Notions of asymptotic theory *

Jean-Marie Dufour †

First version: December 1995 Revised: January 2002

This version: February 20, 2008 Compiled: February 20, 2008, 2:19pm

^{*} This work was supported by the William Dow Chair in Political Economy (McGill University), the Canada Research Chair Program (Chair in Econometrics, Université de Montréal), the Bank of Canada (Research Fellowship), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Institut de finance mathématique de Montréal (IFM2), the Canadian Network of Centres of Excellence [program on *Mathematics of Information Technology and Complex Systems* (MI-TACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, the Fonds de recherche sur la société et la culture (Québec), and the Fonds de recherche sur la nature et les technologies (Québec), and a Killam Fellowship (Canada Council for the Arts).

[†] William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 519, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514 398 8879; FAX: (1) 514 398 4938; e-mail: jean-marie.dufour@mcgill.ca . Web page: http://www.jeanmariedufour.com

Contents

Li	st of I	Definitions, Propositions and Theorems	ii
1.	Sto	chastic convergence	1
2.	Rel	ations between convergence concepts	2
3.	Coi	nvergence of expectations and functions of random variables	5
4.	4.1. 4.2. 4.3.	Definitions	8 9 11 12
5.	Lav	ws of large numbers	13
6.	. Central limit theorems		15
7.	7. Extension to random vectors		16
8.	. Proofs and additional references		18

List of Definitions, Propositions and Theorems

1.2	Proposition: Unicity of probability limit	1
2.2	Proposition : Relations between convergence concepts	2
2.4	Proposition : Moment condition for convergence in mean of order r	2
2.5	Proposition: Sufficient condition for complete convergence	2
2.9	Definition: Sequence of uniformly continuous integrals	3
2.10	Definition: Uniformly integrable sequence	3
2.17	Proposition: Cauchy criterion	4
3.2	Theorem : Helly-Bray	5
3.3	Definition: Uniformly integrable function	6
4.4.2	Theorem : Three series theorem (Kolmogorov)	13
5.2	Theorem : Khintchine weak law of large numbers	14
5.3	Theorem : First Kolmogorov's strong law of large numbers	14
5.4	Theorem : Second Kolmogorov's strong law of large numbers	14
5.5	Theorem : Law of large numbers for correlated r.v.'s	14
6.1	Theorem : Lindeberg-Lévy central limit theorem	15
6.2	Theorem : Liapunov central limit theorem	15
6.3	Theorem : Lindeberg-Feller central limit theorem	15
7.1	Definition: Stochastic convergence for vectors	16
7.2	Theorem : Univariate characterization of convergence in law for a sequence	
	of vectors	17

1. Stochastic convergence

- **1.1 Definition** Let $\{X_n = X_n(\omega) : n = 1, 2, ...\}$ a sequence of real r.v.'s defined on a probability space (Ω, A, P) and $X = X(\omega)$ another real r.v. defined on the same space.
- (a) X_n converges in probability to X as $n \to \infty$ (denoted $X_n \stackrel{p}{\to} X$) iff

$$\lim_{n \to \infty} P[|X_n - X| > \varepsilon] = 0, \ \forall \varepsilon > 0.$$
 (1.1)

(b) X_n converges almost surely to X as $n \to \infty$ (denoted $X_n \stackrel{a.s.}{\to} X$) iff

$$P\left[\lim_{n\to\infty} X_n = X\right] = 1. \tag{1.2}$$

(c) X_n converges completely to X as $n \to \infty$ (denoted $X_n \stackrel{c}{\to} X$) iff

$$\sum_{n=1}^{\infty} P[|X_n - X| > \varepsilon] < \infty, \ \forall \varepsilon > 0.$$
 (1.3)

(d) Suppose $E|X_n|^r<\infty$, $\forall n$, where r>0 . X_n converges in mean of order r to X (denoted $X_n\stackrel{r}{\to} X$) iff

$$\lim_{n \to \infty} E[|X_n - X|^r] = 0.$$
 (1.4)

In this case, we also say that X_n converges to X in L_r . If r=2, we say X_n converges to X in quadratic mean (q.m.).

(e) Let $F_n(x)$ and F(x) be the distribution functions of X_n and X respectively. X_n converges in law (or in distribution) to X as $n \to \infty$ (denoted $X_n \xrightarrow{L} X$) iff

$$\lim_{n \to \infty} F_n(x) = F(x) \text{ at all continuity points of } F(x). \tag{1.5}$$

1.2 Proposition UNICITY OF PROBABILITY LIMIT. Let $\{X_n : n = 1, 2, ...\}$ be a sequence of real r.v.'s defined on a probability space (Ω, \mathcal{A}, P) , and let X and Y be two real r.v.'s defined on the same probability space. Then

$$X_n \xrightarrow{p} X \text{ and } X_n \xrightarrow{p} Y \Rightarrow P[X \neq Y] = 0.$$
 (1.6)

2. Relations between convergence concepts

2.1 Assumption Let $\{X_n\} \equiv \{X_n : n = 1, 2, ...\}$ be a sequence of real r.v.'s defined on a probability space (Ω, \mathcal{A}, P) and X another real r.v. defined on the same space.

Unless stated otherwise, this assumption will hold for all the definitions, propositions and theorems in this section.

2.2 Proposition Relations between convergence concepts.

$$\begin{array}{ccc} (\mathbf{a}) & X_n \overset{a.s.}{\to} X & \Leftrightarrow \sup_{k \geq n} |X_k - X| \overset{p}{\to} 0 \text{ as } n \to \infty \\ \\ & \Leftrightarrow \lim_{n \to \infty} P \left[\sup_{k \geq n} \lvert X_k - X \rvert > \varepsilon \right] = 0 \,, \; \forall \varepsilon > 0 \,. \end{array}$$

(b)
$$X_n \xrightarrow{c} X \Rightarrow X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{L} X$$
.

