DIALOG(R)File 351:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

009604761 **Image available**
WPI Acc No: 1993-298309/*199338*

XRAM Acc No: C93-132439 XRPX Acc No: N93-229912

Electron emitting element - mfd. by oxidising aluminium@ film to form anode film having fine holes, and forming column type electrode by electrolytic pptn. NoAbstract

Patent Assignee: RICOH KK (RICO)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 5211029 A 19930820 JP 9215628 A 19920131 199338 B

Priority Applications (No Type Date): JP 9215628 A 19920131

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 5211029 A 5 H01J-001/30

Title Terms: ELECTRON; EMIT; ELEMENT; MANUFACTURE; OXIDATION; ALUMINIUM; FILM; FORM; ANODE; FILM; FINE; HOLE; FORMING; COLUMN; TYPE; ELECTRODE;

ELECTROLYTIC; PRECIPITATION; NOABSTRACT

Derwent Class: L03; V05

International Patent Class (Main): H01J-001/30

International Patent Class (Additional): H01J-009/02

File Segment: CPI; EPI

Manual Codes (CPI/A-N): L03-C02A

Manual Codes (EPI/S-X): V05-D01B; V05-D05C5A; V05-L01A3A; V05-M03A1

							•
						•	,
							' ' ,
	. + 51						
1,0	•						
	et)			•			
					•		
					•		
Ŷ _Ŷ							
	•				•		
		•					

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-211029

(43)公開日 平成5年(1993)8月20日

(51) Int.Cl.5

識別記号 庁内整理番号

F 1

技術表示箇所

H01J 1/30

B 9172-5E

9/02

B 7354-5E

審査請求 未請求 請求項の数6(全 5 頁)

(21)出顧番号	特顧平4-15628	(71) 出顧人 000006747
		株式会社リコー
(22) / JREE B	平成4年(1992)1月31日	東京都大田区中馬込1丁目3冊6号
(may triage to	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72) 発明者 小塚 武
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(72)発明者 吉田 芳博
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(72) 発明者 小林 寛史
		東京都大田区中馬込1丁月3番6号 株式
		会社リコー内
		(74)代理人 弁理士 有我 軍一郎

(54) 【発明の名称】 電子放出素子及びその製造方法

(57)【要約】

【目的】 本発明は、電子放出案子及びその製造方法に 関し、電子放出を行う針状カソード電極の密度を高くす ることにより単位面積当りの電子放出量を大きくするこ とができる電子放出案子及びその製造方法を提供するこ とを目的とする。

【構成】 A 1 表面層を含む金属積層膜のA 1 膜が隔極 酸化されて微細孔を有するA 1 陽極酸化膜が形成され、 該A 1 陽極酸化膜の微細孔内に電解析出により円柱状電 極が形成されてなるように構成する。

【特許請求の顧問】

【請求項1】A I 表面層を含む金属積層膜のA I 膜が陽 極酸化されて微細孔を有するAI脳極酸化膜が形成さ れ、該A1陽極酸化膜の微細孔内に電解析出により円柱 状電極が形成されてなることを特徴とする電子放出素

【請求項2】前記金属積層膜は、金属板上にA L 芽膜が 形成された構造であることを特徴とする請求項1記載の 電子放出素子。

【請求項3】前記金属積層膜は、絶縁基板上にA1 轉膜 10 表面層を含む少なくとも2層以上の金属薄膜層が形成さ れた構造であることを特徴とする請求項1記載の電子放 出妻子。

【請求項4】前記A1陽極酸化膜表面にゲート電極が形 成され、該ゲート電極関口部のみに円柱状電極が形成さ れ、該門柱状電極近傍の該A1陽極酸化膜がエッチング されて少なくとも1個以上の円柱状電極を1つの電子放 出業子とすることを特徴とする請求項1記載の電子放出 來子。

膜を形成する工程と、

次いで、該金属薄膜をエッチングして該微細孔が露出さ れた閉口部を有する金属薄膜パターンを形成する工程

次いで、電解折出により該開口部内の該微細孔内に円柱 状電極を形成する工程と、

次いで、該円柱状電極近傍の該AI陽極酸化膜をエッチ ングする工程とを含むことを特徴とする電子放出素子の 製造方法。

【請求項6】前記円柱状電極近傍のA1陽極酸化膜のエ 30 ッチングを該円柱状電板の先端が表面に出る状態でスト ップさせることを特徴とする請求項5記載の電子放出素 子の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子放出素子及びその 製造方法に係り、詳しくは、フラットCRT、高速電子 素子等に適用することができ、特に電子放出を行う針状 カソード電極の密度を高くして単位面積当りの電子放出 量を大きくすることができる電子放出素子及びその製造 40 方法に関する。

