

North Carolina Department of Transportation
Division of Highways
Statewide Planning Branch

ASHEVILLE URBAN AREA THOROUGHFARE PLAN

APRIL 1996

1994 THOROUGHFARE PLAN FOR THE

ASHEVILLE URBAN AREA

Prepared By:

The Statewide Planning Branch of the Division of Highways of the North Carolina Department of Transportation

In Cooperation With:

The Ashevillve Urban Area Metropolitan Organization

The Federal Highway Administration of the United States Department of Transportation

N.C. DOCUMENTS CLEARINGHOUSE

JUN 6 1996

N.C. STATE LIBRARY RALEIGH

Persons Responsible for This Report:

Manager, Statewide Planning Branch: Thoroughfare Planning Engineer: Project Engineer: Engineering Technician: Marion R. Poole, Ph.D., P.E. Deborah Hutchings, P.E. Kimberly Drew Hinton Jim Neely

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	THOROUGHFARE PLANNING PRINCIPLES	
	Basic Principles	5
	Purpose of Planning	
	Efficiency	
	System Efficiency	
	Functional Classification	
	Local Access Streets	6
	Minor Thoroughfare System	6
	Major Thoroughfare System	6
	Operational Efficiency	6
	Idealized Major Thoroughfare System	9
	Radial	10
	Loop	10
	Bypass	10
	Application of Thoroughfare Planning Principles	10
3.	1994 ADOPTED THOROUGHFARE PLAN RECOMMENDATIONS	
	Special Note	11
	Special Note	11
	Freeways.	15
	Major Thoroughfare	20
	Upgrades	20
	TIP Projects	21
	No Improvements	
	Minor Thoroughfare	21
	Upgrades	23
	TIP Projects	23
	No Improvements	23
	Major Investment Study	24
4.	MODEL DEVELOPMENT	
	Trends and Assumptions	25
	Planning Area	27
	Traffic Analysis Zones	27
	Road Network	28
	Screenlines	28
	Growth Factors	31
	Population	31
	•	

Socioeconomic Data Collection	32
Socioeconomic Data Projection	32
Walking, Carpooling, and Transit	33
Walking	33
Carpooling	33
Transit	33
5. DEFICIENCY ANALYSIS	
Existing Road Network	35
1989 Travel on the Existing Road Network	35
Problem Areas	
1. Smokey Park Bridge	36
2. CBD	36
3. Biltmore Village Area	37
4. Merrimon Avenue	37
5. US 25 in Fletcher	38
6. Two lane Facilities	38
2020 Travel on the Existing+Committed	46
VII. IMPLEMENTATION	
Methods to Protect Adopted Thoroughfare Plan	
Subdivision Control	47
Future Street Line Ordinance	48
Zoning	48
Redevelopment	48
Municipal Service Districts	48
Capital Improvement Programs	49
Development Reviews	49
Roadway Corridor Official Man.	49

APPENDICES

		Page
APPE	NDIX A: Asheville Urban Area Street Inventory	A-1
	NDIX B: Travel Model Analysis	
	Overview	B-1
	Trip Generation	B-1
	Internal Trip	
	External and Thru Trip	
	Transit Trip	B-6
	Car/Vanpooling Trip	
	Results I	
APPE	NDIX C: Transit Propensity Ratings	C-1
	NDIX D: Capacity Analysis	
	NDIX E: Design Requirements	
	Thoroughfare Cross Section	E-1
	Subdivision Ordinances	
	Design Standards	E-11
	LIST OF TABLES	
- 1	Population and Socioeconomic Estimates	
2	Current and Projected Vechicle Occupancy Rates	33
3	Existing Capacity Deficiency - Severe	
4	Existing Capacity Deficiency - Heavy	44
5	Existing Capacity Deficiency - Moderate	45
B-1	Trip Percentages by Purpose	
B-2	Dwelling Unit Trip Generation Rates - Daily	
B-3	Results of Trip Generation Analysis	
	LIST OF FIGURES	
1	Geographical Location	3
2	Idealized Thoroughfare Plan	7
3	1994 Asheville Urban Area Thoroughfare Plan	
4	Asheville Planning Area	29
5	Existing Road Capacity Deficiencies - 1989	39
6	Capacity Deficiencies Year 2020	41
D1	Levels of Service.	D-3
E1	Cross Sections	D-5

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

1. INTRODUCTION

This report describes the update of the Asheville Urban Area Thoroughfare Plan. The thoroughfare plan is intended to provide the State of North Carolina and the urban area guidance in the development of a transportation system sufficient for travel demands through year 2020. The Asheville Urban Area is nestled in the Smokey Mountains in the western part of the state. The urban area consists of the City of Asheville; the Towns of Biltmore Forest, Black Mountain, Fletcher, Montreat, Weaverville, and Woodfin; and most of Buncombe County. Figure 1 shows the Asheville area in relation to the rest of the State. The previous thoroughfare plan was adopted on January 6, 1975. Thoroughfare plan updates in urban areas are generally needed every five to ten years. The update to the Asheville plan began in 1989.

Transportation plays a vital role in the development of an area. The needs of business, industrial, and residential communities are supported by the transportation system. The purpose of a thoroughfare plan is to assess the needs of these communities and provide a safe, efficient, and economical transportation system for the present and future.

In this report, transportation encompasses various modes of transportation - single occupant automobiles, carpooling, transit, walking, and biking are all discussed and where appropriate, are a part of the solution to the various deficiencies in the area. The major emphasis is on improving the street network for automobile use as that is how the majority of travelers choose to meet their transportation needs.

The system of thoroughfares proposed follows the basic Principles of Thoroughfare Planning as described in Chapter 2 of the report. There are many benefits to be derived from thoroughfare planning. The primary objective is to enable major thoroughfares to be progressively developed that will adequately service future traffic demands. The location of thoroughfares depends on field investigation, aerial photos, existing and anticipated land uses, and topographic conditions. It also considers the travel concerns of the community and its public representatives.

Major benefits to be derived from thoroughfare planning are:

- (a) A minimum amount of land will be required for street and highway purposes.
- (b) Local citizens will be aware of the streets which will be developed as major thoroughfares and thus will have assurance that their residential street will not become a major traffic carrier.
- (c) Land developers can design their subdivisions so that subdivision streets will function in a safe and efficient manner.

It should be emphasized that the thoroughfare plan is based on anticipated growth and current trends of the planing area. Actual growth rates and patterns may differ somewhat from

those logically anticipated. Prior to construction of specific projects, a more detailed study will be required to reconsider development trends, specific locations, design requirements, and environmental needs.

Due to the geographical configuration of the area and distance, separate plans were completed for Black Mountain/Montreat and Weaverville. These plans were adopted on March 11, 1991 and April 9, 1991 respectively. Separate reports were also done for each of the areas.

Finally, the public and environmental agency input that has gone into the update of this thoroughfare plan has been thorough and extensive. The Asheville Urban Area is especially noted in North Carolina for its commitment to public involvement. In addition, as part of this thoroughfare plan, a pilot project effort with the Federal Highway Administration to improve current environmental planning processes was done. The report titled, Phase I Environmental Analysis Approach, for the pilot project is available from:

Asheville Planning Department Post Office Box 7148 Asheville, NC 28802

GEOGRAPHIC LOCATION FOR

ASHEVILLE MPO NORTH CAROLINA

MOUTADOL DIHPAHOOED

DENCE STREET

2. THOROUGHFARE PLANNING PRINCIPLES

This chapter explains the basic principles and the purpose of transportation planning. System and operational efficiency are also defined. Finally, the idealized thoroughfare plan system is described.

Basic Principles

The urban street system typically occupies 25 to 30 percent of the total developed land in the urban area. Since the system is permanent and expensive to build and maintain, much care and foresight are needed in its development. Thoroughfare planning is the process used by public officials to assure the development of the most logical and appropriate street system to meet future travel desires. The major steps involved in the thoroughfare planning process are:

- (1) Collection of data concerning existing physical development and travel desires (origin, destination, and mode of travel) within the area.
- (2) Development of a (computer) model which reflects present travel desires.
- (3) **Prediction of future socioeconomic data**, and computation of future travel desires using the computer model.
- (4) Evaluation of the adequacy of the existing street system in serving present and future travel.
- (5) Formulation of the best thoroughfare plan, on the basis of travel demand, economic benefits, and environmental considerations, to meet future travel desires.
- (6) Development of construction priorities for plan implementation.
- (7) Implementation of the plan.

Purpose of Planning

There are many benefits to be gained from thoroughfare planning, but the primary objective is to assure that the street system will be progressively developed in such a manner as to adequately serve future travel desires. Thus, the cardinal concept of thoroughfare planning is that provisions be made for street and highway improvements so that as needs arise, feasible opportunities to make improvements exist.

Some of the benefits derived from thoroughfare planning are:

- (1) Each street can be designed to perform a specific function. This permits savings in right-of-way and construction costs, and encourages stability in travel and land use patterns.
- (2) Local officials and citizens are informed as to future improvements. Public facilities can be better located, and damage to property and appearance can be minimized (for example: buildings and plants can be located to permit future street widening).

- (3) Residents will know which streets will be developed as major thoroughfares and be able to make an informed decision when choosing a home.
- (4) City officials will know when improvements will be needed and can schedule funds accordingly.

Efficiency

The improvement of the efficiency of existing facilities can be achieved through the improving of the system and operational efficiency of thoroughfares.

System efficiency can reduce travel distances, time, and cost. Improvements in system efficiency can be achieved through the concept of functional classification of streets and development of a coordinated major street system.

Functional Classification - Streets perform two primary functions - they provide **traffic** service and land service. These two functions are basically incompatible. The conflict is not serious if both traffic and land service demands are low, but when traffic volumes are high, conflicts created by intense land service demands result in **congestion**. The thoroughfare plan provides a functional system of streets which permits travel with directness, ease, and safety. Different streets in the system are designed to perform specific functions thus minimizing the traffic and land service conflict. Figure 2 illustrates the relationship between traffic service and land service. Streets can be categorized as: local access streets, minor thoroughfares or major thoroughfares.

Local Access Streets provide access to abutting property. They are not intended to carry heavy volumes of traffic and should be located such that only traffic with origins or destinations on the streets would be served. Their function is to provide access. Depending upon the type of land use which they serve, local access streets may be further classified as residential, commercial, and/or industrial.

Minor Thoroughfares are important streets in the city system. They collect traffic from local access streets and carry it to the major thoroughfare system. They may, in some instances, supplement the major thoroughfare system by aiding minor through movements. A third function which may be performed is that of providing access to abutting property. They should be designed to serve limited areas so that their development as major thoroughfares will be prevented.

Major Thoroughfares are the primary traffic arteries of the city. Their function is to move intra-city and inter-city traffic. Streets which comprise the major thoroughfare system should not serve abutting property. Their major function is to carry traffic. Major thoroughfares may range from two lane streets to expressways with six or more traffic lanes. As a general rule, parking should not be permitted on major thoroughfares.

Operational Efficiency increases the capability of the street to carry vehicular traffic and people. In terms of vehicular traffic, a street's capacity is defined as "the maximum number of

vehicles which can pass a given point on a roadway during a given time period under prevailing roadway and traffic conditions." Capacity is affected by the physical features of the roadway, nature of traffic, and weather.

Physical ways to improve vehicular capacity include street widening, intersection improvements, improving the vertical and horizontal alignment, eliminating road-side parking and eliminating property access points.

Operational ways to improve street capacity include:

- (1) Control of access A roadway with complete access control can carry over two times the traffic handled by a non-controlled access street.
- (2) Parking removal Increases capacity by providing additional street width for traffic flow and reducing friction to flow caused by parking operations.
- (3) One-way operation The capacity of a street can be up to 50%, depending upon turning movements and overall street width, by initiating one-way traffic operations. One-way streets can also improve traffic flow by decreasing potential traffic conflicts and simplifying traffic signal coordination.
- (4) Reversible lanes Reversible traffic lanes may be used to increase street capacity in situations where heavy directional flows occur during peak periods.
- (5) Signal phasing and coordination Uncoordinated signals and poor signal phasing restrict traffic flow by creating excessive stop-and-go operation.

Altering travel demand is a third way to improve the efficiency of existing streets. Travel demand can be reduced or altered in the following ways:

- (1) Encourage people to form carpools and vanpools for work and other trips. This reduces the number of vehicles on the roadway while increasing the people carrying capability of the street system.
- (2) Encourage the use of mass transit, bicycles, and pedestrian travel.
- (3) Encourage industries and business to stagger work hours or establish variable work hours for employees. This will reduce travel demand in peak periods and spread peak travel over a longer time period.

Idealized Thoroughfare Plan System

A coordinated system of major thoroughfares forms the basic framework of the urban street system. A major thoroughfare system which is most adaptable to desired lines of travel within an urban area and which permits movement between various areas of the city with

maximum directness is the radial-loop system. This system consists of several functional elements--radial streets, crosstown streets, loop system streets, and bypasses. An idealized thoroughfare plan showing the described facilities is also included in Figure 2.

Radial streets provide for traffic movement between points located on the outskirts of the city and the central area. This is a major traffic movement in most cities, and the economic strength of the central business district depends upon the adequacy of this type of thoroughfare.

If all radial streets crossed in the central area, an intolerable congestion problem would result. To avoid this problem, it is very important to have a system of **crosstown streets** which form a loop around the central business district. This system allows traffic moving from origins on one side of the central area to destinations on the other to follow the area's border and allows central area traffic to circle and then enter the area near a given destination. The effect of a good crosstown system is to free the central area of crosstown traffic, thus permitting the central area to function more adequately in its role as a pedestrian shopping area.

Loop system streets move traffic between suburban areas of the city. Although a loop may completely encircle the city, a typical trip may be from an origin near a radial thoroughfare to a destination near another radial thoroughfare. Loop streets do not necessarily carry heavy volumes of traffic, but they function to help relieve central areas. There may be one or more loops, depending on the size of the urban area, and they are generally spaced one-half mile to one mile apart, depending on the intensity of land use.

A bypass is designed to carry traffic through or around the urban area, thus providing relief to the city street system by removing from it traffic which has no desire to be in the city. Bypasses are usually designed to through-highway standards, with control of access. Occasionally, a bypass with low traffic volume can be designed to function as a portion of an urban loop. The general effect of bypasses is to expedite the movement of through traffic and to improve traffic conditions within the city. By freeing the local streets for use by shopping and home-to-work traffic, bypasses tend to increase the economic vitality of the local area.

Application of Thoroughfare Planning Principles

The above descriptions are of an idealized major thoroughfare system. In actual practice, thoroughfare planning is done for established areas and is constrained by existing land use and street patterns, topography, public attitudes, and expectations of future land use. Compromises must be made because of these, and other factors that may affect major street locations.

3. THE 1994 ADOPTED THOROUGHFARE PLAN

This chapter will discuss the recommendations for the adopted thoroughfare plan and the travel service of each corridor as it relates to the entire system of roads. The 1994 Adopted Thoroughfare Plan is shown in Figure 3. Facility type explanations are found in Chapter 2 - Thoroughfare Planning Principles.

	Sr	ecial	Note
--	----	-------	------

There are several challenges associated with this thoroughfare plan. The thoroughfare plan has an inadequate major and minor street system due to the mountainous topography. A lot of the minor streets have substandard road widths. The crosstown system needs to be improved. There is not enough crosstown facilities to move traffic around the central area. There is only one parallel radial system with direct access into the central business district (CBD) from south Asheville. And, there are areas of congestion not solved in this thoroughfare plan.

The 1975 Asheville plan presented CBD schemes in addition to recommendations from the earlier 1961 study completed by Wilbur Smith and Associates. The objectives for the CBD schemes were: (1) to reduce or eliminate thru traffic coming into the CBD, (2) to make the CBD more conducive to pedestrian traffic, (3) to create a shopping district safer for pedestrians, and (4) reduce accidents within the CBD. The CBD recommendations were eliminated from this 1994 Thoroughfare plan. This was due partly because of the historic evolution in the CBD.

Seven focus areas in the Asheville Urban Area are I-40 access into the south CBD, Amboy Road\Meadow Road, Biltmore Avenue\McDowell Street, Historic Biltmore Village (see Biltmore Avenue and Liberty Street/Crayton Road), Hillard Street, Merrimon Avenue and Patton Avenue downtown. These areas will not be solved by full implementation of the thoroughfare plan. See each area listed below for more details.

FREEWAYS

Future I-26 Corridor

The Future I-26 corridor will extend from the North Carolina/Tennessee State line on new and existing location to existing I-26 south of I-40 in Asheville. The new freeway will become a primary route to the west and the northeast regions of the United States. The project is being constructed in several sections.

This corridor will be the only north-south freeway in the Asheville Urban Area. It will run the entire length of the Asheville Urban Area from the northern planning boundary to the southern planning boundary. It will run along existing US 19/23/70, I-240, and I-26 with a short new

location project. The new location project, termed Asheville Connector, extends from US 19/23/70 to I-240.

The Asheville Connector was included in a pilot project to select a preferred corridor for this area. The Phase I Environmental Analysis Approach: Alternatives Analysis for the Asheville Urban Area Corridor Preservation Pilot Project documents this work.

The Asheville Connector is recommended to be a 4 lane facility. It will reduce traffic on the Smokey Park Bridge. The Smokey Park Bridge today is experiencing capacity problems from the weaving and merging of lanes coming out of the two large interchanges at both its ends. *The Phase I Environmental Analysis* also recommends widening the Smokey Park Bridge from 8 to 12 lanes and I-240 from US 19/23/70 to I-40/I-26 from 4 to 6 lanes. These recommendations are being analyzed in the Transportation Improvement Program project #I-2513.

I-40

I-40 provides major travel service to the area. I-40 is the only west-east freeway in the Asheville Urban Area. It runs the entire length of the Asheville Urban Area from the western planning boundary to the eastern planning boundary.

It is important economically to keep the travel service on I-40 adequate for the Asheville Urban Area as well as for the State. I-40 will be near its practical limits for a 4 lane freeway by the year 2020. I-40 will then need to be widened to a 6 lane freeway.

I-40 will be needed ultimately to directly access the south CBD of Asheville. A connection is needed between the Brevard Road (NC 191) interchange and the Hendersonville Road (US 25) interchange. The distance between the two interchanges is about 4 miles. Providing this link into the south CBD would help alleviate congestion on the Smokey Park Bridge, Biltmore Avenue\McDowell Street, Haywood Road and the Historic Biltmore Village.

This connection is addressed in the *Phase I Environmental Analysis Approach* as Alternative R in Problem Area #1. Alternative R was not selected as a preferred corridor because of environmental, social, cultural, and historic impacts. Although long term benefits make it a viable project, the Asheville Metropolitan Planning Organization's (MPO) Transportation Advisory Committee (TAC) and the Technical Coordinating Committee (TCC) eliminated this alternative from the thoroughfare plan.

I-240

Today I-240 makes a loop system with I-40 around the heart of Asheville. (The section from Charlotte Street to east I-40 was proposed on the 1975 Thoroughfare Plan.) I-240 carries heavy volumes of traffic of both local and through trips. This is a consequence of an inadequate

location project. The new location project, termed Asheville Connector, extends from US 19/23/70 to I-240.

The Asheville Connector was included in a pilot project to select a preferred corridor for this area. The Phase I Environmental Analysis Approach: Alternatives Analysis for the Asheville Urban Area Corridor Preservation Pilot Project documents this work.

The Asheville Connector is recommended to be a 4 lane facility. It will reduce traffic on the Smokey Park Bridge. The Smokey Park Bridge today is experiencing capacity problems from the weaving and merging of lanes coming out of the two large interchanges at both its ends. *The Phase I Environmental Analysis* also recommends widening the Smokey Park Bridge from 8 to 12 lanes and I-240 from US 19/23/70 to I-40/I-26 from 4 to 6 lanes. These recommendations are being analyzed in the Transportation Improvement Program project #I-2513.

I-40

I-40 provides major travel service to the area. I-40 is the only west-east freeway in the Asheville Urban Area. It runs the entire length of the Asheville Urban Area from the western planning boundary to the eastern planning boundary.

It is important economically to keep the travel service on I-40 adequate for the Asheville Urban Area as well as for the State. I-40 will be near its practical limits for a 4 lane freeway by the year 2020. I-40 will then need to be widened to a 6 lane freeway.

I-40 will be needed ultimately to directly access the south CBD of Asheville. A connection is needed between the Brevard Road (NC 191) interchange and the Hendersonville Road (US 25) interchange. The distance between the two interchanges is about 4 miles. Providing this link into the south CBD would help alleviate congestion on the Smokey Park Bridge, Biltmore Avenue\McDowell Street, Haywood Road and the Historic Biltmore Village.

This connection is addressed in the *Phase I Environmental Analysis Approach* as Alternative R in Problem Area #1. Alternative R was not selected as a preferred corridor because of environmental, social, cultural, and historic impacts. Although long term benefits make it a viable project, the Asheville Metropolitan Planning Organization's (MPO) Transportation Advisory Committee (TAC) and the Technical Coordinating Committee (TCC) eliminated this alternative from the thoroughfare plan..

I-240

Today I-240 makes a loop system with I-40 around the heart of Asheville. (The section from Charlotte Street to east I-40 was proposed on the 1975 Thoroughfare Plan.) I-240 carries heavy volumes of traffic of both local and through trips. This is a consequence of an inadequate

major and minor street system. The street system has developed this way because mountain topography has limited street improvements financially and environmentally.

I-240 from US 19/23/70 to I-40/I-26 is part of the Future I-26 Corridor. This portion will be redesignated as I-26 once the entire corridor is upgraded to interstate standards (see Future I-26). I-240 from I-40/I-26 to Chunks Cove Road is recommended to be improved to a 6 lanes.

US 19/23/70

US 19/23/70, extending north from I-240, functions as a major radial. It runs from the northern planning boundary to the CBD in Asheville. It serves mostly through trips. Like the portion of the I-240 loop, US 19/23/70 will be redesignated as I-26 once it is upgraded to interstate standards (see Future I-26). This project is listed in the Transportation Improvement Program as #A-10.

MAJOR THOROUGHFARES

Amboy Road/Meadow Road/Swannanoa River Road

These roads make up a crosstown facility between I-240 and US 70. This facility transverses the middle of the planning area south of the CBD. It also parallels and is located north of I-40.

Amboy and Meadow Road will become an important connection from the west side of Asheville into the heart of Asheville and the Medical Complexes on Biltmore Avenue and McDowell Street. Amboy Road will continue to grow in importance as congestion increases on the Smokey Park Bridge.

Swannanoa River Road near US 74 south of the Asheville Mall will continue to grow with commercial development. It functions more as a radial by carrying traffic from the Swannanoa community into Asheville.

Recommended improvements to Amboy and Meadow Roads are widening from 2 to 4 lanes. Although future year 2020 traffic projections on Swannanoa River Road imply no improvements are needed, this facility should be upgraded to design standards with turn lanes, where applicable. It should also be monitored for increasing developmental growth.

Biltmore Avenue

Biltmore Avenue serves as a major north-south facility between the CBD and the Historic Biltmore Village District with McDowell Street (see McDowell Street). The area near Biltmore

Village will have severe congestion in the design year, especially near the Historic Biltmore Estate's only entrance.

Biltmore Avenue has costly structures and historic properties near the Medical complexes and Historic Biltmore Village District. Widening of Biltmore Avenue is not recommended because of the dense development in the area; although there is a feasibility study (TIP# U-3404) analyzing the possibilities of widening. A modified one-way pair with McDowell Street is recommended when congestion becomes more severe.

The modified one-way pair would begin at Southside Avenue and end at Lodge Street. The pair would have 3 through lanes in one direction and 1 through lane in the other direction. The modification would allow emergency vehicles the same access they currently have..

The modified one-way concept was studied in the *Phase I Environmental Analysis*Approach. Further study would be needed and input from the hospitals, police, fire department sought before implementation.

Blue Ridge Parkway

The Blue Ridge Parkway is a major scenic highway for the State of North Carolina. It extends from well inside Virginia and runs along the ridges of the Appalachian Mountains. The United States Department of Interior - National Park Service maintains the parkway. There are no recommended improvements to the parkway.

Brevard Road (NC 191)

Brevard Road serves southwest Asheville's traffic. It is a major radial which extends from I-40 to the southern planning boundary and parallels most of I-26. The Pisgah National Forest is predominantly on the west side of Brevard Road. Yet Brevard Road still has increasing development in South Asheville.

Recommended improvements are for widening to multi-lanes, a minimum of 4 lanes, and keeping the integrity of the environment. Brevard Road has many challenges in regards to widening. There are established rural communities, the Blue Ridge Parkway overpass bridge, the French Broad River which parallels a section of Brevard Road, and the Pisgah National Forest. A feasibility study has been placed in the TIP under project #U-3403. (See Minor Thoroughfares.)

Cane Creek Road and Extension

Cane Creek Road is a radial in the fletcher area. It provides access from US 25 to US 74. The extension would extend Cane Creek Road to Old Howard Gap Road.

Charlotte Street

Charlotte Street is a north-south crosstown facility. It runs from Biltmore Avenue to Kimberly Avenue, and is designated a major thoroughfare from Biltmore Avenue to I-240. This section of Charlotte Street was constructed based on the 1975 Thoroughfare Plan. Charlotte Street from College Street to Orchard Street is somewhat inadequate to handle projected traffic. The inclusion of turn lanes at key places should handle projected traffic along this small section. This may require the overpass bridge of I-240 to be replaced.

Clingman Avenue/Haywood Road

Haywood Road runs southwest to northeast from I-40 to south of the CBD. Haywood Road becomes Clingman Avenue after the French Broad River crossing and enters the CBD.

Clingman Avenue was on the 1975 Thoroughfare Plan. It is adequate in handling projected traffic, but Haywood Road from Ridgelawn Road to Patton Avenue (US 19/23 Business) is not. This section of Haywood Road was once a main street in the former City of West Asheville. There are buildings close to this 2 lane road. With 2020 traffic projections approaching 24,000 ADT, this section will need to be a 4 lane facility. This can be achieved by removing the parking on both sides of the road.

This recommendation is not favorable with the City or the community. They feel the character and integrity of the area will be lost. Therefore a parking removal or replacement study and a corridor traffic analysis looking into alternative corridors and modes will be required when traffic congestion becomes unacceptable to the City and community.

The section of Haywood Road (US 19/23) from I-40 to Patton Avenue is not as constrained. Recommended improvements are widening to a 6 lane facility.

Hendersonville Road (US 25)/Sweeten Creek Road (US 25A) and Sweeten Creek Extension

Hendersonville Road and Sweeten Creek Road are two major parallel north-south radials. They extend from Biltmore Village to the southern planning area and serve South Asheville and Fletcher. Sweeten Creek Road merges with Hendersonville Road at Airport Road.

Hendersonville Road is the only route into the southern CBD by way of I-40. There is a proposed interchange at I-40 and Sweeten Creek Road (TIP# I-100).

Hendersonville Road carries two thirds of the total traffic on both facilities. This traffic load on Hendersonville Road will even out once Sweeten Creek Road is widened as part of TIP project #R-2801. Hendersonville Road from I-40 to Airport Road will be adequate for future year 2020 traffic.

Hendersonville Road will experience capacity problems at its ends in the future year 2020. Hendersonville Road from I-40 to Meadow Road in the Biltmore Village is very crucial. This section is attractive because of the Historic Biltmore Estate entrance, the shopping at Biltmore Village, the medical complexes north of Biltmore Village, and access to the CBD.

The proposed interchange at I-40 and Sweeten Creek Road will be the impetus necessary to attract traffic from Hendersonville Road. The Sweeten Creek extension will provide a short bypass around the Historic Biltmore Estate entrance and Biltmore Village onto Swannanoa River Road. However this section of Hendersonville Road will still experience operational problems even with these improvements in the future year 2020.

Hendersonville Road from Sweeten Creek Road at Airport Road to the southern planning boundary also will need improvement. This is addressed in the *Phase I Environmental Analysis Approach* study. Recommended improvements from this study propose widening the existing roadway to a 5 lane curb and gutter facility.

Hillard Street

Hillard Street is a major thoroughfare and crosstown facility in the south CBD. A proposed one-way pair with a new road on new location was presented in the 1975 Asheville Recommended Plan. The major objective in the 1975 Plan was to reduce or eliminate thru traffic coming into the CBD. Since this time several buildings have become historic and the City of Asheville has built a new Public Works facility in its corridor. The new location pair was deleted from the 1994 Asheville Urban Area Thoroughfare Plan by the TAC and TCC.

Long Shoals Road (NC 146)

Long Shoals Road links Hendersonville Road (US 25) to I-26 and Brevard Road (NC 191) in the southern Asheville area. It is an east-west facility with a heavy concentration of residential land uses, schools, and an expanding industrial park. Long Shoals Road is to be widened to a multi-lane facility with TIP project #R-2813.

Lyman Avenue and Extension/Riverside Drive (NC 251)

Lyman Avenue and its extension with Riverside Drive can be considered a north-south radial facility from the northern planning boundary to the heart of Asheville. There are no improvements needed on Riverside Drive from Broadway Street to Lyman Avenue. Riverside Drive from Broadway north to the planning boundary and Lyman Avenue will need to be upgraded.

McDowell Street (US 25)

McDowell Street is a radial which parallels Biltmore Avenue and is a continuation of the service provided by Hendersonville Road and Sweeten Creek Road. McDowell Street is similar

in nature to Biltmore Avenue. It also serves a variety of traffic including medical, commercial, residential and institutional.

McDowell Street does not have the constraints that Biltmore Avenue has except from the Victoria Road tunnel to the viaduct. This section would need to be widened to a five lane facility or converted to a modified one-way pair (see Biltmore Avenue) due to increased congestion.

Merrimon Avenue (US 25)

Merrimon Avenue is another major radial in the northern half of the study area. It serves dense residential development with some historic properties, heavy strip commercial development, the outlying areas of Woodfin and Weaverville, and the University of North Carolina at Asheville.

Merrimon Avenue is currently a heavily congested road. Traffic is expected to become even more congested by the design year 2020 as development continues. Charlotte Street, Kimberly Avenue, Broadway Street, and W.T. Weaver Boulevard experience diverted traffic from Merrimon Avenue. Later Elkwood Avenue and Lakeshore Drive will experience the impacts of traffic diverted from Merrimon Avenue in order to avoid the congestion at Beaver Lake.

It is not feasible to widen Merrimon Avenue its entire length because of the nature of the road. Spot widening at some intersections to add turn lanes may be achievable. *The Phase I Environmental Analysis Approach* recommends a traffic management system of reversible lanes to be studied later. The reversible lanes would start from Beaverdam Road and end at I-240. This solution does not address the area near Beaver Lake.

Northwest Connector

The Northwest Connector is a major thoroughfare which accompany's the Asheville Connector in alleviating congestion on the Smokey Park Bridge. *The Phase I Environmental Analysis Approach* report recommends this corridor in conjunction with the Asheville Connector. The Northwest Connector will be needed by the end of the design year 2020.

The Northwest Connector runs through an undeveloped portion of northwest Asheville. Its design should fit in with the character of the area by minimizing cut and fill.

The Northwest Connector provides a more direct link to the CBD and the Interstate system for northwest Asheville. It is recommended this facility be a fully controlled access parkway with 4 lanes.

Old Airport Road

Old Airport Road is in a growing industrial area in the Town of Fletcher. Recommended improvements are widening to a 4 lane urban facility.

Patton Avenue

Patton Avenue exists as a major radial with the section of Haywood Road from I-40 to Johnston Boulevard. This facility serves west Asheville to the CBD. It has major capacity deficiencies. Signal Optimization is recommended for relieving congestion on Patton Avenue downtown.

West Patton Avenue was also studied in the *Phase I Environmental Analysis Approach* as part of the Smokey Park Bridge problem area. Several options were explored in the environmental analysis to alleviate traffic on Patton Avenue. The options ranged from elevating ramps to elevating Patton Avenue itself to a new parallel facility. These options and others will be analyzed in the Transportation Improvement Program project #I-2513.

Riceville Road

Riceville Road is a major radial which serves the Swannanoa community. It is severely under design standards for the amount of future traffic proposed. Recommended improvements are to upgrade the facility to the design standards of a 2 lane road with 12 feet lanes.

Sardis Road (NC 112)

Sardis Road links the Enka community at US 19/23 to Brevard Road (NC 191) near I-26. This is a growing community. Recommended improvements are to a 5 lane curb and gutter facility.

