

ENSAYO CAVITACIÓN

Alumno: Carlos Aguilar Pinto

Asignatura: ICM557-3

Fecha: 11/12/2020

Profesores: Cristóbal Galleguillos Ketterer

Tomas Herrera Muñoz

Contenido

INTRODUCCIÓN	II
OBJETIVOS.	III
FORMULAS Y DATOS	IV
TABLA VALORES MEDIDOS	V
TABLA VALORES CALCULADOS.	VI
DESARROLLO.	VII
GRAFICO CON LOS VALORES DEL ENSAYO ANTERIOR, TRAZAR LA CURVA CARACTERÍSTICA DE LA BOMB	A PARA LA VELOCIDAD
ENSAYADA Y SOBREPONES LOS NUEVOS VALORES DE ALTURA Y CAUDAL OBTENIDOS	VII
¿Qué significan las desviaciones que se producen?	VIII
Gráficos de series de mediciones realizadas. En la ordenada H, Ne en [%] respecto al vai	LOR SIN CAVITACIÓN Y $oldsymbol{\eta}$, Y
EN LA ABSCISA LA CNSPD.	IX
¿Cómo determina la CNSPD critica y que representa?	XII
Graficar la CNSPR vs Caudal	XIII
¿LA CURVA OBTENIDA TIENE LA FORMA CARACTERÍSTICA?	XIV
¿DE ACUERDO CON LA VELOCIDAD ESPECIFICA DE ESTA BOMBA LOS VALORES DE LA CNSPR SON APR	OPIADOS?XIV
CONCLUSIÓN	
REFERENCIAS.	XVI

Introducción.

En el presente informe se expone el comportamiento de una bomba centrifuga Leader - M18, operando en condiciones de cavitación.

Objetivos.

Determinar la curva de columna neta de succión positiva requerida, CNSPR de una bomba centrifuga.

Formulas y datos.

Velocidad:

$$V = \frac{4Q}{3600 \pi D_A^2} \qquad \left[\frac{m}{s}\right]$$

$$D_A = 0,1023 \text{ [m]}$$

Columna neta de succión positiva disponible, CNSPD.

$$CNSPD = pax + \frac{13,54Patm}{1000} + \frac{V^2}{2g} - Pv$$
 $[m_{ca}]$

Pv = presión de vapor del líquido bombeado en [m_{ca}]

Columna neta de succión positiva requerida ,CNSPR.

$$CNSPR = CNSPD_{CRITICA}$$

Tabla valores medidos.

		ENSAY	O DE CA	VITACIO	IN DE UN	IA BUIVI	DA ENTRI	FUGA		
			VALORE	S MEDI	OOS 290) (curva	a H vs Q)			
	n	cpax	cpdx	nx	pax	pdx	Dhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _H
	2000	0.445	0.465	2000	04.0	5.0	110	1.10	10	757
2	2900 2900	0,115 0,115	0,165 0,165	2899 2899	91,8 93,8	5,6 10,2	140 128	1,19 1,27	18 18	757,2 757,2
3	2900	0,115	0,165	2898	96,3	14,6	115	1,34	18	757,
4	2900	0,115	0,165	2899	98,6	19,4	101	1,42	18	757,3
5	2900	0,115	0,165	2898	100,8	24	87	1,48	18	757,2
7	2900 2900	0,115 0,115	0,165 0,165	2897 2899	103,2 104,8	28,5 32,2	74 63	1,53 1,53	18 18	757,2 757,2
8	2900	0,115	0,165	2896	104,8	37,7	50	1,57	18	757,
9	2900	0,115	0,165	2897	109,7	42,2	36	1,53	18	757,3
10	2900	0,115	0,165	2898	112,2	46,5	22	1,45	18	757,3
11	2900	0,115	0,165	2899	115,2	50,3	9	1,21	19	757,2
12	2900	0,115	0,165	2900	121,1	54,3	0	0,82	19	757,2
					PUNTO 1					
	n	cnav	cndy	nv	nav	ndv	Dhx	Fx	Т	D
	r [rpm]	cpax [m]	cpdx [m]	nx [rpm]	pax [%]	pdx [%]	[mm _{Hq}]	[kp]	[°C]	P _{atm} [mm _H
	[ipiii]	[111]	[111]	[ipiii]	[70]	[/0]	[IIIIIHg]	[κρ]	[c]	[IIIII]
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,3
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,2
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,3
5	2900 2900	0,115 0,115	0,165 0,165	2913 2916	53,5 50,4	5,2 5	105 98	1,38 1,35	16 16	757,2 757,2
6	2900	0,115	0,165	2917	39,4	4,9	89	1,33	16,5	757,
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,2
					PUNTO 2	2				
	n	срах	cpdx	nx	pax	pdx	Dhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _H
		0.11-	0.15	221-	4			4 = -		
2	2900 2900	0,115 0,115	0,165 0,165	2917 2917	102,3 74	27,8 20,5	78 78	1,52 1,52	17 17	757,2 757,2
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,3
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,2
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,3
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,:
								_		
					PUNTO 3	3				
	n	cpax	cpdx	nx	pax	pdx	Dhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _H
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,3
3	2900 2900	0,115 0,115	0,165 0,165	2917 2918	86,1 26,8	36,8 4	35 35	1,55 1,28	18 18	757,1 757,1
э										
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1

Tabla valores calculados.

Valores obtenidos n = 2900 [RPM]												
Q_x	Q	pa _x	pd_x	H _x	Н	Nex	Ne	Nh	η_{gl}	V	CNSPD	CNSPR
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
115,2	115,24	-0,935	2,405	3,34	3,3423	2,5373	2,54	1,0699	42,123	3,8946	+	2,7818
104,4	104,44	-0,735	4,245	4,98	4,9834	2,7079	2,7107	1,4457	53,333	3,5294	9,8693	3,7818
93,6	93,665	-0,485	6,005	6,49	6,499	2,8562	2,8621	1,6909	59,079	3,1654	9,995	4,7818
90	90,031	-0,255	7,925	8,18	8,1856	3,0277	3,0309	2,0471	67,542	3,0426	10,186	5,7818
86,4	86,46	-0,035	9,765	9,8	9,8135	3,1546	3,1611	2,3569	74,558	2,9219	10,369	6,7818
72	72,075	0,205	11,565	11,36	11,384	3,26	3,2702	2,2791	69,692	2,4358	10,477	7,7818
68,4	68,424	0,365	13,045	12,68	12,689	3,2623	3,2657	2,4117	73,85	2,3124	10,607	8,7818
61,2	61,285	0,615	15,245	14,63	14,67	3,3441	3,358	2,4974	74,372	2,0711	10,803	9,7818
46,8	46,848	0,855	17,045	16,19	16,224	3,26	3,2702		64,561	1,5833	10,952	10,782
32,4	32,422	1,105	18,765	17,66	17,684	3,0906	3,097	1,5927	51,426	1,0957	11,135	11,782
25,2	25,209	1,405	20,285	18,88	18,893	2,58	2,5827	1,323	51,225	0,8519	11,411	12,782
0	0	1,995	21,885	19,89	19,89	1,749	1,749	0	0	0	11,964	13,782
Durte 1 a 2000 [DDM]												
Punto 1 n = 2900 [RPM]												
Q _x	Q	pa _x	pd _x	H _x	Н ,	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
90,72	90,47	-0,375	7,205	7,58	7,5384	2,9944	2,9697	1,8944	63,792	3,0575	10,071	4,2007
90,72	90,346	-2,165	5,285	7,45	7,3887	2,9985	2,9616	1,8543	62,612	3,0533	1	5,2007
90,72	90,346	-3,815	3,605	7,42	7,359	2,9985			62,359	3,0533	+	6,2007
90,72	90,315	-4,765	2,245	7,01		2,9567	2,9173	1,743	59,747	3,0522		7,2007
89,64	89,148	-5,075	2,165	7,24	7,1608	2,8954	2,848	1,7732	62,264	3,0128	†	8,2007
86,4	85,896	-6,175	2,125	8,3	8,2035		2,9514		66,32	2,9029		9,2007
82,8	82,346	-6,495	2,045	8,54	8,4465	3,0026	2,9535	1,932	65,417	2,7829	3,869	10,201
					Punto 2	n = 2900	D [RPM]					
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	V	CNSPD	CNSPR
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
82,8	82,317	0,115	11,285	11,17	11,04	3,2611	3,2044	2,5244	78,78	2,7819	10,463	6,8838
82,8	82,317	-2,715	8,365	11,08	10,951	3,2611			78,146	2,7819		7,8838
82,8	82,317	-5,275	4,405	9,68		3,1753			70,117		5,0727	8,8838
82,8	82,317	-6,345	2,045	8,39		3,0251					4,0027	
79,2	78,792	-6,525	2,005	8,53		3,0016					3,7897	10,884
72	71,58	-6,535	2,045	8,58		2,9607	2,9093		57,959		3,7165	11,884
68,4	68,025	-6,505	1,925	8,43	8,3377	2,8954	2,848	1,5755	55,319	2,2989		12,884
				-				-				
Punto 3 n = 2900 [RPM]												
Q_x	Q	pa _x	pd_x	H_x	Н	Nex	Ne	Nh	η_{gl}	V	CNSPD	CNSPR
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	$[m_{ca}]$	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
48,6	48,333	0,865	17,685	16,82	16,636	3,1956	3,1433	2,2335	71,056	1,6334		
48,6	48,317	-1,505	14,885	16,39	16,2	3,3255	3,2676		66,537	1,6329		7,8838
48,6	48,3	-7,435	1,765	9,2	9,0868	2,7471			45,211	1,6323	†	8,8838
48,24		-7,335	1,645	8,98	8,8696	2,6827	2,6334		44,854	1,6202		9,8838
46,8	46,527	-7,185	1,605	8,79		2,5745			44,385		2,8942	10,884

