COL 202 HOMEWORK 1

Rishi Jain, Srijan Gupta, Vatsal Jingar

1 Answer 1

Since there are n teams, ${}^{n}C_{2} = \frac{n*(n-1)}{2}$ matches will be played. Therefore, there will be $\frac{n*(n-1)}{2}$ wins. By PHP, we can say that there exists at least one team whose wins are $\geq \left[\frac{n}{2}\right]$.

Because if all teams have $< \left[\frac{n}{2}\right]$ wins then maximum possible total wins will be $\le (\left[\frac{n}{2}\right] - 1) \cdot n < \frac{n \cdot (n-1)}{2}$. So at least one team has won $\geq \left[\frac{n}{2}\right]$ wins.

Similarly for those $\left[\frac{n}{2}\right]$ we can say one team has $\geq \left[\frac{\left[\frac{n}{2}\right]}{2}\right]$ wins. similarly this goes on until $\left[\frac{\left[\frac{\left[\frac{n}{2}\right]}{2}\right]}{2}\right] < 1$ or we can say $\left[\frac{n}{2^k}\right] < 1\left(\left[\frac{\left[\frac{n}{2}\right]}{ktimes}\right] = \left[\frac{n}{2^k}\right]\right)$ as then no team is left and thus the sequence ends. Clearly, k is the length of the subset here . This implies $k > log_2 n$, $\Rightarrow |S| > log_2 n$.

2 Answer 2

Claim: for every nice set S there exists an integer x such that $S = \{ax \mid a \in Z\}$, where if, for every $x, y \in S$ and every two integers a, b, we have $ax + by \in S$, then we call it as nice set.

Proof:

 $x \in S, y \in S$ and also $ax + by \in S$.

If either a = 0 or b = 0 then $S = \{ax \mid a \in Z\}$ or $S = \{by \mid b \in Z\}$.

For a=0 and b=0, $S=a*0 | a \in Z$ Else consider the gcd(greatest common divisor). gcd(a,b)=g;

We can consider ax + by as a multiple of g by the result of the 8th problem of the tutorial. So we can write ax + by as kg where k can be any integer.

Therefore every nice set can shown to be of the form of $\{gx \mid x \in Z\}$

3 Answer 3

We are given $b \in B$.

 $B' = \{b \in B \mid \text{ there exists } b^* \in B \setminus Im(f) \text{ there exists } k \in NU\{0\} : (fog)^k(b^*) = b\}.$

$$A' = \{g(b) | b \in B'\}$$
].

Checking statement equivalent:

- a) $b \in B'$
- b) If f^{-1} (b) exists then it is in A'.
- c) $g(b) \in A'$.
- 1) Checking a $\implies b$

given $b \in B'$

Claim: Statement b

 $b \in B'$. So, $b = (f \circ g)^k (b^*) = b$ where $k \in NU\{0\}$

 $f(g(f \circ g^{k-1}(b^*) = b.$

If f^{-1} exists, $g((fog)^{k-1}(b^*)) = f^{-1}(b)$. As $(fog)^{k-1}(b^*) \in B'$. So, $b_2 = (fog)^{k-1}(b^*)$

So, $g(b_2) \in A'$. (as $A' = \{g(b) | b \in B'\}$.

Checking $c \implies a$:

Given $A' = \{g(b) | b \in B'\}.$

From statement c, $g(b) \in A'$.

By definition of A', $b \in B'$.

Hence, proved.

Checking b $\implies c$

Let $f^{-1}(b)$ exist. So, $f^{-1}(b) \in A'$.

 $f^{-1}(b) = g(b')$ where $b \in B'$. By definition of A', Taking f both sides, $f(f^{-1}(b)) = f(g(b'))$.

b = fog(b').

 $b' = (fog)^k(b*)$ where b* is defined above.

$$b = (fog)^{k+1}(b^*) \in B'.$$

 $g(b) \in A'$ (By definition). Hence proved.

4 Answer 4

If A is a finite set, then let |A| = n. As A is finite, every subset of A will be a finite length string over A. Hence, A^* can be taken as the power set of A. Therefore, as |A| = n, $|A^*| = 2^n$. Hence as n is finite, 2^n is also finite, i. e. A^* is countable.

When A is countably infinite, let the elements of A be ordered in any way i. e. $A = (a_1, a_2, a_3...)$. A^* is the set of all finite subsets of A.

```
Let A_i = \{A_i \in A \mid \forall a_m \in A_i, m < i\}

A^* = \bigcup_{\forall A_i} A_i

A_i = 2^{\{a_1, a_2, \dots a_{i-1}\}}

\Rightarrow A_i is finite.
```

We know that the countable union of countable sets is countable. We are given that A is countably infinite, which means that A^* is a countable union of countable sets. Hence A^* is countable.

5 Answer 5

Proposition p(k): If graph has k nodes, then at least 2 nodes will have same degree(same no. of branches) Using Principle Of Mathematical Induction:

Base Case:

k = 2

If there are two nodes:

- 1. Connected
- 2. Not Connected

For both subcases their degree is same.

Induction Assumption: We assume for k = 3 to n-1, we have at least 2 nodes with equal degree. Let there be h such nodes where $h \ge 2$.

Induction Step for n:

Case 1:

For $h \geq 3$, we will always have two nodes equal.

Subcase: If n^{th} node is connected to all or none such h nodes then we can observe that all h such nodes will still have equal degree.

Subcase: If n^{th} node is connected to only one such node then also there are still h-1 nodes with equal degree where h > 3

Subcase: If n^{th} node is connected to at least 2 such nodes then we have 2 such nodes with equal degree.

Case 2:

For h = 2:

Subcase: When n^{th} node is connected to both such h nodes then also we have 2 nodes with equal degree.

Subcase: When n^{th} node is connected to none of such nodes then also we have 2 nodes with equal degree.

Subcase: When n^{th} node is connected to only one such node then using pigeon hole principle if we take n nodes then possible degrees are 0 to n-2 or 1 to n-1, because if there exist one such possible node which is not connected to any node then we can not have n-1 degree option. So we have n-1 options and n nodes, So at least 2 nodes should have same degree.