

## VIENNA UNIVERSITY OF TECHNOLOGY

## FACULTY OF PHYSICS

LABORATORY III

# Laboratory Report

Electron Spin Resonance

Authors: Raul Wagner Martin Kronberger Group 301 **Supervisor:** Victor Lindenbauer

conducted on: 04 June 2025

## 1 Resonance absorbtion of a passive HF-Osscilator

#### 1.1 Fundamentals

To detect electron spin resonance (ESR) in DPPH, the DPPH sample is placed in an RF coil that is part of a resonant circuit with high quality factor. This circuit is excited by a variable-frequency RF oscillator operating between 15 and 130 MHz.

When the resonance condition for ESR is met at a frequency  $\nu_0$ , the DPPH sample absorbs energy, which loads the resonant circuit. As a result, the AC resistance increases, and the voltage across the RF coil decreases.

To detect this change, a passive resonant circuit is used for comparison. Its coil is placed coaxially opposite the empty RF coil. The resonance frequency of the passive circuit is given by:

$$\nu_0 = \frac{1}{2\pi \cdot L_2 C_2} \tag{1}$$

Where  $L_2$  and  $C_2$  are the inductance and capacitance of the oscillation circuit. The resonance frequency of the circuit can be adjusted by changing the capacitance  $C_2$ .

When the active circuit is driven at its resonance frequency  $\nu_0$ , it is dampened, and the voltage  $U_1$  across the RF coil decreases. The ESR signal is detected by measuring the rectified voltage  $U_1$ , which corresponds to the current  $I_1$  through a measurement resistor  $R_1 = 56 \text{ k}\Omega$ :

$$U_1 = 56k\Omega \cdot I_1 \tag{2}$$

## 1.2 Setup



Figure 1: Experimental setup

- Connect the ESR base unit to the ESR operating unit via a 6-pin cable and set the rotary potentiometer on the top left to maximum sensitivity.
- Plug in the 13-30 MHz plug-in coil (large).
- Due to a bad connection of the measurement cable of I<sub>1</sub> the current and voltage of the active circuit could not be measured.
- Position the coil of the passive resonant circuit coaxially opposite of the active coil and connect via a BNC/4 mm measurement cable to channel I of the dual-channel oscilloscope.

#### 1.3 Procedure

- Set the variable capacitor of the passive resonant circuit to position Skt. = 3/6.
- Adjust the minimum frequency on the ESR base unit.
- At the operating frequency, measure and record:
  - the frequency,
  - the voltage  $U_2$  of the "passive" coil on the oscilloscope,
- Increase the frequency in steps and repeat the measurement.
- Perform additional measurement series with Skt. = 2/6 and 1/6.
- A measurement without the passive circuit could also not be done due to the bad connection of the active circuit cable.

#### 1.4 Measurement values

| u / MHz | $U_2$ / V | u / MHz | $U_2$ / V |
|---------|-----------|---------|-----------|
| 14.5    | 1.8       | 16.5    | 2         |
| 15      | 2.2       | 17      | 1.8       |
| 15.5    | 2.35      | 17.5    | 1.25      |
| 16      | 2.2       | 18      | 1         |
| 16.5    | 2         | 18.5    | 0.8       |
| 17      | 1.8       | 19      | 0.7       |

| $\nu$ / MHz | $U_2$ / V | u / MHz | $U_2$ / V |
|-------------|-----------|---------|-----------|
| 14.5        | 1.8       | 16.5    | 2         |
| 15          | 2.2       | 17      | 1.8       |
| 15.5        | 2.35      | 17.5    | 1.25      |
| 16          | 2.2       | 18      | 1         |
| 16.5        | 2         | 18.5    | 0.8       |
| 17          | 1.8       | 19      | 0.7       |

