第五章 多元函数微分学及其应用

习 颞 5.1

(A)

1. 设 $|x_k|$ 为 R" 中的点列, $a \in \mathbb{R}^n$, $\lim x_k = a$, 证明 $\lim \|x_k\| = \|a\|$.

证明 由 $\lim_{k\to\infty} x_k = a$ 知对 $\forall s > 0$, $\exists N \in \mathbb{N}_+$,使对 $\forall k > N$,恒有 $\|x_k - a\| < s$. 又 $\|\|x_k\| - \|\|a\|\| \le \|x_k - a\|$,从而 $\lim_{k\to\infty} \|x_k\| = \|a\|$.

3. 证明定理 1.2 中的(2),(4).

定理1.2 设 x, ⊆ R"是收敛点列,则

- (2) |x | 是有界点列;
- (4) 若 |x, | 收敛于 a,则其任一子列也收敛于 a.

证明(2) 设 $\lim_{k\to\infty} x_k = a$,则对 $\varepsilon_0 = 1$, $\exists N_0 \in \mathbb{N}$, 使对 $\forall k > N_0$, 恒有 $\|x_k - a\|$ < 1. 从而 $\|x_k\| \le 1 + \|a\|$, 对 $\forall k > N_0$.

令 $M = \max \{ \| a \| + 1, \| x_1 \|, \| x_2 \|, \dots, \| x_{N_0} \| \}$,则对 $\forall k \in \mathbb{N}_+, \| x_k \| \le M$,即 $\{x_k\}$ 为有界点列.

(4) 由 $\lim_{k\to\infty} x_k = a$ 知对 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, , 使 $\forall k > N$, 恒有 $\|x_k - a\| < \varepsilon$, 则 子列 $\|x_k\|$ 中所有下标 $k_j > N$ 的项 x_k , 均有 $\|x_k - a\| < \varepsilon$, 故 $\lim_{k\to\infty} x_{k_j} = a$.

(B)

- 1. 设 A⊆R" 是一个点集,证明:
- (1) A 与 ext A 是开集;

证明 4是开集

对 $\forall x_0 \in \mathring{A}$, 由内点的定义 $\exists \delta > 0$, 使 $U(x_0, \delta) \subseteq A$. 而对 $\forall y_0 \in U(x_0, \delta)$, 令 $\delta_1 = \|y_0 - x_0\| < \delta, \delta' \leq \min \{\delta - \delta_1, \delta_1\}$, 则 $U(y_0, \delta'/2) \subseteq U(x_0, \delta) \subseteq A$. 则 $y_0 \in \mathring{A}$, 于是 $U(x_0, \delta) \subseteq \mathring{A}$, 即 \mathring{A} 为开集.

ext A 为开集

対 $\forall x_0 \in \text{ext } A$, $\exists \delta > 0$, 使 $U(x_0, \delta) \cap A = \emptyset$. 而 対 $\forall y_0 \in U(x_0, \delta)$, 令 $\delta_1 = \emptyset$

 $\|y_0 - x_0\| < \delta, \delta' \leq \min\left\{\frac{1}{2}\delta_1, \frac{1}{2}(\delta - \delta_1)\right\}, 则 \ U(y_0, \delta') \subseteq U(x_0, \delta), 从而 \ U(y_0, \delta')$ $\cap A = \emptyset$, 即 x_0 的邻域 $U(x_0, \delta)$ 中所有的点均为 A 的外点, 即 $U(x_0, \delta) \subseteq \operatorname{ext} A$. 于是ext A为开集.

(2) A', ∂A 是闭集;

先证 A'是闭集. 即证 A'的任一个聚点 $\mathbf{x}_0 \in A'$. 由于 \mathbf{x}_0 为 A'的聚点,则存在 A'中的点列 $\{\mathbf{x}_k\}$ $(k=1,2,\cdots,\mathbf{L}|\mathbf{x}_k\neq\mathbf{x}_0)$ 使 $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{x}_0$,即对 \mathbf{x}_0 的任一邻域 $\mathring{U}(\mathbf{x}_0,\varepsilon)$, $\exists N\in \mathbb{N}_+$,使对 $\forall k>N$,恒有 $\mathbf{x}_k\in \mathring{U}(\mathbf{x}_0,\varepsilon)$. 又由 $\mathring{U}(\mathbf{x}_0,\varepsilon)$ 是开集,则对 $\forall k>N$, $\exists \mathbf{x}_k$ 的邻域 $U(\mathbf{x}_k)\subseteq \mathring{U}(\mathbf{x}_0,\varepsilon)$,又由 $\mathbf{x}_k\in A'$,则 $U(\mathbf{x}_k)\cap A\neq\emptyset$,即 $\mathring{U}(\mathbf{x}_0,\varepsilon)\cap A\neq\emptyset$,即在 \mathbf{x}_0 的任何去心邻域中均含有 A 的点,由定理 1.5 知 $\mathbf{x}_0\in A'$.

∂A 为闭集.

由于 $\mathbf{R}^n = \mathring{A} \cup \text{ext } A \cup \partial A$,则 $\partial A = (\mathring{A} \cup \text{ext } A)^n$. 由本题(1)及定理 1.7 知 $\mathring{A} \cup \text{ext } A$ 为开集. 由定理 1.6, ∂A 为闭集.

(3) A 为开集⇔A∩∂A = Ø.

先证 A 为开集 $\Rightarrow A \cap \partial A = \emptyset$.

由 A 为开集,则 A = A,从而 $A \cap \partial A = A \cap \partial A = \emptyset$.

再证 $A \cap \partial A = \emptyset \Rightarrow A$ 为开集.

由 $A \cap \partial A = \emptyset$ 且 $A \cap \text{ext } A = \emptyset$,而 $A = (\partial A \cup \text{ext } A)^{\circ}$.

从而 $A \subseteq \mathring{A}$, 故 $A = \mathring{A}$. 即 A 为开集.

2. 以 n=2 为例证明聚点原理: R^* 中的有界无限点集至少有一个聚点.

证明 设 $A = |(x_a, y_a) \in \mathbb{R}^2 | \alpha \in I, I$ 为实数集 | 为有界无限点集,则 $|x_a| \subseteq \mathbb{R}$ \mathbb{R} , $|y_a| \subseteq \mathbb{R}$ $(\alpha \in I)$ 均为有界无限集. 由数集的 Weierstrass 定理 $(\hat{y} - \hat{p})$ 定理 (2.8) 知 $|x_a|$ 必有收敛的子列. 不妨设为 $|x_{a_k}|$,且 $\lim_{k \to \infty} x_{a_k} = x_0$,在 $|y_a|$ ($\alpha \in I$)中选取与 $|x_{a_k}|$ 对应的 $|y_{a_k}|$ 即 $|y_{a_k}|$ 即 $|y_{a_k}|$ 则 $|y_{a_k}|$ 回 $|y_{a_k}|$ 的子数列. 设为 $|y_{a_k}|$,且 $|y_{a_k}|$,且 $|y_{a_k}|$ 以由于与 $|y_{a_k}|$ 对应的 $|x_{a_k}|$ 的子列 $|x_{a_k}|$ ($|x_{a_k}|$) $|x_{a_k}|$ 的点列 $|x_{a_k}|$ ($|x_{a_k}|$) $|x_{a_k}|$) $|x_{a_k}|$ 的点列 $|x_{a_k}|$ 。

习题 5.2

(A)

3. 用定义证明下列二重极限.