

HERO Hardware Reference Manual

Version 1.1.0

This document is preliminary and subject to change

Micrel Lab and Multitherman Lab, University of Bologna, Italy Integrated Systems Lab, ETH Zürich, Switzerland

Table of Contents

Table of Contents	2
HERO Features	6
Introduction to the HERO architecture	7
System on Chip	9
Cores	9
Memory areas	9
Debug architecture	10
Events and interrupts model	10
Exceptions model	10
Data types supported	10
Event Units	10
DMA (direct memory access)	10
Performance counters	10
Memory map	12
Aliased memory map	12
FC aliased address map	12
Cluster aliased address map	12
Device components description	13
RISC-V cores	13
Complex number operations	13
Complex multiplication operations	13
Subtraction of 2 complexes with post rotation by -j	14
Complex conjugate operation	14
Extensions to existing RI5CY vector operations.	14
Addition of vector of half words with post right shift	14
Subtraction of vectors of half words with post right shift	15
Viterbi specific instructions	15
Enhanced shuffling	16
Cluster Subsystem	16
Cluster Subsystem Events	17
Cluster control unit	17
Cluster control unit registers	18
Cluster control unit registers details	18
End Of Computation status register. (EOC)	18
Cluster cores fetch enable configuration register. (FETCH_EN)	18
Cluster clock gate configuration register. (CLOCK_GATE)	20
Cluster cores debug resume register. (DBG_RESUME)	20
Cluster cores debug halt status register. (DBG_HALT_STATUS)	21
Cluster cores debug halt mask configuration register. (DBG_HALT_MASK)	22
Cluster core 0 boot address configuration register. (BOOT_ADDR0)	23
TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)	23
TCDM arbitration policy ch1 for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)	23
Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)	24
Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)	24
Cluster timer	24
Cluster timer registers	25
Cluster timer registers details	25
Timer Low Configuration register. (CFG_LO)	25
Timer High Configuration register. (CFG_HI)	26
Timer Low counter value register. (CNT_LO)	27
Timer High counter value register. (CNT_HI)	27
Timer Low comparator value register. (CMP_LO)	27
Timer High comparator value register. (CMP_HI)	28
Start Timer Low counting register. (START_LO)	28
Start Timer High counting register. (START_HI)	28
Reset Timer Low counter register. (RESET_LO)	28

Reset Timer High counter register. (RESET_HI)	29
Cluster event unit	29
Cluster event unit registers	29
Cluster event unit registers details	36
Input event mask configuration register. (EVT_MASK)	36
Hardware task dispatcher push command register. (HW_DISPATCH_PUSH_TASK)	36
Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)	37
Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)	37
Hardware mutex 0 blocking get command register. (HW_MUTEX_0_MSG_GET)	37
Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)	37
Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)	37
Cluster Software event 0 trigger, wait and clear command register. (SW_EVENT_0_TRIG_WAIT_CLEAR)	38
Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)	38
Cluster hardware barrier 0 trigger mask configuration register. (HW_BARRIER_0_TRIG_MASK)	38
Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)	39
Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONF	IG) 39
Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)	39
Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET)	39
Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)	40
Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT)	40
Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)	40
Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)	40
Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)	41
Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)	41
Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)	41
Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)	41
Cluster hardware barrier summary status register. (HW_BARRIER_0_STATUS_SUM)	42
Interrupt request mask configuration register. (IRQ_MASK)	42
Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)	42
Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT)	43
Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)	43
Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)	43
Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)	43
Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)	44
Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)	44
Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)	44
Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)	44
Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)	45
Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)	45
Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)	45
Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)	45
Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)	46
Cluster cores clock status register. (CLOCK_STATUS)	46
Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)	46
Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)	46
Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR)	47
Cluster hardware barrier 0 trigger and wait command register. (HW_BARRIER_0_TRIG_WAIT)	47
Pending input events status register. (EVENT_BUFFER)	47
Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)	48
Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)	48
Cluster Software event 7 trigger, wait and clear command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)	48
Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLE	AR) 48
Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)	49
Cluster hardware barrier 1 trigger mask configuration register. (HW_BARRIER_1_TRIG_MASK)	49
Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)	49
Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)	49
Pending input events status clear command register. (EVENT_BUFFER_CLEAR)	50
Cluster hardware barrier summary status register. (HW_BARRIER_1_STATUS_SUM)	50
Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)	50

Cluster hardware barrier 1 target mask configuration register. (HW_BARRIER_1_TARGET_MASK)	50
Software events cluster cores destination mask update command register with bitwise AND operation. (SW_EVENT_MASK_AND)	51
Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)	51
Software events cluster cores destination mask update command register with bitwise OR operation.	
(SW_EVENT_MASK_OR)	51
Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG) Input event wait command register. (EVENT_WAIT)	51 52
Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)	52
	
Input event wait and clear command register. (EVENT_WAIT_CLEAR)	52
Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)	52
Cluster hardware barrier 2 trigger mask configuration register. (HW_BARRIER_2_TRIG_MASK)	53
Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)	53
Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)	53
Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)	53
Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)	54
Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)	54
Cluster hardware barrier 2 trigger and wait command register. (HW_BARRIER_2_TRIG_WAIT)	54
Cluster hardware barrier 2 trigger, wait and clear command register. (HW_BARRIER_2_TRIG_WAIT_CLEAR)	54
Cluster hardware barrier 3 trigger mask configuration register. (HW_BARRIER_3_TRIG_MASK)	55
Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)	55
Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)	55
Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)	55
Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)	56
Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)	56
Cluster hardware barrier 3 trigger and wait command register. (HW_BARRIER_3_TRIG_WAIT)	56
Cluster hardware barrier 3 trigger, wait and clear command register. (HW_BARRIER_3_TRIG_WAIT_CLEAR)	56
Cluster hardware barrier 4 trigger mask configuration register. (HW_BARRIER_4_TRIG_MASK)	57
Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)	57
Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)	57
Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)	57
Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)	58
Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)	58
Cluster hardware barrier 4 trigger and wait command register. (HW_BARRIER_4_TRIG_WAIT)	58
Cluster hardware barrier 4 trigger, wait and clear command register. (HW_BARRIER_4_TRIG_WAIT_CLEAR)	58
Cluster hardware barrier 5 trigger mask configuration register. (HW_BARRIER_5_TRIG_MASK)	59
Cluster hardware barrier 5 trigger mask comiguration register. (TW_BARTTER_5_TMG_MASK) Cluster hardware barrier 5 status register. (HW_BARRIER_5_STATUS)	59
Cluster hardware barrier summary status register. (HW_BARRIER_5_STATUS_SUM)	59
Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)	59
Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)	60
Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)	60
Cluster hardware barrier 5 trigger and wait command register. (HW_BARRIER_5_TRIG_WAIT)	60
Cluster hardware barrier 5 trigger, wait and clear command register. (HW_BARRIER_5_TRIG_WAIT_CLEAR)	60
Cluster hardware barrier 6 trigger mask configuration register. (HW BARRIER 6 TRIG MASK)	61
Cluster hardware barrier 6 status register. (HW_BARRIER_6_STATUS)	61
Cluster hardware barrier summary status register. (HW_BARRIER_6_STATUS_SUM)	61
Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)	61
Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)	62
Cluster hardware barrier 6 self trigger command register. (HW_BARRIER_6_SELF_TRIG)	62
Cluster hardware barrier 6 trigger and wait command register. (HW_BARRIER_6_TRIG_WAIT)	62
Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)	62
Cluster hardware barrier 7 trigger mask configuration register. (HW_BARRIER_7_TRIG_MASK)	63
Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)	63
Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)	63
Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)	63
Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)	64
Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)	64
Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT)	64
Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER_7_TRIG_WAIT_CLEAR)	64
Classo, hardinare same in ingger, wait and close command register. (1111_Distributer	

Cluster instruction cache control unit					
Cluster instruction cache control unit registers	65				
Cluster instruction cache control unit registers details	65				
Cluster instruction cache unit enable configuration register. (ENABLE)	65				
Cluster instruction cache unit flush command register. (FLUSH)	65				
Cluster instruction cache unit selective flush command register. (SEL_FLUSH)	65				

1 HERO Features

- HERO combines:
 - o a hard ARM Cortex-A multicore host processor with
 - a scalable, congurable, and extensible FPGA implementation of an open-source, silicon-proven, cluster-based manycore
- The fully open-sourced, heterogeneous software stack of HERO supports:
 - the OpenMP 4.5 Accelerator Model, and shared virtual memory (SVM), which allows for transparent accelerator
 programming and thereby tremendously simplies the porting of existing applications to create heterogeneous
 implementations.
- The base configuration of HERO for the Xilinx Zynq ZC706 Evaluation Kit features the following accelerator configuration:
 - o 1 PULP cluster comprising 8 32-bit RI5CY cores
 - 128 KiB of shared L1 scratchpad memory
 - o 4 KiB of shared L1 instruction cache,
 - $\circ~$ 128 KiB of shared L2 scratchpad and instruction memory, our brand-new IOMMU with
 - an L1 TLB of 32 variable-sized entries, and
 - an L2 TLB of 1024 page-sized entries.