US 19/23

US 19/23 with Haywood Road and Patton Avenue is a major radial from the southwest planning boundary to the CBD. US 19/23 serves the Enka community from the planning boundary to I-40. The Enka community is growing with residential and industrial land uses. Recommended improvements are widening to a 6 lanes curb and gutter facility.

Weaverville Highway (US 25)

Weaverville Highway is a continuation of the Merrimon Avenue radial from Elkwood Avenue to the northern planning boundary at Weaverville. It parallels Future I-26 (now US 19/23/70). This area has heavy strip commercial development and industrial land uses.

Recommended improvements are widening to a 4 lane curb and gutter section with turn lanes at key intersections. Special attention should be given to truck traffic.

Upgrades

There are several major thoroughfares which only need to be upgraded to achieve adequate design standards. In some instances this may be widening the facility a few feet or putting in turn lanes at key intersections or an intersection redesign. These facilities are Beaverdam Road, Mills Gap Road, and Tunnel Road.

TIP Projects

The major thoroughfares which follow will be brought to design standards with the Transportation Improvement Program (TIP). They are Broadway Street (U-1001A), Charlotte Highway - US 74 (R-2306), Hendersonville Road from US 25A to the southern planning boundary (R-2213), Leicester Highway (R-3301), NC 151 (R-2116). These improvements will take these facilities to the design year 2020.

No Improvements

There are several major thoroughfares which did not need improvement at the time of this study. These thoroughfares are adequate to serve the present and future traffic demands. They are Airport Road (NC 280), Asheland Avenue, Clingman Avenue, College Street, Erwin Hills Road, French Broad Avenue, Hillard Street, Lee Creek Road, Porter Cove Road, Ralph Street, Southside Avenue, Town Mountain Road, US 70 from US 74 to the eastern planning boundary, and W.T. Weaver Boulevard.

MINOR THOROUGHFARES

Brevard Road (NC 191)

This route changes from major to minor north of I-240. It extends to Haywood Road. Dense residential development lie on both sides of the road. Ideally, this facility would need to be widened before the design year 2020, but this may not be feasible. More study should be considered for this corridor. (See Major Thoroughfares.)

Charlotte Street/Edwin Place/Kimberly Avenue

Charlotte Street changes from a major to minor thoroughfare north of I-240 to Edwin Place. Strip commercial development lies along Charlotte Street. Recommended improvements are to upgrade this facility. (See Major Thoroughfares.)

Edwin Place is a connecting segment of Charlotte Street to Kimberly Avenue. It is a short connecting section. Kimberly Avenue has a dense residential community on one side and the Grove Park Inn on the other. Both facilities have 2 lanes with parking available.

Design year 2020 traffic estimates range from 18,000 to 22,000 ADT. This is mostly in part due to diverted traffic from Merrimon Avenue. These volumes warrant a 4 lane facility. This recommendation is not favorable with the city or the community. They feel the character and integrity of the area will be lost with this type of improvement.

Elk Mountain Road

Elk Mountain Road is one of the primary routes in the Town of Woodfin. This road is adequate in serving most future demands, but is severely damaged by truck traffic. Transportation Improvement Program project #U-401 will upgrade and improve Elk Mountain Road.

Haywood Street

Haywood Street is in the heart of the west CBD in Asheville. This 2 lane facility will be at practical capacity by the design year 2020. Although widening by way of parking removal is practical, this recommendation is not favorable with the city or the community. They feel the character and integrity of the area will be lost with this type of improvement. A parking study and signal optimization analysis for the west CBD is suggested.

Liberty Street/Crayton Road

Liberty Street/Crayton Road is classified as a minor thoroughfare on the updated thoroughfare plan at the city's request. It moves traffic from local streets to major thoroughfares such as US 25A-Sweeten Creek Road and Swannanoa River Road. In addition it is the only direct southwest to north movement in the area.

Liberty Street/Crayton Road is presently experiencing heavy traffic volumes. Through traffic from the Tunnel Road area destined for the south on Sweeten Creek Road is diverted onto Liberty Street/Crayton Road. This is changing the function of the road.

The City of Asheville now wishes to close Liberty Street/Crayton Road due to community pressures. This will force additional vehicles through the Historic Biltmore Village intersections (US 25/US 25A and All Souls Crescent/US 25) which is already experiencing operational problems. Widening is not possible at these intersections because of the historic nature of the area.

The construction of the new interchange at I-40 and US 25A (I-100) will reduce significantly the traffic on Liberty Street/Crayton Road. The through traffic would divert back to the new interchange. Liberty Street/Crayton Road will provide for low to medium traffic volumes alleviating conflicts with the interchange; and provides for a critical move as stated above.

Louisiana Avenue

Louisiana Avenue experiences residential and industrial traffic. Design year 2020 traffic is near the practical capacity in some areas. Transportation Improvement Program project #U-619 addresses these concerns by recommending widening to 4 lanes.

Upgrades

There are several minor thoroughfares which only need to be upgraded to achieve adequate design standards. In some instances this may be widening the facility a few feet or putting in turn lanes at key intersections or an intersection redesign. These facilities are Avery Creek Road, Bradley Branch Road, Clayton Road, Deaverview Road, Fairview Road, Fanning Bridge Road, Hazel Mill Road, Jenkins Valley Road, Monte Vista Road, Mount Carmel Road, Old Haywood Road, and Overlook Road.

TIP Projects

Two minor thoroughfares which will be brought to design standards with the Transportation Improvement Program (TIP) are Elk Mountain Road (U-401), Louisiana Avenue (U-619). These improvements will take these facilities to the design year 2020.

No Improvements

There were a lot of minor thoroughfares which did not need improvements at the time of this study. These thoroughfares are adequate to serve the present and future traffic demands. See Appendix A Street Inventory for these facilities.

Major Investment Study

The Major Investment Study (MIS) process was created to implement the Intermodal Surface Transportation Efficiency Act of 1991's call for a more integrated planning and project development process. MIS is aimed to improve transportation planning through collaborative decision-making, multimodal information analysis, and public involvement.

Major Investment Studies will be conducted on "High-type highway or transit improvement of substantial cost that is expected to have a significant effect on capacity, traffic, level of service or mode share at the transportation corridor or sub-scale area." The Future I-26 project (I-2513) falls in this category.

The Phase I Environmental Analysis Approach: Alternatives Analysis for the Asheville Urban Area Corridor Preservation Pilot Project incorporated this improved process. There were about five main alternatives studied for this corridor. Modes of transportation considered in the model analysis were highway, transit, walking, vanpooling, and carpooling.

Alternative modes of transportation are considered in all aspects of planning not only in the traffic model analysis. Alternative modes of transportation are evaluated again on the project planning level. Cost estimates were also obtained for the alternatives for cost comparison.

There was collaboration with the Asheville Metropolitan Organization, North Carolina Department of Transportation Division of Highways, Federal Highway Administration, Environmental Resource Agencies, Asheville Transit, and public citizens committees on the update of the Asheville Urban Area Transportation plan.

4. MODEL DEVELOPMENT

The travel forecast model is based on several major parameters. The parameters are the primary input for modeling how much travel there will be in future years and what routes and modes of transportation will be utilized. The projection of the socioeconomic data essentially determines where the needs are located. Included in this chapter is a description of the planning area and the existing and future land use projections. The following are described in detail: the trends and assumptions; the traffic analysis zones; the roads included in the computer network; the socioeconomic data collection method for the base year 1989; the projection of this data to years 2000, 2010, and 2020; and the projection of transit and carpooling use.

Trends and Assumptions

The assumptions upon which the traffic model has been developed are based on the continuation of present trends. The assumptions affect both the patterns and the volume of travel. The trends describe the present characteristics of travel and are based on objective, factual information. The assumptions represent the best conjecture of national and local experts as to expected trends during the next thirty years. The major trends and assumptions affecting Asheville are described in this section. The source for much of the information presented here was found in "Commuting in America, A National Report on Commuting Patterns and Trends" 1987, which was prepared by Alan E. Pisarski for the Eno Foundation for Transportation, Inc. Westport, CT.

Although much consideration has gone into the development of the assumptions, over time the actual trends may vary. To account for variance in the assumptions, the traffic model is continuously monitored and updated every five to seven years. In this way, the traffic model adjusts and accounts for changes in the assumptions upon which it is based.

Population growth is not a direct correlation to traffic growth. The three main contributions to the increase in traffic growth is the increase in number of workers, the increase in the number of jobs which have located in the suburban areas, and the increase in the use of private vehicles as a means of travel to work. The increase in the number of workers has been influenced by an increase in the number of available jobs, the Baby Boom entering the job force, and the increase of women in the workforce. The increase in the number of jobs available in suburban areas has been in response to the growing number of suburban residences and land availability. The increase of private vehicles as a means of travel to work has largely been influenced by an increase in auto ownership.

The Asheville Urban Area is affected to varying degrees by national trends. Included in the traffic model are the following assumptions:

1. A major trend which has shaped and is expected to continue to shape traffic growth in the Asheville area, is the increasing number of vehicles in proportion to population. This

growth indicates a continued increase in the availability and use of automobiles. The curve is expected to increase at a slower slope, but continue the upwards trend. This is similar to national and state trends. In Buncombe County, the number of registered vehicles per person grew from 0.28 in 1950 to 0.86 in 1990. By year 2020, 0.95 vehicles per person is projected.

2. A second assumption, which relates to the previous assumption, is that mode split will remain fairly constant. That is, as transit, walking, and bicycling increase the expected increase in auto usage will outweigh the other increases. This is substantiated in the Pisarski report referenced earlier in this section. In fact, the Pisarski report found that during the past decades transit and walking have decreased - not only as a modal split percentage but also in number.

This is consistent with the ridership in Asheville which since 1987 has decreased from 1,048,691 to 862,144 in 1991. The transit projections in the Asheville Urban area are more optimistic and indicate growth of 1% per year. These future projections reflect the current desires of the local government.

- 3. Another major assumption is that the land use will occur as projected by the local area. This includes continuance of relatively low densities as well as the pinpointing of areas where development has been projected to occur.
- 4. The ratio of the number of employees to the population (E:P) is expected to increase slightly in the coming years because of employment recruitment by the local government. The 1989 E:P is 0.52 and the year 2020 E:P is projected to be 0.59. An increase in this ratio is expected to result in greater traffic volumes (i.e. more employees going to and from work).
- 5. Another assumption is that fuel will remain available at a cost adjusted for inflation. Increasing prices and decreasing fuel availability in the early 70's and again in the early 80's markedly reduced travel. However, when fuel once again became readily available, travel quickly increased up to the place it would have been if an energy crisis had not occurred.
- 6. The trend towards smaller family size and increasing numbers of women in the work force also contribute to an increase in the number of trips. Smaller family size results in more trips per household because there are less combined trips to work, shopping, etc. More women in the work force results in more work trips as well as other trips such as day care.
- 7. Finally, it is conjectured that the habits of society, that is, the number of trips for work and shopping will continue to increase in the coming years. Also, the proportion of disposable family income is projected to remain constant. This assumes that telecommuting and shopping by television will not occur in appreciable amounts. The trend in past years has actually been a decrease in work at home mainly due to a decrease in family farms.

Planning Area

The planning area for the Asheville urban area includes Asheville, Biltmore Forest, Black Mountain, Fletcher (in Henderson County), Montreat, Weaverville, Woodfin, and much of Buncombe County. Due to significant growth, the planning area is much larger than the 1975 planning area. Figure 4 illustrates the planning area boundary, external stations, and traffic analysis zones.

Based on population densities, the Census Bureau determined that although Black Mountain-Montreat and Weaverville are a considerable distance from Asheville, they are still a part of the urbanized area. As such, they were required by Federal law to be included in the thoroughfare plan update. However, because of their distance from Asheville and because they operate somewhat independently of Asheville, separate transportation plans were conducted for both Black Mountain- Montreat and Weaverville. Also because of the distance from Asheville and the noncontiguous shape of the planning area, it was concluded that the traffic model, TRANPLAN, would not have accurately modeled Black Mountain-Montreat and Weaverville. The Black Mountain-Montreat and Weaverville studies were conducted in the spring of 1991. The Black Mountain-Montreat thoroughfare plan was adopted by the Towns on June 10, 1991 and May 9, 1991 and by the Board of Transportation on August 2, 1991. The Weaverville thoroughfare plan was adopted by the Town on February 17, 1992 and by the Board of Transportation on March 6, 1992. The reports for these studies were done separately and are available at the

Asheville Planning Department Post Office Box 7148 Asheville, NC 28802.

Traffic Analysis Zones

The planning area consists of 353 zones and 35 external stations. An external station occurs at the intersection of the planning area boundary with a road in the network. They are referred to as zones 354 to 389. Also, zones 390 to 399 are "dummy zones" - empty zones to be used if it became necessary to alter existing zones in this study or during an update study. The socioeconomic data that was collected for each zone served as the basis for the traffic model. That is, based on the type of housing and employment in each zone, trips were generated onto the road network.

The zone boundaries for the 1989 are the same as those used in the previous thoroughfare plan. For the new expanded zones, the boundaries were based on the following standard criteria:

- 1. to group similar land uses
- 2. to follow census tract boundaries, where practical
- 3. to coincide with property lines

- 4. to construct zones of adequate size and shape permitting detailed traffic analysis
- 5. to establish zones that display relatively uniform trip-making characteristics
- 6. to consider the existing transportation network as an important element in zone location
- 7. to consider the boundaries of political or municipal jurisdictions
- 8. to consider the location of study screenlines

The external stations, cordon stations 354 to 389, are on the outside edge of the planning area boundary. Each road that goes through the boundary is represented by an external station.

Road Network

All the roads on the 1975 thoroughfare plan were included for study in the 1989 update. Many other roads were added due to the expanded study area and growth in the area. All freeways and major roads were included. Also, all the streets which collected traffic onto the major roads were also included and are shown as minor streets. Only some of the local collector streets were included in the model. Appendix A lists the street inventory for the thoroughfares. The street inventory consists of the existing number of lanes, width, speed limits, rights-of- way, traffic counts, and capacities. It also lists the recommended cross sections for each road in the future.

To input the network into TRANPLAN, the nodes were first digitized utilizing AutoCAD to create x and y coordinates. A node represents the point where two roads cross; where a significant curve in the road occurs; or where a zone centroid is located. A centroid is the presumed center of activity in a zone. The connections of nodes to other nodes are termed links. Link information such as speed and distance are also input. This information is input into TRANPLAN and from the nodes, links, and link characteristics, a network is built. The network can be viewed in HNIS on the terminal screen. The network is then checked for accuracy by running paths between nodes. The paths were run on the minimum time, therefore a check on the speed and distance was conducted. Input errors such as incorrect speed limits were corrected at this stage.

Screenlines

Screenlines are imaginary lines drawn across the planning area. They are used as the first step in calibrating the traffic model. Since traffic counts are taken at every road which crosses the screenline, typical locations for screenlines are rivers and railroad lines. By choosing rivers and railroad lines, the number of roads crossing the screenline is minimized. The sum of the traffic counts on a screenline is compared to the sum of the traffic which is synthesized by the model. It is desirable for these sums to be within five percent of each other before going to the next stage of calibration. For the first step, matching the individual counts along the screenline is not as important as matching the sums of the modeled and actual traffic counts.

Asheville has only two screenlines - one going north-south along the French Broad River and one going east-west along Southern Railroad and the Swannanoa River. The traffic model resulted in the French Broad River screenline being 2.8% over the sum of the traffic counts. The

- 4. to construct zones of adequate size and shape permitting detailed traffic analysis
- 5. to establish zones that display relatively uniform trip- making characteristics
- 6. to consider the existing transportation network as an important element in zone location
- 7. to consider the boundaries of political or municipal jurisdictions
- 8. to consider the location of study screenlines

The external stations, cordon stations 354 to 389, are on the outside edge of the planning area boundary. Each road that goes through the boundary is represented by an external station.

Road Network

All the roads on the 1975 thoroughfare plan were included for study in the 1989 update. Many other roads were added due to the expanded study area and growth in the area. All freeways and major roads were included. Also, all the streets which collected traffic onto the major roads were also included and are shown as minor streets. Only some of the local collector streets were included in the model. Appendix A lists the street inventory for the thoroughfares. The street inventory consists of the existing number of lanes, width, speed limits, rights-of- way, traffic counts, and capacities. It also lists the recommended cross sections for each road in the future.

To input the network into TRANPLAN, the nodes were first digitized utilizing AutoCAD to create x and y coordinates. A node represents the point where two roads cross; where a significant curve in the road occurs; or where a zone centroid is located. A centroid is the presumed center of activity in a zone. The connections of nodes to other nodes are termed links. Link information such as speed and distance are also input. This information is input into TRANPLAN and from the nodes, links, and link characteristics, a network is built. The network can be viewed in HNIS on the terminal screen. The network is then checked for accuracy by running paths between nodes. The paths were run on the minimum time, therefore a check on the speed and distance was conducted. Input errors such as incorrect speed limits were corrected at this stage.

Screenlines

Screenlines are imaginary lines drawn across the planning area. They are used as the first step in calibrating the traffic model. Since traffic counts are taken at every road which crosses the screenline, typical locations for screenlines are rivers and railroad lines. By choosing rivers and railroad lines, the number of roads crossing the screenline is minimized. The sum of the traffic counts on a screenline is compared to the sum of the traffic which is synthesized by the model. It is desirable for these sums to be within five percent of each other before going to the next stage of calibration. For the first step, matching the individual counts along the screenline is not as important as matching the sums of the modeled and actual traffic counts.

Asheville has only two screenlines - one going north-south along the French Broad River and one going east-west along Southern Railroad and the Swannanoa River. The traffic model resulted in the French Broad River screenline being 2.8% over the sum of the traffic counts. The

Swannanoa River screenline was 4.1% below the sum of the traffic counts. Figure 4 illustrates the screenlines.

Growth Factors

Existing and future land use are major inputs into the travel model. On behalf of the TCC and TAC, the Land-of-Sky Regional Council (LOSRC) estimated base year 1989 and future population; conducted surveys to determine base year 1989 housing and employment; and made projections as to future housing and employment.

The growth projections contained in the Asheville 2010 Plan provided a basis for land-use projections. Interviews were conducted with the Asheville Planning Department Staff, the Asheville Board of Realtors, Buncombe County Planning Department staff, a local developer, the TCC, and the TAC. These entities were considered to have a good idea of where housing and employment growth would occur.

The projections are described in detail in a report by LOSRC titled "Population, Dwelling Unit, Employment, Public Transportation, Carpooling, and Vanpooling - Estimates, Projections, and Assumptions". The results are summarized in the following sections.

Population

The type and quantity of land-use is a key factor when attempting to predict future traffic in an area. Estimates of population are the first step towards predicting future land use. Table 1 illustrates the base year 1989 and future year population projections.

Table 1 - Population and Socioeconomic Estimates

		Year	
	1989	2010	2020
Population	133,000	150,000	156,000
Dwelling Units	53,000	62,000	66,000
Employment	70,000	87,000	93,000
Employment:Population	0.52	0.58	0.59

To begin the modeling process, up-to-date socioeconomic data was needed. The 1989 traffic counts were taken by NCDOT Traffic Survey Unit at different locations throughout the planning area. Housing and employment data was collected in the summer of 1989 by Land-of-Sky Regional Council. Each dwelling unit (i.e. single family house or apartment) was rated in a "windshield survey" as either excellent, above average, average, below average, or poor. The rating of the dwelling unit is a surrogate for income, and therefore an indication of the number of trips per day generated by the occupants. The data was collected by parcel and then compiled into zones.

Employment information was also collected by parcel and then compiled into zones. Each business was categorized as to its function and number of employees. Business functions were broken into five categories as follows:

Manufacturing
Wholesale Retail
Highway Retail
Office/Institutional
Services

Appendix B contains tables showing the number and type of dwelling units and employment in each zone. From these illustrations it is possible to pinpoint the areas of high density such as the Central Business District. Also, Table 1 shows the totals of the 1989 housing and employment in the Asheville planning area.

Socioeconomic Data Projection

The housing and employment data was then projected by zone to reflect the best available predictions of where and what type of growth will occur. Interviews were conducted with area planners, the Asheville Board of Realtors, the Chamber of Commerce, and area real estate agents to determine likely zones of high, low, or medium growth. By applying growth rates to each zone, the projected housing and employment by zone for the years 2010 and 2020 was determined.

Since the output of the model is directly based upon these inputs, the TCC and TAC were asked to approve the projections. After several months of refining the projections, the TCC and TAC approved the projections in June of 1992. This is contained in the report "Population, Dwelling Unit, Employment, Public Transportation, Carpooling, and Vanpooling - Estimates, Projections, and Assumptions" by LOSRC.

Appendix B contains tables showing the projected number and type of dwelling units and employment in each zone. Also, Table 1 shows the totals of the 2020 housing and employment projections in the Asheville planning area.

Walking, Carpooling, and Transit

Walking, carpooling, and transit are important modes of transportation available in Asheville in addition to vehicles. To evaluate their current and future impact on the transportation system, projections were determined by LOSRC. The input used in the model is summarized in this section. For a full description of the methods used to determine the carpooling and transit projections, refer to the report "Population, Dwelling Unit, Employment, Public Transportation, Carpooling, and Vanpooling - Estimates, Projections and Assumptions."

Walking

It was determined by LOSRC in concurrence with the TCC and TAC that the impacts of walking, both currently and in the future, were negligible in terms of the travel model. Although some walking trips take the place of car trips, there are not enough to cause any sizeable change in the travel model.

Carpooling

Carpooling is another mode of travel that was accounted for in the model. The average number of persons per vehicle is termed the vehicle occupancy rate (VOR). The VOR is developed annually by the Asheville Planning Department. Occupancy counts are taken at Patton Avenue, Merrimon Avenue, Tunnel Road, Biltmore Avenue, and McDowell Street. Since 1986 it has steadily been around 1.24 persons per vehicle. A slight increase of 0.01 per decade was projected during the planning period. This results in a VOR of 1.27 in year 2020. Table 2 illustrates the results of the VOR analysis.

Table 2 - Current and Projected Vehicle Occupancy Rates

Year	Vehicle Occupancy Rate
1990	1.24
2000	1.25
2010	1.26
2020	1.27

Source: Asheville Planning Department, Asheville Transit Authority and Land-of-Sky Regional Council, May 1992.

Transit

A sub-model of TRANPLAN was used to assess the impacts of transit on the road system. A propensity rating was selected by LOSRC for each zone. The rating signifies the likelihood of

transit use for each zone. For example, a zone with a high population density and high proportion of elderly persons would be more likely to utilize transit than a zone in a rural, farm area. The proportion of trips in the planning area expected to switch to transit in the future and the

projected vehicle occupancy rate were also estimated. Finally, an optimistic projection was determined as a way to measure the impact if transit use is higher than expected.

The assumptions used by LOSRC when making the projections included the following:

- 1. The Asheville transit system will operate throughout the planning period.
- 2. A limited number of new routes will be added through year 2020.
- 3. Propensity ratings were based on the likelihood of person living within a zone to utilize public transit (i.e. not employment based trips)
- 4. Public transit trips were defined to include bus transit and elderly and handicapped transit trips.
- 5. Unless a major event such as new legislation mandating transit use or a dramatic increase in oil prices occurs, transit use in Asheville is expected to remain stable, with only a slight increase.

See Appendix B Table 3 for a summary of trips and Appendix C for a list of the transit propensities that were assigned to each zone.

5. DEFICIENCY ANALYSIS

This chapter presents an analysis of the ability of the existing road network to serve the area's travel desires both now and in the coming years. The essence of transportation planning is the ability to test and analyze different transportation configurations for efficiency in serving an area as it grows. Care and emphasis is placed, not only on detecting the major deficiencies, but on understanding their cause. Travel deficiencies may be localized; the result of inadequate pavement width; substandard highway design; inadequate intersection controls; an uncharacteristic peak travel demand; or some combination thereof. The underlying problem may be caused by a system deficiency such as a need for a bypass, loop facility, or additional radial service. The role of other modes of transportation to solve travel deficiencies is also considered.

Existing Road Network

Asheville is served by three Interstate routes, five US routes, and four NC routes. They are I-40, I-240, I-26, US 19, US 23, US 25, US 25 Alternate, US 70, US 74, NC 63, NC 81, NC 191, NC 280, and NC 694. The Blue Ridge Parkway, one of the Nation's most popular scenic highways, traverses the planning area. Major traffic carrying facilities are Patton Avenue, Haywood Road, I-40, I-26, I-240, US 19-23, Tunnel Road, Brevard Road (NC 191), Biltmore Avenue, Broadway Street, Merrimon Avenue, Hendersonville Road, Sweeten Creek Road, Riverside Drive, Lyman Street, Meadow Road, Charlotte Street, Swannanoa River Road, McDowell Street, Southside Avenue, Amboy Road, Kimberly Avenue, Leicester Highway, Airport Road, and Long Shoals Road.

The development of the road system is constrained by the mountainous topography and two major rivers in the area. The French Broad River runs north and south and the Swannanoa River runs east and west. There are many discontinuous and relatively short streets, especially in the Central Business District (CBD). The only major street passing completely through the CBD in a north-south direction is Biltmore Avenue-Broadway Street. Interstate 240 provides a northern border to the CBD and serves both east-west crosstown traffic as well as east-west downtown traffic.

1989 Travel on the Existing Road Network

A good indication of the adequacy of the existing road network is a comparison of traffic volumes with the ability of the streets to move traffic. In an urban area, a street's ability to move traffic is generally controlled by the spacing of major intersections, the width of pavement, and the traffic control devices utilized. Thus, the ability of a street to move traffic can be increased to some degree by restricting parking and turning movements; using proper sign and signal devices; and by the application of other traffic engineering techniques. Capacity is defined as the maximum number of vehicles which has a reasonable expectation of passing over a given section of a roadway in one direction, or in both directions, during a given time period under prevailing

roadway and traffic conditions. Level of service is the term used in the 1994 Highway Capacity Manual to describe the relationship of traffic volumes to the capacity of the roadway. Six levels of service are used and these identify the conditions existing under various speed and volume conditions. Appendix E contains definitions, photographs, and a table describing level of service in more detail. The level of service usually suitable for urban design is level of service C and is defined as being in the zone of stable flow with most drivers restricted in their freedom to select their own speed, change lanes, or pass. A relatively satisfactory operating speed is attained at this level of service. However, a level of service D is tolerated on an existing facility before it is considered operating over "practical" capacity.

When streets are operating below level of service D, speeds are well below the speed limit and travel times are increased. In addition, manuervability is severely limited and a driver's frustration level is generally much higher. This leads to driver's taking more chances on, for example left turns, and the distance between vehicles is severely diminished. Both of these factors result in additional accidents.

Figure 5 shows the deficiencies in the existing road network. Figure 6 shows the existing and committed road network with the 1989 and 2020 ADTs. The most significant problem areas are:

1. Smokey Park Bridge/Patton Avenue Area

A major travel problem in the Asheville Urban Area is that the Smokey Park Bridge is reaching capacity. The traffic volume is expected to increase at approximately 1.9% per year from the 1989 volume of 78,000 to a projected volume of 139,000. From 1960 to 1990 the traffic grew at a rate of 3.8% per year. If growth had been projected to increase at the current rate, the 2020 projected growth would have been 240,000 vehicles per day. There are eight lanes of pavement on the bridge. The typical capacity for eight freeway lanes is approximately 92,900 vehicles per day at LOS D. The capacity for the Smokey Park Bridge is at a LOS E because of the intense merging and weaving of traffic. The problem on the Smokey Park Bridge points to a larger issue with the Asheville Urban Area transportation system. Traffic from all over the area culminates on the bridge. It is not a localized capacity problem. There are several underlying reasons why the traffic ends up on the bridge. Namely, the major and minor street system designed to carry local traffic is not adequate to accommodate the travel demand. A large number of short, local trips utilize the freeway system. Thus, through and local travel are mixed onto the same freeways resulting in an over-capacity situation. The problem is especially intense on the Smokey Park Bridge where traffic from literally all over the urban area culminates on the bridge. The Asheville Urban Area road system has developed this way primarily due to the mountain topography as improvements to the street system result in impacts to environmentally sensitive areas and are financially costly.

2. Access to the CBD

Topographic constraints in the street system has led the CBD to develop with many discontinuous, short, and circuitous streets. Prior to the 1975 thoroughfare plan, the only north-south route through the downtown area was Biltmore Avenue and Broadway Street.

Since then, Southside Avenue has been completed which provides a north-south connection from Charlotte Street to McDowell Street.

The east-west crosstown system is primarily I-240. Thus, a significant portion of travel on the north part of I-240 is for very short trips which travel only one or two interchanges. This is an undesirable situation, since the primary purpose of a facility such as I-240 is for crosstown travel. In 1975, the Hilliard one-way pair was included in the thoroughfare plan as a means of providing a major east- west facility south of the central business area. Since that time, federal laws concerning historic properties have become more stringent and there are several potentially eligible projects in the alignment. Also, the city has built a public works building in the edge of the alignment. It would be difficult, but possibly feasible to overcome the obstacles in this alternative.

Both McDowell Street and Biltmore Avenue are projected to exceed practical capacity by the year 2020. To alleviate this situation, it may be possible to convert them into a one-way pair. Another travel deficiency in the area is the lack of direct connections from west Asheville to the CBD and the hospital area.

3. Biltmore Village Area

Biltmore Village is a relatively small area bounded by the Swannanoa River on the north and I-40 on the south. Biltmore Avenue serves as a major north-south facility between I-40 and areas south of I-40 to the hospitals and CBD. Biltmore Avenue also has the only public entrance and exit to the Biltmore Estate. On the east side of Biltmore Avenue lies the historic area which is a charming and active tourist shopping attraction. On the west side of Biltmore Avenue are two fast food restaurants and two gas stations. All of these factors contribute to the existing capacity of the road being severe in the Biltmore Village area. Sweeten Creek Road is also classified as severe near its intersection with Biltmore Avenue. All the traffic in the area traverses the congested intersection of Sweeten Creek Road (Lodge Avenue) and Biltmore Avenue.

4. Merrimon Avenue Area

Merrimon Avenue from I-240 to Beaverdam Road is currently classified as having heavy congestion. By the year 2020, as development continues to occur, Merrimon Avenue is expected to experience severe congestion. The area has a commercial strip of development close to the road. Older residential neighborhoods lie behind the commercial development. Spot widening at some intersections may be feasible to add turn lanes. Widening along the whole length of the road to add an additional lane is not feasible because of the many businesses and historic properties which are very close to the road. The possibility of reversible lanes is recommended to be studied later.

Currently, Charlotte Avenue, Kimberly Avenue, Broadway Street, and Weaver Boulevard all accommodate some diverted traffic from Merrimon Avenue. As congestion on the road

increases, especially during the peak hours of 7 to 9 am and 4 to 6 pm, traffic will continue to divert to these alternate routes. The combination of Broadway Street and Weaver Boulevard as a cut-through route will continue to increase in desirability as congestion on Merrimon Avenue increases. Elkwood Avenue and Lakeshore Drive will also experience the impacts of cut-through traffic diversions to avoid the congested section of Merrimon Avenue north of Beaver Lake.

5. US 25 in Fletcher

The major travel difficulty in the Fletcher area is the over-capacity status of US 25. The problem has been addressed by the inclusion of projects R-2213 and R-2214 in the Transportation Improvement Program (TIP). These projects widen US 25 from 2 lanes to 5 lanes. The average daily traffic volume in 1992 varied from 10,700 to 15,600 vehicles per day. This is over the practical capacity of a two lane road, especially a two lane road such as US 25 with almost continuous driveways. The projected traffic on US 25 for the year 2020 varies between 24,000 and 32,000. The projected traffic reflects employment growth north of Fletcher into Asheville as well as moderate growth for the industrial area on the east side of Fletcher.

6. Narrow, curvy two lane facilities

There are numerous narrow, curvy two lane facilities which serve as major thoroughfares in the outlying portions of the study area. A few of these roads are Riceville Road, Old Leicester Highway, and Town Mountain Road.

Traffic growth in the planning area has led to several areas of capacity deficiencies on the major street system. The highest levels of congestion occur on sections of NC 63, US 74, Sweeten Creek Road, Crayton Road, Hendersonville Road, Long Shoals Road and Airport Road. These areas are outlined in red in figures 5 and 6.

