Introdução aos Sistemas Digitais

Ano Letivo 2015/16

Mini-teste 2

Nome: N. Mec.: Turma: P3-13		
	Nome:	Turma: P3-13

 [1 valor] Mostre como implementar uma porta lógica OR de 2 entradas a partir de um multiplexador 2→1.

2. Considere o seguinte mapa de Karnaugh relativo à função Booleana f (a,b,c,d):

	cd				
ab		00	01	11	10
	00	1		1	
	00 01 11 10		1		
	11	1	1	1	1
	10	1			1

a) [2 valores] Escreva a função f (a,b,c,d) na primeira forma canónica (soma de produtos).

$$f(a,b,c,d) =$$

b) [3 valores] Minimize a função f (a,b,c,d) recorrendo ao mapa de Karnaugh.

$$f(a,b,c,d) =$$

c) [3 valores] Desenhe o diagrama esquemático do circuito resultante da minimização efetuada na alínea anterior, considerando que possui apenas inversores e portas lógicas de duas entradas.

3. [4 valores] Complete o seguinte circuito de forma a implementar um descodificador de 4→16 a partir de descodificadores de 2→4. Considere que E₀ é uma entrada de *enable* "ativa alta" e E₁\ é uma entrada de *enable* "ativa baixa". As saídas do último descodificador da figura são "ativas baixas".

4.	[3 valores] Considere novamente a função Booleana (original) especificada no mapa de <i>Karnaugh</i> da pergunta 2. Implemente a função recorrendo a um descodificador de 4→16 e a uma porta lógica OR adicional com um número arbitrário de entradas. Desenhe o diagrama esquemático do circuito resultante.
5.	[4 valores] Considere novamente a função Booleana (original) especificada no mapa de <i>Karnaugh</i> da pergunta 2. Implemente a função recorrendo a um multiplexador de 8→1 e assumindo que possui disponíveis as entradas a, b, c e d, quer na sua forma normal, quer na forma complementada, assim como as constantes 0 e 1. Desenhe o diagrama esquemático do circuito resultante.