Global Exercise - 14

Tuan Vo

 $25^{\rm th}$ January 2022

1 Conservation form - Finite Volume Method

Example 1. Determine consistent numerical flux function for Lax-Friedrichs scheme.

Recall the conservation form used for FVM reads

$$u_j^{n+1} = u_j^n + \frac{\Delta t}{\Delta x} \left(\tilde{f}_{j-1/2}^n - \tilde{f}_{j+1/2}^n \right).$$
 (1)

Meanwhile, the Lax-Friedrichs scheme reads

$$u_j^{n+1} = \frac{1}{2} \left(u_{j-1}^n + u_{j+1}^n \right) - \frac{\Delta t}{2\Delta x} \left(f(u_{j+1}^n) - f(u_{j-1}^n) \right). \tag{2}$$

Next, we would like to write (2) in terms of (1). The derivation is done by some algebraic manipulations, as follows

$$\begin{split} u_{j}^{n+1} &= \frac{1}{2} \left(u_{j-1}^{n} + u_{j+1}^{n} \right) - \frac{\Delta t}{2\Delta x} \left(f(u_{j+1}^{n}) - f(u_{j-1}^{n}) \right) \\ &= u_{j}^{n} + \frac{1}{2} u_{j-1}^{n} - \frac{1}{2} u_{j}^{n} + \frac{1}{2} u_{j+1}^{n} - \frac{1}{2} u_{j}^{n} - \frac{\Delta t}{2\Delta x} f(u_{j+1}^{n}) + \frac{\Delta t}{2\Delta x} f(u_{j-1}^{n}) \\ &= u_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\frac{\Delta x}{2\Delta t} u_{j-1}^{n} - \frac{\Delta x}{2\Delta t} u_{j}^{n} + \frac{\Delta x}{2\Delta t} u_{j+1}^{n} - \frac{\Delta x}{2\Delta t} u_{j}^{n} \right) \\ &= u_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\underbrace{\left(\frac{\Delta x}{2\Delta t} u_{j-1}^{n} - \frac{\Delta x}{2\Delta t} u_{j}^{n} + \frac{1}{2} f(u_{j-1}^{n}) \right)}_{=: \widetilde{f}_{j-1/2}^{n}} \right) \\ &= \underbrace{u_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\underbrace{\left(\frac{\Delta x}{2\Delta t} u_{j-1}^{n} - \frac{\Delta x}{2\Delta t} u_{j}^{n} + \frac{1}{2} f(u_{j-1}^{n}) \right)}_{=: \widetilde{f}_{j+1/2}^{n}} \right)}_{=: \widetilde{f}_{j+1/2}^{n}} \\ &= u_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\underbrace{\widetilde{f}_{j-1/2}^{n} - \widetilde{f}_{j+1/2}^{n}} \right), \end{split}$$
(3)

which confirms that the Lax-Friedrichs scheme given at (2) is able to be written in the conservation form with the numerical flux function recognized as follows

$$\widetilde{f}_{j-1/2}^{n} = \widetilde{f}_{j-1/2}^{n} \left(u_{j-1}^{n}, u_{j}^{n} \right) = \frac{\Delta x}{2\Delta t} \left(u_{j-1}^{n} - u_{j}^{n} \right) + \frac{1}{2} f(u_{j-1}^{n}) \tag{4}$$

$$\widetilde{f}_{j+1/2}^{n} = \widetilde{f}_{j-1/2}^{n} \left(u_{j}^{n}, u_{j+1}^{n} \right) = \frac{\Delta x}{2\Delta t} \left(u_{j}^{n} - u_{j+1}^{n} \right) + \frac{1}{2} f(u_{j+1}^{n}) \tag{5}$$