The release of HERO includes:

- 1 PULP cluster with 8 high-performance cores: extended RISC-V ISA
 - o 8 cores that execute in parallel for compute intensive tasks referred to as Cluster
- Memories:
 - o A level 1 Memory (128 KB) shared by all the cores in Cluster (0 wait state memory access)
 - o Memory Protection Unit
- Debug Mode
 - RISCV debug unit
- DMA
 - o A multi-channel 1D/2D cluster-DMA controls the transactions between the L2 Memory and L1 Memory

2 Introduction to the HERO architecture

HERO consists of many different hard- and software components.

On the hardware side, HERO uses an ARM Cortex-A host processor combined with a RISC-V programmable manycore accelerator (PMCA) implemented on FPGA. As PMCA, HERO uses bigPULP, i.e., the big brother of the open-source, multi-core, Parallel Ultra-Low Power (PULP) computing platform jointly developed by ETH Zurich and the University of Bologna. BigPULP is based on the same cluster architecture and source code. Depending on the target FPGA, bigPULP uses one or multiple PULP clusters that share an L2 instruction and data memory, a global interconnect, synchronization infrastructure, as well as the Remap Address Block (RAB) - a software-managed I/O memory management unit - which allows accelerator to coherently access the platform's main memory including support for shared virtual memory (SVM).

Figure 1. HERO Overview

On the software side, HERO combines two diEerent open-source software stacks. Both comprise various modules and are contained in the HERO SDK.

The programmer writes a single application source le for the host and uses OpenMP directives for parallelization and accelerator oFoading. The host-side OpenMP runtime together with the accelerator plugin takes care of the actual oFoading of the target section to the accelerator. Lower-level API calls are resolved to the corresponding, device-specic implementation by the target library. The accelerator uses the PULP Software Development Kit (SDK), which also provides accelerator-specic libraries such as the Virtual Memory Management (VMM) library and the accelerator-side OpenMP runtime. The host-side HERO software stack is completed by a user-space runtime library and kernel-level device driver, which take care of system-level tasks such as booting and synchronizing with the accelerator, and allowing the the accelerator manage the shared virtual memory (SVM) subsystem. The host itself runs a full-stack Linux.

Figure 1. HERO sw stack

3 System on Chip

The following figure describes the main functional blocks of HERO:

Figure 1. HERO Overview

HERO's hierarchical, demand-driven architecture enables ultra-low-power operation by combining:

• A cluster of 8 cores with an architecture optimized for the execution of vectorized and parallelized algorithms.

All cores and peripherals are power switchable and voltage and frequency adjustable on demand. DC/DC regulators and clock generators with ultra-fast reconfiguration times are integrated. This allows HERO to adapt extremely quickly to the processing/energy requirements of a running application. All elements share access to an L2 memory area. The cluster cores share access to an L1 (TCDM) memory area and instruction cache. Multiple DMA units allow autonomous, fast, low power transfers between cluster L1 and L2 memory and between L2 memory and external peripherals.

3.1 Cores

All 8 cores of the cluster share the RV32IMFCXpulp instruction set architecture, while the fabric controller can be configured as either RV32IMC or RV32IMFCXpulp. The I (integer), C (compressed instruction), M (Multiplication and division) and a portion of the supervisor ISA subsets are supported. These standard instruction sets are extended with specific instructions to optimize the performance of signal processing and machine learning algorithms. These extensions include zero-overhead hardware loops, pointer post/pre-modified memory accesses, instructions mixing control flow with computation (min, max, etc.), multiply/subtract and accumulate, vector operations, fixed-point operations, bit manipulation and dot product. All of these instruction extensions are optimized by the compiler or can be used 'by hand' (more details in [RI5CY User Manual] https://PULP-platform.org//wp-content/uploads/2017/11/ri5cy user manual.pdf).

3.2 Memory areas

There are 2 different levels of memory internal to PULP. A larger level 2 area of 512kB which is accessible by all processors and DMA units a smaller (Tightly Coupled Device Memory - TCDM) level 1 area shared by all the cluster cores (128kB). The cluster level 1 memory is banked and connected to the cluster cores via a logarithmic interface that is sized to provide single cycle access in 98% of cases.

L2 memory is divided into 4 128kB blocks.

Cluster L1 memory supports test-an-set functionality. The test-and-set is an atomic instruction used to write to a memory location

and return its old value as a single atomic (i.e. non-interruptible) operation. If multiple processes access the same memory area and if a process is currently performing a test-and-set, no other process may begin another test-and-set until the first process is done.

The instruction caches of the FC (1kB) and cluster (4kB) will automatically cache instructions as needed. The cluster instruction cache is shared between all the cores in the cluster. Generally, the cluster cores will be executing the same area of code on different data hence the shared cluster instruction cache exploits this to reduce memory accesses for loading instructions.

The combination of a high speed shared data and instruction memory in the cluster provides an ideal memory architecture for the execution of code implementing parallelized algorithms.

PULP can also access external memory areas over the HyperBus (Flash or RAM) or quad-SPI (Flash) interfaces. We refer to RAM accessed over the HyperBus or quad-SPI interfaces as level 3 memory. Since the energy and performance cost of accessing external RAM over external buses is very high compared to the internal memory, generally this should be avoided as much as possible. In consequence, program code is loaded from external flash at boot into the L2 memory area.

3.3 Debug architecture

PULP contains debug functionalities to help the developer observing/controlling application code execution.

Debug functionalities are accessible through JTAG using a GDB server. The documentation of the RISCV compliant debug unit is accessible here: https://github.com/pulp-platform/riscv-dbg/blob/master/doc/debug-system.md.

3.4 Events and interrupts model

To be completed

3.5 Exceptions model

To be completed

3.6 Data types supported

The memories are byte addressable so every single data type whose size is a multiple of bytes can be supported either natively if the number of bytes is less or equal than 4 or through software emulation if it is larger.

3.7 Event Units

Two event units (EU) are available in PULP. One for the FC and one for the cluster.

The EU allows the RI5CY cores to be put into sleep mode when waiting for an event to occur. In the EUs, the way of treating incoming events can be controlled. The EU can be instructed to react instantly by jumping to an interrupt routine or to delegate the treatment of the event to a software event task controller.

3.8 DMA (direct memory access)

The DMA unit allows the transfer of data between L2 and cluster L1 memory areas. 8 channels can be programmed. Channels can be 1D/2D on the L2 memory and 1D on the cluster L1 side.

3.9 Performance counters

Each RI5CY cores of the FC and the cluster provide a performance counter. These 32-bit counters can be configured to count the:

- Total number of cycles (also includes the cycles where the core is sleeping)
- Number of cycles the core was active (not sleeping)
- Number of instructions executed
- Number of load data hazards
- Number of jump register data hazards
- Number of cycles waiting for instruction fetches, i.e. number of instructions wasted due to non-ideal caching
- Number of data memory loads executed. Misaligned accesses are counted twice
- Number of data memory stores executed. Misaligned accesses are counted twice
- Number of unconditional jumps (j, jal, jr, jalr)
- Number of both taken and not taken branches
- Number of taken branches
- Number of compressed instructions executed
- Number of memory loads to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external

(cluster only)

- Number of memory stores to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external (cluster only)
- Number of cycles used for memory loads to EXT. Every non-L1 access is considered external (cluster only)
- Number of cycles used for memory stores to EXT. Every non-L1 access is considered external (cluster only)
- Number of cycles wasted due to L1/log-interconnect contention (cluster only)
- Number of cycles wasted due to CSR access

4 Memory map

The following table describes PULP's memory map. All areas in this map are addressable from any RI5CY cores. The aliased area at the start of the memory map has a different meaning when addressed from FC or Cluster RI5CY cores. See the section on aliasing below.

