Dealing with Fiscal Stress: Cities versus Suburbs

Annie Hsu

Indiana University

February 14, 2024

- Introduction
- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

Results

- 1 Introduction
- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

Introduction

- Commuting zone (CZ): the geographic unit determining a local labor market (Tolbert and Sizer, 1996)
- Highly Populated CZs defined by the Census population level in 1990
 - Highly Populated CZs are the top quartile CZs (around 82 % of national population)

Introduction '

Economic environment in highly populated areas:

- Central city government: declining economic bases, concentrated employment
- Suburban governments: growing population

Research guestions:

- How do changes in the local economic environment affect the provision of public goods by local governments?
- Does the response differ between the central city and surrounding suburban local governments?

Contributions:

- The responses to the same economic shocks vary among local governments in the central city and the suburban governments in highly populated areas
- Explore alternative approach: local employment shocks

Background

- Public policy and economic environment:
 - Local tax revenues, expenditures and savings respond to fiscal stress
 Literature Review
 - Long run changes: cut infrastructure expenditure
 - Short run changes: withdraw from saving
- Economic shocks: China joined WTO
 - Local governments received less revenue and cut expenditure when China joined WTO (Feler and Senses, 2017)
- Feler and Senses (2017):
 - Aggregate all types of local governments within a commuting zone into one unit
 - Local government types: multiple-purpose, single-purpose

Results

- Introduction
- 2 Empirical Strategy
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

Data

- Fiscal Data: U.S. Census Bureau's Annual Survey of State and Local Government Finances
- Population Data: U.S. Census Bureau's Population and Housing Unit Estimates Dataset

Results

- Employment Data: Census Bureau's County Business Pattern
- Trade Data: United Nations Commodity Trade Statistics Database
- Demographic variables: US Census Bureau's USA Counties database

China import shocks: commuting zone level data

•
$$\Delta IS_{i,T}^{US} = \sum_{j} \frac{\Delta M_{j,T}^{US} \frac{Emp_{i,j,T}}{Emp_{j,T}}}{Emp_{i,T}}$$

- *i*: commuting zones
- *j*: industry sectors
- T: time interval, 1990-2000, 2000-2007
- $\Delta IS_{i,T}^{US}$: China import exposure variable over time interval **T**
- $\Delta M_{j,T}^{US}$: the change of China import to US in industry **j** over time interval **T**
- $\frac{Emp_{i,j,T}}{Emp_{j,T}}$: the share of local industrial employment over national industrial employment in industry **j** at start-of-period in time interval **T**

China Import Shocks in Highly Populated CZs

- Highly populated CZs defined by the Census population level in 1990
- The legend indicates values for bottom four quintiles and top two deciles
- Trade shock: changes in imports per worker in US\$1,000

Annie Hsu

Indiana University

Empirical Strategy

$$\Delta Y_{i,T}^{City} = \gamma_T + \alpha_1 \Delta I S_{i,T}^{US} + \mathbf{X}_{i,T}' \alpha_2 + \epsilon_{iT}$$
 (1)

$$\Delta Y_{i,T}^{Sub} = \gamma_T + \beta_1 \Delta I S_{i,T}^{US} + \mathbf{X}_{i,T}' \beta_2 + \varepsilon_{iT}$$
 (2)

- $\Delta Y_{i,T}$: Δ Local fiscal variables in CZ i over time interval **T**
- $\Delta IS_{i,T}^{US}$: Δ China imports values to US in CZ i over time T
- X_{i,T}: regional control variables, start-of-period demographic characteristics in CZ i
- γ_T: time fixed effects
- T: time interval, 1990-2000 and 2000-2007

IV Strategy

- Endogeneity problem
- IV strategy: contemporaneous change in other high-income country imports of Chinese goods to capture the exogenous variation (Autor et al., 2013)
 - First stage: $\Delta IS_{i,T}^{US} = \tau_T + \gamma \Delta IS_{i,T}^{NUS} + \eta_{iT}$
 - $\Delta IS_{i,T}^{NUS} = \sum_{i} \frac{\Delta M_{j,T}^{NUS} \frac{Emp_{i,j,T-1}}{Emp_{j,T-1}}}{Emp_{i,T-1}}$
 - $\Delta M_{i.T}^{NUS}$: the change of China imports to high-income countries per worker in industry i in time interval T

- 1 Introduction
- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- 6 Conclusions
- **6** Appendix

Government Variables

- Expenditure categories:
 - Infrastructure: transportation, utility
 - Transfer: health, hospital, public welfare, housing&community
 - Consumption: police, library, etc.

