Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels

Александр Чернышёв, 517 группа

Датасет ImageNet

- 1.28 миллиона изображений
- 1000 классов
- Самый популярный бенчмарк для классификации изображений
- Приличный уровень шума в метках
- Переразмечать вручную дорого

Датасет ImageNet

- Во время обучения нейронных сетей на ImageNet часто прибегают к аугментации данных
- Используется в том числе и «случайный вырез» (random crop)
- Можем вырезать кусок картинки, на котором не будет представлена метка
- ⇒ проблемы как с обучением, так и с оцениванием качества моделей на ImageNet

Original ImageNet label: ox 1.00

Random crops for ImageNet

Кумулятивная гистограмма для IoU между случайными вырезами и настоящим расположением объектов. Было засэмплировано 100 случайных вырезов для каждого изображения из валидационного набора ImageNet (50 000).

[⇒] у многих случайных вырезов метка будет не совсем правильной

Алгоритм ReLabel

- Берем SOTA классификатор, обученный на огромном датасете (например, JFT-300M)
- Дообучаем его на ImageNet
- Заменяем в нем слой глобального пулинга на свертку 1х1
- Теперь выход такой сети $f(x) \in \mathbb{R}^{W \times H \times C}$ для изображения x будем считать новой разметкой x
- W и H —размеры выхода сверточных слоев нейронной сети (не совпадают с размерами x)

LabelPooling

LabelPooling — это подход обучения классификатора на ReLabel метках:

- Во время случайного выреза также вырезаем соответствующий кусок из ReLabel меток
- Применяем глобальный пулинг + softmax \to получаем распределение классов для случайного выреза
- Используем это распределение для обучения (используется кросс энтропийная функция потерь)

Обсуждение

В качестве SOTA модели использовалась EfficientNet-L2.

Память:

- Размер новой разметки: $L \in \mathbb{R}^{15 \times 15 \times 1000}$
- Нужно 1 ТВ памяти: (1.28×10^6) images × $(15 \times 15 \times 1000)$ dim/image × 4 bytes/dim ≈ 1.0 ТВ
- К счастью, обычно всего несколько классов имеют ненулевые предсказания
- Будем сохранять предсказания только для top-5 классов
- Итого всего нужно +10% дополнительной памяти от всего ImageNet.

Время:

- ReLabel всего +3.3% от всего времени обучения ResNet-50
- LabelPooling всего +0.5% дополнительного времени нужно на обучение

Обсуждение

Выбор SOTA модели:

- Авторы попробовали EfficientNet-{B1, B3, B5, B7, B8}, EfficientNet-L2, ResNeXT-101 32x{32d,48d}
- Сравнивали по top-1 доли правильных ответов ResNet-50 на валидации
- Выбрали EfficientNet-L2 как наиболее точную

Обсуждение

Анализ факторов. Хотим проверить, насколько нам в новых метках нужна (а) их локальность, (б) их мультиклассовость:

- Оставляем только 1 класс → localized single labels (argmax вместо softmax)
- Убираем пространнственность в метках → global multi-labels
- Убираем и пространственность, и многоклассовость \rightarrow global single-labels

Variants	ImageNet top-1 (%)		
ReLabel (localized mutli-labels)	78.9		
Localized single labels	78.4 (-0.5)		
Global multi-labels	78.5 (-0.4)		
Global single labels	77.5 (-1.4)		
Original ImageNet labels	77.5 (-1.4)		

Эксперименты

Сравнение с другими алгоритмами переразметки:

		ImageNet	ImageNetV2 [40]	ReaL [2]	Shankar et al. [43]
Network	Supervision	single-label	single-label	multi-label	multi-label
ResNet-50	Original	77.5	79.0	83.6	85.3
ResNet-50	Label smoothing (ϵ =0.1) [49]	78.0	79.5	84.0	84.7
ResNet-50	Label cleaning [2]	78.1	79.1	83.6	85.2
ResNet-50	ReLabel	78.9	80.5	85.0	86.1

Label smoothing — перераспределяет метки: переднему плану отдается $(1 - \varepsilon)$, классам, отвечающим за задний план равномерно отдается ε .

Label cleaning — из датасета удалены все объекты, для которых метка не согласуется с ответом от учителя ("strong teacher classifier")

Метрика для multi-label датасетов: $\frac{1}{N}\sum_{n=1}^{N}1(\arg\max f(x_n)\in y_n)$

Эксперименты

Сравнение различных CNN:

	Resources		Supervision		
Architecture	Params	Flops	Vanilla	ReLabel	
ResNet-18	11.7M	1.8B	71.7	72.5 (+0.8)	
ResNet-50	25.6M	3.8B	77.5	78.9 (+1.4)	
ResNet-101	44.7M	7.6B	78.1	80.7 (+2.6)	
EfficientNet-B0	5.3M	0.4B	77.4	78.0 (+0.6)	
EfficientNet-B1	7.8M	0.7B	79.2	80.3 (+1.1)	
EfficientNet-B2	9.2M	1.0B	80.3	81.0 (+0.7)	
EfficientNet-B3	12.2M	1.8B	81.7	82.5 (+0.8)	
ReXNet (×1.0)	4.8M	0.4B	77.9	78.4 (+0.5)	

Эксперименты

Выбиваем SOTA:

Model	ImageNet top1 (%)
ResNet-50	77.5
+ ReLabel	78.9 (+1.4)
+ ReLabel + CutMix	80.2 (+2.7)
+ ReLabel + CutMix + Extra data	81.2 (+3.7)
ResNet-101	78.1
+ ReLabel	80.7 (+2.6)
+ ReLabel + CutMix	81.6 (+3.5)

	Food-101 [3]	Stanford Cars [29]	DTD [6]	FGVC Aircraft [36]	Oxford Pets [38]
ResNet-50 (Baseline)	87.98	92.64	75.43	85.09	93.92
ResNet-50 (ReLabel-trained)	88.12	92.73	75.74	88.89	94.28

Выводы

- ReLabel помогает улучшать разметку датасетов
- Предложен алгоритм LabelPooling для обучения моделей на локализованных мультиклассовых метках
- Доказана эффективность подходов