form a 2-mercaptobenzimidazole;

(2) the compound 2-chloromethylpyridine was prepared by reacting 2-hydroxymethylpyridine with thionylchloride (according to Arch. Pharm. Vol. 26, pp. 448-451 (1956));

(3) the compound 2-chloromethylbenzimidazole was prepared by condensing o-phenylenediamine with chloroacetic acid.

Example 1

15

and the second s

28.9 g of 2-[2-(4,5-dimethyl)pyridylmethylthio]-(5-acetyl-6-methyl)-benzimidazole were dissolved in 160 ml of CHCl₃,
24.4 g of m-chloroperbenzoic acid were added in portions while stirring and cooling to 5°C. After 10 minutes, the precipitated m-chlorobenzoic acid was filtered off. The filtrate was diluted with CH₂Cl₂, washed with Na₂CO₃ solution, dried over Na₂SO₄ and evaporated in vacuo. The residue crystallized when diluted with CH₃CN, and 2-[2-(4,5-dimethyl)pyridylmethylsulfinyl]-(5-acetyl-6-methyl)benzimidazole was recrystallized from CH₃CN. Yield 22.3 g; m.p. 158°C.

30 Examples 2-30

35

The preparation of compounds of formula III labelled 2-26 was carried out in accordance with Example 1 above. The compounds prepared are listed in Table 1 which identifies the substituents for these compounds.

Example 31 (method c)

O.1 moles of 4-6-dimethyl-2-mercaptobenzimidazole were dissolved in 20 ml of water and 200 ml of ethanol containing 0.2 moles of sodium hydroxide. O.1 moles of 2-chloromethyl-(3,5-dimethyl)pyridine hydrochloride were added and the mixture was refluxed for two hours. The sodium chloride formed was filtered off and the solution was evaporated in vacuo. The residue was dissolved in acetone and was treated with active carbon. An equivalent amount of concentrated hydrochloric acid was added, whereupon the mono-hydrochloride of 2-[2-(3,5-dimethyl)pyridylmethylthio]-(4,6-dimethyl)benzimidazole was isolated. Yield 0.05 moles.

15 This compound was then oxidized in accordance with Example 1 above to give the corresponding sulfinyl compound melting point 50-55°C.

Example 32 (method b)

20

O.1 moles of 2-[Li-methylsulfinyl](5-acetyl-6-methyl)benzimidazole were dissolved in 150 mls of benzene. O.1 moles
2-chloro-(3,5-dimethyl)pyridine were added and the mixture
was refluxed for two hours. The lithiumchloride formed was
filtered off, and the solution was evaporated in vacuo.
The residue was crystallized from CH₃CN, and recrystallized
from the same solvent. Yield O.82 moles of 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-(5-acetyl-6-methyl)benzimidazole melting at 171°C.

30

Example 33 (method d)

23.4 g of 2-[2-(3,4,5-trimethyl)pyridylmethylthio] formic acid and 16.6 g of o-(5-acetyl-6-methyl)phenylenediamine were boiled for 40 minutes in 100 ml of 4N HCl. The mixture was cooled and neutralized with ammonia. The neutral solution was then extracted with ethyl acetate. The organic phase was

treated with active carbon and evaporated in vacuo. The residue was dissolved in acetone whereupon an equivalent of concentrated HCl was added. The precipitated hydrochloride was filtered off after cooling and the salt was recrystallized from absolute ethanol and some ether. Yield of 2-[2-(3,4,5-trimethylpyridyl)methylthio]-(5-acetyl-6-methyl)benzimidazole was 6.5 g.

This compound was then oxidized in accordance with Example 1 10 above, to give the corresponding sulfinyl derivative. M.p. 190° C.

Example 34 (method c)

- 15 22.0 g of 2-mercapto-(5-acetyl-6-methyl)benzimidazols and 19.5 g of chloromethyl(4,5-dimethyl)pyridine hydrochloride were dissolved in 200 ml of 95 % ethanol. 8 g of sodium hydroxide in 20 ml of water were added, whereupon the solution was refluxed for two hours. The sodium chloride formed was filtered off and the solution was evaporated in vacuo. The residue, 2-[2-(4,5-dimethyl)pyridylmethylthio]-(5-acetyl-6-methyl)benzimidazole, was recrystallized from 70 % ethanol. Yield 10.6 g.
- 25 This compound was then oxidized in accordance with Example 1 above, to give the corresponding sulfinyl derivative.

 M.p. 158°C.

							•	
10	Ex.	R ¹	R ²	R ⁶	R ³	R ⁴	R ⁵	M.p.
			٠.				· .	°c
	1	5-COCH ₃	6-CH ₃	Н	Н .	СП		
٠.	2	5-COOCH ₃	6-CH ₃		н	CH3.	CH ³	158
٠.	3	5-соосн _з		Н	Н.	CH3	CH3	163
15	4	5-COCH ₃			снз	CH ₃	снз	141
	5	3 5-соосн _з	6-CH ₃		. "CH	CH ³	H . ·	160
•	6	4-CH ₃	6-CH ₃	Н	CH3	сн _з . н	Н	163
٠.	7	5-COCH ₃	6-CH ₃		CH3	Н	СНЗ	50-55
	8	5-COCH ₃	6-CH ₃		CH ³		СНЗ	171
20	g	5-COCH ₃	6-CH ₃	Н	СН Н		снз	190
	10	4-CH ₃	6-CH ₃			OCH ₃	Н.	165
	11	5-COCH ₃	6-CH ₃		Н	OCH ₃	H	122
	12.	5-COOCH ₃	6-CH ₃	H	CH ₃	OCH3	CH3	156
	13	5-COOCH ₃	6-CH ₃		CH ₃	Н	СНЗ	144
25	14	5-COOCH ₃	- 6-CH-	H	СНЗ	СH ₃	СНЗ	185
	15	5-COOCH ₃			H	OCH ₃	H	169
	16	5-CDOCH ₃	E_CH_	Н	Н	^{OC} 2 ^H 5	Н	148
	17	5-COOCH ₃	6-CH3		EH3	OCH3	Н	175
	18	5-COOCH ₃	6-CH ₃	H.·.	CH ₃	OCH3	CH3	155
30	19	5-COOCH ₃	6-CH3 H	H H	Н	осн ₃	CH3	158
	20	5-COOCH ₃	H	٠ .	CH3	Н	CH ₃	141
•	21	5-COCH ₃		H	CH ₃	осн ₃	CH3	142
	22	5-0CH ₃	H H	Н	снз	оснз	СНЗ	162
	23	5-0CH3		H	H .	оснз	СНЗ	178
35	24		H H	Н	CH3	0CH3	СНЗ	
•	25	5-сн ₃ н	•	Н	CH3	оснз	снз	181
	26		Н	Н	CH3	OCH3	СНЗ	165
	27	5-C1	H .	H	снз	OCH3	CH3-	185
	28			Н	' H	OC2H4OCH3		119
	29	5-00002H5		Н	CH3		СН ^З	150-5
- 1	30	5-COOCH ₃	H	CH3	CH ₃	H	CH ₃	130
ł.	 -	5-CH ₃	п	CH3	CH3	H	СН3.	152

Biological effect

. . .

The compounds of the invention possess worthwhile therapeutic properties as gastric acid secretion inhibitors as 5 demonstrated by the following tests. To determine the gastric acid secretion inhibitory properties, experiments have been performed on conscious dogs provided with gastric fistulas of conventional type and duodenal fistulas, the latter ones used for direct intraduodenal administration of the test compounds. After 18 hours starvation and deprivation of water the dogs were given a subcutaneous infusion of pentagastrin (1-4 nmol/kg, h) lasting for 6-7 hours. Gastric juice was collected in consecutive 30 minutes samples. An aliquot of each sample was titrated with 0.1 $\ensuremath{\text{N}}$ NaOH to pH 7.0 for titrable acid concentration using an automatic titrator and pH-meter (Radiometer, Copenhagen, Denmark). Acid output was calculated as mmol H⁺/60 minutes. The percent inhibition compared to control experiments was calculated for each compound and the peak inhibitory effect is given in Table 2 below. The test compounds, -suspended in 0.5 % Methocel® (methyl cellulose), were given intraduodenally in doses from 4-20 µmol/kg when the secretory response to pentagastrin has reached a steady level.

