Partial Derivative

Simple Partial Derivative

- 1. If $f(x,y) = 7 x^2y^3$, what are its two partial derivatives at (1,2)?
- 2. $\mu = \ln(x^2 + y^2)$. Find the two derivatives with respective to x and y, that is μ_x and μ_y .
- 3. Same setup at the last part, find $(\mu_x)_y$, $(\mu_x)_x$, $(\mu_y)_x$, $(\mu_y)_y$.

Chain Rule and PDE

- 1. If $z = x^2y + 5y^2$, $x = \sin t$, $y = \ln t$, find z(t) two ways:
 - (a) rewriting z=z(t) as a single-variable function of t and taking its ordinary derivative z'(t)
 - (b) applying the Chain Rule \mathbf{CR}_1 : $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$.
- 2. Verify that the given functions are solutions to the corresponding PDEs.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

- (a) $u(x,y) = e^x \cos y$
- (b) $u(x,y) = x^2 y^2$
- (c) $u(x,y) = x^4 6x^2y^2 + y^4$

T/F

- 1. Let X and Y be random variables with finite means and variances. Then Cov[10X, 10Y] = Cov[X, Y].
- 2. The least squares line of best fit is the line which minimizes the sum of the distances from the observed data points (x_i, y_i) to the line.

Source: Homework 37.