Lewiston, Maine, June 22-23, 2024

Contact Mechanics Correction of Activation Volume in Mechanochemistry

Cangyu Qu, Lu Fang and Robert W. Carpick

Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania

The Concept of Activation Volume(s)

Mechanochemistry:

controlling chemical reactions by stress

Energy diagram for a mechanochemical reaction

$$k = A \exp\left(-\frac{E_{\rm a} - E_{\rm m}}{k_{\rm B}T}\right) = A \exp\left(-\frac{E_{\rm a} - \sigma\Delta V}{k_{\rm B}T}\right)$$

$$E_{\rm m} = \sigma \Delta V \longleftarrow (Hydrostatic pressure) \Delta V$$
: volume change

$$E_{\mathrm{m}} = \sum_{i,j} \sigma_{ij} \Delta V_{ij}$$
 (Arbitrary stress state)

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{pmatrix}$$

The Concept of Activation Volume(s)

Chen, B., Hoffmann, R., & Cammi, R. (2017). *Angewandte Chemie International Edition*, 56(37), 11126–11142.

Mechanochemical reactions:

Stress-assisted thermal activation model

$$k = A \exp\left(-\frac{E_{\rm a} - E_{\rm m}}{k_{\rm B}T}\right) = A \exp\left(-\frac{E_{\rm a} - \sigma\Delta V}{k_{\rm B}T}\right)$$

$$E_{\rm m} = \sigma \Delta V \longleftarrow (Hydrostatic\ pressure) \quad \Delta V$$
: volume change

$$E_{\rm m} = \sum_{i,j} \sigma_{ij} \Delta V_{ij}$$

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{pmatrix}$$

Discrepancy in Activation Volume Measurement

Experimentally-measured activation volume values vary a lot!

Examples:

Growth of antiwear film from ZDDP

Zinc dialkyl dithiophsophate (ZDDP)

http://www.howstuffworks.com/engine2.htm

Tribochemical material removal (wear) of Si:

$$\Delta V = 6.7 \sim 60 \text{ Å}^3$$

A. Martini and S. H. Kim, Tribol. Lett. 69, 150 (2021).

T. D. B. Jacobs and R. W. Carpick, Nat. Nanotechnol. 8, 108 (2013).

Methods of Measuring Activation Volume

Methods of Measuring Activation Volume

 ΔV is measured from the **slope**

Methods of Measuring Activation Volume

 $\times 10$ difference in ΔV ??

60 nm

Oil residue

Sharp tip: high stress

8.6 GPa, 402mm sliding Radius change:
22.9 nm → 28.2 nm

Image: Lu Fang

Considering Contact Mechanics

Correction #1

Pressure distribution:
$$\sigma(r) = \frac{3}{2}\sigma_{\rm m}\sqrt{1 - \left(\frac{r}{a}\right)^2}$$

Renn Engineering

 $\sigma_{\rm m}$: mean stress E^* : contact modulus ρ : reactant areal concentration Γ : growth rate Γ_0 : ρ : ρ : ρ

Growth rate: $\Gamma = \iint_A \rho \Gamma_0 e^{-\frac{E_a - \sigma \Delta V}{k_B T}} dA$

Hertz model $\Gamma = \int_{0}^{a} \rho \Gamma_{0} e^{-\frac{E_{a} - \Delta V \sigma(r)}{k_{B}T}} 2\pi r dr$ #2: Contact radius

$$\Gamma = \frac{\pi^3}{2} \rho \Gamma_0 e^{-\frac{E_a}{k_B T}} \left(\frac{R k_B T}{E^* \Delta V} \right)^2 \left[1 + e^{\lambda \sigma_{\mathbf{m}}} (\lambda \sigma_{\mathbf{m}} - 1) \right]$$

 $(\lambda = \frac{3\Delta V}{2k_{\rm B}T})$

predicts a very different stress-dependence!

The Correction Function

Activation volume measurements at **low stresses** could have been wrong!

