Esercizi sui test VSR e CSR

Classificare i seguenti schedule (come: NonSR, VSR, CSR); nel caso uno schedule sia VSR oppure CSR, indicare tutti gli schedule seriali e esso equivalenti.

- 1. $r_1(x)$, $w_1(x)$, $r_2(z)$, $r_1(y)$, $w_1(y)$, $r_2(x)$, $w_2(x)$, $w_2(z)$
- 2. $r_1(x)$, $w_1(x)$, $w_3(x)$, $r_2(y)$, $r_3(y)$, $w_3(y)$, $w_1(y)$, $r_2(x)$
- 3. $r_1(x)$, $r_2(x)$, $w_2(x)$, $r_3(x)$, $r_4(z)$, $w_1(x)$, $w_3(y)$, $w_3(x)$, $w_1(y)$, $w_5(x)$, $w_1(z)$, $w_5(y)$, $r_5(z)$
- 4. $r_1(x)$, $r_3(y)$, $w_1(y)$, $w_4(x)$, $w_1(t)$, $w_5(x)$, $r_2(z)$, $r_3(z)$, $w_2(z)$, $w_5(z)$, $r_4(t)$, $r_5(t)$

SOLUZIONI

$$S_1 = r_1(x), w_1(x), r_2(z), r_1(y), w_1(y), r_2(x), w_2(x), w_2(z)$$

Scelgo di verificare prima CSR. Calcolo l'insieme dei conflitti di S₁.

Conflitti(
$$S_1$$
) = {($r_1(x), w_2(x)$), ($w_1(x), r_2(x)$), ($w_1(x), w_2(x)$)}

Genero il grafo dei conflitti di S₁ e verifico che sia ACICLICO.

Il grafo è ACICLICO e quindi:

 S_1 è CSR (S_1 è conflict-serializzabile)

Poiché CSR ⇒ VSR, allora è anche vero che:

Schedule seriali equivalenti: permutazione (T₁, T₂):

$$SS_1 = r_1(x), w_1(x), r_1(y), w_1(y), r_2(z), r_2(x), w_2(x), w_2(z)$$

SOLUZIONI

$$S_2 = r_1(x), w_1(x), w_3(x), r_2(y), r_3(y), w_3(y), w_1(y), r_2(x)$$

Scelgo di verificare prima VSR.

Calcolo l'insieme delle relazioni LEGGE_DA e l'insieme delle SCRITTURE_FINALI di S2.

LEGGE_DA(
$$S_2$$
) = {($r_2(x), w_3(x)$)}

```
SCRITTURE_FINALI(S_2) = {W_3(x), W_1(y)}
```

Transazioni di S₂:

$$T_1 = r_1(x), w_1(x), w_1(y)$$

 $T_2 = r_2(y), r_2(x)$
 $T_3 = w_3(x), r_3(y), w_3(y)$

Esiste una permutazione delle transazioni (tra le 6 possibili) che rappresenta uno schedule seriale viewequivalente a S_2 ? Vale a dire uno schedule seriale con lo stesso insieme di relazioni LEGGE_DA e SCRITTURE_FINALI?

Quali permutazioni possiamo scartare a priori considerando l'insieme LEGGE_DA(S_2)? Sicuramente per poter ottenere la relazione: ($r_2(x), w_3(x)$) è necessario considerare permutazioni dove T_3 precede T_2 .

Inoltre, per evitare che si generino altre relazioni LEGGE_DA è necessario che:

- T_1 preceda T_3 altrimenti si genera la relazione: $(r_1(x), w_3(x))$
- T_3 preceda T_1 altrimenti si genera la relazione: $(r_3(y), w_1(y))$

Questo è già sufficiente per concludere che non esistono schedule seriali view-equivalenti a S_2 e che quindi S_2 non è serializzabile (S_2 è nonSR).

