### **SMART TAXI SERVICE**

TEAM: GROUP 14

Meghana Santosh Kumar Praveen Kumar Elagudri Preethi Srinivasan Sandesh Airody Alse

#### **Contents**

- Introduction
- Component Overview

Mobile Sensor Cloud Infrastructure

- Mobile Sensor Cloud Components
- Mobile Sensor Cloud Provisioning
- Monitoring of resources
- Repository Management
- Traffic Load Generator, Load Balance and Scalability
- Billing for sensing and data services
- User Dashboard and Analytics

### Introduction

- Traffic incidents in United States happen on annual basis of upwards of 33000 incidents.
- Leading cause of these accidents are driver distractions.
- Human driven cars come at a very high cost in terms of danger.
- The U.S. Department of Transportation actually assigns a value to each human life: \$9.2 million.
- Self Driving Cars?

### Continued

- In order for the cars to operate most efficiently, they'd need to communicate with one another, helping to identify traffic problems or road risks early on.
- Driverless cars sense their surroundings using technology such as temperature sensors, speed sensors, lidar sensors, GPS, and computer vision.
- Using sensors we can monitor various aspects of the vehicle.

# **Component Overview**

• The registered users can be end user, a sensor consumer or sensor provider



# **Monitoring Sensors**



### Add Virtual Sensors



### Sensor Management

#### Manage Sensors

| Sensor ID | Sensor Name   | Sensor Type                          | Sensor Cluster | Sensor Status | Actions               |
|-----------|---------------|--------------------------------------|----------------|---------------|-----------------------|
| 11        | first sensor  | location sensor, speed sensor,       | 101            | Active        | Deactivate Deregister |
| 12        | second sensor | location sensor, Temperature sensor, | 102            | Active        | Deactivate Deregister |
| 13        | third sensor  | location sensor, Temperature sensor  | 103            | Active        | Deactivate Deregister |
| 15        | wda           | speed sensor,                        | 101            | Deactive      | Activate Deregister   |
| 16        | tahoe         | speed sensor, Temperature sensor     | 101            | Deactive      | Activate Deregister   |
| 17        | yosemite      | speed sensor, Temperature sensor     | 103            | Active        | Deactivate Deregister |

### **End User Service**

End user mentions his source and destination



### Continued...

 End user then finds a cab based on sensor data where A is Cab Location, purple marker is the customer location and B is the destination



# **Driving Quality Analysis**

To quantify the Driving Quality, driver safety score is computed using the following 4 parameters. Percentage signifies how each of the parameters impact the final score.

- Overspeed (40%)
- Distraction instants when driving (40%)
- Sudden Acceleration (10%)
- Sudden Braking (10%)

# Driving Quality Analysis Algorithm

■ Overspeed (40%)

```
Avg Overspeed < 5 mph => 40 points

5 mph < Avg Overspeed < 8mph => 30 points

8 mph < Avg Overspeed < 12 mph => 15 points

12mph < Avg Overspeed => 0 points
```

- Distraction instants when driving (40%)
- Sudden Acceleration (10%)
- Sudden Braking (10%)

Ideally, the standard values for this computation need to be derived from a large dataset of safe driving behavior.

# **Driving Quality Analysis**

The screenshot below shows driver safety score calculated for each user making a trip.

### **Driver Safety Score**

| Name  | Miles Travelled | Average Over speed | Sudden Acceleration Times | Sudden Brake Times | Distracted Driving Times | Driver Safety Score |
|-------|-----------------|--------------------|---------------------------|--------------------|--------------------------|---------------------|
| Jack  | 75              | 30                 | 10                        | 10                 | 20                       | 30                  |
| John  | 10              | 15                 | 20                        | 0                  | 10                       | 60                  |
| Sam   | 30              | 20                 | 15                        | 10                 | 5                        | 40                  |
| Smith | 5               | 25                 | 5                         | 5                  | 20                       | 38                  |
| Tim   | 45              | 25                 | 15                        | 25                 | 15                       | 30                  |

### Service Use Cases: Sensor Provider

- Sensor provider owns the sensor services
- Bill generated based on the active time of sensors
- Sensor Provider can add, activate/deactivate and deregister sensors.

### Service Use Cases: Sensor Consumer

- Sensor consumer use the sensor data provided by the sensor provider.
- Sensor consumer can monitor his vehicles.
- Sensor consumer can deactivate his vehicles but cannot add a sensor

### Service Use cases: End User

 End user is provided with the service to find nearby taxis based on the realtime sensor data

End user can check his Trip History along with the Billing

End user can check his Driving Safety Score

# Mobile Cloud Infrastructure Data Repository

- Amazon Relational Database Service.
- MySQL DB instance.
- Why Amazon RDS?
  - Ease of use.
  - Scalability.
  - Available and Durable.

