Clustering, k-means, k-means++ and the advantages of careful seeding

• David Arthur, Sergei Vassilvitskii. *k-means++: The Advantages of Careful Seeding*. In SODA 2007

What is clustering?

 a grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other

How to capture this objective?

a grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other groups

minimize intra-cluster distances

The clustering problem

- Given a collection of data objects
- Find a grouping so that
 - similar objects are in the same cluster
 - dissimilar objects are in different clusters
- Why we care ?
- stand-alone tool to gain insight into the data
 - visualization
- preprocessing step for other algorithms
 - indexing or compression often relies on clustering

Applications of clustering

- image processing
 - cluster images based on their visual content
- web mining
 - cluster groups of users based on their access patterns on webpages
 - cluster webpages based on their content
- bioinformatics
 - cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)
- many more...

The clustering problem

- Given a collection of data objects
- Find a grouping so that
 - similar objects are in the same cluster
 - dissimilar objects are in different clusters

Basic questions:

- * what does similar mean?
- what is a good partition of the objects?
 i.e., how is the quality of a solution measured?
- + how to find a good partition?

Notion of a cluster can be ambiguous

Types of clusterings

- Partitional
 - each object belongs in exactly one cluster
- Hierarchical
 - a set of nested clusters organized in a tree
- Density Based
 - clustering is defined based on the local density of the points

Partitional clustering

A Partitional Clustering

Partitional algorithms

- partition the n objects into k clusters
 - each object belongs to exactly one cluster
 - the number of clusters k is given in advance

The k-means problem

- consider set $X=\{x_1,...,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c₁,...,c_k (named centers or means)
 so that the cost

$$\sum_{i=1}^{n} \min_{j} \left\{ L_2^2(x_i, c_j) \right\} = \sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2^2$$

is minimized

The k-means problem

- consider set $X=\{x_1,...,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c₁,...,c_k (named centers or means)
 - and partition X into {X₁,...,X_k} by assigning each point x_i in X to its nearest cluster center,
 - so that the cost

$$\sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2^2 = \sum_{j=1}^{k} \sum_{x \in X_j} ||x - c_j||_2^2$$

is minimized

The k-means problem

- k=1 and k=n are easy special cases (why?)
- an NP-hard problem if the dimension of the data is at least 2 (d≥2)
- in practice, a simple iterative (greedy) algorithm works quite well

The k-means algorithm

- voted among the top-10 algorithms in data mining
- one way of solving the kmeans problem

Copyrighted Material

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

The k-means (Lloyd's) algorithm

- 1.randomly (or with any other method) pick k cluster centers {c₁,...,c_k}
- 2.for each j, set the cluster X_j to be the set of points in X_j that are the closest to center c_j
- 3.for each j let c_j be the center of mass of cluster X_j (mean of the vectors in X_j)
- 4.repeat (go to step 2) until convergence

Sample execution

Properties of the k-means algorithm

- finds a local optimum
- often converges quickly but not always
- the choice of initial points can have large influence in the result

Effects of bad initialization

Limitations of k-means: different sizes

Original Points

K-means (3 Clusters)

Limitations of k-means: different density

Original Points

K-means (3 Clusters)

Limitations of k-means: non-spherical shapes

Original Points

K-means (2 Clusters)

Discussion on the k-means algorithm

- finds a local optimum
- often converges quickly but not always
- the choice of initial points can have large influence in the result
- tends to find spherical clusters
- outliers can cause a problem
- different densities may cause a problem

Initialization

- random initialization
- random, but repeat many times and take the best solution
 - helps, but solution can still be bad
- pick points that are distant to each other
 - k-means++
 - provable guarantees

k-means++

David Arthur and Sergei Vassilvitskii k-means++: The advantages of careful seeding SODA 2007

k-means algorithm: random initialization

k-means algorithm: random initialization

k-means algorithm: initialization with further-first traversal

k-means algorithm: initialization with further-first traversal

but... sensitive to outliers

but... sensitive to outliers

Here random may work well

k-means++ algorithm

- interpolate between the two methods
- let D(x) be the distance between x and the nearest centers selected so far
- choose next center with probability proportional to

$$(D(x))^a = D^a(x)$$

- + a = 0 random initialization
- + a = ∞ furthest-first traversal
- + a = 2 k-means++

k-means++ algorithm

- initialization phase:
 - choose the first center uniformly at random
 - choose next center with probability proportional to D²(x)
- iteration phase:
 - iterate as in the k-means algorithm until convergence

k-means++ initialization

k-means++ result

k-means++ provable guarantee

- approximation guarantee comes just from the first iteration (initialization)
- subsequent iterations can only improve cost

Lesson learned

no reason to use k-means and not k-means++

- k-means++ :
 - easy to implement
 - provable guarantee
 - works well in practice

- Wiki: https://en.wikipedia.org/wiki/K-means%2B%2B
- Implemented in scikit-learn
- Even a parallel version!! k-means||

But.. how to choose the right k?

- Results depend on the choice of k
- How to choose the right k before even seen the data?

• Idea:

- Iterate through different k and use a statistical test to find the most appropriate k!!
- given that k-means tries to find spherical clusters... assume that clusters are spherical Gaussians!
- use a statistical test to find if the models used fit the data better with the current k.