

Chapter 0 and Chapter 1

Topics

Review

- Set notation
- Set operations

Languages

Alphabet symbols, strings

Regular Languages

- DFA and NFA
- NFA to DFA (Theorem 1.39 and lecture notes)
- Regular Expressions
- NFA to Regular Expression (Lemma 1.60 and lecture notes)
- Pumping lemma for regular languages (Theorem 1.70 and lecture notes)

Recognizing Languages

• Regular (R), Not Regular (N)

No.	Language	Туре
1	$\{a^ib^jc^kd^l \mid (i < j) \text{ or } (k < l)\}$	
2	$\{a^ib^j \mid (i < j)\}$	
3	$\{a^ib^jc^kd^l\mid (i\neq j) \text{ and } (k\neq l)\}$	
4	$\{a^ib^j \mid (i=j)\}$	
5	$\{a^{i}b^{j}c^{k}d^{l} \mid (i=j)<4 \text{ and } (k=l)<2 \}$	
6	$\{a^ib^jc^k \mid i+j < k\}$	
7	$\{a^{i}b^{j} \mid i \mod 3 = 0 \text{ and } j \mod 4 = 0\}$	

Regular or Non Regular?

• A= $\{ab^nc^m|n \ge m; m=3\}$. If A is regular, create the corresponding FA. If A is not a regular language, then use the pumping lemma to demonstrate it is not.

DFA

- Create a DFA for the following regular expression: (a U b)* abb
- Do any of the following strings are accepted by the DFA? (Trace each string to show accept/reject): aab, babba, abb

Closure

 \circ Consider the following NFA and compute the closure of q_0 , q_1 and q_3 .

NFA (to DFA)

Construct the equivalent DFA

NFA (to DFA)

Construct the regular expression

Regular Expression to NFA

Consider the following regular expression: ((bb U ba)+c*)U ((ba)*c)

Regular or Non Regular?

 \circ B={ww | w \square {a, b}*}. If A is regular, create the corresponding FA. If B is not a regular language, then use the pumping lemma to demonstrate it is not.

Regular or Non Regular?

- 1. For the purpose of contradiction, assume that Bis regular
- 2. Let p be the pumping length
- 3. Pick a string s in B with $|s| \ge p$
 - ∘ Let $s = a^pba^pb$, and we have $a^pba^pb \in L$, and $|a^pba^pb| = 2p+2 \ge p$
- 4. Identify all possible decompositions of s into xyz, with $|xy| \le p$ and |y| > 0
 - Since s = a^pba^pb, for any possible decomposition, y must consist of one or more a's but no b's
 - $\circ x = a^{p-k} (p \ge k > 0), y = a^k, z = ba^p b$
- 5. Show that for each decomposition, there exists an $i \ge 0$ such that $xy^iz \notin B$
 - ∘ Let i = 2, we see that $xy^2z = a^{p+k}ba^pb$, since p+k>p, then $s \notin B$
- 6. Conclude that the assumption is wrong. That is L is not regular

DFA

• Create a DFA for the following regular expression: (a U b)* abb

• Do any of the following strings are accepted by the DFA? (Trace each string to show

accept/reject): aab, babba, abb

Creating Languages

- Given an example of L₁, L₂, and L₃, such that
 - L₁ is a non-regular language
 - L₂ is a non-regular language
 - \circ L₃ = L₁ \cap L₂ and L₃ is regular
- Given an example of L₁, L₂, and L₃, such that
 - L₁ is a non-regular language
 - L₂ is a non-regular language
 - \circ L₃ = L₁ U L₂ and L₃ is regular