PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-018172

(43)Date of publication of application: 18.01.2000

(51)Int.CI.

F04B 49/08 F04B 27/14 F04B 27/08

(21)Application number : 10-191137

(71)Applicant: SANDEN CORP

(22) Date of filing:

07.07.1998

(72)Inventor: TAGUCHI YUKIHIKO

(54) CAPACITY CONTROL VALVE MECHANISM OF CAPACITY VARIABLE COMPRESSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a capacity control valve mechanism of capacity variable compressor that improves pressure control accuracy in the intake chamber and enables forcible maintenance at the minimum capacity. SOLUTION: This capacity control valve mechanism of capacity variable compressor is provided with pressure detection means, a transmission rod 4, a valve body 5, and a solenoid 12. The pressure detection means detects the pressures in an intake chamber 65 or in a crank chamber 55. The transmission rod 4, with one end abutting to the detection means, is supported by the valve casing in such a way that it can be inserted thereinto. The valve body 5, to which the other end of the transmission rod 4 abutting, opens and closes a communication passage between a discharge chamber 64 and a crank chamber 55 in accordance with expansion and contraction of the pressure detection means. The solenoid 12 applies the electromagnetic force to the valve body 5. A valve shaft 5b of the valve body 5 is supported in such a way that it can be inserted to a stator 7 of the solenoid 12. The valve shaft

5b projects to a plunger chamber 11 of the solenoid 12 for communicating the plunger chamber 11 to the intake chamber 65.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

BEST AVAILABLE COPY

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-18172 (P2000-18172A)

(43)公開日 平成12年1月18日(2000.1.18)

(51) Int.CL'		微別記号	FΙ			デーマコート*(参考)
F04B	49/08	3 2 1	F04B	49/08	3 2 1	3H045
	ر	3 3 1			3 3 1	3H076
	27/14		•	27/08	S	
	27/08				P	

審査請求 未請求 請求項の数4 OL (全 8 頁)

(21)出廣番号 特顯平10-191137

(22)出順日 平成10年7月7日(1998.7.7)

(71)出膜人 000001845

サンデン株式会社

群馬原伊勢崎市寿町20番地

(72)発明者 田口 幸彦

群馬県伊勢崎市寿町20番地 サンデン株式

会社内

(74)代理人 100071272

弁理士 後藤 洋介 (外2名)

Fターム(参考) 3HO45 AAO4 AA27 AA33 BA12 CAO2

DA25 EA13 EA27 EA42

3H076 AA06 BB32 CC12 CC16 CC41

CC84 CC94 CC98

(54) 【発明の名称】 可変容量圧縮機の容量制御弁機構

(57)【要約】

【課題】 吸入室圧力制御精度を向上させ、かつ強制的 に最小容量に維持できるようにした可変容量圧縮機の容量制御弁機構を提供すること。

【解決手段】 可変容量圧縮機の容量制御弁機構において、吸入室65内の圧力又はクランク室55の圧力を感知する感圧手段と、この感圧手段に一端が当接して弁ケーシングに揮通可能なように支持された伝達ロッド4と、この伝達ロッド4の他端が当接し、前記感圧手段の伸縮に応じて吐出室64とクランク室55との連通路を開閉する弁体5と、この弁体5に電磁力による力を作用させるソレノイド12を設け、前記弁体5の弁軸5bを前記ソレノイド12のステータ7に揮通可能に支持するとともに、前記弁軸5bを前記ソレノイド12のプランジャ室11に突出させ、このプランジャ室11を前記吸入室65と連通させた。

【請求項1】 吐出室、吸入室、及びクランク室を備えた可変容量圧縮機の前記クランク室内の圧力を調整することによってピストンストロークを制御する容量制御弁機構において、前記吸入室内の圧力又は前記クランク室圧力を感知する感圧手段と、前記感圧手段に一端が当接して弁ケーシングに挿通可能なように支持された伝達ロッドと、前記伝達ロッドの他端が当接し、前記感圧手段の伸縮に応じて吐出室とクランク室との連通路を開閉する弁体と、前記弁体に電磁力による力を作用させる磁界印加手段を設け、前記弁体の弁軸を前記磁界印加手段のステータに挿通可能に支持するとともに、前記弁軸を前記磁界印加手段のプランジャ室に突出させ、前記プランジャ室を前記吸入室と連通させたことを特徴とする可変容量圧縮機の容量制御弁機構。

