Machine Learning Report - Coded Project

Table of Contents

Problem Statement 1:	4
Define the problem and perform Exploratory Data Analysis	6
Treat missing values in CPC, CTR and CPM using the formula given.	9
Before Treating Outliers	10
After Treating Outliers	11
Perform z-score scaling and discuss how it affects the speed of the algorithm.	11
Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance	12
Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.	14
Print silhouette scores for up to 10 clusters and identify optimum number of clusters	15
Profile the ads based on optimum number of clusters using silhouette score and your domain understanding	16
Observations:	18
Problem Statement 2:	19
Define the problem and perform Exploratory Data Analysis	20
(i) Which state has the highest gender ratio and which has the lowest?	24
(ii) Which district has the highest & lowest gender ratio?	25
Data Preprocessing	25
PCA	26
Write a linear equation for first PC	35

Table of Figures

1. Heat Map	9
2. Boxplot before treating outliers	
3. Boxplot after treating outliers	11
4. Boxplot after scaling the data with Z-score	11
5. Dendrogram using WARD and Euclidean distance	12
6. Boxplot of visualizing the clustered data	13
7. Elbow plot	15
8. silhouette scores vs Number of clusters	15
9. Clicks vs K_means_silhouette	
10. Revenue vs Device type	
11. CPC vs Device type	
12. CPM vs Device type	17
13. CPC vs Device type	17
14. Boxplot showing outliers in problem 2	
15. Boxplot After scaling the data using Z – score method	26
16. Scree plot for PCA	27
17. Scree plot for 6 PCA	29
18. Screeplot - Cumulative variance vs number of components	30
19. Analysis of PCA with the original data	
20. Heat Map - PCA	34

Problem Statement 1:

Clustering:

Digital Ads Data:

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

The following three features are commonly used in digital marketing:

CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column in the dataset and the Number of Impressions refers to the 'Impressions' Column in the dataset.

CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column in the dataset and the Number of Clicks refers to the 'Clicks' Column in the dataset.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column in the dataset and the Total Measured Ad Impressions refers to the 'Impressions' Column in the dataset.

The Data Dictionary and the detailed description of the formulas for CPM, CPC and CTR are given in the sheet 2 of the Clustering Clean ads_data Excel File.

Perform the following in given order:

- Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.
- Treat missing values in CPC, CTR and CPM using the formula given. You may refer to the Bank KMeans Solution File to understand the coding behind treating the missing values using a specific formula. You have to basically create an user-defined function and then call the function for imputing.
- Check if there are any outliers.
- Do you think treating outliers is necessary for K-Means clustering? Based on your judgment
 decide whether to treat outliers and if yes, which method to employ. (As an analyst your
 judgment may be different from another analyst).
- Perform z-score scaling and discuss how it affects the speed of the algorithm.
- Perform clustering and do the following:
- Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.
- Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.
- Print silhouette scores for up to 10 clusters and identify optimum number of clusters.
- Profile the ads based on optimum number of clusters using silhouette score and your domain understanding
 - [Hint: Group the data by clusters and take sum or mean to identify trends in clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots.]
- Conclude the project by providing summary of your learnings.

Define the problem and perform Exploratory Data Analysis

Getting the first 10 rows of the table

Getting the last 10 rows of the table

Shape of the Data

In [118]: df.shape
Out[118]: (23066, 19)

There are 23066 rows and 19 columns.

Getting the data type

Getting the statistical summary for the numerical variables

Out[88]:		count	mean	std	min	25%	50%	75%	max
	Ad - Length	23066.0	385.16	233.65	120.00	120.00	300.00	720.00	728.00
	Ad- Width	23066.0	337.90	203.09	70.00	250.00	300.00	600.00	600.00
	Ad Size	23066.0	96674.47	61538.33	33600.00	72000.00	72000.00	84000.00	216000.00
	Available_Impressions	23066.0	2432043.67	4742887.76	1.00	33672.25	483771.00	2527711.75	27592861.00
	Matched_Queries	23066.0	1295099.14	2512969.86	1.00	18282.50	258087.50	1180700.00	14702025.00
	Impressions	23066.0	1241519.52	2429399.96	1.00	7990.50	225290.00	1112428.50	14194774.00
	Clicks	23066.0	10678.52	17353.41	1.00	710.00	4425.00	12793.75	143049.00
	Spend	23066.0	2706.63	4067.93	0.00	85.18	1425.12	3121.40	26931.87
	Fee	23066.0	0.34	0.03	0.21	0.33	0.35	0.35	0.35
	Revenue	23066.0	1924.25	3105.24	0.00	55.37	926.34	2091.34	21276.18
	CTR	18330.0	0.07	0.08	0.00	0.00	0.08	0.13	1.00
	СРМ	18330.0	7.67	6.48	0.00	1.71	7.66	12.51	81.56
	CPC	18330.0	0.35	0.34	0.00	0.09	0.16	0.57	7.26

checking the duplicate values in the dataset

There are no duplicate values found in the dataset.

checking the null values in the dataset

Out[90]:	Timestamp	0
	InventoryType	0
	Ad - Length	0
	Ad- Width	0
	Ad Size	0
	Ad Type	0
	Platform	0
	Device Type	0
	Format	0
	Available_Impressions	0
	Matched_Queries	0
	Impressions	0
	Clicks	0
	Spend	0
	Fee	0
	Revenue	0
	CTR	4736
	CPM	4736
	CPC	4736
	dtype: int64	

The shape of the dataset contains the 23066 Rows and 19 columns. From the above dataset, we can find there are no duplicate values. There are 4736 null values found in the columns in CTR, CPC and CPC.

1. Heat Map

CTR and CPM have a high correlation with 0.87, and CPC and Impressions have a high correlation with 0.57.

CPC and Revenue have a high correlation with 0.46.

Treat missing values in CPC, CTR and CPM using the formula given.

Checking the null values after treating the calculated column CPC, CTR and CPM.

Before Treating Outliers

2. Boxplot before treating outliers

After Treating Outliers

3. Boxplot after treating outliers

Perform z-score scaling and discuss how it affects the speed of the algorithm.

Z- Z-score scaling doesn't affect the speed of the algorithm, it only normalize the data.