[0002]

【従来の技術】従来の電子放出素子については、例えば 特別平2-250233号公報で報告されたものがあ り、ここでは、重ね合わせ体を陸極材料層パターンの線 状部分を横切るように切断するだけで、陰極材料がアレ - イ状に分布して露出したアレイ基体が得られ、しかも、 電子引出用窓や引出電極が、各陸極材料の露出面に選択 的に形成しておいたマスクの除去に伴い、その上の金属 層が除去されることにより形成されるため、困難であっ 50 【作用】請求項1配載の発明では、A1表面層を含む金

2 た斜蒸着と正蒸着の同時制御が不要となり、しかも、電 子引出用窓と陰極の位置合わせが極めて簡単に精度良く 行うことができるという利点を有する。

[0003]

【発明が解決しようとする課題】 しかしながら、上記し た従来の電子放出素子では、導電部を形成する際、フォ トエッチング法を用いていたため、各種種部の微細化を 行うのが困難であった。また、絶縁基板の積み重ねを行 っているため、絶縁基板間の電極間距離が大きくなって しまっていた。

【0004】このため、針状カソード電極間距離が大き く(電極の密度が低いため)、単位面積当りの電子放出 量を大きくすることができないという問題があった。そ こで本発明は、電子放出を行う針状カソード電板の密度 を高くすることにより単位面積当りの電子放出量を大き くすることができる電子放出案子及びその製造方法を提 供することを目的としている。

[0005]

【課題を解決するための手段】請求項1記載の発明は、

【翻求項 5】 徳細孔を有するA 1 陽極酸化膿上に金属薬 20 A 1 表面層を含む金属種層膜のA 1 膜が陽極酸化されて 微細孔を有するAI脇極酸化膜が形成され、該A1脇極 酸化膜の微細孔内に電解析出により円柱状電極が形成さ れてなることを特徴とするものである。請求項2紀載の 発明は、請求項1記載の発明において、前記金属積層膜 は、金属板上にA1薄膜が形成された構造であることを 特徴とするものである。

> 【0006】請求項3記載の発明は、請求項1記載の発 明において、前記金属積層膜は、絶縁基板上にA1薄膜 表面層を含む少なくとも2層以上の金属薄膜層が形成さ れた構造であることを特徴とするものである。請求項4 記載の発明は、請求項1記載の発明において、前記AI 陽極酸化膜表面にゲート電極が形成され、該ゲート電極 開口部のみに円柱状電極が形成され、該円柱状電極近傍 の該A1陽極酸化膜がエッチングされて少なくとも1個 以上の円柱状電極を1つの電子放出案子とすることを特 徴とするものである。

> 【0007】請求項5配載の発明は、微細孔を育するA 1陽極酸化額上に金属薄膜を形成する工程と、次いで、 該金属薄膜をエッチングして該微細孔が露出された関ロ 部を有する金属薄膜パターンを形成する工程と、次い で、気解折出により眩厥口部内の眩微細孔内に円柱状像 極を形成する工程と、次いで、該円柱状電極近傍の該A 1 脇極酸化膜をエッチングする工程とを含むことを特徴 とするものである。

> 【0008】請求項6記載の発明は、請求項5記載の発 明において、前記円柱状電極近傍の前記A 1 陽極酸化膜 のエッチングを該円柱状電極の先端が表面に出る状態で ストップさせることを特徴とするものである。

[0009]

ž

15

12

属種層膜を用いてA i 膜を陽極酸化して微細孔を有する AI陽極酸化膜を形成した後、他の金属層を電極として 機細孔内に低解析出により円柱状電極を形成して構成し たため、その金属層を電子放出倒力ソード電極とするこ とができ、電子放出素子の製造工程を容易にすることが できる。そして、A I 脳極酸化膜は1μm以下 (0.数μ m)のピッチで微細孔を有しているため、孔内に形成さ れた円柱状電板を高密度で形成することができる。この ため、単位面積当りの電子放出量を高くすることができ 不要とすることができ、製造工程を容易にすることがで きる。・

【0010】請求項2記載の発明では、金属積層膜を金 属板上にA 1 薄膜が形成された構造としており、このよ うにA1を轉膜で形成して構成したため、膜厚管理が容 易な薄いA!陽極酸化膜を得ることができ、孔内に形成 された円柱状電極とA1陽極酸化膜表面との距離を精密 制御することができる。このため、A1陽極酸化膜上に ゲート電極を形成した場合の円柱状電極とゲート電極と 定(確解分布を一定)とすることができ、電子放出効率 を一定化することができる。

