# Lecture 5 Heterogeneous Effects

Instrumental Variables

Causal Inference Using Graphs August 13, 2019

Goals and Objectives

Review of Constant

Effects

Heterogeneous Effects

Adam Glynn
Department of Political Science and QTM
Emory University

## **Acknowledgements**

Goals and Objectives
Review of Constant
Effects

Heterogeneous Effects

Daniel Arnon contributed to many of the slides from lecture 5 today.

### **Goals and Objectives for This Morning:**

Goals and Objectives

Review of Constant Effects

- Review IV with constant effects
- Introduce IV with heterogeneous effects
- Learning about compliers

#### **Overview**

Goals and Objectives

Review of Constant Effects

Heterogeneous Effects

**1** Review of Constant Effects

leview of Constant

Heterogeneous Effects

1 Review of Constant Effects

Review of Constant Effects

Heterogeneous Effects

### Consider the following path model:

Figure: Confounding on D and Y



Discuss the Wald estimator and why it works.

#### Lets consider a few more path models:

Figure: Confounding on Z, D, Y



Can we still calculate the effect of  $D \rightarrow Y$ ?

Goals and Objectives

fects

#### Lets consider a few more path models:

Figure: Confounding on Z, D, Y



Can we still calculate the effect of 
$$D \rightarrow Y$$
?
$$\frac{Y \sim Z}{D \sim Z} \xrightarrow{p} \frac{\alpha_1 \beta_1 + \gamma_1 \delta_1 \beta_1}{\alpha_1 + \gamma_1 \delta_1} = \frac{\beta_1 (\gamma_1 + \delta_1)}{\gamma_1 + \delta_1} = \beta_1$$

Goals and Objectives

Review of Constant Effects

#### Let's consider one more DAG:

Figure: Direct Effect of Z on Y



Goals and Objectives

Review of Const Effects

#### Let's consider one more DAG:

Figure: Direct Effect of Z on Y



$$\frac{Y \sim Z}{D \sim Z} \xrightarrow{\rho} \frac{\alpha_1 \beta_1 + \gamma_1}{\alpha_1} = \beta_1 + \frac{\gamma_1}{\alpha_1}$$

Goals and Objectives

Review of Cons Effects

# **Multiple Instruments**

Consider the following DAG, with multiple instruments:

Figure: Multiple Instruments, No Exclusion Restriction Violation



Goals and Objectives

Review of Con Effects

Estimating with Wald: The other option is to use a Wald Estimator for each instrument, and to weight them by the strength of the instrument. Formally:

$$\begin{aligned} & \text{Wald1: } \frac{\mathbf{Y} \sim \mathbf{Z_1}}{\mathbf{D} \sim \mathbf{Z_1}} = \frac{\alpha_1 \beta_1}{\alpha_1} \\ & \text{Wald2: } \frac{\mathbf{Y} \sim \mathbf{Z_2}}{\mathbf{D} \sim \mathbf{Z_2}} = \frac{\alpha_2 \beta_1}{\alpha_2} \end{aligned}$$

2 Estimating with 2SLS:  $\psi$ Wald1 +  $(1 - \psi)$ Wald2. Where  $\psi = \frac{\alpha_1 \text{Cov}(D, Z_1)}{\alpha_1 \text{Cov}(D, Z_1) + \alpha_2 \text{Cov}(D, Z_2)}$ 

Goals and Objectives
Review of Constant
Effects

Heterogeneous Effects

1 Review of Constant Effects

Goals and Objectives
Review of Constant

Effects

Heterogeneous Effects

|          |   | $d_i(0)$ |        |  |
|----------|---|----------|--------|--|
|          |   | 0        | 1      |  |
| $d_i(1)$ | 0 | Never    | Defier |  |
|          | 1 | Complier | Always |  |

Table: Principal strata for compliance behavior

Figure: Heterogenous Effects with Confounding on D and Y



# Goals and Objectives Review of Constant Effects

Heterogeneous Effects

|     |          |   | $d_i(0)$          |                    |
|-----|----------|---|-------------------|--------------------|
|     |          |   | 0                 | 1                  |
| - C | $J_i(1)$ | 0 | Never             | Defier             |
|     |          |   | $\alpha_{1i} = 0$ | $\alpha_{1i} = -1$ |
|     |          | 1 | Complier          | Always             |
|     |          |   | $\alpha_{1i} = 1$ | $\alpha_{1i} = 0$  |

