

Matemática Para Computação

Prof. Me. Edimar Izidoro Novaes edimar.novaes@unicesumar.edu.br

Objetivos de Aprendizagem

- Compreender as principais medidas estatísticas de posição, dispersão e separatrizes.
- Entender a aplicação das medidas estatísticas de posição, dispersão e separatrizes.
- Entender os conceitos relacionados a probabilidades.

Apresentação dos dados estatísticos

Medidas de Posição:

- Média aritmética simples
- Média ponderada
- Moda
- Mediana

Medidas de Dispersão

- Amplitude Total
- Variância
- Desvio Padrão
- Coeficiente de variação

Medidas de Posição

Média aritmética simples

<u>População</u>

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\overline{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i}}{\mathbf{n}}$$

Os salários de quatro funcionários das Indústrias Maquinarias Ltda. são: R\$ 20.000,00; R\$ 30.000,00; R\$ 15.000,00 e R\$ 10.000,00. Determine a média aritmética de seus salários.

$$\bar{x} = \frac{\sum_{i=1}^{n} x}{n} = \frac{20.000 + 30.000 + 15.000 + 10.000}{4}$$

$$\bar{x} = \frac{75.000}{4} = 18.750,00$$

Média aritmética ponderada

População

$$\mu = \frac{\sum F_{i.} x_{i}}{N}$$

$$\overline{x} = \frac{\sum F_{i.} x_{i}}{n}$$

Tabela 1: Distribuição de frequências para a quantidade de imóveis visitados por clientes de uma imobiliária para efetuar uma compra

Classes	Fi	Fr	%	Fac	xi
2 16	6	0,545	54,5	54,5	9
16 30	3	0,273	27,3	81,8	23
30 44	2	0,182	18,2	100	37
Total	11	1	100	-	-

Fonte: Dados Hipotéticos

A média ponderada será dada por:

$$\overline{x} = \frac{(6 \times 9) + (3 \times 23) + (2 \times 37)}{11} = 17,91$$
 imóveis visitados

Valor ou atributo que ocorre com <u>maior frequência</u> em um conjunto de <u>dados</u>.

```
{2; 3; 4; 7; 7; 9; 10}
unimodal
```

bimodal ou multimodal

Moda – Dados agrupados em classes

Passos:

- Indica-se a classe modal pela frequência simples (Fi) ou seja, a classe que possui a maior frequência.
- Aplica-se a fórmula:

Mo =
$$l_i + \frac{h(F_i - F_{i-1})}{(F_i - F_{i-1}) + (F_i - F_{i+1})}$$

Moda – Dados agrupados em classes

Mo =
$$l_i + \frac{h(F_i - F_{i-1})}{(F_i - F_{i-1}) + (F_i - F_{i+1})}$$

- <u>l_i = limite inferior da classe modal</u>
- F_i= frequência da classe modal
- F_{i-1} = frequência da classe imediatamente anterior
- F_{i+1} = frequência da classe imediatamente posterior
- h = amplitude da classe modal

Considerando a tabela abaixo, pede-se: qual a moda dos valores apresentados?

i	Classe	Fi	Fi%	FAci	FAci%
1	1 -11	9	9,89	9	9,89
2	11 -21	14	15,38	23	25,27
3	21 -31	35	38,46	58	63,73
4	31 -41	22	24,18	80	87,91
5	41 - 51	11	12,09	91	100
	Soma	91	100		

- Classe modal: é a
- a do intervalo 21 | 31
- l= 21
- $F_i F_{i-1} = 35 14 = 21$
- $F_i F_{i+1} = 35 22 = 13$
- h = 10

$$Mo = 21 + \frac{10(35-14)}{(35-14)+(35-22)}$$

$$Mo = 27,1765$$

- É o valor da variável observada (ou mensurada) que divide seu rol de valores ao meio.
- Rol = valores observados em ordem crescente.
- Mediana possui duas formas diferentes:

Considere o seguinte exemplo:

MEDIANA – DADOS AGRUPADOS EM CLASSES

O objetivo é determinar o ponto do intervalo em que está compreendida a mediana.

Passos:

- Determinar a frequência acumulada;
- Calcula-se p = n/2 (independente se é par ou impar para intervalo de classe).
- Pela F_{ac} identifica-se a classe que contém a mediana (Md).
- Aplica-se a seguinte equação:

$$Md = l_i + \frac{h(p - F_{ai-1})}{F_i} e$$

em que:

$$p = \frac{n}{2}$$
 onde p = indica a posição central da série

 F_i = é frequência da classe que contém a mediana

 F_{ai-1} = é a frequência acumulada da classe anterior a da mediana.

