模式识别实验1 贝叶斯决策

专业: _信息与计算科学 _ 学号: _ _ 20131910023 _ ___ 姓名: _ _ 金洋 _ __

有一组(20 个)待识别的细胞样本,其先验概率为 0.8(正常)和 0.2(异常); 其观察值相应的类条件概率密度如下,试利用**最小错误率贝叶斯决策**规则和**最小风险贝叶斯决策**规则,分别设计一个分类器,对它们进行分类(分为两类,**正常和异常**),(结果表述格式自己设计,表达清楚每个样本的分类情况即可)。风险损失值: $\lambda_{11} = \lambda_{22} = 0, \lambda_{12} = 6, \lambda_{21} = 1$

正常状态下(第二行)和异常状态下(第三行)细胞特征观察值的类条件概率密度见下表:

序号	1	2	3	4	5	6	7	8	9	10
正常	0.03	0.15	0.07	0.16	0.05	0.06	0.19	0.19	0.09	0.14
异常	0.17	0.05	0.13	0.04	0.15	0.14	0.01	0.01	0.11	0.06
最小										
错误										
最小										
风险										
序号	11	12	13	14	15	16	17	18	19	20
正常	0.04	0.03	0.17	0.04	0.06	0.18	0.10	0.16	0.06	0.18
异常	0.16	0.17	0.03	0.16	0.14	0.02	0.10	0.04	0.14	0.02
最小										
错误										
最小										
风险										

一、算法介绍:

1、最小错误率贝叶斯决策:

在模式分类问题中,基于尽量减少分类的错误的要求,利用概率论中的贝叶斯公式,可得出使错误率为最小的分类规则,称之为基于最小错误率的贝叶斯决策。

算法 1: 最小错误率贝叶斯决策算法

Algorithm 最小错误率贝叶斯决策

Input: 待分类对象的特征观察值x;

分类类别数c;

各类别 ω_i 出现的先验概率 $P(\omega_i)$, $i=1,2,\dots,c$;

类条件概率密度函数 $p(x|\omega_i)$, $i=1,2,\dots,c$;

Output: 待分类对象 x 的所属类别 ω_k ;

Step 1: For i=1 to c

$$P(\omega_i \mid x) = \frac{p(x \mid \omega_i)P(\omega_i)}{\sum_{j=1}^{c} p(x \mid \omega_j)P(\omega_j)};$$

Step 2: $x \in \omega_k$, $\sharp + P(\omega_k \mid x) = \max_{i=1,\dots,c} P(\omega_i \mid x)$;

2、最小风险贝叶斯决策:

在考虑错判带来的损失时,我们希望损失最小。如果在采取每一个决策或行动时,都使其条件风险最小,则对所有的 x 作出决策时,其期望风险也必然最小。这样的决策就是最小风险贝叶斯决策。。

算法 2: 最小风险贝叶斯决策算法

Algorithm 最小风险贝叶斯决策

Input: 待识别对象的特征观察值x;

分类类别数c;

各类别 ω_i 出现的先验概率 $P(\omega_i)$, $i=1,2,\dots,c$;

类条件概率密度函数 $p(x|\omega_i)$, $i=1,2,\dots,c$;

决策数a:

损失函数 $\lambda(\alpha_i, w_j)$, i = 1, ..., a; j = 1, ..., c;

Output: x 的最小风险贝叶斯决策;

Step 1: For i=1 to c

$$P(\omega_i \mid x) = \frac{p(x \mid \omega_i)P(\omega_i)}{\sum_{j=1}^{c} p(x \mid \omega_j)P(\omega_j)};$$

Step 2: For i=1 to a

$$R(\alpha_i \mid x) = E(\lambda(\alpha_i, w_j)) = \sum_{j=1}^{c} \lambda(\alpha_i, w_j) P(\omega_j \mid x) ;$$

Step 3: 采取决策 α_k ,其中 $R(\alpha_k | x) = \min_{i=1,...,a} R(\alpha_i | x)$;

- 二、实验过程:
- 1、程序源代码

① MinER.m

```
function [w,k] = MinER( P,Pcc)
%Input -P 1*c矩阵,先验概率 (c为分类类别数)
% -Pcc c*1矩阵,类条件概率
%Output -w 最大后验概率
% -k 分类结果

c=size(P,2);
Px=P*Pcc;%求出P(x)
for i=1:c
    Ppost(i)=P(i)*Pcc(i)/Px;
end
[w,k]=max(Ppost);
```

2 MinRisk.m

```
function [r,k] = MinRisk( P,Pcc,lam)
%Input -P 1*c矩阵,先验概率 (c为分类类别数)
% -Pcc c*1矩阵,类条件概率
% -lam a*c矩阵,风险函数 (a为决策数)
%Output -r 最小条件期望风险
% -k 决策结果

c=size(P,2);
Px=P*Pcc;%求出P(x)
for i=1:c
```

```
Ppost(i) = P(i) * Pcc(i) / Px;
end
R=lam*Ppost';% a*1 矩阵,条件期望损失
[r,k]=\min(R);
3 Main.m
clear;
P=[0.8 0.2];%"正常"、"异常"先验概率
P cc=[0.03 0.15 0.07 0.16 0.05 0.06 0.19 0.19 0.09
0.14 0.04 0.03 0.17 0.04 0.06 0.18 0.10 0.16 0.06
0.18;
  0.17 0.05 0.13 0.04 0.15 0.14 0.01 0.01 0.11
0.06\ 0.16 0.17 0.03 0.16 0.14 0.02 0.10 0.04 0.14
0.02];
n=size(P cc,2);
resultMinER=zeros(2,n);
fprintf('最小错误率贝叶斯决策结果(1正常,2异常):\n');
   [resultMinER(1,i), resultMinER(2,i)] = MinER( P,P cc(:,i));
end
resultMinER(2,:)
resultMinRisk=zeros(2,n);
fprintf('最小风险贝叶斯决策结果(1正常, 2异常):\n');
lam=[0 6;1 0];
for i=1:n
   [resultMinRisk(1,i),resultMinRisk(2,i)] =
```

2、运行结果

end

MinRisk(P,P_cc(:,i),lam);

resultMinRisk(2,:)

三、实验结果

序号	1	2	3	4	5	6	7	8	9	10
最小	异常	正常								
错误										
最小	异常	正常	异常	正常	异常	异常	正常	正常	异常	正常
风险										
序号	11	12	13	14	15	16	17	18	19	20
最小	正常	异常	正常							
错误										
最小	异常	异常	正常	异常	异常	正常	异常	正常	异常	正常
风险										

若要填入计算结果,只需调用 resultMinER(1,:)和 resultMinRisk(1,:)即可:

序号	1	2	3	4	5	6	7	8	9	10
最小	0.5862	0.9231	0.6829	0.9412	0.5714	0.6316	0.987	0.987	0.766	0.9032
错误										
最小	0.4138	0.4615	0.6829	0.3529	0.5714	0.6316	0.0779	0.0779	0.766	0.5806
风险										
序号	11	12	13	14	15	16	17	18	19	20
最小	0.5	0.5862	0.9577	0.5	0.6316	0.973	0.8	0.9412	0.6316	0.973
错误										
最小	0.5	0.4138	0.2535	0.5	0.6316	0.1622	0.8	0.3529	0.6316	0.1622
风险										