Internship Program Report

By

PRAVALLIKA KALANGI 17481A0277

In association with

Contents

Introduction	3
Program organizer	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11th May2021: Classification of Transformers and Generators	9
12th May2021: Classification of Switch gare construction and power factor improvement	10
17 th May2021: Detailing about UPS system and Bus ducts.	11
18th May2021: Detailing about Motor Starters and Sizing of motors.	12
19th May2021: Describing about Earthing system and Lighting Protection	13
20 th May2021: Lighting or illumination systems and calculations.	14
21th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	16
25 th May2021: Cabling calculations and Cable gland selection	17
28 th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations	19
2nd june2021: Caluculations of Earthing and Lighting protection	20
5th june 2021: Cable sizing and cable tray sizing calculations	21
Conclusion	22
Foodback	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organizing Internships, knowledge workshops, debates, hackathons, Technical sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Dr.G.Srinivasa Rao-Coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth - Softwar/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: Online through ZOOM

Presenter: Mr. Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

1B. ENGINEERING DEPARTMENT

On this we have learnt about Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Topic details:

SEQUENCE OF DELIVERABLES

On this day we have gone through Deliverable list of details and work flow in electrical detaling .

This topic has given a detailed information of deliverables and its parts. And also gone through electrical information inflow and out flow in a neat manner which gives us an idea regarding electrical terminologies and abbreviations.

5th May2021: Engineering documentation for commands and formulae

3 Electrical Design Ms word commands
Documentation Ms excel formulae
Auto cad basic commands

Topic details:

MS Word, Excel and Auto cad COMMANDS.

Word Shortcut Keys

Command Name	Keys	
All Caps	Ctrl+Shift+A	
Apply List Bullet	Ctrl+Shift+L	
Auto Format	Alt+Ctrl+K	
Auto Text	F3	
Bold	Ctrl+B	
Cancel	ESC	
Center Para	Ctrl+E	
Change Case	Shift+F3	
Clear	Del	
Close or Exit	Alt+F4	
Copy	Ctrl+C	
Create Auto Text	Alt+F3	
Cut	Ctrl+X	
Double Underline	Ctrl+Shift+D	
Find	Ctrl+F	
Help	FI	
Hyperlink	Ctrl+K	
Indent	Ctrl+M	
Italic	Ctrl+I	
Justify Para	Ctrl+J	
Merge Field	Alt+Shift+F	
New Document	Ctrl+N	
Open	Ctrl+O	
Outline	Alt+Ctrl+O	
Overtype	Insert	
Page	Alt+Ctrl+P	
Page Break	Ctrl+Return	
Paste	Ctrl+V	
Paste Format	Ctrl+Shift+V	
Print	Ctrl+P	
Print Preview	Ctrl+F2	
Redo	Alt+Shift+Backspace	
Redo or Repeat	Ctrl+Y	
Save	Ctrl+S	
Select All	Ctrl+A	
Small Caps	Ctrl+Shift+K	
Style	Ctrl+Shift+S	
Subscript	Ctrl+=	
Superscript	Ctrl+Shift+=	
Task Pane	Ctrl+F1	
Time Field	Alt+Shift+T	

Underline	Ctrl+U	
Undo	Ctrl+Z	
Update Fields	F9	
Word Count List	Ctrl+Shift+G	

Function Keys	
F1	Get Help or visit Microsoft Office Online.
F2	Move text or graphics.
F3	Insert an AutoText (AutoText: A storage location for text or graphics you want to use again, such as a standard contract clause or a long distribution list. Each selection of text or graphics is recorded as an AutoText entry and is assigned a unique name.) entry (after Microsoft Word displays the entry).
F4	Repeat the last action.
F5	Choose the Go To command (Edit menu).
F6	Go to the next pane or frame.
F7	Choose the Spelling command (Tools menu).
F8	Extend a selection.
F9	Update selected fields.
F10	Activate the menu bar.
F11	Go to the next field.
F12	Choose the Save As command (File menu).

In this session we learnt the basic fields of engineering such as MS WORD COMMANDS,MS EXCEL FORMULAE AND BASIC AUTOCAD PRINCIPLES. From these commands we have drawn powerplant sketches .

7th May2021: Engineering documentation for Electrical system design

4 Electrical system Overall plant description design for a small small project Sequence of approach Approach to detailed design

Topic details: Overall plant description, approach to detailed design.

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5 Electrical system
design for typical Load
diagrams Single

Load lists shedule Single line diagram Power flow diagram
Typical schematic diagram

Topic details: Typical diagrams and Load calculations.

