0.1 Motivation

NEEDS TO BE WRITTEN

0.2 FBLT

```
Algorithm 1: FBLT
   Data: s_i^k: interfered transaction;
    s_i^l: interfering transactions;
   \delta_i^k(L): the maximum number of times s_i^k can be aborted during an interval L;
    \eta_i^k: number of times s_i^k has already been aborted during an interval L;
   m_set: contains at most m non-preemptive transactions;
   m_{-}prio: priority of any transaction in m_{-}set. m_{-}prio is higher than any priority of any real-time task;
    r(s_i^k): time point at which s_i^k joined m_set;
    Result: atomic sections that will abort
   if p_i^l > p_i^k then
         if \eta_i^k(L) \leq \delta_i^k(L) then
              Increment \eta_i^k by 1;
              Abort s_i^k;
 5
              if s_i^k \not\in m\_set then Add s_i^k to m\_set;
 6
                   Record r(s_i^k);
                   Increase priority of s_i^k to m-prio;
 9
10
              \begin{array}{l} \textbf{if} \ s_j^l \in m\_{set} \ AND \ r(s_j^l) < r(s_i^k) \ \textbf{then} \\ \big| \ \ \text{Abort} \ s_i^k; \end{array}
11
12
              else
13
                  Abort s_j^l;
14
              end
15
         end
16
   else
         Swap s_i^k and s_i^l;
         Go to Step 4
19
20 end
```

0.2.1 Illustrative Example

NEEDS TO BE WRITTEN

0.3 Properties

0.4 Retry Cost Under FBLT

We now derive an upper bound on the retry cost of any job τ_i^x under FBLT during an interval $L \leq T_i$. Since all tasks are sporadic (i.e., each task τ_i has a minimum period T_i), T_i is the maximum study interval for each task τ_i .

Claim 1 The total retry cost for any job τ_i^x due to: 1) conflicts between its transactions and transactions of other jobs under FBLT during an interval $L \leq T_i$. 2) release of higher priority jobs, is upper bounded by:

$$RC_{to}(L) \le \sum_{\forall s_i^k \in s_i} \left(\delta_i^k(L) len(s_i^k) + \sum_{s_{iz}^k \in \chi_i^k} len(s_{iz}^k) \right) + RC_{re}(L)$$
 (1)

where χ_i^k is the set of at most m-1 maximum length transactions sharing objects with s_i^k . Each transaction $s_{iz}^k \in \chi_i^k$ belongs to a distinct task $\tau_j, j \neq i$. $RC_{re}(L)$ is the retry cost resulting from release of higher piority jobs which preempt τ_i^x . $RC_{re}(L)$ is calculated by (6.8) in [2] for G-EDF, and (6.10) in [2] for G-RMA.

Proof 1 By definition of FBLT, $s_i^k \in \tau_i^x$ can be aborted at maximum $\delta_i^k(L)$ times during interval L before s_i^k joins m_set. Before joining m_set, s_i^k can be aborted due to higher priority transactions, or transactions in the m_set. Original priority (before step) of transactions in m_set can be of higher or lower priority than p_i^x . Thus, the maximum time s_i^k is aborted before joining m_set occurs if s_i^k is aborted for δ_i^k . The worst case scenario for s_i^k after joining m_set occurs if s_i^k is preceded by m-1 maximum length conflicting transactions. Hence, s_i^k has to wait for the previous m-1 transactions to commit first. Priority of s_i^k after joining m_set is higher than any real-time task. So, s_i^k is not aborted by any task. If s_i^k has not joined m_set yet, and a higher piority job τ_j^y is released while s_i^k is running, then s_i^k may be aborted if τ_j^y has conflicting transactions with s_i^k . τ_j^y causes only one abort in τ_i^x because τ_j^y preempts τ_i^x only once. If s_i^k has already joined m_set, then s_i^k cannot be aborted by release of higher priority jobs. So, the maximum number of abort times to transactions in τ_i^x due to release of higher priority jobs is less or equal to number of interfering higher priority jobs to τ_i^x . Claim follows.

Claim 2 The blocking time for a job τ_i^x due to lower priority jobs during an interval $L \leq T_i$ is upper bounded by:

 $D(\tau_i^x) = \min\left(\max_1^m(s_{j_{max}, \forall \tau_j^l, p_j^l < p_i^x})\right) \tag{2}$

where $s_{j_{max}}$ is the maximum length transaction in any job τ_j^l with original priority lower than p_i^x . The right hand side of (2) is the minimum of the m maximum transactional lengths in all jobs with lower priority than τ_i^x .

Proof 2 τ_i^x is blocked when it is initially released and all processors are busy with lower priority jobs with non-preemptive transactions. Although τ_i^x can be preempted by higher priority jobs, τ_i^x cannot be blocked after it is released. If τ_i^x is preempted by a higher priority job τ_j^y , then τ_j^y finishes execution, the underlying scheduler will not choose a lower priority job than τ_i^x before τ_i^x . So, after τ_i^x is released, there is no chance for any transaction s_u^v belonging to a lower priority job than τ_i^x to run before τ_i^x . Thus, s_u^v cannot join m_set before τ_i^x finishes. Consequently, the worst case blocking time for τ_i^x occurs when the maximum length m transactions in lower priority jobs than τ_i^x are executing non-preemptively. After the minimum length transaction in the m_set finishes, the underlying scheduler will choose τ_i^x or a higher priority job to run. Claim follows.

Claim 3 Response time of any job τ_i^x during an interval $L \leq T_i$ under FBLT is upper bounded by

$$R_i^{up} = c_i + RC_{to}(L) + D(\tau_i^x) + \left[\frac{1}{m} \sum_{\forall j \neq i} W_{ij}(R_i^{up}) \right]$$
(3)

where $RC_{to}(L)$ is calculated by (1), $D(\tau_i^x)$ is calculated by by (2), and $W_{ij}(R_i^{up})$ is calculated by (11) in [3] for G-EDF, and (17) in [3] for G-RMA. (11) and (17) in [3] inflates c_j of any job of $\tau_j \neq \tau_i$, $p_j > p_i$ by retry cost of transactions in τ_j .