【請求項2】 請求項1記載の可変容量圧縮機の容量制御弁機構において、前記弁体の弁軸のプランジャ室の圧力を受ける圧力受圧面積を前記弁体の弁座との当接側のクランク室の圧力を受ける圧力受圧面積と同等か、または大きく設定したことを特徴とする可変容量圧縮機の容量制御弁機構。

【請求項3】 請求項1 Xは2記載の可変容量圧縮機の容量制御弁機構において、前記伝達ロッドのクランク室の圧力受圧面積と前記弁体の弁座との当接側のクランク室の圧力受圧面積を同等に設定したことを特徴とする可変容量圧縮機の容量制御弁機構。

【請求項4】 請求項1乃至3の内のいずれかに記載の可変容量圧縮機の容量制御弁機構において、前記感圧手段を開弁方向に押圧する弾性部材を前記弁ケーシングとの間に介在させたことを特徴とする可変容量圧縮機の容量制御弁機構。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車用空調装置 に使用する可変容量圧縮機に設けられる容量制御弁機構 に関する。

[0002]

【従来の技術】従来、自動車用空調装置の冷媒回路には、可変容量圧縮機が用いられている。この可変容量圧縮機の圧縮する冷却媒体の容量を変化させるように、図4の部分断面図にに示すような容量制御弁機構100が設けられている。

【0003】図4を参照すると、リアハウジング53の一端側に設けられた容量制御弁機構100を収容する収容部53aに、容量制御弁機構100が収容されている。容量制御弁機構100は、軸方向に沿って設けられた質通孔101cを備えたケーシング本体101aと、この一端に装着されたキャップ状の蓋部材101bとよりなる弁ケーシング101を備えている。この弁ケーシング101のケーシング本体101aの一端の窪みと蓋

部材101bとによって形成された感圧空間内に、感圧手段としてのベローズ部102が配置されている。ベローズ部102は、ベローズ本体102cの両端に軸部材102dが設けられ、ベローズ本体101cの内部が真空にされ、この内部の軸部材102d間に、内部ばね102aが配置されている。このベローズ部102の配置された空間は、吸入室65に連絡通路67を介して連絡しており、感圧空間内部に配置されたベローズ部102は、吸入室65内の圧力を受けるように構成されている。このベローズ部2の外側一端には、軸部材102の一端に連続して支持部材102bが設けられ、その周囲にばね103が設けられており、ベローズ本体102cを図中下方に押圧するように構成されている。

【0004】 弁ケーシング101 aに設けられた貫通孔101 cに挿通可能なように伝達ロッド104が支持され、このベローズ部102の支持部材102bに一端が当接している。この伝達ロッド104の他端側は、ケーシング本体101 aの他端側の窪みに連絡しており、ボール弁105が当接して設けられている。

【0005】ボール弁105は、ベローズ部102の伸縮に連動して、軸方向に移動し、貫通孔101cの一端に連絡した吐出室64とクランク室55との連通路101dを開閉する。

【0006】また、ボール弁105が配設された弁ケー シング本体101aの他端部には、吐出室64と連通孔 101eを介して連通した弁室106が形成されてい る。弁ケーシング本体101aの他端(図では上端)に は、ステーター107が設けられており、また、その内 部には、ボール弁105の図中上端に、カップ状の収容 部108aを一端に備えて当接し、このステータ107 に挿通可能に支持されたソレノイドロッド108が設け られている。ソレノイドロッド108が挿通されたステ ータ107の上部に当接してプランジャー109が設け られ、これらステータ107の上部及びプランジャー1 09の周囲を覆ってチューブ110が設けられている。 チューブ110内で、ステータ107の上部には、プラ ンジヤー室111が形成されている。また、このチュー ブ110の周囲を覆うように、磁界印加手段としてのソ レノイド112が配置されている。このソレノイド11 2は、プランジャー109とステーター107の間隙に 電磁力を作用させ、その電磁力をソレノイドロッド10 8を介してボール弁105に作用させる。

【0007】具体的には、冷房の際に、冷房負荷が大きくなると、電磁力が大きくなり、ボール弁105の開度が小さくなるように力が働く。弁開度が小さくなると、クランク室に流入する冷媒量が減少し、クランク室内の圧力が減少して、斜板の傾き(駆動軸に垂直な面に対してなす角度)が大きくなる。一方、冷房負荷が小さい場合には、電磁力が小さくなり、ボール弁105の開度が大きくなるように力が働き、クランク室に流入する冷媒

