

The classification of τ -tilting modules over algebras of type D_n

Hanpeng Gao¹

Accepted: 30 November 2021 / Published online: 22 July 2022 © Akadémiai Kiadó, Budapest, Hungary 2022

Abstract

Let Λ be an algebra whose quiver is

$$D_n: 1 \to 2 \to \cdots \to n-2 \xrightarrow{n-1} n$$

In this paper, we classify the τ -tilting modules over Λ when $l(P_1) \le n-2$. Moreover, the following recurrence formula for the number of τ -tilting Λ -modules holds:

$$|\tau - \operatorname{tilt} \Lambda| = \sum_{i=1}^{l(P_1)} C_{i-1} \cdot |\tau - \operatorname{tilt} \Lambda/\langle e_{\leq i} \rangle|,$$

where $e_{\leq i} := e_1 + e_2 + \dots + e_i$ and $C_i = \frac{1}{i+1} \binom{2i}{i}$ is the *i*th Catalan number.

Keywords τ -tilting modules · Support τ -tilting modules · Nakayama algebras

Mathematics Subject Classification $16G10 \cdot 16G20$

1 Introduction

Adachi et al. [1] introduced the concept of support τ -tilting modules over finite-dimensional algebras as a generalization of tilting modules. The support τ -tilting modules are in bijection with some important objects in representation theory including functorially finite torsion classes introduced in [5], 2-term silting complexes introduced in [11], cluster-tilting objects in the cluster category introduced in [6] and left finite semibricks introduced in [3]. Therefore, it is important to calculate the number of support τ -tilting modules over a given algebra.

This work was partially supported by NSFC (Grant No. 11971225).

School of Mathematical Sciences, Anhui University, Hefei 230601, China

For a hereditary algebra, the τ -tilting modules are exactly the tilting modules and the support τ -tilting modules are exactly the support tilting modules. For Dynkin type algebras Δ_n , these numbers were first calculated in [7] via cluster algebras, and later in [12] via representation theory (see the following table).

A finite-dimensional algebra is Nakayama if and only if its quiver is one of the following:

$$A_n: 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow n$$
 $\widetilde{A}_n: 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow n$

Δ_n	\mathbb{A}_n	\mathbb{D}_n	\mathbb{E}_6	\mathbb{E}_7	\mathbb{E}_8
$ \operatorname{tilt}\Delta_n $ $ s\text{-tilt}\Delta_n $	$\frac{\frac{1}{n+1} \binom{2n}{n}}{\frac{1}{n+2} \binom{2n+2}{n+1}}$	$\begin{array}{c} \frac{3n-4}{2n-2} \binom{2n-2}{n-2} \\ \frac{3n-2}{2n-1} \binom{2n-1}{n-1} \end{array}$	418 833	2431 4160	17342 25080

see [4, V.3.2]. Throughout the paper, let

$$\Lambda_n^r = K A_n / \text{rad}^r$$
 and $\widetilde{\Lambda}_n^r = K \widetilde{A}_n / \text{rad}^r$.

Moreover, $t_r(n)$ and $\tilde{t}_r(n)$ denote the number of τ -tilting modules over Λ_n^r and $\tilde{\Lambda}_n^r$, $s_r(n)$ and $\tilde{s}_r(n)$ denote the number of support τ -tilting modules over Λ_n^r and $\tilde{\Lambda}_n^r$, respectively. The following recurrence relations can be found in [2, 3, 9]:

$$t_r(n) = \sum_{i=1}^r C_{i-1} \cdot t_r(n-i), \qquad s_r(n) = 2 \cdot s_r(n-1) + \sum_{i=2}^r C_{i-1} \cdot s_r(n-i),$$

$$\tilde{t}_r(n) = \sum_{i=1}^r C_{i-1} \cdot \tilde{t}_r(n-i), \qquad \tilde{s}_r(n) = 2 \cdot \tilde{s}_r(n-1) + \sum_{i=2}^r C_{i-1} \cdot \tilde{s}_r(n-i),$$

where $C_i = \frac{1}{i+1} {2i \choose i}$ is the *i*th Catalan number. (The four formulas hold for all $n \ge 1$ and $1 \le r \le n$. Moreover, the formulas for $t_r(n)$ and $s_r(n)$ additionally hold for all $r \ge n$ as long as we set $t_r(n) := 0$, $s_r(n) := 0$ for n < 0.)

Let $D_n (n \ge 4)$ be the quiver

$$1 \to 2 \to \cdots \to n-2$$

and $D_n^r := K D_n/\text{rad}^r$. In this paper, we classify the τ -tilting modules over algebras of type D_n when $l(P_1) \le n-2$ and prove that there are similar recurrence relations for the number of τ -tilting and support τ -tilting modules over D_n^r as for the Nakayama algebras Λ_n^r , $\tilde{\Lambda}_n^r$. The following is our first result.

