

(A) Barium chloride

TARGET: IIT-JEE 2022 **NURTURE COURSE**

CHEMISTRY

RA	CE # 01	GENERAL	. CHEMISTRY			
Mat	ter and its classification					
1.	When two or more elen	nents combine chemically	with one another is t	formed ?		
	(A) Element	(B) Mixture	(C) Fluid	(D) Compound		
2.	Which one of the follow	wing statements is correct '	?			
	(A) Two or more than to	wo atoms of the element co	ombine and form compo	und.		
	(B) The atoms retain the	eir own property when for	m a compound.			
	(C) Each substance of a	mixture loses its original	property.			
	(D)Each substance of a	mixture can be separated b	by physical or chemical i	nethods.		
3.	Which one of the follow	wing is heterogeneous mix	ture?			
	(A) Air	(B) Brass	(C) NaCl + Fe	(D) Salt solution		
4.	Which one of the follow	ving pairs have both are pr	esent a compound and m	nixture		
	(A)NH ₃ and salt solutio	n	(B) Lemon juice and	Liquidgum		
	(C) Ice cream and NaCl		(D) Gun powder and	plaster of paris.		
5.	Which one of the following is not an example of homogeneous mixture?					
	(A) Sugar solution	(B) $O_2 + N_2$ gases	(C) Salt + Sand	(D) $Zn + Cu$ alloy		
6.	Co stands for wh	nile CO stands for				
	(A)The atoms of the element cobalt; the atoms of the compound carbon monoxide					
	(B) The atoms of the ele	ement carbon monoxide				
	(C)The atom of the eler	ment cobalt; the molecules	of the compound carbon	monoxide		
	(D) The molecules and	atoms of element carbon				
7.	Classify each of the foll	lowing as an element, a co	mpound, or a mixture.			
	(a) water	(b) iron	(c) ice-cream	(d) sugar		
	(e) toothpaste	(f) silicon dioxide	(g) sulfur	(h) cement		
	(i) air	(j) magnesium oxide				
Forn	nula of ionic compounds	S				
8.		is the formula of the comp	oound nickel bisulphate?			
	(A) Ni HSO ₄	(B) Ni ₂ HSO ₄	(C) Ni ₂ SO ₄	(D) $Ni(HSO_4)_2$		
9.	What is the chemical name of the substance whose formulae is Na(NH ₄)HPO ₄ ?					
	(A) Sodium hydrogen p	hosphate	(B) Ammonium hyd	rogen phosphate		
	(C)Sodium ammonium		(D) None of these			
10.	Which of the following	Which of the following is the formula of the compound stannic phosphate?				
	(A) $\operatorname{Sn}_{3}(\operatorname{PO}_{4})_{4}$	(B) $\operatorname{Sn}_{2}(\operatorname{PO}_{3})_{2}$	(C) $\operatorname{Sn}_{3}(\operatorname{PO}_{3})_{2}$	(D) $\operatorname{Sn}_{2}(\operatorname{PO}_{3})_{4}$		
11.	Which of the following	is the formula of the comp	oound magnesium phosp	hite?		
	(A) Mg_2PO_3	(B) $Mg_2(PO_3)_4$	$(C) Mg_3(PO_3)_2$	(D) None of these		
12.	Which of the following	is the chemical name of E	$Ba(ClO_3)_2$?			

ADI/E-1 CHEMISTRY

(C) Barium chlorite

(B) Barium chlorate

(D) Barium hypochlorite

13.	Which of the followi	ng is the formula of barium	peroxide ?		
	(A) Ba ₂ O	(B) Ba_2O_2	(C) BaO ₂	(D) BaO ₃	
		Mat	trix-Match Type		
14.	Match the column				
	(A) Barium nitrate		(P) Cation is bivalen	t	
	(B) Silver chromate		(Q) Anion is bivalen	t	
	(C) Sodium Hydroge	n phosphate	(R) no. of cations > 1	no. of anions in one formula unit	
	(D) Magnesium phos	phate	(S) no. of cations = r	no. of anions in one formula unit	
			(T) Total no. of ions	per formula unit is 3	
		Pa	aragraph Type		
	We know that ionic of	compounds formed by comb	bination of cation and anio	n.	
	By using NH ₄ +, CrO ₄	⁻² , HCO ₃ ⁻ , Ca ²⁺ , SO ₄ ⁻²			
	Answer the following				
15.		having least number of ion	s per formula unit.		
	(A) Ammonium chromate		-	(B) Calcium bicarbonate	
	(C) Calcium chromate		(D) Ammonium sulphate		
16.	Name the compound having least number of ions and minimum positive charge per formula unit.				
	(A) Ammonium chromate		(B) Calcium chroma	te	
	(C) Ammonium bica	rbonate	(D) Calcium sulphat	e	
17.	7. The chloride of a metal has the formula MCl ₃ . The formula of its phosphate will be-			e will be-	
	$(A) M_2 PO_4$	(B) MPO ₄	$(C) M_3 PO_4$	(D) $M(PO_4)_2$	
	ATOMIC	MASS UNIT AND AVE	GRAGE ATOMIC AND	MOLECULAR MASS	
18.	Atomic weight of No	e is 20.2. Ne is mixture of Ne	e ²⁰ and Ne ²² , Relative abunda	ance of heavier isotope is	
	(A) 90	(B) 20	(C) 40	(D) 10	
19.	Mass of one atom of	the element A is 3.9854×10^{-1}	10 ⁻²³ g. How many atoms a	are contained in 1 g of the element A?	
	(A) 2.509×10^{23}	(B) 6.022×10^{23}	(C) 12.044×10^{23}	(D) None	
20.	The average atomic road.31. then % mole	~	g 79 mole % of 24 Mg and re	emaining 21 mole $\%$ of ^{25}Mg and ^{26}Mg , i	
	(A) 5	(B) 20	(C) 10	(D) 15	
21.	The actual weight of a	a molecule of water is			
	(A) 18 g		(B) 2.99×10^{-23} g		
	(C) both (A) & (B) a	re correct	(D) none of these		
22.	Number of oxygen m	nolecules having weight equ	ual to weight of 20 molecu	les of SO ₃ is equal to	
	(A) 100	(B) 50	(C) 15	(D) 8	

E-2/ADI CHEMISTRY

(A) 13:14:13

2.

TARGET: IIT-JEE 2022 NURTURE COURSE

(D) 14:13:14

RACE # 2 **MOLE CONCEPT CHEMISTRY**

Protons.	Neutrons	and Electrons	calculations
1 1 0 to 113 •	11Cuu Ono	and Licentins	Caiculauous

I.	Number of protons,	neutrons & electrons in th	e element ₈₉ X ²⁵¹ 1s	
	(A) 89, 231, 89	(B) 89, 89, 242	(C) 89, 142, 89	(D) 89, 71, 89

- The charge on the atom containing 17 protons, 18 neutrons and 18 electrons is
 - (B) -2(C) -1(D) Zero
- 3.
- In an atom $_{13}Al^{27}$, number of protons is(a) electron is (b) and neutron is (c). Hence ratio will be [in order c : b : a]
- 4. A and B are two elements which have same atomic weight and are having atomic number 27 and 30 respectively. If the atomic weight of A is 57 then number of neutron in B is

(C) 14:13:13

- (D) 40 (A) 27(B) 33 (C) 30
- The atomic mass 25 had 13 neutron's in its nucleus. What its ion can be 5.

