UniPlug-FPGA核心板(EP4CE22版本) 用户手册

https://github.com/WangXuan95

2021年9月

目录

1	简介	2
2	扩展IO说明	3
3	引脚分配表	4
4	相关软件与驱动	6
5	.qsf(Quartus项目配置文件)引脚约束	7
6	程序固化到配置闪存	8

1 简介

UniPlug-FPGA是一款体积小、低成本、易用、扩展性强的FPGA核心板。可以用作原型设计,或设计底板,添加DRAM、以太网、USB、ADC/DAC、音频、VGA、摄像头等外设,以完成定制化的功能。它的系统框图见图1。它拥有以下特点:

- FPGA 型号为Altera Cyclone IV EP4CE22E22, 拥有22kLE 的逻辑资源和594kbit 的内置存储。
- 集成USB-Blaster (FPGA下载调试器),不需要额外准备USB-Blaster 就能使用。
- 集成的外设包括:
 - USB-UART (CH340E), 用于和上位机通信。
 - 8MB SPI-flash (W25Q64) 用户闪存。
 - Micro SD 卡槽。
 - CAN PHY 芯片 (TJA1050), 用于CAN总线通信。
 - 3 个用户LED 灯。
- 三组扩展IO: IOA, IOB, 和IOC, 共43个普通IO。

注意: 烧写前需要把IOB 和IOC 的电源输入用跳线帽连接到任意电源上,否则FPGA 将无法成功上传程序。 详见下文"扩展IO说明"

图 1: UniPlug-FPGA核心板系统框图

2 扩展IO说明

扩展IO 如图2,包括3个双排2.54mm间距排针:IOA,IOB和IOC。其中:

- IOA 为固定3.3V 的7 个普通IO。
- IOB 可配置为18 个普通IO , 电平可用跳线配置为1.8V、2.5V 或3.3V 。
- IOC 可配置为18 个普通IO , 电平可用跳线配置为1.8V、2.5V 或3.3V 。

调整IOB 的电平的方法是用跳线帽将VIOB 连接到某一个电源电压上:

- IOB 的3,4 号引脚用跳线帽短接时, IOB 的电平=1.8V。
- IOB 的5,6 号引脚用跳线帽短接时, IOB 的电平=2.5V。
- IOB 的7.8 号引脚用跳线帽短接时, IOB 的电平=3.3V。

同理,调整IOC 的电平的方法是用跳线帽将VIOC 连接到某一个电源电压上:

- IOC 的3,4 号引脚用跳线帽短接时, IOC 的电平=1.8V。
- IOC 的5,6 号引脚用跳线帽短接时, IOC 的电平=2.5V。
- IOC 的7,8 号引脚用跳线帽短接时, IOC 的电平=3.3V。

注意:即使不用IOB和IOC,也需要把VIOB和VIOC用跳线帽连接到任意电平上,VIOB和VIOC不能悬空,否则FPGA将无法成功上传程序。

另外,如图2,IOB的1,2 号引脚的上方还有2 个引脚,它们是可选的5V 供电输入。可以给它们输入5V 来给核心板供电。核心板有二极管保护,外部供电和USB 供电不冲突,可以同时存在。

图 2: UniPlug-FPGA核心板扩展IO 示意图

3 引脚分配表

- 丰 1	۱.	FD	$^{\gamma}$ $^{\Lambda}$	台口目	脚分配
18			. T / \	11'1' 11	DAN / I HI I

	1X 1. F1 G			
外设	信号名称	FPGA 引脚号	电平	类型 (对于FPGA)
	EPCS_ASDO	PIN_6		
EPCS16	EPCS_NCS	PIN ₋₈		输出
FPGA 配置芯片	EPCS_DCLK	PIN_12	3.3V	输出
(配置闪存)	EPCS_DATA0	PIN ₋ 13		输入
	CLK27M	PIN 24	3.3V	输入
	UART_RX	PIN_23		 输入
USB 转串口	UART_TX	PIN_10	3.3V	输出
	FLASH_CS	PIN_87		 输出
W25Q64	FLASH_SCK PIN_105 FLASH_MOSI PIN_106			输出
SPI-flash			3.3V	输出
(用户闪存)	FLASH_MISO	PIN_89		输入
	SD_CLK	PIN_32		 输出
	SD_CMD	PIN ₋ 31	3.3V	双向
	SD_DAT0	PIN_33		双向
SD卡槽	SD_DAT1	PIN ₋ 80		双向
	SD_DAT2	PIN ₋ 28		双向
	SDDAT3	PIN ₋ 30		双向
	CAN_RX	PIN_76	0.017	输入
CAN PHY	$CAN_{-}TX$	$PIN_{-}77$	3.3V	输出
	LED0	PIN_100		输出
用户LED灯	LED1	$PIN_{-}7$	3.3V	输出
	LED2	PIN ₋ 11		输出
	IOA0	PIN_104		双向
	IOA1	PIN_103		双向
	IOA2	$PIN_{-}98$		双向
IOA	IOA3	PIN_99		双向
(扩展接口A)	IOA4	PIN86	PIN_86	
	IOA5	PIN83		双向
	IOA6	$PIN_{-}85$		双向

