APPENDIX FOR

Sharpness-Aware Minimization with Adaptive Regularization for Training Deep Neural Networks

A. Proof of Theorem 1

A significant conclusion (3) could be deduced from Assumption 2. If $\nabla f(\mathbf{x})$ has a Lipschitz gradient with constant L > 0, we have

$$f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) \leq \langle \nabla f(\mathbf{x}_{k}), \mathbf{x}_{k+1} - \mathbf{x}_{k} \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|^{2}$$

$$= -\eta_{k} \langle \nabla f(\mathbf{x}_{k}), (1 - \lambda_{k}) \mathbf{g}(\mathbf{x}_{k}) + \lambda_{k} \mathbf{g}(\mathbf{x}_{k} + \epsilon_{\mathbf{x}_{k}}) \rangle + \frac{L}{2} \eta_{k}^{2} \| (1 - \lambda_{k}) \mathbf{g}(\mathbf{x}_{k}) + \lambda_{k} \mathbf{g}(\mathbf{x}_{k} + \epsilon_{\mathbf{x}_{k}}) \|^{2}$$

$$= \underbrace{-\eta_{k} \langle \nabla f(\mathbf{x}_{k}), (1 - \lambda_{k}) \mathbf{g}(\mathbf{x}_{k}) \rangle}_{:= \bullet} - \underbrace{-\eta_{k} \langle \nabla f(\mathbf{x}_{k}), \lambda_{k} \mathbf{g}(\mathbf{x}_{k} + \epsilon_{\mathbf{x}_{k}}) \rangle}_{:= \diamondsuit} + \underbrace{\frac{L}{2} \eta_{k}^{2} \| (1 - \lambda_{k}) \mathbf{g}(\mathbf{x}_{k}) + \lambda_{k} \mathbf{g}(\mathbf{x}_{k} + \epsilon_{\mathbf{x}_{k}}) \|^{2}}_{:= \diamondsuit}.$$

$$(3)$$

We calculate each of the above three parts respectively

 $\stackrel{(b)}{\leq} L\eta_k^2 \left[(1 - \lambda_k)^2 \|\mathbf{g}(\mathbf{x}_k)\|^2 + \lambda_k^2 \|\mathbf{g}(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k})\|^2 \right]$

where the inequality (a) uses Lipschitz continuity $\|\mathbf{g}(\mathbf{x}_k + \epsilon_{\mathbf{x}_k}) - \mathbf{g}(\mathbf{x}_k)\| \le L\|\epsilon_{\mathbf{x}_k}\|$ and the Cauchy's inequality $\langle \mathbf{x}, \mathbf{y} \rangle \le \|\mathbf{x}\| \cdot \|\mathbf{y}\|$. The inequality (b) depends on the inequality $\|\mathbf{a} + \mathbf{b}\|^2 \le 2\|\mathbf{a}\|^2 + 2\|\mathbf{b}\|^2$. Taking expectation on (4), (5) and (6), we can further get

$$\mathbb{E}[\boldsymbol{A}] \stackrel{(c)}{=} - \eta_{k} (1 - \lambda_{k}) \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}], \tag{7}$$

$$\mathbb{E}[\nabla] \leq \eta_{k} \lambda_{k} L \rho \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|] - \eta_{k} \lambda_{k} \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}]$$

$$\stackrel{(d)}{\leq} \frac{L}{2} \rho^{2} + \frac{L}{2} \eta_{k}^{2} \lambda_{k}^{2} \left[\mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|]^{2} - \eta_{k} \lambda_{k} \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}]\right]$$

$$\stackrel{(e)}{\leq} \frac{L}{2} \rho^{2} + \frac{L}{2} \eta_{k}^{2} \lambda_{k}^{2} \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}] - \eta_{k} \lambda_{k} \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}], \tag{8}$$

$$\mathbb{E}[\boldsymbol{A}] \leq L \eta_{k}^{2} \left[(1 - \lambda_{k})^{2} \mathbb{E}[\|\mathbf{g}(\mathbf{x}_{k})\|^{2}] + \lambda_{k}^{2} \mathbb{E}[\|\mathbf{g}(\mathbf{x}_{k} + \boldsymbol{\epsilon}_{\mathbf{x}_{k}})\|^{2}] \right]$$

$$\stackrel{(f)}{\leq} L \eta_{k}^{2} \left[(1 - \lambda_{k})^{2} (\sigma^{2} + \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}]) + \lambda_{k}^{2} (2L^{2}\rho^{2} + 2\sigma^{2} + 2\mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}]) \right], \tag{9}$$

where the equality (c) utilizes that $\mathbf{g}(\mathbf{x}_k)$ is the unbiased estimation of $f(\mathbf{x}_k)$. The inequality (d) leverages the basic inequality $\frac{a+b}{2} \geq \sqrt{ab}$. The inequality (e) comes from the nonnegative variance property $\mathrm{Var}(\mathbf{X}) = \mathbb{E}[\mathbf{X}^2] - \left[\mathbb{E}\left[\mathbf{X}\right]\right]^2 \geq 0$. A combination of the following results (11) and (13) leads to (f). After a simple mathematical derivation of $\|\mathbf{g}(\mathbf{x}_k)\|^2$, the following results could be derived:

$$\|\mathbf{g}(\mathbf{x}_k)\|^2 = \|\mathbf{g}(\mathbf{x}_k) - \nabla f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)\|^2$$

$$= \|\mathbf{g}(\mathbf{x}_k) - \nabla f(\mathbf{x}_k)\|^2 + \|\nabla f(\mathbf{x}_k)\|^2 + 2\langle \mathbf{g}(\mathbf{x}_k) - \nabla f(\mathbf{x}_k), \nabla f(\mathbf{x}_k) \rangle.$$
(10)

