P1 1108961

## ARIO MONTAR O CARARDO CARARDO MANORIA (CAR

TO ALL TO WHOM THESE: PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office

January 06, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/423,380 FILING DATE: November 04, 2002

**RELATED PCT APPLICATION NUMBER: PCT/US03/34787** 

By Authority of the COMMISSIONER OF PATENTS AND TRADEMARKS

M. SIAS Certifying Officer

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

COMPESSED 11040 POV PTO/SB/16 (10-01)

Approved for use through10/31/2002 OMB 0651-0032

U.S. Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB confol number PROVISIONAL APPLICATION FOR PATENT COVER SHEET N

| This is a request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for filing a                          | PROVISIONA         | L APPLICA        | TION FOR P      | ATENT unde               | 37 CFF            | ₹ 1.53(c).          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|------------------|-----------------|--------------------------|-------------------|---------------------|------------|
| Express Mail La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bel No.                               |                    |                  |                 |                          |                   |                     | 7500       |
| <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                    | NVENTOR(         | S)              |                          |                   |                     |            |
| Given Name (first and middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (if anyl)                             |                    |                  |                 |                          |                   | tence               |            |
| Curtis C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Įli aliyj)                            | Harris             | Name or Sur      | name            | (City and e              |                   |                     | n Country) |
| Ping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                     | He                 |                  |                 | Bethesda                 | •                 | טוט                 | 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 110                |                  |                 | Demesu                   | a, IVID           |                     |            |
| Additional inventors are b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eing named                            | on the1            | separately nu    | mbered sheets   | attached heret           | )                 |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | т т                                   | ITLE OF THE IN     | VENTION (50      | 0 characters    | max)                     |                   |                     |            |
| Methods and Compos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | itions for                            | the Diagno         | sis of Ne        | uroendoc        | rine Lung (              | Cancer            |                     |            |
| Direct all correspondence to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | CORRESP            | ONDENCE A        | DDRESS          |                          |                   |                     |            |
| Customer Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 28410              |                  | <b></b>         | ļ                        |                   |                     |            |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type Custor                           | mer Number here    | 9                |                 | <u> </u>                 |                   |                     |            |
| Firm or Individual Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                    |                  |                 | P/                       | 284<br>TENT_TRADE | 10<br>MARK OFFICE   |            |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                    |                  | _               |                          |                   |                     |            |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |                    |                  |                 |                          |                   |                     |            |
| City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | <del></del>        | State            |                 | ZIP                      |                   |                     |            |
| Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ENC                                   | OCEO ADDUIO        | Telephone        |                 | Fax                      | <u> </u>          |                     |            |
| Specification Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | OSED APPLICA       | T                | _               |                          |                   |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |                    | Ĺ                | CD(s), Nu       | mber                     |                   |                     |            |
| The state of the s |                                       | 5                  | Γ                | Other (spe      | ecify)                   |                   |                     |            |
| Application Data Sheet, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                    | L.               |                 |                          |                   |                     |            |
| METHOD OF PAYMENT OF FI  Applicant claims small e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                    |                  | PLICATION FO    | OR PATENT                | <b></b>           | NO FEE              |            |
| A check or money order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                    |                  |                 |                          |                   | NG FEE<br>DUNT (\$) |            |
| The Commissioner is he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ereby authori                         | zed to charge file | ing I            | 50-0548         |                          |                   |                     |            |
| fees or credit any overp Payment by credit card.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                    | lumber:          | 30-0346         |                          | \$1               | 60.00               |            |
| The invention was made by an United States Government.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | agency of the                         | United States C    | Government o     | r under a contr | act with an agei         | ncy of the        |                     |            |
| Yes, the name of the U.S. Gov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ernment agend                         | ey and the Governm | nent contract nu | mber are: DH    | HS, NIH, (               | CCR               |                     |            |
| Respectfully submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 11                 |                  |                 |                          | 7                 |                     |            |
| SIGNATURE SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | all                | _                | Date            | 11/04/2002               | j                 | <del></del>         |            |
| TYPED or PRINTED NAME Jeff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | frey I. Au                            | erbach             | <del></del>      |                 | GISTRATION Nappropriate) | Ю.                | 3                   | 2,680      |

### USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

(if appropriate) **Docket Number:** 

03514.108

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C. 20231.

TELEPHONE (301) 896-0600

## PROVISIONAL APPLICATION COVER SHEET Additional Page

PTO/SB/16 (02-01)

Approved for use through 10/31/2002 OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

| Number | 1 | of | 1 |
|--------|---|----|---|
|        |   |    |   |

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

#### Title of the Invention:

# Methods and Compositions for the Diagnosis of Neuroendocrine Lung Cancer

#### Field of the Invention:

5

10

15

20

25

This invention relates to methods and compositions for the diagnosis of neuroendocrine lung cancers. In particular, the invention concerns the use of cDNA microarrays to facilitate the differential diagnosis of neuroendocrine tumor types

#### **Statement of Governmental Interest**

This invention was funded by NCI Intramural Research Program CCR at the National Institutes of Health. The United States Government has certain rights to this invention.

#### **Background of the Invention:**

The mammalian neuroendocrine system is a dispersed organ system that consists of cells found in multiple different organs. The cells of the neuroendocrine system function in certain ways like nerve cells and in other ways like cells of the endocrine (hormone-producing) glands. The neuroendocrine cells of the lung are of particular significance; they help control airflow and blood flow in the lungs and may help control growth of other types of lung cells.

In some instances, neuroendocrine cells escape from normal cellular control and become malignant, resulting in neuroendocrine tumors. Four clinically distinct types of neuroendocrine tumors have been described: small cell lung cancer (SCLC), large cell neuroendocrine carcinoma (LCNET), typical carcinoid (TC) tumors and atypical carcinoid (AT) tumors. SCLC is the most serious type of neuroendocrine lung tumor (LCNEC), and is among the most rapidly growing and spreading of all cancers. Large cell neuroendocrine carcinoma, typical carcinoid

and atypical carcinoid tumors are rare forms of cancers. Whereas SCLC accounts for 15-25% of total pulmonary malignancies, large cell neuroendocrine carcinoma, typical carcinoid and atypical carcinoid tumors collectively account for only 3-5% of total pulmonary malignancies. Accurate diagnosis of neuroendocrine carcinoma is important since the different tumor types are associated with markedly different survival rates. Small Cell Lung Cancers are associated with 5 and 10 year survival rates of only 9% and 5%, respectively. Large Cell Neuroendocrine Carcinoma presently exhibit 27% and 9%, 5 and 10 year survival rates. Atypical Carcinoid Tumors are associated with 5 and 10 year survival rates of 56% and 35%, respectively. In contrast, Typical Carcinoid Tumors are found to have 5 and 10 year survival rates of nearly 90%

5

10

30

Neuroendocrine tumors are reviewed by Gould, V.E. et al. (2000) "EPITHELIAL TUMORS OF THE LUNG" Chest Surg Clin N Am 10:709-28, by DeLellis, R.A. (1997) "Proliferation Markers In Neuroendocrine tumors: USEFUL OR USELESS? A CRITICAL REAPPRAISAL" Verh Dtsch Ges Pathol. 81:53-15 61, by Travis, W.D. et al. (1991) "NEUROENDOCRINE TUMORS OF THE LUNG WITH PROPOSED CRITERIA FOR LARGE-CELL NEUROENDOCRINE CARCINOMA. AN ULTRASTRUCTURAL, IMMUNOHISTOCHEMICAL, AND FLOW CYTOMETRIC STUDY OF 35 CASES" Am J Surg Pathol 15:529-53, by Cerilli, L.A. et al. (2001) "NEUROENDOCRINE NEOPLASMS OF THE LUNG" Am J Clin Pathol 116:S65-96; by 20 Arrigoni, M.G. et al. (1972) "ATYPICAL CARCINOID TUMORS OF THE LUNG," J Thorac Cardiovasc Surg 64:413-421; by Warren, W.H. et al. (1988) "WELL DIFFERENTIATED AND SMALL CELL NEUROENDOCRINE CARCINOMAS OF THE LUNG: TWO RELATED BUT DISTINCT CLINICOPATHOLOGIC ENTITIES," Virchows Arch B cell Pathol 55:299-310; by Kramer, R. (1930) "ADENOMA OF BRONCHUS," 25 Ann Otol Rhinol LaryngoI 39:689, and by Mark, E.J. et al. (1985) "PERIPHERAL SMALL CELL CARCINOMA OF THE LUNG RESEMBLING CARCINOID TUMOR," Arch Pathol Lab Med 109:263-269.

Unfortunately, all neuroendocrine tumors have similar morphologic appearances and exhibit similar immunohistochemical staining. Thus, a significant

of neuroendocrine tumors. Such diagnosis is still "decisively" based on light-microscopic evaluations of tissue samples for the number of cells involved in mitosis. Other than clinical stage at presentation, mitotic count is currently the sole independent histologic predictor of prognosis (Junker, K. et al. (2000) "PATHOLOGY OF SMALL-CELL LUNG CANCER," J Cancer Res Clin Oncol. 126:361-8; Franklin, WA. (2000) "PATHOLOGY OF LUNG CANCER" J Thorac Imaging. 15:3-12; Chyczewski, L. et al. (2001) "Morphological Aspects Of Carcinogenesis In The Lung" Lung Cancer. 34:S17-25; Travis, W.D. et al. (1991) "NEUROENDOCRINE TUMORS OF THE LUNG WITH PROPOSED CRITERIA FOR LARGE-CELL NEUROENDOCRINE CARCINOMA. AN ULTRASTRUCTURAL, IMMUNOHISTOCHEMICAL, AND FLOW CYTOMETRIC STUDY OF 35 CASES" Am J Surg Pathol 15:529-53; Brambilla, E. et al. (2001) "THE NEW WORLD HEALTH ORGANIZATION CLASSIFICATION OF LUNG TUMOURS" Eur Respir J. 18: 1059-68).

5

10

15

20

25

30

Such microscopic evaluations of tissue samples is complex and difficult. Moreover, no "gold-standard" exists for defining neuroendocrine differentiation (Carnaghi, C. et al. (2001) "CLINICAL SIGNIFICANCE OF NEUROENDOCRINE PHENOTYPE IN NON-SMALL-CELL LUNG CANCER" Ann Oncol. 12:S119-23). The absence of an effective diagnostic standard complicates the management and treatment of neuroendocrine tumors (Oberg, K. (2001) "CHEMOTHERAPY AND BIOTHERAPY IN THE TREATMENT OF NEUROENDOCRINE TUMOURS," Ann Oncol 12:S111-4).

Researchers have attempted to apply the principles of molecular biology in order to identify molecular markers that would facilitate the diagnosis of neuroendocrine tumor types (see, for example, Japanese Patent Document JP 58,198,758A2; and United States Patents Nos. 5,766,888; 5,856,097; 5,866,323; 5,965,362; 5,976,790; 5,985,240; 5,998,154; 6,132,724; 6,166,176; 6,180,082; 6,225,049; 6,238,877; 6,251,586; 6,335,167; and 6,358,491). Certain proteins, such as chromogranin A (CgA) and neuron-specific enolase (NSE) have been identified as having specific potential use in the clinical diagnosis of

neuroendocrine tumors (Seregni, E. et al. (2000) "LABORATORY TESTS FOR NEUROENDOCRINE TUMOURS" Q J Nucl Med. 44:22-41). Non-SCLC neuroendocrine tumors have been reported to overexpress CgA whereas SCLC tumors exhibit elevated NSE levels. Id. Lui, W.-O. et al. (2001) "HIGH LEVEL AMPLIFICATION OF 1P32-33 AND 2P22-24 IN SMALL CELL LUNG CARCINOMAS" 5 Intl. J Oncol. 19:451-457 used comparative genomic hybridization analysis to identify chromosomal abnormalities in SCLC tumor cells. Through such analysis. several genetic regions were found to be amplified (i.e., 1p32, 2p23, 1p32, and 2p32). A loss of heterozygosity (LOH) is observed on 3p, 13q and 17p in nearly all SCLC tumors (Yokota et al. (1987) "Loss Of HETEROZYGOSITY ON 10 CHROMOSOMES 3, 13 AND 17 IN SMALL CELL CARCINOMA AND ON CHROMOSOME 3 IN ADENOCARCINOMA OF THE LUNG" Proc. Natl. Acad. Sci. (U.S.A.) 84:9252-9256. Similarly, deletions in 11q have been correlated with the presence of AT and TC tumors (Walch, A.K. et al. (1998) "TYPICAL AND ATYPICAL CARCINOID TUMORS OF THE LUNG ARE CHARACTERIZED BY 11Q DELETIONS AS DETECTED BY 15 COMPARATIVE GENOMIC HYBRIDIZATION" Am J Pathol. 153:1089-98).

While such efforts have succeeded in identifying quantitative differences in mutations affecting various genes (for example finding that p53 is inactivated in >90% of SCLC tumors, but in only >50% of non-SCLC tumors, or that p16 abnormalities arise in <1% of SCLC tumors but in ~66% of non-SCLC tumors), 20 clear correlations that would support a definitive differential diagnosis of tumor type has not been fully achieved (see, Ignacio, I. et al. (2001) "MOLECULAR GENETICS OF SMALL CELL LUNG CARCINOMA" Semin Oncol. 28:3-13; Carnaghi, C. et al. (2001) "CLINICAL SIGNIFICANCE OF NEUROENDOCRINE PHENOTYPE IN NON-SMALL-CELL LUNG CANCER" Ann Oncol. 12:S119-23). In this regard, one recent 25 study found no statistically significant correlation between any individual marker and response to chemotherapy for non-SCLC tumors (Gajra, A. et al. (2002) "THE PREDICTIVE VALUE OF NEUROENDOCRINE MARKERS AND P53 FOR RESPONSE TO CHEMOTHERAPY AND SURVIVAL IN PATIENTS WITH ADVANCED NON-SMALL CELL LUNG CANCER" Lung Cancer. 36:159-65). Thus, a need remains for a usable 30

molecular marker approach that could distinguish between the different types of neuroendocrine tumors.

cDNA microarrays have been employed to analyze gene expression patterns in human cancers (DeRisi, J. et al. (1996) "Use Of A cDNA

5 Microarray To Analyse Gene Expression Patterns In Human Cancer"

Nature Genetics 14:457-60). Such efforts have combined DNA amplification technologies (such as T7-based RNA amplification) with cDNA microarrays in order to improve the discriminating power of the analysis (Luo, L. et al. (1999) "Gene Expression Profiles Of Laser-Captured Adjacent Neuronal

10 Subtypes" Nature Medicine 5:117-22; Bonner, R.F. et al. (1997) "Laser Capture Microdissection: Molecular Analysis Of Tissue" Science 278:1481,1483; Schena, M. et al. (1995) "Quantitative Monitoring Of Gene Expression Patterns With A Complementary DNA Microarray" Science 270:467-70).

Despite all such progress, no fully successful method for distinguishing between the neuroendocrine tumor types, and of thus accurately diagnosing neuroendocrine cancers has yet been achieved. The present invention is, in part, directed to such needs.

#### Summary of the Invention:

15

This invention relates to methods and compositions for the diagnosis of neuroendocrine lung cancers. The present invention permits one to accurately classify pulmonary neuroendocrine tumors based on their genome-wide expression profile without further manipulation. A hierarchical clustering of all genes classifies these tumors according to World Health Organization (WHO)

1. histological type. The selection of genes with significant variance resulted in the identification of 198 transcripts, many of which have potentially important biological and clinical implications. The present invention thus defines and provides groups of genes that identify each tumor type, and permits one to derive a molecular signature that distinguishes each subtype of neuroendocrine tumor.

