

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA MESTRADO ACADÊMICO EM ENGENHARIA ELÉTRICA

DAVI ALEXANDRE PAIVA

DAVI ALEXANDRE PAIVA

Dissertação apresentada ao Curso de Mestrado Acadêmico em Engenharia Elétrica do Programa de Pós-Graduação em Engenharia Elétrica do Centro de Tecnologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Engenharia Elétrica. Área de Concentração: Engenharia Elétrica.

Orientador: Prof. Dr. Wilkley Bezerra Correia.

DAVI ALEXANDRE PAIVA

Dissertação apresentada ao Curso de Mestrado Acadêmico em Engenharia Elétrica do Programa de Pós-Graduação em Engenharia Elétrica do Centro de Tecnologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Engenharia Elétrica. Área de Concentração: Engenharia Elétrica.

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. Wilkley Bezerra Correia (Orientador) Universidade Federal do Ceará (UFC)

RESUMO

Atualmente o controle e modelagem de sistemas industriais, envolvem um controle supervisório com processos a eventos discretos e também o controle entre os agentes envolvidos na planta para realizar determinado processo. O presente trabalho visa desenvolver uma técnica de controle e modelagem para sistema multiagentes, em que a modelagem é feita através da rede de Petri e o controle através do controle por consenso. A modelagem dos eventos ao longo do sistema são feitos através da rede de petri, com transições e lugares. O controle é feito através do algorítimo de consenso de multiagentes em que é feita a sincronia dos agentes da planta para diferentes pontos de operação alternados pela rede de petri. A técnica de controle e modelagem é apresentada através da aplicação em um cenário de sincronia e formação de autômatos em uma trajetória definida, em que a ordem e a forma de organização dos autômatos é alterada ao longo de eventos modelados pela rede de petri. É possível perceber que a técnica de utilização conjunta da modelagem em redes de petri com o controle por consenso possui uma boa performance e abstração em termos de modelagem de um sistema envolvendo muitos agentes com diferentes eventos, assim como o uso de controle por consenso auxilia de forma eficiente a sincronia entre os diversos agentes industriais.

Palavras-chave: Controle por Consenso; Redes de Petri; Controle multiagente; Plantas industrias, Sistemas Híbridos.

LISTA DE FIGURAS

Figura 1 –	Exemplo de nós e arestas em um grafo	9
Figura 2 –	Exemplo de um grafo	11

SUMÁRIO

1	INTRODUÇÃO	6
1.1	Organização do trabalho	8
2	SISTEMA MULTIAGENTES	9
2.1	Teoria dos Grafos	9
2.2	Teoria algébrica dos grafos e consenso do controle cooperativo	9
2.2.1	Representação matricial dos grafos	10
2.2.2	Matriz de Grafo Laplaciana	10
2.3	Consenso com Integrador único	12
2.3.0.1	Protocolo de controle distribuído para o consenso	12
2.3.1	Consenso com líder	13
2.3.2	Consenso para nós com estados como vetores	13
2.3.3	Movimento invariante para consenso de primeira ordem	14
3	REDES DE PETRI	15
4	CONCLUSÃO	16
	REFERÊNCIAS	17

1 INTRODUÇÃO

Um sistema industrial é composto por sensores, atuadores, sinalizadores, controladores entre outros componentes voltados para a realização de determinada cadeia de processos dentro de uma linha de produção. Tal que para realizar determinado processo é necessário uma sincronia entre diversos equipamentos, sensores e atuadores ao longo da planta industrial. Além do desafio de sincronizar uma gama de processos, os sistemas modernos possuem a necessidade de adaptar-se a novas variações e configurações, abrindo espaço para máquinas e sistemas com programação mais robusta e reconfigurável. Dado este desafio, as redes de Petri coloridas se oferecem como uma ótima ferramenta de modelagem para os sistemas modernos de manufatura em linha de produção em que há um aumento da versatilidade e flexibilidade da estrutura e também a necessidade de uma programação com alto nível de abstração. (WENZELBURGER; ALLGÖWER, 2019)

De acordo com(GIUA; SILVA, 2017), as redes de Petri têm sido consideradas com um modelo adequado para um controle supervisório com o objetivo de abranger uma grande classe de problemas e explorar a análise algébrica necessária para otimização. Tratando-se também da análise para a planta não alcançar determinadas marcações indesejadas;