(c)
$$X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{s} X$$
 for all s such that $0 < s \le r \Rightarrow X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{L} X$.

- 2.3 Remark In general, the implications in 2.2 (b) and (c) cannot be reversed.
- **2.4 Proposition** Moment condition for convergence in Mean of order r.

$$\sum_{n=1}^{\infty} E[|X_n - X|^r] < \infty \text{ for some } r > 0$$

$$\Rightarrow X_n \xrightarrow{c} X \text{ and } X_n \xrightarrow{r} X.$$

2.5 Proposition SUFFICIENT CONDITION FOR COMPLETE CONVERGENCE. Let $g: \mathbb{R} \to \mathbb{R}$ be a nondecreasing monotonic function for $x \geq 0$, such that $g(x) \geq 0$ and g(x) = g(-x). Then

$$\sum_{n=1}^{\infty} E\left[g(X_n - X)\right] < \infty \Rightarrow X_n \stackrel{c}{\to} X.$$

2.6 Proposition $X_n \stackrel{p}{\to} X \Rightarrow$ there is a subsequence $\{X_{n_k} : k = 1, 2, ...\} \subseteq \{X_n\}$ such that $X_{n_k} \stackrel{a.s.}{\underset{k \to \infty}{\mapsto}} X$ and

$$\sum_{k=1}^{\infty} P\left[|X_{n_k} - X| \ge \frac{1}{2^k}\right] < \infty.$$

- **2.7 Proposition** $X_n \stackrel{p}{\to} X \Leftrightarrow \text{each subsequence } \{X_{n_k}\} \text{ of } \{X_n\} \text{ contains a subsequence } \{X_{m_k}\} \subseteq \{X_{n_k}\} \text{ such that } X_{m_k} \stackrel{a.s.}{\to} X.$
- **2.8 Proposition** Let $\{X_n\}$ a sequence of non-negative r.v.'s such that $X_n \leq X_{n+1}$, $\forall n$, or $X_n \geq X_{n+1}$, $\forall n$. Then

$$X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{a.s.}{\to} X$$
.

2.9 Definition SEQUENCE OF UNIFORMLY CONTINUOUS INTEGRALS. The integrals of the r.v.'s $\{X_n : n = 1, 2, ...\}$ are uniformly continuous iff

$$\sup_{n\geq 1} \int_A X_n dP \to 0 \text{ as } P(A) \to 0.$$

2.10 Definition Uniformly integrable sequence. Let $B_n = \{\omega \in \Omega : |X_n| \ge a\}$. The sequence of r.v.'s $\{X_n : n = 1, 2, ...\}$ is uniformly integrable iff

$$\sup_{n\geq 1} \int_{B_n} X_n dP \to 0 \text{ as } a \to \infty.$$

- **2.11 Proposition** $X_n \xrightarrow{r} X \Leftrightarrow X_n \xrightarrow{p} X$ and at least one of the three following conditions holds:
- (a) $E(|X_n|^r) \to E[|X|^r]$;
- (b) the sequence of r.v.'s $\{|X_n|^r: n=1,2,\ldots\}$ is uniformly integrable;
- (c) the integrals of the r.v.'s $\{|X_n|^r : n = 1, 2, ...\}$ or those of $\{|X_n X|^r : n = 1, 2, ...\}$ are uniformly continuous.

2.12 Proposition If $E|X_n|^r \leq c < \infty \;,\; \forall n \,, \, \text{for} \, r > 0 \;, \, \text{then}$

$$X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{r'} X \text{ for all } 0 < r' < r.$$

2.13 Proposition If $|X_n| \leq Y$, $\forall n$, and $E(|Y|^r) < \infty$, then

$$X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{r}{\to} X \text{ and } E(|X|^r) < \infty$$
.

2.14 Proposition If $|X_n| \le c < \infty$, $\forall n$, then

$$X_n \overset{p}{\to} X \Rightarrow X_n \overset{r}{\to} X \text{ and } E\left(|X|^r\right) < \infty \text{ for all } r > 0$$
 .

2.15 Proposition If the r.v.'s X_n are independent, then

$$X_n \stackrel{a.s.}{\to} X \Rightarrow X_n \stackrel{c}{\to} X$$
.

2.16 Proposition If P[X = d] = 1, then

$$X_n \stackrel{p}{\to} d \Leftrightarrow X_n \stackrel{L}{\to} d$$
.

- **2.17 Proposition** CAUCHY CRITERION.
- (a) There is a r.v. X such that $X_n \stackrel{p}{\to} X$

$$\Leftrightarrow \lim_{m,n\to\infty} P[|X_m - X_n| > \varepsilon] = 0, \ \forall \varepsilon > 0$$

$$\Leftrightarrow \lim_{n\to\infty} \left\{ \sup_{k>1} P[|X_{n+k} - X_n| > \varepsilon] \right\}, \ \forall \varepsilon > 0.$$

(b) There is a r.v. X such that $X_n \stackrel{a.s.}{\to} X$

$$\Leftrightarrow \lim_{n \to \infty} P \left[\sup_{k, \ell \ge n} |X_k - X_\ell| > \varepsilon \right] = 0 , \ \forall \varepsilon > 0$$

$$\Leftrightarrow \lim_{n \to \infty} P \left[\sup_{k \ge 1} |X_{n+k} - X_n| > \varepsilon \right] = 0 , \ \forall \varepsilon > 0$$

$$\Leftrightarrow \sup_{k \ge 1} |X_{n+k} - X_n| \underset{n \to \infty}{\overset{p}{\to}} 0$$

$$\Leftrightarrow \sup_{k > 1} |X_{n+k} - X_n| \underset{n \to \infty}{\overset{a.s.}{\to}} 0 .$$

