Time Series Assignment 1

Arindam Patra

03/11/2021

Name: Arindam Patra, Roll: MDS202008

Importing libraries

```
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, tidy = TRUE)
library(tseries)

## Warning: package 'tseries' was built under R version 4.0.5

## Registered S3 method overwritten by 'quantmod':

## method from

## as.zoo.data.frame zoo

library(forecast)

## Warning: package 'forecast' was built under R version 4.0.5

library(moments)
```

Importing Data

Monthly Electric Production data from 1985-2017

Electric Production vs Time

Descriptive Statistics

```
m = mean(data)
s = sd(data)
print(paste("Minimum = ", min(data)))

## [1] "Minimum = 55.3151"
print(paste("Maximum = ", max(data)))

## [1] "Maximum = 129.4048"
print(paste("Range = ", max(data) - min(data)))

## [1] "Range = 74.0897"
print(paste("Mean = ", m))

## [1] "Mean = 88.8472176322418"
print(paste("Standard deviation = ", s))

## [1] "Standard deviation = 15.3878336647309"
print(paste("ist Quartile = ", quantile(data, 0.25)))

## [1] "1st Quartile = 77.1052"
```

Stationarity Test

Let's test the stationarity of this time series. We will test it using 3 tests - ADF, KPSS and PP Test.

Since all the data lies between 3 SD, so the data doesn't have any outlier.

```
adf = adf.test(data)
adf
##
   Augmented Dickey-Fuller Test
##
##
## data: data
## Dickey-Fuller = -5.139, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
kpss = kpss.test(data)
kpss
##
##
   KPSS Test for Level Stationarity
##
## data: data
## KPSS Level = 6.3058, Truncation lag parameter = 5, p-value = 0.01
pp = PP.test(data)
pp
##
   Phillips-Perron Unit Root Test
##
##
## data: data
## Dickey-Fuller = -8.2573, Truncation lag parameter = 5, p-value = 0.01
```

Here ADF and PP test are agreed for stationarity of this data but KPSS is saying non-stationary. So let's do the first difference of the data.

First Difference

```
first_diff <- diff(data)
plot(Time[-1],first_diff, xlab = 'Date',ylab = 'Electric Production',
    main = 'First Difference of the Time Series',type = '1')</pre>
```

First Difference of the Time Series


```
adf = adf.test(first_diff)
adf
##
##
    Augmented Dickey-Fuller Test
##
## data: first_diff
## Dickey-Fuller = -9.6447, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
kpss = kpss.test(first_diff)
kpss
##
##
    KPSS Test for Level Stationarity
##
## data: first_diff
## KPSS Level = 0.078012, Truncation lag parameter = 5, p-value = 0.1
```

```
pp = PP.test(first_diff)
pp

##

## Phillips-Perron Unit Root Test
##

## data: first_diff
## Dickey-Fuller = -15.573, Truncation lag parameter = 5, p-value = 0.01
```

Ok! Here all of them agrees with the stationarity of this time series data. Therefore we can fit this data to our model.

Train test split

Keeping last 20 observations as test data and rest of them as train data.

```
test_size <- 20
n <- length(first_diff)
train_size <- n - test_size

train_data <- first_diff[c(1 : train_size)]
test_data <- first_diff[c((train_size+1) : n)]

### Total data points
length(first_diff)

## [1] 396

### Training Data Size
length(train_data)

## [1] 376

### Test Data Size
length(test_data)</pre>
### [1] 20
```