As redes de Petri também são uma ferramenta de modelagem inicial para o algoritmo de programação com ferramentas intrínsecas que analisam o algoritmo para evitar que o sistema entre em exceções,(LEE *et al.*, 2006)

A planta industrial escolhida para este trabalho é relacionada a um processo de montagem, que é composto por um sistema de três agentes, que são duas esteiras e um robô. Uma esteira recebe a parte superior da peça (tampa) e a segunda recebe a parte inferior da peça (base), para posicionar as peças em um local determinado da esteira tem-se o prendedor, uma estrutura metálica que prende a peça à borda da esteira, tal prendedor possui dois tipos de movimento, o de prender e de soltar a peça. Para movimentar a tampa e montá-la em cima da base utiliza-se o terceiro agente, um braço robótico cartesiano, que possui um movimento no eixo X, ortogonal às esteiras e um movimento no eixo Z, que sobe e desce para levantar e baixar a peça da tampa, respectivamente, através de um atuador pneumático que prende a peça à ponta do braço robótico. O algoritmo de sincronia dos agentes e componentes do processo, tais como atuadores, manipuladores, esteiras e sensores foi modelado por redes de Petri coloridas.

Para modelagem e controle desse sistema composto por vários agentes, escolheu-se a abordagem por redes de Petri coloridas. As redes de Petri coloridas são uma ferramenta gráfica

e matemática que se adaptam bem a um grande numero de aplicações, tais como protocolos de comunicação, controle de oficinas de fabricação. A complexidade dos sistemas, em particular o de fabricação automatizada, leva a uma decomposição de vários níveis de controle, tais como planejamento, escalonamento, coordenação global, coordenação de sub-sistemas e controle direto (autômatos programáveis conectados aos sensores e aos atuadores). (CARDOSO; VALLETE, 1997)

Posteriormente à modelagem por redes de Petri, tal rede será programada utilizando linguagem de programação de auto nível através do paradigma de orientação a objeto, facilitando assim a implementação em sistemas reais, comunicação em auto nível entre o sistema e outros elementos da industria, como clps, supervisórios, sistemas web e possibilitando maior flexibilidade na programação, manutenção e simplificação do código além das ferramentas de análise do modelo a partir da análise da rede de Petri correspondente.

Um sistema multiagente é um sistema que possui mais de um agente, representado por uma entidade independente das outras entidades. Tais entidades se comunicam para a sincronia e execução de um determinado objetivo. No sistema de montagem de peça, considera-se uma entidade como um mecanismo robótico, e outras duas entidades como as esteiras industrias, de modo que o robô é uma entidade independente, que não possui o controle e funcionamento dependente das outras entidades. Assim como o robô as esteiras também têm o funcionamento e controle independente entre si. Para alcançar o objetivo comum de montar as peças os agentes se comunicam entre si através de um protocolo que permite informar o estado de cada agente.

Para a modelagem do sistema em redes de Petri são utilizados os lugares, transições e fichas. O lugar pode ser interpretado como uma condição, um estado associado, por exemplo, sensor ligado, eixo em movimento, peça na posição, etc. Já a transição é associada a uma evento que ocorre no sistema, a um acionamento proposto, tal como movimentar a peça, movimentar robô, acionar a esteira, entre outros. Por fim as fichas são uma indicação que a condição associada ao lugar é satisfeita.

Em (LI *et al.*, 2009), sistemas de manufatura reorganizáveis são modelados pela linguagem UML, para descrever as reconfigurações do sistema e na segunda fase os diagramas são transformados em submodelos da rede de Petri e a relação entre os submodelos e subsistemas são sintetizados em um modelo de rede de Petri de auto nível. Os dois métodos podem analisar comportamentos importantes em relação as propriedades do sistema que são vitais para a modelagem prática dos mesmos.

Em (VILLANI *et al.*, 2005) é feita a modelagem de um sistema de produção híbrida, baseada em redes de Petri representando as partes discretas do sistema, equações diferencias representando as partes contínuas e paradigma de orientação a objetos para lidar com a complexidade se sistemas reais, em que cada sub rede é relacionada a uma classe modelando o comportamento de cada objeto da classe. Na dinâmica do sistema a marcação representa o presente estado do objeto. Cada grupo de ação é representada por uma classe eque possui um modelo definido pela RP.

No presente artigo, para a associação entre os elementos básicos de uma rede de Petri (lugar, transição, fichas) e os elementos básicos de uma planta industrial (sensores, atuadores), modelou-se as seguintes associações, todos os sensores e atuadores da planta são representados por lugares na rede de Petri, tal que o mesmo possui uma ou nenhuma ficha representando respectivamente o estado de ligado ou desligado), acionado ou não acionado, e as transições são lógicas de comando que relacionam lugares e memórias no sistema.

