Influência da Descontinuação da Medicação de Parkinson nas Funções Cerebrais

•••

Alessandro Domingues, Felipe Santos, Felipe Tavares, Thiago Machado

Introdução

 Doença de Parkinson: perda de neurônios dopaminérgicos na substância negra neurodegeneração;

Dificuldades de execução motora e cognitiva;

• Fármaco precursor dopaminérgico: Levodopa;

• Diferentes biomarcadores são estudados para avaliar os sintomas motores e o risco de demência em pacientes com a doença de Parkinson.

Biomarcadores: BETA

EEG: BETA BAND (13-35 Hz)

- Correlacionada com sintomas motores;
- Fisiologicamente: explosões fásicas de curta duração nos circuitos motores corticais-gânglios basais
- Parkinson: tendência em consistir em rajadas fásicas de maior duração

Biomarcadores: TETA

EEG: TETA BAND (4 - 8 Hz)

- Geralmente expressa na região médio-frontal;
- Prevalente após novos estímulos, instruções conflitantes ou após erros
- Modulada após erro durante o tempo de reação correlacionados com ajustes pós-erro e relacionada com neurônios frontais
- Conflito de Simon para estimulação e avaliação.

Biomarcadores: DELTA

EEG: DELTA BAND (0,5 - 4 Hz)

- Essencial na avaliação de declínio cognitivo;
- Aumento da atividade expresso com aumento de carga cognitiva;
- Estudos demonstram queda na atividade em comprometimento cognitivo leve e Alzheimer.

Há diferenças significativas nas funções cerebrais de pacientes com doença de Parkinson após interrupção abrupta da farmacoterapia?

Bases de Dados

EEG: Simon Conflict in Parkinson's

- Tarefa em blocos de conflito de Simon
- 2 sessões de 28 pacientes com Parkinson e 1 sessão de 28 controles saudáveis. (total 56 de gravações)
- Em uma das duas sessões, o paciente teve sua medicação (levodopa) previamente interrompida por 15 horas.

James F Cavanagh and Arun Singh and Kumar Narayanan (2021). EEG: Simon Conflict in Parkinson's. OpenNeuro. [Dataset] doi: 10.18112/openneuro.ds003509.v1.1.0

Tarefa de Simon

- Na tarefa de Simon os participantes respondem a estímulos visuais ao fazer uma resposta movendo-se a direita para um estímulo (por exemplo, ao ver um quadrado), ou movendo-se a esquerda para outro estímulo (por exemplo, ao ver um círculo). Estímulos são apresentados às vezes no canto direito de um display e às vezes no canto esquerdo.
- Para uso do banco de dados, não é relevante o desempenho dos pacientes em responder aos estímulos corretamente. O interesse está nos dados coletados de ondas cerebrais (EEG) e do acelerômetro.

Metodologia de Análise

Ferramentas

- GitHub
- Google Docs
- Google Drive
- Google Colab
- Matlab
- Python
- Jupyter Notebook
- Frameworks
 - Pandas
 - Scikit Learn
 - Keras
 - o PyTorch
 - TensorFlow
 - Scipy

Hipóteses

- Há alguma relação entre o sexo do participante e a presença da doença de Parkinson?
- Há alguma relação entre a idade do participante e a presença da doença de Parkinson?
- A medicação causou alguma diferença no exame de EEG, para pacientes com Parkinson?
- É possível identificar pacientes com Parkinson após interrupção abrupta da farmacoterapia

EEG Channels and BandPower Analysis

- Conceito
- Frequências de atividade
 - Placement

EEG Channels and BandPower Analysis

- Conceito de BandPower
- Visualização de Dados
 - Dataset Atualizado

	absolute_bp	relative_bp	freq_act	sub	988	channel
0	7.482034409	0.2450370447	delta	1	1	Cz
1	1.626393833	0.1385304443	tetha	1	1	Cz
2	0.9992103344	0.1043317802	alpha	- 1	1	Cz
3	1.867909341	0.2296902946	beta	1	1	Cz
4	1.966724113	0.3149616713	gama	1	1	Cz
5	177.6986595	0.3223963935	delta	3	- 1	Fz
6	41.1218081	0.229198998	tetha	1	1	Fz
7	14.38568526	0.1172340209	alpha	1	1	Fz
8	9.974165059	0.1225693772	beta	1	1	Fz

Dados analisados

- Grupo do participante;
- Utilização do medicamento nas sessões;
- Sexo;
- Idade;
- Dados estatísticos do EEG no canal Cz. (média, desvio padrão, valor máximo e valor mínimo);
- Bandpower do canal Cz.

