【高速先生原创|叠层系列】层叠设计的关键要点汇总

作者: 吴均 一博科技高速先生团队队长

层叠设计的关键要点汇总

接上一篇文章说的层叠设计的最后一个层次,其实这是一个开放性题目,非要让大家按照我固定的封闭思路答题,是不公平的。所以我在上周的点评才说是"任性"一次。 不过也还是有朋友的回答和我想的一样,先握个手。

第 3 层次,不仅同时提供阻抗需求表以及层叠设计表,同时还要详细指定每一层的材料型号。比如铜箔是采用 RTF 铜箔还是 VLP 铜箔,1-2 层之间是使用 2 张 1080,RC 含量为 XX。2-3 层之间是 Core 芯板,是 XX 型号,等等。如下图所示:

	Original design		Fou			Estimate	
_ayer Name	Build - up	Dielectric thickness (unit mil)	Dielectric thickness (unit mil)	Build - up	DK @5GHz	DF @5GHz	ed residual copper
L1	0.5oz+plating		1.71	0.5oz+plating			58%
	PP(1*1080)	2.894	2.89	PP(1*1080)	3.35		
L2	1oz		1.2	1oz			77%
	Core(1086*1)	3	3.15	Core(1086*1)	3.48		
L3	1oz		1.2	1oz			52%
	PP(1*1080+1*7628)	9.833	9.73	PP(1*1080+1*7628)	3.64		
L4	1oz		1.2	1oz			52%
	Core(1086*1)	3	3.15	Core(1086*1)	3.48		
L5	1oz		1.2	1oz			77%
	PP(1*1080)	2.88	2.58	PP(1*1080)	3.35		
L6	1oz		1.2	1oz			74%
	Core(1506*2)	12	11.81	Core(1506*2)	3.82		
L7	1oz		1.2	1oz			72%
	PP(1*1080)	2.88	2.56	PP(1*1080)	3.35		
L8	1oz		1.2	1oz			77%
	Core(1086*1)	3	3.15	Core(1086*1)	3.48		
L9	1oz		1.2	1oz			51%
	PP(1*7628+1*1080)	9.833	9.72	PP(1*7628+1*1080)	3.64		
L10	1oz		1.2	1oz			53%
	Core(1086*1)	3	3.15	Core(1086*1)	3.48		
L11	1oz		1.2	1oz			77%
	PP(1*1080)	2.897	2.90	PP(1*1080)	3.35		
L12	0.5oz+plating		1.71	0.5oz+plating			57%
emark:内层RTE	外层STD,外面完成铜厚:1.7+/-0.6mil		70.21	Total board thickness: 72±7.2 mil	(including	plate copp	er and so

有人会问: 为什么要详细到这个程度? 我又不是板厂的 ME 工程师!

这个层次不是所有的项目都需要达到的,一般是推荐 10G Bps+的系统,采用了低 损耗板材或者超低损耗板材的时候,由于材料对信号的影响变得更加显著,需要关注到 铜箔的粗糙度以及玻璃纤维布的编制效应等。

2、 层叠设计的关键要点

所以,层叠设计的第一个关键要点其实已经揭示答案了:要了解板材的基本知识。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

其实就算是上文提到的阻抗控制设计的第 2 层次, 虽然不用制定铜箔及玻纤布型号, 但是也需要了解材料的基本知识, 知道 Core 芯板一般都有哪些厚度, 知道什么是 3313、2116……以及不同型号玻纤布的 DK、DF 参数等。

这不, 高速先生微信群有人提问了: 生益 S1000 的材料, 算阻抗的时候, DK 应该取什么值呢?

