Das CMS-Experiment

HS SS 2008 "Schlüsselexperimente der Teilchenphysik"

Vortrag am 30.05.08 Benjamin Bücking

Inhalt:

- Der Large Hadron Collider (LHC)
 Die Experimente am LHC
- 2. Ziel der LHC- Experimente
 - 2.1 Quark-Gluon-Plasma
 - 2.2 CP-Verletzung
 - 2.3 Higgs Boson
 - 2.4 Supersymmetrie
- 3. Der Compact Muon Solenoid (CMS)
 - 3.1 Genereller Aufbau
 - 3.2 Detektoren
- 4. Ausblick

Der Large Hadron Collider (LHC)

- □Standort: CERN, Genf, CH
- □27 km Umfang, 50 175 m
- unter der Erde
- ☐Es arbeiten ca. 7000
- Physiker aus über 85
- Ländern am LHC
- □Projektbeginn 1994
- □Lange Bauzeit: 2000 2007
- ■Kosten bis zur

Fertigstellung: 5-7 Mrd. Euro

Der LHC-Beschleunigerring

- Protonenbeschleuniger
- 7 TeV pro Strahl
- Schwerpunktsenergie der p-p Kollision: 14 TeV Für die Schwerionenkollisionen: 1150 TeV
- □ Hohe Strahlluminosität:
 L = 10³³-10³⁴ cm⁻²s⁻¹

Beschleunigerrohr

Das Beschleunigerrohr besteht aus supraleitenden Dipolmagneten (insgesamt 1232), arbeitet bei 1,9 K und erzeugt ein Magnetfeld von 8,33T

Beschleunigerrohr

Daten:

Länge: 14,3 m

Gewicht: 35t

Spulen: Nb- Ti

96t Helium

8 Kühlaggregate (14kW)

Beschleunigungsfeld von 5 MV/m

Energie der beschleunigten Protonen

Produktionsraten am LHC

 Inelastische Proton-Proton Reaktionen Quark -Quark/Gluon Streuungen mit	1 Milliarde / sec	
großen transversalen Impulsen (> 20 GeV)	~100 Millionen/ sec	
b-Quark Paaretop-Quark Paare	5 Millio 8	onen / sec / sec
• W \rightarrow e v	150	/ sec
• Z \rightarrow e e	15	/ sec
Higgs (150 GeV)Gluino, Squarks (1 TeV)	0.2 0.03	/ sec / sec

- Interessante Physikprozesse sind selten:
 - ⇒ hohe Strahlintensität des Beschleunigers, extrem gute Detektoren (Unterdrückung des Untergrundes)

- ☐ ATLAS (A Torodial LHC ApparatuS)
 - Universaldetektor für den Nachweis des Higgs-Bosons und supersymmetrischer Teilchen
- ☐ CMS (Compact Muon Solenoid)
 - Universaldetektor für den Nachweis des Higgs-Bosons und supersymmetrischer Teilchen
- ALICE (A Large Collider Experiment)
 - Untersuchung des Quark-Gluon-Plasmas das bei der Kollision von Blei-Ionen entstehen soll
- □ **LHCb** (Large Hadron Collider beauty-Experiment)
 - Untersuchung der CP-Verletzung mit B-Mesonen (Materieteilchen, die aus einem Up- oder Down-Quark und einem Anti-Bottom-Quark bestehen)

Datenmenge

- □ Riesen Datenmenge
- ☐ Man benötigt 100.000 Prozessoren bei einem aktuellen Leistungsstand
- ☐ Pro Jahr 15 Petabyte an Daten
- Bewältigung durch Daten-Netzwerke (DataGrids)

Ziele der LHC- Experimente

- 1) Entdeckung des Higgs-Bosons
- 2) Nachweis supersymmetrischer Teilchen
- 3) Untersuchung der CP-Verletzung in B-Mesonensystemen
- 4) Erzeugung eines Quark-Gluon-Plasmas durch die Kollision von Schwerionen
- 5) Entdeckung einer "neuen Physik" jenseits des Standardmodells

