NSWCCD-50-TR--1999/061

Naval Surface Warfare Center Carderock Division

9500 MacArthur Boulevard, West Bethesda, Maryland 20817-5700

NSWCCD-50-TR--1999/061

November 1999

Hydromechanics Directorate Report

U.S. Coast Guard Island Class 110 WPB: Stern Flap Evaluation and Selection (Model 5526)

By
Dominic S. Cusanelli
Liam O'Connell

DTIC QUALITY INSPECTED 4

20000111 038

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting purgen for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN		
	November 1999	Final, Exper		onducted 4/99
4. TITLE AND SUBTITLE U.S. Coast Guard Island Cla Selection (Model 5526)	ss 110 WPB: Stern Flap	Evaluation and	Sponso	ng numbers or: USCG
6. AUTHOR(S)			Order DTCG	No.: 40-99-X-60002
Dominic S. Cusanelli, Liam	O'Connell			
7. PERFORMING ORGANIZATION NAME	F(S) AND ADDRESS(ES)		8. PERFO	RMING ORGANIZATION
NSWCCD, Code 5200 9500 MacArthur Blvd.	,			T NUMBER
West Bethesda, MD 20817-	.5700		NSWC	CD-50-TR1999/061
9. sponsoring/monitoring agence Boat Engineering Branch (E				SORING/MONITORING CY REPORT NUMBER
Engineering Logistics Cente United States Coast Guard 2401 Hawkins Pt. Road, MS	er .			·
Baltimore, MD 21226-5000				
11. SUPPLEMENTARY NOTES Work Unit Title: USCG Ste	rn Flap			
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT		12b. DIST	RIBUTION CODE
Approved for public release	; distribution is unlimite	ed.		
			<u> </u>	
13. ABSTRACT (Maximum 200 words) Model experiments wer Coast Guard Island Class 11	10 WPB patrol boat. Se	everal stern flap de	signs of	various chord
lengths, spans, and angles w maximizing power reduction	n at high speed, while s	atisfying secondar	y power	ing criteria
prescribed at cruising speed angle. A stern flap with cho	ord length 2 ft (0.61 m).	span of 8.7 ft (2.7	7 m), and	l an angle of 7.5
degrees trailing edge down, with the stern flap installed,	is recommended for in	stallation on the Is	land Cla	iss. At full load,
flap maximum power reduc	tion of 5.8 percent was	attained at 16 kno	ase by 0 ts. This	5.8% powering
reduction includes an empir	ical 1.5% reduction for	stern flap scaling	effects a	is determined from
tests on other ship models. more than 13,000 gallons/ye	Stern flap annual fuel sear. The time to recove	avings for the Isla r the estimated co	nd Class st for ste	s is estimated at orn flap fabrication
and installation is less than				
			(continued on next page
14. SUBJECT TERMS Stern Flaps, 110 WPB, Isl	and Class Patrol Roats			13. NUMBER OF PAGES
Sterii Fiaps, 110 WFB, Isl	and Class, I allor boats			16. PRICE CODE
	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF OF ABSTRACT	ICATION	20. LIMITATION OF ABSTRA
OF REPORT UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFI	ED	same as report

UNCLASSIFIED

13. (continued)					
It is recommended that bow spray rails also be installed in the Island Class. The bow spray rails affected a significant reduction in the amount of spray and forward deck-wetting generated at the bow. A new DTMB Model 5526 was constructed for this project. A ship/model correlation allowance of CA = 0.0003 was estimated from a powering comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526.					

CONTENTS

P	Page
ABSTRACT	1
ADMINISTRATIVE INFORMATION	. 1
INTRODUCTION	1
DESCRIPTION OF MODEL AND EXPERIMENTAL PROCEDURE	2
SHIP/MODEL COMPARISON - CORRELATION ALLOWANCE ESTIMATE	3
STERN FLAP EVALUATION AND SELECTION	4
STERN FLAP PERFORMANCE	5
Resistance	
Full Scale Projected Delivered Power	
Fuel Savings Potential	
Ship Running Trim	9
Stern Waves	10
Effects on Propeller Cavitation	
Measurement Uncertainty	
SPRAY RAIL INSTALLATION	11
CONCLUSIONS	13
ACKNOWLEDGMENTS	
REFERENCES	15
APPENDICES	
A - MODEL 5526 DESCRIPTION AND INSPECTION	A 1
B - MODEL EXPERIMENTS AND ANALYSIS	

	<u>FIGURES</u> Pag	зe
1.	Island Class Model 5526 with stern flap installed	3
2.	Island Class, full scale projected stern flap performance	7
3.	Island Class, stern flap effect on ship running trim	9
4.	Island Class, model scale transom flow comparison, with/without stern flap installed 1	
5.	Island Class, model scale bow wave and spray comparison, with/without bow spray rails 1	2
	<u>TABLES</u>	
1.		4
2.	Summary of stern flap optimization experiments	
3.	•	7
4.		9
	APPENDIX A - FIGURES	
A 1.	Photographs of Island Class Model 5526 and appendages, model tested stern flaps, "bow	
	spray rails", and stern flap installation and testing hardware	
A2.	Island Class Model 5526, graphic depiction of model surface inspection	
A3.	Island Class Model 5526, Chine Rail and Bow Spray Rail Installation A	
A4.	Geometry of model tested stern flaps	9
A5.	Representative Island Class propeller open water characteristics used in delivered power estimates, as determined on cavitation-sized model propeller 5128	10
	APPENDIX A - TABLES	
A1.	Island Class, bare hull hydrostatic calculations at tested loading conditions	l 1
	APPENDIX B - FIGURES	
B1.	Ship/Model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$	14
B2.	Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle	15
В3.	Island Class, comparisons of model scale resistance and powering with/without stern flap installed, full load 163 L. tons (adjusted for stern flap scale effects)	
B4.	Island Class, comparisons of model scale resistance and powering with/without stern flap installed, min-ops 144 L. tons (adjusted for stern flap scale effects)	
B5.	Projected full scale stern flap performance on Island Class 110 WPB, full load (163Ltons) B2	24
B6.	Projected full scale stern flap performance on Island Class 110 WPB,	
	min-ops load (144Ltons)B2	24
B7.	Ship/Model powering comparison to main engine operating envelope (Caterpillar 3516), 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$	25
B8.	Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load	26
B9.	Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, min-ops load	28

	APPENDIX B - FIGURES (continued) Page
B10.	Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, full load 163 L. tons
	Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, min-ops 144 L. tons
B12.	Local transom flow comparisons, with/without stern flap installed, full load 163 L. tonsB32
B13.	Bow wave and spray comparisons, with/without bow spray rails, full load 163 L. tonsB38
	APPENDIX B - TABLES
B1.	Test Agenda: Island Class 110WPB Model 5526 stern flap evaluation and selectionB40
B2.	Island Class Model 5526, displacements, appended wetted surfaces, drafts, and other related
В3.	Model 5526 uncertainty in resistance measurements
B4.	BAINBRIDGE ISLAND (WPB 1343) performance trials results, 151 L. ton load conditionB43
B5.	Ship/model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, variations in correlation allowance
B6.	Island Class, resistance prediction (no flap), ship trials load condition 151 L. tons, Exp. 6 B45
B7.	Island Class, estimated powering (no flap), ship trials load condition 151 L. tons
B8.	Stern flap optimization and selection, model resistance experiments
B9a.	Island Class, resistance prediction (no flap), full load 163 L. tons, original model configuration without spray rail extension, Exp. 17
B9b.	Island Class, resistance prediction (no flap), full load 163 L. tons, Exp. 18
	with "bow spray rails"B52
B10.	Island Class, resistance prediction (no flap), min-ops 144 L. tons, Exp. 21B53
B11.	Island Class, resistance prediction with stern flap, full load 163 L. tons, Exp. 19
B12.	Island Class, resistance prediction with stern flap, min-ops 144 L. tons, Exp. 20
B13.	Island Class, estimated powering (no flap), full load 163 L. tons
B14.	Island Class, estimated powering (no flap), min-ops 144 L. tonsB57
B15.	Island Class, estimated powering with stern flap, full load 163 L. tons
B16.	Island Class, estimated powering with stern flap, min-ops 144 L. tons
B17.	Summary of model scale stern flap and "bow spray rails" performance on Island ClassB60
B18.	Projected full scale stern flap powering on Island Class 110 WPB, full load 163 L. tonsB62
B19.	Projected full scale stern flap powering on Island Class 110 WPB, min-ops 144 L. tonsB63
B20.	Stern flap on Island Class 110 WPB: Summary of full scale projected performance
B21.	Estimate of Island Class 110 WPB main propulsion engine fuel consumption rates, with/without stern flap installed

ABSTRACT

Model experiments were performed to evaluate the performance of a stern flap on a U.S. Coast Guard Island Class 110 WPB patrol boat. Several stern flap designs of various chord lengths, spans, and angles were evaluated. The selected stern flap design was based upon maximizing power reduction at high speed, while satisfying secondary powering criteria prescribed at cruising speed, and limits set on desired running trim angle. A stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5 degrees trailing edge down, is recommended for installation on the Island Class. At full load, with the stern flap installed, the maximum attainable speed will increase by 0.8 knots. The stern flap maximum power reduction of 5.8 percent was attained at 16 knots. This 5.8% powering reduction includes an empirical 1.5% reduction for stern flap scaling effects as determined from tests on other ship models. Stern flap annual fuel savings for the Island Class is estimated at more than 13,000 gallons/year. The time to recover the estimated cost for stern flap fabrication and installation is less than one year.

It is recommended that bow spray rails also be installed in the Island Class. The bow spray rails effected a significant reduction in the amount of spray and forward deck-wetting generated at the bow. A new DTMB Model 5526 was constructed for this project. A ship/model correlation allowance of $C_A = 0.0003$ was estimated from a powering comparison between

BAINBRIDGE ISLAND (WPB 1343) and Model 5526.

ADMINISTRATIVE INFORMATION

The work described in this report was performed at the David Taylor Model Basin, Carderock Division, Naval Surface Warfare Center, herein referred to as DTMB, by the Hydromechanics Directorate, Resistance and Powering Department, Code 5200. The work was sponsored by the US Coast Guard, Boat Engineering Branch (ELC-024), Order No. DTCG40-99-X-60002, Work Unit No. 1-5200-056.

INTRODUCTION

The Island Class 110 WPB patrol boats, with 49 units in active service, represents the largest class of patrol vessels presently in the U.S. Coast Guard (USCG) arsenal. The hull is a modified Vosper-Thornycroft (British) patrol boat design, 110 ft (33.5 m) in overall length, with twin shafts, and 49.6 inch (126 cm) diameter fixed-pitch propellers. The Island Class was acquired for offshore surveillance, law enforcement, and search-and-rescue operations, replacing the older 95 ft (29 m) and 82 ft (25 m) WPBs; Polmar [1]. The USCG has initiated a research and development program with the intention of improving the performance capabilities of the Island Class 110 WPB patrol boats. The preliminary goals of the Coast Guard's R&D program, of which the flap selection is one area of investigation, are to increase the maximum attainable speed at full power, and to reduce the propeller cavitation and cavitation erosion damage tendencies to the propeller's blades. A secondary objective is the improvement of habitability by reducing the propulsion generated onboard radiated noise and vibration levels. In addition, ship trials on the Island Class 110 WPB series C, have indicated that the Caterpillar 3516 main propulsion engines must be operated in exceedance of the specified engine performance curve (brake horsepower vs. engine speed). This has resulted in the inability of this particular engine design, as installed in the WPB 1343, to reach full engine RPM. Therefore, an additional objective of the class performance improvement is to bring into better balance the ship's speed/power characteristics with the engine operating envelope.

As an opening phase of the Island Class 110 WPB improvement initiative, model experiments were performed to evaluate the performance of a stern flap on these patrol boats. A stern flap, which is an appendage fitted to the hull at the transom, reduces the power required to propel the ship through the water. The U.S. Navy has been investigating the potential of stern flaps, as low cost retrofits, on many recent ship designs. Stern flaps represent a viable means of reducing power and increasing top speed for many hullforms, as test programs have shown at both model scale, Cusanelli and Forgach [2], and full scale, Cusanelli [3]. Reductions in propulsion generated vibrations and in signature levels, due to improvements in propeller cavitation characteristics, can also be realized through a stern flap installation.

DTMB Model 5526, representing the Island Class 110 WPB patrol boats, was constructed for this project. Eight stern flaps were manufactured for the present Model 5526 experiments. These stern flaps were designed as a series, to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. The selection of the best stern flap design for the Island Class was based upon several factors. There was a desire to reduce power at high speed (28 ~ 32 knots), to satisfy secondary powering criteria prescribed at cruising speed (24 knots) and best economic speed (12 knots), and to stay within the trim criteria.

A ship/model correlation allowance was estimated by the comparison of Model 5526 data to the BAINBRIDGE ISLAND (WPB 1343) standardization trials results. A ship/model correlation insures that the most accurate assessment of ship performance will be achieved. Traditional model scale powering experiments, which are necessary for a formal determination of correlation allowance, were not performed on Model 5526. Instead, model resistance predictions were utilized to estimate Island Class powering data for comparison to the standardization trials results.

DESCRIPTION OF MODEL AND EXPERIMENTAL PROCEDURE

A new geosim model, DTMB Model 5526 (linear scale ratio $\lambda = 5.706$), representing the Island Class 110 WPB patrol boats, was constructed for this project, Figure 1. Appendages installed on the model were: twin roll stabilizer fins, twin rudders, and twin shaft and strut propulsion appendages. The model also included a 5° wedge at the transom, inlayed into the hull surface. Experiments were conducted with eight different stern flap designs. Appendix A presents a more complete description of Model 5526.

All data presented in this report are for the full scale Island Class 110 WPB patrol boats operating in smooth, deep salt water with a uniform standard temperature of 59° Fahrenheit (15° Celsius). Unless explicitely stated otherwise, all full scale data include all relevent corrections, including the correction for the stern flap scale effect, as is described in a later section. All model experiments were conducted on Carriage 1, in the deep water basin of DTMB. Model experiments were conducted in accordance with standard procedures outlined for model experiments at DTMB. A more complete description of the experimental procedure is presented in Appendix B.

Fig 1. Island Class Model 5526 with stern flap installed

SHIP/MODEL COMPARISON - CORRELATION ALLOWANCE ESTIMATE

A ship/model comparison was performed between the BAINBRIDGE ISLAND (WPB 1343) standardization trials results, Haupt and Puckette [4], and Model 5526 estimated powering data. From this comparison, a ship/model correlation allowance was estimated for the new Model 5526. Model scale powering experiments, which are necessary for a formal determination of correlation allowance, were not performed on Model 5526. Present Model 5526 resistance test data, representative Island Class propeller open water performance data, and estimated propeller-hull interaction coefficients were utilized to estimate Island Class powering data. The estimated model powering data was then used for comparison to the ship trials results, presented in Appendix B.

From the ship/model comparison between BAINBRIDGE ISLAND (WPB 1343) trials results and Model 5526 estimated powering data, it is recommended that the value of $C_A = 0.0003$ be used as the correlation allowance for the Island Class 110 WPB. The stated Island Class correlation allowance, $C_A = 0.0003$, should be viewed only as a model testing adjustment factor which brings the present model estimated powering performance (based on resistance tests and propeller open water tests) in line with the measured trials powering data. At this time, any comparison to the US Navy Correlation Data Base [5] should be done with great caution. It is recommended that an effort should be made to determine the Island Class correlation allowance through a traditional model powering test series.

STERN FLAP EVALUATION AND SELECTION

The stern flap selection experiments were conducted at an equivalent Full Load condition of 163.39 long tons, LCG = 4.645ft (1.42m) aft of midships. Eight stern flaps were manufactured for the present Model 5526 experiments, their principal dimensions are presented in Table 1. These stern flaps were designed as a series to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. The first series, comprised of flaps #1, #2, #3, and #4, was designed to investigate variations in flap chord length, while holding span constant at 16 ft (4.9 m). The second series, comprised of flaps #3, #5, and #6, was designed to investigate variations in span, while holding chord length constant at 2 ft (0.61 m). The third series, comprised of flaps #1, #7, and #8, was also designed to investigate variations in span, while holding chord length constant at only 1 ft (0.3 m). And the fourth series, comprised of flaps #1 versus #6 and #2 versus #5, was designed to investigate variations in planform area distribution, while holding respective total planform area constant. All flaps were evaluated over a range of angles, nominally 0 to 10 degrees, trailing edge down.

Table 1. Principle dimensions of stern flaps tested on Model 5526

	Island Class	110 WPB	Stern Flaps	
	Ship §	Scale Dimen	sions	;
Flap#	Chord Length (ft)		Planform Area (sq. ft)	Angles Tested (trail edge down)
1	1	16	15.6	0°, 5°, 7.5°, 10°
2	1.5	16	23.0	0°, 5°, 10°
3	2	16	30.3	0°, 5°, 7.5°, 10°
4	2.5	16	37.3	0°, 5°, 10°
5	2	12.4	23.0	0°, 5°, 7.5°, 10°
6	2	8.7	15.6	0°, 5°, 7.5°, 10°
7	1	12.4	11.9	0°, 5°, 7.5°, 10°
8	1	8.7	8.2	7.5°, 10°

The selection criteria for the Island Class 110 WPB stern flap design was prescribed by the USCG Boat Engineering Branch (USCG ELC-024), as follows:.

Selection criteria for the Island Class 110 WPB stern flap design

- Maximize reduction in ship powering over high speed range of 28 to 32 knots.
- Disallow any increase in ship powering at cruising speed, as indicated by performance at 24 knots.
- Limit ship running trim modification (bow down) to 1.0 degrees, at all speeds.

Model resistance experiments were conducted for the stern flap evaluation. Stern flap resistance performance is generally considered to be indicative of powering performance. Therefore, the prescribed powering criteria for the Island Class stern flap design were evaluated through model resistance

experiments. The complete Model 5526 data and analysis, pertaining to the stern flaps evaluation, selection, and performance, on the Island Class 110 WPB patrol boats, is contained within Appendix B. A summary of the Island Class model stern flap optimization experiments is presented in Table 2. The data of Table 2 is presented for each stern flap only at the angle where the maximum high speed performance was exhibited, while also satisfying the secondary powering and trim modification criteria.

Table 2. Summary of stern flap optimization experiments

Ste	Stern Flap Optimization - Model Scale Resistance Performance					
Flap#	Angle TED		Cruising Speed: 24 knots (PE flap/base)	High Speed: 30 knots (PE flap/base)	Maximum Trim Modification (∆ degrees)	
1	7.5	0.979	0.982	0.999	-0.65	
2	5.0	0.976	0.993	1.003	-0.26	
3	5.0	0.962	0.992	1.003	-0.32	
4	5.0	0.969	0.995	1.009	-0.31	
5	7.5	0.969	0.976	1.007	-1.00	
6	7.5	0.979	0.979	0.997	-0.63	
7	10.0	0.986	0.974	0.999	-0.96	
8	10.0	0.993	0.983	1.002	-0.72	

Model stern flap #6, at 7.5 degrees, exhibited the best overall reduction in ship resistance at high speed while still satisfying the secondary powering and trim modification criteria. This design represents a full scale stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5° trailing edge down relative to the local slope (run) at the 4 ft (1.22 m) buttock.

STERN FLAP PERFORMANCE

Resistance

The resistance performance of the selected stern flap, chord length 2 ft (0.61 m), span 8.7 ft (2.7 m), and angle of 7.5° TED, on the Island Class 110 WPB patrol boats, over the entire speed range of 10 through 32 knots, was predicted directly from experimental data on Model 5526. Resistance predictions were made at both the Full Load condition of 163.39 L. tons, LCG = 4.645ft (1.42m) aft of midships, and at the Minimum Operating Load (Min-Ops) condition of 143.61 L. tons, LCG = 5.253ft (1.6m) aft of midships. The following predictions are determined at model scale for the two loading conditions.

Full Load: Model resistance predictions indicate a decrease in ship effective power (P_E) when the stern flap is installed for all speeds tested (10 - 32 knots). The maximum stern flap P_E reduction is predicted to be 3.76 percent at a speed of 16 knots. The average decrease in P_E , over the high speed range (as indicated by 28 through 32 knots), is approximately 0.82 percent.

Min-Ops: A decrease in ship P_E , when the stern flap is installed, is again indicated for all speeds tested. The maximum stern flap P_E reduction is predicted to be 3.74 percent at a speed of 15 knots. The average high speed decrease in P_E is approximately 0.96 percent.

Full Scale Projected Delivered Power

The model resistance predictions were then used to estimate powering with and without the stern flap. Model resistance, representative class propeller open water performance data, and estimated propeller-hull interaction coefficients, were utilized to estimate Island Class powering data. For a complete description of the powering estimation procedures, refer to Appendix B.

While significant powering improvement is indicated from these Model 5526 stern flap experiments, the actual full scale stern flap on the Island Class would generally be expected to exceed the performance improvement shown on the model. Ship trials have indicated that the actual performance improvement of full scale prototype stern flaps generally exceed that of the model predictions, in the range of roughly 2% to as much as 12%, Cusanelli [3]. Within the last year, a beneficial stern flap scale effect has been firmly identified through full scale ship trials, model testing with varying model sizes, and computational fluid dynamics calculations. A simple quantitative empirical "performance projection tool", for estimating the magnitude of the stern flap scale effect, is under development. This performance tool was utilized to calculate new projections of Island Class stern flap performance.

Island Class 110 WPB stern flap performance projections, adjusted for stern flap scaling effects, are presented in Figure 3 and summarized in Table 3. Data in Figure 3 is presented as delivered power and propeller RPM ratios, defined as the value required with the stern flap installed divided by the value required for the baseline (no flap) configuration, as a function of ship speed. A ratio below 1.0 denotes a reduction in power or propeller RPM, due to the installation of the stern flap. The Island Class performance estimations, shown in figure 3 and also in table 3, do not account for propeller cavitation.

The installation of the stern flap on the Island Class 110 WPB results in a delivered power (P_D) reduction for all speeds in the ship operating profile. The incipient speed where the stern flap results in a P_D reduction is estimated to be below the 12 knot ship minimum operating speed at engine idle (best economic speed). The stern flap allows the captain the capability to maintain any ship operating speed with less delivered power, and lower engine (or shaft) speed, thus increasing range. Conversely, any equivalent engine horsepower or engine RPM maintained with the flap installed, would result in an increase in speed over the existing patrol boat.

The selected stern flap caused a power reduction at high speed, satisfied the secondary powering criteria prescribed at cruising speed and best economic speed, and did not exceed the trim criteria.

Table 3. Island Class stern flap: Summary of full scale projected performance

Island Class 110 WPB	Projected Performance			
<u>Item</u>	Design Criteria	Full Load	Min-Ops	
Power @ High Speed: 28-32 knots	Maximize Reduction	-0.82%	-0.96%	
Projected Maximum Speed		27.85 kts	30.38 kts	
Increase in Maximum Speed +0.80 kts +0.38				
Power @ Cruising Speed: 24 knots	No Increase	-3.7%	-3.3%	
Maximum Reduction in Powering		-5.8% @ 16 kts	-5.8% @ 15 kts	
Incipient Speed for Effectiveness		< 12 (@ idle)	< 12 (@ idle)	
Annual Fuel Consumption		-4.5%	-3.9%	
Modification to Trim (Bow Down)	Not to Exceed 1.0°	-0.6°	-0.6°	

Island Class Stern Flap:2'Chord, 8.7'Span, 7.5deg Angle

Fig 2. Island Class, full scale projected stern flap performance

The following predictions for both the Full Load condition, and the Min-Ops condition are based on model resistance data, propeller characteristics, and flap scale effect adjustments.

Full Load: The maximum stern flap P_D reduction is projected to be 5.8 percent at a speed of 16 knots. The maximum attainable speed, for the Island Class 110 WPB patrol boats with the stern flap installed, is projected to be 27.85 knots, at a total shaft power of 2583 hP, with a propeller speed of 786.3 RPM (engine speed 1832 RPM). This represents an increase in top speed of 0.80 knots over the existing boats.

Min-Ops: The maximum stern flap P_D reduction is projected to be 5.8 percent at a speed of 15 knots. The maximum attainable speed, with the stern flap installed, is projected to be 30.38 knots, at a total shaft power of 2635 hP, with a propeller speed of 812.9 RPM (engine speed 1894 RPM). This represents an increase in top speed of 0.38 knots.

The projected shaft powering at both the Full load condition and the Min-Ops condition, with/without stern flap installed, were compared to the engine operating envelope of the Island Class 110 WPB C series Caterpillar 3516 main engines. The projected performance at both the Full Load condition (163 L. tons) and at the Min-Ops condition (144 L. tons), indicate delivered power vs. engine speed requirements higher than that of the stated Caterpillar 3516 engine operating envelope (exceeds specified engine performance curve), over most of the speed range. Ship trials on the BAINBRIDGE ISLAND (WPB 1343), at the 151 L. tons displacement, also indicated that the engines were operated in exceedance of the manufacturer's specified engine performance curve. The installation of the stern flap does move the projected powering curve closer to the manufacturer's specified engine performance curve. However, an even greater reduction in the ship's speed vs. power relationship is necessary for the ship performance to remain below the manufacturerer's specified engine performance envelope.

Fuel Savings Potential

The installation of a stern flap on the Island Class 110 WPB results in the capability to maintain ship speed with less delivered power, and lower shaft speed, and therefore, represents a potential for propulsion fuel savings. Fuel consumption rates, measured on the BAINBRIDGE ISLAND (WPB 1343) Caterpillar 3516 main engines, were utilized to estimate fuel consumption at the Full Load and Min-Ops conditions, with and without the flaps. An estimated speed-time profile, shown in table 4, based on 3000 annual operational hours, was supplied by USCG ELC-024 as discussed by Code 5200 personnel and customer representative Debu Ghosh. Assuming equivalent time-at-speed for the class with stern flap installed, the estimated average reduction in annual fuel consumption is 4.5 percent when operating at Full Load, and 3.9 percent for Min-Ops. Fuel savings was then estimated assuming a split of 2/3 time (2000 hr.) at full load, and 1/3 time (1000 hr.) at min-ops.

