Probabilidades y Estadística (M)

Funciones de densidad o probabilidad puntual, esperanzas, varianzas y funciones características de las variables aleatorias más frecuentes

I. Distribuciones discretas

Distribución Binomial Bi(n, p)

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad k = 0, 1, \dots, n \text{ y } 0
$$E(X) = np$$

$$var(X) = np(1-p)$$

$$\varphi_X(t) = (1+p(e^{it}-1))^n$$$$

Un caso particular de la distribución binomial es cuando n=1. Esta distribución suele denominarse Bernoulli de parámetro p, Be(p)=Bi(1,p).

Distribución Geométrica Ge(p)

$$p_X(k) = p (1-p)^{k-1} \quad \text{si } k = 1, 2, \dots \text{ y } 0
$$E(X) = \frac{1}{p}$$

$$var(X) = \frac{1-p}{p^2}$$$$

Distribución Binomial Negativa (o de Pascal) BN(r, p)

$$p_X(k) = {k-1 \choose r-1} p^r (1-p)^{k-r} \qquad k = r, r+1, \dots \text{ y } 0
$$E(X) = \frac{r}{p}$$

$$var(X) = \frac{r(1-p)}{p^2}$$$$

La distribución geométrica es un caso particular de la distribución binomial negativa: Ge(p) = BN(1, p).

Distribución Poisson $\mathcal{P}(\lambda)$

$$p_X(k) = \frac{\lambda^k}{k!} e^{-\lambda} \qquad \text{si } k = 0, 1, 2, \dots \text{ y } \lambda > 0$$

$$E(X) = \lambda$$

$$var(X) = \lambda$$

$$\varphi_X(t) = e^{\lambda(\exp(it) - 1)}$$

Distribución Hipergeométrica $\mathcal{H}(N, r, m)$

N: total poblacional

r: cantidad de "buenos" en la población

m: cantidad de elementos extra ídos (tamaño de la muestra)

$$p_X(k) = \frac{\binom{r}{k}\binom{N-r}{m-k}}{\binom{N}{m}}$$
 si k es entero con $\max(r+m-N,0) \le k \le \min(r,m)$

$$E(X) = m\frac{r}{N}$$

$$var(X) = m\frac{r}{N}\frac{(N-r)}{N}\frac{(N-m)}{(N-1)}$$

II. Distribuciones continuas

Distribución Normal $N(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} \quad \text{con } \sigma > 0$$

$$E(X) = \mu$$

$$var(X) = \sigma^2$$

$$\varphi_X(t) = e^{it\mu} e^{-(\sigma t)^2/2}$$

La distribución Normal estándar corresponde a la elección de parámetros N(0,1).

Densidad de la normal estándar

Distribución Gama $\Gamma(\alpha, \lambda)$

$$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} \mathbb{I}_{(0, +\infty)}(x) \qquad \text{con } \lambda > 0, \ \alpha > 0$$

$$E(X) = \frac{\alpha}{\lambda}$$

$$var(X) = \frac{\alpha}{\lambda^2}$$

$$\varphi_X(t) = \frac{1}{\left(1 - \frac{it}{\lambda}\right)^{\alpha}}$$

Recordemos que el s ímbolo $\Gamma(\alpha)$ representa a la función gama que se define por

$$\Gamma(y) = \int_0^\infty x^{y-1} e^{-x} dx \qquad \text{si } y > 0$$

Satisface las siguientes propiedades:

$$\Gamma(1) = 1$$

$$\Gamma(\alpha) = (\alpha - 1) \Gamma(\alpha - 1)$$

$$\Gamma(n) = (n - 1)! \quad \text{para } n = 1, 2, 3, \dots$$

$$\Gamma(1/2) = \sqrt{\pi}$$

En el gráfico siguiente figuran las funciones de densidad de la gama para distintos valores de los parámetros: la función de la l ínea fina corresponde a $\alpha=3,\ \lambda=3$, la de l ínea sólida de grosor intermedio corresponde a $\alpha=2,\ \lambda=\frac{1}{2}$, y la de l ínea punteada corresponde a $\alpha=5,\ \lambda=1$. Con l ínea punteada están las esperanzas en cada caso.

Densidad de la gama

Distribución Exponencial $Exp(\lambda)$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{I}_{(0,+\infty)}(x) \qquad \text{con } \lambda > 0$$

$$E(X) = \frac{1}{\lambda}$$

$$var(X) = \frac{1}{\lambda^2}$$

$$\varphi_X(t) = \frac{\lambda}{\lambda - it}$$

Densidad Exponencial con $\lambda = 1/5$

La distribución exponencial es un caso particular de la distribución gama: $Exp(\lambda) = \Gamma(1,\lambda)$.

Distribución Beta $\beta(a,b)$

$$f_X(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \mathbb{I}_{(0,1)}(x)$$
 con $a, b > 0$

$$E(X) = \frac{a}{a+b}$$

$$var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

En el gráfico siguiente figuran las funciones de densidad de la beta para distintos valores de los parámetros: la función de la l ínea fina corresponde a $a=3,\ b=6$, la de l ínea sólida de grosor intermedio corresponde a $a=2,\ b=2,\ y$ la de l ínea punteada corresponde a $a=10,\ b=3$. Con l ínea punteada están las esperanzas en cada caso.