Proof 3 Response time of any job τ_i^x is a direct result of FBLT bahviour. Response time of any job τ_i^x is the sum of its worst case execution time c_i , plus retry cost of transactions in τ_i^x (RC(L)), plus blocking time of τ_i^x (D(τ_i^x)), and the workload interference of higher priority jobs. Workload interference of higher priority jobs scheduled by G-EDF is calculated by (11) in [3], and by (17) in [3] for G-RMA.

0.5 FBLT vs. Competitors

Let $RC_A(T_i)$ denote the retry cost of any τ_i^x using the synchronization method A during T_i . Let $RC_B(T_i)$ denote the retry cost of any τ_i^x using synchronization method B during T_i .

Then, schedulability of A is comparable to B if

$$\sum_{\forall \tau_i} \frac{c_i + RC_A(T_i)}{T_i} \leq \sum_{\forall \tau_i} \frac{c_i + RC_B(T_i)}{T_i}$$

$$\sum_{\forall \tau_i} \frac{RC_A(T_i)}{T_i} \leq \sum_{\forall \tau_i} \frac{RC_B(T_i)}{T_i}$$
(4)

0.5.1 FBLT vs. ECM

Claim 4 Schedulability of FBLT is equal or better to ECM's when maximum number of abort times of any transaction s_i^k in any job of τ_i is less or equal to number of conflicting transactions to s_i^k in all other jobs with higher priority than priority of current job of τ_i .

Proof 4 By substituing $RC_A(T_i)$ and $RC_B(T_i)$ in (4) with (1) and (6.7) in [2] respectively.

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right) + RC_{re}(T_{i})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}^{ex}} \sum_{\theta \in \theta_{i}^{ex}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil \sum_{\forall s_{j}^{\bar{h}}(\theta)} len(s_{j}^{\bar{h}}(\theta) + s_{max}^{j}(\theta)) \right) \right) + RC_{re}(T_{i})}{T_{i}}$$

$$(5)$$

Let $\theta_i^{ex} = \theta_i + \theta_i^*$ where θ_i^* is the set of objects not accessed directly by τ_i but can enforce transactions in τ_i to retry due to transitive retry. Let $\gamma_i^{ex} = \gamma_i + \gamma_i^*$ where γ_i^* is the set of tasks that access objects in θ_i^* . $\bar{s}_j^h(\theta)$ can access multiple objects, so $s_{max}^j(\theta)$ is the maximum length transaction conflicting with $\bar{s}_j^h(\theta)$. FBLT needs to bound transitive retry. So, θ_i^{ex} will be avoided in (5). Thus, transactions under ECM behave as if there were no transitive retry. Consequently, (5) will be

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{\theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil \sum_{\forall s_{j}^{\bar{h}}(\theta)} len\left(\bar{s_{j}^{\bar{h}}}(\theta) + \bar{s_{max}}(\theta) \right) \right) \right)}{T_{i}}$$

$$(6)$$

As $\bar{s}_{j}^{h}(\theta)$ is included only once for all objects accessed by it. $s_{max}^{j}(\theta)$ is also included once for each $\bar{s}_{i}^{h}(\theta)$. Consequently, (6) becomes

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \; \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(s_{j}^{\bar{h}}(\theta) + s_{max}^{\bar{j}}(\theta) \right) \right) \right)}{T_{i}}$$

$$(7)$$

Although different s_i^k can have common conflicting transactions $\bar{s_j^h}$, but no more than one s_i^k can be preceded by the same $\bar{s_j^h}$ in the m_set. This happens because transactions in the m_set are non-preemptive. Original priority of transactions preceding s_i^k in the m_set can be of lower or higher priority than original priority of s_i^k . Under G-EDF, $\tau_j \neq \tau_i$ can have at least one job of higher priority than τ_i^x , then $\left\lceil \frac{T_i}{T_j} \right\rceil \geq 1$. So, each one of the s_{iz}^k in the left hand side of (7) is included in one of the $\bar{s_j^h}(\theta)$ in the right hand side of (7). \therefore (7) holds if

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \delta_{i}^{k}(T_{i}) len(s_{i}^{k})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len(s_{max}^{j}(\theta)) \right) \right)}{T_{i}}$$

$$(8)$$

For each $s_i^k \in s_i$, there are a set of zero or more $\bar{s_j^h}(\theta) \in \tau_j$, $\forall \tau_j \neq \tau_i$ that are conflicting with s_i^k . Assuming this set of conflicting transactions with s_i^k is denoted as $\eta_i^k = \left\{\bar{s_j^h}(\theta) \in \tau_j : (\theta \in \theta_i) \land (\forall \tau_j \neq \tau_i) \land \left(\bar{s_j^h}(\theta) \not\in \eta_i^l, l \neq k\right)\right\}$. The last condition $\bar{s_j^h}(\theta) \not\in \eta_i^l, l \neq k$ in defintion of η_i^k ensures that common transactions $\bar{s_j^h}$ that can conflict with more than one transaction $s_i^k \in \tau_i$ are split among different $\eta_i^k, k = 1, ..., |s_i|$. This condition is necessary because in ECM, no two or more transactions of τ_i^x can be aborted by the same transaction of τ_j^h where $p_j^h > p_i^x$. By substitution of η_i^k in (8), we get

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \delta_{i}^{k}(T_{i}) len(s_{i}^{k})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall k=1}^{|s_{i}|} \sum_{s_{j}^{\bar{h}}(\theta) \in \eta_{i}^{k}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(s_{max}^{j}(\theta)\right)\right)\right)}{T_{i}}$$

$$(9)$$

 $\therefore len(s_{max}^j(\theta)) \ge len(s_i^k), \therefore (9) \ holds \ if for each \ s_i^k \in \tau_i$

$$\delta_{i}^{k} \leq \frac{\sum_{\bar{s_{j}^{h}}(\theta) \in \eta_{i}^{k}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(s_{i}^{k}\right) \right)}{len(s_{i}^{k})} = \sum_{\bar{s_{i}^{h}}(\theta) \in \eta_{i}^{k}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil$$

So, $\sum_{\bar{s}_{j}^{\bar{h}}(\theta) \in \eta_{i}^{k}} \left[\frac{T_{i}}{T_{j}} \right]$ is the maximum number of conflicting transactions with s_{i}^{k} in all jobs with higher priority than priority of current job of τ_{i} . Claim follows.