表 2: FPGA 的引脚分配 (续)

W +4-	戸口 カイ ム		ᅶᇽ	类型
外设	信号名称	FPGA 引脚号	电平	(对于FPGA)
	IOB0	PIN_42		双向
	IOB1	PIN_39		双向
	IOB2	$PIN_{-}44$		双向
	IOB3	$PIN_{-}43$		双向
	IOB4	$PIN_{-}49$		双向
	IOB5	$PIN_{-}46$		双向
	IOB6	$PIN_{-}51$		双向
	IOB7	$PIN_{-}50$		双向
	IOB8	$PIN_{-}60$		双向
	IOB9	$PIN_{-}59$		双向
	IOB10	$PIN_{-}65$		双向
IOB	IOB11	$PIN_{-}64$	用跳线调整	双向
(扩展接口B)	IOB12	$PIN_{-}67$	$1.8 \mathrm{V} / 2.5 \mathrm{V} / 3.3 \mathrm{V}$	双向
	IOB13	$PIN_{-}66$		双向
	IOB14	$PIN_{-}69$		双向
	IOB15	$PIN_{-}68$		双向
	IOB16	$PIN_{-}72$		双向
	IOB17	PIN_71		双向
	IOC0	$PIN_{-}144$		双向
	IOC1	$PIN_{-}143$		双向
	IOC2	$PIN_{-}142$		双向
	IOC3	PIN_141		双向
	IOC4	$PIN_{-}137$		双向
	IOC5	$PIN_{-}136$		双向
	IOC6	$PIN_{-}133$		双向
	IOC7	$PIN_{-}132$		双向
	IOC8	$PIN_{-}125$		双向
	IOC9	$PIN_{-}121$		双向
	IOC10	PIN_120		双向
IOC	IOC11	$PIN_{-}119$	用跳线调整	双向
(扩展接口C)	IOC12	$PIN_{-}115$	$1.8 \mathrm{V} / 2.5 \mathrm{V} / 3.3 \mathrm{V}$	双向
	IOC13	$PIN_{-}114$		双向
	IOC14	PIN_113		双向
	IOC15	$PIN_{-}112$		双向
	IOC16	PIN_111		双向
	IOC17	PIN_110		双向

4 相关软件与驱动

- Quartus 标准版或精简版 (需要版本号>11.0):
 - $-\ \mathtt{https://www.intel.cn/content/www/cn/zh/software/programmable/quartus-prime/download.html}$
 - Quartus 安装后会自带USB-blaster 驱动
- CH340&CH341 USB-UART 驱动 (用于进行UART通信,可选):
 - $-\ \mathtt{http://www.wch.cn/downloads/CH341SER_EXE.html}$
- Putty (用于进行UART通信,可选):
 - https://www.chiark.greenend.org.uk/~sgtatham/putty/

