计算机组成原理

群名称:2022春-计组4班

群号:139369553

文杰

计算机科学与技术学院

wenjie@hit.edu.cn

个人主页: http://faculty.hitsz.edu.cn/wenjie

第二章 RISC-V汇编 及其指令系统

第二章 RISC-V汇编及其指令系统

- 计算机中数的表示
- RISC-V概述
- RISC-V汇编语言
- RISC-V指令表示
- 案例分析

计算机中数的表示

- 计算机中数的表示
 - 无符号数和有符号数

机器数与真值;原码/补码/反码/移码表示法

- 定点表示和浮点表示
- IEEE754标准
- 算数移位与逻辑移位

无符号数

• 以8位寄存器为例

寄存器的位数反映无符号数的表示范围

有符号数: 真值与机器数

真值: 带符号的数

+ 0.1011或0.1011

-0.1011

+ 1100或1100

-1100

机器数:符号数字化的数

注:以后非特殊说明,默认二进制数表示;

二进制数位数不是8的倍数,只是为了讲解方便。

有符号数: 真值与机器数

真值: 带符号的数

+ 0.1011

+1011

机器数:符号数字化的数

- 小数和整数在计算机中的表示一模一样?
- 如何表示既有整数又有小数的数据,如+11.01?

原码表示法:整数

带符号的绝对值表示

$$x = +1110$$
 $[x]_{\mathbb{R}} = 0$, 1110 用 逗号 将符号位和数值部分隔开 $x = -1110$ $[x]_{\mathbb{R}} = 1$, 1110
$$[x]_{\mathbb{R}} = 2^4 + 1110 = 1$$
 , 1110
$$[x]_{\mathbb{R}} = \begin{cases} 0, x & 2^n > x \geq 0 \\ 2^n - x & 0 \geq x > -2^n \end{cases}$$

x是真值,n是数值位数

原码表示法: 小数

$$x = +0.1101$$
 $[x]_{\mathbb{R}} = 0$ 1101 用小数点将符号位和数值部分隔开 $x = -0.1101$ $[x]_{\mathbb{R}} = 1$ 1101 = 1 - (-0.1101) $x = +0.1000000$ $[x]_{\mathbb{R}} = 0$ 10000000 用小数点将符号位和数值部分隔开 $x = -0.1000000$ $[x]_{\mathbb{R}} = 1$ 10000000 = 1 - (-0.10000000) $[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \geq 0 \\ 1 - x & 0 \geq x > -1 \\ x$ 是真值

举例: 根据原码求真值

• 例1. 已知 $[x]_{\mbox{\scriptsize g}} = 1.0011$,求 x解: 由小数原码定义得 $x = 1 - [x]_{\mbox{\tiny g}} = 1 - 1.0011 = -0.0011$

• 例2. 已知 $[x]_{\mbox{\sc g}} = 1,1100$,求 x解: 由整数原码定义得 $x = 2^4 - [x]_{\mbox{\sc g}} = 10000 - 1,1100 = -1100$

举例

• 例4. 求 x = 0 的原码

解: 设x = +0.0000则 [+0.0000]_原 = 0.0000 x = -0.0000则 [-0.0000]_原 = 1.0000

同理,对于整数 $[+0]_{\mbox{\tiny \mathbb{R}}} = 0,0000$ 假设整数的数值位是4位 $[-0]_{\mbox{\tiny \mathbb{R}}} = 1,0000$

 $\vdots \quad [+0]_{\mathbb{R}} \neq [-0]_{\mathbb{R}}$

注意: x = 0的原码要分成小数和整数分别讨论

原码的优缺点

• 优点: 简单、直观

• 缺点: 1) +0和-0原码不一样

2) 作加法运算时,会出现如下问题:

要求	数1	数2	实际操作	结果符号	
加法	正	正	加法	正	
加法	正	负	减法	可正可负	
加法	负	正	减法	可正可负	
加法	负	负	加法	负	

实际运算时能否只作加法运算?

原码的缺点

原码运算不等于十进制运算?