_ 1		EQUIPMENT		7	1 E S	Absor	ted Equipr	nent	Load factor	Efficiency at load	Power factor at	<u> </u>	kW = A/D		turned Load		_	_	KW*tan j	4		
8	Equipment			Description	A pA	tal	1886	loa		_	=A/B or HIT	tactor C los	load factor		Cont	nuous	intern	nittent and sp	ires	Sta	nd by	Remerks
"	No.	Descriptori	Apddn:	> 3	Non e	KV	A KW	0	in decimals	D	Cos o	No.	KOW	aVAr	No.	y KVP	F No.	KOW	NVAr	7		
\rightarrow			60	H	2 4	- KV		Н	in decimals	in decimals	Cos o		KTI	KVAI	- K	V KUA		KH	KVA			
4	PROCESS LOADS			ш	\perp	_		Ц														
4	PD-3431	Portable MEG Injection Pump Package	LEWA	ш	X	27.			0.73	0.91	0.83	ш			1 29.				_	Portable Skid (Please refer Note-d)		
4		Liquid Return Pump Motor	LEWA	₩	X	25.4			0.82	0.93	0.81	\vdash			1 27.	37 19.8	1	27.37	19.81			
+	34-PM8401B 1 34-PM8402A 1	Liquid Return Pump Motor	LEWA	₩	x	1.4			0.64	0.93	0.81	\vdash			1 1.3	m 11	, '	27.37	19.81			
+		Booster Pump Motor (LRP Package) Booster Pump Motor (LRP Package)	LEWA	Н.	×	1.4			0.64	0.78	0.84	\vdash			1 1.	9 1.1	1	1.79	1.16			
\rightarrow		Corrosion Inhibitor Injection Pump Motor	LEWA	-	ı x	6.4			0.59	0.90	0.77	1	7.17	5.94		_	-	1.70	1.10			
\neg		Corrosion Inhibitor Injection Pump Motor	LEWA	+	x	6.4			0.59	0.90	0.77	· ·	7.17	0.04		-	1	7.17	5.94			
-		Batch Corrosion Inhibitor Injection Pump Motor	RAM	+	×	133			0.83	0.96	0.80					_	1		104.30			
\neg	34-PM7903B	Batch Corrosion Inhibitor Injection Pump Motor	RAM	\vdash	X	133.	50 160.	00	0.83	0.96	0.80					_	1	139.06	104.30			
,		KHI Inhibitor Injection Pump Motor	LEWA	$^{+}$	×	6.4			0.59	0.90	0.77	1	7.17	5.94		-		155155	100,00	VSD for speed control		
$\overline{}$		KHI Inhibitor Injection Pump Motor	LEWA	\vdash	×	6.4	5 11.0	00	0.59	0.90	0.77						1	7.17	5.94	VSD for speed control		
	34-PM7905A :	Scale Inhibitor Injection Pump Motor	FUTURE		×	3.0	0 4.0	0	0.75	0.85	0.81	1	3.53	2.56						Future		
	34-PM7905B :	Scale Inhibitor Injection Pump Motor	FUTURE		х	3.0			0.75	0.85	0.81						1	3.53	2.56	Future		
	34-KM9602A	Nitrogen Compressor Motor	GENERON		×	30.			0.80	0.90	0.80	1	33.33	25.00								
\Box	34-KM9602B	Nitrogen Compressor Motor	GENERON		х	30.			0.80	0.90	0.80	1	33.33	25.00								
\Box	34-KM9602C	Nitrogen Compressor Motor	GENERON	П	X	30.			0.80	0.90	0.80						1	33.33	25.00			
1	34-EM9602A	Aftercooler for Nitrogen Compressor	GENERON		X	1.1			0.46	0.78	0.80				1 1.4		1					
1	34-EM9602B	Aftercooler for Nitrogen Compressor	GENERON	П	х	1.1			0.46	0.78	0.80				1 1.4	7 1.1	1					
_	34-EM9602C	Aftercooler for Nitrogen Compressor	GENERON		х	1.1			0.46	0.80	0.80	\Box					1	1.44	1.08			
4	34-H9602	Nitrogen Heater				6.2			6.20	0.90	1.00											
4	34-PM9701A	Hydraulic Fluid Pump - Welthead HPU - Very High Pressure	FRAMES	1	X	0.1			0.35	0.80	0.70	\vdash				4 0.2						
4	34-PM9701B	Hydraulic Fluid Pump - Wellhead HPU - Very High Pressure	FRAMES	1	Х	0.1			0.35	0.80	0.70	\vdash				4 0.2						
-	34-PM9702A	Hydraulic Fluid Pump - Wellhead HPU - Medium High Pressure	FRAMES	1	X	5.8			0.77	0.80	0.86	\vdash			1 7.3							
+	34-PM9702B II 34-A9704A II	Hydraulic Fluid Pump - Welthead HPU - Medium High Pressure	FRAMES	+	X	5.8			0.77	0.80	0.86	\vdash			1 7.3	8 4.0						
4		Hydraulic Fluid Pump -IOPPS Valves HPU	LEDEEN	₩	X	5.4			0.99	0.80	0.86	\vdash							_			
-		Hydraulic Fluid Pump -IOPPS Values HPU	LEDEEN	+	X				0.99	0.80	0.86	\vdash			1 6.3							
\rightarrow		Hydraulic Fluid Pump - ESDV's HPU	LEDEEN	+	X	5.4	2 5.5 2 5.5	<u>~</u>	0.99	0.80	0.86	\vdash				8 4.0 8 4.0						
		Hydraulic Fluid Pump - ESDV's HPU Crane motor	LIEBHERR	+	X	112			0.99	0.80	0.90	\vdash			1 117							
+	34-XZM8303	Lifeboat Recovery Starter Panel	SCHAT HARDING	+	X	8.7			0.80	0.90	0.90	\vdash			11/	07.1	-	9.60	6.70			
\dashv		Flare Knock Out Drum Heater Control Panel	CHROMALOX	Н.	×	35.0			1.00	0.90	0.90				1 38.	89 18.8	13	9.00	6.70			
-		BIE FUNCK OULD BIT ROOM CONTO F BINS	OFFICIALON	-	1^	30.	30.1	,,,	1.00	0.30	0.00					05 10.0	~		_			
_	HVAC LOADS			ш	\perp			Ш								_						
_	34-YH4201ACCU01	Air Cooled Condensing Unit - 01	CCTC	,		37.	25 42.9		0.87	0.82	0.80	1	45.43	34.07		_						
\exists	34-YH4201ACCU02	Air Cooled Condensing Unit - 02	CCTC	1		37.			0.62	0.82						_	1	45.43	34.07			
\Box		Air Handling Unit - 01	CCTC		x	8.8			0.89	0.80	0.80	1	11.06	8.30		_			_			
	34-YH4201AHU02	Air Hendling Unit - 02	CCTC	1		8.8			0.89	0.80	0.80					_	1	11.06	8.30			
		Fresh Air Fan - 01	CCTC	,		8.0			1.00	0.90	0.80	1	8.89	6.67		_			-			
\Box	34-YH4201FF02	Fresh Air Fan - 02	CCTC		X	8.0			1.00	0.90	0.80	\vdash					1	8.89	6.67			
		Exhaust Fan - Toilet	CCTC	1 2		1.0			1.00	0.90	1.00	\vdash			1 9.	1 0.8			-			
9		Duct heater - 01		,		9.7				1.00		\vdash							-			
0		Duct healer - 02 Duct healer - 03	CCTC		X	0.9			1.00	1.00	1.00	\vdash				9 0.0			-			
2		Duct heater - 03 Duct heater - 04	CCTC	1	X	4.9			1.00	1.00	1.00				1 0.1				_			
-		DUCT Heater - 04	CCIC	H-'	×	4.0	9.9	0	1.00	1.00	1.00				4.3	16 0.0	,		_			
_	ELECTRICAL LOADS	The state of the s		ш	ш			Ш														
		Power Distribution Board	MASSEERA		K	41.0			0.80	0.98	0.80	1	41.84	31.38						Inclusive of MOV, Choke valve, Control valve and heat tracing		
		UPS- Main/Bypass	GUTOR		K	24.			1.00	0.82	0.80	1	29.27	21.95								
		Switchgear 24 V DC UPS	SAFT	1	K	1.2		0	1.00	0.80	0.80	1	1.50	1.13								
Н	LTR-3431	Lighting Transformer for LP-3431	SCHNEIDER	1	K	27.0			1.00	0.98	0.90	1	27.55	13.34						Inclusive of lighting load, convenience outlets and small power		
_	ELTR-3431 I	Lighting Transformer for ELP-3431	SCHNEIDER	1	X	27.			1.00	0.98	0.90	1	27.55	13.34						Inclusive of lighting load, convenience outlets and small power		
		Welding Socket Outlet 1 - Upper Deck	STAHL	1	X	33.0			1.00	0.98	0.80	\Box					1	33.67	25.26			
	WD-3431B	Welding Socket Outlet 2 - Upper Deck	STAHL	\perp	X	33.0			1.00	0.98	0.80	\sqcup					1		25.26			
	WD-3432A	Welding Socket Outlet 1 - Lower Deck	STAHL	\vdash	X	33.0		10)	1.00	0.98	0.80	\vdash				_	1	33.67	25.26			
\Box	WD-3432B	Welding Socket Outlet 2 - Lower Deck	STAHL	\vdash	X	33.0				0.98	0.80	\vdash					1					
3	WD-3433A VD-3433B V	Welding Socket Outlet 1 - Mezz Deck	STAHL STAHL	+	x	33.0			1.00	0.98	0.80	\vdash					1	33.67 33.67	25.26			
Н		Welding Socket Outlet 2 - Mezz Deck Welding Socket Outlet - Cellar Deck	STAHL	+	×	33.0			1.00	0.98	0.80	\vdash				_	1		25.26 25.26			
-	WD-3434	Henry Journal Collect - Celler Deck	SIANL	+	X	33.0	33.0	N	1.00	0.96	0.80	\vdash					,	33.67	20.26			
_	Max. of normal running plant load:	363 kW, 232 kVAr,	$\sqrt{(kW^2 + kV_c4r^2)}$		423	kVA		x =	100										-	Power factor without compensation [Cos φ] 0.836		
	Est. x %E + y %F)							v =	30		DTAL		278	195	26	2 121		671	503	Power factor with compensation [Cos v,]		
	Peak load:	420 kW, 282 kVAr,	$\sqrt{(kW^2 + kV_0b^2)}$		506	kVA		z=	10	AV4= vi	R#14E4r9		3	39		282			138	Regd capacitor rat: [=kW(tan \varphi - tan \varphi_1)]		
	Est. x %E + y %F + z%G)	518. 54. 5		-		0	and the same	щ														
÷	Land along Woodlandonsto C	b) Absorbed loads:			C		urned loads		of load 1	to the same						loads requ		ter		-		
	Load classification/restarting:	- for pumps, shaft load on duty point.	1000			E-	"Continue									only, such		water		-		
	For definitions of "Vital", "Essential										nal operation	1				se of not n				QATARGAS 384		
	Non - Essential*, services and app		operation of plant.			-			luding light							rically drive				OFFSHORE FACILITIES PROJECT		
	of "Restarting", see DEP 33.64.10.					F.					ds required					nd - by for				WELLHEAD PLATFORM 7		
	Electrical engineering guidelines.	- for workshops, the average total load it	n normal full								eding, etc,	and		rur	ning stear	m - driven	mes (e.	g.charge				
		operation.					all electri	cal s	peres of e	electrically	driven units			pu	nps, boile	feed pum	ps)			-		
	The Panel shall feed Injection Pum																					
0)	Batch Injection pump considered	as standby load during normal running condition based on operating	g philosophy.																			
																				MCDEA		
								П														
	01	24-Jun-07 A	K	Т							APPROVE	D FOF	CONST	RUCTION								
	00	22-Aug-07 P.	J							APPE	ROVED FOR	CON	STRUCT	ON WITH	HOLD							
_																				-		
_	00 B	18-Jul-07 P	J								ISSUED F	OR CC	MPANY	REVIEW						50		
_	В			+				_			ISSUED F									- 1		
_		18-Jul-07 P. 26-Oct-06 Jl DATE PREPAI	3	+							IS	SUED	FOR ID	С								

