

Mastering Interest Rate Derivatives Introduction to Building of Interest Rate Curves

Tim Glauner

May 25, 2025

Copyright and Trademark

No part of this document may be copied, transmitted, reproduced, or stored in any way or by any means whether digital, electronic, mechanical or otherwise, without the express prior written permission of the authors.

The information provided in this presentation is for informational purposes only and does not constitute professional advice.

The views expressed in this presentation are those of the authors and not necessarily those of Finastra or any other person associated with Finastra.

- Overview, Purpose and Concept of Building Curves
- 2 Simplified Example of Building Curves using Discount Bonds
- Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

- Overview, Purpose and Concept of Building Curves
- - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

Purpose of Building Curves

- "Everything starts with interest rate curves" Interest rate curves serve as the foundation for various financial analyses and applications
- Valuing any financial instrument depends on interest rates, which can be extracted or implied from these curves

Concept of Building Curves - 1

- Objective: Develop a rational approach to estimate fair interest rates
- Considerations:
 - Interest rates vary with the term of the instrument and include a risk premium
 - Arbitrage opportunities should be avoided
- Approach to build curve:
 - Utilize widely used instruments to estimate rates
 - Find rates to price all instruments to market
- Representation of built curve
 - Curves are stored as a term structure of zero rates

Concept of Building Curves - 2

- The curves we estimate represent the interest rates at which investors actually trade, rather than the expected rates
- The forward rate differs from the expected spot rate due to the inclusion of a risk premium

Figure: Term Structure of Rates Compared to the Realized Short-term Spot Rate

- 1 Overview, Purpose and Concept of Building Curves
- 2 Simplified Example of Building Curves using Discount Bonds
- 3 Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

- Assume we have 5 bonds maturing over the next 5 years
- They are zero coupon bonds with known prices
- For illustrative purposes, as these bonds are not liquid in reality

Maturity	# Days	Price
1 year	365	98.81
23 months	700	97.35
3 years	1,095	95.03
49 months	1,490	92.54
5 years	1,825	90.48

Table: 5 Bonds

- To determine today's price, we need to discount the par value of the bond from its maturity value; otherwise, an arbitrage opportunity would arise
- We can calculate each zero rate by utilizing a closed-form formula based on this concept
- Let d_i represent the number of days between the maturity date of bond i and today
- The price P_i of bond i is given by $P_i = DF_{di} * \$100$
- ullet The discount factor DF_{d_i} is calculated as $DF_{d_i}=e^{-z_{d_i}*d_i/365}$
- Now, solving for z_{d_i} for each bond's maturity allows us to obtain the corresponding zero rates. As an exercise, you can derive the explicit formula for z_{d_i}

• After deriving zero rates, we have the following bond data:

Maturity	# Days	Price	Zero Rate
1 year	365	98.81	1.2%
23 months	700	97.35	1.4%
3 years	1,095	95.03	1.7%
49 months	1,490	92.54	1.9%
5 years	1,825	90.48	2%

Table: Bond Information including Zero Rates

• Let's graph our first zero curve based on our simplified assumptions

- Overview, Purpose and Concept of Building Curves
- Simplified Example of Building Curves using Discount Bonds
- Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

- Overview, Purpose and Concept of Building Curves
- Simplified Example of Building Curves using Discount Bonds
- Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

Introduction to the Structure of the Curve and its Segments

- USD/LIBOR illustration to build curve ¹
- Deriving a zero curve from liquid instruments
- Conceptually good points, although slightly different instruments were used in practice

Market Data as of 29-Jan-2019			
Type	Date Rate		
MM	2D	4.875%	
MM	1M	4.875%	
MM	3M	4.9%	
FUT	MAR-19	95.06	
FUT	JUN-19	95.12	
SWAP	2Y	5.125%	
SWAP	3Y	5.178%	

- Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

Derive the First Zero Rate for 2D Money Market Point

Market Data as of 29-Jan-2019			
Туре	Date	Zero	
MM	2D	4.875%	
MM	1M	4.875%	
MM	3M	4.9%	
FUT	MAR-19	95.06	
FUT	JUN-19	95.12	
SWAP	2Y	5.125%	
SWAP	3Y	5.178%	

