PRIMEIRA EDIÇÃO

Métodos numéricos

PROBLEMAS NÃO LINEARES E INVERSOS

Fernando Pujaico Rivera

email: fernando.pujaico.rivera@gmail.com

Esta obra está liberada com uma Licença Creative Commons Atribuição - NãoComercial - SemDerivações 4.0 Internacional. Não é possível usar este arquivo excepto em conformidade com a Licença. Pode obter uma copia da Licença em: https://creativecommons.org/licenses/by-nc-nd/4.0/

Limite de responsabilidade e exceção de garantia: O autor tem feito seu melhor esforço na preparação deste material. Esta edição deve ser proporcionada sem nenhuma modificação. Se distribui gratuitamente com a esperança de que seja útil, porém sem nenhuma garantia expressa ou implícita em relação à exatidão ou completitude do conteúdo.

Garanta o "download" gratuito da versão digital do livro em https://trucomanx.github.io/metodos.numericos

Impresso no Brasil – ISBN: XXXXXXXXXXXX

Publicado: Edição Independente

Primeira impressão: XXXXXXXXXX 2020

Diagramação: Fernando Pujaico Rivera **Revisão de texto:** Fernando Pujaico Rivera

Capa: Fernando Pujaico Rivera

Ficha catalográfica

Pujaico Rivera, Fernando, 1982.

Métodos numéricos: Problemas não lineares e inversos / Fernando Pujaico Rivera. – Lavras, Edição Independente, 2020.

30 p.: XXXxXXXcm.

Inclui Bibliografia

ISBN:XXXXXXXXXXX

1. Métodos numéricos. 2. Problemas inversos. 3. Cáculo numérico. I. Título.

CDD: 515 CDU: 519.6

Agradecimentos

Patrocínio

Para investir nesta pesquisa e colaborar com o desenvolvimento e crescimento deste projeto, você pode comprar um exemplar do livro. Para ver uma lista com indicações sobre onde comprar:

- Uma versão impressa do livro, aceder a https://trucomanx.github.io/metodos.numericos/ comprar-impresso.html
- Uma versão digital do livro, aceder a https://trucomanx.github.io/metodos.numericos/ comprar-digital.html

Também pode colaborar com dinheiro em efetivo, desde 5 reais, pelo seguinte método:

• https://apoia.se/metodosnumericos

Para verificar a integridade do arquivo da versão digital deste livro, pode seguir as indicações publicadas no sitio oficial do projeto:

 https://trucomanx.github.io/metodos.numericos/verificar. html

Se já colaborou com a pesquisa, e se assim o deseja, sintase livre de me mandar um e-mail a fernando.pujaico.rivera@gmail.com, sugerindo abordar um novo assunto ou aprofundar em outro. Se seu pedido está dentro das minhas capacidades este será agregado sem falta na seguinte edição do livro.

Fernando Pujaico Rivera

Sumário

	Teoria geral	
1 c	Clasificação de dados	13
1.1	Regressão logística com MSE de $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$	14
1.1.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(x): \mathbb{R} o \mathbb{R}$	14
1.2	Regressão logística polinomial com MSE de $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$	16
1.2.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(x):\ \mathbb{R} ightarrow\mathbb{R}$ \ldots	16
1.3	Regressão logística com MSE de $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N ightarrow \mathbb{R}$	18
1.3.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N o \mathbb{R}$ $~\dots \dots$	18
1.4	Regressão logística polinomial com MSE de $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N ightarrow \mathbb{R}$	20
1.4.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N o \mathbb{R}$ $~\dots \dots$	21
Ш	Referências	
В	ibliografia	25
	Livros	25
	Artigos	25
	Outras fontes	25
ĺr	ndice	27

Teoria geral

1	Clasificação de dados 13
1.1	Regressão logística com MSE de $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$
1.2	Regressão logística polinomial com MSE de
	$f_{\mathbf{c}}(x):\ \mathbb{R} ightarrow\mathbb{R}$
1.3	Regressão logística com MSE de $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N ightarrow \mathbb{R}$
1.4	Regressão logística polinomial com MSE de
	$f_{\mathbf{c}}(\mathbf{x}): \ \mathbb{R}^N o \mathbb{R}$

