

By @kakashi_copiador

CORRELAÇÃO

CORRELAÇÃO POSITIVA

CORRELAÇÃO POSITIVA PERFEITA

CORRELAÇÃO NEGATIVA

CORRELAÇÃO NEGATIVA PERFEITA

CORRELAÇÃO NULA

OBRIGADO

☐ MÉTODO DOS MÍNIMOS QUADRADOS ORDINÁRIOS

$$Y = \alpha + \beta x + \varepsilon$$

$$Y = \alpha + \beta x + \varepsilon$$

$$\beta = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2}$$

$$\beta = \frac{COV(X;Y)}{VAR(X)}$$

$$\beta = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2}$$

$$\beta = \frac{COV(X;Y)}{VAR(X)}$$

amostra	X	У	x.y	X ²
1	100	60		
2	80	40		
3	90	40		
4	120	50		
5	110	60		
TOTAL				

Para fazer uma regressão linear da forma $Y = \alpha + \beta X$, um analista, usando o método dos mínimos quadrados, encontrou, a partir de 20 amostras, os seguintes somatórios

$$\Sigma X=300$$
; $\Sigma Y=400$; $\Sigma X^2=6.000$; $\Sigma e \Sigma(XY)=8.400$

	Х	у
MÉDIA	8	10
DESVIO PADRÃO	2	3
COV (X;Y)		3

OBRIGADO

CÁLCULO DO INTERCEPTO

$$\alpha = \bar{y} - \beta \bar{x}$$

CÁLCULO DO INTERCEPTO

Para fazer uma regressão linear da forma $Y = \alpha + \beta X$, um analista, usando o método dos mínimos quadrados, encontrou, a partir de 20 amostras, os seguintes somatórios

$$\Sigma X=300$$
; $\Sigma Y=400$; $\Sigma X^2=6.000$; $\Sigma e \Sigma(XY)=8.400$

CÁLCULO DO INTERCEPTO

0.0	Estratégia	ì
	Concursos	

	Х	у
MÉDIA	8	10
DESVIO PADRÃO	2	3
COV (X;Y)		3

OBRIGADO

Um grupo de 5 pessoas ingressou em um plano de dieta com o objetivo de reduzir peso. Obtenha a equação de regressão estimada que relacione a quantidade de peso perdida, Y em kg, e o número de semanas de cada um dos participantes no plano, X, sabendo que os valores registrados foram:

$$\Sigma X=15$$
, $\Sigma Y=35$, $\Sigma XY=123$, $\Sigma X^2=55$.

Estratégia Concursos

 $\Sigma X=15$, $\Sigma Y=35$, $\Sigma XY=123$, $\Sigma X^2=55$.

A tabela a seguir apresenta uma amostra aleatória simples formada por 5 pares de valores (X_i, Y_i) , em que $i = 1, 2, ..., 5, X_i$ é uma variável explicativa e Y_i é uma variável dependente.

i	1	2	3	4	5
X _i	0	1	2	3	4
Y _i	0,5	2,0	2,5	5,0	3,5

Considere o modelo de regressão linear simples na forma $Y_i=bX_i+\epsilon_i$, no qual ϵ representa um erro aleatório normal com média zero e variância σ^2 e b é o coeficiente do modelo.

Com base nos dados da tabela e nas informações apresentadas, é correto afirmar que o valor da estimativa de mínimos quadrados ordinários do coeficiente b é igual a

- A. 0,75.
- B. 0,9.
- C. 1,2.
- D. 1,35.
- E. 1,45.

 εi é o componente aleatório de Yi que descreve os erros (ou desvios) cometidos quando tentamos aproximar uma série de observações Xi por meio de uma reta Yi.

i)
$$E(\varepsilon i) = 0$$
.

 A média dos erros é igual a zero. Ou seja, os desvios "para cima da reta" igualam o valor dos desvios "para baixo da reta" na média.

ii)
$$Var(\varepsilon i) = \sigma^2$$
.

 A variância dos erros é constante. Essa propriedade é denominada de homocedasticia.

iii)
$$Cov(\varepsilon i, \varepsilon j) = 0 para i \neq j$$
.

• Os erros cometidos não são correlacionados, isto é, os desvios $\boldsymbol{\varepsilon}i$ são variáveis aleatórias independentes.

OBRIGADO

QUESTÃO 1

Um modelo de regressão linear simples na forma $y = ax + b + \epsilon$, no qual e representa o erro aleatório com média nula e variância constante, foi ajustado para um conjunto de dados no qual as médias aritméticas das variáveis y e x são, respectivamente, \bar{y} = 10 e \bar{x} = 5. Pelo método dos mínimos quadrados ordinários, se a estimativa do intercepto (coeficiente b) for igual a 20, então a estimativa do coeficiente angular a proporcionada por esse mesmo método deverá ser igual a

- A. -2.
- B. 2.
- C. -1.
- D. 0.

E. 1.

https://t.me/kakashi_copiador

A variável x tem média 4 e desvio padrão 2, enquanto a variável y tem média 3 e desvio padrão 1. A covariância entre x e y é -1.

A equação estimada da regressão linear simples de y por x é:

A.
$$\hat{y} = 2-0.25 \times$$
.

B.
$$\hat{y} = 3-0.5 \times$$
.

C.
$$\hat{y} = 3 - \times$$
.

D.
$$\widehat{y} = 4 - \times$$
.

E.
$$\hat{y} = 4-0.25 \times ...$$

Sejam S o valor do salário, em R\$ 1.000,00, e t o respectivo tempo de serviço, em anos, de 20 empregados de uma empresa. Optou-se, com o objetivo de previsão do salário de um determinado empregado em função do seu tempo de serviço, por utilizar a relação linear Si = α + β ti + ϵ i, com i representando a i-ésima observação, α e β são parâmetros desconhecidos e ϵ i é o erro aleatório com as respectivas hipóteses da regressão linear simples.

