Záróvizsga tételsor

2. Differenciál- és integrálszámítás

Dobreff András

Differenciál- és integrálszámítás

Jacobi-mátrix, gradiens, parciális derivált. Szélsőérték, függvényvizsgálat. Riemann-integrál, parciális integrálás, integrálás helyettesítéssel. Newton-Leibniz-formula. A kezdeti érték probléma. Lineáris, ill. magasabb rendű lineáris differenciálegyenletek.

1 Jacobi-mátrix, gradiens, parciális derivált

1.1 Jacobi-mátrix, gradiens

Differenciálhatóság

 $1 \leq n, m \in \mathbb{N}, \quad 1 \leq p, q \leq +\infty,$ $(\mathbb{R}^n, \|.\|_p) \text{ és } (\mathbb{R}^m, \|.\|_q) \text{ normált terek}$ $f \in \mathbb{R}^n \to \mathbb{R}^m, \ a \in intD_f$

Az f függvény differenciálható az a pontban $(f \in D\{a\})$, ha létezik olyan $L \in L(\mathbb{R}^n, \mathbb{R}^m)$ korlátos lineáris leképezés és olyan $\eta \in \mathbb{R}^n \to \mathbb{R}^m$ függvény, hogy :

$$f(a+h) - f(a) = L(h) + \eta(h) \cdot ||h||_p \quad (h \in \mathbb{R}^n, a+h \in D_f)$$

ahol

$$\eta(h) \longrightarrow 0 \quad (\|h\|_p \to 0)$$

Más szóval:

$$\frac{f(a+h) - f(a) - L(h)}{\|h\|_p} \longrightarrow 0 \quad (\|h\|_p \to 0)$$

Amennyiben $\forall a \in intD_f : f \in D\{a\}$, akkor az f differenciálható $(f \in D)$

Megjegyzés:

 $A \ \mathbb{K} \ test \ feletti \ (X, \|.\|_{\bigstar}), \ (X, \|.\|_{\heartsuit}) \ normált \ terek közötti folytonos leképezés, korlátos lineáris leképezés, ha$

• lineáris, azaz

$$f(x + \lambda y) = f(x) + \lambda f(y) \quad (x, y \in X, \lambda \in \mathbb{K})$$

• korlátos, azaz

$$\exists M \ge 0 : ||f(x)||_{\heartsuit} \le M||x||_{\bigstar} \quad (x \in X)$$

Derivált

 $f\in\mathbb{R}^n\to\mathbb{R}^m$ függvény differenciálható egy $a\in intD_f$ pontban $\Rightarrow \exists!L\in L(\mathbb{R}^n,\mathbb{R}^m)$ korlátos lineáris leképezés

Ezt az egyértelműen létező $L \in L(\mathbb{R}^n, \mathbb{R}^m)$ korlátos lineáris leképezést az f függvény a pontbeli deriváltjának nevezzük, és f'(a) szimbólummal jelöljük.

Jacobi-mátrix

Az előzőekben szereplő L:=f'(a) korlátos lineáris leképezéshez $\exists ! A \in \mathbb{R}^{m \times n}$ mátrix, melyre:

$$L(x) = Ax \quad (x \in \mathbb{R}^n)$$

Ezért: f'(a) := A

az f függvény a-beli deriváltja vagy derivált mátrixa, más néven Jacobi-mátrixa.

Gradiens

m=1 esetén : $f \in \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{grad} f(a) := f'(a) \in \mathbb{R}^{1 \times n} \approx \mathbb{R}^n$$

Tehát ebben az esetben az f'(a) Jacobi-mátrix tekinthető egy \mathbb{R}^n -beli vektornak, amit az f függvény a-beli gradiensének nevezünk.

Ha $D := \{a \in D_f : f \in D\{a\}\}, \text{ akkor az}$

$$x \mapsto \operatorname{grad} f(x) \in \mathbb{R}^n \quad (x \in D)$$

függvényt az f függvény gradiensének nevezzük, és grad $f \in \mathbb{R}^n \to \mathbb{R}^n$ jelöljük.

