ФГОУ ВО Уральский Федеральный Университет имени первого Президента России Б.Н.Ельцина

Физико-технологический институт Кафедра теоретической физики и прикладной математики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

«Моделирование атомной структуры реальных кристаллов»

Студент:

Вялова С.А.

группа: ФтМ-170403

Преподаватель:

д.ф.-м.н., профессор Мазуренко Владимир Владимирович

Консультант:

H.C.

Сотников Олег Михайлович

12 июня 2018 г. Екатеринбург.

Содержание

1.	Моделирование атомной структуры реальных кристаллов	2
	1.1. Цель работы	2
	1.2. Теоретическая часть	3
	1.2.1. Потенциал Леннарда-Джонса	3
	1.2.2. Описание методов	4
	1.2.3. Разработка программной части	4
	1.2.4. Результаты моделирования	6
	1.3. Выводы	16

Глава 1

Моделирование атомной структуры реальных кристаллов

1.1. Цель работы

Разработка программы для моделирования основного состояния двумерных решеток, в которых частицы взаимодействуют через потенциал Леннарда-Джонса. Рассмотрение квадратной и треугольной решетки с одинаковой плотностью атомов.

В ходе выполнения работы необходимо реализовать следующие пункты:

- Определить энергии треугольной и квадратной решеток при различных линейных размеров решеток;
- вычислить плотность системы в каждом случае;
- выяснить, какова зависимость плотности решетки от линейных размеров решетки;
- выяснить, энергия какой из рассматриваемых решеток меньше.

1.2. Теоретическая часть

1.2.1. Потенциал Леннарда-Джонса

Потенциал Леннарда-Джонса представляет собой простую модель парного взаимодействия неполярных молекул, описывающая зависимость энергии взаимодействия двух частиц от расстояния между ними. Потенциал был предложен Леннардом-Джонсом первоначально для исследования термодинамических свойств инертных газов. Наиболее часто используется так называемый (6-12)-потенциал Леннарда-Джонса, записанный в форме

$$U = 4 \cdot \varepsilon \cdot [(\sigma/r)^{12} - (\sigma/r)^{6}], \tag{1.1}$$

где ε - глубина потенциальной ямы, σ - значение расстояния между частицами, при котором потенциал равен нулю. Шестая степень убывания отвечает электростатическому диполь-дипольному и дисперсионному притяжению; двенадцатая степень убывания потенциала моделирует достаточно жесткое отталкивание и выбрана из соображений математического удобства.

Рис. 1.1. Расположение атомов в треугольной и квадратной решетках для $L_x = 5$.

1.2.2. Описание методов

В ходе работы необходимо исследовать треугольные и квадратные решетки с различными линейными размерами. Пусть L_x - ширина треугольной решетки, n_c - число частиц в каждой строке или столбце. Столбцы треугольной решетки отстоят друг от друга на $a=L_x/n_c$, а каждую строку разделяет расстояние $\frac{\sqrt{3}}{2}a$. В каждой строке узлы смещены на $\frac{a}{2}$ относительно предыдущей строки. Высота треугольной решетки составляет $L_y=\frac{\sqrt{3}L_x}{2}$, а общее число частиц в системе составляет $N=n_c^2$. Параметры для квадратной решетки подбираются исходя из требования равенства плотностей треугольной и квадратной решеток. Таким образом, сторона квадратной решетки $L=\sqrt{L_x\cdot L_y}$.

Энергия решетки вычисляется через потенциал Леннарда-Джонса следующим образом:

$$E = 4\varepsilon \sum_{i=1}^{N} \sum_{s=i+1}^{N} \left[(\sigma/\vec{r}_{is})^{12} - (\sigma/\vec{r}_{is})^{6} \right]$$
 (1.2)

Плотность решетки вычисляется как частное числа частиц в решетке и полной площади решетки.

Характерный вид расположения атомов в треугольной и квадратной решет-ках для $L_x=5$ и $L_x=7$ представлен на рисунках 1.1 и 1.2.

1.2.3. Разработка программной части

Для решения поставленной задачи была разработана программа на языке C++. Задача программы - сгенерировать начальные значения координат для

Рис. 1.2. Расположение атомов в треугольной и квадратной решетках для $L_x = 7$.

