2021년 고림고 수학(하) 중간고사

- 1. 다음 중 집합이 아닌 것은?
- ① 제곱하면 음수가 되는 정수의 모임
- ② 2초과 3미만인 실수의 모임
- ③ 10이하의 14의 배수의 모임
- ④ 4에 가까운 유리수의 모임
- ⑤ 6이하 자연수의 모임

2. 다음중 함수의 그래프가 아닌 것은?

- **3.** 다음 중 명제가 아닌 것은?
- (1) 3+5=7
- ② $x^2 2x 3 > 0$
- ③ 7은 2의 배수이다.
- ④ 모든 실수 x에 대하여 $x^2 \ge 0$ 이다.
- ⑤ x가 4의 배수이면 x는 2의 배수이다.

- **4.** 점 (-2, 3)을 x축의 방향으로 6만큼, y축의 방향으로 -2 만큼 평행이동한 점의 좌표는?
- ① (-8, 4) ② (-4, 3) ③ (0, 2) ④ (4, 0) ⑤ (4, 1)

- $oldsymbol{5}$. 점 $\left(rac{1}{2},\ -3
 ight)$ 을 x축에 대하여 대칭이동한 점의 좌표를 $(a,\ b)$ 라 할 때, ab의 값은? (단, a, b는 실수이다.)

- ① $\frac{3}{2}$ ② $\frac{2}{3}$ ③ $-\frac{1}{6}$ ④ $-\frac{2}{3}$ ⑤ $-\frac{3}{2}$

- **6.** 전체집합이 $U = \{x | x \in x \in A\}$ 일 때, 조건 $2x 7 \le 0$ 의 진리집합의 원소의 개수는?
- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

7.	전체집합	$U = \{1,\}$	2, 3, 4,	5}와 그	부분집합	A, B	대하여
	$A^{C} = \{4, 5\}$	$\{b\}, B = \{b\}$	(3, 4)일	$\mathbb{C}H$, $n(A$	1∩ <i>B^C</i>)의	값은?	

- ① 1 ② 2
- ③ 3
- 4
- ⑤ 5
- ① 1 ② 2 ③ 4 ④ 8 ⑤ 16

있는 집합의 개수는?

f(1)=1. f(2)=2, f(3)=3을 만족시킬 때, 함수 f의 치역이 될 수

10. 집합 $X = \{1, 2, 3, 4\}$ 에 대하여 함수 $f: X \to X$ 가

- **8.** 도형 $x^2 + 2y + k = 0$ 을 x축의 방향으로 -1만큼, y축의 방향으로 3만큼 평행이동한 도형의 방정식이 점 (1, 3)을 지날 때, 실수 k의 값은?
- ① -9 ② -7 ③ -4 ④ 7 ⑤ 9

- **9.** 두 조건 p, q가 $p: x^2-ax+4 \neq 0, q: x^2-2x+1 \neq 0$ 이고, $p \leftarrow q$ 의 충분조건일 때, 상수 a의 값은?
- ① -3 ② -1 ③ 1 ④ 3 ⑤ 5

- **11.** 집합 X가 공집합이 아닐 때, X에서 X로의 함수 f(x) = x(x-1)(x-2) + x가 항등함수가 되게 하는 집합 X의 개수는?
- ① 7 ② 6 ③ 5 ④ 4
- ⑤ 3

- **12.** a>0, b>0인 실수 a, b에 대하여 $(a+3b)\left(\frac{1}{a}+\frac{3}{b}\right)$ 의 최솟값은?
- ① 10 ② 12 ③ 14 ④ 16 ⑤ 18

