ЛАБОРАТОРНАЯ РАБОТА №137 ИССЛЕДОВАНИЕ ХОЛОДИЛЬНИКА ПЕЛЬТЬЕ

Поляков Даниил, Б23-Ф3

Цель работы: экспериментально определить параметры холодильника Пельтье, определить значение тока, соответствующего максимальной разнице температур при работе прибора в качестве холодильника, определить максимальную разность температур, которую можно при этом получить; оценить «ток разрушения» при работе прибора в качестве нагревателя.

Оборудование:

- Модуль Пельтье;
- Вентилятор с радиатором;
- Термопара;
- Резистор с сопротивлением R = 5.1 Ом;
- Цифровой вольтметр В7 65/3;
- Два источника тока;
- Набор соединительных проводов.

Расчётные формулы:

• Термоэдс термопары ϵ и напряжение на модуле Пельтье U:

$$\varepsilon = AI - BI^{2} + \frac{\alpha'}{K}S$$

$$U = CI - DI^{2} + \frac{\alpha}{K}S$$

$$A = \frac{\alpha'}{K}\Pi_{1}$$

$$B = \frac{\alpha'}{K} \left(\frac{R}{2} + \frac{\alpha}{K}\Pi_{1}\right)$$

$$C = R + \frac{\alpha}{K}\Pi_{1}$$

$$D = \frac{\alpha}{K} \left(\frac{R}{2} + \frac{\alpha}{K}\Pi_{1}\right)$$

I — сила тока, проходящего через модуль Пельтье;

S – члены ряда порядка I^3 и выше;

 α' – коэффициент термоэдс термопары;

K – теплопроводность модуля Пельтье;

R – сопротивление модуля Пельтье;

 α – коэффициент термоэдс модуля Пельтье;

 Π_1 – коэффициент Пельтье модуля Пельтье при комнатной температуре T_1 .

• Сопротивление модуля Пельтье:

$$R = C - \frac{A}{B}D$$

• Коэффициент Пельтье модуля Пельтье при комнатной температуре:

$$\Pi_1 = \frac{A}{2B} \left(C + \frac{A}{B} D \right)$$

• Коэффициент термоэдс модуля Пельтье:

$$\alpha = \frac{1}{T_1} \frac{A}{2B} \left(C + \frac{A}{B} D \right)$$

 $T_{\it 1}$ – комнатная температура.

• Теплопроводность модуля Пельтье:

$$K = \frac{1}{T_1} \frac{A}{4BD} \left(C + \frac{A}{B} D \right)^2$$

 T_1 – комнатная температура.

• Коэффициент термоэдс термопары:

$$\alpha' = \frac{1}{T_1} \frac{A}{2D} \left(C + \frac{A}{B}D \right)$$

 T_{1} – комнатная температура.

 Сила тока, соответствующая максимальной разности температур при работе прибора в качестве холодильника:

2

$$I_{max} \approx \frac{\Pi_1}{R}$$

 Π_1 — коэффициент Пельтье модуля Пельтье при комнатной температуре;

R – сопротивление модуля Пельтье.

• Максимальная разность температур при работе прибора в качестве холодильника:

$$\Delta T_{max} \approx \frac{\Pi_1^2}{2 \ KR}$$

 Π_1 – коэффициент Пельтье модуля Пельтье при комнатной температуре;

R – сопротивление модуля Пельтье;

K – Теплопроводность модуля Пельтье.

• «Ток разрушения» прибора:

$$I_{pasp} = -\frac{K}{\alpha}$$

K – теплопроводность модуля Пельтье; α – коэффициент термоэдс модуля Пельтье.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta f\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},\ldots\right) = \sqrt{\left(\frac{\partial f}{\partial \boldsymbol{x}_{1}}\cdot\Delta\boldsymbol{x}_{1}\right)^{2} + \left(\frac{\partial f}{\partial \boldsymbol{x}_{2}}\cdot\Delta\boldsymbol{x}_{2}\right)^{2} + \ldots}} \\ & \circ \Delta R = \sqrt{\left(\frac{\partial R}{\partial A}\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{\partial R}{\partial B}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{\partial R}{\partial C}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{\partial R}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2}} = \\ & = \sqrt{\left(\frac{D}{B}\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{AD}{B^{2}}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\Delta\boldsymbol{C}\right)^{2} + \left(\frac{A}{B}\cdot\Delta\boldsymbol{D}\right)^{2}} \\ & \circ \Delta\boldsymbol{\Pi}_{1} = \sqrt{\left(\frac{\partial \Pi_{1}}{\partial A}\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{\partial \Pi_{1}}{\partial B}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{\partial \Pi_{1}}{\partial C}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{\partial \Pi_{1}}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2}} \\ & = \frac{1}{2}\sqrt{\left(\left(\frac{C}{B} + \frac{2AD}{B^{2}}\right)\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{AC}{B}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{\partial \alpha}{\partial C}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{\partial \alpha}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{A^{2}}{B^{2}}\cdot\Delta\boldsymbol{D}\right)^{2}} \\ & \circ \Delta\boldsymbol{\alpha} = \sqrt{\left(\frac{\partial \alpha}{\partial A}\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{\partial \alpha}{\partial B}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{\partial \alpha}{\partial C}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{\partial \alpha}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{\partial \alpha}{\partial T_{1}}\cdot\Delta\boldsymbol{T}_{1}\right)^{2}} \\ & = \frac{1}{2}\sqrt{\left(\frac{1}{T_{1}}\left(\frac{C}{B} + 2\frac{AD}{B^{2}}\right)\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{1}{T_{1}}\left(\frac{AC}{B^{2}} + 2\frac{A^{2}D}{B^{3}}\right)\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{A}{T_{1}B}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{A^{2}}{\partial T}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{1}{T_{1}}\left(\frac{AC}{B} + \frac{A^{2}D}{B^{2}}\right)\cdot\Delta\boldsymbol{T}_{1}\right)^{2}} \\ & \circ \Delta\boldsymbol{K} = \sqrt{\left(\frac{\partial K}{\partial A}\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{\partial K}{\partial B}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{\partial K}{\partial C}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{\partial K}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{\partial K}{\partial T_{1}}\cdot\Delta\boldsymbol{T}_{1}\right)^{2}} \\ & = \frac{1}{4}\sqrt{\left(\frac{1}{1}\left(\frac{C^{2}}{B^{2}} + \frac{A^{2}D}{B^{2}}\right)\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{\partial K}{\partial C}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{A^{2}}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{\partial K}{\partial T_{1}}\cdot\Delta\boldsymbol{T}_{1}\right)^{2}} \\ & = \frac{1}{4}\sqrt{\left(\frac{1}{1}\left(\frac{C^{2}}{B^{2}} + \frac{A^{2}D}{B^{2}}\right)\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{\partial K}{\partial B}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{\partial K}{\partial C}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{\partial K}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{\partial K}{\partial T_{1}}\cdot\Delta\boldsymbol{T}_{1}\right)^{2}} \\ & = \frac{1}{4}\sqrt{\left(\frac{1}{1}\left(\frac{C^{2}}{B^{2}} + \frac{A^{2}}{B^{2}}\right)\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{\partial K}{\partial B}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{\partial K}{\partial C}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{\partial K}{\partial D}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{\partial K}{\partial T_{1}}\cdot\Delta\boldsymbol{T}_{1}\right)^{2}} \\ & = \frac{1}{2}\sqrt{\left(\frac{1}{1}\left(\frac{C^{2}}{D} + 2\frac{A}{B}\right)\cdot\Delta\boldsymbol{A}\right)^{2} + \left(\frac{A^{2}}{B^{2}}\cdot\Delta\boldsymbol{B}\right)^{2} + \left(\frac{A^{2}}{B^{2}}\cdot\Delta\boldsymbol{C}\right)^{2} + \left(\frac{A^{2}}{B^{2}}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{A^{2}}{B^{2}}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{A^{2}}{B^{2}}\cdot\Delta\boldsymbol{D}\right)^{2} + \left(\frac{A^{2}}{B^{2$$

