LMAT2440 - Théorie des Nombres

Olivier Pereira - Jean-Pierre Tignol

2014-2015

Algorithmic Number Theory

Study of Numbers

VS.

Study of **this** Number

Algorithmic Number Theory

There are infinitely many primes.

VS.

 $1267650600228229401496703205653 \ is \ prime.$

Algorithmic Number Theory

Every integer greater than 1 is either prime itself or is the product of prime numbers.

VS.

 $2535301200456606295881202795651 = 1125899906842679 \times 2251799813685269$

Plan

- 1. Primality testing/proving
- 2. Integer factorization
- 3. Engineering elliptic curves for cryptographic use
- 4. Engineering encryption from residuosity class problems

Schedule

- Lectures on 21/11, 28/11, 03/12, 10/12
- Exercises on 05/12 and 12/12

Reference

• Prime Numbers. A computational Perspective. By R. Crandall and C. Pomerance, Springer, 2nd Edition.

Recognizing Primes Strategy 1 : Trial Division

$$\begin{array}{l} \textit{prime} \leftarrow \textit{True} \\ d \leftarrow 2 \\ \textbf{while} \ d \leq \sqrt{n} \ \textbf{do} \\ \textbf{if} \ d | n \ \textbf{then} \\ \textit{prime} \leftarrow \textit{False} \\ \textbf{break} \\ d \leftarrow d + 1 \\ \textbf{return} \ \textit{prime} \end{array}$$

Complexity $\approx p$ divisions, with p smallest factor

Improvements:

- Clear 2, then $d \leftarrow d + 2$
- Clear 2, 3, then +2, +4, +2, ...
- Sequence has length 30 when clearing 2, 3, 5, 7
- Sequence has length 1.021.870.080 when clearing primes < 30, and saves 52% work compared to clearing 2, 3
- Trying only primes $\leq \sqrt{n}$ $\Rightarrow \approx \frac{\sqrt{(n)}}{\ln(n)/2}$ divisions

Sieve of Eratosthenes (276–194)

×	2	3	×	5	×	7	%	×	D000
11	×	13	×	×	Ж	17	×	19	28<
×	×	23	*	×	26	×	>4	29	38<
31	×	×	×	X	36	37	38	399	3 90<
41	粱	43	₩	¾ <	36	47	¾ €	飒	><(
×	×	53	¾	¾	36	×	>≪	59	694
61	6 4	34	64	% <	36	67	36	9 9	78<
71	×	73	×	×	Ж	×	Ж	79	88<
» (382	83	34	34	36	387	388	89	98<
% (92	%	94	%	96	97	380	90	D8Q

Sieve of Eratosthenes (276–194)

```
\begin{array}{l} \textit{prime\_list} \leftarrow [\textit{True}]^n \\ \textbf{for } d \leftarrow [2, \sqrt{n}] \ \textbf{do} \\ \textbf{if } \textit{prime\_list}[d] \ \textbf{then} \\ \textbf{for } i \leftarrow \{d^2, d^2 + d, \dots, \leq n\} \ \textbf{do} \\ \textit{prime\_list}[i] \leftarrow \textit{False} \\ \textbf{return } \textit{prime\_list} \end{array}
```

Complexity (if only additions) : $\sum_{p \in P_{\sqrt{n}}} n/p - p \le \sum_{p \in P_{\sqrt{n}}} n/p \approx n \ln \ln n$ Only $\ln \ln n$ operations/integer!

$$a^n \equiv a \pmod{n}$$

- Always true if *n* is prime
- A composite n is a pseudoprime base a if (n, a) satisfy this equation

Recognizing Primes Strategy 2 : Fermat's test

for $i \leftarrow [1, t]$ do $a \leftarrow [2, n-1]$ if $a^n \not\equiv a \pmod{n}$ then return composite return probable prime ▷ Repeat t times
 ▷ Select random basis
 ▷ Test Fermat's equality
 ▷ If fails, then composite
 ▷ Else, probable prime

1. For each a, there are infinitely many pseudoprimes base a

If p is an odd prime not dividing $a^2 - 1$ then $n = (a^{2p} - 1)/(a^2 - 1)$ is pseudoprime base a

2. **Carmichael numbers :** A composite n is a *Carmichael number* if $a^n = a \pmod{n}$ for every integer a

If *n* is composite, squarefree and $\forall p | n : p - 1 | n - 1$, then *n* is a Carmichael number.