Theorem 1.1 (see Theorem 2.5). If Λ is an algebra of type D_n with $l(P_1) \leq n-2$, then there is a bijection

$$\tau$$
-tilt $\Lambda \to \coprod_{i=1}^{l(P_1)} \tau$ -tilt $\Lambda/\langle e_i \rangle$

given by τ -tilt $\Lambda \ni M \mapsto M/P_1$ and the inverse map is given by $N \mapsto N \oplus P_1 \in \tau$ -tilt Λ .

Corollary 1.2 (see Corollary 2.8). If Λ is an algebra of type D_n with $l(P_1) \leq n-2$, then

$$|\tau - \operatorname{tilt} \Lambda| = \sum_{i=1}^{l(P_1)} C_{i-1} \cdot |\tau - \operatorname{tilt} \Lambda/\langle e_{\leq i} \rangle|,$$

where $e_{< i} := e_1 + e_2 + \cdots + e_i$.

Let $d_r(n)$ and $sd_r(n)$ denote the number of τ -tilting modules and support τ -tilting modules over D_n^r , respectively. The following recurrence relations hold:

Theorem 1.3 (see Theorems 2.9 and 2.12). For $r \le n - 2$,

(1)
$$d_r(n) = \sum_{i=1}^r C_{i-1} \cdot d_r(n-i);$$

(2)
$$sd_r(n) = 2 \cdot sd_r(n-1) + \sum_{i=2}^r C_{i-1} \cdot sd_r(n-i).$$

Throughout this paper, Λ will always denote a basic, connected, finite-dimensional K-algebra over an algebraically closed field K. We denote by mod Λ the category of finitely generated right Λ -modules and τ the Auslander–Reiten translation of Λ . Let n be the number of nonisomorphic simple modules over Λ . We also denote by |M| the number of pairwise nonisomorphic indecomposable summands of M and I(M) the Loewy length of M for $M \in \text{mod } \Lambda$. For a finite set X, we denote by |X| the cardinality of X. For two sets X_1 and X_2 , $X_1 \coprod X_2$ stands for disjoint union. Finally, we will freely use the well-known classification of indecomposable modules over type D algebras given in, e.g., [14, Section 3.3].

2 Main results

Let Λ be an algebra. We first recall the definition of support τ -tilting modules over Λ .

Definition 2.1 ([1, Definition 0.1]). Suppose $M \in \text{mod } \Lambda$.

- (1) M is τ -rigid if $\operatorname{Hom}_{\Lambda}(M, \tau M) = 0$.
- (2) M is τ -tilting if it is τ -rigid and $|M| = |\Lambda|$.
- (3) M is support τ -tilting if it is a τ -tilting $\Lambda/\langle e \rangle$ -module for some idempotent e of Λ .
- (4) M is proper support τ -tilting if it is a support τ -tilting but not a τ -tilting Λ -module.

Remark 2.2 (1) A $\Lambda/\langle e \rangle$ -module is τ -rigid as a $\Lambda/\langle e \rangle$ -module if and only if it is τ -rigid as a Λ -module (see [1, Lemma 2.1(b)]).

(2) Recall that $M \in \text{mod } \Lambda$ is called *sincere* if every simple Λ -module appears as a composition factor in M. By [1, Proposition 2.2(a)], the τ -tilting modules are exactly the sincere support τ -tilting modules.

We will denote by τ -tilt Λ (respectively, $s\tau$ -tilt Λ , $ps\tau$ -tilt Λ) the set of isomorphism classes of basic τ -tilting (respectively, support τ -tilting, proper support τ -tilting) Λ -modules. Obviously, $|s\tau$ -tilt $\Lambda| = |\tau$ -tilt $\Lambda| + |ps\tau$ -tilt $\Lambda|$.

Let P_i be the indecomposable projective module, I_i the indecomposable injective module and S_i the simple module of an algebra KQ/I corresponding to the vertex i for i = 1, 2, ..., n.

Now, we will assume that Λ is an algebra of type D_n with $l(P_1) \leq n - 2$.

Lemma 2.3 If M is a τ -rigid Λ -module, then $M \oplus P_1$ is also a τ -rigid Λ -module. Moreover, each τ -tilting Λ -module has P_1 as a direct summand.

Proof Since $l(P_1) \le n-2$ and the vertex 1 is a source, all modules which have S_1 as a composition factor must be injective. Hence, τM has no S_1 as a composition factor. Thus, $\operatorname{Hom}_{\Lambda}(P_1, \tau M) = 0$. Therefore, $M \oplus P_1$ is a τ -rigid Λ -module.

