

at Northeastern University

Assignment Project Exam Help

Wireless Sensor Notworks (and The Internet of Things)
Add WeChat powcoder

Prof. Francesco Restuccia

Email: f.restuccia@northeastern.edu

Office: 318 Dana

February 24, 2021

Contantione Fire of Maran Retocols: https://powcoder.com

Add WeChat powcoder

TRAMA

TRAMA: Energy Efficient Collision-Free MAC, V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, "Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks," Proc. ACM SenSys 2003, LA, CA, Nov. 2003.

Motivation:

- Probability of collisions of both control and data packets in a contention-based scheme increases with traffic
 Assignment Project Exam Help
 This degrades channel utilization and reduces battery lifetime
- ➤ Idea: https://powcoder.com
 - Establish transmission schedules to avoid collisions at the Add WeChat powcoder receiver
 - Make schedules dynamic, adaptive to traffic patterns
 - Make nodes switch to low-power mode according to dynamic schedules, i.e., when there is no data packet intended for those nodes

TRAMA

- Time divided into period
- Random Access Period
 - Used for Assigning ental Project For any Hear Information
 - Collisions are possible https://powcoder.com
- Scheduled Accessil Periodhat powcoder
 - Used for contention free data exchange between nodes
 - Supports unicast, multicast and broadcast communication

TRAMA Components

- Neighbor Protocol (NP)
 - Gather 2-hop neighbors information
- Schedule Exchange Protocol (SEP)
 - Gather Assispment Project Two Parts The Part of the Control of t
- > Adaptive Election Algorithm (AEA)
 - Select transmitters, receivers for current time slot
 - Leave other Add & teleatopowitender low power mode using the NP and SEP results

TRAMA

- SIGNALING SLOTS
 - Used by NEIGHBOR PROTOCOL (NP) to propagate one-hop neighbor information among neighboring nodes during the random access period
 - In this way, a consistent two-hop topology information across all nodes is obtained
- > TRANSMISSION SLOTS
 - 1. Used for collision-free data exchange
 - 2. Used for schedule propagation

Neighbor Protocol (NP)

- Gather two-hop neighborhood information by using signaling packets during the random access period
- ➤ If no updates, signaling packets are sent as "keep-alive" beacons Assignment Project Exam Help
- A node times out if nothing is heard from its neighbor https://powcoder.com

Add WeChat powcoder

- Each node computes a SCHEDULE INTERVAL (named SCHED) based on the rate at which packets are produced
- Cuantity Saktionrapreservise to Exlata Idelphich the node can announce the schedule to its neighbors according to its current state of the powcoder.com
- > The node pre-camputes # of slots in the interval

[t, t+SCHED]

for which it has the highest priority among its two-hop neighbors (contenders) → WINNING SLOTS

- The node announces the intended receivers for these slots
- The last was ignored by and the last was schedule for the next interval (example later) https://powcoder.com

Add WeChat powcoder
If these winning slots cannot be filled by
the node the remaining vacant slots can
be released to other nodes

- > EXAMPLE: Node **u** → SCHED is 100 slots
- During time slot 1000, u computes its winning slots between [1000,1100] - HOW?
- > Assume: Thesignment Project Force, 1064, 1075, 1098
- https://powcoder.com
 Node u uses slot 1098 to announce its next schedule by looking ahead from [webhat96] bwcoder

- Nodes announce their schedules via SCHEDULE **PACKETS**
- Use BITMAP: with the length equal to # of one-hop neighbors Assisiginatene Perivierst Exam Help
- Each bit corresponds to one particular receiver https://powcoder.com
 Example: One node with 4 neighbors 14,7,5 and 4
- BITMAP → sizeAdd WeChat powcoder
- For broadcast: all bitmap bits are set to 1

Adaptive Election (AE)

- Given: Each node knows its two-hop neighborhood and their current schedules
- How to decide which slot (in scheduled access period) a node can use ignment Project Exam Help
 - Use node identifier x and globally known hash function h
 - For time slot t, https://eppiwrepjer/conton
 - Compute this priority for next SCHED time slots for node itself and all two-hop neighbors that powcoder
 - Node uses time slots for which it has the highest priority
 - Gives up time slots for which it has no data to transmit

Schedule Packet Format

SourceAddr: Node announcing the schedule

Timeout: # of of slots for which the schedule is valid (starting from the current slot)

Width: Length of the neighbor bitmap (# of one-hop neighbors)

numSlots: total # of winning slots (# of bitmaps contained in the packet)

What are the main limitations of TRAMA?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Think-Pair-Share!