Gradiens mint Jacobi-mátrix sora

Legyen $1 \leq n, m \in \mathbb{N}$. Az $f = (f_1, ..., f_m) \in \mathbb{R}^n \to \mathbb{R}^m$ függvény akkor és csak akkor differenciálható az $a \in intD_f$ helyen, ha minden i = 1, ..., m esetén az $f_i \in \mathbb{R}^n \to \mathbb{R}$ koordináta-függvény differenciálható az a-ban.

Ha $f \in D\{a\}$, akkor az f'(a) Jacobi-mátrix a következő alakú:

$$f'(a) = \begin{bmatrix} \operatorname{grad} f_1(a) \\ \operatorname{grad} f_2(a) \\ \vdots \\ \operatorname{grad} f_m(a) \end{bmatrix}$$

1.2 Parciális derivált

Definíció

Tekintsük a $h \in \mathbb{R}^n \to \mathbb{R}$ függvényt és az $a = (a_1, ..., a_n) \in D_h$ vektort. Legyen

$$D_{h,i}^{(a)} := \{ t \in \mathbb{R} : (a_1, ..., a_{i-1}, t, a_{i+1}, ..., a_n) \in D_h \} \quad (i = 1, ..., n)$$

És legyen:

$$h_{a,i}: D_{b,i}^{(a)} \to \mathbb{R}, \quad \text{melyre:} \quad h_{a,i}(t) := h(a_1, ..., a_{i-1}, t, a_{i+1}, ..., a_n) \quad (t \in D_{b,i}^{(a)})$$

A $h_{a,i}$ parciális függvények mind egyváltozós valós függvények $(h_{a,i} \in \mathbb{R} \to \mathbb{R})$

A h függvény az a-ban i-edig változó szerint parciálisan deriválható, ha $h_{a,i} \in D\{a_i\}$. Ekkor:

$$\partial_i h(a) := h'_{a,i}(a_i)$$

valós számot a h függvény a-beli, i-edik változó szerinti parcális deriváltjának nevezzük.

Parciális derivált függvény

Tegyük fel, hogy az előző h függvényre:

$$D_{h,i} := \{a \in D_h : \text{létezik a } \partial_i h(a) \text{parciáis derivált}\} \neq \emptyset$$
 $(i = 1, ..., n)$

Ekkor a

$$x \mapsto \partial_i h(x) \quad (x \in D_{h,i})$$

függvényt a h függvény i-edik változó szerinti parciális deriváltfüggvényének nevezzük, és a $\partial_i h$ szimbólummal jelöljük.

Differenciálhatóság és parciális differenciálhatóság

• Differenciálhatóság \Rightarrow parciális differenciálhatóság $1 \leq n \in \mathbb{N}, \ h \in \mathbb{R}^n \to \mathbb{R},$ és $h \in D\{a\} \ (a \in D_h)$ $\Rightarrow \forall i = 1, ..., n :$ a h függvény i-edik változó szerint parciálisan differenciálható az a pontban, és

$$\operatorname{grad} h(a) = (\partial_1 h(a), ..., \partial_n h(a))$$

 $\bullet \,$ Differenciál
hatóság \Leftarrow parciális differenciálhatóság

 $1 \le n \in \mathbb{N}, \ h \in \mathbb{R}^n \to \mathbb{R}, \text{ és } a \in intD_h$

Valamilyen i = 1, ..., n esetén:

- Tetszőleges $x \in K_r(a)$ (r>0 alkalmas) helyen léteznek a $\partial_j h(x)$ parciális deriváltak $(i\neq j=1,...,n)$ és ezek folytonosak
- $\exists \partial_i h(a)$ parciális derivált
- $\Rightarrow h \in D(a)$

2 Szélsőérték, függvényvizsgálat

2.1 Szélsőérték

$$f \in \mathbb{R} \to \mathbb{R}, a \in D_f$$

Lokális maximum

f-nek a-ban lokális maximuma van, ha alkalmas r > 0 mellett:

$$f(x) \le f(a) \qquad (x \in D_f, |x - a| < r)$$

Lokális minimum

f-nek a-ban lokális minimuma van, ha alkalmas r>0 mellett:

$$f(x) \ge f(a)$$
 $(x \in D_f, |x - a| < r)$

Abszolút maximum

f-nek a-ban abszolút maximuma van, ha:

$$f(x) \le f(a) \qquad (x \in D_f)$$

Abszolút mimimum

f-nek a-ban abszolút minumuma van, ha:

$$f(x) \ge f(a) \qquad (x \in D_f)$$

Lokális szélsőérték

f-nek a-ban lokális szélsőértéke van, ha a-ban lokális minimuma vagy maximuma van.

