量子カオスとしての Sachdev-Ye-Kitaev 模型とブラックホール

2018年12月26日

目次

1	はじめに: SYK 模型とは	1
2.1	2 点関数 シュウィンガー・ダイソン方程式	
2.2 2.3 2.4	共形不変性	4
3.1 3.2	4 点関数 K_c の対角化 \dots	
4	量子カオスとしての SYK 模型	19
5	量子カオスとしてのブラックホール	20
6	終わりに	21
付録 A	有効作用の計算	22
付録 B	係数 b の計算	25
付録 C	AdS/CFT 対応及びブラックホール熱力学	26
	量子カオス はじめに: カオスとは何か	27 27

1 はじめに: SYK 模型とは

Sachdev-Ye-Kitaev(SYK) 模型とは、Kitaev が AdS/CFT 対応の簡単な模型として提唱したものであり、 そのハミルトニアンは次のように与えられる:

$$H = \frac{1}{4!} \sum_{i,k,l=1}^{N} J_{ijkl} \psi_i \psi_j \psi_k \psi_l.$$
 (1)

ここで J_{ijkl} は乱数で与えられる反対称テンソルであり、その分布は

$$P(J_{ijkl}) = \sqrt{\frac{N^3}{12\pi J^2}} \exp\left(-\frac{N^3}{12J^2}J_{ijkl}^2\right).$$
 (2)

に従う。SYK 模型において次元を持つパラメータのひとつは (2) 式の J であり、[J]=1 である。(1) 式の大きさはこの J によって決まる。

SYK 模型を調べるモチベーションは複数あり、大別して以下の3つに分けることができる:

強結合領域で可解な模型である. ラージ N 極限を取るとリーディングオーダーでのファインマンダイアグラムが単純なものとなり、その和を取ることによって強結合領域での相関関数が計算可能である。

最大にカオスである。カオスはリャプノフ指数によって計られ、その最大値はアインシュタイン重力におけるブラックホールが持ち、 $2\pi/\beta$ となる [5]。強結合領域における SYK 模型もこの最大値を満たす事が知られている [1]。

共形不変性が現れる. 低エネルギーでは2点関数が共形不変性を持つ。

大抵の場合、理論を解析する際には摂動論が適用できる範囲でしか計算する事ができないが、SYK 模型では一つ目の性質により強結合領域でも計算する事が可能であり、大きなモチベーションの一つとなっている。一つ目と二つ目を組み合わせると非常に興味深い。古典論では「可解である」という事と可積分系である事は等しく、従ってカオスとは相容れない [3]。これが量子論では必ずしもそうではない事を SYK 模型は示している。また二つ目と三つ目の性質により、何らかの形におけるアインシュタイン重力理論が AdS/CFT 対応での双対理論として期待される。

2 節では SYK 模型のラージ N 極限における構造を調べる。SYK 模型はある確率分布に従う乱数 J_{ijkl} を持つ。2 節の諸々の結果は J_{ijkl} に対して平均操作を施したものである。この結果、 2 つの bi-local 場 $G(t_1,t_2)$ と $\Sigma(t_1,t_2)$ が現れる。分配関数においてフェルミオンを積分して取り払うと、これらの bi-local 場について の作用を得る事ができ、G や Σ について変分を取ればそれらに関する運動方程式 (シュウィンガー・ダイソン 方程式) を得る。G の古典解はフェルミオンの 2 点関数に等しい。シュウィンガー・ダイソン方程式は一般の エネルギースケールにおける解析解は知られておらず、数値的な計算がメインである。また低エネルギー極限 では共形対称性を持ち、解析的な解の具体型も存在する。解析解が知られているケースはこの場合以外にも、相互作用するフェルミオンの数 G についてラージ極限を取った場合や、G を用いる事で自由エネルギーやエントロピーを G で展開した表式で得る事ができる。これらの諸々の熱力学的量は後の量子カオスにおける性質を述べる上で重要な役割を持つ。

2 2 点関数

2.1 シュウィンガー・ダイソン方程式

図 1 ラージ N 極限において 2 点関数に寄与する最初の補正ダイアグラム. 特に q=4 の場合について描画している. 灰色の丸と黒い丸はそれぞれ完全な 2 点関数および 1 粒子相互作用を表している.

SYK 模型の作用は

$$I = \int dt \left(\frac{1}{2} \sum_{i=1}^{N} \psi_i \frac{d}{dt} \psi_i - \frac{1}{4!} \sum_{i,j,k,l=1}^{N} J_{ijkl} \psi_i \psi_j \psi_k \psi_l \right)$$
 (3)

である。これを J_{ijkl} について期待値を取り、その後フェルミオンを積分するために 2 つの bi-local 場 $G(t_1,t_2)$ 、 $\Sigma(t_1,t_2)$ を導入すると

$$\frac{I_{eff}}{N} = -\frac{1}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) + \frac{1}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4}G^4\right) \tag{4}$$

を得る *1 。(4)式の停留点が次式のシュウィンガー・ダイソン方程式を与える:

$$G(\omega)^{-1} = -i\omega - \Sigma(\omega), \qquad \qquad \Sigma(t) = J^2 G(t)^3 \tag{5}$$

なお、SYK 模型では 4 つのフェルミオンが相互作用するとしているが、その数を q として一般化しても有効作用やシュウィンガー・ダイソン方程式は計算する事ができ、それぞれ

$$\frac{I_{eff}}{N} = -\frac{1}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) + \frac{1}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{q}G^q\right)$$
 (6)

^{*1} 詳しい計算は付録 A を参照すること.

$$G(\omega)^{-1} = -i\omega - \Sigma(\omega), \qquad \Sigma(t) = J^2 G(t)^{q-1} \tag{7}$$

である。さらに複数の q について相互作用項を足し合わせたような一般化した SYK 模型も調べられており、 [4] にて詳しく論じられている。

ラージ N 極限を施した SYK 模型において、リーディングオーダーで 2 点関数に寄与するファインマンダイアグラムは「メロンダイアグラム」と呼ばれている* 2 。(7) 式の一般の ω における解析的な計算は現在のところ知られていないが、数値的には可能であり、図 1 のダイアグラムのように再帰的に計算を走らせる事で 2 点関数のグラフをプロットできる。

図 2 J=10 としてプロットした 2 点関数. 横軸は時間である. 青色の線が一般の ω , 緑色の線が $\omega=0$, 赤色の線が低エネルギー極限に J^{-1} 補正を加えたものである.

図 3 J=50 としてプロットした 2 点関数. 横軸は時間である. 各色の意味は左図と同様. 低エネルギー極限はラージ J 極限でもあるので、左図と比べて各線は互いに近づく.

2.2 共形不変性

シュウィンガー・ダイソン方程式 (7) は $\omega=0$ という低エネルギー極限においては解析的な解が知られている。この時 (7) 式の一つ目の式は

$$\Sigma(\omega)G(\omega) = -1 \tag{8}$$

となり、この両辺にフーリエ変換を施す事でシュウィンガー・ダイソン方程式は

$$\int dt \ G(t_1, t) \Sigma(t, t_2) = -\delta(t_1 - t_2), \qquad \Sigma(t_1, t_2) = J^2(G(t_1, t_2))^{q-1}$$
(9)

と書き改める事ができる. これらの2つの式は次のようなパラメータ付け替え不変性を持つ:

$$G(t_1, t_2) \to (f(t_1)f(t_2))^{\Delta} G(f(t_1), f(t_2)), \qquad \Sigma(t_1, t_2) \to (f(t_1)f(t_2))^{1-\Delta} \Sigma(f(t_1), f(t_2)).$$
 (10)

ここで $\Delta = 1/q$ である。我々は解として次のような形を仮定する:

$$G_c(t) = \frac{b}{|t|^{2\Delta}} \operatorname{sgn}(t), \quad \text{or} \quad G_c(t) = b \left[\frac{\pi}{\beta \sin(\pi t/\beta)} \right]^{2\Delta} \operatorname{sgn}(t)$$
 (11)

^{*2} このメロンは watermelon の melon であってメロンではないらしい. どの辺がスイカなのかはよく分からない.

2番目の式は有限温度の場合の解であり、パラメータ t を $f(t) = \tan(\pi t/\beta)$ と変換して得る。図 2 および図 3 において G_c を緑色の線でプロットしたところ、一般の ω からは少しずれた。係数 b は

$$J^2 b^q \pi = \left(\frac{1}{2} - \Delta\right) \tan(\pi \Delta) \tag{12}$$

から決める事ができる*3。

2.3 ラージ q 極限

SYK 模型ではラージ q 極限においても (あるオーダーで) 解析解が知られている。ここでは 1/q オーダーおよび $1/q^2$ オーダーまでの解を述べる。

2.3.1 リーディングオーダー

まず最初に 1/q オーダーでの解を考える (q は偶数とする):

$$G(t) = \frac{1}{2}\operatorname{sgn}(t)\left(1 + \frac{1}{q}g(t)\right), \qquad \quad \Sigma(t) = J^2 2^{1-q}\operatorname{sgn}(t)e^{g(t)}. \tag{13}$$

一方でG(t)をフーリエ変換したものは

$$\frac{1}{G(\omega)} = \frac{1}{-\frac{1}{i\omega} + \frac{[\operatorname{sgn} \times g](\omega)}{2q}} = -i\omega + \omega^2 \frac{[\operatorname{sgn} \times g](\omega)}{2q} = -i\omega - \Sigma(\omega)$$
(14)

で与えられる。ここで $[\operatorname{sgn} \times g](\omega)$ は $\operatorname{sgn}(t)g(t)$ の積のフーリエ変換を表す。また 2 番目の等号は 1/q で展開した。 3 番目の等号より

$$\Sigma(\omega) = -\omega^2 \frac{[\operatorname{sgn} \times g](\omega)}{2q} \tag{15}$$

を得るので、これを更にフーリエ変換したものと (13) 式の $\Sigma(t)$ を比べると次のような微分方程式を得る:

$$\partial_t^2(\operatorname{sgn}(t)g(t)) = 2\mathcal{J}^2\operatorname{sgn}(t)e^{g(t)}, \qquad \mathcal{J} \equiv \sqrt{q}\frac{J}{2^{\frac{q-1}{2}}}.$$
 (16)

 $q \to \infty$ の極限で $\mathcal J$ は固定されているものとする。この微分方程式の一般解は次のような形をしている事が知られている:

$$e^{g(t)} = \frac{c^2}{\mathcal{J}^2} \frac{1}{\sin^2(c|t| + t_0)}.$$
 (17)

我々が興味ある解は、g(0)=0 かつ $g(\beta)=0$ を満たすものである。なぜなら J は質量次元が 1 であり、したがって (16) 式が有効となるようなスケールの t が常に存在する。特に t=0 は J のスケールで言い換えれば UV 領域なので、理論は相互作用なしの場合のものになるからである。これを考慮すると、

$$e^{g(t)} = \left[\frac{\cos\frac{\pi v}{2}}{\cos\left(\pi v(\frac{1}{2} - \frac{|t|}{\beta})\right)}\right]^2, \qquad \beta \mathcal{J} = \frac{\pi v}{\cos\frac{\pi v}{2}}$$
(18)

を得る。2つ目の式によってパラメータ $v \in [0,1]$ を決定する。

^{*3} 詳しくは付録 B を参照.

