# ACCQ 205 - Courbes algébriques

# 1 Corps et extensions de corps

# 2 Le Nullstellensatz et les fermés de Zariski

#### Anneaux nothérien

**Def.** Un idéal *I* d'un anneau *A* est de **type fini** s'il est engendré par un nombre fini d'éléments (équivalent à être de type fini en tant que sous-module de *A*).

**Def.** Un anneau *A* est dit **noethérien** lorsque tout idéal *I* de *A* est de type fini.

Rem. Un quotient d'un anneau noethérien est noethérien.

**Th** (de la base de Hilbert). Si A est un anneau noethérien, alors l'anneau A[t] des polynômes à une indéterminée sur A est noethérien.

**Cor.** Soit k un corps ou un anneau noethérien. Alors l'anneau  $k[t_1,...,t_n]$  des polynômes en n indéterminées sur k est un anneau noethérien, et plus généralement toute k-algèbre de type fini (comme k-algèbre)  $k[x_1,...,x_n]$  est un anneau noethérien.

## Idéaux maximaux d'anneaux de polynômes

**Lem.** Soit k un corps algébriquement clos et K une extension. On suppose que  $h_1, \ldots, h_m \in k[t_1, \ldots, t_n]$  ont un zéro commun dans K (i.e  $\exists z_1, \ldots, z_n \in K, \forall i, h_i(z_1, \ldots, z_n = 0)$ ). Alors ils en ont un dans k.

*Not*. Soit k un corps et  $(x_1, ..., x_n) \in k^n$ . On note

$$\mathfrak{m}_{(x_1,\ldots,x_n)} := \{ f \in k[t_1,\ldots,t_n] \mid f(x_1,\ldots,x_n) = 0 \} = (t_1 - x_1,\ldots,t_n - x_n) .$$

**Prop.** Soit k un corps algébriquement clos. Les idéaux maximaux de  $k[t_1,...,t_n]$  sont exactement les idéaux  $\mathfrak{m}_{(x_1,...,x_n)}$ . **Prop** (lemme de Zariski). Soit k un corps et K une extension de type fini comme k-algèbre. Alors k est en fait une extension finie.

### Le Nullstellensatz

**Prop** (Nullstellensatz faible). Soient  $h_1, \ldots, h_m \in k[t_1, \ldots, t_n]$  avec k algébriquement clos. Si  $h_1, \ldots, h_m$  n'engendrent pas l'idéal unité, alors ils ont un zéro commun dans  $k : \exists x_1, \ldots, x_n \in k, \forall i, h_i(x_1, \ldots, x_n) = 0$ .

**Prop** (Nullstellensatz fort). Soient  $g, h_1, ..., h_m \in k[t_1, ..., t_n]$  avec k algébriquement clos. Si g s'annule sur tous les zéros commun de  $h_1, ..., h_m$  alors  $\exists l \in \mathbb{N}, g^l \in (h_1, ..., h_m)$  (idéal engendré).

#### Fermés de Zariski

**Def.** Un idéal r d'un anneau A est dit radical lorsque A/r est réduit, i.e  $\forall x \in A, \forall n \in \mathbb{N}, x^n \in \mathbb{r} \implies x \in \mathbb{r}$ .

Un idéal premier, et a fortiori un idéal maximal, est en particulier un idéal radical.

Dans ce qui suit on note k un corps et  $k^{alg}$  une clôture algébrique.

*Not.* Soit  $\mathscr{F} \subset k[t_1,\ldots,t_n]$ . On pose  $Z(\mathscr{F}) := \{(x_1,\ldots,x_d) \in (k^{\mathrm{alg}})^d \mid \forall f \in \mathscr{F}, f(x_1,\ldots,x_d) = 0\}.$ 

**Def.** On appelle **fermé de Zariski** tout ensemble de la forme  $Z(\mathcal{F})$ .

*Rem.* Z est décroissante pour l'inclusion et on peut toujours supposer que  $\mathscr{F}$  est un idéal radical.

**Def.** Un fermé de Zariski de la forme  $Z(f) = Z(\{f\})$  est appelé une **hypersurface**.

*Rem.* Le vide,  $(k^{alg})^d$  et les singletons sont des fermés de Zariski.

*Not.* Soit  $E \subset (k^{\text{alg}})^d$ . On pose  $J(E) := \{ f \in k[t_1, ..., t_n] \mid \forall (x_1, ..., x_d) \in E, f(x_1, ..., x_d) = 0 \}$ .

*Rem.* J(E) est un idéal radical, J est décroissant pour l'inclusion et  $J(E) = \bigcap_{x \in E} \mathfrak{M}_x$  où  $\mathfrak{M}_x = J(\{x\})$ .