Abszolút szélsőérték

f-nek a-ban abszolút szélsőértéke van, ha a-ban abszolút minimuma vagy maximuma van.

Elsőrendű szükséges feltétel (lokális szélsőértékre)

$$f\in\mathbb{R}\to\mathbb{R}$$
 függvénynek $a\in intD_f$ helyen lokális szélsőértéke van, és $f\in D\{a\}$ $\Rightarrow f'\{a\}=0$

Az előbbi tétel segítségével már nem nehéz belátni a differenciálható függvények vizsgálata szempontjából alapvető fontosságú ún. középérték-tételeket

Rolle-tétel

$$a, b \in \mathbb{R}$$
 $(a < b), f: [a, b] \to \mathbb{R}, f \in C$, és $\forall x \in (a, b) : f \in D\{x\}$ és $f(a) = f(b)$ $\Rightarrow \exists \xi \in (a, b) : f'(\xi) = 0$

Lagrange-féle középértéktétel

$$\begin{aligned} &a,b \in \mathbb{R} \ (a < b), \ f: [a,b] \to \mathbb{R}, \ f \in C, \text{ \'es} \\ &\forall x \in (a,b): f \in D\{x\} \\ &\Rightarrow \exists \ \xi \in (a,b): f'(\xi) = \frac{f(b) - f(a)}{b-a} \end{aligned}$$

Cauchy-féle középértéktétel

$$a, b \in \mathbb{R} \ (a < b), \ f, g : [a, b] \to \mathbb{R}, \ f, g \in C, \text{ \'es}$$

 $\forall x \in (a, b) : f, g \in D\{x\}$
 $\Rightarrow \exists \ \xi \in (a, b) :$
 $(f(b) - f(a)) \cdot g'(\xi) = (g(b) - g(a) \cdot f'(\xi))$

Jelváltás

$$f \in \mathbb{R} \to \mathbb{R}, \ a \in intD_f \text{ és } f(a) = 0, \ (K_r(a) \subset D_f, r > 0)$$

- 1. f függvénynek (-,+) jelváltása van, ha $f(x) \le 0 \le f(t), \quad (x,t \in K_r(a), \ x < a < t)$
- 2. f függvénynek (+,-) jelváltása van, ha $f(x) \geq 0 \geq f(t), \quad (x,t \in K_r(a), \ x < a < t)$

Elsőrendű elégséges feltétel

$$f \in \mathbb{R} \to \mathbb{R}, \ a \in intD_f \text{ és } f \in D\{x\}, \ (x \in K_r(a) \subset D_f, r > 0)$$

- 1. f'-nak az a-ban (+, -) jelváltása van $\Rightarrow f$ -nek a-ban lokális maximuma van.
- 2. f'-nak az a-ban (-,+) jelváltása van $\Rightarrow f$ -nek a-ban lokális minimuma van.

2.2 Monotonitás

$$f \in \mathbb{R} \to \mathbb{R}$$

Monoton növekedés

$$f$$
 monoton növő (\nearrow) , ha $\forall x, t \in D_f$, $x < t : f(x) \le f(t)$.
Amennyiben $f(x) < f(t)$, akkor f szigorúan monoton növő (\uparrow) .

Monoton fogyás (csökkenés)

$$f$$
 monoton fogyó (\(\sqrt{} \)), ha $\forall x, t \in D_f$, $x < t : f(x) \ge f(t)$.
Amennyiben $f(x) > f(t)$, akkor f szigorúan monoton fogyó (\downarrow).

