

# 1 Synchronous Serial Interface

#### 1.1 Overview

The SSI is a full-duplex synchronous serial interface and can connect to a variety of external analog-to-digital (A/D) converters, audio and telecom codecs, and other devices that use serial protocols for transferring data. The SSI supports National's Microwire, Texas Instruments Synchronous Serial Protocol (SSP), and Motorola's Serial Peripheral Interface (SPI) protocol.

The SSI operates in master mode (the attached peripheral functions as a slave) and supports serial bit rates from 7.2 KHz to 24 MHz. Serial data formats may range from 2 to 17 bits in length. The SSI provides 16 entries deep x 17 bits wide transmit and receive data FIFOs.

The FIFOs may be loaded or emptied by the Central Processor Unit (CPU) using programmed I/O, or DMA transfers while receiving or transmitting.

#### Features:

- 3 protocols support: National's Microwire, Tl's SSP, and Motorola's SPI
- Full-duplex or transmit-only or receive-only operation
- Programmable transfer order: MSB first or LSB first
- 16 entries deep x 17 bits wide transmit and receive data FIFOs
- Configurable normal transfer mode or Interval transfer mode
- Programmable clock phase and polarity for Motorola's SSI format
- Two slave select signal (SSI\_CE\_ / SSI\_CE2\_) supporting up to 2 slave devices
- Back-to-back character transmission/reception mode
- Loop back mode for testing



### 1.2 Pin Description

**Table 1-1 Micro Printer Controller Pins Description** 

| Name      | I/O    | Description                                     |
|-----------|--------|-------------------------------------------------|
| SSI_CLK   | Output | Serial bit-rate clock                           |
| SSI_CE_   | Output | First slave select enable                       |
| SSI_CE2_/ | Output | Second slave select enable /                    |
| SSI_GPC   |        | General purpose control signal to external chip |
| SSI_DT    | Output | Transmit data (serial data out)                 |
| SSI_DR    | Input  | Receive data (serial data in)                   |

SSI\_CLK is the bit-rate clock driven from the SSI to the peripheral. SSI\_CLK is toggled only when data is actively being transmitted and received.

SSI\_CE\_ or SSI\_CE2\_ are the framing signal, indicating the beginning and the end of a serialized data word.

SSI\_DT and SSI\_DR are the Transmit and Receive serial data lines.

SSI\_GPC is general-purpose control signal, synchronized with SSI\_CLK, can be used for LCD control.

When the multiplexed pin is configured as SSI\_GPC pin, SSI can't be configured for 17-bit (or multiples of it) data transfer. And the SSI can only perform transfer with the only slave select SPI\_CE\_.

SSI\_GPC and SSI\_CE2\_ is a multiplexed pin.



### 1.3 Register Description

The SSI has seven registers: one data, two control, one status, one bit-rate control, and two interval control registers. The table list these registers.

Name RW **Reset Value Address Access Size SSIDR** RW 0x?? 0x10043000 32 SSICR0 RW 0x0000 0x10043004 16 SSICR1 RW0x00007060 32 0x10043008 SSISR RW0x00000098 0x1004300C 32 **SSIITR** RW 0x0000 0x10043010 16 **SSIICR** RW0x00 0x10043014 8 SSIGR RW 0x0000 0x10043018 16

**Table 1-2 SSI Serial Port Registers** 

### 1.3.1 SSI Data Register (SSIDR)



| Bits  | Name      | Description                                                                 | RW |
|-------|-----------|-----------------------------------------------------------------------------|----|
| 31:17 | Reserved  |                                                                             | R  |
| 16    | GPC/D16   | This bit can be used as normal data bus bit 16 or GPC bit alternatively.    | RW |
|       |           | When the multiplexed output pin is selected as SSI_CE2_, it is normal       |    |
|       |           | data bus bit and it's readable / writable; when multiplexed pin is selected |    |
|       |           | as SSI_GPC, it is GPC bit for SSI_GPC pin output and it's write-only        |    |
| 15:0  | Transmit/ | Data word to be written to/read from Transmit/Receive FIFO.                 | RW |
|       | Receive   | When the transfer frame length is less than 17-bit, received data is        |    |
|       | Data      | automatically right justified in the receive-FIFO and the upper unused bits |    |
|       |           | are filled with '0'. For transmission, the upper unused bits of the data    |    |
|       |           | written into SSIDR is ignored by the transmit logic. (Note: "upper unused   |    |
|       |           | bits" does not include the SSIDR.GPC bit.                                   |    |



National microwire format includes format 1 and format2, when national microwire format 2 is selected, Bit 16 of SSIDR is defined as read/write operation judge bit, if it is 0, bit 15~0 represent one read command; if it is 1, bit 15~0 represent one write command and following is the written data. So the maximum length of one command (is defined in MCOM) is 16, the maximum length of one written or read data (is defined in FLEN) can be 17.

Transmit-FIFO only contain one read operation command once, or one write operation command and its data once, after transmit-FIFO is empty, next command can be filled in transmit-FIFO.