- 25 In the test prior known compounds were compared with the compounds of the present invention as will be evident from the Table 2 below.
- 30 The following gastric acid inhibiting effect data were obtained for a number of compounds tested according to the ... method described.

		3							
	Ex.	R¹	R ²	R [₿]	R ³	R ⁴ .	R ⁵	Dose	Effect
10					· 			µmol/kg	% inhibition
	1	5-COCH ₃	6-CH ₃	Н	Н	CH ₃	CH3	2 ·	90
	4	5-COCH ₃	6-CH ₃	Н		СНЗ		1	60
	7	5-COCH ₃	6-CH3	H.	CH3	н	CH ₃	2	100
	8	5-COCH ₃	6-CH ₃	Н	_	СНЗ	_	4 .	100
15	9.	5-COCH ₃	6-CH ₃	Н	_	оснз	_	2	95
	11	5-COCH ₃				осна		0.5	70
	x ·	5-COCH ₃	_	Н	н	CH3		20	30
	×	5-COCH ₃		Н	Н	н	СНЗ	8	80 .
		_	J				J		
20	2	5-COOCH ₃	6-CH3	Н	Η.	СНа	СНЗ	2	60
	5	5-COOCH3				CH ₃	_	2 -	90
	12	5-COOCH3	6-CH ₃	H .		_	СНЗ	2	70
	13	5-COOCH3			_	CH ₃	-	4	80
	14	5-COOCH3		Н		OCH ₃		2	100
25	15	5-COOCH3	6-CH3	Н	H C)¢ ₂ H ₅	H.	4	75
	16	5-COOCH3	6-CH ₃	Н	CH ₃	OCH3	Н	0.5	65
	17	5-COOCH3	6-CH3	Н	_	OCH ₃		0.5	90
	18	5-COOCH3	6-CH ₃	Н	н	OCH ₃	_		
	×	5-COOCH3	6-CH ₃	Н	Н	н	CH3	4	50
30	×	5-COOCH3	6-CH3	Н	Br	Н	н	4	a
		_	_						
	6	4-CH ₃	6-CH ₃	Н	CH ₃	Н	СНЗ	4	40
	10	4-CH ₃	_		_	осн ₃	_	2	40
	×	4-CH3	6-CH ₃			Н	Н	4	30
35	×	4-CH3	е-сн ³		Н	Н	СНЗ	12	50
Į	·		·						

cont.

	Ex	R ¹	R.2	R ⁶	R ³	R. ⁴	Ra	Dose jimol/kg	Effect % inhibition
		5-COOCH ₃	н	Н	Н	CH.	CH3	4	100
	3	.5-6006113		u	CH	н	CH ₃		60
	19	5-COOCH3	П	n 	C''3	UCH.	CH ₃		6.5
5	20	5-COOCH ₃	H	. п	£ ¹ 3	901.3		•	90
	×	5-COOCH3	Н	н	н	H	CH ₃	20	50
	×	5-COOCH3	Н	Н	Н	• н	Н		
	1	•	•						. 60
•	21	5-COCH ₃	Н	Н	CH3	OCH3	CH ₃		40
10	1	r cocu	다	н	H	Н	^C 2 ^H 5	20	40
	22	5-0CH ₃	Н	Н	H	och ₃	снз		25
	23	5-0CH ₃	Н	н	СНЗ	осна	CH3	0.5	65
	×						Ħ	20	10
		3 551/3	. ''			J		. •	
15	24	5-CH ₃	Н	·H	CH.	OCHa	снз	0.5	50
13	ľ	5-CH ₃	н	н.:	. н	, н	СНЗ		50
	×	3-6113	••			•			
	25	U	н	н	CH.	DCH	снз	0.5	60
	25	•	H			33. H	H	4	50
	×	H	п,	1.1	L *,	UCH 			50
20	28	5-COOC ₂ H	5 ^H		CI.	33	CH.	0.5	25
	26	5-C1	H	Н	LH.	3. ^{UUT} 3	~u. n.	ค.ร	
	27	5-CH ₃	Н	Н	Н	002H401	, 5 Lu	0.5	_
	29	5-CDOCH3	Н	CH	3 CH	3 H	^{Ln} 3		
		- denote	9 3	nre	viou	slv kno	amu comb	טווטטו	

x denotes a previously known compound

25

Example 35

A syrup containing 2 % (weight per volume) of active substance was prepared from the following ingredients:

30			
	2-[2-(4,5-dimethyl)pyridylmethylsulfinyl)(5-acetyl-6-methyl)benzimidazole • HCl	2.0	g
	- · · · · · · · · · · · · · · · · · · ·	0.6	g
	Saccharin	30.0	g
	Sugar	5.0	2
35	Glycerin	0.1	_
	Flavouring agent Ethanol 96 %	10.0	ml
,	Distilled water (sufficient to obtain a final volume of 100 ml)		

0005129

Sugar, saccharin and the acid addition salt were dissolved in 60 g of warm water. After cooling, glycerin and a solution of flavouring agents dissolved in ethanol were added. To the mixture water was added to obtain a final volume of 5 100 ml.

The above given active substance may be replaced with other pharmaceutically acceptable acid addition salts.

10 Example 36

2-[2-(3,4-dimethyl)pyridylmethylsulfinyl]-(5-acetyl-6-methyl)benzimidazole • HCl (250 g) was mixed with lactose
(175.8 g), potato starch (169.7 g) and colloidal silicic
15 acid (32 g). The mixture was moistened with 10 % solution
of gelatin and was ground through a 12-mesh sieve. After
drying, potato starch (160 g), talc (50 g) and magnesium
stearate (5 g) were added and the mixture thus obtained was
pressed into tablets (10.000), with each tablet containing
20 25 mg of active substance. Tablets can be prepared that
contain any desired amount of the active ingredient.

Example 37

Granules were prepared from 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-acetyl-6-methyl)benzimidazole-p-hydroxybenzoate (250 g), lactose (175.9 g) and an alcoholic solution of polyvinylpyrrolidone (25 g). After drying, the
granules were mixed with talc (25 g), potato starch (40 g),
and magnesium stearate (2.50 g) and were pressed into 10.000
tablets. These tablets are first coated with a 10 % alcoholic
solution of shellac and thereupon with an aqueous solution
containing saccharose (45 %), gum arabic (5 %), gelatin (4%),
and dyestuff (0.2 %). Talc and powdered sugar were used for
powdering after the first five coatings. The coating was then
covered with a 66 % sugar syrup and polished with a solution
of 10 % carnauba wax in carbon tetrachloride.

Example 38

2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-(5-acetyl-6-methyl)benzimidazole hydrochloride (1 g), sodium chloride (0.6 g) and ascorbic acid (0.1 g) were dissolved in sufficient amount of distilled water to give 100 ml of solution. This solution, which contains 10 mg of active substance for each ml, was used in filling ampoules, which were sterilized by heating at 120°C for 20 minutes.

And the state of t

5

10

25

The second secon

1. A compound of formula III

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{5}$$

$$R^{5}$$

$$R^{1}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{7}$$

$$R^{5}$$

or a therapeutically acceptable salt thereof in which R^1 and R^2 are the same or different and are selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, and alkanoyl in any position, R^5 is selected from the group consisting of hydrogen, methyl and ethyl, R^3 , R^4 , and R^5 are the same or different and are each selected from the group consisting of hydrogen, methyl, methoxy, ethoxy, methoxy-ethoxy and ethoxy-ethoxy whereby R^3 , R^4 , and R^5 are not all hydrogen, and whereby when two of R^3 , R^4 , and R^5 are hydrogen, the third of R^3 , R^4 , and R^5 is not methyl.

2. A compound according to claim 1, wherein R¹ and R² are same or different and are each selected from the group consisting of hydrogen, alkyl, carbomethoxy, alkoxy, and alkanoyl in any position, whereby R¹ and R² are not both hydrogen, R⁶ is hydrogen, and R³, R⁴, and R⁵ are the same or different and are each selected from the group consisting of hydrogen, methyl, methoxy, and ethoxy, whereby R³, R⁴, and R⁵ are not all hydrogen and whereby when two of R³, R⁴, and R⁵ are hydrogen, the third of R³, R⁴, and R⁵ are not methyl.

