

FIT2090 BUSINESS INFORMATION SYSTEMS AND PROCESSES

Lecture 6
Lean Operations and Quality

CLAYTON, FACULTY OF INFORMATION TECHNOLOGY MONASH UNIVERSITY

Sections © 2016 Cengage Learning and CRC Press All rights reserved

Principles

- Organisations aim to be lean in their operations to improve service or achieve competitive advantage
- Lean and quality concepts can help businesses to lower costs, increase profits, improve service and achieve competitive advantage

Objectives

On completion of this lecture, you will be able to:

- Describe the Six Sigma Quality concept
- Discuss ways of implementing Six sigma quality
- Define the term "lean" and "quality"
- Describe the quality tools and their role in applying lean concepts

Why should we study/understand – Lean Operations and Quality

- Due to competition and 'globalization' successful companies cannot afford internal inefficiencies
- Customers have become more demanding
- So organizations must achieve:
 - Internal efficiency
 - External effectiveness
- To achieve internal efficiencies and external effectiveness, organisations must be lean in their operations and maintain quality in their products/services

Process Improvement: Six Sigma Quality Programs

- Six Sigma is originally a company wide initiative at Motorola for breakthrough improvement in quality and productivity
 - Launched in 1987
 - Motorola the received the US National Quality Award 1988
- The ongoing success of Six Sigma programs has attracted a growing number of prestigious firms to adopt the approach
 - Ex. Ford, GE, AMEX, Honeywell, Nokia, Phillips, Samsung, J.P. Morgan, Maytag, Dupont...
- Savings from Six Sigma at GE
 - 1998 announced \$350 million savings from six sigma
 - later \$1 billion

Quality

- The ability of a product or service to meet or exceed customer expectations
- Techniques used to ensure quality:
 - Lean enterprise management
 - Total quality management (TQM)
 - Six Sigma

Quality: Lean Enterprise Management and TQM

Lean enterprise management

 A philosophy that considers the use of resources for any purpose other than to create value for the customer to be wasteful and therefore a target for elimination

TQM

 A management approach to long-term organizational success through satisfying customer needs

Quality: Six Sigma

- A measurement-based strategy to improve processes and reduce variation through completion of Six Sigma projects
 - Incremental improvement through a process of define, measure, analyze, improve, and control (DMAIC)
 - New product development through a process of define, measure, analyze, design, and verify (DMADV)

Six Sigma: Definitions

- An improvement program aimed at reducing variability and achieving near elimination of defects from every product, process and transaction
- Broad definition of Six Sigma programs
 "A company wide strategic initiative for process improvement in both manufacturing and service organizations with the clear objective of reducing costs and increasing revenues"
- Objective is to reduce cost and increase revenue: increasing process efficiency and process effectiveness
- Focus on bottom line results

Technical Definition of Six Sigma

- Reduce the variation of every individual process to render no more than 3.4 defects per million opportunities
- Assuming the process output is normally distributed with mean μ and standard deviation σ the distance between the target value and the closest specification limit is at least 6 σ ...

Technical Definition of Six Sigma

- Reduce the variation of every individual process to render no more than 3.4 defects per million opportunities
- Assuming the process output is normally distributed with mean μ and standard deviation σ the distance between the target value and the closest specification limit is at least 6 σ and the process mean is allowed to drift at most 1.5 σ from the target

Six Sigma

Six Sigma is when distance between the target value and the closest of the specification limits is at least 6σ

Choose which strategy needed, e.g.

- One Sigma = 690,000 DPMO = 31% efficiency
- Two Sigma = 308,000 DPMO = 69.2% efficiency
- Three Sigma = 66,800 DPMO = 93.32% efficiency
- Four Sigma = 6,210 DPMO = 99.379% efficiency
- Five Sigma = 230 DPMO = 99.977% efficiency
- Six Sigma = 3.4 DPMO = 99.9997% efficiency

The Six Sigma Cost or Efficiency Rationale

Reducing costs by increasing process efficiency has an immediate effect on the bottom line

The Six Sigma Cost or Efficiency Rationale

- A company's profit (or bottom line) is given by:
 - (Revenue Cost)
- Decreasing costs will result in increased profit
- Six Sigma will focus on all type of costs including labor costs
- Labour cost reductions will be realized by increased productivity (NOT layoffs)

