Assignment 2 MAT 458

5.4.48a: Let $\{x_n\} \subset B$ be a sequence converging to some x. We claim that for any $f \in \mathfrak{X}^*$, $f(x_n) \to f(x)$. We have that $||f(x_n)|| = ||\hat{x}_n(f)|| \le 1$ by Theorem 5.8d. Therefore $||\hat{x}(f)|| = ||f(x)|| \le 1$. As desired.

5.4.48b: Let $\langle x_{\alpha} \rangle$ be a net in a bounded set E. Suppose that $f(x_{\alpha}) \to f(x)$. Then, we have that $\sup_{\alpha} \|f(x_{\alpha})\| = \sup_{\alpha} \|\hat{x}_{\alpha}(f)\| = \sup_{\alpha} \|x_{\alpha}\| < \infty$.

5.4.48c: Let $\{f_n\}$ be a sequence in $F \subset \mathfrak{X}^*$, F bounded, that weak converges to some f in the weak closure. Then for all ||x|| = 1, we have that

$$\sup_{n} \|f_n(x)\| \le C$$

for some C. Since $\|\cdot\|$ is continuous, we have that $\|f\| = \|\lim_{n\to\infty} f_n\| \le C$

5.4.48.d: Let $\langle f_{\alpha} \rangle_{\alpha \in I}$ such that $\langle f_i - f_j \rangle_{(i,j) \in I^2} \to 0$. We have that for sufficiently large $n, m, \|f_n(x) - f_m(x)\| \to 0$. Therefore $\langle f_n(x) \rangle$ is a cauchy sequence. Hence it pointwise converges to some $f \in \mathfrak{X}^*$ by assigntment 1 question 7.