

Report No.: EED32I00216503 Page 1 of 67

TEST REPORT

Product : Intelligent Vehicle Network Gateway

Trade mark : TN-IVS-8000 Model/Type reference : TN-IVS-8000

Serial Number : N/A

Report Number : EED32I00216503 **FCC ID** : 2AJDT-TNIVS8000

Date of Issue : Sep. 23, 2016

Test Standards : 47 CFR Part 2(2015)

47 CFR Part 22 subpart H(2015) 47 CFR Part 24 subpart E(2015) 47 CFR Part 27 subpart C(2015)

Test result : PASS

Prepared for:

ZHEJIANG THIRD NET CO., LTD.

6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road,
Binjiang District, Hangzhou, Zhejiang, china

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by: Co

Tom-chen

Compiled by:

Approved by:

Kevin yang (Project Engineer

Tom chen (Test Project)

Kevin Ian (Reviewer)

Sep. 23, 2016

Sheek Luo (Lab supervisor)

Check No.: 2402635644

Report No. : EED32I00216503

2 Version

Page 2 of 67

Version No.	Date	Description	
00	Sep. 23, 2016	Original	

Report No. : EED32I00216503 **3 Test Summary**

	WCDMA(Band	V)	
Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
99%&26dB Occupied Bandwidth	Part 2.1049(h)	Part 22.917(b) &KDB 971168 D01v02r02	PASS
Band Edge at antenna terminals	Part 2.1051/Part 22.917(a)	Part 22.917(b) &KDB 971168 D01v02r02	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Frequency stability	Part 2.1055/ Part 22.355	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
	WCDMA(Band	II)	
Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a) /Part 24.232(c)	TIA-603-D-2010&KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
peak-to-average ratio	Part 24.232(d)	KDB 971168 D01v02r02	PASS
99% &26dBOccupied Bandwidth	Part 2.1049(h)	Part 24.238(b) &KDB 971168 D01v02r02	PASS
Band Edge at antenna terminals	Part 2.1051/ Part 24.238(a)	Part 24.238(b) &KDB 971168 D01v02r02	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Frequency stability	Part 2.1055/Part 24.235	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS

Report No.: EED32I00216503 Page 4 of 67

WCDMA(Band IV)					
Test Item	Test Requirement	Test method	Result		
Conducted output power	Part 2.1046(a) /Part 27.50(d)	TIA-603-D-2010&KDB 971168 D01v02r02	PASS		
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 27.50(d)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
peak-to-average ratio	Part 27.50(d)	KDB 971168 D01v02r02	PASS		
99% &26dBOccupied Bandwidth	Part 2.1049(h)	Part 27.53(h) &KDB 971168 D01v02r02	PASS		
Band Edge at antenna terminals	Part 2.1051/ Part 27.53(h)	Part 27.53(h) &KDB 971168 D01v02r02	PASS		
Spurious emissions at antenna terminals	Part 2.1051/ Part 27.53(h)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
Field strength of spurious radiation	Part 2.1053/ Part 27.53(h)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
Frequency stability	Part 2.1055/Part 27.54	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		

Tx: In this whole report Tx (or tx) means Transmitter.Rx: In this whole report Rx (or rx) means Receiver.RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature. Humid: In this whole report Humid means humidity. Press: In this whole report Press means Pressure.

N/A: In this whole report not application

Remark:

The tested samples and the sample information are provided by the client.

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	5
5 TEST REQUIREMENT	6
5.1 Test setup	6
5.3 Test Condition	7
6 GENERAL INFORMATION	8
6.1 CLIENT INFORMATION	8
6.4 DESCRIPTION OF SUPPORT UNITS	8
6.7 DEVIATION FROM STANDARDS	10 10
7 EQUIPMENT LIST	
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): RF Power Output	14 15
Appendix E): Spurious Emission at Antenna Terminal	54 58
Appendix H): Field strength of spurious radiation	
PHOTOGRAPHS OF TEST SETUP	
ANNEX A: APPENDIX A: PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	67

Page 5 of 67

Report No. : EED32I00216503 **5 Test Requirement**

5.1 Test setup

5.1.1 For Radiated Emissions test setup

Radiated Emissions setup:

Horn Antenna Tower

Base station
Test Receiver Controlles

Controlles

Controlles

Figure 1.30MHz to 1GHz

Figure 2. above 1GHz

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

5.2 Test Environment

Operating Environment:			(c.S)
Temperature:	24°C		
Humidity:	46% RH		
Atmospheric Pressure:	1010mbar	40%	of \$1500

5.3 Test Condition

Test channel:

T	Tx/Rx	RF Channel		
Test Mode		Low(L)	Middle(M)	High(H)
	Tx	Channel 4132	Channel 4182	Channel 4233
WCDMA	(824 MHz ~849 MHz)	826.4 MHz	836.4 MHz	846.6 MHz
band V	Rx	Channel 4357	Channel 4407	Channel 4458
	(869 MHz ~894 MHz)	871.4 MHz	881.4 MHz	891.6 MHz
		Channel 9262	Channel 9400	Channel 9538
WCDMA		1852.4 MHz	1880.0 MHz	1907.6 MHz
Band II		Channel 9662	Channel 9800	Channel 9938
	(1930 MHz ~1990 MHz)	1932.4 MHz	1960.0 MHz	1987.6 MHz
		Channel 1312	Channel 1413	Channel 1513
WCDMA		1712.4MHz	1732.6MHz	1752.6MHz
Band IV		Channel 1537	Channel 1638	Channel 1738
	(2110 MHz ~2155 MHz)	2112.4 MHz	2132.6 MHz	2152.6 MHz

