DCA0121 - INTELIGÊNCIA ARTIFICIAL APLICADA Aula 3 - Lógica Nebulosa (Fuzzy Logic)

Prof. Marcelo Augusto Costa Fernandes mfernandes@dca.ufrn.br

Introdução

- Várias medias como temperatura, altura, velocidade e distância podem admitir graus
- A teoria dos conjuntos fuzzi e a lógica fuzzy foram criadas por Lofti A. Zadeh da Universidade da Califórnia em Berkeley na década de 60
- Diferentemente da lógica convencional (verdadeiro ou falso) a lógica fuzzy (nebulosa) tenta refletir o que as pessoas pensam modelando de alguma forma o senso de palavras na tomada de decisão.
- Pode trabalhar com uma variedade de informações vagas e incertas, que podem ser traduzidas por expressões do tipo: a maioria, mais ou menos, talvez, etc.
- Utiliza como base a teoria de conjuntos nebulosos (Fuzzy)

Características

- Intenso uso de palavras ao invés de números
 - Termos linguísticos: frio, quente, morno, alto, longe, ligeiro, devagar, lento, etc.
- Modificadores de predicado
 - Muito rápido, pouco elevado, mais ou menos, etc.
- Uso de probabilidades linguísticas
 - Provável, improvável, etc.
- Manipulação de infinitos valores entre 0 e 1

Conjuntos Fuzzy

- Lógica clássica
 - Elemento pertence ou não a um conjunto.
 - Conjunto => "alto"

Ex.: João é alto / João é não alto

- Lógica fuzzy
 - Elemento pertence, não pertence ou está parcialmente presente em um conjunto
 - Ex.: João é um pouco alto

Conjuntos Fuzzy

No gráfico abaixo:

- O valor 1 significa que a pessoa pertence ao grupo de jovens;
- O valor 0 significa que a pessoa não pertence o grupo;
- Os valores intermédios indicam o grau de pertinência da pessoa ao grupo:

se possui 25 anos é 50% jovem e 20% adulto

Conjuntos Fuzzy – Função de Pertinência

Conjuntos com limites imprecisos

A = Conjunto de pessoas altas

Fuzificação - Função de Pertinência

• Valores crisp

Valores fuzzy

- Função de pertinência
 - Ex.: Temperatura, $\mathbf{x} = 37^{\circ}$ (valor *crisp*)
 - Conjuntos fuzzy = frio, morno, quente
 - mT(x): Função de pertinência de x em T
 - $mT(37^{\circ}) = 0.2/\text{frio}, 0.4/\text{morno}, 0.8/\text{quente}$

- Pode ser de várias formas diferentes
- Representam uma função de mapeamento
- Características:
 - Medidas subjetivas
 - Funções não probabilísticas monotonicamente crescentes, decrescentes ou subdividida em parte crescente e parte decrescente.

Função de Pertinência: Exemplos

Função Triangular

trimf
$$(x; a, b, c) = \max \left(\min \left(\frac{x - a}{b - a}, \frac{c - x}{c - b} \right), 0 \right)$$

Função Trapezoidal

trapmf
$$(x; a, b, c, d) = \max \left(\min \left(\frac{x - a}{b - a}, 1, \frac{d - x}{d - c} \right), 0 \right)$$

• Função Gaussiana

$$gaussmf(x;a,b,c) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^{2}}$$

• Função Sino Generalizada

gbellmf
$$(x;a,b,c) = \frac{1}{1 + \left|\frac{x-c}{b}\right|^{2b}}$$

- mt(23) a mt(27) = 1
 - Temperatura ambiente
- *m*t(21) ou *m*t(29)
 - Temperatura quase ambiente
- mt(0) ou mt(50)
 - Temperatura não ambiente

- T(velocidade) = {lenta, média, rápida}
- Variável linguística = velocidade
- Termos (conj.fuzzy) = lenta, média, rápida

Conjuntos Fuzzy

- Pertinência não é probabilidade:
 - Pertinência é o nível de compatibilidade de um elemento do conjunto com o conceito do conjunto.

