Data Analysis procedure

```
# Import important tools
     import numpy as np
     import matplotlib.pyplot as plt
     import matplotlib as mpl
     from scipy.io import loadmat, savemat
     from mpl_toolkits.mplot3d import Axes3D
     from scipy.optimize import curve_fit, minimize, least_squares
     from scipy.integrate import trapz
     from scipy.stats import norm, kurtosis
     from matplotlib.ticker import ScalarFormatter
     from matplotlib import rc
[]:
[2]: mpl.rcParams["xtick.direction"] = "in"
     mpl.rcParams["ytick.direction"] = "in"
     mpl.rcParams["lines.markeredgecolor"] = "k"
     mpl.rcParams["lines.markeredgewidth"] = 1
     mpl.rcParams["figure.dpi"] = 130
     rc("font", family="serif")
     rc("text", usetex=True)
     rc("xtick", labelsize="x-small")
     rc("ytick", labelsize="x-small")
     def cm2inch(value):
```

We load the data

return value / 2.54

[1]: %load_ext lab_black

```
[3]: raw_data = loadmat(
         "fit_result_dur_27052020_n_r_fix_0p0513_wav_532_r_1p516_n_1.597.mat"
) ["data"] [:, 0:3]
    r = 1.516 * 1e-6
    n_part = 1.597
    fps = 60
    time = np.arange(0, np.shape(raw_data)[0]) / fps
```

```
dataset = {}
dataset["r"] = r
dataset["n"] = n_part
dataset["fps"] = fps
dataset["time"] = time
```

1 Data exploration

```
[4]: # We put everything in microns
    raw_data_m = raw_data
    raw_data_m[:, 0:3] = raw_data_m[:, 0:3] * 0.0513
    plt.plot(time / fps, raw_data_m[:, 2])
    x = raw_data_m[:, 0]
    y = raw_data_m[:, 1]
    z = raw_data_m[:, 2]

plt.xlabel("$t$ (minutes)")
    plt.ylabel("$z$ ($\mathrm{\mu m}$)")
    plt.show()
```



```
[5]: plt.plot(time / fps, raw_data_m[:, 0], label="x")
   plt.plot(time / fps, raw_data_m[:, 1], label="y")
   plt.xlabel("$t$ (minutes)")
   plt.ylabel("$x$ ($\mathrm{\mu m}$)")
```

plt.show()

2 MSD

We compute the MSD using the formula:

$$\langle \Delta r_i(t)^2 \rangle_t = \langle [r_i(t + \Delta t) - r_i(t)]^2 \rangle_t . \tag{1}$$

```
[6]: def MSD(x, t):
    MSD = np.zeros(len(t))
    for n, i in enumerate(t):
        MSD[n] = np.nanmean((x[0:-i] - x[i:]) ** 2)
    return MSD
```

```
MSD_z = MSD(z * 1e-6, t)

plt.loglog(time[t], MSD_x, "o", label="$x$")
plt.plot(time[t], MSD_y, "o", label="$y$")
plt.plot(time[t], MSD_z, "o", label="$z$")
plt.ylabel("MSD ($\mathrm{m^2}$)")
plt.xlabel("$\Delta t$ (s)")

plt.legend()

dataset["MSD_x_tot"] = MSD_x
dataset["MSD_y_tot"] = MSD_y
dataset["MSD_z_tot"] = MSD_z
dataset["MSD_z_tot"] = time[t]
```


We fit the short time MSD with and average diffusion coefficient such as:

$$\langle \Delta r_i(t)^2 \rangle_t = 2 \langle D_i \rangle \Delta t \,, \tag{2}$$

```
[8]: Do = 4e-21 / (6 * np.pi * 0.001 * r)
f = lambda x, a, noiselevel: 2 * Do * a * x + (noiselevel * 1e-9) ** 2
popt_1, pcov_1 = curve_fit(f, time[t[0:5]], MSD_x[0:5], p0=[1, 30])
popt_2, pcov_1 = curve_fit(f, time[t[0:5]], MSD_y[0:5], p0=[1, 30])
popt_3, pcov_1 = curve_fit(f, time[t[0:5]], MSD_z[0:5], p0=[1, 30])
```

```
dataset["x_MSD_fit"] = time[t[0:5]]

dataset["MSD_x"] = MSD_x[0:5]
dataset["MSD_y"] = MSD_y[0:5]
dataset["MSD_z"] = MSD_z[0:5]
```

