Subtyping

"Type checking object-oriented languages is difficult"
Kim Bruce, Foundations of Object Oriented Languages, MIT Press, 2002.

April 4, 2019

Introduction

- Since mid 80s numerous efforts to provide rigorous foundations for OOPL
- Two alternatives:
 - Encode objects in functional languages
 - Pioneering work of Cardelli in 1984
 - Use functions, records, recursion and subtyping
 - ▶ [Bruce, 2002] Foundations of Object Oriented Languages
 - Propose foundational calculi (like lambda calculi) for OOP
 - ► [Abadi y Cardelli, 1996] A Theory of Objects
 - [Castagna, 1997] Object-Oriented Programming: A Unified Foundation

What is a Type Error in an OOPL?

- In addition to standard errors such as:
 - methods receive the right number and type of parameters
 - assignments respect type of variables
- ► There is a new kind of error:
 - Invocation of inexistant methods
- ▶ We'll see details later

Next Topics

- ► Types in OOPL
- Subtyping and inheritance ("Width-subtyping")
- Invariant type systems
- Drawbacks of invariant type systems
- Subtyping and inheritance ("Depth-subtyping")
- Drawbacks (eg. binary methods)

Introduction

Types for OOPL

Formalizing Subtyping

Subtyping Function, Lists, Arrays and Reference

Algorithmic Subtyping

Example

```
class Point {
  int x,y;
  public int getX() { ... }
  public int getY() { ... }
  public int dist(Point aPoint) { ... }
}
```

Type of new Point()?

Nominal	Structural
the name Point	the record type
	<pre>PointType = { getx: Unit -> Int; gety: Unit -> Int; dist: PointType -> Int }</pre>

Types for OOPL

- ► Notion of class and type is separate
 - ► Class: inherently related to implementation (eg. instance variables, source code of methods, etc.)
 - ► Type of an object: its public interface
 - names of its methods
 - type of the arguments of each method and type of result

Specification of an object (type) ≠ Implementation (class)

- ► This separation benefits modular development: various classes can implement the same type
- ▶ The type of an object is sometimes known as its interface type

Subtyping Judgement

- ► If the class is C, then we write CType for its type
- If C is a subclass of D, how is CType and DType related?

Subsumption

$\sigma < :\tau$

- ▶ Read, "In every context where one expects an expression of type τ , one may use an expression of type σ in its place without causing a run-time error"
- ▶ In particular, if D is a subclass of C, then one expects:

- But more general situations are also captured
- ▶ What is the relation between $\Gamma \triangleright M : \sigma$ and $\sigma < :\tau$?

Substitution Principle

$$\sigma < :\tau$$

- ▶ Read, "In every context where one expects an expression of type τ , one may use an expression of type σ in its place without causing a run-time error"
- Reading is reflected in the theory with a new rule called Subsumption:

$$\frac{\Gamma \rhd M : \sigma \quad \sigma <: \tau}{\Gamma \rhd M : \tau}$$
 (T-Subs)

We next recall the type system of the Lambda Calculus with records Introduction

Types for OOPL

Formalizing Subtyping

Subtyping Function, Lists, Arrays and References

Algorithmic Subtyping

Typing for LC with Records and Subtyping $(\lambda_{\leq :}^{\rightarrow})$

$$\frac{x:\sigma\in\Gamma}{\Gamma\triangleright x:\sigma}(\text{T-Var})$$

$$\frac{\Gamma,x:\sigma\triangleright M:\tau}{\Gamma\triangleright \lambda x:\sigma.M:\sigma\to\tau}(\text{T-Abs}) \frac{\Gamma\triangleright M:\sigma\to\tau}{\Gamma\triangleright MN:\tau}(\text{T-App})$$

$$\frac{\Gamma\triangleright M_i:\sigma_i\quad\forall i\in I=\{1..n\}}{\Gamma\triangleright\{l_i=M_i\}_{i\in I}:\{l_i:\sigma_i\}_{i\in I}}(\text{T-Rcd})$$

$$\frac{\Gamma\triangleright M:\{l_i:\sigma_i\stackrel{i\in 1..n}{}\}\ j\in 1..n}{\Gamma\triangleright M.l_j:\sigma_j}(\text{T-Proj})$$

$$\frac{\Gamma\triangleright M:\sigma\quad\sigma<:\tau}{\Gamma\triangleright M:\tau}(\text{T-Subs})$$