Address range

		Address range
Aliased Memory Area		0x00000000 - 0x003FFFFF
	Aliased memory map area	0x1B000000 - 0x1B3FFFFF
Cluster Subsystem		0x10000000 - 0x103FFFFF
	Cluster L1 RAM (128kB)	0x10000000 - 0x1001FFFF
	Cluster L1 memory test and set unit	0x10100000 - 0x101FFFFF
	Cluster control unit	0x10200000 - 0x102003FF
	<u>Cluster timer</u>	0x10200400 - 0x102007FF
	Cluster event unit	0x10200800 - 0x10200FFF
	Cluster instruction cache control unit	0x10201400 - 0x102017FF
	CL_EU_CORE	0x10204000 - 0x102043FF
	DMA	0x10204400 - 0x10204BFF
L2 Memory		0x1C000000 - 0x1FFFFFF
	L2 RAM (128kB)	0x1C000000 - 0x1C01FFFF
	L2 RAM PRIVATE CH 0	0x1C000000 - 0x1C007FFF
	L2 RAM PRIVATE CH 1	0x1C008000 - 0x1C00FFFF
	L2 RAM INTERLEAVED (SPM)	0x1C010000 - 0x1C03FFFF

Table 1. Pulp memory map table

4.1 Aliased memory map

A reserved section of addresses in the overall memory map have specific meaning when addressed from the FC or Cluster RI5CY cores. These are called aliased addresses. They should be preferred over standard addresses since the access will be faster (1 or 2 clock cycles).

4.2 FC aliased address map

{{fcalias.txt}}

4.3 Cluster aliased address map

Aliased address range		
0x1B000000 - 0x1B01FFFF		
0x1B100000 - 0x1B1FFFFF		
0x1B200000 - 0x1B2003FF		
0x1B200400 - 0x1B2007FF		
0x1B201400 - 0x1B2017FF		
0x1B204000 - 0x1B2043FF		

Table 2. Cluster Subsystem aliased memory map table

5 Device components description

5.1 RISC-V cores

The FC and cluster cores in PULP are based on the PULP RI5CY core.

RI5CY supports the following instructions:

- Full support for RV32I Base Integer Instruction Set
- Full support for RV32C Standard Extension for Compressed Instructions
- Partial support for RV32M Standard Extension for Integer Multiplication and Division. Multiplication only.
- The Fabric Controller core supports a subset of the draft RISC-V privileged architecture supporting M and U modes.

The RISCY core design has been extended with the instructions in the sections below. The RISCY core itself implements extensions to the RISC-V instruction set. The datasheet for the RISCY core can be found in this folder (doc) of the HERO repository. Please note that the RISCY cores in PULP do not contain a floating point unit. The floating point units, in the HERO platform, are shared among all the riscy cores, in a shared fpu cluster. The latency of the fp operations can be found in the riscy manual. A complete overview of the Flex-Float operations supported by the core can be found in a dedicated document, still in this doc folder. For further explanation of the RISC-V instruction format please refer to the RISC-V standards documents.

5.1.1 Complex number operations

Complex number representation for multiply and subtract operations

C = {Re, Im} represented as a vector of 2 16bits signed numbers. Using gcc vector notation C[0] is the real part, C[1] is the imaginary part.

Position in register in little endian:

Re: bits[15:0]Im: bits[31:16]

5.1.1.1 Complex multiplication operations

Mnemonic	Description
pv.cplxmul.s rD, rA, rB	Vector by Vector rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>15 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>15
pv.cplxmul.s.div2 rD, rA, rB	Vector by Vector, Div2 rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>16 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>16
pv.cplxmul.s.div4 rD, rA, rB	Vector by Vector, Div4 rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>17 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>17
pv.cplxmul.s.sc rD, rA, rB	Vector by Scalar rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[15:0])>>15 rD[31:16] = (rA[15:0]*rB[15:0] + rA[31:16]*rB[15:0])>>15
pv.cplxmul.s.sci	Vector by I6 Scalar rD[15:0] = (rA[15:0]*ExtS(I6) - rA[31:16]*ExtS(I6))>>15 rD[31:16] = (rA[15:0]*ExtS(I6) + rA[31:16]*ExtS(I6))>>15

Table 3. Complex multiplication operations summary table

35		31	26	25	24	20 19	15 14 12	217 7	6 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	01010		1	0	src2	src1	000	dest	1010111
	01010		1	0	src2	src1	010	dest	1010111
	01010		1	1	src2	src1	010	dest	1010111
	01010		1	0	src2	src1	100	dest	1010111
	01010		1	lr	mm6[5:0]s	src1	110	dest	1010111

Table 4. Complex multiplication operations format table

5.1.1.2 Subtraction of 2 complexes with post rotation by -j

R = subrotmj(X, Y), R, X, Y complexes.

R.Re = X.Im - Y.Im R.Im = Y.Re - X.Re

It can be viewed as (XY) rotated by 90 degrees (multiplied by j).

Mnemonic Description

pv.subrotmj.h rD, rA, rB	rD[15:0] = rA[31:16] - rB[31:16] rD[31:16] = rB[15:0] rA[15:0]				
pv.subrotmj.h.div2 rD, rA, rB	rD[15:0] = (rA[31:16] - rB[31:16]) >> 1 rD[31:16] = (rB[15:0] - rA[15:0]) >> 1				
pv.subrotmj.h.div4 rD, rA, rB	rD[15:0] = (rA[31:16] - rB[31:16]) >> 2 rD[31:16] = (rB[15:0] - rA[15:0]) >> 2				

Table 5. Subtraction of 2 complexes with post rotation by -j summary table

35	:	31	26	25	24	20 19	15 14	12 17 7	76 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	01101		1	0	src2	src1	000	dest	1010111
	01101		1	0	src2	src1	010	dest	1010111
	01101		1	1	src2	src1	010	dest	1010111

Table 6. Subtraction of 2 complexes with post rotation by -j format table

5.1.1.3 Complex conjugate operation

Mnemonic	Description
pv.cplxconj.h rD, rA	rD[15:0] = rA[15:0] rD[31:16] = -rA[31:16]

Table 7. Complex conjugate operation summary table

35	31	26	25	24	20 19 1	5 14 1	12 17 7	6	0
funct5		F	S	rs2	rs1	funct3	rD	opcode	
01011		1		000000	src1	000	dest	1010111	1

Table 8. Complex conjugate operation format table

5.1.2 Extensions to existing RI5CY vector operations.

5.1.2.1 Addition of vector of half words with post right shift

Extends the existing pv.add instruction.

Mnemonic Description

pv.add.h.div2 rD, rA, rB	rD[15:0] = (rA[15:0] + rB[15:0]) >> 1 rD[31:16] = (rA[31:16] + rB[31:16]) >> 1
pv.add.b.div2 rD, rA, rB	rD[7:0] = (rA[7:0] + rB[7:0]) >> 1 rD[15:8] = (rA[15:8] + rB[15:8]) >> 1 rD[23:16] = (rA[23:16] + rB[23:16]) >> 1 rD[31:24] = (rA[31:24] + rB[31:24]) >> 1
pv.add.h.div4 rD, rA, rB	rD[15:0] = (rA[15:0] + rB[15:0]) >> 2 rD[31:16] = (rA[31:16] + rB[31:16]) >> 2

Mnemonic Description

pv.add.b.div4 rD, rA, rB	rD[7:0] = (rA[7:0] + rB[7:0]) >> 2 rD[15:8] = (rA[15:8] + rB[15:8]) >> 2 rD[23:16] = (rA[23:16] + rB[23:16]) >> 2 rD[31:24] = (rA[31:24] + rB[31:24]) >> 2
--------------------------	--

Table 9. Addition of vector of half words with post right shift summary table

3	5	31	26	25	24	20 19	15 14	12 17 7	6	0
	funct5		F	S	rs2	rs1	funct3	rD	opcode	
	00000		0	0	src2	src1	010	dest	1010111	
	00000		0	0	src2	src1	011	dest	1010111	
	00000		0	1	src2	src1	010	dest	1010111	
	00000		0	1	src2	src1	011	dest	1010111	

Table 10. Addition of vector of half words with post right shift format table

5.1.2.2 Subtraction of vectors of half words with post right shift

Extends the existing pv.sub instruction

Mnemonic	Description				
pv.sub.h.div2 rD, rA, rB	rD[15:0] = (rA[15:0] - rB[15:0]) >> 1 rD[31:16] = (rA[31:16] - rB[31:16]) >> 1				
pv.sub.b.div2 rD, rA, rB	rD[7:0] = (rA[7:0] - rB[7:0]) >> 1 rD[15:8] = (rA[15:8] - rB[15:8]) >> 1 rD[23:16] = (rA[23:16] - rB[23:16]) >> 1 rD[31:24] = (rA[31:24] - rB[31:24]) >> 1				
pv.sub.h.div4 rD, rA, rB	rD[15:0] = (rA[15:0] - rB[15:0]) >> 2 rD[31:16] = (rA[31:16] - rB[31:16]) >> 2				
pv.sub.b.div4 rD, rA, rB	rD[7:0] = (rA[7:0] - rB[7:0]) >> 2 rD[15:8] = (rA[15:8] - rB[15:8]) >> 2 rD[23:16] = (rA[23:16] - rB[23:16]) >> 2 rD[31:24] = (rA[31:24] - rB[31:24]) >> 2				

Table 11. Subtraction of vectors of half words with post right shift summary table

35		31	26	25	24	20 19	15 14	12 17 7	76 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	00001		0	0	src2	src1	010	dest	1010111
	00001		0	0	src2	src1	011	dest	1010111
	00001		0	1	src2	src1	010	dest	1010111
	00001		0	1	src2	src1	011	dest	1010111

Table 12. Subtraction of vectors of half words with post right shift format table

5.1.3 Viterbi specific instructions

Selection of the survivor path relies on which branch the vector max2 has taken for each of its vector sub elements. The usual approach here is to have a variant of max setting 2 hardware flags to keep trace of which input operand has been selected for the elaboration of the max2. These 2 flags are then used by a selection operation taking 2 input vectors and the 2 flags and produce as an output a vector that is a selection of shifted by 1 to the left inputs with bit0 set according to flags.

