

Phase 1: Foundational & Core Concepts

Program Kick-off

Months 1 & 2: Online Learning

A flexible, module-based approach to start your journey.

Core Objective

Master Fundamental Principles

Build the essential groundwork for understanding how fluids behave at rest and in motion.

Hands-on Problem-Solving

Practical application is integrated throughout to reinforce theoretical concepts.

Comprehensive Coverage

Month 1: Fluid Properties, Statics & Basic Dynamics

Week 1:

Introduction & Fluid Properties

Density

Defining mass per unit volume.

Viscosity

Understanding fluid resistance to

flow.

Surface Tension

Cohesive forces at fluid interfaces.

Week 2: Fluid Statics & Pressure Measurement

Hydrostatics

Pressure variation in static fluids.

Principles of U-

Manometry

tube

manometers.

Buoyancy

Principle for floating bodies.

Archimedes'

Week 3: Fluid Kinematics & Conservation of Mass

Visualization

motion via streamlines.

Observing

Applying

Continuity conservation of mass to flow.

Week 4: Conservation of Energy & Momentum

Bernoulli

Pressure, velocity, and elevation.

Applications

Flow through pipes, nozzles,

and orifices.

Momentum

Intro to forces exerted by flowing fluids.

Week 1 Week 2 Week 3 Week 4

Month 2: Viscous Flow, Dimensional Analysis & Machines

Week 6: Head & Minor Losses Calculating Major using the Darcy-Weisbach equation for friction. Losses Quantifying Minor from fittings, valves, and bends in pipe systems. Losses **Energy Equation** Friction Factor System Design

Phase 2: Industry Immersion & Integrated Project

Month 3: Offline Capstone Mini Project & Career Readiness

Goal: Apply principles to a real-world engineering challenge and develop practical problem-solving skills.

Option A: Hydraulic Turbine Model

- **Design & Build:** Engage in the design and construction of a small-scale hydraulic turbine, applying principles of fluid dynamics and machine design.
- **Performance Evaluation:** Focus on measuring and optimizing turbine efficiency, power generation, and understanding operational phenomena.

Energy Conversion

Machine Design

Renewable Energy

III Option B: Pipe Flow Simulation

- Computational Modeling: Utilize CFD software to simulate complex pipe networks, analyzing pressure drops, flow distribution, and transient phenomena.
- **Problem-Solving Focus:** Tackle practical challenges related to water distribution, industrial piping, or fluid transportation systems.

CFD

Network Analysis

Numerical Methods

Week 9: Project Kick-off & Design Phase

On-Campus Transition & Collaborative Foundations

Arrival and Orientation

Transition to the offline campus for an immersive, hands-on environment. A full orientation covers facilities, lab access, safety, and introductions to key personnel.

Team Formation & Mentorship

Collaborative project teams are formed to leverage diverse skillsets. Dedicated faculty mentors are allocated to each team for expert guidance and technical oversight.

Project Design & Technical Readiness

Detailed Design/Analysis Plan

Teams refine project scope, defining objectives, methodologies (analytical, CFD, experimental), and deliverables for their capstone.

Tool Familiarization & Setup

Practical sessions begin for specialized simulation software. Initial materials sourcing and setup for physical models are also initiated.

Design Methodology

Simulation Software

Materials Sourcing

Project Planning

Week 10: Implementation & Data Collection

Option A: Hydraulic Turbine Model Build

Construction: Physical assembly of the miniature turbine model, focusing on precision alignment and material integrity for optimal fluid interaction.

Water Supply Setup: Establishing a controlled water supply with pumps and calibrated piping to deliver specific flow rates for testing.

Initial Testing: Preliminary checks for leaks, rotational freedom, and qualitative flow observation to identify issues before data collection.

Option B: Pipe Flow Simulation & Analysis

Model Creation: Developing detailed CFD models of pipe networks, including accurate geometries and appropriate mesh generation.

Boundary Conditions: Applying realistic conditions (e.g., inlet velocities, outlet pressures, wall roughness) to ensure simulation accuracy.

Simulation Runs: Executing iterative simulations to analyze flow characteristics like velocity profiles, pressure drops, and turbulence patterns.

Week 11: Testing, Analysis & Optimization

4

Integrating Theory & Practice: The Path to Optimized Solutions

This pivotal week focuses on transforming raw data into actionable insights, driving the refinement and optimization of project parameters. It's where theoretical principles meet real-world performance. Students will engage in rigorous testing, detailed data analysis, and iterative optimization loops—critical skills for any fluid mechanics engineer.

Option A: Turbine Performance Analysis

Efficiency Calculation: Detailed calculation of hydraulic, mechanical, and overall efficiencies to map the turbine's characteristic performance curves.

Specific Speed Analysis: Determination of the turbine's specific speed to classify its type and predict optimal operating conditions and potential cavitation.

Optimization Experiments: Conducting targeted adjustments (e.g., nozzle openings, load) to observe impacts on performance and guide optimization.

Energy Conversion

Hydraulic Efficiency

Design Optimization

From Data to Decision: Interpretation & Refinement

Synthesizing findings from experiments or simulations to identify trends, detect anomalies, and draw robust conclusions about project performance. This involves

Based on detailed interpretation, we formulate data-driven recommendations to refine design parameters or operational strategies. The goal is to enhance

Week 12: Project Showcase & Career Launchpad

Crowning Achievement: Final Project Showcase

Dynamic Technical Presentations: Students deliver comprehensive presentations on project objectives, methodologies, and results to faculty and industry experts, highlighting problem-solving skills.

Live Practical Demonstrations: Live demos of Hydraulic Turbine models or interactive walkthroughs of Pipe Flow simulations showcase practical application and analytical capabilities.

Technical Communication

Problem Solving

Practical Application

Innovation Display

Professional Technical Reports: Submission of detailed reports adhering to industry standards, covering literature review, design, analysis, and conclusions with effective data visualization.

Design & Analysis Details: Documentation includes all design calculations, simulation parameters, experimental procedures, and analytical insights, ensuring reproducibility and a complete technical record.

Technical Writing

Data Analysis

Professional Standards

Knowledge Transfer

Propelling Your Future: The Career Launchpad

Building Your Professional Profile

Hands-on workshops to refine resumes, tailor cover letters, and build compelling LinkedIn profiles for networking with industry leaders.

A Honing Your Interview Skills

Mock technical and behavioral interviews with personalized feedback from professionals to build confidence and readiness for real-world scenarios.

Next Steps & Certification

Forge Connections: Industry Networking

Direct Engagement: Participate in an exclusive networking event to connect with leading professionals from the Fluid Dynamics, Hydraulic Engineering, and Mechanical Design sectors.

Career Insights: Gain first-hand insights into current industry trends, emerging technologies, and diverse career pathways. Explore potential job openings with companies actively seeking talent.

Industry Connections

Mentorship

Career Opportunities

Your Achievement: Graduation & Certification

Formal Recognition: Join a celebratory graduation ceremony marking your successful completion of the intensive Fluid Mechanics Track Program and recognizing your dedication.

Certified Expertise: Receive your official certification, a testament to your specialized skills. This credential significantly enhances your professional profile and distinguishes you in the job market.

Academic Excellence

Professional Credential

Skills Validation

Propelling Your Future: Launch Your Career