Exercice 1

Un écoulement d'huile, de viscosité moyenne μ = 0,275 Pl et de masse volumique ρ = 890 kg.m⁻³, se fait dans un tube horizontal de diamètre 150 mm. On installe sur ce tube 2 prises de pression statique que l'on mesure à l'aide d'un manomètre en U à mercure. On lit H_1 = 820 mm et H_2 = 340 mm. Les deux prises de pression sont distantes d'une longueur L = 120 m. La densité du mercure vaut 13,6 .

- 1. Calculer la perte de charge linéique *i*.
- 2. En supposant le régime laminaire, déterminer la vitesse de l'écoulement. En déduire le nombre de Reynolds de l'écoulement. L'hypothèse du régime laminaire était-elle justifiée ?
- 3. Quelle est la puissance dissipée entre les sections 1 et 2 du tube ?

Exercice 2

Un écoulement en tuyau circulaire a un nombre de Reynolds de 2000.

On envisage 2 diamètres possibles : $D_1 = 15$ mm et $D_2 = 150$ mm.

- 1. Calculer la vitesse moyenne, puis le débit volumique de l'écoulement pour chaque diamètre dans les cas suivants :
- a) eau à 20° C : $v = 1 \text{ cSt} = 10^{-6} \text{ m}^2/\text{s}$ b) huile à 20° C : v = 50 cSt densité = 0.9
- 2. Déterminer le coefficient de perte de charge λ :
- a) en supposant que le régime est laminaire
- b) en supposant que le régime est turbulent lisse
- c) à partir du diagramme de Colebrook.
- 3. Calculer les pertes linéiques dans chaque cas pour l'eau. Les exprimer en terme de pression.

Exercice 3:

Une pompe transporte de l'eau d'un réservoir de grandes dimensions sous pression atmosphérique à un réservoir également de grandes dimensions situé plus haut.

Pour les calculs, on prendra : $g = 9.81 \text{ m.s}^{-2}$; $\rho_{eau} = 1000 \text{ kg.m}^{-3}$; $\mu_{eau} = 1.10^{-3} \text{ Pa.s}$

Régime laminaire : Droite de Poiseuille : $\lambda = 64/R_e$;

<u>Régime turbulent</u>: - conduite rugueuse : Loi de Blench : $\lambda = 0.79.(\epsilon/D)^{0.5}$

- conduite lisse : droite de Blasius : $\lambda = 0.316$. $R_e^{-0.25}$

A l'aspiration, la conduite, lisse, a un diamètre de 15 cm, comporte 3 coudes de coefficient de perte de charge 0,2 , une crépine de coefficient de perte de charge 1,1. La longueur droite de conduite est de 4 m.

Au refoulement, la conduite, lisse, a un diamètre de 5cm, comporte 17 coudes de coefficient de perte de charge 0,1 , un adoucisseur entraînant une perte de charge nominale de 3 m. La longueur droite de conduite est de 24 m.

Le débit nominal de l'installation est de 3 m³.h⁻¹.

- 1. Si P_{res} est égal à P_{atm} calculer la charge ΔH_P (dimension d'une hauteur) que doit fournir la pompe, la puissance P_P qu'elle fournit au fluide et la puissance P_r qu'elle reçoit si son rendement η est de 94 %.
- 2. Mêmes questions si $P_{r\acute{e}s}$ vaut 1,8 bar.
- 3. Le $NPSH_r$ de la pompe étant de 1,9 m et la température de l'eau du réservoir étant variable, pour quelle température risque-t-on la cavitation au niveau de l'entrée de la pompe ?

Tensions de vapeur – eau					
T °C	bar	T °C	bar	Т°С	bar
5	0,0087	21	0,0249	48	0,112
6	0,0093	22	0,0260	50	0,123
7	0,0100	23	0,0281	52	0,136
8	0,0107	24	0,0300	54	0,149
9	0,0115	25	0,0317	56	0,165
10	0,0123	26	0,0336	58	0,181
11	0,0131	28	0,0378	60	0,198
12	0,0140	30	0,0424	65	0,249
13	0,0150	32	0,0476	70	0,310
14	0,0160	34	0,0532	75	0,385
15	0,0170	36	0,0594	80	0,473
16	0,0182	38	0,0062	85	0,577
17	0,0193	40	0,0710	90	0,700
18	0,0206	42	0,0820	95	0,844
19	0,0220	44	0,0910	100	1,013
20	0,0236	46	0,1010	105	1,210

Schéma simplifié (les singularités ne sont pas représentées) :