The Six Sigma Approach to Cost Reductions

Oriented around the dimensions of variation, cycle time & yield

Variation

- Difference between actual and target (process, product, service)
- Objective is to reduce variation -> improve quality -> reduce costs

Types of Variation

- Can be divided into two main types
 - 1. Common cause or random variation
 - 2. Special cause or non-random variation
- Non-random variation
 - Due to: differences in quality of input, faulty equipment, inadequate training of employees
 - First step in reducing the overall variation is to eliminate non-random variation by removing its root causes
- Random variation
 - The result of many different causes
 - Inherent in the process and can only be affected by changing the process design

Understanding the Impact of Variation

- Important concepts in understanding the impact of variation
 - Dispersion
 - Predictability
 - Centering
- Dispersion
 - Magnitude of variation in the measured process characteristics.
- Predictability
 - Do the measured process characteristics belong to the same probability distribution over time?
 - E.g. same standard deviation and mean.
- Centering
 - How well the process mean is aligned with the process target value?

Reducing Variation

- Ideally the process should be predictable, with low dispersion, and well centered
- Standard approach for reducing variability in Six Sigma programs
 - 1. Eliminate special cause variation to reduce overall dispersion and improve predictability
 - 2. Reduce dispersion of the predictable process
 - 3. Center the process to the specified target
- Six Sigma use traditional tools for quality and process control/analysis
 - Basic statistical tools for data analysis
 - Quality Control tools (the 7 QC Tools)

Cycle Time and Yield

- Cycle time (lead-time, response time)
 - The time a job spends in the process
- Yield (productivity)
 - Amount of output per unit of input or per unit time
- Used to define: input materials, equipment utilization, set up times, capacity
- Improvement in cycle time and yield follow the same tactic as for variation
 - Gain predictability, reduce dispersion and center to target

The Six Sigma Framework

- Centered around a disciplined and quantitatively oriented improvement methodology (DMAIC)
 - Define, Measure, Analyze, Improve, Control

Six Sigma Success Factors

- The bottom line focus and big dollar impact
 - Encourages and maintains top management commitment
- The emphasis on and consistent use of a unified and quantitative approach to process improvement
 - The DMAIC methodology provides a common language so that experiences and successes can be shared through the organization
 - Creates awareness that decisions should be based on factual data

Six Sigma Success Factors

- The emphasis on understanding & satisfying customer needs
 - Creates focus on doing the right things right
 - Anecdotal information is replaced by factual data
- The combination of the right projects, the right people and the right tools
 - Careful selection of projects and people combined with hands on training in using statistical tools in real projects

Lean Operations

Toyota applied this philosophy to achieve dramatic efficiency gains

- Toyota Production System
- Improving/Smoothening 'flow'
- Just in time philosophy (actual sales vs target sales)
- Waste elimination
 - Transportation (moving products that is not actually required to perform the processing)
 - Inventory (all components, work-in-progress and finished product not being processed)
 - Motion (people or equipment moving or walking more than is required to perform the processing)
 - Waiting (waiting for the next production step)
 - Overproduction (production ahead of demand)
 - Over Processing (due to poor tool or product design creating activity)
- Defects (the effort involved in inspecting for and fixing defects)

http://en.wikipedia.org/wiki/Lean_manufacturing

Video 1 : Lean and Toyoda (14.19 mins)
http://www.youtube.com/watch?v=IVDKzSBE220&list=PLB
AFBA30F1A9286FC

Video 2: The Toyota Production System (7.48 mins) http://www.youtube.com/watch?v=Vjdil2nBCf0

Processing Networks

Satisfy customer demand in most economical way: right products, right quantities, right times, right places

Process Ideal: Synchronization and Efficiency

- Process synchronisation
 - Ability of process to meet customer demand in terms of their quantity, time, quality and location requirements
- Process efficiency
 - Measured in terms of processing cost

4 "Just rights" of synchronisation

- Exactly what is needed (not wrong or defective)
- Exactly how much is needed (no more no less)
- Exactly when it is needed (not before or after)
- Exactly where it is needed
- => Just-in-time paradigm

Waste and Its Sources

- 1. Producing Defective products
- 2. Producing too much product
- 3. Carrying inventory
- 4. Waiting due to unbalanced workloads
- 5. Unnecessary processing
- 6. Unnecessary worker movement
- 7. Transporting materials
- (7 types of waste in manufacturing by TPS)