EXISTING ROAD CAPACITY DEFICIENCIES

(Based on 1989 Traffic Counts)

ASHEVILLE PLANNING AREA

CONGESTION

LEVEL

TRAFFIC

VOLUME

TO CAPACITY

RATIO

Severe

> 1.25

Heavy

1.00-1.24

Moderate

0.85-0.99

No Count Available

00,000 - 1989 TRAFFIC COUNTS (24 HOUR)

{00,000} - ROAD CAPACITY (INCLUDES TIP PROJECTS)

increases, especially during the peak hours of 7 to 9 am and 4 to 6 pm, traffic will continue to divert to these alternate routes. The combination of Broadway Street and Weaver Boulevard as a cut-through route will continue to increase in desirability as congestion on Merrimon Avenue increases. Elkwood Avenue and Lakeshore Drive will also experience the impacts of cut-through traffic diversions to avoid the congested section of Merrimon Avenue north of Beaver Lake.

5. US 25 in Fletcher

The major travel difficulty in the Fletcher area is the over-capacity status of US 25. The problem has been addressed by the inclusion of projects R-2213 and R-2214 in the Transportation Improvement Program (TIP). These projects widen US 25 from 2 lanes to 5 lanes. The average daily traffic volume in 1992 varied from 10,700 to 15,600 vehicles per day. This is over the practical capacity of a two lane road, especially a two lane road such as US 25 with almost continuous driveways. The projected traffic on US 25 for the year 2020 varies between 24,000 and 32,000. The projected traffic reflects employment growth north of Fletcher into Asheville as well as moderate growth for the industrial area on the east side of Fletcher.

6. Narrow, curvy two lane facilities

There are numerous narrow, curvy two lane facilities which serve as major thoroughfares in the outlying portions of the study area. A few of these roads are Riceville Road, Old Leicester Highway, and Town Mountain Road.

Traffic growth in the planning area has led to several areas of capacity deficiencies on the major street system. The highest levels of congestion occur on sections of NC 63, US 74, Sweeten Creek Road, Crayton Road, Hendersonville Road, Long Shoals Road and Airport Road. These areas are outlined in red in figures 5 and 6.

EXISTING ROAD CAPACITY DEFICIENCIES

(Based on 1989 Traffic Counts)

ASHEVILLE PLANNING AREA

TRAFFIC

| VOLUME TO CAPACITY RATIO |
Severe	> 1.25
Heavy	1.00-1.24
Moderate	0.85-0.99

CONGESTION

No Count Available

00,000 - 1989 TRAFFIC COUNTS (24 HOUR)

{00,000} - ROAD CAPACITY (INCLUDES TIP PROJECTS)

PACITY DEFICIENCIES YEAR 2020

sting and committed street system)

ASHEVILLE PLANNING AREA

NGESTION LEVEL TRAFFIC VOLUME TO CAPACITY RATIO

Severe

> 1.25

Heavy

1.00-1.24

Moderate

0.85-0.99

00,000 - 1989 TRAFFIC COUNTS (24 HOUR)

{00,000} - ROAD CAPACITY (INCLUDES TIP PROJECTS)

[00,000] - YEAR 2020 PROJECTED VOLUME

CAPACITY DEFICIENCIES YEAR 2020

(on existing and committed street system)

ASHEVILLE

PLANNING AREA

CONGESTION LEVEL

TRAFFIC VOLUME TO CAPACITY RATIO

> 1.25

1.00-1.24

Moderate

0.85-0.99

1989 TRAFFIC COUNTS (24 HOUR) ROAD CAPACITY (INCLUDES TIP PROJECTS)

[00,000] - YEAR 2020 PROJECTED VOLUME

Table 3 - Existing Capacity Deficiency - SEVERE

Facility	TIP project
NC 63 - Leicester Hwy	
(SR 1318 to SR 1369)	U-2000
US 74 - Charlotte Hwy	
(Blue Rdge Pkwy to SR 2835)	R-2306
Brook St - US 25A	
(US 25 to Fairview Rd)	none
Sweeten Creek Road - US 25A	
(SR 3230 to W Chapel Rd)	U-2801
Crayton Road- Liberty Rd	none
(Sweeten Crk Rd to Merchant St)	
Hendersonville Road - US 25	
(W Chapel to Rock Hill)	U-90
(US 25A to Henderson Co. Line)	R-2213
(Henderson Co. Line to SR 1006)	R-2214
(Swannanoa Rd to Crescent Ave)	none
Long Shoals Road - NC146	
(I-26 to US 25)	R-2813
Airport Road - NC 280	
(US 25 to Henderson Co. Line)	U-2402
(Henderson Co. Line to SR 3539)	R-401
Fairview Avenue	
(Cedar St to Stevens St)	none
Stevens Street	
(Fairview Ave to US 74)	none

Table 4 - Existing Capacity Deficiency - HEAVY

Facility	TIP project
SR 2838 (Black Mtn Hwy-US 70 to I-40)	none
Riceville Road (Black Mtn Hwy-US 70 to Bull Mtn Hwy)	none
US 74 (SR 2835 to Rose Hill Rd)	R-2306
I-240 (French River Rd to Tunnel Rd)	none
Merrimon Avenue (Elk Mtn Scenic Hwy to I 240)	none
Elk Mountain Scenic Highway (Dover St to Beaverdam Rd)	none
Haywood Road (I-240 to Beverly Rd)	none
South French Broad Avenue (Hilliard Rd to Livingston Rd)	none
Livingston Street (S French Broad Ave to Victoria Rd)	none
Lyman Meadow Road (Amboy Rd to Victoria Rd)	none
Wall Street (I-240 to Haywood St)	none
NC 63 - Leicester Hwy (Georgetown Rd-SR 1375 to SR 1369)	U-2000
NC 191 - Brevard Road (I-240 to Pine Ln)	U-2902
Long Shoals Rd -NC 146 (Clayton Rd to I-26)	R-2813
US 25 (SR 1006 to South 1 mile)	none
US 25A -Sweeten Creek Road (W Chapel Rd to Mills Gap Rd)	U-2801

Table 5 - Existing Capacity Deficiency - MODERATE

Facility	TIP Project	
Beaverdam Road		
(Elk Mtn Scenic H	lwy to Carter Cove)	none
US 25 (US 19/23/	70 Exit to Wembley Rd)	none
Kimberly Road (W	arwick Place to Evelyn Place)	none
Charlotte Street (I	-240 to Baird St)	none
Riverside Drive		
(Pearson Bridge F	Rd to Broadway-NC251)	none
I- 240		
(Tunnel Rd to east	•	none
(BYP US19/23 to	French Broad Riv Brdg)	none
Swannanoa River	Road	
(US 74 to Clubhou	use Rd)	none
US 74		
(Rose Hill Rd to C	Cedar Mountain Rd)	R-2306
NC 191 (Haywood	d Rd to Morris St)	none
Amboy Road (Star	te St to Lyman Ave-Meadow Rd)	none
I-40 (US19/23 to	western I-240 & I-26 Int)	none
NC 112 (US 19/23	3 to SR 3437)	none
Mills Gap Road		
North (US 25 to U	•	none
South (US 25 to ea	ast 2 miles)	none
US 25A		
(Mills Gap Rd-N.	to Royal Pines Dr)	U-2801
Liberty Street - Ce	edar Street	
(Merchant St to Fa		none

2020 travel on the 1989 + Committed Roadway System

Asheville's existing transportation system already has several deficient areas as indicated by the effects of 1991 travel on the existing road network (illustrated in figure 5). Several of those deficiencies will be alleviated by projects already in the Transportation Improvement Program (TIP). They are Sweeten Creek Road, Leicester Highway (NC 63), US 25 in Fletcher, Long Shoals Road, US 74, Airport Road, and Brevard Road (NC 191).

Other existing deficiencies have not yet been planned for and will increase in severity as year 2020 approaches. These are Amboy Road, Beaverdam Road, Fairview Road, I-240, Meadow Road, Merrimon Avenue, Mills Gap Road, Kimberly Avenue, and Old Airport Road.

Still other deficiencies, not yet occurring, will begin to occur over the next thirty years. They are Biltmore Avenue, the southern part of Brevard Road, Charlotte Street, Enka Lake Road (NC 112), I-26, I-40, McDowell Street, Mills Gap Road, Riceville Road, Riverside Drive, and Swannanoa River Road.

6. IMPLEMENTATION

The North Carolina legislature enacted a highway bill which will provide \$9.2 billion dollars over a 13.5 year period for highway construction and improvements. Revised revenue projections based on the first year's actual revenue collections, however, show that time period to be optimistic. It now appears that a period nearing 17 years in length will be needed to fund the entire program. Highway Trust Fund projects included in the Asheville Planning Area are: 1) I-40 widening, 2) US 23 complete 4-laning and upgrading, and 3) the Asheville Connector with improvements to existing corridors from I-26 to US 19/23 in north Asheville.

All the municipalities involved in the planning area and the North Carolina Department of Transportation have responsibility for implementation of the thoroughfare plan. North Carolina General Statutes 136-66.1 specify which elements of a plan are a State responsibility, and which are a municipal responsibility. In general, the state is responsible for those facilities which will be serving major volumes of through traffic and traffic from outside to major commercial, industrial, and institutional areas inside a municipality. Facilities which will serve principally internal travel are to be the responsibility of the municipality. A municipality may share in a portion of the right-of-way cost on projects constructed by the State depending upon the participation as determined by House Bill 1211.

This report will not deal with implementation strategies except to briefly describe all the tools currently available for implementation. Initiative for plan implementation will rest largely with the MPO and the local policy boards involved in the plan's development. Implementation of the plan will not be an easy task. However, there are a number of procedures, resources, and tools available to the area which can aid in plan implementation. These include local funding, Federal revenue sharing or block grants, urban bonds, redevelopment, municipal service district, zoning ordinance, subdivision ordinance, official maps, future street line ordinances, impact fee assessment, advance purchase of rights-of-way, and continued lobbying for State construction of needed facilities which are a State responsibility.

Effective and continuing use of available resources, tools, and programs over an extended period of time can result recommended projects being fully developed. A number of the administrative tools, ordinances, and procedures mentioned above may be new or not currently in use by all jurisdictions involved in the planning area. Also, many of these can be used effectively to make improvements to other elements of the thoroughfare system which would be desirable but were not identified as specific needs. A more detailed discussion of these tools, ordinances, and procedures follow:

Subdivision Control

A subdivision ordinance requires every subdivider to submit a plot of his proposed subdivision to the Planning Board in authority for review and approval. Certain standards must

be met by the developer before he can be issued a building permit to construct his development. Through this process, it is possible to obtain, or protect from development the necessary right-of-way for streets which are a part of the thoroughfare plan. Street construction in accordance with the plan can be required.

Appendix E gives recommended definitions and design standards for subdivision ordinances. Extraterritorial subdivision controls are important, especially for municipalities bordered by Counties who do not have subdivision controls. A review of their present ordinance by all the local governments in the planning area to insure it is up-to-date and compatible with the thoroughfare plan is desirable.

Future Street Line Ordinance

This ordinance is a particular benefit where widening of a street will be necessary at some time in the future. A municipality with legislative approval may amend its charter to be empowered to adopt future street line ordinances. Through a metes and bound description of a streets future right-of-way requirements, the municipality may prohibit new construction or reconstruction of structures within the future right-of-way. This approach requires specific design of the facility and would usually require surveys and public hearings to allow affected property owners to know what to expect and make necessary adjustments without undue hardship. A specific ordinance can be enacted for selected streets.

Zoning

A zoning ordinance is beneficial to thoroughfare planning in that planned locations of various land uses and their densities can be realized. This provides a degree of stability on which to forecast travel and to plan the street system.

Other benefits include (1) the establishment of standards of development which will aid traffic operations on major thoroughfares; (2) the minimization of strip commercial development which creates traffic friction and increases the traffic accident potential; and (3) the requirement for provision of off-street parking by new development with the purpose of eventual prohibition of all curb parking on major thoroughfares.

Redevelopment

Redevelopment is the term used to describe efforts toward the removal or rehabilitation of undesirable development. It is one of the few tools available that can be used to correct basic mistakes in the street system such as (1) poor design, (2) poor layout, or, (3) too many streets.

Municipal Service Districts

Under Chapter 160A, Section 535-543 of the General Statutes, the legislative body of a municipality may create one or more municipal service districts in a downtown commercial area in

order to raise additional funds for physical improvements. One of the stipulated purposes of the district is to facilitate traffic flow and parking. The district may float a bond issue which would be paid off with revenues from any extra ad valorem tax on all property within the district's boundaries. Once the improvements have been completed and the bonds retired, the extra tax would cease and the district would dissolve.

Capital Improvements Program

One of the tools which makes it easy to build a planned thoroughfare system is a capital improvements program. This is a long range plan for the spending of money on street improvements, acquisition of rights-of-way, and other capital improvements within the bounds of projected revenues. Municipal revenues will need to be available for street construction that is a municipal responsibility, right-of-way cost sharing on projects that are a state responsibility, and advance purchase of right-of-way where such action is appropriate.

The estimated cost of projects or elements of projects identified as being needed within the design period for this thoroughfare plan are included in a financial constraint report. (As of the printing of this report an updated system's responsibility agreement which would identify which projects are State and local responsibility has not been completed.)

Development Reviews

Driveway access to a State-maintained street or highway is reviewed by the District Engineer's office and the Traffic Engineering Branch of the Department of Transportation prior to access being allowed. Any development expected to generate large volumes of traffic (e.g. shopping centers, fast food restaurants, large industries, etc.) may be comprehensively studied by a review team or staff from Traffic Engineering, Planning and Environmental, and Roadway Design Branches of the Department. If this is done at an early stage, it is often possible to significantly improve the developments accessibility at minimal expense. Since the municipality is often the first point of contact for development interests, it is important that the municipality advises developers of this review requirement and cooperates in the review.

Roadway Corridor Official Map

The North Carolina Statutes 136-44.50 through 136-44.53 are collectively designated as the "Roadway Corridor Official Map Act". For the municipalities contemplating the adoption of a Road way Corridor Map, more commonly referred to as Official Map, there are several things to consider prior to implementation. First and foremost, it should be recognized that Official Map designation places severe but temporary restrictions on private property rights. These restrictions are in the form of a prohibition, for a period of up to three years, on the issuance of building permits or the approval of subdivisions on property lying within an Official Map alignment. This pushes local governmental powers to new limits. Consequently, this new authority should be used carefully and only in cases where less restrictive powers are found to be ineffective.

The Statute establishing the Official Map authority is fairly explicit in outlining the procedures to be followed and the types of projects to be considered of Official Map designation. As required by statute, a project being considered for an Official Map must be on the adopted street system plan.

The Program and Policy Branch of the Division of Highways is responsible for facilitating the adoption of Official Maps. Cities considering Official Map projects should contact this Branch for their "Guidelines for Municipalities Considering Adoption of Roadway Corridor Maps" at P.O. Box 25201, Raleigh, North Carolina 27611.

Fig.			· · · · · · ·		Speed				EN	OED	
Coll Fig. Coll			989		ij		1988	2020		₩ 0-₩	
Company Comp	Facility	Section	(Miles)				MDT	AADT	(F0	(F)	Enhance.
State Use Stat	NEW LOCATIONS seville Connector	US 1923 to F240	0.80			90069	ı	40000	•	230	F2513
South Planning Boundary to Alzyon Read 0.58 45 7700 15000 D 90	thwest Connector	US 1923 to NC 63	4.00			90069	ı	25000	₹	230	
EU/AVS South Planning Boundary to US 192339 A	seten Creek Extension	US 25A to Swannanoa River Road	0.20			17000	ı	12000	Q	8	
South Planning Boundary to Aliport Road (SR 5539) 1720 448 2770 55 55,000 39,000 44,00	ne Greek Extension	Cane Creek to Old Howard Gap Road	0.50			7000	ı	10001	a	8	PN#23
South Planning Boundary to Aliport Read (SR 3339) 172 48 270 55 55,000 33,100 60,000 M 1 30 0 M 1 40 170 M 140 M 1	FREEWAYS										
Althort Road (SR 3539) to WC 148 2 30 48 270 55 500 39,100 69,000 H 300 NC 14 to NC 191 NC 14 to NC 191 1 48 2 77 55 500 38,000 89,000 H 300 NC 14 to NC 191 NC 14 to NC 191 1 48 2 70 55 500 38,000 H 300 US 1822 to 126 1 50 4 8 2 40 55 500 42,000 1,00 10		South Planning Boundary to Airport Road (SR 3539)	1.20		55		3,100	000'09	M	300	
NC 146 to NC 191 NC 191 to 1-40 NC 191 to 1-4		Airport Road (SR 3539) to NC 146	3.00		55			000'09	H	300	
WESTER Planning Boundary to US 1923 168 48 240 55 55,000 48,000 48,000 M 300 US 1922 to 1-28 128 48 240 55 54,000 27,500 58,000 M 300 US 1922 to 1-28 128 48 240 55 54,000 24,000 45,000 M 300 US 18 to US 25 128 48 240 55 54,000 24,000 45,000 M 300 US 18 to US 1923 128 48 220 55 54,000 24,000 45,000 M 300 US 18 to US 1923 128 48 220 55 54,000 24,000 45,000 M ADO US 18 to US 1923 128 48 220 55 54,000 24,000 45,000 M ADO US 18 to D L-40 US 1923 128 48 20 55 46,000 47,000 47,000 M ADO US 18 to		NC 146 to NC 191	4.60		25			000'69	×	300	
Western Planning Boundary to US 1923 1,50 449 240 55 \$4,000 45,700 72,800 M 300 1,50 4,50 4,50 4,50 4,50 4,50 1,50 4,50 4,50 4,50 1,50 1,50 4,50 4,50 1,50		NC 191 to 1-40	1.60		55			000'76	Z	300	
US 1922 to 128 Hay 1925 Hay 1926		Western Planning Boundary to US 19/23	200		55		2,500	58.000	2	300	
No. 15 to U.S. 15 to		US 1973 to F26	1.50		55			29,600	=	300	
No. 1917 to U.S. 25 No. 29 No.		F26 to NC 191	09.0		55			30,400	×	300	For Cont
US 25 to 1240 US 1973 US		NC 191 to US 25	3.80		25			34,000	×	300	For Cont
1-240 to US 19/123 1-240 to Broadway Avenue (SR 1781) 1-240 to Broadway (SR 1781) 1		US 25 to 1-240	260		25			65,000	H	PD	
US 1923 to Chunna Cove Road US 1923 to Chunna Cove Road to US 70 Chunna Cove Road to US 70 US 1923 to Chunna Cove Road to US 70 US 1923 to Chunna Cove Road to US 70 US 1923 to Chunna Cove Road to US 70 US 1923 to Chunna Cove Road to US 70 US 1923 to Chunna Cove Road to US 70 US 1923 to Chunna Cove Road to US 70 US 1924 to US 192 US 1923 to Chunna Cove Road to US 70 US 1924 to US 192 US 1924 to US 1924 to US 192 US 1924 to US 1924 to US 192 US 1924 to US 1924 to US 192 US 1924 to US 192 US 1924 to US 1924 to US 192 US 1924 to US 1		F240 to Eastern Planning Boundary	5.70		55			25,000	¥	ADQ	
US 19/23 to Churnas Cove Road to US 70	g	140 to US 1973	2.80		55			67.000	ш	ADO	
Chunns Cove Road to US 70 Chunns Cove Road to US 70 1.10 99 770 55 64,000 35,800 67,800 ADQ ADQ ADQ US 70 to L40 US 70 to L40 2.10 48 250 55 44,000 27,400 31,500 ADQ ADQ ADQ HAShore Drive to Roadway Averine (SR 1781) Lakeshore Drive to Northern Planning Boundary 4.20 48 250 55 44,000 31,500 35,600 M 300 COROLGHFARES Lakeshore Drive to Northern Planning Boundary 4.20 48 250 55 54,000 27,700 55,600 M 300 COROLGHFARES NC 191 to L26 ADQ 48 250 55 54,000 27,700 55,600 M 300 ADQ L26 to US 25 L26 to US 25 L26 to US 25 L26 to US L27 to US		US 1923 to Chunns Cove Road	2.20		55			2,800	ш	ADO	
US 70 to 140 L20 to Broadway Ave (SR 1781) Lakeshore Drive L20 to Broadway Ave (SR 1781) Lakeshore Drive to Northern Planning Boundary L20 to Broadway Avenue (SR 1781) to Lakeshore Drive to Northern Planning Boundary L20 to L2		Chunns Cove Road to US 70	1.10		55			000'19	ADQ	ADO	
F240 to Broadway Ave (SR 1781) to Lakeshore Drive 1.20 48 250 55 48,000 31,500 55,600 M 300 300 M 300 300 M 300 300 M		US 70 to F40	2.10		55			33,000	ADQ	ADO	
Broadway Avenue (SR 1781) to Lakeshore Drive	192370	F240 to Broadway Ave (SR 1781)	8.		55			55.000	2	300	
CARCHESTARES Lakeshore Drive to Northern Planning Boundary 4.20 48 260 55 54,000 27,700 56,600 M 300 OROUGHFARES NC 191 to L26 NC 191 to L26 -26600 ADQ ADQ ADQ 280) L26 to US 25 -26 to US 25 -2600 ADQ ADQ ADQ 3557) L240 to Lyman Road 1,500 21-26 60 35 16,500 11,000 27,600 O or F 90 McDowell Street (US 25) to Patton Avenue 0,70 50 -60 35 18,000 10,000 15,500 ADQ ADQ		Broadway Avenue (SR 1781) to Lakeshore Drive	1.20		55			25,000	=	300	
OROUGHFARES NC 191 to L26 L26 to US 25 L3009 26400 ADQ ADQ 280] L26 to US 25 L26 to US 25 13,300 36,000 ADQ ADQ 3557] L240 to Lyman Road 1,60 21.26 35 16,500 11,000 27,600 O or F 90 McDowell Street (US 25) to Patton Avenue 0,70 50 60 35 18,000 16,000 15,500 ADQ ADQ ADQ		Lakeshore Drive to Northern Planning Boundary	4.20					98 98	=	300	
280) NC 191 to F26 280) NC 191 to F26 1.50 64 100 55 43000 — 26600 ADQ ADQ ADQ F26 to US 25 F26 to Us 26 F26 to Us 25 F26	MAJOR THOROUGHFARES										
3557)	oort Road (NC 280)	NC 191 to F26 L28 to 112 25	2 F	•	55			26000	ADQ O or F	P P P P P P P P P P	LIP IL 2402
3557)			?		}				5	Ž]
McDowell Street (US 25) to Patton Avenue 0.70 5060 35 18,000 10,000 15,500 ADQ	boy Roed (SR 3557)	F240 to Lyman Road	1,60		35			27,000	OorF	96	
	eland Avenue	McDowell Street (US 25) to Patton Avenue	0.70		35			15,500	ADO	ADQ	

APPENDIX A – ASHEVILLE URBAN AREA STREET INVENTORY

		20000	KOMY.		77		7000	2030	04	7100	
		Tenga				ב הואפונו	200	0707	Aum).	-	
Facility	Section	(Miles)	(F)	Œ	(Mph)	Capachy	AADT	AADT	(F9	Fg	Enhance.
Berverdam Road (SR 2053)	Merrimon Avenue (US 25) to Elk Mtn. Scenic Hwy. (SR 2230)	07.0	18	09	35	6,000	6,700	11,500	d	70-100	PN# 10
	Elk Mtn. Scenic Hwy. (SR 2230) to Webb Cove Road (SR 2053)	1.80	2	8	35	000'9	6,400	12,000	٩	70-100	PN#10
Biltmore Avenue (SR 3214)	Meadow Road (NC 81) to Southside Avenue	9	40-52	8	35	25.000	19.500	36,600	Upgrade	ADO	U-3464, Mod. 1-way
	Southside Avenue to Pack Square	1.00	82	8 6-56	35	20,000	11,500	17,600	Under	Study	,
Blue Ridge Partware	Chestnut Overlook to Brevard Road (NC 191)	27	21-24	1	35	9,500	970	1,200	QQ.	8	
	Brevard Road (NC 191) to Webb Cove Road (Sr 2053)	16.10	21-24	1	35	\$ 500	2,800	9,000	ADO	8	
	Webb Cove Road (SR 2053) to Northern Planning Boundary										
Brevard Road (NC 191)	NC 289 to NC 146	3.40	2	8	55	9,500	7,400	18,600	0	2	U-3403
(see also Minor Thoroughfares)	NC 146 to Clayton Road	1,40	2	8	S	9,500	6,200	14,600	0	2	U-3403
1	Clayton Road to Wesley Bridge Road (SR 3484)	1.50	20	8	જ	11,000	10,600	18,000	0	2	0-3403
	Wesley Bridge Road (SR 3484) to Sardis Road (NC 112)	1.40	20	8	55	11,000	8,400	18,000	0	2	U-3403
	Sardis Road (NC 112) to I-26	0.57	77	26	55	000'07	12,100	21,000	ADQ.	ADQ	U-3403
	L26 to L240	1.90	74	23	જ	7,500	10,600	16,000	0	ADO	U-3403
Renadurat Avenue (SR 1781)	Pack Source to 1240	70	7	50-90	35	18 000	11 000	17,600	ADO	ADO	
(1-240 to Woodraw Avenue	9	20-24	50.90	35	900	000	17 800	=	ADO	TIP U-1001
	Woodrow Avenue to Catawba Street	0 40	20	2	35	9 500	5,000	16,000	: (9	ADO	TIP U-1001
	Catawba Street to Riverside Drive	98.0	20	8	35	21,000	7,500	18,000	PD	ADO	1
Secret State of this	Different Avenue to College Street	87. A	2	8	52	50 %	12 000	18	4 00	900	Tum I mea
anno anno anno anno anno anno anno anno	District Avenue to Consegue on section		\$ \$		3 6		1,000	9 9 9		1	
(see also Minor Inoroughiares)	College Street to Woodnin Place Woodfin Place to Orchard Street (P.240 Bridge)	0.10	\$ \$	2 2	3 %	2,000	19,000	36,66	Under	Study	Tum Lames
Clingman Avenue (SR 3548)	Depot Street to Patton Avenue	0.40	7	\$	33	7,500-9,000	6,500	8,000	ADQ	ADQ	:
College Street (SR 2501)	Patton Avenue to Broadway Avenue	8.0	R	8	35	7,500	1	5,000	ADQ	ADQ	
	Broadway Avenue to Market Street (SR 1781)	0.10	33	8	35	7,500	1	5,000	ADQ	ADO	
	Market Street to Woodfin Street	0.20	22	8	35	38 ,800	1	8,600	ADQ	ADO	
	Woodfin Street to Town Mtn. Road (NC 694)	0.20	8	80-100	53	26,000	I	-10,600	ADQ	ADO	
Erwin Hills Road (SR 1367)	Lee Creek Road (SR 1368) to Old Leicester Hwy. (SR 1002)	98.0	20	- 1	જ	9,500	1,900	4,400	ADQ	ADQ	
French Broad Avenue	Livingston Street to Haywood Street	07.0	20	8	35	9,500	1	7,300	ADQ	ADQ	
Haywood Road (SR 3552)	Patton Ave to Sulpher Springs	9.60	30	1	30	12,000	10,400	19,000	Under	Study	
	Sulpher Springs to Brevard Road	0,30	30	i	20	12,000	14.000	19,000	Under	Shirt	

		Section	Rowy.	Pauds S		Prectical	222		KECOMMENDED	NUEU	
		Length	Width	ROW LIMIT		Current	1989	2020	Rowy.	R-O-W	
Facility	Section	(Miles)	(Fg	(Fg (Mph)		Capacity	AADT	AADT	(FQ	(F)	Enhance,
	Brevard Road to Ridgelawn Road	1.10	30	1	20	12 000	13.500	24,000	Under	Study	
	Ridaelawn Road to Craven Street	0.70	30	28		12,000	6.500	11,000	Under	Study	
	Craven Street to Clinaman Avenue	0.30	8	23		12,000	6.500	11,000	Under	Study	
	•							•		•	
Hendersonville Road (US 25)	SR 1361 to US 25A	3,40	72	8	55	12,000	16,600	32,000	0	8	TIP R-2213
	US 25A to Spring Side (SR 3506)	246	2	08-00 08-00	45	24,000	19,600	24,000	ADO	ADO	TIP R-2213
	Spring Side (SR 3506) to Rock Hill Road (Sr 3081)	3.10	2	8	35	2000	16,600	28,000	ADO	ADO	
	Rock Hill Road to I-40	2,	40-52	120		29,000	19,200	26,000	ADQ	ADO	
	L40 to Meadow Road INC 81	0.50	22-64	8		25,000	24,000	39,000	Under	Study	
Hilliard Street	Clingman Avenue to South French Broad Avenue	07'0	31	8		11,000	I	12,000	ADO	ADO	
	South French Broad Avenue to Biltmore Avenue	0,50	35	8	25 1	11,000	I	12,000	ADQ	ADO	
Lee Creek Road	Mt. Carmel Road (SR 1369) to Erwin Hills Road (SR 1367)	07.0	20	8	35	7,800	ı	2,900	ADQ	ADO	

Leicester Hwy. (NC 63)	Patton Avenue to Northern Planning Boundary	3.10	2	8	5 3	37,000	18,800	29,000	ADQ	ADQ	TIP U-3301
Long Shoals Road/NC 280	NC 280/191 to US 25	3.50	22-24	60-100 33	35-45	7,500	5,600	9,600	0	ADO	TIP R-2813
Lyman Avenue	Amboy Road to Riverside Drive	1.30	32	3	SE	7,500	2,400	000 #	۵.	9	Upgrade
McDowell Street (US 25)	Hendersonville Road to Meadow Road (SR 3556)	95.0	52-64	26		20,000	14,600	28,000	0	06	Mod. 1-way
	Meadow Road (SR 3556) to Southside Avenue	1.60	94	8	35	20,000	16,100	28,000	0	8	PN#18
Mandam Dand (CD 1858)	Amhou Road to McDowell Street	9,	20	36.50		44 000	15 400	35 800	c	06	
	McDowell Street to Blitmore Avenue	0.30	20-24	30-50	35 f	11,000	8,000	17,000	0	06	

Merrimon Avenue (US 25)	1-240 to W. T. Weaver Bivd.	1.10	38-42	8		18,000	17,000	28,000	Study	ADO	PN#1 Turn Lanes
or Weaverville Road	W. T. Weaver Bivd. to Edgewood Drive	3.	38-42	8	35 1	18,000	16,500	22,000	Study	ADO	PN #1 Turn Lanes
	Edgewood Drive to Lakeshore Drive	0.50	38-42	3		18,000	17,000	25,000	Study	ADO	PN#1 Turn Lanes
	Lakeshore Drive to Beaverdam Road	0.20	38-42	2	35	18,000	18,900	30,000	Study	ADO	PN#1 Turn Lenes
	Beaverdam Road to Wembley Avenue	0.30	38-42	2		18,000	10,400	19,000	Study	ADO	PN#1 Turn Lanes
	Wembley Avenue to Elkwood Avenue	1.8	38-42	2	35	9,500	11,000	17,000	Study	ADO	PN #1 Turn Lanes
Mills Gao Road /SR 1551/SR 3116)	US 25 to Concord Road (SR 3151)	3	20	1	35	9,500	7,500	13,000	Upgrade	100	PN#11
[Henderson/Buncombel	Concord Road (SR 3151) to Cane Creek Road (SR 3136)	3.20	20	ı		9,500	5,800	10,000	Upgrade	100	PN#14
	Cane Creek Road (SR 3136) to Cane Creek Road (SR 3136)	2.80	20	l	55	22,000	7,100	14,300	Upgrade	100	PN#14
737 011	110 4003 to Court Diamina Boundary	80	18.38	6-150	55	7.500	ı	98.1	ADO	ADO	TIP R.2116

