- 13. Se
a $A \in \mathbb{R}^{m \times n}$ y $A = U \Sigma V^t$ una descomposición SVD. Demostrar:
 - a) $||Ax||_2/||x||_2$ se maximiza para $x=v_1$, con v_1 la primer columna de V.
 - b) $||A||_2 = \sigma_1$. Deducir que $||A||_2 = \sqrt{\rho(A^t A)^{\ddagger \ddagger}}$.
 - c) $||A||_F = \sqrt{\sum_{i=1}^n \sigma_i^2}$.
 - d) Si m = n y A es inversible, entonces $\kappa_2(A) = \sigma_1/\sigma_n$.
 - e) $\max_i |a_{ii}| \leq \sigma_1$.
 - ^{‡‡}Dada una matriz $B \in \mathbb{R}^{n \times n}$ se define el radio espectral de B como $\rho(B) = \max\{|\lambda| : \lambda \text{ autovalor de } B\}$.

$$\|A\|_2 = \sigma_1 = \sqrt{\rho(A^T A)}$$

$$\checkmark$$

Radio espectral:
$$P(A^TA) = \max\{1\lambda | con \lambda \text{ autovalor } A^TA\}$$

 $P(A^TA) = |\lambda_1| = \lambda_1 = \sigma_1^2 con \lambda_1 \text{ mayor autovalor en módulo}$

$$||A||_z = \max ||A \times ||_z > ||A \times ||_z con ||X||_z = 1$$

 $\times ||X||_z = 1$

$$= \sqrt{(A\hat{x})^{\mathsf{T}}A\hat{x}} = \sqrt{\hat{x}^{\mathsf{T}}A^{\mathsf{T}}A\hat{x}} = \sqrt{\lambda_1 z^{\mathsf{T}}z} = \sqrt{\lambda_1} = \sigma,$$

Sea
$$z \neq 0$$
 ty $A^TAz = \lambda_1 z$ y además $||z||_z = 1$.
Tomamos $\hat{x} = z$.

$$\|A\|_{Z} = \max \|Ax\|_{Z}$$

$$V_{1} \cdot V_{n} \text{ base orthormal } \times = \sum_{i=1}^{n} B_{i}V_{i}$$

$$\|x\|_{Z} = 1 \Rightarrow x^{T}x = 1 \Rightarrow \left[\sum_{j=1}^{n} B_{j}V_{j}\right]^{T} \cdot \sum_{i=1}^{n} B_{j}V_{j} = 1$$

$$\Rightarrow \sum_{j=1}^{n} B_{j}^{2} = 1 \text{ pues } V_{1} \cdot V_{n} \text{ orthormales}$$

$$\|Ax\|_{Z}^{2} = (Ax)^{T}Ax = x^{T}A^{T}Ax = \left[\sum_{j=1}^{n} B_{j}V_{j}^{T}\right] \cdot A^{T}A \cdot \left[\sum_{i=1}^{n} B_{j}V_{j}^{T}\right]$$

$$= \left[\sum_{j=1}^{n} B_{j}V_{j}^{T}\right] \cdot \left[\sum_{i=1}^{n} B_{j}A^{T}AV_{i}\right]$$

$$= \left[\sum_{j=1}^{n} B_{j}V_{j}^{T}\right] \cdot \left[\sum_{i=1}^{n} B_{j}A^{T}AV_{i}\right]$$

$$= \sum_{i=1}^{n} B_{j}^{2}\lambda_{i} \leq \sum_{j=1}^{n} B_{j}^{2}\lambda_{1} = \lambda_{1}$$

$$\lambda_{1} \leq \lambda_{1} \cdot V_{2}$$

$$\therefore \|Ax\|_{Z}^{2} \leq \lambda_{1} \Rightarrow \|Ax\|_{Z} \leq \sqrt{\lambda_{1}} = \sigma_{1}$$

$$\Rightarrow \|A\|_{Z} \leq \sigma_{1}$$

$$\begin{aligned} & \langle \mathcal{O} \rangle \\ \\$$