2-stufiges schrägverzahntes koaxiales Getriebe

Alle im Folgenden auftretenden Angaben zu Seitenzahlen, Tabellen und Gleichungen beziehen sich auf "Roloff/Matek Maschinenelemente (24. Auflage)"

Konstanten per Vorgabe

Drehmoment Antrieb:

$$T_{an} \coloneqq 50 \ \boldsymbol{N \cdot m}$$

Drehmoment Abtrieb:

$$T_{ab} \coloneqq 500 \ \boldsymbol{N \cdot m}$$

Antriebsdrehzahl:

$$n_{an} = 2000 \ min^{-1}$$

Druckkraft:

$$F_B = 3 \, kN$$

Verzahnungsschrägungswinkel:

$$\beta = 20$$
°

Normaleingriffswinkel:

$$\alpha_n = 20$$

Dauerfestigkeitsschubspannung von 42CrMo4 (Wellenstahl):

$$au_{tzul} = 50 \; rac{ extbf{\textit{N}}}{ extbf{\textit{mm}}^2}$$

Überschlägiger Belastungswert:

$$B_{zul} \coloneqq 4 \; rac{N}{mm^2}$$

Anwendungsfaktor:

$$K_A \coloneqq 2$$

theoretisches Übersetzungsverhältnis

$$i_{ges} = \frac{T_{ab}}{T_{an}} = 10$$

$$i_{12} = 3.4$$

$$i_{23} \coloneqq \frac{i_{ges}^{1 \ an}}{i_{12}} = 2.941$$
 $i_{ges} \coloneqq i_{12} \cdot i_{23} = 10$

$$i_{ges} \coloneqq i_{12} \cdot i_{23} = 10$$

gewählt nach TB21-11

Ritzelzähnezahlen

$$z_1 = 2$$

$$z_1 = 21$$
 $z_2 = z_1 \cdot i_{12} = 71.4$ $z_2 = 71$

$$z_2 = 71$$

$$z_2 := 28$$

$$z_3 \coloneqq 28 \hspace{1cm} z_4 \coloneqq z_3 \cdot i_{23} = 82 \hspace{1cm} z_4 \coloneqq 83$$

$$z_4 := 83$$

wirkliches Übersetzungsverhältnis

$$i_{12} = \frac{z_2}{z_1} = 3.381$$

$$i_{23} = \frac{z_4}{z_2} = 2.964$$

$$i_{12} \coloneqq \frac{z_2}{z_1} = 3.381$$
 $i_{23} \coloneqq \frac{z_4}{z_3} = 2.964$ $i_{ges} \coloneqq i_{12} \cdot i_{23} = 10.022$

$$T_{ab} \coloneqq T_{an} \cdot i_{ges} = 501.105 \ \textit{N} \cdot \textit{m}$$

$$\frac{500 \cdot N \cdot m}{T_{ab}} = 0.998$$

Jade Hochschule Wilhelmshaven

Durchmesser Antriebswelle

$$d_{min1} \coloneqq \sqrt[3]{rac{16 \cdot T_{an} \cdot K_A}{\boldsymbol{\pi} \cdot \boldsymbol{ au}_{tzul}}} = 21.677 \,\, \boldsymbol{mm}$$

$$d_{W1} = 30 \, \, mm$$

Formel nach Vereinbarung

Durchmesser Vorlegewelle

$$d_{min2} \coloneqq \sqrt[3]{\frac{16 \cdot T_{an} \cdot i_{12} \cdot K_A}{\pi \cdot \tau_{tzul}}} = 32.535 \ \textit{mm} \qquad \qquad d_{W2} \coloneqq 40 \ \textit{mm}$$

$$d_{W2} \coloneqq 40$$
 mm

Formel nach Vereinbarung

Durchmesser Abtriebswelle

$$d_{min3} \coloneqq \sqrt[3]{\frac{16 \cdot T_{an} \cdot i_{ges} \cdot K_A}{\pi \cdot \tau_{tzul}}} = 46.736 \ \textit{mm} \qquad d_{W3} \coloneqq 55 \ \textit{mm}$$

$$d_{W3} = 55$$
 mm

Formel nach Vereinbarung

gewählt aufgrund von Passfededer-/ & Lagerabmaßen (TB12-2)

Modul 1;2

$$m_{n12} \coloneqq \frac{1.8 \cdot d_{W1} \cdot \cos{(\beta)}}{z_1 - 2.5} = 2.743 \ \textit{mm}$$
 $m_{n12} \coloneqq 3 \ \textit{mm}$ Gl21.36 orienties

$$m_{n12} \coloneqq 3 \, \, \boldsymbol{mn}$$

orientiert an TB21-1

Zahnradbreite

$$b_1 \coloneqq \frac{2 \cdot T_{an}}{d_{W_1}^2 \cdot B_{col}} = 27.778 \; mm$$

$$b_1 \coloneqq 30 \ mm$$

 $b_1 = 30$ mm Formel nach Vereinbarung orientiert an TB21-13b

$$b_2 \coloneqq b_1$$

$$b_3 \coloneqq \frac{2 \cdot T_{an} \cdot i_{12}}{d_{W2}^2 \cdot B_{rad}} = 52.827 \ mm$$

$$h \sim 55 \, mm$$

 $b_3 = 55 \ mm$ Formel nach Vereinbarung orientiert an TB21-13b

$$b_4 \coloneqq b_3$$

Teilkreis 1 & 2

$$d_{T1} = z_1 \cdot \frac{m_{n12}}{\cos(\beta)} = 67.043 \ mm$$

$$d_{T2} = z_2 \cdot \frac{m_{n12}}{\cos(\beta)} = 226.67 \ mm$$

Gl21.38

Achsabstand 1;2

$$a_{d12} := \frac{d_{T1} + d_{T2}}{2} = 146.857 \ mm$$

Gl21.42

Modul 3;4

$$m_{n34} \coloneqq \frac{2 \cdot a_{d12} \cdot \cos{(eta)}}{\left(1 + i_{23}\right) \cdot z_3} = 2.486 \; m{mm}$$

$$m_{n34} = 2.5 \ mm$$
 Gl21.64

orientiert an TB21-1

Jade Hochschule Wilhelmshaven

Teilkreis 3 & 4

$$d_{T3} := z_3 \cdot \frac{m_{n34}}{\cos(\beta)} = 74.492 \ mm$$

$$d_{T4} \coloneqq z_4 \cdot \frac{m_{n34}}{\cos(\beta)} = 220.817 \ \textit{mm}$$

Gl.21.38

Achsabstand 3;4

$$a_{d34} \coloneqq \frac{d_{T3} + d_{T4}}{2} = 147.655 \ \textit{mm}$$
 $a_{d12} \neq a_{ad34}$

$$a_{d12} \neq a_{ad34}$$

$$a_{d12} - a_{d34} = -0.798$$
 mm

Gl.21.42

Fazit: Es ist eine Profilverschiebung notwendig, um die Differenz der Achsabstände auszugleichen! Es wird eine positive Profilverschiebung gewählt, um den Zahnfuß zu stärken und die Tragfähigkeit der Zähne zu erhöhen.

