Knot Theory Seminars: Braided Diagrams

Wout Moltmaker

June 23, 2020

Outline

In this talk I will:

- Introduce the notion of a Hopf algebra
- Introduce the notion of a braided category
- Generalise Hopf algebras to braided categories
- Show how to do algebra with knots (instead of the other way around)

A Hopf algebra is:

- ► An algebra (vector space with multiplication)
- ► A coalgebra (algebra axioms, but arrows reversed)
- A bialgebra (algebra and coalgebra structures compatible)
- ► Equipped with an antipode *S* (generalized inverse)

Algebra: product $\cdot: A \times A \to A$ that is bilinear. This is more compactly expressed as $\cdot: A \otimes A \to A$ being linear.

Coalgebra: coproduct $\Delta: A \to A \otimes A$

Compatability: Δ should be an algebra morphism

Antipode: a map $S: H \rightarrow H$ that acts sort of as an inverse

A braided category is a category that emulates Vec. In braided cateogories you can:

- Form tensor products (and there is a unit $\underline{1}$)
- Swap tensor products via a map Ψ

 Ψ is a natural transformation and obeys the hexagon identities.

A natural transformation $\alpha: F \to G$ consists of the information of a morphism $\alpha_C: \mathscr{F}(C) \to \mathscr{G}(C)$ in \mathcal{D} , for each $C \in \text{ob } \mathcal{C}$.

$$\mathcal{F}(C) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(C')
\alpha_C \downarrow \qquad \qquad \downarrow \alpha_{C'}
\mathcal{G}(C) \xrightarrow{\mathcal{G}(f)} \mathcal{G}(C')$$

This is also called functoriality.

 Ψ is a natural transformation with $\Psi_{V,W}:V\otimes W\to W\otimes V.$

Hexagon identities:

(The other hexagon identity is very similar.)

Let's put these things into nice pictures!

$$\Psi = \searrow \qquad \Psi^{-1} = \searrow \qquad$$

We'll work with strings representing objects. Horizontal juxtaposition of strings means taking \otimes . Thus Ψ is a swapping of strings.

In these 'braided diagrams' functionality looks like this:

On the right hand we see the case that $\phi = \cdot$ for V an algebra living in a braided category.

This is a very important point: functoriality lets us pull morphisms over crossings!

The hexagon identities simply become:

From these axioms one easily derives the braid relation

This is why we call them braided categories!

Now onto 'braided groups':

These are Hopf algebra objects in a braided category. To define them we need the braided diagrams extensively. Hopf algebras are just braided groups in Vec, they have:

- ► A multiplication ·, represented by Y
- A unit η: T
- A comultiplication Δ: 人
- ightharpoonup A counit ϵ : \perp
- \triangleright An antipode S, represented by a circled S

Associativity and coassociativity:

Note the reflection symmetry of braided groups in terms of braided diagrams:

Horizontal reflection ← Arrow-reversal

Unit and counit axioms:

Comultiplication is a braided algebra morphism:

Antipode axiom:

Using braided diagrams instead of commutative diagrams allows us to to proofs by simply treating the strings as physical pieces of knotted string!

Functoriality + braid relation let us treat crossings like physical crossings.

To show off, let's prove the following statement:

$$S \circ \cdot = \cdot \circ \Psi_{B,B} \circ (S \otimes S)$$
 and $\Delta \circ S = (S \otimes S) \circ \Psi_{B,B} \circ \Delta$

$$\Delta \circ S = (S \otimes S) \circ \Psi_{B,B} \circ \Delta$$

These statements are the braided group analogue of

$$(gh)^{-1} = h^{-1}g^{-1}$$

for g, h in a group G.

The proof is a bit involved: it takes up 16 slides.

The idea is analogous to the proof for groups: we sneak in terms $h^{-1}h$ and $g^{-1}g$ and cancel.

$$(gh)^{-1} = h^{-1}h(gh)^{-1} = h^{-1}g^{-1}gh(gh)^{-1}$$

= $(h^{-1}g^{-1})(gh)(gh)^{-1} = h^{-1}g^{-1}$.

Note that this proof implicitly uses associativity.

Now for the braided group statement. In a braided group diagram, the statement is:

We'll prove it by sneaking in a bunch of stuff, rearranging, and then cancelling out.

Proof:

