Towards an Open-Source Workflow for Geological Mapping

Kristiaan Joseph; Thierry Martin; Olivier Kaufmann
UMONS
24/10/19

MOTIVATION

Seamless workflow

Conceptual/Visual understanding

Address "What-if?" scenarios

Efficiency in the field

https://sp.lyellcollection.org/content/459/1/157/tab-figures-data

<u>AIM</u>

An *open-source, integrated* geological workflow to assess and quantify uncertainty utilizing new/updated inputs and decision factors to create models and maps

GOALS

Produce geologically credible 2D maps in a known setting

- Sedimentary environment
- Stratigraphic column
- Data at known points

Workflow

<u>Tools</u>

Jupyter notebooks

Matplotlib(2D)

GemPy

Paraview (VTK)

PyMesh, Gmsh, Meshio

3D Modelling Inputs

Plane orientation normals

Adherence to Sequence Pile

Scalar Field

Block Model

Foliations Dataframe:

In [11]: gp.get data(geo data, 'orientations')

	х	Υ	z	G_x	G_y	G_z	dip	azimuth	polarity	formation	series	formation_number	order_series	isFault
0	621055.284454	2.476424e+06	386.818182	0.648785	-0.061502	0.758482	40.669425	95.415167	1	Unit3	Strat_Series	2	1	False
1	620946.810298	2.477202e+06	422.923077	0.466871	0.226770	0.854755	31.267317	64.093066	1	Unit3	Strat_Series	2	1	False
2	620653.973690	2.477877e+06	400.820896	0.234040	0.326523	0.915755	23.686789	35.631571	1	Unit3	Strat_Series	2	1	False
3	615165.009653	2.477880e+06	430.000000	-0.432540	0.210290	0.876748	28.747494	295.927864	1	Unit3	Strat_Series	2	1	False
4	615490.574975	2.478291e+06	435.000000	-0.431822	0.206362	0.878035	28.593829	295.542510	1	Unit3	Strat_Series	2	1	False
5	614562.705647	2.476466e+06	482.600000	-0.636122	0.285388	0.716870	44.203331	294.162820	1	Unit3	Strat_Series	2	1	False
6	614128.758702	2.475672e+06	475.375000	-0.480245	0.298546	0.824764	34.435457	301.867328	1	Unit3	Strat_Series	2	1	False
7	618954.185116	2.474840e+06	365.833333	0.292640	-0.279519	0.914456	23.871344	133.686261	1	Unit3	Strat_Series	2	1	False
8	619535.625878	2.476016e+06	491.125000	0.305975	-0.081305	0.948561	18.457026	104.880962	1	Unit3	Strat_Series	2	1	False
9	616406.887377	2.478867e+06	431.000000	-0.098850	0.441886	0.891608	26.923954	347.390550	1	Unit3	Strat_Series	2	1	False
0	616103.856828	2.477444e+06	625.333333	-0.406196	0.300498	0.862964	30.349005	306.493491	1	Unit3	Strat Series	2	1	False

3D Geological Model

GemPy: Python-based 3-D structural geological modeling package

Implicit modelling based on the potential field method

Utilizes Theano for calculations

Topography can be incorporated

ParaView

Open-source, data analysis and visualization tool (VTK)

Build visualizations for qualitative and quantitative analysis

Interactive 3D data manipulation

Analyze extremely large datasets

DEM

Point set → Closed surface with varying Z values (Gmsh)

*Not yet included in GemPy Model

GemPy Model of a simple fold of 2 lithologies displayed in ParaView

White lines are contours at Z= 606

Outputs (in-progress)

Geological Map

Structure Symbols

Contour Lines

2D Plane intersecting 3D Surface

- PyMesh vs VTK

import meshio

```
SURFACES_FOLD1= meshio.read('/home/kristiaan/SURFACES_FOLD1.vtk')
SURFACES_FOLD2= meshio.read('/home/kristiaan/SURFACES_FOLD2.vtk')
MAP_FOLD= meshio.read('/home/kristiaan/MAP_FOLD.vtk')
```

```
meshio.write('/home/kristiaan/SURFACES_FOLD1.off', SURFACES_FOLD1)
meshio.write('/home/kristiaan/SURFACES_FOLD2.off', SURFACES_FOLD2)
meshio.write('/home/kristiaan/MAP_FOLD.off', MAP_FOLD)
```

2D Plane intersects 3D Surface

VTK → Meshio → PyMesh

DOCKER

```
>>> import os
>>> os.listdir('/')

>>> import pymesh
>>> S1 = pymesh.load_mesh('/SURFACES_FOLD1.off')
>>> MF = pymesh.load_mesh('/MAP_FOLD.off')
>>> output_mesh = pymesh.boolean(S1, MF|operation = 'intersection', engine='igl')
>>> pymesh.save_mesh('/intersection.off', output_mesh)
```

Map View: GemPy

Map View: ParaView

Bigger Picture: The Iterative Workflow

- Model regeneration and Mapping
 - Streamlined process (eg, input formats)
 - Efficient computation times

- Uncertainty Analysis
 - Detect and reduce errors
 - Identify risks

Select geological realistic scenarios

QUESTIONS?

Theano

Relies on symbolical graphs which represent mathematical expressions

Each individual method corresponds to part of this graph

Benefits:

- Direct execution on GPUs
- Capacity to efficiently compute gradients
 - Provides optimized compiled code
- Capability to perform automatic differentiation (AD)

Potential Field Method

Proposed by LaJaunie (1997); Basis for modelling in GemPy

The Potential Field (PF) - A geological interface (isosurface) of a scalar field defined in the 3D space (Chiles et al, 2007)

PF Method's weighted interpolation function is based on Universal Cokriging

• (de la Varga et al., 2019; Chiles et al., 2014; LaJaunie et al., 1997)

Universal Kriging is appropriate for capturing trends using polynomial drift functions

Cokriging for combining potential and gradient values

Potential Field Interpolation Method (Calcagno et al., 2008)

6 points – 3 in the red layer, 3 in the blue layer, Orientation indicated by arrows, Lines are isosurfaces, (de la Varga *et al.*, 2019)

$$T^*(\mathbf{x}) - T^*(\mathbf{x}_0) = \sum_{\alpha=1}^{M} \mu_{\alpha} \big(T(\mathbf{x}_{\alpha}) - T(\mathbf{x}_{\alpha}') \big) + \sum_{\beta=1}^{N} \nu_{\beta} \frac{\partial T}{\partial u_{\beta}} (\mathbf{x}_{\beta})$$
Scalar fields Weighted Spatial Parameters Weighted Orientation Parameters