量が増加し、クランク室内の圧力が増加して、斜板の傾 きが小さくなる。

【0008】このような構成の従来の容量制御弁機構1 00においては、ボール弁105を閉弁方向に押圧する カFv及びベローズ部102及び伝達ロッド104に作

$$Fv = (Pd-Pc) \cdot Sv + f(I) \cdots (1)$$

用し、ボール弁105を開弁方向に押圧する力Fbは、 それぞれ以下の数1式及び数2式のように示される。 [0009]

【数1】

Pd:吐出窓圧力、Pc:クランク室圧力、Ps:吸入室圧力、f(I):電流Iの時の電磁力、

fs: ぱねの押圧力、fb: ペローズと内部ばねの合成押圧力、Sv: ポール弁シール面積、

Sb:ペローズ部有効面積、Sr:ロッド斯面積

【数2】

$$Fb = fb - fs - \{(Sb - Sr) \cdot Ps + Sr \cdot Pc\} \cdots (2)$$

ここで、Fv<Fbの時、ボール弁105からなる弁体 は、開弁することになるが、上記数1式及び数2式か ら、次の数3式が成り立つ。

[0010] 【数3】

 $(Pd-Pc) \cdot Sv + f(I) < fb-fs- \{(Sb-Sr) \cdot Ps+Sr \cdot Pc\} \cdots (3)$ ここで、Pc=Ps+αとおいて、上記数3に代入して [0011] 整理すると次の数4式が成り立つ。

【数4】 fb-fs+ (Sv-Sr) · α ... (4)

【0012】上記数4式が容量制御弁機構100の吸入 室圧力制御特性となり、図5に示すようにソレノイド1 12からなる電磁コイルへの通電量(I)を変化させる ことにより、吸入室圧力が変化する特性となっている。 この構造の容量制御弁を採用した可変容量圧縮機は、い わゆる外部制御方式と呼ばれており、外部信号により自 在に容量を変化させることが可能となる。

[0013]

【発明が解決しようとする課題】しかしながら、従来の 外部制御方式の可変容量圧縮機では、車両の加速状態を 検出して強制的に圧縮機を最小容量に維持し、圧縮機の 消費動力を低減して車両の加速性能を向上させることが 提案されている。

【0014】従来の容量制御弁機構では、ソレノイド1 12への通電をOFFしても、上記数1式からFv= (Pd-Pc)·Sv>0となり、ボール弁105を閉 弁させようとする圧力差の力が残っており、例えば、吸 入室圧力が制御上限を超えてしまうとベローズが収縮 し、上記数2式からFb<0となるため、弁体は閉じて しまい、吐出ガスがクランク室に供給されず、最小容量 に維持できないという問題があった。

【0015】また、上記数4式に示すように、電磁コイ ル112へ一定の電流を通電しても吐出室圧力によって 吸入室圧力が変化してしまい、安定な制御が損なわれる という問題があった。

【0016】したがって、吐出室圧力の影響を小さくす るためには、弁体であるボール弁105のシール面積を 小さくする必要があるが、この場合クランク室55に供 給する吐出ガス導入量が不足し、容量制御が不安定にな る問題があった。

【0017】そこで、本発明の技術的課題は、吸入室圧 力制御精度を向上させ、かつ強制的に最小容量に維持で きるようにした可変容量圧縮機の容量制御弁機構を提供 することにある.

[0018]

【課題を解決するための手段】本発明によれば、吐出 室、吸入室、及びクランク室を備えた可変容量圧縮機の 前記クランク室内の圧力を調整することによってピスト ンストロークを制御する容量制御弁機構において、前記 吸入室内の圧力又は前記クランク室圧力を感知する感圧 手段と、前記感圧手段に一端が当接して弁ケーシングに 挿通可能なように支持された伝達ロッドと、前記伝達ロ ッドの他端が当接し、前記感圧手段の伸縮に応じて吐出 室とクランク室との連通路を開閉する弁体と、前記弁体 に電磁力による力を作用させる磁界印加手段を設け、前 記弁体の弁軸を前記磁界印加手段のステータに挿通可能 に支持するとともに、前記弁軸を前記磁界印加手段のプ ランジャ室に突出させ、前記プランジャ室を前記吸入室 と連通させたことを特徴とする可変容量圧縮機の容量制 御弁機構が得られる。

【0019】また、本発明によれば、前記可変容量圧縮 機の容量制御弁機構において、前記弁体の弁軸のプラン ジャ室の圧力、即ち、吸入室の圧力を受ける圧力受圧面 積を前記弁体の弁座との当接側のクランク室の圧力を受 ける圧力受圧面積と同等か、または大きく設定したこと を特徴とする可変容量圧縮機の容量制御弁機構が得られ る.