2.3.2 サブリーディングオーダー*4

次に我々は $1/q^2$ のオーダーを計算する (q は偶数とする):

$$G(t) = \frac{1}{2} \operatorname{sgn}(t) \left(1 + \frac{1}{q} g(t) + \frac{1}{q^2} h(t) \right). \tag{19}$$

自己エネルギー $\Sigma(t)$ は(9)式より

$$\Sigma(t) = \frac{\mathcal{J}^2}{q} \operatorname{sgn}(t) e^g \left(1 + \frac{1}{q} \left(h - g - \frac{1}{2} g^2 \right) \right)$$
 (20)

となる。以下では $t\in[0,\beta]$ とする (従って $\mathrm{sgn}(t)=1$ である)。 $G(\omega)^{-1}$ を (19) 式を用いて $1/q^2$ まで展開すると

$$G(\omega)^{-1} = -i\omega + \frac{1}{2q}\omega^2 g(\omega) + \frac{\omega^2}{2q^2} \left(h(\omega) + \frac{i\omega}{2} [g \times g](\omega) \right) = -i\omega - \Sigma(\omega)$$
 (21)

となるので、フーリエ変換された自己エネルギーとして

$$\Sigma(\omega) = -\frac{1}{2q}\omega^2 g(\omega) - \frac{\omega^2}{2q^2} \left(h(\omega) + \frac{i\omega}{2} [g \times g](\omega) \right)$$
 (22)

を得る。これを ω からtへ逆変換したものと(20)を比べれば、(16)式及びh(t)に関する微分方程式を得る:

$$\partial_t^2 h = 2\mathcal{J}^2 e^g h + \frac{1}{2} \partial_t^3 [g \times g] - 2\mathcal{J}^2 e^g \left(g + \frac{1}{2} g^2 \right). \tag{23}$$

リーディングオーダーの場合と同様に g と h は次の境界条件を満たすとする:

$$g(0) = g(\beta) = h(0) = h(\beta) = 0.$$
(24)

この時 g(t) は (18) 式で与えられる。また (23) 式の解は次式で与えられる:

$$h(x) = \frac{1}{2}g^{2}(x) - 2L(x) - 4\left(\tan x \int_{0}^{x} dy \ L(y) + 1\right) + 4\frac{1 + x \tan x}{1 + \frac{\pi v}{2} \tan \frac{\pi v}{2}} \left(\tan \frac{\pi v}{2} \int_{0}^{\frac{\pi v}{2}} dy \ L(y) + 1\right).$$
 (25)

ここで $x = \frac{\pi v}{2} - \frac{\pi v}{\beta}t$ 、また

$$L(x) = g(x) - e^{-g(x)} \operatorname{Li}_2(1 - e^{g(x)}) \qquad \left(\operatorname{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2} \right)$$
 (26)

である*5。

^{*&}lt;sup>4</sup> この節の内容は [10] による.

 $^{^{*5}}$ Li₂(z) は http://mathworld.wolfram.com/Dilogarithm.html を参照した。

2.4 自由エネルギー及びエントロピー

自由エネルギーは(6)式より

$$-\frac{\beta F}{N} = \frac{1}{2} \log \det \left(\frac{d}{dt} - \Sigma \right) - \frac{1}{2} \int_0^\beta dt_1 dt_2 \left(\Sigma(t_{12}) G(t_{12}) - \frac{J^2}{g} G(t_{12})^q \right)$$
 (27)

で与えられる。ここで $t_{ij}\equiv t_i-t_j$ とした。右辺の第一項目の計算を避けるためには自由エネルギーを $J\partial_J$ で微分すると良い*6:

$$J\frac{\partial}{\partial J}\left(-\frac{\beta F}{N}\right) = \frac{J^2\beta}{q} \int_0^\beta dt \ G(t)^q = -\frac{\beta}{q} \frac{\partial G}{\partial t}(t \to 0^+). \tag{28}$$

ここで2つ目の等号では(7)式の2つ目の式を用いた。(19)式を代入すると

$$-\frac{\beta}{q}\frac{\partial G}{\partial t}(t\to 0^+) = \frac{\pi v}{2q} \left(\frac{1}{q}\frac{\partial g}{\partial x} \left(x \to \frac{\pi v}{2} \right) + \frac{1}{q^2}\frac{\partial h}{\partial x} \left(x \to \frac{\pi v}{2} \right) \right)$$
(29)

となり、更に (18) 式と (25) 式を代入して計算を進めると

$$\frac{\partial g}{\partial x}\left(x \to \frac{\pi v}{2}\right) = 2\tan\frac{\pi v}{2} \tag{30}$$

及び

$$\frac{\partial h}{\partial x}\left(x \to \frac{\pi v}{2}\right) = \frac{4}{1 + \frac{\pi v}{2}\tan\frac{\pi v}{2}} \left(\frac{\pi v}{2} - \tan\frac{\pi v}{2}\left(1 + \frac{\pi v}{2}\tan\frac{\pi v}{2}\right) - \int_0^{\frac{\pi v}{2}} dy \ L(y)\right) \tag{31}$$

を得る。上式の L(y) に対する積分は具体的に実行する事ができ、

$$\int_0^{\frac{\pi v}{2}} dy \ L(y) = -\frac{\pi^2 v^2 (\pi v + 3\sin \pi v)}{24\cos^2 \frac{\pi v}{2}}$$
 (32)

で与えられる [10]。この積分結果及び

$$J\frac{\partial}{\partial J} = \frac{v}{1 + \frac{\pi v}{2} \tan \frac{\pi v}{2}} \frac{\partial}{\partial v}$$
 (33)

を用いて (28) 式を積分すると自由エネルギーをラージq で展開した式を求める事ができる:

$$-\frac{\beta F}{N} = \frac{1}{2}\log 2 + \frac{1}{q^2}F_{1/q^2} + \frac{1}{q^3}F_{1/q^3} + \cdots,$$
 (34)

$$F_{1/q^2}(v) = \pi v \left(\tan \frac{\pi v}{2} - \frac{\pi v}{4} \right), \tag{35}$$

$$F_{1/q^3}(v) = \pi v \left(\pi v - 2 \tan \frac{\pi v}{2} \left(1 - \frac{\pi^2 v^2}{12} \right) \right). \tag{36}$$

パラメータvは相互作用の大きさ $\beta \mathcal{J}$ で展開すると

$$v = 1 - \frac{2}{\beta \mathcal{J}} + \frac{4}{(\beta \mathcal{J})^2} - \frac{24 + \pi^2}{3(\beta \mathcal{J})^2} + \cdots$$
 (37)

 $^{^{*6}}$ G と Σ が運動方程式に従っているため、 ∂_J はあらわに J に依存している項のみに作用する。

となる。これを用いて自由エネルギーを強結合領域で展開すると

$$-\frac{\beta F}{N} = \beta \mathcal{J} \left(\frac{1}{q^2} - \frac{12 - \pi^2}{6q^3} \right) + \left(\frac{1}{2} \log 2 - \frac{\pi^2}{4q^2} + \frac{\pi^2}{3q^3} \right) + \frac{1}{\beta \mathcal{J}} \left(\frac{\pi^2}{2q^2} - \frac{\pi^2(\pi^2 + 12)}{12q^3} \right) \cdots$$
(38)

となる。右辺の一行目は基底状態のエネルギー、二行目の 1 つめの括弧は零温度エントロピー、 2 つ目はその補正項である。零温度エントロピーは次式をラージ q で展開したものと一致する [1]:

$$\frac{S_0}{N} = \frac{1}{2}\log 2 - \int_0^{1/q} dx \,\left(\frac{1}{2} - x\right) \tan \pi x. \tag{39}$$

3 4 点関数

この節では強結合領域 $\beta J\gg 1$ における 4 点関数を論じる。disorder-average を取る事によって最も一般的な 4 点関数は

$$\langle \psi_i(t_1)\psi_i(t_2)\psi_i(t_3)\psi_i(t_4)\rangle \tag{40}$$

という形に制限される。これをiとjについて平均を取ったものを考える:

$$\frac{1}{N^2} \sum_{i,j=1}^{N} \langle T\psi_i(t_1)\psi_i(t_2)\psi_j(t_3)\psi_j(t_4)\rangle = G(t_{12})G(t_{34}) + \frac{1}{N}\mathcal{F}(t_1,\dots,t_4). \tag{41}$$