0.5.2 FBLT vs. RCM

Claim 5 Schedulability of FBLT is equal or better to RCM's when maximum number of abort times of each transaction s_i^k in any job of τ_i is less or equal to number of conflicting transactions with s_i^k in all jobs with higher priority than τ_i minus sum of maximum length m-1 transactions conflicting with s_i^k .

Proof 5 By substituing $RC_A(T_i)$ and $RC_B(T_i)$ in (4) with (1) and (6.9) in [2] respectively.

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i})len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k})\right) + RC_{re}(T_{i})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j}^{*} \in \gamma_{i}^{ex}} \sum_{\forall \theta \in \theta_{i}^{ex}} \left(\left\lceil \frac{T_{i}}{T_{j}}\right\rceil + 1\right) \sum_{\forall s_{j}^{\bar{h}}(\theta)} len\left(s_{j}^{\bar{h}}(\theta) + s_{max}^{\bar{h}}(\theta)\right)\right) + RC_{re}(T_{i})}{T_{i}}$$

$$(10)$$

where $\tau_j^* = \{\tau_j : (\tau_j \neq \tau_i) \land (p_j > p_i)\}$. Let $\theta_i^{ex} = \theta_i + \theta_i^*$ where θ_i^* is the set of objects not accessed directly by τ_i but can enforce transactions in τ_i to retry due to transitive retry. Let $\gamma_i^{ex} = \gamma_i + \gamma_i^*$ where γ_i^* is the set of tasks that access objects in θ_i^* . $s_j^{\bar{h}}(\theta)$ can access multiple objects, so $s_{max}^j(\theta)$ is the maximum length transaction conflicting with $s_j^{\bar{h}}(\theta)$. FBLT needs to bound transitive retry. So, θ_i^{ex} will be avoided in (10). Thus, transactions under RCM behave as if there were no transitive retry. Consequently, (10) will be

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\sum_{\forall \tau_{j}^{*} \in \gamma_{i}} \sum_{\forall \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) \sum_{\forall s_{j}^{\bar{h}}(\theta)} len\left(s_{j}^{\bar{h}}(\theta) + s_{max}^{\bar{f}}(\theta) \right)}{T_{i}}$$

$$(11)$$

As $\bar{s}_{j}^{h}(\theta)$ is included only once for all objects accessed by it, $s_{max}^{j}(\theta)$ is also included once for each $\bar{s}_{i}^{h}(\theta)$. Consequently, (11) becomes

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j}^{*} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) len\left(s_{j}^{\bar{h}}(\theta) + s_{max}^{j}(\theta) \right) \right)}{T_{i}}$$

$$(12)$$

Although different s_i^k can have common conflicting transactions $\bar{s_j^h}$, but no more than one s_i^k can be preceded by the same $\bar{s_j^h}$ in the m_set. This happens because transactions in the m_set are non-preemptive. Original priority of transactions preceding s_i^k in the m_set can be of lower or higher priority than original priority of s_i^k . Under G-RMA, $p_j > p_i$ means that $T_j \leq T_i$, then $\left\lceil \frac{T_i}{T_j} \right\rceil \geq 1$. For each $s_i^k \in s_i$, there are a set of zero or more $\bar{s_j^h}(\theta) \in \tau_j^*$ that are conflicting with s_i^k . Assuming this set of conflicting transactions with s_i^k is denoted as $\eta_i^k = \left\{ \bar{s_j^h}(\theta) \in \tau_j^* : (\theta \in \theta_i) \land \left(\bar{s_j^h}(\theta) \not\in \eta_i^l, l \neq k \right) \right\}$. The last condition $\bar{s_j^h}(\theta) \not\in \eta_i^l, l \neq k$ in defintion of η_i^k ensures that common transactions $\bar{s_j^h}$ that can conflict with more than one transaction $s_i^k \in \tau_i$ are split among different $\eta_i^k, k = 1, ..., |s_i|$. This condition is necessary because in RCM, no two or more transactions of τ_i^x can be aborted by the same transaction

of τ_j^h where $p_j^h > p_i^x$. By substitution of η_i^k in (12), we get

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall k=1}^{|s_{i}|} \sum_{s_{j}^{\bar{h}}(\theta) \in \eta_{i}^{k}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) len\left(s_{j}^{\bar{h}}(\theta) + s_{max}^{j}(\theta) \right) \right) \right)}{T_{i}}$$

$$(13)$$

 s_j^h belongs to higher priority jobs than τ_i and s_{max}^j belongs to higher priority jobs than τ_i or τ_i itself. Transactions in m_set can belong to jobs with original priority higher or lower than τ_i . So, (12) holds if for each $s_i^k \in \tau_i$

$$\delta_i^k(T_i)len(s_i^k) \le \left(\sum_{\bar{s_j^h}(\theta) \in \eta_i^k} \left(\left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) len\left(\bar{s_j^h}(\theta) + s_{max}^j(\theta) \right) \right) - \sum_{\bar{s_{iz}^k} \in \chi_i^k} len(s_{iz}^k) \quad (14)$$

$$\therefore \delta_i^k(T_i) \le \left(\sum_{s_j^{\bar{h}}(\theta) \in \eta_i^k} \left(\left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) len \left(\frac{s_j^{\bar{h}}(\theta) + s_{max}^j(\theta)}{s_i^k} \right) \right) \right) - \sum_{s_{iz}^k \in \chi_i^k} len \left(\frac{s_{iz}^k}{s_i^k} \right)$$
(15)