- 3. A compound according to claim 1, wherein \mathbb{R}^1 , \mathbb{R}^2 , and \mathbb{R}^6 have the meanings given and \mathbb{R}^3 and \mathbb{R}^5 are methyl and \mathbb{R}^4 is methoxy.
- 5 4. A compound according to claim 1, wherein R^1 , R^2 , and R^5 have the meanings given, R^4 is methoxy, and R^3 is hydrogen and R^5 is methyl, or R^5 is hydrogen and R^3 is methyl.
- 10 5. A compound according to claim 1 or a therapeutically acceptable salt thereof in which R¹, R², and R⁶ have the meanings given, R³ and R⁵ are hydrogen, and R⁴ is methoxy, ethoxy, methoxyethoxy or ethoxy-ethoxy.
- 15 6. A compound according to claim 1 or a therapeutically acceptable salt thereof in which R^1 , R^2 , and R^6 have the meanings given, and R^3 , and R^5 are methyl and R^4 is hydrogen.
- 20 7. A compound according to claim 1 and selected from the group consisting of
 - 2-[2-(3,4-dimethyl)-pyridylmethylsulfinyl]-(5-acetyl-6-,-methyl)-benzimidazole,
 - 2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(4,6-dimethyl)-
- 25 -benzimidazole,
 - 2-[2-(4,5-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethexy)-benzimidazole,
 - 2-[2-(4,5-dimethyl)-pyridylmethylsulfinyl]-(5-acetyl-6--methyl)-benzimidazole,
- 20 2-[2-(4,5-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-methyl)-benzimidazole,
 - 2-[2-(3,4-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-methyl)-benzimidazole,
 - 2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(5-acetyl-6-
- 35 methyl)-benzimidazole,
 2-[2-(3,4,5-trimethyl)-pyridylmethylsulfinyl]-(5-acetyl-6-methyl)-benzimidazole,

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

```
5 2-[2-4-methoxy)-pyridylmethylsulfinyl]-(5-acetyl-6-methyl)-
    -benzimidazole
    2-[2-(4-methoxy)-pyridylmethylsulfinyl]-(4,6-dimethyl)
    -benzimidazole
    2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-
10 acetyl-6-methyl)-benzimidazole,
    2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy-
    -6-methyl)-benzimidazole,
   2-[2-(3,4,5-trimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy-
   -6-methyl)-benzimidazole.
15 2-[2-(4-methoxy)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-
   methyl)-benzimidazole,
   2-[2-(4-ethoxy)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-
  methyl)-benzimidazole,
   2-[2-(3-methyl-4-methoxy)-pyridylmethylsulfinyl]-(5-carbo-
20 methoxy-6-methyl)-benzimidazole.
   2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-carbo-
   methoxy-6-methyl)-benzimidazole,
   2-[2-(4-methoxy-5-methyl)-pyridylmethylsulfinyl]-(5-carbo-
   methoxy-6-methyl)-benzimidazole,
25 2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy)-
   -benzimidazole,
   2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-carbo-
   methoxy)-benzimidazole,
   2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-
30 acetyl)-benzimidazole,
   2-[2-(4-methoxy-5-methyl)-pyridylmethylsulfinyl]-(5-methoxy)-
   -benzimidazo]e.
   2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-
   -methoxy)-benzimidazole,
35 2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-
   methyl)-benzimidazole, .
   2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-benzi-
   midazole,
   2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-
40 chloro)-benzimidazole
```

8. A pharmaceutical preparation for inhibiting gastric acid secretion, characterized in that it contains as active agent a compound of formula III

The second section of the second seco

or a pharmaceutically acceptable non-toxic acid addition salt thereof in a therapeutically effective amount in which R¹ and R² are the same or different and are selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy, and alkanoyl in any position, R⁶ is selected from the group consisting of hydrogen, methyl, and ethyl R³, R⁴, and R⁵ are the same or different and are each selected from the group consisting of sisting of hydrogen, methyl, methoxy, ethoxy, methoxyethoxy, and ethoxy-ethoxy whereby R³, R⁴, and R⁵ are not all hydrogen, and whereby when two of R³, R⁴, and R⁵ are hydrogen, the third of R³, R⁴, and R⁵ is not methyl.

25 9. A pharmaceutical preparation according to claim 8 wherein the active ingredient is selected from the group consisting of

- 0005129 2-[2-(3,4-dimethyl)-pyridylmethylsulfinyl]-(5-acetyl-6--methyl)-benzimidazole, 2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(4,6-dimethyl)--benzimidazole. 2-[2-(4,5-dimethy])-pyridylmethylsulfinyl]-(5-carbomethoxy)--benzimidazole, 2-[2-[4,5-dimethyl]-pyridylmethylsulfinyl]-(5-acetyl-6--methyl)-benzimidazole, 2-[2-(4,5-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy-10 6-methyl)-benzimidazole. 2-[2-(3,4-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy--6-methyl)-benzimidazole, 2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(5-acetyl-6methyl)-benzimidazole. 15 2-[2-[3,4,5-trimethyl]-pyridylmethylsulfinyl]-[5-acetyl-6--methyll-benzimidazole, 2-[2-(4-methoxy)-pyridylmethylsulfinyl]-(5-acetyl-6-methyl)--benzimidazole. 2-[2-(4-methoxy)-pyridylmethylsulfinyl]-(4.6-dimethyl)-benzi-20 midazole. acetyl-6-methyl)-benzimidazole. 2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy-
- 2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl] < (5-
 - -6-methyl)-benzimidazole,
- 25 2-[2-(3.4,5-trimethyl]-pyridylmethylsulfinyl]-(5-carbomethoxy--6-methyl)-benzimidazole,
 - 2-[2-(4-methoxy)-pyridylmethylsulfinyl]-(5-carbomethoxy-6--methyl)-benzimidazole, ·
- 2-[2-(4-ethoxy)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-30 -methyl)-benzimidazole,
 - 2-[2-(3-methyl-4-methoxy)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-methyl)-benzimidazole,
 - 2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-methyl)-benzimidazole,
- 35 2-[2-(4-methoxy-5-methyl)-pyridylmethylsulfinyl]-(5-carbomethoxy-6-methy1) benzimidazole,

2-[2-(3,5-dimethyl)-pyridylmethylsulfinyl]-(5-carbomethoxy) -benzimidazole,

2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5carbomethoxy)-benzimidazole,

5 2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5acetyl)-benzimidazole,

2-[2-(4-methoxy-5-methyl)-pyridylmethylsulfinyl]-(5-methoxy) -benzimidazole,

2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5-

10 methoxy)-benzimidazole,

2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5methyl)-benzimidazole,

2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-benzimidazole.

2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl]-(5chloro)-benzimidazole,

or a pharmaceutically acceptable non-toxic addition salt thereof.

20 10. Intermediates of the formula

30 wherein R^1 and R^2 , preferably in 3 to 5 position, are the same or different and are selected from the group consisting of hydrogen, alkyl, halogen, carbomethoxy, carbethoxy, alkoxy and alkanoyl, R⁶ is selected from the group consisting of hydrogen, methyl, and ethyl, and R³, R⁴, and R^5 are the same or different and are selected from the group consisting of hydrogen, methyl, methoxy, ethoxy, methoxy-ethoxy, and ethoxy-ethoxy whereby R^3 , R^4 , and R^5

are not all hydrogen when two of \mathbb{R}^3 , \mathbb{R}^4 , and \mathbb{R}^5 are hydrogen, the third of \mathbb{R}^3 , \mathbb{R}^4 , and \mathbb{R}^5 is not methyl.