1. Clasificação de dados

Definição 1.0.1 — Função sigmoid ou Função logística $f: \mathbb{R} \to \mathbb{R}$: Esta é uma função f(u), definida como na Eq. (1.1), com domínio que atinge todos os números reais e contradomínio entre 0 e 1. [Kur+01, pp. 27],

$$f(u) = \frac{1}{1 + e^{-u}}. (1.1)$$

A derivada da função logística cumpre a seguinte propriedade,

$$\frac{df(u)}{du} = f(u)(1 - f(u)). \tag{1.2}$$

Definição 1.0.2 — Função $logit: \mathbb{R} \to \mathbb{R}$: A função logit(f) é definida como na Eq. (1.3), com domínio entre 0 e 1 e contradomínio que atinge todos os números reais. [KK10, pp. 17],

$$u = logit(f),$$

$$= ln\left(\frac{f}{1-f}\right).$$
(1.3)

A função logit, pode entende-se como a função inversa da função logística.

Figura 1.1: Função sigmoide.

Figura 1.2: Função logit.

1.1 Regressão logística com MSE de $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

Teorema 1.1 — Classificação de dados em \mathbb{R} :

Dados, um conjunto de L dados $x_l \in \mathbb{R}, 1 \leq l \leq L$, repartidos em dois grupos etiquetados com os símbolos \triangle e \bigcirc , e separáveis por um hiperplano. Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R} \to \mathbb{R}$, com domínio $x \in \mathbb{R}$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor $\mathbf{c} = [c_1 \ c_2]^T \in \mathbb{R}^2$, como definido na Eq. (1.4),

$$y \equiv f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-h_{\mathbf{c}}(x)}}, \quad h_{\mathbf{c}}(x) = c_1 + c_2 x, (1.4)$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(x)$.

Podemos atribuir a cada valor x_l uma etiqueta $y_l \in \{A, 1-A\}$, onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático médio $e(\mathbf{c})$,

$$e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2,$$
 (1.5)

ponderado com os pesos $w_l \in \mathbb{R}_+$, pode ser achado com

$$\hat{\mathbf{c}} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A} \end{bmatrix}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_l \\ \vdots & \vdots \\ 1 & x_L \end{bmatrix}, \quad \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_l \\ \vdots \\ w_L \end{bmatrix} \end{pmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_1) \\ logit(y_2) \\ \vdots \\ logit(y_l) \\ \vdots \\ logit(y_L) \end{bmatrix}. \quad (1.6)$$

- Dado que a função de classificação $f_{\mathbf{c}}(x)$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(x)$ representa a probabilidade de que um valor x pertença ao grupo \bigcirc .
- O limiar da classificação de $f_{\mathbf{c}}(x)$ está no hiperplano $c_1 + c_2 x = 0$, provocando neste ponto um $f_{\mathbf{c}}(x) = 0.5$.

1.1.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

■ Exemplo 1.1 Conhecida as L=10 amostras x_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.1, achar o classificador $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||c_1 + c_2 x_l - logit(y_l)||^2$.

Solução 1.1 — Relativa ao Exemplo 1.1: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||c_1 + c_2 x_l - logit(y_l)||^2$ com os L = 10 dados x_l da Tabela 1.1, usamos a Eq. (1.6) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.1, 0.9\}$, 0.1 para \triangle e 0.9 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-5.5043 \quad 2.4248]^{\mathrm{T}}$. Assim, podemos representar a função

^aDo inglês "mean square error" com siglas MSE.

l	1	2	3	4	5	6	7	8	9	10
x_l	1.1	1.2	1.4	1.7	1.8	2.8	2.9	3.1	3.3	3.4
y_l	Δ	Δ	Δ	Δ	Δ	0	0	0	0	0

Tabela 1.1: Valores x_l .

 $f_{\mathbf{c}}(x)$ que classifica os dados x_l , como é mostrado na Figura 1.3a e na Eq. (1.7),

$$f_{\mathbf{c}}(x) = \frac{1}{1 + e^{5.5043 - 2.4248x}}. (1.7)$$

É interessante ressaltar que para um valor A = 0.1 a pendente é pequena e a classificação é pouco definida, com limiar de classificação em 2.27.

- (a) Gráfico da classificação usando $y_l \in \{0.1, 0.9\}.$
- (b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.3: Classificação usando a função $f_{\mathbf{c}}(x)$.