(B) 13:13:14

- (A) Mn^{+2} (B) Cr^{+3} (C) $A1^{+3}$ (D) Mg^{+2}
- The sum of number of neutrons and protons in all of the isotopes of hydrogen is 6.
- (A) 3(C) 5(D) 6
- 7. Choose the false statement about deuterium
 - (A) It is an isotope of hydrogen (B) It contains $[(1 e^-) + (1 P^+) + (1 (n))]$
 - (C) It contains only $[(1 (P^+) + (1 (n))]$ (D)D,O is called the heavy water
- 8. Complete the following table:

	Symbol	No. of protons in nucleus	No. of neutrons in nucleus	No. of electrons	Netcharge
1	Y_{39}^{89}				
2	-	20	20		+2
3	-	23	28	20	
4	-	15	16		-3

Symbol		No. of protons in nucleus	No. of neutrons in nucleus	No. of electrons	Netcharge	
1	Y_{39}^{89}	39	50	39	0	
2	X^{+2}	20	20	18	+2	
3	\mathbb{Z}^{+3}	23	28	20	+3	
4	\mathbf{A}^{-3}	15	16	18	-3	

Mole calculations

- 9. No. of atoms in 4.25 g of NH₃ is approx
 - (A) 1×10^{23} (B) 1.5×10^{23} (D) 6×10^{23} (C) 2×10^{23}
- The volume occupied by 4.4 g of CO_2 at 273 K and (P = 1 atm) is **10.**
- (A) 22.4 L (B) 2.24 L (C) 0.224 L (D) 0.1 L

11.	The number of neutrons	present in 9	mg of O ¹⁸ is
-----	------------------------	--------------	--------------------------

(A) 10

 $(B) 5N_A$

(C) $0.005 N_A$

(D) $0.0005 N_A$

12. Rearrange the following (I to IV) in the order of increasing masses.

(I) 0.5 mole of O_3

(II) 0.5 gm molecule of Nitrogen

(III) 3.011×10^{23} molecule of O₂

(IV) 11.35 L of CO₂ at STP

(A) IV < III < II < I

(B) II < III < IV < I

(C) III < II < I < IV

(D) I < II < III < IV

13. Total number of protons, neutrons and electrons present in 14 mg of ${}_{6}C^{14}$ is (Take $N_{A} = 6 \times 10^{23}$)

(A) 1.2×10^{22}

(B) 1.2×10^{25}

(C) 7.2×10^{21}

(D) 1.08×10^{22}

14. Complete the following table : $(N_A = 6 \times 10^{22})$

	Mass of sample	Moles of sample	Molecules in sample	Total atoms in sample
1	$3.9g\ C_6H_6$			
2		0.2 mole H ₂ O		
3			2.4×10^{22} molecules CO2	
4				3.6×10^{22} Total atoms in CH3OH sample

Mass of sample	Moles of sample	Molecules in sample	Total atoms in sample
1 $3.9g C_6 H_6$	0.05	$0.05N_A$	$0.6~\mathrm{N_A}$
2 3.6 g	$0.2 \text{ mole H}_2\text{O}$	$0.2 N_A$	$0.6 \mathrm{N_A}$
3 1.76 g	0.04	2.4×10^{22} molecules CO ₂	7.2×10^{22}

4 0.032g 0.001 6×10^{21} 3.6 $\times 10^{22}$ Total atoms in CH₃OH sample

15. Number of electrons in 36mg of ${}^{18}_{8}\text{O}^{-2}$ ions are (Take N_A = 6 × 10²³)

(A) 1.2×10^{21}

(B) 9.6×10^{21}

(C) 1.2×10^{22}

(D) 1.9×10^{22}

16. Molar mass of electron is nearly ($N_A = 6 \times 10^{23}$)

(A) $9.1 \times 10^{-31} \text{ kg mol}^{-1}$

(B) 9.1×10^{-31} gm mol⁻¹

(C) 54.6×10^{-8} gm mol⁻¹

(D) $54.6 \times 10^{-8} \text{ kg mol}^{-1}$

17. Which of the following contain highest number of molecules

(A) 2.8 g of CO

(B) 3.2 g of CH_{4}

(C) 1.7 g of NH₃

(D) 3.2 g of SO₂

18. 5.6 L of oxygen at 273 K and 1 atm is equivalent to

(A) 1 mole

(B) 1/2 mole

(C) 1/4 mole

(D) 1/8 mole

19. Which has maximum number of molecules of O₂

(A) 32 gm of O_2

(B) 1 mole of O₂

(C) 1 gram molecule of O₂

(D) All have same

20. 1 gm - atom of nitrogen does not represents

(A) $6.02 \times 10^{23} \, \text{N}_2$ molecules

(B) 22.4 lit. of N₂ at N.T.P.

(C) 11.2 lit. of N₂ at N.T.P.

(D) 28 g of nitrogen

21. Column-I

Column-II

(A) 6.023×10^{23} molecules of CO_2

(P) 1 mol

(B) 6.023×10^{23} molecules of water

(Q) 22.4 L

(C) 96 g of O_2 gas

(R) 2 mol

(D) 88 g of CO, gas

(S) 3 mol

HOME WORK (NCERT: 1.10, 1.28, 1.30)

E-4/ADI

RACE #3 **MOLE CONCEPT CHEMISTRY**

Mass	percentage
------	------------

			mass percentage			
1.	•	most mammals contains e number of iron atoms in	• •	firon by mass. The molecular managed by its firm is	ss of haemo	
	(A) 3	(B) 4	(C) 2	(D) 6		
2.	Percentage of Se in panhydrous enzymes	•	syme is 0.5% by weight (at.wt. = 78.4) then min.mol. wt. of	of peroxidase	
	(A) 1.568×10^4	(B) 1.568×10^3	(C) 15.68	(D) 2.136×10^4		
		1	Empirical formula			
3.	A compound contain	ns 38.8% C, 16.0% H and	45.2% N. The empirica	l formula of the compound would	l be –	
	$(A) CH_3NH_2$	(B) CH	I_3CN (C) C_2H_5C	(D) $CH_2(NH)_2$		
4.	-	and Y has equal mass of pound (its mol. wt. is 12		reights are 30 and 20 respectivel	y. Molecula	
	$(A) X_2Y_2$	(B) X_3Y_3	(C) X_2Y_3	(D) X_3Y_2		
5.	A hydrocarbon cont	ains 80% of carbon, and	its $V.D. = 15$ then the h	ydrocarbon is -		
	(A) CH ₄	(B) C_2H_4	$(C) C_2H_6$	(D) C_2H_2		
6.	•	containing carbon and o h element. Therefore mol	• •	qual to 288. On analysis it is four	nd to contain	
	$(A) C_{12}O_9$	$(B) C_4 O_3$	$(C) C_3 O_4$	$(D) C_9 O_{12}$		
7.	Two oxides of a me formula of the secon		6 metal M respectively.	If the formula of the first oxide	is MO ₂ , the	
	$(A) MO_2$	(B) MO_3	$(C) M_2O$	(D) M_2O_5		
8.	In a hydrocarbon, the of the hydrocarbon is	-	gm of hydrogen present	in the molecule. Therefore, molec	cular formula	
	(A) CH ₄	$(B) C_2 H_6$	$(C) C_3H_8$	(D) C_4H_{10}		
9.	On analysis, a cert	ain compound was four	nd to contain iodine an	d oxygen in the ratio of 254 g	m of iodine	
	(at. mass 127) and 80 gm oxygen (at. mass 16). What is the formula of the compound					
	(A) IO	(B) I ₂ O	$(C) I_5O_3$	(D) I_2O_5		
10.	The number of atom	as of Cr and O are 4.8×1	0^{10} and 9.6×10^{10} respect	tively. Its empirical formula is -		
	$(A) \operatorname{Cr_2O_3}$	(B) CrO_2	$(C) Cr_2O_4$	(D) none		
11.	A given sample of p atoms. What is the s	implest formula -	-	atoms of chromium, and 0.60 m	ol of oxyger	
	$(A) \operatorname{ZnCr}_2 O_7$	$(B) ZnCr_2O_4$	(C) ZnCrO ₄	(D) ZnCrO ₆		
Law	s of chemical combin					
12.	When 100 gm of C_2I	H ₄ is polymerised to produ	ice polyethylene accordi	ng to the equation $nC_2H_4 \rightarrow (C_2H_2)$	$_{\mu}$) _n Then, how	

many gm polyethylene (C_2H_4)n would be produced?