# Multitenancy

• Multi-tenant application: It isolates different users on the same platform.



• Registration of different tenants with the aid of user type in Sign Up screen.



# Load Balance, Scalability Management and Traffic Load Generation



### Continued

- Elastic Beanstalk is a service offered from Amazon Web Services for deploying applications.
- Auto Scaling deals with traffic changes by automatically increasing or decreasing the EC2 instances.
- Load Balancer balances the network load by distributing traffic which increases resource utilization.

Traffic Load Generation is achieved using Selenium-WebDriver.



Auto Scaling of instances when the request count reaches threshold value.





# Billing for Sensing and Data Services



# Billing - Mobile Sensor Cloud Admin

- Mobile Sensor Cloud Admin provides and allocates the sensors to the Service Provider.
- Cloud Admin, monitor the sensors and can also activate, deactivate or de-register the sensors.
- Mobile Sensor Cloud Admin has the billing list of all the sensors allocated to all the Sensor Service Provider.
- Billing calculation: (Sensor de-activated time-Sensor creation time)\* cost.

### Billing - Mobile Sensor Cloud Admin



# Analytics For Mobile Sensor Cloud Admin



# Billing - Service Provider

- The billing for the sensor service provider is calculated based on the number of sensors allocated to the particular provider.
- Timestamp of the sensor activation and deactivation is noted.
- Billing is calculated based on the uptime of the sensor based on the activation and deactivation of the sensors.

# Billing - Service Provider



# Analytics For Service Provider



# Billing - End User

- End user is the one who receives the service from the service provider.
- End user provides the pick-up and drop-off location.
- The billing for the end user is calculated based on the distance between the pick-up and drop-off location.
- The billing is also provided with the trip history of his previous rides.

# Billing - End User



# Technologies Used in our project:

#### **Database:**

- Amazon Relational Database Service
- MySQL

#### **Cloud Technology:**

Amazon EC2, AWS BeanStalk

#### **Real Time Data Mapping:**

- Mapbox for customized map
- PubNub for realtime data streaming

#### Front-end Technologies Used:

- JavaScript
- •jQuery
- Bootstrap for simple styling

# Dashboard & Analytics

- Dashboard for each type of user in our application
  - 1. Sensor Provider
  - 2. Sensor Consumer
  - 3. End User

- Dashboard fetches critical data from the Database, and displays it in an user friendly manner for analysis.
- We have data analytics and graphs to quickly understand and observe the trends.

### Sensor Provider

Admin is the one who can add and manage sensor.



### Sensor Provider Dashboard

This is a screenshot of the admin dashboard which shows analytics for sensor details, sensor activity tracking and revenue.



# Sensor Provider – Analytics for Sensor details

- This screenshot shows the number of active sensors and the number of days each sensor was active.
- Active Sensor Time = Last Updated TimeStamp – Creation date TimeStamp



# Sensor Provider – Analytics for Active sensors

Admin can track the sensor activity as shown in the screenshot.

The screenshot shows details of registered mobile sensors such as sensor id, name, status type and last updated timestamp.



| Sensor ID | Sensor Name   | Sensor Description   | Sensor Type                    | Status   | Last Update                |
|-----------|---------------|----------------------|--------------------------------|----------|----------------------------|
| 11        | first sensor  | first virtual sensor | location sensor, speed sensor, | Deactive | 2016-12-04 10:15:39.000245 |
| 12        | second sensor | second sensor        | location sensor, radar sensor, | Active   | 2016-12-04 10:15:39.000245 |
| 13        | third sensor  | third sensor         | location sensor, torque sensor | Active   | 2016-12-04 10:15:39.000245 |
| 15        | wda           | asdasd               | speed sensor,                  | Active   | 2016-12-04 10:15:39.000245 |
| 16        | sensor 3      | zdzdfd               | location sensor, radar sensor, | Inactive | 2016-12-04 10:15:39.000245 |
| 17        | sensor4       | sfgzsfgf             | location sensor, radar sensor, | Service  | 2016-11-04 10:15:39.000245 |

# Sensor Provider - Analytics for Revenue

- The graph fetches sensor revenue details for each sensor in real time.
- This table has details on the revenue generated by each sensor type



# **Sensor Consumer** – (Client who can monitor and de-register sensors added by admin)



### Sensor Consumer

- Sensor consumer or client gets sensor as a service from the admin and also provides smart taxi service to the end user.
- The screenshot shows the dashboard for sensor consumer.



### Sensor Consumer-Analytics for Trip details

The screenshot shows the total number of trips and the distance travelled for each trip along with the trip id.



# Thank You