$Total \# of \ questions = 7. \ Total \# Points = 120.$

1. [10 points]2.5 points each (a) F (b) F (c) F (d) T

2. [15 points] 2.5 points each.

- a) F. Since $g(n_7) + h(n_7) = f(n_7)$ and both n_7 and G_1 are along the optimal path, $f(G_1)$ must be greater than or equal to $f(n_7)$.
- b) F. Since n_5 and n_7 are along two different paths, their path costs are unrelated.
- c) T. From the definition of consistent functions.
- d) T. Since $g(G_1) = f(G_1)$ and G_2 is a suboptimal goal node.
- e) T. Since n_5 is a descendent of n_2 along the same path.
- f) T. Since n_7 is along the optimal path, $f(n_7) \le f(G_1) < f(G_3)$.

3. [15 points]

- a) **3 points** $h(n) = 0.1 \times straight line distance to goal.$
- b) 12 points Labelling of the goal node is optional.

4. [20 points]

a) 12 points Labelling of the goal node is optional.

- b) 4 points. No, $W \times h(n)$ with W = 1.1 is not admissible.
- c) 2 points. Yes, the solution is optimal.
- d) 2 points. Yes, weighted A* is more efficient in this example since the tree generated by weighted A* has less nodes.

5. [20 points]

a) 15 points. Labelling of the goal node is optional.

- b) 5 points The number of entries is the same as the number of nodes in the tree = 10.
- **6.** [20 points] Let $n = n_i$. A heuristic h(n) is consistent means that for every node n_i and every successor n_{i+1} of n_i generated by an action a, the following inequality is satisfied

$$h(n_i) \le c(n_i, a, n_{i+1}) + h(n_{i+1})$$

Let the optimal goal node $G = n_g$. Apply the above inequality from node n_i to n_g along the optimal path repeatedly, we have

$$h(n_i) \le c(n_i, a, n_{i+1}) + h(n_{i+1})$$

$$\begin{split} & \leq c(n_i,a,n_{i+1}) + c(n_{i+1},a,n_{i+2}) + h(n_{i+2}) \\ & \leq c(n_i,a,n_{i+1}) + c(n_{i+1},a,n_{i+2}) + c(n_{i+2},a,n_{i+3}) + h(n_{i+3}) \\ & \leq \cdots \\ & \leq c(n_i,a,n_{i+1}) + c(n_{i+1},a,n_{i+2}) + c(n_{i+2},a,n_{i+3}) + \cdots + c(n_{g-1},a,n_g) + h(n_g) \end{split}$$

Since $h(n_g) = 0$, we have

$$h(n_i) \le c(n_i, a, n_{i+1}) + c(n_{i+1}, a, n_{i+2}) + c(n_{i+2}, a, n_{i+3}) + \dots + c(n_{g-1}, a, n_g)$$

= $h^*(n_i)$ = optimal cost from node n_i to goal n_g .

Therefore, h(n) is admissible.

7. [20 points] Best action returned is A_{3} .