At. wt: C-12; H-1

(D) $\frac{100}{28} \times n$ gm. (A) 100 gm (B) 100n gm

CHEMISTRY ADI/E-5

13.	8.4 g MgCO ₃ on heating S.T.P. will be	leaves behind a residue we	ighing 4.0 g, then carbon	n dioxide released into the atmosphere at		
	(A) 2.24 L	(B) 4.48 L	(C) 1.12 L	(D) 0.56 L		
14.	When 10 ml of propane (gas) is combusted comple	tely, volume of $CO_2(g)$ o	btained in similar condition is		
	(A) 10 ml	(B) 20 ml	(C) 30 ml	(D) 40 ml		
15.	2.76 g of silver carbonate	e on being strongly heated	yields a residue weighin	g		
	(A) 2.16 g	(B) 2.48 g	(C) 2.32 g	(D) 2.64 g		
16.	0.54 gm of metal "M" yie	0.54 gm of metal "M" yields 1.02 gm of its oxide M_2O_3 . The at. wt. of metal "M" is				
	(A) 9	(B) 18	(C) 27	(D) 54		
17.		X and Y combine to form to ules of X_2Y_3 weighs 85 g.		X ₂ Y ₃ when 0.05 mole of XY ₂ weight 5 g and Y are respectively		
	(A) 20, 30	(B) 30, 40	(C) 40, 30	(D) 80, 60		
18.	Chlorine is prepared in the to the reaction	e laboratory by treating man	nganese dioxide (MnO ₂)	with aqueous hydrochloric acid according		
		$4HCl(aq) + MnO_2(s)$	\rightarrow 2H ₂ O(ℓ) + MnCl ₂ (ac	$\mathbf{l}) + \mathbf{Cl}_2(\mathbf{g})$		
	How many gram of HCl	react with 5.0 g of mangar	ese dioxide? (At. wt. of	Mn = 55		
	(A) 2.12 gm	(B) 44.24 gm	(C) 8.4 gm	(D) 3.65 gm		
19.	One of the following con	nbinations illustrate law of	reciprocal proportions			
	(A) N_2O_3 , N_2O_4 , N_2O_5	(B) NaCl, NaBr, NaI	(C) CS2, CO2, SO2	(D) PH_3, P_2O_3, P_2O_5		
20.	The law of multiple prop	ortions is illustrated by				
	(A) Carbon monoxide an	d carbon dioxide	(B) Potassium bromic	le and potassium chloride		
	(C) Water and heavy water	er (D) Calcium hydroxide	and barium hydroxide.			
21.	If law of conservation of a 7.3 gm of HCl and BaSO		20.8 gm of BaCl ₂ on rea	ction with 9.8 gm of H ₂ SO ₄ will produce		
	(A) 11.65 gm	(B) 23.3 gm	(C) 25.5 gm	(D) 30.6 gm		
22.		th 64 g sulphur to form CS g oxygen to form SO ₂ . T	=	ines with 32 g oxygen to form CO_2 . 10 g		
	(A) Law of multiple prop	oortions	(B) Law of definite pr	roportions		
	(C) Law of reciprocal pro	pportions	(D) Law of gaseous v	olumes.		
HON	ME WORK NCERT 1.21,	1.23, 1.24, 1.8, 1.9				

E-6/ADI CHEMISTRY

(A) size, shape and orientation

1.

14.

(A) 18

RACE # 4 GENERAL CHEMISTRY CHEMISTRY

(B) shape, size and orientation

Principal, azimuthal and magnetic quantum numbers are respectively related to

Quantum numbers

	(C) size, orientation an	d shape	(D) none of these			
2. Which of the following sets of quantum num			rs can be correct for an ele	ectron in 4f-orbital:		
	(A) $n = 4$, $\ell = 3$, $m = -2$	2, s = 0	(B) $n = 4$, $\ell = 3$, $m = +$	$4, s = -\frac{1}{2}$		
	(C) $n = 4$, $\ell = 3$, $m = +1$	$1, s = +\frac{1}{2}$	(D) $n = 4$, $\ell = 2$, $m = -$	$-1, s = +\frac{1}{2}$		
3.	-	r model, the angular models bearing the electron.	mentum of revolving elect	tron is directly proportional to the atomic		
	S_2 : An orbital cannot a	accomodate more than 2	electrons.			
	S_3 : All orbitals have of	directional character.				
	(A) FTF	(B) TFF	(C) FFT	(D) TTF		
4.	If an electron has spin of	quantum number of $+1/2$	and magnetic quantum nun	nber of –1 it cannot be present in:		
	(A) f-orbital	(B) d-orbital	(C) p-orbital	(D) s-orbital		
5.	When the quantum nur	mber n,l,m,s are represen	ted by 3,3,2,+1/2, the sym	bolism for the electron is -		
	(A) 3s	(B) 3d	(C) 3f	(D) Impossible set of quantum number		
6.	For a 6s electron the va	alues of n,l,m,s respective	ely could be:			
	(A) 6,4,4,+1/2	(B) 1,0,0,+1/2	(C) 6,1,0,+1/2	(D) 6,0,0, +1/2		
7.	Any p-orbital can acco	modate up to				
	(A) four electrons		(B) Two electrons in p	arallel spin		
	(C) Six electrons		(D) Two electrons with	n opposite spin		
8.	Which one of the arrangement?	e following sets of	quantum numbers (n,l,m,s) represents an impossible		
	(A) $3,2,-2,+1/2$	(B) 4,0,0,+1/2	(C) $3,2,-3,+1/2$	(D) 5,3,0,–1/2		
9.	What type of orbital is	designated $n = 2$, $\ell = 3$,	$m_{\ell} = -2$?			
	(A) 4p	(B) 4d	(C) 4f	(D) Impossible set of quantum number		
10.	The maximum number	of electrons that can be	accomodated in s, p and d-	-subshells respectively are :		
	(A) 2 in each	(B) 1, 3 and 5	(C) 2, 6 and 10	(D) 2, 6 and 14		
11.	Which of the following	ng quantum numbers ha	s not been derived from S	Schrodinger wave equation:		
	(A) Principal quantum	n number (n)	(B) Subsidiary quanti	(B) Subsidiary quantum number (l)		
	(C) Magnetic quantum	n number (m)	(D) Spin quantum nu	mber (s)		
12.	The orbital angular m	omentum corresponding	g to $n = 4$ and $m = -3$ is:			
	(A) 0	(B) $\frac{h}{\sqrt{2}\pi}$	(C) $\frac{\sqrt{6} h}{2\pi}$	(D) $\frac{\sqrt{3} h}{\pi}$		
13.	Orbital angular mome	entum of an electron is	$\sqrt{3}\frac{h}{\pi}$. Then, the number of	f orientations of this orbital in space are:		
	(A) 3	(B) 5	π (C) 7	(D) 9		
Elect	tronic configurations					

CHEMISTRY ADI/E-7

(C) 32

(D) 8

What is the maximum possible number of electrons in an atom with (n + 1 = 7):

(B) 50

15.	Consider the ground respectively are	d state of Cr ($Z = 24$). The	ne numbers of electrons wi	th the azimuthal quantum numbers $l = 1$ and			
	(A) 16 and 4	(B) 12 and 5	(C) 12 and 4	(D) 16 and 5			
16.	Degenerate atomic	orbitals have					
	(A) Equal energy	(B) Nearly equal en	nergy (C) Different energy	gy (D) None of the above			
17.	What is a pos	sible set of quantum nur	mbers for the unpaired elec	etron in the orbital box diagram below?			
		[Ar] $\uparrow \downarrow \uparrow \downarrow$	$ \begin{array}{ccc} \uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow & \uparrow\downarrow \\ 3d & 4s \end{array} $	↑↓ ↑ 4p			
	(A) $n = 1, \ell = 1, m_{\ell}$	$=-1$, $m_s = +1/2$	(B) $n = 4$, $\ell = 1$, m	$_{\ell} = -1, m_{s} = +1/2$			
	(C) $n = 4, \ell = 2, m_{\ell}$	$=-2$, $m_s = +1/2$	(D) $n = 4$, $\ell = 0$, m	$_{\ell} = 0, m_{_{\rm S}} = +1/2$			
18.	Which element has	the following ground sta	ate electron configuration '	?			
		[Ar]	$ \begin{array}{c cccc} \hline \downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow & \hline \uparrow\downarrow & \hline \downarrow\downarrow\uparrow\downarrow \\ 3d & 4s & 4 \end{array} $	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑			
	(A) Se	(B) As	(C) S	(D) Ge			
19.	Hund's rule states the	hat the most stable arran	gement of electrons (for a	ground state electron configuration)			
	(A) Has three electrons per orbital, each with identical spins						
	(B) Has m_{ℓ} values greater than or equal to +1						
	(C) Has the maximum	um number of unpaired	electrons, all with the same	e spin in degenerate orbital			
	(D) Has two electro	ons per orbital, each with	opposing spins				
20.	How many maximu	m electrons can be desc	ribed by the quantum num	bers $n = 5$, $\ell = 2$ in a particular atom?			
	(A) 2	(B) 6	(C) 10	(D) 14			
21.	The total number of	f electrons in Cr atom fo	r which $m = 0$				
	(A) 1	(B) 8	(C) 12	(D) 16			
22.	The Pauli exclusion	principle states that					
	(A) no two electron	s in an atom can have th	e same set of four quantum	n numbers			
	(B) electrons can ha	ave either $\pm 1/2$ spins					
	(C) electrons with o	opposing spins are attrac	ted to each other				
	(D) no two electron	s in an orbital can have t	he same spin				
23.	Which of the follow	ving statements regarding	g subshell filling order for	a neutral atom is/are correct?			
	(I) Electrons are a	ssigned to the 4s subshel	ll before they are assigned	to the 3d subshell			
	(II) Electrons are as	signed to the 4f subshell	before they are assigned t	to the 6s subshell			
		ssigned to the 4d subshe	ll before they are assigned	to the 5p subshell			
	(A) I only	(B) II only	(C) I and III	(D) I, II and III			