补数表示法

- 例:将时钟从5点调到3点
- 补的概念: 时钟以12为模
 - 逆时针: 5-2 = 3
 - 顺时针: 5+10 = 3 + 12

- 可见 -2 可用 +10 代替
 - 称 +10 是 -2 (以 12 为模)的补数
 - 记作 $-2 \equiv +10 \pmod{12}$ 同理 $-4 \equiv +8 \pmod{12}$ $-5 \equiv +7 \pmod{12}$

减法 — 加法

补数——续

可见-1011 与 + 0101 作用等价

记作 $-1011 \equiv +0101$ (mod 2^4)

同理 $-011 \equiv +101$ (mod 2^3)

 $-0.1001 \equiv +1.0111 \pmod{2^1}$

1001=+10111 (mod 21) 正剱的作剱

自然去掉

- 结论(真值的绝对值小于模)
 - •一个负数加上"模"即得该负数的补数
 - •一个负数和一个正数互为补数时,绝对值之和即为模数

补数——续

正数的补数即为其本身

对于时钟:
$$3点、15点、27点都是3点 \longrightarrow 3 \equiv 15 \equiv 27 \pmod{12}$$
 $3 \equiv 3+12 \equiv 3+24 \equiv 3 \pmod{12}$

同理:
$$+0101 \equiv +0101 + 2^4 \equiv +0101 \pmod{2^4}$$

前面已证明:
$$-1011 \equiv -1011 + 2^4 \equiv +0101 \pmod{2^4}$$

$$2^{4+1} - 1011 = 100000 \\ -1011 \\ \hline 1,0101$$
 (mod 2^{4+1})

问题: + 0101 究竟是-1011 的补数还是+0101的补数呢?

补码表示法: 二进制整数

整数补码定义:

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} \{x\}_{\begin{subarray}{l} \{x\}_{\begin{subarr$$

$$x = +0101000$$
 $x = -1011000$
$$[x]_{N} = 0,0101000$$

$$[x]_{N} = 2^{7+1} + (-1011000)$$

$$= 1000000000$$

$$- 1011000$$

$$1,0101000$$
 和数值部分隔开

补码表示法:二进制(纯)小数

小数补码定义:

$$[x]_{i} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \\ + x & x > 1 > x \ge 1 \end{cases}$$

$$x = +0.1110$$
 $x = -0.1100000$ $[x]_{\uparrow \downarrow} = 0.1110$ $[x]_{\uparrow \downarrow} = -0.1100000+2$ $= 10.0000000$ $= 0.1100000$ $= 1.0100000$ 和数值部分隔开

求补码的快捷方式

当<u>真</u>值为负时,补码可用原码除符号位外每位取反,末位加1求得

举例:已知小数补码求真值

已知 $[x]_{i} = 1.0001$,求x和 $[x]_{i}$ 。

解:由定义得 $x = [x]_{in} - 2$ = 1.0001-10.0000 = -0.1111

根据真值x

[x]_补除符号位外,按位取反

结论: 当真值为负时,已知补码求原码的快捷方法:

- 补码除符号位外,每位取反,末位加1
- 补码除符号位外,末位减 1,再每位取反

练习:已知负数补码求真值

己知
$$[x]_{*} = 1,1110$$
,求 x

解: 由定义得
$$x = [x]_{---} - 2^{4+1}$$
 = 1,1110 - 1000000 = -0010

或:
$$[x]_{\stackrel{}{\wedge}} \longrightarrow [x]_{\stackrel{}{\otimes}} \longrightarrow x$$

根据快捷求法:
$$[x]_{\mathbb{R}} = 1,0001+1=1,0010$$

$$x = -0010$$

练习: 求下列真值的补码

真值 $[x]_{\mathbb{R}}$ $[x]_{\lambda}$ x = -70 = -10001101, 0111010 1,1000110 1.0010 1.1110 x = -0.1110 $x = [+0.0000] [+0]_{3/2} = [-0]_{3/2} [0.0000]$ 0.0000 x = [-0.0000]0.0000 1.0000 x = -1.00001.0000 不能表示 由小数补码定义 $[x]_{\stackrel{}{\nmid}_{1}} = \begin{cases} x & 1 > x \ge 0 \\ 2+x & 0 > x \ge -1 \pmod{2} \end{cases}$

$$[-1.0000]_{35} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

反码表示法: 二进制整数

整数反码定义:

$$[x]_{ar{\Sigma}} = \begin{cases} 0, x & 2^n > x \ge 0 \\ (2^{n+l}-1) + x & 0 \ge x > -2^n \pmod{2^{n+l}-1} \end{cases}$$