Densidad de la beta

Distribución Uniforme $\mathcal{U}[a,b]$

$$f(x) = \frac{1}{b-a} \mathbb{I}_{[a,b]}(x)$$

$$E(X) = \frac{a+b}{2}$$

$$var(X) = \frac{(b-a)^2}{12}$$

$$\varphi_X(t) = \frac{e^{itb} - e^{ita}}{i(b-a)t}$$

La distribución uniforme en el (0,1) es un caso particular de la distribución beta: $\mathcal{U}[0,1] = \beta(1,1)$.

Distribución T de Student con n grados de libertad t_n

$$f_X(x) = \frac{\Gamma((n+1)/2)}{\Gamma(n/2)\sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$$

$$E(X) = 0 \quad n \ge 2$$

$$var(X) = \frac{n}{n-2} \quad n > 2$$

Distribución Chi cuadrado con n grados de libertad $\chi_n^2 = \chi^2(n)$ La distribución Chi cuadrado con n grados de libertad es un caso particular de la distribución gama: $\chi_n^2 = \Gamma\left(\frac{n}{2},\frac{1}{2}\right) \ (n\in\mathbb{N})$.

$$E(X) = n$$
$$var(X) = 2n$$

Distribución F de Snedecor con n y m grados de libertad $F_{n,m}$

$$f_X(x) = \frac{\Gamma((m+n)/2)}{\Gamma(n/2)\Gamma(m/2)} \left(\frac{n}{m}\right)^{n/2} x^{(n/2)-1} \left(1 + \frac{n}{m}x\right)^{-(n+m)/2} I_{(0,\infty)}(x).$$

Distribución de Cauchy $C(0, \lambda)$

$$f_X(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2}$$
 $\lambda > 0$
 $\varphi_X(t) = e^{-\lambda|t|}$

La esperanza de esta distribución no está definida pues $\int_{-\infty}^{+\infty} |x| f_X(x) dx = +\infty$. La distribución Cauchy $\mathcal{C}(0,1)$ coincide con la distribución T de Student de un grado de libertad, $\mathcal{C}(0,1) = t_1$.

III. Propiedades

- $X \sim Bi(n,p), Y \sim Bi(m,p)$ independientes $\Rightarrow X + Y \sim Bi(n+m,p)$. Más aún $X = \sum_{i=1}^{n} W_i$ con $W_i \sim Bi(1,p)$ independientes.
- $X \sim Ge(p)$, $Y \sim Ge(p)$ independientes $\Rightarrow X + Y \sim BN(2, p)$. Más aún, si $W \sim BN(r, p)$ existen $W_i \sim Ge(p)$ independientes tales que $W = \sum_{i=1}^r W_i$.
- $X \sim \mathcal{P}(\lambda_1), Y \sim \mathcal{P}(\lambda_2)$ independientes $\Rightarrow X + Y \sim \mathcal{P}(\lambda_1 + \lambda_2)$.
- $Bi(n, p) \approx \mathcal{P}(\lambda) \text{ con } \lambda = np \text{ y } p << 1.$
- $\mathcal{H}(N,r,m) \approx Bi\left(m,\frac{r}{N}\right)$ cuando N es muy grande, y m << N.
- $X_1 \sim \Gamma(\alpha_1, \lambda)$, $X_2 \sim \Gamma(\alpha_2, \lambda)$ independientes $\Rightarrow Y_1 = X_1 + X_2 \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$ y es independiente de $Y_2 = \frac{X_1}{X_1 + X_2} \sim \beta(\alpha_1, \alpha_2)$.
- $X \sim \Gamma(\alpha, \lambda), c \in \mathbb{R} \Rightarrow cX \sim \Gamma(\alpha, \frac{\lambda}{c}).$
- $X \sim N(\mu, \sigma^2)$, $a, b \in \mathbb{R} \Rightarrow aX + b \sim N(a\mu + b, a^2\sigma^2)$. En particular, $\frac{1}{\sigma}(X \mu) \sim N(0, 1)$. Esta transformación se conoce como estandarización de la normal.
- $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ independientes, $a, b, c \in \mathbb{R} \Rightarrow aX + bY + c \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$.
- Sea $Z \sim N(0,1), X_1 \sim \chi^2(n)$ y $X_2 \sim \chi^2(m)$, variables aleatorias independientes. Entonces

$$U = \frac{Z}{\sqrt{X_1/n}} \sim t_n$$

$$V = \frac{X_1/n}{X_2/m} \sim F_{n,m}$$

- Sea $X \sim \chi^2(n)$, entonces existen $Z_1, \ldots, Z_n \sim N(0,1)$ independientes tales que $X = Z_1^2 + \cdots + Z_n^2$. En particular, $Z_1^2 \sim \chi^2(1)$.
- Sean $X_1 \sim N(0,1)$ y $X_2 \sim N(0,1)$, variables aleatorias independientes. Entonces

$$V = \frac{X_1}{X_2} \sim t_1 = \mathcal{C}\left(0, 1\right)$$

- Sean $X_1 \sim \mathcal{C}(0, \lambda_1)$ y $X_2 \sim \mathcal{C}(0, \lambda_2)$, variables aleatorias independientes. Entonces $X_1 + X_2 \sim \mathcal{C}(0, \lambda_1 + \lambda_2)$ y $aX_1 \sim \mathcal{C}(0, a\lambda_1)$, $\forall a \in \mathbb{R}$.