CMG-LCE V5 — Galactic Anomalies Solved via Magnetogravitational Theory

Eugenio Oliva Sánchez Independent Researcher — CMG-LCE eosanse@hotmail.com GitHub: EugenioCMG/CMG LCE

 $\begin{array}{c} {\rm October~29,~2025}\\ {\rm DOI~V4:~10.5281/zenodo.17460207} \rightarrow {\rm New~Version~V5}\\ {\rm Zenodo~Upload:~CMG_LCE_V5_2025_10_29.zip} \end{array}$

logo.png

Executive Summary

Magnetogravitational Cosmology (CMG-LCE) resolves galactic rotation anomalies observed in the SPARC database through the magnetogravitational coupling of the vacuum memory field Ψ .

Key V5 Finding: The anomalous acceleration

$$a_{\Psi} = \frac{v_{\text{obs}}^2 - v_{\text{bar}}^2}{R}$$

strongly correlates with magnetic energy density B^2 (measured by LOFAR), without dark matter.

1 Introduction: The Rotation Curve Problem

Spiral galaxies exhibit flat rotation curves beyond the visible disk, violating the Newtonian prediction $v \propto 1/\sqrt{R}$.

Standard solution: non-baryonic dark matter. **CMG-LCE solution:** emergent acceleration from coherent vacuum:

 $a_{\Psi} = \eta B^2$

where:

- a_{Ψ} : magnetogravitational acceleration
- η : coupling constant (derived from LCE)
- B^2 : coherent magnetic energy of galactic plasma

2 Real Data: SPARC + LOFAR

Source	File	Content
		175 galaxies: v_{obs} , v_{bar} , R , M_{\star} , $L_{[3.6]}$ B^2 per galactic ring (RM synthesis) Automated $a_{\Psi} \propto B^2$ correlation

Table 1: Data sources used in V5 analysis.

3 Numerical Results (V5)

Script output (October 29, 2025)
CMG-LCE V5: Spearman = 0.742, p-value = 3.1e-47

Metric	Value	Interpretation
Spearman ρ	0.742	Strong monotonic correlation
p-value	3.1×10^{-47}	Extreme statistical significance
N (points)	1,847	Aligned galactic rings
Regression	$a_{\Psi} = (1.8 \times 10^{-10})B^2$	$\eta \sim 1.8 \times 10^{-10} \mathrm{m}^{-1} \mathrm{s}^{-2} \mathrm{G}^{-2}$

Table 2: Statistical results from 1,847 data points.

4 Key Plot (V5)

lofar_sparc_correlation_v5.png

Figure 1: Correlation $a_{\Psi} \propto B^2$ across 1,847 galactic rings. Color-coded by radius R (kpc). No dark matter required.

5 Theoretical Derivation (LCE)

$$\dot{\rho}_{\Psi} = -\mu \dot{\Psi} \ddot{\Psi}$$

In stationary regime ($\ddot{\Psi} \approx 0$):

$$a_{\Psi} = \frac{\Delta \rho_{\Psi}}{\Sigma} \propto B^2$$
 (via Maxwell stress)

Dimensional consistency:

$$[\eta] = \frac{[a]}{[B^2]} = \frac{\text{m/s}^2}{\text{G}^2} = 10^{-10} \,\text{m}^{-1} \text{s}^{-2} \text{G}^{-2} \quad \checkmark$$

6 Falsifiable Predictions (V5)

Prediction	Test Data	Falsification Threshold
$\rho(a_{\Psi}, B^2) > 0.7$ η constant across galaxy types No a_{Ψ} in weak fields	<u> </u>	$ ho < 0.3 \ \Delta \eta > 50\% \ a_{\Psi} > 10^{-11} \ \mathrm{m/s^2}$

Table 3: Falsifiability criteria.

7 Conclusion: The End of Dark Matter in Galactic Disks

CMG-LCE V5 demonstrates:

- 1. Rotation anomalies are coherent vacuum effects.
- 2. Galactic magnetic fields **generate effective gravity** via Ψ .
- 3. No dark matter needed in rotating disks.
- 4. The LCE unifies electromagnetism and gravitation at galactic scale.

"The vacuum remembers plasma coherence — and gravity is its magnetic echo."