Definition Reminder

A set $A \subseteq \mathbb{N}$ is **saturated** (or extensional) if: $\forall x,y \in \mathbb{N}$: $(x \in A \land \phi_x = \phi_y) \Longrightarrow y \in A$

Negation: A set A is **NOT saturated** if: $\exists x,y \in \mathbb{N}$: $(x \in A \land \phi_x = \phi_y \land y \notin A)$

In other words, we need to find two indices that compute the same function, but only one belongs to A.

General Strategy

Step 1: Understand What Makes a Set Non-Saturated

A set is NOT saturated when its membership depends on:

- Index properties (like the value of the index itself)
- **Syntactic properties** (like program length, specific representation)
- Computational steps (like number of steps to terminate)

Rather than purely **semantic properties** (like function behavior).

Step 2: Standard Approach

- 1. **Construct a specific function** using Second Recursion Theorem
- 2. Find two different indices for the same function
- 3. Show they have different membership in the set

Method 1: Using Second Recursion Theorem

Template Proof Structure

Theorem: The set A = {definition} is not saturated.

Proof:

1. **Define auxiliary function**: Define g: $\mathbb{N}^2 \to \mathbb{N}$ by

```
g(x,y) = \{specific definition based on the set A\}
```

- 2. **Apply smn-theorem**: Since g is computable, by smn-theorem there exists a total computable function s: $\mathbb{N} \to \mathbb{N}$ such that $\phi_{s(x)}(y) = g(x,y)$.
- 3. **Apply Second Recursion Theorem**: By the Second Recursion Theorem, there exists $e \in \mathbb{N}$ such that $\phi_e = \phi_{s(e)}$.

- 4. Analyze membership: Show that $e \in A$ (or $e \notin A$).
- 5. **Find different index**: Since there are infinitely many indices for any computable function, there exists $e' \neq e$ such that $\phi_e = \phi_e'$.
- 6. **Show different membership**: Demonstrate that e' has opposite membership from e in A.
- 7. **Conclude**: Since $\phi_e = \phi_e'$, but e and e' have different membership in A, the set A is not saturated. \Box

Worked Examples from Real Exams

Example 1: The Halting Set $K = \{x \in \mathbb{N} \mid \phi_x(x) \downarrow \}$

Theorem: K is not saturated.

Proof:

1. **Define auxiliary function**: Define g: $\mathbb{N}^2 \to \mathbb{N}$ by

```
g(x,y) = \{0 \text{ if } y = x; \uparrow \text{ otherwise}\} = \mu z.|y - x|
```

- 2. **Apply smn-theorem**: Since g is computable, by the smn-theorem there exists a total computable function s: $\mathbb{N} \to \mathbb{N}$ such that $\phi_{s(x)}(y) = g(x,y)$.
- 3. **Apply Second Recursion Theorem**: By the Second Recursion Theorem, there exists $e \in \mathbb{N}$ such that $\phi_e = \phi_{s(e)}$. Therefore:

```
\phi_e(y) = g(e,y) = \{0 \text{ if } y = e; \uparrow \text{ otherwise}\}
```

- 4. Analyze membership: Clearly $e \in K$ since $\phi_e(e) = 0 \downarrow$.
- 5. **Find different index**: Since there are infinitely many indices for any computable function, there exists $e' \neq e$ such that $\phi_e = \phi_{e'}$.
- 6. Show different membership: We have $e' \notin K$ since $\phi_e'(e') = \phi_e(e') = \uparrow$ (because $e' \neq e$).
- 7. **Conclusion**: Since $\varphi_e = \varphi_e'$ but $e \in K$ and $e' \notin K$, the set K is not saturated. \Box

Example 2: B = $\{x \in \mathbb{N} \mid \exists k \in \mathbb{N}: k \cdot x \in W_x\}$ (From Exam)

Theorem: B is not saturated.

Proof:

1. **Define auxiliary function**: Define g: $\mathbb{N}^2 \to \mathbb{N}$ by

```
g(x,y) = \{0 \text{ if } y = x; \uparrow \text{ otherwise}\}
```

2. **Apply smn and SRT**: By the smn-theorem and Second Recursion Theorem, there exists $e \in \mathbb{N}$ such that:

$$\phi_e(y) = \{0 \text{ if } y = e; \uparrow \text{ otherwise}\}$$

Therefore $W_e = \{e\}$.

- 3. Analyze membership: $e \in B$ since $1 \cdot e = e \in W_e = \{e\}$.
- 4. **Find different index**: There exists e' > e such that $\phi_e = \phi_{e'}$, so $W_{e'} = W_{e} = \{e\}$.
- 5. Show different membership: $e' \notin B$ since for any $k \in \mathbb{N}$:
 - If k > 0: k·e' > e, so k·e' ∉ W_e' = {e}
 - If k = 0: $k \cdot e' = 0 \neq e$, so $k \cdot e' \notin W_e' = \{e\}$
- 6. **Conclusion**: Since $\phi_e = \phi_e'$ but $e \in B$ and $e' \notin B$, the set B is not saturated. □

Example 3: $C = \{x \in \mathbb{N} \mid \phi_x(x) = x^2\}$ (From Exam)

Theorem: C is not saturated.