(c) There is a r.v. $X \in L_r$ such that $X_n \xrightarrow{r} X$

$$\Leftrightarrow \lim_{m,n\to\infty} E[|X_m - X_n|^r] = 0$$

$$\Leftrightarrow \sup_{k\geq 1} E|X_{n+k} - X_n|^r \underset{n\to\infty}{\to} 0.$$

2.18 Proposition Let $\{\varepsilon_n\}_{n=1}^{\infty}$ be a sequence of positive constants such that $\lim_{n\to\infty}\varepsilon_n=0$. Then

$$\sum_{n=1}^{\infty} P[|X_n - X| > \varepsilon_n] < \infty \Leftrightarrow X_n \stackrel{a.s.}{\to} X.$$

2.19 Proposition $X_n \stackrel{a.s.}{\to} X \Leftrightarrow \exists \text{ a sequence } \varepsilon_n \text{ such that } \lim_{n \to \infty} \varepsilon_n = 0 \text{ and }$

$$\lim_{n\to\infty} P\left[|X_k-X|\geq \varepsilon_k, \text{ for at least one } k\geq n\right]=0.$$

3. Convergence of expectations and functions of random variables

3.1 Assumption Let $\{X_n : n = 1, 2, ...\}$ be a sequence of real r.v.'s, X a real r.v. and $g : \mathbb{R} \to \mathbb{R}$ a function such that g(X) and $g(X_n)$, n = 1, 2, ..., are real r.v.'s.

Unless stated otherwise, this assumption will hold for all the definitions, propositions and theorems in this section.

3.2 Theorem HELLY-BRAY. $X_n \stackrel{L}{\to} X \Rightarrow E[g(X_n)] \to E[g(X)]$ for any bounded continuous function $g: \mathbb{R} \to \mathbb{R}$.

3.3 Definition UNIFORMLY INTEGRABLE FUNCTION. |g| is uniformly integrable with respect to the distributions F_n iff

 $\forall \varepsilon>0 \ , \ \exists \ a(\varepsilon) \ \text{and} \ b(\varepsilon) \ \text{which do not depend on} \ n \ \text{such that}$ $a\leq a(\varepsilon) \ \text{and} \ b\geq b(\varepsilon) \ \text{implies}$

$$\int |g(x)|dF_n(x) - \int_a^b |g(x)|dF_n(x) < \varepsilon, \ \forall n.$$

3.4 Proposition If g(x) is a continuous function and $X_n \stackrel{L}{\to} X$, then

- (a) $\liminf_{n \to \infty} E[|g(X_n)|] \ge E[|g(X)|];$
- (b) |g(x)| is uniformly integrable with respect to $F_n \Rightarrow E[g(X_n)] \to E[g(X)]$;
- (c) $E[|g(X_n)|] \to E[|g(X)|] < \infty \Leftrightarrow |g(x)|$ is uniformly integrable with respect to F_n .
- **3.5 Proposition** If $E[|X_n|^{r_0}] \le c < \infty$, $\forall n$, for $r_0 > 0$, then
- (a) $X_n \stackrel{L}{\to} X \Rightarrow E[|X_n|^r] \to E[|X|^r] < \infty$ for all $0 < r < r_0$, and
- (b) $E\left[X_n^k\right] \to E\left[X^k\right] \neq \pm \infty$ for any integer $0 < k < r_0, k \in \mathbb{N}$.

3.6 Proposition If $E(X_n^k)$ exists and is finite for all k (k = 1, 2, ...) and n, then

- (a) $X_n \stackrel{L}{\to} X$ and $E\left(X_n^k\right) \to \mu_k \neq \pm \infty \Rightarrow E(X^k) = \mu_k$;
- (b) $E\left(X_n^k\right) \to \mu_k \neq \pm \infty$, where the sequence $\{\mu_k : k=1,\ 2,\ \ldots\}$ defines a unique distribution function $F(x) \Rightarrow X_n \overset{L}{\to} X$, where X is a r.v. whose distribution function is F(x).

3.7 Proposition If $E|X_n|^r < \infty, \forall n$, for r > 0, then

$$X_n \xrightarrow{r} X \Rightarrow E|X_n|^r \to E|X|^r \text{ and } E|X|^r < \infty$$

 $\Rightarrow E(X_n^k) \to E(X^k) \text{ for } 0 < k < r$.

3.8 Proposition If $E(X_n^2) < \infty$, $\forall n$, then $X_n \stackrel{2}{\rightarrow} X$ implies

$$E(X_n^2) \to E(X^2) < \infty \text{ and } E(X_n) \to E(X) \neq \pm \infty.$$

3.9 Proposition If $E|X_n|^r < \infty$, $\forall n$, and $E|X|^r < \infty$, for r > 0, then

$$X_n \xrightarrow{r} X \Rightarrow E(X_n^k) \to E(X^k)$$
, for any integer $0 < k \le r$.

3.10 Proposition Let $g: \mathbb{R} \to \mathbb{R}$ a continuous function everywhere on \mathbb{R} , except possibly in a set $A \subseteq \mathbb{R}$, and let X a r.v. such that $P[X \in A] = 0$. Then

- (a) $X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X)$;
- (b) $X_n \stackrel{a.s.}{\to} X \Rightarrow g(X_n) \stackrel{a.s.}{\to} g(X)$;
- (c) $X_n \xrightarrow{L} X \Rightarrow g(X_n) \xrightarrow{L} g(X)$.

