PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-166985

(43) Date of publication of application: 22.06.2001

(51)Int.CI.

G06F 12/02

(21)Application number : 11-352354

(71)Applicant: NEC GUMMA LTD

(22) Date of filing:

10.12.1999

(72)Inventor: ONOYAMA MANABU

(54) MEMORY CONTROLLER

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a memory controller for reducing any excess precharge at the time of performing access to a memory even in a system in which a bank hit access and a bank miss access coexist, and for improving the system performance as the result.

SOLUTION: This memory controller is provided with an SDRAM 2 equipped with a bank, a bank hit counter 4 for counting the number of hits of access to the bank when the bank is turned into an open state, and a memory controller 1 and a timer 3 for varying a time when the bank is turned into the open state according to the counted result of the bank hit counter 4.

LEGAL STATUS

[Date of request for examination]

14.11.2000

[Date of sending the examiner's decision of

25.06.2002

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-166985 (P2001-166985A)

(43)公開日 平成13年6月22日(2001.6.22)

(51) Int.Cl.7 G06F 12/02 識別記号 590

FΙ G06F 12/02 テーマコート*(参考)

590B 5B060

審査請求 有 請求項の数6 OL (全 5 頁)

(21)出願番号

特顯平11-352354

(22)出顧日

平成11年12月10日(1999.12.10)

(71)出願人 000165033

群馬日本電気株式会社

群馬県太田市西矢島町32番地

(72)発明者 小野山 学

群馬県太田市西矢島町32番地 群馬日本電

気株式会社内

(74)代理人 100108578

(外3名) 弁理士 高橋 韶男

Fターム(参考) 5B060 AB13 AB19 CC03

(54) 【発明の名称】 メモリ制御装置

(57)【要約】

【課題】 バンクヒットするアクセスとバンクミスする アクセスが混在するようなシステムにおいてもメモリの アクセス時における余分なプリチャージを減らすことが でき、その結果システム性能の向上を図ることができる メモリ制御装置を提供する。

【解決手段】 バンクを備えるSDRAM2と、バンク がオープン状態となっている場合にバンクへのアクセス のヒット数を計数するバンクヒットカウンタ4と、バン クヒットカウンタ4の計数結果に応じてバンクをオープ ン状態にする時間を可変するメモリコントローラ1及び タイマー3を備える。

1

【特許請求の範囲】

特徴とするメモリ制御装置。

【請求項1】 バンクを備えるメモリと、

前記バンクがオープン状態となっている場合に前記バン クへのアクセスのヒット数を計数する計数手段と、 前記計数手段の計数結果に応じて前記バンクをオープン 状態にする時間を可変する制御手段とを具備することを

【請求項2】 前記メモリは複数のバンクを備え、 前記計数手段は前記バンク各々に対応して設けられ、 前記制御手段は、前記各計数手段の計数結果に応じて対 10 応する前記バンクをオープン状態にする時間を可変する ことを特徴とする請求項1記載のメモリ制御装置。

【請求項3】 前記メモリはシンクロナスDRAMであ ることを特徴とする請求項1又は請求項2記載のメモリ 制御装置。

【請求項4】 ページを備えるメモリと、

前記ページがオープン状態となっている場合に前記パン クへのアクセスのヒット数を計数する計数手段と、 前記計数手段の計数結果に応じて前記ページをオープン 特徴とするメモリ制御装置。

【請求項5】 前記メモリは複数のページを備え、 前記計数手段は前記ページ各々に対応して設けられ、 前記制御手段は、前記各計数手段の計数結果に応じて対 広する前記ページをオープン状態にする時間を可変する ことを特徴とする請求項4記載のメモリ制御装置。

【請求項6】 前記メモリはDRAMであることを特徴 とする請求項4又は請求項5記載のメモリ制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、メモリ制御装置に 係り、特に、シンクロナスDRAM(SDRAM)を各 々が含む複数のシンクロナスDRAMバンクのアクセス を制御するメモリ制御装置に関する。

[0002]

【従来の技術】近年、非同期DRAMに代わる高速DR AMとして、シンクロナスDRAMが注目されている。 シンクロナスDRAMは、外部クロックに同期した入出 力回路構成、コマンド形式のアクセス、バースト転送に よる連続アクセス、2パンク構成などの特徴を持つ。