【0020】また、本発明に前記いずれかの可変容量圧 縮機の容量制御弁機構において、前記伝達ロッドのクラ ンク室の圧力受圧面積と前記弁体の弁座との当接側のク

ランク室の圧力受圧面積を同等に設定したことを特徴と する可変容量圧縮機の容量制御弁機構。

【0021】また、本発明によれば、前記いずれかのの 可変容量圧縮機の容量制御弁機構において、前記感圧手 段を開弁方向に押圧する弾性部材を前記弁ケーシングと の間に介在させたことを特徴とする可変容量圧縮機の容 量制御弁機構が得られる。

[0022]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照しながら説明する。

【0023】図1は本発明の実施の形態による容量可変制御弁を用いた可変容量圧縮機を示す図である。図1を参照すると、可変容量圧縮機50は、複数のシリンダボア51aを備えたシリンダブロック51と、シリンダブロック51の一端に設けられたフロントハウジング52と、シリンダブロック51に弁板装置54を介して設けられたリアハウジング53とを備えている。シリンダブロック51と、フロントハウジング52とによって規定されるクランク室55内を横断して、駆動軸56が設けられ、その中心部の周囲には、斜板57が配置されている。

【0024】斜板57は、駆動軸56に固着されたロー タ58と連結部59を介して結合している。

【0025】駆動軸56の一端は、フロントハウジング52の外側に突出したボス部52a内を貫通して、外側まで延在しており、ボス部52aの周囲にベアリング60を介して電磁クラッチ70が設けられている。

【0026】電磁クラッチ70は、ボス部52aの周囲に設けられたロータ71と、ロータ内に収容された電磁石装置72と、ロータの外側一端面に設けられたクラッチ板73とを備えている。駆動軸56の一端は、ボルト等の固定部材74を介してクラッチ板73と連結している。

【0027】駆動軸56とボス部52aとの間には、シール部材52bが挿入され、内部と外部とを遮断している。また、駆動軸56の他端は、シリンダブロック51内にあり、支持部材78によって、他端を支持している。尚、符号75,76,及び77は、ベアリングである。

【0028】シリンダボア51a内には、ピストン62が配置され、ピストン62の内側の一端のくぼみ62a内には、斜板57の外周部の周囲が収容され、シュー63を介して、ピストン62と斜面57とが互いに連動する構成となっている。

【0029】リアハウジング53は、吸入室65及び吐出室64が区画形成され、吸入室65は、シリンダボア51aとは、弁板装置54に設けられた図示しない吸入弁を介して連絡し、吐出室64は、シリンダボア51aとは、弁板装置54に設けられた吐出弁を介して連絡している。吸入室65は、開口83を介して、駆動軸56

の一端に形成された気室84と連絡している。

【0030】また、リアハウジング53の後壁の窪み内に容量制御弁機構10が設けられている。

【0031】以上までの構成は、容量制御弁機構を除いて、従来技術と同様の構造を備えている。

【0032】図2は本発明の第1の実施の形態による可 変容量圧縮機の容量制御弁機構を示す図である。図2を 参照すると、容量制御弁機構10は、従来技術と同様に 可変容量圧縮機のリアハウジング53内の一端にくぼん で形成された制御機構の収容部53aに設けられてい る。容量制御弁機構10は、弁ケーシング本体1aとこ の一端に設けられたキャップ状の蓋部材1bとを備えた 弁ケーシング1を備えている。この弁ケーシング1内の 一端の感圧空間には、ベローズ部2が配設されている。 【0033】ベローズ部2は、ベローズ本体2bと、ベ ローズ本体2bの両端から内部に突出して先端が離間し て設けられた軸部材2dと、軸部材2dの周囲で、ベロ ーズ本体26内部に配置された内部ばね2aと、ベロー ズ本体26の軸部材2dの一端に連続して設けられた支 持部材2cとを備え、ベローズ本体2bの内部が真空に されている。また、支持部材2cの周囲には、ベローズ 本体2bを軸部材2dを介して図中下方に押圧するよう に、ばね3が配置されている。

