Findings

FM

1 Existence of a smoothing

Let $\mathcal{K} = D_6 * D_6$ be the join of two 6-gons, and let $A_{\mathcal{K}}$ be its Stanley-Reisner ring, and $\mathbb{P}(\mathcal{K})$ its associated projective scheme.

Lemma 1.1. The f-vector of K is f = (1, 12, 48, 72, 36, 1).

The tangent and obstruction modules $T^i(\mathbb{P}(\mathcal{K}))$ can be described as follows:

Proposition 1.2.

$$\dim_{\mathbb{C}} T^{1}(\mathcal{K}) = 12 + 72 = 84$$
$$\dim_{\mathbb{C}} T^{2}(\mathcal{K}) = 72$$

Proof. We use the results of [AC10]. A basis of T^1 come in two orbits. They can be described as follows: let $lk(\mathcal{K}, v_1)$ be the link of a vertex in \mathcal{K} . This is double pyramid over a hexagon, and this contributes with one dimension to T^1 , by the results in [AC10]. There are 12 vertices.

For the other type, let v_i be one of the first six vertices and v_j be one of the last six. Then $lk(\mathcal{K}, v_i v_j)$ is a square, which contributes 2 to T^1 . In total, there are 6×6 choices, hence $2 \times 36 = 72$ dimensions to account for. In total $\dim_{\mathbb{C}} T^1(\mathcal{K}) = 84$.

For T^2 , all contributions are of the same form as those for D_6 , namely the crossing diagonals. There are three of them, so in total, we have $\dim_{\mathbb{C}} T_2^2 = 6$. However, each one of them can be multiplied by monomials to give something of degree 0. Thus there are in total $3 \times 4 \times 6 = 72$ contributions to T^2 . \square

Here's an observation: Let $\mathcal{G} = D_6 * \{v\}$. Then $\mathbb{P}(\mathcal{G})$ can be smoothed to a del Pezzo surface of degree 6. This follows because \mathcal{G} triangulates the associated polytope (a hexagon), by standard "Sturmfels theory". It follows that D_6 can be smoothed as well, because it is embedded as a complete intersection in \mathcal{G} .

Proposition 1.3. There exists a smoothing of $\mathbb{P}(\mathcal{K})$ to a complete intersection of two hyperplanes in a deformation of a toric variety.

Proof. Now let $\mathcal{G} = (D_6 * \{v\}) * (D_6 * \{w\})$ for two vertices v, w. Then using the above trick, \mathcal{G} can be deformed to the projective join T of two del Pezzo surfaces of degree 6. The ideal is just given by the sum of the ideal of each del Pezzo surface, in disjoint variables. Since \mathcal{K} is a complete intersection in \mathcal{G} , it follows that $X_0 = \mathbb{P}(\mathcal{K})$ deforms as well, say to X_t . However, T has a singular locus of dimension 2. By Bertini, it follows that X_t have isolated singularities.

However: it is possible to computationally, by brute force, futher deform T to a variety having singular locus of dimension 1. This implies that X_t deforms to something smooth.

It would be nice to find a non-computational argument for the existence of the smoothing. Maybe a toric deformation? It would also be nice to know if the generic fiber of X_0 over $Def(X_0)$ is smooth, and if not, what is the smoothing component? From computational experiments, it looks like the total base space is way to complicated to approach directly.

2 Mirror symmetry

2.1 Notation and preliminaries

Since X_t above degenerates to a sphere, it is a Calabi-Yau-manifold, and in fact, the description of it is a complete intersection of two hyperplanes corresponds to a so-called nef partition of the polytope associated to T above. We recall the Batyrev-Borisov construction for mirrors of complete intersections in toric varieties. We follow the description in [DN10].

