Análise SLR

Construção de compiladores I

Objetivos

Objetivos

• Apresentar o algoritmo de análise sintática SLR.

Introdução

Introdução

• Nas aulas anteriores, vimos o as funções de fechamento e goto, utilizadas para a construção de itens LR(0), do autômato LR(0) e do algoritmo de análise sintática LR(0).

Introdução

- Nesta aula, vamos conhecer outro algoritmo de análise ascendente: SLR
- O algoritmo SLR consiste de uma pequena modificação na construção de tabela usada pelo algoritmo LR(0).

Construção da tabela SLR

Construção da tabela SLR

- \bullet Seja G a gramática original. Estenda G com uma nova variável inicial. Chamaremos essa nova gramática de G'.
- Calcule follow(A) para cada não terminal A de G'.

Construção da tabela SLR

- Construção do AFD LR(0).
- Construção da tabela SLR.

Construção da tabela SLR

- Construa o conjunto $C = \{I_1, ..., I_n\}$ de itens canônicos para a gramática G'.
- Cada item I_i produz o estado i. As ações da tabela são determinadas como se segue.

Construção da tabela SLR

• Se $A \to \alpha.a\beta \in I_i$ e $goto(I_i, a) = I_j$, marque a entrada A[i,a] = shift j.

Construção da tabela SLR

• Se $A \to \alpha$. $\in I_i$, marque A[i,a] = reduce $A \to \alpha$, para todo $a \in follow(A) - \{S'\}$.

Construção da tabela SLR

• Se $S' \to S$. $\in I_i$, marque A[i,\$] = accept.

Construção da tabela SLR

- Se $goto(I_i, a) = I_j$, marque G[i,a] = goto j.
- Qualquer entrada não marcada, são consideradas como rejeitar.

Exemplo

Exemplo

• Vamos considerar a gramática de exemplo:

$$S \rightarrow (L) \mid \mathbf{x}$$

 $L \rightarrow L, S \mid S$

• Inicialmente, vamos criar uma nova variável inicial.

$$S' \rightarrow S.$$

$$S \rightarrow (L) \mid \mathbf{x}$$

$$L \rightarrow L, S \mid S$$

Exemplo

• Vamos construir o AFD LR(0).

Exemplo

- Inicializando $C \leftarrow closure(\{S' \rightarrow .S\})$.
 - Chamaremos esse conjunto de ${\cal I}_1$

$$\left\{ \begin{array}{cc} S \rightarrow .S & , \\ S \rightarrow .(L) & , \\ S \rightarrow .\mathbf{x} & \right\}$$

Exemplo

- Processando $goto(I_1, x)$:
 - Criando um estado I_2

$$S \rightarrow \mathbf{x}$$
.

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2)\}$$

- Processando $goto(I_1, ():$
 - Criando um estado \mathcal{I}_3

$$S \rightarrow (.L)$$

$$L \rightarrow L,S$$

$$L \rightarrow .S$$

$$S \rightarrow (L)$$

$$S \rightarrow \mathbf{x}$$

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3))\}$$

Exemplo

- Processando $goto(I_1, S)$:
 - Criando um estado \mathcal{I}_4

$$S' \rightarrow S$$
.

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (I_3), (I_1, S, I_4))\}$$

Exemplo

• Com isso, concluímos as transições sobre I_1 .

Exemplo

• Agora, vamos considerar o conjunto I_2 :

$$S \rightarrow \mathbf{x}$$
.

Exemplo

• Nenhuma transição pode ser construída a partir de

$$S \rightarrow \mathbf{x}$$
.

Exemplo

• Agora, vamos considerar o conjunto I_3 :

$$S \rightarrow (.L)$$

$$L \rightarrow \dot{L}, \dot{S}$$

$$L \rightarrow .S$$

$$S \rightarrow (L)$$

$$S \rightarrow \mathbf{x}$$

- Calculando $goto(I_3, x)$
- Única produção a ser considerada:

$$S \rightarrow \mathbf{.x}$$

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2)\}$$

Exemplo

• Logo, obtemos o estado I_2 :

$$S \rightarrow \mathbf{x}$$
.

