

CS4277 / CS5477 3D Computer Vision

Lecture 2:
3D projective geometry, Circular points and
Absolute conic

Assoc. Prof. Lee Gim Hee
AY 2022/23
Semester 2

Course Schedule

Week	Date	Торіс	Assignments	
1	11 Jan	2D and 1D projective geometry	Assignment 0: Getting started with Python (Ungraded)	
2	18 Jan	3D projective geometry, Circular points and Absolute conic		
3	25 Jan	Rigid body motion and Robust homography estimation		
4	01 Feb	Camera models and calibration	Assignment 1: Metric rectification and robust homography (10%) Due: 2359hrs, 07 Feb	
5	08 Feb	Single view metrology	Assignment 2 : Affine 3D measurement from vanishing line and point (10%) Due: 2359hrs, 14 Feb	
6	15 Feb	The Fundamental and Essential matrices		
-	22 Feb	Semester Break	No lecture	
7	01 Mar	Mid-term Quiz (20%)	In-person Quiz (LT 15, 1900hrs – 2000hrs)	
8	08 Mar	Absolute pose estimation from points or lines		
9	15 Mar	Three-view geometry from points and/or lines		
10	22 Mar	Structure-from-Motion (SfM) and bundle adjustment	Assignment 3: SfM and Bundle adjustment (10%) Due: 2359hrs, 28 Mar	
11	29 Mar	Two-view and multi-view stereo	Assignment 4: Dense 3D model from multi-view stereo (10%) Due: 2359hrs, 04 Apr	
12	05 Apr	3D Point Cloud Processing		
13	12 Apr	Neural Field Representations		

Final Exam: 03 MAY 2023

Learning Outcomes

- Students should be able to:
 - 1. Represent points, planes, lines and quadrics in \mathbb{P}^3 .
 - Use line at infinity and/or circular points to remove affine and/or projective distortions.
 - Describe the plane at infinity and its invariance under affine transformation.
 - Describe the absolute conic (and its absolute dual quadrics) and its invariance under similarity transformation.

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- 1. R. Hartley, and Andrew Zisserman: "Multiple view geometry in computer vision", Chapter 2 and 3.
- 2. Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, "An invitation to 3-D vision", Chapter 2.

Points in \mathbb{P}^3

 A point X in 3-space is represented in homogeneous coordinates as a 4-vector, i.e.

$$\mathbf{X} = (X_1, X_2, X_3, X_4)^{\mathsf{T}} \text{ with } X_4 \neq 0$$

• Represents the point $(X, Y, Z)^T$ of \mathbb{R}^3 with inhomogeneous coordinates

$$X = X_1/X_4$$
, $Y = X_2/X_4$, $Z = X_3/X_4$.

• Homogeneous points with $X_4=0$ represent points at infinity.

Projective Transformation of Points in \mathbb{P}^3

• A projective transformation acting on \mathbb{P}^3 is a linear transformation on \mathbf{X} by a non-singular 4×4 matrix:

$$X' = HX$$
.

- The matrix H is homogeneous and has 15 degrees of freedom: 16 elements less one for scaling.
- As in \mathbb{P}^2 , the map is a collineation (lines are mapped to lines),
- which preserves incidence relations such as the intersection point of a line with a plane, and order of contact.

Planes in \mathbb{P}^3

• A plane in 3-space may be written as:

$$\pi_1 X + \pi_2 Y + \pi_3 Z + \pi_4 = 0.$$

• Homogenizing by $x\mapsto x_1/x_4, y\mapsto x_2/x_4, z\mapsto x_3/x_4$ gives

$$\pi_1 X_1 + \pi_2 X_2 + \pi_3 X_3 + \pi_4 X_4 = 0$$
 or $\boldsymbol{\pi}^\mathsf{T} \mathbf{X} = 0$,

which expresses that the point **X** is on the plane $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)^{\mathsf{T}}$.

Planes in \mathbb{P}^3

- Only three independent ratios $\{\pi_1 : \pi_2 : \pi_3 : \pi_4\}$ of the plane coefficients are significant, i.e., 3 degrees of freedom.
- The first 3 components of π correspond to the plane normal of Euclidean geometry, i.e., $\mathbf{n} = (\pi_1, \pi_2, \pi_3)^{\mathsf{T}}$.

Planes in \mathbb{P}^3

• Using inhomogenous notation to rewrite $\pi^T X = 0$ as:

$$\mathbf{n}.\widetilde{\mathbf{X}} + d = 0,$$

where $X = (X, Y, Z, 1)^T$ and $d = \pi_4$.

- In this form, $d/\|\mathbf{n}\|$ is the distance of the plane from the origin.
- Under the point transformation X' = HX, a plane transforms as:

$$oldsymbol{\pi}' = oldsymbol{ t H}^{-\mathsf{T}} oldsymbol{\pi}.$$

Three Points Define a Plane

• Suppose three points \mathbf{X}_i are incident with the plane $\boldsymbol{\pi}$, where each point satisfies $\boldsymbol{\pi}^{\mathsf{T}}\mathbf{X}_i=0$ for i=1,2,3, i.e.

$$\left[egin{array}{c} \mathbf{X}_1^\mathsf{T} \ \mathbf{X}_2^\mathsf{T} \ \mathbf{X}_3^\mathsf{T} \end{array}
ight] oldsymbol{\pi} = \mathbf{0}.$$

- The 3×4 matrix $[\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3]^\mathsf{T}$ has rank 3 when the points are in general positions, i.e., linearly independent.
- The plane π defined by the points is obtained uniquely (up to scale) as the 1-dimensional (right) null-space.

Three Points Define a Plane

- If the matrix $[X_1, X_2, X_2]^T$ has only a rank of 2, and consequently the null-space is 2-dimensional.
- Then the points are collinear and define a pencil of planes with the line of collinear points as axis.

Three Planes Define a Point

• The intersection point X of three planes π_i can be computed as the (right) null-space of the 3 × 4 matrix composed of the planes as rows:

 The development here is dual to the case of three points defining a plane and it shows the point-plane duality.