### 1.3.2 SSI Control Register0 (SSICR0)



| Bits | Name | Description                                                                    | RW |
|------|------|--------------------------------------------------------------------------------|----|
| 15   | SSIE | This bit is used to enable/disable SSI module: 0 – disable; 1 – enable         | RW |
|      |      | Clearing SSIE will not reset SSI FIFO, SSICR0, SSICR1, SSIGR, SSIITR           |    |
|      |      | and SSIICR automatically. Software should ensure the FIFOs/registers are       |    |
|      |      | properly configured and be flush/reset manually when necessary before          |    |
|      |      | enabling SSI.                                                                  |    |
| 14   | TIE  | This bit enables/disables the transmit-FIFO half-empty interrupt TXI:          | RW |
|      |      | 0 – disable; 1 – enable                                                        |    |
| 13   | RIE  | This bit enables/disables the receive-FIFO half-full interrupt RXI:            | RW |
|      |      | 0 – disable; 1 – enable                                                        |    |
| 12   | TEIE | This bit enables/disables the transmit-error interrupt TEI:                    | RW |
|      |      | 0 – disable; 1 – enable                                                        |    |
| 11   | REIE | This bit enables/disables the receive-error interrupt REI:                     | RW |
|      |      | 0 – disable; 1 – enable                                                        |    |
| 10   | LOOP | Used for test purpose. In loop mode, the output of SSI transmit shift register | RW |
|      |      | is connected to input of SSI receive shift register internally. The data       |    |
|      |      | received should be the same as the data transmitted. And do not output         |    |
|      |      | any valid signals on the pins.                                                 |    |
|      |      | 0 – normal SSI mode; 1 – LOOP mode                                             |    |



| 9   | RFINE    | This bit enables/disables    | T                                                                 | he receive    |             |                           |    |  |  |
|-----|----------|------------------------------|-------------------------------------------------------------------|---------------|-------------|---------------------------|----|--|--|
|     |          | receive finish control       |                                                                   | RFINE         | RFINC       | Receive Finish            |    |  |  |
|     |          | function:                    |                                                                   |               |             | Condition                 |    |  |  |
|     |          | 0 – disable; 1 – enable.     |                                                                   | 0             | х           | Same as transmit          |    |  |  |
|     |          | For SSICR1.FMAT = B'10       |                                                                   |               |             | completion condition      |    |  |  |
|     |          | (National Microwire          |                                                                   |               |             | (transmit-fifo is empty   |    |  |  |
|     |          | format 1 is selected),       |                                                                   |               |             | and SSICR1.UNFIN =        |    |  |  |
|     |          | SSICR0.RFINE must be 0       |                                                                   |               |             | 0)                        |    |  |  |
| 8   | RFINC*   | Receive finish control bit:  |                                                                   | 1             | 0           | Receive continue          | RW |  |  |
|     |          | 0 – receive continue;        |                                                                   | 1             | 1           | Receive finish            |    |  |  |
|     |          | 1 – receive finished         |                                                                   |               |             |                           |    |  |  |
|     |          |                              |                                                                   |               |             |                           |    |  |  |
| 7   | Reserved |                              |                                                                   |               |             |                           | R  |  |  |
| 6   | FSEL     | This bit sets the frame sign | al                                                                | to be used    | d for slave | select. The unselected    | RW |  |  |
|     |          | frame signal always output   | in                                                                | valid level   | . When mu   | ultiplexed pin is used as |    |  |  |
|     |          | SSI_GPC, only 0 can be se    | et.                                                               |               |             |                           |    |  |  |
|     |          | 0 – SSI_CE_ is selected;     |                                                                   |               |             |                           |    |  |  |
|     |          | 1 – SSI_CE2_ is selected.    |                                                                   |               |             |                           |    |  |  |
| 5:3 | Reserved |                              |                                                                   |               |             |                           | R  |  |  |
| 2   | TFLUSH   | Flush the transmit FIFO wh   | Flush the transmit FIFO when set to 1. Always return 0 when read. |               |             |                           | RW |  |  |
| 1   | RFLUSH   | Flush the receive FIFO who   | en                                                                | set to 1. A   | Always retu | urn 0 when read.          | RW |  |  |
| 0   | DISREV   | This bit enables/disables re | ece                                                               | eive function | on: 0 – ena | able; 1 – disable         | RW |  |  |

**Note:** \*: 1) When transmitting finished or for receive-only operation, transmit function can be disabled and this bit is used to control receiving completion, and the SSI will consume less power.

2) When the finish condition is set, the receiving will complete after present character is completely shifted in, then the SSI will stop the SSI\_CLK and negate the SSI\_CE\_/ SSI\_CE2\_ if necessary. To make sure present transfer is completed, user must read and get SSISR.END = 1 (or SSISR.BUSY = 0).