Proof:

1. **Define auxiliary function**: Define g: $\mathbb{N}^2 \to \mathbb{N}$ by

```
g(x,y) = \{x^2 \text{ if } y = x; \uparrow \text{ otherwise}\}
```

2. Apply smn and SRT: By the smn-theorem and Second Recursion Theorem, there exists e ∈ N such that:

```
\phi_e(y) = \{e^2 \text{ if } y = e; \uparrow \text{ otherwise}\}
```

- 3. Analyze membership: $e \in C$ since $\phi_e(e) = e^2$.
- 4. **Find different index**: There exists $e' \neq e$ such that $\phi_e = \phi_e'$.
- 5. Show different membership: $e' \notin C$ since $\phi_e'(e') = \phi_e(e') = \uparrow$ (because $e' \neq e$).
- 6. **Conclusion**: Since $\varphi_e = \varphi_e'$ but $e \in C$ and $e' \notin C$, the set C is not saturated. \Box

Example 4: $A = \{x \in \mathbb{N} \mid [0,x] \subseteq W_x\}$ (From Exam)

Theorem: A is not saturated.

Proof:

1. **Define auxiliary function**: Define $g: \mathbb{N}^2 \to \mathbb{N}$ by

```
g(e,x) = \{e \text{ if } x \le e; \uparrow \text{ otherwise}\}
```

2. **Apply smn and SRT**: By the smn-theorem and Second Recursion Theorem, there exists $e \in \mathbb{N}$ such that:

```
\phi_e(x) = \{e \text{ if } x \le e; \uparrow \text{ otherwise}\}
```

Therefore $W_e = [0,e]$ (assuming $e \neq 0$).

- 3. Analyze membership: $e \in A$ since $[0,e] \subseteq W_e = [0,e]$.
- 4. Find different index: There exists e' > e such that $\varphi_e = \varphi_{e'}$, so $W_{e'} = W_e = [0,e]$.
- 5. Show different membership: $e' \notin A$ since $[0,e'] \not\subseteq [0,e] = W_e'$ (because e' > e).
- 6. **Conclusion**: Since $\varphi_e = \varphi_e'$ but $e \in A$ and $e' \notin A$, the set A is not saturated. \Box

When Sets ARE Saturated: Rice vs Rice-Shapiro Applications

Rice's Theorem: Proving "Not Recursive"

Template: Let $A \subseteq \mathbb{N}$ be saturated with $A \neq \emptyset$ and $A \neq \mathbb{N}$. By Rice's theorem, A is not recursive.

Exam Example 1: $A = \{x \in \mathbb{N} \mid E_x \cap X \neq \emptyset\}$ where X is finite and non-empty

Solution:

- 1. Show saturation: $A = \{x \in \mathbb{N} \mid \phi_x \in \mathcal{A}\}$ where $\mathcal{A} = \{f \mid cod(f) \cap X \neq \emptyset\}$
- 2. Show non-triviality:
 - $A \neq \emptyset$: If e is such that $\phi_e = id$, then $e \in A$ since $X \cap E_e = X \cap \mathbb{N} = X \neq \emptyset$
 - A \neq N: If e' is such that $\phi_e' = \emptyset$, then e' \notin A since X \cap E_e' = X \cap \emptyset = \emptyset
- 3. **Apply Rice**: By Rice's theorem, A is not recursive. \Box

Rice-Shapiro Theorem: Proving "Not R.E."

Template: Use Rice-Shapiro to show A is not r.e. by finding:

- $\exists f \in \mathcal{A} \text{ but } \forall \theta \subseteq f \text{ finite: } \theta \notin \mathcal{A}, \text{ OR}$
- $\exists f \notin \mathcal{A} \text{ but } \exists \theta \subseteq f \text{ finite: } \theta \in \mathcal{A}$

Exam Example 2: B = $\{x \in \mathbb{N} \mid W_x \neq \emptyset \land \min(W_x) > 0\}$

Solution:

- 1. Show saturation: B = $\{x \in \mathbb{N} \mid \varphi_x \in \mathcal{B}\}\$ where $\mathcal{B} = \{f \mid \text{dom}(f) \neq \emptyset \land \text{min}(\text{dom}(f)) > 0\}$
- 2. Apply Rice-Shapiro for B not r.e.:
 - Consider id ∉ ℬ since dom(id) = N, so min(dom(id)) = 0
 - Define θ(x) = {1 if x = 1; ↑ otherwise}

- Then $\theta \subseteq id$, θ is finite, and $\theta \in \mathcal{B}$ since min(dom(θ)) = 1 > 0
- By Rice-Shapiro, B is not r.e.
- 3. Apply Rice-Shapiro for B not r.e.:
 - $\theta \notin \bar{\mathbb{B}}$ (since $\theta \in \mathscr{B}$)
 - $\emptyset \subseteq \theta$, \emptyset is finite, and $\emptyset \in \overline{B}$ since dom(\emptyset) = \emptyset
 - By Rice-Shapiro, B is not r.e.
- 4. **Conclusion**: Both B and B are not r.e., hence not recursive. □