Parametrized Points on a Plane

• The points ${f X}$ on the plane ${m \pi}$ may be written as

$$\mathbf{X} = M\mathbf{x}$$
.

- The columns of the 4×3 matrix M generate the rank 3 null-space of π^{\top} , i.e., $\pi^{\top} M = \mathbf{0}_{1\times 3}$, and the 3-vector \mathbf{x} parametrizes points on the plane π .
- M is not unique, suppose the plane is $\pi = (a, b, c, d)^T$ and a is non-zero, then M^T can be written as

$$\mathbf{M}^{\mathsf{T}} = [\mathbf{p} \mid I_{3\times 3}], \quad \text{where } \mathbf{p} = \left(-\frac{b}{a}, -\frac{c}{a}, -\frac{d}{a}\right)^{\mathsf{T}}.$$

Lines in \mathbb{P}^3

• A line is defined by the join of two points or the intersection of two planes.

 Lines have 4 degrees of freedom in 3space.

Sketch of Proof: A line may be specified by its points of intersection with two orthogonal planes. Each intersection point has 2 degrees of freedom, hence 4 degrees of freedom.

• Awkward to represent 3-space line with a homogeneous 5-vector, we will look at two alternatives representations.

National University of Singapore Computing

- Suppose A, B are two (non-coincident) space points.
- The line joining these points (6 dofs, i.e. overparameterized) is represented by the span of the row space of the 2 \times 4 matrix W composed of \mathbf{A}^{T} and \mathbf{B}^{T} as rows:

$$\mathbf{W} = \begin{bmatrix} \mathbf{A}^\mathsf{T} \\ \mathbf{B}^\mathsf{T} \end{bmatrix}.$$

- Then:
 - 1. The span of W^T is the pencil of points $\lambda A + \mu B$ on the line.
 - 2. The span of the 2-dimensional right null-space of W is the pencil of planes with the line as axis.

Remarks on (1):

- It is evident that two other points, \mathbf{A}'^{T} and \mathbf{B}'^{T} , on the line will generate a matrix W' with the same span as W.
- Hence, the representation is independent of the particular points used to define it.

Same line!
$$W = \begin{bmatrix} A^T \\ B^T \end{bmatrix}$$

$$W' = \begin{bmatrix} A'^T \\ B'^T \end{bmatrix}$$

Remarks on (2):

- Suppose that \mathbf{P} and \mathbf{Q} are a basis for the null-space, then $W\mathbf{P} = \mathbf{0}$ and consequently $\mathbf{A}^T\mathbf{P} = \mathbf{B}^T\mathbf{P} = 0$, so that \mathbf{P} is a plane containing the points \mathbf{A} and \mathbf{B} .
- Similarly, Q is a distinct plane also containing the points A and B.
- A and B lie on both the (linearly independent) planes P and Q, so the line defined by W is the plane intersection.
- Any plane of the pencil, with the line as axis, is given by the span $\lambda \mathbf{P} + \mu \mathbf{Q}$.

 $W = \begin{vmatrix} A^T \\ B^T \end{vmatrix}$

P

- The dual representation of a line as the intersection of two planes, **P**, **Q**, follows in a similar manner.
- The line is represented as the span (of the row space) of the 2×4 matrix W^* composed of \mathbf{P}^T and \mathbf{Q}^T as rows:

$$\mathbf{W}^* = \begin{bmatrix} \mathbf{P}^\mathsf{T} \\ \mathbf{Q}^\mathsf{T} \end{bmatrix}$$

- With the properties:
- 1. The span of W^{*T} is the pencil of planes $\lambda \mathbf{P} + \mu \mathbf{Q}$ with the line as axis.
- 2. The span of the 2-dimensional null-space of W^* is the pencil of points on the line.
- The two representations are related by $W^*W^T = WW^{*T} = 0_{2\times 2}$, where $0_{2\times 2}$ is a 2×2 null matrix.

- Join and incidence relations are also computed from null-spaces:
- 1. The plane π defined by the join of the point X and line W is obtained from the null-space of

$$\mathbf{M} = \left[\begin{array}{c} \mathbf{W} \\ \mathbf{X}^{\mathsf{T}} \end{array} \right].$$

If the null-space of M is 2-dimensional then **X** is on W, otherwise $M\pi = \mathbf{0}$.

- Join and incidence relations are also computed from null-spaces:
- 2. The point X defined by the intersection of the line W with the plane π is obtained from the null-space of

$$\mathtt{M} = \left[egin{array}{c} \mathtt{W}^* \ oldsymbol{\pi}^\mathsf{T} \end{array}
ight].$$

If the null-space of M is 2-dimensional then the line W is on π , otherwise MX = 0.

• A quadric is a surface in \mathbb{P}^3 defined by the equation

$$\mathbf{X}^\mathsf{T} \mathbf{Q} \mathbf{X} = 0$$

- where Q is a symmetric 4 × 4 matrix.
- Often the matrix Q and the quadric surface it defines are not distinguished, and we will simply refer to the quadric Q.

- Many of the properties of quadrics follow directly from those of conics:
- A quadric has 9 degrees of freedom. These correspond to the ten independent elements of a 4 × 4 symmetric matrix less one for scale.
- 2. Nine points in general position define a quadric.
- 3. If the matrix Q is singular, then the quadric is degenerate, and may be defined by fewer points.

4. The intersection of a plane π with a quadric Q is a conic C.

Remarks:

- Recall that a coordinate system for the plane can be defined by the complement space to π as X = Mx.
- Points on π are on Q if $\mathbf{X}^{\mathsf{T}} \mathbf{Q} \mathbf{X} = \mathbf{x}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \mathbf{Q} \mathbf{M} \mathbf{x} = 0$.
- These points lie on a conic C, since $\mathbf{x}^T \mathbf{C} \mathbf{x} = 0$, with $\mathbf{C} = \mathbf{M}^T \mathbf{Q} \mathbf{M}$.

5. Under the point transformation X' = HX, a (point) quadric transforms as:

$$\mathsf{Q}' = \mathsf{H}^{-\mathsf{T}} \mathsf{Q} \mathsf{H}^{-1}.$$

- The dual of a quadric is also a quadric.
- Dual quadrics are equations on planes: the tangent planes π to the point quadric Q satisfy $\pi^T Q^* \pi = 0$, where $Q^* = \text{adjoint}$ Q, or Q^{-1} if Q is invertible.
- Under the point transformation $\mathbf{X}' = H\mathbf{X}$, a dual quadric transforms as $\mathbf{Q}^{*\prime} = H\mathbf{Q}^*H^T$.

Adjoint and Minor of a Matrix

Adjoint of a matrix A:

$$\operatorname{adj}(\mathbf{A}) = \mathbf{C}^{\mathsf{T}}.$$

• C is the cofactor of A:

$$\mathbf{C}_{i,j} = \left((-1)^{i+j} \mathbf{M}_{ij}
ight)_{1 \leq i,j \leq n}.$$

• \mathbf{M}_{ij} is the (i, j)-minor of \mathbf{A} , an example is as follows:

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \end{bmatrix},$$

$$\mathbf{M}_{2,3} = \det \begin{bmatrix} 1 & 4 & \square \\ \square & \square & \square \\ -1 & 9 & \square \end{bmatrix} = \det \begin{bmatrix} 1 & 4 \\ -1 & 9 \end{bmatrix} = 9 - (-4) = 13.$$

3D Hierarchy of Transformations

$$R = \begin{bmatrix} c_1c_2 & c_1s_2s_3 - c_3s_1 & s_1s_3 + c_1c_3s_2 \\ c_2s_1 & c_1c_3 + s_1s_2s_3 & c_3s_1s_2 - c_1s_3 \\ -s_2 & c_2s_3 & c_2c_3 \end{bmatrix} \text{,} \quad \text{3x3 rotation matrix}$$

 $t = (t_x, t_y, t_z)^{\mathsf{T}}$, 3x1 translation vector

Group	Matrix	Distortion	Invariant properties
Projective 15 dof	$\left[\begin{array}{cc}\mathbf{A} & \mathbf{t} \\ \mathbf{v}^T & v\end{array}\right]$		Intersection and tangency of surfaces in contact.
Affine 12 dof	$\left[\begin{array}{cc} \mathbf{A} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		Parallelism of planes, volume ratios, centroids. The plane at infinity, π_{∞} ,
Similarity 7 dof	$\left[\begin{array}{cc} s\mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		The absolute conic, Ω_{∞} ,
Euclidean 6 dof	$\left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		Volume.

Line at Infinity and Circular Points

- In the following, it will be shown that:
- 1. The projective distortion may be removed once the image of \mathbf{l}_{∞} is specified;
- And the affine distortion removed once the image of the circular points is specified.

Then the only remaining distortion is a similarity.

The Line at Infinity

• The line at infinity, \mathbf{l}_{∞} , is a fixed line under the projective transformation H if and only if H is an affinity, i.e.,

$$\mathbf{l}_{\infty}' = \mathbf{H}_{\mathbf{A}}^{-\mathsf{T}} \mathbf{l}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{l}_{\infty}.$$

- An affinity is the most general linear transformation with $H_{31}=H_{32}=0$ for the relationship to be true.
- We will see that identifying l_{∞} allows the recovery of affine properties (parallelism, ratio of lengths).

The Line at Infinity

 Contrast this with projective transformation, where an ideal point and line at infinity might not remain at infinity.

$$\mathbf{H}_{p}\mathbf{x} = \mathbf{x'} \quad \Rightarrow \quad \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \\ v_{1}x_{1} + v_{2}x_{2} \end{bmatrix}$$

Might not be 0 since v_1 and v_2 are not 0.

$$\mathbf{H}_{p}^{-\mathsf{T}}\mathbf{l} = \mathbf{l'} \quad \Rightarrow \quad \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{bmatrix}^{-\mathsf{T}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{21}v_{2} - a_{22}v_{1} \\ -a_{11}v_{2} + a_{12}v_{1} \\ a_{11}a_{22} - a_{12}a_{21} \end{pmatrix}$$

Might not be 0 since v_1 and v_2 are not 0.

The Line at Infinity

- Interestingly, \mathbf{l}_{∞} is not fixed pointwise under an affine transformation.
- In general, under an affinity, a point on l_{∞} (an ideal point) is mapped to another point on l_{∞} :

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ 0 \end{pmatrix}.$$

Nonetheless, it would be the same point when:

$$A(x_1, x_2)^{\mathsf{T}} = k(x_1, x_2)^{\mathsf{T}}.$$

Affine Rectification: imaged line at infinity can be used to remove projective distortion.

 H_p maps ideal points and l_{∞} to finite

Problem:

Given $\mathbf{l} = (l_1, l_2, l_3)^{\mathsf{T}}$ where $l_3 \neq 0$, find H'_p that can be used to remove the projective distortion.

Solution:

Since $\mathbf{l} = \mathbf{H}_p^{-\mathsf{T}} \mathbf{l}_{\infty} \Rightarrow \mathbf{H}_p^{\mathsf{T}} [l_1, l_2, l_3]^{\mathsf{T}} = [0,0,1]^{\mathsf{T}}$, we can choose

$$\mathbf{H}_p^{\mathsf{T}} = \begin{pmatrix} 1 & 0 & -l_1/l_3 \\ 0 & 1 & -l_2/l_3 \\ 0 & 0 & 1/l_3 \end{pmatrix}.$$

Furthermore, $H_A = H'_p H_P$

$$\Rightarrow H'_{p} = H_{A}H_{p}^{-1} = H_{A} \begin{pmatrix} 1 & 0 & -l_{1}/l_{3} \\ 0 & 1 & -l_{2}/l_{3} \\ 0 & 0 & 1/l_{3} \end{pmatrix},$$

where H_A is any affine transformation since $\mathbf{l}'_{\infty} = H_A^{-\mathsf{T}} \mathbf{l}_{\infty}$.

