LIST OF PATENTS AND PUBLIC APPLICANT'S INFORMATION DISCLOSURE STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

U.S. PATENT DOCUMENTS

XAMINER			DC	DCUM	ENT N	NUMBI	ER		DATE	NAME	CLAS	S SUB CLAS		FILING DATE	
VITIAL													+		
			<u> </u>	<u></u>	F	ORE	IGN	PA	TENT DO	CUMENTS		 [
T			DOCUMENT NUMBER						DATE	COUNTRY	CLASS	SUB CLASS	Tra NO	nslation YES	
											-				
											<u> </u>				
2	А	G	eorge	e et inthe	al., C esis S	Curre Select	nt Mo			Date, Pertine ince Compariso oplications, Alam	n Macron	nolecular	Sequ 27-1	encing 49 	
2	C	s g P	enes ucke lutan chof	tt et nate	func EMI t al., recep et al. 21: 3	Mole otor (61-3	9(3) cular genes	clores, Proceedings, Proceeding	1-776 (199) ning and chooc. Natl. Add d expression	romosomal loc cad. Sci. U.S.A n of huyman C	alization of . 88: 755	f one of th 7-7561 (1 and Δ1 su	ne hu 991) ubuni	man ts, <i>FEBS</i>	
2	С	s g P g	tructi enes lucke lutan Schof	ures, , The tt en nate ield e 244/.	funce EMI t al., recep et al. 2): 3	Mole otor (61-3	9(3) cular genes ignec	cloress, Procee an	1-776 (199) ning and chooc. Natl. Add d expression	romosomal loc ead. Sci. U.S.A	alization of . 88: 755	f one of the following formula of the following for the following formula of the following form	ne hu 991) ubuni	man ts, <i>FEBS</i>	

				\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}
			DATE CONSIDERE	n 4-9-99
EXAMINER	TOUL	α	DATE CONSIDERE	
	/			MPEP 609: Draw

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applut of

APPLICANT'S INFORMATION DISCLOSURE STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

U.S. PATENT DOCUMENTS

						0.0	, , , ,	\ 	** 5000				
EXAMINER			DC	CUMI	ENT N	UMBE	R		DATE	NAME	CLASS	SUB CLASS	FILING DATE
NITIAL ()	A	4	8	3	7	1	4	8	6/6/89	Cregg	435	172.3	10/30/84
72	В	4	8	5	5	2	3	1	8/8/89	Stroman et al.	435	68	9/25/85
9-		4	8	8	2	2	7	9	11/21/89	Cregg	435	68	10/25/85
	C		9	2	9	5	5	5	5/29/90	Cregg et al.	435	172.3	10/19/87
	D	4		2	4	9	3	9	6/18/91	Gorman	435	69.1	9/25/87
•	E	5	0		8	7	0	7	7/2/91	Nichols et al.	546	156	11/20/89
	F	5	0	2		2	5	7	4/13/93	Heinemann et al.	435	252.3	6/21/91
<u> </u>	G	5	2	0	2	6	2	9	3/28/95	Harpold et al.	435	6	8/7/90
	<u> Н</u>	5	4	0	-	<u> </u>	8	4	4/4/95	Ladner et al.	435	235.1	1/26/93
~		5	4	0	3	4	 	+	7/25/95	Harpold et al.	435	6	1/27/93
	J	5	4	3	6	1	2	8	//25/95	That police et al.	-		
		1				İ	1		1	<u> </u>			

