

Département : Informatique

Spécialité: Informatique, **Niveau :** Licence 2

Matière: Théorie des Langages

Série de TD N°: 01 - Corrigé

Langages Formels

Exercice 1.1 Déterminer les facteurs, les préfixes et les suffixes du mot u = abac.

Corrigé.

Facteurs : ε, a, b, c, ab, ba, ac, aba, bac, abac

Préfixes : ε , a, ab, aba, abac Suffixes : ε , c, ac, bac, abac

Exercice 1.2 Soit $u = a_1 ... a_n$ un mot de longeur n, avec $a_i \neq a_j$ pour tous $i \neq j$. Combien u comporte-t-il de préfixes ? de suffixes ? de facteurs ?

Corrigé.

Les préfixes de u distincts de ε sont entièrement déterminés par leur dernière lettre, qui peut valoir $u[1], u[2], \ldots, u[n]$. Il y en a donc n, à quoi se rajoute le mot vide. Soit n+1 préfixes en tout pour un mot u de longueur n.

On montre de manière similaire que le nombre de suffixes de u est n+1.

Pour déterminer le nombre de facteurs de u, il suffit de constater que les facteurs non-vides de u sont exactement les préfixes de u[i..n] quand i parcourt $\{1,...,n\}$. D'où découle que le nombre de ces facteurs (non vides) vaut :

$$\sum_{i=1}^{n} \left(\text{nombre de préfixes non - vides de } u[i..n] \right) = n + (n-1) + \dots + 1 = \frac{n(n+1)}{2}$$

À quoi se rajoute le mot vide, ce qui donne finalement $1 + \frac{n(n+1)}{2}$ facteurs pour u.

Exercice 1.3

- 1. Compter les occurrences des lettres a et b dans les mots suivants : a^3cbbca , aabg jdd, titi, babc.
- 2. Donner l'ensemble des couples (u, v) tels que uv = abaac.
- 3. Calculer *LM* pour les ensembles suivants :
 - $L = \{a, ab, bb\} \text{ et } M = \{\varepsilon, b, a^2\}$;
 - $L = \varnothing et M = \{a, ba, bb\}$;
 - $L = \{\varepsilon\} \text{ et } M = \{a,ba,bb\}$;
 - $L = \{aa, ab, ba\} \text{ et } M = \{a, b\}^*$.

Corrigé		
1.		
и	$ u _a$	$ u _b$
a^3cbbca	4	2
aabgjdd	2	1
titi	0	0
babc	1	2
		ı
2.		
u	v	

abaac

baac

aac

ac

c

 ε

- 3. $\{a, ab, bb\} \cdot \{\varepsilon, b, a^2\} = \{a, ab, bb, ab^2, b^3, a^3, aba^2, bba^2\};$
 - \mathcal{O} $\{a,ba,bb\} = \mathcal{O}$;
 - $\{\varepsilon\}$ · $\{a,ba,bb\}$ = $\{a,ba,bb\}$;
 - {aa,ab,ba} · {a,b}* est l'ensemble de tous les mots sur l'alphabet {a,b} qui débutent par le préfixe aa, ab, ou ba.

Exercice 1.4 On considère l'alphabet $\Sigma = \{a, b\}$, et les langages L_1 et L_2 suivants :

$$L_1 = \{a^n b^n \mid n \in \mathbb{N}\}\$$

$$L_2 = \{b^n a^n \mid n \in \mathbb{N}\}\$$

Calculez: $L_1 \cup L_2, L_1 \cap L_2, L_1 L_2, L_2 L_1, L_1^2$

Corrigé

 \mathcal{E}

a ab

aba

abaa

abaac

- $L_1 \cup L_2 = \{a^n b^n \mid n \in N\} \cup \{b^n a^n \mid n \in N\} = \{a^n b^n \text{ ou } b^n a^n \mid n \in N\}$
- $L_1 \cap L_2 = \{a^n b^n \mid n \in N\} \cap \{b^n a^n \mid n \in N\} = \{\varepsilon\}$
- $L_1.L_2 = \{ a^n b^n b^m a^m \mid n, m \in \mathbb{N} \} = \{ a^n b^{n+m} a^m \mid n, m \in \mathbb{N} \}$
- $L_2.L_1 = \{ b^n a^n a^m b^m \mid n, m \in \mathbb{N} \} = \{ b^n a^{n+m} b^m \mid n, m \in \mathbb{N} \}$
- $L_1^2 = \{ a^n b^n a^m b^m | n, m \in N \}$

Exercice 1.5

Prouver les assertions suivantes, où Σ est un alphabet, $a,b \in \Sigma$ et $u,v,x,y \in \Sigma^*$.