### 1.3.3 SSI Control Register1 (SSICR1)





| Bits  | Name  |                  | Description                                           |                 | RW |
|-------|-------|------------------|-------------------------------------------------------|-----------------|----|
| 31:30 | FRMHL | Frame valid leve | select, FRMHL [1: 0] correspond to SSI                | _CE2_ and       | RW |
|       |       | SSI_CE_ respec   | tively.                                               |                 |    |
|       |       | FRMHL[1:0]       | Description                                           |                 |    |
|       |       | 00               | SSI_CE_ is low level valid and                        | Initial value   |    |
|       |       |                  | SSI_CE2_ is low level valid                           |                 |    |
|       |       | 01               | SSI_CE_ is high level valid and                       |                 |    |
|       |       |                  | SSI_CE2_ is low level valid                           |                 |    |
|       |       | 10               | SSI_CE_ is low level valid and                        |                 |    |
|       |       |                  | SSI_CE2_ is high level valid                          |                 |    |
|       |       | 11               | SSI_CE_ is high level valid and                       |                 |    |
|       |       |                  | SSI_CE2_ is high level valid                          |                 |    |
| 29:28 | TFVCK | Time from frame  | valid to clock start, that provide program            | mable time      | RW |
|       |       | delay from frame | (SSI_CE_/SSI_CE2_) assert edge to S                   | SI_CLK leading  |    |
|       |       | edge. When TFV   | $CK = B'00$ , the time is fixed half $SSI\_CL$        | K or one        |    |
|       |       | SSI_CLK cycle a  | ccording to SSICR1.POL and SSICR1.P                   | HA              |    |
|       |       | configuration.   |                                                       |                 |    |
|       |       | For SSICR1.FM    | AT = B'01, SSICR1.TFVCK is ignored.                   |                 |    |
|       |       | TFVCK[1:0]       | Description                                           |                 |    |
|       |       | 00               | Ignore (default half or one SSI_CLK                   | Initial value   |    |
|       |       |                  | cycle delay time)                                     |                 |    |
|       |       | 01               | 1 more SSI_CLK cycle delay time is                    |                 |    |
|       |       |                  | added                                                 |                 |    |
|       |       | 10               | 2 more SSI_CLK cycle delay time is                    |                 |    |
|       |       |                  | added                                                 |                 |    |
|       |       | 11               | 3 more SSI_CLK cycle delay time is                    |                 |    |
|       |       |                  | added                                                 |                 |    |
| 27:26 | TCKFI | Time from clock  | stop to frame invalid, provide programma              | able time delay | RW |
|       |       | from SSI_CLK la  | st edge to frame (SSI_CE_/SSI_CE2_)                   | negate edge.    |    |
|       |       | When TCKFI = B   | $^{\prime}$ 00, the time is fixed one SSI_CLK or half | SSI_CLK cycle   |    |
|       |       | according to SSI | CR1.POL and SSICR1.PHA configuratio                   | n.              |    |
|       |       | For SSICR1.FM    | AT = B'01, SSICR1.TFVCK is ignored.                   |                 |    |
|       |       | TCKFI[1:0]       | Description                                           |                 |    |
|       |       | 00               | Ignore (default half or one SSI_CLK                   | Initial value   |    |
|       |       |                  | cycle delay time)                                     |                 |    |
|       |       | 01               | 1 more SSI_CLK cycle delay time is                    |                 |    |
|       |       |                  | added                                                 |                 |    |
|       |       | 10               | 2 more SSI_CLK cycle delay time is                    |                 |    |
|       |       |                  | added                                                 |                 |    |



