

最优化方法

东南大学 计算机&人工智能学院 宋沫飞 songmf@seu.edu.cn

凸集

- 仿射集合
- 凸集
- 重要案例
- 保凸运算
- 广义不等式
- 分离与支撑超平面
- 对偶锥与广义不等式

□ 经过 x_1 和 x_2 的直线所有点

□ 经过 x_1 和 x_2 的直线所有点

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbf{R})$$

□ 经过 x_1 和 x_2 的直线所有点

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbf{R})$$

□ 仿射集合: 经集合中任意两点的直线仍在该集合中

$$\Box$$
 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合

- \Box 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合
- □仿射集合的扩展定义

- \Box 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合
- □仿射集合的扩展定义
 - *包含集合中任意点的仿射组合的集合

- \Box 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合
- □仿射集合的扩展定义
 - *包含集合中任意点的仿射组合的集合
 - ❖是否等价: 经集合中任意两点的直线在该集合中

- \Box 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合
- □仿射集合的扩展定义
 - *包含集合中任意点的仿射组合的集合
 - ❖是否等价: 经集合中任意两点的直线在该集合中
- □证明: 仿射集合C内 x_1 , x_2 , x_3 , $\theta_1 + \theta_2 + \theta_3 = 1$

- \Box 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合
- □仿射集合的扩展定义
 - *包含集合中任意点的仿射组合的集合
 - ❖是否等价: 经集合中任意两点的直线在该集合中
- □证明: 仿射集合C内 x_1 , x_2 , x_3 , $\theta_1 + \theta_2 + \theta_3 = 1$

*考虑
$$\frac{\theta_1}{\theta_1 + \theta_2} x_1 + \frac{\theta_2}{\theta_1 + \theta_2} x_2 \in C$$

- \Box 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合
- □仿射集合的扩展定义
 - ❖包含集合中任意点的仿射组合的集合
 - ❖是否等价: 经集合中任意两点的直线在该集合中
- □证明: 仿射集合C内 x_1 , x_2 , x_3 , $\theta_1 + \theta_2 + \theta_3 = 1$

*考虑
$$\frac{\theta_1}{\theta_1 + \theta_2} x_1 + \frac{\theta_2}{\theta_1 + \theta_2} x_2 \in C$$

$$(\theta_1 + \theta_2)(\frac{\theta_1}{\theta_1 + \theta_2}x_1 + \frac{\theta_2}{\theta_1 + \theta_2}x_2) + (1 - \theta_1 - \theta_2)x_3 \in C$$

- \Box 设 $\theta_1 + \ldots + \theta_k = 1$, 形如 $\theta_1 x_1 + \ldots + \theta_k x_k$ 的点为仿射组合
- □仿射集合的扩展定义
 - *包含集合中任意点的仿射组合的集合
 - ❖是否等价: 经集合中任意两点的直线在该集合中
- □证明: 仿射集合C内 x_1 , x_2 , x_3 , $\theta_1 + \theta_2 + \theta_3 = 1$

*考虑
$$\frac{\theta_1}{\theta_1 + \theta_2} x_1 + \frac{\theta_2}{\theta_1 + \theta_2} x_2 \in C$$

$$(\theta_1 + \theta_2)(\frac{\theta_1}{\theta_1 + \theta_2}x_1 + \frac{\theta_2}{\theta_1 + \theta_2}x_2) + (1 - \theta_1 - \theta_2)x_3 \in C$$

$$\bullet \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_x \in C$$

□ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 - \theta)x_2 \in C$

- □ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 \theta)x_2 \in C$

- □ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 \theta)x_2 \in C$
- □考虑点 $\alpha x_1 + \beta x_2$ 是否属于C
- □ $V = C x_0 = \{x x_0 | x \in C\}$:与C相关的子空间

- □ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 \theta)x_2 \in C$
- □考虑点 $\alpha x_1 + \beta x_2$ 是否属于C
- □ $V=C-x_0=\{x-x_0|x\in C\}$:与C相关的子空间
 - ❖关于加法和数乘是封闭的

- □ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 \theta)x_2 \in C$
- \square 考虑点 $\alpha x_1 + \beta x_2$ 是否属于C
- □ $V=C-x_0=\{x-x_0|x\in C\}$:与C相关的子空间
 - ❖关于加法和数乘是封闭的
 - ❖对于 $v_1, v_2 \in V, \alpha, \beta \in R$,则 $\alpha v_1 + \beta v_2 \in V$

- □ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 \theta)x_2 \in C$
- \square 考虑点 $\alpha x_1 + \beta x_2$ 是否属于C
- □ $V=C-x_0=\{x-x_0|x\in C\}$:与C相关的子空间
 - ❖关于加法和数乘是封闭的
 - ❖对于 $v_1, v_2 \in V, \alpha, \beta \in R$,则 $\alpha v_1 + \beta v_2 \in V$

$$\alpha(v_1 + x_0) + \beta(v_2 + x_0) + (1 - \alpha - \beta)x_0 \in C$$

- □ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 \theta)x_2 \in C$
- \square 考虑点 $\alpha x_1 + \beta x_2$ 是否属于C
- □ $V=C-x_0=\{x-x_0|x\in C\}$:与C相关的子空间
 - ❖关于加法和数乘是封闭的
 - ❖对于 $v_1, v_2 \in V, \alpha, \beta \in R$,则 $\alpha v_1 + \beta v_2 \in V$

$$\alpha(v_1 + x_0) + \beta(v_2 + x_0) + (1 - \alpha - \beta)x_0 \in C$$

$$\alpha v_1 + \beta v_2 + x_0 \in C$$

- □ 仿射集合C内 x_1 和 x_2 ,则 $\theta x_1 + (1 \theta)x_2 \in C$
- □考虑点 $\alpha x_1 + \beta x_2$ 是否属于C
- □ $V=C-x_0=\{x-x_0|x\in C\}$:与C相关的子空间
 - ❖关于加法和数乘是封闭的
 - ❖对于 $v_1, v_2 \in V, \alpha, \beta \in R$,则 $\alpha v_1 + \beta v_2 \in V$

$$\alpha(v_1 + x_0) + \beta(v_2 + x_0) + (1 - \alpha - \beta)x_0 \in C$$

$$\alpha v_1 + \beta v_2 + x_0 \in C$$

$$\alpha v_1 + \beta v_2 \in V$$

□线性方程组的解集 $C=\{x \mid Ax=b\}$ 都是仿射集合

- 线性方程组的解集 $C=\{x \mid Ax=b\}$ 都是仿射集合
 - *证明: 对于 $x_1, x_2 \in C$, 则 $Ax_1=b$, $Ax_2=b$

- 线性方程组的解集 $C=\{x \mid Ax=b\}$ 都是仿射集合
 - *证明: 对于 $x_1, x_2 \in C$, 则 $Ax_1=b$, $Ax_2=b$