- 1. $au = bv \Rightarrow (a = b \text{ et } u = v);$
- 2. $xu = xv \Rightarrow u = v$;
- 3. $(xu = yv \land |x| = |y|) \Rightarrow u = v$;
- 4. $(xu = yv \land |x| \le |y|) \Rightarrow (x \text{ est préfixe de } y \text{ et } v \text{ est suffixe de } u)$.

Corrigé

- 1. Deux mots sont égaux s'ils sont la même longueur et si leurs lettres coïncident en chaque position. Les mots au et bv s'écrivent sous la forme $au_1 ... u_p$ et $bv_1 ... v_n$, avec u_i , $v_i \in \Sigma$ pour tout i. Puisque au = bv, on peut tirer de ce qui précède : p = n, a = b et $u_i = v_i$ pour tout $i \le n$. D'où en particulier a = b et u = v.
- 2. On établit ce résultat par récurrence sur |x|.
 - Si |x| = 0, alors $x = \varepsilon$ et la conclusion est immédiate.
 - Sinon, On suppose que pour |x| = n, $xu = xv \Rightarrow u = v$. On montre la propriété pour |x| = n+1.

Dans ce cas x = ay avec $a \in \Sigma$, $y \in \Sigma^*$ et |y| = n et l'on a : ayu = ayv. D'après le résultat 1 précédant, ceci impose yu = yv, et par hypothèse de récurrence : u = v.

- 3. Récurrence sur |x| = |y|:
 - Si |x| = 0, alors $x = y = \varepsilon$ et la conclusion est immédiate.
 - Sinon, x = ax' et y = by' avec $a,b \in \sum et x'$, $y' \in \sum^* et |x'| = |y'|$. On a : ax'u = by'v. D'après 1, ceci impose a = b et x'u = y'v. Comme |x'| < |x|, on peut conclure, grâce à l'hypothèse de récurrence, que u = v.

Exercice 1.6 Montrer que :

- 1. Il n'existe pas de mot $x \in \{a,b\}^*$ tel que ax = xb.
- 2. Il n'existe pas de mots $x, y \in \{a,b\}^*$ tel que xay = ybx.

Corrigé

- 1. Rappelons que l'on note $|u|_a$ le nombre d'occurrences de la lettre a dans le mot u. Clairement, si u et v sont deux mots, $|uv|_a = |u|_a + |v|_a$. En particulier, si un mot x satisfait ax = xb, on aurait $|ax|_a = |xb|_a$ et donc $|x|_a + 1 = |x|_a$, contradiction.
- 2. L'argument est le même que pour la question précédente : si xay = ybx, alors $|xay|_a = |ybx|_a$ et donc $|x|_a + |y|_a + I = |x|_a + |y|_a$, contradiction.

Exercice 1.7 Soient *A,B,C* trois langages sur un même alphabet. Prouver les propriétés suivantes :

- 1. (AB)C = A(BC)
- 2. A(BUC) = ABUAC
- 3. $A(B \cap C) \subseteq AB \cap AC$ et l'inclusion réciproque est fausse en général.
- 4. $A \subseteq B \Rightarrow A^* \subseteq B^*$
- 5. $(A^*)^* = A^*$
- 6. $(A \cup B)^* = (A^*B^*)^*$

Corrigé

- 1. Se déduit immédiatement de l'associativité de la concaténation des mots.
- 2. $u \in A(B \cup C) \Leftrightarrow \exists a \in A, \exists x \in B \cup C : u = ax$

$$\Leftrightarrow$$
 $(\exists a \in A, \exists x \in B : u = ax) ou (\exists a \in A, \exists x \in C : u = ax)$

 $\Leftrightarrow u \in AB \ ou \ u \in AC$

 $\Leftrightarrow u \in ABUAC$

- 3. Tout mot u de $A(B \cap C)$ s'écrit u = ax avec $a \in A$ et $x \in B \cap C$ et appartient donc à AB (puisque $a \in A$ et $x \in B$) et AC (puisque $a \in A$ et $x \in C$). Par contre, pour $A = \{1,10\}$, $B = \{01\}$ et $C = \{1\}$, on a $101 \in AB \cap AC$, mais clairement $101 \notin A(B \cap C)$ car $B \cap C = \emptyset$
- 4. Si $A \subseteq B$, alors tout mot de la forme $u_1 \dots u_n$ avec $n \in N$ et $u_1, \dots, u_n \in A$ est dans B^n , puisque chaque u_i est dans B. Autrement dit, $A^n \subseteq B^n$ pour tout n. D'où s'ensuit que $A^* = \bigcup_{n \in N} A^n \subseteq B^* = \bigcup_{n \in N} B^n$.
- 5. De $A \subseteq A^*$ on tire, grâce à la question précédente : $A^* \subseteq (A^*)^*$.

