```
Chase Moynihan chasemoy@csu.fullerton.edu
Mile McCloskey miles.mccloskey@csu.fullerton.edu
Diego Franchi diegofranchi@csu.fullerton.edu
CPSC 335 Project 3
```

Project 3 Report

Mathamatical Analysis:

```
----- Exhaustive Method ------
std::shared ptr<Protein> exhaustive best match(ProteinVector & proteins, const
std::string & string1)
        int best i = 0;
                                                                                  //0(1)
        int best score = 0;
                                                                                  //0(1)
        for (int i = 0; i < proteins.size(); i++)</pre>
                                                                                  //O(n)
int score = exhaustive longest common subsequence(proteins[i]->sequence, string1);//O(2(2^n(n))+n^2)
               if (score > best score)
                        best score = score;
                                                                                  //0(1)
                        best_i = i;
                                                                                  //0(1)
        }
        return proteins[best i];
                                                                                  //0(1)
}
                          exhaustive best match Mathamatical Analysis:
                                =0(1 + 1 + n((2(2^n(n))+n^2)+1+1)+1)
                                     =0(3 + n((2(2^n(n))+n^2))+2)
                                          =0 (n (2 (2<sup>n</sup> (n)) + n<sup>2</sup>))
                                           =0 (2n (2^n (n)) + n^2)
                                   Lemma: (3 + n((2(2^n(n))+n^2))+2)
                               \lim_{n \to \infty} \left( \frac{T(n)}{f(n)} \right) = \lim_{n \to \infty} \left( \frac{T(3 + n((2(2^n(n)) + n^2)) + 2)}{f(2n(2^n(n) + n^2))} \right) = 1
                              \therefore 3 + n((2(2^n(n))+n^2))+2 \in O((2n(2^n(n)+n^2))
int exhaustive longest common subsequence (const std::string & string1,
        const std::string & string2)
        auto all subseqs1 = generate all subsequences(string1);
                                                                                 //0(2^{n}(n))
        auto all subseqs2 = generate all subsequences(string2);
                                                                                 //0(2^{n}(n))
        int best score = 0;
                                                                                 //0(1)
        for (auto& s1 : *all subseqs1)
                                                                                 //O(n)
                for (auto& s2 : *all_subseqs2)
                                                                                 //O(n)
                        if (s1 == s2 \&\& s1.length() > best score)
                                                                                  //O(c)
                               best score = s1.length();
                                                                                 //O(c)
                }
        return best_score;
                                                                                 //0(1)
}
               Exhaustive_longest_common_subsequences Mathamatical Analysis:
                               = O((2^{n}(n)) + (2^{n}(n)) + 1 + n(n(c+c)) + 1)
= O((2^{n}(n)) + (2^{n}(n)) + 2 + n(n(2c))
                                     =0((2^{n}(n)) + (2^{n}(n)) + n^{2})
```

```
chasemoy@csu.fullerton.edu
Chase Moynihan
                         miles.mccloskey@csu.fullerton.edu
Mile McCloskey
                           diegofranchi@csu.fullerton.edu
Diego Franchi
CPSC 335 Project 3
                                       =0(2(2^{n}(n))+n^{2})
std::unique ptr<std::vector<std::string>> generate all subsequences(const std::string
& sequence)
auto R = std::unique ptr<std::vector<std::string>>(new std::vector<std::string>());
//O(c)
       double n = pow(2, sequence.length());
                                                                                //O(c)
       for (uint64 t bits = 0; bits < n; bits++)</pre>
                                                                                //0(2^{n})
       {
              std::string subsequence = "";
                                                                                //0(1)
              for (int j = 0; j < sequence.length(); j++)</pre>
                                                                                //O(n)
                     if (((bits >> j) & 1) == 1)
                                                                                //O(c)
                             subsequence += sequence[j];
                                                                                //O(c)
              R->push back(subsequence);
                                                                                //0(1)
                                                                                //0(1)
       return R;
}
                     generate all subsequences Mathamatical Analysis:
                             =0 (c + c + 2<sup>n</sup> (1 + n(c + c) + 1)+1)
                                 =0(2c + 1 + 2n(2 + n(2c)))
                                      =0(2c + 2n(n(2c))
                                          =0(2^{n}(n))
               ----- Dynamic Programming -----
std::shared ptr<Protein> dynamicprogramming best match(ProteinVector & proteins, const
std::string & string1)
       int best i = 0;
                                                                            //0(1)
       int best score = 0;
                                                                            //0(1)
       for (int i = 0; i < proteins.size(); i++)</pre>
                                                                            //O(n)
int score = dynamicprogramming longest common subsequence(proteins[i]->sequence, string1);//0(k + m + km^2)
              if (score > best score)
                                                                            //0(1)
                     best score = score;
                                                                            //0(1)
                     besti = i;
                                                                            //0(1)
              }
       return proteins[best i];
                                                                            //0(1)
                   dynamicprogramming best match Mathamatical Analysis:
                           =0(1 + 1 + n((k + m + km^2)(1+1+1))+1)
                                  =0(3 + n(k + m + km^2)(3))
                                      =0 (n (k + m + km<sup>2</sup>)
                               Lemma: (3 + n(k + m + km^2)(3))
                                        = \lim_{n \to \infty} \left( \frac{(3 + n(k + m + km^2)}{(n(k + m + km^2)} \right) = 1
                       \therefore (3 + n(k + m + km<sup>2</sup>)(3)) \in O(n(k + m + km<sup>2</sup>))
```

```
Chase Moynihan
                           chasemoy@csu.fullerton.edu
                       miles.mccloskey@csu.fullerton.edu
Mile McCloskey
                         diegofranchi@csu.fullerton.edu
Diego Franchi
CPSC 335 Project 3
int dynamicprogramming longest common subsequence(const std::string & string1,
      const std::string & string2)
      int n = string1.length();
                                                                       //O(c)
      int m = string2.length();
                                                                       //O(c)
      std::vector < std::vector < int >> D(n + 1, std::vector < int > (m + 1)); //O(c)
      for (int i = 0; i < n; i++)</pre>
                                                                       //O(k)
             D[i][0] = 0;
                                                                       //0(1)
      for (int j = 0; j < m; j++)</pre>
                                                                      //O(m)
             D[0][j] = 0;
                                                                      //0(1)
      for (int i = 1; i <= n; i++)</pre>
                                                                      //O(k)
             for (int j = 1; j <= m; j++)</pre>
                                                                      //O(m)
             {
                    int up = D[i - 1][j];
                                                                      //O(c)
                    int left = D[i][j - 1];
                                                                      //o(C)
                    int diag = D[i - 1][j - 1];
                                                                      //o(C)
                    if (string1[i - 1] == string2[j - 1])
                                                                      //o(C)
                          diag++;
                                                                      //0(1)
                    int intermediate = std::max(up, left);
                                                                      //o(C)
                    D[i][j] = std::max(intermediate, diag);
                                                                      //o(C)
      return D[n][m];
                                                                   //0(1)
}
         dynamic programming longest common subsequence Mathamatical Analysis:
                       =0(c+c+k(1)+m(1)+k(m(c+c+c+c+1+c+c)+1)
                              =0(2c + k + m + km(6c+1)+1)
                              =0(2c + k + m + km(6c+km)+1)
```