其中: x 为真值, n 为数值位数

$$x = +1101$$
 $x = -1101$ $[x]_{\overline{\mathbb{D}}} = 0,1101$ $[x]_{\overline{\mathbb{D}}} = (2^{4+1}-1)-1101$ $= 11111-1101$ 用 逗号 将符号位 $= 1,0010$ 数值位按位取反

反码表示法: 二进制小数

小数反码定义:

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

其中: x 为真值, n 为数值位数

$$x = -0.1010$$
 $[x]_{\overline{\wp}} = (2-2^{-4}) - 0.1010$ $= 1.1111 - 0.1010$ $= 1.0101$ 和数值部分隔开 $[x]_{\overline{\wp}} = 1.1010$ 数值位按位取反

例子:已知反码求真值,0的反码

• 已知 $[x]_{\overline{\mathbb{Q}}} = 1,1110$,求 x 解: 由定义得 $x = [x]_{\overline{\mathbb{Q}}} - (2^{4+1} - 1)$ = 1,1110 - 11111 = -0001

• 求 0 的反码

解: 设
$$x = +0.0000$$
, $[+0.0000]_{\overline{\mathbb{Q}}} = 0.0000$ $x = -0.0000$, $[-0.0000]_{\overline{\mathbb{Q}}} = 1.1111$ 同理,对于整数 $[+0]_{\overline{\mathbb{Q}}} = 0,0000$, $[-0]_{\overline{\mathbb{Q}}} = 1,1111$ $[+0]_{\overline{\mathbb{Q}}} \neq [-0]_{\overline{\mathbb{Q}}}$

三种机器数的小结

- •最高位为符号位, 书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- •对于正数,符号位为0,原码 = 补码 = 反码
- •对于负数,符号位为1,其数值部分
 - 原码除符号位外每位取反(反码) 末位加 1 -> 补码
- 当真值为 负 时,已知补码求原码的方法:
 - 补码除符号位外,每位取反,末位加 1
 - 补码除符号位外,末位减 1,再每位取反

例子: 机器数的真值

• 设机器数字长为8位(其中1位为符号位);对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数	原码对应	补码对应	反码对应
	对应的真值	的真值	的真值	的真值
00000000 00000001 00000010	$\begin{array}{c c} 0 \\ 1 \\ 2 \end{array}$	$^{+0}_{+1}_{+2}$	±0 +1 +2	+0 +1 +2
01111111	: 127	÷127	+127	÷127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
11111101	253 254	-125	-3	: -2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例: 已知 $[y]_{\lambda}$,求 $[-y]_{\lambda}$

例: 设
$$[y]_{\stackrel{}{\mathbb{A}}} = y_0, y_1, y_2, \dots, y_n,$$
 求 $[-y]_{\stackrel{}{\mathbb{A}}}$ 。

解:
$$\langle I \rangle$$
 $[y]_{i} = 0. y_1 y_2 ... y_n$

$$y = 0. y_1 y_2 \dots y_n$$

$$-y = -0. y_1 y_2 ... y_n$$

$$[-y]_{\nmid h} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n}$$

$$\langle II \rangle$$
 $[y]_{\nmid h} = 1. y_1 y_2 \cdots y_n$

$$[y]_{\mathbb{R}} = 1.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

$$y = -(0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n})$$

$$-y = 0.\overline{y_1}\overline{y_2}...\overline{y_n} + 2^{-n}$$

$$[-y]_{\nmid k} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

[y]_补连同符号位在内, 每位取反,末位加1, 即得[-y]_补

移码表示法

• 补码表示很难直接判断其真值大小

如 十进制	二进制	补码
x = +21	+10101	0,10101 (错
x = -21	-10101	0,10101
x = +31	+11111	0,11111
x = -31	-11111	0,11111 1,00001 大
以上 $x+2^5$	+10101 + 1	000000 = 110101 000000 = 001011
	-10101 + 1	00000 = 001011
	+11111 + 10	00000 = 1111111 00000 = 000001 正确
	-11111 + 10	00000 = 000001

移码表示法: 二进制整数

• 移码定义

$$[x]_{8} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

其中: x 为真值, n 为 整数的位数

小数的移码定义呢?

