Kronecker Delta Function δ_{ij} and Levi-Civita (Epsilon) Symbol ε_{ijk}

1. Definitions

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$\varepsilon_{ijk} = \begin{cases} +1 & \text{if } \{ijk\} = 123, 312, \text{ or } 231 \\ -1 & \text{if } \{ijk\} = 213, 321, \text{ or } 132 \\ 0 & \text{all other cases (i.e., any two equal)} \end{cases}$$

- So, for example, $\varepsilon_{112} = \varepsilon_{313} = \varepsilon_{222} = 0$.
- The +1 (or *even*) permutations are related by rotating the numbers around; think of starting with 123 and moving (in your mind) the 3 to the front of the line, to get 312. Do it again with the 2 and you get 231. The -1 (or *odd*) permutations starting with 213 are related to each other the same way; they are related to 123 by interchanging just two of the numbers (e.g., switch the 1 and 3 to get 321).

2. Applying δ_{ij} and ε_{ijk} to Vectors in Cartesian coordinates

- Instead of using x, y, and z to label the components of a vector, we use 1, 2, 3.
- Then the letters i, j, k, \ldots can be used as summation variables, running from 1 to 3. (We could use any other letters, like a, b, \ldots ; it is merely a convention.)
- Don't confuse the use of the dummy summation variables i, j, k, each of which can be 1, 2, or 3, with the unit vectors $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$. These are two independent notations!
- The dot product of two vectors $\mathbf{A} \cdot \mathbf{B}$ in this notation is

$$\mathbf{A} \cdot \mathbf{B} = A_1 B_1 + A_2 B_2 + A_3 B_3 = \sum_{i=1}^{3} A_i B_i = \sum_{i=1}^{3} \sum_{j=1}^{3} A_{ij} \delta_{ij} .$$

Note that there are nine terms in the final sums, but only three of them are non-zero.

• The i^{th} component of the cross produce of two vectors $\mathbf{A} \times \mathbf{B}$ becomes

$$(\mathbf{A} \times \mathbf{B})_i = \sum_{j=1}^3 \sum_{k=1}^3 \varepsilon_{ijk} A_j B_k$$
.

Again, there are nine terms in the sum, but this time only two of them are non-zero. Note also that this expression summarizes three equations, namely for i = 1, 2, 3.

3. Einstein Summation Convention

• We might notice that the summations in the expressions for $\mathbf{A} \cdot \mathbf{B}$ and $\mathbf{A} \times \mathbf{B}$ are redundant, because they only appear when an index like i or j appears twice on one side of an equation. So we can omit them. Thus

$$\sum_{i=1}^{3} \sum_{j=1}^{3} A_{ij} \delta_{ij} \longrightarrow A_{ij} \delta_{ij} \quad \text{and} \quad \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{ijk} A_{j} B_{k} \longrightarrow \varepsilon_{ijk} A_{j} B_{k} .$$

• Rules: If an index appears (exactly) twice, then it is summed over and appears only on one side of an equation. A single index (called a *free index*) appears once on each side of the equation. So

Valid:
$$A_i = A_j \delta_{ij}$$
, $B_k = \varepsilon_{ikl} A_i C_l$ Invalid: $A_i = B_i C_i$, $A_i = \varepsilon_{ijk} B_i C_j$.

• When you have a Kronecker delta δ_{ij} and one of the indices is repeated (say i), then you simplify it by replacing the other i index on that side of the equation by j and removing the δ_{ij} . For example:

$$A_j \delta_{ij} = A_i$$
, $B_{ij} C_{jk} \delta_{ik} = B_{kj} C_{jk} = B_{ij} C_{ji}$

Note that in the second case we had two choices of how to simplify the equation; use either one!

• The triple or box product $A \cdot (B \times C)$ can be written

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \varepsilon_{ijk} A_i B_j C_k = \varepsilon_{kij} A_i B_j C_k = \varepsilon_{kij} C_k A_i B_j = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) ,$$

where we've used the properties of ε_{ijk} to prove a relation among triple products with the vectors in a different order.

• A useful identity:

$$\varepsilon_{ijk}\varepsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}$$
.

4. Example: Proving a Vector Identity

- We'll write the i^{th} Cartesian component of the gradient operator ∇ as ∂_i .
- Let's simplify $\nabla \times (\nabla \times \mathbf{A}(\mathbf{x}))$. We start by considering the i^{th} component and then we use our expression for the cross product:

$$(\mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{A}))_i = \varepsilon_{ijk} \partial_j (\mathbf{\nabla} \times \mathbf{A})_k$$
.

Next we replace the remaining cross product, making sure to introduce new dummy summation variables l and m:

$$(\nabla \times (\nabla \times \mathbf{A}))_i = \varepsilon_{ijk} \partial_j \varepsilon_{klm} \partial_l A_m = \varepsilon_{kij} \varepsilon_{klm} \partial_j \partial_l A_m$$
.

(The partial derivatives act only on the components of \mathbf{A} , so we can pull out the ε 's.) We rotated the indices in one of the ε 's in the last step so that we can now directly apply our useful identity (and simplify):

$$(\mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{A}))_i = (\delta_{il}\delta_{jm} - \delta_{im}\delta_{lj})\partial_j\partial_l A_m = \partial_m\partial_i A_m - \partial_l\partial_l A_i = \partial_i(\partial_m A_m) - (\partial_l\partial_l A)_i$$
 or, finally,

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$
.