Pre-scan all mode and data rates and positions, find worse case mode are chosen to the report , the worse case mode as below:

band	band Radiated	
WCDMA Band V	1)RMC 12.2Kbps Link	1)RMC 12.2Kbps Link
WCDMA Band II	1)RMC 12.2Kbps Link	1)RMC 12.2Kbps Link
WCDMA Band IV	1)RMC 12.2Kbps Link	1)RMC 12.2Kbps Link

Test mode:

Test Mode	Test Modes description			
UMTS/TM1	WCDMA system, QPSK modulation	(0,)		

6 General Information

6.1 Client Information

Applicant:	ZHEJIANG THIRD NET CO., LTD.
Address of Applicant:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china
Manufacturer:	ZHEJIANG THIRD NET CO., LTD.
Address of Manufacturer:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china

6.2 General Description of EUT

Product Name:	Intelligent Vehicle Network Gateway			
Model No.(EUT):	TN-IVS-8000			
Trade Mark:	TN-IVS-8000			
EUT Supports Radios application	GPS: 1575.42MHz Wlan 2.4GHz 802.11b/g/n(HT20&HT4 UMTS: Band II(1900MHz), Band IV(17 LTE: Band 2, Band 4, Band 5, Band	700MHz), Band V(850MHz) WCDMA	
Power Supply:	DC 9-36V			
Sample Received Date:	Aug. 01, 2016	(27)		
Sample tested Date:	Aug. 01, 2016 to Sep. 19, 2016			

6.3 Product Specification subjective to this standard

Frequency Band:	WCDMA Band V: Tx:826.40 -846.60MHz; Rx: 871.40 - 891.60MHz WCDMA Band II: Tx:1852.40 - 1907.60MHz; Rx:1932.40 - 1987.60MHz WCDMA Band IV: Tx:1712.4 - 1752.6 MHz; Rx:2112.4 - 2152.6MHz		
Modulation Type:	WCDMA Mode with QPSK Modulation		
Sample Type:	Fixed production		
Antenna Type:	Temporary antenna		
Antenna Gain:	WCDMA Band II: 1.5dBi, WCDMA Band V: 1dBi, WCDMA Band IV: 1.5dBi		
Test Voltage:	DC 12V		

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
DC Source	QIEKESI	10209898	FCC DOC	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Report No.: EED32I00216503 Page 9 of 67

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the CustomerNone.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novem conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
	Dadieted Couries excission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction opinion	3.6dB (9kHz to 150kHz)
	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

	(Communication	RF test system	n	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-31-2015	12-29-2016
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54426112	04-08-2016	04-07-2017
DC Power	Keysight	E3642A	MY54426115	04-01-2016	03-31-2017
PC-2	Lenovo	R4960d		04-01-2016	03-31-2017
PC-3	Lenovo	R4960d		04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-1	158060004	04-01-2016	03-31-2017
DC power Box	JS Tonscend	JS0806-4	158060007	04-01-2016	03-31-2017
LTE Automatic test software	JS Tonscend	JS1120-1		04-01-2016	03-31-2017
WCDMA Automatic test software	JS Tonscend	JS1120-3		04-01-2016	03-31-2017
GSM Automatic test software	JS Tonscend	JS1120-3	(4)	04-01-2016	03-31-2017

	Kadiated Spi	urious Emission	& Radiated E	mission	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112	(C)	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO-TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(A)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	(C)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	(01-12-2016	01-11-2017

Report No. : EED32I00216503 Page 13 of 67

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	PART 22 (2015)	PART 22 – PUBLIC MOBILE SERVICES Subpart H – Cellular Radiotelephone Service
2	PART 24 (2015)	PART 24 – PERSONAL COMMUNICATIONS SERVICES Subpart E – Broadband PCS
3	PART 27 (2015)	PART 27 – MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Subpart C – Technical Standards
3	PART 2 (2015)	Frequency allocations and radio treaty matters; general rules and regulations
4	TIA-603-D-2010	Land Mobile FM or PM -Communications Equipment -Measurement and Performance Standards
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part 2.1046(a)/Part 22.913(a)/ part 24.232(c) Part 27.50(d)	TIA-603-D&KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)
Part 24.232(d) Part 27.50(d)	KDB 971168 D01v02r02	peak-to-average ratio	PASS	Appendix B)
Part 2.1049(h)	Part 22.917(b)/ Part 24.238(b)/ Part 27.53(h) &KDB 971168 D01v02r02	99% &26dBOccupied Bandwidth	PASS	Appendix C)
Part 2.1051/Part 22.917(a)/ Part 24.238(a) Part 27.53(h)	Part 22.917(b)/ Part 24.238(b)/ Part 27.53(h) &KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix D)
Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b) Part 27.53(h)	TIA-603-D &KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix E)
Part 2.1055/ Part 22.355/ Part 24.235 Part 27.54	TIA-603-D &KDB 971168 D01v02r02	Frequency stability	PASS	Appendix F)
Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b) Part 27.53(h)	TIA-603-D &KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix G)
Part 2.1046(a)/Part 22.913(a)/ Part 24.232(c) Part 27.50(d)	TIA-603-D &KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix H)