We conclude here how to do load calculations and Typical diagrams and internal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6 Classification of
Transformers and Different types of Transformers Different types of Generators
Generators

Topic Details: Classification of Transformers and Generators.

1 Ph. Pad mounted 3 Ph Pole mounted Commercial/ 3 Ph Oil filled (ONAN) Distribution Residential lighting Residential/ street lighting type for industrial & commercial.

415V Diesel generator sets for standby / 240V 1 ph diesel generator set for lighting and& small power only Emergency power supply.

Transformer shall include a primary disconnect on the incoming power source. The disconnect means shall be either a breaker or a load break primary switch that is fused. Transformers are sized to carry the peak running load of all busses connected to them. In addition, feeders to and from power transformers shall be rated to carry full current at the maximum rating.

The packaged combination of a diesel engine, an alternator and various ancillary devices such as base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, starting systems etc., is referred to as a Diesel Generating Set or a DG Set in short.

12th May 2021: Classification of Switchgears construction and power factor improvement

7 Classification of Switchgears construction and power factor improvement

Different types of Switchgears Assembles

Power factor improvement

Topic details: Classification of Switchgear construction Feaetures.

Switchgear includes switching & protecting devices like fuses, switches, CTs, VTs, relays, circuit breakers, etc. This device allows operating devices like electrical equipment, generators, distributors, transmission lines, etc.

Power factor defined as the ratio of real power to volt-amperes and is the cosine of the phase angle between the voltage and current in an AC circuit.

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about
	UPS system and
	Rusducts

Uninterruptible power supply system

Busduts of the system

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

Busducts are classified into various types depending on its application via phase separated Busducts, segregated phase busducts, non-segregated phase busducts.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9 Detailing about Motor starters and drives Sizing and selection of motors Motor Starters and Sizing of motors

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter
- Star Delta Starter

- Starting method soft starter, Auto transformer, Star/Delta
- Speed variation Constant speed, variable speed for VFD
 - Frame Size 56 to 280
- Insulation class & Temp rise A, E, B, F & H
- Protection Protection based on voltage & KW rating
- Cable entry, size & termination Cable sizing based on staring/running voltage drop and short circuit current Vibration – monitoring based on KW rating.

19th May2021: Describing about Earthing system and Lighting Protection.

10	Describing about Earthing systemand	Plant Earthing system	Lighting Protection materials
	Lighting Protection.		

Topic details: Describing about Earthing system and Lighting Protection.

The purpose of earthing is to prevent damage to people and prevent or limit plant damage. Various earthing systems are provided with each earthing system is isolated from the other.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May 2021: Lighting or illumination systems and calculations.

11	Lighting	or
	Illuminati	on
	systems a	nd
	Calculation	ns

Lighting or illumination systems

Lighting calculations

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG Lux

Applicable Standards: IS 6665: Code of practice for industrial lighting, IS 3646: Code of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12 Lighting or Illumination using DIALUX software

Lighting or illumination systems

Operation of dialux software

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

We have the indoor calculations and outdoor calculations too.

Indoor calculation

outdoor calculations

24th May2021: Cabling and their calculations and types.

Cabling and their types and claculations

Cabling calculations

Types of cabling materials

Topic details: Cabling and their types and claculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

Cable trays shall be generally loaded 60 to 70% leaving space for future use. Underground cabling shall be done in concrete cable trenches with cable trays in paved areas and directly buried with mandatory gap of 300mm between different systems of cables.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and cable gland	Cabling calculations	Cable gland selection
	Selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point.

Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland Size	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion
	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

Load calculations and TR calculations

Load calculations

TR calculations

Topic details:

List of electrical load calculations.

