PS 3 Solution

Figure 1: Schematic of the Urea cycle.

Solution 1 (a)

Metabolite ID

#	Metabolite	Symbol	#	Metabolite	Symbol		
M.1	Arginine (arg)	$C_6H_{14}N_4O_2$	M.10	ATP	$C_{10}H_{16}N_5O_{13}P_3$		
M.2	Ornithine (orn)	$C_5H_{12}N_2O_2$	M.11	AMP	$C_{10}H_{14}N_5O_7P$		
M.3	Urea (u)	CH ₄ N ₂ O	M.12	Diphosphate (PPi)	H ₄ PO ₇		
M.4	Carbamoyl Phosphate (camp)	CH ₄ NO ₅ P	M.13	Orthophosphate	H ₃ PO ₄		
M.5	L-aspartate (asp)	C ₄ H ₇ NO ₄	M.14	NADPH	$C_{21}H_{30}N_7O_{17}P_3$		
M.6	Citrulline (cit)	$C_6H_{13}N_3O_3$	M.15	NADP	$C_{21}H_{29}N_7O_{17}P_3$		
M.7	Arginine succinate (arg_s)	C ₁₀ H ₁₈ N ₄ O ₆	M.16	Oxygen	O ₂		
M.8	Fumarate (fum)	C ₄ H ₄ O ₄	M.17	Nitric Oxide	NO		
M.9	Water	H ₂ O	M.18	H+	Н		

• Reactions involved in the urea cycle (Source: <u>KEGG</u>)

E.C. 6.3.4.5

$$C_4H_7NO_4 + C_6H_{13}N_3O_3 + C_{10}H_{16}N_5O_{13}P_3 = = > C_{10}H_{18}N_4O_6 + C_{10}H_{14}N_5O_7P + H_4PO_7$$

E.C. 4.3.2.1

$$C_{10}H_{18}N_4O_6 ===> C_6H_{14}N_4O_2 + C_4H_4O_4$$

E.C. 3.5.3.1

$$C_6H_{14}N_4O_2 + H_2O ===> C_5H_{12}N_2O_2 + CH_4N_2O$$

E.C. 2.1.3.3

$$C_5H_{12}N_2O_2 + CH_4NO_5P ===> C_6H_{13}N_3O_3 + H_3PO_4$$

E.C. 1.14.13.39

$$2 C_{6}H_{14}N_{4}O_{2} + 3 C_{21}H_{30}N_{7}O_{17}P_{3} + 3 H^{+} + 4 O_{2} <===> 2 C_{6}H_{13}N_{3}O_{3} + 2 NO + 3 C_{21}H_{29}N_{7}O_{17}P_{3} + 4 H_{2}O$$

Reaction ID

#	Reaction	#	Reaction
\mathbf{v}_1	<i>e.c.6.3.4.5</i> asp>arg_s	b_5	[]>ATP
\mathbf{v}_2	e.c.4.3.2.1 arg_s>arg	b_6	AMP>[]
v ₃	e.c.3.5.3.1 arg>orn	b_7	PPi>[]
V 4	<i>e.c.2.1.3.3</i> orn>cit	b ₈	H ₃ PO ₄ >[]
\mathbf{v}_5	e.c.1.14.13.39 arg>cit	b_9	[]<>H ₂ O
v ₆	rev. v ₅ e.c.1.14.13.39 cit>arg	b_{10}	NADPH<>[]
b_1	[]>camp	b_{11}	H<>[]
b_2	[]>asp	b_{12}	NADP<>[]
b ₃	fum>[]	b ₁₃	NO<>[]
b ₄	u>[]	b ₁₄	O ₂ <>[]

(answer) Stoichiometric Matrix, S (see readme.txt also)

