Kleens Theorem - Part 1: for any alphabet & every regular language over 3 an be accepted by a finite Intomate. Proof! we know that every regular language over \leq and be accepted by an NFA.

We will prove the shearem by structural Induction. The language of and Eag (where $a \in \Xi$) can be accepted by two NFA's as shown in figure ii, and so and → The Induction hypothesis is that L, & L2 are both fegular languages over \leq . 6 6 6 3 63 - For both l=1 li=2, li can be 63 CA occapted by an NFA 9 6 Mi = (Qi, ≤, Vi, Ai, Si) 6 necessary, that Q, b, Q2 are disjoint. C 1 C -1 C -1 C 60 Car The state of the s

we must show that 3) In Induction weep there are NFA's accepting the three languages in L(M1) U L(M2) (ii) L(M1) L(M2) In each case, we will give an informal definition & a diagram schowing the idea of the construction. for simplicity, each diagram shows two NFAs M, & M2 as having two accepting states, both distinct from the initial Mu accepting L(M,) VL(M2) on NFA Mu= (Qu, E, 9h, Au, Su) Que - States one additional States. ~ (E) M2 (E) Su - includes all the ones in M1 & M2 as well as 1-tours diene from qu to 9, & 9/2, 1 Au -> (A1 UAz) MI & M2

