Simulation Result for Manuscript

Yi

2023-04-02

 $\begin{aligned} \text{Biomarker1}: \tilde{X} &= \begin{cases} 0.7 + 0.1e & \text{if } \tilde{T} \leq 2\\ 0.3 + 0.3e & \text{if } \tilde{T} > 2 \end{cases} \\ \text{Biomarker2}: \tilde{X} &= \begin{cases} 0.6 + 0.2e & \text{if } \tilde{T} \leq 2\\ 0.4 + 0.3e & \text{if } \tilde{T} > 2 \end{cases} \end{aligned}$

Table 1: Scenarios of simulation

Censoring	Biomarker	Subjects	β	$\alpha_{0.7}$	$\alpha_{0.5}$	$\alpha_{0.3}$
Exp(0.2)	1	U(50, 150)	1	-2.431	-3.199	-3.961
		U(50, 300)	1	-3.277	-4.178	-5.083
	2	U(50, 150)	1	-0.518	-1.270	-2.020
		U(50, 300)	1	-0.878	-1.649	-2.427
U(1, 4)	1	U(50, 150)	1	-2.968	-3.713	-4.452
		U(50, 300)	1	-3.945	-4.899	-5.818
	2	U(50, 150)	1	-0.795	-1.547	-2.286
		U(50, 300)	1	-1.233	-2.020	-2.802

Table 2: Summary of the estimated SAUC when the true censoring is distributed as Exp(0.2).

				Biomarker1		Biomarker2	
Patients	\mathbf{S}	p	Methods	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	70		HZ_P	0.00 (73.70, 75.65)	100	0.00 (61.55, 62.84)	100
		0.7	HZ_O	1.09 (74.59, 76.84)	100	$1.78 \ (63.33, 64.68)$	100
			$\text{Prop}_{(0.7)}$	$0.64 \ (73.90, 76.84)$	77.3	0.02 (61.34, 63.09)	64
		0.5	HZ_O	$1.64 \ (74.80, 77.76)$	100	$2.80 \ (64.07, 65.82)$	100
			$Prop_{(0.5)}$	$0.70 \ (73.51, 77.38)$	76.3	$0.01 \ (60.92, 64.01)$	72
		0.3	HZ_O	$2.63 \ (75.29, 79.32)$	100	$4.18 \ (65.14, 67.40)$	99.9
			$Prop_{(0.3)}$	$0.88 \ (72.86, 78.31)$	67.5	$2.51 \ (60.89, 66.78)$	79.1
	200		HZ_P	$0.00\ (73.92,\ 75.13)$	100	$0.00 \ (61.86, \ 62.58)$	100
		0.7	HZ_O	$1.03\ (74.83,\ 76.19)$	100	1.82 (63.59, 64.43)	100
			$\text{Prop}_{(0.7)}$	$0.49 \ (73.98, 75.94)$	72.2	-0.14 (61.54, 62.56)	63
		0.5	HZ_O	$1.64 \ (75.25, 76.93)$	100	$2.85 \ (64.59, 65.57)$	100
			$Prop_{(0.5)}$	$0.50 \ (73.68, 76.26)$	76.3	-0.46 (61.03, 62.50)	67.2
		0.3	HZ_O	$2.29 \ (75.79, 77.85)$	100	$4.08 \ (65.67, 66.96)$	100
			$Prop_{(0.3)}$	$0.30\ (72.95,\ 76.73)$	76.8	-0.17 (60.31, 66.21)	73.1
50-300	70		HZ_P	$0.00\ (75.08,\ 76.48)$	100	$0.00 \ (62.05, \ 62.96)$	100
		0.7	HZ_O	$0.77 \ (75.56, 77.47)$	100	$1.28 \ (63.35, \ 64.37)$	100
			$Prop_{(0.7)}$	$0.48 \ (75.02, 77.27)$	77.4	$0.62 \ (62.39, \ 63.86)$	73.9
		0.5	HZ_O	$1.23 \ (75.69, 78.17)$	100	$2.06 \ (63.95, 65.26)$	100
			$Prop_{(0.5)}$	$0.43 \ (74.59, 77.54)$	74.8	$0.92 \ (62.17, \ 64.50)$	66.2
		0.3	HZ_O	$1.57 \ (75.07, 79.13)$	100	2.97 (64.68, 66.31)	99.9
			$Prop_{(0.3)}$	-0.08 (72.84, 78.46)	75.7	$1.90 \ (62.10, 65.79)$	70.1
	200		HZ_P	$0.00\ (75.07,\ 76.00)$	100	$0.00 \ (62.25, \ 62.82)$	100
		0.7	HZ_O	$0.68 \ (75.62, 76.73)$	100	$1.31\ (63.55,\ 64.18)$	100
			$Prop_{(0.7)}$	$0.39\ (75.23,\ 76.56)$	78.9	$0.57 \ (62.51, \ 63.77)$	70.2
		0.5	HZ_O	$1.13\ (75.87,\ 77.24)$	100	$2.05 \ (64.25, \ 64.98)$	100
			$Prop_{(0.5)}$	$0.34\ (74.99,\ 76.63)$	75.3	$-0.03 \ (61.97, \ 63.40)$	59.9
		0.3	HZ_O	$1.55 \ (76.01, 78.06)$	100	$2.91 \ (65.04, 66.03)$	100
			$Prop_{(0.3)}$	-0.03 (74.19, 76.81)	79.6	$0.09 \ (61.58, 65.08)$	69.3