EUROPEAN SEARCH REPORT

EP 79 85 0022

	DOCUMENTS CONSID	ERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int. Cl. ²)
ategory	Citation of document with indica passages	tion, where appropriate, of relevant	Relevant to claim	
A	DE - A - 2 548 3	1,24	C 07 D 403/12 A 61 K 31/44	
	* pages 1 to	12 🛪		
				,
·				TECHNICAL FIELDS SEARCHED (InLCL*)
				C 07 D 403/1: A 61 K 31/44
,	•			
				CATEGORY OF CITED DOCUMENTS
				X: particularly relevant A: technological background
				O: non-written disclosure P: Intermediate document T: theory or principle underlyi
				the invention E: conflicting application D: document cited in the
				application L: citation for other reasons
X	The present search repo	rt has been drawn up for all claims	\	&: member of the same patent family, corresponding document
lace of s	earch (Date of completion of the search 18-07-1979	Examiner	<u></u>

(1) Publication number:

0 005 129 R1

_	_
11	2)
v	

EUROPEAN PATENT SPECIFICATION

(5) Date of publication of patent specification: 29.04.81

Application number: 79850022.9

(5) Int. Cl.³: **C 07 D 401/12**, A 61 K 31/44

22 Date of filing: 03.04.79

- Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation.
- 30 Priority: 14.04.78 SE 7804231
- (3) Date of publication of application: 31.10.79 Bulletin 79/22
- Publication of the grant of the patent: 29.04.81 Bulletin 81/17
- Mesignated Contracting States: BE CH DE FR GB IT LU NL SE
- 56 References cited: **DE-A-2 548 340**

- 73 Proprietor: Aktiebolaget Hässle, Fack, S-431 20 Möindal 1 (SE)
- (7) Inventor: Junggren, Ulf Krister, Dammvägen 7, S-435 00 Mölnlycke (SE) Inventor: Sjöstrand, Sven Erik, Dragsnäs L3, S-641 00 Katrineholm (SE)
- (74) Representative: Wurm, Bengt Runio et al, Patent and Trade Mark Department Ab Astra, S-151 85 Södertälje (SF)

05 129 B

-} } _

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation

The present invention relates to new compounds having valuable properties in affecting gastric acid secretion in mammals, including man and pharmaceutical preparations containing said novel compounds, as well as intermediates for their preparation.

The object of the present invention is to obtain compounds which affect gastric acid secretion, and which inhibit exogenously or endogenously stimulated gastric acid secretion. These compounds can be used in the treatment of peptic ulcer disease.

It is previously known from DE-A 25 04 252 and 25 48 340 (AB HÄSSLE) that compounds of the formulas I and II

$$R^{1} \xrightarrow{N} S - R^{4} \xrightarrow{N}$$
(I)

$$R^{1} \xrightarrow{N} \stackrel{O}{\underset{R^{3}}{\longrightarrow}} R^{4} \xrightarrow{N}$$
 (II)

wherein R1 and R2 are each hydrogen, alkyl, halogen, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, carbamoyl, carbamoyloxy, hydroxy, alkoxy, hydroxyalkyl, trifluoromethyl or acyl in any position, R3 is hydrogen, alkyl, acyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, alkylcarbonylmethyl, alkoxycarbonylmethyl, or alkylsulphonyl, and R4 is straight or branched alkylene groups having 1 to 4 carbon atoms, whereby at most one methylene group is present between S and the pyridyl group, and whereby the pyridyl group may be further substituted 30 with alkyl or halogen, posses inhibiting effect of gastric acid secretion.

It has now, however, surprisingly been found that the compounds defined below posses a still greater inhibiting effect than those given above.

Compounds of the invention are those of the general formula III

5

10

15

20

25

35

40

45

50

55

60

or a therapeutically acceptable salt thereof, wherein R1 and R2 are same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R6 is hydrogen, methyl, or ethyl, and R3, R4 and R5 are same or different and are each hydrogen, methyl, methoxy, ethoxy, methoxyethoxy or ethoxyethoxy, whereby R3, R4, and R5 are not all hydrogen, and whereby when two of R3, R4, and R5 are hydrogen, the third of R3, R4 and R5 is not methyl.

Alkyl R1 and R2 of formula III are suitably alkyl having up to 7 carbon atoms, preferably up to 4 carbon atoms. Thus, alkyl R may be methyl, ethyl, n-propyl, isopropyl, n-butyl or isobutyl.

Halogen R¹ and R² is chloro, bromo, fluoro, or iodo. Alkoxy R1 and R2 are suitably alkoxy groups having up to 5 carbon atoms, preferably up to 3 carbon

atoms, as methoxy, ethoxy, n-propoxy, or isopropoxy. Alkanoyi R1 and R2 have preferably up to 4 carbon atoms and are e. g. formyl, acetyl, or propionyl, preferably acetyl.

A preferred group of compounds of the general formula III are those wherein R1 and R2 are the same or different and are each hydrogen, alkyl, methoxycarbonyl, alkoxy, or alkanoyl, whereby R1 and R2 are not both hydrogen, R⁶ is hydrogen, and R³, R⁴, and R⁵ are the same or different and are each hydrogen, methyl, methoxy, or ethoxy, whereby R3, R4, and R5 are not all hydrogen, and whereby when two of R3, R4 and R5 are hydrogen the third of R3, R4, and R5 is not methyl.

A second preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R³ is hydrogen, methyl, or ethyl, R³ is methyl, R⁴ is methoxy, and R⁵ is methyl.

A third preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R⁵ is hydrogen, methyl or ethyl, and R³ is hydrogen, R⁴ is methoxy and R⁵ is methyl or R³ is methyl, R⁴ is methoxy and R⁵ is hydrogen.

A fourth preferred group of compounds of the general formula III are those wherein R^1 and R^2 are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R^6 is hydrogen, methyl or ethyl, R^3 and R^6 are hydrogen and R^4 is methoxy.

A fifth preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy or alkanoyl, R⁶ is hydrogen, methyl, or ethyl, and R³ and R⁵ are methyl, and R⁴ is hydrogen.

A sixth preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R⁵ is hydrogen, methyl, or ethyl, R³ and R⁵ are hydrogen and R⁴ is ethoxy, methoxyethoxy or ethoxyethoxy.

A seventh preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, alkoxy, or alkanoyl, R⁶ is hydrogen, methyl, or ethyl, R³, R⁴ and R⁶ are all methyl.

Compounds of formula III above may be prepared according to the following methods:

a) oxidizing a compound of formula IV

5

10

15

20

35

45

55

wherein R^1 , R^2 , R^6 , R^3 , R^4 , and R^5 have the meanings given, to form a compound of formula III. reacting a compound of the formula V

$$\begin{array}{c|c}
R^{2} & O \\
\downarrow & \uparrow \\
N & \downarrow \\
N & \downarrow \\
H & R^{6}
\end{array}$$
(V)
40

wherein R^1 , R^2 , and R^0 have the meanings given above and M is a metal selected from K, Na and Li, with a compound of formula VI.

$$\mathbb{R}^3$$
 \mathbb{R}^4 \mathbb{R}^5 (VI)

wherein R^3 , R^4 , and R^5 have the same meanings as given above, Z is a reactive esterified hydroxy group, to form a compound of formula III;

c) reacting a compound of the formula VII

$$R^{1} \xrightarrow{R^{2}} N \longrightarrow Z^{1}$$

$$\downarrow N \longrightarrow M$$

$$\downarrow N \longrightarrow$$

wherein R1, and R2 have the same meanings as given above and Z1 is SH or a reactive esterified 65

hydroxy group, with a compound of the formula VIII

$$Z^{2} - CH - N$$

$$R^{3}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$
(VIII)

10

15

5

wherein R⁵, R³, R⁴, and R⁵ have the same meanings as given above, and Z² is a reactive esterified hydroxy group or SH, to form an intermediate of formula IV above, which then is oxidized to give a compound of formula III;

reacting a compound of the formula IX

$$R^2$$
 NH_2 (IX)

(X)

20

wherein R1 and R2 have the same meanings as given above with a compound of the formula X

30

 R^3 R^5 HOOC—S—CH—N wherein F.º, R3, R4 and R5 have the same meanings as given above, to form an intermediate of formula IV above, which then is oxidized to give a compound of formula III, which compound may be converted to its therapeutically acceptable salts, if so desired.

35

40

45

50

55

In the reactions above, Z, Z1, and Z2 may be a reactive, esterified hydroxy group which is a hydroxy group esterified with strong, inorganic or organic acid, preferably a hydrohalogen acid, such as hydrochloric acid, hydrobromic acid, or hydroiodic acid, also sulfuric acid or a strong organic sulfonic acid as a strong aromatic acid, e.g. benzenesulfonic acid, 4-bromobenzenesulfonic acid or 4-toluenesulfonic acid.