- 1. The imaged vanishing line of the plane I is computed from the intersection of two sets of imaged parallel lines.
- 2. Compute $H'_p = H_A H_P^{-1}$ by choosing an arbitrary affinity H_A .

- 3. Use H'_p to projectively warp the image to produce the affinely rectified image.
- 4. Affine properties can be recovered from the affinely rectified image, e.g. parallel lines and ratio of lengths.
- Note: angles cannot be recovered since image is still affinely distorted.

Computing a Vanishing Point from a Length Ratio

- Conversely, known affine properties may be used to determine points and the line at infinity.
- A typical case is where three points \mathbf{a}' , \mathbf{b}' and \mathbf{c}' are identified on a line in an image.
- Suppose a, b and c are the corresponding collinear points on the world line.
- The length ratio $d(\mathbf{a}, \mathbf{b}) : d(\mathbf{b}, \mathbf{c}) = a : b$ is known; $d(\mathbf{x}, \mathbf{y})$ is the Euclidean distance between points \mathbf{x} and \mathbf{y} .

Computing a Vanishing Point from a Length Ratio $(a+b,1)^T$

Solution:

i. Measure the distance ratio in the image, $d(\mathbf{a}', \mathbf{b}') : d(\mathbf{b}', \mathbf{c}') = a' : b'$.

ii. Points **a**, **b** and **c** may be represented as coordinates 0, a and a + b in a coordinate frame on the line $\langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$.

These points are represented by homogeneous 2-vectors in \mathbb{P}^1 , i.e. $(0,1)^{\mathsf{T}}$, $(a,1)^{\mathsf{T}}$ and $(a+b,1)^{\mathsf{T}}$.

Similarly, $\langle \mathbf{a}', \mathbf{b}', \mathbf{c}' \rangle$ have coordinates $(0,1)^{\mathsf{T}}$, $(a',1)^{\mathsf{T}}$ and $(a'+b',1)^{\mathsf{T}}$.

Computing a Vanishing Point from a Length Ratio

Solution:

- iii. Relative to these coordinate frames, compute the 1D projective transformation $H_{2\times 2}$ mapping $\mathbf{a} \mapsto \mathbf{a}'$, $\mathbf{b} \mapsto \mathbf{b}'$ and $\mathbf{c} \mapsto \mathbf{c}'$.
- iv. The image of the point at infinity (with coordinates $(1,0)^{T}$) under $H_{2\times 2}$ is the vanishing point on the line $\langle \mathbf{a}', \mathbf{b}', \mathbf{c}' \rangle$.

- Under any similarity transformation there are two points on l_{∞} which are fixed.
- These are the circular points (also called the absolute points) I, J, with canonical coordinates:

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}.$$

• The circular points are a pair of complex conjugate ideal points.

 The circular points, I, J, are fixed points under the projective transformation H if and only if H is a similarity, i.e.

$$\mathbf{I}' = \mathbf{H}_{\mathrm{S}}\mathbf{I}$$

$$= \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$$

$$= se^{-i\theta} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} = \mathbf{I}, \text{ where } e^{i\theta} = \cos\theta + i\sin\theta.$$

- With an analogous proof for J.
- The converse is also true, i.e. if the circular points are fixed then the linear transformation is a similarity.

- The name "circular points" arises because every circle intersects l_{∞} at the circular points.
- To see this, we start from the conic equation of a circle, i.e. a=c (we scale to 1) and b=0:

$$x_1^2 + x_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

• This conic intersects \mathbf{l}_{∞} at the ideal points where $x_3=0$:

$$x_1^2 + x_2^2 = 0$$

$$\Rightarrow (x_1 + ix_2)(x_1 - ix_2) = 0$$

• with solution $I = (1, i, 0)^T$, $J = (1, -i, 0)^T$

• The dual to the circular points is the conic:

$$C_{\infty}^* = IJ^\mathsf{T} + JI^\mathsf{T}$$

- The conic C_{∞}^* is a degenerate (rank 2) line conic which consists of the two circular points.
- In a Euclidean coordinate system, it is given by:

$$\mathbf{C}_{\infty}^{*} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \begin{pmatrix} 1 & -i & 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix} \begin{pmatrix} 1 & i & 0 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

• The conic C_{∞}^* is fixed under similarity transformations, i.e.

$$C_{\infty}^{* \ '} = H_{S}C_{\infty}^{*}H_{S}^{\mathsf{T}}$$

$$= \begin{pmatrix} s\cos\theta & -s\sin\theta & t_{x} \\ s\sin\theta & s\cos\theta & t_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s\cos\theta & s\sin\theta & 0 \\ -s\sin\theta & s\cos\theta & 0 \\ t_{x} & t_{y} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} s\cos\theta & -s\sin\theta & 0 \\ s\sin\theta & s\cos\theta & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s\cos\theta & s\sin\theta & 0 \\ -s\sin\theta & s\cos\theta & 0 \\ t_{x} & t_{y} & 1 \end{pmatrix}$$

$$= s\begin{pmatrix} \cos^{2}\theta + \sin^{2}\theta & 0 & 0 \\ 0 & \cos^{2}\theta + \sin^{2}\theta & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- Some properties of C_{∞}^* in any projective frame:
- *i.* C_{∞}^* has 4 degrees of freedom:

A 3 × 3 homogeneous symmetric matrix has 5 degrees of freedom, but the constraint $det(C_{\infty}^*) = 0$ reduces the degrees of freedom by 1.

ii. \mathbf{l}_{∞} is the null vector of C_{∞}^* :

This is clear from the definition: the circular points lie on \mathbf{l}_{∞} , so that $\mathbf{I}^{\mathsf{T}}\mathbf{l}_{\infty}=\mathbf{J}^{\mathsf{T}}\mathbf{l}_{\infty}=0$; then

$$\mathbf{C}_{\infty}^* \mathbf{l}_{\infty} = (\mathbf{I} \mathbf{J}^\mathsf{T} + \mathbf{J} \mathbf{I}^\mathsf{T}) \mathbf{l}_{\infty} = \mathbf{I} (\mathbf{J}^\mathsf{T} \mathbf{l}_{\infty}) + \mathbf{J} (\mathbf{I}^\mathsf{T} \mathbf{l}_{\infty}) = \mathbf{0}.$$

Angles on the Projective Plane

• In Euclidean geometry, the angle between two lines is given by the inner product of the normals of $\mathbf{l} = (l_1, l_2, l_3)^{\mathsf{T}}$ and $\mathbf{m} = (m_1, m_2, m_3)^{\mathsf{T}}$:

$$\cos \theta = \frac{l_1 m_1 + l_2 m_2}{\sqrt{(l_1^2 + l_2^2)(m_1^2 + m_2^2)}}.$$

- **Problem with this expression**: it is **not defined** under projective transformation.
- Hence, the expression cannot be applied after an affine or projective transformation of the plane.