【0011】請求項3記載の発明では、金属積層膜を絶 緑基板上にA L 薄膜表面層を含む少なくとも2 層以上の 金属薄膜層が形成された構造としており、このように金 园積層膜を絶縁基板上に薄膜形成して構成したため、微 細なプロック状電子放出部を形成することができる。こ のため、電子放出素子の駆動を容易にすることができ

【0012】請求項4記載の発明では、前記A1陽極酸 30 化膜表面にゲート電極が形成され、該ゲート電極関口部 のみに円柱状電極が形成され、円柱状電極近傍のA1隔 極酸化膜がエッチングされて少なくとも1個以上の円柱 状電極を1つの電子放出素子とする構造としており、こ のようにエッチングにより円柱状電極先端を突出させて 構成したため、円柱エッジ部での電界分布を強くするこ とができ、電子放出効率を高くすることができるうえ、 A1陽極酸化膜上に電子放出部に対応したゲート電極を 効率良く形成することができる。

載の電子放出素子を容易な製造工程で形成することがで きる。請求項6記載の発明では、円柱状電極先端が突出 した状態でA 1 陽極酸化膜のエッチングを終了させるよ うにしたため、硫酸浴等で形成された 0.0数μm径の数 細孔を有するA1陽極酸化膜孔内に形成された円柱状電 概 (0.0数 u m径) が倒れて隣接円柱状電極と接触する ことを防ぐことができる。

[0 0 1 4]

【実施例】以下、本発明を図面に基づいて説明する。

放出来子の構造を示す断面図である。図1において、1. はN1等の金属層であり、2は微細孔2aを有するA1 陽極酸化膜であり、3は微細孔2a内に電解析出により 形成された円柱状電極である。

【0015】次に、その電子放出案子の製造方法を説明 する。まず、Ni金属層1上にAlをスパッタしてAl 層を形成した後、A1層を隔極酸化して微細孔2aを有 するA I 陽極酸化膜2を形成する。そして、金属層1を 電板とし、電解折出により微細孔2a内に円柱状電極3 る他、円柱状電極径が非常に小さいため、針先端加工を 10 を形成することにより、図1に示すようなNi金属層1 をカソード電極として円柱状電極3から電子を放出させ ることができる電子放出素子を得ることができる。

【0016】 このように、本実施例では、A1表面層を 含む金属積層膜を用いてA1膜を隔極酸化して微細孔2 aを有するA1陽極酸化膜2を形成した後、他の金属層 1を電極として微細孔2 a内に電解析出により円柱状電 極3を形成して構成したため、その金属層1を電子放出 側カソード電極とすることができ、電子放出業子の製造 工程を容易にすることができる。そして、AI陽極酸化 有しているため、孔2a内に形成された円柱状電極3を 高密度で形成することができる。このため、単位面積当 りの電子放出量を高くすることができる他、円柱状電板 径が非常に小さいため、針先端加工も不要とすることが でき、製造工程を容易にすることができる。

> 【0017】また、本実施例では、金属積層膜を金属層 1 上にA 1 薄膜が形成された構造としており、このよう にAlを薄膜で形成して構成したため、膜厚管理が容易 な癖いA1陽極酸化酸2を得ることができ、孔2a内に 形成された円柱状電極3とA1隔極酸化膜2表面との距 離を結密制御することができる。このため、A ! 陽極酸 化膜2上にゲート電極を形成した場合の円柱状電極3と ゲート電板との距離、あるいは針状電板とアノード電板 との距離を一定(電解分布を一定)とすることができ、 電子放出効率を一定化することができる。

(第2実施例) 図2は本発明の第2実施例に則した電子 放出案子の構造を示す断面図であり、図2(b)は図2 (a) のA部分の拡大図である。図2において、図1と 同一符号は同一または相当部分を示し、4はガラス基板 $[0\ 0\ 1\ 3]$ 請求項5記載の発明では、上記請求項4記 40 であり、5はガラス基板4上に形成された Λ u等からな る金属層である。

【0018】次に、その電子放出索子の製造方法を説明 する。まず、ガラス基板4上にAu金属層5及びA1等 膜を形成し、両幕膜をプロックパターン状にパターニン グレた後、A1薄膜を脳極酸化して微細孔2aを有する A 1陽極酸化膜2を形成する。そして、Au金属層5を 電極とし、電解折出により微細孔2 a 内に円柱状電極3 を形成することにより図2 (a)、(b) に示すような 電子放出業子を得ることができる。ここでは、プロック (第1 実施例) 図1は本発明の第1 実施例に則した電子 50 状に形成された電子放出部がAu会属層 5 をカソード電 5

