

STM32F103x4 STM32F103x6

小容量增强型,32位基于ARM核心的带16或32K字节闪存的微控制器 USB、CAN、6个定时器、2个ADC、6个通信接口

功能

■ 内核: ARM 32位的Cortex™-M3 CPU

- 最高72MHz工作频率,在存储器的0等待周期访问时可达1.25DMips/MHz(Dhrystone 2.1)
- 单周期乘法和硬件除法

■ 存储器

- 从16K到32K字节的闪存程序存储器
- 从6K到10K字节的SRAM

■ 时钟、复位和电源管理

- 2.0~3.6伏供电和I/O引脚
- 上电/断电复位(POR/PDR)、可编程电压监测器(PVD)
- 4~16MHz晶体振荡器
- 内嵌经出厂调校的8MHz的RC振荡器
- 内嵌带校准的40kHz的RC振荡器
- 产生CPU时钟的PLL
- 带校准功能的32kHz RTC振荡器

■ 低功耗

- 睡眠、停机和待机模式
- V_{BAT}为RTC和后备寄存器供电
- 2个12位模数转换器, 1µs转换时间(多达16个输入通道)
 - 转换范围: 0至3.6V
 - 双采样和保持功能
 - 温度传感器

■ DMA:

- 7通道DMA控制器
- 支持的外设:定时器、ADC、SPI、I²C和 USART

■ 多达80个快速I/O端口

- 26/37/51个I/O口,所有I/O口可以映像到16 个外部中断:几乎所有端口均可容忍5V信号

■ 调试模式

- 串行单线调试(SWD)和JTAG接口

■ 多达6个定时器

- 2个16位定时器,每个定时器有多达4个用于输入捕获/输出比较/PWM或脉冲计数的通道和增量编码器输入
- 1个16位带死区控制和紧急刹车,用于电机 控制的PWM高级控制定时器
- 2个看门狗定时器(独立的和窗口型的)
- 系统时间定时器: 24位自减型计数器

■ 多达6个通信接口

- 1个I²C接口(支持SMBus/PMBus)
- 2个USART接口(支持ISO7816接口, LIN, IrDA接口和调制解调控制)
- 1个SPI接口(18M位/秒)
- CAN接口(2.0B 主动)
- USB 2.0全速接口
- CRC计算单元,96位的芯片唯一代码

■ ECOPACK®封装

表1 器件列表

参考	基本型号
STM32F103x4	STM32F103C4、STM32F103R4、 STM32F103T4
STM32F103x6	STM32F103C6 、STM32F103R6 、 STM32F103T6

本文档英文原文下载地址: http://www.st.com/stonline/products/literature/ds/15060.pdf

目录

2.		一览	
2.		之间的全兼容性	
2.	.,. –		
	2.3.1	ARM®的Cortex™-M3核心并内嵌闪存和SRAM	
	2.3.2	内置闪存存储器	
	2.3.3	CRC(循环冗余校验)计算单元	
	2.3.4	内置SRAM	
	2.3.5	嵌套的向量式中断控制器(NVIC)	
	2.3.6	外部中断/事件控制器(EXTI)	
	2.3.7	时钟和启动	
	2.3.8	自举模式	
	2.3.9	供电方案	
	2.3.10	供电监控器	
	2.3.11	电压调压器	
	2.3.12	低功耗模式	
	2.3.13	DMA	
	2.3.14	RTC(实时时钟)和后备寄存器	
	2.3.15	定时器和看门狗	
	2.3.16	I ² C总线	
	2.3.17	通用同步/异步收发器(USART)	
	2.3.18	串行外设接口(SPI)	
	2.3.19	控制器区域网络(CAN)	
	2.3.20	通用串行总线(USB)	
	2.3.21	通用输入输出接口(GPIO)	10
	2.3.22	ADC(模拟/数字转换器)	10
	2.3.23	温度传感器	11
	2.3.24	串行单线JTAG调试口(SWJ-DP)	11
3 引	脚定义		13
4 存	存储器映像.		20
5 电	包气特性		21
5.	.1 测试组	条件	21
	5.1.1	最小和最大数值	21
	5.1.2	典型数值	21
	5.1.3	典型曲线	21
	5.1.4	负载电容	21
	5.1.5	引脚输入电压	21
	5.1.6	供电方案	22
	5.1.7	电流消耗测量	22

	5.2 绝对:	最大额定值	23
	5.3 工作:	条件	24
	5.3.1	通用工作条件	24
	5.3.2	上电和掉电时的工作条件	24
	5.3.3	内嵌复位和电源控制模块特性	24
	5.3.4	内置的参照电压	25
	5.3.5	供电电流特性	25
	5.3.6	外部时钟源特性	33
	5.3.7	内部时钟源特性	36
	5.3.8	PLL特性	37
	5.3.9	存储器特性	37
	5.3.10	EMC特性	37
	5.3.11	绝对最大值(电气敏感性)	38
	5.3.12	I/O端口特性	39
	5.3.13	NRST引脚特性	41
	5.3.14	TIM定时器特性	42
	5.3.15	通信接口	42
	5.3.16	CAN(控制器局域网络)接口	46
	5.3.17	12位ADC特性	46
	5.3.18	温度传感器特性	50
6	封装特性		51
	6.1 封装	机械数据	51
	6.2 热特	性	56
	6.2.1	参考文档	56
	6.2.2	选择产品的温度范围	56
7	订货代码		58
8	版本历史		59

1 介绍

本文给出了STM32F103x4和STM32F103x6小容量增强型产品的订购信息和器件的机械特性。有关完整的STM32F103xx系列的详细信息,请参考第2.2节。

小容量STM32F103xx数据手册,必须结合STM32F10xxx参考手册一起阅读。

有关内部闪存存储器的编程、擦除和保护等信息,请参考《STM32F10xxx闪存编程参考手册》。

参考手册和闪存编程参考手册均可在ST网站下载: www.st.com/mcu

有关Cortex™-M3核心的相关信息,请参考《Cortex-M3技术参考手册》,可以在<u>ARM公司的网站</u>下载: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/。

2 规格说明

STM32F103x4和STM32F103x6增强型系列使用高性能的ARM® Cortex™-M3 32位的RISC内核,工作频率为72MHz,内置高速存储器(高达32K字节的闪存和6K字节的SRAM),丰富的增强I/O端口和联接到两条APB总线的外设。所有型号的器件都包含2个12位的ADC、3个通用16位定时器和1个PWM定时器,还包含标准和先进的通信接口:多达2个I²C接口、1个SPI接口、2个USART接口、一个USB接口和一个CAN接口。

STM32F103xx小容量增强型系列产品供电电压为2.0V至3.6V,包含-40°C至+85°C温度范围和-40°C至+105°C的扩展温度范围。一系列的省电模式保证低功耗应用的要求。

STM32F103xx小容量增强型系列产品提供包括从36脚至64脚的4种不同封装形式;根据不同的封装形式,器件中的外设配置不尽相同。下面给出了该系列产品中所有外设的基本介绍。

这些丰富的外设配置,使得STM32F103xx小容量增强型系列微控制器适合于多种应用场合:

- 电机驱动和应用控制
- 医疗和手持设备
- PC游戏外设和GPS平台
- 工业应用:可编程控制器(PLC)、变频器、打印机和扫描仪
- 警报系统、视频对讲、和暖气通风空调系统等

图1给出了该产品系列的框图。

2.1 器件一览

表2 STM32F103xx小容量产品功能和外设配置

	外设	STM32	F103Tx	STM32	F103Cx	STM32	F103Rx					
	闪存(K 字节)	16	32	16	32	16	32					
	SRAM(K字节)	6	10	6	10	6	10					
定时	通用		2个(TIM2、TIM3)									
器	高级控制		1个(TIM1)									
	SPI			1个(5	SPI1)							
通	I ² C		1个(I ² C1)									
信接	USART		2个(USART1、USART2)									
	USB		1个(USB 2.0全速)									
	CAN		1个(2.0B 主动)									
	GPIO端口	2	6	3	37 51		51					
12位	ADC模块(通道数)	2(2(10) 2(10) 2(16)									
	CPU频率	72MHz										
	工作电压			2.0~	·3.6V							
	工作温度	环境温度: -40°C~+85°C/-40°C~+105°C(见表8)										
	工下価/支		结温度: -40°C~+125°C(见表8)									
	封装形式	VFQF	PN36	LQF	P48	LQFP64,	TFBGA64					

2.2 系列之间的全兼容性

STM32F103xx是一个完整的系列,其成员之间是完全地脚对脚兼容,软件和功能上也兼容。在参考手册中,STM32F103x4和STM32F103x6被归为小容量产品,STM32F103x8和STM32F103xB被归为中等容量产品,STM32F103xC、STM32F103xD和STM32F103xE被归为大容量产品。

小容量和大容量产品是中等容量产品(STM32F103x8/B)的延伸,分别在对应的数据手册中介绍: STM32F103x4/6数据手册和STM32F103xC/D/E数据手册。小容量产品具有较小的闪存存储器、RAM空间和较少的定时器和外设。而大容量的产品则具有较大的闪存存储器、RAM空间和更多的片上外设,如SDIO、FSMC、I²S和DAC等,同时保持与其它同系列的产品兼容。

STM32F103x4、STM32F103x6、STM32F103xC、STM32F103xD和STM32F103xE可直接替换中等容量的STM32F103x8/B产品,为用户在产品开发中尝试使用不同的存储容量提供了更大的自由度。

同时,STM32F103xx增强型产品与现有的STM32F101xx基本型和STM32F102xx USB基本型产品全兼容。

表3 STM32F103xx系列

引	小容	量产品	中等容	量产品	大容量产品				
脚数	16K闪存	32K闪存 ⁽¹⁾	64K闪存	128K闪存	256K闪存	384K闪存	512K闪存		
目	6K RAM	10K RAM	20K RAM	20K RAM	48K RAM	64K RAM	64K RAM		
144					5个USART + 2个UART 4个16位定时器、2个基本定时器				
100			3个USART		3个SPI、2个I ² S、2个I ² C USB、CAN、2个PWM定时器				
64	2个USART		3个16位定时 2个SPI、2个 CAN、1个P	`l²C、USB、		个DAC、1个S □144脚封装)	SDIO		
48	*	^{刊 裔} 个I ² C、USB、 PWM定时器	1个ADC	тилен пр					
36	2个ADC								

^{1.} 对于订购代码的温度尾缀(6或7)之后没有代码A的产品,其对应的电气参数部分,请参考STM32F103x8/B中等容量产品数据手册。

2.3 概述

2.3.1 ARM[®]的Cortex™-M3核心并内嵌闪存和SRAM

ARM的Cortex™-M3处理器是最新一代的嵌入式ARM处理器,它为实现MCU的需要提供了低成本的平台、缩减的引脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。

ARM的Cortex™-M3是32位的RISC处理器,提供额外的代码效率,在通常8和16位系统的存储空间上发挥了ARM内核的高性能。

STM32F103xx增强型系列拥有内置的ARM核心,因此它与所有的ARM工具和软件兼容。图1是该系列产品的功能框图。

2.3.2 内置闪存存储器

16K或32K字节的内置闪存存储器,用于存放程序和数据。

2.3.3 CRC(循环冗余校验)计算单元

CRC(循环冗余校验)计算单元使用一个固定的多项式发生器,从一个32位的数据字产生一个CRC码。

在众多的应用中,基于CRC的技术被用于验证数据传输或存储的一致性。在EN/IEC 60335-1标准的范围内,它提供了一种检测闪存存储器错误的手段,CRC计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

2.3.4 内置SRAM

6K到10K字节的内置SRAM, CPU能以0等待周期访问(读/写)。

2.3.5 嵌套的向量式中断控制器(NVIC)

STM32F103xx增强型产品内置嵌套的向量式中断控制器,能够处理多达43个可屏蔽中断通道(不包括 16个Cortex™-M3的中断线)和16个优先级。

- 紧耦合的NVIC能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入内核
- 紧耦合的NVIC接口
- 允许中断的早期处理
- 处理*晚到的*较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

2.3.6 外部中断/事件控制器(EXTI)

外部中断/事件控制器包含19个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。EXTI可以检测到脉冲宽度小于内部APB2的时钟周期。多达51个通用I/O口连接到16个外部中断线。

2.3.7 时钟和启动

系统时钟的选择是在启动时进行,复位时内部8MHz的RC振荡器被选为默认的CPU时钟,随后可以选择外部的、具失效监控的4~16MHz时钟;当检测到外部时钟失效时,它将被隔离,系统将自动地切换到内部的RC振荡器,如果使能了中断,软件可以接收到相应的中断。同样,在需要时可以采取对PLL时钟完全的中断管理(如当一个间接使用的外部振荡器失效时)。

多个预分频器用于配置AHB的频率、高速APB(APB2)和低速APB(APB1)区域。AHB和高速APB的最高频率是72MHz,低速APB的最高频率为36MHz。参考图2的时钟驱动框图。