Subtyping as a Preorder

$$\frac{}{\sigma < : \sigma} \text{ (S-Refl)} \qquad \frac{\sigma < : \tau \quad \tau < : \rho}{\sigma < : \rho} \text{ (S-Trans)}$$

Note:

No antisymmetry

Subtyping for Base Types

► For base types we assume that we have been informed of how they are related; for example

```
Nat <: Float
Int <: Float
Bool <: Nat
```

Digression: Nominal Typing à la Java

- Java (nominal subtyping):
 - ► Associates a symbol #C to each class C
 - ► New subtyping axioms::

if class C extends D appears in our program

- Our approach (structural subtyping):
 - Associate a record type CType to each class C
 - Determine if CType<:DType on the basis of the structure of the records
 - We next take a look at subtyping for record types

Reading: Is Structural Subtyping Useful? An Empirical Study. Donna Malayeri, Jonathan Aldrich, ESOP 2009.

Width Subtyping for Record Types

```
{name: String, age:Int} <: {name:String}</pre>
```

The general case is:

$$\frac{}{\{\mathit{I}_i:\sigma_i|i\in 1..n+k\}<:\{\mathit{I}_i:\sigma_i|i\in 1..n\}}\,\big(\mathsf{S}\text{-RcdWidth}\big)$$

Note:

- $ightharpoonup \sigma <:\{\}$, for all record types σ
- ▶ Is there any record type τ s.t. τ <: σ , for all record types σ ?

Another Example

Note that ColorPointType<:PointType where

```
PointType = {
  getx: Unit -> Int;
  gety: Unit -> Int;
  dist: PointType -> Int;
}
```

```
ColorPointType = {
  getx: Unit -> Int;
  gety: Unit -> Int;
  getCol: Unit -> Int;
  dist: PointType -> Int;
}
```

Limitations of Width Subtyping – Shallow Cloning

- ► Cloning: operation for copying an object
- Shallow cloning (in contrast with deep cloning):
 - Copy values of instance variables and same set of instance methods
 - If instance variables refer to other objects, then only copy the references themselves (and not the objects referred to)

Example – Cloning

- ▶ What is the type of clone?
 - ▶ In Object: must return value of type ObjectType
 - In Cell: must return value of type CellType
 - ► In invariant type systems, clone must have type Object, even if the methods returns a value of typeCellType!

```
ObjectType = {
  clone: Unit->ObjectType;
}
```

```
CellType = {
  clone: Unit->ObjectType;
}
```

Programmer forced to insert type cast to "correct" the type system

Example - Shallow Cloning

```
ObjectType = {
  clone: Unit->ObjectType;
}
CellType = {
  clone: Unit->ObjectType;
}
```

► If m is a method of the class Cell and o is an instance variable of type CellType, the expression

```
(o clone()) m()
```

generates a type error

The programmer must insert type cast

```
[CellType](o clone()) m()
```

Type Casts

- ► Type casts are a means to help the type system out
- Two kinds of typecast
 - "up cast": [CType]e where e has type DType and D is a subclass of C
 - "down cast": [DType]e where e has type CType and D is a subclass of C
- In contrast to down casts, up casts are rarely used

Note: Need to resort to type casts are evidence of the limitations of a type system

Can we avoid casts? Depth Subtyping

```
class Object {
  public ?? clone() { ... }
}
```

```
class Cell extends Object {
  public ?? clone() { ... }
}
```