Solução 1.2 — Relativa ao Exemplo 1.1: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||c_1 + c_2 x_l - logit(y_l)||^2$ com os L = 10 dados x_l da Tabela 1.1, usamos a Eq. (1.6) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.001, 0.999\}$, 0.001 para \triangle e 0.999 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-17.3022 \quad 7.6221]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(x)$ que classifica os dados x_l , como é mostrado na Figura 1.3b e na Eq. (1.8),

$$f_{\mathbf{c}}(x) = \frac{1}{1 + e^{17.3022 - 7.6221x}}. (1.8)$$

É interessante ressaltar que para um valor A = 0.001 a pendente é abrupta para cada grupo e a classificação é bem definida, com limiar de classificação em 2.27.

1.2 Regressão logística polinomial com MSE de $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

Teorema 1.2 — Classificação de dados em \mathbb{R} :

Dados, um conjunto de L dados $x_l \in \mathbb{R}$, $1 \le l \le L$, repartidos em dois grupos etiquetados com os símbolos \triangle e \bigcirc , não separáveis por um hiperplano. Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R} \to \mathbb{R}$, com domínio $x \in \mathbb{R}$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor $\mathbf{c} = [c_1 \ c_2 \ ... \ c_{M+1}]^T \in \mathbb{R}^{M+1}$, como definido na Eq. (1.9),

$$y \equiv f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-h_{\mathbf{c}}(x)}}, \quad h_{\mathbf{c}}(x) = \sum_{m=0}^{M} c_{m+1} x^{m},$$
(1.9)

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(x)$.

Podemos atribuir a cada valor x_l uma etiqueta $y_l \in \{A, 1-A\}$, onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático médio $e(\mathbf{c})$,

$$e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2,$$
(1.10)

ponderado com os pesos $w_l \in \mathbb{R}_+$ pode ser calculado com a Eq. (1.11); onde a matriz $\mathbf{W} = diag([w_1, w_2, ..., w_L]^T);$

$$\hat{\mathbf{c}} = [\mathbf{A}^{T}\mathbf{W}\mathbf{A}]^{-1}\mathbf{A}^{T}\mathbf{W}\mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{M} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{M} \\ 1 & x_{3} & x_{3}^{2} & \dots & x_{3}^{M} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{l} & x_{l}^{2} & \dots & x_{l}^{M} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{L} & x_{L}^{2} & \dots & x_{L}^{M} \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_{1}) \\ logit(y_{2}) \\ logit(y_{3}) \\ \vdots \\ logit(y_{l}) \\ \vdots \\ logit(y_{L}) \end{bmatrix}. \quad (1.11)$$

^aDo inglês "mean square error" com siglas MSE.

- Dado que a função de classificação $f_{\mathbf{c}}(x)$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(x)$ representa a probabilidade de que um valor x pertença ao grupo \bigcirc .
- Os limiares de classificação na função $f_{\mathbf{c}}(x)$ estão nas raízes $h_{\mathbf{c}}(x) = 0$, provocando nestos pontos um $f_{\mathbf{c}}(x) = 0.5$.

1.2.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

■ Exemplo 1.2 Conhecidas as L=12 amostras x_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.2, achar o classificador $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(x) - logit(y_l)||^2$.

l	1	2	3	4	5	6	7	8	9	10	11	12
x_l	1.1	1.2	1.4	4.0	4.1	4.2	2.1	2.2	2.5	2.6	2.8	2.9
y_l	Δ	Δ	Δ	Δ	Δ	Δ	0		0	0	0	

Tabela 1.2: Valores x_l .

Solução 1.3 — Relativa ao Exemplo 1.2: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2$ com os L = 12 dados x_l da Tabela 1.2, usamos a Eq. (1.11) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.1, 0.9\}$, 0.1 para \triangle e 0.9 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-12.6667 \quad 11.2848 \quad -2.1263]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(x)$ que classifica os dados x_l , como é mostrado na Figura 1.4a e na Eq. (1.12),

$$f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-(-12.6667 + 11.2848x - 2.1263x^2)}}.$$
 (1.12)

É interessante ressaltar que para um valor A = 0.1 a pendente é pequena e a classificação é pouco definida, com limiares de classificação em 1.6122 e 3.6951.

(b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.4: Classificação usando a função $f_{\mathbf{c}}(x)$.