Annie Hsu Indiana University

Summary Statistics: Highly Populated Central Cities vs Suburbs

	Highly Populated CZs				
	Centra	Central City Suburbs			
	1990	2007	1990	2007	
Total Revenue	\$1.89	\$2.62	\$0.98	\$1.32	
Total tax revenue	\$0.58	\$0.79	\$0.31	\$0.50	
Total Expenditure	\$1.88	\$2.42	\$0.99	\$1.28	
Consumption	\$0.99	\$1.39	\$0.55	\$0.78	
	56.39%	60.36%	55.64%	62%	
Infrastructure	\$0.51	\$0.57	\$0.34	\$0.37	
	24.37%	22.33%	32.87%	28.70%	
Total Debt Outstanding	\$2.52	\$3.18	\$0.98	\$1.17	
Total Cash&Security	\$2.47	\$3.88	\$0.86	\$1.22	

Summary statistics: in US\$1,000 (per capita) or percentage %

Dealing with Fiscal Stress: Cities versus Suburbs

Observations

 $\alpha_1 = \beta_1$

Regression Results: Effect of Import Shocks on Local Fiscal Variables

Table 1: Highly Populated Central Cities vs Suburbs					
	(1)	(2)	(3)	(4)	(5)
	Total	Consumption	Infrastructure	Debt	Cash &
	revenue	expenditure	expenditure	Outstanding	Security
Highly Populated Central Cities: value changes (per capita)					
Δ import values	-316.35**	28.75	-61.23***	-82.50	-162.95
	(139.58)	(36.50)	(19.84)	(128.48)	(172.06)
Highly Populated Suburbs: value changes (per capita)					
Δ import values	-57.02*	-8.71	-26.80	-71.88*	-76.97**
	(29.27)	(12.71)	(19.11)	(38.03)	(37.50)

Robust standard errors are in parentheses, clustering at the commuting zone level.

350

Reject

- * p < 0.10, ** p < 0.05, *** p < 0.01
- Highly populated CZs: top quartile CZs
- Central city governments might hamper the relative competitiveness within an area in the long run.

350

Reject

350

Reject

- Central cities: cut infrastructure expenditure
- Suburbs: withdraw from saving

350

Reject

350

Reject

Regression Results: Effect of Import Shocks on Local Fiscal Variables

Table 2: Highly Populated CZs vs Less Populated CZs

rubic 2. Tilgilly i opulated 625 to 2655 i opulated 625						
	(1)	(2)	(3)	(4)	(5)	
	Total	Consumption	Infrastructure	Debt	Cash &	
	revenue	expenditure	expenditure	Outstanding	Security	
Highly Populate	ed Central C	Cities: value ch	anges (per cap	oita)		
Δ import values	-316.35**	28.75	-61.23***	-82.50	-162.95	
	(139.58)	(36.50)	(19.84)	(128.48)	(172.06)	
Observations	350	350	350	350	350	
Less Populated Central Cities: value changes (per capita)						
Δ import values	-22.84	-33.39*	-12.51	-204.39	-242.27	
	(59.86)	(18.61)	(14.06)	(209.13)	(216.29)	
Observations	1,068	1,068	1,068	1,068	1,068	
$\alpha_1 = \beta_1$	Reject	Reject	Reject	Not Reject	Reject	

Robust standard errors are in parentheses, clustering at the commuting zone level.