-22		1 2		422		Breaker	garas/					(2	Efficiency	Pover	kW = [A]/[D]		Consumed	Load	kVAR = kW	/Htan &
E	quipment No.	E.	quipment Desc	nption		Rating	Breaker	No. of Poles	ELCB Rating	Absorbed Load	Motor/Load Rating	Factor (A)/(B)	at Load Factor [C]	Factor at Load Factor (C)	Continu	louis	Interm	ittent	Stand	-Бу
						A			mA	[A]	(B)	(C) decimal	[D] decimal	cos d	kW.	KVAR	kW.	LEVAR	KW.	kVAF
		R				10						· · · · · · · · · · · · · · · · · · ·								
PU2		São a filter feed pump								12.47	15.00	0.83	0.85	0.73	14.67	13.74				
	314-A	Absorbesnt/Neutral oil pump (W)								3.62	4.70	0.77	0.85	0.73		4.0				
	314 -0	Absorbesm/Neutral oil pump (S)								3.11	3.70	0.84	0.85	0.73		immoneson			3.7	
PU2	305	Feed Pump (Seperator)						-		12.58	15.00	0.84	0.85	0.73		13.9				
MXS	305	MICKER (W)								12.68	15,00	0.85	0.85	0.73		14.0				
MX2	2308	MIXER (S)										0.85	0.85	0.73		***********			14.9	3 14
BW2		Blower								5.45	7.50	0.73	0.85	0.73		6.0				
Rota	ry valve	TK 2313B (0								0.53	0.75	0.71		0.73		I	0.6	0.6		
SC2	314	Screw conveyor (I)								1.23	1.50	0.82					1.45	1.35		-
	324A	Citric acid tan agitator (W)								0.91	1,10	0.83	0.85	0.73		1.00				
AG 2	2324B	Citric acid tank agitator (S)					2	100 0000		0.91	1.10			0.73				1	1.1	1 1
AG 2	305	Citric oil rection vessol agitator								3.34	3.70	0.90		0.73		3.68				4
AG 2	2309	Lye oil reaction vessel agitator								1.21	150	0.81		0.73						
AG 2	310	Lye oil reaction vessel agitator								1.21	1.50	0.81		0.73		1.33				
AG 2	314	Spap Adsorbant Tank Agitator						12-15-15		2.12	3.00	0.71	0.85	0.73	2.49	2.34				
			I																	
							-		-											
										-										
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			paredimental	ymmerone milione me			-calcinosities												
	.)								-											
Maid	mum of norm	al running plant load :			6.0 kW		61.8	kVAR		sqrt	(kW"+kVAR") =	90.4	kVA	TOTAL	65.40	61.23	2.07	1.94	19.65	18.3
Peal	k Load:				an w		63.7	EVAR		most i	kw"+kvAR")=	93.1	LVA	EVA	89.5	9	2.6	ld.	26.9	er .
(Est.	HSE+9SF+	e%G)											2000	33,500		1				
Ann	umptions	iciency and Power factor.																		
11/20	auracio, Lii	Load Rating (kW)				Fillio	iencu		Powerfa	otor										
1		<= 20				0.	85		0.73											
		> 20 - <= 45				0.	91		0.78											
		> 45 - < 150				0.	93		0.82											
		>= 150				0.	94		0.91											

nternz

TR sizing calculations:

29th May2021: DG set calculations.

16 DG set Calculations

Topic details:

Transformer and DG set calculations, types, sizing or selections

	DG SIZING CALCULATIONS	6	
	Design Data		
	Rated Volatge	415	κv
	Power factor (CosØ)	0.73	Avg
	Efficiency	0.85	Avg
	Total operating load on DG set in kVA at 0.73 power factor	78.6	
	Largest motor to start in the sequence - load in KW	15	KW
	Running kVA of last motor (CosØ= 0.91)	24	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starte
	Starting KVA of the largest motor	145	KVA
	(Running kVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	54	KVA
АВ	Continous operation under load -P1 Capacity or DIG set based on continuous operation under load P1 Transient Voltage dip during starting of Last motor P2	54	KVA
_	Total momentary load in KVA	199	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd**) Transient Reactance of Generator (Xd*)	7.91% 10.065%	(Assumed) (Assumed)
	Xd*** = (Xd**+Xd*)/2 Transient Voltage Dip	0.089875	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA × Xd''' × (1-Transient Voltage (Transient Voltage Dip)	102	KVA
C	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	199	KVA
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = <u>Total momentary load in KVA</u> overcurrent capacity of DG (K)	133	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	54	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	102	KVA
	Overload capacity P3	133	KVA
	Considering the last value amongst P1, P2 and P3	133	KVA

June 2021

ROLL NO: 17481A0277

2nd june2021: Caluculations of Earthing and Lighting protection.

17 Calculation of
Earthing and
Lighting protection
calculations

Earthing calculations

Lighting protection calculation

Topic details:

Calculation of Earthing and Lighting protection calculations

		1				
	Location	Mangalore				
	Building	Concrete, Industrial				
	Type of Building	Flat Roofs (a)				
	Building Length (L)	14				
	Building breadth (W)	4				
	Building Height (H)	5				
	Risk Factor Calculation					
- 1	Collection Area (A _c)					
	A.		-	(L°W) + (2°L°	H) + (2"W"F	H) + (3.14°H°
	•			314.5		
2	Probability of Being Struck (P)					
	P		-	A, 'N, '10"		
				0.0005976		
3	Overall veighing factor					
_	a) Use of structure (A)		-	1.2		
	b) Type of construction (B)		-	0.4		
	o) Contents or consequential effects ((= 1	-	0.8		
	d) Degree of isolation (D)		-	1.0		
	e) Type of country (E)		-	0.3		
	Wo - Overall weighing factor			A.B.C.D.	E	
			-	0.115		
4	Overall Risk Factor	Po	-	P. Wo		
		Po	-	6.884E-05		
		Pa		10-3		
	As per clause no. 9.7 of BS-6651, sug	gested acceptable ris	k factor i	(Po) has been	aken as 10	-5
	Since Po > Pa lightning protection req			(10)1145	Lakerres 10	
5	Air Terminations					
	Perimeter of the building		-	2(L+W)		
	Perimeter of the building			2(L+W)	Mt≤.	
			_	36	IVIES.	
6	Down Conductors					
	Perimeter of building		-	36	Mts.	
	No. of down conductors based on peri	meter	-	2	Nos.	
	Hence 2 nos. of Down conductors hav	e been selected.				
	Size of Down conductor		-	20 × 2.5 mm	 Galvanized	d Steel Strip
	(As per BS6651, lightning currents hav	e very short duration,	therefore	e thermal factor:	E .	
	are of little consequence in deciding t	he cross-section of th	e condu	otor. The minim	um size	
	of Down conductors - 20mm X 2.5 mm	Galvanized Steel Stri	inì			

Earthing calculations:

Maximum line-to-ground fault in kA for 1 sec	12	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4.0	
Soil resistivity Ω-meter	15	
Ambient temperature in deg C	50	
Plot dimensions (earth grid) L × B in meters	70	130
Number of earth rods in nos.	6	
Earth electrode sizing:		
Ac - Required conductor cross section in sq.mm		
$I_{\mathrm{lg}} = A_{\mathrm{c}} x \sqrt{\left[\frac{\mathrm{TCAPx10^{-4}}}{\tau_{\mathrm{c}} x \alpha_{\mathrm{r}} x \rho_{\mathrm{r}}}\right] x l_{\mathrm{n}} \left[\frac{K_{\mathrm{0}} + T_{\mathrm{m}}}{K_{\mathrm{0}} + T_{\mathrm{a}}}\right]}$		
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032	
pr - Resistivity of ground conductor at 20 oC	20.10	
Ta - Ambient Temperature is *C	50	
I _{I-a} - RMS fault current in kA = 50 KA	11	
te - Short circuit current duration sec	1	
Thermal capacity factor, TCAP J(cm3.oC)	3.93	
Tm - Maximum allowable temperature for copper conductor, in oC	419	
K0 - Factor at oC	293	
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:		
11 = Ac ~	0.123	
Ac - Required conductor cross section in sq.mm	90	
Earth rod dia in mm	11	
Earth rod dia (including 25% corrosion allowance) in mm	13	
- · · · · · · · · · · · · · · · · · · ·		

5 th june 2021: Cable sizing and cable tray sizing calculations.

18 Cable sizing and cable tray sizing calculations

Cable sizing calculations

Cable tray calculation

Topic details: Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)				Load P.F. Running		Motor P.F Staring	SIN Ø Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overal Deratin factor
3	LV MCC	PU235	Silica filter feed pump	10.84	5.00	415	3	18.9	113.11	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
4	LV MCC	PU 2314-A	Absorbesat Restral oil pump (V)	3.5	3.70	415	3	5.5	32.87	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
5	LV MCC	PU 2314 -B	Absorbesat Neutral oil pump (S)	2.70	3.00	415	3	4.7	28.17	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
6	LV MCC	PU2305	Feed Pamp (Superator)	10.54	11.00	415	3	19.0	114.15	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
7	LV MCC	MX2305	MOERIYI	100	500	415	3	19.2	115.09	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
8	LV MCC	MX 2008	MOER(S)	100	5.00	415	3	19.2	115.09	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	-1	0.882
9	LV MCC	BV2313	Blows	434	5.50	415	3	8.2	49.46	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
10	LV MCC	Rotum valve	TK 2010B (II	0.46	0.55	415	3	0.8	4.80	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
11	LV MCC	302314	Screen convenient (II)	107	150	415	3	1.9	11.16	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
12	LV MCC	AG 2324A	Citric acid tae agitator (W)	0.79	110	415	3	1.4	8.24	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	4	0.882
13	LV MCC	AG 23248	Citric acid task agitator (S)	0.79	110	415	3	1.4	8.24	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
14	LV MCC	AG 2305	Citric oil rection recool agitator	230	3.70	415	3	5.0	30.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
15	LV MCC	AG 2009	Lee oil reaction record againston	105	150	415	3	1.8	10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
16	LV MCC	AG 2010	Lyc oil reaction record agitator	1.05	150	415	3	1.8	10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	- 1	0.882
17	LV MCC	AG 2314	Sosp Adsorbset Task Agitator	184	220	415	3	3.2	19.20	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1 /	1	0.882
18																							

Cable Tray calculations:

_	0/01	11 1		7	100	3.10	DC 70 1 A		
	ABLES								
CABI	LE TRAY: FROM	LT-4		TO	Ľ	T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
	LV MCC	4	6	1	18	18	3.95	0.7	
	PU2315- VFD	4	6	1	18	18	0.37	0.7	Į
	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	ĭ .
	LV MCC	4	2.5	1	16	16	0.37	0.5	
	LV MCC	5	1.5	1	15	15	3.95	0.4	
	LVMCC	4	2.5	1	16	16	0.37	0.5	
	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LV MCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LV MCC	4	6	1	18	18	12	0.7	
	LVMCC	5	1.5	l i	15	15	1.45	0.4	
14	LVMCC	4	10	1	18	18	2	0.9	
	LVMCC	5	1.5	1	15	15	2.4	0.4	
	LV MCC	4	6	1	18	18	2.4	0.7	
	BW2313- VFD	4	6	1	18	18	0.85	0.7	
	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
	LV MCC	4	6	1	18	18	0.85	0.7	
	LV MCC	5	1.5	1	15	15	_	0.4	
21	LVMCC	4	6	1	18	18	0.85	0.7	
	Total			21		348	33.91	11.9	
	ulation					Result			
Maxi	mum Cable Diameter:		18	mm		Selected C	able Tray width:	O.K	
Cons	ider Spare Capacity of Cable Tra	y:	30%			Selected 0	able Tray Depth:	O.K	
Dista	nce between each Cable:		0	mm		Selectrd C	able Tray Weight:	O.K	Including Spare Capacity
Calcu	ulated Width of Cable Tray:		452	mm		Selected D	able Tray Size:	O.K	Including Spare Capacity
	ulated Area of Cable Tray:		8143	Sq.mm					
	Layer of Cables in Cable Tray:		2				able Tray Size:	300 x 50	
	cted No of Cable Tray:		1	Nos.			los of Cable Tray: 🖣		No
	cted Cable Tray Width:		300	mm			able Tray Weight:	150.00	Kg/Meter/Tray
	cted Cable Tray Depth:		50	mm		Type of Ca	ble Tray:	Ladder	
	cted Cable Tray Weight Capacity:		150	Kg/Mete	er		CE M A D		
	of Cable Tray:		Ladder	-			Width Area Remai		
ı otal	Area of Cable Tray:		15000	Sq.mm		Lable Iray	Area Remaning:	46%	

Conclusion:

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback:

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ASSIGNMENT - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

