

#### **Set 2: Digital Image Fundamentals**

- Lecturer Arto Kaarna
- Lappeenranta University of Technology (LUT)
- School of Engineering Science (LENS)
- Machine Vision and Pattern Recognition (MVPR)
- Arto.Kaarna@lut.fi
- http://www.lut.fi/web/en/school-of-engineeringscience/research/machine-vision-and-pattern-recognition



#### **Digital Image Fundamentals**

- Elements of visual perception
- A simple image model
- Sampling and quantization
- Basic relationships between pixels
- Imaging geometry



#### **Elements of Visual Perception**

- Structure of the human eye
  - Simplified diagram of a cross section of the human eye
  - Distribution of rods and cones in the retina
- Image formation in the eye
- Brightness adaptation and discrimination
  - Mach band pattern and other "optical illusions"
  - Examples showing that perceived brightness is not a simple function of intensity
  - Example of simultaneous contrast
- Different sizes of variation are perceived differently by the eye, which needs to be taken into consideration in evaluation print quality (e.g. mottling)

#### **Structure of the Human Eye**





#### Optical illusion on gray-scale values





#### **Optical illusion on geometry**

a b c d

**FIGURE 2.9** Some well-known optical illusions.



#### **Elements of Visual Perception**

Left: Simultaneous contrast to make the same colors look different.

Right: Simultaneous contrast can make different colors look the same.





- Image f(x,y): (intensity) value f, spatial coordinates x and y, resolution in pixels
- $0 < f(x,y) < \infty$
- $f(x,y) = i(x,y) \ r(x,y)$ 
  - *i*(*x*,*y*) illumination, *0*<*i*(*x*,*y*)<∞
    - Characterized by the illumination source
  - r(x,y) reflectance, 0 < r(x,y) < 1
    - Characterized by the imaged object
  - What if imaging is based on transmission t(x,y), like X-ray?



#### **Sampling and Quantization**

- Resolution N \* M
  - Effects of reducing spatial resolution.
- Number of gray-levels  $G = 2^m$ 
  - Effects of reducing number of gray-levels.
- Number of bits

$$b = N * M * m$$

- Note: color images typically contain 3 times as many bits (R, G and B channel each have their own intensity value)
- Spectral images contain

$$b = N * M * B * m$$

where B is the number of bands  $(B = a * 10^1 \dots 10^3)$ 

### **Effects of Reducing Spatial Resolution**



#### **Effects of Sampling and Quantization**

Left: The reduced spatial resolution

Right: The reduced number of gray-levels per pixel







- 128, 64, 16, 8-level images from left to right.
- False contouring in two rightmost images.



## e f

## **Effects of Reducing Number of Gray-levels**

# FIGURE 2.21 (Continued) (e)–(h) Image displayed in 16, 8, 4, and 2 gray levels. (Original courtesy of Dr. David R. Pickens, Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center.)















© 1992–2008 R. C. Gonzalez & R. E. Woods



#### **Image Interpolation**

- Various approaches for resampling
  - Applying exiting data to estimate values in unknown locations
  - Nearest neighbor interpolation
    - assigns a value of the nearest neighbour
  - Bilinear interpolation

$$v(x,y) = ax + by + cxy + d$$

Bicubic interpolation

$$v(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

# Dillipagnintaryalatia

#### **Image Interpolation**

- Bilinear interpolation
- Bi-cubic interpolation
- Top row: original image 72 dpi
- Bottom row: original image
   150 dpi





- Neighbors of a pixel p(x, y)
  - 4-neighbors  $N_4(p)$ : (x+1,y), (x-1,y), (x,y+1), (x,y-1)
  - Diagonal neighbors  $N_D(p)$ : (x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)
  - 8-neighbors  $N_8(p)$ :  $N_4(p)$  and  $N_D(p)$
  - Adjacency between pixels p and q: adjacent if they are neighbors
- Connectivity of pixels
  - 4-connectivity, 8-connectivity
  - m-connectivity
  - A path from p(x,y) to q(s,t) is defined based on connectivity



#### Pixel connectivity, m-Connectivy

### m-Connectivity

4-connected

8-connected

m-connected

V – set of intensity values used to define connectivity. In binary images, V = {1} – refers to connectivity of pixels with value 1.

Two pixels, p and q, with values from *V* are *m*-connected if:

- (i) q is in  $N_4(p)$  or
- (ii) q is in  $N_D(p)$  and  $N_4(p) \cap N_4(q)$  is empty.

#### **Basic Relationships Between Pixels**

- Distance measures between pixels p(x,y) and q(s,t)
  - Euclidean distance

$$D_e(p,q)$$
:  $D_e(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$ 

•  $D_4$  distance  $D_4(p,q)$  (city-block distance)

$$D_4(p,q) = |x - s| + |y - t|$$

•  $D_8$  distance  $D_8(p,q)$  (chessboard distance)

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

- $D_m$  distance is minimum distance between two pixels
  - consider an example, distance between p0=1 and p4=1

$$p_{3} p_{4}$$
  $p_{1}=0, p_{3}=0; m$ -distance = ?  $p_{1} p_{2}$   $p_{1}=0, p_{3}=0: m$ -distance = ?  $p_{1} p_{2}$   $p_{1}=0, p_{3}=1: m$ -distance = ?  $p_{1}=1, p_{3}=1: m$ -distance = ?



