Cálculo II

9. Integrales de Línea y de Superficie. Teorema de Green. Teorema de Gauss y de Stokes.

La bibliografía que utilizaremos para este tema es:

- Principal: Capítulo 8 y 9 de las Notas de clase.
- Principal: Capítulo 7 y 8, Marsden-Tromba, "Cálculo vectorial", 5 ed. Pearson Addison-Wesley.

1 Integrales de trayectoria y de línea.

1. Calcule en cada caso la integral de trayectoria $\int_{\sigma} f \, ds$

(a)
$$f(x, y, z) = x + y + z$$
, $r(t) = (\cos t, sent, t)$, $t \in [0, 2\pi]$

(b)
$$f(x, y, z) = 12x \cdot \cos z$$
, $r(t) = (t, t^2, 0)$, $t \in [0, 1]$

2. Encuentre la longitud de las siguientes curvas:

(a)
$$\gamma(t) = (t, \log(\cos t)), t \in [0, 1]$$

(b)
$$x^2 + y^2 = R^2$$
, para $R > 0$.

- 3. Calcule en cada caso la integral de línea.
 - (a) $\int_{\sigma} (x^2 2xy) dx + (y^2 2xy) dy$ siendo σ el arco de parábola $y = x^2$ que une los puntos (-2,4) y (1,1).
 - (b) $\int_{\sigma} \frac{(x+y)dx (x-2)dy}{x^2 + y^2}$ siendo σ la circunferencia de radio a > 0 y centro en (0,0).
- 4. Encuentre el trabajo realizado al mover una partícula a lo largo de la curva $C(t)=(t,t,t^2)$ con $0 \le t \le 2$, bajo la influencia del campo F(x,y,z)=(x+y,y,y).

2 Integral de Superficie.

1. Indique cuales de estas imágenes son superficies orientadas y cuales no lo son.

2. Obtenga una parametrización para cada una de las superficies. Halle la expresión general del vector normal exterior a cada una de ellas.

2

(a)
$$z = \sqrt{x^2 + y^2}$$

(b)
$$z = x^2 + y^2$$

3. Halle el área de la:

(a) superficie
$$y^2 + x^2 = 4$$
, $0 \le z \le x$.

(b) superficie
$$x^2 - y^2 - z^2 = 0$$
, $0 \le x$, $0 \le y$, $0 \le z$, $x \le 1 - z$.

4. Calcule las siguientes integrales de superficie.

(a)
$$\int\int_S \frac{xy}{z+1/4} dS$$
 siendo $S:z=x^2+y^2,\,x^2+y^2\leq 4.$

- (b) $\iint_S (z^2 4xy^2) dS$ siendo $S: z = x^2 + y^2, \ 0 \le x, z \le 9$.
- 5. Calcule el flujo de los siguientes campos vectoriales sobre las superficies indicadas en cada caso.
 - (a) $\overrightarrow{F}(x,y,z) = (x^2,y^2,z^2)$, S: x+y+z=3, en el primer octante.
 - (b) $\overrightarrow{F}(x,y,z) = (x+z)\mathbf{k}, S: x^2+y^2+z^2=144, 9 \le x^2+y^2 \le 16.$
 - (c) $\overrightarrow{F}(x, y, z) = (y, z, x), S : x^2 + y^2 = (25 z)^2, 9 \le z \le 16.$