FOREIGN PATENT DOCUMENTS

												CLID	Tenn	slation
			DC	CUM	ENT N	UMBE	R		DATE	COUNTRY	CLASS	SUB CLASS	NO	YES
2	ĸ	0	6	0	0	2	7	8	6/8/94	EP A2		-		
2	L	0	6	0	6	7	3	4	7/20/94	EP			<u> </u>	
9	M	0	6	7	4	0	0	3	9/27/95	EP		-		
9	N	2	2	9	1	6	4	7	1/31/96	GB				
9	0	6	0	1	4	7	8	3	1/25/94	JP	-		· -	
	Р	9	1	0	6	6	4	8	5/16/91	PCT				<u> </u>
2	a	9	2	2	3	7	6	9	11/12/92	GB				ļ
N	R	9	3	0	7	0	2	6	4/2/93	GB				<u> `</u>
0	s	9	3	1	3	4	2	3	7/8/93	PCT				
\sim	T	9	3	2	3	5	3	6	11/25/93	PCT			<u> • </u>	<u> </u>
gn	U	9	3	2	4	6	2	9	12/9/93	PCT			<u></u>	

EXAMINER JOLL UIL DATE CONS	SIDERED $\sqrt{-9-9}$	<u> </u>
-----------------------------	-----------------------	----------

LIST OF PATENTS AND PLANE OR APPLICANT'S INFORMATION STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

FOREIGN PATENT DOCUMENTS

		FOREIGN PATENT DOCUMENTS												
T			DC	CUMI	ENT N	UMBE	R		DATE	COUNTRY	CLASS	SUB CLASS	Trans NO	lation YES
	$\frac{1}{\sqrt{ }}$	9	3	2	5	6	7	9	12/23/93	PCT	_		•	
-	w	9	4	0	1	0	9	4	1/20/94	PCT			•	
	×	9	4	0	4	6	9	8	3/3/94	PCT		-	•	
	Ŷ	9	4	0	6	4	2	8	3/31/94	PCT				
-		9	4	1	1	5	0	1	5/26/94	PCT				
	AA	9	5	2	6	4	0	1	10/5/95	PCT	-		<u> </u>	
	- ^ _											<u> </u>		
)TH	FR A	RT	(Inc	ludir	ng A	utho	or, Title, I	Date, Pertine	ent Page	s, Etc.)		
2	AB	T A	bbot	NN.	ADA :	recer	tor c	lone	d, Trends P	harmacol. Sci.	12:449 (1991)		
	AC	+	bbot	NIA.	ADA	recer	otor s	ubur	nit cloned,	Trends Pharma	col. Sci.	12:334 (1	991)	
										novel metabo	stronic dis	itamate re	ceptor	mGluR5
V	AD	C	ouple 3368	ed to 3 (19	inosi 92)	itol p	hosp	hate/	Ca** signa	transduction,				
92	AE	r.	ecep1	ors i	n pre	symi	otom	atic !	Huntington_	ection neurons s Disease, <i>N.</i>				
2	AF	l r	ecep	tor. F	EBS	Lett.	305	(1):2	7-30 (1994	olicing alters th 2)				
2	AC	5 E	Bahou Treno	uth e	t al., arma	Imm	unolo Sci. 1	ogica 12:33	approache 38-343 (19	s for probing r 91)				
2	Al	-1	Barna (1992	rd, V 2)	Vill th	ne rea	al NN	1DA	receptor ple	ease stand up?				
2	A	,	Beal,	Mec	hanis	ms c	f exc	citoto	xicity in ne	urologic disea	ses, FASE	B J. 6:33	38-334	(1992)
2	Α.	1	induc	tion.	Tren	nds N	leuro	sci. 🤄	5:333-33	on of NMDA c (1992)				
	A	ļ	Black rat co	ortica	/., N- al neu	meth	is ar	aspa ntago	rtate- or glonized by Fl	utamate-media PL 15896AR, .	ted toxici J. Neuroci	ty in cultu hem. 65:2	red rat 2170-2	cortical 177

			•	1.	9-99
		1111	DATE CONSIDERED	·/ —	9 - 7 -
EXAMINER	7)01-	470	DATE GOILD ELLE		

LIST OF PATENTS AND CLICA NETOF APPLICANT'S INFORMATION DISCLOSURE STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

