CAMINHOS MÍNIMOS EM GRAFOS: FLOYD-WARSHALL (PARTE III)

Prof. Daniel Kikuti

Universidade Estadual de Maringá

27 de abril de 2015

Sumário

- Introdução
- Revisão de programação dinâmica
- Definição do algoritmo recursivo (correção)
- Algoritmo de Floyd-Warshall
- Análise de complexidade
- Exemplo
- Exercícios

Introdução

O Problema

Dado um grafo orientado G=(V,E) e uma função peso $w:E\to R$, queremos encontrar o caminho de custo mínimo de u até v, para todo par de vértices $u,v\in V$.

Introdução

O Problema

Dado um grafo orientado G=(V,E) e uma função peso $w:E\to R$, queremos encontrar o caminho de custo mínimo de u até v, para todo par de vértices $u,v\in V$.

Solução trivial

Aplicar um algoritmo de caminho mínimo de única origem $\left|V\right|$ vezes, uma para cada vértice.

	Complexidade	
Algoritmo	Grafo esparso	Grafo denso
Dijkstra	$O(VE \lg V)$	$O(V^3 \lg V)$
Bellman-Ford	$O(V^2E)$	$O(V^4)$

Considerações iniciais

- Supomos que não existem ciclos negativos.
- ▶ Os vértices estão numerados de 1 a n, onde n = |V|.
- ▶ Entrada: matriz $W_{n \times n}$ que representa os pesos das arestas. Isto é, $W = w_{ij}$, onde

$$w_{ij} = \begin{cases} 0 & \text{se } i = j \\ \text{o peso da aresta } (i,j) & \text{se } i \neq j \text{ e } (i,j) \in E \\ \infty & \text{se } i \neq j \text{ e } (i,j) \notin E \end{cases}$$

▶ Saída: Matriz $D_{n \times n} = d_{ij}$, onde cada $d_{ij} = \delta(i,j)$, e a Matriz $\Pi_{n \times n} = \pi_{ij}$, onde cada π_{ij} é o vértice predecessor de j em um caminho a partir de i.

Ideia do algoritmo

Programação dinâmica

- Caracterizar estrutura da solução ótima.
- Definir solução recursiva.
- Computar os custos mínimos.
- Construir a solução ótima.

Caracterizar estrutura da solução ótima

Definição de vértice intermediário

Um **vértice intermediário** em um caminho $p = \langle v_1, v_2, \dots, v_l \rangle$ é qualquer vértice de p, exceto v_1 ou v_l .

Subestrutura ótima

Considere um caminho mínimo $i \stackrel{p}{\leadsto} j$ com todos os vértices intermediários em $\{1, 2, \dots, k\}$.

- Se k não é um vértice intermediário de p, então todos os vértices intermediários de p estão em $\{1, 2, ..., k-1\}$.
- ▶ Se k é um vértice intermediário de p, então podemos desmembrar p em $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$. p_1 e p_2 são caminhos mínimos com todos os vértices intermediários em $\{1, 2, \ldots, k-1\}$.

Seja $d_{ij}^{(k)}$ o custo de um caminho mínimo $i \rightsquigarrow j$ com todos os vértices intermediários em $\{1, 2, \ldots, k\}$.

Base da indução

Seja $d_{ij}^{(k)}$ o custo de um caminho mínimo $i \rightsquigarrow j$ com todos os vértices intermediários em $\{1, 2, \dots, k\}$.

Base da indução

k=0, o caminho de i a j sem um vértice com numeração maior que 0 não possui nenhum vértice intermediário. Este caminho possui no máximo uma aresta.

Seja $d_{ij}^{(k)}$ o custo de um caminho mínimo $i \rightsquigarrow j$ com todos os vértices intermediários em $\{1, 2, \dots, k\}$.

Base da indução

k=0, o caminho de i a j sem um vértice com numeração maior que 0 não possui nenhum vértice intermediário. Este caminho possui no máximo uma aresta.

Recursão

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{se } k = 0\\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{se } k \ge 1 \end{cases}$$

Seja $d_{ij}^{(k)}$ o custo de um caminho mínimo $i \rightsquigarrow j$ com todos os vértices intermediários em $\{1, 2, \dots, k\}$.

Base da indução

k=0, o caminho de i a j sem um vértice com numeração maior que 0 não possui nenhum vértice intermediário. Este caminho possui no máximo uma aresta.

Recursão

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{se } k = 0\\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{se } k \ge 1 \end{cases}$$

Observação importante

Para qualquer caminho, todos os vértices intermediários estão no conjunto $\{1,2,\ldots,n\}$. Portanto, a matriz $D^{(n)}=d_{ij}^{(n)}$ fornece a reposta desejada: $d_{ii}^{(n)}=\delta(i,j) \forall i,j\in V$.

Computando os custos mínimos

O algoritmo de Floyd-Warshall

```
Floyd-Warshall(W)

1 n \leftarrow Número de linhas de W;

2 D^{(0)} = W

3 para k \leftarrow 1 até n faça

4 para i \leftarrow 1 até n faça

5 para j \leftarrow 1 até n faça

6 d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

7 devolva D^{(n)}
```

Computando os custos mínimos

O algoritmo de Floyd-Warshall

```
Floyd-Warshall(W)

1 n \leftarrow Número de linhas de W;

2 D^{(0)} = W

3 para k \leftarrow 1 até n faça

4 para i \leftarrow 1 até n faça

5 para j \leftarrow 1 até n faça

6 d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

7 devolva D^{(n)}
```

Análise de complexidade

Cada execução da linha 6 demora O(1). A linha 6 é executada n^3 vezes. Portanto, o tempo de execuão do algoritmo é $\Theta(n^3) = O(V^3)$.

Exercícios

Exercício 1

Informe como podemos construir a solução ótima (matriz de predecessores $\Pi_{n\times n}$) e obter o caminho mínimo entre dois pares de vértices.

Exercício 2

Dado um grafo orientado G=(V,E) com um conjunto de vértices $V=\{1,\ldots,n\}$, queremos saber se G tem um caminho de i a j para quaisquer pares de vértices $i,j\in V$. Definimos o **fecho transitivo** de G como sendo o grafo $G^*=(V,E^*)$, onde $E^*=\{(i,j): \text{ existe um caminho de } i \text{ a } j \text{ em } G\}$. Mostre como podemos modificar o algoritmo de Floyd-Warshall para computar o fecho transitivo de maneira eficiente.