C:\Users\m.lavaud\.conda\envs\analyse\lib\sitepackages\scipy\optimize\minpack.py:828: OptimizeWarning: Covariance of the
parameters could not be estimated
 warnings.warn('Covariance of the parameters could not be estimated',

```
[9]: print(

"We measure a reduced mean diffusion coefficient of {:.3f} for the

→perpendicular motion and of {:.3f} for the parallel motion".format(

(popt_1[0] + popt_2[0]) / 2, popt_3[0]

)

)
```

We measure a reduced mean diffusion coefficient of 0.522 for the perpendicular motion and of 0.243 for the parallel motion

```
[10]: plt.loglog(time[t], MSD_x, "o", label="$x$")
    plt.plot(time[t], MSD_y, "o", label="$y$")
    plt.plot(time[t], MSD_z, "o", label="$z$")
    plt.ylabel("MSD ($\mathrm{m^2}\$)")
    plt.xlabel("$\Delta t$ (s)")
    tt = np.linspace(1e-2, 1e3)
    plt.plot(tt, f(tt, *popt_1), color="k")
    plt.plot(tt, f(tt, *popt_3), color="k")

plt.xlim((1e-2, 1e3))
    plt.legend()
```

[10]: <matplotlib.legend.Legend at 0x27a80c0b700>

3 Displacement distributions

3.1 Δx distributions

```
[11]: def pdf(data, bins=10, density=True):

"""

function to automatize the computations of experimental probability density

functions.

"""

pdf, bins_edge = np.histogram(data, bins=bins, density=density)

bins_center = (bins_edge[0:-1] + bins_edge[1:]) / 2

return pdf, bins_center
```

```
[12]: I = [2, 5, 10, 50, 100, 500, 1000, 2000]
for i in I:

   Dezs = x[0:-i] - x[i:]
   hist, bins_center = pdf(Dezs, bins=50)

   plt.plot(bins_center, hist, label=" t = {:.2f} s".format(time[i]))
```

```
plt.legend()
plt.ylabel("$P(\Delta x)$ [a.u.]")
plt.xlabel("$\Delta x$ [$\mathrm{\mu m}$]")
```

[12]: Text(0.5, 0, '\$\\Delta x\$ [\$\\mathrm{\\mu m}\$]')

If we now normalize by the standard deviation

```
[13]: def gauss_function(x, a, x0, sigma):
    return a * np.exp(-((x - x0) ** 2) / (2 * sigma ** 2))

[14]: for n, i in enumerate(I):

    Dezs = x[0:-i] - x[i:]
    Dezs = Dezs / np.sqrt(2 * Do * time[i])
    hist, bins_center = pdf(Dezs, bins=30)

# if i == I[0]:
    # popt, pcov = curve_fit(gauss_function, bins_center/np.max(bins_center), u)
    -hist, p0 = [1, np.mean(hist), np.std(hist)])
    # plt.plot(bins_center/np.max(bins_center), gauss_function(bins_center, u)
    -*popt), label = "fit at t = {:.2f} s".format(time[i]))
    # plt.plot(bins_center/np.max(bins_center), hist, "x", label = " t = {:.
    -2f} s".format(time[i]), color = "tab:blue")
    # continue
```

```
plt.plot(
    bins_center / np.max(bins_center),
    hist,
    ".",
    label=" $Delta$t = {:.2f} s".format(time[i]),
)

plt.ylabel("$P(\Delta x)$ [a.u.]")
plt.xlabel("normalized $\Delta x$ [a.u.]")
```

[14]: Text(0.5, 0, 'normalized \$\\Delta x\$ [a.u.]')


```
[15]: (3.5e-22) ** (1 / 3)
```

[15]: 7.047298732064899e-08

We can see a clear change but we would need to average on different trajectectories to have consitant results.

3.2 Δz distributions

```
[16]: I = [2, 5, 10, 50, 100, 500, 1000, 2000, 5000, 10000]

for i in I:

    Dezs = z[0:-i] - z[i:]
    hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=50)

    plt.plot(bins_center, hist, label=" t = {:.2f} s".format(time[i]))

plt.legend()
    plt.ylabel("$P(\Delta x)$ [a.u.]")
    plt.xlabel("$\Delta x$ [$\mathrm{\mu m}$]")
```

[16]: Text(0.5, 0, '\$\\Delta x\$ [\$\\mathrm{\\mu m}\$]')


```
[17]: for i in I:

    Dezs = z[0:-i] - z[i:]
    Dezs = Dezs / np.nanstd(Dezs)
    hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=30)

plt.plot(bins_center, hist, label=" t = {:.2f} s".format(time[i]))
```

```
plt.legend()
plt.ylabel("$P(\Delta x)$ [a.u.]")
plt.xlabel("$\Delta x$ [$\mathrm{\mu m}$]")
```

[17]: Text(0.5, 0, '\$\\Delta x\$ [\$\\mathrm{\\mu m}\$]')