Quark Gluon Plasma

- ■Kernbausteine eines Atoms bestehen aus Quarks welche von Gluonen zusammengehalten werden
- □Bei hoher Temperatur und Dichte verlieren Protonen und Neutronen ihre Identität und Quarks werden freigesetzt

=>T ~ 105 TSonne (~200MeV)

=>Dichte wie im Zentrum eines Neutronensterns (~30GeV/fm³)

=>Quark-Gluon-Plasma

- Im QGP sind die Quarks und Gluonen quasi-frei
- Wechselwirkung durch inelastische Stöße bis ein Gleichgewichtszustand eintritt
- □ Aufgrund des inneren Drucks expandiert das Plasma und kühlt dabei ab
 → Hadronisierung
- Angenommener Zustand Sekundenbruchteile nach dem Urknall (10⁻³³s)

CP- Verletzung

- C: Ladungskonjugation
- □ P: Parität
- CP- Verletzung: 1964 entdeckt von Cronin und Fitch, beim Zerfall von schweren neutralen K-Mesonen (Kaonen), es kommt in etwa einem Promille aller Fälle zu einer Verletzung
- Genauere Untersuchung anhand von B-Mesonen
- CP- Verletzung an X-Bosonen nach dem Urknall ist wahrscheinlich verantwortlich für den Überschuss an Materie gegenüber Antimaterie

Higgs im Standartmodell

- Die invariante Lagrange Funktion der Gruppentheorie für die elektroschwache Wechselwirkung enthält masselose Eichbosonen und Fermionen
- Experimente zeigen: W+ W- und Z haben Masse
 - => Higgs Mechanismus
- Masse entsteht erst durch die Wechselwirkung mit einem (hypothetischen) Higgs-Feld
- Durch spontane Symmetriebrechung ist das gesamte Universum von diesem Higgs-Feld durchdrungen

Spontane Symmetriebrechung

Betrachte reelles, selbstwechselwirkendes Skalarfeld Φ mit einer Lagrangefunktion der Form:

$$L = (\partial_{\alpha} \Phi \partial^{\alpha} \Phi) + \mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4}$$
wobei Terme mit Φ^{2} = Masseterm

 $\Phi^4 = WW-Term$

Aus L erhält man ein Potential $V = \mu^2 |\Phi|^2 + \lambda |\Phi|^4$ Higgspotential

- für λ >0 und μ^2 <0 gibt es zwei mögl.

Grundzustände
$$\pm v$$
, mit $v = \frac{-\mu^2}{\lambda} = 247 GeV$

⇒ System entscheidet sich für einen

⇒ Symmetrie wird gebrochen!

Fig. 8.13. Plot of the potential V in (8.48) as a function of a one-dimensional scalar field ϕ for the two cases $\mu^2 > 0$ and $\mu^2 < 0$.

Theoretische Grundlagen

Theoretische Vorstellung für das Skalar-Feld Φ , das für die Teilchenmassen verantwortlich ist.

$$\Phi = \begin{pmatrix} \phi^{\dagger} \\ \phi^{0} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+H \end{pmatrix}; \quad V(\Phi) = -\lambda v^{2} |\Phi^{\dagger} \Phi| + \lambda \left(|\Phi^{\dagger} \Phi| \right)^{2}$$

$$\mathcal{L}_{\Phi} = (D^{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) - g_{f} \left(\bar{\psi}_{L} \Phi \psi_{R} + \bar{\psi}_{R} \Phi^{\dagger} \psi_{L} \right) - V(\Phi)$$
Wechselwirkung mit den Eichbosonen Wechselwirkung mit den Fermionen wich sich selbst
$$m_{W^{\pm}} = \frac{g_{V}}{2}, \quad m_{Z} = \frac{v \sqrt{(g^{2} + g'^{2})}}{2}$$
Existenz eines Spin 0 Teilchens, das Higgs-Boson mit Masse
$$m_{H} = \sqrt{2\lambda v}$$