Mnemonic	Description
	rD[31:16] = max(rA[31:16], rB[31:16])
ny vitan may rD rA rB	rD[15:0] = max(rA[15:0], rB[15:0])
pv.vitop.max rD, rA, rB	\$VF0 = (rA[31:16] <= rB[31:16])
	\$VF1 = (rA[15:0] <= rB[15:0])

Mnemonic Description

I DV VITOD SELTID TA TR	rD[31:16] = ((rA[31:16]<<1)&!\$VF0) (rB[31:16]<<1 \$VF0) rD[15:0] = ((rA[15:0]<<1)&!\$VF1) (rB[15:0]<<1 \$VF1)

Table 13. Viterbi specific instructions summary table

35	31	26	25	24 20	19 15	514	12 17 7	76 0
funct5		F	S	rs2	rs1	funct3	rD	opcode
01100		1	0	src2	src1	001	dest	1010111
01100		1	0	src2	src1	000	dest	1010111

Table 14. Viterbi specific instructions format table

5.1.4 Enhanced shuffling

Extension to RI5CY pv.pack.h rD, rA, rB operation

Mnemonic	Description
pv.pack.h.h rD, rA, rB	rD[31:16] = rA[31:16] rD[15:0] = rB[31:16]
pv.pack.l.h rD, rA, rB	rD[31:16] = rA[15:0] rD[15:0] = rB[15:0]

Table 15. Enhanced shuffling summary table

35	31	26	25	24	20 19 15	14 1	217 7	6	0
funct5		F	S	rs2	rs1	funct3	rD	opcode	
11010		0	0	src2	src1	110	dest	1010111	
11010		0	0	src2	src1	100	dest	1010111	

Table 16. Enhanced shuffling format table

5.2 Cluster Subsystem

5.2.1 Cluster Subsystem Events

Event number	Event name	IP instance name	Direction	Description
0	SW_EVT_0	Cluster RISCY cores	Input	Software event 0 from one of the CL_COREs
1	SW_EVT_1	Cluster RISCY cores	Input	Software event 1 from one of the CL_COREs
2	SW_EVT_2	Cluster RISCY cores	Input	Software event 2 from one of the CL_COREs
3	SW_EVT_3	Cluster RISCY cores	Input	Software event 3 from one of the CL_COREs
4	SW_EVT_4	Cluster RISCY cores	Input	Software event 4 from one of the CL_COREs
5	SW_EVT_5	Cluster RISCY cores	Input	Software event 5 from one of the CL_COREs
6	SW_EVT_6	Cluster RISCY cores	Input	Software event 6 from one of the CL_COREs
7	SW_EVT_7	Cluster RISCY cores	Input	Software event 7 from one of the CL_COREs
8	DMA_EVT_0	DMA	Input	DMA event 0
9	DMA_EVT_1	DMA	Input	DMA event 1
10	CL_TIMER_LO_EVT	CL_TIMER_UNIT	Input	Cluster basic timer low event
11	CL_TIMER_HI_EVT	CL_TIMER_UNIT	Input	Cluster basic timer high event
12	Reserved		Input	Reserved
13	Reserved		Input	Reserved
14	Reserved			Reserved
15	Reserved			Reserved
16	BARRIER_EVT	CL_EVENT_UNIT	Input	Barrier event
17	MUTEX_EVT	CL_EVENT_UNIT	Input	Mutex event
18	DISPATCHER_EVT	CL_EVENT_UNIT	Input	Dispatcher event
19	Reserved			Reserved
20	Reserved			Reserved
21	Reserved			Reserved
22	Reserved			Reserved
23	Reserved			Reserved
24	decompressor done event			Reserved
25	Reserved			Reserved
26	Reserved			Reserved
27	periph_fifo_event	SOC_EVENT_GENERATOR	Input	SoC peripheral event
28	Reserved			Reserved
29	Reserved			Reserved
30	Reserved			Reserved
31	Reserved			Reserved

Table 17. Cluster Subsystem Events table

5.2.2 Cluster control unit

CL_CTRL_UNIT component manages the following features:

- End of Computation status flag
- Configurable fetch activation for all cores of the Cluster
- Configurable core 0 boot address to define where to fetch first instruction in CL_CORE_0 after releasing the reset
- Configurable full cluster clock gating
- Configurable Cluster L1 memory arbitration policy
- Cluster cores resume command control

- Cluster cores halt status flags
- Configurable cluster cores debug halt command group mask policy

None

5.2.2.1 Cluster control unit registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
EOC	0x10200000	0x1B200000	32	Status	R/W	0x0000	End Of Computation status register.
FETCH_EN	0x10200008	0x1B200008	32	Config	R/W	0x0000	Cluster cores fetch enable configuration register.
CLOCK_GATE	0x10200020	0x1B200020	32	Config	R/W	0x0000	Cluster clock gate configuration register.
DBG_RESUME	0x10200028	0x1B200028	32	Config	W	0x0000	Cluster cores debug resume register.
DBG_HALT_STATUS	0x10200028	0x1B200028	32	Config	R	0x0000	Cluster cores debug halt status register.
DBG_HALT_MASK	0x10200038	0x1B200038	32	Config	R/W	0x0000	Cluster cores debug halt mask configuration register.
BOOT_ADDR0	0x10200040	0x1B200040	32	Config	R/W	0x0000	Cluster core 0 boot address configuration register.
TCDM_ARB_POLICY_CH0	0x10200080	0x1B200080	32	Config	R/W	0x0000	TCDM arbitration policy ch0 for cluster cores configuration register.
TCDM_ARB_POLICY_CH1	0x10200088	0x1B200088	32	Config	R/W	0x0000	TCDM arbitration policy ch1 for DMA/HWCE configuration register.
TCDM_ARB_POLICY_CH0_REP	0x102000C0	0x1B2000C0	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH0 register
TCDM_ARB_POLICY_CH1_REP	0x102000C8	0x1B2000C8	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH1 register

Table 18. Cluster control unit registers table

5.2.2.2 Cluster control unit registers details

5.2.2.2.1 End Of Computation status register. (EOC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EOC** (R/W)

End of computation status flag bitfield:

- *0b0*: program execution under going
- *0b1*: end of computation reached

5.2.2.2.2 Cluster cores fetch enable configuration register. (FETCH_EN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved						-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (R/W)

Core 7 fetch enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 6 - **CORE6** (R/W)

Core 6 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 5 - **CORE5** (R/W)

Core 5 fetch enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 4 - **CORE4** (R/W)

Core 4 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 3 - **CORE3** (R/W)

Core 3 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 2 - **CORE2** (R/W)

Core 2 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 1 - **CORE1** (R/W)

Core 1 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 0 - **COREO** (R/W)

Core 0 fetch enable configuration bitfield:

• *0b0*: disabled

• 0b1: enabled

5.2.2.2.3 Cluster clock gate configuration register. (CLOCK_GATE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (R/W)

Cluster clock gate configuration bitfield:

• *0b0*: disabled

• *0b1*: enabled

5.2.2.2.4 Cluster cores debug resume register. (DBG_RESUME)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (W)

Core 7 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 7

Bit 6 - **CORE6** (W)

Core 6 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 6

Bit 5 - **CORE5** (W)

Core 5 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 5

Bit 4 - **CORE4** (W)

Core 4 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 4

Bit 3 - **CORE3** (W)

Core 3 debug resume configuration bitfield:

- 0b0: stay halted
- *0b1*: resume core 3

Bit 2 - **CORE2** (W)

Core 2 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 2

Bit 1 - **CORE1** (W)

Core 1 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 1

Bit 0 - **COREO** (W)

Core 0 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 0

5.2.2.2.5 Cluster cores debug halt status register. (DBG_HALT_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (R)

Core 7 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 6 - **CORE6** (R)

Core 6 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 5 - **CORE5** (R)

Core 5 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 4 - **CORE4** (R)

Core 4 debug halt status flag bitfield:

- 0b0: running
- *0b1*: halted

Bit 3 - **CORE3** (R)

Core 3 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 2 - **CORE2** (R)

Core 2 debug halt status flag bitfield:

- 0b0: running
- *0b1*: halted

Bit 1 - **CORE1** (R)

Core 1 debug halt status flag bitfield:

- *0b0*: running
- 0b1: halted

Bit 0 - **COREO** (R)

Core 0 debug halt status flag bitfield:

- *0b0*: running
- 0b1: halted

5.2.2.2.6 Cluster cores debug halt mask configuration register. (DBG_HALT_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - CORE7 (R/W)

Core 7 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 6 - **CORE6** (R/W)

Core 6 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 5 - **CORE5** (R/W)

Core 5 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 4 - CORE4 (R/W)

Core 4 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 3 - **CORE3** (R/W)

Core 3 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 2 - **CORE2** (R/W)

Core 2 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 1 - **CORE1** (R/W)

Core 1 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 0 - **COREO** (R/W)

Core 0 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

5.2.2.2.7 Cluster core 0 boot address configuration register. (BOOT_ADDR0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							В	A							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - BA (R/W)

Cluster core 0 boot address configuration bitfield.