Flows for 2D rate of 4.875%			
Date Amount Required NPV			
29-Jan-19	\$100	\$100	
31-Jan-19	-\$100.0271	-\$100	

- We need to define the discount factor (DF) to make the sum of NPV values \$0
- Recall, we have $DF = e^{(-z \cdot \frac{\# \text{ days}}{365})}$
- So, $z = \ln(\frac{100.0271}{100}) \cdot \frac{365}{2}$
- and, z = 4.94204%

Derive the next Zero Rate for 1M Money Market Point

Market Data as of 29-Jan-2019			
Type	Date	Rate	Zero
MM	2D	4.875%	4.94204%
MM	1M	4.875%	
MM	3M	4.9%	
FUT	MAR-19	95.06	
FUT	JUN-19	95.12	
SWAP	2Y	5.125%	
SWAP	3Y	5.178%	

Flows for 1M rate of 4.875%			
Date Amount Required NPV			
31-Jan-19	\$100	\$99.9729	
28-Feb-19 ^a	-\$100.3792	-\$99.9729	

- We know the zero rate of 31-Jan-19
- Find next z so, $\sum_{i=1}^{n} NPV(Flow_i) = \0
- Flows are at spot date and 28-Feb-19
- We receive \$100 spot and pay back $$100 \cdot 4.875\% \cdot \frac{28}{360} = 100.3792
- So, $z = \ln(\frac{100.3792}{99.9729}) \cdot \frac{365}{30}$
- ullet and therefore, z=4.93394%

^aRolled date to good business day with Modified Following rolling convention

Derive the next Zero Rate for 3M Money Market Point

Market Data as of 29-Jan-2019			
Туре	Date	Rate	Zero
MM	2D	4.875%	4.94204%
MM	1M	4.875%	4.93394%
MM	3M	4.9%	
FUT	MAR-19	95.06	
FUT	JUN-19	95.12	
SWAP	2Y	5.125%	
SWAP	3Y	5.178%	

Flows for 3M rate of 4.9%			
Date Amount Required NPV			
31-Jan-19 \$100		\$99.9729	
30-Apr-19 -\$101.2114 -\$99.9729			

- We know zero rates up to 28-Feb-19
- Find z for 30-Apr-19 so that $\sum_{i=1}^{n} NPV(Flow_i) = \0
- So, $z = \ln(\frac{101.2114}{99.9729}) \cdot \frac{365}{91}$
- \bullet and therefore, z=4.93829%

- Overview, Purpose and Concept of Building Curves
- Simplified Example of Building Curves using Discount Bonds
- Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

Interpolation of Zero Rates

- The zero curve consists of distinct data points
- Interpolation is required for values not present on the curve
- For the first futures contract, we require z on the starting date
- There are many interpolation methods
- Smoothing forward rates is common practice

Linear interpolation of Zero Rate

Given, z_1 at time t_1 and z_2 at time t_2 interpolate z at time t:

$$z = z_1 + (z_2 - z_1) \cdot \frac{t - t_1}{t_2 - t_1} = \frac{z_2 \cdot (t - t_1) + z_1 \cdot (t_2 - t)}{t_2 - t_1}$$

- Overview, Purpose and Concept of Building Curves
- Simplified Example of Building Curves using Discount Bonds
- 3 Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

Derive the next Zero Rate for first Futures contract - 1

- Eurodollar future represents a 3 month forward rate
- Prices are available for up to 3-4 years into the future
- It's common to use futures up to 1-2 years
- The price of 95.06 implies rate of 4.94%

Futures Price to Rate Conversion

$$\textit{Rate} = \frac{100 - \textit{Futures Price}}{100}$$

- The length of the future can be interpreted as 3M or contract to contract
- The start and end dates are determined by exchanges

Derive the next Zero Rate for first Futures contract - 2

Market Data as of 29-Jan-2019			
Туре	Date	Rate	Zero
MM	2D	4.875%	4.94204%
MM	1M	4.875%	4.93394%
MM	3M	4.9%	4.93829%
FUT	MAR-19	95.06	
FUT	JUN-19	95.12	
SWAP	2Y	5.125%	
SWAP	3Y	5.178%	

