Here we will predict the quality of wine on the basis of given features. We use the wine quality dataset available on Internet for free. This dataset has the fundamental features which are responsible for affecting the quality of the wine. By the use of several Machine learning models, we will predict the quality of the wine.

Our dataset that we will use consists of the following features:

- 1. type: whether white or red wine
- 2. fixed acidity: fixed acidity value
- 3. volatile acidity: volatile acidity value
- 4. citric acid: citric acid value
- 5. residual sugar: residual sugar value
- 6. chlorides: chloride value
- 7. free sulfur dioxide: free sulfur dioxide value
- 8. total sulfur dioxide: total sulfur dioxide value
- 9. density: density value of wine
- 10. pH: pH value of wine
- 11. sulphates: sulphates value
- 12. alcohol: Alcohol value
- 13. quality: target quality of wine which range from 0 to 10

```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model selection import train_test_split
        from sklearn.preprocessing import StandardScaler, MinMaxScaler
        import warnings
        warnings.filterwarnings("ignore")
        from imblearn.over sampling import RandomOverSampler
        from imblearn.under sampling import RandomUnderSampler
        from imblearn.under sampling import TomekLinks
        from collections import Counter
        from imblearn.over sampling import SMOTE
        from sklearn.model selection import GridSearchCV, RandomizedSearchCV
        from sklearn.metrics import mean absolute error, mean squared error, r2 score
        from sklearn.metrics import accuracy score, recall score, precision score, f1 score, confusion
```

Reading data

Out[2]:		type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	white	7.0	0.270	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	0.45	8.8	6
	1	white	6.3	0.300	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	0.49	9.5	6

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
2	white	8.1	0.280	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	0.44	10.1	6
3	white	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
4	white	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
•••													
6492	red	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
6493	red	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	NaN	11.2	6
6494	red	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
6495	red	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
6496	red	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

6497 rows × 13 columns

In [3]: | df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):

		/ -	
#	Column	Non-Null Count	Dtype
0	type	6497 non-null	object
1	fixed acidity	6487 non-null	float64
2	volatile acidity	6489 non-null	float64
3	citric acid	6494 non-null	float64
4	residual sugar	6495 non-null	float64
5	chlorides	6495 non-null	float64
6	free sulfur dioxide	6497 non-null	float64
7	total sulfur dioxide	6497 non-null	float64
8	density	6497 non-null	float64
9	рН	6488 non-null	float64
10	sulphates	6493 non-null	float64
11	alcohol	6497 non-null	float64
12	quality	6497 non-null	int64

dtypes: float64(11), int64(1), object(1)

memory usage: 660.0+ KB

In [4]:

df.describe().T

Out[4]:		count	mean	std	min	25%	50%	75%	max
	fixed acidity	6487.0	7.216579	1.296750	3.80000	6.40000	7.00000	7.70000	15.90000
v	olatile acidity	6489.0	0.339691	0.164649	0.08000	0.23000	0.29000	0.40000	1.58000
	citric acid	6494.0	0.318722	0.145265	0.00000	0.25000	0.31000	0.39000	1.66000
I	residual sugar	6495.0	5.444326	4.758125	0.60000	1.80000	3.00000	8.10000	65.80000
	chlorides	6495.0	0.056042	0.035036	0.00900	0.03800	0.04700	0.06500	0.61100
free	sulfur dioxide	6497.0	30.525319	17.749400	1.00000	17.00000	29.00000	41.00000	289.00000
total	sulfur dioxide	6497.0	115.744574	56.521855	6.00000	77.00000	118.00000	156.00000	440.00000
	density	6497.0	0.994697	0.002999	0.98711	0.99234	0.99489	0.99699	1.03898

max	75%	50%	25%	min	std	mean	count	
4.01000	3.32000	3.21000	3.11000	2.72000	0.160748	3.218395	6488.0	рН
2.00000	0.60000	0.51000	0.43000	0.22000	0.148814	0.531215	6493.0	sulphates
14.90000	11.30000	10.30000	9.50000	8.00000	1.192712	10.491801	6497.0	alcohol
9.00000	6.00000	6.00000	5.00000	3.00000	0.873255	5.818378	6497.0	quality

checking for nulls

```
In [5]:
        df.isnull().sum()
Out[5]: type fixed acidity
                                 Ω
                               10
        volatile acidity
                                8
        citric acid
        residual sugar
        chlorides
        free sulfur dioxide total sulfur dioxide
        total sulfur dioxide
                                0
        density
        Нф
        sulphates
                                 4
                                 0
        alcohol
        quality
        dtype: int64
```

