BUNDESREPUBLIK DEUTSCHLAND

REC'D 0 1 DEC 2003
WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 48 201.2

Anmeldetag:

16. Oktober 2002

Anmelder/Inhaber:

Pfleiderer Infrastrukturtechnik GmbH & Co KG,

Neumarkt/DE

Bezeichnung:

Vorfiltermaterial

IPC:

B 29 C, B 01 J

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 23. September 2003 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Es.

A 9161 02/00 Pfleiderer Infrastrukturtechnik GmbH & Co. KG 91 617 o2/sch 16.10.2002

Vorfiltermaterial

Die Erfindung betrifft einen Formkörper aus Kunststoff, ein Verfahren zu seiner Herstellung und seine Verwendung in Form einer Schüttung als ein Vorfiltermaterial.

Vorfilter verwendet, um grobkörnige Gewöhnlich werden einer Lösung Partikel wie Schmutzpartikel aus herauszufiltern, bevor diese durch nachgeschaltete feinere Filter weiter gereinigt wird. Der Einsatz von Vorfiltern ist notwendig, um zu vermeiden, dass die feinen Filter durch grobe Partikel verstopft werden und so ihre Filterleistung beeinträchtigt wird.

häufig Vorfiltermaterialien werden Sand, Split, Als Die Keramikröhrchen eingesetzt. und Lavagestein dadurch Filtereigenschaften dieser Materialien werden dass sie als Schüttungen verwendet werden. Verwendung von Sand, Split und Lavagestein ist häufig jedoch unvorteilhaft, da diese Materialien im Verhältnis zu ihrem Gewicht nur eine geringe Filtereffizienz aufweisen. Darüber hinaus sind Sand und Split aufgrund der relativ kleinen Partikel, aus denen sich die Schüttung zusammensetzt, schwer zu reinigen. Keramikröhrchen weisen zusätzlich den auf, dass sich Keramikpartikel der Nachteil Röhrchen lösen können, was zu Filtration den von unerwünschten Verunreinigungen des Filtrats führt.

Des weiteren ist es bekannt, Watte als ein Vorfiltermaterial einzusetzen, um grobe Schmutzpartikel aus einer Lösung

herauszufiltern. Watte weist jedoch den Nachteil auf, dass sie relativ leicht verstopft und nur schwer zu reinigen ist.

Daher besteht die der Erfindung zugrunde liegende Aufgabe darin, ein Vorfiltermaterial mit einem geringen Gewicht bereit zu stellen, das leicht zu reinigen ist, einen geringen Druckverlust und sogar bei einer geringen Schütthöhe eine hohe Effizienz während der Filtration aufweist.

Diese Aufgabe wird gelöst durch einen Kunststoffformkörper, der unregelmäßig zusammengesinterte Granulatkörner aus Kunststoff mit einer Dichte von 0,6 bis 1,2 g/cm³ umfasst und eine Schüttdichte im Bereich von 150 bis 250 g/l aufweist. Kunststoffformkörper dieser Art können in Form einer Schüttung als vorteilhafte Vorfilter eingesetzt werden.

Zur Herstellung des erfindungsgemäßen Kunststoffformkörpers, der in Form einer Schüttung als Vorfiltermaterial verwendet werden kann, wird der Kunststoff in Form eines grobkörnigen Granulats unregelmäßig in eine Sinterform gefüllt und in dieser auf eine Temperatur erwärmt, die so hoch ist, dass das Kunststoffgranulat an der Oberfläche anschmilzt, aber nicht Art wird das diese Auf vollkommen durchschmilzt. Kunststoffgranulat an den Kontaktflächen zusammengesintert und nach dem Abkühlen ergibt sich ein stabiler Sinterverbund, d.h. der erfindungsgemäße Kunststoffformkörper.

