EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

59042460

PUBLICATION DATE

09-03-84

APPLICATION DATE

01-09-82

APPLICATION NUMBER

57150690

APPLICANT: TOSHIBA CORP;

INVENTOR: IGAWA HIROSHI;

INT.CL.

G01R 25/00

TITLE

PHASE DETECTING DEVICE

$$\alpha = \theta \times \frac{|X_1|}{|X_0| + |X_1|}$$
 $\beta = \theta \times \frac{|X_{21}|}{|X_{22}| + |X_{21}|}$

ABSTRACT :

PURPOSE: To detect a phase difference with high accuracy, by sampling two AC inputs from the same electric power source system, and using sampling values before and after zero-crossing of the AC inputs and a phase difference between each sampling.

CONSTITUTION: Two AC inputs inputted from the same electric power source system are sampled by a prescribed sampling frequency, and are converted to digital values. A negative sampling value X_0 and a positive sampling value X_1 in case when the input A_1 is changed to positive from negative for to its polarity are derived, and in the same way, a negative sampling value X₂₀ and a positive sampling value X₂₁ of the input A₂ are derived. Subsequently, a sampling number N₀ extending from the sampling value X₁ of the input A_1 to the negative sampling value X_{20} of the input A_2 is counted. Subsequently, a phase difference θ between each sampling in the actual power supply frequency is derived, phase difference α , β are derived by use of the sampling values X_0 , X_1 , X_{20} and X_{21} and the phase difference θ ; the phase difference between two inputs is detected.

COPYRIGHT: (C)1984, JPO& Japio