If N is a τ -tilting Λ -module, then it is τ -rigid and hence $N \oplus P_1$ is also τ -rigid. It follows from [1, Theorems 2.10 and 2.12] that N has P_1 as a direct summand.

Lemma 2.4 For 0 < t < n - 2, there is an almost split sequence

$$0 \longrightarrow \operatorname{rad} P_1/\operatorname{rad}^{t+1} P_1 \xrightarrow{\begin{pmatrix} q \\ i \end{pmatrix}} (\operatorname{rad} P_1/\operatorname{rad}^t P_1) \oplus P_1/\operatorname{rad}^{t+1} P_1 \xrightarrow{(-j, p)} P_1/\operatorname{rad}^t P_1 \longrightarrow 0$$

in mod Λ , where q and p are the canonical epimorphisms and i and j are the inclusion homomorphisms. Hence, $\tau(P_1/\text{rad}^t P_1) = \text{rad } P_1/\text{rad}^{t+1} P_1$.

Proof The given sequence is easily seen to be exact. It is not split and has indecomposable end terms; hence by [4, IV. 1.13], we only need to prove that the homomorphism $g := \binom{q}{i}$ is left almost split in mod Λ . Let N be an indecomposable Λ -module and f: rad $P_1/\operatorname{rad}^{t+1}P_1 \to N$ be a nonisomorphism. We want to show that f can be factored through g.

Let $\Lambda_1 := \Lambda/\langle e_{n-1} + e_n \rangle$. Then the quiver of Λ_1 is $1 \to 2 \to \cdots \to n-2$ and is a subquiver of Λ . Moreover, Λ_1 is a Nakayama algebra. By [4, V. Theorem 4.1], the above sequence is an almost split sequence in mod Λ_1 . If N has no S_{n-1} and S_n as composition factors, then N is a Λ_1 -module and hence f can be factored through g. If N has S_{n-1} or S_n as composition factors, then f = 0. So f can be factored through g.

Now, we can prove our main theorem as follows.

Theorem 2.5 *There is a bijection*

$$au$$
 — tilt $\Lambda
ightarrow \coprod_{i=1}^{l(P_1)} au$ — tilt $\Lambda/\langle e_i
angle$

given by τ -tilt $\Lambda \ni M \mapsto M/P_1$ and the inverse map is given by $N \mapsto N \oplus P_1 \in \tau$ -tilt Λ .

Proof Suppose $M \in \tau$ -tilt $\Lambda/\langle e_i \rangle$ for some $1 \le i \le l(P_1)$. Then M is a τ -rigid Λ -module by Remark 2.2(1) and hence $M \oplus P_1$ is a τ -tilting Λ -module since it is τ -rigid by Lemma 2.3 and $|M \oplus P_1| = |M| + 1 = |\Lambda|$.

Conversely, suppose $M \in \tau$ -tilt Λ . Then we decompose M as $M = P_1 \oplus N \oplus L$ by Lemma 2.3 where N is a maximal direct summand of M consisting of $\Lambda/\langle e_1 \rangle$ -module and $L \ncong P_1$ is a direct summand of M with S_1 as a composition factor. If L = 0, then N is a τ -tilting $\Lambda/\langle e_1 \rangle$ -module clearly. Assume that $L \not\equiv 0$. Since $l(P_1) \le n-2$, we have $L \in \Lambda/\langle e_{j+1} \rangle$ for $1 \le j := l(L) < l(P_1)$. Now, we claim that $N \in \text{mod } \Lambda/\langle e_{j+1} \rangle$. Indeed, if it does not hold, then there is an indecomposable module Y which is a direct summand of N and has S_{j+1} as a composition factor. Take $X := P_1/\text{rad}^j P_1 \in \text{add } L$. By Lemma 2.4, we have $\tau X = \text{rad } P_1/\text{rad}^{j+1} P_1$. Thus, top $(\tau X) = S_2$ and $\text{Soc } (\tau X) = S_{j+1}$. Note that $\text{mod } \Lambda/\langle e_n + e_{n-1} \rangle$ is a full subcategory of mod Λ when $l(P_1) \le n-2$ ($\Lambda_1 := \Lambda/\langle e_n + e_{n-1} \rangle$ is a Nakayama algebra). If $Y \in \text{mod } \Lambda_1$, then $\text{Hom }_{\Lambda}(Y, \tau X) \cong \text{Hom }_{\Lambda_1}(Y, \tau X) \ne 0$ by [2, Lemma 2.4]. If Y has either S_n or S_{n-1} as composition factors, then $Y/\text{Soc } Y \in \text{mod } \Lambda_1$. Note that there is a exact sequence $0 \to \text{Soc } Y \to Y \to Y/\text{Soc } Y \to 0$ and $\text{Hom }_{\Lambda}(\text{Soc } Y, \tau X) = 1$

0, we have $\operatorname{Hom}_{\Lambda}(Y, \tau X) \cong \operatorname{Hom}_{\Lambda}(Y/\operatorname{Soc} Y, \tau X) \cong \operatorname{Hom}_{\Lambda_1}(Y/\operatorname{Soc} Y, \tau X) \neq 0$ since $Y/\operatorname{Soc} Y$ has S_{j+1} as a composition factor. This contradicts that M is τ -rigid. Thus, $N \oplus L$ is a τ -tilting mod $\Lambda/\langle e_{j+1} \rangle$ -module.

