ARBITRARY WHEEL

August 24, 2021

Definitions:

- v_x Desired velocity of chasiss in the X axis
- v_y Desired velocity of chasiss in the Y axis
- ω Desired angular velocity of chasis
- W Half the horizontal distance betwen the modules
- L Half the vertical distance betwen the modules
- Δy_i Total displacement of the general module in the Y axis
- Δx_i Total displacement of the general module in the X axis
- v_i Calculated linear velocity for general module
- θ_i Calculated angle location for general module
- α_i General angle disposition from (W,0)

$$r = \sqrt{L^2 + W^2}$$

$$\alpha_0 = \arctan(\frac{L}{W})$$

$$\alpha_1 = \pi - \alpha_0$$

$$\alpha_2 = \pi + \alpha_0$$

$$\alpha_3 = -\alpha_0$$

Holonomic movement:

$$\frac{\underline{v} = (v_x \cdot t, v_y \cdot t)}{\theta_i = \arctan(\frac{v_y}{v_x})}$$

$$\theta_{i} = \arctan(\frac{v_{y}}{2})$$

$$v_i = \sqrt{v_y^2 + v_x^2}$$

Rotation Case:

$$\overline{\Delta y_i = r \cdot \sin(\omega \cdot t + \alpha_i) - r \cdot \sin(\alpha_i)}$$

$$\Delta x_i = r \cdot \cos(w \cdot t + \alpha_i) - r \cdot \cos(\alpha_i)$$

$$\theta_i = \arctan(\frac{\Delta y_i}{\Delta x_i})$$

$$\theta_i = \arctan(\frac{\Delta y_i}{\Delta y_i})$$

$$v_i = \sqrt{\Delta x_i^2 + \Delta y_i^2}$$

Combined Case:

$$\overline{\Delta x_i = v_x \cdot t + r \cdot \cos(\omega \cdot t + \alpha) - r \cdot \cos(\alpha_i)}$$

$$\Delta y_i = v_y \cdot t + r \cdot \sin(\omega \cdot t + \alpha) - r \cdot \sin(\alpha_i)$$

$$\theta_i = \arctan(\frac{\Delta y}{\Delta x})$$

$$\theta_i = \arctan(\frac{\Delta y}{\Delta x})$$

$$v_i = \sqrt{\Delta x_i^2 + \Delta y_i^2}$$

Figure 1: Swerve diagram