Table: Principal strata and monotonicity

 $\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]}$ 

#### Goals and Objectives

Review of Constant Effects

Review of Constant Effects

$$\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]}$$

$$=\frac{E[\beta_{1i}|\alpha_{1i}=1]Pr(\alpha_{1i}=1)-E[\beta_{1i}|\alpha_{1i}=-1]Pr(\alpha_{1i}=-1)}{Pr(\alpha_{1i}=1)-Pr(\alpha_{1i}=-1)}$$

Effects

$$E[\alpha_{1i}\beta_{1i}]$$

$$=\frac{E[\beta_{1i}|\alpha_{1i}=1]Pr(\alpha_{1i}=1)-E[\beta_{1i}|\alpha_{1i}=-1]Pr(\alpha_{1i}=-1)}{Pr(\alpha_{1i}=1)-Pr(\alpha_{1i}=-1)}$$

 $E[\alpha_{1i}]$ 

$$= E[\beta_{1i}|\alpha_{1i} = 1] \left( \frac{Pr(\alpha_{1i} = 1) - \frac{E[\beta_{1i}|\alpha_{1i} = -1]}{E[\beta_{1i}|\alpha_{1i} = 1]} Pr(\alpha_{1i} = -1)}{Pr(\alpha_{1i} = 1) - Pr(\alpha_{1i} = -1)} \right)$$

# **Figure:** Heterogenous Effects with Confounding on *D* and *Y*, Continuous Treatment



$$D_i = \alpha_0 + \alpha_{1i}Z_i + \epsilon_i$$

$$Y_i = \gamma_0 + \beta_{1i} D_i + \nu_i$$

What are compliers now?

Goals and Objectives
Review of Constant
Effects

Review of Constant Effects

$$\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]} = \frac{\frac{1}{n}\sum \alpha_{1i}\beta_i}{\frac{1}{n}\sum D_{1i} - D_{0i}} = \frac{1}{n}\sum \frac{\alpha_{1i}}{\bar{\alpha_1}\beta_i}$$

# Learning about compliers for one-sided noncompliance (binary treatment)

Goals and Objectives
Review of Constant
Effects

One sided non-compliance refers to a case a patient cannot get a drug without being assigned to treatment, i.e. there are no always-takers. There are only compliers and never-takers.

$$\frac{E[\alpha_{1i}\beta_{1i}]}{E[\alpha_{1i}]} = \frac{Pr(\alpha_{1i} = 1)E[\beta_i]|\alpha_{1i} = 1}{Pr(\alpha_{1i} = 1)} = E[\beta_i|\alpha_{1i} = 1]$$

Because under one-sided non-compliance, we know for every treated individual whether they are compliers or never takers.

#### Learning about compliers for monotonicity (binary treatment)

Goals and Objectives
Review of Constant
Effects

$$E[g(x_i)|\alpha_{1i} = 1, D_{1i} > D_{0i}] = \frac{E[\kappa_i g(x_i)]}{E[\kappa_i]}$$

Where:

$$\kappa_i = 1 - \underbrace{\frac{D_i(1 - Z_i)}{1 - Pr(Z_i = 1|X_i)}}_{\text{D=1, Z=0} \rightarrow \text{always-taker}} \underbrace{\frac{(1 - D_i)Z_i}{Pr(Z_i = 1|X_i)}}_{\text{Z=1, D=0} \rightarrow \text{never-taker}}$$

In this equation,  $\kappa_i=1$  for compliers. For identifiable always-takers and never-takers, the  $\kappa$  equation gives large negative values. The equation identifies who looks like they would have been always-takers and never takers based on their covariate characteristics.  $E[\alpha_i]=E[\kappa_i]=$  proportion of compliers  $(Pr(D_1>D_0).$ 

## Learning about weights with continuous treatment

Goals and Objectives

Review of Constant Effects

Heterogeneous Effects

Ideas?

## **Goals and Objectives for This Morning:**

Goals and Objectives
Review of Constant
Effects

- Review IV with constant effects
- Introduce IV with heterogeneous effects
- Learning about compliers

Review of Constant Effects

Heterogeneous Effects

This afternoon, mediation analysis and more with heterogeneous effects.