### 实验10 三极管9013的伏安特 性测量

- 一、实验目的:
  - 1、学习三极管9013基极b,集电极c,发射极e的判别。
  - 2、学习PNP管和NPN管的判别。
  - 3、学习硅(Si)、锗(Ge)管的判别。
  - 4、三极管9013的伏安特性曲线测量。

#### 二、实验原理:

利用二极管的伏安特性图,可以判断二极管的阳极和阴极,根据导通电压可以判断二极管的类型(Si, Ge)。



### 三极管的结构示意和图形符号



双极晶体管(Bipolar Junction Transistor, 简称BJT) 常简称为晶体管 (晶体三极管、三极管)。属于电流控制型器件("CCCS")

### 各种三极管的图片

#### 三极管型号及管脚排列

9013——NPN管 9012——PNP管





### 三极管的输入和输出特性曲线



$$i_{\mathrm{B}} = f(u_{\mathrm{BE}})\Big|_{U_{\mathrm{CE}} = \sharp \mathfrak{B}}$$

输入特性曲线



$$i_{\rm C} = f(u_{\rm CE})\Big|_{I_{\rm B}={\rm rm}}$$
输出特性曲线

- 三、实验设备
  - 1、实验箱
  - 2、万用表
  - 3、示波器
  - 4、信号源
  - 5、9013
  - 6、直流电源



# 9013的插法



# 电源



输出两路 独立直流 电源的接 线方法。

主要用于 9013的实 验,导线 箱里有1米 长的导线



直流电源1 0-30V连续可调

直流电源3 0-5V连续可调

#### 四、实验内容:

- 1、用万用表的 → 档判别出任意一个三极管的基极 b。 判别该三极管 的类型(Si管、Ge管, NPN管、PNP管)。
- 2、用万用表的  $h_{FE}$ 档测出任意一个三极管的直流电流放大系数  $\overline{\beta}$  (即  $h_{FE}$ )。判别出该三极管的发射极 e 、集电极 e 。 (根据 放大工作状态为 202 ,倒置工作状态为 13 )。

- 3、三极管的伏安特性测量—示波器、
  - ("间接测量法"测量电流、 "逐点测量法"测量伏安特性)
- (1) 反相器 电子开关
  - 2个直流电压源的作用:

 $V_{
m RR}$  — 基极偏置电源(或 供电电源)。

 $V_{
m CC}$  — 集电极偏置电源(或 供电电源)。



| $I_{\rm B} =$ | $rac{oldsymbol{V_{	ext{BB}}} - oldsymbol{V_{	ext{BE}}}}{oldsymbol{R}_{	ext{b}}}$ |
|---------------|-----------------------------------------------------------------------------------|
| $I_{\rm C} =$ | $rac{m{V}_{ m CC} - m{V}_{ m CE}}{m{R}_{ m c}}$                                  |

| 测试条件                    |                     |                          | 实测值                         |                      |                                                 |
|-------------------------|---------------------|--------------------------|-----------------------------|----------------------|-------------------------------------------------|
| 例 风杂件                   | $V_{ m BE}({ m V})$ | $I_{\rm B}(\mu {\rm A})$ | $V_{\text{CE}}(\mathbf{V})$ | $I_{\rm C}({ m mA})$ | $\overline{eta}$ (即 $\mathbf{h}_{	extbf{FE}}$ ) |
| $V_{ m BB}$ = $0{ m V}$ |                     |                          |                             |                      |                                                 |
| $V_{\mathrm{BB}}$ =+15V |                     |                          |                             |                      |                                                 |

- 3、三极管的伏安特性测量—示波器、
  - ("间接测量法"测量电流、 "逐点测量法"测量伏安特性)
- (2) 输入伏安特性测量
- a) 根据测量结果绘制 输入伏安特性曲线。

$$i_{\mathrm{B}} = f(u_{\mathrm{BE}})\Big|_{U_{\mathrm{CE}} = \sharp \mathfrak{B}}$$



