

Machine Learning 6 Bayesin Classification

Prof. Dr. Steffen Staab Nadeen Fatallah

Daniel Frank

Akram Sadat Hosseini

Rodrigo Lopez

Osama Mohamed

Yi Wang

Tim Schneider

https://www.ki.uni-stuttgart.de/

Intermezzo:
Discrete
Probabilistic
Reasoning

Inference

"Inferences are steps in reasoning, moving from premises to logical consequences..."

(https://en.wikipedia.org/w/index.php?title=Inference&oldid=953649900)

"Statistical inference uses mathematics to draw conclusions in the presence of **uncertainty**."

(https://en.wikipedia.org/w/index.php?title=Inference&oldid=953649900)

Sources of uncertainty

- Machine learning:
 - generalizes from (rather) small number of observations (i.e. samples)
 - to the general (including unseen objects)

- Observations are uncertain, because
 - observations may be flawed (e.g. defect or inaccurate sensor)
 - reality may be uncertain
 - inherently uncertain (e.g. quantum dynamics)
 - incomplete knowledge best modelled by uncertainty (no Laplace's demon)
 - including: modeling with latent variables

Probabilities and Random Variables

• For a random variable X with discrete $dom(X) = \Omega$ we write: $\forall x \in \Omega: 0 \leq P(X=x) \leq 1$

$$\sum_{x \in \Omega} P(X = x) = 1$$

- Example: A dice can take values $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - *X* is the random variable representing a dice throw.
 - $P(X=1) \in [0,1]$ is the probability that X takes value 1, i.e. event "1" happens
- A random variable is a map from a measurable space to a domain (sample space). It introduces a probability measure on the domain ("assigns a probability to each possible value" or "assigns a probability to each possible, maybe complex event")

Atomic and non-atomic events

- Atomic or elementary event of *X* with $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Represented by a singleton, e.g. {3}
- Non-atomic event
 - E.g. seeing an even number {2,4,6}

Notation

- $P(X=1) \in [0,1]$ denotes a specific probability of an event
- P(X) denotes the probability distribution (function over Ω)
- Implementation over discrete random variables $\left[\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right]$
- Non-atomic events $A=\{x_1,\ldots,x_k\}$ have probability $\Sigma_{x\in A}P(X=x)$ or shorthand $\Sigma_AP(X)$
- We also write $\Sigma_{x \in dom(X)} P(X = x) = \Sigma_X P(X)$

Joint distributions

- Assume we have two random variables X, Y
- Implemented as a matrix of probability values $P_{x,y}$

y

Joint distributions of two discrete random variable

Assume we have two random variables X, Y

$$P(X=x,Y=y)$$

- Definitions:
 - Joint distribution: P(X,Y)
 - Marginal distribution: $P(X) = \Sigma_Y P(X, Y)$

Joint distributions

Assume we have two random variables X, Y

$$P(X=x,Y=y)$$

- Definitions:
 - Joint distribution: P(X,Y)
 - Marginal distribution: $P(X) = \sum_Y P(X,Y)$ Conditional: $P(X|Y) = \frac{P(X,Y)}{P(Y)}$

$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

• The conditional is normalized: $\forall y \in \text{dom}(Y)$: $\sum_{x,y} P(X|Y=y) = 1$

Joint distributions

Assume we have two random variables X, Y

$$P(X=x,Y=y)$$

- Definitions:
 - Joint distribution: P(X,Y)
 - Marginal distribution: $P(X) = \Sigma_Y P(X, Y)$
 - Conditional: $P(X|Y) = \frac{P(X,Y)}{P(Y)}$

- The conditional is normalized: $\forall Y: \Sigma_X P(X|Y) = 1$
- X is independent of Y iff: P(X|Y) = P(X)

identical colors stand for identical values

Visualizing specific conditional events

P (yellow | red):?

P (red| yellow) = ?

Can we infer something about P (red| yellow) if we know P (yellow | red)?

