Chapter 16

Homework 21935004 谭焱

In these exercises U always denotes an open subset of \mathbb{R}^n , with a smooth boundary ∂U . As usual, all given functions are assumed smooth, unless otherwise stated.

Problem 16.1. Fix $\alpha > 0$ and let $U = B^0(0,1)$. Show there exists a constant C depending only on n and α , such that

$$\int_{U} u^{2} dx \leq C \int_{U} |Du|^{2} dx$$

provided

$$|\{x \in U | u(x) = 0\}| \ge \alpha, \quad u \in H^1(U)$$

Proof. Take $A = \{x \in U \mid u(x) = 0\}$. Then

$$\int_{U} u^{2} dx = \int_{U-A} (u - (u)_{U} + (u)_{U})^{2} dx$$

$$\leq 2 \int_{U-A} (u - (u)_{U})^{2} dx + \int_{U-A} (u)_{U}^{2} dx$$

$$\leq C_{1} \|Du\|_{L^{2}(U)}^{2} + |U - A| (u)_{U}^{2} \qquad C_{1} \in (0, +\infty)$$

$$= C_{1} \|Du\|_{L^{2}(U)} + \frac{|U - A|}{|U|^{2}} (\int_{U-A} u dx)^{2}$$

$$\leq C_{1} \|Du\|_{L^{2}(U)} + \frac{|U - A|^{2}}{|U|^{2}} \int_{U-A} u^{2} dx$$

$$\implies \int_{U} u^{2} dx \leq \frac{C_{1}}{1 - \frac{|U - A|^{2}}{|U|^{2}}} \|Du\|_{L^{2}(U)}.$$

Since $|A| \ge \alpha > 0$, $1 - \frac{|U - A|^2}{|U|^2} > 0$. Therefore $C = \frac{C_1}{1 - \frac{|U - A|^2}{|U|^2}} \in (0, +\infty)$ is the constant.

Problem 16.2. (Variant of Hardy's inequality) Show that for each $n \geq 3$ there exists a constant C so that

$$\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \le C \int_{\mathbb{R}^n} |Du|^2 dx$$

for all $u \in H^1(\mathbb{R}^n)$ (Hint: $\left| Du + \lambda \frac{x}{|x|^2} u \right|^2 \ge 0$ for each $\lambda \in \mathbb{R}$.) **Proof.** Take $u \in C_c^{\infty}(\mathbb{R}^n), F(x) = \frac{x}{|x|^2}$, then

$$\int_{\mathbb{R}^n} u^2 \operatorname{div} F dx = -\int_{\mathbb{R}^n} D(u^2) \cdot F(x) dx$$

$$= -2 \int_{\mathbb{R}^n} Du \cdot u F dx$$

$$\Longrightarrow \left| \int_{\mathbb{R}^n} u^2 \operatorname{div} F dx \right|^2 = 4 \left| \int_{\mathbb{R}^n} Du \cdot u F dx \right|^2$$

$$\leq 4 \|Du\|_{L^2}^2 \|u F\|_{L^2}^2.$$

However, we have div $F = \frac{n^2}{|x|^2}, |F(x)|^2 = \frac{1}{|x|^2}$. So

$$\frac{(n-2)^2}{4} \left(\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \right)^2 \le \int_{\mathbb{R}^n} |Du|^2 dx \int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx$$

$$\implies \int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \le \frac{4}{(n-2)^2} \int_{\mathbb{R}^n} |Du|^2 dx.$$

Since $H^1(\mathbb{R}^n) = H^1_0(\mathbb{R}^n)$, there is $\exists u_k \in C_c^{\infty}(\mathbb{R}^n), s.t. \lim_{k \to \infty} u_k = u$ in $H^1(\mathbb{R}^n)$. So that

$$\int_{\mathbb{R}^n} |Du_k|^2 dx \longrightarrow \int_{\mathbb{R}^n} |Du|^2 dx$$

Above we already get

$$\int_{\mathbb{R}^n} \frac{u_k^2}{|x|^2} dx \le \frac{4}{(n-2)^2} \int_{\mathbb{R}^n} |Du_k|^2 dx.$$

It's indicate $\frac{u_k}{|x|} \in L^2(\mathbb{R}^n)$, and $L^2(\mathbb{R}^n)$ is complete, in other side $u_k \in H^1(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$ there is $u \in L^2(\mathbb{R}^n)$ such that as $k \to \infty$, $u_k \to u$, a.e., and u maintains $\frac{u_k}{|x|} \to \frac{u}{|x|}$, a.e..