Let $N \approx \mathbb{Z}^n$ be a lattice and let $M = N^{\vee}$ be the dual lattice (the "equation lattice"). Let $\Delta \subset N_{\mathbb{R}}$ be a reflexive polytope and Δ° its polar polytope (which is also reflexive). Let $T := N \otimes_{\mathbb{Z}} \mathbb{C}^*$ be the *n*-dimensional torus. We denote by \mathbb{P}_{Δ} the toric variety associated to the polytope Δ . It can be described as the closure of the map $T_N \to \mathbb{P}^{s-1}$ (here *s* is the number of vertices of lattice points of Δ) given by

$$t \mapsto (\chi^{m_1}(t), \dots, \chi^{m_s}(t)).$$

An equivalent (?) description more suitable for computations is the following: embed Δ in $M_{\mathbb{R}} \times \mathbb{R}$ as $\Delta \times \{1\}$. Let C be the cone over $\Delta \times \{1\}$, and consider

the semigrup ring $\mathbb{C}[C \cap (M \times \mathbb{Z})]$. This is a graded ring, so we define \mathbb{P}_{Δ} to be $\operatorname{Proj} \mathbb{C}[C \cap (M \times \mathbb{Z})]$.

Let the vertex set V of Δ be partitioned into a disjoint union of subsets $V_1 \sqcup V_2 \sqcup \cdots \sqcup V_r$ with corresponding polytopes $\Delta_i := \operatorname{Conv}(V_i \cup \{0\})$. We say that this partition is a *nef partition* if the Minkowski sum $\Delta_1 + \ldots + \Delta_r$ is also a reflexive polytope, which we will denote by $\nabla^{\circ} \subset N_{\mathbb{R}}$ (so $\nabla \subset M_{\mathbb{R}}$) (we say that the nef partition is *indecomposable* if no Minkowski sum of any proper subset of the partition gives a reflexive polytope).

The associated Cayley polytope $P^* \subset N_{\mathbb{R}} \times \mathbb{R}^r$ of dimension n+r-1 is given by

$$P^* = \operatorname{Conv}\left(\bigcup_{i=1}^r \Delta_i \times e_i\right),$$

where of course $\{e_i\}_{i=1}^r$ is the standard basis of \mathbb{R}^r . The cone over the Cayley polytope is the Cayley cone $C^* := \operatorname{Cone}(P^*)$ with dual Cayley cone $C \subset M_{\mathbb{R}} \times \mathbb{R}^r$. The cone C^* is a reflexive Gorenstein cone of index r.

The intersections of P with affine subspaces given by intersections of hyperplanes $x_i = 1, x_j = 0$ for $i, j \in \{n+1, \ldots, n+r\}$, and $i \neq j$ are polytopes $\nabla'_1, \ldots, \nabla'_r$. Then $\nabla_i = \pi(\nabla'_i)$, the projection of ∇'_i to $N_{\mathbb{R}}$. These polytopes correspond to the dual nef partition, such that $\nabla = \operatorname{Conv}(\nabla_1 \cup \cdots \cup \nabla_r)$ and $\Delta^{\circ} = \nabla_1 + \ldots + \nabla_r$.

To sum up, we have the following sets of polytopes:

$$\frac{N_{\mathbb{R}}}{\Delta = \operatorname{Conv}(\{\Delta_{1}, \dots, \Delta_{r}\})} \quad \frac{M_{\mathbb{R}}}{\Delta^{\circ} = \nabla_{1} + \dots + \nabla_{r}} \\
\nabla^{\circ} = \Delta_{1} + \dots + \Delta_{r} \qquad \nabla = \operatorname{Conv}(\{\nabla_{1}, \dots, \nabla_{r}\})$$

This is the mirror duality of Batyrev-Borisov.

2.2 Applied to our case

Recall that the polytope associated to the del Pezzo surface of degree 6 is the polytope H depicted in 2.2.