Table 3: Summary of the estimated SAUC when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

				Biomarker1		Biomarker2		
Patients	\mathbf{S}	p	Methods	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	
50-150	70		HZ_P	0.00 (74.12, 75.80)	100	0.00 (61.71, 62.82)	100	
		0.7	HZ_O	0.92 (74.88, 77.02)	100	1.98 (63.61, 64.92)	100	
			$\text{Prop}_{(0.7)}$	$0.58 \ (74.23, 77.04)$	63.9	0.29 (61.79, 63.41)	44	
		0.5	HZ_O	$1.58 \ (75.20, 77.97)$	100	3.08 (64.61, 66.19)	100	
			$Prop_{(0.5)}$	$0.04 \ (73.40, 76.78)$	56.8	0.67 (61.31, 65.20)	51.5	
		0.3	HZ_O	$2.32\ (75.46,\ 79.32)$	100	4.42 (65.71, 67.75)	100	
			$Prop_{(0.3)}$	-0.34 (71.97, 77.27)	45.4	3.98 (62.86, 67.51)	64.4	
	200		HZ_P	$0.00\ (74.17,\ 75.26)$	100	0.00 (61.92, 62.61)	100	
		0.7	HZ_O	0.99 (75.13, 76.39)	100	1.97 (63.88, 64.62)	100	
			$\text{Prop}_{(0.7)}$	$0.66 \ (74.50, 76.38)$	79.6	-0.03 (61.72, 62.73)	39.2	
		0.5	HZ_O	1.52 (75.48, 77.05)	100	3.15 (64.98, 65.82)	100	
			$Prop_{(0.5)}$	-0.03 (73.57, 75.94)	72.9	-0.32 (61.30, 62.84)	45.8	
		0.3	HZ_O	2.17 (75.85, 77.98)	100	$4.45 \ (66.07, 67.28)$	100	
			$\mathrm{Prop}_{(0.3)}$	$-0.79 \ (72.54, 75.53)$	67.9	$3.68 \ (61.18, 66.96)$	59.6	
50-300	70		HZ_P	$0.00\ (75.28,\ 76.70)$	100	$0.00 \ (62.11, \ 62.93)$	100	
		0.7	HZ_O	$0.74\ (75.78,\ 77.68)$	100	$1.41 \ (63.50, \ 64.43)$	100	
			$\text{Prop}_{(0.7)}$	$0.23\ (75.13,\ 77.37)$	62.3	$0.18 \ (62.08, \ 63.38)$	40.6	
		0.5	HZ_O	1.14 (75.76, 78.42)	100	$2.29 \ (64.23, 65.37)$	100	
			$Prop_{(0.5)}$	-0.22 (74.31, 76.98)	58.1	0.55 (61.88, 64.49)	41.5	
		0.3	HZ_O	$1.38 \ (74.34, 79.47)$	100	3.25 (64.98, 66.45)	100	
			$Prop_{(0.3)}$	-2.46 (34.02, 76.50)	54.7	$2.41 \ (62.12, 66.19)$	50.6	
	200		HZ_P	$0.00\ (75.33,\ 76.18)$	100	$0.00 \ (62.33, \ 62.86)$	100	
		0.7	HZ_O	0.62 (75.88, 76.93)	100	1.38 (63.69, 64.29)	100	
			$Prop_{(0.7)}$	$0.40 \ (75.56, 76.77)$	72.5	$0.01 \ (62.24, \ 62.95)$	34.6	
		0.5	HZ_O	$1.05 \ (76.10, 77.52)$	100	$2.21\ (64.46,\ 65.15)$	100	
			$Prop_{(0.5)}$	$0.10\ (75.02,\ 76.71)$	74	-0.32 (61.82, 62.84)	36.8	
		0.3	HZ_O	$1.42 \ (76.11, 78.26)$	100	3.15 (65.28, 66.17)	100	
			$Prop_{(0.3)}$	-0.83 (73.69, 76.01)	69.4	-0.42 (61.54, 64.68)	42.3	

Patients denote the range of the number of patients. S denotes the number of the population studies. p denotes the approximate proportion of the published studies among the population. Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. HZ_P denotes the HZ model using the population studies; HZ_O denotes the HZ model using only the corresponding numbers of published studies; $Prop_{(p)}$ denotes the proposed sensitivity analysis method given p. The medians are multiplied by 100.