Angles on the Projective Plane

• Once the conic C_{∞}^* is identified on the projective plane then Euclidean angles may be measured by

$$\cos \theta = \frac{\mathbf{l}^\mathsf{T} \mathsf{C}_\infty^* \mathbf{m}}{\sqrt{(\mathbf{l}^\mathsf{T} \mathsf{C}_\infty^* \mathbf{l})(\mathbf{m}^\mathsf{T} \mathsf{C}_\infty^* \mathbf{m})}},$$

which is invariant to projective transformation.

Proof: We have $(I' = H^{-T}I)$ and $(C^{*'} = HC^*H^T)$ under the point transformation $\mathbf{x}' = H\mathbf{x}$, hence the numerator transforms as

$$\mathbf{l}^\mathsf{T} \mathsf{C}^*_\infty \mathbf{m} \mapsto \mathbf{l}^\mathsf{T} \mathsf{H}^{-1} \mathsf{H} \mathsf{C}^*_\infty \mathsf{H}^\mathsf{T} \mathsf{H}^{-\mathsf{T}} \mathbf{m} = \mathbf{l}^\mathsf{T} \mathsf{C}^*_\infty \mathbf{m}.$$

It can be verified that the denominator terms also stay the same, and the scales of ${f l}$ and ${f m}$ cancel out.

Angles on the Projective Plane

• Lines **l** and **m** are orthogonal if $\mathbf{l}^{\mathsf{T}} \mathbf{C}_{\infty}^* \mathbf{m} = 0$.

Proof:

$$\cos \theta = \frac{\mathbf{l}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m}}{\sqrt{(\mathbf{l}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{l})(\mathbf{m}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m})}}$$

This is because $\cos\left(\frac{\pi}{2}\right) = 0$.

Metric rectification using C_{∞}^*

• Once the conic C_{∞}^* is identified on the projective plane then projective distortion may be rectified up to a similarity.

Proof:

If the point transformation is $\mathbf{x}' = H\mathbf{x}$, we have

$$\begin{array}{lll} {C_{\infty}^*}' & = & \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \, H_{\mathrm{S}} \right) \, {C_{\infty}^*} \, \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \, H_{\mathrm{S}} \right)^\mathsf{T} = \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \right) \left(H_{\mathrm{S}} \, {C_{\infty}^*} \, H_{\mathrm{S}}^\mathsf{T} \right) \left(H_{\mathrm{A}}^\mathsf{T} \, H_{\mathrm{P}}^\mathsf{T} \right) \\ & = & \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \right) \, {C_{\infty}^*} \, \left(H_{\mathrm{A}}^\mathsf{T} \, H_{\mathrm{P}}^\mathsf{T} \right) \\ & = & \left[\begin{array}{c} KK^\mathsf{T} & KK^\mathsf{T} \mathbf{v} \\ \mathbf{v}^\mathsf{T} KK^\mathsf{T} & \mathbf{v}^\mathsf{T} KK^\mathsf{T} \mathbf{v} \end{array} \right]. \end{array}$$

It is clear that image of C_{∞}^* gives the projective (\mathbf{v}) and affine (K) components, but not the similarity component.

Recall:
$$H = H_S H_A H_P = \begin{bmatrix} sR & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} K & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} I & \mathbf{0} \\ \mathbf{v}^T & v \end{bmatrix} = \begin{bmatrix} A & \mathbf{t} \\ \mathbf{v}^T & v \end{bmatrix}$$

Metric rectification using C_{∞}^*

• Given the identified C_{∞}^* in an image, i.e. $C_{\infty}'^*$, a suitable rectifying homography H can be found from the SVD of $C_{\infty}'^*$:

$$C_{\infty}^{*\prime} = U \begin{bmatrix} \sqrt{S} & 0 & 0 \\ 0 & \sqrt{S} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{S} & 0 & 0 \\ 0 & \sqrt{S} & 0 \\ 0 & 0 & 0 \end{bmatrix} U^{\top}$$
$$= C_{\infty}^{*}$$

- where the rectifying projectivity is H = U up to a similarity \sqrt{S} .
- S is the singular value of C'^*_{∞} .

Metric rectification using C_{∞}^*

• Note: In general C'^*_{∞} does not fulfil the rank-2 and repeated singular value constraint due to noisy measurements, i.e.

$$C_{\infty}^{*\prime} = U \begin{bmatrix} S_1 & 0 & 0 \\ 0 & S_2 & 0 \\ 0 & 0 & S_3 \end{bmatrix} U^{\mathsf{T}}.$$

• We can simply set $S_3 = 0$, and the $S_2 = S_1$. This gives C, the closest rank-2 matrix with repeated singular values to the measured $C_{\infty}^{*\prime}$, i.e.

$$\underset{C}{\operatorname{argmin}} \left\| \operatorname{C}_{\infty}^{*'} - \operatorname{C} \right\|_{F} \text{ s.t } \operatorname{rank}(C) = 2, \text{ and } S_{1} = S_{2}.$$
• $\|.\|_{F}$ denotes the Frobenius norm.