5.2.2.2.8 TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								POL

Bit 0 - **POL** (R/W)

TCDM arbitration policy for cluster cores configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

5.2.2.2.9 TCDM arbitration policy ch1 for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

5.2.2.2.10 Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for cluster cores configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

5.2.2.2.11 Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- *0b0*: fair round robin
- *0b1*: fixed order

5.2.3 Cluster timer

BASIC TIMER component manages the following features:

- 2 general purpose 32bits up counter timers
- Input trigger sources:
 - o FLL clock
 - o FLL clock + Prescaler
 - o Reference clock at 32kHz
 - o External event
- 8bit programmable prescaler to FLL clock
- Counting modes:
 - o One shot mode: timer is stopped after first comparison match
 - o Continuous mode: timer continues counting after comparison match
 - o Cycle mode: timer resets to 0 after comparison match and continues counting

- o 64 bit cascaded mode
- Interrupt request generation on comparison match

None

5.2.3.1 Cluster timer registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CFG_LO	0x10200400	0x1B200400	32	Config	R/W	0x0000	Timer Low Configuration register.
CFG_HI	0x10200404	0x1B200404	32	Config	R/W	0x0000	Timer High Configuration register.
CNT_LO	0x10200408	0x1B200408	32	Data	R/W	0x0000	Timer Low counter value register.
CNT_HI	0x1020040C	0x1B20040C	32	Data	R/W	0x0000	Timer High counter value register.
CMP_LO	0x10200410	0x1B200410	32	Config	R/W	0x0000	Timer Low comparator value register.
CMP_HI	0x10200414	0x1B200414	32	Config	R/W	0x0000	Timer High comparator value register.
START_LO	0x10200418	0x1B200418	32	Config	R/W	0x0000	Start Timer Low counting register.
START_HI	0x1020041C	0x1B20041C	32	Config	R/W	0x0000	Start Timer High counting register.
RESET_LO	0x10200420	0x1B200420	32	Config	R/W	0x0000	Reset Timer Low counter register.
RESET_HI	0x10200424	0x1B200424	32	Config	R/W	0x0000	Reset Timer High counter register.

Table 19. Cluster timer registers table

5.2.3.2 Cluster timer registers details

5.2.3.2.1 Timer Low Configuration register. (CFG_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CASC								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PV	'AL				CCFG	PEN	ONE_S	MODE	Reserve d	IRQEN	RESET	ENABLE

Bit 31 - **CASC** (R/W)

Timer low + Timer high 64bit cascaded mode configuration bitfield.

Bits 15:8 - **PVAL** (R/W)

Timer low prescaler value bitfield. Ftimer = Fclk / (1 + PRESC_VAL)

Bit 7 - **CCFG** (R/W)

Timer low clock source configuration bitfield:

- *0b0*: FLL or FLL+Prescaler
- *0b1*: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer low prescaler enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 5 - **ONE_S** (R/W)

Timer low one shot configuration bitfield:

- *0b0*: let Timer low enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer low when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer low continuous mode configuration bitfield:

- *0b0*. Continue mode continue incrementing Timer low counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer low counter when compare match with CMP_LO occurs.

Bit 2 - IRQEN (R/W)

Timer low compare match interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 1 - RESET (R/W)

Timer low counter reset command bitfield. Cleared after Timer Low reset execution.

Bit 0 - ENABLE (R/W)

Timer low enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

5.2.3.2.2 Timer High Configuration register. (CFG_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved				CLKCFG	PEN	ONE_S	MODE	Reserve d	IRQEN	RESET	ENABLE

Bit 7 - CLKCFG (R/W)

Timer high clock source configuration bitfield:

- *0b0*: FLL or FLL+Prescaler
- *0b1*: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer high prescaler enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 5 - **ONE_S** (R/W)

Timer high one shot configuration bitfield:

- *0b0*: let Timer high enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer high when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer high continuous mode configuration bitfield:

- 0b0: Continue mode continue incrementing Timer high counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer high counter when compare match with CMP_LO occurs.

Bit 2 - IRQEN (R/W)

Timer high compare match interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 1 - RESET (W)

Timer high counter reset command bitfield. Cleared after Timer high reset execution.

Bit 0 - ENABLE (R/W)

Timer high enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

5.2.3.2.3 Timer Low counter value register. (CNT_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT_LO (R/W)

Timer Low counter value bitfield.

5.2.3.2.4 Timer High counter value register. (CNT HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT_HI (R/W)

Timer High counter value bitfield.

5.2.3.2.5 Timer Low comparator value register. (CMP_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CMP_LO (R/W)

Timer Low comparator value bitfield.

5.2.3.2.6 Timer High comparator value register. (CMP_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	P_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **CMP_HI** (R/W)

Timer High comparator value bitfield.

5.2.3.2.7 Start Timer Low counting register. (START_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								STRT_L O

Bit 0 - STRT_LO (W)

Timer Low start command bitfield. When executed, CFG_LO.ENABLE is set.

5.2.3.2.8 Start Timer High counting register. (START_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								STRT_H

Bit 0 - STRT_HI (W)

 $\label{thm:command} \mbox{Timer High start command bitfield. When executed, CFG_HI.ENABLE is set.}$

5.2.3.2.9 Reset Timer Low counter register. (RESET_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								RST_LO

Bit 0 - **RST_LO** (W)

 $\ \, \hbox{Timer Low counter reset command bit field. When executed, CFG_LO.RESET is set. } \\$

5.2.3.2.10 Reset Timer High counter register. (RESET_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **RST_HI** (W)

Timer High counter reset command bitfield. When executed, CFG_HI.RESET is set.

5.2.4 Cluster event unit

Cluster event unit component manages the following features:

- Cluster software events generation
- Cluster cores clock gate control
- Wait for event functionality
- Input event mask configuration
- Cluster cores IRQ generation
- 2 hardware mutex
- 8 hardware barriers
- 1 message dispatcher

Events managed by Cluster event unit are:

- 1 SoC peripheral event: when this event occurs, the SoC peripheral events fifo must be read to get the SoC event ID.
- 1 message dispatcher event
- 1 barrier event
- up to 4 hardware accelerator events
- 2 Cluster timer events
- 2 DMA events
- 8 software events that can come from cluster cores directly or external triggering.

None

5.2.4.1 Cluster event unit registers

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_CORE0	0x10200800	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE0	0x10200804	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE0	0x10200808	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE0	0x1020080C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE0	0x10200810	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.

Name	Address	Size	Туре	Access	Default	Description
IRQ_MASK_OR_CORE0	0x10200814	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE0	0x10200818	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE0	0x1020081C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE0	0x10200820	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE0	0x10200824	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE0	0x10200828	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE0	0x1020082C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_COREO	0x10200830	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_COREO	0x10200834	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE1	0x10200840	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE1	0x10200844	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE1	0x10200848	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE1	0x1020084C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE1	0x10200850	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE1	0x10200854	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE1	0x10200858	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE1	0x1020085C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE1	0x10200860	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE1	0x10200864	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE1	0x10200868	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE1	0x1020086C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE1	0x10200870	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE1	0x10200874	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE2	0x10200880	32	Config	R/W	0x0000	Input event mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_AND_CORE2	0x10200884	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE2	0x10200888	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ MASK_CORE2	0x1020088C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ MASK AND CORE2	0x10200890	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ MASK OR CORE2	0x10200894	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE2	0x10200898	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE2	0x1020089C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE2	0x102008A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE2	0x102008A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE2	0x102008A8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE2	0x102008AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE2	0x102008B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE2	0x102008B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE3	0x102008C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT MASK AND CORE3	0x102008C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE3	0x102008C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE3	0x102008CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE3	0x102008D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE3	0x102008D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE3	0x102008D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE3	0x102008DC	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE3	0x102008E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE3	0x102008E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE3	0x102008E8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE3	0x102008EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_MASK_AND_CORE3	0x102008F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE3	0x102008F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE4	0x10200900	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE4	0x10200904	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE4	0x10200908	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE4	0x1020090C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE4	0x10200910	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE4	0x10200914	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK STATUS CORE4	0x10200918	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE4	0x1020091C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE4	0x10200920	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE4	0x10200924	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE4	0x10200928	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE4	0x1020092C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE4	0x10200930	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE4	0x10200934	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE5	0x10200940	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE5	0x10200944	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE5	0x10200948	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE5	0x1020094C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE5	0x10200950	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ MASK OR CORE5	0x10200954	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE5	0x10200958	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE5	0x1020095C	32	Config	R	0x0000	Pending input events status register.