Home Work NCERT EXERCISE 2.23, 24, 27, 28, 29, 30, 311.

E-8/ADI CHEMISTRY

RACE #5 **MOLE CONCEPT CHEMISTRY**

Column-I 1.

Column-II

- (A) No. of electrons in Na(11) having m = 0
- (P) 7
- (B) No. of electrons in S(16) having $(n + \ell) = 3$
- (Q) 15
- (C) No. of maximum possible electrons having
- (R) 8

s = +1/2 spin in Cr(24)

(S) 12

2. Imagine a universe in which the four quantum no. can have the same possible values as in our universe except that angular quantum no. (l) can have integral values from 0, 1, 2 n + 1.

Find the no. of electron n = 1 & 2 shell.

- **3.** The total number of subshells in nth main energy level are:

- (B) $2n^2$
- (C) 2n + 1
- (D) n.

- 4. Which of the following orbital does not make sense:
 - (A) 4d
- (B) 3f
- (C) 5p
- (D) 7s
- The correct order of the maximum spin of $\ [_{25}Mn^{4+},\,_{24}Cr^{3+},\,_{26}Fe^{3+}]$ is : 5.
- (A) $Fe^{3+} > Cr^{3+} = Mn^{4+}$ (B) $Fe^{3+} = Cr^{3+} > Mn^{4+}$ (C) $Cr^{3+} = Mn^{4+} > Fe^{3+}$
- (D) $Fe^{3+} > Mn^{4+} > Cr^{3+}$
- A neutral atom of an element has 2K, 8L, 9M and 2N electrons. Which of the following is/are correctly matched: 6.
 - (A) Total number of s electrons 8
- (B) Total number of p electrons 12
- (C) Total number of d electrons -1
- (D) Number of unpaired electrons in element 3
- Spin only magnetic moment of $25^{Mn^{x+}}$ ion is $\sqrt{15}$ B.M. Then, What is the value of x. 7.
- 8. (a) If the value of Azimuthal Quantum Number ℓ for an electron in a particular subshell is 3, then the minimum value of shell number associated with this electron can be x
 - (b) Orbital angular momentum of an electron is $\sqrt{3} \frac{h}{\pi}$. Then, the number of orientations of this orbital in space is y:

Give the value of (y-x)

MATCH THE COLUMN

9. Column-I

- (A) N₂
- (B) CO
- $(C) C_6 H_{12} O_6$
- (D) CH, COOH

10. Column-I

- (A) Vapour density
- (B) 1 mol
- (C) 12 g carbon
- (D) 96500 C

11. Column-I

- (A) N³⁻ (1 mol)
- (B) O^{2-} (1 mol)
- $(C) CH_4 (1 mol)$
- (D) H₂O (1 mol)

Column-II

- (P) 40% carbon by mass
- (Q) Empirical formula CH2O
- (R) Vapour density = 14
- (S) $14N_A$ ($N_A = 6.023 \times 10^{23}$) electrons in a mole

Column-II

- (P) Unitless
- (Q) 6.023×10^{23} electrons
- (R) 6.023×10^{23} atoms
- (S) $\frac{1}{2}$ × Molecular mass

Column-II

- (P) 10 mol electrons
- (Q) 8 mol protons
- (R) 6.023×10^{24} electrons
- (S) 10 mol protons

12. Column-I

- (A) $0.5 \text{ mol SO}_{2}(g)$
- (B) 1 g of $H_2(g)$
- $(C) 0.5 \text{ mol } O_2(g)$
- (D) One gram mole of O₂(g)

Column-II

- (P) Occupy 11.2 L at NTP
- (Q) Weighs 16 g
- (R) Number of atoms = $2 \times 6.023 \times 10^{23}$
- (S) Weighs 32 g
- 13. An unknown compound contains 8% sulphur by mass. Calculate
 - (a) Least molecular weight of the compound and
 - (b) Molecular weight if one molecule contains 4 atoms of "S"
 - (A) 200, 400
- (B) 300, 400
- (C) 400, 1600
- (D) 400, 1200

Home Work NCERT EXERCISE 2.62, 63, 64, 65, 66, 67

E-10/ADI CHEMISTRY

(A) 33

(B) 34

TARGET : IIT-JEE 2022 NURTURE COURSE

RA	RACE # 06		IODIC TABLE		CHEMISTRY
Peri	odic classification				
1.	Which element's ato	omic weight had been corre	ected by Mendleeve :-		
	(A) Be	(B) B	(C) Br	(D) Ba	
2.	Which element is a	bridge element Acc. to Me	ndleeve :-		
	(A) Na	(B) Li	(C) K	(D) Cu	
3.	Recently, a new elem	ment of Atomic No. 120 ha	we been discovered. It will	be placed in :-	
	(A) Inert gases	(B) Alkali metal	(C) Alkaline earth meta	al (D) Chalcogens	
4.	Which of the follow	ving is inner transition eler	ment :-		
	(A) Ca	(B) Cu	(C) Cm	(D) Cd	
5.	What is the outermo	ost electronic configuration	of Pt :-		
	(A) $4d^{10}5s^0$	(B) $4d^95s^1$	(C) $5d^{10} 6s^0$	(D) $5d^96s^1$	
6.	The long form of pe	eriodic table has			
	(A) Eight horizonta	l rows and seven vertical co	olumns		
	(B) Seven horizonta	al rows and eighteen vertica	al columns		
	(C) Seven horizonta	al rows and seven vertical c	olumns		
	(D) Eight horizonta	l rows and eight vertical co	lumns		
7.	What is General ele	ctronic configuration of f-b	plock element :-		
	(A) $(n-2)f^{0 \text{ to } 14} (n-1)$	$)d^{0 \text{ to } 4} \text{ ns}^2$	(B) $(n-2)f^{0 \text{ to } 14}(n-1)d$	$10 \text{ to } 1 \text{ ns}^{0 \text{ to } 2}$	
	(C) $(n-2)f^{0 \text{ to } 14} (n-1)$	$)d^{0 \text{ to } 1} \text{ ns}^0$	(D) $(n-2)f^{0 \text{ to } 14}(n-1)d$	$1^{0 \text{ to } 1} \text{ ns}^2$	
8.	Which block elemen	nt show allotropy :-			
	(A) s-block	(B) p-block	(C) d-block	(D) f-block	
9.	Which group metal	are non transition element			
	(A) 2 nd group	(B) 12 th group	(C) 16th group	(D) 18th group	
10.	Which block contain	n gaseous element :-			
	(A) s-block	(B) p-block	(C) d-block	(D) f-block	
11.	Rare earth metal are	e placed in :-			
	(A) s-block	(B) p-block	(C) Lanthanoides	(D) Actinoids	
12.	Which contain radio	pactive element :-			
	(A) s-block	(B) p-block	(C) d-block	(D) Actinoids	
13.	Which elements are	called trans-uranium :-			
	(A) Element after uranium		(B) Element after Lithium		
	(C) Element after B	errilium	(D) Element after Box	ron	
14.	If an atom has elect	ronic configuration			
	$1s^2 2s^2 2p^6 3s^2 3p^6 3$	d ³ 4s ² , it will be placed in			
	(A) II A group	(B) III A group	(C) V B group	(D) VI A group	
15.		guration of an element is 1 guration in the periodic ta		the atomic number of th	ne element which is

