The number of spanning trees

longhuan@sjtu.edu.cn

树的刻画

- 树(Tree): 连通无环图。
- 树的例子:

叶子(leaf)

- 叶子(leaf): 图G中度数为1的顶点被称为叶子或终点(end-vertex)。
- 引理:对任意树T,如果 $|T| \ge 2$,则T必含有至少两个终点。
- 证明: 取T中的一条极长路径P

$$P \quad \xrightarrow{e_1} \quad ----- \quad \xrightarrow{e_t} \quad v_{t-1} \quad v_t$$

$$\deg_T(v_0) = \deg_T(v_t) = 1$$

树的基本性质

- 树生长引理(Tree-growing lemma): 对图G 及图G上的叶子结点v而言,如下命题等价
 - I. 图G是树。
 - II. 图G-v是树。

证明:

树生长引理的意义: 在归纳证明中的应用。

树的等价刻画

- 对图G = (V, E)而言,以下陈述等价
 - I. 图G是树。
 - II. 路径唯一:对任意两点 $u,v \in V$,存在从u到v的唯一路径。
 - III. 最小连通图: G是连通图,且去掉任意一条边后都成为非连通图。
 - IV. 最大无环图: G不含环,但增加任何一条边所得到的图G + e(其中 $e \in \binom{V}{2}\setminus E$)中含有一个环。
 - V. Euler方程: G是连通图,且|V| = |E| + 1。

树的等价刻画

- 对图G = (V, E)而言,以下陈述等价
 - L. 图G是树。
 - II. 路径唯一:对任意两点 $u,v \in V$,存在从u到v的唯一路径。
 - III. 最小连通图: G是连通图,且去掉任意一条边后都成为非连通图。
 - IV. 最大无环图: G不含环,但增加任何一条边所得到的图G + e(其中 $e \in \binom{V}{2}$ \E)中含有一个环。
 - V. Euler方程: G是连通图,且|V| = |E| + 1。

树的等价刻画

- 对图G = (V, E)而言,以下陈述等价
 - L 图G是树。
 - V. Euler方程: G是连通图,且|V| = |E| + 1。
- 证明: (I.⇔V.)
 - 充分性: 归纳法(用树生长引理,对顶点个数做归纳)。
 - 必要性: (归纳法)考虑连通图G满足|V| = |E| + 1 ≥ 2。
 - ▶由握手定理,图G中顶点度数之和为2|V|-2。故图G中必存在度数小于2的顶点,且图G是连通图,任何点度数非0,故存在度数为1的点,设为v。
 - ▶考虑G' = G v。易验证归纳假设条件成立,根据归纳假设G'是树。
 - ▶显然, G'是树蕴含G是树。

问题: 某小镇一共有n座 房子,某天小镇上的人计 划在房子下面修建紧急逃 生地道, 使得所有房子从 地下最后是连通的,同时 出于安全考虑地道图中不 允许有环。问有多少种挖 掘地道的方案?

树的计数

• 问题抽象: *n*个不同顶点所能构成的树的个数。

树的计数

- 问题抽象: *n*个不同顶点所能构成的树的个数。
- 两棵树T,T'是"相等"的当且仅当树T的边 集与树T'的边集相等。

生成树

- 生成树(Spanning tree): 对连通图G = (V, E),生成树是包含G的所有顶点且为树的子图。
- 上述问题最终抽象为: 设 $V = \{1,2,...,n\}$, $n \ge 2$, 问 K_n 的生成树一共有多少种?