3 Teoremas de Integración.

- 1. Si una particula está sometida a la fuerza $\overrightarrow{F}(x,y) = (-x^2y,xy^2)$, calcule el trabajo realizado por la partícula al girar una vez, en sentido antihorario, a lo largo de la circunferencia $x^2 + y^2 = 4$
- 2. Aplique el Teorema de Green para determinar el momento de inercia de una arandela homogénea de radio interno a, radio externo b y masa M, respecto a uno de sus diámetros.
- 3. Calcule el área de:
 - (a) la región encerrada por $x^2 + y^2 = 1$, $y \ge x$, y = 0.
 - (b) un arco de cicloide $x = a(\theta sen\theta), y = a(1 \cos\theta), a > 0, \theta \in [0, 2\pi]$ y el eje x.
- 4. Sea $P(x,y) = -\frac{y}{x^2+y^2}$ y $Q(x,y) = \frac{x}{x^2+y^2}$. donde $D: x^2+y^2 \le 1$.
 - (a) Calcule la integral de línea $\int_{x^2+y^2=1} \overrightarrow{F} \cdot ds$
 - (b) Calcule la integral $\int \int_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy$.
 - (c) ¿Los resultados obtenidos en (a) y (b) contradicen el Teorema de Green? Justifique su respuesta.
- 5. Calcule, de dos formas distintas, la integral de superficie $\int_S rot \overrightarrow{F} dS$ para el campo vectorial \overrightarrow{F} y la superficie S dados a continuación:
 - (a) $\overrightarrow{F}(x,y,z) = (y^2,z^2,x^2)$, S es la parte del plano x+y+z=1 que se encuentra en el primer octante, la normal exterior apunta en la dirección donde crecen los valores de las variables.
 - (b) $\overrightarrow{F}(x,y,z) = (2y,-z,3)$, S es la parte del paraboloide $z=4-x^2-y^2$ que se encuentra dentro del cilindro $x^2+y^2=1$.
 - (c) $\overrightarrow{F}(x,y,z) = (-3y, x, zsen(z-2)sen(z-2))$, S es la parte del cono $z^2 = x^2 + y^2$ que se encuentra entre los planos z = 1 y z = 2.
- 6. Calcule, de dos formas distintas, el flujo del campo $\overrightarrow{F}(x,y,z) = (x^2,y^2,z^2)$, sobre la superficie S: x+y+z=3, en el primer octante .
- 7. Calcule $\int_V \operatorname{div} \overrightarrow{F} dV$, de dos formas distintas.
 - (a) $\overrightarrow{F}(x,y,z) = (3x^2y, xy^2, 0), V = \{(x,y,z) \in \mathbb{R}^3 : x+y \le 1, x \ge 0, y \ge 0, 0 \le z \le 1\}$
 - (b) $\overrightarrow{F}(x, y, z) = (x, y, z), V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 16, z \ge 1\}$

8. Determine si los siguientes campos vectoriales son conservativos. En caso afirmativo, halle la función potencial.

(a)
$$\overrightarrow{F}(x,y) = (y.e^{xy}, x.e^{xy})$$
 (c) $\overrightarrow{F}(x,y) = (x+y\cos x, senx)$ (d) $\overrightarrow{F}(x,y,z) = (x+z, -y-z, x-y)$

- 9. Calcule el trabajo realizado por el campo vectorial $\overrightarrow{F}(x,y) = (\sqrt{y}, x y)$ a lo largo de la curva γ que une los puntos (0,0) y (1,1) siguiendo : (i) y = x, (ii) $y^2 = x^3$ ¿el trabajo realizado depende de la trayectoria recorrida? ¿y de la parametrización utilizada?
- 10. Pruebe que los siguientes campos vectoriales son conservativos y, mediante el uso de su función potencial, calcule las integrales de línea.

(a)
$$\int_{(0,0)}^{(1,2)} (3x^2 + y) dx + (x - 4y) dy$$
 (b) $\int_{(1,1,2)}^{(3,5,0)} (yz) dx + (xz) dy + (xy) dz$

- 11. Sea el campo vectorial F(x, y) = (2x, 2y).
 - (a) Grafique el campo F(x, y) y bozqueje algunas líneas de flujo ¿Qué gráfica parece seguir las líneas de flujo? Encuentre en particular la línea de flujo r(t) con r(0) = (1, 1).
 - (b) Encuentre,
si existe, la función potencial gtal que
 $F=\nabla g$

2020, FCEN, UNCuyo