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2$$
$$= \theta b + (1 - \theta)b$$
$$= b,$$

- □线性方程组的解集 $C=\{x \mid Ax=b\}$ 都是仿射集合
 - *证明: 对于 $x_1, x_2 \in C$, 则 $Ax_1=b$, $Ax_2=b$

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2$$
$$= \theta b + (1 - \theta)b$$
$$= b,$$

*与C相关的子空间V:

- 线性方程组的解集 $C=\{x \mid Ax=b\}$ 都是仿射集合
 - *证明: 对于 $x_1, x_2 \in C$, 则 $Ax_1=b$, $Ax_2=b$

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2$$
$$= \theta b + (1 - \theta)b$$
$$= b,$$

 \bullet 与C相关的子空间V:

$$V = \{x - x_0 | x \in C\} = \{x - x_0 | Ax = b\}, Ax_0 = b$$

- 线性方程组的解集 $C=\{x \mid Ax=b\}$ 都是仿射集合
 - *证明: 对于 $x_1, x_2 \in C$, 则 $Ax_1=b$, $Ax_2=b$

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2$$
$$= \theta b + (1 - \theta)b$$
$$= b,$$

*与C相关的子空间V:

$$V = \{x - x_0 | x \in C\} = \{x - x_0 | Ax = b\}, Ax_0 = b$$

$$= \{x - x_0 | A(x - x_0) = 0\} = \{y | Ay = 0\}$$

- □线性方程组的解集 $C=\{x \mid Ax=b\}$ 都是仿射集合
 - *证明: 对于 $x_1, x_2 \in C$, 则 $Ax_1=b$, $Ax_2=b$

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2$$
$$= \theta b + (1 - \theta)b$$
$$= b,$$

*与C相关的子空间V:

$$V = \{x - x_0 | x \in C\} = \{x - x_0 | Ax = b\}, Ax_0 = b$$

$$= \{x - x_0 | A(x - x_0) = 0\} = \{y | Ay = 0\}$$

□任意仿射集合都可以表示为一个线性方程组的解集

 \Box 任意集合C,构造尽可能小的仿射集

- \Box 任意集合C,构造尽可能小的仿射集
- □仿射包

- \Box 任意集合C,构造尽可能小的仿射集
- □仿射包

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1\}$$

- \Box 任意集合C,构造尽可能小的仿射集
- □仿射包

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1\}$$

- \Box 任意集合C,构造尽可能小的仿射集
- □仿射包

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1\}$$

- \Box 任意集合C,构造尽可能小的仿射集
- □仿射包

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1\}$$

- \Box 任意集合C,构造尽可能小的仿射集
- □仿射包

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1\}$$

- \Box 任意集合C,构造尽可能小的仿射集
- □仿射包

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1\}$$

□连接x₁和x₂的线段所有点

$$x = \theta x_1 + (1 - \theta)x_2$$

*此处: $0 \le \theta \le 1$

□连接x₁和x₂的线段所有点

$$x = \theta x_1 + (1 - \theta)x_2$$

- *此处: $0 \le \theta \le 1$
- □ 凸集:集合中任意两点间的线段仍然集合中

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

□连接x₁和x₂的线段所有点

$$x = \theta x_1 + (1 - \theta)x_2$$

- *此处: $0 \le \theta \le 1$
- □ 凸集:集合中任意两点间的线段仍然集合中

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

□ 例:

□连接x₁和x₂的线段所有点

$$x = \theta x_1 + (1 - \theta)x_2$$

- *此处: $0 \le \theta \le 1$
- □ 凸集:集合中任意两点间的线段仍然集合中

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

□ 例:

 \square 点 x_1,\ldots,x_k 的凸组合:满足下列形式的点

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

*此处: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$

 \Box 点 x_1,\ldots,x_k 的凸组合:满足下列形式的点

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

- *此处: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$
- \square 凸包conv S: 集合S中所有点的凸组合的集合

 \Box 点 x_1,\ldots,x_k 的凸组合:满足下列形式的点

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

- *此处: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$
- \Box 凸包conv S: 集合S中所有点的凸组合的集合

$$\{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\}$$

 \square 点 x_1,\ldots,x_k 的凸组合:满足下列形式的点

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

- *此处: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$
- □ 凸包**conv** S: 集合S中所有点的凸组合的集合 $\{\theta_1x_1 + \dots + \theta_kx_k \mid x_i \in C, \ \theta_i \geq 0, \ i = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\}$

 \Box C是锥,则对于 $x \in C$ and $\theta \ge 0$,有 $\theta x \in C$

- $\Box C$ 是锥,则对于 $x \in C$ and $\theta \ge 0$,有 $\theta x \in C$
- \Box 点 x_1 和 x_2 的锥组合(非负线性组合):

- $\Box C$ 是锥,则对于 $x \in C$ and $\theta \ge 0$,有 $\theta x \in C$
- \Box 点 x_1 和 x_2 的锥组合(非负线性组合): $x = \theta_1 x_1 + \theta_2 x_2$

- $\Box C$ 是锥,则对于 $x \in C$ and $\theta \ge 0$,有 $\theta x \in C$
- □ $点x_1$ 和 x_2 的锥组合(非负线性组合):

$$x = \theta_1 x_1 + \theta_2 x_2$$
 $\theta_1 \ge 0, \ \theta_2 \ge 0$

- $\Box C$ 是锥,则对于 $x \in C$ and $\theta \ge 0$,有 $\theta x \in C$
- □点 x_1 和 x_2 的锥组合(非负线性组合):

$$x = \theta_1 x_1 + \theta_2 x_2$$
 $\theta_1 \ge 0, \ \theta_2 \ge 0$

- $\Box C$ 是锥,则对于 $x \in C$ and $\theta \ge 0$,有 $\theta x \in C$
- □点 x_1 和 x_2 的锥组合(非负线性组合):

$$x = \theta_1 x_1 + \theta_2 x_2$$
 $\theta_1 \ge 0, \ \theta_2 \ge 0$

- $\Box C$ 是锥,则对于 $x \in C$ and $\theta \ge 0$,有 $\theta x \in C$
- □点 x_1 和 x_2 的锥组合(非负线性组合):

$$x = \theta_1 x_1 + \theta_2 x_2$$
 $\theta_1 \ge 0, \ \theta_2 \ge 0$

■ 锥包:集合中所有元素的锥组合的集合 $\{\theta_1x_1 + \dots + \theta_kx_k \mid x_i \in C, \ \theta_i \geq 0, \ i = 1,\dots,k\}$

 \Box 仿射组合: $\theta_1 + \cdots + \theta_k = 1$

- □ 仿射组合: $\theta_1 + \cdots + \theta_k = 1$
- 口组合: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$

- □ 仿射组合: $\theta_1 + \cdots + \theta_k = 1$
- 口组合: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$
- □ 维组合: $\theta_1, \ldots, \theta_k \geq 0$

