Package 'HTGM2D'

April 7, 2025

Version 1.0

Date 2025-04-03

Title Two Dimensional High Throughput 'GoMiner'

Author Barry Zeeberg [aut, cre]

Depends R (>= 4.2.0)

Imports minimalistGODB, GoMiner, HTGM, grDevices, stats, gplots, jaccard

LazyData true

LazyDataCompression xz

Description The Gene Ontology (GO) Consortium https://geneontology.org/ organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as 'GoMiner' (see Zee-

Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Microarray studies are usually analyzed with BP, whereas proteomics researchers often prefer CC. To capture the benefit of both of those ontologies, I developed a two-dimensional version of 'High-Throughput GoMiner' ('HTGM2D'). I generate a 2D heat map whose axes are any two of BP, MF, or CC, and the value within a picture element of the heat map reflects the Jaccard metric p-value for the number of genes in common for the corresponding pair.

License GPL (\geq 2)

Encoding UTF-8

VignetteBuilder knitr

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2025-04-07 16:10:08 UTC

2 catGenes

Contents

	catGenes
	cluster52
	compareGoMinerHTGM2D
	GOGOA3small
	Housekeeping_Genes
	HTGM2D
	HTGM2Ddriver
	Jaccard
	JaccardHeatMap
	x_jmat
	x_1
	x_m1
	x_m2
	x_mat
Index	
catG	enes catGenes

Description

match up genes in gene list with categories in GOGOA3 database

Usage

```
catGenes(geneList, GOGOA3, ontology)
```

Arguments

geneList character vector of user-supplied genes of interest

GOGOA3 return value of subsetGOGOA()

ontology c("molecular_function","cellular_component","biological_process")

Value

returns a matrix of 1's and 0's indicating the presence or absence of gene-category pairs

Examples

```
#load("data/GOGOA3small.RData")
geneList<-cluster52
m1<-catGenes(geneList,GOGOA3small,"biological_process")</pre>
```

cluster52 3

cluster52

HTGM2D data set

Description

HTGM2D data set

Usage

```
data(cluster52)
```

compareGoMinerHTGM2D

compareGoMinerHTGM2D

Description

compare the results of GoMiner and HTGM2D

Usage

```
compareGoMinerHTGM2D(subd, mat, 1, ontologies)
```

Arguments

subd character string full path name to the output subdirectory

mat return value of Jaccard()

1 of return values of GoMiner()

ontologies character vector of 2 ontologies e.g. c("biological_process", "cellular_component")

Value

returns no value, but saves files that list category difference between GoMiner and HTG2D

Examples

```
ontologies<-c("biological_process","cellular_component")
#load("data/x_1.Rdata")
#load("data/x_mat.Rdata")
subd<-tempdir()
compareGoMinerHTGM2D(subd,x_mat,x_1,ontologies)</pre>
```

4 HTGM2D

GOGOA3small

HTGM2D data set

Description

HTGM2D data set

Usage

data(GOGOA3small)

Housekeeping_Genes

HTGM2D data set

Description

HTGM2D data set

Usage

data(Housekeeping_Genes)

HTGM2D

HTGM2D

Description

run 2D version of GoMiner

Usage

```
HTGM2D(dir, geneList, ontologies, GOGOA3)
```

Arguments

dir character string full path name to the directory acting as result repository

geneList character vector of user-supplied genes of interest

ontologies character vector of 2 ontologies e.g. c("biological_process", "cellular_component")

GOGOA3 return value of subsetGOGOA()

Value

returns the return value of Jaccard()

HTGM2Ddriver 5

Examples

```
## Not run:
# this example takes too long to run, and
# GOGOA3.RData is too large to include in the R package
# so I need to load it from a file that is not in the package.
# Since this is in a file in my own file system, I could not
# include this as a regular example in the package.
# This example is given in full detail in the package vignette.
# You can generate GOGOA3.RData using the package 'minimalistGODB'
# or you can retrieve it from https://github.com/barryzee/GO
# load("~/GODB_RDATA/GOGOA3.RData")
subd<-tempdir()
geneList<-cluster52
ontologies<-c("biological_process", "cellular_component")
mat<-HTGM2D(subd,geneList,ontologies,GOGOA3)
## End(Not run)</pre>
```