Derivált és monotonitás kapcsolata

$$I \subset \mathbb{R}$$
 nyîlt intervallum, $\hat{f}: I \to \mathbb{R}, \ f \in D$ \Rightarrow

- 1. $f \nearrow \Leftrightarrow f' \ge 0$
- $2. \ f \searrow \Leftrightarrow \ f' \le 0$
- 3. $f konstans \Leftrightarrow \forall x \in I : f'(x) = 0$
- 4. $\forall x \in I : f'(x) > 0 \implies f \uparrow$
- 5. $\forall x \in I : f'(x) < 0 \implies f \downarrow$

2.3 Alaki viszonyok

Konvexitás, konkávitás

 $I \subset \mathbb{R}$ intervallum, $f: I \to \mathbb{R}$

- f konvex, ha $\forall a,b \in I \quad \forall 0 \leq \lambda \leq 1: f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda)f(b)$
- f konkáv, ha $\forall a, b \in I \quad \forall 0 \le \lambda \le 1 : f(\lambda a + (1 \lambda)b) \ge \lambda f(a) + (1 \lambda)f(b)$

ábra 1: Konvex függvény

Konvexitás és derivált

 $I \subset \mathbb{R}$ nyílt intervallum, $f: I \to \mathbb{R}, \ f \in D$

- f konvex $\Leftrightarrow f' \nearrow$
- f konkáv $\Leftrightarrow f' \searrow$

Inflexió

 $f \in \mathbb{R} \to \mathbb{R}, \ a \in intD_f, \ f \in D\{a\}:$

Pontbeli érintő

$$e_a(x) := f(a) + f'(a)(x - a) \quad (x \in \mathbb{R})$$

Inflexió

f-nek az a-ban inflexiója van, ha az $f - e_a(f)$ az a-ban jelet vált.

(a) x^3 függvény inflexiója

(b) szinusz függvény inflexiója

(c) x^2 -nek nincs inflexiója

2.4 Többször differenciálható függvények

Második derivált

 $f \in \mathbb{R} \to \mathbb{R}, \ a \in intD_f$, és

 $f \in D\{x\} \quad (x \in K_r(a), r > 0), \text{ illetve } f' \in D\{a\}$

Ekkor f az a-ban kétszer deriválható és f''(a) := (f')'(a) az f második deriváltja.

Differenciálás magasabb rendben

Hasonlóképpen az előzőhöz:

 $f \in \mathbb{R} \to \mathbb{R}, \ a \in intD_f$, és

 $f \in D^n\{x\} \quad (x \in K_r(a), r > 0), \text{ illetve } f^{(n)} \in D\{a\}, \ (1 \le n \in \mathbb{N})$

Ekkor f az a-ban (n+1)-szer deriválható és $f^{(n+1)}(a) := (f^{(n)})'(a)$ az f (n+1)-edik deriváltja.

Másodrendű elégséges feltétel (lokális szélsőérték létezésére)

$$f \in D^2\{a\}$$
 függvényre $f'(a) = 0$ és $f''(a) \neq 0$

 $\Rightarrow f$ -nek az a-ban szigorú lokális szélsőértéke van.

Ha $f''(a) < 0 \Rightarrow$ szigorú lokális maximum.

Ha $f''(a) > 0 \Rightarrow$ szigorú lokális minimum.

3 Riemann-integrál, parciális integrálás, integrálás helyettesítéssel.

Primitív függvény

 $I \subset \mathbb{R}$ nyílt intervallum, $f \in I \to \mathbb{R}$ Ha $\exists F : I \to \mathbb{R}$, hogy $F \in D$, F' = f akkor F az f primitív függvénye.

Határozatlan integrál

Legyen $\int f := \int f(x)dx := \{F : I \to \mathbb{R}, F \in D \text{ és } F' = f\}$ az f határozatlan integrálja.