1.1 Organização do trabalho

Para a estruturação do presente trabalho, adota-se a seguinte metodologia de estudo

- 1. **Introdução:** Este capítulo contém as premissas básicas de estudo e evolução dos temas recorrentes na área de Controle Multiagentes. Ainda incluem-se os princípios básicos de apresentação do projeto, tais como os objetivos, a justificativa e a motivação do estudo.
- 2. Sistema Multiagentes: Partindo-se do princípio mais básico relacionado a modelagem de sistemas multiagentes. Assim, definem-se as representações matemáticas e gráficas de um sistema multiagente assim como técnicas de controle Cooperativo. Por fim são repassadas as principais técnicas de modelagem, representação em grafos e controle de sistemas multiagentes.

3. Redes de Petri:

- 4. Simulação:
- 5. **Conclusão:** Por fim, este último capítulo trata das considerações gerais sobre os conceitos apresentados e uma discussão crítica acerca dos resultados de simulação.

2 SISTEMA MULTIAGENTES

2.1 Teoria dos Grafos

No estudo da interação e comportamento entre sistemas dinâmicos, as interconexões entre os agentes e o fluxo de informações formam uma rede de comunicação. Essa rede é modelada através da teoria dos grafos em que cada sistema é representado por um nó, também chamado de agente.

Um grafo é um par G = (V, E), tal que $V = \{v_1, v_2, ..., v_N\}$ é um conjunto de N nós ou vértices e E um conjunto de vetores ou arcos. Um elemento pertencente a E é um par (v_i, v_j) tal que é um vetor que liga v_i à v_j , e é representado como uma flecha em que a cauda está em v_i e a ponta em v_j como demonstrado na figura 1.

Figura 1 – Exemplo de nós e arestas em um grafo

Os graus de liberdade de entrada de um dado nó v_i é definido como o número de vetores que a ponta da flecha se encontra em v_i . Do mesmo modo, os graus de liberdade de saída de um nó v_i é dado pelo número de vetores que em v_i se encontra a cauda da flecha.

Associado à cada aresta de um elemento em $E=(v_i,v_j)$ tem-se um peso $a_{ij}>0$. O peso a_{ij} representa a força de interação entre os nós v_i e v_j . De modo que quanto maior o peso maior a influência tem o comportamento do agente j sobre o agente i. Um grafo é dito bidirecional se e somente se $a_{ij} \neq 0$ e $a_{ji} \neq 0$, então tem-se que a comunicação entre agentes flui bidirecionalmente. Um grafo é dito unidirecional se $a_{ij} = a_{ji}$, para qualquer i e j.

2.2 Teoria algébrica dos grafos e consenso do controle cooperativo

O controle cooperativo estuda a dinâmica de sistemas dinâmicos com múltiplos agentes com iterações um com o outro através de uma comunicação em grafo. O grafo representa as iterações e comunicações entre agentes. O objetivo do controle cooperativo é garantir a sincronia entre o comportamento e estados dos agentes, de modo que para cada agente só é disponível que as informações sejam entre o agente com os agentes vizinhos.

2.2.1 Representação matricial dos grafos

A estrutura e propriedade dos grafos podem ser estudadas examinando as propriedades de certas matrizes associadas. Dados os pesos $a_i j$ associados, o grafo pode ser representado pela **Matriz de Adjacência** ou conectividade $A = [a_{ij}]$, com $a_{ij} > 0$ se $(v_j, v_i) \in E$ e a_{ij} caso contrário. Define-se duas propriedades locais dos grafos, o graus de entrada e os graus de saída. Os graus de entrada de um nó v_i é definido pela equação 2.1, tal que d_i é o somatório dos pesos a_{ij} da linha i-th.

$$d_i = \sum_{j=1}^{N} a_{ij} (2.1)$$

Os graus de saída de um nó v_i é definido pela equação 2.2, tal que d_i é o somatório dos pesos a_{ij} da coluna i-th.

