Why you shouldn't trust me: A survey on Adversarial Model Interpretation Manipulations.

Verena Heusser Seminar Explainable Machine Learning

Motivation

Motivation: Omnipresent ML

- Machine learning algorithms are moving out of the lab into the real world
- Performance comes at the cost of complexity

Motivation: Omnipresent ML

- Machine learning algorithms are moving out of the lab into the real world
- Performance comes at the cost of complexity → black box

Motivation: Omnipresent ML

- Machine learning algorithms are moving out of the lab into the real world
- Performance comes at the cost of complexity → black box

- so far: *what* is the most likely label → accuracy
- now also: why does the model chose this label and which features are important for the decision

- Local vs. global
 - Local: Explain the decision
 - → Why is this image a cat?
 - Global: explain the whole model
 - → What does a cat look like?

- White box vs. black box
 - White box: use the model itself to compute interpretations
 - Black box: use an interpretable model to mimic an uninterpretable model

(a) Original.

(b) Map.

LRP [Bach et al., 2015]

(a) Original

(b) Mask.

(c) Saliency Map.

- Problem solved? → Not quite ...
- Interpretation methods are already used in many domains for model validation
- However
 - Humans do not benefit from interpretation methods
 - they cannot build better models [Hase et al., 2020]
 - improve their performance [Hase et al., 2020]
 - and are not better at detecting false model decisions [Poursabzi-Sangdeh et al., 2018]
 - Methodological difficulties: it is unclear
 - how to evaluate
 - how to compare different interpreters

Motivation: Adversarial ML

- Adversarial model fooling
 - attacks on the model
 - o altered input [Szegedy et al., 2013]
 - → model makes false predictions

correctly labeled image

image difference

incorrectly labeled image

Motivation: Adversarial ML

- Adversarial model fooling
 - attacks on the model
 - o altered input [Szegedy et al., 2013]
 - → model makes false predictions
- Adversarial interpreter fooling
 - attacks on the interpreter
 - → interpreter makes false interpretations

Motivation: Adversarial ML

Adversarial Interpreter Fooling

Fooling Interpretations via Model Manipulation!!

Fooled Interpretations!!

Try to hide the fact that model uses Race and Sex features

Manipulation Methods

Manipulation Types

- Input Level Manipulations
 - O [Subramanya et al., 2019]
 - O [Dombrowski et al., 2019]
 - O [Ghorbani et al., 2019]

- Model Level Manipulations
 - [Heo et al., 2019]
 - O [Dimanov et al., 2020]
 - [Slack et al., 2020]

Evaluation Criteria: Is the fooling successful?

- Fooling successful if [Dimanov et al., 2020]
 - (Model prediction similarity)
 - Interpretation dissimilarity
- Other criteria
 - Effectiveness: no computational overhead
 - Transferability: manipulation does not only affect one type of interpretation
- Evaluation → which is the best interpreter?
 - Qualitative Evaluation: Inspection and random sampling
 - Quantitative Evaluation → similarity scores

Interpreter Manipulation Examples Input Level

 $\mathbf{x} + \delta$

Explanations can be manipulated and geometry is to blame

Ann-Kathrin Dombrowski¹, Maximilian Alber⁵, Christopher J. Anders¹, Marcel Ackermann², Klaus-Robert Müller^{1,3,4}, Pan Kessel¹

Explanations can be manipulated and geometry $\mathbf{x} + \delta$ is to blame [Dombrowski et al., 2019]

manipulate an image with a hardly perceptible perturbation such that the explanation map matches an arbitrary target map

$$\mathcal{L} = \|h(x_{adv}) - h^t\|^2 + \gamma \|g(x_{adv}) - g(x)\|^2$$

- Practical implication:
 - adversary can imperceptibly change the input to a model
 - → arbitrary + drastic manipulation of the interpreter

Further Studies

 Learned adversarial patches can cause both model and interpreter to fail [Subramanya et al., 2019]

 Interpreters are susceptible even to infinitesimal perturbations [Ghorbani et al., 2019]

Interpreter Manipulation Examples **Model** Level

$N + \delta$

Fooling Neural Network Interpretations via Adversarial Model Manipulation

Juyeon Heo¹*, Sunghwan Joo¹*, and Taesup Moon^{1,2}

¹Department of Electrical and Computer Engineering, ²Department of Artificial Intelligence Sungkyunkwan University, Suwon, Korea, 16419

heojuyeon12@gmail.com, {shjoo840, tsmoon}@skku.edu

Fooling Network Interpretations via Adversarial Model Manipulation [Heo et al., 2019]

Fooling Network Interpretations via Adversarial Model Manipulation [Heo et al., 2019]

(b) Examples of different kinds of foolings

Fooling Network Interpretations via Adversarial Model Manipulation [Heo et al., 2019]

$N + \delta$

- Results:
 - generalization to unseen test samples
 - different types of interpreters are fooled
 - while the model performance stays approx. the same
 - \circ \rightarrow the model is robust but the interpreter is not
- Practical implication:
 - No way to detect the model inherent bias
 - Interpreters can be systematically manipulated to contain unfair biases

Fooling Interpretations via Model Manipulation!!