Report No. : EED32100216503

Page 14 of 67

Appendix A): RF Power Output

Limit: Mode WCDMA Band V WCDMA Band II WCDMA Band Frequency 824 – 849MHz 1850 – 1910MHz 1710 – 1755MHz 1850 – 1910MHz 1710 – 1755MHz 1850 – 1910MHz 1710 – 1755MHz 1710 – 1755MHz 1850 – 1910MHz 185	
Limit Frequency 824 – 849MHz 1850 – 1910MHz 1710 – 1755M Limit 38.45dBm 33.01dBm 30dBm (ERP) (EIRP) The transmitter output was connected to a calibrated coaxial cable, attenuand power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its max power setting. The power output at the transmitter antenna port was determined.	
Limit 38.45dBm (ERP) (EIRP) 30dBm (EIRP) The transmitter output was connected to a calibrated coaxial cable, attenuand power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its max power setting. The power output at the transmitter antenna port was determined.	V
Limit 38.45dBm (ERP) (EIRP) The transmitter output was connected to a calibrated coaxial cable, attenuand power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its max power setting. The power output at the transmitter antenna port was deter	z
and power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its max power setting. The power output at the transmitter antenna port was deter	(EIRP) kial cable, attenuator to a Base Station to EUT to its maximum a port was determined ter reading. The tests to channel and high
were performed at three frequencies (low channel, middle channel and highest power levels, which can be setup on the transmitters.	mum nined sts
Instruments Used: Refer to section 7 for details	
Test Results: Pass	

Test Data:

Test Band	Test Mode	Test Channel	Measured (dbm)	Limit (dbm)	Verdict
		LCH	23.83	38.5	PASS
WCDMA850	UMTS/TM1	MCH	23.70	38.5	PASS
		НСН	24.03	38.5	PASS

Test Band	Test Mode	Test Channel	Measured (dbm)	Limit (dbm)	Verdict
		LCH	23.99	30	PASS
WCDMA1700	UMTS/TM1	MCH	24.75	30	PASS
6.		НСН	24.53	30	PASS

Test Band	Test Mode	Test Channel	Measured (dbm)	Limit (dbm)	Verdict
		LCH	24.50	33	PASS
WCDMA1900	UMTS/TM1	MCH	24.60	33	PASS
		НСН	24.76	33	PASS

Report No. . EED32100210303

Page 15 of 67

Appendix B): Peak-to-Average Ratio

Test Requirement:	Part 24.232(d)
Test Method:	KDB 971168 D01
Test Setup:	Refer to section 5 for details
Limit:	13dBm
Measurement Procedure:	Use one of the procedures to measure the total peak power and record as PPk. Use one of the applicable procedures to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from: PAPR (dB) = PPk (dBm) - PAvg (dBm).
Instruments Used:	Refer to section 7 for details
Test Results:	Pass

Test Data:

Test Band	Test Mode	Test Channel	Measured (db)	Limit (db)	Verdict
	(1)	LCH	3.29	13	PASS
WCDMA1700	UMTS/TM1	МСН	3.47	13	PASS
		НСН	3.38	13	PASS

Test Band	Test Mode	Test Channel	Measured (db)	Limit (db)	Verdict
		LCH	3.19	13	PASS
WCDMA1900 UM	UMTS/TM1	MCH	3.44	13	PASS
	(17)	нсн	3.42	13	PASS

For WCDMA

Test Band=WCDMA1700
Test Mode=UMTS/TM1

Test Channel=LCH

Test Channel=MCH

Test Channel=HCH

Test Band=WCDMA1900
Test Mode=UMTS/TM1

Test Channel=LCH

Test Channel=MCH

Test Channel=HCH

Appendix C): BandWidth

Test Requirement:	Part 2.1049(h)
Test Method:	Part 22.917(b)/Part 24.238(b)/ Part 27.53(h)
Test Setup:	Refer to section 5 for details
Limit:	N/A
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyser, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel, middle channel and high channel).the resolution bandwidth of the analyser is set to 100kHz or 1% of the emission bandwidth, the EUT emission bandwidth is measured as the width of the signal between two points, outside of which all emission are attenuated at least 26dB below the transmitter power. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to peak or peak hold power.
Instruments Used:	Refer to section 7 for details
Test Results:	Pass

Test Data:

	Tool Bala.						
	Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict	
16811	Test ballu	Mode	Channel	(kHz)	(kHz)	verdict	
	(61)		LCH	4152.4	4650	PASS	
	WCDMA850	UMTS/TM1	MCH	4146.4	4645	PASS	
			НСН	4161.2	4686	PASS	

Test Band	Test Mode	Test Channel	Occupied Bandwidth (kHz)	Emission Bandwidth (kHz)	Verdict
WCDMA1700	UMTS/TM1	LCH	4160.7	4694	PASS
		МСН	4156.5	4688	PASS
		НСН	4164.6	4663	PASS

Test Band	Test Mode	Test Channel	Occupied Bandwidth (kHz)	Emission Bandwidth (kHz)	Verdict
WCDMA1900	UMTS/TM1	LCH	4160.9	4663	PASS
		MCH	4159.6	4684	PASS
(6,1,)		нсн	4178.9	4681	PASS

