# Euclid's Elements

# Book I

If Euclid did not kindle your youthful enthusiasm, you were not born to be a scientific thinker.

Albert Einstein

#### **Table of Contents, Chapter 1**

- 1 Construct an equilateral triangle
- 2 Copy a line
- 3 Subtract one line from another
- 4 Equal triangles if equal side-angle-side
- 5 Isosceles triangle gives equal base angles
- 6 Equal base angles gives isosceles triangle
- 7 Two sides of triangle meet at unique point
- 8 Equal triangles if equal side-side
- 9 How to bisect an angle
- 10 Bisect a line
- 11 Construct right angle, point on line
- 12 Construct perpendicular, point to line
- 13 Sum of angles on straight line = 180
- 14 Two lines form a single line if angle = 180

- 15 Vertical angles equal one another
- 16 Exterior angle larger than interior angle
- 17 Sum of two interior angles less than 180
- 18 Greater side opposite of greater angle
- 19 Greater angle opposite of greater side
- 20 Sum of two angles greater than third
- 21 Triangle within triangle has smaller sides
- 22 Construct triangle from given lines
- 23 Copy an angle
- 24 Larger angle gives larger base
- 25 Larger base gives larger angle
- 26 Equal triangles if equal angle-side-angle
- 27 Alternate angles equal then lines parallel
- 28 Sum of interior angles = 180, lines parallel

- 29 Lines parallel, alternate angles are equal
- 30 Lines parallel to same line are parallel to themselves
- 31 Construct one line parallel to another
- 32 Sum of interior angles of a triangle = 180
- 33 Lines joining ends of equal parallels are parallel
- 34 Opposite sides-angles equal in parallelogram
- 35 Parallelograms, same base-height have equal area
- 36 Parallelograms, equal base-height have equal area
- 37 Triangles, same base-height have equal area
- 38 Triangles, equal base-height have equal area



#### **Table of Contents, Chapter 1**

- 39 Equal triangles on same base, have equal height
- 40 Equal triangles on equal base, have equal height
- 41 Triangle is half parallelogram with same base and height
- 42 Construct parallelogram with equal area as triangle
- 43 Parallelogram complements are equal
- 44 Construct parallelogram on line, equal to triangle
- 45 Construct parallelogram equal to polygon
- 46 Construct a square
- 47 Pythagoras' theorem
- 48 Inverse Pythagoras' theorem



Proposition 13 of Book I

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line



If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



$$\angle DBA + \angle ABC = 2 \perp$$
  
 $\alpha + \beta = 2 \perp$ 

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

The sum of the angles ABD and ABC is equal to two right angles



If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



 $\varepsilon = \gamma$ 

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B
The sum of the angles ABD and ABC is equal to two right angles

#### **Proof**

Construct a perpendicular line to point E (I-11)

1. Angles  $\gamma$  and  $\epsilon$  are right angles

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



$$\varepsilon = \gamma$$

1. 
$$\epsilon = \gamma$$
  
2.  $\gamma = \beta + \theta$ 

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

The sum of the angles ABD and ABC is equal to two right angles

#### **Proof**

- 1. Angles  $\gamma$  and  $\epsilon$  are right angles
- 2. Angle  $\gamma$  is the sum of angles  $\beta$  and  $\theta$

# E straight lin

#### Proposition 13 of Book I

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



$$\varepsilon = \gamma$$

$$2. \qquad \gamma = \beta + \theta$$

3. 
$$\varepsilon + \gamma = \beta + \theta + \varepsilon$$

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

The sum of the angles ABD and ABC is equal to two right angles

#### **Proof**

- 1. Angles  $\gamma$  and  $\epsilon$  are right angles
- 2. Angle  $\gamma$  is the sum of angles  $\beta$  and  $\theta$
- 3. Add angle  $\epsilon$  to  $\gamma$  and to  $\theta$  plus  $\beta$

## E •

#### **Proposition 13 of Book I**

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



$$\varepsilon = \gamma$$

$$2 \cdot \gamma = \beta + \theta$$

3. 
$$\varepsilon + \gamma = \beta + \theta + \varepsilon$$

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

The sum of the angles ABD and ABC is equal to two right angles

#### **Proof**

- 1. Angles  $\gamma$  and  $\epsilon$  are right angles
- 2. Angle  $\gamma$  is the sum of angles  $\beta$  and  $\theta$
- 3. Add angle  $\epsilon$  to  $\gamma$  and to  $\theta$  plus  $\beta$
- 4. Angle  $\alpha$  is the sum of angles  $\theta$  and  $\epsilon$