CHEMISTRY ADI/E-11

(C) 31

(D) 49

16.	Which one of the follo	wing belongs to represent	ative group of elements in	n the periodic table				
	(A) Iron	(B) Argon	(C) Chromium	(D) Aluminium				
17.	Which of the following	g pairs has both members	from the same period of t	he periodic table				
	(A) Na,Ca	(B) Na,Cl	(C) Ca,Cl	(D) Cl,Br				
18.	The elements having a	tomic number 72 belongs	to					
	(A) s-block	(B) p-block	(C) d-block	(D) f-block				
19.	An element has electro	onic configuration 1s ² 2s ² 2	p ⁶ 3s ² 3p ⁴ . Predict their p	eriod, group and block				
	(A) Period = 3^{rd} , block	= p, group $= 16$	(B) Period = 5 th , block	s = s, group = 1				
	(C) Period = 3^{rd} , block	= p, group $= 10$	(D) Period = 4 th , block	t = d, group = 12				
20.	because of Aufbau rule ments of atoms. They instead of two each orl	and other principles their decided not to obey Aufbar pital can take maximum of	thoughts are restricted for rule and capacity of each three electrons. Now on	periodic table, reach to a conclusion that or further discussion on electronic arranges h orbital is increased to three electrons i.e the basis of new arrangement, what is the e that total number of elements are 112)				
	(A) 12, 27	(B) 27, 22	(C) 12, 22	(D) 22, 27				
21.	Which atomic number represents a noble gas							
	(A) 56	(B) 59	(C) 86	(D) 72				
22.	The element with atomic number 35 will be placed in							
	(A) Noble gas family		(B) Alkali family					
	(C) Alkaline earth fam	ily (D) Halogen family						
23.	Effective nuclear charge:-	e experienced by a valence	e electron in an atom, wil	l be less than actual nuclear charge, due to				
	(A) Shielding effect		(B) Diagnonal relation	aship				
	(C) Inert pair effect		(D) Anamalous property					
24.	In a given shell the ord	ler of screening effect is:						
	(A) $s > p > f > d$	(B) $s > d > p > f$	(C) $s > p > d > f$	(D) $p > s > d > f$				
Aton	nic radius							
25.	Which of the following	g atom has smallest size						
	(A) He	(B) F	(C) H	(D) None of these				
26.	• Which of the alkali metals is smallest in size ?							
	(A) Rb	(B) K	(C) Na	(D) Li				
27.	Which of the following	g has largest radius?						
	$(A) Mg^{2+}$	(B) Na ⁺	$(C) O^{2-}$	(D) F ⁻				
28.	The radius of Au atom	is known as						
	(A) covalent radius	(B) molecular radius	(C) metallic radius	(D) ionic radius				

Home Work NCERT EXERCISE 3.1, 2, 3, 4, 5, 6, 7, 8, 34, 35

E-12/ADI CHEMISTRY

RACE # 7 PERIODIC TABLE CHEMISTRY

1.	The descending order	in size of Al, Al ³⁺ , Mg an	id Mg ²⁺ would be					
	(A) $Mg > Mg^{2+} > A1^{3+}$	+> A1	(B) $Mg > Al > Al^{3+} + > M^{2+}$					
	(C) $Mg > Mg^{2+} > Al >$	Al ³⁺	(D) $Mg > Al > Mg^{2+} >$	(D) $Mg > Al > Mg^{2+} > Al^{3+}$				
2.	Ionic radii of							
	(A) $Ti^{4+} < Mn^{7+}$	(B) $_{35}Cl^{-1} < _{37}Cl^{-1}$	(C) $K^+ > Cl^{-1}$	(D) $P^{3+} > P^{5+}$				
3.	The atomic radius of 6 Mg(1.6A°), Si(1.17 A	_	nent is given Which one ha	as incorrect value of it's ionic radius				
	(A) Mg^{2+} (0.65 A°)	(B) Si^{4+} (0.41 A°)	(C) P^{3-} (2.12 °)	(D) S^{2-} (1.0 A°)				
4.	Which radius order is	correct :-						
	(A) V.W. radius > Cov	valent > Metallic	(B) V.W. radius > Met	tallic > Covalent				
	(C) Metallic > V.W. ra	dius > Covalent	(D) Metallic > Covale	ent > V.W. radius				
5.	Size in lanthanoide ele	ement decreases from left	to right due to :-					
	(A) Inert pair effect		(B) Lanthanoid contra	action				
	(C) Diagonal relations	ship(D) Absence of vacan	t orbital					
6.	The calculated atomic radius of Cl and Cu are 99 Pm and 128 Pm. These are :-							
	(A) Metallic and cova	lent respectively	(B) Both metallic radi	us				
	(C) Covalent and metallic respectively (D) Both covalent radius							
7.	Which d-block metal has almost equal size :-							
	(A) Sc, Ti	(B) Ti, V	(C) Sc, Fe	(D) Co, Ni				
8.	Which of the following has the maximum number of unpaired electrons -							
	(A) Mg^{2+}	(B) Ti ³⁺	(C) V^{3+}	(D) Fe^{2+}				
9.	Which statement is co	orrect						
	(A) For potassium, the atomic radius < ionic radius; but for bromine, the atomic radius > ionic radius							
	(B) For potassium and bromine both, the atomic radii > ionic radii							
	(C) For potassium and bromine both, the atomic radii < ionic radii							
	(D) For potassium, the atomic radius > ionic radius but for bromine, the atomic radius < ionic radius							
10.	Al3+ has a lower ionic	Al ³⁺ has a lower ionic radius than Mg ²⁺ because						
	(A) Mg atom has less number of neutrons than Al (B) Al ³⁺ has higher nuclear charge than Mg ²⁺							
	(C) Their electronegativities are different (D) Al has a lower ionisation potential than Mg atom							
11.	In the isoelectronic sp	ecies, the ionic radii (Å) o	of N ³⁻ , O ²⁻ and F ⁻ are respo	ectively given by:				
	(A) 1.36, 1.40, 1.71	(B) 1.36, 1.71, 1.40	(C) 1.71, 1.40, 1.36	(D) 1.71, 1.36, 1.40				
12.	The correct order of se	econd ionization potential	of carbon, nitrogen, oxyg	gen and fluorine is:				
	(A) $C > N > O > F$	(B) $O > N > F > C$	(C) $O > F > N > C$	(D) F > O > N > C				
13.								

CHEMISTRY ADI/E-13

 $(A) \ Al^{+3} > Mg^{+2} > Na^{+} \qquad (B) \ Na^{+} > Mg^{+2} > Al^{+3} \qquad (C) \ Mg^{+2} > Na^{+} > Al^{+3} \qquad (D) \ Mg^{+2} > Al/^{+3} > Na^{+} > Na^$

14. Which of the following atom has largest size	
---	--

(A) Ba

(B) Cs

(C) K

(D) Sr

15. From the given set of species, point out the species from each set having least atomic radius:-

(a) O⁻², F -, Na+

(b) Ni, Cu, Zn

(c) Li, Be, Mg

(d) He, Li+, H-

Correct answer is

(A) O⁻², Cu, Li, H⁻

(B) Na+, Ni, Be, Li+

(C) F⁻, Zn, Mg, He

(D) Na+, Cu, Be, He

16. In the ions P^{3-} , S^{2-} and Cl^{-} the increasing order of size is:-

(A) $Cl^- < S^{2-} < P^{3-}$

(B) $P^{3-} < S^{2-} < Cl^{-}$

(C) $S^{2-} < Cl^{-} < P^{3-}$

(D) $S^{2-} < P^{3-} < Cl^{-}$

17. Which of the following order of atomic/ionic radius is not correct :-

(A) $I^- > I > I^+$

(B) $Mg^{+2} > Na^{+} > F^{-}$

(C) $P^{+5} < P^{+3}$

(D) Li > Be > B

18. Select correct order of size of A^{3+} , B^{3+} , C^{3+} :

(If atomic number of A = 58, B = 69 and C = 63)