Határozott integrál (Riemann-integrál)

 $-\infty < a < b < \infty$, $f: [a, b] \to \mathbb{R}$, f korlátos

- A $\tau \subset [a, b]$ felosztása, ha τ véges és $a, b \in \tau$ Ekkor $\tau = \{x_0, x_1, ..., x_n\} (n \in \mathbb{N})$, ahol $a := x_0 < x_1 < ... < x_n := b$
- $m_i := m_i(f) := \inf\{f(x) : x_i \le x \le x_{i+1}\} (i = 0..n 1)$, illetve $M_i := M_i(f) := \sup\{f(x) : x_i \le x \le x_{i+1}\} (i = 0..n 1)$ és:

$$s(f,\tau):=\sum_{i=0}^{n-1}m_i(x_{i+1}-x_i) \text{ - als\'o \"osszeg}$$

$$S(f,\tau):=\sum_{i=0}^{n-1}M_i(x_{i+1}-x_i) \text{ - fels\'o \"osszeg}$$

- $\mathfrak{F} := \{ \tau \subset [a, b] \text{ felosztás } \}$
- Az $\{s(f,\tau): \tau \in \mathfrak{F}\}$ felülről korlátos és $\forall \mu \in \mathfrak{F}: S(f,\mu)$ felső korlát, illetve Az $\{S(f,\tau): \tau \in \mathfrak{F}\}$ alulról korlátos és $\forall \mu \in \mathfrak{F}: s(f,\mu)$ alsó korlát
- Tehát legyen:

$$I_*(f):=\sup\{s(f,\tau):\tau\in\mathfrak{F}\}$$
 - Darboux alsó index, és $I^*(f):=\inf\{S(f,\tau):\tau\in\mathfrak{F}\}$ - Darboux felső index

$$\Rightarrow \forall \tau, \mu \in \mathfrak{F} : s(f,\tau) \leq I_*(f) \leq I^*(f) \leq S(f,\mu)$$

Az f függvény Riemann-integrálható $(f \in R[a,b])$, ha $I_*(f) = I^*(f)$, ekkor legyen $\int_a^b f := \int_{[a,b]}^b f := \int_a^b f(x) dx := I_*(f) = I^*(f)$ az f függvény Riemann-integrálja (határozott integrálja).

Parciális integrálás

• Határozatlan esetben

 $I \subset \mathbb{R}$ nyílt intervallum, $f,g:I \to \mathbb{R}, \, f,g \in D$ és fg'-nek van primitív függvénye (azaz $\int fg' \neq \emptyset$) $\Rightarrow \int f'g \neq \emptyset$ és $\int f'g = fg - \int fg'$

• Határozott esetben

$$\begin{split} &f,g \in D[a,b] \\ &f'g,fg' \in R[a,b] \\ &\Rightarrow \int_a^b f'g = f(b)g(b) - f(a)g(a) - \int_a^b fg' \end{split}$$

Integrálás helyettesítéssel

• Határozatlan esetben

 $I,J\subset\mathbb{R}$ nyílt intervallumok, $g:I\to J,g\in D,f:J\to\mathbb{R},\int f\neq\emptyset$ $\Rightarrow \int f\circ g\cdot g'\neq\emptyset$ és $(\int f)\circ g=\int (f\circ g\cdot g')$

• Határozott esetben

$$\begin{split} &f \in C[a,b], g: [\alpha,\beta] \to [a,b], g \in C^1[\alpha,\beta], \\ &g(\alpha) = a, g(\beta) = b \\ &\Rightarrow \int_a^b f = \int_\alpha^\alpha (f \circ g \cdot g') \end{split}$$

4 Newton-Leibniz-formula

$$f \in R[a,b], \exists F: [a,b] \to \mathbb{R}, F$$
 folytonos és $F \in D\{x\}, F'(x) = f(x), (a < x < b)$ $\Rightarrow \int_a^b f = F(b) - F(a)$

5 A kezdeti érték probléma

Differenciál egyenlet

 $0 < n \in \mathbb{N}, \ I \subset \mathbb{R}$ nyílt intervallum, $\Omega := I_1 \times \ldots \times I_n \subset \mathbb{R}^n$, ahol $I_1, \ldots, I_n \subset \mathbb{R}$ nyílt intervallum $f: I \times \Omega \to \mathbb{R}^n, \ f \in C$

Határozzuk meg a $\varphi \in I \to \Omega$ függvényt úgy, hogy:

- D_{φ} nyílt intervallum
- $\varphi \in D$
- $\varphi'(x) = f(x, \varphi(x)) \quad (x \in D_{\varphi})$

Ezt a feladatot nevezzük differenciál egyenletnek.