Theorem 2.5 gives a method of constructing τ -tilting Λ -modules over algebras of type D_n with $l(P_1) = 2$.

Corollary 2.6 Let Λ be an algebra of type D_n with $l(P_1) = 2$. Then all τ -tilting Λ -modules are exactly those forms $P_1 \oplus M_1$ and $P_1 \oplus S_1 \oplus M_2$, where M_1 and M_2 are τ -tilting modules over $\Lambda/\langle e_1 \rangle$ and $\Lambda/\langle e_1 + e_2 \rangle$, respectively.

Example 2.7 (1) Let Λ be an algebra given by the quiver

$$1 \rightarrow 2 \frac{3}{4}$$

with rad $^2=0$. Since $\Lambda/\langle e_1\rangle$ is the algebra given by the quiver $3 \leftarrow 2 \rightarrow 4$, we have five τ -tilting $\Lambda/\langle e_1\rangle$ -modules as follows:

$$3_{34}^{24}$$
, 2_{34}^{23} , 3_{34}^{22} , 2_{34}^{22} , 2_{34}^{23} .

We only have one τ -tilting $\Lambda/\langle e_1+e_2\rangle$ -module: 3 4. Hence, we get all τ -tilting Λ -modules by Corollary 2.6:

(2) Let Γ be an algebra given by the quiver

$$5 \to 1 \to 2 \frac{3}{4}$$

with rad $^2=0$. Since $\Gamma/\langle e_5\rangle\cong\Lambda$ and $\Gamma/\langle e_5+e_1\rangle\cong\Lambda/\langle e_1\rangle$, we have all τ -tilting Γ -modules by Corollary 2.6:

As an application of Theorem 2.5, we immediately get a recurrence relation for $|\tau - \text{tilt }\Lambda|$.

Corollary 2.8 If Λ is an algebra of type D_n with $l(P_1) \leq n-2$, then

$$|\tau - \text{tilt } \Lambda| = \sum_{i=1}^{l(P_1)} C_{i-1} \cdot |\tau - \text{tilt } \Lambda/\langle e_{\leq i} \rangle|,$$

where $e_{\leq i} := e_1 + e_2 + \cdots + e_i$.

Proof By Theorem 2.5, we have

$$|\tau - \text{tilt } \Lambda| = \sum_{i=1}^{l(P_1)} |\tau - \text{tilt } \Lambda/\langle e_i \rangle|.$$

Since $l(P_1) \le n-2$, we get $\Lambda/\langle e_i \rangle \cong \Lambda/\langle e_{\ge i} \rangle \times \Lambda/\langle e_{\le i} \rangle$, where $e_{\le i} := e_1 + e_2 + \cdots + e_i$ and $e_{>i} := e_i + e_{i+1} + \cdots + e_n$ for $1 \le i \le l(P_1)$. Thus, there is a bijection

$$\tau - \mathrm{tilt} \; \Lambda / \langle e_{\geq i} \rangle \times \tau - \mathrm{tilt} \; \Lambda / \langle e_{\leq i} \rangle \to \tau - \mathrm{tilt} \; \Lambda / \langle e_i \rangle$$

given by $(N, L) \mapsto N \oplus L$. Therefore,

$$|\tau - \text{tilt } \Lambda/\langle e_i \rangle| = |\tau - \text{tilt } \Lambda/\langle e_{>i} \rangle| \cdot |\tau - \text{tilt } \Lambda/\langle e_{$$

Note that $\Lambda/\langle e_{\geq i}\rangle$ is the hereditary algebra of type \mathbb{A}_{i-1} , and hence $|\tau$ -tilt $\Lambda/\langle e_{\geq i}\rangle|=C_{i-1}$. Thus, the assertion follows.

