Programming Lab Report

Vivid Padungkiatsakul 6601023620026^1

¹Robotic Engineering and Automation System, Faculty of Engineering, King Mongkut's University of Technology North Bangkok

[010243107] C Programming 2023

Lab Week 10

Function[II]: Array & Pointer

Topic

- Function with Array
- $\bullet\,$ Pass by reference

Experiment I

1 Problem description

- Write a function that shows a message if the temperature is higher than 30.0 degrees or not. The function gets a temperature value of an array {29.5, 30.7, 30.1, 29.2, 30.9} in function main.
- void IsTempHigh(float temperature)
- Note: Pass a cell of array into the function.

2 Program design

- For this experiment, we have to create function called "IsTempHigh()" and get cell value from array.
- For the function, we use if statement to split between more or equal to 30 and lower than 30
- The function will be:

$$IsTempHigh(x_{temp}) = \begin{cases} x_{temp} >= 30 & High \\ x_{temp} < 30 & NotHigh \end{cases}$$

3 Program text

```
#include <stdio.h>
float Temp[] = {29.5, 30.7, 30.1, 29.2, 30.9};
int lenght = sizeof(Temp)/sizeof(Temp[0]);
int i;

void IsTempHigh(float temperature){
   if (temperature >= 30){
      printf("Temp: %.1f is High\n",temperature);
   } else {
      printf("Temp: %.1f is not High\n",temperature);
   }
}

int main() {
   for (i = 0; i < lenght; i++) {
      IsTempHigh(Temp[i]);
   }
}</pre>
```

4 Terminal output

```
Temp: 29.5 is not High
Temp: 30.7 is High
Temp: 30.1 is High
Temp: 29.2 is not High
Temp: 30.9 is High
```

Experiment II

1 Problem description

- Write a function that gets an array {29.5, 30.7, 30.1, 29.2, 30.9} as input and returns average temperature. In function main, call the function and verify the function.
- float calAverageTemp(float t[])
- Note: Pass the whole array into the function.

2 Program design

- For this experiment, we have to create function called "calAverageTemp()" and get cell value from array by insert whole array.
- The function will sum all value of the array and calculate the average.
- For calculate the average, we can calculate by:

$$\bar{x} = \frac{\sum_{n=1}^{n} x_n}{n}$$

3 Program text

```
#include <stdio.h>
float Temp[] = {29.5, 30.7, 30.1, 29.2, 30.9};
int lenght = sizeof(Temp)/sizeof(Temp[0]);
int i;

float calAverageTemp(float t[]){
    float SumFunction = 0, Avge;
    for (i = 0; i < lenght; i++){
        SumFunction = SumFunction + t[i];
    }
    Avge = SumFunction/lenght;
    return Avge;
}

int main(){
    printf("lenght: %d\nAverage temp: %f",lenght,calAverageTemp(Temp));
}</pre>
```

4 Terminal output

```
lenght: 5
Average temp: 30.079998
```

Experiment III

1 Problem description

- Write a function that increments value of a variable (declared in function main) by one every time that the function is called. In function main, call the function 10 times and verify the function.
- void count(int *p)
- Note: Pass address of a variable into the function.

2 Program design

- For this experiment, we have to create the function called "count" that get address from pointer and add the value of that variable of the address.
- In this case, we can not have the return value because when we add the value of the pointer, the variable of that address will add too.
- For calling function 10 times, we use the loop of easy to do the same pattern.

3 Program text

```
#include <stdio.h>

void count(int *p){
    (*p)++;
}

int main(){
    int var = 0, i;
    printf("Var: %d\n", var);
    for(i = 0; i < 10; i++){
        count(&var);
    }
    printf("Var: %d", var);
}</pre>
```

4 Terminal output

```
Var: 0
Var: 10
```

Experiment IV

1 Problem description

- Write a function that calculate volume of cylinder.
- void calCylinderVol(float r, float h, float *v)
- In function main, call the function and verify the function.

2 Program design

- For this experiment, we have to return the value after calculation but the problem fix the function to void. So, we have to use pointer to transfer the value.
- For calculate the area of cylinder (A), we can calculate by:

$$A = \Pi r^2 h$$

• For testing and compare to hand calculation, we set r and h equal to 1.

3 Equation solve

First:

Let
$$r$$
 and $h = 1$

Then insert into equation:

$$A = \Pi r^2 h$$
$$= \Pi \times 1^2 \times 1$$
$$A = \Pi \approx 3.141593$$

4 Program text

```
#include <stdio.h>
#define M_PI (3.141592653589793)

void calCylinderVol(float r, float h, float *v){
    *v = M_PI * r * r * h ;
}

int main(){
    float Radiun = 1, Heigh = 1, Volumn;
    calCylinderVol(Radiun, Heigh, & Volumn);
    printf("Volumn of Cylender (R: %f, D: %f): %f", Radiun, Heigh, Volumn);
}
```

Part 5: Terminal output is on the next page.

5 Terminal output

Volumn of Cylender (R: 1.000000, D: 1.000000): 3.141593

End of Lab Experiment Week 10