Table 1: Voltage  $U_2$  at Skt. = 3/6

Table 2: Voltage  $U_2$  at Skt. = 2/6

| $\nu$ / MHz | $U_2$ / V | $\nu$ / MHz | $U_2$ / V |
|-------------|-----------|-------------|-----------|
| 14.5        | 1.8       | 16.5        | 2         |
| 15          | 2.2       | 17          | 1.8       |
| 15.5        | 2.35      | 17.5        | 1.25      |
| 16          | 2.2       | 18          | 1         |
| 16.5        | 2         | 18.5        | 0.8       |
| 17          | 1.8       | 19          | 0.7       |

Table 3: Voltage  $U_2$  at Skt. = 1/6



Figure 2: The resonance frequencies  $\mu_n$  can be determined by measuring voltage peaks in the passive coil voltage  $U_2(f)$ . The measurement apparatus for the current through the active coil was broken. Thus, the active voltage  $U_1(f)$  couldn't be determined. It would usually correspond to a damped oscillation thus creating corresponding local minima in  $U_1$  at the same resonace frequencies

## 2 Electronspinresonance on DPPH

#### 2.1 Fundamentals

Electron spin resonance (ESR) detects transitions between spin states of unpaired electrons in a magnetic field  $B_0$ . The energy levels split due to the Zeeman effect, and when electromagnetic radiation of the right frequency  $\nu\nu$  is applied, resonant absorption occurs.

This resonance condition is:

$$h\nu = g\mu_B B_0 \tag{3}$$

Where h is the planks constant,  $\nu$  is the radiation frequency, g is the lande g-factor,  $\mu_B$  the Bohr magneton and  $B_0$  the static magnetic field.

From this, the magnetic field  $B_0$  can be calculated using:

$$B_0 = h\nu g\mu_B \tag{4}$$

For a free electron: g = 2.0023

Spin quantum number:  $J = s = \frac{1}{2}$ 

ESR transition:  $\Delta m = J = \pm 1$ 

The ESR line width  $\Delta B_0$  relates to level lifetime T via the uncertainty relation:

$$\Delta B_0 = 12g\mu_B T \tag{5}$$

#### 2.1.1 Experiment:

DPPH is used as a stable free radical sample with  $g \approx 2.003$ . The magnetic field is generated by Helmholtz coils and modulated at 50 Hz. A high-Q RF resonant circuit detects the absorption via a drop in voltage when resonance occurs.

### 2.2 Setup



Figure 3: Experimental setup



Figure 4: Experimental setup

The experimental setup is shown in Fig. 4 and 5.

- Place the Helmholtz coils parallel to each other at a center distance of 6.8 cm (equal to the mean radius r).
- Connect both Helmholtz coils in series with the ammeter to the ESR operating unit.
- Connect the ESR base unit to the ESR operating unit via a 6-pin cable.
- Connect output Y of the ESR operating unit via a BNC cable to channel I of the dual-channel oscilloscope, and output X to channel II.

#### 2.3 Procedure

#### Determination of the Resonance Magnetic Field $B_0$

• Insert the 30-75 MHz plug-in coil (medium) and place the DPPH sample in the coil.

#### Laboratory Work III - Electron Spin Resonance

- Switch on the ESR base unit and position it so that the plug-in coil with DPPH sample is in the center of the Helmholtz-coil pair (see Fig. 4).
- Set the resonance frequency  $\nu = 30$  MHz.
- Set the modulation amplitude  $U_{\rm mod}$  to the second scale division.
- Set the phase shift to 0°.
- Operate the oscilloscope in dual-channel mode:
  - Dual on
  - ▶ Time base  $2\frac{ms}{cm}$
  - Amplitude I and II  $0.5\frac{V}{mm}$  AC
- Slowly increase the DC voltage  $U_0$  to the Helmholtz coils until the resonance signals are equidistant (see Fig. 6).
- Switch the oscilloscope to XY mode and adjust the phase shift so that the two resonance peaks coincide.
- Vary  $U_0$  until the resonance signal is symmetric, keeping the modulation voltage as low as possible.
- Measure the DC current  $2I_0$  through the Helmholtz-coil pair and record it together with the resonance frequency  $\nu$ .
- Increase  $\nu$  by 5 MHz and adjust  $U_0$  to reestablish resonance.
- Again measure and record the current  $2I_0$ .
- Continue raising  $\nu$  in 5 MHz steps (switch to the 75-130 MHz coil (small) at 75 MHz) and repeat the measurements.

