Probability and Statistics

Omid Safarzadeh

January 30, 2022

Table of contents

- Moments
 - Expected Value
 - Variance
- Covariance and Correlation
- Moment Generating Functions
 - Normal mgf
- Distributions
 - Discrete Distribution
 - Discrete Uniform Distribution
 - Binomial Distribution
 - Poisson Distribution
 - Continuous Distribution
 - Uniform Distribution
 - Exponential Distribution
 - Normal Distribution
 - Lognormal Distribution
 - Laplace distribution
- Reference

*Acknowledgement: This slide is prepared based on Casella and Berger, 2002

Moments definition

Definition 1.1

For each of integer n, the n^{th} moment of X is

$$\mu'_n = E[X^n].$$

The n^{th} central moment of X, μ_n , is

$$\mu_n = E[(X - \mu)^n],$$

where $\mu = \mu'_1 = E[X]$.

- Recall that" average" is an arithmetic average where all available observations are weighted equally.
- The expected value, on the other hand, is the average of all possible values a random variable can take, weighted by the probability distribution.
- The question is, which value would we expect the random variable to take on, on average.

Definition 1.2

The expected value or mean of a random variable g(X), denoted by E[g(X)], is

$$E[g(X)] = \begin{cases} \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \\ \\ \sum_{x \in \mathcal{X}} g(x) f_X(x) = \sum_{x \in \mathcal{X}} g(x) P(X = x) & \text{if } X \text{ is discrete} \end{cases}$$

If $E[g(X)] = \infty$, we say that E[g(X)] does not exist.

• we are taking the average of g(x) over all of its possible values $(x \in \mathcal{X})$, where these values are weighted by the respective value of the pdf, $f_X(x)$.

(ロ > 《圖 > 《필 > 《필 > _ 필 _ 씨익()

Omid Safarzadeh Ziousialis and Sanatas January 30, 2022 5/4

Example 1.1

Suppose X has an exponential (λ) distribution, that is, it has pdf given by

$$f_X(x) = \frac{1}{\lambda}e^{-x/\lambda}, \quad 0 \le x < \infty \quad \lambda > 0.$$

Then,

$$E[X] = \int_0^\infty \frac{1}{\lambda} x e^{-x/\lambda} dx = -x e^{-x/\lambda} |_0^\infty + \int_0^\infty e^{-x/\lambda} dx$$
 (1)

$$= \int_0^\infty e^{-2/\lambda} dx = \lambda. \tag{2}$$

• To obtain this result, we use a method called integration by parts. This is based on

$$\int u dv = uv - \int v du.$$

(□) (□) (필) (필) (필)
 (□)

- A very useful property of the expectation operator is that it is a linear operator.
- For example, consider some X such that $E[X] = \mu$.
- Then, for two constants a and b,

$$E[a + Xb] = a + E[Xb] = a + bE[x] = a + b\mu.$$

• Notice that, clearly, the expectation of a constant is equal to itself.

Theorem 1.1

Let X be a random variable and let a, b and c be constants. Then for any functions $g_1(x)$ and $g_2(x)$ whose expectations exist.

- $E[ag_1(X) + bg_2(X) + c] = aE[g_1(X)] + bE[g_2(X)] + c$.
- If $g_1(x) > 0$ for all x, then $E[g_1(X)] > 0$.
- If $g_1(x) \ge g_2(x)$ for all x, then $E[g_1(X)] \ge E[g_2(X)]$.
- If $a \le g_1(x) \le b$ for all x, then $a \le E[g(X)] \le b$.

Proof: Exercise!

Omid Safarzadeh

Example 1.2

Let X have a uniform distribution, such that

$$f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{if otherwise} \end{cases}$$

Define $g(X) = -\log X$. Then,

$$E[g(X)] = E[-\log X] = \int_0^1 -\log x dx = (-x\log x + x)|_0^1 = 1,$$

where we use integration by parts.

<ロ > → □ > → □ > → □ > → □ = → の Q (~)

Variance

- variance measures the variation/dispersion/spread of the random variable around expectation.
- While the expectation is usually denoted by μ , σ^2 is generally used for variance.
- Variance is a second-order moment.