3.2.1 Short time distributions

```
[18]: I = [1, 2, 5, 6, 9, 10]
for i in I:

    Dezs = z[0:-i] - z[i:]
    Dezs = Dezs / np.std(Dezs)
    hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=100)

if i == I[0]:
    popt, pcov = curve_fit(
        gauss_function, bins_center, hist, p0=[1, np.mean(hist), np.
    std(hist)]
    )
    plt.plot(bins_center, gauss_function(bins_center, *popt))
    plt.plot(
        bins_center,
        hist,
```

```
".",
    label=" t = {:.2f} s".format(time[i]),
    color="tab:blue",
)
    continue
    plt.semilogy(bins_center, hist, ".", label=" t = {:.2f} s".format(time[i]))

plt.legend()
plt.ylabel("$P(\Delta r_z)$ [a.u.]")
plt.xlabel("$\Delta r_z$ [$\mathrm{\mu m}$]")
axes = plt.gca()
axes.set_ylim([1e-5, 1])
```

[18]: (1e-05, 1)

The non-Gaussianity is due to the hindered mobility. Taking into account the hindered mobility the PDF of displacement writes:

$$P(\Delta r_i, \Delta t) = \int_0^\infty dD P(D_i) \frac{1}{\sqrt{4\pi D_i \Delta t}} \exp\left[\frac{-\Delta_i r_i^2}{4D_i \Delta t}\right]. \tag{3}$$

This non-Gaussianity can be fitted as done at the end of this appendix and shown in the manuscript.

3.3 Long time distributions

```
[19]: I = [2000, 5000, 10000]

color_long_time = ["tab:gray", "tab:olive", "tab:cyan"]
for n, i in enumerate(I):

    Dezs = z[0:-i] - z[i:]
    hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=10)

plt.semilogy(
    bins_center,
    hist,
    "o",
    label=" $t = {:.2f}$ s".format(time[i]),
    color=color_long_time[n],
)

plt.legend()

plt.ylabel("$P(\Delta r_z)$ [a.u.]")
plt.xlabel("$\Delta r_z$ [$\mathrm{\mu m}$]")
```

[19]: Text(0.5, 0, ' $\$ [\$\\mathrm{\\mu m}\$]')

Indeed at long time it becomes exponential and it's no longer dependent on Δt At very long time

intervals Δt each position measurement can be seen as random measurement on the Boltzmann distribution. Thus, one can write the probability distribution as a convolution of two PDF:

$$P(\Delta z) = \int_{-\infty}^{\infty} dz P_B(z) P_B(z + \Delta z), \tag{4}$$

with:

$$P_B(z) = Ae^{\left(Bexp\left(-\frac{z}{l_d}\right) - \frac{z}{l_b}\right)}$$
 (5)

Also, $P_B(z < 0)$ giving at long time step :

$$P(\Delta z) = A' exp \left[Bexp \left[-\frac{z}{l_d} \right] \left(1 + exp \left[-\frac{\Delta z}{l_d} \right] \right) - \frac{2z + \Delta z}{l_b} \right]$$
 (6)

3.4 Analysis of pdf of the Δz at large time step

To have a better measurement we average the PDF of displacement Δr_z over different time-step Δt . But, first of all, we need to get rid of the drifts at long time. We do that by taking a moving minimum.

3.5 Dedrifting the z trajectory

```
[20]: def movmin(datas, k):
    result = np.empty_like(datas)
    start_pt = 0
    end_pt = int(np.ceil(k / 2))

for i in range(len(datas)):
    if i < int(np.ceil(k / 2)):
        start_pt = 0
    if i > len(datas) - int(np.ceil(k / 2)):
        end_pt = len(datas)
    result[i] = np.min(datas[start_pt:end_pt])
    start_pt += 1
    end_pt += 1
```

```
[21]: z_dedrift = z - movmin(z, 10000)
```

```
[22]: # Fig for comparing the two

plt.plot(time, z - np.min(z), label="raw")
 plt.plot(time, z_dedrift, label="dedrifted")
 plt.legend()

plt.xlabel("t [s]")
 plt.ylabel("z [$\mathrm{\mu m}$]")
```

```
[22]: Text(0, 0.5, 'z [$\\mathrm{\\mu m}$]')
```


