				Data.			Working Variables.											Result Variables.		
Nature of Operation,		Indication of change in the value on any Variable.	Statement of Results.	1V ₁ 00 0 0	1V ₂ O 0 0 2	1V ₃ O 0 0 4	°V4 0000 000	°V ₅ O 0 0 0 0	0V ₆ ⊙ 0 0 0	°V ₇ O 0 0 0 0	00000	°V, 0000	°V ₁₀ ○ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	°V ₁₁ ○ 0 0 0	6V ₁₂ O 0 0 0	οΨ ₁₃ ○ 0 0 0	B, in a decimal On fraction.	B ₃ in a decimal O _R A	B _s in a decimal Og fraction.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\times ^{1}V_{3}$ $^{1}V_{4}, ^{1}V_{5}, ^{1}V_{4}$ $^{2}V_{4}$ $^{2}V_{4}$ $^{2}V_{5}$ $^{2}V_{5}$ $^{2}V_{1}$ $^{2}V_{1}$ $^{2}V_{1}$ $^{2}V_{11}$ $^{2}V_{11}$ $^{2}V_{11}$ $^{2}V_{11}$ $^{2}V_{11}$	$\begin{array}{c} \begin{array}{c} 1 & 3 & -3 \\ 1 & 1 & 2 & 2 & 4 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 5 & 2 & 2 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 5 & 2 & 5 \\ 2 & 1 & 4 & 6 & 1 \\ 2 & 2 & 5 & 6 & 4 \\ \end{array} \\ \begin{array}{c} 1 & 2 & 2 & 5 \\ 2 & 2 & 4 & 6 & 2 \\ 1 & 1 & 2 & 2 & 1 \\ 1 & 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ \end{array} \\ \begin{array}{c} 2 & 2 & 2 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 \\ \end{array}$		1 1	2		2 n 2 n - 1 0	2 n+1 0	2 n					$\begin{array}{c} 2n-1 \\ 2n+1 \\ 1 \\ \frac{1}{2}, \frac{2n-1}{2n+1} \\ 0 \end{array}$		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\lambda_0$				
+ V ₂ + V ₆ +	-1V ₁ 1V ₁₀ +0V ₇ 1V ₇ +1V ₇ 3V ₁₁ ×3V ₁₁ 1V ₁₂ +1V ₁₃ 2V ₁₃	$ \begin{cases} 1V_2 = 1V_2 \\ 0V_7 = 1V_7 \\ 1V_6 = 1V_6 \\ 0V_{11} = 3V_{11} \end{cases} $ $ \begin{cases} 1V_{21} = 1V_{21} \\ 3V_{11} = 3V_{11} \end{cases} $ $ \begin{cases} 1V_{12} = 0V_{12} \\ 1V_{13} = 2V_{13} \end{cases} $	$ \begin{aligned} &= n-1 \ (=3) \\ &= 2+0=2 \dots \\ &= \frac{2n}{2} = A_1 \dots \\ &= B_1 \cdot \frac{2n}{2} = B_1 A_1 \dots \\ &= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \dots \\ &= n-2 \ (=2) \dots \end{aligned} $		2	n			2n	2 2			 	$\frac{2 n}{2} = A_1$ $\frac{2 n}{2} = A_1$	$B_1 \cdot \frac{2\pi}{2} = B_1 A_1$	$\left\{-\frac{1}{2}, \frac{2n-1}{2n+1} + B_1, \frac{2n}{2}\right\}$	B ₁			
+ 1V ₁ + + 2V ₆ - × 1V ₈ > - 2V ₆ - + 1V ₁ - + 3V ₆ - × 1V ₉ > × 1V ₂₂ >	+3V7 1V9	$ \begin{cases} v_1 & = v_1 \\ v_1 & = 1v_1 \\ v_1 & = 1v_1 \end{cases} $ $ \begin{cases} v_1 & = 2v_6 \\ v_2 & = 2v_5 \\ v_3 & = 2v_5 \end{cases} $ $ \begin{cases} v_2 & = 2v_5 \\ v_3 & = v_5 \\ v_1 & = v_1 \end{cases} $ $ \begin{cases} v_3 & = v_5 \\ v_1 & = v_1 \\ v_1 & = v_1 \end{cases} $ $ \begin{cases} v_1 & = v_1 \\ v_2 & = v_2 \\ v_3 & = v_5 \end{cases} $ $ \begin{cases} v_1 & = v_1 \\ v_2 & = v_2 \\ v_2 & = v_2 \end{cases} $ $ \begin{cases} v_2 & = v_2 \\ v_1 & = v_1 \\ v_2 & = v_2 \end{cases} $ $ \begin{cases} v_2 & = v_2 \\ v_1 & = v_1 \\ v_2 & = v_2 \end{cases} $	$\begin{array}{c} = 2n-1 \\ & = 2+1 = 3 \\ & = \frac{2n-1}{3} \\ & = \frac{3n}{3} \\ & = 2n-2 \\ & = 2n-2 \\ & = 2n-2 \\ & = 3+1 = 4 \\ & = \frac{2n-2}{2n-1} \\ & = \frac{2n-2}{3n-1} \\ & = \frac{2n-2}{3$						2 n - 1 2 n - 1 2 n - 2 2 n - 5	3 3	2n-1 3 0	 2n-2 4 0 		$\begin{cases} \frac{2n}{2}, \frac{2n-1}{3} \\ \\ \frac{2n}{3}, \frac{2n-1}{3}, \frac{2n-2}{3} \\ \\ -A_3 \\ \\ 0 \\ \\ \\ \\ \\ \\ \end{cases}$	B ₃ A ₃	$\{A_3 + B_1 A_1 + B_2 A_3^{\dagger}\}$		B ₃		

