Average Curvature FISTA for Nonconvex Smooth Composite Optimization Problems

Computational Results

Jiaming Liang

School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with Renato Monteiro

MOPTA, Lehigh University - August 2, 2021

Computational Results

 J. Liang and R. D. C. Monteiro. Average Curvature FISTA for Nonconvex Smooth Composite Optimization Problems. Available on arXiv:2105.06436, 2021.

- Assumptions
- Approximate solutions
- 2 Average Curvature FISTA
 - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA
- 3 Computational Results
- 4 Concluding Remarks

Computational Results

The Main Problem

- The Main Problem
 - Assumptions
 - Approximate solutions
- - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA

The main problem:

(P)
$$\min \{f(z) + h(z) : z \in \mathbb{R}^n\}$$

Computational Results

where

- $h \in C\overline{\text{onv}}(\mathbb{R}^n)$ and dom h has a finite diameter $D_{\mathcal{H}}$
- there exist scalars $m, M, L \ge 0$ and a compact convex set $\Omega \supset \operatorname{dom} h$ such that f is nonconvex and differentiable on Ω . and for every $z, z' \in \Omega$

$$\begin{split} \|\nabla f(z) - \nabla f(z')\| &\leq L \|z - z'\|, \\ -\frac{m}{2} \|z - z'\|^2 &\leq f(z) - \ell_f(z;z') \leq \frac{M}{2} \|z - z'\|^2 \end{split}$$
 where $\ell_f(z';z) := f(z) + \langle \nabla f(z), z' - z \rangle.$

Computational Results

- The Main Problem
 - Assumptions
 - Approximate solutions
- - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA

A necessary condition for \bar{z} to be a local minimizer of (P) is that

$$0 \in \nabla f(\bar{z}) + \partial h(\bar{z})$$

Goal: for given $\hat{\rho} > 0$, find a $\hat{\rho}$ -approximate solution of (P), i.e., a pair (\hat{z}, \hat{v}) such that

$$\hat{\mathbf{v}} \in \nabla f(\hat{\mathbf{z}}) + \partial h(\hat{\mathbf{z}}), \quad \|\hat{\mathbf{v}}\| \leq \hat{\rho}$$

There are a couple of ACG methods which accomplishes the above goal (e.g., Ghadimi and Lan's AG method [1]). This talk describes a different and novel ACG method for doing that.

- The Main Problem
 - Assumptions
 - Approximate solutions
- 2 Average Curvature FISTA
 - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA
- Computational Results
- Concluding Remarks

ACG methods compute the next iterate as

$$z_{k+1} = z(\tilde{x}_k; M_k) := \operatorname{argmin}_z \left\{ \ell_f(z; \tilde{x}_k) + h(z) + \frac{M_k}{2} \|z - \tilde{x}_k\|^2 \right\}$$

Computational Results

where

$$M_k \ge \mathcal{C}(z_{k+1}; \tilde{x}_k) := \frac{2[f(z_{k+1}) - \ell_f(z_{k+1}; \tilde{x}_k)]}{\|z_{k+1} - \tilde{x}_k\|^2} \quad (*)$$

Fact: small M_k leads to fast convergence

- Constant estimate: $M_k = L$
- Adaptive estimate: $M_k \leftarrow \tau M_k$ for some $\tau > 1$, if (*) is not satisfied

ACG methods compute the next iterate as

$$z_{k+1} = z(\tilde{x}_k; M_k) := \operatorname{argmin}_z \left\{ \ell_f(z; \tilde{x}_k) + h(z) + \frac{M_k}{2} \|z - \tilde{x}_k\|^2 \right\}$$

where

$$M_k \ge \mathcal{C}(z_{k+1}; \tilde{x}_k) := \frac{2[f(z_{k+1}) - \ell_f(z_{k+1}; \tilde{x}_k)]}{\|z_{k+1} - \tilde{x}_k\|^2} \quad (*)$$

