1

Assignment 13

Surbhi Agarwal

Abstract—This document illustrates properties of subspaces of a vectorspace.

1 Problem

For arbitrary subspaces, U, V and W of a finite dimensional vectorspace, which of the following hold:

- 1) $U \cap (V + W) \subset (U \cap V) + (U \cap W)$
- 2) $U \cap (V + W) \supset (U \cap V) + (U \cap W)$
- 3) $(U \cap V) + W \subset (U + W) \cap (V + W)$
- 4) $(U \cap V) + W \supset (U + W) \cap (V + W)$

2 Solution

1. $U \cap (V + W) \subset (U \cap V) + (U \cap W)$ False. Counter Example: Let $\mathbf{u}_1 = (\mathbf{v}_1 + \mathbf{w}_1) \in U \cap (V + W)$ such that $(\mathbf{v}_1 + \mathbf{w}_1) \in U, \mathbf{v}_1 \in V, \mathbf{w}_1 \in W$ But since $\mathbf{w}_1 \notin V$, hence $\mathbf{v}_1 + \mathbf{w}_1 \notin V$ \implies $(\mathbf{v}_1 + \mathbf{w}_1) \notin (U \cap V)$ And since $\mathbf{v}_1 \notin W$, hence $\mathbf{v}_1 + \mathbf{w}_1 \notin W$ \implies $(\mathbf{v}_1 + \mathbf{w}_1) \notin (U \cap W)$ Therefore, $(\mathbf{v}_1 + \mathbf{w}_1) \notin (U \cap V) + (U \cap W)$ There exists an element in LHS that does not belong to RHS. $\therefore U \cap (V + W) \not\subset (U \cap V) + (U \cap W)$ 2. $U \cap (V + W) \supset (U \cap V) + (U \cap W)$ Let $(\mathbf{u}_1 + \mathbf{u}_2) \in (U \cap V) + (U \cap W)$ such that $\mathbf{u}_1 \in U \cap V$ and $\mathbf{u}_2 \in U \cap W$ \implies $\mathbf{u}_1 \in U, V \text{ and } \mathbf{u}_2 \in U, W$ Since $\mathbf{u}_1 \in V, \mathbf{u}_2 \in W$ \implies $(\mathbf{u}_1 + \mathbf{u}_2) \in (V + W)$ And since $\mathbf{u}_1, \mathbf{u}_2 \in U$ \implies $(\mathbf{u}_1 + \mathbf{u}_2) \in U$ \therefore ($\mathbf{u}_1 + \mathbf{u}_2$) $\in U \cap (V + W)$ So, $(\mathbf{u}_1 + \mathbf{u}_2) \in (U \cap V) + (U \cap W) \implies (\mathbf{u}_1 + \mathbf{u}_2) \in U \cap (V + W)$ Hence, $U \cap (V + W) \supset (U \cap V) + (U \cap W)$ The given option is true.

3.
$$(U \cap V) + W \subset (U + W) \cap (V + W)$$

Let $(\mathbf{u}_1 + \mathbf{w}_1) \in (U \cap V) + W$, such that $\mathbf{u}_1 \in (U \cap V)$ and $\mathbf{w}_1 \in W$

Since, $\mathbf{u}_1 \in (U \cap V)$, $\Longrightarrow \mathbf{u}_1 \in U, V$

Now, since $\mathbf{u}_1 \in U, \mathbf{w}_1 \in W$
 $(\mathbf{u}_1 + \mathbf{w}_1) \in (U + W)$

And since, $\mathbf{u}_1 \in V, \mathbf{w}_1 \in W$
 $(\mathbf{u}_1 + \mathbf{w}_1) \in (U + W) \cap (V + W)$

Hence, $(\mathbf{u}_1 + \mathbf{w}_1) \in (U \cap V) + W \implies (\mathbf{u}_1 + \mathbf{w}_1) \in (U + W) \cap (V + W)$

The given option is true.

4. $(U \cap V) + W \supset (U + W) \cap (V + W)$

False.

Counter Example:

Let $\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{w}_1 \in U$
 $\mathbf{v}_1 \in V, \mathbf{w}_1 \in W$

Then, since $\mathbf{v}_1 + \mathbf{w}_1 \in U \implies \mathbf{v}_1 + \mathbf{w}_1 \in U + W$

And since, $\mathbf{v}_1 \in V, \mathbf{w}_1 \in W \implies \mathbf{v}_1 + \mathbf{w}_1 \in V + W$
 $\therefore \mathbf{v}_1 + \mathbf{w}_1 \in (U + W) \cap (V + W)$

Now, since $\mathbf{w}_1 \notin V \implies \mathbf{v}_1 + \mathbf{w}_1 \notin V + W$
 $\implies \mathbf{v}_1 + \mathbf{w}_1 \notin U \cap V + W \implies \mathbf{v}_1 + \mathbf{w}_1 \notin V \implies \mathbf{v}_1 + \mathbf{w}_1 \notin U \cap V + W \implies \mathbf{v}_1 + \mathbf{w}_1 \notin V \implies \mathbf{v}_1 + \mathbf{w}_1 \notin U \cap V + W \implies \mathbf{v}_1 + \mathbf{v}_1 \notin U \cap V + W \implies \mathbf{v}_1 + \mathbf{v}_1 \notin U \cap V + W \implies \mathbf{v}_1 + \mathbf{v}_1 \notin U$

TABLE 1: Proving properties of subspaces of a vectorspace