The oxidation of the sulfur atom in the chains above to sulfinyl ($S \rightarrow O$) takes place in the presence of an oxidizing agent as nitric acid, hydrogen peroxide, peracids, peresters, ozone, dinitrogentetraoxide, iodosobenzene, N-halosuccinimide, 1-chlorobenzotriazole, t-butylhypochlorite, diazobicyclo-[2,2,2]octane bromine complex, sodium metaperiodate, selenium dioxide, manganese dioxide, chromic acid, ceric ammonium nitrate, bromine, chlorine, and sulfuryl chloride. The oxidation usually takes place in a solvent wherein the oxidizing agent is present in some excess in relation to the product to be oxidized.

Depending on the process conditions and the starting materials, the end product is obtained either as the free base or the acid addition salt, both of which are included within the scope of the invention. Thus, basic, neutral or mixed salts may be obtained as well as hemi, mono, sesqui or polyhydrates. The acid addition salts of the new compounds may in a manner known per se be transformed into free base using basic agents such as alkali or by ion exchange. On the other hand, the free bases obtained may form salts with organic or inorganic acids. In the preparation of acid addition salts preferably such acids are used which form suitable therapeutically acceptable salts. Such acids include hydrohalogen acids, sulfonic, phosphoric, nitric, and perchloric acids; aliphatic, alicyclic, aromatic, heterocyclic carboxy or sulfonic acids, such as formic, acetic, propionic, succinic, glycolic, lactic, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, pyruvic, phenylacetic, benzoic, p-aminobenzoic, antranilic, p-hydroxybenzoic, salicylic or p-aminosalicylic acid, embonic, methanesulfonic, ethanesulfonic, hydroxyethanesulfonic, ethylenesulfonic, halogenbenzenesulfonic, toluenesulfonic, naphthylsulfonic or sulfanilic acids; methionine, tryptophane, lysine or arginine.

60

65

These or other salts of the new compounds, as e. g. picrates, may serve as purifying agents of the free bases obtained. Salts of the bases may be formed, separated from solution, and then the free base can be recovered from a new salt solution in a purer state. Because of the relationship between the new compounds in free base form and their salts, it will be understood that the corresponding salts are included within the scope of the invention.

Some of the new compounds may, depending on the choice of starting materials and process, be

present as optical isomers or racemates, or if they contain at least two asymmetric carbon atoms, be present as an isomer mixture (racemate mixture).

The isomer mixtures (racemate mixtures) obtained may be separated into two stereoisomeric (diastereomeric) pure racemates by means of chromatography or fractional crystallization.

The racemates obtained can be separated according to known methods, e. g. recrystallization from an optically active solvent, use of microorganisms, reactions with optically active acids forming salts which can be separated, separation based on different solubilities of the diastereomers. Suitable optically active acids are the L- and D-forms of tartaric acid, di-o-tolyl-tartaric acid, malic acid, mandelic acid, camphorsulfonic acid or quinic acid. Preferably the more active part of the two antipodes is isolated.

The starting materials are known or may, if they should be new, be obtained according to processes known per se.

10

15

20

25

30

35

40

45

50

60

65

In clinical use the compounds of the invention are administered orally, rectally or by injection in the form of a pharmaceutical preparation which contains an active component either as a free base or as a pharmaceutically acceptable, non-toxic acid addition salt, such as hydrochloride, lactate, acetate, sulfamate, in combination with a pharmaceutically acceptable carrier. The carrier may be in the form of a solid, semisolid or liquid diluent, or a capsule. These pharmaceutical preparations are a further object of the invention. Usually the amount of active compound is between 0.1 to 95% by weight of the preparation, between 0.5 to 20% by weight in preparations for injection and between 2 and 50% by weight in preparations for oral administration.

In the preparation of pharmaceutical preparations containing a compound of the present invention in the form of dosage units for oral administration the compound selected may be mixed with a solid, pulverulent carrier, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives or gelatin, as well as with an anti-friction agent such as magnesium stearate, calcium stearate, and polyethyleneglycol waxes. The mixture is then pressed into tablets. If coated tablets are desired, the above prepared core may be coated with a concentrated solution of sugar, which may contain gum arabic, gelatin, talc, titanium dioxide or with a lacquer dissolved in volatile organic solvent or mixture of solvents. To this coating various dyes may be added in order to distinguish among tablets with different active compounds or with different amount of the active compound present.

Soft gelatin capsules may be prepared which capsules contain a mixture of the active compound or compounds of the invention and vegetable oil. Hard gelatin capsules may contain granules of the active compound in combination with a solid, pulverulent carrier as lactose, saccarose, sorbitol, mannitol, potato starch, corn starch, amylopectin, cellulose derivatives or gelatin.

Dosage units for rectal administration may be prepared in the form of suppositories which contain the active substance in a mixture with a neutral fat base, or they may be prepared in the form of gelatin-rectal capsules which contain the active substance in a mixture with a vegetable oil or paraffin oil

Liquid preparations for oral administration may be prepared in the form of syrups or suspensions, e. g. solutions containing from 0.2% to 20% by weight of the active ingredient and the remainder consisting of sugar and a mixture of ethanol, water, glycerol and propylene glycol. If desired, such liquid preparations may contain colouring agents, flavouring agents, saccharin and carboxymethylcel-lulose as a thickening agent.

Solutions for parenteral administration by injection may be prepared as an aqueous solution of a water soluble pharmaceutically acceptable salt of the active compound, preferably in a concentration from 0.5 to 10% by weight. These solutions may also contain stabilizing agents and/or buffering agents and may be manufactured in different dosage unit ampoules.

Pharmaceutical tablets for oral use are prepared in the following manner: The solid substances are ground or sieved to a certain particle size, and the binding agent is homogenized and suspended in a suitable solvent. The therapeutically active compounds and auxiliary agents are mixed with the binding agent solution. The resulting mixture is moistened to form a uniform suspension having the consistency of wet snow. The moistening causes the particles to aggregate slightly, and the resulting mass is pressed through a stainless steel sieve having a mesh size of approximately 1 mm. The layers of the mixture are dried in carefully controlled drying cabinets for approximately ten hours to obtain the desired particle size and consistency. The granules of the dried mixture are sieved to remove any powder. To this mixture, disintegrating, antifriction and antiadhesive agents are added. Finally, the mixture is pressed into tablets using a machine with the appropriate punches and dies to obtain the desired tablet size. The pressure applied affects the size of the tablet, its strength and its ability to dissolve in water. The compression pressure used should be in the range 0.5 to 5 tons. Tablets are manufactured at the rate of 20.000 to 200.000 per hour. The tablets, especially those which are rough or bitter, may be coated with a layer of sugar or some other palatable substance. They are then packaged by machines having electronic counting devices. The different types of packages consist of glass or plastic gallipots, boxes, tubes and specific dosage adapted packages.

The typical daily dose of the active substance varies according to the individual needs and the manner of administration. In general, oral dosages range from 100 to 400 mg/daý of active substance and intravenous dosages range from 5 to 20 mg/day.

0 005 129

The following illustrates preferred embodiments of the invention. Temperature is given in degrees Centigrades.

The starting materials in the examples found below were prepared in accordance with the following methods:

5

10

- (1) a 1,2-diamino compound, such as o-phenylenediamine was reacted with potassium ethylxanthate (according to Org. Synth. Vol. 30, p. 56) to form a 2-mercaptobenzimidazole;
- the compound 2-chloromethylpyridine was prepared by reacting 2-hydroxymethylpyridine with thionylchloride (according to Arch. Pharm. Vol. 26, pp. 448-451 (1956));
- (3) the compound 2-chloromethylbenzimidazole was prepared by condensing o-phenylenediamine with chloroacetic acid.

Example 1

28.9 g of 2-[2-(4,5-dimethyl-pyridyl)methylthio]-5-acetyl-6-methyl-benzimidazole were dissolved in 15 160 ml of CHCl₃, 24.4 g of m-chloroperbenzoic acid were added in portions while stirring and cooling to 5°C. After 10 minutes, the precipitated m-chlorobenzoic acid was filtered off. The filtrate was diluted with CH₂Cl₂, washed with Na₂CO₃ solution, dried over Na₂SO₄ and evaporated in vacuo. The residue crystallized when diluted with CH₃CN, and 2-[2-(4,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole was recrystallized from CH₃CN. Yield 22.3 g; m. p. 158° C. 20

Examples 2-30

25

The preparation of compounds of formula III labelled 2-26 was carried out in accordance with Example 1 above. The compounds prepared are listed in Table 1 which identifies the substituents for these compounds.