Reason for Bayes' Theorem

$$P(A|B) = rac{P(A,B)}{P(B)}$$
 $P(B|A) = rac{P(A,B)}{P(A)}$

$$P(A,B) = P(A|B) * P(B)$$

 $P(A,B) = P(B|A) * P(A)$

$$P(A|B) * P(B) = P(B|A) * P(A)$$

$$P(A|B) = rac{P(B|A) * P(A)}{P(B)}$$

Can I infer something about the second, by knowing about the first?

P (yellow | red) =
$$4/20 = 1/5$$

P (red| yellow) =
$$4/6 = 2/3$$

$$P(\text{red}|\text{yellow}) = \frac{P(\text{yellow}|\text{red}) \cdot P(\text{red})}{P(\text{yellow})} =$$

This is practically useful if the term on the left side is hard to measure, but the terms on the right side are easy to measure.

Bayes' Theorem

TALKING ABOUT DISTRIBUTIONS

TALKING ABOUT PROBABILITIES OF (OFTEN NON-ATOMIC) EVENTS

$$P(X|Y) = \frac{P(Y|X) \cdot P(X)}{P(Y)}$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$posterior = \frac{likelihood \cdot prior}{normalization}$$

Probability theory for dealing with uncertainty

Frequentist probabilities are defined in the limit of an infinite number of trials

Example: "The probability of a particular coin landing heads up is 0.43"

Bayesian (subjective) probabilities quantify degrees of belief

- Example: "The probability of rain tomorrow is 0.3"
 - not possible to repeat "tomorrow"

Fair or manipulated?

Coin flipping: What process produces these sequences?

HHTHT

HHHHH

- Two hypotheses H=1, H=2
 - Fair coin:

$$H=1$$

$$H = 1$$
 $P(d_i = Head \mid H = 1) = \frac{1}{2}$

Manipulated:

$$H=2$$

$$H = 2$$
 $P(d_i = Head \mid H = 2) = 1$

D=HHTHT

$$P(D|H=1) = \left(\frac{1}{2}\right)^5$$

$$P(H = 1|D) = \frac{P(D|H=1) \cdot P(H=1)}{P(D)}$$

D=HHTHT

$$P(D|H=1) = \left(\frac{1}{2}\right)^5$$

$$P(H = 1|D) = \frac{P(D|H=1) \cdot P(H=1)}{P(D)}$$

$$P(D|H=2) = 0$$

$$P(H = 2|D) = \frac{P(D|H=2) \cdot P(H=2)}{P(D)}$$

We do not know the probability of P(D) but it is the same for either observation, hence we compare:

$$\frac{P(H=1|D)}{P(H=2|D)} = \frac{P(D|H=1) \cdot P(H=1)}{P(D|H=2) \cdot P(H=2)}$$

What are our prior beliefs that the coin is fair or manipulated? Let's assume:

$$P(H = 1) = 0.999, P(H = 2) = 0.001$$

Then

$$\frac{P(H=1|D)}{P(H=2|D)} = \frac{\left(\frac{1}{2}\right)^5}{0} \cdot \frac{0.999}{0.001} = \infty$$

H1 fair, H2 manipulated

D=HHHHH

$$P(D|H=1) = \left(\frac{1}{2}\right)^5$$

$$P(D|H=2) = 1$$

$$P(H = 1|D) = \frac{P(D|H=1) \cdot P(H=1)}{P(D)}$$

$$P(H = 2|D) = \frac{P(D|H=2) \cdot P(H=2)}{P(D)}$$

D=HHHHH

$$P(D|H=1) = \left(\frac{1}{2}\right)^5$$

$$P(H = 1|D) = \frac{P(D|H=1) \cdot P(H=1)}{P(D)}$$

$$P(D|H=2)=1$$

$$P(H=2|D) = \frac{P(D|H=2) \cdot P(H=2)}{P(D)}$$

We do not know the probability of P(D) but it is the same for either observation, hence we compare:

$$\frac{P(H=1|D)}{P(H=2|D)} = \frac{P(D|H=1) \cdot P(H=1)}{P(D|H=2) \cdot P(H=2)}$$

