ЕГЭ-2022. Досрочная волна 28.03.2022. Вариант 1. Москва

1. Задание 1 № 627977

Найдите корень уравнения $log_4(5-x) = 2$.

2. Задание 2 № 627978

В соревнованиях участвуют 40 спортсменов, из которых 6— из Румынии. Найдите вероятность того, что первым на соревнованиях будет выступать выступать спортсмен из Румынии.

3. Задание 3 № 627979

В четырёхугольник ABCD, периметр которого равен 54, вписана окружность, AB=18. Найдите длину стороны CD.

4. Задание 4 № 627980

Найдите значение выражения $\frac{4^{2,4} \cdot 7^{3,4}}{28^{1,4}}$

5. Задание 5 № 627981

Площадь боковой поверхности треугольной призмы равна 36. Через среднюю линию основания этой призмы проведена плоскость, параллельная боковой грани. Найдите площадь боковой поверхности отсечённой треугольной призмы.

6. Задание 6 № 627982

На рисунке изображён график функции y=f'(x)— производной функции f(x), определенной на интервале (–5; 5). Найдите точку минимума функции f(x).

7. Задание 7 № 627983

В розетку электросети подключены приборы, общее сопротивление которых составляет $R_1=36~{\rm CM}$. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R_2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями $R_1~{\rm CM}$ и $R_2~{\rm CM}$ их общее сопротивление дается формулой $R_{\rm общ}=\frac{R_1R_2}{R_1+R_2}$ (${\rm OM}$), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 20 ${\rm CM}$. Ответ выразите в омах.

8. Задание 8 № 627984

Имеется два сплава. Первый сплав содержит 35% меди, второй — 5% меди. Масса первого сплава больше массы второго на 80кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

9. Задание 9 № 627985

На рисунке изображены графики функций f(x) = 5x и $g(x) = ax^2 + bx + c$, которые пересекаются в точках A и B. Найдите абсциссу точки B.

10. Задание 10 № 627986

Биатлонист четыре раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые два раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

11. Задание 11 № 627987

Найдите точку минимума функции $y = x\sqrt{x} - 12x + 35$.

12. Задание 12 № 627988

- а) Решите уравнение $4^{\sin x} + 4^{\sin(x+\pi)} = \frac{5}{2}$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$.

13. Задание 13 № 627989

Дан правильный треугольник ABC. Точка D лежит вне плоскости ABC, $\cos \angle BAD = \cos \angle DAC = 0, 3$.

- а) Докажите, что прямые AD и BC перпендикулярны.
- б) Найдите расстояние между прямыми AD и BC, если AC = 6.

14. Задание 14 № 627990

Решите неравенство $\frac{\log_2(32x)-1}{\log_2^2x-\log_2x^5}\geqslant -1.$

15. Задание 15 № 627991

15-го декабря планируется взять кредит в банке на 900 000 рублей на 13 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа с 1 по 12 месяц долг должен уменьшаться на одну и ту же сумму;
- 15-го числа 13 месяца долг должен быть погашен.

Сколько тысяч рублей составляет долг на 15 число 12 месяца, если всего было выплачено 1134 тысяч рублей?

16. Задание 16 № 627992

Окружность вписана в треугольник ABC, P— точка касания окружности со стороной AB, точка M— середина AB.

- а) Докажите, что $MP = \frac{|AC CB|}{2}$
- б) Найдите углы треугольника, если MC = MA, AC > BC, $MP = \frac{r}{2}$.

17. Задание 17 № 627993

Найдите все значения параметра а, при каждом из которых система

$$\begin{cases} \frac{xy^2 - 2xy - 4y + 8}{\sqrt{4 - y}} = 0, \\ y = ax \end{cases}$$

имеет три различных решения.

18. Задание 18 № 627994

Каждое из четырёх подряд идущих натуральных чисел разделили на их первые цифры и результаты сложили в сумму S.

- а) Может ли быть $S = 41\frac{11}{24}$?
- б) Может ли быть $S = 569 \frac{29}{72}$?
- в) Найдите наибольшее целое S, если все четыре числа лежат в отрезке от 400 до 999 включительно.

Ключ

№ п/п	№ задания	Ответ
1	627977	-11
2	627978	0,15
3	627979	9
4	627980	196
5	627981	18
6	627982	4
7	627983	45
8	627984	120
9	627985	6
10	627986	0,03
11	627987	64
12	627988	a) $\left\{\pm \frac{\pi}{6} + \pi k, : k \in \mathbb{Z} \right\}$; 6) $\frac{17\pi}{6}$; $\frac{19\pi}{6}$; $\frac{23\pi}{6}$.
13	627989	6) $\frac{3\sqrt{66}}{5}$.
14	627990	$(0;1) \cup \{4\} \cup (32;+\infty).$
15	627991	300.
16	627992	6) $\angle A = \arccos \frac{4}{5}$, $\angle B \arccos \frac{3}{5}$, $\angle C = 90^{\circ}$.
17	627993	$(0;1)\cup(1;4).$
18	627994	а) да; б) нет; в) 478.