3.5.1 Measuring pdf at large Δt with the dedrifted trajectory and analysing it

```
[23]: t_start = 25
    t_end = 30
    I = np.arange(t_start * fps, t_end * fps)
    bins = 50

hists = np.zeros((bins, len(I)))
bins_centers = np.zeros((bins, len(I)))

for n, i in enumerate(I):

    Dezs = z_dedrift[0:-i] - z_dedrift[i:]
    hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=bins)

hists[:, n] = hist
    bins_centers[:, n] = bins_center

pdf_long_t = np.mean(hists, axis=1)
bins_centers_long_t = np.mean(bins_centers, axis=1)
err_long_t = np.std(hists, axis=1)
err_bins_centers = np.std(bins_centers, axis=1)
```

```
[24]: plt.plot(bins_centers_long_t, pdf_long_t)
plt.fill_between(
    bins_centers_long_t, pdf_long_t - err_long_t, pdf_long_t + err_long_t,
    alpha=0.3
)
plt.ylabel("$P(\Delta x)$ ($m^{-1}$)")
plt.xlabel("$\Delta x$ ($\mathrm{\mu m}$)")
```

[24]: Text(0.5, 0, '\$\\Delta x\$ (\$\\mathrm{\\mu m}\$)')

We are now going to code the function

$$P(\Delta z) = \int_{-\infty}^{\infty} A' exp \left[Bexp \left[-\frac{z}{l_d} \right] \left(1 + exp \left[-\frac{\Delta z}{l_d} \right] \right) - \frac{2z + \Delta z}{l_b} \right]$$
 (7)

Noting that coding the form:

$$P(\Delta z) = \int_{-\infty}^{\infty} dz P_B(z) P_B(z + \Delta z), \tag{8}$$

Will be easier and P_B will be reused later on. Also since $P_B(z < 0) = 0$:

$$P(\Delta z) = \int_0^\infty dz P_B(z) P_B(z + \Delta z),\tag{9}$$

with:

$$P_B(z) = Ae^{\left(Bexp\left(-\frac{z}{l_d}\right) - \frac{z}{l_b}\right)} \tag{10}$$

```
[25]: def P_b(z, A, B, ld, lb):
          P_b = A * np.exp(-B * np.exp(-z / (ld)) - z / lb)
          P_b[z < 0] = 0
          return P_b
      def dPdeltaz_long(z, DZ, A, B, ld, lb):
          return P_b(z, A, B, 1d, 1b) * P_b(z + DZ, A, B, 1d, 1b)
      def P_computation(DZ, A, B, ld, lb):
          z = np.linspace(0, 20e-6, 1000)
          dP = dPdeltaz_long(z, DZ, A, B, ld, lb)
          P = trapz(dP, z)
          return P
      def Pdeltaz_long(DZ, B, ld, lb):
          if type(DZ) == float:
              return P_computation(i, 1, B, ld, lb)
          pdf = np.array([P_computation(i, 1, B, ld * 1e-9, lb * 1e-9) for i in DZ])
          # normalisation of the PDF to not use A
          A = trapz(pdf, DZ * 1e6)
          return np.array([P_computation(i, 1, B, ld * 1e-9, lb * 1e-9) for i in DZ]) /
       \hookrightarrow A
[26]: A = 0.14e8
      B = 4
      ld = 70
      1b = 500
      p1 = [B, ld, lb]
      # Normalisation fo the pdf
      pdf_long_t = pdf_long_t / trapz(pdf_long_t, bins_centers_long_t)
      popt, pcov = curve_fit(Pdeltaz_long, bins_centers_long_t * 1e-6, pdf_long_t,__
      dataset["pdf_longtime"] = pdf_long_t
      dataset["x_pdf_longtime"] = bins_centers_long_t * 1e-6
```

<ipython-input-25-d08630fe76fc>:2: RuntimeWarning: overflow encountered in exp $P_b = A * np.exp(-B * np.exp(-z / (ld)) - z / lb)$

```
[27]: A = 0.14e8
B = 400
ld = 70
lb = 500
p0 = [B, ld, lb]

plt.semilogy(bins_centers_long_t, pdf_long_t, label="$P_z(\Delta r_z)$")
plt.fill_between(
    bins_centers_long_t, pdf_long_t - err_long_t, pdf_long_t + err_long_t,
    alpha=0.3
)

zz = np.linspace(-4, 4, 1000)
plt.plot(zz, Pdeltaz_long(zz * 1e-6, *popt), label="fit", color="k")
plt.xlim(-4, 4)
plt.legend()
plt.ylabel("$P(\Delta z)$")
plt.xlabel("$\Delta z$ [$\mathrm{\mu m}$]")
```

[27]: Text(0.5, 0, '\$\\Delta z\$ [\$\\mathrm{\\mu m}\$]')


```
[28]: print("We measure, B = {:.2f}, ld = {:.2f} nm, lb = {:.2f} nm".format(*popt))
B, ld, lb = popt
```