Sexo dos participantes

Porcentagem de participantes de controle e com Parkinson.

Histograma da idade dos participantes.

Análise I:
Dados estatísticos do canal Cz
com idade e sexo dos
participantes.

Análise I: Variáveis com forte correlações (>= 0.5 e < 1.0)

Cz mean s2	Cz 75% s2	0.501980
Cz 25% s2	Cz mean s2	0.537130
Cz mean s2	Cz max s2	0.794413
Cz std s2	Cz mean s2	0.843164
Cz 75% s1	Cz min s1	0.879755
Cz mean s2	Cz min s2	0.886603
Cz_min_s1	Cz_50%_s1	0.906972
Cz mean s1	Cz min s1	0.913283
Cz min s1	Cz 25% s1	0.939152
Cz_min_s2	Cz_max_s2	0.985225
Cz 75% s1	Cz 25% s1	0.985803
Cz_75%_s2	Cz_25%_s2	0.991187
Cz 50% s1	Cz 25% s1	0.994881
sess2 Med	sess1 Med	0.995937
Cz_std_s2	Cz_min_s2	0.996203
Cz mean s1	Cz 75% s1	0.996224
Cz_{max_s2}	Cz_std_s2	0.996323
sess1 Med	Group	0.996558
Cz 25% s1	Cz mean s1	0.996590
Cz_75%_s1	Cz_50%_s1	0.997173
Cz 50% s2	Cz 25% s2	0.997299
Cz_mean_s1	Cz_50%_s1	0.999496
Group	sess2 Med	0.999974

Análise II:
Dados estatísticos do canal Cz
com idade e sexo dos
participantes com Parkinson.

Análise II: Variáveis com forte correlações (>= 0.5 e < 1.0)

Cz_min_s1	Cz_75%_s1	0.936585
Cz_mean_s1	Cz_min_s1	0.946259
Cz_50%_s1	Cz_min_s1	0.949900
Cz_25%_s1	Cz_min_s1	0.954421
Cz_min_s2	Cz_max_s2	0.985164
Cz_75%_s1	Cz_25%_s1	0.989761
Cz_75%_s2	Cz_25%_s2	0.995673
Cz_max_s2	Cz_std_s2	0.996250
Cz_std_s2	Cz_min_s2	0.996272
Cz_75%_s1	Cz_50%_s1	0.996506
Cz_50%_s1	Cz_25%_s1	0.996967
Cz_mean_s1	Cz_25%_s1	0.997318
Cz_25%_s2	Cz_50%_s2	0.998601
Cz_50%_s2	Cz_75%_s2	0.998799
Cz_mean_s1	Cz_50%_s1	0.999195

Análise III: Band Power absoluto do canal Cz com idade e sexo dos participantes.

Análise III: Variáveis com forte correlações (>= 0.5 e < 1.0)

abs bp_alpha_ Cz_s01	abs bp_gama_C z_s01	0.640393
abs bp_beta_C z_s01	abs bp_alpha_ Cz_s01	0.757440
abs bp_delta_ Cz_s01	abs bp_alpha_ Cz_s01	0.803050
abs bp_alpha_ Cz_s01	abs bp_tetha_ Cz_s01	0.880716
abs bp_beta_C z_s01	abs bp_gama_C z_s01	0.986074
abs bp_delta_ Cz_s01	abs bp_tetha_ Cz_s01	0.989326
sess2_Med	sess1_Med	0.995937
Group	sess1_Med	0.996558
'sess2_Med	Group	0.999974

Análise IV:
Band Power absoluto do canal Cz
com idade e sexo dos participantes
com doença de Parkinson..

