Statistical Methods in AI (CS7.403)

Lecture-4: Classification Performance Measures (F1-Score, Multi-Class Metrics)

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Announcements

- A1
 - Will be out on Saturday (Aug 10)
 - Explanation session in Tutorial (Saturday)

Summary of Measures – Two Class Classification

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

correct prediction of + class

% of – class incorrectly predicted

Accuracy vs Precision vs Recall

- Monitor Precision if a false positive carries higher cost.
- Monitor Recall if a false negative carries higher cost.

% of correct predictions

F1-score: A unified measure

- What to do when one classifier has better precision but worse Recall, while other classifier behaves exactly opposite?
 - F-measure (Information Retrieval)

$$\mathbf{F}_1 = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

F-1 score

- What to do when one classifier has better Precision but worse Recall, while other classifier behaves exactly opposite?
 - F-measure (Information Retrieval)

$$\mathbf{F}_{1} = 2$$

$$\frac{1}{Recall} + \frac{1}{Precision}$$

- → F1 measure punishes extreme values more!
- → Definition of Recall and Precision have same numerator, different denominators. A sensible way to combine them is harmonic mean.

How to use 2-class measures for multi-class?

Convert into 2-class problems!

- Average Precision, Recall etc.
- Board ...

Avg. accuracy may not be very meaningful with imbalanced class label distribution

Multi-class Classification - Confusion matrix

- •Reveals several performance aspects of the classifier:
 - Most confusing pairs
 - Least confusing pairs

Multi-class problems - Confusion matrix

p

actual class

Multi-class Classification: Measures

- Mean <measure> +- standard deviation
- Median <measure> +- median absolute deviation

Descriptor	Spectral bands			
Descriptor	RGB	PCA RGB		
Gist	74.14 ± 1.93	77.76 ± 2.62		
MSIFT	88.92 ± 1.39	90.97 ± 1.81		
MBoW	88.60 ± 1.70	88.31 ± 1.38		
cSIFT	88.17 ± 1.17	88.76 ± 1.74		
rgSIFT	88.24 ± 1.89	87.71 ± 1.33		
BoWV [8]	71.86	N/A		
SPMK [12]	74.00	N/A		
SPCK++[8]	76.05	N/A		
Dense SIFT [2]	81.67 ± 1.23	N/A		

Exam analogy: Did you prepare at least a little?

- Compute <Performance Measure> (e.g. Accuracy) for TRAINING SET
- Verify it is "decent"

Baseline Classifiers

- 0 cost-to-build classifiers
- Binary
 - Equal # of samples / class in training set → Random Guessing (50% accuracy)
 - Class imbalance
 - Guess according to class proportion (Accuracy =
 - O-Rule: Majority class (Accuracy =) [slightly stronger baseline]

Multi-Label Classification

Multi Label Classifier

Example-based

- $\underline{\underline{n}}$ is the number of examples.
 $\underline{\underline{Y}}_i$ is the ground truth label assignment of the example.
 $\underline{\underline{x}}_i$ is the $\underline{\underline{i}}^{th}$ example.
 $\underline{\underline{h}}(\underline{x}_i)$ is the predicted labels for the example.

Precision =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i \cap h(x_i)|}{|h(x_i)|}$$

What % of labels are predicted correctly?

Recall =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i \cap h(x_i)|}{|Y_i|}$$

What % of correct labels were predicted?

Accuracy = Fraction of samples predicted correctly

Summary

- Many metrics:
 - Accuracy, TP, FP, Precision, Recall, F-1 score
 - Class imbalance and decision-cost imbalance must be taken into account
- Confusion Matrix: Important to analyze and refine solution.

References and Reading

Code

 https://scikit-learn.org/stable/modules/model_evaluation.html#classificationmetrics