- □ 仿射组合: $\theta_1 + \cdots + \theta_k = 1$
- □ 凸组合: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$
- 维组合: $\theta_1, \ldots, \theta_k \geq 0$
- $\Box C = \{x\}$

- □ 仿射组合: $\theta_1 + \cdots + \theta_k = 1$
- □ 凸组合: $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$
- 维组合: $\theta_1, \ldots, \theta_k \geq 0$
- $\Box C = \{x\}$

□超平面

□超平面

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

□超平面

$${x \mid a^T x = b} \ (a \neq 0)$$

□超平面

$${x \mid a^T x = b} \ (a \neq 0)$$

□ 半空间

□超平面

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

□ 半空间

$$\{x \mid a^T x \leq b\} \ (a \neq 0)$$

□超平面

$${x \mid a^T x = b} \ (a \neq 0)$$

□ 半空间

$$\{x \mid a^T x \le b\} \ (a \ne 0)$$

❖ a: 法向量

超平面和半空间

□超平面

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

□ 半空间

$$\{x \mid a^T x \le b\} \ (a \ne 0)$$

❖ a: 法向量

超平面和半空间

□超平面

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

□ 半空间

$$\{x \mid a^T x \le b\} \ (a \ne 0)$$

❖ a: 法向量

*超平面是仿射集合和凸集

超平面和半空间

□超平面

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

□ 半空间

$$\{x \mid a^T x \le b\} \ (a \ne 0)$$

❖ a: 法向量

- *超平面是仿射集合和凸集
- *半空间是凸集

 \Box (Euclid) 球: x_c 为球心,r 为半径

(Euclid)球: x_c 为球心, r为半径 $B(x_c,r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$

- **(Euclid)**球: x_c 为球心, r为半径 $B(x_c,r) = \{x \mid ||x x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$
- □证明: 球是凸集

- **(Euclid)**球: x_c 为球心, r为半径 $B(x_c,r) = \{x \mid ||x x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$
- □证明: 球是凸集 $\|x_1 - x_c\|_2 \le r \quad \|x_2 - x_c\|_2 \le r \quad 0 \le \theta \le 1$

- **Euclid)**球: x_c 为球心, r为半径 $B(x_c,r) = \{x \mid ||x x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$
- 证明: 球是凸集 $\|x_1 - x_c\|_2 \le r \|x_2 - x_c\|_2 \le r \quad 0 \le \theta \le 1$ $\|\theta x_1 + (1 - \theta)x_2 - x_c\|_2$

- **(Euclid)**球: x_c 为球心, r为半径 $B(x_c,r) = \{x \mid ||x x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$
- 证明: 球是凸集 $\|x_1 - x_c\|_2 \le r \|x_2 - x_c\|_2 \le r \quad 0 \le \theta \le 1$ $\|\theta x_1 + (1 - \theta)x_2 - x_c\|_2$ $= \|\theta(x_1 - x_c) + (1 - \theta)(x_2 - x_c)\|_2$

- **(Euclid)**球: x_c 为球心, r为半径 $B(x_c,r) = \{x \mid ||x x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$
- 证明: 球是凸集 $\|x_1 - x_c\|_2 \le r \quad \|x_2 - x_c\|_2 \le r \quad 0 \le \theta \le 1$ $\|\theta x_1 + (1 - \theta)x_2 - x_c\|_2$ $= \|\theta(x_1 - x_c) + (1 - \theta)(x_2 - x_c)\|_2$ $\le \theta \|x_1 - x_c\|_2 + (1 - \theta)\|x_2 - x_c\|_2$

- **(Euclid)**球: x_c 为球心, r为半径 $B(x_c,r) = \{x \mid ||x x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$
- ┛证明: 球是凸集 $||x_1 - x_c||_2 \le r ||x_2 - x_c||_2 \le r 0 \le \theta \le 1$ $\|\theta x_1 + (1-\theta)x_2 - x_c\|_2$ $= \|\theta(x_1-x_c)+(1-\theta)(x_2-x_c)\|_2$ $\leq \theta \|x_1 - x_c\|_2 + (1 - \theta) \|x_2 - x_c\|_2$ < r

□椭球:

$${x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1}$$

□椭球:

$${x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1}$$

□椭球:

$${x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1}$$

回例
$$\xi = \{x \mid x^T \begin{cases} 4 & 0 \\ 0 & 1 \end{cases}^{-1} x \le 1\}$$

□椭球:

$${x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1}$$

回例
$$\xi = \{x \mid x^T \begin{cases} 4 & 0 \\ 0 & 1 \end{cases}^{-1} x \le 1\}$$

□椭球:

$${x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1}$$

回例
$$\xi = \{x \mid x^T \begin{cases} 4 & 0 \\ 0 & 1 \end{cases}^{-1} x \le 1\}$$

□椭球:

$${x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1}$$

回例
$$\xi = \{x \mid x^T \begin{cases} 4 & 0 \\ 0 & 1 \end{cases}^{-1} x \le 1\}$$

$$\xi = \{(x_1, x_2) \mid \frac{x_1^2}{4} + x_2^2 \le 1\}$$

□ 其他表示:
$$\{x_c + Au \mid ||u||_2 \le 1\}$$
 A非奇异的方阵

□范数:满足如下条件的函数

□ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$

- □ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$
- □ 范数球: x_c 为球心, r为半径

- □ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$
- □ 范数球: x_c 为球心, r为半径 $\{x \mid ||x x_c|| \le r\}$

- □ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$
- □ 范数球: x_c 为球心, r为半径 $\{x \mid ||x x_c|| \le r\}$
- □ 范数锥:

- □ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$
- □ 范数球: x_c 为球心, r为半径 $\{x \mid ||x x_c|| \le r\}$
- □ 范数锥: $\{(x,t) \mid ||x|| \le t\}$

- □ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$
- □ 范数球: x_c 为球心, r为半径 $\{x \mid ||x x_c|| \le r\}$
- □ 范数锥: $\{(x,t) \mid ||x|| \le t\}$
- □Euclid锥为二阶锥

- □ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$
- □ 范数球: x_c 为球心, r为半径

$$\{x \mid ||x - x_c|| \le r\}$$

- □ 范数锥: $\{(x,t) \mid ||x|| \le t\}$
- □Euclid锥为二阶锥

- □ 范数: 满足如下条件的函数 $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ $||x + y|| \le ||x|| + ||y||$
- □ 范数球: x_c 为球心, r为半径

$$\{x \mid ||x - x_c|| \le r\}$$

- □ 范数锥: $\{(x,t) \mid ||x|| \le t\}$
- □Euclid锥为二阶锥
- □范数球和范数锥均为凸集

□有限个线性等式和不等式的解集:

$$Ax \leq b, \qquad Cx = d$$

□有限个线性等式和不等式的解集:

$$Ax \leq b, \qquad Cx = d$$

 \square ($A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, \preceq 紧凑表达式)