)

In detail, the invention provides a method for determining whether a candidate cell is a neuroendocrine tumor cell, wherein the method comprises the steps of:

- (A) determining the profile of expression of a plurality of genes of the candidate cell; and
- (B) comparing such determined profile of expression with the profile of expression of the genes of a small cell lung cancer cell, a large cell neuroendocrine carcinoma cell, a typical carcinoid tumor cell or an atypical carcinoid tumor cell;
- 10 to thereby determine whether the candidate cell is a neuroendocrine tumor cell.

5

15

20

The invention particularly concerns the embodiment of such method wherein the method additionally permits a determination of neuroendocrine tumor cell type. The invention further concerns the embodiments of such methods wherein the method determines whether the candidate cell is a small cell lung cancer (SCLC) neuroendocrine tumor cell, a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell, a typical carcinoid (TC) neuroendocrine tumor cell, or an atypical carcinoid (AT) neuroendocrine tumor cell.

The invention further concerns the embodiments of such methods wherein step (A) of the methods comprise incubating RNA of the candidate cell, or DNA or RNA amplified from such RNA, in the presence of a plurality of genes, or fragments or RNA transcripts thereof, under conditions sufficient to cause RNA to hybridize to complementary DNA or RNA molecules; and detecting hybridization that occurs.

The invention additionally concerns the embodiments of such methods wherein the plurality of genes, or polynucleotide fragments or RNA transcripts thereof, are distinguishably arrayed in a microarray. The invention particularly concerns the embodiments of such methods wherein the microarray comprises

arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in neuroendocrine tumor cells relative to normal cells.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells.

5

10

15

20

25

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to atypical carcinoid (AT) neuroendocrine tumor cells.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to atypical carcinoid (AT) neuroendocrine tumor cells.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in typical carcinoid (TC) neuroendocrine tumor cells relative to atypical carcinoid (AT) neuroendocrine tumor cells

5

10

15

20

25

The invention additionally concerns a microarray of genes, or polynucleotide fragments or RNA transcripts thereof for distinguishing a neuroendocrine tumor cell, the microarray comprising a solid support having greater than 10 genes, or polynucleotide fragments or RNA transcripts thereof, distinguishably arrayed in spaced apart regions, wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) cell, a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell, a typical carcinoid (TC) neuroendocrine tumor cell, or an atypical carcinoid (AT) neuroendocrine tumor cell, relative to a normal cell or a cell belonging to a different neuroendocrine tumor cell type, to permit the microarray to distinguish a pulmonary neuroendocrine tumor cell.

The invention particularly concerns the embodiment of such microarray wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a neuroendocrine tumor cell relative to a normal cell to permit the microarray to distinguish between a neuroendocrine tumor cell and a normal cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell to permit the microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine

tumor cell and a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit the microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and a typical carcinoid (TC) neuroendocrine tumor cell.

5

10

15

20

25

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to an atypical carcinoid (AT) neuroendocrine tumor cell to permit the microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and an atypical carcinoid (AT) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit the microarray to distinguish between a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell and a typical carcinoid (TC) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell relative to an atypical carcinoid (AT) neuroendocrine tumor cell to permit the microarray to distinguish between a large cell neuroendocrine carcinoma (LCNEC)

neuroendocrine tumor cell and an atypical carcinoid (AT) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a typical carcinoid (TC) neuroendocrine tumor cell relative to an atypical carcinoid (AT) neuroendocrine tumor cell to permit the microarray to distinguish between a typical carcinoid (TC) neuroendocrine tumor cell and an atypical carcinoid (AT) neuroendocrine tumor cell.

#### 10 Brief Description of the Figures:

5

25

Figures 1A-1D illustrate carcinoid tumor tissue sections before and after laser capture microdissection; H&E (Figure 1A); Before LCM (Figure 1B); After LCM (Figure 1C); Dissected Tissue on the cap (Figure 1D).

Figure 2 shows the hierarchical clustering of genes with statistically significant variance (p<0.004) among all tumor samples.

Figure 3 shows the hierarchical clustering of 198 genes, created by enforcing the classification of 17 tumors.

Figures 4A and 4B show the expression of genes of large cell neuroendocrine tumor cells and typical carcinoid tumor cells.

#### 20 Description of the Preferred Embodiments:

The invention concerns methods and compositions for the diagnosis of neuroendocrine lung cancers. Lung cancer is a leading cause of cancer-related deaths (Franceschi, S. et al. (1999) "THE EPIDEMIOLOGY OF LUNG CANCER," Ann. Oncol. 10 Suppl 5:S3-6). The observed continuous relative increase in the incidence of SCLC (Junker, K. et al. (2000) "Pathology of Small-Cell Lung Cancer, J. Cancer Res. Clin. Oncol. 126:361-368) reflects cigarette smoking, lack of effective methods for early diagnosis and paucity of information on phenotypic

changes which predict the development of aggressive types of lung cancer. Neuroendocrine tumors are a distinct subset of lung cancers that share morphologic, ultrastructural, immunohistochemical, and molecular characteristics. As indicated above, the term neuroendocrine tumors encompasses small cell lung cancer (SCLC) tumors, large cell neuroendocrine carcinomas, typical carcinoid (TC) tumors and atypical carcinoid (AT) tumors. All neuroendocrine tumors have similar morphologic appearance with organoid, trabecular or rosettelike pattern; immunohistochemical staining for chromogranin (Cga), synaptophysin, neuronspecific enolase (NSE), neural cell adhesion molecule (NCAM), and the presence of neuroendocrine granules, which can be detected by electron microscopy (Fisher, E.R. et al. (1978) "COMPARATIVE HISTOPATHOLOGIC, HISTOCHEMICAL, ELECTRON MICROSCOPIC AND TISSUE CULTURE STUDIES OF BRONCHIAL CARCINOIDS AND OAT CELL CARCINOMAS OF THE LUNG," Am J Clin Pathol 69: 165-172).

5

10

15

20

30

The dramatic differences in survival exhibited by the different neuroendocrine malignancies reflect fundamental differences in biological behavior and therapeutic approaches in these tumors (Travis, W.D., et al. (1998) "SURVIVAL ANALYSIS OF 200 PULMONARY NEUROENDOCRINE TUMORS: WITH CLARIFICATION OF CRITERIA FOR ATYPICAL CARCINOID AND ITS SEPARATION FROM TYPICAL CARCINOID," Am J Surg Pathol 22:934-944). Current treatment for patients with TC involves surgical resection because the tumors are slow growing and frequently detected as solitary pulmonary lesions. In less than one third of patients with LCNEC, surgical resection is possible without neoadjuvant treatment. Unfortunately, at the time of diagnosis, most SCLC tumors are disseminated, treatment is not effective and the prognosis is poor. Thus, accurate diagnosis of each type of pulmonary neuroendocrine tumors is essential for successful clinical 25 outcome.

The combined use of light microscopy, immunohistochemistry and electron microscopy has increased the oncologist's ability to differentiate different subtypes of neuroendocrine tumors and has provided clues regarding their pathogenesis. However, little information is available on genetic changes associated with each type of neuroendocrine tumors.

Over the past decade, there have been significant changes in the classification of pulmonary neuroendocrine tumors in order to improve prediction of their biological behavior. The accurate diagnosis of each pulmonary tumor subtype is critical for decisions of therapy. A diagnosis based on light microscopic examination, specifically in differentiation of SCLC from other pulmonary NETs is often challenging. Unfortunately, there are no molecular markers to aid in differentiation of each tumor subtype.

5

10

15

In accordance with the methods of the present invention, the analysis of genome-wide gene expression in neuroendocrine tumors from cDNA microarray data (often referred to as "unsupervised learning") accurately distinguishes each tumor type. The pattern of gene expression has been found to correlate with each subtype assigned by light microscopy according to WHO/LASLSC classification (Histopathological classification of these tumors is based on the 1999 WHO Classification (Travis, W.D. et al. (1999) "HISTOLOGIC TYPING OF LUNG AND PLEURAL TUMORS" (Ed 3). Berlin, Germany, Springer).

Microarray technology is widely used to identify changes in gene expression accompanying altered cell physiology during development, cell cycle progression, drug treatment or disease progression. Related phenotypes are usually accompanied by related patterns of cellular transcripts that can be used to characterize these changes. The present invention exploits the recent development 20 of DNA microarray technology (see, for example, DeRisi, J. et al. (1996) "USE OF A cDNA MICROARRAY TO ANALYSE GENE EXPRESSION PATTERNS IN HUMAN CANCER" Nature Genetics 14:457-60; Luo, L. et al. (1999) "GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL SUBTYPES" Nature Medicine 5:117-22; Bonner, R.F. et al. (1997) "LASER CAPTURE 25 MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE" Science 278:1481,1483; Schena, M. et al. (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY" Science 270:467-70) to analyze genome-wide changes that may distinguish these tumors and discover molecular markers. The identification of such markers and their subsequent use 30

ion the diagnosis and monitoring of neuroendocrine cancers permits a more effective selection of treatment modalities for individual patients.

5

10

15

20

25

The analysis of changes in gene expression in clinical specimens is complicated by the mixture of tumor and normal cells, as well as stromal, vascular, and other cells obtained in biopsy. In addition, the heterogeneity of cell type hinders the study of gene expression profiles in cancer cells. Although the principles of the present invention may be used with tissue biopsies and other tissue samples, most preferably, the analysis will be conducted with single cells. Such single cells can be isolated using any of a variety of methods, however, the use of laser capture microdissection (LCM) is preferred. Laser capture microdissection is a procedure that permits the harvesting of a specific cell population directly from frozen sections. The procedure involves fixing the desired cells to a thermoplastic film following infrared laser pulse to avoid "contamination" by other cell populations (Emmert-Buck, M.R. et al. (1996) "Laser Capture Microdissection," Science 274:998-1001; Goldsworthy, S.M. et al. (1999) "EFFECTS OF FIXATION ON RNA EXTRACTION AND AMPLIFICATION FROM LASER CAPTURE MICRODISSECTED TISSUE," Molecular Carcinogenesis, 1999, 86-91; Luo, L. et al. (1999) "Gene Expression Profiles Of Laser-Captured ADJACENT NEURONAL SUBTYPES" Nature Medicine 5:117-22).

Most preferably, the PixCell<sup>TM</sup> LCM system (Arcturus, Moutain View, CA) is used for laser capture microdissection (Bonner, R.F., et al. (1997) "LASER CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE," Science 278: 1481,1483). The examples described below illustrate the desirability of isolating tumor cells from vascular and inflammatory components frequently found in surgical specimens of lung cancer and other vascular tumors.

The present invention thus permits one to distinguish between different neuroendocrine tumor subtypes based on their expression profiles. Preferably, such analysis will involve a comparison of the expression of multiple genes, and is accomplished by assessing the extent or presence of hybridization occurring

between RNA transcripts (or cDNA copies thereof) of a candidate cell and genes, or polynucleotide fragments or RNA transcripts thereof of a reference cell that are differentially expressed in some or all neuroendocrine tumor cells. As used herein, a gene is said to be "differentially expressed" in a tumor cell if detection of its expression facilitates the determination that a candidate cell is or is not a tumor cell.

5

10

15

20

Clones containing suitable genes, and from which suitable polynucleotide fragments or RNA transcripts can be made, are obtainable from Incyte Genomics (<a href="www.incyte.com">www.incyte.com</a>). The present invention provides a preferred set of 198 genes that are particularly suited for use in such analysis. Clones of these genes are commercially available from Incyte Genomics using the Incyte Clone ID No. information provided in Table 2. Preferably the analysis will be conducted using 10%, 20%, 50%, 70%, 80%, 90% or all of these 198 genes, alone or in combination with other genes, or polynucleotide fragments or RNA transcripts thereof. These 198 genes have been found to define three different cluster groups. The analysis may involve a comparison of the expression of genes belonging to the same cluster group, or to two or more different cluster groups.

cDNA microarrays are preferably performed on a solid surface, such as a chip or slide. Preferably, such surfaces will contain multiple human genes, or polynucleotide fragments or RNA transcripts thereof, distinguishably arrayed. As used herein, the term "distinguishably arrayed" is intended to denote that such gene's (or its fragment or transcript)'s location on the surface is distinct or distinguishable from the locations of other gene(s) that may be bound to the support.

25 Most preferably, the array will contain gene fragments of hundreds or thousands of human genes. A glass slide containing gene fragments of 9,984 human genes (provided by the Advanced Technology Center of the National Cancer Institute) is preferably employed. Clones and arrays are also available from Incyte Genomics, Palo Alto, CA, and other sources.

For analyzing such microarrays, nucleic acid, most preferably RNA, is isolated from candidate neuroendocrine cells. Any of a wide variety of amplification procedures may be employed. In a preferred embodiment of the invention, a T7-based RNA amplification procedure ins employed, such as that described by Luo, L. et al. (1999) ("GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL SUBTYPES" Nature Medicine 5:117-22). To facilitate the analysis, the amplified material is preferably labeled, as with a radioactive, fluorescent, chemiluminescent, enzymatic, haptenic, or other label, and incubated with the arrayed gene fragments under conditions suitable for nucleic acid hybridization to occur (see, for example, Schena, M. et al. (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY" Science 270:467-70).

The hybridized array are then analyzed for their pattern of hybridization. Detection of hybridization, e.g., detection of the labeled amplified material hybridized to a region of the array, indicates that the gene present at such region was expressed by the candidate cell being analyzed. Most preferably, such analysis will employ an automated scanning device, such as a GenePix 4000A Laser Scanner (Axon Instruments, Inc., Foster City, CA) in conjunction with software for conducting such analysis. The BRB ArrayTools (ver 2.0) is preferred for this purpose (<a href="http://linus.nci.nih.gov/BRB-ArrayTools.html">http://linus.nci.nih.gov/BRB-ArrayTools.html</a>).

Having now generally described the invention, the same will be more readily understood through reference to the following examples, which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

25

5

10

15

20

## Example 1 cDNA Microarray

In order to identify molecular markers of pulmonary neuroendocrine tumors, the gene expression profile of clinical samples from patients with TC, LCNEC, and SCLC is analyzed by cDNA microarrays, preferably as follows: Tissue Collection And RNA Quality Assessment. Archived, frozen lung tumor tissues are collected from hospitals in the Baltimore, MD metropolitan area over an 11 year period. Tumor tissues are flash-frozen at surgery and stored at — 80°C until used. The frozen tumor tissue block is prepared with O.C.T. mount 5 medium and the quality of total RNA of each sample is evaluated by spectrophotometery and gel electrophoresis after phenol/chloroform extraction from one frozen section. Histopathological classification of these tumors is based on the 1999 WHO Classification (Travis, W.D. et al. (1999) "HISTOLOGIC TYPING OF LUNG AND PLEURAL TUMORS" (Ed 3). Berlin, Germany, Springer). Two large cell neuroendocrine carcinomas (case 1240 and 1672) are confirmed by demonstrating the neuorendocrine immuno-phenotype with positive NCAM (CD56) staining. Table 1 summarizes clinical findings in the pulmonary NE tumors.

| Table 1 Clinical Features Of 17 Patients With Pulmonary Neuroendocrine Tumors |        |         |        |       |         |           |
|-------------------------------------------------------------------------------|--------|---------|--------|-------|---------|-----------|
| Histology                                                                     |        | Sex Age |        |       | Smoking |           |
|                                                                               |        | Male    | Female | Range | Mean    |           |
| TC                                                                            | (n=11) | 7       | 4      | 35-68 | 50      | 7 (64%)   |
| LCNEC                                                                         | (n=2)  | 2       | 0      | 59-60 | 60      | 2 (100%)  |
| SCLC                                                                          | (n=4)  | 3       | 1      | 43-75 | 65      | 4 (100%)  |
| TOTAL                                                                         | (n=17) | 12      | 5      | 35-75 | 65      | 13 (100%) |

Laser Capture Microdissection Of 17 Neuroendocrine Tumors. Frozen tumor tissue  $(0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5)$  are embedded in O.C.T. in a cryomold, and immersed immediately in dry ice-cold 2-methylbutane at  $-50^{\circ}$ C. Sections of frozen tissue (8 mm) are mounted on silane coated glass slides and kept at  $-80^{\circ}$ C until use. The slides are immediately fixed by immersion in 70% ethanol, stained with H&E and air-dried for 10 minutes after xylene treatment.