Omid Safarzadeh Stobeldilley and Stobeld

Variance

Definition 1.3

The variance of a random variable X is its second central moment,

$$Var(X) = E[(X - \mu)^2],$$

while $\sqrt{Var(X)}$ is known as the standard deviation of X.

Importantly,

$$Var(X) = E[(X - \mu)^2] = E[X^2] - \mu^2.$$

covariance

ullet When it exists, the covariance of two random variables X and Y is defined as

$$Cov(X, Y) = E({X - E[X]}{Y - E[Y]}).$$

• Let X and Y be two random variables. To keep notation concise, we will use the following notation.

$$E[X] = \mu_X$$
, $E[Y] = \mu_Y$, $Var(X) = \sigma_X^2$ and $Var(Y) = \sigma_Y^2$.

Definition 2.1

The covariance of X and Y is the number defined by

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)].$$

Definition 2.2

The correlation of X and Y is the number defined by

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_x \sigma_y},$$

which is also called the correlation coefficient.

←□▶←□▶←□▶←□▶ □ ♥9

13 / 40

- If large(small) values of X tend to be observed with large(small) values of Y, then will be positive.
- Why so? Within the above setting, when $X>\mu_X$ then $Y>\mu_Y$ is likely to be true whereas when $X<\mu_X$ then $Y<\mu_Y$ is likely to be true. Hence

$$E[(X - \mu_X)(Y - \mu_Y)] > 0.$$

• Similarly, if large(small) values of X tend to be observed with small(large) values of Y, then Cov(X, Y) will be negative.

14 / 40

Omid Safarzadeh Substitive and Santais January 30, 2022

- Correlation normalises covariance by the standard deviations and is, therefore, a more informative measure.
- If Cov(X, Y)=50 while Cov(W, Z)=0.9, this does not necessarily mean that there is a much stringer relationship between X and Y. For example, if Car(X)=Var(Y)=100 while Var(W)=Var(Z)=1, then

$$\rho_{XY} = 0.5 \quad \rho_{WZ} = 0.9.$$

Theorem 2.1

For any random variables X and Y.

$$Cov(X, Y) = E[XY] - \mu_X \mu_Y.$$

• Proof:

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= E[XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y]$$

$$= E[XY] - \mu_X E[Y] - \mu_Y E[X] + \mu_X \mu_Y$$

$$= E[XY] - \mu_X \mu_Y.$$

Theorem 2.2

If $X \perp \!\!\! \perp Y$, then $Cov(X, Y) = \rho_{XY} = 0$.

• **Proof**: Since $X \perp \!\!\!\perp Y$, by Theorem (2.1), Then

$$Cov(X, Y) = E[XY] - \mu_X \mu_Y = \mu_X \mu_Y - \mu_X \mu_Y = 0,$$

and consequently,

$$\rho_{XY} = \frac{Cov(X,Y)}{\sum_{X} \sum_{Y}} = 0.$$

• It is crucial to note that although $X \perp \!\!\! \perp Y$ implies that $Cov(X,Y) = \rho_{XY} = 0$, the relationship does not necessarily hold in the reverse direction.

16 / 40

Theorem 2.3

If X and Y are any two random variables and a and b are any two constants, then

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$$

If X and Y are independent random variables, then

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y).$$

• Proof: Exercise!

Note that if two random variables, X and Y, are positively correlated, then

$$Var(X + Y) > Var(X) + Var(Y),$$

whereas if X and Y are negatively correlated, then

$$Var(X + Y) < Var(X) + Var(Y)$$
.

- For positively correlated random variables, large values in one tend to be accompanied by large values in the other. Therefore, the total variance is magnified.
- Similarly, for negatively correlated random variables, large values in one tend to be accompanied by small values in the other. Hence, the variance of the sum is dampened.

18 / 40

third and fourth moments

• third and fourth moments are concerned with how symmetric and fat-tailed the underlying distribution is.

Moment Generating Functions

 moment generating function can be used to obtain moments of a random variable.

Omid Safarzadeh January 30, 2022

Moments and Moment Generating Functions

Definition 3.1

Let X be a random variable with cdf F_X . The moment generating function (mgf)of X (or F_X), denoted by $M_X(t)$, is

$$M_X(t) = E[e^{tX}],$$

provided that the expectation exists for t in some neighbourhood of 0. That is, there is an h>0 such that, for all t in -h< t< h, $E[e^{tX}]$ exists. If the expectation does not exist in a neighbourhood of 0, we say that the mgf does not exist.

