Homework 1

Physics 5A

Due Fr 9 / 13 / 24 @ 5:00PM

There are 7 problems worth a total of 80 points. The clearer your presentation is, the easier it is for us to give you points! Please turn in your solutions using Gradescope by 5:00 PM on Friday, September 13. "K.K." refers to the 2nd edition of the textbook "An Introduction to Mechanics" authored by Kleppner & Kolenkow. Remember, you are encouraged to work together, but please make sure the work you turn in is your own.

- 1. Vectors and relative velocity (20 pts)
 - If the air velocity (velocity with respect to the air) of an airplane is \mathbf{u} , and the wind velocity with respect to the ground is \mathbf{w} , then the ground velocity \mathbf{v} of the airplane is $\mathbf{v} = \mathbf{u} + \mathbf{w}$. An airplane flies a straight course (with respect to the ground) from P to Q and then back to P, with a constant airspeed $|\mathbf{u}| = U_0$, regardless of the wind. If the distance from P to Q is L, find the time t required for one round trip, under the following conditions:
 - (a) No wind.
 - (b) Wind of speed W_0 blowing from P to Q .
 - (c) Wind of speed W_0 blowing perpendicular to a line connecting P and Q.
 - (d) Wind of speed W_0 blowing at an angle heta from a line connecting P and Q .
 - (e) Show that the round trip flying time is always the least for the condition in part (a).
 - (f) What happens to the answers to (b)-(d) when $W_0>U_0$? Interpret this limiting condition physically.
 - (g) Since airplanes typically fly much faster than the wind blows, i.e. $U_0 >> W_0$, use a Taylor expansion to obtain an expression for part (d) valid to second order in W_0 (e.g., keep terms up to and including W_0^2). The expansions $\sqrt{1+x}=1+\frac{x}{2}+\cdots$ and $\frac{1}{1-x}=1+x+\cdots$ may prove useful, or refer to KK Note 1.3.
- 2. (10 pts) K.K. 1.16
- 3. (10 pts) K.K. 1.23
- 4. (10 pts) K.K. 1.24 (Note: these quantities should be given as vectors)
- 5. (10 pts) K.K. 1.26

- 6. (10 pts) K.K. 1.27
- 7. (10 pts) The time derivative of acceleration is called 'jerk'.
 - (a) if we are using a Cartesian coordinate system to describe the motion of the particle, i.e.
 - $\mathbf{r}(t) = x(t)\hat{\mathbf{x}} + y(t)\hat{\mathbf{y}} + z(t)\hat{\mathbf{z}}$, derive the expression for the jerk vector.
 - (b) if we are using a polar coordinate system to describe the motion of the particle, i.e.
 - $\mathbf{r}(t) = r(t)\hat{\mathbf{r}}(\theta(t))$, derive the expression for the jerk vector, i.e. find the coefficients j_r and j_θ in $\mathbf{j} = j_r \hat{\mathbf{r}} + j_\theta \hat{\boldsymbol{\theta}}$.
 - (c) what is the jerk vector for moving uniformly in a circle of radius R with angular velocity ω