

EJEMPLO DIAGRAMAS POLARES Y DIAGRAMA DE BODE

Encuentre la función de transferencia del circuito de la figura y trace el diagrama polar y el diagrama de Bode correspondiente.

La función de transferencia estará dada por:

$$F_{(P)} = \frac{E_{OUT}}{E_{IN}} = \frac{\frac{R_1 \left(R_2 + \frac{1}{C_2 P}\right)}{R_1 + R_2 + \frac{1}{C_2 P}} \bullet \frac{R_2}{R_2 + \frac{1}{C_2 P}}}{\frac{1}{C_1} + \frac{R_1 \left(R_2 + \frac{1}{C_2 P}\right)}{R_1 + R_2 + \frac{1}{C_2 P}}} = \frac{\frac{R_1}{R_1 + R_2 + \frac{1}{C_2 P}} \bullet R_2}{\frac{R_1}{C_1 P} + \frac{R_2}{C_1 P} + \frac{1}{C_1 C_2 P^2} + R_1 \left(R_2 + \frac{1}{C_2 P}\right)}{R_1 + R_2 + \frac{1}{C_2 P}}$$

$$F_{(P)} = \frac{R_1 \bullet R_2}{\frac{R_1}{C_1 P} + \frac{R_2}{C_1 P} + \frac{1}{C_1 C_2 P^2} + R_1 R_2 + \frac{R_1}{C_2 P}} = \frac{R_1 \bullet R_2}{\frac{1}{C_1 C_2 P^2} \bullet \left(R_1 R_2 C_1 C_2 P^2 + R_1 C_1 P + R_1 C_2 P + R_2 C_1 P + 1\right)}$$

$$F_{(P)} = \frac{R_1 R_2 C_1 C_2 P^2}{\left(R_1 R_2 C_1 C_2 P^2 + R_1 C_1 P + R_1 C_2 P + R_2 C_1 P + 1\right)} =$$

$$F_{(P)} = \frac{R_1 R_2 C_1 C_2 P^2}{R_1 R_2 C_1 C_2} \bullet \left(P^2 + \frac{R_1 C_1 P}{R_1 R_2 C_1 C_2} + \frac{R_1 C_2 P}{R_1 R_2 C_1 C_2} + \frac{R_2 C_1 P}{R_1 R_2 C_1 C_2} + \frac{1}{R_1 R_2 C_1 C_2} \right)$$

Finalmente:

$$F_{(P)} = \frac{P^2}{\left[P^2 + \left(\frac{1}{R_2C_2} + \frac{1}{R_2C_1} + \frac{1}{R_{11}C_2}\right)P + \frac{1}{R_1R_2C_1C_2}\right]}$$

Con los valores de los componentes de nuestro circuito tendremos:

$$F_{(P)} = \frac{P^2}{P^2 + 3P + 1}$$

Cambiamos $P \rightarrow j\omega$ y de este modo obtenemos $F_{(j\omega)}$:

$$F_{(jw)} = \frac{-w^2}{-w^2 + j3w + 1}$$

Ordenamos y multiplicamos numerador y denominador por el conjugado del denominador para así obtener parte real y parte imaginaria de $F_{(j\omega)}$:

$$F_{(jw)} = \frac{-w^2}{1 - w^2 + j3w} \bullet \frac{1 - w^2 - j3w}{1 - w^2 - j3w} = F_{(jw)} = \frac{w^4 - w^2}{\left(1 - w^2\right)^2 + \left(3w\right)^2} + j\frac{3w^3}{\left(1 - w^2\right)^2 + \left(3w\right)^2}$$

Tomando distintos valores de la pulsación ω, hacemos una tabla en la que obtendremos el valor de la parte real, el valor de la parte imaginaria, el valor del módulo y el valor de la fase :