Recall that $t_r(n)$ stands for the number of τ -tilting modules over $\Lambda_n^r = KA_n/\mathrm{rad}^r$. We use the notations $d_r(n)$ for the number of τ -tilting modules over $D_n^r = KD_n/\mathrm{rad}^r$ $(n \ge 4, r \ge 1)$ and $sd_r(n)$ for the number of support τ -tilting modules over D_n^r . Note that $D_n^1 \cong K^n$, we have $d_1(n) = 1$ and $sd_1(n) = 2^n$ for all $n \ge 4$. For convenience, we also define $D_3^r = K(\bullet \leftarrow \bullet \rightarrow \bullet)$ and $D_2^r = K \times K$ (hence, $d_r(3) = 5$, $d_r(2) = 1$, $sd_r(3) = 14$, $sd_r(2) = 4$,) for all $r \ge 2$.

Theorem 2.9 We have

$$d_r(n) = \begin{cases} \sum_{i=1}^r C_{i-1} \cdot d_r(n-i) & \text{if } r \le n-2; \\ \frac{3n-4}{2n-2} {2n-2 \choose n-2} & \text{if } r \ge n-1. \end{cases}$$

Proof The above discussion shows that the formula holds for r = 1.

Now, suppose $r \ge 2$. Take $\Lambda := D_n^r$. If $r \ge n-1$, then Λ is hereditary and so $d_r(n) = \frac{3n-4}{2n-2} \binom{2n-2}{n-2}$ [12, Theorem 1]. If $r \le n-2$, then $\Lambda/\langle e_{\le i} \rangle \cong D_{n-i}^r$, hence we get the result by Corollary 2.8.

The support τ -tilting D_n^r -modules can be calculated by considering the τ -tilting modules over quotient algebras of D_n^r . We will construct a formula for $sd_r(n)$ but for this we need the following lemma.

Lemma 2.10 If V is the set of all support τ -tilting Λ_n^r -modules which have $S_1, S_2, \ldots, S_{n-1}$ as composition factors, then

$$|V| = t_r(n-1) + t_r(n)$$
.

Proof If V_1 is the set of all support τ -tilting Λ_n^r -modules which have $S_1, S_2, \ldots, S_{n-1}$ as composition factors but not S_n , then $V = V_1 \mid \tau$ -tilt Λ_n^r . Hence,

$$|V| = |V_1| + |\tau - \text{tilt } \Lambda_n^r| = t_r(n-1) + t_r(n).$$

Proposition 2.11 For $n \geq 4$,

$$sd_r(n) = \sum_{i=1}^{n-4} t_r(i-1)sd_r(n-i) + 14t_r(n-4) + 4t_r(n-3) + t_r(n-2) + 2t_r(n-1) + d_r(n).$$

Proof Let $\Lambda := D_n^r$ and W_i (i = 1, 2, ..., n) denote the set of all support τ -tilting Λ -modules which have $S_1, S_2, ..., S_{i-1}$ as composition factors but not S_i .

For a given $1 \le i \le n-4$, we have $\Lambda/\langle e_i \rangle \cong \Lambda/\langle e_{\ge i} \rangle \times \Lambda/\langle e_{\le i} \rangle$ where $e_{\ge i} := e_i + e_{i+1} + \cdots + e_n$ and $e_{\le i} := e_1 + e_2 + \cdots + e_i$. Hence, there is a bijection

$$\tau$$
-tilt $\Lambda/\langle e_{>i}\rangle \times s\tau$ -tilt $\Lambda/\langle e_{$

given by $(M, N) \mapsto M \oplus N$. Note that $\Lambda/\langle e_{\geq i} \rangle \cong \Lambda_{i-1}^r$ and $\Lambda/\langle e_{\leq i} \rangle \cong D_{n-i}^r$, therefore

$$\begin{aligned} |W_i| &= |\tau - \text{tilt } \Lambda/\langle e_{\geq i} \rangle| \cdot |\text{s}\tau - \text{tilt } \Lambda/\langle e_{\leq i} \rangle| \\ &= |\tau - \text{tilt } \Lambda_{i-1}^r| \cdot |\text{s}\tau - \text{tilt } D_{n-i}^r| \\ &= t_r(i-1)sd_r(n-i). \end{aligned}$$

Since $\Lambda/\langle e_{n-3}\rangle$ is the product of the algebra Λ_{n-4}^r and the algebra $A_3: n-1 \leftarrow n-2 \rightarrow n$,

$$|W_{n-3}| = |\tau - \text{tilt } \Lambda_{n-4}^r| \cdot |s\tau - \text{tilt } A_3| = 14t_r(n-4).$$