Table 4. Island Class: Estimated Speed Time Profile

Speed	163Lton Speed-Time Profile	144Lton Speed-Time Profile
	163Lton Speed-Time Profile (% of time at given speed)	(% of time at given speed)
12	40	40
15	25	25
18	10	10
21	5	5
23	5	5
25	5	5
27	10	-
30	-	10

The annual fuel savings, resulting from a stern flap installation of the Island Class 110 WPB, would amount to 13,328 gallons, or approximately \$13,000 per ship / per year, on average. The indicated cost for fabrication and installation of a stern flap on this class is in the range of \$10,000 or less. Therefore, the time to recover the cost of the stern flap installation (pay-back on investment) is less than one year.

Ship Running Trim

Comparisons were made between the ship running trim, for the Island Class with and without the stern flap installed, for both the full load and min-ops conditions, Figure 3. The Island Class ship running trim, at both Full Load and Min-Ops, was affected very similarly by the stern flap. The net change in bow down trim angle, resulting from the stern flap, increased as ship speed increased. The change in trim angle remained within 0.6 degrees over the range of ship operational speeds (12 ~ 30 knots). Therefore, the selected stern flap satisfied the design criteria for ship running trim modification (bow down) not to exceed 1.0 degrees, at any speed.

Net Change in Ship Running Trim Angle Due to Stern Flap

Output

Outpu

Fig 3. Island Class, stern flap effect on ship running trim

Stern Waves

Visual observations and photographs were taken of the local transom flow generated behind Model 5526, with and without the stern flap installed, at 2 knot increments of ship speed, from 10 to 32 knots. The complete set of photographs is presented in Appendix B. Figure 4 presents the with/without stern flap comparison photographs at a ship speed of 16 knots, at the Full Load condition. The character of the transom flow was considerably altered by the stern flap over the speed range of 12 ~ 20 knots. Within these speeds, the transom flow appears to be decreased in both wave height and overall width by the stern flap. The ship speed at which the transom flow detaches (break-away) was reduced from approximately 17 knots for the baseline hull to 15 knots with the stern flap installed. Referring to Figure 4, the baseline hull at 16 knots still exhibits attached flow, while the stern flap case exhibits fully detached flow. At this speed, the stern flap exhibited the greatest modification to the transom flow. Not coincidentally, the stern flap also exhibited its maximum powering reduction at this 16 knot speed. For speeds in excess of 22 knots, there appears to be little visual difference in the local transom flow generated behind Model 5526 with or without the stern flap installed. However, at these higher speeds, the stern flap does appear to reduce the visual wake deficit behind the rudders, which appears as a trail of "white water" behind each rudder. This change in the rudder wake is a stern flap effect which had not previously been documented.

Fig 4. Island Class, model scale transom flow comparison, with/without stern flap installed

A qualitative assessment as to stern flap effects on transom flow can be generalized as follows. The stern flap causes a reduction in the observed slopes of the trailing waves, the overall height and sharpness of the ridges along these waves, the amount of residual "white water" trailing in the wake, the apparent height of the first wave crest (transom convergence wave), and the location of the first wave crest. The amount of wave breaking both directly behind the stern (the rooster tail) and also at the edge of the inner transom wave region is visually reduced with the flap.

Effects on Propeller Cavitation

Cavitation may be induced on a full scale ship propeller over parts of it's operating profile, due to the wide range of demands on speed and power. Propeller cavitation effects are not simulated in traditional tow tank model experiments. The reduced power due to the stern flap, leading to reduced propeller loading, combined with the flap's associated increased pressure and reduced flow velocity under the hull, can serve to suppress propeller cavitation and reduce thrust breakdown losses. Slight improvements in cavitation inception speed can also result from the reduced propeller loading at moderate speeds.

A complete assessment of the possible stern flap effects on propeller cavitation, will be made by NSWCCD Code 5400 during the Island Class 110 WPB propeller design study. This information will be published in a later report.

Measurement Uncertainty

As part of the standard model testing procedure for the David Taylor Model Basin, an estimate of the uncertainty in the model measurements is prepared. The details of the uncertainty analysis, as well as the repeat model test data, are presented in Appendix B, Table B3. The estimated uncertainty in the resistance measurement is 0.49% at 16 knots and 0.96% at 24 knots.

For this hullform, the measured improvement in the model resistance due to the stern flap is 3.8% at 16 knots and 2.2% at 24knots The magnitude of the performance improvement due to the stern flap far exceeds the uncertainty in the measurement.

SPRAY RAIL INSTALLATION

In order to promote a cleaner flow separation along the model lower chine, model scale chine rails were installed along an 87 inch (221 cm) length of the chine. This is a technique used at model scale only, in order to promote flow separation similar to that of the full scale ship, along the existing ship lower chine. This model scale chine rail is not to be interpreted as an additional hull treatment or appendage necessary for flow separation at full scale.

However, during model testing, it was noted that a significant amount of spray was being generated from the bow region, forward of the chine rails, at ship speeds in excess of 24 knots. At higher speeds, this spray resulted in model deck-wetting. Representatives of the USCG ELC-024, present at the model testing, reported that similar spray patterns - leading to forward deck-wetting, have been observed at full scale. The flow streamlines, which appear to generate this spray, originate in the region of the bow between the forwardmost edge of the bow stem and the ship's existing lower chine. Since there is nothing in the hull lines to deflect these flow streamlines (either at ship or model scale), the water tends to cling to the hull and progress upwards. At ship speeds of 24 ~ 30 knots, the flow appears to separate off the

upper chine. At higher speeds, the flow progresses all the way to the deck line before separating. Once at the upper chine or deck level, the flow separates in a spray sheet which increases in size as speed increases. It was suggested by the DTMB test engineers to add "bow spray rails" as a continuation of the chine rails, in order to promote better flow separation of the flow streamlines which appeared to generate the bow spray sheet.

In contrast to the chine rails which were installed on the model, the addition of "bow spray rails" extending forward of the existing hull lower chine represents a modification to the existing Island Class hull. The bow spray rails promoted flow separation at the level of the lower chine for all ship speeds, and affected a significant reduction in the amount of spray generated by the bow at higher speeds. Figure 5 shows a comparison of the bow wave and spray with/without bow spray rails installed, for full load at 28 knots. With the bow spray rails installed, there was no forward deck-wetting observed on the model at any speed. Model test data showed that the bow spray rails increase the effective power 0.2 to 1.3% for the 14 ~ 19 knot speed range, but do not affect the predicted power above 19 knots (see table B9a. "Island Class, resistance prediction (no flap), full load 163 L.tons, original model configuration without spray rail extension, Exp. 17" and table B9b. "Island Class, resistance prediction (no flap), full load 163 L.tons, Exp. 18 with "bow spray rails""). See Appendix A, "Model 5526 Description and Inspection", for further details regarding the installation of the chine rail, and bow spray rails on the model.

Fig 5. Island Class, model scale bow wave and spray comparison, with/without bow spray rails

It is recommended that bow spray rails be installed in the Island Class. The exact length of the bow spray rails should be determined through observation of the full scale spray pattern on the Island Class Patrol Boat. They should extend aft at least 7.25 ft (2.2 m) from the bow stem, following the contour indicated by the existing lower chine line, and project from the hull (thickness) approximately 1.5 inches (3.8 cm).

CONCLUSIONS

The U.S. Coast Guard initiated a research and development program with the intention of improving the performance capabilities of the Island Class 110 WPB patrol boats. As an opening phase of this program, model experiments were performed to evaluate the performance of a stern flap on this class. Eight stern flaps were designed and tested on Model 5526. These stern flaps were designed as a series, to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution.

The recommended stern flap for the Island Class 110 WPB is: chord length 2 ft (0.61 m), span 8.7 ft (2.7 m), and angle of 7.5° trailing edge down relative to the local slope (run) at the 4 ft (1.22 m) buttock.

The model tests directly show that the Full Load performance on the Island Class 110 WPB, with the stern flap, will have the following characteristics:

- Maximum attainable speed of 27.55 knots, increase of 0.5 knots
- Power reduction of 2.4% at cruise speed of 24 knots (Conversely range increased by 2.4%)
- Annual propulsion fuel savings of approximately \$8,500 per ship.

Our experience with stern flaps scale effects (model scale to ship scale performance) indicates that there will be an additional benefit above and beyond the benefit shown by the model tests.

With stern flap scaling taken into account the Full Load Performance on the Island Class 110 WPB, with stern flap, will have the following characteristics:

- Maximum attainable speed of 27.85 knots, increase of 0.8 knots
- Power reduction of 3.7% at cruise speed of 24 knots (Conversely range increased by 3.7%)
- Annual propulsion fuel savings of approximately \$13,000 per ship.

It is also recommended that bow spray rails be installed on the Island Class 110 WPB. The bow spray rails promoted flow separation at the level of the lower chine for all ship speeds, and caused a significant reduction in the amount of spray generated by the bow at higher speeds. At ship scale, the bow spray rails should extend at least 7.25 ft (2.2 m) aft from the bow stem, and follow the contour indicated by the existing lower chine line. The bow spray rails should project from the hull (thickness) approximately 1.5 inches (3.8 cm).

In order to insure that an accurate assessment of ship performance was achieved, a ship/model correlation allowance of $C_A = 0.0003$ was estimated, from model resistance experiments, prior to the stern flap testing. It is recommended, however, that an effort should be made to determine the Island Class correlation allowance through a traditional model powering test series.

ACKNOWLEDGMENTS

The authors would like to thank Chris Barry and Debu Ghosh, of the U.S. Coast Guard, Boat Engineering Branch (ELC-024), for their contributions and support towards this project.

REFERENCES

- [1] Polmar, N., Naval Institute Guide to the Ships and Aircraft of the U.S. Fleet, Sixteenth Edition, Naval Institute Press, Annapolis, Maryland, (1997).
- [2] Cusanelli, D.S., and K.M. Forgach, "Stern Flaps for Enhanced Powering Performance", Proceedings of Twenty-Fourth American Towing Tank Conference, College Station, Texas, (Nov. 1995).
- [3] Cusanelli, D.S., "Stern Flap Installations on Three U.S. Navy Ships", ASNE 1998 Symposium 21st Century Combatant Technology, Biloxi, Mississippi, (Jan. 1998).
- [4] Haupt, K.D., and L.T. Puckette, "U.S. Coast Guard 110 ft WPB Island Class C Standardization Trials Results USCG BAINBRIDGE ISLAND (WPB-1343)", NSCSES Report No. 60-264, (Oct. 1991).
- [5] Karafiath, G., "US Navy Ship-Model Powering Correlation and Propeller RPM Prediction", Proceedings of Propellers/Shafting '97 Symposium, Hampton Roads, VA, (Sept. 1997)
- [6] Cusanelli, D.S. and J. Bradel, U.S. Patent Number 5,343,742, "Floating Platform Tow Post", (Sept. 1994).
- [7] Grant, J. W., and C. J. Wilson, "Design Practices for Powering Predictions", DTNSRDC/SPD-0693-01, (Oct. 1976)
- [8] Hadler, J.B., et al., "Ship Standardization Trial Performance and Correlation with Model Predictions", SNAME Transactions, Vol. 70, (1962)

APPENDIX A MODEL 5526 DESCRIPTION AND INSPECTION

- APPENDIX A -

A new geosim model, DTMB Model 5526, representing the U.S. Coast Guard Island Class 110 WPB patrol boats, was built for this project. Descriptions of Model 5526 hull, fabrication, and comparisons of the model hull surface to the numerical model, and descriptions of all model appendages included on the model during testing, are contained within this appendix.

MODEL 5526 - HULL

Model 5526, representing the USCG Island Class 110 WPB, is built to a scale ratio $\lambda = 5.706$ and is shown in figure A1, and in table A1. The model is constructed of sugar pine and was cut on a 5-axis numerically controlled milling machine based on a non-uniform rational b-spline (NURBS) Fastship file. The file is based on offsets provided by the sponsor in the form of an electronic data file.

An inspection of model 5526 was performed using DTMB's Laser Scanner and the results compared to the original Fastship surface. The results of the comparison are shown in figure A2. The results indicate that the majority of the model is within .03 inches (.076cm) of the Fastship surface and all points on the surface are within .05 inches (.13cm). Anything within a tolerance of .05 inches is considered acceptable.

MODEL 5526 - APPENDAGES

Appendages installed on Model 5526 during all the present experiments were: twin roll stabilizer fins, twin rudders, and open shaft and strut propulsion appendage suite. Experiments were also conducted with six different stern flap designs installed. The model surface also included a small wedge at the transom. All appendages were inspected in accordance with Code 52 ISO 9000 requirements and found to be acceptable.

Chine Rails: In order to promote a cleaner flow separation along this chine, model scale chine rails were installed. The chine rails were installed on both port and starboard sides of the model, extending from 15.25 in (38.7 cm) aft of the bow stem to 8.0 ft (2.43 m) aft of the bow stem on the model. The chine rails were made of plexi-glass 1/4 inch (0.64 cm) thick, and 1/2 inch (1.28 cm) in height. Therefore, the chine rails extended the lower chine 1/4 inch (0.64 cm) beyond the existing hull lines. This is a technique used at model scale only, in order to promote flow separation similar to that of the full scale ship along the existing ship lower chine. Figure A3 depicts the installation of the chine rails.

"Bow Spray Rails": In contrast to the chine rails, additional "bow spray rails" were added to the model which represent an additional hull treatment which will alter the location of flow separation at full scale in addition to model scale. The bow spray rails extend from the bow stem to 15.25in (38.7cm) aft of the bow stem along the line indicated by the existing lower chine. These bow spray rails were added to the model at the suggestion of the DTMB engineers when tests indicated that there was significant bow spray at model scale. Representatives of the USCG ELC-024, present at the model testing, reported that similar

spray patterns - leading to forward deck-wetting, have been observed at full scale. Figure A3 depicts the installation of the bow spray rails.

Stern Flaps: Eight stern flaps were designed and manufactured for the Model 5526 experiments. A small-scale sketch depicting the geometry of the model tested stern flaps, and tabulated principal dimensions, are presented in Figure A4. These stern flaps were designed as several different series to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. The first series, comprised of flaps #1, #2, #3, and #4, was designed to investigate variations in flap chord length, while holding span constant at 16 ft (4.9 m). The span selected was the maximum reasonable width across the transom, without the flap impinging on the wake off the corners of the transom, and without requiring significant curvature of the flap around the tight radius at the turn of the bilge. The second series, comprised of flaps #3, #5, and #6, was designed to investigate variations in span, while holding chord length constant at 2 ft (0.61 m). The third series, comprised of flaps #1, #7, and #8, was also designed to investigate variations in span, while holding chord length constant at only 1 ft (0.3 m). And the fourth series, comprised of flaps #1 versus #6 and #2 versus #5, was designed to investigate variations in planform area distribution, while holding respective total planform area constant. A simple radiused corner treatment (in plan view) equal to the flap chord length, was chosen for all flap designs, to simplify construction and reduce full scale flap manufacturing costs. All flaps were evaluated over a range of angles, nominally in 2.5 degree increments, from 0 to 10 degrees trailing edge down (TED). The coordinate system used for flap angle is defined with zero degrees parallel to the slope of the local buttock angle (run) at the 4 ft (1.22 m) buttock. The gap between the transom and the flap was bridged by a small fairing strip fastened to the model to prevent cross-flow and pressure loss at the intersection between the forward edge of the flap and the transom.

Transom Wedge: A small transom wedge designed to be an integral part of (inlayed into) the ship plating at the transom. The manufacture of Model 5526 included this wedge as part of the model surface, and therefore, as on the ship, it is not a removable appendage. Bollinger Shipyard drawing No. 110WPB 085-003 indicates that the transom wedge has a longitudinal chord length of 2.5 ft (0.76 m) and a wedge angle of 5 degrees specified at the 4 ft (1.22 m) buttock.

Rudders: The rudders were designed and built for Model 5526 to conform with Bollinger Shipyard drawing No. 110BWPB 562-001. The rudders are designed with a root chord length 2.35 ft (0.72 m), a tip chord length 1.68ft (0.52m), and a total rudder height of 2.5ft (0.76m). The total wetted surface for the pair of rudders is 21.1ft² (1.96m²). The rudders were aligned parallel to the ship centerline for all experiments on Model 5526.

Roll Stabilizer Fins: The roll stabilizer fins were designed and built for Model 5526 to conform with Bollinger Shipyard drawing No. 110BWPB 565-001. The roll stabilizer fins are designed with a root chord length 3.75ft (1.14 m), a tip chord length 2.75ft (0.84m), and a total fin height of 3.0ft (0.91m).

The twin roll stabilizer fins total wetted surface is 40.0ft^2 (3.72m²). The roll stabilizer fins were aligned parallel to the ship centerline for all experiments on Model 5526.

<u>Propulsion Suite</u>: The open shaft and strut propulsion (twin shaftline) appendage suite consists of the shafts, main and intermediate shaft support struts, and main and intermediate strut barrels. The appendage were designed and built for Model 5526 to conform with Bollinger Shipyard drawing No. 110BWPB 161-001. Shaft angle relative to the baseline is 6.9 degrees, parallel to the ship centerline. The scope of the present model tests did not include model self-propulsion (powering) experiments. Therefore, in order to provide a model at a lower cost, the Model 5526 propulsion appendage suite was constructed of renwood in lieu of standard construction materials. This necessitates that standard functioning propulsion appendages must be manufactured for Model 5526 if future model experiments are to include self-propulsion.

Fig A1. Photographs of Island Class Model 5526 and appendages, model tested stern flaps, "bow spray rails", and stern flap installation and testing hardware

Difference Between Actual and Desired Model Offsets

Fig A2. Island Class Model 5526, graphic depiction of model surface inspection

Fig A2. Island Class Model 5526, graphic depiction of model surface inspection (cont.)

Figure A3. Island Class Model 5526, Chine Rail and Bow Spray Rail Installation

Island	d Class 110 WPE	3 Stern F	laps	Model 5526 $\lambda = 5.706$	
Flap#	Ship So Chord Length (ft)	cale Dime <u>Span</u> (ft)	nsions <u>Planform Area</u> (sq. ft)	<u>Series</u>	Comments
1	1	16	15.6	chord series @16' span, span series @1' chord	Area Equivalent to #6
2	1.5	16	23.0	chord series @16' span	Area Equivalent to #5
3	2	16	30.3	chord series @16' span, span series @2' chord	•
4	2.5	16	37.3	chord series @16' span	Longest Chord
5	2	12.4	23.0	span series @2' chord	Area Equivalent to #2
6	2	8.7	15.6	span series @2' chord	Area Equivalent to #1
7	1	12.4	` 11.9	span series @1' chord	
8	1	8.7	8.2	span series @1' chord	Smallest flap

Flaps #1, #2, #3 and #4: Equivalent 16' Span, Variations in Chord Length

Flaps #3, #5, and #6: Equivalent 2' Chord Length, Variations in Span

Flaps #1, #7, and #8: Equivalent 1' Chord Length, Variations in Span

Fig A4. Geometry of model tested stern flaps A9

0.000

1.298

10KQ

FAIRED OPEN WATER COEFFICIENTS

EXP NO. 1.00

2/6/90

0.044

.259 .216 .169 .120 .070 1.018

0.695 0.672

0.050

0.100 0.150

0.00.0

0.088

0.218

0.175

0.645

0.617 0.587 0.556

0.200 0.250 0.261

0.303

0.965 0.913

0.524

0.350 0.400

0.300

0.492

0.343 0.383 0.458 0.493

0.421

0.428 0.3960.365

0.500 0.550

0.860 0.808 0.757

0.460

0.450

0.608

0.517 0.471

0.247

0.800 0.850

0.628

0.219

0.584

0.563

0.276

0.750

0.557

0.610

0.305

0.526

0.658

0.335

0.650 0.700

0.600

0.707

0.643 0.650

0.426

0.191

0.900

0.630

0.109

1.050

0.587

0.241

0.081

1.100 .150 .200

0.497

0.191

0.138

0.022

CHORD LENGTH (0.7R)

DIAMETER 15.502 in ROTATION 표

NO. BLADES

P/D (0.7R)

0.641

0.336 0.289

0.137

1.000

0.381

0.164

0.950

Fig A5. Representative Island Class propeller open water characteristics used in delivered power estimates, as determined on cavitation-sized model propeller 5128

USCG Island Class 110 WPB 4/5/99 Liam O'Connell 163.38Lt (166.04MT) 2242sqft (208.3sqm) 68.88sqft (6.4sqm) 102.44ft (31.22m) 104.3ft (31.80m) date: 21.07ft (6.42m) Naval Surface WarfareCenter 17.95ft (5.47m) 18.28ft (5.57m) 0.88Lt (.89MT) 7.66ft (2.33m) 6.85ft (2.09m) 3.69ft (1.13m) 1.34ft (.41m) 1.20ft (.37m) Resistance & Propulsion Cwp .783 drawn by: Model Scale Properties 5.706 Principal Dimensions Coefficients 5.706 scale factor: CG110WPB.SRF Draft AP (Tap) Wetted Surface Wetted Surface Draft AP (Tap) Length (LWL) Length (LWL) Draft FP (Tfp) Draft FP (Tfp) Displacement Displacement Length (LBP) Length (LBP) Scale Ratio Beam (Bx) Beam (Bx) Cp .691 Cb .402 5526 model number: surface file: 163Lton LCG: 4.65ft aft midships VCG: 8.88ft above BL

Table A1. Island Class, bare hull hydrostatic calculations at tested loading conditions

USCG Island Class 110 WPB 4/5/99 Liam O'Connell 151.0Lt (153.46MT) 2175sqft (202.1sqm) 102.44ft (31.22m) 103.67ft (31.60m) 66.82sqft (6.2sqm) 21.07ft (6.42m) 0.81Lt (.83MT) date: 7.18ft (2.19m) 6.74ft (2.05m) 17.95ft (5.47m) 18.17ft (5.54m) Naval Surface WarfareCenter Resistance & Propulsion 3.69ft (1.13m) 1.26ft (.38m) 1.18ft (.36m) Cwp .778 Model Scale Properties 5.706 Principal Dimensions drawn by: Coefficients 5.706 scale factor: surface file: CG110WPB.SRF Wetted Surface Draft AP (Tap) Draft AP (Tap) Wetted Surface Length (LWL) Draft FP (Tfp) Length (LWL) Draft FP (Tfp) Length (LBP) Displacement Length (LBP) Displacement Scale Ratio Beam (Bx) Beam (Bx) Cb .386 Cp .69 5526 model number: 151Lton LCG: 5.09ft aft midships VCG: 9.11ft above BL Table A1. Island Class, bare hull hydrostatic

calculations at tested loading conditions (cont.)

USCG Island Class 110 WPB 4/5/99 Liam O'Connell 143.6Lt (145.94MT) 2136sqft (198.5sqm) 65.62sqft (6.1sqm) 103.61ft (31.58m) 102.44ft (31.22m) date: 21.07ft (6.42m) 0.77Lt (.79MT) Naval Surface WarfareCenter 17.95ft (5.47m) 18.16ft (5.53m) 6.93ft (2.11m) 6.66ft (2.03m) 3.69ft (1.13m) 1.21ft (.37m) 1.17ft (.36m) Resistance & Propulsion Cwp .776 drawn by: Model Scale Properties 5.706 Principal Dimensions 5.706 Coefficients scale factor: CG110WPB.SRF Wetted Surface Wetted Surface Draft AP (Tap) Draft AP (Tap) Length (LWL) Length (LWL) Draft FP (Tfp) Draft FP (Tfp) Displacement Displacement Length (LBP) Length (LBP) Scale Ratio Beam (Bx) Beam (Bx) Ср .688 Cb 376 5526 model number: surface file: title: 144Lton LCG: 5.253ft aft midships VCG: 9.373ft above BL Table A1. Island Class, bare hull hydrostatic calculations at tested loading conditions (cont.)

APPENDIX B MODEL EXPERIMENTS AND ANALYSIS

- APPENDIX B -

Model scale data and analysis pertaining to the evaluation, selection, and performance of a stern flap design for the U.S. Coast Guard Island Class 110 WPB patrol boats are contained within this appendix.

Hardware and Procedures

The Test Agenda, which includes a list of experimental numbers and corresponding ship/model conditions, is presented in Table B1. All data contained herein was collected on Carriage 1 in the deep water basin of DTMB. Model 5526 was ballasted to three different representative displacements and loading conditions for this test series. A Ship Trials loading condition of 151 L. tons, LCG = 5.09ft (1.55m) aft of midships, static trim = -1.0°, was utilized for the ship/model comparison between the standardization trials on the BAINBRIDGE ISLAND (WPB 1343) and powering estimates on Model 5526. The stern flap evaluation, selection, and performance, was determined at the Full Load condition of 163.39 L. tons, LCG = 4.645ft (1.42m) aft of midships. Stern flap performance at a second condition of Min-Ops loading 143.61 L. tons, LCG = 5.253ft (1.6m) aft of midships, was also determined. The Model 5526 displacements, appended wetted surfaces, drafts, and other related quantities, pertaining to the three tested loading conditions, are presented in Table B2.

