FEEDING THE RICE CROP: FILIPINO FARMERS' MANAGEMENT PRACTICES

Rowena G. Manalili Chona P. Austria SED staff

Objectives

• Fertilizer use and nutrient management practices of rice farmers (2011 WS)

sources and types of fertilizer

 $N-P_2O_5-K_2O$ use

by ecosystem/barangay classification

by method of crop establishment

by seed class

by source of water

- Technology awareness and adoption on Nutrient Management Practices
- Training on Nutrient Management
- Government Services availed and wanted by farmers CLEAN GREEN PRACTICAL SMART

Fertilizer

- One of the major inputs in rice production
- Together with high-yielding rice varieties and good irrigation water management, fertilizer is one of the factors that contributed to the success of the Green Revolution in the 1970s and 1980s

Users and Non-users of Fertilizers

Commonly Used Fertilizers

Average Inorganic Fertilizer Use

Inorganic Fertilizer	Irrigated	Non- Irrigated	All Ecosystems
Urea (46-0-0)	2.08	1.56	1.92
Complete (14-14-14)	1.69	1.05	1.50
Ammonium Sulfate (21-0-0)	0.69	0.57	0.65
Ammonium Phosphate (16-20-0)	0.46	0.45	0.46
Urea (45-0-0)	0.39	0.21	0.33
Potassium Nitrate (17-0-17)	0.07	0.02	0.06
Muriate of Potash (0-0-60)	0.02	0.01	0.02
TOTAL	5.51	3.91	5.04

Average N-P₂O₅-K₂O used

N Use in Irrigated

Phosphate (P₂0₅)Use in Irrigated

Potassium Oxide (K₂0) in Irrigated

N Use in Non-Irrigated

Phosphate (P₂0₅)Use in Non-Irrigated

Potassium Oxide (K₂0) in Non-Irrigated

Number of Applications

Timing of N Application (Irrigated)

Timing of N Application (Non-Irrigated)

Yield and Fertilizer Cost by Type of Fertilizer User

	Irrigated			Non-Irrigated		
Fertilizer Source/Users	n	Yield (ton/ha)	Fertilizer Cost (P/ha)	n	Yield (ton/ha)	Fertilizer Cost (P/ha)
Inorganic users	1624 (96)	3.96	6,622	641 (91)	3.17	4,914
Inorganic- organic users	31 (2)	4.16	7,222	10 (1)	2.92	4,949
Non-users	38 (2)	3.14	0	55 (8)	2.12	0

N-P₂O₅-K₂O Used by Yield Level

Yield by province (Irrigated)

Yield by province (Non-irrigated)

N-P₂O₅-K₂O by crop establishment

N-P₂O₅-K₂O by crop establishment and by ecosystem

Yield and Fertilizer Cost by Crop Establishment

	Irrigated			Non-Irrigated		
Crop Establishment	n	Yield (ton/ha)	Fertilizer Cost (P/ha)	n	Yield (ton/ha)	Fertilizer Cost (P/ha)
Transplanted	1265 (75)	4.03	6,744	434 (61)	3.15	4,440
Wet Direct Seeded	405 (24)	3.73	5,727	232 (33)	3.03	4,811
Dry Direct Seeded	19 (1)	3.41	5,424	39 (6)	2.58	3,904

CLEAN | GREEN | PRACTICAL | SMART | PHILISUCE

N-P₂O₅-K₂O by Seed Class

Yield and Fertilizer Cost by Seed Class

	Irrigated			Non-Irrigated		
Seed Class	n	Yield (ton/ha)	Fertilizer Cost (P/ha)	n	Yield (ton/ha)	Fertilizer Cost (P/ha)
Hybrid	82 (5)	4.90	8,567	18 (3)	3.87	7,257
High Quality Inbred	753 (44)	4.05	7,124	250 (35)	3.46	5,565
Low Quality Inbred	858 (51)	3.76	5,724	438 (62)	2.83	3,829

CLEAN GREEN PRACTICAL SMART PHILRICE

Frequency of applications by water source

N-P₂O₅-K₂O used by water source

Yield and Fertilizer Cost by Water Source

Water Source	No. of Farmers	Yield (ton/ha)	Fertilizer Cost (P/ha)
NIS/CIS	1167 (49)	3.74	5,518
SSIS	401 (17)	3.59	6,809
Natural Source	277 (12)	3.11	4,457
Rain	554 (23)	3.19	4,968

Rice Trainings

Top 5 trainings attended, 2009-2012

Rice Trainings

5 Least attended trainings, 2009-2012

Technology Awareness and Adoption on Nutrient Management Practices

Technology Awareness and Adoption on Nutrient Management Practices

Government Services Availed

Percent of farmers who availed of government services, 2011 WS

Government Services Wanted by Farmers

Percent of farmers who want to avail of government services, 2011 WS

Problems Encountered in Rice Farming

Percent of farmers who reported problems, 2011 WS

Summary

- Majority of the farmers are applying fertilizers
- Very few practiced the inorganic-organic fertilizer application
- The most common fertilizer grades are urea (46-0-0), complete (14-14-14), ammonium Sulfate (21-0-0) and ammonium phosphate (16-20-0).
- Foliar fertilizers such as Crop Giant and Agrowell were also popular to farmers.
- Majority of the farmers applied fertilizer twice
- N-P2O5-K20 use was 81-17-14 kg/ha for irrigated and 58-12-8 kg/ha for non-irrigated

Summary

- Farmers who applied higher levels of fertilizers obtained higher yields
- Farmers serviced by NIS/CIS and SSIS applied higher amounts of NPK than farmers having other sources. As expected, the sufficiency of irrigation water increased the level of fertilizer application
- Very low awareness and adoption of currently available nutrient management technologies

Thank you