What are our prior beliefs that the coin is fair or manipulated? Let's assume:

$$P(H = 1) = 0.999, P(H = 2) = 0.001$$

Then

$$\frac{P(H=1|D)}{P(H=2|D)} = \frac{\left(\frac{1}{2}\right)^5}{1} \cdot \frac{0.999}{0.001} \approx 30$$

D=НННННННН

$$P(D|H=1) = \left(\frac{1}{2}\right)^1 0$$

$$P(H = 1|D) = \frac{P(D|H=1) \cdot P(H=1)}{P(D)}$$

$$P(D|H=2)=1$$

$$P(H = 2|D) = \frac{P(D|H=2) \cdot P(H=2)}{P(D)}$$

We do not know the probability of P(D) but it is the same for either observation, hence we compare:

$$\frac{P(H=1|D)}{P(H=2|D)} = \frac{P(D|H=1) \cdot P(H=1)}{P(D|H=2) \cdot P(H=2)}$$

What are our prior beliefs that the coin is fair or manipulated? Let's assume:

$$P(H = 1) = 0.999, P(H = 2) = 0.001$$

Then

$$\frac{P(H=1|D)}{P(H=2|D)} = \frac{\frac{1}{1024}}{1} \cdot \frac{0.999}{0.001} \approx 1$$

https://xkcd.com/1132/

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS \$\frac{1}{36} = 0.027.\$

SINCE P<0.05, I CONCLUDE THAT THE SUN HAS EXPLODED.

BAYESIAN STATISTICIAN:

Joint Distributions for Three Random Variables

3 random variables X, Y, Z, stored as rank 3 tensor

Joint distribution: P(X, Y, Z)

Marginal distribution: $P(X) = \sum_{Y,Z} P(X,Y,Z)$

Conditional distribution: $P(X|Y,Z) = \frac{P(X,Y,Z)}{P(Y,Z)}$

X is conditionally independent of Y given Z iff: P(X|Y,Z) = P(X|Z)

Product rule and Bayes' theorem:

$$P(X, Z, Y) = P(X|Y, Z) P(Y|Z) P(Z)$$

$$P(X|Y,Z) = \frac{P(Y|X,Z) P(X|Z)}{P(Y|Z)}$$

$$P(X,Y|Z) = \frac{P(X,Z|Y) P(Y)}{P(Z)}$$

n Random Variables

Analogously for n random variables $X_{1:n}$ (stored as a rank n tensor)

Joint: $P(X_{1:n})$

Marginal: $P(X_1) = \sum_{X_{2:n}} P(X_{1:n})$, Conditional: $P(X_1|X_{2:n}) = \frac{P(X_{1:n})}{P(X_{2:n})}$

Product rule and Bayes' theorem:

$$P(X_{1:n}) = \prod_{i=1}^{n} P(X_i|X_{i+1:n})$$

$$P(X_1|X_{2:n}) = \frac{P(X_2|X_1, X_{3:n}) P(X_1|X_{3:n})}{P(X_2|X_{3:n})}$$

Mapping joint atomic events to probabilities.

Storing probabilities in an n-dimensional array (tensor)

Naïve Bayes

Bayes' Classifier

- Probabilistic classification
 - Estimate (soft classification)

$$\hat{f}_{NBsoft}(o) = P(c|o)$$

Classification (hard)

$$\hat{f}_{NB}(o) = \underset{c \in C}{\operatorname{argmax}} P(c|o)$$

Bayes Theorem:

$$P(c \mid o) = \frac{P(c) \cdot P(o \mid c)}{P(o)}$$

- P(o): Probability of the object constant for all categories
- P(c): **Prior** probability of a category
- P(o|c): Probability to observe o in c (*Likelihood*)
- P(c|o): Probability that observation o should be classified as c (**Posterior**)

Estimate from training data

Non-naïve Bayes

Attributes and class label are (interdependent) random variables

Resolving the Probabilities with all Dependencies

$$P(c \mid o) = \frac{P(c) \cdot P(o \mid c)}{P(o)}$$
From objects

Non-naive!!!