TRAMA Limitations

- Complex election algorithm and data structure
- Overhead due to explicit schedule propagation
- Higher queuing delay
- Energy savängsigmmeat/ProjepetrExamtHeelporkload situation
- Energy savings in 8-MAC depend on duty cycle
- > TRAMA has higher throughtest than contention-based S-MAC
- TRAMA disadvantage: substantial memory/CPU requirements for schedule computation

at Northeastern University

Assignment Religious Help

Wireless Sensor Notworks (and The Internet of Things)
Add WeChat powcoder

Prof. Francesco Restuccia

Email: f.restuccia@northeastern.edu

Office: 318 Dana

February 25, 2021

Hybriden Mage Etrestancals; https://powcoder.com

Add WeChat powcoder

Z-MAC

Z(ebra)-MAC: A HYBRID MAC PROTOCOL

Rhee, A. Warrier, M. Aia, J. Min, ACM SenSys 2005, Nov 2005.

- Combines the strengths of both CSMA and TDMA at the same time offsetting their weaknesses
- High channel efficiency and fair

Effective Throughput

CSMA vs. TDMA

Z-MAC

- Uses the TDMA schedule as a 'hint' to schedule transmissions
- The owner as a significant by the medium non-owners while accessing the medium https://powcoder.com
- Unlike TDMA, nadeb Whereshot up to the owners do not have data to send

Z-MAC

- This enables Z-MAC to switch between CSMA and TDMA depending on the level of contention
- > Hence, undersignmente Project Exam Help
 - Z-MAC acts like CSMA
 - High channel utilization and low latency
- > Under high contention we Chat powcoder
 - Z-MAC acts like TDMA
 - High channel utilization, fairness and low contention overhead

Schedule TDMA-like with DRAND

- Z-MAC requires a conflict-free transmission schedule or a TDMA schedule
- Uses DRAND, a distributed TDMA scheduling scheme
- DRAND is distributed, and is a distributed implementation of RAND, a famous centralized channel scheduling scheme
- > Let G = (V, E) Assignment Project Examt Halpes and E the set of edges.
- > An edge e = (u, v) ehttps://powcoder.com/vithin interference range
- Given G, DRAND calculates a TDMA schedule in time linear to the maximum node degreeded WeChat powcoder

Rhee, I., Warrier, A., Min, J. and Xu, L., 2009. **DRAND: Distributed randomized TDMA scheduling for wireless ad hoc networks**, *IEEE Transactions on Mobile Computing*, *8*(10), pp.1384-1396, 2009.

Transmission Control

- Slot Ownership
 - If current timeslot is the node's assigned time-slot, then it is the Owner, and all other neighboring nodes are Non-Owners
- > If Low Contention Level Phole List detected in
 - Nodes compete in all slots, albeit with different priorities
- > Before transmithttps://powcoder.com
 - If I am the Owner: take backoff Random powcoder
 - Else if I am the Non-Owner:
 take backoff = T_o + Random(T_{no})
- After backoff, sense channel, if busy repeat above, else send

Transmission Control

- Switches between CSMA and TDMA automatically depending on contention level
- > Performan As signandato Projectife xatu 4 telep To and Tno
- > Usually, $T_o = 8$ https://powcoder.com Add WeChat powcoder

Explicit Contention Notification (ECN)

- With ECN, a node informs all nodes within two-hop neighborhood not to send during its time-slot
- When a node receives ECN message, it sets its High Contention Level (HCL) flags 1gnment Project Exam Help
- by BTW, How do we beteet high congestion?
 Add WeChat powcoder
- High contention is detected by lost ACKs or repeated backoffs
- On receiving one-hop ECN from a node i, forward two-hop ECN if it is on the routing path from node i

Explicit Contention Notification - Example

Thick Line – Routing Path Dotted Line – ECN Messages

discard

- C experiences high contention
- C broadcasts one-hop ECN message to A, B, D
- A, B not on routing path

Assignment Project Exam Help

• D is on routing path, so it forwards https://powe60deaschwo-hop ECN message to E, F

Forward WeChatapawcoderot compete during

C's slot as Non-Owners

 A, B and E are eligible to compete during C's slot, albeit with lesser priority as Non-Owners

