

Universitatea Tehnică "Gheorghe Asachi" din Iași

FACULTATEA DE AUTOMATICĂ ȘI CALCULATOARE

ELECTRONICĂ DIGITALĂ proiect

Tema: Comparator

Studenţi: Buţu Alexandra-Gabriela Chelea Diana-Maria

Spiridon Bianca

Grupa: 1207B

Coordonator:

Asist. Drd. Marius Obreja

1. Specificațiile proiectului:

COMPARATOR

Să se implementeze în FPGA prin descriere în limbaj VHDL, două comparatoare de câte 2 vectori de 4 biţi care să furnizeze la ieşire rezultatul mai mic, egal sau mai mare; unul dintre vectorii de intrare va fi comun la cele două comparatoare.

Implementarea proiectului va fi făcută printr-o descriere comportamentală

Fig. 1 schema bloc a modulului COMPARATOR

Fișierul bitstream rezultat în urma procesului de implementare va fi verificat utilizând placa de dezvoltare BASYS3.

2. Modulul COMPARATOR

Modulul COMPARATOR are urmatoarele functionalitati:

- 1. Modulul are ca sursa de clock extern butonul din centru (U18)
- 2. Functioneaza pe frontul pozitiv al clock-ului
- 3. Contine 3 numere pe 4 biti, introduse cu ajutorul a 12 switch-uri(Primul numar este introdus de la stanga la dreapta, incepand cu switch-ul 1 pana la 4, al doilea este introdus de la switch-ul 6 la switch-ul 9, al treilea este introdus de la switch-ul 11 pana la 14)
- 4. Odata introduse numerele, pentru aprinderea led-urilor se va activa switch-ul 15.
- 5. Pentru compararea numerelor, se va pune switch-ul 15 pe 0, si se va pune switch-ul 16 pe 1
- 6. Rezultatul compararii numerelor va fi afisat utilizand unul din displayurile modulului astfel:
 - ❖ In partea de sus a display-ului va aparea rezultatul compararii <u>primelor doua numere</u> sub 3 forme:
 - Primul numar mai mare decat al doilea (se aprinde portiunea stanga sus)

• Numerele sunt egale (se aprinde portiunea de sus din mijloc)

• Primul numar mai mic decat al doilea (se aprinde portiunea dreapta sus)

- ❖ In partea de jos a display-ului va aparea rezultatul compararii <u>ultimelor doua numere</u> sub 3 forme:
 - Al doilea numar mai mare decat al treilea (se aprinde portiunea stanga jos)

• Numerele sunt egale (se aprinde portiunea de jos din mijloc)

 Al doilea numar mai mic decat al treilea (se aprinde portiunea dreapta jos)

3. Metoda de implementare

Pentru implementarea acestui modul s-au folosit programul de sinteza Vivado si limbajul VHDL. Implementarea proiectului a fost facuta printr-o descriere comportamentala. S-a proiectat entitatea comparator . Aceasta are un "proces" care compara, prin operatii pe biti, numerele incarcate anterior, si furnizeaza rezultatul compararii printr-un segment din display.

Fisierul bitstream creeat de programul Vivado a fost testat cu ajutorul placii BASYS 3 Artix-7 xc7a35tcpg236-1.

4. Descrierea (scurtă) a sistemului de dezvoltare BASYS 3

Placa de dezvoltare BASYS 3 este un circuit de dezvoltare complet si ready-to-use bazat pe ultimele Artix-7 Field Programmable Gate Array(FPGA) produse de Xilinx. Cu o mare capacitate de FPGA si cu o colectie de porturi USB, VGA si altele, placa de dezvoltare BASYS 3 permite proiectarea unor design-uri variate, atat circuite introductorii combinationale, cat si circuite secventiale complexe ca procesoarele si controllerele embedded.