From objects to attributes
$$P(c|x_1,\ldots,x_m) = \frac{P(x_1,\ldots,x_m|c)\cdot P(c)}{P(x_1,\ldots,x_m)} =$$

$$= \frac{P(x_1,\ldots,x_{m-1}|x_m,c)\cdot P(x_m|c)\cdot P(c)}{P(x_1,\ldots,x_m)} =$$

$$= \frac{P(x_1,\ldots,x_{m-2}|x_{m-1},x_m,c)\cdot P(x_{m-1}|x_m,c)\cdot P(x_m|c)\cdot P(c)}{P(x_1,\ldots,x_m)} =$$

$$= \frac{P(x_1,\ldots,x_{m-2}|x_{m-1},x_m,c)\cdot P(x_{m-1}|x_m,c)\cdot P(x_{m-1}|x_m,c)}{P(x_1,\ldots,x_m)} \cdot \frac{P(x_{m-1}|x_m,c)\cdot P(x_m|c)\cdot P(c)}{P(x_1,\ldots,x_m)} = \frac{P(x_1,\ldots,x_m,c)\cdot P(x_m|c)\cdot P(x_m|c)\cdot$$

Naïve Bayes Assumption

- (Naive) assumption:
 - The class label only depends bi-laterally on the attribute values:

$$\begin{split} &P(o|c) = P(x_1, ..., x_m|c) = \\ &= P(x_1, ..., x_{m-1}|x_m, c)P(x_m|c) = ... \\ &= P(x_1|x_2, ..., x_m, c)P(x_2|x_3, ..., x_m, c) ... P(x_{m-1}|x_m, c)P(x_m|c) \approx \\ &\approx P(x_1|c)P(x_2|c) ... P(x_{m-1}|c)P(x_m|c) \end{split}$$

Simplifying Probabilities with Naïve Bayes Assumption

To be estimated from training data: which fraction in a class has a certain attribute value?

Example of Naive Bayes

Wine

Color	Age	Class
Red	Old	Good
White	Old	Good
White	Young	Good
Red	Old	Bad
White	Young	bad

To classify: A new instance wine(red, young)

Calculate value of the decision rule for both classes:

Class "good":

 $P (good|red, young) = P (good) \cdot P(red|good) \cdot P(young|good) =$

Class "bad":

 $P (bad|red, young) = P (bad) \cdot P(red|bad) \cdot P(young|bad) = \dots \dots$

- ⇒ Higher probability for class "bad"
- ⇒ Naive Bayes classifies new instance as "bad"

Estimating probabilities

- In general:
 - Use count information, i.e. frequencies

Category priors:

$$P(c_i) = \frac{|\{(x_1, \dots, x_m, c) \in O : c = c_i\}|}{|O|}$$

Example: Mushrooms

$$P(\text{edible}) = \frac{79}{100} = 0.79$$

$$P(\text{poisonous}) = \frac{21}{100} = 0.21$$

"If you find a mushroom and do not know anything about it, there is a 21% chance it is poisonous"

Estimating probabilities

- Categorial features:
 - Use count frequencies:

$$P(x_{j} = v \mid c_{i}) = \frac{\left| \{(x_{1}, \dots, x_{m}, c) \in O : x_{j} = v \land c = c_{i}\} \right|}{\left| \{(x_{1}, \dots, x_{m}, c) \in O : c = c_{i}\} \right|}$$