15

The PixCell™ LCM system (Arcturus, Moutain View, CA) is used for LCM (Bonner, R.F., et al. (1997) "LASER CAPTURE MICRODISSECTION:

MOLECULAR ANALYSIS OF TISSUE," Science 278: 1481,1483). Tumor cells are fused to transfer film by thermal adhesion after laser pulse and were then transferred into tubes containing solution D in the Strategene Micro RNA isolation kit that contains gaunidinium thiocyanate (GTC) and beta-mercaptoethanol.

5

10

15

20

25

Figures 1A-1D illustrate carcinoid tumor tissue sections before and after the microdissection. For each specimen, 15 to 18 frozen sections are used to maximize the quantity of RNA. Total RNA is extracted using a Micro RNA isolation kit (Strategene, La Jolla, CA) according to the manufacturer's instructions. Purified total RNA was resuspended in 11 ml of diethyl pyrocarbonate (DEPC), treated water, and used directly for RNA amplification and subjected to cDNA microarray analysis (Schena, M. et al. (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY," Science 270(5235):467-70; DeRisi, J. et al. (1996) "USE OF A CDNA MICRO ARRAY TO ANALYSE GENE EXPRESSION PATTERNS IN HUMAN CANCER," Nature Genetics 14:457-60, Lyer, R.P. et al. (1999) "MODIFIED OLIGONUCLEOTIDES--SYNTHESIS, PROPERTIES AND APPLICATIONS," Curr. Opin. Mol. Ther. 1:344-358).

RNA Amplification. The RNA amplification procedure used is preferably as described by Luo, L. et al. (1999) ("GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL SUBTYPES," Nature Med 5: 117-122). The method relies on attaching a T7 promoter sequence to the oligo(dT) primer. A preferred such sequence for synthesis of the first strand cDNA is SEQ ID NO.:1:

5' TCTAGTCGAC GGCCAGTGAA TTGTAATACG ACTCACTATA
GGGCGTTTTT TTTTTTTTT TTTTTTT 3'

After second strand cDNA synthesis, amplified RNA is generated using T7 RNA polymerase and the double-stranded cDNA molecules as targets for the linear amplification. The T7 promoter sequence is regenerated in subsequent rounds by priming the first strand cDNA synthesis reaction with random hexamers (Amersham Biosciences, Piscataway, NJ). The quality and quantity of amplified

RNA were evaluated spectrophotometrically and by migration in 2.4% agarose gel electrophoresis, respectively.

Cell Culture. BEAS-2B cell line (Amstad, P. et al. (1988) "NEOPLASTIC TRANSFORMATION OF A HUMAN BRONCHILL EPITHELIAL CELL LINE BY A

5 RECOMBINANT RETROVIRUS ENCODING VIRAL HARVEY RAS," Mol Carcinog. 1988 1:151-60) is cultured in a serum-free medium, LHC-9 (Biofluids, Rockville, MD). Total RNA is isolated from cells with Trizol, followed by phenol/chloroform and isopropanol extraction and purification (Stratagene, La Jolla, CA). Two rounds of amplified RNA are generated from the cell line as described above.

Microarrays Hybridization. cDNA microarrays are performed in 10 duplicate for each sample on glass slides containing 9,984 human genes which were provided by the Advanced Technology Center of the National Cancer Institute. BEAS-2B amplified RNA (8 µg) is labeled with Cy5-dUTP and test samples (4 mg each) are labeled with Cy3-dUTP using Superscript II (Invitrogen, Carlsbad, CA). Briefly, RNA is incubated with Cy3-dUTP (or Cy5-dUTP) (Perkin 15 Elmer Life Sciences, Boston, MA) at 42°C for 1h to synthesize the first strand of cDNA. The reaction is stopped by addition of 5 µl 0.5M EDTA and 10 µl 1N NaOH followed by incubation at 65°C for 60 min. After neutralization, the samples are purified by centrifugation with a Microcon 30 (Millipore Corp., Bedford, MA) to remove unincorporated nucleotides and salts. The Cy3- and Cy5-20 labeled samples of each pair are combined and heated at 100°C for 2 min. After centrifugation for 10 minutes, the samples are placed onto the center of a glass microarray slide and hybridized at 65°C for 16h. The slides are washed to a final stringency of 0.2 x SSC at room temperature for 2 min prior to analysis.

Image And Statistic Analysis. Hybridized array slides are scanned with a GenePix 4000A Laser Scanner (Axon Instruments, Inc., Foster City, CA).

Analysis is performed using BRB ArrayTools (ver 2.0) developed by Drs. Richard Simon and Amy Peng (<a href="http://linus.nci.nih.gov/BRB-ArrayTools.html">http://linus.nci.nih.gov/BRB-ArrayTools.html</a>).

Hierarchical clustering was performed on 8,987 clones with log-ratios present in at least 4 samples for each gene.

## Example 2 cDNA Microarray Results

The results of the microarray analysis are obtained using Laser Capture Microdissection (LCM) as follows:

Laser Capture Microdissection (LCM) Of Clinical Samples. Use of LCM improves the sample preparation of microarray analysis by avoiding contamination with other cell types. (Emmert-Buck, M.R. et al. (1996) "Laser 10 Capture Microdissection," Science 274:998-1001). This selection is particularly desirable for analysis of tumors from lung, prostate, overy, and others (Ornstein, D.K. et al. (2000) "PROTEOMIC ANALYSIS OF LASER CAPTURE MICRODISSECTED HUMAN PROSTATE CANCER AND IN VITRO PROSTATE CELL LINES," Electrophoresis 21(11):2235-2242; Mirura, K. et al. (2002) "LASER CAPTURE MICRODISSECTION AND MICROARRAY EXPRESSION ANALYSIS OF LUNG ADENOCARCINOMA REVEALS 15 TOBACCO SMOKING- AND PROGNOSIS RELATED MOLECULAR PROFILES," Cancer Res. 62:3244-3250; Ono, K. et al. (2000) "IDENTIFICATION BY CDNA MICROARRAY OF GENES INVOLVED IN OVARIAN CARCINOGENESIS," Cancer Res. 60:5007-5011). Tumor cells are selected by LCM from frozen sections. High quality RNA is obtained from these dissected materials. One example of LCM 20 from a TC sample is illustrated in Figures 1A-1D.

Microarray Analysis Of Gene Expression Profiles Of Pulmonary
Neuroendocrine Tumors. The invention tested the hypothesis that gene
expression profiling using cDNA microarray analysis can effectively identify
subtypes of pulmonary neuroendocrine tumors classified by light microscopy
according to WHO recommendations. Hierarchical clustering of 8,987 human
genes, often referred to as unsupervised learning, separated samples into clusters
based on overall similarity in gene expression without prior knowledge of sample
identity. The hierarchical clustering of genes with statistically significant variance

25

(p<0.004) among all tumor samples is displayed in Figure 2. After decoding the specimens, it was immediately apparent that clustering based on genome-wide expression divides the tumors into their assigned WHO classification with 100% accuracy. Tumor samples from TC, LCNEC and SCLC clusters with their respective subtype indicating similarities of gene expression shared by these tumors. The length of the branches indicates the relatedness of neuroendocrine tumors. Three distinct groups of tumors can be identified by this display. The sample, which contains features of LCNEC and SCLC clusters between LCNEC and SCLC with a shorter distance to SCLC. Thus, the data support the molecular classification that predicted morphological classification of human pulmonary neuroendocrine tumors. The data indicates that WHO proposed morphological classification of pulmonary neuroendocrine tumors correspond to a significant similarity of their molecular profiles.

5

10

The Class Comparison Tool is used to select genes differentially expressed among each tumor type at an assigned statistical significance level. The F-test, 15 which measures levels of variance in gene expression among each sample, is used to compare the defined classes of tumors using BRB ArrayTool. This analysis results in the identification of a set of 198 genes that have statistically significant variance (p<0.004, Table 2). Having selected these 198 genes, another hierarchical clustering can be created by enforcing the classification of 17 tumors 20 (Figure 3). The results show that the tumors cluster together in 3 groups in complete agreement with the pre-assigned morphological classification. Samples from LCNEC cluster closer to TC than to SCLC and the tumor that contained features of small and large neuroendocrine cells clustered with SCLC which confirms the molecular relatedness identified by genome-wide expression in 25 clinical behavior of these tumors. The results show that most of the 198 selected genes could be assigned to major functional groups that have been previously implicated in cancer development (Table 3). In particular, decreased expression of genes that oppose cell survival pathway, such as BCL2 antagonist-killer, BAK1, and caspase 4, are common in all 3 types of neuroendocrine tumors, whereas TC 30

and LCNEC have an additional >2.5-fold decrease in expression of BAS and TNF receptor-interacting kinase, RIPK1. These features indicate that these tumors lack opposing effects on BCL2, as contrasted to overexpression of BCL2, which leads to survival advantage in certain types of lymphomas (Cleary, M.L. et al. (1986) "CLONING AND STRUCTURAL ANALYSIS OF CDNAS FOR BCL-2 AND A HYBRID BCL-2/IMMUNOGLOBULIN TRANSCRIPT RESULTING FROM THE T(14;18) TRANSLOCATION," Cell. 47(1):19-28) (Figure 2).

|                      |                                                                                                        | Table 2                 |                               |             |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|-------------|--|--|--|
| Genes                | Having Statistically Significant \                                                                     |                         | ion in Neuroendocr            | ine Tumor   |  |  |  |
| <del></del>          | Cells                                                                                                  |                         |                               |             |  |  |  |
| Unique               | Description                                                                                            | Gene Symbol             | Incyte                        | UG          |  |  |  |
| ID No.               |                                                                                                        | (Map)                   | Clone ID No.                  | Cluster     |  |  |  |
| Cluster #1<br>166807 | glutamate receptor, ionotropic,                                                                        | COM                     |                               | T II- 00500 |  |  |  |
| , - 2 - 2 - 2        | AMPA 2<br>Neuronal Marker, TM Receptor                                                                 | GRIA2<br>[4q32-q33]     | IncytePD 1505977              | Hs.89582    |  |  |  |
| 159877               | carboxypeptidase E<br>Secreted Lys Neuronal M                                                          | CPE<br>[4q32 3]         | IncytePD,2153373              | Hs.75360    |  |  |  |
| 161598               | ongin recognition complex, subunit<br>4 (yeast homolog)-like                                           | ORC4L<br>[2q22-q23]     | IncytePD 2728840              | Hs 55055    |  |  |  |
| 167158               | complement component 5 Infl Resp. VP Extracellular                                                     | C5<br>[9q32-q34]        | IncytePD·1712663              | Hs 1281     |  |  |  |
| Cluster #2           |                                                                                                        |                         |                               |             |  |  |  |
| 167153               | gamma-glutamyl hydrolase<br>(conjugase,<br>folylpolygammaglutamyl hydrolase)<br>Protease, Lys          | GGH<br>[8q12 1]         | IncytePD-1997967              | Hs 78619    |  |  |  |
| 160605               | P311 protein<br>Invasion marker, Adhesion<br>Plaques                                                   | P311<br>[5q21 3]        | IncytePD 1555545              | Hs 142827   |  |  |  |
| 169429               | nuclear receptor subfamily 3,<br>group C, member 1<br>Glucocort Rec/TF                                 | NR3C1<br>[5q31]         | IncytePD:629077               | Hs 75772    |  |  |  |
| 165192               | synaptojanin 2<br>IP3 5-Phosphatase                                                                    | SYNJ2<br>[6q25-26]      | IncytePD.3954785              | Hs 61289    |  |  |  |
| 165784               | adducin 3 (gamma)<br>Cytoschel                                                                         | ADD3<br>[10g24 2-g24 3] | IncytePD·1481225              | Hs 324470   |  |  |  |
| 163031               | KIAA0751 gene product                                                                                  | KIAA0751<br>[8q23 1]    | IncytePD 2369544              | Hs.153610   |  |  |  |
| 166328               | proteasome (prosome, macropain)<br>26S subunit, ATPase, 6<br>Proteasome                                | PSMC6<br>[12q15]        | IncytePD <sup>-</sup> 1488021 | Hs 79357    |  |  |  |
| 168061               | formyltetrahydrofolate<br>dehydrogenase<br>NADPH Sx, Folic Acid One-carbon<br>meth                     | FTHFD<br>[3q21 3]       | IncytePD 2104145              | Hs 9520     |  |  |  |
| 168141               | diacylglycerol kinase, gamma<br>(90kD)                                                                 | DGKG<br>[3q27-q28]      | IncytePD.2568547              | Hs 89462    |  |  |  |
| 185076               | PI-3-kinase-related kinase SMG-1<br>RNA Survellance                                                    | SMG1<br>[16p12.3]       | IncytePD 4253663              | Hs 110613   |  |  |  |
| 167103               | TAF2 RNA polymerase II, TATA<br>box binding protein (TBP)-<br>associated factor, 150 kD<br>TATA Box TF | TAF2<br>[8q24 12]       | IncytePD 998069               | Hs 122752   |  |  |  |

|         |                                                                                                                                        | Table 2                  |                        |               |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|---------------|--|--|
| Genes ! | Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells                                            |                          |                        |               |  |  |
| Unique  | Description                                                                                                                            | Gene Symbol<br>(Map)     | Incyte<br>Clone ID No. | UG<br>Cluster |  |  |
| ID No.  | eukaryotic translation initiation                                                                                                      | EIF2S1                   | IncytePD 1224219       | Hs 151777     |  |  |
| 69391   | factor 2, subunit 1 (alpha, 35kD)                                                                                                      | [14q23 3]                |                        |               |  |  |
| 66789   | zinc finger protein 202 Transcriptional Repressor                                                                                      | ZNF202<br>[11q23 3]      | IncytePD 1997937       | Hs 9443       |  |  |
| 167316  | solute carrier family 24<br>(sodium/potassium/calcium<br>exchanger), member 1<br>Sodium/potassium/calcium<br>exchanger                 | SLC24A1<br>[15q22]       | IncytePD-2200079       | Hs 173092     |  |  |
| 168700  | formyl peptide receptor-like 1<br>Integram<br>Membr/Migration/Expressed in<br>Luna                                                     | FPRL1<br>[19q13 3-q13 4] | IncytePD.523635        | Hs 99855      |  |  |
| 165576  | interleukin 6 signal transducer<br>(gp130, oncostatin M receptor)                                                                      | IL6ST<br>[5q11]          | IncytePD.2172334       | Hs.82065      |  |  |
| 168276  | integrin, beta-like 1 (with EGF-like repeat domains)                                                                                   | ITGBL1<br>[13q33]        | IncytePD 1258790       | Hs 82582      |  |  |
| 169180  | interleukin 8 receptor, beta                                                                                                           | IL8RB<br>[2q35]          | IncytePD 561992        | Hs 846        |  |  |
| 160957  | protein kinase, AMP-activated, alpha 2 catalytic subunit                                                                               | PRKAA2<br>[1p31]         | IncytePD.2507648       | Hs 2329       |  |  |
| 160617  | colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)                                                      | CSF2RB<br>[22q13 1]      | IncytePD.1561352       | Hs 285401     |  |  |
| 160429  | PTK6 protein tyrosine kinase 6<br>Non-Receptor, Sensitizes to EGF                                                                      | PTK6<br>[20q13 3]        | IncytePD:3255437       | Hs 51133      |  |  |
| 160237  | nuclear protein, ataxia-<br>telangiectasia locus<br>Osteogenesis Imperfecta                                                            | NPAT<br>[11q22-q23]      | IncytePD 2308525       | Hs 89385      |  |  |
| 167125  | tumor necrosis factor receptor superfamily, member 6                                                                                   | TNFRSF6<br>[10q24 1]     | IncytePD 2205246       | Hs 82359      |  |  |
| 164652  | platelet-derived growth factor                                                                                                         | PDGFRB<br>[5q31-q32]     | IncytePD.1821971       | Hs.76144      |  |  |
| 161117  | ATP-binding cassette, sub-family<br>G (WHITE), member 2<br>Multidrug Resistance                                                        | ABCG2<br>[4q22]          | IncytePD.1501080       | Hs.194720     |  |  |
| 161896  | collagen, type XV, alpha 1                                                                                                             | COL15A1<br>[9q21-q22]    | IncytePD.4287342       | Hs.83164      |  |  |
| 159813  | protein tyrosine phosphatase, non-<br>receptor type 12<br>PEST Dom; p-c-Abl, Ctx Cell<br>shape/motility                                | PTPN12<br>[7q11.23]      | IncytePD:1382374       | Hs 62         |  |  |
| 164573  | cyclin D binding Myb-like<br>transcription factor 1<br>Not reported to be Expressed in<br>Lung                                         | DMTF1<br>[7q21]          | IncytePD 1637517       | Hs.5671       |  |  |
| 169384  | solute carner family 22 (organic<br>cation transporter), member 1-like<br>antisense<br>Organic-Cation Transporter-Like 2-<br>Antisense | <u></u>                  | incytePD 3842669       | Hs 300076     |  |  |
| 165393  | ESTs, Weakly similar to 2109260A<br>B cell growth factor [H sapiens]                                                                   |                          | IncytePD 3202075       | Hs 35169      |  |  |
| 168169  | 3-oxoacid CoA transferase<br>mitochondrial matrix coenzyme A<br>from succinyl-CoA to acetoacetate                                      | OXCT<br>[5p13]           | IncytePD 1685342       | Hs 17758      |  |  |
| 165617  | protactin receptor                                                                                                                     | PRLR<br>[5p14-p13]       | IncytePD.3427560       | Hs.1906       |  |  |
| 169432  | ınterleukın 13 receptor, alpha 2                                                                                                       | IL13RA2<br>[Xq13.1-q28]  | IncytePD.3360476       | Hs.25954      |  |  |