4. Boxplot after scaling the data with Z-score

Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.

5. Dendrogram using WARD and Euclidean distance

Counting the number of clusters

1454

Out[159]: clusters 5 7241 2 6795 4 4246 1 3330

Name: count, dtype: int64

Average of cluster data

CPM	CPC
1.540055	0.755331
	0.567322
5.057546	0.109326
2.149377	0.089515
4.216383	0.118293

Visualize the clustering data

6. Boxplot of visualizing the clustered data

3 clusters

Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm K- Means Inertia values.

7. Elbow plot

optimum number of clusters for k-means algorithm is 5.

Print silhouette scores for up to 10 clusters and identify optimum number of clusters

8. silhouette scores vs Number of clusters


```
The silhouette scores for 2 is 0.47408614007079075
The silhouette scores for 3 is 0.3996085499898667
The silhouette scores for 4 is 0.4598885200834244
The silhouette scores for 5 is 0.5624992189264133
The silhouette scores for 6 is 0.5814351008554612
The silhouette scores for 7 is 0.5424544472408298
The silhouette scores for 8 is 0.46653628830971466
The silhouette scores for 9 is 0.4688187168141927
The silhouette scores for 10 is 0.4147804025269941
```

the optimum number of clusters based on the silhouette scores is 5.

Profile the ads based on optimum number of clusters using silhouette score and your domain understanding

9. Clicks vs K_means_silhouette

10. Revenue vs Device type

11. CPC vs Device type

12. CPM vs Device type

Out[284]: <Axes: xlabel='Device Type', ylabel='CPM'>

13. CPC vs Device type

Out[286]: <Axes: xlabel='Device Type', ylabel='CPC'>

Observations:

Clicks It is a marketing metric that counts the number of times users have clicked on the advertisement to reach an online property.

Impressions The impression counts of the particular Advertisement out of the total available impressions.

CTR stands for "Click through rate". CTR is the number of clicks that your ad receives divided by the number of times your ad is shown. Formula used here is CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column and the Total Measured Ad Impressions refers to the 'Impressions' Column.

CPM stands for "cost per 1000 impressions." Formula used here is CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column and the Number of Impressions refers to the 'Impressions' Column.

CPC stands for "Cost-per-click". Cost-per-click (CPC) bidding means that you pay for each click on your ads. The Formula used here is CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column and the Number of Clicks refers to the 'Clicks' Column.

From the above k-means silhouette scores:

we can say that most of the advertisement cluster falls on the cluster 3, followed by cluster 1, cluster 0, cluster 2, cluster 4 and cluster 5.

The cost per click (CPC) for cluster 5 is high. The cost per 1000 impressions (CPM) for cluster 5 is high. The click through rate (CTR) for cluster 1 is high.

The cluster 5 has highest number of clicks that counts the number of times users have clicked on the advertisement to reach an online property done by both desktop and mobile device.

The cluster 4 has achieved the highest number of revenue using both the device type (mobile & desktop), followed by cluster 5, cluster 2, cluster 3, cluster 0, cluster 1.

Cluster 3 has a minimum ad size when compared to other clusters.

The average CPM (cost per 1000 impressions) is highest in cluster 0, cluster 1, and cluster 5 which means the ads are displayed by spending a huge amount to gain an impression on users.

The Average CPC (Cost-per-click) is high for cluster 2, cluster 3, and cluster 4, due to this it has the highest impression count of the Advertisement out of the total available impressions.

The lower the CPM higher the revenue generated.

The Digital Marketing company should focus on ads based on CPM which yields revenue by increasing the number of impressions on the ads rather than going for CPC.

Problem Statement 2:

PCA:

PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/UTs - District Level), Scheduled tribes - 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population, Scheduled Castes, Scheduled Tribes Population, Population in the age group 0-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also Non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and rural-urban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 subdistricts, 7,935 Towns and 6,40,867 Villages.

The data collected has so many variables thus making it difficult to find useful details without using Data Science Techniques. You are tasked to perform detailed EDA and identify Optimum Principal Components that explain the most variance in data. Use Sklearn only.

 Note: The 24 variables given in the Rubric is just for performing EDA. You will have to consider the entire dataset, including all the variables for performing PCA.

