Contents

C	Contents					
	Tables & Co 1.1 Betrag	1				
	Ordinary Differential Equations 2.1 Stammfunktionen	1				

1 Tables & Co

E 1.1 (Ableitungen und Stammfunktionen)

E 1.1 (Ableitungen und Stammfunktionen)								
f'(x) =	F(x) =							
0	$c \cdot x$							
$n \cdot x^{n-1}$	$\frac{1}{x^n}$							
$-\frac{1}{x^2}$	$\ln x $							
$\frac{1}{x}$	$x \cdot (\ln x - 1)$							
$\frac{1}{x \cdot \ln a }$	$x \cdot (\log_a x - \frac{1}{\ln a })$							
$\ln a \cdot a^x$	$a^x \cdot \frac{1}{ a }$							
cos x	$-\cos x$							
$-\sin x$	$\sin x$							
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$-\ln \cos x $							
$2\sin x\cos x$	$\frac{1}{2}(x-\sin x\cos x)$							
$-2\sin x\cos x$	$\frac{1}{2}(x+\sin x\cos x)$							
$2 \cdot \frac{tanx}{\cos^2 x}$	$t \tan x - x$							
$\frac{1}{\sqrt{1-x^2}}$	$x \cdot \arcsin x + \sqrt{1 - x^2}$							
$-\frac{1}{\sqrt{1-x^2}}$	$x \cdot \arccos x - \sqrt{1 - x^2}$							
$\frac{1}{1-x^2}$	$x \cdot \arctan x + \frac{1}{2} \ln \left(1 + x^2 \right)$							
cosh x	cosh x							
sinh x	sinh x							
$1 - \tanh^2 x = \frac{1}{\cosh^2 x}$	$\ln\left(\cosh x\right)$							
	$f'(x) = 0$ $n \cdot x^{n-1}$ $-\frac{1}{x^2}$ $\frac{1}{x \cdot \ln a }$ $\ln a \cdot a^x$ $\cos x$ $-\sin x$ $1 + \tan^2 x = \frac{1}{\cos^2 x}$ $2 \sin x \cos x$ $-2 \sin x \cos x$ $2 \cdot \frac{\tan x}{\cos^2 x}$ $\frac{1}{\sqrt{1-x^2}}$ $-\frac{1}{\sqrt{1-x^2}}$ $\cosh x$ $\sinh x$							

E 1.2 (Wichtige Reihen & Limits)

- geometrische Reihe: $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ ist konvergent für |q| < 1, da $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$
- harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{k}$ ist divergent
- alternierende harmonische Reihe: $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ ist konvergent, aber nicht absolut konvergent
- ullet Leibnizreihen haben die Form $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$ und sind konvergent
- $\sum_{k=0}^{\infty} \frac{1}{ki}$ ist konvergent für $j \geq 2$, keine Aussagen über 1 < j < 2
- Euler-Mascheroni Konstante $\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k} \ln n\right)$

E 1.3 (Infinite Series)

$\sum_{n=0}^{\infty} (k+1) \cdot q^n + \frac{1}{(1-q)^2}, q < 1$	
$\sum_{n=0}^{\infty} \frac{(-1)^k}{2k+1} = \pi/4$	$\sum_{n=1}^{\infty} \frac{(-1)^{k+1}}{k} = \ln 2$
$\sum_{n=1}^{\infty} \frac{1}{k^2} = \pi^2/6$	$\sum_{n=1}^{\infty} \frac{(-1)^{k+1}}{k} = \pi^2 / 12$

E 1.4 (Other Important Stuff)

- $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- $\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2 = (\sum_{k=1}^{n} k)^2$
- $\sum_{k=1}^{n} (2k-1) = n^2$
- $\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}$
- $\bullet \sin^2 x + \cos^2 x = 1$
- $\sin x + y = \sin x \cdot \cos y + \cos x \cdot \sin y$
- $\cos x + y = \cos x \cdot \cos y \sin x \cdot \sin y$

- $\sin x = \frac{\exp(ix) \exp(-ix)}{2i}$
- $\cos x = \frac{\exp(ix) + \exp(-ix)}{2}$
- $\sinh x = \frac{e^x e^{-x}}{2}$
- $\cosh x = \frac{e^x + e^{-x}}{2}$
- $\bullet \sin^2 x = \frac{1 \cos(2x)}{2}$
- $\bullet \cos^2 x = \frac{1 + \cos(2x)}{2}$
- $\tan^2 x = \frac{1-\cos(2x)}{1+\cos(2x)}$
- $\sin(\arccos x) = \sqrt{1 x^2}$ $\sin(\arctan x) = x/\sqrt{1 + x^2}$
- $\cos(\arcsin x) = \sqrt{1 x^2}$ $\cos(\arctan x) = 1/\sqrt{1 + x^2}$
- $tan(arcsin x) = x/\sqrt{1-x^2}$ $tan(arccos x) = \sqrt{1-x^2}/x$