треугольной, квадратной решетки с заданными линейными размерами. Программа последовательно генерирует следующие типы решеток:

- квадратная, $L_x = 5$
- квадратная, $L_x = 7$
- треугольная, $L_x = 5$
- треугольная, $L_x = 7$

Далее в цикле считается энергия решетки для каждого значения параметра σ с шагом 0.001, вычисляется минимальное значение энергии решетки на интервале σ от 0 до 5 и в минимуме фиксируется значение σ . Значения энергии системы в зависимости от параметра σ на каждом шаге моделирования записываются в файл для построения соответствующих графиков зависимости. Для каждой решетки вычисляется плотность. Значения минимальной энергии, плотности, значения параметра σ в минимуме для каждой решетки выводятся в терминал.

При исследовании системы были использованы следующие входные данные:

- начальное значение параметра σ : 0;
- ullet конечное значение параметра σ : 5;
- шаг по параметру σ : 0.001;

Рис. 1.3. Демонстрация выполняющейся программы.

- значение параметра ε =0.0031;
- линейный размер системы по горизонтали $L_x = 5$;
- число частиц в строке/столбце $n_c = 6$;
- число частиц в решетке $N = {n_c}^2 = 36$;

Программа запускается из командной оболочки bash. Снимок экрана с выводом программы представлен на рисунке 1.3.

Как видно из представленного вывода программы, плотности треугольной и квадратной решеток для каждого из исследованных параметров L_x , плотности треугольной и квадратной решеток, как и требовалось, равны при одинаковых параметрах L_x .

Затем необходимо включить динамику для квадратной решетки.

1.2.4. Результаты моделирования

В результате моделирования, были получены графики зависимости энергии систем в зависимости от параметра σ для каждого значения L_x . Соответствующие зависимости представлены на рисунках 1.4 и 1.5.

Рис. 1.4. Графики зависимости энергии системы в зависимости от параметра σ для треугольной и квадратной решеток для $L_x=5$.

Рис. 1.5. Графики зависимости энергии системы в зависимости от параметра σ для треугольной и квадратной решеток для $L_x=7$.

После вычисления параметров σ в минимуме энергии для каждой решетки необходимо проследить динамику систем частиц для квадратных решеток. Для этого необходимо воспользоваться видоизмененным программным кодом для лабораторной работы №1 (необходимо передать параметры L_x и L_y для периодических граничных условий и на вход подать найденные в ходе данной работы параметры σ в минимуме для квадратных решеток), в которой исслед-

Рис. 1.6. Состояние системы в начальный момент времени для $L_x = 7$.

валась динамика двумерной системы частиц, взаимодействующих через потенциал Леннарда-Джонса.

Характерный вид состояния системы в начальный момент времени и после некоторого количества шагов динамики системы представлены на рисунках 1.6 и 1.7.

Из полученной динамики видно, что после некоторого числа шагов моделирования система приходит к некоторому равновесному состоянию с меньшей энергией, в котором стремится стабилизироваться, даже при очень малых начальных скоростях частиц системы (разброс скоростей в пределах $v_{initial} = [-0,000001,0,000001]$). Система переходит из квадратного упорядочения к треугольному. Далее был построен график зависимости энергии системы от числа шагов моделирования, представленный на рисунке 1.8, из которого видно, что полная энергия системы сохраняется, а частицы системы, в попытке привести её в равновесное состояние, испытывают столкновения друг с другом.

Рассматривая график зависимости среднеквадратического смещения частиц от шага моделирования (рисунок 1.9), можно сделать вывод, что смещение частиц системы в ходе её эволюции в состояние с меньшей энергией мало относительно размеров системы. Рост среднеквадратического с шагом по времени замедляется, что подтверждает то, что система приходит к некоторому равно-

Рис. 1.7. Состояние системы после некоторого количества шагов динамики системы при разбросе начальных скоростей частиц $v_{initial}=0,00001$ и $L_x=7$.

Рис. 1.8. График зависимости энергии системы от числа шагов моделирования динамики частиц квадратной решетки для разброса начальных скоростей $v_{initial}=0,000001$ и $L_x=7$.

