APLICACIÓN DA POTENCIA DUN PUNTO RESPECTO DUNHA CIRCUNFERENCIA NA RESOLUCIÓN DE CASOS DE TANXENCIA.

1-Recordemos o concepto de "potencia".

Punto exterior "P"

Se dende un punto exterior a unha circunferencia trazamos secantes a mesma, o producto dos segmentos que se determinan é constante (K) e é a potencia do punto P respecto desta circunferencia. Se consideramos ó segmento PT como secante límite, PT² será igual a calquera dos productos que se obteñan das outras secantes. *PT será o segmento representativo da potencia* dun punto respecto dunha circunferencia.

$$PA \times PA' = PB \times PB' = PT^2 = K$$

Punto interior "P". Potencia negativa.

$$-PA \times PA' = -K$$

Punto da circunferencia "P".

O segmento PB' ten unha lonxitude cero logo a potencia de P será "0".

$$PB'=0$$

$$PB \times PB' = K = 0$$

EIXE RADICAL DE DÚAS CIRCUNFERENCIAS.

Lugar xeométrico dos puntos do plano que teñen a mesma potencia (cada un deles) respecto de dúas circunferencias.

O eixe radical é perpendicular á recta que une os centros das circunferencias. Calquer punto "J" do eixe radical ten igual potencia respecto ás dúas circuferencias, logo os segmentos tanxentes trazados dende "J", "JT", medirán o mesmo.

Eixe radical de dúas circunferencias secantes.

Os puntos de intersección das circunferencias pertecen ó eixe radical xa que a súa potencia é "cero" respecto ás dúas (os puntos dunha circunferencia teñen potencia "0" respecto a ésta).

Eixe radical de dúas circunferencias tanxentes.

O punto de tanxencia das circunferencias pertecen ó eixe radical xa que a súa potencia é "cero" respecto ás dúas (os puntos dunha circunferencia teñen potencia "0" respecto a ésta).

-Tanxentes exteriores O_1 O_2 $E.R.(O_1-O_2)$

-Tanxentes interiores

Eixe radical de dúas circunferencias exteriores.

Como non teñen puntos en común, debuxamos unha circunferencia auxiliar de centro "Oi" secante ás outras dúas e determinamos os eixes radicais auxiliares, o punto de intersección "J" pertece o eixe radical buscado por ter a mesma potencia respecto ás dúas circunferencias. Trazamos o eixe, perpendicular á recta que une os centros.

Eixe radical de dúas circunferencias interiores.

Como non teñen puntos en común, debuxamos unha circunferencia auxiliar de centro "Oi" secante ás outras dúas e determinamos os eixes radicais auxiliares, o punto de intersección "J" pertece ó eixe radical buscado por ter a mesma potencia respecto ás dúas circunferencias. Trazamos o eixe, perpendicular á recta que une os centros.

Eixe radical de dúas circunferencias concentricas.

O eixe é impropio posto que os eixes auxiliares son paralelos.

Centro radical de tres circunferencias.

Determinamos eixes radicais entre as circunferencias dúas a dúas. Os eixes radicais córtanse nun punto que ten a mesma potencia respecto ás tres, é o centro radical das mesmas C.R.

Os segmentos tanxentes trazados dende "C.R." ás tres circunferencias terán polo tanto igual medida.

Feixes de circunferencias coaxiáis. Propiedades. Aplicación ás tanxencias.

Conxunto de circunferencias de eixe radical común.

Feixe de tanxentes.

Tóda-las circunferencias do feixe son tanxentes nun punto "T".

Un punto "J" do eixe radical ten a mesma potencia "JT" respecto de tóda-las circunferencias. Un punto "J" do eixe radical e dunha recta tanxente común a dúas circunferncias do feixe é punto medio do segmento "T-T".

Aplicación á resolución de tanxencias:

Debuxa-las circunferencias tanxentes á de centro "C" no punto "T" e á recta "r".

Feixe de secantes.

Tóda-las circunferencias do feixe se cortan en dos puntos "A" e "B".

Un punto "J" do eixe radical ten a mesma potencia "JT" respecto de tódalas circunferencias. Un punto "J" do eixe radical e dunha recta tanxente común a dúas circunferencias do feixe é punto medio do segmento "T-T".

Aplicación á resolución de tanxencias:

Debuxa-las circunferencias tanxentes á de centro "C" e que pasan polos puntos "A" e "B".

TEMA 5

TANXENCIAS (casos aplicación de potencia)

pax. 7

Feixe de exteriores.

Un punto "J" do eixe radical ten a mesma potencia "JT" respecto de tódalas circunferencias. Un punto "J" do eixe radical e dunha recta tanxente común a dúas circunferencias do feixe é punto medio do segmento "T-T".

-Vamos a debuxar algunhas circunferencias do feixe definido polas circunferencias "O₁" e "O₂".

Exercicios de tanxencias por potencia.

- Circunferencias tanxentes á de centro "C" e á recta "r" no punto "T".

- Circunferencias tanxentes á de centro "C" e á recta "r" no punto "T".

- Circunferencias tanxentes á de centro "C" no punto "T" e á recta "r".

- Circunferencias tanxentes á de centro " C_2 " no punto "T" e á de centro " C_1 ".

- Circunferencias tanxentes á de centro " C_1 " no punto "T" e á de centro " C_2 ".

- Circunferencias tanxentes á de centro "C" e que pasen polos puntos "A" e "B".

- Circunferencias tanxentes aos lados do ángulo da figura e que pasen polo punto "P".

- Circunferencias tanxentes aos lados do ángulo da figura e á circunferencia de centro "C".

- Circunferencias tanxentes á de centro "C" e que pasan polos puntos "A" e "B".

- Debuxa as circunferencias tanxentes á recta "r" que pertecen ó mesmo feixe que as de centros "C" e "C".

- Circunferencias tanxentes á de centro "O" , á recta "m" e que pasen polo punto "P". (Exteriores a O)

m

- Circunferencias tanxentes á de centro "O" , á recta "m" e que pasen polo punto "P". (Que conteñan a O)