以下ではFについて解析する。

$$t_1 = t_3 + 1 = 0 + 1 = 0 + \cdots$$

図 4 (41) 式の 1/N の項を表すダイアグラム。特に q=4 の場合について描画した。ラダーダイアグラムと呼ぶ。

 \mathcal{F} を表すダイアグラムはラダーダイアグラムである (図 4)。n 個の輪があるものを \mathcal{F}_n とすると、計算するべきは

$$\mathcal{F} = \sum_{n} \mathcal{F}_n \tag{42}$$

である。図4の最初にある輪を持たないラダーダイアグラムは単なるプロパゲーターの積である:

$$\mathcal{F}_0(t_1, \dots, t_4) = -G(t_{13})G(t_{24}) + G(t_{14})G(t_{23}). \tag{43}$$

次に並ぶ、輪を1個だけ持つラダーダイアグラムでは、輪の端の位置について積分した形で与えられる:

$$\mathcal{F}_1(t_1,\cdots,t_4)$$

$$= J^{2}(q-1) \int dt dt' \left(G(t_{1}-t)G(t_{2}-t')G(t-t')^{q-2}G(t-t_{3})G(t'-t_{4}) - (t_{3} \leftrightarrow t_{4}) \right). \tag{44}$$

積分の前にある q-1 という因子は、どの線をレールや輪にするかのパターン数に起因する。上述した 2 つの ラダーダイアグラム \mathcal{F}_0 、 \mathcal{F}_1 に限らず、全てのラダーダイアグラムは 1/N に比例する。

あるラダーダイアグラム \mathcal{F}_n と次の \mathcal{F}_{n+1} の間には

$$\mathcal{F}_{n+1}(t_1, \dots, t_4) = \int dt dt' \ K(t_1, t_2; t, t') \mathcal{F}_n(t, t', t_3, t_4)$$
(45)

という漸化式的な関係がある。ここで積分核Kは

$$K(t_1, t_2; t_3, t_4) = -J^2(q-1)G(t_{13})G(t_{24})G(t_{34})^{q-2}$$
(46)

である。(45) 式の計算では、K の最初の 2 つの変数を 1 つめの添字、残りの 2 つを 2 つ目の添字と見なす事によって積分を行列計算としてしまうのが便利である (行列 K は 2 変数反対称関数の空間に作用する)。こうする事で全てのラダーダイアグラムの総和を

$$\mathcal{F} = \sum_{n=0}^{\infty} \mathcal{F}_n = \sum_{n=0}^{\infty} K^n \mathcal{F}_0 = \frac{1}{1 - K} \mathcal{F}_0 \tag{47}$$

という様に表す事ができる。これを更に計算するために、以下では K を対角化する事を考える。(46) 式による定義では K は対称行列ではないが、次のような操作により対称化する事が可能である:

$$\tilde{K}(t_1, t_2; t_3, t_4) \equiv |G(t_{12})|^{\frac{q-2}{2}} K(t_1, t_2; t_3, t_4) |G(t_{34})|^{\frac{2-q}{2}}.$$
(48)

従って K は固有関数 (固有ベクトル) の完全系を持つとして良い。

3.1 K_c の対角化

ここまでの話は一般の βJ について成り立つ。解析を進めるために、以下では共形対称性の成り立つ極限 $\beta J\gg 1$ で考える。よって 2 点関数は (11) 式の $G_c(t)$ で与えられる。(11) 式を (46) 式に代入すると、K の共形不変なものとして

$$K_c(t_1, t_2; t_3, t_4) = -\frac{1}{\alpha_0} \frac{\operatorname{sgn}(t_{13}) \operatorname{sgn}(t_{24})}{|t_{13}|^{2\Delta} |t_{24}|^{2\Delta} |t_{34}|^{2-4\Delta}}$$
(49)

を得る。ここで

$$\alpha_0 \equiv \frac{2\pi q}{(q-1)(q-2)\tan\frac{\pi}{q}} \tag{50}$$

である。 K_c を対角化した暁には、実は固有関数の中に固有値 $k_c(h)=1$ を持つものも存在する。従って (47) 式の級数は発散するが、これは共形極限から摂動的に少しずれる事によって対処する事ができる。それを議論するまでは、ひとまず (49) 式を用いる事にする。

 K_c の対角化では共形不変性を活用する事になる。SYK 模型は時間 1 次元しか持たないので、1 次元共形場理論 CFT_1 であり *7 、共形変換群は $SL(2,\mathbb{R})$ で与えられる [11]:

$$\hat{D} = -t\partial_t - \Delta, \qquad \hat{P} = \partial_t, \qquad \hat{K} = t^2\partial_t + 2t\Delta,$$
 (51)

$$[\hat{D}, \hat{P}] = \hat{P}, \qquad [\hat{D}, \hat{K}] = -\hat{K}, \qquad [\hat{P}, \hat{K}] = -2\hat{D}.$$
 (52)

これらの生成子は K_c と交換し、

$$(\hat{D}_1 + \hat{D}_2)K_c(t_1, t_2; t_3, t_4) = K_c(t_1, t_2; t_3, t_4)(\hat{D}_3 + \hat{D}_4)$$
(53)

となる。ただし、計算の際に現れる表面項の取扱いには注意を要する。 K_c の固有関数を Ψ_h とすると、固有値方程式は

$$\int dt_1 dt_2 \ \Psi_h(t_1, t_2) K(t_1, t_2; t_3, t_4) = k_c(h) \Psi_h(t_3, t_4)$$
(54)

^{*7 1} 次元の場の量子論は本質的に量子力学なので、Conformal Quantum Mechanics の頭文字を取って CQM と表記する事もある。

となり、(53) 式は正確に書けば

$$\int dt_1 dt_2 \left[(\hat{D}_1 + \hat{D}_2) \Psi_h(t_1, t_2) \right] K_c(t_1, t_2; t_3, t_4)
= (\hat{D}_3 + \hat{D}_4) \int dt_1 dt_2 \ \Psi_h(t_1, t_2) K_c(t_1, t_2; t_3, t_4)
= k_c(h) \left[(\hat{D}_3 + \hat{D}_4) \Psi_h(t_3, t_4) \right]$$
(55)

である。この最初の行の積分を実行する際に現れる表面項は、後に K_c の固有関数は超幾何関数 $_2F_1$ のある特定の線型結合である事が判明するが、これを用いた場合のみ消滅する。 \hat{P} や \hat{K} についても同様である。

この対称性により、まずラダーダイアグラム \mathcal{F}_n は $SL(2,\mathbb{R})$ 不変の複比 (cross ratio)

$$\chi = \frac{t_{12}t_{34}}{t_{13}t_{24}} \tag{56}$$

の関数である事が示唆される。これは F_0 が共形 4 点関数のように変換するからである。この性質は $SL(2,\mathbb{R})$ 不変の演算子を作用させても変わらない。従って $K_c(t_1,t_2;t_3,t_4)$ とする代わりに $K_c(\chi;\tilde{\chi})$ とする事ができる。2 つ目の示唆は、 K_c が次式で与えられるカシミール演算子 C_{1+2} と可換というものである:

$$C_{1+2} = (\hat{D}_1 + \hat{D}_2)^2 - \frac{1}{2}(\hat{K}_1 + \hat{K}_2)(\hat{P}_1 + \hat{P}_2) - \frac{1}{2}(\hat{P}_1 + \hat{P}_2)(\hat{K}_1 + \hat{K}_2)$$

$$= 2(\Delta^2 - \Delta) - \hat{K}_1\hat{P}_2 - \hat{P}_1\hat{K}_2 + 2\hat{D}_1\hat{D}_2.$$
(57)

スペクトラムに縮退はないため、これは K_c の固有関数が C_{1+2} のそれと同じである事を意味する。(47) 式を C_{1+2} の固有関数 $\Psi_h(\chi)$ で展開すれば、何らかの内積を用いて

$$\mathcal{F}(\chi) = \sum_{h} \Psi_h(\chi) \frac{1}{1 - k_c(h)} \frac{\langle \Psi_h, \mathcal{F}_0 \rangle}{\langle \Psi_h, \Psi_h \rangle}$$
 (58)

と変形できる。よって我々が行うべき仕事は Ψ_h と $k_c(h)$ を求め、そして内積を計算する事である。そのため に、まず χ の関数としての \mathcal{F}_n の性質を調べる事から始める。

3.1.1 $\mathcal{F}_n(\chi)$ の性質

共形極限では、ラダーダイアグラム \mathcal{F}_n は $SL(2,\mathbb{R})$ 変換のもとで次元 Δ を持つ 4 点関数として振る舞う:

$$\mathcal{F}_n(t_1, t_2; t_3, t_4) = G_c(t_{12})G_c(t_{34})\mathcal{F}_n(\chi). \tag{59}$$

 t_1 と t_2 の間、および t_3 と t_4 の間の反対称性、さらに (t_1,t_2) と (t_3,t_4) の間の対称性や $SL(2,\mathbb{R})$ 変換を駆使すると、 $t_1=0$ 、 $t_3=1$ 、 $t_4=\infty$ さらに $t_2>0$ という様に移す事ができ、 $\chi=t_2$ の値を正であるとして制限できる。(41) 式の時間順序積の存在により、 $\chi>1$ か $\chi<1$ かによって

$$\mathcal{F}_n(\chi) \approx \begin{cases} +\langle \psi_j(\infty)\psi_j(1)\psi_i(\chi)\psi_i(0)\rangle & 0 < \chi < 1\\ -\langle \psi_j(\infty)\psi_i(\chi)\psi_j(1)\psi_i(0)\rangle & 1 < \chi < \infty \end{cases}$$
 (60)

となる。

 $\chi > 1$ の領域では、ある離散的な対称性が存在する。これを見るには

$$\frac{t-2}{t} = \tan\frac{\theta}{2} \tag{61}$$

図 5 $\theta \to -\theta$ という対称性は $\chi > 1$ において $\chi \to \frac{\chi}{\chi-1}$ と対応する。

