DC/AC Converter

Part-1

By: Dr. Bhavnesh Kumar Assistant Professor

DC/AC Converter: Inverter

- ► A device that converts dc power into ac power at a desired output voltage and frequency
- ► The DC source may be in the form of batteries, generators, solar cells or for large power applications, controlled or uncontrolled ac-dc rectifier circuits.
- ► The configuration of AC/DC converter and DC/AC converter is called a dc-link converter.
- ► Applications:
 - ► Emergency lighting systems
 - Uninterrupted power supplies
 - ► AC motor drives

Classifications

▶ On the basis of input source

- ► Voltage Source Inverter (VSI): Have stiff dc voltage source at the input, in other words it have dc voltage source with negligible impedance.
 - ► Current Source Inverter (CSI): Have stiff current source at the input in other words dc source have high impedance.

▶ On the basis of Commutation

- Line commutated Inverters: Can't function as isolated ac voltage source or as a variable frequency generator with dc power at the input.
 - ► Forced commutated Inverters: Can provide an independent ac output voltage of adjustable voltage and adjustable frequency.

▶ On the basis of output

- ► Single phase Inverters
- ► Three phase Inverters

Single phase VSIs

Single phase half bridge

First generation inverters, using thyristor switches, were almost invariably square wave inverters because thyristor switches could be switched on and off only a few hundred times in a second

Single phase half bridge VSI

- In half bridge topology the input dc voltage is split in two equal parts through an ideal and loss-less capacitive potential divider.
- Each leg of the inverter consists of two series connected electronic switches
- Each of these switches consists of an IGBT type controlled switch across which an uncontrolled diode is put in anti-parallel manner
- These switches are capable of conducting bidirectional current but they need to block only one polarity of voltage
- ▶ In half bridge topology the single-phase load is connected between the mid-point of the input dc supply and the junction point of the two switches
- the switches should neither be simultaneously on nor be simultaneously off. Simultaneous turn-on of both the switches will amount to short circuit across the dc bus and will cause the switch currents to rise rapidly.

For Resistive load

- The switching sequence is to design that switch SW_1 is on for the time duration $0 \le t \le T_1$ and the switch SW_2 is on for the time duration $T_1 \le t \le T_2$.
- When switch SW₁ is turned ON, the instantaneous voltage across the load is

$$V_o = +E_{dc}/2$$

When the switch SW₂ is only turned ON, the voltage across the load is

$$V_o = - E_{dc}/2$$

The waveform of the output voltage and the switch currents for a resistive load is shown in Fig.

The r.m.s. value of output voltage vo is given by : V_o , $rms = \frac{1}{T_1} \int_0^{T_1} \frac{E_{dc}^2}{4} dt = \frac{E_{dc}}{2}$

The instantaneous output voltage (vo) is rectangular in shape. The instantaneous output can be expressed in Fourier series as:

$$v_o = \frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

Due to the quarter wave symmetry along the time axis (Figure 3), the values of a_0 and a_n are zero. The value of b_n is given by:

$$b_{n} = \frac{1}{\pi} \left[\int_{-\frac{\pi}{2}}^{0} \frac{-E_{dc}}{2} d(\omega t) + \int_{0}^{\frac{\pi}{2}} \frac{E_{dc}}{2} d(\omega t) \right] = \frac{2E_{dc}}{n\pi}$$

Substituting the value of bn:

$$v_o = \sum_{n=1,3,5,\dots}^{\infty} \frac{2E_{dc}}{n\pi} \sin(n\omega t)$$

$$i_o = \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{R} \frac{2E_{dc}}{n\pi} \sin(n\omega t)$$

For
$$n=1$$

$$v_{o1} = \sum \frac{2E_{dc}}{\sqrt{2}\pi} \approx 0.45E_{dc}$$

Single phase full bridge VSI with R Load

Operation

- Switch SW1 and SW4 are turned ON simultaneously for half of the time period
 - ▶ Path of current flow is marked with red color line arrow
- Switch SW2 and SW3 are turned ON simultaneously for the remaining half cycle.
 - ▶ Path of the current flow is marked with blue color line arrow.

Firing Scheme

Thank You