	OT	HER ART (Including Author, Title, Date, Pertinent Pages, Etc.)
2	AL	Bottaro et al, Identification of the hepatocyte growth factor receptor as the c-met proto- oncogene product, Science 251:802-804 (1991)
2	АМ	Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:248 (1976)
2	AN	Bristow et al., The glycine/NMDA receptor antagonist R-(+)-HA-966, blocks activation of the mesolimbic dopaminergic system induced by phencyclidine and dizcilpine (MK-801) in rodents, <i>Br. J. Pharmacol.</i> 108:1156-1163 (1993)
22	AO	Choi, Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage, <i>Trends Neurosci.</i> 11(10):465469 (1988)
2	AP	Choi, Glutamate neurotoxicity and diseases of the nervous system, Neuron 1:623-634 (1988)
2	ΔQ	Ciba-Geigy Unveils Research Agreement with SIBIA of U.S., The Wall Street Journal (September 17, 1992)
2	AR	Coyle <i>et al.</i> , Oxidative stress, glutamate, and neurodegenerative disorders, <i>Science</i> 262:689-695 (1993)
•	AS	Daggett et al., Cloning and functional characterization of three splice variants of the human NMDAR1 receptor, Biophys J., 36(2):447 (1994)
•	AT	Dascal, The use of Xenopus oocytes for the study of ion channels, CRC Critical Reviews in Biochemistry 22(4):317-387 (1987)
<u> </u>	AU	Donnelly and Pallotta, Single-channel currents from diethylpyrocarbonate-modified NMDA receptors in cultured rat brain cortical neurons, <i>J. Gen. Physol.</i> 105:837-859 (1995)
2	AV	Durand et al., Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C, Proc. Natl. Acad. Sci. USA 89:9359-9363 (1992)
2	AW	Aircost PNA editing of the glutamate receptor subunit
2	AX	and a second according according receptor stimulates adenylate
w	AY	state of the apply and genomic sequence of a G protein
a	AZ	analysis of aDNAs encoding human hippocampus N-

EXAMINER JOH - UI DATE CONSIDERED 4-9-99

LIST OF PATENTS AND F APPLICANT'S INFORMATION TROPES URE STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

	OT	HER ART (Including Author, Title, Date, Pertinent Pages, Etc.)
2	ВА	Gautam et al., A G protein gamma subunit shares homology with ras proteins, Science 244:971 (1989)
a	ВВ	Gautam et al., G protein diversity is increased by associations with a variety of y subunits, <i>Proc. Natl. Acad. Sci. USA</i> 87:7973 (1990)
9	ВС	Gereau and Conn, Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1, <i>J. Neurosci</i> 15(10):6879-6889 (1995)
2	BD	Greenamyre et al., Synaptic localization of striatal NMDA, quisqualate and kainate receptors, Neurosci. Lett. 101:133-137 (1989)
22	BE	Grimwood et al., Interactions between the glutamate and glycine recognition sites of the N-methyl-D-aspartate receptor from rat brain, as revealed from radioligand binding studies, J. Neurochem. 60:1729-1738 (1993)
2	BF	Gubler et al., A simple and very efficient method for generating cDNA libraries, Gene 25:263-269 (1983)
2	BG	Gunasekar et al., NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: Implication for cell death, <i>J. Neurochem.</i> 65:2016-2021 (1995)
a-	ВН	Gundersen et al., Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes, Proc. R. Soc. London Ser. 221:127 (1984)
2~	ВІ	Hess et al., Cloning, functional expression, and pharmacological characterization of human NMDAR1/NMDAR2 heteromeric receptors, <i>Biophys J., 36(2)</i> :446 (1994) (abstract and poster)
2	BJ	Hess et al., Biophysical properties of human NMDA receptors stably expressed in mammalian cells, Soc. Neurosci. Abstr. 21:1-3 (1995)
9	ВК	Hoffman, NMDA receptor cloned —— twice! Science 254:801-802 (1991)
2	BL	Hollman et al., Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor, Neuron 10:943-954 (1993)
0/	ВМ	Hollman et al., Cloned glutamate receptors, Annu. Rev. Neurosci. 17:31-108 (1994)
2	BN	Hurley et al., Isolation and characterization of a cDNA clone for the y subunit of bovine retinal transducin, <i>Proc. Natl. Acad. Sci. USA 81</i> :6948 (1984)
V	во	Ishii et al., Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits, J. Biol. Chem. 268(4):2836-2843 (1993)

