Boyota Customer Promotion plan

METIS BOOTCAMP

Xinyuan Shu 2022/06/14

01.Background introduction

02. **Methodo** -logy

Contents

03. Data Explan -ation & EDA

04. ML Models comparison

05. **Deeper** explore

06.Further **Steps**

Background Introduction

Business Problems Raised

- Boyota Corp. is a Japanese automobile company has plans to enter US markets with their existing products (P1, P2, P3, P4 and P5)
- Sales team has classified all customers into A,B,C,D class, they plan to use the same strategy on new markets and have identified 2627 new potential customers.
- We are required to help the manager to predict the right group of the new customers.

Methodology

Solution Path

Modeling Goal

Find
Common/Different
Characteristics of
Customers:

- Gender
- Age
- Graduation
- Family Size
- Profession
- Marriage

• • • • •

ML Method

Find Suitable Machine Learning Methods

- KNN
- Random Forest
- Decision Tree
- Naïve Bayes

• • • • •

Business Goal

Correctly Assign Potential Customers to Their Segments

Achieving Successful Customer Management

Maximize profits

Data Explanation & EDA

Features Explanation

Variable	Definition	
ID	Unique ID	
Gender	Gender of the customer	
Ever_Married	Marital status of the customer	
Age	Age of the customer	
Graduated	Is the customer a graduate	
Profession	Profession of the customer	
Work_Experie nce	Work Experience in years	
Spending_Sco re	Spending score of the customer	
Family_Size	Number of family members for the customer (including the customer)	
Var_1	Anonymised Category for the customer	
Segmentation	(target) Customer Segment of the customer	

We will show some important Features:

- Work experience
- Spending Score
- Age
- Marriage
- Family Size

Age

Age-bin(17-30, 31-45,46-60,60+)

Work Experience

D: highest C: lowest, D>A>B>C

Work Experience-bin(0-1,1-7,7-15)

Marriage

Spending Score

Mean A: 2.0

Conclusion

- Segment C (sketch: student/entry-level employees)
 - highest average age
 - married
 - lowest working experience
 - higher than other segments 'spending score
- Segment D (sketch: middle-aged wealthy customers)
 - lowest average age
 - unmarried
 - highest working experience
 - lower than other segments 'spending score
- Segment A has the smallest family size
- Hard to tell segments B from features

ML Models comparison

ML methods comparison

ML Methods	F1 Scores(Train)	F1 Scores(Test)
K-nearest neighbors(Normalized)	0.69	0.41
K-nearest neighbors(Dummy variables)	0.60	0.45
Random Forest(Normalized)	0.96	0.46
Random Forest(Dummy variables)	0.72	0.47
Naïve Bayes(Normalized)	0.48	0.47
Naïve Bayes(Dummy variables)	0.50	0.49

^{*} I deleted dummy method of KNN and all Naïve Bayes method to simplify my Notebook

ML Models comparison

Final Choice of ML Methods

- Final Choice: Random Forest
 - Flexible, higher F1 scores
- Random Forest(Normalized)
 - Train data overfitting
- K-nearest neighbors
 - -Both of F1 scores are lower than random forest.
 - -In normalized dataset, KNN has a good performance may because that the original Dataset is built on K-means
- Naïve Bayes
 - Assumption not suitable

Deeper explore

Segment B distinguish

	Α	В	С	D
A	235	148	69	140
В	155	160	153	89
С	66	145	286	94
D	144	56	26	455

^{*}Confusion Matrix of RF(Dummy method)

- 155 B are considered as A
- 148 A are considered as B
- 145 C are considered as B
- 153 B are considered as C
- B has the least obvious features as seen in EDA

Deeper explore

Segment B distinguish

	F1 Score(Train)	F1 Score(Test)
В	0.56	0.24
Not B	0.91	0.85

- Still hard to tell Segment B
- Easier to tell Segment which is not B

*Random Forest Methods For B/Not B Test

Conclusion

Conclusion& Inspiration

- From the EDA& Confusion Matrix:
 - Segment B is the hardest part to tell
 - Segment C & D have clearer customer sketches
- Reason for choosing Random Forest:
 - Flexibility
 - Ability to deal with noise
 - Ability to deal with more features
 - Nice F1 Score (and precision score)
- New models to tell not segment B groups
- Accuracy is low no matter what we choose

Further Steps

ID Features Explore

ID seems have some information to tell but we directly drop it

Web App

Build a web app by flask for better visualization and communication

Thank You

Boyota Customer Promotion plan METIS BOOTCAMP

Xinyuan Shu 2022/6/14

METIS