5. Editarea fişierului VHDL

-----proiect_2.vhd(TOP MODULE)-----

Entitatea comparator:

```
1
     library IEEE;
     use IEEE.STD LOGIC 1164.ALL;
 2
 3
 4 - entity comparator is
 5 | Port (
 6 ! clk in: std logic;
     X: in std logic vector(3 downto 0);
     Y: in std logic vector(3 downto 0);
     Z: in std logic vector(3 downto 0);
10
11
    X out: out std logic vector(3 downto 0);
    Y out: out std logic vector(3 downto 0);
12
13 '
     Z out: out std logic vector(3 downto 0);
14
15 load: in std logic;
    compare: in std logic;
16
17
18
     an: out STD LOGIC VECTOR(3 downto 0);
     seg:out STD LOGIC VECTOR(6 downto 0)
19
20
21 ;
22 \(\hatcarrow\) end comparator;
```

Buffere pentru semnalele de intrare si iesire si vectorii pentru calcule:

```
24 - architecture Behavioral of comparator is
25
26 -- Buffer semnal intrare
27
28 | signal X1: std logic vector(3 downto 0);
29 ; signal Y1: std logic vector(3 downto 0);
30 | signal Z1: std logic vector(3 downto 0);
31 --Buffer semnal iesire
32
   signal X1_out: std logic vector(3 downto 0);
33
   signal Y1 out: std logic vector(3 downto 0);
34
35 signal Z1_out: std logic vector(3 downto 0);
36
37 : --Vectorii pentru calculul diferentei
38 | signal Ul :std logic vector(3 downto 0);
    signal U2 :std logic vector(3 downto 0);
39
40
    --Vectorii pentru transporturile rezulktate in urma scaderii
41
42 signal C1 :std logic vector(4 downto 0);
    signal C2 :std logic vector(4 downto 0);
43 :
44
45
   begin
46
47 X1<=X;
                  --initializarea bufferelor
48 | X_out<=X1_out;
49 Y1<=Y;
50 Y out<=Yl out;
51 Z1<=Z;
52 Z out<=Z1 out:
```

Ledul folosit:

```
53

54 an(0) <= '0';

55 an(1) <= '1';

56 an(2) <= '1';

57 an(3) <= '1';

58
```

Rezultatele compararii:

Cat timp clk si load sunt pe 1, se incarca inputurile numerelor in leduri

Cand load-ul este pe 0, si clk si compare sunt pe 1 se incepe compararea numerelor:

```
else

--In caz contrar, ne folosim de valoarea output-ului din led-uri pentru a compara numerele
if(compare = 'l') then
--Comparator 1:

Cl(0) <= '0';
C2(0) <= '0';

for I in 0 to 3 loop
Ul(I) <= ( not ( Cl(I) ) and not ( Xl_out(I) ) and Yl_out(I) ) or (not ( Cl(I) ) and Xl_out(I)
and not ( Yl_out(I) )) or (not( Yl_out(I) ) and not ( Xl_out(I) ) and Cl(I)) or (Cl(I) and Xl_out(I));
Cl(I +l) <= (not (Xl_out(I)) and Yl_out(I)) or (Cl(I) and ((not ( Xl_out(I) )) or Yl_out(I)));</pre>
```

Comparator 2:

```
--Comparator 2:

for I in 0 to 3 loop

U2(I) <= ( not ( C2(I) ) and not ( Y1_out(I) ) and Z1_out(I) ) or (not ( C2(I) ) and Y1_out(I) and not ( Z1_out(I) ))

pr (not( Z1_out(I) ) and not ( Y1_out(I) ) and C2(I)) or (C2(I) and Y1_out(I) and Z1_out(I));

C2(I +1)<= (not (Y1_out(I)) and Z1_out(I)) or (C2(I) and ((not ( Y1_out(I) )) or Z1_out(I)));
```