3.11 Proposition Let $\{X_n\}$ and $\{Y_n\}$ two sequences of random variables. Then

- (a) $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y \Rightarrow X_n + Y_n \xrightarrow{p} X + Y$;
- (b) $X_n \stackrel{a.s.}{\to} X$ and $Y_n \stackrel{a.s.}{\to} Y \Rightarrow X_n + Y_n \stackrel{a.s.}{\to} X + Y$;
- $(c) \ \ X_n \xrightarrow{p} X \ \text{and} \ Y_n \xrightarrow{p} Y \Rightarrow g(X_n,Y_n) \xrightarrow{p} g(X,\ Y) \ \text{for any continuous function} \ g(x,\ y) \ .$

3.12 Proposition Let $\{X_n\}$ and $\{Y_n\}$ two sequences of r.v.'s such that $X_n \stackrel{L}{\to} X$ and $Y_n \stackrel{p}{\to} c$, where X is a r.v. and c is a real constant $(-\infty < c < +\infty)$. Then

(a)
$$X_n + Y_n \xrightarrow{L} X + c$$
;

- (b) $X_n Y_n \stackrel{L}{\to} X_c$;
- (c) $X_n/Y_n \xrightarrow{L} X/c \text{ if } c \neq 0$;
- (d) $(X_n, Y_n) \xrightarrow{L} (X, c)$.
- **3.13 Proposition** Let $\{X_n\}$ and $\{Y_n\}$ two sequences of r.v.'s such that $X_n Y_n \stackrel{p}{\to} 0$ and $Y_n \stackrel{L}{\to} Y$, and let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then
- (a) $X_n \stackrel{L}{\to} Y$;
- (b) $g(X_n) g(Y_n) \stackrel{p}{\to} 0$;
- (c) $g(X_n) \stackrel{L}{\rightarrow} g(Y)$.
- **3.14 Proposition** $X_n \stackrel{2}{\to} X \Leftrightarrow \lim_{\substack{m \to \infty \\ n \to \infty}} E(X_m X_n)$ exists and is finite irrespective of the way m and $n \to \infty$.
- **3.15 Proposition** $X_n \stackrel{2}{\to} X$ and $Y_n \stackrel{2}{\to} Y \Rightarrow E(X_n + Y_n) \to E(X + Y)$ and $E(X_n Y_n) \to E(XY)$, where E(X + Y) and E(XY) are finite real numbers.

4. Random series

4.1. Definitions

- **4.1.1 Definition** Let $\{X_t: t \in \mathbb{N}\}$ be a real-valued stochastic process and consider the series $\sum_{t=1}^{\infty} X_t$.
- **4.1.2 Definition** We say $\sum_{t=1}^{\infty} X_t$ converges (according to given mode of convergence) iff there exists a real r.v. Y such that

$$\sum_{t=1}^{N} X_t \xrightarrow[N \to \infty]{} Y \text{ (according to the same mode of convergence)}.$$

4.1.3 Remark Mode of convergence : a.s., in probability or in mean of order r.

4.1.4 QUESTIONS:

- (1) Under which conditions does the series $\sum_{t=1}^{\infty} X_t$ converge?
- (2) Under which conditions can one write

$$E\left(\sum_{t=1}^{\infty} X_t\right) = \sum_{t=1}^{\infty} E(X_t)?$$

4.1.5 Definition We say $\sum_{t=1}^{\infty} X_t$ converges absolutely (according to a given convergence mode) iff $\sum_{t=1}^{\infty} |X_t|$ converges (according to the same mode of convergence). If $\sum_{t=1}^{\infty} |X_t|$ converges with probability one (a.s.), we write $\sum_{t=1}^{\infty} |X_t| < \infty$ a.s.

General convergence criteria

- **4.2.1 Proposition** $\sum_{t=1}^{\infty} |X_t| < \infty \text{ a.s.} \Rightarrow \sum_{t=1}^{\infty} X_t \text{ converges a.s.}$
- **4.2.2 Proposition** $\sum_{t=1}^{\infty} X_t$ converges absolutely in probability $\Leftrightarrow \sum_{t=1}^{\infty} X_t$ converges absolutely a.s.
- **4.2.3 Proposition** If there is a sequence of positive constants $\{\varepsilon_t\}_{t=1}^{\infty}$ such that

$$(a) \quad \sum_{t=1}^{\infty} \varepsilon_t < \infty \,,$$

(a)
$$\sum_{t=1}^{\infty} \varepsilon_t < \infty,$$
(b)
$$\sum_{t=1}^{\infty} P(|X_t| \ge \varepsilon_t) < \infty,$$

then $\sum\limits_{t=1}^{\infty} X_t$ converges a.s. (i.e. there exists a r.v. X such that $\sum\limits_{t=1}^{N} X_t \xrightarrow[N \to \infty]{a.s.} X$).

4.2.4 Proposition

$$\sum_{t=1}^{\infty} |X_t| < \infty \ a.s. \Leftrightarrow P\left(\sum_{t=1}^{n} |X_t| < x\right) \xrightarrow[n \to \infty]{} F(x), \ \forall x,$$
 (4.1)

where F(x) is the distribution function of a r.v.

4.2.5 Proposition
$$\sum_{t=1}^{\infty} E|X_t| < \infty \Rightarrow \sum_{t=1}^{\infty} |X_t| < \infty \text{ a.s. and } E\left[\sum_{t=1}^{\infty} |X_t|\right] = \sum_{t=1}^{\infty} E|X_t|$$
.

4.2.6 Proposition $\sum_{t=1}^{\infty} (E|X_t|^r)^{1/r} < \infty$, where $r \ge 1 \Rightarrow \sum_{t=1}^{\infty} |X_t|$ and $\sum_{t=1}^{\infty} X_t$ converge a.s. and in mean of order r.