【0034】ベローズ部2は、吸入室65の圧力(以下、吸入室圧力と呼ぶ)を受圧する感圧手段として機能する

【0035】ケーシング本体1aには、軸方向に賃通して、賃通孔1cが設けられている。この貫通孔1cには、ベローズ部2の支持部材2cの上端に、一端が当接して弁ケーシング本体1aに挿通可能なように支持された伝達ロッド4を備えている。この伝達ロッド4の他端には、弁体5の一端の大径部5aが当接している。この弁体5は、ベローズ部2の伸縮に応じて吐出室64とクランク室55との連通路66,1d,1e,68を開閉する。この弁体5の周囲には、ケーシング本体1aの上端に接触して設けられ、弁体5の弁軸5bを挿通可能に支持するステーター7が配置され、ケーシング本体1aとステーター7の一端部とによって弁室6を形成している。即ち、この弁体5の一端は、弁室6内に収容されている。

【0036】弁室6は、吐出室64,通路68,空間14,及び通路1eを介して連通している。また、ステーター7の他端部には、プランジャー9が設けられ、このプランジャー9をステーター7を含めて覆うように、チューブ8が設けられている。ステーター7とチューブ8とによってプランジャー室11が区画形成されている。このプランジャー室11と、吸入室65とを通路67,孔部1f,密圧空間15を介して連通するように、連通路13が設けられている。

【0037】チューブ10の外周部には、プランジャー

9とステーター7の間隙に電磁力を作用させ、その電磁 力を弁軸5bを介して弁体の大径部5aに作用させる磁 界印加手段としてのソレノイド12からなる電磁コイル が配設されている。

【0038】このような構成の容量制御弁機構100に おいて、弁体5を閉弁方向に押圧する力Fv及びベロー

ズ部2及び伝達ロッド4に作用し、弁体5を開弁方向に 押圧する力F b はそれぞれ以下の数5式及び数6式のよ うに示される。

[0039]

【数5】

$$Fv = f(I) + Ps \cdot Sp - (Sp - Sv) \cdot Pd - Pc \cdot Sv \cdots (5)$$

【数6】

$$Fb=fb-fs-\{(Sb-Sr)\cdot Ps+Sr\cdot Pc\}$$
 ... (6)

Pd:吐出室圧力、Pc:クランク室圧力、Ps:吸入室圧力、1s:ばねの押圧力、

f b:ペローズと内部ばねの合成押圧力、f(I):電波Iの時の電磁力、

Sv:弁体シール面積、Sb:ベローズ有効面積、Sr:伝達ロット新面積、

Sp:弁軸端の受圧面積、

ここでPc=Ps+αとおくと次の数7式及び数8式が 成り立つ。

[0040] 【数7】

$$Fv = f(I) + (Sv - Sp) \cdot (Pd - Ps) - a \cdot Sv - (7)$$

【数8】

$$Fb = fb - fs - Sb \cdot Ps - a \cdot Sr \qquad \cdots (8)$$

【0041】ここで、ソレノイド12からなる電磁コイ ルへの通電量(I)をゼロとした場合、電磁力f(I) =0となり、 $Fv = (Sv - Sp) \cdot (Pd - Ps) \alpha \cdot Sv$ となるが、Pd-Ps>0、 $\alpha = Pc-Ps>$ 0であること、また、Sv≦Spと設定すれば常時Fv <0が成立する。 すなわち、弁軸5bの吸入室圧力受圧 面積(Sp)を弁体5のシール面積(Sv)と同等か、 または大きく設定することにより、吸入室65内の圧力 が制御上限を越えてベローズ部2が収縮しFb<0とな っても、電磁コイル12への通電量(I)をゼロにすれ ば常時Fv<0となり、弁体は圧力差による力で、常時 図中上方に押し上げられ、開弁する。これにより常時吐 出ガスがクランク室55に導入され、最小容量が維持で きる。

【0042】尚、Fv<Fbの時、弁体は開弁すること になるが、数7式及び数8式から次の数9式が成り立

[0043]

【数9】

$$\therefore P_{8} < -\frac{1}{8b+8p-8v} \cdot f(0) + \frac{8p-8v}{8b+8p-8v} \cdot P_{4} + \frac{(b-f_{8}+(8v-8r) \cdot a)}{8b+8p-8v} \cdots (9)$$

上記数9式が第1の実施の形態による容量制御弁機構の 吸入圧力制御特性となる。

【0044】したがって、弁体の弁軸56の吸入室圧力 受圧面積(Sp)を弁体シール面積(Sv)よりわずか に大きく設定すれば、吐出室内の圧力(以下、吐出室圧 力と呼ぶ) の影響の少ない吸入室圧力制御特性が得られ る。

【0045】尚、上記数9式で、Sv=Spとすれば吐 出室圧力の影響を受けない吸入室圧力制御特性が得ら れ、さらにSv=Srとすればα、つまりクランク室の 圧力の影響を受けない下記数 1 0式で示されるような吸 入室圧力制御特性が得られる.