13.	이차함수 $y=x^2+x-a$ 를 y 축에 대하여 대칭이동한 곡선이 직선 $3x-y-2=0$ 의 그래프와 접할 때, 상수 a 의 값은?	위한 필요조건일 때, 〈보기〉에서 옳은 것만을 있는 대로 고른 것은?(단, <i>P</i> , <i>Q, R</i> 은 각각 조건 <i>p, q, r</i> 의 진리집합이다.)			
1	-3 ② -2 ③ -1 ④ 0 ⑤ 1	¬. P ∩ Q = ∅ $ □. QC ⊂ R $ $ □. PC ⊂ RC$			
		(1) 7 (2) L (3) 7, L (4) 7, E (5) 8 7, L, E			
14.	전체집합 $U=\{x x\in 100$ 이하의 자연수}와 그 부분집합 A,B 에 대하여 $A=\{x x\in 3$ 의 배수}, $B=\{x x\in 5$ 의 배수}일 때, $n(A\cup B)$ 의 값은?	17. 직선 $-2x+y-2a=0$ 을 $y=x$ 에 대하여 대칭이동시킨 후 다시 x 축의 방향으로 -2만큼, y 축의 방향으로 4만큼 평행이동시켰더니 원 $x^2+y^2+4x-2y-11=0$ 의 넓이를 이등분하였다. 상수 a 의 값은?			
1	44 ② 45 ③ 46 ④ 47 ⑤ 48	① 1 ② 2 ③ 3 ④ 4 ⑤ 5			
15.	다음은 명제 '집합 A , B 에 대하여 $A-B=\varnothing$ 이면 $A\subset B$ 이다.' 가 참임을 증명하는 과정이다. $($ 가 $)$, $($ 나 $)$, $($ 나 $)$ 에 알맞은 것은?	18. 전체집합 $U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7\}$ 의 부분집합 A 에 대하여 $2\leq n(A)\leq 6$ 을 만족하는 집합 A 의 개수는?			
그러 즉, 이는	의 결론을 부정하여 (가)라고 하자. 면 x (나) B	① 119 ② 122 ③ 125 ④ 128 ⑤ 131			
① ② ③ ④ ⑤	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

16. 세 조건 $p,\ q,\ r$ 에 대하여 p는 $\sim q$ 이기 위한 충분조건, q는 $\sim r$ 이기

	원 $(x+1)^2+(y-4$ 대하여 대칭일 때,			?, <i>Q</i> 가 원점에
① 1	② $\frac{1}{2}$	$3 \frac{1}{3}$	(4) $\frac{1}{4}$	⑤ $\frac{1}{5}$

20. 〈보기〉에서 참인 명제만을 있는 대로 고른 것은? (단, a, b는 실수이다.)

- \neg . a < b < 0 이면 $a^2 > b^2$ 이다.
- $L. |a|+|b| \ge |a+b|$ 이면 $a \ge 0$ 이고 $b \ge 0$ 이다.
- \Box . 자연수 a에 대하여 a^2 이 4의 배수이면 a도 4의 배수이다.
- =. 자연수 a, b에 대하여 a^2+b^2 이 홀수이면 ab는 짝수이다.
- ① ¬, ⊏
- ② 7, 2
- ③ ∟, ⊏
- ④ ∟, ⊒ ⑤ ㄱ, ㄷ, ㄹ

- **21.** 다음 중 두 집합 P, Q가 항상 서로소인 것은? (단, U는 전체집합이고, A, B는 U의 부분집합이다.)
- ① $P = \{x | x \in A^C \ \text{ } \exists \vdash x \in B\}, \ Q = \{x | x \in A\}$
- ② $P = \{x \in A^C \ \mathbb{E} = x \in B^C\}, \ Q = \{x \in A^C\}$
- ④ $P = \{x | x \notin A \ 그리고 \ x \in B^C\}, \ Q = \{x | x \notin B \ 그리고 \ x \in U\}$
- ⑤ $P = \{x | x \in A \ 그리고 \ x \in B\}, \ Q = \{x | x \in A \ 그리고 \ x \not\in B\}$

22. ²²⁾자연수 n에 대하여 좌표평면 위의 점 A_n 과 점 B_n 이 다음 조건을 만족한다고 하자.

(가) A₁(0, 2)

- (나) 점 B_n 은 점 A_n 을 원점 대칭시킨 점이다.
- (다) 점 A_{n+1} 은 점 B_n 을 x축의 방향으로 2만큼 평행이동시킨 점이다.

 $\overline{A_{10}B_{20}}$ 의 값은?

- ① $4\sqrt{2}$ $\frac{1}{4}$ $2\sqrt{2}$
- ② $2\sqrt{5}$ ⑤ 2

3 4

- **23.** 실수 x, y가 x > 0, y > 0을 만족할 때, 〈보기〉에서 옳은 것만을 있는 대로 고른 것은?
 - $\lnot. \ xy + 1 < x + y$
- ||x| |y|| < |x + y|
- $\ \ \, :: \ \, x^2 + y^2 + 1 \ge xy + x + y$
- $\exists. \ \frac{1}{(x+1)^2} + \frac{1}{(y+1)^2} \ge \frac{2}{(x+1)(y+1)}$
- (1) 7, 2 (2) L, C (4) C, Z (5) L, C, Z
- ③ ∟, ≥

1) ④

2) ⑤

3) ②

4) ⑤

5) ①

6) ③

7) ①

8) ③

9) ⑤

10) ②

11) ①

12) ④

13) ②

14) ④

15) ⑤

16) ③

17) ③18) ①

19) ④

20) ②

21) ⑤

22) ①

23) ⑤