5. Übung

Institut für Technische Informatik und Mikroelektronik Technische Grundlagen der Informatik 1 Digitale Systeme

WS 2013/14

Abgabetermin: 6. Kalenderwoche (03.02.2014 - 07.02.2014) Maximal **36** Punkte können erreicht werden.

1. Aufgabe (24 Punkte)

Die Steuerung für ein Kaugummi-Automat ist zu entwerfen. In Abbildung 1 ist der strukturelle Aufbau des Automaten dargestellt.

Abbildung 1: Blockdiagramm zum Kaugummi-Automat

Ein Kaugummi kostet 50 Cent. Der Automat akzeptiert 10, 20 und 50 Cent-Stücke. Über das Münzen-Erkennung-Modul wird der zu entwerfenden Steuereinheit angezeigt welcher Münzentyp eingeworfen wurde. Die Einwurf-Codierung ist in Abbildung 2(a) angegeben.

m_1	m_0	Verhalten
0	0	kein Einwurf
0	1	10 Cent-Münze
1	0	20 Cent-Münze
1	1	50 Cent-Münze

k	Verhalten
0	keine Ausgabe
1	Ausgabe

W_2	w_1	w_0	Verhalten
0	_	_	kein Wechselgeld
1	0	0	$1 \times 10 \text{ Cent}$
1	0	1	$2 \times 10 \text{ Cent}$
1	1	0	$3 \times 10 \text{ Cent}$
1	1	1	4×10 Cent

(a) Münzen-Erkennung

(b) Kaugummi-Ausgabe

(c) Wechselgeld-Rückgabe

Abbildung 2: Codierung der Ein- und Ausgabesignale ("-" = don't care)

Die Ausgabe des Kaugummis wird über den Steuerausgang k realisiert. Das Ausgabe-Verhalten ist in Abbildung 2(b) spezifiziert.

Die Wechselgeld-Rückgabe beschränkt sich auf 10 Cent-Münzen. Durch eine entsprechende Codierung (siehe Abbildung 2(c)) kann der Rückgabebetrag festgelegt werden.

Über die Zustandssignale s_2 , s_1 und s_0 wird der aktuelle Einzahlungswert codiert und an eine Anzeige weitergeben.

Mit Hilfe eines Takt-Moduls werden alle Bestandteile des Kaugummi-Automaten synchronisiert.

- (a) Entwerfen Sie einen Mealy-Automaten, der die Steuerung realisiert. In Abbildung 3 ist die benötigte Zustandsmenge und eine Übergangscodierung dargestellt. So beschreibt den Startzustand. Die jeweiligen Indizes zeigen den aktuellen Einzahlungswert an (z. B. Southeautomate). Vervollständigen Sie die Abbildung zu einem Zustandsgraphen.
- (b) Geben Sie die resultierende Zustandsübergangstabelle an. Vervollständigen Sie hierfür Tabelle 1.
- (c) Zur Realisierung des Schaltwerks stehen eine PAL- und eine PLA-Struktur sowie drei Master-Slave-D-Flipflop zur Verfügung (siehe Abbildung 4). Die Zustandsübergangsfunktionen s_2' , s_1' und s_0' sollen mit Hilfe des PALs realisiert werden. Die Ausgangsfunktionen k, w_2 , w_1 und w_0 tragen Sie in das PLA ein.

 Bestimmen und minimieren Sie die logischen Funktionen unter Berücksichtigung der Hardware-Strukturen mit Hilfe von KV-Diagrammen. Geben Sie die ermittelten Funktionen jeweils an.
- (d) Vervollständigen Sie auf der Grundlage der Ergebnisse aus Teilaufgabe (c) das in Abbildung 4 gegebene Schaltwerk.

Übergangscodierung

Abbildung 3: Automat

Tabelle 1: Zustandsübergangstabelle inklusive Zustandscodierung ("-" = don't care)

	8	ıktu				Folge-								
	7	Zust	and		Eingabe zustand			Ausgabe						
$\delta(s_2s_1s_0m_1m_0)$		s ₂	s ₁	s ₀	m_1	m ₀		s_2'	s_1'	s ₀	k	W ₂	w_1	w ₀
0	S_0	0	0	0	0	0	S ₀	0	0	0	0	0	-	-
1	S_0	0	0	0	0	1								
2	S_0	0	0	0	1	0								
3	S_0	0	0	0	1	1								
4	S ₁₀	0	0	1	0	0								
5	S ₁₀	0	0	1	0	1								
6	S ₁₀	0	0	1	1	0								
7	S ₁₀	0	0	1	1	1								
8	S ₂₀	0	1	0	0	0								
9	S ₂₀	0	1	0	0	1								
10	S ₂₀	0	1	0	1	0								
11	S ₂₀	0	1	0	1	1								
12	S ₃₀	0	1	1	0	0								
13	S ₃₀	0	1	1	0	1								
14	S ₃₀	0	1	1	1	0								
15	S ₃₀	0	1	1	1	1								
16	S ₄₀	1	0	0	0	0								
17	S ₄₀	1	0	0	0	1								
18	S ₄₀	1	0	0	1	0								
19	S ₄₀	1	0	0	1	1								
20 - 23		1	0	1	-	-	S ₀	0	0	0	0	0	-	-
24 - 31		1	1	-	-	_	S ₀	0	0	0	0	0	_	-

Abbildung 4: Schaltwerk (Die unteren Ausgänge der MS-D-Flipflops entsprechen den jeweiligen negierten Ausgangswerten $(=\overline{\mathbb{Q}}).)$

2. Aufgabe (12 Punkte)

Gegeben ist das folgende Schaltwerk:

Abbildung 5: Schaltwerk

- (a) Um welchen Automaten-Typ handelt es sich? Begründen Sie Ihre Antwort.
- (b) Lesen Sie die Ausgangsfunktion y sowie die Übergangsfunktionen z_1' und z_0' aus dem Schaltwerk ab. Stellen Sie y, z_1' und z_0' als DNF dar.
- (c) Erstellen Sie eine Zustandsübergangstabelle zum Schaltwerk. Vervollständigen Sie hierfür Tabelle 2.

Taballa 9.	Zugton	dsübergangs	taballa	inlelugiero	Zugtone	lagodiorung
rabene 2 .	Zustan	usubergangs	tabene	IIIKIUSIVE	Zustand	iscomer ung
		0-				

	aktueller				Folge-			
	Zustand			Eingabe	zustand			Ausgabe
$\delta(z_1z_0x)$		z_1	z ₀	Х		z_1'	z_0'	у
0	Α	0	0	0				
1	Α	0	0	1				
2	В	0	1	0				
3	В	0	1	1				
4	С	1	0	0				
5	С	1	0	1				
6	D	1	1	0				
7	D	1	1	1				

- (d) Der Zustand A sei der Startzustand des Automaten. Zeichnen Sie auf der Grundlage Ihrer Zustandsübergangstabelle ein Zustandsdiagramm. Welche Besonderheit zeigt sich bei näherer Betrachtung des Zustands D?
- (e) Das Schaltwerk dient der Überwachung einer seriellen Daten-Übertragung. Wie lautet die zu erkennenden Eingabe-Sequenzen (y=1)?