

Normal Forms

COMP9311 24T2; Week 5.2

By Zhengyi Yang, UNSW

Notice

- No lectures/labs next week (Week 6)

- Consultation still available

- Project due next week (10PM, Sunday of Week 6)

Normal Forms

Normal Forms:

- Criteria for a good database design (e.g., to resolve update anomalies)
- > Formalized by functional (or other) dependencies

Types of Normal Forms:

- > 1NF, 2NF, 3NF (Codd 1972)
- Boyce-Codd NF (1974)
- Multivalued dependencies and 4NF (Zaniolo 1976 and Fagin 1977)
- Join dependencies (Rissanen 1977) and 5NF (Fagin 1979)

First Normal Form (1NF)

This means that attribute values are *atomic*, and are part of the definition of the relational model.

Atomic: multivalued attributes, composite attributes, and their combinations are disallowed.

There is still interest in non-first normal form databases.

First Normal Form (1NF) (cont)

Fac Dept	Prof	Course Preferences	
l ac_bept	1 101	Course	Course_Dept
		353	Comp Sci
	Smith	379	Comp Sci
		221	Decision Sci
Comp Sci		353	Comp Sci
	Clark	351	Comp Sci
	Clark	379	Comp Sci
		456	Mathematics
		353	Comp Sci
Chemistry	Turner	456	Mathematics
		272	Chemsitry
		353	Comp Sci
		379	Comp Sci
Mathematics	Jameison	221	Decision Sci
		456	Mathematics
		469	Mathematics

First Normal Form (1NF) (cont)

CRS_PREF			
Prof	Course	Fac_Dept	Crs_Dept
Smith	353	Comp Sci	Comp Sci
Smith	379	Comp Sci	Comp Sci
Smith	221	Comp Sci	Decision Sci
Clark	353	Comp Sci	Comp Sci
Clark	351	Comp Sci	Comp Sci
Clark	379	Comp Sci	Comp Sci
Clark	456	Comp Sci	Mathematics
Turner	353	Chemistry	Comp Sci
Turner	456	Chemistry	Mathematics
Turner	272	Chemistry	Chemistry
Jamieson	353	Mathematics	Comp Sci
Jamieson	379	Mathematics	Comp Sci
Jamieson	221	Mathematics	Decision Sci
Jamieson	456	Mathematics	Mathematics
Jamieson	469	Mathematics	Mathematics

First Normal Form (1NF)

The relation has the following drawbacks: (part 1)

- (1) Repetition of data:
- The fact that (a given professor is in a given department) may be repeated,
- > The fact that (a given course is offered by a given department) may be repeated.

Can result in insertion and update anomalies

CRS_PREF				
<u>Prof</u>	Course Fac_Dept Crs_Dept			
Smith	353	Comp Sci	Comp Sci	
Smith	221 Comp Sci Decision S		Decision Sci	
Turner	353 Chemistry Comp Sc		Comp Sci	
Turner	456	Chemistry	Mathematics	

First Normal Form (1NF)

The relation has the following drawbacks: (part 2)

- (2) Some associations aren't stored explicitly:
- ➤ The association between professor and department will not be recorded unless the professor has some course references,
- The association between course and department is not recorded unless someone prefers the course.

Can lead to deletion anomalies

CRS_PREF				
<u>Prof</u>	Prof Course Fac_Dept Crs_Dept			
Smith	353	Comp Sci	Comp Sci	
Smith	nith 379 Comp Sci Comp Sci			
Turner	353	Chemistry	Comp Sci	

Unspecified dependencies between Attr.

There is too much information in a table.

- CRS PREF(Prof, Course, Fac Dept, Crs Dept)
- The FD's for these attributes are F = {Prof → Fac_Dept, Course → Crs_Dept}.
- From F, the only candidate key is {Prof, Course}.

From the FDs, we see

- Fac_Dept depends only on Prof and not on Course,
- Crs_Dept depends only on Course and not on Prof.

CRS_PREF			
<u>Prof</u>	Course Fac_Dept Crs_		Crs_Dept
Smith	353	Comp Sci	Comp Sci
Smith	379	Comp Sci	Comp Sci
Smith	221	Comp Sci	Decision Sci
Clark	353	Comp Sci	Comp Sci
Clark	351	Comp Sci	Comp Sci
Clark	379	Comp Sci	Comp Sci
Clark	456	Comp Sci	Mathematics
Turner	353	Chemistry	Comp Sci
Turner	456	Chemistry	Mathematics
Turner	272	Chemistry	Chemistry
Jamieson	353	Mathematics	Comp Sci
Jamieson	379	Mathematics	Comp Sci
Jamieson	221	Mathematics	Decision Sci
Jamieson	456	Mathematics	Mathematics
Jamieson	469	Mathematics	Mathematics

Second Normal Form (2NF) (1)

2NF Prerequisite (1)

Definition (Prime attribute): An attribute of relation schema R is called a prime attribute of R if it is a member of some candidate key of R.

Definition (Nonprime attribute): An attribute is called nonprime if it is not a prime attribute—that is, if it is not a member of any candidate key.

