Théorème d'inversion locale :

I Le développement

Le but de ce développement est de démontrer le théorème d'inversion locale en calcul différentiel.

Dans tout ce développement, on considère $\mathbb K$ un corps commutatif quelconque, E et F deux $\mathbb K$ -espaces vectoriels de dimension finie, $\mathcal U$ un ouvert non vide de $E, f: \mathcal U \longrightarrow F$.

Théorème 1 : Théorème d'inversion locale [Gourdon, p.341] :

Soient $f: \mathcal{U} \longrightarrow \mathcal{V}$ et $a \in \mathcal{U}$.

Si f est de classe \mathcal{C}^1 et que df_a est inversible, alors il existe un voisinage ouvert $\widetilde{\mathcal{U}}$ de a et \mathcal{W} de f(a) tels que :

 $*f|_{\widetilde{\mathcal{U}}}:\widetilde{\mathcal{U}}\longrightarrow\mathcal{W}$ soit une bijection.

 $*g = f|_{\widetilde{\mathcal{U}}}^{-1} : \mathcal{W} \longrightarrow \widetilde{\mathcal{U}}$ est continue.

* g est de classe \mathcal{C}^1 et pour tout $x \in \widetilde{\mathcal{U}}$, $dg_{f(x)} = (df_x)^{-1}$.

Preuve:

Soient $f: \mathcal{U} \longrightarrow \mathcal{V}$ et $a \in \mathcal{U}$.

On suppose que f est de classe C^1 et que df(a) est inversible.

* Quitte à considérer la fonction $x \mapsto df_a^{-1}(f(a+x)-f(a))$, on peut supposer que a=0, f(a)=0 et $df_a=\mathrm{Id}_E$.

Comme f est de classe C^1 , df est continue et donc :

$$\exists r > 0 \text{ tq } \mathcal{B}_f(0,r) \subseteq \mathcal{U} \text{ et } |||df_x - df_0||| = |||df_x - \mathrm{Id}_E||| \le \frac{1}{2}$$

Ainsi, pour tout $x \in \mathcal{B}_o(0,r)$, $||df_x - \mathrm{Id}_E|| < 1$ et donc $(df_x - \mathrm{Id}_E) + \mathrm{Id}_E$ est inversible et d'inverse $\sum_{n=0}^{+\infty} (-1)^n (df_x - \mathrm{Id}_E)^n$. D'où :

$$\|df_x^{-1}\| \le \sum_{n=0}^{+\infty} \|df_x - \mathrm{Id}_E\|^n \le \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 2$$

* Soit $y \in \mathcal{B}_o\left(0, \frac{r}{2}\right)$.

Posons $h: x \longmapsto x + y - f(x)$.

On a h de classe \mathcal{C}^1 et pour tout $x \in \mathcal{B}_o(0,r)$, $|||dh_x||| = |||\mathrm{Id}_E - df_x||| \leq \frac{1}{2}$. Donc par l'inégalité des accroissements finis, on a :

$$\forall x, x' \in \mathcal{B}_f(0, r), \ \|h(x) - h(x')\| \le \frac{1}{2} \|x - x'\|$$
 (par continuité de $\|\cdot\|$ et h)

En particulier, pour tout $x \in \mathcal{B}_f(0,r)$:

$$||h(x)|| \le ||y|| + ||x - f(x)|| \le ||y|| + ||h(x) - h(0)|| < \frac{1}{2}(r + ||x||) \le r$$

Donc h est une fonction $\frac{1}{2}$ -contractante de $\mathcal{B}_f(0,r)$ dans $\mathcal{B}_o(0,r) \subseteq \mathcal{B}_f(0,r)$ (qui est complet). Ainsi, par le théorème du point fixe, il existe un unique $x \in \mathcal{B}_f(0,r)$ tel que h(x) = x et puisque $h(\mathcal{B}_f(0,r)) \subseteq \mathcal{B}_o(0,r)$, on a $x \in \mathcal{B}_o(0,r)$ et f(x) = y.

On pose alors $\widetilde{\mathcal{U}} = f^{-1}\left(\mathcal{B}_o\left(0,\frac{r}{2}\right)\right) \cap \mathcal{B}_o(0,r)$ et $\mathcal{W} = \mathcal{B}_o\left(0,\frac{r}{2}\right)$.

L'application $f|_{\widetilde{\mathcal{U}}}:\widetilde{\mathcal{U}}\longrightarrow\mathcal{W}$ est alors une bijection et on note g son inverse.

* On pose h définie sur $\mathcal{B}_o(0,r)$ par h(x) = x - f(x). Pour tout $x \in \mathcal{B}_o(0,r)$, on a alors x = h(x) + f(x) et ainsi :

$$\forall x, x' \in \mathcal{B}_o(0, r), \|x - x'\| \le \|h(x) - h(x')\| + \|f(x) - f(x')\|$$

$$\le \frac{1}{2} \|x - x'\| + \|f(x) - f(x')\|$$

Donc $||x - x'|| \le 2 ||f(x) - f(x')||$ et ainsi :

$$\forall y, y' \in \mathcal{W}, \ \|g(y) - g(y')\| \le 2 \|y - y'\|$$

Finalement, g est une application 2-lipschitzienne et donc continue.

* Soit $y \in \mathcal{W}$.

Il existe alors $x \in \widetilde{\mathcal{U}}$ tel que f(x) = y.

Soit $w \in E$ tel que $y + w \in \mathcal{W}$ et posons v = g(y + w) - g(y).

