We assume the reader is familiar with additive categories and (closed, symmetric) monoidal categories.

Definition 0.1. A triangulated category is a tuple $(\mathcal{C}, \Sigma, \Omega, \mathcal{D})$ such that

- (1) C is an additive category.
- (2) $\Sigma, \Omega: \mathcal{C} \to \mathcal{C}$ are additive functors which form an adjoint equivalence of \mathcal{C} with itself. (Σ is calld the *shift functor*.)
- (3) D is a collection of distinguished triangles, where a triangle is a diagram of the form

$$X \to Y \to Z \to \Sigma X$$
.

These are also sometimes called *cofiber sequences* or *fiber sequences*.

These data must satisfy the following axioms:

TR0 Given a commutative diagram

where the vertical arrows are isomorphisms, if the top row is distinguished then so is the bottom.

TR1 For any object X in \mathcal{C} , the diagram

$$X \xrightarrow{\mathrm{id}_X} X \to 0 \to \Sigma X$$

is a distinguished triangle.

TR2 For all $f: X \to Y$ there exists an object C_f (also sometimes denoted Y/X) called the $cofiber\ of\ f$ and a distinguished triangle

$$X \xrightarrow{f} Y \to C_f \to \Sigma X.$$

TR3 Given a solid diagram with both rows commutative

$$\begin{array}{cccc} X & \longrightarrow & Y & \longrightarrow & Z & \longrightarrow & \Sigma X \\ f \downarrow & & \downarrow & & \downarrow & & \downarrow \Sigma f \\ X' & \longrightarrow & Y' & \longrightarrow & Z' & \longrightarrow & \Sigma X' \end{array}$$

such that the leftmost square commutes and both rows are distinguished, there exists a dashed arrow $Z \to Z'$ which makes the remaining two squares commute.

TR4 A triangle

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{\Sigma} X$$

is distinguished if and only if

$$Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X \xrightarrow{-\Sigma f} \Sigma Y$$

is distinguished.

TR5 (Octahedral axiom) Given three distinguished triangles

$$X \xrightarrow{f} Y \xrightarrow{h} Y/X \to \Sigma X$$
$$Y \xrightarrow{g} Z \xrightarrow{k} Z/Y \to \Sigma Y$$

$$X \xrightarrow{g \circ f} Z \xrightarrow{l} Z/X \to \Sigma X$$

there exists a distinguished triangle

$$Y/X \xrightarrow{u} Z/X \xrightarrow{v} Z/Y \xrightarrow{w} \Sigma(Y/X)$$

such that the following diagram commutes

It turns out that the above definition is actually redundant; TR3 and TR4 follow from the remaining axioms (see Lemmas 2.2 and 2.4 in [1]).

We now recall several important propositions for triangulated categories:

Proposition 0.2. Given a map $f: X \to Y$ in a triangulated category $(\mathfrak{C}, \Sigma, \Omega, \mathfrak{D})$, the cofiber sequence of f is unique up to isomorphism, in the sense that given any two distinguished triangles

$$X \xrightarrow{f} Y \to Z \to \Sigma X$$
 and $X \xrightarrow{f} Y \to Z' \to \Sigma X$,

there exists an isomorphism $Z \to Z'$ which makes the following diagram commute:

$$\begin{array}{cccc} X & \xrightarrow{f} & Y & \longrightarrow & Z & \longrightarrow & \Sigma X \\ \parallel & & \parallel & & \downarrow_k & & \parallel \\ X & \xrightarrow{f} & Y & \longrightarrow & Z' & \longrightarrow & \Sigma X \end{array}$$

Proposition 0.3. Given an arrow $f: X \to Y$ in a triangulated category $(\mathfrak{C}, \Sigma, \Omega, \mathfrak{D})$, there exists an object F_f called the fiber of f, and a distinguished triangle

$$F_f \to X \xrightarrow{f} Y \to \Sigma F_f (\cong C_f).$$

Proposition 0.4. Let $(\mathcal{C}, \Sigma, \Omega, \mathcal{D})$ be a triangulated category. Given a distinguished triangle