We measure, B = 20.71, 1d = 71.84 nm, 1b = 504.78 nm

3.6 Analyse of the MSD z plateau

[29]: Text(0.5, 0, '\$\\Delta\$t (s)')


```
[30]: plateau = np.mean(MSD_z_dedrift[time[t] > 1e2])
```

```
[31]: plt.loglog(time[t], MSD_z_dedrift, "o", label="$z$", color="tab:green")
    plt.plot(tt, [plateau] * len(tt), "k")
    plt.plot(tt, f(tt, *popt_3), color="k")
    plt.xlim((1e-2, 1e3))
    plt.ylim((None, 1e-12))
    plt.legend()
    plt.ylabel("MSD (m$^2$)")
    plt.xlabel("$\Delta$t (s)")
```

[31]: Text(0.5, 0, '\$\\Delta\$t (s)')


```
[32]: np.mean(MSD_z_dedrift[time[t] > 1e2])

[32]: 5.348018604759325e-13
```

```
[33]: # dataset["plateau_MSD"] = popt[0]
dataset["plateau_MSD"] = np.mean(MSD_z_dedrift[time[t] > 1e2])
print("Measured plateau : {:e}".format(popt[0]))
```

Measured plateau : 2.070536e+01

The MSD plateau is theoritically given by:

$$Plateau = \int_{-\infty}^{+\infty} \Delta z^2 P_{\Delta z, t \to +\infty}(\Delta z, B, l_d, l_b) d\Delta z$$
 (11)

```
[34]: x_Th_Plateau = bins_centers_long_t * 1e-6

def Theoritical_Plateau(B, ld, lb):
    x = dataset["x_pdf_longtime"]
    P = Pdeltaz_long(x, B, ld, lb) / trapz(Pdeltaz_long(x, B, ld, lb), x)

res = trapz((x ** 2) * P, x)
    return res
```

```
[35]: def minimize_plateau(x):
    B = x[0]
    ld = x[1]
    lb = x[2]
    return (
        np.log(Theoritical_Plateau(B, ld, lb)) - np.log(dataset["plateau_MSD"])
    ) ** 2 / np.log(Theoritical_Plateau(B, ld, lb)) ** 2
```

```
[36]: res_plateau = minimize(minimize_plateau, x0=[B, ld, lb])
print("We measure, B = {:.2f}, ld = {:.2f} nm, lb = {:.2f} nm".

→format(*res_plateau.x))
```

We measure, B = 20.71, ld = 71.84 nm, lb = 504.78 nm

3.7 PDF of heights

```
[37]: def logarithmic_hist(data, begin, stop, num=50, base=2):
          if begin == 0:
              beg = stop / num
              bins = np.logspace(
                  np.log(beg) / np.log(base), np.log(stop) / np.log(base), num - 1,
       ⇒base=base
              widths = bins[1:] - bins[:-1]
              bins = np.cumsum(widths[::-1])
              bins = np.concatenate(([0], bins))
              widths = bins[1:] - bins[:-1]
          else:
              bins = np.logspace(
                  np.log(begin) / np.log(base), np.log(stop) / np.log(base), num,
       →base=base
              widths = bins[1:] - bins[:-1]
         hist, bins = np.histogram(data, bins=bins, density=True)
```

```
# normalize by bin width
bins_center = (bins[1:] + bins[:-1]) / 2
return bins_center, widths, hist
```

```
[38]: pdf_z, bins_center_pdf_z = pdf(z_dedrift[z_dedrift < 1.5], bins=150)
    plt.plot(bins_center_pdf_z, pdf_z, "o")
    plt.xlabel("z ($\mathrm{\mu m}$)")
    plt.ylabel("$P_z(z)$")</pre>
```

[38]: $Text(0, 0.5, '$P_z(z)$')$

The idea now is to find where the substrate is, to do this we will use a first method which consist to adjust the PDF with an offset to make it fit with the measured mean Diffusion coefficient. With

$$\langle D_i \rangle = \int_{-\infty}^{\infty} dz D_i(z) P(z)$$
 (12)

For z we are going to use the Padé approx:

$$D_z(z) \approx D_0 \left(\frac{6z^2 + 2rz}{6z^2 + 9rz + 2r^2} \right)$$
 (13)

For x we are going to use the Faxen formula:

$$D_x(z) \approx D_0 \left[1 - \frac{9}{16} \left(\frac{r}{z} \right) + \frac{1}{8} \left(\frac{r}{z} \right)^3 - \frac{45}{236} \left(\frac{r}{z} \right)^4 - \frac{1}{16} \left(\frac{r}{z} \right)^5 \right]$$
 (14)

