MECH3750 - Tutorial 4

Question 1.

Show that

a.
$$\overline{\exp(iy)} = \exp(-iy)$$

b.
$$\sin y = \frac{e^{iy} - e^{-iy}}{2i}$$

c.
$$\cos y = \frac{e^{iy} + e^{-iy}}{2}$$

Question 2.

Using the complex inner product $(u, v) = \sum_{i=0}^{4} \overline{u_i} v_i$ consider the vectors

$$q_n^{(k)} = \exp(ik\frac{2\pi n}{M})$$
 $n = 0, 1, 2, 3$

- a. Write $q^{(k)}$ explicitly for k = 0, 1, 2, 3.
- b. Use the inner product to find $||q^{(k)}||$ for k = 0, 1, 2, 3.
- c. Verify $q^{(0)}, q^{(1)} = 0; q^{(2)}, q^{(3)} = 0; q^{(0)}, q^{(2)} = 0$

Question 3.

In our interpretation of the DFT, the values a_k represent the coefficients of the vector:

$$p_n^{(k)} = \frac{1}{N} \exp\left(i\frac{2\pi nk}{N}\right)$$

in the signal f_n for k = 0, 1, ..., N - 1.

Verify that $p_n^{(N-1)} = p_n^{(-1)}$ and also $p_n^{(N-m)} = p_n^{(-m)}$. This is important for interpreting the values of the DFT for large k.

Question 4.

Find the DFT of:

(a)
$$\mathbf{f} = (1, 2, 0, 1)$$

(b)
$$\mathbf{f} = (1, 1, ..., 1)$$
, for $N = 8$

Question 5.

Show that the DFT of: $\mathbf{f} = (f_0, f_1, \dots, f_7)$ for:

$$f_n = \sin \frac{2\pi n}{8}$$

Is given by (0, A, 0, 0, 0, 0, B), and determine A, B. You may use the orthogonality properties of $p_n^{(k)}$.

Question 6.

The DFT of a signal f obtained at values $x_n = \frac{2\pi n}{8}$, n = 0, ..., 7 is: a = (8, 4 - 8i, 2, -i, 0, i, 2, 4 + 8i).

a. This means that the original signal can be expressed as

$$f_n = \sum_{k=0}^{N-1} a_k p_n^{(k)}$$
 $p_n^{(k)} = \frac{1}{N} \exp(ikx_n).$

Rewrite the original signal in the form $\mathbf{f} = \alpha_1 + \sum_i \alpha_i \cos(\omega_i x) + \beta_i \sin(\omega_i x)$ where the coefficients and ω_i are to be determined. **Hint:** Use the property that $p_n^{N-m} = p_n^{-m}$

b. Use the inverse DFT to obtain the values of the f using Python.

Formula Sheet

Discrete Fourier Transform Given a vector $(f_0, f_1, \dots f_{N-1})$ we define its DFT as

$$a_k = \sum_{n=0}^{N-1} f_n \exp(-ikx_n)$$
 with $x_n = \frac{2\pi n}{N}$, $n = 0, \dots, N-1$.

The original signal can be recovered using the inverse DFT $f_n = \frac{1}{N} \sum_{k=0}^{N-1} a_k \exp(ikx_n)$. The DFT relies on the orthogonality relationship:

$$\sum_{n=0}^{N-1} \exp(-ikx_n) \exp(ijx_n) = 0 \quad k \neq j \quad \& \quad = N \quad k = j$$