APRENDIZADO DE MÁQUINA - AM

Regras de Associação

Exemplo: vendas casadas

Sei que quem compra A também compra B.

Amazon.com

Responde...

sponder

Imprimir

Anterior

Excluir

amazonwire PODCAST

Avançar

Endereços

Interviews and Exclusives--Books, Music, Movies,

quarta-feira, 10 de maio de 2006 08:04

alvares@inf.ufrgs.br

Encaminhar

"Multi-Agent-Based Simulation VI : International Workshop, MABS 2005, Utrecht, The Netherlands, July 25, 2005, Revised and Invited Papers (Lecture Notes ... / Lecture Notes in Artificial I unto:

and Those Who Create Them

▶ Learn more

Dear Amazon.com Customer,

We've noticed that customers who have purchased Agents Breaking Away: 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW '96, Eindhoven, The Netherlands, January 22 ... / Lecture Notes in Artificial Intelligence) by Walter van de Velde also purchased books by Jaime S. Sichman. For this reason, you might like to know that Jaime S. Sichman's Multi-Agent-Based Simulation VI: International Workshop, MABS 2005, Utrecht, The Netherlands, July 25, 2005, Revised and Invited Papers (Lecture Notes ... / Lecture Notes in Artificial Intelligence) will be released in paperback soon. You can pre-order your copy by following the link below.

Mineração de regras de associação

 Dado um conjunto de transações, encontre regras para a predição da ocorrência de itens baseado na ocorrência de outros itens na transação

transações

TID	Items
1	pão, leite
2	pão, fralda, cerveja, ovos
3	leite, fraldas, cerveja, coca
4	pão, leite, fraldas, cerveja
5	pão, leite, fraldas, coca

Exemplos de regras de associação

```
\{fraldas\} \rightarrow \{cerveja\},\
\{leite, pão\} \rightarrow \{ovos, coca\},\
\{cerveja, pão\} \rightarrow \{leite\},\
```

Implicação significa co-ocorrência, e não causa!!!

Definições: conjuntos de itens frequentes (frequent itemsets)

Itemset (conjunto de itens)

- Um conjunto de um ou mais items
 - Exemplo: {leite, pão, fralda}
- - Um itemset com k itens

Suporte (σ)

- □ Freqüência de ocorrência de um conjunto de itens (itemset)
- □ Ex: $\sigma(\{\text{leite, pão}\}) = 3$

Suporte (s)

- Fração das transações que contêm um itemset
- \square Ex: s({leite, pão, fralda}) = 2/5

Conjunto de itens frequentes

 Um itemset cujo suporte é maior ou igual a um dado limite minsup

TID	Items
1	pão, leite
2	pão, fralda, cerveja, ovos
3	leite, fralda, cerveja, coca
4	pão, leite, fralda, cerveja
5	pão, leite, fralda, coca

Definição: regra de associação

- Regras de associação
 - Uma expressão da forma X → Y, onde X e
 Y são conjuntos disjuntos de itens
 - Exemplo:

{leite, fralda} → {cerveja} (significado: quem compra leite e fralda também compra cerveja na mesma transação)

TID	Items
1	pão, leite
2	pão, fralda, cerveja, ovos
3	leite, fralda, cerveja, coca
4	pão, leite, fralda, cerveja
5	pão, leite, fralda, coca

- Métricas de avaliação das regras
 - Suporte (s)
 - Fração das transações que contêm
 X e Y
 - Confiança (c)
 - Mede a freqüência com que Y aparece nas transações que contêm X

Exemplo:

 $\{\text{leite}, \text{fralda}\} \Rightarrow \{\text{cerveja}\}$

$$s = \frac{\sigma(\text{leite, fralda, cerveja})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{leite, fralda, cerveja})}{\sigma(\text{leite, fralda})} = \frac{2}{3} = 0.67$$

Regras de associação

 Regras de associação ou regras associativas têm a forma

$$X \Rightarrow Y$$

- onde X e Y são conjuntos de itens que ocorrem juntos em uma transação e X ∩ Y = ∅
- significando que se encontrarmos o conjunto de itens X em uma transação, então temos uma boa chance de encontrar também o conjunto de itens Y na mesma transação.

