This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

10

15

What is claimed is:

- 1) In a fuel cell comprising:
 - A) a polymer electrolyte membrane;
 - B) a fuel electrode or anode;
 - C) an oxidation electrode or cathode; and
 - D) appropriate conductors for the supply of electrical current to an electrical load,

the improvement comprising the use of a porous, coal-based, carbon foam as either or both of said anode and said cathode.

- The fuel cell of claim 1 wherein said coal-based carbon foam is semi-crystalline, largely isotropic, produced from particulate coal of a small diameter and exhibits a density of between about 0.1 and about 0.8 g/cm³ and a thermal conductivity of below about 1 W/m/°K.
- 3) The fuel cell of claim 2 wherein said small diameter is less than about 1 mm.
- 4) The fuel cell of claim 2 wherein said coal-based carbon foam has a compressive strength below about 6000 psi.

- 5) The fuel cell of claim 1 wherein said coal-based carbon foam is prepared from bituminous coal.
- 6) The fuel cell of claim 4 wherein said bituminous coal has a swell index of between about 3 and about 5.
- 7) The fuel cell of claim 4 wherein said bituminous coal has a Gieseler plasticity value above about 500DDPM.
- 8) The fuel cell of claim 2 wherein coal-based carbon foam exhibits a pore size below about 2000μ .
- 9) The fuel cell of claim 8 wherein said coal-based carbon foam exhibits a pore size below about 100μ.
- 10) The fuel cell of claim 2 wherein said coal-based carbon foam has been graphitized at a temperature between about 1600°C and 2600°C.
- 11) The fuel cell of claim 9 wherein said coal-based carbon foam has been graphitized at a temperature between about 1800°C and about 2200°C.

5

15

- 12) The fuel cell of claim 9 wherein said coal-based carbon foam has been graphitized at a temperature of about 2200°C.
- 13) The fuel cell of claim 2 wherein said coal-based carbon foam is prepared by a process comprising the steps of:
 - A) comminuting coal to a small particle size to form a ground coal;
 - B) placing said ground coal in a mold;
 - C) heating said ground coal in said mold under a nonoxidizing atmosphere to a temperature of between
 about 300° C and about 700° C and soaking at this
 temperature for a period of from about 10 minutes to
 about 12 hours to form an electrode preform;
 - D) controllably cooling said electrode preform; and
 - E) graphtizing said electrode preform at a temperature between about 1600°C and 2400°C.
- 14) In an electrical cell for the generation or storage of electrical power through an electrochemical reaction and comprising:
 - A) an anode;
 - B) a cathode; and
 - C) appropriate conductors for the supply of electrical current to an electrical load,

the improvement comprising the use of a porous carbon foam as either or both of said anode and said cathode.

- 15) The electrical cell of claim 13 wherein said porous carbon foam is coal-based.
- 16) The electrical cell of claim 14 wherein said coal-based carbon foam is derived from a coal having a swell index of between about 3 and about 9.
- 17) The electrical cell of claim 15 wherein said swell index is about 4.
- 18) The electrical cell of claim 14 wherein said carbon foam is derived from a coal having a Gieseler plasticity value above about 500 DDPM.
- 19) The electrical cell of claim 14 wherein said carbon foam semicrystalline, largely isotropic, produced from particulate coal of a small diameter and exhibits a density of between about 0.1 and about 0.8 g/cm³ and a thermal conductivity of below about 1 W/m/°K.

15

10

5

10

- The electrical cell of claim 18 wherein said small diameter is 20) less than about 1 mm.
- 21) The electrical cell of claim 18 wherein said carbon foam has a compressive strength below about 6000 psi.
- The electrical cell of claim 14 wherein coal-based carbon foam 22) exhibits a pore size below about 2000µ.
- 23) The electrical cell of claim 21 wherein said coal-based carbon foam exhibits a pore size below about 100µ.
- 24) The electrical cell of claim 14 wherein said coal-based carbon foam has been graphitized at a temperature between about 1600°C and 2600°C.
- 25) The electrical cell of claim 23 wherein said coal-based carbon foam has been graphitized at a temperature between about 1800°C and about 2200°C.
- 26) The electrical cell of claim 24 wherein said coal-based carbon foam has been graphitized at a temperature of about 2200°C.

5

- 27) The electrical cell of claim 14 wherein said carbon foam is prepared by a process comprising the steps of:
 - F) comminuting coal to a small particle size to form a ground coal;
 - G) placing said ground coal in a mold;
 - H) heating said ground coal in said mold under a nonoxidizing atmosphere to a temperature of between
 about 300° C and about 700° C and soaking at this
 temperature for a period of from about 10 minutes to
 about 12 hours to form an electrode preform;
 - I) controllably cooling said electrode preform; and
 - J) graphtizing said electrode preform at a temperature between about 1600°C and 2400°C.