To do this we will fit the PDF with an offset, adjust it with the mean value of z. Let's first do it over z

```
[39]: def P_b_off(z, z_off, B, ld, lb):
          z_{off} = z_{off} * 1e-6
          lb = lb * 1e-9
          ld = ld * 1e-9
          z = z - z_off
          P_b = np.exp(-B * np.exp(-z / (ld)) - z / lb)
          P_b[z < 0] = 0
          # Normalization of P_b
          A = trapz(P_b, z * 1e6)
          P_b = P_b / A
          return P_b
[40]: # Normalization of the PDF
      pdf_z = pdf_z / trapz(pdf_z, bins_center_pdf_z)
      p2 = [0, B, 1d, 1b]
      popt, pcov = curve_fit(P_b_off, bins_center_pdf_z * 1e-6, pdf_z, p0=p2)
     <ipython-input-39-f5e0b340e678>:6: RuntimeWarning: overflow encountered in exp
       P_b = np.exp(-B * np.exp(-z / (ld)) - z / lb)
     <ipython-input-39-f5e0b340e678>:12: RuntimeWarning: invalid value encountered in
     true_divide
       P_b = P_b / A
[41]: plt.semilogy(bins_center_pdf_z, pdf_z, "o")
      plt.plot(bins_center_pdf_z, P_b_off(bins_center_pdf_z * 1e-6, *popt), "k")
      plt.xlabel("z $\mathrm{(\mu m)}$")
      plt.ylabel("P(z)")
      plt.grid()
```


We measure a mean diffusion coefficient of 0.522D0 for the perpendicular motion and of 0.243D0 for the parallel motion

```
[43]: Do = 4e-21 / (6 * np.pi * 0.001 * r)

def Dz_z(z):
    result = (6 * z * z + 2 * r * z) / (6 * z * z + 9 * r * z + 2 * r * r)
    return result

def Dx_z(z):
```

```
result = (

1

- 9 / 16 * (r / (z + r))

+ 1 / 8 * (r / (z + r)) ** 3

- 45 / 256 * (r / (z + r)) ** 4

- 1 / 16 * (r / (z + r)) ** 5
)
return result
```

```
[45]: offset = res
```

```
offset = np.mean(res["final_simplex"][0])
print(
    "From the measurement of the mean diffusion coefficient, we measure an
    →offset of {:.3f} um".format(
          offset
    )
)
```

From the measurement of the mean diffusion coefficient, we measure an offset of $0.005 \ \mathrm{um}$

```
[47]: def logarithmic_hist(data, begin, stop, num=50, base=2):
    """
    Function to make logarithmic histograms to have more points
    near the surface and where the particle spend the most of its time.
    """
    if begin == 0:
        beg = stop / num
        bins = np.logspace(
```

```
np.log(beg) / np.log(base), np.log(stop) / np.log(base), num - 1,
       →base=base
              widths = bins[1:] - bins[:-1]
              bins = np.cumsum(widths[::-1])
              bins = np.concatenate(([0], bins))
              widths = bins[1:] - bins[:-1]
          else:
              bins = np.logspace(
                  np.log(begin) / np.log(base), np.log(stop) / np.log(base), num, u
       →base=base
              widths = bins[1:] - bins[:-1]
          hist, a = np.histogram(data, bins=bins, density=True)
          # normalize by bin width
          bins_center = (bins[1:] + bins[:-1]) / 2
          return bins_center, widths, hist
      bins_center_pdf_z, widths, pdf_z = logarithmic_hist(z_dedrift, 0.01, 2, num=50,__
       →base=12)
      p2 = [0, B, 1d, 1b]
      popt_pdf, pcov_pdf = curve_fit(P_b_off, bins_center_pdf_z * 1e-6, pdf_z, p0=p2)
      dataset["pdf_z"] = pdf_z
      dataset["x_pdf_z"] = bins_center_pdf_z * 1e-6
      plt.semilogy(bins_center_pdf_z, pdf_z, "o")
      plt.plot(bins_center_pdf_z, P_b_off(bins_center_pdf_z * 1e-6, *popt_pdf),__
       plt.xlabel("z ($\mathrm{\mu m}$)")
      plt.ylabel("P(z) ($m^{-1}$)")
     <ipython-input-39-f5e0b340e678>:6: RuntimeWarning: overflow encountered in exp
       P_b = np.exp(-B * np.exp(-z / (ld)) - z / lb)
     <ipython-input-39-f5e0b340e678>:12: RuntimeWarning: invalid value encountered in
     true_divide
       P_b = P_b / A
[47]: Text(0, 0.5, 'P(z) (\$m^{-1}\$)')
```



```
[48]: offset_pdf, B_pdf, ld_offset, lb_offset = popt_pdf
```

