MA 214: Introduction to numerical analysis (2021–2022)

Tutorial 2

(January 19, 2022)

- (1) Use the Bisection method to find the approximations p_1, \ldots, p_5 for the root of $f(x) = \sqrt{x} \cos x = 0$ on [0, 1].
- (2) Use the Bisection method to find solutions accurate to within 10^{-2} for the root of $f(x) = x^3 7x^2 + 14x 6 = 0$ on [1, 3.2].
- (3) Let $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the interval [-1.5, 2.5]?
- (4) Show that the fixed point theorem does not ensure a unique fixed point of $f(x) = 3^{-x}$ on the interval [0,1], even though a unique fixed point on this interval does exist.
- (5) The following two methods are proposed to compute $21^{1/3}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$:

$$p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2}, \qquad p_n = \left(\frac{21}{p_{n-1}}\right)^{1/2}.$$

- (6) Let $f(x) = x^2 6$ and $p_0 = 1$. Use Newton's method to find p_3 .
- (7) Let $f(x) = x^2 6$. Use the Secant method to find p_4 with $p_0 = 3$ and $p_1 = 2$.
- (8) Let $f(x) = x^2 6$. Use the method of false position to find p_4 with $p_0 = 3$ and $p_1 = 2$.
- (9) An object falling vertically through the air is faces viscous resistance as well as the gravitational force. Assume that an object with mass a is dropped from a height d_0 and that the height of the object after t seconds is

$$d_t = d_0 - \frac{ag}{k}t + \frac{a^2g}{k^2}(1 - e^{-kt/a})$$

where $g=9.80665\ m/s^2$ and $k=0.24\ kg/m$ represents the coefficient of air resistance. If an object of mass $0.25\ kg$ is dropped from a height of 300 meters then find, to within 0.01 error, the time it takes this object to hit the ground.