It would be desirable to have CellType<:ObjectType, where

```
ObjectType = {
  clone: Unit->ObjectType;
}
```

```
CellType = {
  clone: Unit->CellType;
}
```

Depth Subtyping for Record Types

```
{a: Student, b:Int} <: {a:Person}
```

The rule is

$$\frac{\sigma_i <: \tau_i \quad i \in I = \{1..n\}}{\{l_i : \sigma_i\}_{i \in I} <: \{l_i : \tau_i\}_{i \in I}}$$
(S-RcdDepth)

Examples

 $\{x : \{a : Nat, b : Nat\}, y : \{m : Nat\}\}$

23 / 54

Examples

Permutations of Fields

▶ The order of fields in a record should be irrelevant

$$\frac{\{k_j:\sigma_j|j\in 1..n\} \text{ permutation of } \{l_i:\tau_i|i\in 1..n\}}{\{k_j:\sigma_j|j\in 1..n\}{<:}\{l_i:\tau_i|i\in 1..n\}} \text{ (S-RcdPerm)}$$

Note:

► (S-RcdPerm) may be used in combination with (S-RcdWidth) y (S-Trans) to ignore fields in any part of a record type

Combining Width, Depth and Permutation

$$\frac{\{\mathit{l}_{i}|\ i\in 1..n\}\subseteq \{\mathit{k}_{j}|\ j\in 1..m\}}{\{\mathit{k}_{j}:\sigma_{j}|\ j\in 1..m\}{<:}\{\mathit{l}_{i}:\tau_{i}|\ i\in 1..n\}}\left(\mathsf{S-Rcd}\right)$$

Introduction

Types for OOPL

Formalizing Subtyping

Subtyping Function, Lists, Arrays and References

Algorithmic Subtyping

Subtyping

Up to now we have considered:

- Base types
- Records

We now consider

- Functions
- Lists
- Arrays
- References

Subtyping for Function Types

$$\frac{\sigma' <: \sigma \quad \tau <: \tau'}{\sigma \rightarrow \tau <: \sigma' \rightarrow \tau'}$$
 (S-Func)

- ▶ Note: <: reverses the type of the domain but not that of the range
- ➤ We say that the functional type constructor is contravariant in its first argument and variant in its second.

For example:

$$Unit \rightarrow CellType <: Unit \rightarrow ObjectType$$

Subtyping for Function Types

$$\frac{\sigma' <: \sigma \quad \tau <: \tau'}{\sigma \to \tau <: \sigma' \to \tau'}$$
 (S-Func)

If a context/program P expects an expression f of type $\sigma' \to \tau'$ it may receive one of type $\sigma \to \tau$ if the indicated conditions hold

- f is applied to arguments of type σ'
- ightharpoonup These are coerced to arguments of type σ
- ightharpoonup f, whose real type is $\sigma \to \tau$, is applied
- \blacktriangleright Finally, the result is coerced to τ' , the type that P is expecting

For example:

$$Unit \rightarrow CellType <: Unit \rightarrow ObjectType$$

The type *Top*

Similar to Object class in Smalltalk

$$\frac{}{\sigma <: Top}$$
 (S-Top)

- ▶ Is there a type σ s.t. $\sigma \to \sigma <: \sigma$?
- ▶ Note that *Top* × *Top* <: *Top*
- ▶ What happens with $Top \rightarrow Top$? $Top \rightarrow Top$ <: Top

Subtyping Collections

List σ Is it covariant? What about contravariant?

$$\frac{\sigma <: \tau}{\textit{List } \sigma <: \textit{List } \tau}$$

It is covariant (in most languages)

Subtyping References

Covariant? Imagine the rule:

$$\frac{\sigma <: \tau}{\textit{Ref } \sigma <: \textit{Ref } \tau}$$

What happens?

