Purdue University School of Electrical and Computer Engineering

ECE 20200 : Linear Circuit Analysis II

Summer 2013 Instructor: Aung Kyi San

Midterm Examination I June 26, 2013

Instructions:

- 1. Wait for the "BEGIN" signal before opening this booklet.
- 2. Enter your name, student ID number, e-mail address and your full signature in the space provided on this page.
- 3. You have 90 minutes to complete all 5 questions contained in this exam. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
- 4. Read the questions carefully. Unless otherwise stated, you must fully justify your answers. You may use any method you want unless you are asked to use a specific method.
- 5. This booklet contains 14 pages including the Laplace Transform Tables. Since only this booklet will be graded, make sure you have all your answers written in this booklet.
- 6. Notes, books, calculators, cell phones, pagers and any other electronic communication device are strictly forbidden.

Name:		
Student ID:		
Email:		
Signature:		_

(Total 20 pts) 1.

(a)

(i) (3 pts) Represent $f_1(t)$ using sums of steps, ramps and shifts of basic signals.

(ii) (2 pts) Find the Laplace transform of $f_1(t)$.

(b) (3 pts) Find the Laplace transform of $f_2(t) = [(t^2 + 1) + (t^2 - 1)] [\delta(t+1) + \delta(t-1)].$

(c) (6 pts) Find the inverse Laplace transform of the function

$$F_3(s) = \frac{10s + 40 - (20s + 40)e^{-s}}{s^3 + 6s^2 + 8s}.$$

(d) (6 pts) Find the inverse Laplace transform of the function

$$F_4(s) = \frac{3s}{(s+3)^2} + \frac{2s-3}{s^2+4}.$$

(Total 20 pts) 2.

(a) Consider the parallel RLC circuit given below. Suppose the initial conditions are $i_L(0^-) = 1$ A and $v_C(0^-) = 1$ V.

(i) (2 pts) Show that the integro-differential equation of the circuit is given by

$$\frac{1}{5}v_c(t) + \frac{1}{20}\frac{dv_c(t)}{dt} + \frac{1}{4}\int_{-\infty}^t v_c(q)dq = i_{in}(t)$$

(ii) (7 pts) By taking Laplace transform of the equation obtained in part (i), find $V_c(s)$ if $i_{in}(t) = u(t)$ A.

(iii) (4 pts) Find $v_c(t)$.

(b) (7 pts) Compute the Thevenin equivalent impedance of the following circuit.

(Total 15 pts) 3.

(a) (12 pts) Compute $H_1(s) = \frac{V(s)}{V_{in}(s)}$ and $H_2(s) = \frac{V_{out}(s)}{V(s)}$ using nodal analysis, basis op amp properties and/or the transfer function formula of an inverting op amp amplifer. Then find $H(s) = \frac{V_{out}(s)}{V_{in}(s)}$.

177 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EXAMI	(Aung	Kvi	San
---	-------	-------	-----	-----

(b) (3 pts) Find the impulse response.

(Total 20 pts) 4.

(a) (4 pts) The Laplace transform of a capacitor voltage is given by $V_C(s) = \frac{2}{s} - \frac{1}{2s+5}$. Find the initial capacitor voltage $v_C(0^+)$ using the Initial Value Theorem.

(b) (6 pts) Consider the circuit given below. The switch moves from position A to position B at t = 2 s, back to position A at t = 4 s, and then back to position B at t = 6 s, where it remains forever.

If $C_1 = 1$ F, $C_2 = 4$ F, $v_{out}(0^-) = 0$, and $v_{in}(t) = 25u(t)$ V, find $v_{out}(t)$ at t = 7 s.

(c) Consider the circuit below. $v_{in}(t)$ is given as u(t). Assume all the initial conditions to be zero.

(i) (6 pts) Write down the loop equations in s-domain.

(ii) (2 pts) Write the equations obtained in part (i) in matrix form.

(iii) (2 pts) Write down the formula you would use to solve $I_2(s)$ using Cramer's Rule.

(Total 25 pts) 5. Consider the circuit given below. Suppose $i_{in}(t) = 10u(-t) + 10u(t)$.

(a) Compute $v_C(0^-)$ and $i_L(0^-)$. (2 pts)

(b) Compute $Z_{in}(s)$ for the case of t < 0. (3 pts).

