

Spec No. :DS70-2009-0014 Effective Date: 05/19/2017

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

1. DESCRIPTION

1.1 Features

- Current transfer ratio (CTR) : MIN. 50% at I_F = 5mA, V_{CE} = 5V
- High input-output isolation voltage. (Viso=3,750Vrms)
- Employs double transfer mold technology
- Safety approval:

UL 1577

VDE DIN EN60747-5-5 (VDE 0884-5),

CSA CA5A

FIMKO

- RoHS Compliance: All materials be used in device are followed EU RoHS directive (No.2002/95/EC).
- ESD pass HBM 8000V/MM2000V
- MSL class1
- Halogen Free

1.2 Applications

- Hybrid substrates that require high density mounting.
- Programmable controllers
- System appliances, measuring instruments

2. PACKAGE DIMENSIONS

2.1 LTV-217

1.27±0.25 0.75 Anode Cathode 5.30±0.3 2.6±0.3 7.00+0.2

2.2 LTV-227

2.3 LTV-247

1.27±0.25

1.27±0.25

Notes:

- 1. 3-digit date code.
- 2. Rank shall be or shall not be marked
- 3. VDE mark only appears on devices or ordered "V" option.
- "●" indicates Halogen free option.

^{*}All dimensions in millimeters.

3. TAPING DIMENSIONS

3.1 LTV-217

3.2 LTV-217-TP1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	12±0.3 (0.47)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	5.5±0.1 (0.217)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	8±0.1 (0.315)

3.3 LTV-227

Description	Symbol	Dimension in mm (inch)
Tape wide	W	12±0.3 (0.47)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	5.5±0.1 (0.217)
Distance of compartment	P_2	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	8±0.1 (0.315)

3.4 LTV-247

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.47)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.217)
Distance of compartment	P_2	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.315)

3.5 Quantities per Reel

Package Type	LTV-217	LTV-227	LTV-247
Quantities (pcs)	3000	2000	2000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25℃

	Parameter	Complete	Rating	Unit	
	Parameter	Symbol	217 227	247	Unit
	Forward Current	l _F	50		mA
	Reverse Voltage	V_R	6		V
Input	Power Dissipation	Р	70		mW
	Pulse Forward Current	I _{FSM}	1		Α
	Junction Temperature	TJ	125		°C
	Collector - Emitter Voltage	V_{CEO}	80		V
	Emitter - Collector Voltage	V _{ECO}	7		V
Output	Collector Current	Ic	50		mA
	Collector Power Dissipation	Pc	150	100	mW
	Junction Temperature	TJ	125		°C
	Total Power Dissipation	P _{tot}	200	170	mW
1.	Isolation Voltage	V _{iso}	3750		V _{rms}
	Operating Temperature	T _{opr}	-55 ~ +1°	0	°C
	Storage Temperature	T_{stg}	-55 ~ +1	50	°C
2.	Soldering Temperature	T _{sol}	260		°C

1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 Seconds

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25℃

Parameter		Symb	Min.	Тур.	Max.	Unit	Test Condition	
	Forward Voltage	V _F	_	1.2	1.4	V	I _F =20mA	
Input	Reverse Current	I _R	_	_	10	μΑ	V _R =4V	
	Terminal Capacitance	Ct	_	30	250	pF	V=0, f=1KHz	
	Collector Dark Current	I _{CEO}	_	_	100	nA	V _{CE} =20V, I _F =0	
Output	Collector-Emitter Breakdown Voltage	BV _{CEO}	80	_	_	V	I _C =0.1mA, I _F =0	
	Emitter-Collector Breakdown Voltage	BV _{ECO}	7	_	_	V	I _E =10μΑ, I _F =0	
	Collector Current	Ic	2.5	_	30	mA	I _F =5mA	
	Current Transfer Ratio	CTR	50	_	600	%	V _{CE} =5V	
	Collector-Emitter Saturation Voltage	V _{CE(sat)}	_	_	0.4	V	I _F =8mA I _C =2.4mA	
TRANSFER	Isolation Resistance	R _{iso}	5×10 ¹⁰	1×10 ¹¹	_	Ω	DC500V, 40 ~ 60% R.H.	
CHARACTERISTICS	Floating Capacitance	Cf	_	0.6	1	pF	V=0, f=1MHz	
	Response Time (Rise)	tr	_	2	18	μs	V _{CE} =10V,	
	Response Time (Fall)	tf	_	3	18	μs	I _C =2mA	
	Turn-On Time	T _{ON}	_	3	_	μs	$R_L=100\Omega$,	
	Turn-Off Time	T _{OFF}	_	3	_	μs	f=100Hz	
	Turn-On Time	t _{ON}	_	2	_	μs	\	
	Storage Time	Ts	_	25	_	μs	V _{CE} =5V, I _C =16mA	
	Turn-Off Time	t _{OFF}	_	40	_	μs	R _L =1.9KΩ	

1. CTR =
$$\frac{I_C}{I_F} \times 100\%$$

5. RANK TABLE OF CURRENT TRANSFER RATIO CTR

MODEL NO.	CTR Rank	Min	Max	Condition
	А	80	160	
	A1	100	160	
LTV-217	В	130	260	
LTV-227	С	200	400	
	D	300	600	I _F =5mA, V _{CE} =5V, Ta=25°C
	A or B or C or D or No mark	50	600	1F-0111A, VCE-0V, 1a-20 0
	В	130	260	
	С	200	400	
	B or C or No mark	50	600	
LTV-247	No mark	100	600	

6. CHARACTERISTICS CURVES (TYPICAL PERFORMANCE)

Figure 1. Collector Power Dissipation vs. Ambient Temperature

Figure 3. Forward Current vs. Forward Voltage

Figure 5. Pulse Forward Current vs. Duty Cycle Ratio

Figure 2. Forward Current vs. Ambient Temperature

Figure 4. Forward Voltage Temperature Coefficient vs.

Figure 6. Pulse Forward Current vs. Pulse Forward

Figure 7. Collector-Emitter Saturation Voltage vs. Forward

Figure 8. Collector Current vs. Collector-Emitter

Figure 9. Collector Current vs. Small Collector-Emitter

Figure 10. Normalized CTR vs. Forward Current

Figure 11. Collector Dark Current vs. Ambient Temperature

Figure 12. Current Transfer Ratio vs. Forward

Current

10/15

Figure 13. Normalized CTR vs. Ambient Temperature

Figure 15. Collector Current vs. Ambient Temperature

Figure 17. Switching Time vs. Ambient Temperature

Figure 14. Collector-Emitter Saturation Voltage vs.

Ambient Temperature

Figure 16. Switching Time vs. Load Resistance

Figure 18. Frequency Response

11/15

7. SWITCHING TIME TEST CIRCUIT

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T _L)	217°C
- Time (t _L)	60 ~100 sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

8.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

9. RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Unit: mm

9.1 LTV-217

9.2 LTV-227

9.3 LTV-247

10. NAMING RULE

IT\/-2X7-(1)-(2) - G
	., —
A A	1
DEVICE PART NUMBER ———	
(1) TAPING TYPE (TP1 or no suffix)	
Please refer to orientation of taping on Page P3-P5	
(2) CTR RANK	
Please refer to the CTR table on Page P8	
(3) Halogen free option ————————————————————————————————————	

Example: LTV-217-TP-A-G

11. NOTES

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.