$$d_i^0 = \sum_{j=1}^N a_{ji} \tag{2.2}$$

Define-se duas propriedades globais dos grafos, o diâmetro do grafo , dada pela maior distância entre dois nós e o volume de entrada (in) – volume, dado pela soma dos nós de entrada

$$VolG = \sum_{i} d_{i} \tag{2.3}$$

2.2.2 Matriz de Grafo Laplaciana

Uma definição importante aplicada a sistemas multiagentes é a **Matriz Laplaciana**, que auxilia o estudo das propriedades da dinâmica do grafo de multiagentes. A mesma é obtida através da operação entre duas matrize, a Matriz Diagonal e a Matriz de Adjacência. Define-se a matriz diagonal de graus de entrada, pela equação 2.4, em que para um agente i, tem-se o elemento d_i como o somatório das flechas que apontam para o dado agente.

$$D = diag\{d_i\} \tag{2.4}$$

Por fim a matriz Laplaciana L é definida como L=D-A, tal que D é a matriz Diagonal e A é a matriz de Adjacência.

Figura 2 – Exemplo de um grafo

Um exemplo de matriz laplaciana associada ao grafo pode ser ilustrada através da figura 2, em que a matriz Diagonal *D* é dada pela matriz 2.5.

$$D = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$
 (2.5)

A matriz A, dada pela Matriz de Adjacência 2.6.

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
 (2.6)

Por fim, a matriz Laplaciana é dada por L = D - A.

$$L = \begin{bmatrix} 3 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ -1 & -1 & 2 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
(2.7)

2.3 Consenso com Integrador único

Para o estudo inicial de controle cooperativo, tem-se a análise de um sistema multiagente formado por agentes *i* com dinâmica dada por um integrador escalar único, modelada pela equação 2.8

$$\dot{x}_i = u_i \tag{2.8}$$

com $x_i, u_i \in R$. Isso corresponde que cada nó do grafo G, possui um agente com memória.

2.3.0.1 Protocolo de controle distribuído para o consenso

Para cada agente i, considere o protocolo de controle local dado pela equação 2.9

$$u_i = \sum_{j \in N_i} a_{ij} (x_j - x_i) \tag{2.9}$$

com a_{ij} sendo o peso de interação entre os estados dos agentes. Essa equação é conhecida como protocolo de votação local, em que o estado de cada agente depende tão somente do estado do agente vizinho, e a entrada de controle depende da da diferença dos estados em relação aos agentes vizinhos. De modo que percebe-se que se todos os estados forem os mesmo a entrada de controle tende a zero $\dot{x}_i = u_i = 0$.

Para a dinâmica de integrador único, é desejável que a equação 2.8, resolva o problema de consenso, da dinâmica de malha fechada dada pela equação 2.10

$$\dot{x}_i = \sum_{j \in N_i} a_{ij} (x_j - x_i) \tag{2.10}$$

Reorganizando a equação 2.10, tem-se que a equação. 2.11

$$\dot{x}_i = -x_i \sum_{j \in N_i} a_{ij} + \sum_{j \in N_i} a_{ij} x_j = -d_i x_i + \begin{bmatrix} a_{i1} & \cdots & a_{iN} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$
(2.11)

tal que d_i são os graus de liberdade, $x = [x_1 \cdots x_N] \in R^N$ o vetor de estados. Define-se a matriz D como matriz diagonal formada por $D = diag\{d_i\}$, organiza-se a dinâmica global, através da matriz dada pela equação Laplaciana.

$$\dot{x} = -Dx + Ax = -(D - A)x$$

$$\dot{x} = u = -Lx$$
(2.12)

Através da equação 2.12, e da matriz laplaciana de grafo tem-se que a dinâmica de malha fechada pode ser analisada através da matriz laplaciana dada. Para a dinâmica de integrador único tem-se que se e somente se o grafo possui a topologia de spanning tree, então todos os estados dos nós vão a um valor de consenso dado por $x_i = x_j = c$. O valor de consenso é dado pela equação 2.13.

$$c = \sum_{i=1}^{N} p_i x_i(0) \tag{2.13}$$

tal que $w_1 = [p_1 \cdots p_N]^T$, é o vetor normalizado pela esquerda da matriz laplaciana L, para $\lambda_1 = 0$. De modo que a constante de tempo é dada por 2.14 e λ_2 sendo o segundo autovalor da matriz L.

$$\tau = 1/\lambda_2 \tag{2.14}$$

2.3.1 Consenso com líder

Um "(directed) tree" é um um grafo onde todo nó exceto um é chamado de líder, e possui grau de entrada unitário. De modo que todos os outros nós possuem um consenso liderado pelas condições iniciais do líder. O valor de consenso é dado pela equação 2.13, de modo que p_i é o i-th componente para o autovetor pela esquerda de w_i para $\lambda_1=0$, tal consenso é na verdade a média ponderada das condições iniciais das raízes dos nós ou do líder em um grafo.