Der Kunststoff, der in Form eines grobkörnigen Granulats eingesetzt wird, kann jeder handelsübliche Kunststoff sein, der eine Dichte von 0,6 bis 1,2 g/cm³, vorzugsweise 0,8 bis Granulat erhältlich aufweist und als a/cm^3 . Bevorzugt werden Polyethylen oder Polyproylen verwendet. Denkbar ist auch, dass eine Mischung aus unterschiedlichen Kunststoffen verwendet wird, wobei hier jedoch darauf zu ähnliche Granulatoberflächen die acht'en ist, dass Anschmelztemperaturen aufweisen sollten.

Im Hinblick auf ihre Anschmelztemperaturen weisen die Granulatkörner vorzugsweise eine Vicat-Erweichungstemperatur im Bereich von 60 bis 100 °C, besonders bevorzugt 70 bis 90 °C, auf. Ein Kunststoff mit einer Vicat-Erweichungstemperatur im oben angegebenen Bereich besitzt gewöhnlich eine Anschmelztemperatur im Bereich zwischen 80 und 220 °C, der für die Herstellung der erfindungsgemäßen Kunststoffformkörper besonders gut geeignet ist.

Kunststoffgranulatkörner können eine beliebige Form sind bevorzugt zylinder-, kugel, aufweisen und linsenförmig. ist Es linsenförmig, besonders bevorzugt bevorzugt, dass die Granulatkörner eine durchschnittliche Größe im Bereich von 2 mm bis 10 mm, besonders bevorzugt 4 mm bis 7 mm, aufweisen. Im Fall von kugel- oder linsenförmigen ist mit "durchschnittliche Granulatkörnern Durchmesser gemeint. Denkbar ist auch, dass eine Mischung aus verwendet wird. um einen verschiedenen Granulatformen Unregelmäßigkeit in dem möglichst hohen Grad an resultierenden Kunststoffformkörper zu erzielen. Der Grad an insbesondere ist beim Unregelmäßigkeit Kunststoffformkörpers als Vorfiltermaterial von Bedeutung, da durch die Unregelmäßigkeiten Umkehrpunkte beim Durchleiten Je mehr Umkehrpunkte einer Flüssigkeit erzeugt werden. existieren, desto größer ist die Filterwirkung.

Der erfindungsgemäße Kunststoffformkörper weist ferner eine Schüttdichte im Bereich von 150 bis 250 g/l, bevorzugt im Bereich von 150 bis 200 g/l, auf. Die Schüttdichte ist ein für die Unregelmäßigkeit, mit der die Granulatkörner zusammengesintert sind. Je unregelmäßiger die Granulatkörner kleiner Kunststoffformkörper vorliegen und iе zusammengeschmolzenen Kontaktflächen der Granulatkörner sind, die Schüttdichte. Ferner ist die kleiner desto verwendeten Schüttdichte abhängig der Größe der von verwendeten: iе kleiner die Granulatkörner, d.h.

Granulatkörner desto größer wird die Schüttdichte des aus den Granulatkörnern hergestellten Formkörpers.

erfindungsgemäße besitzt der Vorzugsweise Kunststoffformkörper eine spezifische Oberfläche im Bereich von 15 bis 80 cm²/g, besonders bevorzugt 20 bis 40 cm²/g. Die sich über die Größe Oberfläche lässt der Größe verwendeten Granulatkörner einstellen, wobei durch kleinere Oberflächen für den größere Granulatkörner wird die werden. Ferner Kunststoffformkörper erzielt Sintergrad beeinflusst, wobei durch Oberfläche von dem kleinere Sinterkontaktflächen zwischen den Granulatkörnern, größere Oberflächen bei dem resultierenden erfindungsgemäßen Kunststoffformkörpers bewirkt werden.

Der erfindungsgemäße Kunststoffformkörper selbst kann porös oder unporös sein, d.h. zwischen den einzelnen Granulatkörnern können Zwischenräume vorliegen oder auch nicht.

Im folgenden wird das Verfahren zur Herstellung des erfindungsgemäßen Kunststoffformkörpers näher beschrieben.