Note that $\Lambda/\langle e_{n-2}\rangle \cong \Lambda_{n-3}^r \times K \times K$, so

$$|W_{n-2}| = 4|\tau - \text{tilt } \Lambda_{n-3}^r| = 4t_r(n-3).$$

 $\Lambda/\langle e_{n-1}\rangle$ is the algebra given by the quiver $1\to 2\to \cdots \to n-2\to n$ with rad r=0. Hence W_{n-1} is exactly the set of all support τ -tilting $\Lambda/\langle e_{n-1}\rangle$ -modules which have S_1,S_2,\ldots,S_{n-2} as composition factors. It follows from Lemma 2.10 that

$$|W_{n-1}| = t_r(n-2) + t_r(n-1).$$

Clearly, $\Lambda/\langle e_n\rangle \cong \Lambda_{n-1}^r$, so

$$|W_n| = t_r(n-1).$$

Note that $ps\tau$ -tilt $\Lambda = \coprod_{i=1}^{n} W_i$, therefore

$$|ps\tau\text{-tilt }\Lambda| = \sum_{i=1}^{n} W_i$$

$$= \sum_{i=1}^{n-4} t_r(i-1)sd_r(n-i) + 14t_r(n-4) + 4t_r(n-3)$$

$$+ t_r(n-2) + 2t_r(n-1).$$

Hence,

$$sd_r(n) = |\operatorname{ps}\tau - \operatorname{tilt} \Lambda| + |\tau - \operatorname{tilt} \Lambda|$$

$$= \sum_{i=1}^{n-4} t_r(i-1)sd_r(n-i) + 14t_r(n-4) + 4t_r(n-3) + t_r(n-2)$$

$$+ 2t_r(n-1) + d_r(n).$$

As a consequence, the following result holds.

Theorem 2.12 We have

$$sd_r(n) = \begin{cases} 2 \cdot sd_r(n-1) + \sum_{i=2}^r C_{i-1} \cdot sd_r(n-i) & \text{if } r \le n-2; \\ \frac{3n-2}{2n-1} {2n-1 \choose n-1} & \text{if } r \ge n-1. \end{cases}$$

Proof If $r \ge n-1$, then D_n^r is hereditary and so $sd_r(n) = \frac{3n-2}{2n-1} \binom{2n-1}{n-1}$ [12, Theorem 1]. If $r \le n-2$, then

$$\begin{split} sd_r(n) - sd_r(n-1) \\ &= \sum_{l=1}^{n-4} t_r(l-1)sd_r(n-l) + 14t_r(n-4) + 4t_r(n-3) + t_r(n-2) + 2t_r(n-1) + d_r(n) \\ &- \left(\sum_{l=1}^{n-5} t_r(l-1)sd_r(n-1-l) + 14t_r(n-5) + 4t_r(n-4) + t_r(n-3) + 2t_r(n-2) + d_r(n-1)\right) \\ &= sd_r(n-3) + 2t_r(n-2) + d_r(n-1)) \\ &= sd_r(n-1) + \sum_{l=2}^{n-4} (t_r(l-1) - t_r(l-2)) sd_r(n-l) + 14 (t_r(n-4) - t_r(n-5)) \\ &+ 4 (t_r(n-3) - t_r(n-4)) + (t_r(n-2) - t_r(n-3)) + 2 (t_r(n-1) - t_r(n-2)) + (d_r(n) - d_r(n-1)) \\ &= sd_r(n-1) + \sum_{l=2}^{n-4} \sum_{i=2}^r C_{i-1}t_r(l-1-i)sd_r(n-l) + 14 \sum_{i=2}^r C_{i-1}t_r(n-4-i) \\ &+ 4 \sum_{i=2}^r C_{i-1}t_r(n-3-i) + \sum_{i=2}^r C_{i-1}t_r(n-2-i) \\ &+ 2 \sum_{i=2}^r C_{i-1}t_r(n-1-i) + \sum_{i=2}^r C_{i-1}d_r(n-i) \\ &= sd_r(n-1) + \sum_{i=2}^r C_{i-1} \left(\sum_{l=1}^{n-i-4} t_r(l-1)sd_r(n-i-l) + 14t_r(n-i-4) + 4t_r(n-i-3) + t_r(n-i-2) + 2t_r(n-i-1) + d_r(n-i)\right) \\ &= sd_r(n-1) + \sum_{l=2}^r C_{i-1}sd_r(n-i). \end{split}$$

The first and last equations follow from Proposition 2.11. The third equation follows from the recurrence relations of $t_r(n)$ and $d_r(n)$. The fourth equation holds since $t_r(n) = 0$ for n < 0.

Hence,
$$sd_r(n) = 2 \cdot sd_r(n-1) + \sum_{i=2}^r C_{i-1} \cdot sd_r(n-i)$$
.

Now, we obtain the recurrence relations of $d_2(n)$ and $sd_2(n)$.

Corollary 2.13

$$d_2(n) = d_2(n-1) + d_2(n-2),$$

$$sd_2(n) = 2sd_2(n-1) + sd_2(n-2).$$

Proof It follows from Theorems 2.9 and 2.12.

