Mandelbrot Set 的生成和探索

蔡聪聪 信息与计算科学 3180102279

摘要

这是一个摘要 **关键字:** 这是一个关键字

这是一段引言

1 问题的背景介绍

Mandelbrot Set 是一个几何图形, 曾被称为"上帝的指纹". 这个点集均出自公式: $z_{n+1} = z_n^2 + c$, 对于非线性迭代公式 $z_{n+1} = z_n^2 + c$, 所有使得无限迭代后的结果能保持有限数值的复数 z 的集合连通的 c 构成Mandelbrot Set. [1] 它是曼德勃罗教授在二十世纪七十年代发现的.

2 数学理论

本文的算法基于以下理论.

定理 1. $c \notin M$ 当且仅当存在 $n \in N^+$, 使得 $|z_n| > 2$.

证明. 分别探讨 |c| > 2 与 $|c| \le 2$ 两种情形, 首先证明 $|c| \le 2$ 时的情况:

假设 $|z_n| > 2$. 因为 $|c| \le 2$,故 $|z_n| > |c|$. 因为 $|z_n| > |c|$, $|z_n| > 2$,故 $|z_{n+1}| = |z_n^2 + c| \ge |z_n|^2 - |c| > |z_n|^2 - |z_n| > 2|z_n| - |z_n| = |z_n|$ 由以上可知 $|z_{n+1}| > |z_n|$. 由数学归纳法可知 $2 < |z_n| < |z_{n+1}| < |z_{n+2}| < ...$,可看出随着迭代次数增加 $|z_n|$ 逐渐递增并发散. 即 $c \notin M$

同理, $|z_n| > 2$, (n = 1, 2, ...) 且, |c| > 2 时, $c \notin M$.

综合上述可得知不论 |c| 为多少, 若 $|z_n| > 2$, 则 $c \notin M$.

3 算法: 计算 Mandelbrot Set 并生成黑白图像

4 数值算例

图片

5 结论

参考文献

[1] 张天蓉. 蝴蝶效应之谜: 走近分形与混沌: Mystery of the butterfly effect : fractals and chaos. 蝴蝶效应之谜: 走近分形与混沌: Mystery of the butterfly effect : fractals and chaos, 2013.