Homework 1

CS209, Spring 2017

In this homework we consider the sentential logic language defined in the lecture, i.e., with the set S of sentence symbols and the set S^{wff} of well-formed formulas (wffs).

- 1. Let A, B be distinct sentence symbols in S. Determine if each of the following wffs is a tautology. If your answer is negative, find a truth assignment v that does not satisfy the wff and show the truth values of A, B under the assignment v.
 - (a) $(((A \rightarrow B) \rightarrow B) \rightarrow B)$
 - (b) $(((A \rightarrow B) \rightarrow B) \rightarrow A)$
- 2. Let A, B, C be distinct sentence symbols in S. Show that neither of the following two wffs tautologically implies the other:

$$\begin{array}{l} (A \leftrightarrow (B \leftrightarrow C)) \\ ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C)))) \end{array}$$

Note that you need to exhibit two truth assignments (i.e., not eight).

3. Prove or disprove:

THEOREM: For each natural number $n \ge 2$, there is a set Σ_n with n wff's such that (1) Σ_n is not satisfiable, and (2) each (n-1)-element subset of Σ_n is satisfiable.

4. Let Σ be a (possibly infinite) set of wffs and α , β two wffs.

Prove: Σ ; $\alpha \models \beta$ if and only if $\Sigma \models (\alpha \rightarrow \beta)$

Note that the notation " Σ ; α " means $\Sigma \cup \{\alpha\}$.

- 5. Write a complete proof for Case 3 (i.e., $\alpha = (\alpha_1 \vee \alpha_2)$) of the induction step in proving Lemma 3 (page marked "15" in the April 6's lecture notes).
- 6. (Duality) Let α be a wff whose only connectives are \wedge , \vee , and \neg . Let α^* be the resulting wff after interchanging \wedge and \vee and replacing each sentence symbol (e.g., A) by its negation (i.e., $(\neg A)$).

THEOREM: α^* is tautologically equivalent to $(\neg \alpha)$, i.e., $\alpha^* \models (\neg \alpha)$ and $(\neg \alpha) \models \alpha^*$.

Give a proof using mathematical induction.