6. Editarea fișierului de constrângeri

Switch-uri:

```
14 set property PACKAGE_PIN R2 [get ports {X[3]}]
15 ;
      set property IOSTANDARD LVCMOS33 [get ports {X[3]}]
16 set property PACKAGE_PIN T1 [get_ports {X[2]}]
17 !
      set property IOSTANDARD LVCMOS33 [get ports {X[2]}]
18 set property PACKAGE_PIN Ul [get ports {X[1]}]
19
      set property IOSTANDARD LVCMOS33 [get ports {X[1]}]
20
   set property PACKAGE PIN W2 [get ports {X[0]}]
21
     set property IOSTANDARD LVCMOS33 [get ports {X[0]}]
22
23 set property PACKAGE_PIN V16 [get ports {load}]
24 :
     set property IOSTANDARD LVCMOS33 [get ports {load}]
25 set property PACKAGE_PIN V17 [get ports {compare}]
26
      set property IOSTANDARD LVCMOS33 [get ports {compare}]
27
28 | #set property PACKAGE PIN W15 [get ports {swt[4]}]
    #set property IOSTANDARD LVCMOS33 [get ports {swt[4]}]
29 ;
30 set property PACKAGE_PIN T2 [get ports {Y[3]}]
     set property IOSTANDARD LVCMOS33 [get ports {Y[3]}]
32 | set property PACKAGE_PIN T3 [get_ports {Y[2]}]
33
      set property IOSTANDARD LVCMOS33 [get ports {Y[2]}]
34 set property PACKAGE PIN V2 [get ports {Y[1]}]
35 '
     set property IOSTANDARD LVCMOS33 [get ports {Y[1]}]
   set property PACKAGE_PIN W13 [get_ports {Y[0]}]
37
     set property IOSTANDARD LVCMOS33 [get ports {Y[0]}]
38 | #set property PACKAGE PIN T3 [get ports {sw[9]}]
     #set property IOSTANDARD LVCMOS33 [get ports {sw[9]}]
40 | set property PACKAGE PIN V15 [get ports {Z[3]}]
41
     set property IOSTANDARD LVCMOS33 [get ports {Z[3]}]
42 '
   set property PACKAGE PIN W15 [get ports {Z[2]}]
43 :
    set property IOSTANDARD LVCMOS33 [get ports {Z[2]}]
44 set property PACKAGE_PIN W17 [get ports {Z[1]}]
45
      set property IOSTANDARD LVCMOS33 [get ports {Z[1]}]
46 set_property PACKAGE_PIN W16 [get_ports {Z[0]}]
      set property IOSTANDARD LVCMOS33 [get ports {Z[0]}]
```

LED-uri:

```
53
54 :
55 ## LEDs
56
    set property PACKAGE_PIN L1 [get ports {X_out[3]}]
       set property IOSTANDARD LVCMOS33 [get ports {X_out[3]}]
57
58
    #set property PACKAGE PIN U16 [get ports {Z out[0]}]
59
      #set property IOSTANDARD LVCMOS33 [get ports {Z out[0]}]
60 1
    set property PACKAGE PIN Pl [get ports {X out[2]}]
61
       set property IOSTANDARD LVCMOS33 [get ports {X_out[2]}]
62 :
    set property PACKAGE_PIN N3 [get ports {X_out[1]}]
63
       set property IOSTANDARD LVCMOS33 [get ports {X_out[1]}]
64 set property PACKAGE_PIN P3 [get ports {X_out[0]}]
65
        set property IOSTANDARD LVCMOS33 [get ports {X_out[0]}]
66
    #set property PACKAGE PIN W18 [get ports {led[4]}]
67
        #set property IOSTANDARD LVCMOS33 [get ports {led[4]}]
68
    set property PACKAGE_PIN W3 [get ports {Y_out[3]}]
69
       set property IOSTANDARD LVCMOS33 [get ports {Y out[3]}]
70 :
    set property PACKAGE PIN V3 [get ports {Y out[2]}]
71
        set property IOSTANDARD LVCMOS33 [get ports {Y_out[2]}]
72
    set property PACKAGE_PIN V13 [get ports {Y_out[1]}]
73
        set property IOSTANDARD LVCMOS33 [get ports {Y_out[1]}]
74
    set property PACKAGE_PIN V14 [get ports {Y_out[0]}]
75
        set property IOSTANDARD LVCMOS33 [get ports {Y_out[0]}]
76
    #set property PACKAGE PIN V3 [get ports {led[9]}]
77
        #set property IOSTANDARD LVCMOS33 [get ports {led[9]}]
78
    set property PACKAGE_PIN U15 [get ports {Z_out[3]}]
79
       set property IOSTANDARD LVCMOS33 [get ports {Z_out[3]}]
80
    set property PACKAGE PIN W18 [get ports {Z out[2]}]
81
       set property IOSTANDARD LVCMOS33 [get ports {Z_out[2]}]
82 :
    set property PACKAGE_PIN V19 [get ports {Z_out[1]}]
83
        set property IOSTANDARD LVCMOS33 [get ports {Z_out[1]}]
84 ; set property PACKAGE_PIN U19 [get ports {Z_out[0]}]
        set property IOSTANDARD LVCMOS33 [get ports {Z out[0]}]
86 | #set property PACKAGE PIN P1 [get ports {led[14]}]
```

