```
import os
import sys
module_path = os.path.abspath(os.path.join(os.pardir, os.pardir))
if module path not in sys.path
    sys.path.append(module_path)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
from \ sklearn.metrics \ import \ confusion\_matrix, \ ConfusionMatrixDisplay
from sklearn import preprocessing
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import MaxPooling2D from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import ImageDataGenerator #
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout, BatchNormalization, Activation, Input
from keras.models import Sequential
from keras.callbacks import EarlyStopping
from keras import regularizers
from keras.wrappers.scikit_learn import KerasClassifier
import warnings
warnings.filterwarnings("ignore")
from keras import layers
from keras import optimizers
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import accuracy_score
from google.colab import drive
drive.mount('/content/drive')
      Mounted at /content/drive
%cd /content/drive/MyDrive/Garbage.1
     /content/drive/MvDrive/Garbage.1
# Define directories for train, test and validation data
train_dir = "/content/drive/MyDrive/Garbage.1/train"
test_dir = "/content/drive/MyDrive/Garbage.1/test"
validation_dir = "/content/drive/MyDrive/Garbage.1/validation"
# Define batch size and image size
batch_size = 64
image_size = 128
# list to store the corresponding category, note that each folder of the dataset has one class of data
categories_list = []
# list containing all the filenames in the dataset
filenames list = []
# Iterate through categories and filenames, adding them to the respective lists
for category in os.listdir(train_dir):
    for filename in os.listdir(os.path.join(train_dir, category)):
    filenames_list.append(os.path.join(category, filename))
         categories_list.append(category)
# Create a DataFrame with filenames and categories
df = pd.DataFrame({
     'filename': filenames_list,
     'category': categories_list
df = df.sample(frac=1).reset_index(drop=True)
print('number of elements = ' , len(df))
     number of elements = 2741
# Createting a barplot to visualize the distribution of images
df_visualization = df.copy()
\label{lem:df_visualization} $$ df_{visualization['category'].value\_counts().plot.bar(x = 'count', y = 'category') $$ $$
plt.xlabel("Garbage Classes", labelpad=14)
plt.ylabel("Images Count", labelpad=14)
plt.title("Count of images per class", y=1.02);
# We can see here that this data is imbalanced
```

```
Count of images per class
             500
       Count
             300
# Initialize the ImageDataGenerators for the training and validation sets
# Upsampling train data
train datagen = ImageDataGenerator(rescale=1./255.
                                          rotation_range=40,
width_shift_range=0.2,
                                          height_shift_range=0.2,
                                          shear_range=0.2,
zoom_range=0.2,
                                          horizontal flip=True.
                                          fill_mode='nearest')
val_datagen = ImageDataGenerator(rescale=1./255)
train generator = train datagen.flow from directory(
          # This is the target directory
         train dir.
          shuffle=True,
         # All images will be resized to image_size set earlier
target_size=(image_size, image_size),
         batch_size=batch_size,
          # Since we use categorical_crossentropy loss, we need categorical labels
         class_mode='categorical')
validation_generator = val_datagen.flow_from_directory(validation_dir,
                                                                  shuffle=False.
                                                                  target_size=(image_size, image_size),
                                                                  batch size=batch size.
                                                                 class_mode='categorical')
      Found 2741 images belonging to 7 classes. Found 105 images belonging to 7 classes.
# Adding class weights to balance the data
# Get class labels and indices from the generators class_labels = list(train_generator.class_indices.keys())
class_indices = np.array(list(train_generator.class_indices.values()))
# Calculate class weights using scikit-learn's compute_class_weight function
class\_weights = compute\_class\_weight(class\_weight='balanced', \ classes=np.unique(train\_generator.classes), \ y=train\_generator.classes)
class_weights = dict(enumerate(class_weights))
# Convert class_weights to a dictionary to pass it to the model.fit() method
class_weights = {i: class_weights[i] for i in range(len(class_labels))}
# Looking at the weight distribution
print(class_labels)
print(class_indices)
class_weights
      ['cardboard', 'carton', 'glass', 'metal', 'paper', 'plastic', 'trash']
[0 1 2 3 4 5 6]
{0: 1.0497893527384143,
1: 0.85495945102932,
       2: 0.8313618441006976,