(A) $A^{3+} > B^{3+} > C^{3+}$

(B) $C^{3+} > B^{3+} > A^{3+}$

(C) $A^{3+} > C^{3+} > B^{3+}$

(D) $B^{3+} > C^{3+} > A^{3+}$

19. If the difference in atomic size of :

Na - Li = x

$$Rb - K = y Fr - Cs = z$$

Then correct order will be:-

(A) x = y = z

(B) x > y > z

(C) x < y < z

(D) x < y << z

(D)

20. Match list I with list II and select the correct answer using the codes given below

List I List II Ion Radius (in pm) (A) Li⁺ (a) 216

(B) Na+

(b) 195

(C) Br-

(c) 60

(D) I-

(d) 95

(D)

c

Codes:

(A) (B) (C)

(A) (B) (C)

(A) a b d

(B) b c a d

(C) c d b a

(D) d c b a

Subjectives

- 21. Mg²⁺, O²⁻, Na⁺, F⁻, N³⁻ (Arrange in decreasing order of ionic size)
- 22. Why Ca^{2+} has a smaller ionic radius than K^{+} .
- 23. Arrange in decreasing order of atomic size: Na, Cs, Mg, Si, Cl.
- **24.** If internuclear distance between Cl atoms in Cl₂ is 10 Å & between H atoms in H₂ is 2 Å, then calculate internuclear distance between H & Cl (Electronegativity of H = 2.1 & Cl = 3.0).

Home Work

NCERT EXERCISE 3.12, 13, 16, 19, 20, 25, 38

RACE # 8 PERIODIC TABLE CHEMISTRY

Ionis	sation en	ergy								
1.	The first four ionisation energy values of an element are 191, 578, 872 and 5962 kcal. The number of valence electrons in the element is									
	(A) 1		(B) 2			(C) 3	(D) 4			
2.	The cor	rect order	of ionisation en	ergy of C	,N, O, I	is				
	(A) F <	N < C <	O $(B) C <$	N < O <	F	(C) C < O < N < F	(D) $F < O < N < C$			
3.	The ion	isation en	ergy of nitrogen	is more t	han tha	t of oxygen because	;			
	(A) Nit	(A) Nitrogen has half filled p-orbitals								
	(B) Nit	trogen is 1	eft to the oxygen	in the sa	ıme peri	od of the periodic ta	able			
	(C) Nit	trogen cor	ntains less numbe	er of elec	trons					
	(D) Nit	trogen is 1	ess electronegati	ve						
4.	Select c	correct abo	out first ionizatio	n energy	:					
	(A) Be	> B	(B) Be ⁺	> B+		(C) $B^+ < C^+$	(D) $B > C$			
5.	Select correct about first ionization energy:									
	(A) Zn	> Cu	(B) Cu	(B) $Cu > Zn$		(C) $Zn > Ga$	(D) $Ga > Zn$			
6.	Correct orders of Ist I.P. are:-									
	(a) $Li < B < Be < C$		< C (b) O <	(b) $O < N < F$		(c) Be $<$ N $<$ Ne				
	(A) a, b		(B) b, c			(C) a, c	(D) a, b, c			
7.	IP ₁ and	IP_1 and IP_2 of Mg are 178 and 348 K. cal mol ⁻¹ . The enthalpy required for the reaction Mg \rightarrow Mg ²⁺ + 2e ⁻ is :-								
	(A) + 170 K.cal $(B) + 526 K.cal$					(C) – 170 K.cal	(D) - 526 K.cal			
8.	The IP_1 , IP_2 , IP_3 , IP_4 and IP_5 of an element are 7.1, 14.3, 34.5, 46.8, 162.2 eV respectively. The element is likely to be									
	(A) Na		(B) Si			(C) F	(D) Ca			
9.	Which	of the foll	owing has 2 nd IP	< Ist IP						
	(A) Mg		(B) Ne	(B) Ne		(C) C	(D) None of these			
10.		1	d second (IE ₂) ich of these would		_		elements designated by I	Roman numerals are		
		IE_1	${ m IE}_2$	IE_1	IE_2					
	(A) I	2372	5251 (B) II	520	7300					
	(C) III	900	1760 (D) IV	1680	3380)				
11.	Which	of the foll	owing reaction c	correctly 1	represen	t second ionization	energy of atom magnesiu	m:		
	(A) Mg	(s) \longrightarrow N	$4g_{(g)}^{+2} + 2e^{-}$			$(B) Mg_{(g)} \longrightarrow Mg$	$g_{(g)}^{+2} + 2e^{-}$			
	(C) $Mg_{(g)}^+ \longrightarrow Mg_{(g)}^{+2} + e^-$					(D) $Mg_{(g)}^{+2} \longrightarrow M$	$\lg_{(g)}^{+3} + e^-$			

CHEMISTRY ADI/E-15

(C) Equal

(D) None of these

The ionisation energy of B and Al as compared to Be and Mg are

(B) Higher

12.

(A) Lower

- 13. Element X, Y and Z have atomic numbers 19, 37 and 55 respectively. Which of the following statements is true:-
 - (A) Their ionisation potential would increase with the increasing atomic number
 - (B) 'Y' would have an ionisation potential in between those of 'X' and 'Z'
 - (C) 'Z' would have the highest ionisation potential
 - (D) 'Y' would have the highest ionisation potential
- 14. Which of the following information is not specific for one element in periodic table :
 - (A) Atom in which one electron is present in outer most shell and helium gas configuration in penultimate shell.
 - (B) Atom which have maximum ionization energy (IE₁).
 - (C) Atom which have full filled 2nd principal energy level but other higher energy levels are vacant.
 - (D) Atom which have higher value of IE₂ as compared to IE₁.
- **15.** Consider the following changes:

1.
$$M(s) \longrightarrow M(g)$$

2.
$$M(s) \longrightarrow M^{2+}(g) + 2e^{-}$$

3.
$$M(g) \longrightarrow M^+(g) + e^-$$

4.
$$M^+(g) \longrightarrow M^{2+}(g) + e^-$$

5.
$$M(g) \longrightarrow M^{2+}(g) + 2e^{-}$$

The second ionization energy of M could be calculated from the energy values associated with:

$$(A) 1 + 3 + 4$$

(B)
$$2 - 1 + 3$$

$$(C) 1 + 5$$

(D)
$$5 - 3$$

16. Incorrect order of ionisation energy is :-

(A) Pb (I.E.)
$$>$$
 Sn (I.E.)

(B)
$$Na^{+}(I.E.) > Mg^{+}(I.E.)$$

(C)
$$Li^{+}(I.E.) < O^{+}(I.E.)$$

(D)
$$Be^+(I.E.) < C^+(I.E.)$$

17. The electronic configuration of some neutral atoms are given below:-

(A)
$$1s^2 2s^1$$

(B)
$$1s^2 2s^2 2p^3$$

(C)
$$1s^2 2s^2 2p^5$$

(D)
$$1s^2 2s^2 2p^6 3s^1$$

In which of these electronic configuration would you expect to have highest :-

(i) IE₁

(ii) IE,

(A) C, A

(B) B, A

(C)C,B

(D) B, D

Subjectives

- 18. The IE do not follow a regular trend in II & III periods with increasing atomic number. Why?
- 19. The IE values of Al (g) \rightarrow Al⁺(g) + e⁻ is 577.5 kJ mol⁻¹ and Δ H for Al(g) \rightarrow Al³⁺ (g) +3e⁻ is 5140 kJ mol⁻¹. If second and third IE values are in the ratio 2 : 3. Calculate IE, and IE₃.

