Objetivos

Utilizar un generador de números aleatorios para obtener (a) secuencias de números para señalar sus características estadísticas y (b) una configuración inicial de un sistema en 2D y otro en 3D, dados los parámetros suficientes para su implementación.

Actividad 1

Elaborar un programa para generar números aleatorios de acuerdo con el siguiente algoritmo:

$$x_n = (5x_{n-1} + 1) \mod(16)$$

El programa deberá incluir:

- a) La lectura por pantalla de la semilla y la salida como una tabla de dos columnas (n y x_n), para n= 1, 2, ..., 100. Hacerlo para tres semillas diferentes.
- Reportar en cada caso de (i) las características de la secuencia de números aleatorios.

Las semillas utilizadas fueron 27.6, 73, y 153.5. Se muestran sus tablas respectivas a continuación:

	n	x_n		n	x_n		n	x_n
0	1	11.0	0	1	14.0	0	1	0.5
1	2	8.0	1	2	7.0	1	2	3.5
2	3	9.0	2	3	4.0	2	3	2.5
3	4	14.0	3	4	5.0	3	4	13.5
4	5	7.0	4	5	10.0	4	5	4.5
95	96	2.0	95	96	9.0	95	96	9.5
96	97	11.0	96	97	14.0	96	97	0.5
97	98	8.0	97	98	7.0	97	98	3.5
98	99	9.0	98	99	4.0	98	99	2.5
99	100	14.0	99	100	5.0	99	100	13.5

100 rows × 2 columns 100 rows × 2 columns 100 rows × 2 columns

Desarrollo Experimental II – Tarea 2

Semilla 1 - 27.6:

Se observa que la secuencia comienza en 11.0, termina en 2.0, y es un conjunto de 16 valores. En este caso todos los valores fueron números enteros.

Semilla 2 - 73:

Se observa que la secuencia comienza en 14.0, termina en 9, y es un conjunto de 16 valores. En este caso todos los valores fueron números enteros.

• Semilla 3 – 153.5:

:Se observa que la secuencia comienza en 0.5, termina en 9.5, y es un conjunto de 16 valores. En este caso los valores que tienen un decimal de 0.5.

Actividad 2

Elaborar un programa para generar números aleatorios con el generador que incluye su compilador. El programa deberá incluir:

- a) La lectura por pantalla de la semilla y la salida por pantalla de dos columnas (n y x_n), para n= 1, 2, ..., 100.
- b) La lectura por pantalla de dos semillas y la salida en archivo de dos columnas (x_n , y_n), donde y son números aleatorios. Hacerlo para 100, 1000 y 10000 parejas de números aleatorios.
- c) Graficar el resultado obtenido para los tres casos de (ii).

```
#Pedimos al usuario que defina el valor de las semillas
print('Ingrese el valor de la primera semilla de la muestra aleatoria:', end='')
semU2_1 = int(input())
print('Ingrese el valor de la segunda semilla de la muestra aleatoria:', end='')
semU2_2 = int(input())
```

Ingrese el valor de la primera semilla de la muestra aleatoria:50 Ingrese el valor de la segunda semilla de la muestra aleatoria:103

Actividad 3

Configuración inicial aleatoria bidimensional Implementar un código para construir una configuración inicial aleatoria bidimensional sin traslapes. Ejecutar su programa para obtener configuraciones iniciales para los casos siguientes:

- a) Concentración reducida fija en $n^* = 0.4$ y N = 100, 500 y 1000 partículas.
- b) Número de partículas fijo en N=500 y $n^* = 0.2$, 0.6 y 0.8.

En cada caso:

- i) Incluir en su código la instrucción que lleve a mostrar la longitud de la celda de simulación.
- ii) Mostrar gráficamente la distribución de partículas obtenida donde se aprecie con claridad la longitud de la celda correspondiente.

Antonio Reyes Montaño 216212080

Desarrollo Experimental II – Tarea 2

x_n

x_n

Actividad 4

Configuración inicial aleatoria tridimensional Modificar la Actividad 3 para construir configuraciones iniciales aleatorias tridimensionales sin traslapes. Puede utilizar los mismos valores de los parámetros.

Muestra 1: n*=0.4, N=100, L=15.81

Muestra 2: n*=0.4, N=500, L=35.36

Muestra 4: n*=0.2, N=500, L=50

Muestra 5: n*=0.6, N=500, L=28.87

Muestra 6: n*=0.8, N=500, L=25