Taking expectation on (10), then we derive

$$\mathbb{E}[\|\mathbf{g}(\mathbf{x}_k)\|^2] \le \sigma^2 + \mathbb{E}[\|\nabla f(\mathbf{x}_k)\|^2. \tag{11}$$

(6)

After a plain derivation of $\|\mathbf{g}(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k})\|^2$, we have

$$\|\mathbf{g}(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k})\|^2 = \|\mathbf{g}(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k}) - \mathbf{g}(\mathbf{x}_k) + \mathbf{g}(\mathbf{x}_k)\|^2$$

$$\leq 2\|\mathbf{g}(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k}) - \mathbf{g}(\mathbf{x}_k)\|^2 + 2\|\mathbf{g}(\mathbf{x}_k)\|^2$$

$$\leq 2L^2\rho^2 + 2\|\mathbf{g}(\mathbf{x}_k)\|^2.$$
(12)

Taking expectation on (12) gives us

$$\mathbb{E}[\|\mathbf{g}(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k})\|^2] \le 2L^2 \rho^2 + 2\mathbb{E}[\|\mathbf{g}(\mathbf{x}_k)\|^2]. \tag{13}$$

Taking expectation on (3) combining (7), (8), (9), (11) and (13), we can get

$$\mathbb{E}\left[f(\mathbf{x_{k+1}}) - f(\mathbf{x_{k}})\right] \leq \mathbb{E}[\boldsymbol{A}] + \mathbb{E}[\nabla] + \mathbb{E}[\boldsymbol{A}]$$

$$\leq -\eta_{k}(1 - \lambda_{k})\mathbb{E}\left[\|\nabla f(\mathbf{x}_{k})\|^{2}\right] + \frac{L}{2}\rho^{2} + \frac{L}{2}\eta_{k}^{2}\lambda_{k}^{2}\mathbb{E}\left[\|\nabla f(\mathbf{x}_{k})\|^{2}\right] - \eta_{k}\lambda_{k}\mathbb{E}\left[\|\nabla f(\mathbf{x}_{k})\|^{2}\right]$$

$$+ L\eta_{k}^{2}\left[(1 - \lambda_{k})^{2}(\sigma^{2} + \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}]) + \lambda_{k}^{2}(2L^{2}\rho^{2} + 2\sigma^{2} + 2\mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}])\right]. \tag{14}$$

Rearranging these terms and dividing the constant η_k on both sides of (14) yields

$$\underbrace{\left[1 - \frac{5}{2}L\eta_k\lambda_k^2 - L\eta_k(1 - \lambda_k)^2\right]}_{:=M_k} \mathbb{E}[\|\nabla f(\mathbf{x}_k)\|^2] \le 2L\eta_k\lambda_k^2\sigma^2 + \frac{L\rho^2}{2\eta_k} + L\eta_k(1 - \lambda_k)^2\sigma^2$$

$$+2L^3\eta_k\lambda_k^2\rho^2+\frac{\mathbb{E}[f(\mathbf{x}_k)-f(\mathbf{x}_{k+1})]}{\eta_k}.$$

(14)

It holds that $\lambda_k \in (0,1)$ according to the update rule in Algorithm 1. Thus we have $1-\frac{5}{2}L\eta_k \leq M_k = 1-\frac{5}{2}L\eta_k\lambda_k^2 - L\eta_k(1-\lambda_k)^2 \leq 1-\frac{5}{7}L\eta_k, \ M_k \geq \nu = 1-\frac{5L\eta_0}{2\sqrt{K}}$ with $\eta_k = \frac{\eta_0}{\sqrt{K}}$ and $\rho = \frac{\rho_0}{\sqrt{K}}$. Consequently, we further get

$$\mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}] \leq \frac{1}{\nu} \left[2L\eta_{k}\sigma^{2} + \frac{L\rho^{2}}{2\eta_{k}} + L\eta_{k}\sigma^{2} + 2L^{3}\eta_{k}\rho^{2} + \frac{\mathbb{E}[f(\mathbf{x}_{k}) - f(\mathbf{x}_{k+1})]}{\eta_{k}} \right] \\
= \frac{1}{\nu} \left[\frac{2L\eta_{0}\sigma^{2}}{\sqrt{K}} + \frac{L\rho_{0}^{2}}{2\eta_{0}\sqrt{K}} + \frac{L\eta_{0}\sigma^{2}}{\sqrt{K}} + \frac{2L^{3}\eta_{0}\rho_{0}^{2}}{K^{\frac{3}{2}}} + \frac{\mathbb{E}[f(\mathbf{x}_{k}) - f(\mathbf{x}_{k+1})]}{\eta_{0}} \sqrt{K} \right].$$
(15)

