$\left(x^{\alpha}\right)' = \alpha x^{\alpha - 1} (\alpha \neq 0)$	$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$
$(\sin x)' = \cos x$	$(\cos x)' = -\sin x$	$(tgx)' = \frac{1}{\cos^2 x}$
$\left(ctgx\right)' = -\frac{1}{\sin^2 x}$	$\left(\arcsin x\right)' = \frac{1}{\sqrt{1 - x^2}}$	$\left(\arccos x\right)' = -\frac{1}{\sqrt{1-x^2}}$
$\left(arctgx\right)' = \frac{1}{1+x^2}$	$\left(arcctgx\right)' = -\frac{1}{1+x^2}$	$\left(a^{x}\right)' = a^{x} \ln a$
$(e^x)' = e^x$	$\left(\ln x\right)' = \frac{1}{x}$	$\left(\log_a x\right)' = \frac{1}{x \ln a}$

Основные правила нахождения производной:

$$(c)' = 0 \; ; \; (x)' = 1 \; ; \; (u \pm v)' = u' \pm v' \; ; \; (cu)' = cu' \; ; \; (uv)' = u'v + uv' \; ; \; \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \; .$$
 Если $y = f\left(u\right)$ и $u = \varphi(x)$, т.е. $y = f\left(\varphi(x)\right)$, то $y_x' = y_u'u_x'$, то есть $\left(f\left(\varphi(x)\right)\right)' = f'\left(\varphi(x)\right)\varphi'(x) \; .$

Несколько примеров вычисления производных высших порядков.

	f(x)	f'(x)	f''(x)		$f^{(n)}(x)$
1	a^{x}	$a^x \ln a$	$a^x \ln^2 a$	• • • • • • • • • • • • • • • • • • • •	$a^{x} \ln^{n} a$
2	e^{x}	e^{x}	e^{x}	• • • • • • • • • • • • • • • • • • • •	e^{x}
3	sin x	$\cos x$	$-\sin x$		$\sin\left(x+n\frac{\pi}{2}\right)$
4	$\cos x$	$-\sin x$	$-\cos x$	•••••	$\cos\left(x+n\frac{\pi}{2}\right)$
5	x^{α}	$\alpha x^{\alpha-1}$	$\alpha(\alpha-1)x^{\alpha-2}$		$\alpha(\alpha-1)\cdot\cdot(\alpha-n+1)x^{\alpha-n}$
6	ln x	$\frac{1}{x}$	$-\frac{1}{x^2}$		$\frac{\left(-1\right)^{n-1}\left(n-1\right)!}{x^{n}}$

Формула Лейбница.

Теорема. Пусть функции u(x) и v(x) имеют на интервале (a,b) производные до порядка n включительно. Тогда для n -й производной их произведения справедлива следующая формула Лейбница: $(uv)^{(n)} = \sum_{n=0}^{n} C_n^m (u)^{(n-m)} (v)^{(m)}$.

Теорема. Функция y = f(x) дифференцируема в точке x тогда и только тогда, когда в этой точке существует производная f'(x), и в этом случае df(x) = f'(x)dx.

Для дифференциалов высших порядков справедлива формула $d^n f(x) = f^{(n)}(x) dx^n$.