Solução 1.4 — Relativa ao Exemplo 1.2: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2$ com os L = 12 dados x_l da Tabela 1.2, usamos a Eq. (1.11) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.001, 0.999\}$, 0.001 para \triangle e 0.999 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-39.8164 \quad 35.4727 \quad -6.6838]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(x)$ que classifica os dados x_l , como é mostrado na Figura 1.4b e na Eq. (1.13),

$$f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-(-39.8164 + 35.4727x - 6.6838x^2)}}.$$
 (1.13)

É interessante ressaltar que para um valor A = 0.001 a pendente é abrupta para cada grupo com uma classificação bem definida, e limiares de classificação em 1.6122 e 3.6951.

1.3 Regressão logística com MSE de $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}$

Teorema 1.3 — Classificação de dados em \mathbb{R}^N :

Dados, um conjunto de L pontos $\mathbf{x}_l \in \mathbb{R}^N$, $1 \le l \le L$, repartidos em dois grupos etiquetados com os símbolos \triangle e \bigcirc , separáveis por um hiperplano em \mathbb{R}^N . Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, com domínio $\mathbf{x} \in \mathbb{R}^N$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor $\mathbf{c} = [c_1 \ c_2 \ ... \ c_{N+1}]^T \in \mathbb{R}^{N+1}$, como definido na Eq. (1.14),

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \quad h_{\mathbf{c}}(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{x}^{\mathrm{T}} \end{bmatrix} \mathbf{c},$$

$$(1.14)$$

ou seu equivalente: $logit(y) = h_c(x)$.

Podemos atribuir a cada valor \mathbf{x}_l uma etiqueta $y_l \in \{A, 1-A\}$, A para \triangle e 1-A para \bigcirc , onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático médio^a $e(\mathbf{c})$,

$$e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2,$$

$$(1.15)$$

pode ser achado mediante a Eq. (1.16). Os erros de cada amostra são ponderados com os pesos $w_l \in \mathbb{R}_+$ e agrupados na matriz $\mathbf{W} = diag([w_1, w_2, ..., w_L]^T);$

$$\hat{\mathbf{c}} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A} \end{bmatrix}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} 1 & \mathbf{x}_{1}^{\mathrm{T}} \\ 1 & \mathbf{x}_{2}^{\mathrm{T}} \\ \vdots & \vdots \\ 1 & \mathbf{x}_{l}^{\mathrm{T}} \\ \vdots & \vdots \\ 1 & \mathbf{x}_{l}^{\mathrm{T}} \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_{1}) \\ logit(y_{2}) \\ \vdots \\ logit(y_{l}) \\ \vdots \\ logit(y_{L}) \end{bmatrix}. \quad (1.16)$$

^aDo inglês "mean square error" com siglas MSE.

- Dado que a função de classificação $f_{\mathbf{c}}(\mathbf{x})$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(\mathbf{x})$ representa a probabilidade de que um ponto \mathbf{x} pertença ao grupo \bigcirc .
- O limiar de classificação na função $f_{\mathbf{c}}(\mathbf{x})$ está no hiperplano $h_{\mathbf{c}}(\mathbf{x}) = 0$, provocando nestos pontos um $f_{\mathbf{c}}(\mathbf{x}) = 0.5$.

1.3.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N ightarrow \mathbb{R}$

■ Exemplo 1.3 Conhecidas as L=10 amostras x_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.3, achar o classificador $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$.

Solução 1.5 — Relativa ao Exemplo 1.3: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L = 10 dados \mathbf{x}_l da

l	1	2	3	4	5	6	7	8	9	10
\mathbf{x}_l	1	3	1	2	1	4	5	6	3	2
	1	1	4	2	2	4	3	2	5	6
\mathbf{y}_l	Δ	Δ	Δ	Δ	Δ	0	0	0		

Tabela 1.3: Valores \mathbf{x}_l .

Tabela 1.3, usamos a Eq. (1.16) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.1, 0.9\}$, 0.1 para \triangle e 0.9 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-5.21014 \quad 0.95532 \quad 0.84509]^T$. Assim, podemos representar a função $f_{\mathbf{c}}(\mathbf{x})$ que classifica os dados \mathbf{x}_l , como é mostrado na Figura 1.5a,

$$f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-(-5.21014 + 0.95532x_1 + 0.84509x_2)}}.$$
 (1.17)

É interessante ressaltar que a pendente é pequena e a classificação é pouco definida, com limiares de classificação no hiperplano $-5.21014 + 0.95532x_1 + 0.84509x_2 = 0$.

