

СТАРТАПУ ИИ:

Прогнозирование временных рядов на нейронных сетях. Потребление электричества (TensorFlow)

Обсуждаем: https://t.me/devdvStartup

Репозиторий: https://github.com/akumidv/startup-khv-ai-study

ПРОЦЕДУРА СОЗДАНИЯ МОДЕЛИ

ПОДГОТОВКА ДАННЫХ

СОЗДАНИЕ СТРУКТУРЫ МОДЕЛИ

ПОДБОР ПАРАМЕТРОВ ОБУЧЕНИЯ

ДАННЫЕ

TIME SERIES – ВРЕМЕННЫЕ РЯДЫ

- Значения описывающие процесс
- Измерения в последовательные моменты времени
- Как правило равные интервалы

ПРИМЕРЫ?

СТРУКТУРА ДАННЫХ ВРЕМЕННОГО РЯДА

	pwr
2018-03-01 00:00:00	87.8
2018-03-01 00:30:00	87.4
2018-03-01 01:00:00	88.4
2018-03-01 01:30:00	88.8
2018-03-01 02:00:00	88.0

КАК ОБУЧАТЬ И ПРОВЕРЯТЬ ВРЕМЕННОЙ РЯД?

МОДЕЛЬ ПРОГНОЗИРОВАНИЯ

ЗАДАЧА ПРОГНОЗИРОВАНИЯ

3ABTPA KAK BYEPA

СКОЛЬЗЯЩИЕ СРЕДНИИ: КОЛ-ВО ИНТЕРВАЛОВ, ЭКСПОТЕНЦИАЛЬНЫЕ...

•••

НЕЙРОННЫЕ СЕТИ

ПРОГНОЗИРОВАНИЕ ПО СКОЛЬЗЯЩЕЙ СРЕДНЕЙ

ОСНОВНЫЕ ЗАДАЧИ ДЛЯ НЕЙРОННЫХ СЕТЕЙ

КЛАССИФИКАЦИЯ

РАСПОЗНАВАНИЕ

ПРЕДСКАЗАНИЕ

ЧТО ТАКОЕ НЕЙРОННАЯ СЕТЬ?

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

НЕЙРОННАЯ СЕТЬ НЕ ПРОГРАММИРУЕТСЯ, А ОБУЧАЕТСЯ

ОСНОВА НЕЙРОН И СВЯЗИ МЕЖДУ НИМИ

The Perceptron

TENSORFLOW И KERAS

МНОГОСЛОЙНЫЕ СЕТИ

УПРОЩЕНИЕ СОЗДАНИЯ И ОБУЧЕНИЯ СЕТЕЙ (BCTPOEH B TENSORFLOW)

БАЗОВЕ СЛОИ KERAS

DENSE Полносвязанный слой output=activation(dot(input,kernel)+bias)

ДСТІVДТІО№ Функция активации применяемая к выводам предыдущего слоя

DROPOUT Случайное обнуление выводов

Конвертации входящих данных в меньшую размерность

INPUT Входной слой

FLATTEN

RESHAPE Изменение под размерность

РЕКУРРЕНТНЫЕ НЕЙРОННЫЕ СЕТИ

ДЛЯ ВРЕМЕННЫХ РЯДОВ И NLP

Вывод подается обратно в качестве входящих данных

RNN с хранилищем для информации о предыдущих обучениях

Упрощение LSTM с забыванием

ОБУЧЕНИЕ

ОСНОВНЫЕ ПОНЯТИЯ

ЭПОХИ (EPOCHS)

EATY (BATCH SIZE)

ПОТЕРИ ОБУЧЕНИЯ (TRAYNING LOSS)

ВАЛИДАЦИОННАЯ/TECTOBAЯ ПОТЕРИ (VALIDATION/TEST LOSS)

МЕТОД ПРОРЕЖИВАНИЯ/ИСКЛЮЧЕНИЯ (DROPOUT)

КОЭФФИЦИЕНТ ОБУЧЕНИЯ (LEARNING RATE)

ЭПОХА - ЕРОСН

КАЧЕСТВО ПРОГНОЗИРОВАНИЯ ПО ЭПОХАМ

1 3ΠΟΧΑ, LOSS: 0.1518

5 3ΠΟΧ, LOSS: 0.0517 VLOS: 0.0473

10 3ΠΟX, LOSS: 0.0310

20 3ΠΟΧ, LOSS: 0.0207

BATCH SIZE

СКОРОСТЬ ОБУЧЕНИЯ И ТОЧНОСТЬ

BATCH SIZE HA 10-TH 3TIOXAX

```
Epoch 00009: val loss did not improve from 0.01524
                    Enoch 10/10
                                                                          loss: 0.0193 - val loss: 0.0161
                                                             9s 29ms/step
                    320/320 [=========]
                    Epoch 00010: val loss did not improve from 0.01524
                    CPU times: user 1min 35s, sys: 2.41 s, total: 1min 38s
                    Wall time: 1min 34s
                     Epoch 00009: val loss improved from 0.03010 to 0.02993, saving model to /content/drive/M
                     Epoch 10/10
                                                                         loss: 0.0278 - val loss: 0.0254
                     80/80 [=========]
                                                          - 3s 39ms/step
                     Epoch 00010: val_loss improved from 0.02993 to 0.02539, saving model to /content/drive/M
                     CPU times: user 30 4 s, sys: 2.18 s, total: 32.6 s
                     Wall time: 32.6 s
                     Epoch 00009: val loss improved from 0.02909 to 0.02823, saving model to /content/drive//
64
                    Enoch 10/10
                    40/40 [========================== ] - 2s 58ms/step - loss: 0.0320 - val loss: 0.0275
                     Epoch 00010: val_loss improved from 0.02823 to 0.02750, saving model to /content/drive//
                    CPU times: user 19.1 s, sys: 2.83 s, total: 22.1 s
                    Wall time: 24.4 s
                     Epoch 00009: val loss improved from 0.04660 to 0.04547, saving model to /content/drive/My
256
                     Epoch 10/10
                                                                          loss: 0.0454 - val loss: 0.0426
                     10/10 [-----]
                                                           2s 163ms/ste
                     Epoch 00010: val_loss improved from 0.04547 to 0.04264, saving model to /content/drive/My
                     CPU times: usen 0.03 s, sys: 3.44 s, total: 13.4 s
                     Wall time: 17.7 s
```