Data file - PCA India Data Census.xlsx

Define the problem and perform Exploratory Data Analysis

Getting the first 5 rows of the dataset

Getting the last 5 rows of the dataset

Getting the data type

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 640 entries, 0 to 639
Data columns (total 61 columns):
# Column
                    Non-Null Count Dtype
---
                     -----
                     640 non-null
     State Code
     Dist.Code
                     640 non-null
 1
                                     int64
                     640 non-null
     State
                                     object
     Area Name
                     640 non-null
 3
                                     object
 4
     No HH
                     640 non-null
                                     int64
                     640 non-null
     TOT_M
                                     int64
                     640 non-null
 6
     TOT_F
                                     int64
     M 06
                     640 non-null
                                     int64
     F_06
                     640 non-null
                                     int64
 8
 9
     M_SC
                     640 non-null
                                     int64
                     640 non-null
 10
    F_SC
                                     int64
 11
     M_ST
                     640 non-null
                                     int64
 12
     F ST
                     640 non-null
                                     int64
                     640 non-null
 13 M_LIT
                                     int64
     F_LIT
                     640 non-null
                                     int64
 14
 15
     M ILL
                     640 non-null
                                     int64
                     640 non-null
     F_ILL
                                     int64
 16
     TOT_WORK_M
                     640 non-null
                                     int64
 17
 18
     TOT_WORK_F
                     640 non-null
                                     int64
     MAINWORK_M
 19
                     640 non-null
                                     int64
 20
     MAINWORK_F
                     640 non-null
                                     int64
     MAIN_CL_M
 21
                     640 non-null
                                     int64
 22
     MAIN_CL_F
                     640 non-null
                                     int64
                     640 non-null
 23
     MAIN_AL_M
                                     int64
                     640 non-null
 24
     MAIN_AL_F
                                     int64
 25
     MAIN_HH_M
                     640 non-null
                                     int64
                     640 non-null
     MAIN_HH_F
 26
                                     int64
 27
     MAIN_OT_M
                     640 non-null
                                     int64
     MAIN_OT_F
                     640 non-null
                                     int64
 28
     MARGWORK M
                     640 non-null
 29
                                     int64
 30
    MARGWORK F
                     640 non-null
                                     int64
     MARG_CL_M
                     640 non-null
 31
                                     int64
 32
     MARG CL F
                     640 non-null
                                     int64
     MARG_AL_M
                     640 non-null
 33
                                     int64
 34
     MARG AL F
                     640 non-null
                                     int64
     MARG_HH_M
                     640 non-null
 35
                                     int64
 36
     MARG_HH_F
                     640 non-null
                                     int64
 37
     MARG OT M
                     640 non-null
                                     int64
                     640 non-null
 38
     MARG_OT_F
                                     int64
 39
     MARGWORK_3_6_M
                     640 non-null
                                     int64
     MARGWORK_3_6_F
                     640 non-null
                                     int64
 40
 41
     MARG_CL_3_6_M
                     640 non-null
                                     int64
     MARG_CL_3_6_F
                     640 non-null
                                     int64
 42
 43
     MARG_AL_3_6_M
                     640 non-null
                                     int64
 44
     MARG AL 3 6 F
                     640 non-null
                                     int64
 45
     MARG_HH_3_6_M
                     640 non-null
                                     int64
     MARG_HH_3_6_F
 46
                     640 non-null
                                     int64
                     640 non-null
     MARG_OT_3_6_M
 47
                                     int64
     MARG OT 3 6 F
 48
                     640 non-null
                                     int64
     MARGWORK 0 3 M
                     640 non-null
                                     int64
 49
     MARGWORK 0 3 F
                     640 non-null
                                     int64
 50
 51
     MARG_CL_0_3_M
                     640 non-null
                                     int64
 52
     MARG_CL_0_3_F
                     640 non-null
                                     int64
 53
     MARG_AL_0_3_M
                     640 non-null
                                     int64
     MARG_AL_0_3_F
 54
                     640 non-null
                                     int64
     MARG HH 0 3 M
                     640 non-null
 55
                                     int64
                     640 non-null
     MARG_HH_0_3_F
                                     int64
 57
     MARG_OT_0_3_M
                     640 non-null
                                     int64
 58 MARG_OT_0_3_F
                     640 non-null
                                     int64
 59 NON_WORK_M
                     640 non-null
                                     int64
 60 NON WORK F
                     640 non-null
                                     int64
dtypes: int64(59), object(2)
memory usage: 305.1+ KB
```

Out[9]:

	count	mean	std	mIn	25%	50%	75%	max
State Code	640.0	17.114062	9.426486	1.0	9.00	18.0	24.00	35.0
Dist.Code	640.0	320.500000	184.896367	1.0	160.75	320.5	480.25	640.0
No_HH	640.0	51222.871875	48135.405475	350.0	19484.00	35837.0	68892.00	310450.0
TOT_M	640.0	79940.576563	73384.511114	391.0	30228.00	58339.0	107918.50	485417.0
TOT_F	640.0	122372.084375	113600.717282	698.0	46517.75	87724.5	164251.75	750392.0
M_06	640.0	12309.098438	11500.906881	56.0	4733.75	9159.0	16520.25	96223.0
F_06	640.0	11942.300000	11326.294567	56.0	4672.25	8663.0	15902.25	95129.0
M_SC	640.0	13820.946875	14426.373130	0.0	3466.25	9591.5	19429.75	103307.0
F_SC	640.0	20778.392188	21727.887713	0.0	5603.25	13709.0	29180.00	156429.0
M_ST	640.0	6191.807813	9912.668948	0.0	293.75	2333.5	7658.00	98785.0
F_ST	640.0	10155.640625	15875.701488	0.0	429.50	3834.5	12480.25	130119.0
M_LIT	640.0	57967.979688	55910.282466	286.0	21298.00	42693.5	77989.50	403261.0
F_LIT	640.0	66359.565625	75037.860207	371.0	20932.00	43796.5	84799.75	571140.0
M_ILL	640.0	21972.596875	19825.605268	105.0	8590.00	15767.5	29512.50	105961.0
F_ILL	640.0	56012.518750	47116.693769	327.0	22367.00	42386.0	78471.00	254160.0
TOT_WORK_M	640.0	37992.407813	36419.537491	100.0	13753.50	27936.5	50226.75	269422.0
TOT_WORK_F	640.0	41295.760938	37192.360943	357.0	16097.75	30588.5	53234.25	257848.0
MAINWORK_M	640.0	30204.446875	31480.915680	65.0	9787.00	21250.5	40119.00	247911.0
MAINWORK_F	640.0	28198.846875	29998.262689	240.0	9502.25	18484.0	35063.25	226166.0
MAIN_CL_M	640.0	5424.342188	4739.161969	0.0	2023.50	4160.5	7695.00	29113.0
MAIN_CL_F	640.0	5486.042188	5326.362728	0.0	1920.25	3908.5	7286.25	36193.0
MAIN_AL_M	640.0	5849.109375	6399.507966	0.0	1070.25	3936.5	8067.25	40843.0
MAIN_AL_F	640.0	8925.995312	12864.287584	0.0	1408.75	3933.5	10617.50	87945.0
MAIN_HH_M	640.0	883.893750	1278.642345	0.0	187.50	498.5	1099.25	16429.0
MAIN_HH_F	640.0	1380.773438	3179.414449	0.0	248.75	540.5	1435.75	45979.0
MAIN_OT_M	640.0	18047.101562	26068.480886	36.0	3997.50	9598.0	21249.50	240855.0
MAIN_OT_F	640.0	12406.035938	18972.202369	153.0	3142.50	6380.5	14368.25	209355.0
MARGWORK_M	640.0	7787.960938	7410.791691	35.0	2937.50	5627.0	9800.25	47553.0
MARGWORK_F	640.0	13096.914062	10996.474528	117.0	5424.50	10175.0	18879.25	66915.0
MARG_CL_M	640.0	1040.737500	1311.546847	0.0	311.75	606.5	1281.00	13201.0
MARG_CL_F	640.0	2307.682813	3564.626095	0.0	630.25	1226.0	2659.25	44324.0
MARG_AL_M	640.0	3304.326562	3781.555707	0.0	873.50	2062.0	4300.75	23719.0
MARG_AL_F	640.0	6463.281250	6773.876298	0.0	1402.50	4020.5	9089.25	45301.0
MARG_HH_M	640.0	316.742188	462.661891	0.0	71.75	166.0	356.50	4298.0
MARG_HH_F	640.0	788.626562	1198.718213	0.0	171.75	429.0	962.50	15448.0
MARG_OT_M	640.0	3126.154687	3609.391821	7.0	935.50	2036.0	3985.25	24728.0
MARG_OT_F	640.0	3539.323438	4115.191314	19.0	1071.75	2349.5	4400.50	36377.0
MARGWORK_3_6_M	640.0	41948.168750	39045.316918	291.0	16208.25	30315.0	57218.75	300937.0
MARGWORK_3_6_F	640.0	81076.323438	82970.406216	341.0	26619.50	56793.0	107924.00	676450.0
MARG_CL_3_6_M	640.0	6394.987500	6019.806644	27.0	2372.00	4630.0	8167.00	39106.0
MARG_CL_3_6_F	640.0	10339.864063	8467.473429	85.0	4351.50	8295.0	15102.00	50065.0
MARG_AL_3_6_M	640.0	789.848438	905.639279	0.0	235.50	480.5	986.00	7426.0
MARG_AL_3_6_F	640.0	1749.584375	2496.541514	0.0	497.25	985.5	2059.00	27171.0
MARG_HH_3_6_M	640.0	2743.635938	3059.586387	0.0	718.75	1714.5	3702.25	19343.0

MARGWORK_3_6_F	640.0	81076.323438	82970.406216	341.0	26619.50	56793.0	107924.00	676450.0
MARG_CL_3_6_M	640.0	6394.987500	6019.806644	27.0	2372.00	4630.0	8167.00	39106.0
MARG_CL_3_6_F	640.0	10339.864063	8467.473429	85.0	4351.50	8295.0	15102.00	50065.0
MARG_AL_3_6_M	640.0	789.848438	905.639279	0.0	235.50	480.5	986.00	7426.0
MARG_AL_3_6_F	640.0	1749.584375	2496.541514	0.0	497.25	985.5	2059.00	27171.0
MARG_HH_3_6_M	640.0	2743.635938	3059.586387	0.0	718.75	1714.5	3702.25	19343.0
MARG_HH_3_6_F	640.0	5169.850000	5335.640960	0.0	1113.75	3294.0	7502.25	36253.0
MARG_OT_3_6_M	640.0	245.362500	358.728567	0.0	58.00	129.5	276.00	3535.0
MARG_OT_3_6_F	640.0	585.884375	900.025817	0.0	127.75	320.5	719.25	12094.0
MARGWORK_0_3_M	640.0	2616.140625	3036.964381	7.0	755.00	1681.5	3320.25	20648.0
MARGWORK_0_3_F	640.0	2834.545312	3327.836932	14.0	833.50	1834.5	3610.50	25844.0
MARG_CL_0_3_M	640.0	1392.973438	1489.707052	4.0	489.50	949.0	1714.00	9875.0
MARG_CL_0_3_F	640.0	2757.050000	2788.776676	30.0	957.25	1928.0	3599.75	21611.0
MARG_AL_0_3_M	640.0	250.889062	453.336594	0.0	47.00	114.5	270.75	5775.0
MARG_AL_0_3_F	640.0	558.098438	1117.642748	0.0	109.00	247.5	568.75	17153.0
MARG_HH_0_3_M	640.0	560.690625	762.578991	0.0	136.50	308.0	642.00	6116.0
MARG_HH_0_3_F	640.0	1293.431250	1585.377938	0.0	298.00	717.0	1710.75	13714.0
MARG_OT_0_3_M	640.0	71.379688	107.897627	0.0	14.00	35.0	79.00	895.0
MARG_OT_0_3_F	640.0	200.742188	309.740854	0.0	43.00	113.0	240.00	3354.0
NON_WORK_M	640.0	510.014063	610.603187	0.0	161.00	326.0	604.50	6456.0
NON_WORK_F	640.0	704.778125	910.209225	5.0	220.50	464.5	853.50	10533.0

checking the duplicate values in the dataset

There are no duplicate values in the dataset.

checking the null values in the dataset