For WCDMA

Test Band=WCDMA850
Test Mode=UMTS/TM1

Test Channel=LCH

Test Channel=MCH

Test Channel=HCH

Test Band=WCDMA1700 Test Mode=UMTS/TM1 Test Channel=LCH

Test Channel=MCH

Test Channel=HCH

Report No. : EED32I00216503

Test Band=WCDMA1900

Test Mode=UMTS/TM1

Test Channel=LCH

Test Channel=MCH

Test Channel=HCH

Page 24 of 67

Appendix D): Band Edges Compliance

Page 25 of 67

Test Requirement:	Part 2.1051		-05			
Test Method:	Part 22.917(b)/Part 24.238(b)/ Part 27.53(h)					
Test Setup:	Refer to section 5 for details	Refer to section 5 for details				
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyser, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel).in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of 100kHz or 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed. The EUT emission bandwidth is measured as the width of the signal between two points, outside of which all emission are attenuated at least 26dB below the transmitter power. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to peak or peak hold power.					
Limit:	Operation Band	Frequency Range (MHz)	Limit			
	WCDMA 850	Below 824 and above 849	Attenuated at least 43+10log(P)			
	WCDMA 1900	Below 1850 and above 1910	Attenuated at least 43+10log(P)			
	WCDMA 1700	Below 1710 and above 1755	Attenuated at least 43+10log(P)			
Instruments Used:	Refer to section 7 for details					
Test Results:	Pass					

Test Graphs: For WCDMA

Test Band=WCDMA850

Test Mode=UMTS/TM1

Test Channel=LCH

Test Channel=HCH

Report No. : EED32I00216503

Test Band=WCDMA1700

Test Mode=UMTS/TM1

Test Channel=LCH

Test Channel=HCH

Report No.: EED32I00216503

Test Band=WCDMA1900

Test Mode=UMTSTM1

Test Channel=LCH

Test Channel=HCH

Test Requirement:	Part 2.1051/Part 2.1057			
Test Method:	TIA-603-D-2010 Clause 2.2.13			
Test Setup:	Refer to section 5 for details			
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuated and Spectrum analyzer, the other end of which was connected to a Basic Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel). The equipment operates below 10GHz: to the tent harmonic of the highest fundamental frequency or to 40GHz. Whichever is lower, the resolution bandwidth of the spectrum analyzer was set at 100kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1 GHz. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to mean or average power.			
Instruments Used:	Refer to section 7 for details			
Limit:	Attenuated at least 43+10log(P)			
Test Results:	Pass			

Test Graphs: For WCDMA

Test Band=WCDMA850

Test Mode=UMTS/TM1

Test Channel=LCH

#Avg

Log 10

dB/

0ffst 14.4

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

#Res BW 1 MHz

* Agilent

Ref 30 dBm

#Atten 30 dB

#VBW 3 MHz

Copyright 2000-2006 Agilent Technologies

Test Channel=MCH

Page 32 of 67

Copyright 2000-2006 Agilent Technologies

Test Channel=HCH

Page 34 of 67

Copyright 2000-2006 Agilent Technologies

Report No.: EED32I00216503 Test Band=WCDMA1700

Test Mode=UMTS/TM1

Test Channel=LCH

Hotline: 400-6788-333

#Avg Log 10

dB/

0ffst 14.4

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

#Res BW 1 MHz

* Agilent

Ref 30 dBm

#Atten 30 dB

Copyright 2000-2006 Agilent Technologies

Test Channel=MCH

Page 39 of 67

Test Channel=HCH

Test Band=WCDMA1900 Test Mode=UMTS/TM1 Test Channel=LCH

Test Channel=MCH

Test Channel=HCH

Page 51 of 67

#Avg Log 10

dB/

0ffst 14.4

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

Copyright 2000-2006 Agilent Technologies

#Res BW 1 MHz

* Agilent

Ref 30 dBm

#Avg Log 10

dB/

dΒ

DI -13.0

dBm

PAvg

\$3 FC

£(f):

FTun

Swp

Center 10.300 GHz

#Res BW 1 MHz

0ffst 17.2

* Agilent

Ref 30 dBm

Span 6.6 GHz

Sweep 19.94 ms (6800 pts)

Off

#VBW 3 MHz

#Atten 30 dB

Appendix F): Frequency Stability

Page 54 of 67

Appendix r). Freq	deficy diability	
Test Requirement:	Part 2.1055	
Test Method:	TIA-603-D-2010 Clause 2.2.2	(*)
Test Setup:	Refer to section 5 for details	
Measurement Procedure:	Station Simulator. The Base Station maximum power setting. The tests we channel and high channel). The EUT the DC leads and RF output cable made for that purpose. After Operate 15 minutes before proceeding. The +50°C at intervals of not more than 100 maximum setting.	d to a calibrated coaxial cable and a Base Simulator was set to force the EUT to its were performed at three frequencies (low was place in the temperature chamber, exited the chamber though an opening the equipment in standby conditions for temperature was varied from -30°C to 0°C The frequency stability was read from oltage was varied +/-15%, the frequency
Instruments Used:	Refer to section 7 for details	
Limit:	Operation Band	Frequency stability Limit(ppm)
	WCDMA 850	±2.5ppm
	WCDMA 1900	
	WCDMA 1700	(20) (20)
Test Results:	Pass	

Test Data:

Frequency Error vs. Voltage:

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
(C)			TN	VL	-2.85	0.00	±2.5	PASS
		LCH	TN	VN	-1.74	0.00	±2.5	PASS
			TN	VH	-3.80	0.00	±2.5	PASS
MODIM			TN	VL	-3.48	0.00	±2.5	PASS
WCDMA	TM1	мсн	TN	VN	-1.74	0.00	±2.5	PASS
850			TN	VH	1.65	0.00	±2.5	PASS
_0			TN	VL	-0.78	0.00	±2.5	PASS
(6)		HCH	TN	VN	-1.74	0.00	±2.5	PASS
(6)	/		TN	VH	-1.27	0.00	±2.5	PASS