Рис. 1.9. График среднеквадратического смещения частиц квадратной решетки от шага моделирования при разбросе начальных скоростей частиц $v_{initial} = 0,000001$ и $L_x = 7$.

весному состоянию. График автокорреляционной функции скорости представлен на рисунке 1.10. Траектория одной из частиц представлена на рисунке 1.11 и также указывает на то, что частицы системы переходят в равновесное состояние.

Рассмотрим динамику треугольной решетки. Зададим начальный разброс скоростей $v_{initial}=0,00001$, значение $\sigma=1.047,\,L_x=7$. Положение системы в ходе моделирования показано на рисунке 1.12, из которого видно, что решетка стабильна именно в таком состоянии, что подтверждается графиками зависимостей автокорреляционной функции скорости (1.13) и среднеквадратического смещения (1.14) от шага моделирования и позволяет судить о том, что смещение отдельной частицы системы в ходе моделирования мало.

Будем увеличивать разброс начальных скоростей со значения $v_{initial} = 0,0000001$ до $v_{initial} = 0,1$. Положения частиц после некоторого числа шагов моделирования представлены на рисунке 1.15. Графики зависимости среднеквадрати-

Рис. 1.10. График зависимости автокорреляционной функции скорости от шага моделирования динамики квадратной решетки при разбросе начальных скоростей частиц $v_{initial} = 0,00001$ и $L_x = 7$.

Рис. 1.11. Траектория частицы при разбросе начальных скоростей частиц $v_{initial}=0,00001$ и $L_x=7.$

Рис. 1.12. Состояние системы после некоторого количества шагов динамики треугольной решетки при разбросе начальных скоростей частиц $v_{initial} = 0,0000001$ и $L_x = 7$.

Рис. 1.13. График зависимости автокорреляционной функции скорости от шага моделирования в треугольной решетке при разбросе начальных скоростей частиц $v_{initial}=0,0000001$ и $L_x=7$.

Рис. 1.14. График среднеквадратического смещения частиц треугольной решетки от шага моделирования при разбросе начальных скоростей частиц $v_{initial} = 0,0000001$ и $L_x = 7$.

ческого смещения и автокорреляционной функции скорости в данном случае представлены, соответственно, на рисунках 1.16 и 1.17. Из графика СКС очевидно, что смещения частиц велики, и состояние системы более не является стабильным. Траектория отдельной частицы представлена на рисунке 1.18, ясно, что смещение каждой из частиц велико, что не соответствует стабильному состоянию системы - решетка "разваливается".

Рис. 1.15. Состояние системы после некоторого количества шагов динамики треугольной решетки при разбросе начальных скоростей частиц $v_{initial}=0,1$ и $L_x=7$.

Рис. 1.16. График зависимости автокорреляционной функции скорости от шага моделирования в треугольной решетке при разбросе начальных скоростей частиц $v_{initial}=0,1$ и $L_x=7$.

Рис. 1.17. График среднеквадратического смещения частиц треугольной решетки от шага моделирования при разбросе начальных скоростей частиц $v_{initial}=0,1$ и $L_x=7$.

Рис. 1.18. Траектория частицы при разбросе начальных скоростей частиц $v_{initial}=0,1$ и $L_x=7.$

1.3. Выводы 16

1.3. Выводы

В ходе данной работы была разработана программа, моделирующая основное состояние треугольной и квадратной решеток, взаимодействующих через потенциал Леннарда-Джонса. Моделирование было проведено для треугольных решеток с линейными размерами системы $L_x=5$ и $L_x=7$, $L_y=\frac{\sqrt{3}}{2}L_x$ и квадратных решеток со стороной $L=\sqrt{L_x\cdot L_y}$, плотности которых равны при одинаковых параметрах L_x . После проведения расчётов были получены изображения, показывающие расположение частиц в системах, а также были построены и проанализированы графики зависимости энергии систем в зависимости от параметра σ . Значения σ , при которых энергия системы с квадратной конфигурацией минимальна, были зафиксированы и квадратные решетки были рассмотрены в динамике с данными значениями σ . Из полученных в ходе исследования результатов можно сделать вывод, что треугольная структура решетки является более предпочтительной, поскольку обладает меньшей энергии при том же значении σ .