Fact: small M_k leads to fast convergence

- Constant estimate: $M_k = L$
- Adaptive estimate: $M_k \leftarrow \tau M_k$ for some $\tau > 1$, if (*) is not satisfied

Matrix completion: function, gradient and resolvent evaluations require SVD

Motivation

We will exploit the novel idea of choosing M_k as

$$M_k = \frac{\sum_{i=0}^{k-1} \mathcal{C}(z_{i+1}; \tilde{x}_i)}{k \, \alpha}$$

where $\alpha \in (0,1)$

Note: No search for M_k is involved here! $M_k \ge C(z_{k+1}; \tilde{x}_k)$ might be violated.

Computational Results

- - Assumptions
 - Approximate solutions
- Average Curvature FISTA
 - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA

- 0. Let $\alpha, \gamma \in (0,1)$, tolerance $\hat{\rho} > 0$ and initial point $z_0 \in \text{dom } h$ be given; set $A_0 = 0$, $x_0 = z_0$, $M_0 = \gamma M$ and k = 0
- 1. compute

$$a_k = rac{1 + \sqrt{1 + 4M_kA_k}}{2M_k}, \quad A_{k+1} = A_k + a_k, \quad \tilde{x}_k = rac{A_kz_k + a_kx_k}{A_{k+1}};$$

2. compute

$$\begin{aligned} x_{k+1} &= \operatorname{argmin}_u \left\{ a_k \left(\ell_f(u; \tilde{x}_k) + h(u) \right) + \frac{1}{2} \| u - x_k \|^2 \right\} \\ z_{k+1}^g &= \operatorname{argmin}_u \left\{ \ell_f(u; \tilde{x}_k) + h(u) + \frac{M_k}{2} \| u - \tilde{x}_k \|^2 \right\} \\ v_{k+1} &= M_k (\tilde{x}_k - z_{k+1}^g) + \nabla f(z_{k+1}^g) - \nabla f(\tilde{x}_k) \end{aligned}$$
 if $\| v_{k+1} \| \leq \hat{\rho}$ then output $(\hat{z}, \hat{v}) = (z_{k+1}^g, v_{k+1})$ and stop ;

compute

$$C_{k} = \max \left\{ \mathcal{C}(z_{k+1}^{g}; \tilde{x}_{k}), \mathcal{L}(z_{k+1}^{g}; \tilde{x}_{k}) \right\}, \quad \mathcal{L}(z; \tilde{x}) = \frac{\|\nabla f(z) - \nabla f(\tilde{x})\|}{\|z - \tilde{x}\|}$$

$$M_{k+1} = \max \left\{ \gamma M, \frac{\sum_{j=0}^{k} C_{j}}{\alpha(k+1)} \right\},$$

Computational Results

4. set

$$z_{k+1} = \begin{cases} z_{k+1}^g & \text{if } C_k \le 0.9M_k & \leftarrow \text{good iteration} \\ \frac{A_k z_k + a_k x_{k+1}}{A_{k+1}} & \text{otherwise} & \leftarrow \text{bad iteration} \end{cases}$$

and $k \leftarrow k + 1$, and go to step 1

Remarks:

AC-ACG method

 Both good and bad iterations perform well-known types of acceleration steps Good: mimics the condition in standard ACG methods $M_k > \mathcal{C}(z_{k+1}; \tilde{x}_k)$

If

$$\frac{1}{\alpha} \ge 1 + \frac{1}{\gamma}$$

then it can be shown that the proportion of good iterations is at least 2/3

- Every iteration performs two resolvent evaluations
- Numerical results suggest removing the curvature $\mathcal{L}(z_{\nu+1}^g; \tilde{x}_k)$

- - Assumptions
 - Approximate solutions
- Average Curvature FISTA
 - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA

AC-FISTA in contrast to AC-ACG

AC-ACG computes:

$$\begin{aligned} x_{k+1} &= \mathsf{argmin}_u \left\{ a_k \left(\ell_f(u; \tilde{x}_k) + h(u) \right) + \frac{1}{2} \| u - x_k \|^2 \right\} \\ z_{k+1}^g &= z(\tilde{x}_k; M_k) = \mathsf{argmin}_u \left\{ \ell_f(u; \tilde{x}_k) + h(u) + \frac{M_k}{2} \| u - \tilde{x}_k \|^2 \right\} \\ C_k &= \mathsf{max} \left\{ \mathcal{C}(z_{k+1}^g; \tilde{x}_k), \mathcal{L}(z_{k+1}^g; \tilde{x}_k) \right\} \end{aligned}$$

Computational Results

AC-FISTA computes:

$$z_{k+1}^g = z(\tilde{x}_k; M_k), \quad C_k = \mathcal{C}(z_{k+1}^g; \tilde{x}_k),$$

Good and bad iterations

If $C_k < 0.9 M_k$, compute

$$x_{k+1}^{g} = P_{\Omega} \left(a_k M_k z_{k+1}^{g} - \frac{A_k}{a_k} z_k \right), \quad \leftarrow \text{good iteration}$$

Computational Results

and set $x_{k+1} = x_{k+1}^g$ and $z_{k+1} = z_{k+1}^g$; otherwise, compute

$$x_{k+1}^b = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ a_k [\ell_f(u; \tilde{x}_k) + h(u)] + \frac{1}{2} \|u - x_k\|^2 \right\}, \quad \leftarrow \text{bad iteration}$$

$$z_{k+1} = \frac{A_k z_k + a_k x_{k+1}^b}{A_{k+1}}$$

AC-FISTA

If $C_k < 0.9 M_k$, compute

$$x_{k+1}^g = P_{\Omega} \left(a_k M_k z_{k+1}^g - \frac{A_k}{a_k} z_k \right), \quad \leftarrow \text{good iteration}$$

Computational Results

and set $x_{k+1} = x_{k+1}^g$ and $z_{k+1} = z_{k+1}^g$; otherwise, compute

$$x_{k+1}^b = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ a_k [\ell_f(u; \tilde{x}_k) + h(u)] + \frac{1}{2} \|u - x_k\|^2 \right\}, \quad \leftarrow \text{bad iteration}$$

and set $x_{k+1} = x_{k+1}^b$ and

$$z_{k+1} = \frac{A_k z_k + a_k x_{k+1}^b}{A_{k+1}}$$

Remarks:

If

$$\frac{1}{\alpha} \ge 1 + \frac{1}{\gamma}$$

then it can be shown that the proportion of good iterations is at least 2/3

- The good iteration is performing a FISTA update
- \bullet Good iterations: one resolvent evaluation + one projection onto Ω

Bad iterations: two resolvent evaluations

• AC-FISTA uses curvature $C(z_{k+1}^g; \tilde{x}_k)$ instead of $\max \{C(z_{k+1}^g; \tilde{x}_k), \mathcal{L}(z_{k+1}^g; \tilde{x}_k)\}$

Computational Results

The Main Problem

- The Main Problem
 - Assumptions
 - Approximate solutions
- 2 Average Curvature FISTA
 - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA
- 3 Computational Results
- Concluding Remarks

Define the index sets for the good and bad iterations as

$$\mathcal{G} := \{k \ge 0 : C_k \le 0.9 M_k\}, \quad \mathcal{B} := \{k \ge 0 : C_k > 0.9 M_k\}.$$

Computational Results

- Condition A: There exist $k_0 \in \mathbb{N}_+$ such that $|\mathcal{B}_k| \le k/3$ for every $k \geq k_0$ where $\mathcal{B}_k := \{i \in \mathcal{B} : i \leq k-1\}$ for every $k \geq 1$.
- Define

$$M_k^{hm} := \frac{k}{\sum_{i=0}^{k-1} \frac{1}{M_i}}, \quad L_k^{avg} := \frac{1}{k} \sum_{i=0}^{k-1} \mathcal{L}(y_{i+1}^g; \tilde{x}_i),$$

and let

$$\theta_k := \frac{M_k}{M_k^{hm}}, \quad au_k := \frac{L_k^{avg}}{M_k}.$$

$\mathsf{Theorem}$

Then, the following statements hold:

- (a) for every $k \geq 1$, we have $v_k \in \nabla f(z_k^g) + \partial h(z_k^g)$;
- (b) if Condition A holds, then for every $k \ge \max\{12, k_0\}$,

$$egin{aligned} \min_{1 \leq i \leq k} \|v_i\| &= \ \mathcal{O}\left((1+ au_k)\left[rac{M_k d_0}{k^{3/2}} + \left(\sqrt{ar{M}} + \sqrt{ar{m}}
ight)rac{\sqrt{M_k heta_k} D_\Omega}{k} + rac{\sqrt{ar{m}M_k heta_k} D_\mathcal{H}}{\sqrt{k}}
ight]
ight) \end{aligned}$$

Computational Results

where D_{Ω} and $D_{\mathcal{H}}$ denote the diameters of Ω and dom h, respectively.

Corollary

If Condition A holds, then for every $k \geq 1$,

$$\frac{k-1}{2k} \leq \theta_k \leq \frac{M_k}{\gamma M} = \mathcal{O}\left(\frac{1}{\alpha \gamma}\right), \quad \tau_k \leq \frac{\overline{L}}{\gamma M},$$

and, as a consequence,

$$\min_{1 \le i \le k} \|v_i\| = \mathcal{O}\left(\left(1 + \frac{\bar{L}}{\gamma M}\right) \left[\frac{M d_0}{\alpha k^{3/2}} + \left(\sqrt{\bar{M}} + \sqrt{\bar{m}}\right) \frac{\sqrt{M} D_{\Omega}}{\alpha \sqrt{\gamma} k} + \frac{\sqrt{\bar{m}} M D_{\mathcal{H}}}{\alpha \sqrt{\gamma} \sqrt{k}}\right]\right).$$

Dependence on α, γ is

$$\mathcal{O}\left(\frac{1}{\alpha \gamma^{3/2}}\right)$$
.

- The Main Problem
 - Assumptions
 - Approximate solutions
- 2 Average Curvature FISTA
 - Motivation
 - AC-ACG method
 - AC-FISTA
 - Convergence rate bounds
 - A practical AC-FISTA
- 3 Computational Results
- Concluding Remarks

• Interesting case: α large (e.g., 0.5), and γ small (e.g., 10^{-6}) $(0.5, 10^{-6})$ -AC-FISTA forces M_{k} to be small.

Computational Results

$$M_{k+1} = \max \left\{ \gamma M, \frac{\sum_{j=0}^{k} C_j}{\alpha(k+1)} \right\}$$

- $\mathcal{O}(\alpha^{-1}\gamma^{-3/2})$ is obtained by using conservative estimates $\theta_k = \mathcal{O}(\alpha^{-1}\gamma^{-1})$ and $\tau_k = \mathcal{O}(\gamma^{-1})$
- In practice, $\theta_k = \mathcal{O}(1)$ and $\tau_k = \mathcal{O}(1)$, and the convergence rate bound reduces to

$$\min_{1 \le i \le k} \|v_i\| = \mathcal{O}\left(\frac{M_k d_0}{k^{3/2}} + \left(\sqrt{\bar{M}} + \sqrt{\bar{m}}\right) \frac{\sqrt{M_k} D_{\Omega}}{k} + \frac{\sqrt{\bar{m} M_k} D_{\mathcal{H}}}{\sqrt{k}}\right)$$

Computational Results

Restart variant of AC-FISTA: whenever $k \in \mathcal{G}$ and $\phi(z_{k+1}) \geq \phi(z_k)$, rejects z_{k+1} , sets $x_k = z_k$ and $A_k = 0$, and repeats the k-th iteration. AC-FISTA (AF) and its restart variant AF(R) described above were benchmarked against

- UPFAG (UP) [2] by Ghadimi, Lan and Zhang (backtracking)
- ADAP-NC-FISTA (AD) [4] by L., Monteiro and Sim (backtracking)
 - and its restart variant, AD(R)
- AC-ACG (AC) [3] by L. and Monteiro (average curvature)
 - and its restart variant, AC(R)

on three problems.