As generalizations of simple modules and semisimple modules, bricks and semibricks are considered and they have long been studied in [8, 13]. Let Λ be an algebra. A Λ -module M is called a brick if $\operatorname{Hom}_{\Lambda}(M,M)$ is a K-division algebra and a semibrick is a set consisting of isoclasses of pairwise Hom-orthogonal bricks. A semibrick S is called left finite [3] if the smallest torsion class T(S) containing S is functorially finite. It is proved that there exists a bijection between $s\tau$ -tilt Λ and the set of left finite semibricks of Λ (see [3, Theorem 2.3]). Note that every torsion class is functorially finite for a representation-finite algebra. Hence, there exists a bijection between $s\tau$ -tilt Λ and the set sbrick Λ of semibricks of Λ for an algebra of type D_n .

Now, we obtain a proof that is different from that of Theorem 2.12.

Proposition 2.14 If Λ is an algebra of type D_n with $l(P_1) \leq n-2$, then

$$|s au$$
-tilt $\Lambda|=2|s au$ -tilt $(\Lambda/\langle e_1
angle)|+\sum_{i=2}^{l(P_1)}C_{i-1}\cdot|s au$ -tilt $(\Lambda/\langle e_{\leq i}
angle)|,$

Proof Suppose X is a brick of Λ such that top $X = S_i$, Soc $X = S_j$ and X has no S_n and S_{n-1} as composition factors. We write $S_{i,j} := X$.

We define W_0 as the subset of sbrick Λ consisting of the semibricks without S_1 as a composition factor. It is clear that $|W_0| = |\operatorname{sbrick} (\Lambda/\langle e_1 \rangle)|$.

Let W_i $(i = 1, 2, ..., l(P_1))$ be the subset of sbrick Λ consisting of the semibricks which contain the brick $S_{1,i}$.

Firstly, there is a bijection $W_1 \mapsto \text{sbrick } (\Lambda/\langle e_1 \rangle)$ defined as $S \mapsto S \setminus \{S_{1,1}\}$. Hence,

$$|W_1| = |\operatorname{sbrick}(\Lambda/\langle e_1\rangle)|.$$

Secondly, there is a bijection $W_2 \mapsto \operatorname{sbrick} (\Lambda/\langle e_1 + e_2 \rangle)$ defined as $S \mapsto S \setminus \{S_{1,2}\}$. Hence,

$$|W_2| = |\operatorname{sbrick} (\Lambda/\langle e_1 + e_2 \rangle)|.$$

Thirdly, for $i = 3, ..., l(P_1)$, there exists a bijection

$$W_i \mapsto \operatorname{sbrick} (\Lambda/\langle e_{[1\ i]}\rangle) \times \operatorname{sbrick} (\Lambda/\langle 1 - e_{[2\ i-1]}\rangle)$$

given by $S \mapsto (\{S \in S \mid \text{Supp } S \cap \{1, 2, 3, \dots, i\} = \emptyset\}, \{S \in S \mid \text{Supp } S \subset \{2, 3, \dots, i-1\}\})$, where Supp S stands for the support of S and $e_{[i,k]} = e_i + e_{i+1} + \dots + e_k$ for all $j \leq k$.

Since sbrick
$$\Lambda = \coprod_{i=0}^{l(P_1)} W_i$$
, we obtain
$$|s\tau\text{-tilt }\Lambda| = |\operatorname{sbrick }\Lambda|$$

$$= \sum_{i=0}^{l(P_1)} |W_i|$$

$$= 2|\operatorname{sbrick }(\Lambda/\langle e_1\rangle)| + |\operatorname{sbrick }(\Lambda/\langle e_1+e_2\rangle)|$$

$$+ \sum_{i=3}^{l(P_1)} |\operatorname{sbrick }(\Lambda/\langle e_{[1,i]}\rangle)| \cdot |\operatorname{sbrick }(\Lambda/\langle 1-e_{[2,i-1]}\rangle)|$$

$$= 2|\operatorname{sbrick }(\Lambda/\langle e_1\rangle)| + |\operatorname{sbrick }(\Lambda/\langle e_1+e_2\rangle)|$$

$$+ \sum_{i=3}^{l(P_1)} |\operatorname{sbrick }(\Lambda/\langle e_{[1,i]}\rangle)| \cdot |\operatorname{sbrick }(KA_{i-2})|$$

$$= 2|\operatorname{s}\tau\text{-tilt }(\Lambda/\langle e_1\rangle)| + |\operatorname{s}\tau\text{-tilt }(\Lambda/\langle e_1+e_2\rangle)|$$

$$+ \sum_{i=3}^{l(P_1)} |\operatorname{s}\tau\text{-tilt }(\Lambda/\langle e_{[1,i]}\rangle)| \cdot |\operatorname{s}\tau\text{-tilt }(KA_{i-2})|$$

$$= 2|\operatorname{s}\tau\text{-tilt }(\Lambda/\langle e_1\rangle)| + \sum_{i=2}^{l(P_1)} C_{i-1} \cdot |\operatorname{s}\tau\text{-tilt }(\Lambda/\langle e_{[1,i]}\rangle)|$$

$$= 2|\operatorname{s}\tau\text{-tilt }(\Lambda/\langle e_1\rangle)| + \sum_{i=2}^{l(P_1)} C_{i-1} \cdot |\operatorname{s}\tau\text{-tilt }(\Lambda/\langle e_{\leq i}\rangle)|.$$

