Visualizing the Manhattan Curve Thesis Prospectus

William Clampitt

May 7, 2025

Topology

Definition (Topological Space)

A **topological space** X is a set together with a collection \mathcal{T} of subsets of X where \mathcal{T} contains the sets X, \varnothing , and is closed under finite intersections and arbitrary unions. The elements of \mathcal{T} are called open sets.

Topology

Definition (Topological Space)

A **topological space** X is a set together with a collection \mathcal{T} of subsets of X where \mathcal{T} contains the sets X, \varnothing , and is closed under finite intersections and arbitrary unions. The elements of \mathcal{T} are called open sets.

Definition (d-manifold)

Let $d \in \mathbb{Z}_{\geq 0}$. A *d*-manifold is topological space that is second countable, Hausdorff, and locally Euclidean of dimension *d*.

Topology

Definition (Topological Space)

A **topological space** X is a set together with a collection \mathcal{T} of subsets of X where \mathcal{T} contains the sets X, \varnothing , and is closed under finite intersections and arbitrary unions. The elements of \mathcal{T} are called open sets.

Definition (d-manifold)

Let $d \in \mathbb{Z}_{\geq 0}$. A *d*-manifold is topological space that is second countable, Hausdorff, and locally Euclidean of dimension *d*.

Definition (Locally Euclidean of Dimension d)

A topological space M is **locally Euclidean of dimension** d if every point of M is contained in an open set in M that is homeomorphic to an open subset of \mathbb{R}^d .

► $S_{0,3}$: the sphere with 3 punctures.

► $S_{0,3}$: the sphere with 3 punctures.

 $ightharpoonup \mathbb{RP}^2$: the set of all lines passing through the origin in \mathbb{R}^3 .

▶ $S_{0,3}$: the sphere with 3 punctures.

- $ightharpoonup \mathbb{RP}^2$: the set of all lines passing through the origin in \mathbb{R}^3 .
 - A basis for the topology in \mathbb{RP}^2 is the sets of lines that form a bounded angle from a fixed line ℓ in \mathbb{R}^3 .

Alternate View of \mathbb{RP}^2

Definition

A **plane** in \mathbb{R}^3 is a 2-dimensional vector subspace of \mathbb{R}^3 . An **affine plane** A is a translate of a plane P by a nonzero vector v that is not in P.

Alternate View of \mathbb{RP}^2

Lemma

Let P be a plane passing through the origin in \mathbb{R}^3 and let A be an affine plane which is a translate of P by a nonzero vector v not in P. Then,

$$\mathbb{RP}^2 \cong A \sqcup \pi(P)$$

Note: $\pi(P)$ is the subset of \mathbb{RP}^2 of lines passing through the origin and contained in P.

Fundamental Groups

Definition

Let S be a path-connected a surface. For any point $p \in S$ the **fundamental group** of S is the set of equivalence classes (under homotopy) of the loops on S based at p with the concatenation operation. This group is denoted $\pi_1(S)$.

Questions?

Hyperbolic Structures

The Upper Half Plane

Definition

The **hyperbolic plane** \mathbb{H}^2 is the metric space

$$\mathbb{H}^{2} = \left\{ (x, y) \in \mathbb{R}^{2} : y > 0 \right\} \qquad \mathsf{d}(u, v) = \inf_{u \to v} \int_{0}^{1} \frac{\sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}}}{y(t)} \mathsf{d}t$$

Hyperbolic Structure on a Surface S

ightharpoonup Every point $p\in S$ has a neighborhood that maps to an open subset of \mathbb{H}^2

- ► This gives a notion of distance between two points on the surface *S*.
- ► Many surfaces have lots of hyperbolic structures, but . . .
- \triangleright $S_{0.3}$ only has one.

The Hyperbolic Structure on $S_{0,3}$

Definition

An open set $\Omega \subseteq \mathbb{RP}^2$ is **proper** if there exists a plane $P \subseteq \mathbb{R}^3$ passing through the origin such that $\overline{\Omega} \cap \pi(P) = \emptyset$.

Definition

- An open set $\Omega \subseteq \mathbb{RP}^2$ is **proper** if there exists a plane $P \subseteq \mathbb{R}^3$ passing through the origin such that $\overline{\Omega} \cap \pi(P) = \emptyset$.
- ▶ A proper set $\Omega \subseteq \mathbb{RP}^2$ is **convex** if, for any two points $x, y \in \Omega$, the line I_{xy} passing though x and y intersects Ω in a connected segment.

Definition

- An open set $\Omega \subseteq \mathbb{RP}^2$ is **proper** if there exists a plane $P \subseteq \mathbb{R}^3$ passing through the origin such that $\overline{\Omega} \cap \pi(P) = \emptyset$.
- ▶ A proper set $\Omega \subseteq \mathbb{RP}^2$ is **convex** if, for any two points $x, y \in \Omega$, the line I_{xy} passing though x and y intersects Ω in a connected segment.
- $ightharpoonup \Omega$ is **strictly convex** if $\partial\Omega$ contains no straight line segments.

Given a strictly convex set Ω in \mathbb{RP}^2 .