• 移码在数轴上的表示

x = 10100

• 例:

$$[x]_8 = 2^5 + 10100 = 1,10100$$

 $x = -10100$ 用 逗号 将符号位
和数值位隔开

$$[x]_{8} = 2^{5} - 10100 = 0.01100$$

移码和补码的比较

设
$$x = +1100100$$
 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$ $[x]_{1} = 0,1100100$ 设 $x = -1100100$ $[x]_{8} = 2^{7} + (-1100100) = 0,0011100$ $[x]_{1} = 2^{7+1} - 1100100 = 1,0011100$ 补码与移码只差一个符号位

真值、补码和移码的对照表

真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-100000 -11111 -11110 : -00001 ±00000 +00001 +00010 : +11110	100000 100001 100010 :: 111111 000000 000001 000010 ::	000000 000001 000010 : 011111 100000 100001 100010 : 111110	0 1 2 : 31 32 33 34 :
+ 11111	$011110 \\ 011111$	111111	62 63

移码的特点

续前表,
$$n=5$$

$$[+0]_{8} = 2^{5} + 0 = 1,00000$$

$$[-0]_{8} = 2^{5} - 0 = 1,00000$$

$$[+0]_{8} = [-0]_{8}$$

最小真值 $-2^5 = -100000$ 对应的移码为 $2^5-100000 = 000000$ 最小真值的移码为全 0

可用移码思想表示浮点数的阶码,便于判断浮点数阶码大小

第二章 计算机中数的表示

• 计算机中数的表示

- 无符号数和有符号数
- 定点表示和浮点表示
- IEEE754标准
- 算数移位与逻辑移位

IEEE 754浮点数: 单精度为例

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
S	S 8位指数(无符号数)							23位尾数(无符号数)							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
23位尾数(无符号数)															

指数	尾数	表示对象	换算方法
0	0	0	规定 (符号位不同, 存在+0.0和-0.0)
0	非0	正负 <mark>非</mark> 规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ^(0 - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 真值转二进制

- 例题
 - 将十进制 -0.75 转为单精度 IEEE 754格式二进制
- 解: 根据十进制小数转二进制小数算法: $-0.75_{10} = -0.11_2$ 规格化: $-0.11 = -1.1 * 2^{-1}$,能够规格化,说明是正负浮点数表示 $-1.1 * 2^{-1} = (-1)^S \times (1 + \mathbf{E}\mathbf{\underline{w}}_2) \times 2^{(\frac{1}{2}6 \frac{1}{2}7)}$ $= (-1)^1 \times (1 + 0.1_2) \times 2^{(\frac{1}{2}6 \frac{1}{2}7)}$

符号位: 1; 指数部分: 126; 尾数部分: 0.12

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IEEE754相关网址: https://www.h-schmidt.net/FloatConverter/IEEE754.html

IEEE 754浮点数: 真值转二进制

IEEE754相关网址: https://www.h-schmidt.net/FloatConverter/IEEE754.html

Tools & Thoughts								
IEEE-754 Floating Point Converter Translations: de								
This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used by all modern CPUs (IEEE 754 floating point).								
IEEE 754 Converter (JavaScript), V0.22								
	Sign	Exponent	Mantissa					
Value:		2 ⁻¹	1.5					
Encoded as:	1	126	4194304					
Binary:	✓							
	You e	ntered -0.75	+1					
	Value	actually stored in float: -0.75						
	Error	due to conversion: 0.00	-1					
	Binary	Representation 10111111	01000000000000000000000					
	Hexac	lecimal Representation 0xbf4000	00					

Update

There has been an update in the way the number is displayed. Previous version would give you the represented value as a possibly rounded decimal number and the same number with the increased pre float. Now the original number is shown (either as the number that was entered, or as a possibly rounded decimal string) as well as the actual full precision decimal number that the float value is represent a nice example to see this behaviour. The difference between both values is shown as well, so you can easier tell the difference between what you get in IFFF-754.