┛有限个线性等式和不等式的解集:

$$Ax \leq b$$

$$Ax \prec b$$
, $Cx = d$

 \square ($A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, \preceq 紧凑表达式)

┛有限个线性等式和不等式的解集:

$$Ax \leq b, \qquad Cx = d$$

$$Cx = d$$

 \square ($A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, \preceq 紧凑表达式)

■多面体是有限个半空间和超平面的交集

单纯形

单纯形

□ \mathbf{R}^n 空间中选择 $\mathbf{v_0}$ … $\mathbf{v_k}$ 共 $\mathbf{k+1}$ 个点,其中 $\mathbf{v_1}$ - $\mathbf{v_0}$ … $\mathbf{v_k}$ - $\mathbf{v_0}$ 线 性无关,则与上述点相关的单纯形为

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

- □ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为
- $C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$
 - □ 例: **R**²空间

- □ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为
- $C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$
 - □ 例: **R**²空间

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

□ \mathbf{R}^n 空间中选择 $v_0...v_k$ 共k+1个点,其中 $v_1-v_0...v_k-v_0$ 线性无关,则与上述点相关的单纯形为

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}$$

 \square S^n 是n 阶对称矩阵集合

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^{n} = \{X \in S^{n} \mid X \succ 0\}$ 对称正定矩阵集合

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^n = \{X \in S^n \mid X \succ 0\}$ 对称正定矩阵集合
- \Box 证明: S_{+}^{n} 是凸锥

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^{n} = \{X \in S^{n} \mid X \succ 0\}$ 对称正定矩阵集合
- \Box 证明: S_{+}^{n} 是凸锥
 - 拳等价: 若 $\theta_1, \theta_2 \ge 0$ 且 $A, B \in \mathbf{S}_+^n, \theta_1 A + \theta_2 B \in \mathbf{S}_+^n$

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^n = \{X \in S^n \mid X \succ 0\}$ 对称正定矩阵集合
- \Box 证明: S_{+}^{n} 是凸锥
 - 拳等价: 若 $\theta_1, \theta_2 \ge 0$ 且 $A, B \in \mathbf{S}_+^n, \theta_1 A + \theta_2 B \in \mathbf{S}_+^n$
 - ❖半正定矩阵A: 对任意n维向量x, 有 $x^TAx \ge 0$

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^{n} = \{X \in S^{n} \mid X \succ 0\}$ 对称正定矩阵集合
- \Box 证明: S_{+}^{n} 是凸锥
 - 拳等价: 若 $\theta_1, \theta_2 \ge 0$ 且 $A, B \in \mathbf{S}_+^n, \theta_1 A + \theta_2 B \in \mathbf{S}_+^n$
 - ❖半正定矩阵A: 对任意n维向量x, 有 $x^TAx \ge 0$
 - ❖则有 x^TAx ≥**0**, x^TBx ≥**0**

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^n = \{X \in S^n \mid X \succ 0\}$ 对称正定矩阵集合
- \Box 证明: S_{+}^{n} 是凸锥
 - 拳等价: 若 $\theta_1, \theta_2 \ge 0$ 且 $A, B \in \mathbf{S}_+^n, \theta_1 A + \theta_2 B \in \mathbf{S}_+^n$
 - ❖半正定矩阵A: 对任意n维向量x, 有 $x^TAx \ge 0$
 - **❖**则有 x^TAx ≥**0**, x^TBx ≥**0**

$$x^T(\theta_1 A + \theta_2 B)x$$

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^{n} = \{X \in S^{n} \mid X \succ 0\}$ 对称正定矩阵集合
- \Box 证明: S_{+}^{n} 是凸锥
 - *等价: 若 $\theta_1, \theta_2 \ge 0$ 且 $A, B \in \mathbf{S}_+^n, \theta_1 A + \theta_2 B \in \mathbf{S}_+^n$
 - ❖半正定矩阵A: 对任意n维向量x, 有 $x^TAx \ge 0$
 - **❖**则有 x^TAx ≥**0**, x^TBx ≥**0**

$$x^{T}(\theta_1 A + \theta_2 B)x = \theta_1 x^{T} A x + \theta_2 x^{T} B x$$

- \square S^n 是n 阶对称矩阵集合
- **□** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ 对称半正定矩阵集合
- □ $S_{++}^{n} = \{X \in S^{n} \mid X \succ 0\}$ 对称正定矩阵集合
- \Box 证明: S_{+}^{n} 是凸锥
 - *等价: 若 $\theta_1, \theta_2 \ge 0$ 且 $A, B \in \mathbf{S}_+^n, \theta_1 A + \theta_2 B \in \mathbf{S}_+^n$
 - ❖半正定矩阵A: 对任意n维向量x, 有 $x^TAx \ge 0$
 - **❖**则有 x^TAx ≥**0**, x^TBx ≥**0**

$$x^{T}(\theta_{1}A + \theta_{2}B)x = \theta_{1}x^{T}Ax + \theta_{2}x^{T}Bx$$
$$\geq 0$$

$$\square$$
 $n=1$ 时

- \square n=1 时
 - *对称矩阵集合是实数集

- □ *n*=1时
 - ❖对称矩阵集合是实数集
 - ❖对称半正定矩阵为非负实数集

- □ *n*=1时
 - ❖对称矩阵集合是实数集
 - *对称半正定矩阵为非负实数集
 - ❖对称正定矩阵为正实数集

- \square n=1 时
 - ❖对称矩阵集合是实数集
 - *对称半正定矩阵为非负实数集
 - *对称正定矩阵为正实数集
- □ *n*=2时

- □ *n*=1时
 - ❖对称矩阵集合是实数集
 - *对称半正定矩阵为非负实数集
 - *对称正定矩阵为正实数集
- □ n=2目寸

$$\left[\begin{array}{cc} x & y \\ y & z \end{array}\right] \in \mathbf{S}_+^2$$

□如何确定集合*C*是否凸集?

- □如何确定集合C是否凸集?
- □方式1:运用定义

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

- □如何确定集合C是否凸集?
- □方式1:运用定义

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

□方式2:是否可通过对一些简单的凸集(超平面、 半空间、范数球等)进行保凸运算获取集合*C*?

