MAE 770 Written Preliminary Exam#1

Kyle B. Thompson

February 18, 2016

1. The units can be determined from the left hand side of the equation

$$\rho D_k \frac{\partial Y_k^{(g)}}{\partial x_i} \cdot \hat{n}_j = M_k \dot{s}_k \tag{1}$$

Using the following nomenclature:

mmass Nnumber of molecules llength time

The units of the variables on the left hand side of 1 are

$$\rho = \frac{m}{l^3}$$

$$D_k = \frac{l^2}{t}$$

$$x_j = l$$

The mass fraction, $Y_k^{(g)}$, is unitless, as well as the unit normal vector, \hat{n}_j . Since the unit of molecular weight are, $M_k = m/N$, we can rearrange Eq. (1) and solve for the units of \dot{s}_k

$$\dot{s}_k = \frac{\rho D_k}{M_k} \frac{\partial Y_k^{(g)}}{\partial x_j} \cdot \hat{n}_j$$

$$= \frac{m}{l^3} \frac{N}{m} \frac{l^2}{l} \frac{1}{l}$$

$$= \frac{N}{l^2 t}$$
(2)

Expressing surface coverage, Θ_i , as the fraction of sites occupied by species i implies that it is unitless. The concentration of surface-absorbed species, C_k , has units N/l^2 and must be equivalent to the product of surface coverage and surface site density, Γ ; therefore, the units of surface site density must be N/l^2 . Thus, the units for \dot{s}_k and Γ , expressed in the same basis as the problem was posed, are

$$\label{eq:sk} \boxed{ \dot{s}_k = \frac{moles}{area^2 - sec} }$$

$$\boxed{ \Gamma = \frac{moles}{area^2} }$$

$$\Gamma = \frac{moles}{area^2}$$

2. The formulation of the source terms \dot{s}_k for k = gas species and k = surfacespecies can be expressed as

$$\dot{s}_{k} = \sum_{r=1}^{N_{r}} \left[(\nu_{k,r}^{"} - \nu_{k,r}^{'})(R_{f,r} - R_{b,r}) \right]$$

$$R_{f,r} = k_{f,r} \prod_{i=1}^{N_{k}} (C_{i}^{\nu_{i,r}^{'}}), \quad R_{b,r} = k_{b,r} \prod_{i=1}^{N_{k}} (C_{i}^{\nu_{i,r}^{"}})$$

$$(3)$$

where $\nu_{k,r}^{'}$ is the stoichometric coefficient for species k in reaction r as a reactant in the forward reaction, and $\nu_{k,r}^{''}$ is for that species as a product in the forward reaction. N_k denotes the number of species and N_r denotes the number of reactions. Additionally, the backward rate coefficient $k_{b,r}$ can be determined from the forward rate coefficient $k_{f,r}$ and the equilibrium constant $K_{c,r}$. This is much better, since the law of mass action enables the determination of $K_{c,r}$ as a function of species concentrations, resulting in $\dot{s}_k = \dot{s}_k(k_{f,r}, C_1, \ldots, C_{N_k})$. Thus, using Eq. (3) the \dot{s}_k source terms can be expressed as

$$\dot{s}_{H_2}^{(g)} = -\left(k_{f,1}C_{H_2}^{(g)} - \frac{k_{f,1}}{k_{c,1}}C_H^{(s)}\right) \tag{4}$$

$$\dot{s}_{O_2}^{(g)} = -\left(k_{f,2}C_{O_2}^{(g)} - \frac{k_{f,2}}{k_{c,2}}C_O^{(s)}\right) \tag{5}$$

$$\dot{s}_{H_2O}^{(g)} = k_{f,6} C_{H_2O}^{(s)} - \frac{k_{f,6}}{k_{c,6}} C_{H_2O}^{(g)} \tag{6}$$

$$\dot{s}_{H}^{(s)} = 2 \left(k_{f,1} C_{H_2}^{(g)} - \frac{k_{f,1}}{k_{c,1}} C_{H}^{(s)^2} \right)
- \left(k_{f,3} C_{H}^{(s)} C_{O}^{(s)} - \frac{k_{f,3}}{k_{c,3}} C_{OH}^{(s)} \right)
- \left(k_{f,4} C_{H}^{(s)} C_{OH}^{(s)} - \frac{k_{f,4}}{k_{c,4}} C_{H_2O}^{(s)} \right)$$
(7)

$$\dot{s}_{O}^{(s)} = 2 \left(k_{f,2} C_{O_2}^{(g)} - \frac{k_{f,2}}{k_{c,2}} C_O^{(s)^2} \right)
- \left(k_{f,3} C_H^{(s)} C_O^{(s)} - \frac{k_{f,3}}{k_{c,3}} C_{OH}^{(s)} \right)
+ \left(k_{f,5} C_{OH}^{(s)^2} - \frac{k_{f,5}}{k_{c,5}} C_{H_2O}^{(s)} C_O^{(s)} \right)$$
(8)

$$\dot{s}_{OH}^{(s)} = 2 \left(k_{f,3} C_{OH}^{(s)} - \frac{k_{f,3}}{k_{c,3}} C_H^{(s)} C_O^{(s)} \right)
- \left(k_{f,4} C_H^{(s)} C_{OH}^{(s)} - \frac{k_{f,4}}{k_{c,4}} C_{H_2O}^{(s)} \right)
- 2 \left(k_{f,5} C_{OH}^{(s)}^2 - \frac{k_{f,5}}{k_{c,5}} C_{H_2O}^{(s)} C_O^{(s)} \right)$$
(9)

$$\dot{s}_{H_2O}^{(s)} = \left(k_{f,4}C_H^{(s)}C_{OH}^{(s)} - \frac{k_{f,4}}{k_{c,4}}C_{H_2O}^{(s)}\right)
+ \left(k_{f,5}C_{OH}^{(s)}^2 - \frac{k_{f,5}}{k_{c,5}}C_{H_2O}^{(s)}C_O^{(s)}\right)
- \left(k_{f,6}C_{H_2O}^{(s)} - \frac{k_{f,6}}{k_{c,6}}C_{H_2O}^{(g)}\right)$$
(10)