CS-541: Artificial Intelligence Lecture 7

Abdul Rafae Khan

Department of Computer Science Stevens Institute of Technology akhan4@stevens.edu

March 28, 2022

Recap

States: $s_{start} \& s_{end}$

Chance nodes: $s_{ans} \& s_{quit}$ Policy (π) produces a path:

 s_0 ; $a_1r_1s_1$; a_2 , r_2 , s_2 ; a_3 , r_3 , s_3 ; · · ·

Utility: $u_{\pi} = r_1 + \gamma r_2 + \gamma^2 r_3$

Value: $V_{\pi}(s)$, Expected Utility for policy π

starting at state s

Q-Value: $A_{\pi}(s, a)$, Expected Utility for

policy π after taking action a from state s

Recap

```
s<sub>start</sub>: start state
```

Actions(s): all possible actions from state s

T(s, a, s'): probability of s' if action a is taken from state s

Reward(s, a, s'): reward from the transition s to s'

lsEnd(s): is s a goal state

 $0 \le \gamma \le 1$: discount factor (default: 1)

Unknown Transitions & Reward

s_{start}: start state
Actions(s): all possible actions from state s

T(s, a, s'): probability of s' if action a is taken from state s

Reward(s, a, s'**)**: reward from the transition s to s'

lsEnd(s): is s a goal state

 $0 \le \gamma \le 1$: discount factor (default: 1)

Unknown Transitions & Reward

```
s_{start}: start state Actions(s): all possible actions from state s T(s, a, s'): probability of s' if action a is taken from state s Reward(s, a, s'): reward from the transition s to s' IsEnd(s): is s a goal state 0 \le \gamma \le 1: discount factor (default: 1)
```

Reinforcement Learning!

Unknown Transitions & Reward

MDPs:

Know how the word works: Environment is observable Find a policy which maximizes the reward

Reinforcement learning:

Do not know about the world: Environment is not observable Find a policy which maximizes the reward Perform actions and collect the reward

The agent performs actions and observes the rewards
This feedback loop helps learn the missing values (transition probabilities and reward)

Overall algorithm

```
for t=1,2,3,\cdots
Choose action a_t=\pi_{act}(s_{t-1})
Get reward r_t and new state s_t
Update parameters
```

Data: s_0 ; $a_1r_1s_1$; a_2 , r_2 , s_2 ; a_3 , r_3 , s_3 ; ... Estimate T(s, a, s') & R(s, a, s')

$$\hat{T}(s, a, s') = \frac{\text{No. of times } s, a, s' \text{ occurs}}{\text{No. of times } s, a \text{ occurs}}$$

$$\hat{R}(s, a, s') = \text{reward observed by } s, a, s'$$

Iteration: 0

Policy π is Answer

Iteration: 1

Data: s_{start}; Ans, 4, s_{start}; Ans, 4, s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end}

Policy π is Answer

Iteration: 2

Data: s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end}

Policy π is Answer

Iteration: 3

Data: s_{start} ; Ans, 4, s_{end}

Can converge to true values Compute policy using value Iteration for the estimated MDP (with \hat{T} and \hat{R})

If $a \neq \pi(s)$ (a = Quit), s, a will not be seen

Exploration: try unknown actions to get information

We can use the computed transitions and rewards And compute the optimal Value and Q-value

$$\hat{V}_{opt}(s) = E[\hat{V}_{opt}(s)] = egin{cases} 0 ext{ if } isEnd(s) \ \hat{Q}_{opt}(s) ext{ otherwise} \end{cases}$$

$$\hat{Q}_{opt}(s,a) = \sum_{s'} \hat{T}(s,a,s') [\hat{R}(s,a,s') + \gamma \hat{V}_{opt}(s')]$$

Pros:

• Makes efficient use of experiences

Cons:

- May not scale to large state spaces
 - Learns model one state-action pair at a time
 - Cannot solve MDP for very large |S|

Model-based vs Model-free

Goal: Compute the age of CS students

P(A) is known

$$\mathbb{E}[A] = \sum_{a} P(A) \cdot a$$
$$= 0.35 \times 20 + \cdots$$

Model-based vs Model-free

Without P(A), collect samples $[a_1, a_2, \cdots, a_N]$

Unknown P(A): Model-based

$$\hat{P}(A) = \frac{num(a)}{N}$$

$$\mathbb{E}[A] \approx \sum_{A} \hat{P}(A)$$

Because, eventually the correct model is learnt

Unknown P(A): Model-free

$$\mathbb{E}[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Because, samples appear with right frequencies

Model-based vs Model-free

Model based vs. Model free:

Do we estimate T(s, a, s') and R(s, a, s'), or just learn values/policy directly

Online vs Batch:

Learn while exploring the world, or learn from fixed batch of data

Active vs Passive:

Does the learner actively choose actions to gather experience? or, is a fixed policy provided?