Ex: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, ...

Proof:

- If n si squarefree \Rightarrow just show $a^n = a \pmod{p}$, $\forall p \mid n$
- Let p|n and $a \in \mathbb{N}$
- If p|a then $p|a^n a$
- if $p \nmid a$ then $a^{p-1} = 1 \mod p$ and $a^{n-1} = 1 \pmod p$ since $p 1 \mid n 1$.

3. If n is composite and not pseudoprime base $a \in \mathbb{Z}_n^*$ then it is not pseudoprime for at least $\varphi(n)/2$ bases.

Proof:

- If n is pseudoprime base $b \in \mathbb{Z}_n^*$, then it is not pseudoprime base $ab : (ab)^n = a^n b^n = a^n \neq a \mod n$
- If $b_1, b_2 \in (\mathbb{Z}_n^*)^2$ then $ab_1 \neq ab_2$

$$a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) \pmod{n}$$

- Always true if n is prime and $n \nmid a$
- A composite n is a Euler pseudoprime base a if (n, a) satisfy this equation

Recognizing Primes Strategy 3 : Solovay-Strassen's test

for
$$i \leftarrow [1, t]$$
 do
$$a \leftarrow [2, n - 1]$$
if $a^{\frac{n-1}{2}} \not\equiv \left(\frac{a}{n}\right) \pmod{n}$ then
return composite
return probable prime

▷ If fails, then composite

▷ Else, probable prime

1. If n is composite and not pseudoprime base $a \in \mathbb{Z}_n^*$ then it is not pseudoprime for at least $\varphi(n)/2$ bases.

Proof: Same multiplicativity property with Jacobi's symbol

2. If *n* is composite, then there is always a base *a* such that *n* is *not* pseudoprime base *a*.

Proof: Part 1: if $p^2|n$ then $a=1+\frac{n}{p}$ is a witness

- $(1+\frac{n}{p})^p = 1+n+B(p,2)pn+\cdots \equiv 1 \mod n$
- Then $(1+\frac{n}{p})^j\equiv 1 \mod n$ implies p|j. Otherwise, $\gcd(p,j)=1$ and $\forall x,\exists a,b$ such that x=aj+bp and $(1+\frac{n}{p})^x=1 \mod n$.
- If a is not a witness, then $a^{\frac{n-1}{2}} \equiv \pm 1 \mod n$ and $a^{n-1} \equiv 1 \mod n$. But $p \not| n-1$, so a must be a witness.

2. If *n* is composite, then there is always a base *a* such that *n* is *not* pseudoprime base *a*.

Proof: Part 2: if n is squarefree and p|n

- Suppose $\exists a : a = 1 \mod \frac{n}{p}$ and $\left(\frac{a}{p}\right) = -1$.
- Then $\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{n}\right) = -1 \left(\frac{1}{a}\right) = -1$
- Then $a^{\frac{n-1}{2}} = 1 \mod \frac{n}{p}$ and $a^{\frac{n-1}{2}} = 1 + j\frac{n}{p} \mod n$. But $1 + j\frac{n}{p} \neq -1 \mod n$ since $-2 \nmid \frac{n}{p}$.
- So, a would be a witness. But does it exist?
- Pick $b: \left(\frac{b}{p}\right) = -1$. Then the system $a = b \mod p$ and $a = 1 \mod \frac{n}{p}$ has a solution (since $\gcd(p, \frac{n}{p}) = 1$)!

