

CUPGE 2e année 2024 - 2025

TD6 – Limites d'intégrales

Exercice 1. Pour tout $n \ge 2$, soit f_n la fonction continue sur \mathbb{R}_+ telle que f_n est nulle sur $[0, n[\cup]2n^2, +\infty[$, f_n est affine sur [n,2n] et sur $[2n,2n^2]$, et $f_n(2n)=\frac{1}{n}$.

- **1.** Représenter f_n .
- **2.** Montrer que (f_n) converge uniformément vers 0 sur \mathbb{R}_+ .
- **3.** Calculer $\int_0^{+\infty} f_n(x) dx$. A-t-on convergence de $\int_0^{+\infty} f_n(x) dx$ vers 0 lorsque $n \to +\infty$?

Exercice 2. Pour tout x > 0, on considère $f_n(x) := \frac{\sin(x^n)}{x^n(1+x^2)}$.

- **1.** Montrer que $\forall t \in \mathbb{R}$, $|\sin t| \le |t|$.
- **2.** En déduire que f_n est intégrable sur $]0, +\infty[$.
- **3.** Calculer la limite ponctuelle de $(f_n)_{n \in \mathbb{N}}$.
- **4.** Calculer la limite de $\int_0^{+\infty} f_n(x) dx$ lorsque $n \to +\infty$.

Exercice 3. Après avoir justifier l'existence des intégrales pour tout n, calculer les limites suivantes :

$$1. \lim_{n \to +\infty} \int_0^1 \frac{n\sqrt{x} + 1}{nx + 1} \, \mathrm{d}x$$

$$4. \lim_{n \to +\infty} \int_0^1 \frac{n\sqrt{x}+1}{2nx+1} \, \mathrm{d}x$$

$$2. \lim_{n \to +\infty} \int_0^{+\infty} \frac{\ln(x)}{n^2 + x^2} \, \mathrm{d}x$$

5.
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\sin(nx^n)}{nx^{n+\frac{1}{2}}} dx$$

3.
$$\lim_{n \to +\infty} \int_1^{+\infty} \frac{n^2 x^4 + 3x^2 + 7}{(n^2 x^4 + 3)(x^2 + 1)} dx$$

5.
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\sin(nx^n)}{nx^{n+\frac{1}{2}}} dx$$

6. $\lim_{n \to +\infty} \int_0^{+\infty} \frac{1}{(1+x^2)\sqrt[n]{1+x^n}} dx$

Exercice 4. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue qui converge vers une limite ℓ en $+\infty$.

- 1. Montrer que f est bornée.
- **2.** Déterminer la limite de $\int_0^{+\infty} \frac{f(nx)}{1+x^2} dx$ lorsque $n \to +\infty$.
- 3. En déduire que :

$$\lim_{n\to+\infty} \int_0^{+\infty} \frac{nf(t)}{n^2+t^2} dt = \frac{\pi}{2} \ell.$$

Exercice 5. Soit $I_n = \int_0^1 \frac{1}{1+t^n} dt$.

- **1.** Montrer que $(I_n)_{n\in\mathbb{N}}$ converge vers 1.
- **2.** Montrer que $I_n = 1 \frac{\ln 2}{n} + o(\frac{1}{n})$. Indication : intégrer par partie $1 I_n$.

Exercice 6. Soit $I = \int_0^{+\infty} \frac{\sin x}{e^x - 1} dx$.

- **1.** Montrer que *I* est convergente.
- **2.** On pose $S_n(x) = \sum_{k=0}^n e^{-kx}$. Montrer que $(S_n)_{n \in \mathbb{N}}$ converge simplement sur \mathbb{R}_+^* .
- **3.** Montrer que :

$$I = \sum_{k=0}^{+\infty} \int_{0}^{+\infty} \sin(x) e^{-(k+1)x} dx.$$

4. En déduire que $I = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$.