として t を円周上に写像すると良い。 $t=0,1,\infty$ はそれぞれ $\theta=-\pi,-\frac{\pi}{2},\frac{\pi}{2}$ に写される。 $t_2=\chi$ はある θ が対応する。対称性 $\theta\to-\theta$ によって $\chi\to\frac{\chi}{\chi-1}$ となる。

これは $\chi>1$ では $F(\chi)=F(\frac{\chi}{\chi-1})$ が成り立つ事を意味する。この変換は $1<\chi<2$ の区間を $2<\chi<\infty$ へと写す事に注意すると、 $F(\chi)$ を決定するには $0<\chi<2$ という区間で十分である事に気付く。また $\chi=2$ は固定点なので、F の一階微分の $\chi=2$ における値は 0 であるという条件もつく。

 \mathcal{F}_{n+1} と \mathcal{F}_n の間の関係式 (45) 式を χ を用いて書き直すと

$$\mathcal{F}_{n+1}(\chi) = \int_0^2 \frac{d\tilde{\chi}}{\tilde{\chi}^2} K_c(\chi; \tilde{\chi}) \mathcal{F}_n(\chi)$$
 (62)

となる。 $K_c(\chi; \tilde{\chi})$ は次式で与えられる:

$$K_c(\chi; \tilde{\chi}) = \frac{1}{\alpha_0} \left[\frac{\chi^{2\Delta} \tilde{\chi}^{2\Delta}}{|\chi - \tilde{\chi}|^{2\Delta}} m(\chi, \tilde{\chi}) + \operatorname{sgn}(\tilde{\chi} - 1) \frac{\chi^{2\Delta} \tilde{\chi}^{2\Delta}}{|\chi + \tilde{\chi} - \chi \tilde{\chi}|^{2\Delta}} m\left(\chi, \frac{\tilde{\chi}}{\tilde{\chi} - 1}\right) \right]. \tag{63}$$

ここで $m(\chi, \tilde{\chi})$ は次のような超幾何関数 $_2F_1$ で与えられる χ と $\tilde{\chi}$ に関して対称な関数である:

$$z \equiv \frac{1 - \min(\chi, \tilde{\chi})}{|\chi - \tilde{\chi}|}, \qquad B_h(x) = \frac{\Gamma(h)^2}{\Gamma(2h)} x^h \,_2 F_1(h, h, 2h, x) \tag{64}$$

という2つの記号を導入して、

$$m(\chi, \tilde{\chi}) = \frac{2\pi}{\sin 2\pi \Delta} {}_{2}F_{1}(1 - 2\Delta, 2\Delta, 1, z) - B_{2\Delta}\left(\frac{1}{1 - z}\right) - B_{1-2\Delta}\left(\frac{1}{1 - z}\right) \qquad z \le 0, \tag{65}$$

$$m(\chi, \tilde{\chi}) = -\frac{2\pi}{z^{2\Delta} \sin 2\pi \Delta} {}_{2}F_{1}\left(2\Delta, 2\Delta, 1, \frac{z-1}{z}\right) + \frac{2\pi}{\sin 2\pi \Delta} {}_{2}F_{1}(2\Delta, 1-2\Delta, 1, z) \qquad 0 \le z \le 1, \quad (66)$$

$$m(\chi, \tilde{\chi}) = -\frac{2\pi}{\sin 2\pi \Delta} {}_{2}F_{1}(2\Delta, 1 - 2\Delta, 1, 1 - z) - B_{2\Delta}\left(\frac{1}{z}\right) - B_{1-2\Delta}\left(\frac{1}{z}\right) \qquad 1 \le z$$
 (67)

である。

3.1.2 カシミール演算子 C_{1+2} の固有関数

次にカシミール演算子 C_{1+2} の固有関数を求める。(57) 式から、 C_{1+2} は

$$C_{1+2} \frac{1}{|t_{12}|^{2\Delta}} f(\chi) = \frac{1}{|t_{12}|^{2\Delta}} \mathcal{C}f(\chi), \qquad \mathcal{C} = \chi^2 (1-\chi) \partial_{\chi}^2 - \chi^2 \partial_{\chi}$$
 (68)

を満たす。 \mathcal{C} の固有値を h(h-1) とすると、固有値方程式は $\mathcal{C}f = h(h-1)f$ である。この一般解は超幾何関数 $_2F_1$ を用いて

$$\chi^{h}{}_{2}F_{1}(h, h, 2h, \chi), \qquad x^{1-h}{}_{2}F_{1}(1-h, 1-h, 2-2h, \chi)$$
 (69)

という 2 つの解の線型結合となる。それで張られる空間は f'(2)=0 となるような関数の空間である。またこの関数空間の内積は (62) 式より

$$\langle g, f \rangle = \int_0^2 \frac{d\chi}{\chi^2} g^*(\chi) f(\chi) \tag{70}$$

のように与えられる。規格化はこの内積から計算される。 C がエルミート演算子であるための条件は

$$0 = \langle g, \mathcal{C}f \rangle - \langle \mathcal{C}g, f \rangle = \int_0^2 d\chi \, \frac{d}{d\chi} \left[g^*(\chi)(1-\chi) \frac{d}{d\chi} f(\chi) - \frac{d}{d\chi} g^*(\chi)(1-\chi) f(\chi) \right] \tag{71}$$

である。 $\chi=2$ では f や g^* の一階微分が 0 になる事から表面項は消える。また $\chi=0$ においても f や g^* は $\chi^{1/2}$ よりも速く 0 となるという条件を課す事で消滅する。加えて (69) 式の固有関数は $\chi=1$ にて対数発散が存在するため、もう 1 つの条件を課す必要がある。即ち、特異点を打ち消すためには

$$f \approx A + B \log(1 - \chi)$$
 for $\chi \to 1^-$,
 $f \approx A + B \log(\chi - 1)$ for $\chi \to 1^+$

のように定数項と対数の項が1に近づくにつれ一致していなければならない。

以上を踏まえて、カシミール演算子 C_{1+2} の固有関数 $\Psi_h(\chi)$ は次のように書き下す事ができる。まず $1<\chi$ の時は

$$\Psi_h(\chi) = \frac{\Gamma\left(\frac{1}{2} - \frac{h}{2}\right)\Gamma\left(\frac{h}{2}\right)}{\sqrt{\pi}} {}_2F_1\left(\frac{h}{2}, \frac{1}{2} - \frac{h}{2}, \frac{1}{2}, \frac{(2-\chi)^2}{\chi^2}\right) \quad \text{for } 1 < \chi$$
 (72)

である。また χ < 1 の時は

$$\Psi_h(\chi) = A \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h_{2} F_1(h, h, 2h, \chi) + B \frac{\Gamma(1-h)^2}{\Gamma(2-2h)} \chi^{1-h_{2}} F_1(1-h, 1-h, 2-2h, \chi) \quad \text{for } \chi < 1$$
 (73)

である。ここでAとBは

$$A = \frac{1}{\tan \frac{\pi h}{2}} \frac{\tan \pi h}{2}, \qquad B = A(1 - h) = -\tan \frac{\pi h}{2} \frac{\tan \pi h}{2}$$
 (74)

で与えられる。 $\chi>1$ と $\chi<1$ の両方の場合において $\Psi_h=\Psi_{1-h}$ という性質を持つ。最後に $\chi\to0$ で Ψ_h は $\chi^{1/2}$ と同じかそれ以上に速く 0 に近づくという条件から、h について次の 2 つの解が存在する: 1 つ目は $h=\frac{1}{2}+is$ というものである。この時 $\Psi_h(\chi)$ は $1<\chi$ で単調関数であり、また $1>\chi$ で振動する (非常に多く振動する)。2 つ目は $h=2n,n\in\mathbb{N}$ であり、定数 B は消滅する。この解もまた $0<1<\chi$ で単調関数であり、 $1>\chi$ で振動する (0 を n 回横切る)。

3.1.3 Kcの固有値

 C_{1+2} の固有関数 Ψ_h に縮退はないため、 K_c と C_{1+2} が可換である事から Ψ_h は K_c の固有関数でもある。 原理的には (54) 式から固有値 $k_c(h)$ を計算できるが、ここではもっと単純な方法を取る。固有値 h(h-1) を 持つ C_{1+2} の固有関数は 2 つのフェルミオンの共形 3 点関数の形を持つ:

$$\frac{\operatorname{sgn}(t_{12})}{|t_{10}|^h|t_{20}|^h|t_{12}|^{2\Delta-h}}. (75)$$

これは任意の t_0 や h において K_c の固有関数である。 $SL(2,\mathbb{R})$ を用いて t_0 を動かす事が可能なため、固有値 $k_c(h)$ は h にのみ依存する。特に t_0 を無限大に持っていけば、固有値は (49) 式より

$$k_c(h) = \int dt_1 dt_2 \ K_c(1, 0; t_1, t_2) \frac{\operatorname{sgn}(t_{12})}{|t_{12}|^{2\Delta - h}} = -\frac{1}{\alpha_0} \int dt_1 dt_2 \ \frac{\operatorname{sgn}(1 - t_1) \operatorname{sgn}(-t_2) \operatorname{sgn}(t_{12})}{|1 - t_1|^{2\Delta} |t_2|^{2\Delta} |t_{12}|^{2-2\Delta - h}}$$
(76)

となる。この積分の実行には

$$\frac{\operatorname{sgn}(t)}{|t|^a} = \int \frac{\omega}{2\pi} e^{-i\omega t} c(a) |\omega|^{a-1} \operatorname{sgn}(\omega), \qquad c(a) = 2i2^{-a} \sqrt{\pi} \frac{\Gamma\left(1 - \frac{a}{2}\right)}{\Gamma\left(\frac{1}{2} + \frac{a}{2}\right)}$$
(77)