Highly populated CZs: top quartile CZs

- Highly populated CZs central cities: cut infrastructure expenditure
- Less populated CZs central cities: cut consumption expenditure

- 4 ロ ト 4 ┛ ト 4 種 ト 4 種 ト - 種 - 4 の Q ()

^{*} *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01

Table 3: Highly Populated Special and School Districts

		0)					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Total	Intergovt.	Total	Property	Total	Consumption	Infrastructure
	revenue	transfer aid	taxes	taxes	expenditure	expenditure	expenditure
Highly Populate	ed Specia	Districts: va	alue chan	ges (per c	apita)		
Δ import values	-1.24	-11.61	-4.49	-2.83	-17.84	-18.53	-2.32
	(21.07)	(10.97)	(5.23)	(2.46)	(19.41)	(15.06)	(8.35)
Highly Populated School Districts: value changes (per capita)							
Δ import values	12.90	8.60	5.74	6.38	1.53	1.61	-
	(22.74)	(15.52)	(13.14)	(12.83)	(19.54)	(20.52)	-
Observations	350	350	350	350	350	350	350

Robust standard errors are in parentheses, clustering at the commuting zone level.

Single-purpose local governments: not respond to import shocks

Annie Hsu

Indiana University

^{*} p < 0.10. ** p < 0.05. *** p < 0.01Highly populated CZs: top quartile CZs

- Introduction
- 2 Empirical Strategy
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

Introduction

- Local labor markets experienced a relative decline in employment and earnings when China joined WTO (Autor et al. 2013)
- The legend indicates values for bottom four quintiles and top two deciles
- Employment shock: changes in %

Annie Hsu Dealing with Fiscal Stress: Cities versus Suburbs

$$\Delta Y_{i,T}^{\textit{City}} = \gamma_t + \alpha_1 \Delta \textit{Manuf}_{i,T} + \mathbf{X}_{i,T}' \alpha_2 + \epsilon_{iT}$$
 (3)

$$\Delta Y_{i,T}^{Sub} = \gamma_t + \frac{\beta_1}{\Delta} \Delta Manuf_{i,T} + \mathbf{X}_{i,T}' \beta_2 + \varepsilon_{iT}$$
 (4)

- $\Delta Y_{i,T}$: Δ Local fiscal variables in CZ **i** over time interval **T**
- $\Delta Manuf_{i,T}$: weighted manuf. employment growth in CZ i over time T
- X_{i,T}: regional control variables, start-of-period demographic characteristics in CZ i
- γ_T : time fixed effects
- T: time interval, 1990-2000 and 2000-2007

Bartik IV strategy

- Endogeneity problem
- Bartik IV: local industry shares and national industry growth rates (Goldsmith-Pinkham, 2020)
 - First stage: $\Delta Manuf_{i,T} = \tau_T + \gamma \Delta B_{i,T} + \eta_{iT}$
 - Bartik IV: $\Delta B_{i,T} = \sum_{i} g_{i,T} \frac{Emp_{i,j,T-1}}{Emp_{i,T}}$
 - g_{i,T}: national industry j growth rate over time interval T
 - $\frac{Emp_{i,j,T-1}}{Emp_{i,T-1}}$: local industry **j** employment share in CZ **i**, start-of-period in time interval **T-1**
 - T: time interval, 1990-2000 and 2000-2007

Results: Effect of Employment Shocks on Local Fiscal Variables

Table 4:	Highly	Populated	Central Cities	vs Suburl	os
	(1)	(2)	(3)	(4)	(5)
-	Total	Consumption	Infrastructure	Debt	Cash

	(1)	(2)	(3)	(4)	(5)	
	Total	Consumption	Infrastructure	Debt	Cash &	
	expenditure	expenditure	expenditure	Outstanding	Security	
Highly Popul	ated Central	Cities: value	changes (per c	apita)		
Δ manuf.	211.95***	53.93	46.94***	85.67	168.80	
employment	(83.39)	(43.31)	(14.15)	(100.35)	(113.41)	
Highly Populated Suburbs: value changes (per capita)						
Δ manuf.	34.69**	17.19**	15.10**	50.99*	64.57***	
employment	(13.64)	(7.89)	(6.91)	(26.46)	(25.18)	
Observations	350	350	350	350	350	
$\alpha_1 = \beta_1$	Reject	Reject	Reject	Reject	Reject	

Robust standard errors are in parentheses, clustering at the commuting zone level.