On a alors $||v|| \le 2 ||w||$ et w = f(x+v) - f(x) (car v+x = g(y+w)). Donc :

$$\Delta(w) = g(y+w) - g(y) - df_x^{-1}(w) = v - df_x^{-1} (f(x+v) - f(x))$$
$$= -df_x^{-1} (f(x+v) - f(x) - df_x(v))$$

Ainsi, on a $\|\Delta(w)\| \le \|df_x^{-1}\| \|f(x+v) - f(x) - df_x(v)\| \le 2 \|v\| \varepsilon(v)$ (avec $\lim_{v\to 0} \varepsilon(v) = 0$). D'où :

$$\|\Delta(w)\| \le 4 \|w\| \, \varepsilon(g(y+w)-g(y)) \underset{w\to 0}{\longrightarrow} 0$$
 (par continuité de g)

Finalement, g est différentiable en y = f(x) et $dg_{f(x)} = df_x^{-1}$ et par continuité de l'inverse et de df, on a que dg est continue et ainsi g est de classe \mathcal{C}^1 .

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé le théorème du point fixe de Banach dont on rappelle l'énoncé ci-dessous :

Théorème 2 : Théorème du point fixe de Banach [Gourdon, p.21] :

Soient (E, d) un espace métrique complet et une application $f: E \longrightarrow E$. Si f est k-contractante, alors f admet un unique point fixe sur E.

II.2 Pour aller plus loin...

Le théorème d'inversion locale possède beaucoup de conséquences et on en donne ici deux :

Corollaire 3: [Gourdon, p.343]

Soient E et F deux espaces de Banach et U un ouvert de E.

Si $f: U \longrightarrow F$ est de classe C^1 et telle que pour tout $x \in U$, df_x soit inversible, alors f est une application ouverte.

Preuve:

Soient E et F deux espaces de Banach, U un ouvert de E et $f:U\longrightarrow F$ une application de classe \mathcal{C}^1 .

On suppose que pour tout $x \in \mathcal{U}$, df_x soit inversible.

On considère Ω un ouvert de U et $x \in \Omega$.

Par le théorème d'inversion locale, on peut trouver un voisinage ouvert $V_x \subseteq \Omega$ et un voisinage ouvert W_x de f(x) tels que $f|_{V_x}$ soit une bijection de V_x sur W_x . En particulier, $f(V_x) = W_x$ et on a alors :

$$f(\Omega) = f\left(\bigcup_{x \in \Omega} V_x\right) = \bigcup_{x \in \Omega} f(V_x) = \bigcup_{x \in \Omega} W_x$$

Ainsi, $f(\Omega)$ est un ouvert de F et donc f est une application ouverte.

Théorème 4 : Théorème d'inversion globale [Gourdon, p.343] :

Soient E et F deux espaces de Banach et U un ouvert de E.

Si f est injective et de classe \mathcal{C}^1 , alors les assertions suivantes sont équivalentes :

* Pour tout $x \in U$, df_x est inversible et bicontinue.

*V = f(U) est un ouvert de F et $f^{-1}: V \longrightarrow U$ est de classe \mathcal{C}^1 .

Preuve:

Soient E et F deux espaces de Banach et U un ouvert de E et $f:U\longrightarrow F$ une application injective et de classe \mathcal{C}^1 .

* Supposons que pour tout $x \in U$, df_x est inversible et bicontinue.

D'après le corollaire précédent, V = f(U) est un ouvert. La fonction f est donc une bijection de l'ouvert U sur l'ouvert V.

Soient $x \in U$ et $y = f(x) \in V$.

Par le théorème d'inversion locale, on peut trouver un voisinage ouvert A de x et un voisinage ouvert B de f(x) tels que $f|_A:A\longrightarrow B$ soit bijective et $f|_A^{-1}$ soit de classe \mathcal{C}^1 .

Comme $f^{-1}|_B = f|_A^{-1}$, on en déduit que f^{-1} est de classe \mathcal{C}^1 sur un voisinage de f(x) (ici B) et puisque ceci est vrai pour tout $x \in V$, on a finalement que f^{-1} est de classe \mathcal{C}^1 sur V.

* Supposons que V = f(U) est un ouvert de F et $f^{-1}: V \longrightarrow U$ est de classe \mathcal{C}^1 . En notant $g = f^{-1}$, on a $g \circ f = \mathrm{Id}_U$ et donc puisque f et g sont de classe \mathcal{C}^1 , on a $dg_{f(x)} \circ df_x = \mathrm{Id}_E$ pour tout $x \in U$.

De même, la relation $f \circ g = \operatorname{Id}_V$ entraı̂ne que $df_x \circ dg_{f(x)} = \operatorname{Id}_F$ pour tout $x \in U$. On en déduit que pour tout $x \in U$, df_x est inversible et d'inverse $dg_{f(x)}$, donc continu.

Ainsi, on a démontré l'équivalence voulue.

Remarque 5 : [Gourdon, p.343]

D'après le théorème de Banach, une application linéaire continue et bijective entre deux espaces de Banach est bicontinue. Donc dans les deux résultats précédents, on peut remplacer l'hypothèse " df_x est inversible et bicontinue" par " df_x est inversible" (df_x est forcément continue par définition d'une différentielle).

II.3 Recasages

Recasages : 214 - 215.

III Bibliographie

— Xavier Gourdon, Les maths en tête, Analyse.