を用いると良い。結果は

$$k_c(h) = \frac{1}{\alpha_0} \frac{c(2 - 2\Delta - h)}{c(2\Delta - h)} c(2\Delta)^2$$

$$\tag{78}$$

となる。 $k_c(h)$ は全ての $h=\frac{1}{2}+is$ や h=2n で実数となる。特に連続的なスペクトラムに対しては負、離散 的なスペクトラムだと正となる。 $q=4,\infty,2$ の場合について具体的な式は

$$k_c(h) = -\frac{3}{2} \frac{\tan \frac{\pi(h-1/2)}{2}}{h - \frac{1}{2}} \qquad q = 4,$$

$$k_c(h) = \frac{2}{h(h-1)} \qquad q = \infty,$$
(80)

$$k_c(h) = \frac{2}{h(h-1)} \qquad q = \infty, \tag{80}$$

$$k_c(h) = -1 q = 2 (81)$$

となる。特に $q=4,\infty$ の時 $k_c(h=2)=1$ となり、(47) の級数が発散する。この h=2 についての正しい取 り扱いは後に議論する。

$3.1.4 \quad \langle \Psi_h, \Psi_h \rangle \succeq \langle \Psi_h, \mathcal{F}_0 \rangle$

次に (58) 式の計算に必要な 2 つの内積 $\langle \Psi_h, \Psi_h \rangle$ と $\langle \Psi_h, \mathcal{F}_0 \rangle$ を求める。連続的なスペクトラム $h=\frac{1}{2}+is$ に関しては

$$\langle \Psi_h, \Psi_h \rangle = \frac{\pi \tan \pi h}{4h - 2} 2\pi \delta(s - s') \tag{82}$$

で与えられ、また離散的なスペクトラム $h = 2n, n \in \mathbb{N}$ に関しては

$$\langle \Psi_h, \Psi_h \rangle = \frac{\delta_{hh'} \pi^2}{4h - 2} \tag{83}$$

となる。

 χ の関数としての \mathcal{F}_0 は

$$\mathcal{F}_0(\chi) = \begin{cases} -\chi^{2\Delta} + \left(\frac{\chi}{1-\chi}\right)^{2\Delta} & 0 < \chi < 1, \\ -\chi^{2\Delta} - \left(\frac{\chi}{\chi-1}\right)^{2\Delta} & 1 < \chi < \infty \end{cases}$$
(84)

で与えられる。以下では内積 $\langle \Psi_h, \mathcal{F}_0 \rangle$ の計算には連続的なスペクトラムについてのみ考える。離散的なスペクトラムの場合は h について解析接続する事で得られる。固有関数 Ψ_h は連続スペクトラムにおいて次のような積分表示を持つ:

$$\Psi_h(\chi) = \frac{1}{2} \int_{-\infty}^{\infty} dy \, \frac{|\chi|^h}{|y|^h |\chi - y|^h |1 - y|^{1 - h}}.$$
 (85)

この積分表示を用いて $\langle \Psi_h, \mathcal{F}_0 \rangle$ の積分を行う。 $\chi \to \frac{\chi}{\chi-1}$ の変換で $\Psi_h(\chi) = \Psi_h\left(\frac{\chi}{\chi-1}\right)$ であるが、 \mathcal{F}_0 はこの変換で、 $\chi > 1$ の時は対称、 $\chi < 1$ の時は反対称となる。この性質を用いると

$$\langle \Psi_h, \mathcal{F}_0 \rangle = -\frac{1}{2} \int_{-\infty}^{\infty} dy d\chi \, \frac{\operatorname{sgn}(\chi)}{|\chi|^{2-h-2\Delta} |\chi - y|^h |1 - y|^{1-h} |y|^h}$$
 (86)

を得る。この積分は、積分領域を分割し、それぞれの領域でオイラーの β 関数を用いると実行できる。便利な表式として

$$\langle \Psi_h, \mathcal{F}_0 \rangle = \frac{\alpha_0}{2} k_c(h) \tag{87}$$

というものがある。

3.1.5 全ラダーダイアグラムの総和

ここまでの議論を踏まえて、4点関数は

$$\mathcal{F}(\chi) = \sum_{h} \Psi_{h}(\chi) \frac{1}{1 - k_{c}(h)} \frac{\langle \Psi_{h}, \mathcal{F}_{0} \rangle}{\langle \Psi_{h}, \Psi_{h} \rangle}$$

$$= \alpha_{0} \int_{0}^{\infty} \frac{ds}{2\pi} \frac{2h - 1}{\pi \tan \pi h} \frac{k_{c}(h)}{1 - k_{c}(h)} \Psi_{h}(\chi) + \alpha_{0} \sum_{n=1}^{\infty} \left[\frac{2h - 1}{\pi^{2}} \frac{k_{c}(h)}{1 - k_{c}(h)} \Psi_{h}(\chi) \right]_{h=2n}$$
(88)

となる。ここで 1 つの問題が生じる: n=1 の項は $k_c(2)=1$ より発散する。これを取り扱うには共形極限から少しずれた領域に行かなければならない。ここでは、ひとまず $n\neq 2$ となる固有関数のみを扱い、その寄与を $\mathcal{F}_{h\neq 2}$ とする.この時

$$\frac{2}{\tan \pi h} = \frac{1}{\tan \frac{\pi h}{2}} - \frac{1}{\tan \frac{\pi (1-h)}{2}}$$
 (89)

という公式を使い、s の積分領域を実数全体 $-\infty \to \infty$ に広げ、被積分関数が持つ $h \to 1-h$ の下での反対称性を用いて複数ある項を 1 つに直すと

$$\frac{\mathcal{F}_{h\neq 2}}{\alpha_0} = \int_{-\infty}^{\infty} \frac{ds}{2\pi} \frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \Psi_h(\chi) + \sum_{n=2}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \Psi_h(\chi) \right]_{h=2n}. \tag{90}$$

となる。級数の項は $\frac{1}{\tan(\pi h/2)}$ の極の留数を走る総和として書いた。第 1 項目の被積分関数と第 2 項目の級数の中身が同じであるため、右辺全体を複素 h 平面のある曲線 C 上の線積分として理解できる:

$$\frac{1}{2\pi i} \int_{\mathcal{C}} dh = \int_{-\infty}^{\infty} \frac{ds}{2\pi} + \sum_{n=1}^{\infty} \operatorname{Res}_{h=2n}.$$
 (91)

ここで、 Ψ_h は h=1+2n に極を持つが、これは $1/\tan(\pi h/2)=\pm 1/\infty$ によって相殺される。従って全体では h=2n のみに極を持つ。

 Ψ_h が $\chi>1$ の場合 (72) 式と $\chi<1$ の場合 (73) 式で違うため、この 2 つのケースで場合分けして考える。まず $\chi>1$ の時、曲線 $\mathcal C$ を s 軸から無限遠へ右にずらす事ができる。これによって h=2n における極の総和はキャンセルされるが、 $k_c(h)=1$ となる $h=h_m$ における極を選ぶ事となり、

$$\mathcal{F}_{h\neq 2}(\chi) = -\alpha_0 \sum_{m=0}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \Psi_h(\chi) \right]_{h=h_m} \qquad \chi > 1$$
 (92)

を得る (図 6)。

図 6 h 平面における極。h=2n における極を点、 $k_c(h)=1$ となるような $h=h_m$ における極をバツ印で表した。 $h=2=h_0$ では極が重なるため点とバツ印を重ねている。h の連続スペクトラム h=1/2+is の直線は右へずらす事ができ、点で表した $1/\tan(\pi h/2)$ の極を相殺し、バツ印の極を選ぶ事になる。

次に $\chi<1$ の場合について考える。この場合は (73) 式の $_2F_1(1-h,1-h,2-2h,\chi)$ を大きい h>0 に持っていく事ができないため、少し回り道をする必要がある。最初に、被積分関数の中の $\tan(\pi h/2)$ を $\tan(\pi h)$ に置き換えるために、 $_2F_1$ 以外の残りの部分が持つ $h\to 1-h$ の下での反対称性を利用する。これによって $h\to 1-h$ の下で対称となる被積分関数を得る。この対称性を使って (73) 式の B を A に置き換えれば、

$$\frac{\mathcal{F}_{h\neq 2}(\chi)}{\alpha_0} = \int \frac{ds}{2\pi} \frac{h - 1/2}{\tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h {}_2F_1(h, h, 2h, \chi)
+ \sum_{n=2}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h {}_2F_1(h, h, 2h, \chi) \right]_{h=2n}$$
(93)

という式に至る。ここで留数の総和において、h が偶数の時 $\Psi_h(\chi) = \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h \ _2F_1(h,h,2h,\chi)$ となる事を用いた。この被積分関数は $\chi>1$ の場合のように右へずらす事が可能であり、選ぶべき留数が $k_c(h)=1$ となる $h=h_m$ におけるものとなり、最終的に

$$\mathcal{F}_{h\neq 2} = -\alpha_0 \sum_{m=0}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h_2 F_1(h, h, 2h, \chi) \right]_{h=h_m} \qquad \chi < 1$$
 (94)

を得る。

3.2 h=2 の場合の取り扱い

 K_c は固有値 $k_c(h)=1$ を持つため、(47) 式の級数が発散する。 $k_c(h)=1$ となるのは h=2 における $SL(2,\mathbb{R})$ のカシミール演算子 C_{1+2} の固有関数である。 4 点関数の有限な解を得るために、K を摂動的に共

形極限から δK だけずらした場所でその固有関数を扱う必要がある。摂動による補正 δK は、K を構成する 2 点関数 G の非共形極限におけるリーディングオーダーでの補正 δG から生じる。摂動パラメータは結合の 大きさの逆数 $(\beta J)^{-1}$ である。

