Лекция 4

Ilya Yaroshevskiy

January 11, 2021

Contents

1	Дис	ффеоморфизмы	1
	1.1	Теорема о неявном отображении(продолжение)	1
	1.2	Определение	2
	1.3	Определение	2
	1.4	Теорема	2
		1.4.1 Следсвтие о двух параметризациях	3

1 Диффеоморфизмы

1.1 Теорема о неявном отображении (продолжение)

$$F' = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_m} & \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_n} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_m} & \frac{\partial F_n}{\partial y_1} & \cdots & \frac{\partial F_n}{\partial y_n} \end{pmatrix}$$

Локазательство

Если 1) выполняется, то 2) очевидно: $F(x,\Phi(x))=0 \Rightarrow F_x'(x,\Phi(x))+F_y'(x,\Phi(x))\cdot\Phi'(x)=0$

1.
$$\tilde{F}:O\to\mathbb{R}^{m+n}$$
 $(x,y)\mapsto (x,F(x,y))$ $\tilde{F}(a,b)=(a,0)$ $\tilde{F}'=\begin{pmatrix}E&0\\F'x&F'y\end{pmatrix}$, очевидно $\det \tilde{F}=0$ в (a,b) , значит $\exists U((a,b))$ $\tilde{F}|_{U((a,b))}$ - диффеоморфизм

- (a) $U=p_1 \times Q$ можно так считать
- (b) $V = \tilde{F}(U)$
- (c) \tilde{F} диффеоморфизм на $U\Rightarrow \exists \Psi=\tilde{F}^{-1}:V\to U$
- (d) \tilde{F} не меняет первые m координат $\Psi(u,v)=(u,H(u,v))$ $H:V\to\mathbb{R}^m$
- (e) Ось x и ось u идентичны p= ось $u=\mathbb{R}^m\times\{0\}^n\cap\underbrace{V}_{\text{открыто в }\mathbb{R}^{m+n}}\Rightarrow p$ открыто в R^m

1

(f)
$$\Phi(x)=H(x,0)$$
 $F(x,\Phi(x))=0,$ при $x\in P$ $F\in C^r\Rightarrow \tilde{F}\in C^r\Rightarrow \Psi\in C^r\Rightarrow H\in C^r\Rightarrow \Phi\in C^r$

Единственность
$$x\in p\ y\in u$$
 $F(x,y)=0$ $(x,y)=\Psi(\tilde{F}(x,y))=\Psi(x,0)=(x,H(x,0))=(x,\Phi(x))$

1.2 Определение

"поверхность" = многообразие

 $M \subset \mathbb{R}^m \quad k \in \{1, \dots, m\}$

M - простое k-мерное многообразие в \mathbb{R}^m если оно гомеоморфно некоторому открытому $O \subset \mathbb{R}^k$ т.е. $\exists \Phi : O \subset \mathbb{R}^k \to M$ - непрерывное, обратимое, Φ^{-1} - непрерывное, Φ - параметризация многообразия M

1.3 Определение

 $M \subset \mathbb{R}^m$ - простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m

 $\exists \Phi: O \subset \mathbb{R}^l \to \mathbb{R}^m \quad \Phi(O) = M \quad \Phi: O \to M$ - гомеооморфизм

 $\Phi \in C^r$ $\forall x \in O$ rank $\Phi'(x) = k$ - максимально возможное значение

Примеры

1. Полусфера в $\mathbb{R}^3 = \{(x, y, z) \in \mathbb{R}^3 | z = 0, \ x^2 + y^2 + z^2 = R^2 \}$

 $\Phi: (x,y) \mapsto (x,y,\sqrt{R^2 - x^2 - y^2})$

 $\Phi: B(0,R) \subset \mathbb{R}^2 \to \mathbb{R}^3$

 $\Phi \in C^{\infty}(B(0,R),\mathbb{R}^3)$

$$\Phi' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-x}{\sqrt{R^2 - x^2 - y^2}} & \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \end{pmatrix}, \text{ rank } \Phi' = 2$$

Аналогично график гладкой функции (${
m R}^2 o {
m R}$) - простое двумерное многообразие

2. Цилиндр $\{(x,y,z)\in\mathbb{R}^3|x^2+y^2=R^2,\ z\in(0,h)\}$ $\Phi:[0,2\pi]\times(0,h)\to\mathbb{R}^3$

 $(\varphi,z)\mapsto (R\cos\varphi,R\sin\varphi,z)$ - параметризация цилиндра без отрезка(боковой перпендикуляр)

При
$$\varphi = 0, \ \varphi = 2\pi$$
 проблема $\not\exists \Phi: \ O \subset \mathbb{R}^2 \to M \subset \mathbb{R}^3$ откр., односвязно $(x,y) \mapsto (\frac{Rx}{\sqrt{x^2+y^2}}, \frac{Ry}{\sqrt{x^2+y^2}}, \sqrt{x^2+y^2-1})$

 $(x,y) \in$ открытое кольцо $1 < x^2 + y^2 < (1+h)^2$

3. Сфера в \mathbb{R}^3 без . . .

$$\Phi: (0,2\pi) \times [-\frac{\pi}{2},\frac{\pi}{2}] \to R^3 \quad R \text{ - радиус}$$

$$(\varphi,\psi) \mapsto \begin{pmatrix} R\cos\varphi\cos\psi \\ R\sin\varphi\cos\psi \end{pmatrix} \text{ - сферические координаты в } \mathbb{R}^3$$

$$R\sin\psi$$

1.4 Теорема

 $M \subset \mathbb{R}^m \quad 1 \le k < m \quad 1 \le r \le \infty \quad p \in M$

