

ЭТИКЕТКА

<u>УПЗ.487.317 ЭТ</u>

Микросхема интегральная 564 УМ1В Функциональное назначение — 4^{x} - линейный усилитель индикации со стробированием по каждому входу

Климатическое исполнение УХЛ Схема расположения выводов Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	
1	Вход стробирования С3	9	Вход информационный Х0	
2	Вход Х4	10	Вход стробирования С0	
3	Выход У4	11	Вход информационный Х1	
4	Выход УЗ	12	Вход стробирования С1	
5	Выход У2	13	Вход информационный Х2	
6	Выход У1	14	Вход стробирования С2	
7	Питание, U _{u.n2}	15	Вход информационный ХЗ	
8	Общий	16	Питание, U _{u.n1}	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Цантаноронно повомотво отнично наморония вомин наморония	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: U_{CC1} = 5 B, U_{CC2} = -5 B	U_{OL}	/-4,99/	ı
2. Выходное напряжение высокого уровня, B, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B$	U_{OH}	4,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC1} = 5 B, U_{CC2} = -5 B	U _{OL max}	/-4,0/	-
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC1} = 5 B, U_{CC2} = -5 B	$U_{ m OHmin}$	4,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B \\ U_{CC1} = 15 \; B, \; U_{CC2} = 0 \; B$	I_{IL}	- -	/-0,05/ /-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC1} = 5$ В, $U_{CC2} = -5$ В $U_{CC1} = 0$ В, $U_{CC2} = -15$ В	I_{IH}	-	0,05 0,1
7. Выходной ток низкого уровня, мА, при: $U_{\rm CC1}$ = 5 B, $U_{\rm CC2}$ = -5 B $U_{\rm O}$ = -4,5 B	I_{OL}	0,9	-
8. Выходной ток высокого уровня, мА, при: U_{CC1} = 5 B, U_{CC2} = -5 B U_{O} = 4,5 B	I_{OH}	/-0,45/	-

Продолжение таблицы 1			
1	2	3	4
9. Ток потребления (в статическом режиме), мкА, при: U_{CC1} = 5 B, U_{CC2} = -5 B U_{CC1} = 0 B, U_{CC2} = -15 B	I _{CC}	- -	10 20
10. Время задержки распространения при включении, нC, при: $\rm U_{CC1}$ = 5 B, $\rm U_{CC2}$ = -5 B	t _{PHL}	-	1200
11. Время задержки распространения при выключении, нС, при: U_{CC1} = 5 B, U_{CC2} = -5 B	$t_{\rm PLH}$	-	1200
12. Время перехода при включении, н C , при: $U_{\rm CC1}$ = 5 B, $U_{\rm CC2}$ = -5 B	t _{THL}	-	180
13. Время перехода при выключении, нС, при: $U_{CC1} = 5$ B, $U_{CC2} = -5$ В	t _{TLH}	-	180
14. Минимальная длительность строб. импульсов, нС, при: $U_{\rm CC1}$ = 5 B, $U_{\rm CC2}$ = -5 B	t _{строб.}	-	170
15. Входная емкость, пФ, при: $U_{CC1} = 5~B, U_{CC2} = -5~B$	Cı	-	7,5

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

3олото $\Gamma,$ серебро $\Gamma,$ в том числе: 3олото $\Gamma/$ мм

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

на 16 выводах, длиной

 $2.1~{\rm M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{\rm u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{\rm C}$ - не менее $100000~{\rm u}$., а в облегченных режимах, которые приводят в ТУ, при $U_{\rm CC}=5{\rm B}\pm10\%$ - не менее $120000~{\rm u}$.

Гамма – процентный ресурс $(T_{D\gamma})$ микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе "Справочные данные" ТУ.

MM.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- $3.1 \ \underline{\Gamma}$ арантии предприятия изготовителя по ОСТ В $11 \ 0398 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕД	ЕНИЯ	O	ПРИЕМ	ИΚЕ

Микросхемы 564 УМ1В соответствуют техническим условиям бК0.347.064 ТУ27 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	OT	(дата)	
Место для шт	ампа ОТК			Место для штампа ВП
Место для шт	ампа «Перепроверка	произведена	ι	
Приняты по	(извещение, акт и др.)	OT	(дата)	
Место для шт	ампа ОТК			Место для штампа ВП

Цена договорная

- 5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ
- 5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход общая точка, выход общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.