- a3 Explain Ant Colony optimization in Detail.
 - ant colony optimization technique was introduced by marco porigo in 1990s
 - => Ants communicate with each other using touch, pheromone and sound.
 - by ants that trigger responses in peer ant members.
 - >> We can design an algorithm on this behaviour of ants.
 - =) For explaining the concept. I am using single ant colony and a single food source.
 - >) we will imagine the scenario using graphs
 - => Ants will be node.
 - =) food source will also be node or vertice.
 - 3) The path serves as edges.
 - => The amount of pheromone released will be weight of the edge.

Page: Walty

(2)

=> suppose graph CH=(V, E) V-> Vertices and E> edges.

Here, Vs >> source vertice

Vd => destination vertice

=) E, and E2 are edges of lengths L1 and L2

=> Associated pheromone values => R1 and R2

=> Mow, for each ant, starting probability
of selection of path can be: +

P; = Ri where i= 1,2

R1+R2

=) If R1>R2 probability of choosing
Ey is higher

then pheromone value will be updated

This updation will be made on 2 criterias:

(1) evaporation rate

(2) Length of peuth

vpdate with consideration of evaporation

RI C1-V) * RI

evaposation.

Paga: Walter Date:
A-2 Describe the following Earls to Predicate logic.
Ans > (1)
ci) Every child toves Santa
Ans -> 4 oc (CHILD(OC) -> LOVES(OC, SANTA))
cii) Everyone who loves Santa loves any reindeer
Ans > + or (Loves (x, SANTA) > + y (REINDEER (y) -) LOVES (x, y)))
riii) Rudolph is reindeer and Rudolph - has red nose.
Ans => REMOTER (RUDO) REIMOTER (RUDO) A REDNOSE (Rudolph)
civo Anything which has red nose is weird or is a down
Ans => YOL (REDNOSIE (X) -> WEIRD(X) V (LOWN(X))
(V) No Reindeer is clown.
C CX) MWOJO ACXONBADX Er (C
(vi) Scrooge does not love anything which is wein
=> \AX(MEIRD(X) -> \TLOVES(S(8000)e, 2())

	Page: Walter Date:
8-5	Explain Baysein Metwork.
7)	The main idea is to describe the real world.
5	Here, we will use a more local representation in which we will describe dusters of events that interact
2)	For example:) S: sprinkler was on last night W: grass i's wet R: it rained last night.
	Sprinkler (Rain)
	(Sprinkler) (Pain)
	(wet)
5)	There are 2 different ways that proposition can influence the likelihood:
	(1) Observing a symptom affects the likelihood of all possible causes of the likelihood of symptoms.

1908098 CNIN DNN >) It is an one Itisa kind of Kind of Deep neusal net work neural net work with many layers. =) (NN is used for Deep neusal network image classification is used in the field of supervised