Ref is not Covariant

```
let r = ref aStudent (* r:Ref Student *)
in
 r := aPerson;
 (!r).aStudentId (* Runtime exception *)
```

Student <: Person

Ref Student <: Ref Person

Ref is not Contravariant

Contravariant? Imagine this rule:

$$\frac{\sigma <: \tau}{\textit{Ref}\, \tau <: \textit{Ref}\, \sigma}$$

Again, what happens?

Ref is not Contravariant

```
let r = ref aPerson (* Ref Person *)
in (!r).studentId (* Runtime exception *)
```

Student <: Person

Ref Person <: Ref Student

Ref is Invariant

$$\frac{\sigma <: \tau \quad \tau <: \sigma}{Ref \, \sigma <: Ref \, \tau}$$

"Only references of equivalent types may be compared."

Covariant Subtyping for Arrays in Java

- ► The following code passes the type checker but generates a run-time error!
- Exception in thread "main" java.lang.ArrayStoreException: prueba.A at prueba.Main.main(arreglo.java:11)

Refining the Ref Type Constructor

- ▶ Reynolds in Forsythe (1988) separated references in two kinds:
- \triangleright Source σ read
- \triangleright Sink σ write
- \blacktriangleright We still have $Ref \sigma$ for read/write

$$\frac{\Gamma|\Sigma\rhd M:\textit{Source }\sigma}{\Gamma|\Sigma\rhd !M:\sigma} \qquad \frac{\Gamma|\Sigma\rhd M:\textit{Sink }\sigma\quad \Gamma|\Sigma\rhd N:\sigma}{\Gamma|\Sigma\rhd M:=N:\textit{Unit}}$$

Example of use of Source

$$\frac{\sigma <: \tau}{\textit{Source } \sigma <: \textit{Source} \, \tau} \, (\textit{SSource}) \quad \frac{\textit{Student} <: \textit{Person}}{\textit{Source Student} <: \textit{Source Person}}$$

!r may be seen as float even though r is source int (due to t-sub)

```
let r = ref aStudent (* r:Source Student *)
in
!r (* Source Student <: Source Person *)
end :: Person</pre>
```

"If one expects to read from a ref to T, then one may expect a ref to a lower, less informative, type"

Example of use of Sink

```
\frac{\tau <: \sigma}{\textit{Sink } \sigma <: \textit{Sink} \tau} \textit{(SSink)} \qquad \frac{\textit{Student} <: \textit{Person}}{\textit{Sink Person} <: \textit{Sink Student}}
```

```
let r = ref aPerson (* r:Sink Person *)
in
   r := aStudent; (* Sink Person <: Sink Student *)
   !r</pre>
```

- r := aStudent holds since r is Sink Person and (due to t-sub) it can be seen as Sink Student.
- "If one expects to write to a ref T, then may expect a ref of a higher, less informative type"

Relating Sink and Source with Ref

Every context in which we expect Source (or Sink), can receive Ref instead:

$$\frac{}{\textit{Ref }\tau <: \textit{Source }\tau} \text{ (S-RefSource)} \qquad \frac{}{\textit{Ref }\tau <: \textit{Sink }\tau} \text{ (S-RefSink)}$$

Exercise

Let σ be a type. Which of these are related by <:?

- \triangleright Ref σ
- Ref Ref σ
- Sink σ
- Source σ
- Ref Sink σ
- Source Ref σ
- Source Source σ
- Source Sink σ