所以大家注意了,高速先生是有微信群的,平常可以沟通交流技术问题,欢迎大家 后台联系管理员加入哈。

下面来看一下 TU872 SLK 的详细 Datasheet,在 1G Hz 的时候,不同型号的芯片,DK 可以从 3.48 到 4.0。这么大的差异,对我们阻抗计算以及仿真都会带来影响,不能忽视。

Thin core Standard Construction List

Nominal Thickness		Standard	RC	Demode	Dk@					Df@				
(mils)	(mm)	Construction	(%)	Remarks	1MHz	1GHz	2GHz	5GHz	10GHz	1MHz	1GHz	2GHz	5GHz	10GHz
2.0	0.05	1067x1	67	premium, better DS	3.83	3.61	3.44	3.44	3.42	0.0077	0.0083	0.0085	0.0086	0.0090
2.0	0.05	106x1	71	1st choice	3.75	3.51	3.33	3.34	3.32	0.0079	0.0085	0.0086	0.0087	0.0091
2.5	0.06	1067x1	72	premium, better DS	3.73	3.48	3.30	3.31	3.29	0.0079	0.0086	0.0087	0.0088	0.0091
2.5	0.06	1080x1	59	1st choice	4.01	3.80	3.66	3.65	3.62	0.0074	0.0080	0.0081	0.0083	0.0088
3.0	0.08	1078x1	64	premium, better DS	3.90	3.68	3.52	3.52	3.50	0.0076	0.0082	0.0083	0.0085	0.0089
3.0	0.08	1080x1	64	1st choice	3.90	3.68	3.52	3.52	3.50	0.0076	0.0082	0.0083	0.0085	0.0089
3.5	0.09	3313x1	51	1st choice	4.18	4.00	3.88	3.87	3.82	0.0071	0.0076	0.0077	0.0081	0.0087
4.0	0.10	3313x1	56	1st choice	4.07	3.88	3.74	3.73	3.70	0.0073	0.0078	0.0080	0.0082	0.0088
4.0	0.10	1067x2	67	premium, better DS	3.83	3.61	3.44	3.44	3.42	0.0077	0.0083	0.0085	0.0086	0.0090
4.0	0.10	106x2	71	2nd choice	3.75	3.51	3.33	3.34	3.32	0.0079	0.0085	0.0086	0.0087	0.0091
4.5	0.11	2116x1	52	1st choice	4.17	3.99	3.86	3.85	3.81	0.0071	0.0076	0.0078	0.0081	0.0087
4.5	0.11	3313x1	60	2nd choice	3.98	3.78	3.63	3.63	3.60	0.0074	0.0080	0.0081	0.0084	0.0089
5.0	0.13	2116x1	55	1st choice	4.09	3.90	3.77	3.76	3.72	0.0072	0.0078	0.0079	0.0082	0.0088

那层叠设计还有其他哪些关键要点呢?

- ▶ 信号回流与参考平面
- ▶ 布线层数规划,这个是确定一个板子设计多少层的前提因素,我们的高速小姐 刘为霞会在后续文章详细解释
- ▶ 电源、地层数的规划

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

- ▶ 层间串扰以及双带线的设计
- ▶ 跨分割的影响,如何考虑信号跨分割

下图是本系列层叠设计文章的大致计划,用脑图的方式来规划高速先生的文章,是 不是很高大上的感觉?

【关于一博】

- 一博科技专注于高速 PCB 设计、PCB 制板、焊接加工、物料供应等服务。作为全球最大 的高速 PCB 设计公司, 我司在中国、美国、日本设立研发机构, 全球研发工程师 500 余人。超大规模的高速 PCB 设计团队,引领技术前沿,贴近客户需求。
- 一博旗下 PCB 板厂成立于 2009 年,位于广东四会(广州北 50KM),采用来自日本、 德国的一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提 供高品质、高多层的制板服务。
- 一博旗下 PCBA 总厂位于深圳,并在上海设立分厂,现有 12 条 SMT 产线,配备全新进 口富士 XPF、NXT3、全自动锡膏印刷机、十温区回流炉等高端设备,并配有波峰焊、 AOI、XRAY、BGA 返修台等配套设备,专注研发打样、中小批量的 SMT 贴片、组装等 服务。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

Fdad⇔C 全球最大的高速 PCB 设计中心

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高 速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之 作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

扫一扫,即可关注

