In [1]:

import pandas as pd

In [2]:

df=pd.read_csv("Salary_Data.csv")

In [3]:

df

Out[3]:

	YearsExperience	Salary	
0	1.1	39343.0	
1	1.3	46205.0	
2	1.5	37731.0	
3	2.0	43525.0	
4	2.2	39891.0	
5	2.9	56642.0	
6	3.0	60150.0	
7	3.2	54445.0	
8	3.2	64445.0	
9	3.7	57189.0	
10	3.9	63218.0	
11	4.0	55794.0	
12	4.0	56957.0	
13	4.1	57081.0	
14	4.5	61111.0	
15	4.9	67938.0	
16	5.1	66029.0	
17	5.3	83088.0	
18	5.9	81363.0	
19	6.0	93940.0	
20	6.8	91738.0	
21	7.1	98273.0	
22	7.9	101302.0	
23	8.2	113812.0	
24	8.7	109431.0	
25	9.0	105582.0	
26	9.5	116969.0	
27	9.6	112635.0	
28	10.3	122391.0	
29	10.5	121872.0	

In [4]:

import matplotlib.pyplot as plt

In [5]:

plt.scatter(df.YearsExperience,df.Salary)

Out[5]:

<matplotlib.collections.PathCollection at 0x1786bcd4308>

In [6]:

#1.

X=df[['YearsExperience']]

y=df.Salary

In [7]:

Х

Out[7]:

YearsExperience						
0	1.1					
1	1.3					
2	1.5					
3	2.0					
4	2.2					
5	2.9					
6	3.0					
7	3.2					
8	3.2					
9	3.7					
10	3.9					
11	4.0					
12	4.0					
13	4.1					
14	4.5					
15	4.9					
16	5.1					
17	5.3					
18	5.9					
19	6.0					
20	6.8					
21	7.1					
22	7.9					
23	8.2					
24	8.7					
25	9.0					
26	9.5					
27	9.6					
28	10.3					
29	10.5					

```
In [8]:
```

```
from sklearn.linear_model import LinearRegression
model=LinearRegression()
```

In [9]:

```
model.fit(X,y)
```

Out[9]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

In [10]:

```
model.score(X,y)
```

Out[10]:

0.9569566641435084

In [11]:

```
pre=model.predict(X)
```

```
In [12]:
```

у

```
Out[12]:
```

```
0
       39343.0
1
       46205.0
2
       37731.0
3
       43525.0
4
       39891.0
5
       56642.0
6
       60150.0
7
       54445.0
8
       64445.0
9
       57189.0
10
       63218.0
11
       55794.0
12
       56957.0
13
       57081.0
14
       61111.0
15
       67938.0
16
       66029.0
17
       83088.0
18
       81363.0
19
       93940.0
20
       91738.0
21
       98273.0
22
      101302.0
23
      113812.0
24
      109431.0
25
      105582.0
26
      116969.0
27
      112635.0
      122391.0
28
```

Name: Salary, dtype: float64

121872.0

29

```
In [13]:
```

```
plt.scatter(X,y,c='r')
plt.plot(X,pre,c='b')
```

Out[13]:

[<matplotlib.lines.Line2D at 0x1786e036048>]

In [14]:

```
model.predict([[20]])
```

Out[14]:

array([214791.44662777])

In [15]:

```
model.intercept_
```

Out[15]:

25792.200198668717

In [16]:

```
model.coef_
```

Out[16]:

array([9449.96232146])

In [19]:

```
df=pd.read_csv("position_salaries.csv")
```

In [20]:

df

Out[20]:

	Position	Level	Salary
0	Business Analyst	1	45000
1	Junior Consultant	2	50000
2	Senior Consultant	3	60000
3	Manager	4	80000
4	Country Manager	5	110000
5	Region Manager	6	150000
6	Partner	7	200000
7	Senior Partner	8	300000
8	C-level	9	500000
9	CEO	10	1000000

In [21]:

```
X=df[['Level']]
y=df.Salary
```

In [22]:

```
plt.scatter(X,y)
```

Out[22]:

<matplotlib.collections.PathCollection at 0x1786f628d48>

In [23]:

```
model2=LinearRegression()
```

```
In [24]:
```

```
model2.fit(X,y)
```

Out[24]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

In [26]:

```
model2.score(X,y)
```

Out[26]:

0.6690412331929895

In [27]:

```
pre=model2.predict(X)
```

In [28]:

```
plt.scatter(X,y,c='red')
plt.plot(X,pre,c='b')
```

Out[28]:

[<matplotlib.lines.Line2D at 0x1786f826888>]

In [29]:

from sklearn.preprocessing import PolynomialFeatures

In [34]:

```
poly=PolynomialFeatures(degree=3)
```

```
In [36]:
```

```
X_poly=poly.fit_transform(X)
```

In [37]:

```
model3=LinearRegression()
```

In [38]:

```
model3.fit(X_poly,y)
```

Out[38]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

In [39]:

```
model3.score(X_poly,y)
```

Out[39]:

0.9812097727913366

In [41]:

```
pre3=model3.predict(X_poly)
```

In [42]:

```
plt.scatter(X,y,c='red')
plt.plot(X,pre3,c='b')
```

Out[42]:

[<matplotlib.lines.Line2D at 0x17870198308>]

In [47]:

data

Out[47]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	A
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Fε 674\nLaurat
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnso Suite 07! Kathlee
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 E Stravenue\nDan WI (
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nf
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymon AE
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS William AP 301เ
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 92 8489\nAPO AA
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tracy Suite 076\nJosh
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nf
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Apt. 509\nEa

5000 rows × 7 columns

In [48]:

x=data.drop(['Address','Price'],axis=1)

In [49]:

y=data.Price

In [51]:

from sklearn.model_selection import train_test_split

In [78]:

x_train,x_test,y_train,y_test=train_test_split(x,y)

In [79]:

MLR=LinearRegression()

In [80]:

MLR.fit(x_train,y_train)

Out[80]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

In [81]:

MLR.score(x_test,y_test)

Out[81]:

0.9176528918114587

In [82]:

data.corr()

Out[82]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
Avg. Area Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734
Avg. Area House Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543
Avg. Area Number of Rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664
Avg. Area Number of Bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071
Area Population	-0.016234	-0.018743	0.002040	-0.022168	1.000000	0.408556
Price	0.639734	0.452543	0.335664	0.171071	0.408556	1.000000

In []:			