Extra Problems

MAT544

Spring 2013

Problem 1. Let R be a commutative ring with $1 \neq 0$, and A, B, C, D be finite R-modules. Suppose

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \to 0$$

is exact. Prove $|A| \cdot |C| = |B| \cdot |D|$.

Problem 2. Let R be a commutative ring with $1 \neq 0$ and suppose

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

is short exact.

- (a) Suppose the sequence above splits with a function $h: C \to B$. Prove $B = Im(f) \oplus Im(h)$.
- (b) Suppose M is an R-module and N is a submodule such that M/N is a free R-module with finite basis of size k. Prove $M \cong N \oplus R^k$.

Problem 3. Let M is an R-module and N be an R-submodule of M. Prove M is Noetherian if and only if N and M/N are Noetherian.

Problem 4. Et R be an integral domain and let F be a field contained in R as a subring. Suppose R is finitely generated as an F-module. Show that R is a field.

Problem 5. Let $f: A \to B$ be an R-module homomorphism.

- (a) Show that f is injective if and only if for every pair of R-module homomorphisms $g, h: D \to A$ such that $f \circ g = f \circ h$, then g = h.
- (b) Show that f is surjective if and only if for every pair of R-module homomorphisms $k, t: B \to C$ such that $k \circ f = t \circ f$, then k = t.

Problem 6. Let R be a commutative ring with $1 \neq 0$ and let M be a free R-module with finite basis of order k. Show that $M \cong \mathbb{R}^k$.

Problem 7. Let R be a ring with identity. Prove that $Hom_R(R,R)$ is isomorphic to R.

Problem 8. Show that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are isomorphic as \mathbb{Q} -vector spaces, but not as rings.

Problem 9. Let M be an R-module for R a commutative ring. Prove that the scalar multiplication of R on M may be extended to R[x] so that M becomes an R[x]-module.

Problem 10. Prove that a finite subgroup of the multiplicative group of a field must be cyclic.

Problem 11. Let E be an extension field of F and let K and L be intermediate fields of E/F. Let [K:F]=m and [L:F]=n and assume $\gcd(m,n)=1$. Show that $K\cap L=F$ and [KL:F]=mn.

Problem 12. Let \mathbb{Q} be the field of rational numbers. Show that the group of automorphisms of \mathbb{Q} is trivial.

Problem 13. Show that $[F : \mathbb{Q}] = 2$, then there is a square-free integer m such that $F = \mathbb{Q}(\sqrt{m})$.

Problem 14. Let K be a Galois extension of F with |Gal(K/F)| = 12. Prove that there exists a subfield E of K containing F with [E:F] = 3. Does a sub-extension L necessarily exist satisfying [L:F] = 2?

Problem 15. Suppose $K = F(\alpha)$ is a proper Galois extension of F and assume there exists an element σ of Gal(K/F) satisfying $\sigma(\alpha) = \alpha^{-1}$. Show that [K : F] is even and that $[F(\alpha + \alpha^{-1}) : F] = \frac{1}{2}[K : F]$.

Problem 16. Let $p \in \mathbb{Z}_+$ be a prime and let \mathbb{F}_p be the finite field with p elements. Let $a \in \mathbb{F}_p \setminus \{0\}$. Show that $f(x) = x^p - x + a \in \mathbb{F}_p[x]$ is irreducible. Let α be a root of of f. Show that $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ is Galois.

Problem 17. Let K be an extension of \mathbb{Q} contained in \mathbb{C} such that K/\mathbb{Q} is Galois and $Gal(K/\mathbb{Q})$ is cyclic of order 4. Show that $i \notin K$.

Problem 18. A field, F, is called **algebraically closed** if every polynomial in F[x] has all its roots in F. Show that every algebraically closed field must be infinite.

Problem 19. Let K/F be a finite extension of fields. Show that K/F is Galois if and only if $[K:F] = |Aut_FK|$.

Problem 20. Let p > 0 be a prime and let K be a field with charK = p.

- (a) Show that if $\zeta \in K$ is a p^{th} root of unity, then $\zeta = 1$. Deduce that if m, n > 0 and $p \nmid n$, then every np^m -th root of unity is an n^{th} root of unity.
- (b) If $a \in K$, show that the polynomial $x^p a \in K[x]$ has either no roots or exactly one root in K.

Problem 21. Let $F \subseteq K$ be a finite extension of fields and suppose $f(x) \in F[x]$ be a monic irreducible polynomial. Let $\alpha \in K$ be a root of f(x). If K/F is Galois, show that f(x) has all its roots in K.