SIMILAR QUESTIONS BELONGS TO NCERT TEXT BOOK

Problem - 3.5, 3.6

Excercise - 3.12, 3.17, 3.19, 3.16, 3.31

(A) S

(B) S^+

TARGET: IIT-JEE 2022 NURTURE COURSE

RACE #9 PERIODIC TABLE CHEMISTRY

Elec	tron affinity and Electro	onegativity					
1.	A compound AB whose between A & B mean d	<u> </u>	nce is 1.9. Atomic radius	of A and B are 4 and 2 Å. The distance			
	(A) 6.2Å	(B) 5.82Å	(C) 6.9Å	(D) 7.5Å			
2.	Which of the following	element has the lowest va	alue of electron affinity -				
	(A) Carbon	(B) Oxygen	(C) Fluorine	(D) Neon			
3.	In which case the energ	y released is minimum:-					
	$(A) Cl \rightarrow Cl^{-}$	$(B) P \to P^{\scriptscriptstyle -}$	$(C) N \to N^{\scriptscriptstyle -}$	$(D) C \to C^{-}$			
4.	Electron addition would	d be easier in :-					
	(A) O	(B) O+	(C) O-	(D) O ⁺²			
5 .	Process in which maxin	num energy is released:-					
	$(A) O \rightarrow O^{-2}$	(B) $Mg^+ \rightarrow Mg^{+2}$	$(C) Cl \rightarrow Cl^{-}$	(D) $F \rightarrow F^-$			
6.	Select correct order of I	E_3 :					
	(A) $O > C > N > B$	(B) B > C > N > O	(C) O > N > C > B	(D) $O > C > B > N$			
7.	In the formation of a chl equal to :-	loride ion, from an isolated	d gaseous chlorine atom,	3.8 eV energy is released, which would be			
	(A) Electron affinity of	Cl-	(B) Ionisation potential of Cl				
	(C) Electronegativity of	f Cl	(D) Ionisation potentia	l of Cl-			
8.	The electron gain entha	lpies of halogens are as gi	iven below.				
	F = -332, $C1 = -349$, E	Br = -324, $I = -295$ kJ m	01^{-1} .				
The less negative value for F as compared to that of Cl is due to:							
	(A) Strong electron-elec	ctron repulsions in the cor	npact 2p sub shell of F.				
	(B) Weak electron-electron repulsions in the bigger 3p sub shell of Cl						
	(C) Smaller electronega	tivity value of F than Cl					
	(D) (A) & (B) both						
9.	Which of the following	represent(s) the correct of	rder of electron affinities	?			
	(A) F > Cl > Br > I	(B) $C < N < O < F$	(C) N < C < O < F	(D) C < Si > P > N			
10.	The process(es) requirir	ng the absroption of energ	y is/are:				
	$(A) Cl \rightarrow Cl^{-}$	$(B) S \to S^{2-}$	$(C) H \rightarrow H^{-}$	(D) $Ar \rightarrow Ar^-$			
11.		configuration ns ² np ⁵ of its of principle quantum nur	_	est electron affinity in its group of periodic e shell :			
	(A) One	(B) Two	(C) Three	(D) Four			
12.	Select correct order of e	electron affinity					
	(A) F > Cl > O > S	(B) Cl > F > O > S	(C) Cl > F > S > O	(D) Cl > S > F > O			
13.	Highest electron affinity	y is shown by					
	(A) F ⁻	(B) Cl ⁻	(C) Li ⁺	(D) Na+			
14.	Electron addition would	d be easier in					

CHEMISTRY ADI/E-17

(C) S-

(D) S^{+2}

		1. Togulai Allaiysis	in ough continuous Excroise				
15.	Alkaline earth metals always form dipositive ions due to						
	(A) $IE_2 - IE_1 > 10 \text{ eV}$ (B) $IE_2 - IE_1 = 17 \text{ eV}$		(C) $IE_2 - IE_1 < 10 \text{ eV}$	(D) None of these			
16.	The element with least e	electronegative nature is –					
	(A) Cu	(B) Cs	(C) Cr	(D) Ba			
17.	An element X have elec	tronegativity on Paulings	scale is 2.5, select correct	about polarity of bond in:			
	(A) $\overset{\delta-}{H}$ $\overset{\delta+}{X}$	$(B)\stackrel{\delta+}{N} \stackrel{\delta-}{\longrightarrow} X$	(C) $\operatorname{Br}^{\delta_+} - \operatorname{X}^{\delta}$	(D) $\stackrel{\delta_+}{B}$ — $\stackrel{\delta}{X}$			
18 .	The nomenclature of IC	l is iodine monochloride b	because of				
	(A) Size of $I < Size of C$	Cl (B) Atomic number of I	> Atomic number of Cl				
	(C) E.N. of I < E.N. of C	Cl(D) E. A. of $I < E$. A. of	Cl				
19.	The amount of energy re	eleased for the process $X_{(g)}$	$_{0}$ + $e^{-} \rightarrow X^{-}_{(g)}$ is minimum	n and maximum respectively for:-			
	(a) F	(b) Cl	(c) O	(d) P			
	Correct answer is :-						
	(A) c & a	(B) d & b	(C) a & b	(D) c & b			
20.	The ionization energy an of the element on Paulin	-	ement are 17.42 and 3.42 e	V respectively. Then the electronegativity			
	(A) 10.435	(B) 3.721	(C) 1.86	(D) 2.88			
21.	The correct order of elec	etron affinity of B, C, N, C) is :-				
	(A) $O > C > N > B$	(B) $B > N > C > O$	(C) O > C > B > N	(D) O > B > C > N			
22.	_	belong to the same group. och of the following eleme		ixide of Q and R are amphoteric while the itive?			
	(A) P	(B) Q	(C) R	(D) S			
23.	For an element 'A', the f	irst ionisation energy will	be numerically equal to :				
	(A) EA of A+	(B) EA of A^{2+}	(C) IE of A^{2+}	(D) None of these			
24.	Which is the correct ord	ler of electronegativity –					
	(A) Cl > S > P > Si	(B) $Si > Al > Mg > Na$	(C) F > Cl > Br > I	(D) All			
25.	Electronegativity decrea	ses in the order –					
	(A) F > O > N > Br	(B) F > Br > N > O	(C) F > O > Br > N	(D) $F > Br > O > N$			
Subj	ectives						
26.	Explain why a few element	ents such as Be, N & He h	ave positive electron gain	enthalpies while majority of elements do			

do have negative values.

SIMILAR QUESTIONS BELONGS TO NCERT TEXT BOOK

Excercise - 3.20, 3.22

RACE #10 PERIODIC TABLE CHEMISTRY

Application of Electronegetivity

1	Arrange	in tha	order o	of incre	ocina	acidia	notura	(NIO	$V \cap$	7nO	٠.
1.	Arrange	m me	order (or mere	asmg	actuic	nature	$(1NO_2,$	N ₂ O	, ZnO)) :-

(A)
$$NO_2 < ZnO < K_2O$$
 (B) $K_2O < ZnO < NO_2$ (C) $NO_2 < K_2O < ZnO$ (D) $K_2O < NO_2 < ZnO$

(B)
$$K_2O < ZnO < NO_2$$

$$(C) NO_2 < K_2O < ZnO$$

(D)
$$K_2O < NO_2 < ZnO$$

(A)
$$K_2O < SrO < MgO < NiO$$

(B) NiO
$$<$$
 MgO $<$ SrO $<$ K $_{2}$ O

(C)
$$MgO < NiO < SrO < K_2O$$

(D)
$$K_2O < MgO < NiO < SrO$$

(A)
$$Na_2O > MgO > Al_2O_3 > SiO_2$$

(B)
$$SiO_2 > Al_2O_3 > MgO > Na_2O$$

$$(C) Al_2O_3 > SiO_2 > MgO > Na_2O$$

(D)
$$SiO_2 > MgO > Na_2O > Al_2O_3$$

(A)
$$Cl_2O_7 > SO_3 > P_4O_{10}$$

(B)
$$CO_2 > N_2O_5 > SO_3$$

(C)
$$Na_2O > MgO > Al_2O_3$$

(D)
$$K_2O > CaO > MgO$$

$$(B) Al_2O_2$$

$$(D) P_2O_5$$

$$(A) Fe_2O_3$$

7. Identify the correct order of acidic strengths:-

(A)
$$CaO < CuO < H_2O < CO_2$$

(B)
$$H_2O < CuO < CaO < CO_2$$

$$(C)$$
 CaO $<$ H₂O $<$ CuO $<$ CO₂

(D)
$$H_2O < CO_2 < CaO < CuO$$

(A)
$$Sc^{3+} > Cr^{3+} > Fe^{3+} > Mn^{3+}$$
 ionic radii

(B)
$$Sc^{3+} < Y^{3+} < La^{3+}$$
 Ionic radii

$$(B) Al_2O_3$$

$$(C) Sb_2O_3$$

Calculate individual and average Oxidation number (if required) of the marked element **10.**

