Block Gibbs Sampling for SLDS

March 29, 2023

Bayesian linear regression and VAR

A necessary premise for a Bayesian treatment of linear systems is Bayesian linear regression. In (multivariate) linear regression we consider the system

$$\mathbf{y}_t = A\mathbf{x}_t + \boldsymbol{\epsilon}_t$$

where $\mathbf{y}_t \in \mathbb{R}^m$, $\mathbf{x}_t \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $t = 1, \dots, T$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

with $Q \in \mathbb{R}^{m \times m}$. Introducing matrix notations $\{\mathbf{y}_t\} \equiv Y$ with $Y \in \mathbb{R}^{m \times T}$ (with Y_{it} is the t-th observation of the i-th component of \mathbf{y}) and $\{\mathbf{x}_t\} \equiv X$ with $X \in \mathbb{R}^{n \times T}$ (with X_{it} is the t-th observation of the i-th component of x) and $\{\boldsymbol{\epsilon}_t\} \equiv E$ with $E \in \mathbb{R}^{m \times T}$

$$Y_{it} = \sum_{i} A_{ij} X_{jt} + E_{it}$$
 or $Y = AX + E$

We can assume that $\mathbf{y}_t, \mathbf{x}_t$ have zero mean, oterwise simply

$$\mathbf{y}_t \to \mathbf{y}_t - \frac{1}{T} \sum_t \mathbf{y}_t, \qquad \mathbf{x}_t \to \mathbf{x}_t - \frac{1}{T} \sum_t \mathbf{x}_t$$

Hence, we assume that all rows of matrices Y,X have zero mean. The likelihood is

$$f(X,Y|A,Q) = |Q|^{-T/2} exp\{-\frac{1}{2}Tr[(Y-AX)^TQ^{-1}(Y-AX)]\}$$

The max-likelihood solution for A is

$$\hat{A} = YX^T(XX^T)^{-1}$$

In the Bayesian scenario, we introduce a (conjugate) Matrix-normal inverse-Wishart prior for A,Q:

$$A, Q \sim MNIW(M, \Lambda, \Psi, \nu)$$

i.e..

$$\begin{split} f(A,Q|M,\Lambda,\Psi,\nu) &= |Q|^{-m/2}|\Lambda|^{-n/2}exp\Big(-\frac{1}{2}Tr\big[(A-M)^TQ^{-1}(A-M)\Lambda^{-1}\big]\Big) \times \\ &\times |\Psi|^{\nu/2}|Q|^{-(m+\nu+1)/2}exp\Big(-\frac{1}{2}Tr\big[\Psi Q^{-1}\big]\Big) \end{split}$$

It can be easily shown by some algebra that the posterior is also Matrix-normal inverse-Wishart with updated parameters

$$A, Q|Y, X \sim MNIW(M', \Lambda', \Psi', \nu')$$

with

$$M' = \hat{A}XX^T\Lambda' + M\Lambda^{-1}\Lambda'$$

$$\Lambda' = (\Lambda^{-1} + XX^T)^{-1}$$

$$\Psi' = \Psi + M\Lambda^{-1}M^T + YY^T - A'\Lambda'^{-1}A'^T$$

$$\nu' = \nu + T$$

In a vector-autoregressive process, we consider the system

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

where $\mathbf{x}_t \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, t = 2, ..., T, $\epsilon_t \sim \mathcal{N}(0, Q)$ with $Q \in \mathbb{R}^{m \times m}$. Introducing matrix notations $Y = \{\mathbf{x}_t\}$, t = 2, ..., T with $Y \in \mathbb{R}^{m \times T-1}$ and $X = \{\mathbf{x}_{t-1}\}$, t = 2, ..., T with $X \in \mathbb{R}^{n \times T-1}$ and $\{\epsilon_t\} \equiv E$ with $E \in \mathbb{R}^{m \times T-1}$

$$Y_{it} = \sum_{j} A_{ij} X_{j(t-1)} + E_{it}$$
 or $Y = AX + E$

We can assume that $\mathbf{y}_t, \mathbf{x}_t$ have zero mean. A, Q can be simply found with (Bayesian) linear regression.