Model-free Monte Carlo

Policy π is Answer

Iteration: 0

Data:

Model-free Monte Carlo

Policy π is Answer

Iteration: 1

Data: s_{start} ; Ans, 4, s_{end}

Policy π is Answer

Iteration: 2

Data: s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{end}

Policy π is Answer

Iteration: 3

Data: s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{end}

We are estimating Q_{π} and not Q_{opt}

Policy π is Answer

Data: s_1 ; a_1 , r_1 , s_1 ; a_2 , r_2 , s_2 ; · · · ; a_n , r_n , s_n

$$\hat{Q}(s,a)=$$
 average of u_t where $s_{t-1}=s, a_t=a$

Equivalent formulation (convex combination)

for each
$$(s,a,u)$$

$$\eta = \frac{1}{1 + \text{No. of updates } (s,a)}$$

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$$

Convex combination:

for each
$$(s, a, u)$$
 $\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta)\hat{Q}_{\pi}(s, a) + \eta u$

Stochastic Gradient:

for each
$$(s, a, u)$$

$$\hat{Q}_{\pi}(s, a) \leftarrow \hat{Q}_{\pi}(s, a) - \eta [\underbrace{\hat{Q}_{\pi}(s, a)}_{prediction} - \underbrace{u}_{target}]$$

Objective (Least squares): $(\hat{Q}_{\pi}(s, a) - u)^2$

Using the Utility

Policy π is Answer Data:

```
s_{start}; Ans, 4, s_{end} u = 4
s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end} u = 8
s_{start}; Ans, 4, 8
```

Model-free Monte Carlo:

for each
$$(s,a,u)$$
 $\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{u}_{data}$

Using the reward+Q-value

Current estimate: $Q_{\pi}(s, Ans) = 11$

Data:

$$s_{start}$$
; Ans , 4 , s_{end} 4 + 0
 s_{start} ; Ans , 4 , s_{start} ; Ans , 4 , s_{end} 4 + 11
 s_{start} ; Ans , 4 , s_{start} ; Ans , 4 , s_{start} ; Ans , 4 , s_{end} 4 + 11
 s_{start} ; Ans , 4 , s_{end} 4 + 11

SARSA:

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{\begin{bmatrix} r \\ \text{data} \end{bmatrix}}_{\text{estimate}} + \gamma \underbrace{\hat{Q}_{\pi}(s',a')}_{\text{estimate}}$$

Model-free Monte Carlo vs SARSA

Model-free Monte Carlo:

for each
$$(s,a,u)$$

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{u}_{data}$$

SARSA:

for each
$$(s, a, r, s', a')$$

$$\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta)\hat{Q}_{\pi}(s, a) + \eta \underbrace{\begin{bmatrix} r \\ data \end{bmatrix}}_{estimate} + \gamma \underbrace{\hat{Q}_{\pi}(s', a')}_{estimate}$$

SARSA uses $\hat{Q}_{\pi}(s,a)$ instead of raw data u SARSA doesn't have to wait till it reaches the terminal node to update

Model-free Monte Carlo vs SARSA

Output	MDP	Reinforcement Learning	
$\overline{\hspace{1.5cm}Q_{\pi}}$	Policy Evaluation	Model-free Monte Carlo, SARSA	
Q_{opt}	Value Iteration	Q-Learning	

 ${\sf Table} \colon {\sf Caption}$

Q-Learning

Recall (Bellman optimality equation):

$$Q_{opt}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{opt}(s')]$$

Q-Learning:

$$\hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \underbrace{\hat{Q}_{opt}(s, a)}_{prediction} + \eta \underbrace{(r + \gamma V_{opt}(s'))}_{target}$$

Q-Learning

Recall (Bellman optimality equation):

$$Q_{opt}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{opt}(s')]$$

Q-Learning:

$$\begin{split} \text{for each } & (s, a, r, s') \\ & \hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \underbrace{\hat{Q}_{opt}(s, a)}_{prediction} + \eta \underbrace{(r + \gamma V_{opt}(s'))}_{target} \\ & \hat{V}_{opt}(s') = \max_{a' \in Actions(s')} \hat{Q}_{opt}(s', a') \end{split}$$