Performance Evaluation

DRAND and ZMAC have been implemented on both NS2 and on Mica2 motes

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Performance Results

- Platform:
 - Mica2
 - · 8-bit Assignment Project Exam Help
 - 8KB flash, 256KB RAM coder.com
 - 916 MHz radio (ISM)
 - TinyOS eventdo WeChat powcoder

Experimental Setup – Single Hop

- Single-Hop Experiments:
 - Star network configuration
 - Tests repeated 10 times and average/standard deviation grippene Project (Postion Meintervals)

https://powcoder.com

Z-MAC – Two Hop Experiments

- Setup Two-Hop
 - Dumbbell shaped topology
 - Transmission power varied between low (50) and high (150) to get two-hop situations
 Assignment Project Exam Help
 Aim See how Z-MAC works when Hidden Terminal
 - Aim See how Z-MAC works when Hidden Termina Problem The Problem Termina Problem The Problem Termina Problem

Single-Hop Throughput

Multi Hop Results – Throughput

Multi Hop Results – Energy Efficiency

(KBits/Joule)

What are the pros and cons of ZMAC?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Think-Pair-Share!

Overhead (Hidden Costs)

Operation	Average (J)	StdDev
Neighbor Discovery	0.73	0.0018
Assignmen	t Project Exam	Help
DRAND	4.88	3.105
https://	powcoder.com	
Local Frame	1.33	1.39
Exchange Add W	eChat powcod	er
Time Synchronization	0.28	0.036

Total energy: 7.22 J – 0.03% of typical battery (2500mAh, 3V)

Add WeChat powcoder

Gahng-Seop Ahn, Emiliano Miluzzo, Andrew T. Campbell, Se Gi Hong, and Francesca Cuomo, "Funneling-MAC: A Localized, Sink-Oriented MAC For Boosting Fidelity in Sensor Networks", In Proc. of Fourth ACM Conference on Embedded Networked Sensor Systems (SenSys 2006)

In *Proc. of Fourth ACM Conference on Embedded Networked Sensor Systems (SenSys 2006)*, Boulder, Colorado, USA, Nov 1-3, 2006

The Funneling Problem

The Funneling Problem

The Funneling Problem

Quantifying the Funneling Effect

- 45 Mica2 in a 9x5 grid topology
- Grid calibration: 1 hop \rightarrow > 80% of total nodes, 2-hop \rightarrow < 20%
- TinyOS 1.1.15

Funneling Effect Impact

At the sink overall loss rate: between 67% and 95%

Is there a simple solution to this problem?

Is there a simple solution to this problem?

Answer

- > Yes, it is possible and the Funneling-MAC is built to
 - Exploit localized control over the intensity region
 - Reacting dynamically to network conditions

Assignment Project Exam Help

Such that it addresses scalability while proposing an efficient schedulity sproposing an

Add WeChat powcoder

Funneling-MAC Design Considerations

Funneling-MAC algorithm

- On-demana saignoning Project Exam Help
- Dynamic-depth tuning https://powcoder.com
 Sink-oriented scheduling

Add WeChat powcoder

- > To dynamically drive the depth of the intensity region
- To synchronize the nodes inside the intensity region Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

The sink periodically

sensors

• At the bootstrap of the network or

• Assignment Projecth Exstantified the low traffic the Beacon transmission power is the https://powcostenscenthe sensors

• Add WeChat powcoder

sink

Dynamic-depth Tuning - More formally

- $ightharpoonup A_{max}
 ightharpoonup max$ number of slots that can be assigned given the TDMA capacity
- ➤ A → number of slots required to schedule path-heads' Assignment Project Exam Help traffic

https://powcoder.com

- ⇒ if $A \le A_{max}$ → sink increases beacon transmission power ⇒ if $A > A_{max}$ → sink deliverable the weak of the deliverable the sink of the sin

Conclusion

- Contribution
 - Boosts reliability by mitigating the funneling effect in choke points
 - Provides a lightweight, robust, and efficient hybrid TDMA/ Esmignment Project Exam Help
 - Shows that multiple medium access schemes can seamlessly coexist powcoder.com

Add WeChat powcoder

Funneling-MAC could more generally operate on multiple sinks/hierarchical sensor networks

Any other approaches to tackle the Funneling Effect?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Think-Pair-Share!

