RECEIVED CENTRAL FAX CENTER

Listing of the Claims

AUG 1 5 2006

1. (Original) A polyanionic polymer conjugate of the formula:

wherein n ranges from 1 to 200; L represents a moiety comprising a functional group for attaching the polyanion polymer to a nanoparticle surface; Z represents a bridging group, and X represents Q, X' or -Q-X', wherein Q represents a functional group for attaching a recognition probe to the polyanion polymer, and X' represents a recognition probe.

- 2. (Original) The polyanionic polymer conjugate of claim 1, wherein the polyanion polymer further comprises a detection label bound thereto.
- 3. (Original) The polyanionic polymer conjugate of claim 2, wherein the detection label comprises a chromophore, a fluorescent label, a UV label, a radioisotope, a Raman label or a SERS (surface enhanced raman spectroscopy) label, or an enzyme.
- 4. (Original) The polyanionic polymer conjugate of claim 1, wherein the functional group for attaching a recognition probe to the polyanion polymer comprises a carboxylic acid or an amino group.
- 5. (Original) The polyanionic polymer conjugate of claim 1, wherein the recognition probe comprises a protein, a peptide, a nucleic acid, a peptide nucleic acid, a linked nucleic acid, a nucleoside triphosphate, a carbohydrate, a lipid, a lipid bound protein, an aptamer, a virus, a cell fragment, or a whole cell.
- 6. (Original) The polyanionic polymer conjugate of claim 5, wherein the lipid bound protein comprises a G-protein coupled receptor.
- 7. (Original) The polyanionic polymer conjugate of claim 1, wherein the recognition probe comprises an antibody, an antigen, a receptor, or a ligand.
- 8. (Original) The polyanionic polymer conjugate of claim 1 wherein L comprises an alkanethiol containing group, a phosphorothioate containing group, a substituted alkylsiloxane

containing, a polythiol containing group, or a cyclic disulfide containing group.

9. (Original) The polyanionic polymer conjugate of claim 1 wherein Z comprises a polymer, -C₁-C₁₀-alkyl-, -COO-, -CH₂(CH₂),COO-, -OCO-, R¹N(CH₂),-NR¹-,

- 10. (Original) A nanoparticle having a plurality of polyanionic polymer conjugates of claim 1 attached thereto.
- 11. (Original) The nanoparticle of claim 10, wherein the polyanionic polymer conjugate further comprises a detection label bound thereto.
- 12. (Original) The nanoparticle of claim 11, wherein the detection label comprises a chromophore, a fluorescent label, a UV label, a radioisotope, a Raman label or a SERS (surface enhanced raman spectroscopy) label, or an enzyme.
- 13. (Original) The nanoparticle of claim 10, wherein the functional group for attaching a probe to the polyanionic polymer conjugate comprises a carboxylic acid or an amino group.
- 14. (Original) The nanoparticle of claim 10, wherein the recognition probe comprises a protein, a peptide, a nucleic acid, a peptide nucleic acid, a linked nucleic acid, a nucleoside

triphosphate, a carbohydrate, a lipid, a lipid bound protein, an aptamer, a virus, a cell fragment, or a whole cell.

- 15. (Original) The nanoparticle of claim 14, wherein the lipid bound protein comprises a G-protein coupled receptor.
- 16. (Original) The nanoparticle of claim 10, wherein the recognition probe comprises an antibody, an antigen, a receptor, or a ligand.
- 17. (Original) The nanoparticle of claim 10 wherein L comprises an alkanethiol containing group, a phosphorothicate containing group, a substituted alkylsiloxane containing, a polythiol containing group, or a cyclic disulfide containing group.
- 18. (Original) The nanoparticle of claim 10 wherein Z comprises a polymer, $-C_1-C_{10}$ -alkyl-, -COO-, $-CH_2(CH_2)_vCOO$ -, -OCO-, $R^1N(CH_2)_v-NR^1$ -, $-OC(CH_2)_v$ -, $-(CH_2)_v$ -, -O-(CH_2)_v-, -O-(CH_2)_v-,

or
$$\overset{O}{=}$$
 $\overset{R^1}{=}$ $\overset{R^1}{=}$ $\overset{O}{=}$ $\overset{I}{=}$ $\overset{I}{=}$

19. (Original) A method for detecting the presence or absence of a target analyte in a sample comprising:

providing nanoparticles having a plurality of polyanionic polymer conjugates of claim 1 attached thereto, wherein the recognition probes bound to the polyanionic polymer conjugates selectively bind to the target analyte;

contacting the nanoparticles with the sample under conditions effective to allow for

binding of the recognition probes with the target analyte; and

observing a detectable change brought by the binding of the recognition probes with the target analyte.

- 20. (Original) The method according to claim 19 wherein the recognition probe bound to the polyanionic polymer conjugate comprises a protein, a peptide, a nucleic acid, a peptide nucleic acid, a linked nucleic acid, a nucleoside triphosphate, a carbohydrate, a lipid, a lipid bound protein, an aptamer, a virus, a cell fragment, or a whole cell.
- 21. (Original) The method according to claim 19 wherein the lipid bound protein comprises a G-protein coupled receptor.
- 22. (Original) The method according to claim 19 wherein the recognition probe comprises an antibody, an antigen, a receptor, or a ligand.
- 23. (Original) The method according to claim 19 wherein detection label comprises a chromophore, a fluorescent label, a UV label, a radioisotope, a Raman label or a SERS (surface enhanced raman spectroscopy) label, or an enzyme.
- 24. (Original) The method according to claim 19 wherein the detectable change is a change in color.
- 25. (Original) The method according to claim 19 wherein the detectable change is an optical change associated with nanoparticle binding of the target.
- 26. (Original) A method for detecting the presence or absence of one or more target analytes in a sample comprising:

providing one or more types of nanoparticles having a plurality of polyanionic polymer conjugates of claim 1 attached thereto, wherein the polyanionic polymer conjugate attached to each type of nanoparticles has bound thereto a recognition probe specific for a target analyte and a detection label that serves as an identifer for a specific target analyte;

contacting the nanoparticles with the sample under conditions effective to allow for binding of the recognition probes and the target analytes; and

observing detectable changes for each analyte brought by the binding of the recognition probe with the target analyte.