| _                |                                                                                             | Table 2                |                     |               |  |  |
|------------------|---------------------------------------------------------------------------------------------|------------------------|---------------------|---------------|--|--|
| Genes 1          | Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells |                        |                     |               |  |  |
| Unique<br>ID No. | Description                                                                                 | Gene Symbol (Map)      | Incyte Clone ID No. | UG<br>Cluster |  |  |
| 166812           | myelin protein zero-like 1                                                                  | MPZL1                  | IncytePD 2057323    | Hs 287832     |  |  |
| 100012           | extracellular membrane face                                                                 | [1q23 2]               | 1                   |               |  |  |
| 168428           | runt-related transcription factor 3                                                         | RUNX3                  | IncytePD:885297     | Hs 170019     |  |  |
|                  | ·                                                                                           | [1p36]                 |                     |               |  |  |
| 167180           | S100 calcium-binding protein A4                                                             | S100A4                 | IncytePD.1222317    | Hs 81256      |  |  |
|                  | (calcium protein, calvasculin,                                                              | [1q21]                 |                     |               |  |  |
|                  | metastasın, murine placental<br>homolog)                                                    |                        | l .                 | Į             |  |  |
|                  | cell cycle progression, Associated                                                          |                        | ł                   | ł             |  |  |
|                  | with mets                                                                                   | -                      |                     |               |  |  |
| 161533           | cleavage stimulation factor, 3' pre-                                                        | CSTF2                  | IncytePD 4016254    | Hs 693        |  |  |
|                  | RNA, subunit 2, 64kD                                                                        | [Xq21 33]              | i.                  |               |  |  |
|                  | RNA processing/modification                                                                 |                        |                     | ) I- 4400CE   |  |  |
| 165588           | small nuclear RNA activating                                                                | SNAPC4                 | IncytePD.2224902    | Hs 113265     |  |  |
| 101700           | complex, polypeptide 4, 190kD<br>epithelial membrane protein 3                              | [9q34 3]<br>EMP3       | IncytePD 780992     | Hs 9999       |  |  |
| 164799           | cell-cell interactions. Promotes                                                            | [19q13 3]              | incyter B 700552    | 1.13.3333     |  |  |
|                  | Apoptosis                                                                                   | 1,54,6 6,              | ļ                   |               |  |  |
| 161709           | hypothetical protein FLJ11560                                                               | FLJ11560               | IncytePD 1990361    | Hs 301696     |  |  |
|                  |                                                                                             | [9p12]                 |                     | <u> </u>      |  |  |
| 164868           | guanylate binding protein 2.                                                                | GBP2                   | IncytePD.1610993    | Hs.171862     |  |  |
|                  | interferon-inducible                                                                        | [1pter-p13 2]          |                     | 1             |  |  |
|                  | GTP-ase                                                                                     | 1 53/51/5              | 1 -1 - 55 04 40 70  | Hs.38018      |  |  |
| 160233           | dual-specificity tyrosine-(Y)-                                                              | DYRK3                  | IncytePD 614679     | HS.30010      |  |  |
|                  | phosphorylation regulated kinase 3<br>Cell growth, P-histones,                              | [1q32]                 | 1                   | ł             |  |  |
|                  | Transcription                                                                               |                        | ſ                   | 1             |  |  |
| 165400           | hypothetical brain protein my040                                                            | MY040                  | IncytePD:2048144    | Hs 124854     |  |  |
|                  | Overexp Lung neuroendocrine                                                                 | [7q35-q36]             | 1                   |               |  |  |
|                  | tumors                                                                                      |                        |                     | 1             |  |  |
| 165957           | pancreatic lipase-related protein 2                                                         | PNLIPRP2               | IncytePD:885032     | Hs 143113     |  |  |
|                  | Hydrolyse GTP-binding protein homologous                                                    | [10q26.12]<br>SEC4L    | IncytePD.1824556    | Hs 302498     |  |  |
| 160054           | to Saccharomyces cerevisiae                                                                 | [17q25 3]              | incyter B. 1024330  | 113 002 103   |  |  |
|                  | SEC4                                                                                        | [[,,420.0]             | İ                   | }             |  |  |
|                  | Sec vesicles SC                                                                             |                        |                     |               |  |  |
| 162475           | cancer/testis antigen 2                                                                     | CTAG2                  | IncytePD:849425     | Hs 87225      |  |  |
|                  | melanomas, non-small-cell lung                                                              | [Xq28]                 |                     | ł             |  |  |
|                  | carcinomas, bladder, Prostate, H/N                                                          |                        | 1 1-00 0010070      | Hs 73073      |  |  |
| 169182           | testis-specific ankynn motif                                                                | LOC56311               | IncytePD 2013272    | HS /30/3      |  |  |
| 162912           | containing protein nectin 3                                                                 | [7q31]<br>DKFZP566B084 | IncytePD 2680168    | Hs 21201      |  |  |
| 102912           | PVRL1, may be a membrane                                                                    | [3q13]                 | micyter & 2000 roo  | 1.10          |  |  |
| i                | glycoprotein                                                                                | [04,0]                 | ł                   | 1             |  |  |
| 163475           | hypothetical protein                                                                        | FLJ20485               | IncytePD.2299818    | Hs 98806      |  |  |
|                  | 7q22 1 102-113                                                                              | [7q22 1]               |                     | 1             |  |  |
| 164927           | heterogeneous nuclear                                                                       | HNRPA0                 | IncytePD:637639     | Hs 77492      |  |  |
|                  | ribonucleoprotein A0                                                                        | [5q31]                 |                     | 1             |  |  |
| 400000           | RNA processing/modification                                                                 | HOXD9                  | IncytePD:2956581    | Hs.236646     |  |  |
| 160630           | homeo box D9 RNA processing/modification                                                    | [2q31-q37]             | incyter o 2900001   | 1.55.550040   |  |  |
| 160367           | v-jun avian sarcoma virus 17                                                                | JUN                    | IncytePD:1969563    | Hs.78465      |  |  |
| 100007           | oncogene homolog                                                                            | [1p32-p31]             | ,                   | 1             |  |  |
|                  | Associated with transl in Tumors                                                            |                        |                     |               |  |  |
| 163762           | ESTs ~                                                                                      | [17]                   | IncytePD 1743234    | Hs.120854     |  |  |
| 162247           | very large G protein-coupled                                                                | VLGR1                  | IncytePD 942207     | Hs.153692     |  |  |
|                  | receptor 1                                                                                  | [5q13]                 | 1                   | 1             |  |  |
| [                | transports Ca2+ during excitation-                                                          | 1                      | 1                   | 1             |  |  |
| 407040           | pumilio (Drosophila) homolog 1                                                              | PUM1                   | IncytePD 3333130    | Hs 153834     |  |  |
| 167219           | pumilio (Drosopniis) namolog 1                                                              | [1p35.2]               | incyter D 3333 130  | 1.5.0000      |  |  |

|            |                                                                                                                                                       | Table 2                    |                                         |           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-----------|
| Genes      | Having Statistically Significant \                                                                                                                    |                            | sion in Neuroendocri                    | ne Tumor  |
|            |                                                                                                                                                       | Cells                      | · y · · · · · · · · · · · · · · · · · · |           |
| Unique     | Description                                                                                                                                           | Gene Symbol                | Incyte                                  | UG        |
| ID No.     |                                                                                                                                                       | (Map)                      | Clone ID No.                            | Cluster   |
| Cluster #3 | keratin 18                                                                                                                                            | KRT18                      | IncvtePD-1435374                        | Hs 65114  |
| 165171     | keraun 18                                                                                                                                             | [12q13]                    | Incyter D 1435374                       | HS 05114  |
| 165052     | CDC20 (cell division cycle 20, S<br>cerevisiae, homolog)<br>Cell cycle, microtubule-dependent                                                         | CDC20<br>[9q13-q21]        | IncytePD:2469592                        | Hs 82906  |
| 167948     | processes pim-1 oncogene S T kinase Hematop Cells                                                                                                     | PIM1<br>[6p21 2]           | IncytePD 2679117                        | Hs 81170  |
| 161954     | ATPase, H+ transporting, lysosomal (vacuolar proton pump) 21kD Vacuolar H Transporter                                                                 | ATP6F<br>[1p32 3]          | IncytePD:5017148                        | Hs 7476   |
| 162391     | polymerase (DNA directed),<br>epsilon 3 (p17 subunit)<br>DNA Replication                                                                              | POLE3<br>[9q33]            | IncytePD 961082                         | Hs 108112 |
| 166635     | keratin 5 (epidermolysis bullosa<br>simplex, Dowling-<br>Meara/Kobner/Weber-Cockayne<br>types)                                                        | KRT5<br>[12q12-q13]        | IncytePD 3432534                        | Hs.195850 |
| 160035     | flap structure-specific<br>endonuclease 1<br>DNA Repair/UV rad protection                                                                             | FEN1<br>[11q12]            | IncytePD.2050085                        | Hs 4756   |
| 161774     | calcium and integrin binding protein (DNA-dependent protein kinase interacting protein)                                                               | SIP2-28<br>[15q25 3-q26]   | IncytePD 4626895                        | Hs 10803  |
| 162207     | membrane protein of cholinergic synaptic vesicles vesicular transport                                                                                 | VATI<br>[17q21]            | IncytePD.2060308                        | Hs.157236 |
| 161163     | guanylate kinase 1<br>Sx GTP/GMP                                                                                                                      | GUK1<br>[1q32-q41]         | IncytePD.2506427                        | Hs 3764   |
| 161223     | CD27-binding (Siva) protein tumor necrosis receptor (TFNR) superfamily                                                                                | SIVA<br>[22]               | IncytePD 2356635                        | Hs.112058 |
| 161211     | capping protein (actin filament), gelsolin-like                                                                                                       | CAPG<br>[2cen-q24]         | IncytePD 2508570                        | Hs.82422  |
| 161948     | claudin 11 (oligodendrocyte transmembrane protein)                                                                                                    | CLDN11<br>[3q26.2-q26 3]   | IncytePD.4144001                        | Hs 31595  |
| 161391     | interleukin 17F                                                                                                                                       | IL17F<br>[6p12]            | IncytePD.1610083                        | Hs 272295 |
| 162571     | phosphofructokinase, liver                                                                                                                            | PFKL<br>[21q22.3]          | IncytePD:885601                         | Hs 155455 |
| 164504     | cathepsin C<br>Lys Prot Degr                                                                                                                          | CTSC<br>[11q14 1-q14 3]    | IncytePD 1822716                        | Hs.10029  |
| 160565     | aminoacylase 1<br>L-aa Sx salvage path                                                                                                                | ACY1<br>[3p21 1]           | IncytePD 1812955                        | Hs 334707 |
| 169551     | glycogen synthase kinase 3 beta<br>target of Akt, Ilk1, Reg jun, myb,<br>etc                                                                          | GSK3B<br>[3q13 3]          | IncytePD 2057908                        | Hs 78802  |
| 166914     | methyltransferase-like 1<br>S-adenosylmethionine-binding mo                                                                                           | METTL1<br>[12q13]          | IncytePD.1603584                        | Hs 42957  |
| 167738     | cytochrome P450, subfamily XXVIIB (25-hydroxyvitamın D-1-<br>alpha-hydroxylase), polypeptide 1 drug metabolism and synthesis of cholesterol, steroids | CYP27B1<br>[12q13 1-q13 3] | IncytePD.1749727                        | Hs 199270 |
| 160938     | GrpE-like protein cochaperone cooperates with mitochondrial hsp70 i                                                                                   | HMGE<br>[4p16]             | IncytePD 2074154                        | Hs 151903 |
| 162734     | wingless-type MMTV integration<br>site family, member 7A<br>Regulates Steroid responses                                                               | WNT7A<br>[3p25]            | IncytePD 2622566                        | Hs 72290  |