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Verdict
	(0))	TN	VL	-18.88	-0.01	PASS
		LCH	TN	VN	-12.88	-0.01	PASS
			TN	VH	-12.56	-0.01	PASS
MODMA		0	TN	VL	4.49	0.00	PASS
WCDMA	TM1	МСН	TN	VN	-12.88	0.00	PASS
1700			TN	VH	3.86	0.00	PASS
			TN	VL	-11.05	-0.01	PASS
		НСН	TN	VN	-12.88	0.00	PASS
	6	/	TN	VH	-7.57	0.00	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 55 of 67

Report No.: EED32l00216503

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Verdict
		6	TN	VL	-11.89	-0.01	PASS
(0.)		LCH	TN	VN	-6.01	0.00	PASS
			TN	VH	-13.00	-0.01	PASS
MODIAA			TN	VL	-6.50	0.00	PASS
WCDMA	TM1	МСН	TN	VN	-6.01	0.00	PASS
1900	0	/	TN	VH	-5.36	0.00	PASS
			TN	VL	-12.10	-0.01	PASS
(:)		НСН	TN	VN	-6.01	-0.01	PASS
		(8	TN	VH	-7.55	0.00	PASS

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
.))			VN	-30	0.06	0.00	±2.5	PASS
/			VN	-20	0.15	0.00	±2.5	PASS
			VN	-10	2.78	0.00	±2.5	PASS
WCDMA			VN	0	1.01	0.00	±2.5	PASS
1.4	TM1	LCH	VN	10	-3.23	0.00	±2.5	PASS
850			VN	20	1.60	0.00	±2.5	PASS
			VN	30	-0.50	0.00	±2.5	PASS
			VN	40	-0.24	0.00	±2.5	PASS
			VN	50	1.48	0.00	±2.5	PASS
			VN	-30	0.08	0.00	±2.5	PASS
			VN	-20	2.21	0.00	±2.5	PASS
			VN	-10	-1.92	0.00	±2.5	PASS
WCDMA			VN	0	0.34	0.00	±2.5	PASS
(6)	TM1	МСН	VN	10	-1.69	0.00	±2.5	PASS
850			VN	20	-1.89	0.00	±2.5	PASS
			VN	30	-1.04	0.00	±2.5	PASS
			VN	40	-3.02	0.00	±2.5	PASS
)	91	((1))	VN	50	-0.35	0.00	±2.5	PASS
			VN	-30	-4.23	0.00	±2.5	PASS
			VN	-20	1.07	0.00	±2.5	PASS
1			VN	-10	0.70	0.00	±2.5	PASS
MCDMA			VN	0	-2.40	0.00	±2.5	PASS
WCDMA	TM1	нсн	VN	10	-1.77	0.00	±2.5	PASS
850			VN	20	-1.25	0.00	±2.5	PASS
		· -	VN	30	0.27	0.00	±2.5	PASS
^)			VN	40	-3.31	0.00	±2.5	PASS
			VN	50	-1.63	0.00	±2.5	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Verdict
			VN	-30	-14.33	-0.01	PASS
		6	VN	-20	-8.18	0.00	PASS
			VN	-10	-10.25	-0.01	PASS
			VN	0	-5.72	0.00	PASS
WCDMA	TM1	LCH	VN	10	-9.58	-0.01	PASS
1700	(6)		VN	20	-11.54	-0.01	PASS
			VN	30	-6.87	0.00	PASS
			VN	40	-5.17	0.00	PASS
			VN	50	-4.78	0.00	PASS
		(6	VN	-30	6.87	0.00	PASS
			VN	-20	3.62	0.00	PASS
			VN	-10	0.96	0.00	PASS
14/00144	/3		VN	0	4.58	0.00	PASS
WCDMA	TM1	MCH	VN	10	-1.94	0.00	PASS
1700			VN	20	3.68	0.00	PASS
			VN	30	5.77	0.00	PASS
			VN	40	1.37	0.00	PASS
(65)		(6	VN	50	3.63	0.00	PASS
		100	VN	-30	-13.43	-0.01	PASS
			VN	-20	-11.63	-0.01	PASS
	-07		VN	-10	-7.83	0.00	PASS
VACCENAA	(65)	6)	VN	0	-7.81	0.00	PASS
WCDMA	TM1	НСН	VN	10	-13.67	-0.01	PASS
1700			VN	20	-10.06	-0.01	PASS
			VN	30	-7.16	0.00	PASS
			VN	40	-7.68	0.00	PASS
		6	VN	50	-9.67	-0.01	PASS