```
Out[11]: State Code 0
Dist.Code 0
State 0
Area Name 0
No_HH 0
...
MARG_HH_0_3_F 0
MARG_OT_0_3_M 0
MARG_OT_0_3_F 0
NON_WORK_M 0
NON_WORK_F 0
Length: 61, dtype: int64
```

There are no null values in the dataset.

(i) Which state has the highest gender ratio and which has the lowest?

Out[17]:	State	
[]-	Andhra Pradesh	1.862113
	Tamil Nadu	1.825079
	Chhattisgarh	1.820831
	Arunachal Pradesh	1.741054
	Odisha	1.737621
	Nagaland	1.713262
	Maharashtra	1.701224
	Puducherry	1.691728
	Kerala	1.663236
	Goa	1.608628
	Mizoram	1.603504
	Tripura	1.597749
	Uttarakhand	1.585126
	Karnataka	1.567885
	Madhya Pradesh	1.563246
	Manipur	1.559626
	Sikkim	1.557081
	Himachal Pradesh	1.555837
	Dadara & Nagar Havelli	1.551275
	West Bengal	1.537645
	Andaman & Nicobar Island	1.532148
	Gujarat	1.481824
	Jharkhand	1.466697
	Assam	1.456536
	Rajasthan	1.438257
	Chandigarh	1.428496
	Daman & Diu	1.422185
	Jammu & Kashmir	1.360260
	Punjab	1.343180
	Bihar	1.343010
	Meghalaya	1.329504
	Uttar Pradesh	1.329492
	NCT of Delhi	1.290194
	Haryana	1.283484
	Lakshadweep	1.151993
	dtype: float64	

State with the highest gender ratio: Andhra Pradesh State with the lowest gender ratio: Lakshadweep

(ii) Which district has the highest & lowest gender ratio?

Out[20]:	Area Name Krishna Koraput Virudhunagar West Godavari Baudh	2.283250 2.268763 2.225429 2.221849 2.215060
	Baghpat Dhaulpur Mahamaya Nagar Badgam Lakshadweep Length: 635, dtyp	1.184830 1.180761 1.180202 1.179576 1.151993 e: float64

District with the highest gender ratio: Krishna District with the lowest gender ratio: Lakshadweep

Data Preprocessing

14. Boxplot showing outliers in problem 2

True Outliers are kept without treatment for further analysis.

Scaling the Data using Z-score method

Out[24]:		State												
		Code	Dist.Code	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_A
	0	-1.710782	-1.729347	-0.904738	-0.771236	-0.815563	-0.561012	-0.507738	-0.958575	-0.957049	-0.423306	 -0.163229	-0.720610	-
	1	-1.710782	-1.723934	-0.935695	-0.823100	-0.874534	-0.681096	-0.725367	-0.958297	-0.956772	-0.582014	 -0.583103	-0.732811	-
	2	-1.710782	-1.718521	-0.972412	-1.000919	-0.981466	-0.976956	-0.965262	-0.958575	-0.956772	-0.038951	 -0.859212	-0.921931	
	3	-1.710782	-1.713109	-1.037530	-1.052224	-1.041001	-1.022118	-0.995393	-0.958783	-0.957049	-0.355965	 -0.805468	-0.900758	-
	4	-1.710782	-1.707696	-0.822676	-0.809381	-0.813933	-0.622359	-0.649908	-0.957395	-0.955529	0.149238	 -0.348645	-0.297513	
	5 r	ows × 59 c	olumns											

15. Boxplot After scaling the data using Z – score method.

KMO Test The Kaiser-Meyer-Olkin (KMO) - measure of sampling adequacy (MSA)

Out[35]: 0.8039889932779798

Generally, if MSA is less than 0.5, PCA is not recommended, since no reduction is expected. On the other hand, MSA > 0.7 is expected to provide a considerable reduction is the dimension and extraction of meaningful components.

PCA

Obtaining the Eigen Vectors