• n = 2: 1 mathred 1

1 • 2

• n = 3: 3种

- n = 4: ?种
 - 星形: 4种

-路径:
$$\frac{4!}{2}$$
 = 12 种

- n = 4: 16 π
 - 星形: 4种

-路径: $\frac{4!}{2}$ = 12 种

16

- *n* = 5: ?种
 - 星形: 5 种

-路径:
$$\frac{5!}{2} = 60$$
种

$$-T形: 5 \cdot 4 \cdot 3 = 60$$
种

•
$$n = 5$$
: 125种

- 星形: 5 种

-路径:
$$\frac{5!}{2} = 60$$
种

$$-T形: 5 \cdot 4 \cdot 3 = 60$$
种

• *n* = 6: ?种

• *n* = 6: ?种

-星形: 6种, 路径: $\frac{6!}{2}$ = 360 种

• *n* = 6: ?种

-星形: 6种, 路径: $\frac{6!}{2}$ = 360 种

-+字架形: $6 \times 5 \times 4 = 120$ 种

$$-$$
星形: 6种, 路径: $\frac{6!}{2}$ = 360 种

$$-+$$
字架形: $6 \times 5 \times 4 = 120$ 种

$$-$$
双箭头形: $\binom{6}{2} \times \binom{4}{2} = 90$ 种

-+字架形: $6 \times 5 \times 4 = 120$ 种

-双箭头形: $\binom{6}{2} \times \binom{4}{2} = 90$ 种

- 单箭头形: $6 \times 5 \times 4 \times 3 = 360$ 种

$$-$$
星形: 6种, 路径: $\frac{6!}{2}$ = 360 种

-+字架形: $6 \times 5 \times 4 = 120$ 种

-双箭头形: $\binom{6}{2} \times \binom{4}{2} = 90$ 种

- 单箭头形: $6 \times 5 \times 4 \times 3 = 360$ 种

- 雨棚形: $\frac{6\times5\times4\times3\times2}{2}$ = 360 种

$$-$$
星形: 6种, 路径: $\frac{6!}{2}$ = 360 种

-+字架形: $6 \times 5 \times 4 = 120$ 种

-双箭头形: $\binom{6}{2} \times \binom{4}{2} = 90$ 种

- 单箭头形: $6 \times 5 \times 4 \times 3 = 360$ 种

- 雨棚形: $\frac{6\times5\times4\times3\times2}{2}$ = 360 种

含n个顶点的树

顶点个数	树的种数	
1	1	
2	1	
3	3	
4	16	
5	125	
6	1296	

含n个顶点的树

顶点个数	树的种数
1	$1=1^{-1}$
2	$1=2^{0}$
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	$1296 = 6^4$

• Caley 定理(Caley's formula): n个项点能构成的不同树一共有 n^{n-2} 种。

A proof via score

Proposition. Let $d_1, d_2, ..., d_n$ be positive integers summing up to 2n - 2. Then the number of spanning trees of the graph K_n in which the vertex i has degree exactly d_i for all i = 1, 2, ..., n equals

$$\frac{(n-2)!}{(d_1-1)! (d_2-1)! \cdots (d_n-1)!}.$$

Proof. (By induction on n) T: the set of STs of K_n with given degrees.

- n = 1,2, the proposition holds trivially.
- n > 2: there must exist an i with $d_i = 1$. w.l.o.g. $d_n = 1$.
- For $1 \le i \le n-1$, $T_i \subseteq T$, where T_i is the STs with $\{i,n\} \in E$
- Delete v_n from each tree in T_i to get T_i' : STs of K_{n-1} with degrees $d_1, d_2, \dots d_{i-1}, d_i 1, d_{i+1}, \dots, d_{n-1}$.

A proof via score

Proposition. Let $d_1, d_2, ..., d_n$ be positive integers summing up to 2n - 2. Then the number of spanning trees of the graph K_n in which the vertex i has degree exactly d_i for all i = 1, 2, ..., n equals

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}.$$

Proof. (Continue)

•
$$|T_{i}| = |T'_{i}| = \frac{(n-3)!}{(d_{1}-1)!\cdots(d_{i-1}-1)!(d_{i}-2)!(d_{i+1}-1)!\cdots(d_{n-1}-1)!}$$

$$= \frac{(n-3)!(d_{i}-1)}{(d_{1}-1)!(d_{2}-1)!\cdots(d_{n-1}-1)!}$$

$$|T| = \sum_{i=1}^{n} |T_{i}| = \sum_{i=1}^{n-1} \frac{(n-3)!(d_{i}-1)}{(d_{1}-1)!(d_{2}-1)!\cdots(d_{n-1}-1)!} = \cdots$$

A proof via score

Proposition. Let $d_1, d_2, ..., d_n$ be positive integers summing up to 2n - 2. Then the number of spanning trees of the graph K_n in which the vertex i has degree exactly d_i for all i = 1, 2, ..., n equals

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}.$$

Finally

$$|T(K_n)| = \sum_{\substack{d_1, d_2, \dots, d_n \ge 1 \\ d_1 + d_2 + \dots + d_n = 2n - 2}} \frac{(n-2)!}{(d_1 - 1)! (d_2 - 1)! \dots (d_n - 1)!}$$

$$= \sum_{\substack{k_1 + k_2 + \dots + k_n = n - 2 \\ k_1, \dots, k_n \ge 0}} \frac{(n-2)!}{k_1! k_2! \dots k_n!}$$

$$= \underbrace{(1 + 1 + \dots + 1)^{n-2}}_{n-2} = \underbrace{n^{n-2}}_{n-2}.$$

A proof with Vertebrates

有限域上的函数与函数图

Function graph

$$f \colon V \to V$$

v	1	2	3	4	5	6
f(v)	3	4	5	1	2	2

函数图与函数一一对应。 故|V| = n时共有 n^n 种不同 的函数图。

脊椎动物(Vertebrate)骨骼标本

- 骨骼标本: 三元组(T,h,b)被称为骨骼标本 若其中(1) T是一棵树; (2) h, $b \in V$ 。 h被称 为颈椎骨, b被称为尾椎骨。
- 注意: *h*, *b*必须是树上的节点,除此外没有任何限制(可重合)。