Fooled Interpretations!!

Try to hide the fact that model uses Race and Sex features

Further Studies

- Interpreters fail to decide if a model is fair [Dimanov et al., 2020]
 - create adversarial models that focus on sensitive features
 - → model interpreters fail to incorporate fairness and fail to detect model biases
 - → use real-world datasets

⇒ Core motivational concern of Interpretable ML

Conclusion

Summary

- → Adversarial setting for fooling model interpreters
 - Interpretation methods can be tricked by applying input and model perturbations
 - interpreters can be fooled with simple input perturbations

$$\mathbf{x} + \delta$$

- Biases can be encoded into the model
- and there might be no way to uncover the hidden biases

$$N + \delta$$

Conclusion

- Models and interpreters can be misled in a large and systematic manner
- However, this does not mean that interpreters are useless
 - ⇒ Caution when using interpretation techniques
 - ⇒ Future work:
 - Benchmarking
 - Robustness
 - Theoretical understanding
 - Extension to other task domains

Study Summaries

Study	Data + Task	Interpreters	Method	Results
[Dombrowski et al., 2019] Explanations can be manipulated and geometry is to blame	Images + Image Classification	LRP, Guided BP, Gradients, Integrated Gradients	generate x $\mathbf{x}+\delta$ + δ by optimizing loss function using SGD	→ SmoothGrad ~ β-smoothing altered interpretations
[Subramanya et al., 2019] Fooling Network Interpretation in Image Classification	Images + Image Classification	GradCAM	generate patch $\mathbf{x}+\delta$ z+ δ by optimizing loss function	model + interpreter fooled
[Ghorbani et al., 2019] Interpretation of Neural Networks Is Fragile	Images + Image Classification	Integrated Gradients, DeepLift, SimpleGrad	generate $\mathbf{x}+\delta$ samples by different schema	most difficult to create adv. examples for Integrated Gradients
[Heo et al., 2019] Fooling Neural Network Interpretations via Adversarial Model Manipulation	Images + Image Classification + example on tabular data	LRP, GradCam, SimpleGrad	alter model by $N+\delta$ adapting the fine-tuning loss	all interpreters are fooled, but least effect on SmoothGrad
[Dimanov et al., 2020] You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods	Tabular data + Classification	SHAP, LIME, IG, Gradients, etc.	alter model by $N+\delta$ adapting the fine-tuning loss to have low target feature attribution	interpreters do not reveal unfairness
[Slack et al., 2019] Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods	Tabular data + Classification	LIME, SHAP	alter the $N+\delta$ original model by classifying arbitrarily on non-perturbed samples	LIME is slightly more robust

References

References (1)

[Bach et al., 2015] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. *PloS one*, *10*(7), e0130140.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). leee.

[Dimanov et al., 2020] Dimanov, B., Bhatt, U., Jamnik, M., & Weller, A. (2020, February). You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods. In *SafeAl@ AAAI* (pp. 63-73).

[Dombrowski et al., 2019] Dombrowski, A. K., Alber, M., Anders, C., Ackermann, M., Müller, K. R., & Kessel, P. (2019). Explanations can be manipulated and geometry is to blame. In *Advances in Neural Information Processing Systems* (pp. 13589-13600).

[Ghorbani et al., 2019] Ghorbani, A., Abid, A., & Zou, J. (2019, July). Interpretation of neural networks is fragile. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 33, pp. 3681-3688).

[Hase et al., 2020] Hase, P., & Bansal, M. (2020). Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?. arXiv preprint arXiv:2005.01831.

[Heo et al., 2019] Heo, J., Joo, S., & Moon, T. (2019). Fooling neural network interpretations via adversarial model manipulation. In *Advances in Neural Information Processing Systems* (pp. 2925-2936).

References (2)

[Slack et al., 2020] Slack, D., Hilgard, S., Jia, E., Singh, S., & Lakkaraju, H. (2020, February). Fooling lime and shap: Adversarial attacks on post hoc explanation methods. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society* (pp. 180-186).

[Subramanya et al., 2019] Subramanya, A., Pillai, V., & Pirsiavash, H. (2019). Fooling network interpretation in image classification. In *Proceedings* of the IEEE/CVF International Conference on Computer Vision (pp. 2020-2029).

[Szegedy et al., 2013] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*.

[Poursabzi-Sangdeh et al., 2018] Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Vaughan, J. W., & Wallach, H. (2018). Manipulating and measuring model interpretability. *arXiv* preprint arXiv:1802.07810.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "Why should i trust you?" Explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining* (pp. 1135-1144).