Flows for MAR-19 contract with price 95.06		
Date Amount Required NPV		
20-Mar-19	\$100	\$99.3263
19-Jun-19	-\$101.2487	-\$99.3263

- Imply fwd rate: $\frac{100-95.06}{100} = 4.94\%$
- Interpolate z for 20-Mar-19 to get the zero rate on the start date of the future
- Calculate t, t_1, t_2 based on days to today
- $z = z_1 + (z_2 z_1) \cdot \frac{20}{59} = 4.93537\%$
- We can now present value the start flow of the future
- $NPV = \$100 \cdot e^{-4.93537\% \cdot \frac{50}{365}} = \99.3263

Derive the next Zero Rate for first Futures contract - 3

Market Data as of 29-Jan-2019			
Type	Date	Rate	Zero
MM	2D	4.875%	4.94204%
MM	1M	4.875%	4.93394%
MM	3M	4.9%	4.93806%
FUT	MAR-19	95.06	
FUT	JUN-19	95.12	
SWAP	2Y	5.125%	
SWAP	3Y	5.178%	

Flows for MAR-19 contract with price 95.06								
Date Amount Required NPV								
20-Mar-19	\$100	\$99.3263						
19-Jun-19	-\$101.2487	-\$99.3263						

- Calculate 19-Jun-19 flow using standard formula
- Basis for interest calculation is A/360 by convention
- $100 \cdot (1 + 4.94\% \cdot \frac{91}{360}) = 100.2487$
- Find next z so, $\sum_{i=1}^{n} NPV(Flow_i) = \0
- So, $z = \ln(\frac{100.2487}{99.3263}) \cdot \frac{365}{141}$
- ullet and therefore, z=4.96262%

Recap and Graph Zero Rates

Figure: Zero Rates and Number of Days

Next Point is JUN-19 Futures Contract - 1

Market Data as of 29-Jan-2019									
Туре	Date	Rate	Zero						
MM	2D	4.875%	4.94204%						
MM	1M	4.875%	4.93394%						
MM	3M	4.9%	4.93829%						
FUT	MAR-19	95.06	4.96262%						
FUT	JUN-19	95.12							
SWAP	2Y	5.125%							
SWAP	3Y	5.178%							

Flows for JUN-19 contract with price 95.12									
Date Amount Required NPV									
19-Jun-19	\$100	\$98.1012							
18-Sep-19	-\$101.2336	-\$98.1012							

- Imply fwd rate: $\frac{100-95.12}{100} = 4.88\%$
- Flow for 18-Sep-19 is \$101.2336
- z on start date is known from previous Steps
- So, we can imply z = 4.94493% for the end date of the futures contract

Adding Remaining Futures

Marl	Market Data as of 29-Jan-2019										
Туре	Date	Rate	Zero								
MM	2D	4.875%	4.94204%								
MM	1M	4.875%	4.93394%								
MM	3M	4.9%	4.93394%								
FUT	MAR-19	95.06	4.96262%								
FUT	JUN-19	95.12	4.94493%								
FUT	SEP-19	95.13	4.93438%								
FUT	T DEC-19 94.76		5.00989%								
FUT	MAR-20	95.01	5.01309%								
FUT	JUN-20	94.94	5.02602%								
SWAP	2Y	5.125%									
SWAP	3Y	5.178%									

- We use six contracts
- \bullet In practice, futures often overlap with the first Swap
- You can then either specify which has priority or merge the zero rates
- Convexity adjustment is required but we won't cover it in this lecture

- Overview, Purpose and Concept of Building Curves
- Simplified Example of Building Curves using Discount Bonds
- Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

Next Point is the First Swap Point - 2Y - 1

- We assume the projection index equals the discount index for simplicity
- The floating side can then be ignored when building the curve
- Reason is that with notional exchanges, the value will always be \$0
- Post 2008, LIBOR flows were discounted using the Fed Fund rate. With SOFR, the market is returning to equal indices
- LIBOR swaps pay semi-annually, resulting in 4 cash flows for a 2-year period
- As we are ignoring the floating side we need to add the notional exchanges to the fixed leg
- Find the z of the last cash flows, such that $\sum_{i=1}^{6} NPV(Flow_i) = \0
- The known $\{z_i\}$ values can be obtained from the curve