- All of the features that has missing values are numerical so they can be replaced by their mean or median
- Our dataset is large so we can drop them or replace them by a suitable way
- Decided to replace them by their mean

```
In [6]:
        for col, value in df.items():
             if col != 'type':
                 df[col] = df[col].fillna(df[col].mean())
In [7]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 6497 entries, 0 to 6496
        Data columns (total 13 columns):
         # Column
                                  Non-Null Count Dtype
        --- ----
                                  6497 non-null object
         0 type
         1 fixed acidity
                                  6497 non-null float64
         2 volatile acidity 6497 non-null float64
3 citric acid 6497 non-null float64
4 residual sugar 6497 non-null float64
5 chlorides 6497 non-null float64
         6 free sulfur dioxide 6497 non-null float64
         7 total sulfur dioxide 6497 non-null float64
         8 density 6497 non-null float64
         9 рН
                                  6497 non-null float64
                                  6497 non-null float64
         10 sulphates
         11 alcohol
                                  6497 non-null float64
         12 quality
                                   6497 non-null int64
        dtypes: float64(11), int64(1), object(1)
        memory usage: 660.0+ KB
```

Encoding of (type)

```
In [8]:
         df['type'].unique()
         array(['white', 'red'], dtype=object)
Out[8]:
In [9]:
         df['type'] = [1 if i == 'white' else 0 for i in df.type]
In [10]:
         df['type'].unique()
         array([1, 0], dtype=int64)
Out[10]:
```

• replaced the type values of (white,red) with values of (1 for white, 0 for red)

checking for Duplicated values

```
In [11]:
          df.duplicated().sum()
Out[11]:
In [12]:
          duplicated = df.duplicated()
          df[duplicated]
```

2]:		type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	4	1	7.2	0.230	0.32	8.50	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
	5	1	8.1	0.280	0.40	6.90	0.050	30.0	97.0	0.99510	3.26	0.44	10.1	6
	7	1	7.0	0.270	0.36	20.70	0.045	45.0	170.0	1.00100	3.00	0.45	8.8	6
	8	1	6.3	0.300	0.34	1.60	0.049	14.0	132.0	0.99400	3.30	0.49	9.5	6
	39	1	7.3	0.240	0.39	17.95	0.057	45.0	149.0	0.99990	3.21	0.36	8.6	5
	•••													
(6461	0	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
(6462	0	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
(6465	0	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
(6479	0	6.2	0.560	0.09	1.70	0.053	24.0	32.0	0.99402	3.54	0.60	11.3	5
(6494	0	6.3	0.510	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6

1168 rows × 13 columns

```
In [13]:
           len(df)
          6497
```

Out[13]:

Out[12]

```
In [14]: df.drop_duplicates(inplace = True)
```

- They might be different wine testers for the same wine type but leaving them will affect our model results
- Decided to drop the duplicates out for better performance of the model

```
In [15]: len(df)
# 6497 - 1168 = 5329
Out[15]: 5329
```

EDA

• There is more white wine numbers than red wines

type

```
In [18]: plot_histplots(df)
```


• we can notice there is some skewness in some of the features such as 'total sulfur dioxide', 'free sulfur

dioxide', 'residual sugar'

