Lecture I (NW) partition: = < fr. fr.) = correlation function Computing such integrals is a princry target Topological Field Theories Grexaet results, using fixed point formulas and other decliniques (Correlation functions give various invariants: Donaldeon, G.W., Jones polynomial, etc (onformal Field Theories in 2D: (BP2) A; (xi) A; (xj) = Cij (xi, xj) Alkh(xj)

A; (xi) Aj(xj) = Cij (xi, xj) Alkh(xj)

Tufinite - dimensional symmetry

expansion lead to constraints on Cij (xi, xi) expressed via diff. equations

	Structure of the co	urse	-
1	Creametric (Segal) and (anatructive (8PZ) appre	uch
5)	Vertex algebras (sim Rational conformal fi	plest CFTs) (minimal mo eld theories. Relationshipt	lde, WZW)
S) 4)	, Advanced topics: 1) (rival de Kham camplex. Applications to Mirror sy.	nuetry
	2) <	LE approach to CFT integrable models and C Applications to Geometr	
C	tric approach, appli	ed to QFT in gene	ral
D+	et-dimensional QtI, an unctor Φ : Man(D)	nong other things (ά
8	"manifold"-loose in where * is the e	otion, correct is x-1 xtra structure	natifodd

· MrM' if there is a diff., preserving x-structure

orientation 2 spin structure topological sph conformal Field Theories. complex structure Zideas: i) Z - closed D-dim manifold > Hilbert space HE Physically: space of greantum states oblained by greantizing theory on EXIR spacetime. in emission $\Phi_{+}: H_{\Xi} \to H_{\Xi}$ $\Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ $\Phi_{+}: H_{\Xi} \to H_{\Xi} \quad \Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ $\Phi_{+}: H_{\Xi} \to H_{\Xi} \quad \Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ $\Phi_{+}: H_{\Xi} \to H_{\Xi} \quad \Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ $\Phi_{+}: H_{\Xi} \to H_{\Xi} \quad \Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ $\Phi_{+}: H_{\Xi} \to H_{\Xi} \quad \Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ $\Phi_{+}: H_{\Xi} \to H_{\Xi} \quad \Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ $\Phi_{+}: H_{\Xi} \to H_{\Xi} \quad \Phi_{+}: = \Phi_{+} \circ \Phi_{+}:$ (i) "Evolution operator" with two boundaries E and E' In general to any M En: Sle stle On from physics perspective: 10.3-local set of fund fielde Hand fields

Fund (ϕ') = $\int D\phi K_{m}(\phi', \phi) + i_{m}(\phi) K_{m}(\phi', \phi) = \int D\phi' K_{m}(\phi', \phi') + i_{m}(\phi', \phi') +$ 1) In degenerate case & consists of \$ = \$ \$1000 2) It E is a disjoint union of several menifolds NEWE - NEONE

Topological FT One can glue M1, M2 via surgery (applying Difflet) In topological theory (M) & fle is inv under Diffo(E) since it can always be deformed over a collar EXI) only TE (mapping class group) and $1 \rightarrow Diff_{o}(\epsilon) \rightarrow Diff(\epsilon) \rightarrow \Gamma_{\epsilon} \rightarrow 1$ 7(M') = < M2 (U(8) /M.) YETE Also dimths = Tyles = = 7 (Exst) if flat.d. Only one closed manifold: If M= Hst or Willist

They can be defined by considering

They can be defined by considering

The sphere with 1,2,3 holes 2d TET! 1) O l -> we call it vacuum vector 1. 100 / 2 (3) = (100 H-10 2(3) = (100 1 dil-boxis 2) 2) n: lle sl - 6
n; = y(bi, bi) Ex. Show that it is not beganite

. Hollast $A \cdot \beta = c(A, \beta)$ $C : Al \rightarrow End(M)$ or of = E Cej Pa c: Sym V > C Cijn = Cij Yer Mij = Cijo y(d.B,8) = y(d,B.8) Picture (d-b)-x = y(b-x) n(1,p)=<1.B)6 y(d, B) = (d.B)0

Elij Chel = Elije Chie (p.); = Ci; - symmetric commuting matrices can be simultaneously diagonalized by Si that is orthogonal w.v.t. Mij $C_{i,j} = \sum_{n} S_{i,j}^{n} \lambda_{i,j}^{(n)} (S_{i,j}^{-1})_{n}^{k} = \sum_{n} S_{i,j}^{(n)} \lambda_{i,j}^{(n)} (S_{i,j}^{-1})_{n}^{k}$ $C_{0,i} = \delta_{i}^{k} \rightarrow \lambda_{i}^{k} = \sum_{j=1}^{k} \lambda_{j}^{k} (s_{j})_{k}^{k}$ $C_{0,i} = \delta_{i}^{k} \rightarrow \lambda_{i}^{k} \rightarrow \lambda_{i$ Exercises: $\frac{1}{3} \left(\frac{1}{3} \right)^{\frac{1}{3}} \left(\frac{1}$ 2) Calculate partition functione Ēm: 'Φω → C Dis. Din Marking

n-point functions