• Example:

$$P(\text{gill} - \text{color} = p \mid \text{poisonous}) = \frac{3}{21}$$

$$P(bruises = f \mid edible) = \frac{13}{79}$$

$$P(\text{habitat} = d \mid \text{poisonous}) = \frac{0}{21}$$

Feature		Edible	Poisonous
cap-shape	bell=b convex=x flat=f sunken=s	29 34 13 3	0 20 1 0
cap- surface	fibrous=f scaly=y smooth=s	14 36 29	0 13 8
cap-color	brown=n gray=g white=w yellow=y	12 7 19 41	9 0 12 0
bruises	bruises=t no=f	66 13	21
gill- spacing	close=c crowded=w	65 14	21
gill- size	broad=b narrow=n	64 15	0 21
gill-color	black=k brown=n gray=g pink=p white=w	20 22 10 10 17	8 6 0 3 4
habitat	grasses=g meadows=m paths=p urban=u woods=d	28 28 8 7 8	8 0 0 13 0

Smoothing for Naive Bayes

$$P(c \mid x_1, \dots, x_m) \propto P(c) \cdot \prod_{j=1}^m P(x_j \mid c)$$

Laplace smoothing

$$P_{\text{Laplace}}(x_{j} = v \mid c_{i}) = \frac{\left| \{(x_{1}, \dots, x_{m}, c) \in O : x_{j} = v \land c = c_{i}\} + 1}{\left| \{(x_{1}, \dots, x_{m}, c) \in O : c = c_{i}\} + \left| V_{j} \right|\right|}$$

- Where V_i is the set of values for attribute x_i
- Generalized additive smoothing (Lidstone):

$$P_{\text{Lidstone}}(x_{j} = v \mid c_{i}) = \frac{\left| \{ (x_{1}, \dots, x_{m}, c) \in O : x_{j} = v \land c = c_{i} \} + \lambda}{\left| \{ (x_{1}, \dots, x_{m}, c) \in O : c = c_{i} \} + \left| V_{j} \right| \cdot \lambda} \right|$$

with Parameter λ

One entry zero: overall product zero !!!

Estimating probabilities using smoothing

Example:

$$P(\text{gill} - \text{color} = p \mid \text{poisonous}) = \frac{4}{26}$$

$$P(bruises = f | edible) = \frac{14}{81}$$

$$P(\text{habitat} = d \mid \text{poisonous}) = \frac{1}{26}$$

ì							
		Feature	Edible	Poisonous			
	cap-shape	bell=b convex=x flat=f sunken=s	29 +1 34 +1 13 +1 3 +1	0 +1 20 +1 1 +1 0 +1			
	cap- surface	fibrous=f scaly=y smooth=s	14 +1 36 +1 29 +1	0 +1 13 +1 8 +1			
	cap-color	brown=n gray=g white=w yellow=y	12 +1 7 +1 19 +1 41 +1	9 +1 0 +1 12 +1 0 +1			
	bruises	bruises=t no=f	66 +1 13 +1	21 +1 0 +1			
	gill- spacing	close=c crowded=w	65 +1 14 +1	21 +1 0 +1			
	gill- size	broad=b narrow=n	64 +1 15 +1	0 +1 21 +1			
	gill-color	black=k brown=n gray=g pink=p white=w	20 +1 22 +1 10 +1 10 +1 17 +1	8 +1 6 +1 0 +1 3 +1 4 +1			
	habitat	grasses=g meadows=m paths=p urban=u woods=d	28 +1 28 +1 8 +1 7 +1 8 +1	8 +1 0 +1 0 +1 13 +1 0 +1			

Example: Classification

- Mushroom: o = (f,y,w,t,c,n,p,g)
- Category: poisonous:

$$P(\text{poisonous}) = \frac{21}{100}$$

$$P(\text{cap-shape} = f \mid \text{poisonous}) = \frac{2}{25}$$

$$P(\text{cap-surface} = y \mid \text{poisonous}) = \frac{14}{24}$$

$$P(\text{cap-color} = w \mid \text{poisonous}) = \frac{13}{25}$$

$$P(\text{bruises} = t \mid \text{poisonous}) = \frac{22}{23}$$

$$P(\text{gill-spacing} = c \mid \text{poisonous}) = \frac{22}{23}$$

$$P(\text{gill-size} = n \mid \text{poisonous}) = \frac{22}{23}$$

$$P(\text{gill-color} = p \mid \text{poisonous}) = \frac{4}{26}$$

$$P(\text{habitat} = g \mid \text{poisonous}) = \frac{9}{26}$$

P(poisonous|o) = 0.000247

	Feature	Edible	Poisonous
cap-shape	bell=b	29 +1	0 +1
	convex=x	34 +1	20 +1
	flat=f	13 +1	1 +1
	sunken=s	3 +1	0 +1
cap- surface	fibrous=f scaly=y smooth=s	14 +1 36 +1 29 +1	0 +1 13 +1 8 +1
cap-color	brown=n gray=g white=w yellow=y	12 +1 7 +1 19 +1 41 +1	9 +1 0 +1 12 +1 0 +1
bruises	bruises=t	66 +1	21 +1
	no=f	13 +1	0 +1
gill-	close=c	65 +1 14 +1	21 +1
spacing	crowded=w		0 +1
gill-	broad=b	64 +1 15 +1	0 +1
size	narrow=n		21 +1
gill-color	black=k brown=n gray=g pink=p white=w	20 +1 22 +1 10 +1 10 +1 17 +1	8 +1 6 +1 0 +1 3 +1 4 +1
habitat	grasses=g	28 +1	8 +1
	meadows=m	28 +1	0 +1
	paths=p	8 +1	0 +1
	urban=u	7 +1	13 +1
	woods=d	8 +1	0 +1

Example: Classification

- Mushroom: o = (f,y,w,t,c,n,p,g)
- Category: edible:

$$P(\text{edible}) = \frac{79}{100}$$

$$P(\text{cap-shape} = \text{f} | \text{edible}) = \frac{14}{83}$$

$$P(\text{cap-surface} = \text{y} | \text{edible}) = \frac{37}{82}$$

$$P(\text{cap-color} = \text{w} | \text{edible}) = \frac{20}{83}$$

$$P(\text{bruises} = \text{t} | \text{edible}) = \frac{67}{81}$$

$$P(\text{gill-spacing} = \text{c} | \text{edible}) = \frac{66}{81}$$

$$P(\text{gill-size} = \text{n} | \text{edible}) = \frac{16}{81}$$

$$P(\text{gill-color} = \text{p} | \text{edible}) = \frac{11}{84}$$

$$P(\text{habitat} = \text{g} | \text{edible}) = \frac{29}{84}$$

Poisonous!

P(edible|o) = 0.000087

	Feature	Edible	Poisonous
cap-shape	bell=b	29 +1	0 +1
	convex=x	34 +1	20 +1
	flat=f	13 +1	1 +1
	sunken=s	3 +1	0 +1
cap- surface	fibrous=f scaly=y smooth=s	14 +1 36 +1 29 +1	0 +1 13 +1 8 +1
cap-color	brown=n gray=g white=w yellow=y	12 +1 7 +1 19 +1 41 +1	9 +1 0 +1 12 +1 0 +1
bruises	bruises=t	66 +1	21 +1
	no=f	13 +1	0 +1
gill-	close=c	65 +1 14 +1	21 +1
spacing	crowded=w		0 +1
gill-	broad=b	64 +1	0 +1
size	narrow=n	15 +1	21 +1
gill-color	black=k brown=n gray=g pink=p white=w	20 +1 22 +1 10 +1 10 +1 17 +1	8 +1 6 +1 0 +1 3 +1 4 +1
habitat	grasses=g	28 +1	8 +1
	meadows=m	28 +1	0 +1
	paths=p	8 +1	0 +1
	urban=u	7 +1	13 +1
	woods=d	8 +1	0 +1

Implementation Detail

$$P(c \mid x_1, \dots, x_m) \propto P(c) \cdot \prod_{j=1}^m P(x_j \mid c)$$

- High number of attributes and attribute values:
 - Many multiplications
 - Very small values
- Use logarithm:

Risk of issues with accurate representation

$$\log P(c \mid x_1, \dots, x_m) \propto \log \left(P(c) \cdot \prod_{j=1}^m P(x_j \mid c) \right)$$

$$= \log(P(c)) + \sum_{j=1}^m \log(P(x_j \mid c))$$

Naive Bayes for Text Classification

Intermezzo:
Continuous
Probabilistic
Reasoning

Numeric values

- Single observations are too specific
 - P(Height = 83 cm) ?
 - P(Height = 83.81 cm) ?