Page 57 of 67

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Verdict
			VN	-30	-9.98	-0.01	PASS
(0)		(6	VN	-20	-8.54	0.00	PASS
			VN	-10	-6.00	0.00	PASS
			VN	0	-6.68	0.00	PASS
WCDMA	TM1	LCH	VN	10	-10.54	-0.01	PASS
1900	6)	VN	20	-5.00	0.00	PASS
			VN	30	-3.85	0.00	PASS
			VN	40	-7.13	0.00	PASS
		0	VN	50	-7.84	0.00	PASS
6		6	VN	-30	-6.35	0.00	PASS
			VN	-20	-8.21	0.00	PASS
			VN	-10	-8.38	0.00	PASS
	(3)	6	VN	0	-3.77	0.00	PASS
WCDMA	TM1	MCH	VN	10	-10.09	-0.01	PASS
1900			VN	20	-9.41	-0.01	PASS
			VN	30	-7.69	0.00	PASS
$(\mathcal{E}_{\mathcal{L}_{\mathcal{L}}})$		(6	VN	40	-9.52	-0.01	PASS
		"	VN	50	-6.90	0.00	PASS
			VN	-30	-9.19	0.00	PASS
	(3		VN	-20	-9.29	0.00	PASS
	(6))	VN	-10	-2.93	0.00	PASS
14/00144			VN	0	-9.16	0.00	PASS
WCDMA	TM1	HCH	VN	10	-8.97	0.00	PASS
1900		0	VN	20	-9.66	-0.01	PASS
(0,		6	VN	30	-13.35	-0.01	PASS
			VN	40	-9.93	-0.01	PASS
			VN	50	-5.36	0.00	PASS

Report No. : EED32l00216503 Page 58 of 67

Appendix G): Effective Radiated Power of Transmitter (ERP/EIRP)

	F	Data	-t DD\/	\/D\//	C Domesti	
	Frequen	-		VBW	Remark	
	30MHz-10	GHz pea	ak 120kHz	300kHz	Peak	
	Above 1G	GHz Pea	ak 1MHz	3MHz	Peak	
Measurement Procedure:	Test procedure at Anechoic Chelength. modulof the transm 2) The EUT was interference-antenna towards. The disturbar raising and letter turntable measuremer 4) Steps 1) to 3 and horizontal	as below: as powered ON and amber. The antenn allation mode and th itter under test. as set 3 meters(above receiving antenna, er. ance of the transmitt bowering from 1m to bowering from 1m to After the fundame at was made. were performed was all polarization.	placed on a 1.5m has of the transmitted the measuring receive 18GHz the distated which was mounted and the receive and the receive and the the EUT and the receive and the the EUT and the receive and the rec	night table at was extended ver shall be to note is 1 meted on the top conthe test retenna and by maximized, a e receive anter	a 3 meter fully ed to its maximumed to the free r) away from the fa variable-he ceiver display I rotating throug field strength	um quenc ne eight by Jh 360 ertical
	the antenna 6) A signal at the radiating cabe polarized, the at the test refield strength 7) The output polarized at the test refield strength 8) Steps 6) and 9) Calculate polarized BIRP(dBI) EIRP(dBI) EIRP=ERION	was approximately e disturbance was ale. With both the substance receive antenna was develored in step 3) is considered as a substance of the	fed to the substitut ubstitution and the was raised and low the signal generate obtained for this seritution antenna was with both antennas pollowing formula: ble loss (dB) + anter the loss (dB) (dB) (dB) (dB)	on as the cention antenna be receive antenered to obtain or was adjusted of conditions then measure polarized. Inna gain (dBoenna gain (dBoen	ter of the transing means of a range of a ra	mitter. non- y eading
Limit:	the antenna 6) A signal at the radiating cab polarized, the at the test refield strength 7) The output polarized at the test refield strength 8) Steps 6) and 9) Calculate polarized at the test refield strength ERP(dBn EIRP(dBn EIRP=EF where: Pg is the general 10) Test the EUT 11) The radiation operation model 11	was approximately e disturbance was ale. With both the substance receive antenna vaceiver. The level of a level in step 3) is cower into the substance repeated was also wer in dBm by the fance of the properties	at the same location and the substitution and the substitution and low the signal generate obtained for this secution antenna was sith both antennas pollowing formula: sole loss (dB) + anterior the substitution and the substitution and the performed in X, Y (axis positioning wall frequencies means)	on as the cention antenna breceive antenered to obtain or was adjusted of conditions then measure polarized. It of conditions at the measure polarized. It of conditions then measure polarized. It of conditions at the measure polarized. It of conditions and the measure polarized. It of conditions at the measure polarized. It of conditions are the measure polarized.	neer of the transic by means of a range horizontall a a maximum red until the meas. red. d) in the meas. nest channel ioning for EUT se case.	mitter. non- ly eading easure

Measurement Data

Page 59 of 67

Micasai Cilicit	Data						
			WCE	MA band \	/		
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
4132/	150	154	18.1	38.45	-20.35	Pass	Н
826.4	200	313	20.2	38.45	-18.25	Pass	V
4182/	150	215	18.52	38.45	-19.93	Pass	Н
836.6	200	270	19.56	38.45	-18.89	Pass	V
4233/	150	226	17.69	38.45	-20.76	Pass	н (С
846.6	150	226	20.09	38.45	-18.36	Pass	V

	(WCE	MA band I			Cil
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
	150	48	17.98	33.01	-15.03	Pass	Н
9262/1852.4	250	67	20.06	33.01	-12.95	Pass	V
.*)	150	203	15.28	33.01	-17.73	Pass	Н
9400/1880.0	150	270	21.1	33.01	-11.91	Pass	V
	150	210	16.57	33.01	-16.44	Pass	Н
9538/1907.6	150	132	18.2	33.01	-14.81	Pass	V

			WCD	MA band I	/		
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
	250	98	14.04	30.00	-18.97	Pass	Н
1312/1712.4	200	144	17.25	30.00	-15.76	Pass	V
	150	305	14.38	30.00	-18.63	Pass	Н
1413/1732.6	200	172	22.14	30.00	-10.87	Pass	V
	150	258	14.52	30.00	-18.49	Pass	Н
1513/1752.6	150	167	19.3	30.00	-13.71	Pass	V