4.2.7 Proposition If $X_t \in L_2$, $\mu_t \equiv E(X_t)$ and $\sigma_t^2 \equiv Var(X_t)$, $\forall t$, then $\sum_{t=1}^{\infty} \left[\sigma_t^2 + \mu_t^2\right]^{\frac{1}{2}} < \infty \text{ implies}$

$$\sum_{t=1}^{\infty} |X_t|$$
 and $\sum_{t=1}^{\infty} X_t$ converge a.s. and q.m.

In particular, if $E(X_t) = 0$, $\forall t$,

$$\sum_{t=1}^{\infty} \sigma_t < \infty \Rightarrow \sum_{t=1}^{\infty} |X_t| \text{ and } \sum_{t=1}^{\infty} X_t \text{ converge a.s. and q.m.}$$

4.2.8 Proposition

$$\sum_{t=1}^{\infty} E|X_t| < \infty \Rightarrow E\left[\sum_{t=1}^{\infty} X_t\right] = \sum_{t=1}^{\infty} E(X_t).$$

4.2.9 Proposition If $X_t \in L_2$, $\forall t$, and if there are non-negative constants $\{\bar{\rho}_t : t = 1, 2, ...\}$ such that $0 \leq \bar{\rho}_t \leq 1$,

$$E(X_s X_t) \leq \bar{\rho}_{t-s} \left[E\left(X_s^2\right) E\left(X_t^2\right) \right]^{\frac{1}{2}}, \text{ for } 0 < s \leq t,$$

and

$$\sum_{t=1}^{\infty} \bar{\rho}_t < \infty ,$$

then

$$\sum_{t=1}^{\infty} (\log t)^2 E\left(X_t^2\right) < \infty \Rightarrow \sum_{t=1}^{\infty} X_t \text{ converges a.s.}$$

4.2.10 Remark When $E(X_t) = 0$, we have

$$Corr(X_s, X_t) \leq \bar{\rho}_{t-s}$$
.

4.3. Series of orthogonal variables

4.3.1 Proposition Let $\{X_t\}_{t=1}^{\infty}$ a sequence of r.v.'s such that $X_t \in L_2$, $E(X_t) = 0$ and $E(X_sX_t) = 0$ for $s \neq t$. Then

(a)
$$\sum_{t=1}^{\infty} X_t$$
 converges in quadratic mean $\Leftrightarrow \sum_{t=1}^{\infty} E|X_t|^2 < \infty$;

(b)
$$\sum_{t=1}^{\infty} E|X_t|^2 < \infty \Rightarrow E|X|^2 = \sum_{t=1}^{\infty} E|X_t|^2 < \infty$$
, where $\sum_{t=1}^{N} X_t \xrightarrow[N \to \infty]{} X$;

(c)
$$\sum_{t=1}^{\infty} \frac{E|X_t|^2}{b_t^2} < \infty$$
 and $b_n \uparrow \infty \Rightarrow \frac{1}{b_n} \sum_{t=1}^n X_t \stackrel{2}{\to} 0$; (Kolmogorov)

(d)
$$\sum_{t=1}^{\infty} (\log t)^2 E|X_t|^2 < \infty \Rightarrow \sum_{t=1}^{\infty} X_t$$
 converges a.s. and in quadratic mean;

(e)
$$\sum_{t=1}^{\infty} \left(\frac{\log t}{b_t}\right)^2 E|X_t|^2 < \infty$$
 and $b_n \uparrow \infty \Rightarrow \frac{1}{b_n} \sum_{t=1}^n X_t \stackrel{a.s.}{\to} 0$.

4.3.2 Proposition Let $\{X_t\}_{t=1}^{\infty}$ a sequence of r.v.'s such that $X_t \in L_2$ and $Cov(X_s, X_t) = 0$ for $s \neq t$, and let $\mu_t = E(X_t)$. Then

- (a) $\sum_{t=1}^{\infty} (X_t \mu_t)$ converges in quadratic mean to a r.v. $Y \Leftrightarrow \sum_{t=1}^{\infty} Var(X_t) < \infty$;
- (b) $\sum_{t=1}^{\infty} Var(X_t) < \infty \Rightarrow Var(Y) = \sum_{t=1}^{\infty} Var(X_t)$, where $\sum_{t=1}^{N} (X_t \mu_t) \xrightarrow[N \to \infty]{2} Y$;
- (c) $\sum_{t=1}^{\infty} \frac{Var(X_t)}{b_t^2} < \infty$ and $b_n \uparrow \infty \Rightarrow \frac{1}{b_n} \sum_{t=1}^n (X_t \mu_t) \stackrel{2}{\to} 0$;
- (d) $\sum_{t=1}^{\infty} (\log t)^2 Var(X_t) < \infty \Rightarrow \sum_{t=1}^{\infty} (X_t \mu_t)$ converges in quadratic mean and a.s.;
- (e) $\sum_{t=1}^{\infty} \left(\frac{\log t}{b_t}\right)^2 Var(X_t) < \infty \text{ and } b_n \uparrow \infty \Rightarrow \frac{1}{b_n} \sum_{t=1}^n (X_t \mu_t) \stackrel{a.s.}{\to} 0$.
- **4.3.3 Proposition** Let $\{X_t\}_{t=1}^{\infty}$ a sequence of r.v.'s such that $X_t \in L_2$ and $E(X_sX_t) = 0$ for $s \neq t$. Then
- (a) $\sum_{t=1}^{\infty} E(X_t^2) < \infty \Rightarrow \sum_{t=1}^{\infty} X_t$ converges in q.m.;
- (b) $\sum_{t=1}^{\infty} (\log t)^2 E(X_t^2) < \infty \Rightarrow \sum_{t=1}^{\infty} X_t$ converges a.s.