Desarrollo.

Grafico con los valores del ensayo anterior, trazar la curva característica de la bomba para la velocidad ensayada y sobrepones los nuevos valores de altura y caudal obtenidos.

¿Qué significan las desviaciones que se producen?

Las desviaciones presentes nos indican que se produce cavitación, significa que en la aspiración de la bomba se generan unas burbujas de vapor debido al abrupto cambio de presión, esto genera que la altura de elevación sea menor.

Gráficos de series de mediciones realizadas. En la ordenada H, Ne en [%] respecto al valor sin cavitación y η , y en la abscisa la CNSPD.

Ilustración 1: 1er punto

Medición N°2

Ilustración 2: 2do punto.

Medición N°3

Ilustración 3: 3er punto.

¿Cómo determina la CNSPD critica y que representa?

Para su determinación se analizan los gráficos expuestos con anterioridad, localizamos el punto de inflexión.

El análisis se hace a cada grafico obteniendo la columna neta de succión requerida (CNSPR) y su caudal correspondiente.

Graficar la CNSPR vs Caudal.

¿La curva obtenida tiene la forma característica?

La curva obtenida se asemeja a lo esperado esto comparado a los manuales de bombas centrifugas que entrega el fabricante.

¿De acuerdo con la velocidad especifica de esta bomba los valores de la CNSPR son apropiados?

Se evalúan los puntos de operación nominal de la bomba, tanto los obtenidos del ensayo anterior como los de ahora. Observamos los puntos o mejor dicho rango donde los valores de altura y caudal no cavita, este rango de valores sería el óptimo de función de la bomba.

Conclusión.

Se observa que el objetivo propuesto se cumplió sin problemas, se logro observar mediante gráficos el comportamiento de la bomba con cavitación.

Referencias.

Apuntes Ramiro Mege Turbomáquinas.