Leçon : Conversion de Puissance Électromécanique

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

30 mai 2024

Niveau : CPGE PSI

Prérequis : Électromagnétisme

: mécanique

Principe de fonctionnement

Figure – Contacteur électromagnétique

Énergie magnétique emmagasinée

Méthodologie

- Théorême d'Ampère
- Onservation du flux du champ magnétique
- Expression du champ B en fonction de l'ntensité
- Induction propre
- Énegie magnétique emmagasinée

Force Électromagnétique

Force Électromagnétique

Il faut noter que:

- $F_M \propto i^2$ c'est une force de rappel quelque soit le signe de i et est nulle en moyenne dans le temps pour une excitation sinusoïdale
- Ce type de dispositif peut servir de contacteur électromagnétique permettant de commander la fermeture et l'ouverture d'un circuit électrique via le déplacement de la partie mobile, qui en l'absence de champ magnétique est ramenée à sa position initiale par l'intermédiaire d'un ressort.

Généralisation

On peut généraliser l'expression de la force :

$$F = \left(\frac{\partial E}{\partial x}\right)_{\Phi} \tag{1}$$

Pour un contacteur en rotation autour d'un axe fixe repéré par un angle θ , on utilisera plutôt le moment des actions s'exerçant sur le contacteur : Γ

$$\Gamma = \left(\frac{\partial E}{\partial \theta}\right)_{\Phi}.\tag{2}$$

Structure

Figure – Physique expérimentale, Jolidon

Rôle du collecteur

Figure - Physique expérimentale, Jolidon

Constante électromécanique

Point de fonctionnement

Figure – Caractéristique MCC, extrait du Jolidon

Bilan de puissance

Figure – Bilan de Puissance, extrait jolidon

Structure

Figure - Schéma cours Naval