Summing (15) from k = 0 to K - 1, we have

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}] \leq \frac{1}{\nu} \left[\frac{2L\eta_{0}\sigma^{2}}{\sqrt{K}} + \frac{L\rho_{0}^{2}}{2\eta_{0}\sqrt{K}} + \frac{L\eta_{0}\sigma^{2}}{\sqrt{K}} + \frac{2L^{3}\eta_{0}\rho_{0}^{2}}{K^{\frac{3}{2}}} + \frac{\mathbb{E}[f(\mathbf{x}_{0}) - f(\mathbf{x}_{K})]}{\eta_{0}\sqrt{K}} \right] \\
\leq \frac{1}{\nu} \left[\frac{f(\mathbf{x}_{0}) - f_{\inf}}{\eta_{0}\sqrt{K}} + \frac{L\rho_{0}^{2}}{2\eta_{0}\sqrt{K}} + \frac{3L\eta_{0}\sigma^{2}}{\sqrt{K}} + \frac{2L^{3}\eta_{0}\rho_{0}^{2}}{K^{\frac{3}{2}}} \right]. \tag{16}$$

As to $\frac{1}{K}\sum_{k=1}^{K-1}\mathbb{E}[\|\nabla f(\mathbf{x}_k+\boldsymbol{\epsilon}_{\mathbf{x}_k})\|^2]$, which could be derived by leveraging on (16). After an ordinary derivation of $\|\nabla f(\mathbf{x}_k+\boldsymbol{\epsilon}_{\mathbf{x}_k})\|^2$ $(\epsilon_{\mathbf{x}_k})\|^2$, we are then led to

$$\|\nabla f(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k})\|^2 = \|\nabla f(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k}) - \nabla f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)\|^2$$

$$\leq 2\|\nabla f(\mathbf{x}_k + \boldsymbol{\epsilon}_{\mathbf{x}_k}) - \nabla f(\mathbf{x}_k)\|^2 + 2\|\nabla f(\mathbf{x}_k)\|^2$$

$$\leq 2L^2 \rho^2 + 2\|\nabla f(\mathbf{x}_k)\|^2.$$
(17)

Utilizing (17), we have

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla f(\mathbf{x}_{k} + \boldsymbol{\epsilon}_{\mathbf{x}_{k}})\|^{2}] \leq 2L^{2}\rho^{2} + \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla f(\mathbf{x}_{k})\|^{2}]$$

$$\leq \frac{2}{\nu} \left[\frac{f(\mathbf{x}_{0}) - f_{\inf}}{\eta_{0}\sqrt{K}} + \frac{L\rho_{0}^{2}}{2\eta_{0}\sqrt{K}} + \frac{3L\eta_{0}\sigma^{2}}{\sqrt{K}} + \frac{2L^{3}\eta_{0}\rho_{0}^{2}}{K^{\frac{3}{2}}} \right] + \frac{2L^{2}\rho_{0}^{2}}{K}. \tag{18}$$

 ${\bf TABLE~III}\\ {\bf Hyperparameters~setting~used~to~produce~the~results~of~CIFAR10/CIFAR100}$

Dataset	Model	Optimizer	Lr	ρ	θ	γ	χ
CIFAR10	ResNet-34	SAMAR	0.3	0.10	-	1.550	1.100
		SGD	0.3	-	-	-	-
		SAM	0.3	0.10	-	-	-
		VaSSO	0.3	0.10	0.9	-	-
	Wide-Resnet-34-10	SAMAR	0.1	0.10	-	1.400	1.050
		SGD	0.1	-	-	-	-
		SAM	0.1	0.10	-	-	-
		VaSSO	0.1	0.10	0.9	-	-
CIFAR100	ResNet-34	SAMAR	0.3	0.10	-	1.400	1.075
		SGD	0.3	-	-	-	-
		SAM	0.3	0.10	-	-	-
		VaSSO	0.3	0.10	0.9	-	-
	Wide-Resnet-34-10	SAMAR	0.3	0.15	-	1.500	1.000
		SGD	0.3	-	-	-	-
		SAM	0.3	0.15	-	-	-
		VaSSO	0.3	0.15	0.9	-	-

B. Hyperparameters for experiements

The hyperparameters throughout the experiment are noteworthy. Since every model is only trained for 100 epochs, we set a slightly larger initial learning rate to ensure that all models converge after training 100 epochs. Referring to the hyperparameters in the relevant literature [5, 6, 11–13, 16], and combining them with the changes in experimental results we observed while finetuning the hyperparameters, the hyperparameters in experiments are shown in Table III. Following [12], VaSSO adopts $\theta=0.9$. To reduce the effort of finetuning the hyperparameters, we take $\lambda_0=1, \delta=0.01$ for SAMAR, and weight decay is 0.0005 in all experiments.