

Natural Language Processing

第五周 循环神经网络

庞彦

yanpang@gzhu.edu.cn

Overview

Introduction Video

Example Application

Example Application

Solving slot filling by Feedforward network?正反馈网络

Input: a word

输入: 单词

(Each word is represented as a vector)

单词可以用矢量来表示

Beijing

1-of-N encoding

How to represent each word as a vector? 如何将单词表达成为一个矢量?

1-of-N Encodinglexicon 词典= {apple, bag, cat, dog, elephant}

单一矢量长度为词典长度 每个维度都有固定的含义 数值只能0或1

apple =
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

bag = $\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$
cat = $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
dog = $\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
elephant = $\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

Beyond 1-of-N encoding

Dimension for "Other"

Word hashing

Example Application

Solving slot filling by Feedforward network?正反馈网络

Input: a word

输入: 单词

(Each word is represented as a vector)

单词可以用矢量来表示

Output:输出

输入单词是正确填空的概率

 y_1 y_2 χ_2

dest time of departure

Beijing

Example Application

Recurrent Neural Network (RNN)

Example

Example

Example

Input sequence:

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots \begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix}$

output sequence:

RNN

RNN

Different差异

The values stored in the memory is different. 存储值不同

Of course it can be deep ...

Elman Network & Jordan Network

Bidirectional RNN

Introduction Video

Long Short-term Memory (LSTM)

Spring 2023

Activation function f is usually a sigmoid function激活函数

Between 0 and 1

Mimic open and close gate 模仿门的开关 Z_f

$$c' = g(z)f(z_i) + cf(z_f)$$

LSTM - Example

When $x_2 = 1$, add the numbers of x_1 into the memory输入存储

When x_2 = -1, reset the memory重置存储

When $x_3 = 1$, output the number from the memory.从存储输出

Original Network:原始的网络

➤ Simply replace the neurons with LSTM

Long Short-term Memory (LSTM)

Long Short-term Memory (LSTM)

LSTM

Extension: "peephole"

Multiple-layer LSTM

This is quite standard now.

Spring 2023

Learning

More Architecture

You Like More?

https://www.youtube.com/watch?v=fLvJ8VdHLA0&t=77s

Q&A

