Esercizio 1. Let M and N be elementarily homogeneous structures of the same cardinality λ . Suppose that $M \models \exists x \, p(x) \Leftrightarrow N \models \exists x \, p(x)$ for every $p(x) \subseteq L$ such that $|x| < \lambda$. Prove that the two structures are isomorphic.

Suggerimento: vedi dimostrazione di $universale + homogeneo \Rightarrow ricco$

Esercizio 2. For every $a \in \mathcal{U}^{|u|}$ and $A \subseteq \mathcal{U}$, the following are equivalent

- 1. a is solution of some algebraic formula $\varphi(u) \in L(A)$;
- 2. $a = a_1, ..., a_n$ for some $a_1, ..., a_n \in acl(A)$.

Esercizio 3. Let $\varphi(z) \in L(A)$ be a consistent formula. Prove that, if $a \in \operatorname{acl}(A, b)$ for every $b \models \varphi(z)$, then $a \in \operatorname{acl}(A)$. Prove the same claim with a type $p(z) \subseteq L(A)$ for $\varphi(z)$.

Esercizio 1. Dimostrare che se N è (elementarmente) saturo allora è (elementarmente) omogeneo.

La dimostrazione usa la tecnica dell'andirivieni (back-and-forth). Nelle note è esposta nel caso generale. Si provi a fare una dimostrazione nel caso specifico.

Esercizio 2. Let $\varphi(x;z) \in L$. Prove that if the set $\{\varphi(a;\mathcal{U}): a \in \mathcal{U}^{|x|}\}$ is infinite then it has cardinality κ . Does the claim remains true with a type $p(x;z) \subseteq L$ for $\varphi(x;z)$?

Suggerimento per la seconda domanda: potrebbe esserci un controesempio in $\mathcal{U} \equiv \mathbb{N}$ nel linguaggio degli ordini.

Esercizio 3. For every $a \in \mathcal{U}^{|u|}$ and $A \subseteq \mathcal{U}$, the following are equivalent

- 1. a is solution of some algebraic formula $\varphi(u) \in L(A)$;
- 2. $a = a_1, ..., a_n$ for some $a_1, ..., a_n \in acl(A)$.