We write the diffusion function.

```
[49]: def Dz_z(z, off):
    off = off * 1e-6
    z = z - off
    result = (6 * z * z + 2 * r * z) / (6 * z * z + 9 * r * z + 2 * r * r)
    return result

def Dx_z_off(z, offset):
    offset = offset * 1e-6
    z = z + offset
    result = (
        1
        - 9 / 16 * (r / (z + r))
        + 1 / 8 * (r / (z + r)) ** 3
        - 45 / 256 * (r / (z + r)) ** 4
        - 1 / 16 * (r / (z + r)) ** 5
    )
    return result
```

3.8 Measuring the diffusion coefficient using the Frishman and Ronceray's method

```
[50]: from scipy.io import loadmat

dataset["D_0"] = 4e-21 / (6 * np.pi * 0.001 * dataset["r"])

D = loadmat("diffusionAnalysis.mat")["diffusion"]

dataset["z_D"] = D[:, 0]

dataset["z_D_x"] = (D[:, 1] + D[:, 2]) / 2

dataset["z_D_z"] = D[:, 3]

[51]: plt.plot(dataset["z_D"], dataset["z_D_x"] / dataset["D_0"], "o")

plt.loglog(dataset["z_D"], dataset["z_D_z"] / dataset["D_0"], "o")

zz = np.linspace(1e-8, 1e-5)

plt.plot(zz, Dz_z(zz, 0), "k")
```

[51]: [<matplotlib.lines.Line2D at 0x27a85cc7850>]

plt.plot(zz, Dx_z_off(zz, 0), "k")


```
[52]: def c_P_D(B, ld, lb, offset=None):
    if offset == None:
        offset = 0

z = np.linspace(1e-9, 15e-6, 1000)
```

```
P_D = Dz_z(z, offset) * Do * P_b_off(z, offset, B, ld, lb)
    return Dz_z(z, offset) * Do, P_D / np.trapz(P_D, z)
def _P_Dz_short_time(Dz, Dt, B, ld, lb, offset=None):
    if offset == None:
        offset = 0
   D_z, P_D = c_PD(B, ld, lb, offset)
    P = np.trapz(
        P_D / np.sqrt(4 * np.pi * D_z * Dt) * np.exp(-(Dz ** 2) / (4 * D_z *_U))
 \rightarrowDt)), D_z
    return P
def P_Dz_short_time(Dz, Dt, B, ld, lb, offset=None):
    if offset == None:
        offset = 0
    P = [_P_Dz_short_time(i, Dt, B, ld, lb, offset=offset) for i in Dz]
    P = np.array(P)
    P = P / np.trapz(P, Dz)
    return P
```

4 Fit everything in the same time!

Finaly we can fit everything in the same time to recap we have :

- MSD x and MSD y => < D >
- MSD $z \Rightarrow \langle D \rangle$
- mean < D > with the pdf
- Long time pdf $\Delta z => l_d, l_b, B$
- Pdf $z \Rightarrow offset, l_d, l_b, B$
- D parallel, perp => offset

The minimizer χ^2 we are going to optimize can be written as :

$$\chi^2 = \sum_{n=1}^N \chi_n^2 \tag{15}$$

$$\chi_n^2 = \sum_{i=1}^{A} (n)_i = 1 \frac{1}{\sigma_{ni}} (y_{ni} - y_n(x_{ni}, a))^2$$
(16)

with σ_{ni} the uncertainty (can be set to 1), A the number of point in the dataset for each function, y_n , nth equation, a the fit parameters