After all,

$$\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx = \lim_{k \to \infty} \int_{\mathbb{R}^n} \frac{u_k^2}{|x|^2} dx \le \lim_{k \to \infty} \frac{4}{(n-2)^2} \int_{\mathbb{R}^n} |Du_k|^2 dx = C \int_{\mathbb{R}^n} |Du|^2 dx.$$

Problem 16.3. Provide details for the following alternative proof that if $u \in H^1(U)$ then Du = 0 a.e. on the set $\{u = 0\}$ Let ϕ be a smooth, bounded and nondecreasing function, such that ϕ' is bounded and $\phi(z) = z$ if $|z| \leq 1$. Set

$$u^{\epsilon}(x) := \epsilon \phi(u/\epsilon)$$

Show that $u^{\epsilon} \to 0$ weakly in $H^1(U)$ and therefore

$$\int_{U} Du^{\epsilon} \cdot Du dx = \int_{U} \phi'(u/\epsilon) |Du|^{2} dx \to 0$$

Employ this observation to finish the proof.

Proof.

• $u^{\varepsilon} \to 0$ weakly in $L^{2}(U)$ For $\forall \varphi \in C_{c}^{\infty}(U)$,

$$\int_{U} u^{\varepsilon} \varphi dx = \varepsilon \int_{U} \phi(u/\varepsilon) \varphi dx$$

$$\leq \varepsilon \|\phi\|_{L^{\infty}(U)} \|\varphi\|_{L^{1}(U)}$$

$$\leq \varepsilon \|\phi\|_{L^{\infty}(U)} \|\varphi\|_{L^{\infty}(U)} |U|$$

$$\to 0 \quad \text{as } \varepsilon \to 0^{+}.$$

However, by the same way, we have $\|u^{\varepsilon}\|_{L^{2}(U)}^{2} = \varepsilon^{2} \int_{U} |\phi(u/\varepsilon)|^{2} dx \leq \varepsilon^{2} \|\phi\|_{L^{\infty}(U)}^{2} |U|$ is bounded. So $u^{\varepsilon} \in L^{2}(U)$.

Combining with $C_c^{\infty}(U)$ is a Dense Set of $(L^2(U))^* = L^2(U)$ and $\forall \varphi \in C_c^{\infty}(U), \langle u^{\varepsilon}, \varphi \rangle = \int_U u^{\varepsilon} \varphi dx \to 0$, we know $u^{\varepsilon} \to 0$ weakly in $L^2(U)$.

• $Du^{\varepsilon} \to 0$ weakly in $L^2(U)$

By the same way as above,

$$\|\partial_i u^{\varepsilon}\|_{L^2(U)} = \int_U |\partial_i u^{\varepsilon}|^2 dx = \int_U |\phi'(u/\varepsilon)\partial_i u|^2 dx \le \|\phi'\|_{L^{\infty}}^2 \|\partial_i u\|_{L^2(U)}^2.$$

Since ϕ' is bounded and $u \in H^1(U)$ imply $||Du||_{L^2(U)}$ is bounded, $||\partial_i u^{\varepsilon}||_{L^2(U)}$ is uniform boundedness. In other side, $\forall \varphi \in C_c^{\infty}(U)$,

$$\langle \partial_i u^{\varepsilon}, \varphi \rangle = \int_U \partial_i u^{\varepsilon} \varphi dx = -\int_U u^{\varepsilon} \partial_i \varphi dx \le \|u^{\varepsilon}\|_{L^2(U)} \|\partial_i \varphi\|_{L^2(U)}.$$

Since $||u^{\varepsilon}||_{L^{2}(U)} \to 0$ as $\varepsilon \to 0$ and $||\partial_{i}\varphi||_{L^{2}(U)}$ is bounded. $\langle \partial_{i}u^{\varepsilon}, \varphi \rangle \to 0$ as $\varepsilon \to 0$. Therefore, $Du^{\varepsilon} \to 0$ weakly in $L^{2}(U)$.

In summay, $u^{\varepsilon} \to 0$ weakly in $H^1(U)$.

Take $A = \{u = 0\} \in U$, $\int_A Du^{\varepsilon} \cdot Du dx = \sum_{i=1}^n \int_A \partial_i u^{\varepsilon} \partial_i u dx \leq \sum_{i=1}^n \|\partial_i u^{\varepsilon}\|_{L^2(A)} \|\partial_i u\|_{L^2(A)} \to 0$ as $\varepsilon \to 0$, since $\|\partial_i u^{\varepsilon}\|_{L^2(A)} \to 0$ and $\|\partial_i u\|_{L^2(A)}$ is bounded. Then

$$\int_{A} Du^{\varepsilon} \cdot Du dx = \sum_{i=1}^{n} \int_{A} \partial_{i} u^{\varepsilon} \partial u dx$$

$$= \sum_{i=1}^{n} \int_{A} \phi'(u/\varepsilon) (\partial_{i} u)^{2} dx$$

$$= \int_{A} |Du|^{2} \phi'(u/\varepsilon) dx.$$

Combining with $u = 0, \phi'(0) = 1$, so Du = 0, a.e..