2.3.2 Consenso para nós com estados como vetores

Nas condições de integrador úninco e integrado duplo apresentadas anteriormente os estados são tidos como escalares, para os exemplos em que os estados são vetores tais como $x_i, u_i \in R^N$ tem-se que os vetores globais de estados e controle são respectivamente $x = [x_1^T \cdots x_N^T]^T \in R^{nN}, u = [u_1^T \cdots u_N^T]^T \in R^{nN}$ e os elementos dados pelos pesos de consenso a_{ij} e a diagonal d_i são multiplicados pela matriz identidade I_n , de modo que a dinâmica global do sistema é dada pela equação 2.15

$$u = -(L \otimes I_N)x$$

$$\dot{x} = -(L \otimes I_N)x$$
(2.15)

dado que \otimes é definido como produto de kronecker.

2.3.3 Movimento invariante para consenso de primeira ordem

Para o protocolo de primeira ordem local dado por 2.12 foi garantido que para a topologia de *spannigtree* o consenso é alcançado.

3 REDES DE PETRI

4 CONCLUSÃO

O método de modelagem e controle proposto foi realizado no problema de uma planta industrial envolvendo a sincronia e formação de um grupo de autômatos ao longo de trajetórias pré definidas, em que a partir de alguns eventos modelados pela rede de Petri foi alterado a formação do grupo de autômatos assim como os pontos de sincronia. O método se apresentou como uma técnica viável e eficiente, pois para aplicações de sistemas com muitos agentes o controle por consenso se apresenta como uma implementação simples sem grande uso de recurso matemático que fornece a sincronia necessária para aplicação de formação ordenada do grupo de autômatos. No ponto de vista de robustez e adaptabilidade do sistema, observou-se que cada agente respeita as limitações dos agentes vizinhos, seja ela de posição de velocidade, evitando assim colisões e independente da mudança da dinâmica de um agente todo o sistema tem sua dinâmica adaptada, trazendo assim uma sincronia entre os diferentes agentes com diferentes dinâmicas ao longo do sistema. A principal contribuição desse trabalho é a técnica conjunta de modelagem e controle que diminui o processamento local em cada agente deixando assim as lógicas de processamento centralizada em um sistema supervisório modelado via rede de petri, além de uma lógica de controle de baixo custo computacional, todavia é necessário uma ótima comunicação entre os agentes, pois a base do controle é dada pela sincronia entre os estados do agente vizinho.

REFERÊNCIAS

- CARDOSO, J.; VALLETE, R. Redes de Petri. Florianópolis, SC: [S. n.], 1997.
- GIUA, A.; SILVA, M. Modeling, analysis and control of discrete event systems: a petri net perspective. **IFAC-PapersOnLine**, v. 50, n. 1, p. 1772–1783, 2017. ISSN 2405-8963. Disponível em: https://www.sciencedirect.com/science/article/pii/S2405896317302793.
- LEE, J.; CHOI, M.; SUNG, C. A modeling technique applying an object-oriented petri net for embedded system. In: **2006 International Conference on Hybrid Information Technology**. [*S. l.*: *s. n.*], 2006. v. 2, p. 642–645.
- LI, J.; DAI, X.; MENG, Z.; DOU, J.; GUAN, X. Rapid design and reconfiguration of petri net models for reconfigurable manufacturing cells with improved net rewriting systems and activity diagrams. **Computers & Industrial Engineering**, v. 57, n. 4, p. 1431–1451, 2009. ISSN 0360-8352. Disponível em: https://www.sciencedirect.com/science/article/pii/S0360835209002137.
- VILLANI, E.; PASCAL, J. C.; MIYAGI, P. E.; VALETTE, R. A petri net-based object-oriented approach for the modelling of hybrid productive systems. **Nonlinear Analysis: Theory, Methods & Applications**, v. 62, n. 8, p. 1394–1418, 2005. ISSN 0362-546X. Hybrid Systems and Applications. Disponível em: https://www.sciencedirect.com/science/article/pii/S0362546X05004098.

WENZELBURGER, P.; ALLGÖWER, F. A petri net modeling framework for the control of flexible manufacturing systems. **IFAC-PapersOnLine**, v. 52, n. 13, p. 492–498, 2019. ISSN 2405-8963. 9th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S2405896319310596.