Canjor link-rn

Introduction

Engr 315: Hardware / Software Codesign

Andrew Lukefahr *Indiana University*

Wartlist: see me Wartlist: class

Course Website

engr315.github.io

Write that down!

WARNING: Know Thy Foo()

- Python First few weeks
- C − 2nd week onward
- Verilog 3nd week onward

If you are not familiar with these, see me after class!

The goal

This class is <u>NOT</u> about computing.

This class is **NOT** about computing.

It's about computing *FAST*.

How can we make our computation FAST?

-) better/more data structures -7 · Caching - SW - do less work T'better" algorithm -> paraMelism-)
-> different (PUS
-> different (PUS
-> FP6A parallelism

- -) memory placement
- -) memory (acho (HW)
- -) make CPU Faster
- -) Pipelinio/000

How can we make our computation FAST?

• Do less work.

• Do work faster.

• Do work in parallel.

Doing less work?

Algorithmic complexity

- Languages:
 - Python vs. C++ vs. C/ASM

- Optimizing compiler
 - gcc -03

Yep. What else?

Do work faster?

Tried it. Next?

Do work in parallel?

Theoretical GB/s

When it works, it really works!

How to do work in parallel?

The primary goal of this class is:

Learn methods to accelerate applications

Especially using hardware!

The secondary goals of this class are:

• Find performance bottlenecks in applications

of the second of the sec

• Learn computer systems architectures!

We'll be using the Pynq-Z1

- System-on-Chip
 - SoC "S-O-C" or "Sock"
- Contains both FPGA and CPU

- Runs Linux
- http://www.pynq.io/

E315 assignments are all "optimizations"

• I give you a working software version.

- You need to:
 - a) Make it go faster
 - b) Make it run on hardware
 - c) (usually) both

About Me

Andrew Lukefahr, Assistant Professor

Office: 2032 Luddy Hall

Email: <u>lukefahr@Indiana.edu</u>

Office Hours: M/W 3-4pm

Research work on security for FPGA-based systems.

Email

• I treat email as "e"-mail, not instant massaging

• I bulk respond ~1 time / day. Sometimes ~1 time / 2 days.

Slack

• Can someone set this up? And add me?

WARNING: Know Thy Foo()

- Python First few weeks
- $C 2^{nd}$ week onward.
- Verilog 3nd week onward.

If you are not familiar with these, see me after class!

Course Website

engr315.github.io

Write that down!

Performance Profiling

How long does your code take to run?

Squared Values

```
1  def squares(n):
2    if n <= 1:
3        return [1]
4    else:
5        seq = squares(n-1)
6        seq.append(n*n)
7        return seq</pre>
```

```
for i in range(1,10):
    print (squares(i))

[1]
[1, 4]
[1, 4, 9]
[1, 4, 9, 16]
[1, 4, 9, 16, 25]
[1, 4, 9, 16, 25, 36]
[1, 4, 9, 16, 25, 36, 49]
[1, 4, 9, 16, 25, 36, 49, 64]
[1, 4, 9, 16, 25, 36, 49, 64, 81]
```

Measuring Execution Time

```
import time

start_time = time.time()

squares(10)
end_time = time.time()

# at the end of the program:
print("%f seconds" % (end_time - start_time))
```

0.000107 seconds

107 prsec

Measuring Execution Time

```
import time
import sys
sys.setrecursionlimit(21000)

start_time = time.time()
squares(20000)
end_time = time.time()

# at the end of the program:
print("%f seconds" % (end_time - start_time))
```

0.009825 seconds

How do we *reduce* that time?

```
1  def squares(n):
2    if n <= 1:
3        return [1]
4    else:
5        seq = squares(n-1)
6        seq.append(n*n)
7        return seq</pre>
```

How would we know <u>what</u> to optimize?

Code Profiling

• In software engineering, profiling ("program profiling", "software profiling") is a form of dynamic program analysis that measures, for example, the space (memory) or time complexity of a program, the usage of particular instructions, or the frequency and duration of function calls. Most commonly, profiling information serves to aid program optimization. [Wiki]

Profilers give us call-stack information about where the program is spending its time.

```
import cProfile
2 cProfile.run('squares(20000)')
       40002 function calls (20003 primitive calls) in 0.021 seconds
 Ordered by: standard name
 ncalls tottime percall
                         cumtime percall filename:lineno(function)
20000/1
          0.019
                   0.000
                            0.021
                                    0.021 <ipython-input-8-50d13c5dd8df>:1(squares)
          0.000 0.000
                          0.021
                                   0.021 <string>:1(<module>)
          0.000 0.000 0.021
                                   0.021 {built-in method builtins.exec}
                                    0.000 {method 'append' of 'list' objects}
  19999
         0.002
                  0.000
                           0.002
                                    0.000 {method 'disable' of 'lsprof.Profiler' objects}
          0.000
                   0.000
                            0.000
```

ncalls tottime percall cumtime percall filename: lineno(function)

ncalls: the total number of calls made to a function tottime: the total time taken by all calls to a function percall: time per function call (tottime / ncalls) cumtime: total time spend in this and sub-functions percall: total cumulative time / total time

filename:lineno (function): The name of the python function

What does this tell us?

```
symptom
  Cause
 ncalls tottime percall
                                  percall filename:lineno(function)
                          cumtime
20000/1
          0.019
                 0.000
                            0.021
                                     0.021 <ipython-input-8-50d13c5dd8df>:1(squares)
           0.000
                    0.000
                            0.021
                                     0.021 <string>:1(<module>)
           0.000
                                     0.021 {built-in method builtins.exec}
                   0.000
                            0.021
  19999
           0.002
                   0.000
                            0.002
                                     0.000 {method 'append' of 'list' objects}
                                     0.000 {method 'disable' of 'lsprof.Profiler' objects}
           0.000
                            0.000
                   0.000
```