 $\therefore len\left(\frac{s_{iz}^k}{s_i^k}\right) \leq len(s_{iz}^k), \ and \ len(s_{max}^j(\theta)) > len(s_i^k) \therefore (15) \ holds \ if$

$$\therefore \delta_i^k(T_i) \le \left(\sum_{\bar{s}_j^h(\theta) \in \eta_i^k} \left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) \right) - \sum_{\bar{s}_{iz}^k \in \chi_i^k} len\left(\bar{s}_{iz}^k\right)$$

 $\sum_{s_j^{\bar{h}}(\theta) \in \eta_i^k} \left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) \text{ represents number of conflicting transactions with } s_i^k \text{ in all jobs with } higher priority than } \tau_i. \sum_{s_{iz}^k \in \chi_i^k} len\left(s_{iz}^k\right) \text{ is sum of maximum } m-1 \text{ transactional length } transactions conflicting with } s_i^k. Claim follows.$

0.5.3 FBLT vs. G-EDF/LCM

Claim 6 Schedulability of FBLT is equal or better to G-EDF/LCM's when maximum number of abort times of each transaction s_i^k in any job of τ_i is less or equal to sum of total number each transaction s_j^h can conflict with s_i^k multiplied by maximum α with which s_j^h can conflict with maximum length transaction sharing objects with s_i^k and s_j^h .

Proof 6 By substituting $RC_A(T_i)$ and $RC_B(T_i)$ in (4) with (1) and (6.7) in [2] respectively.

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{\forall s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right) + RC_{re}(T_{i})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}^{ex}} \sum_{\theta \in \theta_{i}^{ex}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil \sum_{\forall s_{j}^{h}(\theta)} len\left(s_{j}^{h}(\theta) + \alpha_{max}^{jh} s_{max}^{j}(\theta)\right) \right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len\left(s_{max}^{i}\right) \right) + RC_{re}(T_{i})}{T_{i}}$$

$$(16)$$

Let $\theta_i^{ex} = \theta_i + \theta_i^*$ where θ_i^* is the set of objects not accessed directly by τ_i but can enforce transactions in τ_i to retry due to transitive retry. Let $\gamma_i^{ex} = \gamma_i + \gamma_i^*$ where γ_i^* is the set of tasks that access objects in θ_i^* . $\bar{s}_j^h(\theta)$ can access multiple objects, so $s_{max}^j(\theta)$ is the maximum length transaction conflicting with $\bar{s}_j^h(\theta)$. FBLT needs to bound transitive retry. So, θ_i^{ex} will be avoided in (16). Thus, transactions under G-EDF/LCM behave as if there were no transitive retry. Consequently, (16) will be

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{\forall s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{\theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil \sum_{\forall s_{j}^{\bar{h}}(\theta)} len\left(s_{j}^{\bar{h}}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta) \right) \right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len\left(s_{max}^{i} \right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len\left(s_{max}^{i} \right) \right)}{T_{i}}$$

As $\bar{s}_{j}^{h}(\theta)$ is included only once for all objects accessed by it. $s_{max}^{j}(\theta)$ is also included once for each $\bar{s}_{i}^{h}(\theta)$. Consequently, (17) becomes

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{\forall s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{\forall s_{j}^{\bar{h}}(\theta), \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(s_{j}^{\bar{h}}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta) \right) \right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len\left(s_{max}^{i} \right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len\left(s_{max}^{i} \right) \right)}{T_{i}}$$

Although different s_i^k can have common conflicting transactions $\bar{s_j^h}$, but no more than one s_i^k can be preceded by the same $\bar{s_j^h}$ in the m_set. This happens because transactions in the m_set are non-preemptive. Original priority of transactions preceding s_i^k in the m_set can be of lower or higher priority than original priority of s_i^k . Under G-EDF/LCM, $\tau_j \neq \tau_i$ can have at least one job of higher priority than current job of τ_i , then $\left\lceil \frac{T_i}{T_j} \right\rceil \geq 1$. So, each one of the s_{iz}^k in the left hand side of (18) is included in one of the $\bar{s_j^h}(\theta)$ in the right hand side

of (18). : (18) holds if

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \delta_{i}^{k}(T_{i}) len(s_{i}^{k})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{\forall s_{j}^{h^{-}}(\theta), \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(\alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta)\right)\right)\right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik}\right) len\left(s_{max}^{i}\right)}{T_{i}}$$

$$(19)$$

For each $s_i^k \in s_i$, there are a set of zero or more $\bar{s}_j^h(\theta) \in \tau_j$, $\forall \tau_j \neq \tau_i$ that are conflicting with s_i^k . Assuming this set of conflicting transactions with s_i^k is denoted as $\eta_i^k = \left\{\bar{s}_j^h(\theta) \in \tau_j : (\theta \in \theta_i) \land (\forall \tau_j \neq \tau_i) \land \left(\bar{s}_j^h(\theta) \notin \eta_i^l, l \neq k\right)\right\}$. The last condition $\bar{s}_j^h(\theta) \notin \eta_i^l, l \neq k$ in definition of η_i^k ensures that common transactions \bar{s}_j^h that can conflict with more than one transaction $s_i^k \in \tau_i$ are split among different $\eta_i^k, k = 1, ..., |s_i|$. This condition is necessary because in G-EDF/LCM, no two or more transactions of τ_i^x can be aborted by the same transaction of τ_j^h where $p_j^h > p_i^x$. By substitution of η_i^k in (19), we get