2.3.8 自举模式

在启动时,通过自举引脚可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部**SRAM**自举

自举加载程序(Bootloader)存放于系统存储器中,可以通过USART1对闪存重新编程。更详细的信息,请参考应用笔记AN2606。

2.3.9 供电方案

- V_{DD} = 2.0~3.6V: V_{DD}引脚为I/O引脚和内部调压器供电。
- V_{SSA}, V_{DDA} = 2.0~3.6V: 为ADC、复位模块、RC振荡器和PLL的模拟部分提供供电。使用ADC时, V_{DDA}不得小于2.4V。V_{DDA}和V_{SSA}必须分别连接到V_{DD}和V_{SS}。
- $V_{BAT} = 1.8 \sim 3.6 V$: 当关闭 V_{DD} 时,(通过内部电源切换器)为RTC、外部32kHz振荡器和后备寄存器供电。

关于如何连接电源引脚的详细信息,参见图10供电方案。

2.3.10 供电监控器

本产品内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过2V时工作;当V_{DD}低于设定的阀值(V_{POR/PDR})时,置器件于复位状态,而不必使用外部复位电路。器件中还有一个可编程电压监测器(PVD),它监视V_{DD}/V_{DDA}供电并与阀值V_{PVD}比较,当V_{DD}低于或高于阀值V_{PVD}时产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。PVD功能需要通过程序开启。关于V_{POR/PDR}和V_{PVD}的值参考表11。

2.3.11 电压调压器

调压器有三个操作模式:主模式(MR)、低功耗模式(LPR)和关断模式

- 主模式(MR)用于正常的运行操作
- 低功耗模式(LPR)用于CPU的停机模式
- 关断模式用于CPU的待机模式:调压器的输出为高阻状态,内核电路的供电切断,调压器处于零消耗状态(但寄存器和SRAM的内容将丢失)

该调压器在复位后始终处于工作状态,在待机模式下关闭处于高阻输出。

2.3.12 低功耗模式

STM32F103x4和STM32F103x6增强型产品支持三种低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。

● 睡眠模式

在睡眠模式,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。

● 停机模式

在保持SRAM和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,停止所有内部1.8V部分的供电,PLL、HSI的RC振荡器和HSE晶体振荡器被关闭,调压器可以被置于普通模式或低功耗模式。

可以通过任一配置成EXTI的信号把微控制器从停机模式中唤醒,EXTI信号可以是16个外部I/O口之一、PVD的输出、RTC闹钟或USB的唤醒信号。

● 待机模式

在待机模式下可以达到最低的电能消耗。内部的电压调压器被关闭,因此所有内部1.8V部分的供电被切断; PLL、HSI的RC振荡器和HSE晶体振荡器也被关闭; 进入待机模式后, SRAM和寄存器的内容将消失, 但后备寄存器的内容仍然保留, 待机电路仍工作。

从待机模式退出的条件是: NRST上的外部复位信号、IWDG复位、WKUP引脚上的一个上升边沿或RTC的闹钟到时。

注: 在进入停机或待机模式时,RTC、IWDG和对应的时钟不会被停止。

2.3.13 DMA

灵活的7路通用DMA可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输,DMA控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件DMA请求逻辑,同时可以由软件触发每个通道; 传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA可以用于主要的外设: SPI、I²C、USART,通用、基本和高级控制定时器TIMx和ADC。

2.3.14 RTC(实时时钟)和后备寄存器

RTC和后备寄存器通过一个开关供电,在V_{DD}有效时该开关选择V_{DD}供电,否则由V_{BAT}引脚供电。后备寄存器(10个16位的寄存器)可以用于在关闭V_{DD}时,保存20个字节的用户应用数据。RTC和后备寄存器不会被系统或电源复位源复位;当从待机模式唤醒时,也不会被复位。

实时时钟具有一组连续运行的计数器,可以通过适当的软件提供日历时钟功能,还具有闹钟中断和阶段性中断功能。RTC的驱动时钟可以是一个使用外部晶体的32.768kHz的振荡器、内部低功耗RC振荡器或高速的外部时钟经128分频。内部低功耗RC振荡器的典型频率为40kHz。为补偿天然晶体的偏差,可以通过输出一个512Hz的信号对RTC的时钟进行校准。RTC具有一个32位的可编程计数器,

使用比较寄存器可以进行长时间的测量。有一个20位的预分频器用于时基时钟,默认情况下时钟为32.768kHz时,它将产生一个1秒长的时间基准。

2.3.15 定时器和看门狗

小容量的STM32F103xx增强型系列产品包含1个高级控制定时器、2个普通定时器,以及2个看门狗 定时器和1个系统嘀嗒定时器。

下表比较了高级控制定时器、普通定时器和基本定时器的功能:

表4 定时器功能比较

定时器	计数器分辩率	计数器类型	预分频系数	产生DMA请求	捕获/比较通道	互补输出
TIM1	16位	向上,向下, 向上/下	1~65536之间 的任意整数	可以	4	有
TIM2 TIM3	16位	向上,向下, 向上/下	1~65536之间 的任意整数	可以	4	没有

高级控制定时器(TIM1)

高级控制定时器(TIM1)可以被看成是分配到6个通道的三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生PWM(边缘或中心对齐模式)
- 单脉冲输出

配置为16位标准定时器时,它与TIMx定时器具有相同的功能。配置为16位PWM发生器时,它具有全调制能力(0~100%)。

在调试模式下,计数器可以被冻结,同时PWM输出被禁止,从而切断由这些输出所控制的开关。

很多功能都与标准的TIM定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与TIM定时器协同操作,提供同步或事件链接功能。

通用定时器(TIMx)

STM32F103xx增强型产品中,内置了多达2个可同步运行的标准定时器(TIM2、TIM3)。每个定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输入捕获、输出比较或PWM通道。

它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一标准定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求机制。

这些定时器还能够处理增量编码器的信号,也能处理1至3个霍尔传感器的数字输出。

独立看门狗

独立的看门狗是基于一个12位的递减计数器和一个8位的预分频器,它由一个内部独立的40kHz的RC 振荡器提供时钟;因为这个RC振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能,在调试模式下,计数器可以被冻结。

系统时基定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24位的递减计数器
- 自动重加载功能

- 当计数器为0时能产生一个可屏蔽系统中断
- 可编程时钟源

2.3.16 I²C总线

1个I²C总线接口,能够工作于多主模式或从模式,支持标准和快速模式。

I²C接口支持7位或10位寻址,7位从模式时支持双从地址寻址。内置了硬件CRC发生器/校验器。

它们可以使用DMA操作并支持SMBus总线2.0版/PMBus总线。

2.3.17 通用同步/异步收发器(USART)

USART1接口通信速率可达4.5兆位/秒,其他接口的通信速率可达2.25兆位/秒。USART接口具有硬件的CTS和RTS信号管理、支持IrDA SIR ENDEC传输编解码、兼容ISO7816的智能卡并提供LIN主/从功能。

所有USART接口都可以使用DMA操作。

2.3.18 串行外设接口(SPI)

多达2个SPI接口,在从或主模式下,全双工和半双工的通信速率可达18兆位/秒。3位的预分频器可产生8种主模式频率,可配置成每帧8位或16位。硬件的CRC产生/校验支持基本的SD卡和MMC模式。所有的SPI接口都可以使用DMA操作。

2.3.19 控制器区域网络(CAN)

CAN接口兼容规范2.0A和2.0B(主动), 位速率高达1兆位/秒。它可以接收和发送11位标识符的标准帧, 也可以接收和发送29位标识符的扩展帧。具有3个发送邮箱和2个接收FIFO, 3级14个可调节的滤波器。

2.3.20 通用串行总线(USB)

STM32F103xx增强型系列产品,内嵌一个兼容全速USB的设备控制器,遵循全速USB设备(12兆位/秒)标准,端点可由软件配置,具有待机/唤醒功能。USB专用的48MHz时钟由内部主PLL直接产生(时钟源必须是一个HSE晶体振荡器)。

2.3.21 通用输入输出接口(GPIO)

每个GPIO引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。多数GPIO引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有的GPIO引脚都有大电流通过能力。

在需要的情况下,I/O引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入I/O寄存器。在APB2上的I/O脚可达18MHz的翻转速度。

2.3.22 ADC(模拟/数字转换器)

STM32F103xx增强型产品内嵌2个12位的模拟/数字转换器(ADC),每个ADC共用多达16个外部通道,可以实现单次或扫描转换。在扫描模式下,自动进行在选定的一组模拟输入上的转换。

ADC接口上的其它逻辑功能包括:

- 同步的采样和保持
- 交叉的采样和保持
- 单次采样

ADC可以使用DMA操作。

模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。

由标准定时器(TIMx)和高级控制定时器(TIM1)产生的事件,可以分别内部级联到ADC的开始触发和注入触发,应用程序能使AD转换与时钟同步。

2.3.23 温度传感器

温度传感器产生一个随温度线性变化的电压,转换范围在2V < V_{DDA} < 3.6V之间。温度传感器在内部被连接到ADC12 IN16的输入通道上,用于将传感器的输出转换到数字数值。

2.3.24 串行单线JTAG调试口(SWJ-DP)

内嵌ARM的SWJ-DP接口,这是一个结合了JTAG和串行单线调试的接口,可以实现串行单线调试接口或JTAG接口的连接。JTAG的TMS和TCK信号分别与SWDIO和SWCLK共用引脚,TMS脚上的一个特殊的信号序列用于在JTAG-DP和SW-DP间切换。

图1 STM32F103xx增强型模块框图

- 1. 工作温度: -40°C至+105°C, 结温达125°C。
- 2. AF: 可作为外设功能脚的I/O端口

- 1. 当HSI作为PLL时钟的输入时,最高的系统时钟频率只能达到64MHz。
- 2. 当使用USB功能时,必须同时使用HSE和PLL,CPU的频率必须是48MHz或72MHz。
- 3. 当需要ADC采样时间为1µs时,APB2必须设置在14MHz、28MHz或56MHz。

3 引脚定义

图3 STM32F103xx增强型LQFP64引脚分布

图4 STM32F103xx增强型TFBGA64引脚分布											
	1	2	3	4	5	6	7	8			
Α	PC14-1 OSC32_IN	/ PC13-; TAMPER-RT	C (PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)			
В	,PC15-, O9C32_OU	T (VBAT)	(PB8)	воото	(PD2)	(PC11)	(PC10)	(PA12)			
С	OSC_IN	VSS_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)			
D	ośc_oùt	V _{DD_4}	(PB6)	'Vss_3'	'VSS_2'	VSS_1	(PA8)	(PC9)			
E	(NRST)	(PC1)	(PCO)	'V _{DD_3} '	'V _{DD_2} '	'V _{DD_1} '	(PC7)	(PC8)			
F	(V _{SSA})	(PC2)	(PA2)	(PA5)	(PBO)	(PC6)	(PB15)	(PB14)			
G	VREF+	PÁO-WKÙP	(PA3)	PA6	(PB1)	(PB2)	(PB10)	(PB13)			
Н	(V _{DDA})	(PA1)	(PA4)	(PA7)	PC4	(PC5)	(PB11)	(PB12)			
								Al15494			

图5 STM32F103xx增强型LQFP48引脚分布

图6 STM32F103xx增强型VFQFPN36引脚分布

表5 小容量STM32F103xx引脚定义

								可选的复用功能	3
LQFP48	LQFP64	TFBGA64	VFQFPN36	引脚名称	类 型 (1)	I/O电平 ⁽²⁾	主功能 ⁽³⁾ (复位后)	默认复用功能	重定义功能
1	1	B2	-	V_{BAT}	S		V_{BAT}		
2	2	A2	-	PC13- TAMPER-RTC ⁽⁴⁾	I/O		PC13 ⁽⁵⁾	TAMPER-RTC	
3	3	A1	-	PC14- OSC32_IN ⁽⁴⁾	I/O		PC14 ⁽⁵⁾	OSC32_IN	
4	4	B1	-	PC15- OSC32_OUT ⁽⁴⁾	I/O		PC15 ⁽⁵⁾	OSC32_OUT	
5	5	C1	2	OSC_IN	ı		OSC_IN		
6	6	D1	3	OSC_OUT	0		OSC_OUT		
7	7	E1	4	NRST	I/O		NRST		
-	8	E3	-	PC0	I/O		PC0	ADC12_IN10	
-	9	E2	ı	PC1	I/O		PC1	ADC12_IN11	
-	10	F2	1	PC2	I/O		PC2	ADC12_IN12	
-	11	-	-	PC3	I/O		PC3	ADC12_IN13	
-	-	G1	-	$V_{REF^+}^{(6)}$	S		V_{REF^+}		
8	12	F1	5	V_{SSA}	S		V_{SSA}		
9	13	H1	6	V_{DDA}	S		V_{DDA}		
10	14	G2	7	PA0-WKUP	I/O		PA0	WKUP/USART2_CTS ⁽⁷⁾ ADC12_IN0/ TIM2_CH1_ETR ⁽⁷⁾	
11	15	H2	8	PA1	I/O		PA1	USART2_RTS ⁽⁷⁾ / ADC12_IN1/TIM2_CH2 ⁽⁷⁾	
12	16	F3	9	PA2	I/O		PA2	USART2_TX ⁽⁷⁾ / ADC12_IN2/TIM2_CH3 ⁽⁷⁾	
13	17	G3	10	PA3	I/O		PA3	USART2_RX ⁽⁷⁾ / ADC12_IN3/TIM2_CH4 ⁽⁷⁾	
-	18	C2	-	V_{SS_4}	S		V _{SS_4}		
-	19	D2	-	V_{DD_4}	S		V_{DD_4}		
14	20	НЗ	11	PA4	I/O		PA4	SPI1_NSS ⁽⁷⁾ /USART2_CK ⁽⁷⁾ /ADC12_IN4	
15	21	F4	12	PA5	I/O		PA5	SPI1_SCK ⁽⁷⁾ /ADC12_IN5	
16	22	G4	13	PA6	I/O		PA6	SPI1_MISO ⁽⁷⁾ / ADC12_IN6/TIM3_CH1 ⁽⁷⁾	TIM1_BKIN
17	23	H4	14	PA7	I/O		PA7	SPI1_MOSI ⁽⁷⁾ / ADC12_IN7/TIM3_CH2 ⁽⁷⁾	TIM1_CH1N