(c) Compute $Z_{in}(s)$ for the case of $t \geq 0$. (3 pts).

For parts (d), (e) and (f), if you do not have answers for part(a), then assume $v_C(0^-) = 2$ V and $i_L(0^-) = 1$ A and proceed to obtain partial credits.

(d) Draw the equivalent s-domain circuit for $t \ge 0$. Use your results from part (a) and use only **CURRENT SOURCE MODELS** of charged capacitor/inductor. (3 pts)

(e) Compute the zero-input response for $t \geq 0$ assuming the input current is zero. (7 pts)

(f) Compute the zero-state response for $t \geq 0$ assuming all initial conditions are zero. (7 pts)

Table 12.1 LAPLACE TRANSFORM PAIRS

Item Number	f(t)	$\mathcal{L}[f(t)] = \mathbf{F}(\mathbf{s})$
1	$K\delta(t)$	K
2	Ku(t) or K	K/s
3	r(t)	1/s ²
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{-at}u(t)$	1/(s+a)
6	$te^{-at}u(t)$	$1/(s+a)^2$
7	$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$
8	$\sin(\omega t)u(t)$	$\frac{\omega}{s^2 + \omega^2}$
9	$\cos(\omega t)u(t)$	$\frac{s}{s^2 + \omega^2}$
10	$e^{-at}\sin(\omega t)u(t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$
11	$e^{-at}\cos(\omega t)u(t)$	$\frac{(s+a)}{(s+a)^2 + \omega^2}$
12	$t\sin(\omega t)u(t)$	$\frac{2\omega s}{(s^2 + \omega^2)^2}$
13	$t\cos(\omega t)u(t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
14	$\sin(\omega t + \phi)u(t)$	$\frac{s\sin(\phi) + \omega\cos(\phi)}{s^2 + \omega^2}$
15	$\cos(\omega t + \phi)u(t)$	$\frac{s\cos(\phi) - \omega\sin(\phi)}{s^2 + \omega^2}$
16	$e^{-at}[\sin(\omega t) - \omega t \cos(\omega t)]u(t)$	$\frac{2\omega^3}{\left[\left(s+a\right)^2+\omega^2\right]^2}$

17	$te^{-at}\sin(\omega t)u(t)$	$2\omega \frac{s+a}{\left[\left(s+a\right)^2+\omega^2\right]^2}$
18	$e^{-at} \left[C_1 \cos(\omega t) + \left(\frac{C_2 - C_1 a}{\omega} \right) \sin(\omega t) \right] u(t)$	$\frac{C_1s+C_2}{(s+a)^2+\omega^2}$

Table 12.2 LAPLACE TRANSFORM PROPERTIES

Property	Transform Pair
Linearity	$\mathcal{L}[a_1f_1(t) + a_2f_2(t)] = a_1F_1(s) + a_2F_2(s)$
Time Shift	$\mathcal{L}[f(t-T)u(t-T)] = e^{-sT}F(s), T > 0$
Multiplication by <i>t</i>	$\mathcal{L}[tf(t)u(t)] = -\frac{d}{ds}F(s)$
Multiplication by <i>t</i> ⁿ	$L[t^n f(t)] = (-1)^n \frac{d^n F(s)}{ds^n}$
Frequency Shift	$\mathcal{L}[e^{-at}f(t)] = F(s+a)$
Time Differentiation	$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0^{-})$
Second-Order Differentiation	$L\left[\frac{d^2 f(t)}{dt^2}\right] = s^2 F(s) - sf(0^-) - f^{(1)}(0^-)$
nth-Order Differentiation	$L\left[\frac{d^{n}f(t)}{dt^{n}}\right] = s^{n}F(s) - s^{n-1}f(0^{-}) - s^{n-2}f^{(1)}(0^{-})$ $-\dots - f^{(n-1)}(0^{-})$
	(i) $L\left[\int_{-\infty}^{t} f(q)dq\right] = \frac{F(s)}{s} + \frac{\int_{-\infty}^{0^{-}} f(q)dq}{s}$
Time Integration	(ii) $L\left[\int_{0^{-}}^{t} f(q)dq\right] = \frac{F(s)}{s}$
Time/Frequency Scaling	$\mathcal{L}[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$