|       |          | 11                 | 2 mars SSL CLK avals delay time is                                          |                 |     |  |
|-------|----------|--------------------|-----------------------------------------------------------------------------|-----------------|-----|--|
|       |          |                    | 3 more SSI_CLK cycle delay time is                                          |                 |     |  |
| 0.5   | LECT     | Catta I CD finat a | added                                                                       | 1 LOD 6:t       | DW  |  |
| 25    | LFST     |                    | r MSB first when transfer: 0 – MSB first;                                   |                 | RW  |  |
| 24    | ITFRM    | · ·                | erval, selects if the Frame (SSI_CE_/SS                                     | , _             | RW  |  |
|       |          | •                  | during interval time at Interval Mode (SS                                   |                 |     |  |
|       |          |                    | .IVLTM ≠ H'0000). It's ignored at Normal                                    |                 |     |  |
|       |          |                    | SI_CE2_ deassert during interval time at                                    |                 |     |  |
|       |          |                    | SI_CE2_ keeps asserted during interval t                                    | ime at Interval |     |  |
|       |          | Mode               |                                                                             |                 | RW  |  |
| 23    | UNFIN    |                    |                                                                             |                 |     |  |
|       |          | • ,                | nappen) after all data in transmit-FIFO are                                 | _               |     |  |
|       |          |                    | must be cleared to 0 when SSICR1.FMA                                        | T = B'01 (TI's) |     |  |
|       |          | SSP format).       |                                                                             |                 |     |  |
|       |          |                    | O empty means end of transmission;                                          |                 |     |  |
|       |          |                    | didn't finish when transmit-FIFO is empt                                    | •               |     |  |
|       |          |                    | r and SSI waits for data filling; SSI_CLK                                   |                 |     |  |
|       |          | /SSI_CE2_ keep     | s asserted, SSI_CLK stop at the current                                     | level.          |     |  |
|       |          | _                  |                                                                             |                 |     |  |
|       |          |                    | lote: For transmit-FIFO empty before any transfer after SSI enabled, if     |                 |     |  |
|       |          |                    | = 1 or SSICR0.RFINE = 0, SSI will wait ti                                   |                 |     |  |
|       |          |                    | start to transfer and no underrun error wi                                  |                 |     |  |
|       |          |                    | = 0 and SSICR0.RFINE = 1, after transm                                      | it-FIFO become  |     |  |
|       | 144 H TO |                    | tart a receive-only transfer.                                               |                 | DVA |  |
| 22    | MULTS    |                    | nultiplexed pin function.                                                   |                 | RW  |  |
|       |          | ·                  | in is used as SSI_CE2_;                                                     |                 |     |  |
| 04.00 |          |                    | in is used as SSI_GPC.                                                      |                 | DW  |  |
| 21:20 | FMAT     |                    | e operating transfer format.                                                | 1               | RW  |  |
|       |          | FMAT[1:0]          | Description                                                                 |                 |     |  |
|       |          | 00                 | Motorola's SPI format                                                       | Initial value   |     |  |
|       |          | 01                 | TI's SSP format                                                             |                 |     |  |
|       |          | 10                 | National Microwire 1 format                                                 |                 |     |  |
|       |          | 11                 | National Micowire 2 format                                                  |                 |     |  |
| 19:16 | Reserved |                    |                                                                             |                 | R   |  |
| 15:12 | MCOM     |                    | MAT = B'10 or B'11 (National Microwire                                      |                 | RW  |  |
|       |          | -                  | selected), this bit decides the length of command from 1-bit to 16-bit. The |                 |     |  |
|       |          | _                  | ength of written or read data is defined in FLEN. For SSICR1.FMAT ≠         |                 |     |  |
|       |          | B'10 or B'11, this |                                                                             | <del></del>     |     |  |
|       |          | MCOM[1:0]          | Description                                                                 |                 |     |  |
|       |          | 0000               | 1-bit command selected                                                      |                 |     |  |
|       |          | 0001               | 2-bit command selected                                                      |                 |     |  |
|       |          | 0010               | 3-bit command selected                                                      |                 |     |  |



|       |          | 0040               | 0 hit                                        |                     |    |
|-------|----------|--------------------|----------------------------------------------|---------------------|----|
|       |          | 0010               | 3-bit command selected                       |                     |    |
|       |          | 0011               | 4-bit command selected                       |                     |    |
|       |          | 0100               | 5-bit command selected                       |                     |    |
|       |          | 0101               | 6-bit command selected                       |                     |    |
|       |          | 0110               | 7-bit command selected                       |                     |    |
|       |          | 0111               | 8-bit command selected                       | Initial value       |    |
|       |          | 1000               | 9-bit command selected                       |                     |    |
|       |          | 1001               | 10-bit command selected                      |                     |    |
|       |          | 1010               | 11-bit command selected                      |                     |    |
|       |          | 1011               | 12-bit command selected                      |                     |    |
|       |          | 1100               | 13-bit command selected                      |                     |    |
|       |          | 1101               | 14-bit command selected                      |                     |    |
|       |          | 1110               | 15-bit command selected                      |                     |    |
|       |          | 1111               | 16-bit command selected                      |                     |    |
| 11:10 | TTRG     | These bits set th  | e transmit-FIFO half-empty threshold val     | ue, when equal      | RW |
|       |          | or less character  | s left in transmit-FIFO, the SSISR.TFHE      | will be set to '1'. |    |
|       |          | TTRG[1:0]          | Description                                  |                     |    |
|       |          | 00                 | less than or equal to 1                      |                     |    |
|       |          | 01                 | less than or equal to 4                      |                     |    |
|       |          | 10                 | less than or equal to 8                      | Initial value       |    |
|       |          | 11                 | less than or equal to 14                     |                     |    |
| 9:8   | RTRG     | Set the receive-F  | FIFO half-full threshold value, when equa    | l or more           | RW |
|       |          | characters receiv  | ved in receive-FIFO, the SSISR.RFHF wi       | Il be set to '1'.   |    |
|       |          | RTRG[1:0]          | Description                                  |                     |    |
|       |          | 00                 | less than or equal to 1                      |                     |    |
|       |          | 01                 | less than or equal to 4                      | Initial value       |    |
|       |          | 10                 | less than or equal to 8                      |                     |    |
|       |          | 11                 | less than or equal to 14                     |                     |    |
| 7:4   | FLEN     | These bits set the | e bit length of every character to be transr | mitted/received.    | RW |
|       |          |                    | ata length can be configured is 17 bits. Fo  |                     |    |
|       |          |                    | ts (multiples of the SSICR1.FLEN configu     | _                   |    |
|       |          | _                  | ensure properly processing. When SSI_0       | • ,                 |    |
|       |          |                    | S = 1), the FLEN shouldn't be configured     | •                   |    |
|       |          | ,                  | en TI SSP mode is selected (FMAT = 2'b       |                     |    |
|       |          |                    | l'b0000) isn't supported.                    | •                   |    |
|       |          | MCOM[1:0]          | Description                                  |                     |    |
|       |          | 0000               | 2-bit data                                   |                     |    |
|       |          | 0001               | 3-bit data                                   |                     |    |
|       |          | 0010               | 4-bit data                                   |                     |    |
|       | <u> </u> | 0011               | 5-bit data                                   |                     |    |
|       |          |                    |                                              | <u> </u>            |    |