Kezdeti érték probléma

Ha az előzőekhez még adottak: $\tau \in I$, és $\xi \in \Omega$ Illetve a φ függvényre még teljesül:

• $\tau \in D_{\varphi}$ és $\varphi(\tau) = \xi$

Akkor kezdeti érték problémának (Cauchy feladatnak) nevezzük.

6 Lineáris, ill. magasabb rendű lineáris differenciálegyenletek

6.1 Lineáris differenciálegyenletek

Definíció

A lineáris differenciálegyenlet olyan differenciálegyenlet, melyre: $n=1, \quad I, I_1 \subset \mathbb{R}$ nyílt intervallumok, $f:I \times I_1 \to \mathbb{R}$, ahol $g,h:I \to \mathbb{R}, \ g,h \in C, \ I_1:=\mathbb{R}$ és $f(x,y):=g(x)\cdot y+h(x) \quad (x\in I,y\in I_1=\mathbb{R})$ $\Rightarrow \varphi'(x)=f(x,\varphi(x))=g(x)\cdot \varphi(x)+h(x) \quad (x\in D_\varphi)$

Homogenitás

A lineáris differenciálegyenlet homogén ha $h \equiv 0$ (különben inhomogén)

Kezdeti érték probléma

- Minden lineáris differenciálegyenletre vonatkozó kezdeti érték probléma megoldható és $\forall \varphi, \psi$ megoldásokra: $\varphi(t) = \psi(t) \quad (t \in D_{\varphi} \cap D_{\psi})$
- Minden homogén lineáris differenciálegyenlet $(\varphi: I \to \mathbb{R})$ megoldása a következő alakú: $c\varphi_0$, ahol $c \in \mathbb{R}$ és $\varphi_0(t) = e^{G(t)}$ $(G: I \to \mathbb{R}, G \in D,$ és G' = g)
- Állandók variálásának módszere:

 $\exists m: I \to \mathbb{R}, \ m \in D: m \cdot \varphi_0$ megoldása az (inhomogén) lineáris differenciálegyenletnek

• Partikuláris megoldás:

$$\begin{aligned} M &:= \{ \varphi: I \to \mathbb{R} : \varphi'(t) = g(t) \cdot \varphi(t) + h(t) \ (t \in I) \} \\ M_h &:= \{ \varphi: I \to \mathbb{R} : \varphi'(t) = g(t) \cdot \varphi(t) \ (t \in I) \} \\ \Rightarrow \forall \psi \in M: M = \psi + M_h = \{ \varphi + \psi : \varphi \in M_h \} \\ \text{(És itt } \psi \text{ az előzőek alapján } m \cdot \varphi_0 \text{ alakban írható)} \end{aligned}$$

• Példa: Radioaktív bomlás:

 $m_0 > 0$ - kezdeti anyagmennyiség

 $m \in \mathbb{R} \to \mathbb{R}$ - tömeg-idő függvénye, ahol

m(t) - a meglévő anyag mennyisége

$$m \in D \Rightarrow \frac{m(t) - m(t + \Delta t)}{\Delta t}$$
 $(\Delta t \neq 0)$ - átlagos bomlási sebesség

$$m \in D \Rightarrow \frac{\Delta t}{\Delta t}$$
 $\Delta t \neq 0$) - atlagos bomlasi sebesseg $\frac{m(t) - m(t + \Delta t)}{\Delta t} \xrightarrow{\Delta t \to 0} -m'(t)$, ami megfigyelés alapján $\approx m(t)$

$$m'(t) = -\alpha \cdot m(t) \quad (t \in \mathbb{R}, 0 < \alpha \in \mathbb{R})$$

$$m(0) = m_0$$

Homogén lineáris differenciálegyenlet (kezdeti érték probléma):

$$g \equiv -\alpha, \ \tau := 0, \ \xi := m_0$$

$$\Rightarrow G(t) = -\alpha t \quad (t \in \mathbb{R}) \Rightarrow \varphi_0(t) = e^{-\alpha t} \quad (t \in \mathbb{R})$$

$$\Rightarrow \exists c \in \mathbb{R} : m(t) = c \cdot e^{-\alpha t} \quad (t \in \mathbb{R}), \text{ ahol}$$

$$\Rightarrow \exists c \in \mathbb{R} : m(t) = c \cdot e^{-\alpha t} \quad (t \in \mathbb{R}), \text{ ahol}$$

$$m(0) = c = m_0 \Longrightarrow m(t) = m_0 e^{-\alpha t} \quad (t \in \mathbb{R})$$

Ha
$$T \in \mathbb{R} : m(T) = \frac{m_0}{2}$$
 (felezési idő)

$$m(0) = c = m_0 \Longrightarrow m(t) = m_0 e^{-\alpha t} \quad (t \in \mathbb{R}), \text{ and}$$

$$m(0) = c = m_0 \Longrightarrow m(t) = m_0 e^{-\alpha t} \quad (t \in \mathbb{R})$$
Ha $T \in \mathbb{R} : m(T) = \frac{m_0}{2} \quad \text{(felezési idő)}$

$$\Rightarrow \frac{m_0}{2} = m_0 e^{-\alpha T} \Rightarrow \frac{1}{2} = e^{-\alpha T} \Rightarrow e^{\alpha T} = 2$$

$$\Rightarrow T = \frac{\ln(2)}{\alpha}$$

6.2Magasabb rendű lineáris differenciálegyenletek

Definíció

 $0 < n \in \mathbb{N}, I \subset \mathbb{R}$ nyílt, $a_0, ..., a_{n-1} : I \to \mathbb{R}$ folytonos és $c : I \to \mathbb{R}$ folytonos. Keressünk olyan $\varphi \in I \to \mathbb{K}$ függvényt, melyre:

- $\varphi \in D^n$
- D_{φ} nyílt intervallum

•
$$\varphi^{(n)}(x) + \sum_{k=0}^{n-1} a_k(x) \cdot \varphi^{(k)}(x) = c(x) \quad (x \in D_{\varphi})$$

Ezt n-edrendű lineáris differenciálegyenletnek nevezzük. (n=1 esetben Lineáris diff. egyenlet). Ha még:

$$\tau \in I, \ \xi_0, ..., \xi_{n-1} \in \mathbb{K}$$
 és

•
$$\tau \in D_{\omega}$$
 és $\varphi^{(k)}(\tau) = \xi_k$ $(k = 0...n - 1)$

Akkor Kezdeti érték problémáról beszélünk.

Homogenitás

Amennyiben c(x) = 0 homogén n-edrendű lineáris differenciálegyenletről beszélünk. Tehát homogén és inhomogén egyenletek megoldásainak halmazai:

$$M_h := \{ \varphi : I \to \mathbb{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = 0 \}$$

$$M := \{ \varphi : I \to \mathbb{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = c \}$$

$$M := \{ \varphi : I \to \mathbb{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = c \}$$

(Itt M_h n-dimenziós lineáris tér, így valamilyen $\varphi_1,...,\varphi_n\in M_h$ bázist, más néven alaprendszert alkot.)

Állandó együtthatós eset

Ebben az esetben $a_0, ..., a_{n-1} \in \mathbb{R}$

• Karakterisztikus polinom szerepe

Legyen
$$P(t):=t^n+\sum\limits_{k=0}^{n-1}a_kt^k \quad (t\in\mathbb{K})$$
 karakterisztikus polinom és $\varphi_\lambda(x):=e^{\lambda x} \quad (x\in\mathbb{R},\lambda\in\mathbb{K})$

Ekkor:
$$\varphi_{\lambda} \in M_h \iff P(\lambda) = 0$$

Sőt ha λ r -szeres gyöke P -nek, és
$$\varphi_{\lambda,j}(x) := x^j e^{\lambda x} \ (j = 0..r - 1, x \in \mathbb{R}), \text{ akkor: } \varphi_{\lambda,j} \in M_h \iff \varphi_{\lambda,j}^{(n)} + \sum_{k=0}^{n-1} a_k \varphi_{\lambda,j}^{(k)}$$
 azaz $P(\lambda)^{(j)} = 0 \quad (j = 0..r - 1)$

