GATE ASSIGNMENT 2

Sachin Karumanchi - AI20BTECH11013

Download all latex codes from

https://github.com/sachinkarumanchi/EE3900/tree/ main/Gateassignment2/Gateassignment2.tex

GATE EC 2008 O.84

The impulse response h(t) of linear time - invariant continuous time system is given by $h(t) = e^{-2t}u(t)$, where u(t) denotes the unit step function.

The frequency response $H(\omega)$ of this system in terms of angular frequency ω , is given by $H(\omega)$

(a)
$$\frac{1}{1+f2\omega}$$

(b) $\frac{\sin(\omega)}{\omega}$
(c) $\frac{1}{2+j\omega}$
(d) $\frac{j\omega}{2+j\omega}$

$$(b)\frac{\sin(\omega)}{\omega}$$

$$(c)\frac{1}{2+i\omega}$$

$$(d)\frac{j\dot{\omega}}{2+i\omega}$$

Solution

Given,

$$h(t) = e^{-2t}u(t) (0.0.1)$$

Finding the laplace transform

$$\mathcal{L}(h(t)) = \int_0^\infty h(t)e^{s-t}dt \qquad (0.0.2)$$

$$= \int_0^\infty e^{-2t} e^{-st} dt$$
 (0.0.3)

$$= \int_0^\infty e^{-(2+s)t} dt$$
 (0.0.4)

$$=\frac{1}{2+s}$$
 (0.0.5)

The Fourier transform is nothing but the Laplace transform evaluated at $s = i\omega$

$$H(\omega) = |\mathcal{L}(f(t))|_{s=j\omega}$$
 (0.0.6)

$$\implies H(\omega) = \frac{1}{2 + i\omega} \tag{0.0.7}$$

Therefore, frequency response $H(\omega) = \frac{1}{2+j\omega}$ Hence, option (c) is correct answer