Existenz eines Spin 0 Teilchens, das Higgs-Boson mit Masse

• Hierbei ist λ unbekannt; Die Higgs-Masse ist einen vom SM nicht vorhergesagter freier Parameter

Higgsproduktion

(i) Gluonfusion

(ii) Vektorbosonfusion

(iii) "begleitende" Produktion (W/Z, tt)

$$q\overline{q}\rightarrow HZ$$

Zerfallskanäle

 Am LHC stehen mehrere Zerfallskanäle des Higgs-Bosons zur Untersuchung, die komplett von der Higgs-Masse abhängen

M. Spira Fortsch. Phys. 46 (1998) WW bb BR(H) ZZ10 $c\overline{c}$ tŧ 10 100 200 500 50 1000 M_H [GeV]

Geringe Masse $m_H < 2m_Z$

$$H
ightarrow bar{b}, \ H
ightarrow \gamma\gamma, \ H
ightarrow au^+ au^- \ (via VBF), \ H
ightarrow ZZ^*
ightarrow 4I, \ H
ightarrow WW^*
ightarrow 2I2
u \ (via VBF)$$

Große Masse $m_H > 180$ GeV

•Der Goldene Kanal :

$$H \rightarrow ZZ \rightarrow 4I$$

•Bei sehr große Masse $m_{H} \ge 800 GeV$

$$H \rightarrow WW \rightarrow l\nu jj$$

Wichtige Zerfälle zum Nachweis am LHC:

• $\mathbf{H} \to \mathbf{Z} \mathbf{Z} \to \lambda \lambda \lambda \lambda$ (der goldene Kanal)

Strategie für die Higgs-Suche

- Wie wird ein Higgs-Boson in den verschiedenen Kanälen gesucht?
 - Suche Signal mit bestimmten Zerfallsprodukte
 - □ Welche Untergrundprozesse gleiche Endprodukte ergeben
 - □ Unterscheiden zw. Signal und Untergrund, Suche nach den richtigen Auswahlkriterien

Supersymmetrie

- Symmetrie zwischen Fermionen und Bosonen
- Werden STeilchen genannt
- Eichbosonen erhalten die Endung -ino
- Zahl der Elementarteilchen verdoppelt sich
- Neue Quantenzahl: R Parität

$$R = (-1)^{3B+L+2S}$$

mit B: Baryonenzahl, L: Leptonenzahl, S:Spin

- Für SM Teilchen: R=+1 Für ihre Susy-Partner R=-1
- Wenn man die R-Paritätserhaltung annimmt zerfallen Susy-Teilchen nicht in SM Teilchen
 - => Das leichteste Susy Teilchen soll stabil sein

Vereinheitlichung der Grundkräfte

Unification of the Coupling Constants in the SM and the minimal MSSM

- Für große Energien: Vereinigung der elektromagnetischen, schwachen und starken Wechselwirkung
- Dies ist nur im Rahmen des supersymmetrischen Modells möglich da sich die im Rahmen des Standardmodells extrapolierten Kopplungskonstanten nicht in einem Punkt treffen

Mögliches Ereignis und Nachweis

- Neutralino χ das leichteste supersymmetrische Teilchen d.h. entsteht am Ende der Zerfallskette und entweicht aus dem Detektor da es nicht mit normaler Materie wechselwirkt
- Diese fehlende Transversale Energie die nicht von den Kalorimetern erfasst wird kann zum Nachweis dienen

Der Compact Muon Solenoid (CMS) Detektor

Der Compact Muon Solenoid (CMS) Detektor

Querschnitt durch den CMS Detektor

Spurendetektor

- Der Spurendetektor besteht aus fein segmentierten Sensoren aus Silizium (Streifen- und Pixeldetektoren)
- Ermöglichen die Rekonstruktion von Teilchenspuren und die Bestimmung ihrer Impulse
- Insgesamt verfügt der CMS Tracker über 25000 Silizium Streifen Sensoren auf einer Fläche von 210m²