Tuttavia, considerando anche l'insieme delle SCRITTURE_FINALI è necessario che:

- $\bullet \quad T_1 \text{ preceda } T_3 \text{ per conservare la scrittura finale: } w_3(x)$
- T₃ preceda T₁ per conservare la scrittura finale: w₁(y)

Quindi anche considerando solo le scritture finali ottengo lo stesso risultato.

$$S_3 = r_1(x), r_2(x), w_2(x), r_3(x), r_4(z), w_1(x), w_3(y), w_3(x), w_1(y), w_5(x), w_1(z), w_5(y), r_5(z)$$

Scelgo di verificare prima CSR. Calcolo l'insieme dei conflitti di S₃. $r_1(x)$, $r_2(x)$, $w_2(x)$, $r_3(x)$, $r_4(z)$, $w_1(x)$, $w_3(y)$, $w_3(x)$, $w_1(y)$, $w_5(x)$, $w_1(z)$, $w_5(y)$, $r_5(z)$ Conflitti(S_3) = {($r_1(x), w_2(x)$), ($r_1(x), w_3(x)$), ($r_1(x), w_5(x)$), $(r_2(x), w_1(x)), (r_2(x), w_3(x)), (r_2(x), w_5(x)),$... da completare} $r_1(x)$, $r_2(x)$, $w_2(x)$, $r_3(x)$, $r_4(z)$, $w_1(x)$, $w_3(y)$, $w_3(x)$, $w_1(y)$, $w_5(x)$, $w_1(z)$, $w_5(y)$, $r_5(z)$ Conflitti(S₃) = { $(r_1(x), w_2(x)), (r_1(x), w_3(x)), (r_1(x), w_5(x)),$ $(r_2(x), w_1(x)), (r_2(x), w_3(x)), (r_2(x), w_5(x)),$ $(W_2(X),r_3(X)), (W_2(X),W_1(X)), (W_2(X),W_3(X)), (W_2(X),W_5(X)),$ $(r_3(x), w_1(x)), (r_3(x), w_5(x)),$... da completare} $r_{1}(X),\, r_{2}(X),\, w_{2}(X),\, r_{3}(X),\, r_{4}(Z),\, w_{1}(X),\, w_{3}(y),\, w_{3}(X),\, w_{1}(y),\, w_{5}(X),\, w_{1}(Z),\, w_{5}(y),\, r_{5}(Z)$ Conflitti $(S_3) = \{(r_1(x), w_2(x)), (r_1(x), w_3(x)), (r_1(x), w_5(x)), (r_1(x), w_2(x)), (r_1(x), w_3(x)), (r_1(x),$ $(r_2(x), w_1(x)), (r_2(x), w_3(x)), (r_2(x), w_5(x)),$ $(w_2(x),r_3(x)), (w_2(x),w_1(x)), (w_2(x),w_3(x)), (w_2(x),w_5(x)),$ $(r_3(x), w_1(x)), (r_3(x), w_5(x)),$ $(r_4(Z), w_1(Z)), (w_1(X), w_3(X)), (w_1(X), w_5(X)),$... da completare} $r_1(x)$, $r_2(x)$, $w_2(x)$, $r_3(x)$, $r_4(z)$, $w_1(x)$, $w_3(y)$, $w_3(x)$, $w_1(y)$, $w_5(x)$, $w_1(z)$, $w_5(y)$, $r_5(z)$ Conflitti(S₃) = { $(r_1(x), w_2(x)), (r_1(x), w_3(x)), (r_1(x), w_5(x)),$ $(r_2(x), w_1(x)), (r_2(x), w_3(x)), (r_2(x), w_5(x)),$ $(W_2(X),r_3(X)), (W_2(X),W_1(X)), (W_2(X),W_3(X)), (W_2(X),W_5(X)),$ $(r_3(x), w_1(x)), (r_3(x), w_5(x)),$ $(r_4(z), w_1(z)), (w_1(x), w_3(x)), (w_1(x), w_5(x)),$ $(w_3(y),w_1(y)), (w_3(y),w_5(y)), (w_3(x),w_5(x)), (w_1(y),w_5(y)), (w_1(z),r_5(z))$

A questo punto genero il grafo dei conflitti. Ci sono in totale 5 transazioni nello schedule, pertanto avrò 5 nodi nel grafo.

