CSc 8530 Parallel Algorithms

Spring 2019

January 17th, 2019

O-notation

- $O(g(n)) = \{f(n) : \text{ there exist positive }$ constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$
- g(n) is an asymptotic upper bound for f(n)
- If $f(n) \in O(g(n))$, we write f(n) = O(g(n))
 - Abuse of notation for convenience
 - Similarly for the other notations

Important classes of algorithms

- Most algorithms you'll encounter in practice are either:
 - Constant time: $\Theta(1)$
 - Running time is independent of input size
 - Logarithmic time: $\Theta(\log(n))$
 - Running time is proportional to the number of bits needed to encode the input
 - Linear time: $\Theta(n)$
 - Running time is proportional to the input size
 - Log-linear time: $\Theta(n \log(n))$
 - How many times we execute an $\Theta(n)$ operation depends on the input size's number of bits
 - Polynomial time: $\Theta(n^p)$
 - Common cases: $\Theta(n)$, $\Theta(n^2)$ (quadratic), $\Theta(n^3)$ (cubic)
 - Running time is proportional to a number of subsets (e.g., pairs for quadratic, triples for cubic, etc.)
 - Exponential time: $\Theta(2^{n^p})$
 - Common case: $\Theta(2^n)$
 - Running time doubles every time the input size grows by one
 - Practical only for small inputs

Graph definition

- A graph G = (V, E) is defined by two sets:
 - A set of n vertices V (also called nodes)
 - A set of m edges E (also called links)
- All the elements in both V and E are unique (i.e., no repeated values)
- Every edge $e=(u,v)\in E$ is a tuple (i.e., two *ordered* values), such that $u,v\in V$
 - In other words, each edge is defined by its starting and ending vertices
- In general, $m = O(n^2)$ (why?)

Undirected graph

	1	2	3	4	5				
1	0	1	0	0	1				
2	1	0	1	1	1				
3	0	1	0	1	0				
4	0	1	1	0	1				
5	1	1	0	1	0				
	(c)								

Directed graph

	1	2	3	4	5	6				
1	0	1	0	1	0	0				
2	0	0	0	0	1	0				
3	0	0	0	0	1	1				
4	0	1	0	0	0	0				
5	0	0	0	1	0	0				
6	0	0	0	0	0	1				
	(c)									

Graph attributes

- We often assign attributes to the vertices and/or edges
- Enables us to represent real-world phenomena (e.g., a map of cities)
- Common cases:
 - An (x,y) vector (usually real values) for each vertex that defines its position on a plane (**planar graphs**)
 - A weight (usually real values) for each edge. Weights can represent, among other things, the distance or similarity between neighboring vertices
 - A weight for each vertex
 - A string (i.e., name) for each vertex
- More exotic examples can include arbitrary data structures: lists of strings, arrays, even other graphs
- ullet In our pseudocode, we will use v.d to refer to the attribute d for the vertex v

Divide and conquer

- There are many strategies for designing algorithms
- The most basic is incremental
 - We iteratively add one element to our partial solution at a time until we have a complete solution
 - Example: insertion sort
- Divide and conquer is another common approach
 - Divide the problem into smaller instances of the same problem
 - **Conquer** the subproblems by solving them *recursively*
 - Base case: if a subproblem is small enough, solve it directly
 - Combine the solutions to the subproblems to solve the original problem
 - Example: merge sort

Insertion sort

Merge sort

Greedy algorithms

- Algorithms for optimizing a value (e.g., the minimum cost of a spanning tree) typically go through a sequence of steps, with a set of choices at each step
- An algorithm is greedy if, when faced with a set of possible actions, it always picks the one that looks best at the moment
 - It doesn't factor in how earlier choices influence later ones
- We make a *locally optimal choice* in the hope of getting a *globally optimal solution*

Greedy algorithms

Greedy algorithms work for problems that have:

- Optimal substructure
 - An optimal solution can be constructed efficiently from optimal solutions of its subproblems
 - Intuitively, the problem can be broken down into separate sub-problems
 - Also applies to dynamic programming
 - Example and counter-example:
 - ullet Let $p(C_1,C_2)$ be a path between two cities C_1 to C_2
 - Let $D(p(C_1, C_2))$ and $F(p(C_1, C_2))$ be the (minimum) costs of driving and flying, respectively
 - ullet Assume that p(Atlanta, Raleigh) includes Charlotte
 - Then:

$$\begin{split} D(p(\mathsf{Atlanta}, \mathsf{Raleigh})) &= \\ D(p(\mathsf{Atlanta}, \mathsf{Charlotte})) + D(p(\mathsf{Charlotte}, \mathsf{Raleigh})) \\ F(p(\mathsf{Atlanta}, \mathsf{Raleigh})) &\neq \\ F(p(\mathsf{Atlanta}, \mathsf{Charlotte})) + F(p(\mathsf{Charlotte}, \mathsf{Raleigh})) \end{split}$$