The model was restrained in surge, sway, and yaw, but was free to pitch, heave, and roll. Data measurements were made using DTMB standard instrumentation. Model resistance was measured using a 200 lbf (890 N) capacity 4 inch (10.16 cm) block gauge. The linear bearing, floating platform tow post system was utilized; Cusanelli and Bradel [6]. The static location of the model tow point was at 81.5 inches aft of the FP, parallel to, and at the same level as, the water surface. Side force was measured with a 20 lbf (89 N) capacity 4 inch (10.16 cm) block gauge. Dynamic running rise/sinkage was determined at the forward and aft perpendiculars by wire potentiometers. Resistance experiments, to determine stern flap performance, were conducted nominally at two knot (ship scale) increments over the full range of ship speeds from 12 through 32 knots. Model data was collected over smaller speed increments when determined necessary. Stern flap evaluation/optimization experiments were conducted at six speeds, in 4 knot increments over the speed range, (12, 16, 20, 24, 28, 32 knots). The ship/model comparison experiments were conducted at the corresponding ship speeds measured during the standardization trials on the BAINBRIDGE ISLAND (WPB 1343). The appropriate force measurements and/or coefficients were monitored and/or plotted throughout the experiments, until the Project Manager (Model Test) determined that necessary and sufficient measurements had been collected to fulfill the experimental agenda.

In order to induce turbulent flow over the length of the model hull, one-eighth inch (0.318 cm) diameter by one-tenth inch (0.254 cm) height turbulence stimulator studs were placed aft of the stem at approximately 1 percent of the waterline length, spaced 1 inch (2.54 cm) apart.

Measurement Uncertainty

Resistance measurement uncertainties (precision errors) were examined on Model 5526 at two ship speeds, 16 and 24 knots. The precision error, also known as random or repeatability error, is an indicator of the "scatter" in the data. Table B3 summarizes the measured uncertainty (precision errors) in resistance measurements for the present Model 5526 experiments. For Island Class Model 5526, the uncertainty is in the range of $\pm 0.5 \sim 1.0$ percent of the nominal resistance measurement. Precision error is a function of the unsteadiness of the phenomenon being measured, and the instability of test equipment. For the reported uncertainty analysis, the precision error limit values were determined directly from repeated model test measurements. A minimum sample size of 12 individual data spots was utilized for each analysis. These are first-order precision limits, reflecting the scatter in a data set collected over the time span of a single experiment, with the identical model, equipment, and instrumentation, utilized throughout the model experiments reported herein.

Data Analysis

Resistance and powering data presented in this report are for the full scale Island Class 110 WPB patrol boats operating in smooth, deep salt water with a uniform standard temperature of 59° Fahrenheit (15° Celsius). The 1957 ITTC Model-Ship Correlation Line was used for the frictional resistance calculations. Stern flap performance, as determined from resistance and estimated powering results, are presented at one knot (ship scale) increments over the full range of ship speeds from 12 through 32 knots. Stern flap evaluation/optimization experiments are presented at six speeds, in 4 knot increments over the speed range. The ship/model comparison is presented at the corresponding ship speeds as measured during the standardization trials on the BAINBRIDGE ISLAND (WPB 1343).

Full scale Island Class effective power (P_E) predictions were determined directly from resistance experiments conducted on DTMB Model 5526. Model self-propulsion (powering) experiments were not conducted on Model 5526 at this time. Estimates of the Island Class delivered power (P_D), propeller RPM, with and without stern flap, were made by the combination of the following elements:

- Effective Power (P_E) from the present resistance experiments on Model 5526.
- Representative class propeller open water performance data, as measured on a single 15.502 inch (39.37 cm) cavitation-sized model propeller 5128. Model 5526 propulsion-sized propellers, which would have a model scale diameter of 8.7 inches (22.1 cm), do not exist for the Island Class.
- Assumed propeller-hull interaction coefficients of 1-t, $1-W_T$, and η_R , representative of similar patrol craft, and iterated to values which best matched estimated model powering data to full scale powering data.

Ship/Model Comparison - Correlation Allowance Estimate

Prior to the stern flap evaluation and selection, it was necessary to perform a ship/model comparison between Model 5526 and standardization trials results from the BAINBRIDGE ISLAND (WPB 1343). This comparison was made in order to estimate the ship/model correlation allowance for the new Model

5526. A ship/model correlation insures that the most accurate assessment of ship performance will be achieved. Powering performance trials were conducted on the BAINBRIDGE ISLAND (WPB 1343), off the coast of Cape Henry, Virginia, in 1991; Haupt and Puckette [4]. An excerpt from this powering trials report is presented as Table B4. This table contains the propulsion performance data at a loading condition of 151 long tons, LCG of 5.09' aft of midships, static trim of -1.0°. This loading condition was chosen by USCG ELC-024, for the ship/model comparison, because it was the most representative of the intended Island Class full load condition of 163 long tons (nominal).

Model scale powering experiments, which are necessary for a formal and precise determination of correlation allowance, were not performed on Model 5526. Instead, model resistance predictions, representative class propeller open water performance data, and assumed propeller-hull interaction coefficients, were utilized to estimate Island Class powering data for comparison to the ship trials results. Since powering experiments were not conducted on Model 5526, the standard methods by which ship/model correlation coefficients are determined could not be utilized. A method relating model resistance predictions to ship trials powering data had to be developed. A powering estimate for the Island Class, at the trials loading condition, was prepared by DTMB. It was desired that this powering estimate reflect the exact speeds, delivered powers, and propeller RPMs measured during the WPB-1343 standardization trials of Table B4. Propeller-hull interaction coefficients of 1-t , 1-W_T, and η_R , representative of similar patrol craft, were then assumed, and propeller efficiency was calculated from the trials RPM and the open water coefficients from model propeller 5128. An iterative process of "fairing", or smoothing, of the assumed and/or calculated coefficients was necessary in order to retain all values within reasonable bounds for similar craft. Ultimately, ship resistance predicted from the Model 5526 experiments was utilized with the presumed propeller-hull interaction coefficients, to estimate full scale powering data. The ship/model powering correlation allowance was determined by solving for the value of C_A which, when used with the standard DTMB powering prediction method, Grant and Wilson [7], results in the best agreement between the ship standardization trial measured delivered power and the estimated delivered power from model experiments, Hadler, et al. [8]. Due to variations of C_A correlation with speed, some engineering judgment is used to select the best value. Though the full scale trial data often includes slow speed measurements, in practice, the correlation is done for the speeds where sufficient power is developed for accurate measurements. The highest speeds are generally of the most interest, because the high speed data for both model and ship is considered more accurate, and the prediction of maximum speed and power is a primary concern. However, for the Island Class at full power, the ship propellers exhibit characteristics of propeller cavitation. Comparison of full scale data at speeds where the ship propeller exhibits cavitation, to that of the (non-cavitation corrected) model predictions, would result in an erroneous correlation allowance.

Table B5 presents the ship/model powering comparison between BAINBRIDGE ISLAND(WPB 1343) and Model 5526, at the 151 L. ton loading condition, with variations in correlation allowance. The

comparisons, between ship trials measured delivered power and estimated model delivered power, are presented in DTMB standard form utilized for formal ship/model correlations: Power correlation C_P , and RPM correlation, C_N , which are defined as non-dimensional coefficients of: trial measurement / model prediction. It is recommended that the value of $C_A = 0.0003$ be considered the appropriate correlation allowance for the Island Class 110 WPB. The complete model resistance and powering (no flap), at 151 L. ton load condition, at $C_A = 0.0003$, are presented in Tables B6 and B7, and compared to the BAINBRIDGE ISLAND trials results in Figure B1. The stated correlation allowance, $C_A = 0.0003$, for the Island Class and the present ship/model comparison on the Bainbridge Island, should be viewed only as a model testing adjustment factor which brings the present model resistance predictions, utilized to estimate ship powering, in line with the measured ship trials data. At this time, any comparison to the NAVSEA Correlation Data Base [5] on other U.S. Navy ships, should be done with great caution. Prior to adding this Island Class correlation allowance to the data base, it is recommended that an effort be made to determine the ship model correlation allowance through a traditional model powering test series.

Stern Flap Evaluation and Selection

The stern flap optimization and selection experiments were conducted at an equivalent Full Load condition of 163.39 L. tons, LCG = 4.645' aft of midships, for six speeds, in 4 knot increments over the speed range, (12, 16, 20, 24, 28, 32 knots). Eight stern flaps were manufactured for the present Model 5526 experiments. Small-scale sketches and principal dimensions were presented in Figure A3. These stern flaps were designed as a series to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. All eight flaps were evaluated over a range of angles, nominally in 2.5 degree increments, from 0 to 10 degrees trailing edge down. Stern flap design is affected greatly by mission requirements and selection criteria, as well as hullform design. Stern flaps exhibit specific resistance performance trends with respect to the design parameters. Increasing flap chord length or angle generally reduces the low speed performance, but improves the high speed resistance reduction. A compromise must customarily be reached between high and low speed performance, with the particular ship's operating profile indicating the relative importance of each. For the Island Class design, particular attention was also made as to the effects of the stern flap designs on ship running trim. Increasing flap chord length or angle tends to increase the magnitude of the generated bow down trim moment.

Stern Flap Coordinate System: The coordinate system used to define the stern flap angle (see following diagram) is referenced to the local run angle near the transom along the 4 ft (1.22 m) buttock. A zero degree (0°) stern flap is one which is a continuation of (or parallel to) this run angle. Flap angle is increased by rotating the flap trailing edge downward (TED). The run angle, on the Island Class 110 WPB, is 3.7° relative to the ship baseline. Ship drawings specify the angle of the transom wedge (inlayed into the present hull design) to be 5° at the 4 ft (1.22 m) buttock. In the defined coordinate system, a 5° flap angle would be a continuation (continuous parallel bottom surface) of the 5° wedge angle, whereas, a

0° flap angle would be parallel to local run angle. The 4 ft (1.22 m) buttock was selected as the position for measuring the flap and wedge angles because it was the position at which the transom wedge angle was specified in the full scale drawings. (For reference, the bottom surface of the present 5° wedge is 1.3° TED, relative to the ship baseline.)

The selection criteria for the Island Class 110 WPB final stern flap design was prescribed by USCG ELC-024. Stern flap selection was based upon maximizing power reductions at high speeds, while satisfying secondary powering criteria prescribed at cruising speed and best economic speed, and upon limits set on maximum ship trim modification. The stern flap selection criteria, as prescribed by ELC-024, was stated specifically in terms of ship powering. However, the scope of the present model tests did not include model self-propulsion (powering) experiments. The prescribed criteria for the Island Class stern flap design selection were evaluated through model resistance experiments only. It is assumed that the stern flap configuration which exhibited the lowest resistance at the critical speeds would also have the lowest delivered power. In general, delivered power reductions average a few percent greater than resistance reductions during model powering tests with stern flaps. An examination of the historical data base of model stern flap experiments shows that stern flaps can cause an improvement in propulsive efficiency, due to reductions in wake factor and increases in propulsion efficiency. Therefore, model stern flap effective power performance is considered indicative of delivered power performance, and in most cases, represents the lower bounds of the powering reduction potential. The model scale predicted resistance for the Island Class with each of the eight stern flap designs at all tested flap angles, were compared to the baseline (no flap) predicted resistance, at each of the six tested ship speeds. Likewise, the ship dynamic running trim for each flap case was compared to the baseline configuration. By this method, a direct stern flap performance can be determined. The prescribed criteria for the Island Class stern flap design were as follows:

Selection criteria for the Island Class 110 WPB final stern flap design -

- Maximize reduction in ship powering over high speed range of 28 to 32 knots.
- Disallow any increase in ship powering at cruising speed, as indicated by performance at 24 knots.
- Limit ship running trim modification (bow down) to 1.0 degrees, at all speeds.

Comparisons of the effective power performances and trim modifications of the eight tested stern flap designs, at all tested flap angles and optimization speeds, are presented in Table B8. Results of the stern flap optimization experiments, depicted graphically as effects on resistance and ship running trim, for all variations in flap chord length, span, and angle, are presented in Figure B2.

All tested flaps were able to satisfy the secondary powering criteria prescribed at cruising speed and best economic speed. Many of the stern flap designs exhibited resistance reductions from ship speeds of 12 up to 28 or 30 knots. However, none of the designs, at any tested flap angle, appeared to have a potential for substantial resistance reduction at the top speed tested, 32 knots. Increasing flap angle to 10°, tended to result in the lowest resistance in the range of 20 knots, however, dramatically increased the 32 knot resistance. Flap angles of 10°, for all but the two smallest flaps, exceeded the maximum allowable ship running trim modification. Several of the larger flap designs also exceeded the trim criteria at angles of 7.5°. The performance of the tested series of flaps can be summarized as follows:

- Flap chord variations at constant span of 16 ft (4.9 m): For flap angles of 0° and 5°, the chord variations resulted in minimal (± 1.0%) resistance differences. At a flap angle of 10°, lengthening the chord resulted in reduced resistance at 20 knots (-3%), but resulted in an equivalent increase in resistance at 32 knots.
- Flap span variations at constant chord length of 2 ft (0.61 m) or constant chord length of 1 ft (0.3 m): In general, for all angles tested, trends indicated that increasing span resulted in reduced resistance at 12 ~ 20 knots, but resulted in increased resistance at 24 ~ 32 knots.

Severe deck-wetting resulted from any ship running trim modification (bow down) that exceed approximately 1.2 degrees. At the top speed tested, 32 knots, severe deck-wetting occurred whenever the ship running trim modification reached approximately 1.0 degrees. A effort was made to insure that the Island Class 110 WPB selected stern flap design did not approach the originally stated 1.0 degree ship running trim modification criteria. Note: The subsequent bow spray rail design effort successfully reduced the bow spray sheet which resulted in the aforementioned deck-wetting at high speeds.

Model stern Flap #6 at 7.5 degrees exhibited the greatest reduction in high speed ship resistance while still satisfying the secondary resistance and trim modification criteria. This design represents a full scale stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5° trailing edge down relative to the local slope (run) at the 4 ft (1.22 m) buttock.

Stern Flap Performance

Performance predictions are for the selected Island Class 110 WPB stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5° trailing edge down.

Resistance and Delivered Power Performance

The selected stern flap resistance performance on the Island Class 110 WPB patrol boats, over the entire speed range of 10 through 32 knots, was predicted from experiments on Model 5526. Resistance predictions were made at both the Full Load condition of 163.39 L. tons, LCG = 4.645' aft of midships, and at a second condition of Min-Ops loading 143.61 L. tons, LCG = 5.253' aft of midships. Island Class effective power (P_E) predictions, both with and without the stern flap installed, for both loading conditions, are presented in Tables B9 through B12. The P_E predictions were determined directly from resistance experiments conducted on DTMB Model 5526.

The model resistance predictions were then used to estimate powering with and without the stern flap, by the technique detailed previously. Island Class estimated delivered power (P_D), propeller RPM, and other related quantities, both with and without the stern flap installed, for both loading conditions, are presented in Tables B13 through B16, and summarized in Table B17. The model scale performance of the Island Class stern flap design, in terms of resistance, delivered power, and propeller RPM, is depicted in Figure B3 for full load, and Figure B4 for min-ops. Data is presented as ratios, defined as value required with the stern flap installed divided by value required for the baseline (no flap) configuration, as a function of ship speed. A ratio value below 1.0 denotes a reduction due to the stern flap.

Projected Full Scale Stern Flap Performance

While significant powering improvement is indicated from these Model 5526 stern flap experiments, the actual full scale stern flap on the Island Class would generally be expected to exceed the performance on the model. Prior to any full scale stern flap installation, an appropriate stern flap design is determined through model experiments and CFD calculations. While significant powering improvement is indicated from these model experiments, the actual performance of the full scale prototype stern flap generally exceeds that of the model predictions, Cusanelli [3]. Ship trials indicate that the model experiments were under-predicting the stern flap performance in the range of roughly 2% to as much as 12%. Closer examination of these trials shows that the major improvement in ship performance due to the flap that is not duplicated at model scale tends to occur at lower speeds. Stern flap ship trials have shown no adverse affect on ship powering at any speed tested, indicating that the low speed powering penalty of model stern flaps may be attributable to model scale phenomena. These circumstances lead the designer to conclude that, as a consequence of the smaller scale, the flow conditions around the model stern flap are not truly representative of that on the ship. Indications are that the stern flap scale effect might have a strong

Reynolds Number dependency. Therefore, stern flap performance may not extrapolate correctly by the standard techniques. Although the stern flap is itself a source of drag, its interaction with the ship's hull results in a net decrease in effective power. The drag on the model stern flap may be disproportionately large, as evidenced by the increase in resistance measured at low speeds. This may be due to incorrect scaling of drag associated with interference, separation, or interaction of the stern flap induced flow with the afterbody flow patterns, or any combination of these and other effects. Because of these issues, it became necessary to modify the standard techniques for extrapolation of model scale stern flap data to ship performance.

Three sets of ship trials, and recent testing on various size models, have been conducted with and without the stern flaps, in an effort to better understand the stern flap scale effect. Computational efforts for studying this scale effect have been made possible by the recent emergence of improved computers and flow codes that can perform calculations at full scale Reynolds numbers. Great strides have been made, towards verification and explanation of performance and flow observations of stern flaps, through the combination of these full scale, model scale, and computational efforts; Cusanelli et. al. [9]. This unique data set has been used to develop a simple quantitative empirical "performance projection tool", for estimating the magnitude of the stern flap scale effect. This performance adjustment tool loosely simulates the full scale experience, i.e., indicating greater model data adjustments at lower speeds and at increasing model scale ratio. Performance projections, adjusting model data for scaling effects by the performance adjustment tool, were compared to the stern flap ship trials performances [9]. The developed performance adjustment tool did tend to bring the model data more in line with the full scale results. However, the adjustment tool needs to be used with some attentiveness, as stern flaps on ships still performed better than the model data indicated at several speeds, even with adjustments to model scale data.

The performance adjustment tool was utilized to calculate new projections of Island Class 110 WPB full scale stern flap performance, from the Model 5526 data. These new stern flap performance projections, adjusted for scaling effects, are presented in Tables B18 and B19, and Figures B5 and B6, for both load conditions. The performance projections are summarized in Table B20. The presented Island Class performances do not account for propeller cavitation.

Performance within Engine Operating Envelope

Projected shaft powering comparisons were made to the Island Class main propulsion engine operating envelope, Figures B7 through B9. Island Class 110 WPB C series Caterpillar 3516 main propulsion engines were utilized for this comparison. Data pertaining to the engine operating envelope was supplied by USCG ELC-024. The depicted engine envelope represents the "upper curve" on engine brake horsepower, BHP, defined by the equation: BHP = (engine RPM / 1910)^2.7 * 2730. This curve of engine brake horsepower vs. engine speed has typically been referred to as the engine performance curve. A transmission gear loss of 3% was utilized for the conversion between BHP and delivered shaft

horsepower, SHP. The transmission gear ratio between engine RPM and shaft RPM is 2.33:1. Also depicted on these figures is the engine maximum power, with bands representing $\pm 3\%$ on maximum power.

The BAINBRIDGE ISLAND (WPB 1343) ship trials data and Model 5526 powering data (at the estimated correlation allowance $C_A = 0.0003$) are compared to the engine operating envelope, for the trials 151 L. ton load condition, in Figure B7. As shown by this figure, the WPB 1343 trials data, except for the two lowest speeds, exhibits delivered power vs. engine speed requirements in excess of the stated Caterpillar 3516 engine operating envelope (exceeding specified engine performance curve). This has resulted in the inability of this particular engine design, as installed in the WPB 1343, to reach full engine RPM. The data spot depicting maximum ship speed attained, 29.2 knots, falls slightly below the engine maximum power, but within the - 3% power band.

Island Class projected shaft powering at both full load and min-ops, with/without stern flap installed, are compared to the operating envelope, in Figures B8 and B10. As was the case at 151 L. tons, the data at both the higher full load (163 L. tons) and lower min-ops (144 L. tons), indicate delivered power vs. engine speed requirements higher than that of the stated Caterpillar 3516 engine operating envelope (exceeding specified engine lug curve), over most of the speed range. The installation of the stern flap shifts the projected powering curve closer to the defined engine operating envelope. However, an even greater reduction in the ship's power vs. speed relationship is necessary for the performance to remain within the envelope.

Ship Maximum Speed Determination

The Island Class projected maximum speeds, at both full load and min-ops, with/without stern flap installed, were determined from the comparison of the projected powering to the Caterpillar 3516 engine operating envelope. Maximum SHP and engine RPM were determined where the projected powering curve intersected the line defining the engine maximum power. Maximum ship speed was then determined at this powering point. For the full load condition, the maximum attainable speed, for the Island Class 110 WPB patrol boats with the stern flap installed, is projected to be 27.85 knots, at a total shaft power of 2583 hP, with a propeller speed of 786.3 RPM (engine speed 1832 RPM). This represents an increase in top speed of 0.80 knots over the existing boats. At min-ops, the maximum attainable speed, with the stern flap installed, is projected to be 30.38 knots, at a total shaft power of 2635 hP, with a propeller speed of 812.9 RPM (engine speed 1894 RPM). This represents an increase in top speed of 0.38 knots.

Savings Potential

The installation of a stern flap on the Island Class 110 WPB results in the capability to maintain ship speed with less delivered power, and lower shaft speed, and therefore, represents a potential for propulsion fuel reduction. Data pertaining to the fuel consumption rates, of the Island Class 110 WPB C

series Caterpillar 3516 main propulsion engines, was collected during the standardization trials on the BAINBRIDGE ISLAND (WPB-1343). Fuel consumption rates were recorded for ship speeds in the range of 15 through 29 knots, at a loading condition of 151 long tons, LCG of 5.09' aft of midships, static trim of -1.0°. These fuel rates were utilized to estimate fuel consumption (gal/hr.) at the full load and min-ops conditions, with and without the flap. An estimated speed-time profile was supplied by USCG ELC-024, based on 3000 annual operational hours. Summation of the weighted time at speed and the estimated fuel consumption rates, yields an estimate of the annual fuel consumption of the Island Class at each loading condition, with and without the stern flap, Table B21. It is assumed that the time-at-speed for the class with the stern flap installed will be equivalent to that of the present ship. The estimated average reduction in annual fuel consumption, provided for by the installation of the stern flap, is 4.5 percent when operating at full load, and 3.9 percent for min-ops. Fuel savings was estimated assuming a split of 2/3 time (2000 hr.) at full load, and 1/3 time (1000 hr.) at min-ops. The annual fuel savings, resulting from a stern flap installation of the Island Class 110 WPB, would amount to 13,328 gallons, or approximately \$13,000 per ship / per year, on average.

Effects on Ship Running Trim

Ship sinkage at both the forward and aft perpendiculars, and the ship trim, for the Island Class with and without the stern flap installed, for both the full load and min-ops conditions, are presented in Figures B10 and B11. The effect of the stern flap on ship trim was then determined. The Island Class ship running trim, at both full load and min-ops, was affected very similarly by the stern flap. The net change in bow down trim angle, resulting from the stern flap, increased as ship speed increased. The change in trim angle remained within 0.6 degrees over the range of ship operational speeds (12 ~ 30 knots). Therefore, the selected stern flap satisfied the design criteria of ship running trim modification (bow down) not to exceed 1.0 degrees, at any speed.

Effects on Stern Waves

Wave breaking, eddy-making, and turbulence, represent lost energy in the local transom flow of a vessel. A great deal of information can be obtained about the performance of a stern flap by careful observations of its effects on the flow past the transom and the localized waves generated at the transom. Transom flow can be categorized by three simplified descriptions. At slower speeds, the transom and flap are fully wetted and the flow is said to be "attached". Resistance is increased by the added wetted surface and significant eddy-making. As speed increases, the transom becomes less submerged and less water tends to flow back over the flap. Over a small speed range the stern flow becomes "transitional", periodically breaking free of transom and flap then rolling forward to wet them again. At some greater speed, the flow detaches cleanly or "breaks-away" from the bottom edge of the transom or flap. The speed at which this detachment occurs is affected by factors which include ship displacement, ship trim,

transom design and depth of submergence, and the specific design of the transom and stern flap. The effect of the stern flap on the localized flow around the transom, and its effects on the ship speed at which the stern flow breaks away from the transom, is carefully observed and photographed at model scale.

Visual observations and photographs were taken of the local transom flow generated behind Model 5526, with and without the stern flap installed, at full load, for 2 knot increments of ship speed, from 10 to 32 knots, Figure B12. The character of the transom flow was considerably altered by the stern flap over the speed range of 12 ~ 20 knots. Within these speeds, the transom flow appears to be decreased in both wave height and overall width by the stern flap. The ship speed at which the transom flow detaches (break-away) was reduced from approximately 17 knots for the baseline hull to 15 knots when the stern flap was installed. Referring to the comparison photographs at 16 knots, the baseline hull still exhibits attached flow, while the stern flap case exhibits fully detached flow. At this speed, the stern flap exhibited the greatest modification to the transom flow. Coincidentally, the stern flap also exhibited its maximum powering reduction at this 16 knot speed.

For speeds in excess of 22 knots, there appears to be little visual difference in the local transom flow generated behind Model 5526 with or without the stern flap installed. However, at these higher speeds, the stern flap does appear to reduce the visual wake deficit behind the twin rudders. This stern flap effect had not previously been documented.

Spray Rail Installation

During the initial model testing, observations of the flow patterns off the model lower chine, lead the test engineers to conclude that proper flow separation was not being achieved over this region at model scale. In order to promote a cleaner flow separation along this chine, a model scale chine rails were installed. Plexi-glass spray rails were installed on both port and starboard sides of the model, following the contour indicated by the existing lower chine line The spray rails extended the lower chine 1/4 inch (0.64 cm) beyond the existing hull lines. This is a technique used at model scale only, in order to promote flow separation similar to that of the full scale ship along the existing ship lower chine. This model scale spray rail is not to be interpreted as an additional hull treatment or appendage necessary for flow separation at full scale. These spray rails were installed on the model for all of the experiments reported herein.

However, it was further noted during the stern flap evaluation and selection phase of the model testing, that a significant amount of spray was being generated from the bow region at ship speeds in excess of 24 knots. This spray resulted in a serious amount of model deck-wetting at still higher speeds. This was not believed to be solely a model scale flow separation phenomena. Representatives of the USCG ELC-024, present at the model testing, reported that similar spray patterns - leading to forward deck-wetting, have been observed at full scale. The flow streamlines, which appear to generate this spray, originate in the region of the bow between the forwardmost edge of the bow stem and the ship's existing lower chine.