極として形成されており、Au金属層5電極の電位をON、OFFすることによりカソード電極側での電子放出 制御を行うことができる。

【0019】本実施例では、金属積層膜を絶縁ガラス基 板4上にA1薄膜表面層を含む金属薄膜層が形成された 構造としており、このように金属積層膜を絶縁ガラス基 板4上に薄膜形成して構成したため、微細なブロック状 電子放出部を形成することができる。このため、電子放 出素子の駆動を容易にすることができる。

(第3 実施例) 図3は本発明の第3 実施例に則した電子 10 放出素子の製造力法を説明する図であり、図3 (e) は図3 (f) のB部分の拡大図である。図3において、図1、2と同一符号は同一または相当部分を示し、2 bは A I 薄膜であり、6、7は各々ゲート電極となる金属薄膜パターン、レジストマスクであり、8 は金属薄膜パターン6に形成された所口部である。

【0020】 次に、その電子放出案子の製造方法を説明する。まず、図3(a)に示すように、ガラス基板4上にAu 金属層5及びAl 薄膜2bを形成した後、図3(b)に示すように、Al 様膜2bを形成した後、図3(c)に示すように、Al 様膜2bを形成する。次に、図3(c)に示すように、Al 陽極酸化度2上にゲート電極となる金属薄膜を形成し、金属薄膜上にレジストマスク7を形以した後、このレジストマスク7を用い、金属薄膜をエッチングして微細孔2aが露出された閉口部8 造を有する金属薄膜ターン6を形成する。

[0021] 次いで、全属層5を電極とし、電解析出に より開口部8内の教師孔2a内に円柱状電極3を形成す る。そして、円柱状電極3近傍のA1陽極酸化膜2をエ ッチングした後、レジストマスク7を剝離することによ 30 り、図3(d)、(e)に示すような電子放出素子を得 ることができる。

【0022】本実施例では、A1陽極酸化膜2表面にゲート電極となる金属棒膜パターン6を形成し、この金属棒膜パターン6の同口部8のみに円柱状電極3が形成され、この円柱状電極3近傍のA1陽極酸化膜2部分をエッチングし、円柱状電板61つの電子放出索子と3方とである構造としており、このようにエッチングにより円柱状電板3先端を突出させて構成したため、円柱エッジ部での電解分布を強くすることができ、電子放出効率を高くする40

ことができるうえ、A1陽極酸化膜2上に電子放出部に 対応したゲート電極を効率良く形成することができる。

(第4実施例)図4は本発明の第4実施例に則した電子 放出素子の構造を示す断面図である。図4において、図 3と同一符号は同一または相当部分を示す。

[0023] 図3の第3実施例では、円柱状電極3近等のA1陽極酸化度2を全て除去して構成する場合について説明したが、本実施例では、円柱状電極3先端が突出した状態でA1陽極酸化膜2のエッチングを終了させるようにして、円柱状電極3補強用にA1陽極酸化膜2を残して構成している。このため、硫酸浴等で形成された0.0数μm径の微細孔2aを有するA1隔極酸化膜2孔2a内に形成された円柱状電極3(0.0数μm径)が倒れて関接円柱状電極3と接触することを防ぐことができる。

[0024]

【発明の効果】本発明によれば、電子放出を行う針状力 ソード電極の密度を高くすることにより単価面積当りの 電子放出量を大きくすることができるという効果があ る。

「図面の簡単なが明】

【図1】本発明の第1実施例に則した電子放出棄子の構造を示す断面図である。

【図2】本発明の第2実施例に則した電子放出素子の構造を示す断面図である。

【図3】本発明の第3実施例に則した電子放出素子の製造方法を説明する図である。

【図4】本発明の第4実施例に則した電子放出素子の構造を示す断面図である。

- 30 【符号の説明】
 - 1 金属層
 - 2 A L 陽極酸化購
 - 2 a 微細孔
 - 2 b A 1 薄膜
 - 3 円柱状電板
 - 4 ガラス基板
 - 5 金属層
 - 6 金属薄膜パターン
 - レジストマスク
 - 8 南口部

(図1)

[図1]

(a)
(a)
(b)
(b)
(c)
(d)
(e)
(a)
(a)
(a)
(b)
(b)
(c)
(d)
(e)

THIS PAGE BLANK (USPTO)