

Chapter3: Gate-Level Minimization

Lecture 1- Three and Four-Variables Function Simplification using Map Method

Engr. Arshad Nazir, Asst Prof Dept of Electrical Engineering SEECS

Fall 2021

-1

Chapter Contents

Karnaugh Maps
SOP and POS Simplifications
Don't Care Conditions
Quine McCluskey Minimization Algorithm
NAND and NOR Implementations
Parity Generation and Detection

Fall 2021

Objectives

- Introduction to Map Method
- Plot and Labeling of minterms on Map
- Functions Simplification in Sum-of-Products (SOP) form using Three and Four-Variables Map

K-Map Method

- The Karnaugh Map (K-Map) method uses a simple procedure for minimizing Boolean functions.
 - The map is a diagram made up of squares with each square representing one minterm of the function.
 - The key is to learn to identify visual patterns.
 - The result is always an expression that is in one of the two standard forms, SOP or POS.
 - Much faster and more efficient than previous minimization techniques with Boolean algebra. It can be used to simplify functions of up to six variables.
 - It is possible to find two or more expressions that satisfy the minimization criteria.
 - > Rules to consider
 - Every cell containing a 1 must be included at least once.
 - The largest possible "power of 2 rectangle" must be enclosed.
 - The 1's must be enclosed in the smallest possible number of rectangles.

Fall 2021

4

Two-Variable Map

- A two-variable map holds four minterms for two variables.
 - ➤ We mark the squares of the minterms that belong to a given function.
 - Combine adjacent squares to find minimal expression.

Fig. 3-1 Two-variable Map

Fig. 3-2 Representation of Functions in the Map

Three-Variable Map

- A three-variable map holds eight minterms for three variables.
 - > Again, we mark the squares of the minterms that belong to a given function.
 - > Note that the sequence is arranged in Gray code to allow only one bit to change from column to column and row to row.
- Since any two adjacent cells in a 3-variable map represent a change in only a single bit, we use this to do minimization.
 - \triangleright Consider the two cells for m₀ and m₁ where the difference is the negation of the bit z.
 - $F = m_0 + m_1 = x'y'z' + x'y'z = x'y'(z' + z) = x'y'$

Fig. 3-3 Three-variable Map

Fall 2021

6

Minimization Example

• Each of the two adjacent pairs of entries can be simplified by eliminating the changing bit (z in both cases).

$$\triangleright$$
 F (x,y,z) = x'y' + xy

$$F(x, y, z) = \sum (0,1,6,7)$$

Fall 2021

Notes on Adjacency

- So far, we have assumed that adjacent cells in the map need to touch each other but this is not always the case.
 - \rightarrow m₀ and m₂ are considered adjacent

$$om_0 + m_2 = x'y'z' + x'yz' = x'z'(y' + y) = x'z'$$

 \rightarrow m₄ and m₆ are considered adjacent

$$om_4 + m_6 = xy'z' + xyz' = xz'(y' + y) = xz'$$

$_{\rm X} \sim$	^{/Z} 00	01	11	10
0	m_0	ml	m3	m_2
1	m4	ms	m7	mδ

$X \sim \frac{1}{2}$	^{IZ} 00	01	11	10
0	x'y'z'	x'y'z	х'уг	x'yz'
1	xy'z'	ху' z	хух	xyz'

3-Variable Map Patterns

- The number of adjacent squares that may be combined always represent a number that is a power of 2 such as 1, 2, 4, and 8.
 - > One square represents one minterm with three literals.
 - > Two adjacent squares represents a term of two literals.
 - > Four adjacent squares represents a term of one literal.
 - ➤ Eight adjacent squares represents the entire map and produces a function that is always equal to 1.

Mapping Functions Example

Given the function

$$F = x'z + xy' + xy'z + yz$$

 $F = \sum (1, 3, 4, 5, 7)$

- Map the function
- Determine the sum of minterms equation
- Determine the minimum sum of products expression

$x \sim 3$	^{7Z} 00	01	11	10
0		1	1	
1	1	1	1	

The minimum sum-of-Products (SOP) is

$$F = z + xy'$$

Fall 2021

10

Simplify the Boolean function $F(x,y,z) = \sum (2,3,4,5)$ using map method

Solution:

- 1 is marked in each minterm that represents the function
- Find the possible adjacent squares and mark them with rectangles
- The upper right rectangle represents the area enclosed closed by x'y (eliminating the changing bit)
- Similarly lower left rectangle represents xy'
- The logical sum of these two terms gives:

$$F = x'y + xy'$$

Fig. 3-4 Map for Example 3-1; $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Simply the function $F(x,y,z) = \sum (3,4,6,7)$

Solution:

- 1 is marked in each minterm that represents the function
- Find the possible adjacent squares and mark them with rectangles
- Two adjacent squares are combined in the third column to give a twoliteral term yz
- The remaining two squares with 1's are enclosed in half rectangles. This gives two-literal term xz'
- The logical sum of these two terms gives: F = yz + xz'

$x \sim 3$	^{/Z} 00	01	11	10
0	m_0	ml	mз	m_2
1	m4	ms	m7	m _{ര്}

Fig. 3-5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Simply the function $F(x,y,z) = \sum S(0,2,4,5,6)$

Solution:

- 1 is marked in each minterm that represents the function
- Find the possible adjacent squares and mark them with rectangles
- We combine four adjacent squares to get a single literal term z' as m₀+m₂+m₄+m₆
 x'y'z'+x'yz'+xy'z'+xyz'= x'z'(y'+y) +xz'(y'+y)
 = x'z' + xz' = z'
- The remaining two squares with 1's are enclosed by a rectangle (with one square that is already used once). This gives two-literal term xy'
- The logical sum of these two terms gives:

$$F = z' + xy'$$

Fig. 3-6 Map for Example 3-3; $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Simplify F = A'C + A'B + AB'C + BC

