Niech dana będzie funkcja ograniczona $f{:}[a,b] \to \mathbb{R}$ Sumą częściową (Riemanna) nazywa się liczbę

$$R_{f,P(q_1,\dots,q_n)} = \sum_{i=1}^n f(q_i) \cdot \Delta p_i.$$

Funkcję f nazywa się całkowalną w sensie Riemanna lub krótko R-całkowalną, jeśli dla dowolnego ciągu normalnego (P^k) podziałów przedziału [a,b], istnieje (niezależna od wyboru punktów pośrednich) granica

$$R_f = \lim_{k \to \infty} R_{f, P^k \left(q_1^k, \dots, q_{n_k}^k\right)}$$

nazywana wtedy całką Riemanna tej funkcji. Równoważnie: jeżeli istnieje taka liczba R_f , że dla dowolnej liczby rzeczywistej $\varepsilon>0$ istnieje taka liczba rzeczywista $\delta>0$, że dla dowolnego podziału $P(q_1,\ldots,q_n)$ o średnicy diam $P(q_1,\ldots,q_n)<\delta$;