Since there is nothing in the hull lines to deflect these flow streamlines (either at ship or model scale), the water tends to cling to the hull and progress upwards. At speeds of 24 ~ 28 knots, the flow appears to separate off the upper chine. At higher speeds, the flow progress upwards all the way to the deck line before separating. Once at the upper chine or deck level, the flow separates in a spray sheet which increases in size as speed increases.

It was suggested by the DTMB test engineers to add "bow spray rails" as a continuation of the model scale chine rails forward to the bow stem. It was believed that spray rails in this forwardmost bow region would promote separation of the flow streamlines which appeared to generate the spray sheet. In contrast to the chine rails, this addition of the "bow spray rails" forward of the existing hull chine, does represent a modification to the existing Island Class hull. At ship scale, the bow spray rails extend 7.25 ft (2.2 m) from the bow stem, following the contour indicated by the existing lower chine line. The bow spray rails extend off the hull (thickness) approximately 1.5 inches (3.8 cm). Model scale experiments were conducted at full load, with and without the bow spray rails. Effective power predictions showed a relatively small increase (0.2 to 1.3%) over the very small speed range of 14 ~ 19 knots. However, as can be seen in the comparison photographs of Figure B13, the bow spray rails effected a very significant reduction in the amount of spray generated by the bow. In fact, with the bow spray rails installed, throughout the speed range tested there was not any significant amount of spray or forward deck-wetting observed. It was recommended by the DTMB test engineers that bow spray rails remain installed at model scale for all of the subsequent model experiments with and without the selected stern flap. Continuation of the model testing, with bow spray rails installed, was agreed to by the representatives of the USCG ELC-024.

It is recommended that "bow spray rails" be installed in the Island Class. The bow spray rails extend aft 7.25 ft (2.2 m) from the bow stem, following the contour indicated by the existing lower chine line, and extend off the hull (thickness) approximately 1.5 inches (3.8 cm).

Fig B1. Ship/Model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, at estimated correlation allowance $\rm C_A=0.0003$

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

FLAPS #1,2,3,4: Span 16 ft, Angle 0° (Chord Variations)

Shaded areas indicate boundaries of selection criteria

FLAPS #1,2,3,4: Span 16 ft, Angle 5° (Chord Variations)

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

FLAPS #3,5,6: Chord 2 ft, Angle 0° (Span Variations @ 2ft chord)

FLAPS #3,5,6: Chord 2 ft, Angle 5° (Span Variations @ 2ft chord)

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

FLAPS #3,5,6: Chord 2 ft, Angle 7.5° (Span Variations @ 2ft chord)

Shaded areas indicate boundaries of selection criteria

FLAPS #3,5,6: Chord 2 ft, Angle 10° (Span Variations @ 2ft chord)

Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

Fig B3. Island Class, comparisons of model scale resistance and powering with/without stern flap installed, full load 163 L. tons (adjusted for stern flap scale effects)

Fig B4. Island Class, comparisons of model scale resistance and powering with/without stern flap installed, min-ops 144 L. tons (adjusted for stern flap scale effects)

Fig B5. Projected full scale stern flap performance on Island Class 110 WPB, full load 163 L. tons (adjusted for stern flap scale effects)

Fig B6. Projected full scale stern flap performance on Island Class 110 WPB, min-ops 144 L. tons (adjusted for stern flap scale effects)

Fig B7. Ship/Model powering comparison to main engine operating envelope (Caterpillar 3516), 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$

Fig B8. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load

Fig B8. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load (continued)

Fig B9. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, min-ops load

Fig B9. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, min-ops load (continued)

Fig B10. Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, full load 163 L. tons

Fig B11. Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, min-ops 144 L. tons

Fig B12. Local transom flow comparisons, with/without stern flap installed, full load 163 L. tons

Fig B12. Local transom flow comparisons, with/without stern flap installed, full load 163 L. tons (continued)

Fig B12. Local transom flow comparisons, with/without stern flap installed, full load 163 L. tons (continued)

Local transom flow comparisons, with/without stern flap installed, full load 163 L. tons (continued)

Fig B12. Local transom flow comparisons, with/without stern flap installed, full load 163 L. tons (continued)

Fig B12. Local transom flow comparisons, with/without stern flap installed, full load 163 L. tons (continued)

Fig B13. Bow wave and spray comparisons, with/without bow spray rails, full load 163 L. tons

Table B1. Test Agenda: USCG Island Class 110 WPB Model 5526 stern flap evaluation and selection

	Comments/Description	Yaw angle adjustments to zero side force	Data Collect for Uncertainty Analysis	determine CA vs. Bainbridge Island ship trials	Baseline (no flap) speeds for flap comparisons	Flap angle optimization
	Speeds (knots)	16, 20, 24	16, 24	trials speeds	12-32 (4kt Incs)	12-32 (4kt Incs)
	Stern Flap	NO flap	NO flap	NO flap	NO flap	Flap #1
	Loading Long Tons Appendages	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS
1/27/99	Long Tons	151	151	151	163.39	163.39
4/22/99 - 4	Loading	Corr	Corr	Corr	Full Load	Full Load
Experiments Conducted 4/22/99 - 4/27/99	Test # Test Type	Set-Up/Trials	Uncertainty	Correlation	PE Resistance	Flap Evaluation
Experime	Test #	-	2	·0	4	ည

First series of experiments aborted after Test 5. Model 5526 was returned to woodshop for repairs to keel. Spray Rail Installed: 1/4" thick plexi-glass rail along 8' of lower chine to promote cleaner flow/spray separation at chine.

	(knots) Comments/Description	peeds correlate vs. Bainbridge Is. trials, repeat Test 3 w/chine rail	kt Incs) Baseline (no flap) speeds for flap comparisons	kt Incs) Lc=1ft, Span=16ft, angle optimization (0°, 5°, 10°)	kt Incs) Lc=1.5ft, Span=16ft, angle optimization (0°, 5°, 10°)	kt Incs) Lc=2ft, Span=16ft, angle optimization (0°, 5°, 10°)	kt Incs) Lc=2.5ft, Span=16ft, angle optimization (0°, 5°, 10°)	kt Incs) Lc=2ft, Span=12.4ft, angle optimization (0°, 5°, 7.5°, 10°)	kt Incs) Lc=2ft, Span=8.7ft, angle optimization (0°, 5°, 7.5°, 10°)	kt Incs) Angle optimization (Re-Tests at additional 7.5° angle)	kt Incs) Lc=1ft, Span=12.4ft, angle optimization (0°, 5°, 7.5°, 10°)	kt Incs) Lc=1ft, Span=8.7ft, angle optimization (7.5°, 10°)	ugh 32 Baseline (no flap) PE Experiment, entire speed range	s of this series.	ugh 32 PE Experiment to determine effect of extending spray rail	ugh 32 Selected Flap PE Experiment	ugh 32 Selected Flap PE Experiment, alternate loading	ugh 32 PE Experiment (no flap), alternate loading
	Speeds (knots)	trials speeds	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12-32 (4kt Incs)	12 through 32	experiments	12 through 32	12 through 32	12 through 32	12 through 32
	Stern Flap	NO flap	NO flap	Flap #1	Flap #2	Flap #3	Flap #4	Flap #5	Flap #6	Flap #1,3	Flap #7	Flap #8	NO flap	bow stem for all remaining experiments of this series.	NO flap	Flap#6 @7.5°	Flap#6 @7.5°	NO flap
	Appendages	S&S, R, RS	S&S, R, HS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	t to bow stem	S&S, R, RS	S&S, R, RS	S&S, R, HS	S&S, R, RS
13/99.	Loading Long Tons	151	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	Spray Rail extended forward to	163.39	163.39	143.61	143.61
5/3/99 - 5/	Loading	Corr	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	ay Rail exte	Full Load	Full Load	Min-Ops	Min-Ops
Experiments Conducted 5/3/99 - 5/13/99.	Test Type	Correlation	PE Resistance	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	PE Resistance	Spr	PE Resistance	PE Resistance	PE Resistance	PE Resistance
Experim	Test #	9	7	80	6	10	=	12	13	14	15	16	17		18	19	20	21

Appendages: Shafting and struts (S&S), rudders (R), roll stabilizers (RS)

Table B2. Island Class Model 5526, displacements, appended wetted surfaces, drafts, and other related quantities, tested loading conditions

Model 5526 LAMDA = 5.706

r			T			
		number 1	l l	number 2		number 3
	USCG Island C		USCG Island C		USCG Island C	
	Trial Condition	151 LT	Min-Ops 143.	61 LI	Full Load 163	.39 L1
	SHIP	MODEL	SHIP	MODEL	SHIP	MODEL
LBP (ft)	102.44	17.953	102.44	17.953	102.44	17.953
LWL (ft)	103.67	18.169	103.61	18.158	104.30	18.279
WET SURF HULL(sq ft)	2175	66.803	2136	65.605	2242	68.861
WET SURF APP(sq ft)	123.7	3.8	123.7	3.8	123.7	3.8
TOTAL WET SURF(sq ft)	2298.7	70.602	2259.7	69.404	2365.7	72.660
DISPLACE (ton, lbs)	151	1770	143.61	1684	163.39	1916
BOW DRAFT (ft)	7.18	1.258	6.93	1.215	7.66	1.342
STERN DRAFT (ft)	6.74	1.181	6.66	1.167	6.85	1.200
SHIP TRIM (+ft bow up)	-0.44	-0.077	-0.27	-0.047	-0.81	-0.142
BEAM (ft)	21.07	3.693	21.07	3.693	21.07	3.693
TEMP (F)	59	68	59	68	59	68
RHO	1.9905	1.9367	1.9905	1.9367	1.9905	1.9367
NU	1.2817	1.0836	1.2817	1.0836	1.2817	1.0836
Bow Deck/Keel (ft)	15.4	2.695	15.4	2.695	15.4	2.695
Mid-Ship Deck/Keel (ft)	-	2.033	13.4	2.000	10.1	
Stern Deck/Keel (ft)	15.4	2.695	15.4	2.695	15.4	2.695
BOW HOOK SET (ft)	15.4	1.437	13.4	1.480	10.4	1.353
MID HOOK SET (ft)	_	1.407	_	1.400	_	
STERN HOOK SET (ft)	1	1.514	_	1.528	_	1.495
STERNITOOK SET (II)		1.014				
PROP #, port	_	-	_	-	_	-
PROP #, stbd	_	-	_	-	-	-
PROP DIA (in)	-	-	_	-	-	-
PROP ROTATION	•	-	-	-	-	-
	40.0		100	5.00	40.0	5.00
SPEED RANGE, low (kts)	12.0	5.02	12.0	5.02	12.0	5.02
high (kts)	32.0	13.40	32.0	13.40	32.0	13.40
MODEL DISP total (lbs)	_	1770	_	1684	-	1916
MODEL WEIGHT (ibs)	i	1456	_	1456	-	1456
Floating Platform (lbs)		45		45		45
BALLAST needed (lbs)	-	269	-	183	-	415
			04.0-	1 070	04.07	4.070
APPENDAGES, ws (sqft)		1.876	61.07	1.876	61.07	1.876
Stabilizer Fins (2)		1.228	40	1.228	40	1.228
Rudders (2)	21	0.648	21	0.648	21	0.648
		!		1 1 1		
		! ! !				i !

Table B3. Model 5526 uncertainty in resistance measurements

Ship Speed (knots)	Measure- ment	Units	Nominal Mean	Bias Limit (±)	Precision Limit (±)	Uncertainty* units (±)	Uncertainty percent (±
16	Rt	lbf _.	97.05	0.17	0.446	0.477	0.49%
24	Rt	lbf	166.27	0.17	1.584	1.593	0.96%

^{*} Overall Uncertainty has been determined by combining the bias and precision limits using the root-sum-square (RSS) method for a 95 percent confidence level.

Мо	del Measur	ements for P	recision Err	or	y H
Spot	Vsk	Rt	Vsk	Rt	
1	24.06	165.66	16.02	97.071	
2	24.06	166.62	16.03	96.862	
3	24.06	166.97	16.02	96.916	
4	24.06	165.61	16.02	96.843	
5	24.06	166.86	16.02	96.664	
6	24.06	166.8	16.02	97.067	
7	24.05	164.84	16.02	97.081	
8	24.05	167.17	16.02	97.403	
9	24.06	165.53	16.02	97.13	
10	24.05	166.3	16.02	97.271	
11	24.05	166.09	16.02	97.062	
12	24.05	166.83	16.02	97.234	_
		166.27		97.050	_Average (Nominal Mean)
		0.727		0.205	Standard Deviation
		1.584		0.446	t dist * Std Dev = Precision (Units)

Table B4. BAINBRIDGE ISLAND (WPB 1343) performance trials results, 151 L. ton load condition

· · ·		_		<u>~</u>		-							\neg
	Running	Trim,	Ref. B.L.	(Degrees)		-1.2	-	-0.2	0.8	1.5	1.7	1.6	1.3
	Propulsion	Fuel	Consumption	Total	(GPH)	•	ı	9.69	114.0	163.2	188.3	215.2	276.0
		wer	•	Total		217	436	1250	2065	3187	3627	4213	5092
343) .0°		Shaft Horsepower		Stbd		108	217	609	1013	1562	1782	2041	2545
D (WPB 13 Trim = -1		Shaf		Port		109	219	641	1052	1624	1845	2172	2547
Performance Trials Results BAINBRIDGE ISLAND (WPB 1343) 151 LT, LCG = 5.09 ft. Aft of Midships, Static Trim = -1.0°		Shaft Torque	(Ft- Lbs)	Stbd		2054	3299	6817	9605	12663	13609	14707	16687
s BAINBRII Aft of Mids		Shaft	(Ft-	Port		2086	3346	7132	9928	13201	14193	15657	16927
rials Result = 5.09 ft.	Engine	Speed	(RPM)	Average	1	640	803	1097	1292	1508	1597	1698	1854
formance T 1 LT, LCG				Average	1	275	345	471	555		686	729	962
Per 15		Shaft Speed	(RPM)	Stbd		275	345	469	554	648	688	729	801
				Port		275	344	472	555	646	683	728	190
		Average	Speed	(Knots)		10.0	11.8	12.	17.5	21.1	22.9	25.0	29.5
		E E	Number			1/2	3/4	5/6	2/8	9/10	11/12	13/14	15/16

Reproduced from Table 3.1.3. of NSCSES Report No. 60-264; Haupt and Puckette [4]

Table B5. Ship/model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, variations in correlation allowance

Performance Trials Results BAINBRIDGE ISLAND (WPB 1343)

								•	
151	LT,	LCG	= 5.09	ft.	Aft of	Midships,	Static	Trim = -	1.0°

ſ	FULL SCALE TRIALS DATA								
Speed	Ship Speed	Shaft Speed	Shaft Power						
No.	(knots)	RPM (avg)	Total (hP)						
1	10.0	275.0	217						
2	11.8	344.5	436						
3	15.1	470.5	1250						
4	17.5	554.5	2065						
5	21.1	647.0	3187						
6	22.9	685.5	3627						
7	25.0	728.5	4213						
8	29.2	795.5	5092						

SELECTED CORRELATION ALLOWANCE

	MODEL DATA	CA =	0.0003							
Ship Speed	Shaft Speed	Shaft Power	Correlation	Correlation						
(knots)	FIPM	PD (hP)	Cn	С р						
(Ship/Model	Ship/Model						
10.0	288.8	275	0.952	0.787						
11.8	345.5	466	0.997	0.936						
15.1	473.1	1278	0.995	0.978						
17.5	556.4	2105	0.997	0.981						
21.1	647.3	3160	1.000	1.009						
22.9	684.9	3626	1.001	1.000						
25.0	725.9	4159	1.004	1.012						
29.2	797.9	5167	0.997	0.985						
	averages (spe	eeds 3 - 7) =>	0.999	0.998						

1		MODEL DATA	CA =	0.0002	
Speed	Ship Speed	Shaft Speed	Shaft Power	Correlation	Correlation
No.	(knots)	FIFM	PD (hP)	On	Ср
140.	(Ship/Model	Ship/Model
1	10.0	287.9	271	0.955	0.799
2	11.8	344.5	459	1.000	0.950
3	15.1	471.9	1263	0.997	0.989
4	17.5	555.0	2083	0.999	0.992
5	21.1	645.6	3122	1.002	1.021
6	22.9	683.0	3579	1.004	1.013
7	25.0	723.8	4102	1.006	1.027
8	29.2	795.4	5087	1.000	1.001
0		p averages (sp	eeds 3 - 7) =>	1.002	1.008

	MODEL DATA	CA =	0.00025	
Ship Speed	Shaft Speed	Shaft Power	Correlation	Correlation
(knots)	FIPM	PD (hP)	C n	Сp
(1010)			Ship/Model	Ship/Model
10.0	288.4	273	0.954	0.793
11.8	345.0	462	0.999	0.943
15.1	472.5	1271	0.996	0.983
17.5	555.7	2094	0.998	0.986
21.1	646.5	3141	1.001	1.015
22.9	684.0	3602	1.002	1.007
25.0	724.8	4130	1.005	1.020
29.2	796.6	5127	0.999	0.993
	p averages (sp	eeds 3 - 7) =>	1.000	1.002

ſ		MODEL DATA	CA =	0.00035	
Speed	Ship Speed	Shaft Speed	Shaft Power	Correlation	Correlation
No.	(knots)	HPM	PD (hP)	C n	Ср
NO.	(Kilots)			Ship/Model	Ship/Model
1	10.00	289.3	278	0.951	0.781
2	11.80	346.1	469	0.995	0.929
3	15.10	473.7	1285	0.993	0.972
4	17.50	557.0	2117	0.996	0.976
5	21.10	648.2	3179	0.998	1.003
6	22.90	685.8	3649	1.000	0.994
7	25.00	726.9	4188	1.002	1.006
8	29.20	799.1	5207	0.995	0.978
_	Cn and C	p averages (sp	eeds 3 - 7) =>	0.998	0.990
		· •			

	MODEL DATA	CA =	0.0004	
Ship Speed	Shaft Speed	Shaft Power	Correlation	Correlation
(knots)	FIPM	PD (hP)	On	Сф
(Miloto)			Ship/Model	Ship/Model
10.00	289.8	280	0.949	0.775
11.80	346.6	472	0.994	0.923
15.10	474.3	1293	0.992	0.967
17.50	557.7	2128	0.994	0.971
21.10	649.0	3198	0.997	0.997
22.90	686.8	3672	0.998	0.988
25.00	728.0	4216	1.001	0.999
29.20	800.4	5248	0.994	0.970
	p averages (sp		0.996	0.984

Table B6. Island Class, resistance prediction (no flap), ship trials load condition 151 L. tons, Exp. 6

MODEL CONDITION = "Exp6 Model 5526 @151LT, No Flap, w/Rail"

EHP RESULTS FROM EXPERIMENT NUMBER = 6

DTRC MODEL NUMBER = 5526 DTRC DSC 14-May-99

MODEL SHIP 17.95 FT (5.472 M) 102.44 FT (31.2 M) LENGTH WETTED SURFACE 2299.SQ FT (214. SQ M) 70.60 SQ FT (6.56 SQ M) DISPLACEMENT 151.TONS (153. T) 0.79 TONS (0.80 T)

151.TONS (153. T , 1.9905 (31.885 N SXX2/MXX4) 1.9369 (31.020 I 2.20 1.0983 (0.10204 SQ M/SEC) 1.9369 (31.026 N SXX2/MXX4)

NU (E+5)

5.706 LINEAR RATIO ITTC FRICTION LINE

CORRELATION ALLOWANCE (CA) 0.00030

	 S	PE		FRICTIONAL	POWER	FN	V-L	1000CR
KNOTS	M/S	HP	- KW	НР	KW			
10.00	5.14	144.8	108.0	45.9	34.2	0.294	0.988	4.945
11.00	5.66	197.9	147.6	60.4	45.0	0.323	1.087	5.165
11.80	6.07	252.3	188.1	73.9	55.1	0.347	1.166	5.428
12.00	6.17	268.3	200.0	77.6	57.9	0.353	1.186	5.517
13.00	6.69	363.3	270.9	97.7	72.9	0.382	1.284	6.044
14.00	7.20	494.8	369.0	121.0	90.2	0.412	1.383	6.812
15.00	7.72	673.1	501.9	147.5	110.0	0.441	1.482	7.786
15.10	7.77	692.4	516.4	150.4	112.2	0.444	1.492 ·	
16.00	8.23	869.6	648.4	177.7	132.5	0.470	1.581	8.446
17.00	8.75	1053.4	785.5	211.6	157.8	0.500	1.680	8.567
17.50	9.00	1145.0	853.8	230.1	171.6	0.514	1.729	8.536
18.00	9.26	1235.3	921.2	249.5	186.1	0.529	1.778	8.452
19.00	9.77	1411.7	1052.7	291.6	217.5	0.559	1.877	8.165
20.00	10.29	1582.1	1179.8	338.1	252.1	0.588	1.976	7.775
21.00	10.80	1747.8	1303.3	389.2	290.2	0.617	2.075	7.335
21.10	10.85	1764.0	1315.4	394.6	294.3	0.620	2.085	7.289
22.00	11.32	1910.7	1424.8	445.1	331.9	0.647	2.174	6.882
22.90	11.78	2057.7	1534.4	499.7	372.6	0.673	2.263	6.487
23.00	11.83	2074.1	1546.6	506.0	377.4	0.676	2.272	6.444
24.00	12.35	2241.5	1671.5	572.2	426.7	0.706	2.371	6.038
25.00	12.86	2415.5	1801.3	643.7	480.0	0.735	2.470	5.670
26.00	13.38	2599.0	1938.1	720.9	537.6	0.764	2.569	5.343
27.00	13.89	2793.7	2083.3	803.9	599.4	0.794	2.668	5.055
28.00	14.40	3000.6	2237.6	892.9	665.8	0.823	2.766	4.801
29.00	14.92	3219.1	2400.5	988.1	736.8	0.853	2.865	4.574
29.20	15.02	3264.5	2434.3	1007.9	751.6	0.858	2.885	4.532
30.00	15.43	3450.5	2573.0 	1089.7	812.6 	0.882 	2.964 	4.372

Table B7. Island Class, estimated powering (no flap), ship trials load condition 151 L. tons

		PB1343 e		e 151L/	r Ca=0.0	003 FEET (31.2 M	ETERS)			
				\ITT	151.			ETRIC TO	ONS)		
					2299.			Q METER			
							TTC FRI				
		J1444111111									
I	SHTP	SPEED	RESID	JARY	EFFEC	TIVE	DE	LIVERED	PF	OPELLER	I
I	21121		RES.C		POWER		PO	WER- PD	F	EV. PER	I
Ī	(KTS)	(M/S)	(CR*1		(HP)		(HP)	(k)	V)	MINUTE	I
I	10.0		4.94		144.8			4 20	5.3	288.8	I
I	11.8		5.42		252.3				7.2	345.5	I
I	12.0		5.51	7	268.3	200.0			3.8	352.4	I
I	14.0	7.20	6.81		494.8	369.0	494. 906.	6 67	5.1	426.5	I
I	15.1	7.77	7.87		692.4	516.4	1278.	0 95	3.0	473.1	I
I	16.0	8.23	8.44	6	869.6	648.4	1608.	9 119	9.7	508.3	I
I	17.5	9.00	8.53		1145.0	853.8	2105.	4 157	0.0	556.4	I
I			· 8.45	2 :	1235.3	921.2	2266.	2 168	9.9	570.9	I
I	20.0	10.29	7.77		1582.1	1179.8	2860.	5 213	3.1	622.5	I
I	21.1	10.85	7.28		1764.0	1315.4	3159.	9 235	5.3	647.3	I
I	22.0	11.32	6.88	2	1910.7	1424.8	3397.	4 253	3.4	666.7	I
I	22.9	11.78	6.48		2057.7	1534.4	3625.	5 270	3.5	684.9	I
I	24.0	12.35	6.03	8 :	2241.5	1671.5	3902.	1 290	9.8	706.6	I
I	25.0	12.86	5.67	0 :	2415.5	1801.3	4159.	0 310	1.3	725.9	I
I	26.0	13.38	5.34	3	2599.0	1938.1	4414.			744.6	I
I	28.0	14.40	4.80	1	3000.6	2237.6	4905.			779.3	I
I	29.2	15.02	4.53	2	3264.5	2434.3	5167.	2 385	3.2	797.9	I
I	30.0	15.43	4.37	2	3450.5	2573.0	5410.	8 403	4.9	813.3	I
I	SHIP		EFFICI	ENCIES	(ETA)					ADVANCE	I
I	SPEED							WAKE FA		COEF.	I
I			ETAO	ETAH		ETAB		1-WFTT		-	I
I	10.0		0.635	0.810		0.650	0.825	1.015		0.860 0.855	I
I	11.8	0.540	0.630	0.820		0.660	0.835	1.020 1.025			I
I		0.540	0.630	0.820		0.665 0.660	0.835 0.850	1.025			I
I	14.0 15.1	0.545 0.540	0.620 0.615	0.825		0.655	0.860	1.040			I
I		0.540	0.610	0.830		0.650	0.865	1.040			I
I		0.545	0.610	0.840		0.650	0.880	1.050	1.090		I
I		0.545	0.615	0.840		0.650	0.885	1.050	1.090		I
I	20.0	0.555	0.620	0.850		0.650	0.900	1.055	1.085		I
I	21.1	0.560	0.625	0.855		0.650	0.905	1.055	1.080	0.845	I
I	22.0	0.560	0.630	0.865		0.650	0.915	1.060	1.080	0.855	I
I	22.9	0.570	0.635	0.870		0.650	0.920	1.055	1.075	0.865	I
Ī	24.0	0.575	0.640	0.880		0.655	0.930	1.055	1.070	0.880	I
I	25.0	0.580	0.640	0.890		0.655	0.935	1.050	1.065	0.890	I
I	26.0	0.590	0.640	0.900		0.655	0.940	1.045	1.060	0.895	I
I	28.0	0.610	0.645	0.925		0.660	0.955	1.030	1.045	0.910	I
I	29.2	0.630	0.645	0.945		0.670	0.960	1.015	1.035	0.910	I
I	30.0	0.640	0.645	0.955	1.040	0.670	0.965	1.015	1.035	0.915	I