	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	V 4	v ₅	\mathbf{v}_6	\mathbf{b}_1	\mathbf{b}_2	b ₃	b ₄	b ₅	b ₆	b ₇	b ₈	b ₉	b ₁₀	b_{11}	b_{12}	b_{13}	b ₁₄
M.1	0	1	-1	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M.2	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
М.3	0	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0
M.4	0	0	0	-1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
M.5	-1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
M.6	-1	0	0	1	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M.7	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M.8	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0
М.9	0	0	-1	0	4	-4	0	0	0	0	0	0	0	0	1	0	0	0	0	0
M.10	-1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
M.11	1	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
M.12	1	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0
M.13	0	0	0	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0
M.14	0	0	0	0	-3	3	0	0	0	0	0	0	0	0	0	-1	0	0	0	0
M.15	0	0	0	0	3	-3	0	0	0	0	0	0	0	0	0	0	0	1	0	0
M.16	0	0	0	0	-4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	-1
M.17	0	0	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	1	0
M.18	0	0	0	0	-3	3	0	0	0	0	0	0	0	0	0	0	-1	0	0	0

Convention for v₅ reversibility has been assumed to be: citrulline ===> arginine

Solution 1 (b)

(answer) Atom Matrix, A

	M.1	M.2	м.3	М.4	M.5	М.6	М.7	М.8	М.9	M.10	M.11	M.12	M.13	M.14	M.15	M.16	M.17	M.18
С	6	5	1	1	4	6	10	4	0	10	10	0	0	21	21	0	0	0
Н	14	12	4	4	7	13	18	4	2	16	14	4	3	30	29	0	0	1
N	4	2	2	1	1	3	4	0	0	5	5	0	0	7	7	0	1	0
0	2	2	1	5	4	3	6	4	1	13	7	7	4	17	17	2	1	0
P	0	0	0	1	0	0	0	0	0	3	1	2	1	3	3	0	0	0

I have used the atom matrix for this part and the **epsilon = A*S** matrix can be generated by running the ("**S_and_epsillon_generator.jl**") file.

• in julia console run include("a,b S_and_epsillon_generator.jl")

This will generate "atom_matrix.csv" and "epsilon.csv" files.

If the urea cycle reconstruction is elementally balanced, the components of epsilon matrix should be zero, which is true in this case.

Solution 1 (c)

The code for solving the FBA problem is given in "c run.jl"

• Upper bounds for the fluxes were calculated using:

$$v_{max,i} = k_{cat,i} \times E \times \prod_{i=1}^{m} \frac{C_i}{K_m + C_i}$$

• K_m values and metabolite concentration , C_i were obtained from Park et al Nat Chem Biol 12:482-9, 2016 and used to calculate:

For these values, the following order of preference was followed:

Homo sapiens > Mus musculus > other organism

Data for S. cerevisiae was used for the enzyme E.C.2.1.3.3

Note: I have assumed the metabolites involved in reaction v_5 can be exchanged through the boundary. Deactivate lines 25, 26 and activate lines 29 and 30 to see fluxes with **no boundary exchange of reaction v_5 metabolites** (in this case flux $v_5 = v_6 = 0.0$ mmol/gDW.hr to maximize urea)

• in julia console run include("c run.jl")

(answer) Optimum fluxes for maximum urea production

Flux ID	Reaction	LB	UB	Optimum value (mmol/gdW.hr)
V ₁	<i>e.c.6.3.4.5</i> asp>arg_s	0	v_{max1}	1.242
v_2	<i>e.c.4.3.2.1</i> arg_s>arg	0	V _{max2}	1.242
v ₃	<i>e.c.3.5.3.1</i> arg>orn	0	V _{max} 3	1.271095
V4	e.c.2.1.3.3 orn >cit	0	V _{max} 4	1.271095
V ₅	<i>e.c.1.14.13.39</i> arg- ->cit	0	V _{max} 5	0
V ₆	rev. v ₅ e.c.1.14.13.39 cit>arg	0	$v_{ ext{max6}}$	0.014548
b_1	[]>camp	0	10	1.271095
b_2	[]>asp	0	10	1.242
b ₃	fum>[]	0	10	1.242
b ₄	u>[]	0	10	1.271095
b ₅	[]>ATP	0	10	1.242
b ₆	AMP>[]	0	10	1.242
b ₇	PPi>[]	0	10	1.242
b ₈	H ₃ PO ₄ >[]	0	10	1.271095
b ₉	[]<>H ₂ O	-10	10	1.329286
b ₁₀	NADPH<>[]	-10	10	0.043643
b ₁₁	H<>[]	-10	10	0.043643
b ₁₂	NADP<>[]	-10	10	0.043643
b ₁₃	NO<>[]	-10	10	0.029095
b ₁₄	O ₂ <>[]	-10	10	0.05819