Name	Address	Size	Туре	Access	Default	Description
EVENT_BUFFER_MASKED_CORE5	0x10200960	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE5	0x10200964	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE5	0x10200968	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE5	0x1020096C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE5	0x10200970	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE5	0x10200974	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE6	0x10200980	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE6	0x10200984	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE6	0x10200988	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE6	0x1020098C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE6	0x10200990	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE6	0x10200994	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE6	0x10200998	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE6	0x1020099C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE6	0x102009A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE6	0x102009A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE6	0x102009A8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE6	0x102009AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE6	0x102009B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW EVENT MASK OR CORE6	0x102009B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE7	0x102009C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE7	0x102009C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE7	0x102009C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE7	0x102009CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
IRQ_MASK_AND_CORE7	0x102009D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE7	0x102009D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE7	0x102009D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE7	0x102009DC	32	Config	R	0x0000	Pending input events status register.
EVENT BUFFER MASKED CORE7	0x102009E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE7	0x102009E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE7	0x102009E8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE7	0x102009EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE7	0x102009F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_COREZ	0x102009F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
HW_BARRIER_0_TRIG_MASK	0x10200C00	32	Config	R/W	0x0000	Cluster hardware barrier 0 trigger mask configuration register.
HW_BARRIER_0_STATUS	0x10200C04	32	Status	R	0x0000	Cluster hardware barrier 0 status register.
HW_BARRIER_0_STATUS_SUM	0x10200C08	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_0_TARGET_MASK	0x10200C0C	32	Config	R/W	0x0000	Cluster hardware barrier 0 target mask configuration register.
HW_BARRIER_0_TRIG	0x10200C10	32	Config	W	0x0000	Cluster hardware barrier 0 trigger command register.
HW_BARRIER_1_TRIG_MASK	0x10200C20	32	Config	R/W	0x0000	Cluster hardware barrier 1 trigger mask configuration register.
HW_BARRIER_1_STATUS	0x10200C24	32	Status	R	0x0000	Cluster hardware barrier 1 status register.
HW_BARRIER_1_STATUS_SUM	0x10200C28	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_1_TARGET_MASK	0x10200C2C	32	Config	R/W	0x0000	Cluster hardware barrier 1 target mask configuration register.
HW_BARRIER_1_TRIG	0x10200C30	32	Config	W	0x0000	Cluster hardware barrier 1 trigger command register.
HW BARRIER 2 TRIG MASK	0x10200C40	32	Config	R/W	0x0000	Cluster hardware barrier 2 trigger mask configuration register.
HW BARRIER 2 STATUS	0x10200C44	32	Status	R	0x0000	Cluster hardware barrier 2 status register.
HW_BARRIER_2_STATUS_SUM	0x10200C48	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_2_TARGET_MASK	0x10200C4C	32	Config	R/W	0x0000	Cluster hardware barrier 2 target mask configuration register.
HW_BARRIER 2_TRIG	0x10200C50	32	Config	W	0x0000	Cluster hardware barrier 2 trigger command register.

Name	Address	Size	Туре	Access	Default	Description
HW_BARRIER_3_TRIG_MASK	0x10200C60	32	Config	R/W	0x0000	Cluster hardware barrier 3 trigger mask configuration register.
HW_BARRIER_3_STATUS	0x10200C64	32	Status	R	0x0000	Cluster hardware barrier 3 status register.
HW BARRIER 3 STATUS SUM	0x10200C68	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_3_TARGET_MASK	0x10200C6C	32	Config	R/W	0x0000	Cluster hardware barrier 3 target mask configuration register.
HW_BARRIER_3_TRIG	0x10200C70	32	Config	W	0x0000	Cluster hardware barrier 3 trigger command register.
HW_BARRIER_4_TRIG_MASK	0x10200C80	32	Config	R/W	0x0000	Cluster hardware barrier 4 trigger mask configuration register.
HW_BARRIER_4_STATUS	0x10200C84	32	Status	R	0x0000	Cluster hardware barrier 4 status register.
HW_BARRIER_4_STATUS_SUM	0x10200C88	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_4_TARGET_MASK	0x10200C8C	32	Config	R/W	0x0000	Cluster hardware barrier 4 target mask configuration register.
HW_BARRIER_4_TRIG	0x10200C90	32	Config	W	0x0000	Cluster hardware barrier 4 trigger command register.
HW_BARRIER_5_TRIG_MASK	0x10200CA0	32	Config	R/W	0x0000	Cluster hardware barrier 5 trigger mask configuration register.
HW_BARRIER_5_STATUS	0x10200CA4	32	Status	R	0x0000	Cluster hardware barrier 5 status register.
HW_BARRIER_5_STATUS_SUM	0x10200CA8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_5_TARGET_MASK	0x10200CAC	32	Config	R/W	0x0000	Cluster hardware barrier 5 target mask configuration register.
HW_BARRIER_5_TRIG	0x10200CB0	32	Config	W	0x0000	Cluster hardware barrier 5 trigger command register.
HW_BARRIER_6_TRIG_MASK	0x10200CC0	32	Config	R/W	0x0000	Cluster hardware barrier 6 trigger mask configuration register.
HW_BARRIER_6_STATUS	0x10200CC4	32	Status	R	0x0000	Cluster hardware barrier 6 status register.
HW_BARRIER_6_STATUS_SUM	0x10200CC8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_6_TARGET_MASK	0x10200CCC	32	Config	R/W	0x0000	Cluster hardware barrier 6 target mask configuration register.
HW_BARRIER_6_TRIG	0x10200CD0	32	Config	W	0x0000	Cluster hardware barrier 6 trigger command register.
HW_BARRIER_7_TRIG_MASK	0x10200CE0	32	Config	R/W	0x0000	Cluster hardware barrier 7 trigger mask configuration register.
HW_BARRIER_7_STATUS	0x10200CE4	32	Status	R	0x0000	Cluster hardware barrier 7 status register.
HW_BARRIER_7_STATUS_SUM	0x10200CE8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_7_TARGET_MASK	0x10200CEC	32	Config	R/W	0x0000	Cluster hardware barrier 7 target mask configuration register.
HW_BARRIER_7_TRIG	0x10200CF0	32	Config	W	0x0000	Cluster hardware barrier 7 trigger command register.
SW_EVENT_0_TRIG	0x10200E00	32	Config	W	0x0000	Cluster Software event 0 trigger command register.
SW_EVENT_1_TRIG	0x10200E04	32	Config	W	0x0000	Cluster Software event 1 trigger command register.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_2_TRIG	0x10200E08	32	Config	W	0x0000	Cluster Software event 2 trigger command register.
SW_EVENT_3_TRIG	0x10200E0C	32	Config	W	0x0000	Cluster Software event 3 trigger command register.
SW_EVENT_4_TRIG	0x10200E10	32	Config	W	0x0000	Cluster Software event 4 trigger command register.
SW_EVENT_5_TRIG	0x10200E14	32	Config	W	0x0000	Cluster Software event 5 trigger command register.
SW_EVENT_6_TRIG	0x10200E18	32	Config	W	0x0000	Cluster Software event 6 trigger command register.
SW_EVENT_7_TRIG	0x10200E1C	32	Config	W	0x0000	Cluster Software event 7 trigger command register.
SOC_PERIPH_EVENT_ID	0x10200F00	32	Status	R	0x0000	Cluster SoC peripheral event ID status register.