- □如何确定集合C是否凸集?
- □方式1:运用定义

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

- □方式2:是否可通过对一些简单的凸集(超平面、 半空间、范数球等)进行保凸运算获取集合*C*?
 - *交集

- □如何确定集合C是否凸集?
- □方式1:运用定义

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

- □方式2:是否可通过对一些简单的凸集(超平面、 半空间、范数球等)进行保凸运算获取集合*C*?
 - *交集
 - * 仿射函数

保凸运算

- □如何确定集合C是否凸集?
- □方式1:运用定义

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

- □方式2:是否可通过对一些简单的凸集(超平面、 半空间、范数球等)进行保凸运算获取集合*C*?
 - *交集
 - * 仿射函数
 - ◆透视函数

保凸运算

- □如何确定集合C是否凸集?
- □方式1:运用定义

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

- □方式2:是否可通过对一些简单的凸集(超平面、 半空间、范数球等)进行保凸运算获取集合*C*?
 - *交集
 - ❖ 仿射函数
 - ◆透视函数
 - *线性分式

□任意数目的凸集的交集仍为凸集

- □任意数目的凸集的交集仍为凸集
- □ 例:

- □任意数目的凸集的交集仍为凸集
- □ 例:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

- □任意数目的凸集的交集仍为凸集
- □ 例:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

□此处:

- □任意数目的凸集的交集仍为凸集
- □ 例:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

- □任意数目的凸集的交集仍为凸集
- □ 例:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

- □ 若m = 2:

- □任意数目的凸集的交集仍为凸集
- □ 例:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

- □ 若m = 2:

igcup 设函数 $f: \mathbf{R}^n \to \mathbf{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$

- igcup 设函数 $f: \mathbf{R}^n \to \mathbf{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$
- □则凸集在函数f下的象为凸集

- igcup 设函数 $f: \mathbf{R}^n \to \mathbf{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$
- □ 则凸集在函数f下的象为凸集 $S \subseteq \mathbf{R}^n$ 为凸 \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ 为凸

- igcup 设函数 $f: \mathbf{R}^n \to \mathbf{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$
- □ 则凸集在函数f下的象为凸集 $S \subseteq \mathbf{R}^n$ 为凸 \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ 为凸
- □ 类似的, 凸集在函数f下的原象为凸集

- \square 设函数 $f: \mathbb{R}^n \to \mathbb{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- □ 则凸集在函数f下的象为凸集 $S \subseteq \mathbf{R}^n$ 为凸 \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ 为凸

- \square 设函数 $f: \mathbb{R}^n \to \mathbb{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbf{R}^{m \times n}$. $b \in \mathbf{R}^m$
- ┛则凸集在函数f下的象为凸集 $S \subseteq \mathbf{R}^n$ 为凸 \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ 为凸
- \Box 类似的,凸集在函数f 下的原象为凸集 $C \subseteq \mathbf{R}^m$ 为凸 \Longrightarrow $f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ 为凸
- □ 例:

- \square 设函数 $f: \mathbb{R}^n \to \mathbb{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- □ 则凸集在函数f下的象为凸集 $S \subseteq \mathbb{R}^n$ 为凸 \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ 为凸
- □ 类似的,凸集在函数f下的原象为凸集 $C \subseteq \mathbf{R}^m$ 为凸 \Longrightarrow $f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ 为凸 \Box 例:
- ❖缩放 $\alpha S = \{\alpha x \mid x \in S\}$

- \square 设函数 $f: \mathbf{R}^n \to \mathbf{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$
- □ 则凸集在函数f下的象为凸集 $S \subseteq \mathbb{R}^n$ 为凸 \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ 为凸
- 类似的,凸集在函数f下的原象为凸集 $C \subseteq \mathbf{R}^m \text{ 为凸 } \Longrightarrow f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ 为凸}$
- □ 例:
 - 缩放 $\alpha S = \{ \alpha x \mid x \in S \}$
 - *平移 $S + a = \{x + a \mid x \in S\}$

- \square 设函数 $f: \mathbb{R}^n \to \mathbb{R}^m$ 为仿射函数,即f(x) = Ax + b 其中 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- □ 则凸集在函数f下的象为凸集 $S \subseteq \mathbb{R}^n$ 为凸 \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ 为凸
- 型类似的,凸集在函数f下的原象为凸集

$$C \subseteq \mathbf{R}^m$$
 为凸 \Longrightarrow $f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ 为凸

- ┛ 例:
 - 缩放 $\alpha S = \{ \alpha x \mid x \in S \}$
 - *平移 $S + a = \{x + a \mid x \in S\}$
 - ❖ 投影 $T = \{x_1 \in \mathbf{R}^m \mid (x_1, x_2) \in S \text{ for some } x_2 \in \mathbf{R}^n \}$

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

 $S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

 $S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$
 $f(x_1, x_2) = x_1 + x_2$

□两个凸集的和是凸的:

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

 $S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$
 $f(x_1, x_2) = x_1 + x_2$

□ 线性矩阵不等式的解 $A_i, B \in \mathbf{S}^p$ $\{x \mid x_1A_1 + \dots + x_mA_m \leq B\}$

□两个凸集的和是凸的:

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

 $S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$
 $f(x_1, x_2) = x_1 + x_2$

□ 线性矩阵不等式的解 $A_i, B \in \mathbf{S}^p$ $\{x \mid x_1 A_1 + \dots + x_m A_m \leq B\}$ $A(x) = x_1 A_1 + \dots + x_n A_n \leq B$

□两个凸集的和是凸的:

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

 $S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$
 $f(x_1, x_2) = x_1 + x_2$

□ 线性矩阵不等式的解 $A_i, B \in \mathbf{S}^p$ $\{x \mid x_1 A_1 + \dots + x_m A_m \leq B\}$ $A(x) = x_1 A_1 + \dots + x_n A_n \leq B$ f(x) = B - A(x)

□两个凸集的和是凸的:

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

 $S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$
 $f(x_1, x_2) = x_1 + x_2$

□ 线性矩阵不等式的解 $A_i, B \in \mathbf{S}^p$ $\{x \mid x_1 A_1 + \dots + x_m A_m \leq B\}$ $A(x) = x_1 A_1 + \dots + x_n A_n \leq B$ $f(x) = B - A(x) \quad f: \mathbf{R}^n \to \mathbf{S}^m$

□两个凸集的和是凸的:

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

 $S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$
 $f(x_1, x_2) = x_1 + x_2$

受性矩阵不等式的解 $A_i, B \in \mathbf{S}^p$ $\{x \mid x_1 A_1 + \dots + x_m A_m \leq B\}$ $A(x) = x_1 A_1 + \dots + x_n A_n \leq B$ f(x) = B - A(x) $f: \mathbf{R}^n \to \mathbf{S}^m$ $f(x) \in \mathbf{S}^n_+$

$$\mathcal{E} = \{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \}$$

$$\mathcal{E} = \{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\} \ P \in \mathbf{S}_{++}^n$$

$$\mathcal{E} = \{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\} \ P \in \mathbf{S}_{++}^n$$
$$\{u \mid ||u||_2 \le 1\}$$

$$\mathcal{E} = \{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\} \ P \in \mathbf{S}_{++}^n$$
$$\{u \mid ||u||_2 \le 1\}$$
$$f(u) = P^{1/2} u + x_c$$

