Week-7: Code-along

Hariz Emran

2023-10-02

All about ggplot2 package

```
# Enter code here
\#install.packages("tidyverse")
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
                            1.1.3 v readr
                                                                                             2.1.4
## v forcats 1.0.0
                                                             v stringr
                                                                                            1.5.0
## v ggplot2 3.4.3
                                                       v tibble
                                                                                            3.2.1
## v lubridate 1.9.3
                                                           v tidyr
                                                                                            1.3.0
## v purrr
                                     1.0.2
## -- Conflicts -----
                                                                                                               ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                                                    masks stats::lag()
## x dplyr::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
#install.packages("palmerpenguins")
library(palmerpenguins)
glimpse(penguins)
## Rows: 344
## Columns: 8
## $ species
                                                         <fct> Adelie, 
## $ island
                                                         <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
## $ bill_length_mm
                                                         <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
                                                         <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
## $ bill_depth_mm
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
                                                         <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
## $ body_mass_g
## $ sex
                                                         <fct> male, female, female, NA, female, male, female, male~
## $ year
                                                          <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
```

Palmer Penguins: Plot recreation

```
# Enter code here
ggplot(data = penguins,
```

Bill depth and length

Dimensions for Adelie, Chinstrap, and Gentoo Penguins

Source: Palmer Station LTER / palmerpenguins package

Palmer Penguins: Plot recreation (Shape 1)

```
labs(title = "Bill depth and length",
    subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
    x = "Bill depth (mm)",
    y = "Bill length (mm)",
    colour = "Species",
    caption = "Source: Palmer Station LTER / palmerpenguins package") +
scale_colour_viridis_d()
```

Bill depth and length

Dimensions for Adelie, Chinstrap, and Gentoo Penguins

Palmer Penguins: Plot recreation (Shape 2)

```
colour = "Species",
     caption = "Source: Palmer Station LTER / palmerpenguins package") +
scale colour viridis d()
```

Bill depth and length

Dimensions for Adelie, Chinstrap, and Gentoo Penguins

Source: Palmer Station LTER / palmerpenguins package

Palmer Penguins: Plot recreation (Size)

```
# Enter code here
ggplot(data = penguins,
       mapping = aes(x = bill_depth_mm,
                     y = bill_length_mm,
                     colour = species,
                     shape = species,
                     size = body_mass_g)) +
  geom_point() +
  labs(title = "Bill depth and length",
       subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
       x = "Bill depth (mm)",
       y = "Bill length (mm)",
       colour = "Species",
       caption = "Source: Palmer Station LTER / palmerpenguins package") +
  scale colour viridis d()
```


Palmer Penguins: Plot recreation (Alpha)

```
# Enter code here
ggplot(data = penguins,
       mapping = aes(x = bill_depth_mm,
                     y = bill_length_mm,
                     colour = species,
                     shape = species,
                     size = body_mass_g,
                     alpha = flipper_length_mm)) +
  geom_point() +
  labs(title = "Bill depth and length",
       subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
       x = "Bill depth (mm)",
       y = "Bill length (mm)",
       colour = "Species",
       caption = "Source: Palmer Station LTER / palmerpenguins package") +
  scale_colour_viridis_d()
```


Mapping vs Setting (Mapping)

Mapping vs Setting (Setting)

Faceting (Facet 1)

Faceting (Facet 2)

Faceting (Facet 3)

Faceting (Facet 4)

Faceting (Facet 5)

Faceting (Facet 6)

Faceting (Facet and Color)

Faceting (Facet and Color, no Legend)

