INT202 Complexity of Algorithms Data Structures

XJTLU/SAT/INT SEM2 AY2020-2021

Data Structures: Rooted Trees

- A rooted tree, *T*, is a set of nodes which store elements in a parent-child relationship.
- T has a special node, r, called the root of T.
- ightharpoonup Each node of T (excluding the root node r) has a parent node.

Rooted trees: terminology

- If node *u* is the *parent* of node *v*, then *v* is a *child* of *u*.
- Two nodes that are *children* of the same *parent* are called *siblings*.
- A node is a *leaf* (external) if it has no children and internal otherwise
- A tree is *ordered* if there is a *linear* ordering defined for the *children* of each internal node (i.e. an internal node has a distinguished first child, second child, etc).

Binary Trees

- A binary tree is a rooted ordered tree in which every node has at most two children.
- A binary tree is *proper* if each internal node has *exactly two children*.
- Each *child* in a binary tree is labeled as either a *left child* or a *right child*.

Tree ADT Methods

Tree ADT access methods:

- root(): return the root of the tree.
- ightharpoonup parent of v.
- children(v): return links to v's children.

Tree ADT query methods:

- ightharpoonup is internal node.
- ightharpoonup is External(v): test whether v is external node.
- **▶** *isRoot(v)*: test whether *v* is the root.

Tree ADT Methods (cont.)

Tree ADT generic methods:

- size(): return the number of nodes in the tree.
- elements(): return a list of all elements.
- positions(): return a list of addresses of all elements.
- ightharpoonup swap Elements stored at positions u and v.
- replaceElements(v,e): replace element at address v with element e.

Depth of a node in a tree

The *depth* of a node, *v*, is number of ancestors of *v*, excluding *v* itself. This is easily computed by a recursive function.

Depth(T, v)

- **1 if** *T.isRoot*(*v*)
- 2 then return 0
- 3 else return 1 + DEPTH(T, T.parent(v))

Depth of a node in a tree

The *depth* of a node, *v*, is number of ancestors of *v*, excluding *v* itself. This is easily computed by a recursive function.

Depth(T, v)

- **1 if** *T.isRoot*(*v*)
- 2 then return 0
- 3 else return 1 + DEPTH(T, T.parent(v))

Height of a tree

The *height* of a tree is equal to the maximum depth of an external node in it. The following pseudo-code computes the height of the subtree rooted at *v*.

```
HEIGHT(T, v)
1 if ISEXTERNAL(\nu)
    then return 0
    else
       h = 0
       for each w \in T.CHILDREN(v)
5
6
           do
               h = MAX(h, HEIGHT(T, w))
       return 1 + h
8
```

Tree Traversal

- In a *traversal*, the goal is for the algorithm to visit all the nodes in the tree in some order and perform an operation on them.
- ► Traversal and Searching
- ▶ Binary trees have three kinds of traversals: preorder, postorder, and inorder.

Preorder traversal in trees

 A traversal visits the nodes of a Algorithm *preOrder(v)* tree in a systematic manner visit(v)In a preorder traversal, a node is for each child w of v visited before its descendants preorder (w) Application: print a structured document Make Money Fast! 1. Motivations 2. Methods References 2.3 Bank 2.1 Stock 2.2 Ponzi 1.2 Avidity 1.1 Greed Scheme Robbery Fraud

Preorder traversal in trees (cont.)

Preorder traversal in trees (cont.)

A call to *preorder(T,A)* would produce: A,B,C,D,E,F,G,H,I,J,K.

Postorder traversal of trees

- In a postorder traversal, a node is visited after its descendants.
- Application: compute space used by files in a directory and is sub-directions.

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

Postorder traversal in trees (cont.)

Postorder traversal in trees (cont.)

A call to postorder(T,A) would produce: D,E,C,F,B,I,J,H,K,G,A.

Inorder traversal in trees

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v

• y(v) = depth of v

Algorithm inOrder(v)

if hasLeft (v)

inOrder (left (v))

visit(v)

if hasRight (v)

inOrder (right (v))

Inorder traversal in trees (cont.)

A call to *inorder*(T,A) would produce: D,C,E,B,F,A,I,H,J,G,K.

Example: Parsing arithmetic expressions

Binary tree associated with an arithmetic expression

Each external node is a variable or a constant.

▶ Each *internal node* defines an *arithmetic operation* on its

two children.

Traversing the tree in inorder gives the valid *postfix* expression that represents this arithmetic calculation:

$$(2*(a-1)+(3*b))$$

Example: Parsing arithmetic expressions

Y = [(4+7)*6+(11-5)+3]*[(4+6)*8-3]

