Insurance Charges Al Prediction

Problem Statement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

1.) Identify your problem statement

- **Machine Learning** Here data are number format.
- **Supervised Learning** Here the requirement is "predict the insurance charges" clear. Then Input and Output data are available (insurance pre.csv file).
- **Regression** It's continuous value (i.e Numerical)

2.) Tell basic info about the dataset (Total number of rows, columns)

In dataset, it contains "age", "sex", "bmi", "children", "smoker" and "charges" attributes.

Input parameters are "age", "sex", "bmi", "children", "smoker and output is "charges"

[2]:	<pre>dataset = pd.read_csv("insurance_pre.csv")</pre>							
[5]:	dataset							
[5]:		age	sex	bmi	children	smoker	charges	
	0	19	female	27.900	0	yes	16884.92400	
	1	18	male	33.770	1	no	1725.55230	
	2	28	male	33.000	3	no	4449.46200	
	3	33	male	22.705	0	no	21984.47061	
	4	32	male	28.880	0	no	3866.85520	
	1333	50	male	30.970	3	no	10600.54830	
	1334	18	female	31.920	0	no	2205.98080	
	1335	18	female	36.850	0	no	1629.83350	
	1336	21	female	25.800	0	no	2007.94500	
	1337	61	female	29.070	0	yes	29141.36030	
	4220		C l					

1338 rows × 6 columns

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

"sex" and "smoker" attributes are categorial data. So, it has pre-processed into nominal data by using "one hot encoding"

```
#data preprocessing - because categorial data can't be handle so we modify the data into numerical data using one hot encoding(Nominal)

dataset = pd.get_dummies(dataset, drop_first=True)
```

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

I have used regression algorithms like *Multiple Linear Regression, Support vector* machine, *Decision tree and Random Forest algorithm* from Machine Learning to predict the insurance charges.

5.) All the research values (r2_score of the models) should be documented.(You can make tabulation or screenshot of the results.)

Dataset – insurance_pre

- 1. Multiple Linear Regression R² value = 0.789
- 2. Support Vector Machine

Parameters:

- Cfloat, default=1.0
- kernel{'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'

Without Standardization:

S.No	Hyper Parameter C	Linear R2 value	RBF R2 value	Poly R2 value	Sigmoid R2 value
1	10	-0.001	-0.081	-0.093	-0.090
2	100	0.543	-0.124	-0.099	-0.118
3	1000	0.634	-0.117	-0.055	-1.665
4	2000	0.689	-0.107	-0.002	-5.616
5	3000	0.759	-0.096	0.048	-12.019

With Standardization:

S.No	Hyper Parameter C	Linear R2	RBF R2 value	Poly R2	Sigmoid R2 value
		value		value	
1	10	0.462	-0.032	0.038	0.039
2	100	0.628	0.320	0.617	0.527
3	1000	0.764	0.810	0.856	0.287
4	2000	0.744	0.854	0.860	-0.593
5	3000	0.741	0.866	0.859	-2.124

3. Decision Tree

Parameters:

- criterion{"squared_error", "friedman_mse", "absolute_error", "poisson"}, default="squared_error"
- splitter{"best", "random"}, default="best"
- max_featuresint, float or {"sqrt", "log2"}, default=None

S.No.	Criterion	Splitter	max_features	R² Value
1. 1				0.706
2.	squared_error	Best	None	0.718
3.	squared_error	Best	Sqrt	0.577
4.	squared_error	Best	Log2	0.711
5.	squared_error	Random		0.660
6.	squared_error	Random	None	0.746
7.	squared_error	Random	Sqrt	0.651
8.	squared_error	Random	Log2	0.670
9.	friedman_mse	Best		0.695
10.	friedman_mse	Best	None	0.703
11.	friedman_mse	Best	Sqrt	0.700
12.	friedman_mse	Best	Log2	0.717
13.	friedman_mse	Random		0.708
14.	friedman_mse	Random	None	0.730
15.	friedman_mse	Random	Sqrt	0.696
16.	friedman_mse	Random	Log2	0.630
17.	absolute_error	Best		0.661
18.	absolute_error	Best	None	0.690
19.	absolute_error	Best	Sqrt	0.726
20.	absolute_error	Best	Log2	0.713
21.	absolute_error	Random		0.723
22.	absolute_error	Random	None	0.715
23.	absolute_error	Random	Sqrt	0.719
24.	absolute_error	Random	Log2	0.754
25 .	poisson	<mark>Best</mark>		<mark>0.727</mark>
26.	poisson	Best	None	0.720
27.	poisson	Best	Sqrt	0.733
28.	poisson	Best	Log2	0.691
29.	poisson	Random		0.716
30.	poisson	Random	None	0.668
31.	poisson	Random	Sqrt	0.707
32.	poisson	Random	Log2	0.755

In decision tree, criterion='poisson', splitter='best' gives best R² value as 0.727

4. Random Forest

Parameters:

- n_estimatorsint, default=100
- criterion{"squared_error", "absolute_error", "friedman_mse", "poisson"}, default="squared_error"
- max_features{"sqrt", "log2", None}, int or float, default=1.0

S.No.	n_estimators	Criterion	max_features	R ² Value
1	100	squared_error	None	0.854
2	100	squared_error	Sqrt	0.870
3	100	squared_error	Log2	0.870
4	50	squared_error	None	0.850
5	50	squared_error	Sqrt	0.869
6	50	squared_error	Log2	0.869
7	10	squared_error	None	0.833
8	10	squared_error	Sqrt	0.852
9	10	squared_error	Log2	0.852
10	100	friedman_mse	None	0.855
11	100	friedman_mse	Sqrt	0.870
12	100	friedman_mse	Log2	0.870
13	50	friedman_mse	None	0.851
14	50	friedman_mse	Sqrt	0.870
15	50	friedman_mse	Log2	0.870
16	10	friedman_mse	None	0.833
17	10	friedman_mse	Sqrt	0.851
18	10	friedman_mse	Log2	0.851
19	100	absolute_error	None	0.853
<mark>20</mark>	100	absolute_error	Sqrt	0.871
	<u>100</u>	absolute_error	Log2	0.871
22	50	absolute_error	None	0.854
<mark>23</mark>	50	absolute_error	Sqrt	0.871
	50	absolute_error	Log2	0.871
	10	absolute_error	None	0.836
	10	absolute_error	Sqrt	0.858
	10		Log2	0.858
		absolute_error		
	100	poisson	None	0.853
	100	poisson	Sqrt	0.867
	100	poisson	Log2	0.867
	50	poisson	None	0.850
32	50	poisson	Sqrt	0.863
33	50	poisson	Log2	0.863
34	10	poisson	None	0.832
35	10	poisson	Sqrt	0.854
36	10	poisson	Log2	0.854

In Random Forest, below model gives best R² value = 0.871

- (n_estimators=100, criterion='absolute_error', max_features='sqrt')
- (n_estimators=100, criterion='absolute_error', max_features='log2')
- (n_estimators=50, criterion='absolute_error', max_features='sqrt')
- (n_estimators=50, criterion='absolute_error', max_features='log2')

6.) Mention your final model, justify why u have chosen the same.

I have chosen "Random Forest" algorithm as a final model, because "R score" value is good when compare to other algorithms.

S.No	Algorithm	Parameter	R Score
1	Multiple Linear Regression		0.789
2	Support Vector Machine	(kernel='rbf', c=3000)	0.866
3	Decision Tree	(criterion='poisson', splitter='best')	0.727
4	Random Forest	(n_estimators=100, criterion='absolute_error', max_features='sqrt')	0.871