|     | T        | I-I-              |                                                                   |                 |    |
|-----|----------|-------------------|-------------------------------------------------------------------|-----------------|----|
|     |          | 0011              | 5-bit data                                                        |                 |    |
|     |          | 0100              | 6-bit data                                                        |                 |    |
|     |          | 0101              | 7-bit data                                                        |                 |    |
|     |          | 0110              | 8-bit data                                                        | Initial value   |    |
|     |          | 0111              | 9-bit data                                                        |                 |    |
|     |          | 1000              | 10-bit data                                                       |                 |    |
|     |          | 1001              | 11-bit data                                                       |                 |    |
|     |          | 1010              | 12-bit data                                                       |                 |    |
|     |          | 1011              | 13-bit data                                                       |                 |    |
|     |          | 1100              | 14-bit data                                                       |                 |    |
|     |          | 1101              | 15-bit data                                                       |                 |    |
|     |          | 1110              | 16-bit data                                                       |                 |    |
|     |          | 1111              | 17-bit data                                                       |                 |    |
| 3:2 | Reserved |                   |                                                                   | _               | R  |
| 1   | PHA      | This bit sets the | phase of the SSI_CLK from the beginning                           | of a data frame | RW |
|     |          | for Motorola's SI | PI format (SSICR1.FMAT = B'00).                                   |                 |    |
|     |          | 0 - The leading   | edge of SSI_CLK is used to sample data                            | from SSI_DR     |    |
|     |          | after the SSI_CE  | fter the SSI_CE_/SSI_CE2_ goes valid, it is initial value;        |                 |    |
|     |          | 1 – The leading   | edge of SSI_CLK is used to drive data on                          | to SSI_DT after |    |
|     |          | the SSI_CE_/S     | SI_CE2_ goes valid.                                               |                 |    |
| 0   | POL      | This bit sets SSI | _CLK's idle state polarity for Motorola's S                       | PI format       | RW |
|     |          | (SSICR1.FMAT      | = B'00).                                                          |                 |    |
|     |          | 0 – SSI_CLK kee   | 0 – SSI_CLK keeps low level when idle, when SSI_CE_/SSI_CE2_ goes |                 |    |
|     |          | valid the leading | clock edge is a rising edge, it is initial val                    | ue;             |    |
|     |          | 1 – SSI_CLK ke    | eps high level when idle, when SSI_CE                             | /SSI_CE2_       |    |
|     |          | goes valid the le | ading clock edge is a falling edge.                               |                 |    |

# 1.3.4 SSI Status Register1 (SSISR)



| Bits  | Name     | Description | RW |
|-------|----------|-------------|----|
| 31:18 | Reserved |             | R  |