共形極限において、零温度と有限温度での両方の解 (11) 式は t のパラメータ付け替え不変性によって互いに等しいものであったが、摂動 δK によって共形対称性が破れるため、2 つの解を等しいとする事はできない。そこで最初から有限温度で議論し、周期を β から 2π にするために角度座標 $\theta=2\pi t/\beta$ を導入する。値の範囲は $\theta\in[0,2\pi]$ である。これは $\beta=2\pi$ と設定して議論を始めようとしているとも言える。 θ は周期的ユークリッド時間である。

また K を直接論じるよりも、それを対称化した \tilde{K} の方が話を進めやすい。(48) 式で $t \to \theta$ と変数変換すると

$$\tilde{K}(\theta_1, \theta_2; \theta_3, \theta_4) = -J^2(q-1)|G(\theta_{12})|^{\frac{q-2}{2}}G(\theta_{13})G(\theta_{24})|G(\theta_{34})|^{\frac{q-2}{2}}$$
(95)

となる。またこの積分核 $ilde{K}$ の反対称な固有関数を

$$\Psi_{h,n}^{\text{exact}}(\theta_1, \theta_2) = -\Psi_{h,n}^{\text{exact}}(\theta_2, \theta_1) \tag{96}$$

と書く事にする。ここで添字 h はあるラベルであり、後に詳しく説明する。また n はフーリエ展開した際の $e^{-in(\theta_1+\theta_2)/2}$ の中の n である。 \tilde{K} は次式で与えられる内積において対称となる:

$$\langle \Psi, \Phi \rangle \equiv \int_0^{2\pi} d\theta_1 d\theta_2 \ \Psi^*(\theta_1, \theta_2) \Phi(\theta_1, \theta_2). \tag{97}$$

4 点関数の表式を得るためには、輪を持たないラダーダイアグラム \mathcal{F}_0 が反対称単位行列

$$I(\theta_1, \cdots, \theta_4) = -\delta(\theta_{13})\delta(\theta_{24}) + \delta(\theta_{14})\delta(\theta_{23}) = -2\sum_{h,n} \Psi_{h,n}^{\text{exact}}(\theta_1, \theta_2)\Psi_{h,n}^{\text{exact}*}(\theta_3, \theta_4)$$
(98)

に作用する \tilde{K} に比例するという事を用いると良い。おおよそ $\mathcal{F}=(1-\tilde{K})^{-1}\tilde{K}\cdot I$ の様に書き表す事ができ、より正確には

$$\left[(q-1)J^{2}G(\theta_{12})^{\frac{q-2}{2}}G(\theta_{34})^{\frac{q-2}{2}} \right] \mathcal{F}(\theta_{1}, \cdots, \theta_{2}) = 2 \sum_{h,n} \frac{k(h,n)}{1 - k(h,n)} \Psi_{h,n}^{\text{exact}}(\theta_{1}, \theta_{2}) \Psi_{h,n}^{\text{exact}*}(\theta_{3}, \theta_{4})$$
(99)

となる。ここで k(h,n) は固有関数 $\Psi_{h,n}^{\rm exact}(\theta_1,\theta_2)$ に対応する固有値である。適切な固有関数の完全系の下で、この 4 点関数の表式はあらゆるカップリングの大きさ βJ において正しい。

共形極限 $\beta J\gg 1$ に行くと、前節までの議論と接続できる。固有関数 $\Psi_{h,n}^{\rm exact}$ は、 $SL(2,\mathbb{R})$ に属する固有値 h(h-1) を持つカシミール演算子 C_{1+2} の固有関数 $\Psi_{h,n}$ となり、固有関数も $k(h,n)\to k_c(h)$ の様に h だけ の関数になる。また (99) 式の n を走る総和は (t を $t=\tan\frac{\theta}{2}$ によって円周上に射影した後で) $\mathcal{F}_{h\neq 2}$ の Ψ_h が 現れる表式を与える。

4 点関数の計算において h=2 からは無限大の寄与を得てしまう。これはフーリエインデックス n について走る関数族 $\Psi_{2,n}$ によって与えられる。この無限大を対処するには、共形極限から少し離れて共形対称性を破った上でリーディングオーダーでの補正を求める必要がある。特に共形極限での固有値 $k_c(h)$ への補正を計算する:

$$k(2,n) = 1 - O\left(\frac{1}{\beta J}\right). \tag{100}$$

3.2.1 Ψ_{2n} の具体型

まず最初に $\Psi_{2,n}$ の具体型を求める。このためにパラメータ付け替え不変性を活用する。共形極限におけるシュウィンガー・ダイソン方程式 (9) 式はパラメータ付け替え不変性を持つ。これによって $\theta \to \theta + \epsilon(\theta)$ という様にリパラメトライズしたとすると変化分 $\delta_\epsilon G_c$ は

$$\delta_{\epsilon}G_{c} = \left[\Delta\epsilon'(\theta_{1}) + \Delta\epsilon'(\theta_{2}) + \epsilon(\theta_{1})\frac{\partial}{\partial\theta_{1}} + \epsilon(\theta_{2})\frac{\partial}{\partial\theta_{2}}\right]G_{c}$$
(101)

となり、 $G_c + \delta_{\epsilon}G_c$ もまた (9) 式の解となる。(9) 式の最初の式から

$$\delta_{\epsilon}G_c * \Sigma_c + G_c * \delta_{\epsilon}\Sigma_c = 0 \qquad \therefore \quad 0 = \delta_{\epsilon}G_c + G_c * [(q-1)J^2G_c^{q-2}\delta_{\epsilon}G_c] * G_c = (1-K_c)\delta_{\epsilon}G_c \qquad (102)$$

を得る。ここで積*は

$$(F * G)(t_1, t_2) \equiv \int dt \ F(t_1, t)G(t, t_2)$$
 (103)

を表す。つまり変化分 $\delta_\epsilon G_c$ は $1-K_c$ を作用させる事により消滅する。書き換えれば $K_c\delta_\epsilon G_c=\delta_\epsilon G_c$ という固有値方程式になるため、 $\delta_\epsilon G_c$ は固有値 1 を持つ K_c の固有関数である。 \tilde{K}_c において対応する固有関数は $|G_c|^{\frac{q-2}{2}}\delta_\epsilon G_c$ である。

便利な基底を選ぶには $\epsilon \approx e^{-in\theta}$ とすると良い。(11) 式の有限温度の G_c を (101) 式に代入し、 $|G_c|^{\frac{q-2}{2}}\delta_\epsilon G_c$ を計算し、最後に内積 (97) 式を用いて規格化すると、 \tilde{K}_c の固有値 1 の固有関数として

$$\Psi_{2,n} = \gamma_n \frac{e^{-iny}}{2\sin\frac{x}{2}} f_n(x), \qquad f_n(x) = \frac{\sin\frac{nx}{2}}{\tan\frac{x}{2}} - n\cos\frac{nx}{2}, \tag{104}$$

$$x = \theta_1 - \theta_2, \qquad y = \frac{\theta_1 + \theta_2}{2}, \qquad \gamma_n^2 = \frac{3}{\pi^2 |n|(n^2 - 1)}$$
 (105)

を得る。 $\Psi_{2,n}$ はカシミール演算子 C_{1+2} の h=2 の固有関数でもある。また n=-1,0,1 の場合、 G_c の $SL(2,\mathbb{R})$ 共変性により変化分 $\delta_\epsilon G_c$ は消滅する。従って $|n|\geq 2$ の場合のみ考えれば良い。 $n\geq 2$ に対して、 $\Psi_{2,n=2}$ に $\hat{P}_1+\hat{P}_2$ を作用させる事により全ての $\Psi_{2,n}$ を得る事ができ、従って $SL(2,\mathbb{R})$ のある表現を構成する。n<-2 の場合も同様である。

3.2.2 固有値への補正

ここでは h=2 の固有値 k(2,n) の共形極限での値 $k_c(h=2)=1$ に対する $(\beta J)^{-1}$ 補正を、相互作用する フェルミオンの数 q のラージ極限において計算する。伝搬関数は (13) 式、また $g(\theta)$ は (18) 式より与えられる。 ラダーダイアグラムの梯子のレールの部分の伝搬関数は

$$G(\theta) = \frac{1}{2} \operatorname{sgn}(\theta), \tag{106}$$

また輪の部分は (qを偶数として)

$$G(\theta)^{q-2} = \frac{1}{2^{q-2}} \left(1 + \frac{g(\theta)}{q} \right)^{q-2} \to \frac{1}{2^{q-2}} e^{g(\theta)} \quad \text{for } q \to \text{large}$$
 (107)

となる。これらを用いると固有値方程式 $\tilde{K}\Psi=k\Psi$ は

$$-J^{2}q \int d\theta_{1} d\theta_{2} \frac{\operatorname{sgn}(\theta_{13})}{2} \frac{\operatorname{sgn}(\theta_{24})}{2} \frac{e^{(g(\theta_{12}) + g(\theta_{34}))/2}}{2^{q-2}} \Psi(\theta_{1}, \theta_{2}) = k\Psi(\theta_{3}, \theta_{4})$$
(108)

と表される。この固有値方程式の両辺に $\partial_{\theta_3}\partial_{\theta_4}e^{g(\theta_{34})/2}$ を作用させ、 $\partial_x \mathrm{sgn}(x)=2\delta(x)$ を用いる積分を解消して微分方程式に直す事ができる。(18) 式の e^g を代入し、固有値を k=2/h(h-1) のようにパラメトライズし、フーリエ変換した上で解くと

$$\Psi(\theta_1, \theta_2) = \frac{e^{-iny}}{\sin\frac{\tilde{x}}{2}} \psi_n(x), \qquad \tilde{x} = vx + (1 - v)\pi, \tag{109}$$

$$\left(n^2 + 4\frac{\partial^2}{\partial x^2} - \frac{h(h-1)v^2}{\sin^2\frac{\tilde{x}}{2}}\right)\psi_n(x) = 0$$
(110)