Identifying C_{∞}^{*} in an Image

Example 1: Metric rectification of an affinely rectified image

1. Affine rectification, i.e. removal of projective distortion H_p (seen earlier)

2. Metric rectification, i.e. removal of affine distortion H_A

Identifying C_{∞}^{*} in an Image

Example 1: Metric rectification of an affinely rectified image

We have seen that

$$C_{\infty}^{*}' = (H_{P} H_{A} H_{S}) C_{\infty}^{*} (H_{P} H_{A} H_{S})^{\mathsf{T}} = (H_{P} H_{A}) C_{\infty}^{*} (H_{A}^{\mathsf{T}} H_{P}^{\mathsf{T}}),$$

which can be written as

$$H_p^{-1}C'_{\infty}^*H_p^{-T} = H_AC_{\infty}^*H_A^T,$$

$$= C''_{\infty}^*$$

• where C''^*_{∞} is the image of the conic C^*_{∞} after removal of projective distortion.

Identifying C_{∞}^* in an Image

Example 1: Metric rectification of an affinely rectified image

- We can compute C''^*_{∞} and hence H_A from two pairs of orthogonal lines.
- Suppose the lines l', m' in the affinely rectified image correspond to an orthogonal line pair l, m on the world plane, we get:

$$\underbrace{\begin{pmatrix} \mathbf{l}^{\mathsf{T}} \mathbf{H}_{\mathsf{A}}^{-1} \end{pmatrix}}_{\mathbf{l}'^{\mathsf{T}}} \underbrace{\mathbf{H}_{\mathsf{A}}^{*} \mathbf{H}_{\mathsf{A}}^{\mathsf{T}} \left(\mathbf{H}_{\mathsf{A}}^{-\mathsf{T}} \mathbf{m} \right)}_{\mathbf{m}'} = 0 , \quad \mathbf{H}_{\mathsf{A}} = \begin{bmatrix} \mathbf{K} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1} \end{bmatrix}$$

$$\Rightarrow \left(\begin{array}{ccc} l_1' & l_2' & l_3' \end{array}\right) \left[\begin{array}{ccc} \mathtt{KK}^\mathsf{T} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{array}\right] \left(\begin{array}{c} m_1' \\ m_2' \\ m_3' \end{array}\right) = 0 \;, \quad \text{where we write $S_{2 \times 2} = \mathtt{KK}^\mathsf{T}$} \\ \text{with 3 independent elements.}$$

Identifying C_{∞}^{*} in an Image

Example 1: Metric rectification of an affinely rectified image

• Thus, the orthogonality constraint can be written as:

$$(l'_1m'_1, l'_1m'_2 + l'_2m'_1, l'_2m'_2)$$
 s = 0,

where $\mathbf{s} = (s_{11}, s_{12}, s_{22})^{T}$ is S written as a 3-vector.

- Two constraints from two orthogonal line pairs which may be stacked to give a 2 × 3 matrix with s determined as the null vector.
- Thus S, and hence K (therefore H_A), is obtained up to scale by Cholesky decomposition.

Identifying C_{∞}^* in an Image

Example 2: Metric rectification of perspective image of the plane (not affinely rectified).

Removal of projective and affine distortion H_pH_A

This can be achieved by identifying C_{∞}^{*} on the perspective image, i.e.

$$\mathbf{C}_{\infty}^{* \; \prime} \; = \; \left(\mathbf{H}_{\mathrm{P}} \, \mathbf{H}_{\mathrm{A}}\right) \mathbf{C}_{\infty}^{*} \left(\mathbf{H}_{\mathrm{A}}^{\mathsf{T}} \, \mathbf{H}_{\mathrm{P}}^{\mathsf{T}}\right) \; = \; \left[\begin{array}{cc} \mathbf{K} \mathbf{K}^{\mathsf{T}} & \mathbf{K} \mathbf{K}^{\mathsf{T}} \mathbf{v} \\ \mathbf{v}^{\mathsf{T}} \mathbf{K} \mathbf{K}^{\mathsf{T}} & \mathbf{v}^{\mathsf{T}} \mathbf{K} \mathbf{K}^{\mathsf{T}} \mathbf{v} \end{array}\right].$$

Identifying C_{∞}^* in an Image

Example 2: Metric rectification of perspective image of the plane (not affinely rectified).

• Each orthogonal pair of lines \mathbf{l}' , \mathbf{m}' on the perspective image gives the constraint:

$$(l'_1m'_1, (l'_1m'_2 + l'_2m'_1)/2, l'_2m'_2, (l'_1m'_3 + l'_3m'_1)/2, (l'_2m'_3 + l'_3m'_2)/2, l'_3m'_3) \mathbf{c} = 0$$

- where $\mathbf{c} = (a, b, c, d, e, f)^{\mathsf{T}}$ is C'_{∞}^* written as a 6-vector.
- Five such constraints can be stacked to form a 5×6 matrix, and \mathbf{c} , and hence C'_{∞}^* (therefore H_pH_A), is obtained as the null vector.

Stratification

 Note the two-step (remove projective then affine) and one-step (remove both) difference between example 1 and 2.

• The two-step approach is termed stratified.

- The plane at infinity has the canonical position $\pi_{\infty} = (0, 0, 0, 1)^{\mathsf{T}}$ in affine 3-space.
- It contains the directions $\mathbf{D} = (X_1, X_2, X_3, 0)^{\mathsf{T}}$, and enables the identification of affine properties such as parallelism, particularly:
- i. Two planes are parallel if, and only if, their line of intersection is on π_{∞} .
- ii. A line is parallel to another line, or to a plane, if the point of intersection is on $oldsymbol{\pi}_{\infty}$.

• The plane at infinity, π_{∞} , is a fixed plane under the projective transformation H if, and only if, H is an affinity, i.e.

$$\boldsymbol{\pi}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \boldsymbol{\pi}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \boldsymbol{\pi}_{\infty}$$

Remarks:

- 1. The plane π_{∞} is, in general, only fixed as a set under an affinity; it is not fixed pointwise.
- 2. Under a particular affinity (for example a Euclidean motion) there may be planes in addition to π_{∞} which are fixed. However, only π_{∞} is fixed under any affinity.