Stirneingreifswinkel

$$\alpha_t = \operatorname{atan}\left(\frac{\operatorname{tan}\left(\alpha_n\right)}{\operatorname{cos}\left(\beta\right)}\right) = 21.173$$
°

Gl. 21.35

Betriebseingriffswinkel

$$\alpha_w \coloneqq \operatorname{acos}\left(\cos\left(\alpha_t\right) \cdot \frac{a_{d12}}{a_{d34}}\right) = 21.959$$
°

Gl. 21.31

Summe Profilverschiebungsfaktoren

$$inv\alpha_w := \tan\left(\alpha_w\right) - \alpha_w \cdot \frac{\pi}{180} = 0.01994$$

$$inv\alpha_t = \tan(\alpha_t) - \alpha_t \cdot \frac{\pi}{180^{\circ}} = 0.01779$$

Gl. 21.56

Ersatzzähnezahlen

$$\beta_b = \cos\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right) = 18.747$$
°

Gl. 21.36

$$\cos\left(\beta_b\right)^2 = 0.897$$
 vgl. mit Additionstheorem $xyz \coloneqq \frac{1}{2}\left(1 + \cos\left(2 \cdot \beta_b\right)\right) = 0.897$

$$z_{n1} = \frac{z_1}{\cos\left(\beta_b\right)^2 \cdot \cos\left(\beta\right)} = 24.922$$

$$z_{n2} \coloneqq \frac{z_2}{\cos\left(eta_b\right)^2 \cdot \cos\left(eta\right)} = 84.26$$

Gl. 21.47

sinnvolle Wahl von x $x_1 \coloneqq \frac{\Sigma x}{2} + \left(\frac{1}{2} - \frac{\Sigma x}{2}\right) \cdot \frac{\log\left(\frac{z_2}{z_1}\right)}{\log\left(\frac{z_{n1} \cdot z_{n2}}{100}\right)} = 0.28128$ Gl. 21.33 $x_2 := \Sigma x - x_1 = -0.0105$ Beide Räder nach TB 21-3 ausführbar! Gl. 21.56 Verschiebungen $V_1 := x_1 \cdot m_{n12} = 0.844 \ mm$ $V_2 := x_2 \cdot m_{n12} = -0.031 \ mm$ $V_3 = 0 \ \boldsymbol{mm}$ $V_4 \coloneqq 0 \ \boldsymbol{mm}$ Gl. 21.49 **Kontrolle Achsabstand** Betriebswälzkreisdurchmesser: $d_{w1} \coloneqq d_{T1} \cdot \frac{\cos\left(\alpha_{t}\right)}{\cos\left(\alpha_{w}\right)} = 67.408 \ \boldsymbol{mm}$ $d_{w2} \coloneqq d_{T2} \cdot \frac{\cos\left(lpha_t ight)}{\cos\left(lpha_w ight)} = 227.902 \; m{mm}$ Gl. 21.22a $a := \frac{d_{w1} + d_{w2}}{2} = 147.655$ mm vgl.: $a_{d34} = 147.655 \ mm$ **Kopfspiel Soll** $c_{12Soll} = 0.25 \cdot m_{n12} = 0.75 \ mm$ $c_{34} \coloneqq 0.25 \cdot m_{n34} = 0.625 \ \textit{mm}$ vgl. S. 794 $k := a - a_{d12} - m_{n12} \cdot (x_1 + x_2) = -0.014 \ mm$ Kopfhöhenänderung: Gl.21-23

Zahnräder		
Zahnrad Nr.1:		
$d_{T1} = 67.043 \; mm$		
Betriebswälzkreisdurchmessel	$d_{w1} := \frac{2 \cdot z_1}{z_1 + z_2} \cdot a = 67.408 \ \mathbf{mm}$	Gl.21-22a
Grundkreisdurchmesser:	$d_{b1} \coloneqq z_1 \cdot \frac{m_{n12} \cdot \cos\left(lpha_t ight)}{\cos\left(eta ight)} = 62.517$ mm	Gl.21-39
Kopfkreisdurchmesser:	$d_{a1} := d_{T1} + 2 \cdot (m_{n12} + V_1 + k) = 74.702 $ mm	Gl.21-24
Fußkreisdurchmesser:	$d_{f1} \coloneqq d_{T1} - 2 \cdot \left(\left(m_{n12} + c_{12Soll} \right) - V_1 \right) = 61.231 \ \textbf{r}$	nm Gl.21-25
Zahnrad Nr.2:		
$d_{T2} = 226.67 \; mm$		
$d_{w2} := \frac{2 \cdot z_2}{z_1 + z_2} \cdot a = 227.902 \ mr$	a	Gl.21-22b
$\begin{aligned} d_{w2} &\coloneqq \frac{2 \cdot z_2}{z_1 + z_2} \cdot a = 227.902 \ \textit{mr} \\ d_{b2} &\coloneqq z_2 \cdot \frac{m_{n12} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 211 \end{aligned}$	369 <i>mm</i>	Gl.21-39
$d_{a2} \coloneqq d_{T2} + 2 \cdot \left(m_{n12} + V_2 + k \right)$		Gl.21-24
$d_{f2} \coloneqq d_{T2} - 2 \cdot \left(\left\langle m_{n12} + c_{12Soll} \right\rangle \right.$	$-V_2$) = 219.107 mm	Gl.21-25
Zahnrad Nr.3:		
$d_{T3} = 74.492 \; mm$		
$d_{w3} \coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \; mm$		Gl.21-22a
$d_{w3} \coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \; \textit{mm}$ $d_{b3} \coloneqq z_3 \cdot \frac{m_{n34} \cdot \cos{(\alpha_t)}}{\cos{(eta)}} = 69.4$	64 <i>mm</i>	Gl.21-39
$d_{a3} \coloneqq d_{T3} + 2 \cdot \left(m_{n34} + V_2 + k \right)$		Gl.21-40
$d_{f3} \coloneqq d_{T3} - 2.5 \cdot m_{n34} = 68.242$	mm	Gl.21-41

Zahnrad Nr.4:	
$d_{T4} = 220.817 \; \pmb{mm}$	
$d_{w3} \coloneqq \frac{2 \cdot z_4}{z_3 + z_4} \cdot a = 220.817 \ \textit{mm}$ $m_{w24} \cdot \cos{(\alpha_4)}$	Gl.21-22b
$d_{b4} \coloneqq z_4 \cdot \frac{m_{n34} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 205.911 \ \boldsymbol{mm}$	Gl.21-39
$d_{a4} := d_{T4} + 2 \cdot (m_{n34} + V_2 + k) = 225.725 \ mm$	Gl.21-40
$d_{f4} \coloneqq d_{T4} - 2.5 \cdot m_{n34} = 214.567$ mm	Gl.21-41
Kopfspiel nach Profilverschiebung	
$c_{12Ist} = a - 0.5 \cdot (d_{a1} + d_{f2}) = 0.75 mm$ $c_{12Soll} - c_{12Ist} = -6.505 \cdot 10^{-16} mm$	
Keine relevante Abweichung! Stirnmodul	vgl. S. 794
$m_{t12} \coloneqq \frac{m_{n12}}{\cos(eta)} = 3.193 \; extbf{\textit{mm}} \hspace{1cm} m_{t34} \coloneqq \frac{m_{n34}}{\cos(eta)} = 2.66 \; extbf{\textit{mm}}$	Gl.21-23
Profilüberdeckung	
$c_{\alpha 1 2} := \frac{0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \frac{z_2}{ z_2 } \cdot \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a \cdot \sin\left(\alpha_w\right)}{\pi \cdot m_{t1 2} \cdot \cos\left(\alpha_t\right)} = 1.47$	Cl 24 F7
Laut S.787 ist der Wert für ε_{lpha} gut.	Gl.21-57
$\varepsilon_{\beta 12} \coloneqq \frac{b_1 \cdot \sin(\beta)}{\pi \cdot m_{n12}} = 1.089$	Gl.21-44
$\text{Gesamt:} \varepsilon_{\gamma 12} \coloneqq \varepsilon_{\alpha 12} + \varepsilon_{\beta 12} = 2.559$	
$0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_4}{ z } \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2} \right) - a \cdot \sin \left({lpha_w} ight)$	
$c_{\alpha 3 4} \coloneqq \frac{0.5 \cdot \left(\sqrt{d_{a 3}^{2} - d_{b 3}^{2}} + \frac{z_{4}}{\left z_{4}\right } \cdot \sqrt{d_{a 4}^{2} - d_{b 4}^{2}}\right) - a \cdot \sin\left(\alpha_{w}\right)}{\pi \cdot m_{t 3 4} \cdot \cos\left(\alpha_{t}\right)} = 1.316$	Gl.21-57
Laut S.787 ist der Wert für $arepsilon_{lpha}$ gut.	
$arepsilon_{eta34}\coloneqq rac{b_3\cdot\sin\left(eta ight)}{oldsymbol{\pi}\cdot m_{n34}}=2.395$	Gl.21-44
$\text{Gesamt:} \varepsilon_{\gamma34} \coloneqq \varepsilon_{\alpha34} + \varepsilon_{\beta34} = 3.711$	