Visualising numeric variables

Peeking at Data

\$ state

```
# Enter code here
#install.packages("openintro")
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
glimpse(loans_full_schema)
## Rows: 10,000
## Columns: 55
## $ emp_title
                                      <chr> "global config engineer ", "warehouse~
## $ emp_length
                                      <dbl> 3, 10, 3, 1, 10, NA, 10, 10, 10, 3, 1~
                                      <fct> NJ, HI, WI, PA, CA, KY, MI, AZ, NV, I~
```

```
<fct> MORTGAGE, RENT, RENT, RENT, RENT, OWN~
## $ homeownership
## $ annual income
                                      <dbl> 90000, 40000, 40000, 30000, 35000, 34~
## $ verified income
                                      <fct> Verified, Not Verified, Source Verifi~
## $ debt_to_income
                                      <dbl> 18.01, 5.04, 21.15, 10.16, 57.96, 6.4~
                                      <dbl> NA, NA, NA, NA, 57000, NA, 155000, NA~
## $ annual_income_joint
## $ verification income joint
                                      <fct> , , , Verified, , Not Verified, , ,~
## $ debt to income joint
                                      <dbl> NA, NA, NA, NA, 37.66, NA, 13.12, NA,~
                                      <int> 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0~
## $ deling 2y
## $ months_since_last_deling
                                      <int> 38, NA, 28, NA, NA, 3, NA, 19, 18, NA~
## $ earliest_credit_line
                                      <dbl> 2001, 1996, 2006, 2007, 2008, 1990, 2~
## $ inquiries_last_12m
                                      <int> 6, 1, 4, 0, 7, 6, 1, 1, 3, 0, 4, 4, 8~
                                      <int> 28, 30, 31, 4, 22, 32, 12, 30, 35, 9,~
## $ total_credit_lines
## $ open_credit_lines
                                      <int> 10, 14, 10, 4, 16, 12, 10, 15, 21, 6,~
## $ total_credit_limit
                                      <int> 70795, 28800, 24193, 25400, 69839, 42~
## $ total_credit_utilized
                                      <int> 38767, 4321, 16000, 4997, 52722, 3898~
## $ num_collections_last_12m
                                      <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ num_historical_failed_to_pay
                                      <int> 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0~
## $ months since 90d late
                                      <int> 38, NA, 28, NA, NA, 60, NA, 71, 18, N~
## $ current_accounts_deling
                                      <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ total_collection_amount_ever
                                      <int> 1250, 0, 432, 0, 0, 0, 0, 0, 0, 0, ~
## $ current_installment_accounts
                                      <int> 2, 0, 1, 1, 1, 0, 2, 2, 6, 1, 2, 1, 2~
## $ accounts_opened_24m
                                      <int> 5, 11, 13, 1, 6, 2, 1, 4, 10, 5, 6, 7~
## $ months_since_last_credit_inquiry <int> 5, 8, 7, 15, 4, 5, 9, 7, 4, 17, 3, 4,~
                                      <int> 10, 14, 10, 4, 16, 12, 10, 15, 21, 6,~
## $ num satisfactory accounts
## $ num_accounts_120d_past_due
                                      <int> 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, ~
## $ num_accounts_30d_past_due
                                      <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ num_active_debit_accounts
                                      <int> 2, 3, 3, 2, 10, 1, 3, 5, 11, 3, 2, 2,~
## $ total_debit_limit
                                      <int> 11100, 16500, 4300, 19400, 32700, 272~
## $ num_total_cc_accounts
                                      <int> 14, 24, 14, 3, 20, 27, 8, 16, 19, 7, ~
                                      <int> 8, 14, 8, 3, 15, 12, 7, 12, 14, 5, 8,~
## $ num_open_cc_accounts
                                      <int> 6, 4, 6, 2, 13, 5, 6, 10, 14, 3, 5, 3~
## $ num_cc_carrying_balance
## $ num_mort_accounts
                                      <int> 1, 0, 0, 0, 0, 3, 2, 7, 2, 0, 2, 3, 3~
## $ account_never_delinq_percent
                                      <dbl> 92.9, 100.0, 93.5, 100.0, 100.0, 78.1~
## $ tax_liens
                                      <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0~
                                      <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0~
## $ public_record_bankrupt
## $ loan_purpose
                                      <fct> moving, debt_consolidation, other, de~
## $ application type
                                      <fct> individual, individual, individual, i~
## $ loan_amount
                                      <int> 28000, 5000, 2000, 21600, 23000, 5000~
                                      <dbl> 60, 36, 36, 36, 36, 36, 60, 60, 36, 3~
## $ term
                                      <dbl> 14.07, 12.61, 17.09, 6.72, 14.07, 6.7~
## $ interest_rate
## $ installment
                                      <dbl> 652.53, 167.54, 71.40, 664.19, 786.87~
                                      <fct> C, C, D, A, C, A, C, B, C, A, C, B, C~
## $ grade
                                      <fct> C3, C1, D1, A3, C3, A3, C2, B5, C2, A~
## $ sub grade
                                      <fct> Mar-2018, Feb-2018, Feb-2018, Jan-201~
## $ issue_month
                                      <fct> Current, Current, Current, C~
## $ loan_status
                                      <fct> whole, whole, fractional, whole, whol~
## $ initial_listing_status
                                      <fct> Cash, Cash, Cash, Cash, Cash, Cash, C~
## $ disbursement_method
## $ balance
                                      <dbl> 27015.86, 4651.37, 1824.63, 18853.26,~
## $ paid_total
                                      <dbl> 1999.330, 499.120, 281.800, 3312.890,~
                                      <dbl> 984.14, 348.63, 175.37, 2746.74, 1569~
## $ paid_principal
## $ paid_interest
                                      <dbl> 1015.19, 150.49, 106.43, 566.15, 754.~
## $ paid_late_fees
                                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
```