... La nota G estaba dedicada a los números de Bernoulli; en este apartado Ada describe con detalle las operaciones mediante las cuales las tarjetas perforadas "tejerían" una secuencia de números en la máquina analítica. Este código está considerado como el primer algoritmo específicamente diseñado para ser ejecutado por un ordenador, aunque nunca fue probado ya que la máquina nunca llegó a construirse. (Wikipedia)

3 - 2 - 1

Árbol Sintáctico Abstracto

Semántica 3 - 2 - 1

Gramática Independiente del Contexto

- expresion → expresion '-' expresion
- expresion → NUMERO

3-2-1

Gramática Ambigua

- expresion → expresion '-' expresion
- expresion → NUMERO

Esquema de Traducción (yacc)

```
e \longrightarrow e' - e' = \{ \$\$ = \$1 - \$3; \}
e \longrightarrow NUM \{ \$\$ = Number(\$1); \}
3-2-1
\$\$ = \$1 - \$3 = 1 - 1 = 0
\$\$ = \$1 - \$3 = 3 - 1 = 2
\$\$ = \$1 - \$3 = 3 - 2 = 1
e \Longrightarrow \$\$ = \$1 - \$3 = 3 - 1 = 2
e \Longrightarrow \$\$ = \$1 - \$3 = 3 - 2 = 1
```

\$\$ = Number(\$1) = 3

\$\$= '3'

е

\$\$='3'

Análisis Léxico y Expresiones Regulares

```
[0-9]+ /* is a Natural Number */
      /* is a '-' */
       /*Any character but \n*/
```


Un Programa que Evalúa Expresiones

https://nolanlawson.github.io/jison-debugger/

```
%lex
%%
          return 'NUMBER'
          return '-'
          return 'INVALID'
/lex
%%
es: e
```

Parser Generators: an example

https://nolanlawson.github.io/jison-debugger/

true

This tool, a parser generator uses a parsing algorithm known as LALR that was invented by Donald Ervin Knuth

The Phases of a Translator

A programming language translator usually consists of a sequence of stages

Lexer:

 Skips the comments and whitespaces and produces the stream of tokens for numbers, identifiers, reserved words, etc

Parser:

• Reads the stream of tokens, check that it complies with the syntactic rules and produces the *Abstract Syntax Tree*: a data structure representing the underlying syntactic structure of the input program

The Abstract Syntax Tree: a data structure representing the underlying syntactic structure of the input program: https://astexplorer.net/

- Applies transformations that improve the program in various goals
- Goals: execution time, memory consumption, energy consumption, etc.
- Examples of transformations: Constant folding, Constant propagation, Loop invariants

Input Program

• Transforms abstract syntax tree to instructions for a particular computer architecture