Zusammen	tassung								
Nr.	d	d_b	d_a	d_f	d_w	b	m	V	z
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
$Zahnrad_1$	67.04	62.52	74.78	61.196	67.41	30	3	0.844	21
$Zahnrad_2$	226.67	211.37	232.61	219.032	227.66	30	3	-0.031	71
$Zahnrad_3$	74.49	69.46	79.49	68.24	74.49	55	2.5	0	28
$Zahnrad_4$	220.82	205.92	225.82	214.57	220.82	55	2.5	0	83
Passfederv	erbindu	ngen	TB 12-	2					
Material der	Passfede	r: E295							
$R_e \coloneqq 295 \cdot \frac{1}{m}$	$\frac{N}{m^2}$ S	$f_F \coloneqq 1.1$	η_{zul} :=-	$\frac{R_e}{S_F} = 268.3$	$182 \frac{N}{mm}$	<u> </u>	o:=1	$n \coloneqq 1$	
$l_{tr1}\!\coloneqq\! rac{}{d_{W1}\!\cdot\!3}$	$rac{2 m{\cdot} T_{an}}{m{m} m{m} m{\cdot} \eta_{zu}}$	$\frac{1}{n!} \cdot \varphi \cdot n =$	4.143 m	im b:	=8 <i>mm</i>	l_{tr1} -	+ b = 12.1	143 <i>mm</i>	
			Antrie	bswelle:	Passfede	er DIN 6	5885 - A8	3x7x14	
$l_{tr2} \coloneqq rac{2}{d_{W2} \cdot 3}$	$2 \cdot T_{an} \cdot i_{12} \ mm \cdot \eta_{zu}$	$\frac{2}{nl \cdot \varphi \cdot n} =$:10.506 1	mm b:	=12 mm	$oldsymbol{l}_{tr2}$ -	+ b = 22.5	506 <i>mm</i>	
			Vorle	gewelle:	Passfede	r DIN 68	385 - A12	2x8x25	
$l_{tr3}\!\coloneqq\!rac{2ullet}{d_{W3}\!\cdot\!4}$	$T_{an}\!\cdot\!i_{12}\!\cdot\!i_{mm}\!\cdot\!\eta_{zu}$	$\frac{i_{23}}{d\cdot arphi \cdot n} =$:16.987 1	mm b:	=16 mm	$oldsymbol{l}_{tr3}$ -	+ b = 32.9	987 mm	
			Abtrie	bswelle:	Passfede	er DIN 6	5885 - A1	6x10x36	
								C	612.1

Zahnrad 1:		
Umfangskraft:	${F}_{t1}\!\coloneqq\!2\!ullet\!rac{T_{an}}{d_{T1}}\!=\!1.492~ extbf{\emph{kN}}$	Gl.21.7
Radialkraft:	$F_{R1}\!\coloneqq\!rac{F_{t1}\!\cdot\! an\left(lpha_n ight)}{\cos\left(eta ight)}\!=\!0.578$ kN	Gl.21.7
Axialkraft:	$F_{a1} \coloneqq F_{t1} \cdot \tan\left(eta\right) = 0.543 kN$	Gl.21.7
Zahnrad 2:		
Umfangskraft:	$F_{t2} \coloneqq F_{t1} = 1.492 \ kN$	
Radialkraft:	$F_{R2} \! := \! \left F_{R1} \right \! = \! 0.578 \; {\it kN}$	
Axialkraft:	$F_{a2} \coloneqq \left F_{a1} \right = 0.543 \ $ kN	
Zahnrad 3:		
Umfangskraft:	$F_{t3}\!\coloneqq\!2\!ullet\!rac{T_{an}\!ullet\!i_{12}}{d_{T3}}\!=\!4.539~ extbf{kN}$	
Radialkraft:	$F_{R3} \coloneqq \frac{F_{t3} \cdot \tan\left(lpha_n ight)}{\cos\left(eta ight)} = 1.758 \; extbf{\textit{kN}}$	
Axialkraft:	$F_{a3} \coloneqq F_{t3} \cdot \tan(\beta) = 1.652 \ \mathbf{kN}$	
Zahnrad 4:		
Umfangskraft:	$F_{t4} \coloneqq F_{t3} = 4.539 \; kN$	
Radialkraft:	$F_{R4}\!:=\!\left F_{R3} ight \!=\!1.758\; {\it kN}$	
Axialkraft:	$F_{a4} \coloneqq F_{a3} = 1.652 \ kN$	

Es werden hier nur die Beträge der Kräfte aufgeführt, die Orientierungen der Kräfte werden in den Berechnungen der Lagerkräfte passend (d.h entgegengesetzt) angenommen (siehe Freischnitte & Schnittverläufe der drei Wellen).

Lagerkräfte Antriebswelle

Freischnitt der Antriebswelle:

Wirkabstände:

$$X_1 := 33 \ \mathbf{mm}$$

$$X_1 \coloneqq 33 \ mm$$
 $X_2 \coloneqq 26.5 \ mm$

$$B_{Y1} \coloneqq \frac{F_{R1} \cdot X_1 + F_{a1} \cdot \frac{d_{T1}}{2}}{\left(X_1 + X_2\right)} = 0.626 \text{ kN}$$

$$B_{Z1} := \frac{F_{t1} \cdot X_1}{(X_1 + X_2)} = 0.827 \text{ kN}$$

$$A_{Y1} := F_{R1} - B_{Y1} = -0.049 \ kN$$

$$A_{Z1} := F_{t1} - B_{Z1} = 0.664 \ kN$$

$$A_{R1} := \sqrt[2]{A_{Y1}^2 + A_{Z1}^2} = 0.666 \ kN$$

$$B_{R1} := \sqrt[2]{B_{Y1}^2 + B_{Z1}^2} = 1.038 \text{ kN}$$

A ist das Festlager aufgrund der kleineren radialen Belastung $A_{R1} < B_{R1}$

$$A_{X1} := -F_{a1} = -0.543 \text{ kN}$$
 $B_{X1} := 0 \text{ kN}$

Schnittgrößenverläufe Antriebswelle

Berechnung für XY-Ebene:

$$s_{1max} \coloneqq X_1 = 33$$
 mm $s_{1min} \coloneqq 0$ mm $s_{2max} \coloneqq X_2 = 26.5$ mm $s_{2min} \coloneqq 0$ mm

positives Schnittufer:

$$F_N := -A_{X1} = 0.543 \ kN$$

$$F_{OY} := A_{Y1} = -0.049 \text{ kN}$$

$$M_{BZ}(x) \coloneqq A_{Y1} \cdot s_1$$
 $M_{BZmin}(x) \coloneqq A_{Y1} \cdot s_{1min} = 0 \ \textit{N} \cdot \textit{m}$ $M_{BZmax}(x) \coloneqq A_{Y1} \cdot s_{1max} = -1.602 \ \textit{N} \cdot \textit{m}$

negatives Schnittufer:

$$F_N = 0$$

$$F_{QY} := -B_{Y1} = -0.626 \ kN$$

$$M_{BZ}(x) \coloneqq B_{Y1} \cdot s_2$$
 $M_{BZmin}(x) \coloneqq B_{Y1} \cdot s_{2min} = 0$ $N \cdot m$

$$M_{BZmax}(x) \coloneqq B_{Y1} \cdot s_{2max} = 16.596 \ \textit{N} \cdot \textit{m}$$

Jade Hochschule Wilhelmshaven

Berechnung für XZ-Ebene:

positives Schnittufer:

$$F_{QZ} := A_{Z1} = 0.664 \ kN$$

$$M_{BY}(x) \coloneqq A_{Z1} \cdot s_1 \qquad \qquad M_{BYmin}(x) \coloneqq A_{Z1} \cdot s_{1min} = 0 \ \textbf{N} \cdot \textbf{m}$$

$$M_{BYmax}(x) \coloneqq A_{Z1} \cdot s_{1max} = 21.922 \ \textbf{N} \cdot \textbf{m}$$

negatives Schnittufer:

$$F_{QZ} := -B_{Z1} = -0.827 \text{ kN}$$

$$M_{BY}(x) \coloneqq B_{Z1} \cdot s_1$$
 $M_{BYmin}(x) \coloneqq B_{Z1} \cdot s_{2min} = 0 \ \textbf{N} \cdot \textbf{m}$ $M_{BYmax}(x) \coloneqq B_{Z1} \cdot s_{2max} = 21.922 \ \textbf{N} \cdot \textbf{m}$

$$M_{Bmax1} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 27.496 \ N \cdot m$$

$$\label{eq:mit_max} \text{mit} \quad M_{BYmax} \!=\! 21.922 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}} \quad \text{ und } \quad M_{BZmax} \!=\! 16.596 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}}$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Lagerkräfte Vorgelegewelle

Freischnitt Vorgelegewelle:

Wirkabstände:

$$X_3 = 36.5 \, mm$$
 $X_4 = 33 \, mm$ $X_5 = 49 \, mm$

$$X_{\Lambda} \coloneqq 33 \ \mathbf{mn}$$

$$X_5 \coloneqq 49 \ \boldsymbol{mm}$$

$$A_{Y2} := -F_{R2} - B_{Y2} - F_{R3} = 1.394$$
 kN

$$B_{Z2} := \frac{F_{t2} \cdot X_3 - F_{t3} \cdot (X_4 + X_5)}{X_4} = -9.628 \text{ kN}$$

$$A_{Z2} \coloneqq -F_{t2} - B_{Z2} - F_{t3} \equiv 3.598 \text{ kN}$$

$$A_{R2} := \sqrt[2]{{A_{Y2}}^2 + {A_{Z2}}^2} = 3.858 \text{ kN}$$

$$B_{R2} := \sqrt[2]{B_{Y2}^2 + B_{Z2}^2} = 10.325 \text{ kN}$$

 $A_{R2} < B_{R2}$ A ist das Festlager aufgrund der kleineren radialen Belastung

$$A_{X2} := F_{a3} - F_{a2} = 1.109 \text{ kN}$$
 $B_{X2} := 0 \text{ kN}$

Schnittgrößenverläufe Vorgelegewelle

$$s_{3max} \coloneqq X_3 = 36.5 \ mm$$

$$s_{3min} \coloneqq 0 \cdot mm$$

$$s_{4max} \coloneqq X_4 = 33 \ mm$$
 $s_{4min} \coloneqq 0 \ mm$

$$s_{4min} \coloneqq 0 \, \, \boldsymbol{mm}$$

$$s_{5max} \coloneqq X_5 = 49 \ mm$$

$$s_{5min} = 0$$
 mm

Berechnung für XZ-Ebene:

1. positives Schnittufer:

$$F_N := F_{a2} = 0.543 \ kN$$

$$F_{QY} = -F_{R2} = -0.578 \text{ kN}$$

$$M_{BZ}(x)\!\coloneqq\!-F_{R2}\!\cdot\!s_3\!-\!F_{a2}\!\cdot\!\frac{d_{T2}}{2}$$

$$M_{BZmin}(x) \coloneqq -F_{R2} \cdot s_{3min} - F_{a2} \cdot \frac{d_{T2}}{2} = -61.528 \ N \cdot m$$

$$M_{BZmax}(x) \coloneqq -F_{R2} \cdot s_{3max} - F_{a2} \cdot \frac{\bar{d}_{T2}}{2} = -82.615 \ \textit{N} \cdot \textit{m}$$

Jade Hochschule Wilhelmshaven

2. positives Schnittufer:

$$F_N := F_{a2} - A_{X2} = -0.566 \ kN$$

$$F_{QY} \coloneqq -F_{R2} - A_{Y2} = -1.971 \text{ kN}$$

$$M_{BZ}(x) := F_{R2} \cdot (s_3 + s_4) - A_{Y2} \cdot s_3 - F_{a2} \cdot \frac{d_{T2}}{2}$$

$$\begin{split} M_{BZmin}(x) &\coloneqq F_{R2} \cdot \left(s_{3max} + s_{4min}\right) - A_{Y2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -91.306 \ \textit{N} \cdot \textit{m} \\ M_{BZmax}(x) &\coloneqq F_{R2} \cdot \left(s_{3max} + s_{4max}\right) - A_{Y2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -72.241 \ \textit{N} \cdot \textit{m} \end{split}$$

1. negatives Schnittufer:

$$F_N := F_{a3} = 1.652 \ kN$$

$$F_{OY} := F_{R3} = 1.758 \ kN$$

$$M_{BZ}(x) := -F_{R3} \cdot s_5 - F_{a3} \cdot \frac{d_{T3}}{2} = -61.528 \ \textit{N} \cdot \textit{m}$$

$$M_{BZmin}(x) := -F_{R3} \cdot s_{5min} - F_{a3} \cdot \frac{d_{T3}}{2} = -61.528 \ N \cdot m$$

$$M_{BZmax}(x) := -F_{R3} \cdot s_{5max} - F_{a3} \cdot \frac{d_{T3}}{2} = -147.668 \ \textit{N} \cdot \textit{m}$$

Berechnung der XZ-Ebene:

1. positives Schnittufer:

$$F_{QZ} = -F_{t2} = -1.492 \text{ kN}$$

$$M_{BY}(x) \coloneqq -F_{t2} \cdot s_3$$

$$M_{BYmin}(x) \coloneqq -F_{t2} \cdot s_{3min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

$$M_{BYmax}(x) \coloneqq -F_{t2} \cdot s_{3max} = -54.443 \ \mathbf{N} \cdot \mathbf{m}$$