Montrons maintenant que $(A^*)^* \subseteq A^*$. Soit $u \in (A^*)^*$. Donc il existe $n \ge 0$ tel que $u \in (A^*)^n$. Cela veut dire que u peut s'écrire $u = u_0, ..., u_n$ avec $u_i \in A^*$ (pour tout i entre 0 et n). Puisque chaque u_i est une concaténation de mots de A, il s'en suit que u est lui-même une concaténation de mots de A, c-à-d $u \in A^*$. D'où l'inclusion $(A^*)^* \subseteq A^*$.

- 6. On montre que : a) $(A \cup B)^* \subseteq (A^*B^*)^*$ et b) $(A^*B^*)^* \subseteq (A \cup B)^*$
 - a) On a $A \subseteq A^*$ et $A^* \subseteq A^*B^*$, puisque $\varepsilon \in B^*$. D'où $A \subseteq A^*B^*$, et on prouve de manière similaire que $B \subseteq A^*B^*$. L'inclusion $A \cup B \subseteq A^*B^*$ en découle et entraı̂ne $(A \cup B)^* \subseteq (A^*B^*)^*$, par la question 4.
 - b) De $A \subseteq A \cup B$ (resp. $B \subseteq A \cup B$) on tire, par la question 4, $A^* \subseteq (A \cup B)^*$ (resp. $B^* \subseteq (A \cup B)^*$), puis $A^*B^* \subseteq (A \cup B)^*$, puisque $(A \cup B)^*$ est clos pour la concaténation. Il découle $(A^*B^*)^* \subseteq ((A \cup B)^*)^*$ (toujours par la question 4), puis $(A^*B^*)^* \subseteq (A \cup B)^*$ puisque $((A \cup B)^*)^* = (A \cup B)^*$ (question 5).

Exercice 1.8 Soient A, B deux langages sur un même alphabet.

- 1. Comparer $(A \cup B)^*$ et $A^* \cup B^*$.
- 2. Comparer $(A \cap B)^*$ et $A^* \cap B^*$.
- 3. Comparer $(AB)^*$ et A^*B^* .

Corrigé

1. Nous avons $(A*UB*) \subseteq (AUB)*$ mais l'inverse n'est pas toujours vrai.

Montrons que $(A*UB*) \subseteq (AUB)*$. De $A \subseteq AUB$ (resp. $B \subseteq AUB$) on tire, par la question 4 de l'exercice 7, $A* \subseteq (AUB)*$ (resp. $B* \subseteq (AUB)*$), d'où $(A*UB*) \subseteq (AUB)*$.

Montrons maintenant qu'il existe A et B tel que $(A \cup B)^* \not\subset (A^* \cup B^*)$. Prenons $A = \{a\}$ et $B = \{b\}$. On a $ab \in (A \cup B)^*$ mais $ab \not\in A^* \cup B^*$ (les mots de $A^* \cup B^*$ sont formés soit uniquement de a ou uniquement de b).

2. Nous avons $(A \cap B)^* \subseteq A^* \cap B^*$ mais l'inverse n'est pas toujours vrai.

Montrons que $(A \cap B)^* \subseteq A^* \cap B^*$. Soit w $\in (A \cap B)^*$ donc w peut s'écrire $u = u_0$, ..., u_n avec $n \ge 0$ et $u_i \in A \cap B$ (pour tout i entre 0 et n) c- \dot{a} -d, $u_i \in A$ et $u_i \in B$ et donc $u_i \in A^*$ et $u_i \in B^*$ d'où $u_i \in A^* \cap B^*$.

Montrons maintenant qu'il existe A et B tel que $A^* \cap B^* \not\subset (A \cap B)^*$. Prenons $A = \{a\}$ et $B = \{aa\}$. On a $aa \in A^* \cap B^*$ mais $aa \not\in (A \cap B)^*$ ($car A \cap B = \emptyset$ et $donc (A \cap B)^* = \{\varepsilon\}$).

3. Nous avons $(AB)^* \neq A^*B^*$.

Prenons $A = \{a\}$ et $B = \{B\}$.

$$AB = \{ab\}\ et\ (AB)^* = \{\varepsilon,\ ab,\ abab,\ ababab,\ \dots\} = \{(ab)^n\mid n\geq 0\}$$

$$A^* = \{ \varepsilon, a, aa, aaa, ... \}, B^* = \{ \varepsilon, b, bb, bbb, ... \} et$$

Nous avons par exemple, $abab \in (AB)^*$ mais $abab \notin A^*B^*$ (car les mots de A^*B^* sont formés d'une suite de a suivi d'une suite de b, c-à-d une fois qu'on a un b on ne peut plus avoir un a à nouveau), d'où $(AB)^* \not\subset A^*B^*$.

De plus par exemple, $aa \in A*B*$ (prendre n = 2 et m = 0) mais $aa \notin (AB)*$ (car dans (AB)*, on ne peut jamais avoir deux a consécutifs), d'où $A*B* \not\subset (AB)*$.

