Sheaves on Manifolds Exercise II.10 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise II.10, KS02] の解答です。

II Sheaves

問題 II.10. R を X 上の環の層として、M を R 加群とする。

(1) M が入射的であるための必要十分条件は、任意の部分 \mathcal{R} -加群 $\mathcal{I} \subset \mathcal{R}$ (これを \mathcal{R} の**イデアル**という) に対して

$$\Gamma(X, M) \cong \operatorname{Hom}_{\mathcal{R}}(\mathcal{R}, M) \to \operatorname{Hom}_{\mathcal{R}}(\mathcal{I}, M)$$

が全射となることである。これを示せ。

(2) A を体とする。 A_X のイデアルはある開集合 $U \subset X$ を用いて A_U と表すことができる。このことから、 A_X -加群 M が入射的であるための必要十分条件は M が脆弱層であることであることを帰結せよ。

証明. (1) を示す。必要性は明らかであるので十分性が問題である。 \mathcal{R} -加群 F とその部分 \mathcal{R} -加群 $G \subset F$ と 射 $g:G \to M$ を任意にとる。集合

$$S \stackrel{\text{def}}{=} \{ (H, h) | G \subset H \subset F, h|_G = g \}$$

に

$$(H_0,H_0) \leq (H_1,h_1) \Leftrightarrow H_0 \subset H_1$$
かつ $h_1|_{H_0} = h_0$

で順序を入れる。全順序部分集合 $S_0 \subset S$ に対して、 $H_{S_0} : \stackrel{\mathrm{def}}{=} \bigcup_{H \in S_0} H$ と定めて $h_{S_0} : H_{S_0} \to M$ を余極限 の普遍性により定まる自然な射とすると (H_{S_0}, h_{S_0}) は S_0 の上界である。よって Zorn の補題より S には極大限 (H,h) が存在する。 $H \neq F$ であるとする。このとき、開集合 $U \subset X$ と切断 $s \in F(U) \setminus H(U)$ が存在する。U 上の切断 S は R-加群の射 $R_U \to H$ と対応する。Fiber 積をとって $\mathcal{I} : \stackrel{\mathrm{def}}{=} \mathcal{R}_U \times_F H$ とおけば、 \mathcal{I} は \mathcal{R}_U の部分 \mathcal{R} -加群である。ここで

$$\operatorname{Hom}_{\mathcal{R}}(\mathcal{R}, M) \to \operatorname{Hom}_{\mathcal{R}}(\mathcal{R}_U, M) \to \operatorname{Hom}_{\mathcal{R}}(\mathcal{I}, M)$$

の合成は全射であるから、 $\mathrm{Hom}_{\mathcal{R}}(\mathcal{R}_U,M)\to\mathrm{Hom}_{\mathcal{R}}(\mathcal{I},M)$ も全射であり、従って、自然な射影と h の合成 $\mathcal{I}\to H\stackrel{h}{\to} M$ は射 $\mathcal{R}_U\to M$ へとリフトし、可換図式

$$\mathcal{I} \xrightarrow{\subset} \mathcal{R}_U \\
\downarrow \qquad \qquad \downarrow \\
H \xrightarrow{h} M$$

を得る。Push-out をとることによって、射 $h':H'\stackrel{\mathrm{def}}{:=} \mathcal{R}_U\coprod_{\mathcal{I}} H \to M$ を得る。一方、可換図式

$$\begin{array}{ccc}
\mathcal{I} & \stackrel{\subset}{\longrightarrow} & \mathcal{R}_U \\
\downarrow & & \downarrow^s \\
H & \stackrel{\subset}{\longrightarrow} & F
\end{array}$$

で push-out をとることにより、射 $H' \to F$ を得るが、 $\mathcal{I} = \mathcal{R}_U \times_F H$ であることと [Exercise 1.6 (3), KS02] より、 $H' \to F$ はモノ射である。従って $H' \subset F$ とみなせる。 $s \not\in H(U)$ なので $H \subsetneq H'$ である。これは (H,h) < (H',h') を意味し、(H,h) の極大性に反する。この矛盾は $H \neq F$ と仮定したことにより引き起こされたので、H = F であることが帰結し、以上で、 $f|_G = g$ となる射 $f: F \to M$ の存在が示された。これは F が入射的層であることを示している。以上で(1)の証明を完了する。

(2) を示す。A を体、 $\mathcal{I}\subset A_X$ をイデアルとする。各 $x\in X$ に対して $\mathcal{I}_x\subset A_{X,x}$ はイデアルであるが、 $A_{X,x}$ は体なので、 \mathcal{I}_x は 0 か $A_{X,x}$ のいずれかである。

$$S : \stackrel{\text{def}}{=} \{ x \in X | \mathcal{I}_x = A_{X,x} \}$$

とおき、S が開であることを示す。 $x\in S$ を任意にとる。 $\mathcal{I}_x=A_{X,x}$ であるので、ある開近傍 $x\in U$ とある 切断 $s\in \mathcal{I}(U)$ が存在して、任意の $y\in U$ に対して $s_y=1$ が成り立つ。これから各 $y\in U$ で $\mathcal{I}_y\neq 0$ である ことが従い、 \mathcal{I}_y は 0 か $A_{X,y}$ のいずれかであったので、 $\mathcal{I}_y=A_{X,y}$ が従う。よって $U\subset S$ が従い、これは S が開であることを示している。最後の主張を示す。入射的ならば脆弱層であるため、 A_X -加群 M が脆弱層である場合に M が入射的であることを示す。M が入射的であることを示すためには、(1) より、任意のイデアル層 $\mathcal{I}\subset A_X$ と任意の A_X -加群の射 $\mathcal{I}\to M$ に対し、それが $\mathcal{I}\subset A_X$ に沿ってリフトすることを示すことが十分である。既に証明したことにより、イデアル層 $\mathcal{I}\subset A_X$ に対してある開集合 $U\subset X$ が存在して $\mathcal{I}=A_U$ が成り立つ。 A_X 加群の射 $A_U\to M$ は M(U) の切断と対応し、M は脆弱層であるので、それは M(X) の元に延長することができる。このことは射 $A_U=\mathcal{I}\to M$ が $A_U=\mathcal{I}\subset A_X$ に沿ってリフトすることを意味し、従って M は入射的である。以上で (2) の証明を完了し、問題 II.10 の解答を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.