Next Point is the First Swap Point - 2Y - 2

Marl	Market Data as of 29-Jan-2019										
Type	Date	Rate	Zero								
MM	2D	4.875%	4.94204%								
MM	1M	4.875%	4.93394%								
MM	3M	4.9%	4.93394%								
FUT	MAR-19	95.06	4.96224%								
FUT	JUN-19	95.12	4.94431%								
FUT	MAR-20	95.01	5.01261%								
FUT	JUN-20	94.94	5.02535%								
SWAP	2Y	5.125%									
SWAP	3Y	5.178%									

Flows - 2Y Swap Pay 5.125%										
Date	Amount	NPV								
31-Jan-19	\$100	\$99.9729								
31-Jul-19	-\$2.5625	-\$2.4996								
31-Jan-20	-\$2.5625	-\$2.4375								
31-Jul-20	-\$2.5625	-\$2.3761								
29-Jan-21	-\$2.5482	-\$2.3025								
29-Jan-21	-\$100	-\$90.3570								

- Fixed leg of 2Y swap has 4 cashflows, {flow_i}
- ullet To find z we require notional exchanges at start and end
- Requirement for z: $\sum_{i=1}^{6} NPV(flow_i) = \0
- ullet The known values, $\{z_i\}$, are extracted from the curve

• So,
$$z = \ln(\frac{100 + flow_4}{\sum_{i=1}^{3} NPV(flow_i) + NPV(100, Spot)}) \cdot \frac{365}{731}$$

• and therefore, z = 5.06314%

Next Point is the 3Y Swap Point

Market Data as of 29-Jan-2019									
Туре	Date	Rate	Zero						
MM	2D	4.875%	4.94204%						
MM	1M	4.875%	4.93394%						
MM	3M	4.9%	4.93394%						
FUT	MAR-19	95.06	4.96224%						
FUT	Γ JUN-19 95.12		4.94431%						
FUT	FUT MAR-20 95.0		5.01261%						
FUT	JUN-20	94.94	5.02535%						
SWAP	2Y	5.125%	5.06314%						
SWAP	3Y	5.178%							

Flows - 3Y Swap Pay 5.178%									
Date	Amount	NPV							
31-Jan-19	\$100	\$99.9729							
31-Jul-19	-\$2.5890	-\$2.5254							
31-Jan-20	-\$2.5890	-\$2.4627							
31-Jul-20	-\$2.5890	-\$2.4007							
29-Jan-21	-\$2.5746	-\$2.3263							
30-Jul-21	-\$2.6033	-\$2.2922							
31-Jan-22	-\$2.5890	-\$2.2199							
31-Jan-22	-\$100	-\$85.7453							

- Requirement for z: $\sum_{i=1}^{8} NPV(flow_i) = \0
- Known $\{z_i\}$ are taken from the curve

• So,
$$z = \ln(\frac{100 + flow_6}{\sum_{i=1}^{5} NPV(flow_i) + NPV(100, Spot)}) \cdot \frac{365}{1098}$$

ullet and therefore, z=5.11228%

Complete Cashflow Schedule Information for a 3Y Swap

Semi-Annual Fixed Leg Cashflows										
Begin	End	Period	Rate	Notional	Flow	Date	Days	Zero	DF	PV(Flow)
1/31/2019	7/31/2019	180	5.178	1,000,000.00	-25,890.00	7/31/2019	183	4.95445	0.97547	-25,254.81
7/31/2019	1/31/2020	180	5.178	1,000,000.00	-25,890.00	1/31/2020	367	4.97089	0.95125	-24,627.79
1/31/2020	7/31/2020	180	5.178	1,000,000.00	-25,890.00	7/31/2020	549	5.01934	0.92728	-24,007.36
7/31/2020	1/29/2021	179	5.178	1,000,000.00	-25,746.17	1/29/2021	731	5.06314	0.90357	-23,263.47
1/29/2021	7/30/2021	181	5.178	1,000,000.00	-26,033.83	7/30/2021	913	5.08751	0.88051	-22,922.97
7/30/2021	1/31/2022	180	5.178	1,000,000.00	-25,890.00	1/31/2022	1098	5.11228	0.85745	-22,199.47

