ECEN325 Ref Sheet

peta P 10 ¹⁵ 1 000 000 000 00 tera T 10 ¹² 1 000 000 00	
tera T 10^{12} 1 000 000 0	00 000
giga G 10^9 1 000 0	000 000
	000 000
kilo k 10 ³	1 000
hecto h 10 ²	100
$deca da 10^1$	10
one 10^0 1	
deci d 10^{-1} 0.1	
centi c 10^{-2} 0.01	
milli m 10^{-3} 0.001	
micro μ 10 ⁻⁶ 0.000 001	
nano n 10^{-9} 0.000 000 001	
pico p 10^{-12} 0.000 000 000 00)1
femto f 10 ⁻¹⁵ 0.000 000 000 00	00 001

Ohm's Law V = IR, $\overline{I = \frac{V}{R}}$, $R = \frac{V}{T}$

Battery Symbol

The side with the longer line is the positive side Complex Numbers

- $z = x + iy = re^{i\theta} = r[\cos(\theta) + i\sin(\theta)]$
- $[r(\cos(\theta) + i\sin(\theta))]^n = r^n[\cos(n\theta) + i\sin(n\theta)]$
- $\bullet z^{n} = (re^{i\theta}) = r^{n}e^{in\theta}$
- $\bullet \frac{1}{i} = -i$
- $\bullet \sqrt[n]{z} = \sqrt[n]{r}e^{\frac{\theta}{n} + \frac{2k\pi}{n}} \text{ for } n \in N^* \text{ (ints } \ge 0)$ $\bullet e^{j\theta} = \cos(\theta) + j\sin(\theta) \mid e^{-j\theta} = \cos(\theta) j\sin(\theta)$ $\bullet \cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta}) \mid \sin(\theta) = \frac{1}{2j}(e^{j\theta} e^{-j\theta})$
- normalized: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$
- $\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$ $\angle \frac{a}{b} = \angle a - \angle b$

 $\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$ $\cos^{2}(a) + \sin^{2}(a) = 1$ $\cos^{2}(a) = \frac{1}{2}(1 + \cos(2a))$ $\sin^{2}(a) = \frac{1}{2}(1 - \cos(2a))$

Voltage Division between two non-zero points

 $V_{DD} \rightarrow R_1 \rightarrow V_1 \rightarrow R_2 \rightarrow V_{EE}$ $V_1 = V_{DD} \frac{R_2}{R_1 + R_2} + V_{EE} \frac{R_1}{R_1 + R_2}$ (superposition)

Bode Plots

- magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20 \log_{10} |T(j\omega)|$
- starts on y-axis at DC offset with slope 0
- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin:

constant slope $\pm 20db/dec$ for all ω ; 0dB at

 $\omega = 10^0 = 1$

- *Pole/Zero at ω_0 :

- 0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after *Constant C: constant line at $20 \log_{10}(|C|)$
- phase:
 - *Pole at origin: constant $-\frac{\pi}{2}$ or -90°
 - *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
 - *Pole/Zero at ω_0 :
 - 0 for $\omega < \frac{\omega_0}{10}$
 - slope linearly ($\pm 45^{\circ}/dec$) until $10\omega_0$

0 slope for $\omega > 10\omega_0$

*Constant C: no effect (0 for all ω)

© Josh Wright April 19, 2017 • Prof wants us to actually show the -3dB drop curve, not just a straight intersection

Solving systems with Op Amps

• only applies if the op-amp has feedback

- step 0: if the op amp is ideal, write out ideal properties: $*V_{+} = V_{-}$
- $*I_{-}=0,I_{+}=0$
- $*\,A\approx\infty$
- avoid doing KCL/KVL directly on the output node of the op amp
- ignore resistors from a point at 0V to ground

Op Amp Equations

Inverting Amplifier

Non-Inverting Amplifier

- ideal open-loop behavior: $(V_p V_n) > 0 \rightarrow V_o = V_{DD}$ $(V_p - V_n) < 0 \to V_o = -V_{DD}$
- general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$
- $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response
- $*\omega_0 = \frac{\omega_t}{1 + R_2/R_1}$
- inverting op amp: * ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$

* non-ideal:
$$T(s) = \frac{V_i}{V_i} = -\frac{R_1}{R_1}$$

* non-ideal: $T(s) = \frac{V_o}{V_i} = \frac{-R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_0}} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_0}}$

• non-inverting op-amp:

- non-inverting op-amp: * ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$

*non-ideal:
$$T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}} = \frac{1 + R_2/R_1}{1 + \frac{s}{\omega_0}}$$

MOS DC Biasing

- this is all for NMOS. PMOS is backward $\beta = k_n'(\frac{W}{L})$
- cutoff: $V_{GS} < V_{th}$
 - $*I_D = 0$
- triode (linear): $V_{DS} < V_{GS} V_{th}$

*
$$I_D = k'_n \frac{W}{L} \left((V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right)$$
• active (saturation): $V_{DS} > V_{GS} - V_{th}$

- $*I_D = \frac{k_n'}{2} \frac{W}{L} (V_{GS} V_{th})^2$ $* overdrive voltage V_{ov} = V_{GS} V_{th}$ to show it's active: show that $V_{DS} > V_{ov}$ or $V_{DS} > V_{GS} - V_{th}$

MOS Small Signal

- $g_m = k_n' \frac{W}{L}(V_{GS} V_t) = k_p' \frac{W}{L}(V_{SG} V_t) = k_n' \frac{W}{L}(V_{ov})$ CS: Common Source
- $*R_i = R_G = R_{G1} || R_{G2}$

- $*R_o = R_D$ $*V_o = \frac{R_D||R_L}{\frac{1}{g_m} + R_S}$ CD: Common Drain (buffer)
- $*R_i = R_G = R_{G1} || R_{G2}$
- $*R_o = \frac{1}{g_m}$ $*\frac{V_o}{V_g} = \frac{R_L}{\frac{1}{g_m} + R_L}$
- CG: Common Gate
- $*R_i = \frac{1}{a_m}$

 $*R_o = R_D \\ * \frac{V_o}{V_s} = \frac{R_D||R_L}{R_i}$