[0046]

【数10】

$$P_{\delta} < \frac{1}{S_b} \cdot f(D) + \frac{f_b - f_{\delta}}{S_b} \cdots (10)$$

【0047】図3は本発明の第2の実施の形態による可 変容量圧縮機の容量制御弁機構を示す断面図である。 図 3に示される第2の実施の形態による可変容量圧縮機の 容量制御弁機構20は、図2で示される第1の実施の形 態による可変容量圧縮機の容量制御弁機構に対して、ベ ローズ2の図中下側で、蓋部材16の下部にくぼんだカ ップ部1gにベローズ部2を開弁方向に押し上げるため のばね3 を配置したことのみが異なる。このばね3 は、従来技術と同様に、特にベローズ部2が収縮した時 ベローズ2を支持する目的があるが、さらに電磁力 f (I)がゼロとなった場合、ベローズ部2の全体を図中 上方に押し上げ、弁体5を開弁させる機能がある。

【0048】このような本発明の実施の形態による可変 容量圧縮機の容量制御弁機構においては、ソレノイドへ の通電量をOFFすると、弁体の開閉方向に作用する圧 力差により弁体5が常時開弁し、最小容量を維持するこ

とができるとともに吸入室圧力の制御精度が向上する。 【0049】また、ペローズ部2と弁ケーシング1aの 間にばねを介在させた構成でも、ソレノイドへの通電量 をOFFすると、弁体が常時開弁し、最小容量を維持す ることができる。

[0050]

【発明の効果】以上説明したように、本発明では、吸入 室圧力制御精度を向上させ、かつ強制的に最小容量に維 持できるようにした可変容量圧縮機の容量制御弁機構を 提供することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態による容量可変制御 弁を用いた可変容量圧縮機の全体構造を示す断面図であ る.

【図2】本発明の第1の実施の形態による可変容量圧縮 機の容量制御弁機構を示す断面図である。

【図3】本発明の第2の実施の形態による可変容量圧縮 機の容量制御弁機構を示す断面図である。

【図4】従来技術による可変容量圧縮機の容量制御弁機 構を示す断面図である。

【図5】従来技術による可変容量圧縮機の容量制御弁機 構の吸入室圧力制御特性を示す図である。

【符号の説明】

- 弁ケーシング 1
- ケーシング本体 1 a
- 1 b 蓋部材
- 貫通孔 1 c
- 1d. 1e. 66, 68 連通路
- 1 f 孔部
- ベローズ部 2
- 内部ばね 2 a
- ベローズ本体 2 b
- 2 c 支持部材
- 軸部材 2 d
- 3、3 ばね
- 伝達ロッド 4
- 5 弁体
- 5 b 弁軸
- 6 弁室
- 7 ステーター
- チューブ 8
- プランジャー
- 10 容量制御弁機構
- プランジヤー室 11
- 12 ソレノイド
- 13 連通路
- 14 空間
- 15 感圧空間
- 50 可変容量圧縮機
- 51a シリンダボア

- シリンダブロック 51
- フロントハウジング 52
- 52a ポス部
- リアハウジング 53
- 53a 収容部
- 55 クランク室
- 56 駆動軸
- 57 斜板
- 58 駆動体
- 59 連結部
- ベアリング
- 60 61 ばね
- ピストン 62
- 62a くぼみ
- 63 シュー
- 64 吐出室
- 吸入室 65
- 66 連絡通路
- 67 連絡通路
- 70 電磁クラッチ
- 71 ロータ
- 72 電磁石装置
- 73 クラッチ板
- 74 固定部材
- 75、76、77 ベアリング
- 吸入口 81
- 82 吐出口
- 83 開口
- 84 気室
- 100 容量制御弁機構
- 101a ケーシング本体
- 101b 蓋部材
- 101c 貫通孔
- 101d, 101e 連通路
- 弁ケーシング 101
- ベローズ部 102
- 102a 内部ばね
- 102b 支持部材
- ベローズ本体 102c
- 102d 軸部材
- 103 ばね
- 104 伝達ロッド
- 105 ボール弁
- 106 弁室
- 107 ステーター
- 108a 収容部
- 108 ソレノイドロッド
- 109 プランジャー
- チューブ 110
- プランジヤー室 111

【図1】

【図4】

【図5】