Mineração de regras de associação

- Dado um conjunto de transações T, o objetivo da mineração de regras de associação é encontrar todas as regras com
 - suporte ≥ minsup
 - confiança ≥ minconf
- Abordagem da força bruta:
 - □ liste todas as possíveis regras de associação
 - calcule o suporte e a confiança para cada regra
 - corte as regras que não satisfazem minsup ou minconf
 - Computacionalmente proibitivo!

Problema: número de regras geradas

Considerando 4 itens: A, B, C e D, sem considerar suporte e confiança podemos ter:

conjunto	Regras possíveis	Número
		de regras
$\{AB\}$	$A \rightarrow B; B \rightarrow A$	2
<i>{AC}</i>	$A \rightarrow C$; $C \rightarrow A$	2
$\{AD\}$	$A \rightarrow D$; $D \rightarrow A$	2
<i>{BC}</i>	$B \rightarrow C; C \rightarrow B$	2
<i>{BD}</i>	$B \rightarrow D; D \rightarrow B$	2
<i>{CD}</i>	$C \rightarrow D; D \rightarrow C$	2
$\{ABC\}$	$A \rightarrow\!$	6
$\{ABD\}$	$A \rightarrow BD$; $B \rightarrow AD$; $D \rightarrow AB$; $BD \rightarrow A$; $AD \rightarrow B$; $AB \rightarrow D$	6
{ACD}	$A \rightarrow DC$; $D \rightarrow AC$; $C \rightarrow AD$; $DC \rightarrow A$; $AC \rightarrow D$; $AD \rightarrow C$	6
<i>{BCD}</i>	$D \rightarrow\!$	6
{ABCD}	$A \rightarrow BCD$; $B \rightarrow ACD$; $C \rightarrow ABD$; $D \rightarrow ABC$; $AB \rightarrow CD$; $AC \rightarrow BD$; $AD \rightarrow BC$;	14
	$BC \rightarrow AD$; $BD \rightarrow AC$; $CD \rightarrow AB$; $BCD \rightarrow A$; $ACD \rightarrow B$; $ABD \rightarrow C$; $ABC \rightarrow D$;	

Minerando regras de associação

TID	Items
1	pão, leite
2	pão, fralda, cerveja, ovos
3	leite, fralda, cerveja, coca
4	pão, leite, fralda, cerveja
5	pão, leite, fralda, coca

Exemplos de regras:

```
\{\text{leite,fralda}\} \rightarrow \{\text{cerveja}\}\ (s=0.4,\ c=0.67)
\{\text{leite,cerveja}\} \rightarrow \{\text{fralda}\}\ (s=0.4,\ c=1.0)
\{\text{fralda,cerveja}\} \rightarrow \{\text{leite}\}\ (s=0.4,\ c=0.67)
\{\text{cerveja}\} \rightarrow \{\text{leite,fralda}\}\ (s=0.4,\ c=0.67)
\{\text{fralda}\} \rightarrow \{\text{leite,cerveja}\}\ (s=0.4,\ c=0.5)
\{\text{leite}\} \rightarrow \{\text{fralda,cerveja}\}\ (s=0.4,\ c=0.5)
```

Observações:

- Todas as regras acima são partições binárias do mesmo itemset:
 - {leite, fralda, cerveja}
- Regras originadas do mesmo itemset têm o mesmo suporte mas podem ter confianças diferentes
- Então, podemos separar o suporte da confiança

Mineração de regras de associação

- Abordagem em dois passos:
 - Geração dos items frequentes
 - gerar todos os itemsets com suporte ≥ minsup
 - Geração das regras
 - gerar regras de alta confiança para cada itemset, onde cada regra é um partição binária de um itemset frequente
- A geração dos conjuntos de items frequentes ainda é computacionalmente custosa

Mineração de regras de associação

Geração de itemsets frequentes

- Abordagem de força bruta:
 - □ Cada itemset no reticulado (lattice) é um conjunto frequente candidato
 - Calcule o suporte de cada candidato lendo o conjunto de dados transações

□ Complexidade ~ O(NMw) => Custoso pois M = 2^d !!!