All methods stop with a pair (z, v) satisfying

$$v \in \nabla f(z) + \partial h(z), \qquad \frac{\|v\|}{\|\nabla f(z_0)\| + 1} \le \hat{\rho}$$

1st Problem (Constrained matrix completion)

$$\min \left\{ \frac{1}{2} \|\Pi_{\mathcal{Q}}(Z - O)\|_F^2 + \mu \sum_{i=1}^r p(\sigma_i(Z)) : Z \in \mathcal{B}_R \right\}$$

where $O \in \mathbb{R}^{\Omega}$ is an incomplete observed matrix, $r := \min\{I, n\}$, $\sigma_i(Z)$ is the *i*-th singular value of Z, $\mathcal{B}_R = \{Z \in \mathbb{R}^{I \times n} : \|Z\|_F \leq R\}$ and

$$p(t) = p_{eta, heta}(t) := eta \log \left(1 + rac{|t|}{ heta}
ight).$$

Table: Matrix completion datasets

Dataset	Users (1)	Items (n)	Ratings	Density	Scale
MovieLens 100K	943	1682	100000	6.30%	[1,5]
FilmTrust	1508	2071	35497	1.14%	[0.5,4.0]

Concluding Remarks

			Fur	nction \	/alue /		
m			lter	ation C	Count /		
			Rur	ning T	ime (s)		
	UP	AD	AC	AF	AD(R)	AC(R)	AF(R)
4.4	2605	2625	2288	1836	2625	2240	1912
	521	1674	765	375	1674	718	305
	1545	1946	923	287	1946	851	245
8.9	4261	4203	3884	3617	4203	3914	3797
	576	1794	968	291	1794	896	241
	1621	1930	1173	233	1930	1057	208
20	4637	4582	4267	4098	4582	4358	4164
	676	2209	1079	260	2209	1028	304
	1914	2364	1236	212	2364	1210	267
30	6753	6293	5975	5333	6293	5958	5524
	606	1963	1085	505	1963	1205	413
	1628	2104	1263	417	2104	1687	349

Table: Solving MC with FilmTrust

Computational Results

			Fur	nction \	/alue /		
m			lter	ation C	ount /		
			Run	ning T	ime (s)		
	UP	AD	AC	AF	AD(R)	AC(R)	AF(R)
4.4	1050	1069	959	849	1069	981	804
	584	2025	836	347	2025	796	586
	6460	9063	3559	991	9063	3321	1753
8.9	1814	1854	1769	1538	1854	1701	1516
	634	2410	1050	469	2410	1198	753
	7130	11171	4617	1334	11171	4939	2198
20	2120	2064	2016	1739	2064	2008	1777
	630	2665	1015	676	2665	1100	528
	7214	12701	4656	1959	12701	4582	1617
30	2980	2917	2845	2593	2917	2845	2593
	559	2365	1086	533	2365	1086	533
	6244	11205	4824	1582	11205	4518	1582

m		AF		AF(R)			
	$ar{ heta}_{m{k}}$	$ar{ au}_k$	$ \mathcal{B}_k /k$	$ar{ heta}_{m{k}}$	$ar{ au}_k$	$ \mathcal{B}_k /k$	
4.4	1.07	1.23	6%	1.12	1.20	4%	
8.9	1.04	1.53	8%	1.02	1.48	10%	
20	0.97	2.16	9%	1.00	1.88	13%	
30	1.02	2.49	7%	1.02	2.40	11%	