|        |                                                                                                                  | Table 2                  |                      |                     |
|--------|------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|---------------------|
| Genes  | Having Statistically Significant V                                                                               |                          | sion in Neuroendocri | ne Tumor            |
| Uniona | Danadad                                                                                                          | Cells Gene Symbol        | T francis            | UG                  |
| Unique | Description                                                                                                      | _                        | Incyte               | 1                   |
| ID No. |                                                                                                                  | (Map)                    | Clone ID No.         | Cluster<br>Hs 74122 |
| 165813 | caspase 4, apoptosis-related<br>cysteine protease                                                                | CASP4<br>[11q22 2-q22 3] | IncytePD 2304121     | HS /4122            |
| 159898 | pituitary tumor-transforming 1                                                                                   | PTTG1<br>[5q35 1]        | IncytePD 1748705     | Hs 252587           |
| 161244 | ADP-ribosylation factor 4-like<br>GTP-binding proteins. ARF4L is c                                               | ARF4L<br>[17q12-q21]     | IncytePD 2852403     | Hs.183153           |
| 160715 | cell division cycle 34                                                                                           | CDC34<br>[19p13 3]       | IncytePD.1857493     | Hs 76932            |
| 163787 | pyrroline-5-carboxylate reductase<br>1<br>Proline Sx                                                             | PYCR1<br>[17q24]         | IncytePD:1702266     | Hs 79217            |
| 160127 | phosphoglycerate mutase 1 (brain)                                                                                | PGAM1<br>[10q25 3]       | IncytePD.3032691     | Hs.181013           |
| 160323 | 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase Purine BioSx                  | ATIC<br>[2q35]           | IncytePD.2056149     | Hs.90280            |
| 164850 | interleukin-1 receptor-associated kinase 1                                                                       | IRAK1<br>[Xq28]          | IncytePD:1872067     | Hs 182018           |
| 165583 | 7-dehydrocholesterol reductase                                                                                   | DHCR7<br>[11q13.2-q13 5] | IncytePD:3518380     | Hs 11806            |
| 165039 | thymudine kinase 1, soluble<br>two forms have been identified in<br>animal cells                                 | TK1<br>[17q23 2-q25 3]   | IncytePD 2055926     | Hs.105097           |
| 167964 | cyclin-dependent kinase Inhibitor<br>2A (melanoma, p16, inhibits<br>CDK4)                                        | CDKN2A<br>[9p21          | IncytePD.2740235     | Hs 1174             |
| 167223 | guanine nucleotide binding protein<br>(G protein), beta polypeptide 1<br>Ras GTPase, Contains 7 wd<br>repeats    | GNB1<br>[1p36 21-36 33]  | IncytePD 3562795     | Hs 215595           |
| 167931 | cleavage stimulation factor, 3' pre-<br>RNA, subunit 1, 50kD<br>RNA, transducin-like repeats                     | CSTF1<br>[20q13 2]       | IncytePD.1635008     | Hs 172865           |
| 163690 | hexabrachion (tenascin C, cytotactin)                                                                            | HXB<br>[9q33]            | IncytePD.1453450     | Hs.289114           |
| 161955 | contactin 2 (axonal)                                                                                             | CNTN2<br>[1g32 1]        | IncytePD.4014715     | Hs.2998             |
| 160275 | structure specific recognition protein 1                                                                         | SSRP1<br>[11q12          | IncytePD:2055773     | Hs 79162            |
| 168110 | TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 20 kD                                 | TAF12<br>[1p35 1]        | IncytePD 1297269     | Hs 82037            |
| 160102 | protein disulfide isomerase related<br>protein (calcium-binding protein,<br>intestinal-related)<br>Sevretion, ER | ERP70<br>[10]            | IncytePD 1824957     | Hs 93659            |
| 167116 | nucleoside phosphorylase<br>adenosine deaminase (ADA)<br>serves a key role in punne<br>catabolism, Def=SCID      | NP<br>[14q13 1]          | IncytePD 2453436     | Hs 75514            |
| 160802 | prohibitin Tumor suppressor, Blocks DNA Sx; Breast CA                                                            | PHB<br>[17q21]           | IncytePD.1625169     | Hs.75323            |
| 161643 | ADP-ribosylation factor-like 7<br>GTP-binding protein                                                            | ARL7<br>[2q37 2]         | IncytePD 3115514     | Hs 111554           |
| 162343 | LIM domain kinase 2 Rho-induced reorganization of the actin cytoskeleton                                         | LIMK2<br>[22q12 2]       | IncytePD 958513      | Hs 278027           |
| 162727 | protein tyrosine kinase 9-like (A6-<br>related protein)                                                          | PTK9L<br>[3p21 1]        | IncytePD:3999291     | Hs.6780             |

|        |                                                                                                 | Table 2                   |                        |               |  |  |
|--------|-------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------|--|--|
| Genes  | Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor           |                           |                        |               |  |  |
| Unique | Description                                                                                     | Cells Gene Symbol         | Incyte<br>Clone ID No. | UG<br>Cluster |  |  |
| ID No. |                                                                                                 | (Map)                     | IncytePD 2663948       | Hs 155049     |  |  |
| 160262 | DEAD/H (Asp-Giu-Ala-Asp/His)<br>box polypeptide 28<br>probable atp-binding ma helicase          | DDX28<br>[16q22.1] -      | IncytePD 2663948       | ns 155049     |  |  |
| 165790 | surfeit 1 Mit Resp Enz                                                                          | SURF1 .<br>[9q33-q34]     | IncytePD.1921567       | Hs 3196       |  |  |
| 168638 | histone deacetylase 7A                                                                          | HDAC7A<br>[12q13.1]       | IncytePD:1968721       | Hs 275438     |  |  |
| 168079 | epithelial membrane protein 1<br>cell-cell interactions Promotes<br>Apoptosis                   | EMP1<br>[12p12 3]         | IncytePD 1624024       | Hs.79368      |  |  |
| 160999 | Rho-specific guarane nucleotide exchange factor p114 cell growth and motility; Obl, PH dom      | P114-RHO-GEF<br>[18p13 3] | IncytePD·1734113       | Hs 6150       |  |  |
| 161790 | KIAA0469 gene product                                                                           | KIAA0469<br>[1p36.23]     | IncytePD 2674277       | Hs.7764       |  |  |
| 169691 | ubiquitin camer protein E2 enzyme activity                                                      | E2-EPF<br>[17p12-p11]     | IncytePD 2057823       | Hs 174070     |  |  |
| 163682 | diptheria toxin resistance protein required for diphthamide blosynthesis (Saccharomyces)-like 2 | DPH2L2<br>[1p34]          | IncytePD 1810821       | Hs 324830     |  |  |
| 168266 | proteasome (prosome, macropain)<br>activator subunit 3 (PA28 gamma;<br>Ki)                      | PSME3<br>[17q12-q21]      | IncytePD:1308112       | Hs 152978     |  |  |
| 161374 | polymerase (DNA-directed), alpha<br>(70kD)<br>RNA Processing                                    | POLA2<br>[11q13 1]        | IncytePD.3179113       | Hs 81942      |  |  |
| 164646 | galactose-4-epimerase, UDP-<br>Rate-lim for Sx glycoproteins and<br>glycolipids                 | GALE<br>[1p36-p35]        | IncytePD.1807294       | Hs 76057      |  |  |
| 162150 | apolipoprotein L                                                                                | APOL1<br>[22q13 1]        | IncytePD 2056987       | Hs.114309     |  |  |
| 164206 | type I transmembrane protein Fn14 similar to munne Fgfrp2                                       | FN14<br>[16p13.3]         | IncytePD 1402615       | Hs 10086      |  |  |
| 162623 | BCL2-antagonist/killer 1                                                                        | BAK1<br>[6p21 3]          | IncytePD·2055687       | Hs.93213      |  |  |
| 162244 | Rho GDP dissociation inhibitor (GDI) alpha                                                      | ARHGDIA<br>[17q25 3]      | IncytePD 2055640       | Hs.159161     |  |  |
| 164586 | inosine triphosphatase (nucleoside<br>triphosphate pyrophosphatase)<br>Ins Phos phosphatase     | [20p]                     | IncytePD:1931265       | Hs.6817       |  |  |
| 165483 | PDGFA associated protein 1<br>Enhances PDGFA                                                    | PDAP1<br>[7q22 1]         | IncytePD.3032825       | Hs 278426     |  |  |
| 166195 | adenine phosphoribosyltransferase<br>Sx AMP punne/pyrimidine Met                                | APRT<br>[16q24]           | IncytePD.2751387       | Hs 28914      |  |  |
| 166960 | Apg12 (autophagy 12, S cerevisiae)-like                                                         | APG12L<br>[5q21-q22]      | IncytePD.2058537       | Hs 264482     |  |  |
| 167505 | thiosulfate sulfurtransferase<br>(rhodanese)<br>Miloch detox cyanide                            | TST<br>[22q13 1]          | IncytePD.1988239       | Hs 351863     |  |  |
| 168642 | suppression of tumongenicity 14 (colon carcinoma, matriptase, epithin) Protease ECM             | ST14<br>[11q24-q25]       | IncytePD 478960        | Hs 5693.7     |  |  |
| 167170 | GS2 gene                                                                                        | DXS1283E<br>[Xp22 3]      | IncytePD 1567995       | Hs 264        |  |  |
| 161754 | actin, gamma 2, smooth muscle, entenc                                                           | ACTG2<br>[2p13 1]         | IncytePD:3381870       | Hs.78045      |  |  |
| 166010 | receptor (TNFRSF)-interacting serine-threonine kinase 1                                         | RIPK1<br>[6p25 3]         | IncytePD 2180031       | Hs 296327     |  |  |
| 161794 | secretory carner membrane protein                                                               | SCAMP2                    | IncytePD.3123858       | Hs 238030     |  |  |

|         |                                                                                    | Table 2                     | <del> </del>         | - T            |
|---------|------------------------------------------------------------------------------------|-----------------------------|----------------------|----------------|
| Genes I | laving Statistically Significant V                                                 | ariance in Express<br>Cells | ion in Neuroendocrin | e Tumor        |
| Unique  | Description .                                                                      | Gene Symbol<br>(Map)        | Incyte Clone ID No.  | UG<br>Cluster  |
| ID No.  | 2                                                                                  | [15q23-q25]                 |                      |                |
| ļ       | Vesic Traff, Secretpry path                                                        | []                          |                      |                |
| 67591   | catechol-O-methyltransferase                                                       | COMT                        | IncytePD 605019      | Hs.240013      |
|         | Sx dopamine, epinephine, and norepinephrine                                        | [22q11 21] /                |                      | 11 404000      |
| 162587  | polymerase (RNA) II (DNA                                                           | POLR2D                      | IncytePD.696002      | Hs.194638      |
|         | directed) polypeptide D<br>RNA Processing                                          | [2q21]                      |                      |                |
| 169071  | capping protein (actin filament)                                                   | CAPZB                       | IncytePD.1853163     | Hs.333417      |
|         | muscle Z-line, beta                                                                | [1p36 1]<br>POLD2           | IncvtePD 2056172     | Hs.74598       |
| 160467  | polymerase (DNA directed), delta<br>2, regulatory subunit (50kD)<br>RNA Processing | [7p13]                      |                      |                |
| 162178  | C2f protein                                                                        | C2F                         | IncytePD 5096975     | Hs.12045       |
|         | ,                                                                                  | [12p13]                     | IncytePD:1486983     | Hs.28077       |
| 167706  | GDP-mannose pyrophosphorylase                                                      | GMPPB<br>[3p21 31]          | INCYLER D' 1400903   |                |
|         | B<br>N-linked oligosaccharides                                                     | [oper or]                   |                      | l              |
| 160803  | phenylalanine-tRNA synthetase-                                                     | FARSL.                      | IncytePD 1808260     | Hs.23111       |
| 100003  | like                                                                               | [19p13.2]                   |                      |                |
|         | Reg. in tumors and cell cycle                                                      |                             | 1                    | Hs.46964       |
| 169254  | polymerase (DNA directed), mu                                                      | POLM                        | IncytePD-771715      | TIS.40904      |
|         | RNA Processing                                                                     | [7p13]<br>MYBPH             | IncytePD 3010959     | Hs.927         |
| 167351  | myosin-binding protein H                                                           | [1q32 1]                    | 110,101 5 00 10000   |                |
| 163276  | ESTs, Weakly similar to 137356                                                     | [7]                         | IncytePD.2383065     | Hs.25892       |
| 1034/0  | epithelial microtubule-associated protein, 115K [H sapiens]                        | 1.                          |                      |                |
| 167135  | excision repair cross-                                                             | ERCC1                       | IncytePD.2054529     | Hs.59544       |
| 10, 100 | complementing rodent repair                                                        | [19q13.2-q13 3]             | 1                    | ŀ              |
|         | deficiency complementation group                                                   |                             | 1                    |                |
|         | 1 (includes overlapping antisense                                                  | 1                           |                      |                |
| 160478  | sequence) G5b protein                                                              | G5B                         | IncytePD 1942845     | Hs 73527       |
| 1604/8  | 1 ' '                                                                              | [6p21 3]                    | 1 -                  | 111-15010-     |
| 162631  | transcriptional adaptor 3 (ADA3,                                                   | TADA3L                      | IncytePD 3990209     | Hs.158196      |
|         | yeast homolog)-like (PCAF histone                                                  | [3p25 2]                    |                      |                |
| 1       | acetylase complex)                                                                 |                             | İ                    |                |
|         | PCAF histone acetilase complex glucosamine-6-phosphate                             | GNPI                        | IncytePD:1653911     | Hs 278500      |
| 163921  | glucosamine-6-pnospnate<br>Isomerase                                               | [5q21]                      | ,                    | 1              |
| ł       | Hydrolase                                                                          |                             |                      | 110 25052      |
| 160098  | mitochondrial ribosomal protein                                                    | MRPL49                      | IncytePD:1755793     | Hs.75859       |
|         | 149                                                                                | [11q13]                     | IncytePD:1693847     | Hs 24297       |
| 161058  | multiple endocnne neoplasia i                                                      | MEN1<br>[11q13]             | ILICAGES D. 1093041  |                |
| 400000  | BCL2-antagonist of cell death                                                      | BAD                         | IncytePD:3967780     | Hs 76366       |
| 160038  | · I                                                                                | [11q13.1]                   | 1 -                  | <del>   </del> |
| 162220  | FK506-binding protein 1A (12kD)                                                    | FKBP1A                      | IncytePD:4059193     | Hs.349972      |
|         | Interacts with TGF beta                                                            | [20p13]                     | IncytePD-1669254     | Hs 6487        |
| 161026  |                                                                                    | HSXQ28ORF<br>[Xq28]         | INCYLEFO 1009234     | 1              |
| 1       | ORF 3' eDNA Repair xonuclease activit                                              |                             | ļ                    |                |
| 107007  |                                                                                    | TRAP1                       | IncytePD:1960722     | Hs 18236       |
| 167607  | HSP90 fam, Binds to TNFR                                                           | [16p13.3]                   |                      | 1              |
| 167713  | likely ortholog of maternal                                                        | KIAA0175                    | IncytePD-3805046     | Hs 18433       |
| 1       | embryonic leucine zipper kinase                                                    | [9p11.2]                    | ì                    | l l            |
| I       | regulation of fatty acid synthesis                                                 |                             | IncytePD 740878      | Hs 2359        |
| 165648  | dual specificity phosphalase 4                                                     | DUSP4                       | fileyter D 140010    | 1              |
| 1       | negatively regulate MAPK Anti-                                                     | [8p12-p11]                  |                      |                |
| 161574  | oncogene frequently rearranged in advance                                          | FRAT2                       | IncytePD 3871545     | Hs.14072       |