Per inserire gli archi consideriamo i conflitti calcolati in precedenza:

```
\begin{split} & \text{Conflitti}(S_3) = \{ (r_1(x), w_2(x)), \ (r_1(x), w_3(x)), \ (r_1(x), w_5(x)), \\ & \qquad \qquad (r_2(x), w_1(x)), \ (r_2(x), w_3(x)), \ (r_2(x), w_5(x)), \\ & \qquad \qquad (w_2(x), r_3(x)), \ (w_2(x), w_1(x)), \ (w_2(x), w_3(x)), \ (w_2(x), w_5(x)), \\ & \qquad \qquad \qquad (r_3(x), w_1(x)), \ (r_3(x), w_5(x)), \\ & \qquad \qquad (r_4(z), w_1(z)), \ (w_1(x), w_3(x)), \ (w_1(x), w_5(x)), \\ & \qquad \qquad (w_3(y), w_1(y)), \ (w_3(y), w_5(y)), \ (w_3(x), w_5(x)), \ (w_1(y), w_5(y)), \ (w_1(z), r_5(z)) \} \end{split}
```


Poiché il grafo dei conflitti non è ACICLICO, lo schedule S_3 non è CSR. Verifico se è VSR.

Calcolo l'insieme delle relazioni LEGGE_DA e l'insieme delle SCRITTURE_FINALI di S₃.

$$r_1(x), r_2(x), w_2(x), r_3(x), r_4(z), w_1(x), w_3(y), w_3(x), w_1(y), w_5(x), w_1(z), w_5(y), r_5(z)$$

LEGGE_DA(S₃) = {
$$(r_3(x), w_2(x)), (r_5(z), w_1(z))$$
}
SCRITTURE_FINALI(S₃) = { $w_5(x), w_1(z), w_5(y)$ }

Transazioni:

 $t_1: r_1(x), w_1(x), w_1(y), w_1(z)$

 t_2 : $r_2(x)$, $w_2(x)$

 t_3 : $r_3(x)$, $w_3(y)$, $w_3(x)$

 t_4 : $r_4(z)$

 t_5 : $W_5(x)$, $W_5(y)$, $r_5(z)$

Considerando l'insieme SCRITTURE_FINALI $(S_3) = \{w_5(x), w_1(z), w_5(y)\}$

Otteniamo che:

Ultima scrittura su y: $w_5(y) \Rightarrow t_1 < t_5$, $t_3 < t_5$

Ultima scrittura su z: $w_5(x) \Rightarrow t_1 < t_5, t_2 < t_5, t_3 < t_5$

Considerando l'insieme LEGGE_DA(S₃) = $\{(r_3(x), w_2(x)), (r_5(z), w_1(z))\}$

Da cui otteniamo: $t_2 < t_3$, $t_1 < t_5$

A questo punto valutiamo le relazioni legge_da che potrebbero generarsi. Consideriamo le transazioni t₁ e t₂.

$$t_1$$
: $r_1(x)$, $w_1(x)$, $w_1(y)$, $w_1(z)$
 t_2 : $r_2(x)$, $w_2(x)$

Poiché e richiesto che $t_2 < t_3$, ipotizziamo di considerare il caso in cui anche $t_1 < t_3$. Se $t_1 < t_2$ allora si genera la legge_da: $(r_2(x), w_1(x))$, relazione non presente nell'insieme LEGGE_DA(S₃). Se invece $t_2 < t_1$ si genera la legge_da: $(r_1(x), w_2(x))$, relazione non presente nell'insieme LEGGE_DA(S₃). In quest'ultimo caso, fra l'altro si perde la relazione $(r_3(x), w_2(x))$.

Poiché in qualsiasi permutazione o $t_1 < t_2$ o $t_2 < t_1$ nessun schedule seriale può presentare lo stesso insieme LEGGE DA di S_3 . Quindi S_3 non è VSR. Pertanto è nonSR.

$$S_4 = r_1(x), r_3(y), w_1(y), w_4(x), w_1(t), w_5(x), r_2(z), r_3(z), w_2(z), w_5(z), r_4(t), r_5(t)$$

Scelgo di verificare prima CSR.