#### **Mathematical tools in DIP**

Linear vs. nonlinear operations

$$\bullet H[a_i f_i(x, y) + a_j f_j(x, y)] = a_i H[f_i(x, y)] + a_j H[f_j(x, y)]$$

- Additivity (+) and homogenity (H(af) vs. aH(f))
- e.g. max-operator? An example may show that it is non-linear
- Arithmetic/Logic operations for pixels
  - Addition, subtraction, multiplication, and division
  - AND, OR, COMPLEMENT
  - Example of filtering
- Distance Transforms



- Example on X-ray imaging
- Original image,
- injection applied
   Difference image,
   contrast enhanced
   difference image



© 1992-2008 R. C. Gonzalez & R. E. Woods



#### **Mathematical tools in DIP**

- •Shading correction with g(x, y) = f(x, y) \* h(x, y)
- g(x,y) known
- f(x,y) unknown
- h(x,y)?







#### Masking with ROI















#### **Mathematical tools in DIP**

- Negative image







a b c

FIGURE 2.32 Set operations involving grayscale images. (a) Original image. (b) Image negative obtained using set complementation. (c) The union of (a) and a constant image. (Original image courtesy of G.E. Medical Systems.)





- Basic transformations
  - Translation, rotation, scaling, shearing
- Transformation in general is

$$\bullet(x,y) = T\{(v,w)\}$$

In the following the computations are

$$\bullet [x \ y \ 1] = [v \ w \ 1]T = [v \ w \ 1] \begin{bmatrix} t_{11} & t_{12} & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1 \end{bmatrix}$$



#### Affine transformations

### **Imaging Geometry**

|     | Transformation<br>Name | Affine Matrix, T                                                                                             | Coordinate<br>Equations                                                 | Example  |
|-----|------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|
|     | Identity               | $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                          | x = v $y = w$                                                           | <i>y</i> |
|     | Scaling                | $\begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                      | $x = c_x v$ $y = c_y w$                                                 |          |
|     | Rotation               | $\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | $x = v \cos \theta - w \sin \theta$ $y = v \cos \theta + w \sin \theta$ |          |
|     | Translation            | $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix}$                                      | $x = v + t_x$ $y = w + t_y$                                             |          |
|     | Shear (vertical)       | $\begin{bmatrix} 1 & 0 & 0 \\ s_v & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                        | $x = v + s_v w$ $y = w$                                                 |          |
| Voo | Shear (horizontal)     | $\begin{bmatrix} 1 & s_h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                        | $x = v$ $y = s_h v + w$                                                 |          |



- Two approaches in the computations
  - Forward mapping

$$\bullet$$
[ $x y 1$ ] = [ $v w 1$ ] $T$ 

- Straight-forward approach to find new location and intensity for each pixel
- Problem: multiple original values may map to one pixel only?
- Inverse mapping

$$[v \ w \ 1] = T^{-1}[x \ y \ 1]$$

Interpolation needed in defining the intensities for the pixels



Example on inverse mapping



a b c d

**FIGURE 2.36** (a) A 300 dpi image of the letter T. (b) Image rotated 21° clockwise using nearest neighbor interpolation to assign intensity values to the spatially transformed pixels. (c) Image rotated 21° using bilinear interpolation. (d) Image rotated 21° using bicubic interpolation. The enlarged sections show edge detail for the three interpolation approaches.



- In previous mappings the transformation T was known
- Image registration for aligning two (or more) images
  - Two images:
    - Input image which we want to transform and
    - Reference image against which we want to register
  - Differences may come from viewing angle, distance, orientation, sensor resolution, object position, etc.



- Basic steps in registration
  - 1. Define control points in the two images (How?)
  - Find the transformation matrix
  - 3. Apply the transformation on input image (location, intensity)
  - 4. Apply desired operations on the two images
- For example, in step 2

$$x = c_1v + c_2w + c_3vw + c_4$$
  
 $y = c_5v + c_6w + c_7vw + c_8$ 

- For higher quality use more corresponding pixels
  - Quadrilaterals as subimages
  - Polynomials as more complex models (LSQ algorithms)
- Intensity interpolation for finding the intensities for the pixels











#### FIGURE 2.37

Image registration.
(a) Reference image. (b) Input (geometrically distorted image). Corresponding tie points are shown as small white squares near the corners.

- (c) Registered image (note the errors in the borders).
- (d) Difference between (a) and (c), showing more registration errors.

#### **Probabilistic models**

• Probability p of an intensity level  $z_k$  in an image of size MN

$$\bullet p(z_k) = \frac{n_k}{MN}$$

- Mean m and variance  $\sigma^2$  of the intensities
  - also other moments (bias, kurtosis(heaviness of the tail))

$$\mu_n(z) = \sum_{k=0}^{L-1} (z_k - m)^n p(z_k), n = 0,1,2,3,4$$







FIGURE 2.41
Images exhibiting
(a) low contrast,
(b) medium
contrast, and
(c) high contrast.



- Basic transformations
- Perspective transformation
  - The camera coordinate system (x,y,z) is aligned to the world coordinate system (X,Y,Z)
- Camera model
  - Imaging geometry with two coordinate systems.
  - Camera viewing a 3-D scene
- Camera calibration
- Stereo imaging
- Motion, tracking