Applied Statistics II, Lab 1

J. Arturo Esquivel

11/01/23

Table of contents

Lab Exercises 1

```
#install.packages("tidyverse")
library(tidyverse)

dm <- read_table("https://www.prdh.umontreal.ca/BDLC/data/ont/Mx_1x1.txt", skip = 2, col_t</pre>
```

Lab Exercises

1. Plot the ratio of male to female mortality rates over time for ages 10,20,30 and 40 (different color for each age) and change the theme

Male to Female Mortality Ratio Over Time

2. Find the age that has the highest female mortality rate each year

```
summary_max <- dm |>
    group_by(Year) |>
    # Assign to each year the age with maximum mortality rate in the group
    mutate(Max_Mort_Age = Age[which.max(Female)]) |>
    # Keep one entry per year
    summarize(Max_Mort_Age = max(Max_Mort_Age, na.rm = TRUE))
  head(summary_max)
# A tibble: 6 x 2
  Year Max_Mort_Age
  <dbl> <chr>
  1921 106
1
```

1923 104 3 1924 107

1922 98

2

- 1925 98
- 1926 106

 - 3. Use the summarize(across()) syntax to calculate the standard deviation of mortality rates by age for the Male, Female and Total populations.

```
sd_age <- dm |>
    # Turn age column into integers so that the dataframe is correctly sorted when shown
    mutate_at(2, as.integer) |>
    group_by(Age) |>
    summarize(across(Female:Total, sd, na.rm = TRUE))
  head(sd_age)
# A tibble: 6 x 4
   Age
         Female
                   Male
                            Total
 <int>
          <dbl>
                   <dbl>
                            <dbl>
     0 0.0256 0.0330 0.0294
     1 0.00352 0.00396 0.00374
2
3
     2 0.00154 0.00175 0.00164
     3 0.00113 0.00127 0.00120
     4 0.000925 0.000987 0.000947
     5 0.000748 0.000820 0.000776
```

4. The Canadian HMD also provides population sizes over time (https://www.prdh.umontreal.ca/BDLC/data Use these to calculate the population weighted average mortality rate separately for males and females, for every year. Make a nice line plot showing the result (with meaningful labels/titles) and briefly comment on what you see (1 sentence). Hint: left_join will probably be useful here.

```
data <- read_table("https://www.prdh.umontreal.ca/BDLC/data/ont/Population.txt", skip = 1)

data <- data |>
    pivot_longer(Female:Total, names_to = "sex", values_to = "Size")

# Get the total population size per year and sex

totals <- data |>
    group_by(Year, sex) |>
    summarize(Total_size = sum(Size, na.rm = TRUE))

# Compute the weight for each each per year
data_totals <- left_join(data, totals, by = c("Year", "sex")) |>
    mutate(weight = Size/Total_size)

dm_long <- dm |>
    pivot_longer(Female:Total, names_to = "sex", values_to = "mortality")
```

Population Weighted Average Mortality in Ontario

Female mortality is consistently lower than male's. In both cases mortality has had a decreasing trend, stabilizing after 1990 for females, and around 2000 for males.