- (a) Gráfico da classificação usando $y_l \in \{0.1, 0.9\}.$
- (b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.5: Classificação usando a função $f_{\mathbf{c}}(\mathbf{x})$.

Solução 1.6 — Relativa ao Exemplo 1.3: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L = 10 dados \mathbf{x}_l da Tabela 1.3, usamos a Eq. (1.16) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.001, 0.999\}, 0.001$ para \triangle e 0.999 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-16.3776 \quad 3.0029 \quad 2.6564]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(\mathbf{x})$ que classifica os dados \mathbf{x}_l , como é mostrado na Figura 1.5b e na Eq. (1.18),

$$f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-(-16.3776 + 3.0029x_1 + 2.6564x_2)}}.$$
(1.18)

É interessante ressaltar que a pendente é abrupta para cada grupo com uma classificação bem definida, e limiares de classificação no hiperplano $-16.3776 + 3.0029x_1 + 2.6564x_2 = 0$.

1.4 Regressão logística polinomial com MSE de $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}$

Teorema 1.4 — Classificação de dados em \mathbb{R}^N :

Dados, um conjunto de L pontos $\mathbf{x}_l \in \mathbb{R}^N$, $1 \le l \le L$, repartidos em dois grupos etiquetados com os símbolos Δ e \bigcirc , não separáveis por um hiperplano em \mathbb{R}^N . Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, com domínio $\mathbf{x} \in \mathbb{R}^N$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor \mathbf{c} , como definido na Eq. (1.19),

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \quad h_{\mathbf{c}}(\mathbf{x}) = \mathbf{a}_{M}(\mathbf{x})\mathbf{c},$$

$$(1.19)$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(\mathbf{x})$, sendo $h_{\mathbf{c}}(\mathbf{x})$ um polinômio multivariante de grau total M [GCL07, pp. 47] [Zip12, pp. 108] com coeficientes agrupados no vetor \mathbf{c} . Podemos atribuir a cada valor \mathbf{x}_l uma etiqueta $y_l \in \{A, 1-A\}$, A para \triangle e 1-A para \bigcirc , onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático médio $e(\mathbf{c})$,

$$e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2,$$

$$(1.20)$$

pode ser achado mediante a Eq. (1.21). Os erros de cada amostra são ponderados com os pesos $w_l \in \mathbb{R}_+$ e agrupados na matriz $\mathbf{W} = diag([w_1, w_2, ..., w_L]^T);$

$$\hat{\mathbf{c}} = \left[\mathbf{A}^{\mathsf{T}} \mathbf{W} \mathbf{A} \right]^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{W} \mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} a_{M}(\mathbf{x}_{1}) \\ a_{M}(\mathbf{x}_{2}) \\ \vdots \\ a_{M}(\mathbf{x}_{L}) \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_{1}) \\ logit(y_{2}) \\ \vdots \\ logit(y_{L}) \end{bmatrix}, \quad (1.21)$$

$$\mathbf{a}(\mathbf{x}) = \begin{bmatrix} \mathbf{b}_0(\mathbf{x}) & \mathbf{b}_1(\mathbf{x}) & \dots & \mathbf{b}_m(\mathbf{x}) & \dots & \mathbf{b}_M(\mathbf{x}) \end{bmatrix}, \tag{1.22}$$

$$\mathbf{b}_{0}(\mathbf{x}) = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{b}_{1}(\mathbf{x}) = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{N} \end{bmatrix}, \quad \mathbf{b}_{m}(\mathbf{x}) = \bigcup_{\alpha_{1} + \alpha_{2} + \dots + \alpha_{N} = m}^{\rightarrow} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \dots x_{N}^{\alpha_{N}}. \quad (1.23)$$

 $\mathbf{b}_m(\mathbf{x})$ representa um vetor linha com elementos $x_1^{\alpha_1}x_2^{\alpha_2}...x_N^{\alpha_N}$ de modo que em cada elemento se cumpre que $\alpha_1 + \alpha_2 + ... + \alpha_N = m$, sendo que $\alpha_n \in \mathbb{N}$.

