AUTOTUNING UNDER TIGHT BUDGET CONSTRAINTS: A TRANSPARENT DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel^{1,3}, Steven Quinito Masnada², Brice Videau³, Arnaud Legrand³, Jean-Marc Vincent³, Alfredo Goldman¹

Autotuning: Optimizing Program Configurations

- How to write efficient code for each of these?
- We can use autotuning: the process of automatically finding a configuration of a program that optimizes an objective

Strategies for Exploring Search Spaces

Domain	Approach
Dense Linear Algebra	Exhaustive
Compiler	Genetic Algorithm
Runtime	Nelder-Mead
Domain-Agnostic	Stochastic Local Search
Domain-Agnostic	Direct Search
Domain-Agnostic	Ensemble
Compiler	Machine Learning
GPU kernels	Decision Trees
	Dense Linear Algebra Compiler Runtime Domain-Agnostic Domain-Agnostic Domain-Agnostic Compiler

Exhaustive, Meta-Heuristics, Machine Learning

Assumptions:

Many measurements, "smoothness", reachable solutions

After optimizing:

Learn "nothing", can't explain choices

Autotuning: Search Spaces are Hard to Explore

Unrolling, blocking and Mflops/s for matrix multiplication Seymour K, You H, Dongarra J. A comparison of search heuristics for empirical code optimization. InCLUSTER 2008 Oct 1 (pp. 421-429)

- Represent the effect of all possible configurations on the objectives, can be difficult to explore, with multiple local optima and undefined regions
- Main issues are exponential growth, geometry, & measurement time

Design of Experiments: Exploration under a Budget

Design of Experiments (DoE):

- Factors are program parameters, and levels are possible factor values
- An experiment fixes levels, and a design is a selection of experiments to run
- A performance model is required to construct designs

A Plackett-Burman design for 7 2-level factors

Results, or responses, can be used to identify relevant parameters and to fit a linear regression model

Exploration of a search space using a fixed budget of 50 points, the red "+" represents the best point found by each strategy

A Transparent Design of Experiments Approach

- An initial model is provided by the user (steps 1 & 2)
- Design of Experiments guides exploration (steps 3 & 4)
- Significant factors are identified by Analysis of Variance (ANOVA) (steps 5 & 6)
- New fitted model predicts best value for significant factors (steps 7 & 8)

Transparent: factor and level selections based on ANOVA Parsimonious: DoE decreases measurements

A Motivating Result on a GPU Kernel

Kernel factors:

Factor	Levels	Short Description
vector_length	$2^0, \dots, 2^4$	Size of support
		arrays
load_overlap	true, false	Load overlaps in
		vectorization
temporary_size	2,4	Byte size of tem-
		porary data
elements_number	$1,\ldots,24$	Size of equal data
		splits
y_component_number	$1,\ldots,6$	Loop tile size
$threads_number$	$2^5, \dots, 2^{10}$	Size of thread
		groups
lws_y	$2^0,\ldots,2^{10}$	Block size in y di-
		mension

Initial performance model:

This simple case had known valid search space and global optimum, and fixed budget

Extensive Evaluation on the SPAPT Benchmark

- SPAPT is an autotuning benchmark for CPU kernels, with search space sizes between 10^7 and 10^{36}
- We evaluated DLMT on 17 kernels (3 shown below) using the same initial performance model, and fixed budget

Our approach (DLMT) achieved good speedups using a smaller budget, while exploring better configurations

Our approach (DLMT) was always within 1% of the optimum

Laboratoire d'informatique de Grenoble _

- ¹University of São Paulo, São Paulo, Brazil, with CAPES Funding
- ²University of Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK 38000 Grenoble, France
- ³University of Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG 38000 Grenoble, France