Порядок измерений

- 1. Соберём схему. Подключим один источник питания к вентилятору, а другой к цепи «элемент Пельтье резистор», т.е. к точкам 1 и 4, как указано на схеме. Включим источники питания, установим на источнике питания элемента Пельтье такое напряжение, чтобы отображаемая на нём сила тока была примерно равна 1 А. Убедимся, что внешняя поверхность элемента Пельтье охлаждается; если она нагревается, поменяем полярность источника тока. В таком положении будем считать протекающий ток положительным, а при использовании элемента Пельтье в качестве нагревателя отрицательным.
- 2. Подключим вольтметр к термопаре, подождём около 2 минут до установления термодинамического равновесия, и снимем показания вольтметра ε ЭДС на термопаре. После этого измерим напряжение на резисторе U_R и на модуле Пельтье U. Будем изменять ЭДС источника, чтобы шаг силы тока в цепи был примерно равен 0.1 А и повторять измерения.
- 3. При достижении силы тока, равной 0, поменяем полярность источника ЭДС, поменяв концы проводов на клеммах 1 и 4 местами. Повторим измерения, повышая силу тока до тех пор, пока не достигнем силы тока $I \approx 1.0~A$. После этого повторим такие же измерения в обратном порядке.

Таблицы и обработка данных

1. Анализ измеренных зависимостей.

Силу тока в цепи находим через напряжение на резисторе: $I = \frac{U_R}{R}$. Сопротивление резистора $R = 5.10 \pm 0.05~Om$.

Таблица. Зависимость ЭДС термопары и напряжения на элементе Пельтье от силы тока в цепи $\varepsilon(I)$ и U(I)

Nº	U_R , B	I, A	ε, мВ	U, B
1	4.948	0.970	2.17	5.397
2	4.530	0.888	2.02	4.956
3	4.041	0.792	1.85	4.437
4	3.532	0.693	1.66	3.893
5	3.027	0.594	1.46	3.356
6	2.525	0.495	1.25	2.820
7	2.0361	0.399	1.05	2.298
8	1.5330	0.301	0.82	1.7533
9	1.0299	0.202	0.58	1.2010
10	0.5307	0.104	0.32	0.6392
11	-0.5003	-0.098	-0.32	-0.6079
12	-0.9928	-0.195	-0.65	-1.2344
13	-1.4905	-0.292	-1.02	-1.9018
14	-1.9576	-0.384	-1.40	-2.565
15	-2.483	-0.487	-1.86	-3.358
16	-2.985	-0.585	-2.36	-4.171
17	-3.480	-0.682	-2.95	-5.057
18	-3.960	-0.776	-3.52	-5.962
19	-4.467	-0.876	-4.27	-7.040
20	-4.920	-0.965	-5.00	-8.070
21	-4.585	-0.899	-4.49	-7.340
22	-4.105	-0.805	-3.78	-6.315
23	-3.582	-0.702	-3.12	-5.296
24	-3.092	-0.606	-2.58	-4.431
25	-2.569	-0.504	-2.01	-3.544
26	-2.0360	-0.399	-1.50	-2.704
27	-1.5332	-0.301	-1.07	-1.9760
28	-1.0643	-0.209	-0.71	-1.3362
29	-0.5563	-0.109	-0.36	-0.6824
30	0.4826	0.095	0.26	0.5651
31	1.0052	0.197	0.54	1.1615
32	1.5069	0.295	0.79	1.7155
33	2.0245	0.397	1.02	2.273
34	2.488	0.488	1.22	2.769
35	3.034	0.595	1.44	3.345
36	3.504	0.687	1.63	3.843
37	4.051	0.794	1.82	4.419
38	4.542	0.891	2.01	4.949
39	4.995	0.979	2.15	5.432

Теперь необходимо выбрать степень аппроксимирующего полинома для зависимостей $\varepsilon(I)$ и U(I). При рассмотрении степеней полинома 3, 4 и 5, в обоих случаях наименьшая погрешность коэффициентов B_1 и B_3 (при х и х³) наблюдалась при полиноме 4-й степени, поэтому будем использовать полиномы 4-й степени.