Modelling

At first we will build two optimized model. 1 - Using AIC, 2 - Using BIC

Using AIC

```
## ARIMA(2,0,2) with non-zero mean : 2082.145
## ARIMA(0,0,0) with non-zero mean : 2593.348
## ARIMA(1,0,0) with non-zero mean : 2536.677
## ARIMA(0,0,1) with non-zero mean : 2470.228
## ARIMA(0,0,0) with zero mean : 2591.363
## ARIMA(1,0,2) with non-zero mean : 2345.833
## ARIMA(2,0,1) with non-zero mean : 2089.945
## ARIMA(3,0,2) with non-zero mean : 2076.4
```

```
ARIMA(3,0,1) with non-zero mean : 2076.408
##
   ARIMA(4,0,2) with non-zero mean : 2064.957
## ARIMA(4,0,1) with non-zero mean : 2071.16
## ARIMA(5,0,2) with non-zero mean : 2049.122
   ARIMA(5,0,1) with non-zero mean: 2072.437
## ARIMA(6,0,2) with non-zero mean : Inf
## ARIMA(5,0,3) with non-zero mean : Inf
## ARIMA(4,0,3) with non-zero mean : Inf
## ARIMA(6,0,1) with non-zero mean : 2072.464
## ARIMA(6,0,3) with non-zero mean : Inf
## ARIMA(5,0,2) with zero mean
                                   : 2060.629
##
## Best model: ARIMA(5,0,2) with non-zero mean
aic_model
## Series: train_data
## ARIMA(5,0,2) with non-zero mean
##
## Coefficients:
##
            ar1
                     ar2
                             ar3
                                      ar4
                                              ar5
                                                       ma1
                                                                ma2
                                                                        mean
         0.6928 -0.3857
                         -0.2180
                                 -0.0489 0.2877
                                                   -0.8282
                                                            -0.0991 0.1095
## s.e. 0.1446
                          0.0998
                                   0.0734 0.0573
                                                    0.1451
                 0.1248
                                                             0.1311 0.0208
## sigma^2 estimated as 13.12: log likelihood=-1015.56
## AIC=2049.12
                AICc=2049.61
                               BIC=2084.49
For AIC, Best model is ARMA(5,2).
Using BIC
bic_model <- auto.arima(train_data, trace= TRUE,d=0, max.p = 10, max.q = 10,</pre>
                        ic ="bic", approximation = FALSE)
##
## ARIMA(2,0,2) with non-zero mean : 2105.723
## ARIMA(0,0,0) with non-zero mean : 2601.207
## ARIMA(1,0,0) with non-zero mean : 2548.466
## ARIMA(0,0,1) with non-zero mean : 2482.016
## ARIMA(0,0,0) with zero mean
                                   : 2595.293
## ARIMA(1,0,2) with non-zero mean : 2365.481
## ARIMA(2,0,1) with non-zero mean : 2109.593
## ARIMA(3,0,2) with non-zero mean : 2103.907
##
   ARIMA(3,0,1) with non-zero mean : 2099.985
## ARIMA(3,0,0) with non-zero mean : 2166.644
## ARIMA(4,0,1) with non-zero mean : 2098.667
## ARIMA(4,0,0) with non-zero mean : 2093.737
## ARIMA(5,0,0) with non-zero mean : 2098.297
## ARIMA(5,0,1) with non-zero mean : 2103.874
## ARIMA(4,0,0) with zero mean
                                   : 2089.178
   ARIMA(3,0,0) with zero mean
##
                                   : 2161.152
## ARIMA(5,0,0) with zero mean
                                  : 2093.927
## ARIMA(4,0,1) with zero mean
                                   : 2094.259
## ARIMA(3,0,1) with zero mean
                                   : 2102.707
## ARIMA(5,0,1) with zero mean
                                   : 2099.486
```

```
##
## Best model: ARIMA(4,0,0) with zero mean
bic model
## Series: train_data
## ARIMA(4,0,0) with zero mean
##
## Coefficients:
##
            ar1
                     ar2
                               ar3
                                        ar4
##
        -0.0231 -0.4336 -0.4910
                                   -0.4355
## s.e.
         0.0466
                 0.0390
                           0.0388
                                    0.0467
##
## sigma^2 estimated as 14.03: log likelihood=-1029.76
## AIC=2069.53
                AICc=2069.69
                               BIC=2089.18
For BIC, Best model is ARMA(4,0).
```

Choosing BEST Model

We will check MSE for both of these models. For whichever model the MSE is lowest, we will choose that.

```
pred_aic<- forecast(aic_model, h = 20)
aic_forecast<- pred_aic$mean
mse_aic = sum((test_data - aic_forecast)^2)/length(test_data)
print(paste("MSE for AIC Model = ", mse_aic))

## [1] "MSE for AIC Model = 37.4904858003665"

pred_bic <- forecast(bic_model, h = 20)
bic_forecast<- pred_bic$mean
mse_bic = sum((test_data - bic_forecast)^2)/length(test_data)
print(paste("MSE for BIC Model = ", mse_bic))</pre>
```

```
## [1] "MSE for BIC Model = 38.2007743700181"
```

As we can see, MSE for AIC model is lowest. So we will choose that. Therefore ARMA(5,2) is the best model and we will forecast with respect to this model.

Residuals

```
checkresiduals(aic_model)
```

Residuals from ARIMA(5,0,2) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(5,0,2) with non-zero mean
## Q* = 60.265, df = 3, p-value = 5.159e-13
##
## Model df: 8. Total lags used: 11
```

We can see that residual follows almost a normal distribution which is a good sign for this model.

Forecasting

```
plot(forecast(aic_model,h=20),type='l')
lines(c((train_size+1):n),test_data, col = 'black')
```

Forecasts from ARIMA(5,0,2) with non-zero mean


```
plot(Time[(train_size +1): n],aic_forecast,type='l',col = 'red',
    ylim = c(-15,20),xlab = 'Time',ylab = 'AIC Forecast',
    main = 'Actual Data vs Forecast Data')

lines(Time[(train_size+1):n],test_data, col = 'blue')
legend('top', legend=c("Forecast", "Actual"),fill=c("red", "blue"), text.font=4)
```

Actual Data vs Forecast Data

Time

Inverse Transformation

```
y_hat = rep(0, (length(test_data) + 1))
y_hat[1] = data[(length(train_data))]
for (i in 2:(length(test_data) + 1)) {
    y_hat[i] = aic_forecast[i - 1] + y_hat[i - 1]
}

df_compare = data.frame(cbind(y_hat[2:(length(test_data) + 1)], data[c((train_size+2) : length(Time))])
## Took (train_size + 2), since in the main data we have one extra row, first one.
colnames(df_compare) = c("Predicted", "Actual")
df_compare

## Predicted Actual
## 1 103.76434 104.0375
```

```
## 1 103.76434 104.0375
## 2 112.64052 114.5397
## 3 110.02710 115.5159
## 4 99.91560 102.7637
## 5 91.75646 91.4867
## 6 94.36664 92.8900
## 7 104.28110 112.7694
## 8 111.73824 114.8505
## 9 110.07556 99.4901
## 10 101.48482 101.0396
## 11 94.88823 88.3530
```

```
## 12 96.55488 92.0805

## 13 104.42672 102.1532

## 14 110.69114 112.1538

## 15 109.55664 108.9312

## 16 102.73284 98.6154

## 17 97.24516 93.6137

## 18 98.35416 97.3359

## 19 104.65782 114.7212

## 20 109.87463 129.4048
```

Now let's plot it.

Actual Data vs Forecast Data for Main Data