Das Verfahren umfasst die folgenden Schritte:

- (a) Einfüllen von mindestens zwei Lagen an Kunststoffgranulatkörnern in eine Form,
- (b) gleichmäßiges Erwärmen der Kunststoffgranulatkörner in einem Sinterofen auf eine Temperatur, bei der die Kunststoffgranulatkörner lediglich an der Oberfläche anschmelzen, aber nicht vollkommen durchschmelzen,
- (c) Abkühlen auf Raumtemperatur und
- (d) Herauslösen des gesinterten Kunststoffformkörpers aus der Form.

In Schritt (a) werden die Kunststoffgranulatkörner in eine Form gefüllt, wobei die Füllmenge wenigstens zwei Lagen an Polymergranulat betragen soll. Es ist vorteilhaft, wenn die Granulatkörner möglichst unregelmäßig in der Sinterform vorliegen und möglichst kleine Kontaktflächen aufweisen. Dazu werden die Granulatkörner durch eine Schlitzdüse in die Form gefüllt, wodurch sich eine zufällige, unregelmäßige Schüttung ergibt. Die Sinterform ist von beliebiger Größe und Form und kann abhängig davon ausgewählt werden, welche Größe und Form der resultierende Kunststoffformkörper wünschenswerter Weise aufweisen soll.

Das in Schritt (b) beschriebene Erwärmen erfolgt in einem Sinterofen, wodurch das Kunststoffgranulat gleichmäßig von allen Seiten erwärmt wird. Die Temperatur, auf die das Kunststoffgranulat erwärmt wird, um das Anschmelzen seiner Oberflächen zu erreichen, ist abhängig von dem gewählten die Kunststoff. Für Polyethylen oder Polypropylen liegt °C. Die zwischen 80 und 220 gewöhnlich Temperatur das erreicht, wenn Anschmelztemperatur ist dann Kunststoffmaterial, aus dem die Granulatkörner bestehen, ein Bevorzugt Erscheinungsbild annimmt. Erwärmung für 5 bis 60 Minuten, besonders bevorzugt 15 bis 20 Minuten, durchgeführt.

In Schritt (c) werden die angeschmolzenen Kunststoffgranulatkörner auf Raumtemperatur abgekühlt. Vorzugsweise geschieht die Abkühlung sehr schnell, d.h. durch Abschrecken, beispielsweise durch Einblasen von kalter Luft. Anschließend wird der erkaltete Kunststoffformkörper in einem Schritt (d) aus der Form herausgelöst.

Der erfindungsgemäße Kunststoffformkörper ist hervorragend zur Verwendung als ein Vorfiltermaterial geeignet. Dazu wird er in Form einer losen Schüttung eingesetzt. Aufgrund der unregelmäßigen Struktur des einzelnen erfindungsgemäßen Kunststoffformkörpers entstehen beim Durchleiten von Flüssigkeiten Wirbel, auch Umkehrpunkte genannt. Durch diese Umkehrpunkte entsteht die Filterwirkung und Partikel, die

sich in der zu filtrierenden Flüssigkeit befinden, bleiben an den Kunststoffformkörpern zurück, während die Flüssigkeit durch die Schüttung hindurchfließt. Um eine hervorragende Filterwirkung zu erreichen, genügt aufgrund der Vielzahl an Umkehrpunkten bereits eine geringe Schütthöhe. Die als Vorfiltermaterial einsetzbare Schüttung des erfindungsgemäßen Kunststoffformkörpers hat den Vorteil, dass sie einen geringen Druckverlust beim Durchleiten von Flüssigkeiten aufweist, ein geringes Gewicht hat und chemisch beständig und leicht zu reinigen ist.

Beispiel

5,5 g Granulatkörner aus Polyethylen mit hoher Dichte (Hostalen° GM 6255, hergestellt von Elenac) werden in eine runde Sinterform mit einem Durchmesser von 55 mm eingefüllt. Das verwendete Polyethylen weist eine Dichte (23 °C, ISO 1183) von 0,951 g/cm³ und einen Vicat Erweichungspunkt B/50 (ISO 306) von 84 °C auf.

