

Macroeconomic forecasting: Can machine learning methods outperform traditional approaches?

CFDS06 Project

Felix Jobson

29.05.2021

Table of contents

Problem Description

Data

Sources and Overview Preparation of the Data Missing Values

Approach

Models

Evaluation

Results

Conclusion

Problem Description

Problem Description

- ► The research question of the project is the capability of machine learning models to predict the growth of an economy and compare the result with traditional methods of forecasting.
- ► The dependent variable is the growth rate of the gross domestic product (GDP). This is the objective of the learning and prediction task. The independent variables are several macroeconomic factors.
- ► The baseline models are classical econometric methods and the World Economic Outlook of the International Monetary Fund.

CFDS Project Slide 2/22

Data

Data sources

- Sources
 - ► International Monetary Fund (IMF)
 - Organisation for Economic Co-operation and Development (OECD)
- ► Time Period: 1980 2017
 - ► Training Set: 1980 2004
 - ► Validation Set: 2005 2010
 - ► Test Set: 2011 2017
- Countries:
 - ► Initially 189
 - ► After clearning 46

Variables

- ▶ Number of macroeconomic factors used:
 - ▶ Initial: 41
 - ► After cleaning 15
- Examples of used varibles
 - ► Inflation
 - ► Unemployment rate
 - Material consumption
 - Working age population
 - Fertility rates

Split of the dataset

- ► Two different purposes:
- Model selection and model assessment.
- The validation set is used to estimate the prediction error for model selection.
- ► The test set should be kept in a "vault" and is used to estimte the test error at the end of the analysis.

Transforming to Growth Rates

- ▶ Because the variable have different absolute values, growth rates are used.
- ► To receive the same magnitude for an increase as well as a decrease a logarithmic transformation is used:

$$\hat{x}_i = \ln(\frac{x_i}{x_{i-1}} + |\min_j(x_j)| + 0.001)$$

Preparation of the Data

- Using the framework of supervised learning to work with time series.
- ▶ The original data is given in the form (x_t, y_t) , t = 1...N
- ► For every time step the outcome *y* is mapped to predictor variables *x* that are preceding:

$$(x_{t-1}, y_t), t = 2...N$$

► Hence a model for supervised learning can be trained and used for prediction.

CFDS Project Slide 7/22

Impute missing values

- ► Only countries with less than 50 % missing values are used. Then the top 15 filled variables are selected.
- ► To use time series with missing data at all, an imputing strategy is used: *k-nearest neighbors*
- ► Each sample's missing values are imputed using the mean value from n nearest neighbors found in the training set.
- ▶ Important: Fit on the training set and then apply imputation on the validation and test set.

CFDS Project Slide 8/22

Approach

World Economic Outlook

- ► The International Monetary Fund publishes predictions of the GDP growth in its World Economic Outlook (WEO)
- ▶ The IMF publishes the WEO twice a year in spring and fall.
- ► The prediction from the fall is used, as this is closer to the next year and therefore the prediction is more precise.

CFDS Project Slide 9/22

- Ordinary Least Squares
 - ► The OLS regression is the most famous and basic model in econometrics. It has the following form:

$$y = x_1 \beta_1 + x_2 \beta_2 + \dots + x_N \beta_N + \beta_{N+1}$$

- Autoregressive Integrated Moving Average
 - The autoregressive integrated moving average ARIMA(p, d, q) model is used in time series analysis.

 - Here α_i are the parameters of the autoregressive part of the model, θ_i are the parameters of the moving average part, d is the degree of differencing and ϵ_t are error terms.

CFDS Project Slide 10/22

Machine Learning Models I

- Least Absolute Shrinkage and Selection Operator
 - ► The LASSO is a penalized version of the OLS:

$$\min_{\beta} ||X\beta - y||_2^2 + \alpha ||\beta||_1$$

- Support Vector Regression
 - ► The SVR is an adapted version of a SVM for regression problems and tries to solve the optimization problem:

$$\min_{\beta} \frac{1}{2} ||\beta||_2^2$$
, subject to $||X\beta - y|| < \varepsilon$

CFDS Project Slide 11/22

Machine Learning Models II

- Regression Tree
 - ▶ Binary tree that groups data with similar vaules into the same leaf. The response in each leaf $L_1, L_2, ..., L_M$ is modeled as constant, so the tree can be expressed as a function:

$$f(x) = \sum_{i=1}^{M} c_m I(x \in L_m)$$

- Gradient Booster
 - Ensemble of the from

$$f(x) = \sum_{i=1}^{N} f_i(x)$$

where f_i are weak learners, most of the time tree based models.

Are called gradient booster because of the way the model is trained.

CFDS Project Slide 12/22

Deep Learning

- Recurrent Neural Network
 - A RNN is a deep neural network that is designed to handle sequential data.
 - A RNN cell is defined as:

$$h_t = \sigma(W_{ih}x_t + b_{ih} + W_{hh}h_{(t-1)} + b_{hh})$$

There are also more sophisticated approaches like the LSTM (Long short-term memory).

CFDS Project Slide 13/22

Evaluation

► The performance of the models is measured by the MSE of the test set:

$$MSE = \frac{1}{|T|} \sum_{t \in T} (y_t - \hat{y}_t)^2$$

The cartesian product Ω of the set of all classical models and all machine learning models is formed. The MSE of both is compared:

$$X(\omega) := \begin{cases} 1 & \text{if } MSE_{ML_{\omega}} > MSE_{classic_{\omega}} \\ 0 & \text{else} \end{cases} \quad \omega \in \Omega$$

CFDS Project Slide 14/22

Evaluation

- ightharpoonup Confidence intervals of X are approximated by bootstrapping.
- ▶ If the lower bound of the confidence interval is greater than 0.5, the machine learning methods have statistically significant better performance than the traditional approaches.
- Evaluating this approach with two different settings:
- ► Training each model with the data of a single country.
- Training each model with the whole data combined.

CFDS Project Slide 15/22

Results

Deep Learning went wrong

RNN
RNN_Adam
RNN_Large_Adam
LSTM
LSTM_Large_Adam

- LSTM_Stacked

Result Training Single Country

CFDS Project Slide 17/22

Result Training All Countries

CFDS Project Slide 18/22

Test for statistical significance

CFDS Project Slide 19/22

Conclusion

Conclusion I

- ► Machine learning models can outperform traditional approaches!
- ► At least in the given evaluation framework presented.
- ▶ Data collection and handling take the most time from the project budget, modelling takes only a fraction.
- Deep learning relies heavily on the amount of data and fails if there is not enough available.

CFDS Project Slide 20/22

Conclusion II

- ► Even simple machine learning models have a decent performance.
- SVR failed on training with all countries. A profound understanding of the model is important to understand problems.
- The proposed deep reinforcement learning approach was not successful.

CFDS Project Slide 21/22

Possible Next Steps

- ► Collect better Data in terms of quality and quantity.
- ▶ The "expert-based" decision should be derived based on data.
- Analyse feature importance and automate feature selection.
- Analyse the transformation of the data and use a more sophisticated approach.

CFDS Project Slide 22/22

"All models are wrong, but some are useful"