APPENDIX A – ASHEVILLE URBAN AREA STREET INVENTORY

Facility Old Alrport Road (SR 1547) Old Leicester Highway (SR 1002) Mt. Carmel Road to Envir H		000000000000000000000000000000000000000				-	-			
		30000	Width ROW	THIS	Current	1969	200	Rdmy.	R-O-W	
	Section	(Miles)	(F) (F)	(Mph)	Capacity	AADT	AADT	(F9	(FØ	Enhance,
	Creek Road	0.90	34 90	35	7,500	6,900	15,600	H	92	PW# 12
	Mt. Carmel Road to Erwin Hills Road	9	18-20	×	9,500	2 100	3,600	م	ADO	
DECK STILL THE T	Erwin Hills Road to Gorman Bridge Road	98.0		55	985 6	4,400	900 '5	٩	ADO	
Gorman Bridge R	Gorman Bridge Road to Riverside Drive	99.0	18-20	33	9,500	6,200	900'	م	ADO	
Patton Avenue (SR 2115) US 1923/70 (east	US 1973/70 (east of French Broad River) to College Street	1.88	65-75 450	\$	17.500	l	24,300	Under	Study	
	od Road	0.80	40-46 150	\$	17,500	6,300	26,600	Under	Study	
Patton Avenue - One Way Eastbound West College Stre	West College Street to Spruce Street	0.10	I R	35	7,500	I	\$,300	Under	Study	
Porter Cove Road (SR 2838) US 78 to H40		0.20	160	34	35,000	000'6	19,000	ADO	ADO	
Raiph Street	Bartlett Street to South French Broad Avenue	0.38	36 50	35	18,000	1	12,000	ADO	ADO	
Riverside Drive/NC 251 Lyman Avenue to Broadway	to Broadway	2.58	20	35	2,500	6,700	9,700	٩	100	Tum Lanes
	Broadway Street to Walnut Lane	0.70	20-22 60	8	9,500	2,600	8,500	٩	100	PN# ¢
Walnut Lane to N.	Walnut Lane to Northern Planning Boundary	2.40	20 60	S	9,500	1,800	2,000	م	100	PNE
Sard's RoadNC 112 US 1923 to Case	US 19/23 to Case Cove Road (SR 3437)	8	24-64 100	3	11,000	9,700	18,000	0	06	
	Case Cove Road (SR 3437) to Sandhill Road (SR 3412)	1.10		53	11,000	6,000	10,000	0	06	
Sandhills Road (S	Sandhills Road (SR 3412) to Brevard Road (NC 191)	2.10	24 100	3	11,000	8,200	15,000	0	26	
Southside Avenue McDowell Street (McDowell Street (US 25) to Biltmore Avenue	95.0	\$	35	26,000	6,700	16,400	ADQ	ADO	
Swennanca River Road Biltmore Avenue to F. 240	ue to F 240	1.78	24 60	\$	10,000	8,500	12,000	م	100	
		1.2		5	16,000	8,500	14,000	٩	100	
US 74 to US 70		1.20		\$	30,000	10,300	15,000	٩	100	
Sweeten Creek Road US 25A US 25 (et Alrport Road) to I-40	ort Road) to 1-40	8	22-30 60	5\$	10,000	12,000	26,000	0	96	TIP U-2801
	L40 to US 25 in Biltmore Village	1.70	40-50 60	25-45	18,000	9,300	24,300	0	26	TIP U-2801
Town Wountain Road (MC 694) College Street to 1-349	to F240	0.20	20 60	S	7.500	2200	.500	ADO	ADO	
	L240 to Webb Cove Road (SR 2053)	6.10		35	7,000	800	1,800	ADO	ADQ.	
Tunnel Road (US 70) College Street to	College Street to Kenilworth Drive	1.00	32-64 100	35	25,000	13,400	22,000	ADO	ADQ	
	Ve to NC 81	8.		35	22,000	20,800	38,000	Under	Study	
MC 81 to US 70		0.70	60 60-100	45	25,000	000'6	13,600	ADO	ADO	

Facility			4					2000			
Facility		Length	Moth	ROW	Z	Current	1989	0202	KOMY.	R-0-W	
	Section	(Miles)	E	1	(Mph)	Capachy	AADT	AADT	(FQ	(F9	Enhance.
US 19.23	Western Planning Boundary to 1-40	2.58	3	28	3	26	26.200	24.000	L	110	
	L40 to Haywood Road	09'0	44-52	\$	35	35,000	24,100	44,000	u,	110	
US 70	US 74 to Governors View	2	\$	-100	3	000'0#	26.600	41,000	AD0	ADO	
	Governors View to Grassy Branch Road (SR 2403)	9	-S	-100	\$	37,000	17,500	31,000	ADO	ADO	
	Gressy Branch Road (2403) to East Planning Boundary	3.20	8,	-100	\$	36,000	16,100	36,000	ADO	ADO	
US 74 (Charlotte Highway)	US 70 to NC 81 West	9	25	60-100	25-45	25,000	9.000	13.000	ADO	ADO	
7	NC 81 West to NC 81 East	1.20			3	16,000	8,500	14,000	ADO	ADO	
	NC 81 East to I-240 at River Ridge	9.58	7.	200	\$	33,500	13,500	21,000	*	8	
	F.240 to southeast planning boundary	28.5	3	3	55	000'6	11,000	19,000	A DQ	ADO	TIP R-2306
W. T. Weaver Blvd. (SR 1730)	Broadway Avenue (SR 1781) to Merrimon Avenue (US 25)	0.80	87	8	35	33,500	6,000	12,000	ADQ	ADQ	
Weeverville Hwy. (US 25)	Elkwood Avenue (SR 1674) to Northern Planning Boundary	09'0	77	2	\$	12,000	8,400	13,600	Ŧ.	8	PW#5
STATESTICACITY ACTION											
Acton Circle (SR 1245)	US 19/23 to US 19/23	0.42	91	l	55	7,500	100	1	ADO	ADQ	
Asbury Road (SR 1234)	Monte Vista Road(SR 1224) to US 19/23	1.80	18	ł	35	7,500	3,100	3,700	ADQ	ADQ	Perking
Avery Creek Boat CD \$4861	Deed End to Braverd Boad OV 104)	\$	\$	ı	55	. A. 000	1 80	3500	85	900	
frace (c) peop years frage	Brevard Road (NC 191/280) to Glen Bridge Road (SR 3495)	28	16-18	ı	55	7,000	1,300	3,500	P Q	§	
Azelee Road (SR2754)	Swannanoa River Road to US 70	2.30	8 2	99	55	9,500	2,200	3,600	ADQ	ADO	
Baldwin Road (SR 3189)	Christ School Road (SR 3188) to Lower Christ School Road	1.10	18	26	55	7,500	1,000	3,000	ADQ	ADQ	
Bartlett Street	Depot Street to Raiph Street	0.10	8	3	35	11,000	I	10,000	ADQ	ADQ	
Bear Creek Road (SR 1630)	Heywood Road (US 19/23) to Old County Home Road (SR 1315)	1.30	19	A	55	7,500	3,000	4,700	ADQ	ADQ	
Bent Creek Road (SR 3480)	Pole Creasman Road (Sr 3476) to Wesley Bridge Road (SR 3484)	0,40	26	2	35	8,500	100	1	ADQ	ADQ	
Beverly Road	New Haw Creek Road to US 70	0.38	5	8	35	7,500	5,900	6,000	ADQ	ADQ	
Binghem Road (SR 1350)	Emma Road (SR 1338) to Pearson Bridge Road (SR 1348)	0.80	13	1	35	6,500	2,300	3,000	ADQ	ADQ	

APPENDIX A – ASHEVILLE URBAN AREA STREET INVENTORY

		Section Rowy.	Rdwy.	Speed	Freder			ALCOM MENDED	SOLD	
		Length	Width R-O-W	LIMK	Current	1989	2920	Rdwy.	R-O-W	
Facility	Section	(Wiles)	(Fg (Fg	(Mph)	Capachy	AADT	AADT	(F0	(F0	Enhance.
Bingham Heights Road (SR 1349)	Riverview Road (SR 1353) to Louisana Avenue (SR1332)	07.0	80	જ	11,000	009	9,200	ADQ	ADQ	
Brevard Road (NC 191) (see also Major Thoroughfares)	F240 to Haywood Road	3,00	20-24 60	20	7,500	7,200	11,600	Under	Study	
Browntown Road (SR 1297)	Stuyvesant Road to Hendersonville Road (US 25)	80	20	35	7,000	1,800	2,500	ADO	ADO	
Buff Creek Road (SR 2424)	Northern Planning Boundary to Shope Creek Road (SR 2426)		- 4	જ	2,000	200	1,000	ADO	ADO	
Bushee Road	Vanderbilt Road to Hendersonville Road (US 25)	0.20	18	35	2,500	1,700	2,500	ADO	ADO	
Caledonia Road	Biltmore Avenue to Foresthill Orive	0.28	22 30	35	10,000	1	4,500	ADO	ADO	
Cane Creek Road (SR 1545)	US 25 to Henderson County Line	8.	28	x	7,500	2,000	6,000	ADQ	ADO	
Cane Creek Road (SR 3136)	Henderson County Line to Eastern Planning Boundary	2.90	20	35	9,500	5,300	9,500	ADO	ADO	
Caribou Road (SR 3223)	Hendersonville Road (US 25) to Sweeten Creek (US 25A)	2.10	15.22	8	7,800		1,500	ADQ	ADQ	
Cedar Hill Road (SR 1263)	Johnston School Road (SR 1318) to Pisgah View Road (SR 1403)	97.0	16	22	7,500	1	2,500	ADQ	ADQ	
Charlotte Street (see also Major Thoroughfares)	Orchard Street to Chestnut Street Chestnut Street to Edwin Lane	0.10	2 2	35	22,000	1 1	26,000	00	2 2	
Chestnut Street	Charlotte Street to Broadway Street	0.59	24 40		7,500	3,700	5,600	ADQ	ADO	
	Broadway Street to Flint Street Flint Street to Montord Avenue	0.16	30 26 26	3 3	7,500	3,700	5,000 5,000	ADQ ADQ	ADQ ADQ	
Choctow Street	McDowell Street to South French Broad Avenue	0.35	39 60	35	7,500	1	10,000	ADO	ADQ	
Christ School Road (SR 3188)	Pensacola Avenue to Baldwin Road (SR 3189) Baldwin Road (SR 3189) to Lower Christ School Road (SR 3197)	0.38	###	55 55	005'Z	200	3,500	ADQ ADQ	ADQ ADQ	
Chum's Cove Road (SR 2042)	Tunnel Road to Old Chunn's Cove Road Old Chunn's Cove Road to SR 2208	0.50	24-44 60 16 60	35 35	7,000	1,500	4,000	ADQ ADQ	ADQ ADQ	
Clayton Road (SR 3501)	Brevard Road (NC 191) to Long Shoals Road (NC 146)	1.30	5	x	7,000	9,500	12,000	٩	100	
Concord Road (SR 3150)	Wills Gap Road (SR 3116) to Emma's Grove Road (SR 3128)	2.56	16	55	6,500	1	5,000	ADQ	ADO	

		Section	KOMY.	Speed Fractical	1080	NECOMIN	Return R-D-W	
Facility	Section	erenenen.						Enhance,
Deaverniew Road (SR 1263)	Pisgah View Road (SR 1403) to Patton Avenue (US 1923)	67	99					UPGRADE
Depot Street	Lyman Street to Livingston Street	0.45	3	35 75,000	I I	12,800 ADQ	ADQ A	
Dogwood Road (SR 1220)	H40 to US 19/23	RO	16	35 7,500	2,600	3,500 ADQ	ADO	
Dryman Mtr. Road	Mt. Cermel Road to Urban Boundary	0.50	18	\$		3,500 ADQ		
or Emma Road (SR 1338)	Urban Boundary to Near Jamieson Street Jamieson Street to Smith Bridge	3.5.	18 30	35 7,500 35 7,500	3,200	4,900 ADQ	88	
Edwin Place	Kimberly Avenue to Charlotte Street	0.40	32 60	25 11,000	T	18,000 Under	er Study	
Elida Homa Road (SR 1318)	Leicester Hwy. (NC 63) to North City Limits North City Limits to Dryman Wtn. Roed (SR 1338)	0.70	95 55 09	35 7,000 55 7,000	1,200	4,600 ADQ 1,500 ADQ	A A A A A A A A A A A A A A A A A A A	
Elk Mountain Road (SR 1684)	Lower Beaverdam Creek Road to Cottage Street	160	35 50	35 7,500	5,700	8,600	0.2	10th off ws
	US 19/23 to Lakeshore Drive	8		308			70	SW, TP U-401
Elk Mountain Scenic Hwy. (SR 2230)	Beaverdam Road (SR 2053) to Blue Ridge Parkway	25	20 60	55 6,000	300	1,800 ADQ	A ADQ	
Elkwood Avenue (SR 1674)	Riverside Drive (NC 251) to Weaverville Road (US 25)	1.40	16-20 60	35 9,000	3,200	4,000 ADQ	ADQ A	
Emma's Grove Road (SR 3128)	Concord Road (SR 3150) to US 74	3.50	16	55 7,500	ı	3,600 ADQ	ADO	
Enks Cove Road (SR 3446)	North Case Cove Road (SR 3437) to South Case Road (SR 3437)	8.	18	35 7,000	ا م	5,000 ADQ	ADO	
Evelyn Place	Kimberly Avenue to Murdock Street	0.10	30 40	25 11,000	ı	4,500 ADQ	ADO	
Fenning Bridge Road (SR 3539)	Brevard Road (NC 191) To Alrport Road (NC 280) Alrport Road (NC 280) To Hendersonville Road (US 25)	1.20	5 5	55 7,500 55 7,500	2,500	3,500 P	70-100	PN#3
Foresthill Orive	Caledonia Road to Kenilworth Drive	010	20 40	35 7,500	1	4,100 ADQ	ADQ A	
Fairriew Road	Sweeten Creek Road (US 25A) to Cedar Street Cedar Street to Swannanoa River Road (NC 81)	1.00	21 — —	35 9,000 45 33,500	9,900 1; 13,800 Z	12,000 P 22,000 ADQ	ADQ ADQ	Sidewalks
Glen Bridge Road (SR 3495)	Brevard Road (NC 191/280) to Hendersonville Road (US 25)	6.10	16-22 60	55 7,500	- 2	2,600 ADQ	ADO	

APPENDIX A - ASHEVILLE URBAN AREA STREET INVENTORY

		Section Rdwy.	Rdwy.	Speed	Prectice	0000		RECOMMENDED	NDED	
		Length	Width R-O-W			1989	2020	Robny.	R-O-W	
Facility	Section	(Miles)	F9 (F9	(Mph)	Capacity	AADT	AADT	(F9	(F)	Enhance.
Glendale Avenue (SR 3229)	Fairview Road to Swannanoa River Road (NC 81)	8:0		R	2,500	2,800	4,100	ADO	ADO	
Gorman Bridge Road (SR 1357)	Dryman Mtn. Road (SR 1338) to Old Leicester Hwy. (SR 1002)	1.80	16.	88	22,000	1,600	4,500	ADO	ADO	
Grassy Branch Road (SR 2403)	US 70 to Old Farm Sch. Road (SR 2408)	1.46	5	35	6,000	1,600	2,900	ADQ	ADO	
Haywood Street	Flint Street to College Street	R 0	32-36	8	7,500	2,000	12,000	Under	Study	Pkg one side
Hazel Milli Road (SR 1333)	Dryman Mtn. Road (SR 1338) to Louisana Avenue (SR 1332) Louislana Avenue (SR 1332) to Patton Avenue (US 19/23)	0.70	9t 9t	8 8 8 8	009'2	3,200	5,600	Upgrade Upgrade	100	
Henry Road (SR 3521)	Glen Bridge Road (SR 3495) to Heywood Road (SR 3552)	80	7.	55	7,500	I	6,700	ADO	ADQ	
Herron Cove Road (SR 2098)	Elk Mnt Scenic Hwy. (SR 2230) to Northern Planning Boundary	95.0	20 0	8	6,000	ı	1,400	ADO	ADO	
Heywood Road (SR 3552)	Henry Road (SR 3521) to US 25	0:30	2	33	2,000	ı	6,400	ADO	ADQ	
Hiswasses Street	Haywood Street to Lexington Avenue	0.20	ੱ ਲ	35	7,000	I	2,600	ADQ	ADQ	
Hillside Street (SR 2128)	Broadway Street (SR 1781) to Charlotte Street	8.0		30 35	7,500	3,700	5,000	ADQ	ADQ	
Holbrook Road (SR 1238)	Monte Vista Road (SR 1224) to Starmes Cove Road (SR 1255)	1.00	18	55	7,500	1,500	7,200	ADO	ADO	
Jenkins Valley Road (SR 1641)	Macedonia Road (SR 1645) to Mt Carmel Road (SR 1369)	09'0	10	55	7,500	I	1,600	۵.	100	
Johnston Blvd. (SR 1319).	Old County Home Road to Cedar Hill Road	3 :		~~~~		1,800	000	ADO	ADO	
	Bear Creek Road to Baker Drive Baker Drive to Patton Avenue	0.78	. 18 27 31	3 33 33	7,500	3,500	5,000 5,000	§ § §	\$ \$ \$	
Jonestown Road (SR 1661)	Riverside Drive to Elk Mountain Road	1.80		2	2,300	ı	2,500	ADO	ADO	
Kenilworth Road	Foresthill Drive to Tunnel Road	1.36	20-35 40-60	35	16,000	ı		ADO	ADQ	
Kimberly Avenue	Evelyn Place to Beaverdam Road	1.88	32 6	60 25	11,000	10,200	22,600	Under	Study	
Lekeshore Drive	Elkwood Avenue to Merrimon Avenue	1.60	32 6	50 25	\$, 600	5,500	8,500	ADQ	ADQ	

Facility Ledbetter Road (SR 3498) Liberty Street/Crayton Road Old West Cold West Cold Street Livingston Street Louisians Avenue (SR 1332) New Oneo	Section NC 181/280 to Long Shoels Road (NC 146) Sweeten Creek to Old West Chanel	Length W (Wiles) (Roger (Table		Current 19	1989 : AADT A			R-O-W	Enhance,	
			띡		9888				3	Enhance.	
		ı		(Mph) Cap			77.777				
	Creek to Old West Cheed		18-20 60		000'6	-	₹ 2000	YDO	ADQ.		
		93.0			7 200	80		Inder	Chich	267	
	Old West Chanel to Fairnian Road	970	1	8		6 200	5 S		Study	14	
	Depot Street to Victoria Road	5 .0	R	35 18,	18,000	ı	12,000 A	ADQ /	ADQ		
		e i							9		
Caro Caro	Haywood Koad to Near Oregon Avenue	7		33					3 :		
	Near Oregon Avenue to Patton Avenue	9 :	09					~	2		
Patton Av.	Patton Avenue to Near Emma Road (SR 1338)	3						T	2	Ille Creits	
Near Emm	Near Emma Road (SR 1338) to Bingham Road (SR 1349)	8	24	35 f6,	16,500 5,3	5,300	8 100 0		2	130 Cr618	
Lower Christ School Road (SR 3197) Mills Gap I	Milis Gap Road (SR 3116) to Cane Creek Road (SR 3136)	8	2	55 7.	7,500	ı	3,000 A	ADQ /	ADQ		
Lower Grassy Branch Road (SR 2403) US 70 to R	US 70 to Riceville Road (SR 2002)	2.25	5	35 7,5	7,500	ı	3,000 A	ADO	ADQ		
Mcintosh Road (SR 3426) Oakview R	Oakview Road (SR 1224) to Pond Road	98.0	18 50	55 7.5	2,500	1	1,500 A	ADQ ,	ADO		
										٠	
Merrill's Cove Road (SR 3119) Concord R	Concord Road (SR 3150) to Pinner's Cove Road (SR 3121)	1.70	1	55 5.6	5,000	ı	1,000 A	ADQ ,	AD0		
Monte Vista Roed (SR 1224) Western P	Western Planning Boundary to Acton Circle (SR 1245)	278	16 40	35 7,5	7,500 4,0	4,500	7,000 A	ADQ 70	70-100		
Montford Avenue Haywood	Haywood Street to Chestnut Street	0.80	69 07	35 7,500-18,000	18,000	ı	5,200 A	ADQ 1	A DQ		
Mount Carmel Road (SR 1369) Lelcester I	Leicester Highway (NC 63) to Old NC 20 (SR 1622)	2.70	1	35 6,1	6,400 4,3	4,300	2,000	P 70	70-100		
Murdock Avenue Hillside St	Hillside Street (SR 2128) to Merrimon Avenue (US 25)	0.75	24 40	35 7.	7,500	1	7,500 A	ADQ ,	ADQ		
New Haw Creek Road (SR 2032) US 70/DIIII	US 70/Dillingham Road to Mann Road (SR 2183)	2.70	16.18	55 7.5	7.500 5.9	5.900	6.000	۵.	100		
							-				
Oak Hill Road (SR 1248) Monte Visi	Monte Vista Road (SR 1224) to Starnes Cove Road (SR 1255)	1.20		35 7.	7,500	ı	1,300 A	ADQ ,	ADQ		
Oak Street	Woodfin Street to College Street	88.0	48 60	35 22,	22,000 8,4	8,400 1	14,000 A	ADQ /	ADQ		
Oakview Road (SR 1224)	Sand Hill Road (SR 3412) to McIntosh Road (SR 3426)	1.80	94	., 	7,500	ı	f,000 A	ADQ /	ADQ		
Old Beaverdam Creek Road NC 251/Rh	NC 251/Riverside Drive to Elk Mountain Road (SR 1684)	0.18	18	55 7,5	7,500	ı	2,300 A	ADO	ADQ		
Old County Home Road (SR 1315) Lelcester I	Lelcester highway (NC 63) to Bear Creek Road (SR 1630)	0.30	19	35 6,0	6,000	1	3,700 A	ADO	ADQ		

APPENDIX A – ASHEVILLE URBAN AREA STREET INVENTORY

		Section	Robery. Wildth R	ROW L	Speed Pri	Practical	1989	2020	Rdwy. R-O	ROW	
Fadility	Section	(Miles)	£	FG R	(Mph) Ca	Capacity	AADT	AADT	(Fg	(Fg	Enhance,
Old Farm School Road (SR 2402)	Riceville Rd West(SR 2002) to Lower Grassy Branch Rd (SR 2403)	Ê	18-20	1	55	9,500	 	1,600	ADQ	ADO	
Old Farm School Road (SR 2488)	Lower Grassy Branch Rd (SR 2403) to Riceville Rd East(SR 2002)	1.60	18-20	8	55	9,500		1,600	ADQ	ADO	
Old Haywood Road (SR 1404)	US 19/23 to US 19/23	3	20	ı	S	7,500	4,100	7,000	٩	ADO	UPGRADE
Old Shoals Road (SR 3522)	Airport Road (SR 3526) to Henry Road (SR 3521)	1.00	20-22	8	8	7,500	I	3,500	ADO	ADO	
Olivette Road (SR 1348)	Old Lelcester Highway (SR 1002) to Macedonia Road (SR 1645)	0.80	18	ı	55 7	2,500	200	909	ADQ	ADO	
Overlook Road (SR 3503)	Long Shoals Road (NC 146) to Hendersonville Highway (US 25)	1.80	20	09-07	35 7	7,500	3,000	-7,600	ADO	ADQ	Enhanc
Pearson Bridge Road (SR 1948)	Bingham Heights Road (SR 1349) to River View Road (SR 1353) River View Road (SR 1353) to Riverside Drive / NC 251	0.30	16	1 1	35 7	7,000	2,400 3,500	3,300	ADQ	ADQ	
Pensacola Avenue (SR 3187)	US 25A to Christ School Road (SR 3188)	0'03	8	8	35	7,500	1,000	3,600	ADO	ADO	
Philes Street	South French Broad Avenue to McDowell Street (US 25)	0,19	77	9	35	7,500	1	3,000	ADO	ADO	
Plagah View Road (SR 1403)	Starmes Cove Road (SR 1255) to Cedar Hill Road (SR 1263)	2.10	16	ı	35	7,500	2,000	3,000	ADO	ADO	S
Pole Creasman Road (SR 3479)	Bent Creek Road (SR 3430) to Brevard Road (NC 191)	3.	20-30	8	35	205 3	2,600	3,000	ADO	ADO	
Pond Road (SR 3439)	Sardis Road (NC 112) to Brevard Road (NC 191)	2.00	12	8	8	6,500	200	1,000	ADQ	ADO	
Queen Road (SR 3447)	NC 151 to Enka Lake Road (SR 3446)	7.69	16-18	1	8	7,500	1	3,000	ADQ	ADQ	
Riceville Road (SR 2002) (see also Major Thoroughfares)	Buil Creek Road (SR 2424) to Warren Wilson College Rd	2.00	8	ı	8	7,500	I	7,000	ADQ	ADQ	
Rock Hill Road (SR 3081)	Hendersonville Road (US 25) to Sweeten Creek (US 25A)	09'0	16	I	30	16,000	3,400	5,000	ADO	ADQ	
Rose H## Road (SR 3121)	Merrill's Cove Road (SR 3119) to US 74	2.26	16-18	1	55	5,000	ı	1,000	ADQ	ADQ	
Rumbough Place	Patton Avenue (US 19/23) to Salola Street	0.38	20	96	35	7,500	ı	3,000	ADQ	ADQ	
Sand Hill Road (SR 3412)	Sardis Road (NC 112) to Sand Hill School Road Sand Hill School Read to I-40	8 8 8	2 2	8 8	& & 8. 9.	000 6	5,100	2,600	8 ABQ	2	

							Ę.	ĘĐ	
Facility	Section	Length Width	į	Limit Current (Mph) Capachy	AADT	AADT	Kamy.	KOW Fe	Enhance
	L40 to Haywood Road		\$		2,100	3,000	ADQ	8	
Sendhill School Road (SR 1224)	Acton Circle (SR 1245) to Sand Hill Road (SR 3412)	0.70	\$	35 7,500	3,000	5, 900	ADQ	ADQ	
Salola Street	Rumbough Place to Sand Hill Road	0.33 20	30	35 75,000	ı	3,000	ADQ	ADQ	
Shelburne Road	Brevard Road (NC 191) to Sand Hill Road (SR 3412)	0.70 20	30	35 7,000	ı	2,000	ADQ	ADQ	
Shope Greek Road (SR 2426)	Bull Creek Road (SR 2419) to Northern Planning Boundary	1.50 16	1	55 6,000	l	2,600	ADQ	ADQ	
Starnes Cove Road (SR 1259)	Northern Planning Boundary to US 1973	2.80 16	92	7,500	3,200	5,000	ADO	ADQ	
State Street	Amboy Road (SR 3557) to Haywood Road (SR 3552)	1.26 28	07	35 7,500	1	3,000	ADQ	ADQ	
Vanderbit/Stryvessmt Road	Blue Ridge Pkwy to Hendersonville Road (US 25)	3.70 21		35 8,000	ı	2,900	ADQ	ADQ	
Warren Wilson College Road (2416)	US 70 to Old Farm School Road	1.30 16-18	99	55 7,500	ı	7,000	ADQ	ADQ	
Webb Cove Road (SR 2053)	Beaverdam Road (SR 2053) to Town Mtn. Road (NC 694)	2.49 16	99	45 7,500	1,500	4,000	ADQ	ADQ	
Westey Branch Road (SR 3484)	Bent Creek Road (SR 3480) to NC 191	1.00 18	8	55 7,500	ı	3,000	ADQ	ADQ	
West Chapel Road	Sweeten Creek Road (US 25A) to Caribou Road (SR 3223) Caribou Road (SR 3223) to Hendersonville Highway (US 25)	0.66 19	22	30 7,600 30 7,600	1 1	f,700 f,700	ADQ ADQ	ADQ ADQ	
Weston Road (SR 3157)	Hendersonville Highway (US 25) to Mills Gap Rd (SR 3116)	200 20	- 1	35 7,500	ı	3,700	ADQ	ADQ	
Woodfin Street (SR 1668)	Lexington Avenue to Oak Street	0.50 48	<i>B</i> 2	35 22,000	8,400	14,000	ADQ	ADQ	
	Enh. = Enhancement Project Mod.1-wsy = Modified One-Wsy Pair PN = Priority Needs List Number	SW= TIP=1	SW = Sidewalks TIP = Transportation	SW = Sidewalks TIP = Transportation improvement Program Project	am Project				

B. TRAFFIC MODEL ANALYSIS

This section explains the development of the traffic model by detailing each phase of model development. A description of the trip generation model and the trip distribution model is included.

TRANPLAN is the transportation planning software that was used to model the traffic. TRANPLAN was developed in 1988 by The Urban Analysis Group (UAG) in Danville, California and is widely used throughout the United States. UAG also developed NIS, a software program which allows interactive display and editing of networks on the terminal screen. Plots which illustrate network characteristics can be made using NIS and TRANPLAN.

Overview of Model Development

The thoroughfare plan process began with development of the basis of the model and a first opportunity for public involvement. As described in the Chapter 4-Model Development, the planning area, the traffic analysis zones, and the roads to be used in the network were determined. The socioeconomic data was then collected.

The socioeconomic data was then used to produce and attract trips for each zone. This phase is termed trip generation. Once trip generation is complete, the trips ends are assigned between pairs of zones during the trip distribution phase. The outcome of this phase is synthesized traffic volumes. These traffic volumes are termed loaded volumes. The calibration phase then begins which includes adjustment of various factors until the loaded volumes match the traffic counts. This model used an all or nothing assignment procedure for loading calibration.

After the base year model is calibrated, the future year socioeconomic projections that have been provided by the local area are entered into the model. At this time, the analysis of alternate modes of transportation are analyzed. The projections are entered into the model and their impact on traffic volumes is quantified. Traffic is then assigned to the road network based on the projected location of housing and employment. The resulting traffic volumes are compared to the road capacities. The result of this comparison is an illustration of the capacity deficiencies on the road system. After the future year model is complete, the alternatives analysis phase begins. The design year 2020 projections included in Appendix A are based on an existing + committed network.

Trip Generation Models

The number of trips beginning and ending in each zone was generated based on the socioeconomic data. During the trip generation phase, only the number of trips produced and attracted to each zone is determined.

There are three types of trips. Different trip types have different characteristics such as length, purpose, and the impacts of transit and car/vanpooling. Thru trips begin and end outside of the planning area. For example, vacationers headed from Hickory to Knoxville would pass through the planning area on I-40. Internal trips are trips that begin and end in the planning area. The internal trips are then separated into three purposes: home-based work, other home-based, and non-home based. Non-home based secondary trips, that is, trips generated by vehicles garaged outside the planning area, are also determined. Lastly, external-internal trips are trips that have one trip end inside the planning area and one outside the planning area. For example, a person who lives in Hendersonville but travels to work in Fletcher is considered an external-internal trip. Internal trips are impacted by transit and car/vanpooling the most. The external-internal trips are impacted by transit and car/vanpooling to a lesser degree.

The Internal Data Summary (IDS) Program, developed by the NCDOT Statewide Planning Branch was used to estimate internal trip productions and attractions. Trip productions were calculated using generation rates on page B-4. IDS utilizes previously developed multiple regression equations to determine trip productions and attractions for truck and taxi trips. Regression equations are also used to determine the trip attractions for all internal and external trips. The trip attractions were adjusted to meet the trip productions.

Regression Equations

The generic regression equation for trip attractions for home-based other trips, non-home based trips, and external-internal trip purposes is shown below. The home-based work is a special case in that the trip attractions are equal to the total employment for each zone.

Regression Equation

Trip Attractions =
$$aX_1 + bX_2 + cX_3 + dX_4 + eX_5 + fX_6 + gX_7 + hX_8$$

where the X_S represent the following:

X₁ = Industrial Employment (SIC code 1-49) X₂ = Wholesale/Retail Employment (SIC code 50-54,56,57,59)

 X_3^2 = Highway Retail Employment (SIC code 55,58)

 X_A^3 = Office/Industrial Employment (SIC code 60-67,91-97)

 X_5^{\dagger} = Service Employment (SIC Code 70-76,78-89,99)

 $X_6 =$ Special (Grove Park Inn)

 X_7^0 = Special (UNC-Asheville)

 $X_{R}' = D$ welling Units

Attraction Coefficients

Purpose:	a	b	c	d	е	f	g	h	
HBO	0.5	1.83	8.36	2.60	2.55	0.80	5.00	0.5	
NHB	0.5	1.83	8.36	2.60	2.55	0.80	5.00	0.1	
EXT-INT	0.5	1.83	8.36	2.60	2.55	0.80	5.00	1.0	

The differences in the attraction coefficients illustrate the relative attractiveness (and thus number of trips attracted to a zone) of the various types of employment. For example, highway retail employment has a coefficient of 8.36 and industrial employment has a coefficient of 1.0. This difference indicates that highway retail attracts significantly more trips than industrial.