Let
$$n-1=2^st$$
 where t is odd
$$a^t\equiv 1\pmod n$$
 or
$$a^{2^it}\equiv -1\pmod n \text{ for some } i\in [0,s[$$

- Always true if n is prime and $n \nmid a$
- A composite n is a strong pseudoprime base a if (n, a) satisfy this equation

Recognizing Primes

Strategy 4: Miller-Rabin test

```
Let n-1=2^{s}t
  for i \leftarrow [1, u] do
                                                          \triangleright Repeat u times
      a \stackrel{r}{\leftarrow} [2, n-1]
                                                    Select random basis
       b \leftarrow a^t \mod n

    ▷ Computing "smallest" root

      if b \equiv \pm 1 \pmod{n} then
           break
                                                            \triangleright n looks prime
       for r \leftarrow [0, s] do

    ▷ Checking squares

           b \leftarrow b^2
           if b = 1 then
               return composite
                                                          if b=-1 then
               break
                                                            \triangleright n looks prime
       return composite
                                                              Never got 1
  return probable prime
```

1. For each composite n > 9: $|\{\text{strong pseudoprimes bases mod } n\}| \le \frac{1}{4}\varphi(n) \le \frac{n}{4}$

Proof: (for the case where $p^2|n$ only)

Ex cursus : $\mathbb{Z}_{p^2}^*$ is cyclic of order p(p-1)

- Let g be a generator of \mathbb{Z}_p^*
- If $g^{p-1} \neq 1 \mod p^2$ then g is of order p(p-1) Indeed, order of g divides p(p-1) and $g^p \equiv g \pmod p \Rightarrow g^p \equiv g + ip \not\equiv 1 \pmod p^2$
- If $g^{p-1}=1 \mod p^2$ then g(1+p) is of order p(p-1) Indeed, $(g(1+p))^{p-1}=(1+p)^{p-1}=1+(p-1)p=1-p \neq 1 \mod p^2$

1. For each composite n>9 : $|\{\text{strong pseudoprimes bases mod }n\}| \leq \frac{1}{4}\varphi(n) \leq \frac{n}{4}$

Proof: (for the case where $p^2|n$ only)

- If $a^{n-1} \equiv 1 \mod n$ then $a^{n-1} \equiv 1 \mod p^2$
- If g generates $\mathbb{Z}_{p^2}^*$ then $\exists j: a=g^j \bmod p^2$
- So, j(n-1) = kp(p-1) for some k
- Since $p \not| (n-1)$, we have p|j
- So, only (p-1) possible values for j, and (p-1) possible values for $a \mod p^2$
- Proportion is then $\frac{p-1}{p^2-1} = \frac{1}{p+1} \le \frac{1}{4}$

1. For each composite n > 9: $|\{\text{strong pseudoprimes bases mod } n\}| \le \frac{1}{4}\varphi(n) \le \frac{n}{4}$

Proof: (for the case where n = pq and $a^t \equiv 1 \mod n$)

- $a^t \equiv 1 \mod p$ and $a^t \equiv 1 \mod q$
- If g generates \mathbb{Z}_p^* then $\exists j: a = g^j \mod p$ So, $jt \equiv 0 \mod p - 1$
- This only works for $\gcd(t,p-1)=\gcd(t,t')\leq t'$ values of j where $p-1=2^{s'}t'$
- Same thing $mod q = 1 + 2^{s''}t''$
- So, proportion is at most $\frac{t't''}{2^{s'+s''}t't''} \leq \frac{1}{4}$ since $s',s'' \geq 1$

1. For each composite n>9 : $|\{\text{strong pseudoprimes bases mod }n\}| \leq \frac{1}{4}\varphi(n) \leq \frac{n}{4}$

Proof :(for the general case)

- more prime factors ⇒ more terms in the product, even better bound!
- case $a^{2^r t} \equiv -1 \mod n$: same approach, slightly refined:
 - count the $2^r t$ -roots of -1 mod primes, as before
 - show that we cannot have gcd(t, t') = t' and gcd(t, t'') = t'' (or n would have squares), so t't'' bound is overstated

1. For each composite n>9 : $|\{\text{strong pseudoprimes bases mod }n\}| \leq \frac{1}{4}\varphi(n) \leq \frac{n}{4}$

Observations:

- More factors ⇒ more witnesses
- p-1 is a bigger power of $2 \Rightarrow$ more witnesses

When picking random values : high probability of detecting composite on first attempt!

