VERİ SIKIŞTIRMA

Giriş-1

Prof.Dr. Banu DİRİ

Kaynaklar

■ Introduction to Data Compression, Khalid Sayood

 Digital Compression for Multimedia, J. Gibson, T. Berger, T. Lookabaugh

■ Data Compression, D.Salomon

Değerlendirme

Vize	%20
Seminer	%20
Ödev	%20
Final Projesi	%40

Ödev

Bir veya iki adet ödev verilecektir. Ödev teslim süresi verildiği tarihten iki hafta sonra teslim edilecektir.

Seminer

Veri Sıkıştırma alanı ile ilgili bir makale seçilecek Aralık ayında power point sunum eşliğinde anlatılacak Hazırlanılan konu ieee formatında bir rapor halinde yazılarak sunum günü teslim edilecek.

Proje

Veri Sıkıştırma alanı ile ilgili bir konu seçilecek Final haftasında kod üzerinden anlatımı yapılarak, projenin çıktısı gösterilecek Final sınav evrakı olarak proje raporu hazırlanarak online.yildiz.edu.tr üzerinden sisteme yüklenecek

Konular

- > Veri Sıkıştırma Nedir?
- > Hata Bulma ve Düzeltme
- Temel Teknikler (Sezgisel Yöntemler, Run Lenght Coding, Move-To-Front)
- Statik Kodlar (Prefix, Colomb)
- İstatistiksel Yöntemler (Shannon Fano, Huffman ve Türevleri, MNP ve Türevleri, Aritmetik, PPM Kodlama)

- Sözlüksel Yöntemler (LZ ve Türevleri)
- > Görüntü Sıkıştırma

Veri Sıkıştırma Nedir?

Bir input data stream (source stream, original raw data) yerden ve zamandan kazanmak amacı ile verinin boyutunu küçülterek bir başka data stream (output, compressed) çevirme işlemidir.

- Fixed Size Code
- Redundancy
- Variable Size Code

Fixed Size Code: Tüm sembollerin aynı bit uzunluğunda kodlanması

Variable Size Code: Sembollerin farklı bit uzunlukları ile kodlanması. Kullanım sayısı fazla olan semboller daha az bit ile kodlanırken, kullanım sayısı az olan semboller daha çok bit ile kodlanır.

Redundancy (Artıklık): Sıkıştırılmış veri içerisindeki fazlalık

Veri Sıkıştırmada Kullanılan Kavramlar

- Compressor / Encoder / Kodlayıcı
 Input stream ham veriyi sıkıştıran ve sıkıştırılmış veri ile output stream oluşturan algoritma
- Decompressor / Decoder / Kod Çözücü
 Kodlayıcının yaptığı işi ters yönde yapar
- Codec
 Encoder ve decoder'ı birlikte tanımlar
- Unencoded / Raw Data / Original Data
 Orijinal giriş verisi
- Encoded / Compressed
 Sikiştirilmiş veri

Non-adaptive Compression Method

Parametre ve işlemler belli tip veriler için geçerlidir (facsimile compression)

Adaptive Compression

İşlenmemiş her türlü veri üzerinde işlem yapar. Parametre ve işlemler değiştirilebilir

Semi-Adaptive Compression

İki adımda işlemler gerçekleştirilir. Önce veri üzerinden geçilerek tüm semboller için kullanım sıklıkları çıkarılır, sonrasında sıkıştırma işlemi gerçekleştirilir

Lossy / Lossless Compression

Lossy (kayıplı) sıkıştırmada sıkıştırılmış veri açıldığında orijinal veriye dönülemez. Ses ve görüntü sıkıştırmada kullanılır

Lossless (kayıpsız) sıkıştırmada sıkıştırılmış olan veri açıldığında orijinal halindedir. Doküman sıkıştırmada kullanılır

Symmetrical Compression

Compresor ve decompresor aynı algoritmayı ters yönde kullanırlar

Asymmetric Compression

Compresor ve decompresor farklı algoritma kullanır

Soru

ARŞİV uygulamaları

Kodlayıcının karışık ve uzun sürdüğü buna karşılık kod çözücünün basit ve hızlı çalıştığı sıkıştırma algoritmalarının tercih edildiği bir uygulama alanı ne olabilir?

Soru

Backup uygulamaları

Kodlayıcının basit ve kısa sürdüğü buna karşılık kod çözücünün karışık ve yavaş çalıştığı sıkıştırma algoritmalarının tercih edildiği bir uygulama alanı ne olabilir?

Soru

İyi bir sıkıştırma performansına sahip bir algoritmanın önemli olduğu fakat kodlama ve kod çözme hızının önemli olmadığı bir duruma örnek veriniz.

Stream Mode / Block Mode

Stream mode: Veri byte byte çekilir ve üzerinde işlem yapılır

Block mode : Veri bloklar halinde çekilir ve her blok üzerinde farklı algoritma çalıştırılabilir

Bits per Chars

Sıkıştırılan her bir sembolün ortalama bit uzunluğu

Bits per Pixels

Sıkıştırılan her bir pixel in ortalama bit uzunluğu

Sıkıştırma Oranı

compression_ratio = size of the output stream /size of the input stream

Sıkıştırma Performansı (yüzdesel)

100* (1-compression_ratio)

Corpus

Calgary, Canterbury, UCI

• Root Mean Square Error (e_{RMS})

I(r,c) orijinal resim, I'(r,c) decompress edilmiş resim

$$error(r,c) = I'(r,c) - I(r,c)$$

Image size MxN Sıkıştırıldıktan sonraki toplam hata

total error =
$$\sum_{r=0}^{M-1} \sum_{c=0}^{N-1} [I'(r,c) - I(r,c)]$$

Root Mean Square Error
$$e_{RMS} = \sqrt{\frac{1}{N^2} \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} [I'(r,c) - I(r,c)]^2}$$

Signal Noise Ratio (SNR)

$$SNR_{RMS} = \sqrt{\frac{\sum_{r=0}^{M-1}\sum_{c=0}^{N-1}[I'(r,c)]^2}{\sum_{r=0}^{M-1}\sum_{c=0}^{N-1}[I'(r,c)-I(r,c)]}}$$

$$SNR_{PEAK}$$
=PSNR = 10 $log_{10} \frac{(L-1)^2}{\frac{1}{N^2} \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} [I'(r,c)-I(r,c)]^2}$

L : renk sayısı