СВЯЗЬ ВАТСН С КАЧЕСТВОМ ОБУЧЕНИЯ

LOSS vs. LEARNING RATE FOR DIFFERENT BATCH SIZES

ПОТЕРИ (LOSS)

ПЕРЕОБУЧЕННАЯ

Validation Loss

Training Loss

НЕДООБУЧЕННАЯ

Validation Loss

Training Loss

ЦЕЛЬ VAL_LOSS => 0

Validation Loss

Training Loss

DROPOUT

ИСКЛЮЧАЕМ С ВЕРОЯТНОСТЬЮ Р (ВЕРНЕТ О) ОБУЧАЕМ АНСАМБЛЬ, УСРЕДНЯЕМ => УМЕНЬШАЕМ ПЕРЕОБУЧЕНИЕ

КОЭФФИЦИЕНТ ОБУЧЕНИЯ

КАЧЕСТВО ПРОГНОЗИРОВАНИЯ

53-Я ЭПОХА ИЗ **93**, LOSS: 0.01132

ОШИБКА ПО ЭПОХАМ:

КАЧЕСТВО ПРОГНОЗИРОВАНИЯ

КОГДА ОСТАНОВИТЬ ОБУЧЕНИЕ?

КАК ПОДОБРАТЬ ПАРАМЕТРЫ ОБУЧЕНИЯ СЕТИ?

ВАРИАНТЫ ПОИСКА

ИДТИ ПОСЛЕДОВАТЕЛЬНО

ИСКАТЬ СЛУЧАЙНО

ИСКАТЬ ПО ГРАДИЕНТУ

МЕТОД ОТЖИГА

...МНОЖЕСТВО ДРУГИХ

ГРАДИЕНТЫНЙ БУРСИНГ

МЕТОД ОТЖИГА

(кристалическое состояние)

Ловушка! Локальный минимум Направление уменьшения энергии Ловушка! Локальный минимум Финиш

ЗАДАЧА КОММИВОЯЖЕРА

СРАВНЕНИЕ ФУНКЦИЙ ОПТИМИЗАЦИИ

СРАВНЕНИЕ ФУНКЦИЙ ОПТИМИЗАЦИИ

LR И АЛГОРИТМ ОПТИМИЗАЦИИ

КОГДА МЕНЯЕМ МНОЖЕСТВО ПАРАМЕТРОВ

МНОГОМЕРНОЕ ПРОСТРАНСТВО

ОПТИМИЗАЦИЯ HYPEROPT

```
space = {
    'units': hp.choice('units', [64, 128, 256, 512]),
    'dropout': hp.quniform('dropout', 0, .5, .01),
    'stack': hp.choice('stack', [True, False]),
    'patience': hp.choice('patience', [20, 40]),
}
```

(11/4) = 330 COYETAHNŇ

```
params: {'dropout': 0.31, 'patience': 20, 'stack': True, 'units': 128} | metric: 0.016431448981165886
______
found better metric:
0.011289630085229874
params: {'dropout': 0.21, 'patience': 40, 'stack': True, 'units': 512} | metric: 0.011289630085229874
______
params: {'dropout': 0.16, 'patience': 40, 'stack': False, 'units': 512} | metric: 0.01203224714845419
______
params: {'dropout': 0.48, 'patience': 40, 'stack': True, 'units': 64} | metric: 0.014453343115746975
_____
params: {'dropout': 0.34, 'patience': 40, 'stack': False, 'units': 256} | metric: 0.012039628811180592
_____
found better metric:
0.010894561186432838
params: {'dropout': 0.2, 'patience': 20, 'stack': False, 'units': 512} | metric: 0.010894561186432838
```


ПОДРОБНЕЕ ПРО ПАРАМЕТРЫ И СЛОИ

HTTPS://CODELABS.DEVELOPERS.GOOGLE.COM/CODELABS/CLOUD-TENSORFLOW-MNIST?HL=EN

ПОИГРАТЬСЯ БЕЗ КОДА C TENSORFLOW

HTTPS://PLAYGROUND.TENSORFLOW.ORG

ДОРОЖНАЯ КАРТА МЕРОПРИЯТИЙ

- Векторная оценка схожести предложений
- Бекторная оценка схожести пре
 Классификация текста fasstext
 - Предсказание текста, нейронные сети

ВРЕМЕННЫЕ РЯДЫ руthon • Прогнозирование на нейронных сетях • AutoML (hyperopt)

- Классификация на нейронных сетях
 - Детекция CV и нейронные сети

КОНТАКТЫ

ОБСУЖДАЕМ

https://t.me/devdvAl

https://t.me/devdvStartup

РЕПОЗИТОРИЙ

https://github.com/akumidv/startup-khv-ai-study

АНДРЕЙ КУМИНОВ

+7 914 770 5846

https://facebook.com/akuminov

https://vk.com/akumidv