30

35

40

Example 31 (method c)

0.1 moles of 4-6-dimethyl-2-mercaptobenzimidazole were dissolved in 20 ml of water and 200 ml of ethanol containing 0.2 moles of sodium hydroxide. 0.1 moles of 2-chloromethyl-(3,5-dimethyl)pyridine hydrochloride were added and the mixture was refluxed for two hours. The sodium chloride formed was filtered off and the solution was evaporated in vacuo. The residue was dissolved in acetone and was treated with active carbon. An equivalent amount of concentrated hydrochloric acid was added, whereupon the mono-hydrochloride of 2-[2-(3,5-dimethyl-pyridyl)-methylthio]-4,6-dimethyl-benzimidazole was isolated. Yield 0.05 moles.

This compound was then oxidized in accordance with Example 1 above to give the corresponding sulfinyl compound melting point 50-55°C.

45

Example 32 (method b)

0.1 moles of 2-[Li-methylsulfinyl]5-acetyl-6-methyl-benzimidazole were dissolved in 150 mls of benzene. 0.1 moles 2-chloro-(3,5-dimethyl)pyridine were added and the mixture was refluxed for two hours. The lithiumchloride formed was filtered off, and the solution was evaporated in vacuo. The residue was crystallized from CH₃CN, and recrystallized from the same solvent. Yield 0.82 moles of 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole melting at 171°C.

55

60

50

Example 33 (method d)

23.4 g of 2-[2-(3,4,5-trimethyl-pyridyl)methylthio]formic acid and 16.6 g of o-(5-acetyl-6-methyl)phenylenediamine were boiled for 40 minutes in 100 ml of 4N HCl. The mixture was cooled and neutralized with ammonia. The neutral solution was then extracted with ethyl acetate. The organic phase was treated with active carbon and evaporated in vacuo. The residue was dissolved in acetone whereupon an equivalent of concentrated HCl was added. The precipitated hydrochloride was filtered off after cooling and the salt was recrystallized from absolute ethanol and some ether. Yield of 2-[2-(3,4,5-trimethylpyridyl)methylthio]-5-acetyl-6-methyl-benzimidazole was 6.5 g.

This compound was then oxidized in accordance with Example 1 above, to give the corresponding sulfinyl derivative. M. p. 190° C.

0 005 129

Example 34 (method c)	
22.0 g of 2-mercapto-5-acetyl-6-methyl-benzimidazole and 19.5 g of chloromethyl(4,5-dimethyl)pyridine hydrochloride were dissolved in 200 ml of 95% ethanol. 8 g of sodium hydroxide in 20 ml of water were added, whereupon the solution was refluxed for two hours. The sodium chloride formed was filtered off and the solution was evaporated in vacuo. The residue, 2-[2-(4,5-dimethyl-pyridyl)methyl-thio]-5-acetyl-6-methyl-benzimidazole, was recrystallized from 70% ethanol. Yield 10.6 g. This compound was then oxidized in accordance with Example 1 above, to give the corresponding sulfinyl derivative. M. p. 158° C.	5
·	
	15
	20
	25
	30
	35
	40
	45
	40
	50
	55
	60

Ex.	R ¹	R²	R ⁶	R ³	R ⁴	R ⁵	М. р. °С
1	5-COCH ₃	6-CH ₃	Н	Н	CH ₃	CH ₃	158
2	5-COOCH ₃	6-CH ₃	Н	Н	CH_3	CH ₃	163
3	5-COOCH ₃	Н	Н	Н	CH ₃	CH ₃	141
4	5-COCH ₃	6-CH ₃	Н	CH_3	CH ₃	Н	160
5	5-COOCH ₃	6-CH ₃	Н	CH_3	CH ₃	Н	163
6	4-CH ₃	6-CH ₃	Н	CH_3	Н	CH_3	50-55
7	5-COCH ₃	6-CH ₃	Н	CH_3	Н	CH_3	171
8	5-COCH ₃	6-CH ₃	Н	CH_3	CH ₃	CH_3	190
9	5-COCH ₃	6-CH ₃	Н	Н	OCH ₃	Н	165
10	4-CH ₃	6-CH ₃	Н	Н	OCH3	Н	122
11	5-COCH ₃	6-CH ₃	Н	CH ₃	OCH ₃	CH_3	156
12	5-COOCH ₃	6-CH ₃	Н	CH_3	·H	CH_3	144
13	5-COOCH ₃	6-CH ₃	Н	CH ₃	CH ₃	CH_3	185
14	5-COOCH ₃	6-CH ₃	Н	Н	OCH ₃	Н	169
15	5-COOCH ₃	6-CH ₃	Н	Н	OC ₂ H ₅	Н	148
16	5-COOCH3	6-CH ₃	Н	CH ₃	OCH ₃	Н	175
17	5-COOCH ₃	6-CH ₃	Н	CH ₃	OCH ₃	CH_3	155
18	5-COOCH ₃	6-C H ₃	Н	Н	OCH ₃	CH_3	158
19	5-COOCH ₃	Н	Н	CH_3	Н	CH,	141
20	5-COOCH ₃	Н	Н	CH_3	OCH ₃	CH_3	142
21	5-COCH ₃	Н	Н	CH ₃	OCH_3	CH_3	162
22	5-OCH₃	Н	Н	Н	OCH ₃	CH_3	178
23	5-OCH ₃	Н.	Н	CH ₃	OCH_3	CH ₃	156
24	5-CH ₃	н .	Н	CH ₃	OCH ₃	CH_3	181
25	Н	Н	Н	CH3	OCH_3	CH ₃	165
26	5-C1	Н	Н	CH_3	OCH ₃	CH ₃	185
27	5-C H ₃	Н	Н	Н	OC2H4OCH3	Н	119
28	5-COOC ₂ H ₅	Н	Н	CH ₃	OCH ₃	CH_3	150-5
29	5-COOCH ₃	Н	CH ₃	CH ₃	Н	CH ₃	130
30	5-C H ₃	Н	CH ₃	CH ₃	Н	CH_3	152

0 005 129

Biological effect

The compounds of the invention possess worthwhile therapeutic properties as gastric acid secretion inhibitors as demonstrated by the following tests. To determine the gastric acid secretion inhibitory properties, experiments have been performed in conscious dogs provided with gastric fistulas of conventional type and duodenal fistulas, the latter ones used for direct intraduodenal administation of the compounds. After 18 hours starvation and deprivation of water the dogs were given a subcutaneous infusion of pentagastrin (1—4 nmol/kg, h) lasting for 6—7 hours. Gastric juice was collected in consecutive 30 minutes samples. An aliquot of each sample was titrated with 0.1 N NaOH to pH 7.0 for titrable acid concentration using an automatic titrator and pH-meter (Radiometer, Copenhagen, Denmark). Acid output was calculated as mmol H+/60 minutes. The percent inhibition compared to control experiments was calculated for each compound and the peak inhibitory effect is given in Table 2 below. The test compounds, suspended in 0.5% Methocel® (registered Trade Mark for methyl cellulose), were given intraduodenally in doses from 4—20 µmol/kg when the secretory response to pentagastrin has reached a steady level.

In the test prior known compounds were compared with the compounds of the present invention as will be evident from the Table 2 below.

The following gastric acid inhibiting effect data were obtained for a number of compounds tested according to the method described.

.