Análise IV: Variáveis com forte correlações (>= 0.5 e < 1.0)

abs_bp_beta_Cz_s01	abs_bp_delta_Cz_s0	0.999537
abs_bp_delta_Cz_s0	abs_bp_gama_Cz_s01	0.999619
abs_bp_alpha_Cz_s0	abs_bp_delta_Cz_s0	0.999643
abs_bp_delta_Cz_s0	abs_bp_tetha_Cz_s0	0.999749
abs_bp_beta_Cz_s01	abs_bp_tetha_Cz_s0	0.999762
abs_bp_gama_Cz_s01	abs_bp_alpha_Cz_s0	0.999875
abs_bp_alpha_Cz_s0	abs_bp_tetha_Cz_s0	0.999912
abs_bp_beta_Cz_s01	abs_bp_alpha_Cz_s0	0.999929

Análise V:
Band Power relativo do canal Cz
com idade e sexo dos
participantes.

Análise V: Variáveis com forte correlações (>= 0.5 e < 1.0)

rel bp beta Cz s02	rel bp delta Cz s02	0.813816
rel bp tetha Cz s02	rel bp beta Cz s02	0.826063
rel bp alpha Cz s02	sess1 Med	0.832207
rel bp tetha Cz s02	sess1 Med	0.837288
sess2 Med	rel bp tetha Cz s02	0.840027
rel bp tetha Cz s02	Group	0.840059
rel bp gama Cz s02	sess2 Med	0.843248
Group	rel bp alpha Cz s02	0.843284
rel bp alpha Cz s02	sess2 Med	0.843970
rel bp gama Cz s02	Group	0.844079
rel bp delta Cz s02	sess1 Med	0.866851
rel bp beta Cz s02	sess1 Med	0.871113
rel bp delta Cz s02	Group	0.875322
Group	rel bp beta Cz s02	0.887761
rel bp beta Cz s02	sess2 Med	0.888915
rel bp alpha Cz s02	rel bp beta Cz s02	0.911402
sess1 Med	sess2 Med	0.995937
sess2_Med	Group	0.999974

Análise VI:
Band Power relativo do canal Cz
com idade e sexo dos
participantes com Parkinson.

Análise VI: Variáveis com forte correlações (>= 0.5 e < 1.0)

rel_bp_alpha_Cz_s01	rel_bp_gama_Cz_s02	0.503890
rel_bp_gama_Cz_s02	rel_bp_beta_Cz_s01	0.512614
sex	rel_bp_gama_Cz_s02	0.535049
rel_bp_gama_Cz_s02	rel_bp_beta_Cz_s02	0.574649
rel_bp_tetha_Cz_s01	rel_bp_gama_Cz_s01	0.580769
rel_bp_beta_Cz_s01	rel_bp_beta_Cz_s02	0.603402
rel_bp_alpha_Cz_s02	rel_bp_alpha_Cz_s01	0.615456
rel_bp_beta_Cz_s01	rel_bp_alpha_Cz_s01	0.635096
rel_bp_gama_Cz_s02	rel_bp_alpha_Cz_s02	0.655489
rel_bp_beta_Cz_s02	rel_bp_alpha_Cz_s02	0.657913
rel_bp_tetha_Cz_s01	rel_bp_alpha_Cz_s01	0.729738
rel_bp_alpha_Cz_s02	rel_bp_tetha_Cz_s02	0.745070
rel_bp_gama_Cz_s01	rel_bp_beta_Cz_s01	0.790240

Classificação de pacientes com Parkinson com interrupção de medicamento

- Considerados dados de canais de EEG e acelerômetro coletados
- Uso de estatísticas descritivas nos canais (média, desvio padrão, quartis)
- Uso de features de bandpower absoluto e relativo para os sinais de EEG
 (Cz, Fz, Pz, Oz) e acelerômetro (eixos X, Y, Z)
- Modelos de classificação para identificação de pacientes de Parkinson com medição interrompida com busca de hiperparametros (Regressões logísticas, árvores de decisão, KNNs, SVMs, Random Forests.)
- Comparação entre uso de dataset com todos os canais de EEG e acelerômetro e de canais relacionados com Parkinson.

Classificação de pacientes com Parkinson com interrupção de medicamento

- Separação dos dados em 70% para treino e 30% para teste.
- Uso de KFolds (5) nos dados de treino para escolha de melhores hiperparametros para os modelos estatísticos.