| 17:13 | TFIFO-NUM | These bits indicate the Characters Number in Transmit-FIFO.                | R  |
|-------|-----------|----------------------------------------------------------------------------|----|
| 12:8  | RFIFO-NUM | These bits indicate the Characters Number in Transmit-FIFO.                | R  |
| 7     | END       | This bit indicates transfer end status. It is the inverse of SSISR.BUSY    | R  |
|       |           | when transfer is in process, but it'll keep cleared at interval time       |    |
|       |           | before transfer is completed. It'll be set when transfer finished.         |    |
| 6     | BUSY      | This bit indicates SSI's working status.                                   | R  |
|       |           | 0 – SSI is idle or at interval time; 1 – Transmission and/or reception is  |    |
|       |           | in process.                                                                |    |
| 5     | TFF       | This bit denotes transmit-FIFO is full or not.                             | R  |
|       |           | 0 - Transmit-FIFO is not full; 1 - Transmit-FIFO is full.                  |    |
| 4     | RFE       | This bit denotes receive-FIFO is empty or not.                             | R  |
|       |           | 0 – Receive-FIFO is not empty; 1 – Receive-FIFO is empty.                  |    |
| 3     | TFHE      | This bit denotes whether the characters number in transmit-FIFO            | R  |
|       |           | being less or equal to SSICR1.TTRG.                                        |    |
|       |           | 0 – The data in transmit-FIFO is more than the condition set by            |    |
|       |           | SSICR1.TTRG;                                                               |    |
|       |           | 1 – The data in transmit-FIFO meets the condition set by                   |    |
|       |           | SSICR1.TTRG, If SSICR0.TIE = 1, it will generate SSI TXI interrupt.        |    |
| 2     | RFHF      | This bit denotes whether the characters number in receive-FIFO             | R  |
|       |           | being more or equal to the number set by SSICR1.RTRG.                      |    |
|       |           | 0 – The data in receive-FIFO is less than the condition set by             |    |
|       |           | SSICR1.RTRG                                                                |    |
|       |           | 1 – The data in receive-FIFO meets the condition set by                    |    |
|       |           | SSICR1.RTRG, If SSICR0.RIE = 1, it will generate SSI RXI interrupt.        |    |
| 1     | UNDR      | Transmit-FIFO underrun status. When underrun happens, SSI set this         | RW |
|       |           | bit and keeps the current status of SSI_CLK and SSI_CE_/SSI_CE2_,          |    |
|       |           | waiting for transmit-FIFO filling.                                         |    |
|       |           | 0 – Underrun has not occurred;                                             |    |
|       |           | 1 – Underrun has occurred, when SSICR0.TEIE is set, it will generate       |    |
|       |           | SSI TEI interrupt. Write '0' to clear this bit, writing '1' has no effect. |    |
| 0     | OVER      | Receive-FIFO overrun status, new received data will lose.                  | RW |
|       |           | 0 – Overrun has not occurred;                                              |    |
|       |           | 1 – Overrun has occurred, When SSICR0.REIE is set, it will generate        |    |
|       |           | SSI REI interrupt. Write '0' to clear this bit, writing '1' has no effect. |    |



# 1.3.5 SSI Interval Time Control Register (SSIITR)



| Bits | Name   | Description                                                                            | RW |
|------|--------|----------------------------------------------------------------------------------------|----|
| 15   | CNTCLK | Counting clock source select.                                                          | RW |
|      |        | 0 – Use SSI bit clock (SSI_CLK) as the interval counter clock source;                  |    |
|      |        | 1 – Use 32K clock as the interval counter clock source.                                |    |
| 14:0 | IVLTM  | Interval time set, set the cycle number of counting clock source for                   | RW |
|      |        | desired interval time. When SSIITR.IVLTM = 0x0000, normal mode is                      |    |
|      |        | selected, and SSIITR.CNTCLK and SSIICR are ignored. When                               |    |
|      |        | SSIITR.IVLTM ≠ 0x0000, interval mode is selected. The interval time is                 |    |
|      |        | calculated as follows:                                                                 |    |
|      |        | Interval time ≈ [CNTCLK clock period] * [Value of IVLTM]                               |    |
|      |        | The actual interval time is as follow:                                                 |    |
|      |        | When SSIITR.CNTCLK = 0:                                                                |    |
|      |        | Interval time = [CNTCLK clock period] * [Value of IVLTM] + 3 *                         |    |
|      |        | device_clock period                                                                    |    |
|      |        | When SSIITR.CNTCLK = 1:                                                                |    |
|      |        | Interval time ≥ [CNTCLK clock period] * [Value of IVLTM + 1] + 1 *                     |    |
|      |        | device_clock period;                                                                   |    |
|      |        | Interval time ≤ [CNTCLK clock period] * [Value of IVLTM + 2] + 2 * device_clock period |    |



# 1.3.6 SSI Interval Character-per-frame Control Register (SSIICR)



| Bits | Name     | Description                                                           | RW |
|------|----------|-----------------------------------------------------------------------|----|
| 7:3  | Reserved |                                                                       | R  |
| 2:0  | ICC      | Sets the fixed number of characters to be transmitted / received each | RW |
|      |          | time during SSI_CLK changing (and SSI_CE_ / SSI_CE2_ asserting) in    |    |
|      |          | interval mode for SSICR1.FMAT = B'00 (Motorola's SPI format is        |    |
|      |          | selected). SSIICR is ignored for SSICR1.FMAT ≠ B'00.                  |    |
|      |          | The desired transfer number of characters-per-frame is (SSIICR set    |    |
|      |          | value + 1).                                                           |    |

# 1.3.7 SSI Clock Generator Register (SSIGR)



| Bits | Name     | Description                                                            |    |  |  |  |
|------|----------|------------------------------------------------------------------------|----|--|--|--|
| 15:8 | Reserved |                                                                        | R  |  |  |  |
| 7:0  | CGV      | Sets the frequency of serial bit clock (SSI_CLK). The serial bit clock | RW |  |  |  |
|      |          | (SSI_CLK) is generated by dividing device-clock as follows:            |    |  |  |  |
|      |          | F <sub>SSI_CLK</sub> = [Frequency of device clock] / (2 * (CGV + 1))   |    |  |  |  |
|      |          | Device clock is generated in CPM module. The value in SSIGR can be     |    |  |  |  |
|      |          | set from 0 to 255, and initialized to 0x0000 on power-on reset.        |    |  |  |  |



### 1.4 Functional Description

Serial data is transferred between the processor and external peripheral through FIFO buffers in the SSI. Data transfers to system memory are handled by either the CPU (using programmed I/O) or by DMA. Operation is full duplex - separate buffers and serial data paths permit simultaneous transfers to and from the external peripheral.