表5 小容量STM32F103xx引脚定义(续1)

								可选的复用功能	E E
LQFP48	LQFP64	TFBGA64	VFQFPN36	引脚名称	类 型 ⁽¹⁾	I/O电平 ⁽²⁾	主功能 ⁽³⁾ (复位后)	默认复用功能	重定义功能
-	24	H5	-	PC4	I/O		PC4	ADC12_IN14	
-	25	H6	-	PC5	I/O		PC5	ADC12_IN15	
18	26	F5	15	PB0	I/O		PB0	ADC12_IN8/TIM3_CH3 ⁽⁷⁾	TIM1_CH2N
19	27	G5	16	PB1	I/O		PB1	ADC12_IN9/TIM3_CH4 ⁽⁷⁾	TIM1_CH3N
20	28	G6	17	PB2	I/O	FT	PB2/BOOT1	_	
21	29	G7	-	PB10	I/O	FT	PB10		TIM2_CH3
22	30	H7	-	PB11	I/O	FT	PB11		TIM2_CH4
23	31	D6	18	V _{SS_1}	S		V _{SS_1}		
24	32	E6	19	V _{DD_1}	S		V_{DD_1}		
25	33	Н8	-	PB12	I/O	FT	PB12	TIM1_BKIN ⁽⁷⁾	
26	34	G8	-	PB13	I/O	FT	PB13	TIM1_CH1N ⁽⁷⁾	
27	35	F8	-	PB14	I/O	FT	PB14	TIM1_CH2N ⁽⁷⁾	
28	36	F7	-	PB15	I/O	FT	PB15	TIM1_CH3N ⁽⁷⁾	
-	37	F6	-	PC6	I/O	FT	PC6		TIM3_CH1
-	38	E7	-	PC7	I/O	FT	PC7		TIM3_CH2
-	39	E8	-	PC8	I/O	FT	PC8		TIM3_CH3
-	40	D8	-	PC9	I/O	FT	PC9		TIM3_CH4
29	41	D7	20	PA8	I/O	FT	PA8	USARTI_CK/TIWII_CHT/	
30	42	C7	21	PA9	I/O	FT	PA9	USART1_TX / TIM1_CH2	
31	43	C6	22	PA10	I/O	FT	PA10	USART1_RX / TIM1_CH3	
32	44	C8	23	PA11	I/O	FT	PA11	USART1_CTS / CAN_RX ⁽⁷⁾ / TIM1_CH4 / USBDM	
33	45	В8	24	PA12	I/O	FT	PA12	USART1_RTS / CAN_TX ⁽⁷⁾ / TIM1_ETR / USBDP	
34	46	A8	25	PA13	I/O	FT	JTMS/SWDIO		PA13
35	47	D5	26	V_{SS_2}	S		V_{SS_2}		
36	48	E5	27	V_{DD_2}	S		V_{DD_2}		
37	49	A7	28	PA14	I/O	FT	JTCK/SWCLK		PA14
38	50	A6	29	PA15	I/O	FT	JTDI		TIM2_CH1_ETR / PA15 / SPI1_NSS
_	51	B7		PC10	I/O	FT	PC10		
-	52	В6		PC11	I/O	FT	PC11		
-	53	C5		PC12	I/O	FT	PC12		

表5 小容量STM32F103xx引脚定义(续2)

					可选的复用功能				
LQFP48	LQFP64	TFBGA64	VFQFPN36	引脚名称	类 型 (1)	I/O电平 ⁽²⁾	主功能 ⁽³⁾ (复位后)	默认复用功能	重定义功能
5	5	C1	2	PD0	I/O	FT	OSC_IN ⁽⁸⁾		
6	6	D1	3	PD1	I/O	FT	OSC_OUT ⁽⁸⁾		
	54	В5	-	PD2	I/O	FT	PD2	TIM3_ETR	
39	55	A5	30	PB3	I/O	FT	JTDO		TIM2_CH2 / PB3 / TRACESWO / SPI1_SCK
40	56	A4	31	PB4	I/O	FT	NJTRST		TIM3_CH1 / PB4 / SPI1_MISO
41	57	C4	32	PB5	I/O		PB5	I2C1_SMBAI	TIM3_CH2/ SPI1_MOSI
42	58	D3	33	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁷⁾	USART1_TX
43	59	C3	34	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾	USART1_RX
44	60	B4	35	воото	Ι		воото		
45	61	В3	1	PB8	I/O	FT	PB8		I2C1_SCL/ CAN_RX
46	62	A3	-	PB9	I/O	FT	PB9		I2C1_SDA/ CAN_TX
47	63	D4	36	V_{SS_3}	S		V_{SS_3}		
48	64	E4	1	V_{DD_3}	S		V_{DD_3}		

- 1. I=输入,O=输出,S=电源,HiZ=高阻
- 2. FT: 容忍5V
- 3. 可以使用的功能依选定的型号而定。对于具有较少外设模块的型号,始终是包含较小编号的功能模块。例如,某个型号只有1个SPI和2个USART时,它们即是SPI1和USART1及USART2。参见表2。
- 4. PC13, PC14和PC15引脚通过电源开关进行供电,而这个电源开关只能够吸收有限的电流(3mA)。因此这三个引脚作为输出引脚时有以下限制:在同一时间只有一个引脚能作为输出,作为输出脚时只能工作在2MHz模式下,最大驱动负载为30pF,并且不能作为电流源(如驱动LED)。
- 5. 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由备份区域寄存器控制(这些寄存器不会被主复位系统所复位)。 关于如何控制这些IO口的具体信息,请参考STM32F10xxx参考手册的电池备份区域和BKP寄存器的相关章节。
- 6. 与LQFP64的封装不同,在TFBGA64封装上没有PC3,但提供了VREF+引脚。
- 7. 此类复用功能能够由软件配置到其他引脚上(如果相应的封装型号有此引脚),详细信息请参考STM32F10xxx参考 手册的复用功能I/O章节和调试设置章节。
- 8. VFQFPN36封装的引脚2和引脚3、LQFP48和LQFP64封装的引脚5和引脚6、和TFBGA64封装的C1和C2,在芯片复位后默认配置为OSC_IN和OSC_OUT功能脚。软件可以重新设置这两个引脚为PD0和PD1功能。但对于LQFP100/BGA100封装,由于PD0和PD1为固有的功能引脚,因此没有必要再由软件进行重映像设置。更多详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。在输出模式下,PD0和PD1只能配置为50MHz输出模式。

译注:

表中的引脚名称标注中出现的ADC12_INx(x表示0~15之间的整数),表示这个引脚可以是ADC1_INx或ADC2_INx。例如: ADC12_IN9表示这个引脚可以配置为ADC1_IN9,也可以配置为ADC2_IN9。

表中的引脚PA0对应的复用功能中的TIM2_CH1_ETR,表示可以配置该功能为TIM2_TI1或TIM2_ETR。同理,PA15对应的重映射复用功能的名称TIM2_CH1_ETR,具有相同的意义。

4 存储器映像

图7 存储器图

电气特性 5

5.1 测试条件

除非特别说明,所有电压的都以Vss为基准。

5.1.1 最小和最大数值

除非特别说明,在生产线上通过对100%的产品在环境温度TA=25°C和TA=TAmax下执行的测试 (T_Amax与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件 下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线 上进行测试; 在综合评估的基础上, 最小和最大数值是通过样本测试后, 取其平均值再加减三倍的 标准分布(平均 $\pm 3\Sigma$)得到。

5.1.2 典型数值

除非特别说明,典型数据是基于T_A=25°C和V_{DD}=3.3V(2V≤V_{DD}≤3.3V电压范围)。这些数据仅用于设 计指导而未经测试。

典型的ADC精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差 小于等于给出的数值(平均±2 Σ)。

5.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

5.1.4 负载电容

测量引脚参数时的负载条件示于图8中。

图8 引脚的负载条件

5.1.5 引脚输入电压

引脚上输入电压的测量方式示于图9中。

引脚输入电压 图9

5.1.6 供电方案

图10 供电方案

注:上图中的4.7µF电容必须连接到V_{DD3}。

5.1.7 电流消耗测量

图11 电流消耗测量方案

5.2 绝对最大额定值

加在器件上的载荷如果超过'绝对最大额定值'列表(表6、表7、表8)中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表6 电压特性

符号	描述	最小值	最大值	单 位
V _{DD} - V _{SS}	外部主供电电压(包含V _{DDA} 和V _{DD}) ⁽¹⁾	-0.3	4.0	
V _{IN}	在5V容忍的引脚上的输入电压 ⁽²⁾	V _{SS} -0.3	5.5	V
VIN	在其它引脚上的输入电压(2)	V _{SS} -0.3	V _{DD} + 0.3	
ΔV _{DDx}	不同供电引脚之间的电压差		50	mV
V _{SSx} - V _{SS}	不同接地引脚之间的电压差		50	IIIV
V _{ESD(HBM)}	ESD静电放电电压(人体模型)	参见第5.3.11节		

- 1. 所有的电源(VDD, VDDA)和地(VSS, VSSA)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限(见表7),即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 V_{IN} > V_{IN} max时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。

表7 电流特性

符号	描述	最大值	单位
I _{VDD}	经过V _{DD} /V _{DDA} 电源线的总电流(供应电流) ⁽¹⁾	150	
Ivss	经过Vss地线的总电流(流出电流) ⁽¹⁾	150	
lia	任意I/O和控制引脚上的输出灌电流	25	
I _{IO}	任意I/O和控制引脚上的输出电流	-25	mA
	NRST引脚的注入电流	±5	IIIA
I _{INJ(PIN)} (2) (3)	HSE的OSC_IN引脚和LSE的OSC_IN引脚的注入电流	±5	
	其他引脚的注入电流(4)	±5	
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	±25	

- 1. 所有的电源(V_{DD}, V_{DDA})和地(V_{SS}, V_{SSA})引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{DD} 时,有一个正向注入电流;当 V_{IN} <
 V_{SS} 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。参看第5.3.17节。
- 4. 当几个I/O口同时有注入电流时, Σ I_{INJ(PIN)}的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件4个I/O端口上 Σ I_{INJ(PIN)}最大值的特性。

表8 温度特性

符号	描述	数值	单位
T _{STG}	储存温度范围	-65 ~ + 150	°C
TJ	最大结温度	150	°C

5.3 工作条件

5.3.1 通用工作条件

表9 通用工作条件

符号	参数	条件	最小值	最大值	单位	
f _{HCLK}	内部AHB时钟频率		0	72		
f _{PCLK1}	内部APB1时钟频率		0	36	MHz	
f _{PCLK2}	内部APB2时钟频率		0	72		
V_{DD}	标准工作电压		2	3.6	V	
V _{DDA} ⁽¹⁾	模拟部分工作电压(未使用ADC)	- 必须与V _{DD} ⁽²⁾ 相同	2	3.6		
V DDA.	模拟部分工作电压(使用ADC)	少次与 V DD 相问	2.4	3.6	V	
V _{BAT}	备份部分工作电压		1.8	3.6	V	
	功率耗散 温度标号 6 : T _A =85°C	TFBGA64		308		
PD		LQFP64		444	mW	
ГО	温度标号7 ⁽³⁾ : T _A =105℃	LQFP48		363]	
	ших ил. 31 г. гд	VFQFPN36		1110		
	环境温度(温度标号6)	最大功率耗散	-40	85	°C	
_	外冕血汉(血反称 50)	低功率耗散(4)	-40	105		
T _A	环接组座(组座标品7)	最大功率耗散	-40	105	°C	
	环境温度(温度标号7)	低功率耗散(4)	-40	125	- C	
т.	结温度范围	温度标号6	-40	105	°C	
TJ	知価及氾団	温度标号7	-40	125		