Page 60 of 67

Appendix H): Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1GHz	Peak	120kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Measurement	1. Scan up to 10 th harmon					
Procedure:	The technique used to antenna substitution m actual ERP/EIRP emis	ethod. Substitu	ition method			
	 Test procedure as below: 1) The EUT was powered Anechoic Chamber. The length, modulation modured frequency of the transman. 2) The EUT was set 3 medinterference-receiving antenna tower. 	ne antenna of the de and the meanitter under testers(above 180	ne transmitte asuring rece t. GHz the dist	er was exter eiver shall b ance is 1 m	nded to its ma e tuned to the eter) away fro	iximum om the
	 3) The disturbance of the raising and lowering from 360° the turntable. After the measurement was made. 4) Steps 1) to 3) were per and horizontal polariza. 	om 1m to 4m the er the fundamer de. formed with the	e receive a ntal emissio	ntenna and n was maxi	by rotating thi mized, a field	rough strength
	5) The transmitter was the		d replaced v	vith another	antenna. The	e center o
	the antenna was approached. A signal at the disturbation radiating cable. With be polarized, the receive a reading at the test received measured field strength.	ince was fed to oth the substitu antenna was ra eiver. The level	the substitution and the ised and low of the signal	ition antenn receive an vered to ob Il generator	a by means o tennas horizo tain a maximu was adjusted	f a non- ntally m until the
	7) The output power into the strength of the s	the substitution peated with bo n by the followi Bm) – cable los Bm) – cable los	antenna wa th antennas ng formula: s (dB) + ant	as then mea polarized. enna gain (asured. dBd)	(K)
	where: Pg is the generator ou 10) Test the EUT in the low 11) The radiation measure operation mode,And for 12) Repeat above procedu	tput power into vest channel, the ments are perforund the X axis	ne middle chormed in X, positioning	annel the H Y, Z axis po which it is v	dighest channo disitioning for E vorse case.	
	ニー・モー いらいらむに ひいひと いけいにだけい	res unul an HEC	いたいいたり けん	CLOUDED VVO		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Data: Above 1GHz

	V	VCDMA ban	d V 4132 channel/8	826.4MHz(lowest channe	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1764.123	150	154	-44.19	-13	-31.19	Pass	Н
2412.718	200	313	-35.72	-13	-22.72	Pass	Н
3738.129	150	215	-49.32	-13	-36.32	Pass	H (
6511.117	150	270	-45.38	-13	-32.38	Pass	н
9181.198	150	226	-44.25	-13	-31.25	Pass	Н
12303.620	150	31	-43.28	-13	-30.28	Pass	Н
1118.517	150	100	-56.22	-13	-43.22	Pass	V
1651.146	200	14	-45.22	-13	-32.22	Pass	V
2519.418	150	258	-47.43	-13	-34.43	Pass	V
3757.208	150	20	-49.11	-13	-36.11	Pass	V
6577.752	150	360	-45.60	-13	-32.60	Pass	V
9884.602	150	78	-45.42	-13	-32.42	Pass	V

	W	CDMA ban	d V 4182 channel/8	36.4MHz(ı	middle chann	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1764.123	150	36	-46.97	-13	-33.97	Pass	Н
2412.718	150	10	-36.05	-13	-23.05	Pass	Н
3747.656	150	251	-49.90	-13	-36.90	Pass	Н
6396.125	100	360	-45.57	-13	-32.57	Pass	н
9181.198	150	78	-45.26	-13	-32.26	Pass	н
12303.620	150	14	-43.90	-13	-30.90	Pass	Н
1346.929	150	251	-55.49	-13	-42.49	Pass	V
1672.296	150	20	-47.86	-13	-34.86	Pass	V
2519.418	150	360	-46.45	-13	-33.45	Pass	V
3757.208	250	78	-49.32	-13	-36.32	Pass	V
6396.125	150	200	-45.70	-13	-32.70	Pass	V
11312.310	150	46	-44.42	-13	-31.42	Pass	V

	W	CDMA band	d V 4233 channel/8	46.6MHz(h	nighest chann	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	150	360	-56.49	-13	-43.49	Pass	Н
1894.450	200	24	-52.53	-13	-39.53	Pass	Н
2412.718	150	11	-44.85	-13	-31.85	Pass	Н
3776.385	150	78	-50.24	-13	-37.24	Pass	Н (е
6494.564	150	200	-45.84	-13	-32.84	Pass	Н
10113.670	150	61	-44.52	-13	-31.52	Pass	Н
1127.091	150	40	-57.35	-13	-44.35	Pass	V
1828.125	150	200	-56.57	-13	-43.57	Pass	V
2310.537	150	251	-52.59	-13	-39.59	Pass	V
4181.159	200	59	-50.16	-13	-37.16	Pass	V
6379.864	150	121	-47.27	-13	-34.27	Pass	V
10087.960	150	30	-45.79	-13	-32.79	Pass	V

	W	CDMA band	d IV 1312 channel/1	1712.4MHz	(lowest chann	nel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1135.731	150	116	-56.62	-13	-43.62	Pass	Н
3738.129	150	20	-50.07	-13	-37.07	Pass	Н
4617.550	150	147	-50.88	-13	-37.88	Pass	Н
6527.712	150	59	-46.41	-13	-33.41	Pass	н
9834.406	200	200	-45.98	-13	-32.98	Pass	н
11933.470	150	360	-43.58	-13	-30.58	Pass	Н
1350.362	150	70	-53.56	-13	-40.56	Pass	V
3419.491	150	89	-43.10	-13	-30.10	Pass	V
4433.263	150	24	-50.05	-13	-37.05	Pass	V
6363.645	150	100	-46.17	-13	-33.17	Pass	V
9181.198	150	21	-45.19	-13	-32.19	Pass	V
11872.880	150	56	-43.44	-13	-30.44	Pass	V