Problem 16.4. Use the Fourier transform to prove that if $u \in H^s(\mathbb{R}^n)$ for s > n/2 then $u \in L^{\infty}(\mathbb{R}^n)$, with the bound

$$||u||_{L^{\infty}(\mathbb{R}^n)} \le C||u||_{H^s(\mathbb{R}^n)}$$

for a constant C depending only on s and n

Proof. Since $u \in H^s(\mathbb{R}^n)$ implies

$$\left(\int_{\mathbb{R}^n} (1+|y|^s)^2 |\hat{u}|^2 dx\right)^{1/2} \le C_1 ||u||_{H^s(\mathbb{R}^n)}.$$

It follows $\hat{u} \in L^1(\mathbb{R}^n)$ from

$$\|\hat{u}\|_{L^{1}(\mathbb{R}^{n})} = \int_{\mathbb{R}^{n}} |\hat{u}| dx = \int_{\mathbb{R}^{n}} \left| (1 + |x|^{s})(1 + |x|^{s})^{-1} \hat{u} \right| dx$$

$$\leq C_{1} \|u\|_{H^{s}(\mathbb{R}^{n})} \left((1 + |x|^{s})^{-2} dx \right)^{1/2}$$

$$\leq C(s, n) \|u\|_{H^{s}(\mathbb{R}^{n})}.$$

Therefore, $u(x) = \int_{\mathbb{R}^n} \hat{u}(\xi) e^{2\pi i x \cdot \xi} d\xi$, which shows that

$$||u||_{L^{\infty}(\mathbb{R}^n)} \le ||\hat{u}||_{L^1(\mathbb{R}^n)} \le C||u||_{H^s(\mathbb{R}^n)}.$$

Problem 16.5. Show that if $u, v \in H^s(\mathbb{R}^n)$ for s > n/2, then $uv \in H^s(\mathbb{R}^n)$ and

$$||uv||_{H^s(\mathbb{R}^n)} \le C(s,n)||u||_{H^s(\mathbb{R}^n)}||v||_{H^s(\mathbb{R}^n)}$$

the constant C depending only on s and n

Proof. First of all,

$$||u||_{H^{s}(\mathbb{R}^{n})} = C_{1}||(1+|x|^{s})\hat{u}||_{L^{2}(\mathbb{R}^{n})}, ||v||_{H^{s}(\mathbb{R}^{n})} = C_{2}||(1+|x|^{s})\hat{v}||_{L^{2}(\mathbb{R}^{n})},$$

 $C_1, C_2 > 0$. And

$$\begin{split} \|uv\|_{H^{s}(\mathbb{R}^{n})} &= \left(\int_{\mathbb{R}^{n}} (1+|x|^{s})^{2} (\widehat{uv})^{2} dx\right)^{1/2} \\ &= (2\pi)^{n/2} \left(\int_{\mathbb{R}^{n}} ((1+|x|^{s}) \hat{u} * \hat{v})^{2}\right)^{1/2} \\ &= (2\pi)^{n/2} \left(\int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} (1+|x|^{s}) \hat{u}(x-y) \hat{v}(y) dy\right)^{2} dx\right)^{1/2} \\ &\leq C(s) \left(\int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} ((1+|x-y|^{s})+(1+|y|^{s})) \hat{u}(x-y) \hat{v}(y) dy\right)^{2} dx\right)^{1/2} \\ &= C(s) \left(\int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} (1+|x-y|^{s}) \hat{u}(x-y) \hat{v}(y) dy\right)^{2} dx + \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} (1+|y|^{s}) \hat{u}(x-y) \hat{v}(y) dy\right)^{2} dx\right)^{1/2} \\ &= C(s) \left(\int_{\mathbb{R}^{n}} ((1+|y|^{s}) u(y) * v(y))^{2} + (u(y) * (1+|y|^{s}) v(y))^{2} dx\right)^{1/2} \\ &\leq C(s) (\|u(y) * (1+|y|^{s}) v(y)\|_{L^{2}(\mathbb{R}^{n})} + \|(1+|y|^{s}) u(y) * v(y)\|_{L^{2}(\mathbb{R}^{n})}) \\ &\leq C(s) (\|(1+|y|^{s}) v(y)\|_{L^{2}} \|u(y)\|_{L^{1}} + \|(1+|y|^{s}) u(y)\|_{L^{2}} \|v(y)\|_{L^{1}}) \quad \text{ by Young inequality} \\ &\leq C(s,n) \|u\|_{H^{s}(\mathbb{R}^{n})} \|v\|_{H^{s}(\mathbb{R}^{n})} \quad \text{ by Problem 16.4.} \end{split}$$