HTGM2Ddriver

HTGM2Ddriver

Description

driver to invoke GoMiner and HTGM2D, and compare the results

Usage

```
HTGM2Ddriver(
  dir,
  geneList,
  ontologies,
  GOGOA3,
  enrichThresh = 2,
  countThresh = 5,
  fdrThresh = 0.1,
  nrand = 100
)
```

Arguments

dir character string full path name to the directory acting as result repository

geneList character vector of user-supplied genes of interest

ontologies character vector of 2 ontologies e.g. c("biological_process", "cellular_component")

GOGOA3 return value of subsetGOGOA()

enrichThresh numerical acceptance threshold for enrichment passed to GoMiner numerical acceptance threshold for gene count passed to GoMiner

6 Jaccard

fdrThresh numerical acceptance threshold for fdr passed to GoMiner nrand integer number of randomizations passed to GoMiner

Value

returns no value, but saves hyperlinked SVG heatmap files to a results directory

Examples

```
## Not run:
# this example takes too long to run, and
# GOGOA3.RData is too large to include in the R package
# so I need to load it from a file that is not in the package.
# Since this is in a file in my own file system, I could not
# include this as a regular example in the package.
# This example is given in full detail in the package vignette.
# You can generate GOGOA3.RData using the package 'minimalistGODB'
# or you can retrieve it from https://github.com/barryzee/GO
# load("~/GODB_RDATA/GOGOA3.RData")
geneList<-cluster52
ontologies<-c("biological_process","cellular_component")
dir<-tempdir()
HTGM2Ddriver(dir,geneList,ontologies,GOGOA3,enrichThresh=2,countThresh=5,fdrThresh=0.10,nrand=100)
## End(Not run)</pre>
```

Jaccard Jaccard

Description

create the heat map data that is needed as input to JaccardHeatMap()

Usage

```
Jaccard(dir, m1, m2, thresh1 = 2, thresh2 = 3, B = 100)
```

Arguments

dir	character string full pathname to the directory acting as result repository
m1	return value of catGenes
m2	return value of catGenes
thresh1	integer acceptance threshold for the number of genes in a cat
thresh2	integer acceptance threshold for the number of common genes in 2 cats
В	integer a total bootstrap iteration

JaccardHeatMap 7

Value

returns a numerical matrix containing number of genes and associated p value in the intersection of 2 categories

Examples

```
#load("data/x_m1.RData")
#load("data/x_m2.RData")
mat<-Jaccard(dir=tempdir(),x_m1,x_m2)</pre>
```

JaccardHeatMap

JaccardHeatMap

Description

use the Jaccard metric to construct 2D heat map

Usage

```
JaccardHeatMap(dir, mat)
```

Arguments

dir character string containing path name of output directory

mat return value of Jaccard()

Value

returns a Jaccard matrix of cat1 vs cat2 FDR, and also saves hyperlinked SVG heatmap files to a results directory

Examples

```
#load("data/x_jmat.RData")
dir<-tempdir()
jHeatMap<-JaccardHeatMap(dir,x_jmat)</pre>
```

 x_{jmat}

HTGM2D data set

Description

HTGM2D data set

Usage

```
data(x_jmat)
```

8 x_mat

HTGM2D data set x_1 Description HTGM2D data set Usage $data(x_1)$ HTGM2D data set x_m1 Description HTGM2D data set Usage $data(x_m1)$ x_{m2} HTGM2D data set Description HTGM2D Usage $data(x_m2)$

HTGM2D data set

Description

 x_{mat}

HTGM2D

Usage

data(x_mat)

Index

```
catGenes, 2
cluster52, 3
compareGoMinerHTGM2D, 3

GOGOA3small, 4

Housekeeping_Genes, 4
HTGM2D, 4
HTGM2Ddriver, 5

Jaccard, 6
JaccardHeatMap, 7

x_jmat, 7
x_1, 8
x_m1, 8
x_m2, 8
x_mat, 8
```