Second Normal Form (2NF) (2)

2NF Prerequisite (2)

Definition (Full functional dependency): In an FD $X \rightarrow Y$, Y is fully functionally dependent on X if there is no $Z \subset X$ such that $Z \rightarrow Y$.

Definition (Partial functional dependency): In an FD $X \rightarrow Y$, Y is partially functionally dependent on X if there is any $Z \subset X$ such that $Z \rightarrow Y$.

Second Normal Form (2NF) (3)

Definition (Second Normal Form): A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is not partially dependent on any key of R.

Second Normal Form (2NF) (4)

Recall (Second Normal Form): A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is not partially dependent on any key of R.

Common confusion: Can we consider just the primary key instead?

Answer: Only if the relation has one candidate key only

Common confusion: Why all keys rather than just one key? Answer: No special consideration will be given to the primary key over other candidate keys.

Second Normal Form (2NF)

Let's decompose this 1NF relation:

CRS_PREF			
<u>Prof</u>	Course Fac_Dept Crs		Crs_Dept
Smith	353	Comp Sci	Comp Sci
Smith	379	Comp Sci	Comp Sci
Smith	221	Comp Sci	Decision Sci
Clark	353	Comp Sci	Comp Sci
Clark	351	Comp Sci	Comp Sci
Clark	379	Comp Sci	Comp Sci
Clark	456	Comp Sci	Mathematics
Turner	353	Chemistry	Comp Sci
Turner	456	Chemistry	Mathematics
Turner	272	Chemistry	Chemistry
Jamieson	353	Mathematics	Comp Sci
Jamieson	379	Mathematics	Comp Sci
Jamieson	221	Mathematics	Decision Sci
Jamieson	456	Mathematics	Mathematics
Jamieson	469	Mathematics	Mathematics

Second Normal Form (2NF)

(You can decompose a 1NF into a 2NF)

COURSE_PREF		
<u>Prof</u>	<u>Course</u>	
Smith	353	
Smith	379	
Smith	221	
Clark	353	
Clark	351	
Clark	379	
Clark	456	
Turner	353	
Turner	456	
Turner	272	
Jamieson	353	
Jamieson	379	
Jamieson	221	
Jamieson	456	
Jamieson	469	

COURSE		
<u>Course</u>	Dept	
353	Comp Sci	
379	Comp Sci	
221	Decision Sci	
351	Comp Sci	
456	Mathematics	
272	Chemistry	
469	Mathematics	

FACULTY		
<u>Prof</u>	Dept	
Smith	Comp Sci	
Clark	Comp Sci	
Turner	Chemistry	
Jamieson	Mathematics	

Second Normal Form (2NF)

Recall (Second Normal Form): A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is not partially dependent on any key of R.

E.g., Is this table 2NF?

The relation TEACHES is in 2NF

Redundancy/Issue in 2NF

Do we resolve all issues? Not for all relations in 2NF.

- The fact that A532 has Room_Cap of 45 and Enrol_Lmt of 40 can still be stored twice.
- 2. If course 355 is deleted, then the fact that H940 has Room_Cap of 400 and Enrol_Lmt of 300 will be lost.

	TEACHES			
Course	Prof	Room	Room_Cap	Enrol_I_mt
353	Smith	A532	45	40
351	Smith	C320	100	60
355	Clark	H940	400	300
456	Turner	B278	50	45
459	Jamieson	D110	50	45
500	Bob	A532	45	40

Transitive Functional Dependency

Definition (Transitive dependency):

A FD X \rightarrow Y is a transitive dependency if there is a Z that is not a subset of any key, such that X \rightarrow Z and Z \rightarrow Y. The attributes of Y are transitively dependent on X.

E.g., Room_Cap is transitively dependent on {Course}, since {Course} \rightarrow {Room} and {Room} \rightarrow {Room_Cap} hold, and {Room} is not a subset of any key.

Superkey

Recall (superkey): A superkey of a relation schema $R = \{A1, A2, ..., An\}$ is a set of attributes $S \rightarrow R$ with the property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = t2[S].

Recall (key): A key K is a superkey with the additional property that removal of any attribute from K will cause K not to be a superkey anymore.

Definition (Third Normal Form):

A relation scheme is in third normal form (3NF) if for all non-trivial FD's of the form

$$X \rightarrow A$$

- EitherX is a superkey
- orA is a prime attribute.

The 3NF disallows transitive dependencies

Recall (Third Normal Form): A relation scheme is in third normal form (3NF) if for all non-trivial FD's of the form $X \rightarrow A$. Either X is a superkey or A is a prime attribute.

Let us enumerate all options:

X	Α
Superkey	Prime
Superkey	Nonprime
Not Superkey	Prime
Not Superkey	Nonprime

The 3NF disallows FDs of the form "Not superkey -> Nonprime"

Note: not Superkey = either (1) prime attributes that are proper subset of a key or (2) nonprime

Lets compare the 2nf and the 3nf

X		Α
Superkey		Prime
Superkey		Nonprime
Not Superkey		Prime
Not Super Prime attributes (proper subsets)		Nonprime
Super (proper subsets) Key Non prime		1

2NF allows FDs of the type nonprime -> nonprime 3NF disallows nonprime -> nonprime in addition

Definition (Transitive dependency):

A FD X \rightarrow Y is a transitive dependency if there is a Z that is not a subset of any key, such that X \rightarrow Z and Z \rightarrow Y. The attributes of Y are transitively dependent on X.

