$$7 = R(= 1000 \times 4 \times 10^{-6} = 4 \times 10^{-3} \text{ seconds}$$

$$9 = CV(1 - e^{-t/2}) = 3.03 \times 10^{-5} \text{ coulombs}$$

b)
$$i = \frac{dq}{dt}$$
 : $i = (^{2}VR(t - e^{-t/RC})$
 $i = ^{5.211} \times 10^{-7}$ amps

$$\frac{2}{q} = -iRC \quad \text{where } i = \frac{dq}{dt} \quad \text{therefor } q = -RC \frac{dq}{dt}$$

b.)
$$q = q \cdot e^{-\frac{t}{R}c}$$
 where $q \cdot = (V)$

$$q = (V) e^{-\frac{t}{R}c}$$

$$q' = \frac{V}{R} \left(\frac{-t}{R}c \right)$$

$$CVe^{-t/RC} = -RC(-\frac{V}{R}e^{-t/RC})$$
 $CVe^{-t/RC} = CVe^{-t/RC}$ They are the same

i =
$$\frac{-4}{RC}$$
 [assuming capacitor is fully charged, $q = -90$]

$$i = \frac{-40}{RC} = \frac{-4 \times 10^{-6} \times 12}{1000 \times 4 \times 10^{-6}} = 0.012 \text{ amps}$$

2.5~

$$-2.5I_{2} + 12 - 0.5I_{2} - 6I_{1} = 0$$
 $12 = 3I_{2} + 6I_{1}$
 $45 - 2I_{3} - 6I_{1} = 0$
 $45 = 2I_{3} + 6I_{1}$
 $I_{3} = I_{3} + 6I_{4}$

$$6I_1 + 3I_2 \circ = 12$$

 $6I_1 + 466 \circ 2I_3 = 45$
 $I_1 + I_2 + I_3 = 0$

$$I_1 = 9.25$$
 amps
 $I_2 = -14.5$ amps
 $I_3 = -5.25$ amps