- 1. 当使用ADC时,参见表45。
- 2. 建议使用相同的电源为V_{DD}和V_{DDA}供电,在上电和正常操作期间,V_{DD}和V_{DDA}之间最多允许有300mV的差别。
- 3. 如果 T_A 较低,只要 T_J 不超过 T_J max(参见第1节),则允许更高的 P_D 数值。
- 4. 在较低的功率耗散的状态下,只要 T_J 不超过 T_J max(参见第1节), T_A 可以扩展到这个范围。

5.3.2 上电和掉电时的工作条件

下表中给出的参数是在一般的工作条件下测试得出。

表10 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单 位
	V _{DD} 上升速率		0	8	
t _{∨DD}	V _{DD} 下降速率		20	∞	μs/V

5.3.3 内嵌复位和电源控制模块特性

下表中给出的参数是依据表9列出的环境温度下和VDD供电电压下测试得出。

表11 内嵌复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单 位
		PLS[2:0]=000 (上升沿)	2.1	2.18	2.26	V
		PLS[2:0]=000 (下降沿)	2	2.08	2.16	٧
V_{PVD}	V _{PVD} 可编程的电压检测器 的电平选择	PLS[2:0]=001 (上升沿)	2.19	2.28	2.37	٧
	,	PLS[2:0]=001 (下降沿)	2.09	2.18	2.27	V
		PLS[2:0]=010 (上升沿)	2.28	2.38	2.48	V
V _{PVD}	V _{PVD} 可编程的电压检测器 的电平选择	PLS[2:0]=010 (下降沿)	2.18	2.28	2.38	V
		PLS[2:0]=011 (上升沿)	2.38	2.48	2.58	V

		PLS[2:0]=011 (下降沿)	2.28	2.38	2.48	V
		PLS[2:0]=100 (上升沿)	2.47	2.58	2.69	V
		PLS[2:0]=100 (下降沿)	2.37	2.48	2.59	V
		PLS[2:0]=101 (上升沿)	2.57	2.68	2.79	V
		PLS[2:0]=101 (下降沿)	2.47	2.58	2.69	V
		PLS[2:0]=110 (上升沿)	2.66	2.78	2.9	V
		PLS[2:0]=110 (下降沿)	2.56	2.68	2.8	V
		PLS[2:0]=111 (上升沿)	2.76	2.88	3	V
		PLS[2:0]=111 (下降沿)	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD迟滞			100		mV
V	1. 由/转由有总网店	下降沿	1.8 ⁽¹⁾	1.88	1.96	V
V _{POR/PDR}	上电/掉电复位阀值 	上升沿	1.84	1.92	2.0	V
V _{PDRhyst} ⁽²⁾	PDR迟滞			40		mV
T _{RSTTEMPO} ⁽²⁾	复位持续时间		1	2.5	4.5	ms

- 1. 产品的特性由设计保证至最小的数值V_{POR/PDR}。
- 2. 由设计保证,不在生产中测试。

5.3.4 内置的参照电压

下表中给出的参数是依据表9列出的环境温度下和VDD供电电压下测试得出。

表12 内置的参照电压

符号	参数	条件	最小值	典型值	最大值	单位
V	内置参照电压	-40°C < T _A < +105°C	1.16	1.20	1.26	V
V _{REFINT}	内且参照电压	-40°C < T _A < +85°C	1.16	1.20	1.24	V
T _{S_vrefint} ^(!)	当读出内部参照电压 时,ADC的采样时间			5.1	17.1 ⁽²⁾	μs

- 1. 最短的采样时间是通过应用中的多次循环得到。
- 2. 由设计保证,不在生产中测试。

5.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O引脚的负载、产品的软件配置、工作频率、I/O脚的翻转速率、程序在存储器中的位置以及执行的代码等。

电流消耗的测量方法说明,详见图11。

本节中给出的所有运行模式下的电流消耗测量值,都是在执行一套精简的代码,能够得到Dhrystone 2.1代码等效的结果。

最大电流消耗

微控制器处于下列条件:

- 所有的I/O引脚都处于输入模式,并连接到一个静态电平上——V_{DD}或V_{SS}(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到f_{HCLK}的频率(0~24MHz时为0个等待周期,24~48MHz时为1个等待周期,超过48MHz时为2个等待周期)。
- 指令预取功能开启(提示:这个参数必须在设置时钟和总线分频之前设置)。
- 当开启外设时: f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK}。

表13、表14和表15中给出的参数,是依据表9列出的环境温度下和VDD供电电压下测试得出。

表13 运行模式下的最大电流消耗,数据处理代码从内部闪存中运行

符号	参数	条件	f _{HCLK}	最大	:值 ⁽¹⁾	单位
111.2	多奴	米 田	IHCLK	T _A = 85°C	T _A = 85°C	
I _{DD}	运行模式下的供应	外部时钟 ⁽²⁾ ,	72MHz	45	46	mA

电流		48MHz	32	33	
		36MHz	26	27	
		24MHz	18	19	
		16MHz	13	14	
		8MHz	7	8	
		72MHz	30	31	
		48MHz	23	24	
	外部时钟 ⁽²⁾ ,	36MHz	19	20	
	关闭所有外设	24MHz	13	14	
		16MHz	10	11	
		8MHz	6	7	

- 1. 由综合评估得出,不在生产中测试。
- 2. 外部时钟为8MHz,当f_{HCLK}>8MHz时启用PLL。

表14 运行模式下的最大电流消耗,数据处理代码从内部RAM中运行

符号	参数	条件	f _{HCLK}	最大	单位	
10 3	罗双	本口	IHCLK	T _A = 85°C	T _A = 105°C	平位
			72MHz	41	42	
			48MHz	27	28	
		外部时钟 ⁽²⁾ ,	36MHz	20	21	
		使能所有外设	24MHz	14	15	
			16MHz	10	11	
	运行模式下的供应		8MHz	6	7	mA
I _{DD}	电流		72MHz	27	28	ША
			48MHz	19	20	
		外部时钟 ⁽²⁾ ,	36MHz	15	16	
		关闭所有外设	24MHz	10	11	
			16MHz	7	8	
				8MHz	5	6

- 1. 由综合评估得出,在生产中以V_{DD}max和f_{HCLK}max为条件测试。
- 2. 外部时钟为8MHz,当f_{HCLK}>8MHz时启用PLL。

图13 运行模式下典型的电流消耗与频率的对比(3.6V供电,数据处理代码在RAM中运行,关闭所有外设)

表15 睡眠模式下的最大电流消耗,代码运行在Flash或RAM中

符号	参数	条件	f _{HCLK}	最大	单位	
111 7	多奴	※ IT	IHCLK	T _A = 85°C	T _A = 105°C	平位
			72MHz	26	27	
			48MHz	17	18	
		外部时钟 ⁽²⁾ ,	36MHz	14	15	
		使能所有外设	24MHz	10	11	
			16MHz	7	8	
	睡眠模式下的供应		8MHz	4	5	mA
I _{DD}	电流		72MHz	7.5	8	IIIA
			48MHz	6	6.5	
		外部时钟 ⁽²⁾ ,	36MHz	5	5.5	
		关闭所有外设	24MHz	4.5	5	
			16MHz	4	4.5	
				8MHz	3	4

- 1. 由综合评估得出,在生产中以V_{DD}max和以f_{HCLK}max使能外设为条件测试。
- 2. 外部时钟为8MHz,当f_{HCLK}>8MHz时启用PLL。

表16 停机和待机模式下的典型和最大电流消耗

			典型	值 ⁽¹⁾	最大	值	
符号	参数	条件	V_{DD}/V_{BAT} = 2.4V	V_{DD}/V_{BAT} = 3.3V	T _A = 85°C	T _A = 105°C	单位
	停 机 模 式 下 的供应电流	调压器处于运行模式,低速和高速 内部RC振荡器和高速振荡器处于 关闭状态(没有独立看门狗)	21.3	21.7	160	200	
		调压器处于低功耗模式,低速和高速内部RC振荡器和高速振荡器处于关闭状态(没有独立看门狗)	11.3	11.7	145	185	
I _{DD}		低速内部RC振荡器和独立看门狗 处于开启状态	2.75	3.4	ı	ı	μA
	 待 机 模 式 下 的供应电流	低速内部RC振荡器处于开启状态, 独立看门狗处于关闭状态	2.55	3.2	ı	1	
	HJ MZZ. GME	低速内部RC振荡器和独立看门狗 处于关闭状态,低速振荡器和RTC 处于关闭状态	1.55	1.9	3.2	4.5	
I _{DD_VBAT}	备份区域的 供应电流	低速振荡器和RTC处于开启状态	1.1	1.4	1.9 ⁽²⁾	2.2	

- 1. 典型值是在T_A=25°C下测试得到。
- 2. 由综合评估得出,不在生产中测试。

图14 调压器在运行状态时,停机模式下的典型电流消耗在V_{DD}=3.3V和3.6V时与温度的对比

图16 待机模式下的典型电流消耗在V_{DD}=3.3V和3.6V时与温度的对比

典型的电流消耗

MCU处于下述条件下:

- 所有的I/O引脚都处于输入模式,并连接到一个静态电平上——V_{DD}或V_{SS}(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到f_{HCLK}的频率(0~24MHz时为0个等待周期,24~48MHz时为1个等待周期,超过48MHz时为2个等待周期)。
- 环境温度和V_{DD}供电电压条件列于表9。

● 指令预取功能开启(提示: 这个参数必须在设置时钟和总线分频之前设置)。当开启外设时: f_{PCLK1} = $f_{HCLK}/4$, f_{PCLK2} = $f_{HCLK}/2$, f_{ADCCLK} = $f_{PCLK2}/4$ 。

表17 运行模式下的典型电流消耗,数据处理代码从内部Flash中运行

<i>⁄⁄</i> ⁄⁄ □.	**	AT 14-		典型	值 ⁽¹⁾	单位
符号	参数	条件	f HCLK	使能所有外设(2)	关闭所有外设	一一一
			72MHz	31.3	24.5	
			48MHz	21.9	17.4	
			36MHz	17.2	13.8	1
			24MHz	11.2	8.9	
			16MHz	8.1	6.6	
		外部时钟 ⁽³⁾	8MHz	5	4.2	mA
			4MHz	3	2.6	1
			2MHz	2	1.8	
			1MHz	1.5	1.4	-
			500kHz	1.2	1.2	
I _{DD}	运行模式下		125kHz	1.05	1	
טטו	的供应电流		64MHz	27.6	21.6	
			48MHz	21.2	16.7	
			36MHz	16.5	13.1	
			24MHz	10.5	8.2	
		运行于高速内部	16MHz	7.4	5.9	
		RC振荡器(HSI), 使用AHB预分频以	8MHz	4.3	3.6	mA
	减低频率		4MHz	2.4	2	
		2MHz 1.5	1.5	1.3		
			1MHz	1	0.9	
			500kHz	0.7	0.65	
			125kHz	0.5	0.45]

- 1. 典型值是在T_A=25°C、V_{DD}=3.3V时测试得到。
- 2. 每个模拟部分的ADC要增加额外的0.8mA电流消耗。在应用环境中,这部分电流只有在开启ADC(设置ADC_CR2 寄存器的ADON位)时才会增加。
- 3. 外部时钟为8MHz, 当f_{HCLK}>8MHz时启用PLL。

表18 睡眠模式下的典型电流消耗,数据处理代码从内部Flash或RAM中运行

7/1 II.	会₩	AZ JAL	_	典型	值 ⁽¹⁾	* *
符号	参数	条 件	f HCLK	使能所有外设(2)	关闭所有外设	单位
I _{DD}	运行模式下		72MHz	12.6	5.3	
	的供应电流		48MHz	8.7	3.8	
			36MHz	6.7	3.1	
			24MHz	4.8	2.3	
		外部时钟 ⁽³⁾	16MHz	3.4	1.8	mA
			8MHz	2	1.2	
			4MHz	1.5	1.1	
			2MHz	1.25	1	
			1MHz	1.1	0.98	
			500kHz	1.05	0.96	
			125kHz	1	0.95	
		运行于高速内部	64MHz	10.6	4.2	mA
	RC振荡器(HSI),	48MHz	8.1	3.2		
		使用AHB预分频以 减低频率	36MHz	6.1	2.5	
		994 IKV 275-	24MHz	4.2	1.7	