Test for 3NF (for simple one key): There should be no transitive dependency of a nonkey attribute on the primary key.

You can decompose TEACHES from 2NF into 3NF:

TEACHES				
Course	Prof	Room	Room_Cap	Enrol_I_mt
353	Smith	A532	45	40
351	Smith	C320	100	60
355	Clark	H940	400	300
456	Turner	B278	50	45
459	Jamieson	D110	50	45
500	Bob	A532	45	40

2NF (but not 3NF)

COURSE_DETAILS			
Course	Prof	Room	
353	Smith	A532	
351	Smith	C320	
456	Turner	B278	
459	Jamieson	D110	
355	Clark	H940	

ROOM_DETAILS			
Room	Room_Cap	Enrol_I_mt	
A532	45	40	
C320	100	60	
B278	50	45	
D110	50	45	
H940	400	300	

3NF

Summary

We have covered 1NF, 2NF, 3NF (Codd 1972)

Details:

- > Each normal form satisfies the requirements of the lower normal forms
- > The normal form of a relation is the highest normal form it satisfies.
- > A relation is "normalized" if it meets the 3NF

What normal form is this?

(Assume given that this is 1NF)

Is it in 2NF?

LOTS

LOTS is **not in 2NF**:

Since City→Tax_Rate, Tax_Rate is not prime, and {City,Lot_No} is a key, making Tax_Rate partially dependent on a key.

Now we have 2NF

LOTS1

LOTS2

Is this in 3NF?

Now we have 2NF

LOTS1

City Tax_Rate

Is this in 3NF?

Since Area → Price, {Area} is not a superkey and Price is not prime.

Third Normal Form (3NF) (cont)

LOTS1A

LOTS1B

LOTS2

Third Normal Form (3NF) (cont)

LOTS1A

LOTS1B

LOTS2

It is possible that the dependency *Area* → *City* exists

The relations schemes are still in 3NF since City is a prime attribute. However, there can be anomalies, just as before.

To illustrate the anomalies, we will use a simpler example in next slide.

3NF Example

Consider the booking relation R

- > Two candidate keys: {title, city} and {theater, title}
- > R is in 3NF
 - title city → theater
 {title, city} is a superkey
 - theater → city
 city is contained in a candidate key

Redundancy in 3NF

There is some redundancy in this schema

Example of problems due to redundancy in 3NF

```
➤ R = (title, theater, city)
F = {theater → city, title city → theater }
```

<u> </u>		
title	theater	city
<i>j</i> ₁	<i>I</i> ₁	k ₁
j_2	<i>I</i> ₁	<i>k</i> ₁
j_3	I_1	k ₁

repetition of information (e.g., the relationship I_1 , k_1)

Boyce-Codd Normal Form (BCNF)

Definition (Boyce-Codd Normal Form): A relation scheme is in Boyce-Codd Normal Form (BCNF) if whenever X→A holds and X→A is non-trivial, X is a superkey.

BCNF is also known as 3.5NF

Boyce-Codd Normal Form (BCNF)

Definition (Boyce-Codd Normal Form): A relation scheme is in Boyce-Codd Normal Form (BCNF) if whenever X→A holds and X→A is non-trivial, X is a superkey.

Let us enumerate all options:

X	Α
Superkey	Prime
Superkey	Nonprime
Not Superkey	Prime
Not Superkey	Nonprime

Note: not Superkey = either (1) prime attributes that are proper subset of a key or (2) nonprime

Comparisons

BCNF implies 3NF

Property	3NF	BCNF
Elimination of redundancy due to functional dependency	Most	Yes
Lossless Join	Yes	Yes
Dependency preservation due to functional dependency	Yes	Maybe

It is not always possible to get a BCNF decomposition that is dependency preserving (dependency preservation discussed in future lectures)

Boyce-Codd Normal Form (BCNF)(cont)

We can make our example into BCNF:

(One possible decomposition to satisfy BCNF)

Boyce-Codd Normal Form (BCNF)(cont)

We can make our example into BCNF:

LOTS1AA

(LOTS1AB and LOTS1B (from prev slide) into LOTS1C)

Discussion

We discussed that the normal form of a relation is the highest NF it satisfies. E.g., R is 2NF means that R is not 3NF or BCNF.

In terms of the database scheme as a whole...

- > A database scheme is in 1NF if all its relations are in 1NF.
- A database scheme is in 2NF if all its relations are in 2NF.
- > A database scheme is in 3NF if all its relations are in 3NF.
- A database scheme is in BCNF if all its relations are in BCNF.

Learning Outcomes

- 1. Definitions of 1NF, 2NF, 3NF and BCNF
- 2. (3NF and BCNF is the key NFs to understand)
- 3. How the presence of some types of functional dependencies can contribute to update anomalies
- 4. Determine the highest NF of a relation