ニューラルネットワーク (ISBN 4-254-11612-8) 自習 ノート

目次

1	==	Lーラルネットワークとは何か	3
	1.1 生物	』に学ぶ	3
	1.1.1	蚊と蟻とサッカーロボット	3
	1.1.2	神経細胞の構造と機能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	1.2 神経	を細胞のモデル	3
	1.3 シナ	- プスの可塑性	3
	1.4 ==	ューラルネットワークの分類	3
	1.4.1	階層型ニューラルネットワーク	3
	1.4.2	相互結合型ニューラルネットワーク	3
	1.5 ==	ューラルネットワークの特徴	3
	1.5.1	並列分散処理	3
	1.5.2	学習と自己組織化	3
2	階層	骨型ニューラルネットワークの情報処理	3
	2.1 パー	-セプトロン	4
	2.1.1	単純パーセプトロン	6
	2.1.2	単純パーセプトロンの学習	6
	2.2 バッ	クプロパゲーション	6
	2.2.1	一般化デルタ則	6
	2.2.2	バックプロパゲーション	6
	2.2.3	応用例	6
	2.2.4	ニューラルネットワークの構造とパラメータの与え方	6

2.2.5	バックプロパゲーションの改良	6
3 相互	豆結合型ニューラルネットワークの情報処理	6
3.1 相互	五結合型ニューラルネットワークの形態	6
3.2 連想	思記憶	6
3.3 ホッ	,プフィールドモデル	6
3.3.1	2 値ホップフィールドモデル	6
3.3.2	連想記憶へのおう	6
3.3.3	連続値ホップフィールドモデル	6
3.3.4	最適化問題への応用	6
3.3.5	連続値ホップフィールドモデルの改良	6
3.4 ボル	レツマンマシン..................................	6
3.4.1	ボルツマンマシンの動作	6
3.4.2	ボルツマンマシンの学習	6
3.4.3	ボルツマンマシンの特徴	6
	NV 515 TV	_
	合学習型ニューラルネットワークの方法処理	6
	*機構の自己形成	6
	本のトポロジカルマッピングのモデル	6
	hーネンのモデル	6
4.3.1	予備実験	6
4.3.2	特徴抽出細胞の形成	6
4.3.3	コホーネンの学習則	6
4.3.4	コホーネンの自己組織化特徴マップのアルゴリズムとシミュレーション.	6
4.3.5	応用例	6
5 ==	ューラルネットワーク研究の意義	6
	数を生かす	6
5.1.1	研究の歴史	6
5.1.2	生物内のニューラルネットワークと人工ニューラルネットワーク	6
5.1.3	シナプスの可塑性と脳・神経系の可塑性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
5.1.4	教師あり学習と教師なし学習	6
5.1.5	ニューロンコンピュータ	6
5.1.6	融合化技術	6
5.1.0	THAT TOUCHS	0

5.2.1	応用されてきた分野	(
5.2.2	事例の完備性と適用有効範囲	(
5.2.3	ブラックボックスモデルの利用環境への適合性	6
5.3 脳	科学への貢献	(

1 ニューラルネットワークとは何か

- 1.1 生物に学ぶ
- 1.1.1 蚊と蟻とサッカーロボット
- 1.1.2 神経細胞の構造と機能
- 1.2 神経細胞のモデル
- 1.3 シナプスの可塑性
- 1.4 ニューラルネットワークの分類
- 1.4.1 階層型ニューラルネットワーク
- 1.4.2 相互結合型ニューラルネットワーク
- 1.5 ニューラルネットワークの特徴
- 1.5.1 並列分散処理
- 1.5.2 学習と自己組織化

2 階層型ニューラルネットワークの情報処理

階層型ニューラルネットワークは心理学者ローゼンブラットによって提案されたパーセプトロンから発展したものである。パーセプトロンはパターンを学習・識別することができるニューラルネットワークであり、形式ニューロンとシナプスの可塑性を用いている。また、小脳においてパーセプトロンと類似した機能を有する部分があると指摘されている。本章ではパーセプトロンはら発展した階層型ニューラルネットワークについて述べる。ニューラルネットワークによる応用のうちで最も多いのが、階層型ニューラルネットワークのバックプロパゲーションである。

2.1 パーセプトロン

パーセプトロンは3つの層からなる階層型ニューラルネットワークである。パーセプトロンを構成する3つの層はそれぞれ感覚ユニット (sensory unit)、連合ユニット (associate unit)、反応ユニット (response unit) と呼ばれる。パーセプトロンの基本形である単純パーセプトロンは感覚ユニットから連合ユニット、連合ユニットから反応ユニットへと一方向に繋がっている。また反応ユニットは1つのニューロンによって構成され、連合ユニットの全てのニューロンと接続される。

 aa_1

- 2.1.1 単純パーセプトロン
- 2.1.2 単純パーセプトロンの学習
- 2.2 バックプロパゲーション
- 2.2.1 一般化デルタ則
- 2.2.2 バックプロパゲーション
- 2.2.3 応用例
- 2.2.4 ニューラルネットワークの構造とパラメータの与え方
- 2.2.5 バックプロパゲーションの改良
- 3 相互結合型ニューラルネットワークの情報処理
- 3.1 相互結合型ニューラルネットワークの形態
- 3.2 連想記憶
- 3.3 ホップフィールドモデル
- 3.3.1 2値ホップフィールドモデル
- 3.3.2 連想記憶へのおう
- 3.3.3 連続値ホップフィールドモデル
- 3.3.4 最適化問題への応用
- 3.3.5 連続値ホップフィールドモデルの改良
- 3.4 ボルツマンマシン
- 3.4.1 ボルツマンマシンの動作
- 3.4.2 ボルツマンマシンの学習
- 3.4.3 ボルツマンマシンの特徴
- 4 競合学習型ニューラルネットワークの方法処理
- 4.1 認識機構の自己形成
- 4.2 生体のトポロジカルマッピングのモデル
- 4.3 コホーネンのモデル
- 4.3.1 予備実験
- 4.3.2 特徴抽出細胞の形成
- 4.3.3 コホーネンの学習則
- U
- 4.3.4 コホーネンの自己組織化特徴マップのアルゴリズムとシミュレーション
- 4.3.5 応用例
- 5 ニューラルネットワーク研究の意義
- 5.1 特徴を生かす
- 5.1.1 研究の歴史