2. positives Schnittufer:

$$F_{OZ} := A_{Z2} - F_{t2} = 2.106 \ kN$$

$$M_{BY}(x)\!\coloneqq\!-F_{t2}\!\cdot\!\left(s_3\!+\!s_4\right)\!+\!A_{Z2}\!\cdot\!s_4$$

$$M_{BYmin}(x) := -F_{t2} \cdot (s_{3max} + s_{4min}) + A_{Z2} \cdot s_{4min} = -54.443 \ \textbf{N} \cdot \textbf{m}$$

$$M_{BYmax}(x) := -F_{t2} \cdot (s_{3max} + s_{4max}) + A_{Z2} \cdot s_{4max} = 15.065 \ \textit{N} \cdot \textit{m}$$

1. negatives Schnittufer:

$$F_{QZ} = -F_{t3} = -4.539 \text{ kN}$$

$$M_{BY}(x) \coloneqq -F_{t3} \cdot s_5$$

$$M_{BYmin}(x) \coloneqq -F_{t3} \cdot s_{5min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

$$M_{BYmin}(x) \coloneqq -F_{t3} \cdot s_{5max} = -222.394 \ \textbf{N} \cdot \textbf{m}$$

$$M_{Bmax2} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 266.955 \ N \cdot m$$

mit
$$M_{BYmax} = -222.394 \ N \cdot m$$
und

$$M_{BZmax} = -147.668 \, \boldsymbol{N \cdot m}$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Schnittgrößenverläufe Abtriebswelle

Berechnung der XY-Ebene:

$$s_{6max} \coloneqq X_6 = 41.5 \ mm$$

$$s_{6min}\!\coloneqq\!0~\boldsymbol{mm}\qquad s_{7max}\!\coloneqq\!X_7\!=\!52~\boldsymbol{mm}$$

$$s_{7min} \coloneqq 0 \ \boldsymbol{mm}$$

positives Schnittufer:

$$F_N = 0$$

$$F_{QY} \coloneqq A_{Y3} = 2.928 \text{ kN}$$

$$M_{BZ}(x) \coloneqq A_{Y3} \cdot s_6$$
 $M_{BZmin}(x) \coloneqq A_{Y3} \cdot s_{6min} = 0 \ \textit{N} \cdot \textit{m}$ $M_{BZmax}(x) \coloneqq A_{Y3} \cdot s_{6max} = 121.527 \ \textit{N} \cdot \textit{m}$

$$F_N := B_{X3} - F_B = 1.652 \ kN$$

$$F_{QY} = -B_{Y3} = 1.17 \ kN$$

$$\begin{split} M_{BZ}(x) \coloneqq & B_{Y3} \bullet s_7 & M_{BZmin}(x) \coloneqq & B_{Y3} \bullet s_{7min} = 0 \ \textit{N} \bullet \textit{m} \\ & M_{BZmax}(x) \coloneqq & B_{Y3} \bullet s_{7max} = -60.861 \ \textit{N} \bullet \textit{m} \end{split}$$

Berechnung der XZ-Ebene:

positives Schnittufer:

$$F_{OZ} := A_{Z3} = 2.524 \ kN$$

$$M_{BY}(x) \coloneqq A_{Z3} \cdot s_6$$

$$M_{BYmin}(x) \coloneqq A_{Z3} \cdot s_{6min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

 $M_{BYmax}(x) \coloneqq A_{Z3} \cdot s_{6max} = 104.753 \ \boldsymbol{N} \cdot \boldsymbol{m}$

negatives Schnittufer:

$$F_{QZ} = -B_{Z3} = -2.014 \text{ kN}$$

$$M_{BY}(x) \coloneqq B_{Z3} \cdot s_7$$

$$M_{BYmin}(x) \coloneqq B_{Z3} \cdot s_{7min} = 0 \ \textbf{N} \cdot \textbf{m}$$

 $M_{BYmax}(x) \coloneqq B_{Z3} \cdot s_{7max} = 104.753 \ \textbf{N} \cdot \textbf{m}$

$$M_{Bmax3} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 121.15 \ N \cdot m$$

$$\label{eq:mit_max} \text{mit} \quad M_{BYmax} \!=\! 104.753 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}} \quad \text{und} \quad M_{BZmax} \!=\! -60.861 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}}$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

$v_1 := 3$ aufgrund von Rillenkugellager	
$a := 2000 \cdot \frac{1}{1}$ $d = 30 mm$	
$a_1 = 2000 \cdot \frac{1}{min}$ $d_{W1} = 30 $ mm	
Loslager	Festlager
$P_{1L} \coloneqq \left B_{R1} \right = 1.038 \ kN$	P_{1F} := 1.5 $ extit{kN}$
$c_{erf} := P_{1L} \sqrt[\nu_1]{\frac{n_1 \cdot 10000 \cdot hr}{10^6}} = 11.026 \ kN$	c_{erf} := P_{1F} $\sqrt[\nu_1]{rac{n_1 \cdot 10000 \cdot hr}{10^6}}$ = 15.94 kN
gewählt: 6006	gewählt: 6206
Berechnung Lagerlebensdauer Antriebs	welle
$c_{6006} \coloneqq 13.8 \; kN$	$c_{6206}\!\coloneqq\!20.3\; extbf{kN}\qquad c_{0.6206}\!\coloneqq\!11.2\; extbf{kN}$
$_{10h;6006} \coloneqq \frac{10^6}{n_1} \cdot \left(\frac{c_{6006}}{P_{1L}}\right)^{\nu_1} = 19606 \ \textit{hr}$	$\frac{\left A_{X1}\right }{A_{R1}} = 0.815$ $\frac{\left A_{X1}\right }{c_{0.6206}} = 0.048$
Gl. 14.5a	nach TB 14-3A
	$0.794 > e$ d.h. $X_{1F} := 0.56$
	$Y_{1F} \coloneqq 1.8$
	$P_{6206} := X_{1F} \cdot A_{R1} + Y_{1F} \cdot A_{X1} = 1.35 \text{ kN}$
	$l_{10h;6206}\!\coloneqq\!rac{10^6}{n_1}\!\cdot\!\left(\!rac{c_{6206}}{P_{6206}}\! ight)^{\! u_1}\!=\!28321$ hr

Jade Hochschule Wilhelmshaven

Vorauswahl Lagergrößen Vorgelegewelle $n_2 \coloneqq \frac{2000 \cdot \frac{1}{min}}{i_{12}} = 591.549 \frac{1}{min}$ $d_{W2} = 40 \ mm$ Loslager Festlager $P_{2L} = 11.269 \$ **kN** $P_{2F} \coloneqq 10 \ \mathbf{kN}$ $c_{erf} \coloneqq P_{2L} \sqrt[\nu_1]{\frac{n_2 \cdot 10000 \cdot hr}{10^6}} = 79.787 \text{ kN} \qquad c_{erf} \coloneqq P_{2F} \sqrt[\nu_1]{\frac{n_2 \cdot 10000 \cdot hr}{10^6}} = 70.802 \text{ kN}$ gewählt: NU 308 gewählt: NUP 308 Berechnung Lagerlebensdauer Vorgelegewelle $\nu_2 = \frac{10}{3}$ aufgrund von Rollenlager $c_{NU308} = 93 \text{ kN}$ $c_{NUP308} = 93 \text{ kN}$ $\frac{A_{X2}}{A_{B2}} = 0.287$ Gl. 14.5a nach TB 14-3A 0.079 < e d.h. $X_{NUP308} = 1$ $Y_{NIIP308} \coloneqq 0$ $P_{NUP308} := X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2}$ $P_{NUP308} = 3.858 \text{ kN}$ $l_{10h1F} := \frac{10^6}{n_1} \cdot \left(\frac{c_{6206}}{P_{6206}}\right)^{\nu_2} = 69899 \ hr$

