Задание составлено на основе материалов Алексея Балицкого, Рената Гимадеева и Ильи Козлова.

Рекомендации к чтению

- Кормен, пункт 9.3 (линейный в худшем случае алгоритм поиска порядковой статистики). В этом задании уже обязательно нужно ознакомиться с этим алгоритмом.
- Рекомендация от одного авторитетного человека: книга блестящих математиков Гача и Ловаса по вычислительной сложности:
 - http://www.cs.elte.hu/~lovasz/complexity.pdf.
 - В ней можно прочитать то, что я рассказывал на семинаре про класс P и алгоритм Евклида, а так же про Гауссово исключение, которое есть в вашем каноническом задании. Можете почитать и другие полиномиальные темы.
- Кто не хочет читать на английском можете прочитать про класс P в Мусатове, там все кратко и понятно. Кто любит читать много буков, то можете почитать книгу Хопкрофта, Мотвани и Ульмана начало 10 главы.
- Рекомендую (но это необязательно и в этом задании не участвует) в Кормене прочитать пункт 9.2 (линейный в среднем алгоритм поиска порядковой статистики), чтобы уже сейчас получить первое представление о вероятностных алгоритмах. О вероятности можно думать пока что примитивно, на физическом уровне строгости: вероятность это что-то типа отношения числа удачных исходов к числу всех опытов при многократном повторении опыта. О вероятностных алгоритмах мы будем говорить позднее.

Ключевые понятия: полиномиальный алгоритм, класс P, линейный алгоритм поиска порядковой статистики, алгоритм Eвклида (если я не указываю источник по какой-то теме задания, то источником считаются лекции, семинары и википедия).

Обязательные задачи

Задача 1 (1+1) Есть три типа табличек: черный квадрат 2×2 , белый квадрат 2×2 и серый прямоугольник 2×1 (его можно поворачивать на 90°).

- (a) Найдите число способов замостить этими табличками полосу $2 \times n$.
- (b) Предложите эффективный алгоритм нахождения этого числа.

Задача 2 (2) Предположим у нас есть некая программа (black box), которая эффективно находит медиану массива длины n за $C \cdot n$ сравнений, где C – маленькая константа (маленькая в смысле меньше констант, которые получаются в известных вам алгоритмах поиска медианы). Придумайте как можно более эффективный (внимание, в этой

задаче константа в асимптотике имеет значение), который находит k-ую порядковую статистику массива. Докажите его корректность и оцените требуемое количество сравнений в худшем случае (оно будет зависеть от C).

Задача 3 (2) Дано n точек в трёхмерном пространстве \mathbb{R}^3 (точки заданы на входе своими координатами). Предложите как можно более быструю процедуру нахождения куба минимального размера, параллельного осям координат, с центром в начале координат, содержащего не менее трети всех точек.

В следующих задачах нужно привести строгое доказательство, которое использует какое-нибудь формальное определение класса P, например такое:

Определение. $L \in P$ т. и т. т. когда существует MT M и полином p(n), такие что L распознается машиной M и на любом слове $x \in \{0,1\}^*$ (мы всегда без ограничения общности работаем в двоичном алфавите) M делает не больше p(|x|) переходов.

При этом с машинами Тьюринга можно обращаться довольно свободно. Приведу пример корректного доказательства. Пусть языки $L_1 \in P$ и $L_2 \in P$, докажем, что $L_1 \cup L_2 \in P$. Так как $L_1 \in P$ и $L_2 \in P$, существуют машины Тьюринга M_1 и M_2 и полиномы $p_1(n)$ и $p_2(n)$, т. ч. $L_1 = L(M_1)$, $L_2 = L(M_2)$ и на любом слове $x \in \{0,1\}^*$ M_1 и M_2 делают не больше $p_1(|x|)$ и $p_2(|x|)$ переходов соответственно. Рассмотрим машину Тьюринга M, которая на любом слове x будет сначала симулировать работу машины M_1 . Если M_1 принимает x, то M принимает x. Если M_2 принимает x. Если M_1 не принимает x. В противном случае M отвергает x. На любом слове x M сделает не больше $p(|x|) = p_1(|x|) + p_2(|x|)$ переходов. Если $x \in L_1 \cup L_2$, то $x \notin L_1$ или $x \in L_2$ и в обоих случаях M примет x. Если $x \notin L_1 \cup L_2$, то $x \notin L_1$ и $x \notin L_2$, поэтому $x \notin L_2$ поэтому $x \notin L_2$ поэтому $x \notin L_2$ по определению (для него существует распознающая его машина $x \notin L_2$ 0 пореходов).