Tabelle 2

Ex.	R!	R ²	R*	R ³	R ⁴	R ⁵	Dose 4 mol/ kg	Effect inhi- bition
1	5-COCH ₃	6-C H ₃	Н	Н	CH ₃	CH3	2	90
4	5-COCH ₃	6-C H ₃	Н	CH ₃	CH ₃	Н	1	60
7	5-COCH ₃	6-CH ₃	Н	CH ₃	Н	CH ₃	2	100
8	5-COCH ₃	6-CH ₃	Н	CH_3	CH ₃	CH ₃	4	100
9	5-COCH₃	6-CH ₃	H	Н	OCH_3	Н	2	95
11	5-COCH ₃	6-C H ₃	Н	CH ₃	OCH ₃	CH ₃	0.5	70
*	5-COCH ₃	6-CH ₃	H	Н	CH ₃	Н	20	30
*	5-COCH ₃	6-CH3	Н	Н	Н	CH ₃	8	80
2	5-COOCH ₃	6-CH ₃	Н	Н	CH ₃	CH ₃	2	60
5	5-COOCH ₃	6-CH ₃	H	CH ₃	CH ₃	H	2	90
12	5-COOCH ₃	6-CH ₃	Н	CH ₃	Н	CH_3	2	70
13	5-COOCH ₃	6-CH ₃	H	CH ₃	CH ₃	CH_3	4	80
14	5-COOCH ₃	6-CH ₃	Н	Н	OCH ₃	H	2	100
15	5-COOCH ₃	6-CH ₃	H	Н	OC ₂ H ₅	Н	4	75
16	5-COOCH ₃	6-CH ₃	Н	CH_3	OCH ₃	Н	0.5	65
17	5-COOCH ₃	6-CH ₃	Н	CH_3	OCH_3	CH ₃	0.5	90
18	5-COOCH ₃	6-CH ₃	Н	Н	OCH_3	CH ₃		
*	5-COOCH ₃	6-CH ₃	Н	Н	Н	CH ₃	4	50
*	5-COOCH ₃	6-CH ₃	Н	Br	Н	Н	4	0
6	4-CH ₃	6-CH ₃	Н	CH ₃	Н	CH_3	4	40
10	4-CH ₃	6-CH ₃	H	Н	OCH ₃	Н	2	40
*	4-CH ₃	6-CH ₃	Н	Н	Н	Н	4	30
*	4-CH ₃	6-CH ₃	H	Н	Н	CH ₃	12	50
3	5-COOCH ₃	H	H	Н	CH ₃	CH ₃	4	100
19	5-COOCH ₃	Н	H	CH ₃	Н	CH ₃	2	60
20	5-COOCH ₃	Н	Н	CH ₃	OCH ₃	CH ₃	0.5	65
*	5-COOCH ₃	H	Н	Н	Н	CH ₃	20	90
*	5-COOCH ₃	Н	Н	Н	Н	Н	20	50
21	5-COCH ₃	Н	Н	CH ₃	OCH ₃	CH ₃	0.5	60
*	5-COCH ₃	Н	Н	Н	Н	C ₂ H ₅	20	40
22	5-OCH ₃	Н	H	Н	OCH ₃	CH ₃		

(Continuation)

Ex.	R¹	R ²	R ⁶	R³	R ⁴	K ⁵	Dose umol/ kg	Effect % inhi- bition
23	5-OCH ₃	Н	Н	CH ₃	OCH,	CH ₃	0.5	65
×	5-OCH ₃	Н	Н	H	CH ₃	Н	20	10
24	5-CH ₃	Н	Н	CH ₃	OCH ₃	CH ₃	0.5	50
4 :	5-CH ₃	Н	Н	Н	Н	CH ₃	4	50
25	Н	Н	Н	CH ₃	OCH ₃	CH ₃	0.5	60
*	Н	Н	Н	Н	H	H	4	50
28	5-COOC ₂ H ₅	Н	Н	CH_3	OCH ₃	CH ₃	0.5	50
26	5-Cl	Н	Н	CH ₃	OCH ₃	CH ₃	0.5	25
27	5-CH ₃	н	Н	H	OC ₂ H ₄ OCH ₃	H .	0.5	30
29	5-COOCH ₃	Н	CH ₃	CH ₃	Н	CH ₃	0.5	40

^{*)} Denotes a previously known compound (DE-A 25 04 252 and 25 48 340).

Example 35

A syrup containing 2% (weight per volume) of active substance was prepared from the following ingredients:

2-[2-(4,5-dimethyl-pyridyl)methylsulfinyl]-				
5-acetyl-6-methyl-benzimidazole · HCl			2.0 g	
Saccharin			0.6 g	
Sugar			30.0 g	
Glycerin			5.0 [°] g	
Flavouring agent	•		0.1 g	
Ethanol 96%	٠.	·	10.0 ml	

Distilled water (sufficient to obtain a final volume of 100 ml)

Sugar, saccharin and the acid addition salt were dissolved in 60 g of warm water. After cooling, glycerin and a solution of flavouring agents dissolved in ethanol were added. To the mixture water was added to obtain a final volume of 100 ml.

The above given active substance may be replaced with other pharmaceutically acceptable acid addition salts.

Example 36

30

35

40

45

50

55

60

65

2-[2-(3,4-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole · HCl (250 g) was mixed with lactose (175.8 g), potato starch (169.7 g) and colloidal silicic acid (32 g). The mixture was moistened with 10% solution of gelatin and was ground through a 12-mesh sieve. After drying, potato starch (160 g), talc (50 g) and magnesium stearate (5 g) were added and the mixture thus obtained was pressed into tablets (10.000), with each tablet containing 25 mg of active substance. Tablets can be prepared that contain any desired amount of the active ingredient.

Example 37

Granules were prepared from 2-[2-(3,5-dimethyl-pyridyl)-methylsulfinyl]-5-acetyl-6-methyl-benz-imidazole-p-hydroxybenzoate (250 g), lactose (175.9 g) and an alcoholic solution of polyvinylpyrrolidone (25 g). After drying, the granules were mixed with talc (25 g), potato starch (40 g), and magnesium stearate (2.50 g) and were pressed into 10.000 tablets. These tablets are first coated with a

10% alcoholic solution of shellac and thereupon with an aqueous solution containing saccharose (45%), gum arabic (5%), gelatin (4%), and dyestuff (0.2%). Talc and powdered sugar were used for powdering after the first five coatings. The coating was then covered with a 66% sugar syrup and polished with a solution of 10% carnauba wax in carbon tetrachloride.

Example 38

2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole hydrochloride (1 g), so-dium chloride (0.6 g) and ascorbic acid (0.1 g) were dissolved in sufficient amount of distilled water to give 100 ml of solution. This solution, which contains 10 mg of active substance for each ml, was used in filling ampoules, which were sterilized by heating at 120° C for 20 minutes.

15 Claims

5

10

30

65

1. A compound of formula III

20
$$R^{2} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{5}$$

$$R^{1} \longrightarrow S \longrightarrow CH \longrightarrow N$$

$$\downarrow R^{6} \longrightarrow R^{6}$$
(III)

or a therapeutically acceptable salt thereof in which R¹ and R² are the same or different and are hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl in any position, R⁵ is hydrogen, methyl or ethyl, R³, R⁴ and R⁵ are the same or different and are each hydrogen, methyl, methoxy, ethoxy, nethoxyethoxy or ethoxyethoxy, whereby R³, R⁴, and R⁵ are not all hydrogen, and whereby when two of R³, R⁴, and R⁵ are hydrogen, the third of R³, R⁴, and R⁵ is not methyl.

2. A compound according to claim 1, which is

35 2-[2-(3,4-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-4,6-dimethyl-benzimidazole, 2-[2-(4,5-dimethyl-pyridyl)methylsulfinyl]-5-methoxy-carbonyl-benzimidazole, 2-[2-(4,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(4,5-dimethyl-pyridyl)methylsulfinyl]-5-methoxy-carbonyl-6-methyl-benzimidazole, 40 2-[2-(3,4-dimethyl-pyridyl)methylsulfinyl]-5-methoxy-carbonyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(3,4,5-trimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(4-methoxy-pyridyl)methylsulfinyl]-4,6-dimethyl-benzimidazole, 45 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-methoxy-carbonyl-6-methyl-benzimidazole, 2-[2-(3,4,5-trimethyl-pyridyl)methylsulfinyl-5-methoxy-carbonyl-6-methyl-benzimidazole, 2-[2-(4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, 2-[2-(4-ethoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, 50 2-[2-(3-methyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazole, 2-[2-(4-methoxy-5-methyl-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-methoxycarbonyl-benzimidazole, 55 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-benzimidazole, 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-benzimidazole, 2-[2-(4-methoxy-5-methyl-pyridyl)methylsulfinyl]-5-methoxy-benzimidazole, 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxy-benzimidazole, 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methyl-benzimidazole, 60 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-benzimidazole, 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-chloro-benzimidazole

3. A pharmaceutical preparation for inhibiting gastric acid secretion, characterized in that it contains as active agent a compound according to claim 1 or a pharmaceutically acceptable non-toxic acid

'addition salt thereof in a therapeutically effective amount in combination with a pharmaceutically acceptable carrier.