Complexidade

- Dado d items:
 - □ número total de itemsets = 2^d
 - □ número total possível de regras de associação:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

se d=6, R = 602 regras se d=10, R= 57.002 regras

Estratégias para a geração de itemsets frequentes

- Reduzir o número de candidatos (M)
 - Busca completa: M=2^d
 - Usar técnicas de poda para reduzir M
- Reduzir o número de transações (N)
 - Reduzir o tamanho de N quando o número de itemsets aumenta
 - Usado pelo DHP e algoritmos baseados em mineração vertical
- Reduzir o número de comparações (NM)
 - Usar estruturas de dados eficientes para armazenar os candidatos ou as transações
 - Sem necessidade de comparar cada candidato com cada transação

Reduzindo o número de candidatos

- Princípio do algoritmo Apriori :
 - Se um itemset é frequente então todos os seus subconjuntos também são frequentes
- Este princípio é devido a seguinte propriedade do suporte:
 - O suporte de um itemset nunca é maior que o suporte de seus subconjuntos
 - Isto é conhecido como a propriedade antimonotônica do suporte

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

Ilustrando o princípio do Apriori

Ilustrando o princípio do Apriori

Item	Count
pão	4
coca	2
leite	4
cerveja	3
fralda	4
ovos	1

Items (1-itemsets)

Itemset	Count
{pão,leite}	3
{pão,cerveja}	2
{pão,fralda}	3
{leite,cerveja}	2
{leite,fralda}	3
{cerveja,fralda}	3

Pares (2-itemsets)

(Não há necessidade de Gerar candidatos com **coca** ou **ovos**)

Suporte mínimo= 3

Triplas (3-itemsets)

Se todos os conjuntos são considerados, ${}^6C_1 + {}^6C_2 + {}^6C_3 = 41$ Com o corte baseado no suporte, 6+6+1=13

Itemset	Count
{pão,leite,fralda}	3

O algoritmo Apriori

- Método:
 - □ seja k=1
 - Obtenha conjuntos frequentes de tamanho 1
 - Repita enquanto novos itemsets frequentes forem obtidos
 - Obtenha itemsets candidatos de tamanho (k+1) a partir de itemsets de tamanho k (não inclua itemsets candidatos contendo subconjuntos de tamanho k infrequentes)
 - Conte o suporte de cada candidato varrendo o BD
 - Elimine candidatos não frequentes, deixando só os frequentes

Algoritmo Apriori

- (1) Dado um limiar de suporte minsup, no primeiro passo encontre os itens que aparecem ao menos numa fração das transações igual a minsup. Este conjunto é chamado L1, dos itens frequentes.
- (2) Os pares dos itens em L1 se tornam pares candidatos C2 para o segundo passo. Os pares em C2 cuja contagem alcançar minsup são os pares frequentes L2.
- (3) As trincas candidatas C3 são aqueles conjuntos {A, B, C} tais que todos os {A, B}, {A, C} e {B, C} estão em L2. No terceiro passo, conte a ocorrência das trincas em C3; aquelas cuja contagem alcançar minsup são as trincas frequentes, L3.
- (4) Proceda da mesma forma para tuplas de ordem mais elevada, até os conjuntos se tornarem vazios. Li são os conjuntos frequentes de tamanho i; Ci+1 é o conjunto de tamanho i+1 tal que cada subconjunto de tamanho i está em Li.

Dada a tabela abaixo onde cada registro corresponde a uma transação de um cliente, com itens assumindo valores binários (sim/não), indicando se o cliente comprou ou não o respectivo item, descobrir todas as regras associativas com suporte >= 0,3 e grau de certeza (confiança) >= 0,8.

TID	leite	café	cerveja	pão	manteiga	arroz	feijão
1	não	sim	não	sim	sim	não	não
2	sim	não	sim	sim	sim	não	não
3	não	sim	não	sim	sim	não	não
4	sim	sim	não	sim	sim	não	não
5	não	não	sim	não	não	não	não
6	não	não	não	não	sim	não	não
7	não	não	não	sim	não	não	não
8	não	não	não	não	não	não	sim
9	não	não	não	não	não	sim	sim
10	não	não	não	não	não	sim	não

 Dada uma regra de associação "Se compra X então compra Y", os fatores sup e conf são:

$$sup = \frac{\text{Número de registros com } X \text{ e } Y}{\text{Número total de registros}}$$

$$conf = \frac{\text{Número de registros com } X \text{ e } Y}{\text{Número de registros com } X}$$

- (1) Calcular o suporte de conjuntos com um item.
 Determinar os itens frequentes com sup ≥ 0,3.
- (2) Calcular o suporte de conjuntos com dois itens.