- Similar results as the import shocks specification:
 - Central cities: cut infrastructure expenditure
 - Suburbs: cut infrastructure expenditure, withdraw from saving

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Highly populated CZs: top quartile CZs

- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- **5** Conclusions
- **6** Appendix

Conclusion

Introduction

- Central city and suburban local governments in highly populated CZs respond to economic shocks differently.
 - Central city governments: cut infrastructure expenditure as if permanent impacts
 - Suburban governments: withdraw cash & security as if temporary impacts
 - Contribution: central cities' behavior hampers their relative competitiveness within the region in the long run
- Local governments in highly populated CZs respond to economic shocks differently than those in less populated CZs.
 - Highly populated central cities: suburbanization

- Introduction
- 2 Empirical Strategy
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

Literature Review

Introduction

Public policy and economic environment

- Expenditures or revenues:
 - Craig and Hoang (2011); Skidmore and Scorsone (2011); Ross et al. (2015); Chernick et al. (2017); Feler and Senses (2017); Buschman and Sjoquist (2017)
- Savings or rainy day funds:
 - Rosengren (2018); Bautista et al. (2022)
- Unemployment insurance:
 - Craig and Hoang (2011); Craig et al. (2016)

First Stage Regression Results

- First Stage:
 - Import shock approach: $\Delta IS_{i,T}^{US} = \tau_T + \gamma \Delta IS_{i,T}^{NUS} + \eta_{iT}$
 - Employment shock approach: $\Delta Manuf_{i,T} = \tau_T + \gamma \Delta B_{i,T} + \eta_{iT}$

	(1)	(2)	(3)	(4)
	Highly populated	Less populated	Highly populated	Less populated
	$\Delta IS_{i,T}^{US}$	$\Delta IS_{i,T}^{US}$	$\Delta Manuf_{i,T}$	ΔM anu $f_{i,T}$
$\Delta IS_{i,T}^{NUS}$	0.61***	0.61***		
-,-	(0.12)	(0.14)		
$\Delta B_{i,T}$			0.78***	0.81***
			(0.14)	(0.12)
Observations	350	1068	350	1068
F statistic	44.32	43.20	30.47	36.28

Robust standard errors are in parentheses, clustering at the commuting zone level.

Highly populated CZs: top quartile CZs

^{*} *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01

Regression Results: Effect of Import Shocks on Local Fiscal Variables

Table 1: Highly Populated Central Cities vs Suburbs

Table 1. Triginy i opulated central enties vs Suburbs						
(1)	(2)	(3)	(4)	(5)		
Total	Consumption	Infrastructure	Debt	Cash &		
revenue	expenditure	expenditure	Outstanding	Security		
d Central C	Cities: value ch	anges (per cap	oita)			
-316.35**	28.75	-61.23***	-82.50	-162.95		
(139.58)	(36.50)	(19.84)	(128.48)	(172.06)		
d Suburbs:	value changes	(per capita)				
-57.02*	-8.71	-26.80	-71.88*	-76.97**		
(29.27)	(12.71)	(19.11)	(38.03)	(37.50)		
350	350	350	350	350		
Reject	Reject	Reject	Reject	Reject		
	(1) Total revenue d Central C -316.35** (139.58) d Suburbs: -57.02* (29.27) 350	(1) (2) Total Consumption expenditure d Central Cities: value ch-316.35** 28.75 (139.58) (36.50) d Suburbs: value changes -57.02* -8.71 (29.27) (12.71) 350 350	(1) (2) (3) Total Consumption Infrastructure expenditure expenditure expenditure (130.55** 28.75 (139.58) (36.50) (19.84) Suburbs: value changes (per capital) (19.70.2** -8.71 (26.80) (29.27) (12.71) (19.11) (350 350 350 350	(1) (2) (3) (4) Total consumption expenditure expenditure expenditure expenditure expenditure 1 Central Cities: value charges (per capita) -316.35** 28.75 -61.23*** -82.50 (139.58) (36.50) (19.84) (128.48) 2 Suburbs: value charges (per capita) -57.02* -8.71 -26.80 -71.88* (29.27) (12.71) (19.11) (38.03) 350 350 350 350 350		

Robust standard errors are in parentheses, clustering at the commuting zone level.

Highly populated CZs: top quartile CZs

- Central city governments might hamper the relative competitiveness within an area in the long run.
 - Central cities: cut infrastructure expenditure
 - Suburbs: withdraw from saving
- → Go Back

Annie Hsu

^{*} p < 0.10, ** p < 0.05, *** p < 0.01