16MHz	2.8	1.2	
8MHz	1.4	0.55	
4MHz	0.9	0.5	
2MHz	0.7	0.45	
1MHz	0.55	0.42	
500kHz	0.48	0.4	
125kHz	0.4	0.38	
-	8MHz 4MHz 2MHz 1MHz 500kHz	8MHz 1.4 4MHz 0.9 2MHz 0.7 1MHz 0.55 500kHz 0.48	8MHz 1.4 0.55 4MHz 0.9 0.5 2MHz 0.7 0.45 1MHz 0.55 0.42 500kHz 0.48 0.4

- 1. 典型值是在T_A=25°C、V_{DD}=3.3V时测试得到。
- 2. 每个模拟部分的ADC要增加额外的0.8mA电流消耗。在应用环境中,这部分电流只有在开启ADC(设置ADC_CR2 寄存器的ADON位)时才会增加。
- 3. 外部时钟为8MHz,当f_{HCLK}>8MHz时启用PLL。

内置外设电流消耗

内置外设的电流消耗列于表19,MCU的工作条件如下:

- 所有的I/O引脚都处于输入模式,并连接到一个静态电平上——V_{DD}或V_{SS}(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 给出的数值是通过测量电流消耗计算得出
 - 关闭所有外设的时钟
 - 只开启一个外设的时钟
- 环境温度和V_{DD}供电电压条件列于表6。

表19 内置外设的电流消耗(1)

内置外设		25°C时的 典型功耗	单位	内置外设		25°C时的 典型功耗	单位	
	TIM2	1.2			GPIOA	0.47		
	TIM3	1.2			GPIOB	0.47		
	USART2	0.35	mA		GPIOC	0.47		
	I2C1	0.39			GPIOD	0.47		
APB1	USB	0.65		APB2	ADC1 ⁽²⁾	1.81	mA	
	CAN	0.72		,		ADC2	1.78	
					TIM1	1.6		
					SPI1	0.43		
					USART1	0.85		

- 1. f_{HCLK} =72MHz, f_{APB1} = f_{HCLK} /2, f_{APB2} = f_{HCLK} ,每个外设的预分频系数为默认值。
- 2. ADC的特殊条件: $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, $f_{ADCCLK} = f_{APB2}/4$, ADC_CR2寄存器的ADON=1。

5.3.6 外部时钟源特性

来自外部振荡源产生的高速外部用户时钟

下表中给出的特性参数是使用一个高速的外部时钟源测得,环境温度和供电电压符合表**9**的条件。 表**20** 高速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSE_ext}	用户外部时钟频率 ⁽¹⁾		0	8	25	MHz
V _{HSEH}	OSC_IN输入引脚高电平电压		0.7V _{DD}		V_{DD}	V
V _{HSEL}	OSC_IN输入引脚低电平电压		V _{SS}		0.3V _{DD}	V
$t_{\text{w(HSE)}} \\ t_{\text{w(HSE)}}$	OSC_IN高或低的时间 ⁽¹⁾		16			ns
$\begin{array}{c} t_{r(\text{HSE})} \\ t_{f(\text{HSE})} \end{array}$	OSC_IN上升或下降的时间 ⁽¹⁾				20	115
C _{in(HSE)}	OSC_IN输入容抗 ⁽¹⁾			5		pF
DuCy _(HSE)	占空比		45		55	%
IL	OSC_IN输入漏电流	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA

¹ 由设计保证,不在生产中测试。

来自外部振荡源产生的低速外部用户时钟

下表中给出的特性参数是使用一个低速的外部时钟源测得,环境温度和供电电压符合表**9**的条件。 表**21** 低速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSE_ext}	用户外部时钟频率 ⁽¹⁾		0	32.768	1000	MHz
V _{LSEH}	OSC32_IN输入引脚高电平电压		$0.7V_{DD}$		V_{DD}	V
V _{LSEL}	OSC32_IN输入引脚低电平电压		V _{SS}		$0.3V_{DD}$	V
$\begin{array}{c} t_{\text{w(LSE)}} \\ t_{\text{w(LSE)}} \end{array}$	OSC32_IN高或低的时间 ⁽¹⁾		450			ns
$\begin{array}{c} t_{r(LSE)} \\ t_{f(LSE)} \end{array}$	OSC32_IN上升或下降的时间 ⁽¹⁾				50	115
C _{in(LSE)}	OSC32_IN输入容抗 ⁽¹⁾			5		pF
DuCy _(LSE)	占空比		30		70	%
IL	OSC32_IN输入漏电流	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μΑ

^{1.} 由设计保证,不在生产中测试。

图17 外部高速时钟源的交流时序图

图18 外部低速时钟源的交流时序图

使用一个晶体/陶瓷谐振器产生的高速外部时钟

高速外部时钟(HSE)可以使用一个4~16MHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。(译注:这里提到的<u>晶体谐振器</u>就是我们通常说的无源晶振)

表22 HSE 4~16MHz振荡器特性⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
f _{OSC_IN}	振荡器频率		4	8	16	MHz
R _F	反馈电阻			200		kΩ
C _{L1} C _{L2} ⁽³⁾	建议的负载电容与对应的晶 体串行阻抗(R _S) ⁽⁴⁾	$R_S = 30\Omega$		30		pF
i ₂	HSE驱动电流	V _{DD} =3.3V,V _{IN} =V _{SS} 30pF负载			1	mA
g _m	振荡器的跨导	启动	25			mA/V
t _{SU(HSE)} ⁽⁵⁾	启动时间	V _{DD} 是稳定的		2		ms

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. 对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计的(典型值为)5pF~25pF之间的瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,PCB和MCU引脚的容抗应该考虑在内(可以粗略地把引脚与PCB板的电容按10pF估计)。
- 4. 相对较低的RF电阻值,能够可以为避免在潮湿环境下使用时所产生的问题提供保护,这种环境下产生的泄漏和偏置条件都发生了变化。但是,如果MCU是应用在恶劣的潮湿条件时,设计时需要把这个参数考虑进去。
- 5. t_{SU(HSE)}是启动时间,是从软件使能HSE开始测量,直至得到稳定的8MHz振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

图19 使用8MHz晶体的典型应用

1. Rext数值由晶体的特性决定。典型值是5至6倍的Rs。

使用一个晶体/陶瓷谐振器产生的低速外部时钟

低速外部时钟(LSE)可以使用一个32.768kHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用表23中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。(译注:这里提到的晶体谐振器就是我们通常说的无源晶振)

注意: 对于 C_{L1} 和 C_{L2} ,建议使用高质量的 $5pF\sim15pF$ 之间的瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。

负载电容CL由下式计算: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, 其中 C_{stray} 是引脚的电容和PCB板或PCB相关的电容,它的典型值是介于2pF至7pF之间。

警告: 为了避免超出C_{L1}和C_{L2}的最大值(15pF),强烈建议使用负载电容C_L≤7pF的谐振器,不能使用负载电容为12.5pF的谐振器。

例如: 如果选择了一个负载电容 C_L =6pF的谐振器并且 C_{stray} =2pF,则 C_{L1} = C_{L2} =8pF。

表23 LSE 振荡器特性(f_{LSE}=32.768kHz)⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
R _F	反馈电阻			5		ΜΩ
C _{L1} C _{L2} ⁽²⁾	建议的负载电容与对应的晶体串行阻抗(R _S) ⁽³⁾	$R_S = 30k\Omega$			15	pF
l ₂	LSE驱动电流	V_{DD} =3.3 V , V_{IN} = V_{SS}			1.4	μΑ
g m	振荡器的跨导		5			μA/V
t _{SU(LSE)} ⁽⁴⁾	启动时间	V _{DD} 是稳定的		3		S

- 1. 由综合评估得出,不在生产中测试。
- 2. 参见本表格上方的注意和警告段落。
- 3. 选择具有较小Rs值的高质量振荡器(如MSIV-TIN32.768kHz),可以优化电流消耗。详情请咨询晶体制造商。
- 4. $t_{SU(HSE)}$ 是启动时间,是从软件使能HSE开始测量,直至得到稳定的8MHz振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

图20 使用32.768kH晶体的典型应用

5.3.7 内部时钟源特性

下表中给出的特性参数是使用环境温度和供电电压符合表9的条件测量得到。

高速内部(HSI)RC振荡器

表24 HSI振荡器特性(1)(2)

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSI}	频率			8		MHz
		T _A = -40~105°C	-2	±1	2.5	%
ACC	HSI振荡器的精度	T _A = -10~85°C	-1.5	±1	2.2	%
ACC _{HSI}	NOI抓物	T _A = 0~70°C	-1.3	±1	2	%
		T _A = 25°C	-1.1	±1	1.8	%
t _{SU(HSI)}	HSI振荡器启动时间		1		2	μs
I _{DD(HSI)}	HSI振荡器功耗			80	100	μΑ

- 1. $V_{DD} = 3.3V$, $T_A = -40 \sim 105$ °C,除非特别说明。
- 2. 由设计保证,不在生产中测试。

低速内部(LSI)RC振荡器

表25 LSI振荡器特性⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSI} ⁽²⁾	频率		30	40	60	kHz
t _{SU(LSI)} (3)	LSI振荡器启动时间				85	μs
I _{DD(LSI)} ⁽³⁾	LSI振荡器功耗			0.65	1.2	μΑ

- 1. V_{DD} = 3.3V, T_A = -40~105°C, 除非特别说明。
- 2. 由综合评估得出,不在生产中测试。
- 3. 由设计保证,不在生产中测试。

从低功耗模式唤醒的时间

表26列出的唤醒时间是在一个8MHz的HSI RC振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 停机或待机模式:时钟源是RC振荡器
- 睡眠模式:时钟源是进入睡眠模式时所使用的时钟

所有的时间是使用环境温度和供电电压符合表9的条件测量得到。

表26 低功耗模式的唤醒时间

符号	参数	条件	典型值	单位
twusleep(1)	从睡眠模式唤醒	使用HSI RC时钟唤醒	1.8	μs
	从停机模式唤醒(调压器处于运行模式)	HSI RC时钟唤醒 = 2μs	3.6	
t _{WUSTOP} ⁽¹⁾	从停机模式唤醒(调压器为低功耗模式)	HSI RC时钟唤醒 = 2μs 调压器从低功耗模式唤醒时间 = 5μs	5.4	μs
twustdby ⁽¹⁾	从待机模式唤醒	HSI RC时钟唤醒 = 2μs 调压器从关闭模式唤醒时间 = 38μs	50	μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

5.3.8 PLL特性

表27列出的参数是使用环境温度和供电电压符合表9的条件测量得到。

表27 PLL特性

符号	参数			单位	
		最小值	典型值	最大值 ⁽¹⁾	半仏
·	PLL输入时钟 ⁽²⁾	1	8.0	25	MHz
f _{PLL_IN}	PLL输入时钟占空比	40		60	%
f _{PLL_OUT}	PLL倍频输出时钟	16		72	MHz
t _{LOCK}	PLL锁相时间			200	μs

- 1. 由综合评估得出,不在生产中测试。
- 2. 需要注意使用正确的倍频系数,从而根据PLL输入时钟频率使得f_{PLL} out处于允许范围内。

5.3.9 存储器特性

闪存存储器

除非特别说明,所有特性参数是在T_A = -40~105°C得到。

表28 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值 ⁽¹⁾	单位
t _{prog}	16位的编程时间	T _A = -40~105°C	40	52.5	70	μs
t _{ERASE}	页(1K字节)擦除时间	T _A = -40~105°C	20		40	ms
t _{ME}	整片擦除时间	T _A = -40~105°C	20		40	ms
		读模式,f _{HCLK} =72MHz,2个等 待周期,V _{DD} =3.3V			20	mA
I_{DD}	供电电流	写/擦除模式,f _{HCLK} =72MHz, V _{DD} =3.3V			5	mA
		掉电模式/停机,V _{DD} =3.3~3.6V			50	μΑ
V_{prog}	编程电压		2		3.6	V

^{1.} 由设计保证,不在生产中测试。

表29 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值 ⁽¹⁾	典型值	最大值	单位
N _{END}	寿命(译注:擦写次数)	T _A = -40~85°C(尾缀为6) T _A = -40~105°C(尾缀为7)	10			千次
		T _A = 85°C时,1000次擦写 ⁽²⁾ 之后	30			
t _{RET}	数据保存期限	T _A = 105°C,1000次擦写 ⁽²⁾ 之后	10			年
		T _A = 55°C,1万次擦写 ⁽²⁾ 之后	20			

- 1. 由综合评估得出,不在生产中测试。
- 2. 循环测试均是在整个温度范围下进行。

5.3.10 EMC特性

敏感性测试是在产品的综合评估时抽样进行测试的。

功能性EMS(电磁敏感性)

