Tutorial 6: Bases and coordinates

- Q1. Consider the following ordered basis for \mathbb{R}^2 : $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2)$ where $\mathbf{b}_1 = (1, 2)$ and $\mathbf{b}_2 = (-1, 1)$. On the xy-plane, draw axes parallel to the basis vectors \mathbf{b}_1 and \mathbf{b}_2 , marking multiples of \mathbf{b}_1 and \mathbf{b}_2 on these axes. Call the axes a and b respectively. Write the vector (-2, 5) in terms of the ordered basis \mathcal{B} . What is the coordinate vector $[(-2, 5)]_{\mathcal{B}}$? Mark (-2, 5) on your graph, clearly showing the \mathcal{B} -coordinates.
- **Q2**. Consider the ordered basis for \mathbb{R}^3 , $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$, where $\mathbf{b}_1 = (1, 0, 1)$, $\mathbf{b}_2 = (2, 1, 3)$, and $\mathbf{b}_3 = (1, 2, 1)$.
 - (a) Find the coordinate vector $[\mathbf{a}]_{\mathcal{B}}$ for $\mathbf{a} = (3, 5, 4)$.
 - (b) Find the vector $\mathbf{v} = (x, y, z) \in \mathbb{R}^3$ with coordinate vector $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$.
- Q3. In each part, find the coordinate vector of \mathbf{a} with respect to the given ordered basis \mathcal{B} .
 - (a) $\mathbf{a} = 2 x + x^3$, $\mathcal{B} = (1, x, x^2, x^3)$ in \mathcal{P}_4 ;

(b)
$$\mathbf{a} = \begin{bmatrix} 3 & -2 \\ 0 & 4 \end{bmatrix}$$
, $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -2 \\ 2 & 4 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$ in $M_{2,2}$.

Q4. For each of the following subspaces (i) find a spanning set, and (ii) determine if the spanning set is a basis for the subspace. If not, use the column method to find a basis for the subspace. What is the dimension of each subspace?

(a)
$$A = \{(a+2b-c+2e, b+c+3d+2e, c+2d+e, a-b+3c+5d+3e) \mid a,b,c,d,e \in \mathbb{R}\} \subset \mathbb{R}^4$$

(b)
$$B = \{a + (b - 4a)x^2 + (a - 2b)x^3 \mid a, b \in \mathbb{R}\} \subset \mathcal{P}_3$$

- $\mathbf{Q5}$. Are the following functions linear transformations?
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T(x,y) = (x+y)^2$
 - (b) $T: \mathbb{F}_2^2 \to \mathbb{F}_2$ given by $T(x, y) = (x + y)^2$