Random Knot Diagrams

 $\label{eq:harrison} \begin{array}{l} \text{Harrison Chapman (UGA - Graduate student)} \\ \text{joint w/ Jason Cantarella (UGA), Matt Mastin (Wake Forest)} \end{array}$

AMS Western Spring Sectionals 2015 (UNLV) - April 18, 2015

Question

What fraction of 8-crossing diagrams are trefoils?

Question

What fraction of 8-crossing diagrams are trefoils?

12.48%

Question

What is the average minimal crossing # of an 8-crossing diagram?

Question

What is the average minimal crossing # of an 8-crossing diagram?

0.52

Define an operation on diagrams, **delooping**: Recursively RI untwist monogon loops in a diagram until there are no more.

Question

What is the average crossing # of a delooped 8-crossing diagram?

Question

What is the average crossing # of a delooped 8-crossing diagram?

2.19

Question

How many 8-crossing diagrams can be delooped to the unknot?

Question

How many 8-crossing diagrams can be delooped to the unknot?

44.51%

Ansatz

Combinatorial approaches

The Petaluma model

Satisfying theorems have been proven for the Petaluma model

Figure: Diagram from Evan-Zohar, Hass, et al.

Random diagrams

Definition

In the **random diagram model** of random knotting, a *n*-crossing diagram is drawn uniformly from the finite set of *n*-crossing knot diagrams.

Random diagrams

Definition

A **knot diagram** is a generic embedding of the oriented S^1 into the sphere S^2 together with over-under strand information at each double point.

Diagrams from shadows

Sample diagrams uniformly through tabulation:

- Enumerate shadows (unoriented graph structure behind diagrams).
- 2 Expand shadows into diagrams.

How many shadows?

oriented	n = 0	1	2	3	4	5
S^2 , S^1	1	1	3	9	37	182
S^2	1	1	2	6	21	99
S^1	1	1	2	6	21	97
	1	1	2	6	19	76

Curves on S^2 . The number of types

1008989	Number of immersions of unoriented circle into unoriented sphere with n double points.
1, 1, 2, 6,	19, 76, 376, 2194 (<u>list; graph; refs; listen; history; text; internal format</u>)
OFFSET	0,3
REFERENCES	V. I. Arnold, Topological Invariants of Plane Curves, American Math.
LINKS	Table of n, $a(n)$ for $n=07$.
CROSSREFS	Sequence in context: <u>A150119 A181770 A138800 * A057240 A079564 A079453</u> Adjacent sequences: <u>A008986 A008987 A008988 * A008990 A008991 A008992</u>
KEYWORD	nonn
AUTHOR	N. J. A. Sloane.
EXTENSIONS	Two more terms from Guy H. Valette (guy.valette(AT)skynet.be), Feb 09 20
STATUS	paperound

n	# knot shadows
0	1
1	1
2	2
2 3 4	6
4	19
5	76
6	376*
7	2194*
8	14614**
9	106421**

Tabulating knot shadows

Generated table of knot shadows two different ways as a check. Both methods use features from McKay and Brinkmann's plantri.

Tabulating knot shadows

Generated table of knot shadows two different ways as a check. Both methods use features from McKay and Brinkmann's plantri.

Actually generate all link shadows, then restrict to knot shadows

Tabulation is difficult!

Accounting for symmetry is complicated.

Breaking symmetries could make counting easier

Two-leg diagrams counted by generating function (Bouttier, et. al):

$$G_0 = \frac{24g - 1 + \sqrt{1 - 12g}}{9g(1 + \sqrt{1 - 12g})} = 1 + 2g + 9g^2 + 54g^3 + 378g^4 + \cdots$$

From shadows to diagrams

Expansion of *n*-crossing shadows to diagrams procedure:

- 1 Orient each component. (2 choices)
- 2 Assign over-under information to each vertex. (2^n choices)
- 3 Group diagrams by isomorphism.

How many knot diagrams?

n	# knot shadows	2^{n+1} (# shadows)	# knot diagrams
3	6	96	36
4	19	608	276
5	76	4,864	2,936
6	376	48,128	35,872
7	2,194	561,664	484,088
8	14,614	7,482,368	6,967,942
9	106,421	108,975,104	in process

Knotting probabilities

- Able to run searches across entire space computationally.
- Can check knot type of each diagram (HOMFLY is typically enough for our low crossing number)
- Possible to run many different types of searches

Ratio of unknots in *n*-crossing diagram iso. classes (log scale)

Ratios of knots in *n*-crossing diagram iso. classes (log scale)

Ratios of knots in *n*-crossing diagram iso. classes (log scale)

Counting monogons and bigons in knot shadows

n	shadows	1-gon	2-gon	neither
3	6	5 (83.33%)	3 (50%)	0
4	19	18 (94.74%)	11 (57.89%)	0
5	76	74 (97.37%)	52 (68.42%)	0
6	376	371 (98.67%)	275 (73.14%)	0
7	2,194	2,178 (99.27%)	1,714 (78.12%)	0
8	14,614	14,562 (99.64%)	11,892 (81.37%)	1
9	106,421	106,216 (99.81%)	89,627 (84.22%)	1

Monogons in diagrams

Basic polyhedra 8* and 9*

Figure: 8₁₈ (left), 9₄₀ (right).

Tree-like curves

A **tree-like curve** is a knot shadow which can be delooped to the trivial shadow.

Tree-like curves \Rightarrow lower bound on unknottedness.

Tree-like curves

n	# knot shadows	# tree-like	% tree-like
1	1	1	100.00%
2	2	2	100.00%
3	6	5	83.33%
4	19	16	84.21%
5	76	55	72.37%
6	376	240	63.83%
7	2,194	1149	52.37%
8	14,614	6,229	42.62%
9	106,421	35,995	33.82%

Unknottedness and tree-like diagrams

Ratio of unknots, tree-like curves in \leq *n*-crossing diagram iso. classes (log scale)

Delooped crossing number

n	Average delooped crossing $\#$
3	0.50
4	0.53
5	0.92
6	1.25
7	1.72
8	2.19
9	2.70

Questions to answer

Theorem (Sumners-Wittington)

The ratio of unknots in random n-edge self-avoiding lattice polygons tends to zero exponentially with n.

Conjecture

The ratio of unknots in diagrams tends to zero as n increases. (Exponentially?)

Questions to answer

Random curves project to diagrams.

Question

How does the pushforward measure differ from uniform diagram sampling?

Questions to answer

Question

Can we sample diagrams uniformly without enumeration?

Link diagrams

n	# link shadows	# knot shadows
0	1	1
1	1	1
2	3	2
3	7	6
4	30	19
5	124	76
6	733	376**
7	4586	2194**
8	33373	14614*
9	259434	106421*

Knot distances

Can study pure knot theoretic things, not just probabilistic things—transitions between knots bat graph [figure]

Thank you!

Coming soon: Knot probabilities in random diagrams.

This research was supported in part by NSF grant DMS-1344994 (RTG in Algebra, Algebraic Geometry, and Number Theory, at the University of Georgia).