Table 20. Cluster event unit registers table

5.2.4.2 Cluster event unit registers details

5.2.4.2.1 Input event mask configuration register. (EVT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EMSOC	Reserve d							EM	ICL						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EM	ICL							

Bit 31 - **EMSOC** (R/W)

Soc peripheral input event mask configuration bitfield:

- EMSOC[i]=0b0: Input event request i is masked
- EMSOC[i]=0b1: Input event request i is not masked

Bits 29:0 - EMCL (R/W)

Cluster internal input event mask configuration bitfield:

- EMCL[i]=0b0: Input event request i is masked
- ullet EMCL[i]=0b1: Input event request i is not masked

$5.2.4.2.2\ Hardware\ task\ dispatcher\ push\ command\ register.\ (HW_DISPATCH_PUSH_TASK)$

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message to dispatch to all cluster cores selected in HW_DISPATCH_PUSH_TEAM_CONFIG.CT configuration bitfield.

5.2.4.2.3 Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	MSG														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message dispatched using HW_DISPATCH_PUSH_TASK command and popped by cluster core who issued HW_DISPATCH_POP_TASK command.

5.2.4.2.4 Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message pushed when releasing hardware mutex 0 configuration bitfiled. It is a non-blocking access.

5.2.4.2.5 Hardware mutex 0 blocking get command register. (HW_MUTEX_0_MSG_GET)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 0 data bitfiled. It is a blocking access.

5.2.4.2.6 Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWOT** (W)

Triggers software event 0 for cluster core i if SW0T[i]=0b1.

5.2.4.2.7 Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.8 Cluster Software event 0 trigger, wait and clear command register. (SW_EVENT_0_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
				44		_	_	_	_	_		_	_	_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.9 Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VALID	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							I	D			

Bit 31 - **VALID** (R)

Bits 7:0 - ID (R)

Oldest SoC peripheral event ID status bitfield.

5.2.4.2.10 Cluster hardware barrier 0 trigger mask configuration register. (HW_BARRIER_0_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Trigger mask for hardware barrier 0 bitfield. Hardware barrier 0 will be triggered only if for all HB0TM[i] = 0b1, HW_BARRIER_0_STATUS.HB0S[i]=0b1. HB0TM=0 means that hardware barrier 0 is disabled.

5.2.4.2.11 Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	MΑ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMA (W)

Input event mask configuration bitfield update with bitwise AND operation. It allows clearing EMCL[i], EMINTCL[i] or EMSOC[i] if EMA[i]=0b1.

5.2.4.2.12 Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONFIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **CT** (R/W)

Cluster cores team selection configuration bitfield. It allows to transmit HW_DISPATCH_PUSH_TASK.MSG to cluster core i if CT[i]=0b1.

5.2.4.2.13 Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
				11			_	_	_	_		_	_	_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message pushed when releasing hardware mutex 1 configuration bitfiled. It is a non-blocking access.

5.2.4.2.14 Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	MSG														
15	14	13	12	11	10	a		_	_	-			-		_
13	14	13	12	111	10	9	8	7	6	5	4	3		1	U

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 1 data bitfiled. It is a blocking access.

5.2.4.2.15 Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW1T** (W)

Triggers software event 1 for cluster core i if SW1T[i]=0b1.

5.2.4.2.16 Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.17 Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						_	•	-	•			-	_	-	_

Bits 31:0 - EBM (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.18 Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	42	42	44	40	0			_	_		_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 0 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 0. It is cleared when HBS matches HW_BARRIER_0_TRIG_MASK.HB0TM.

5.2.4.2.19 Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ΕN	МО							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMO (W)

Input event mask configuration bitfield update with bitwise OR operation. It allows setting EMCL[i], EMINTCL[i] or EMSOC[i] if EMO[i]=0b1.

5.2.4.2.20 Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW2T** (W)

Triggers software event 2 for cluster core i if SW2T[i]=0b1.

5.2.4.2.21 Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.22 Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	1.4							

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.23 Cluster hardware barrier summary status register. (HW BARRIER 0 STATUS SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 0. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.24 Interrupt request mask configuration register. (IRQ_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IMSOC	IMINTCL							IM	CL						
		42	12	11	10			7	-	E	4	2	-	1	•
15	14	13	12	11	10	9	۰	,	0	5	4	3			

Bit 31 - **IMSOC** (R/W)

Soc peripheral interrupt request mask configuration bitfield:

- bit[i]=0b0. Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

Bit 30 - IMINTCL (R/W)

Inter-cluster interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

Bits 29:0 - **IMCL** (R/W)

Cluster internal interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

5.2.4.2.25 Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Resi	erved							SW	/3T			

Bits 7:0 - SW3T (W)

Triggers software event 3 for cluster core i if SW3T[i]=0b1.

5.2.4.2.26 Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.27 Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.28 Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
45	4.4			- 44		_						_			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 0 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 0 event when HW_BARRIER_0_STATUS will match HW_BARRIER_0_TRIG_MASK.

5.2.4.2.29 Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IN	1A							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMA (W)

Interrupt request mask configuration bitfield update with bitwise AND operation. It allows clearing IMCL[i], IMINTCL[i] or IMSOC[i] if IMA[i]=0b1.

5.2.4.2.30 Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SW4T (W)

Triggers software event 4 for cluster core i if SW4T[i]=0b1.

5.2.4.2.31 Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
45	14	13	12	11	10	0	0	-	_	E	4	2	2	- 1	_
15	14	13	12	11	10	9	۰	,	ь	5	4	3			U

Bits 31:0 - EBM (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.32 Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	BM							

Bits 31:0 - **EBM** (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.33 Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_0_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.34 Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IM	Ю							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMO (W)

Interrupt request mask configuration bitfield update with bitwise OR operation. It allows setting IMCL[i], IMINTCL[i] or IMSOC[i] if IMO[i]=0b1.

5.2.4.2.35 Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							SV	/5T			

Bits 7:0 - **SW5T** (W)

Triggers software event 5 for cluster core i if SW5T[i]=0b1.

5.2.4.2.36 Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	3M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.37 Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.38 Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								r							

Bits 31:0 - **T** (R)

Sets HW_BARRIER_0_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.39 Cluster cores clock status register. (CLOCK_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								CS

Bit 0 - **CS** (R)

Cluster core clock status bitfield:

- *0b0*: Cluster core clocked is gated
- 0b1: Cluster core clocked is running

5.2.4.2.40 Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							SW				

Bits 7:0 - **SW6T** (W)

Triggers software event 6 for cluster core i if SW6T[i]=0b1.

5.2.4.2.41 Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.42 Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
				44		_	_	_	_	_		_	_	_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.43 Cluster hardware barrier 0 trigger and wait command register. (HW_BARRIER_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EE								

Bits 31:0 - EBM (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.44 Pending input events status register. (EVENT_BUFFER)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Е	В							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Е	n							

Bits 31:0 - **EB** (R)

Pending input events status bitfield.

EB[i]=0b1: one or more input event i request are pending.

5.2.4.2.45 Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SW7T (W)

Triggers software event 7 for cluster core i if SW7T[i]=0b1.

5.2.4.2.46 Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.47 Cluster Software event 7 trigger, wait and clear command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.48 Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.49 Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	3M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Pending input events status bitfield with EVT_MASK applied.

EBM[i]=0b1: one or more input event i request are pending.

5.2.4.2.50 Cluster hardware barrier 1 trigger mask configuration register. (HW_BARRIER_1_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB1TM** (R/W)

Trigger mask for hardware barrier 1 bitfield. Hardware barrier 1 will be triggered only if for all HB1TM[i] = 0b1, HW_BARRIER_1_STATUS.HB1S[i]=0b1. HB1TM=0 means that hardware barrier 1 is disabled.

5.2.4.2.51 Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IBM (R)

Pending input events status bitfield with IRQ_MASK applied.

IBM[i]=0b1: one or more input events i are pending.

5.2.4.2.52 Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 1 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 1. It is cleared when HBS matches HW_BARRIER_1_TRIG_MASK.HB1TM.

5.2.4.2.53 Pending input events status clear command register. (EVENT_BUFFER_CLEAR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	3C							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBC (W)

Pending input events status clear command bitfield. It allows clearing EB[i] if EBC[i]=0b1.

${\bf 5.2.4.2.54\ Cluster\ hardware\ barrier\ summary\ status\ register.\ (HW_BARRIER_1_STATUS_SUM)}$

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 1. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.55 Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese								SW				

Bits 7:0 - **SWEM** (R/W)

Software events mask configuration bitfield:

- bit[i]=0b0: software events are masked for CL_CORE[i]
- bit[i]=0b1: software events are not masked for CL_CORE[i]

$5.2.4.2.56\ Cluster\ hardware\ barrier\ 1\ target\ mask\ configuration\ register.\ (HW_BARRIER_1_TARGET_MASK)$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Doce	erved							HB1	TAN4			

Cluster hardware barrier 1 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 1 event when HW_BARRIER_1_STATUS will match HW_BARRIER_1_TRIG_MASK.

5.2.4.2.57 Software events cluster cores destination mask update command register with bitwise AND operation. (SW_EVENT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWEMA** (W)

Software event mask configuration bitfield update with bitwise AND operation. It allows clearing SWEM[i] if SWEMA[i]=0b1.