5 .qsf(Quartus项目配置文件)引脚约束

set_location_assignment PIN_24 -to CLK27M set_location_assignment PIN_100 -to LED[0] set_location_assignment PIN_7 -to LED[1] set_location_assignment PIN_11 -to LED[2] set_location_assignment PIN_10 -to UART_TX set_location_assignment PIN_23 -to UART_RX set_location_assignment PIN_6 -to EPCS_ASDO set_location_assignment PIN_8 -to EPCS_NCS set_location_assignment PIN_12 -to EPCS_DCLK set_location_assignment PIN_13 -to EPCS_DATAO set_location_assignment PIN_87 -to FLASH_CS set_location_assignment PIN_105 -to FLASH_SCK set_location_assignment PIN_106 -to FLASH_MOSI set_location_assignment PIN_89 -to FLASH_MISO set_location_assignment PIN_28 -to SD_DAT[2] set_location_assignment PIN_30 -to SD_DAT[3] set_location_assignment PIN_31 -to SD_CMD set_location_assignment PIN_32 -to SD_CLK set_location_assignment PIN_33 -to SD_DAT[0] set_location_assignment PIN_80 -to SD_DAT[1] set_location_assignment PIN_77 -to CAN_TX set_location_assignment PIN_76 -to CAN_RX set_location_assignment PIN_104 -to IOA[0] set_location_assignment PIN_103 -to IOA[1] set_location_assignment PIN_98 -to IOA[2] set_location_assignment PIN_99 -to IOA[3] set_location_assignment PIN_86 -to IOA[4] set_location_assignment PIN_83 -to IOA[5] set_location_assignment PIN_85 -to IOA[6] set_location_assignment PIN_42 -to IOB[0] set_location_assignment PIN_39 -to IOB[1] set_location_assignment PIN_44 -to IOB[2] set_location_assignment PIN_43 -to IOB[3] set_location_assignment PIN_49 -to IOB[4] set_location_assignment PIN_46 -to IOB[5] set_location_assignment PIN_51 -to IOB[6] set_location_assignment PIN_50 -to IOB[7] set_location_assignment PIN_60 -to IOB[8] set_location_assignment PIN_59 -to IOB[9] set_location_assignment PIN_65 -to IOB[10] set_location_assignment PIN_64 -to IOB[11] set_location_assignment PIN_67 -to IOB[12] set_location_assignment PIN_66 -to IOB[13] set_location_assignment PIN_69 -to IOB[14] set_location_assignment PIN_68 -to IOB[15] set_location_assignment PIN_72 -to IOB[16] set_location_assignment PIN_71 -to IOB[17] set_location_assignment PIN_144 -to IOC[0] set_location_assignment PIN_143 -to IOC[1] set_location_assignment PIN_142 -to IOC[2] set_location_assignment PIN_141 -to IOC[3] set_location_assignment PIN_137 -to IOC[4] set_location_assignment PIN_136 -to IOC[5] set_location_assignment PIN_133 -to IOC[6] set_location_assignment PIN_132 -to IOC[7] set_location_assignment PIN_125 -to IOC[8] set_location_assignment PIN_121 -to IOC[9] set_location_assignment PIN_120 -to IOC[10] set_location_assignment PIN_119 -to IOC[11] set_location_assignment PIN_115 -to IOC[12] set_location_assignment PIN_114 -to IOC[13] set_location_assignment PIN_113 -to IOC[14] set_location_assignment PIN_112 -to IOC[15] set_location_assignment PIN_111 -to IOC[16] set_location_assignment PIN_110 -to IOC[17]

6 程序固化到配置闪存

这节我们介绍如何把程序固化到EPCS16(配置闪存芯片),这样就能永久保留FPGA 程序。因为UniPlug-FPGA的烧写电路只支持JTAG 方式,不支持AS 方式。所以只能用jlc文件来烧录配置闪存芯片。

我们首先需要将sof文件转换为jic文件,如图3。

图 3: 转换sof文件到jic 文件的步骤

第一步: 打开一个项目,确保[项目目录]/output_files文件夹下已经有一个编译好的sof文件(若没有则需要编译工程)。在工具栏中打开File->Convert Programming Files,弹出一个窗口。

第二步:指定文件类型、文件名和flash芯片类型。选择Programming file type 为.jic; Configuration device为EPCS16 (这是UniPlug-FPGA上的配置闪存的型号);最后指定File name为"output_files/[项目名称].jic"。实际上jic文件名可以随便起,但笔者建议它与项目同名,并应该存放在项目目录下的output_files文件夹下,与sof文件存放在一起。

第三步:选择FPGA型号。点击下方Flash Loader,再点击右边Add Device,在弹出的框里的左侧选择Cyclone IV E,再在右侧选择EP4CE22(这是UniPlug-FPGA上的FPGA型号),然后点OK,完成FPGA型号选择

第四步:选择待转换的sof文件。点击下方的SOF Data,再点击右边的Add File,在弹出的框里选择之前编译生成的sof文件(一般sof存放路径是[项目目录]/output_files/[项目名称].sof)。选择好sof后点击Open,最后点击Generate,看到成功提示后,点Close关闭窗口。然后可以在[项目目录]/output_files/中找到jic文件。

有了jic文件,我们可以向配置闪存中烧录它,如图4。

第一步: 首先连接开发板到电脑,在Quartus软件上方点击Program ,在打开的烧录选项里,正确地选择USB-Blaster。

第二步: 删除之前的sof烧录选项(如果有的话),点选sof文件并点击delete。

第三步:添加jic文件。与添加sof的方法一样,点击Add File...,选择之前生成的.jic 文件,点击Open。

第四步: 烧录。在右侧勾选上Program/Configure, 然后点击Start, 右上角进度条开始运行。烧录jic大概需要15秒时间(比烧录sof慢得多)。完成后会有成功提示,此时你必须**重新插拔开发板**,它才会运行烧录的jic程序。

图 4: 烧录jic文件的步骤