• We can write the mgf of X as

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$
 if X is continuous,

$$M_X(t) = \sum_{x} e^{tx} P(X = x)$$
 if X is discrete.

Omid Safarzadeh Protestificand Statistics January 30, 2022 21 /

Moment Generating Functions

Theorem 3.1

If X has mgf $M_X(t)$, then

$$E[X^n] = M_X^{(n)}(0),$$

where we define

$$M_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t)|_{t=0}.$$

That is, the n^{th} moment is equal to the n^{th} derivative of $M_X(t)$ evaluated at t=0.

Normal mgf

• Now consider the pdf for X $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \quad -\infty < x < \infty.$$

• The mgf is given by

$$M_X(t) = E[e^{Xt}] = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} dx.$$

<ロ > ← □ > ← □ > ← □ > ← □ = − → へへ

Normal mgf

Then

$$M_X(t) = exp(\mu t + \frac{\sigma^2 t^2}{2}).$$

Clearly,

$$\begin{split} E[X] &= \frac{d}{dt} M_X(t)|_{t=0} = (\mu + \sigma^2 t) exp(\mu t + \frac{\sigma^2 t^2}{2})|_{t=0} = \mu, \\ E[X^2] &= \frac{d^2}{dt^2} M_X(t)|_{t=0} = \sigma^2 exp(\mu t + \frac{\sigma^2 t^2}{2}|_{t=0} \\ &+ (\mu + \sigma^2 t)^2 exp(\mu t + \frac{\sigma^2 t^2}{2})^2|_{t=0} \\ &= \sigma^2 + \mu^2, \\ Var(X) &= E[X^2] - \{E[X]\}^2 = \sigma^2 + \mu^2 - \mu^2 = \sigma^2. \end{split}$$

Discrete Uniform Distribution

A random variable X has a discrete uniform(1,N) distribution if

$$P(X = x|N) = \frac{1}{N}, \quad x = 1, 2, ..., N,$$

where N is a specified integer. This distribution puts equal mass on each of the outcomes 1, 2, ..., N.

Omid Safarzadeh Propositional Statistic January 30, 2022 25 / 40

Binomial Distribution

- This is based on a Bernoulli trial (after James Bernoulli which is an experiment with two, and only, two, possible outcomes.
- A random variable X has Bernoulli(p) distribution if

$$X = egin{cases} 1 & ext{with probability } p \ 0 & ext{with probability } 1-p \end{cases} \quad 0 \le p \le 1.$$

- X=1 is often termed as "success" and p is, accordingly, the probability of success. Similarly, X = 0 is termed a "failure".
- Now.

$$E[X] = 1 * p + 0 * (1 - p) = p,$$

and $Var(X) = (1 - p)^2 p + (0 - p)^2 (1 - p) = p(1 - p).$

- E[X] = np (**Proof**: Exercise!)
- Var(X) = np(1-p) (**Proof**: Exercise!)
- Examples:
 - 1 Tossing a coin (p = probability of a head, X = 1 if heads)
 - 2 Roulette (X = 1 if red occurs, p = probability of red)
 - 3 Election polls (X = 1 if candidate A gets vote)
 - Incidence of disease (p = probability that a random person gets infected)

Omid Safarzadeh January 30, 2022

Binomial Distribution

- We can extend the scope to a collection of many independent trials.
- Define

$$A_i = \{X = 1 \text{ on the } i^{th} \text{ trial}\}, \quad i = 1, 2, ..., n.$$

- Assuming that $A_1, ..., A_n$ are independent events, we can derive the distribution of the total number of successes in n trials. Define Y = "total number of successes in n trials".
- The event $\{Y = y\}$ means that out of n trials, y resulted as success. Therefore, n y trials have been unsuccessful.
- In other words, exactly y of $A_1, ..., A_n$ must have occurred.
- There are many possible orderings of the events that would lead to this outcome. Any particular such ordering has probability

$$p^{y}(1-p)^{n-y}.$$

• Since there are $\binom{n}{v}$ such sequences, we have

$$P(Y = y | n, p) = {n \choose y} p^{y} (1 - p)^{n-y}, \quad y = 0, 1, 2, ..., n,$$

and Y is called a binomial (n,p) random variable.