□椭球是球的仿射映射

$$\mathcal{E} = \{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\} \ P \in \mathbf{S}_{++}^n$$

$$\{u \mid ||u||_2 \le 1\}$$

$$f(u) = P^{1/2} u + x_c$$

$$\{f(u) \mid ||u||_2 \le 1\}$$

■椭球是球的仿射映射

$$\mathcal{E} = \{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\} \ P \in \mathbf{S}_{++}^n$$

$$\{u \mid ||u||_2 \le 1\}$$

$$f(u) = P^{1/2} u + x_c$$

$$\{f(u) \mid ||u||_2 \le 1\}$$

$$= \{P^{1/2} u + x_c \mid ||u||_2 \le 1\} \ \Leftrightarrow x = P^{1/2} u + x_c$$

■椭球是球的仿射映射

$$\mathcal{E} = \{x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1\} \ P \in \mathbf{S}_{++}^n$$

$$\{u \mid ||u||_2 \le 1\}$$

$$f(u) = P^{1/2}u + x_c$$

$$\{f(u) \mid ||u||_2 \le 1\}$$

$$= \{P^{1/2}u + x_c \mid ||u||_2 \le 1\} \ \Leftrightarrow x = P^{1/2}u + x_c$$

$$= \{x \mid ||P^{-1/2}(x - x_c)||_2 \le 1\}$$

■椭球是球的仿射映射

$$\mathcal{E} = \{x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1\} \ P \in \mathbf{S}_{++}^n$$

$$\{u \mid ||u||_2 \le 1\}$$

$$f(u) = P^{1/2}u + x_c$$

$$\{f(u) \mid ||u||_2 \le 1\}$$

$$= \{P^{1/2}u + x_c \mid ||u||_2 \le 1\} \ \Leftrightarrow x = P^{1/2}u + x_c$$

$$= \{x \mid ||P^{-1/2}(x - x_c)||_2 \le 1\}$$

$$= \{x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1\}$$

 \Box 透视函数 $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$

透视函数
$$P: \mathbf{R}^{n+1} \to \mathbf{R}^n$$
 $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$

- **登视函数** $P : \mathbf{R}^{n+1} \to \mathbf{R}^n$ $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$
- □凸集在透视函数下的象和原象均为凸集

- □ 透视函数 $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$ $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$
- □凸集在透视函数下的象和原象均为凸集

- **登视函数** $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$ $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$
- □凸集在透视函数下的象和原象均为凸集

- □ 透视函数 $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$ $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$
- □凸集在透视函数下的象和原象均为凸集

- **登视函数** $P : \mathbf{R}^{n+1} \to \mathbf{R}^n$ $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$
- □凸集在透视函数下的象和原象均为凸集

- **登视函数** $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$ $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$
- □凸集在透视函数下的象和原象均为凸集

- **登视函数** $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$ $P(x,t) = x/t, \quad \mathbf{dom} P = \{(x,t) \mid t > 0\}$
- □凸集在透视函数下的象和原象均为凸集

□考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$

- □ 考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$
- □ 线段表达式: $0 \le \theta \le 1$, $\theta X + (1 \theta)Y$

- □ 考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$
- □ 线段表达式: $0 \le \theta \le 1$, $\theta X + (1 \theta)Y$
- □证明: 透视函数P变换下仍为线段

- □ 考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$
- □ 线段表达式: $0 \le \theta \le 1$, $\theta X + (1 \theta)Y$
- □证明: 透视函数P变换下仍为线段
- □考虑点X和Y的凸组合及其透视函数变换

- □ 考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$
- □ 线段表达式: $0 \le \theta \le 1$, $\theta X + (1 \theta)Y$
- □证明: 透视函数P变换下仍为线段
- □考虑点X和Y的凸组合及其透视函数变换

$$P(\theta X + (1 - \theta)Y) = \frac{\theta x + (1 - \theta)y}{\theta x_{n+1} + (1 - \theta)y_{n+1}}$$

- □ 考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$
- □ 线段表达式: $0 \le \theta \le 1$, $\theta X + (1 \theta)Y$
- □证明: 透视函数P变换下仍为线段
- □考虑点X和Y的凸组合及其透视函数变换

$$P(\theta X + (1 - \theta)Y) = \frac{\theta x + (1 - \theta)y}{\theta x_{n+1} + (1 - \theta)y_{n+1}}$$

$$= \frac{\theta x_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{x}{x_{n+1}} + \frac{\theta y_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{y}{y_{n+1}}$$

- □ 考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$
- □ 线段表达式: $0 \le \theta \le 1$, $\theta X + (1 \theta)Y$
- □证明:透视函数P变换下仍为线段
- □考虑点X和Y的凸组合及其透视函数变换

$$P(\theta X + (1 - \theta)Y) = \frac{\theta x + (1 - \theta)y}{\theta x_{n+1} + (1 - \theta)y_{n+1}}$$

$$= \frac{\theta x_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{x}{x_{n+1}} + \frac{\theta y_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{y}{y_{n+1}}$$

$$= \mu \qquad P(X) + (1 - \mu) \qquad P(Y)$$

- □ 考虑 R^{n+1} 内线段,起点为 $X=(x,x_{n+1}),Y=(y,y_{n+1})$
- □ 线段表达式: $0 \le \theta \le 1$, $\theta X + (1 \theta)Y$
- □证明: 透视函数P变换下仍为线段
- □考虑点X和Y的凸组合及其透视函数变换

$$P(\theta X + (1 - \theta)Y) = \frac{\theta x + (1 - \theta)y}{\theta x_{n+1} + (1 - \theta)y_{n+1}}$$

$$= \frac{\theta x_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{x}{x_{n+1}} + \frac{\theta y_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{y}{y_{n+1}}$$

$$= \mu \qquad P(X) + (1 - \mu) \qquad P(Y)$$

$$0 \le \mu \le 1$$

 \Box 证明: 凸集C在透视函数下的原象为凸集

□ 证明: 凸集C在透视函数下的原象为凸集 $P^{-1}(C) = \{(x,t) \in \mathbf{R}^{n+1} \mid x/t \in C, t > 0\}$

- □ 证明: 凸集C在透视函数下的原象为凸集 $P^{-1}(C) = \{(x,t) \in \mathbf{R}^{n+1} \mid x/t \in C, t > 0\}$
- □ 考虑 $(x,t) \in P^{-1}(C)$ $(y,s) \in P^{-1}(C)$ $0 \le \theta \le 1$
- □须证明

- □ 证明: 凸集C在透视函数下的原象为凸集 $P^{-1}(C) = \{(x,t) \in \mathbf{R}^{n+1} \mid x/t \in C, t > 0\}$
- □ 考虑 $(x,t) \in P^{-1}(C)$ $(y,s) \in P^{-1}(C)$ $0 \le \theta \le 1$
- □ 须证明 $\theta(x,t) + (1-\theta)(y,s) \in P^{-1}(C)$
- 等价于 $\frac{\theta x + (1 \theta)y}{\theta t + (1 \theta)s} \in C$