W Bernhardiner: Größe, Gewicht, Farben

Weibchen: Zwischen 65 und 80 cm Männchen: Zwischen 70 und 90 cm Bernhardiner: Gewicht Weibchen: Zwischen 50 und 75 kg

Männchen: Zwischen 55 und 90 kg

Fellfarbe

Größe

Ossalan	and to be to	In a ballet
Gender	weight	neignt
F	52,33	66,40
F	64,39	73,64
F	51,07	65,64
F	66,27	74,76
F	69,68	76,81
F	51,03	65,62
F	63,48	73,09
M	79,17	83,81
M	62,40	74,23
M	62,94	74,54
M	67,22	76,98
M	59,27	72,44
M	59,04	72,31
M	62,81	74,46
M	56,14	70,65
M	78,44	83,40
M	74,27	81,01
M	69,61	78,35

Distributions over continuous domains

- Let X be a continuous random variable
- The probability density function (pdf) $p(x) \in [0, \infty)$ defines the probability

$$P(a \le x \le b) = \int_a^b p(x) dx \in [0, 1]$$

The cumulative probability distribution

$$F(y) = P(x \le y) = \int_{-\infty}^{y} p(x) dx \in [0, 1]$$

is the cumulative integral with $\lim_{y\to\infty} F(y) = 1$

Uniform continuous distribution over [0, 1]

• e.g. Python

random. random()

Return the next random floating point number in the range [0.0, 1.0).

random.uniform(a, b)

Return a random floating point number N such that $a \le N \le b$ for $a \le b$ and $b \le N \le a$.

The end-point value b may or may not be included in the range depending on floating-point rounding in the equation a + (b-a) * random().

Numeric values

- Single observations are too specific
 - P(Height = 83 cm) ?
 - P(Height = 83.81 cm) ?

W Bernhardiner: Größe, Gewicht, Farben

Weibchen: Zwischen 65 und 80 cm Männchen: Zwischen 70 und 90 cm

Bernhardiner: Gewicht

Weibchen: Zwischen 50 und 75 kg Männchen: Zwischen 55 und 90 kg

Fellfarbe

Größe

Felltyp 🔞

Gender	weight	height
F	52,33	66,40
F	64,39	73,64
F	51,07	65,64
F	66,27	74,76
F	69,68	76,81
F	51,03	65,62
F	63,48	73,09
M	79,17	83,81
M	62,40	74,23
M	62,94	74,54
M	67,22	76,98
M	59,27	72,44
M	59,04	72,31
M	62,81	74,46
M	56,14	70,65
M	78,44	83,40
M	74,27	81,01
M	69,61	78,35

1-dim Gaussian distribution (also "Normal distribution")

1-dimensional:

$$\mathcal{N}(x|\mu,\sigma^2) = p(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- mean μ
- variance σ^2
- standard deviation σ
- "standard normal", iff $\mu = 0, \sigma = 1$

n-dim Gaussian distribution (also "Normal distribution")

n-dim Gaussian in normal form:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \frac{1}{\sqrt{(2\pi)^n \mid \boldsymbol{\Sigma} \mid}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

with mean μ and covariance matrix Σ

Numeric Values

Numeric values

- Single observations are too specific
 - P(Height = 83 cm) ?
 - P(Height = 83.81 cm) ?
- Assumption:
 - Attribute values follow a normal distribution (in each class).