# F

#### Proposition 13 of Book I

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



1. 
$$\epsilon = \gamma$$

2. 
$$\gamma = \beta + \theta$$

3. 
$$\varepsilon + \gamma = \beta + \theta + \varepsilon$$

$$\alpha = \theta + \theta$$

5. 
$$\beta + \alpha = \beta + \theta + \epsilon$$

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

The sum of the angles ABD and ABC is equal to two right angles

#### **Proof**

- 1. Angles  $\gamma$  and  $\epsilon$  are right angles
- 2. Angle  $\gamma$  is the sum of angles  $\beta$  and  $\theta$
- 3. Add angle  $\epsilon$  to  $\gamma$  and to  $\theta$  plus  $\beta$
- 4. Angle  $\alpha$  is the sum of angles  $\theta$  and  $\epsilon$
- 5. Add angle  $\beta$  to  $\alpha$  and to  $\theta$  plus  $\epsilon$

# E

#### **Proposition 13 of Book I**

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



1. 
$$\epsilon = \gamma$$

$$2. \qquad \gamma = \beta + \theta$$

3. 
$$\varepsilon + \gamma = \beta + \theta + \varepsilon$$

4. 
$$\alpha = \theta + \epsilon$$

5. 
$$\beta + \alpha = \beta + \theta + \epsilon$$

6. 
$$\beta + \alpha = \gamma + \epsilon = 2 \perp$$

#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

The sum of the angles ABD and ABC is equal to two right angles

#### **Proof**

Construct a perpendicular line to point E (I-11)

- 1. Angles  $\gamma$  and  $\epsilon$  are right angles
- 2. Angle  $\gamma$  is the sum of angles  $\beta$  and  $\theta$
- 3. Add angle  $\epsilon$  to  $\gamma$  and to  $\theta$  plus  $\beta$
- 4. Angle  $\alpha$  is the sum of angles  $\theta$  and  $\epsilon$
- 5. Add angle  $\beta$  to  $\alpha$  and to  $\theta$  plus  $\epsilon$
- 6. From equations 3 and 5, we have the sums of two angles equal to the sum of  $\beta$ ,  $\theta$  and  $\epsilon$

And since things that equal the same thing equal each other...

The sum of  $\beta$  and  $\alpha$  equals the sum of the two right angles,  $\gamma$  and  $\epsilon$ 



# E

#### Proposition 13 of Book I

If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.



1. 
$$\epsilon = \gamma$$

2. 
$$\gamma = \beta + \theta$$

3. 
$$\varepsilon + \gamma = \beta + \theta + \varepsilon$$

4. 
$$\alpha = \theta + \epsilon$$

5. 
$$\beta + \alpha = \beta + \theta + \epsilon$$

6. 
$$\beta + \alpha = \gamma + \epsilon = 2$$

$$\angle ABC + \angle ABD = 2 \perp$$



#### In other words

Start with an arbitrary line segment CD and an arbitrary point B on the line

Draw a line from point an arbitrary point A to point B

The sum of the angles ABD and ABC is equal to two right angles

#### **Proof**

Construct a perpendicular line to point E (I-11)

- 1. Angles  $\gamma$  and  $\epsilon$  are right angles
- 2. Angle  $\gamma$  is the sum of angles  $\beta$  and  $\theta$
- 3. Add angle  $\epsilon$  to  $\gamma$  and to  $\theta$  plus  $\beta$
- 4. Angle  $\alpha$  is the sum of angles  $\theta$  and  $\epsilon$
- 5. Add angle  $\beta$  to  $\alpha$  and to  $\theta$  plus  $\epsilon$
- 6. From equations 3 and 5, we have the sums of two angles equal to the sum of  $\beta$ ,  $\theta$  and  $\epsilon$

And since things that equal the same thing equal each other...

The sum of  $\beta$  and  $\alpha$  equals the sum of the two right angles,  $\gamma$  and  $\epsilon$ 

#### **Youtube Videos**

https://www.youtube.com/c/SandyBultena











Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc/3.0