

Table of Contents

- 1. Time Series
- 2. Sequence Problems
- 3. Word Embeddings
 - A. CBOW
 - B. Skip-gram
- 4. Recurrent Neural Nets
- 5. Long Short Term Memory

Github Link

 https://github.com/DiveshRKubal/GreyAtom-Deep-Learning/tree/master/GreyAtom-Deep-Learning/RNN

Time Series

Vector sequence

ML for Time Series

- Prediction of future (regression, forecasting)
- Pattern recognition & segmentation (classification, clustering, anomaly detection)
- Compression, noise reduction (preprocessing)

Prediction

Use past to predict the future

Detect deviation from standard behavior

Prediction

Find recurring patterns

Sequence Problems One to One

Network

- Point-wise Forecasting
- Classification (fixed input/output size)

One to Many

- Sequence output from single input
- · e.g. image captioning

Many to One

- Sequence input, single output
- e.g. sentiment analysis from text

Many to Many

- Sequence input, sequence output
- e.g. text translation

Word Embeddings

 Word Embeddings are the texts converted into numbers and there may be different numerical representations of the same text.

- Predict the probability of a word given a context.
- A context may be a single word or a group of words.
- C = "Hey, this is sample corpus using only one context word." and we have defined a context window of 1

Sample one-hot encoded Matrix

Input	Output		Hey	This	is	sample	corpus	using	only	one	context	word
Hey	this	Datapoint 1	1	0	0	o	ó	0	0	0	0	0
this	hey	Datapoint 2	0	1	0	0	0	0	0	0	0	0
is	this	Datapoint 3	0	0	1	0	0	0	0	0	0	0
is	sample	Datapoint 4	0	0	1	0	0	0	0	0	0	0
sample	is	Datapoint 5	0	0	0	1	0	0	0	0	0	0
sample	corpus	Datapoint 6	0	0	0	1	0	0	0	0	0	0
corpus	sample	Datapoint 7	0	0	0	0	1	0	0	0	0	0
corpus	using	Datapoint 8	0	0	0	0	1	0	0	0	0	0
using	corpus	Datapoint 9	0	0	0	0	0	1	0	0	0	0
using	only	Datapoint 10	0	0	0	0	0	1	0	0	0	0
only	using	Datapoint 11	0	0	0	0	0	0	1	0	0	0
only	one	Datapoint 12	0	0	0	0	0	0	1	0	0	0
one	only	Datapoint 13	0	0	0	0	0	0	0	1	0	0
one	context	Datapoint 14	0	0	0	0	0	0	0	1	0	0
context	one	Datapoint 15	0	0	0	0	0	0	0	0	1	0
context	word	Datapoint 16	0	0	0	0	0	0	0	0	1	0
word	context	Datapoint 17	0	0	0	0	0	0	0	0	0	1

- This matrix shown in the image is sent into a shallow neural network with three layers:
 - an input layer,
 - a hidden layer and,
 - an output layer.
- The output layer is a softmax layer which is used to sum the probabilities obtained in the output layer to 1.

Diagrammatic representation of the CBOW model

Working of CBOW

- The input layer and the target, both are one- hot encoded of size [1 X V]. Here V=10 in the above example.
- There are two sets of weights. One is between the input and the hidden layer and second between hidden and output layer.
 Input-Hidden layer matrix size =[V X N], hidden-Output layer matrix size =[N X V]: Where N is the number of dimensions we choose to represent our word in. It is arbitary and a hyper-parameter for a Neural Network. Also, N is the number of neurons in the hidden layer. Here, N=4.
- There is a no activation function between any layers.(More specifically, I am referring to linear activation)
- The input is multiplied by the input-hidden weights and called hidden activation. It is simply the corresponding row in the input-hidden matrix copied.
- The hidden input gets multiplied by hidden- output weights and output is calculated.
- Error between output and target is calculated and propagated back to re-adjust the weights.
- The weight between the hidden layer and the output layer is taken as the word vector representation of the word.

Multiple Context Words as I/P

Advantages of CBOW

- Being probabilistic is nature, it is supposed to perform superior to deterministic methods(generally).
- It is low on memory. It does not need to have huge RAM requirements like that of co-occurrence matrix where it needs to store three huge matrices.

Disadvantages of CBOW

- CBOW takes the average of the context of a word (as seen above in calculation of hidden activation). For example, Apple can be both a fruit and a company but CBOW takes an average of both the contexts and places it in between a cluster for fruits and companies.
- Training a CBOW from scratch can take forever if not properly optimized.

Skip – Gram model

 Aim of skip-gram is to predict the context given a word.

C="Hey, this is sample corpus using only one context

word."

