4.7 CHANGE OF BASIS

When a basis \mathcal{B} is chosen for an n-dimensional vector space V, the associated coordinate mapping onto \mathbb{R}^n provides a coordinate system for V. Each \mathbf{x} in V is identified uniquely by its \mathcal{B} -coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.

In some applications, a problem is described initially using a basis \mathcal{B} , but the problem's solution is aided by changing \mathcal{B} to a new basis \mathcal{C} . (Examples will be given in Chapters 5 and 7.) Each vector is assigned a new \mathcal{C} -coordinate vector. In this section, we study how $[\mathbf{x}]_{\mathcal{C}}$ and $[\mathbf{x}]_{\mathcal{B}}$ are related for each \mathbf{x} in V.

To visualize the problem, consider the two coordinate systems in Fig. 1. In Fig. 1(a), $\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$, while in Fig. 1(b), the same \mathbf{x} is shown as $\mathbf{x} = 6\mathbf{c}_1 + 4\mathbf{c}_2$. That is,

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$

Our problem is to find the connection between the two coordinate vectors. Example 1 shows how to do this, provided we know how \mathbf{b}_1 and \mathbf{b}_2 are formed from \mathbf{c}_1 and \mathbf{c}_2 .

FIGURE 1 Two coordinate systems for the same vector space.

EXAMPLE 1 Consider two bases $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ for a vector space V, such that

$$\mathbf{b}_1 = 4\mathbf{c}_1 + \mathbf{c}_2 \quad \text{and} \quad \mathbf{b}_2 = -6\mathbf{c}_1 + \mathbf{c}_2 \tag{1}$$

Suppose

$$\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2 \tag{2}$$

That is, suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Find $[\mathbf{x}]_{\mathcal{C}}$.

SOLUTION Apply the coordinate mapping determined by C to \mathbf{x} in (2). Since the coordinate mapping is a linear transformation,

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 3\mathbf{b}_1 + \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}}$$
$$= 3\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} + \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}}$$

We can write this vector equation as a matrix equation, using the vectors in the linear combination as the columns of a matrix:

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 (3)

¹Think of $[\mathbf{x}]_{\mathcal{B}}$ as a "name" for \mathbf{x} that lists the weights used to build \mathbf{x} as a linear combination of the basis vectors in \mathcal{B} .

This formula gives $[x]_{\mathcal{C}}$, once we know the columns of the matrix. From (1),

$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$

Thus (3) provides the solution:

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

The C-coordinates of \mathbf{x} match those of the \mathbf{x} in Fig. 1.

The argument used to derive formula (3) can be generalized to yield the following result. (See Exercises 15 and 16.)

THEOREM 15

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\mathcal{C}_{\leftarrow \mathcal{B}}^P$ such that

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}} \tag{4}$$

The columns of ${}_{\mathcal{C}} \leftarrow {}_{\mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$${}_{\mathcal{C}} \stackrel{P}{\leftarrow} \mathcal{B} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} & \cdots & [\mathbf{b}_n]_{\mathcal{C}} \end{bmatrix}$$
 (5)

The matrix $_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$ in Theorem 15 is called the **change-of-coordinates matrix from** \mathcal{B} **to** \mathcal{C} . Multiplication by $_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$ converts \mathcal{B} -coordinates into \mathcal{C} -coordinates.² Figure 2 illustrates the change-of-coordinates equation (4).

FIGURE 2 Two coordinate systems for V.

The columns of ${}_{\mathcal{C}}\stackrel{P}{\leftarrow_{\mathcal{B}}}$ are linearly independent because they are the coordinate vectors of the linearly independent set \mathcal{B} . (See Exercise 25 in Section 4.4.) Since ${}_{\mathcal{C}}\stackrel{P}{\leftarrow_{\mathcal{B}}}$ is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both sides of equation (4) by $({}_{\mathcal{C}}\stackrel{P}{\leftarrow_{\mathcal{B}}})^{-1}$ yields

$$({}_{\mathcal{C}} \overset{P}{\leftarrow} {}_{\mathcal{B}})^{-1} [\mathbf{x}]_{\mathcal{C}} = [\mathbf{x}]_{\mathcal{B}}$$

²To remember how to construct the matrix, think of ${}_{\mathcal{C}} \stackrel{P}{\leftarrow}_{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$ as a linear combination of the columns of ${}_{\mathcal{C}} \stackrel{P}{\leftarrow}_{\mathcal{B}}$. The matrix-vector product is a \mathcal{C} -coordinate vector, so the columns of ${}_{\mathcal{C}} \stackrel{P}{\leftarrow}_{\mathcal{B}}$ should be \mathcal{C} -coordinate vectors, too.