However, these numerical flux function $\tilde{f}(\cdot,\cdot)$ is not consistent with the original flux function $f(\cdot)$, which can be checked for the case of constant flow, as follows

$$(4) \Leftrightarrow \widetilde{f}_{j-1/2}^{n}(\beta, \beta) = \frac{\Delta x}{2\Delta t}(\beta - \beta) + \frac{1}{2}f(\beta) = \frac{1}{2}f(\beta) \quad \not (6)$$

$$(5) \Leftrightarrow \widetilde{f}_{j+1/2}^{n}(\beta, \beta) = \frac{\Delta x}{2\Delta t}(\beta - \beta) + \frac{1}{2}f(\beta) = \frac{1}{2}f(\beta) \quad \ \ \cancel{2}$$
 (7)

which have confirmed that $\widetilde{f}_{j\pm 1/2}^n(\beta,\beta) \neq f(\beta)$, $\forall \beta \in \mathbb{R}$. Therefore, a modified version is required for these numerical flux functions, such that they become consistent with $f(\cdot)$, and simultaneously, the summation of these two fluxes do not lead to any change in the *Lax-Friedrichs* scheme. The consistent numerical flux functions for *Lax-Friedrichs* scheme reads

$$\widetilde{f}_{j-1/2}^{n} = \widetilde{f}_{j-1/2}^{n} \left(u_{j-1}^{n}, u_{j}^{n} \right) = \frac{\Delta x}{2\Delta t} \left(u_{j-1}^{n} - u_{j}^{n} \right) + \frac{1}{2} \left(f(u_{j-1}^{n}) + f(u_{j}^{n}) \right), \tag{8}$$

$$\widetilde{f}_{j+1/2}^{n} = \widetilde{f}_{j-1/2}^{n} \left(u_{j}^{n}, u_{j+1}^{n} \right) = \frac{\Delta x}{2\Delta t} \left(u_{j}^{n} - u_{j+1}^{n} \right) + \frac{1}{2} \left(f(u_{j+1}^{n}) + f(u_{j}^{n}) \right), \tag{9}$$

whose consistent property is checked as follows

$$(8) \Leftrightarrow \widetilde{f}_{j-1/2}^{n}(\beta, \beta) = \frac{\Delta x}{2\Delta t} (\beta - \beta) + \frac{1}{2} (f(\beta) + f(\beta)) = f(\beta) \quad \checkmark$$
 (10)

$$(9) \Leftrightarrow \widetilde{f}_{j+1/2}^{n}(\beta, \beta) = \frac{\Delta x}{2\Delta t}(\beta - \beta) + \frac{1}{2}(f(\beta) + f(\beta)) = f(\beta) \quad \checkmark$$
 (11)

which have confirmed that $\widetilde{f}_{j\pm 1/2}^n(\beta,\beta)=f(\beta), \forall \beta\in\mathbb{R}$ for constant flow. Hence, the numerical flux functions $\widetilde{f}_{j\pm 1/2}^n$ for the *Lax-Friedrichs* scheme take the following formulation

$$\widetilde{f}_{j-1/2}^{n}\left(u_{j-1}^{n}, u_{j}^{n}\right) = \frac{\Delta x}{2\Delta t} \left(u_{j-1}^{n} - u_{j}^{n}\right) + \frac{1}{2} \left(f(u_{j-1}^{n}) + f(u_{j}^{n})\right) \\
\widetilde{f}_{j+1/2}^{n}\left(u_{j}^{n}, u_{j+1}^{n}\right) = \frac{\Delta x}{2\Delta t} \left(u_{j}^{n} - u_{j+1}^{n}\right) + \frac{1}{2} \left(f(u_{j}^{n}) + f(u_{j+1}^{n})\right) \tag{12}$$

or the generalized form used for FVM implementation reads

$$\therefore \left[F(u_L, u_R) = \frac{1}{2} \left(f(u_L) + f(u_R) \right) + \frac{\Delta x}{2\Delta t} \left(u_L - u_R \right) \right]$$
 (13)

2 Godunov's method

Example 2. Summary

 \rightarrow One-sided method cannot be used for system, i.e. mixed sign of eigenvalue causes difficulty.

 \rightarrow

3 Approximate Riemann Solvers

Example 3. Linearized Riemann solvers - Roe Solver.

Example 4. Local Lax-Friedrichs flux.

4 High resolution methods

Example 5. Linearized Riemann solvers - Roe Solver.