|         |                                                           | Table 2                 | to a fee Nt          | - T.       |
|---------|-----------------------------------------------------------|-------------------------|----------------------|------------|
| Genes F | laving Statistically Significant V                        | ariance in Express      | ion in Neuroendocrin | e Tumor    |
|         |                                                           | Cells                   | <del></del>          | TIC.       |
| Inique  | Description                                               | Gene Symbol             | Incyte               | UG         |
| D No.   |                                                           | (Map)                   | Clone ID No.         | Cluster    |
|         | T-cell lymphomas 2                                        | [10q23-q24 1]           |                      |            |
| ł       | prevent gsk-3-dependent                                   |                         |                      |            |
| 04000   | phosphorylation KIAA0415 gene product                     | KIAA0415                | IncytePD:2798872     | Hs.229950  |
| 61650   | KIMAU415 gene product                                     | [7p22 2]                | 1,                   |            |
| 68386   | nucleolar and coiled-body                                 | NOLC1                   | IncytePD:1431819     | Hs.75337   |
| 1       | nhosphorotein 1                                           | [10]                    |                      |            |
| 59906   | H2A histone family, member X                              | H2AFX                   | IncytePD.1704168     | Hs 147097  |
|         | = i=i (= i i i i i i i i i i i i i i i i                  | [11q23 2-q23 3]<br>RAE1 | IncytePD 2914719     | Hs.196209  |
| 167906  | RAE1 (RNA export 1, S pombe)<br>homolog                   | [20q13 31]              | moyler B 2014115     | 7.07.00000 |
|         | RNA export from the N                                     | [254.55.]               |                      |            |
| 160486  | deltex (Drosophila) homolog 2                             | DTX2                    | IncytePD 1691161     | Hs 89135   |
| 100 100 | collagen type III                                         | [7q11 23]               |                      | 11 050000  |
| 160678  | v-maf musculoaponeurotic                                  | MAFG                    | IncytePD 2956906     | Hs.252229  |
|         | fibrosarcoma (avian) oncogene                             | [17q25]                 | 1                    |            |
|         | family, protein G                                         |                         | 1                    | 1          |
|         | transcriptional regulator fusion, derived from t(12,16)   | FUS                     | IncytePD 3038508     | Hs.99969   |
| 159889  | malignant liposarcoma                                     | [16p11 2]               | 1110/101 2 0000222   |            |
|         | DNA Sx atp-independent                                    | (1001112)               | 1                    | Į.         |
|         | annealing of complementary                                | Ì                       |                      |            |
|         | single- stranded dnas                                     |                         |                      | <u> </u>   |
| 167553  | ligase I, DNA, ATP-dependent                              | LIG1                    | IncytePD 1841920     | Hs.1770    |
|         | DNA excision repair process                               | [19q13 2-q13 3]         | IncytePD·1405652     | Hs 78853   |
| 163824  | uracii-DNA glycosylase                                    | UNG<br>[12g23-g24 1]    | IncycePD 1403032     | 115 70000  |
|         | DNA Base-excision repair GCN1 (general control of amino-  | GCN1L1                  | IncytePD 1699149     | Hs.75354   |
| 161012  | acid synthesis 1, yeast)-like 1                           | [12q24.2]               |                      |            |
| 162006  | regenerating islet-derived 1 beta                         | REG1B                   | IncytePD.2374294     | Hs 4158    |
| 102000  | (nancreatic stone protein,                                | [2p12]                  | ì                    | İ          |
|         | pancreatic thread protein)                                |                         | }                    | i          |
|         | brain and pancreas regeneration                           | 2000                    | IncytePD:2722572     | Hs 233950  |
| 161454  | serine protease inhibitor, Kunitz                         | SPINT1<br>[15q13.3]     | incyter D 2722372    | 115 200300 |
|         | type 1<br>Secreted S/Protease; proteolytic                | [13413.3]               |                      | 1          |
|         | activation of HGF                                         |                         |                      |            |
| 162510  | calcium/calmodulin-dependent                              | CAMKK2                  | IncytePD 557451      | Hs 108708  |
| 102310  | protein kinase kinase 2, beta                             | [12]                    |                      |            |
|         | S/T Protein kinase                                        |                         |                      | 11- 00000  |
| 163308  | Bloom syndrome                                            | BLM                     | IncytePD 2923082     | Hs 36820   |
|         | DNA Repair                                                | [15q26 1]<br>RNUT1      | IncytePD 1562658     | Hs 21577   |
| 160242  | RNA, U transporter 1                                      | RNUTT                   | Incyler D 1362636    | 113 21017  |
| 101100  | glutamate rich WD repeat protein                          | GRWD                    | IncytePD 1561867     | Hs 218842  |
| 164106  | GRWD                                                      | [19q13.33]              |                      |            |
|         | RNA stability                                             |                         |                      |            |
| 165799  | MAD (mothers against                                      | MADH3                   | IncytePD 1858365     | Hs.21157   |
|         | decapentaplegic, Drosophila)                              | [15q21-q22]             | 1                    |            |
|         | homolog 3                                                 |                         | į.                   |            |
|         | TF, activated by tgf-beta                                 | SNAPC2                  | IncytePD 1445203     | Hs 78403   |
| 166574  | small nuclear RNA activating complex, polypeptide 2, 45kD | [19p13 3-p13 2]         | 1110y.c. 0 1440200   | 1          |
|         | RNA Processing                                            | (                       |                      |            |
| 160441  | lymphotoxin beta receptor (TNFR                           | LTBR                    | IncytePD:899102      | Hs 1116    |
| 100771  | superfamily, member 3)                                    | [12p13]                 |                      |            |
| J       | TNF family of receptors                                   | _1                      |                      | 110 10101  |
| 168453  | transforming, acidic coiled-coil                          | TACC3                   | IncytePD.2056642     | Hs.10401   |
| •       | containing protein 3                                      | [4p16.3]                | 1                    | 1          |
|         | Upregulated in Tumors                                     | DEMC4                   | IncytePD 2806778     | Hs 21159   |
| 164244  | proteasome (prosome, macropain)                           | PSMC4                   | INCYCETU 2000//0     | 1 2        |

|             | - C. H. H. D. C 16 N.                                                                                                 | Table 2                      | on in Nourgendocrin | e Tumor   |
|-------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|-----------|
| Genes l     | Having Statistically Significant V                                                                                    | ariance in Expressi<br>Cells | on in lacalacumacem | C I WINUI |
| <del></del> |                                                                                                                       | Gene Symbol                  | Incyte              | UG        |
| Unique      | Description                                                                                                           | -                            | Clone ID No.        | Cluster   |
| ID No.      |                                                                                                                       | (Map)<br>SMARCD2             | IncytePD 1890919    | Hs 250581 |
| 69564       | SWVSNF related, matrix<br>associated, actin dependent<br>regulator of chromatin, subfamily d,<br>member 2<br>TF       | SMARCD2<br>[17q23-q24]       | ·                   |           |
| 161178      | basigin (OK blood group)<br>Induces MMTP, p-regulated in<br>gliomas                                                   | BSG<br>[19p13.3]             | IncytePD:2182907    | Hs 74631  |
| 165614      | junction plakoglobin                                                                                                  | JUP<br>[17q21]               | IncytePD 820580     | Hs 2340   |
| 168987      | HMT1 (hnRNP methyltransferase,<br>S cerevisiae)-like 2<br>Protein methylation                                         | HRMT1L2<br>[19q13 3]         | IncytePD:2888814    | Hs.20521  |
| 167987      | ectonucleoside triphosphate<br>diphosphohydrolase 1<br>ATP hydrolysis, Pit aggregation                                | ENTPD1<br>[10q24]            | IncytePD:1672749    | Hs.205353 |
| 163726      | complement component 3                                                                                                | C3<br>[19p13 3-p13 2]        | IncytePD.1513989    | Hs 284394 |
| 164642      | tyrosyi-tRNA synthelase                                                                                               | YARS<br>[1p34 3]             | IncytePD.1559756    | Hs 239307 |
| 160303      | Ets2 repressor factor                                                                                                 | ERF<br>[19q13]               | IncytePD:2057547    | Hs 333069 |
| 161635      | G protein-coupled receptor                                                                                            | TYMSTR<br>[3p21]             | IncytePD:2610374    | Hs 34526  |
| 159859      | nuclear autoantigen wd REPEAT PROTEIN                                                                                 | GS2NA<br>[14q13-q21]         | IncytePD 1339241    | Hs.183105 |
| 161051      | MAP/microlubule affinity-regulating kinase 3 S/T Protein kinase                                                       | MARK3<br>[14q32.3]           | IncytePD 2395018    | Hs.172766 |
| 161835      | peroxisome biogenesis factor 10                                                                                       | PEX10<br>[1p36.11-1p36.33]   | IncytePD 3115936    | Hs 247220 |
| 165571      | annexin A3 calcium-dependent phospholipid- binding                                                                    | ANXA3<br>[4q13-q22]          | IncytePD.1920650    | Hs.1378   |
| 164286      | nuclear factor of kappa light<br>polypeptide gene enhancer in B-<br>cells inhibitor, epsilon                          | NFKBIE<br>[6p21.1]           | IncytePD 2748942    | Hs.91640  |
| 165786      | hyaluronoglucosaminidase 2 Degrades glycosaminoglycans of the extracellular matrix                                    | HYAL2<br>[3p21.3]            | IncytePD:1240748    | Hs.76873  |
| 161620      | H4 histone family, member E                                                                                           | H4FE<br>[6p22-p21 3]         | IncytePD:3728255    | Hs.278483 |
| 168302      | Tax interaction protein 1 1 odz/dhr domain                                                                            | TIP-1<br>[17p13]             | incytePD·1997792    | Hs 12956  |
| 160887      | pescadillo (zebrafish) homolog 1,<br>containing BRCT domain<br>embrional dev                                          | PES1<br>[22q12 1]            | IncytePD:2758740    | Hs.13501  |
| 162419      | RAE1 (RNA export 1, S.pombe)                                                                                          | RAE1<br>[20q13 31]           | IncylePD:588157     | Hs 19620  |
| 169625      | replication factor C (activator 1) 4<br>(37kD)<br>DNA Sx/Repair                                                       | RFC4<br>[3q27]               | IncytePD 1773638    | Hs 35120  |
| 163425      | transcription elongation factor A (SII), 2                                                                            | TCEA2<br>[20]                | IncytePD 818568     | Hs 80598  |
| 166359      | tubulin, beta polypeptide<br>Testis-specific                                                                          | TUBB<br>[6p21.3]             | IncytePD.3334367    | Hs 33678  |
| 161947      | translocase of inner mitochondral<br>membrane 17 homolog 8 (yeast)<br>Integral Mitoch Expr. In<br>Neuroendocr Lung CA | TIM17B<br>[Xp11.23]          | IncytePD·1727491    | Hs 19105  |
| 162236      |                                                                                                                       | KIAA0670<br>[14q11 1]        | IncytePD.1968610    | Hs 22713  |

| Table 2  Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor  Cells |                            |                  |                 |          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------|------------------|-----------------|----------|--|--|--|--|--|
|                                                                                                       |                            |                  |                 |          |  |  |  |  |  |
| 168426                                                                                                | ghoma pathogenesis-related | RTVP1<br>[12q15] | IncytePD 477045 | Hs.64639 |  |  |  |  |  |

#### Characteristics Of The Gene Expression Patterns In Pulmonary

5

10

15

20

25

Neuroendocrine Tumors. The present invention permits investigation of whether expression of genes significantly altered in neuroendocrine tumors correlates with clinical behavior of these tumors. The results show that most of 198 selected genes could be assigned to major functional groups that have been previously implicated in cancer development (Table 3). In particular, decreased expression of genes that oppose cell survival pathway, such as BCL2 antagonist-killer, BAK1, and caspase 4, are common in all 3 types of neuroendocrine tumors, whereas TC and LCNEC have an additional >2.5-fold decrease in expression of BAD and TNF receptor-interacting kinase, RIPK1. These features indicate that these tumors lack opposing effects on BCL2, as contrasted to overexpression of BCL2, which leads to survival advantage in certain types of lymphomas (Cleary, M.L. et al. (1986) "CLONING AND STRUCTURAL ANALYSIS OF CDNAS FOR BCL-2 AND A HYBRID BCL-2/IMMUNOGLOBULIN TRANSCRIPT RESULTING FROM THE T(14;18)
TRANSLOCATION," Cell. 47(1):19-28).

Genes involved in regulation of cell-cell and extracellular matrix interactions, claudin 11 (CLDN11), contractin-2, (CNTN2), keratin 5 and 18 (KRT 5 and 18), calcium and integrin binding protein (SIP2-28), and junction plakoglobulin (JUP) are also suppressed in TC and LCNEC tumors, and, to a lesser degree, in SCLC. The dominant group of genes is involved in transcriptional regulation and DNA synthesis and repair. Decrease in expression of Bloom (BLM) is shared by TC and LCNEC, whereas DNA excision repair (ERCC1) and DNA ligase-1 (LIG) are suppressed in all tumor types. Other groups of genes manifesting decreased expression in all tumors are genes involved in cell cycle control (CDC34, p16/CDK inhibitor 2A), suppressor of MAPK pathway (dual specificity phosphatase, DUSP4), antioncogenes, such as epithin (ST14), and

prohibitin, (PHB). Decreased expression of genes involved in microtubular assembly, beta tubulin polypepetide B (TUBB) in conjunction with overexpression of ATP-binding cassette protein (ABCG2) and gamma glutamyl hydrolase (GGH), could confer well-known resistance of these tumors to chemotherapy, specifically to taxol-related drugs. Decreased expression of genes associated with the ubiquitin pathway, such as proteasome subunit 26S (PSMC4), and proteasome activator subunit 3 (PSME3), correlates with potential resistance to newly developed proteasome inhibitors. The decrease in expression of these genes can affect NFkB activity, drug resistance and other functions in these tumors.

10

15

20

25

Only a fraction of genes identified herein is significantly over-expressed. Expression of a neuroendocrine peptide processing enzyme, carboxypeptidase E (CPE), inotropic glutamate receptor (GRIA2) and a complement component 5 are increased 4-6-fold in TC. In addition, TC has a modest increase in expression of the IL8 receptor B, IL8RB (1.61-fold), and that of the interleukin 6 signal transducer chain common to several interleukin receptors, gp130 (Oncostatin M, IL6ST), which is elevated at a mean of 1.34-fold in the 11 samples from TC. In contrast, LCNEC, have over 20 genes whose expression is above 1.9-fold or higher (Figures 4A and 4B). These gene products are increased specifically in LCNEC and included colony stimulating factor receptor (CSF2R), IL 13 receptor (IL13RA2), IL-8 receptor beta (IL8RB) as well as the IL 6 signal transducer, gp130 (Oncostatin M, IL6ST) and gamma-glutamyl hydrolase (GGH), which has been associated with drug resistance. In addition, LCNEC have a six-fold overexpression of a neuronal marker, P311, recently identified as a marker of aggressive gliomas. P311 may have a role in defining a metastatic/invasive potential in LCNEC. In contrast to LCNEC, analysis of SCLC shows only modest increase in 25 genes, none of which exceeded 1.5-fold increase. The lack of detection of over-expressed genes in SCLC reported herein could reflect a qualitative change in oncogenic mutations, such as p21<sup>ras</sup>, p53 and others which are found in SCLC (Wistuba, I.I. et al. (2001) "MOLECULAR GENETICS OF SMALL CELL LUNG CARCINOMA," Semin. Oncol. 28: 3-13) or due to limited number of

30 samples used.