Thus $({}_{\mathcal{C} \leftarrow \mathcal{B}}^{P})^{-1}$ is the matrix that converts \mathcal{C} -coordinates into \mathcal{B} -coordinates. That is,

$$({}_{\mathcal{C}} \stackrel{P}{\leftarrow} {}_{\mathcal{B}})^{-1} = {}_{\mathcal{B}} \stackrel{P}{\leftarrow} {}_{\mathcal{C}}$$
 (6)

Change of Basis in \mathbb{R}^n

If $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and \mathcal{E} is the *standard basis* $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ in \mathbb{R}^n , then $[\mathbf{b}_1]_{\mathcal{E}} = \mathbf{b}_1$, and likewise for the other vectors in \mathcal{B} . In this case, $\mathcal{E}_{\leftarrow \mathcal{B}}^P$ is the same as the change-of-coordinates matrix $P_{\mathcal{B}}$ introduced in Section 4.4, namely,

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$$

To change coordinates between two nonstandard bases in \mathbb{R}^n , we need Theorem 15. The theorem shows that to solve the change-of-basis problem, we need the coordinate vectors of the old basis relative to the new basis.

EXAMPLE 2 Let $\mathbf{b}_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

SOLUTION The matrix ${}_{\mathcal{C}} \overset{P}{\leftarrow}_{\mathcal{B}}$ involves the \mathcal{C} -coordinate vectors of \mathbf{b}_1 and \mathbf{b}_2 . Let $[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Then, by definition,

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{b}_1$$
 and $\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{b}_2$

To solve both systems simultaneously, augment the coefficient matrix with \mathbf{b}_1 and \mathbf{b}_2 , and row reduce:

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{bmatrix}$$
 (7)

Thus

$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$

The desired change-of-coordinates matrix is therefore

$$_{\mathcal{C}\leftarrow\mathcal{B}}^{P} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}$$

Observe that the matrix ${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$ in Example 2 already appeared in (7). This is not surprising because the first column of ${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$ results from row reducing $[\mathbf{c}_{1} \quad \mathbf{c}_{2} \mid \mathbf{b}_{1}]$ to $[I \mid [\mathbf{b}_{1}]_{\mathcal{C}}]$, and similarly for the second column of ${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$. Thus

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} \sim \begin{bmatrix} I & P \\ C \leftarrow B \end{bmatrix}$$

An analogous procedure works for finding the change-of-coordinates matrix between any two bases in \mathbb{R}^n .

EXAMPLE 3 Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$.

- a. Find the change-of-coordinates matrix from C to B.
- b. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

SOLUTION

a. Notice that $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$ is needed rather than $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$, and compute

$$\begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & | & -7 & -5 \\ -3 & 4 & | & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 5 & 3 \\ 0 & 1 & | & 6 & 4 \end{bmatrix}$$

So

$${}_{\mathcal{B} \leftarrow \mathcal{C}} = \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix}$$

b. By part (a) and property (6) above (with \mathcal{B} and \mathcal{C} interchanged),

$${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P} = ({}_{\mathcal{B} \leftarrow \mathcal{C}}^{P})^{-1} = \frac{1}{2} \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix} = \begin{bmatrix} 2 & -3/2 \\ -3 & 5/2 \end{bmatrix} \blacksquare$$

Another description of the change-of-coordinates matrix ${}_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$ uses the change-of-coordinate matrices $P_{\mathcal{B}}$ and $P_{\mathcal{C}}$ that convert \mathcal{B} -coordinates and \mathcal{C} -coordinates, respectively, into standard coordinates. Recall that for each \mathbf{x} in \mathbb{R}^n ,

$$P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}, \quad P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}} = \mathbf{x}, \quad \text{and} \quad [\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x}$$

Thus

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

In \mathbb{R}^n , the change-of-coordinates matrix ${}_{\mathcal{C} \leftarrow \mathcal{B}}^P$ may be computed as $P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$. Actually, for matrices larger than 2×2 , an algorithm analogous to the one in Example 3 is faster than computing $P_{\mathcal{C}}^{-1}$ and then $P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Let $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2\}$ and $\mathcal{G} = \{\mathbf{g}_1, \mathbf{g}_2\}$ be bases for a vector space V, and let P be a matrix whose columns are $[\mathbf{f}_1]_{\mathcal{G}}$ and $[\mathbf{f}_2]_{\mathcal{G}}$. Which of the following equations is satisfied by P for all \mathbf{v} in V?

(i)
$$[\mathbf{v}]_{\mathcal{F}} = P[\mathbf{v}]_{\mathcal{G}}$$

(ii)
$$[\mathbf{v}]_{\mathcal{G}} = P[\mathbf{v}]_{\mathcal{F}}$$

2. Let \mathcal{B} and \mathcal{C} be as in Example 1. Use the results of that example to find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

4.7 EXERCISES

- 1. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = 6\mathbf{c}_1 2\mathbf{c}_2$ and $\mathbf{b}_2 = 9\mathbf{c}_1 4\mathbf{c}_2$.
 - a. Find the change-of-coordinates matrix from ${\cal B}$ to ${\cal C}.$
 - b. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x} = -3\mathbf{b}_1 + 2\mathbf{b}_2$. Use part (a).
- 2. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = -2\mathbf{c}_1 + 4\mathbf{c}_2$ and $\mathbf{b}_2 = 3\mathbf{c}_1 6\mathbf{c}_2$.
 - a. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .
 - b. Find $[\mathbf{x}]_c$ for $\mathbf{x} = 2\mathbf{b}_1 + 3\mathbf{b}_2$.