Exemplo

- Calculando $goto(I_3, ()$.
- Produção base

$$S \rightarrow .(L)$$

- - $-\,$ Incluindo produções $L\,$

$$S \rightarrow (.L)$$

$$\begin{array}{ccc}
L & \rightarrow & .L,S \\
L & \rightarrow & .S
\end{array}$$

$$L \rightarrow .S$$

- Calculando o $closure(\{S \to (.L)\}.$
 - -Incluindo produções ${\cal S}$
 - Estado I_3

$$S \rightarrow (.L)$$

$$S \rightarrow \dot{x}$$

$$L \rightarrow L,S$$

$$L \rightarrow .S$$

$$S \rightarrow (L)$$

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3))\}$$

Exemplo

- Calculando $goto(I_3, L)$
 - Vamos chamar esse estado de I_5

$$S \rightarrow (L.)$$

$$S \rightarrow L., S$$

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3), (I_3, L, I_5))\}$$

${\bf Exemplo}$

- Calculando $goto(I_3, S)$:
 - Chamaremos esse estado de I_6

$$L \rightarrow S$$
.

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3), (I_3, L, I_5), (I_3, S, I_6)\}$$

Exemplo

- Agora, vamos considerar o estado I_4
 - Não há transições possíveis.

$$S' \rightarrow S$$
.

Exemplo

 \bullet Agora, vamos considerar o estado I_5

$$\begin{array}{ccc} S & \to & (L.) \\ S & \to & L., S \end{array}$$

Exemplo

- Calculando $goto(I_5,))$
 - Chamaremos esse estado de I_7 .

$$S \rightarrow (L).$$

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3), (I_3, L, I_5), (I_3, S, I_6), (I_5,), I_7)\}$$

${\bf Exemplo}$

- Calculando $goto(I_5, ,)$
 - Chamaremos esse estado de I_8
- Produção base

$$S \rightarrow L, S$$

- Calculando $closure(\{S \rightarrow L, .S\})$:
 - Chamaremos esse estado de I_8

$$S \rightarrow L, S$$

$$\begin{array}{ccc} S & \rightarrow & .(L) \\ S & \rightarrow & .x \end{array}$$

$$S \rightarrow .x$$

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3), (I_3, L, I_5), (I_3, S, I_6), (I_5,), I_7), (I_5, , , I_8)\}$$

Exemplo

- Agora, vamos considerar o estado I_6 :
 - Não há transições possíveis.

$$L \rightarrow S$$
.

Exemplo

- Agora vamos considerar o estado I_7 :
 - Não há transições possíveis.

$$S \rightarrow (L).$$

Exemplo

• Agora vamos consderar o estado I_8 :

$$S \rightarrow L, .S$$

$$\begin{array}{ccc} S & \rightarrow & .(L) \\ S & \rightarrow & .x \end{array}$$

$$S \rightarrow x$$

- Calculando $goto(I_8, x)$
- \bullet Produção base: $S \to .x$
- \bullet Resultado: estado I_2

Exemplo

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3), (I_3, L, I_5), (I_3, S, I_6), (I_5,), I_7), (I_5, , , I_8), (I_8, x, I_2)\}$$

Exemplo

- Calculando $goto(I_8, ()$
- Produção base: $S \to (.S)$
- Resultado: estado I_3 .

${\bf Exemplo}$

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3), (I_3, L, I_5), (I_3, S, I_6), (I_5,), I_7), (I_5, , , I_8), (I_8, x, I_2), (I_8, (, I_3))\}$$

- \bullet Calculando $goto(I_8,S)$
 - Vamos chamar esse estado de I_9 .
- \bullet Produção base: S \rightarrow L,S.

$$S \rightarrow L, S.$$

• Atualizando arestas:

$$E = \{(I_1, x, I_2), (I_1, (, I_3), (I_1, S, I_4), (I_3, x, I_2), (I_3, (, I_3), (I_3, L, I_5), (I_3, S, I_6), (I_5,), I_7), (I_5, , , I_8), (I_8, x, I_2), (I_8, (, I_3)), (I_8, S, I_9)\}$$

Exemplo

- Agora vamos considerar o estado I_9
 - Não há transições possíveis.

$$S \rightarrow L, S.$$

Exemplo

- Como não há modificações, o algoritmo termina
- Agora, temos o AFD LR(0) para a gramática.

