Solving ODEs with MATLAB

L.F. Shampine and I. Gladwell Department of Mathematics Southern Methodist University Dallas, TX 75275

S. Thompson
Department of Mathematics & Statistics
Radford University
Radford, VA 24142

©2002, L.F. Shampine, I. Gladwell & S. Thompson

Contents

1		ting Started	3
	1.1	Introduction	3
	1.2	Existence, Uniqueness, and Well–Posedness	6
	1.3	Standard Form	15
	1.4	Control of the Error	20
	1.5	Qualitative Properties	26
2	Init	ial Value Problems	29
	2.1	Introduction	29
	2.2	Numerical Methods for IVPs	29
		2.2.1 One–Step Methods	30
		Local Error Estimation	34
		Runge–Kutta Methods	35
		Explicit Runge–Kutta Formulas	37
		Continuous Extensions	39
		2.2.2 Methods with Memory	41
		Adams Methods	41
		BDF methods	43
		Error Estimation and Change of Order	51
		Continuous Extensions	53
	2.3	Solving IVPs in Matlab	57
		2.3.1 Event Location	65
		2.3.2 ODEs Involving a Mass Matrix	74
		2.3.3 Large Systems and the Method of Lines	80
		2.3.4 Singularities	89
3	Bou	andary Value Problems	93
	3.1	v	93
	3.2	Boundary Value Problems	94
	3.3	Boundary Conditions	96
		·	97
		· ·	01
	3.4		.09
	3.5		16
4	Dol	ay Differential Equations 1	47
	4.1	v -	47 47
	4.1		.41 47
	4.3	v -	.41 50
	4.4		.50
	4.4		.52 70