We have nonlinear functions so we can use the Marquardt to optimize or Nelder-Mead methods to optimize the minimizer.

```
[53]: def minimizer_diffusion_coeff(mean_D_para, mean_D_perp, z_off, B, ld, lb):
                              # minimization of the mean diffusion coefficient measurement with the PDF_{f \sqcup}
                     \rightarrow and MSD
                             a = trapz(
                                         Dx_z_off(bins_center_pdf_z * 1e-6, z_off)
                                         * P_b_off(bins_center_pdf_z * 1e-6, z_off, B, ld, lb),
                                         bins_center_pdf_z,
                             b = trapz(
                                         Dz_z(bins_center_pdf_z * 1e-6, z_off)
                                         * P_b_off(bins_center_pdf_z * 1e-6, z_off, B, ld, lb),
                                         bins_center_pdf_z,
                             )
                             at = mean_Dx
                             bt = mean_Dz
                             return (a - at) ** 2 / at ** 2 + (b - bt) ** 2 / bt ** 2
                 dataset["z"] = z_dedrift
                 dataset["x"] = x
                 dataset["y"] = y
                 def minimizer_Dz_small_t(B, ld, lb):
                             xi = 0
                             for n, i in enumerate([1, 2, 3]):
                                         Dezs = (dataset["z"][0:-i] - dataset["z"][i:]) * 1e-6
                                         Dezs = Dezs # - np.mean(Dezs)
                                         hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=30)
                                         hist = hist / np.trapz(hist, bins_center)
                                         Dz_th = bins_center
                                         PPP = P_Dz_short_time(Dz_th, time[i], B, ld, lb)
                                         \# xi = xi + np.nanmean((((np.abs(hist) - (PPP)))) ** 2) / ((np.abs(hist) - (PPP)))) ** 2) / ((np.abs(hist) - (PPP))) ** 2) / ((np.abs(hist) - (PPP)))) ** 2) / ((np.abs(hist) - (PPP))) ** 2) / ((np.abs(hist) - (PPP)))) ** 2) / ((np.abs(hist) - (PPP))) ** 2) / ((np.abs(hist) - (PPP)))) ** 2) / ((np.abs(hist) - (PPP))) ** 2) / ((np.abs(hist) - (PPP)))) ** 2) / ((np.abs(hist) - (PPP))) ** 2) / ((np.abs(hist) - (PPP)))) ** 2) / ((np.abs(hist) - (PPP))) ** 2) / ((np.abs(hist) - (PP
                     \rightarrow abs(hist)**2)))
                                         xi = xi + np.nanmean(
                                                     ((hist[hist > 0] - PPP[hist > 0]) ** 2) / hist[hist > 0] ** 2
                                         )
                             return xi
```

```
[54]: dataset["D_para"] = mean_Dx
      dataset["D_perp"] = mean_Dz
      def minimizer(x, *args):
          data = dataset
          1d = x[0]
          lb = x[1]
          B = x[2]
          offset_dif = x[3]
          chi_mean_D_pdf = minimizer_diffusion_coeff(
              dataset["D_para"], dataset["D_perp"], 0, B, ld, lb
          )
          chi_MSD_plateau = minimize_plateau([B, ld, lb])
          E_longtime_pdf = (Pdeltaz_long(data["x_pdf_longtime"], B, ld, lb)) - (
              data["pdf_longtime"]
          )
          chi_longtime_pdf = np.mean(
              (E_longtime_pdf[E_longtime_pdf > -np.inf] ** 2)
              / (((Pdeltaz_long(data["x_pdf_longtime"], B, ld, lb))) ** 2)
          )
          E_chi_pdf_z = P_b_off(data["x_pdf_z"], 0, B, ld, lb) - data["pdf_z"]
          chi_pdf_z = np.nanmean(
              (E_{chi_pdf_z}[E_{chi_pdf_z} > -np.inf] ** 2)
              / ((P_b_off(data["x_pdf_z"], 0, B, ld, lb)) ** 2)
          )
          E_D_z = (Dz_z(data["z_D"], offset_dif)) - (data["z_D_z"] / Do)
          chi_D_z = np.mean(
              (E_D_z[E_D_z > -np.inf] ** 2) / ((Dz_z(data["z_D"], offset_dif)) ** 2)
          )
          E_D_x = (Dx_z_off(data["z_D"], offset_dif)) - (data["z_D_x"] / Do)
          chi_D_x = np.mean(
              (E_D_x[E_D_x > -np.inf] ** 2) / ((Dx_z_off(data["z_D"], offset_dif)) **_U
       →2)
          )
          chi_Dz_small_t = minimizer_Dz_small_t(B, ld, lb)
          summ = (
              chi_mean_D_pdf
              + chi_MSD_plateau
              + chi_longtime_pdf
```

```
+ chi_pdf_z
              + chi_D_z
              + chi_D_x
              + chi_Dz_small_t
          return summ
[55]: B = 5
      ld = ld_offset
      x0 = [1d, 550, B, 0, offset_pdf]
[56]: from scipy.optimize import leastsq
      options = {
          "maxc1or": 30,
          "ftol": 2.2e-10,
          "gtol": 1e-5,
          "eps": 1e-08,
          "maxfun": 15000,
          "maxiter": 15000,
          "maxls": 20,
          "finite_diff_rel_step": None,
      }
      res = minimize(
          minimizer,
          x0,
          method="BFGS",
          tol=1e-1,
[57]: res.x
      results = {
          "ld": res.x[0],
          "lb": res.x[1],
          "B": res.x[2],
          "offset_diffusion": res.x[3],
      }
      results
[57]: {'ld': 25.53322987706852,
       'lb': 549.9956782843908,
       'B': 4.856896668800334,
       'offset_diffusion': 0.0019089236000464675}
```

This final result has been used to plot theories along the manuscript.