=O(k + m + km(km)) $=O(k + m + km^2)$

Empiracal Analysis:

Dynamic Method:		Exhuastive Method:	
n runtimes	time (seconds)	n runtimes	time (seconds)
100	0.130544	50	27.0331
300	0.375181	100	53
500	0.566103	150	81.3127
700	0.860546	200	114.377
	3.3333.0	250	135.794
900	1.16766	300	77.7037
1100	1.33538	350	90.6967
1300	1.53265	400	236.573
1500	1.82574	450	261.121
1700	2.03512	500	271.481
1900	2.21351		

Chase Moynihan Mile McCloskey Diego Franchi CPSC 335 Project 3

chasemoy@csu.fullerton.edu
miles.mccloskey@csu.fullerton.edu
diegofranchi@csu.fullerton.edu

Conclusion

Exhuastive Match Results:

sp|P08521|AAP YEAST

sp|Q02336|ADA2 YEAST

sp|P08521|AAP YEAST

sp|P14164|ABF1 YEAST

sp|P19414|ACON_YEAST

Dynamic Match Results:

sp|P32469|DPH5 YEAST

sp|P32469|DPH5_YEAST

sp|P32469|DPH5_YEAST

sp|P32469|DPH5_YEAST

sp|Q08032|CDC45_YEAST

- 3) The results that we generated did not all match to the protein. Essentially, because its looking for two strings that matches, and both algorithms are looking for the longest subsequence, and when it finds them the two will ignore strings of equal length.
- 4)Our empirically-observed time efficiency data is consistent with the mathamatically derived big-O efficiency class of the dynamic programming algorithm. However, our empirically-observed data isn't as consistent with out mathamatically derived big-O efficiency class of the exhuastive algorithm.