当运行一个简单的应用程序时(通过I/O端口闪烁2个LED),测试样品被施加2种电磁干扰直到产生错误,LED闪烁指示了错误的产生。

- **静电放电(ESD)**(正放电和负放电)施加到芯片所有的引脚直到产生功能性错误。这个测试符合 IEC 1000-4-2标准。
- **FTB**: 在V_{DD}和V_{SS}上通过一个100pF的电容施加一个瞬变电压的脉冲群(正向和反向)直到产生功能性错误。这个测试符合IEC 1000-4-4标准。

芯片复位可以使系统恢复正常操作。

测试结果列于下表中。这是基于应用笔记AN1709中定义的EMS级别和类型进行的测试。

表30 EMS特性

符号	参数	条件	级别/类型
V _{FESD}	施加到任一I/O脚,从而导致功能错误的电压 极限。	V_{DD} = 3.3V, T_A = +25 °C, f_{HCLK} = 72MHz。符合IEC 1000-4-2	2B
V _{EFTB}	在V _{DD} 和V _{SS} 上通过100pF的电容施加的、导致功能错误的瞬变脉冲群电压极限。	V_{DD} = 3.3V, T_A = +25 °C, f_{HCLK} = 72MHz。符合IEC 1000-4-4	4A

设计牢靠的软件以避免噪声的问题

在器件级进行EMC的评估和优化,是在典型的应用环境中进行的。应该注意的是,好的EMC性能与用户应用和具体的软件密切相关。

因此,建议用户对软件实行EMC优化,并进行与EMC有关的认证测试。

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等……)

认证前的试验

很多常见的失效(意外的复位和程序计数器被破坏),可以通过人工地在NRST上引入一个低电平或在晶振引脚上引入一个持续1秒的低电平而重现。

在进行ESD测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错误(参见应用笔记AN1015)。

电磁干扰(EMI)

在运行一个简单的应用程序时(通过I/O端口闪烁2个LED),监测芯片发射的电磁场。这个发射测试符合SAE J1752/3标准,这个标准规定了测试板和引脚的负载。

表31 EMI特性

符号	符号 参数 条件		监测的频段	最大值(f _{HSE} /f _{HCLK})		单位	
10 7 多数	罗双	* 11	III.(31179)(4X	8/48MHz	8/72MHz	平位	
		0.1~30MHz	12	12			
	岐 法	V _{DD} = 3.3 V,T _A = 25 °C, 峰值 LQFP100封装 符合SAE J1752/3	30~130MHz	22	19	dΒμV	
S _{EMI}	峰徂.		130MHz~1GHz	23	29		
			SAM EMI级别	4	4	-	

5.3.11 绝对最大值(电气敏感性)

基于三个不同的测试(ESD, LU),使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电(ESD)

静电放电(一个正的脉冲然后间隔一秒钟后一个负的脉冲)施加到所有样品的所有引脚上,样品的大小与芯片上供电引脚数目相关(3片 x (n+1)供电引脚)。这个测试符合JESD22-A114/C101标准。

表32 ESD绝对最大值

符号	参数	条件	类型	最大值 ⁽¹⁾	单位
V _{ESD(HBM)}	静电放电电压(人体模型)	T _A = +25 °C, 符合JESD22-A114	2	2000	\ \
V _{ESD(CDM)}	静电放电电压(充电设备模型)	T _A = +25 °C, 符合JESD22-C101	II	500	V

1. 由综合评估得出,不在生产中测试。

静态栓锁

为了评估栓锁性能,需要在6个样品上进行2个互补的静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的I/O引脚上注入电流。

这个测试符合EIA/JESD 78A集成电路栓锁标准。

表33 电气敏感性

符号	参数	条件	类型
LU	静态栓锁类	T _A = +105 °C,符合JESD 78A	II 类A

5.3.12 I/O端口特性

通用输入/输出特性

除非特别说明,下表列出的参数是按照表9的条件测量得到。所有的I/O端口都是兼容CMOS和TTL。表34 I/O静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL}	输入低电平电压		-0.5		8.0	
V _{IH}	标准I/O脚,输入高电平电压	TTL端口	2		V _{DD} +0.5	V
VIH	FT I/O脚 ⁽¹⁾ ,输入高电平电压		2		5.5	
V _{IL}	输入低电平电压	CMOS端口	-0.5		$0.35V_{DD}$	V
V _{IH}	输入高电平电压	- CWOS _{畑口}	0.65V _{DD}		V _{DD} +0.5	V
\ <u></u>	标准I/O脚施密特触发器电压迟滞 ⁽²⁾		200			mV
V _{hys}	5V容忍I/O脚施密特触发器电压迟滞 ⁽²⁾		5%V _{DD} ⁽³⁾			mV
	な) Pe to 次(4)	V _{SS} ≤ V _{IN} ≤ V _{DD} 标准I/O端口			±1	
I _{lkg}	输入漏电流 ⁽⁴⁾	V _{IN} = 5V, 5V容忍端口			3	μΑ
R _{PU}	弱上拉等效电阻 ⁽⁵⁾	V _{IN} = V _{SS}	30	40	50	kΩ
R _{PD}	弱下拉等效电阻 ⁽⁵⁾	V _{IN} = V _{DD}	30	40	50	kΩ
C _{IO}	I/O引脚的电容			5		pF

- 1. FT = 5V容忍。
- 2. 施密特触发器开关电平的迟滞电压。由综合评估得出,不在生产中测试。
- 3 至少100m\/
- 4. 如果在相邻引脚有反向电流倒灌,则漏电流可能高于最大值。
- 5. 上拉和下拉电阻是设计为一个真正的电阻串联一个可开关的PMOS/NMOS实现。这个PMON/NMOS开关的电阻很小(约占10%)。

所有I/O端口都是CMOS和TTL兼容(不需软件配置),它们的特性考虑了多数严格的CMOS工艺或TTL 参数:

- 对于V_{IH}:
 - 如果V_{DD}是介于[2.00V~3.08V];使用CMOS特性但包含TTL。
 - 如果V_{DD}是介于[3.08V~3.60V]; 使用TTL特性但包含CMOS。
- 对于V_{IL}:
 - 如果V_{DD}是介于[2.00V~2.28V];使用TTL特性但包含CMOS。
 - 如果V_{DD}是介于[2.28V~3.60V]; 使用CMOS特性但包含TTL。

输出驱动电流

GPIO(通用输入/输出端口)可以吸收或输出多达+/-8mA电流,并且吸收+20mA电流(不严格的V_{OL})。 在用户应用中,I/O脚的数目必须保证驱动电流不能超过5.2节给出的绝对最大额定值:

● 所有I/O端口从V_{DD}上获取的电流总和,加上MCU在V_{DD}上获取的最大运行电流,不能超过绝对最大额定值I_{VDD}(参见表**7**)。

● 所有I/O端口吸收并从Vss上流出的电流总和,加上MCU在Vss上流出的最大运行电流,不能超过绝对最大额定值Ivss(参见表7)。

输出电压

除非特别说明,表35列出的参数是使用环境温度和V_{DD}供电电压符合表9的条件测量得到。所有的I/O端口都是兼容CMOS和TTL的。

表35 输出电压特性

符号	参数	条件	最小值	最大值	单位
V _{OL} ⁽¹⁾	输出低电平,当8个引脚同时吸收电流	TTL端口,I _{IO} = +8mA		0.4	V
V _{OH} ⁽²⁾	输出高电平,当8个引脚同时输出电流	$2.7V < V_{DD} < 3.6V$	V_{DD} -0.4		V
V _{OL} ⁽¹⁾	输出低电平,当8个引脚同时吸收电流	CMOS端口,I _{IO} = +8mA		0.4	V
V _{OH} ⁽²⁾	输出高电平,当8个引脚同时输出电流	$2.7V < V_{DD} < 3.6V$	2.4		V
V _{OL} ⁽¹⁾⁽³⁾	输出低电平,当8个引脚同时吸收电流	I _{IO} = +20mA		1.3	V
V _{OH} ⁽²⁾⁽³⁾	输出高电平,当8个引脚同时输出电流	$2.7V < V_{DD} < 3.6V$	V _{DD} -1.3		v
V _{OL} ⁽¹⁾⁽³⁾	输出低电平,当8个引脚同时吸收电流	I _{IO} = +6mA		0.4	V
V _{OH} ⁽²⁾⁽³⁾	输出高电平,当8个引脚同时输出电流	2V < V _{DD} < 2.7V	V _{DD} -0.4		, v

- 1. 芯片吸收的电流I_{IO}必须始终遵循表7中给出的绝对最大额定值,同时I_{IO}的总和(所有I/O脚和控制脚)不能超过I_{VSS}。
- 2. 芯片输出的电流 I_{IO} 必须始终遵循表7中给出的绝对最大额定值,同时 I_{IO} 的总和(所有I/O脚和控制脚)不能超过 I_{VDD} 。
- 3. 由综合评估得出,不在生产中测试。

输入输出交流特性

输入输出交流特性的定义和数值分别在图21和表36给出。

除非特别说明,表36列出的参数是使用环境温度和供电电压符合表9的条件测量得到。

表36 输入输出交流特性(1)

MODEx[1:0] 的配置	符号	参数	条件	最小 值	最大值	单位
40	f _{max(IO)out}	最大频率 ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2 \sim 3.6 \text{V}$		2	MHz
10 (2MHz)	$t_{f(IO)out}$	输出高至低电平的下降时间	$C_L = 50 \text{ pF}, V_{DD} = 2 \sim 3.6 \text{V}$		125 ⁽³⁾	ns
(2111112)	$t_{r(IO)out}$	输出低至高电平的上升时间	C _L = 30 μr, ν _{DD} = 2×3.0 ν		125 ⁽³⁾	115
0.4	f _{max(IO)out}	最大频率 ⁽²⁾	C _L = 50 pF, V _{DD} = 2~3.6V		10	MHz
01 (10MHz)	t _{f(IO)out}	输出高至低电平的下降时间	C = 50 pF \/ = 2, 2 6\/		25 ⁽³⁾	20
(101/11/12)	t _{r(IO)out}	输出低至高电平的上升时间	$C_L = 50 \text{ pF}, V_{DD} = 2 \sim 3.6 \text{V}$		25 ⁽³⁾	ns
	f _{max(IO)out}	but 最大频率 ⁽²⁾	$C_L = 30 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$		50	
			$C_L = 50 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$		30	MHz
			$C_L = 50 \text{ pF}, V_{DD} = 2 \sim 2.7 \text{V}$		20	
44			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$		5 ⁽³⁾	
11 (50MHz)	$\mathbf{t}_{f(IO)out}$	输出高至低电平的下降时间	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$		8 ⁽³⁾	
(00171112)			$C_L = 50 \text{ pF}, V_{DD} = 2 \sim 2.7 \text{V}$		12 ⁽³⁾	no
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$		5 ⁽³⁾	ns
	$t_{r(IO)out}$	输出低至高电平的上升时间	C _L = 50 pF, V _{DD} = 2.7~3.6V		8 ⁽³⁾	
			$C_L = 50 \text{ pF}, V_{DD} = 2 \sim 2.7 \text{V}$		12 ⁽³⁾	
-	t _{EXTIPW}	EXTI控制器检测到外部信号的脉冲宽度		10		ns

- 1. I/O端口的速度可以通过MODEx[1:0]配置。参见STM32F10xxx参考手册中有关GPIO端口配置寄存器的说明。
- 2. 最大频率在图21中定义。
- 3. 由设计保证,不在生产中测试。

图21 输入输出交流特性定义

5.3.13 NRST引脚特性

NRST引脚输入驱动使用CMOS工艺,它连接了一个不能断开的上拉电阻,R_{PU}(参见表34)。除非特别说明,表37列出的参数是使用环境温度和V_{DD}供电电压符合表9的条件测量得到。表37 NRST引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(NRST)} ⁽¹⁾	NRST输入低电平电压		-0.5		0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST输入高电平电压		2		V _{DD} +0.5	V
V _{hys(NRST)}	NRST施密特触发器电压迟滞			200		mV
R _{PU}	弱上拉等效电阻 ⁽²⁾	V _{IN} = V _{SS}	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST输入滤波脉冲				100	ns
V _{NF(NRST)} ⁽¹⁾	NRST输入非滤波脉冲		300			ns

- 1. 由设计保证,不在生产中测试。
- 2. 上拉电阻是设计为一个真正的电阻串联一个可开关的PMOS实现。这个PMON/NMOS开关的电阻很小(约占10%)。 图22 建议的NRST引脚保护