• Valós megoldások Legyen $\lambda = u + iv \quad (u, v \in \mathbb{R}, v \neq 0, i^2 = -1)$ \Rightarrow az $x \mapsto x^j e^{ux} cos(vx)$, és $x \mapsto x^j e^{ux} sin(vx)$ függvények valós alaprendszert (bázist) alkotnak $(M_h$ -ban)

Példa: Rezgések

Írjuk le egy egyenes mentén, rögzített pont körül rezgőmozgást végző m tömegű tömegpont mozgását, ha ismerjük a megfigyelés kezdetekor elfoglalt helyét és az akkori sebességét!

$$\varphi \in \mathbb{R} \to \mathbb{R}, \varphi \in D^2$$
: kitérés-idő függvény

m>0: tömeg

 $F \in \mathbb{R} \to \mathbb{R}$: kitérítő erő

 $\alpha>0$: visszatérítő erő, mely arányos $\varphi\text{-vel}$

 $\beta \geq 0$: fékezőerő, mely arányos a sebességgel.

⇒ (Newton-féle mozgástörvény alapján):

$$m \cdot \varphi'' = F - \alpha \varphi - \beta \varphi'$$

$$\varphi(0) = s_0, \varphi'(0) = s_0'$$

Másodrendű lineáris differenciál egyenlet (kezdeti érték probléma)

Standard alakba írva:
$$\varphi'' + \frac{\beta}{m}\varphi' + \frac{\alpha}{m}\varphi = \frac{F}{m}$$

Tekintsük kényszerrezgésnek a periodikus külső kényszert, amikor:

$$\frac{F(x)}{m} = A sin(\omega x) \quad [A>0 \text{ (amplitúdó)}, \ \omega>0 \text{ (kényszerfrekvencia)}]$$

Ekkor
$$\omega_0 := \sqrt{\frac{\beta}{m}}$$
 - saját frekvencia

és
$$\varphi''(x) + \omega_0^2 \varphi(x) = A \sin(\omega x)$$

Melynek karakterisztikus polinomja : $P(t) = t^2 + \omega_0^2 \quad (t \in \mathbb{R})$

Megoldásai: $\lambda = \pm \omega_0 i$

Korábban láttuk, hogy ha $\lambda = u + iv$ akkor $x \mapsto x^j e^{ux} cos(vx)$, és $x \mapsto x^j e^{ux} sin(vx)$ függvények valós alaprendszert (bázist) alkotnak $(M_h$ -ban). Így $\varphi(x) = c_1 cos(\omega_0 x) + c_2 sin(\omega_0 x)$ alakban írható mely fázisszög segítségével: $d \cdot sin(\omega_0 x + \delta)$ $(d = \sqrt{c_1^2 + c_2^2}, \delta \in \mathbb{R})$ alakra átírható. Így: $M_h = \{d \cdot sin(\omega_0 x + \delta)\}$

Ekkor már könnyen megadhatunk egy partikuláris megoldást:

• $\omega \neq \omega_0$ esetén partikuláris megoldás:

$$x \to q \cdot \sin(\omega x)$$

És
$$q = \frac{A}{\omega_0^2 - \omega^2}$$
 kielégíti a $-q\omega^2 sin(\omega x) + \omega_0^2 q \cdot sin(\omega x) = A sin(\omega x)$ egyenletet. Tehát:

$$\varphi(x) = d \cdot \sin(\omega_0 x + \delta) + \frac{A}{\omega_0^2 - \omega^2} \sin(\omega x)$$
 megoldás két harmonikus rezgés összege.

• $\omega = \omega_0$ (rezonancia) esetén partikuláris megoldás:

$$x \to qx \cdot \cos(\omega x)$$

És
$$q = \frac{-A}{2\omega}$$
 kielégíti a $-2q\omega \cdot sin(\omega x) - q\omega^2 x \cdot cos(\omega x) + \omega^2 qx \cdot cos(\omega x) = Asin(\omega x)$ egyenletet. Tehát:

$$\varphi(x) = d \cdot \sin(\omega x + \delta) - \frac{A}{2\omega}x \cdot \cos(\omega x)$$
 megoldás egy harmonikus és egy aperiodikus rezgés összege.

(Ebben az esetben az idő (x) elteltével a φ értéke nő. Bizonyos modellekben ez a "rendszer szétesését" idézi elő)