Calcolo l'insieme dei conflitti:

$$\begin{array}{c} \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_2(z), r_3(z), w_2(z), w_5(z), \ r_4(t), \ r_5(t) \} \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(y), w_1(y)), \\ \text{... da completare} \} \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(y), w_1(y)), \\ (w_4(x), w_5(x)), \ (w_1(t), r_4(t)), \ (w_1(t), r_5(t)), \\ \text{... da completare} \} \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(y), w_1(y)), \\ (w_4(x), w_5(x)), \ (w_1(t), r_4(t)), \ (w_1(t), r_5(t)), \\ (w_4(x), w_5(x)), \ (w_1(t), r_4(t)), \ (w_1(t), r_5(t)), \\ (r_2(z), w_5(z)), \ (r_3(z), w_2(z), \ r_3(z), w_2(z), w_5(z), \ r_4(t), \ r_5(t), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(z), w_5(z), \ r_4(t), \ r_5(t), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x), \ r_4(t), \ r_5(t), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x), \ r_4(t), \ r_5(t), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x), \ r_4(t), \ r_5(t), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x), \ r_4(t), \ r_5(t), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x)), \ (r_3(x), w_5(x)), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x)), \ (r_3(x), w_5(x)), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x)), \ (r_3(x), w_5(x)), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x)), \ (r_3(x), w_5(x)), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_3(x), w_5(x)), \ (r_3(x), w_5(x)), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \\ \\ \text{Conflitti}(S_4) = \{(r_1(x), w_4(x)), \ (r_1(x), w_5(x)), \ (r_1(x),$$

 $(W_2(z),W_5(z))$

A questo punto genero il grafo dei conflitti. Ci sono in totale 5 transazioni nello schedule, pertanto avrò 5 nodi nel grafo.

Per inserire gli archi consideriamo i conflitti calcolati in precedenza:

$$\begin{split} \text{Conflitti}(S_4) &= \{ (r_1(x), w_4(x)), \; (r_1(x), w_5(x)), \; (r_3(y), w_1(y)), \\ & (w_4(x), w_5(x)), \; (w_1(t), r_4(t)), \; (w_1(t), r_5(t)), \\ & (r_2(z), w_5(z)), \; (r_3(z), w_2(z)), \; (r_3(z), w_5(z)), \\ & (w_2(z), w_5(z)) \} \end{split}$$

Poiché il grafo dei conflitti è ACICLICO, lo schedule S_4 è CSR e quindi anche VSR.

Calcolo gli schedule seriali equivalenti:

$$r_1(x),\, r_3(y),\, w_1(y),\, w_4(x),\, w_1(t),\, w_5(x),\, r_2(z),\, r_3(z),\, w_2(z),\, w_5(z),\, r_4(t),\, r_5(t)$$

Transazioni:

 $t_1: r_1(x), w_1(y), w_1(t)$

 t_2 : $r_2(z)$, $w_2(z)$

 t_3 : $r_3(y)$, $r_3(z)$

 $t_4: W_4(x), r_4(t)$

 $t_5: w_5(x), w_5(z), r_5(t)$

Ordinamenti topologici desumibili dal grafo:

ORD_TOP₁: t₃, t₁, t₂, t₄, t₅

ORD_TOP₂: t₃, t₂, t₁, t₄, t₅

ORD_TOP $_3$: t_3 , t_1 , t_4 , t_2 , t_5

 SS_1 : $r_3(y)$, $r_3(z)$, $r_1(x)$, $w_1(y)$, $w_1(t)$, $r_2(z)$, $w_2(z)$, $w_4(x)$, $r_4(t)$, $w_5(x)$, $w_5(z)$, $r_5(t)$

SS₂: $r_3(y)$, $r_3(z)$, $r_2(z)$, $w_2(z)$, $r_1(x)$, $w_1(y)$, $w_1(t)$, $w_4(x)$, $r_4(t)$, $w_5(x)$, $w_5(z)$, $r_5(t)$

 SS_3 : $r_3(y)$, $r_3(z)$, $r_1(x)$, $w_1(y)$, $w_1(t)$, $w_4(x)$, $r_4(t)$, $r_2(z)$, $w_2(z)$, $w_5(x)$, $w_5(z)$, $r_5(t)$