2. Under Extended Riemann Hypothesis (\approx primes are well distributed), the first non strong pseudoprime base for composite n is $< 2 \ln^2 n$

Let $a, n \in \mathbb{N}^{>1}$ If $a^{n-1} \equiv 1 \pmod n$ but $a^{(n-1)/q} \not\equiv 1 \pmod n$ for every prime q|(n-1) then n is prime.

Proof:

- $a^{n-1} \equiv 1 \pmod{n} \Rightarrow \operatorname{ord}(a)|n-1$
- $a^{(n-1)/q} \not\equiv 1 \pmod{n} \Rightarrow \operatorname{ord}(a)$ is not a strict divisor of n-1
- So a is of order n − 1
- But ord(a) $|\varphi(n)|$
- $\varphi(n)$ can only reach n-1 when n is prime, so n must be prime

Let $a, n \in \mathbb{N}^{>1}$ If $a^{n-1} \equiv 1 \pmod n$ but $a^{(n-1)/q} \not\equiv 1 \pmod n$ for every prime q|(n-1) then n is prime.

Strategy:

- need a primitive root mod nbut they are common $\approx n/(2 \ln \ln n)$
- Need the factors of n-1, hard in general, but we may build n-1 ourselves
- Need to prove that these factors are prime themselves
 A recursive proof might be needed
- But gives a proof in the end!

Variant: Let $a, n \in \mathbb{N}^{>1}$ with a odd. If $a^{(n-1)/2} \equiv -1 \pmod{n}$ and $a^{(n-1)/2q} \not\equiv -1 \pmod{n}$ for every odd prime q|n-1 then n is prime.

Proof:

- $a^{(n-1)/2} \equiv -1 \pmod{n} \Rightarrow a^{(n-1)} \equiv 1 \pmod{n}$
- $a^{(n-1)/q} \equiv 1 \pmod{n} \Rightarrow a^{(n-1)/2q} \equiv -1 \pmod{n}$ Indeed, $(a^{(n-1)/2q})^2 \equiv 1$ and $(a^{(n-1)/2q})^q \equiv -1$
- So, $a^{(n-1)/2q} \not\equiv -1 \pmod{n} \Rightarrow a^{(n-1)/q} \not\equiv 1 \pmod{n}$

Variant: Let $a, n \in \mathbb{N}^{>1}$ with a odd. If $a^{(n-1)/2} \equiv -1 \pmod{n}$ and $a^{(n-1)/2q} \not\equiv -1 \pmod{n}$ for every odd prime $q \mid n-1$ then n is prime.

Example: 1279 is prime

- Claim that $1279 = 3^3 \cdot 71 + 1$ with 3 and 71 primes
- Look for a primitive root mod 1279. a = 3 works!
- Check that :
 - $3^{1278/2} \equiv -1 \pmod{1279}$
 - $3^{1278/(2\cdot3)} \equiv 775 \not\equiv -1 \pmod{1279}$
 - $3^{1278/(2\cdot71)} \equiv 498 \not\equiv -1 \pmod{1279}$
- Then prove that 3 and 71 are primes in the same way.

Factoring Strategy 1 : Trial Division

```
\begin{array}{l} d \leftarrow 2 \\ \textbf{while } d \leq \sqrt{n} \ \textbf{do} \\ \textbf{while } d | n \ \textbf{do} \\ \textbf{print } d \\ n \leftarrow n/d \\ d \leftarrow d+1 \end{array}
```

Complexity $\approx p$ divisions, with p smallest factor Good for finding small factors!