Pixeldetektor

- In 4cm Abstand von der Strahlachse
- Drei konzentrische Lagen aus Silizium Pixel Detektoren + Scheiben für Frontrichtung
 Spuren bis |η|<=2,4
- Pixel sorgen für hohe Ortsauflösung: 15 μm
 => genaue Identifizierung von Sekundärvertizes

Siliziumstreifen Spurdetektor

- Im Anschluss an den Pixeldetektor: 15148 Streifendetektormodule
- Streifen haben den Nachteil, dass man z-Komponente nicht bestimmen kann
 - => Verwendung von doppelseitigen Modulen deren Streifen gegeneinander gedreht sind (hier blau)
- Der CMS-Spurdetektor ist eine Teilchenkamera mit 10 Millionen Kanälen, welche 40 Millionen Bilder pro Sekunde schießt und dabei eine Auflösung einiger hundertstel Millimeter erreicht

Elektromagnetisches Kalorimeter

- □ homogenes Kalorimeter bestehend aus 61000 PbWO4 Kristallen, Material hoher Dichte gewählt, welches gleichzeitig als Absorber und als Quelle für das Detektorsignal dient.
- ■WW mit den Kristallen über Bremsstrahlung, Photoeffekt, Compton-Effekt, Paarbildung
- □ Abwechselnd Paarbildung und Bremsstrahlung => Ausbildung elektromagnetischer Schauer
- ☐ Die Energie des Primärteilchens ist proportional zur Intensität des Szintillationslichts

Hadronisches Kalorimeter

- Sampling- (Inhomogenes) Kalorimeter
 Schauermedium: Kupfer bzw. Stahl
 Nachweismedium: Plastikszintillator bzw. Quarzfasern
- In Sampling-Kalorimetern wechseln sich Schichten aus passivem Absorbermaterial(= "Konverter") und aktivem Detektormaterial ab
- Schauerbildung komplizierter als im elektromagnetischen Schauer da verschiedene Mesonen entstehen können
- π⁰ Zerfall in zwei γ erzeugt elektromagnetische Subschauer
- Intensität des Schauers nimmt wie ab
- λ_{had} ist die hadronische Wechselwirkungslänge
- Durch Forward Kalorimeter Abdeckung bis |η|<5

Der Myonendetektor

- Myonendetektor:
 Driftkammern gefüllt mit Ar-Co2 Gasgemisch
- Beim Durchgang eines Myons ionisiert dieses das Gas
- Freigesetzte e- driften zur Anode
- Ort des Durchgangs lässt sich durch Messung der Driftzeit berechnen da Beschleunigung erst nah beim Draht

$$=>$$
 $s = v_{drift} \cdot \Delta t$

Transverse slice through CMS detector Click on a particle type to visualise that particle in CMS Press "escape" to exit

- CMS-Detektor wird momentan am LHC zusammengebaut
- Mittlerweile schon erste Testläufe des Beschleunigerrings (12.11.2007)
- Start wurde auf Sommer 2008 verschoben Beginn des Testlaufs bei noch niedriger Luminosität und mit einer geringeren Zahl an Teilchenpaketen im Strahl
- Beginn der Experimente bei 14 TeV Oktober 2008?

Literatur:

Internet:

- https://ptweb.desy.de/berichte
- http://www.desy.de/f/jb2006/104-108.pdf
- http://www-ekp.physik.uni-karlsruhe.de/~mullerth/CMS-LHC-08.pdf
- http://www-ekp.physik.uni-karlsruhe.de/~mullerth/FZK-Nachrichten.pdf
- http://www.gsi.de/beschleuniger/sis18/pdf/cern.pdf
- http://www-linux.gsi.de/~wolle/Schuelerlabor/TALKS/DETEKTOREN/VO-6-Kalorimeter.pdf
- http://www.cms.cern.ch

Vorträge:

- Mikova A.: Suche nach dem Higgs-Boson des Standardmodells
- Wiegand A.: Das CMS-Experiment
- Jakobs K.: Die neuen großen Beschleuniger und ihre Schlüsselrolle