Producto directo

Sésar

1. Producto directo externo

Proposition 1. Sean H y K grupos. Entonces $H \times K$ junto con la operación siguiente:

$$(h_1, k_1) \odot (h_2, k_2) := (h_1 h_2, k_1 k_2)$$

forman un grupo.

Demostración. La asociatividad de la operación viene de la asociatividad de los grupos H y K. Por otro lado, demostremos que (e_H, e_K) es el elemento neutro de esta operación:

$$(h,k) \odot (e_H, e_K) = (he_H, ke_K) = (h,k) = (e_Hh, e_Kk) = (e_H, e_K) \odot (h,k).$$

Finalmente, para todo $(h,k) \in H \times K$, tenemos que $(h,k)^{-1} = (h^{-1},k^{-1})$, puesto que

$$(h,k)\odot(h^{-1},k^{-1})=(hh^{-1},kk^{-1})=(e_H,e_K)=(h^{-1}h,k^{-1}k)=(h^{-1},k^{-1})\odot(h,k),$$

por lo que todo elemento tiene un inverso.

Definition 1. Definimos el **producto directo externo** de H y K como el grupo

$$(H \times K, \odot)$$
.

Remark 1. Si H y K son finitos, entonces $H \times K$ es también finito y $|H \times K| = |H||K|$.

Proposition 2. Sean H y K grupos. Entonces

$$H \times K \cong K \times H$$
.

Demostración. Definamos la siguiente aplicación:

$$f: H \times K \to K \times H$$
$$(h, k) \mapsto (k, h)$$

Veamos que f es un isomorfismo. En primer lugar, veamos que es un homomorfismo.

$$f((h_1, k_1) \odot (h_2, k_2)) = f(h_1 h_2, k_1 k_2) = (k_1 k_2, h_1 h_2) = (k_1, h_1) \odot (k_2, h_2) = f(h_1, k_1) \odot f(h_2, k_2).$$

Ahora bien, es fácil observar que la aplicación es sobreyectiva, pues para todo $(k,h) \in K \times H$, tenemos que f(h,k) = (k,h). Queda por tanto probar la inyectividad de f y como es un homomorfismo, basta con comprobar que el núcleo es trivial. Si $(h,k) \in \ker f$, entonces $f(h,k) = (k,h) = (e_K,e_H)$, luego $h = e_H$ y $k = e_K$, por lo que $\ker f = \{(e_H,e_K)\}$.

Proposition 3. Sean H y K grupos. Entonces

$$Z(H \times K) = Z(H) \times Z(K).$$

Demostración. Por definición del centro, $(h_0, k_0) \in Z(H \times K)$ es equivalente a decir que para todo $(h, k) \in H \times K$, $(h_0, k_0) \odot (h, k) = (h_0 h, k_0 k) = (h, k) \odot (h_0, k_0) = (hh_0 .kk_0)$, es decir, para todo $h \in H$, $h_0 h = hh_0$ y para todo $k \in K$, $k_0 k = kk_0$ que, de nuevo por definición, $h \in Z(H)$ y $k \in Z(K)$, equivalentemente, $(h, k) \in Z(H) \times Z(K)$.

Definition 2. Sean $f: H \to H'$ y $g: K \to K'$ homomorfismos. Definimos la **aplicación producto** $f \times g$ como sigue:

$$f \times g: H \times K \to H' \times K'$$
$$(h, k) \mapsto (f(h), g(k))$$

Proposition 4. Sean $f: H \to H'$ y $g: K \to K'$ homomorfismos. Entonces $f \times g$ es un homomorfismo tal que $\ker(f \times g) = \ker(f) \times \ker(g)$ y $\operatorname{im}(f \times g) = \operatorname{im}(f) \times \operatorname{im}(g)$.

Demostración. Ver que es un homomorfismo es directo. Sean $(h_1, k_1), (h_2, k_2) \in H \times K$. Entonces

$$(f \times g)((h_1, k_1) \odot (h_2, k_2)) = (f \times g)(h_1h_2, k_1k_2) = (f(h_1h_2), g(k_1k_2)) =$$

$$= (f(h_1)f(h_2)), g(k_1)g(k_2)) = (f(h_1), g(k_1)) \odot (f(h_2), g(k_2)) =$$

$$= (f \times g)(h_1, k_1) \odot (f \times g)(h_2, k_2).$$

Por otro lado, se tiene que $(h, k) \in \ker(f \times g)$ si y solo si $(f \times g)(h, k) = (f(h), g(k)) = (e_H, e_K)$ si y solo si f(h) = e y g(k) = e, es decir, $h \in \ker(f)$ y $k \in \ker(g)$, luego $(h, k) \in \ker(f) \times \ker(g)$.