• we need to fix the skewness to be represented in a better way.

```
In [19]:
         !pip install scipy
        Requirement already satisfied: scipy in c:\users\hp\appdata\roaming\python\python39\site-p
        ackages (1.10.1)
        Requirement already satisfied: numpy<1.27.0,>=1.19.5 in c:\users\hp\appdata\roaming\python
        \python39\site-packages (from scipy) (1.24.3)
        WARNING: Ignoring invalid distribution -atplotlib (c:\users\hp\anaconda3\lib\site-package
        WARNING: Ignoring invalid distribution -illow (c:\users\hp\anaconda3\lib\site-packages)
        WARNING: Ignoring invalid distribution -atplotlib (c:\users\hp\anaconda3\lib\site-package
        WARNING: Ignoring invalid distribution -illow (c:\users\hp\anaconda3\lib\site-packages)
In [20]:
         from scipy.stats import skew
         def plot histplots solving skewness(dataframe):
             columns = dataframe.columns
             for column in columns:
                 if column != 'type':
                     plt.figure(figsize = (8,5))
                     data = dataframe[column]
                     skewness = skew(data)
                     if abs(skewness) > 1:
                      # Apply log transformation if skewness is greater than 1
                          transformed data = np.log1p(data)
                         plt.hist(transformed data, bins=10)
                         plt.title(f'Histogram of {column} (Log Transformed)')
                      # Plot histogram without transformation
                         plt.hist(data, bins=10)
                         plt.title(f'{column}')
                     plt.xlabel(column)
                     plt.show()
In [21]:
         plot histplots solving skewness(df)
```


• these are the histograms of all the features showing the distribution of each feature

Correlation

```
In [22]: corr = df.corr()
corr
```

Out[22]:

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
type	1.000000	-0.486281	-0.644389	0.183691	0.328820	-0.499645	0.465295	0.694181	-0.428757	-0.310338
fixed acidity	-0.486281	1.000000	0.215226	0.328758	-0.104643	0.289010	-0.281753	-0.327297	0.477858	-0.270174
volatile acidity	-0.644389	0.215226	1.000000	-0.383010	-0.164445	0.367308	-0.349388	-0.401280	0.307107	0.245559
citric acid	0.183691	0.328758	-0.383010	1.000000	0.146626	0.055081	0.132186	0.195116	0.094893	-0.343148
residual sugar	0.328820	-0.104643	-0.164445	0.146626	1.000000	-0.123254	0.399361	0.487681	0.521622	-0.233823
chlorides	-0.499645	0.289010	0.367308	0.055081	-0.123254	1.000000	-0.186836	-0.269993	0.371441	0.026176
free sulfur dioxide	0.465295	-0.281753	-0.349388	0.132186	0.399361	-0.186836	1.000000	0.720666	0.006687	-0.141344
total sulfur dioxide	0.694181	-0.327297	-0.401280	0.195116	0.487681	-0.269993	0.720666	1.000000	0.007359	-0.222514
density	-0.428757	0.477858	0.307107	0.094893	0.521622	0.371441	0.006687	0.007359	1.000000	0.034136
рН	-0.310338	-0.270174	0.245559	-0.343148	-0.233823	0.026176	-0.141344	-0.222514	0.034136	1.000000
sulphates	-0.489352	0.305803	0.226112	0.060308	-0.174795	0.404384	-0.198378	-0.274679	0.282264	0.166500
alcohol	0.057334	-0.102807	-0.065060	-0.005592	-0.306422	-0.269105	-0.170396	-0.249597	-0.668216	0.097354
quality	0.114889	-0.080554	-0.264212	0.098764	-0.057253	-0.202312	0.054456	-0.050387	-0.326978	0.039946

```
In [23]: plt.figure(figsize = (10,5))
    sns.heatmap(corr , annot = True, cmap = 'winter')
```

Out[23]: <Axes: >

- · We can find that there is no features that is heavily correlated to each other
- This is great for our performance of the model
- No feature selection is needed

Splitting of data

1000

500

0

```
In [24]: 
x = df.drop(['type','quality'], axis = 1)
y = df['quality']
```

checking of imbalanced data

Ė.

6 quality

8

9

7

- We find that the classes number of the quality diifer from one class to another by a huge difference
- we can solve the problem by applying SMOTE or RandomOverSampler.