という解を得る。ここで v は (18) 式の 2 つ目の式によって定義される。x と y は (105) 式で与えられる。 v=1 の時は $\beta\mathcal{J}\to\infty$ であり、(110) 式は共形変換群 $SL(2,\mathbb{R})$ のカシミール演算子 C_{1+2} の固有関数を与える方程式となる。ここで \mathcal{J} は (16) 式の 2 つ目の式で与えられる、ラージ q で一定となるようにリスケールされた相互作用の大きさである。しかし (110) 式は任意の $\beta\mathcal{J}$ に対してラージ q の固有関数を与える。

探したいものは然るべき対称性を備えた固有関数である。4 点関数は θ_1, θ_2 の 2 変数関数として

$$F(\theta_1, \theta_2) = -F(\theta_2, \theta_1), \qquad F(\theta_1 + 2\pi, \theta_2) = -F(\theta_1, \theta_2), \qquad F(\theta_1, \theta_2 + 2\pi) = -F(\theta_1, \theta_2) \tag{111}$$

という性質を持つ。最初の2つの性質は1つにまとめる事ができ、それをxとyを使って表すと

$$F(x,y) = F(2\pi - x, y + \pi)$$
(112)

というものになる。また (111) 式の最初の性質より x>0 と制限できる。さらに (109) 式の e^{-iny} の存在により、 $\psi_n(x)$ は $x=\pi$ で、n が偶数の時は対称、奇数の時は反対称となる必要がある。以上を踏まえると $\psi_{h,n}$ は、 $\tilde{n}=n/v$ として、

$$\psi_{h,n}(x) \approx \left(\sin\frac{\tilde{x}}{2}\right)^h {}_2F_1\left(\frac{h-\tilde{n}}{2}, \frac{h+\tilde{n}}{2}, \frac{1}{2}, \cos^2\frac{\tilde{x}}{2}\right)$$
 (n even)

$$\approx \cos\frac{\tilde{x}}{2} \left(\sin\frac{\tilde{x}}{2} \right)^h {}_2F_1 \left(\frac{1+h-\tilde{n}}{2}, \frac{1+h+\tilde{n}}{2}, \frac{3}{2}, \cos^2\frac{\tilde{x}}{2} \right) \tag{n odd}$$

となる。 ψ は x=0 で消滅するという境界条件によって h の量子化条件が決まる。

1	量子力	オ フレ	1 アの	CVIZ	描刊
4	里十八	ハスと	1, (())	r	体力

この節では SYK 模型の量子カオスの性質を述べる*8。

^{*8} この節の内容は [7] 及び [8] による。

5 量子カオスとしてのブラックホール

この節では主に SYK 模型の重力双対である Jackiw–Teitelboim ブラックホールの量子カオスの性質を述べる *9 。

^{*9} この節の内容は [7] 及び [8] による。

6 終わりに

付録 A 有効作用の計算

SYK 模型のラグランジアンは

$$L = \frac{1}{2} \sum_{i=1}^{N} \psi_i \frac{d}{dt} \psi_i - \frac{1}{4!} \sum_{i,j,k,l=1}^{N} J_{ijkl} \psi_i \psi_j \psi_k \psi_l$$
 (115)

で与えられる。SYK 模型ではしばしば有限温度を考慮するため、分配関数はユークリッド化したものを計算する:

$$Z = \int \mathcal{D}\psi \, \exp\left(-\int dt \, L\right). \tag{116}$$

以下では (116) 式を乱数 J_{ijkl} について平均を取るという disorder-average の計算を行い、その後フェルミオンについて積分し有効作用を得る事を目標とする。

disorder-average は

$$\langle Z \rangle = \int \prod_{i < j < k < l}^{N} \left[dJ_{ijkl} \ P(J_{ijkl}) \right] Z \tag{117}$$

を計算すれば良い。以下では表記を簡潔にするために

$$a \equiv \frac{N^3}{12J^2} \tag{118}$$

$$I_{ijkl} \equiv \int dt \; \psi_i \psi_j \psi_k \psi_l \tag{119}$$

としておく。 J_{ijkl} についての積分が実行される部分が明確になるように式変形すると

$$\langle Z \rangle = \int \mathcal{D}\psi \exp\left(-\int dt \sum_{i} \frac{1}{2} \psi_{i} \frac{d}{dt} \psi_{i}\right)$$

$$\times \underbrace{\int \left[\prod_{i < j < k < l} dJ_{ijkl} \sqrt{\frac{a}{\pi}} \exp\left(-aJ_{ijkl}^{2}\right)\right] \exp\left(\frac{1}{4!} \sum_{i,j,k,l} I_{ijkl} J_{ijkl}\right)}_{\equiv G}$$

$$(120)$$

となる。ここから更にGを複数のガウス積分の積となるように変形すると

$$G = \left(\frac{a}{\pi}\right)^{4!_N C_4/2} \prod_{i < j < k < l} \int dJ_{ijkl} \exp\left(-aJ_{ijkl}^2 + I_{ijkl}J_{ijkl}\right)$$

$$\tag{121}$$

となる。ここで J_{ijkl} と I_{ijkl} が反対称テンソルである事を用いて

$$\frac{1}{4!} \sum_{i,j,k,l} I_{ijkl} J_{ijkl} = \sum_{i < j < k < l} I_{ijkl} J_{ijkl}$$
(122)

を使用した。あとは通常のガウス積分を実行すると

$$G = \exp\left(\frac{3J^2}{N^3} \sum_{i < j < k < l} I_{ijkl}^2\right) = \exp\left(\frac{3J^2}{4!N^3} \sum_{i,j,k,l} I_{ijkl}^2\right)$$
(123)

となり、

$$\langle Z \rangle = \int \mathcal{D}\psi \, \exp\left(-\int dt \, \sum_{i} \frac{1}{2} \psi_{i} \frac{d}{dt} \psi_{i} + \frac{3J^{2}}{4!N^{3}} \sum_{i,j,k,l} \int dt_{1} dt_{2} \, \psi_{i}(t_{1}) \psi_{j}(t_{1}) \psi_{k}(t_{1}) \psi_{l}(t_{2}) \psi_{j}(t_{2}) \psi_{k}(t_{2}) \psi_{l}(t_{2})\right)$$
(124)

という結果を得る。次はフェルミオンについて積分するのであるが、その前に

$$G(t_1, t_2) = \frac{1}{N} \sum_{i=1}^{N} \psi_i(t_1) \psi_i(t_2)$$
(125)

という場を導入するために

$$1 = \int \mathcal{D}G \, \delta \left(NG - \sum_{i} \psi_{i} \psi_{i} \right)$$

$$= \int \mathcal{D}G \, \int \mathcal{D}\Sigma \, \exp\left(-\int dt_{1} dt_{2} \, \frac{1}{2} \Sigma(t_{1}, t_{2}) \left(NG(t_{1}, t_{2}) - \sum_{i} \psi_{i}(t_{1}) \psi_{i}(t_{2}) \right) \right)$$
(126)

を $\langle Z \rangle$ に挿入する *10 。この時、挿入したデルタ関数によって

$$\sum_{i,j,k,l} \int dt_1 dt_2 \ \psi_i(t_1) \psi_j(t_1) \psi_k(t_1) \psi_l(t_1) \psi_i(t_2) \psi_j(t_2) \psi_k(t_2) \psi_l(t_2) \to N^4 \int dt_1 dt_2 G(t_1, t_2)^4$$
 (127)

という置き換えができる。以上を踏まえてフェルミオンの積分が実行される部分が明確になるように式変形を 行うと

$$\langle Z \rangle = \int \mathcal{D}G \int \mathcal{D}\Sigma \exp\left(-\frac{N}{2} \int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4} G^4\right)\right) \times \underbrace{\int \mathcal{D}\psi \exp\left(-\sum_i \int dt_1 dt_2 \frac{1}{2} \psi_i(t_1) \left(\delta(t_1 - t_2) \frac{d}{dt_1} - \Sigma(t_1, t_2)\right) \psi_i(t_2)\right)}_{F}$$
(128)

となる。あとはFと置いた部分を計算するのだが、そのためには次の公式を使うとよい[9]:

$$\int d\theta \exp\left(-\frac{1}{2}\theta \cdot M \cdot \theta\right) = \sqrt{\det(M)}$$
(129)

$$\delta(x) \propto \int dp \, \exp(ipx)$$

であるが、今は $\Sigma(t_1,t_2)$ を虚軸方向に積分していると考えているため、結果として虚数単位iがさらにi倍され負号となる。

^{*10} ディラックのデルタ関数をフーリエ変換したものはもちろん

ここで $\theta = (\theta_1, \dots, \theta_n)$ は n 個のグラスマン数であり、M は反対称行列である。これを用いて、

$$F = \prod_{i} \int \mathcal{D}\psi_{i} \exp\left(-\int dt_{1}dt_{2} \frac{1}{2}\psi_{i}(t_{1}) \left(\delta(t_{1} - t_{2})\frac{d}{dt_{1}} - \Sigma(t_{1}, t_{2})\right)\psi_{i}(t_{2})\right)$$

$$= \prod_{i} \left[\det\left(\delta(t_{1} - t_{2})\frac{d}{dt_{1}} - \Sigma(t_{1} - t_{2})\right)\right]^{1/2}$$

$$= \left[\det\left(\frac{d}{dt} - \Sigma\right)\right]^{N/2}$$

$$= \exp\left(\frac{N}{2}\log\det\left(\frac{d}{dt} - \Sigma\right)\right)$$
(130)

となる。ここで

$$\delta(t_1 - t_2) \frac{d}{dt_1} - \Sigma(t_1 - t_2) \to \frac{d}{dt} - \Sigma \tag{131}$$

という記号的な処理を施した。

以上より

$$\langle Z \rangle = \int \mathcal{D}G \int \mathcal{D}\Sigma \exp\left(\frac{N}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) - \frac{N}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4}G^4\right)\right)$$

$$\equiv \int \mathcal{D}G \int \mathcal{D}\Sigma \exp(-I_{eff})$$
(132)