• Exemplo:

- Pedro é ALTO com μ =0.85.
 - Indica que Pedro é bem compatível com o conceito ALTO.
 - Tem-se uma idéia da altura de Pedro.
- Pedro tem 0.85 de probabilidade de ser ALTO.
 - Indica que Pedro tem grandes chances de ser ALTO.
 - NÃO se têm a menor idéia da altura de Pedro.

Função de pertinência: Universo Discreto

- $X = \{SF, Boston, LA\}$ (discreto e não ordenado)
 - C = "Cidade desejável para se viver"
 - $C = \{(SF, 0.9), (Boston, 0.8), (LA, 0.6)\}$
- $X = \{0, 1, 2, 3, 4, 5, 6\}$ (discreto)
 - A = "Número de filhos"
 - $A = \{(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)\}$

Função de pertinência: Universo Contínuo

- X = (Conjunto de números reais positivos) (contínuo)
 - B = "Pessoas com idade em torno de 50 anos"
 - $B = \{(x, \mu_{B(x)}) \mid x \text{ em } X\}$

$$\mu_B(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^2}$$

Partição Fuzzy

• Partição fuzzy do universo de X representando "idade", formada pelos conjuntos fuzzy "jovem", "maduro" e "idoso".

Variáveis Linguísticas

- Uma variável lingüística possui valores que não são números, mas sim palavras ou frases em linguagem natural.
 - Idade = idoso
- Um valor lingüístico é um conjunto fuzzy.
- Todos os valores lingüísticos formam um conjunto de termos:
 - T(idade) = {Jovem, velho, muito jovem,...

Maduro, não maduro,...

Velho, não velho, muito velho, mais ou menos velho,...

Não muito jovem e não muito velho,...}

• Permitem que a linguagem da modelagem fuzzy expresse a semântica usada por especialistas

Exemplo:

If projeto.duração is não muito LONGO then risco is ligeiramente reduzido

Operadores dos Conjuntos Fuzzy

Intersecção

Sejam X conjunto de pontos, A e B conjuntos contidos em X e $\forall x \in X$.

Operadores dos Conjuntos Fuzzy

União

Sejam X conjunto de pontos,A e B conjuntos contidos em X e $\forall x \in X$.

Operadores dos Conjuntos Fuzzy

Complemento

Sejam X conjunto de pontos, A um conjunto contido em X e $\forall x \in X$.

Operações Básicas

- Subconjunto
- Igualdade
- Complemento
- União

Interseção

$$\boxtimes$$
 A \subset B, se $\mu_{B(x)} \ge \mu_{A(x)}$ para cada $x \in X$

$$\boxtimes$$
 A = B, se $\mu_{A(x)} = \mu_{B(x)}$ para cada $x \in X$

$$\boxtimes A = X - A \rightarrow \mu_{A(x)} = 1 - \mu_{A(x)}$$

$$\begin{array}{ccc} & & & \subset = A \wedge B \xrightarrow{} \mu_{c(x)} = \min(\mu_{A(x)}, \, \mu_{B(x)}) \\ & & & \subset = \mu_{A(x)} \wedge \mu_{B(x)} \end{array}$$

Representação

Operadores na lógica clássica a na lógica fuzzy

Two-valued logic

Multivalued logic

Exemplo (União | Interseção)

- $X = \{a, b, c, d, e\}$
 - $A = \{1/a, 0.7/b, 0.3/c, 0/d, 0.9/e\}$
 - $B = \{0.2/a, 0.9/b, 0.4/c, 1/d, 0.4/e\}$
 - União
 - $C = \{1/a, 0.9/b, 0.4/c, 1/d, 0.9/e\}$
 - Interseção
 - $D = \{0.2/a, 0.7/b, 0.3/c, 0/d, 0.4/e\}$

Regras Fuzzy

- Formam a base de conhecimento
- Equivalente as regras de produção
- IF x é A THEN y é B

 (antecedente) (consequente)
- IF pressão é alta THEN volume é pequeno
- Inferência

Procedimento para se chegar a conclusões a partir de regras IF-THEN ("Raciocínio" fuzzy)

Regras Fuzzy

- E o raciocínio?
 - Avaliar o antecedente
 - Aplicar o resultado ao consequente
 - As regras são ativadas parcialmente, dependendo do antecedente
 - Ex: Se a altura é alta, o peso é pesado (altura = 1.85, peso = ?)