	Quarterly LIBOR Floating Leg Cashflows										
Begin	End	Reset	Period	Rate	Notional	Flow	Date	Days	Zero	DF	PV(Flow)
1/31/2019	4/30/2019	1/29/2019	89	4.9	1,000,000.00	12,113.89	4/30/2019	91	4.93829	0.98776	11,965.66
4/30/2019	7/31/2019	4/26/2019	92	4.93319	1,000,000.00	12,607.05	7/31/2019	183	4.95445	0.97547	12,297.75
7/31/2019	10/31/2019	7/29/2019	92	4.87391	1,000,000.00	12,455.54	10/31/2019	275	4.93994	0.96347	12,000.48
10/31/2019	1/31/2020	10/29/2019	92	5.02604	1,000,000.00	12,844.31	1/31/2020	367	4.97089	0.95125	12,218.12
1/31/2020	4/30/2020	1/29/2020	90	5.13841	1,000,000.00	12,846.03	4/30/2020	457	5.0114	0.93918	12,064.77
4/30/2020	7/31/2020	4/28/2020	92	5.02143	1,000,000.00	12,832.53	7/31/2020	549	5.01934	0.92728	11,899.39
7/31/2020	10/30/2020	7/29/2020	91	5.11358	1,000,000.00	12,925.99	10/30/2020	640	5.03812	0.91545	11,833.09
10/30/2020	1/29/2021	10/28/2020	91	5.20123	1,000,000.00	13,147.57	1/29/2021	731	5.06314	0.90357	11,879.75
1/29/2021	4/30/2021	1/27/2021	91	5.13538	1,000,000.00	12,981.10	4/30/2021	822	5.07532	0.89199	11,579.03
4/30/2021	7/30/2021	4/28/2021	91	5.15973	1,000,000.00	13,042.65	7/30/2021	913	5.08751	0.88051	11,484.14
7/30/2021	10/29/2021	7/28/2021	91	5.18408	1,000,000.00	13,104.20	10/29/2021	1004	5.09969	0.86912	11,389.09
10/29/2021	1/31/2022	10/27/2021	94	5.20996	1,000,000.00	13,603.78	1/31/2022	1098	5.11228	0.85745	11,664.60

Adding Remaining Swaps

	Market Data as of 29-Jan-2019										
Type	Date	Rate	Zero	Date							
MM	2D	4.875%	4.94204%	31-Jan-2019							
MM	1M	4.875%	4.93394%	28-Feb-2019							
MM	3M	4.9%	4.93394%	30-Apr-2019							
FUT	MAR-19	95.06	4.96262%	19-Jun-2019							
FUT	JUN-19	95.12	4.94493%	18-Sep-2019							
FUT	SEP-19	95.13	4.93438%	18-Dec-2019							
FUT	DEC-19	94.76	5.00989%	18-Mar-2020							
FUT	MAR-20	95.01	5.01309%	17-Jun-2020							
FUT	JUN-20	94.94	5.02602%	16-Sep-2020							
SWAP	2Y	5.125%	5.06314%	29-Jan-2021							
SWAP	3Y	5.178%	5.11228%	31-Jan-2022							
SWAP	5Y	5.394%	5.42569%	31-Jan-2024							
SWAP	7Y	5.548%	5.57245%	29-Jan-2026							
SWAP	10Y	5.709%	5.72934%	31-Jan-2029							
SWAP	15Y	5.863%	5.90024%	31-Jan-2034							
SWAP	20Y	5.932%	5.97185%	31-Jan-2039							
SWAP	30Y	5.96%	5.98892%	29-Jan-2049							

- We employ the same methodology as before to add remaining swaps
- For large gaps, synthetic swaps are constructed using the cubic spline method
- We may also consider utilizing the 40Y or 50Y points
- It is important to consider extrapolation assumptions

Zero Rates Graph

Figure: Zero Rate for Different Maturities

Summary

- Overview, Purpose and Concept of Building Curves
- 2 Simplified Example of Building Curves using Discount Bonds
- Building Curves using Money Market Rates, Futures and Swaps
 - Introduction to the Structure of the Curve and its Segments
 - Money Markets
 - Zero Rate Interpolation
 - Interest Rate Futures
 - Swaps

Thank You!

Questions?