Selected Variables

```
# Enter code here
loans <- loans_full_schema %>%
 select(loan_amount, interest_rate, term, grade, state, annual_income, homeownership, debt_to_income)
glimpse(loans)
## Rows: 10,000
## Columns: 8
## $ loan_amount
                <int> 28000, 5000, 2000, 21600, 23000, 5000, 24000, 20000, 20~
## $ interest_rate <dbl> 14.07, 12.61, 17.09, 6.72, 14.07, 6.72, 13.59, 11.99, 1~
                  ## $ term
## $ grade
                  <fct> C, C, D, A, C, A, C, B, C, A, C, B, C, B, D, D, D, F, E~
## $ state
                  <fct> NJ, HI, WI, PA, CA, KY, MI, AZ, NV, IL, IL, FL, SC, CO,~
## $ annual income <dbl> 90000, 40000, 40000, 30000, 35000, 34000, 35000, 110000~
## $ homeownership <fct> MORTGAGE, RENT, RENT, RENT, RENT, OWN, MORTGAGE, MORTGA~
## $ debt_to_income <dbl> 18.01, 5.04, 21.15, 10.16, 57.96, 6.46, 23.66, 16.19, 3~
```

Histogram

```
# Enter code here
ggplot(loans) + aes(x = loan_amount) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Histogram & binwidth = 1000

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 1000)
```


Histogram & binwidth = 5000

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 5000)
```


Histogram & binwidth = 20000

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 20000)
```


Customizing Histograms

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
   geom_histogram(binwidth = 5000) +
   labs(x = "Loan amount ($)", y = "Frequency", title = "Amounts of Lending Club loans")
```


Fill with a Categorical Variable

```
# Enter code here
ggplot(loans, aes(x = loan_amount, fill = homeownership)) +
  geom_histogram(binwidth = 5000, alpha = 0.5) +
  labs(x = "Loan amount ($)", y = "Frequency", title = "Amounts of Lending Club loans")
```


Facet with a Categorical Variable

```
# Enter code here
ggplot(loans, aes(x = loan_amount, fill = homeownership)) +
  geom_histogram(binwidth = 5000) +
  labs(x = "Loan amount ($)", y = "Frequency", title = "Amounts of Lending Club loans") +
  facet_wrap(~ homeownership, nrow = 3)
```

Amounts of Lending Club loans

Density Plot

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_density()
```


Density Plot and Adjusting Bandwidth (Bandwith 1)

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 0.5)
```


Density Plot and Adjusting Bandwidth (Bandwith 2)

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 1)
```


Density Plot and Adjusting Bandwidth (Bandwith 3)

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 2)
```


Customizing Density Plots

```
# Enter code here
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 2) +
  labs(x = "Loan amount ($)", y = "Density", title = "Amounts of Lending Club loans")
```

Amounts of Lending Club loans

Adding a Categorical Variable

```
# Enter code here
ggplot(loans, aes(x = loan_amount, fill = homeownership)) +
  geom_density(adjust = 2, alpha = 0.5) +
  labs(x = "Loan amount ($)", y = "Density", title = "Amounts of Lending Club loans", fill = "Homeowner")
```

Amounts of Lending Club loans

Box Plot

```
# Enter code here
ggplot(loans, aes(x = interest_rate)) +
  geom_boxplot()
```


Box Plot and Outliers

```
# Enter code here
ggplot(loans, aes(x = annual_income)) +
  geom_boxplot()
```


Customizing Box Plots

```
# Enter code here
ggplot(loans, aes(x = interest_rate)) +
  geom_boxplot() +
  labs(x = "Interest rate (%)", y = NULL, title = "Interest rates of Lending Club loans") +
  theme(axis.ticks.y = element_blank(), axis.text.y = element_blank())
```

Interest rates of Lending Club loans

Adding a Categoric Variable

Interest rates of Lending Club loans by grade of loan

${\bf Scatterplot}$

Hex Plot 1

```
# Enter code here
ggplot(loans, aes(x = debt_to_income, y = interest_rate)) +
  geom_hex()
```

Warning: Removed 24 rows containing non-finite values ('stat_binhex()').

Hex Plot 2

```
# Enter code here
ggplot(loans %>% filter(debt_to_income < 100), aes(x = debt_to_income, y = interest_rate)) +
   geom_hex()</pre>
```


Visualising categoric variables

```
# Enter code here
```

Bar Plot

```
# Enter code here
ggplot(loans, aes(x = homeownership)) +
  geom_bar()
```


Segmented Bar Plot 1

```
# Enter code here
ggplot(loans, aes(x = homeownership, fill = grade)) +
  geom_bar()
```


Segmented Bar Plot 2

```
# Enter code here
ggplot(loans, aes(x = homeownership, fill = grade)) +
  geom_bar(position = "fill")
```


Customizing Bar Plots

```
# Enter code here
ggplot(loans, aes(y = homeownership, fill = grade)) +
   geom_bar(position = "fill") +
   labs(x = "Proportion", y = "Homeownership", fill = "Grade", title = "Grades of Lending Club loans", s
```

Grades of Lending Club loans and homeownership of lendee

Visualising variables of varied types

Violin Plots

```
# Enter code here
ggplot(loans, aes(x = homeownership, y = loan_amount)) +
  geom_violin()
```


Ridge Plots

```
# Enter code here
library(ggridges)
ggplot(loans, aes(x = loan_amount, y = grade, fill = grade, color = grade)) +
  geom_density_ridges(alpha = 0.5)
```

Picking joint bandwidth of 2360