Programmed I/O transmits and receives data directly between the CPU and the transmit/receive FIFO's. The DMA controller transfers data during transmit and receive operations between memory and the FIFO's.

Transmit data is written by the CPU or DMA to the SSI's transmit FIFO. The SSI then takes the data from the FIFO, serializes it, and transmits it via the SSI\_DT signal to the peripheral. Data from the peripheral is received via the SSI\_DR signal, converted to parallel words and is stored in the Receive FIFO. Read operations automatically target the receive FIFO, while write operations write data to the transmit FIFO. Both the transmit and receive FIFO buffers are 16 entries deep by 17 bits wide. As the received data fills the receive FIFO, a programmable threshold triggers an interrupt to the Interrupt Controller. If enabled, an interrupt service routine responds by identifying the source of the interrupt and then performs one or several read operations from the inbound (receive) FIFO buffer.



### 1.5 Data Formats

Four signals are used to transfer data between the processor and external peripheral. The SSI supports three formats: Motorola SPI, Texas Instruments SSP, and National Microwire. Although they have the same basic structure the three formats have significant differences, as described below.

SSI CE /SSI CE2 varies for each protocol as follows:

- For SPI and Microwire formats, SSI\_CE\_/SSI\_CE2\_ functions as a chip select to enable the external device (target of the transfer), and is held active-low during the data transfer.
- For SSP format, this signal is pulsed high for one serial bit-clock period at the start of each frame.

SSI CLK varies for each protocol as follows:

- For Microwire, both transmit and receive data sources switch data on the falling edge of SSI\_CLK, and sample incoming data on the rising edge.
- For SSP, transmit and receive data sources switch data on the rising edge of SSI\_CLK, and sample incoming data on the falling edge.
- For SPI, the user has the choice of which edge of SSI\_CLK to use for switching outgoing
  data, and for sampling incoming data. In addition, the user can move the phase of SSI\_CLK,
  shifting its active state one-half period earlier or later at the start and end of a frame.

While SSP and SPI are full-duplex protocols, Microwire uses a half-duplex master-slave messaging protocol. At the start of a frame, a 1 or 2-byte control message is transmitted from the controller to the peripheral. The peripheral does not send any data. The peripheral interprets the message and, if it is a READ request, responds with requested data, one clock after the last bit of the requesting message.

The serial clock (SSI\_CLK) only toggles during an active frame. At other times it is held in an inactive or idle state, as defined by its specified protocol.

#### 1.5.1 Motorola's SPI Format Details

### 1.5.1.1 General Single Transfer Formats

The figures below show the timing of general single transfer format. SSI\_GPC is also illustrated when the multiplexed pin is selected as SSI\_GPC.





Figure 1-1 SPI Single Character Transfer Format (PHA = 0)



Figure 1-2 SPI Single Character Transfer Format (PHA = 1)

For SSICR1.PHA = 0, when SSICR1.TFVCK = B'00, hardware ensures the first clock edge appears one SSI\_CLK period after SSI\_CE\_ / SSI\_CE2\_ goes valid; when SSICR1.TCKFI = B'00, hardware ensures the SSI\_CE\_ / SSI\_CE2\_ negated half SSI\_CLK period after last clock change edge; when SSICR1.TFVCK  $\neq$  B'00 or SSICR1.TCKFI  $\neq$  B'00, 1/2/3 more clock cycles are inserted.

For SSICR1.PHA = 1, when SSICR1.TFVCK = B'00, hardware ensures the first clock edge appears



half SSI\_CLK period after SSI\_CE\_ / SSI\_CE2\_ goes valid; when SSICR1.TCKFI = B'00, hardware ensures the SSI\_CE\_ / SSI\_CE2\_ negated one SSI\_CLK period after last clock change edge; when SSICR1.TFVCK  $\neq$  B'00 or SSICR1.TCKFI  $\neq$  B'00, 1/2/3 more clock cycles are inserted.

Data is sampled from SSI\_DR at every rising edge (when PHA = 0, POL = 0 or PHA = 1, POL = 1) or at every falling edge (when PHA = 0, POL = 1 or PHA = 1, POL = 0). According to SPI protocol, input data on SSI\_DR should be stable at every sample clock edge.

Drive data onto SSI\_DT at every rising edge (when PHA = 0, POL = 1 or PHA = 1, POL = 0) or at every falling edge (when PHA = 0, POL = 0 or PHA = 1, POL = 1).

#### 1.5.1.2 Back-to-Back Transfer Formats



Figure 1-3 SPI Back-to-Back Transfer Format

For Motorola's SPI format transfers those continuous characters are exchanged during SSI\_CE\_ / SSI\_CE2\_ being valid, the timing is illustrated in the figure (SSICR1.LFST = 0).

