475 SPRING 2025 PROBLEM SET #5

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dxdy$, and evaluate this double integral by switching to polar coordinates r, θ . **Problem 1.** Compute the integral $\int_{-\infty}^{\infty} e^{-x^2} dx$. Hint: relate this to the double integral

Problem 2. Use Cauchy's theorem¹ to show that $\int_C f(z)dz = 0$ when C is the unit circle in the complex plane (with either orientation) and f is given by

- (a) $f(x) = \frac{z^2}{z-3}$ (b) $f(z) = ze^{-z}$ (c) $f(z) = \frac{1}{z^2+2z+2}$ (d) $f(z) = \operatorname{sech}(z)$
- (e) $f(z) = \tan(z)$
- (f) f(z) = Log(z+2).

Problem 3. Let C_1 be the square $\{x = \pm 1, y = \pm 1\}$ with side length 2 centered at the origin, and let C_2 be the circle of radius 4 centered at the origin, both with counterclockwise orientation. Explain why we have $\inf_{C_1} f(z)dz = \int_{C_2} f(z)dz$, where

- (a) $f(z) = \frac{1}{3z^2 + 1}$ (b) $f(z) = \frac{z + 2}{\sin(z/2)}$ (c) $f(z) = \frac{z}{1 e^z}$.

Problem 4. Show that we have

$$\int_{0}^{\infty} e^{-x^{2}} \cos(2bx) dx = \frac{\sqrt{\pi}}{2} e^{-b^{2}}.$$

for b > 0. More precisely, compute this integral by applying Cauchy's theorem to the function $f(z) = e^{-z^2}$ over the rectangle with vertices -a, a, a + bi, -a + bi and take the limit $a \to \infty$. Hint: if you get stuck follow the outline in Brown and Churchill (9th edition) section 53 problem 4.

Problem 5. Show that if C is a positively oriented simple closed contour, then the area of the region encloded by C can be written as

$$\frac{1}{2i} \int_C \overline{z} dz.$$

Hint: try applying Green's theorem as we did in the proof of Cauchy's theorem in the case that f'(z) is continuous.

¹Note that this is also sometimes called the Cauchy-Gorsat theorem, e.g. in Brown and Churchill.