3: 1.030451127819549,
       4: 0.7831428571428571,
       5: 0.8663084702907712,
6: 3.65954606141522}
# Baseline model
# Defining model architecture
model = models.Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) # Add dropout with rate of 0.25
model.add(Conv2D(64, kernel size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
\verb|model.add(Dropout(0.25))| # Add dropout with rate of 0.25|
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) # Add dropout with rate of 0.25
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5)) # Add dropout with rate of 0.5
model.add(Dense(7, activation='softmax'))
\ensuremath{\mathtt{\#}} This was the combination of layers and regularizations that gave me the best results
# Compile the model
model.compile(loss='categorical_crossentropy'
                 {\tt optimizer=optimizers.RMSprop(1r=1e-4),}
                 metrics=['acc'])
# Print model summary
model.summary()
```

```
# Define early stopping callback
early_stop = EarlyStopping(monitor='val_loss', patience=5)
# Train the model on the training set and validate on the validation set
epochs=30,
                     validation_data=validation_generator,
                     validation_steps=len(validation_generator),
                     verbose=2.
                     callbacks=[early_stop],
                     class_weight=class_weights)
# Define test data generator and get test set
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(test_dir,
                                                     shuffle=False.
                                                     target_size=(image_size, image_size),
                                                     batch size=batch size,
                                                     class_mode='categorical')
# Evaluating the model on the test set
test_x, test_y = next(test_generator)
results_test = model.evaluate(test_x, test_y)
# After trying all diferent kinds of combinations without making any relevant improvement, I decided to use transfer learning to see if I could get better results
# Plot the training and validation accuracy and loss
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
plt.plot(history.history['acc'], label='acc')
plt.plot(history.history['val_acc'], label='val_acc')
plt.subplot(1,2,2)
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.legend()
\ensuremath{\mbox{\#}} Get the predicted probabilities for the validation set
pred_probs = model.predict(validation_generator)
# Convert the probabilities to predicted class labels
pred_labels = np.argmax(pred_probs, axis=1)
# Get the true class labels for the validation set
true_labels = validation_generator.classes
# Calculate confusion matrix
cm = confusion_matrix(true_labels, pred_labels)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=test_generator.class_indices.keys())
fig, ax = plt.subplots(figsize=(10,10))
disp.plot(cmap=plt.cm.Blues, ax=ax)
plt.show()
# Get class names from test generator
class_names = list(test_generator.class_indices.keys())
# Get classification report
report = classification report(true labels, pred labels, target names=class names)
# Print report
print(report)
\mbox{\tt\#} Using transfer learning to see if I can get better results with a pre-trained model
# Load VGG16 model without top layer and freeze its layers
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(image_size, image_size) + (3,))
# Freeze the layers of VGG16 model
for layer in base_model.layers:
    layer.trainable = False
# Create new model and add VGG16 base model
model = Sequential()
model.add(base model)
model.add(Flatten())
# Add new fully connected layers
model.add(Dense(7, activation='softmax'))
# Compile the model
model.compile(loss='categorical_crossentropy',
              optimizer=tf.keras.optimizers.Adam(),
               metrics=['acc'l)
# Print model summary
model.summary()
early_stop = EarlyStopping(monitor='val_loss', patience=5)
# Train the model
history = model.fit(train_generator,
                     epochs=50.
                     steps_per_epoch=train_generator.n//train_generator.batch_size,
                     validation_data=validation_generator
                     validation_steps=validation_generator.n//validation_generator.batch_size,
                     verbose=2.
                     validation_freq=1,
                     callbacks=[early_stop],
class_weight=class_weights)
```

```
Output Shape
         Layer (type)
                                                                                             Param #
         vgg16 (Functional)
                                                     (None, 4, 4, 512)
         flatten (Flatten)
                                                    (None, 8192)
                                                                                             а
         dense (Dense)
                                                    (None, 7)