Bayesian treatment of switching linear systems

The switching linear dynamical system model is a generative model for observed time series \mathbf{x}_t where $\mathbf{x}_t \in \mathbb{R}^d$ and t = 1, ..., T. The model assumes a latent categorical variable

$$z_t \in \{1, ..., K\}$$

The latent variable follows a simple stochastic process, a (time-invariant) Markov chain

$$P(z_{t+1} = k | z_t = l) = \Pi_{lk}$$

where Π is the Markov transition matrix. Given z_t , The dynamics of \mathbf{x}_t follows an (order 1) vector-autoregressive process

$$\mathbf{x}_{t+1} = A_{z_t} \mathbf{x}_t + \boldsymbol{\epsilon}$$

where A_k are $d \times d$ matrices (with max(eig(A)) < 1 for linear stability), and $\epsilon \sim \mathcal{N}(0, Q_{z_t})$ where Q_k are positive-definite matrices.

Priors and conditional posteriors

We use conjugate priors. For π_k (the k-th column of Π) we assume a Dirichlet prior,

$$\pi_k \sim Dir(\alpha_k)$$

The conditional posterior of π_k (all other parameters fixed) is

$$\pi_k |all \sim Dir(\alpha_k + \mathbf{n}_k)$$

where the matrix $n_{lk} = \#(z_{t+1} = k | z_t = l)$ has entries counting the number of observed state transitions from k to l, and \mathbf{n}_k is its k-th row.

For A_k , Q_k , we assume matrix-normal inverse-wishart prior

$$A_k, Q_k \sim MNIW(M_k, \Lambda_k, \Psi_k, \nu)$$

Now, let

$$\mathbf{t}_k = \{t > 1 \mid z_t = k\}, \qquad |\mathbf{t}_k| = T_k$$

And consider the matrix $X^{(k)} = \{\mathbf{x}_{t-1}\}$ with $t \in \mathbf{t}_k$, $X \in \mathbb{R}^{n \times T_k}$; and $Y = \{\mathbf{x}_t\}$ with $t \in \mathbf{t}_k$, $Y \in \mathbb{R}^{n \times T_k}$. We assume that the rows of matrices $Y^{(k)}, X^{(k)}$ have zero mean (otherwise, subtract the mean of each row from the matrices). The conditional posterior A_k , Q_k (all other parameters fixed) is

$$A_k, Q_k | all \sim MNIW(M'_k, \Lambda'_k, \Psi'_k, \nu'_k)$$

with

$$M_k' = \hat{A}_k X^{(k)} X^{(k)T} \Lambda' + M_k \Lambda_k^{-1} \Lambda_k'$$

$$\Lambda_k' = (\Lambda_k^{-1} + X^{(k)} X^{(k)T})^{-1}$$

$$\Psi'_k = \Psi + M_k \Lambda_k^{-1} M_k^T + Y^{(k)} Y^{(k)T} - A'_k (\Lambda')^{-1} A'_k^T$$

$$\nu_k' = \nu_k + T_k$$

(here, $\hat{A}_k = Y^{(k)} X^{(k)T} (X^{(k)} X^{(k)T})^{-1}$.

The conditional posterior of z_t , given all other parameters, is

$$Prob(z_t = k) = \frac{r_{tk}}{\sum_k r_{tk}}$$

where

$$r_{tk} = \prod_{Z_{t-1}k} |Q_k|^{-1/2} exp\{-\frac{1}{2} (\mathbf{x}_t - A_k \mathbf{x}_{t-1})^T Q_k^{-1} (\mathbf{x}_t - A_k \mathbf{x}_{t-1})^T]\}$$

Block Gibbs sampling

Block Gibbs sampling proceeds with as follows

Initialization. Randomly sample z_t uniformly. Determine \mathbf{n}_k , $X^{(k)}, Y^{(k)}$, $M_k', \Lambda_k', \Psi_k', \nu_k'$. Randomly sample Π and A_k, Q_k from the priors.

Iterations

1. For each k, sample

$$\pi_k \sim Dir(\alpha_k + \mathbf{n}_k)$$

2. For each k, sample

$$A_k, Q_k \sim MNIW(M_k', \Lambda_k', \Psi_k', \nu')$$

3. For each t = 2, ..., T, sample z_t from

$$Prob(z_t = k) = \frac{r_{tk}}{\sum_k r_{tk}}$$

4. Recompute \mathbf{n}_k , $X^{(k)},Y^{(k)},\,M_k',\Lambda_k',\Psi_k',\nu_k'.$