Table B8. Stern flap optimization and selection, model resistance experiments

The color of the	TALE DESCRIPTION OF THE PROPERTY OF THE PROPER
Speed Full Load (knots) Trim Angle Trim Angle 12	gie riap Angle 7 5
(knots) Trim Angle Trim Angle 12	7.5°
12 -0.02 -0.04 16 1.24 20 2.33 2.24 24 2.42 28 2.26 2.11 32 2.08 1.87 Speed AAngle AAngle (knots) 12 -0.02 14 -0.02 28 -0.02 28 -0.02 32 -0.05 16 1.24 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.42 20 2.33 2.17 24 2.08 1.85 Speed AAngle AAngle (knots) 12 -0.03 15 -0.03 16 -0.016	_
16 1.24 20 2.33 2.24 24 2.42 28 2.26 2.11 32 2.08 1.87 Speed Δ Angle Δ Angle (knots)	286
20 2.33 2.24 24 2.42 28 2.26 2.11 32 2.08 1.87 Speed AAngle AAngle (knots)	
24 2.42 28 2.26 2.11 32 2.08 1.87 Speed	1745 1730 171
28 2.26 2.11 32 2.08 1.87 Speed	2434
32 2.08 1.87 Speed Δ Angle Δ Angle (knots) 0° - 12 - -0.02 20 - - 24 - - 28 - - 28 - - 28 - - (knots) Trim Angle Trim Angle 12 - - - 20 2.33 2.17 24 2.42 - - 29 2.33 2.17 28 2.26 2.10 32 2.08 1.85 Speed A Angle 0° (knots) - -0.03 16 - - -0.03 16 - - - 20 - - - 21 - - - 22 - - - 23 - - - 24 - - -	3275
Speed A Angle A Angle (knots) 0° 12 - -0.02 20 - - -0.09 24 - - -0.09 28 - - -0.15 28 - - -0.21 Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 - 20 2.33 2.17 24 2.42 - 28 2.26 2.10 32 2.08 1.85 Speed A Angle A Angle (knots) - - 12 - - 20 2.33 2.10 32 2.08 1.85 Speed A Angle - (knots) - - 20 - - 24 - -<	
(knots) 0° 120.02 160.02 20 0.09 240.15 320.21 Exps Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed A Angle 0° (knots) 0° 12 - 0.03 15 0.03 16 0.16 28 2.26 2.10 32 2.08 1.85 Speed A Angle 0° 12 0.03 16 0.16 28 0.16 29 0.16	tio PE Ratio
120.02 160.09 240.15 320.15 320.21 Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed A Angle 0° (knots) 0° 120.03 150.03 160.03	7.5°
160.09 240.15 280.15 320.21 Baseline Flap Angle Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed A Angle A Angle (knots) 0° 120.03 160.03	9 0.979
200.09 240.15 280.15 32 0.21 Baseline Flap Angle Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed A Angle Angle (knots) 0° 120.03 160.03	
240.15 32 0.21 Story Trill Trip Angle Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed A Angle Angle (knots) 0° 120.03 120.03 120.03	
280.15 320.21 Exog IFIM FlapPs Charact Street Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed A Angle (knots) 120.03 150.03 160.05	0.982
32 - 0.21 Exos TRIM Flapts chart 1 5m Baseline Flap Angle Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 -0.05 20 2.33 2.17 24 2.42 2.10 28 2.26 2.10 32 2.08 1.85 Speed Δ Angle 0° (knots) 0 -0.03 16 - -0.03 16 - -0.16 24 - -0.16 28 - -0.16 28 - -0.16 28 - -0.16 28 - -0.16	0.989
Exos TRIM Flapfa, Chalcal 5 ft Baseline Flap Angle Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.05 12 -0.02 -0.05 -0.05 20 2.33 2.17 2.42 28 2.26 2.10 32 2.08 32 2.08 1.85 Speed Δ Angle (knots) 0° 120.03 160.03 280.16 290.16 290.16 290.16	1.004 1.008 1.02
Speed Full Load 0° (knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed Δ Angle Δ Angle (knots) 0° 12 - 0.03 16 - 0.16 28 - 0.16	222
(knots) Trim Angle Trim Angle 12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed Δ Angle Δ Angle (knots) 0° 12 -0.03 16 - 20 -0.16 28 -0.03	7.5°
12 -0.02 -0.05 16 1.24 20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed Δ Angle Δ Angle (knots) 12 -0.03 16 -0.16 24 -0.16 28 -0.16	PE (hP) PE (hP) PE (
20 2.33 2.17 24 2.42 28 2.26 2.10 32 2.08 1.85 Speed Δ Angle Δ Angle (knots) 12 -0.03 16 -0.03 20 -0.16 24 -0.16 28 -0.16	
24 2.42 28 2.26 2.10 32 2.08 1.85 Speed \triangle Angle \triangle Angle (knots) 0° 120.03 160.16 240.16 280.16	1752
28 2.26 2.10 32 2.08 1.85 Speed	
32 2.08 1.85 Speed	307
Speed A Angle A Angle (knots) 0° 120.03 160.16 240.16 280.16 33	
120.03 160.16 200.16 240.16 320.16	0
120.03 160.16 240.16 320.16	?
160.16 240.16 390.16	0.976 0.97
200.16 240.16 390.16	
24 0.16 28 0.16 32 0.02	0.987 0.9
280.16	
30 68	866
37:0	1.008 1.0

Table B8. Stern flap optimization and selection, model resistance experiments (continued)

Exp10 R	ESISTANC	Exp10 RESISTANCE; Flap#3, Chord	Shord 2 ff. (12 ft, Span 16 ft		Exoto TE	IIM: Flab#3	Exp10 TRIM: Flap#3 Chord 2 ft. Span 15 ft	Span 16 ft		
	Baseline	Flap Angle	Flap Angle Flap Angle Flap Angle	Flap Angle	Fła		Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle
Speed	Full Load	°0	5°	7.5°		Speed	Full Load	°0		7.5°	
(knots)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	(knots)	Trim Angle	Trim Angle	Trim Angle	Trim Angle	Trim Angle
12	292	280	281	283	284	12	-0.02	-0.07	-0.13	-0.18	-0.31
16	996					16	1.24				
20	1775	1767	1749	1720	1682	20	2.33	2.21	2.07	1.79	1.45
24	2478					24	2.42				
28	3313	3338	3308	3290	3300	28	2.26	2.13	1.99	1.57	0.99
32	4385	4423	4415	4452		32	2.08	1.81	1.76	1.02	
Speed	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	∆ Angle	∆ Angle	∆ Angle	∆ Angle	∆ Angle
(knots)		°	ညိ	7.5°	10°	(knots)		°O	ည်	7.5°	10°
12	1	0.959	0.962	0.969	0.973	12	•	-0.04	-0.11	-0.16	-0.29
16						16	ı			:	
20	•	0.995	0.985	0.969	0.948	20	•	-0.12	-0.26	-0.54	-0.88
24						24	1				
28	1	1.008	0.998	0.993	966.0	28	ı	-0.13	-0.27	69.0-	-1.27
32	•	1.009	1.007	1.015		35	1	-0.26	-0.32	-1.06	
Exp11 RI	SISTANCE	EXPIT RESISTANCE: Flapsid, Chord	Mord 2.5 ft	2.5 ft, Span 18 f		Exp11 TR	EXPITITRIM: FIAD#4	i. Chord 2.5 f	ft, Span 16 f	#	
	Baseline	Flap Angle Flap	Flap Angle	Angle Flap Angle Flap Angle	Flap Angle	,	Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle
Speed	Full Load	°°	5°	7.5°	10°	Speed	Full Load	°	5°	7.5°	10°
(knots)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	(knots)	Trim Angle	Trim Angle	Trim Angle	Trim Angle	Trim Angle
12	292	280	283		282	12	-0.02	-0.10	-0.16	٠	-0.34
16	996			-		16	1.24				
20	1775	1770	1746		1670	20	2.33	2.23	2.03		1.38
24	2478				-	24	2.42				
28	3313	3330	3330		3313	28	2.26	2.10	2.01		0.88
32	4385	4453	4437			32	2.08	1.86	1.76		
Speed	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	∆ Angle	Δ Angle	∆ Angle	∆ Angle	Δ Angle
(knots)		°0	5°	7.5°	10°	(knots)	ı	ိစ	ည့်	7.5°	10°
12	•	0.959	0.969		0.966	12	,	-0.08	-0.13		-0.32
16						16					•
20		0.997	0.984		0.941	20		-0.10	-0.30		-0.95
24	1					24					
28	•	1.005	1.005		1.000	28	t	-0.16	-0.25		-1.39
32		1.016	1.012			32	•	-0.21	-0.31		

Table B8. Stern flap optimization and selection, model resistance experiments (continued)

Exp12 At	SISTANCI	Exp12 RESISTANCE: Flap#5, Chord Baseline Flan Angle Flan	: Flap#5, Chord 2 ft, Span 12.4 ft Flan Angle Flan Angle Flan Angle	2 tt, Span 12.4 tt	f Flan Angle	Exp.12 TR	Exp12 TRIM: Flap#5	Chotd 2 ff.	Span 12.41 Flan Angle	f Flan Andle	Flan Angla
Speed	Fill Load	م الم	الله الله الله الله الله الله الله الله	الالالالالالالا 7 مي 7	10°	Sneed	Full Load	و الماد	Sign of the second	1 idp / iligio 7 5°	10°
(knots)	PF (hP)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	(knots)	Trim Angle	Trim Angle	Trim Angle	Trim Angle	Trim Angle
12	292	286	282	283	283	12	-0.02	-0.06	-0.11	-0.21	-0.24
9 -	996) } 			;	16	1.24				!
20	1775	1762	1754	1707	1690	20	2.33	2.16	2.17	1.78	1.65
24	2478	2476	2460		2418	24	2.42	2.25	2.26		1.69
28	3313	3309	3313	3275	3294	28	2.26	2.03	2.02	1.45	1.25
32	4385	4398	4401	4498	4527	32	2.08	1.74	1.76	1.07	0.89
Speed	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	∆ Angle	∆ Angle	∆ Angle	∆ Angle	∆ Angle
(knots)		°	5°	7.5°	10°	(knots)		°O	ည့	7.5°	10°
12	•	0.979	0.966	0.969	0.969	12	•	-0.03	-0.09	-0.19	-0.22
16	•					16	•			;	
20		0.993	0.988	0.962	0.952	20	•	-0.17	-0.16	-0.55	-0.68
24	•	0.999	0.993		0.976	24	•	-0.17	-0.16		-0.73
28	ı	0.999	1.000	0.989	0.994	28	•	-0.23	-0.25	-0.81	-1.02
32		1.003	1.004	1.026	1.032	32		-0.34	-0.32	-1.00	-1.19
Exp13 Ri	SISTANC	EXP19 RESISTANCE: Flap#6, Chor	3hord 2 H,	12.1, Span 8.7 ft	elliniii.	Exp13 TR	Expl3 TRIME Flap#8	Chord 2 ft.	Span 8.7 ft		
	Baseline	Flap Angle	Flap Angle Flap Angle Flap Angle	Flap Angle	Flap Angle	,	Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle
Speed	Full Load	°	2°	7.5°		Speed	Full Load	°O	ညိ	7.5°	10°
(knots)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	(knots)	Trim Angle	Trim Angle	Trim Angle	Trim Angle	Trim Angle
12	292	287	287	286	288	12	-0.02	-0.04	-0.10	-0.14	-0.17
16	996			935	933	16	1.24			96.0	0.88
20	1775	1763	1763	1723	1720	20	2.33	2.20	2.13	1.95	1.84
24	2478	2465		2425	2413	24	2.42	2.27		2.02	1.90
28	3313	3307	3325	3270	3240	28	2.26	2.00	2.07	1.79	1.54
32	4385	4425	4430	4420	4462	32	2.08	1.84	1.85	1.45	1.20
Speed	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	∆ Angle	∆ Angle	∆ Angle	. ∆ Angle	∆ Angle
(knots)		°	ညိ	7.5°	-01	(knots)		°O	ည့	7.5°	10°
12		0.983	0.983	0.979	0.986	12	ı	-0.02	-0.08	-0.12	-0.15
16				0.968	0.966	16	1			-0.28	-0.36
20	1	0.993	0.993	0.971	0.969	20	ı	-0.13	-0.20	-0.38	-0.49
24	•	0.995		0.979	0.974	24	•	-0.15		-0.40	-0.52
28	•	0.998	1.004	0.987	0.978	28		-0.26	-0.19	-0.48	-0.72
32	ı	1.009	1.010	1.008	1.018	32	4	-0.24	-0.22	-0.63	-0.88

Table B8. Stern flap optimization and selection, model resistance experiments (continued)

	p15 RE	SISTANCE	2: Flap#7, 1	Chord 1 ff,	Exp15 RESISTANCE: Flap#7, Chord 1 ft, Span 12.4 ft	#	Exp15 TI	AIM: Flap#7	Exp15 TRIM: Flap#7, Chord 1 ft, Span 12.4 ft	. Span 12.4	#	
1.5° 10°		Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle		Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle
FF (hP) FE (peed	Full Load	°O	ညိ	7.5°	10°	Speed	Full Load		2°	7.5°	10°
88 286 288 12 -0.02 -0.09 -0.12 64 1734 1719 20 2.33 2.14 1.99 -0.12 99 3284 3242 2.8 2.26 2.01 1.99 1.81 99 3284 3242 2.8 2.26 2.01 1.99 1.81 19 4440 4473 32 2.08 1.69 1.47 1.90 19 4240 473 32 2.08 1.69 1.81 10 (knots) 2.08 1.69 1.65 1.47 10 (knots) 0.96 0.00 0.00 1.81 10 0.979 0.986 2.0 -0.19 0.10 10 0.981 0.986 2.0 -0.19 0.10 10 0.981 0.986 2.0 -0.19 0.10 10 0.981 0.986 1.0 -0.25 0.21 0.10	nots)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	(knots)	Trim Angle				Trim Anale
64 1734 1719 16 1.24 99 3284 2.0 2.33 2.14 1.99 19 3284 3242 2.8 2.26 2.01 1.99 1.99 19 3284 3242 28 2.26 2.01 1.99 1.47 19 4440 4473 32 2.68 1.69 1.47 1.47 19 7.5° 10° (knots) 0.9 1.69 7.5° 1.47 196 0.991 0.986 20 - - -0.07 -0.19 10 0.981 2.0 - - -0.07 -0.10 -0.37 10 0.981 2.0 - - -0.07 -0.10 -0.37 11A Span By Tim 1.0 - - - -0.25 -0.27 -0.14 11A Span By Tim 1.2 - - - - -0.19 -0.11 11A Span By Tim<	12	292	286	288	286	288	12	-0.02				-0.16
64 1734 1719 20 2.33 2.14 1.99 2430 224 2.42 2.26 2.01 1.69 1.81 99 3284 3242 2.86 2.26 2.01 1.69 1.81 99 3284 3242 2.86 2.06 4.73 1.65 1.44 10 7.5° 10° (knots) AAngle A Angle A Angle 1.44 10 7.5° 10° 12 -	16	996					16	1.24		•	!) • •
99 32430 24 2.45 2.26 2.01 1.99 1.81 19 3284 3242 2.8 2.06 1.69 1.81 1.81 19 4440 4473 32 2.06 1.69 1.81 1.81 19 7.5° 10° (knots) Δ Angle Δ Angle Δ Angle 1.81 1.81 19 0.977 0.968 12 - - - -0.07 -0.10 19 0.981 0.986 12 -	20	1775	1763	1764	1734	1719	20	2.33		2.14	1.99	1.86
99 3284 3242 28 2.26 2.01 1.99 1.81 194 4440 4473 32 2.26 2.01 1.69 1.81 184 4440 4473 32 2.08 1.69 1.69 1.81 186 7.5° 10° (knots) Angle A Angle <td>24</td> <td>2478</td> <td></td> <td></td> <td>2430</td> <td></td> <td>24</td> <td>2.42</td> <td></td> <td></td> <td>2.05</td> <td>)) :</td>	24	2478			2430		24	2.42			2.05)) :
19	28	3313	3308	3299	3284	3242	28	2.26	2.01	1.99	1.81	1.44
Speed A Angle A Angl	32	4385	4409	4419	4440	4473	32	2.08	1.69	1.65	1.47	1.12
1. 1. 1. 1. 1. 1. 1. 1.	peed	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	Δ Angle	Δ Angle	A Angle	A Angle	A Andle
12 0.976 0.986 12 - 0.07 - 0.014 - - - -	iots)		°	ညိ	7.5°	10°	(knots)	l	ီဝီ	2° 3	7.5°	10°
16 0.977 0.968 20 - 0.025 -0.27 -0.37 -0.37 -0.38	2		0.979	0.986	0.979	0.986	12	ı		-0.07	-0.10	-0 14
94 0.977 0.968 20 0.19 - 0.37	91						16	ı			•	•
96 0.991 24 - -0.25 -0.27 -0.37 -0.45 108 1.020 32 - -0.29 -0.27 -0.45 -0.45 -0.45 Angle Flap Flap Flap Flap Flap Flap Flap Flap	50	1	0.993	0.994	0.977	0.968	20	1		-0.19	-0.34	-0.47
96 0.991 0.979 280.25 -0.27 -0.45 11.013 1.020 320.39 -0.43 -0.61 11.013 1.020 320.39 -0.43 -0.61 11.020 2.88 2.90 12 -0.02 11.743 1735 20 2.33 11.7445 4445 4446 32 2.08 12.89 2.26 2.08 13.275 32.79 28 2.26 14.45 4445 32 10° (knots) 7.5° 0.02 14.45 11.6 1.24 15.6 1.24 17.8 1.8 2.90 18.9 2.06 19.9 2.8 2.06 19.9 2.8 2.08 19.9 2.8 2.08 19.9 2.8 2.08 10.9 8.9 3 12 0.02 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.097 10.9 8.9 0.999 28 0.099 10.9 0.9 8.9 0.999 28 0.099 10.9 0.9 8.9 0.999 28 0.099 10.9 0.9 8.9 0.999 28 0.099 10.9 0.9 8.9 0.999 28 0.099 10.9 0.9 9.9 0.9 9.9 0.9 0.9 0.9 0.0 0.0	24	•			0.981		24	1			-0.37	
1.013 1.020 32 - 0.39 - 0.43 - 0.61 1.02 mark Exp16 Filth Filab Angle Flap Angle Flap Angle Flap Angle - 0.61 n. 7.5° 10° Speed Full Load 0° 5° 7.5° n. 7.5° 10° Speed Full Load 0° 5° 7.5° n. 7.5° 10° Trim Angle Trim Angle Trim Angle Trim Angle 1.0° 952 17 1.24 Trim Angle Trim Angle 1.0° 7.5° 1743 1735 20 2.33 Trim Angle Trim Angle 1.0° 1.0° 1744 1743 1735 20 2.33 Trim Angle 1.0° 1.0° 1744 4445 4446 32 2.08 2.0° 1.82 28 10° 10° 10° 1.0° 1.0° 1.5° 10° 10° 10° 1.0° 1.0° 1.0° 1.0°	58		0.998	966.0	0.991	0.979	28	,	-0.25	-0.27	-0.45	-0.82
Angle Flap Angle 7.5° Baseline Flap Angle Flap Angle Flap Angle Flap Angle Flap Angle 7.5° Flap Angle Flap Angle Flap Angle Flap Angle Flap Angle Flap Angle 7.5° 7.5°	2		1.005	1.008	1.013	1.020	32	ı	-0.39	-0.43	-0.61	96.0-
Full Load 0° 5° 7.5° 10° Speed 1.24	16 AE	SISTANCE Raseline	Flap#8, C	Mord 1 ff.	Span 8.7 II Flan Angla	Flan Angla	Exp16 TR	IM: Flap#8	Chord 1 th	***************************************		ī
PE(hP) P	þad		٥٥	الله .	7 50	26.11.7dzi -			। ਕਿਸ ਨਾ।ਪੁੱਚ ਨੂੰ	riap Angle	riap Aligie	riap Arigle
292 288 290 12 -0.02 -0.11 Angle Irim Angle 10.01 -0.11 -0.09 -0.09 -0.18 </td <td>ote</td> <td>DE (hp)</td> <td>(4) DO</td> <td>(04) 30</td> <td>5.7</td> <td>ָ הַלְּ</td> <td>neade (1.1.1.)</td> <td>rull Load</td> <td></td> <td>ດີ. ເ</td> <td>, c. /</td> <td>20.</td>	ote	DE (hp)	(4) DO	(04) 30	5.7	ָ הַלְּ	neade (1.1.1.)	rull Load		ດີ. ເ	, c. /	20.
966 952 12 -0.02 -0.02 966 952 16 1.24 1.06 1775 1743 1735 20 2.33 1.06 2478 242 2.42 2.03 2.03 3313 3275 3279 28 2.26 1.82 4385 4445 4446 32 2.08 1.52 PERatio PERatio PERatio PERatio Speed Δ Angle Δ Angle Δ Angle 0° 5° 7.5° 10° (knots) 0° 5° 7.5° - 0.000 0.096 0.998 12 - 0.02 -0.09 - 0.986 0.998 0.990 - - -0.02 -0.02 -0.03 - 0.989 0.990 - - - -0.03 -0.04 - 1.014 1.014 32 - - - - - - - - - - - - - -	(e) c	200				FE (NF)	(knots)	ırım Angle		Frim Angle	Trim Angle	Trim Angle
900 952 16 1.24 1.06 1775 1743 1735 20 2.33 1.06 2478 242 2.42 2.03 2.03 3313 3275 3279 28 2.26 1.82 4385 4445 4446 32 2.08 1.52 PE Ratio PE	V C	787			288	290	12	-0.02			-0.11	-0.12
1775 1743 1735 20 2.33 2.03 2478 242 2.42 1.82 3313 4445 4446 32 2.26 1.82 4385 4445 4446 32 2.08 1.52 PE Ratio PA Page PE Page PA Page PE Page PA Page PE Page PA Page PE Page PE Page PE Page PA Page PE Page	٥	906			952		16	1.24			1.06	
2478 3275 3279 28 2.26 1.82 3313 4445 4446 32 2.26 1.82 4385 4445 4446 32 2.08 1.52 PE Ratio Pe Page Pe Page <td< td=""><td>0</td><td>1775</td><td></td><td></td><td>1743</td><td>1735</td><td>20</td><td>2.33</td><td></td><td></td><td>2.03</td><td>1.95</td></td<>	0	1775			1743	1735	20	2.33			2.03	1.95
3313 3275 3279 28 2.26 1.82 4385 4445 4446 32 2.08 1.52 PE Ratio PE Ratio PE Ratio Speed Δ Angle Δ Angle Δ Angle 0° 5° 7.5° 10° (knots) 0° 5° 7.5° - 0.000 0.086 0.993 12 - 0.02 0.02 -0.09 - 0.982 0.977 20 - - -0.30 - - 0.989 0.990 28 - - -0.44 - - 1.014 1.014 32 -	4	2478					24	2.42				
4385 4445 4446 32 2.08 1.52 PE Ratio PE Ratio PE Ratio PE Ratio PE Ratio Speed Δ Angle Δ Angle Δ Angle - 0.000 0.086 0.993 12 - 0.02 0.02 -0.09 - 0.986 0.986 16 - - -0.18 - 0.982 0.977 20 - -0.30 - - 0.989 0.990 24 - -0.30 - 1.014 1.014 32 - - -0.44	80	3313			3275	3279	28	2.26			1.82	1.73
PE Ratio Speed Δ Angle Δ Angle Δ Angle Δ Angle Δ Angle Δ Angle Δ 7.5° 7.0° 7.0°	22	4385			4445	4446	32	2.08			1.52	1.36
0° 5° 7.5° 10° (knots) 0° 5° 7.5° - 0.000 0.0986 0.993 12 - 0.02 0.02 -0.09 - 0.986 16 - - -0.18 - 0.982 0.977 20 - -0.30 - 24 - - -0.44 - 0.989 0.990 28 - -0.44 - 1.014 1.014 32 - -0.56	pee	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	∆ Angle	∆ Angle	A Angle	∆ Angle	∆ Angle
- 0.000 0.096 0.993 12 - 0.02 -0.09 - 0.986 16 - -0.18 - 0.982 0.977 20 - -0.18 - 24 - - 0.989 0.990 28 - -0.44 - 1.014 1.014 32 - -0.56	ots)		°	ည့	7.5°	10°	(knots)		°°	ည့်	7.5°	10°
- 0.986 160.18 - 0.982 0.977 200.30 240.30 - 0.989 0.990 280.44 - 1.014 1.014 320.56	7	•	0.000	0.000	0.986	0.993	12	•	0.02	0.02	-0.09	-0.10
- 0.982 0.977 200.30 - 240.30 - 0.989 0.990 280.44 - 1.014 1.014 320.56	9	•			0.986		16	ı			-0.18	
- 24 0.989 0.990 280.44 1.014 1.014 320.56	0.	•			0.982	0.977	20	1			-0.30	-0.38
- 0.989 0.990 280.44 - 1.014 1.014 320.56	4						24	1				
- 1.014 1.014 320.56	80	•			0.989	0.990	28	;			-0.44	-0.53
	7				1.014	1.014	32				-0.56	-0.72

Table B9a. Island Class, resistance prediction (no flap), full load 163 L. tons, original model configuration without spray rail extension, Exp. 17

MODEL CONDITION = "Exp17,163LT, No Flap, no ExtRails" EHP RESULTS FROM EXPERIMENT NUMBER = 17 DTRC MODEL NUMBER = 5526 DTRC DSC 5-19-99 MODEL SHIP

17.95 FT (5.472 M) 102.44 FT (31.2 M) LENGTH

 WETTED SURFACE
 2366.SQ FT (220. SQ M)
 72.66 SQ FT (6.75 SQ M)

 DISPLACEMENT
 163.TONS (166. T)
 0.86 TONS (0.87 T)

 RHO
 1.9905 (31.885 N SXX2/MXX4)
 1.9369 (31.026 N SXX2/MXX4)

 NU (E+5)
 1.2817 (0.11907 SQ M/SEC)
 1.0983 (0.10204 SQ M/SEC)

LINEAR RATIO 5.706 ITTC FRICTION LINE CORRELATION ALLOWANCE (CA) 0.00030

v	'S	PE		FRICTIONA	L POWER	FN	V-L	1000CR
KNOTS	M/S	HP	KW	HP	KW			
10.00	5.14	150.9	112.5	47.3	35.2	0.294	0.988	5.035
11.00	5.66	209.8	156.5	62.2	46.4	0.323	1.087	5.390
12.00	6.17	291.0	217.0	79.9	59.5	0.353	1.186	5.936
13.00	6.69	402.1	299.8	100.6	75.0	0.382	1.284	6.668
14.00	7.20	549.8	410.0	124.5	92.8	0.412	1.383	7.531*
15.00	7.72	743.0	554.1	151.8	113.2	0.441	1.482	8.510*
16.00	8.23	963.5	718.5	182.9	136.4	0.470	1.581	9.260*
17.00	8.75	1177.6	878.2	217.8	162.4	0.500	1.680	9.492*
18.00	. 9.26	1379.3	1028.5	256.8	191.5	0.529	1.778	9.351*
19.00	9.77	1576.9	1175.9	300.1	223.8	.0.559	1.877	9.044*
20.00	10.29	1764.2	1315.6	348.0	259.5	0.588	1.976	8.601
21.00	10.80	1943.0	1448.9	400.6	298.7	0.617	2.075	8.092
22.00	11.32	2116.3	1578.1	458.1	341.6	0.647	2.174	7.566
23.00	11.83	2288.5	1706.6	520.8	388.4	0.676	2.272	7.059
24.00	12.35	2464.2	1837.5	588.9	439.1	0.706	2.371	6.591
25.00	12.86	2648.0	1974.6	662.5	494.0	0.735	2.470	6.174
26.00	13.38	2843.3	2120.3	741.9	553.2	0.764	2.569	5.809
27.00	13.89	3053.0	2276.6	827.3	616.9	0.794	2.668	5.494
28.00	14.40	3278.3	2444.6	918.9	685.2	0.823	2.766	5.222
29.00	14.92	3518.7	2623.9	1016.9	758.3	0.853	2.865	4.984
30.00	15.43	3776.1	2815.9	1121.5	836.3	0.882	2.964	4.777
31.00	15.95	4052.8	3022.2	1232.9	919.4	0.911	3.063	4.599
32.00	16.46	4355.9	3248.2	1351.3	1007.6	0.941	3.162	4.455

^{*} Only at these speeds does the addition of the "bow spray rails" affect the resistance.