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \delta_{i}^{k}(T_{i})len(s_{i}^{k})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\sum_{k=1}^{|s_{i}|} \sum_{\forall s_{j}^{\bar{h}}(\theta) \in \eta_{i}^{k}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(\alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta)\right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik}\right) len\left(s_{max}^{i}\right)\right)}{T_{i}}$$

$$(20)$$

 s_j^h belongs to higher priority jobs than τ_i and s_{max}^j belongs to higher priority jobs than τ_i or τ_i itself. Transactions in m_set can belong to jobs with original priority higher or lower than τ_i . So, (18) holds if for each $s_i^k \in \tau_i$

$$\delta_{i}^{k}(T_{i})len(s_{i}^{k}) \leq \left(\sum_{\forall \bar{s}_{j}^{\bar{h}}(\theta) \in \eta_{i}^{\bar{k}}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil \right) len\left(\alpha_{max}^{\bar{j}\bar{h}} s_{max}^{j}(\theta)\right) \right) + \left(1 - \alpha_{max}^{ik}\right) len\left(s_{max}^{i}\right)$$

$$\therefore \delta_i^k(T_i) \le \left(\sum_{\forall s_i^{\overline{h}}(\theta) \in \eta_i^k} \left(\left\lceil \frac{T_i}{T_j} \right\rceil \right) len\left(\frac{\alpha_{max}^{j\overline{h}} s_{max}^j(\theta)}{s_i^k} \right) \right) + \left(1 - \alpha_{max}^{ik} \right) len\left(\frac{s_{max}^i}{s_i^k} \right)$$
(21)

 $\therefore len\left(\frac{s_{max}^{j}(\theta)}{s_{i}^{k}}\right) \geq 1, \therefore (21) holds if$

$$\therefore \delta_i^k(T_i) \le \left(\sum_{\bar{s}_j^{\bar{h}}(\theta) \in \eta_i^k} \left(\left\lceil \frac{T_i}{T_j} \right\rceil \alpha_{max}^{\bar{j}\bar{h}} \right) \right)$$

Claim follows.

0.5.4 FBLT vs. G-RMA/LCM

Claim 7 Schedulability of FBLT is equal or better to G-RMA/LCM's when maximum number of abort times of each transaction s_i^k in any job of τ_i is less or equal to sum of maximum length m-1 transactions conflicting with s_i^k subtracted from sum of total number each transaction s_j^h can conflict with s_i^k multiplied by maximum α with which s_j^h can conflict with maximum length transaction sharing objects with s_i^k and s_j^h .

Proof 7 By substituing $RC_A(T_i)$ and $RC_B(T_i)$ in (4) with (1) and (6.9) in [2] respectively.

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i})len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k})\right) + RC_{re}(T_{i})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\sum_{\forall \tau_{j}^{*} \in \gamma_{i}^{ex}} \sum_{\forall \theta \in \theta_{i}^{ex}} \left(\left\lceil \frac{T_{i}}{T_{j}}\right\rceil + 1\right) \sum_{\forall s_{j}^{\bar{h}}(\theta)} len\left(s_{j}^{\bar{h}}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta)\right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik}\right) len(s_{max}^{i}) + RC_{re}(T_{i})}{T_{i}}$$

$$(22)$$

where $\tau_j^* = \{\tau_j : p_j > p_i\}$. Let $\theta_i^{ex} = \theta_i + \theta_i^*$ where θ_i^* is the set of objects not accessed directly by τ_i but can enforce transactions in τ_i to retry due to transitive retry. Let $\gamma_i^{ex} = \gamma_i + \gamma_i^*$ where γ_i^* is the set of tasks that access objects in θ_i^* . $\bar{s}_j^h(\theta)$ can access multiple objects, so $s_{max}^j(\theta)$ is the maximum length transaction conflicting with $\bar{s}_j^h(\theta)$. FBLT needs to bound transitive retry. So, θ_i^{ex} will be avoided in (22). Thus, transactions under G-RMA/LCM behave as if there were no transitive retry. Consequently, (22) will be

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\sum_{\forall \tau_{j}^{*} \in \gamma_{i}} \sum_{\forall \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) \sum_{\forall s_{j}^{\bar{h}}(\theta)} len\left(s_{j}^{\bar{h}}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len(s_{max}^{i})}{T_{i}}$$

$$(23)$$

As $\bar{s}_{j}^{h}(\theta)$ is included only once for all objects accessed by it. $s_{max}^{j}(\theta)$ is also included once for each $\bar{s}_{j}^{h}(\theta)$. Consequently, (23) becomes

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j}^{*} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) len\left(s_{j}^{\bar{h}}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta) \right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len(s_{max}^{i})}{T_{i}}$$

$$(24)$$

Although different s_i^k can have common conflicting transactions $\bar{s_j^h}$, but no more than one s_i^k can be preceded by the same $\bar{s_j^h}$ in the m_set. This happens because transactions in the m_set are non-preemptive. Original priority of transactions preceding s_i^k in the m_set can be of lower or higher priority than original priority of s_i^k . Under G-RMA, $p_j > p_i$ means that $T_j \leq T_i$, then $\left\lceil \frac{T_i}{T_j} \right\rceil \geq 1$. For each $s_i^k \in s_i$, there are a set of zero or more $\bar{s_j^h}(\theta) \in \tau_j^*$ that are conflicting with s_i^k . Assuming this set of conflicting transactions with s_i^k is denoted as $\eta_i^k = \left\{ \bar{s_j^h}(\theta) \in \tau_j^* : (\theta \in \theta_i) \land \left(\bar{s_j^h}(\theta) \notin \eta_i^l, l \neq k \right) \right\}$. The last condition $\bar{s_j^h}(\theta) \notin \eta_i^l, l \neq k$ in definition of η_i^k ensures that common transactions $\bar{s_j^h}$ that can conflict with more than one transaction $s_i^k \in \tau_i$ are split among different $\eta_i^k, k = 1, ..., |s_i|$. This condition is necessary because in G-RMA/LCM, no two or more transactions of τ_i^x can be aborted by the same transaction of τ_j^h where $p_j^h > p_i^x$. By substitution of η_i^k in (24), we get