となり、有効作用として

$$\frac{I_{eff}}{N} = -\frac{1}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) + \frac{1}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4}G^4\right)$$
(133)

を得た。

付録 B 係数 b の計算

この付録では (11) 式の係数 b の計算方法について述べる. まず (9) 式の 2 つの式を一つにまとめると

$$J^{2} \int ds \ G(s-t_{1})G(s-t_{2})^{q-1} = -\delta(t_{2}-t_{1})$$
(134)

となる.この積分を実行するには、

$$\frac{\operatorname{sgn}(t)}{|t|^{2\Delta}} = \int \frac{d\omega}{2\pi} \exp(-i\omega t) \ i \, 2^{1-2\Delta} \sqrt{\pi} \frac{\Gamma(1-\Delta)}{\Gamma(1/2+\Delta)} |\omega|^{2\Delta-1} \operatorname{sgn}(\omega) \tag{135}$$

を使用すると便利である. 少しの計算のあとに、

$$-\delta(t) = -J^{2}b^{q}\pi \frac{\Gamma(1-\Delta)\Gamma(\Delta)}{\Gamma(1/2+\Delta)\Gamma(3/2-\Delta)}$$

$$\times \int ds \int \frac{d\omega}{2\pi} \exp(-i\omega(t-s)) |\omega|^{2\Delta-1} \operatorname{sgn}(\omega) \int \frac{d\Omega}{2\pi} \exp(-i\Omega s) |\Omega|^{1-2\Delta} \operatorname{sgn}(\Omega)$$
(136)

という式にたどり着く。積分の部分は最初に s について実行すると $\delta(\omega-\Omega)$ が現れ、その後 ω および Ω で積分すると $\delta(t)$ が現れる。またガンマ関数の部分については

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$
 for $\forall z \notin \mathbb{Z}$ (137)

という性質と $\Gamma(1+z)\Gamma(z)=z\Gamma(z)$ を用いることで

$$\frac{\Gamma(1-\Delta)\Gamma(\Delta)}{\Gamma(1/2+\Delta)\Gamma(3/2-\Delta)} = \frac{1}{(1/2-\Delta)\tan(\pi\Delta)}$$
(138)

となる. 以上より、係数bは

$$J^2 b^q \pi = \left(\frac{1}{2} - \Delta\right) \tan(\pi \Delta) \tag{139}$$

という式により決定できる。

付録 C AdS/CFT 対応及びブラックホール熱力学

この節では AdS/CFT 対応及びブラックホール熱力学の詳しい説明を行う。

付録 D 量子カオス

D.1 はじめに: カオスとは何か

カオスの分野は 19 世紀末のヘンリ・ポアンカレによる 3 体問題に関する研究に始まる [12]。 2 つの質点が互いに内力のみで相互作用し、外力が存在しないような 2 質点系は可積分系である。そのような系の位相空間上の軌道は、一般に系の自由度の数だけ存在する保存量によって決まる多様体からはみ出る事がなく、安定である。一方、ポアンカレによって 3 質点系では摂動展開した級数の収束性は証明不可能である事が示された。この問題を我々の太陽系に当てはめると、「太陽系は本当に安定な系か?」という興味深い (そして少し不安になるような (?)) 問いとなる。しかし我々の太陽系は観測上ケプラーの法則に非常に精度良く従っている。ケプラーの法則は根本的に 2 質点系の可積分性から演繹されるものであるため、太陽系のような多体系がこの法則に従うのは今日でも解消されていない謎の 1 つとなっている。

我々の住む世界には多くの場面においてカオスが顔を表す。上述したような 3 つ以上の惑星を含む系の運動に始まり、化学反応、病気の広がり方、インターネットや経済学にも現れる [12]。一方、可積分系は非可積分系に比べて知られているものが非常に少ない。可積分系という単語は、ハミルトン形式の力学において次のようにして定義される:系の自由度を n とする。この時、運動の定数 $I_i(\vec{q},\vec{p})$ = const が n 個あり、かつ

$$[I_i, I_j]_{\text{poisson}} = 0 \tag{140}$$

を満たす時、系は可積分性を持つという。ここで [,]poisson は

$$[f,g]_{\text{poisson}} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$$
(141)

で与えられるポアソン括弧である。ポアンカレによって、ほとんどの力学系は運動の定数としてエネルギーしか持たない事が示された [12]。つまり、これらの系は自由度が n=1 でなければ可積分系とはならない。従って、 $n \geq 2$ となるようなほとんどの系は可積分系ではないと言える。

例として 3 次元空間内における N 体問題を考えると、系の自由度が 3N であるのに対して、ポアソン括弧の意味で互いに可換となるような運動の定数は 6 つしかない。故に N=2 の時のみ可積分系となるのであり、それより多い数の物体が存在すると最早可積分系ではなくなる。

カオス系の最も簡易な定義は次のように与えられる: ある 1 つの運動を、初期条件をわずかに変えて時間発展させた時、運動の軌跡が初期条件によって大きく異なるような系をカオス系という。しかし古典カオスにおいて、これは寧ろ証明されるものであり、より根本的かつ数学的に厳密な定義が複数存在する [14]: 1 つは位相的推移性 (topological transitivity) を持つ写像が存在する事である。つまり、運動を表す状態空間 (例えば位相空間) M 上で作用する写像 $f: M \to M$ があり、任意の 2 つの開集合 U,V に対して $f^N(U) \cap V \neq \emptyset$ となるような自然数 $N \in \mathbb{N}$ が存在するというものである。ここで $f^N(U) = f(f(\cdots f(U)\cdots))$ である。もう少し直感的な言葉を使うなら、ある時点での任意の状態に対して、それに限りなく近づくような軌道が状態空間 M 内に必ず存在するという事でもある。2 つ目は状態空間 M 内に周期的な点からなる稠密部分集合が存在する事である* 11 。つまり、全ての状態 $x \in M$ それぞれに限りなく近い点 y が存在し、y はある周期的な軌道に乗ったものである。これらの定義は互いに等価な内容である。

^{**11} 位相 (topological) 空間 X の部分集合 A が X において稠密であるとは、 $x \in X$ の任意の近傍 U(x) が $U(x) \cap A \neq \emptyset$ を満たす事を言う。等価な定義として、A を含む X の閉集合が X 自身しかない時、A は稠密であるというものもある。

古典カオスが位相空間を用いた厳密な定義を持つ一方で、量子カオスにはそのような定義が存在しない。これは、量子系は不確定性原理により正準共役な変数が可換でなくなるため、位相空間上の軌道という概念は最早意味を成さない事に起因する。

量子カオスの伝統的な研究手法では対応原理を使用する:カオス系として知られている古典系を用意し、それを単純に量子化するのである。典型的な系は次のようなものである [13]:あるリング上に存在する粒子を考える。その粒子はある一定時間ごとにデルタ関数的なポテンシャルにより強く加速される。ハミルトニアンは

$$H(x,p) = \frac{p^2}{2} + V(x) \sum_{n=-\infty}^{\infty} \delta(t-n)$$
 (142)

の様に与えられる。ここで $V(x)=-\frac{K}{4\pi^2}\cos(2\pi x)$ はリング上の周期的ポテンシャルである。この系は V(x) の大きさ K によって可積分系からカオス系へと転移するという特徴を持ち (図 7)、系を量子化した後でも、この性質は伏見関数 $\Psi(x,p)$ を見る事により保たれている事を示せる。

図 7 (142) 式で与えられる系の位相空間上の軌道。横軸がx、縦軸がpである。Kが大きくになるにつれて可積分性が消滅しカオスとなっていく。

参考文献

- [1] J. Maldacena and D. Stanford, "Comments on the Sachdev-Ye-Kitaev model," arXiv:1604.07818 [hep-th]
- [2] V. Rosenhaus, "An introduction to the SYK model," arXiv:1807.03334v1 [hep-th]
- [3] J. Polchinski and V. Rosenhaus, "The Spectrum im the Sachdev-Ye-Kitaev Model," arXiv:1601.06768 [hep-th]
- [4] D. J. Gross and V. Rosenhaus, "A Generalization of Sachdev-Ye-Kitaev," arXiv:1610.01569 [hep-th]
- [5] J. Maldacena, S. H. Shenker and D. Stanford, "A bound on chaos," arXiv:1503.01409 [hep-th]
- [6] J. Liu, "Spectral form factors and late time quantum chaos," arXiv:1806.05316 [hep-th]
- [7] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher and M. Tezuka, "Black Holes and Random Matrices," arXiv:1611.04650 [hep-th]
- [8] P. Saad, S. H. Shenker and D. Stanford, "A semiclassical ramp in SYK and in gravity," arXiv:1806.04650 [hep-th]
- [9] H. E. Haber, "Notes on antisymmetric matrices and the pfaffian"
- [10] G. Tarnopolsky, "On large q expansion in the Sachdev-Ye-Kitaev model," arXiv:1801.06871 [hep-th]
- [11] K. Andrzejewski, "Quantum conformal mechanics," arXiv:1506.05596 [hep-th]
- [12] J. Masoliver and A. Ros, "Integrability and chaos: the classical uncertainty," arXiv:1012.4384 [nlin.CD]
- [13] D. Ullmo and S. Tomsovic, "INTRODUCTION TO QUANTUM CHAOS," http://www.lptms.u-psud.fr/membres/ullmo/Articles/eolss-ullmo-tomsovic.pdf
- [14] W. Hsiao, "Introduction to Classical Chaos," http://theory.uchicago.edu/ejm/course/Journal-Club/IntroductionToClassicalChaos.pdf
- [15] P. H. C. Lau, C. T. Ma, J. Murugan and M. Tezuka, "Randomness and Chaos," arXiv:1812.04770 [hep-th]