Section 9

Regression Discontinuity Designs

Sooahn Shin

GOV 2003

Nov 11, 2021

Overview

- Logistics:
 - Pset 8 (the last pset) released!: Due at 11:59 pm (ET) on Nov 17
 - November 12th 19th: Submit a brief (no longer than 5 page)
 page memo of your main results, including tables, figures, and brief
 analysis. For methodological projects, this should include a
 description of the method and any analytical/simulation results.
 You will be required to give feedback on another group's project,
 which will be counted toward the overall grade based on
 attentiveness and usefulness of the feedback provided.
- Today's topics:
 - Sharp RD
 - Identification
 - Estimation
 - Diagnostics

Sharp RD

- Finding exogenous variation in the treatment assignment
 - RD: a discontinuity in treatment assignment
- Example: incumbency advantage in the U.S. House (Lee 2008)
 - "The overall causal impact of being the current incumbent party in a district on the votes obtained in the district's election"
 - Treatment (D_i) : being the current incumbent party
 - Forcing (X_i) : margin of victory (at election t)
 - Outcome (Y_i) : probability of winning (at election t + 1)
 - Sharp RD: $D_i = 1\{X_i \ge c\} \forall i$
- Estimand: local average treatment effect at the cutoff

$$\tau_{\mathsf{srd}} = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = c]$$

= $\mathbb{E}[Y_i(1)|X_i = c] - \mathbb{E}[Y_i(0)|X_i = c]$

Sharp RD

Identifying the effect at the cutoff with continuity of CEFs

$$\tau_{\mathsf{srd}} = \underbrace{\lim_{x \downarrow c} \mathbb{E}[Y_i \mid X_i = x]}_{=\mathbb{E}[Y_i(1) \mid X_i = c]} - \underbrace{\lim_{x \uparrow c} \mathbb{E}[Y_i \mid X_i = x]}_{=\mathbb{E}[Y_i(0) \mid X_i = c]}$$

Estimate the limit by the local linear regression

$$(\widehat{\alpha}_+, \widehat{\beta}_+) = \operatorname{argmin} \sum_{i: X_i \ge c} \{Y_i - \alpha - \beta(X_i - c)\}^2 \underbrace{K\left(\frac{X_i - c}{h}\right)}_{\text{weights}}$$

- We take the estimated intercept: $\widehat{\alpha}_+ = \widehat{\mathbb{E}}[Y_i(1) \mid X_i = c]$
- Our point estimate is: $\widehat{\tau}_{srd} = \widehat{\alpha}_{+} \widehat{\alpha}_{-}$

4

Graphical Illustration

Identification: continuity v. local randomization

Continuity assumption is not equivalent to local randomization

$$\{Y_i(1), Y_i(0)\} \perp 1\{X_i > c\} \mid c_0 \le X_i \le c_1$$

- Stronger than continuity. Why?
- Estimation and its visualization?

Estimation and visualization

- Use rdrobust package (current standard)
- 1. Visualization: showing discontinuity at the cutoff

Estimation and visualization

2. Estimation: fit one linear regression with the interaction between $(X_i - c)$ and D_i

$$\underset{(\alpha,\beta,\tau,\gamma)}{\operatorname{argmin}} \sum_{i:X_i \in [c-h,c+h]} \left\{ Y_i - \alpha - \beta(X_i - c) - \tau D_i - \gamma(X_i - c) D_i \right\}^2$$

- 3. Optimal bandwidth, bias correction and robust standard errors
 - Intuition:
 - find bandwidth that minimizes the estimation error
 - we don't know the true bias and have to estimate it
 - → additional uncertainty
 - Calonico, Cattaneo, and Titiunik (CCT, 2014, Econometrica)

```
# fit local linear regression
fit <- rdrobust(y = vote, x = margin, p = 1, kernel = "tri")</pre>
```

Results

	estimate	se
Conventional Bias-Corrected	7.414 7.507	1.459 1.459
Robust	7.507	1.741

- Two types of point estimates:
 - 1. The standard local linear estimator $\widehat{\tau}_{\mathsf{srd}}$
 - 2. The local linear estimator with bias-correction $\widehat{ au}_{
 m srd}^{
 m rbc} = \widehat{ au}_{
 m srd} \widehat{
 m bias}$
- Two standard errors
 - 1. Standard SE $\widehat{\sigma}^2$
 - 2. "Robust" SE: accounts for uncertainty in bias estimation $\widehat{\sigma}^2_{ ext{robust}}$
- We report the "Robust" estimate: $\widehat{ au}_{BC}$ with $\widehat{\sigma}_{robust}^2$

Estimated effect along different bandwidths

We want to understand how results change along bandwidth

```
# fit local linear regression with bandwidth bws[b]
bws \leftarrow seq(5, 25, by = 1); fits \leftarrow list()
for (b in 1:length(bws)) {
  fits[[b]] <- rdrobust(y = vote, x = margin, h = bws[b],
    p = 1, kernel = "tri")
# summarize result (use "robust")
plot(1, 1, type = 'n', xlim = c(4, 26), ylim = c(3, 21),
     xlab = 'Bandwidth', ylab = 'Estimated Effect (with 95% CI)')
for (b in 1:length(bws)) {
  points(bws[b], fits[[b]]$coef[3], pch = 16)
  lines(c(bws[b], bws[b]), fits[[b]]ci[3,], lwd = 1.2)
abline(v = fit$bws[1,1], col = 'red', lwd = 1.5)
```

Result

Diagnostics: no-sorting?

Using pre-treatment covariates

Diagnostics: no-sorting?

McCrary test

[1] 0.3897849

Diagnostics: no-sorting?

• Example of discontinuity

[1] 0.02900635