2000 1				
$n_3 \coloneqq \frac{2000 \cdot \frac{1}{min}}{i_{qes}} = 1$	00.550	4 _ 55		
$n_3 = \frac{1}{i_{ges}}$	99.559 —— min	$a_{W3} = 55$	mm	
Loslager			Festlager	
$P_{3L} := A_{R3} = 3.866 $ k.	V		P_{3F} := 10 kN	
$c_{erf} \coloneqq P_{3L} \bigvee^{ u_1} \sqrt{rac{n_3 \cdot 100}{100}}$	$000 \cdot hr = 19.05$	55 <i>kN</i>	$c_{erf} \coloneqq P_{3F} \bigvee_{r=1}^{ u_1} \int_{r=1}^{r}$	$\frac{n_3 \cdot 10000 \cdot hr}{10^6} = 49.288 \ kN$
10 J	O^6			106
gewählt: 6011			gewählt: 6311	
Berechnung Lage	rlebensdauer	Abtriebsw	elle	
$c_{6011} = 29.6 \ kN$			$c_{6311}\!\coloneqq\!74.1~$ kJ	$c_{0;6311}\!:=\!45~{\it kN}$
$l_{10h;6011}\!\coloneqq\!rac{10^6}{n_3}\!\cdot\!\left(\!rac{c_{601}}{P_{3.}}\! ight.$	$\left(\frac{11}{L}\right)^{\nu_1} = 37483 ha$	r	$\frac{B_{X3}}{B_{R3}}$ = 1.997	$rac{B_{X3}}{c_{0;6311}}$ = 0.103
Gl. 14.5a			nach TB 14-3A	A
			1.879>e d.h	$X_{6311}\!\coloneqq\!0.56$
				$Y_{6311} = 1.4$
			$P_{6311}\!\coloneqq\! X_{6311}$.	$B_{R3} + Y_{6311} \cdot B_{X3} = 7.817$ kN
			106	$(c_{e211})^{\nu_1}$
			$l_{10h1F} := \frac{10}{m} \cdot $	$\frac{-6311}{R}$ = 71129 hr
			$l_{10h1F}\coloneqq \frac{10}{n_3} \cdot \left($	$\left(\frac{c_{6311}}{P_{6311}}\right)^{ u_1} = 71129 \; m{hr}$
Übersicht der gew	rählten Lager		$l_{10h1F} = \frac{10}{n_3} \cdot \left($	$\left(\frac{r_{6311}}{P_{6311}}\right) = 71129 \ hr$
Übersicht der gew				
		ensdauer	Festlager Lebe	nsdauer
Welle	Loslager Leb		Festlager Lebe	
Übersicht der gew Welle Antriebswelle Vorgelegewelle	Loslager Leb	pensdauer (hr)	Festlager Lebe	nsdauer (hr)

Jade Hochschule Wilhelmshaven

Festigkeitsnachweise

Material der Wellen: 42CrMo4

$$R_m \coloneqq 1100 \ \frac{N}{mm^2} \qquad R_{p0.2} \coloneqq 900 \ \frac{N}{mm^2} \qquad R_z \coloneqq 6 \ \mu m$$

$$R_{p0.2} = 900 \frac{N}{mm^2}$$

$$R_z = 6 \ \mu m$$

$$\sigma_{bWN} = 550 \; rac{N}{mm^2} \qquad au_{tWN} = 330 \; rac{N}{mm^2}$$

$$\tau_{tWN} = 330 \frac{N}{mm^2}$$

Einflussfaktoren (gelten für alle drei Wellen gleich):

Oberflächenverfestigung:

$$K_V = 1.2$$

$$K_{O\sigma} \coloneqq 1 - 0.22 \log \left(\frac{R_z}{1 \ \mu m}\right) \cdot \left(\log \left(\frac{R_m}{20 \ \frac{N}{mm^2}}\right) - 1\right) = 0.873$$

$$K_{O\tau} := 0.575 \cdot K_{O\sigma} + 0.425 = 0.927$$

Antriebswelle

$$d_{W1} = 30 \ mm$$

Aufgrund der Passfederverbindung wird der Querschnitt der Antriebswelle aufgrund der Kerbwirkung geschwächt

$$t_{1:W1} \coloneqq 4$$
 mm

 $d_1 \coloneqq d_{W1} - t_{1:W1} = 26 \ mm$

Schwachstelle der Antriebswelle befindet sich beim Zahnrad_1 (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsn	achweis	nach Bild 3.30	
vorhandene Spannung	en:		
$W_{B1} \coloneqq 0.012 \cdot \left(d_{W1} + a\right)$	$\binom{1}{1}^3 = (2.107 \cdot 10^3) \ mm^3$	$W_{T1} = 0.2 \cdot d_1^{-3} = (3.8)$	$515 \cdot 10^3$) mm^3
$M_{Bmax1} = 27.496 \ N \cdot n$	2	$M_{tmax1}\!\coloneqq\!50~ extbf{ extit{N}}\!\cdot\! extbf{ extit{m}}$	
$\sigma_{bmax1} \coloneqq \frac{M_{Bmax1}}{W_{B1}} = 13$	$.047 \frac{N}{mm^2}$	$ au_{tmax1} \coloneqq \frac{M_{tmax1}}{W_{T1}} = 14$	$1.224 \frac{N}{mm^2}$
Technologischer Größe	eneinflussfaktor: $K_{t1} \coloneqq 1$ –	$-0.26 \log \left(\frac{d_1}{16 \ \mathbf{mm}} \right) = 0.$	945
Bauteilfestigkeit:			TB 3-11a
$\sigma_{bF1} \coloneqq 1.2 \cdot R_{p0.2} \cdot K_{t1}$	$=1020.792 \frac{N}{mm^2}$		
$\boldsymbol{\tau}_{TF1} \coloneqq 1.2 \boldsymbol{\cdot} R_{p0.2} \boldsymbol{\cdot} \frac{K_{t1}}{\sqrt[2]{3}}$	$=589.355 \frac{N}{mm^2}$		
Gesamtsicherheit:	$S_{F1} \coloneqq rac{1}{\sqrt[2]{\left(rac{\sigma_{bmax1}}{\sigma_{bF1}} ight)^2 + \left(rac{\sigma_{bmax1}}{\sigma_{bF1}} ight)^2}}$	$\frac{\tau_{tmax1}}{\tau_{TF1}}\right)^2 = 36.616$	
	$S_{F1} \! > \! S_{Fmin}$ Die A	ntriebswelle ist statisch	fest
	$ \qquad mit S_{Fmin} \!\coloneqq\! 2 nach $	TB3-14b	