Remark 2.15 (1) A semibrick S is called *sincere* if the direct sum of all bricks in S is sincere. It is shown that there is a bijection between the set of τ -tilting Λ -modules and the set of sincere left finite semibricks of Λ (see [10, Corollary 2.6]). Hence, we can obtain Corollary 2.8 similarly to the proof of Proposition 2.14.

(2) Let $D'_n (n \ge 4)$ be the quiver

$$1 \leftarrow 2 \leftarrow \cdots \leftarrow n-2$$

and Γ an algebra of type D'_n . Since there is a bijection between $s\tau$ -tilt Γ and $s\tau$ -tilt Γ^{op} with Γ^{op} the opposite algebra of Γ [1, Theorem 2.14], we have $|s\tau$ -tilt $\Gamma|=2|s\tau$ -tilt $(\Gamma/\langle e_1\rangle)|+\sum_{i=2}^{l(I_1)}C_{i-1}\cdot|s\tau$ -tilt $(\Gamma/\langle e_{\leq i}\rangle)|$ when $l(I_1)\leq n-2$ (it can also be obtained by considering the number of semibricks of Γ). It is difficult to classify τ -tilting Γ -modules similarly to Theorem 2.5 since it can be not true that every τ -tilting Γ -module has I_1 as direct summand. For example, let $\Gamma:=KD'_n/{\rm rad}^2$. Then $P_1\oplus P_3\oplus P_4\oplus I_2$ is τ -tilting but I_1 is not a direct summand. However, we can classify the sincere left finite semibricks of Γ and then get all τ -tilting Γ -modules.

Example 2.16 We give some examples of the numbers of τ -tilting modules and support τ -tilting modules of D_n^r (see Table 1 and Table 2).

Table 1	The number of τ -tilting
modules	s of D_{-}^{r}

$d_r(n)$ r	n					
	4	5	6	7	8	
1	1	1	1	1	1	
2	6	11	17	28	45	
3	20	27	57	124	235	
4	20	77	112	254	620	

Table 2 The number of support τ -tilting modules of D_n^r

$sd_r(n)$ r	n					
	4	5	6	7	8	
1	16	32	64	128	256	
2	32	78	118	4548	1026	
3	50	120	314	848	2250	
4	50	182	458	1258	3588	

References

- 1. T. Adachi, O. Iyama, I. Reiten, τ-tilting theory. Compos. Math. 150, 415–452 (2014)
- T. Adachi, The classification of τ-tilting modules over Nakayama algebras. J. Algebra 452, 227–262 (2016)
- 3. S. Asai, Semibricks. Int. Math. Res. Not. IMRN **00**(16), 4993–5054 (2020)
- 4. I. Assem, D. Simson, A. Skowronski, *Elements of the Representation Theory Of Associative Algebras*, London Mathematical Society Student Texts, vol. 65. (Cambridge Univ. Press, Cambridge, 2006)
- 5. M. Auslander, S. Smalø, Almost split sequences in subcategories. J. Algebra 69, 426–454 (1981)
- A.B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)
- 7. S. Fomin, A. Zelevinsky, Y-sytstems and generalized associahedra. Ann. Math. 158, 977-1018 (2003)
- 8. P. Gabriel, Des catégories abéliennes (French). Bull. Soc. Math. France 90, 323–448 (1962)
- 9. H. Gao, R. Schiffler, On the number of τ-tilting modules over Nakayama algebras. SIGMA 16, 13 (2020)
- H. Gao, Z. Xie, Support τ-tilting modules over one-point extensions. Commun. Algebra 49(2), 739–746 (2021)
- 11. B. Keller, D. Vossieck, Aisles in derived categories. Bull. Soc. Math. Belg. Sér. A 40(2), 239–253 (1988)
- A. Obaid, S.K. Nauman, W.M. Fakieh, C.M. Ringel, The number of support-tilting modules for a Dynkin algebra. J. Integer Seq. 18(10), 24 (2015)
- 13. C.M. Ringel, Representations of K-species and bimodules. J. Algebra 41(2), 269–302 (1976)
- 14. R. Schiffler, Quiver Representations CMS Books in Mathematics. (Springer, 2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

