

Metrology and Sensing

Lecture 11-1: Phase retrieval

2021-01-14

Herbert Gross

Winter term 2020 www.iap.uni-jena.de

Content

- Basic idea
- Theory
- Illumination

Principle of Psf Phase Retrieval

- Wave front W(x,y) determines local direction of propagation
- Propagation over distance z : change of transverse intensity distribution I(x,y,z)
- Intensity propagation contains amplitude and phase information
- Reconstruction of phase out of intensity measurements

Typical change of the intensity profile

- Near to the focal plane, the changes of intensity are more significant
- The best extraction of information is obtained from the transition far-near field range
- In particular the imapct of aberrations is nearly not seen in the far zone

Defocussed Perfect Psf

- Perfect point spread function with defocus
- Representation with constant energy: extreme large dynamic changes

Defocused Psf with Spherical Aberration

Asymmetry for different sign of defocus:

 Positive: extra focal, compact profile with broadened basis

 Negative: intra focal, ring structure

Institute of Applied Physics

Friedrich-Schiller-Universität Jena

Transport of Intensity Equation

Paraxial wave equation

$$2ik_{o}n_{o}\frac{\partial E}{\partial z} = \frac{\partial^{2} E}{\partial x^{2}} + \frac{\partial^{2} E}{\partial y^{2}} + k_{o}^{2} \left[n^{2}(x, z) - n_{o}^{2}\right]E$$

 Separation of the complex field E into real amplitude A and phase W

$$E(x, y) = A(x, y) \cdot e^{ikW(x, y)}$$

 Separation of real and imaginary part results in two coupled equations

$$\frac{\partial A}{\partial z} = \frac{A}{2} \left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} \right) + \frac{\partial A}{\partial x} \frac{\partial W}{\partial x} + \frac{\partial A}{\partial y} \frac{\partial W}{\partial y}$$

$$\frac{\partial W}{\partial z} = -\frac{1}{2Ak^2} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right) + \frac{1}{2} \left[\left(\frac{\partial W}{\partial x} \right)^2 + \left(\frac{\partial W}{\partial y} \right)^2 \right]$$

Substituting the amplitude by the intensity

$$A = \sqrt{I}$$

Transport of intensity equation (TIE) is obtained

$$\frac{\partial I}{\partial z} = -\nabla I \cdot \nabla W - I \cdot \nabla^2 W$$

- Interpretation:
 - change of intensity during propagation I(z) for every lateral position x,y
 - the phase modulates the change, the intensity acts as a weighting

Institute of Applied Physics

Friedrich-Schiller-Universität Jena

Propagation of Intensity

Transport of intensity equation couples phase and intensity

$$k \cdot \frac{\partial I(x, y, z)}{\partial z} = -\nabla \big[I(x, y, z) \cdot \nabla W(x, y) \big]$$

- Solution with z-variation of the intensity delivers start phase at z = 0
- Determine phase from intensity distribution.
 - Inverse propagation problem : ill posed
 - Boundary condition : measured z-stack I(x,y,z)
- Algorithm for numerical solution
 - IFTA / Gerchberg Saxton (error reduction)
 - Acceleration (conjugate gradients, Fienup,...)
 - Modal non least square-methods
 - Extended Zernike method
- Applications:
 - Calculation of diffractive components for given illumination distribution
 - Wave front reconstruction
 - Phase microscopy

Properties of Phase Retrieval

- Determine phase from intensity distribution
 - Inverse propagation problem: ill posed
 - Boundary condition: redundant information to overcome problems with noise, discretization, errors,...
- Imaging Fourier transfer theory

$$I_{image}(x) = I_{psf}(x) * I_{object}(x) + I_{noise}$$

Approach 1:

Object known, system (psf) evaluated, metrology of lenses

$$I_{image}(x) = I_{psf/transfer}(x) * I_{object/illumination}(x) + I_{noise}$$

Approach 2:

System known, object/illumination evaluated, metrology of beams

$$I_{image}(x) = I_{psf/transfer}(x) * I_{object/illumination}(x) + I_{noise}$$

- Applications:
 - Calculation of diffractive components for given illumination distribution (1)
 - Wave front reconstruction (1)
 - Phase imaging / microscopy (2)
 - Laser beam quality metrology (2)

Phase Retrieval

- Principle of phase retrieval for metrology of optical systems
- Measurement of intensity caustic z-stack

Reconstruction of the phase in the exit pupil

Principal Approach

- Given object I_{object}(x)
- Known illumination, usually incoherent
- Known measured image intensities I_{image}(x',z) for several z-values
- To be calculated: transfer function of the system / pupil function
- Relationship: convolution

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Phase Space: 90° -Rotation

- Transition pupil-image plane: 90° rotation in phase space
- Planes Fourier inverse
- Marginal ray: space coordinate x ---> angle θ'
- Chief ray: angle θ ---> space coordinate x'

Phase Space Interpretation

- Known measurement of intensity in defocussed planes:
 - Several rotated planes in phase space
 - Information in and near the spatial domain
- Calculation of distribution in the Fourier plane
- Wave equation is valid
- Principle : Tomography

Phase Retrieval Illumination Setups

- Pinhole object
 - Deconvolution may be necessary
 - Illumination incoherent
 - Problems with pinhole

- Epi-illumination
 - Double pass with plane mirror b) Epi illumination and plane mirror
 - Only symmetrical aberrations
 - No field coma seen
- Trans-illumination with objective
 - Laser source, coherent
 - Calibration necessary
 - Speckle problem