Trip Percentages By Purpose

Based on previous studies analysis determined that trips made in the urban area were 88% internal or internal-external trips. Of these internal trips, 27% were HBW, 49% were OHB, and 24% were NHB. Table B-1 illustrates the percentages of trips.

Table B-1
Trip Percentages by Purpose

Trip Type	Percent of Trips
Internal of Total:	88%
HBW	(27%)
HBO	(49%)
NHB	(24%)

Internal Trip Generation

The internal trip productions were based on applying a trip generation rate to each housing classification collected by LOSRC. Each residence in the planning area was classified according to an excellent, above average, average, below average, or poor rating. Based on these ratings, a corresponding number of trips per residence was estimated. Previous research has shown that generally more trips are produced from residences rated excellent than those rated poor.

Table B-2 shows the dwelling unit trip generation rates that were input into IDS to generate internal trips for both the base and future year. The base year rates resulted in an average trip generation rate of 6.6 trips per dwelling unit. As part of the calibration, the rates were adjusted from initial estimates until calibration was achieved. The screenline checks validate the selected generation rates. The future year trip generation rates were adjusted to reflect changes in the number of vehicles per person and persons per household. As shown below, the 1989 Average Generation Rate (AGR) was multiplied by factors to result in the 2020 AGR:

Calculation of Increase in Trip Generation Rates:

Composite Factor =
$$\frac{1989 \text{ Persons/Vehicle}}{2020 \text{ Persons/Vehicle}} \times \frac{\text{Usage}}{\text{Factor}} \times \frac{2020 \text{ Person/DU}}{1989 \text{ Person/DU}}$$

$$= \frac{1.16}{1.05} \times 1.00 \times \frac{2.38}{2.50}$$

$$= 1.05$$
Increase for Generation Rates = Average 1989 \times Composite - Average 1989 \text{Trip Rate} Factor Trip Rate}
$$= (6.56 \times 1.05) - 656$$

$$= 0.3387 \text{ (use 0.30)}$$

Table B-2
Dwelling Unit Trip Generation Rates - Daily

Housing Classification	Base Year Trips/DU	Adjustment/1	Future Year Trips/DU
Excellent	12.0	0.3	12.3
Above Average	10.0	0.3	10.3
Average	8.0	0.3	8.3
Below Average	5.5	0.3	6.5
Poor	4.0	0.3	4.3

Added to these internally generated trips are internal trips that are generated by vehicles garaged outside the planning area, that is non-home based secondary trips (NHBS). A factor of 0.45 determined from data from previous studies was used to calculate the number of NHBS trips. This factor indicates that vehicles garaged outside the planning area and coming into the planning area generate NHBS trips. These trips are added to the internally produced NHB trips and distributed to each zone based on each zone's relative attractiveness as determined from the regression equation. Table B-3 illustrates the total trips for each purpose.

Secondary NHB Trip Equation:

External and Thru Trip Generation

Traffic counts taken at each external station (zones 354 to 389) were the basis for external and thru trip productions. A new origin-destination study was not conducted as part of this update. Since the planning area boundary is significantly larger than the 1975 planning area, the 1975 thru trip table was adjusted to reflect the larger planning area.

A thru trip table reflects the number of vehicles that pass thru the planning area. In 1967, an origin-destination survey was conducted at the external stations whereby drivers were stopped and asked their origin and destination. The 1975 thru trip table was compiled based on the results of the origin and destination survey. Ideally, another origin and destination survey would have been conducted in the summer of 1989 at the new external stations. Since this was not possible due to fiscal constraints, adjustments were made to the 1975 thru trip table. An estimate of the percent of trips that were at the 1975 external station still at the 1989 external station was made. The estimate was based on (1) the geographic location of new station with respect to the old station, (2) the functional classification of the new versus old station, (3) the land use between the two stations, and (4) the observed trip patterns. A copy of the 1975 planning area and station locations is also included (this can be compared to the current planning area shown in Figure 4).

This information was then input into TRIP VERT in UTPS for conversion to a new trip table (TRANPLAN did not have this option available). The output of TRIP VERT reflected the thru trips which would have occurred in 1975, but on the expanded 1989 boundary. This trip table was then input into FRATAR in TRANPLAN along with external station historical growth rates. This resulted in the 1989 thru trip table.

To project the 1989 thru trip table to 2020, the traffic growth rate that occurred at each station from 1975 to 1990 was calculated. At some stations, there was a decrease in traffic. The rates were then adjusted to reflect plans for additional development or the scaling down of development. For example, SR 2002 has grown at a rate of 14.1% per year since 1975 -from 300 to 1890 vehicles per day. Assuming this rate would continue to 2020, would result in a future forecast of 98,000 vehicles per day. Most likely, is that from 1975 to 1990 some growth

occurred in the immediate area near SR 2002. Since no major developments are expected in the area, the growth that occurred since 1975 is expected to level off. Thus, 14.1% was adjusted to a more reasonable 2.0% per year. From the 1975 to 1990 rate, adjustments were made as necessary to reflect the expected growth from 1990 to 2020 at the external stations. The growth factors were then input into FRATAR which increases the thrutrip table. The output from FRATAR is an estimate of thru trips in 2020 at the external stations. The total trips at a station are made of both thru trips (those trips going thru the planning area) and external-internal trips (those trips beginning outside the planning area but ending outside the planning area) and internal-external trips (those trips beginning inside the planning area but ending outside the planning area). The proportion of thru to external-internal trips in 1975 (from the origin-destination survey) was estimated to be the same in 2020.

Transit Trip Generation

Transit is an integral aspect of the transportation system in Asheville. It primarily serves the elderly, handicapped, and low income persons who are dependent upon transit to get to and from work. The local area foresees transit growing at a rate of 1% per 10 years. The local area also pinpointed those zones expected to have the greatest propensity for transit usage. The method used to analyze increased transit usage is explained here.

The Statewide Planning Branch has developed a computer program, Quick Response Transit Impact Analysis (QRTIA). This program reduces the number of trips in specified zones based on the transit propensities, the percent ridership by purpose, and the target ridership. The program was developed in 1981 and in 1991 was updated for use with a personal computer.

The parameters needed to input to QRTIA include propensity ratings for each zone, the percent ridership by purpose, and the target ridership. Chapter 4-Model Development explains the methodology used to arrive at many of the Input Data below. The calculations below determine percent ridership by purpose and the target ridership:

Input Data

1989 ridership = 910,816 riders/year ("Historical Trends", NCDOT/PTD info from Fixed Route Operators)

1989 Daily Riders = 4,000 riders/day (Carl Owenby, Asheville Transit)

Transit Trips, Work Related = 57% (Weslin Consulting, phone survey)

Transit Trips, Non-Work Related = 43% (Weslin Consulting)

1990 Work Trips By Transit = 2.8% (1990 Census)

2020 Work Trips By Transit = 5.8% (LOSRC projections)

1989 Vehicle Occupancy Rate = 1.24 persons/vehicle (LOSRC)

2020 Vehicle Occupancy Rate = 1.27 persons/vehicle (LOSRC)

1989 Internal of Total Trips = 355,000 vehicle trips/day (TRANPLAN)

1989 Home Based Work Trips = 96,106 vehicle trips/day (TRANPLAN)

1989 Non Home Based Trips = 85,427 vehicle trips/day (TRANPLAN)

1989 Other HomeBased Trips = 174,414 vehicle trips/day (TRANPLAN)

Calculation of Percent Ridership by Purpose (1989)

Convert auto trips to person trips:

HBW: (96,106 vehicle trips)*(1.24 persons/auto) = 119,171 person trips/day

NHB: 85,427 vehicle trips/day = 105,929 person trips/day

OHB: 174,414 " " = 216,273 " "

Work Trips + Non-Work Trips = Average Daily Ridership

Therefore, 57% of 4,000 = 2,280 (work trips) 43% of 4,000 = 1,720 (non-work trips)

= 4,000 Average Daily Ridership

So, 2.8% of HBW person trips should = 2,280 2.8% of 119,171 = 3,337 3,337 does not equal 2,280

These numbers do not match because Statewide Planning defines HBW more broadly than Weslin Consultants or small survey size (218) by Weslin resulted in a low estimate work trip percentage or 2.8% of transit is too high or some combination of the above.

$$3,337 = x\% \text{ of } 4,000$$

 $x\% = 0.8343$
 $x = 83\%$

The remaining trips (4,000 - 3,337 = 663) are NHB and OHB trips. Take 0.205% of NHB and 0.205% OHB to account for the remaining 663 transit trips.

So, to convert to ridership by purpose which adds up to 100%: (this is the format needed for QRTIA)

Sideline: this means that 3.21% of all trips utilize transit (i.e. 2.8% + 0.205% + 0.205%)

The last run of QRTIA used 87% HBW, 6% NHB, and 7% OHB.

% Switch to Transit = (2020 Transit Work %) - (1989 Transit Work %)

= 5.8% - 2.8%

Switch to Transit = 3.0%

Use proportions to determine NHB and OHB switch

28%/5.0% = 0.205% / x%x% = 0.425%

When these parameters are input into QRTIA, the appropriate transit trips are reduced from each zone. The HBW, NHB, OHB, and NHBS trips were reduced by 4,000, 0, 1,000, and 1,000 trips respectively. Table 3 illustrates the impact of transit use on the trip totals.

External-Internal Transit Trips

This above analysis does not account for external-internal transit trips. The local projections indicate that shuttle service between Asheville and Black Mountain/Swannanoa and Weaverville is likely. These trips are external-internal trips. The calculations to account for these trips follows:

Input Data

Shuttle service from Asheville to Black Mountain/Swannanoa and Weaverville is likely. It will utilize US 70 and Merrimon Avenue (Business US 19-23).

Calculation of External-Internal Transit Trips

Since an estimate of ridership was not given, it was estimated that 450 riders utilize the shuttle for each new route (300 riders on US 70 and 150 riders on Merrimon Avenue). The estimate was determined by making the ridership to population ratios equivalent. This assumes the same proportion of projected riders in Asheville as in Black Mountain and Weaverville. This is a very high estimate of transit use in Black Mountain and Weaverville because Asheville has a greater propensity for transit use due to its more dense housing and the shorter travel time involved in using transit. The high estimate was used to illustrate that at even a very optimistic high amount, the impact to the road system is minimal.

Year 2020 Planning Area Populations:

Black Mountain/Montreat:

$$\frac{6,000 \text{ riders}}{156,000 \text{ population}} = \frac{X}{11,000 \text{ population}}$$

$$X = 400 \text{ riders}$$

Weaverville:

$$\frac{6,000 \text{ riders}}{156,000 \text{ population}} = \frac{X}{4,500 \text{ population}}$$

$$X = 175 \text{ riders}$$

The number of riders was then converted to vehicle trips by applying the vehicle occupancy rate:

Black Mountain: 400 riders * vehicle/1.27 persons = 300 vehicle trips

Weaverville: 175 riders * vehicle/1.27 persons = 150 vehicle trips

Thus, the external-internal trips were reduced by 300 and 150 vehicle trips on US 70 and Merrimon Avenue respectively. Table 3 illustrates the impact of transit on the various types of trips. No change is shown in the external-internal trips because it is rounded to the nearest 1,000.

Car/vanpooling Trip Generation

Car/vanpooling is also an integral part of the transportation system. The amount of car/vanpooling is expressed by the vehicle occupancy rate (VOR). The vehicle occupancy rate is projected to increase from 1.24 persons/vehicle in 1989 to 1.27 persons/vehicle in 2020. This increase in VOR was applied to the internal trips and external- internal trips. As shown in the calculation below, 15,000 trips were reduced from the internal trip table due to the increase in VOR:

(463,000 Internal + 183,000 NHBS) * (1.24 VOR)/(1.27 VOR) = (452,000 Internal + 179,000 NHBS)

A total of 15,000 trips was then reduced by proportion from each zone. Table 3 illustrates the net impact of car/vanpooling.

This analysis illustrates that a slight change in VOR results in an appreciable change in the number of trips. The Technical Coordinating Committee (TCC) and the Transportation Advisory Committee (TAC) urban area have expressed interest in proactive actions to remain a non-attainment area for air quality. Thus, a strong local effort to increase car/vanpooling is one option to reduce the number of vehicle miles of travel (VMT).

Results of Trip Generation Analysis

The result of the trip generation analysis indicates that modest growth is expected for the Asheville urban area. The internal trips are projected to grow at an average rate of 1.3 % per year - from 433,000 trips in 1989 to 631,000 trips in 2020. This is somewhat less than other urban areas in the state such as Hickory, Raleigh, and Winston-Salem which have estimated internal growth rates between 2.5 and 3.5% per year.

The external-internal trips are projected to grow at an average rate of 2.5% per year - from 227,000 trips in 1989 to 472,000 trips in 2020. The thru trips are projected to grow at an average rate of 3.3% per year. The external-internal and thru trips are projected to grow more quickly than the internal trips because they are based on historical trends which indicate more significant growth. The external-internal trips also account for the existence of the I-26 corridor.

Line A in Table 3 represents the 1989 trips simulated by the traffic model. Line B represents the 2020 trips with no adjustment for transit or carpooling. Line C represents the 2020 trips with the subtraction of transit trips. Line D represents the 2020 trips adjusted for both transit and carpooling.

GRAND	000'669	102,000 1,226,000	1,220,000	1,205,000	
THRU	39,000	102,000	102,000	102,000	
NHBS* EXT-INT	227,000	472,000	183,000 **472,000	472,000	
NHBS*	80,000	183,600	183,000	452,000 179,000	
INTERNAL	355,000	468,000	463,000		
OHB*	85,000 174,000 355,000	230,000	112,000 229,000	109,000 224,000	
NHB*	85,000	112,000	112,000	109,000	
HBW*	000'96	126,000	122,000	119,000	
	1989:	2020: Unadjusted	Adjusted: w/Transit	w/Transit &	Cal/Vailpooiiiig
1 8	<	B	O	0	4

NHBS = Non Home Based Secondary Trips OHB = Other Home Based Work Trips NHB = Non Home Based Work Trips * HBW = Home Based Work Trips

** No Change shown for EXT-INT Trips because rounded to the nearest 1,000

APPENDIX B - POPULATION ESTIMATES AND PROJECTIONS BY TAZ 1/4

		HOUSIN					PERSONS		1989	1 1890	2000	2010	1 2020
AZ I		4 1	3	12	11	TOTAL	PER	I ESTIMATED	I PERCENT	POPULATION	POPULATION	POPULATION	POPULATIO
		AVG		AVG		I UNITS	-דואט ו	l	POPULATION			I	1
1 !			0		158		2.5	395	0.002871488	397		427	1 .
3			0					I 58 I 0					
4 I							2.5	3		4	21 1		
61	0 1	0 1	1	1 2	0	3	2.5	8	0.000056420	9 1	26 1	40	I
81	0 1	0 1	14	0	0	141	2.5	35	0.0002632961	49	199	327	1 4
101		01	4 0										
111	01	01	0 t				2.5	5 1					
13	0 1	0 !	0 1	8 1	122	130 1	2.5	325	0.002444895	3.27 1	343	357 1	
14	0 1	01	2 1 0 1	21			2.5 2.5			172 7			
16	01	01	0 I 55 I				2.5 2.5			224 I 769 I			
18 I	01	11	171	521		106		265	0.001993530		283 !		1 3
201	0 1	8 1	181	801	111	117 !	2.5	293 1	0.0022004061	296	332	363 (1
21 I 22 I	161	3 I	55 I 11 I	321	131 /	524 I	2.5 I 2.5 I			1314 I 144 I	1350 i 161 i	1381 I 175 I	
231	01	11	102 I 15 I		3 !		2.5 I			742 I 1067 I			
25 I 26 I	01	01	421	100 1	31		2.5 I 2.5 I	433	0.0032535921	434 1	451 I	465	4
271	0 1	0 1	5 /	601	216	281	2.5	703 (0.0052847361	704 1	21 I 721 I	735	7
28 ! 29 I	0 I	21	591 711	301 I 311 I	52 I 68 I	414 I 450 I	2.51	1035 1125	0.0077860521	1037 I 1127 I	1053 1143	1067 I 1157 I	10
301	01	2 1 0 1	1261	171 362	16 I 43 I	315 I 474 I	2.51	788 I 1185 I	0.005924170 I 0.008814466 I	789 I 1187 I	806 I 1203 I	820 I 1217 I	8
321	11	17	601	33 1	29 1	140	2.5 1	3501	0.0026329641	352 1	368	382	3
341	0 1	10 I 0 I	159	157 I 126 I	6 I	128 /	2.5 I 2.5 I	830 I 320 I	0.0024072821	832 I 322 I	338 (862 i 352 i	3
35 I	11	81	183 I 269 I	232 I 648 I	41 I 78 I	464 I 1000 I	251 251	1160 I 2500 I	0.008726397 (0.018806890 (1164 2502	1200 I 2518 I	1231 2532	12 25
371	151	50 I 90 I	92 I 270 I	83 i 88 i	21	229 1	2.51	5731	0.0043067781	574 (591	606	12
39 I	191	60 1	871	481	3 I 0 I	466 I 214 I	25 I 25 I	1165 I 535 I	0.0087640111	1167 I 537 I	1183 I 553 I	1197 I 567 I	6
40 I	31	27 I 19 I	111	31	01	41 I 43 I	2.5 I 2.5 I	103 I 108 I	0.0007710821 0.0008086961	104 I 111 I	121 I 152 I	135 I 187 I	
421	0	11	1 I 2 I	0 I 2 I	01	2 I 8 I	2.5 I 2.5 I	51 201	0.0000376131	9 I 34 I	50 I 184 I	85 I 312 I	1
441	0 1	7 1	71	0 1	01	141	2.5 (35 1	0.0002632961	49 1	199 !	327	4
45 I 46 I	0 I 7 I	17 1	25 I 11 I	129 i 0 i	74	228 I 35 I	2.5 I 2.5 I	570 I 88 I	0.004287971 0.000658241	572 I 91 I	588 I 127 I	602 i 158 i	6
471 481	7 I 30 I	32 I 27 I	43 I	0 I 3 I	01	82 I 69 I	25 I 25 I	206 ! 173 !	0.001542165 0.001297675	209 I 176 I	245 217 !	276 I 252 I	3
49	7 1	25 1	65 1	8 1	0 1	105	251	2631	0.0019747231	266 1	302	333	3
50 I 51 I	11	23 I 75 I	88 I 76 I	0 I 16 I	1 I 6 I	117 I 174 I	2.5 I 2.5 I	293 435	0.002200406 0.003272399	296 ! 439 I	332 I 480 I	363 I 515 I	3 5
52 I 53 I	11	61	13 I 7 I	41	1	23 I 15 I	2.51	58 I 38 I	0.000432558 0.000282103	61 I 41 I	97 I 82 I	128 I 117 I	1
54 (01	11	51	4.1	33 1	431	2.5	1081	0.0008086961	109	126 (140	i 2
55 I	0 1	71	53 I 66 I	3 I 72 I	21 I 23 I	78 I 168 I	25 I 25 I	195 I 420 I	0.001466937 0.003159567	197 422	213 I 438 I	227 452	4
57! 58 i	21 I 8 I	61 I	85 I 56 I	31	01	171 / 161 /	2.5 I 2.5 I	4 28 1 403 1	0.003215978 0.003027909	429 I 404 I	446 I 421 I	460 ! 435 !	4
591 601	11	80 : 0 i	49 I 131 I	1 I 15 I	0 I 2 I	134	2.5 I 2.5 I	335 I 373 I	0.0025201231	337 I 374 I	353 I 391 I	367 I 405 I	3
611	0 1	4.1	831	131	0 1	100	251	250	0.0018806891	254 I 166 I	295 I 207 I	330 I 242 I	3
62 I	01	3 I 2 I	28 I 53 I	28 ! 27 I	41	6S I 86 I	25 I 25 I	163 I 215 I	0.001222447 0.001617392	2191	260 (295	3
64 I	01	01	59 I 60 I	67 i 34 i	15 I 22 I	141	25 I 25 I	353 I 290 I	0.0026517711	354 I 292 I	371 I 308 I	385 I 322 I	3
66 I 67 I	0 I 1 I	01	79 I 162 I	46 I 179 I	11	136 378	2.5 I 2.5 I	340 l 945 l	0.002557737 0.007109004	342 i 947 i	358 I 963 I	372 I 977 I	3
186	31	23	981	0 1	0 1	124 /	251	3101	0.002332054	312	3.28	342	3
70 I	31	35 I 10 I	101 I 102 I	25 I 20 I	21	165 I 137 I	25 I 25 I	413 I 343 I	0.003103137 0.002576544	414 I 344 I	431 I 361 I	445 I 375 I	3
71 I 72 I	14	50 I 21 I	148	2 I 2 I	01	214 I 37 I	251 251	535 I 93 I	0.004024674 0.000695855	537 I 96 I	553 I 137 I	567 I 172 I	5
731	0 1	1!	35	77 i 26 i	791	192	251	4801	0.0036109231	4821	498 i	512 I 102 I	5
75 1	01	21	100 1	611	691	222	251	5561	0.0041751291	550	595 i	626 1	6
76 I 77 I	11	1 I 3 I	32 I 144 I	38 I 2 I	17 1	88 I 150 I	25 25	220 I 375 I	0.001655006 0.002821033	224 I 379 I	260 I 415 i	291 I 446 I	3
81	01	19 24	234 I 177 I	200 I 80 I	01	453 I 286 I	251 251	1133 I 715 I	0.0085195211	1134 I 717 I	1151 I 733 I	1165 I 747 I	11 7
10	4 1	301	711	0 1	01	105	25 i 25 i	263 i 20 i	0.001974723	264 i 22 i	281 I 38 I	295 I 52 I	3
1 I 2 I	11	01	101 I	204	71	313	251	783	0.0058865561	784 1	801	815	
3 I	111	28 1	153 I 0 I	64 I	11	260 I 2 I	2.5 I 2.5 I	650 I 5 I	0.004889791 0.000037613	652 I	23	682 i	6
5 I	0 1	0 I 3 I	13 I 64 I	169 I 73 I	11	183 I 154 I	2.5 I 2.5 I	458 I 385 I	0.003441661 0.002896261	450 i 387 i	476 I 403 I	490 i 417 i	5
6 I	01	53	47 1	01	0 1	100	251	250 (0.0018806891	254 1	290 I	321	3
8 I 9 I	5 I 0 I	11	21	21	11	341	2.5 I 2.5 I	851	0.000639434 0.000056420	89 I 11 I	125 I 47 I	156 I 78 I	1
0 I	0 1	0.1	1 i 69 i	261	01	2 I 357 I	25 I 25 I	5 I 893 I	0.000037613 I 0.00671406 I	9 I 896 I	45 I 932 I	76 I 963 I	1
1 2	3 I	1	81	31	2 1	14 (2.51	351	0.0002632961	37 1	53 1	67 (
3 I 4 I	3 I 0 I	116 I 32 I	287 I 98 I	14 I 29 I	01	421 I 159 I	2.5 I 2.5 I	1053 I 398 I	0.007917701 0.002990295	1056 i 401 i	1097	1132 I 477 I	11 5
5 1	01	31	81	0 I 32 I	0 I 14 I	11 I 151 I	251 251	28 I 378 I	0.000206875 0.002839840	29 I 381 I	46 I 417 I	60 I 448 I	4
6 I	01	11	96 I 91 I	142	110	344 1	251	860 1	0.0064695701	864 I	905	940	
8 I 9 I	11	14 1	219 I 121 I	88 I 20 I	67 I 2 I	377 I 157 I	2.5 I 2.5 I	383	0.0070901971 0.0029526811	946 I 396 I	987 I 432 I	1022 I 463 I	10
0 1	1.1	111	101 i	260 I 254 I	31	376 I 517 I	2.5 I 2.5 I	940 i 1293 i	0.0070713911	944 I 1296 I	980 I 1332 I	1011 I 1363 I	10 13
1 I	01	48 I 8 I	213 I 275 I	106	21	390 (2.5	9751	0.007334687	979 I	1015	1046	10
3 I	01	11	23 I 44 I	191 !	133	221 1 429 I	2.5 I 2.5 I	553 I 1073 I	0.0041563221 0.0080681561	556 I 1076 I	597 I 1112 I	632 1143	6 11
61	0 1	0.1	1231	711	10 1	204 I 252 I	2.5 I 2.5 I	510 I 630 I	0.003836605 0.004739336	514 I 632 I	550 I 648 I	581 I 662 I	6
16 I	0	41	3 I 69 I	31	0 1	761	251	190	0.001429323	192 1	208 1	222	2
6 I	0	3 I 10 I	157 i 275 i	161	01	311 I 299 I	251	778 I 748 I	0.005848943 0.005623260	779 I 749 I	796 I 766 I	810 I 780 I	8 7
01	01	13 1	42 I 137 I	85 I 20 I	43 I 27 I	170 I 197 I	251	425 I 493 I	0.003197171 / 0.003704967 /	427 I 494 I	443 I 511 I	457 I 525 I	44 5:
21	01	131	1181	161	111	158 I	2.5 1	3961	0.0029714881	397	413	427 1	43
31		31	88 !	161	01	107	2.5	268 I 5 I	0.002012337 0.000037613	269 1	286 I 23 I	300 I	3

APPENDIX B - POPULATION ESTIMATES AND PROJECTIONS BY TAZ 2/4

	1151 1161 1171 1181 1191	0 I 0 I 0 I 0 I 0 I	01 01 21 31	3 AVG 63 2 16 63 73	ITIONS I 2 I BELOW AVG I 34 I 256 I 8 I 16	1	TOTAL MINUS CONDEMN 98 258 27 83 165	I PERSONS I PER I DWELLING I UNIT I 2.5 I 2.5 I 2.5 I 2.5	245 645 68 208 413	PERCENTAGE OF TOTAL	247 649 69 211	POPULATION PROJECTIONS 263 690 86 247 431	277 725 100 278 445	PROJEC
	120 121 122 123 124 125 126 127 128	01	5 I 0 I 0 I 0 I 1 I 1 I	200 4 0 35 0 0 23 60	1 2 1 17 1 59 1 0 1 101 1 54	0 4 173 0 0 3	6 21 1 267 1 0 1 101 1 11 1 1 1	2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51	15 53 668 0 253 203	0.000112841 i 0.000394944 i 0.005021439 i 0.005021439 i 0.001899496 i 0.001523358 i 0.005905363 i	17 54 669 0 1 254 1 204 787	33 71 686 0 271 221 803	47 85 700 0 285 236 617	
	129 130 131 132 133 134 135 136 137	0 I 0 I 0 I 0 I 0 I	11 01 01 41 11 01	94 7 0 122 11 16 9	0 0 0 0 1 50 11 15 158	I 0 I 0 I 25 I 134 I 0	7 0 0 1 0 1 1 1 1 1 1	2.5 I 2.5 I 2.5 I 2.5 I 2.5 I 2.5 I 2.5 I 2.5 I	496 18 0 0 503 393 78 440	0.000131648 i 0 i 0 i 0 i 0.003780185 i 0.002962681 i 0.000583013 i 0.003310012 i	19 2 4 506 396 79 442	36 18 40 542 432 96 458	50 32 71 573 463 110 472	
	138 139 140 141 142 143 144	01 01 11 91 21 01	01 01 421 181 11 21 01	133 59 121 122 0 84 51	118 42 51 17 0 85 137	1 2 1 47 1 32 1 15 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	253 148 247 181 3 180 209	251 251 251 251 251 251 251	633 370 618 453 81 450 523	0.004758143 0.002783419 0.004645302 0.003404047 0.000066420 0.003385240 0.003930640	634 374 621 456 9 452	651 410 657 492 26 468 541	665 441 688 523 40 482 555	
	146 147 148 149 150 151 152 153	01 01 11 01 11 321 351	11 01 01 11 01 461 1471 11	108 (6) 4) 31) 4) 36) 58) 99)	130 130 1 2	0 0 273 0 0	7 8 435 6 116 241 255	2.51 2.51 2.51 2.51 2.51 2.51 2.51	7151 181 201 10681 151 2901 6031 5381	0.0001316481 0.0001504551 0.0061809971 0.0001128411 0.0021815991 0.0045324601 0.0047957571	604 I 639 I	36 38 1106 33 308	50 52 1120 47 322 635 670	
	156 I 156 I 157 I 158 I 159 I 160 I 161 I	01	01 01 81 11 01 01	26 I 9 I 54 I 24 I 141 I 30 I 0 I	6 0 19 114 64 0	9 2 2 12 12 12 12 12 12	40 I 11 I 104 I 56 I 278 I 298 I	251 251 251 251 251 251	218 100 28 260 140 695 745 0 3	0.0007522751 0.0002068751 0.0019659161 0.0010631851 0.0052283151 0.0056044531	219 104 29 264 144 697 747 0 4		180 60 340 220 727 777	
1	63 64 65 66 67 68 70	14 3 0 0 0 0 11 7	511 191 11 21 11 21 401 671	191 331 251 1521 41 341 101 281	76 29 1 19 2 8	1 15 17 0 4 0 2	62 I 117 I 200 I 6 I 59 I 63 I 112 I	251 251 251 251 251 251 251 251	213 I 155 I 263 I 500 I 115 I 148 I 158 I 280 I	0.001166027 I 0.002203406 I 0.003761378 I 0.000112841 I 0.001109606 I 0.001184834 I 0.002106371 I	214 157 294 504 17 151 161 282	231 I 173 I 311 I 540 I 33 I 192 I 202 I 298 I	187 325 571 47 227 237 312	_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	711 721 731 741 751 761 771 781 791	01 01 01 01 01 01	11 41 01 01 61 31 31 1381	71 41 171 01 61 1511 4751 1291 231	01 01 41 01 21 161 3321 2151 271	0 ! 4 ! 0 ! 1 ! 9 ! 10 !	8 8 25 0 15 171 819 506 62	251 251 251 251 251 251 251 251	201 201 631 01 381 4281 20481 12701 1551	0.000150455 0.000150455 0.000470172 0 0.000282103 0.003215978 0.015402843 0.009553900 0.001166027	24 24 66 0 39 431 2049 1274	60 I 60 I 107 I 0 I 56 I 472 I 2066 I 1310 I	91 91 142 0 70 505 2080 1341 167	
1 1 1 1 1	80 81 82 83 84 85 86 87	0! 0! 3! 0! 0!	61 01 11 121 11 01 01	93 50 17 300 13 49 30 54	12 68 30 45 8 316 72 8	91 421 391 251 41 171 271	120 I 180 I 87 I 385 I 26 I 382 I 129 I 65 I	2.51 2.51 2.51 2.51 2.51 2.51 2.51	300 I 450 I 218 I 963 I 655 I 955 I 323 I 163 I	0.002256826 f 0.003385240 f 0.001636199 f 0.007240653 f 0.000488979 f 0.007184232 f 0.002426088 f 0.001222447 f	304 454 221 966 69 959 326 166	340 490 257 1002 105 996 362 207	371 521 288 1033 136 1026 393 242	
1 1 1 1 1 1	88 89 90 91 92 93 94 96	01	01 21 01 01 11 21 01 11	411 391 01 71 291 371 311 21 781	157 68 55 34 0 33 31 5 168	22 ! 41 ! 165 ! 17 ! 0 ! 11 ! 11 !	220 I 170 I 220 I 58 I 30 I 83 I 73 I 8 I 279 I	251 251 251 251 251 251 251 251	550 425 550 145 75 208 183 201 698	0.004137516 I 0.003197171 I 0.004137516 I 0.001090799 I 0.000564206 I 0.001560971 I 0.001372903 I 0.0005247122 I	552 427 552 147 77 209 184 22 690	568 443 568 163 93 226 201 38 716	582 ! 457 ! 582 ! 177 ! 107 ! 240 ! 215 ! 52 !	
1 1 1 2 2 2 2 2 2 2	97 98 99 00 01 02 03	01	31 01 01 11 21 11 31	99 26 81 54 134 152 136 122	120 94 174 135 203 69 148 326	35 I 21 I 19 I 9 I 19 I 0 I 1 I 7 I	257 141 274 199 358 242 288 455	251 251 251 251 251 251 251 251	643 353 685 498 695 605 720 1138	0.00483.3370 0.002651771 0.005153088 0.003742571 0.00673.2566 0.004551267 0.006416384 0.008557135	644 354 687 490 697 607 722 1139	661 l 371 l 703 l 516 l 913 l 623 l 738 l	675 385 717 530 927 637 752 1170	
21 22 2 2 2 2	05 06 07 08 09 10 11	01	21 01 01 21 01 01	72 32 16 21 0 33 1 13	140 ! 78 ! 71 ! 14 ! 0 ! 30 ! 8 !	24 243 6 28 0 12 2 6	238 353 93 65 0 75 3 27	251 251 251 251 251 251 251 251	595 683 233 163 0 188 6 68	0.00447604 0.006638832 0.001749040 0.001222447 01 0.001410516 0.000066420 0.000507786	597 884 234 166 0 189 9 71	613 901 251 207 0 206 26 107	627 915 265 242 0 220 40 138	
2 2 2 2 2 2 2 2 2 2	13 14 15 16 17 18 19 120	01 01 01 01 01	01 01 01 01 01 01	171 111 791 11 11 51 801 21	301 301 321 11 11 541 361 71	01 361 101 01 21 61 531	47 1 77 1 122 1 2 1 4 1 65 1 175 1 21 1	2.51 2.51 2.51 2.51 2.51 2.51 2.51	118 193 305 51 10 163 438 53	0.000863923 0.001448130 0.002294440 0.000037613 0.000075227 0.001222447 0.003291205 0.00038444	119 196 307 71 12 166 439 54	136 232 323 23 28 202 456 71	150 263 337 37 42 233 470 85	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 22 23 24 25 26 27 28 28 28 28 28 28 28	01 01 01 01 01 01	11 01 01 111 11 11 61 01	30 I 0 I 1 I 11 I I 75 I 221 I 210 I 39 I 75 I	191 01 01 381 271 661 2261 201 141	761 01 11 281 691 661 61 41	128 01 21 189 162 344 450 63 90	2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51	320 0 5 473 406 660 1125 158 225 5	0.002407282 0 1 0 1 0 1 0 1 0 1 0 0	322 01 71 476 409 664 1127 150 227 7	338 0 23 517 450 900 1143 176 243 22	352 i 0 i 37 i 552 i 486 i 931 i 1157 i 190 i 257 i 37 i	

