Paths of analysis* L5 DIA

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL COEF*FGI COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

- 1. trans-Propenylboronic acid available at Sigma-Aldrich
- 2. 3-bromo-2,5-dihydrofuran-2-one available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C1 = CCOC1 = O$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24937

2.1.2 Diels-Alder

Substrates:

1. Calcium carbide - available at Sigma-Aldrich

 $2. \ \mathrm{C/C}{=}\mathrm{C/C1}{=}\mathrm{CCOC1}{=}\mathrm{O}$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

 $\textbf{Typical conditions:} \ H2O. MeOH. EtOH. is ooct ane$

Protections: none

 $\textbf{Reference:} \ \ 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3702(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)40:1000(20020517)40:100$

Z

2.1.3 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

 $1. \ \, \text{4-Iodotoluene -} \quad \textit{available at Sigma-Aldrich}$

2. Acetyl chloride - available at Sigma-Aldrich

3. CC1C=CC2COC(=O)C2=C1

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C12C}(=\mathrm{O})\mathrm{OCC1C} = \mathrm{CC}(\mathrm{C})\mathrm{C2c1ccc}(\mathrm{C})\mathrm{cc1}$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.2 Path 2

Score: 76.25

Figure 2: Outline of path 2

2.2.1 Steglich Esterification

Substrates:

1. sorbic alcohol

 $2. \ \, 3\text{-p-tolylacrylic acid} - \quad \, \underline{SYNTHONIXCORPORATION}$

Products:

 $1. \ \ CC=CC=CCOC(=O)C=Cc1ccc(C)cc1$

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1002/anie.197805221

2.2.2 Diels-Alder

Substrates:

 $1. \ \mathrm{CC}{=}\mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{O})\mathrm{C}{=}\mathrm{Cc1ccc}(\mathrm{C})\mathrm{cc1}$

Products:

1. Cc1ccc(C2C(C)C=CC3COC(=O)C32)cc1

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

2.2.3 Claisen Condensation

Substrates:

1. Methyl acetate - available at Sigma-Aldrich

 $2. \ Cc1ccc(C2C(C)C=CC3COC(=O)C32)cc1$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C}(=\mathrm{O})\mathrm{O}\mathrm{C}\mathrm{C}1\mathrm{C}=\mathrm{CC}(\mathrm{C})\mathrm{C}2\mathrm{c}1\mathrm{ccc}(\mathrm{C})\mathrm{cc}1$

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.3 Path 3

Score: 76.25

Figure 3: Outline of path 3

2.3.1 Steglich Esterification

Substrates:

1. Lithium acetoacetate - available at Sigma-Aldrich

2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)CC(C)=O

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.3.2 Knoevenagel Condensation

Substrates:

- 1. CC=CC=CCOC(=O)CC(C)=O
- 2. p-Tolualdehyde available at Sigma-Aldrich

Products:

$1. \ CC = CC = CCOC(=O)C(=Cc1ccc(C)cc1)C(C) = O$

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.3.3 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1ccc(C)cc1)C(C)=O$

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C)cc1

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.4 Path 4

Score: 76.25

Figure 4: Outline of path 4

2.4.1 Acid catalyzed transesterification

Substrates:

1. sorbic alcohol

2. methyl 3-(p-tolyl)acrylate -SYNTHONIXCORPORATION

Products:

 $1. \ CC = CC = CCOC(=O)C = Cc1ccc(C)cc1$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

2.4.2 Diels-Alder

Substrates:

 $1. \ \mathrm{CC}{=}\mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{O})\mathrm{C}{=}\mathrm{Cc1ccc}(\mathrm{C})\mathrm{cc1}$

Products:

1. Cc1ccc(C2C(C)C=CC3COC(=O)C32)cc1

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

2.4.3 Claisen Condensation

Substrates:

1. Methyl acetate - available at Sigma-Aldrich

 $2. \ Cc1ccc(C2C(C)C=CC3COC(=O)C32)cc1$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C}(=\mathrm{O})\mathrm{O}\mathrm{C}\mathrm{C}1\mathrm{C}=\mathrm{CC}(\mathrm{C})\mathrm{C}2\mathrm{c}1\mathrm{ccc}(\mathrm{C})\mathrm{cc}1$

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.5 Path 5

Score: 84.06

Figure 5: Outline of path 5

2.5.1 Steglich Esterification

Substrates:

1. 3-(4-methylphenyl)-2-oxopropanoic acid - available at Sigma-Aldrich

2. sorbic alcohol

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=O)Cc1ccc(C)cc1$

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.5.2 Corey-Seebach

Substrates:

 $1. \ CC{=}CC{=}CCOC({=}O)C({=}O)Cc1ccc(C)cc1 \\$

2. 2-Methyl-1,3-dithiane - available at Sigma-Aldrich

Products:

 $1. \ CC = CC = CCOC(=O)C(O)(Cc1ccc(C)cc1)C(C) = O$

Typical conditions: BuLi.THF.-30C.HgO.H2O.THF

Protections: none

Reference: 10.1055/s-1977-24412

Retrosynthesis ID: 11199

2.5.3 Elimination of tertiary alcohols

Substrates:

1. CC=CC=CCOC(=O)C(O)(Cc1ccc(C)cc1)C(C)=O

Products:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccc(C)cc1)C(C) = O$

 $\textbf{Typical conditions:} \ \, \text{TsOH.toluene.reflux}$

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1016/j.bmc.2008.07.050 and 10.1155/2010/604549 and

10.1016/j. steroids. 2004. 11.008

Retrosynthesis ID: 24119

2.5.4 Diels-Alder

Substrates:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccc(C)cc1)C(C) = O$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C}(=\mathrm{O})\mathrm{O}\mathrm{C}C1\mathrm{C}=\mathrm{CC}(\mathrm{C})\mathrm{C}2\mathrm{c}1\mathrm{ccc}(\mathrm{C})\mathrm{cc}1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t