Table B9b. Island Class, resistance prediction (no flap), full load 163 L. tons, Exp. 18 with "bow spray rails"

	rs	PE	 E	FRICTIONA	L POWER	FN	V-L	1000CR
KNOTS	M/S	HP	KW	HP	KW			
10.00	5.14	150.9	112.5	47.3	35.2	0.294	0.988	5.035
11.00	5.66	209.8	156.5	62.2	46.4	0.323	1.087	5.390
12.00	6.17	291.0	217.0	79.9	59.5	0.353	1.186	5.936
13.00	6.69	402.1	299.8	100.6	75.0	0.382	1.284	6.668
14.00	7.20	550.3	410.4	124.5	92.8	0.412	1.383	7.540*
15.00	7.72	749.9	559.2	151.8	113.2	0.441	1.482	8.610*
16.00	8.23	976.2	727.9	182.9	136.4	0.470	1.581	9.410*
17.00	8.75	1182.5	881.8	217.8	162.4	0.500	1.680	9.540*
18.00	9.26	1382.7	1031.1	256.8	191.5	0.529	1.778	9.380*
19.00	9.77	1578.3	1177.0	300.1	223.8	0.559	1.877	9.054*
20.00	10.29	1764.2	1315.6	348.0	259.5	0.588	1.976	8.601
21.00	10.80	1943.0	1448.9	400.6	298.7	0.617	2.075	8.092
22.00	11.32	2116.3	1578.1	458.1	341.6	0.647	2.174	7.566
23.00	11.83	2288.5	1706.6	520.8	388.4	0.676	2.272	7.059
24.00	12.35	2464.2	1837.5	588.9	439.1	0.706	2.371	6.591
25.00	12.86	2648.0	1974.6	662.5	494.0	0.735	2.470	6.174
26.00	13.38	2843.3	2120.3	741.9	553.2	0.764	2.569	5.809
27.00	13.89	3053.0	2276.6	827.3	616.9	0.794	2.668	5.494
28.00	14.40	3278.3	2444.6	918.9	685.2	0.823	2.766	5.222
29.00	14.92	3518.7	2623.9	1016.9	758.3	0.853	2.865	4.984
30.00	15.43	3776.1	2815.9	1121.5	836.3	0.882	2.964	4.777
31.00	15.95	4052.8	3022.2	1232.9	919.4	0.911	3.063	4.599
32.00	16.46 	4355.9	3248.2	1351.3	1007.6	0.941	3.162	4.455

^{*} Only at these speeds does the addition of the "bow spray rails" affect the resistance.

Table B10. Island Class, resistance prediction (no flap), min-ops 144 L. tons, Exp. 21

MODEL CONDITION = "Exp21, 144LT, No Flap, ExtRails"

EHP RESULTS FROM EXPERIMENT NUMBER = 21

DTRC MODEL NUMBER = 5526 DTRC DSC 5-19-99

MODEL SHIP 102.44 FT (31.2 M)

17.95 FT (5.472 M) DISPLACEMENT 144.TONS (146. T) 0.75 TONS (0.76 TONS LENGTH

144.TONS (146. T) 0.75 TONS (0.76 T) 1.9905 (31.885 N SXX2/MXX4) 1.9369 (31.026 N SXX2/MXX4) 1.2817 (0.11907 SQ M/SEC) 1.0983 (0.10204 SQ M/SEC) 1.2817 (0.11907 SQ M/SEC) NU (E+5)

LINEAR RATIO

5.706

ITTC FRICTION LINE

CORRELATION ALLOWANCE (CA) 0.00030

v	'S	PE		FRICTIONA	L POWER	FN	V-L	1000CR
KNOTS	M/S	HP	KW	HP	KW			
10.00	5.14	142.4	106.2	45.1	33.7	0.294	0.988	4.945
11.00	5.66	194.5	145.1	59.4	44.3	0.323	1.087	5.165
12.00	6.17	261.6	195.1	76.3	56.9	0.353	1.186	5.455
13.00	6.69	351.7	262.3	96.0	71.6	0.382	1.284	5.920
14.00	7.20	479.1	357.3	118.9	88.7	0.412	1.383	6.677
15.00	7.72	649.8	484.5	145.0	108.2	0.441	1.482	7.607
16.00	8.23	832.0	620.4	174.7	130.3	0.470	1.581	8.163
17.00	8.75	1003.4	748.2	208.0	155.1	0.500	1.680	8.234
18.00	9.26	1172.3	874.2	245.3	182.9	0.529	1.778	8.085
19.00	9.77	1339.3	998.7	286.7	213.8	0.559	1.877	7.806
20.00	10.29	1503.2	1120.9	332.4	247.9	0.588	1.976	7.444
21.00	10.80	1664.0	1240.9	382.6	285.3	0.617	2.075	7.038
22.00	11.32	1822.8	1359.2	437.6	326.3	0.647	2.174	6.617
23.00	11.83	1981.7	1477.8	497.5	371.0	0.676	2.272	6.205
24.00	12.35	2143.7	1598.5	562.5	419.4	0.706	2.371	5.818
25.00	12.86	2311.9	1724.0	632.8	471.9	0.735	2.470	5.466
26.00	13.38	2489.6	1856.5	708.6	528.4	0.764	2.569	5.154
27.00	13.89	2680.5	1998.9	790.2	589.3	0.794	2.668	4.885
28.00	14.40	2886.7	2152.6	877.7	654.5	0.823	2.766	4.655
29.00	14.92	3109.3	2318.6	971.3	724.3	0.853	2.865	4.459
30.00	15.43	3348.9	2497.3	1071.2	798.8	0.882	2.964	4.291
31.00	15.95	3603.5	2687.2	1177.6	878.2	0.911	3.063	4.142
32.00	16.46	3870.8	2886.5	1290.7	962.5	0.941	3.162	4.005

Table B11. Island Class, resistance prediction with stern flap, full load 163 L. tons, Exp. 19

MODEL CONDITION = "Exp19, 163LT, Stern Flap, ExtRails"

EHP RESULTS FROM EXPERIMENT NUMBER = 19

DTRC MODEL NUMBER = 5526 DTRC DSC 5-19-99

SHIP

LINEAR RATIO 5.706 ITTC FRICTION LINE

CORRELATION ALLOWANCE (CA) 0.00030

7	<i>1</i> S	PE		FRICTIONA	L POWER	FN	V-L	1000CR
KNOTS	M/S	HP	KW	HP	KW			
10.00	5.14	149.1	111.2	47.3	35.2	0.294	0.988	4.949
11.00	5.66	205.8	153.4	62.2	46.4	0.323	1.087	5.242
12.00	6.17	283.4	211.4	79.9	59.5	0.353	1.186	5.724
13.00	6.69	389.6	290.5	100.6	75.0	0.382	1.284	6.392
14.00	7.20	530.8	395.8	124.5	92.8	0.412	1.383	7.195
15.00	7.72	721.9	538.3	151.8	113.2	0.441	1.482	8.206
16.00	8.23	939.5	700.6	182.9	136.4	0.470	1.581	8.975
17.00	8.75	1139.0	849.4	217.8	162.4	0.500	1.680	9.110
18.00	9.26	1339.9	999.2	256.8	191.5	0.529	1.778	9.023
19.00	9.77	1535.8	1145.3	300.1	223.8	0.559	1.877	8.753
20.00	10.29	1722.6	1284.5	348.0	259.5	0.588	1.976	8.348
21.00	10.80	1900.7	1417.3	400.6	298.7	0.617	2.075	7.870
22.00	11.32	2072.2	1545.2	458.1	341.6	0.647	2.174	7.365
23.00	11.83	2240.7	1670.9	520.8	388.4	0.676	2.272	6.868
24.00	12.35	2411.3	1798.1	588.9	439.1	0.706	2.371	6.405
25.00	12.86	2589.2	1930.7	662.5	494.0	0.735	2.470	5.991
26.00	13.38	2779.6	2072.8	741.9	553.2	0.764	2.569	5.633
27.00	13.89	2988.6	2228.6	827.3	616.9	0.794	2.668	5.335
28.00	14.40	3218.6	2400.1	918.9	685.2	0.823	2.766	5.090
29.00	14.92	3472.6	2589.5	1016.9	758.3	0.853	2.865	4.892
30.00	15.43	3748.9	2795.6	1121.5	836.3	0.882	2.964	4.728
31.00	15.95	4045.4	3016.7	1232.9	919.4	0.911	3.063	4.587
32.00	16.46	4355.9	3248.2 	1351.3	1007.6	0.941	3.162	4.455

^{*} Addition of "bow spray rails" results in a change in Cr over full speed range.

Table B12. Island Class, resistance prediction with stern flap, min-ops 144 L. tons, Exp. 20

MODEL CONDITION = "Exp20, 144LT, Stern Flap, ExtRails"

EHP RESULTS FROM EXPERIMENT NUMBER = 20

DTRC MODEL NUMBER = 5526 DTRC DSC 5-19-99

RHO 1.9905 (31.885 N SXX2/MXX4) 1.9369 (31.026 N SXX2/MXX4) NU (E+5) 1.2817 (0.11907 SQ M/SEC) 1.0983 (0.10204 SQ M/SEC)

LINEAR RATIO

LINEAR RATIO 5.706
ITTC FRICTION LINE

CORRELATION ALLOWANCE (CA) 0.00030

FRICTIONAL POWER FN V-L KNOTS M/S HP ΚW HP
 5.14
 139.9
 104.3
 45.1
 33.7
 0.294
 0.988
 4.820

 5.66
 190.5
 142.0
 59.4
 44.3
 0.323
 1.087
 5.010
 10.00 11.00
 6.17
 254.0
 189.4
 76.3
 56.9
 0.353

 6.69
 340.1
 253.6
 96.0
 71.6
 0.382

 7.20
 462.3
 344.8
 118.9
 88.7
 0.412

 7.72
 625.5
 466.4
 145.0
 108.2
 0.441

 8.23
 802.9
 598.7
 174.7
 130.3
 0.470

 8.75
 971.7
 724.6
 208.0
 155.1
 0.500
 76.3 96.0 56.9 0.353 1.186 5.232 12.00 5.650 1.284 13.00 1.383 6.366 14.00 1.482 7.241 15.00 1.581 7.801 16.00 1.680 7.906 17.00 9.26 1136.4 847.4 245.3 182.9 0.529 1.778 7.772 18.00 9.77 1300.9 970.1 286.7 213.8 0.559 1.877 7.521 19.00 1.976 10.29 1463.4 1091.2 332.4 247.9 0.588 7.191 20.00 10.80 1623.6 1210.7 382.6 285.3 0.617 2.075 6.816 21.00
 10.80
 1623.6
 1210.7
 382.6
 285.3
 0.617

 11.32
 1782.4
 1329.1
 437.6
 326.3
 0.647

 11.83
 1941.3
 1447.6
 497.5
 371.0
 0.676

 12.35
 2103.2
 1568.3
 562.5
 419.4
 0.706

 12.86
 2271.3
 1693.7
 632.8
 471.9
 0.735

 13.38
 2449.1
 1826.3
 708.6
 528.4
 0.764

 13.89
 2640.7
 1969.2
 790.2
 589.3
 0.794

 14.40
 2040.7
 2124.2
 2124.2
 217.7
 654.5
 0.823
 2.174 22.00 6.424 6.036 .2.272 23.00 2.371 5.669 24.00 2.470 25.00 5.334 5.037 2.569 26.00 4.782 2.668 27.00 14.40 2848.7 2124.3 877.7 654.5 0.823 2.766 4.567 28.00 14.92 3074.8 2292.9 971.3 724.3 0.853 2.865 4.387 29.00 15.43 3318.2 2474.3 1071.2 798.8 0.882 2.964 4.233 30.00 31.00 15.95 3577.2 2667.5 1177.6 878.2 0.911 3.063 4.097 16.46 3843.7 2866.3 1290.7 962.5 0.941 32.00 3.162 3.963

Table B13. Island Class, estimated powering (no flap), full load 163 L. tons

POWER- PE

DELIVERED

POWER- PD

PROPELLER

REV. PER

I

I

WPB estimate 163LT No Fla	ap, including	wod"	spray ra	ils"
SHIP LENGTH	102.4	FEET	(31.2	METERS)
SHIP DISPLACEMEN	NT 163.	TONS	(166.	METRIC TONS)
SHIP WETTED SUR	FACE 2366.	SQFT	(220.	SQ METERS)
CORRELATION ALL	OWANCE .00030		ITTC F	RICTION USED

SHIP SPEED RESIDUARY EFFECTIVE

RES.COEF.

I

_								******	•	1000	<u> </u>
Ι	(KTS)	(M/S)	(CR*1	.000)	(HP)	(kW)	(HP)	(k	:W)	MINUTE	I
I	10.0	5.14	5.04	1	151.0	112.6	288.	4 21	5.1	291.7	I
I	11.0	5.66	5.39	6	210.0	156.6	394.		4.2	324.3	I
I	12.0	6.17	5.93	17	291.0	217.0	541.		4.0	359.4	I
I	13.0	6.69	6.66		402.0	299.8	745.			397.5	I
I	14.0	7.20	7.53		550.0	410.1	1023.		3.1	438.1	I
I	15.0	7.72	8.61		750.0	559.3	1404.		7.5	482.1	Ī
I	16.0	8.23	9.40		976.0	727.8	1839.		1.4		
I	17.0	8.75	9.54		1183.0					524.0	I
I						882.2	2221.		6.3	557.9	I
	18.0	9.26	9.38		1383.0	1031.3	2581.		5.3	587.9	I
I	19.0	9.77	9.05		1578.0	1176.7			0.9	615.2	I
I	20.0	10.29	8.60		1764.0	1315.4	3239.		5.8	639.9	I
I	21.0	10.80	8.09		1943.0	1448.9			4.2	662.2	I
I	22.0	11.32	7.56		2116.0	1577.9	3809.	7 284	0.9	683.4	I
I	23.0	11.83	7.06		289.0	1706.9			8.3	703.3	I
I	24.0	12.35	6.59		464.0	1837.4	4327.	8 322	7.3	722.3	I
I	25.0	12.86	6.17		2648.0	1974.6	4592.	5 342	4.6	741.1	I
I	26.0	13.38	5.80		843.0	2120.0	4857.	7 362	2.4	759.5	I
I	27.0	13.89	5.49	4 3	3053.0	2276.6	5119.	5 381	7.6	777.2	I
I	28.0	14.40	5.22		3278.0	2444.4	5379.	3 401	1.4	794.2	I
I	29.0	14.92	4.98		519.0	2624.1	5627.	6 419	6.5	810.4	I
I	30.0	15.43	4.77	7 3	776.0	2815.8	5935.	4 442	6.0	828.8	I
I	31.0	15.95	4.59	9 4	1053.0	3022.3	6293.	9 469	3.3	848.9	I
I	32.0	16.46	4.45	5 4	356.0	3248.3	6692.	6 499	0.7	869.6	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	I
I	SPEED			-			AND	WAKE FA	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WFT	Q ADVC	I
I	10.0	0.525	0.630	0.810	1.025	0.645	0.825	1.015	1.030	0.850	I
I.	11.0	0.530	0.630	0.815	1.040	0.655	0.830	1.020	1.045		I
I	12.0	0.535	0.625	0.820	1.050	0.655	0.835	1.025	1.055		I
I	13.0	0.540	0.620	0.820	1.060	0.655	0.845	1.030	1.065		I
I	14.0	0.535	0.610	0.825	1.065	0.650	0.850	1.030	1.075		I
I	15.0	0.535	0.605	0.830	1.065	0.645	0.860	1.035	1.085	0.790	I
I	16.0	0.530	0.600	0.830	1.065	0.640	0.865	1.040	1.090	0.780	I
I	17.0	0.535	0.600	0.835	1.060	0.635	0.875	1.045	1.090	0.780	I
I	18.0	0.535	0.605	0.840	1.055	0.635	0.885	1.050	1.090	0.790	I
I		0.540	0.605	0.845	1.050	0.640	0.890	1.055	1.090	0.795	I
I		0.545	0.610	0.850	1.045	0.640	0.900	1.055	1.090		
I	21.0	0.550	0.620	0.855	1.040	0.640	0.905	1.055	1.085	0.810	I
I			0.625							0.820 0.835	I
I	23.0	0.560	0.630	0.870	1.033						I
I		0.570	0.630			0.645	0.920	1.055	1.075	0.845	I
I	25.0			0.880	1.025	0.645	0.930	1.055	1.070	0.860	I
I		0.575	0.635	0.890	1.020	0.650	0.935	1.050	1.065	0.870	I
	26.0	0.585	0.640	0.900	1.020	0.650	0.940	1.045	1.060	0.880	I
I	27.0	0.595	0.640	0.910	1.025	0.655	0.950	1.040	1.055	0.885	I
I	28.0	0.610	0.640	0.925	1.030	0.660	0.955	1.030	1.045	0.890	I
I	29.0	0.625	0.640	0.940	1.035	0.665	0.960	1.020	1.040	0.895	I
I	30.0	0.635	0.640	0.955	1.040	0.670	0.965	1.015	1.035	0.900	I
I	31.0	0.645	0.645	0.960	1.040	0.670	0.970	1.010	1.035	0.905	I
I	32.0	0.650	0.645	0.970	1.045	0.670	0.975	1.010	1.030	0.910	I

Table B14. Island Class, estimated powering (no flap), min-ops 144 L. tons

WPB estimate 144LT No Flap, including "bow spray rails"

SHIP LENGTH 102.4 FEET (31.2 METERS)

SHIP DISPLACEMENT 144. TONS (146. METRIC TONS)

SHIP WETTED SURFACE 2260. SQFT (210. SQ METERS)

CORRELATION ALLOWANCE .00030 ITTC FRICTION USED

	٠.	<i>71</i> 11111111111111111111111111111111111	TON ALL	OMMICH		•					
I	SHIP	SPEED	RESID	UARY	EFFEC	TIVE	DE	LIVERED	I	PROPELLER	I
I			RES.C	OEF.	POWER	- PE	PC	WER-PD		REV. PER	I
I	(KTS)	(M/S)	(CR*1	000)	(HP)	(kW)	(HP)	(k	W)	MINUTE	I
I	10.0	5.14	4.92	7	142.0	105.9	269.	5 20	0.9	287.5	I
I	11.0	5.66	5.18	3	195.0	145.4	363.	3 27	0.9	318.6	I
I	12.0	6.17	5.46	7	262.0	195.4	481.	7 35	9.2	350.4	I
I	13.0	6.69	5.92		352.0	262.5	641.	9 47	8.7	384.8	I
I	14.0	7.20	6.67		479.0	357.2	873.	9 65	1.7	423.1	I
I	15.0	7.72	7.61		650.0	484.7	1191.	3 88	8.3	464.6	I
I	16.0	8.23	8.16		832.0	620.4	1529.	1 114	0.3	502.5	I
I	17.0	8.75	8.23		.003.0	747.9	1835.	5 136	8.8	534.3	I
I	18.0	9.26	8.08		172.0	874.0	2133.	6 159	1.0	563.3	I
I	19.0	9.77	7.80	4 1	.339.0	998.5	2422.	5 180	6.4	589.9	I
I	20.0	10.29	7.44		.503.0	1120.8	2699.	4 201	2.9	614.7	I
I	21.0	10.80	7.03		664.0	1240.8	2965.	2 221	1.2	637.4	I
I	22.0	11.32	6.61	8 1	.823.0	1359.4	3225.	5 240	5.3	659.4	I
I	23.0	11.83	6.20	6 1	.982.0	1478.0	3476.	1 259	2.1	679.9	I
I	24.0	12.35	5.81	9 2	144.0	1598.8	3720.	2 277	4.2	699.6	I
I	25.0	12.86	5.46	6 2	312.0	1724.1	3970.	7 296	1.0	719.0	I
I	26.0	13.38	5.15	5 2	490.0	1856.8	4221.	8 314	8.2	737.8	I
I	27.0	13.89	4.88	6 2	681.0	1999.2	4469.	0 333	2.5	755.7	I
I	28.0	14.40	4.65	6 2	887.0	2152.8	4715.	8 351	6.6	773.1	I
I	29.0	14.92	4.45	8 .3	109.0	2318.4	4953.	6 369	3.9	789.6	I
I	30.0	15.43	4.29	1 3	349.0	2497.3	5251.	4 391	6.0	808.4	I
I	31.0	15.95	4.14	3 3	604.0	2687.5	5Š90.	4 416	8.8	828.7	I
I	32.0	16.46	4.00	5 3	871.0	2886.6	5947.	6 443	5.1	849.1	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	IST DEDU	CTION	ADVANCE	E I
I	SPEED				,,	•		WAKE FA		COEF	
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT			I
I	10.0	0.525	0.635	0.810	1.025	0.650	0.825	1.015			I
I	11.0	0.535	0.635	0.815	1.040	0.660	0.830	1.020	1.049		I
I	12.0	0.545	0.630	0.820	1.050	0.665	0.835	1.025	1.055		I
I	13.0	0.550	0.630	0.820	1.060	0.665	0.845	1.030	1.069	0.850	I
I	14.0	0.550	0.625	0.825	1.065	0.665	0.850	1.030	1.070	0.835	I
I	15.0	0.545	0.615	0.830	1.065	0.660	0.860	1.035	1.080		I
I	16.0	0.545	0.615	0.830	1.065	0.655	0.865	1.040	1.089	0.815	I
I	17.0	0.545	0.615	0.835	1.060	0.655	0.875	1.045	1.085		I
I	18.0	0.550	0.620	0.840	1.055	0.655	0.885	1.050	1.085	0.820	I
I	19.0	0.555	0.620	0.845	1.050	0.655	0.890	1.055	1.089	0.830	I
I	20.0	0.555	0.625	0.850	1.045	0.655	0.900	1.055	1.089	0.840	I
I	21.0	0.560	0.630	0.855	1.040	0.655	0.905	1.055	1.080	0.855	I
I	22.0	0.565	0.635	0.865	1.035	0.655	0.915	1.060	1.080	0.865	I
I	23.0	0.570	0.635	0.870	1.030	0.655	0.920	1.055	1.079	0.875	I
I	24.0	0.575	0.640	0.880	1.025	0.655	0.930	1.055	1.070	0.885	I
I	25.0	0.580	0.640	0.890	1.020	0.655	0.935	1.050	1.065	0.895	I
I	26.0	0.590	0.645	0.900	1.020	0.655	0.940	1.045			I
I	27.0	0.600	0.645	0.910	1.025	0.660	0.950	1.040	1.050		I
I	28.0	0.610	0.645	0.925	1.030	0.660	0.955	1.030	1.045		I
I	29.0	0.630	0.645	0.940	1.035	0.665	0.960	1.020			I
I	30.0	0.640	0.645	0.955	1.040	0.670	0.965	1.015			I
I	31.0	0.645	0.645	0.960	1.040	0.670	0.970	1.010			I
I	32.0	0.650	0.645	0.970	1.045	0.670	0.975	1.010	1.030		I