APPENDIX B - POPULATION ESTIMATES AND PROJECTIONS BY TAZ 3/4

	15 1	HOUSIN	IG COND	ITIONS	11	TOTAL		1989 ESTIMATED	1 1989 I PERCENTAGE	I 1990 I POPULATION	POPULATION	2010 POPULATION	I 2020 I POPULATIO
AZ	EXCE	ABOVE	AVQ	AVG		CONDEMN	UNIT"		OF TOTAL	I	I PROJECTIONS		ı
231					1 7		2.5	1003	0.007541563	1004		1035	
232 233	1 01	Ó	32	1 18	1 36	86	2.5	215	0.001617392	219	255	286	1 :
234 I						283 304							
236 I 237 I													
238 I 239 I							2.5	568	0.004269164	571	607 1	638	
240	01	5	231	144	1 11	391	2.5	978	0.007353494	979	9961	10101	11
42	. 01	0	70	53	51 1	184 (25	460	0.003460467	464	500 1	531	
43 I 44 I	01	4.1	294	84	1 21 1	403	2.5	1008					
45 I 46 I		0 1				91 I 217 I							
47 I 48 I		21	991	176	15 (292	2.5 (730	0.005491612	734	1770 1	801	
49	01	71	248	684	5 1	944 1	2.5	2360	0.017753705	2362	2378	2392	2
50 I 51 I		2 I 0 I	30 I 20 I	21	I 63 I	34 I 104 I	2.5 (260	0.001955916	262	278	292	
ا 23 ا 33	01	81	99 I 17 I	86 I 48 I		225 I 67 I		563 168			607 I		
54 I 55 I	01	14	49 I 160 I		20 1	139 210	2.51	348 525	0.002614157	349	366 (380	:
56 I	01	01	01	0 1	01	0 1	251	01	0 1	0 1	0 1	0 1	
7 ! 8 I	01	3 I 0 I	36 I 82 I			45 I 82 I		113 I 205 I					
59 I 50 I	01	01	2 I 84 I			8 I 221 I	2.51 2.51						
11	01	01	01	0 1	01	01	2.5 1	01	01	0 1	. 01		
33 I	01	01	01	0 1	01	01		0 1	0 1	21	18 1	321	
4 I 5 I	01	01	01	111		0 I 14 I		01 351				32 I 57 I	
66 I	01	01	01	24 1	4.1	28 I 37 I	2.51	70 I 93 I		72 I 94 I	88 I 111 I	102 I 125 I	
8 I	0 i	01	21	11	1.1	41	251	10	0.0000752271	12 1	28 1	421	
19: 10:	01	2 I 9 I	20 I 41 I			78 I 264 I	251	195 I 660 I		197 I 664 I	213 I 700 I	227 I 731 I	
11	01	4 I 17 I	2 I 25 I			6 I 42 I	2.51 2.51	15 I 105 I	0.0001128411	17 : 109 i	33 I 150 I	47 I 185 I	
31	1 0	11	61	11	01	8 1	2.5 (201		24 1	65 I	100 (
4 I	1 I 0 I	23 I 2 I	40 I 33 I	291	161	74 : 80 i	2.5 I 2.5 I	185 I 200 I	0.0015045511	189 I 204 I	240 1	256 I 271 I	
6 I 7 I	11	5 I	116 I 24 I	87 I 13 I		272 : 52 i	251 251	680 I 130 I		684 I 134 I	725 I 162 I	760 I 197 I	
8 1	11	12	38 I 37 I	61	1,1	58	251	145 I 350 I	0.0010907991	149 (185 I 368 I	216 I 382 I	
91	01	11	401		10 I	140 t 113 t	251 251	283	0.002632964 0.002125178	352 I 284 I	301 I	315 I	
11	01	11	8 I 45 I	9 I 32 I		21 I 95 I	25 I 25 I	53 I 238 I	0.000394944 I 0.001786654 I	56 I 241 I	97 I 282 I	132 i 317 i	
31	01	41	70 I 15 I	59 I 23 I	30 1	160 I 53 I	251	400 I 133 I	0.0030091021 0.0009967651	404 I 136 I	445 I 177 I	480 I 212 I	
61	11	51	1151	33 1	54 1	210	251 251	525	0.0039494471	529 1	570 1	1 202	
16 I	2 I 4 I	16 I 84 I	292 I 555 I	106 I 113 I	10 I 15 I	426 I 771 I	251 251	1065 I 1928 I	0.008011735 0.014500112	1069 I 1929 I	1110 I 1946 I	1145 I 1960 I	1
8 I 9 I	2 I 0 I	105 I 21 I	522	55 I 9 I	21 I	705 1	2.51	1763 I 338 I	0.013258858 I 0.002538930 I	1766 I 341 I	1807 I 382 I	1842 I 417 I	1
0 !	01	21	103 I 31 I	141	22	135 I 69 I	251 251	173 I	0.001297675	174	191 I	205 I	
11	01	4 I 16 I	39 I 164 I	23 I 66 I	13 I 42 I	79 I 268 I	251 251	198 I 720 I	0.001485744 I 0.005416384 I	199 I 722 I	216 I 738 I	230 I 752 I	
3 I	01	12 !	42 I	13 2	23 I 1 I	90 I 10 I	251 251	225 I 25 I	0.001692620 I 0.000188068 I	229 I 27 I	265 I 43 I	296 I 57 I	
61	01	0 1	831	681	95 I	246 I	251	615 (0.0046264951	517 I 99 I	633 I 116 I	647 I 130 I	
6 I	01	3 ! 1 !	5 I 22 I	10 I 46 I	21 I 63 I	39 I 132 I	251 251	98 330	0.000733468 I 0.002482509 I	332	348 1	362	
8 I 9 I	01	21	9 I 70 I	19 I 84 I	19 I 82 I	48 I 238 I	251 251	120 I 595 I	0.0009027301	122 I 597 I	138 I 513 I	152 1 627 I	
11	01	31	163 I 50 I	125 I 71 I	56 I 269 I	347 I 390 I	251 251	868 I 975 I	0.006525991 0.007334687	871 I 977 I	907 I 993 I	938 I 1007 I	1
21	10	41	200 I	21 1	71	232	251	580 I	-0.004363188 I	5821	598 1	612 I	
3 I 4 I	11	41	88 I	42 I 57 I	123 l 39 l	169 I 189 I	251 251	4731	0.003178364 I 0.003554502 I	424 I 474 I	441 I 491 I	455 I 506 I	í
5 I 6 I	0 I 5 I	5 ! 12 !	94 I 219 I	90 I 140 I	43 I 11 I	232 I 387 I	251 251	580 I 968 I	0.004363198 I 0.007278266 I	582 I 971 I	598 I 1007 I	612 I 1038 I	1
71	0 1	0:	21	0 1	11	31	251	81	0.0000564201	91	26 1	401	
8 I 9 I	0 I	0 I	01	1 I 0 I	01	01	2.5 I 2.5 I	3 I 0 I	0.0000188061 0.00001	4 1 0 1	21 I 0 I	35 I 0 I	
11	01	01	01	01	10	01	251 251	01	01	0 I 0 I	. 01	01	
2 1	01	01	29 I 166 I	20 I 38 I	66 I 40 I	115 I 244 I	251 251	288 I 610 I	0.002152792 I 0.004588881 I	289 I 624 I	306 I 774 I	320 I 902 I	1
3 I	01	21	40 I	61	71	55 1	251	1381	0.0010343791	152 (301 /	429	
5 I	11	41	2 I 30 I	0 I 7 I	1 I 30 I	5 I 72 I	25! 25!	13 I 180 I	0.000094034 0.001354096	14 I 182 I	31 I 198 I	45 I 212 I	:
ri H	01	11	10 I 25 I	1 I 22 I	2 I 46 I	14 I 94 I	251 251	35 I 235 I	0.0002632961 0.0017578471	2371	199 I 253 I	327 I 267 I	
н	01	1.1	121	4.1	11	181	2.51	451	0.000338524	471	63 1	77 ì	
11	01	101	11 I 105 I	9 I 25 I	3 I 21 I	33 I 152 I	25 I 25 I	83 I 380 I	0.000620627 0.002858647	84 I 382 I	101 I 398 I	115 I 412 I	
31	01	0 ! 1 !	134 I 25 I	3 I 19 I	3 I 23 I	140 l 68 l	2.5 I 2.5 I	350 I 170 I	0.002632964 0.001278868	352 I 174 I	368 I 210 I	382 ! 241 I	
П	01	21	63 I	331	71 1	169 (251	423 1	0.003178364	426 I	467	500	
5 I 5 I	0 I	01	10	01	01	01	2.5 I 2.5 I	01	01	0 I 0 I	01	01	
71	01	01	10	01	0 I 0 I	0 I	2.5 I 2.5 I	0 t 0 t	01	0 I 2 I	0 I 18 I	0 32	
1	01	01	01	01	. 0 1	01	2.51	01	01	01	0 1	0 1	
11	01	4 I 0 I	3971	39 I 2 I	85 I	525 I 7 I	251 251	1313 I 18 I	0.009873617 I 0.000131648 I	1314 I 19 I	1331 I 35 I	1345 I 50 I	13
2 1	01	01	31	6 1	1.1	101	2.5 I 2.5 I	25 I 0 I	0.0001880681	27	43 I	57 I	
3 I	01	01	01	01	01	01	2.5	01	01	01	01	0 1	
5 I 6 I	0 I	0 I 3 I	701	0 I 45 I	0 I 16 I	0 I 134 I	2.5 I 2.5 I	0 335	0 I 0.002520123 I	339	0 I 375 I	0 1 406 I	4
Ž	01	01	21 I	281	0 I 21 I	25 I 116 I	2.5 I 2.5 I	63 I 290 I	0.000470172 I 0.002181599 I	64 I 292 I	81 I 306 I	95 I 322 I	1
	01	15 (57 1 106 I	201	92 I	233	251	583 I	0.004382005	586	622	653	6
	01	31	50 I 21 I	52 I 24 I	121 I 22 I	225 I 70 I	2.5 I 2.5 I	563 I 175 I	0.004231550 0.001316482	564 I 179 I	581 220	696 1 255 I	6 2
	Ť	14 1	148 I 70 I	9 I 25 I	12	171 I 114 I	251	428 I 285 I	0.003215978 0.002143985	431 I 289 I	472 I 325 I	507 I 356 I	5.
		121	135	111	41	162	2.51	405 I 225 I	0.003046716 0.001692620	409 I 229 I	445 I 266 I	476 I 296 I	3
		21	801	4.1	31	90 (2.5						

APPENDIX B - POPULATION ESTIMATES AND PROJECTIONS BY TAZ 4/4

		HOUSIN	G COND	ITIONS			PERSONS	1989	1989	1 1990	2000	2010	2020
1	6	14 1	3 1	12 1	1 1	TOTAL	PER	I ESTIMATED	I PERCENTAGE	POPULATION	POPULATION	POPULATION I	POPULATION
TAZ	EXCE	ABOVE	AVG I	BELOW I	POOR	MINUS	DWELLING	I POPULATION	I OF TOTAL	ESTIMATE	PROJECTIONS	PROJECTIONS	PROJECTIONS
		AVG		AVG		CONDEMN	UNIT	1	POPULATION	1	1	1	
347	0	1 61	461	301	13	9.5	2.5	1 238	0.001786654	241	1 282	317 1	349
348	0	1 01	301	151	17 (62	2.5	1 155	0.001166027	150	200	235	262
3491	0	1 51	101	111	21	28	2.5	1 70	0.000526592	1 72	88	1021	114
350 1	0	1 01	151	8 1	6 1	29	2.5	1 73	0.000545399	1 74	91	1061	116
3511	0	1 01	23 1	28 1	201	71	2.5	1 178	0.001335289	1 179	196	210 1	221
352	0	23	4081	55 1	731	550	2.5	1 1398	0.010513052	1399	1416	14301	1441
353	0	31	721	90	83	248	2.5	620	0.004664108	624	660	691 1	716
OTAL	373	27031	22147	20207	7737	53172	2.5	132930		133784	142628	150213	156272

^{*1990} Census

SOURCE: Transportation/Land Use Survey, summer 1969 and Land-of-Sky Regional Council.

1	TAZ	BUSINESS	1991 FULL	PART	TOTAL FU	DÓ LL PART	TOTAL	2010 FULL	PART	TOTAL	2020 FULL	PART	TOTAL	TAZ	1991-2020 NET CHANGE	TOTAL BY TAZ
1																
1		1 3		3	4 7	3	4 7		4	5 (9	4	5 6	Ī	1	2
1		1 5	7	8 124	202	88	140 228	8	5 15	1 246	10	2 16	3 265		1 63	91
		2 2	2	9 12	2 81	78	14 93	В	4 1	4 98	8	9 1	5 104		2 23	
1		2 4		5 1	1 6	5	1 6		6	1 7	7	7	1 8		2 2	
1		3 1	1	3	16	14	3 17	11	5	3 18	1	6	4 20		3 4	
1		3 3		7	7	8	0 8		8	9 0	3	9	0 9		3 2	
1		3 5	14	19 8	157	168	9 177	18	1 1	0 191	19	4 1	0 204		3 47	135
4		4 2	4	6 6	55	52	10 62	5	6 1	1 67	7 5	9 1	1 70	1	4 15	
1		4 4	26	3 21	284	291	23 314	31	1 2	3.36	33	2 2	6 358		4 74	
Color Colo		5 1		6 0	6	6	0 6		7	7		7	0 7		5 1	
A		5 4	26	6 36	302	292	40 332	31	5 4:	2 357	33	6 4	381		79	
Color		6 1	19	6 0	195				0 (2.30		6 (246			
1		6 3														
The color of the		6 5	8	4 32											36	
The color of the																
The color of the																
1 2 73		7 5	9		172	105	89 194	11:	3 90	209	12	10	226		7 54	115
S		3 2	7	8 41	119	87	46 133	8.	3 41	142	100	5	153		34	1
1	- 1	8 4	3	5 28	63	39	31 70	4	33	74	4.5	30	81		18	
1		1	1.	3 1	14	14	1 15	10	5	17	10	5	17		3	
1		3	7	6 22	98	8.5	25 110	9	1 26	117	8	28	125		27	
10		5	87	0 132	1002	988 1	50 1138	1065	162	1227	1148	174	1322		320	406
10	10	2		6 2	8	8	3 11		3	11) 3	12	10) <u>4</u>	
11	10	9 4	85	0 83	933	946	82 1038	1010	9.6	1108	1076	109	1184	10	251	1
11	11	1		4 0	4	6	0 6	(ST	6			6	11	2	
12 2	11	5		2 1	3	3	1 4		2	5	1 3	2	5	_ 11	2	6
12 4 5 0 5 6 0 6 6 0 6 6 0 6 12 1 1 1 1 1 1 1 1 1																
13 1																
13																
13																
14 2 52 0 52 58 0 58 62 0 62 7 0 0 14 15 15	13	4	104	3 0	1043		0 1158		0	1236		0	1322	13	279	
14 4 2 1 0 2 1 2 3 0 23 25 0 25 27 0 27 14 6 14 5 12 74 198 140 34 23 15 190 24 16 180 27 14 62 88 15 1 8 2 10 8 2 11 9 2 11 10 2 12 15 5 26 15 3 8 2 10 9 2 11 9 2 11 10 2 12 15 5 25 15 3 4 42 3 45 46 3 51 51 4 55 55 4 59 15 14 15 4 42 3 45 46 3 51 51 4 55 55 4 59 15 14 15 5 6 11 10 2 12 10 3 13 15 31 15 6 7 7 7 7 7 7	14	2	52	2 . 0	52	58	0 58	62	. 0	62	67	0	67	14	15	
15 1	14	4			21	23	0 23	25	0	25	27	0	27			
15 3	15	1		8 2	10	9	2 11	6	2	11	10	2	12	15	. 2	
15	15	3		3 2	10	9	2 11	10	2	12	10	3	13	15	. 3	
16 2	15	5	81	1] 11	921	93	13 106	100	14	114	108	15	123	15	31	92
16	16	2	7(9 9	88	94	11 105	101	11	112	109	12	121	16	33	
17	16	4	39	3	42	43	3 46	46	. 3	1 49	50	4	54	16	12	
17	17	1	179	4	179	193	4 197	207	5	212	220	5	225	17	46	
17	17	3		21 0	2	21	0 2	2	0	2	3	0	31	17	. 1	
18	17	5	306	58	364	346 (66 412	373	71	444	402	76	478	17	114	
18	18	2	14	1	15	17	1 18	16	1	18	20	1	21	18	6	
19	18	4	4	2	61	21	1 3	2	1	3	3	1	41	18	-2	
19	19	1	214	9	222	234	8 242	248	9	257	264	9	273	19	51	
20 1 7 1 8 9 1 8 8 1 9 9 1 10 20 2	19	4	320	12	332	354	13 367	379	1 14	393	405	16	421	19	68	
20	20	1	7	1	8	9	1 8	8	1	9	9	1	10	20	2	
21	20	4.	50				9 58	53	10	63	57	11	68	20	. 17	
21	21	1	2	0	2	2	0 2	2	0	2	2	0	2	21	0	
21	21	3	6	2	91	7	2 9	7	2	8	8	3	11	21	3	
The color of the	21	5	30	3	33	34	3 37	37	4	41	38	4	43	21	10	
23	22	3	13	7	20	16	9 25	17	9	26	18	10	28	22	8	
23	23	2	5.3	5	59	67	61 73	72	7	79	76	7	8.3	23	25	
24 5 33 7 40 39 8 47 42 9 51 45 10 55 24 15 17 25 2 29 3 32 32 3 35 34 4 39 37 4 41 25 9 25 3 3 2 5 3 2 5 4 2 6 4 3 7 25 2 25 4 20 7 27 13 3 16 14 3 17 125 2 25 5 760 95 855 85a 107 965 925 116 104 997 125 122 25 267 270 26 1 47 0 47 50 0 50 53 56 0 56 26 9 26 5 904 421	23	5	224	15	239	257 1	7 274	276	18	296	298	20	318	23	79	
25 3 3 2 5 3 2 5 4 2 6 4 3 7 25 2	24	5	33	7	40	391	8 47	42	9	51	45	10	55	24	15	17
25 5 760 95 855 859 107 995 925 116 1041 997 125 1122 25 267 270	25	3	3	2	5	3 !	2 5	- 4	2	6	4	3	7	25	2	
26 1 47 0 47 50 0 50 53 56 0 56 26 9 26 3 81 1 82 90 1 91 96 1 97 102 2 1 103 26 21 26 5 904 421 1325 1018 474 1492 1097 511 1608 1183 551 1734 26 400 439 27 1 9 0 8 10 0 10 11 0 11 22 2 3 27 3 6 1 7 7 1 8 7 1 1 8 9 1 9 27 2 27 4 3 2 5 3 2 5 4 2 6 4 3 7 27 2 2 2 2 <	25	5	760	95	855	858 10	7 965	925	116	1041	997	125	1122	25	267	270
26 5 904 421 1325 1018 474 1492 1007 511 1608 1183 551 1734 26 40e 43e 27 1 9 0 8 10 0 10 111 0 112 27 3 27 3 6 1 7 7 1 8 7 1 8 8 1 9 27 2 27 4 3 2 5 3 2 5 4 2 6 4 3 7 27 2 27 5 41 4 45 48 5 53 5 57 55 5 60 27 15 22 28 2 10 3 13 12 4 16 13 4 17 13 4 17 28 4 28 3 9	26	11	47	0	82	90	0 50	96	1	97	102	1	103	26	21	
27 3 6 1 7 7 1 8 7 1 8 8 1 9 27 2 2 2 2 2 3 2 5 4 2 6 4 2 6 4 3 7 27 2 2 2 2 2 3 2 2 5 4 1 4 1 6 1 3 4 1 7 1 3 4 1 7 2 7 2 2 2 2 3 2 2 5 4 1 6 1 3 4 1 7 1 3 4 1 7 2 8 4 2 2 8 2 3 9 15 2 4 10 17 2 7 2 1 1 19 30 12 20 32 28 6 6	. 26	5	904		1325		0 10	11	0	. 11	12	. 0	12:	27	3	130
27 5 41 4) 45 48 5 53 52 5 57 55 5 60 27 15 22 28 2 10 3 13 12 4 16 13 4 17 13 4 17 28 4 28 3 9 15 22 10 17 27 11 19 30 12 20 32 26 6	27	3	6	1 2	5	3	1 8	4	2	6	4	3	71	27	21	
28 3 9 15 24 10 17 27 11 19 30 12 20 32 28 8	27	51	41	4	45	481	5 53 4 16	13	4	17	13	4	17	28	41	22
	28	3	9	15	24	10 1	7 27	- 11	19				32	26		

TAZ BUSIN	ESS 1991	PARY		JUL PART		2010 FULL 1	PARY		020 ULL PA	ARY 1	TAZ		-2020 TOTAL CHANGE BY TAZ
26	5 8	6 9	95	102	11 113	109	11	120	J171-	12	129	28	34 34
29		5 2	27	162	0 162 2 30	171	2:	31	32	3	182 35	29	8
29 29 29	-4/4 1	0 3 5 0	13 15 20	11 17 20	3 14 0 17 3 23	12 18 21	0	16	20	0	17 20 27	29 29 29	5 7 64
30	1 7	8 5	83 47	85 25	5 90	91	5	25 96	96 29	7	103	30	7 64 20 15
30 30	3 9 4 23	9 47	146 248	109	52 161 12 274	117	55	172 293	125 299	59	184 313	30	38
30	5 24	0 60	300 58	270 61	67 337	291	73	364	70	78	392 72	30	92 230
31	3 4		62 118	41 51	28 69 80 131	44 54	30 85	139	47 58	32 91	79 149	31	17 31
31	4 11 5 15	3 16	117 169	125 175	4 129 18 193	134 188	5 20	139	143 203	21	148	31	31 55 148
34	8 4		276	317	0 2	342	0	343	368	0	368	34	92 93
35 35		3 1	137	134	0 134	130	1	130	125	1	125	35 35	-12
35	5 3		40	35	0 6 12 47	38	13	51	41	14	7 55	35	15 6
36 36 36	2 74 3 20 4 91	6 16	98 42 103	29 110	27 111 18 47 4 114	90 31 118	19	119 50 123	97 33 126	31 20 5	128 53 131	36 36	30
36	5 31		349	362	34 396	390	37	427	420	40	460	36	28 111 180
37	2 14		17	17	3 20	19	3	22	20	4	24	37 37 37	7
37	4 3	1 5	36	35	6 41	37	6	43	40	6	46 S4	37	10
38	1 10		111	116	8 124 3 6	124	8	132	133	9	142	38	13 32 31 2
38		3 1	51	3 38	1 4	40	1 22	62	44	11	5	38	17 51
39	4	4 1	51	9	2 11	111	2	13	11	2	13	39	8 8
45		4 4	8	4 39	4 8 14 53	4	15	56	4	5	9	45	16
45	3	3 6 3	9	4	7 11	4	8	12	4	8	12	45	3
45	5 25		32	30	8 38	32	9	41	35	10	45	45 50	13 35
50	5 56	6 231	79 416	66 443	28 94	71	31	102:	76	33	109	50	30 31 81
55		91 41	13	10	4 14 6 25	20	5	16	12	6	17	55	5
55	5 17	7 4	21	10	0 10 5 24	10	5	10	22	5	27	55	6 98
56	2 43		82	28 50	1 29	53	48	101	31 : 57 :	52	109	56	27
56 56	3 18		35	21	1 3	22	21	3	3	22	46	56 66	11
56	5 16	2 0	23	211	0 27	23	6	29	3	7	31	561	8 53
58		3 1	81	82	12 94	89	121	101	95	13	108	58	27 28
60		3 1	38	35 I	11 46	37	12	7	40i	12	52	60	14 15
61	11 141		141	157	7 9 0 157	167	7	167	179	8	179	61	5 5 38
64 64 65		2; 21	28	34	1 35	37	2	38	39	31	61	64	2 52
65	4 3	3 0	3	4	3 7	4	0	41	5	01	5	65	21 22
65 67 67	5 60 2 136 4 3	0	136	71 172 3	4 75 0 172 0 3	76 184	0	184:	197	0	197	67	61
67		2 2	315	2	0 3 2 4 55 352	211	166	377	3 225	1781	403	67	2 64
69	3 73	39	112		43 124 6 26	86	46	132	92	49	141	69	29
70	5 21	4	25 27	24	5 29	26	5	311	28	51	331	70	8 131
70	2 89		117		31 131	107	341	141	114	36	150	701	33
701	4 22 5 108		28 132	122	7 31 27 149	132	7 29	331 161	142	32	36 174	70	42 87
73	1 179	2	181	195 15	2 197	207	2	209	219	3	201	731	40
73	3 20	0	20 B	8	1 9	24 8	1	9	25 0	1	25 10	73	5
73 74	1 114	2 2	115	123	1 124	130	2	131	139	3	140	73	2 55
74	3 7	1 2	38	48	3 51	51 8	2	10	55	3	12	74	3
74	5 148 1 27	0	149	167 31	0 31	180	0	181	194 i	0	196	74.	8 94
75 75	2 6	0	81	91	0 8	10	0	101	111	01	11:	75	3
75	5 13 1 7	0	7	15	2 17 0 10	16	0	19	18	0	11	751	6 19
76 78	5 1 1 26	1	27	29	1 30	31	1	32	33	1	34	761	2 6
78	2 16 3 27	18	18 45		2 20 50	32	22	54	34	23	23 57	781	12
78	4 47 5 29	3	32	33	3 36	36	4	40:	38	41	42	781	14 10 48
79	1 34	51	111		1 39 57 125	73	61	134	77	65	142	79	31
791	31 35 41 45	5	50	50	6 56	53	63	59	57	67	63	79	13
79 80	5 55	10	73	10	20 82	11:	121	23	12	13	25	801	23 99 6 411 417
821	5 1143	4	1316	3	96 1485	1390	5	1601	1490	5	1727	82	2
82	2) 3	0	8	9	0 9	10	0:	10	11	01	11	82	3
82 83	5 25 2 23	17	401		5 35 191 45	28	20	37 48	30	22	39 52	83	10 16 12 10
83	3 18 4 9 5 97	1	10 128	10	22 42 1 11 35 145	111	11	45 12 157	111	11	12	83	41 65
84	1 311	01	311	336	0 336 14 172	356	0	355	375 184	01	375	84	64 113
85	1 48	2	50	51	2 53	541 142	2	56: 156:	59	2	60	85 85	101
85 85	3 53 5 1235	42	95 1438	59	46 106 28 1617	63	246	113	1615	53	120	85	25 442 518
				-									

BUSINESS	TIGGI			2000	PART		2010 FULL 1	PART	TOTAL	2020 FULL	PART	YOTAL	TAZ I	001-2020 YOTA
	1 1	0		1:	0	1:	11	0	1	1	0	1	135	0
	2 4 3 47		109	54	71	125	57	75	132	61	80	141	135	32
	4 26 5 74			861	19		92	20	112	99	21	34 120		7
136	1 67	1	68	75	1	76	80	11	81	85	1	86	136	18
	3 5			8	0	8	8	0	8	9	0			1
136	5 336 1 794	52	388	382 854	59 29	841 883	412 904	64 31	476 935	957	69 33	513	136	125
138	67	0	67	85	0	85	91	0	91	97	٥	97	138	30
	3 2			3	0		3	0	- 8	3	2			2
140	4 3	3	6	5	5 2	10	5	5	10	5	5	10	140	4
141	5 3	25	32	9	32	41	10	34	44	10	37	47		16
	4 10 5 8			13	3		14	3	18	14	3		141	5
143	1 7	0	7	8	0	8	91	01	9	9	0	9	143	2
	2 17		12	12	12	14	12	13	34	13	13	36 16	143	0
143	1 25	12	37	29 225	14		241	15	260	33 259	16 30		143	12 70
144	2 1	1	2	- 1	1	2	1	11	2	2.59	2	4	144	2
	1 10			11	6	14	12	6	15	13	6	15		5
145	83	0	83	107	0	107	115	0	115	122	0	122	145	39
	15		15	97	24	18	104	26	130	110	28	138	145	29
	186			207	114	321	2221	122	344	238	130	368	147	80
	398			439	191	630 50	469 50	204	673 54	501	218	719		148
147	74		111	36	42	125	90	45 23	135	33	48	145	147	34 i -7 i
149	19	3	22	23	4	27	24	41	28	26	4	30	1491	8
149				8	7	11	41	8	121	9	8	12		3
149 5	45	2	47	55	2	57	59	3	62	63	3	66	149	19
150 3 150 5	108	5	113 :	123	28	129	133	30	139	143	32		150	37
	37			42	0		10 45	6	10 51	10	0	10: 54		12
152	56	7		64	81	72	69	9	78	75	9	84	152	21
153 1 153 2	118			13.3	42	175	143	45	188	153	48	201	153	7 46
153 3	10	16	26	11	18	29	12	19	31	13	20	33	153	7
153 4				134	33	167	144	36	180	155	38	193	153	47
154 1	861			936	23	959	983	24	1017	1054	25	1079	154	197
154 2				34	8	6	37	8	45	39	91	48	154	141
154 4 154 5			12	13	0	13	14	0	36	15	0	15	154	3
155 1	3	0	3	51	0	32	32	0	5	5	0	5		2
155 3 157 5				14	01	14	14	0	7	14	0	7		3
159 2	3	1	41	3	1	4	4	11	5	4	1	. 5	159	11
159 3 159 4			51	57	15	59	60	16	62	64	17	67	150	5
159 5	79	27	106	92	32	124	99	34	133	107	36	143	159	37 45
160 1			123	129	10	139	137	31	148	156	12	168	160	12
160 3 160 4			16	5	14	19	5	15	20	1	17	23	160	7
160 5	111	56	167	131	64	195	141	70	211	155	751	230	160	63
165 1 165 2			85	95	10	106	102	10	112	108	11	1191	165	34
165 4	16	2	18	18	2	20	201	21	22	21	3	241	166	6
165 5 166 2			24	3	0	3	3	0	30	3	0	32	166	1
166 3 166 5			21	27	0	27	28	0	29	30	0	30	166	10
170 1	11	0	111	131	0	131	13	01	131	141	0	14	170	3
170 2 170 4			12	10	3	137	11	0	15	12	0	16	1701	2
170 5 171 2	52 68	3	55	60	3	63	65	71	157	701	76	74 168	170	191
171 3	9	7	126	10	81	147	11	8	19	12	9	21	171	5
171 4 171 5			27	72	8	31	76	9	78	27	91	36	171	19
172 3	0	4	4	01	71	7	. 0	71	7	0	8	8	172	4
172 5 176 1		3	13	11	3	14	12	4	16	13	2	17	172 176	1
176 2 1761 3	176	113		190	128	327	213	137	350	228	146	374	176	85 S
176 5	70	54	124	80	61	141	86	661	152	93	71	164	176	40
177 1 177 2		153	353	229	171	965 400	1020	183	1021	1078	196	1079	177	180
177 3	105	103	208	116	114	230	124	122	246	133	130	263	177	55
177 4 177 5			202	175	52	227	189	56	245	204	60	264	177	621
178 1	306		306	329	0	329	348	0	348	367	0	367	1781	62
178 2 178 3	12	25	37	13	28	41	14 !	30	25 44	15	32	47	178	10
178 4 178 5	521	251	77 : 56 :	58 S	28	86	59	30	92 69	66	321	74	178 178	21
179 3	4	2	6	9	31	12	91	3	121	10	3	13	179	7
180 5			2:	71	0	4	21	2	41	2	0	4	180	2 2
181 5	7	2	9	12	3	15	13	3	16	131	3	16	181	7
183 1			3:	2	0	2	2	0	3	3	0	3	1831	0 1
183 4	21	4	25	23	4	27	251	5	30	27	5	32	183	7
183 5 185 2			298	338	7	345	363	71	370	391	8	390	183	101
185 4	1	0	1:	2	0	2	2	0	2'	2	0	2	185	11
185 5 186 1			2	4	0	7	41	0	7	41	01	7	186	3
186 2	3	0	3	6	0	6	6	0	6	6	01	6	186	3
186 5		0;	2	41	0	81	41	0	411	41	0	411	186	39
188 1	425	01	425	455	0	455	4801	2	4801	507	31	507	188	82
188 5	22	13	35	25	15	40	27	16	431	291	171	46	1881	11
189 1	216	7	223	240	7	247	253	01	261	267	91	276	189	53
189 2		3	31	0	3:	3	0'	41	41	0	4	41	180	11
180 5						1000						4.00		
	923	45	968	990	3	1038 56 23	1045 57	51	1096	1104	54	1158	190 190 i	190 14 7 2