Utilizando o método dos mínimos quadrados, com base nas 20 observações correspondentes dos 20 empregados, obtiveram-se as estimativas de α e β (a e b, respectivamente). O valor encontrado para b foi de 1,8 e as médias dos salários dos 20 empregados e dos correspondentes tempos de serviço apresentam os valores de R\$ 2.800,00 e 2 anos, respectivamente.

A previsão de salário para um empregado que tenha 5 anos de serviço é de

- A. R\$ 6.800,00
- B. R\$ 7.500,00
- C. R\$ 8.200,00
- D. R\$ 8.400,00
- E. R\$ 9.000,00

Um grupo de 5 pessoas ingressou em um plano de dieta com o objetivo de reduzir peso. Obtenha a equação de regressão estimada que relacione a quantidade de peso perdida, Y em kg, e o número de semanas de cada um dos participantes no plano, X, sabendo que os valores registrados foram:

$$\Sigma X=15, \Sigma Y=35, \Sigma Y^2=279, \Sigma XY=123, \Sigma X^2=55.$$

- A. $\hat{y} = 1.8 + 1.6X$
- B. $\hat{y} = 9.6 + 1.6X$
- C. $\hat{y} = 1.6 + 1.8X$
- D. $\hat{y} = -9.6 + 1.8X$
- E. $\hat{y} = -1.6 1.8X$

Estratégia Concursos

Seja o modelo linear Yi = β X i + ϵ i estabelecendo uma relação linear, sem intercepto, entre duas variáveis X e Y, em que Y i é a variável dependente na observação i, X i é a variável explicativa na observação i e ϵ i o erro aleatório com as respectivas hipóteses para a regressão linear simples. O parâmetro β do modelo é desconhecido e sua estimativa foi obtida pelo método dos mínimos quadrados com base em 10 pares de observações (X i , Y i).

 $\Sigma X=120$, $\Sigma Y=180$, $\Sigma XY=2.400$ e $\Sigma X^2=1.500$

Considerando a equação da reta obtida pelo método dos mínimos quadrados, obtém-se que Y é igual a 24 quando X for igual a

- A. 15.
- B. 6.
- C. 16.
- D. 18.
- E. 20.

Assinale a alternativa que apresenta a premissa da homocedasticidade que é subjacente ao método dos mínimos quadrados no modelo de regressão linear clássico.

- A. Dado o valor de X, o valor médio ou esperado do distúrbio aleatório u i é zero.
- B. Não há autocorrelação entre os termos de erro.
- C. Ausência de covariância entre u i e X i.
- D. Dado o valor de X, a variância de ui é a mesma para todas as observações.
- E. Os valores de X em uma dada amostra não devem ser os mesmos.

OBRIGADO

Prof. Jhoni Zini

Análise da variância da regressão

Prof. Jhoni Zini

TESTE DE HIPÓTESES

$$H_0: \beta = 0$$

$$H_0$$
: $\beta = 0$
 H_1 : $\beta \neq 0$

TABELA ANOVA

FONTE DE	SOMA DOS	GRAUS DE	QUADRADOS	ESTATÍSTICA
VARIAÇÃO	QUADRADOS	LIBERDADE	MÉDIOS	F
REGRESSÃO	SQ _R	1	QM _R	$\frac{QM_R}{QM_E}$
RESÍDUOS (ERROS)	SQ _E	N-2	QM _E	
TOTAL	SQ _T	N-1	QM_T	

SOMA DOS QUADRADOS DA REGRESSÃO

$$SQ_{REGRESS\tilde{A}O} = \sum (\hat{y} - \bar{y})^2$$

SOMA DOS QUADRADOS DOS RESÍDUOS

$$SQ_{RES} = \left(Y_i - \hat{Y}\right)^2$$

SOMA DOS QUADRADOS TOTAIS

$$SQ_T = (Y_i - \overline{Y})^2$$

EXEMPLO

$$Y = \alpha + \beta X + \varepsilon$$
 N = 21 SQM = 40 SQR = 380 SQT = 420

FONTE DE	SOMA DOS	GRAUS DE	QUADRADOS	ESTATÍSTICA
VARIAÇÃO	QUADRADOS	LIBERDADE	MÉDIOS	F
REGRESSÃO				
RESÍDUOS				
TOTAL				

EXEMPLO

$$Y = \alpha + \beta X + \varepsilon$$
 N = 11 SQM = 6 SQR = 18 SQT = 24

FONTE DE	SOMA DOS	GRAUS DE	QUADRADOS	ESTATÍSTICA
VARIAÇÃO	QUADRADOS	LIBERDADE	MÉDIOS	F
REGRESSÃO				
RESÍDUOS				
TOTAL				

ANÁLISE DO TESTE - DISTRIBUIÇÃO F

EXEMPLO

FONTE DE	SOMA DOS	GRAUS DE	QUADRADOS	ESTATÍSTICA	F
VARIAÇÃO	QUADRADOS	LIBERDADE	MÉDIOS	F	TAB
REGRESSÃO	180	1			4,5
RESÍDUOS	900	15			
TOTAL					

OBRIGADO

Prof. Jhoni Zini