Тогда эквивалентны:

- 1. $\exists U \subset \mathbb{R}^m$ окрестность точки p в \mathbb{R}^m : $M \cap U$ простое k-мерное многообразие класса C^r
- 2. $\exists \tilde{U} \subset \mathbb{R}^m$ окрестность точки p

$$f_1, f_2, \dots, f_{m-k} : \tilde{U} \to \mathbb{R}$$
, все $f \in C^r$ $x \in M \cap \tilde{U} \Leftrightarrow f_1(x) = f_2(x) = \dots = 0$, при этом $\operatorname{grad}(f_1(p)), \dots, \operatorname{grad}(f_{m-k}(p))$ - ЛНЗ

Доказательство

• 1 \Rightarrow 2 Φ - параметризация : $\underbrace{O}_{(t_1,\dots,t_k)}\subset \mathbb{R}^k,\ \in C^r,\ p=\Phi(t^0)$ Φ' - матрица $m\times k$ rank $\Phi'(t^0)=k$

Пусть $\det(\frac{\partial \Phi_i}{\partial t_k})_{i,j=1...k} \neq 0$

 $\mathbb{R}^m = \mathbb{R}^k \times \mathbb{R}^{m-k}$

 $L:\mathbb{R}^m o \mathbb{R}^k$ - проекция на первые k координат $((x_1,\ldots,x_m) \mapsto (x_1,\ldots,x_k))$

Тогда ($L \circ \Phi$)' (t^0) - невырожденный оператор

 $W(t^0)$ - окрестность точки $t^0,\, L\circ\Phi:\mathbb{R}^k o\mathbb{R}^k$

 $L \circ \Phi : W o V \subset \mathbb{R}^k$ - диффеоморфизм

Множество $\Phi(W)$ - это график отображения $H:V\to\mathbb{R}^{m-k}$

Пусть $\Psi = (L \circ \Phi)^{-1} : V \to W$

Берем $x' \in V$, тогда $(x', H(x')) = \Phi(\Psi(x'))$, т.е. $H \in C^r$

Множество $\Phi(W)$ - открытое в $M \Rightarrow \Phi(W) = M \cap \tilde{U}$, где \tilde{U} - открытое множество в \mathbb{R}^m

Можно считать, что $\tilde{U} \subset U \times \mathbb{R}^{m-k}$

Пусть $f_j: U\mathbb{R}$ $f_j(x) = H_j(L(x)) - x_{k+j}$

Тогда $x \in M \cap \tilde{U} = \Phi(W) \Leftrightarrow \forall j: \ f_j(x) = 0$

Тогда
$$x \in M \cap U = \Phi(W) \Leftrightarrow \forall j : f_j(x) = 0$$

$$\begin{pmatrix} \operatorname{grad} f_1(p) \\ \vdots \\ \operatorname{grad} f_{m-k}(p) \end{pmatrix} = \begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \cdots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \cdots & 0 \\ \frac{\partial H_2}{\partial x_1} & \cdots & \frac{\partial H_2}{\partial x_k} & 0 & -1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial H_{m-k}}{\partial x_1} & \cdots & \frac{\partial H_{m-k}}{\partial x_k} & 0 & 0 & \cdots & -1 \end{pmatrix}$$

•
$$2\Rightarrow 1$$
 $F=(f_1,\ldots,f_{m-k})$
$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m-k}}{\partial x_1} & \cdots & \frac{\partial f_{m-k}}{\partial x_m} \end{pmatrix}$$
 - матрица $m-k\times m$ Градиенты ЛНЗ \Rightarrow ранг матрицы равен $m-k$, он достигается на последних $m-k$ столбцах

 $F(x_1, \dots, x_k, x_{k+1}, \dots, x_m) = 0, \quad x \in \tilde{U}$

По теореме о неявном отображении $\exists P$ - окрестность (x_1,\ldots,x_k) в \mathbb{R}^m $\exists Q$ - окр (x_{k+1},\ldots,x_m)

 $\exists H:P o Q\quad H\in C^r\quad F(x',H(x'))=0,\quad x'\in P$ Тогда $\Phi:P o \mathbb{R}^m\quad (x_1,\ldots,x_k)\mapsto (x_1,\ldots,x_k,H_1(x_1',\ldots,x_k'),H_2,\ldots,H_{m-k})$ - параметризация мноогбразия

 Φ - гомеоморфизм P и $M\cap \tilde{U},\,\Phi^{-1}$ - практически проекция

Следсвтие о двух параметризациях

 $M \subset \mathbb{R}^m$ - k-мерное C^k -гладкое многообразие $p \in M$

 \exists две парметризации $\Phi_1: O_1 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m \quad \Phi_1(t^0) = 0$

 $\Phi_2: O_2 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m \quad \Phi_2(s^0) = 0$

Тогда \exists диффеоморфизм $\Theta: O_1 \to O_2,$ что $\Phi_1 = \Phi_2 \circ \Theta$

Доказательство чатсный случай. Пусть для Φ_1 , Φ_2 , rank $\Phi_1'(t^0)$, rank $\Phi_2'(s^0)$ достигаются на первых k столбцах

Тогда $\Phi_1 = \Phi_2 \circ (L \circ \Phi_2)^{-1} \circ (L \circ \Phi_1)$

$$\Phi_1 = \Phi_2 \circ (\Phi_2 \circ L_2)^{-1} \circ (L_2 \circ L_1^{-1}) \circ (L_1 \circ \Phi_1)$$

$$L_2 \circ L_1^{-1} = L_2 \circ \Phi_1 \circ (L_1 \circ \Phi_1)^{-1} \in C^r$$

"Почему-то неверно" LUL