Instruction Manual for the Ray de novo genome assembler software

Sébastien Boisvert

March 8, 2011

Ray version 1.3.0	
http://denovoassembler.sf.net	
Reference to cite:	

Sébastien Boisvert, François Laviolette & Jacques Corbeil.

Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. *Journal of Computational Biology* (Mary Ann Liebert, Inc. publishers, New York, U.S.A.). November 2010, Volume 17, Issue 11, Pages 1519-1533.

doi:10.1089/cmb.2009.0238

 $\rm http://dx.doi.org/doi:10.1089/cmb.2009.0238$

Contents

1	Inst	callation
	1.1	Compilation flags
	1.2	Compilation with the configure script
	1.3	Compilation with the makefile.alternate
2	Inp	uts
3	Par	ameters
	3.1	k-mer length with -k
	3.2	Output prefix with -o
	3.3	Single-end reads with -s
	3.4	Paired-end reads and mate-pair reads with -p
	3.5	Paired-end reads and mate-pair reads with -i (interleaved sequences)
4	Out	put 4
	4.1	Contiguous sequences
	4.2	Paired-end and mate-pair libraries
	4.3	Coverage distribution
5	Exa	imple 5
	5.1	Bacterial genome with paired-end and mate-pair short reads
6	Vir	tual sequencer & simulations

Table 1: Suggested software

Software	Name
C++ compiler	GNU g++
MPI implementation	Open-MPI

1 Installation

To install Ray, you need a C++ compiler, make and an MPI implementation compliant with MPI standard 2.2. These software are readily available in most GNU/Linux distributions.

1.1 Compilation flags

Table 2: Compilation flags

Flag	Effet
HAVE_ZLIB	enable support for .gz files
HAVE_LIBBZ2	enable support for .bz2 files
FORCE_PACKING	enable packing of structures and classes
ASSERT	enable assertions in the code

1.2 Compilation with the configure script

```
./configure --prefix=$(pwd)/software/ray-x.y.z
make
make install
ls -l $(pwd)/software/ray-x.y.z/bin/Ray
```

1.3 Compilation with the makefile.alternate

make -f makefile.alternate
ls -l code/Ray

2 Inputs

The input files for Ray contain sequences. The files must be formatted in one of the supported formats.

Table 3: File formats compatible with the Ray de novo genome assembler software

*	i O
Format	Obligatory extension
Fasta format	.fasta
Fasta format, compressed with GNU zip (gzip)	. fasta. gz
Fasta format, compressed with bzip2	.fasta.bz 2
Fastq format	.fastq
Fastq format, compressed with GNU zip (gzip)	.fastq $.$ gz
Fastq format, compressed with bzip2	.fastq.bz2
Standard flowgram format	.sff

3 Parameters

Ray assembles reads (paired or not) to produce an assembly. Paired reads must be on opposite strands (forward & reverse or reverse & forward).

3.1 Path prefix for memory-mapped files (default: value given to -o)

Ray uses memory-mapped files (using POSIX mmap). If you are running Ray on a high-performance computer/cluster, check if the system provides a directory called /scratch. Such a directory usually provides fast-access to file pages. OnDiskAllocator is a chunk allocator whose chunks are in memory-mapped files (1 chunk = 1 file). Obviously, demand paging will do the swapping of memory pages.

-MemoryPrefix <memoryPrefix>

3.2 k-mer length with -k

Ray builds a distributed catalog of all occurring k-mers in the reads and their reverse-complement. k must be greater or equal to 15 and lower or equal to 31. The k-mer length must be an odd number.

3.3 Output prefix with -o

Output files are named according to the prefix provided by the option -o.

3.4 Single-end reads with -s

-s <sequencesFile>

3.5 Paired-end reads and mate-pair reads with -p

-p <leftSequencesFile> <rightSequencesFile> [<averageFragmentLength> <standardDeviation>]

Example for paired-end reads (the ends of DNA fragments):

```
-p s_200_1.fastq s_200_2.fastq
```

Example for mate-pair reads:

-p s_20000_1.fastq s_20000_2.fastq

3.6 Paired-end reads and mate-pair reads with -i (interleaved sequences)

-i <sequencesFile [<averageFragmentLength> <standardDeviation>]

In the interleaved file (example is for a fasta file):

>200_1_1234/1
ATCGATCGATCGACTCAGACACGTACG
>200_1_1234/2
ACTGACGACGTACGACGTCATGCAACT

. . .

4 Output

4.1 Contiguous sequences

OutputPrefix.fasta contains contiguous sequences.

4.2 Paired-end and mate-pair libraries

OutputPrefix.LibraryLibraryNumber.txt contains the distribution of distances for paired-end and mate-pair libraries. One file per library.

4.3 Coverage distribution

OuputPrefix.CoverageDistribution.txt contains the k-mer coverage distribution.

5 Example

5.1 Bacterial genome with paired-end and mate-pair short reads

The command:

```
mpirun -np 32 ~/Ray/trunk/code/Ray \
-p /home/boiseb01/nuccore/Large-Ecoli/200_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/200_2.fastq \
-p /home/boiseb01/nuccore/Large-Ecoli/1000_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/1000_2.fastq \
-p /home/boiseb01/nuccore/Large-Ecoli/4000_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/4000_2.fastq \
-p /home/boiseb01/nuccore/Large-Ecoli/10000_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/10000_1.fastq \
    /bome/boiseb01/nuccore/Large-Ecoli/10000_2.fastq \
-o BacterialGenome | tee RayLog
```

6 Virtual sequencer & simulations

The Ray package includes a simulator for paired reads.

```
N=6000000
readLength=50
errorRate=0.005
ref=~/nuccore/Ecoli-k12-mg1655.fasta
g++ code/simulatePairedReads.cpp -03 -Wall -o Simulator
./Simulator $ref $errorRate 200 20 $N $readLength L1_1.fasta L1_2.fasta
```