CHAPTER 7

Study Questions

- 1. Describe the sampling distribution for the random variable $(n-1)s^2/\sigma^2$.
- 2. How is the sampling distribution for the function of s^2 different from the sampling distribution for \overline{y} ?
- 3. What assumptions must be met in order to use the Chi-square and F-distributions for hypothesis testing?

The Chi-Square Distribution

Properties of the Chi-Square Distribution

- 1. The distribution is on the nonnegative side of the real line.
- 2. It is a non-symmetric continuous distribution.
- 3. The mean of the distribution is equal to the degrees of freedom.
- 4. It is the sampling distribution for a function of s^2 .

Chi-Square Distribution with Three Degree of Freedom

Finding Values of the Chi-square Distribution

$$\chi^{2}.05,5 = \chi^{2}.01,10 =$$

For 8 degrees of freedom, find the Chi-square value such that 5% of the area is below it.

Small-Sample Hypothesis Test for a Single Variance

Hypotheses

$$\begin{array}{lll} H_o: \ \sigma^2 = \sigma_o^2 & \qquad & H_o: \ \sigma^2 = \sigma_o^2 & \qquad & H_0: \ \sigma^2 = \sigma_o^2 \\ H_a: \ \sigma^2 < \sigma_o^2 & \qquad & H_a: \ \sigma^2 > \sigma_o^2 & \qquad & H_a: \ \sigma^2 \neq \sigma_o^2 \end{array}$$

$$H_0$$
: $\sigma^2 = \sigma_0$

$$H_0$$
: $\sigma^2 = \sigma_0^2$

$$H_a$$
: $\sigma^2 < \sigma_o^2$

$$H_a$$
: $\sigma^2 > \sigma_o$

$$H_a$$
: $\sigma^2 \neq \sigma_o^2$

Test Statistic

$$\chi^2_{obs} = \frac{(n-1)s^2}{\sigma_0^2}$$

Distribution for the Rejection Region

The rejection region is found using a chi-square distribution with df=(n-1).

Small-Sample Confidence Intervals for a Single Variance

$$\frac{(n-1)s^2}{\chi^2_{(\alpha/2),(n-1)}}, \frac{(n-1)s^2}{\chi^2_{(1-\alpha/2),(n-1)}}$$

Example: A medical supplies manufacturer claims that its new thermometers are so precise that the standard deviation in its measurements is smaller than .25°F. To test this claim, a hospital took 10 measurements in an incubator. Below are the results of the experiment measured in degrees Fahrenheit.

```
98.82 98.84 98.90 98.87 98.79 98.83 98.85 98.84 98.62 98.72
```

Conduct a hypothesis test to determine if the manufacturer's claim is true. Use a significance level of .05. {Notes: 1) Sampling Distribution of S2 is right-skewed (Chi-squared, χ^2);

2) Chi-square practice on page 59; 3) Formulas p. 60}

$$H_0$$
: $\sigma = .25$ H_A : $\sigma < .25$

Standardized Scale Method

$$\chi^2_{\text{obs}} = (\text{n-1})S^2/\sigma_0^2 = (9)(.08176)^2/(.25)^2 = 0.9626$$

$$\chi^2_{\text{crit}} = 3.325$$

 RH_0

P-Value Method

$$\chi^2_{\rm obs} = 0.9626$$

p-value < 0.001

 RH_0

Construct a 95% confidence interval for the standard deviation.

$$\sqrt{(n-1)}S^2/\chi^2_{\omega/2,n-1} \quad \sqrt{(n-1)}S^2/\chi^2_{\omega/2,n-1}$$

$$\sqrt{(9)}(.08176)^2/19.02 \qquad \sqrt{(9)}(.08176)^2/2.70$$

$$0.056, \, 0.149$$

Problems p. 351 & 352 7.5 - 7.11