Determinar conjuntos de itens frequentes com sup \geq 0,3.

Obs: se um item não é frequente em (1), pode ser ignorado aqui.

Descobrir as regras com alto fator de certeza.

(3) Calcular o suporte de conjuntos com três itens.

Determinar conjuntos de itens frequentes com sup ≥ 0.3 .

Obs: pelo mesmo motivo anterior, só é necessário se considerar conjuntos de itens que são frequentes pelo passo anterior.

C_1

Conjunto de itens	suporte
{leite}	2
{café}	3
{cerveja}	2
{pão}	5
{manteiga}	5
{arroz}	2
{feijão}	2

Conjunto de itens	suporte
{café}	3
{pão}	5
{manteiga}	5

 C_2 , L_2

Conjunto de itens	suporte
{café, pão}	3
{café, manteiga}	3
{pão, manteiga}	4

Conjunto de itens	suporte
{café, pão, manteiga}	3

- Regras candidatas com dois itens com o seu valor de certeza:
 - Conjunto de itens: {café, pão}
 - Se café Então pão conf = 1,0
 - Se **pão** Então **café** conf = 0,6

Conjunto de itens: {ca	afé. manteiga}
------------------------	----------------

- Se café Então manteiga conf = 1,0
- Se manteiga Então café conf = 0,6
- Conjunto de itens: {pão, manteiga}
 - Se **pão** Então **manteiga** conf = 0,8
 - Se manteiga Então pão conf = 0,8

Conjunto de itens	suporte
{café, pão}	3
{café, manteiga}	3
{pão, manteiga}	4

- Regras candidatas com três itens com o seu valor de certeza:
 - Conjunto de itens: {café, manteiga, pão}

Se café, manteiga Então pão	conf = 1,0
Se café, pão Então manteiga	conf = 1,0
Se manteiga, pão Então café	conf = 0.75
Se café Então manteiga, pão	conf = 1,0
Se manteiga Então café, pão	conf = 0,6
Se pão Então café , manteiga	conf = 0,6

Conjunto de itens	suporte
{café, pão, manteiga}	3

Padrões descobertos, minsup = 0,3 e minconf = 0,8:

Se café Então pão	conf = 1,0
Se café Então manteiga	conf = 1,0
Se pão Então manteiga	conf = 0.8
Se manteiga Então pão	conf = 0.8
Se café, manteiga Então pão	conf = 1,0
Se café, pão Então manteiga	conf = 1,0
Se café Então manteiga, pão	conf = 1,0

Exercício

Considere a tabela de transações abaixo:

Tid	Itens comprados
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E
5	A, B, C, E

- Quais são os conjuntos frequentes, considerando 50% como suporte mínimo?
- Qual a confiança da regra B → CE?

LIFT

 Suporte e confiança são usados como filtros, para diminuir o número de regras geradas, gerando apenas regras de melhor qualidade

- mas, se considerarmos a regra
 - Se A então B com confiança de 90%
- podemos garantir que seja uma regra interessante?

LIFT

- □ a regra (1) Se A então B com confiança de 90%
 - NÃO é interessante se B aparece em cerca de 90% das transações, pois a regra não acrescentou nada em termos de conhecimento.
- □ já a regra (2): Se C então D com confiança de 70%
 - é muito mais importante se D aparece, digamos, em 10% das transações.
- □ lift = confiança da regra / suporte do consequente
 - \Box lift da regra (1) = 0,9 / 0,9 = 1
 - \Box lift da regra (2) = 0,7 / 0,1 = 7

Challenges of frequent itemset mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting of candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Regras Redundantes