w	Real	Imaginario	$\left F_{(j\omega)} \right = \sqrt{\operatorname{Re}^2 + \operatorname{Im}^2}$	$Fase(F_{(j, \omega)}) = tg^{-1} \frac{\operatorname{Im}}{\operatorname{Re}}$
0	0,000000000	0,000000000	0	180,0000
0,1	-0,009251472	0,002803476	0,009666913	163,1416
0,2	-0,029962547	0,018726592	0,035333263	147,9946
0,3	-0,049996948	0,049447531	0,070318938	135,3165
0,4	-0,062639821	0,089485459	0,109230923	124,9920
0,5	-0,066666667	0,133333333	0,149071198	116,5651
0,6	-0,063130206	0,177553705	0,188442938	109,5731
0,7	-0,053510631	0,220337894	0,226742531	103,6504
0,8	-0,039119804	0,260798696	0,263716361	98,5308
0,9	-0,021007084	0,298521724	0,299259949	94,0253
1	0,000000000	0,333333333	0,333333333	90,0000
1,2	0,048169322	0,394112638	0,397045407	83,0317
1,4	0,101370572	0,443496250	0,45493397	77,1250
1,6	0,156774072	0,482381760	0,50721817	71,9958
1,8	0,212349609	0,511914236	0,554209835	67,4706
2	0,266666667	0,533333333	0,596284794	63,4349
5	0,749063670	0,468164794	0,883331567	32,0054
10	0,925147183	0,280347631	0,966691318	16,8584
50	0,996808776	0,059832460	0,998602853	3,4350
Infinito	1	0	1	0

Con los valores obtenidos, trazamos el diagrama polar :

Para comprobar alguno de los valores calculados utilizamos el método gráfico para el trazado del diagrama polar.

MÉTODO GRÁFICO PARA EL TRAZADO DEL DIAGRAMA POLAR

En primer lugar, para poder emplear el método gráfico, debemos expresar nuestra función de transferencia $F_{(P)}$ en función de los ceros y polos de la misma :

$$F_{(P)} = \frac{P^2}{P^2 + 3P + 1} = \frac{P^2}{(P + 0.381966) \bullet (P + 2.618034)}$$

Luego dibujamos en el plano de la variable P, la posición de los ceros y polos de F_(P).

Página 3 de 6

Trazamos vectores desde cada una de las raíces (ceros y polos) de la $F_{(P)}$ al valor de la pulsación a la cual queremos hacer el cálculo ($\pmb{\omega}$ -Considerada) aplicando las expresiones que siguen a continuación. El módulo en el plano de la función $F_{(P)}$ o $F_{(j\omega)}$ estará dado por :

$$\|Modulo\|_{\omega-Considerada} = Kte \bullet \frac{\prod(Dis \tan cia \cdot de \cdot los \cdot ceros \cdot a \cdot la \cdot \omega \cdot Considerada)}{\prod(Dis \tan cia \cdot de \cdot los \cdot polos \cdot a \cdot la \cdot \omega \cdot Considerada)}$$

Mientras que la fase estará dada por :

$$\varphi|_{\omega-Considerada} = \sum de \cdot los \cdot angulos \cdot de \cdot los \cdot ceros - \sum de \cdot los \cdot angulos \cdot de \cdot los \cdot polos$$

ω -Considerada	Distancia de los Ceros a la ω -Considerada	Distancia del Polo P1 (P+0,381966) ω -Considerada	Distancia del Polo P2 (P+2,618034) ω -Considerada	Módulo en plano $F_{(P)}$ o $F_{(j\omega)}$
0	0	0,381966	2,618034	0
0,5	0,5^2	0,629204279	2,665352139	0,149071199
1	1^2	1,070466265	2,802517087	0,333333333
2	2^2	2,03614784	3,294556423	0,596284793
5	5^2	5,014568578	5,643943836	0,883331566
50	50^2	50,00145896	50,06849411	0,998602853
∞	∞ ^2	8	8	1

ω -Considerada	Angulo de los Ceros a la ω -Considerada	Angulo del Polo P1 (P+0,381966) a la ω- Considerada	Angulo del Polo P2 (P+2,618034) a la ω - Considerada	FASE en plano F _(P) ο F _(jω)
0	90 X 2	0	0	180
0,5	90 X 2	52,62263267	10,81231692	116,5650504
1	90 X 2	69,09484311	20,90515737	89,99999952
2	90 X 2	79,18768335	37,37736802	63,43494863
5	90 X 2	85,63147699	62,36313983	32,00538318
50	90 X 2	89,56230772	87,00269121	3,435001075
∞	90 X 2	90	90	0

Graficando tenemos:

El diagrama de Bode del circuito propuesto será tal como el de la siguiente figura:

Simulando el circuito mediante EWB5 tendremos:

Página 5 de 6

La figura indica el resultado obtenido con el instrumento de trazado de Bode incorporado en Electronic Work Bench.

Expandiendo la gráfica obtenemos el mismo resultado que en nuestro trazo de Bode.

Comparar:

