PRÉSENTATION DE STAGE

Extraction de modèles numériques de terrains à partir de bases de données

MEDESSI Seithondji Dieudonné

AXESSIM

HISTORIQUE

- Créée en 2007
- Située à Illkirch-Graffenstaden
- Spécialisée en simulation électromagnétique
- Rejoint Sopemea en Avril 2021

PRODUITS PHARES

- MaxSim
- CableSim
- KaWa

CONTEXTE DU STAGE

PROJET PSOL

Objectif principal : Simuler avec précision la propagation des ondes électromagnétiques sur de longues distances en résolvant les équations de Maxwell dans des environnements les plus réalistes possibles.

Approche Méthodologique : Méthode FDTD (Finite Difference Time Domain), techniques de fenêtrage mobiles, et de décomposition de domaine.

Applications: Environnements de communication terrestre, communications entre véhicules, radiocompatibilité, etc.

AXESSIM DANS LE PROJET PSOL

- Acquisition de données d'environnement réelles pour intégration à la simulation
- Génération de scènes et modélisation électromagnétique

PROOF OF CONCEPT

- Génération de modèles numériques de terrains
- Librairie Python (psol)

MISSIONS AU COURS DU STAGE

- Assurer la compatibilité de l'outillage de développement avec les outils utilisés au sein d'AxesSim
- Améliorer l'outillage
- Générer d'arbres et de forêts
- Se familiariser avec la modélisation électromagnétique

CONTRIBUTIONS

- Génération de maillages au format Amelet HDF
- Gestion d'une base de données spatiales
- Traitement de ponts

GÉNÉRATION DE MAILLAGES AU FORMAT AMELET HDF

AMELET HDF

Conçue par AxesSim pour exprimer différents types de données électromagnétiques

- maillages
- données de tableau numérique
- modèles de matériaux
- réseaux et lignes de transmission
- sources électromagnétiques

STRUCTURE D'UN FICHIER AMELET HDF

exemple de fichier Amelet HDF

DU PLY À AMELET HDF

Outils: ah5, pytable, hdfview

MAILLAGES STRUCTURÉS SURFACIQUES

Figure 2. maillage structuré surfacique de la Vigie

MAILLAGES STRUCTURÉS VOLUMIQUES

Figure 3. maillage structuré volumique de la Vigie

RÉSULTAT

Figure 4. les Algorithmes (Ilkirch)

PONTS DANS LE MODÈLE NUMÉRIQUE DE SURFACE (MNS)

BOUCHON DES PONTS

Figure 5. pont de la Vigie avant traitement

TRAITEMENT DES PONTS

Figure 6. pont de la Vigie après traitement

GESTION D'UNE BASE DE DONNÉES SPATIALES

LES DONNÉES SUR DISQUE

structure des données sur le disque

Lecture de BATIMENT.shp:6min

SEGMENTATION DES DONNÉES

decoupage en dalles

```
/data
|-- /BDTOPO_RASTER
| |-- /67
| | |-- BATIMENT/
| | |-- RGEALTI/
| | | |-- dalle_1.tif
| | | |-- MNSC/
| | | |-- dalle_1.tif
| | |-- ZONE_DE_VEGETATION/
| | |-- ...
```

 $3GB \rightarrow 81GB$

POSTGIS

exemple de requête SQL sur une base de données PostGIS

Lecture de la table batiment de toute la France : 300ms

RÉSULTAT

- Port du rhin avant PostGIS: 7min
- Port du rhin après PostGIS: 1min 30s

CONCLUSION

RETOUR D'EXPÉRIENCE