- □ 证明: 凸集C在透视函数下的原象为凸集 $P^{-1}(C) = \{(x,t) \in \mathbf{R}^{n+1} \mid x/t \in C, \ t > 0\}$
- □ 考虑 $(x,t) \in P^{-1}(C)$ $(y,s) \in P^{-1}(C)$ $0 \le \theta \le 1$
- □ 须证明 $\theta(x,t) + (1-\theta)(y,s) \in P^{-1}(C)$
- 等价于 $\frac{\theta x + (1 \theta)y}{\theta t + (1 \theta)s} \in C$

$$\frac{\theta x + (1 - \theta)y}{\theta t + (1 - \theta)s} = \mu(x/t) + (1 - \mu)(y/s)$$

- □ 证明: 凸集C在透视函数下的原象为凸集 $P^{-1}(C) = \{(x,t) \in \mathbf{R}^{n+1} \mid x/t \in C, t > 0\}$
- □ 考虑 $(x,t) \in P^{-1}(C)$ $(y,s) \in P^{-1}(C)$ $0 \le \theta \le 1$
- □ 须证明 $\theta(x,t) + (1-\theta)(y,s) \in P^{-1}(C)$
- 等价于 $\frac{\theta x + (1 \theta)y}{\theta t + (1 \theta)s} \in C$

$$\frac{\theta x + (1 - \theta)y}{\theta t + (1 - \theta)s} = \mu(x/t) + (1 - \mu)(y/s)$$
$$\mu = \frac{\theta t}{\theta t + (1 - \theta)s} \in [0, 1]$$

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

 \Box 仿射函数和透视函数的复合函数 $f = P \circ g$

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

- \square 仿射函数和透视函数的复合函数 $f = P \circ g$
 - **�**仿射函数 $g: \mathbf{R}^n \to \mathbf{R}^{m+1}$

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

- \Box 仿射函数和透视函数的复合函数 $f = P \circ g$
 - ***** 仿射函数 $g: \mathbf{R}^n \to \mathbf{R}^{m+1}$

$$g(x) = \left[\begin{array}{c} A \\ c^T \end{array} \right] x + \left[\begin{array}{c} b \\ d \end{array} \right]$$

② 线性分式 $f: \mathbf{R}^n \to \mathbf{R}^m$

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

- \square 仿射函数和透视函数的复合函数 $f = P \circ g$
 - ***** 仿射函数 $g: \mathbf{R}^n \to \mathbf{R}^{m+1}$

$$g(x) = \left[\begin{array}{c} A \\ c^T \end{array} \right] x + \left[\begin{array}{c} b \\ d \end{array} \right]$$

□凸集在线性分式下的象和原象均为凸集

□例:两个随机变量的联合概率---条件概率

□例:两个随机变量的联合概率---条件概率

❖随机变量*u*和*v*: {1,...*n*},{1,...,*m*}

- □例:两个随机变量的联合概率---条件概率
 - **❖**随机变量*u*和*v*: {1,...*n*},{1,...,*m*}
 - $P_{ij}=P(u=i, v=j)$

- □例:两个随机变量的联合概率---条件概率
 - **❖**随机变量*u*和*v*: {1,...*n*},{1,...,*m*}
 - $P_{ij} = P(u=i, v=j)$

- □例:两个随机变量的联合概率---条件概率
 - **❖**随机变量*u*和*v*: {1,...*n*},{1,...,*m*}
 - $P_{ij} = P(u=i, v=j)$

$$f_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}$$

- □例:两个随机变量的联合概率---条件概率
 - **❖**随机变量*u*和*v*: {1,...*n*},{1,...,*m*}
 - $P_{ij} = P(u=i, v=j)$

$$f_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}$$

$$A=[0,0,...,1,...,0]$$

- □例:两个随机变量的联合概率---条件概率
 - **❖**随机变量*u*和*v*: {1,...*n*},{1,...,*m*}
 - $P_{ij}=P(u=i, v=j)$
 - $f_{ij} = P(u=i| v=j)$

$$f_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}$$

- A=[0,0,...,1,...,0]
- c=[1,1,1,...,1]

- □例:两个随机变量的联合概率---条件概率
 - **❖**随机变量*u*和*v*: {1,...*n*},{1,...,*m*}
 - $P_{ij}=P(u=i, v=j)$

$$f_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}$$

$$A = [0,0,...,1,...,0]$$

$$c = [1,1,1,...,1]$$

$$f(x) = \frac{Ax + b}{c^T x + d}$$

透视函数和线性分式

□例:线性分式

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

□ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - **❖***K*是闭的(包含其边界)

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - **❖***K*是闭的(包含其边界)
 - **❖***K*是实的(没有空的内部)

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - **❖***K*是闭的(包含其边界)
 - **❖***K*是实的(没有空的内部)
 - **❖***K*是尖的(不包含直线)

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - **❖***K*是闭的(包含其边界)
 - **❖***K*是实的(没有空的内部)
 - **❖***K*是尖的(不包含直线)

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - **❖***K*是闭的(包含其边界)
 - **❖***K*是实的(没有空的内部)
 - **❖***K*是尖的(不包含直线)
- □ 例:

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - **❖***K*是闭的(包含其边界)
 - **❖***K*是实的(没有空的内部)
 - **❖***K*是尖的(不包含直线)

□ 例:

*非负象限 $K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i = 1, \dots, n\}$

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - ❖ K是闭的(包含其边界)
 - **❖***K*是实的(没有空的内部)
 - **❖***K*是尖的(不包含直线)

□ 例:

- *非负象限 $K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i = 1, \dots, n\}$
- *半正定锥 $K = \mathbf{S}_+^n$

- □ 若锥 $K \subseteq \mathbb{R}^n$ 为正常锥,则其满足
 - **❖***K*是闭的(包含其边界)
 - **❖***K*是实的(没有空的内部)
 - **❖***K*是尖的(不包含直线)

□ 例:

- *非负象限 $K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i = 1, \dots, n\}$
- *半正定锥 $K = \mathbf{S}_{+}^{n}$
- ❖[0,1]上非负的多项式锥:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

- □ 例:
 - *分量不等式

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

- □ 例:
 - *分量不等式 $(K = \mathbf{R}_{+}^{n})$ $x \preceq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, \quad i = 1, \dots, n$

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

- □ 例:
 - *分量不等式 $(K = \mathbf{R}_{+}^{n})$ $x \preceq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, \quad i = 1, \dots, n$
 - *矩阵不等式 $(K = \mathbf{S}_{+}^{n})$ $X \preceq_{\mathbf{S}_{+}^{n}} Y \iff Y X$ 为半正定

