Algebraic Topology II - Assignment 5

Matteo Durante, s2303760, Leiden University

23rd April 2019

Exercise 2

Proof. (a) We will make use of the Serre Spectral sequence given by the usual fibration sequence $\Omega S^n \hookrightarrow PS^n \to S^n$ to compute the cohomology groups and the cohomology ring of ΩS^n , n > 1. Since what we are about to do will be useful in (b), we will begin our discussion generally and then specify whether n is even or odd when it matters. To have a graphical representation of the sequence we refer to the notes.

First of all, since S^n is a simply-connected pointed space, by [HM19] we know that E_2^{ij} $H^{i}(S^{n}, H^{j}(\Omega S^{n})) \Rightarrow H^{i+j}(PS^{n}).$

Also, the path space PS^n is contractible, hence the E_{∞} -page of the spectral sequence has to be zero everywhere except for at (0,0), where it is \mathbb{Z} .

We know that $E_2^{ij} \cong H^j(\Omega S^n)$ for i=0,n,=0 otherwise. We may then write $E^{0j}=H^j(\Omega S^n), \ E_2^{nj}=H^j(\Omega S^n)\cdot a$ for a generator $a\in H^n(S^n)$.

Observe that, since all of these groups are 0, all the differentials in the sequence are zero, except some in the n-page among the following ones: $E_n^{i,j+(n-1)} \xrightarrow{d_n} E_n^{i+n,j}$. This implies that all the

positions in the sequence may change only from the *n*-page to the (n+1)-page. It follows that $E_2^{0k} = E_\infty^{0k}$ for k < n-1 and, for $k \neq 0$, $E_2^{0k} = 0$. Suppose now that $E_2^{0k} = 0$ for some $k \in \mathbb{N}$. Remembering that $E_2^{nk} \cong E_2^{0k}$ and these groups have remained stable from the 2-page to the n-page, this means that the differential $E_n^{0,k+(n-1)} \xrightarrow{d_n} E_n^{n,k}$

is zero, thus $E_2^{0,k+(n-1)}$ remains stable in the sequence as well and therefore it is =0. It follows that $H^k(\Omega S^n)=0$ whenever $k\equiv 1,\ldots n-2 \mod n-1$. Also, the only differentials which may still be non-zero are the ones $E^{0,k(n-1)} \xrightarrow{d_n} E^{n,(k-1)(n-1)}$

Now, since $E_m^{n,0}$ eventually has to vanish and the only non-zero map into the (n,0)-position is d_n , we have that this map is actually surjective. On the other hand, $\ker(d_n) = E_{n+1}^{0,n-1} = E_{\infty}^{0,n-1} = 0$, hence d_n is an isomorphism and $H^{n-1}(\Omega S^n) \cong \mathbb{Z}$. Likewise, suppose that $E^{0,(k-1)(n-1)} \cong H^{(k-1)(n-1)}(\Omega S^n) \cong \mathbb{Z}$. By applying the same reasoning

as before to the map d_n into $E^{n,(k-1)(n-1)}$, we see that all of the remaining maps are actually isomorphisms, hence $H^{k(n-1)}(\Omega S^n) \cong \mathbb{Z}$ for every $k \in \mathbb{N}$ and it is = 0 for all other indexes.

Now we will start describing the multiplicative structure on this ring.

Let $x_k \in H^{k(n-1)}(\Omega S^n) = E^{0,k(n-1)}$ be a generator. We may set $x_0 = 1$ and choose x_k for every k>0 s.t. $d_n(x_k)=x_{k-1}a$, which is a generator of $E_n^{n,(k-1)(n-1)}$, where d_n is the differential $E^{0,k(n-1)} \xrightarrow{d_n} E^{n,(k-1)(n-1)}$. Notice that the choice is actually unique because the maps are isomorphisms. (*)

If n is odd, then by the Leibniz rule $d_n(x_1^k) = x \cdot d_n(x^{k-1}) + d_n(x) \cdot x^{k-1} = \ldots = kx_1^{k-1}d_n(x_1) = kx_1^{k-1} \cdot a$. Also, we know that $x_1^k \in H^{k(n-1)}(\Omega S^n)$ and therefore $x_1^k = n_k x_k$, which implies that $d_n(x_1^k) = d_n(n_k x_k) = n_k \cdot d(x_k) = n_k x_{k-1} \cdot a$. It follows that $kx_1^{k-1} \cdot a = n_k x_{k-1} \cdot a$ and in particular $kx_1^{k-1} = n_k x_{k-1}$. Iterating, this means that $x_1^k = k! x_k$, thus $x_k = \frac{x_1^k}{k!}$ is a generator of $H^{k(n-1)}(\Omega S^n)$. The fact that d_n is isomorphism and the cohomology groups we are considering are $\cong \mathbb{Z}$ guarantees that we may actually "divide" uniquely x_1^k by k! in $H^{k(n-1)}(\Omega S^n)$. Also, $x_k x_l = \frac{x_1^k}{k!} \cdot \frac{x_1^l}{l!} = \frac{(k+l)!}{k!l!} \cdot \frac{x_1^{k+l}}{(k+l)!} = \binom{k+l}{k} x_{k+l}$.