Back-to-back transfer is performed as transmit-only/full-duplex operation when transmit-FIFO is not empty before the completion of the last character's transfer or performed as receive-only operation.



#### 1.5.1.3 Frame Interval Mode Transfer Format

When in interval mode (SSIITR. IVLTM  $\neq$  '0'), SSI always wait for an interval time (SSIITR.IVLTM), transfer fixed number of characters (SSIICR), then repeats the operation.

When SSICR0.RFINE = 1, if transmit-FIFO is still empty after the interval time, receive-only transfer will occur.

During interval-wait time, SSI stops SSI\_CLK, and when SSICR1.ITFRM = 0 it negates the SSI\_CE\_ / SSI\_CE2\_, when SSICR1.ITFRM = 1 it keeps asserting the SSI\_CE\_ / SSI\_CE2\_.

For transfers finished with transmit-FIFO empty, if the SSI transmit-FIFO is empty before fixed number of characters being loaded to transfer (SSICR1.UNFIN must be 1), then the SSI will set SSISR.UNDR = 1; if enabled, it'll send out a SSI underrun interrupt. At the same time, SSI will hold the SSI\_CE\_ / SSI\_CE2\_ and SSI\_CLK signals at current status and wait for the transmit-FIFO filling. The SSI will continue transfer after transmit-FIFO being filled. The SSI always stops after completion of fixed number of characters' transfer (SSICR1.UNFIN must be 0) with transmit-FIFO empty.

For transfers finished by SSICR0.RFINC being valid set, the SSI will stop after finished current character transfer and needn't wait for a whole completion of fixed number of characters' transfer.

Two Interval transfer mode are illustrated in the following figures. In these timing diagram, SSICR1.PHA = 0, SSICR1.POL = 0 and SSIICR = 0.



Figure 1-4 SPI Frame Interval Mode Transfer Format (ITFRM = 0, LFST = 0)





Figure 1-5 SPI Frame Interval Mode Transfer Format (ITFRM = 1, LFST = 1)

### 1.5.2 TI's SSP Format Details

In this format, each transfer begins with SSI\_CE\_ pulsed high for one SSI\_CLK period. Then both master and slave drive data at SSI\_CLK's rising edge and sample data at the falling edge. Data are transferred with MSB first or LSB first. At the end of the transfer, SSI\_DT retains the value of the last bit sent through the next idle period.



Figure 1-6 TI's SSP Single Transfer Format





Figure 1-7 TI's SSP Back-to-back Transfer Format

#### 1.5.3 National Microwire Format Details

It supports format 1 and format 2. If format 1 is selected, both master and slave drive data at SSI\_CLK falling edge and sample data at the rising edge. If format 2 is selected, master drive and sample data at SSI\_CLK falling edge, slave drive and sample data at SSI\_CLK rising edge. SSI\_CLK goes high midway through the command's most significant bit (or LSB) and continues to toggle at the bit rate. One bit clock (format 1) or half one bit clock (format 2) period after the last command bit, the external slave must return the serial data requested, with most significant bit first (or LSB first) on SSI\_DR. SSI\_CE\_ / SSI\_CE2 deasserts high half clock (SSI\_CLK) period (and 1/2/3 additional clock periods) later. Format 1 support back-to-back transfer, the start and end of back-to-back transfers are similar to those of a single transfer. However, SSI\_CE\_ / SSI\_CE2 remains asserted throughout the transfer. The end of a character data on SSI\_DR is immediately followed by the start of the next command byte on SSI\_DT.



Figure 1-8 National Microwire Format 1 Single Transfer





Figure 1-9 National Microwire Format 1 Back-to-back Transfer



Figure 1-10 National Microwire Format 2 Read Timing



Figure 1-11 National Microwire Format 2 Write Timing



# 1.6 Interrupt Operation

In SSI, there are TXI, RXI, TEI and REI total 4 interrupts, all these interrupts are combined together to make one SSI interrupt, which can be masked by writing '1' into corresponding mask bit in INTC interrupt mask register (IMR).

**Table 1-3 SSI Interrupts** 

| Operation | Condition                    | Flag Bit   | Mask Bit    | Interrupt | DMAC<br>Activation |
|-----------|------------------------------|------------|-------------|-----------|--------------------|
| Transmit  | T-FIFO is half-empty or less | SSISR.TFHE | SSICR0.TIE  | TXI       | Possible           |
|           | Transmit underrun error      | SSISR.UNDR | SSICR0.TEIE | TEI       | Impossible         |
| Receive   | R-FIFO is half-full or more  | SSISR.RFHF | SSICR0.RIE  | RXI       | Possible           |
|           | Receive overrun error        | SSISR.OVER | SSICR0.REIE | REI       | Impossible         |

Either SSISR.TFHE or SSISR.RFHF can activate DMA transferring when corresponding individual interrupt mask bit in SSICR0 is cleared (masked) and DMA is enabled and configured.