Table B15. Island Class, estimated powering with stern flap, full load 163 L. tons

WPB estimate 163LT Stern Flap, including "bow spray rails"

SHIP LENGTH 102.4 FEET (31.2 METERS)

SHIP DISPLACEMENT 163. TONS (166. METRIC TONS)

SHIP WETTED SURFACE 2366. SQFT (220. SQ METERS)

CORRELATION ALLOWANCE .00030 ITTC FRICTION USED

	_	OMMENT.	LION ALI	TOMPINCE	.00030		ITIC FR.	ICTION U	SED		
I	SHIF	SPEED	RESII	DUARY	EFFE	CTIVE	D	ELIVERED) <u>E</u>	ROPELLER	I
I			RES.	COEF.	POWER	R- PE	P	OWER- PD)	REV. PER	I
I	(KTS)	(M/S)	(CR*	L000)	(HP)	(kW)			W)	MINUTE	I
I	10.0	5.14	4.94	13	149.0	111.1		' - '	1.9	290.8	I
I	11.0	5.66	5.25	50	206.0	153.6			7.9	322.8	Ī
I	12.0	6.17	5.73		283.0	211.0			1.5	357.0	I
I	13.0	6.69	6.40		390.0	290.8			7.3		
I	14.0	7.20	7.19		531.0					394.5	I
Ī	15.0	7.72				396.0			2.9	434.2	I
I	16.0		8.20		722.0	538.4			2.4	477.3	I
I		8.23	8.98		940.0	701.0			2.8	518.7	I
	17.0	8.75	9.11		1139.0	849.4			5.1	552.3	I
I	18.0	9.26	9.02		1340.0	999.2			6.1	583.1	I
I	19.0	9.77	8.75		1536.0	1145.4		.9 211	4.0	610.9	I
Ι	20.0	10.29	8.35		1723.0	1284.8	3153	.2 235	1.4	636.0	I
I	21.0	10.80	7.87	'2 :	1901.0	1417.6	3445	.5 256	9.3	658.6	I
I	22.0	11.32	7.36	34	2072.0	1545.1		.2 277	4.2	679.9	I
I	23.0	11.83	6.86		2241.0	1671.1	3979.	.0 296	7.2	699.7	I
I	24.0	12.35	6.40	4 :	2411.0	1797.9	4225	.2 315	0.7	718.6	I
I	25.0	12.86	5.99	0 2	2589.0	1930.6	4481.	1 334	1.6	737.3	I
I	26.0	13.38	5.63	4 2	2780.0	2073.0	4741.	9 353	6.0	755.7	I
I	27.0	13.89	5.33	6 2	2989.0	2228.9	5005.	3 373	2.4	773.5	I
I	28.0	14.40	5.09	1 3	3219.0	2400.4			5.1	791.1	I
I	29.0	14.92	4.89	3 3	3473.0	2589.8	5550.			808.1	I
I	30.0	15.43	4.72	8 3	3749.0	2795.6				827.6	I
I	31.0	15.95	4.58		1045.0	3016.4	•			848.5	I
I	32.0	16.46	4.45		1356.0	3248.3				869.6	Ī
											_
I	SHIP		EFFICI	ENCIES	(ETA)			IST DEDU		ADVANCE	I
I	SPEED						AND	WAKE FA	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT			I
I	10.0	0.525	0.630	0.810	1.025	0.645	0.825	1.015	1.030	0.855	I
I	11.0	0.535	0.630	0.815	1.040	0.655	0.830	1.020	1.045	0.850	I
I	12.0	0.540	0.625	0.820	1.050	0.660	0.835	1.025	1.055	0.840	I
I	13.0	0.540	0.620	0.820	1.060	0.660	0.845	1.030	1.065	0.830	I
I	14.0	0.540	0.615	0.825	1.065	0.655	0.850	1.030	1.075	0.815	I
I	15.0	0.535	0.610	0.830	1.065	0.650	0.860	1.035	1.080		I.
I	16.0	0.535	0.605	0.830	1.065	0.640	0.865	1.040	1.090	0.785	I
I	17.0	0.535	0.605	0.835	1.060	0.640	0.875	1.045	1.090		I
I	18.0	0.540	0.605	0.840	1.055	0.640	0.885	1.050	1.090		I
I	19.0	0.540	0.610	0.845	1.050	0.640	0.890	1.055	1.090	0.800	I
I	20.0	0.545	0.615	0.850	1.045	0.645	0.900	1.055	1.085	0.815	I
I	21.0	0.550	0.620	0.855	1.040	0.645	0.905	1.055	1.085		ī
I	22.0	0.555	0.625	0.865	1.035	0.645	0.915	1.060	1.080		I
I	23.0	0.565	0.630	0.870	1.030	0.645	0.920	1.055	1.075	0.850	I
I	24.0	0.570	0.635	0.880	1.025	0.650	0.930	1.055	1.070	0.865	I
I	25.0	0.580	0.635	0.890	1.020	0.650	0.935	1.050	1.065	0.875	
I	26.0	0.585	0.640	0.900	1.020	0.650	0.940	1.045	1.060	0.885	I
I	27.0	0.595	0.640	0.910	1.025	0.655	0.950	1.043	1.055		I
I	28.0	0.610	0.640	0.925	1.030	0.660	0.955	1.040	1.045	0.890	I
I	29.0	0.625	0.640	0.940	1.035	0.665	0.960	1.030		0.895	I
I	30.0	0.635	0.640	0.955	1.040	0.670			1.040	0.895	I
Ī	31.0	0.645	0.645	0.960	1.040	0.670	0.965	1.015	1.035	0.900	I
I	32.0	0.650	0.645	0.970	1.040	0.670	0.970	1.010	1.035	0.905	I
_		3.330	J. 07J	9.370	1.040	0.0/0	0.975	1.010	1.030	0.910	I

Table B16. Island Class, estimated powering with stern flap, min-ops 144 L. tons

WPB estimate 144LT Stern Flap, including "bow spray rails"
SHIP LENGTH 102.4 FEET (31.2 METERS)
SHIP DISPLACEMENT 144. TONS (146. METRIC TONS)
SHIP WETTED SURFACE 2260. SQFT (210. SQ METERS)
CORRELATION ALLOWANCE .00030 ITTC FRICTION USED

I	SHIP	SPEED	RESID	UARY	EFFEC	TIVE	DE	LIVERED	3	ROPELLER	I
Ī			RES.C	OEF.	POWER	- PE	PO	WER- PD		REV. PER	I
I	(KTS)	(M/S)	(CR*1		(HP)	(kW)	(HP)	(k	W)	MINUTE	I
ī	10.0	5.14	4.82		140.0	104.4	265.	3 19	7.8	286.6	I
ī	11.0	5.66	5.03		191.0	142.4	355.		4.8	317.1	I
I	12.0	6.17	5.23		254.0	189.4	465.		7.1	347.9	I
I	13.0	6.69	5.64	_	340.0	253.5	617.		0.6	381.6	I
I	14.0	7.20	6.36		462.0	344.5	839.		5.7	419.4	I
	15.0	7.72	7.24		626.0	466.8	1141.		1.0	460.2	I
I	16.0		7.24		803.0	598.8	1468.			498.0	I
I •		8.23	7.90		972.0	724.8	1770.			530.1	I
I	17.0	8.75			136.0	847.1	2059.			558.9	Ī
I	18.0	9.26	7.76			970.2	2344.			585.7	I
I	19.0	9.77	7.52		301.0	1091.0	2618.			610.7	I
I -	20.0	10.29	7.18		463.0	1211.0	2886.			633.8	I
I	21.0	10.80	6.81		624.0	1328.8	3146.			655.9	I
I -	22.0	11.32	6.42		782.0	1447.4	3398.			676.7	I
I	23.0	11.83	6.03		941.0 103.0	1568.2	3644.			696.6	I
I -	24.0	12.35	5.66			1693.5	3897.			716.2	I
I	25.0	12.86	5.33		271.0	1826.2	4150.			735.2	I
I	26.0	13.38	5.03		449.0					753.4	I
I	27.0	13.89	4.78		641.0	1969.4	4401.			771.0	I
I	28.0	14.40	4.56		849.0	2124.5	4653.			771.0	I
I	29.0	14.92	4.38		075.0	2293.0	4899.			806.9	I
I	30.0	15.43	4.23		318.0	2474.2	5203.				I
I	31.0	15.95	4.09		577.0	2667.4	5549.			827.5	I
I	32.0	16.46	3.96	3 3	844.0	2866.5	5907.	2 440	5.0	847.9	Τ
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	I
I	SPEED						AND	wake fa	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WFT	Q ADVC	I
I	10.0	0.530	0.635	0.810	1.025	0.650	0.825	1.015	1.030	0.870	I
I	11.0	0.540	0.635	0.815	1.040	0.660	0.830	1.020	1.045		I
I	12.0	0.545	0.635	0.820	1.050	0.665	0.835	1.025	1.055		I
I	13.0	0.550	0.630	0.820	1.060	0.670	0.845	1.030	1.065		I
I	14.0	0.550	0.625	0.825	1.065	0.665	0.850	1.030	1.070		I
I .	15.0	0.550	0.620	0.830	1.065	0.660	0.860	1.035	1.080		I
I	16.0	0.545	0.615	0.830	1.065	0.655	0.865	1.040	1.085		I
I	17.0	0.550	0.620	0.835	1.060	0.655	0.875	1.045	1.085		I
I	18.0	0.550	0.620	0.840	1.055	0.655	0.885	1.050	1.085		Ī
I	19.0	0.555	0.625	0.845	1.050	0.655	0.890	1.055	1.085		I
I	20.0	0.560	0.630	0.850	1.045	0.655	0.900	1.055	1.085	0.845	I
I	21.0	0.565	0.630	0.855	1.040	0.655	0.905	1.055	1.080		I
						0.055	0.505				I
I	22.0	0.565	0.635	0.865	1.035	0.655	0.915	1.060	1.080	0.870	
I I	22.0 23.0	0.570			1.035 1.030				1.075	0.880	I
	22.0 23.0 24.0	0.570 0.575	0.635	0.865 0.870 0.880	1.035 1.030 1.025	0.655 0.655 0.655	0.915 0.920 0.930	1.060 1.055 1.055	1.075	0.880	I
I	22.0 23.0 24.0 25.0	0.570 0.575 0.585	0.635 0.640	0.865 0.870	1.035 1.030 1.025 1.020	0.655 0.655 0.655 0.655	0.915 0.920 0.930 0.935	1.060 1.055	1.075 1.076 1.065	0.880 0.890 0.900	I
I	22.0 23.0 24.0	0.570 0.575	0.635 0.640 0.640	0.865 0.870 0.880	1.035 1.030 1.025 1.020 1.020	0.655 0.655 0.655	0.915 0.920 0.930 0.935 0.940	1.060 1.055 1.055	1.075	0.880 0.890 0.900	I I I
I I	22.0 23.0 24.0 25.0	0.570 0.575 0.585	0.635 0.640 0.640 0.640	0.865 0.870 0.880 0.890	1.035 1.030 1.025 1.020	0.655 0.655 0.655 0.655	0.915 0.920 0.930 0.935	1.060 1.055 1.055 1.050	1.075 1.076 1.065	0.880 0.890 0.900 0.905	I
I I I	22.0 23.0 24.0 25.0 26.0	0.570 0.575 0.585 0.590	0.635 0.640 0.640 0.640 0.645	0.865 0.870 0.880 0.890 0.900	1.035 1.030 1.025 1.020 1.020 1.025 1.030	0.655 0.655 0.655 0.655 0.655	0.915 0.920 0.930 0.935 0.940 0.950 0.955	1.060 1.055 1.055 1.050 1.045	1.075 1.076 1.065	0.880 0.890 0.900 0.905 0.915	I I I I
I I I I	22.0 23.0 24.0 25.0 26.0 27.0	0.570 0.575 0.585 0.590 0.600	0.635 0.640 0.640 0.640 0.645	0.865 0.870 0.880 0.890 0.900	1.035 1.030 1.025 1.020 1.020	0.655 0.655 0.655 0.655 0.655	0.915 0.920 0.930 0.935 0.940 0.950	1.060 1.055 1.055 1.050 1.045 1.040	1.075 1.076 1.065 1.066	0.880 0.890 0.900 0.905 0.915 0.915	I I I
I I I I	22.0 23.0 24.0 25.0 26.0 27.0 28.0	0.570 0.575 0.585 0.590 0.600 0.610	0.635 0.640 0.640 0.640 0.645 0.645	0.865 0.870 0.880 0.890 0.900 0.910 0.925	1.035 1.030 1.025 1.020 1.020 1.025 1.030	0.655 0.655 0.655 0.655 0.655 0.660	0.915 0.920 0.930 0.935 0.940 0.950 0.955	1.060 1.055 1.055 1.050 1.045 1.040 1.030	1.075 1.076 1.066 1.056 1.045	0.880 0.890 5 0.900 0.905 0 0.915 0.915 0.920	I I I I
I I I I I	22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0	0.570 0.575 0.585 0.590 0.600 0.610 0.630	0.635 0.640 0.640 0.645 0.645 0.645	0.865 0.870 0.880 0.890 0.900 0.910 0.925 0.940	1.035 1.030 1.025 1.020 1.020 1.025 1.030 1.035	0.655 0.655 0.655 0.655 0.655 0.660 0.660	0.915 0.920 0.930 0.935 0.940 0.950 0.955 0.960	1.060 1.055 1.055 1.050 1.045 1.040 1.030	1.075 1.076 1.065 1.056 1.045 1.046	0.880 0.890 0.900 0.905 0.915 0.915 0.920 0.925	I I I I
I I I I I I	22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0	0.570 0.575 0.585 0.590 0.600 0.610 0.630 0.640	0.635 0.640 0.640 0.645 0.645 0.645 0.645	0.865 0.870 0.880 0.890 0.900 0.910 0.925 0.940 0.955	1.035 1.030 1.025 1.020 1.025 1.030 1.035 1.040	0.655 0.655 0.655 0.655 0.655 0.660 0.660 0.665	0.915 0.920 0.930 0.935 0.940 0.950 0.955 0.960	1.060 1.055 1.055 1.050 1.045 1.040 1.030 1.020	1.075 1.075 1.065 1.066 1.056 1.046 1.046	0.880 0.890 0.900 0.905 0.915 0.915 0.920 0.925 0.930	I I I I I

Table B17. Summary of model scale stern flap and "bow spray rails" performance on Island Class

		RESISTANCE: F	CE: Full Load	14 163.39 LT	I			RESISTAN	RESISTANCE: Min-Ops 143.61 L/	ns 143.61 LT	
		Exp18,	PE ratio				<u></u>			PE ratio	PE ratio
	Exp17,	Baseline	Exp18/17,	Exp19,	PE ratio	PE ratio		Exp21,	Exp20,	Exp20/21,	Exp20/21,
	Baseline	163LT,	Extended	163LT,	Exp19/18,	Exp19/18,		144LT,	144LT,	Stern Flap	Stern Flap
	163LT,	No Flap,	Spray Rail	Stern Flap,	Stern Flap	Stern Flap		No Flap,	Stern Flap,	Effects,	Effects,
NS	No Flap	ExtRails	Effects	ExtRails	Effects	Effects	۸S	ExtRails	ExtRails	ExtRails	ExtRails
10	151	151	1.0	149	0.988	-1.19	01	142	140	0.982	-1.76
=	210	210	1.0	506	0.981	-1.91	=	195	161	0.979	-2.06
12	291	291	1.0	283	0.974	-2.61	12	262	254	0.971	-2.91
13	402	402	1.0	390	696.0	-3.11	13	352	340	0.967	-3.30
14	550	550	1.001	531	0.965	-3.54	14	479	462	0.965	-3.51
15	743	750	1.009	722	0.963	-3.73	15	650	979	0.963	-3.74
16	964	926	1.013	940	0.962	-3.76	91	832	803	0.965	-3.50
17	1178	1183	1.004	1139	0.963	-3.68	17	1003	972	896.0	-3.16
18	1379	1383	1.002	1340	696.0	-3.10	18	1172	1136	696.0	-3.06
16	1577	1578	1.001	1536	0.973	-2.69	19	1339	1301	0.971	-2.87
20	1764	1764	0.1	1723	926.0	-2.36	70	1503	1463	0.974	-2.65
21	1943	1943	1.0	1901	0.978	-2.18	21	1664	1624	9260	-2.43
22	2116	2116	1.0	2072	0.979	-2.08	22	1823	1782	0.978	-2.22
23	2289	2289	1.0	2241	0.979	-2.09	23	1982	1941	0.980	-2.04
24	2464	2464	1.0	2411	0.979	-2.15	24	2144	2103	0.981	-1.89
25	2648	2648	1.0	2589	0.978	-2.22	25	2312	2271	0.982	-1.76
26	2843	2843	1.0	2780	0.978	-2.24	26	2490	2449	0.984	-1.63
27	3053	3053	1.0	5886	0.979	-2.11	27	2681	2641	0.985	-1.48
58	3278	3278	1.0	3219	0.982	-1.82	28	2887	2849	0.987	-1.32
29	3519	3519	1.0	3473	0.987	-1.31	29	3109	3075	0.989	-1.11
30	3776	3776	1.0	3749	0.993	-0.72	30	3349	3318	166.0	-0.92
31	4053	4053	1.0	4045	866.0	-0.18	31	3604	3577	0.993	-0.73
32	4356	4356	1.0	4356	1.000	0.00	32	3871	3844	0.993	-0.70

Table B17. Summary of model scale stern flap and "bow spray rails" performance on Island Class (continued)

		Stern Flan	Effects	PM Ratio	0 997	0.995	0.993	0 992	166.0	166.0	0.991	0.992	0.992	0.993	0.993	0.994	0.995	0.995	966.0	966.0	966.0	0.997	0.997	866.0	866.0	666.0	0.999	
				PD Ratio R	,																						0.993	
143,61 L.T		144LT,	Stern Flan.	RPM	286.6	317.1	347.9	381.6	419.4	460.2	498.0	530.1	558.9	585.7	610.7	633.8	655.9	676.7	9.969	716.2	735.2	753.4	771.0	787.8	6.908	827.5	847.9	
POWERING: Min-Ons 143 61 1 1		144LT,	Stern Flap,	P.O.	265	355	466	618	839	1141	1468	1771	2059	2345	2619	2886	3146	3399	3645	3897	4150	4401	4653	4899	5203	5549	5907	
POWERIN		144LT,	No Flap,	RPM	287.5	318.6	350.4	384.8	423.1	464.6	502.5	534.3	563.3	589.9	614.7	637.4	659.4	6.629	9.669	719.0	737.8	755.7	773.1	9.687	808.4	828.7	849.1	
		144LT,	No Flap,	PD .	270	363	482	642	874	1191	1529	1836	2134	2423	5696	2965	3226	3476	3720	3971	4222	4469	4716	4954	5251	5590	5948	
			_	۸S	2	=	12	13	14	15	91	17	18	61	20	21	22	23	24	25	56	27	28	59	30	31	32	
		Stern Flap	Effects,	Ratio Ratio	0.997	0.995	0.993	0.992	0.991	0.990	0.660	0.660	0.992	0.993	0.994	0.995	0.995	0.995	0.995	0.995	0.995	0.995	966.0	0.997	0.999	1.000	1.000	
,		Stern Flap	Effects,	PD Ratio	0.985	0.979	696.0	996.0	096.0	0.957	0.957	0.957	0.964	696.0	0.973	0.975	0.977	0.977	926.0	926.0	926.0	0.978	0.981	986'0	0.993	0.998	1.000	
1163,39 L.T.		163LT,	Stern Flap,	RPM	290.8	322.8	357	394.5	434.2	477.3	518.7	552.3	583.1	610.9	989	92859	6.629	<i>L</i> .669	718.6	737.3	755.7	773.5	791.1	808.1	827.6	848.5	9.698	
POWERING: Full Load 163,39 L.T.		163LT,	Stern Flap,	P.D	284	386	525	721	983	1344	1761	2126	2489	2835	3153	3446	3720	3979	4225	4481	4742	5005	5277	5550	5891	6281	6693	
POWERIN	Baseline	163LT,	No Flap,	RPM	291.7	324.3	359.4	397.5	438.1	482.1	524.0	557.9	587.9	615.2	639.9	662.2	683.4	703.3	722.3	741.1	759.5	777.2	794.2	810.4	828.8	848.9	9.698	,
	Baseline	163LT,	No Flap,	PD	288	395	542	746	1023	1405	1839	2221	2582	2925	3240	3533	3810	4075	4328	4593	4858	5120	5379	5628	5935	6294	6693	
															_				74									

Table B18. Projected full scale stern flap powering on Island Class 110 WPB, full load 163 L. tons

WPB estimate 163LT Stern Flap (fs projected) SHIP LENGTH 102.4 FEET (31.2 METERS) 163. TONS (166. METRIC TONS) SHIP DISPLACEMENT 2366. SQFT (220. SQ METERS) SHIP WETTED SURFACE CORRELATION ALLOWANCE .00030 ITTC FRICTION USED Ι SHIP SPEED RESIDUARY EFFECTIVE DELIVERED PROPELLER Ι RES.COEF. POWER- PE POWER- PD REV. PER Ι (KTS) (M/S) (CR*1000) (HP) (kW) (HP) (kW) MINUTE Ι 10.0 5.14 109.6 4.846 147.0 280.0 208.8 289.9 Ι Ι 11.0 5.66 5.141 203.0 151.4 379.8 283.2 321.7 Т Ι 385.3 12.0 6.17 5.599 279.0 208.1 516.7 355.7 I I 13.0 707.9 ' 6.69 6.268 384.0 527.9 286.3 393.0 I 14.0 7.20 7.056 523.0 390.0 965.8 720.2 432.5 I I 15.0 7.72 8.064 712.0 530.9 1322.8 986.4 475.6 Ι I 16.0 8.23 8.826 927.0 691.3 1732.4 1291.8 516.8 Ι 17.0 8.75 8.971 1125.0 838.9 2095.3 1562.5 550.5 Ι Ι 18.0 9.26 8.882 1323.0 986.6 2452.6 1828.9 581.1 Ι 19.0 9.77 8.620 1517.0 1131.2 2794.5 2083.9 608.9 Ι Ι 20.0 10.29 8.217 1701.0 1268.4 3107.1 2316.9 634.0 Ι I 21.0 10.80 3396.0 7.746 1877.0 1399.7 2532.4 656.5 I 22.0 11.32 7.245 2046.0 1525.7 3667.7 2735.0 677.8 I I 23.0 11.83 6.757 2213.0 1650.2 3923.7 2925.9 697.6 I Ι 24.0 12.35 6.299 2381.0 1775.5 4167.4 3107.6 716.5 I I 25.0 12.86 5.891 2557.0 1906.8 4421.1 3296.8 735.2 Ι Ι 26.0 13.38 5.537 2745.0 2046.9 4677.9 3488.3 753.6 Τ I 27.0 13.89 5.242 2951.0 2200.6 4937.9 3682.2 771.4 Т I 28.0 14.40 5.000 3178.0 2369.8 5206.5 3882.4 788.9 Ι I 29.0 14.92 4.805 3429.0 2557.0 5476.8 4084.0 805.9 I Ι 30.0 15.43 4.644 3702.0 2760.6 5814.5 4335.9 825.3 I 31.0 15.95 4.505 3995.0 2979.1 6201.1 4624.1 846.3 I 32.0 16.46 4.374 4301.0 3207.3 6606.3 4926.3 867.3 Ι I SHIP EFFICIENCIES (ETA) THRUST DEDUCTION ADVANCE Ι I SPEED AND WAKE FACTORS COEF. Ι I (KTS) ETAD ETAO ETAH ETAR ETAB 1-THDF 1-WFTT 1-WFTQ ADVC I I 10.0 0.525 0.630 0.810 1.025 0.650 0.825 1.015 1.030 0.860 I I 11.0 0.535 0.630 0.815 1.040 0.655 0.830 1.020 1.045 0.855 1.050 Т 12.0 0.540 0.625 0.820 0.660 0.835 1.025 1.055 0.845 Ι 13.0 0.540 I 0.625 0.820 1.060 0.660 0.845 1.030 1.065 0.835 Ι I 14.0 0.540 0.615 0.825 1.065 0.655 0.850 1.030 1.075 0.820 Т Ι 15.0 0.540 0.610 0.830 1.065 0.650 0.860 1.035 1.080 0.800 Ι I 16.0 0.535 0.605 0.830 1.065 0.645 0.865 1.040 1.090 0.790 I Ι 17.0 0.535 0.605 0.835 1.060 0.640 0.875 1.045 1.090 0.790 I 0.885 1.050 1.090 18.0 0.540 0.605 0.840 1.055 0.640 0.795 I 19.0 0.545 0.610 0.845 1.050 0.640 0.890 1.055 1.090 0.805 Ι 20.0 0.545 0.615 0.850 1.045 0.645 0.900 1.055 1.085 0.815 I 21.0 0.555 0.620 0.855 1.040 0.645 0.905 1.055 1.085 0.830 Ι 1.035 0.645 Ι 22.0 0.560 0.625 0.865 0.915 1.060 1.080 0.840 Τ Ι 23.0 0.565 0.630 0.870 1.030 0.650 0.920 1.055 1.075 0.855 Ι 24.0 0.570 0.635 I 0.880 1.025 0.650 0.930 1.055 1.070 0.865 Т I 25.0 0.580 0.635 0.890 1.020 0.650 0.935 1.050 1.065 0.875 T Ι 26.0 0.585 0.640 0.900 1.020 0.655 0.940 1.045 1.060 0.885 Ι I 27.0 0.600 0.640 0.950 0.910 1.025 0.655 1.040 1.055 0.890 Ι I 28.0 0.610 0.640 0.925 1.030 0.660 0.955 1.030 1.045 0.895 Т I 29.0 0.625 0.640 0.940 1.035 0.665 0.960 1.020 1.040 0.900 Ι Ι 30.0 0.635 0.645 0.955 1.040 0.670 0.965 1.015 1.035 0.905 Ι I 31.0 0.645 0.645 0.960 1.040 0.670 0.970 1.010 1.035 0.905 Ι 32.0 0.650 0.645 0.970 1.045 0.670 0.975 1.010 1.030 0.910