SARSA vs Q-Learning

SARSA:

for each
$$(s, a, r, s', a')$$

$$\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta)\hat{Q}_{\pi}(s, a) + \eta \big[r + \gamma \hat{Q}_{\pi}(s', a')\big]$$

Q-Learning:

$$\begin{split} \text{for each } (s, a, r, s') \\ \hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \hat{Q}_{opt}(s, a) + \eta \big(r + \gamma \max_{a' \in Actions(s')} \hat{Q}_{opt}(s', a') \big) \end{split}$$

On-policy: evaluate or improve the data-generating policy **Off-policy:** evaluate or learn using data from another policy

	On-Policy	Off-Policy
Policy Evaluation (Q_{π})	Monte-Carlo, SARSA	
Policy Optimization (Q_{opt})		Q-Learning

Algorithm	Estimating	Based On
Model-Based Monte Carlo	$\hat{\mathcal{T}},\hat{\mathcal{R}}$	$s_0, a_1, r_1, s_1, \cdots$
Model-Free Monte Carlo	\hat{Q}_{π}	и
SARSA	\hat{Q}_{π}	$r+\hat{Q}_{\pi}$
Q-Learning	\hat{Q}_{opt}	$r+\hat{Q}_{opt}$

Overall algorithm

```
for t=1,2,3,\cdots
Choose action a_t=\pi_{act}(s_{t-1})
Get reward r_t and new state s_t
Update parameters
```

Overall algorithm

```
for t=1,2,3,\cdots
Choose action a_t=\pi_{act}(s_{t-1}) (how?)
Get reward r_t and new state s_t
Update parameters (how?)
```

 s_0 ; a_1, r_1, s_1 ; a_2, r_2, s_2 ; a_3, r_3, s_3, \cdots ; a_n, r_n, s_n

What policy π_{act} should be used?

Choosing the policy

Option1: Select the best policy

 $\pi_{act}(s) = \operatorname{arg\,max}_{a \in Actions(s)} \hat{Q}_{\pi}(s, a)$

Problem: $\hat{Q}_{\pi}(s,a)$ estimates are inaccurate. Too greedy

Option2: Select a random policy $\pi_{act}(s) = \text{random from } Actions(s)$ **Problem:** Exploration is not guided

Epsilon-Greedy Policy

$$\pi_{act}(s) = egin{cases} {
m arg\,max}_{a \in Actions(s)} \ \hat{Q}_{\pi}(s,a) & {
m probability} \ 1-\epsilon \ {
m random \ from} \ Actions(s) & {
m probability} \ \epsilon \end{cases}$$

A balance between the two!

Function Approximation

Stochastic Gradient update:

$$\hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \hat{Q}_{opt}(s, a) + \eta \big[\underbrace{\hat{Q}_{opt}(s, a)}_{prediction} - \underbrace{(r + \gamma \hat{V}_{opt}(s', a'))}_{target} \big]$$

How to generalize to unseen states/actions

Function Approximation

Linear Regression:

Use features $\phi(s, a)$ and weights **w**

$$\hat{Q}_{opt}(s,a;\mathbf{w}) = \mathbf{w} \cdot \phi(s,a)$$

Grid World:

$$\phi_1(s, a) = 1[a = Up]$$

 $\phi_2(s, a) = 1[a = Left]$
...

$$\phi_7(s,a) = 1[s = (1,*)]$$

 $\phi_8(s,a) = 1[s = (*,2)]$

Function Approximation

Q-Learning with Function Approximation:

for each
$$(s, a, r, s')$$
:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \Big[\underbrace{\hat{Q}_{opt}(s, a; \mathbf{w})}_{prediction} - \underbrace{(r + \gamma \hat{V}_{opt}(s'))}_{target} \Big] \phi(s, a)$$

Objective Function:

$$\left(\underbrace{\hat{Q}_{opt}(s,a;\mathbf{w})}_{prediction} - \underbrace{\left(r + \gamma \hat{V}_{opt}(s')\right)}_{target}\right)^2$$

Recap

Reinforcement Learning
Model-based Monte Carlo Learning
Model-free Monte Carlo Learning
SARSA
Q-Learning
Epsilon-Greedy
Function Approximation

References

Stuart Russell and Xiaodong Song (2021)

CS 188 — Introduction to Artificial Intelligence University of California, Berkeley

Chelsea Finn and Nima Anari (2021)

CS221 — Artificial Intelligence: Principles and Techniques

Stanford University

The End