Finalemente, $(h', k') \in \text{im}(f \times g)$ si y solo si existe $(h, k) \in H \times K$ tal que $(f \times g)(h, k) = (f(h), g(k)) = (h', k')$, es decir, $h' = f(h) \in \text{im}(f)$ y $g' = g(k) \in \text{im}(g)$, equivalentemente, $(h', k') \in \text{im}(f) \times \text{im}(g)$.

Theorem 1 (Isomorfía del producto directo I). Supongamos que $H\cong \widetilde{H}$ y $K\cong \widetilde{K}$.

$$H \times K \cong \widetilde{H} \times \widetilde{K}$$
.

Demostración. Sean $\alpha: H \to \widetilde{H}$ y $\beta_K \to \widetilde{K}$ dichos isomorfismos. Entonces $\alpha \times \beta$ es un homomorfismo tal que $\ker(\alpha \times \beta) = \ker(\alpha) \times \ker(\beta) = \{e_H\} \times \{e_K\} = \{e_{H \times K}\}$, luego $\alpha \times \beta$ es un monomorfismo, y $\operatorname{im}(\alpha \times \beta) = \operatorname{im}(\alpha) \times \operatorname{im}(\beta) = H' \times K'$, luego $\alpha \times \beta$ es un epimorfismo. \square

Definition 3. Sean H y K grupos.

1. Llamamos **proyecciones** de $H \times K$ en $H \times K$ a las respectivas aplicaciones

$$p_H: H \times K \to H$$
 $p_K: H \times K \to K$ $(h, k) \mapsto h$ $(h, k) \mapsto k$

2. Llamamos inyecciones de H y K en $H \times K$ a las respectivas aplicaciones

$$q_H: H \to H \times K$$
 $q_K: K \to H \times K$
 $h \mapsto (h, e_K)$ $k \mapsto (e_H, k)$

Remark 2. Sean $f: H \to H'$ y $g: K \to K'$ homomorfismos. Entonces podemos escribir $f \times g$ en función de las proyecciones e inyecciones de la siguiente manera: $f \times g = q_{H'} \circ f \circ p_H * q_{K'} \circ g \circ p_K$

Lemma 1. Las proyecciones son epimorfismos y las inyecciones son monomorfismos.

Demostración. Se puede comprobar rutinariamente que las proyecciones y las inyecciones son homomorfismos. Por otro lado, tomando la proyección p_H , para todo $h \in H$, tenemos que $p_H(h, e_K) = h$, luego es un epimorfismo. Siguiendo con q_H , si $h \in \ker q_H$, entonces $q_H(h) = (h, e_K) = (e_H, e_K)$, luego $h = e_H$ demostrando el hecho de que q_H es un monomorfismo.

Remark 3. Por las definiciones de proyecciones e inyecciones, tenemos que $p_H \circ q_H = \mathrm{id}_H$ y $p_K \circ q_K = \mathrm{id}_K$. Por otro lado, $\ker p_H = \mathrm{im}\, q_K = \{e_H\} \times K$ y $\ker p_K = \mathrm{im}\, q_H = H \times \{e_K\}$

Theorem 2. Sean H y K grupos. Sean $H' := H \times \{e_K\}$ y $K' := \{e_H\} \times K$.

- 1. $H' \cong H \ y \ K' \cong K$.
- 2. $H', K' \subseteq H \times K$.

Demostración. Las demostraciones son completamente análogas para ambos grupos, luego sólo escribiremos la demostración para el grupo H.

En primer lugar, notemos que $H' = q_H(H)$ y como q_H es un monomorfismo, en particular es un isomorfismo en la imagen de q_H , luego $H \cong q_H(H) = H'$. Por otro lado, como $H \subseteq H$, tenemos que $H' = q_H(H) \subseteq H \times K$ ya que los homomorfismos conservan los subgrupos normales. \square

Theorem 3 (Isomorfía del producto directo II). Supongamos que $H \times K \cong \widetilde{H} \times \widetilde{K}$.

$$H \cong \widetilde{H} \text{ y } K \cong \widetilde{K}.$$

Demostración. Denotemos por φ el isomorfismo entre $H \times K$ y $\widetilde{H} \times \widetilde{K}$. Demostraremos sólo el caso $H \cong \widetilde{H}$, pues $K \cong \widetilde{K}$ es completamente análogo. Definamos $\alpha := p_{\widetilde{H}} \circ \varphi \circ q_H : H \to \widetilde{H}$. Probaremos que α es un isomorfismo.

En primer lugar, observamos que α está bien definida. Además, es un homomorfismo por ser composición de homomorfismos. Basta ver que es una biyección. Por un lado, se tiene que $\ker \alpha = \varphi^{-1}(q_H^{-1}(\ker p_{\widetilde{H}})) = \varphi^{-1}\left(q_H^{-1}\left(\left\{e_{\widetilde{H}}\right\} \times \widetilde{K}\right)\right) = \varphi^{-1}(\left\{e_{H \times K}\right\}) = \left\{e_H\right\},$ luego α es un monomorfismo. Por otro lado, im $\alpha = p_{\widetilde{H}}(\varphi(\operatorname{im} q_H)) = p_{\widetilde{H}}(\varphi(H \times \{e_K\})) = p_{\widetilde{H}}\left(\widetilde{H} \times \left\{e_{\widetilde{K}}\right\}\right) = \widetilde{H},$ luego α es un epimorfismo.