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{i}^{k} \in \chi_{i}^{k}} len(s_{i}^{k}) \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall k=1}^{|s_{i}|} \sum_{s_{j}^{\bar{h}}(\theta) \in \eta_{i}^{k}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) len\left(s_{j}^{\bar{h}}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta) \right) \right)}{T_{i}}$$

$$+ \sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k}} \left(1 - \alpha_{max}^{ik} \right) len(s_{max}^{i})}{T_{i}}$$

$$(25)$$

 s_j^h belongs to higher priority jobs than τ_i and s_{max}^j belongs to higher priority jobs than τ_i or τ_i itself. Transactions in m_set can belong to jobs with original priority higher or lower than τ_i . So, (25) holds if for each $s_i^k \in \tau_i$

$$\delta_{i}^{k}(T_{i})len(s_{i}^{k}) \leq \left(\sum_{\bar{s}_{j}^{h}(\theta) \in \eta_{i}^{k}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) len \left(\bar{s}_{j}^{h}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta) \right) \right) \right) + \left(1 - \alpha_{max}^{ik} \right) len(s_{max}^{i}) - \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k})$$

$$\therefore \delta_{i}^{k}(T_{i}) \leq \left(\sum_{\bar{s}_{j}^{\bar{h}}(\theta) \in \eta_{i}^{k}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) len \left(\frac{\bar{s}_{j}^{\bar{h}}(\theta) + \alpha_{max}^{j\bar{h}} s_{max}^{j}(\theta)}{s_{i}^{k}} \right) \right) \right) + \left(1 - \alpha_{max}^{ik} \right) len \left(\frac{\bar{s}_{max}^{i}}{s_{i}^{k}} \right) - \sum_{\bar{s}_{iz}^{k} \in \chi_{i}^{k}} len \left(\frac{\bar{s}_{iz}^{k}}{s_{i}^{k}} \right)$$

$$(26)$$

 $\therefore len\left(\frac{s_{iz}^k}{s_i^k}\right) \leq len(s_{iz}^k), \; \alpha_{max}^{\bar{j}\bar{h}} \leq 1 \; and \; s_{max}^i \; can \; be \; greater, \; less \; or \; equal \; to \; s_i^k \; \therefore \; (26) \; holds \; if$

$$\therefore \delta_i^k(T_i) \le \left(\sum_{s_j^{\bar{h}}(\theta) \in \eta_i^k} \left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) \alpha_{max}^{\bar{j}\bar{h}} len\left(\frac{s_j^{\bar{h}}(\theta) + s_{max}^j(\theta)}{s_i^k} \right) \right) - \sum_{s_{iz}^k \in \chi_i^k} len\left(s_{iz}^k \right) \quad (27)$$

 $\therefore len(\frac{s_{max}^{j}(\theta)}{s_{i}^{k}}) \geq 1, \therefore (27) holds if$

$$\therefore \delta_i^k(T_i) \le \left(\sum_{s_j^{\bar{h}}(\theta) \in \eta_i^k} \left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) \alpha_{max}^{j\bar{h}} \right) - \sum_{s_{iz}^k \in \chi_i^k} len\left(s_{iz}^k\right)$$

Claim follows.

0.5.5 FBLT vs. PNF

Claim 8 Schedulability of FBLT is equal or better to PNF's with G-EDF and G-RMA if for any τ_i^x the following conditions are satisfied:

- 1. Total sum of transactional lengths of all transactions conflicting with the maximum length transaction in τ_i^x , $s_{i_{max}}$, is no less than maximum retry cost of τ_i^x due to release of higher priority jobs.
- 2. Maximum abort number of $s_{i_{max}}$ is less or equal to difference between total sum of transactional lengths of all transactions conflicting with $s_{i_{max}}$ and maximum retry cost of τ_i^x due to release of higher priority jobs divided by length of $s_{i_{max}}$.
- 3. Maximum abort number of any s_i^k , other than $s_{i_{max}}$, should be less or equal to total sum of transactional lengths of all conflicting transactions with s_i^k divided by length of s_i^k .

Proof 8 By substituting $RC_A(T_i)$ and $RC_B(T_i)$ in (4) with (1) and (6.1) in [2] respectively.

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right) + RC_{re}(T_{i})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{\theta \in \theta_{i}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) \sum_{\forall s_{j}^{\bar{h}}(\theta)} len(s_{j}^{\bar{h}}(\theta)) \right)}{T_{i}}$$

$$(28)$$

 $\bar{s_j^h}(\theta)$ can access multiple objects, so $s_{max}^j(\theta)$ is the maximum length transaction conflicting with $\bar{s_j^h}(\theta)$. As $\bar{s_j^h}(\theta)$ is included only once for all objects accessed by it. $s_{max}^j(\theta)$ is also included once for each $\bar{s_j^h}(\theta)$. Consequently, 28 becomes

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i})len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k})\right) + RC_{re}(T_{i})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \theta \in \theta_{i}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}}\right\rceil + 1\right) len(\bar{s_{j}^{h}}(\theta))\right)}{T_{i}}$$

$$(29)$$

 $RC_{re}(T_i)$ is given by (6.8) in [2] in case of G-EDF, and (6.10) in [2] in case of G-RMA. Substituting $RC_{re}(T_i) = \sum_{\forall \tau_j \in \gamma_i} \left[\frac{T_i}{T_j}\right] s_{i_{max}}$, covers $RC_{re}(T_i)$ given by (6.8) and (6.10) in [2] and maintains validity of 29. If τ_j has no shared objects with τ_i , then release of any higher priority job τ_j^y will not abort any transaction in any job of τ_i . \therefore 29 holds if

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right) + \left(\sum_{\forall \tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil s_{imax} \right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \; \theta \in \theta_{i}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) len(s_{j}^{\bar{h}}(\theta)) \right) \right)}{T_{i}}$$

$$(30)$$

Although different s_i^k can have common conflicting transactions $\bar{s_j^h}$, but no more than one s_i^k can be preceded by the same $\bar{s_j^h}$ in the m_set. This happens because transactions in the m_set are non-preemptive. Original priority of transactions preceding s_i^k in the m_set can be of lower or higher priority than original priority of s_i^k . Under PNF, τ_j^y can have a priority higher or lower priority than τ_i^x , still transactions in τ_j^y can abort transactions in τ_i^x . So, each one of the s_{iz}^k in the left hand side of 30 is included in one of the $\bar{s_j^h}(\theta)$ in the right hand side of 30. \therefore 30 holds if