Solution:

- The two squares corresponding to the first term A'C. (A' first row and C two middle columns)
- A'B has 1's in squares 011 and 010 in the same way. AB'C has 1 square 101 and BC has two 1's in squares 011 and 111
- The function has total of 5 minterms as shown in figure
- Find the possible adjacent squares and mark them with rectangles as shown in the map
- It can be simplified with only two terms giving: F = C + A'B

Fig. 3-7 Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B

Four-Variable Map

- A four-variable map holds 16 minterms for four variables.
 - Again, we mark the squares of the minterms that belong to a given function.
 - Note that the sequence is not arranged in a binary way.
 - The sequence used is a Gray code and allows only one bit to change from column to column and row to row.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	<i>m</i> ₉	m_{11}	m_{10}
(a)			

Fig. 3-8 Four-variable Map

4-Variable Map Patterns

- The number of adjacent squares that may be combined always represent a number that is a power of 2 such as 1, 2, 4, 8, and 16.
 - > One square represents one minterm with four literals.
 - > Two adjacent squares represents a term of three literals.
 - > Four adjacent squares represents a term of two literals.
 - > Eight adjacent squares represents a term of one literal.
 - ➤ Sixteen adjacent squares represents the entire map and produces a function that is always equal to 1.

Minimization Example

$$F(w, x, y, z) = \sum (2, 3, 6, 7, 8, 10, 11, 12, 14, 15)$$

- The eight adjacent squares can be combined to form the one literal term y.
- Four adjacent squares can be combined by folding property to form the two literal term wz'.
- The simplified expression will be logical sum of two product terms producing the function

$$F = y+wz'$$

- Four adjacent corners can be combined to form the two literal term x'z'.
- Four adjacent squares can be combined to form the two literal term x'y.
- The remaining 1 is combined with a single adjacent 1 to obtain the three literal term w'y'z'.

$$F = x'z' + x'y + w'y'z'$$

Simplify the function F=A'BC '+A'CD '+ABC+AB 'C'D '+ABC '+AB 'C using map method

Simplify the function $F(A,B,C,D) = \sum m(0,3,5,8,9,10,11,12,13,14,15)$

$$F = C + A'BD + B'D'$$

Solution set can be considered as a coordinate System!

Magnitude Comparator

K-map for LT

K-map for EQ

K-map for GT

LT =
$$A'B'D + A'C + B'CD$$

EQ = $A'B'C'D' + A'BC'D + ABCD + AB'CD'$
GT = $BC'D' + AC' + ABD'$

 $F(w,x,y,z) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$

Solution:

- 1 is marked in each minterm that represents the function
- Find the possible adjacent squares and mark them with rectangles
- We combine eight adjacent squares to get a single literal term y'
- The top two 1's on the right are combined with the top two 1's on the left to give the term w'z'
- We combine the single square left on right with three adjecent squares that are already used to give the term xz'
- The logical sum of these three terms gives:

$$F = y' + w'z' + xz'$$

wx 🔀	7 z 00	01	11	10
00	m_0	ml	mз	m_2
01	m4	m ₅	m7	m ₆
11	m_{12}	m13	m_{15}	m ₁₄
10	m8	m9	m_{ll}	m_{10}

Fig. 3-9 Map for Example 3-5; F(w, x, y, z)= Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'

F = A'B'C'+B'CD'+A'BCD'+AB'C'

Solution:

- Each of three literal term in map is represented by two squares and four literal term in map is represented by one square
- We combine the 1's in the four corners to give the term B'D'
- The two left hand 1's in the top row are combined with two 1's in the bottom row to give the term B'C'
- The remaining 1's may be combined in the two-square area to give the term A'CD'
- The logical sum of these three terms gives:

$$F = B'D' + B'C' + A'CD'$$

Fig.3-10 Map for Example 3-6; A'B'C' + B'CD' + A'BCD' + AB'C' = B'D' + B'C' + A'CD'

Prime Implicants Definitions

Implicant of a function F

a single 1 (= minterm) or any group of 1's which can be combined together in a K-map (i.e., 1's that are adjacent and which are grouped in a number that is always a power of 2). represents a product term which is called an implicant of a function F. An implicant represents a product term that can be used in a SOP expression for that function, that is, the function is 1 whenever the implicant is 1 (and maybe other times, as well ...)

Prime Implicant

is an implicant that cannot be combined with another one to eliminate a literal. In other word each prime implicant corresponds to a product term in one of the minimum SOP expression for the function. A prime implicant is an implicant that is not fully contained in any other implicant.

Essential prime implicant

is a prime implicant that includes at least one 1 that is not included in any other prime implicant. In other words if a particular element of the on-set is covered by only one prime implicant, than that implicant is called an essential prime implicant.

Example of Prime Implicants

Essential Prime Implicants

Essential Prime Implicants:

BD, AC, B'C

Distinguished 1-cells: m₂, m₅, m₁₄

Other Prime Implicants:

CD

F=BD+AC+B'C

Functions with Multiple Solutions

Example: Find all the possible solutions of the following function using map method:-

 $F(A,B,C,D)=\sum (0,2,3,5,7,8,9,10,11,13,15)$

Functions with Multiple Solutions Cont...

Algorithm for determining minimum SOP using a K-map

31

The End