Chapter 4

2. We start from
$$\cos\left(n\frac{\pi}{4}\right) = x(n) = x_c(nT) = \cos\left(\Omega_0 nT\right)$$

(=) For all
$$k \in \mathbb{Z}$$
, $n\frac{\pi}{4} + 2k\pi = \Omega_0 nT$

$$\frac{\pi}{4} + 2\ell'\pi = \Omega_0 T$$

$$l_{i}=0$$
 $\Omega_{o}=\frac{\pi}{4}.1000=250\pi$

$$\frac{\ell_{\epsilon}'=1}{2\pi} = \left(2\pi + \frac{\pi}{4}\right) 1000 = 2250 \, \text{T}$$

$$\frac{\pi}{8} = \frac{1}{10,000} \Omega c$$

$$\frac{\pi}{8} = \frac{1}{25,000} \Omega_c$$

$$\Omega_c = 2\pi \cdot 625 \text{ rad/sec}$$
 $\Omega_c = 2\pi \cdot 1250 \text{ rad/sec}$

$$\Leftrightarrow \frac{2\pi}{T} \% 2\Omega_{o} \Leftrightarrow T \in \frac{\pi}{\Omega_{o}}$$

So the range of values for
$$T$$
 for which $x_r(t) = x_c(t)$ is $\left[0, \frac{\pi}{\Omega_0}\right]$.

20 (a) Similarly to 19., we need:
$$\Omega_{s} \approx 2\Omega_{0}$$

$$\Omega_{s} = \frac{2\pi}{T} \iff \frac{1}{T} = \frac{\Omega_{s}}{2\pi}$$

Hence, $\frac{1}{T} \approx \frac{2\Omega_{0}}{2\pi} = \frac{2(2\pi)1000}{2\pi} = 2000 \text{ Hz}$

$$\frac{1}{5} \approx 26 \text{ Hz}$$

(b) if $\omega_{s} = \frac{\pi}{2}$, we need $|\omega| \ll \frac{\pi}{2}$ so that $y_{r}(t) = x_{e}(t)$

$$2t's take a specific value of ω and call it ω_{N}

Then, $\omega_{N} = \Omega_{N}.T \ll \frac{\pi}{2}$, then $\frac{1}{T} \approx 2\Omega_{N}$
as the maximum value of Ω_{N} is Ω_{0} , we must verify
$$\frac{1}{T} \approx 2\Omega_{0} = 2(2\pi)1000 = 4000 \text{ Hz}$$

$$\frac{1}{5} \approx 46 \text{ Hz}$$$$

as the maximum value of
$$\Omega_N$$
 is Ω_0 , we must verify
$$\frac{1}{T} \gg \frac{2\Omega_0}{\pi} = \frac{2(2\pi)1000}{\pi} = 4000 \text{ Hz}$$
Is a 4leHz

$$(1) \frac{1}{T_1} = \frac{1}{T_2} = 2 \times 10^4$$

411×103

-47,103

From the figure below, it can be seen that the only portion of the prectrum which remains unaffected by the aliasing is $|w| < T_3$. So if we choose $\omega_c < T_3$, the overall system is LTI with a frequency response of $H_c(j\Omega) = \begin{cases} 1 & \text{for } |\Omega| < \omega \times 6 \times 10^3 \end{cases}$ undiased X (ejm) aliased 26. For no diving to be present in the output (LTI means $y_c(t) = \kappa c(t)$) we require that $2\Pi - \Omega_N T \gg \omega_c^{\frac{T}{2}}$ $2\pi - \frac{\pi}{2} = 7 \Omega_N T$ 3 T 2 7 2N T 311 × 1 > 12N 2 3 AT . Ps ≥ 27 Pc 3/4 fs 7/ fa IF the sampling rate is &= 16 kHz, the cutoff frequency of the C/D converte should be no more than 12 letz