Matriz de correlação com todos os dados

 Distribuição com classe "PD_no_med", que representam pacientes de Parkinson com interrupção de medicação.

	count	mean	std	min	25%	50%	75%	max
PD_no_med	543.0	-0.024542	0.111283	-0.5	-0.092547	-0.038868	0.033413	1.0

• 10 features com melhores correlações:

	PD_no_med
X_delta_relative_t	op 0.379352
Y_delta_relative_t	op 0.352597
X_alpha_relative_t	op 0.324407
Z_tetha_relative_t	op 0.289732
Z_alpha_relative_t	op 0.277168
Y_tetha_relative_t	op 0.264210
X_delta_absolute_t	op 0.258869
X_tetha_relative_t	op 0.249533
Z_delta_absolute_t	op 0.233156
Y_delta_absolute_t	op 0.230807

correlation matrix heatmap:

Matriz de correlação com canais relacionados com Parkinson

 Distribuição com classe "PD_no_med", que representam pacientes de Parkinson com interrupção de medicação.

	count	mean	std	min	25%	50%	75%	max
PD_no_med	123.0	-0.023982	0.172749	-0.5	-0.097475	-0.042009	0.024835	1.0

 10 features com melhores correlações: (por fim são as mesmas que da análise com todos os dados)

	PD_no_med
X_delta_relative_bp	0.379352
Y_delta_relative_bp	0.352597
X_alpha_relative_bp	0.324407
Z_tetha_relative_bp	0.289732
Z_alpha_relative_bp	0.277168
Y_tetha_relative_bp	0.264210
X_delta_absolute_bp	0.258869
X_tetha_relative_bp	0.249533
Z_delta_absolute_bp	0.233156
Y delta absolute bp	0.230807

Resultados de modelos de classificação: conjunto de teste (30% dados)

	model	dataset	f1_test	acc_test	balanced_acc_test	precision_test	recall_test	roc_auc_test	cohen_kappa_test
3	LogisticRegression_L2	dataset_filtered_features	0.625000	0.769231	0.751880	0.55556	0.714286	0.751880	0.462069
11	Decision Tree	dataset_filtered_features	0.600000	0.692308	0.744361	0.461538	0.857143	0.744361	0.384615
1	LogisticRegression	dataset_filtered_features	0.55556	0.692308	0.699248	0.454545	0.714286	0.699248	0.337580
0	LogisticRegression	dataset_full	0.545455	0.615385	0.691729	0.400000	0.857143	0.691729	0.281768
9	KNN	dataset_filtered_features	0.533333	0.730769	0.680451	0.500000	0.571429	0.680451	0.345324
5	SVM kernel linear	dataset_filtered_features	0.500000	0.692308	0.654135	0.44444	0.571429	0.654135	0.282759
13	Random Forest	dataset_filtered_features	0.500000	0.692308	0.654135	0.44444	0.571429	0.654135	0.282759
2	LogisticRegression_L2	dataset_full	0.500000	0.538462	0.639098	0.352941	0.857143	0.639098	0.191710
4	SVM kernel linear	dataset_full	0.500000	0.538462	0.639098	0.352941	0.857143	0.639098	0.191710
8	KNN	dataset_full	0.285714	0.615385	0.511278	0.285714	0.285714	0.511278	0.022556
6	SVM kernel rbf	dataset_full	0.000000	0.730769	0.500000	0.000000	0.000000	0.500000	0.000000
7	SVM kernel rbf	dataset_filtered_features	0.153846	0.576923	0.439850	0.166667	0.142857	0.439850	-0.125984
10	Decision Tree	dataset_full	0.235294	0.500000	0.432331	0.200000	0.285714	0.432331	-0.119205
12	Random Forest	dataset_full	0.000000	0.576923	0.394737	0.000000	0.000000	0.394737	-0.243478

Conclusão

Hipóteses:

- Há alguma relação entre o sexo do participante e a presença da doença de Parkinson?
- Há alguma relação entre a idade do participante e a presença da doença de Parkinson?
- A medicação causou alguma diferença no exame de EEG, para pacientes com Parkinson?
- É possível identificar pacientes com Parkinson após interrupção abrupta da farmacoterapia
- Resultados dos modelos
- Trabalhos futuros