Вы так же можете ссылаться на то, что на машине Тьюринга можно за полиномиальное время выполнять со словами любые действия, которые можно выполнить полиномиально на реальном компьютере.

Задача 4 $\left(\frac{2}{3} + \frac{2}{3} + \frac{2}{3} + 3\right)$ Докажите, что если $L_1 \in P$ и $L_2 \in P$, то

- (a) $L_1 \cap L_2 \in P$.
- (b) $\overline{L_1} \in P$
- (c) $L_1L_2 \in P$.
- (d) $L_1^* \in P$ (этот пункт сложный, его можно сдавать вместе со следующей домашкой, я его там продублирую).

Если какие-то обозначения вам неизвестны, спросите меня.

Задача 5 $\left(\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+1\right)$ Докажите, что следующие языки принадлежат классу P. Можно считать, что графы кодируются соответствующими матрицами смежности.

- (а) Язык двудольных графов, содержащих не менее 2016 треугольников (троек попарно смежных вершин).
- (b) Язык несвязных графов без циклов (надеюсь, что после курса основных алгоритмов вы умеете решать такие задачи, а те кто не ходил и не может решить, спросите ребят, которые ходили)
- (c) Язык квадратных $\{0,1\}$ -матриц (т.е. элементами могут быть только нули и единицы) порядка $n \geqslant 3000$, в которых есть квадратная подматрица порядка (n-2017), заполненная одними единицами.
- (d) Пусть $q(t) = t^{2016} \in \mathbb{Z}[t]$ и $a, m \in \mathbb{N}$. Язык $L_{a,m} \subseteq \mathbb{N}$ определяется правилами $x_0 = a \pmod{m}$, $x_{i+1} = q(x_i) \pmod{m}$ (все члены этой рекуррентной последовательности лежат в языке, и только они).

Задача 6 (3) Дано описание программы.

- (а) Что вычисляет программа?
- (b) Оцените число производимых битовых операций.

Дополнительные задачи (можно сдавать в течение семестра)

Задача 7 (4) Дан массив из n элементов, на которых определено отношение равенства (например, речь может идти о массиве картинок или музыкальных записей). Постройте как можно более быстрый алгоритм, который определяет, есть ли в массиве элемент, повторяющийся не менее $\frac{n}{2}$ раз.

Задача 8 (3) Вдоль дороги (представляющей целочисленную координатную ось) стоят $N \leq 10^7$ деревень, они точечные и заданы координатой. Формально, даны целозначные координаты деревень $x_1, x_2, \ldots, x_N, |x_i| < 10^9$. Координаты вводятся в несортированном порядке. Также даны количества жителей $0 < m_1, m_2, \ldots, m_N < 10^4$. Приведите эффективный алгоритм (докажите его корректность и оцените сложность), который находит оптимальное местоположение для колодца, которое минимизирует взвешенную сумму расстояний от него до всех деревень отелей (веса – количества жителей).

Числа в этой задаче даны, чтобы вы могли прикинуть приемлемую сложность алгоритма. Представьте, что вам нужно запрограммировать алгоритм на языке высокого уровня, чтобы он работал в пределах пары секунд на любом входе, используя вычислительные мощности слабого персонального компьютера.