Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 2_2

Дисциплина: Автоматизация проектирования дискретных устройств (на английском языке).

Выполнил студент гр. 5130901/10101	(подпись)	_ Д.Л. Симоновский
Руководитель	(подпись)	_ А.А. Федотов
		" <u>07</u> " февраля 2024 г.

Санкт-Петербург

Оглавление

1.	Список иллюстраций:	2
2.	Задача:	3
3.	Решение:	3
4	RLIBOTI.	í

1. Список иллюстраций:

Рис. 2.1. Схема разрабатываемого устройства	3
Рис. 3.1. Код модуля верхнего уровня lab2 2	
Рис. 3.2. RTL Viewer модуля lab2_2	4
Рис. 3.3. Код теста первого класса для модуля lab2 2.	
Рис. 3.4do файл для запуска тестового модуля	
Рис. 3.5. Результат моделирования.	

2. Задача:

На языке Verilog разработать устройство по следующей схеме:

Рис. 2.1. Схема разрабатываемого устройства.

Выводы:

- *1) Входы:*
 - а) *CLK* тактовый сигнал.
 - b) aRSTin вход асинхронного сброса (активный уровень для сброса 1).
- 2) Выходы:
 - a) [15:0] Dout выход.

Модули:

- 1) *CNT* счетчик, создаваемый с помощью IP модуля LPM_COUNTER:
 - а) Разрядность: 8 бит.
 - b) Двоичный счетчик на сложение.
 - с) Вход асинхронного сброса (clear).
- 2) *PWR* модуль возведения в степень 2, создаваемый с помощью IP модуля LPM MULT:
 - а) Два входа по 8 бит.
 - b) Без знаковый.
 - с) Без конвейеризации.
- 3) RG регистр, описываемый на Verilog в файле верхнего уровня:
 - а) arst вход асинхронного сброса (активный уровень <math>-1).
- 4) **DFF** триггеры, описываемые на Verilog в файле верхнего уровня:
 - a) aset вход асинхронно устанавливает триггер в 1.

3. Решение:

Создадим модуль верхнего уровня на языке Verilog. Его код будет выглядеть следующим образом:

Рис. 3.1. Код модуля верхнего уровня lab2 2.

Первый блок always описывает два триггера DFF для сигнала асинхронного сброса. Поскольку сброс асинхронный, always реагирует не только на фронт clk, но и на фронт сигнала сброса. Блок CNT передает параметры IP-модулю счетчика, полученного из IP-модулей Quartus Prime. Блок PWR, аналогично CNT передает модули IP-модулю умножителя.

Блок RG реализует регистр на выходе умножителя. Поскольку регистр должен иметь асинхронный сигнал сброса, поэтому always реагирует не только на фронт clk, но и на фронт сигнала сброса.

Проверим корректность разработанной схемы, используя RTL Viewer:

Puc. 3.2. RTL Viewer модуля lab2 2.

Как мы видим, разработанное устроство полностью совпадает с примером. Далее разработаем тесты первого класса для разработанного модуля:

Рис. 3.3. Код теста первого класса для модуля lab2 2.

Поскольку на один полный цикл счетчика (от 0 до 255 (т.к. раззрядность счетчика 8)) необходимо 256 тактов, для двух полных циклов необходимо PERIOD * 256 * 2 времени. Именно столько мы и ждем перед остановкой.

Для запуска тестового модуля созададим следующий .do файл:

```
vlib work
vlog cnt.v
vlog lab2_2.v
vlog pwr.v
vlog tb_lab2_2.v
vsim -L lpm_ver work.tb_lab2_2
add wave /tb_lab2_2/lab2_2_inst/CLK
add wave /tb_lab2_2/lab2_2_inst/aRSTin
add wave -format Analog-Step -height 128 -max 255.0 -radix unsigned /tb_lab2_2/lab2_2_inst/Dcnt
add wave -format Analog-Step -height 512 -max 65025.0 -radix unsigned /tb_lab2_2/lab2_2_inst/Dout
run -all
```

Рис. 3.4. .do файл для запуска тестового модуля.

В строках с 1 по 5 мы создаем проект и выполняем компиляцию всех требуемых модулей, далее с 6 по 10 мы запускам симуляцию и добавлем все необходимо на waveform, после чего мы запускаем проект.

Результат запуска выглядит следующим образом:

Рис. 3.5. Результат моделирования.

Как видно, получившаяся waveform полностью соответствует ожиданиям и техническому заданию, что свидетельствует о корректно разработанном устройстве.

4. Вывод:

В ходе лабораторной работы было разработано устройство на языке Verilog в соответствии с схемой. Получившееся устройство полностью соответствует техническому заданию. В процессе разработки использовались IP-модули из библиотеки Quartus Prime, стоит отметить, что они сильно ускорили процесс и помогли избавиться от написания стандартных модулей, дав возможность сосредоточиться на основном задании.