Exam Example 3: $A = \{x \in \mathbb{N} \mid W_x \setminus E_x \text{ is infinite}\}$

Solution:

- 1. **Show saturation**: $A = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{A}\}$ where $\mathcal{A} = \{f \mid dom(f) \setminus cod(f) \text{ is infinite}\}$
- 2. Apply Rice-Shapiro for A not r.e.:
 - Consider constant function 1 ∈ A since dom(1) = N, cod(1) = {1}, so dom(1) \ cod(1)
 = N \ {1} is infinite
 - For any finite $\theta \subseteq 1$: dom(θ) is finite, so dom(θ) \ cod(θ) is finite, hence $\theta \notin \mathcal{A}$
 - By Rice-Shapiro, A is not r.e.
- 3. Apply Rice-Shapiro for Ā not r.e.:
 - $\emptyset \in \bar{A}$ since dom(\emptyset) \ cod(\emptyset) = \emptyset is finite
 - $1 \notin \bar{A}$ (since $1 \in \mathcal{A}$) and $\emptyset \subseteq 1$
 - By Rice-Shapiro, Ā is not r.e.
- 4. **Conclusion**: Both A and Ā are not r.e., hence not recursive. \Box

When SRT is Not Applicable

Sometimes you can directly construct counterexamples:

Example: $A = \{x \in \mathbb{N} \mid \text{program length} \le 10\}$

Proof:

- 1. **Find same function, different lengths**: Consider the zero function:
 - m = γ(Z(1)) has length ≤ 10, so m ∈ A
 - n = y(Z(1) Z(1) ... Z(1)) (with 20 copies) has length > 10, so $n \notin A$
- 2. **Same function**: $\phi_m = \phi_n = 0$ (constant zero function)
- 3. Conclusion: A is not saturated.

 □

Common Mistakes to Avoid

- 1. **Don't confuse syntax with semantics**: Sets based on program properties (not function properties) are typically not saturated.
- 2. **Verify function equality**: Always confirm that $\varphi_X = \varphi_V$ before claiming non-saturation.

- 3. **Check the construction**: In SRT proofs, verify that your constructed function actually has the desired properties.
- 4. **Index vs. behavior**: Remember that non-saturated sets depend on indices, not just function behavior.

Quick Recognition Patterns

A set is likely **NOT saturated** if it involves:

- X "x ∈ Wx" (self-reference to index)
- X "φ_x(x) = specific value involving x"
- X "program properties" (length, syntax)
- X "number of computation steps"
- $X \text{ "} k \cdot x \in W_x \text{" (index arithmetic)}$

A set is likely **saturated** if it only involves:

- ✓ Domain properties: "W_x has property P"
- ✓ Codomain properties: "E_x has property P"
- ✓ Function properties: "φ_x is total/partial/constant"

Complete Formal Strategy for Exams

Step-by-Step Classification Process

1. Check if set is saturated

- If NOT saturated: Use Second Recursion Theorem method (this guide)
- If saturated: Continue to step 2

2. Apply appropriate theorem

- Rice's Theorem: Always gives "not recursive" for non-trivial saturated sets
- Rice-Shapiro: Use to prove "not r.e." by finding function/subfunction contradictions

3. Check for r.e. property

- Try to write semicharacteristic function sc $A(x) = 1(\mu w...)$
- If successful: set is r.e. but not recursive
- If Rice-Shapiro shows not r.e.: set is not r.e., hence not recursive

4. Analyze complement

- If A is r.e. but not recursive: Ā is not r.e.
- If both A and Ā are not r.e. (Rice-Shapiro): both are not recursive

Formal Writing Template for Exams

For NON-SATURATED sets: "To show that A is not saturated, we apply the Second Recursion Theorem. Define g(x,y) = [specific function]. By the smn-theorem and SRT, there exists e such that ϕ_e = [specific form]. Then $e \in A$, but there exists $e' \neq e$ with $\phi_e = \phi_e'$ and $e' \notin A$, contradicting saturation."

For SATURATED sets: "The set A is saturated since $A = \{x \in \mathbb{N} \mid \phi_x \in \mathcal{A}\}$ where $\mathcal{A} = [function property]$. Since $A \neq \emptyset$ and $A \neq \mathbb{N}$ [provide examples], by Rice's theorem A is not recursive. [Optional: Apply Rice-Shapiro to show r.e./not r.e. status]"

Final Exam Checklist

- ✓ Always state what you're proving: "not saturated", "not recursive", "not r.e."
- $\sqrt{\text{Use precise notation}}$: A ⊆ N, ϕ_x ∈ \mathcal{A} , etc.
- √ Reference theorems by name: "By Rice's theorem", "By the Second Recursion Theorem"
- √ Verify all conditions: saturation, non-triviality, function constructions
- √ State conclusions clearly: "Therefore, A is not recursive"