E 1.5

E 1.5						
Radian	Gradian	sin	cos	tan		
0 deg	0	0	1	0		
30 deg	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$		
45 deg	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1		
60 deg	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$		
90 deg	$\pi/2$	1	0	∞		
120 deg	$2\pi/3$	$\sqrt{3}/2$	-1/2	$-\sqrt{3}$		
135 deg	$3\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1		
150 deg	$5\pi/6$	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$		
180 deg	π	0	-1	0		

1.1 Betrag

$$|ab| = |a||b|$$

$$|\frac{a}{b}| = \frac{|a|}{|b|}$$

$$|a+b| \le |a| + |b|$$

1.2 Potenzen und Wurzeln

Definition: $x = \sqrt[n]{a} \Leftrightarrow (x^n = a \text{ und } x \ge 0)$ Es folgt: $\sqrt[n]{-a} = -\sqrt[n]{a}, a \ge 0$ $a^{-n} = \frac{1}{a^n} = (\frac{1}{a})^n$ $a^{\frac{1}{a}} = \sqrt[n]{a}$ $\sqrt{ab} = \sqrt{a}\sqrt{b}$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a^x = e^{x \cdot \ln a}$ $\sqrt[n]{a^{-m}} = \frac{1}{\sqrt[n]{a^m}}$

1.2.1 Potenzgesetzte und Wurzelgesetze

$$a^{m}a^{n} = a^{m+n} \qquad \sqrt[n]{a^{m}} = \sqrt[kn]{a^{km}}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n} \qquad \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a^{km}}$$

$$(a^{m})^{n} = a^{mn} \qquad \sqrt[n]{a} \sqrt[n]{b} = \sqrt[n]{ab}$$

$$a^{n}b^{n} = (ab)^{n} \qquad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$\frac{a^{n}}{b^{n}} = (\frac{a}{b})^{n}$$

1.3 Logarithmensätze

$$\log(uv) = \log u + \log v \quad \log(\frac{u}{v}) = \log u - \log v$$
$$\log(u^r) = r \cdot \log u \qquad \log(\frac{1}{v}) = -\log v$$

2 Ordinary Differential Equations

2.1 Stammfunktionen

D 2.1 (Stammfunktion einer Funktion) Sei $f:]a,b[\to \mathbb{R}$ stetig, also $f \in C^0(]a,b[)$. Eine Funktion $F \in C^1(]a,b[)$ heißt Stammfunktion von f gdw. $\forall x \in]a,b[:F'(x)=f(x)$ gilt.

R 2.2 Ist f integrierbar, so muss nicht zwingenderweise eine stetige Stammfunktion existieren.

T 2.3 (Konstante) Seien $F_1, F_2:]a, b[\rightarrow \mathbb{R}$ Stammfunktionen von $f \in C^0(]a, b[)$. Dann gilt $F_1 - F_2 = c \in \mathbb{R}$.

C 2.4 Sei $I \subset \mathbb{R}$ ein Intervall, sei $f: I \to \mathbb{R}$ eine stetige Funktion, und seien $a, b \in I$ mit a < b und $c \in \mathbb{R} \setminus \{0\}$.

Dann gilt folgendes:

Sind $a + c, b + c \in I$, gilt

1.
$$\int_{a}^{b} f(t+c)dt = \int_{a+c}^{b+c} f(x)dx$$

Sind $ca, cb \in I$, gilt

2.
$$\int_a^b f(ct)dt = \frac{1}{c} \int_{ca}^{cb} f(x)dx$$

Ist f stetig differenzierbar und $f(t) \neq 0$, $\forall t \in [a,b]$, gilt

3.
$$\int_a^b \frac{f'(t)}{f(t)} dt = \log(|f(b)|) - \log(|f(a)|)$$

T 2.5 (Local existence of unique sol) Suppose $F : \mathbb{R}^3 \to \mathbb{R}$ diffbar, $x_0 \in \mathbb{R}$, $(y_0, y_0') \in \mathbb{R}$. Then the ODE F(x, y, y') = 0 has a unique sol f on "largest' open interval I containing x_0 st $f(x_0) = y_0$, $f'(x_0) = y_0'$.

D 2.6 (Linear differential equations) *Let* $I \subset \mathbb{R}$ *be an open interval and* $k \geq 1$. *A homogenous linear ODE is defined as*

$$y^{(k)} + a_{k-1}y^{(k-1)} + ... + a_1y' + a_0y = 0$$

, where a_i are compex functions on I. A inhomogenous linear ODE is defined as

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$$

, where b is a compex funtion on I.

T 2.7 Consider a linear ODE. The following holds:

- Set S of k-diffbar sols to the ODE is a subspace of all complex functions defined on I.
- $dim(S) = kand \ \forall x_0 \in I \ \forall (y_0, ..., y_{k-1}) \in C^k \ exists \ a \ unique \ f \in S \ st$ $f(x_0) = y_0, ..., f^{(k-1)} = y_{k-1}.$
- If $b \in C^0(I)$ is the inhom part of a ODE, then there exists a sol f_0 and S_b is the set of solutions which have the form $f + f_0$, $f \in S$.
- $\forall x_0 \in I \ \forall (y_0,...,y_{k-1}) \in C^k$ there a unique sol $f \in S_b$ st $f(x_0) = y_0, ..., f^{(k-1)} = y_{k-1}$.