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$$

and any object A in C, there is a long exact sequence of abelian groups

$$\cdots \to [\Sigma^{n+1}A,Z] \xrightarrow{\partial} [\Sigma^nX,X] \xrightarrow{f_*} [\Sigma^nA,Y] \xrightarrow{g_*} [\Sigma^nA,Z] \xrightarrow{\partial} [\Sigma^{n-1}A,X] \to \cdots$$

extending infinitely in either direction, where for n < 0 we define $\Sigma^{-n} := \Omega^n$, and ∂ is the map

$$[\Sigma^{n+1}A,Z] \xrightarrow{h_*} [\Sigma^{n+1}A,\Sigma X] \cong [\Sigma^{-1}\Sigma^{n+1}A,X] \cong [\Sigma^nA,X].$$

Also important for our work is the concept of a *tensor triangulated category*, that is, a triangulated symmetric monoidal category in which the triangulated structures are compatible, in the following sense:

Definition 0.5. A tensor triangulated category is a triangulated symmetric monoidal category $(\mathfrak{C}, \otimes, S, \Sigma, \Omega, \mathfrak{D})$ such that:

TT1 For all objects X and Y in \mathcal{C} , there are natural isomorphisms

$$e_{X,Y}: X \otimes (\Sigma Y) \xrightarrow{\cong} \Sigma(X \otimes Y).$$

TT2 For each object X in C, the functor $X \otimes (-) \cong (-) \otimes X$ is an additive functor.

TT3 For each object X in C, the functor $X \otimes (-) \cong (-) \otimes X$ preserves distinguished triangles, in that given a distinguished triangle/(co)fiber sequence

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$$
,

then also

$$X \otimes A \xrightarrow{X \otimes f} X \otimes B \xrightarrow{X \otimes g} X \otimes C \xrightarrow{X \otimes h} \Sigma(X \otimes A)$$

and

$$A \otimes X \xrightarrow{f \otimes X} B \otimes X \xrightarrow{g \otimes X} C \otimes X \xrightarrow{h \otimes X} \Sigma(A \otimes X)$$

are distinguished triangles, where here we are being abusive and writing $X \otimes h$ and $h \otimes X$ to denote the compositions

$$X \otimes C \xrightarrow{X \otimes h} X \otimes (\Sigma A) \xrightarrow{e_{X,A}} \Sigma(X \otimes A)$$

and

$$C \otimes X \xrightarrow{h \otimes X} (\Sigma A) \otimes X \xrightarrow{\tau} X \otimes (\Sigma A) \xrightarrow{e_{X,A}} \Sigma(X \otimes A) \xrightarrow{\Sigma \tau} \Sigma(A \otimes X),$$

respectively.

Usually, most tensor triangulated categories that arise in nature will satisfy additional coherence axioms (see axioms TC1–TC5 in [1]), but the above definition will suffice for our purposes. To avoid the awkwardness of saying "a tensor triangulated category which is also a closed symmetric monoidal category," we introduce the following (nonstandard) terminology:

Definition 0.6. We say a tensor triangulated category $(\mathcal{C}, \otimes, S, \Sigma, \Omega)$ is *closed* if \mathcal{C} is a closed symmetric monoidal category, in the sense that for each object $X \in \mathcal{C}$, the functor $-\otimes X$ has a right adjoint F(X, -).

Note that given a tensor triangulated category, we have the following characterization of the shift functor:

Proposition 0.7. Given a tensor triangulated category $(\mathfrak{C}, \otimes, S, \Sigma, \Omega)$, there is a canonical natural isomorphism $\Sigma S \otimes - \cong \Sigma$.

Proof. Given an object X in \mathcal{C} , we have natural isomorphisms

$$\Sigma S \otimes X \xrightarrow{\tau} X \otimes \Sigma S \xrightarrow{e_{X,S}} \Sigma(X \otimes S) \xrightarrow{\Sigma \rho_X} \Sigma X,$$

where ρ is the right unitor specified by the monoidal structure on \mathcal{C} .

Because of the above proposition, when working with tensor triangulated categories we will often assume that $\Sigma = S^1 \otimes -$ for some object S^1 .