

Statement of Verification

BREG EN EPD No.: 000372 Issue 02

This is to verify that the

Environmental Product Declaration provided by:

Superglass Insulation Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

BRE Global Scheme Document SD207

This declaration is for: 1Kg of Blowing Wool

Company Address

Thistle Industrial Estate Kerse Road Stirling FK7 7QQ

25 October 2021

Emma Baker

Operator

16 November 2021

Date of this Issue

24 October 2026

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000372

General Information

Applicable Product Category Rules								
BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013								
LCA consultant/Tool								
Andrew Dutfield/ BRE LINA v2.0								
Applicability/Coverage								
Product Average.								
Background database								
ecoinvent v3.2								
ation of Verification								
5804 serves as the core PCR ^a								
Independent verification of the declaration and data according to EN ISO 14025:2010 □ Internal ⊠ External								
(Where appropriate ^b)Third party verifier: Pat Hermon								

a: Product category rules

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Product		Construction			Use stage						Benefits and loads beyond				
	Produc	τ	Const	ruction	Rel	ated to	the bui	lding fa	bric	Relat	ted to uilding		End-of-life		the system boundary	
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{A}}$												$\overline{\mathbf{A}}$	

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Superglass Insulation Limited, Thistle Industrial Estate, Kerse Road, Stirling, FK7 7QQ

Construction Product:

Product Description

Superglass blowing wool is a glass mineral wool manufactured from recycled glass with other raw materials, including the addition of anti-static and water repellents. Superglass blowing wool is used for thermal and acoustic insulation in all types of buildings.

The products covered are: Superwhite 34, Superwhite 40, Superwhite Loft, Superwhite 42 Loft Blown Wool, Swedish White Wool.

The products are similar but have different fibre diameters and fibre length which manifest in different characteristics at the point of installation (which include the installed density). The number suffix generally refers to the λ_D value i.e. '34' equates to 0.034 W·m⁻¹·K⁻¹.

Technical Information

Property	Value, Unit
Thermal conductivity (λ _D)	0.034-0.045 W·m ⁻¹ ·K ⁻¹
Target density	12-25 kg/m ³
Fire classification: BS EN 13501-1:2018	A1
Indoor air quality (EN 16516, French VOC Regulation of March and April 2011 (DEVL1101903D and DEVL1104875A)	A+
Bag of finished product	16.6 kg

bre

Main Product Contents

Material/Chemical Input	%
Glass cullet	84
Process additives	16

Manufacturing Process

The manufacturing process involves the melting of recycled waste glass with additional raw materials that are needed to give the required compositions. The molten glass leaves the furnace and is formed into glass fibres. A water repellent additive is applied. All glass mineral wool products are compression packed to reduce both storage and transport space.

Process flow diagram

Construction Installation

The installation of the product is undertaken using blowing machines, tested and accepted for use with the product by the BBA. The installer provides all necessary hoses, drilling tools and equipment to install the product according the manufacturer's instructions. The installer is also responsible for providing materials for making good the walls (if required) after the installation. Where a semi-detached or terraced property is to be insulated, a cavity brush is inserted at the line dividing the properties to contain the insulation. This consists of a continuous nylon brush which is left in place when the installation is completed.

Use Information

As the product is confined within the wall cavity and has suitable durability, maintenance is not required.

End of Life

Superglass assume that at the end of life the product will be disposed of in landfill. Technologies are being developed that could allow the product (at end of life) to be recycled or reprocessed.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1 kg of Superglass Blowing Wool with an installed thermal conductivity (λ_D) of 0.034-0.045 W·m⁻¹·K⁻¹

System boundary

This is a cradle to gate with options EPD referring to all Superglass blowing wool products with a declared thermal conductivity from 0.034 to 0.045 W·m⁻¹·K⁻¹. Production life cycle stages of modules from A1 to A3, A4, C2 and C4 are reported in accordance with EN 15804:2012+A1:2013.

Data sources, quality and allocation

Data collected by Superglass for the production of the Superglass blowing wool product at the Stirling site for the period 1st July 2019 to 31st August 2020 has been used for this EPD. The months of April and May 2020 are excluded due to a factory shutdown and so the resultant assessment period is for 12 months. As there were more input materials than output materials (including waste), this resulted in a mass balance of 102%.

Superglass manufacture other insulation products at the Stirling site. Figures for the raw materials, ancillary materials and packaging are compiled from actual usages for all included products. Allocation of energy, water, and waste has been done according to the provisions of the BRE PCR PN514 and EN 15804. Energy per product type is not individually metered. Values of total site electricity and natural gas have been taken from bills for the 2019-2020 years, and allocated based on percentage of mass of overall production output as the other insulation products are of similar density. All energy used on site (i.e. energy such as factory and office lighting and heating) is included, not only that specifically used in the manufacture of the product.

Data for transport to installation and disposal to landfill at end of life were supplied by Superglass. No losses are assumed during transportation.

Superglass blowing wool products have BBA certification which assesses the product for durability. The certificate states "The product is unaffected by the normal conditions in a wall, and is durable, rot-proof, water resistant and sufficiently stable to remain effective as insulation for the life of the building.". Using this information and by looking at publicly available data on average lifetime of buildings it is possible to estimate a service life of 60 years.

Secondary data have been drawn from the BRE LINA database v2.0.83 and the background LCI datasets are based on ecoinvent v3.2 (2015).