Introduction

Types for OOPL

Formalizing Subtyping

Subtyping Function, Lists, Arrays and Reference

Algorithmic Subtyping

Typing Rules as Algorithmic Specification

- All typing rules except for subtyping are syntax directed.
- ▶ It is simple to implement a type checker for syntax directed rules

$$\frac{x:\sigma\in\Gamma}{\Gamma\triangleright x:\sigma}(\text{T-Var})$$

$$\frac{\Gamma,x:\sigma\triangleright M:\tau}{\Gamma\triangleright \lambda x:\sigma.M:\sigma\to\tau}(\text{T-Abs}) \frac{\Gamma\triangleright M:\sigma\to\tau}{\Gamma\triangleright MN:\tau}(\text{T-App})$$

$$\frac{\Gamma\triangleright M_i:\sigma_i\quad\forall i\in I=\{1..n\}}{\Gamma\triangleright\{l_i=M_i\}_{i\in I}:\{l_i:\sigma_i\}_{i\in I}}(\text{T-Rcd})$$

$$\frac{\Gamma\triangleright M:\{l_i:\sigma_i\stackrel{i\in 1..n}{}\}\quad j\in 1..n}{\Gamma\triangleright M.l_i:\sigma_i}(\text{T-Proj})$$

Subsumption

- Subsumption is not syntax directed.
- Not obvious how to implement type-checking when this rule is present

$$\frac{x:\sigma\in\Gamma}{\Gamma\triangleright x:\sigma} \text{ (T-Var)} \qquad \frac{\Gamma\triangleright M:\sigma\quad\sigma<:\tau}{\Gamma\triangleright M:\tau} \text{ (T-Subs)}$$

$$\frac{\Gamma,x:\sigma\triangleright M:\tau}{\Gamma\triangleright \lambda x:\sigma.M:\sigma\to\tau} \text{ (T-Abs)} \qquad \frac{\Gamma\triangleright M:\sigma\to\tau\quad\Gamma\triangleright N:\sigma}{\Gamma\triangleright MN:\tau} \text{ (T-App)}$$

$$\frac{\Gamma\triangleright M_i:\sigma_i\quad\forall i\in I=\{1..n\}}{\Gamma\triangleright\{l_i=M_i\}_{i\in I}:\{l_i:\sigma_i\}_{i\in I}} \text{ (T-Rcd)}$$

$$\frac{\Gamma\triangleright M:\{l_i:\sigma_i\stackrel{i\in 1..n}{}\} \quad j\in 1..n}{\Gamma\triangleright M.l_j:\sigma_j} \text{ (T-Proj)}$$

"Hard-wiring" Subsumption

- ► A quick look at the rules determines that the only place that one needs subtyping is the argument of a function type
- ▶ Thus we propose the following variant: $\lambda_{<:,alg}^{\rightarrow}$

$$\frac{x : \sigma \in \Gamma}{\Gamma \mapsto x : \sigma} (\text{T-Var}) \qquad \frac{\Gamma, x : \sigma \mapsto M : \tau}{\Gamma \mapsto \lambda x : \sigma.M : \sigma \to \tau} (\text{T-Abs})$$

$$\frac{\Gamma \mapsto M : \sigma \to \tau \quad \Gamma \mapsto N : \rho \quad \rho <: \sigma}{\Gamma \mapsto M N : \tau} (\text{T-App})$$

$$\frac{\Gamma \mapsto M_i : \sigma_i \quad \forall i \in I = \{1..n\}}{\Gamma \mapsto \{I_i = M_i\}_{i \in I} : \{I_i : \sigma_i\}_{i \in I}} (\text{T-Rcd})$$

$$\frac{\Gamma \mapsto M : \{I_i : \sigma_i \stackrel{i \in 1..n}{} \} \quad j \in 1..n}{\Gamma \mapsto M.I_j : \sigma_j} (\text{T-Proj})$$

Syntax-Directed Variant

- ► Before addressing type-checking a question
- ▶ What is the relation between $\lambda_{<:,alg}^{\rightarrow}$ and $\lambda_{<:}^{\rightarrow}$?