$$(1) HNO_3$$

$$(2)$$
 OsO₄

$$(4) CrO_4^{2-}$$

$$(5) \underline{Cr}_{7}O_{7}^{2-}$$

$$(8)$$
 FeS₂

$$(9) C_6 H_{12} O_6$$

$$(10) \underline{X} e O_2 F_2$$

$$(12) \text{ Na}_3 \underline{\text{Al}} F_6$$

$$(13) P_{4}$$

$$(15) I (IO_3)_3$$

$$(16) \underline{Fe}_3 O_4$$

$$(14) \underline{\mathbf{o}}_3$$

$$(15) I (IO3)3$$

$$(16) Fe3O2$$

(17)
$$CsI_3$$

$$(19) \, \underline{O}_2 F_2$$

$$(20) H2 SiF6$$

$$(24) Mg2 C3$$

$$(21) \underline{P}(OH)_3$$

$$(25) \underline{CaC}_2$$

$$(23) \underline{Si}(OH)_4$$

$$(27) Na\underline{B}H_4$$

$$(28) \, \underline{Fe}_{0.96} O$$

11. Calculate the O.N. of all atoms in following compounds

- $(1) \text{ Fe}_3O_4$
- (2) FeO
- $(3) Na_2S_4O_6$
- $(4) C_2H_5OH$

- (5) FeSO₄.(NH₄)₂SO₄.6H₂O (8) PbS (9
 - (9) CS,
- (6) CO₂ (10) CrO₅
- (7) FeS₂ (11) (N₂H₅)₂SO₄

- $(12) N_2O_5$
- (13) HCN
- (14) HNC
- $(15) Ba[H_2PO_2],$

- (16) OsO₄
- $(17) H_2 S_2 O_3$
- (18) CH₃SO₃H

6

Miscelleneous questions

12. Which are correct match :-

- (a) O < C < S < Se Atomic size
- (b) $Na < Al < Mg < Si I^{st} I.P$
- (c) MgO < SrO < Cs₂O < K₂O Basic character
- (A) a, b
- (B) b, c
- (C) a, c
- (D) a, b, c

13. For the processes $K^+(g) \xrightarrow{1} K(g) \xrightarrow{\mathbb{I}} K(s)$:

- (A) Energy is released in (I) and absorbed in (II)
- (B) Energy is absorbed in (I) and released in (II)
- (C) Energy is absorbed in both the processes
- (D) Energy is released in both the processes

14. Which of the following option is/are correct:

(A) IE_1 of $Be > IE_1$ of Be^-

(B) IE_1 of $Be^- > IE_1$ of Be

(C) $|IE_1|$ of $Be^{-1} = |EA|$ of Be^{-1}

(D) IE_1 of $Be > IE_1$ of B

15. Match the column:

Column I

Column-1	Columni-11
(A) F	(P) highest ionization energy
(B) Cl	(Q) highest electronegativity
(C) Br	(R) highest electron affinity
(D) I	(S) highest size

Column II

Subjectives

16. From among the elements, choose the following: Cl, Br, F, Al, C, Li, Cs & Xe.

(i) The element with highest electron gain enthalpy (ii) The element with lowest ionisation potential.

(T) atom in which penultimate shell is full filled

- (iii) The element whose oxide is amphoteric.
- (iv) The element which has smallest radii.
- (v) The element whose atom has 8 electrons in the outermost shell.
- 17. Which oxide is more basic, MgO or BaO? Why?
- 18. Based on location in P.T., which of the following would you expect to be acidic & which basic.
 - (a) CsOH(b) IOH(c) Sr(OH),(d) Se(OH),
- (e) FrOH
- (f) BrOH

19. Compare the following giving reasons

Acidic nature of oxides: CaO, CO, CO₂, N₂O₅, SO₃

ANSWER KEY

RACE-01

1. (D) **2.** (D) **3.** (C) **4.** (A) **5.** (C) **6.** (C)

7. (a) C (b) E (c) M (d) C (e) M (f) C (g) E (h) M (i) M (j) C 8. (D) 9. (C)

10. (A) 11. (C) 12. (B) 13. (B) 14. (A) \rightarrow P,T; (B) \rightarrow QRT; (C) \rightarrow QRT; (D) \rightarrow P,R

15. (C) **16.** (C) **17.** (B) **18.** (D) **19.** (D) **20.** (C) **21.** (B)

22. (B)

RACE-02

1. (C) 2. (C) 3. (C) 4. (A) 5. (D) 6. (D) 7. (C)

8. 9. (D) 10. (B) 11. (C) 12. (B) 13. (A) 14.

15. (C) **16.** (D) **17.** (B) **18.** (C) **19.** (D) **20.** (ABD)

21. (A) \rightarrow P,Q; (B) \rightarrow P; (C) \rightarrow S; (D) \rightarrow R

RACE-03

1. (B) **2.** (A) **3.** (A) **4.** (C) **5.** (C) **6.** (A) **7.** (B)

8. (A) **9.** (D) **10.** (B) **11.** (B) **12.** (A) **13.** (A) **14.** (C)

15. (A) **16.** (C) **17.** (C) **18.** (C) **19.** (C) **20.** (A) **21.** (B)

22. (C)

RACE-04

1. (A) 2. (C) 3. (A) 4. (D) 5. (D) 6. (D) 7. (D)

8. (C) 9. (D) 10. (C) 11. (D) 12. (D) 13. (C) 14. (C)

15. (B) **16.** (A) **17.** (B) **18.** (A) **19.** (C) **20.** (C) **21.** (C)

22. (A) **23.** (C)

RACE-05

1. (A–P, B–R, C–Q) **2.** (18,32) **3.** (D) **4.** (B) **5.** (A) **6.** (ABC)

7. 4 8. 3 9. (A-R,S), (B-R,S), (C-P,Q), (D-P,Q) 10. (A-PS); (B-R); (C-R); (D-Q)

11. (A - P,R), (B - P, Q, R), (C - P, R, S), (D - P, R, S) 12. (A - P,S), (B - P), (C - Q), (D - R)

13. (C)

RACE -06

1. (A) **2.** (A) **3.** (C) **4.** (C) **5.** (D) **6.** (B) **7.** (D)

8. (B) **9.** (B) **10.** (B) **11.** (C) **12.** (D) **13.** (A) **14.** (C)

15. (A) **16.** (D) **17.** (B) **18.** (C) **19.** (A) **20.** (B) **21.** (C)

22. (D) 23. (A) 24. (C) 25. (A) 26. (D) 27. (C) 28. (C)

RACE -07

1.	(D)	2.	(D)	3.	(D)	4.	(B)	5.	(B)	6.	(C)	7.	(D)
8.	(D)	9.	(D)	10.	(B)	11.	(C)	12.	(C)	13.	(B)	14.	(B)

21.
$$N^{3-} > O^{2-} > F^- > Na^+ > Mg^{2+}$$
 23. $Cl < Si < Mg < Na < Cs 24. $r_{HCl} = 5.919 A^0$$

RACE -08

19.
$$IE_2 = 1825 \text{ kJ/mol}$$
, $IE_3 = 2737.5 \text{ kJ/mol}$

RACE -09

1.	(B)	2.	(D)	3 .	(C)	4.	(D)	5 .	(C)	6.	(A)	7.	(D)
0	(D)	•	(0)	4.0	(D)	4.4	(D)	10	(0)	10	(6)	4.4	(D)

RACE -10

10.

11.

17.
$$(+1, -2, +6, -2)$$
 18. $(-2, +1, +4, -2, +1)$

19.
$$CaO < CO < CO_2 < N_2O_5 < SO_3$$