Problem 22. Let K be a Galois extension of k and let $k \subseteq F \subseteq K$ and $k \subseteq L \subseteq K$.

- (a) Show that $Gal(K/LF) = Gal(K/L) \cap Gal(K/F)$.
- (b) Show that $Gal(K/(L \cap F)) = \langle Gal(K/L), Gal(K/F) \rangle$.

Problem 23. Let E be a finite dimensional Galois extension of a field F and let G = Gal(E/F). For $e \in E$ let $G(e) = \{\sigma(e) : \sigma \in G\}$. Let e_1, \ldots, e_n be all the distinct elements of G(e).

- (a) Prove that $f(x) = (x e_1)(x e_2) \cdots (x e_n)$ is in F[x].
- (b) Prove that f(x) is irreducible in F[x].

Problem 24. Let K_1 and K_2 be two finite extensions of F contained in the field K and suppose both are splitting fields over F. Show that the compositum K_1K_2 is a splitting field over F.

Problem 25. Let K/E/F be a tower of fields. Prove the following:

- (a) If $u \in K$ is separable over F, then u is separable over E.
- (b) If K is separable over F, then K is separable over E and E is separable over F.

Problem 26. Let F be a field and \overline{F} an algebraic closure of F. Assume that $F \subseteq K \subseteq \overline{F}$, $F \subseteq L \subseteq \overline{F}$, K/F is a Galois extension of fields, and L/K is a Galois extension of fields. Prove that KL/F is a Galois extension of fields, where KL is the composite field.

Problem 27. Suppose E/\mathbb{Q} is a Galois extension with Galois group isomorphic to C_6 . Explain why E cannot be the splitting field of a cubic polynomial.

Problem 28. Suppose that K is the splitting field of some polynomial over \mathbb{Q} with $[K : \mathbb{Q}] = p^2q$, where p and q are distinct primes. Show that K has subfields L_1 , L_2 , and L_3 such that $[K : L_1] = p$, $[K : L_2] = p^2$, $[K : L_3] = q$.

Problem 29. Let F be a perfect field, \overline{F} an algebraic closure of F and $\sigma \in Aut(\overline{F}/F)$. Let

$$K = \{ \alpha \in \overline{F} : \sigma(\alpha) = \alpha \}.$$

Show that K is a field and that every finite extension of K is cyclic.

Problem 30. Show that if F is a field with characteristic 0, then every algebraic extension of F is separable. [Hint: If $f(x) \in \mathbb{Q}[x]$ has a multiple root, then $\gcd(f(x), f'(x)) \neq 1$.]

Problem 31. Let p be a prime number, and let K be the splitting field of $f(x) = x^6 - p$ over \mathbb{Q} . Determine the Galois group of K over \mathbb{Q} as well as all of the intermediate fields E satisfying $[E:\mathbb{Q}]=2$.

Problem 32. Let p be an odd prime, $d \ge 1$ and write $q = p^d$.

(a) Consider $\{\pm 1\}$ as a group under multiplication. Show that there is an unique group homomorphism $\lambda_q: \mathbb{F}_q^{\times} \to \{\pm 1\}$ which is characterized by the requirement that for every $u \in \mathbb{F}_q^{\times}$, $\lambda_q(u) = 1$ if and only if $u = v^2$ for some $v \in \mathbb{F}_q^{\times}$. Is λ_q always surjective?

(b) Consider the set of all squares in \mathbb{F}_q ,

$$\Sigma_q = \{u^2 \in \mathbb{F}_q : u \in \mathbb{F}_q\} \subseteq \mathbb{F}_q.$$

Show that the number of elements of Σ_q is (q+1)/2. Deduce that if $t \in \mathbb{F}_q$ then the set

$$t - \Sigma_q = \{t - u^2 \in \mathbb{F}_q : u \in \mathbb{F}_q\}$$

has (q+1)/2 elements.

(c) If $t \in \mathbb{F}_q$, show that

$$\left|\Sigma_q \cap (t - \Sigma_q)\right| \ge 1.$$

Deduce that every element of \mathbb{F}_q is either a square or can be written as the sum of two squares.

- (d) Deduce that the equation $x^2 + y^2 + z^2 = 0$ has at least one non-trivial solution in \mathbb{F}_q .
- (e) What can you say about the case p = 2?

Problem 33. A field F is called perfect if every element of an algebraic closure of F is separable over F. Let F be a field of characteristic p. Show that the following are equivalent.

- (a) The field F is perfect.
- (b) For every $\alpha \in F$ there exists a $\beta \in F$ such that $\beta^p = \alpha$.
- (c) The map $a \mapsto a^p$ is an automorphism of F.

