MMIC Chip Design

EERF – 6396
Prof. Dr. Randall E. Lehmann
Dept. of Electrical Engineering
The University of Texas at Dallas

Submitted by: Omkar Kulkarni

11/20/2017

1. Introduction

Objectives: Design two Butterworth High Pass Filters:

- a. Ideal (lumped element) HPF
- b. MMIC HPF of GaAs

2. Design

a. PART - 1: Ideal (lumped element) HPF

Parameter	Design Goal
f_{C} (GHz)	10.0
Rejection at 5GHz (dB)	≥30
No. of elements (N, odd)	Minimum
Pi topology	
Z_G and $Z_L = 50\Omega$	

- 1. From the attenuation behavior chart the number of elements chosen to achieve the desired attenuation is 7.
- 2. Coefficients for N = 7 Butterworth are:

7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450 1.0000										ı.
	7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000	

3. Calculating the Values:

$$L_1 = L_7 = \frac{R}{2\pi \times fc \times gn} = \frac{50}{2\pi \times 10G \times 0.445} = 1.788 \text{ nH}$$

$$C_2 = C_6 = \frac{1}{2\pi \times R \times fc \times gn} = \frac{1}{2\pi \times 10G \times 50 \times 1.247} = 0.2552 \text{ pF}$$

$$L_3 = L_5 = \frac{R}{2\pi \times f \circ \times gr} = \frac{50}{2\pi \times 100 \times 10010} = 0.4416 \text{ nH}$$

$$C_4 = \frac{1}{2\pi \times R \times fc \times an} = \frac{1}{2\pi \times 10G \times 50 \times 2} = 0.1591 \text{ pF}$$

• Schematic

• S-parameters form circuit simulations

• Compliance Matrix:

Parameter	Design Goal	Simulated Performance	Compliant (Yes/No)	
f _c (GHz)	10	10	Yes	
Rejection at 5GHz (dB)	> 30	42.16	Yes	

Summary: The results exceed the required specifications with N=7. We will design the next part with N=5.

b. PART - II: MMIC HPF on GaAs

Parameter	Design Goal
$f_{C}(GHz)$	10.0
Rejection at 5GHz (dB) (actual S21)	≥25
No. of elements (N, odd)	Minimum
Tee topology	
Z_G and $Z_L = 50\Omega$	
MMIC Chip Size (sq. mm)	Minimum

1. Butterworth coefficients for N = 5:

ı			1				
	5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000

2. Calculating the values:

T topology is chosen to minimize the number of inductors which would save chip area.

$$C_{1} = C_{5} = \frac{1}{2\pi \times R \times fc \times gn} = \frac{1}{2\pi \times 10G \times 50 \times 0.6180} = 0.515 \text{ pF}$$

$$C_{3} = \frac{1}{2\pi \times R \times fc \times gn} = \frac{1}{2\pi \times 10G \times 50 \times 2} = 0.5 \text{ pF}$$

$$L_{2} = L4 = \frac{R}{2\pi \times fc \times gn} = \frac{50}{2\pi \times 10G \times 1.618} = 0.4918 \text{ nH}$$

- 3. Realizing the L and C on GaAs substrate:
 - i. AWR MESFET library is used to streamline the MMIC design process
 - ii. MSUB is defined as follows:

iii. TFCM element is used for capacitors: TFCM shows the calculated capacitance in green for the set parameters. Adjusting the values of width, length the required C values are achieved. The length of all capacitors is kept constant and the width is tuned which further helped in reducing the x dimension.

iv. MCINDS element is used for inductors: $Z_{\rm IN}$ was plotted on smith chart to achieve the required $X_{\rm L}$ at 10 GHz by tuning radius, width, number of turns, length of the bridge and spacing.

- v. Appropriate connecting elements are added to make a practically realizable layout.
- vi. TVIA are used to connect the inductors to the ground plane and GSG pads are added for auto-probing capability on both sides.
- vii. Tuning was done as necessary to compensate for the connecting elements.

• Schematic:

• Layout:

All dimensions in micrometer

• 3-D Layout:

• Measurements:

• Compliance Matrix:

Parameter	Design Goal	Simulated Performance	Compliant (Yes/No)	
f _c (GHz)	10	10	Yes	
Rejection at 5GHz (dB)	>25	30.15	Yes	

• MMIC yield

- Area of 1 chip:

Leaving a margin of 25 µm from all 4 sides:

Length = $460 + 25 + 25 = 510 \mu m$

Width = $509 + 25 + 25 = 559 \mu m$

Total area of unit chip = Length \times Width = 0.510 mm \times 0.559 mm = **0.285 mm**²

- Calculating the available wafer area:

Wafer diameter = 150 mm; wafer radius = 75 mm

Discounting the outer 10 mm:

Remaining area = $\pi r^2 = \pi \times 65^2 = 13273 \text{ mm}^2$

Discounting 5% area for PCM chips = $13273 \times 0.95 = 12609.56 \text{ mm}^2$

Considering the total process and RF yield of $90\% = 12609.56 \times 0.90 = 11348.6 \text{ mm}^2$

- Expected yield =
$$\frac{Available\ wafer\ area}{Unit\ chip\ area} = \frac{11348.6}{0.285} = 39816$$

Summary: The MMIC HPF has a cutoff frequency of around 10 GHz with rejection of 30.15 dB at 5 GHz. Around 39800 chips can be expected from a 150 mm diameter GaAs wafer.