График 1. Зависимость ЭДС термопары от силы тока в цепи $\varepsilon(I)$ и результаты аппроксимации

Формула аппроксимирующего полинома:

$$y = B_0 + B_1 x + B_2 x^2 + B_3 x^3 + B_4 x^4$$

Коэффициенты полинома соответствуют коэффициентам A и B в формуле для $\varepsilon(I)$:

$$B_1 = A = 3.040 \pm 0.015 \frac{MB}{A}$$

$$-B_2 = B = 1.33 \pm 0.04 \frac{MB}{A^2}$$

График 2. Зависимость напряжения на элементе Пельтье от силы тока в цепи U(I) и результаты аппроксимации.

Формула аппроксимирующего полинома:

$$y = B_0 + B_1 x + B_2 x^2 + B_3 x^3 + B_4 x^4$$

Коэффициенты полинома соответствуют коэффициентам C и D в формуле для U(I):

$$B_1 = C = 6.096 \pm 0.012 \frac{B}{A}$$

$$-B_2 = D = 1.25 \pm 0.03 \frac{B}{A^2}$$

2. Вычисление параметров элемента Пельтье и термопары.

Температура в комнате T_1 =20.1±0.1 °C.

• Сопротивление модуля Пельтье:

$$R = 3.24 \pm 0.12 \, O_M$$

• Коэффициент Пельтье модуля Пельтье при комнатной температуре:

$$\Pi_1 = 10.2 \pm 0.5 B$$

• Коэффициент термоэдс модуля Пельтье:

$$\alpha = 34.9 \pm 1.6 \frac{MB}{\circ K}$$

• Теплопроводность модуля Пельтье:

$$K = 125 \pm 7 \frac{MBm}{\circ K}$$

• Коэффициент термоэдс термопары:

$$\alpha' = 37.1 \pm 0.8 \frac{M\kappa B}{\circ K}$$

Оценим значение тока, соответствующего максимальной разности температур при работе прибора в качестве холодильника и максимальную разность температур, которую можно при этом получить:

$$I_{max} \approx \frac{\Pi_1}{R} \approx 3.17 A$$

$$\Delta T_{max} \approx \frac{\Pi_1^2}{2 \ KR} \approx 130 \ ^{\circ}C$$

Оценим «ток разрушения» при работе прибора в качестве нагревателя:

$$I_{pasp} = -\frac{K}{\alpha} = -3.58 A$$

Выводы

Мы подтвердили существование термоэлектрических явлений: явление Зеебека, на котором основано измерение температуры с помощью термопары, и явление Пельтье, на котором основаны модули Пельтье, переносящие тепло с одной поверхности на другую. При пропускании тока через модуль Пельтье в одном направлении рассматриваемая сторона охлаждалась, а при смене полярности — нагревалась, т. е. менялось направление переноса тепла. На термопаре, приложенной своими концами к противоположным поверхностям модуля Пельтье, образовывалась ЭДС, значение которой зависит от разности температур.

Были получены следующие параметры элемента Пельтье и термопары:

• Сопротивление модуля Пельтье:

$$R = 3.24 \pm 0.12 \, O_M$$

• Коэффициент Пельтье модуля Пельтье при комнатной температуре:

$$\Pi_1 = 10.2 \pm 0.5 B$$

• Коэффициент термоэдс модуля Пельтье:

$$\alpha = 34.9 \pm 1.6 \frac{MB}{\circ K}$$

• Теплопроводность модуля Пельтье:

$$K = 125 \pm 7 \frac{MBm}{\circ K}$$

• Коэффициент термоэдс термопары:

$$\alpha' = 37.1 \pm 0.8 \frac{M \kappa B}{\circ K}$$

• Ток, соответствующий максимальной разности температур при работе элемента Пельтье в качестве холодильника:

$$I_{max} \approx 3.17 A$$

• Максимальная разность температур, достигаемая данным элементом Пельтье при работе в качестве холодильника:

$$\Delta T_{max} \approx 130 \,^{\circ} C$$

• «Ток разрушения» при работе прибора в качестве нагревателя:

$$I_{pasp} = -3.58 A$$