Adam Optimizer

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}.$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}.$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}.$$

$$0.999$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t.$$

$$\approx 0 \text{ [Extremely small]}$$

BOW, Naire Bayes

Training!	call	can	have	11	lakn	me	now	soring	ט	Will	No.20	-	<u> </u>
Sorry I'll call later	1	0	0	1	1	o	0	1	0	1	٥	9	
→ U can call me now		ı	0	6	0	-	1	0	1	-	6	-	
U have won call now!!	1	6	Ţ	0	0	•	1	۰)	0	1) Z	}

Testing

Cross Entropy loss:-

$$y \rightarrow Actual$$

Gain = \hat{y} . $(1-\hat{y})$
 $\hat{y} \rightarrow Predicted$

Loss = $-log_{e}\{\hat{y}^{y}.(1-\hat{y})\}$

Penformance Metrics

$$P_{+} = \frac{TP}{TP + FP}$$

$$P_{+} = \frac{TP}{TP + FP}$$
 $P_{-} = \frac{TN}{TN + FN}$

$$P_{+} = \frac{TP}{TP + FN}$$
 $P_{-} = \frac{TN}{FP + TN}$

$$\therefore f-1 = \frac{2}{\frac{1}{p} + \frac{1}{p}} = \frac{2}{\frac{R+p}{pR}} = \frac{2pR}{p+R}$$

Tenn-Tenn Co-occurance Matrin:-

Positive Pointvise Mutual Information (PPMI):-

max
$$\left(\log_2\left(\frac{P(\omega,c)}{P(\omega)\cdot P(c)}\right), 0\right) = PPMI(\omega,c)$$