EXAMINER	John	41~	DATE CONSIDERED	4-9-9	9
					_

LIST OF PATENTS AND F APPLICANT'S INFORMATION DIS STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

ОТ	HER ART (Including Author, Title, Date, Pertinent Pages, Etc.)
ВР	Ito et al., Characterization of prostaglandin E ₂ -induced Ca ²⁺ mobilization in single bovine adrenal chromaffin cells by digital image microscopy, J. Neurochem. 56:531-540 (1991)
ВΩ	Jones et al., Characterization of the binding of radioligands to the N-methyl-D-aspartate, phencyclidine, and glycine receptors in buffy coat membranes, J. Pharmacol. Meth. 21:161 (1989)
BR	Kantak et al., Effects of N-methyl-D-aspartate antagonists in rats discriminating different doses of cocaine: Comparisons with direct and indirect dopamine agonists, J. Pharmacol. Exper. Therap. 274:657-665 (1995)
BS	Karp et al., Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor, J. Biol. Chem. 268:3728-3733 (1993)
ВТ	Kemp et al., Protein kinase recognition sequence motifs, Trends Biochem. Sci. 15:342-346 (1990)
80	Kishimoto et al. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependent protein kinase, J. Biol. Chem. 260:12492-12499 (1985)
BV	Kisselev et al., Receptor-G protein coupling is established by a conformational switch in the Ry complex, Proc. Natl. Acad. Sci. USA 92:9102-9106 (1995)
BW	Kleuss et al., Selectivity in signal transduction determined by y subunits of heterotrimeric G proteins, Science 259:832 (1993)
BX	Köhr et al., NMDA receptor Channels: Subunit-specific potentiation by reducing agents, Neuron 12:1031-1040 (1994)
BY	Kozak, Structural features in eukaryotic mRNAs that modulate the initiation of translation, J. Biol. Chem. 266:19867-19870 (1991)
BZ	Krieg and Melton, Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs, Nucleic Acids Research 12:7057-7070 (1984)
CA	Kumar et al., Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex, Nature 354:70-73 (1991)
СВ	Kutsuwada et al., Molecular diversity of the NMDA receptor channel, Nature 358:36-41 (1992)
CC	Kyte and Doolittle, A simple method for displaying the hydropathic chacter of a protein, J. Mol. Biol. 157:105 (1982)
CD	ANADA receptor subupit mRNA expression by projection neurons
	BP BQ BR BS BT BU BV BW BX CA

4-9-99 JOLL UM DATE CONSIDERED **EXAMINER**

LIST OF PATENTS AND PUBLICATION APPLICANT'S INFORMATION DISCLOSURE STATEMENT

APPLICANT

FILING DATE

6362-9383C

DAGGETT et al.

