Class 7: Machine Learning

Edwin Ruiz (PID: A17136339)

Today we will begin our multi-part exploration of some key machine learning methods. We will begin with clustering - finding groupings in data, and then dimensionallity reduction.

Clustering

Let's start with "k-means" clustering The main function in base R for this kmeans().

```
## Make up data
hist(rnorm(100000, mean = 3))
```

Histogram of rnorm(1e+05, mean = 3)


```
tmp <- c(rnorm(30, -3), rnorm(30, +3))
x <- cbind(x = tmp, y=rev(tmp))
plot(x)</pre>
```


Now let's try out kmeans()

```
km <- kmeans(x, center = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 3.103932 -2.998233
2 -2.998233 3.103932
```

Clustering vector:

Within cluster sum of squares by cluster:

[1] 53.95715 53.95715 (between_SS / total_SS = 91.2 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

\$class

- [1] "kmeans"
 - Q. How many points in each cluster?

km\$size

- [1] 30 30
 - Q. What components of your result object details cluster assignment/membership?

km\$cluster

- - Q. What are centers/mean values of each cluster?

km\$centers

- x y 1 3.103932 -2.998233
- 2 -2.998233 3.103932
 - Q. Make a plot of your data showing your clustering results

```
plot(x, col= c(1,6))
```



```
plot(x, col = km$cluster)
points(km$centers, col = "green", pch=15, cex=3)
```


Q. Run kmeans() again and cluster in 4 groups and plot the results

```
km2 <- kmeans(x, center = 4)
plot(x, col= km2$cluster)</pre>
```


Hierchical Clustering

This form of clustering aims to reveal the structure of the data by progressively grouping points into a even smaller number of clusters.

The main function in base R for this is called hclust(). This function does not take out input data directly but want a "distant matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust(dist(x))</pre>
```

The print out of hc is not very useful (unlike that from k means) but there is a useful plot() method

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my tree using the function $\mathtt{cutree}()$

```
grps <- cutree(hc, h=10)

plot(x, col = grps)</pre>
```


Principle Component Analysis (PCA)

The goal of PCA is to reduce the dimensionality of a dataset dwon to some subset of new variables (called PCs) that are useful bases for further analysis, like visualization, clustering, etc.

Lets do a PCA of UK food data

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	X	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033

8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
c(nrow(x), ncol(x))
```

[1] 17 5

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
barplot(as.matrix(x), beside=T, col = rainbow(nrow(x)))
```


The so-called "pairs" plot can be useful for small datasets

```
pairs(x, col=rainbow(nrow(x)), pch=16)
```


This plot is useful for small datasets but it can be lots of work to interpret and gets untraceable for larger datasets.

So PCA to the rescue!

The main function to fo PCA in base R is called prcomp()

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        3.176e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

```
$class
[1] "prcomp"
```

```
pca$x
```

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

A major PCA result viz is called a "PCA plot" (aka a score plot, biplot, PC1 vs PC2 plot, ordination plot)

Another important outut from PCA is called the "loadings" vector or the "rotation" component - this tells us how much the original variables (the foods in this case) contribute to the new PCs

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.103508492
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.316290619
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001847469

PCA loos to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.