Exemplo

• Desenho do AFD LR(0) para a gramática na lousa.

Exemplo

• Construção dos conjuntos follow(A)

Exemplo

• Primeiro calculando os conjuntos first.

$$- \operatorname{first}(S') = \operatorname{first}(S) = \operatorname{first}((L)) \cup \operatorname{first}(x) = \{(x)\}.$$

-
$$\operatorname{first}(L) = \operatorname{first}(S) = \{(x)\}.$$

Exemplo

• Calculando follow:

$$\begin{split} &- \text{ follow}(S') = \{\$,(,\,,\} \\ &- \text{ follow}(S) = \{\,\,),\,,\} \\ &- \text{ follow}(L) = \{\,\,),\,,\} \end{split}$$

- Agora vamos construir a tabela de análise.
- Primeiro, considerando o estado I_1 .

Exemplo

- Produção $S \to x$:
 - Como goto(I_1 ,x) = I_2 , temos que A[1,x] = shift 2.

Exemplo

- Produção $S \to (L)$:
 - Como goto(I_1 ,() = I_3 , temos que A[1,(] = shift 3.

Exemplo

• Como goto $(I_1, S) = I_4$, temos que G[1,S] = goto 4.

Exemplo

- Considerando o estado I_2 .

$$-A[2,] = A[2,] = \text{reduce } S \rightarrow x.$$

Exemplo

- Considerando o estado I_3 .
 - Como goto $(I_3,x) = I_2$, temos que A[3,x] =shift 2.
 - Como goto $(I_3,()=I_3,$ temos que A[3,)]= shift 3.

- Como goto $(I_3,L) = I_5$, temos que G[3,L] = goto 5.
- Como goto $(I_3,S) = I_6$, temos que G[3,S] = goto 6.

- Considerando o estado I_4 .
 - Como S' \rightarrow S., temos que A[4,\$] = accept.

Exemplo

- Considerando o estado I_5 .
 - Como $goto(I_5,)) = I_7$, temos que A[5,)] = shift 7.
 - Como goto $(I_5, .) = I_8$, temos que A[5, .] = shift 8.

Exemplo

- Considerando o estado I_6 .
 - Como L \rightarrow S. e follow(L) = {), ,}, temos que: * A[6,)] = A[6, ,] = reduce $L \rightarrow S$.

Exemplo

- Considerando o estado I_7 .
 - Como S \rightarrow (L) e follow(S) = {), ,}, temos que: * A[7,,] = A[7, ,] = reduce $S \rightarrow$ (L)

Exemplo

- Considerando o estado I_8 .
 - Como goto $(I_8, () = I_3, \text{ temos que A}[8, (] = \text{shift } 3$
 - Como goto $(I_8, \mathbf{x}) = I_2$, temos que $\mathbf{A}[8,\mathbf{x}] = \mathrm{shift} \ 2$

Exemplo

• Como goto $(I_8,S) = I_9$, temos que G[8,S] = goto 9.

- Considerando o estado I_9 .
 - Como L \rightarrow L,S. e follow(L) = {), ,}, temos que: * A[9,)] = A[9, ,] = reduce $L \rightarrow L, S$.

- Desenho da tabela na lousa.
- Uso da tabela para análise sintática de (x,x).

Concluindo

Concluindo

- Nesta aula apresentamos a construção de tabelas SLR.
- Próxima aula: Analisadores sintáticos LR(1).

Exercícios

Exercícios

• Determine se a seguinte gramática possui conflitos, utilizando o algoritmo de construção de tabelas SLR.

$$\begin{array}{ccc} E & \rightarrow & T{+}E \,|\, T \\ T & \rightarrow & \mathbf{x} \end{array}$$