Apêndice: parâmetros para modelos estatísticos

	model_name	model	param_grid	search_type	expr_dataset	search_n_iter
0	LogisticRegression	LogisticRegression()	0	grid	dataset_full	NaN
1	LogisticRegression	LogisticRegression()	0	grid	dataset_filtered_features	NaN
2	LogisticRegression_L2	LogisticRegression()	{'penalty': ['I2'], 'C': [0.03125, 0.041468603	grid	dataset_full	NaN
3	LogisticRegression_L2	LogisticRegression()	{'penalty': ['I2'], 'C': [0.03125, 0.041468603	grid	dataset_filtered_features	NaN
4	SVM kernel linear	SVC(kernel='linear', max_iter=10000)	$\{ \!\!\! \text{ 'C': } [0.03125, 0.04146860325085487, 0.0550286$	rand	dataset_full	50.0
5	SVM kernel linear	SVC(kernel='linear', max_iter=10000)	$ \{ \ C': [0.03125, 0.04146860325085487, 0.0550286$	rand	dataset_filtered_features	50.0
6	SVM kernel rbf	SVC(max_iter=10000)	$ \{ \!\!\! \text{'C':} [0.03125, 0.04146860325085487, 0.0550286 \\$	rand	dataset_full	50.0
7	SVM kernel rbf	SVC(max_iter=10000)	$ \{ \ C': [0.03125, 0.04146860325085487, 0.0550286$	rand	dataset_filtered_features	50.0
8	KNN	KNeighborsClassifier()	{'n_neighbors': [12, 38, 21, 16, 7, 27, 22, 38	rand	dataset_full	40.0
9	KNN	KNeighborsClassifier()	{'n_neighbors': [12, 38, 21, 16, 7, 27, 22, 38	rand	dataset_filtered_features	40.0
10	Decision Tree	DecisionTreeClassifier()	{'ccp_alpha': [0.0, 0.003184430739849202, 0.01	rand	dataset_full	50.0
11	Decision Tree	DecisionTreeClassifier()	{'ccp_alpha': [0.0, 0.003184430739849202, 0.01	rand	dataset_filtered_features	50.0
12	Random Forest	RandomForestClassifier()	{'n_estimators': [10, 100, 1000], 'max_feature	grid	dataset_full	NaN
13	Random Forest	RandomForestClassifier()	{'n_estimators': [10, 100, 1000], 'max_feature	grid	dataset_filtered_features	NaN

Apêndice: parâmetros para modelos estatísticos

```
# param grid logregl2
param range = search n iter
penalty = ['12']
C range = np.logspace(-5, 15, param range, base=2)
param grid logregl2 = dict(penalty=penalty, C=C range)
# param grid svm
param range = search n iter
C range = np.logspace(-5, 15, param range, base=2)
gamma = np.logspace(-9, 3, param_range, base=2)
param grid svm = dict(C=C range, gamma=gamma)
# param grid knn
knn param range = 40
knn max n = 40
K range = [round(random.random()*knn max n + 1) for i in range(knn param range)]
param grid knn = dict(n neighbors=K range)
# param grid decisiontree
param range = search n iter
ccp alpha range = [0.0] + [(random.random()*0.04) for i in range(param range-1)]
param grid decisiontree = dict(ccp alpha=ccp alpha range)
# param grid randomforest
n estimators range = [10, 100, 1000]
max features range = [5, 10, 22]
param grid randomforest = dict(n estimators=n estimators range,
                               max features=max features range)
```

```
expr params = [{
         'model_name': 'LogisticRegression',
        'model': LogisticRegression(),
         'param grid': {},
         'search type': 'grid',
        'model': LogisticRegression(),
         'param grid': param grid logregl2,
         'search_type': 'grid',
   },{
         'model name': 'SVM kernel linear'.
        'model': svm.SVC(kernel='linear', max iter=10000),
         'param grid': param grid sym,
         'search type': 'rand'.
         'search_n_iter': search_n_iter,
    },{
         'model name': 'SVM kernel rbf',
        'model': svm.SVC(kernel='rbf', max iter=10000),
         'param grid': param grid sym,
        'search type': 'rand'.
         'search n iter': search n iter,
         'model name': 'KNN',
        'model': KNeighborsClassifier(),
         'param grid': param grid knn,
        'search type': 'rand',
         'search n iter': knn param range,
    },{
         'model name': 'Decision Tree',
        'model': DecisionTreeClassifier(),
         'param grid': param grid decisiontree,
         'search type': 'rand',
         'search n iter': search n iter,
        'model': RandomForestClassifier(),
         'param grid': param grid randomforest,
         'search_type': 'grid',
```

Obrigado!