Now, how do we *reduce* that time?

```
1  def squares(n):
2    if n <= 1:
3        return [1]
4    else:
5        seq = squares(n-1)
6        seq.append(n*n)
7        return seq</pre>
```

40002 function calls (20003 primitive calls) in 0.021 seconds

Ordered by: standard name

```
ncalls tottime percall cumtime percall filename: lineno(function)
          0.019
20000/1
                   0.000
                           0.021
                                    0.021 <ipython-input-8-50d13c5dd8df>:1(squares)
          0.000
                                    0.021 <string>:1(<module>)
                   0.000
                           0.021
          0.000
                   0.000
                           0.021
                                    0.021 {built-in method builtins.exec}
 19999
          0.002
                   0.000
                           0.002
                                    0.000 {method 'append' of 'list' objects}
                                    0.000 {method 'disable' of 'lsprof.Profiler' objects}
          0.000
                   0.000
                           0.000
```

Can we cut the recursion?

```
1  def squares(n):
2    if n <= 1:
3        return [1]
4    else:
5        seq = squares(n-1)
6        seq.append(n*n)
7        return seq</pre>
```

```
1  def squares2(n):
2    if n <= 1:
3        return [1]
4    else:
5        seq = []
6        for i in range(1,n):
7             seq.append(i*i)
8        return seq</pre>
```

```
import time
import sys
sys.setrecursionlimit(21000)

start_time = time.time()
squares(20000)
end_time = time.time()

# at the end of the program:
print("%f seconds" % (end_time - start_time))
```

0.009825 seconds

```
import time

start_time = time.time()

squares2(20000)

end_time = time.time()

# at the end of the program:

print("%f seconds" % (end_time - start_time))
```

0.004209 seconds

0.009825/0.004209 = 2.332.33x Faster!

Why was it faster?

```
import cProfile
2 cProfile.run('squares2(20000)')
       20003 function calls in 0.007 seconds
 Ordered by: standard name
 ncalls tottime
                percall
                         cumtime
                                  percall filename:lineno(function)
          0.005
                   0.005
                           0.006
                                    0.006 <ipython-input-21-5c6731cb3b0c>:1(squares2)
          0.000
                 0.000
                         0.007 0.007 <string>:1(<module>)
          0.000
                 0.000
                         0.007
                                    0.007 {built-in method builtins.exec}
                         0.002
         0.002
                0.000
                                    0.000 {method 'append' of 'list' objects}
  19999
          0.000
                 0.000
                           0.000
                                    0.000 {method 'disable' of 'lsprof.Profiler' objects}
```


What's missing?

Conclusion #1: Overheads to function calls!

Can we make it go even faster?

```
1  def squares2(n):
2    if n <= 1:
3        return [1]
4    else:
5        seq = []
6        for i in range(1,n):
7             seq.append(i*i)
8        return seq</pre>
```

```
import time

start_time = time.time()

squares2(20000)

end_time = time.time()

# at the end of the program:
print("%f seconds" % (end_time - start_time))
```

0.004209 seconds

Is there a way to remove list.append()?

Can we make it go even faster?


```
1  def squares2(n):
2    if n <= 1:
3        return [1]
4    else:
5        seq = []
6        for i in range(1,n):
7             seq.append(i*i)
8    return seq</pre>
```

```
import time

start_time = time.time()

squares2(20000)

end_time = time.time()

# at the end of the program:

print("%f seconds" % (end_time - start_time))
```

0.004209 seconds

```
import numpy as np
def squares3(n):

seq = np.zeros(n, dtype=np.int)
for i in range(1, n+1):
    seq[i-1] = i * i
return seq
```

```
import time

start_time = time.time()

squares3(20000)

end_time = time.time()

# at the end of the program:

print("%f seconds" % (end_time - start_time))
```

0.003960 seconds

```
import cProfile
cProfile.run('squares3(20000)')
```

5 function calls in 0.005 seconds

Ordered by: standard name

```
ncalls tottime
               percall
                        cumtime
                                percall filename:lineno(function)
         0.005
                 0.005
                         0.005
                                  0.005 <ipython-input-68-7272dceb0678>:2(squares3)
         0.000
               0.000
                       0.005
                                  0.005 <string>:1(<module>)
                                  0.005 {built-in method builtins.exec}
         0.000
               0.000 0.005
                                  0.000 {built-in method numpy.zeros}
         0.000
               0.000
                       0.000
         0.000
                0.000
                        0.000
                                  0.000 {method 'disable' of 'lsprof.Profiler' objects}
```

Next Time

• More on Profiling!

Introduction

Engr 315: Hardware / Software Codesign Andrew Lukefahr Indiana University