Jade Hochschule Wilhelmshaven

Dynamischer Festigkeitsnachweis vorhandene Spannungen: $\sigma_{ba1} \! \coloneqq \! \frac{K_{\!A} \! \cdot \! M_{Bmax1}}{W_{\!B1}} \! = \! 26.095 \; \frac{N}{mm^2}$ $\tau_{ta1} \coloneqq \frac{K_A \cdot M_{tmax1}}{W_{T1}} = 28.448 \frac{N}{mm^2}$ $\sigma_{bm1} = 0 \; rac{N}{mm^2}$ $au_{tm1}\!\coloneqq\!0\;rac{ extbf{ extit{N}}}{ extbf{ extit{mm}}^2}$ vereinfachte Berechnung siehe S.73 Einflussfaktoren: Technologischer Größeneinflussfaktor: $K_{T1} = 1 - 0.26 \log \left(\frac{d_1}{16 \ mm} \right) = 0.945$ Kerbwirkungszahl: $\beta_{KB1} \coloneqq 2.5$ TB 3-09b $\beta_{KT1} \coloneqq 2.3$ $K_{G1} \coloneqq 1 - 0.2 \; rac{\log\left(rac{d_1}{7.5 \; mm} ight)}{\log\left(20 ight)} = 0.917$ Geometrische Größeneinflussfaktor: TB 3-11c Gesamteinflussfaktor/ Konstruktionsfaktor: $K_{DT1} \coloneqq \left(\frac{\beta_{KT1}}{K_{C1}} + \frac{1}{K_{O\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.156 \quad K_{DB1} \coloneqq \left(\frac{\beta_{KB1}}{K_{C1}} + \frac{1}{K_{O\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.393$ Gl. 3.16 Gestaltwechselfestigkeit: $\sigma_{bGW1} \coloneqq K_{T1} \cdot \frac{\sigma_{bWN}}{K_{DB1}} = 217.251 \frac{N}{mm^2} \qquad \tau_{tGW1} \coloneqq K_{T1} \cdot \frac{\tau_{tWN}}{K_{DT1}} = 144.694 \frac{N}{mm^2}$ $S_{D1} \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba1}}{\sigma_{ta1}}\right)^2 + \left(\frac{\tau_{ta1}}{\tau_{ta1}}\right)^2}} = 4.34$ Gesamtsicherheit: $S_{D_erf} \coloneqq 1.5$ $S_{D1} > S_{D,erf}$ Die Antriebswelle ist dauerfest

Jade Hochschule Wilhelmshaven

Vorgelegewelle

$$d_{W2} = 40 \ \boldsymbol{mm}$$

$$t_{1:W2} = 2.5 \ \boldsymbol{mm}$$

$$d_2 = d_{W2} - t_{1:W2} = 37.5 \ mm$$

Schwachstelle der Vorgelegewelle befindet sich beim Loslager (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsnachweis

nach Bild 3.30

vorhandene Spannungen:

$$W_{B2} := \frac{\pi}{32} \cdot d_{W2}^3 = (6.283 \cdot 10^3) \ mm^3$$

$$W_{T2} = \frac{\pi}{16} \cdot d_{W2}^{3} = (1.257 \cdot 10^{4}) \ \textit{mm}^{3}$$

$$M_{Bmax2} = 266.955 \ N \cdot m$$

$$M_{tmax2} = 50 \ N \cdot m \cdot i_{12} = 169.048 \ N \cdot m$$

$$\sigma_{bmax2} \coloneqq \frac{M_{Bmax2}}{W_{B2}} = 42.487 \ \frac{\textit{\textbf{N}}}{\textit{\textbf{mm}}^2}$$

$$au_{tmax2} \coloneqq \frac{M_{tmax2}}{W_{T2}} = 13.452 \frac{N}{mm^2}$$

Technologischer Größeneinflussfaktor: $K_{t2} = 1 - 0.26 \, \log \left(\frac{d_2}{16 \, \textit{mm}} \right) = 0.904$

TB 3-11a

Bauteilfestigkeit:

$$\sigma_{bF2} \coloneqq 1.2 \cdot R_{p0.2} \cdot K_{t2} = 976.129 \frac{N}{mm^2}$$

$$au_{TF2} \coloneqq 1.2 \cdot R_{p0.2} \cdot \frac{K_{t2}}{\sqrt[2]{3}} = 563.568 \cdot \frac{N}{mm^2}$$

$$S_{F2} \coloneqq \frac{1}{\sqrt[2]{\left(\frac{\sigma_{bmax2}}{\sigma_{bF2}}\right)^2 + \left(\frac{\tau_{tmax2}}{\tau_{TF2}}\right)^2}} = 20.144$$

$$S_{F2} {>} S_{Fmin}$$

Die Antriebswelle ist statisch fest

$$\mathsf{mit} \quad S_{Fmin} \coloneqq 2$$

nach TB3-14b

Jade Hochschule Wilhelmshaven

Dynamischer Festigkeitsnachweis vorhandene Spannungen: $\sigma_{ba2} \coloneqq \frac{K_A \cdot M_{Bmax2}}{W_{B2}} = 84.974 \frac{N}{mm^2}$ $au_{ta2} \coloneqq \frac{K_A \cdot M_{tmax2}}{W_{T2}} = 26.905 \ \frac{N}{mm^2}$ $\sigma_{bm2} = 0 \; \frac{N}{mm^2}$ $au_{tm2} \coloneqq 0 \; rac{ extbf{\textit{N}}}{ extbf{\textit{mm}}^2}$ vereinfachte Berechnung siehe S.73 Einflussfaktoren: Technologischer Größeneinflussfaktor: $K_{T2} = 1 - 0.26 \log \left(\frac{d_2}{16 \ \textit{mm}} \right) = 0.904$ Kerbwirkungszahl: $\beta_{KB2} = 2.9$ $\beta_{KT2} = 1.9$ TB 3-09b Geometrische Größeneinflussfaktor: $K_{G2} = 1 - 0.2 \frac{\log\left(\frac{d_2}{7.5 \ mm}\right)}{\log(20)} = 0.893$ Gesamteinflussfaktor/ Konstruktionsfaktor: $K_{DT2} := \left(\frac{\beta_{KT2}}{K_{C2}} + \frac{1}{K_{C2}} - 1\right) \cdot \frac{1}{K_{V}} = 1.839$ $K_{DB2} := \left(\frac{\beta_{KB2}}{K_{C2}} + \frac{1}{K_{C2}} - 1\right) \cdot \frac{1}{K_{V}} = 2.829$ Gl. 3.16 Gestaltwechselfestigkeit: $\sigma_{bGW2} := K_{T2} \cdot \frac{\sigma_{bWN}}{K_{DB2}} = 175.745 \frac{N}{mm^2}$ $\tau_{tGW2} := K_{T2} \cdot \frac{\tau_{tWN}}{K_{DT2}} = 162.147 \frac{N}{mm^2}$ $S_{D2} := \frac{1}{\sqrt[2]{\left(\frac{\sigma_{ba2}}{\sigma_{bGW2}}\right)^2 + \left(\frac{\tau_{ta2}}{\tau_{tGW2}}\right)^2}} = 1.956$ Gesamtsicherheit: $S_{D_erf} \coloneqq 1.5$ $S_{D2} > S_{D\ erf}$ Die Vorgelegewelle ist dauerfest

Abtriebswelle

 $d_{W3} = 55 \ mm$

Aufgrund der Passfederverbindung wird der Querschnitt der Antriebswelle aufgrund der