【0003】このシンクロナスDRAMをコンピュータ システムの主記憶として利用すれば、例えばCPUとシ ンクロナスDRAMのクロックの共通化によりアクセス 時のロスを少なくでき、またバースト転送を利用すると とによってCPUをノーウエイトで動作させること等を 実現できる。

【0004】シンクロナスDRAMへアクセスを行う場 合は、クロックイネーブルとなるCKE信号をアクティ ブにした状態で、ACT(バンク・アクティブ)コマン

た後、リード/ライトコマンドによりカラムアドレスを シンクロナスDRAMに与える事でアクセスを行なう。 シンクロナスSDRAMの上記コマンド受け取りは、そ のシンクロナスDRAMに入力されたクロックCLKに 同期して行われる。このようなシンクロナスDRAMを コンピュータの主記憶として使用する場合には、その主 記憶は、1以上のシンクロナスDRAMを各々が含む複 数のシンクロナスDRAMバンクによって構成される。 [0005]

【発明が解決しようとする課題】ところで、SDRAM をアクセスする場合において、シーケンシャルアクセス かランダムアクセスかによってバンクをオープンにして おく時間が変わってくる。シーケンシャルアクセス時は バンクを長い時間オープンにしておいた方が、余分なプ リチャージが発生せずに性能を向上させやすくなる、一 方、ランダムアクセスのようにバンクミスが多い場合は バンクをすぐにクローズさせるために、プリチャージを すぐにかけた方が性能を向上させやすい。

【0006】バンクヒットが多く発生するアクセスが頻 状態にする時間を可変する制御手段とを具備することを 20 繁に行われるシステムや、バンクミスが多く発生するア クセスが頻繁に行われるシステムのように、バンクヒッ ト又はバンクミスの何れかが多く発生することが予想さ れるシステムにおいては、予めプリチャージをかけるタ イミングを設定することによりシステム性能の向上を図 ることができる。しかしながら、バンクヒットするアク セスとバンクミスするアクセスが混在するようなシステ ムの場合、バンクヒットのアクセスが多いか、バンクミ スのアクセスが多いかを判断することができないためメ モリ性能向上によるシステム全体の性能を向上すること が困難であった。近年では、メモリアクセスの高速化が 30 重要な要因であり、システム全体の性能向上のために は、メモリ性能の向上が必須となる。

> [0007] 本発明は、上記事情に鑑みてなされたもの であり、バンクヒットするアクセスとバンクミスするア クセスが混在するようなシステムにおいてもメモリのア クセス時における余分なプリチャージを減らすことがで き、その結果システム性能の向上を図ることができるメ モリ制御装置を提供することを目的とする。

[0008]

【課題を解決するための手段】上記課題を解決するため に、本発明は、バンクを備えるメモリと、前記バンクが オープン状態となっている場合に前記バンクへのアクセ スのヒット数を計数する計数手段と、前記計数手段の計 数結果に応じて前記バンクをオープン状態にする時間を 可変する制御手段とを具備することを特徴としている。 ことで、前記メモリは複数のバンクを備え、前記計数手 段は前記バンク各々に対応して設けられ、前記制御手段 は、前記各計数手段の計数結果に応じて対応する前記バ ンクをオープン状態にする時間を可変することを特徴と ドにより、ローアドレスをシンクロナスDRAMに与え 50 している。また、前記メモリはシンクロナスDRAMで 3

あることを特徴としている。また、本発明は、ページを 備えるメモリと、前記ページがオープン状態となってい る場合に前記バンクへのアクセスのヒット数を計数する 計数手段と、前記計数手段の計数結果に応じて前記ペー ジをオープン状態にする時間を可変する制御手段とを具 備することを特徴としている。ここで、前記メモリは複 数のページを備え、前記計数手段は前記ページ各々に対 応して設けられ、前記制御手段は、前記各計数手段の計 数結果に応じて対応する前記ページをオープン状態にす る時間を可変することを特徴としている。また、前記メ モリはDRAMであることを特徴としている。

[0009]

【発明の実施の形態】以下、図面を参照して本発明の実 施形態によるメモリ制御装置について詳細に説明する。 [第1実施形態]図1は、本発明の第1実施形態による メモリ制御装置の概略構成を示す図である。図1におい ては、理解を容易にするため、本発明に関する部分のみ を図示してある。図1において、1はシステムバスに接 続されたメモリコントローラであり、CPU(中央処理 装置)からのメモリアクセス要求に従って、SDRAM 20 2のバンクのオープン及びクローズを制御するととも に、データ書き込み又はデータ読み出しを制御する。本 実施形態において、SDRAM2は単一のバンクからな るものである。