Etapas do raciocínio Fuzzy

Exemplo Operadores lógicas em cada regra

Exemplo Implicação de cada regra

Exemplo Agregação das regras

Defuzificação

Defuzzify the aggregate output (centroid).

Resumo do processo de inferência

Interpreting the fuzzy inference diagram

Resumo do processo de inferência

Fuzzificação

- Etapa na qual as variáveis lingüísticas são definidas de forma subjetiva, bem como as funções membro (funções de pertinência)
- Engloba
 - Análise do Problema
 - Definição das Variáveis
 - Definição das Funções de pertinência
 - Criação das Regiões
- Na definição das funções de pertinência para cada variável, diversos tipos de espaço podem ser gerados:
 - Triangular, Trapezoidal, ...

Fuzzificação

- Etapa na qual as proposições (regras) são definidas e depois são examinadas paralelamente
- Engloba:
 - Definição das proposições
 - Análise das Regras
 - Criação da região resultante

- O mecanismo chave do modelo Fuzzy é a proposição
- A proposição é o relacionamento entre as variáveis do modelo e regiões Fuzzy
- Na definição das proposições, deve-se trabalhar com:
- Proposições Condicionais
 if W is Z then X is Y

Proposições Não-Condicionais
 X isY

- A regra semântica tradicionalmente utilizada para o processamento de inferências com o modelo de Mamdani é chamada de inferência Máx Min.
- Utiliza as operações de união e de interseção entre conjuntos da mesma forma que Zadeh, por meio dos operadores de máximo e de mínimo, respectivamente.

Defuzzificação

- Etapa no qual as regiões resultantes são convertidas em valores para a variável de saída do sistema
- Esta etapa corresponde a ligação funcional entre as regiões *Fuzzy* e o valor esperado
- Dentre os diversos tipos de técnicas de defuzzificação destaca-se:
 - Centróide
 - First-of-Maxima
 - Middle-of-Maxima
 - Critério Máximo

Defuzzificação

Exemplos:

Centróide

First-of-Maxima

Critério Máximo

Inferência Fuzzy: Um exemplo

- Objetivo do sistema:
 - um analista de projetos de uma empresa que determina o risco de um determinado projeto
 - Quantidade de dinheiro e de pessoas envolvidas no projeto
- Representação das variáveis de entrada

- Base de conhecimento
- Se dinheiro é adequado ou pessoal é pequeno então risco é pequeno
- 2. Se dinheiro é médio e pessoal é alto, então risco é normal
- 3. Se dinheiro é inadequado, então risco é alto

Problema: dinheiro = 35% e pessoal = 60%

Inferência Fuzzy: Um exemplo

• Passo 1: Fuzzificar

$$\mu_b(p) = 0.2 \& \mu_a(p) = 0.8$$

Inferência Fuzzy: Um exemplo

Passo 2: Avaliação das regras

Passo 3: Defuzzificação

$$C = \frac{(10+20+30+40)*0.2+(50+60+70)*0.25+(80+90+100)*0.75}{0.2+0.2+0.2+0.2+0.25+0.25+0.25+0.75+0.75+0.75} = \frac{267.5}{3.8} = 70.4$$

Projeto de um Sistema Fuzzy

- Seleção das variáveis de entrada e saída
- Definição das regras e conjuntos fuzzy
- Mecanismo de inferência (MIN-MAX)
- Escolha da estratégia de defuzificação