YAZ	BUSINESS	FULL	PART	TOTAL	FÜLL	PARY	YOYAL	2010 FULL	PART	TOTAL	2020 FULL	PART	TOTAL	TAZ	1991-2020 NET CHANGE	TOTAL BY TAZ
18				1: 1:									2 3	0. 19		1
18	3		45	3 4	8 4	18	3 5	1 5	0	3 5	3 5	2	3 5	5 16 5 19	3	2 13 7
190			03 17 27 3	72 37		26 18:							0! 47	9 19		
193				6 5-		12 11			5 1	9 6 5 11				8 19		0 198
194				1 1		14 21				1 2	2 2		1 2	3 16	4	5
194	4	4	52	7 St	9 6	0.	В 6	8 6	3	8 7	2 6	7	9 7	6 16	4 1	7
192	5	1	6	01	6:	6 (0	6	7	0	71	8	J .	8 19	6	5 57
196	5	3 1	11	6 1	7 1	2	7 1	9 1	31		0 1	4	3 2	2 16	5 9	5
196	5 5	5 27	74 18		2 31	10 21	3: 52	3 33		0 56	5 36	1 24	7 60		5 144	6 196
196	6 3	12	20 16	3 28	3 13		1 31	4 14	2 193	3 33	5 15	2 200	35			5
196				8 36			1 4			0 1		7 1		3 19 8 - 19		2 92
197				0 49 3 18		9 4	5		3 1	2 5		6 13	5	9 19	7 14	
197	7 5	1	0 (0 10	0 1	2 (1 3	2 1	3	1 3	3 1		1	3 19	7	3 25
198	8 3	3!	3 1		4	41 1		5	41		5	4	1	5 19 8 19	8	1 20
199	9 1	2	28 : 1	1 26	9 3		3	2 3		1 3	4 3	4	3	5 19	9	6
199	9 3	1	1 2	2 13	3 1	2 2	2 1	4 1	3	2 1	5 1	4	1	7 19	9	4
199	5	5	7 22		6	2 3 5 29	8	0 7	0 2		7 7	5 29		4 19	9 2	
200	2	2	10		0 2	3 11		4. 2	11		6 2	6 13		9 20	0 0	9
200 200	4	1.	5 (5	6 0		6	5		6	6 . (8 20 6 20	0 1	1
200			17 10		7 . 4	2 11					8 4		6	2 20		6
201	1 2	14	6 29	5 171 2 11	17	1 29	20	0 18	3 3		4 19	7 3.3	23		11 50	
201	1 4	1	2 0	0 12 7 115	2 1	3 0	1:	3 1	s i(14	1	5 (5 20	1	3
202	2 1	7	7 1	1 78	8 8	4 1	8.	5 8)	9(9	1	9.	5 20	2 17	7
202	2 5	. 2	25 8	0 23 8 34	1 2		3	3	11		2 3.	3 12	4.		2 11	
203	5	1	8 8		7 2	9 0 4 10	3	4 2	11		8 2	8 12	4	1 20	3 14	
205 205	5	4	2 0	0 3	2 5		5	5-	1	54	5		5		5 16	
206 206				2: 18 1: 11						21 21			1-			3
206	3		7 3	3 10)	8 3	1		9 4	1. 1.	31	91 4		3 20	3	3 19
207	2	2	4 2	2 26	3	1 3	3.	3	3	36	3	3	31	20	13	3
207 208	4		0 1			0 1		1) 1		ii (1	-7-	20	0	13
208	1	1		0 11	i 1:	0 16	1;	2 13		13	3 14		14	20	3	7
209	5		5 5	0 9 5 120	13	1! 6	137	142	. 6	148	15.	2 7	151	20	39	45
210				222		7: 24			25		11 3	1		21		
210 210				3 8 5 42		7: 4 3: 7			1 8			8				9.3
211 211	1	700	0 50	750	74	7 53	800	786	56	845	8.30	59	897	21 21	142	2 [
211	3		7 21	28		8. 23	31		25	3.3	11 8	31 - 26	3.5	21	7	
211	5	67	7 15	82	75	17	92	2: 81	18	99	88	3 20	108	21	26	208
212 213	2	1:	1 1	100	17	71 2	1 18	17	2	1.8	1.	2	20	21:	8	
213 213	4	24	4 0	58	32	2 0	32	3.4	. 0		36	0	36	21:	1. 12	48
214				414	250	224	474	267	240	507	286	256	542	215	128	
215 215											18					
215 217				80		8 8				99	96					
218 219	5		0 1	1		10	10) C	10	10	0	10	10	218	9	9
219	2	16	6 33	49	1 18	38	56	16	40	59	21	43	64	219	15	
219	4	10	0 5	15	11	6	17	12	6	18	13	6	18	219	4	
219 220	1			8	. 7	2		7	2	. 0	. 8	3	11	220	3	
220 220	3		6 9	15	7	11	18	. 8	11	19	8	12	20	220	5	
220 221		178	8 0		195		195	205	0	205	217	0	217	221	39	
221 221	2	57		57												
221	4	21	1 5	26	24		30	25	6	31	27	6	33	221	7	1
224	1.		8 0	8		0	9	10	0	10	11	0	11	224	3	1
224	3	2	2 0	2	2	0	2	3	0	3	3	0	3	224	1 1	
224	5	2	6 4 2 4	6	2	5	7	3	5	8	3	6	9	224	3	41
225 225		37	7 36		4.3	42	8.5	46	45	91	49	48	97	225	24	
22S	3	61	1 24	8.5	70	28	98									
225	5	10	0 4	. 14	. 12	5	17	13	5	18	1 13	5	18	225	4	
226 226	2	41	45	86	47	52	99	50	55	105	54	59	113	226	27	
226 226	4	3	3 0	3	3	0	3	. 4	0	4	4	0	4	226	11	
226	5						77 323			343	344	20	364	227	68	
227	2	76	10	88	96	11	107	102	12	114	110	13	123	227	34	
227	4	52	21 4	56	59	4		62	5	67	66	5	71	227	15	
						. 1/								441		
227 228	1	4	0	4	. 4	0	4	5		5	5	0	- 5			
227	2	88 35	0 3 38 5 15	126 50	99	0 43 17	4	106 41	45 18	5 150 59	5 113 44	0 49 19	162 63	228	36 13	

TAZ	BUSINES		PART	TOTAL	FULL	PART	TOTAL	2010 FULL	PART	TOYAL	2020 FULL	PART	TOTAL	TAZ	1991-2020 TOTAL
	68	1) 11		3 121			129			3 135	134		4 14		
2	68 68	3 1	0	7 71 8 18 7 40	11			1:	1	0 86 0 22 9 48	1.	3 1	2 9. 0 2 9 5	3 268	5
2	69	1	3!	0 3	4	(1	0 4		4	0	4 269	1
2	69 70	5	9	4 13 1 2	12	9		1:	2	6 18	1:	3	6 1		6 8
2	70 70	3	0 (0 50 0 3	63	(63	6		0 67 0 4	7	1	0 7	1 270 4 270	21
2	76	1 3	5	1 2 0 35	41		41	4		1 2 0 44	4	7	0 4		12
2	78	1 2	7	3 4 2 29	30	1	32	3	i	4 5 2 33	34		3 3		8
2	79	3 1		0 4 6 21 9 141	17	7	24	11	3	0 5 7 25 1 176	20	0	0 ! 8 21		7
28	30	1 2	3	7 30	25	8	3.3	25		B 33	26	5	8 3	280	4
26	30	5 2	4 1	8 33	35	13		3	1		40	1-	4 5		21 26
28	36	1 13	2 3	3 8 3 135	143	3	11 146	151		4 11 3 154	160) .	5 1; 4 16	286	29
28	36		21 3	35	2	3	43		21	0 46 4 6	1	3		7 286	2
28	36	5 2	1 7	7 28	24	8	32	26		35	28	3	9 3		9 56
28	37	2 7	9 4	9 104 4 83	88	4		100		120 111 111	112	2	5 120 5 11 1 1	7 287	341
28	37		1 1	1 12	12	1	13	13		1 14	14	1	1 15	287	3
28	38	3	4 1 1		. 5	1	6	5		1 6	•	5	1 11	7 288	2
29	90	5 4	3 7	50	51	10	61	56	10	66	60	1	0 6	290	21 23
29	72		1 0	1	1	. 0	126	121	1:	133	128	1;	2 140	292	25
29	3	2 2	2 0	22	28	. 0	28	31	1	31	3.3	3	0 8	293	11
29	6	2 :	3 0		7	0	7	7		15	7	7	6 17 0 7	295	4 4
29	16		3 2	10	10	2	12	11		13	11		13	296	3
29 29 28	16			5	4	1	5	5	1	5 1 6 2 51	5	5 1	0 5 1 6 3 53	296	1 566
28	71	2 1		25	22	7	28	23		30	25		3	297	8
28	7	5 7	1 6	77	81	7	88	87	1	94	84		102	287	25 43
29	8		5 2	8	7	2	9	7		48	8	i ;	3 11	298	31
29 29	18	4 2: 5 20	2 4	26	25	4	28	26	5	31	28		33	298	7
29	9	1 25	5 8	33	27		36	29		38	31	10	3 39	299	
29	9	3 54 4 13	3 0	131	15	0	15	15	1 0	15	17		17	299	41
30	0	5 52 1 90	12	102	59 97	13	110	102	14	116	108	14	122	300	20
30	0 :	2 145 3 68	47	115	76	52	128	81	56	137	87	60	147	300	32
30	0 !	4 34 5 38	11	48	43	12	55	46	13	59	50	15		300	16 152
30 30 30	11 :	1 41	1	47	45 57 29	1	58	61	1 1	62	66		67	301	20
30	1 4	36	5	44		6	50	47	. 6	53	50	- 6	56	301	121
30	21	1 1556	7	1563	1662	. 7	1669	1755	9	1764	1854	9	1863	302	300
30	2 3	3 28	42	70	31 36		77		15	83 54	35	53 16	58	302 302	18
30	3 1	5 67 1 704	35	739	75 756	54 38	794	801	40	841	847	42	889	303	150
30	3 4	68	2	61	4		6		2	7	5	3	8	303	2
30	4 1	1 1208	52	1260		8 55 7	1350	1367	58	1425	1444	62	1506	304	246
30	4 3	2 E 3 44	21	65	49	23	72	52	25	77	56	27	8.3	304	18
30	4 5		22	74	59	25 2	84	63	27	80	68	29	87	304	23 303
30	51 2	73	60	133	83 52	68	151		73	161	9.1	78	172	305	39
30	5 5	57	26	57 108	64 93	0 30	64 123	68 101	32	133	73 108	34	73 142	305	16 34 124
30	61 4 6 5	277	21	298	2 313	0 24	337	2 337	26	363	364 3	28	392	306	94 95
31:	2 1	300	0	300 80	326 102	0	102	109	0	109		0		312	36 98
31:	3 1	2 23	17	40	30		52		24	55	34	25		313	19
31:	31 5	1 2	2	4	2	2	4	3	3	6	3	3	6	313	2 21
314	4 5		1	41	8 6	1	7	6	1	7	6	2	8	314	4 9
31	7: 2	182	6	236	289	53 8	287	214 310	8	318		9	341	317	105
31	7! 4	43	0	43	17 48	5 0 68	48	18 51 157	0	51	55	0	55	317	12 60 233
311	B 1	1 12	1	13	15	1	16	16	1	17	17	1	18	318	5
311	8 5		1	2	11		2		1	2		1	2	318	0 8
321	1 1	30	10	40	314		360	317	46	363		47	367	321 321	327 7
32	1 3	3	0	3	3	0	3 15	8	7	15	8	7	15	321 321	6 334
32	3 1	193	17	210	955 475	106 55	530	1001 509	59	568		64	609	323	164
32	1 5	10	2	4	2 18	13	31		13	32	20	14	34	324	2 1143 17 17
330	0 2	1 126		3	148	3	151	159	3		170	3			3 46 49

APPENDIX B - EMPLOYMENT ESTIMATES & PROJECTIONS BY TAZ 8/8

	BUSINESS	11991				2000	I		12	010	1		12	2020	1	1		TAZ	1991-2020	TOTAL
	GROUP	FULL	PART	T	OTAL	FULL	PART	70	TAL	ULL	PART .	TC	TAL	ULL	PART	110	TAL		NET CHANGE	BYYA
										-										
34	0 1	1 44	13)	12:	456	487		13	500	519		14:	533	553	1	15	568	34	0 113	3
34	0 2		7	44	141	113		50	163	120		5.3	173	1 28		57	186	34	0 4	
34	0 3	3	88	13	51	42		14	56	45		15	60	48		16	64	34	0 1:	3
34	0 4		30	4	34	33		4	37	36		5	41	38		5	43	34	0 0	
34	0 5	8	13	32	115	94	1	36	130	101		39	140	109		42	151			5
34	1 4	1	2	1 1	3	3	1	1	4	3		1:	4	3		2	5	34	11	2
34	1 5	22	2	17	239	257		22	279	279		24	303	300		26	326	34	11 87	7
34	6 1	1	5	0	15	16	1	0	16	15		0	15	15	1	01	15	34	6 (
34			1	3	4	1	1	4	5	- 1		4	5	1		4	5			
34			2	1	3	4		1	5	4		1 ;	5	5		2	7	34		
35		1	4	0	14	16	1	0	16	17		0	17	18		0	16			
35	0 2		3	2	5			2	6	4		3	7	4	-	3	7	35		21
35			5	0	5	6		0	6	6		0	6	. 7		0	7	35	0	2
35	5		6	01	6	7		0	7	8		0	8	9		0	9	35	0 :	3
35	1 1	31	6	36	352	345		40	385	364	4	43	407	386		46	432	35	1 80	
35	1 2	1	3	3	16	15		3	18	16		4	20	17		4	21	35	1	5
35	3	3	0	4	34			4	38	36		5	41	38		5	43	35	1	
35	1 5	2	1	1	22			1	25	26		1	27	28		1	29	35	11	7
35		5	0	3	53			3	59	59		4	63	63		4	67	353		
35	2 2	1	7	1]	18	19		1	20	21		1	22	22		1	23			5
353	2 3	10	11	31	132	114		351	149	121		37	158	130		40	170	35	2 31	3
353			6	6	12			7	14	7		7	14	8		8	16			1
35		9	3	20	113	107		23	130	115		25	140	124		27	151			
35			0	1	. 1			2	2	. 0		2	2	0		2	2	35		
35	3 2		2	0	2	4	Ī	0 (4	5		0	5	5		01	5	35	31	31

APPENDIX C - TRANSIT PROPENSITY RATINGS PAGE 1/1

2000 TRANSIT PROPENSITY RATING 2	I 2010 I TRANSIT I PROPENSITY I RATING I 2	1	2020 TRANSIT PROPENSITY RATING 2 2	2020	2020 12000 178ANSIT 178ANSIT 178ANSIT 178ANSIT 178ANSIT 178ANSIT 178ANSIT 178ANSIT 178ANSIT 188ANSIT 188A	2020 2000 2010	200	2020 2000 2010 2020	2020	2020	2020	2020 2030 2010 2020 2020 2010 2020	2020 2000 2010 2020 2000 2010 2020 2020 2020	2020 2000 2010 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020	2020 2000 2010 2020 2000 2010 2020
0 0 0 0 0 4 0 0 1	 	0 0 0 0 2 4 0 0	0 1 1 0 1 1 0 1 1 1	0 1 1 118 0 1 1 120 0 1 1 120 0 1 1 120 2 3 1 122 4 4 1 123 0 0 1 124 0 0 1 125 1 1 1 125 4 4 1 127	0 1 1 118 0 0 1 1 118 3 0 1 1 120 2 2 0 1 1 121 0 2 2 2 2 2 2 2 2 2	0 1 1 118 0 0 0 0 0 0 0 0 0	0 1 1 118 0 0 0 0 0 0 0 0 0	0 1 1 118 0 0 0 0 232 1 231	0 1 1 118 0 0 0 1 232 0 0 0 1 1 122 0 0 0 1 1 123 0 0 1 1 124 0 0 0 0 1 238 2 2 2 2 2 2 2 2 2	0 1 1 118 0 0 0 0 1 232 0 0 0 0 1 1 1 1 1 1	0 1 1 118 0 0 0 1 232 0 0 0 0 0 0 0 0 0	0 1 1 18 0 0 0 0 1 22 0 0 0 0 1 345 0 1 1 18 3 3 3 3 233 0 0 0 0 347 0 1 1 120 2 2 2 2 2 234 1 1 1 1 348 0 1 1 121 0 0 0 0 1 235 4 4 4 4 1 349 2 3 1 122 0 0 0 0 1 235 4 4 4 4 1 349 2 3 1 122 3 3 3 3 3 1 237 1 1 1 1 1 1 1 1 1	0 1 1 118 0 0 0 0 1 232 0 0 0 0 1 345 0 0 0 1 1 1 1 1 1 1	0 1 1 118 0 0 0 1 232 0 0 0 347 0 0 1 1 119 3 3 3 3 233 0 0 0 0 347 0 0 1 1 120 2 2 2 2 234 1 1 1 1 348 0 0 1 1 121 0 0 0 0 1 235 4 4 4 4 349 0 2 3 1 122 0 0 0 0 235 4 4 4 4 349 0 2 3 1 122 3 3 3 3 237 1 1 1 1 1 351 0 4 4 4 1 123 3 3 3 3 237 1 1 1 1 1 1 1 1 0 0 1 125 1 1 1 1 1 239 1 1 1 2 353 0 1 1 1 126 1 1 1 1 240 3 3 3 3 4 4 4 1 127 2 2 2 2 2 2 2 2 2	0 1 1 118 0 0 0 0 1 232 0 0 0 1 345 0 0 0 0 0 0 0 0 0
0 4 4 5 4 1 4 5 4		1445314545	1	1 1 1 128 4 4 1 129 4 4 1 129 4 1 130 5 5 1 131 1 131 1 131 1 131 1	1 1 1 128 2 4 4 1 129 1 1 128 1 1 129 1 1 1 130 1 1 130 1 1 130 1 1 130 1 1 130 1 1 130 1 1 1 1 1 1 1 1 1	1 1 128 2 2 2 4 4 1 129 1 1 1 1 1 1 1 1 1	1 1 1 128 2 2 2 2 4 4 4 129 1 1 11 2 4 4 4 1 129 1 1 1 2 4 4 4 1 130 0 0 1 1 1 1 1 1 1	1 1 1 128 2 2 2 2 242 4 4 1 129 1 1 1 1 2 242 4 4 1 130 0 1 1 1 2 243 5 5 1 131 0 0 0 0 0 245 3 3 1 132 0 0 0 0 0 245 1 2 1 133 0 0 1 240 4 4 1 134 0 0 0 0 0 249 5 5 1 135 0 0 0 0 249 4 4 1 136 2 2 2 2 25 5 5 1 137 0 0 0 0 0 255	1 1 1 128 2 2 2 2 2 2 242 0 4 4 1 129 1 1 1 2 1 243 0 4 4 1 130 0 1 1 1 2 2 243 0 5 5 1 131 0 0 0 0 1 245 0 3 3 1 132 0 0 0 0 1 246 0 1 2 1 133 0 1 2 2 2 2 2 2 2 2 2	1 1 1 128 2 2 2 2 2 2 242 0 4 4 1 129 1 1 1 2 2 243 0 4 4 1 130 0 1 1 2 243 0 5 5 1 131 0 0 0 0 1 245 0 5 5 1 132 0 0 0 0 1 245 0 1 2 1 132 0 0 0 0 1 246 1 1 2 1 133 0 1 2 247 1 1 4 4 1 134 0 0 0 0 1 248 2 5 5 1 135 0 0 0 0 249 2 4 4 1 136 2 2 2 2 250 1 5 5 1 137 0 0 0 1 251 1	1 1 1 128 2 2 2 2 242 0 0 0 4 4 1 129 1 1 1 2 243 0 0 0 4 4 1 130 0 0 1 2 243 0 0 0 5 5 1 131 0 0 0 0 245 0 0 3 3 1 132 0 0 0 0 246 1 2 2 1 2 1 133 0 0 1 247 1 1 1 1 2 1 134 0 0 0 0 248 2 2 2 2 5 5 1 135 0 0 0 0 248 2 2 2 3 3 1 137 0 0 0 251 1 2 2	1 1 1 128 2 2 2 2 242 0 0 0 0 0 0 0 0 0	1 1 1 128 2 2 2 2 2 2 2 0 0 0	1 1 1 128 2 2 2 2 2 242 0 0 0 0 0 0 0 0 0	1 1 128 2 2 2 2 2 2 2 2 2
5 5 6 6 3 3 3 3 3 3	5 5 0 0 0 3 3 3 3		5 5 5 5 5 5 5 5 5 5	51 137 138 138 138 138 138 140 1	51 1371 0 1 51 1381 2 51 139 1 0 0 1 140 0 51 141 0 31 142 0 31 143 3 31 145 1 21 145 1 31 147 0		51 137 01 01 01 01 01 01 01 01 01 01 01 01 01						51 137 01 01 01 251 11 21 21 21 15 1 138 21 21 21 22 21 22 21 252 01 21 21 21 21 21 21 21 21 21 21 21 21 21		
	3 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1111111111	3 4 4 3 2 1 0 0 0	31 1471 41 1481 41 1491 31 1501 21 1511 21 1521 01 1531 01 1541 01 1561 01 1561	31 147 0 41 148 0 41 148 0 31 150 0 21 151 0 21 151 1 11 153 3 01 154 2 01 155 0 01 156 0 01 157 0	31 147 0 0 0 1 4 1 148 0 0 0 4 1 148 0 0 0 4 1 149 3 3 3 3 3 1 150 0 0 0 0 1 151 0 0 0 0 1 151 3 3 3 3 0 1 151 3 3 3 3 0 1 155 0 0 0 1 155 0 0 0 0 1 157 0 0 0 0 1 157 0 0 0 0 0 0 0 0 0	31 147 0 0 0 0 4 1 148 0 0 0 0 4 1 148 0 0 0 0 0 4 1 148 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 147 0 0 0 0 261 4 1 148 0 0 0 0 262 4 1 149 3 3 3 3 263 3 1 150 0 0 0 0 1 262 2 1 151 0 0 0 0 1 264 2 1 151 1 1 1 1 1 266 1 1 153 3 3 3 3 3 267 0 1 154 2 2 2 2 2 2 268 0 1 156 0 0 0 0 1 270 0 1 157 0 0 0 0 1 270	31 147 01 01 01 251 01 41 148 01 01 01 0221 01 41 149 31 31 31 2531 01 31 1501 01 01 01 02 12 251 01 21 1511 01 01 01 01 2561 01 21 1521 11 11 11 11 2661 11 11 1531 31 31 31 2671 11 01 1551 01 01 01 2591 01 01 1551 01 01 01 01 2591 01 01 1571 01 01 01 01 2701 01	31 1471 01 01 01 2611 01 0 41 1481 01 01 01 12621 01 0 41 1491 31 31 31 2631 01 0 31 1501 01 01 01 12641 01 0 21 1511 01 01 01 12651 01 0 21 1521 11 11 11 12661 11 1 11 1531 31 31 31 2671 11 1 01 1551 01 01 2691 01 0 01 1551 01 01 01 2691 01 0 01 1571 01 01 01 2701 01 0	3 1 147 0 0 0 0 1 261 0 0 0 0 0 0 0 0 0	31 147 0 0 0 1261 0 0 0 0 0 0 0 0 0	31 147 0 0 0 1 261 0 0 0 0 4 1 148 0 0 0 0 1 262 0 0 0 0 0 0 0 0 0	31 147 0 0 0 1261 0 0 0 0 0 0 0 0 0	31 1471
0 0 0 0 0 1 1 0		0 0 2 1 0 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	0 0 1 157 0 1 158 1 158 1 158 1 1 1 1 1 1 1 1 1	0 0 1 157 0 0 0 1 158 0 0 1 158 0 1 158 1 1 158 1 1 1 158 1 1 1 1 1 1 1 1 1	0 0 1 157 0 0 0 0 0 0 0 0 0	0 0 1 157 0 0 0 0 0 0 0 0 0	0 0 1 157 0 0 0 271 0 0 271 0 0 0 272 2 2 2 2 2 2 2 2	0 0 1 157 0 0 0 0 1 271 0 0 0 0 1 272 0 0 0 0 1 272 0 0 0 1 272 0 0 0 1 272 0 0 0 0 0 0 1 272 0 0 0 0 0 0 0 0 0	0 0 1 157 0 0 0 0 1 271 0 0 0 0 1 271 0 0 0 0 1 158 0 0 0 0 0 1 272 0 0 0 0 1 158 0 0 0 0 0 0 1 272 0 0 0 0 1 1 1 1 1 1	0 0 1 157 0 0 0 0 271 0 0 0 0 0 0 0 0 0	0 0 1 157 0 0 0 0 271 0 0 0 0 0 0 0 0 0	0 0 1 157 0 0 0 0 271 0 0 0 0 0 0 0 0 0	0 0 1 157 0 0 0 0 271 0 0 0 0 0 0 0 0 0	0 0 1 157 0 0 0 0 1 271 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1		0 0 0 2 1 1 2 1	0 0 0 0 0 0 0 0 0 0	0 0 1 167 1681 1691 10 1 1691 1 1691 1 1691 1 1691 1 1691 1 1691 1 1691 1 1691 1 1691 1 172 1 172 1 172 1 173 1 174 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 167 0 0 0 1 168 0 0 0 1 168 0 0 1 168 0 0 1 1 1 1 1 1 1 1	0 0 1 167 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 281 281 0 0 0 0 1 281 0 0 0 0 1 282 0 0 0 1 169 0 1 0 0 0 1 283 2 2 2 1 170 1 0 0 0 1 283 1 1 1 1 1 1 1 1 1	0 0 1 167 0 0 0 0 1 281 0 0 0 1 282 0 0 0 0 1 282 0 0 0 0 1 282 0 0 0 0 1 282 0 0 0 0 1 282 0 0 0 0 1 282 0 0 0 0 1 282 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 1 281 0 0 0 0 0 1 282 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 1 281 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 1 281 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 1 281 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 1 281 0 0 0 0 0 0 0 0 0	0 0 1 167 0 0 0 0 1 281 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 1 1		1 0 1 1 1 2 1 3 1 1 2 1 2 1	1	1	1 1 1 175 1 170 1 171	1	1 1 175 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 </td <td>11 11 1751 11 11 21 1 201 01 01 1771 21 21 21 21 21 21 21 21 21 21 21 21 21 21 11 11 11 11 12 22 21 21 21 20 01 01 01 01 224 23 31 31 1811 01 01 01 01 294 31 31 181 01 01 01 294 32 31 284 32</td> <td>1 1 1 1 2 2 1 20 0 <td>1 1 1 1 2 1 20 1 1 1 1 1 1 1 1 1 1 1 1 2 2 0 <td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></td></td>	11 11 1751 11 11 21 1 201 01 01 1771 21 21 21 21 21 21 21 21 21 21 21 21 21 21 11 11 11 11 12 22 21 21 21 20 01 01 01 01 224 23 31 31 1811 01 01 01 01 294 31 31 181 01 01 01 294 32 31 284 32	1 1 1 1 2 2 1 20 0 <td>1 1 1 1 2 1 20 1 1 1 1 1 1 1 1 1 1 1 1 2 2 0 <td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></td>	1 1 1 1 2 1 20 1 1 1 1 1 1 1 1 1 1 1 1 2 2 0 <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>	1	1	1	1	1
0 0 0 0 2 0 1 2		1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 155 0 0 1 185 1 1 1 187 0 0 1 188 2 2 1 189 0 0 1 190 1 1 1 191 2 2 1 192	1 1 1 185 0 1 1 1 1 1 1 1 1 1	11	1	11 11 1 1851 01 01 01 1 2991 01 01 1 1861 11 11 11 3001 11 11 1871 01 01 01 1 3011 01 01 1 1881 11 11 11 11 3021 21 21 1 891 1 11 11 11 3031 01 01 1 901 41 41 41 41 3041 11 1 1 1911 11 11 11 11 13051 21 21 1 1921 01 01 01 01 01	11 11 1 1851 01 01 01 299 01 01 01 1 1861 11 11 1 1 3001 01 11 11 1871 01 01 01 3011 01 01 01 1 1 11 11 1 1 3021 01 21 21 1 1861 1 1 1 1 1 1 1 3031 01 01 01 1 1 901 4 1 4 1 4 1 3041 1 1 11 1 1 1 911 1 1 1 1 1 1 3051 1 1 21 2 1 1 1921 0 1 0 1 0 1 3061 1 1	11	11 11 1851 01 01 01 2981 01 01 01 01 01 01 1861 11 11 11 13001 01 11 11 11 11 1871 01 01 01 3011 01 11 11 01 01 1881 11 11 11 13021 01 21 21 21 21 1891 11 11 11 13031 01 01 01 01 01 01 1901 41 41 41 3041 11 11 11 11 11 11 11 11 11 11 21 21 21 21 1921 01 01 01 01 3061 11 21 21 21	11 11 1851 01 01 01 12991 01 01 01 01 01 01 1861 11 11 11 13001 01 11 11 11 11 1871 01 01 01 3011 01 11 11 01 01 1881 11 11 11 13021 01 21 21 21 21 1891 11 11 11 13 3031 01 01 01 01 01 01 1901 41 41 41 3041 11 11 11 11 11 11 1911 11 11 11 3051 11 21 21 21 21 1921 01 01 01 01 3061 11 21 22	11 11 1851 01 01 01 2891 01 01 01 01 01 1861 11 11 11 3001 01 11 11 11 11 1871 01 01 01 3011 01 11 11 01 01 1881 11 11 11 13021 01 21 21 21 21 1891 11 11 11 13331 01 01 01 01 01 1890 41 41 41 3041 11 11 11 11 11 11 1901 41 41 41 3041 11 21 21 21 21 1921 01 01 01 3061 11 21 21	11 11 1851 01 01 01 2991 01 01 01 01 01 01 01 01 01 01 01 01 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 21 <td< td=""><td>1</td></td<>	1
2 0 2 2 0 2 2		0 ! 3 ! 2 ! 0 ! 2 ! 3 !	0! 1! 3! 3! 2! 3! 0! 1! 2! 3! 0! 1! 2! 3!	0 1 1 1941 3 3 1 1951 2 3 1 1961 2 3 1 1971 0 1 1 1981 2 1 1 1981 3 2 1 2001 0 0 1 2011	0 1 1 194 1 3 3 1 195 0 2 3 1 196 3 2 3 1 197 2 0 1 1 198 3 2 1 1 199 3 3 2 1 200 3 0 0 0 201 3	0 1 1 194 1 1 1 1 3 3 1 195 0 0 0 0 2 3 1 196 3 3 3 2 3 1 196 3 3 3 3 2 1 1 1 1 1 1 1 1 1	0 1 1 194 1 1 1 1 1 3 3 3 1 1	0 1 1 1941 1 1 1 1 3091 31 31 1 1 1 3091 2 31 1 1 1 1 3091 2 31 1 1 1 1 1 3091 2 31 1 1 1 1 2 2 2 2 1 311 1 3101 2 2 2 2 1 311 1 312 2 1 1 1 1 1 1 1 1	0	0 1 1 194 1 1 1 1 308 0	0	0	0	0 1 1 194 1 1 1 1 1 308 0 0 0 0 0 0 0 0 0	0
0 0 0 0 0 1 0 0		0 0 0 0 2 1 0	0 0 0 0 0 0 0 1	0 0 1 2021 0 0 1 2031 0 0 1 2031 0 0 1 2041 0 0 1 2051 2 3 1 2071 1 2 2 2081 0 0 0 1 2081 0 0 0 1 2091	0 0 1 202 3 0 0 1 203 2 0 0 1 203 2 0 0 1 204 2 0 0 1 205 3 0 0 1 205 4 1 2 3 1 207 0 1 2 1 208 0 0 0 0 1 200 0	0 0 1 202 3 3 3 1 1 203 2 2 2 2 2 2 2 2 2	0 0 1 202 3 3 3 3 3 0 0 0 1 203 2 2 2 2 2 2 2 2 2	0 0 1 202 3 3 3 1 316 3 1 316 3 1 3 3 1 3 3 3 3 3	0 0 1 202 3 3 3 1 316 0 1	0 0 1 2021 3 3 3 1 316 0 0 0 0 0 0 0 0 0	0 0 1 202 3 3 3 1 316 0 0 0 0 0 0 0 0 0	0 0 1 2021 3 3 3 3 1 3 6 0 0 0 0 0 0 0 0 0	0 0 1 202 3 3 3 1 316 0 0 0 0 0 0 0 0 0	0 0 1 2021 3 3 3 1 316 0 0 0 0 0 0 0 0 0	0 0 1 2021 3 3 3 1 3161 0 0 0 0 0 0 0 0 0
0 0 0 0 3 2 2 3 2		0 0 1 0 3 2 2 3 2	0 0 0 1 1 2	0 0 1 2101 0 21 211 1 21 212 1 2 1 213 3 3 2 1 213 3 2 2 2 2 2 2 2 2 2 2	0 0 1 210 1 1 0 1 1 1 1 1 1	0 0 1 210 1 1 1 1 0 0 2 1 211 0 0 1 1 1 1 1 1 1	0 0 1 210 1 1 1 1 1 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0	0 0 1 210 1 1 1 1 324 0 2 1 211 0 0 0 0 325 1 1 1 2 2 2 2 2 2 2	0 0 1 210 1 1 1 1 1 324 0 0 0 2 1 211 0 0 0 325 0 1 1 1 2 2 2 2 2 2 2	0 0 1 210 1 1 1 1 1 324 0 0 0 0 0 0 1 211 1 1 1 325 0 0 0 1 1 1 1 1 325 0 0 0 1 1 1 1 1 1 1	0 0 1 210 1 1 1 1 1 324 0 0 0 0 0 0 0 0 0	01	0 0 1 210 1 1 1 1 324 0 0 0 0 0 0 0 0 0	01	0 0 1 210 1 1 1 1 324 0 0 0 0 0 0 0 0 0
		2 2 3 1 2 2 2 2 2	2 2 2 2 3 4 1 1 1 1 2 2 2 2 2 2	2 2 1 218 2 2 2 218 2 2 2 2 2 2 2 2 2	2 21 1 218 01 2 2 1 219 11 3 41 220 11 1 1 1 221 01 2 2 1 222 01 2 2 2 223 01 2 2 2 224 01 2 2 2 225 11 2 2 1 225 11 2 2 1 225 11 0 0 1 227 2	21 21 1 2181 01 21 21 21 1 2191 11 21 31 41 1 2201 11 11 11 11 1 221 01 01 21 21 1 2221 01 01 21 21 1 2221 01 01 21 21 1 2221 01 01 21 21 1 2231 01 01 21 21 22 1 2251 11 21 21 21 1 2251 11 21 21 21 1 2251 11 21	2 2 1 2 8 0 2 2 2 2 2 2 2 2 2	2 2 1 218	2 2 1 218 0 2 2 1 332 0 2 2 1 332 0 2 2 1 332 0 3 4 1 220 1 1 1 1 1 1 1 1 1	2 2 1 218 0 2 2 1 332 0 0 0 0 0 0 0 0 0	2 2 1 216 0 2 2 1 332 0 0 0 0 0 0 0 0 0	2 2 1 2 8 0 2 2 1 332 0 0 0 0 0 2 2 1 332 0 0 0 0 0 0 0 0 0	2 2 1 218 0 2 2 1 332 0 0 0 0 0 0 0 0 0	2 2 1 2 8 0 2 2 1 3 3 2 0 0 0 0 0 0 0 0 0	2 2 1 2 8 0 2 2 1 332 0 0 0 0 0 0 0 0 0