Binomial Distribution

Example 4.1

If you flip a fair coin 10 times, what is the probability of getting all tails?

• Let's first calculate the probability of getting tail on fair coin when you flip it one time.

$$P(1) = \frac{1}{2} = 50\%$$
 (Because coin has two sides, H & T)

- Since all the trails are independent, probability of getting head on *nth* turn is also 1/2.
- Then,

$$P(10) = \frac{1}{2} * \frac{1}{2} * \dots * \frac{1}{2}$$
 (10 times)
= $(\frac{1}{2})^{10}$.

Omid Safarzadeh Badasilika and Stadistics January 30, 2022 28/40

Poisson Distribution

- In modelling a phenomenon in which we are waiting for an occurrence (such as waiting for a bus), the number of occurrence in a given time interval can be modelled by the Poisson distribution.
- The basic assumption is as follows: for small time intervals, the probability of an arrival is proportional to the length of waiting time.
- If we are waiting for the bus, the probability that a bus will arrive within the next hour is higher than the probability that it will arrive within 5 minutes.
- Other possible applications are distribution of bomb hits in an area or distribution of fish in a lake.
- The only parameter is λ , also sometimes called the "intensity parameter."

January 30, 2022

Poisson Distribution

•
$$E[X] = \lambda$$

- $Var(X) = \lambda$
- Proof: Exercise!

Omid Safarzadeh Compositive para Stephenics January 30, 2022

Poisson Distribution

Example 4.2

As an example of a waiting-for-occurrence application, consider a telephone operator who, on average, handles fie calls every 3 minutes. What is the probability that there will be no calls in the next minute? At leas two calls? If we let X =number of calls in a minute, then X has a Poisson distribution with $E[X] = \lambda = 5/3$. So,

P(no calls in the next minute) = P(X = 0)

$$=\frac{e^{-5/3}(5/3)^0}{0!}=e^{-5/3}=0.189$$

and

 $P(\text{at least two calls in the next minute}) = P(X \ge 2)$

$$= 1 - P(X = 0) - P(X = 1)$$
$$= 1 - 0.189 - \frac{e^{-5/3}(5/3)^{1}}{11}$$

= 0.496.

Omid Safarzadeh Browning Statusus January 30, 2022

Uniform Distribution

• The continuous uniform distribution is defined by spreading mass uniformly over an interval [a, b]. Its pdf is given by

$$f(x|a,b) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{if otherwise} \end{cases}.$$

One can easily show that

$$\int_{a}^{b} f(x)dx = 1,$$

$$E[X] = \frac{b+a}{2},$$

$$Var(X) = \frac{(b-a)^{2}}{12}.$$

• In many cases, when people say Uniform distribution, they implictly mean (a, b) = (0, 1).

Omid Safarzadeh Szalaslassa January 30, 2022 32/40

Exponential Distribution

• Now consider, $\alpha = 1$:

$$f(x|a,\beta) = f(x|1,\beta) = \frac{1}{\beta}e^{-e/\beta}, \quad 0 < x < \infty.$$

ullet Again, using our previous results, for X exponential (eta) we have

$$E[X] = \beta$$
 and $Var(X) = \beta^2$

• A peculiar feature of this distribution is that it has no memory.

Omid Safarzadeh Szonalália and Szonalála January 30, 2022 33 / 40

Exponential Distribution

• If X exponential(β), then, for $s > t \ge 0$,

$$P(X > s | X > t) = \frac{P(X > s, X > t)}{P(X > t)} = \frac{P(X > s)}{P(X > t)}$$
$$= \frac{\int_{s}^{\infty} \frac{1}{\beta} e^{-x/\beta} dx}{\int_{t}^{\infty} \frac{1}{\beta} e^{-x/\beta} dx} = \frac{e^{-s/\beta}}{e^{-t/\beta}}$$
$$= e^{-(s-t)/\beta} = P(X > s - t).$$

• This is because.

$$\int_{s-t}^{\infty} \frac{1}{\beta} e^{-x/\beta} dx = -e^{-x/\beta}|_{x=s-t}^{\infty} = e^{-(s-t)/\beta}.$$

- What does this mean? When calculating P(X > s | X > t), what matters is not whether X has passed a threshold or not. What matters is the distance between the threshold and the value to be reached.
- If Mr X has been fired more than 10 times, what is the probability that he will be fired more than 12 times? It is not different from the probability that a person, who has been fired once, will be fired more than two times. History does not matter.