```
Eigen Vectors
%s [[ 0.16  0.17  0.17  ...  0.13  0.15  0.13]
[-0.13  -0.09  -0.1  ...  0.05  -0.07  -0.07]
[-0.        0.06  0.04  ...  -0.08  0.11  0.1 ]
...
[ 0.        -0.21  0.04  ...  -0.21  -0.04  0.05]
[-0.08  0.08  0.05  ...  0.09  -0.32  0.22]
[ 0.64  0.03  -0.22  ...  -0.01  0.01  -0.02]]
```

Variance ratio

```
[0.56 0.14 0.07 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.
                            0.
                                       0.
                 0.
                       0.
                                  0.
                                             0.
                                                  0.
                                                        0.
                                                              0.
0.
            0.
                 0.
                           ]
      0.
                       0.
```

Cumulative Variance ratio

```
Cumulative Variance Explained in Percentage: [ 55.73 69.51 76.79 83.21 87.08 90.47 92.53 93.85 94.93 95.85 96.61 97.23 97.75 98.24 98.57 98.81 99.01 99.2 99.37 99.51 99.61 99.69 99.75 99.81 99.85 99.89 99.92 99.94 99.96 99.97 99.98 99.99 100. ]
```

We can see above that more than 93% of the variance is explained by 8 Principal Components. Around 98% of the variance is explained by 15 Principal Components. For the scope of this project, take at least 90% explained variance.

16. Scree plot for PCA

Dimensionality reduction from 33 to 6

