24. Рекуррентные алгоритмы динамического оценивания состояния системы

Рекуррентные алгоритмы динамического оценивания так или иначе используют информацию об эволюции параметров системы во времени для формированяи предположения о состоянии системы на следующем шаге, а также информацию о наблюдениях, позволяющих скорректировать тем или иным образом оценку, основанную на предсказании. Различаются только способы, при помощи которых это осуществляется.

Подходы к оцениванию состояния динамических систем

Метод	Краткое описание	Преимущества/недостат ки
1. Рекуррентный метод наименьших квадратов	Используется минимизация суммы квадратов разностей между измеренными значениями параметров и их априорной оценкой	Удовлетворительные результаты только в случае высокой степени соответствия между моделью и данными
2. Авторегрессионные модели	Модели временных рядов, в которых каждый последующий член линейно выражается через предыдущий.	Применяется в случае линейных моделей и на этапе постобработки (как правило). Шум должен быть белым и распределенным по Гауссу
3. Гарантированный подход	Основан на теоретико-множественных моделях неопределенностей. Их свойства описываются при помощи геометрических и интегральных ограничений. Для этого подхода задача оценивания сводится к нахождению множеств всевозможных значений искомых величин с ограничениями на неопределенность.	необходимо моделировать множества всех
а) Минимаксное гарантированное оценивание		
б) Метод эллипсоидов		
4. Рекуррентные алгоритмы оценивания параметров Стохастический подход	Основан на вероятностной математической интерпретации свойств неопределенности, нашедшей применение в разработке алгоритмов оптимальной фильтрации Калмана	объем априорной информации о

Калмана (Linear Kalman Filter) и оптимальный Байесовский фильтр (Optimal Bayesian estimator)	моделью эволюции осуществляется экстраполяция вектора параметров, а на втором уточнение с соответствии с поступившим наблюдением. Байесовский фильтр основан оценке плотности вероятности распределения параметров при	технических систем являются нелинейными, вследствие чего оптимальные подходы к оцениванию состояния, такие как ЛФК не могут использоваться. Шум должен быть
	Основано на аппроксимации нелинейных операторов пр помощи рядов Тейлора	1 1
в) Сигма-точечный фильтр Калмана (Unscented Kalman filter)	Основано на сигма-точечном преобразовании	Качество оценок чуть лучше или чуть хуже, чем для ЕКГ в зависимости от модели. Требует реализацию разложения Холецкого (корень из матрицы). Работает немного медленнее
г) Последовательный метод Монте-Карло (Particle filter, Sequential Monte Carlo method)		Оценки как правило более точные, но требует значительных вычислительных ресурсов для численного моделирования плотностей вероятностей