Exercice 1.9 Trouver l'ensemble des facteurs gauches et l'ensemble des facteurs droits des langages sur l'alphabet $\Sigma = \{a,b\}$ suivants :

- 1. $L_1 = \{a^n.b^n \mid n \ge 0\}.$
- 2. $L_2 = \{a^n.b^m \mid 0 \ge n \ge m\}.$
- 3. $L_3 = \{ w \in \Sigma^* \mid |w|_a = |w|_b \}.$

Corrigé

- 1. $L_1 = \{a^n.b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb,\}$
 - a) Facteurs gauches (préfixes). On peut montrer que

$$Préfixes(L_l) = \{ a^n.b^m \mid n \ge m \ge 0 \}$$

Notons l'ensemble $\{a^n.b^m\mid n\geq m\geq 0\}$ par X. Pour cela, on montre que tout préfixe d'un élément de L_I est dans X et tout élément de X est dans $Préfixes(L_I)$ i.e., un préfixe d'un élément de L_I .

Il est clair que tous préfixe d'un mot de L_1 est de la forme $a^n.b^m$ avec $n \ge m \ge 0$.

Tout mot de la forme $a^n.b^m$ pour $n \ge m \ge 0$ représente un préfixe du mot $a^n.b^n$ de L_1 ($a^n.b^n$ s'obtient en ajoutant (n-m) b à la fin de $a^n.b^m$).

b) Facteurs droits (suffixes). Avec un raisonnement similaire, on trouve :

Suffixes(
$$L_1$$
) = { $a^n.b^m \mid m \ge n \ge 0$ }

- 2. $L_2 = \{a^n.b^m \mid n \ge m \ge 0\}$..
 - a) Facteurs gauches (préfixes). On peut montrer que

$$Pr\acute{e}fixes(L_2) = L_2$$

Pour cela, on montre que tout préfixe d'un élément de L_2 est dans L_2 et tout élément de L_2 est dans $Préfixes(L_2)$ i.e., un préfixe d'un élément de L_2 .

Soit w est un préfixe d'un élément quelconque $a^n.b^m$ $(n \ge m \ge 0)$ de L_2 , alors soit w est de la forme a^r avec $r \ge 0$ et il est dans L_2 , ou bien de la forme $a^n.b^k$ avec $k \le m$ et donc $n \ge k \ge 0$ et w est dans ce cas aussi dans L_2 .

Soit w un élément quelconque de L_2 . w est de la forme $a^n.b^m$ $(n \ge m \ge 0)$, mais comme w est préfixe de lui-même alors w est dans $Préfixes(L_2)$.

b) Facteurs droits (suffixes). On peut montrer que

$$Suffixe(L_2) = \{ a^n.b^m \mid n, m \ge 0 \}$$

Notons l'ensemble $\{a^n.b^m \mid n, m \ge 0\}$ par X. On montre alors que tout suffixe d'un élément de L_2 est dans X et tout élément de X est un suffixe d'un élément de L_2 .

Soit w est un suffixe d'un élément quelconque $a^n.b^m$ $(n \ge m \ge 0)$ de L_2 , alors soit w est de la forme b^r avec $r \ge 0$ et il est dans X, ou bien de la forme $a^r.b^m$ avec r, $m \ge 0$ et w est dans ce cas aussi dans X.

Soit w un élément quelconque de X. w est de la forme $a^n.b^m$ avec n, $m \ge 0$. On a deux cas:

- Soit $n \ge m$ et donc w est dans L_2 mais comme w est suffixe de lui-même alors w est suffixe d'un élément de L_2 .
- Soit n < m et dans ce cas w est suffixe par exemple de $a^{m-n} w = a^{m-n} a^n b^m = a^m b^m$ qui est un élément de L_2 .
- 3. $L_3 = \{ w \in \Sigma^* \mid |w|_a = |w|_b \}$
 - a) Facteurs gauches (préfixes). On peut montrer que

$$Préfixes(L_3) = \Sigma^* = \{a,b\}^*$$

Pour cela, on montre que tout préfixe d'un élément de L_3 est dans Σ^* et tout élément de Σ^* est dans $Préfixes(L_3)$ i.e., un préfixe d'un élément de L_3 .

La première partie est triviale car tout préfixe d'un élément de L_3 est un mot sur l'alphabet $\Sigma = \{a,b\}$.

Soit w un mot quelconque de Σ^* . On peut toujours compléter w par des symboles a et b à droite pour obtenir un mot w avec $|w'|_a = |w'|_b$ et donc w est un préfixe d'un élément de L_3 .

b) Facteurs droits (suffixes). Par un raisonnement similaire, on montre que :

Suffixe(
$$L_3$$
) = Σ * = { a,b }*