Tid	Itemset
1	A, C, D,T, W
2	C, D, W
3	A, D, T, W
4	A, C, D, W
5	A, C, D, T, W
6	C, D, T

$$A \rightarrow W$$
 s=4/6 c=4/4

$$A \rightarrow D,W$$
 $s=4/6$ $c=4/4$

TidSet	Frequent sets L
123456	{ D }
12456	{C}, { C,D }
12345	{W}, {D,W}
1245	{C,W}, {C,D,W }
1345	${A}_{,}$ ${A,D}_{,}$ ${A,W}_{,}$ ${A,D,W}_{,}$
1356	$\{T\}, \{D,T\}$
145	$\{A,C\}, \{A,C,W\}, \{A,C,D\}, \{A,C,D,W\}$
135	${A,T}, {T,W}, {A,D,T}, {A,T,W}, {D,T,W}, {A,D,T,W}$
156	$\{C,T\},\{C,D,T\}$

Compact representation of frequent itemsets

 Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	Α7	A8	A9 A	\10	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- Number of frequent itemsets
- Need a compact representation

$$= 3 \times \sum_{k=1}^{10} \binom{10}{k}$$

Maximal frequent itemset

An itemset is maximal frequent if none of its immediate supersets is

Closed Itemset

 An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support	
{A,B,C}	2	
{A,B,D}	3	
{A,C,D}	2	
{B,C,D}	3	
$\{A,B,C,D\}$	2	

Maximal x Closed itemsets

Maximal x Closed itemsets

Relationship between Frequent Itemset Representations

- It is important to point out the relationship between frequent itemsets, closed frequent itemsets and maximal frequent itemsets.
 - Closed frequent itemsets are more widely used than maximal frequent itemset because when efficiency is more important that space

Exercício

Considere a tabela de transações abaixo:

Tid	Itens comprados
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E
5	A, B, C, E

Quais são os conjuntos frequentes fechados, considerando 50% como suporte mínimo?

Alternative methods for frequent itemset generation

- Representation of Database
 - horizontal vs vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	C	D	Е
1	1	2	2	1
4	2	2 3 4 8 9	2 4 5 9	3 6
4 5 6 7	2 5	4	5	6
6	7	8	9	
	8	9		
8 9	8 10			
9				

ECLAT

 For each item, store a list of transaction ids (tids)

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1
4	2	2	4	3 6
5	5		2 4 5 9	6
4 5 6	2 5 7 8 10	4 8 9	9	
7	8	9		
8 9	10			
9				
	·	·		

↓ TID-list

FP-growth Algorithm

Use a compressed representation of the database using an FP-tree

 Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

FP-tree construction

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	{A,D,E}
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	{B,C,E}

After reading TID=1:

After reading TID=2:

FP-tree construction

FP-growth

Conditional Pattern base for D:

```
P = {(A:1,B:1,C:1),
(A:1,B:1),
(A:1,C:1),
(A:1),
(B:1,C:1)}
```

Recursively apply FP-growth on P

Frequent Itemsets found (with sup > 1):
AD, BD, CD, ACD, BCD

Bibliografia

- TAN, P-N,; STEINBACH, M; KUMAR, V. Introduction to Data Mining, Boston, Addison Wesley, 2006
- AGRAWAL, R.; IMIELINSKI, T.; SWAMI, A. Mining association rules between sets of items in large databases. In: ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 1993, Washington, D.C. Proceedings... New York: ACM Press, 1993. p. 207-216.
- AGRAWAL, R.; SRIKANT, R. Fast Algorithms for Mining Association Rules in Large Databases. In: INTERNATIONAL CONFERENCE ON VERY LARGE DATABASES, VLDB, 20., 1994, San Francisco. Proceedings... California: Morgan Kaufmann, 1994. p.487 – 499.
- ZAKI. M. Generating Non-redundant Association Rules. In: ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD, 6., 2000, Boston. Proceedings... [S.I.]: ACM, 2000. p.34-43.
- ZAKI., M.; HSIAO, C. CHARM: An Efficient Algorithm for Closed Itemset Mining. In: INTERNATIONAL CONFERENCE ON DATA MINING, SIAM, 2., 2002, Arlington. Proceedings... [S.I.]:SIAM, 2002.
- HAN, J., PEI, J., and YIN, Y. Mining frequent patterns without candidate generation. In: ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 2000, Dallas. P.1-12.