Handling unbalanced data

```
In [26]:
         y.value counts()
              2327
Out[26]:
             1755
              857
               206
         8
              149
         3
               30
         Name: quality, dtype: int64
In [27]:
         smote = SMOTE(k neighbors = 4)
         x, y = smote.fit resample(x, y)
In [28]:
         y.value counts()
              2327
Out[28]:
              2327
              2327
             2327
         4
              2327
         3
              2327
              2327
         Name: quality, dtype: int64
```

Now each class is balanced so we can move on to the train test split

train_test split

```
In [29]: x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state =42
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size = 0.2, random_state
```

Scaling

```
In [30]: scaler = StandardScaler()

x_train = scaler.fit_transform(x_train)
x_val = scaler.transform(x_val)
x_test = scaler.transform(x_test)
```

- We just scaled the the input features
- We applied a fit_transform for the x_train
- For the rest, we just applied a transform function for them (x_val, x_test)

KNN

```
In [31]:
         # Use grid search to find best value
         from sklearn.neighbors import KNeighborsClassifier
         knn = KNeighborsClassifier()
         params grid = {
             'n neighbors':[3,4,5,6,7,8,9,10]
         grid = GridSearchCV(
             knn,
             params grid,
             cv = 5
         grid.fit(x train,y train)
         print(f'the best value of k = {grid.best params }')
         the best value of k = \{ 'n \text{ neighbors': 3} \}
In [32]:
         ## check overfitting
         knn = KNeighborsClassifier(n neighbors = 3)
         knn.fit(x train,y train)
         x train pred = knn.predict(x train)
         train score = accuracy score(y train,x train pred)
         print(f'the train score is ={train score}')
         x val pred = knn.predict(x val)
         val score = accuracy score(y val,x val pred)
         print(f'the valid score is ={val score}')
         # scores are almost equal so no overfitting
         the train score is =0.8839217191097467
         the valid score is =0.7736862293824319
In [33]:
         y pred = knn.predict(x test)
         cnf mat = confusion matrix(y test,y pred)
         plt.figure(figsize = (10,5))
         sns.heatmap(cnf mat ,annot = True, cmap = 'Blues')
        <Axes: >
Out[33]:
```


Decision Tree

precision = 76.01632097959961 %
f1 score = 76.35984956920231 %

```
In [35]: # Use grid search to find best value
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.tree import plot_tree

dt = DecisionTreeClassifier()

params_grid = {
        'max_depth':[3,4,5,6,7,8,9,10,11,12,13,14,15],
        'criterion': ['gini', 'entropy', 'log_loss']
}

grid = GridSearchCV(
        dt,
        params_grid,
        cv = 5
)
grid.fit(x_train,y_train)

print(f'the best value is = {grid.best_params_}')

the best value is = {'criterion': 'entropy', 'max depth': 15}
```

In [36]: ## check overfitting
dt = DecisionTreeClassifier(criterion = 'entropy', max_depth = 11)

```
x train pred = dt.predict(x train)
          train score = accuracy score(y train,x train pred)
          print(f'the train score is ={train score}')
          x val pred = dt.predict(x val)
          val score = accuracy score(y val,x val pred)
          print(f'the valid score is ={val_score}')
          # scores are almost equal so no overfitting
         the train score is =0.8123561013046815
         the valid score is =0.6797084771768316
In [37]:
          y_pred = dt.predict(x_test)
          cnf_mat = confusion_matrix(y_test,y_pred)
          plt.figure(figsize = (10,5))
          sns.heatmap(cnf mat ,annot = True, cmap = 'Blues')
          y pred
         array([4, 9, 9, ..., 4, 5, 5], dtype=int64)
Out[37]:
             4.2e+02
                        37
                                 11
                                                                               400
               19
                       4e+02
                                         22
                                                                    0
                                                                               350
                                                                               300
               29
                      1.1e+02
                              1.9e+02
                                                                                250
                        70
                                                  87
                                                           49
               27
                                 93
                                       1.4e+02
                                                                               200
                6
                        16
                                 23
                                         85
                                                           81
                                                                    2
                                                                               - 150
                                                                              - 100
                        2
                                 4
                                         28
                                                  51
                                                         3.3e+02
                                                                    2
                                                                               - 50
                        0
                                          0
                                                                  4.5e+02
                0
                                 0
                                                   0
                                                           1
                                                                               - 0
In [38]:
          acc_score_dt = accuracy_score(y_test, y_pred)
          recall = recall_score(y_test, y_pred, average = 'macro')
          precision = precision score(y test, y pred, average = 'macro')
          f1 = f1 score(y test, y pred, average = 'macro')
          print(f'accuracy = {acc score dt * 100} %')
          print(f'recall = {recall * 100} %')
          print(f'precision = {precision * 100} %')
          print(f'f1 score = {f1 * 100} %')
         accuracy = 67.00429711479435 %
         recall = 67.16885787900334 %
         precision = 65.78617560171931 %
         f1 score = 66.16385891157778 %
```

