

University of Bordeaux 1 - Science and Technology

MOBILITY MODELS FOR UAV GROUP RECONNAISSANCE APPLICATIONS

Erik Kuiper & Simin Nadjm-Tehrani IEEE lecture 2006

By Paziewski Hayley, Etcheverry Jérémy, Tessier Alexis, Testa Mickaël, Castagnet Florian

22/01/2014

Responsible of Directed Works:

CHAUMETTE Serge and AUTEFAGE Vincent

Master 2 Computer Science

UNIVERSITÉ DE BORDEAUX

Study and Research Project

2013-2014

Plan

- Context
- Problematic
- Study of existing
- Our article
- Models of our study
- Experiments
- Comparison of 2 models
- Our Implementation
- Conclusion

Context

- UAV
- Swarm of UAVs
- Mobility models
- → How do they move ?

Problematic

Figure 1 . Source : "http://www.swiss-uav.com"

How well scan an area?

As much and as quickly possible, in a limited time and at least, once every hour.

Figure 2. Source: "http://technorati.com"

Master 2 – Computer Science – Authors : fcastagn, jetcheve, hpaziews, altessie & mtesta

Study of existing

Existing Models

Random Walk

Random WayPoint

[1] : Result pattern of Random Walk

[2] : Result pattern of Random Walk

Study of existing

City Section

[3]:(b) Region B: Street scenario corresponding to a square area of size 1900 m×1900 m

Distributed Pheromone Repel

[4]: Attractive and Repulsive Pheromones For Surveillance

Blue : repulsive

Green: attractive

Our Article

Introduction

- MANET
 - Mobile Ad Hoc Network
 - Networks of mobile entities
 - Collect, process and transmit data
- UAV
 - Application of mobility models with UAVs
- 2 differents mobilities models
 - Random Waypoint
 - Distributed Pheromone Repel

Random Waypoint model

- Each drones are independant
- No backup position
- Random target

Random Waypoint model

Table 1. UAV random action table.

	Probability of action		
Last action	Turn left	Straight ahead	Turn right
Straight ahead	10%	80%	10%
Turn left	70%	30%	0%
Turn right	0%	30%	70%

From : "Mobility Models for UAV Group Reconnaissance Applications"

By: E. Kuiper and S. Nadjm-Tehrani.

Distributed Pheromone Repel model

- Coordination of UAVs thanks to pheromones
- Dynamic UAV

Distributed Pheromone Repel model

- One pheromone map per UAV
- Marks the areas when they have been scanned
- Broadcast regularly a local area pheromone map (when a distance is inferior to 8 km)

Distributed Pheromone Repel model

Figure 2. Pheromone search pattern

Table 2. UAV pheromone action table.

Probability of action					
Turn left	Straight ahead	Turn right			
(Total – Left) /	(Total – Center) /	(Total – Right) /			
(2 * Total)	(2 * Total)	(2 * Total)			

From: "Mobility Models for UAV Group Reconnaissance Applications"

By: E. Kuiper and S. Nadjm-Tehrani.

Experiments

Scenarios for the 2 models

- Characteristics
 - Square with a side length of 30 Km
 - 10 UAVs per run
 - Fixed wing aircraft
- Requirements
 - Data must be returned to the C&C
 - No excessive use of bandwidth (communication of 1 message/s/UAV)

Experiments

Expected results:

Obtained results:

Scan the area in 40 min

Mobilities Models	RandomWayPoint	Pheromone	
Time to scan the area	80% of the area in 120 min	90% of the area in 50 min	
Connectivity	Low	Low	

Experiments

Limitations

- Speed and shift (direction)
- Coverage and connectivity of communications are two conflicting objectives.
- Absolutely unrealistic !!!!!!

Comparison of 2 models

Scan characteristic

Both models manage quite well to avoid rescanning a recently scanned area.

Table 3. Never scanned area

	Max	Median	Min
Random	16.2%	3.2%	0.5%
Pheromone	0.21%	0.03%	0.01%

From: "Mobility Models for UAV Group Reconnaissance Applications"

By: E. Kuiper and S. Nadjm-Tehrani.

All models

- Everything was done
- 10 nodes/models
- Margin calculation
- Percentage of scan
- Tracking display

Pheromone model

- Presence of C&C does not move
- Communication

JBotSim

Pheromone model

JBotSim

Random Walk model

JBotSim

Random Waypoint model

Master 2 – Computer Science – Authors : fcastagn, jetcheve, hpaziews, altessie & mtesta

Interpretation of results

- At the beginning, Random model more efficiency
- Pheromone : sharp increase because of C&C communication
- At the end, random models are stable
- Pheromone model is more effective that the others models to reach 100% of scan.

Comparison with article

Figure 3. Random mobility coverage

Figure 4. Pheromone mobility coverage.

Conclusion

- Good model for scan coverage and reconnaissance scenario.
- Absolutely unrealistic
- Possiblity amelioration is to temporary storage data and relax the limited bandwidth.

Figure 4. Source: "http://fr.depositphotos.com"

Figure 3. Source: "http://www.vikingaero.com"

Figure 5. Source: "http://titanaerospace.com"

DO YOU HAVE ANY QUESTIONS ?

Figure 6.

Ressources

• E. Kuiper and S. Nadjm-Tehrani.

Mobility models for uav group reconnaissance applications. In Wireless and Mobile Communications, 2006. ICWMC '06. International Conference on, page 33, July 2006.

"http://dept-info.labri.fr/~desbarat/PER/sujets/Autefage1-article.pdf"

[1] && [2]: A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, S. Suri. Towards Realistic Mobility Models for Mobile Ad Hoc Networks. 9th annual International Conference on Mobile Computing and Networking. September 2003. ACM Press

[3] A. K. Saha, D. B. Johnson. Modeling Mobility for Vehicular Ad Hoc Networks. First ACM Workshop on Vehicular Ad Hoc Networks. October 2004. ACM Press

[4] J. A. Sauter, R. Matthews, H. V. D. Parunak, S. A.Brueckner. Performance of Digital Pheromones for Swarming Vehicle Control. Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems. July, 2005. ACM Press