Exemplo

A seguir estão apresentados os números de funcionários de empresas que prestam serviços de limpeza. Qual a mediana dos valores apresentados?

Classe	Fi	Fi%	FAci	FAci%
1 -11	9	9,89	9	9,89
11 -21	14	15,38	23	25,27
21 31	35	38,46	58	63,73
31 -41	22	24,18	80	87,91
41 - 51	11	12,09	91	100
Soma	91	100		
	1 -11 11 -21 21 -31 31 -41	1 -11 9 11 -21 14 21 -31 35 31 -41 22 11 -151 11	1 -11 9 9,89 11 -21 14 15,38 21 -31 35 38,46 31 -41 22 24,18 11 -151 11 12,09	1 -11 9 9,89 9 11 -21 14 15,38 23 21 -31 35 38,46 58 31 -41 22 24,18 80 41 -151 11 12,09 91

Classe da mediana

$$p = n/2 = 91/2 = 45,5$$

A classe que contém a mediana é a terceira, cujo intervalo é dado por: 21 -31

$$1 = 21$$

$$h=10$$

$$F_{ai-1} = 23$$

$$F_{i} = 35$$

$$Md = 21 + \frac{10 \cdot (45, 5 - 23)}{35}$$

$$Md = 27,4286$$

Tabela 3: Distribuição de frequências para a quantidade de imóveis visitados por clientes de uma imobiliária para efetuar uma compra

Classes	Fi	Fr	%	Fac	Хi
2 16	6	0,545	54,5	54,5	9
16 30	3	0,273	27,3	81,8	23
30 44	2	0,182	18,2	100	37
Total	11	1	100	-	-

Fonte: Dados Hipotéticos

$$p = \frac{11}{2} = 5,5$$
 logo o número 5,5 está inserido na 1ª classe. Sendo

assim:

$$Md = l_i + \frac{h(p - F_{ai-1})}{F_i} = 2 + \frac{14(5,5-0)}{6} = 14,83$$
 imóveis visitados

Medidas de Dispersão

VARIÂNCIA

População

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Desvio padrão

<u>População</u>

$$\sigma = \sqrt{\sigma^2}$$

$$s = \sqrt{s^2}$$

Desvio padrão

Coeficiente de Variação (CV).

População

$$CV = \frac{\sigma}{\mu} \times 100$$

$$CV = \frac{s}{\overline{x}} \times 100$$

Exemplo

Amostra	Oxigênio (mg/L)			
1	0,5			
2	0,53			
3	0,6			
4	0,76			
5	0,87			
6	0,98			
7	0,99			
8	1,05			
9	1,12			
10	1,15			
11	1,17			
12	1,22			
13	1,23			
14	1,25			
15	1,26			
16	1,7			

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$S^{2} = \frac{(0.5-1.023)^{2} + (0.53-1.023)^{2} \dots (1.7-1.023)^{2}}{16-1}$$

$$s^2 = 0.099 \text{ mg/L}^2$$

$$S = \sqrt{0.099}$$

$$S = 0.314 \text{ mg/L}$$

Coeficiente de Variação

$$\bar{x} = 1,023 \, \text{e} \, \text{s} = 0,314$$

•
$$CV = \frac{0.314}{1.023} \times 100 = 30.7\%$$

Considere as idades das pessoas de uma família como sendo: 5; 10; 12; 35; 38, calcule a variância amostral para este conjunto de dados.

Primeiramente, calculamos a média sendo esta igual a 20.

$$s^{2} = \frac{(5-20)^{2} + (10-20)^{2} + (12-20)^{2} + (35-20)^{2} + (38-20)^{2}}{5-1}$$

$$s^{2} = 234,5 \text{ anos}^{2}$$

Considerando o caso acima em que a variância foi $s^2 = 234,5$ anos², o cálculo do desvio-padrão (s) fica bastante simples, ou seja:

$$s = \sqrt{234,5} = 15,31$$
 anos

Esta medida é interpretável e dizemos que a dispersão média entre os indivíduos desta família é de 15,31 anos.

Considerando o cálculo da média e do desvio padrão já feitos sabemos que:

$$\bar{x} = 20$$
 e s=15,31

$$CV = \frac{15,31}{20} \times 100 = 76,5\%$$

Verifica-se uma grande variação, ou seja, uma alta dispersão dos dados e assim a média não seria uma boa representante para este conjunto de dados.

