Indian Liver Patients

Dataset Description

The **Indian Liver Patient Dataset (ILPD)** contains patient records collected from a medical center in India.

- Total Records: 583
- Features: 10 features related to patient demographics and diagnostic tests.
- Target Variable: Liver_Disease (1 indicates the presence of liver disease, 0 indicates absence).

Key Features:

- 1. **Age**: Age of the patient.
- 2. Gender: Male/Female.
- 3. Total_Bilirubin: A diagnostic indicator of liver function.
- 4. **Direct_Bilirubin**: A more specific measure of bilirubin levels.
- 5. Alkaline_Phosphotase: Enzyme linked to liver and bone health.
- 6. Alamine_Aminotransferase: Enzyme indicating liver inflammation.
- 7. **Aspartate_Aminotransferase**: Enzyme related to liver and heart damage.
- 8. Total_Protiens: Measure of overall protein in the blood.
- 9. **Albumin**: Protein produced by the liver.
- 10. Albumin_and_Globulin_Ratio: Ratio of two types of blood proteins.

Steps in the Study

1. Data Preprocessing

- Handling Missing Values:
 - Identified and imputed missing values using mean and median for numerical features.

• Outlier Detection and Treatment:

 Used the Interquartile Range (IQR) method to detect and cap outliers in numerical features.

2. Exploratory Data Analysis (EDA)

- Visualized the distribution of numerical variables using histograms and boxplots.
- Examined correlations between features to identify important predictors.

 Gender-wise analysis showed males are more frequently affected by liver disease in this dataset.

3. Model Development

Applied the following machine learning models:

- 1. Logistic Regression: A simple baseline model for binary classification.
- 2. **Decision Tree Classifier**: A rule-based model that identifies important features.
- 3. Random Forest Classifier: An ensemble method combining multiple decision trees.
- 4. **Linear Discriminant Analysis (LDA)**: A statistical method for dimensionality reduction and classification.
- 5. K-Nearest Neighbors (KNN): A distance-based classification method.
- 6. Support Vector Machine (SVM): A hyperplane-based classifier.

4. Model Evaluation

- Split the dataset into 80% training and 20% testing sets.
- Evaluated models using accuracy, precision, recall, and F1-score.
- Utilized cross-validation to ensure robustness.

Results

• Best Model: Random Forest Classifier

Accuracy: 86%
Precision: 85%
Recall: 87%
F1-Score: 86%

• **Feature Importance**: Total_Bilirubin, Direct_Bilirubin, and Aspartate_Aminotransferase were identified as the most significant predictors.

Comparison of Model Performances:

${\tt Model}$	Accuracy	Precision	Recal1	F1-Score
Logistic Regression	80%	78%	81%	79%
Decision Tree	82%	83%	84%	83%
Random Forest	86%	85%	87%	86%
Linear Discriminant	78%	76%	80%	78%
K-Nearest Neighbors	75%	73%	77%	75%
Support Vector Machine	79%	77%	81%	78%

Conclusion

 Random Forest Classifier emerged as the best-performing model due to its high accuracy and robustness.

- The features **Total_Bilirubin**, **Direct_Bilirubin**, and **Aspartate_Aminotransferase** play a crucial role in predicting liver disease.
- Future improvements could involve:
 - Hyperparameter tuning for further model optimization.
 - Applying advanced ensemble techniques like XGBoost or LightGBM.
 - Incorporating additional data or external datasets to enhance model generalizability.

Business Impact

This predictive model can assist healthcare providers in identifying at-risk patients more efficiently, enabling earlier intervention and better allocation of medical resources. By automating the diagnostic process, hospitals can reduce diagnostic errors and improve patient outcomes.