Оглавление

0.1	Жорданова форма	1
	0.1.1 Существование жордановой формы нильпотентного оператора	
0.2	Многочлены от оператора	,

0.1 Жорданова форма

0.1.1 Существование жордановой формы нильпотентного оператора

Определение 1. Жордановой лкеткой порядка r с собств. знач. 0 назыавется квадратная матрица порядка r вида

 $\begin{pmatrix} 0 & - & & 0 \\ 1 & 0 & & 0 \\ & & & & \\ 0 & & 1 & 0 \end{pmatrix}$

Обозначение. $J_r(0)$

Определение 2. Жордановой матрицей с собств. знач. 0 назвыается матрица вида

$$\begin{pmatrix} J_{r_1}(0) & 0 & . & 0 \\ 0 & J_{r_2}(0) & . & 0 \\ . & . & . & . \\ 0 & . & F_{r_k}(0) & 0 \end{pmatrix}$$

Пример.

$$J = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Пусть это матрица оператора в базисах e_1, e_2, e_3, e_4, e_5

$$Je_1 = 0e_1 + 1e_2 + 0e_3 + 0e_4 + 0e_5 = e_2$$

$$Je_2 = e_3, \qquad Je_3 = 0, \qquad Je_4 = e_5, \qquad Je_5 = 0$$

Обозначение. $e_1 \to e_2 \to e_3 \to 0, \qquad e_4 \to e_5 \to 0$

Определение 3. \mathcal{A} – нильпотентный оператор

Жордановой цепочкой называется такой набор векторов $e_1, e_2, ..., e_r$, что $\mathcal{A}(e_i) = e_{i+1}$ при i < r и $\mathcal{A}(e_r) = 0$

Обозначение. $e_1 \to e_2 \to ... \to e_r \to 0$

Замечание. Вектор e_r является собственным вектором, соотв. $\lambda=0$

Пример. $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3, \qquad X \mapsto AX$

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 2 & -3 \\ 1 & 2 & -3 \end{pmatrix}, \qquad A^2 = 0$$

- $e_1 \rightarrow e_2 \rightarrow e_3 \rightarrow 0$ не бывает, т. к. $\mathcal{A}^2(e_1) = 0$
- Построим цепочку $e_1 \to e_2 \to 0$ Найдём ker $\mathcal A$

$$\begin{pmatrix} 1 & 2 & -3 \\ 1 & 2 & -3 \\ 1 & 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \iff x + 2y - 3z = 0$$

 $\dim \ker \mathcal{A} = 2$

Найдём e_1 , такой что $e_1 \rightarrow e_2 \rightarrow 0$:

Любой вектор за 2 шага перейдёт в 0, т. к. $\mathcal{A}^2=0$

Найдём e_1 , который за 1 шаг **не** перейдёт в 0:

Возьмём $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$e_2 = \mathcal{A}(e_1) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Найдём e_1' , который перейдёт в 0: Возьмём e_1' , линейно независимый с e_2

Подойдёт $e_1' = \begin{pmatrix} -2\\1\\0 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \\ e_2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} -2 \\ 1 \\ 0 \\ e'_1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

 e_1,e_2,e_1' – жорданов базис

Жорданова форма:

$$\left(\begin{array}{cc|c}
0 & 0 & 0 \\
1 & 0 & 0 \\
\hline
0 & 0 & 0
\end{array}\right)$$

Лемма 1 (ЛНЗ жордановых цепочек). Дано несколько жордановых цепочек:

$$e_1^{(1)} \to e_2^{(1)} \to \dots \to e_{r_1}^{(1)} \to 0$$

$$e_1^{(k)} \to e_2^{(k)} \to \dots \to e_{r_k}^{(k)} \to 0$$

Если последние векторы цепочек, т. е. $e_{r_1}^{(1)},...,e_{r_k}^{(k)}$ ЛНЗ, то объединение цепочек ЛНЗ

Доказательство. Индукция по $r \coloneqq \max\{r_1, ..., r_k\}$

• База. r = 1

Все цепочки длины 1

Все векторы – последние и, по условию, ЛНЗ

• Переход. $r-1 \rightarrow r$

$$\mathcal{A}(e_i^{(j)}) = \begin{cases} e_{i+1}^{(j)}, & i < r_j \\ 0, & i = r_j \end{cases}$$

Применим s раз:

$$\mathcal{A}^{s}(e_{i}^{(j)}) = \begin{cases} e_{i+s}^{(j)}, & i+s \leq r_{j} \\ 0, & i+s < r_{j} \end{cases}$$