```
Out[57]: array([[-4.62, -4.77, -5.96, ..., -6.29, -6.22, -5.9],

[ 0.14, -0.11, -0.29, ..., -0.64, -0.67, -0.94],

[ 0.33, 0.24, 0.37, ..., 0.11, 0.27, 0.35],

[ 1.54, 1.96, 0.62, ..., 1.37, 1.14, 1.11],

[ 0.35, -0.15, 0.48, ..., 0.15, 0.06, 0.15],

[-0.42, 0.42, 0.28, ..., 0.14, -0.12, -0.15]])
```

Eigen vectors for 6 PCA

```
Out[58]: array([[ 0.16, 0.17, 0.17, 0.16, 0.16, 0.15, 0.15, 0.03, 0.03,
                                                 0.16, 0.15, 0.16, 0.17, 0.16, 0.15, 0.15, 0.12, 0.1, 0.07, 0.11, 0.07, 0.13, 0.08, 0.12, 0.11, 0.16, 0.16,
                                                 0.08,
                                                                   0.05,
                                                                                      0.13, 0.11, 0.14,
                                                                                                                                             0.13, 0.16, 0.15,
                                                                                                                                                                                                     0.16,
                                                 0.16, 0.17, 0.16, 0.09, 0.05, 0.13, 0.11, 0.14, 0.12, 0.15, 0.15, 0.15, 0.14, 0.05, 0.04, 0.12, 0.12, 0.14,
                                                 0.13, 0.15, 0.13],
                                            [-0.13, -0.09, -0.1 , -0.02, -0.02, -0.05, -0.05, 0.03, 0.03, -0.12, -0.15, -0.01, -0.01, -0.13, -0.09, -0.18, -0.15, 0.06,
                                                 0.09, -0.03, -0.06, -0.08, -0.08, -0.21, -0.21, 0.09,
                                                                                                                                                                                                    0.13,
                                                 0.27, 0.25, 0.17, 0.14, 0.07, 0.02, -0.09, -0.12,
                                               -0.11, 0.08, 0.1, 0.26, 0.24, 0.16, 0.13, 0.06,
                                              -0.09, -0.13, 0.15, 0.18, 0.25, 0.24, 0.19, 0.18, 0.08, 0.05, -0.07, -0.07],
                                            [-0. , 0.06, 0.04, 0.06, 0.05, 0. , -0.03, -0.12, -0.14,
                                               -0.08, 0.12, -0.02, -0.09, 0.05, -0.06, 0.05, -0.06, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07
                                                0.2 , 0.27, -0.19, -0.27, -0.02, -0.08, 0.11, 0.1 , 0.06, 0.08, -0.02, -0.07, 0.15, 0.26, -0.2 , -0.28, -0.02, -0.08, 0.11, 0.1 , 0.05, 0.02, 0.27, 0.28, -0.14, -0.2 , -0.02,
                                                0.11, 0.1,
                                                -0.08, 0.11, 0.1],
                                            [-0.13, -0.02, -0.07, 0.01, 0.01, -0.01, -0.03, -0.22, -0.23, -0.04, -0.06, 0.03, -0.08, -0.04, -0.23, -0.07, -0.25, -0.09,
                                               -0.29, -0.14, -0.29, 0.15, 0.05, -0.04, -0.12, 0.09, -0.09,
                                               -0.06, -0.17, 0.09, -0.11, 0.24, 0.2, 0.09, 0.03, -0.
                                                0., 0.09, -0.11, -0.04, -0.18, 0.08, -0.14, 0.24, 0.09, 0.03, 0.09, -0.02, -0.1, -0.14, 0.13, 0., 0.21, 0.08, 0.02],
                                            [-0.01, -0.03, -0.01, -0.05, -0.04, -0.17, -0.16, 0.43,
                                               -0.01, 0.06, -0.1, -0.12, -0.02, -0.04, -0.04, -0.08, -0.29, -0.24, -0.21, -0.18, -0.13, -0.14, 0.06, 0.08, 0.06, 0.09,
                                               -0.02, -0.06,
                                                                                    0.02, 0.08, -0.06, -0.03, 0.12, 0.17, -0.04, 0.07, -0.01, -0.06, 0.01, 0.06, -0.07, -0.04,
                                                                 0.05,
                                                 0.11, 0.14, 0.08, 0.13, -0.05, -0.05, 0.06, 0.13, -0.04,
                                            0. , 0.16, 0.24],
[0. , -0.07, -0.04, -0.16, -0.15, -0.06, -0.04, 0.22, 0.23,
                                                -0.06, -0.05, -0.12, -0.03, -0. , 0.11, 0.02, 0.12, -0.01, 0.1, -0.03, 0.02, 0.17, 0.42, 0.02, 0.08, -0.09, 0.02, 0.03, 0.09, -0.14, -0.09, 0.09, 0.37, -0.06, 0. , -0.14,
                                               0.3 , -0.05, -0.02]])
```

Eigenvalues for 6 PCA

```
Out[59]: array([31.81356474, 7.86942415, 4.15340812, 3.66879058, 2.20652588, 1.93827502])
```

Variance Ratio for 6 PCA

