

A Maldição da Dimensionalidade: como selecionar características em problemas complexos?

Msc. Felipe Teodoro
Head of Data Science

Felipe Teodoro

- Mestre em Sistemas de Informação pela USP.
- MBA em Engenharia de Software pela FIAP.
- Tecnólogo em Análise e Desenvolvimento de Sistemas pela Faculdade de Tecnologia Termomecânica.
- Autor de artigos acadêmicos e entusiasta de Inteligência Artificial.
- Head de Data Science da empresa BuiltCode.

O que é a maldição da dimensionalidade?

O que é a maldição da dimensionalidade?

We select only useful features.

O que é a maldição da dimensionalidade?

Modelo **1** 2 Features

Modelo **2** 16 Features

Modelo **3** 128 Features

Modelo **4** 1024 Features

Acurácia: 57%

Acurácia: 83%

Acurácia: 85%

Acurácia: 79%

O que queremos?

Modelo **5** 37 Features

Acurácia: 90%

Treinamento de Modelos de Machine Learning

Análise de Componentes Principais

Dataset 1

Seq	Host
ATGTTTGTTTTGCTTGCATATGCCTTGTTGCATATTGCTGGTT	human
ATGTTTTTGATACTTTTAATTTCCTTACCAATGGCTTTTTGCTGTTA	human
ATGTTTATTTCTTATTTTCTTACTCTCACTAGAGGTAGTGACC	human
ATGACGCCTTTAATTTACTTCTGGTTGTTCTTACCAGTACTTCTAA	porcine
ATGAAGTCTTTAACTTACTTCTGGTTGTTCTTACCAGTACTTTCAA	porcine
ATGCAGAGAGCTCTATTGATTATGACCTTACTTTGTCTCGTTCGAG	porcine
ATGTTTTTGATACTTTTAATTTCCTTACCAACGACTTTTGCTGTTA	bovine
ATGAAACTTTTTATAGTTTTTTGTGCTCCTTTTTTAGGGTGTGTTATT	bat
ATGTTGGTGAAGTCACTGTTTTTAGTGACTCTTTTGTTTG	avian
ATGTTGGTAACACCTCTTTTATTAGTGACTCTTTTGTTTG	avian

builtcode

Análise de Componentes Principais

Análise de Componentes Principais

Dataset 1

	PC 1	PC 2	Host
0	3.775624	1.613269	human
36	-1.254264	-3.114602	human
72	-1.845260	-1.941322	human
108	-1.657282	-0.982642	human
144	1.436796	3.099578	human
180	-1.643563	1.725470	human
216	-2.941701	1.510518	porcine
252	-2.935069	1.062321	porcine
288	-2.914471	0.908152	porcine
324	-2.912731	0.903012	porcine
360	4.935531	3.713215	porcine
396	-2.124629	-2.173583	bovine
432	-2.178364	-2.104020	bovine
468	1.622693	3.955135	bat
504	-1.699718	2.866013	bat
540	-1.049189	-0.162940	murine
576	4.694584	-1.157702	avian
612	4.440957	-1.328387	avian
648	4.228678	-0.941589	avian
684	4.290554	-1.297679	avian
720	4.907956	2.258447	avian

730 rows x 2 cols

Análise de Componentes Principais

Análise de Componentes Principais

> Mas e se temos características inúteis/ruins em nosso Dataset?

Seleção de Características

- Métodos de Filtro (filter methods)
- Métodos Embutidos (embedded methods)
- Métodos Invólucros (wrapper methods)

Métodos de Filtros

Correlação de Pearson

Métodos de Embutidos

LASSO, Elastic Net, Ridge Regression

Métodos Invólucros (wrapper

methods)

Recursive Feature Elimination

Para n features temos 2ⁿ combinações!

THE DEVELOPER'S

Métodos Invólucros

E agora?

Heurísticas!

THE DEVELOPER'S CONFERENCE

Codificação da Solução

Fonte: https://www.neuraldesigner.com/blog/genetic algorithms for feature selection

- Função de Avaliação:
 - Seleciona as características do cromossomo e faz validação cruzada (cross validation) e obtém a acurácia, usada como critério de avaliação do GA.

```
def calculate fitness(individual):
          np ind = np.asarray(individual)
          if np.sum(np ind) == 0:
              return (0.0,)
          else:
              feature idx = np.where(np ind==1)[0]
              x temp = X[:,feature idx]
          cv_set = np.repeat(-1.,x_temp.shape[0])
          skf = StratifiedKFold(n splits = 5)
          for train index,test index in skf.split(x temp,y):
              X_train,X_test = x_temp[train_index],x_temp[test_index]
              y_train,y_test = y[train_index],y[test_index]
              if X train.shape[0] != y train.shape[0]:
                  raise Exception()
              classifier.fit(X train,y train)
              predicted_y = classifier.predict(X test)
              cv set[test index] = predicted y
          acc = accuracy score(y, cv_set)
          return (acc,)
```


Problema: Biometria utilizando batimentos cardíacos:

Extração de Características:

- Características do domino do tempo
- Transformada Discreta Cosseno
- Transformada de Fourier
- Função de Autocorrelação
- Modelo Autoregressivo
- Codificação Linear Preditiva
- Transformada Pulso Ativo
- Representação Linear por partes
- Polinômios de Hermite
- Coecientes Mel-cepstrais
- Transformada Wavelet
- Métodos de estimativa da Dimensão Fractal
- Decomposição do Modo Empírico

754 características extraídas

- Conjunto de Dados:
 - > PTB ECG Database;
 - 290 pessoas distintas (logo 290 classes);
 - 754 características extraídas;
 - O numero de gravações por pessoa varia de 2 a 20, aproximadamente 2000 amostras.

- Resultados:
 - Acurácia de 97,93% no conjunto de teste, redução de 754 características para 31 após o término da execução;
 - Classificador Optimum-Path Forest utilizado na função fitness;
 - Artigo publicado em: https://ieeexplore.ieee.org/document/7966216

- > Problema: Classificação de severidade de paralisia facial
 - Escala de House-Brackmann (de 1 a 5 em grau de severidade)

Imagens do Dataset Sir Charles Bell Society (SCBS) para paralisia facial

Extração de Características

Características 2D

Características Biométricas de Face

Extração de Características

- Conjunto de dados e configuração dos experimentos:
 - 1202 faces obtidas do dataset Sir Charles Bell Society (SCBS) e de pacientes do Hospital das Clínicas em São Paulo;
 - 5 classes;
 - 1451 características extraídas.
 - Implementação utilizando a biblioteca DEAP para otimização.

- Resultados preliminares:
 - 1451 características extraídas.
 - Acurácia inicial de ~=60% utilizando Correlação de Pearson e RFE (com Random Forest como classificador);
 - 78% de acurácia após o término da execução com 162 características e classificador SVM-RBF.

Conclusão

- GA para seleção de características em problemas de alta dimensionalidade funcionam muito bem;
- Diversos cases no mercado e na literatura;
- Possibilidade de utilização de outras Meta-Heurísticas como otimização de exame de partículas, colônias de formigas e algoritmos meméticos.

Quer fazer parte de um time inquieto?

Obrigado!

https://www.linkedin.com/in/felipe-teodoro-87b25217/

https://github.com/felipesteodoro