Greedy algorithms

Greedy algorithms work for problems that have:

Iterative optimality

- The current solution is optimal for the subset of the problem observed so far
- The best current choice may depend on previous choices, but not future ones
- Example:
 - Making change (with US coins) using the fewest number of coins
 - Algorithm: Keep picking the largest denomination, until you go over, then pick the next largest, etc.
 - 36 cents = 1 quarter + 1 dime + 1 penny (3 coins)

Dynamic programming

- **Dynamic programming** (DP) is a powerful optimization technique which breaks a problem into subproblems
 - Similar to divide-and-conquer, but DP caches intermediate results
 - Avoids solving the same subproblem twice
 - Similar to greedy algorithms, but applies to problems where we have to factor in the subsequent cost of an action
 - In the greedy case, we only care about the local, immediate cost
- Note: the term "programming" refers to scheduling, not code
- As in the phrases: "Today's reception has been programmed for 5:00pm" or "Get with the program"

Dynamic programming

Dynamic programming works for problems that have:

- Optimal substructure
 - An optimal solution can be constructed efficiently from optimal solutions of its subproblems
 - Intuitively, the problem can be broken down into separate sub-problems
 - Example and counter-example:
 - Let $p(C_1, C_2)$ be a path between two cities C_1 to C_2
 - Let $D(p(C_1, C_2))$ and $F(p(C_1, C_2))$ be the (minimum) costs of driving and flying, respectively
 - Assume that p(Atlanta, Raleigh) includes Charlotte
 - Then:

$$\begin{split} D(p(\mathsf{Atlanta},\mathsf{Raleigh})) &= \\ D(p(\mathsf{Atlanta},\mathsf{Charlotte})) + D(p(\mathsf{Charlotte},\mathsf{Raleigh})) \\ F(p(\mathsf{Atlanta},\mathsf{Raleigh})) &\neq \\ F(p(\mathsf{Atlanta},\mathsf{Charlotte})) + F(p(\mathsf{Charlotte},\mathsf{Raleigh})) \end{split}$$

Dynamic programming

- Dynamic programming works for problems that have:
 - Overlapping subproblems: A recursive algorithm has to solve the same subproblems over and over
 - The space of subproblems is *small*:
 - Typically polynomial with respect to the input size
 - For general problems, this space has **exponential** size
 - DP stores or caches the solution to each subproblem to avoid having to solve it again
 - Requires a lookup-table-type data structure to keep track of already solved subproblems
 - **Example:** Fibonacci numbers: f(n) = f(n-1) + f(n-2)
 - \bullet We can save a lot of calculations by solving each f(n-k) only once
 - \bullet For f(5) a recursive solution would compute:

```
\begin{split} f(5) &= f(4) + f(3) \\ &= (f(3) + f(2)) + (f(2) + f(1)) \\ &= ((f(2) + f(1)) + (f(1) + f(0))) + ((f(1) + f(0)) + f(1)) \\ &= (((f(1) + f(0)) + f(1)) + (f(1) + f(0))) + ((f(1) + f(0)) + f(1)) \end{split}
```

Dynamic programming vs. greedy approach

```
PRIM(G, w, r)
DIJKSTRA(G, w, s)
                                                             O = \emptyset
 INIT-SINGLE-SOURCE(G, s)
                                                             for each u \in G, V
 S = \emptyset
                                                                  u.kev = \infty
 for each vertex u \in G.V
                                                                  u.\pi = NIL
      INSERT(O, u)
                                                                  INSERT(O, u)
 while O \neq \emptyset
                                                             DECREASE-KEY(O, r, 0)
                                                                                              // r, key = 0
      u = \text{EXTRACT-MIN}(O)
                                                             while O \neq \emptyset
      S = S \cup \{u\}
                                                                  u = \text{EXTRACT-MIN}(O)
      for each vertex v \in G.Adi[u]
                                                                  for each v \in G.Adi[u]
          Relax(u, v, w)
                                                                       if v \in O and w(u, v) < v. key
          if v.d changed
               DECREASE-KEY(Q, v, v.d)
                                                                            v.\pi = u
                                                                            DECREASE-KEY (Q, v, w(u, v))
```

- Dijkstra's shortest-path and Prim's minimum-spanning-tree algorithm are virtually identical
- The only difference is in how we update a node's cost:

Dijkstra's:
$$v. d = u. d + w(u, v)$$

Prim's: $v. d = w(u, v)$

Historical note: Dijkstra actually rediscovered and published (1959)
 Prim's algorithm two years after Prim (1957) (and 29 years after the earliest discover Voitěck Jarník (1930))

Dynamic programming vs. greedy approach

• The updates:

encapsulate the difference between **dynamic programming** and a **greedy approach**