2. Producto directo interno

Definition 4. Sea G grupo y $H, K \subseteq G$. Decimos que $G = H \circledast K$ es el **producto directo** interno de H y K si G = HK y $H \cap K = \{e\}$.

Remark 4. Como $H, K \subseteq G$, en particular tenemos que HK es un grupo y que HK = KH.

Lemma 2. Sea G grupo y $H, K \subseteq G$ tales que G = HK. Son equivalentes

- 1. $G = H \circledast K$.
- 2. Para todo $g \in G$, existen unos únicos $h \in H$ y $k \in K$, tales que g = hk.
- 3. Si hk = e donde $h \in H$ y $k \in K$, entonces h = k = e.

Demostración. Supongamos primero que $G = H \otimes K$. Entonces para todo g = G = HK, existen $h \in H$ y $k \in K$ tales que g = hk. Veamos que son únicos. Supongamos que g = h'k', con $h' \in H$ y $k' \in K$. Entonces como $hk = h'k' \Rightarrow (h')^{-1}h = k'k^{-1} \in H \cap K = \{e\}$, lo que implica que h = h' y k = k'.

Sea ahora hk = e con $h \in H$ y $k \in K$. Como e = ee donde $e \in H$ y $e \in K$, entonces por la expresión única del producto, h = k = e.

Finalmente, supongamos que $g \in H \cap K$. Como $H \cap K \leq G$, en particular, $g^{-1} \in H \cap K$. Por lo tanto, tenemos que $gg^{-1} = e$ donde $g \in H \cap K \leq H$ y $g^{-1} \in H \cap K \leq K$. Por hipótesis, $g = g^{-1} = e$, demostrando así que $H \cap K = \{e\}$.

Proposition 5. Si $G = H \otimes K$, entonces hk = kh para todo $h \in H$ y $k \in K$.

Demostración. Tomemos $h \in H$ y $K \in K$ y denotemos $g = hkh^{-1}k^{-1}$. Entonces $hkh^{-1}, k^{-1} \in K$, y por tanto $g \in K$. Por otro lado, $h, khk^{-1} \in H$, luego $g \in H$. Por lo tanto, $g \in H \cap K = \{e\}$, por lo que hk = kh.

Theorem 4 (Caracterización del producto directo I). Sean H y K grupos.

$$H \times K = H' \circledast K'$$

Demostración. En primer lugar, sabemos que $H', K' \subseteq H \times K$. Veamos que $H \times K = H'K'$. Para todo $g \in G$, $g = (h, k) = (h, e_H) \odot (e_H, k) \in H'K'$. Finalmente, si $(h, k) \in H' \cap K'$, tenemos que $(h, k) \in H' \Rightarrow k = e_K$ y $(h, k) \in K' \Rightarrow h = e_H$. Luego $(h, k) = (e_H, e_K)$ lo que implica que $H' \cap K' = \{(e_H, e_K)\}$.

Theorem 5 (Caracterización del producto directo II). Sea G grupo y $H, K \subseteq G$.

$$H \circledast K \cong H \times K$$
.

Demostración. Definamos la siguiente aplicación:

$$f: H \circledast K \to H \times K$$

 $hk \mapsto (h, k).$

En primer lugar, veamos que la aplicación está bien definida. Si $h_1k_1 = h_2k_2$, entonces por el lemma de la expresión única, tenemos que $h_1 = h_2$ y $k_1 = k_2$ por lo que $f(h_1k_1) = (h_1, k_1) = (h_2, k_2) = f(h_2k_2)$.

Probemos ahora que f es un homomorfismo. Tenemos que $f((h_1k_1)(h_2k_2)) = f(h_1(k_1h_2)k_2) = f(h_1h_2k_1k_2) = (h_1h_2, k_1k_2) = (h_1, k_1) \odot (h_2, k_2) = f(h_1k_1) \odot f(h_2k_2).$

Es fácil ver que f es un epimorfismo porque para todo $(h,k) \in H \times K$, f(hk) = (h,k). Por lo que falta comprobar que f es un monomorfismo. Supongamos que $hk \in \ker f$. Entonces f(hk) = (h,k) = (e,e), lo que implica que hk = e. Esto demuestra que $\ker f = \{e\}$ y por tanto f es un monomorfismo.

Remark 5. La propiedad tercera del lema puede verse como una consecuencia directa del hecho de que $H \circledast H \cong H \times K$, ya que si hk = e, entonces (h, k) = (e, e), por lo que h = k = e.

3. Producto finito

4. Producto infinito