【0010】3は、メモリコントローラ1に接続された タイマーであり、SDRAM2のバンクがオープン状態 にある時間を計測するものである。このタイマー3は、 メモリコントローラ1から出力される信号によってリセ ットされる。4はバンクヒットカウンタであり、初期の 値が「O」に設定され、SDRAM2のバンクがオープ 30 ン状態にある場合にメモリアクセスがなされ、オープン 状態にあるバンクへのアクセスがヒットした場合に値を インクリメントする。バンクヒットカウンタ4の値はメ モリコントローラ1によってリセット、つまり初期の値 である「0」に設定される。尚、本実施形態において は、バンクヒットカウンタ4の値が「0」~「3」であ る場合に、タイマー3により時間を測定し、5 µ s e c の間バンクをオープン状態にでき、バンクヒットカウン タ4の値が「4」以上の場合にタイマー3により時間を 測定し、20μsecの間バンクをオープン状態にする 40 ことができるシステムについて説明する。

【0011】次に、上記構成における本発明の第1実施 形態によるメモリ制御装置の動作について説明する。ま ず、CPU等からシステムバスを介してSDRAM2へ のアクセス要求がなされると、そのアクセス要求はメモ リコントローラ1へ送られる。この時、SDRAM2の バンクがクローズされていた場合には、メモリコントロ ーラ1はSDRAM2のバンクをオープン状態にしてS DRAM2をアクセスする。メモリコントローラ1がS DRAM2のバンクをオープン状態にすると、メモリコ 50 ては、バンクヒットカウンタ4の値が「O」から「3」

ントローラ1はタイマー3をリセットし、SDRAM2 のバンクがオープン状態になっている時間の計測を開始 する。

【0012】バンクヒットカウンタ4の値が「0」から 「3」の値である場合には、メモリコントローラ1はタ イマー3によって計測される時間が5μs e c になるま でSDRAM2のバンクをオープン状態にしたまま次の アクセスを待つ。タイマー3の計測した時間が5μs e cとなり、この時点までに次のアクセスが無い場合に 10 は、メモリコントローラ1はSDRAM2のバンクをク ローズし、バンクヒットカウンタの値を「0」にする。 ここで、バンクヒットカウンタ4の値が「0」から 「3」の値である場合にタイマー3の計測時間を5 μ s ecとしているのは、ランダムアクセスがなされている 場合にバンクをすぐにクローズしてプリチャージをすぐ にかけた方が性能を向上させやすいからである。

【0013】一方、バンクヒットカウンタの値が「4」 以上である場合には、メモリコントローラ1はタイマー 3により計測される時間が20μsecになる時点まで SDRAM2のバンクをオープンにしたまま、次のアク セスを待つ。次のメモリアクセスが20μsec以内に 無い場合は、メモリコントローラ1はSDRAM2のバ ンクをクローズし、バンクヒットカウンタ4の値を 「0」にする。ここで、バンクヒットカウンタ4の値が 「4」以上である場合にタイマー3の計測時間を20 µ secとしているのは、シーケンシャルアクセス時はバ ンクを長い時間オープンにしておいた方が、余分なプリ チャージが発生せずに性能を向上させやすくなるからで ある。

【0014】また、SDRAM2のバンクがオープン状 態となっているときに、CPU等からアクセス要求がな され、そのアクセスがバンクにヒットした場合、メモリ コントローラ 1 はバンクヒットカウンタ4の値をインク リメントするとともに、タイマー3をリセットして再び バンクをオープン状態にしている時間の計測を始める。 よって、バンクヒットが連続した場合には、バンクがオ ープン状態となっている時間が長くなり、余分なプリチ ャージが発生しないため、性能の向上をはかることがで きる。

【0015】一方、そのアクセス要求がバンクミスであ った場合は、メモリコントローラ1はパンクヒットカウ ンタ4の値を「0」にするとともに、SDRAM2のバ ンクをクローズして新しいバンクをオープンする。この 時、メモリコントローラ1はタイマー3をリセットし て、新しくオープンにしたバンクのオープン時間の計測 を開始する。よって、バンクミスが生じた場合には、バ ンクがすぐにクローズされ、プリチャージを行っている ため性能の向上をはかることができる。