Table: Statistics of $\bar{\theta}_k$, $\bar{\tau}_k$ and $|\mathcal{B}_k|$ for FilmTrust 100K

m		AF		AF(R)			
	$ar{ heta}_k$	$ar{ au}_k$	$ \mathcal{B}_k /k$	$\bar{\theta}_k$	$ar{ au}_k$	$ \mathcal{B}_k /k$	
4.4	1.09	1.25	10%	1.11	1.21	9%	
8.9	1.02	1.55	6%	0.99	1.61	6%	
20	1.04	2.07	8%	1.06	2.07	9%	
30	1.04	2.59	11%	1.04	2.59	11%	

$$\min \left\{ f(Z) := -\frac{\xi}{2} \|D\mathcal{B}(Z)\|^2 + \frac{\tau}{2} \|\mathcal{A}(Z) - b\|^2 : z \in P_n \right\}$$

where P_n is the unit spectraplex, i.e.,

$$P_n := \left\{ Z \in \mathcal{S}^n_+ : \operatorname{tr}(Z) = 1 \right\},\,$$

 $\mathcal{A}: S^n_+ o \mathbb{R}^\ell$ and $\mathcal{B}: S^n_+ o \mathbb{R}^p$ are linear operators, $D \in \mathbb{R}^{p \times p}$ is a positive diagonal matrix, and $b \in \mathbb{R}^{\ell}$ is a vector.

Table: Quadratic programming datasets

Dataset	1	n	Density d
QP-1	50	200	2.5%
QP-2	50	400	0.5%

Concluding Remarks

	Iteration Count /									
m			Rur	ning T	ime (s)					
	UP	AD	AC	AF	AD(R)	AC(R)	AF(R)			
10 ⁶	9	12	10	18	23	10	15			
	0.7	0.7	0.5	0.6	0.7	0.5	0.5			
10 ⁵	2633	2206	1054	947	787	1054	419			
	261	89	43	30	33	43	14			
10 ⁴	7203	2591	1678	1744	1573	1678	601			
	705	104	68	55	66	68	20			
10 ³	5429	2637	1464	2000	1552	1464	773			
	540	109	60	63	65	60	26			
10 ²	6891	2639	1420	1687	1666	1420	736			
	653	116	58	52	69	58	25			
10	6479	2640	1424	1804	1675	1424	785			
	613	116	58	56	69	58	26			

Table: Solving QP with QP-2

	Iteration Count /									
m			Rui	nning T	ime (s)					
	UP	AD	AC	AF	AD(R)	AC(R)	AF(R)			
10 ⁶	10	12	10	17	23	10	14			
	1.9	1.8	1.2	1.5	1.8	1.2	1.3			
10 ⁵	56	530	142	140	292	142	140			
	13	56	16	12	30	16	12			
10 ⁴	105	868	320	195	364	320	182			
	26	93	36	17	38	36	17			
10 ³	115	900	271	187	384	271	164			
	29	103	29	16	40	29	15			
10 ²	119	904	300	216	385	300	179			
	32	103	33	19	40	33	16			
10	113	904	274	221	385	274	177			
	31	104	30	19	40	30	16			

m		AF		AF(R)			
	$ar{ heta}_{m{k}}$	$ar{ au}_{k}$	$ \mathcal{B}_k /k$	$ar{ heta}_{m{k}}$	$ar{ au}_{k}$	$ \mathcal{B}_k /k$	
10 ⁵	0.92	1.22	13%	1.04	1.24	15%	
10 ⁴	1.07	1.05	7%	1.07	1.05	13%	
10 ³	0.99	1.14	5%	0.99	1.14	13%	
10 ²	1.02	1.07	5%	1.02	1.07	18%	
10	1.00	1.10	5%	1.00	1.10	10%	

m	AF			AF(R)			
	$ar{ heta}_{m{k}}$	$ar{ au}_{k}$	$ \mathcal{B}_k /k$	$ar{ heta}_{m{k}}$	$ar{ au}_{k}$	$ \mathcal{B}_k /k$	
10 ⁵	0.60	3.08	13%	0.60	3.08	13%	
10 ⁴	0.68	2.29	18%	0.72	2.16	15%	
10 ³	0.69	2.38	16%	0.74	2.14	15%	
10 ²	0.69	2.40	14%	0.73	2.17	15%	
10	0.69	2.40	14%	0.73	2.17	15%	

