FAT Directory – The Entry

- Directory Entry for Cop.txt
 - Again for the purpose of this section, the directory entry is going to be considered a Record, with data at certain areas ~ offsets 1 through 32.
 - Clearly the first offset in a file would be 0, not 1 each
 Entry will be broken down as offsets 1 32 as if it were
 a Record

1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
43	3 4	1F	50	20	20	20	20	20	54	58	54	20	18	84	82	70	9F	2D	9F	2D	00	00	F1	71	9F	2D	16	02	F C	08	00	00
												Ε	ا	Q	С	rea	ate	b		A	_		V	۷ri	tter	<u> </u>		()				
Status		Directory Name				•	Ext	tens n	sio	Attributes	Reserved	Directory	Time	<u> </u>	Date		Date	ccessed	Jused			Timo	שופ	Dato	Cluster	Starting	D	ired Siz	ctor ze	У		

FAT Directory – Created Time & Date

- Created Time & Date 4 Bytes
 - Broken down in 2 byte segments each or 16 Bits.
 - Created Time Offsets 15 & 16
 - Created Date- Offsets 17 & 18

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
43	4F	50	20	20	20	20	20	54	58	54	20	18	84	82	70	9F	2D	9F	2D	00	00	F1	71	9F	2D	16	02	F O	80	00	00
Status	ı	Dire	ecto	ory	Na	ıme		Ext	ten n	sio	Attributes	Reserved	Directory	C	rea	ate Dale		Date	Accessed	OHUSEU	Lancad	\ 		tter Dale	7	Cluster	Starting	D	irec Siz	ctor ze	ry

FAT Directory – Big or Little Endian

- Before we can dissect the Date & Time Information we must first know whether the data is stored Big or Little Endian.
- In our example, the Created Time information Hex Values are 82 70

FAT Directory – Big or Little Endian

- Intel Processors processed binary data "Little Endian"
 - This is the order in which the processor processes the data.
 - DOS, Windows and Linux on Intel processors will store data Little Endian.
 - Some files such as bitmaps images store data Big Endian regardless of the processor
 - Unix and Macintosh are both Big Endian systems

FAT Directory – Big or Little Endian

- Fortunately, The Processor knows how to interpret the data correctly, But...
 - When converting the data manually, you must input it in reverse order or Least Significant Byte First
 - Hex Values of 82 70 for Created Time must be input manually as 70 82.
 - EnCase will convert this data for you automatically using Date & Time Functions.
 - However to better understand this concept we will do the conversion manually using a Base or Hex Converter.

- File Created Time of 14:04:04 would display as 82 70 in Hex (16 bit Integer)
 - This must be converted into binary as Little Endian
 - Input 70 82 into Base Converter Little Endian
 - The binary result is 0111000010000010
 - The First 5 Bits are Hours 0111000010000010
 - The Next 6 Bits are Minutes 0111000010000010
 - The Last 5 Bits are Seconds 011100001000010
 - Seconds are Multiplied by 2, this is why all DOS dates are even number seconds.

- Created Time in binary (16 Bit Integer)
 - -0111000010000010
- The bits of the 16 bit field for the Directory Entry Creation Time are not read as one 16 bit number.
- Instead the 16 Bits of the 2 bytes are broken down and segmented.

0111000010000010 = Created Time in binary (16 Bit Integer)

Τ	The Bit Values are not interpreted as a Straight 16 Bit Value as shown here.														
32768	16384	8092	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
0	1	1	1	0	0	0	0	1	0	0	0	0	0	1	0

Tł	The Values are adjusted for the appropriate field of data being interpreted														
16	8	4	2	1	32	16	8	4	2	1	16	8	4	2	1
0	1	1	1	0	0	0	0	1	0	0	0	0	0	1	0
		Hours	8				Min	utes	Seconds x2						

Next we add the values of the bits

- File Created Time in binary (16 Bit Integer)
 - -0111000010000010 = 14:04:04

	Н	our	S			1	/linu	ıtes			Seconds x2							
16	8	4	2	1	32	16	8	4	2	1	16	8	4	2	1			
0	1	1	1	0	0	0	0	1	0	0	0	0	0	1	0			
	Total	Value	- 14			Total Value = 2 (x2) or 4												

- Hours = 14 Minutes = 4

Seconds $x^2 = 4$

- 14:04:04 is the Created File Time

FAT Directory – Created Date

- File Created Date of 12/31/2002 in Hex would display as 9F 2D (16 bit Integer)
 - -9F2D > 2D9F
 - The binary result is 0010110110011111
 - The First 7 Bits are the Year <u>0010110</u>10011111
 - Add 1980
 - The Next 4 Bits are the Month 00101101110011111
 - Value of 1-12
 - The Last 5 Bits are the Day 0010110110011111
 - Value of 1-31

FAT Directory – Created Date

- Created Date in binary (16 Bit Integer)
 - 0010110110011111
- Just as Created Time Data, the 16 Bit data field for the Creation Time is not read as one 16 bit number.
- Instead the 16 Bits of the 2 bytes are broken down and segmented into Year Month & Day

64	32	16	8	4	2	1	8	4	2	1	16	8	4	2	1
	Year								nth				Day		

FAT Directory – Created Date

- File Created Date in binary (16 Bit Integer)
 - -0010110110011111 = 12/31/2002

								Mo	nth		Day							
64	32	16	8	4	2	1	8	4	2	1	16	8	4	2	1			
0	0	1	0	1	1	0	1	1	0	0	1	1	1	1	1			
Tot	Total Value = 22 + 1980 or 2002							l Val	ue =	12	Total Value = 31							

- Year = 22 + 1980 = 2002 Month = 12 Day = 31
- 12/31/2002 is the Created File Date

Reference

 Al Hobbs, Understanding Impact of Individual Bits within a Byte, and working with Multi-byte values, Lake County States Attorney Investigations & Guidance Software Inc.