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i})len(s_{i}^{k})\right) + \left(\sum_{\forall \tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil s_{imax}\right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(s_{j}^{\bar{h}}(\theta)\right)\right)\right)}{T_{i}}$$

$$(31)$$

One of the s_i^k is $s_{i_{max}}$, so 31 becomes

 \leq

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}, s_{i}^{k} \neq s_{imax}} \left(\delta_{i}^{k}(T_{i})len(s_{i}^{k})\right) + \left(\left(\delta_{imax} + \sum_{\forall \tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil\right) s_{imax}\right)}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \sum_{s_{j}^{\bar{h}}(\theta), \theta \in \theta_{i}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len(s_{j}^{\bar{h}}(\theta))\right)\right)}{T_{i}}$$

$$(32)$$

For each $s_i^k \in s_i$ including $s_{i_{max}}$, there are a set of one or more $\bar{s_j^h}(\theta) \in \tau_j$, $\forall \tau_j \in \gamma_i$ that are conflicting with s_i^k . Assuming this set of conflicting transactions with s_i^k is denoted as $\eta_i^k = \left\{\bar{s_j^h}(\theta) \in \tau_j : (\theta \in \theta_i) \land (\forall \tau_j \in \gamma_i) \land \left(\bar{s_j^h}(\theta) \notin \eta_i^l, l \neq k\right)\right\}$. The last condition $\bar{s_j^h}(\theta) \notin \eta_i^l$, $l \neq k$ in definition of η_i^k ensures that common transactions $\bar{s_j^h}$ that can conflict with more than one transaction $s_i^k \in \tau_i$ are split among different η_i^k , $k = 1, ..., |s_i|$. This condition is necessary because in PNF, no two or more transactions of τ_i^x can be aborted by the same transaction of τ_j^h whether $p_j^h > p_i^x$ or not. By substitution of η_i^k in 31, we get

$$\sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall s_{i}^{k} \in s_{i}, s_{i}^{k} \neq s_{i_{max}}} \left(\delta_{i}^{k}(T_{i})len(s_{i}^{k})\right)\right) + \left(\left(\delta_{i_{max}}(T_{i}) + \sum_{\forall \tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil\right) s_{i_{max}}\right)}{T_{i}}$$

$$\sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall k=1}^{|s_{i}|} \sum_{s_{j}^{\bar{h}}(\theta) \in \eta_{i}^{k}} \left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(\bar{s_{j}^{h}}(\theta)\right)\right)\right)}{T_{i}}$$

$$(33)$$

Since $s_{i_{max}} \in s_i$, : (33) holds if the following two conditions hold for each τ_i :

$$1. \ \delta_{i_{max}} \leq \frac{\left(\sum_{s_{j}^{\bar{h}}(\theta) \in \eta_{i_{max}}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(s_{j}^{\bar{h}}(\theta)\right)\right) - \left(\sum_{\forall \tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil s_{i_{max}}\right)}{s_{i_{max}}}, \ where \ \eta_{i_{max}} \ is \ one \ of \ the \ \eta_{i}^{k} s \ that \\ corresponds \ to \ s_{i_{max}}. \ \because \ \delta_{i_{max}} \geq 0, \ \therefore \ \left(\sum_{\bar{s_{j}^{h}}(\theta) \in \eta_{i_{max}}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil len\left(\bar{s_{j}^{h}}(\theta)\right)\right) \geq \left(\sum_{\forall \tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil s_{i_{max}}\right).$$

2. For each
$$s_i^k$$
 other than $s_{i_{max}}$, $\delta_i^k \leq \sum_{\bar{s_j^h}(\theta) \in \eta_i^k} \left(\left\lceil \frac{T_i}{T_j} \right\rceil len\left(\frac{\bar{s_j^h}(\theta)}{\bar{s_i^k}} \right) \right)$.

Claim follows.

0.5.6 FBLT vs. Lock-free

Claim 9 Under G-EDF and G-RMA, schedulability of FBLT is equal or better than lock-free's if $s_{max} \leq r_{max}$. If transactions execute in FIFO order (i. e., $\delta_i^k = 0, \forall s_i^k$) and contention is high, s_{max} can be much larger than r_{max} .

Proof 9 Lock-free synchronization [1, 3] accesses only one object. Thus, the number of accessed objects per transaction in FBLT is limited to one. This allows us to compare the schedulability of FBLT with the lock-free algorithm.

By substituting $RC_A(T_i)$ and $RC_B(T_i)$ in (4) with (1) and (6.17) in [2] respectively.

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k}) \right) + RC_{re}(T_{i})}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1 \right) \beta_{i,j} r_{max} \right) \right) + RC_{re}(T_{i})}{T_{i}}$$

$$(34)$$

where $\beta_{i,j}$ is the number of retry loops of τ_j that access the same objects as accessed by any retry loop of τ_i [1]. r_{max} is the maximum execution cost of a single iteration of any retry loop of any task [1]. For G-EDF(G-RMA), any job τ_i^x under FBLT has the same pattern of interference from higher priority jobs as ECM(RCM) respectively. $RC_{re}(T_i)$ for ECM, RCM and lock-free are given by Claims 25, 26 and 27 in [2] respectively. $RC_{re}(T_i) = \begin{bmatrix} T_i \\ T_j \end{bmatrix} s_{i_{max}}, \forall \tau_j \in \gamma_i$ covers $RC_{re}(T_i)$ for G-EDF/FBLT and G-RMA/FBLT. $RC_{re}(T_i) = \begin{bmatrix} T_i \\ T_j \end{bmatrix} r_{i_{max}}, \forall \tau_j \in \gamma_i$ covers retry cost for G-EDF/lock-free and G-RMA/lock-free. \therefore (34) becomes

