Quiz 2

Name:	Date:	I participated today:

- 1. Which of the following are possible single-qubit gates? Circle all that apply. (Hint: Consider how each matrix would transform the state vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Is the result a valid single-qubit state?)
 - a. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- c. $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- e. $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

b. [0 1]

- d. $\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$
- f. $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
- 2. What is the difference between relative and global phase?

Relative phase refers to phase terms (complex arguments) of various amplitudes in a superposition that are different relative to each other; states with different relative phase patterns are distinguishable. Global phase refers to a phase term which is common to all amplitudes in a superposition and can be factored out; states with different global phases are indistinguishable.

3. True or False: Two qubits could have different relative phases but the same measurement probabilities.

True. For example, $|+\rangle$ *and* $|-\rangle$

4. Label the vectors $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $|+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, $|-\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$, $|i\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{bmatrix}$, and $|-i\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} \end{bmatrix}$ on the Bloch sphere shown below. (Recall that the spherical coordinates (θ, φ) on the Bloch sphere map to the state vector $|\psi\rangle = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\varphi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix}$.)

5. How might you prepare the state $\frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$?

Assuming a starting state of $|0\rangle$, apply $R_y\left(\frac{\pi}{3}\right)$. This rotates the qubit $\frac{\pi}{3}$ radians about the Y-axis, producing the state $\cos\left(\frac{\pi}{6}\right)\cdot|0\rangle+\sin\left(\frac{\pi}{6}\right)\cdot|1\rangle=\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}|1\rangle$.