Přírodovědecká fakulta Masarykovy univerzity

PRAKTIKUM Z FYZIKY PLAZMATU

Paschenův zákon, katodový spád potenciálu v doutnavém výboji

Zpracovali: Radek Horňák, Lukáš Vrána Naměřeno: 15. 3. 2022

1 Teorie

1.1 Paschenův zákon

Z Townsendovy teorie lavin víme, že působením elektrického pole na zředěný plyn dochází k urychlování přítomných elektronů. Takto urychlené elektrony mohou ionizovat neutrální částice a vytvořit takzvanou Townsedovu lavinu. Počet elektronů vzniklých v důsledku Townsendovy laviny závisí exponenciálně na dráze d

$$n = n_0 e^{\alpha d} \tag{1}$$

kde n_0 je počet elektronů v počátečním bodě d=0 a α je první Townsendův nebo také ionizační koeficient. Elektrické pole můžeme charakterizovat napětím V přiloženým mezi dvě rovinné elektrody, dráha d je vzdálenost mezi elektrodami. Elektronovou lavinu doprovází vznik iontů, jejichž počet lze vyjádřit jako

$$n_i = n_0 \left[e^{\alpha d} - 1 \right] \tag{2}$$

Ionty jsou polem urychlovány ke katodě, dopadají na ni a vyvolávají sekundární emisi elektronů. Tu popisuje Townsendův třetí koeficient neboli koeficient sekundární emise γ . Konkrétně udává průměrný počet elektronů emitovaných jedním iontem při jeho dopadu na katodu. Pomocí γ lze vyjádřit podmínku zapálení výboje jako

$$\gamma \left(e^{\alpha d} - 1\right) = 1\tag{3}$$

tedy že v lavině musí být jedním primárním elektronem vytvořeno tolik i
ontů, které dopadem na katodu způsobí emisi jednoho nového elektronu. I
onizační koeficient α závisí na intenzitě elektrického pole

$$\frac{\alpha}{p} = A e^{-\frac{Bp}{E}} \tag{4}$$

kde $A = 1/\lambda_1$ a $B = U_i/\lambda_1$ jsou konstanty závislé na druhu plynu, λ_1 je střední volná dráha elektronů při jednotkovém tlaku. Dále lze (4) přepsat jako

$$\frac{\alpha}{n} = A e^{-\frac{Bpd}{V}} \tag{5}$$

Logaritmováním a úpravou (5) získáme

$$V = \frac{B \, pd}{\ln A - \ln \frac{\alpha}{d}} \tag{6}$$

Dosazením αd z (6) do (3), logaritmováním a dalšími úpravami dojdeme k tvaru

$$A pd e^{-\frac{Bpd}{V_z}} = \ln\left(\frac{1}{\gamma} + 1\right) \tag{7}$$

kde V_z je zápalné napětí výboje. Pro daný plyn a materiál katody položme pravou stranu (7)

$$\ln\left(\frac{1}{\gamma} + 1\right) = C \tag{8}$$

Úpravami dostáváme

$$V_z = \frac{B \, pd}{C' + \ln(pd)} \tag{9}$$

 $kde C' = \ln C - \ln A.$

- 1.2 Katodový spád potenciálu v doutnavém výboji
- 2 Měření a výsledky
- 3 Závěr