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Maximum-likelihood estimate of parameters:

$$\mu_i = \frac{1}{n} \sum_{o} x_i$$

$$var_i = \frac{1}{n-1} \sum_{o} (x_i - \mu_i)^2$$

$$\sigma_i = \sqrt{var_i}$$

Gender	weight	height
F	52,33	66,40
F	64,39	73,64
F	51,07	65,64
F	66,27	74,76
F	69,68	76,81
F	51,03	65,62
F	63,48	73,09
M	79,17	83,81
M	62,40	74,23
M	62,94	74,54
M	67,22	76,98
M	59,27	72,44
M	59,04	72,31
M	62,81	74,46
M	56,14	70,65
M	78,44	83,40
M	74,27	81,01
M	69,61	78,35

Modelling Distribution for Numeric Data

Learning the parameters for height

Modelling Distribution for Numeric Data

Learning the parameters for weight

Making Use of the Distributions

- Still:
 - $P(\text{weight} = 67 \mid c = f) = 0$

$$P(x_i < t) = \int_{-\infty}^{t} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

- Solution:
 - Assume a weight "around" the actual value.
 - $P(\text{weight} = 67 \pm \epsilon \mid c = f)$
- Implementation:
 - Use value of density function

Example

- New data point:
 - Weight: 67, Height: 155
- Parameters
 - Weight:

•
$$\mu_{wF} = 65.57$$

$$\sigma_{wF} = 2.22$$

•
$$\mu_{wM} = 71.57$$

$$\sigma_{wM} = 2.02$$

Height:

•
$$\mu_{hF} = 123.29$$

$$\sigma_{hF} = 13.89$$

•
$$\mu_{hM} = 161.64$$

$$\sigma_{hM} = 10.90$$

Priors:

$$P(\text{female}) = \frac{7}{18}$$
$$P(\text{male}) = \frac{11}{18}$$

$$P(\text{male}) = \frac{11}{18}$$

Do the priors make sense?

Gender	weight	height
F	66	124
F	66	115
F	64	121
F	69	139
F	62	98
F	67	135
F	65	131
M	74	170
M	68	166
M	70	155
M	72	167
M	71	158
M	72	175
M	69	143
M	72	163
M	75	160
M	70	145
M	71	176

Example

Class "Female":

- $P(\text{height} = 155 \mid c = f) = 0.0021$
- $P(\text{weight} = 67 \mid c = f) = 0.1459$
- With prior:
 - P(f | o) = 0.00012
- Without prior:
 - P(f | o) = 0.00031
- Class "Male":
 - $P(\text{height} = 155 \mid c = \text{m}) = 0.0304$
 - $P(\text{weight} = 67 \mid c = \text{m}) = 0.0223$
 - With prior:
 - $P(m \mid o) = 0.00041$
 - Without prior:
 - $P(m \mid o) = 0.00068$

Conclusion: `Graphical Models'

- You have now seen the first, specific `graphical model´: probabilistic reasoning with Naive Bayes
- `graphical models' are probabilistic models with multiple random variables and dependencies
- `graphical models´ are a general framework for modelling problems:
 - regression and classification, decision making
 - unsupervised learning
 - reinforcement learning
 - language modeling

Probabilistic Machine Learning – Lecture in winter terms

Current research at Analytic Computing: Predicting functions with Bayesian methods

Diagrams by Tim Schneider

(a) Prior Distribution

(b) Posterior Distribution

(c) Baseline Solutions

$$s = s_T \sum_{i=1}^{n} f_i \prod_{j=1}^{m_i} \left(\frac{q_{ij} c^{\alpha_{ij}}}{1 + p_{ij} c^{\beta_{ij}}} \right)^{\gamma_{ij}},$$

Thank you!

Steffen Staab

E-Mail Steffen.staab@ipvs.uni-stuttgart.de
Telefon +49 (0) 711 685-To be defined
www.ipvs.uni-stuttgart.de/departments/ac/

Universität Stuttgart Analytic Computing, IPVS Universitätsstraße 32, 50569 Stuttgart