Example: Consider the Euclidean transformation represented

by the matrix

$$\mathbf{H}_{\mathrm{E}} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- This is a rotation by θ about the Z-axis with a zero translation, hence, there is a pencil of fixed planes orthogonal to the z-axis.
- The planes are fixed as sets, but not pointwise as any (finite) point (not on the axis) is rotated in horizontal circles by this Euclidean action.

Example continue:

 Algebraically, the fixed planes of H are the eigenvectors of H^T, i.e.

$$H^{-T}\mathbf{v} = \lambda \mathbf{v} \iff H^{-T}\boldsymbol{\pi} = \lambda \boldsymbol{\pi},$$

- λ , \mathbf{v} are the eigenvalues and eigenvectors of \mathbf{H}^{T} and \mathbf{H}^{T} .
- In this case, the eigenvalues and eigenvectors of H_E^T are $\{e^{i\theta},e^{-i\theta},1,1\}$ and

$$\mathbf{E}_1 = \begin{pmatrix} 1 \\ i \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{E}_2 = \begin{pmatrix} 1 \\ -i \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{E}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{E}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Example continue:

- The eigenvectors \mathbf{E}_1 and \mathbf{E}_2 are imaginary planes, and will not be discussed further.
- In addition to ${\bf E}_4$ (i.e. the plane at infinity), we can see that there is a pencil of fixed planes spanned by ${\bf E}_3$ and ${\bf E}_4$ under ${\bf H}_E$, i.e.

$$\boldsymbol{\pi} = \mu \mathbf{E}_3 + \lambda \mathbf{E}_4.$$

• We say that the eigenvectors \mathbf{E}_3 and \mathbf{E}_4 are degenerate.

Example continue:

• The axis of this pencil is the line of intersection of the planes (perpendicular to the Z-axis) with π_{∞} , and the pencil includes π_{∞} , i.e.

$$L^* = \begin{bmatrix} \mathbf{E}_3^{\mathsf{T}} \\ \mathbf{E}_4^{\mathsf{T}} \end{bmatrix}$$
, with null-space basis $(1,0,0,0)^{\mathsf{T}}$ and $(0,1,0,0)^{\mathsf{T}}$.

• $(1,0,0,0)^{\mathsf{T}}$ and $(0,1,0,0)^{\mathsf{T}}$ are ideal points that lie on π_{∞} , and hence \mathbf{E}_3 and \mathbf{E}_4 intersects at \mathbf{l}_{∞} .

- We will see in Lecture 6 that uncalibrated two-view reconstructions lead to projective ambiguity.
- The identified π_{∞} can be used to remove the projective ambiguity, where affine properties can be measured.

Image source: "Multiple View Geometry in Computer Vision", Richard Hartley and Andrew Zisserman

- The absolute conic, Ω_{∞} , is a (point) conic on π_{∞} .
- In a metric frame $\pi_{\infty}=(0,0,0,1)^{\mathsf{T}}$, and points on Ω_{∞} satisfy

$$\left. \begin{array}{c} X_1^2 + X_2^2 + X_3^2 \\ X_4 \end{array} \right\} = 0.$$

• Note that two equations are required to define Ω_{∞} .

• For directions on π_{∞} (i.e. points with $X_4=0$) the defining equation can be written

$$(X_1, X_2, X_3)I(X_1, X_2, X_3)^T = 0$$

- So that Ω_{∞} corresponds to a conic C with matrix C=I; it is thus a conic of purely imaginary points on π_{∞} .
- The conic Ω_{∞} is a geometric representation of the 5 additional degrees of freedom required to specify metric properties in an affine coordinate frame.

• The absolute conic, Ω_{∞} , is a fixed conic under the projective transformation H if, and only if, H is a similarity transformation.

Proof:

Since the absolute conic lies in π_{∞} , a transformation fixing it must fix π_{∞} , and hence must be affine, i.e.

$$\mathtt{H}_{\mathtt{A}} = \left[egin{array}{ccc} \mathtt{A} & \mathbf{t} \ \mathbf{0}^\mathsf{T} & \mathbf{1} \end{array}
ight].$$

At π_{∞} , $\Omega_{\infty} = I_{3\times 3}$, and since it is fixed by H_A , one has $A^{-\mathsf{T}}IA^{-1} = I$ (up to scale), and taking inverses gives $AA^{\mathsf{T}} = I$.

This means that A is orthogonal, hence a scaled rotation, or scaled rotation with reflection, i.e. similarity transform.

П

- Even though Ω_{∞} does not have any real points, it shares the properties of any conic:
- 1. The conic Ω_{∞} is only fixed as a set by a general similarity; it is not fixed pointwise.

Remark: This means that under a similarity a point on Ω_{∞} may travel to another point on Ω_{∞} , but it is not mapped to a point off the conic.

2. All circles intersect Ω_{∞} in two points.

Remark: Suppose the support plane of the circle is π . Then π intersects π_{∞} in a line, and this line intersects Ω_{∞} in two points. These two points are the circular points of π .

3. All spheres intersect ${m \pi}_{\infty}$ in Ω_{∞} .

• The angle between two lines with directions (3-vectors) \mathbf{d}_1 and \mathbf{d}_2 is given by:

$$\cos \theta = \frac{(\mathbf{d}_1^\mathsf{T} \Omega_\infty \mathbf{d}_2)}{\sqrt{(\mathbf{d}_1^\mathsf{T} \Omega_\infty \mathbf{d}_1)(\mathbf{d}_2^\mathsf{T} \Omega_\infty \mathbf{d}_2)}}$$

- where \mathbf{d}_1 and \mathbf{d}_2 are the points of intersection of the lines with the plane $\boldsymbol{\pi}_{\infty}$ containing the conic Ω_{∞} .
- And Ω_{∞} is the matrix representation of the absolute conic in that plane.
- Two directions \mathbf{d}_1 and \mathbf{d}_2 are orthogonal if $\mathbf{d}_1^{\mathsf{T}} \Omega_{\infty} \mathbf{d}_2 = 0$.