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

- □ 例:
 - *分量不等式 $(K = \mathbf{R}_{+}^{n})$ $x \preceq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, \quad i = 1, \dots, n$
 - *矩阵不等式 $(K = \mathbf{S}_{+}^{n})$ $X \preceq_{\mathbf{S}_{+}^{n}} Y \iff Y X$ 为半正定
- □性质: ≤к的许多性质和实数集上≤的性质一致

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

- □ 例:
 - *分量不等式 $(K = \mathbf{R}_{+}^{n})$ $x \preceq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, \quad i = 1, \dots, n$
 - *矩阵不等式 $(K = \mathbf{S}_{+}^{n})$ $X \preceq_{\mathbf{S}_{+}^{n}} Y \iff Y X$ 为半正定
- □性质: ≤K的许多性质和实数集上≤的性质一致

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

□ \preceq_K 不是一个线性序: 可同时满足 $x \npreceq_K y$ 和 $y \npreceq_K x$

- □ \preceq_K 不是一个线性序: 可同时满足 $x \npreceq_K y$ 和 $y \npreceq_K x$
- □ $x \in S$ 是集合S关于 $\leq K$ 的最小元,则其满足:

- □ \preceq_K 不是一个线性序:可同时满足 $x \npreceq_K y$ 和 $y \npreceq_K x$
- □ $x \in S$ 是集合S关于 $\leq K$ 的最小元,则其满足:

$$y \in S \implies x \leq_K y$$

- □ \preceq_K 不是一个线性序:可同时满足 $x \not\preceq_K y$ 和 $y \not\preceq_K x$
- $x \in S$ 是集合S关于 \leq_K 的最小元,则其满足: $y \in S \implies x \leq_K y$
- □ $x \in S$ 是集合S关于 \leq_K 的极小元,则其满足:

- □ \preceq_K 不是一个线性序:可同时满足 $x \npreceq_K y$ 和 $y \npreceq_K x$
- $\square x \in S$ 是集合S关于 \preceq_K 的最小元,则其满足:

$$y \in S \implies x \leq_K y$$

□ $x \in S$ 是集合S关于 \preceq_K 的极小元,则其满足:

$$y \in S$$
, $y \leq_K x \implies y = x$

- □ \preceq_K 不是一个线性序:可同时满足 $x \npreceq_K y$ 和 $y \npreceq_K x$
- □ $x \in S$ 是集合S关于 $\leq K$ 的最小元,则其满足:

$$y \in S \implies x \leq_K y$$

□ x ∈ S 是集合S关于 \preceq_K 的极小元,则其满足:

$$y \in S$$
, $y \leq_K x \implies y = x$

- - x_1 是集合 S_1 的最小元
 - $*x_2$ 是集合 S_2 的极小元

最小与极小元

- □ \preceq_K 不是一个线性序:可同时满足 $x \npreceq_K y$ 和 $y \npreceq_K x$
- □ $x \in S$ 是集合S关于 \preceq_K 的最小元,则其满足:

$$y \in S \implies x \leq_K y$$

□ $x \in S$ 是集合S关于 \preceq_K 的极小元,则其满足:

$$y \in S$$
, $y \leq_K x \implies y = x$

- - x_1 是集合 S_1 的最小元
 - $*x_2$ 是集合 S_2 的极小元

□ 若C和D为两个不相交的凸集,则存在 $a \neq 0$, b

□ 若C和D为两个不相交的凸集,则存在 $a \neq 0$, b $a^T x \leq b$ for $x \in C$, $a^T x \geq b$ for $x \in D$

□ 若C和D为两个不相交的凸集,则存在 $a \neq 0$, b $a^T x \leq b$ for $x \in C$, $a^T x \geq b$ for $x \in D$

□则超平面 $\{x \mid a^T x = b\}$ 为集合C和D的分离超平面

□ 若C和D为两个不相交的凸集,则存在 $a \neq 0$, b $a^T x \leq b$ for $x \in C$, $a^T x \geq b$ for $x \in D$

- □则超平面 $\{x \mid a^T x = b\}$ 为集合C和D的分离超平面
- \square 严格的分离需要额外的条件(如,C是闭的,D是单元素集)

□ 集合C在边界点 x_0 的支撑超平面定义为:

■ 集合C在边界点 x_0 的支撑超平面定义为:

$$\{x \mid a^T x = a^T x_0\}$$

□ 集合C在边界点 x_0 的支撑超平面定义为:

$$\{x \mid a^T x = a^T x_0\}$$

□ 此处,

□ 集合C在边界点 x_0 的支撑超平面定义为:

$$\{x \mid a^T x = a^T x_0\}$$

山此处, $a \neq 0$ 且 $a^T x \leq a^T x_0$ for all $x \in C$

□ 集合C在边界点 x_0 的支撑超平面定义为:

$$\{x \mid a^T x = a^T x_0\}$$

山此处, $a \neq 0$ 且 $a^T x \leq a^T x_0$ for all $x \in C$

□ 集合C在边界点 x_0 的支撑超平面定义为:

$$\{x \mid a^T x = a^T x_0\}$$

山此处, $a \neq 0$ 且 $a^T x \leq a^T x_0$ for all $x \in C$

□ 集合C在边界点 x_0 的支撑超平面定义为:

$$\{x \mid a^T x = a^T x_0\}$$

山此处, $a \neq 0$ 且 $a^T x \leq a^T x_0$ for all $x \in C$

 \Box 支撑超平面定理:若集合C为凸集,则在集合C的每个边界点均存在一个支撑超平面

 \Box 锥K的对偶锥:

□ 锥*K*的对偶锥:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

□ 锥*K*的对偶锥:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

□ 例:

□ 锥*K*的对偶锥:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

\Box 锥K的对偶锥:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

□前三个锥自对偶

□ 锥*K*的对偶锥:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

- ■前三个锥自对偶
- □正常锥的对偶锥仍为正常锥,因此可定义广义 不等式:

□ 锥*K*的对偶锥:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

- ■前三个锥自对偶
- □ 正常锥的对偶锥仍为正常锥,因此可定义广义不等式: $y \succeq_{K^*} 0 \iff y^T x \geq 0$ for all $x \succeq_K 0$

对偶不等式的最小和极小元义

对偶不等式的最小和极小元

□最小元:x为集合S的最小元,当且仅当

对所有 $\lambda \succ_{K^} 0$, x为集合S中元素z上

极小化 $\lambda^T z$ 的唯一最优解

S

对偶不等式的最小和极小元

- □最小元:x为集合S的最小元,当且仅当
 - *对所有 $\lambda \succ_{K^*} 0$, x为集合S中元素z上极小化 $\lambda^T z$ 的唯一最优解
- □极小元:
 - $\stackrel{\diamond}{\sim}$ 若对某些 $\lambda \succ_{K^*} 0$,x在集合S中元素z上极小化 $\lambda^T z$,则x为极小元
 - \star 若x为凸集S的极小元,则存在非零 $\lambda \succ_{K^*} 0$,满足x极小化 $\lambda^T z$

S