3rd Problem (SVM)

$$\min_{z \in \mathbb{R}^n} \left\{ f(z) := \frac{1}{p} \sum_{i=1}^p \ell(x_i, y_i; z) + \frac{\lambda}{2} ||z||^2 : z \in B_r \right\},\,$$

for some $\lambda, r > 0$, where $x_i \in \mathbb{R}^n$ is a feature vector, $y_i \in \{1, -1\}$ denotes the corresponding label, $\ell(x_i, y_i; \cdot) = 1 - \tanh(y_i \langle \cdot, x_i \rangle)$ is a nonconvex sigmoid loss function and $B_r := \{z \in \mathbb{R}^n : ||z|| \le r\}$.

Table: SVM datasets

Dataset	n	р	λ	М
SVM-1	1000	500	0.002	13
SVM-2	2000	1000	0.001	25
SVM-3	3000	1000	0.001	38
SVM-4	4000	500	0.002	50

Dataset		Iteration Count /							
Dataset			Rui	nning T	ime (s)				
	UP	AD	AC	AF	AD(R)	AC(R)	AF(R)		
SVM-1	130	12274	546	545	12274	342	342		
	8	188	6	6	188	5	4		
SVM-2	278	21127	1131	1130	21127	392	366		
	39	1836	81	67	1836	30	26		
SVM-3	401	71991	1035	1034	71991	290	291		
	97	8957	109	92	8957	34	31		
SVM-4	247	12450	665	664	12450	210	210		
	44	1033	47	37	1033	11	10		

Dataset	AF			AF(R)		
	$\bar{\theta}_{k}$	$ar{ au}_{k}$	$ \mathcal{B}_k /k$	$ar{ heta}_{m{k}}$	$ar{ au}_{k}$	$ \mathcal{B}_k /k$
SVM-1	2.71	0.57	32%	2.32	0.56	42%
SVM-2	8.51	0.60	35%	1.93	0.54	40%
SVM-3	1.86	0.59	37%	1.75	0.53	41%
SVM-4	2.32	0.55	32%	1.83	0.56	41%

- AC-FISTA is a FISTA-type ACG variant of the AC-ACG method proposed in [3], which is an ACG method based on the average of the previously observed curvatures.
- AC-FISTA does not require any line search for M_k .
- Using $C(z_{k+1}^g; \tilde{x}_k)$ instead of $\max \{C(z_{k+1}^g; \tilde{x}_k), L(z_{k+1}^g; \tilde{x}_k)\}$
- Good iterations: one resolvent evaluation, bad iterations: two resolvent evaluations
 In practice, one resolvent evaluation per iteration on average

- A practical AC-FISTA variant substantially outperforms previous ACG variants as well as the theoretical and practical AC-ACG variants
- Establish a convergence rate bound in terms of the average observed curvatures (novel result)
- Convergence rate analysis of the restart variant

THE END

Thanks!

Accelerated gradient methods for nonconvex nonlinear and stochastic programming.

Math. Programming, 156:59-99, 2016.

S. Ghadimi, G. Lan, and H. Zhang. Generalized uniformly optimal methods for nonlinear programming.

Journal of Scientific Computing, 79(3):1854–1881, 2019.

J. Liang and R. D. C. Monteiro. An average curvature accelerated composite gradient method for nonconvex smooth composite optimization problems. SIAM Journal on Optimization, 31(1):217–243, 2021.

J. Liang, R. D. C. Monteiro, and C.-K. Sim. A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems.

Computational Optimization and Applications, 79(3):649–679, 2021.