Definition

The **Hilbert distance** between any two distinct points $a,b\in\Omega$ is given by

$$d(a,b) = \frac{1}{2} \log CR[x,a,b,y]$$

► Can equip $S_{0,3}$ with many convex real projective structures with their Hilbert metric

- ► Can equip $S_{0,3}$ with many convex real projective structures with their Hilbert metric
- Use reflections

$$R_{1,T} = \begin{bmatrix} -1 & 0 & 0 \\ 2T & 1 & 0 \\ \frac{2}{T} & 0 & 1 \end{bmatrix} \qquad R_{2,T} = \begin{bmatrix} 1 & \frac{2}{T} & 0 \\ 0 & -1 & 0 \\ 0 & 2T & 1 \end{bmatrix}$$

$$R_{3,T} = \begin{bmatrix} 1 & 0 & 2T \\ 0 & 1 & \frac{2}{T} \\ 0 & 0 & -1 \end{bmatrix}$$

- ► Can equip $S_{0,3}$ with many convex real projective structures with their Hilbert metric
- Use reflections

$$R_{1,T} = \begin{bmatrix} -1 & 0 & 0 \\ 2T & 1 & 0 \\ \frac{2}{T} & 0 & 1 \end{bmatrix} \qquad R_{2,T} = \begin{bmatrix} 1 & \frac{2}{T} & 0 \\ 0 & -1 & 0 \\ 0 & 2T & 1 \end{bmatrix}$$

$$R_{3,T} = \begin{bmatrix} 1 & 0 & 2T \\ 0 & 1 & \frac{2}{T} \\ 0 & 0 & -1 \end{bmatrix}$$

- ► Can equip $S_{0,3}$ with many convex real projective structures with their Hilbert metric
- Use reflections

$$R_{1,T} = \begin{bmatrix} -1 & 0 & 0 \\ 2T & 1 & 0 \\ \frac{2}{T} & 0 & 1 \end{bmatrix} \qquad R_{2,T} = \begin{bmatrix} 1 & \frac{2}{T} & 0 \\ 0 & -1 & 0 \\ 0 & 2T & 1 \end{bmatrix}$$

$$R_{3,T} = \begin{bmatrix} 1 & 0 & 2T \\ 0 & 1 & \frac{2}{T} \\ 0 & 0 & -1 \end{bmatrix}$$

Hilbert Entropy

Definition

Let Ω be a convex real projective structure on a surface S and $p\in\Omega$ be a fixed point. The Hilbert **entropy** is given by

$$h_{\Omega} = \lim_{x \to \infty} \frac{1}{x} \log \# \left\{ \gamma \in \pi_1(S_{0,3}) \colon d_{\Omega}(p, \rho_T(\gamma)p) \le x \right\}$$

The Manhattan Curve

► The **Manhattan Curve** is a way use the entropy to compare two convex projective structures.

Properties of The Manhattan Curve

Strictly convex

Properties of The Manhattan Curve

- Strictly convex
- ► Real analytic

Goals:

► Generate a lot of group elements

Goals:

- ► Generate a lot of group elements
- Store their singular values
 - ▶ The singular values are related to the quantity $d^H(p, \rho(\gamma))$

Goals:

- ► Generate a lot of group elements
- Store their singular values
 - ▶ The singular values are related to the quantity $d^H(p, \rho(\gamma))$
- Estimate entropy

Structure of Reflection Group

► Takes in parameters *T* and a maximum depth for the layer tree.

- ► Takes in parameters T and a maximum depth for the layer tree.
- Calculates the length of group element using the singular values.

- ► Takes in parameters T and a maximum depth for the layer tree.
- Calculates the length of group element using the singular values.
- Counts number of elements who's lengths are in the interval (n, n + 1).

- ► Takes in parameters T and a maximum depth for the layer tree.
- Calculates the length of group element using the singular values.
- Counts number of elements who's lengths are in the interval (n, n + 1).
- Uses the count to calculate the approximate entropy.

Program Execution

```
>> find entropy
      finished row:
      finished row:
      finished row: 2
      finished row: 3
      finished row:
      finished row: 5
      finished row:
      finished row:
      finished row:
     finished row: 9
      finished row: 10
      elapsed time: 193.675ms
>> sum(count tally(filelist)(2,:))
ans = 4094
```

► Analyze symmetries of the Manhattan curve?

- Analyze symmetries of the Manhattan curve?
- ▶ Estimate the coordinates of the point where the slope of the tangent line of the Manhattan curve is equal to the slope of the secant line between the axes intercepts.

- Analyze symmetries of the Manhattan curve?
- ► Estimate the coordinates of the point where the slope of the tangent line of the Manhattan curve is equal to the slope of the secant line between the axes intercepts.
 - Dynamical quantity called the correlation number.

- ► Analyze symmetries of the Manhattan curve?
- Estimate the coordinates of the point where the slope of the tangent line of the Manhattan curve is equal to the slope of the secant line between the axes intercepts.
 - Dynamical quantity called the correlation number.
- ▶ What happens to the Manhattan curve $\mathcal{M}(\rho_1, \rho_T)$ when T gets large?

- ► Analyze symmetries of the Manhattan curve?
- Estimate the coordinates of the point where the slope of the tangent line of the Manhattan curve is equal to the slope of the secant line between the axes intercepts.
 - Dynamical quantity called the correlation number.
- ▶ What happens to the Manhattan curve $\mathcal{M}(\rho_1, \rho_T)$ when T gets large?
- Optimize code

- ► Analyze symmetries of the Manhattan curve?
- Estimate the coordinates of the point where the slope of the tangent line of the Manhattan curve is equal to the slope of the secant line between the axes intercepts.
 - Dynamical quantity called the correlation number.
- ▶ What happens to the Manhattan curve $\mathcal{M}(\rho_1, \rho_T)$ when T gets large?
- Optimize code
- Generate more examples for different values of T.

Thank You!