Fermat method

If
$$n = u \cdot v$$
 is odd, then $n = a^2 - b^2$ where $a = \frac{u + v}{2}$ and $b = \frac{|u - v|}{2}$

Observations:

- |u v| is small if u and v are about the same size
 ⇒ checking if a² n is a small b² for increasing a's might work!
- *u* and *v* do not need to be primes

Factoring

Strategy 2 : Fermat method

Search for a non trivial divisor of an odd n

for
$$\sqrt{n} \le a \le (n+9)/6$$
 do
if $a^2 - n = b^2$ for an integer b then
return $a - b$

Observations:

- Do not compute a^2 every time : $(a+1)^2 = a^2 + 2a + 1$
- Worst case is $n = 3p \Rightarrow a = (p+3)/2 = (n+9)/6$
 - \rightarrow Much worse than previous strategy!
 - ⇒ Try small factors first/in parallel
- Twist : try to factor kn with small k in parallel This may bring products of factors close to \sqrt{kn}

Pollard p-1

If
$$p|n$$
 and $p-1|M$
then $2^M \equiv 1 \pmod{p}$ and $p|\gcd(2^M-1,n)$

Ideas :

- Build M as a product of small factors and hope that p-1|M
- Do not compute $2^M 1$ but $2^M 1 \mod n$

Factoring

Strategy 3 : Pollard p-1

$$\begin{array}{ll} c \leftarrow 2 & m \leftarrow 1 \\ p \leftarrow \text{ list of primes} \leq B \\ a_i \leftarrow \max_j p_i^j \leq B \text{ for all } i \\ \textbf{for } 1 \leq i \leq \text{length}(p) \textbf{ do} \\ \textbf{for } 1 \leq j \leq a_i \textbf{ do} \\ c \leftarrow c^{p_i} \bmod n \\ \textbf{if } \gcd(c-1,n) \not \in \{1,n\} \textbf{ then} \\ \textbf{return } \gcd(c-1,n) \end{array}$$

Observations:

- Hope that the prime factors of any p-1 are less than B
- Typically check gcd more often, in order to avoid trivial factors
- $B = 10^6$ gives 25% of 12 digit factors and 3% of 18 digit factors

Pollard ρ

Idea 1:

- 1. Select x_1, \ldots, x_m in \mathbb{Z}_n
- 2. Search for (x_i, x_i) : $gcd(x_i x_i, n) \neq 1$

If p is smallest factor of n, then (x_i, x_j) exist for $m \approx \sqrt{p}$ But finding the (i, j) pair takes $\approx p$ tests

Idea 2:

- 1. Compute $x_{i+1} = F(x_i)$ such that : $x_1 \equiv x_2 \pmod{p} \Rightarrow F(x_1) \equiv F(x_2) \pmod{p}$
- 2. Search (x_{2i}, x_i) : $gcd(x_{2i} x_i, n) \neq 1$

If p is smallest factor of n, then (x_{2i},x_i) exist for $i pprox \sqrt{p}$

Eventual complexity is $\approx \sqrt{p} \approx \sqrt[4]{n}$

Factoring Strategy 4 : Pollard ρ

With
$$F(x) = x^2 + a \pmod{n}$$
:

$$a \overset{r}{\leftarrow} [1, n-1] \qquad x_0 \overset{r}{\leftarrow} [0, n-1]$$

$$u \leftarrow x_0 \qquad v \leftarrow x_0$$
while True do
$$u \leftarrow u^2 + a$$

$$v \leftarrow v^2 + a$$

$$v \leftarrow v^2 + a$$
if $\gcd(u-v,n) \not\in \{1,n\}$ then
$$return \gcd(u-v,n)$$
if $\gcd(u-v,n) = n$ then
$$Restart with new $(a,x_0)$$$