#### Determination of the Half-Width $\delta B_0$

- Operate the oscilloscope in XY mode:
  - Amplitude II  $0.05\frac{V}{mm}$  AC
- Reestablish the resonance condition for  $\nu = 50$  MHz (medium plug-in coil).
- Vary the modulation voltage  $U_{\rm mod}$  until the resonance trace spans the full screen width (10 cm) in the X-direction.
- Switch the ammeter to AC mode and measure the effective current  $2I_{\rm mod}$  corresponding to  $U_{\rm mod}$ .
- Increase the X-deflection, read off the width  $\Delta U$  of the resonance peak at half its height, and record it.

# 2.4 Measurement values

| ν / MHz | 2 I <sub>0</sub> / A | Plug-in coil           |
|---------|----------------------|------------------------|
| 30      | 0.53                 | middle                 |
| 35      | 0.63                 | middle                 |
| 40      | 0.71                 | middle                 |
| 45      | 0.79                 | middle                 |
| 50      | 0.89                 | middle                 |
| 55      | 0.97                 | middle                 |
| 60      | 1.06                 | middle                 |
| 65      | 1.15                 | middle                 |
| 70      | 1.23                 | middle                 |
| 75      | 1.33                 | middle                 |
| 80      | 1.41                 | middle                 |
| 80      | 1.53                 | $\operatorname{small}$ |
| 90      | 1.65                 | $\operatorname{small}$ |
| 95      | 1.67                 | small                  |
| 100     | 1.7                  | $\operatorname{small}$ |
| 105     | 1.74                 | small                  |
| 110     | 1.79                 | small                  |
| 115     | 2.05                 | small                  |
| 120     | 2.16                 | small                  |

Table 4: Current  $2I_0$  as a function of frequency  $\nu$  of the magnetic field

| ν / MHz | $\mathrm{B}_{\mathrm{0}}\ /\ \mathrm{mT}$ |
|---------|-------------------------------------------|
| 30      | 1.12                                      |
| 35      | 1.33                                      |
| 40      | 1.5                                       |
| 45      | 1.67                                      |
| 50      | 1.88                                      |
| 55      | 2.05                                      |
| 60      | 2.24                                      |
| 65      | 2.43                                      |
| 70      | 2.6                                       |
| 75      | 2.81                                      |
| 80      | 2.98                                      |
| 80      | 3.24                                      |
| 90      | 3.49                                      |
| 95      | 3.53                                      |
| 100     | 3.6                                       |
| 105     | 3.68                                      |
| 110     | 3.79                                      |
| 115     | 4.34                                      |
| 120     | 4.57                                      |

Table 5: Magnetic field  $B_0$  as a function of frequency  $\nu$  of the magnetic field



Figure 5: Resonance frequency as a function of the magnetic field for  $\mathsf{DPPH}$ 

Measured Half-Width  $\delta U$ :

 $\delta U = 0.95 \mathrm{V}$ 

 $\quad \text{With} \quad$ 

$$\delta I = \frac{\delta U}{U_{\rm mod}} \cdot I_{\rm mod} \tag{6}$$

calculated Half-Width  $\delta I = 0.078 \mathrm{A}$ 

With

$$\delta B_0 = 4.23 \text{ mT} \cdot \delta I \tag{7}$$

calculated  $\delta B_0 = 0.33~\mathrm{mT}$ 

Slope: 27.19  $\frac{\text{MHz}}{\text{mT}}$ 

In experiment determined g-factor:

g = 1.9426

g-factor from literature:

g = 2,0036

Despite a deviation from linearity in the higher frequency range, a linear relationship between resonance frequency and magnetic field strength is observed. Furthermore, the measured gfactor is in sufficient agreement with the literature value.

#### 2.5 Error Estimation

Since the voltage values were read from a oscilloscope, the error of these values is  $\pm 0.1$  V. Since the Current was measured by an amperemeter, the error for the current is  $\pm 0.01$  A.

Fehler!