- Dado que a função de classificação $f_{\mathbf{c}}(\mathbf{x})$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(\mathbf{x})$ representa a probabilidade de que um ponto \mathbf{x} pertença ao grupo \bigcirc .
- O limiar de classificação na função $f_{\mathbf{c}}(\mathbf{x})$ está no hiperplano $h_{\mathbf{c}}(\mathbf{x}) = 0$.
- A ordem dos elementos do vetor $\mathbf{a}_M(\mathbf{x})$ podem ser alterados, isto só modificará a posição dos elementos no vetor \mathbf{c} .

^aDo inglês "mean square error" com siglas MSE.

■ Exemplo 1.4 — Polinômios multivariante:

• Polinômio univariado de grau total 2: $P_{\mathbf{c}}(x) = c_1 + c_2 x + c_3 x^2$.

$$\mathbf{b}_0(x) = [1], \quad \mathbf{b}_1(x) = [x], \quad \mathbf{b}_2(x) = [x^2].$$
 (1.24)

• Polinômio bivariado de grau total 2: $P_{\mathbf{c}}(\mathbf{x}) = c_1 + c_2 x_1 + c_3 x_2 + c_4 x_1^2 + c_5 x_1 x_2 + c_6 x_2^2$.

$$\mathbf{b}_0(\mathbf{x}) = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{b}_1(\mathbf{x}) = \begin{bmatrix} x_1 & x_2 \end{bmatrix}, \quad \mathbf{b}_2(\mathbf{x}) = \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 \end{bmatrix}. \tag{1.25}$$

• Polinômio trivariado de grau total 2: $P_{\mathbf{c}}(\mathbf{x}) = c_1 + c_2 x_1 + c_3 x_2 + c_4 x_3 + c_5 x_1^2 + c_6 x_2^2 + c_7 x_3^2 + c_8 x_1 x_2 + c_9 x_1 x_3 + c_{10} x_2 x_3$.

$$\mathbf{b}_{0}(\mathbf{x}) = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{b}_{1}(\mathbf{x}) = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix}, \quad \mathbf{b}_{2}(\mathbf{x}) = \begin{bmatrix} x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{1}x_{2} & x_{1}x_{3} & x_{2}x_{3} \end{bmatrix}.$$
(1.26)

Teorema 1.5 — Número de elementos de $\mathbf{b}_m(\mathbf{x})$: Dada uma função vetorial $\mathbf{b}_m(\mathbf{x})$ de parâmetro $\mathbf{x} \in \mathbb{R}^N$, a quantidade de elementos $L_{\mathbf{b}}(N,m)$ do vetor $\mathbf{b}_m(\mathbf{x})$ pode ser calculado com

$$L_{\mathbf{b}}(N,m) = \frac{N(N+1)(N+2)...(N+m-1)}{m!} = \binom{N+m-1}{m}.$$
 (1.27)

Prova: $L_{\mathbf{b}}(N,m)$ representa o número de combinações (grupos ou multiconjuntos) com repetição, onde cada grupo tem m elementos, escolhidos de um total de N elementos, quando a ordem de escolha não importa, e os elementos podem ser escolhidos mais de uma vez em cada grupo.

	$\mathbf{b}_0(\mathbf{x})$	$\mathbf{b}_1(\mathbf{x})$	$\mathbf{b}_2(\mathbf{x})$	$\mathbf{b}_3(\mathbf{x})$
$L_{\mathbf{b}}(N,m)$	1	N	$\frac{N(N+1)}{2}$	$\frac{N(N+1)(N+2)}{3!}$

Tabela 1.4: Número de elementos de $\mathbf{b}_m(\mathbf{x})$.

1.4.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N o \mathbb{R}$

■ Exemplo 1.5 Conhecidas as L=10 amostras \mathbf{x}_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.5, achar o classificador $f_{\mathbf{c}}(\mathbf{x})$ que usa um polinômio multivariante $h_{\mathbf{c}}(x)$ de grau total M=2, que gere o menor erro $e(\mathbf{c})=\frac{1}{L}\sum_{l=1}^{L}||h_{\mathbf{c}}(\mathbf{x}_l)-logit(y_l)||^2$.

l	1	2	3	4	5	6	7	8	9	10
\mathbf{x}_l	1	1	2	4	5	2	2	3	5	6
	5	4	2	1	1	6	5	3	2	2
\mathbf{y}_l	Δ	Δ	Δ	\triangle	Δ	0	0	0	0	\bigcirc

Tabela 1.5: Valores \mathbf{x}_l .

