Existential Introduction & Elimination

PHI 201 — Introductory Logic

Lecture 8

Overview

- Review of universal quantifier rules
- New rules for the existential quantifier:
 - Existential Introduction (EI)
 - Existential Elimination (EE)
- ullet Practice proofs involving \exists and \forall

Existential Introduction

Rule

From a particular instance Fa, we may infer that something is F:

$$\frac{Fa}{\exists x \, Fx} \, (\mathsf{EI})$$

1 (1)
$$Fa \rightarrow Ga$$
 A
1 (2) $\exists x(Fx \rightarrow Gx)$ 1 EI

$$\begin{array}{ccc}
1 & (1) & Fa \to Ga & & \mathsf{A} \\
1 & (2) & \exists x (Fx \to Ga) & & 1 & \mathsf{EI}
\end{array}$$

Unlike UI, EI permits replacement of some (but not all) occurences of a name a.

- $\begin{array}{cccc}
 1 & (1) & Raa & & A \\
 1 & (2) & \exists xRxx & & 1 & \text{EI}
 \end{array}$
- 1 (1) Raa A

 1 (2) $\exists yRay$ 1 EI

 1 (3) $\exists x\exists yRxy$ 2 EI

To show: $\neg \exists x Fx \vdash \forall x \neg Fx$

To show: $\neg \forall x Fx \vdash \exists x (Fx \rightarrow P)$

To show $\neg \exists x Fx \vdash \forall x (Fx \rightarrow P)$

1

$$(1)$$
 $\neg \exists x F x$
 A

 2
 (2)
 Fa
 A

 2
 (3)
 $\exists x F x$
 2 EI

 1,2
 (4)
 $\exists x F x \land \neg \exists x F x$
 3,1 \land I

 1
 (5)
 $\neg Fa$
 2,4 RA

 1
 (6)
 $Fa \rightarrow P$
 5 neg par

 1
 (7)
 $\forall x (Fx \rightarrow P)$
 6 UI

Existential elimination

Idea

What can be derived from $\exists x \varphi(x)$?

Pick an arbitrary name a. If a general claim ψ can be derived from an instance $\varphi(a)$, without making any additional assumptions about a, then ψ follows from $\exists x \varphi(x)$.

Existential Elimination

Existential Elimination

- **Restriction:** The name a must not occur in any dependencies of the existential premise, or of the derived conclusion, except for the instance $\varphi(a)$ itself.
- Dependencies are the union of the dependencies of the existential sentence and those of the derived conclusion, minus dependency on the instance.

Example

```
      1
      (1)
      \exists x(Fx \land Gx)
      A

      2
      (2)
      Fa \land Ga
      A

      2
      (3)
      Fa
      2 \land E

      2
      (4)
      \exists xFx
      3 EI

      1
      (5)
      \exists xFx
      1,2,4 EE
```

Reasoning with multiple \exists

To show: $\exists x \exists y Rxy \vdash \exists y \exists x Rxy$

1	(1)	$\exists x \exists y Rxy$	Α
2	(2)	$\exists y Ray$	Α
3	(3)	Rab	Α
3	(4)	$\exists x Rxb$	3 EI
3	(5)	$\exists y \exists x Rxy$	4 EI
2	(6)	$\exists y \exists x Rxy$	2,3,5 EE
1	(7)	$\exists y \exists x Rxy$	1,2,6 EE

Reasoning with \forall and \exists

1	(1)	$\forall x (Fx \to Gx)$	Α
2	(2)	$\exists x F x$	Α
3	(3)	Fa	Α
1	(4)	$Fa \to Ga$	1 UE
1,3	(5)	Ga	4,3 MP
1,3	(6)	$\exists xGx$	5 El
1 2	(7)	$\exists xGx$	2.3.6 FE

Reasoning with \forall and \exists

1	(1)	$\exists y \forall x R x y$	Α
2	(2)	$\forall x R x b$	Α
2	(3)	Rab	2 UE
2	(4)	$\exists y Ray$	3 EI
2	(5)	$\forall x \exists y Rxy$	4 UI
1	(6)	$\forall x \exists y Rxy$	1,2,5 EE

Preventing invalid inferences

1	(1)	$\exists x F x$	Α
2	(2)	$\exists xGx$	Α
3	(3)	Fa	Α
4	(4)	Ga	Α
3,4	(5)	$Fa \wedge Ga$	3,4 ∧1
3,4	(6)	$\exists x (Fx \land Gx)$	5 El

EE cannot be applied to 1,3,6 because 6 depends on 4, which contains a. EE cannot be applied to 1,4,6 because 6 depends on 3, which contains a.

Preventing invalid inferences

```
1 (1) \forall x \exists y Rxy
1 (2) \exists y Ray
                                     1 UF
3 (3) Rab
        \forall xRxb
                                     Error!
```

UI cannot be applied to 3 because it depends on 3, which contains a.

Quantifier order matters

 $\forall x \exists y \, \varphi(x,y)$ follows from $\exists y \forall x \, \varphi(x,y)$. But not vice versa.

Quantifier negation equivalences

 $\neg \exists x F x$ is equivalent to $\forall x \neg F x$

 $\neg \forall x F x$ is equivalent to $\exists x \neg F x$

"Equivalent" means mutually derivable

To show: $\forall x \neg Fx \vdash \neg \exists x Fx$

1

$$(1) \forall x \neg Fx$$
 A

 2
 $(2) \exists xFx$
 A

 3
 $(3) Fa$
 A

 1
 $(4) \neg Fa$
 1 UE

 1,3
 $(5) Fa \land \neg Fa$
 3,4 \land I

 1,3
 $(6) \neg \exists xFx$
 2,5 RA

 1,2
 $(7) \neg \exists xFx$
 2,3,6 EE

 1,2
 $(8) \exists xFx \land \neg \exists xFx$
 2,7 \land I

 1
 $(9) \neg \exists xFx$
 2,8 RA

Non-constructive existence proofs

How to derive $\exists x(Fx \to P)$ from $\forall xFx \to P$?

Not possible to derive $Fa \to P$ from $\forall xFx \to P$.