2 hours <u>C'HENNAI MATHEMATICAL INSTITUTE</u>
Max:30

Subject: Optimization Techniques

25/09/2018

In Maximize $5x_1 + 12x_2 + 4x_3$, Subject to $x_1 + 2x_2 + x_3 \le 5$ $2x_1 - x_2 + 3x_3 = 2$ and $x_i > 0$ for i = 1, 2, 3

(b) Is your solution to (a), a basic feasible [3+2]

II Let $S = \{(x_1, x_2) : x_1 + x_2 \le 1\}$ (a) Find the extreme points and directions of S

(b) Can you represent any point in \$ as a convex combination of extreme points plus a nonnigative linear combination of extreme directions? [3+2]

Let $f(x) = \min \min \{f_1(x), f_2(x)\}$ where $f_1(x) = 4 - |x|$ and $f_2(x) = 4 - |x-2|^2$ for $x \in \mathbb{R}$.

(a) Examine whether f is concave in \mathbb{R} ?

(b) Find a subgradient vector for f at x=4.

[3+2]

Is it unique?

PLEASE TURN TO OTHER SIDE FOR MORE QUESTIONS.

(2) Consider minimizing: $\sum_{i=1}^{n} S_i$ Subject to $S \in X$ where X is nonempty, $S \in X$ where $S \in X$ is a closed Subset of nonnegative orthant in R. This problem has one optimal Solution.

(222) Origin in \mathbb{R}^3 is a local minimum for $f(x_1, x_2, x_3) = z_1 x_2 + 2 x_1^2 + x_2^2 + 2 x_3^2 - 6 x_1 x_3 + 1$ (222) Let $f: \mathbb{R}^N \to \mathbb{R}$ be a convex and differentiable function. Let $\nabla f(x)$ Stand for the gradient vector at $x \in \mathbb{R}^N$. Then

 $\left(\nabla f(x') - \nabla f(x'') \right)^t \left(x' - x'' \right) > 0 \quad \text{for every} \quad x', \, n'' \in \mathbb{R}^m.$

(Hint: Note subgradient vector at & coincides with the gradient vector in the given problem).

[4+4+4]

Brevity + Neatness . - - . [3]