Évaluation 3.2 - Atomes et molécules

Compétences évaluées

Compétences	Items	D	C	В	\mathbf{A}
APP	Extraire une information.				
REA	Calculer une structure électronique.				
ANA/RAI	Prévoir à l'aide d'un modèle. Faire des hypothèses.				
VAL	Faire preuve d'esprit critique				
COM	Rédiger de manière synthétique et argumentée.				

	0 0 2.12	110041801 40 111011010 3/11011011440 00 0184111011000		
Αn	préciation (et remarques		
	preciation			

QCM - cocher la ou les bonnes réponses.

1 -	L'at	ome	de	sodium	Na	est	devenu
l'ion	Na^{+}	parc	e qu	ue			

- ☑ un électron lui a été arraché
- □ un électron lui a été donné
- □ il a gagné un proton

2 – L'ion Na⁺

- \square est un anion
- ✓ est un cation
- \square a une charge positive
- \square a une charge négative

3 – Le cortège électronique a une structure particulière

- \square avec des couches (1, 2, 3, ...) et des sous-couches (s, p, ...)
- \square les sous-couches s peuvent contenir au plus 2 électrons
- \square les sous-couches p peuvent contenir au plus 6 électrons

- **4 –** La dernière colonne de la classification périodique s'appelle la famille
 - ☑ des gaz nobles
 - □ des halogènes
 - \square des alcalins
- 5 Les entités chimiques ⁶³₂₉Cu, Cu⁺, Cu²⁺ sont toutes du Cuivre car elles ont
 - ☐ le même nombre d'électrons
 - $\ensuremath{\overline{\square}}$ le même nombre de protons Z
 - \square le même nombre de nucléons A

6 — Les atomes peuvent s'associer en molécule pour

- ✓ adopter la configuration électronique du gaz noble le plus proche
- ☑ respecter la règle de l'octet ou du duet
- \square avoir une charge électrique totale nulle

le

- **7** Le gaz noble le plus proche du Béryllium (Z = 4) est
- 8 Pour gagner en stabilité, Béryllium pourra

 \square l'Hélium (Z=2)

✓ perdre 2 électrons

 \square le Néon (Z=10)

□ gagner 2 électrons

 \square l'Argon (Z=18)

 \Box gagner 4 électrons

1 - Structure électronique d'un atome

Document 1 – Tableau périodique									
1	$_1\mathrm{H}$ Hydrogène								
2	$_3{ m Li}$	$_4{ m Be}$	$_5\mathrm{B}$ Bore	6 ^C Carbone	7N Azote	8O Oxygène	$_9\mathrm{F}$ Fluor	10Ne Néon	
3	₁₁ Na Sodium	$_{12}{ m Mg}$ Magnésium	$_{13}\mathrm{Al}$ Aluminium	₁₄ Si Silicium	$_{15}\mathrm{P}$ Phosphore	$_{16}\mathrm{S}$ Soufre	17Cl Chlore	₁₈ Ar Argon	

- 1 Donner le nombre d'électrons de l'azote N, du magnésium Mg et de l'argon Ar. (APP, ANA/RAI)
- ▶ Le numéro atomique de l'azote est 7, il possède donc 7 protons et 7 électrons par neutralité électrique de l'atome. Le magnésium possède 12 électrons et l'argon possède 18 électrons.
 - 2 Donner la structure électronique de l'azote, du magnésium et de l'argon. (REA)
 - $ightharpoonup N: 1s^2 2s^2 2p^3, Mg: 1s^2 2s^2 2p^6 3s^2, Ar: 1s^2 2s^2 2p^6 3s^2 3p^6$
- **3 –** Entourer la couche externe de chacune des structures électronique et indiquer le nombre d'électrons de valence de chaque atome. (COM, ANA/RAI)
- ▶ Couche externe de l'azote : 2 avec 5 électrons de valences. Couche externe du magnésium : 3 avec 2 électrons de valences. Couche externe de l'argon : 3 avec 8 électrons de valences.
 - 4 Parmi ces trois atomes, lequel est le plus stable? Justifier. (ANA/RAI)
 - L'argon, car sa couche externe est pleine : c'est un gaz noble.

- **5** Rappeler la règle de l'octet avec vos mots. *(COM)*
- ▶ Pour gagner en stabilité, un atome de numéro atomique > 6, peut perdre ou gagner des électrons pour atteindre la structure électronique du gaz noble **le plus proche**, avec 8 électrons sur sa couche externe.
- **6 –** D'après cette règles, quel ion pourra être formé à partir d'un atome de magnésium? Expliquer. (ANA/RAI, COM)
- ▶ D'après la règle de l'octet, le magnésium va perdre 2 électrons pour atteindre la configuration électronique du néon. On aura donc l'ion Mg²⁺.

2 - Stabilité d'une molécule

Document 2 - L'ammoniac

L'ammoniac est un gaz irritant à température ambiante. La molécule d'ammoniac est composé d'hydrogène H (Z=1) et d'azote N (Z=7). Le schéma de Lewis de la molécule est le suivant :

- 7 Indiquer la formule de la molécule d'ammoniac . (APP)
- lacktriangle La molécule est composée de 1 azote et de 3 hydrogène : NH_3
- 8 Quelle règle doit respecter l'atome d'hydrogène pour gagner en stabilité? (COM)
- La règle du duet : il doit gagner un électron en formant une liaison covalente.
- 9 Combien de liaisons covalentes a formé l'azote dans la molécule d'ammoniac ? Est-ce cohérent avec la règle de l'octet ? (APP, VAL)
- L'azote a formé 3 liaisons covalentes, ce qui lui a permis d'ajouter 3 électrons sur sa couche externe pour la compléter et respecter la règle de l'octet.
 - 10 Légender le schéma de Lewis de la molécule d'ammoniac du doc. 2. (COM)
- ▶ Il faut légender les doublets liants et le double non-liant en plus des éléments chimiques.

A - Ma correction (à faire après la correction du professeur)

Question	L'erreur	Analyse de l'erreur	La correction

B - Mon bilan après mon travail de correction

Ce que je n'avais pas compris	Ce que maintenant j'ai compris

C - Mes acquis après mon travail de correction (à remplir par le professeur)

Appréciation et remare	ques		