D. Capacity Analysis

A good indication of the adequacy of the existing major street system is a comparison of the traffic volumes with the ability of the streets to move traffic freely at a desirable speed. The ability of a street to move traffic freely, safely, and efficiently with a minimum delay is controlled principally by the spacing of major devices utilized. Thus, the ability of a street to move traffic can be increased by restricting parking and turning movements, using proper sign and signal devices, and by the application of other traffic engineering techniques.

Capacity is defined as the maximum number of vehicles that have a reasonable expectation of passing over a given section of a roadway in one direction, or in both directions, during a given period under prevailing roadway and traffic conditions. The relationship of traffic volumes to the capacity of the roadway will determine the **level of service** being provided. Six levels of service have been selected to identify the conditions existing under various speed and volume conditions on a highway or street.

The six levels of service are illustrated in Figure D1, and they are defined on the following page. The definitions are general and conceptual in nature, but may be applied to urban arterial levels of service. Levels of service for interrupted flow facilities vary widely in terms of both the user's perception of service quality and the operational variables used to describe them. Each chapter of the 1994 Highway Capacity Manual contains more detailed descriptions of the levels of service as defined for each facility type.

¹ Highway Capacity manual, Special Report 209, 1994, p. 3:7-11.

- 1. Level-of-service A describes primarily free flow operations at average travel speeds, usually about 90 percent of the free flow speed for the arterial class. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Stopped delay at signalized intersections is minimal.
- 2. Level-of-service B represents reasonable unimpeded operations at average travel speeds, usually about 70 percent of the free flow speed for the arterial class. The ability to maneuver within the traffic stream is only slightly restricted and stopped delays are not bothersome. Drivers are not generally subjected to appreciable tension.
- 3. Level-of-service C represents stable operations. However, ability to maneuver and change lanes in midblock locations may be more restricted than in LOS B, and longer queues and/or adverse signal coordinations may contribute to lower average travel speeds of about 50 percent of the average free flow speed for the arterial class. Motorists will experience an appreciable tension while driving.
- 4. Level-of-service D borders on a range on which small increases in flow may cause substantial increases in approach delay and, hence, decreases in arterial speed. They may be due to adverse signal progression, inappropriate signal timing, high volumes, or some combination of these. Average travel speeds are about 40 percent of free flow speed.
- 5. Level-of-service E is characterized by significant approach delays and average travel speeds of one-third the free flow speed or lower. Such operations are caused by some combination of adverse progression, high signal density, extensive queuing at critical intersections, and inappropriate signal timing.
- 6. Level-of-service F characterizes arterial flow at extremely low speeds below one-third to one-quarter of the free flow speed. Intersection congestion is likely at critical signalized locations, with high approach delays resulting. Adverse progression is frequently a contributor to this condition.

Source: 1994 Highway Capacity Manual

LOS A.

LOS D.

LOS B.

LOS E.

LOS C.

LOS F.

E. DESIGN REQUIREMENTS

SPECIAL NOTE: English equivalents are printed in this report merely as a guide. The English measurements were not meant to represent exact conversions, and should not be used for standards, regulations, or construction. The tables in this section were taken from the Roadway Design Metric Design Manual. In the event of conflicting information, the Standard Specifications for Roads and Structures and the Roadway Design Metric Design Manual should serve as the standard.

THOROUGHFARE CROSS SECTIONS

Cross section requirements for thoroughfares vary according to the desired capacity and level of service to be provided. Universal standards in the design of thoroughfares are not practical. Each street section must be individually analyzed and its cross section requirements determined on the basis of amount and type of projected traffic, existing capacity, desired level of service, and available right-of-way.

Typical cross section recommendations are shown in Figure E1. These cross sections are typical for facilities on new location and where right-of-way constraints are not critical. For widening projects and urban projects with limited right-of-way, special cross sections could be developed that meet the needs of the project.

Recommended typical cross sections for thoroughfares were derived on the basis of projected traffic, existing capacities, desirable levels of service, and available right-of-way. The recommended typical cross sections for the thoroughfares are given in Appendix A along with other pertinent information.

On all existing and proposed major thoroughfares delineated on the thoroughfare plan, adequate right-of-way should be protected or acquired for the ultimate cross sections. Ultimate desirable cross sections for each of the thoroughfares are listed in Appendix A. Recommendations for "ultimate" cross sections are provided for (1) thoroughfares which may require widening after the current planning period; (2) for thoroughfares which are borderline adequate and accelerated traffic growth could render them deficient; and (3) for thoroughfares where an urban curb and gutter cross section may be locally desirable because of urban development or redevelopment.

Recommended design standards relating to maximum and minimum grades, minimum sight distances, maximum degree of curve and related super elevation, and other considerations for thoroughfares are given later in this Appendix. This Appendix gives definitions and design standards recommended for inclusion in subdivision regulations.

Cross sections "A", "B", and "M" is typical for controlled access freeways. The 14 m (46 ft) grassed median is the minimum desirable median width, but there could be some variation from this depending upon design considerations. Right-of-way requirements would typically vary upward from 70 m (228 ft) depending upon cut and fill requirements.

Cross section "C", seven lane curb and gutter, should not be used for new projects. When the conditions warrant six lanes, cross section "E" should be recommended. Cross section "C" should be used only in special situations such as when widening from a five lane section and right-of-way is limited. Even in these situations, consideration should be given to converting the center turn lane to a median so that cross section "E" is the final cross section.

Cross section "D", five lane curb and gutter, is typical for major thoroughfares where frequent left turns are anticipated as a result of abutting development or frequent street intersections.

Cross sections "E", "F", and "N" are used on major thoroughfares where left turns and intersecting streets are not as frequent. Left turns would be restricted to a few selected intersections. The 4.9 m (16 ft) median is the minimum recommended for an urban boulevard type cross section. In most instances, monolithic construction should be utilized due to greater cost effectiveness, ease and speed of placement, and reduced future maintenance requirements. In special cases, grassed or landscaped medians may be used in urban areas. However, these types of medians result in greatly increased maintenance costs and an increased danger to maintenance personnel. Non-monolithic medians should only be recommended when the above concerns are addressed.

Cross section "G" is recommended for urban boulevards or parkways to enhance the urban environment and to improve the compatibility of major thoroughfares with residential areas. A minimum median width of 7.3 m (24 ft) is recommended with 9.1 m (30 ft) being desirable.

Cross section "H" is recommended for major thoroughfares where projected travel indicates a need for four travel lanes but traffic is not excessively high, left turning movements are light, and right-of-way is restricted. An additional left turn lane would probably be required at major

intersections. This cross section should be used only if the above criteria is met. If right-of-way is not restricted, future strip development could take place and the inner lanes could become de facto left turn lanes.

In urban environments, thoroughfares which are proposed to function as one-way traffic carriers would typically require cross section "I". Cross sections "J" and "K" are usually recommended for urban minor thoroughfares since these facilities usually serve both land service and traffic service functions. Cross section "J" would be used on those minor thoroughfares where parking on both sides is needed as a result of more intense development.

Cross section "J" is used in rural areas or for staged construction of a wider multi-lane cross section. On some thoroughfares, projected traffic volumes may indicate that two travel lanes will adequately serve travel for a considerable period of time. For areas that are growing and future widening will be necessary, the full right-of-way of 30 m (100 ft) should be required. In some instances, local ordinances may not allow the full 30 m (100 ft). In those cases, 21 m (70 ft) should be preserved with the understanding that the full 30 m (100 ft) will be preserved by use of building setbacks and future street line ordinances.

The urban curb and gutter cross sections all illustrate the sidewalk adjacent to the curb with a buffer or utility strip between the sidewalk and the minimum right-of-way line. This permits adequate setback for utility poles. If it is desired to move the sidewalk farther away from the street to provide additional separation for pedestrians or for aesthetic reasons, additional right-of-way must be provided to insure adequate setback for utility poles.

The right-of-ways shown for the typical cross sections are the minimum rights-of-way required to contain the street, sidewalks, utilities, and drainage facilities. Cut and fill requirements may require either additional right-of-way or construction easements. Obtaining construction easements is becoming the more common practice for urban thoroughfare construction.

If there is sufficient bicycle travel along the thoroughfare to justify a bicycle lane or bikeway, additional right-of-way may be required to contain the bicycle facilities. The North Carolina Bicycle Facilities Planning and Design Guidelines should be consulted for design standards for bicycle facilities. Cross sections O, P, and Q are typically used to accommodate bicycle travel.

TYPICAL THOROUGHFARE CROSS SECTIONS

TYPICAL THOROUGHFARE CROSS SECTIONS

TYPICAL THOROUGHFARE CROSS SECTIONS

TYPICAL THOROUGHFARE CROSS SECTIONS FOR ACCOMMODATING BICYCLES

I. Streets and Roads

A. Rural Roads

- Principal Arterial A rural link in a highway system serving travel, and having characteristics indicative of substantial statewide or interstate travel and existing solely to serve traffic. This network would consist of Interstate routes and other routes designated as principal arterials.
- 2. Minor Arterial A rural roadway joining cities and larger towns and providing intra-state and intercounty service at relatively high overall travel speeds with minimum interference to through movement.
- 3. <u>Major Collector</u> A road which serves major intracounty travel corridors and traffic generators and provides access to the Arterial system.
- 4. <u>Minor Collector</u> A road which provides service to small local communities and traffic generators and provides access to the Major Collector system.
- 5. Local Road A road which serves primarily to provide access to adjacent land, over relatively short distances.

B. Urban Streets

- 1. <u>Major Thoroughfares</u> Major thoroughfares consist of Inter-state, other freeway, expressway, or parkway roads, and major streets that provide for the expeditious movement of high volumes of traffic within and through urban areas.
- Minor Thoroughfares Minor thoroughfares perform the function of collecting traffic from local access streets and carrying it to the major thoroughfare system. Minor thoroughfares may be used to supplement the major thoroughfare system by facilitating minor through traffic movements and may also serve abutting property.
- Local Street A local street is any street not on a higher order urban system and serves primarily to provide direct access to abutting land.
- C. Specific Type Rural or Urban Streets
 - 1. Freeway, expressway, or parkway Divided multilane roadways designed to carry large volumes of traffic

at high speeds. A <u>freeway</u> provides for continuous flow of vehicles with no direct access to abutting property and with access to selected crossroads only by way of interchanges. An <u>expressway</u> is a facility with full or partial control of access and generally with grade separations at major intersections. A <u>parkway</u> is for non-commercial traffic, with full or partial control of access.

- 2. Residential Collector Street A local street which serves as a connector street between local residential streets and the thoroughfare system. Residential collector streets typically collect traffic from 100 to 400 dwelling units.
- 3. Local Residential Street Cul-de-sacs, loop streets less than 760 meters (2500 ft) in length, or streets less than 1.6 kilometers (1.0 miles) in length that do not connect thoroughfares, or serve major traffic generators, and do not collect traffic from more than 100 dwelling units.
- 4. <u>Cul-de-sac</u> A short street having only one end open to traffic and the other end being permanently terminated and a vehicular turn-around provided.
- 5. Frontage Road A road that is parallel to a partial or full access controlled facility and provides access to adjacent land.
- 6. <u>Alley</u> A strip of land, owned publicly or privately, set aside primarily for vehicular service access to the back side of properties otherwise abutting on a street.

II. Property

- A. <u>Building Setback Line</u> A line parallel to the street in front of which no structure shall be erected.
- B. <u>Easement</u> A grant by the property owner for use by the public, a corporation, or person(s), of a strip of land for a specific purpose.
- C. <u>Lot</u> A portion of a subdivision, or any other parcel of land, which is intended as a unit for transfer of ownership or for development or both. The word "lot" includes the words "plat" and "parcel".

III. Subdivision

A. <u>Subdivider</u> - Any **person**, firm, corporation or official agent thereof, who subdivides of develops any land

deemed to be a subdivision.

- Subdivision All divisions of a tract or parcel of В. land into two or more lots, building sites, or other divisions for the purpose, immediate or future, of sale or building development and all divisions of land involving the dedication of a new street or change in existing streets; provided, however, that the following shall not be included within this definition nor subject to these regulations: (1) the combination or re-combination of portions of previously platted lots where the total number of lots is not increased and the resultant lots are equal to or exceed the standards contained herein; (2) the division of land into parcels greater than 4 hectares (10 acres) where no street right-of-way dedication is involved, (3) the public acquisition, by purchase, of strips of land for the widening or the opening of streets; (4) the division of a tract in single ownership whose entire area is no greater than 0.8 hectares (2 acres) into not more than three lots, where no street right-of-way dedication is involved and where the resultant lots are equal to or exceed the standards contained herein.
- C. <u>Dedication</u> A gift, by the owner, of his property to another party without any consideration being given for the transfer. The dedication is made by written instrument and is completed with an acceptance.
- D. <u>Reservation</u> Reservation of land does not involve any transfer of property rights. It constitutes an obligation to keep property free from development for a stated period of time.

DESIGN STANDARDS

I. Streets and Roads

The design of all roads within the Planning Area shall be in accordance with the accepted policies of the North Carolina Department of Transportation, Division of Highways, as taken or modified from the <u>American Association of State Highway Officials'</u> (AASHTO) manuals.

The provision of street rights-of-way shall conform and meet the recommendations of the Thoroughfare Plan, as adopted by the municipality.

The proposed street layout shall be coordinated with the existing street system of the surrounding area. Normally the proposed streets should be the extension of existing streets if possible. A. Right-of-way Widths - Right-of-way (ROW) widths shall not be less than the following and shall apply except in those cases where ROW requirements have been specifically set out in the Thoroughfare Plan.

1.	Rura		Min.	ROW		
	a.	Principle Arterial				
		Freeways	105	m	(350	ft)
		Other	60	m	(200	ft)
	b.	Minor Arterial	30	m	(100	ft)
	c.	Major Collector	30	m	(100	ft)
	d.	Minor Collector	24	m	(80	ft)
	e.	Local Road	18	m ¹	(60	ft)
2.	Urba	in the state of th				
	a.	Major Thoroughfare other				
		than Freeway and Expressway	27	m	(90	ft)
	b.	Minor Thoroughfare	21	m	(70	ft)
	c.	Local Street	18		(60	ft)
	d	Cul-de-sac	Vai	riabl	e ²	

The subdivider will only be required to dedicate a maximum of 30 meters (100 ft) of right-of-way. In cases where over 30 meters (100 ft) of right-of-way is desired, the subdivider will be required only to reserve the amount in excess of 30 meters (100 ft). On all cases in which right-of-way is sought for a fully controlled access facility, the subdivider will only be required to make a reservation. It is strongly recommended that subdivisions provide access to properties from internal streets, and that direct property access to major thoroughfares, principle and minor arterials, and major collectors be avoided. Direct property access to minor thoroughfares is also undesirable.

A partial width right-of-way, not less than 18 meters (60 ft) in width, may be dedicated when adjoining undeveloped property that is owned or controlled by the subdivider; provided that the width of a partial dedication be such as to permit the installation of such facilities as may be necessary to

The desirable minimum right-of-way (ROW) is 18 meters (60 ft). If curb and gutter is provided, 15 meters (50 ft) of ROW is adequate on local residential streets.

² The ROW dimension will depend on radius used for vehicular turn around. Distance from edge of pavement of turn around to ROW should not be less than distance from edge of pavement to ROW on street approaching turn around.

serve abutting lots. When the said adjoining property is sub-divided, the remainder of the full required right-of-way shall be dedicated.

- B. <u>Street Widths</u> Widths for street and road classifications other than local shall be as recommended by the Thoroughfare Plan. Width of local roads and streets shall be as follows:
 - 1. Local Residential
 Curb and Gutter section: 7.8 meters (26 ft), face
 to face of curb
 Shoulder section: 6.0 meters (20 ft) to edge of
 pavement, 1.2 meters (4 ft) for
 shoulders
 - 2. Residential Collector Curb and Gutter section: 10.2 meters (34 ft), face to face of curb Shoulder section: 6.0 meters (20 ft) to edge of pavement, 1.8 meters (6 ft) for shoulders
- C. Geometric Characteristics The standards outlined below shall apply to all subdivision streets proposed for addition to the State Highway System or Municipal Street System. In cases where a subdivision is sought adjacent to a proposed thoroughfare corridor, the requirements of dedication and reservation discussed under Right-of-Way shall apply.
 - 1. <u>Design Speed</u> The design speed for a roadway should be a minimum of 10 km/h (5 mph) greater than the posted speed limit. The design speeds for subdivision type streets shall be:

DESIGN SPEEDS (METRIC)						
Facility Type	<u>Design Speed km/h</u> Desirable Minimum Level Rolling					
RURAL Minor Collector Roads (ADT Over 2000)	100	80	60			
Local roads including Residential Collectors and Local Residential (ADT Over 400) URBAN	80	80	60			
Major Thoroughfares other than Freeway or Expressway	100	60	60			
Minor Thoroughfares	100	50	50			
Local Streets	50	50	30			

DESIGN SPEEDS (ENGLISH)						
Facility Type	Design Speed mph Desirable Minimum Level Rolling					
RURAL Minor Collector Roads (ADT Over 2000)	60	50	40			
Local roads including Residential Collectors and Local Residential (ADT Over 400) URBAN	50	* 50	* 40			
Major Thoroughfares other than Freeway or Expressway	60	50	40			
Minor Thoroughfares	40	30	30			
Local Streets	30	**30	**20			

^{*} Based on ADT of 400-750. Where roads serve a limited area and small number of units, can reduce min design speed.

^{**}Based on projected ADT of 50-250. (Reference NCDOT Roadway Design Manual page 1-1B)

2. Maximum and Minimum Grades

a. The maximum grades in percent shall be:

MAXIMUM VERTICAL GRADE (METRIC)						
Facility Type	Design Speed (km/h)	(Percent)				
RURAL Minor Collector Roads*	30 50 65 80 100 110	7 7 7 6 5	10 9 8 7 6 5	12 10 10 9 8 6		
Local roads including Residential Collectors and Local Residential Streets*	30 50 65 80 100	- 7 7 6 5	11 10 9 8 6	16 14 12 10		
URBAN Major Thoroughfares other than Freeway or Expressway	50 65 80 100	8 7 6 5	9 8 7 6	11 10 9 8		
Minor Thoroughfares*	30 50 65 80 100	9 9 9 7 6 5	12 11 10 8 7 6	14 12 12 10 9 7		
Local Streets*	30 50 65 80 100	- 7 7 6 5	11 10 9 8 6	16 14 12 10		

^{*} For streets and roads with projected annual average daily traffic less than 250 or short grades less than 150 meters (500 ft) long, grades may be 2% steeper than the values in the above table.

⁽Reference NCDOT Roadway Metric Design Manual page 1-12 T-3)

MAXIMUM VERTICAL GRADE (ENGLISH)					
Facility Type	Design Speed (mph)	peed (Percent)			
RURAL Minor Collector Roads*	20 30 40 50 60 70	7 7 7 6 5	10 9 8 7 6 5	12 10 10 9 8 6	
Local roads including Residential Collectors and Local Residential Streets* URBAN	20 30 40 50 60	- 7 7 6 5	11 10 9 8 6	16 14 12 10	
Major Thoroughfares other than Freeway or Expressway	30 40 50 60	8 7 6 5	9 8 7 6	11 10 9 8	
Minor Thoroughfares*	20 30 40 50 60 70	9 9 7 6 5	12 11 10 8 7 6	14 12 12 10 9 7	
Local Streets*	20 30 40 50 60	- 7 7 6 5	11 10 9 8 6	16 14 12 10	

- b. Minimum grade should not be less than 0.5%.
- c. Grades for 30 meters (100 ft) each way from intersections (measured from edge of pavement) should not exceed 5%.

^{*} For streets and roads with projected annual average daily traffic less than 250 or short grades less than 150 meters (500 ft) long, grades may be 2% steeper than the values in the above table.

⁽Reference NCDOT Roadway Design Manual page 1-12 T-3)

3. Minimum Sight Distance - In the interest of public safety, no less than the minimum sight distance applicable shall be provided. Vertical curves that connect each change in grade shall be provided and calculated using the following parameters:

SIGHT DISTANCE	METRIC)			
Design Speed (km/h)	30	50	60	90	100
Stopping Sight Distance Minimum (meters) Desirable (meters) Minimum K* Value for: Crest curve Sag curve Passing Sight Distance: Minimum Passing Dist for two lanes, in m	29.6 30 3 4 *	57.4 70 9 11	74.3 90 14 15	131.2 170 43 30 *	157.0 210 62 37 *

(General practice calls for vertical curves to be multiples of 10 m. Calculated lengths shall be rounded up in each case.)

* Currently under revision.
(Reference NCDOT Roadway Metric Design Manual page 1-12 T-1)

SIGHT DISTANCE (E	NGLISH)			
Design Speed, MPH	30	40	50	60
Stopping Sight Distance: Minimum (ft.) Desirable (ft.) Minimum K* Value for: Crest Curve Sag Curve Passing Sight Distance: Minimum Passing Distance for 2 lanes, in feet	200 200 30 40 1,100	275 325 60 60 1,500	400 475 110 90 1,800	525 650 190 120 2,100

(General practice calls for vertical curves to be multiples of 50 feet. Calculated lengths shall be rounded up in each case.) (Reference NCDOT Roadway Design Manual page 1-12 T-1)

^{*} K is a coefficient by which the algebraic difference in grade may be multiplied to determine the length of the vertical curve which will provide the desired sight distance. Sight distance provided for stopped vehicles at intersections should be in accordance with "A Policy on Geometric Design of Highways and Streets, 1990".

4. The "Superelevation Table" shown below shows the minimum radius and the related maximum superelevation for design speeds. The maximum rate of roadway superelevation (e) for rural roads with no curb and gutter is 0.08. The maximum rate of superelevation for urban streets with curb and gutter is 0.06, with 0.04 being desirable.

SUPERELEVATION TABLE (METRIC)					
Design	Maximum	Minimum			
Speed	e*	Radius m			
50 km/h	0.04	100			
65	0.04	175			
80	0.04	280			
100	0.04	490			
50	0.06	90			
65	0.06	160			
80	0.06	250			
100	0.06	435			

e = rate of roadway superelevation, meter per meter

SUPERELEVATION TABLE (ENGLISH)							
Design	Maximum	Minimum	Max. Deg.				
Speed	e*	Radius ft.	of Curve				
30 mph	0.04	302	19 00'				
40	0.04	573	10 00'				
50	0.04	955	6 00'				
60	0.04	1,637	3 45'				
30	0.06	273	21 00'				
40	0.06	521	11 15'				
50	0.06	955	6 45				
60	0.06	1,432	4 15'				
30	0.08	260	22 45'				
40	0.08	477	12 15'				
50	0.08	819	7 30'				
60	0.08	1,146	4 45'				

* e = rate of roadway superelevation, foot per foot (Reference NCDOT Roadway Design Manual page 1-12 T-6 thru T-8)

D. Intersections

- 1. Streets shall be laid out so as to intersect as nearly as possible at right angles, and no street should intersect any other street at an angle less than sixty-five (65) degrees.
- 2. Property lines at intersections should be set so that the distance from the edge of pavement, of the street turnout, to the property line will be at least as great as the distance from the edge of pavement to the property line along the intersecting streets. This property line can be established as a radius or as a sight triangle. Greater offsets from the edge of pavement to the property lines will be required, if necessary, to provide sight distance for the stopped vehicle on the side street.
- 3. Off-set intersections are to be avoided. Intersections which cannot be aligned should be separated by a minimum length of 60 meters (200 ft) between survey center lines.

E. <u>Cul-de-sacs</u>

Cul-de-sacs shall not be more than 150 meters (500 ft) in length. The distance from the edge of pavement on the vehicular turn around to the right-of-way line should not be less than the distance from the edge of pavement to right-of-way line on the street approaching the turn around. Cul-de-sacs should not be used to avoid connection with an existing street or to avoid the extension of an important street.

F. Alleys

- Alleys shall be required to serve lots used for commercial and industrial purposes except that this requirement may be waived where other definite and assured provisions are made for service access. Alleys shall not be provided in residential subdivisions unless necessitated by unusual circumstances.
- 2. The width of an alley shall be at least 6.0 meters (20 ft).
- 3. Dead end alleys shall be avoided where possible, but if unavoidable, shall be provided with adequate turn around facilities at the dead end as may be required by the Planning Board.

G. Permits For Connection To State Roads

An approved permit is required for connection to any existing state system road. This permit is required prior to any construction on the **stre**et or **ro**ad. The application is

available at the office of the District Engineer of the Division of Highways.

H. Offsets To Utility Poles

Poles for overhead utilities should be located clear of roadway shoulders, preferably a minimum of at least 9.0 meters (30 ft) from the edge of pavement. On streets with curb and gutter, utility poles shall be set back a minimum distance of 1.8 meters (6 ft) from the face of curb.

I. Wheel Chair Ramps

All street curbs being constructed or reconstructed for maintenance purposes, traffic operations, repairs, correction of utilities, or altered for any reason, shall provide wheelchair ramps for the physically handicapped at intersections where both curb and gutter and sidewalks are provided and at other major points of pedestrian flow.

J. Horizontal Width on Bridge Deck

- 1. The clear roadway widths for new and reconstructed bridges serving 2 lane, 2 way traffic should be as follows:
 - a. Shoulder section approach
 - i. Under 800 ADT design year

Minimum 8.4 meters (28 ft) width face to face of parapets, rails, or pavement width plus 3.0 meters (10 ft), whichever is greater.

ii. 800 - 2000 ADT design year

Minimum 10.2 meters (34 ft) width face to face of parapets, rails, or pavement width plus 3.6 meters (12 ft), whichever is greater.

iii. Over 2000 ADT design year

Minimum width of 12 meters (40 ft), desirable width of 13.2 meters (44 ft) width face to face of parapets or rails.

- b. Curb and gutter approach
 - i. Under 800 ADT design year

Minimum 7.2 meters (24 ft) face to face of curbs.

ii. Over 800 ADT design year

Width of approach pavement measured face to face of curbs.

Where curb and gutter sections are used on roadway approaches, curbs on bridges shall match the curbs on approaches in height, in width of face to face of curbs, and in crown drop. The distance from face of curb to face of parapet or rail shall be a minimum of 450 millimeters (1' 6"), or greater if sidewalks are required.

- 2. The clear roadway widths for new and reconstructed bridges having 4 or more lanes serving undivided two-way traffic should be as follows:
 - a. Shoulder section approach Width of approach pavement plus width of usable shoulders on the approach left and right. (Shoulder width 2.4 m (8 ft) minimum, 3.0 m (10 ft) desirable.)
 - b. Curb and gutter approach Width of approach pavement measured face to face of curbs.

STATE LIBRARY OF NORTH CAROLINA
3 3091 00590 6904

