Math 135 Lecture 6 Notes

Liam Tan

February 1st, 2024

1 Functions and the Axiom of Choice

1.1 Functions

Theorem 1.1 (1-1 Functions). Let $F: X \to Y$ be a function. Then TFAE

- F is one-to-one
- $\exists g, g: Z \to X \land g \circ F = I_X$
- F^{-1} is a function and $F^{-1} \circ F = I_X$

Proof. We have shown 1 implies 3 in the previous lecture. 3 implies 2 is trivial. Let us prove 2 implies 1.

Suppose there exists $g: Z \to X$ such that $g \circ f = I_X$. Let $a, b \in \text{dom} f = X$. Suppose f(a) = f(b). Apply g to both sides, to get g(f(a)) = a = b = g(f(b)).

Definition 1.1 (Onto). A function $f: X \to Y$ is onto Y if and only if ran f = Y. Similarly, if $\exists g: Y \to X$ such that $f \circ g = I_Y$, then f is onto Y.

Proposition 1.1. Let R be a relation and let R^{-1} be its converse relation. Then

$$R \circ R^{-1} \supset I_{ranR}$$

Proof. Let $t \in I_{\text{ran}R}$. Then $\exists a \in \text{ran}R$ such that $t = \langle a, a \rangle$. Thus $\exists b$ such that $\langle b, a \rangle \in R$. This implies $\langle a, b \rangle \in R^{-1}$. From that we can conclude that $\langle a, a \rangle \in R \circ R^{-1}$

Proposition 1.2. Let $f: X \to Y$ be a one-to-one function. Then

$$\operatorname{dom}(f\circ f^{-1})=\operatorname{ran} f$$

Proof. We have already shown $I_{\operatorname{ran} f} \subseteq f \circ f^{-1}$. Let $b \in \operatorname{ran} f$. Then $\exists a$ such that $\langle a, b \rangle \in f$, so $\langle b, a \rangle \in f^{-1}$. Thus $\langle b, b \rangle \in f \circ f^{-1}$. Thus $b \in \operatorname{dom}(f \circ f^{-1})$.

Let $b \in \text{dom}(f \circ f^{-1})$. Then $\exists c \exists a \text{ such that } \langle b, c \rangle \in f^{-1} \text{ and } \langle c, a \rangle \in f$. Then we know that $\langle c, b \rangle \in f$. Thus $b \in \text{ran} f$

Proposition 1.3. If $f: X \to Y$ is a one-to-one function, then $f \circ f^{-1}$ a function and $f \circ f^{-1} = I_{ranf}$.

Proof. We showed that $f \circ f^{-1} \supseteq I_{\text{ran}f}$ and that $\text{dom}(f \circ f^{-1}) = \text{ran}f$. Let $t \in f \circ f^{-1}$. Then $\exists a \in \text{ran}f$ and $\exists a, c$ such that $t = \langle a, c \rangle$ and $\langle a, b \rangle \in f^{-1}$ and $\langle b, c \rangle \in f$. It follows that $\langle b, a \rangle \in f$. Since f is a function, we have that a = c, so $t = \langle a, a \rangle \in I_{\text{ran}f}$.

Example 1.1.

$$f: \mathbb{C} \to \mathbb{C}$$
$$z \mapsto z^2$$

Does there exists $g: \mathbb{C} \to \mathbb{C}$ such that $f \circ g = I_{\mathbb{C}}$? f^{-1} is not a function. For every complex number z, we can write $z = re^{i\theta}$ for $r \geq 0$ and $0 \leq \theta \leq 2\pi$.

$$g(z) = \sqrt{r}e^{i\frac{\theta}{2}}$$

$$f(g(z)) = (\sqrt{r}e^{i\frac{\theta}{2}})^2 = |r|e^{i\theta}$$

1.2 Intro to the Axiom of Choice

Axiom 1.1 (Axiom of Choice). For every relation R, there exists a function F such that $F \subseteq R$ and dom F = dom R.

Remark 1.1. Start with the relation R. For each $a \in \text{dom} R$.

$$R[\![\{a\}]\!] = \{b: \langle a,b\rangle \in R\} \neq \emptyset$$

"Define" F(a) = b by choosing some $b \in R[[a]]$.

Theorem 1.2 (Axiom of Choice Implies Right Inverses). $f: X \to Y$ is onto Y if and only if $\exists g: Y \to X$ such that $f \circ g = I_Y$

 $Proof. \iff$ was completed earlier today.

 \Longrightarrow By the axiom of choice there exists $g \subseteq f^{-1}$ a function with the same domain, Y. rang $\subseteq \operatorname{ran} f^{-1} = \operatorname{dom} f = X$. Thus $g: Y \to X$ and $g \subseteq f^{-1}$. We conclude that $\operatorname{dom}(f \circ g) = Y$. We know $f \circ g \subseteq f \circ f^{-1} \subseteq I_Y$. If $t \in f \circ f^{-1}$, then $\exists a \exists b$ such that $\langle a, b \rangle = t \in f \circ f^{-1}$ and $\exists c$ such that $\langle a, c \rangle \in f^{-1}$ and $\langle c, b \rangle \in f$. Thus a = b and $b \in A$ Since $\operatorname{dom}(f \circ g) = f \in A$ and $b \in A$ we have that

$$f \circ g = I_Y$$

Definition 1.2 (Functions from X to Y).

$$^XY = \{f \in \mathcal{P}(X \times Y) : f : X \to Y\}$$

Example 1.2. Let Y be any set

$$\label{eq:definition} \begin{split} ^{\emptyset} &\emptyset = \{ f \in P(\emptyset \times \emptyset) : f : \emptyset \to \emptyset \} = \{ \emptyset \} \\ ^{\emptyset} &Y = \{ f \in P(\emptyset \times Y) : f : \emptyset \to Y \} = \{ \emptyset \} \end{split}$$

$$Y\emptyset = \{ f \in P(Y \times \emptyset) : f : Y \to \emptyset \} = \emptyset$$

Example 1.3. Let $X = \{1, 2\}$ and let $Y = \{1, 2, 3\}$ Calculate XY and its cardinality.

Axiom 1.2 (Axiom of Choice formulation 2). Let I, Y be any set. Denote

$$\underset{i \in I}{\bigvee} X_i = \{f: f \text{ is a function such that } dom f = I \land \forall i \in I, f(i) \in X_i\}$$

The axiom of choice states that for $f:I\to Y$ such that $f(i)\neq\emptyset$ for all $i\in I$.

$$\underset{i \in I}{\textstyle \times} f(i) \neq \emptyset$$