September 29, 1997

GROUP Unassigned

06,540,000

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

	ОТ	HER ART (Including Author, Title, Date, Pertinent Pages, Etc.)
2	CE	Le Bourdellès <i>et al.</i> , Cloning, functional coexpression, and pharmacological characterisation of human cDNAs encoding NMDA receptor NR1 and NR2A subunits, <i>J. Neurochem.</i> 62:2091-2098 (1994)
7	CF	Linder and Gilman, G proteins, Scientific American 267:56-65 (1992)
22	CG	Liu et al., Mutational analysis of the relative orientation of transmembrane helices I and VII in G protein-coupled receptors, J. Biol. Chem. 270(3):19532-19539 (1995)
2	СН	Lynch et al., Pharmacological chacterization of heterodimeric NMDA receptors of NR1a and 2B subunits: Differences with receptors formed from NR 1a and 2A, J. Neurochem. 64:1462-1468 (1995)
2	CI	Masayuki, Human mRNA for key subunit of the N-methyl-D-aspartate receptor, DDBJ database (7/20/93)
2	CJ	Masu et al., Sequence and expression of a metabotropic glutamate receptor, Nature 349:760-765 (1991)
7	СК	Matsui <i>et al.</i> , Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration, <i>J. Neurochemistry</i> 65:454-458 (1995)
7	CL	Mayer, NMDA receptors cloned at last, Nature 354:16-17 (1991)
0,	СМ	Meguro et al., Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs, <i>Nature 357</i> :70-74 (1992)
2	CN	Meldrum, Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters, <i>Clin. Sci.</i> 68:113-122 (1985)
2~	co	Meldrum et al., Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci. 11:379-387 (1990)
1	СР	Minakami <i>et al.</i> , The expression of two splice variants of metabotropic glutamate receptor subtype 5 in the rat brain and neuronal cells during development, <i>J. Neurochem.</i> 65:1536-1542 (1995)
2	ca	Monaghan et al., The excitory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system, Ann. Rev. Pharmacol. Toxicol. 29:365-402 (1980)
9~	CR	Monyer et al., Heteromeric NMDA receptors: Molecular and functional distinction of subtypes, Science 256:1217-1221 (1992)
2	cs	Monyer et al., Developmental and regional expression in the rat brain and functional properties of four NMDA receptors, <i>Neuron</i> 12:529-540 (1994)

EXAMINER	JOLL	U1-	DATE CONSIDERED	

LIST OF PATENTS AND PLANCE OR APPLICANT'S INFORMATION MISTERS STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

	ОТ	HER ART (Including Author, Title, Date, Pertinent Pages, Etc.)		
2	СТ	Moriyoshi et al., Molecular cloning and characterization of the rat NMDA receptor, Nature 354:31-37 (1991)		
2	сυ	Nakajima et al., Direct linkage of three tachykinin receptors to stimulation of both phosphatidylinositol hydrolysis and cyclic AMP cascades in transfected Chinese hamster ovary cells, J. Biol. Chem. 267:2437-2442 (1992)		
2	CV	Nakanishi, Molecular diversity of glutamate receptors and implications for brain function, Science 258:597-602 (1992)		
2	cw	Nicoletti et al., The activation of inositol phospholipid metabolism as a signal-transducing system for excitory amino acids in primary cultures of cerebellar granule cells, J. Neurosci. 6:1905 (1986)		
	СХ	SIBIA/Ciba-Geigy agreement, UCSD Connect (September 16, 1992)		
2	CY	Ogita et al., A possible role of glutathione as an endogenous agonist at the N-methyl-D-aspartate recognition domain in rat brain, J. Neurochem. 64:1088-1096 (1995)		
	CZ	Other News to Note, BioWorld Today, 6 (April 15, 1994)		
2	DA	O'Connor et al., Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitory postsynaptic current: Investigations of the involvement of mGlu receptors, <i>J. Neurosci.</i> 15(3):2013-2020 (1995)		
2		Paoletti and Ascher, Mechanosensitivity of NMDA receptors in cultured mouse central neurons, <i>Neuron 13</i> :645-655 (1995)		
2	DB	Pin et al., Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in <i>Xenopus</i> oocytes, <i>Neurobiology</i> 89:10331-10335 (1992)		
2	DC	Planells-Cases et al., Molecular cloning, functional expression, and pharmacological characterization of an N-methyl-D-aspartate receptor subunit from human brain, Proc. Natl. Acad. Sci. USA 90:5057-5061 (1993)		
	DD	Potter, Sibia to collaborate with Ciba-Geigy, BioWorld Today 3:1 (Sep. 17, 1992)		
2	DE	Tip proteins and pucleic acids: a terminology muddl; and a way		
2	DF	Rueter et al., Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine, Science 267:1491-1494 (1995)		
2-	DG	2. Although description to Mg ²⁺ and channel		

