ERROR

ANALYSIS

Error Metrics

- actual $A = (a_1, \dots a_n)$
- predicted $P = (p_1, \dots, p_n)$
- max absolute error

$$\max(|a_1-p_1|,\ldots,|a_n-p_n|)$$

• median absolute error

$$median(|a_1-p_1|,\ldots,|a_n-p_n|)$$

Error Metrics (cont'd)

• mean absolute error (MAE)

$$\frac{1}{n} \sum_{i=1}^{n} |a_i - p_i|$$

• root mean squared error (RMSE)

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(a_i-p_i)^2}$$

\overline{i}	1	2	3	4	5
a_i	6	8	7	8	6
p_i	4	7	4	4	3
$ a_i - p_i $	2	1	3	4	3
$(a_i - p_i)^2$	4	1	9	16	9

- max absolute error: 4
- median absolute error: 3

Error Computation (cont'd)

mean absolute error

$$\frac{1}{n} \sum_{i=1}^{n} |a_i - p_i| = \frac{13}{5} = 2.6$$

• root mean squared error

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(a_i - p_i)^2} = \sqrt{\frac{39}{5}} \approx 2.8$$

Evenly Distributed Errors

\overline{i}	1	2	3	4	5
a_i	6	8	7	8	6
p_i	5	9	6	7	5
$ a_i - p_i $	1	1	1	1	1
$(a_i - p_i)^2$	1	1	1	1	1

$$MAE = RMSE = 1$$

Small Error Variance

$$MAE = \frac{7}{5} = 1.40$$

$$RMSE = \sqrt{\frac{11}{5}} \approx 1.48$$

Large Error Outlier

MAE =
$$\frac{26}{5} = 5.2$$

RMSE = $\sqrt{\frac{410}{5}} \approx 9.06$

MAE vs. RMSE

- \bullet MAE \leq RMSE
- RMSE \leq MAE $\cdot \sqrt{n}$
- (RMSE MAE) \uparrow as $n \uparrow$
- MAE: easy to interpret
- RMSE: no absolute values