Problem 34. Let x and y be independent indeterminates of \mathbb{F}_p , $K = \mathbb{F}_p(x,y)$, and $F = \mathbb{F}_p(x^p,y^p)$.

- (a) Show that $[K:F]=p^2$.
- (b) Show that K is not a simple extension of F.

Problem 35. Show that every purely inseparable field extension is normal.

Problem 36. Let K be an arbitrary separable extension of F. Show that if every element of K is a root of a polynomial in F[x] of degree less than or equal to n, then K is a simple extension of F of degree less than or equal to n.

Problem 37. Let α be a root of the polynomial $x^6 + 3$. Show that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois and find $Gal(\mathbb{Q}(\alpha)/\mathbb{Q})$.

Problem 38. Let $q = p^m$ for $p, m \in \mathbb{Z}_+$ with p a prime. Let $g(x) \in F_p[x]$ be an irreducible polynomial of degree d. Show that $g(x) \mid x^{p^m} - x$ if and only if $d \mid m$.

Problem 39. Let M be an R-module and let N be an R-submodule of M. Prove that M is Noetherian (resp. Artinian) if and only if both N and M/N are Noetherian (resp. Artinian).

Problem 40. Let R be a commutative Noetherian ring with identity. Show that there are only finitely many minimal prime ideals of R.

Problem 41. Let R be a Noetherian integral domain. Show that every ideal of R contains a product of prime ideals of R.

Problem 42. Let M_i be Noetherian R-modules for i = 1, ..., n. Show that $\bigoplus_{i=1}^{n} M_i$ is a Noetherian R-module.

Problem 43. Let M be a Noetherian R-module, and let $f: M \to M$ be an R-module homomorphism. Show that if f is surjective, then f is an R-module isomorphism.

Problem 44. Let R be an integral domain. Show that R is Artinian if and only if R is a field.

Problem 45. Let V be a vector space over a field F. A linear transformation $T: V \to V$ is said to be idempotent if $T^2 = T$. Prove that if T is idempotent, then $V = V_0 \oplus V_1$, where $T(v_0) = 0$ for all $v_0 \in V$ and $T(v_1) = v_1$ for all $v_1 \in V_1$.

Problem 46. Let $T: V \to W$ be a linear transformation of vector spaces over a field F.

- (a) Show that T is injective if and only if $\{T(v_1), \ldots, T(v_n)\}$ is linearly independent in W whenever $\{v_1, \ldots, v_n\}$ is linearly independent in V.
- (b) Show that T is surjective if and only if $\{T(x) : x \in X\}$ is a spanning set for W whenever X is a spanning set for V.

Problem 47. Let V be a finite dimensional vector space over a field F, and $T: V \to V$ a linear transformation. Prove that there exist subspaces W_1 and W_2 of V which are both stable under T such that T restricted to W_1 is non-singular, T restricted to W_2 is nilpotent, and $V = W_1 \oplus W_2$.

Problem 48. Show that the center of $M_n(R)$ is isomorphic to the center of R.

Problem 49. Let $M_n(F)$ denote the ring of $n \times n$ matrices over a field F, and let I_n denote the identity matrix.

- (a) Determine (with proof) the number of similarity classes there are in $M_n(\mathbb{Q})$ of matrices satisfying $A^2 = -I_n$. Note, your answer may depend on n.
- (b) Repeat part (a) for matrices in $M_n(\mathbb{C})$ satisfying $A^2 = -I_n$.

Problem 50. Let N be an $n \times n$ matrix with coefficients in the field F. Suppose N is nilpotent, that is, $N^k = 0$ for some positive integer k.

- (a) Prove that N is similar to a block diagonal matrix whose blocks are matrices with 1's on the first superdiagonal, and 0's elsewhere.
- (b) Prove that if N is an $n \times n$ nilpotent matrix, then $N^n = 0$. (You should not quote the Cayley-Hamilton Theorem).

Problem 51. Let A be an $n \times n$ complex matrix with characteristic polynomial $f(x) = x^n - nx + 1$.

- (a) Prove that if n > 2 then A is diagonalizable over the complex numbers.
- (b) Is the assertion in part (a) true if n = 2? Either prove it or give a counterexample.

Problem 52. Let $A \in M_n(\mathbb{C})$. Prove that A is not invertible if and only if 0 is an eigenvalue of A.

Problem 53. Let A be an $n \times n$ matrix such that $A^2 = I_n$ and $A \neq I_n$. Show that -1 is an eigenvalue of A.