Отчет по лабораторной работе №7: Эффективность рекламы

дисциплина: Математическое моделирование

Родина Дарья Алексеевна, НФИбд-03-18

Содержание

1	Введ	цение	4
	1.1	Цель работы	4
		Задачи	4
	1.3		4
2	Эфф	ективность рекламы	5
	2.1	Описание модели эффективности рекламы	5
3	Вып	олнение лабораторной работы	8
	3.1	Формулировка задачи из варианта	
	3.2	Реализация алгоритмов	9
		3.2.1 Подключение библиотек	8 9 9
		3.2.2 Функция, описывающая дифференциальные уравнения	9
		3.2.3 Начальные значения	10
		3.2.4 Решение дифференциального уравнения и построение	
		графиков	10
	3.3	Построенные графики	11
4	Выв	од	13

Список иллюстраций

2.1 2.2	График решения уравнения модели Мальтуса	6 7
3.1	График распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио. Коэффициент $\alpha 1=0.54$, коэффициент $\alpha 2=0.00016$	11
3.2		
	рекламы и с учетом сарафанного радио, точка максимальной скорости распространения. Коэффициент $\alpha 1 = 0.000021$,	
	коэффициент $\alpha 2=0.38$	12
3.3	График распространения информации о товаре с учетом платной	
	рекламы и с учетом сарафанного радио, точка максимальной	
	скорости распространения. Коэффициент $\alpha 1 = 0.2 cos(t)$,	
	коэффициент $\alpha 2 = 0.2 cos(2t)$	12

1 Введение

1.1 Цель работы

Основной целью лабораторной работы можно считать построение математической модели для выбора правильной стратегии при решении задачи об эффективности рекламы.

1.2 Задачи

Можно выделить три основные задачи данной лабораторной работы: 1. изучить теоретическую часть модели, описывающией эффективность рекламы; 2. реализовать частные случаи модели из моего варианта на одном из представленных языков программирования.

1.3 Объект и предмет исследования

Объектом исследования в данной лабораторной работе является модель, описывающая эффективность рекламы, а предметом исследования - частные случаи, представленные в моем варианте лабораторной работы.

2 Эффективность рекламы

2.1 Описание модели эффективности рекламы

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу

описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$

При $a_1(t)>>a_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис. 2.1):

Рис. 2.1: График решения уравнения модели Мальтуса

В обратном случае, при $a_1(t) << a_2(t)$ получаем уравнение логистической кривой (рис. 2.2):

Рис. 2.2: График логистической кривой

3 Выполнение лабораторной работы

3.1 Формулировка задачи из варианта

Так как в седьмой лабораторной работе 70 вариантов, то номер моего варианта вычисляется по формуле $S_n mod 70+1$, где S_n - номер студенческого билета (в моем случае $S_n=1032182581$):

Соответственно, номер моего варианта - 32.

Вариант 32

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

- 1. $\frac{dn}{dt} = (0.54 + 0.00016 n(t))(N-n(t))$
- 2. $\frac{dn}{dt} = (0.000021 + 0.38n(t))(N n(t))$
- 3. $\frac{dn}{dt} = (0.2cos(t) + 0.2cos(2t)n(t))(N n(t))$

При этом объем аудитории N=609, в начальный момент о товаре знает 4 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3.2 Реализация алгоритмов

3.2.1 Подключение библиотек

Для того, чтобы использовать многие формулы, а также для построения графиков, необходимо подключить определенные библиотеки, в которых эти формулы описаны:

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from math import cos

### Функции, описывающие факторы, влияющие на эффективность рекламы
Платная реклама:
```

```
def k(t):
    g = 0.54
    return g
```

Сарафанное радио:

```
def p(t):
    v = 0.00016
    return v
```

3.2.2 Функция, описывающая дифференциальные уравнения

Функция для решения дифференциального уравнения имеет вид:

```
# Уравнение, описывающее распространение рекламы
def f(x, t):
    dx = (k(t) + p(t) * x[0]) * (N - x[0])
    return dx
```

3.2.3 Начальные значения

Начальные условия задаются следующим образом:

```
t0 = 0 # Начальный момент времени
# Количество людей, знающих о товаре в начальный момент времени
x0 = 4
# Максимальное количество людей, которых может заинтересовать товар
N = 609
# временной промежуток (длительность рекламной кампании)
t = np.arange(t0, 10, 0.1)
```

Для каждого случая длительность рекламной кампании была разная.

3.2.4 Решение дифференциального уравнения и построение графиков

```
x = odeint(f, x0, t)
plt.plot(t, x)
```

Для второго случая необходимо было найти момент времени, в которой скорость была максимальной:

```
n = x.size

v = 0
k = -1
for i in range(n - 2):
    if x[i+1] - x[i] > k:
        k = x[i+1] - x[i]
    v = i
```

3.3 Построенные графики

Первый случай (рис. 3.1):

Рис. 3.1: График распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио. Коэффициент $\alpha 1=0.54$, коэффициент $\alpha 2=0.00016$

Второй случай (рис. 3.2):

Рис. 3.2: График распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио, точка максимальной скорости распространения. Коэффициент $\alpha 1=0.000021$, коэффициент $\alpha 2=0.38$

Третий случай (рис. 3.3):

Рис. 3.3: График распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио, точка максимальной скорости распространения. Коэффициент $\alpha 1=0.2cos(t)$, коэффициент $\alpha 2=0.2cos(2t)$

4 Вывод

При выполнении лабораторной работы мною были усвоены основные приципы модели, описывающей эффективность рекламы, а также проведена реализация данной модели в рамках моего варианта лабораторной работы.