7-segment display:

```
90
 91 : #7 segment display
 92 | set property PACKAGE_PIN W7 [get_ports {seg[0]}]
         set property IOSTANDARD LVCMOS33 [get ports {seg[0]}]
 94 | set property PACKAGE PIN W6 [get ports {seg[1]}]
         set property IOSTANDARD LVCMOS33 [get ports {seg[1]}]
 96; set property PACKAGE_PIN U8 [get ports {seg[2]}]
       set property IOSTANDARD LVCMOS33 [get ports {seg[2]}]
 98 | set property PACKAGE_PIN V8 [get ports {seg[3]}]
         set property IOSTANDARD LVCMOS33 [get ports {seg[3]}]
100 set_property PACKAGE_PIN U5 [get_ports {seg[4]}]
101 ;
         set property IOSTANDARD LVCMOS33 [get ports {seg[4]}]
102 set property PACKAGE_PIN V5 [get ports {seg[5]}]
103 :
       set property IOSTANDARD LVCMOS33 [get ports {seg[5]}]
104 set_property PACKAGE_PIN U7 [get_ports {seg[6]}]
105
       set property IOSTANDARD LVCMOS33 [get ports {seg[6]}]
106
107 #set property PACKAGE PIN V7 [get ports dp]
108
       #set property IOSTANDARD LVCMOS33 [get ports dp]
109
110 | set property PACKAGE_PIN U2 [get ports {an[0]}]
111
       set property IOSTANDARD LVCMOS33 [get ports {an[0]}]
112 set property PACKAGE_PIN U4 [get_ports {an[1]}]
113
       set property IOSTANDARD LVCMOS33 [get ports {an[1]}]
114 set property PACKAGE_PIN V4 [get_ports {an[2]}]
115 ;
         set property IOSTANDARD LVCMOS33 [get ports {an[2]}]
116 set property PACKAGE_PIN W4 [get ports {an[3]}]
117 ;
       set property IOSTANDARD LVCMOS33 [get ports {an[3]}]
```

Butoane externe (pentru clock):

```
##Buttons

120 set_property PACKAGE_PIN U18 [get_ports {clk_in}]

121 set_property IOSTANDARD LVCMOS33 [get_ports {clk_in}]

122 set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets {clk_in}]
```

7. Descrierea pașilor de sinteză și testarea circuitului rezultat

- 1. S-a creeat un proiect nou in programul Vivado
- 2. S-a implementat modulul "MODUL_COMPARATOR" printr-o descriere comportamentala.
- 3. S-a editat fisierul de constrangeri in vederea realizarii legaturilor intre switch-uri si intrari, butonului din mijloc(U18) si clock, switch(V16) si load, switch(V17) si activarea comparatorului, segmentele display-ului si iesirile modulului.
- 4. S-a realizat analiza RTL(Register Transfer Level)
- 5. S-a sintetizat modulul(pentru se vedea design-ul sintetizat)
- 6. S-a lansat implementarea proiectului care a avut ca efect final generarea fisierului bitstream
- 7. S-a programat placa de dezvoltare BASYS 3 cu fisierul bitstream si s-a testat functionarea corespunzatoare a modulului implementat

8. Fotografii cu functionarea modulului:

Cazul cand nr1>nr2 si nr2<nr3

Cazul cand nr=nr2 si nr2=nr3 deci nr1=nr2=nr3

Cazul cand nr1=nr2 si nr2<nr3

9. Concluzii

In concluzie, s-a implementat ca proiect un comparator. Acesta compara , prin operatii pe biti, trei numere , doua cate doua, incarcate prin intermediul switch-urilor, iar rezultatul este furnizat la final printr-un segment din display(cel mai din dreapta). Astfel, relatia (=/</>) dintre primul si al doilea numar poate fi observata in partea superioara, iar cea dintre al doilea si al treilea numar in partea inferioara al segmentului.

Bibliografie:

- 1. VHDL Reference Manual, http://www.ics.uci.edu/~jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf
- $2.\ BASYS\ 3\ Reference\ Manual,\ https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual$