Act 8. Prueba de hipótesis

Facundo Colasurdo Caldironi

2024-08-23

Enlatados

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Paso 1: hipotesis

```
H_0: \mu = 11.7 \ H_1: \mu \neq 11.7
```

¿Como se distribuye \bar{x} ? x se distribuye como una normal n < 30 no conocemos sigma

Entonces: la distribución muestra es una t de student

Paso 2: Regla de decisión

Nivel de confianza es de 0.98 Nivel de significancia es de 0.02

Necesito encontrar a cuántas desviaciones estándar está lejos el valor frontera.

```
n = 21

alfa = 0.02

t_f = qt(alfa/2, n-1)

cat("T frontera:", t_f)

## T frontera: -2.527977

##Regla de decision Rechazo h_0 si:

|t_e| > 2.53 \text{ valor p} < 0.02
```

Paso 3: Análisis del resultado

 t_e : Número de desviaciones añ qie \bar{x} se encuentra lejos de $\mu=11.7$ valor p: probabilidad de obtener lo que obtuve en la muestra o un valor más extremo

Estadistico de prueba

```
X = c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.
xb = mean(X)
s = sd(X)
miu = 11.7

te=(xb-miu)/(s/sqrt(n))
cat("Te =", te)

## Te = -2.068884

valorp = 2*pt(te, n-1)
cat("Valor p =", valorp)

## Valor p = 0.0517299
```

mas facil, para hacer el análisis de resultado

```
##
## One Sample t-test
##
## data: X
## t = -2.0689, df = 20, p-value = 0.05173
## alternative hypothesis: true mean is not equal to 11.7
## 98 percent confidence interval:
## 11.22388 11.74755
## sample estimates:
## mean of x
## 11.48571
```

Paso 4: Conclusion

```
Comparar : Regla de decisón vs análisis del resultado
```

Entonces: $|t_e|=2.07>2.53$ -> No RHO valor p = 0.05 > 0.02 -> No RHO

En el contexto: Las latas de durazno tienen el peso requerido

##Elabora un gráfico que muestre la regla de decisión y el punto donde queda el estadístico de prueba.

```
sigma = sqrt((n-1)/(n-3))
x=seq(-4*sigma,4*sigma,0.01)
y=dt(x,n-1)

plot(x,y,type="l",col="blue",xlab="",ylab="",ylim=c(-0.1,0.4),frame.plot=FALSE,xaxt="n",yaxt="n",main=",")
```

```
abline(v=t_f,col="red",lty=5)
abline(v=-1*t_f,col="red",lty=5)
abline(h=0)
abline(v=0,col="blue",pch=19)

points(te, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución t de Student, gl=20)

La decisión de Fowle Marketing Research, Inc.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

 $\begin{array}{l} \text{Tiempo: } 17,\,11,\,12,\,23,\,20,\,23,\,15,\,16,\,23,\,22,\,18,\,23,\,25,\,14,\,12,\,12,\,20,\,18,\,12,\,19,\,11,\,11,\,20,\,21,\,11,\,18,\,14,\\ 13,\,13,\,19,\,16,\,10,\,22,\,18,\,23 \end{array}$

Por experiencias anteriores, se sabe que =4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

Paso 1: hipotesis

 $H_0: \mu = 15 \ H_1: \mu > 15$

¿Como se distribuye \bar{x} ? x se distribuye como una normal n > 30 sigma = 4 alpha = 0.07 Entonces: la distribución muestra es una Z

Paso 2: Regla de decisión

Nivel de confianza es de 0.93 Nivel de significancia es de 0.07

Necesito encontrar a cuántas desviaciones estándar está lejos el valor frontera.

```
n = 35
alfa = 0.07
sigma = 4
ds <- sigma / sqrt(n)
cat("Desviación estándar", ds, "\n")

## Desviación estándar 0.6761234

z <- qnorm(alfa)
cat("Valor de z", z, "\n")

## Valor de z -1.475791

##Regla de decision Rechazo h<sub>0</sub> si:
```

Paso 3: Analisis de resultado

Estadistico de prueba

z > 1.48 valor p < 0.07

```
X = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 1
sigma = 4
miu = 15
n=35
xb = mean(X)

ze=(xb-miu)/(sigma/sqrt(n))
cat("Ze =", ze, "\n")

## Ze = 2.95804
valorp = pnorm(ze)
cat("Valor p =", valorp, "\n")
```

Valor p = 0.998452

mas facil, para hacer el análisis de resultado

```
t.test(X, mu=15, alternative=("less"),conf.level=0.93)
```

```
##
## One Sample t-test
##
## data: X
## t = 2.6114, df = 34, p-value = 0.9933
## alternative hypothesis: true mean is less than 15
## 93 percent confidence interval:
## -Inf 18.15731
## sample estimates:
## mean of x
## 17
```

Paso 4: Conclusion

Comparar : Regla de decisón vs análisis del resultado

Entonces: $|t_e| = 2.95804 > 1.48 -> \text{RHO valor p} = 0.99 < 0.07 -> \text{NoRHO}$

En el contexto: El tiempo de las llamadas telefonicas si son mayores a 15 minutos

##Elabora un gráfico que muestre la regla de decisión y el punto donde queda el estadístico de prueba.

```
sigma =sqrt((n-1)/(n-3))

x=seq(-4*sigma,4*sigma,0.01)
y=dt(x,n-1)

plot(x,y,type="l",col="blue",xlab="",ylab="",ylim=c(-0.1,0.4),frame.plot=FALSE,xaxt="n",yaxt="n",main=".abline(v=z,col="red",lty=5)
abline(v=-1*z,col="red",lty=5)
abline(h=0)
abline(v=0,col="blue",pch=19)

points(ze, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución Z, gl=20)

