Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО».

Факультет программной инженерии и компьютерной техники

Основы профессиональной деятельности Лабораторная работа №7

Синтез команд БЭВМ Вариант 583058

Выполнил: Свечников Константин Денисович, Р3130

Проверил: Саржевский И. А., преподаватель практики

Оглавление

Задание	2
Ход работы	2
Исходный код синтезируемой команды:	2
Тестовая программа	3
Методика проверки	
Комментарии к методике	
Заключение	

Задание

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. МАDC M сложение с учетом переноса аккумулятора с ячейкой памяти с записью результата в ячейку памяти и установкой N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса $00CA_{16}$

Ход работы

Исходный код синтезируемой команды:

Адрес МП	Микрокоманда	Описание	Комментарий
E0	80E4011040	if PS $(C) = 0$ then GOTO	Переход к ячейке Е4, если
		@ E4	перенос С = 0

E1	0001E09411	$AC + DR + 1 \rightarrow DR$	Сумма аккумулятора и		
		NZVC	значения ячейки памяти с		
			учетом переноса		
E2	0200000000	DR -> MEM(AR)	Запись результата обратно		
			в ячейку		
E3	80C4101040	GOTO INT @ C4	Переход к циклу		
			прерывания		
E4	0001E09011	AC + DR -> DR, NZVC	Сумма аккумулятора и		
			значения ячейки памяти с		
			учетом переноса		
E5	0200000000	DR -> MEM(AR)	Запись результата обратно		
			в ячейку		
E6	80C4101040	GOTO INT @ C4	Переход к циклу		
			прерывания		

Тестовая программа

ORG 0x00B0

RESULT: WORD 0
CHECK1: WORD 0
CHECK2: WORD 0
CHECK3: WORD 0
RES1: WORD 0
RES2: WORD 0
RES3: WORD 0
AC1: WORD 0x1010
ARG1: WORD 0xFFFF

ARG2: WORD 0x0004 AC3: WORD 0x0002 ARG3: WORD 0x0008

ORG 0x00D0 START: CLA CALL TEST1 CALL TEST2 CALL TEST3 CLA

C2: WORD 0x2

LD CHECK1

OR CHECK2

OR CHECK3

ST RESULT

STOP: HLT

TEST1: LD AC1

ST RES1

LD ARG1

ADC RES1

ST RES1

CLC

LD AC1

CMP1: WORD 0x90B8

BMI ERROR1

LD ARG1

CMP RES1

BEQ CORR1

ERROR1:

CLA

CLC

RET

CORR1: ST RES1

LD #0x1

ST CHECK1

CLA

CLC

RET

TEST2: LD AC2

ADD C2

ST RES2

LD ARG2

ADC RES2

ST RES2

CLC

LD AC2

ADD C2

CMP2: WORD 0x90BB

LD ARG2

CMP RES2

BEQ CORR2

ERROR2:

CLA

CLC

RET

CORR2: ST RES2

LD #0x2

ST CHECK2

CLA

CLC

RET

TEST3: LD AC3

ST RES3 LD ARG3 ADC RES3 ST RES3 CLC LD AC3

CMP3: WORD 0x90BD

LD ARG3 CMP RES3 BEQ CORR3 ERROR3:

CLA CLC

CLC RET

RET

CORR3: ST RES3

ST CHECK3 CLA CLC

LD #0x4

Трассировка микропрограммы

МР до	Содержимое памяти и регистров после выборки микрокоманды									
выборки	MR	IP	CR	AR	DR	SP	BR	AC	NZVC	СчМК
МК										
E0	80E4011040	0B9	90B8	0B8	0010	7FD	0B8	1010	1001	E1
E4	0001E09011	0B9	90B8	0B8	1020	7FD	0B8	1010	1001	E5
E5	0200000000	0B9	90B8	0B8	1020	7FD	0B8	1010	1001	E6
E6	80C4101040	0B9	90B8	0B8	1020	7FD	0B8	1010	1001	E7

Методика проверки

- 1. Загрузить комплекс разработанных микропрограмм в микропрограммную память БЭВМ
- 2. Загрузить тестовую программу в память базовой ЭВМ и скомпилировать ее.
- 3. Запустить основную программу в режиме работа.
- 4. Дождаться останова.
- 5. Проверить значение ячейки памяти RESULT с номером 0x0B0, если значение 0x0007 все тесты выполнены успешно.

Комментарии к методике

- В ячейке RESULT младшие 3 байта отвечают за успешность каждого из 3 тестов, где 1 успех
- Для загрузки комплекса разработанных микропрограмм откройте БЭВМ через консоль с помощью команды java -jar -Dmode=cli bcomp-ng.jar и введите: 00E0

MA

MW 80E4011040

MW 0001E09411

MW 020000000

MW 80C4101040

MW 0001E09011

MW 020000000

MW 80C4101040

Ячейка с результатом		Первый АС	Второе	Ожидаемый	Фактический
			число	результат	результат
RES1	0x00B4	0x1010 (C = 0)	0x0010	0x1020	0x1020
RES2	0x00B5	0x0001 (C = 1)	0x0004	0x0006	0x0006
RES3	0x00B6	0x0002 (C = 0)	0x0008	0x000A	0x000A

Заключение

Ульрамегаприкольная работа.