```
Out[61]: array([0.56, 0.14, 0.07, 0.06, 0.04, 0.03])
```

Out[62]: array([0.55726063, 0.69510499, 0.76785794, 0.83212212, 0.87077261, 0.9047243])

Scree Plot for 6 PCA

17. Scree plot for 6 PCA

create a dataframe of component loading against each field and identify the pattern

: _	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MAR
0	0.16	0.17	0.17	0.16	0.16	0.15	0.15	0.03	0.03	0.16	 0.15	0.14	0.05	0.04	
1	-0.13	-0.09	-0.10	-0.02	-0.02	-0.05	-0.05	0.03	0.03	-0.12	 0.15	0.18	0.25	0.24	
2	-0.00	0.06	0.04	0.06	0.05	0.00	-0.03	-0.12	-0.14	0.08	 0.05	0.02	0.27	0.28	
3	-0.13	-0.02	-0.07	0.01	0.01	0.01	-0.03	-0.22	-0.23	-0.04	 0.09	-0.02	-0.10	-0.14	
4	-0.01	-0.03	-0.01	-0.05	-0.04	-0.17	-0.16	0.43	0.44	-0.01	 0.08	0.13	-0.05	-0.05	
5	0.00	-0.07	-0.04	-0.16	-0.15	-0.06	-0.04	0.22	0.23	-0.06	 -0.06	-0.00	0.07	0.08	

MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0_3_M	MARG_OT_0_3_F	NON_WORK_M	NON_WORK_F
0.14	0.05	0.04	0.12	0.12	0.14	0.13	0.15	0.13
0.18	0.25	0.24	0.19	0.18	0.08	0.05	-0.07	-0.07
0.02	0.27	0.28	-0.14	-0.20	-0.02	-0.08	0.11	0.10
-0.02	-0.10	-0.14	0.13	0.00	0.23	0.21	0.08	0.02
0.13	-0.05	-0.05	0.06	0.13	-0.04	0.00	0.16	0.24
-0.00	0.07	0.08	-0.12	-0.11	0.06	0.30	-0.05	-0.02

Out[70]:

	PC1	PC2	PC3	PC4	PC5	PC6
No_HH	0.156021	-0.126347	-0.002690	-0.125293	-0.007022	0.004083
TOT_M	0.167118	-0.089677	0.056698	-0.019942	-0.033026	-0.073389
тот_ғ	0.165553	-0.104912	0.038749	-0.070873	-0.012847	-0.043647
M_06	0.162193	-0.022095	0.057788	0.011917	-0.050248	-0.157957
F_06	0.162566	-0.020271	0.050126	0.014844	-0.043848	-0.154436
M_SC	0.151358	-0.045111	0.002569	0.012485	-0.173007	-0.064295
F_SC	0.151567	-0.051924	-0.025101	-0.029893	-0.159803	-0.040518
M_ST	0.027234	0.027679	-0.123504	-0.222247	0.433163	0.222591
F_ST	0.028183	0.030223	-0.139769	-0.229754	0.438792	0.225531
M_LIT	0.161993	-0.115355	0.082168	-0.035163	-0.009101	-0.055465
F_LIT	0.146873	-0.153109	0.117098	-0.059559	0.055844	-0.048021
M_ILL	0.161749	-0.006625	-0.021855	0.025348	-0.096580	-0.115234
F_ILL	0.165248	-0.009107	-0.093062	-0.076023	-0.119911	-0.028757
TOT_WORK_M	0.159872	-0.133529	0.045176	-0.040154	-0.019553	-0.001801
TOT_WORK_F	0.145936	-0.085087	-0.059450	-0.225160	-0.040437	0.105162
MAINWORK_M	0.146201	-0.176368	0.054295	-0.068351	-0.036802	0.019283
MAINWORK_F	0.123970	-0.151413	-0.055609	-0.246640	-0.082834	0.123832
MAIN_CL_M	0.103127	0.062415	-0.067399	-0.089769	-0.286039	-0.006170
MAIN_CL_F	0.074540	0.086477	-0.009238	-0.288965	-0.241936	0.102951
MAIN_AL_M	0.113356	-0.031040	-0.247917	-0.136082	-0.205723	-0.031068
MAIN_AL_F	0.073882	-0.058688	-0.251932	-0.290042	-0.177605	0.019240
MAIN_HH_M	0.131573	-0.076021	0.026569	0.152366	-0.134089	0.174465
MAIN_HH_F	0.083383	-0.082477	-0.060523	0.048950	-0.139441	0.422309
MAIN_OT_M	0.123526	-0.212984	0.137378	-0.040289	0.064638	0.023477
MAIN_OT_F	0.111021	-0.210071	0.095634	-0.120391	0.080743	0.083079
MARGWORK_M	0.164615	0.092994	-0.008628	0.093018	0.060244	-0.090762
MARGWORK_F	0.155396	0.125270	-0.049370	-0.088707	0.089202	0.017868

MARG_CL_F	0.049195	0.246547	0.268787	-0.168402	-0.059205	0.092086
MARG_AL_M	0.128599	0.165831	-0.189868	0.091787	0.019422	-0.141605
MARG_AL_F	0.114305	0.140958	-0.267768	-0.106365	0.080527	-0.085120
MARG_HH_M	0.140853	0.068068	-0.021257	0.237985	-0.059971	0.089533
MARG_HH_F	0.127670	0.024216	-0.082504	0.196321	-0.033602	0.365112
MARG_OT_M	0.155263	-0.089442	0.111713	0.087119	0.119121	-0.061066
MARG_OT_F	0.147287	-0.117899	0.100046	0.026729	0.166882	0.001739
MARGWORK_3_6_M	0.164972	-0.043995	0.064423	-0.000026	-0.043834	-0.136253
MARGWORK_3_6_F	0.161253	-0.105502	0.079704	0.003894	0.000537	-0.106900
MARG_CL_3_6_M	0.165502	0.077193	-0.024205	0.092875	0.054073	-0.096708
MARG_CL_3_6_F	0.155647	0.103174	-0.072013	-0.107860	0.073050	0.023773
MARG_AL_3_6_M	0.093014	0.264409	0.153518	-0.038488	-0.007789	0.013477
MARG_AL_3_6_F	0.051536	0.244261	0.256213	-0.179691	-0.061303	0.093993
MARG_HH_3_6_M	0.128576	0.158783	-0.200119	0.080411	0.008457	-0.144061
MARG_HH_3_6_F	0.110646	0.125287	-0.279866	-0.136240	0.064109	-0.076709
MARG_OT_3_6_M	0.139593	0.062262	-0.020618	0.237745	-0.066400	0.097058
MARG_OT_3_6_F	0.124546	0.014766	-0.082794	0.190511	-0.044810	0.384552
MARGWORK_0_3_M	0.154294	-0.093159	0.110285	0.086479	0.108829	-0.062043
MARGWORK_0_3_F	0.146286	-0.125596	0.095667	0.027275	0.141190	0.008962
MARG_CL_0_3_M	0.150126	0.150681	0.054892	0.087433	0.081185	-0.060715
MARG_CL_0_3_F	0.140157	0.180690	0.023982	-0.022290	0.129936	-0.001727
MARG_AL_0_3_M	0.052542	0.251328	0.268330	-0.104686	-0.048849	0.065409