|                          |               | Tabl                                                                                     | e 3        |                |  |  |
|--------------------------|---------------|------------------------------------------------------------------------------------------|------------|----------------|--|--|
| II-i ID                  | No of         |                                                                                          |            | C), Small Cell |  |  |
| Unique ID No. of<br>Gene |               | Expression of Genes in Large Cell (LC), Small Cell (SC) and Typical Carcinoma (TC) Cells |            |                |  |  |
| Gene Family              | (LOH)         | LC                                                                                       | SC         | TC             |  |  |
| Apoptosis                |               |                                                                                          |            |                |  |  |
| 167125                   | Yes           | 3 23                                                                                     | 0 88       | 1 36           |  |  |
| 162623                   | Yes           | 0 23                                                                                     | 0 51       | 0 13           |  |  |
| 160038                   | Yes           | 0 47                                                                                     | 1.04       | 0.32           |  |  |
| 165813                   |               | 0.59                                                                                     | 0.75       | 0 28           |  |  |
| 168079                   |               | 0 46                                                                                     | 0.93       | 0 25           |  |  |
| 164799                   | Yes           | 12                                                                                       | 0.73       | 0 64           |  |  |
| 160441                   |               | 0 37                                                                                     | . 0 49     | 0 18           |  |  |
| 161223                   |               | 0 2                                                                                      | 0 71       | 0 11           |  |  |
| 166010                   |               | 0 45                                                                                     | 0.99       | 0.28           |  |  |
| 167607                   |               | 0.4                                                                                      | 0.81       | 0 23           |  |  |
| 166960                   |               | 0 17                                                                                     | 0 37       | 0 09           |  |  |
| Cell-Cell And I          | CM Interacti  | ons                                                                                      |            |                |  |  |
| 168700                   | Yes           | 1 91                                                                                     | 0 82       | 1 69           |  |  |
| 168276                   |               | 1 61                                                                                     | 0 63       | 1 21           |  |  |
| 162912                   |               | 0.82                                                                                     | 0.7        | 1 27           |  |  |
| 161896                   |               | 2.12                                                                                     | 0 75       | 1 04           |  |  |
| 159813                   |               | 1 99                                                                                     | 0 83       | 1,22           |  |  |
| 166812                   |               | 0 93                                                                                     | 0 78       | 0 78           |  |  |
| 165171                   |               | 0.3                                                                                      | D 16       | 0 05           |  |  |
| 166635                   |               | 0.18                                                                                     | 0 63       | 0 11           |  |  |
| 161774                   | Yes           | 02                                                                                       | 0 57       | 0.11           |  |  |
| 161211                   | 100           | 0 27                                                                                     | 0 64       | 0 12           |  |  |
| 161948                   |               | 0 19                                                                                     | 0.56       | 0.09           |  |  |
| 162734                   |               | 0 73                                                                                     | 1 01       | 0.32           |  |  |
| 163690                   |               | 0 42                                                                                     | 0.82       | 0 23           |  |  |
| <b></b>                  |               | 0.17                                                                                     | 0.38       | 0 09           |  |  |
| 161955<br>164208         |               | 0 26                                                                                     | 0 53       | 0 11           |  |  |
|                          |               | 0.55                                                                                     | 0 96       | 0.3            |  |  |
| 168642                   |               | 0.37                                                                                     | 0.72       | 0.19           |  |  |
| 160486                   | Yes           | 0.52                                                                                     | 1.05       | 0 36           |  |  |
| 161178                   | Yes           | 0.32                                                                                     | 0.82       | 02             |  |  |
| 165614                   | Yes           | 0.58                                                                                     | 1.03       | 0 32           |  |  |
| 167987                   | 165           | 0.56                                                                                     | 0.94       | 0.35           |  |  |
| 165786                   |               |                                                                                          |            |                |  |  |
| 164504                   |               | .1                                                                                       | <u>. L</u> |                |  |  |
|                          | is and Repair | 0 57                                                                                     | 0.98       | 0.35           |  |  |
| 163306                   |               | 0 34                                                                                     | 0.63       | 0.2            |  |  |
| 167135                   |               | 0.21                                                                                     | 0.00       | 0.11           |  |  |
| 160035                   |               | 0.21                                                                                     | 0.58       | 0 12           |  |  |
| 160262                   |               |                                                                                          | 0 78       | 0 28           |  |  |
| 161026                   |               | 0 54                                                                                     | 0.79       | 0 22           |  |  |
| 159889                   |               | 0.33                                                                                     | 0 67       | 0 23           |  |  |
| 167553                   |               | 0 39                                                                                     | 0 79       | 0 24           |  |  |
| 163824                   |               | 0 39                                                                                     | 0 88       | 0 44           |  |  |
| 169625                   |               | 1 0 99                                                                                   | 1 000      | L              |  |  |
| Cell Cycle               |               | 7-046                                                                                    | 0.33       | 0 08           |  |  |
| 167964                   |               | 0 15                                                                                     | 0.94       | 0.17           |  |  |
| 160715                   |               | 0 33                                                                                     | 1.37       | 1 17           |  |  |
| 167180                   |               | 1 54                                                                                     |            | 0 08           |  |  |
| 165052                   |               | 0 18                                                                                     | 0.6        | 0.11           |  |  |
| 16239                    | 1             | 0 17                                                                                     | 0.6        | 9.11           |  |  |

|                  |               |                                       | ole 3                                 |                 |  |  |
|------------------|---------------|---------------------------------------|---------------------------------------|-----------------|--|--|
| Unique ID        | No. of        | Expression of C                       | Genes in Large Cell                   | LC), Small Cell |  |  |
| Gen              |               | (SC) and Typical Carcinoma (TC) Cells |                                       |                 |  |  |
| Gene Family      | (LOH)         | LC                                    | SC                                    | TC              |  |  |
|                  |               |                                       |                                       |                 |  |  |
| 162631<br>168638 |               | 0.43<br>0.21                          | 1 06<br>0 58                          | 0 38            |  |  |
|                  |               | 0.21                                  | 0 36                                  | 0 14            |  |  |
| Anti-Oncogenes   |               | 0.70                                  | 105                                   |                 |  |  |
| 161058           | Yes           | 0 72                                  | 1 25                                  | 0 39            |  |  |
| 165648           |               | 0 31                                  | 06                                    | 0 19            |  |  |
| 169551           |               | 0 47                                  | 08                                    | 0 26            |  |  |
| 160802<br>161574 | Yes           | 0.16<br>0.6                           | 0 44<br>1.05                          | 0 09            |  |  |
| Oncogenes        | 165           |                                       | . 1.05                                | <u>U+</u>       |  |  |
| 160429           |               | 2.54                                  | 071                                   | 0.94            |  |  |
| 167948           | Yes           | 0.61                                  | 1 16                                  | 0 28            |  |  |
| 159898           | Yes           | 0 28                                  | 0.42                                  | 0 09            |  |  |
| 165799           | Yes           | 0 53                                  | 0.67                                  | (027            |  |  |
| Cytoskeleton/M   |               |                                       | · · · · · · · · · · · · · · · · · · · |                 |  |  |
| 160999           | Yes           | 0 42                                  | 0 91                                  | 0 24            |  |  |
| 161754<br>169071 | Yes           | 0.53<br>0.3                           | 1.11<br>0.72                          | 0 35<br>0 21    |  |  |
| 167351           | 16            | 0 39                                  | 0.69                                  | 0 26            |  |  |
| 182343           | <del></del>   | 0 33                                  | 0.09                                  | 0 17            |  |  |
| 162727           | Yes           | 0.2                                   | 0 45                                  | 0 11            |  |  |
| 165784           | Yes           | 1,46                                  | 0.69                                  | 1 96            |  |  |
| 160605           |               | 5 94                                  | 0.84                                  | 1.06            |  |  |
| Proteasome       |               |                                       |                                       |                 |  |  |
| 166328           | <del></del>   | 1 14                                  | 0 72                                  | 2 12            |  |  |
| 169691           | Yes           | 0 15                                  | 034                                   | 0.09            |  |  |
| 168266           | Yes           | 0.2                                   | 0 45                                  | 0.03            |  |  |
| 164244           | Yes           | 0.43                                  | 0.67                                  | 0 22            |  |  |
| Drug Resistance  |               | 3,70                                  | 3.01                                  | 7 44            |  |  |
| 161117           | <u> </u>      | 2 52                                  | 0.75                                  | 1.12            |  |  |
| 167738           |               | 0.32                                  | 0.75                                  | 0.18            |  |  |
|                  |               | 0.32                                  |                                       | 0.18            |  |  |
| 167505           | - V           |                                       | 0.77                                  | 0.21            |  |  |
| 166359           | Yes           | 0 46                                  | 0 64                                  |                 |  |  |
| 167153           |               | 6 27                                  | 1                                     | 1 31            |  |  |
| 168061           |               | 1 32                                  | 0 64                                  | 1 23            |  |  |
|                  | s/Receptors A | nd Signal Transduction E              |                                       |                 |  |  |
| 165576           |               | 1.93                                  | 0.66                                  | 1.34            |  |  |
| 169180           |               | 1.88                                  | 0.86                                  | 1.61            |  |  |
| 160617           |               | 3 57                                  | 0.86                                  | 0 93            |  |  |
| 164652           |               | 2.63                                  | 0 97                                  | 1 18            |  |  |
| 165617           |               | 2.9                                   | 0.73                                  | 1 32            |  |  |
| 169432           |               | 2.04                                  | 0.65                                  | 1.04            |  |  |
| 161391           |               | 0 43 ·                                | 0.83                                  | 0.25            |  |  |
| 164850           |               | 0.2                                   | 0.45                                  | 0.09            |  |  |
| 165483           |               | 0.33                                  | 0.98                                  | 0.23            |  |  |
| 162006           |               | 0 29                                  | 0.71                                  | 0.2             |  |  |
| 161454           |               | 0 58                                  | 0.99                                  | 0.39            |  |  |
| 168453           |               | 0 35                                  | 0 59                                  | 0 18            |  |  |
| 162220           |               | 0 34                                  | 0.76                                  | 0.25            |  |  |
| 160233           |               | 2 07                                  | 0 97                                  | 1 13            |  |  |
| Neuronal Mari    | kers          |                                       | <del></del>                           | <u> </u>        |  |  |
| 166807           |               |                                       | T                                     |                 |  |  |
| 159877           |               | 1 39                                  | 0.93                                  | 5 89            |  |  |
| 162207           | Yes           | 0.17                                  | 0.58                                  | 0.13            |  |  |

|                |                                        | Tabl                    | le 3                                  |                  |  |
|----------------|----------------------------------------|-------------------------|---------------------------------------|------------------|--|
| Unique ID      | No. of                                 | Expression of G         | enes in Large Cell                    | (LC), Small Cell |  |
| Gen            | e                                      | (SC) and T              | (SC) and Typical Carcinoma (TC) Cells |                  |  |
| Gene Family    | (LOH)                                  | LC                      | SC                                    | TC               |  |
| 161948         |                                        | 0 19                    | 0.56                                  | 0 09             |  |
| 159898         | Yes                                    | 0 28                    | 0 42                                  | 0 09             |  |
| 160127         | Yes                                    | 0 14                    | 0 44                                  | 0.1              |  |
| 161955         |                                        | 0.17                    | 0 38                                  | 0.09             |  |
| 167591         |                                        | 0.18                    | 0 46                                  | 0 14             |  |
| 162006         |                                        | 0 29                    | 0.71                                  | 02               |  |
| 160887         |                                        | 0 89                    | 1.4                                   | 0 56             |  |
| 162247         |                                        |                         |                                       |                  |  |
| 165400         |                                        | 1.7                     | 0 76                                  | 0.82             |  |
| RNA Synthesis, | Processing an                          | d Transcription Factors |                                       | ····             |  |
| 161598         |                                        | 0 82                    | 0.96                                  | 2.59             |  |
| 169429         |                                        | 4 52                    | 0.8                                   | 1 18             |  |
| 165076         |                                        | 0 96                    | ` 0.81                                | 1.53             |  |
| 167103         |                                        | 1.7                     | 0.72                                  | 1.34             |  |
| 169391         | Yes                                    | 0 98                    | 0 66                                  | 1 15             |  |
| 166789         | Yes                                    | 1 76                    | 0.75                                  | 1 07             |  |
| 168428         | Yes                                    |                         |                                       |                  |  |
| 165588         |                                        | 1 11                    | 0.8                                   | 0 57             |  |
| 164927         |                                        | 0 51                    | 1 65                                  | 1.4              |  |
| 160630         | Yes                                    | 0.53                    | 1 15                                  | 1 35             |  |
| 160367         |                                        | 0.58                    | 1,26                                  | 0.92             |  |
| 167931         |                                        | 0 38                    | 0 99                                  | 0 35             |  |
| 161533         |                                        | 1 59                    | 0.67                                  | 0 48             |  |
| 168110         | Yes                                    | 0.35                    | 0.8                                   | 0.21             |  |
| 161374         | Yes                                    | 0.34                    | 0.89                                  | 0.19             |  |
| 162587         |                                        | 0.28                    | 0 63                                  | 0 17             |  |
| 160467         | Yes                                    | 0.17                    | 0 44                                  | 0.12             |  |
| 160803         | Yes                                    | 03                      | 0 71                                  | 0 18             |  |
| 169254         | Yes                                    | 0 29                    | 0.6                                   | 0 16             |  |
| 160678         |                                        | 0 48                    | 0 94                                  | 0.29             |  |
| 160242         |                                        | 0 59                    | 0.83                                  | 0.31             |  |
| 164106         | Yes                                    | 0.48                    | 0 61                                  | 0 24             |  |
| 166574         | Yes                                    | 0 47                    | 0 89                                  | 0.25             |  |
| 169564         |                                        | 0.25                    | 0 48                                  | 0.15             |  |
| 164642         | —————————————————————————————————————— | 0.69                    | 0.92                                  | 0.27             |  |
| 162419         |                                        | 0.59                    | 1.03                                  | 0.44             |  |
| 163425         |                                        | 0.95                    | 0.86                                  | 0 44             |  |
| 160303         | Yes                                    | 0 62                    | 1.45                                  | 0 46             |  |
| 164573         | Yes                                    | 2 23                    | 0 82                                  | 1.37             |  |

#### Molecular Signature Of The Subtypes Of Pulmonary Neuroendocrine

Tumors. The expression profile of genes significantly altered in neuroendocrine tumors was examined to determine whether such information could be used to differentiate among each subtype of pulmonary neuroendocrine tumors. To establish a signature list for each tumor type, the relative expression ratio between TC, LCNEC and SCLC is employed. Table 4 shows the extent of expression of

such a signature list, and provides the ratio of expression. In Table 4, TC/SC denotes genes exhibiting higher levels of expression in TC cells than in SC cells; SC/TC denotes genes exhibiting higher levels of expression in SC cells than in TC cells. Data for TC/LC, LC/TC, SC/LC, and LC/SC are similarly provided. This form of statistical analysis is independent of the reference value and, therefore, can be used for future studies. Using a ratio of 1.9 or higher, it is found that TC had 15 genes whose expression distinguished these tumors from SCLC, and 12 from LCNEC. In contrast, 134 genes are higher in SCLC than in TC and 97 higher than in LCNEC (Table 4). The difference between expression of genes in LCNEC from SCLC is encompassed within 34 genes. Thus, cDNA microarray analysis derived expression profile obtained using a cell line as a reference can be used to develop a molecular signature algorithm which may be useful for differential diagnosis of these tumors.

| Mo                    | lecular Signa                                       | Table 4 | ndocrine Tum | ors                    |
|-----------------------|-----------------------------------------------------|---------|--------------|------------------------|
| Unique ID No. of Gene | lecular Signature of Neuroer<br>Observed Expression |         | Ratio        | Observed<br>Expression |
|                       | TC/SC                                               |         |              |                        |
|                       | TC                                                  | SC      | TC/SC        | Normal Cells           |
| 159877                | 5.89                                                | 0.93    | 6.33         |                        |
| 167158                | 6.52                                                | 1.16    | 5.62         |                        |
| 166807                | 4.46                                                | 0.81    | 5 51         |                        |
| 163031                | 3 15                                                | 1 02    | 3 09         | 1 06                   |
| 166328                | 2 12                                                | 0 72    | 2.94         |                        |
| 165784                | 1 96                                                | 0.69    | 2 84         |                        |
| 161598                | 2.59                                                | 0 96    | 2.70         |                        |
| 165393                | 1.98                                                | 0 96    | 2 10         |                        |
| 168700                | 1.69                                                | 0 82    | 2 06         |                        |
| 165192                | 1 56                                                | 0 76    | 2 05         |                        |
| 165576                | 1 34                                                | 0 66    | 2 03         |                        |
| 168061                | 1.23                                                | 0 64    | 1 92         |                        |
| 168276                | 1 21                                                | 0 63    | 1 92         |                        |
| 165076                | 1 53                                                | ٠ 0 81  | - 189        |                        |
| 169180                | 1 61                                                | 0 86    | 1 87         |                        |
|                       | SC/TC                                               |         |              |                        |
|                       | SC                                                  | TC      | SC/TC        | Normal Cells           |
| 165052                | 0.60                                                | 0.08    | 7.50         | 0.50                   |
| 161163                | 0 53                                                | 0.08    | 6 63         | 0 40                   |
| 160035                | 0 72                                                | 0 11    | 6 55         | 0 50                   |
| 161223                | 0.71                                                | 0 11    | 6 45         | 0 40                   |
| 161948                | 0 56                                                | 0.09    | 6.22         | 0.22                   |
| 166635                | 0.63                                                | 011     | 5 73         | 0 40                   |

