| CS 355 Lecture 7                                                                              | (4/23)                                                                                    |                                        |                                                                                                                  |     |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|-----|
| Logistics: HW2 due this Friday at 5pm<br>HW3 posted this Friday<br>See Piazza for office hour | (submit via Gradescope) information for upcoming week (cou                                | trace staff is traveling)              |                                                                                                                  |     |
| Previous lecture: 2-party computation (You                                                    | o's gourbled circuits)                                                                    |                                        |                                                                                                                  |     |
| Suppose Alice and Bob                                                                         | want to compute function for joint                                                        | input (x, y)                           |                                                                                                                  |     |
| -                                                                                             | requires tor 2 > requires                                                                 | abebraic assumptions Hu                | 2: Realize large number of OTs from                                                                              |     |
|                                                                                               | OT responses (more exp garbled circuit for f only require garbled inputs for y primitives | es cheap symmetric                     | a small (~2) number of base OT                                                                                   | Š   |
| f(x,y) <                                                                                      |                                                                                           |                                        |                                                                                                                  |     |
| Security: Neither party                                                                       | learns more from protocol other than w                                                    | that is revealed by $f(x)$             | 3)                                                                                                               |     |
|                                                                                               | $\{\text{View}_{A}(x,y)\} \stackrel{\epsilon}{\approx} \{S(1^{2},x,t)\}$                  | 9                                      |                                                                                                                  |     |
|                                                                                               | View of Alice in real protocol tr<br>grotocol execution can be simulate                   |                                        |                                                                                                                  |     |
|                                                                                               | on inputs x and y party's input an                                                        | l just given<br>Loutput of computation |                                                                                                                  |     |
| Question: What if we have more than to                                                        | wo parties?                                                                               |                                        |                                                                                                                  |     |
| This lecture: Secret sharing and MPC                                                          |                                                                                           |                                        |                                                                                                                  |     |
| Beaver triples and MPC;                                                                       | n the preprocessing model                                                                 |                                        |                                                                                                                  |     |
| Secret sharing: Suppose we have a secret                                                      | and want to distribute it among n                                                         | Parties such that any                  | t of them can subsequently recover                                                                               |     |
|                                                                                               | subset cannot [eg., Board of directors                                                    |                                        |                                                                                                                  |     |
| Def. A (t,n)-secret sharing scheme ove                                                        | E a massage space M and sha                                                               | me source S consists of                | two efficient about home:                                                                                        |     |
| Share: M → Sn                                                                                 | Space   Comment                                                                           |                                        |                                                                                                                  |     |
| Reconstruct: $S^t \rightarrow M$                                                              |                                                                                           |                                        |                                                                                                                  |     |
| with the following properties:                                                                |                                                                                           |                                        |                                                                                                                  |     |
| Correctness: Any t Shares co                                                                  | un be used to reconstruct m:                                                              |                                        |                                                                                                                  |     |
| √m ∈ M: (s,,                                                                                  | Sn) = Share(m)                                                                            |                                        |                                                                                                                  |     |
| <b>∀</b> S ⊆ {s <sub>1</sub> ,, s <sub>n</sub> } ω                                            | here (S) = t : Reconstruct (S) = n                                                        | L .                                    |                                                                                                                  |     |
| Security: Need at least t sl                                                                  | haves to learn the secret                                                                 | can relax to compu                     | tational indistinguishability (in which one,                                                                     |     |
|                                                                                               | [m] where  I  < t:                                                                        | Share takes in addit                   | tational indistinguishability (in which case, onal security powermeter)  : So for all $i \in I$ information them | ی   |
| $\{(s_i,,s_n) \leftarrow Sha$                                                                 | $we(m_0)$ : $S_i$ for all $i \in I $ $\exists \{$                                         | $(s_i,,s_n) \leftarrow Share(m_i)$     | : So for all i & I & information-theor                                                                           | eta |
|                                                                                               |                                                                                           |                                        |                                                                                                                  |     |





| ^               |                                         |                               | Secret Sharing                                                                                           | yab                                   | * Can be improved     |                                                          |
|-----------------|-----------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|----------------------------------------------------------|
| Comparison with | h Yao:                                  | Type of computation           | Arithmetic circuits (Tip)                                                                                | Boolean circuits                      | * lesenyes seven      | al optimizations                                         |
|                 |                                         |                               | Arbitrary (n)                                                                                            |                                       | (half-gates +         | free XOR)                                                |
|                 |                                         | Round complexity              | Depth of circuit                                                                                         | 2                                     |                       |                                                          |
|                 |                                         | Communication                 | Depth of circuit  12-1 lap bits per to multiplication adde  Information theoretic  (with Beaver triples) | ~256 bits per                         | As                    | side: Preprocessing is also possible                     |
|                 |                                         | Cecuity                       | Information-theoretic                                                                                    | Computational                         |                       |                                                          |
|                 |                                         | Schully                       | (with Beaver triples)                                                                                    |                                       |                       | DT (OT correlations): gives fast                         |
| Δ               | 1 0                                     |                               | 2 Chres                                                                                                  | povessina is input                    | independent! 0        | nformation-theoretic OT in the a                         |
| Guestion . Wh   | vere do Beaue                           | r triples come troi           | 7                                                                                                        | processing is input.                  | mo-posser.            | hase                                                     |
|                 |                                         | offline "preprocessi          |                                                                                                          |                                       | - Implication: OT is  | complete for MPC: any n-9                                |
| -               | Trusted deale                           | x (e.g., Intel SC)            | .) can generate the                                                                                      | em.                                   | functiona             | complete for MPC: any n-9<br>lity can be computed secure |
| -               | Using oblivi                            | ous transfer (OT)             | - accelerate using                                                                                       | OT extensions (                       | (HW2, Problem 4) a    | ssuming existence of OT.                                 |
|                 |                                         | at homomorphic encry          |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
| Question: Wh    | unt if parties                          | are malicious?                | So far, everything is                                                                                    | only semi-homest seco                 | we]                   |                                                          |
| The GMW u       | uldreid-Mikali-Wigd<br>empiler transfor | usur]<br>ms any Protocol with | Semi-honest Secur                                                                                        | only semi-horest security to one with | malicious security    |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       | according to the protocol specifi                        |
| nga twe         |                                         | - TETO KNOWN                  | 7. 1                                                                                                     |                                       | 13,10                 | J. Walan Beau                                            |
| Carallan        | (1 - 11 1 -                             | h                             |                                                                                                          |                                       | 1 .21 1.1             |                                                          |
| Cotollary - Any | thing that co                           | in be computed wi             | h a trusted party                                                                                        | can be computed                       | ( without !           | rmation - theoretically!                                 |
|                 | for n-parti                             | es, if we have fewe           | than 1/3 corrup                                                                                          | oted parties, this in                 | s even possible info  | rmation - theoretically!                                 |
|                 | - With cryptog                          | raphic assumptions (          | i.e. OT), we can                                                                                         | support n-1 con                       | rrupted parties (with | h some careats)                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |
|                 |                                         |                               |                                                                                                          |                                       |                       |                                                          |