- ① 如果|V| = n,用 T_n 表示V上的树的所有可能棵数。
- ② 每一棵树T对应 n^2 种骨骼标本(T,h,b)。
- ③ 骨骼标本与V上的函数图一一对应。有 n^n 种。
- ④ 根据②③: $T_n = \frac{n^n}{n^2} = n^{n-2}$

• 脊椎(Spine): 出现在从颈椎骨到尾椎骨的路径上的点被称为脊椎。

• 脊椎(Spine): 出现在从颈椎骨到尾椎骨的路径上的点被称为脊椎。

v						
f(v)	8	3	2	19	4	6

• 脊椎(Spine): 出现在从颈椎骨到尾椎骨的路径上的点被称为脊椎。

v	2	3	4	6	8	19
f(v)	8	3	2	19	4	6

• 脊椎(Spine): 出现在从颈椎骨到尾椎骨的路径上的点被称为脊椎。

\boldsymbol{v}	2	3	4	6	8	19
f(v)	8	3	2	19	4	6

骨骼标本与V上的函数图一一对应

- V上的骨骼标本 \longrightarrow 函数 $f: V \to V$
- 函数 $f: V \to V \longrightarrow V$ 上的骨骼标本

\boldsymbol{v}	1	3	4	7	8
f(v)	8	7	1	3	4

v	1	3	4	7	8
f(v)	8	7	1	3	4

_ v	1	3	4	7	8
f(v)	8	7	1	3	4

- ① 如果|V| = n,用 T_n 表示V上的树的所有可能棵数。
- ②每一棵树T对应 n^2 种骨骼标本(T,h,b)。
- ③ 骨骼标本与V上的函数图一一对应。故有 n^n 种。
- ④ 根据②③: $T_n = \frac{n^n}{n^2} = n^{n-2}$

Proof working with determinants

$$G = (V, E)$$
, where $V = \{1, 2, ..., n\}$ $n \ge 2$, $E = \{e_1, e_2, ..., e_m\}$

Define $n \times n$ matrix Q -- the Laplace matrix for G:

$$q_{ii} = \deg_{\mathbf{G}}(i) \qquad i = 1, 2, \dots, n$$

$$q_{ij} = \begin{cases} -1 & \{i,j\} \in E(G) \\ 0 & \text{other wise} \end{cases} \quad i,j = 1,2,\dots,n, i \neq j.$$

$$Q = \begin{bmatrix} \deg(1) & -1 & \cdots & 0 \\ -1 & \deg(2) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \deg(n) \end{bmatrix}_{n \times n}^{i}$$

 Q_{ij} denote the $(n-1) \times (n-1)$ matrix arising from the matrix Q by deleting the ith row and jth column.

Application:
$$G = K_n$$

$$Q = \begin{bmatrix} n & 1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}_{n \times n}$$

$$Q_{11} = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}_{(n-1)\times(n-1)}$$

$$\det(Q_{11}) = n^{n-2}$$

- Proof. (By induction) We show that the theorem holds for multigraphs (i.e., for graphs with multiple edges, no self-loops).
- For an edge
- 1 G e Graph $(V, E \setminus \{e\})$
- \bigcirc G: e contraction
 - I. Remove the edge *e*
 - II. Merge the endpoints of e
 - III. Remove self-loops

Proof. For an edge

② G: e

$$T(G) = T(G - e) + T(G:e)$$

• Proof. For an edge $e \in G$

$$T(G) = T(G - e) + T(G : e)$$
 $e = \{1,2\}$

$$e = \{1,2\}$$

Q': the Laplacian of G - e

Q''': the Laplacian of G: e

 $Q'_{11} = Q_{11}$ except the element in the upper left corner minus 1.

$$Q''_{11} = Q_{11,22}.$$

• Proof. For an edge $e \in G$

$$T(G) = T(G - e) + T(G : e)$$
 $e = \{1,2\}$

$$e = \{1,2\}$$

$$Q''_{11} = Q_{11,22}.$$

$$Q_{11} = \begin{pmatrix} 5 & 0 & -1 & -1 \\ 0 & 2 & -1 & 0 \\ -1 & -1 & 3 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \qquad Q_{11}'' = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Q_{11}'' = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- Proof. By induction on m that the results holds for every multigraph G with at most m edges.
- Base: m=0 works.
- Vertex 1 is incident to at least one edge. Fix one of them and call it e. Numbering the other end of e to be 2. By induction

$$T(G) = T(G - e) + T(G : e)$$

= $\det Q'_{11} + \det Q''_{11}$
= $\det Q'_{11} + \det Q_{11,22}$
= $\det Q_{11}$