                                                                                             57351
        Total params: 14,772,039
        Trainable params: 57,351
Non-trainable params: 14,714,688
                     624s - loss: 1.3615 - acc: 0.4905 - val_loss: 0.8757 - val_acc: 0.6719 - 624s/epoch - 15s/step
        Fnoch 2/50
         42/42 - 592s - loss: 0.9911 - acc: 0.6403 - val loss: 0.8924 - val acc: 0.6562 - 592s/epoch - 14s/step
        42/42 - 582s - loss: 0.9012 - acc: 0.6735 - val loss: 0.6498 - val acc: 0.7500 - 582s/epoch - 14s/step
        Epoch 4/50
                    590s - loss: 0.8304 - acc: 0.7004 - val_loss: 0.6670 - val_acc: 0.7969 - 590s/epoch - 14s/step
        Epoch 5/50
         42/42 - 595s - loss: 0.7757 - acc: 0.7310 - val loss: 0.6705 - val acc: 0.7812 - 595s/epoch - 14s/step
        42/42 - 591s - loss: 0.7362 - acc: 0.7434 - val loss: 0.5502 - val acc: 0.7969 - 591s/enoch - 14s/sten
        Epoch 7/50
42/42 - 587
                     587s - loss: 0.7111 - acc: 0.7370 - val_loss: 0.5343 - val_acc: 0.8438 - 587s/epoch - 14s/step
        Epoch 8/50
        42/42 - 594s - loss: 0.6899 - acc: 0.7579 - val_loss: 0.7060 - val_acc: 0.7031 - 594s/epoch - 14s/step
Epoch 9/50
        42/42 - 593s - loss: 0.6725 - acc: 0.7665 - val loss: 0.6338 - val acc: 0.7969 - 593s/epoch - 14s/step
        Epoch 10/50 42/42 - 593s - loss: 0.6509 - acc: 0.7643 - val_loss: 0.5660 - val_acc: 0.7812 - 593s/epoch - 14s/step Epoch 11/50
         42/42 - 589s - loss: 0.6141 - acc: 0.7848 - val_loss: 0.5336 - val_acc: 0.7656 - 589s/epoch - 14s/step
        42/42 - 3683 - 1033. 0.0144 - acc. 0.7622 - val_1033. 0.0044 - val_acc. 0.7612 - 3683/epoch - 143/step Epoch 13/50 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005
         42/42 - 591s - loss: 0.5568 - acc: 0.8005 - val_loss: 0.5240 - val_acc: 0.7656 - 591s/epoch - 14s/step
        42/42 - 592s - loss: 0.5688 - acc: 0.7972 - val loss: 0.4512 - val acc: 0.8281 - 592s/enoch - 14s/sten
        #2/42 - 592s - loss: 0.5513 - acc: 0.8009 - val_loss: 0.5435 - val_acc: 0.7812 - 592s/epoch - 14s/step
        Epoch 17/50
        42/42 - 603s - loss: 0.5613 - acc: 0.7998 - val_loss: 0.3327 - val_acc: 0.8594 - 603s/epoch - 14s/step
         Epoch 18/50
        42/42 - 634s - loss: 0.5401 - acc: 0.8020 - val loss: 0.3727 - val acc: 0.8438 - 634s/epoch - 15s/step
        42/42 - 0343 - 0345 - 0345 - 0345/epoch - 135/step
Epoch 19/50
42/42 - 618s - 10ss: 0.5229 - acc: 0.8173 - val_loss: 0.4695 - val_acc: 0.8281 - 618s/epoch - 15s/step
Epoch 20/50
         42/42 - 595s - loss: 0.5213 - acc: 0.8099 - val loss: 0.4290 - val acc: 0.8281 - 595s/epoch - 14s/step
        Enoch 22/50
        42/42 - 585s - loss: 0.5039 - acc: 0.8166 - val_loss: 0.4290 - val_acc: 0.8438 - 585s/epoch - 14s/step
model.save("recycling_cnn_2.h5")
# Define test data generator and get test set
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(test_dir,
                                                                              shuffle=False.
                                                                              target_size=(image_size, image_size),
                                                                              batch_size=batch_size,
                                                                              class_mode='categorical')
# Evaluating the model on the test set
test_x, test_y = next(test_generator)
results_test = model.evaluate(test_x, test_y)
# Much better results using VGG16
        Found 105 images belonging to 7 classes.
        2/2 [=======] - 13s 8s/step - loss: 1.0314 - acc: 0.7188
# Plot the training and validation accuracy and loss
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
plt.plot(history.history['acc'], label='acc')
plt.plot(history.history['val_acc'], label='val_acc')
plt.legend()
plt.subplot(1,2,2)
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.legend()
```

```
# Get the probabilities to predicted class labels
pred_labels = np.argmax(pred_probs, axis=1)
# Get the true class labels for the validation set
true_labels = validation_generator.classes
2/2 [=========] - 265 9s/step
```

Calculate confusion matrix
cm = confusion_matrix(true_labels, pred_labels)

Plot confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=test_generator.class_indices.keys())
fig, ax = plt.subplots(figsize=(10,10))
disp.plot(cmap=plt.cm.Blues, ax=ax)

Get class names from test generator
class_names = list(test_generator.class_indices.keys())

Get classification report
report = classification_report(true_labels, pred_labels, target_names=class_names)

Print report
print(report)

support	f1-score	recall	precision	
15	0.85	0.93	0.78	cardboard
15	0.91	1.00	0.83	carton
15	0.83	1.00	0.71	glass
15	0.62	0.53	0.73	metal
15	0.77	0.67	0.91	paper
15	0.64	0.60	0.69	plastic
15	0.71	0.67	0.77	trash
105	0.77			accuracy
105	0.76	0.77	0.77	macro avg
105	0.76	0.77	0.77	weighted avg

✓ 0s completed at 1:47 PM