 $t_{1:W3} = 6 \ \boldsymbol{mm}$

Kerbwirkung geschwächt

$$d_3 = d_{W3} - t_{1:W3} = 49 \ mm$$

Schwachstelle der Abtriebswelle befindet sich beim Zahnrad_4 (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsnachweis

nach Bild 3.30

vorhandene Spannungen:

$$W_{B3}\!\coloneqq\!0.012\!ullet\! \left(d_{W3}\!+\!d_3
ight)^3 =\! \left(1.35\!ullet\! 10^4
ight)\,m{mm}^3$$

$$W_{T3} = 0.2 \cdot d_3^3 = (2.353 \cdot 10^4) \ mm^3$$

$$M_{Bmax3} = 121.15 \ N \cdot m$$

$$M_{tmax3} = 50 \, N \cdot m \cdot i_{ges} = 501.105 \, N \cdot m$$

$$\sigma_{bmax3} \coloneqq \frac{M_{Bmax3}}{W_{B3}} = 8.975 \ \frac{\textit{N}}{\textit{mm}^2}$$

$$\boldsymbol{\tau_{tmax3}} \coloneqq \frac{\boldsymbol{M_{tmax3}}}{\boldsymbol{W_{T3}}} = 21.297 \ \frac{\boldsymbol{N}}{\boldsymbol{mm}^2}$$

Technologischer Größeneinflussfaktor: $K_{t3} = 1 - 0.26 \log \left(\frac{d_3}{16 \text{ mm}} \right) = 0.874$

TB 3-11a

Bauteilfestigkeit:

$$\sigma_{bF3} := 1.2 \cdot R_{p0.2} \cdot K_{t3} = 943.51 \frac{N}{mm^2}$$

$$au_{TF3} \coloneqq 1.2 \cdot R_{p0.2} \cdot \frac{K_{t3}}{\sqrt[2]{3}} = 544.736 \frac{N}{mm^2}$$

$$S_{F3} := \frac{1}{\sqrt[2]{\left(\frac{\sigma_{bmax3}}{\sigma_{bF3}}\right)^2 + \left(\frac{\tau_{tmax3}}{\tau_{TF3}}\right)^2}} = 24.853$$

$$S_{F3} > S_{Fmin}$$

Die Antriebswelle ist statisch fest

mit
$$S_{Fmin} = 2$$
 nach TB3-14b

Dynamischer Festigkeitsnachweis vorhandene Spannungen: $\sigma_{ba3} \coloneqq \frac{K_A \cdot M_{Bmax3}}{W_{B3}} = 17.95 \frac{N}{mm^2}$ $\tau_{ta3} \coloneqq \frac{K_A \cdot M_{tmax3}}{W_{T3}} = 42.593 \; \frac{\textit{N}}{\textit{mm}^2}$ $\sigma_{bm3} = 0 \frac{N}{mm^2}$ $au_{tm3}\!\coloneqq\!0\;rac{ extbf{ extit{N}}}{ extbf{ extit{mm}}^2}$ vereinfachte Berechnung siehe S.73 Einflussfaktoren: Technologischer Größeneinflussfaktor: $K_{T3} = 1 - 0.26 \log \left(\frac{d_3}{16 \ mm} \right) = 0.874$ Kerbwirkungszahl: $\beta_{KB3} = 2.5$ TB 3-09b $\beta_{KT3} = 2.3$ Geometrische Größeneinflussfaktor: $K_{G3} \coloneqq 1 - 0.2 \frac{\log\left(\frac{d_3}{7.5 \ \textit{mm}}\right)}{\log(20)} = 0.875$ Gesamteinflussfaktor/ Konstruktionsfaktor: $K_{DT3} \coloneqq \left(\frac{\beta_{KT3}}{K_{C3}} + \frac{1}{K_{O\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.257 \qquad K_{DB3} \coloneqq \left(\frac{\beta_{KB3}}{K_{C3}} + \frac{1}{K_{O\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.503$ Gl. 3.16 Gestaltwechselfestigkeit: $\sigma_{bGW3} := K_{T3} \cdot \frac{\sigma_{bWN}}{K_{DB3}} = 191.986 \frac{N}{mm^2}$ $\tau_{tGW3} := K_{T3} \cdot \frac{\tau_{tWN}}{K_{DT3}} = 127.748 \frac{N}{mm^2}$ $S_{D3} := \frac{1}{\sqrt{\left(\frac{\sigma_{ba3}}{\sigma_{toryo}}\right)^2 + \left(\frac{\tau_{ta3}}{\tau_{toryo}}\right)^2}} = 2.888$ Gesamtsicherheit: $S_{D_erf} \coloneqq 1.5$ $S_{D3} > S_{D,erf}$ Die Abtriebswelle ist dauerfest

Fliehkraftkupplung	
Anzahl der Fliehkörper:	N_{FK} := 2
Schaltdrehzahl:	$n_S\!\coloneqq\!1400\!ullet\!rac{1}{min}$
Fliehkörpermasse:	$m_{FK}\coloneqq 0.5$ $m{kg}$
Reibdurchmesser:	$D_R \coloneqq 140 \; mm$
Haftreibwert:	$\mu_{0;FK}$:= 0.9
Fliehkörperschwerpunktradius:	r_{FK} := 50 mm
Gesamtfederkraft:	$F_F \coloneqq 25~m{N}$
Winkelgeschwindigkeit: $\omega_{FK} \coloneqq 2 \; \pi \cdot n_S \!=\! 146.608 \; \frac{1}{s}$ Fliehkraft: $F_{Flieh} \coloneqq m_{FK} \cdot r_{FK} \cdot \omega_{FK}^2 = 537.345 \; I$	N
Kontaktkraft: $F_{N;FK}\!\coloneqq\!F_{Flieh}\!-\!F_F\!=\!512.345~\textbf{\textit{N}}$	
Reibkraft an einem Fliehkörper: $F_{R;FK}\!\coloneqq\!\mu_{0;FK}\!\bullet\!F_{N;FK}\!=\!461.111~\textbf{\textit{N}}$	
Reibmoment: $M_{R;FK}\!\coloneqq\!N_{FK}\!\cdot\!F_{R;FK}\!\cdot\!\frac{D_R}{2}\!=\!64.555~I$	$N \cdot m$

Schmierstoffberechnung	
Ölstand soll bis zur unteren Zahnradstufe (Zahnräder 3 & 4) reichen	
Kraft-Geschwindigkeits-Faktor (für Stirnradgetriebe):	
$f_{t,0} = \begin{pmatrix} F_{t3} & i_{23} + 1 \end{pmatrix}$ 1 $f_{t,0} = \begin{pmatrix} F_{t3} & i_{23} + 1 \end{pmatrix}$ 1	$MPa \cdot s$
$k_{-}v := \left(3 \cdot \frac{F_{t3}}{b_{3} \cdot d_{T3}} \cdot \frac{i_{23} + 1}{i_{23}}\right) \cdot \frac{1}{\pi \cdot d_{T3} \cdot \frac{n_{an}}{i_{aes}}} = 5.71 \cdot \frac{kg}{mm^{2} \cdot s} \qquad k_{-}v = 5.71 \cdot \frac{kg}{mm^{2} \cdot s}$	m
$\pi \cdot a_{T3} \cdot rac{}{i_{qes}}$	
	Gl.20-2
CLP 150 wird als Schmieröl verwendet	
OL. 150 Wild die Schmierer verwerdet	TB 20-7a
CLP 150 nach DIN 51517; Viskositätsklasse 150, d.h. bei	
40°C hat das Öl eine kinematische Viskosität im Bereich	
von 135 bis 165 mm^2/s	