L8 - 28/08/2024

NOTE - From now on, we will use the not
$$[n]$$
 to refer to $T(n)$ or $EC(n)$.

There is a natural injective map from naturals to the integers.

$$N \hookrightarrow \mathbb{Z}$$
 $n \mapsto [n--0]$

Pf - Consider
$$(m--0)$$
, $(n--0) \in \mathbb{Z}$
s.t
 $(m--0) = (n--0)$

Proposition - Let
$$x, y$$
 be integers

At $xy = 0$.

Then $x = 0$ or $y = 0$

Pf - Let $x = (a - b)$, $y = (c - d)$
 $a \neq b$ and $c \neq d$
 $xy = (a - b)(c - d)$
 $= ((ac + bd) - - (bc + ad)) = (0 - 0)$
 $\Rightarrow ac + bd = bc + ad$

WLOG, Let $a > b > c > d$
 $\Rightarrow 3 \land k > 0 \text{ s.t}$
 $a = b + h > c = d + k$
 $\Rightarrow (b + h)(d + k) + bd = b(d + k) + (b + h)d$
 $\Rightarrow kk = 0 \Rightarrow k = 0 \text{ or } k = 0$

Contain

Similarly, we can prove for other cases.

Corollary - (cancellation law)

Let
$$x,y,z$$
 be integers s.t $z \neq 0$.

Then $xz = yz \Rightarrow x = y$
 $yz = (x-y)z = 0$
 $zz = yz = (x-y)z = 0$
 $zz = yz = (x-y)z = 0$
 $zz = yz = 0$
 $zz = yz = 0$
 $zz = 0$

Rationals

Consider the set $X = \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$. We define an eq. set \sim on \times s.t

for (a11b), (c11d) ∈ X

 $(a/1b) \sim (c/1d) \Leftrightarrow ad = bc$ $Pf - R - ab = ba \Rightarrow (a/1b) \sim (a/1b)$

 $S - ad = bc \Rightarrow cb = da$ $S \Rightarrow (a,b) \sim (c,d) \Rightarrow (c,d) \sim (a,b)$

T - ad = bc & cy = dn $\Rightarrow ady = bcy \Rightarrow bcy = bdn$

 $\Rightarrow ady = bdx$ $\Rightarrow ay = bx \quad (': d \neq 0)$

So, $(a,b) \sim (c,d) \times (c,d) \sim (x,y)$ $\Rightarrow (a,b) \sim (x,y)$

Hence, ~ is an eq. reen _

Add

Consider
$$[\alpha//\beta] = [\alpha//b] \Rightarrow \alpha b = \beta \alpha$$

 $[\gamma//\delta] = (c//d) \Rightarrow \gamma d = \delta c$

We need to show that
$$[(\alpha S + \beta \gamma) // \beta S] = [(\alpha d + bc) // bd]$$

$$\Rightarrow [(\alpha S + \beta \gamma) / \beta S] = [(\alpha d + bc) / bd]$$

<u>Multip</u>

Checking if multipⁿ is well-defined

Consider
$$[\alpha//\beta] = [\alpha//b] \Rightarrow \alpha b = \beta a$$

 $[\gamma//\delta] = [c//d] \Rightarrow \gamma d = \delta c$

We need to show that

$$\Rightarrow (\alpha \gamma // \beta \delta) = (\alpha c // bd)$$

-
$$(a//b) := ((-a)//b)$$

Sub

 $x-y := x + (-y)$

There is a natural injective map from integers to rationals

 $Z \hookrightarrow Q$
 $n \mapsto (n//1)$
 p_{f} - Consider $(n//1)$, $(m//1) \in Q$

s.t

 $(n//1) = (m//1)$
 $\Rightarrow (n//1) \sim (m//1)$
 $\Rightarrow n = m$

gnverse For [a/16] ∈ Q/{03 [a//b] = [b//a] NOTE - 96 [allb] +0 = a+0 # - a=0 > a·1= b·0

E- If
$$[a||b] \neq 0 \Rightarrow a \neq 0$$

Pf - $a = 0 \Rightarrow a \cdot 1 = b \cdot 0$
 $\Rightarrow (a||b) \sim (0||1)$
 $\Rightarrow (a||b) = (0||1) = 0$

(Proof of contrapositive)

Proposition - Let x, y, & be rationals x+y = y+x Then (x+y)+z = x+(y+z) X+0=0+2=2 x + (-x) = (-x) + x = 0ny = yn 21 = 12 = 2 x(y+2) = xy + x2 $\chi \chi^{-1} = \chi^{-1} \chi = 1$ NOTE - Any set R having operations +: RXR -> R & ·: RXR -> R which obeys the laws of algebra for Z & Q forms a commutative ring & a field respectively.

Positive rational

A rational q is positive if J positive a, b s.t

Lemma -
$$9f$$
 q is positive, then

c, d s.t cd < 0 and q = (c//d)

...
$$\exists a,b$$
 positive s.t $q = [a/b]$

whoy, let cao & doo.

Reals

· Absolute value -

$$|x| = \begin{cases} n, n > 0 \\ 0, n = 0 \\ -x, n < 0 \end{cases}$$

· Dist b/w rationals