- 1. 复位网络是为了防止寄生复位。
- 2. 用户必须保证NRST引脚的电位能够低于表37中列出的最大V_{IL(NRST)}以下,否则MCU不能得到复位。

5.3.14 TIM定时器特性

表38列出的参数由设计保证。

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM输出)的特性详情,参见第5.3.12 节。

表38 TIMx⁽¹⁾特性

符号	参数	条件	最小值	最大值	单位
t	定时器分辨时间		1		t _{TIMxCLK}
t _{res(TIM)}	是的偏力 <i>剂</i> 的问	$f_{TIMxCLK} = 72MHz$	13.9		ns
f _{EXT}	CH1至CH4的定时器外部时钟频		0	f _{TIMxCLK} /2	MHz
IEXT	率	$f_{TIMxCLK} = 72MHz$	0	36	MHz
Res _{TIM}	定时器分辨率			16	位
4	当选择了内部时钟时,16位计数		1	65536	t _{TIMxCLK}
tcounter	器时钟周期	$f_{TIMxCLK} = 72MHz$	0.0139	910	μs
f	最大可能的计数			65536 x 65536	t _{TIMxCLK}
t _{MAX_COUNT}	取入 ^內 配的 // 效	$f_{TIMxCLK} = 72MHz$		59.6	s

^{1.} TIMx是一个通用的名称,代表TIM1~TIM4。

5.3.15 通信接口

I²C接口特性

除非特别说明,表39列出的参数是使用环境温度, f_{PCLK1} 频率和 V_{DD} 供电电压符合表9的条件测量得到。 STM32F103xx增强型产品的 I^2 C接口符合标准 I^2 C通信协议,但有如下限制: SDA和SCL不是"真"开漏的引脚,当配置为开漏输出时,在引出脚和 V_{DD} 之间的PMOS管被关闭,但仍然存在。

 I^2 C接口特性列于表39,有关输入输出复用功能引脚(SDA和SCL)的特性详情,参见第5.3.12节。

表39 I²C接口特性

符号	参数	标准	I ² C ⁽¹⁾	快速I ² C ⁽¹⁾⁽²⁾		单位
10.2	多奴	最小值	最大值	最小值	最大值	1 平位
t _{w(SCLL)}	SCL时钟低时间	4.7		1.3		
t _{w(SCLH)}	SCL时钟高时间	4.0		0.6		μs
t _{su(SDA)}	SDA建立时间	250		100		
t _{h(SDA)}	SDA数据保持时间	0(3)		0 ⁽⁴⁾	900 ⁽³⁾	
$\begin{array}{c} t_{r(SDA)} \\ t_{r(SCL)} \end{array}$	SDA和SCL上升时间		1000	20 + 0.1C _b	300	ns
$t_{f(SDA)}$ $t_{f(SCL)}$	SDA和SCL下降时间		300		300	
t _{h(STA)}	开始条件保持时间	4.0		0.6		
t _{su(STA)}	重复的开始条件建立时间	4.7		0.6		μs
t _{su(STO)}	停止条件建立时间	4.0		0.6		μs
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4.7		1.3		μs
C _b	每条总线的容性负载		400		400	pF

^{1.} 由设计保证,不在生产中测试。

^{2.} 为达到标准模式I²C的最大频率,f_{PCLK1}必须大于2MHz。为达到快速模式I²C的最大频率,f_{PCLK1}必须大于4MHz。

^{3.} 如果不要求拉长SCL信号的低电平时间,则只需满足开始条件的最大保持时间。

^{4.} 为了跨越SCL下降沿未定义的区域,在MCU内部必须保证SDA信号上至少300ns的保持时间。

图23 I²C总线交流波形和测量电路⁽¹⁾

1. 测量点设置于CMOS电平: 0.3V_{DD}和0.7V_{DD}。

表40 SCL频率(f_{PCLK1} = 36MHz, V_{DD} = 3.3V) $^{(1)(2)}$

focus and	I2C_CCR数值
f _{SCL(kHz)}	$R_P = 4.7k\Omega$
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

- 1. $R_P =$ 外部上拉电阻, $f_{SCL} = I^2 C$ 速度。
- 2. 对于200kHz左右的速度,速度的误差是±5%。对于其它速度范围,速度的误差是±2%。这些变化取决于设计中外部元器件的精度。

SPI接口特性

除非特别说明,表41列出的参数是使用环境温度,f_{PCLKx}频率和V_{DD}供电电压符合表9的条件测量得到。有关输入输出复用功能引脚(NSS、SCK、MOSI、MISO)的特性详情,参见第5.3.12节。

表41 SPI特性⁽¹⁾

符号	参数	条件	最小值	最大值	单位
f _{SCK}	SPI时钟频率	主模式	0	18	MHz
1/t _{c(SCK)}	1/t _{c(SCK)}	从模式	0	18	IVII IZ
$t_{r(SCK)}$ $t_{f(SCK)}$	SPI时钟上升和下降时间	负载电容: C = 30pF		8	ns
t _{su(NSS)} ⁽²⁾	NSS建立时间	从模式	4t _{PCLK}		ns
t _{h(NSS)} ⁽²⁾	NSS保持时间	从模式	73		ns
$t_{\text{w(SCKL)}}^{(2)}$ $t_{\text{w(SCKL)}}^{(2)}$	SCK高和低的时间	主模式,f _{PCLK} = 36MHz,预分频系数=4	50	60	ns
t _{su(MI)} ⁽²⁾	数据输入建立时间,主模式	SPI1	1		ns
L _{Su(MI)}	数	SPI2	5		

t _{su(SI)} ⁽²⁾	数据输入建立时间, 从模式		1		
t _{h(MI)} ⁽²⁾	数据输入保持时间,主模式	SPI1	1		ns
لh(MI)	双项和八八八寸叮问, 工保八	SPI2	5		
$t_{h(SI)}^{(2)}$	数据输入保持时间, 从模式		3		
t _{a(SO)} (2)(3)	粉块绘山法词时间	从模式, f _{PCLK} = 36MHz, 预分频系数=4	0	55	ns
la(SO)	t _{a(SO)} (2)(3) 数据输出访问时间	从模式,f _{PCLK} = 24MHz		4t _{PCLK}	115
t _{dis(SO)} (2)(4)	数据输出禁止时间	从模式	10		ns
t _{v(SO)} (2)(1)	数据输出有效时间	从模式(使能边沿之后)		25	ns
t _{v(MO)} ⁽²⁾⁽¹⁾	数据输出有效时间	主模式(使能边沿之后)		3	ns
t _{h(SO)} ⁽²⁾	数据输出保持时间	从模式(使能边沿之后)	25		ne
t _{h(MO)} ⁽²⁾		主模式(使能边沿之后)	4		ns

- 1. 重映射的SPI1特性需要进一步确定。
- 2. 由综合评估得出,不在生产中测试。
- 3. 最小值表示驱动输出的最小时间,最大值表示正确获得数据的最大时间。
- 4. 最小值表示关闭输出的最小时间,最大值表示把数据线置于高阻态的最大时间。

图24 SPI时序图 – 从模式和CPHA=0

图25 SPI时序图 – 从模式和CPHA=1⁽¹⁾

1. 测量点设置于CMOS电平: 0.3V_{DD}和0.7V_{DD}。

图26 SPI时序图 – 主模式⁽¹⁾

1. 测量点设置于CMOS电平: 0.3V_{DD}和0.7V_{DD}。

USB特性

USB(全速)接口已通过USB-IF认证。

表42 USB启动时间

符号	参数	最大值	单位
t _{STARTUP} (1)	USB收发器启动时间	1	μs

1. 由设计保证,不在生产中测试。

表43 USB直流特性

符号	参数	条件	最小值 ⁽¹⁾	最大值 ⁽¹⁾	单位		
输入电平							
V_{DD}	USB操作电压 ⁽²⁾		3.0 ⁽³⁾	3.6	V		
V _{DI} ⁽⁴⁾	差分输入灵敏度	I(USBDP, USBDM)	0.2				
V _{CM} ⁽⁴⁾	差分共模范围	包含V _{DI} 范围	0.8	2.5	V		
V _{SE} ⁽⁴⁾	单端接收器阀值		1.3	2.0			
输出电平	输出电平						
V _{OL}	静态输出低电平	1.5kΩ的RL接至3.6V ⁽⁵⁾		0.3	V		
V _{OH}	静态输出高电平	15kΩ的RL接至V _{SS} ⁽⁵⁾	2.8	3.6	V		

- 1. 所有的电压测量都是以设备端地线为准。
- 2. 为了与USB 2.0全速电气规范兼容,USBDP(D+)引脚必须通过一个1.5kΩ电阻接至3.0~3.6V电压。
- 3. STM32F103xx的正确USB功能可以在2.7V得到保证,而不是在2.7~3.0V电压范围下降级的电气特性。
- 4. 由综合评估保证,不在生产中测试。
- 5. RL是连接到USB驱动器上的负载。

图27 USB时序:数据信号上升和下降时间定义

表44 USB全速电气特性(1)

符号	参数	条件	最小值	最大值	单位
t _r	上升时间 ⁽²⁾	CL ≤ 50pF	4	20	ns
t _f	下降时间 ⁽²⁾	CL ≤ 50pF	4	20	ns
t _{rfm}	上升下降时间匹配	t _r / t _f	90	110	%
V _{CRS}	输出信号交叉电压		1.3	2.0	V

- 1. 由设计保证,不在生产中测试。
- 2. 测量数据信号从10%至90%。更多详细信息,参见USB规范第7章(2.0版)。

5.3.16 CAN(控制器局域网络)接口

有关输入输出复用功能引脚(CAN_TX和CAN_RX)的特性详情,参见第5.3.12节。

5.3.17 12位ADC特性

除非特别说明,表**45**的参数是使用符合表**9**的条件的环境温度、f_{PCLK2}频率和V_{DDA}供电电压测量得到。 *注意: 建议在每次上电时执行一次校准。*

表45 ADC特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{DDA}	供电电压		2.4		3.6	V
V _{REF+}	正参考电压		2.4		V_{DDA}	V
I _{VREF}	在V _{REF} 输入脚上的电压			160 ⁽¹⁾	220 ⁽¹⁾	μA
f _{ADC}	ADC时钟频率		0.6		14	MHz
f _S ⁽²⁾	采样速率		0.05		1	MHz
f _{TRIG} ⁽²⁾	外部触发频率	f _{ADC} = 14MHz			823	kHz
TRIG	7下印服又9火华				17	1/f _{ADC}
V _{AIN} ⁽³⁾	转换电压范围		0(V _{SSA} 或V _{REF} - 连接到地)		V_{REF^+}	V
R _{AIN} ⁽²⁾	外部输入阻抗		参见 <u>公式1</u> 和表 46			kΩ
R _{ADC} ⁽²⁾	采样开关电阻				1	kΩ
C _{ADC} ⁽²⁾	内部采样和保持电容				12	pF
t _{CAL} ⁽²⁾	校准时间	f _{ADC} = 14MHz	5.9			μs
ICAL .	仅作的问			83		
t _{lat} ⁽²⁾	注入触发转换时延 -	$f_{ADC} = 14MHz$			0.214	μs
L lat	在八個及科铁町延				3 ⁽⁴⁾	1/f _{ADC}
t _{latr} ⁽²⁾	常规触发转换时延 -	$f_{ADC} = 14MHz$			0.143	μs
L iatr	市观感及科技可是				2 ⁽⁴⁾	1/f _{ADC}
ts ⁽²⁾	 采样时间	$f_{ADC} = 14MHz$	0.107		17.1	μs
	NOTE #1161		1.5		239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	上电时间		0	0	1	μs
t _{CONV} ⁽²⁾	总的转换时间(包括采样时间)	$f_{ADC} = 14MHz$	1		18	μs
CONV	心的投资的问(包括不特的问)		14~252(采样t	s + 逐步逼	近12.5)	1/f _{ADC}

- 1. 由综合评估保证,不在生产中测试。
- 2. 由设计保证,不在生产中测试。
- 3. 在VFQFPN36、LQFP48和LQFP64封装产品中,V_{REF+}在内部连接到V_{DDA},V_{REF-}在内部连接到V_{SSA}。TFBGA64 封装的产品中具有V_{REF}引脚但没有V_{REF}引脚(V_{REF}-在内部连接到V_{SSA})。详见表5和图4。
- 4. 对于外部触发,必须在表45列出的时延中加上一个延迟1/fpcLK2。

公式1:最大RAIN公式

$$R_{AIN}\!<\!\frac{T_{S}}{f_{ADC}\!\times C_{ADC}\!\times ln(2^{N+2})}\!-\!R_{ADC}$$

上述公式(公式1)用于决定最大的外部阻抗,使得误差可以小于1/4 LSB。其中N=12(表示12位分辨率)。

表46 f_{ADC}=14MHz⁽¹⁾时的最大R_{AIN}

T _S (周期)	t _S (μs)	最大R _{AIN} (kΩ)
1.5	0.11	1.2
7.5	0.54	10
13.5	0.96	19
28.5	2.04	41
41.5	2.96	60
55.5	3.96	80
71.5	5.11	104
239.5	17.1	350

1. 由设计保证,不在生产中测试。

表47 ADC精度 - 局限的测试条件(1)(2)

