Crowdsourcing Real Time Dynamic Map in Automotive Edge Computing

High-Definition Map

- Autonomous cars are isolated
 - Line-of-sight sensors
 - Blind spots

- ❖ HD map is static
 - Massive dataset
 - Non-real time

^{*} Tesla autopilot, HTML

^{*} HD map, HTML

- Connecting vehicles together helps
 - Wirelessly vehicle-to-everything
 - Allows sharing & collaboration

- Sharing information is challenging
 - Massive real time perception data
 - Dynamic networks

SLAM >100Mbps

Speed >30kph

^{*} Connected vehicle, HTML

^{*} Ahmad, F., et. al., Carmap: Fast 3d feature map updates for automobiles. NSDI 2020

Agenda

System Overview

Data Plane Design

Control Plane Design

System Implementation

Results and Analysis

System Overview

- How to design a system to:
 - Connect vehicles wirelessly?
 - Detect, match, track objects on the road?
 - Sharing info among vehicles in sub-seconds?

- LiveMap: real-time dynamic map
 - Crowdsourcing from connected vehicles
 - Efficient info sharing platform, e.g., ped., bike
 - Intelligent management, e.g., sched., offload

- How to process vehicle data efficiently?
 - **Inputs**: raw sensor data (RGB-D images)
 - Outputs: object info (id, 3d loc., category)
 - Objective: low process time, high accuracy

- Components
 - Object detection
 - Projection
 - Feature extraction
 - Object matching
 - Combination & tracking

Object detection

- Objective: detect objects in RGB image
- **Insight**: existing detectors are designed for generic categories in high-end server
- Contribution: specific category for transportation, neural network pruning
- Results: 93.7% network size reduction w/ 0.01 mAP loss

Detection	mAP@0.5 Num. of		time(Nano)
Networks	640x	parameters	w/o TensorRT
YOLOv3 tiny	0.534	8.69e+06	191.9/37.4 ms
Pruned Network	0.524	0.54e+06	154.7/30.4 ms

Object projection

- Objective: project 2d loc. of objects to 3d with depth info
- Insight: inaccurate depth estimation w/ bounding box
- Contribution: sample-based avg. depth calculation

Feature extraction

- Objective: extract features from cropped objects
- Insight: existing extractors (ORB) generate large feature size, perform not well for small objects
- Contribution: adopt variational autoencoder (VAE) as extractor

Object matching

- Objective: match objects within global database
- **Insight**: feature distance neglects phy. distance among objects
- Contribution: new location-aware distance function w/ predicted object loc

$$D_{i,j} = \min([||z_{i,m} - z_{j,m}||^2, \forall m \in \mathcal{M}]) + w||g_i - g_j||^2$$

Object combination

- Objective: combine objects loc seen from diff. angles
- Insight: inaccurate loc combination w/ same id
- Contribution: new confidence weighted method

Global dataset

- Objective: record objects w/ multi-attributes
- Share new obj. updates for all vehicles
- Entry: unique id, category, location, confidence, direction, speed, features, etc.

object id	class	geo-location	confidence
speed	direction	update time	multi-view latents

TABLE II: Attributes of an object in the database

- Data Offloading Procedures
 - Local process: low trans. traffic, long delay as limited on-board comp.
 - Full offload: heavy trans. traffic, long delay as sharing trans., and comp.

Observed Insights

- Partial DP offload: more on-board computation, less data size to transmit
- Schedule vehicles: vehicle coverage overlapping, esp. urban area

The Problem

- How to manage vehicles in system?
 - Inputs: network state (traffic, network condition)
 - Outputs: vehicle schedule, partial offload of DP
 - Objective: low info sharing delay
 - Difficulty: E2E delay is too complicated to be mathe. modeled

High-Level Solution

Overview

- Insight: DP offload (subsec.) has smaller time scale than vehicle sched (sec.)
- Scheduler: pre-sched. vehicle based on coverage to meet requirement
- Offload agent: decide partial DP offloading w/ DRL technique

Vehicle scheduling

- Inputs: vehicle coverage, requirement
- Outputs: scheduled vehicle list
- Objective: minimum vehicles, meet requirement
- Method: graph trimming, vehicles as vertices, coverage overlap ratio as edges

DP offload agent

- State: local state (wireless quality, loc., comp.); global state (traffic, server workload, etc.)
- Action: index of partial offloading
- Reward: negative E2E delay

System Prototype

- Vehicles: 4x JetRacers w/ ARM CPU, Nvidia Nano
- Server: Intel i7 w/ Nvidia GTX 1070
- Access point: 5GHz WiFi router w/ 20MHz BW
- Dynamics: Linux "iw" adjust WiFi TX power
- Data set: Unity3D, record 1000 RGB-D images/ location per vehicle

Network Simulator

- Wireless: system-level 5G simulator, UMi channel, 1MHz BW
- Computing: FIFO service model, real comp delay derived from experiments
- Time driven: time scale 1 ms
- Trace: real world measurement on system prototype

- Comparison Alg.
 - LP: local process for all vehicles
 - EO: offload raw data for all vehicles
 - RO: random offload decision
 - RM: regress a model to make offload decision
 - LiveMap-lite: schedule all vehicles

- LiveMap outperforms others
 - Avg. 20.3% latency reduction than RM
 - Avg. 16.4% latency reduction than LiveMap-lite
 - Better performance under crowd scenarios

- LiveMap is intelligent
 - make larger offloading decisions if more vehicles
 - Lower offloading decision if better wireless quality
- LiveMap is more efficient
 - Avg. 34.1% latency reduction than LP + Baseline
 - Avg. 74.9% improvement of #objects* than Baseline

^{*} We consider an object is successfully detected only if its object ID is matched correctly and the estimated geo-location error is less than 1 meter.

- LiveMap is more scalable
 - Avg. 10.2% latency reduction than RM if 50 vehicles
 - RO and EO are not scalable if more vehicles

- LiveMap exploits overlapping coverages
 - Avg. 31.1% latency reduction if 60% requirement
 - Only. 15.6% vehicles are scheduled meanwhile

Conclusion

- ❖ We propose LiveMap, a real-time dynamic map, allows efficient info. sharing among connected vehicles
- We design data plane to efficiently detect, match, track objects on the road based on crowdsourcing data from connected vehicles in sub-second
- ❖ We design control plane to intelligently schedule vehicles and determine DP offload under network dynamics
- Future directions: cooperative perception, communication-efficient offloading

Qiang Liu

Assistant Professor
School of Computing
University of Nebraska–Lincoln
qiang.liu@unl.edu
https://cse.unl.edu/~qliu/