3.4 Convergência simples e absoluta

Proposição Se a série $\sum_{n=1}^{\infty} |a_n|$ é convergente, então também é convergente $\sum_{n=1}^{\infty} a_n$ e tem-se

$$\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} |a_n|$$

Diz-se que a série $\sum_{n=1}^{\infty} a_n$ é **absolutamente convergente** se a série dos módulos $\sum_{n=1}^{\infty} |a_n|$ é convergente- A série $\sum_{n=1}^{\infty} a_n$ diz-se **simplesmente convergente** se for convergente e a sua série dos módulos for divergente.

Qualquer série convergente de termos não negativos é absolutamente convergente.

Exemplos:

$$\sum_{n=1}^{\infty} \left(-\frac{1}{5} \right)^n \qquad \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

3.4 Convergência simples e absoluta

Uma das vantagens de uma série absolutamente convergente reside no facto de ela continuar a convergir perante qualquer reordenação dos seus termos. Esta propriedade não é garantida com a mera convergência simples.

Teorema (Critério de D'Alembert) Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não nulos. Suponhamos que existe o limite

$$A:=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$$

Então:

- **1** Se A < 1, a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente.
- ② Se A > 1 ou $A = \infty$, a série $\sum_{n=1}^{\infty} a_n$ é divergente.

Exemplo:

- $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ $\sum_{n=1}^{\infty} \frac{n!}{2^n}$

3.4 Convergência simples e absoluta

Teorema (Critério da Raiz) Seja $\sum_{n=1}^{\infty} a_n$ uma série de números reais. Suponhamos que existe o limite

$$R:=\lim_{n\to\infty}\sqrt[n]{|a_n|}$$

Então:

- **1** Se R < 1, a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente.
- ② Se R > 1 ou $R = \infty$, a série é divergente.

Exemplos:

- $\bullet \sum_{n=1}^{\infty} \left(\frac{n^2+1}{2n^2+3} \right)^{2n}$
- $\bullet \sum_{n=1}^{\infty} \frac{3^n}{\left(1+\frac{1}{n}\right)^{n^2}}$

Observação: Tal como no Critério de D'Alembert, nada podemos concluir através do critério anterior quando R=1.

3.5 Séries alternadas

Uma série alternada é uma série da forma

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ ou } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

em que $a_n > 0$ para todo $n \in \mathbb{N}$. O resultado seguinte dá-nos condições suficientes para a convergência de uma série alternada.

Teorema (Critério de Leibniz) Suponhamos que (a_n) é uma sucessão de termos positivos, monótona decrescente e $\lim_{n\to\infty}a_n=0$. Então a série alternada $\sum_{n=1}^{\infty}(-1)^na_n$ é convergente. Além disso,

$$0<|R_p|< a_{p+1}$$

onde R_p denota o resto de ordem p relativo à serie $\sum_{n=1}^{\infty} (-1)^n a_n$.

Exemplo: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

3.6.2 Representação de dízimas infinitas periódicas

Todo o número real não negativo pode ser aproximado por um número da forma

$$r_n = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \ldots + \frac{a_2}{10^n}$$

onde a_0 é um inteiro (não negativo), $a_1, a_2, \ldots, a_n \in \{0, 1, \ldots, 9\}$ e $n \in \mathbb{N}_0$. Este último pode ser escrito de forma mais compacta através da seguinte representação decimal (finita):

$$r_n = a_0 a_1 a_2 \dots a_n$$

Exemplos: 0, (7); 0, (24)

Sobre comutatividade e associatividade dos termos de uma série

Exemplo:

$$1-1+1-1+1-1+1-1+\dots$$

seja divergente, a série

$$(1-1)+(1-1)+(1-1)+(1-1)+\dots$$

converge para zero, a série

$$1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + \dots$$

converge para 1, e se trocarmos, na série original, o 2.º e 3.º termos entre si, o 4.º e o 5.º termos entre si, o 6.º e o 7.º termos entre si, etc. e associarmos depois aos pares consecutivamente obtemos

$$(1+1)+(-1+1)+(-1+1)+(-1+1)+\dots$$

que converge para 2.