4.4. Series of independent variables

- **4.4.1 Proposition** Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent r.v.'s such that $X_t \in L_2$. Then
- (a) $\sum_{t=1}^{\infty} Var(X_t) < \infty \Rightarrow \sum_{t=1}^{\infty} (X_t EX_t)$ converges a.s.;
- (b) if $|X_t| \le c < \infty$, $\forall t$,

$$\sum_{t=1}^{\infty} (X_t - EX_t) \text{ converges a.s. } \Leftrightarrow \sum_{t=1}^{\infty} Var(X_t) < \infty ;$$

- (c) $\sum_{t=1}^{\infty} E(X_t)$ converges to a finite number and $\sum_{t=1}^{\infty} \text{Var}(X_t) < \infty \Rightarrow \sum_{t=1}^{\infty} X_t$ converges a.s. and in quadratic mean ;
- (d) $|X_t| \le c < \infty$, $\forall t$, and $\sum_{t=1}^{\infty} X_t$ converges a.s. $\Rightarrow \sum_{t=1}^{\infty} X_t$ and $\sum_{t=1}^{\infty} \text{Var}(X_t)$ converge.

4.4.2 Proposition Three series theorem (Kolmogorov). Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent r.v.'s and let

$$X_t^c = X_t$$
, if $|X_t| < c$
= 0, if $|X_t| \ge c$

where c>0. The series $\sum_{t=1}^{\infty} X_t$ converges a.s. \Leftrightarrow there exists a constant c>0 such that the three following series converge in \mathbb{R} :

(a)
$$\sum_{t=1}^{\infty} P[|X_t| \ge c];$$
(b)
$$\sum_{t=1}^{\infty} Var(X_t^c);$$

(b)
$$\sum_{t=1}^{\infty} Var\left(X_t^c\right) ;$$

$$(c) \quad \sum_{t=1}^{c-1} E(X_t^c) \ .$$

4.4.3 Proposition Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent r.v.'s. If the two series $\sum_{t=1}^{\infty} E(X_t)$ and $\sum_{t=1}^{\infty} E(|X_t|^p)$ where $1 converge, then the series <math>\sum_{t=1}^{\infty} X_t$ converges a.s.

4.4.4 Proposition Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent r.v.'s. Then

(a)
$$\sum_{t=1}^{\infty} X_t$$
 converges $a.s. \Leftrightarrow \sum_{t=1}^{\infty} X_t$ converges in probability $\Leftrightarrow \sum_{t=1}^{\infty} X_t$ converges in law;

(b) if
$$|X_t| \le c < \infty$$
 and $E(X_t) = 0$, $\forall t$, then $\sum_{t=1}^{\infty} X_t$ converges $a.s.$ iff

$$\sum_{t=1}^{\infty} X_t \text{ converges in quadratic mean.}$$

Laws of large numbers

5.1 Proposition Let $\{X_t\}_{t=1}^{\infty}$ a sequence of r.v.'s such that $X_t \in L_2$ and $Cov(X_s, X_t) = 0$ for $s \neq t$, and let $\mu_t = E(X_t)$. Then

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} Var(X_n) < \infty \Rightarrow \bar{X}_n - \bar{\mu}_n \xrightarrow[n \to \infty]{2} 0$$
 (Chebychev law) where $\bar{X}_n = \sum_{t=1}^n X_t/n$ and $\bar{\mu}_n = \sum_{t=1}^n \mu_t/n$, and

(b)
$$\sum_{n=1}^{\infty} \left(\frac{\log n}{n}\right)^2 Var(X_n) < \infty \Rightarrow \bar{X}_n - \bar{\mu}_n \xrightarrow[n \to \infty]{a.s.} 0.$$

In particular, if $Var(X_t) = \sigma^2 < \infty$ and $E(X_t) = \mu$ for all t, then

$$\frac{1}{n} \sum_{t=1}^{n} X_t \xrightarrow[n \to \infty]{a.s.} \mu \text{ and } \frac{1}{n} \sum_{t=1}^{n} X_t \xrightarrow[n \to \infty]{2} \mu.$$

5.2 Theorem KHINTCHINE WEAK LAW OF LARGE NUMBERS. Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent and identically distributed r.v.'s whose mean $E(X_t)$ exists. Then

$$E(X_t) = \mu \Rightarrow \bar{X}_n \xrightarrow[n \to \infty]{p} \mu$$
.

5.3 Theorem FIRST KOLMOGOROV'S STRONG LAW OF LARGE NUMBERS. Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent r.v.'s such that $E(X_t) = \mu_t$ and $Var(X_t) = \sigma_t^2$ exist for all t. Then

$$\sum_{n=1}^{\infty} (\sigma_n/n)^2 < \infty \Rightarrow \bar{X}_n - \bar{\mu}_n \xrightarrow[n \to \infty]{a.s.} 0.$$

5.4 Theorem SECOND KOLMOGOROV'S STRONG LAW OF LARGE NUMBERS. Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent and identically distributed r.v.'s. Then

$$E(X_t)$$
 exists and is equal to $\mu \Leftrightarrow \bar{X}_n - \bar{\mu}_n \xrightarrow[n \to \infty]{a.s.} 0$.

- **5.5 Theorem** LAW OF LARGE NUMBERS FOR CORRELATED R.V.'S. Let $\{X_t\}_{t=1}^{\infty}$ a sequence of r.v.'s with means $E(X_t) = \mu_t$ and satisfying the following condition: there exists a sequence of real numbers $\{r_j\}_{j=0}^{\infty}$ such that
- (a) $0 \le r_j \le 1$, for all j,
- (b) $Cov(X_s, X_t) \le r_{t-s} [Var(X_s)Var(X_t)]^{1/2}$, for $t \ge s$,

(c)
$$\sum_{j=1}^{\infty} r_j < \infty$$
,

$$(d) \sum_{n=1}^{\infty} \left(\frac{\log(n)}{n}\right)^2 Var(X_n) < \infty.$$

Then

$$\bar{X}_n - \bar{\mu}_n \xrightarrow[n \to \infty]{a.s.} 0$$
.