												kW=[A]/[D]		ConsumedL	.oad	kVAR=kWxt	tanφ	
	Equipment No.	EquipmentDescription	Breaker Rating	Breaker Type	Breaker No. ofPol es	Rating	Absorbed Load	Motor/Load Rating	Load Factor [A] /[B]	Efficiency at Loadct Fa or[C]	Power Factor atLoadFa ctor[C]	Continue	ous	Interm	ittent	Stand-	by	Remar
							[A]	[B]	[C]	[D]		1-10/	L) (A D	1.307	13/40	1.347	13/40	
4			А			mA	kW	kW	decimal	decimal	cosφ	kW	kVAR	kW	kVAR	kW	kVAR	
+	PU2315	Silicafilterfeedpump					57.98	75.00	0.77	0.93	0.82	62.34	43.52					
	PU2314-A	Absorbesnt/Neutraloilpump(W)					16.84		0.77			18.5						
	PU2314-B	Absorbesnt/Neutraloilpump(S)					14.49		0.78			10.5	14.0			15.9	12.8	
	PU2305	FeedPump(Seperator)					58.56		0.78			63.0	44.0			10.0	12.0	
	MX2305	MIXER(W)					59.01	75.00	0.79			63.5						
	MX2308	MIXER(S)					59.01	75.00	0.79							63.5	44.3	
	BW2313	Blower					25.33		0.84			27.8	22.3			55.5	1	
	Rotaryvalve	TK2313B(I)					2.46		0.66					2.9	2.7			
	SC2314	Screwconveyor(I)					5.69		0.76					6.69				
	AG2324A	Citric acidtanagitator(W)					4.27	5.50	0.78			5.02	4.70					
	AG2324B	Citricacidtankagitator(S)					4.27	5.50	0.78							5.0	4.7	
	AG2305	Citricoilrectionvessolagitator					15.54		0.71			17.08	13.70					
3	AG2309	Lyeoilreactionvesselagitator					5.65		0.75	0.85	0.73	6.65	6.22					
1 /	AG2310	Lyeoilreactionvesselagitator					5.65		0.75	0.85	0.73	6.65	6.22					
5 /	AG2314	SoapAdsorbantTankAgitator					9.89	11.00	0.90	0.85	0.73	11.64	10.89					
	Maximumofnorma (Est.x%E+y%F)	alrunningplantload: 285.0kW		213.4	1 kVAR		sqrt(I	«W²+kVAR²)=	356.0	kVA	TOTAL	282.13	210.68	9.59	8.98	84.40	61.77	
	PeakLoad: (Est.x%E+y%F+z	293.5kW		219.5	5 kVAR		sqrt(I	xW²+kVAR²)=	366.5	kVA	kVA	352.1.	2	13.	13	104.5	9	
	Assumptions 1)Loadfactor,Effic	ciencyandPowerfactor. LoadRating(kW) <=20 >20-<=45 >45-<150 >=150	0 0 0	ciency 1.85 .91 .93		Powerfac 0.73 0.78 0.82 0.91												

ASSIGNMENT - 2 **Calculation for Transformer Capacity Example of calculation for Transformer Capacity** Calculation for consumed load Consumed loads used for this example are as follows: kW kVar kVA 282.13 a. Continuous load 210.7 352.11 --- (i) b. Intermittent load / Diversity Factor 9.59 9.0 13.14 --- (ii) c. Stand-by load required as consumed load 84.40 61.8 104.59 --- (iii) Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) = 293.4 219.6 Future expansion load (20% capacity) 11.8 11.1 16.19 Total Load = Calculation for 3.3kV / 0.433 kV transformer capacity 366.5 kVA Max. Consumed load Spare capacity 73 3 kVA 439.8 kVA Required capacity Transformer rated capacity 500 kVA 1.3 Voltage regulation check During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows: 500 KVA 2.219 % Hence, %R ==.....3.33 % %X $P_{M} = \frac{75}{10}$ KW having (K = $\frac{6}{10}$ & C = $\frac{1}{10}$ & Cos θ = $\frac{0.82}{10}$ & Eff.h = $\frac{0.93}{100}$ & Cos θ = $\frac{0.25}{100}$ Ps = 590.087 KVA Cos θ_{S} = 0.25 ,Corresponding to Angle θ_{s} = 75.5225 Degrees for which Sin q_s = 0.97 260.65 KVA & PB in KW is = 213.733 & P_B in Kvar = 190.56 \ Cos θ_B = 0.820 Cos θ_B = 0.85 ,Corresponding to Angle θ_s = 34.9152 Degrees, for which Sin θ_s = P_CP 361.255 KW P_{CQ} 761.909 KVAR P_{C} 843.214 KVA 0.42843 , where as Sin θ_{C} =0.904 $Cos \theta_C = =$ Voltage Regulation e

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals

is approx ... 6.30%

1.4 Selection of rated capacity

500 kVA transformer selected.

Assignment - 3

	Assignmer		
	DG SIZING CALCULATION	ONS	
Design Data			
Rated Volatge		415	KV
Power factor (CosØ)		0.76	Avg
Efficiency		0.88	Avg
Total operating load on DG	t in kVA at 0.73 power factor	350.0	
Largest motor to start in the	equence - load in KW	75	KW
Running kVA of last motor (osØ= 0.91)	112	KVA
Starting current ratio of mot		6	(Considering starting method as Soft starter)
Starting KVA of the largest r		673	KVA
(Running kVA of last motor)	Starting current ratio of motor)		
Base load of DG set in KVA (Total operating load in kVA	Running kVA of last motor)	238	KVA
, ,	· ·		
Continous operation under	oad -P1		
Capacity of DG set based on	ontinuous operation under load P1	238	KVA
Transient Voltage dip durin	starting of Last motor P2		
Total momentary load in KV		911	KVA
(Starting KVA of the last mo	r+Base load of DG set in KVA		
Subtransient Reactance of G	nerator (Xd'')	7.91%	(Assumed)
Transient Reactance of Gene	ator (Xd')	10.065%	(Assumed)
Xd''' =(Xd"+Xd')/2		0.089875	
Transient Voltage Dip		15%	(Max)
	oft starter starting of Last motor KVA x Xd''' x (1-Transient Voltage Dip) (Transient Voltag	=	KVA
	(Hansieht Voltag	,ς διρ)	
Overload capacity P3			
Capacity of DG set required	onsidering overload capacity	911	10.44
Total momentary load in KV			KVA
overcurrent capacity of DG (150%	
(Ref: IS/IEC 60034-1, Clause	3.2)		
	onsidering overload capacity omentary load in KVA	607	KVA
over	rrent capacity of DG (K)		
Considering the last value a	nongst P1, P2 and P3		
Continous operation under	ad -P1	238	KVA
Toronton M. D	Saffa and an annual section of the s	464	KVA
Transient Voltage dip during Overload capacity P3	oort starter starting of Last motor P2	607	KVA
Considering the last value a	ongst P1, P2 and P3	607	KVA
_	KVA is adequate to cater the loads as p	oer re-	
	RFD - 15%		
Transient Voltage dip during Overload capacity P3 Considering the last value a	Soft starter starting of Last motor P2 ongst P1, P2 and P3 KVA is adequate to cater the loads as p	464 607 607	KVA KVA

Assignment - 4

Lightning Calculations

	13			
Location	Bhopal			
Building	Concrete, Industrial			
Type of Building	Flat Roofs (a)			
Building Length (L)	15			
Building breadth (W)	6			
Building Height (H)	6			
Risk Factor Calculation				
1 Collection Area (Ac)				
A_c			=	(L*W) + (2*L*H) + (2*W*H) 455.04
2 Probability of Being Struck (P)				
P		:	=	Ac* N g* 10 ⁻⁶
				0.001274112
3 Overall weighing factor				
a) Use of structure (A)			=	1.2
b) Type of construction (B)			=	0.4
c) Contents or consequential effects (C	C)		=	0.8
d) Degree of isolation (D)			=	1.0
e) Type of country (E)			=	0.3
Wo - Overall weighing factor			=	A * B * C * D * E
			=	0.115
4 Overall Risk Factor		Ро	=	P * Wo

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	=	2(L+W)
	=	42 Mts.

Ро

0.000146778 10⁻⁵

6 Down Conductors

Perimeter of building = 42 Mts. No. of down conductors based on perimeter = 2 Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

Assignment – 5 Earthing calculations

			90 81 400					-
					Table	1—Material o	constants	
	13		Description	Material conductivity (%)	o, factor of 20 fig. to	4,48°C	Paring"	p.39*4
Maximum line-to-ground fault in kA for 1 sec	12			(4)	00.0		(c)	-
Earthing material (Earth rod & earth strip)	GI		Ciggo.					
Depth of earth flat burrial in meter	0.5		promoted soft-depen	100.0	0.8035	234	100	172
Average depth / length of Earth rod in meters	4.0							-
Soil resistivity Ω-meter	7.5		Copper, commercial	916	0.800 81	36	1964	129
Ambient temperature in deg C	50		had-down					
Plot dimensions (earth grid) L x B in meters	70	130	Copportable	44	0.00078	36	1964	4.00
Number of earth rods in nos.	6		sted wire		030.0		_	
Earth electrode sizing:			Copper-clad sand wire	36.0	0.00578	365	1384	536
Ac - Required conductor cross section in sq.mm			Copporabil	30	0.0073	36	1984	16
			said sof		000.4	30		110
$I_{lg} = A_c x \sqrt{\frac{TCAPx10^{-4}}{\tau_c x \sigma_c x \rho_c}} x I_n \left[\frac{K_0 + T_m}{K_0 + T_a} \right]$			Alaminum, ISC grade	61.8	0.864.03	25	67	186
,			Alonison, 200 diar	53.5	0.001:73	20	602	3.22
er - Thermal co-efficient of resistivity, at 20 oC	0.003		Abritan	_	_	_		_
pr = Resistivity of ground conductor at 20 oC	20.10		Kill day	12.5	0.00047	38	671	3.38
Ta - Ambient Temperature is 'C	50		Aluminum shif					
I _{rq} - RMS fault current in kA = 50 KA	12		and wire	36.5	000146	28	487	1.40
to - Short circuit ourrent duration sec	1		Stal. 1039	30.8	0.00160	605	1500	25.90
Thermal capacity factor, TCAP JI(cm3.oC)	3.93		Snislaw-shi					
Tm - Maximum allowable temperature for copper conductor, in a			student ref	3.5	0.00160	605	1400	17.50
K0 - Factor at oC	233		Zacound					
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for olad			sed red	8.6	8,00139	261	489	25.18
12 = Ac*	0.123		Sociales and					
Ac - Required conductor cross section in sq.mm	38		314	2.4	0.00130	749	1400	70.00
Earth rod dia in mm	11		True ASTM co	elek.				
Earth rod dia (including 25% corrosion allowance) in mm	14			from basel on R. et not basel on R.				move No.
Earth flat sizing:								
Ac - Required conductor cross section in sq.mm								
$I_{0g} = A_{0}x\sqrt{\left[\frac{TCAPx10^{-4}}{r_{c}x\alpha_{p}x\rho_{r}}\right]}xI_{0}\left[\frac{K_{0} + T_{m}}{K_{0} + T_{n}}\right]$								
or - Thermal co-efficient of resistivity, at 20 oC	0.003							
pr - Resistivity of ground conductor at 20 oC	20.10							
Ta - Ambient Temperature is 'C	50							
I _{r.} , - RMS fault current in kA = 50 KA	14							
to - Short circuit current duration sec	- 1							
Thermal capacity factor, TCAP JI(cm3 oC)	3.93							
Tm - Maximum allowable temperature for copper conductor, in c								
K0 - Factor at oC	293							

17.13 ptu svorov towo contragett	
Earli Ratassin m	2
Early Nat area (including 25% corresion allowance) in min	
Sekstelflæsise V* Tvi in symm	
MANAGE AT THE APPL	
K 80-1	
Ry-Galmostano	
Baldimenstrance can be calculated using Eq. 52 of EEE 80	
1	
$\mathbb{E}_{\mathbf{I}^{\bullet 0}} \left[\frac{1}{1} \cdot \frac{1}{\sqrt{0 \text{ s.i.}}} \right] \cdot \frac{1}{1 + b \sqrt{0 \text{ s.i.}}} \right]$	
1 1 Mar 1 1 1 M 1	
h	
orionnes E	
p-Solinsistivity in C-mater:	75
L-Totalbuiet length of ground conductor in meter	40
h-Detholoxialmere	15
A-Gidavan og meler	98
Ry-Catheistana	1/94
-y actions	***
Al-Eath Buttolin editator	
Gald resistance can be calculated using Eq. 97 of EEE 80	
to Francisco	
$\left\ e^{\frac{1}{\ln(1+1)}} \left\ \left(\frac{\ln t}{t} \right) \cdot e^{\frac{\ln(1+t)}{2}} \right\ _{L^{\infty}}^{2}$	
"limited by " [F.	
101100	
p-Solindotivly is Dimeric 1836	25
a - Ricci eath-electroles	1
2r - Langth of earth electrody in meter	ì
J. Cureir of each electrode in theire	000
II-pelon	1
A - Annual grides square metre	500
34.04	
A - Earth Electrode resistance	2977
Growing system resistance	
Brounding system resistance can be calculated using equation 5	To EEE Ill acidous
1.1.1	
1.111.1	
$2_{1} \cdot \frac{2_{1}}{2_{1}} \cdot 2_{1} \cdot 2_{2}$	
R, - Mital good esstanx benen he goop of good	
conductors, R _c and group of electrodes, R _c in Ω. Neglected R _c .	
since file is for hortogenous soil	
an more recognise of	
A Teledisentenism	ME Day
As -Total earling system resistance	
The salculated resistance grounding option is less than the allo	NOR LA TRIBE

