Especificación funcional Conversión DNP3 a IEC104

CONTENIDO

Introducción	2
Conversión FLAG Digitales	2
Conversión FLAG Digitales	2
Conversión FLAG Analógicos	2
Objetos implementados	2
Objeto 1 SINGLE-BIT BINARY INPUT	2
Objeto 2 SINGLE-BIT BINARY INPUT CHANGE	2
Objeto 3 DOUBLE-BIT BINARY INPUT	3
Objeto 4 DOUBLE-BIT BINARY INPUT CHANGE	3
Objeto 10 SINGLE-BIT BINARY OUTPUT	3
Objeto 11 SINGLE-BIT BINARY OUTPUT CHANGE	3
Objeto 12	3
Objeto 20 16/32-Bit Binary Counter	3
Objeto 21 16/32-Bit Binary Counter FREEZE	3
Objeto 22 16/32-Bit Binary Counter CHANGE	4
Objeto 23 16/32-Bit Binary Counter FREEZE CHANGE	4
Objeto 30	5
Objeto 31	5
Objeto 32	5
Objeto 40	5
Objeto 42	6
Objeto 50	6
Objeto 52	6
Calificadores Implementados	6
Configuración del servicio	7

Introducción

El presente documento establece los alcances y particularidades del servicio de conversión de DNP3 serie a IEC104 SLAVE

Conversión FLAG Digitales

El FLAG DNP3 correspondiente a las entradas digitales tanto simples como dobles se transforma en el descriptor de calidad de IEC con las siguientes reglas

– DNP 3 bit 7, STATE→ IEC bit 0, SPI / DPI

DNP 3 bit 6, STATE(doble) → IEC bit 1, DPI

– DNP 3 bit 4, LOCAL FORCED → IEC bit 5, SUBSTITUTED

DNP 3 bit 3, REMOTE FORCED → IEC bit 5, SUBSTITUTED

DNP 3 bit 2, COMM LOST → IEC bit 6, TOPICAL

DNP 3 bit 0, ON_LINE
→ IEC bit 7, VALID

Conversión FLAG Contadores

El flag DNP 3 correspondiente a los contadores se transforma en el descriptor IEC

– DNP 3 bit 0, ON-LINE→ IEC bit 7, VALID

DNP 3 bits 4y 5 , ROLLOVER → IEC bit 5, CARRY

Conversión FLAG Analógicos

Objetos implementados

Objeto 1 SINGLE-BIT BINARY INPUT

- Variación 1 : se transmite el estado únicamente como "SPI type identification 1"
- Variación 2 : se transmite el estado y flag como "SPI type identification 1"

Objeto 2 SINGLE-BIT BINARY INPUT CHANGE

- Variación 1 : se transmite el estado y flag como "SPI type identification 1"
- Variación 2: se transmite el estado, flag y timestamp como "SPI type identification 30"

Variación 3: NO IMPLEMENTADA

Objeto 3 DOUBLE-BIT BINARY INPUT

- Variación 1 : se transmite el estado únicamente como "SPI type identification 3"
- Variación 2 : se transmite el estado y flag como "SPI type identification 3"

Objeto 4 DOUBLE-BIT BINARY INPUT CHANGE

- Variación 1 : se transmite el estado únicamente como "SPI type identification 3"
- Variación 2: se transmite el estado, flag y timestamp como "SPI type identification 31"

Objeto 10 SINGLE-BIT BINARY OUTPUT

- Variación 1 : se transmite el estado únicamente como "SPI type identification 1"
- Variación 2 : se transmite el estado y flag como "SPI type identification 1"

Objeto 11 SINGLE-BIT BINARY OUTPUT CHANGE

- Variación 1 : se transmite el estado y flag como "SPI type identification 1"
- Variación 2: se transmite el estado, flag y timestamp como "SPI type identification 30"
- Variación 3: NO IMPLEMENTADA

Objeto 12

Variación 1

Objeto 20 16/32-Bit Binary Counter

- Variación 1: (32bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 2: (16bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 3: (Δ32bits)NO IMPLEMENTADA
- Variación 4: (Δ16bits)NO IMPLEMENTADA
- Variación 5: (32bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 6: (16bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 7: (Δ32bits)NO IMPLEMENTADA
- Variación 8: (Δ16bits)NO IMPLEMENTADA

Objeto 21 16/32-Bit Binary Counter FREEZE

Variación 1: (32bits)se transmite el estado y flag como "SPI type identification 15"

- Variación 2: (16bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 3: (Δ32bits)NO IMPLEMENTADA
- Variación 4: (Δ16bits)NO IMPLEMENTADA
- Variación 5: : (32bits)se transmite el estado, flag y timestamp como "SPI type identification 37"
- Variación 6: : (32bits)se transmite el estado, flag y timestamp como "SPI type identification 37"
- Variación 7: (Δ32bits)NO IMPLEMENTADA
- Variación 8: (Δ16bits)NO IMPLEMENTADA
- Variación 9: (32bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 10: (16bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 11: (Δ32bits)NO IMPLEMENTADA
- Variación 12: (Δ16bits)NO IMPLEMENTADA

