Definition: Let (X, d_X) and (Y, d_Y) be netric spaces, let $E \subset X$, and let $f: E \to Y$. If $p \in X$ is a limit point of E, then we say that

$$\lim_{x\to p} f(x) = g \quad \text{or} \quad f(x) \to g \text{ as } x\to p \qquad (g \in Y)$$

iff

∀ε>0] \$>0 (xeE and O≥dx(x,p)≥8) ⇒ dy(f(x),g)<ε.

Note the significance of the condition

it means that we only consider $x \neq p$. If p belongs to E, the value of f(p) is unimportant.

Theorem: Let (X, d_X) , (Y, d_Y) be metric spaces, $E \subset X$, $f: E \rightarrow Y$, and $p \in X$ be a limit point of E. Then

iff

(**) \{pn}CE ((pn ≠p \ne Z+) and pn →p) => f(pn) →g.

Proof: Suppose first that

Let {pn} <= E satisfy pn ≠p ∀n ∈ Z+ and pn→p. We wish to prove
that flpn)→q. Let €>0 be given. Since (x) holds, there exists
\$>0 such that

(xeE and 0< $d_{\chi}(x,p) < \mathcal{E}$) $\Longrightarrow d_{\gamma}(f(x),g) < \varepsilon$.

Since $p_n \rightarrow p$ and $p_n \neq p \forall n$, there exists $N \in \mathbb{Z}^+$ such that $n \geq N \Rightarrow 0 \leq d_{\mathbf{X}}(p_n, p) \leq S$.

But then

n = N => dy(f(p,),q)< E,

and hence $f(p_n) \rightarrow g$.

Conversely, suppose (*) fails. Then there exists E>0 such that $\forall S>0 \exists x \in E \cap (B_S(p)\setminus \{p\}), dy(f(x),g) \geq E$.

In particular,

 $\forall n \in \mathbb{Z}^+ \exists \rho_n \in E \cap (B_{\gamma}(\rho) \setminus \{\rho\}), d_{\gamma}(f(\mu), q) \geq \varepsilon.$

But then

[pn] CE, pn ≠ p ∀n ∈ Z+, pn-p

and yet

f(pn) - 8.

Thus (xx) fails.

Corollary: Let (x,dx), (Y,dy) he matric spaces, Ecx, palinit point of E, and let f: E-y. If lim f(x) exists, it is unique.

(This is a cospllary of the previous theorem because it follows from the corresponding fact about limits.)

Note that if $f: X \rightarrow Y$, $g: X \rightarrow Y$, and Y is an abstract metric space, then it makes no sense to refer to $f \pm g$, fg, or f/g. But if $f: X \rightarrow \mathbb{R}$, $g: X \rightarrow \mathbb{R}$, then we define

f+g:X=R by $(f+g)(x) = f(x)+g(x) \forall x \in X$,

f-g:X=R by $(f-g)(x) = f(x)-g(x) \forall x \in X$,

fg:X=R by $(fg)(x) = f(x)g(x) \forall x \in X$,

fg:X=R by $(f/g)(x) = \frac{f(x)}{g(x)} \forall x \in X$ and, for ceR,

cf: X > R by (cf)/x) = cf/x) \forall x \in X.

Theorem Let (X,d) be a metric space, let $E\subset X$, let $f:X\to \mathbb{R}$, $g:X\to \mathbb{R}$, and let p be a limit point of E such that

exist. Then

$$\lim_{x\to p} (f+g)/x = \lim_{x\to p} f(x) + \lim_{x\to p} g(x),$$

$$\lim_{x\to p} (f-g)(x) = \lim_{x\to p} f(x) - \lim_{x\to p} g(x) J$$

$$\lim_{x\to p} (fg)(x) = \left(\lim_{x\to p} f(x)\right) \left(\lim_{x\to p} g(x)\right)$$

$$\lim_{x\to p} (f/g)(x) = \lim_{x\to p} f(x)$$

$$\lim_{x\to p} g(x) = \lim_{x\to p} g(x) = \lim_{x\to p} g(x)$$

$$\lim_{x\to p} g(x)$$

and, for all CEIR,

Proof: Follows immediately from the previous theorem and the corresponding limit laws.

Definition: Suppose (X, d_X) and (Y, d_Y) are metric spaces, $E \subset X$, $p \in E$, and $f : E \rightarrow Y$. We say that f is <u>continuous</u> at p iff

(x)
$$\forall \epsilon > 0 \exists S > 0 \ (x \in E \text{ and } d_x(x,p) < S) \Rightarrow d_y(f(x),f(p)) < \epsilon.$$

We say that f is continuous iff f is continuous at every p in its domain E.

Proof: This is obvious upon comparing (x) with the definition of lim fw=flp).

Theorem: Let $(X,d_X),(Y,d_Y),(2,d_Z)$ be metric spaces, ECX,FCY, and suppose $f:E\rightarrow Y$, $g:F\rightarrow Z$, where $R(f)\subset F$. Define $h:E\rightarrow Z$ by $h=g\circ f$ (i.e. h(x)=g(fx)) $\forall x\in E$). If f is continuous at $p\in E$ and g is continuous at f(p), then h is continuous at p.

Proof: Let E70. Since g is continuous at f(p), there exists \$>0 such that

(yeF and dyly, fip) 25) => dz (gly), g(fip)) 28.

Since f is continuous at p, there exists 870 such that

(xEE and of (x,p)=8) => dy (f(x),f(p))=8.

But then

 $(x \in E \text{ and } d_{x}(x_{p}) < 8) \Rightarrow d_{y}(f(x),f(p)) < 5$ $\Rightarrow d_{z}(g(f(x)),g(f(p))) < \epsilon$ $\Rightarrow d_{z}(h(x),h(p)) < \epsilon.$

Thus h is continuous at p.//

Theorem: Let (X,d) be a metric space, let $E\subset X$, and let $f:E\to \mathbb{R}$, $g:E\to \mathbb{R}$ be continuous at $p\in E$. Then $f\pm g$ and fg are continuous at p and, if $g(p) \neq 0$, then f/g is continuous at p. Also, for all $C\in \mathbb{R}$, of is continuous at p.

Proof: By the earlier theorem (f is continuous at p iff lim f(x)=f(p)), and by the earlier theorem about limits,

 $\lim_{x\to y} |f_{+g}|(x) = \lim_{x\to y} |f_{+g}|(x) + g_{+g}|(x) + g_{+g}|(x) = \lim_{x\to y} |f_{+g}|(x) = \lim_{x\to y} |f_{+g}|(x) + g_{+g}|(x) = \lim_{x\to y} |f_{+g}|(x) = \lim_{x\to y}$

Thus fity is antinuous at p. The proofs for fg, flg, of are similar.