Slope in the semi-log plot:
$$\frac{d(\ln \Gamma)}{d\sigma_{\rm m}} = \frac{\Delta V}{k_{\rm B}T} f(q)$$

Correction function
$$f(q) = \frac{3}{2} \cdot \frac{qe^q}{1 + e^q(q-1)}$$
 $(q = \lambda \sigma_{\rm m} = \frac{3\Delta V \sigma_{\rm m}}{2k_{\rm B}T})$ dimensionless number

Examples:

(for a hypothetical reaction of $\Delta V = 10 \text{ Å}^3$ at T = 130 °C)

- Colloidal AFM: $\sigma_{\rm m} = 200 \text{ MPa} \rightarrow f = 6.61$
- Sharp AFM: $\sigma_{\rm m} = 2 \text{ GPa} \rightarrow f = 1.84$
- Large-stress limit: f = 1.5

Removed by using σ_{max} instead of σ_{m}

Adding Shear Stress to the Model

*Note: sign convention assume
$$\tau = \mu \sigma$$
 (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ Reaction rate: $\Gamma_0 e^{-\frac{E_a - \sigma_{ij} \Delta V_{ij}}{k_B T}} = \Gamma_0 e^{-\frac{E_a - \tau \Delta V_s + \sigma \Delta V_n}{k_B T}}$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant μ) $\Gamma_0 \exp(-\frac{E_a - \sigma \Delta V_{eff}}{k_B T})$ assume $\tau = \mu \sigma$ (constant τ) assume $\tau = \tau$ (constant τ) assume $\tau = \tau$ (constant τ) assume $\tau = \tau$

$$\ln\left(\frac{\Gamma E^{*2}}{R^2}\right) = \ln\left(\frac{\pi^3 k_{\rm B}^2 \rho T^2 \Gamma_0}{2}\right) - \frac{E_0}{k_{\rm B}T} - 2\ln\left(\frac{\tau_{\rm m}}{\sigma_{\rm m}} \Delta V_{\rm s} - \Delta V_{\rm n}\right) + \ln\left[1 + e^{\frac{3(\Delta V_{\rm s} \tau_{\rm m} - \Delta V_{\rm n} \sigma_{\rm m})}{2k_{\rm B}T}} \left(\frac{3}{2} \cdot \frac{\Delta V_{\rm s} \tau_{\rm m} - \Delta V_{\rm n} \sigma_{\rm m}}{k_{\rm B}T} - 1\right)\right]$$

 E_a : activation energy

Fitting to Experimental Data

- Normal stress promotes reaction
- Shear stress has little effect

Fitting to new model:

$$\Delta V_{\rm n} = -2.08 \pm 0.36 \, \text{Å}^{3}$$

$$\Delta V_{\rm s} = 0.43 \pm 0.57 \, \text{Å}^{3}$$

$$\Rightarrow \Delta V_{\rm eff} = \mu_{\rm m} \Delta V_{\rm s} - \Delta V_{\rm n}$$

$$= 2.3 \, \text{Å}^{3}$$

Previous results:

Sharp AFM:
$$\Delta V_{\rm eff} = 2.1 \, \text{Å}^3$$

Colloidal AFM:
$$\Delta V_{\rm eff} = 22.5 \, \text{Å}^3$$

over-estimated!

Extension to Non-Hertzian Contacts

Tip flattening: Pt-coated Si tip

Non-Hertzian: Power-law tip shape $z = cr^n \ (n \ge 2)$

More Questions to Ask ...

$$\Delta V_{\rm s} = 274 {\rm A}^{\rm s}, \Delta V_{\rm n} = 9.9 {\rm A}^{\rm s}$$

$$\rightarrow \Delta V_{\text{eff}} = \mu_{\text{m}} \Delta V_{\text{s}} - \Delta V_{\text{n}} = 17.5 \,\text{Å}^3$$

Contradictory to AFM results:

- Shear stress **promotes** reaction
- Normal stress **inhibits** reaction

Summary

Contact mechanics correction: a general framework for measuring activation volume correctly

- Hertzian contact: Correction function
 - Slope of the semi-log plot ← activation volume
- Extension to non-Hertzian contacts
- Validation with experiments: ZDDP tribofilm growth

Acknowledgements

Thank you!

Contact: qucangyu@seas.upenn.edu

QR code: Carpick group website

Dr. Lu Fang

Prof. Robert Carpick

Carpick group

This work was supported by NSF CMMI-1854702, and was carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-2025608.