- 3、三极管的伏安特性测量——示波器、
  - ("间接测量法"测量电流、 "逐点测量法"测量伏安特性)
- (3) 输出特性曲线
- a) 根据测量结果绘制 输出伏安特性曲线
- b)分析 $V_{CE}$ 增大时  $V_{RE}$  是增大还是减小?
- c)分析 $V_{CE}$ 增大时  $\beta$  值的变化。





| 测试条件 | 实测值                 |                          |                             |                      |                                         |
|------|---------------------|--------------------------|-----------------------------|----------------------|-----------------------------------------|
| 侧风矛件 | $V_{ m BE}({ m V})$ | $I_{\rm B}(\mu {\rm A})$ | $V_{\text{CE}}(\mathbf{V})$ | $I_{\rm C}({ m mA})$ | $_{eta}$ (即 $\mathbf{h}_{	extbf{FE}}$ ) |
|      |                     |                          |                             |                      |                                         |
|      |                     |                          |                             |                      |                                         |
|      |                     |                          |                             |                      |                                         |
|      |                     |                          |                             |                      |                                         |
|      |                     |                          |                             |                      |                                         |
|      |                     |                          |                             |                      |                                         |

- 3、三极管的伏安特性测量—示波器、
  - ("<mark>间接测量法"</mark>测量电流、 "逐点测量法"测量伏安特性)
- (3) 输出特性曲线
- a) 根据测量结果绘制 输出伏安特性曲线。
- b)分析 $V_{CE}$ 增大时  $V_{RE}$  是增大还是减小?
- c)分析 $V_{CE}$ 增大时  $\beta$  值的变化。

$$\overline{\beta} \approx I_{\rm C}/I_{\rm B}$$



#### 五、实验仿真:

#### 1、输入伏安特性仿真

$$i_{\mathrm{B}} = f(u_{\mathrm{BE}})\Big|_{U_{\mathrm{CE}} = \mathrm{fl} \mathfrak{A}}$$

#### 测量条件:

a) 
$$U_{CE} = 0V$$

**b**) 
$$U_{CE} = 5V$$



$$U_{CE} = 0V$$

| V <sub>BB</sub> (V) | VBE(V) | l <sub>B</sub> (uA) |
|---------------------|--------|---------------------|
|                     |        |                     |
|                     |        |                     |
|                     |        |                     |
|                     |        |                     |
|                     |        |                     |
|                     |        |                     |
|                     |        |                     |
|                     |        |                     |
|                     |        |                     |

#### $U_{CE} = 5V$

| V <sub>BB</sub> (V) | VBE(V) | lв(uA) |
|---------------------|--------|--------|
|                     |        |        |
|                     |        |        |
|                     |        |        |
|                     |        |        |
|                     |        |        |
|                     |        |        |
|                     |        |        |
|                     |        |        |
|                     |        |        |

#### 2、输出伏安特性仿真

$$i_{\rm C} = f(u_{\rm CE})\Big|_{I_{\rm B}=\sharp \mathfrak{B}}$$

#### 测量条件:

**a)** 
$$I_B = 10uA$$

**b)** 
$$I_B = 40uA$$



$$I_B = 10uA$$

| $I_{B}$ | =40uA | L |
|---------|-------|---|
|---------|-------|---|

| Vcc(V) | VCE(V) | lc(mA) |
|--------|--------|--------|
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |

| Vcc(V) | VCE(V) | lc(mA) |
|--------|--------|--------|
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |

#### 附录: 双极型三极管

三极管的种类很多,主要分双极型和场效应两大类。

做从用途上分,三极管包括低频三极管、高频三极管、开 关三极管等;其功耗大于等于1W属于大功率管,小于1W的属 于小功率管。

#### 附录:三极管的主要参数

- ightharpoonup  $P_{CM}$ : 集电极最大允许功率损耗。
- ◆ I<sub>CM</sub>:集电极最大允许电流。
- ◆ T<sub>iM</sub>: 最大允许结温。
- **◆ R<sub>T</sub>:** 热阻。
- lacktriangle  $V_{CEO}$ : 基极开路时集电极—发射极之间的电压。
- ◆ V<sub>CBO</sub>: 发射极开路时集电极—基极之间的电压。
- ◆ V<sub>EBO</sub>: 集电极开路时发电极—基极之间的电压。
- $\bullet$   $V_{BEon}$ :
- ◆ V<sub>CEsat</sub>:集电极—发射极之间的饱和压降。
- ◆ V<sub>REsat</sub>: 基极—发射极之间的饱和压降。
- ◆ I<sub>CBO</sub>: 发射极开路, CB(集电结)之间的反向饱和电流。
- ◆ I<sub>EBO</sub>:集电极开路,EB之间的反向饱和电流。
- $igchtar{igchtarpoonup}_{\mathrm{FE}}$ : 共发射极接法直流电流放大系数. 也称直流  $\overline{eta}$  。

### 附录: GS9013(NPN)三极管的参数

Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified

| Parameter                                    | Symbol | Value              | Unit |
|----------------------------------------------|--------|--------------------|------|
| Collector-Base Voltage                       | Vcво   | 40                 | V    |
| Collector-Emitter Voltage                    | Vceo   | 20                 | V    |
| Emitter-Base Voltage                         | Vebo   | 5                  | V    |
| Collector Current                            | IC     | 500                | mA   |
| Power Dissipation at T <sub>amb</sub> = 25°C | Ptot   | 625 <sup>(1)</sup> | mW   |
| Thermal Resistance Junction to Ambient Air   | ReJA   | 200 <sup>(1)</sup> | °C/W |
| Junction Temperature                         | Tj     | 150                | °C   |
| Storage Temperature Range                    | Ts     | –55 to +150        | °C   |

#### Notes:

(1) Valid provided that leads are kept at ambient temperature at a distance of 2mm from case.

### 附录: GS9013(NPN)三极管的参数

#### Electrical Characteristics (TJ = 25°C unless otherwise noted)

| Parameter                                         | Symbol   | Test Condition                              | Min                   | Тур  | Max                     | Unit         |
|---------------------------------------------------|----------|---------------------------------------------|-----------------------|------|-------------------------|--------------|
| Current Gain Group D<br>E<br>DC Current Gain<br>G | hee      | VcE = 1V, Ic = 50mA                         | 64<br>78<br>96<br>112 |      | 91<br>112<br>135<br>166 | _            |
| <u>H</u>                                          |          |                                             | 144                   | _    | 202                     | $\mathbb{H}$ |
|                                                   |          | VcE = 1V, Ic = 500mA                        | 40                    | 120  | _                       | <u> </u>     |
| Collector-Emitter Breakdown Voltage               | V(BR)CEO | $I_C = 1 \text{mA}, I_B = 0$                | 20                    | _    | -                       | V            |
| Collector-Base Breakdown Voltage                  | V(BR)CBO | Ic = 100μA, I <sub>E</sub> = 0              | 40                    | -    | -                       | V            |
| Emitter-Base Breakdown Voltage                    | V(BR)EBO | I <sub>E</sub> = 100μA, I <sub>C</sub> = 0  | 5                     |      |                         | ٧            |
| Collector Cut-off Current                         | Icbo     | V <sub>CB</sub> = 25V, I <sub>E</sub> = 0   | 1                     | -    | 100                     | nA           |
| Emitter Cut-off Current                           | IEBO     | V <sub>EB</sub> = 3V, I <sub>C</sub> = 0    | 1                     | -    | 100                     | nA           |
| Collector-Emitter Saturation Voltage              | VCE(sat) | Ic = 500mA, IB = 50mA                       | 1                     | 0.16 | 0.6                     | ٧            |
| Base-Emitter Saturation Voltage                   | VBE(sat) | Ic = 500mA, I <sub>B</sub> = 50mA           | _                     | 0.91 | 1.2                     | ٧            |
| Base-Emitter ON Voltage                           | VBE(on)  | V <sub>CE</sub> = 1V, I <sub>C</sub> = 10mA | 0.6                   | 0.67 | 0.7                     | V            |

下次预习:《电子技术基础实验教程》

实验13 基本运算电路设计 (P.320-324)