In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\thara\Downloads\drug200.csv")
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
#
    Column
                 Non-Null Count Dtype
    _____
                 _____
 0
                 200 non-null
                                 int64
    Age
 1
                 200 non-null
                                 object
    Sex
                 200 non-null
 2
                                 object
 3
    Cholesterol 200 non-null
                                 object
 4
                                 float64
    Na_to_K
                 200 non-null
                 200 non-null
                                 object
    Drug
dtypes: float64(1), int64(1), object(4)
memory usage: 9.5+ KB
```

```
In [4]:
df['Sex'].value_counts()
Out[4]:
Sex
Μ
     104
F
      96
Name: count, dtype: int64
In [5]:
df['BP'].value_counts()
Out[5]:
BP
HIGH
          77
LOW
          64
NORMAL
          59
Name: count, dtype: int64
In [6]:
df['Cholesterol'].value_counts()
Out[6]:
Cholesterol
HIGH
NORMAL
           97
Name: count, dtype: int64
In [7]:
df['Drug'].value_counts()
Out[7]:
Drug
drugY
         91
drugX
         54
drugA
         23
drugC
         16
drugB
         16
Name: count, dtype: int64
```

In [8]:

```
convert={"Sex":{"M":1,"F":0}}
df=df.replace(convert)
df
```

Out[8]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	HIGH	HIGH	25.355	drugY
1	47	1	LOW	HIGH	13.093	drugC
2	47	1	LOW	HIGH	10.114	drugC
3	28	0	NORMAL	HIGH	7.798	drugX
4	61	0	LOW	HIGH	18.043	drugY
195	56	0	LOW	HIGH	11.567	drugC
196	16	1	LOW	HIGH	12.006	drugC
197	52	1	NORMAL	HIGH	9.894	drugX
198	23	1	NORMAL	NORMAL	14.020	drugX
199	40	0	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [14]:

```
convert={"BP":{"HIGH":1,"NORMAL":2,"LOW":3}}
df=df.replace(convert)
df
```

Out[14]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	1	HIGH	25.355	drugY
1	47	1	3	HIGH	13.093	drugC
2	47	1	3	HIGH	10.114	drugC
3	28	0	2	HIGH	7.798	drugX
4	61	0	3	HIGH	18.043	drugY
195	56	0	3	HIGH	11.567	drugC
196	16	1	3	HIGH	12.006	drugC
197	52	1	2	HIGH	9.894	drugX
198	23	1	2	NORMAL	14.020	drugX
199	40	0	3	NORMAL	11.349	drugX

200 rows × 6 columns

In [15]:

```
convert={"Cholesterol":{"HIGH":1,"NORMAL":2}}
df=df.replace(convert)
df
```

Out[15]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	1	1	25.355	drugY
1	47	1	3	1	13.093	drugC
2	47	1	3	1	10.114	drugC
3	28	0	2	1	7.798	drugX
4	61	0	3	1	18.043	drugY
195	56	0	3	1	11.567	drugC
196	16	1	3	1	12.006	drugC
197	52	1	2	1	9.894	drugX
198	23	1	2	2	14.020	drugX
199	40	0	3	2	11.349	drugX

200 rows × 6 columns

In [16]:

```
x=["Sex","BP","Cholesterol"]
y=["Drugy","Drugx","DrugA","DrugC","DrugB"]
all_inputs=df[x]
all_classes=df["Drug"]
```

In [17]:

```
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.3)
clf=DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
```

Out[17]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

DecisionTreeClassifier(random_state=0) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [18]:	
<pre>score=clf.score(x_test,y_test) print(score)</pre>	

0.466666666666667

In []:		