Table B19. Projected full scale stern flap powering on Island Class 110 WPB, min-ops 144 L. tons

WPB estimate 144LT Stern Flap (fs projected)
SHIP LENGTH 102.4 FEET (31.2 METERS)
SHIP DISPLACEMENT 144. TONS (146. METRIC TONS)
SHIP WETTED SURFACE 2260. SQFT (210. SQ METERS)
CORRELATION ALLOWANCE .00030 ITTC FRICTION USED

I	SHIP	SPEED	RESID	UARY	EFFEC	TIVE	DE	LIVERED	F	ROPELLER	I
I			RES.C		POWER	- PE	PO	WER- PD		REV. PER	I
Ī	(KTS)	(M/S)	(CR*1		(HP)	(kW)	(HP)	(k		MINUTE	I
ī	10.0	5.14	4.72		138.0	102.9	261.		4.8	285.6	I
	11.0	5.66	4.91		188.0	140.2	349.		0.2	315.9	I
I						186.4	457.		1.1	346.6	I
I	12.0	6.17	5.11		250.0		607.		3.1	380.3	Ī
I	13.0	6.69	5.53		335.0	249.8					
I	14.0	7.20	6.24		456.0	340.0	826.		6.6	418.0	I
I	15.0	7.72	7.11		617.0	460.1	1122.		7.1	458.6	I
I	16.0	8.23	7.66		792.0	590.6	1445.			496.3	I
I	17.0	8.75	7.78		960.0	715.9	1745.			528.4	I
I	18.0	9.26	7.64		122.0	836.7	2030.			557.2	I
I	19.0	9.77	7.40		.285.0	958.2	2312.			584.0	I
I	20.0	10.29	7.07		445.0	1077.5	2582.			608.8	·I
I	21.0	10.80	6.70		.603.0	1195.4	2844.			631.8	I
I	22.0	11.32	6.31	7 1	760.0	1312.4	3103.			654.0	I
I	23.0	11.83	5.93		917.0	1429.5	3353.			674.8	I
I	24.0	12.35	5.57	3 2	077.0	1548.8	3597.	0 268	2.3	694.7	I
I	25.0	12.86	5.24	2 2	243.0	1672.6	3847.	1 286	8.8	714.3	I
I	26.0	13.38	4.94	7 2	418.0	1803.1	4096.	3 305	4.6	733.2	I
I	27.0	13.89	4.69	8 2	608.0	1944.8	4345.	4 324	0.4	751.4	I
I	28.0	14.40	4.48	4 2	813.0	2097.7	4594.	2 342	5.9	769.0	I
I	29.0	14.92	4.30	6 3	036.0	2263.9	4837.	3 360	7.2	785.8	I
I	30.0	15.43	4.15	5 3	277.0	2443.7	5139.	5 383	2.5	804.9	I
I	31.0	15.95	4.02	0 3	532.0	2633.8	5481.	0 408	7.2	825.4	I
I	32.0	16.46	3.88	9 3	796.0	2830.7	5835.	9 435	1.8	845.8	I
											_
I	SHIP		EFFICI:	ENCIES	(ETA)			ST DEDU		ADVANCE	I
I	SPEED						AND	WAKE FA	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO								
I				ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WFT	Q ADVC	I
	10.0	0.530	0.635	0.810	1.025	0.650	0.825	1-WFTT 1.015	1-WFT	Q ADVC 0.870	I
I	11.0	0.540	0.635 0.635	0.810 0.815	1.025 1.040	0.650 0.660	0.825 0.830	1-WFTT 1.015 1.020	1-WFT 1.030 1.040	Q ADVC 0.870 0.870	I I I
I	11.0 12.0	0.540 0.545	0.635 0.635 0.635	0.810 0.815 0.820	1.025 1.040 1.050	0.650 0.660 0.670	0.825 0.830 0.835	1-WFTT 1.015 1.020 1.025	1-WFT 1.030 1.040 1.055	ADVC 0.870 0.870 0.870	I I I
I I	11.0 12.0 13.0	0.540 0.545 0.550	0.635 0.635 0.635 0.635	0.810 0.815 0.820 0.820	1.025 1.040 1.050 1.060	0.650 0.660 0.670 0.670	0.825 0.830 0.835 0.845	1-WFTT 1.015 1.020 1.025 1.030	1-WFT 1.030 1.040 1.055 1.065	ADVC 0.870 0.870 0.870 0.870 0.860	I I I I
I I I	11.0 12.0 13.0 14.0	0.540 0.545 0.550 0.550	0.635 0.635 0.635 0.635 0.630	0.810 0.815 0.820 0.820 0.825	1.025 1.040 1.050 1.060 1.065	0.650 0.660 0.670 0.670 0.670	0.825 0.830 0.835 0.845 0.850	1-WFTT 1.015 1.020 1.025 1.030 1.030	1-WFT 1.030 1.040 1.055 1.065	ADVC 0.870 0.870 0.870 0.870 0.860 0.845	I I I I
I I I	11.0 12.0 13.0 14.0 15.0	0.540 0.545 0.550 0.550	0.635 0.635 0.635 0.635 0.630 0.620	0.810 0.815 0.820 0.820 0.825 0.830	1.025 1.040 1.050 1.060 1.065 1.065	0.650 0.660 0.670 0.670 0.670	0.825 0.830 0.835 0.845 0.850 0.860	1-WFTT 1.015 1.020 1.025 1.030 1.030	1-WFT 1.030 1.040 1.055 1.065 1.070	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.830	I I I I I
I I I	11.0 12.0 13.0 14.0 15.0	0.540 0.545 0.550 0.550 0.550	0.635 0.635 0.635 0.635 0.630 0.620	0.810 0.815 0.820 0.820 0.825 0.830 0.830	1.025 1.040 1.050 1.060 1.065 1.065	0.650 0.660 0.670 0.670 0.670 0.665 0.660	0.825 0.830 0.835 0.845 0.850 0.860 0.865	1-WFTT 1.015 1.020 1.025 1.030 1.030 1.035 1.040	1-WFT 1.030 1.040 1.055 1.065 1.070 1.080	ADVC 0 0.870 0 0.870 0 0.870 0 0.870 0 0.860 0 0.845 0 0.830 0 0.825	I I I I I I
I I I I	11.0 12.0 13.0 14.0 15.0 16.0	0.540 0.545 0.550 0.550 0.550 0.550	0.635 0.635 0.635 0.635 0.630 0.620 0.620	0.810 0.815 0.820 0.820 0.825 0.830 0.830 0.835	1.025 1.040 1.050 1.060 1.065 1.065 1.065	0.650 0.660 0.670 0.670 0.670 0.665 0.660	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045	1-WFT 1.030 1.040 1.055 1.065 1.070 1.085	ADVC 0 0.870 0 0.870 0 0.870 0 0.870 0 0.860 0 0.845 0 0.830 0 0.825 0 0.825	I I I I I I I
I I I	11.0 12.0 13.0 14.0 15.0	0.540 0.545 0.550 0.550 0.550 0.550 0.555	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620	0.810 0.815 0.820 0.820 0.825 0.830 0.835 0.835	1.025 1.040 1.050 1.060 1.065 1.065	0.650 0.660 0.670 0.670 0.665 0.665 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885	1-WFTT 1.015 1.020 1.025 1.030 1.030 1.035 1.040	1-WFT 1.030 1.040 1.055 1.065 1.070 1.080 1.085 1.085	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
I I I I	11.0 12.0 13.0 14.0 15.0 16.0	0.540 0.545 0.550 0.550 0.550 0.550 0.555 0.555	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.620	0.810 0.815 0.820 0.820 0.825 0.830 0.835 0.840 0.845	1.025 1.040 1.050 1.060 1.065 1.065 1.065 1.060 1.055	0.650 0.660 0.670 0.670 0.670 0.665 0.660 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055	1-WFT 1.030 1.040 1.055 1.065 1.070 1.085	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830 0.840	I I I I I I I I I I
I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	0.540 0.545 0.550 0.550 0.550 0.550 0.555 0.555	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620	0.810 0.815 0.820 0.820 0.825 0.830 0.835 0.835	1.025 1.040 1.050 1.060 1.065 1.065 1.065	0.650 0.660 0.670 0.670 0.665 0.665 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885	1-WFTT 1.015 1.020 1.025 1.030 1.030 1.035 1.040 1.045 1.050	1-WFT 1.030 1.040 1.055 1.065 1.070 1.080 1.085 1.085	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830 0.840	I I I I I I I I I I I I I I I I I I I
I I I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	0.540 0.545 0.550 0.550 0.550 0.550 0.555 0.555	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.620	0.810 0.815 0.820 0.820 0.825 0.830 0.835 0.840 0.845	1.025 1.040 1.050 1.065 1.065 1.065 1.065 1.055 1.050 1.045	0.650 0.660 0.670 0.670 0.670 0.665 0.660 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885 0.890 0.900	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055	1-WFT 1.030 1.040 1.055 1.065 1.070 1.085 1.085 1.085	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830 0.840 0.850	I I I I I I I I I I
I I I I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	0.540 0.545 0.550 0.550 0.550 0.550 0.555 0.555	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.620 0.625 0.630	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850	1.025 1.040 1.050 1.060 1.065 1.065 1.065 1.060 1.055 1.050	0.650 0.660 0.670 0.670 0.670 0.665 0.660 0.655 0.655 0.660	0.825 0.830 0.835 0.845 0.850 0.865 0.865 0.875 0.885 0.890	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055	1-WFT 1.030 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830 0.840 0.850 0.860	I I I I I I I I I I I I I I I I I I I
I I I I I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	0.540 0.545 0.550 0.550 0.550 0.550 0.555 0.555 0.560	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850	1.025 1.040 1.050 1.065 1.065 1.065 1.065 1.055 1.050 1.045	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.655 0.660 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885 0.890 0.900	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.055	1-WFT 1.030 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.825 0.825 0.825 0.830 0.840 0.850 0.860 0.870	I I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.560 0.565	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855	1.025 1.040 1.050 1.060 1.065 1.065 1.065 1.055 1.050 1.045 1.040	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.660 0.655 0.660	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885 0.890 0.900	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.055 1.055	1-WFT 1.030 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085 1.085	ADVC 0 .870 0 .870 0 .870 0 .870 0 .860 0 .845 0 .825 0 .825 0 .830 0 .840 0 .850 0 .860 0 .870 0 .885	
I I I I I I I I I I I I I I I I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	0.540 0.545 0.550 0.550 0.550 0.550 0.555 0.560 0.565 0.565	0.635 0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.635	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.865	1.025 1.040 1.050 1.060 1.065 1.065 1.065 1.055 1.050 1.045 1.040 1.035 1.030	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.660 0.655 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885 0.890 0.900 0.905 0.915	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.055 1.055 1.055 1.055 1.055	1-WFT 1.030 1.040 1.055 1.065 1.080 1.085 1.085 1.085 1.085 1.085 1.085	ADVC 0 .870 0 .870 0 .870 0 .870 0 .860 0 .845 0 .825 0 .825 0 .825 0 .830 0 .840 0 .850 0 .860 0 .870 0 .885 0 .895	
I I I I I I I I I I I I I I I I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.560 0.565 0.565 0.570	0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.635	0.810 0.815 0.820 0.825 0.830 0.835 0.845 0.845 0.855 0.865 0.870 0.880	1.025 1.040 1.050 1.060 1.065 1.065 1.060 1.055 1.050 1.045 1.040 1.035 1.030	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.660 0.655 0.655 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885 0.890 0.900 0.905 0.915 0.920 0.930	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.055 1.055 1.055 1.055 1.055	1-WFT 1.030 1.040 1.055 1.065 1.080 1.085 1.085 1.085 1.085 1.085 1.085	ADVC 0 0.870 0 0.870 0 0.870 0 0.860 0 0.845 0 0.825 0 0.825 0 0.825 0 0.830 0 0.840 0 0.850 0 0.860 0 0.870 0 0.885 0 0.895 0 0.900	
I I I I I I I I I I I I I I I I I I I	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.560 0.565 0.565 0.570 0.575 0.585	0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.635 0.640 0.640	0.810 0.815 0.820 0.825 0.830 0.835 0.845 0.855 0.855 0.865 0.870 0.880 0.890	1.025 1.040 1.050 1.060 1.065 1.065 1.065 1.055 1.050 1.045 1.040 1.035 1.030 1.025	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.655 0.655 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.860 0.865 0.875 0.885 0.900 0.905 0.915 0.920 0.930	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.055 1.055 1.055 1.055 1.055	1-WFT 1.030 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085 1.075 1.075 1.075	ADVC 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830 0.840 0.850 0.860 0.870 0.885 0.895 0.900 0.910	
	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.565 0.565 0.570 0.575 0.585 0.590	0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.640 0.645	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.855 0.855 0.865 0.870 0.880 0.890	1.025 1.040 1.050 1.065 1.065 1.065 1.055 1.050 1.045 1.035 1.030 1.025 1.020	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.655 0.655 0.655 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.865 0.875 0.885 0.990 0.905 0.915 0.920 0.930 0.935 0.940	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.055 1.055 1.060 1.055 1.055 1.055	1.040 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085 1.085 1.075 1.075 1.075 1.065	ADVC 0.870 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830 0.840 0.850 0.860 0.870 0.885 0.895 0.900 0.910 0.915	
	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.565 0.565 0.570 0.575 0.585 0.590 0.600	0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.640 0.645 0.645	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.855 0.865 0.870 0.880 0.890 0.900	1.025 1.040 1.050 1.065 1.065 1.065 1.055 1.050 1.045 1.040 1.035 1.030 1.025 1.020	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.655 0.655 0.655 0.655 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.865 0.875 0.885 0.900 0.905 0.915 0.920 0.935 0.935 0.940 0.950	1-WFTT 1.015 1.020 1.025 1.030 1.030 1.035 1.040 1.045 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055	1.040 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085 1.075 1.075 1.075 1.065 1.065	ADVC 0.870 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.830 0.840 0.850 0.860 0.870 0.885 0.895 0.900 0.910 0.915 0.920	
	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.565 0.565 0.575 0.575 0.585 0.590 0.600	0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.640 0.645 0.645	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.855 0.865 0.870 0.880 0.900 0.910 0.925	1.025 1.040 1.050 1.065 1.065 1.065 1.055 1.050 1.045 1.030 1.035 1.030 1.025 1.020 1.025 1.020	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.865 0.875 0.885 0.900 0.905 0.915 0.920 0.935 0.940 0.950 0.955	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.055 1.055 1.055 1.055 1.055 1.055 1.050 1.045 1.050	1.040 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085 1.075 1.075 1.075 1.065 1.065 1.065	ADVC 0.870 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825 0.825 0.825 0.830 0.840 0.850 0.860 0.870 0.860 0.870 0.910 0.915 0.920 0.920	
	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.565 0.565 0.575 0.575 0.585 0.590 0.600 0.610	0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.645 0.645 0.645	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.865 0.870 0.890 0.900 0.910 0.925 0.940	1.025 1.040 1.050 1.065 1.065 1.065 1.055 1.050 1.045 1.035 1.025 1.020 1.025 1.020	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655	0.825 0.830 0.835 0.845 0.850 0.865 0.875 0.885 0.900 0.905 0.915 0.920 0.930 0.935 0.940 0.950 0.955 0.960	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055	1.040 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085 1.075 1.075 1.075 1.065 1.065 1.045	ADVC 0.870 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825	
	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0	0.540 0.545 0.550 0.550 0.550 0.555 0.555 0.565 0.565 0.575 0.575 0.585 0.590 0.600 0.610 0.630	0.635 0.635 0.635 0.630 0.620 0.620 0.620 0.625 0.635 0.635 0.645 0.645 0.645 0.645	0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.855 0.865 0.870 0.890 0.900 0.910 0.925 0.940 0.955	1.025 1.040 1.050 1.065 1.065 1.065 1.055 1.050 1.045 1.035 1.020 1.025 1.020 1.025 1.030 1.025 1.030	0.650 0.660 0.670 0.670 0.665 0.665 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.660 0.660 0.660	0.825 0.830 0.835 0.845 0.850 0.865 0.875 0.885 0.900 0.905 0.905 0.915 0.920 0.935 0.940 0.955 0.960 0.965	1-WFTT 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.055 1.055 1.055 1.055 1.055 1.050 1.045 1.040 1.030 1.030 1.030	1.040 1.040 1.055 1.065 1.070 1.085 1.085 1.085 1.085 1.075 1.075 1.075 1.065 1.065 1.045 1.045 1.045	ADVC 0.870 0.870 0.870 0.870 0.870 0.860 0.845 0.830 0.825	

Table B20. Stern flap on Island Class 110 WPB: Summary of full scale projected performance (indluding flap scale effects)

1		Stern Flan	Effects.	RPM Ratio	9934	9915	9892	9883	6286	9871	22.0	0686	9892	0066	9904	9912	8166	9925	9930	9935	8666	9943	9947	9952	9957	0966	1966.0
	•																										
		Stern Fla	Effects,	PD Ratio	0.9692	0.9606	0.9498	0.9466	0.9461	0.9423	0.9452	0.9511	0.9515	0.9545	0.9568	0.9594	0.9622	0.9647	0.9669	0.9689	0.9703	0.9723	0.9742	0.9765	0.9787	0.9804	0.9812
§ 143.61 L.T		144LT,	Stern Flap,	RPM	285.6	315.9	346.6	380.3	418.0	458.6	496.3	528.4	557.2	584.0	8.809	631.8	654.0	674.8	694.7	714.3	733.2	751.4	0.692	785.8	804.9	825.4	845.8
OWERING: Min-Ops 143.61 L.T		144LT,	Stern Flap,	PD :	261	349	458	809	827	1123	1445	1746	2030	2312	2583	2845	3104	3353	3597	3847	4096	4345	4594	4837	5140	5481	5836
POWERIN		144LT,	No Flap,	RPM	287.5	318.6	350.4	384.8	423.1	464.6	502.5	534.3	563.3	589.9	614.7	637.4	659.4	6.629	9.669	719.0	737.8	755.7	773.1	789.6	808.4	828.7	849.1
		144LT,	No Flap,	PD	270	363	482	642	874	1191	1529	1836	2134	2423	5699	2965	3226	3476	3720	3971	4222	4469	4716	4954	5251	5590	5948
				۸S	10	Ξ	12	13	14	15	91	17	18	61	20	21	22	23	24	25	26	27	28	53	30	31	32
		Flap	cts,	Ratio		26	 @	 68	87	37	98	37	 ee	 e	=		2		2	- 2	7	<u> </u>	<u>.</u>	4	9		
		Stern Flap		RPM Ratio	0.994	0.0	0.660	0.9	0.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.99	0.99	0.9	0.9	0.99	0.99	0.95	0.95	0.99	0.99	0.99
		Stern Flap	Effects,	PD Ratio	0.971	0.963	0.954	0.949	0.944	0.942	0.942	0.943	0.950	0.955	0.959	0.961	0.963	0.963	0.963	0.963	0.963	0.965	0.968	0.973	0.980	0.985	0.987
1163,39 LT		163LT,	Stern Flap,	RPM	289.9	321.7	355.7	393.0	432.5	475.6	516.8	520.5	581.1	6.809	634.0	656.5	8.77.8	9.769	716.5	735.2	753.6	771.4	788.9	805.9	825.3	846.3	867.3
OWERING: Full Load 163,39 I		163LT,			280	380	217	208	996	1323	1732	2095	2453	2795	3107	3396	3998	3924	4167	4421	4678	4938	5207	5477	5815	6201	9099
POWERING		163LT,	ď,	RPM	291.7	324.3	359.4	397.5	438.1	482.1	524.0	557.9	587.9	615.2	636.9	662.2	683.4	703.3	722.3	741.1	759.5	777.2	794.2	810.4	828.8	848.9	9.698
Ī	Baseline	163LT,	No Flap,	PD C	288	395	542	746	1023	1405	1839	2221	2582	2925	3240	3533	3810	4075	4328	4593	4858	5120	5379	5628	5935	6294	6693
				SA	01	=	12	13	4	15	91	17	8	61	70	21	22	23	24	25	56	27	28	29	30	31	32

Table B21. Estimate of Island Class main propulsion engine fuel consumption rates. with/without stern flap installed (both include effect of "bow spray rails")

-	41= A1 -		. (400) .	
Based on	2000	lep), Full Load Annual Operat		ď
baseu on	2000	Annual Operat	ional nouts	
	Total	Fuel	Speed-Time	Annual Fuel
Speed	Power	Consumption	Profile	Consumption
(knots)	PD (hP)	(gai/hr)	(% time)	(gal/yr)
12	542	33.4	40	26747
13	746	45.1		
14	1023	60.3		
15	1405	79.9	25	39935
16	1839	100.9		
17	2221	118.8		
18	2582	135.5	10	27095
19	2925	151.5		
20	3240	166.6		
21	3533	181.2	5	18117
22	3810	195.6		
23	4075	210.2	5	21015
24	4328	224.9		
25	4593	241.2	5	24117
26	4858	258.6		
27	5120	277.1	10	55423
28	5379	296.8		
29	5628	316.9		
30	5935	344.0		
Total A	Annual Fu	el Consumption	(gallons/yr):	212449

STE	RN FLAP	Full Load (163	L tons)	
Based on	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Speed (knots)	Total Power PD (hP)	Fuel Consumption (gal/hr)	Speed-Time Profile (% time)	Annual Fuel Consumption (gal/yr)
12 13 14	517 708 966	32.0 43.0 57.2	40	25564
15 16	1323 1732	75.8 95.8	25	37881
17 18 19	2095 2453 2795	112.9 129.5 145.4	10	25898
20 21 22	3107 3396 3668	160.2 174.3 188.1	5	17430
23 24	3924 4167	201.8 215.4	5	20178
25 26	4421 4678	230.5 246.7	5	23049
27 28 29	4938 5207 5477	264.2 283.5 304.5	10	52833
30	5815	333.1		
Total		el Consumptior al Fuel Savings		

1000			
	Annual Operat	tional hours	
Total	Fuel	Speed-Time	Annual Fuel
Power	Consumption	Profile	Consumption
PD (hP)	(gal/hr)	(% time)	(gal/yr)
482	29.9	40	11952
642	39.2		
874	52.2		
1191	69.1	25	17265
1529	86.0		
1836	100.7		
2134	114.7	10	11472
2423	128.1		
2699	140.9		
2965	153.4	5	7670
3226	165.9	-	
3476	178.3	5	8916
3720	190.9		
3971	204.4	5	10218
4222	218.6		
4469	233.4		
4716	249.1		
4954	265.3		
5251	286.9	10	28693
nual Fue	el Consumption	(gallons/yr):	96186
	Power PD (hP) 482 642 874 1191 1529 1836 2134 2423 2699 2965 3226 3476 3720 3971 4222 4469 4716 4954 5251	Power Consumption PD (hP) (gal/hr) 482 29.9 642 39.2 874 52.2 1191 69.1 1529 86.0 1836 100.7 2134 114.7 2423 128.1 2699 140.9 2965 153.4 3226 165.9 3476 178.3 3720 190.9 3971 204.4 4222 218.6 4469 233.4 4716 249.1 4954 265.3 5251 286.9	Power Consumption Profile (% time) 482 29.9 40 642 39.2 874 52.2 1191 69.1 25 1529 86.0 1836 100.7 2134 114.7 10 2423 128.1 2699 140.9 2965 153.4 5 3226 165.9 3476 178.3 5 3720 190.9 3971 204.4 5 4222 218.6 4469 233.4 4716 249.1 4954 265.3

STE	RN FLAP,	Min-Ops (144	L tons)	
Based on	1000	Annual Operat	ional hours	
	Total	Fuel	Speed-Time	Annual Fuel
Speed	Power	Consumption	Profile	Consumption
(knots)	PD (hP)	(gal/hr)	(% time)	(gal/yr)
12	458	28.4	40	11374
13	608	37.3		
14	827	49.6		
15	1123	65.5	25	16375
16	1445	81.9		
17	1746	96.5		
18	2030	109.9	10	10990
19	2312	123.0		
20	2583	135.5		
21	2845	147.7	5	7387
22	3104	160.0		
23	3353	172.2	5	8609
24	3597	184.5		
25	3847	197.6	5	9881
26	4096	211.4		
27	4345	225.9		
28	4594	241.3		
29	4837	257.3		
30	5140	278.6	10	27858
Total		el Consumption		92475
	Annua	al Fuel Savings	(gallons/yr):	3711
				3.9%

Based on 3000 Annual Operating hours: 2/3 (2000 hrs) at Full Load, 1/3 (1000 hrs) at Min-Ops

Stern Flap Annual Fuel Savings (gallons/yr):

13328

Stern Flap Fuel Reduction (%):

4.3%

Annual Fuel Cost Savings (\$1/gallon): \$13,328

INITIAL DISTRIBUTION

Copy Number	Copies	Code	Name
1-12	12	USCG Boat Engineering	Ghosh, Barry
		Branch (ELC-024)	
13,14	2	DTIC	

CENTER DISTRIBUTION

Copy Number	Copies	Code	Name
15,16	2	5200	Cusanelli, Karafiath
17,18	2	5200	Correspondence File
19-30	12	5060	
31	1	5010	
32	1	Library-3442	