EXAMINER TOLL	C1-	DATE CONSIDERED	4-7-99
			AL MOED

APPLICANT'S INFORMATION DESCLOSUR STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

	ОТ	HER ART (Including Author, Title, Date, Fertiliert 1 agos, 200)
2	DH	Sambrook et al., Molecular Cloning. A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press (1989)
R	DI	Sanes et al., Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos, EMBO J. 5(12):3133-3142 (1986)
2	נם	Sanner et al., NMDA receptor blockade rescues Clarke's and red nucleus neurons after spinal hemisection, J. Neurosci. 14(11):6472-6480 (1995)
2	DK	Schoepp et al., 1S,3R-ACPD-sensitive (metabotropic [³ H]glutamate receptor binding in membranes, Neurosci. Lett. 145:100 (1992)
2	DL	Sills et al., [³ H]CGP 39653: a new N-methyl-D-aspartate antagonist radioligand with low nanomolar affinity in rat brain, Eur. J. Pharmacol. 192:19 (1991)
0	DM	Simon et al., Diversity of G proteins in signal transduction, Science 252:802 (1991)
2	DN	Singaram et al., Dopaminergic defect of enteric nervous system in Parkinson's disease patients with chronic constipation, Lancet 346:861-864 (1995)
2	DO	Sladeczek <i>et al.</i> , Glutamate stimulates inositol phosphate formation in striatial neurones, <i>Nature 317</i> :717 (1985)
2	DP	Smirnova et al., Cloning a complementary DNA fragment of human brain kainate receptor, Dokl. Akad. Nauk SSSR 309(3):745-748 (1989)
1	DQ	Smirnova et al., Characterization of a presynaptic glutamate receptor, Science 262:430-433 (1993)
1	DR	Smirnova et al., Transsynaptic expression of a presynaptic glutamate receptor during hippocampal long-term potentiation, Science 262:433-436 (1993)
0	DS	Sommer et al., Glutamate receptor channels: novel properties and new clones, <i>Trends Pharmacol. Sci</i> 13:291 296 (1992)
-	DT	Steiner et al., Radioimmunoassay for cyclic nucleotides, J. Biol. Chem. 247:1106-1113 (1972)
1	DU	Stillman et al., Replication and supercoiling of simian virus 40DNA in cell extracts from human cells, Mol. Cell. Biol. 5:2051-2060 (1985)
2	DV	Stühmer, Electrophysiological recording from Xenopus oocytes, Meth. Enzymol. 207:319-339 (1992)
2	DW	phorbol esters, J. Biol. Chem. 263(4):1611 (1988)
2	DX	to a street of source isoforms of the NMDA receptor

4-9-99 John UIL DATE CONSIDERED **EXAMINER**

LIST OF PATENTS AND P APPLICANT'S INFORMATION DI STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 **GROUP** Unassigned