5.2.4.2.58 Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **T** (W)

Sets HW_BARRIER_1_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.59 Software events cluster cores destination mask update command register with bitwise OR operation. (SW_EVENT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							SWE	EMO			

Bits 7:0 - **SWEMO** (W)

Software event mask configuration bitfield update with bitwise OR operation. It allows setting SWEM[i] if SWEMO[i]=0b1.

5.2.4.2.60 Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							٦	Γ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_1_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.61 Input event wait command register. (EVENT_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register will gate the Cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.62 Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.63 Input event wait and clear command register. (EVENT_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	•		•	•	•	EE	NA	•	•		•	•	•	

Bits 31:0 - **EBM** (R)

Reading this register has the same effect as reading EVENT_WAIT.EBM. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.64 Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB								

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.65 Cluster hardware barrier 2 trigger mask configuration register. (HW BARRIER 2 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB2TM** (R/W)

Trigger mask for hardware barrier 2 bitfield. Hardware barrier 2 will be triggered only if for all HB2TM[i] = 0b1, HW_BARRIER_2_STATUS.HB2S[i]=0b1. HB2TM=0 means that hardware barrier 2 is disabled.

5.2.4.2.66 Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 2 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 2. It is cleared when HBS matches HW_BARRIER_2_TRIG_MASK.HB2TM.

5.2.4.2.67 Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 2. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.68 Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 2 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 2 event when HW_BARRIER_2_STATUS will match HW_BARRIER_2_TRIG_MASK.

5.2.4.2.69 Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1						_	_	-	_	_		_	_		

Bits 7:0 - T (W)

Sets HW_BARRIER_2_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.70 Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_2_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.71 Cluster hardware barrier 2 trigger and wait command register. (HW_BARRIER_2_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

$5.2.4.2.72\ Cluster\ hardware\ barrier\ 2\ trigger,\ wait\ and\ clear\ command\ register.\ (HW_BARRIER_2_TRIG_WAIT_CLEAR)$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.73 Cluster hardware barrier 3 trigger mask configuration register. (HW BARRIER 3 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HB3TM (R/W)

Trigger mask for hardware barrier 3 bitfield. Hardware barrier 3 will be triggered only if for all HB3TM[i] = 0b1, HW_BARRIER_3_STATUS.HB3S[i]=0b1. HB3TM=0 means that hardware barrier 3 is disabled.

5.2.4.2.74 Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 3 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 3. It is cleared when HBS matches HW_BARRIER_3_TRIG_MASK.HB3TM.

5.2.4.2.75 Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 3. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.76 Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 3 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 3 event when HW_BARRIER_3_STATUS will match HW_BARRIER_3_TRIG_MASK.

5.2.4.2.77 Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_3_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.78 Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_3_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.79 Cluster hardware barrier 3 trigger and wait command register. (HW_BARRIER_3_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
	44	43	12	- 44	40	•		-	_	-	4	-	-	4	^
15	14	13	12	11	10	9	ŏ	,	6	5	4	3	2	1	U

Bits 31:0 - EBM (R)

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.80 Cluster hardware barrier 3 trigger, wait and clear command register. (HW_BARRIER_3_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.81 Cluster hardware barrier 4 trigger mask configuration register. (HW BARRIER 4 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HB4TM (R/W)

Trigger mask for hardware barrier 4 bitfield. Hardware barrier 4 will be triggered only if for all HB4TM[i] = 0b1, HW_BARRIER_4_STATUS.HB4S[i]=0b1. HB4TM=0 means that hardware barrier 4 is disabled.

5.2.4.2.82 Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 4 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 4. It is cleared when HBS matches HW_BARRIER_4_TRIG_MASK.HB4TM.

5.2.4.2.83 Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 4. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.84 Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 4 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 4 event when HW_BARRIER_4_STATUS will match HW_BARRIER_4_TRIG_MASK.

5.2.4.2.85 Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_4_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.86 Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Т							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_4_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.87 Cluster hardware barrier 4 trigger and wait command register. (HW_BARRIER_4_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.88 Cluster hardware barrier 4 trigger, wait and clear command register. (HW_BARRIER_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.89 Cluster hardware barrier 5 trigger mask configuration register. (HW BARRIER 5 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB5TM** (R/W)

Trigger mask for hardware barrier 5 bitfield. Hardware barrier 5 will be triggered only if for all HB5TM[i] = 0b1, HW_BARRIER_5_STATUS.HB5S[i]=0b1. HB5TM=0 means that hardware barrier 5 is disabled.

5.2.4.2.90 Cluster hardware barrier 5 status register. (HW_BARRIER_5_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 5 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 5. It is cleared when HBS matches HW_BARRIER_5_TRIG_MASK.HB5TM.

5.2.4.2.91 Cluster hardware barrier summary status register. (HW_BARRIER_5_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 5. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.92 Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 5 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 5 event when HW_BARRIER_5_STATUS will match HW_BARRIER_5_TRIG_MASK.

5.2.4.2.93 Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_5_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.94 Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_5_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.95 Cluster hardware barrier 5 trigger and wait command register. (HW_BARRIER_5_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

$5.2.4.2.96\ Cluster\ hardware\ barrier\ 5\ trigger,\ wait\ and\ clear\ command\ register.\ (HW_BARRIER_5_TRIG_WAIT_CLEAR)$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
										_	_		_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.97 Cluster hardware barrier 6 trigger mask configuration register. (HW BARRIER 6 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB6TM** (R/W)

Trigger mask for hardware barrier 6 bitfield. Hardware barrier 6 will be triggered only if for all HB6TM[i] = 0b1, HW_BARRIER_6_STATUS.HB6S[i]=0b1. HB6TM=0 means that hardware barrier 6 is disabled.

5.2.4.2.98 Cluster hardware barrier 6 status register. (HW_BARRIER_6_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 6 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 6. It is cleared when HBS matches HW_BARRIER_6_TRIG_MASK.HB6TM.

5.2.4.2.99 Cluster hardware barrier summary status register. (HW_BARRIER_6_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 6. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.100 Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 6 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 6 event when HW_BARRIER_6_STATUS will match HW_BARRIER_6_TRIG_MASK.

5.2.4.2.101 Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_6_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

$5.2.4.2.102\ Cluster\ hardware\ barrier\ 6\ self\ trigger\ command\ register.\ (HW_BARRIER_6_SELF_TRIG)$

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Т							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_6_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.103 Cluster hardware barrier 6 trigger and wait command register. (HW_BARRIER_6_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.104 Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.105 Cluster hardware barrier 7 trigger mask configuration register. (HW BARRIER 7 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HB7TM (R/W)

Trigger mask for hardware barrier 7 bitfield. Hardware barrier 7 will be triggered only if for all HB7TM[i] = 0b1, HW_BARRIER_7_STATUS.HB7S[i]=0b1. HB7TM=0 means that hardware barrier 7 is disabled.

5.2.4.2.106 Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 7 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 7. It is cleared when HBS matches HW_BARRIER_7_TRIG_MASK.HB7TM.

5.2.4.2.107 Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBSS** (R)

Current status of hardware barrier 7. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.108 Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 7 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 7 event when HW_BARRIER_7_STATUS will match HW_BARRIER_7_TRIG_MASK.

5.2.4.2.109 Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_7_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.110 Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_7_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.111 Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						_	•	-				_	_	-	_

Bits 31:0 - EBM (R)

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.112 Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EBM														
							•	_	_	-		-			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.5 Cluster instruction cache control unit

CL_ICACHE_CTRL component manages the following features:

- Bypassable Cluster instruction cache controller
- Flush and selective flush commands

None

5.2.5.1 Cluster instruction cache control unit registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
ENABLE	0x10201400	0x1B201400	32	Config	8	0x0000	Cluster instruction cache unit enable configuration register.
FLUSH	0x10201404	0x1B201404	32	Config	W	0x0000	Cluster instruction cache unit flush command register.
SEL_FLUSH	0x1020140C	0x1B20140C	32	Config	W	0x0000	Cluster instruction cache unit selective flush command register.

Table 21. Cluster instruction cache control unit registers table

5.2.5.2 Cluster instruction cache control unit registers details

5.2.5.2.1 Cluster instruction cache unit enable configuration register. (ENABLE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												EN		

Bit 0 - **EN** (W)

Cluster instruction cache enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

5.2.5.2.2 Cluster instruction cache unit flush command register. (FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
31							l							.,	
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										FL					

Bit 0 - **FL** (W)

Cluster instruction cache full flush command.

5.2.5.2.3 Cluster instruction cache unit selective flush command register. (SEL_FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ADDR														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **ADDR** (W)

Cluster instruction cache selective flush address configuration bitfield.