【0016】尚、上述した本発明の第1実施形態におい

の値である場合と、バンクヒットカウンタの値が「4」 以上である場合とにわけてタイマー3の計測時間を変え ているが、本発明は、これらの数値に制限されず、その 境界値はシステムの用途に応じて適宜設定することがで きる。

【0017】 [第2実施形態] 図2は、本発明の第2実 施形態によるメモリ制御装置の概略構成を示す図であ る。図2においても、図1と同様に、理解を容易にする ため、本発明に関する部分のみを図示してある。図2に 示した本発明の第2実施形態によるメモリ制御装置と図 10 きる。 1に示した本発明の第1実施形態によるメモリ制御装置 とが異なる点は、図1中のSDRAM2を通常のDRA M5にするとともに、バンクヒットカウンタ4に代えて DRAM5のページへのアクセスのヒットをカウントす るページヒットカウンタ6を設けた点である。つまり、 本発明は図1に示したようにメモリがSDRAM2であ る場合に限られず、DRAM5を用いた場合にも適用す ることができる。

【0018】 (第3実施形態) 図3は、本発明の第3実 施形態によるメモリ制御装置の概略構成を示す図であ る。図3においても、図1及び図2と同様に、理解を容 易にするため、本発明に関する部分のみを図示してあ る。図3に示した本発明の第3実施形態によるメモリ制 御装置は、基本的な構成は図1に示した第1実施形態と 同様である。第1実施形態においては、SDRAM2が 単一のバンクからなるものであったが、本実施形態にお いては、SDRAM2が複数のバンクからなるものであ り、複数のバンクを同時にオープン状態とするものであ る点が異なる。また、各々のバンクに対応させて複数の バンクヒットカウンタ4a~4c及びタイマ3a~3c 30 を備えている。尚、バンクの数、タイマ3a~3cの 数、及びバンクヒットカウンタ4a~4cの数は図3に 示した数に制限されない。

【0019】 (第4実施形態) 図4は、本発明の第4実 施形態によるメモリ制御装置の概略構成を示す図であ る。図3においても、図1~図3と同様に、理解を容易 にするため、本発明に関する部分のみを図示してある。 図4に示した本発明の第4実施形態によるメモリ制御装 置と図1に示した本発明の第1実施形態によるメモリ制 御装置とが異なる点は、図1中のタイマー3に代えてリ 40 フレッシュタイマー7を設けた点である。 このリフレッ シュタイマー7は、SDRAM2のリフレッシュ間隔を

計測するものである。 つまりリフレッシュタイマー7を 設けることによって、バンクがオープンとなっている時 間が長時間に亘った場合には、メモリコントローラ1は リフレッシュタイマー7で規定されるリフレッシュ間隔 が訪れたときに、一度強制的にバンクをクローズしてプ リチャージを行い、再びバンクをオープン状態とする。 このようにすることで、長時間バンクをオープン状態と していることによる弊害を除去することができる。本実

施形態は上記第1~第3実施形態にも適用することがで

[0020]

【発明の効果】以上、説明したように、本発明によれ は、バンクを備えるメモリと、前記バンクがオープン状 態となっている場合に前記バンクへのアクセスのヒット 数を計数する計数手段と、前記計数手段の計数結果に応 じて前記バンクをオープン状態にする時間を可変する制 御手段とを備えるようにしたので、メモリのアクセス状 態がランダムアクセスであるか又はシーケンシャルアク セスであるかに応じてバンク又はページをオープン状態 20 にする時間を可変して余分なプリチャージを減らす事が でき、その結果メモリアクセスの性能向上を図ることが できるという効果がある。そして、メモリアクセスの性 能向上によりシステム全体の性能向上を図ることができ

【図面の簡単な説明】

本発明の第1実施形態によるメモリ制御装置 の概略構成を示す図である。

【図2】 本発明の第2実施形態によるメモリ制御装置 の概略構成を示す図である。

【図3】 本発明の第3実施形態によるメモリ制御装置 の概略構成を示す図である。

【図4】 本発明の第4実施形態によるメモリ制御装置 の概略構成を示す図である。

【符号の説明】

1	メモリコントローラ(制御手段)
2	SDRAM(メモリ)
3, 3a∼3c	タイマー(制御手段)
4, 4a∼4 c	バンクヒットカウンタ(計数手段)
5	DRAM(メモリ)
6	ページヒットカウンタ(計数手段)
7	リフレッシュタイマー

