Exercises due Aug 3, 2021 19:59 EDT

Concept Checks: Empirical CDF

3/3 points (graded)

Let $X_1,\ldots,X_n\stackrel{iid}{\sim}X,$ with (true) cdf $F\left(t
ight)$, and let $F_n\left(t
ight)$ be the empirical cdf of X_1,\ldots,X_n

What is the domain of F_n ? That is, what are all the values of t for which F_n is defined.

For any t (in the domain of F_n), the empirical cdf $F_n\left(t
ight)$ is

- o random
- deterministic

For any t (in the domain of F_n), the true $\operatorname{cdf} F(t)$ is

- random
- deterministic

Submit

You have used 1 of 1 attempt

Pointwise and Uniform Convergence of Functions

A sequence of functions $g_n\left(x
ight)$ converges pointwise to a function $g\left(x
ight)$ if for each x, $\lim_{n o\infty}g_n\left(x
ight)=g\left(x
ight)$.

Example: In the region $x>1,\ g_n\left(x\right)=\frac{1}{x^n}$ converges **pointwise** to $g\left(x\right)=0$. For any fixed $x>1,\ \frac{1}{x^n}\longrightarrow 0$.

A sequence of functions $g_n\left(x\right)$ converges uniformly to a function $g\left(x\right)$ if $\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |g_n\left(x\right) - g\left(x\right)| = 0$. That is, for every M > 0, there exists an n_M such that $\sup_x |g_n\left(x\right) - g\left(x\right)| < M$ for all $n \geq n_M$.

Example: In the region x>2, $g_n\left(x\right)=\frac{1}{x^n}$ converges **uniformly** to $g\left(x\right)=0$, since $\sup_{x>2}g_n\left(x\right)=\sup_{x>2}\frac{1}{x^n}=\frac{1}{2^n}\xrightarrow[n\to\infty]{}0.$

Example of pointwise but not uniform convergence:

The sequence of functions $g_n\left(x\right)=\frac{1}{x^n}$ does **not** converge uniformly to $g\left(x\right)=0$ in the region x>1, since $\sup_{x>1}g_n\left(x\right)=\sup_{x>1}\frac{1}{x^n}=1$, which does not converge to 0 as $n\to\infty$.

Consistency of Empirical CDF, Uniform versus Pointwise Convergence, Fundamental Theorem of Statistics

Start of transcript. Skip to the end.

OK.

So now I have this thing.

Hopefully it's going to be close,

and I want to know how close they are.

OK, I would like to have a way of measuring

how the step function and the true function I'm actually

trying to test are close, because I

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Consistency of the Empirical cdf

2 points possible (graded)

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} X$ be i.i.d. random variables with cdf F(t).

Recall the empirical cdf is the random function

$$egin{aligned} F_n: \mathbb{R} &
ightarrow [0,1] \ & t & \mapsto rac{1}{n} \sum_{i=1}^n \mathbf{1} \left(X_i \leq t
ight). \end{aligned}$$

Then following convergence holds almost surely:

$$F_{n}\left(0
ight)=rac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left(X_{i}\leq0
ight)rac{a.s.}{n
ightarrow\infty}L$$

for some value $m{L}$. What is $m{L}$? (Choose all that apply.)

O	
$\Box F(0)$	
$\square F(1)$	
$oxedsymbol{\square} \; \mathbb{E}\left[1\left(X \leq 0 ight) ight]$	

What result is invoked to obtain the value of L?

centra	al limit theorem
(stron	g) law of large numbers
Slutsk	xy's theroem
Submit	You have used 0 of 3 attempts

Let $X_1,\ldots,X_n\stackrel{iid}{\sim}X$ be i.i.d. random variables with cdf F(t) and empirical cdf $F_n(t)$.

The Glivenko-Cantelli theorem, also known as the Fundamental Theorem of Statistics, states that

$$\sup_{t\in\mathbb{R}}\left|F_{n}\left(t
ight)-F\left(t
ight)
ight|\overset{a.s.}{\longrightarrow}0.$$

This is a stronger result than the one in the problem above in that the convergence happens $\begin{array}{l} \textbf{uniformly} \text{ over } t. \text{ This means for all large enough } n \text{ and for any } \delta > 0, \text{ the difference} \\ |F_n\left(t\right) - F\left(t\right)| \text{ is bounded above by } \delta \text{ for all } t. \text{ Almost sure convergence means that for all } \delta > 0 \text{ and } \epsilon > 0, \text{ there exists } N = N\left(\delta, \epsilon\right) \text{ such that the event } \sup_t |F_n\left(t\right) - F\left(t\right)| < \delta \text{ occurs with probability at least } 1 - \epsilon \text{ for all } n > N. \text{ In other words, with probability approaching } 1, \text{ the function } F_n \text{ is a close } L_\infty \text{ (the sup-norm) approximation of } F. \end{aligned}$

Discussion

Hide Discussion

Topic: Unit 4 Hypothesis testing:Lecture 16: Goodness of Fit Tests Continued: Kolmogorov-Smirnov test, Kolmogorov-Lilliefors test, Quantile-Quantile Plots / 4. Consistency of the Empirical CDF

Add a Post

Show all posts 💙

by recent activity ${\color{red} \boldsymbol{\vee}}$

There are no posts in this topic yet.

×