Quality Level	Geographical representativeness	Technical representativeness	Time representativeness
Very Good	Data from area under study	Data from processes and products under study. Same state of technology applied as defined in goal and scope (i.e. identical technology)	n/a
Fair	n/a	n/a	Less than 10 years of difference between the reference year according to the documentation, and the time period for which data are representative

The quality level of geographical and technical representativeness is Very Good. The quality level of time representativeness is Fair as the background LCI datasets are based on ecoinvent v3.2 which was compiled in 2015 and so there is less than 10 years between the reference year according to the documentation, and the time period for which data are representative.

Cut-off criteria

No inputs or outputs have been excluded and all raw materials, packaging and transport, energy, water use and wastes as well as direct emissions to air are included. Emissions to air directly related to burning of natural gas have been excluded to avoid double-counting. Direct emissions to soil and water are not measured and so are also excluded. Upstream extraction and/or processing of inputs are included within the use of the background datasets within LINA.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
	kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO₄)³- equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.				
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
1 Toddet Stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	1.22E+00	1.30E-07	5.78E-03	1.44E-03	5.32E-04	1.94E-04	2.10E+01		
Construction process stage	Transport	A4	1.62E-01	2.99E-08	5.52E-04	1.44E-04	9.52E-05	4.26E-07	2.45E+00		
End of life	Transport	C2	8.36E-03	1.54E-09	2.80E-05	7.38E-06	4.88E-06	2.20E-08	1.26E-01		
	Disposal	C4	8.62E-02	2.97E-08	6.64E-04	1.64E-04	1.15E-04	9.32E-08	2.50E+00		

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG		
Floudet stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	1.76E+00	4.55E-06	1.76E+00	2.37E+01	5.29E-01	2.42E+01		
Construction process stage	Transport	A4	3.26E-02	1.21E-07	3.26E-02	2.44E+00	0.00E+00	2.44E+00		
End of life	Transport	C2	1.68E-03	6.24E-09	1.68E-03	1.25E-01	0.00E+00	1.25E-01		
Liiu Oi IIIe	Disposal	C4	6.46E-02	9.80E-08	6.46E-02	2.48E+00	0.00E+00	2.48E+00		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m³				
Description of the second	Raw material supply	A1	AGG	AGG	AGG	AGG				
	Transport	A2	AGG	AGG	AGG	AGG				
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	1.49E+01	0.00E+00	0.00E+00	3.23E-02				
Construction process stage	Transport	A4	0.00E+00	0.00E+00	0.00E+00	5.32E-04				
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	2.74E-05				
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	2.86E-03				

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories									
			HWD	NHWD	RWD				
			kg	kg	kg				
	Raw material supply	A1	AGG	AGG	AGG				
Product stage	Transport	A2	AGG	AGG	AGG				
1 Toduct Stage	Manufacturing	А3	AGG	AGG	AGG				
	Total (of product stage)	A1-3	6.69E-03	2.05E-01	9.08E-05				
Construction process stage	Transport	A4	1.03E-03	1.14E-01	1.69E-05				
End of life	Transport	C2	5.29E-05	5.89E-03	8.71E-07				
End of file	Disposal	C4	8.99E-04	1.66E+01	1.69E-05				

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

LCA Results (continued)

Other environmental information describing output flows – at end of life										
			CRU	MFR	MER	EE				
			kg	kg	kg	MJ per energy carrier				
	Raw material supply	A1	AGG	AGG	AGG	AGG				
Product stage	Transport	A2	AGG	AGG	AGG	AGG				
Floudel stage	Manufacturing	А3	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Construction process stage	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00				

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery;

EE = Exported Energy

Scenarios and additional technical information

Scenarios and addi	tional technical information								
Scenario	Parameter	Units	Results						
	Distances derived from analysis of delivery data for period covered. Split by delivery area (including goods that are exported)								
	Diesel/ 16-32 t lorry	Kg/vkm	0.3						
	Distance:	km	968						
A4 – Transport to the building site	Lorry capacity utilisation (incl. empty returns)	%	35						
	Ship distance by sea	km	46						
	Ship capacity utilisation (incl. empty returns)	%	65						
	Bulk density of transported products	kg/m³	165						
Reference service life	Superglass blowing wool products have BBA certification which assesses the product for durability. The certificate states "The product is unaffected by the normal conditions in a wall, and is durable, rot-proof, water resistant and sufficiently stable to remain effective as insulation for the life of the building.". Using this information and by looking at publicly available data on average lifetime of buildings it is possible to estimate a service life of between 50-60 years.								
	Estimate of average distance from a typical building site where Superglass wool is installed to the nearest waste disposal / landfill facility								
	Diesel/ 16-32 t lorry	Kg/vkm	0.3						
C2 - Transport from site to pre-processing facility or landfill	Distance:	km	50						
racility of landilli	Lorry capacity utilisation (incl. empty returns)	%	35						
	Density of waste insulation kg/m³ 12-25								
C4 - Disposal	Superglass assume that at the end of life the product will Technologies are being developed that could allow the preprocessed.								
	Disposal to landfill	kg	1.0						

Interpretation

Glass cullet is by far the largest material input at 84% of the total. However it only forms 7% of the overall impact in terms of GWP. The largest impacts in terms of GWP in modules A1-A3 are electricity usage at 45% and gas usage at 24%.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.