Observe que para dados agrupados há uma pequena diferença nas fórmulas de variância da população e amostra:

População

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2 F_i}{N}$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} F_{i}}{n-1}$$

Tabela 4: Distribuição de frequências para a quantidade de imóveis visitados por clientes de uma imobiliária para efetuar uma compra

Classes	Fi	Fr	%	Fac	xi
2 16	6	0,545	54,5	54,5	9
16 30	3	0,273	27,3	81,8	23
30 44	2	0,182	18,2	100	37
Total	11	1	100	-	-

Fonte: Dados Hipotéticos

A média ponderada será dada já calculada na anteriormente é $\bar{x}=$ 17,91 imóveis visitados. Logo:

$$S^{2} = \frac{(9-17,91)^{2}.6 + (23-17,91)^{2}.3 + (37-17,91)^{2}.2}{11-1}$$

 $S^2 = 128,29 \text{ im\'oveis visitados}^2$

$$S = \sqrt{128,29} = 11,33$$
 imóveis visitados

E consequentemente o Coeficiente de variação será:

$$CV = \frac{11,33}{17,91}.100 = 63,26\%$$

Link para medidas de dispersão.

http://www.uff.br/cdme/medidasdispers ao/medidasdispersaohtml/MedidasDeDDesvMeAbs.html

- Probabilidades chances.
- Chances de <u>um produto falhar</u>, chance de <u>ganharmos em jogos</u>, chance <u>de chover</u> etc.
- Foco Conseguir saber o tanto que é provável determinado evento.

Probabilidade de um evento

$$P(A) = \frac{n(A)}{N}$$

TRADUZINDO...

 Probabilidade do Evento A ocorrer = N° de possíveis resultados dividido por todos os resultados possíveis.

EXEMPLOS CLÁSSICOS DA ESTATÍSTICA

 Queremos estudar a ocorrência das faces de um dado. Esse seria o experimento aleatório.

Modelo probabilístico :

Face	1	2	3	4	5	6
Frequência	1/6	1/6	1/6	1/6	1/6	1/6

 Se o experimento aleatório for o lançamento de uma moeda:

Face	Cara	Coroa
Frequência	1/2	1/2

 Se um grupo for composto por 30 homens e 40 mulheres e um deles for sorteado ao acaso para ganhar um determinado prêmio, o modelo probabilístico será:

Sexo	Homem	Mulher
Frequência	30/70	40/70

Sexo	Homem	Mulher
Frequência	30/70	40/70

- E se fosse para saber a probabilidade em percentual (%)?
- Basta efetuar a divisão e multiplicar por 100%

Sexo	Homem	Mulher
Frequência	30/70	40/70

• Homem = 30/70 = 0,4285 * 100% = 42,85% de ser um homem sorteado.

Sexo	Homem	Mulher
Frequência	30/70	40/70

Mulher = 40/70 = 0.5714 * 100% = 57.14 % de se uma mulher sorteada.

 Espaço amostral: <u>possíveis resultados do</u> <u>experimento:</u>

 $\Omega = \{\omega_1, \omega_2, \dots \omega_n\}$, sendo que cada elemento de Ω é chamado de um ponto amostral.

Evento: Subconjunto do espaço amostral Ω.

Exemplo: Lançamento de uma moeda.

 $\Omega = \{cara, coroa\}$

Evento A = "obter cara".

No lançamento de um dado construir o espaço amostral e calcular a probabilidade de sair face ímpar (evento A) e sair as face 2 e 5 (evento B).

$$\Omega = \{1, 2, 3, 4, 5, 6\} - N = 6$$

 $A = \{1, 3, 5,\} - n(A) = 3$
 $B = \{2, 5\} - n(B) = 2$

Assim:

$$P(A) = \frac{3}{6} = 0.5$$
 ou em porcentagem 0.5 x 100 = 50%

$$P(B) = \frac{2}{6} = 0.33$$
 ou em porcentagem 0,33 x 100 = 33%

Qual a probabilidade de obtermos 6 pontos na jogada de dois dados HONESTOS?

- 1º) Quantidade de combinações totais possíveis:
- 6 (de um dado) X 6 (do outro dado) =
 - = 36 combinações diferentes.

2º) Combinações para marcar 6 pontos:

A: somatório para 6 pontos

$$A = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

A= 5/36 ou 0,1388 ou ainda 13,88%

Matemática Para Computação

Prof. Me. Edimar Izidoro Novaes edimar.novaes@unicesumar.edu.br