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

	OT	HER ART (Including Author, Title, Date, Pertinent Pages, Etc.)
2	DY	Sugiyama et al., A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531 (1987)
2	DZ	Sullivan et al., Identifiction of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor, <i>Neuron</i> 13:929-936 (1994)
2	ΕA	Takano et al., Chromosomal localization of the £1, £3 and \$1 subunit genes of the human NMDA receptor channel, Biochem. Biophys. Res. Commun. 197(2):922-926 (1993)
2	EB	Tamir et al., G-protein βy forms: Identity of β and diversity of γ subunits, Biochemistry 30:3929 (1991)
0-/	EC	Tanabe et al. A family of metabotropic glutamate receptors, Neuron 8:169-179 (1992)
2	ED	Tingley et al., Regulation of NMDA receptor phosphorylation by alternative splicing of the terminal domain, Nature 364:70-73 (1993)
2	EE	Ulas et al., Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson's disease, Alzheimer's disease, and mixed Parkinson's disease/ Alzheimer's disease patients: An autoradiographic study, J. Neurosci. 14(11):6317-6324 (1994)
~	EF	Urlaub et al., Effect of gamma rays at the dihydrofolate reductase locus: Deletions and Inversions. Somatic Cell and Mol. Genetics 12(6):555-566 (1986)
1	EG	Varney et al., Stable expression and characterization of recombinant human dimens NMDA receptor subtypes 1A/2A and 1A/2B in mammalian cells, Soc. Neurosci. Abstr. (1995)
	EH	Vornov et al., Enhancement of NMDA receptor-mediated neurotoxicity in the hippocampal slice by depolarization and ischemia, <i>Brain Res.</i> 555:99-106 (1991)
<u> </u>	EI	Waechter and Baserga, Effect of methylation on expression of microinjected genes, <i>Proc. Natl. Acad. Sci. USA</i> 79:1106-1110 (1982)
	EJ	Wafford et al., Preferential co-assembly of recombinant NMDA receptors composed of three different subunits, NeuroReport 4(12):1347-1349 (1993)
2	EK	Wahlestedt et al., Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions, <i>Nature</i> 363:260-263 (1993)
-V	EL	Wenzel et al., Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C, and 2D in rat brain. NeuroReport 7:45-48 (1995)
92	EM	Wigler et al., DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells, <i>Proc. Natl. Acad. Sci. USA 76</i> :1373-1376 (1979)
2	EN	The strength MK-801 is a potent N-methyl-D-aspartate antagonist, Proc

FXAMINER	TOLL	D. cm	DATE CONSIDERED	49 7
				SUL MADED 60

APPLICANT'S INFORMATION DISCLESSORE STATEMENT

APPLICANT DAGGETT et al.

FILING DATE September 29, 1997 GROUP Unassigned

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

	U	HER ART (including Addior, Trice, Edice, Fortillette 23-4,
2	EO	Yakel et al., Identification of a Ca ²⁺ /calmodulin protein kinase II regulatory phosphorylation site in N-methyl-D-aspartate glutamate receptors, <i>Proc. Natl. Acad. Sci. USA</i> 92:1376-1380 (1995)
2	– EP	Yamazaki, M. et al., Cloning, expression and modulation of a mouse NMDA receptor subunit FEBS Letters 300(1):39 (1992)
92	EQ	Young et al., NMDA receptor losses in putamen from patients with Huntington's Disease, Science 241:981-983 (1988)
2	ER	Younkin et al., Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line, <i>Proc. Natl. Acad. Sci. USA</i> 90:2174-2178 (1993)
2	ES	Zeevalk et al., Chemically induced hypoglycemia and anoxia: Relationship to glutamate receptor-mediated toxicity in retina, J. Pharmacol. Exp. Thera. 253(3):1285-1292 (1990)
2	ET	Zeevalk et al., Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition, J. Pharmacol. Exp. Thera. 257(2):870-878 (1991)
	EU	Zhang et al., Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition, <i>Proc. Natl. Acad. Sci. USA 91</i> :10883-10887 (1994)
2	EV	Zipser et al., Mapping function domains in the promoter region of the herpes thymidine kinase gene, <i>Proc. Natl. Acad. Sci. USA 78(10)</i> :6276–6280 (1981)

EXAMINER JOL Con

DATE CONSIDERED

4-9-99

US 1000774703P1

Creation date: 09-03-2003

Indexing Officer: ETILAHUN - ETHIOPIA TILAHUN

Team: OIPEBackFileIndexing

Dossier: 10007747

Legal Date: 12-28-2001

•		
		Number of pages
No	Doccode	2
1	CTMS	

Total number of pages: 2

Remarks:

Order of re-scan issued on