$$\sum_{\forall \tau_{i}} \frac{\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) len(s_{i}^{k}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} len(s_{iz}^{k})\right) + \sum_{\tau_{j} \in \gamma_{i}} \left[\frac{T_{i}}{T_{j}}\right] s_{imax}}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \left(\left(\left\lceil\frac{T_{i}}{T_{j}}\right\rceil + 1\right) \beta_{i,j} r_{max}\right)\right) + \sum_{\tau_{j} \in \gamma_{i}} \left\lceil\frac{T_{i}}{T_{j}}\right\rceil r_{imax}}{T_{i}}$$

$$(35)$$

Since $s_{max} \ge s_{i_{max}}$, $len(s_i^k)$, $len(s_{iz}^k)$, $\forall i, z, k$ and $r_{max} \ge r_{i_{max}}$: (35) holds if

$$\sum_{\forall \tau_{i}} \frac{\left(\left(\sum_{\forall s_{i}^{k} \in s_{i}} \left(\delta_{i}^{k}(T_{i}) + \sum_{s_{iz}^{k} \in \chi_{i}^{k}} 1\right)\right) + \sum_{\tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil\right) s_{max}}{T_{i}}$$

$$\leq \sum_{\forall \tau_{i}} \frac{\left(\left(\sum_{\forall \tau_{j} \in \gamma_{i}} \left(\left(\left\lceil \frac{T_{i}}{T_{j}} \right\rceil + 1\right) \beta_{i,j}\right)\right) + \sum_{\tau_{j} \in \gamma_{i}} \left\lceil \frac{T_{i}}{T_{j}} \right\rceil\right) r_{max}}{T_{i}}$$

$$(36)$$

 \therefore (36) holds if for each τ_i

$$\left(\left(\sum_{\forall s_i^k \in s_i} \left(\delta_i^k(T_i) + \sum_{s_{iz}^k \in \chi_i^k} 1 \right) \right) + \sum_{\tau_j \in \gamma_i} \left\lceil \frac{T_i}{T_j} \right\rceil \right) s_{max}$$

$$\leq \left(\left(\sum_{\forall \tau_j \in \gamma_i} \left(\left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) \beta_{i,j} \right) \right) + \sum_{\tau_j \in \gamma_i} \left\lceil \frac{T_i}{T_j} \right\rceil \right) r_{max}$$
(37)

٠.

$$\frac{s_{max}}{r_{max}} \leq \frac{\left(\sum_{\forall \tau_j \in \gamma_i} \left(\left(\left\lceil \frac{T_i}{T_j}\right\rceil + 1\right) \beta_{i,j}\right)\right) + \sum_{\tau_j \in \gamma_i} \left\lceil \frac{T_i}{T_j}\right\rceil}{\left(\sum_{\forall s_i^k \in s_i} \left(\delta_i^k(T_i) + \sum_{s_{iz}^k \in \chi_i^k} 1\right)\right) + \sum_{\tau_j \in \gamma_i} \left\lceil \frac{T_i}{T_j}\right\rceil}$$
(38)

It appears from (38) that as δ_i^k , as well as $|\chi_i^k|$, increases, then s_{max}/r_{max} decreases. So, to get the lower bound on s_{max}/r_{max} , let $\sum_{\forall s_i^k \in s_i} \left(\delta_i^k(T_i) + \sum_{s_{iz}^k \in \chi_i^k} 1 \right)$ reaches its maximum value. This maximum value is the total number of interfering transactions belonging to any job τ_j^l , $j \neq i$. Priority of τ_j^l can be higher or lower than current instance of τ_i . Beyond this maximum value, higher values for any δ_i^k are ineffective as there will be no more transactions to conflict with s_i^k . $\therefore \sum_{\forall s_i^k \in s_i} \left(\delta_i^k(T_i) + \sum_{s_{iz}^k \in \chi_i^k} 1 \right) \leq \sum_{\forall \tau_j \in \gamma_i} \left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right)$. Consequently, (38) will be

$$\frac{s_{max}}{r_{max}} \leq \frac{\left(\sum_{\forall \tau_j \in \gamma_i} \left(\left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) \beta_{i,j} \right) \right) + \sum_{\tau_j \in \zeta_i} \left\lfloor \frac{T_i}{T_j} \right\rfloor}{\left(\sum_{\forall \tau_j \in \gamma_i} \left(\left\lceil \frac{T_i}{T_j} \right\rceil + 1 \right) \right) + \sum_{\tau_j \in \zeta_i} \left\lfloor \frac{T_i}{T_j} \right\rfloor}$$
(39)

As we look for the lower bound on $\frac{s_{max}}{r_{max}}$, let $\beta_{i,j}$ assumes its minimum value. So, $\beta_{i,j} = 1$. \therefore (39) holds if $\frac{s_{max}}{r_{max}} \leq 1$.

Let $\delta_i^k(T_i) \to 0$ in (38). This means transactions approximately execute in their arrival order. Let $\beta_{i,j} \to \infty$, $\left\lceil \frac{T_i}{T_j} \right\rceil \to \infty$ in (38). This means contention is high. Consequently, $\frac{s_{max}}{r_{max}} \to \infty$. So, if transactions execute in FIFO order and contention is high, s_{max} can be much larger than r_{max} . Claim follows.

Bibliography

- [1] U.M.C. Devi, H. Leontyev, and J.H. Anderson. Efficient synchronization under global edf scheduling on multiprocessors. In 18th Euromicro Conference on Real-Time Systems, pages 10 pp. -84, 0-0 2006.
- [2] Mohammed El-Shambakey. Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations. Phd proposal, Virginia Tech, 2012.
- [3] M. Elshambakey and B. Ravindran. Stm concurrency control for multicore embedded real-time software: Time bounds and tradeoffs. In SAC, 2012.