Proposition:

- 1. $\Gamma \mapsto M : \sigma \text{ implies } \Gamma \rhd M : \sigma$
- 2. $\Gamma \rhd M : \sigma$ implies there exists τ such that $\Gamma \mapsto M : \tau$ with $\tau < :\sigma$

Towards Implementing Type-Checking

▶ It remains to be seen how to implement checking for σ <: τ

$$\frac{x : \sigma \in \Gamma}{\Gamma \mapsto x : \sigma} (\text{T-Var}) \qquad \frac{\Gamma, x : \sigma \mapsto M : \tau}{\Gamma \mapsto \lambda x : \sigma.M : \sigma \to \tau} (\text{T-Abs})$$

$$\frac{\Gamma \mapsto M : \sigma \to \tau \quad \Gamma \mapsto N : \rho \quad \rho <: \sigma}{\Gamma \mapsto M N : \tau} (\text{T-App})$$

$$\frac{\Gamma \mapsto M_i : \sigma_i \quad \forall i \in I = \{1...n\}}{\Gamma \mapsto \{I_i = M_i\}_{i \in I} : \{I_i : \sigma_i\}_{i \in I}} (\text{T-Rcd})$$

$$\frac{\Gamma \mapsto M : \{I_i : \sigma_i \stackrel{i \in 1...n}{\longrightarrow} j \in 1...n}{\Gamma \mapsto M.I_i : \sigma_i} (\text{T-Proj})$$

Subtyping Rules – Review

$$\frac{}{\sigma < :\sigma} \text{(S-Refl)} \qquad \frac{}{\sigma < :Top} \text{(S-Top)}$$

$$\frac{}{Nat < :Float} \text{(S-NatFloat)} \frac{}{Int < :Float} \text{(S-IntFloat)} \frac{}{Bool < :Nat} \text{(S-BoolNat)}$$

$$\frac{}{\sigma < :\tau \quad \tau < :\rho} \text{(S-Trans)} \qquad \frac{}{\sigma' < :\sigma \quad \tau < :\tau'} \text{(S-Func)}$$

$$\frac{\{I_i \mid i \in 1..n\} \subseteq \{k_j \mid j \in 1..m\} \qquad k_j = I_i \Rightarrow \sigma_j < :\tau_i}{\{k_j : \sigma_j \mid j \in 1..m\} < :\{I_i : \tau_i \mid i \in 1..n\}} \text{(S-Rcd)}$$

- ► Not syntax-directed...
- ► The problem: (S-Refl) and (S-Trans)

Dropping (S-Refl) and (S-Trans)

- ▶ Note that one can prove σ <: σ
- ▶ We do of course have to include reflexivity for base types:
 - ► Nat<:Nat
 - ► Bool<:Bool
 - ► Float<:Float

Dropping (S-Trans)

- One may prove transitivity
- ► We must assume though, that we have transitivity of base types:
 - ► We have:
 - ► Nat<:Float
 - ► Int<:Float
 - ► Bool<:Nat
 - ► We add:
 - ► Bool<:Float

The Algorithm for Subtype-Checking (ignoring the axioms for Nat, Bool, Float)

```
let rec subtype (S,T) =
  match S,T with
  | _,Top -> true
  | (S1→ S2),(T1→ T2) ->
      subtype (T1,S1) && subtype (S2,T2)
  | {kj:Sj, j∈1..m},{li:Ti, i∈1..n} ->
      ({li, i∈1..n} ⊆ {kj, j∈1..m}) &&
            (∀i.∃j.kj = li) && subtype (Sj,Ti)
  | _ -> false
```

Reading

- A Theory of Objects, Martín Abadi, Luca Cardelli, Monographs in Computer Science, Springer-Verlag, 1996.
- ► Foundations of Object Oriented Languages, Kim Bruce, MIT Press, 2002.
- Some Challenging Typing Issues in Object-Oriented Languages, Kim Bruce. Electronic Notes in Theoretical Computer Science 82, no. 8 (2003). (see author's webpage).
- On binary methods, Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leavens, and Benjamin Pierce. Theory and Practice of Object Systems, 1(1995).
- Types and Programming Languages, Benjamin C. Pierce, The MIT Press, 2002.