Basic Principles of Lean Operations

- Improve process flows
 - Efficient plant layout
 - Fast and accurate flow of material and information
- Increase process flexibility
 - Reduce equipment changeover times and cross-functional training
- Decrease process variability
 - Flow rates, processing times, and quality
- Minimise processing costs
 - Eliminate non-value adding activities s.a. transportation, inspection and rework

Improving Process Architecture

Functional layout

- Resources performing same functions are pooled together
 - Fuller utilisation of resource pool in producing a variety of products
 - Division of labour, worker-training, standardisation of work within each function
 - For job shops that process a wide variety of products in small volumes
- Flow units travel significant distances between various resource pools
- Narrow focus of workers

Cellular Layouts

- Product-focussed layout
 - All workstations that perform successive operations on a given product (or product family) are grouped together to form a cell
- Advantages
 - Reduce transportation of flow units and move small batches of flow units quickly
 - Facilitates synchronised flows, improved defect visibility, traceability and accountability
- Disadvantages
 - Resources cannot be used by other cells

Read: Group Technology and Manufacturing Cells

Improving information and material flow: Demand Pull

Push

 Input availability triggers production, i.e. keep busy to maximise resource utilisation as long as there is work to be done

Pull

 Demand from a customer station triggers production so that each station produces only on demand from its customer station

Synchronisation: Supply Push Vs Demand Pull

Supply Push: Input availability triggers production

Demand Pull: Output need triggers production

Material flow

Demand Signalling – Kanban System

- Pull system: customer needs a signalling device to inform supplier of need
- Kanban
 - Device for customer to inform supplier of its need
 - Card attached to an output flow in the buffer between customer and supplier processes
 - Contains information on
 - Customer process
 - Supplier process
 - Parts description
 - Production quantity
 - As customer withdraws output flow units, attached kanban goes back to supplier, signalling supplier to produce the listed quantity

Improving Process Flexibility: Batch Size Reduction

How much to produce at a time?

- Example
 - 2 different models: people mover, sedan
 - 10,000 units of each model monthly
- Level production
 - Frequent small quantities to match customer demands
 - Alternate production one at a time
 - If demand is stable, i.e. even load, perfect synchronisation
- Changeover costs and batch relation
 - Reduction of fixed costs associated with each batch
 - Reduce changeover costs by studying and simplifying the changeover process, customising machines, changeover activities while machine running to reduce time

Quality at source: Defect Prevention and Early Detection

- Defect prevention
 - Simplification, standardisation
 - Mistake-proofing (Poka Yoke)
 - Design to minimise chances of defect (e.g. incorrect assembly of parts)
 - Intelligent Automation (Jidoka)
 - Halt machine/process immediately if defective units
- Defect visibility
 - Early detection, e.g. Statistical Process Control to monitor and detect abnormal variations
- Decentralised control
 - Delegate problem solving to the local level

Reducing Process variability

- Standardisation reduces variability
 - changing personnel, change from one production cycle to another, easier to identify sources of waste that can be eliminated
- Planned preventive maintenance
 - Workers handle light maintenance of their machines on an ongoing basis with complete maintenance schedule during offhours
- Carry safety capacity
 - Trade off between safety capacity and safety inventory

Other principles of Lean Operations

- Visibility of Performance
 - help members of team when problems occurs, celebrate success where possible
- Managing human resources: employee involvement
- Supplier Management

Also look up : Agile Manufacturing (Lean + more)

Improving flows in a supply chain

Scale magnification

 E.g. flow times between nodes in a supply chain can be orders of magnitude larger than those between processes within a plant

Multiple decision makers

Different nodes in supply chain with own objectives, etc.

Asymmetric information

 Independent decision maker possess local information but lacks global information necessary for synchronisation and efficiency in supply chain.

Reference:

Y. Cheung, J Bal (1999), Managing turbulence in the supply chain, *Published* in *TQM & Innovation, Learning for Innovation, Proceedings of the 4th Conference on ISO9000 and TQM*, Ho S. ed., Hong Kong Baptist University, Hong Kong, pp 248-254.

Quality Tools for Business Process Improvement

See Lecture 6b

Summary

- Six Sigma Quality concept
- Ways of implementing Six sigma quality
- Lean concepts
- Quality tools and their role in applying lean concepts

Essential Reading : Laguna and Marklund, Chapter 2