Solução 1.7 — Relativa ao Exemplo 1.5: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L = 10 dados \mathbf{x}_l da Tabela 1.5, usamos as Eqs. (1.26) e (1.21) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.1, 0.9\}$, 0.1 para \triangle e 0.9 para \bigcirc , obtendo um vetor

$$\hat{\mathbf{c}} = \begin{bmatrix} -11.71919 & 2.49938 & 2.49938 & -0.30282 & -0.30282 & 0.50579 \end{bmatrix}^{\mathrm{T}}.$$
 (1.28)

Assim, podemos representar a função $f_{\mathbf{c}}(\mathbf{x})$ que classifica os dados \mathbf{x}_l , como é mostrado na Figura 1.6a,

$$f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \qquad h_{\mathbf{c}}(\mathbf{x}) = -11.71919 +2.49938x_1 + 2.49938x_2 -0.30282x_1^2 - 0.30282x_2^2 + 0.50579x_1x_2.$$
 (1.29)

É interessante ressaltar que para um valor A = 0.1 a pendente na mudança de classificação é pouco definida, com limitares de classificação na superfície $h_{\mathbf{c}}(\mathbf{x}) = 0$.

(a) Gráfico da classificação usando $y_l \in \{0.1, 0.9\}.$

(b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.6: Classificação usando a função $f_{\mathbf{c}}(\mathbf{x})$.

Solução 1.8 — Relativa ao Exemplo 1.5: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \frac{1}{L} \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L = 10 dados \mathbf{x}_l da Tabela 1.5, usamos as Eqs. (1.26) e (1.21) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.001, 0.999\}$, 0.001 para \triangle e 0.999 para \bigcirc , obtendo um vetor

$$\hat{\mathbf{c}} = [-36.83809 \quad 7.85656 \quad 7.85656 \quad -0.95187 \quad -0.95187 \quad 1.58990]^{\mathrm{T}}.$$
 (1.30)

Assim, podemos representar a função $f_{\mathbf{c}}(\mathbf{x})$ que classifica os dados \mathbf{x}_l , como é mostrado na Figura 1.6b,

$$f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \qquad h_{\mathbf{c}}(\mathbf{x}) = -36.83809 +7.85656x_1 + 7.85656x_2 -0.95187x_1^2 - 0.95187x_2^2 + 1.58990x_1x_2.$$
 (1.31)

É interessante ressaltar que para um valor A = 0.001 a pendente na mudança de classificação está bem definida, com limiares de classificação na superfície $h_{\mathbf{c}}(\mathbf{x}) = 0$.

Referências

Bibliografia	 	 	 	 	 25
Livros Artigos					
Outras fontes					
Índice	 	 	 	 	 27

Bibliografia

Livros

- [GCL07] K.O. Geddes, S.R. Czapor e G. Labahn. *Algorithms for Computer Algebra*. Springer US, 2007. ISBN: 9780585332475. URL: https://books.google.com.br/books?id=9f0UwkkRxT4C (ver página 20).
- [KK10] D.G. Kleinbaum e M. Klein. *Logistic Regression: A Self-Learning Text*. Statistics for Biology and Health. Springer New York, 2010. ISBN: 9781441917423. URL: https://books.google.com.br/books?id=FTVDAAAAQBAJ (ver página 13).
- [Kur+01] V. Kurkova et al. Artificial Neural Nets and Genetic Algorithms: Proceedings of the International Conference in Prague, Czech Republic, 2001. Springer computer science. Springer Vienna, 2001. ISBN: 9783211836514. URL: https://books.google.com.br/books?id=qXguv62cn1YC (ver página 13).
- [Zip12] R. Zippel. *Effective Polynomial Computation*. The Springer International Series in Engineering and Computer Science. Springer US, 2012. ISBN: 9781461531883. URL: https://books.google.com.br/books?id=mmYECAAAQBAJ (ver página 20).

Artigos

Outras fontes

Índice Remissivo

F
Função Logística
M
Multiset
Р
Polinômio multivariante 20
R
Regressão Logística $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R} \dots 18$ Logística $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R} \dots 14$ Logística polinomial $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}20$ Logística polinomial $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R} 16$

ÍNDICE REMISSIVO 29