6. Central limit theorems

6.1 Theorem LINDEBERG-LÉVY CENTRAL LIMIT THEOREM. Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent and identically distributed r.v.'s in L_2 such that $E(X_t) = \mu$ and $Var(X_t) = \sigma^2 > 0$. Then

$$\frac{1}{\sqrt{n}} \sum_{t=1}^{n} (X_t - \mu) / \sigma = \sqrt{n} (\bar{X}_t - \mu) / \sigma \xrightarrow[n \to \infty]{L} Z$$

where $Z \sim N(0, 1)$.

6.2 Theorem LIAPUNOV CENTRAL LIMIT THEOREM. Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent r.v.'s in L_3 such that $E(X_t) = \mu_t$, $Var(X_t) = \sigma_t^2 \neq 0$, $E[|X_t - \mu_t|^3] = \beta_t$ for all t. Moreover,

$$B_n = \left(\sum_{t=1}^n \beta_t\right)^{1/3}, C_n = \left(\sum_{t=1}^n \sigma_t^2\right)^{1/2}.$$

If $\lim_{n\to\infty} (B_n/C_n) = 0$, then

$$\Sigma_{t=1}^{n}(X_{t}-\mu_{t})/C_{n}=\sqrt{n}(\bar{X}_{t}-\bar{\mu}_{n})/(C_{n}/\sqrt{n})\sigma \stackrel{L}{\underset{n\to\infty}{\longrightarrow}} Z$$

where $Z \sim N(0, 1)$.

6.3 Theorem LINDEBERG-FELLER CENTRAL LIMIT THEOREM. Let $\{X_t\}_{t=1}^{\infty}$ a sequence of independent r.v.'s in L_2 such that

$$P[X_t \le x] = G_t(x), \ E(X_t) = \mu_t, \ Var(X_t) = \sigma_t^2 \ne 0,$$

for all t. Then

$$\sum_{t=1}^{n} (X_t - \mu_t) / C_n \xrightarrow[n \to \infty]{L} Z \text{ and } \lim_{n \to \infty} \max_{1 \le t \le n} (\sigma_t / C_n) = 0$$

iff

$$\lim_{n\to\infty} \frac{1}{C_n^2} \sum_{t=1}^n \int_{|x-\mu_t|>\varepsilon C_n} (x-\mu_t)^2 dG_t(x) = 0, \forall \varepsilon > 0.$$

7. Extension to random vectors

7.1 Definition STOCHASTIC CONVERGENCE FOR VECTORS. Let $\{X_n\}_{n=1}^{\infty}$ a sequence of vectors of dimension k,

$$X_n = (X_{1n}, X_{2n}, ..., X_{kn})', n = 1, 2, ...$$

whose components are real random variables all defined on the same probability space (Ω, P) , and

$$X = (X_1, X_2, ..., X_k)'$$

another random vector of dimension k whose components are defined on the same space.

- (a) We say X_n converges to X in probability (almost surely, in mean of order r) as $n \to \infty$ if each component of X_n converges to the corresponding component of X in probability (almost surely, in mean of order r) as $n \to \infty$. Depending on the case considered, we then write $X_n \stackrel{p}{\to} X$, $X_n \stackrel{a.s.}{\to} X$ or $X_n \stackrel{r}{\to} X$.
- (b) We say X_n converges in law to X $(X_n \xrightarrow{L} X)$ iff

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$
 at all continuity points of $F_X(x)$.

where $x = (x_1, x_2, ..., x_k)' \in \mathbb{R}^k$,

$$F_{X_n}(x) = P[X_{1n} \le x_1, ..., X_{kn} \le x_k], \ n = 1, 2, ...$$

and

$$F_X(x) = P[X_1 \le x_1, ..., X_k \le x_k].$$

7.2 Theorem Univariate Characterization of Convergence in Law for a sequence of vectors.. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random vectors of dimension $k \times 1$ and let X be another random vector of dimension $k \times 1$. Then

$$X_n \xrightarrow[n \to \infty]{L} X \Leftrightarrow \lambda' X_n \xrightarrow[n \to \infty]{L} \lambda' X, \forall \lambda \in \mathbb{R}^k.$$

In particular, if $X \sim N[\mu, \varSigma]$,

$$X_n \xrightarrow[n \to \infty]{L} N[\mu, \Sigma] \Leftrightarrow \lambda' X_n \xrightarrow[n \to \infty]{L} N[\lambda'\mu, \lambda'\Sigma\lambda], \forall \lambda \in \mathbb{R}^k.$$

8. Proofs and additional references

Proofs and further discussions of the results presented above may be found the following references.

