1. Formułę zdaniową ~ (~ $(p \lor q) \lor (\sim p \land q)$) zapisać w postaci równoważnej, korzystając tylko z funktorów ~ i \Rightarrow .

2. Sprawdzić, czy schemat $\frac{p \Rightarrow \sim q, r \Rightarrow q, r}{\sim p}$ jest regułą wnioskowania.

3. Przed naszym egzaminem usłyszeliśmy słowa studenta skierowane do jego kolegi: Jeśli uczyteś się do tego egzaminu, to ten egzamin zdasz. Ale ty się nie uczyteś. Zatem tego egzaminu nie zdasz. Przedstawić schemat tej wypowiedzi i, następnie, formalnie zbadać poprawność (lub brak poprawności) widocznego tam rozumowania.

4. Dana jest funkcja $f: X \to Y$ oraz podzbiory A i B zbioru Y. Wykazać, że $f^{-1}(A - B) = f^{-1}(A) - f^{-1}(B)$. Przedstawić formalne uzasadnienie równości.

5. Indukcyjnie wykazać, że liczba $x_n = 2^{n+2} \cdot 3^n + 5n - 4$ jest podzielna przez 25 dla każdej liczby $n \in \mathbb{N}$.	
	_
6. Dany jest zbiór częściowo uporządkowany ($\mathcal{P}(\{1,2,3,4\}),\subseteq$), gdzie $\mathcal{P}(\{1,2,3,4\})$ jest zbiorem wszystkich podzbiorów zbioru $\{1,2,3,4\}$ i \subseteq jest relacją zawierania się zbiorów. (1) Narysować diagram Hassego tego częściowego porządku i na nim zaznaczyć zbiór $B=\{\{1\},\{1,2\},\{1,3\}\{1,4\},\{1,2,3\},\{2,3,4\}\}\}$. (2) Dla danego zbioru B wyznaczyć (jeśli to możliwe) elementy:	
1. minimalne:	
2. maksymalne:	
3. najmniejsze:	
4. największe:	
5. ograniczenia dolne:	
6. kresy dolne:	
7. ograniczenia górne:	
8. kresy górne:	
7. W zbiorze \mathbb{Z} określona jest relacja \sim , gdzie dla $a,b\in\mathbb{Z}$ jest $a\sim b$ wtedy i tylko wtedy, gdy $7 3a+4b$. (1) Formalnie wykazać, że \sim jest relacją równoważności w zbiorze \mathbb{Z} . (2) Wyznaczyć klasę abstrakcji $[0]_{\sim}$. Uzasadnić swoją propozycję!	
	_
8. Formalnie uzasadnić, że odcinek (1; 2) nie jest równoliczny ze zbiorem N.	
(-, - <i>)</i> ,, (-, - <i>)</i> ,	_