	W	CDMA band	IV 1413 channel/1	732.6MHz	(middle chanr	nel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1350.362	150	85	-55.79	-13	-42.79	Pass	Н
3757.208	150	200	-49.20	-13	-36.20	Pass	Н
6363.645	150	360	-45.60	-13	-32.60	Pass	Н
7941.185	150	71	-46.59	-13	-33.59	Pass	Н (г
9834.406	250	42	-45.51	-13	-32.51	Pass	Н
11842.690	150	100	-44.00	-13	-31.00	Pass	Н
1346.929	150	56	-54.06	-13	-41.06	Pass	V
3463.291	250	78	-47.26	-13	-34.26	Pass	V
4617.550	150	22	-49.38	-13	-36.38	Pass	V
6527.712	150	51	-45.02	-13	-32.02	Pass	V
9134.575	150	36	-45.79	-13	-32.79	Pass	V
10696.210	150	70	-45.23	-13	-32.23	Pass	V

	WC	DMA band	IV 1513 channel/1	752.6MHz(highest chan	nel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	150	336	-56.74	-13	-43.74	Pass	Н
1510.402	150	349	-53.81	-13	-40.81	Pass	Н
3728.625	150	151	-49.63	-13	-36.63	Pass	Н
6511.117	250	20	-45.68	-13	-32.68	Pass	Н
8637.084	150	47	-46.10	-13	-33.10	Pass	H (C)
11842.690	150	100	-44.22	-13	-31.22	Pass	Н
1204.210	150	84	-55.79	-13	-42.79	Pass	V
1346.929	150	360	-53.42	-13	-40.42	Pass	V
3507.652	200	45	-47.22	-13	-34.22	Pass	V
6396.125	200	210	-44.72	-13	-31.72	Pass	V
8002.061	150	20	-45.78	-13	-32.78	Pass	V
11140.850	150	75	-43.55	-13	-30.55	Pass	V

	V	/CDMA ban	d II 9262 channel/1	852.4MHz(I	lowest channe	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1132.844	150	56	-56.82	-13	-43.82	Pass	Н
1289.885	150	79	-56.26	-13	-43.26	Pass	Н
3747.656	150	200	-49.23	-13	-36.23	Pass	Н
6347.466	150	154	-45.14	-13	-32.14	Pass	Н (г
8506.170	150	78	-45.52	-13	-32.52	Pass	Н
11027.980	150	360	-43.46	-13	-30.46	Pass	Н
1110.008	150	220	-55.70	-13	-42.70	Pass	V
1506.563	250	87	-52.92	-13	-39.92	Pass	V
3747.656	250	145	-49.66	-13	-36.66	Pass	V
6412.427	250	56	-45.41	-13	-32.41	Pass	V
9587.228	150	91	-45.29	-13	-32.29	Pass	V
12397.940	150	82	-42.09	-13	-29.09	Pass	V

	V	VCDMA baı	nd II 9400 channel/1	1880MHz(n	niddle channe	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1165.013	150	205	-56.57	-13	-43.57	Pass	Н
1613.749	150	360	-56.71	-13	-43.71	Pass	Н
3757.208	150	178	-49.05	-13	-36.05	Pass	Н
6331.329	150	20	-45.97	-13	-32.97	Pass	н
9859.472	100	151	-45.29	-13	-32.29	Pass	н
12334.980	150	69	-42.36	-13	-29.36	Pass	Н
1350.362	250	200	-55.00	-13	-42.00	Pass	V
3747.656	150	147	-47.98	-13	-34.98	Pass	V
5325.007	150	20	-49.39	-13	-36.39	Pass	V
6511.117	150	58	-44.99	-13	-31.99	Pass	V
9228.060	250	210	-45.17	-13	-32.17	Pass	V
12272.34	161	360	-42.28	-13	-29.28	Pass	V

	Page 65 of 67
I/1907.6MHz(highest channel)	

	W	CDMA band	d II 9538 channel/19	907.6MHz(h	nighest chann	nel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1159.096	150	336	-57.19	-13	-44.19	Pass	Н
1296.469	150	100	-57.15	-13	-44.15	Pass	Н
3598.087	200	78	-49.78	-13	-36.78	Pass	H
6331.329	150	245	-45.51	-13	-32.51	Pass	Н (
9065.084	150	20	-44.62	-13	-31.62	Pass	н
12334.980	150	360	-42.50	-13	-29.50	Pass	Н
1346.929	150	164	-54.89	-13	-41.89	Pass	V
3738.129	150	200	-48.82	-13	-35.82	Pass	V
4724.558	150	98	-49.26	-13	-36.26	Pass	V
6527.712	150	200	-45.67	-13	-32.67	Pass	V
9065.084	200	31	-45.20	-13	-32.20	Pass	V
12303.620	150	59	-42.22	-13	-29.22	Pass	V

Note:

¹⁾ Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 66 of 67

PHOTOGRAPHS OF TEST SETUP

Test model No.: TN-IVS-8000

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Annex A: Appendix A: PHOTOGRAPHS OF EUT Constructional Details (Please See Appendix A)

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