- **1.2** Lukacs (1975), Theorem 2.2.6, p. 39.
- **2.6** Loève (1977), p. 153.
- **2.7** Lukacs (1975), p. 49.
- **2.8** Lukacs (1975), pp. 37 and 49.
- **2.11** Loève (1977), vol. I, p. 165.
- **2.12** Loève (1977), vol. I, p. 166.
- **2.13** Loève (1977), vol. I, p. 166.
- **2.14** Lukacs (1975), p. 38.
- **2.15** Loève (1977), vol. I, p. 240.
- **2.17** (a) Loève (1977), vol. I, pp. 114, 118, 153, and Lukacs (1975), p. 48.
 - (b) Loève (1977), vol. I, p. 153, and Lukacs (1975), p. 45.
 - (c) Loève (1977), p. 163, and Lukacs (1975), p. 49.
- **2.18** Stout (1974), Theorem 2.1.2, p. 11.
- **2.19** Loève (1977), vol. I, p. 175.
- **3.2** Loève (1977), vol. I, p. 184.
- **3.4** Loève (1977), vol. I, p. 185.
- **3.5** Loève (1977), vol. I, p. 186.
- **3.6** Rao (1973), p. 121.
- **3.7** Loève (1977), vol. I, p. 165, and Prakasa Rao (1987), p. 10.
- **3.10** Prakasa Rao (1987), p. 12.
- **3.11** Prakasa Rao (1987), pp. 43 and 57-58.
- **3.12** Rao (1973), p. 122) and Prakasa Rao (1987), p. 10.
- **3.13** Rao (1973), p. 124.
- **3.14** Lukacs (1975), p. 50.
- **4.2.2** Implication of Proposition **2.8**.
- **4.2.3** Lukacs (1975), Corollary 4.2.2, p. 82.
- **4.2.4** Loève (1977), vol. I, p. 175, Problem 10.
- **4.2.5** Loève (1977), vol. I, p. 175, Problem 10, Lukacs (1975), Theorem 4.2.1, p. 80, and the Monotone convergence theorem [Loève (1977), vol. I, p. 125].
- **4.2.6** Loève (1977), vol. I, p. 175, Problem 10, and Proposition **2.13** above.
- **4.2.8** Loève (1977), p. 111. This result is an implication of the Dominated convergence theorem: Loève (1977), vol. I, p. 126, and Royden (1968), pp. 88-89.
- **4.2.9** Stout (1974), Corollary 2.4.1, p. 28.
- **4.3.1** Loève (1977), vol. II, Theorem 30.1, p. 122, and Theorem 30.1B, p. 124.
- **4.3.3** (a) Loève (1977), Theorem 4.2.4A, p. 85, and Stout (1974), Lemma 2.2.2, p. 15.

- (b) Stout (1974), Theorem 2.3.2, p. 20.
- **4.4.1** (a) Lukacs (1975), Theorem 4.2.4, p. 84, and Loève (1977), vol. I, Theorem 17.3.Ia, p. 248.
- (b) Loève (1977), vol. I, Theorem 17.3.Ia, p. 248, and Lukacs (1975), Theorem 4.2.4, Corollary 3, p. 87.
 - (c) Lukacs (1975), Theorem 4.2.4, Corollary 1, p. 84.
 - (d) Loève (1977), Theorem 17.3.Ib, p. 248.
- **4.4.3** Lukacs (1975), Theorem 4.2.6, Corollary, p. 89.
- **4.4.4** (a) Lukacs (1975), Theorem 4.2.8, p. 92.
- **5.1** This result can be deduced on considering the case where $b_t = t$ in **4.3.2** (c) and (d).
- **5.2** Rao (1973), Section 2c.3, p. 112.
- **5.3** Rao (1973), Section 2c.3, p. 114.
- **5.4** Rao (1973), Section 2c.3, p. 115.
- **5.5** Gouriéroux and Monfort (1995), vol. 2, Appendix.
- **6.1** Rao (1973), Section 2c.5, p. 127.
- **6.2** Rao (1973), Section 2c.5, p. 127.
- **6.3** Rao (1973), Section 2c.5, p. 128.
- **7.2** Rao (1973), Section 2c.5, p. 128.

Several counterexamples relevant to the above results are presented in Stoyanov (1997). About laws of large of numbers, the literature on ergodic theorems is also relevant; for a review, see Petersen (1983). For general presentations of asymptotic theory in view of statistical applications, the reader may consult: Rao (1973, Chapter 2), Serfling (1980), White (1984), Prakasa Rao (1987), McCabe and Tremayne (1993), Davidson (1994), van der Vaart (1998), Spanos (1999, Chapter 9) and Lehmann (1999).

References

- DAVIDSON, J. (1994): Stochastic Limit Theory: An Introduction for Econometricians. Oxford University Press, Oxford, U.K., second edn.
- GOURIÉROUX, C., AND A. MONFORT (1995): Statistics and Econometric Models, Volumes One and Two. Cambridge University Press, Cambridge, U.K.
- LEHMANN, E. L. (1999): Elements of Large-Sample Theory. Springer-Verlag, New York.
- LOÈVE, M. (1977): *Probability Theory, Volumes I and II*. Springer-Verlag, New York, 4th edn.
- LUKACS, E. (1975): Stochastic Convergence. Academic Press, New York, second edn.
- MCCABE, B., AND A. TREMAYNE (1993): *Elements of Modern Asymptotic Theory with Statistical Applications*. Manchester University Press, Manchester.
- PETERSEN, K. E. (1983): Ergodic Theory. Cambridge University Press, Cambridge, U.K.
- PRAKASA RAO, B. L. S. (1987): Asymptotic Theory of Statistical Inference. John Wiley & Sons, New York.
- RAO, C. R. (1973): *Linear Statistical Inference and its Applications*. John Wiley & Sons, New York, second edn.
- ROYDEN, H. L. (1968): Real Analysis. MacMillan, New York, second edn.
- SERFLING, R. J. (1980): Approximation Theorems of Mathematical Statistics. John Wiley & Sons, New York.
- SPANOS, A. (1999): *Probability Theory and Statistical Inference: Econometric Modelling with Observational Data*. Cambridge University Press, Cambridge, UK.
- STOUT, W. F. (1974): Almost Sure Convergence. Academic Press, New York.
- STOYANOV, J. M. (1997): *Counterexamples in Probability*. John Wiley & Sons, Chichester, U.K., second edn.
- VAN DER VAART, A. W. (1998): *Asymptotic Statistics*. Cambridge University Press, Cambridge, U.K.
- WHITE, H. (1984): Asymptotic Theory for Econometricians. Academic Press, Orlando, Florida.