Input	Output(Context1)	Output(Context2)			
Hey	this	<padding></padding>			
this	Hey	is			
is	this	sample			
sample	is	corpus			
corpus	sample	corpus			
using	corpus	only			
only	using	one			
one	only	context			
context	one	word			
word	context	<padding></padding>			

Skip-gram architecture

Working of Skip-gram

In the above example, C is the number of context words=2, V= 10, N=4

- The row in red is the hidden activation corresponding to the input one-hot encoded vector. It is basically the corresponding row of input-hidden matrix copied.
- The yellow matrix is the weight between the hidden layer and the output layer.
- The blue matrix is obtained by the matrix multiplication of hidden activation and the hidden output weights. There will be two rows calculated for two target(context) words.
- Each row of the blue matrix is converted into its *softmax* probabilities individually as shown in the green box.
- The grey matrix contains the one hot encoded vectors of the two context words(target).
- Error is calculated by subtracting the first row of the grey matrix(target) from the first row of the green matrix(output) element-wise. This is repeated for the next row. Therefore, for **n** target context words, we will have **n** error vectors.
- Element-wise sum is taken over all the error vectors to obtain a final error vector.
- This error vector is propagated back to update the weights

Advantages of Skip-Gram Model

- Skip-gram model can capture two semantics for a single word. i.e it will have two vector representations of Apple. One for the company and other for the fruit.
- Skip-gram with negative sub-sampling outperforms every other method generally.

Word Embeddings use case scenarios

1. Finding the degree of similarity between two words.

```
model.similarity('woman','man')
0.73723527
```

2. Finding odd one out.

```
model.doesnt_match('breakfast cereal dinner lunch';.split())
'cereal'
```

3. Amazing things like woman+king-man =queen

```
model.most_similar(positive=['woman','king'],negative=['man'],topn=1)
queen: 0.508
```

4. Probability of a text under the model

```
model.score(['The fox jumped over the lazy dog'.split()])
0.21
```


Туре		Advantages	Limitations		
			Faces curse of dimensionality as the		
	One-Hot Encoding	Easy to compute.	number of vocabulary increases.		
Frequency Based	Ole-Hot Elecoding	Low computational time to generate.	Does not capture context and		
(Discrete Word Representations)			semantics		
(Discrete word Representations)	Count Vector	Simple to implement.	Does not consider full corpus at a time.		
	Count vector	Takes a document in consideration.	Fails to compute semantics and context.		
		Takes full corpus in consideration.	Based on CBOW, hence does not capture		
	TF-IDF vector	Easy computation of similarity between	context.		
		document pair.	Also fails to capture semantic meaning.		
		Semantic relationship is preserved.			
	Co-occurrence vector	Compute once, use later, which makes it			
		faster.	Requirement of huge memory to store co- occurrence matrix.		
		Uses Singular Value Decomposition (SVD)			
		so vectors produced are more accurate			
Prediction Based		Better than deterministic method as it	Based on taking average of context words.		
(Distributed Word Representations)	Word2vec CBOW Model	probabilistic in nature.	Training from scratch takes a long time		
(Distributed Word Representations)		Less memory (RAM) requirements.	if not optimized.		
		Computes two different semantics	Training on separate local context		
	Word2vec Skip-Gram Model	for same word occurring in different	windows instead of at global level.		
	wordzyce skip-orani woder	context	Hence it poorly utilize the statistics of the corpus		
		Context			

Approaches Comparison

Type of Approach	Techniques	Type	Capture Semantics	Capture Context	Memory Require- ment	Computational Time	
	One-Hot En- coding	Frequency based	No	No	Low	Low	
Discrete Word Representations	Count Vector	Frequency based	No	No	Low	Low	
	TF_IDF	Frequency based	No	No	Low	Low to Moder- ate	
	Co-occurence Vector	Frequency based	No	Yes	High	Low to Moder- ate	
Distributed Word Representations	Word2vec CBOW model	Probability Based	Yes	Yes	Low to Moderate	Moderate to High	
	Word2vec Skip-Gram model	Probability Based	Yes	Yes	Low to Moderate	Moderate to High	

- Connections between units form a directed cycle
- Networks with internal state

Vanilla RNN

201617

Unroll Time

$$h_t = \tanh(w \, h_{t-1} + u \, x_t)$$

- · w, u do not depend on t
- same weights at all times

Deep RNN

$$h_t^2 = \tanh(w^2 h_{t-1}^2 + u^2 h_t^2)$$

Second Layer

$$h'_t = \tanh(w'h'_{t-1} + u'x_t)$$

Long Term Dependency Problem

Learn to selectively remember and forget

Cell State

· Cell maintains state

· Gates modify information

Forget Gate

Input Gate

State Update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Github Link

 https://github.com/DiveshRKubal/GreyAtom-Deep-Learning/tree/master/GreyAtom-Deep-Learning/RNN