- 27. (Original) The method according to claim 26 wherein the recognition probe bound to the polyanionic polymer conjugate comprises a protein, a peptide, a nucleic acid, a peptide nucleic acid, a linked nucleic acid, a nucleoside triphosphate, a carbohydrate, a lipid, a lipid bound protein, an aptamer, a virus, a cell fragment, or a whole cell.
- 28. (Original) The method according to claim 26 wherein the lipid bound protein comprises a G-protein coupled receptor.
- 29. (Original) The method according to claim 26 wherein the recognition probe comprises an antibody, an antigen, a receptor, or a ligand.
- 30. (Original) The method according to claim 26 wherein detection label comprises a chromophore, a fluorescent label, a UV label, a radioisotope, a Raman label or a SERS (surface enhanced raman spectroscopy) label, or an enzyme.
- 31. (Original) The method according to claim 26 wherein the detectable change is a change in color.
- 32. (Original) The method according to claim 26 wherein the detectable change is an optical change associated with nanoparticle binding of the target.
- 33. (Original) A method for detecting for the presence or absence of one or more target analytes in a sample, the target analyte having at least two binding sites, said method comprising:

providing a substrate having bound thereto one or more types of capture probes for immobilizing the target analyte onto said substrate, each capture probe specific for a target analyte;

providing one or more types of nanoparticles having a plurality of polyanionic polymer conjugates attached thereto, wherein the polyanionic polymer conjugates attached to each type of nanoparticles has bound thereto (i) a recognition probe specific for a target analyte and (ii) a

detection label that serves as an identifer for a specific target analyte;

contacting the nanoparticles, the sample, and the substrate under conditions effective for specific binding interactions between the target analyte, the capture probe, and the nanoparticle so as to form a detection substrate having nanoparticles complexed thereto in the presence of one or more target analytes in the sample; and

determining for the presence of said complexes on said detection substrate as an indication of the presence of one or more target analytes in the sample.

- 34. (Original) The method of claim 33, wherein the substrate has a plurality of different capture probes attached thereto in an array to allow for the detection of multiple types of target analytes.
- 35. (Original) The method of claim 33, wherein the substrate comprises a glass slide, a microplate well, or glass beads.
- 36. (Original) The method according to claim 33 wherein the recognition probe bound to the polymer comprises a protein, a peptide, a nucleic acid, a peptide nucleic acid, a linked nucleic acid, a nucleoside triphosphate, a carbohydrate, a lipid, a lipid bound protein, an aptamer, a virus, a cell fragment, or a whole cell.
- 37. (Original) The method according to claim 33 wherein the recognition probe bound to the polyanionic polymer conjugate comprises a protein, a peptide, a nucleic acid, a peptide nucleic acid, a linked nucleic acid, a nucleoside triphosphate, a carbohydrate, a lipid, a lipid bound protein, an aptamer, a virus, a cell fragment, or a whole cell.
- 38. (Original) The method according to claim 33 wherein the lipid bound protein comprises a G-protein coupled receptor.
- 39. (Original) The method according to claim 33 wherein the recognition probe comprises an antibody, an antigen, a receptor, or a ligand.
- 40. (Original) The method according to claim 33 wherein detection label comprises a chromophore, a fluorescent label, a UV label, a radioisotope, a Raman label or a SERS

(surface enhanced raman spectroscopy) label, or an enzyme.

- 41. (Original) The method according to claim 33 wherein the detectable change is a change in color.
- 42. (Original) The method according to claim 33 wherein the detectable change is an optical change associated with nanoparticle binding of the target.
- 43. (Original) A kit for detecting the presence or absence of a target analyte in a sample comprising:
- (a) nanoparticles having polyanionic polymer conjugates bound thereto, wherein the polyanion polymers have the formula:

wherein n ranges from 1 to 200; L represents a molety comprising a functional group for attaching the polyanion polymer to a nanoparticle surface; Z represents a bridging group, and X represents Q, X' or -Q-X', wherein Q represents a functional group for attaching a probe to the polyanion polymer, and X' represents a probe; and

- (b) an optional substrate for observing a detectable change.
- 44. (Original) The kit of claim 43, wherein the polyanionic polymer conjugate further comprises a detection label bound thereto.
- 45. (Original) The kit of claim 44, wherein the detection label comprises a chromophore, a fluorescent label, a UV label, a radioisotope, a Raman label or a SERS (surface enhanced raman spectroscopy) label, or an enzyme.
- 46. (Original) The kit of claim 43, wherein the functional group for attaching a probe to the polyanionic polymer conjugate comprises a carboxylic acid or an amino group.
- 47. (Original) The kit of claim 43, wherein the probe comprises a protein, a peptide, a nucleic acid, a peptide nucleic acid, a linked nucleic acid, a nucleoside triphosphate, a carbohydrate, a lipid, a lipid bound protein, an aptamer, a virus, a cell fragment, or a whole cell.

- 48. (Original) The kit of claim 47, wherein the lipid bound protein comprises a G-protein coupled receptor.
- 49. (Original) The kit of claim 43, wherein the probe comprises an antibody, an antigen, a receptor, or a ligand.
- 50. (Original) The kit of claim 43 wherein the substrate is a transparent substrate or an opaque white substrate.