# 3 Corps de courbes algébriques

#### **Définitions**

**Def.** Soit k un corps. Un **corps de fonctions** K de dimension n sur k est une extension de corps de k de type fini et de degré de transcendance n sur k. Pour n = 1 on parle de **corps de fonctions de courbe** sur k.

Par abus de langage on dit que *K* est une courbe (algébrique) sur *k*.

**Def. Droite projective** sur k, notée  $\mathbf{P}_k^1$  ou  $\mathbf{P}^1$ : courbe simple donnée par k(t) le corps des fractions rationnelles.

• •

## Anneaux de valuation

**Def.** Soit K un corps. Un **anneau de valuation** de K est un sous-anneau R de K vérifiant  $\forall x \in K, x \in R$  ou  $x^{-1} \in R$ . Il est dit non-trivial si  $R \neq K$ . Lorsque  $k \subset R$  est un sous-corps de K, on dit que R est un anneau de valuation au-dessus de k.

*Rem.* R est intègre et  $K = \operatorname{Frac}(R) \to \operatorname{on}$  parle d'anneau de valuation dans l'absolu pour un anneau de valuation de son corps des fractions.

**Def.** Soit  $x, y \in K$ . On dit que :

- x est plus valué que <math>y si  $\exists z \in R, x = yz$ ,
- x et y ont la même valuation si  $\exists z \in R^{\times}, x = yz$ .

Ceci définit une relation d'équivalence dont les classes sont appelées **valuations** et notées  $v_R(x)$  ou v(x). On note  $v(0) = \infty$  mais cette classe est mise à part et on ne considère généralement pas qu'il s'agisse d'une valuation.

Rem. On a défini une relation d'ordre total sur les valuations (plus ∞ qui est le plus grand élément).

*Not.* On definit v(x) + v(y) = v(xy) et  $\forall c \in \mathbb{R}^{\times}, v(c) = v(1) = 0$ .

**Def.** Soit  $\Gamma := K^{\times}/R^{\times}$  l'ensemble des valuations. Le groupe abélien  $(\Gamma, +)$  est appelé **groupe des valuations** (ou des **valeurs**) de R.

**Def.** Si  $\Gamma$  = **Z**, i.e. est engendré par un unique élément, on dira que R est un anneau de valuation **discrète**.

**Prop.** Soit R un anneau de valuation de K. On a :

- (i)  $v(x) = \infty \iff x = 0$
- (ii) v(xy) = v(x) + v(y)
- (iii)  $v(x+y) \geqslant \min\{v(x), v(y)\}$
- (iv)  $v(x+y) = \min\{v(x), v(y)\}\ si\ v(x) = v(y)$

De plus  $v(K^{\times}) = \Gamma$  et  $R = \{x \in K \mid v(x) \ge 0\}$ .

Ex. Soit K = k(t) et h un polynôme unitaire irréductible sur k. On pose, pour  $f \in k[t]$ ,  $v_h(f)$  est l'exposant de la plus grande puissance de h qui divise f. Si  $g \in k[t] \setminus \{0\}$ ,  $v_h\left(\frac{f}{g}\right) = v_h(f) - v_h(g)$ . Alors  $v_h$  vérifie les conditions ci-dessus et atteint 1 en h. De plus R est l'ensemble des fractions rationnelles sans h facteur du dénominateur. Ex. Soit p premier et  $K = \mathbb{Q}$ . Pour  $m \in \mathbb{Z}$ , on pose  $v_p(m)$  la valuation p-adique de m, i.e. l'exposant de la plus grande puissance de q qui divise m. Si  $\frac{n}{m} \in \mathbb{Q}$ ,  $v_p\left(\frac{n}{m}\right) = v_p(n) - v_p(m)$ . Alors  $v_p$  vérifie les conditions ci-dessus et atteint 1 en p. De plus R est l'ensemble des rationnels dont le dénominateur réduit n'est pas multiple de p. Rem. Si A est un anneau intègre et  $v: A \to \mathbb{Z} \cup \{\infty\}$  vérifie (i), (ii) et (iii) alors il existe une unique fonction  $v: \operatorname{Frac}(A) \to \mathbb{Z} \cup \{\infty\}$  qui prolonge le v donné sous les mêmes conditions, à savoir  $v: \frac{x}{v} \mapsto v(x) - v(y)$  où  $y \neq 0$ .

**Def.** Un anneau *R* est dit **local** s'il vérifie l'une des propriétés équivalentes suivantes :

- (i) R a un unique idéal maximal,
- (ii) le complémentaire de  $R^{\times}$  dans R est un idéal (forcément maximal),

Si, de plus, v est positive sur A alors  $A \subset R$  ou R est l'anneau de la valuation.

(iii) pour tout  $x \in R$ , soit x est inversible, soit 1 - cx est inversible pour tout  $c \in R$ .

**Prop.** Un anneau de valuation est un anneau local. Son idéal maximal est  $\mathfrak{m}_v = \{x \in R \mid v(x) > 0\}$ .