4. A pharmaceutical preparation according to claim 3 wherein the active ingredient is one of the compounds according to claim 2.

$$R^{1} \xrightarrow{R^{2}} N \xrightarrow{R^{3}} R^{4} \xrightarrow{R^{5}} R^{5}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

wherein R1, R2, R3, R4, R5 and R6 are defined according to claim 1.

Patentansprüche

1. Verbindung der Formel III

5. Intermediates of the formula

5

10

15

20

30

35

40

45

50

55

60

65

oder ein therapeutisch verträgliches Salz derselben, worin R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, eine Alkylgruppe, ein Halogenatom, eine Methoxycarbonylgruppe, eine Äthoxycarbonylgruppe, eine Alkoxygruppe oder eine Alkanoylgruppe in irgendeiner Stellung bedeuten, R⁵ ein Wasserstoffatom eine Methylgruppe oder eine Äthylgruppe bedeutet, R³, R⁴ und R⁵ gleich oder verschieden sind und jeweils ein Wasserstoffatom, eine Methylgruppe, eine Methoxygruppe, eine Äthoxygruppe, eine Methoxygruppe oder eine Äthoxyäthoxygruppe bedeuten, wobei R³, R⁴ und R⁵ nicht alle ein Wasserstoff bedeuten und wobei, wenn zwei der Substituenten R³, R⁴ und R⁵ Wasserstoffatome sind, der dritte Substituent von R³, R⁴ und R⁵ keine Methylgruppe ist.

- 2. Verbindung nach Anspruch 1, die
 - 2-[2-(3,4-Dimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
 - 2-[2-(3.5-Dimethylpyridyl)-methylsulfinyl]-4,6-dimethylbenzimidazol,
 - 2-[2-(4,5-Dimethylpyridyl)-methylsulfinyl)-5-methoxycarbonylbenzimidazol,
 - 2-[2-(4,5-Dimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
 - 2-[2-(4,5-Dimethylpyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
 - 2-[2-(3,4-Dimethylpyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
 - 2-[2-(3,5-Dimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
 - 2-[2-(3,4,5-Trimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
 - 2-[2-(4-Methoxypyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
 - 2-[2-(4-Methoxypyridyl)-methylsulfinyl]-4,5-dimethylbenzimidazol,
 - 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
 - 2-[2-(3,5-Dimethylpyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
 - 2-[2-(3,4,5-Trimethylpyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
 - 2-[2-(Methoxypyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
- 2-[2-(4-Āthoxypyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
- 2-[2-(3-Methyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
- 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxycarbonyl-8-methylbenzimidazol,
- 2-[2-(4-Methoxy-5-methylpyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
- 2-[2-(3,5-Dimethylpyridyl)-methylsulfinyl]-5-methoxycarbonylbenzimidazol,
- 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxycarbonylbenzimidazol,
- 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-acetylbenzimidazol,
- 2-[2-(4-Methoxy-5-methylpyridyl)-methylsulfinyl]-5-methoxybenzimidazol,
- 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxybenzimidazol,
- 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methylbenzimidazol,

2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-benzimidazol, 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-chlorbenzimidazol

ist.

- 3. Pharmazeutisches Präparat zur Hemmung der Magensäuresekretion, dadurch gekennzeichnet, daß es als aktives Mittel eine Verbindung gemäß Anspruch 1 enthält.
- 4. Pharmazeutisches Präparat nach Anspruch 3, worin der aktive Bestandteil eine der Verbindungen gemäß Anspruch 2 ist.
 - 5. Zwischenprodukte der Formel

10

15

20

5

$$R^{1} \xrightarrow{R^{2}} N \xrightarrow{R^{3}} S \xrightarrow{R^{4}} R^{5}$$

$$R^{1} \xrightarrow{N} S \xrightarrow{R^{4}} R^{5}$$

worin R1, R2, R3, R4, R5 und R6 gemäß Anspruch 1 definiert sind.

Revendications

1. Composé de la formule III

30

25

35 40

45

50

55

60

ou un sel thérapeutiquement acceptable de celui-ci, formule dans laquelle R1 et R2 sont semblables ou différents et sont un atome d'hydrogène, un groupe alkyle, un atome d'halogène, un groupe méthoxycarbonyle, éthoxycarbonyle, alcoxy ou alcanoyle dans toute position, R6 est un atome d'hydrogène ou un groupe méthyle ou éthyle et R3, R4 et R5 sont semblables ou différents et sont chacun un atome d'hydrogène ou un groupe methyle, méthoxy, éthoxy, méthoxyéthoxy ou éthoxyéthoxy sous cette réserve que R³, R⁴ et R⁵ ne sont pas tous des atomes d'hydrogène et que, lorsque deux des substituants R3, R4 et R5 sont des atomes d'hydrogène, le troisième des substituants R3, R4 et R5 n'est pas un groupe méthyle.

- 2. Composé selon la revendication 1, qui est
 - le 2-[2-(3,4-diméthyl-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole,
 - le 2-[2-(3,5-diméthyl-pyridyl)méthylsulfinyl]-4,6-diméthylbenzimídazole,
 - le 2-[2-(4,5-diméthyl-pyridyl)méthylsulfinyl]-5-méthoxycarponyl-benzimidazole,
 - le 2-[2-[4,5-dimethyl-pyridyl]methyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole,
 - le 2-2-(4,5-diméthyl-pyridyl)méthylsulfinyl -5-méthoxycarbonyl-6-méthyl-benzímidazole,
 - le 2-[2-(3,4-dimethyl-pyridyl]methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole,
- le 2-[2-(3,5-diméthyl-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole,
 - le 2-[2-(3,4,5-triméthyl-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole,
 - le 2-[2-(4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole,
 - le 2-[2-(4-méthoxy-pyridyl)méthylsulfinyl -4,6-diméthylbenzimidazola,
 - le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole,
 - le 2-[2-(3,5-diméthyl-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-8-méthyl-benzimidazole,
 - le 2-[2-(3,4,5-triméthyl-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole,
 - le 2-[2-(4-méthoxy-pyridyi)méthylsulfinyi]-5-méthoxycarbonyi-6-méthyl-benzimidazole,

 - le 2-[2-(4-éthoxy-pyridyt)méthylsulfinyt]-5-méthoxycarbonyl-6-méthyl-benzimidazole,
 - le 2-[2-(3-méthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole,
 - le 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole,
 - le 2-[2-(4-méthoxy-5-méthyl-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole,
 - le 2-[2-(3,5-dimethyl-pyridyl) methylsulfinyl]-5-methoxycarbonyl-benzimidazole,
 - le 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-benzimidazole,
- le 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-benzimidazole. 65

- le 2-[2-(4-méthoxy-5-méthyl-pyridyl)méthylsulfinyl]-5-méthoxy-benzimidazole,
- le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthoxy-benzimidazole,
- le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthyl-benzimidazole,
- le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-benzimidazole,
- et le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-chloro-benzimidazole.
- 3. Composition pharmaceutique servant à inhiber la sécrétion d'acide gastrique, caractérisée en ce qu'elle contient comme agent actif un composé selon la revendication 1 ou un sel d'addition d'acide de celui-ci, non toxique, pharmaceutiquement acceptable selon une quantité thérapeutiquement efficace en combinaison avec un véhicule pharmaceutiquement acceptable.
- 4. Composition pharmaceutique selon la revendication 3, caractérisée en ce que l'ingrédient actif est l'un des composés selon la revendication 2.
 - 5. Intermédiaires répondant à la formule:

$$R^{1}$$
 R^{2}
 R^{3}
 R^{5}
 R^{5}
 R^{6}
 R^{5}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{6}

dans laquelle Rf, R2, R3, R4, R5 et R6 répondent à la définition donnée à la revendication 1.

5

10

30

40

45

50

55

60⁻

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

₩ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.