Objeto 22 16/32-Bit Binary Counter CHANGE

- Variación 1: (32bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 2: (16bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 3: (Δ32bits)NO IMPLEMENTADA
- Variación 4: (Δ16bits)NO IMPLEMENTADA
- Variación 5: (32bits)se transmite el estado y flag como "SPI type identification 37"
- Variación 6: (16bits)se transmite el estado y flag como "SPI type identification 37"

Objeto 23 16/32-Bit Binary Counter FREEZE CHANGE

- Variación 1 : (32bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 2 : (16bits)se transmite el estado y flag como "SPI type identification 15"
- Variación 3: (Δ32bits)NO IMPLEMENTADA
- Variación 4: (Δ16bits)NO IMPLEMENTADA
- Variación 5 : (32bits)se transmite el estado y flag como "SPI type identification 37"
- Variación 6: (16bits)se transmite el estado y flag como "SPI type identification 37"

Objeto 30

- Variación 1 : se transmiten los 16 bits menos significativos del estado y flag como "SPI type identification 11"
- Variación 2 : se transmite el estado y flag como "SPI type identification 1"
- Variación 3 : se transmiten los 16 bits menos significativos del estado como "SPI type identification 11"
- Variación 4 : se transmite el estado como "SPI type identification 1"

Objeto 31

- Variación 1 : se transmiten los 16 bits menos significativos del estado y flag como "SPI type identification 11"
- Variación 2 : se transmite el estado y flag como "SPI type identification 11"
- Variación 3 : se transmiten los 16 bits menos significativos del estado como "SPI type identification 35"
- Variación 4 : se transmite el estado y timestamp como "SPI type identification 35"
- Variación 5 : se transmiten los 16 bits menos significativos del estado como "SPI type identification 11"
- Variación 6 : se transmite el estado como "SPI type identification 11"

Objeto 32

- Variación 1 : se transmiten los 16 bits menos significativos del estado y flag como "SPI type identification 11"
- Variación 2 : se transmite el estado y flag como "SPI type identification 11"
- Variación 3: se transmiten los 16 bits menos significativos del estado, flag y timestamp como "SPI type identification 35"
- Variación 4 : se transmite el estado, flag y timestamp como "SPI type identification 35"

Objeto 40

- Variación 1 : se transmiten los 16 bits menos significativos del estado y flag como "SPI type identification 11"
- Variación 2 : se transmite el estado y flag como "SPI type identification 11"
- Variación 3 : NO IMPLEMENTADA

Objeto 42

- Variación 1 : se transmiten los 16 bits menos significativos del estado y flag como "SPI type identification 11"
- Variación 2 : se transmite el estado y flag como "SPI type identification 11"
- Variación 3 : NO IMPLEMENTADA
- Variación 4 : NO IMPLEMENTADA
- Variación 5 : NO IMPLEMENTADA
- Variación 6 : NO IMPLEMENTADA
- Variación 7 : NO IMPLEMENTADA

Objeto 50

- Variación 1 : NO IMPLEMENTADA
- Variación 2 : NO IMPLEMENTADA

Objeto 52

- Variación 1 : NO IMPLEMENTADA
- Variación 2 : NO IMPLEMENTADA

Calificadores Implementados

Configuración del servicio

La configuración del servicio se realiza utilizando el software de configuración para equipos RIC. Se muestra una imagen de los campos configurar en el software.

Slave Address

Este campo representa la dirección DNP3 del esclavo con el que estamos intentando comunicarnos por el puerto serie.

Master Address

Este campo representa la dirección DNP3 del maestro que se utilizará para interrogar al con el que estamos intentando comunicarnos por el puerto serie.

SPI Input Address

Esta dirección es la dirección base que se sumara a la dirección del objeto DNP.

SPI Output Address

Este campo representa la dirección DNP3 del esclavo con el que estamos intentando comunicarnos por el puerto serie.

DPI Input Address

Este campo representa la dirección DNP3 del esclavo con el que estamos intentando comunicarnos por el puerto serie.

ME Input Address

Este campo representa la dirección DNP3 del esclavo con el que estamos intentando comunicarnos por el puerto serie.

Me Output Address

Este campo representa la dirección DNP3 del esclavo con el que estamos intentando comunicarnos por el puerto serie.

SC Address

Este campo representa la dirección DNP3 del esclavo con el que estamos intentando comunicarnos por el puerto serie.

DC Address

Este campo representa la dirección DNP3 del esclavo con el que estamos intentando comunicarnos por el puerto serie.