**Def.** On note parfois  $\mathcal{O}_v$  l'anneau de valuation associé à la valuation v. Le corps  $\varkappa_v = \mathcal{O}_v/\mathfrak{m}_v$  s'appelle **corps** résiduel de la valuation v.

**Prop.** Si v est une valuation au-dessus de k (corps de base) alors  $\varkappa_v$  est une extension de k. Son degré (s'il est fini) s'appellera degré sur k de la valuation v.

**Def.** Soit K un corps de fonction de courbe sur k. Une valuation non triviale au-dessus de k sur un corps K de fonctions de k s'appelle une **place** de K (ou de la courbe C telle que K = k(C)). On note  $\mathcal{V}_{K/k}$  ou  $\mathcal{V}_C$  l'ensemble de ces places.

**Prop.** Soit K un corps,  $A \subset K$  un sous-anneau et  $\mathfrak p$  un idéal premier de A. Alors il existe un anneau de valuation R de K tel que  $A \subset R \subset K$  et  $\mathfrak m \cap A = \mathfrak p$  où  $\mathfrak m$  est l'idéal maximal de R.

Cette proposition sert à construire des valuations "centrées" sur un idéal premier p qu'on s'est donné.

**Prop.** Soit K un corps et  $A \subset K$  un sous-anneau. Alors  $B := \bigcap_{A \subset R \subset K} R$  (avec R anneau de valuation de K) est exactement l'ensemble des  $x \in K$  entiers (algébriques) sur A au sens où il existe  $f \in A[t]$  unitaire, non constant, à coefficients dans A tels que f(x) = 0. B est donc un sous-anneau de K et s'appelle fermeture intégrale de A dans K, ou clôture intégrale lorsque  $K = \operatorname{Frac}(A)$ . En particulier, si K est un sous-corps de K alors K est la fermeture algébrique de K dans K.

**Prop.** Soit  $\mathcal{O}_v$  un anneau de valuation discrète de valuation v. Un élément  $t \in \mathcal{O}_v$  engendre  $\mathfrak{m}$  en tant qu'idéal si et seulement si v(t) = 1. Il est appelé **uniformisante** de  $\mathcal{O}_v$  et pour un tel t fixé (il en existe) :

- tout  $x \neq 0$  de K a une représentation unique sous la forme  $x = ut^r$  avec  $u \in \mathcal{O}_v^{\times}$  et  $r \in \mathbb{Z}$ , avec r = v(x),
- tout idéal  $I \neq \{0\}$  de  $\mathcal{O}_v$  est l'idéal  $\mathfrak{m}^r = \{x \in \mathcal{O}_v \mid v(x) \geqslant r\}$  engendré par  $t^r$  pour un certain  $r \in \mathbb{N}$ .

Régis - BDE Télécom ParisTech

### Places des courbes

**Lem.** Soit K un corps de fonctions de courbes sur k et v une valuation de K au-dessus de k. Alors :

- (i) Si x vérifie  $v(x) \neq 0$  et  $v(x) < \infty$  alors x est transcendant sur k et le corps K est fini sur k(x).
- (ii) Si  $x_1, \ldots, x_n$  vérifient  $0 < v(x_1) < v(x_2) < \cdots < v(x_n) < \infty$ , alors  $x_1, \ldots, x_n$  sont linéairement indépendants sur  $k(x_n)$ , et en particulier le degré  $[K:k(x_n)]$  (fini) est supérieur ou égal à n.
- (iii) Si x vérifie  $0 < v(x) < \infty$  alors  $[\varkappa_v : k] \le [K : k(x)]$ .

**Prop.** Soit K un corps de fonctions de courbe sur k. Alors toutes les places de K sont discrètes.

Dans ce cas  $\varkappa_v$  est une extension finie, donc algébrique, de k. Le degré  $[\varkappa_v:k]$  s'appelle aussi degré de la place v. S'il vaut 1, i.e.  $\varkappa_v=k$ , v est dite rationnelle. C'est notamment le cas si v est algébriquemet clos. **Def.** Soit K un corps de fonctions de courbe sur k. Si  $f \in K$  et  $v \in \mathscr{V}_K$  on peut définir l'**évaluation** de f en v

$$f(v) \in \varkappa_v, \quad f(v) = \left\{ \begin{array}{ll} \text{la classe de } f \in \mathcal{O}_v \text{ modulo } \mathfrak{m}_v \text{ lorsque } v(f) \geqslant 0 \\ \text{le symbole spécial } \infty \text{ (pas celui de } v(0) \end{array} \right.$$

Les places de la droit projective L'indépendance des valuations L'identité du degré Diviseurs sur les courbes Espaces de Riemann-Roch Différentielles de Kähler Théorème de Riemann-Roch Points et places Revêtements de courbes