IEEE 754浮点数: 二进制转真值

- 例题
 - 将二进制IEEE754浮点数表示转换为十进制浮点数(空白为0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

• 解

符号位为1,指数字段为129,尾数字段为2⁻² = 0.25。是浮点数 $(-1)^S \times (1 + 尾数_2) \times 2^{(fff)} = (-1)^T \times (1 + 0.25) \times 2^{(129 - 127)} = -1 \times 1.25 * 2^2 = -5.0$

IEEE 754浮点数: 二进制转真值

Tools & Thoughts IEEE-754 Floating Point Converter Translations: de This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used by all modern CPUs (IEEE 754 floating point).					
		IEEE 754	4 Converter (JavaScript), V0.22		
	Sign	Exponent	Mantissa		
Value:	-1	2 ²	1.25		
Encoded as: Binary:	1	129	2097152		
	Decim	al representation -5.0	+1		
	Value	actually stored in float: -5			
	Error o	ue to conversion:			
	Binary	Representation 11000000	01010000000000000000000		
	Hexad	ecimal Representation 0xc0a000	000		

补码加减

第二章 计算机中数的表示

• 计算机中数的表示

- 无符号数和有符号数
- 定点表示和浮点表示
- IEEE754标准
- 算数移位与逻辑移位

移位运算

• 移位的意义

15.m = 1500.cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

• 在计算机中,移位与加减配合,能够实现乘除运算

算术移位规则

- 符号位不变
- 机器数的移位与 真值移位一致

真值	码制	添补代码
正数	原码、补码、反码	0
负数	原码	0
	补 码	左移添0
	个 143	右移添1
	反 码	1

$$y = 0. y_1 y_2 ... y_n 100...00$$
 $y = -0. y_1 y_2 ... y_n 100...00$
 $[y]_{\bar{\mathbb{P}}} = 1. y_1 y_2 ... y_n 100...00$
 $[y]_{\bar{\mathbb{P}}} = 1. \overline{y_1} \overline{y_2} ... \overline{y_n} 011...11$
 $[y]_{\bar{\mathbb{P}}} = 1. \overline{y_1} \overline{y_2} ... \overline{y_n} 011...11$ 的
 $\bar{\mathbb{P}}$
 $\bar{\mathbb{P}}$

•例17. 设机器数字长为 8 位(含1位符号位),写出 **A** = +26 时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = +26 = +11010$$
 则 $[A]_{\mathbb{F}} = [A]_{\mathbb{H}} = [A]_{\mathbb{F}} = 0,0011010$

移位操作	机器数 $[A]_{\scriptscriptstyle{ar{R}}}=[A]_{\scriptscriptstyle{ar{A}}}=[A]_{\scriptscriptstyle{ar{D}}}$	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

•例18. 设机器数字长为 8 位(含1位符号位),写出 **A** = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,011010 <mark>0</mark>	- 52
左移两位	1,1101000	- 104
右移一位	1,0001101	- 13
右移两位	1,0000110	-6

补码

移位操作	机器数	对应的真值
移位前	1,1100110	- 26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1, <mark>1</mark> 110011	-13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	- 26
左移一位	1,100101 <mark>1</mark>	- 52
左移两位	1,0010111	- 104
右移一位	1, <mark>1</mark> 110010	- 13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

算术移位和逻辑移位的区别

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

 $\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$

逻辑右移 高位添

高位添 0,低位移丢

例如

01010011

10110010

逻辑左移

10100110

逻辑右移

01011001

算术左移

00100110

算术右移

11011001 (补码)

高位1移丢

0

 $1\,0\,1\,0\,0\,1\,1\,0$