

Solution Review: Nested Loop with Multiplication (Advanced)

This review provides a detailed analysis of the different ways to solve the Nested Loop with Multiplication challenge.

- Solution
 - Time Complexity

Solution

```
n = 10 # can be anything
 2
   sum = 0
    pie = 3.14
    for i in range(n):
 5
        j = 1
        while j < i:
 6
 7
            sum += 1
 8
            j *= 2
 9
        print(sum)
10
```

In the main function, the outer loop is O(n) as it iterates over ${\tt n}$. The inner while loop iterates over ${\tt i}$ which is always **less than** ${\tt n}$ and ${\tt j}$ is doubled

each time, therefore we can say that it is $O(log_2(n))$. Thus, tended a complexity of the program given above becomes:

$$O(nlog_2(n))$$

Here's another way to arrive at the same result. Let's look at the inner loop once again.

$$n imes log_2(i) \Rightarrow \sum_{i=1}^n log_2(i)$$

$$\Rightarrow log_2(1) + ... + log_2(n-1) + log_2(n)$$

as we know that; log(a) + log(b) = log(ab)

so above expression becomes:

$$\Rightarrow log_2(1 imes 2 imes ... imes (n-1) imes (n))$$
 $\Rightarrow log_2(n!)$

Thus, the total time complexity of the inner-loop (considering the outer-loop) is $O(log_2(n!))$. This might be unfamiliar, though. We could simplify the above summation by replacing each of $log_2(1), log_2(2), log_2(3), ..., log_2(n)$ with $log_2(n))$ and get:

$$log(n!)$$
 = $\sum_{k=1}^n log(k) < \sum_{k=1}^n log(n)$ = $nlog(n)$

The overall number of executions are summarized in the table below.

Statement	Number of Executions
n = 10	1
sum = 0	1
pie = 3.14	1
i	n
range(n)	1
j=1	n
while j < i:	$log_2(n!)$
sum+=1	$log_2(n!)$
j*=2	$log_2(n!)$
print(sum)	n

Time Complexity#

As mentioned above, the running time complexity of the program is:

Time Complexity = $3 + 4n + 3log_2(n!)$

To find the Big O time complexity,

- 1. Drop the leading constants $\Rightarrow n + log_2(n!)$
- 2. Drop the lower order terms $\Rightarrow log_2(n!)$
- 3. As also discussed above, this can be written as $O(nlog_2(n))$.

The Big O time complexity of the above is $\Rightarrow O(nlog_2(n))$.

Interviewing soon? We've partnered with Hired so that \times companies apply to you instead of you applying to them. See how \odot

Next \rightarrow

Challenge 6: Nested Loop with Multipl...

Challenge 7: Nested Loop with Multipl...

Completed

Report an Issue

