

USER CHURN RATE

Analyze Data with SQL Bianca Niemann 02 September 2024

Table of Contents

- 1. Who is Codeflix and what is "Churn Rate"?
- 2. Get familiar with the data
- 3. Create Temp tables
- 4. Conclusions

CODEFLIX

1a. Who is Codeflix?

Codeflix, a streaming video startup, and are interested in measuring their user churn rate.

They company started in Dec 2016 and they would like the churn rate for the first 3 months (Jan 2017 to Mar 2017), as cancellations are not possible within first 31 days of subscribing it would be pointless to analyze Dec 2016

1b. What is "Churn Rate"?

Churn rate is the percent of subscribers that have canceled within a certain period, usually a month. For a user base to grow, the churn rate must be less than the new subscriber rate for the same period.

cancellations total subscribers

2. Get familiar with the data

From "subscriptions" table, print first 20 rows

SELECT *
FROM subscriptions
LIMIT 20;

id	subscription_start	subscription_end	segment
1	2016-12-01	2017-02-01	87
2	2016-12-01	2017-01-24	87
3	2016-12-01	2017-03-07	87
4	2016-12-01	2017-02-12	87
5	2016-12-01	2017-03-09	87
6	2016-12-01	2017-01-19	87
7	2016-12-01	2017-02-03	87
8	2016-12-01	2017-03-02	87
9	2016-12-01	2017-02-17	87
10	2016-12-01	2017-01-01	87
11	2016-12-01	2017-01-17	87
12	2016-12-01	2017-02-07	87
13	2016-12-01		30
14	2016-12-01	2017-03-07	30
15	2016-12-01	2017-02-22	30
16	2016-12-01		30
17	2016-12-01		30
18	2016-12-02	2017-01-29	87
19	2016-12-02	2017-01-13	87
20	2016-12-02	2017-01-15	87

Determine the range of dates

SELECT MIN(subscription_start), MAX(subscription_start) FROM subscriptions;

MIN(subscription_start) MAX(subscription_start)

2016-12-01 2017-03-30

Determine the segments

SELECT DISTINCT(segment) FROM subscriptions;

segment
87
30

3. Create Temp tables

Create temp table called "months" that will have 2 columns "first_day" and "last_day"

first_day	last_day
2017-01-01	2017-01-31
2017-02-01	2017-02-28
2017-03-01	2017-03-30

Create temp table "months" that will have 2 columns "first_day" and "last_day"

WITH months AS (SELECT

2017-01-01' AS 'first_day', 2017-01-31' AS 'last_day'

UNION

SELECT

2017-02-01' AS 'first_day', 2017-02-28' AS 'last day'

UNION

SELECT

2017-03-01' AS 'first_day', 2017-03-30' AS 'last day'),

first_day	last_day
2017-01-01	2017-01-31
2017-02-01	2017-02-28
2017-03-01	2017-03-30

Create temp table "cross_join" that will join "subscriptions" and "months" tables

cross_join AS (
SELECT *
FROM subscriptions
CROSS JOIN months),

id	subscription_start	subscription_end	segment	first_day	last_day
1	2016-12-01	2017-02-01	87	2017-01-01	2017-01-31
1	2016-12-01	2017-02-01	87	2017-02-01	2017-02-28
1	2016-12-01	2017-02-01	87	2017-03-01	2017-03-30
2	2016-12-01	2017-01-24	87	2017-01-01	2017-01-31
2	2016-12-01	2017-01-24	87	2017-02-01	2017-02-28

```
status AS (
SELECT id.
  first day AS 'month',
CASE
WHEN (subscription start < first day)
AND (segment = 87)
AND (subscription end > first day
  OR subscription end IS NULL)
THEN 1 ELSE 0
END AS is active 87,
CASE
WHEN (subscription start < first day)
AND (segment = 30)
AND (subscription end > first day
  OR subscription end IS NULL)
THEN 1 ELSE 0
END AS is active 30,
CASE
WHEN (subscription end BETWEEN
first day AND last day)
AND (segment = 87)
THEN 1 FLSE 0
END AS is cancelled 87,
CASE
WHEN (subscription end BETWEEN
first day AND last day)
AND (segment = 30)
THEN 1 ELSE 0
END AS is cancelled 30
FROM cross join),
```

Create Temp table "status" showing "is_active" and "is_cancelled" columns for each segment

is active 30

is active 87

id

month

Create a "status_aggregate" temporary table that is a SUM of the active and canceled subscriptions for each segment, for each month

status_aggregate AS(
SELECT
month,
SUM(is_active_87) AS 'sum_active_87',
SUM(is_active_30) AS 'sum_active_30',
SUM(is_cancelled_87) AS
'sum_canceled_87',
SUM(is_cancelled_30) AS
'sum_canceled_30'
FROM status

GROUP BY month)

month	sum_active_87	sum_active_30	sum_canceled_87	sum_canceled_30
2017-01-01	278	291	70	22
2017-02-01	462	518	148	38
2017-03-01	531	716	247	81

Calculate the churn rates for the two segments over the three month period.

SELECT month,
ROUND(1.0 * sum_canceled_87 / sum_active_87, 2) AS 'churn_rate_87',
ROUND(1.0 * sum_canceled_30 / sum_active_30, 2) AS 'churn_rate_30'
FROM status_aggregate;

month	churn_rate_87	churn_rate_30
2017-01-01	0.25	0.08
2017-02-01	0.32	0.07
2017-03-01	0.47	0.11

4. Conclusions

month	churn_rate_87	churn_rate_30
2017-01-01	0.25	0.08
2017-02-01	0.32	0.07
2017-03-01	0.47	0.11

- Based on our analysis, we can conclude that the churn rate increased over the months Jan 2017 to Mar 2017
 - Customer segment 87 definitely has a much higher churn rate then customer segment 30
 - Codeflix should look into why there is a general increase in Churn rates each month
- Codeflix should also see why 87 has a much higher rate and maybe make some changes to be more like 30 to decrease the Churn rate for that segment.