Earth flat area in mm	12	
Earth flat area (including 25% corrosion allowance) in mm	15	
Selected flat size W * Thk in sq mm	20	
Fig - Grid resistance		
Grid resistance can be calculated using Eq. 52 of IEEE 80		
[, , [, 7]		
$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \right\} + \frac{1}{1 + h \sqrt{20 /A}} \right\}$		
L √20 x A [1+h √20 /A]]		
p - Soil resistivity in Ω-meter=	7.5	
L - Total buried length of ground conductor in meter	400	
h - Depth of burial in meter	0.5	
A - Grid area in sq. meter	9100	
	0.054	
Fig Grid resistance	0.054	
/∂/ - Earth Electrode resistance		
Grid resistance can be calculated using Eq. 55 of IEEE 80		
Sind resistance can be calculated using Eq. 55 or IEEE 60		
0 [[4xL] 2xt;xL/- 2]		
$R_{\tau} = \frac{\rho}{2 \times \times \times n_{\tau} \times L_{\tau}} \left\{ L_{\tau} \left[\frac{4 \times L_{\tau}}{b} \right] - 1 + \frac{2 \times L_{\tau} \times L_{\tau}}{\sqrt{A}} \left(\sqrt{n_{\tau}} - 1 \right)^{2} \right\}$		
p - Soil resistivity in Ω-meter, 16.96	7.5	
n - No of earth electrodes	6	
Zr - Length of earth electrode in meter	4	
♪ - Diameter of earth electrode in meter	0.020	
A/ - co-efficient	2100	
A - Area of grid in square metre	9100	
Ar - Earth Electrode resistance	2.973	
Grounding system resistance		
Grounding system resistance can be calculated using equation 5	3 of IEE	E 80
P + P P 2		
$R_{s} = \frac{R_{g} \times R_{2} - R_{m}^{2}}{R_{g} + R_{2} - 2R_{m}}$		
R Mutual ground resistance between the group of ground		
conductors, R_{\bullet} and group of electrodes, R_{\bullet} in Ω . Neglected R_{\bullet} ,		
conductors, R_{\bullet} and group of electrodes, R_{\bullet} in Ω . Neglected R_{\bullet} , since this is for homogenous soil		
since this is for homogenous soil	0.053	Other
IS 아니지 않는데 100 HE IS NOT IN THE IS NOT IN THE IS NOT HER IN THE IS NOT IN THE IS NOT IN THE IS NOT IN THE IS N		
since this is for homogenous soil ### As - Total earthing system resistance		
since this is for homogenous soil ### As - Total earthing system resistance		

Assignment – 6 Cable sizing

Description	Conrum ed Leud EV	Load Ratio	Voltag (V)	0.00	Fell Load Gene	Motor Starti Na Caser	P.F. Person	SIN 8 Florain	Motor P.F Staring	SIN 6 Stari	Tgre	Mo. of Hon	No. of Core	Title (mm.)	Current fluting (A) ×	December Sector	Deceting factor k2 v	Deceting factor k3 v	Deceting factor 8.6 v	Owned Denoting Factor	Denote d Core	Cobbo Length (M =
coritorio-doung		-	46	T	101.1	604,50	Ü	13	99	1.5	- 1	- 1	4.0	- 60	- 11	939	13	1	1	9.995	171.6	16
ri salar pang			48	1	363	28.71	6.1	9.6	9.8	1.5	- 2	- 1	4.6	K	- 15	9.86	1.9	- 1	1	9.860	75.0	16
eadwork/feated orlinating	1.0	_	40	1	353	TID	E.I	1.6	0.0	1.1	- 1	- 1	4.0	N	III.	0.96	1.3	1	1	0.862	79.0	- 88
rk-Acid Task pump			46	1	(1)	10.04	U	13	99	1.5	- 1	1	4.1	- 90	- 11	939	13	1	1	2993	101.4	16
y Olyana			48	1	853.6	(8.1)	- 6.1	15	9.8	1.5	- 2	- 1	4.1	90	- 11	9.86	1.5	- 1	1	9.862	Mes	- 78
riserpany-Sanding	2.0	- 54	40	3	162.6	4813	E.I	1.6	0.0	1.1	- 1	- 1	4.1	90	10	0.96	1.3	1	1	0.862	T014	100
r'imple: Pénning Pump	- 14		46	1	883	294.39	- 0	1.5	99	15	- 1	-	4.1	- 8	61	939	13	1	1	2893	75.0	100
rotonage hash pump	14		46	1	4.0	25.67	- U	15	98		- 2	- 1	4.1		38	9.96	1.9	- 1	1	9.862	30.5	100
nd Fump(Tegerator)	1.0		40	1		10.07	LI.	1.6	0.0	1.1	- 1	- 1	4.1	ŧ	81	0.90	1.3	1	1	0.862	45.0	78
gystod Purp		_ 11	46	12	74	00.55	- 0	- 13	00	- 15		_	41	+	- 51	199	13	1	1	1993	163	-
NI .			46	1	T4	16.55	- U	15		13	- 2	-	4.1	- 6	- 61	9.96	1.5	1	1	9860	(5)	- 78
er .	10		48	1		10.71	U	1.6	0.0	1.1		1	4.1	N	III.	0.96	1.5	1	1	0.862	79.0	100
H12			46	1	29	938			9				41		54	190	D			280	163	18
enert - California IX																						
Flating factor for variation in aid	yourdense	nder																				
Plating factor for depth of being																						
Flating factor for spacing betwe	en/moderale	,																				
Plating factor for variation in the	emal existed	a of the	epil .																			
ning Volkage Drop - Thi, Sharing																						
PE 1.4 Conductor, ILPE hould PE 2 Co Conductor, ILPE hould																						
ng Variation + Till																						

Assignment 7 Cable tray sizing

LTCA	BLES								
CABLE	TRAY:FROM	LT-4		TO	L	.T-5			
Sr. No.	CableRoute(From-To)	Type&CableSize	Size ofCab le(mm 2)	No. ofCab le	OverallDia meter ofeach Cable(mm)	Sum of CableOD (mm)	Self Weight ofCable(K g/Mt)	Total Weight ofCable(Kg /Mt)	Remarks
1	PU2315	4	50	1	26	26	2.3	2.3	
2	PU2314A	4	16	1	21	21	1	1	
3	PU2324	4	16	1	21	21	1	1	
4	PU2305	4	50	1	26	26	2.3	2.3	
5	MX2305	4	50	1	26	26	2.3	2.3	
6	MX2308	4	50	1	26	26	2.3	2.3	
7	BW2313	4	16	1	21	21	1	1	
8	SC2314	4	4	1	17	17	0.6	0.6	
9	AG2324A	4	6	1	18	18	0.7	0.7	
10	AG2305	4	6	1	18	18	0.7	0.7	
11	AG2309	4	6	1	18	18	0.7	0.7	
12	AG2310	4	16	1	21	21	1	1	
13	AG2314	4	6	1	18	18	0.7	0.7	
	Total			13		277	16.6	16.6	
Calculation MaximumCableDiameter: ConsiderSpareCapacityofCableTray: DistancebetweeneachCable: CalculatedWidthofCableTray: CalculatedAreaofCableTray: CalculatedAreaofCableTray: SelectedNoofCablesTray: SelectedCableTrayWidth: SelectedCableTrayWidth: SelectedCableTrayWeightCapacity: TypeofCableTray: TypeofCableTray: TytalAreaofCableTray:				mm mm Sq.mm Nos. mm mm Kg/Meter		Result SelectedCableTr SelectedCableTr SelectedCableTr SelectedCableTr RequiredCableTr RequiredCableTr TypeofCableTr CableTrayWidth CableTrayAreaR	ayDepth: ayWeight: aySize: raySize: ableTray: rayWeight: /: AreaRemaning	O.K O.K O.K O.K 300x100 1 90.00 Ladder 40% 69%	IncludingSpareCapacity IncludingSpareCapacity mm No Kg/Meter/Tray