NUMERICAL METHODS-LECTURE I: OUTLINE OF COURSE

Trevor Gallen

GOALS

Aim is to teach numerical methods, give you the tools you need to write down, solve, and estimate models

- 1. Interpolation
- 2. Numerical derivatives
- 3. Maximization/minimization
 - Deterministic, stochastic
 - Derivative-based, derivative-free
 - Local, global
- 4. Numerical integration/quadrature
- Bellman equations
- 6. Calibrate (and possibly estimate) structural models

Odds & Ends

- 1. This course runs for 8 weeks, from October 21st-December 7th.
- 2. Office hours will be coordinated with the student(s)

- 3. Contact: tgallen [at] purdue
- 4. Grading: Four homeworks, one "paper"/model
- 5. Course Text: Judd
- 6. Also useful: Miranda & Fackler
- 7. Various readings

Background on Computational

- More and more, interesting problems have wrinkles
- ► Simple examples:
 - Game theory (Bringing game parameters to data)
 - Industrial organization (Demand system estimation)
 - Labor economics (Household bargaining, nonlinear constraints)
 - ► Public economics (program participation, dynamics)
 - ► Macroeconomics (DSGE models of last 30 years)

DISTINGUISHING CHARACTERISTICS

- Explicit specifications of preferences, production, and behavior
- ► Frequently, many different actors
- Frequently, markets clearing
- Numerical output
- Increasingly, dynamic

Great Leap Forward

- ► Focus on numerical output has been great!
 - Complexity
 - ► No more hand waving (or less)
 - Closer link to data
 - Failure of models is feature not bug
 - ► Real predictions
- But it has its costs
 - Complexity
 - Death of economic intuition
 - Closed form
 - Unclear if many numerical heuristics work
 - Perhaps most importantly: black hole of time!

Great Leap Forward

- ► Focus on numerical output has been great!
 - Complexity ≠ black box!!!
 - ► No more hand waving (or less)
 - Closer link to data
 - Failure of models is feature not bug
 - Real predictions
- But it has its costs
 - Complexity
 - Death of economic intuition
 - Closed form
 - Unclear if many numerical heuristics work
 - Perhaps most importantly: black hole of time!

Great Leap Forward

- ► Focus on numerical output has been great!
 - Complexity ≠ black box!!!
 - ► No more hand waving (or less)
 - Closer link to data
 - ► Failure of models is feature not bug(?!)
 - Real predictions
- But it has its costs
 - Complexity
 - Death of economic intuition
 - Closed form
 - Unclear if many numerical heuristics work
 - Perhaps most importantly: black hole of time!

OUTLINE OF COURSE

- Matlab introduction
- ► Bellman equations: theory
- ▶ Bellman equations: extremely limited numerical solution
- Numerical derivatives
 - Derivative-based and derivative-free
 - ► Local and global
- Maximization
- Equation solving
- Interpolation
- Integration
- Simulated methods of estimation

POTENTIAL USES OF CONCEPTS

- Bellman equations: most dynamic problems
- Numerical derivatives: maximization, equation-solving
- ► Maximization: Agent problems, estimation
- Equation solving: Solving models
- Interpolation: Making your life easier, allowing for richer agent choice, better estimation
- Integration: Allowing for shocks, allowing for agent heterogeneity

WHAT DO YOU WANT TO SEE?

What tools, models, papers, methods would you like to learn?