Since we have a total of 7 points in $H \cap N$, the del Pezzo surface is naturally embedded in \mathbb{P}^6 . Taking the projective join of two such, we get the (singular) toric variety T in \mathbb{P}^{11} . The polytope associated to this variety is H*H, the join of H with itself. This is obtained by placing each copy of H in disjoint hyperplanes and taking the convex hull. Explicitly, the join of two polytopes $P_1 \subset N_{\mathbb{R}}$ and $P_2 \subset N_{\mathbb{R}}$ can be defined in the following way: embed P_i in $N_{\mathbb{R}} \times N_{\mathbb{R}} \times \mathbb{R}^2$ as $P_i \times \{e_i\}$. Then take the convex hull of P_1 and P_2 . In our case, we consider the convex hull of the columns of the matrix

Figure 1: The hexagon, a.k.a the polytope associated to a degree 6 del Pezzo surface.

Note however that P' is not a reflexive polytope anymore. The origin is a vertex, and there are no interior points. This is solved by considering $P := 2 \cdot P' - (1, 1, 1, 1, 1)$. This polytope is now reflexive. Since a polytope and any of its multiples have the same normal fan, we can just as well consider P as the polytope associated to T.

P lives in $N_{\mathbb{R}}$, so to get the same setup as in the previous section, we define Δ to be its polar P° . Now Δ is the convex hull of the columns of the matrix:

$$\Delta = \operatorname{Conv} \left(\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & -1 \\ 0 & -1 & 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & -2 & -2 & -1 & -1 \end{bmatrix} \right)$$

Using the program PALP, which is implemented in SAGE, one finds that if one takes Δ_1 (resp. Δ_2) to be convex hull of the first six columns (resp. six last) and the origin, then $\Delta_1 + \Delta_2$ is reflexive, which we will, as above, denote by ∇° .

Lemma 2.1. The f-vector of ∇° is f = (1, 48, 156, 194, 108, 24, 1).

The associated Cayley polytope P^* is as above the convex hull of $\Delta_1 \times \{e_1\}$ and $\Delta_2 \times \{e_2\}$ in $N_{\mathbb{R}} \times \mathbb{R}^2$. Explicitly, it is given by the same matrix as Δ , but with (1,0) after the first six columns and (0,1) after the last six.

The Cayley cone C^* is just the 7-dimensional cone supported on P^* . To find P, one just takes the convex hull of the ray generators of $C = (C^*)^*$. As above, one find ∇_1, ∇_2 by intersecting with hyperplanes, and then projecting back to $M_{\mathbb{R}}$.

Lemma 2.2. ∇_1 and ∇_2 are isomorphic lattice polytopes, differing by a translation in the lattice. In particular, they have the same normal fan.

A calculation in PALP gives the following:

Lemma 2.3. The Hodge numbers associated to this nef partition are $h^{12} = h^{22} = 19$ (and consequently, they are the same for the dual nef partition).

Here's a summary of the data of all the polytopes found so far:

Polytope	Dimension	Lattice points	Interior points	Reflexive	f-vector
Δ	5	15	1	Yes	(12, 48, 74, 48, 12)
Δ°	5	87	1	Yes	(12, 48, 74, 48, 12)
Δ_1	3	8	0	No (2)	(7, 12, 7)
Δ_2	3	8	0	No (2)	(7, 12, 7)
∇	5	27	1	Yes	(24, 108, 194, 156, 48)
$ abla^{\circ}$	5	63	1	Yes	(48, 156, 194, 108, 24)
$ abla_1$	5	14	0	No (2)	(12, 48, 74, 48, 12)
$ abla_2$	5	14	0	No (2)	(12, 48, 74, 48, 12)

By "No (2)" is ment that $2 \cdot P$ is reflexive.

References

- [AC10] Klaus Altmann and Jan Arthur Christophersen. Deforming Stanley-Reisner schemes. *Math. Ann.*, 348(3):513–537, 2010.
- [DN10] Charles F. Doran and Andrey Y. Novoseltsev. Closed form expressions for Hodge numbers of complete intersection Calabi-Yau three-folds in toric varieties. In *Mirror symmetry and tropical geometry*, volume 527 of *Contemp. Math.*, pages 1–14. Amer. Math. Soc., Providence, RI, 2010.