All of this implies that $H^*(\Omega S^n) \cong \Gamma[x_1]$, where $x_1 \in H^{n-1}(\Omega S^n)$ is an element of degree n-1 (where n is odd and positive).

Proof. (b) We now begin the discussion of the case where n is even and positive from (*).

By graded commutativity, since $x_1 \in H^{n-1}(\Omega S^n)$ is of odd degree, $x_1^2 = 0$. Also, $x_1x_k \in H^{(k+1)(n-1)}(\Omega S^n)$ can be written as n_kx_{k+1} for some integer n_k , thus $d_n(x_1x_k) = d_n(n_kx_{k+1}) = n_k \cdot d_n(x_{k+1}) = n_kx_ka$. We also know that $d_n(x_1x_k) = d(x_1) \cdot x_k - x_1 \cdot d(x_k) = ax_k - x_1x_{k-1}a = ax_k - n_{k-1}x_ka = (1-n_{k-1})x_ka$. Since $n_1 = 0$, we get that n_k is equal to $k+1 \mod 2$ and therefore $x_1x_k = x_kx_1 = x_{k+1}$ if k is even, $x_1x_k = x_kx_1 = 0$ otherwise.

 $x_1x_k = x_kx_1 = x_{k+1} \text{ if } k \text{ is even, } x_1x_k = x_kx_1 = 0 \text{ otherwise.}$ $\text{We also have that } x_2 \in H^{2(n-1)}(\Omega S^n) \text{ is s.t. it commutes with every other element because of its degree and } d_n(x_2^k) = x_2 \cdot d(x_2^{k-1}) + d(x_2^{k-1}) \cdot x_2 = kx_2^{k-1}x_1a. \text{ Also, } x_2^k \in H^{2k(n-1)}(\Omega S^n), \text{ thus } x_2^k = m_k x_{2k} \text{ for some integer } m_k \text{ and } d_n(x_2^k) = d_n(m_k x_{2k}) = m_k \cdot d_n(x_{2k}) = m_k x_{2k-1}a. \text{ It follows that } m_k x_{2k-1}a = kx_2^{k-1}x_1a = km_{k-1}x_{2(k-1)}x_1a.$

Since $x_{2k-1} = x_1 x_{2(k-1)}$ by what we showed earlier, $m_k x_1 x_{2(k-1)} a = k m_{k-1} x_{2(k-1)} x_1 a$, thus by induction $m_k = k!$ and $x_{2k} = \frac{x_2^k}{k!}$, similarly to the case where n is odd.

Let's write down all of the meaningful relations which derive from this:

$$x_1 x_k = x_k x_1 = \begin{cases} x_{k+1} & \text{if } k \equiv 0 \mod 2 \\ 0 & \text{otherwise} \end{cases}$$

$$x_2^k = k! x_{2k}$$

$$x_{2k} x_{2l} = \frac{x_2^k}{k!} \cdot \frac{x_2^l}{l!} = \frac{(k+l)!}{k! l!} \cdot \frac{x_2^{k+l}}{(k+l)!} = \binom{k+l}{k} x_{2(k+l)}$$

$$x_{2k+1} x_{2l} = x_1 x_{2k} x_{2l} = \binom{k+l}{k} x_{2(k+l)+1} = x_{2k} x_{2l} x_1 = x_{2k} x_{2l+1}$$

$$x_{2k+1} x_{2l+1} = x_{2k} x_1^2 x_{2l} = 0$$

It follows that, for n even, $H^*(\Omega S^n) \cong \Gamma[x_2][x_1]/(x_1^2) \cong \Gamma[x_2] \otimes \mathbb{Z}[x_1]/(x_1^2)$, where $x_1 \in H^{n-1}(\Omega S^n)$ has degree n-1 and $x_2 \in H^{2(n-1)}(\Omega S^n)$ has degree 2(n-1).