ECON52603 Fall2024

Problem Set 5

Name:

For this problem set, you need to use the Stata datafile "production function.dta." This datafile contains a panel data set of 575 manufacturing firms in Spain during 9 years: 1982 - 1990. It includes the following variables:

Name	Description	Notation
year	Year	t
id	Firm identification number	i
\mathbf{y}	Logarithm of real annual output	$\log(Y)$
lt	Logarithm of annual total employment	$\log \left(L^P + L^T \right)$
$l\mathbf{p}$	Logarithm of annual "permanent" employment	$\log (L^P)$
k	Logarithm of real capital stock at the beginning of year	$\log(K)$
ik	Investment rate (annual investment / capital beginning year)	\mathbf{I}/\mathbf{K}
\mathbf{rt}	Ratio of temporary employment over permanent employment	$\mathbf{L}^T/\mathbf{L}^P$
wage	Ratio of annual wage bill over total employment	W

We consider an extension of the standard Cobb-Douglas production function. This extended version takes into account that: (1) temporary and permanent workers can have different productivity; and (2) that new investments during the year can have different productivity that the capital stock at the beginning of the year. That is:

$$Y_{it} = A_{it} (L_{it}^P + \lambda_L L_{it}^T)^{\alpha_L} (K_{it} + \lambda_K I_{it})^{\alpha_K}$$

where L^P and L^T represent permanent and temporary workers, respectively; $\lambda_L > 0$ is a parameter that measures the productivity of temporary workers relative to permanent workers; K is capital at the beginning of the year; K represents investment during the year; K is a parameter that measures the productivity of new investments relative to old capital; and K and K have the usual interpretation. We can take the logarithm transformation of this production function and - using standard approximations - obtain the following linear regression model:

$$\log(Y_{it}) = \alpha_L \log(L_{it}^P) + \alpha_L \lambda_L \log\left(\frac{L_{it}^T}{L_{it}^P}\right) + \alpha_K \log(K_{it}) + \alpha_K \lambda_K \left(\frac{I_{it}}{K_{it}}\right) + \alpha_{it}$$

- Q1. For the following questions, provide the code in Stata /Python and the table of estimation results.
- (a) Estimate the parameters of this production function using OLS with time dummies. Present also the estimates of the parameters λ_L and λ_K . Explain the results.
- (b) Test the null hypothesis $\lambda_L = 1$. Is temporary labor significantly less productive than permanent labor? Explain.
- (c) Test the null hypothesis $\lambda_K = 1$. Is new capital significantly less productive than old capital? Explain.
- (d) Test the null hypothesis $\alpha_L + \alpha_k = 1$. Is there significant evidence of decreasing returns to scale? Explain.
- Q2. For the following questions, provide the code in Stata/Python and the table of estimation results.
- (a) Estimate the parameters of this production function using Fixed Effects estimator with time dummies. Present also the estimates of the parameters λ_L and λ_K . Explain the results.
- (b) Implement the same tests as in Questions 1(b), 1(c), and 1(d), and answer the same questions. Explain the results.
- Q3. For the following questions, provide the code in Stata/Python and the table of estimation results.
- (a) Using the quasi-first difference transformation $(y_{it} \rho y_{i,t-1})$ obtain the equation of the linear regression model that we estimate to implement the Fixed Effects + Cochrane-Orcutt estimator. The model has 9 parameters, but it imposes 4 restrictions on these parameters. Write the equations for these 4 restrictions on the parameters.
- (b) Estimate the parameters of this production function using **Fixed Effects Cochrane Orcutt** estimator with time dummies. Present also the estimates of the parameters λ_L and λ_K . Explain the results.
- (c) Test the 4 restrictions on the parameters implied by the Cochrane- Orcutt model. Test each restriction separately, and also the 4 joint restrictions (5 different tests).

- Q4. For the following questions, provide the code in Stata/Python and the table of estimation results.
- (a) Estimate the parameters of this production function using Arellano-Bond estimator with time dummies and non-serially correlated transitory shock. Present also the estimates of the parameters λ_L and λ_K . Explain the results.
- (b) Test for the null hypothesis of no serial correlation in the transitory shocks. Explain the results.
- (c) Test for the over-identification restrictions of this IV estimator. Explain the results.
- Q5. For the following questions, provide the code in Stata/Python and the table of estimation results.
- (a) Estimate the parameters of this production function using Arellano-Bond estimator with time dummies and with an AR(1) transitory shock. Present also the estimates of the parameters λ_L and λ_K .
- (b) Test for the null hypothesis of no serial correlation in the transitory shocks. Explain the results.
- (c) Test the 4 restrictions on the parameters implied by the Cochrane-Orcutt model. Test each restriction separately, and also the 4 joint restrictions (5 different tests).
- (d) Test for the over-identification restrictions of this IV estimator. Explain the results.