Normal Distribution

- We now consider the normal distribution or the Gaussian distribution.
- Why is this distribution so popular?
 - Analytical tractability
 - Bell shaped or symmetric
 - 3 It is central to Central Limit Theorem; this type of results guarantee that, under (mild) conditions, the normal distribution can be used to approximate a large variety of distribution in large samples.
- ullet The distribution has two parameters: mean and variance, denoted by μ and σ^2 , respectively.
- The pdf is given by,

$$f(x|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp[-1/2\frac{(x-\mu)^2}{\sigma^2}].$$

Omid Safarzadeh January 30, 2022 35 / 40

Normal Distribution

- This distribution is usually denoted as $N(\mu, \sigma^2)$.
- A very useful result is that for X $N(\mu, \sigma^2)$,

$$Z=rac{X-\mu}{\sigma} \ {\it N}(0,1).$$

- N(0,1) is known as the standard normal distribution.
- To see this, consider the following:

$$P(Z \le z) = P(\frac{(X - \mu)/\sigma \le z}{)}$$

$$= P(X \le z\sigma + \mu)$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{z\sigma + \mu} e^{-(x-\mu)^2}/2\sigma^2 dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z\sigma + \mu} e^{-t^2/2} dt,$$

where we substitute $t=(x-\mu)/\mu$. Notice that this implies that $dt/dx=1/\sigma$. This shows that $P(Z \le z)$ is the standard normal cdf.

Normal Distribution

- Then, we can do all calculations for the standard normal variable and then convert these results for whatever normal random variable we have in mind.
- Consider, for Z N(0,1), the following:

$$E[Z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-z^2/2} dz = -\frac{1}{\sqrt{2\pi}} e^{-z^2/2} |_{-\infty}^{\infty} = 0.$$

• Then, to find E[X] for X $N(\mu, \sigma^2)$, we can use $X = \mu + Z\sigma$:

$$E[X] = E[\mu + Z\sigma] = \mu + \sigma E[Z] = \mu + \sigma * 0 = \mu.$$

Similarly,

$$Var(X) = Var(\mu + Z\sigma) = \sigma^2 Var(Z) = \sigma^2.$$

What about

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-z^2/2}dz\stackrel{?}{=}1.$$

Omid Safarzadeh January 30, 2022

Lognormal Distribution

• Let X be a random variable such that

$$\log X N(\mu, \sigma^2).$$

Then, X is said to have a lognormal distribution.

• By using a transformation argument (Theorem (1.2)), the pdf of X is given by,

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{x} exp[-\frac{(\log x - \mu)^2}{2\sigma^2}],$$

where $0 < x < \infty$, $-\infty < \mu, \infty$, and $\sigma > 0$.

• How? Take $W = \log X$. We start from distribution of W and want to find the distribution of X = expW. Then, g(W) = exp(W) and $g^{-1}(X) = log(X)$. The rest follows by using Theorem (1.2).

Omid Safarzadeh

Laplace distribution

Laplace prior for β :

$$eta_j \sim extit{Lap}(0, rac{2\sigma^2}{\lambda} \Rightarrow extit{p}(eta_j) = rac{\lambda}{4\sigma^2} ext{exp}(-rac{\lambda}{2\sigma^2} |eta_j|)$$

where $\beta_i, j = 1, ..., p$ are i.i.d

• If $Z \sim Lap(\mu, b)$, then $E[Z] = \mu$, $Var(Z) = 2b^2$,

$$p(Z) = \frac{1}{2b} exp(-\frac{|x-\mu|}{b})$$

Likelihood: Gaussian likelihood

Omid Safarzadeh 39 / 40

References

Casella, G., & Berger, R. (2002). *Statistical inference*. Cengage Learning. https://books.google.fr/books?id=FAUVEAAAQBAJ

(□▶◀∰▶◀불▶◀불▶ 불 쒸٩♡

40 / 40