Die mit den Granulatkörnern gefüllte Form wird in einem Sinterofen auf eine Temperatur von 210 °C für 20 Minuten erwärmt. Während dieser Temperaturbehandlung schmelzen die Granulatkörner an der Oberfläche an und können so an ihren Kontaktflächen miteinander verschmelzen. Danach wird die Form aus dem Ofen entfernt und der Formkörper durch Einblasen von erhaltene abgeschreckt. so Luft Der kalter Kunststoffformkörper weist eine spezifische zwischen 20 und 40 cm²/g und eine Schüttdichte von 160 bis 180 g/l auf.

Bestimmung der Schüttdichte:

Die Schüttdichte wurde gemäß DIN-ISO 60 bestimmt.

Bestimmung der spezifischen Oberfläche:

Die spezifische Oberfläche des erfindungsgemäßen Kunststoffformkörpers wird mit Hilfe einer Schieblehre durch Ausmessen bestimmt. Dabei wird vorausgesetzt, was auch durch Krypton-Gasadsorption experimentell bestätigt wurde, dass das für den Kunststoffformkörper eingesetzte Kunststoffgranulat auf der Oberfläche keine Mikroporosität aufweist.

Bei der Bestimmung der spezifischen Oberfläche werden die den Granulatkörner 10 bildenden Kunststoffformkörper Kunststoffformkörpern mit einer Schieblehre vermessen. Dabei die Kontaktflächen. an denen Anteil der wird der die nicht ' zur sind und Granulatkörnern verschmolzen bestimmten Die beitragen, abgezogen. so Oberfläche Oberflächen werden auf 1 g Kunststoffformkörper bezogen, wobei das Gewicht durch Auswiegen bestimmt wird.

Pfleiderer
Infrastrukturtechnik GmbH & Co. KG

91 617 o2/sch 16.10.2002

Patentansprüche:

- Kunststoffformkörper, der unregelmäßig zusammengesinterte Granulatkörner aus Kunststoff mit einer Dichte von 0,6 bis 1,2 g/cm³ umfasst und eine Schüttdichte (DIN-ISO 60) im Bereich von 150 bis 250 g/l aufweist.
- 2. Kunststoffformkörper gemäß Anspruch 1, wobei die Schüttdichte im Bereich von 150 bis 200 g/l liegt.
- 3. Kunststoffformkörper gemäß Anspruch 1 oder 2, wobei die Kunststoffgranulatkörner aus Polyethylen oder Polypropylen sind.
- 4. Kunststoffformkörper gemäß einem oder mehreren der Ansprüche 1 bis 3, wobei die Kunststoffgranulatkörner linsenförmig sind.
- 5. Verfahren zur Herstellung des Kunststoffformkörpers wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, umfassend die Schritte:
 - (a) Einfüllen von mindestens zwei Lagen an Kunststoffgranulatkörnern in eine Form,
 - (b) Erwärmen der Kunststoffgranulatkörner auf eine Temperatur, bei der die Kunststoffgranulatkörner lediglich an der Oberfläche anschmelzen, aber nicht vollkommen durchschmelzen,
 - (c) Abkühlen auf Raumtemperatur und
 - (d) Herauslösen des gesinterten Kunststoffformkörpers aus der Form.

- 6. Verfahren gemäß Anspruch 4, wobei das Abkühlen in Schritt (d) ein Abschrecken ist.
- 7. Verwendung von Kunststoffformkörpern wie in einem oder mehreren der Ansprüche 1 bis 4 definiert in Form einer Schüttung als Vorfiltermaterial.
- 8. Schüttung aus den Kunststoffformkörpern wie in einem oder mehreren der Ansprüche 1 bis 4 définiert.

Zusammenfassung

Die vorliegende Erfindung betrifft einen Kunststoffformkörper, der unregelmäßig zusammen-gesinterte Granulatkörner aus Kunststoff mit einer Dichte von 0,6 bis 1,2 g/cm³ umfasst und eine Schüttdichte (DIN-ISO 60) im Bereich von 150 bis 250 g/l aufweist. In Form einer Schüttung ist der erfindungsgemäße Kunststoffformkörper hervorragend zur Verwendung als ein Vorfiltermaterial geeignet.