

proof of existence of the essential supremum

 ${\bf Canonical\ name} \quad {\bf ProofOfExistenceOfTheEssential Supremum}$

Date of creation 2013-03-22 18:39:25 Last modified on 2013-03-22 18:39:25

Owner gel (22282) Last modified by gel (22282)

Numerical id 7

Author gel (22282) Entry type Proof Classification msc 28A20 Suppose that $(\Omega, \mathcal{F}, \mu)$ is a σ -finite measure space and \mathcal{S} is a collection of measurable functions $f \colon \Omega \to \overline{\mathbb{R}}$. We show that the essential supremum of \mathcal{S} exists and furthermore, if it is nonempty then there is a sequence $f_n \in \mathcal{S}$ such that

$$\operatorname{ess\,sup} \mathcal{S} = \sup_{n} f_{n}.$$

As http://planetmath.org/AnySigmaFiniteMeasureIsEquivalentToAProbabilityMeasure σ -finite measure is equivalent to a probability measure, we may suppose without loss of generality that μ is a probability measure. Also, without loss of generality, suppose that \mathcal{S} is nonempty, and let \mathcal{S}' consist of the collection of maximums of finite sequences of functions in \mathcal{S} . Then choose any continuous and strictly increasing $\theta \colon \mathbb{R} \to \mathbb{R}$. For example, we can take

$$\theta(x) = \begin{cases} x/(1+|x|), & \text{if } |x| < \infty, \\ 1, & \text{if } x = \infty, \\ -1, & \text{if } x = -\infty. \end{cases}$$

As $\theta(f)$ is a bounded and measurable function for all $f \in \mathcal{S}'$, we can set

$$\alpha = \sup \left\{ \int \theta(f) d\mu : f \in \mathcal{S}' \right\}.$$

Then choose a sequence g_n in \mathcal{S}' such that $\int \theta(g_n) d\mu \to \alpha$. By replacing g_n by the maximum of g_1, \ldots, g_n if necessary, we may assume that $g_{n+1} \geq g_n$ for each n. Set

$$f = \sup_{n} g_n.$$

Also, every g_n is the maximum of a finite sequence of functions $g_{n,1}, \ldots, g_{n,m_n}$ in \mathcal{S} . Therefore, there exists a sequence $f_n \in \mathcal{S}$ such that

$$\{f_1, f_2, \ldots\} = \{g_{n,m} : n \ge 1, 1 \le m \le m_n\}.$$

Then,

$$f = \sup_{n} f_n$$
.

It only remains to be shown that f is indeed the essential supremum of S. First, by continuity of θ and the dominated convergence theorem,

$$\int \theta(f) d\mu = \lim_{n \to \infty} \int \theta(g_n) d\mu = \alpha.$$

Similarly, for any $g \in \mathcal{S}$,

$$\int \theta(f \vee g) = \lim_{n \to \infty} \int \theta(g_n \vee g) \, d\mu \le \alpha.$$

It follows that $\theta(f\vee g)-\theta(f)$ is a nonnegative function with nonpositive integral, and so is equal to zero μ -almost everywhere. As θ is strictly increasing, $f\vee g=f$ and therefore $f\geq g$ μ -almost everywhere.

Finally, suppose that $g: \Omega \to \mathbb{R}$ satisfies $g \geq h$ (μ -a.e.) for all $h \in \mathcal{S}$. Then, $g \geq f_n$ and,

$$g \ge \sup_{n} f_n = f$$

 μ -a.e., as required.