Цепочки бывают двух видов: у некоторых длина r, а у некоторых – меньше (по определению r) НУО считаем, что цепочки с номерами 1, 2, ..., m имеют длину r, а остальные – меньше, т. е.

$$r_1 = r_2 = \dots = r_m = r,$$
 $r_i < r$ при $i > m$

От противного: пусть набор ЛЗ:

$$\sum_{j=1}^k \sum_{i=1}^{r_j} a_i^{(j)} e_i^{(j)} = 0,$$
 не все $a_i^{(j)}$ равны 0

Применим к этому равентсву A^{r-1} :

- Если цепочка короче r, то она вся перейдёт в 0
- Иначе останется только поледний вектор

То есть,

$$e_1^{(j)} o e_r^{(j)}, \qquad a_1^{(j)} e_1^{(j)} o a_1^{(j)} e_r^{(j)}, \qquad$$
 остальные $\to 0$

Получится сумма:

$$\sum_{j=1}^{m} a_1^{(j)} e_r^{(j)}$$

Заметим, что это ЛК последних векторов (которые, по условию, ЛНЗ)

$$\implies a_1^{(j)} = 0$$
 при $j \le m$

Уберём слагаемы
е $0\cdot e_1^{(j)}$ при $j\leq m$

$$\sum_{j \le m} \sum_{i=2}^{r} a_i^{(j)} e_i^{(j)} + \sum_{j > m} a_i^{(j)} e_i^{(j)} = 0$$

Это – ЛК векторов из цепочек длины r-1 с теми же последними векторами Применим **индукционное предположение**. Вместе с условием, что последние векторы ЛНЗ, получаем, что все они ЛНЗ

Лемма 2 (базис из жордановых цепочек). \mathcal{A} – оператор на V, базис $e_1, e_2, ..., e_n$ – базис, являющийся объединением жордановых цепочек (в естественном порядке):

$$e_1 \to e_2 \to \dots \to e_{r_1} \to 0$$
$$e_{r_1+1} \to e_{r_2+2} \to \dots \to e_{r_1+r_2} \to 0$$

$$e_{r_1+...+r_{k-1}+1} \to ... \to e_{r_1+r_2+...+r_{k-1}+r_k} \to 0$$

Тогда матрица \mathcal{A} в этом базисе

$$A = \begin{pmatrix} J_{r_1}(0) & 0 & . & 0 \\ 0 & J_{r_2}(0) & . & 0 \\ . & . & . & . \\ 0 & . & 0 & J_{r_k}(0) \end{pmatrix}$$

Доказательство.

$$\mathcal{A}(e_{r_1}) = \mathcal{A}(e_{r_1+r_2}) = \dots = \mathcal{A}(e_{r_1+\dots+r_k}) = 0$$

Значит, при $i=r_1,r_1+r_2,\ldots,r_1+\ldots+r_k,$ i-й столбец – нулевой При $i\neq r_1,\ldots,r_1+\ldots+r_k,$ $\mathcal{A}(e_i)=e_{i+1}\implies i$ -й столбец:

Теорема 1 (жорданова форма нильпотентного оператора). Для любого нильпотентного оператора на конечномерном векторном пространстве существует форданов базис

Доказательство. Будем доказывать, что существует базис из жордановых цепочек

Положим $W \coloneqq \ker \mathcal{A}$

Если мы возьмём ЛНЗ векторы из ядра и достроим (слева от них) цепочки, то получим жорданов базис

Положим $U_i := \operatorname{Im} \mathcal{A}^i$

$$V = U_0 \supset U_1 \supset U_2 \supset ... \supset U_{k-1} \supset U_k = \{0\}$$

где k – степень нильпотентности

Заметим, что если $v \in U_t \cap W$, то существует цепочка длины t+1 с концом v

Построим базис W (такой, чтобы можно было достроть цепочки):

Будем пересекать W с U_i

Выберем базис $W \cap U_{k-1}$. Он ЛНЗ, значит его можно дополнить до базиса $W \cap U_{k-2}$

В итоге получим базис $W \cap U_0 = W$

Получили базис $e_1, e_2, ...$ пространства W

Для $e_i \in W \cap U_t$ построим цепочку длины t+1 с концом e_i :

$$e_1^{(i)} \to e_2^{(i)} \to \dots \to e_{t+1}^{(i)} = e_i \to 0$$

Объединение цепочек – ЛНЗ (по лемме)

Докажем, что это базис, т. е. что набор порождающий:

Докажем, что если $A^{s}(v) = 0$, то v является ЛК векторов цепочек

Докажем **индукцией** по s:

• База. s = 1

$$A^{1}(v) = 0, \qquad v \in W, \qquad e_{1}, e_{2}, \dots$$
 – базис W

• Переход. $s \rightarrow s+1$

Пусть
$$\mathcal{A}^{s+1}(v) = 0$$
, $\mathcal{A}^s(v) \neq 0$

Положим $u = \mathcal{A}^s \implies u \in U_s$

$$\underbrace{v \to \cdot \to \dots \to u}_{s+1} \to 0$$

Значит, $A(u) = 0 \implies u \in W$

Значит, $u \in U_s \cap W$

Представим его в виде ЛК базиса $U_s \cap W$ (того, до которого мы дошли на каком-то очередном шагу дополнения базисов):

$$u = \sum_{i} a_i e_i$$

 $\forall e_i$ из этого бзиса выбрана цепочка длины хотя бы s+1

$$e_i = e_{s+t_i}^{(i)}$$
 – последний вектор цепочки

Пусть e'_i – вектор цепочки, такой что $\mathcal{A}^s(e'_i) = e_i$ (вектор, который на s шагов раньше)

$$\mathcal{A}^s \left(\sum a_i e_i' \right) = \sum a_i e_i = u$$

При этом, $\mathcal{A}^s(v) \stackrel{\text{def}}{=} u$

Получили 2 линейных представления u, значит,

$$\mathcal{A}^{s}(v) = \mathcal{A}^{s}\left(\sum a_{i}e'_{i}\right) \implies \mathcal{A}^{s}\left(v - \sum a_{i}e'_{i}\right) = 0$$

Тогда, **по индукционному предположению**, $v - \sum a_i e_i'$ представляется в виде ЛК векторов из цепочек

Значит, v представляется в виде ЛК векторов цепочек

0.2 Многочлены от оператора

Обозначение. V – векторное пространство над K, — \mathcal{A} – оператор на V, — $P \in K[x]$

$$P(x) = a_n x^n + \dots + a_1 x + a_0$$

Тогда $P(A) = a_n A^n + ... + a_1 A + a_0 \mathcal{E}$, т. е. такой опрератор \mathcal{B} , что

$$\mathcal{B}(v) = a_n \mathcal{A}^n(v) + ... + a_2 \mathcal{A}^2(v) + a_1 \mathcal{A}(v) + a_0 v$$

Лемма 3 (произведение многочленов от оператора). P,Q – многочлены, \mathcal{A} – оператор

$$\implies (PQ)(\mathcal{A}) = P(\mathcal{A}) \circ Q(\mathcal{A})$$

Доказательство. Пусть $P(t) = \sum p_i t^i, \quad Q(t) = \sum q_i t^i, \quad R(t) = P(t)Q(t)$

$$R(t) = \sum p_i q_j t^{i+j}$$

Положим $\mathcal{B} = P(\mathcal{A}), \quad \mathcal{C} = Q(\mathcal{A}), \quad \mathcal{D} = R(\mathcal{A})$

Нужно доказать, что $\mathcal{B}\Big(\mathcal{C}(v)\Big) = \mathcal{D}(v) \quad \forall v$

Пусть $w = \mathcal{C}(v)$

$$\implies \mathcal{B}(w) = \sum p_i \mathcal{A}^i(w), \qquad \mathcal{C}(v) = \sum q_j \mathcal{A}^j(v), \qquad \mathcal{D}(v) = \sum p_i q_j \mathcal{A}^{i+j}(v)$$

$$\mathcal{B}\Big(\mathcal{C}(v)\Big) = \mathcal{B}(w) = \mathcal{B}\Big(\sum p_j \mathcal{A}^j(v)\Big) = \sum q_j \mathcal{B}\Big(\mathcal{A}^j(v)\Big) = \sum q_j \Big(\sum p_i \mathcal{A}^i\big(\exists^j(v)\big)\Big) = \sum q_j \Big(\sum p_i \mathcal{A}^i\big(\exists^j(v)\big)\Big) = \sum q_j \Big(\sum p_i \mathcal{A}^{i_j}\Big) = \sum q_j p_i \mathcal{A}^{i+j} = \mathcal{D}(v)$$

Следствие. P,Q – многочлены, $\mathcal{A},\mathcal{B},\mathcal{C}$ – операторы, $\mathcal{B}=P(\mathcal{A}), \quad \mathcal{C}=Q(\mathcal{A})$

$$\implies \mathcal{B} \circ \mathcal{C} = \mathcal{C} \circ \mathcal{B}$$

5

Доказательство. $PQ = QP \implies (PQ)(A) = (QP)(A)$