- **Greedy:** We only have to factor the local, current cost of an item (an edge, in this case)
- **Dynamic programming:** We have to factor the local cost + the best cost assuming we take that action
 - In this case, it is more intuitive to imagine going backwards (from v to s)
 - ullet u.d is the minimum cost of going from u to s
 - This is the best we can do, if we choose to first move from v to u

The C programming language

- When C was first introduced in 1972, it was considered a "high-level" language
 - Compared to assembler
 - By modern standards, it is rather low-level
- Has a few gotchas w.r.t. to higher-level languages (e.g., Python, Matlab, or even Java):
 - Manual memory allocation
 - No garbage collection
 - Liberal use of pointers
 - Variables and functions must be declared prior to use (e.g., in a header file)
 - Heavy use of macros (pre-compilation text replacement)
 - No built-in support for string operations, object orientation, etc.

Pointers

- When a variable is initialized, the operating system allocates it a specific memory location
- A pointer is a reference to the memory location of another variable
 - Used to change variables inside a function (reference parameters)
 - Used to remember a particular member of a group (such as an array)
- Pointers are usually much smaller than the data they point to

By Daniel B - de.wikibooks, CC BY-SA 3.0

Pointer arithmetic

- Pointers can be manipulated like other integers
 - Addition, subtraction, multiplication, etc.
- Pointers often point to the start of a data structure (e.g., an array)
- We usually add a constant to a pointer to access different parts of that structure
- Example: p = p + 1 accesses the adjacent memory location
- A point of caution: Trying to access memory locations outside of your program's valid area will result in a segmentation fault

Dynamic memory allocation

- Dynamic memory is allocated during the execution of the program
 - Its specific size is not known in advance
- Dynamic memory handling in C is manual
 - Like in a stick-shift car
- The programmer is responsible for requesting, allocating, and freeing up all dynamic memory
- Generally, through the standard library functions malloc and free
- A common source of bugs is to access memory before it is allocated or after it has been freed

Dynamic memory allocation

```
// Static memory allocation
int array [10];
// Dynamic memory allocation
// with error checking
int *array = malloc(size*sizeof(int));
if (array == NULL) {
  fprintf(stderr, "malloc_failed\n");
  return(-1);
// ... use the array
// Deallocate the memory
free (array);
```

Other nuances in C

- C has a preprocessor that manipulates the source code before handing it over to the compiler
 - Its main use is for replacing macros (basically text substitution)
 - Macros are often used for constants, e.g., #define PI 3.14
- Variables must be declared prior to use:
 - Unlike languages such as Python or Matlab
 - e.g. int x = 0; x = x + 5;
- Strings are just arrays of characters with a NULL (' $\0$ ') value at the end
 - e.g., "cat" is ['c','a','t','\0']
 - No standard methods for comparing, concatenating, etc.
 - Must use array manipulation
- Displaying variable values is awkward
 - You have to manually declare how printf() should format each variable
 - e.g., printf("This is a signed int: %d", signIntVar)

Parallel processing

- The goal of parallel processing is to execute a program faster by using multiple processors
- Typically, the processors are all of the same type
- The way the processors are interconnected is fundamental
 - Different types of connections lead to radically different types of parallel architectures
- In a parallel architecture, the processors are tightly interconnected
 - Usually via some form of shared memory
- In contrast, in a **distributed system** the processors can be heterogeneous and separated geographically

Parallel speedup

- ullet Let P be a computational problem with inputs of size n
- We denote the best-possible sequential (i.e., classic) complexity of P as $T^*(n)$
- Let A be a parallel algorithm that solves P in time $T_p(n)$ using p processors
- ullet Then, the **speedup** achieved by A is:

$$S_p(n) = \frac{T^*(n)}{T_p(n)}$$

- By construction, $S_p(n) \leq p$
- We would like $S_p(n) \approx p$
 - ullet i.e., each processor should do around 1/p of the work of a single one
- In practice, inefficiencies in concurrency, synchronization, communication, etc. reduce the actual speedup

Parallel efficiency

• The **efficiency** of a parallel algorithm A is given by:

$$E_p(n) = \frac{T_1(n)}{pT_p(n)}$$

- $T_1(n)$ is the running time of the parallel algorithm with a single processor
 - Not necessarily equal to $T^*(n)$
- Efficiency measures how much bang for our buck we get per processor
- Ideally, $E_n(n) \approx 1$
- Again, inefficiencies reduce this value in practice

Upper limit on running time

- ullet For a given input size, there is an upper limit $T_{\infty}(n)$ on how much we can speed up processing with more processors
 - ullet For example, if we are adding two vectors of length n, having more than n processors is of no use
- $T_p(n) \ge T_{\infty}(n)$, for all p
- Furthermore:

$$E_p(n) \le \frac{T_1(n)}{pT_{\infty}(n)}$$

• An algorithm's efficiency degrades quickly once we exceed $T_1(n)/T_{\infty}$

