PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

Temporada Académica de Verano 2020 Profesor: Luis Zegarra (lzegarra@uc.cl) Ayudante: Odette Ríos (ovrios@uc.cl)

Calculo II - MAT1620

Ayudantia 9

Ejercicio 1

Calcular las siguientes integrales:

a)
$$\int_1^4 \int_1^2 \left(\frac{x}{y} + \frac{y}{x}\right) dx dy$$

b)
$$\iint_R x \sin(x+y) dA$$
, $R = [0, \pi/6] \times [0, \pi/3]$

c)
$$\int \int_R \frac{xy^2}{x^2+1}$$
, $R = \{(x,y)|0 \le x \le 1, -3 \le y \le 3\}$

Ejercicio 2

- a) Evalúe $\int \int_S \sin{(y^3)} \ dA$, donde S es la región acotada por $y = \sqrt{x}; y = 2; x = 0$
- b) Calcule $\int \int_D \frac{\sin x}{x} dA$, donde D es el triángulo definido por y=x y x=1

Ejercicio 3

- a) Encuentre el volumen del sólido que está debajo del paraboloide elíptico $x^2/4 + y^2/9 + z = 1$ y arriba del rectángulo $R = [-1, 1] \times [-2, 2]$.
- b) Encuentre el volumen del sólido en el primer octante limitado por el cilindro $z=16-x^2$ y el plano y y=5.

Ejercicio 4

Evalúe las siguentes integrales en la región indicada:

a)
$$\int \int_{D} \frac{y}{x^{5}+1} dA$$
, $D = \{(x,y)|0 \le x \le \pi, 0 \le y \le x^{2}\}$

- b) $\int_D xy\ dA, D$ está encerrada por las curvas $y=x^2, y=3x$
- c) $\int \int_D (2x-y) \ dA$, D está acotada por la cincunferencia con centro en el origen y de radio 2

Cálculo II - MAT1620 Ayudantia 9

Ejercicio 5

Encuentre el volumen del sólido que está bajo la superficie z=xy y arriba del triángulo con vértices $(1,1),\,(4,1)$ y (1,2)

Propuesto

Calcule el volumen acotado por los cilindros $x^2 + y^2 = r^2$ e $y^2 + z^2 = r^2$