Visualizing Network Security Events using Compound Glyphs from a ServiceOriented Perspective

Jason Pearlman, Henggeler Consulting Penny Rheingans, UMBC

Outline

- Problem and Motivation
- Network Attack Background
- Related Work
- Approach
- Results
- Evaluation
- Conclusions/Questions

Problem and Motivation

- Network attacks are a serious problem
 - Network attacks cost businesses estimated 666 million in 2003 [Ball04]
 - DISA (Defense Information Systems Agency) study [Howard]:
 - Approximately 44 million network attacks occur per year
 - 0.7% of network attacks are reported
 - 2.6% are detected

Network Attack Background

- Some Attack Types
 - Denial of Service (DoS)
 - Overload a service with more load than it can handle
 - Distributed Denial of Service (DDoS)
 - Overload from multiple sources
 - Network Trojan
 - Install itself on a system, propagate to related systems
- Nework Security Data comes in various forms
 - Raw data
 - System and application logs
 - Network routing
 - Port status

Basic Approach

- Graph of compound glyphs
 - Home-centric
 - Service-oriented
- Pie glyph
 - Size of wedge based on relative activity of service
 - Managed nodes larger than unmanaged
 - Unmanaged node size corresponds to amount of activity

Network Node Glyph

Time Slicing

- Temporal visualization technique applied to glyphs
- Inner slice represents activity furthest in the past
- Outer is most recent

Results (Guess What)

Results, not your initial reaction...

Evaluation

- Several resulting images were shown to a group of five network administrators
- They were asked to explain what they see and choose which attack fits the image best from the following choices
 - Distributed Denial of Service
 - Denial of Service
 - Compromised Network using Trojans
 - Session Hijacking
 - No attack present

Conclusion

- Four out of five network administrators felt this approach would add additional value in identifying network security events when compared with their current approaches.
- This research provides an application using a combination of visualization techniques applied a network traffic data set in order to better detect the type, severity, and presence of a network attack.

The end

Questions/Comments?

* 7			
			- 9

Related Work

- Home-centric approach
- Embedded activity information into glyph
- Shading
- Filtering

Source: Ball, R., Fink, G. A., and North, C. 2004. Home-centric visualization of network traffic for security administration. In *Proceedings of the 2004 ACM Workshop on Visualization and Data Mining For Computer Security* (Washington DC, USA, October 29 - 29, 2004). VizSEC/DMSEC '04. ACM Press, New York, NY, 55-64

Related Work

- B in the image shows an example of a server on the managed network
- How much activity is happening?
- What kind of activity is the server producing?

Source: Ball, R., Fink, G. A., and North, C. 2004. Home-centric visualization of network traffic for security administration. In *Proceedings of the 2004 ACM Workshop on Visualization and Data Mining For Computer Security* (Washington DC, USA, October 29 - 29, 2004). VizSEC/DMSEC '04. ACM Press, New York, NY, 55-64