MARG_AL_0_3_F	0.041786	0.240720	0.284956	-0.135716	-0.051895	0.083743
MARG_HH_0_3_M	0.121840	0.185277	-0.138628	0.132544	0.062380	-0.124209
MARG_HH_0_3_F	0.116011	0.180616	-0.202198	0.004051	0.128308	-0.105530
MARG_OT_0_3_M	0.139869	0.084869	-0.022599	0.230038	-0.036390	0.061228
MARG_OT_0_3_F	0.132192	0.050813	-0.078720	0.206201	0.000165	0.295600
NON_WORK_M	0.150376	-0.065365	0.111827	0.084854	0.162862	-0.052387
NON_WORK_F	0.131066	-0.073847	0.102553	0.021124	0.238292	-0.024901

19. Analysis of PCA with the original data

PC1 has the highest magnitude in the parameter TOT_M = 0.17

PC2 has the highest magnitude in the parameter MARG_CL_M = 0.27

PC3 has the highest magnitude in the parameter MARG_AL_0_3_F = 0.28

PC4 has the highest magnitude in the parameter MAIN_AL_F = 0.29

PC5 has the highest magnitude in the parameter $F_ST = 0.44$

PC6 has the highest magnitude in the parameter MAIN_HH_F = 0.42

No_HH -	0.16	0.13	0.00	0.13	0.01	0.00
тот_м -	0.17	0.09	0.06	0.02	0.03	0.07
TOT_F -	0.17	0.10	0.04	0.07	0.01	0.04
M_06 -	0.16	0.02	0.06	0.01	0.05	0.16
F_06 -	0.16	0.02	0.05	0.01	0.04	0.15
M_SC -	0.15	0.05	0.00	0.01	0.17	0.06
F_SC -	0.15	0.05	0.03	0.03	0.16	0.04
M_ST -	0.03	0.03	0.12	0.22	0.43	0.22
F_ST -	0.03	0.03	0.14		0.44	
M_LIT -	0.16	0.12	0.08	0.04	0.01	0.06
F_LIT -	0.15	0.15	0.12	0.06	0.06	0.05
M_ILL -	0.16	0.01	0.02	0.03	0.10	0.12
F_ILL -	0.17	0.01	0.09	0.08	0.12	0.03
TOT_WORK_M -	0.16	0.13	0.05	0.04	0.02	0.00
TOT_WORK_F -		0.09	0.06	0.23	0.04	0.11
MAINWORK_M -		0.18	0.05	0.07	0.04	0.02
MAINWORK_F -	0.12	0.15	0.06	0.25	0.08	0.12
MAIN_CL_M -		0.06	0.07	0.09	0.29	0.01
MAIN_CL_F -		0.09	0.01	0.29		0.10
MAIN_AL_M -	0.11	0.03	0.25	0.14	0.21	0.03
MAIN_AL_F -		0.06		0.29	0.18	0.02
MAIN_HH_M -	0.13	0.08	0.03	0.15	0.13	0.17
MAIN_HH_F -		0.08	0.06	0.05	0.14	0.42
MAIN_OT_M -	0.12	0.21	0.14	0.04	0.06	0.02
MAIN_OT_F -		0.21	0.10	0.12	0.08	0.08
MARGWORK_M -		0.09	0.01	0.09	0.06	0.09
MARGWORK_F -	0.16	0.13	0.05	0.09	0.09	0.02
MARG_CL_M -		0.27	0.20	0.06	0.02	0.03
MARG_CL_F -				0.17	0.06	0.09
MARG_AL_M -		0.17	0.19	0.09	0.02	0.14
MARG_AL_F -		0.14		0.11	0.08	0.09
MARG_HH_M -		0.07	0.02	0.24	0.06	0.09
MARG_HH_F -	0.13	0.02	0.08	0.20	0.03	0.37
MARG_OT_M -		0.09	0.11	0.09	0.12	0.06
MARG_OT_F -		0.12	0.10	0.03	0.17	0.00
MARGWORK_3_6_M -	0.16	0.04	0.06	0.00	0.04	0.14
MARGWORK_3_6_F -		0.11	0.08	0.00	0.00	0.11
MARG_CL_3_6_M -	0.17	0.08	0.02	0.09	0.05	0.10
MARG_CL_3_6_F -	0.16	0.10	0.07	0.11	0.07	0.02
MARG_AL_3_6_M -		0.26	0.15	0.04	0.01	0.01
MARG_AL_3_6_F -		0.24	0.26	0.18	0.06	0.09
MARG_HH_3_6_M -		0.16	0.20	0.08	0.01	0.14
MARG_HH_3_6_F -		0.13	0.28	0.14	0.06	0.08
MARG_OT_3_6_M -		0.06	0.02	0.24	0.07	0.10
MARG_OT_3_6_F -		0.01	0.08	0.19	0.04	0.38
MARGWORK_0_3_M -		0.09	0.11	0.09	0.11	0.06
MARGWORK_0_3_F -		0.13	0.10	0.03	0.14	0.01
MARG_CL_0_3_M -		0.15	0.05	0.09	0.08	0.06
MARG_CL_0_3_F -		0.18	0.02	0.02	0.13	0.00
 MARG_AL_0_3_M -		0.25	0.27	0.10	0.05	0.07
MARG_AL_0_3_F -				0.14	0.05	0.08
MARG_HH_0_3_M -		0.19	0.14	0.13	0.06	0.12
MARG_HH_0_3_F -		0.18	0.20	0.00	0.13	0.11
MARG_OT_0_3_M -		0.08	0.02	0.23	0.04	0.06
		0.05	0.08	0.21	0.00	0.30
	0.13					
MARG_OT_0_3_F -				0.08	0,16	0.05
		0.07	0.11	0.08	0.16	0.05 0.02

- 0.15

- 0.10

- 0.05

Write linear equation for first PC

The linear equation for PC1 is {'TOT_F' * 0.17 + 'MARG_CL_3_6_M' * 0.17 + 'TOT_M' * 0.17 + 'F_ILL' * 0.17 + 'No_HH' * 0.16 + 'M ILL' * 0.16 + 'MARG CL 3 6 F' * 0.16 + 'MARGWORK 3 6 F' * 0.16 + 'MARGWORK 3 6 M' * 0.16 + 'MARG OT M' * 0.16 + ' MARGWORK_F' * 0.16 + 'TOT_WORK_M' * 0.16 + 'M_LIT' * 0.16 + 'F_06' * 0.16 + 'M_06' * 0.16 + 'MARGWORK_M' * 0.16 + 'F LIT' * 0.15 + 'TOT WORK F' * 0.15 + 'MAINWORK M' * 0.1 5 + 'MARG OT F' * 0.15 + 'NON WORK M' * 0.15 + 'MARG CL 0 3 M ' * 0.15 + 'MARGWORK_0_3_F' * 0.15 + 'MARGWORK_0_3_M' * .15 + 'F_SC' * 0.15 + 'M_SC' * 0.15 + 'MARG_OT_0_3_M' * 0.14 + 'MARG OT 3 6 M' * 0.14 + 'MARG CL 0 3 F' * 0.14 + 'MAR G_HH_M' * 0.14 + 'MARG_HH_3_6_M' * 0.13 + 'MARG_OT_0_3_F' * 0.13 + 'NON_WORK_F' * 0.13 + 'MARG_HH_F' * 0.13 + 'MARG_AL_M' * 0.13 + 'MAIN HH M' * 0.13 + 'MARG HH 0 3 M' * 0.12 + 'M AIN OT M' * 0.12 + 'MAINWORK F' * 0.12 + 'MARG OT 3 6 F' * $0.1\overline{2}$ + 'MARG HH 0 3 F' * $0.1\overline{2}$ + 'MAIN OT F' * $\overline{0.1\overline{1}}$ + 'MARG HH _3_6_F' * 0.11 + 'MARG_AL_F' * 0.11 + 'MAIN_AL_M' * 0.11 + 'MAIN_CL_M' * 0.1 + 'MARG_AL_3_6_M' * 0.09 + 'MARG_CL_M' * 0.08 + 'MAIN HH F' * 0.08 + 'MAIN AL F' * 0.07 + 'MAIN CL F' * 0.07 + 'MARG AL 0 3 M' * 0.05 + 'MARG AL 3 6 F' * 0.05 + 'MARG_CL_F' * 0.05 + 'MARG_AL_0_3_F' * 0.04 + 'F ST' * 0. 03 + 'M ST' * 0.03}