The Absolute Conic: Orthogonality and Polarity

- We will see in Lecture 5 that the imaged absolute conic can be used to recover the camera intrinsics, i.e. calibration.
- Furthermore, we will see in Lecture 6 that both the absolute conic and plane at infinity can be used to remove affine distortion, hence the metric properties can be measured.

Image source: "Multiple View Geometry in Computer Vision", Richard Hartley and Andrew Zisserman

- The dual of the absolute conic Ω_{∞} is a degenerate dual quadric in 3-space called the absolute dual quadric, and denoted by Q_{∞}^* .
- Geometrically Q_{∞}^* consists of the planes tangent to Ω_{∞} , so that Ω_{∞} is the "rim" of Q_{∞}^* , hence called a rim quadric.
- Algebraically Q_{∞}^* is represented by a 4 × 4 homogeneous matrix of rank 3, with the canonical form:

$$\mathbf{Q}_{\infty}^* = \left[\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 0 \end{array} \right].$$

- The dual quadric Q_{∞}^* is a degenerate quadric.
- There are 8 degrees of freedom (a symmetric matrix has 10 independent elements, but the irrelevant scale and zero determinant).

• The absolute dual quadric, Q_{∞}^* , is fixed under the projective transformation H if, and only if, H is a similarity.

Proof:

Since Q_{∞}^* is a dual quadric, it is fixed under H if and only if $Q_{\infty}^* = HQ_{\infty}^*H^{\mathsf{T}}$. Applying this with an arbitrary transform

$$\mathbf{H} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & k \end{bmatrix}, \, \mathbf{we} \, \mathbf{get} \, \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & k \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{A}^\mathsf{T} & \mathbf{v} \\ \mathbf{t}^\mathsf{T} & k \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{A}^\mathsf{T} & \mathbf{A}\mathbf{v} \\ \mathbf{v}^\mathsf{T}\mathbf{A}^\mathsf{T} & \mathbf{v}^\mathsf{T}\mathbf{v} \end{bmatrix}$$

Proof (continued):

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{A}^\mathsf{T} & \mathbf{A}\mathbf{v} \\ \mathbf{v}^\mathsf{T}\mathbf{A}^\mathsf{T} & \mathbf{v}^\mathsf{T}\mathbf{v} \end{bmatrix}$$

which must be true up to scale.

By inspection, this equation holds if and only if $\mathbf{v} = \mathbf{0}$ and A is a scaled orthogonal matrix (scaling, rotation and possible reflection).

In other words, H is a similarity transform.

П

• The plane at infinity π_{∞} is the null-vector of Q_{∞}^* .

Remarks:

This is easily verified when Q_{∞}^* has its canonical form in a metric frame since then, with $\pi_{\infty} = (0, 0, 0, 1)^{\mathsf{T}}$, $Q_{\infty}^* \pi_{\infty} = \mathbf{0}$.

This property holds in any frame as may be readily seen algebraically from the transformation properties of planes and dual quadrics: if $\mathbf{X}' = H\mathbf{X}$, then $Q_{\infty}^{*'} = HQ_{\infty}^{*} \ H^{\mathsf{T}}$, $\boldsymbol{\pi}_{\infty}{}' = H^{-\mathsf{T}}\boldsymbol{\pi}_{\infty}$, and

$$\mathbf{Q}_{\infty}^{*} \mathbf{\pi}_{\infty}' = (\mathbf{H} \mathbf{Q}_{\infty}^{*} \mathbf{H}^{\mathsf{T}}) \mathbf{H}^{-\mathsf{T}} \mathbf{\pi}_{\infty} = \mathbf{H} \mathbf{Q}_{\infty}^{*} \mathbf{\pi}_{\infty} = \mathbf{0}.$$

• The angle between two planes $oldsymbol{\pi}_1$ and $oldsymbol{\pi}_2$ is given by

$$\cos \theta = \frac{\boldsymbol{\pi}_1^\mathsf{T} \mathbf{Q}_\infty^* \boldsymbol{\pi}_2}{\sqrt{(\boldsymbol{\pi}_1^\mathsf{T} \mathbf{Q}_\infty^* \boldsymbol{\pi}_1) (\boldsymbol{\pi}_2^\mathsf{T} \mathbf{Q}_\infty^* \boldsymbol{\pi}_2)}}.$$

Proof:

Consider two planes with Euclidean coordinates $\pi_1 = (n_1^T, d_1)^T$, $\pi_2 = (n_2^T, d_2)^T$. In a Euclidean frame, Q_{∞}^* has the form

$$\mathbf{Q}_{\infty}^* = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{bmatrix}$$
, and we get $\cos \theta = \frac{\mathbf{n}_1^\mathsf{T} \mathbf{n}_2}{\sqrt{(\mathbf{n}_1^\mathsf{T} \mathbf{n}_1)(\mathbf{n}_2^\mathsf{T} \mathbf{n}_2)}}$

which is the angle between the planes expressed in terms of a scalar product of their normals.

Remarks:

If the planes and Q_{∞}^* are projectively transformed,

$$\cos \theta = \frac{\boldsymbol{\pi}_1^\mathsf{T} \boldsymbol{\mathsf{Q}}_\infty^* \boldsymbol{\pi}_2}{\sqrt{\left(\boldsymbol{\pi}_1^\mathsf{T} \boldsymbol{\mathsf{Q}}_\infty^* \boldsymbol{\pi}_1\right) \left(\boldsymbol{\pi}_2^\mathsf{T} \boldsymbol{\mathsf{Q}}_\infty^* \boldsymbol{\pi}_2\right)}}.$$

will still determine the angle between planes due to the (covariant) transformation properties of planes and dual quadrics.

Exercise: Prove it!

Summary

- Students should be able to:
 - 1. Represent points, planes, lines and quadrics in \mathbb{P}^3 .
 - Use line at infinity and/or circular points to remove affine and/or projective distortions.
 - 3. Describe the plane at infinity and its invariance under affine transformation.
 - 4. Describe the absolute conic (and its absolute dual quadrics) and its invariance under similarity transformation.

