《多元函数微分学》检测题

姓名 成绩 班级

一、选择题(15分)

1. 下列二元函数在(0,0)处可微的是()

 $A. f(x,y) = \begin{cases} \sqrt{x^2 + y^2} \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases} B. f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases} C. f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases} D. f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$

2. 设 f(x,y)与 $\varphi(x,y)$ 均为可微函数,且 $\varphi_v(x,y) \neq 0$,已知 (x_0,y_0) 是f(x,y)在约束条件 $\varphi(x,y) = 0$ 下的一个极值点,下列选项正确的是(

(A) $\stackrel{\text{def}}{=} f_{\nu}(x_0, y_0) = 0, \quad \text{M} f_{\nu}(x_0, y_0) = 0;$

(B)若 $f_{x}(x_{0}, y_{0}) = 0$,则 $f_{y}(x_{0}, y_{0}) \neq 0$;

(C)若 $f_{\nu}(x_0, y_0) \neq 0$, 则 $f_{\nu}(x_0, y_0) = 0$;

(D)若 $f_{\nu}(x_0, y_0) \neq 0$, 则 $f_{\nu}(x_0, y_0) \neq 0$.

3. 设函数 $u = x^2 - xy + y^2$, 点 M (1, 1), 则 $\operatorname{grad} u(M) = ($).

A. $\vec{i} + \vec{j}$; B. $2\vec{i} + \vec{j}$; C. $\vec{i} - \vec{j}$; D. $2\vec{i} - \vec{j}$.

4. 已知函数 $f(x+y,x-y) = x^2 - y^2$,则 $\frac{\partial f(x,y)}{\partial x} + \frac{\partial f(x,y)}{\partial y} = ($).

A. 2x-2v;

B. 2x + 2y; C. x + y; D. x - y.

5. 已知曲面 $z=4-x^2-y^2$ 上点 P 处的切平面平行于平面 2x+2y+z-1=0 ,则切点 P 的坐标是

A. (1, -1, 2); B. (-1, 1, 2); C. (1, 1, 2); D. (-1, -1, 2).

二、填空题(15分)

1. 设 a 为常数,计算 $\lim_{x\to+\infty} \left(\frac{x+1}{x}\right)^{\frac{x}{x+y}} = \underline{\qquad}$.

2. 曲面 $z = x^2 (1 - \sin y) + y^2 (1 - \sin x)$ 在点 (1,0,1) 处的切平面方程

5. 曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 45 \\ x^2 + 2v^2 - z = 0 \end{cases}$ 上点 M (-2, 1, 6) 处的切线方程是_____

三、(8分) 设函数 f(u) 具有连续导数, $z = f(e^x \cos y)$ 满足 $\cos y \frac{\partial z}{\partial x} - \sin y \frac{\partial z}{\partial y} = (4z + e^x \cos y)e^x$. 若 f(0) = 0,求 f(u) 的表达式.

四、 (8分) 设
$$z(x,y)$$
 是由方程组
$$\begin{cases} x = (t+1)\cos z, \\ y = t\sin z \end{cases}$$
 确定的隐函数,求 $\frac{\partial z}{\partial x}$.

五、(10 分) 设
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$$
, 证明: (1) $f(x,y)$ 在(0,0) 点连续;

- (2) $f_x(0,0), f_y(0,0)$ 存在; (4) $f_x(x,y), f_y(x,y)$ 在 (0,0) 点不连续;
- (4) f(x,y)在(0,0)点可微.

六、(8 分) 在曲面 $2x^2 + y^2 - z^2 - 2xy + 1 = 0$ 上求一点,使它到原点的距离最小.

七、(8分)设 $z = f(x + y, xe^y)$,其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.

八、 $(8 \, f)$ 设 F(u,v) 具有连续的一阶偏导数,求证:曲面 $F\left(\frac{x-a}{z-c}, \frac{y-b}{z-c}\right) = 0$ 上任一点处的切平面都通过一定点(其中 a、b、c 为常数).

九、(8分)已知 $u=u(\sqrt{x^2+y^2})$ 有二阶连续偏导数,且满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2+y^2$, 试求u(x,y).

十、(12 分)设函数 z=f(x,y)具有二阶连续偏导数,且 $\frac{\partial f}{\partial y}\neq 0$. 证明:对任意常数 c,f(x,y)=c 为 一条直线的充分必要条件是 $(f_v)^2 f_{xx} - 2f_x f_v f_{xy} + f_{yy} (f_x)^2 = 0.$