Random Forest

dt.fit(x train,y train)

In [39]: # Use grid search to find best value
from sklearn.ensemble import RandomForestClassifier

```
from sklearn.tree import plot tree
         rf = RandomForestClassifier()
         params grid = {
             'max depth': [3,4,5,6,7,8,9,10],
              'criterion': ['gini', 'entropy', 'log loss']
         grid = GridSearchCV(
             rf,
             params grid,
             cv = 5
         grid.fit(x train, y train)
         print(f'the best value is = {grid.best params }')
         the best value is = {'criterion': 'log loss', 'max depth': 10}
In [40]:
         ## check overfitting
         rf = RandomForestClassifier(criterion = 'log loss', max depth = 10)
         rf.fit(x train, y train)
         x train pred = rf.predict(x train)
         train score = accuracy score(y train,x train pred)
         print(f'the train score is ={train score}')
         x val pred = rf.predict(x val)
         val score = accuracy score(y val,x val pred)
         print(f'the valid score is ={val score}')
         # scores are almost near and no big difference so no overfitting
         the train score is =0.9136607828089025
         the valid score is =0.7733026467203682
In [41]:
         y pred = rf.predict(x test)
         cnf mat = confusion matrix(y test,y pred)
         plt.figure(figsize = (10,5))
         sns.heatmap(cnf mat ,annot = True, cmap = 'Blues')
         y pred
        array([4, 9, 9, ..., 3, 5, 5], dtype=int64)
Out[41]:
```



```
In [42]: acc_score_rf = accuracy_score(y_test, y_pred)
    recall = recall_score(y_test, y_pred, average = 'macro')
    precision = precision_score(y_test, y_pred, average = 'macro')
    f1 = f1_score(y_test,y_pred, average = 'macro')

    print(f'accuracy = {acc_score_rf * 100} %')
    print(f'recall = {recall * 100} %')
    print(f'precision = {precision * 100} %')
    print(f'f1 score = {f1 * 100} %')
```

accuracy = 77.68569674647023 % recall = 77.81073905402492 % precision = 76.49565539041333 % f1 score = 76.92830906875642 %

Visualization of Decision tree

• Here is a vsualization of the decision tree in which our model produced

Comparsion of Models Evaluation (Accuracy)

```
In [44]:
          models names = ['dt','knn','rf']
          models scores = [acc score dt,acc score knn,acc score rf]
          sns.barplot(x = models names, y = models scores, data = df, palette = 'husl')
         <Axes: >
Out[44]:
          0.8
          0.7
          0.6
          0.5
          0.4
          0.3
          0.2
          0.1
          0.0
                    dt
                                    knn
```

- We can conclude from the plot above that KNN classifier scored the highest accuracy
- random forest classifier was much near to the accuracy scored by the KNN classifier than the accuracy scored by decision tree classifier.
- Decision tree classifier had the lowest score among all of the classifiers

```
In [ ]:
```

In []:	
In []:	

In []:	
In []:	