符号	参数	测试条件	典型值	最大值 ⁽³⁾	单位
ET	综合误差		±1.3	±2	
EO	偏移误差	f _{PCLK2} = 56 MHz,	±1	±1.5	
EG	增益误差	f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ, V_{DDA} = 3~3.6V, T_{A} = 25 °C	±0.5	±1.5	LSB
ED	微分线性误差	WBBA = 3 3.60V, FA = 23 G 测量是在ADC校准之后进行的	±0.7	±1	
EL	积分线性误差		±0.8	±1.5	

- 1. ADC的直流精度数值是在经过内部校准后测量的。
- 2. ADC精度与反向注入电流的关系:需要避免在任何标准的模拟输入引脚上注入反向电流,因为这样会显著地降低另一个模拟输入引脚上正在进行的转换精度。建议在可能产生反向注入电流的标准模拟引脚上,(引脚与地之间)增加一个肖特基二极管。

如果正向的注入电流,只要处于第5.3.12节中给出的 $I_{INJ(PIN)}$ 和 $\Sigma I_{INJ(PIN)}$ 范围之内,就不会影响ADC精度。

3. 由综合评估保证,不在生产中测试。

表48 ADC精度(1)(2)(3)

符号	参数	测试条件	典型值	最大值 ⁽³⁾	单位
ET	综合误差		±2	±5	
EO	偏移误差	f _{PCLK2} = 56 MHz,	±1.5	±2.5	
EG	增益误差	f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ,	±1.5	±3	LSB
ED	微分线性误差		±1	±2	
EL	积分线性误差		±1.5	±3	

- 1. ADC的直流精度数值是在经过内部校准后测量的。
- 2. 最佳的性能可以在受限的V_{DD}、频率、V_{REF}和温度范围下实现。
- 3. ADC精度与反向注入电流的关系:需要避免在任何标准的模拟输入引脚上注入反向电流,因为这样会显著地降低另一个模拟输入引脚上正在进行的转换精度。建议在可能产生反向注入电流的标准模拟引脚上,(引脚与地之间)增加一个肖特基二极管。

如果正向的注入电流,只要处于第5.3.12节中给出的 $I_{INJ(PIN)}$ 和 $\Sigma I_{INJ(PIN)}$ 范围之内,就不会影响ADC精度。

4. 由综合评估保证,不在生产中测试。

图28 ADC精度特性

图29 使用ADC典型的连接图

- 1. 有关R_{AIN}、R_{ADC}和C_{ADC}的数值,参见表45。
- 2. C_{parasitic}表示PCB(与焊接和PCB布局质量相关)与焊盘上的寄生电容(大约7pF)。较大的C_{parasitic}数值将降低转换的精度,解决的办法是减小f_{ADC}。

PCB设计建议

依据V_{REF+}是否与V_{DDA}相连,电源的去藕必须按照图30或图31连接。图中的10nF电容必须是瓷介电容(好的质量),它们应该尽可能地靠近MCU芯片。

图30 供电电源和参考电源去藕线路(V_{REF+}未与V_{DDA}相连)

1. V_{REF+}只出现在TFBGA64型号的产品中

图31 供电电源和参考电源去藕线路(VREF+与VDDA相连)

1. V_{REF+}只出现在TFBGA64封装的产品中。

5.3.18 温度传感器特性

表49 温度传感器特性

符号	参数	最小值	典型值	最大值	单位
T _L ⁽¹⁾	V _{SENSE} 相对于温度的线性度		±1	±2	°C
Avg_Slope ⁽¹⁾	平均斜率	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	在25°C时的电压	1.34	1.43	1.52	V
t _{START} ⁽²⁾	建立时间	4		10	μs
T _{S_temp} (2)(3)	当读取温度时,ADC采样时间			17.1	μs

- 1. 由综合评估保证,不在生产中测试。
- 2. 由设计保证,不在生产中测试。
- 3. 最短的采样时间可以由应用程序通过多次循环决定。

6 封装特性

6.1 封装机械数据

为了符合环境的需要,ST根据不同的环境等级提供了这些芯片不同等级的ECOPACK®封装。 ECOPACK®规范、等级定义和产品状态可以在www.st.com网站上获得。

ECOPACK®是ST的商标。

图32 VFQFPN36, 6x6mm, 0.5mm间距封装图 图33 建议的PCB图(尺寸以mm为单位)⁽¹⁾⁽²⁾⁽³⁾

- 1. 图不是按照比例绘制。
- 2. 后背的焊盘内部没有联到Vss或VDD。
- 3. 在VFQFPN封装的底面有一个焊盘,应把它焊接在PCB上。所有的引脚都应该焊接在PCB上。

表50 VFQFPN36,6x6mm,0.5mm间距封装机械数据

标号	毫米			英寸 ⁽¹⁾		
	最小值	典型值	最大值	最小值	典型值	最大值
Α	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1		0.020	0.050		0.0008	0.0020
A2		0.650	1.000		0.0256	0.0394
A3		0.250			0.0098	
b	0.180	0.230	0.300	0.0071	0.0091	0.0118
D	5.875	6.000	6.125	0.2313	0.2362	0.2411
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673
Е	5.875	6.000	6.125	0.2313	0.2362	0.2411
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673
е	0.450	0.500	0.550	0.0177	0.0197	0.0217
L	0.350	0.550	0.750	0.0138	0.0217	0.0295
ddd		0.080			0.0031	

1. 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

图34 LQFP64,64脚低剖面方形扁平 封装图⁽¹⁾

图35 建议的PCB元件尺寸(1)(2)

- 1. 图不是按照比例绘制。
- 2. 尺寸单位为毫米。

表51 LQFP64,64脚低剖面方形扁平封装数据

标号	毫米			英寸 ⁽¹⁾		
	最小值	典型值	最大值	最小值	典型值	最大值
Α			1.60			0.0630
A1	0.05		0.15	0.0020		0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09		0.20	0.0035		0.0079
D		12.00			0.4724	
D1		10.00			0.3937	
E		12.00			0.4724	
E1		10.00			0.3937	
е		0.50			0.0197	
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00			0.0394	
N	引脚数目 = 64					

^{1.} 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

图36 TFBGA64 – 8x8 球阵列, 5x5mm, 0.5mm间距, 封装图

1. 图不是按照比例绘制。

表52 TFBGA64 - 8x8 球阵列, 5x5mm, 0.5mm间距, 封装机械数据

标号	毫米			英寸 ⁽¹⁾		
你亏	最小值	典型值	最大值	最小值	典型值	最大值
Α			1.200			0.0472
A1		0.150			0.0059	
A2		0.785			0.0309	
A3	0.200			0.0079		
A4			0.600			0.0236
b	0.300	0.250	0.350	0.0118	0.0098	0.0138
D	5.000	4.850	5.150	0.1969	0.1909	0.2028
D1	3.500			0.1378		
E	5.000	4.850	5.150	0.1969	0.1909	0.2028
E1	3.500			0.1378		
е	0.500			0.0197		
F	0.750			0.0295		
ddd	0.080			0.0031		
eee	0.150			0.0059		
fff	0.050			0.0020		

1. 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

图37 建议的PCB设计规则(0.5mm间距的BGA封装)

- 1. 不建议定义焊盘的阻焊层。
- 2. 4~6mil的丝印。

图38 LQFP64,64脚低剖面方形扁平封装图⁽¹⁾ 图39 建议的PCB元件尺寸⁽¹⁾⁽²⁾

表53 LQFP48,48脚低剖面方形扁平封装数据

标号	毫米			英寸 ⁽¹⁾		
	最小值	典型值	最大值	最小值	典型值	最大值
Α			1.600			0.0630
A1		0.050	0.150		0.0020	0.0059
A2	1.400	1.350	1.450	0.0551	0.0531	0.0571
b	0.220	0.170	0.270	0.0087	0.0067	0.0106
С		0.090	0.200		0.0035	0.0079
D	9.000	8.800	9.200	0.3543	0.3465	0.3622
D1	7.000	6.800	7.200	0.2756	0.2677	0.2835
D3	5.500			0.2165		
E	9.000	8.800	9.200	0.3543	0.3465	0.3622
E1	7.000	6.800	7.200	0.2756	0.2677	0.2835
E3	5.500			0.2165		
е	0.500			0.0197		
L	0.600	0.450	0.750	0.0236	0.0177	0.0295
L1	1.000			0.0394		
k	3.5°	0°	7°	3.5°	0°	7°
ccc	0.080				0.0031	•

^{1.} 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

6.2 热特性

芯片的最大结温(T_Jmax)一定不能超过表9给出的数值范围。

芯片的最大结温(T_Jmax)用摄氏温度表示,可用下面的公式计算:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

其中:

- T_Amax是最大的环境温度,用°C表示,
- Ø_{JA} 是封装中结到环境的热阻抗,用°C/W标示,
- P_D max是 P_{INT} max和 $P_{I/O}$ max的和(P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT}max是I_{DD}和V_{DD}的乘积,用瓦特(Watt)表示,是芯片的最大内部功耗。

P_{I/O}max是所有输出引脚的最大功率消耗:

 $P_{I/O}$ max = Σ (VOL x IOL) + Σ ((VDD - VOH) x IOH),

考虑在应用中I/O上低电平和高电平的实际的VOL/IOL和VOH/IOH。

表54 封装的热特性

符号	参数	数值	单位	
	结到环境的热阻抗——TFBGA64 – 5x5mm/0.5mm间距	65	°C / W	
0	结到环境的热阻抗——LQFP64 – 10x10mm/0.5mm间距	45		
Θ_{JA}	结到环境的热阻抗——LQFP48 – 7x7mm/0.5mm间距	55] C/W	
	结到环境的热阻抗——VFQFPN36 –6x6mm/0.5mm间距	18		

6.2.1 参考文档

JESD51-2 集成电路热测量环境条件 - 自然对流(空气静止)。

参见www.jedec.org。

6.2.2 选择产品的温度范围

当订购微控制器时,温度范围在订购代码中指定(见表55)。

每个温度范围编号的产品,对应于一个给定的、在最大消耗下可以保障的环境温度,对应于一个给定的最大结温度。

因为一般的应用不会在最大消耗的状态下使用STM32F103xxx,计算真正的功率消耗和结温,可以更好地为选择适合应用范围的器件提供依据。

下面的例子说明如何根据特定的应用计算需要的温度范围。

例1: 高性能应用

假设下面的应用条件:

最大环境温度 T_A max = 82°C(根据JESD51-2标准测量),

 I_{DD} max = 50mA, V_{DD} = 3.5 V,同时最多有20个I/O端口处于输出低电平 I_{OL} =8mA, V_{OL} =0.4V,

并且同时最多有8个I/O端口处于输出低电平I_{OL}=20mA, V_{OL}=1.3V

 P_{INT} max = 50mA x 3.5V = 175mW

 P_{IO} max = 20 x 8mA x 0.4V + 8 x 20mA x 1.3 = 272mW

这样得到: P_{INT}max = 175mW和 P_{IO}max = 272mW

即: P_Dmax = 175 + 272 = 447mW

因此: P_Dmax = 447mW

根据表54中得到的数据如下计算T_Jmax:

对于 LQFP100, 46°C/W

 T_{J} max = 82°C + (46°C/W x 447mW) = 82°C + 20.6°C = 102.6°C

结果在尾缀为6的版本(-40 < T」 < 105°C)温度范围内。

在这个例子中,最低要订购温度范围尾缀为6的芯片(见表55)。

例2: 高温应用

使用同样的规则,对于具有较小消耗的应用有可能工作在高环境温度下,只要结温处于给定的范围。 假设下面的应用条件:

最大环境温度 T_A max = 115°C(根据JESD51-2标准测量),

 I_{DD} max = 20mA, V_{DD} = 3.5 V,同时最多有20个I/O端口处于输出低电平 I_{OL} =8mA, V_{OL} =0.4V,

 P_{INT} max = 20mA x 3.5V = 70mW

 P_{10} max = 20 x 8mA x 0.4V = 64mW

这样得到: P_{INT}max = 70mW和 P_{IO}max = 64mW

即: P_Dmax = 70 + 64 = 134mW

因此: P_Dmax = 134mW

根据表54中得到的数据如下计算T_Jmax:

对于 LQFP100, 46°C/W

 T_{J} max = 115°C + (46°C/W x 134mW) = 115°C + 6.2°C = 121.2°C

结果在尾缀为7的版本(-40 < T」 < 125°C)温度范围内。

在这个例子中,最低要订购温度范围尾缀为7的芯片(见表55)。

7 订货代码

表55 订货代码信息图示

xxx = 已编程的器件代号

TR = 卷带式包装

关于更多的选项列表(速度、封装等)和其他相关信息,请与邻近的ST销售处联络。

8 版本历史

请参考英文版数据手册

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对ST产品和/或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于ST产品的最新信息。ST产品的销售依照订单确认时的相关ST销售条款。

买方自行负责对ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的ST 产品如有不同于此处提供的信息的规定,将导致ST 针对该产品授予的任何保证失效。

ST 和ST 徽标是ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利