|                  |               | Table 4        |              |                                                  |
|------------------|---------------|----------------|--------------|--------------------------------------------------|
| Mo               | lecular Signa | ture of Neuroe | ndocrine Tum | ors                                              |
| Unique ID        | Observed      | Expression     | Ratio        | Observed                                         |
| No. of Gene      |               | •              |              | Expression                                       |
| 165583           | 0 28          | 0 05           | 5 60         | 0.20                                             |
| 160715           | 0.94          | 0 17           | 5 53         | 0.67                                             |
| 162391           | 0 60          | 0.11           | 5 45         | 0 35                                             |
| 161244           | 0 38          | 0 07           | 5.43         | 0 20                                             |
| 161211           | 0 64          | 0 12           | 5.33         | 0.35                                             |
| 161774           | 0 57          | 0 11           | 5.18         | 0 40                                             |
| 166195           | 0 56          | 0 11           | 5.09         | 0 30                                             |
| 164850           | 0 45          | 0 09           | 5.00         | 0.38                                             |
| 160802           | 0 44          | 0 09           | 4 89         |                                                  |
| 161643           | 1.16          | 0 24           | 4 83         | 0 80                                             |
| 160262           | 0.58          | 0.12           | 4.83         |                                                  |
| 164206<br>164586 | 0 53<br>0 48  | 0.11<br>0.10   | 4 82         | 0.40                                             |
| 165039           | 0 19          | 0 04           | 4 80<br>4.75 | 0.35                                             |
| 161374           | 0.89          | 0.19           | 4.75         | 0 10<br>0.55                                     |
| 159898           | 0.03          | 0.13           | 4.67         | 0.35                                             |
| 160102           | 1 07          | 0 23           | 4 65         | 0.20                                             |
| 164646           | 0.69          | 0 15           | 4 60         | 0 42                                             |
| 163787           | 0.81          | 0.18           | 4 50         | 0 50                                             |
| 168268           | 0.45          | 0 10           | 4.50         |                                                  |
| 161790           | 0 45          | 0 10           | 4 50         | · <del></del>                                    |
| 162207           | 0 58          | 0 13           | 4 46         | 0 55                                             |
| 160127           | 0 44          | 0.10           | 4 40         | 0 40                                             |
| 160323           | 0 43          | 0 10           | 4 30         | 0,30                                             |
| 165483           | 0 98          | 0 23           | 4 26         | 0 73                                             |
| 161955           | 0.38          | 0.09           | 4 22         | <u> </u>                                         |
| 167948           | 1 16          | 0 28           | 4.14         | 1 86                                             |
| 168638           | 0.58          | 0 14           | 4.14         |                                                  |
| 167964<br>166960 | 0 33<br>0.37  | 0.08<br>0.09   | 4.13         | 0.23                                             |
| 161954           | 0.37          | 0.19           | 411          | 0 25<br>0 20                                     |
| 165614           | 0.82          | 0.19           | 4.10         | 0 50                                             |
| 162727           | 0.45          | 0.11           | 4 09         | 0 25                                             |
| 167116           | 0.32          | 0.08           | 4.00         | 020                                              |
| 160803           | 0.71          | 0 18           | 3 94         | 0.50                                             |
| 162343           | 0.67          | · 017          | 3 94         | 0 62                                             |
| 163682           | 0.59          | 0.15           | 3.93         | T                                                |
| 162623           | 0.51          | 0 13           | 3 92         | 0.35                                             |
| 166914           | 0 61          | 0 16           | 3 81         |                                                  |
| 168110           | 0.80          | 0 21           | 3 81         |                                                  |
| 160999           | 0 91          | 0 24           | 3 79         | 0.60                                             |
| 160486           | 0 72          | 0.19           | 3 79         | 0 50                                             |
| 160275           | 0 53<br>0 34  | 0.14           | 3 79         | <del> </del>                                     |
| 169691<br>165790 | 0 34          | 0 09           | 3.78         | 1                                                |
| 169254           | 0 60          | 0 12<br>0 16   | 3.75<br>3.75 | 0.30                                             |
| 168079           | 0 93          | 0.25           | 3 72         | 0.56                                             |
| 162587           | 0 63          | 0.17           | 3.71         | 0 55                                             |
| 162244           | 0.74          | 0 20           | 3.70         | 0 70                                             |
| 167505           | 0 77          | 0 21           | 3.67         | <del>                                     </del> |
| 160467           | 0 44          | 0 12           | 3 67         | 0 30                                             |
| 161012           | 0 73          | 0 20           | 3 65         | 0 55                                             |
| 159889           | 0 79          | 0 22           | 3 59         | 0.55                                             |
| 163690           | 0 82          | 0 23           | 3 57         | 0 50                                             |
| 166574           | 0.89          | 0 25           | 3 56         | 0.62                                             |
| 167738           | 0 64          | 0 18           | 3.56         | 0 51                                             |
| 167706           | 0 64          | 0 18           | 3 56         |                                                  |
| 162006           | 0.71          | 0.20           | 3 55         | 0 31                                             |
| 166010           | 0.99          | 0.28           | 3 54         | 0 55                                             |

| Table 4  Molecular Signature of Neuroendocrine Tumors |              |              |       |                                                  |  |
|-------------------------------------------------------|--------------|--------------|-------|--------------------------------------------------|--|
| Unique ID                                             | Observed I   | Expression   | Ratio | Observed<br>Expression                           |  |
| No. of Gene                                           |              | 0.23         | 3.52  | 0 82                                             |  |
| 167607                                                | 0.81         | 0.23         | 3.44  | 0.30                                             |  |
| 159906                                                | 0.62         | 0 32         | 3 44  | 0.50                                             |  |
| 162150                                                | 1 10         | 0.21         | 3 43  | 0.00                                             |  |
| 169071                                                | 0 72         | 0.07         | 3 43  | 0 20                                             |  |
| 162178                                                | 0 24         | 0.07         | 3 41  | 0.40                                             |  |
| 164642                                                | 0.92<br>0 88 | 0 26         | 3 38  | 0.52                                             |  |
| 167170                                                | 0.81         | 0.24         | 3.38  |                                                  |  |
| 168386                                                | 0.87         | 0.26         | 3.35  | 0.65                                             |  |
| 167223                                                | 0.83         | 0 25         | 3 32  | 0 70                                             |  |
| 161391<br>167906                                      | 0 63         | 0.19         | 3 32  |                                                  |  |
| 160565                                                | 0.56         | 0.17         | 3 29  | 0 56                                             |  |
| 163824                                                | 0.79         | 0 24         | 3 29  |                                                  |  |
| 167591                                                | 0 46         | 0 14         | 3 29  |                                                  |  |
| 168453                                                | 0 59         | 0.18         | 3.28  |                                                  |  |
| 161794                                                | 0.95         | 0.29         | 3.28  | 0.74                                             |  |
| 163726                                                | 1 21         | 0.37         | 3.27  | 0.90                                             |  |
| 160038                                                | 1.04         | 0.32         | 3.25  | 0.63                                             |  |
| 160678                                                | 0.94         | 0 29         | 3.24  |                                                  |  |
| 167987                                                | 1 03         | 0 32         | 3 22  |                                                  |  |
| 164504                                                | 077          | 0.24         | 3 21  | 0 80                                             |  |
| 161058                                                | 1 25         | 0.39         | 3.21  |                                                  |  |
| 168642                                                | 0.96         | 0.30         | 3 20  |                                                  |  |
| 169564                                                | 0.48         | 0.15         | 3 20  | <u> </u>                                         |  |
| 165171                                                | 0.16         | 0.05         | 3.20  | 1                                                |  |
| 161754                                                | 1.11         | 0 35         | 3.17  | 0 60                                             |  |
| 165648                                                | 0.60         | 0.19         | 3 16  | 0 48                                             |  |
| 162734                                                | 1 01         | 0 32         | 3 16  | 0 65                                             |  |
| 160303                                                | 1 45         | 0.46         | 3 15  | 1 30                                             |  |
| 167135                                                | 0 63         | 0 20         | 3.15  | 0 50                                             |  |
| 160098                                                | 0.91         | 0 29         | 3 14  | 0.30                                             |  |
| 169551                                                | 0 80         | 0 26         | 3 08  | <del></del>                                      |  |
| 164244                                                | 0 67         | 0 22         | 3.04  | 0.60                                             |  |
| 162220                                                | 0 76         | 0.25<br>0.31 | 3 03  |                                                  |  |
| 164286                                                | 0.94         | 0.35         | 3 03  | 0 80                                             |  |
| 161635                                                | 1 06         | 0 26         | 2 96  | <del>                                     </del> |  |
| 167713                                                | 0 77         | 0.16         | 2.94  | <del> </del>                                     |  |
| 163276                                                |              | 0.36         | 2 92  | 0 60                                             |  |
| 161178                                                | 1 05<br>0 67 | 0.23         | 2 91  | <del></del>                                      |  |
| 167553                                                | 0,52         | 0.23         | 2 89  | 0 55                                             |  |
| 163921<br>167931                                      | 0.52         | 0 35         | 2.83  |                                                  |  |
| 160938                                                | 0 82         | 0.29         | 2.83  | 0.50                                             |  |
| 163306                                                | 0 98         | 0.35         | 2.80  | 0 50                                             |  |
| 161650                                                | 1.23         | 0.44         | 2.80  |                                                  |  |
| 162631                                                | 1 06         | 0 38         | 2 79  |                                                  |  |
| 161026                                                | 0.78         | 0.28         | 2.79  |                                                  |  |
| 162571                                                | 1.11         | 0.40         | 2 78  | 0 80                                             |  |
| 160478                                                | 1 07         | 0 39         | 2 74  |                                                  |  |
| 160441                                                | 0 49         | 0.18         | 2.72  | 0 42                                             |  |
| 165786                                                | 0 95         | 0 35         | 2 71  | 0 60                                             |  |
| 165571                                                | 0.84         | 0 31         | 2 71  | 0 80                                             |  |
| 161620                                                | 0 84         | 0 31         | 2 71  | 0 80                                             |  |
| 165813                                                | 0 75         | 0.28         | 2.68  | 0 70                                             |  |
| 160242                                                | 0 83         | 0.31         | 2.68  |                                                  |  |
| 168302                                                | 0 88         | 0.33         | 2 67  | 0 40                                             |  |
| 167351                                                | 0.69         | 0 26         | 2 65  | U 40                                             |  |
| 168987                                                | 0.79         | 0 30         | 2.63  |                                                  |  |
| 161574                                                | 1 05         | 0 40         | 2 63  | 0.72                                             |  |
| 162510                                                | 0 91         | 0 35         | 2 60  | U.7 E                                            |  |

|                  |                 | Table 4        |                                                                           |                                       |  |  |
|------------------|-----------------|----------------|---------------------------------------------------------------------------|---------------------------------------|--|--|
|                  | lecular Signati | re of Neuroend | ocrine Tumo                                                               | rs Observed                           |  |  |
| Unique ID        | Observed E      | Expression     | Ratio                                                                     | Observed<br>Expression                |  |  |
| No. of Gene      | <del></del>     |                | 2 54                                                                      | 0 50                                  |  |  |
| 164106           | 0 61            | 0.24<br>0.39   | 2.54                                                                      | 0 60                                  |  |  |
| 161454           | 0.99            | 0.56           | 2.50                                                                      | 1.24                                  |  |  |
| 160887           | 1 40<br>0 67    | 0 27           | 2 48                                                                      | 0 55                                  |  |  |
| 165799           | 1.03            | 0.44           | 2.34                                                                      | 0.80                                  |  |  |
| 162419           | 0 64            | 0.28           | 2 29                                                                      | 0.80                                  |  |  |
| 166359<br>169625 | 0 88            | 0 44           | 2 00                                                                      |                                       |  |  |
| 168426           | 1.09            |                | 1.98                                                                      |                                       |  |  |
| 163425           | 0.86            | 0 44           | 1.95                                                                      | 0 80                                  |  |  |
| 100120           | TC/LC.          |                |                                                                           |                                       |  |  |
|                  | TC              | LC             | TC/LC                                                                     | Normal Cells                          |  |  |
| 167158           | 6 52            | 0.87           | 7 49                                                                      |                                       |  |  |
| 159877           | 5.89            | 1 39           | 4 24                                                                      |                                       |  |  |
| 166807           | 4 46            | 1 11           | 1 11     4 02       0 82     3 16       0 51     2 75       1.22     2.58 |                                       |  |  |
| 161598           | 2 59            | 0 82           |                                                                           |                                       |  |  |
| 164927           | 1 40            |                |                                                                           |                                       |  |  |
| 163031           | 3.15            | 1.22           |                                                                           |                                       |  |  |
| 160630           | 1 35            | 0 53           | 2.55                                                                      | <u> </u>                              |  |  |
| 162247           | 1 40            | 0 67           | 2 09                                                                      | <u> </u>                              |  |  |
| 167219           | 1.16            | . 0.57         | 2.04                                                                      | <del> </del>                          |  |  |
| 163475           | 1.17            | 0 60           | 1,95                                                                      |                                       |  |  |
| 163762           | 1 04            | 0 54           | 1.93                                                                      | <del> </del>                          |  |  |
| 166328           | 2 12            | 1 14           | 1 86                                                                      | <u></u>                               |  |  |
|                  | LC/TC           |                |                                                                           |                                       |  |  |
| •                | LC              | TC             | LC/TC                                                                     | Normal Cells                          |  |  |
| 165400           | 1 70            | 0.82           | 2 07                                                                      |                                       |  |  |
| 164850           | 0 20            | 0.09           | 2.22                                                                      | <u> </u>                              |  |  |
| 164868           | 2,39            | 1.16           | 2.06                                                                      |                                       |  |  |
| 161533           | 1 59            | 0 48           | 3 31                                                                      |                                       |  |  |
| 160957           | 3 20            | 1 16           | 2 76                                                                      |                                       |  |  |
| 169429           | 4 52            | 1.18           | 3.83<br>1.96                                                              | <del></del>                           |  |  |
| 169432           | 2 04            | 1 04           | 2 00                                                                      | 0 20                                  |  |  |
| 165583           | 0 10            | 0 05           | 2 20                                                                      | - <del></del>                         |  |  |
| 165617           | 2 90            | 1 32<br>0 30   | 2.00                                                                      | <del></del>                           |  |  |
| 168987           | 0.60            | 0.79           | 2 39                                                                      |                                       |  |  |
| 161709           | 1 89<br>0 98    | 0.75           | 2 23                                                                      | <del></del>                           |  |  |
| 169625           | 0 53            | 0 27           | 1 96                                                                      | 0 55                                  |  |  |
| 165799           | 2.12            | 1 04           | 2.04                                                                      | •                                     |  |  |
| 161896           | 0.59            | 0 28           | 211                                                                       | 0 70                                  |  |  |
| 165813<br>162571 | 1 32            | 0 40           | 3 30                                                                      | 0.80                                  |  |  |
| 161948           | 0 19            | 0 09           | 211                                                                       | 0 22                                  |  |  |
| 167116           | 0 18            | 0.08           | 2 25                                                                      |                                       |  |  |
| 167125           | 3 23            | 1.36           | 2.38                                                                      |                                       |  |  |
| 167153           | 6 27            | 1 31           | 4 79                                                                      |                                       |  |  |
| 162734           | 0 73            | 0 32           | 2.28                                                                      | 0 60                                  |  |  |
| 163425           | 0 95            | 0 44           | 2.16                                                                      | 0.80                                  |  |  |
| 164106           | 0 48            | 0 24           | 2 00                                                                      | 0 50                                  |  |  |
| 160237           | 3 50            | 1.38           | 2.54                                                                      |                                       |  |  |
| 164206           | 0 26            | 0 11           | 2 36                                                                      |                                       |  |  |
| 164244           | 0 43            | 0 22           | 1 95                                                                      |                                       |  |  |
| 168266           | 0 20            | 0 10           | 2 00                                                                      | 0.94                                  |  |  |
| 160429           | 2 54            | 0 94           | 2.70                                                                      | 0.94                                  |  |  |
| 159898           | 0.28            | 0 09           | 3.11                                                                      | 0.42                                  |  |  |
| 160441           | 0 37            | 0 18           | 2.06<br>2.46                                                              | - V.72                                |  |  |
| 167713           | 0 64            | 0.26           | 2.25                                                                      | 0.50                                  |  |  |
| 165052           | 0.18<br>0.42    | 0 08           | 2 33                                                                      | 0 30                                  |  |  |
| 1 450008         | 1 11 47         | 1 UID          | . 200                                                                     | · · · · · · · · · · · · · · · · · · · |  |  |

| Unique ID                       | Observed F   | re of Neuroen | docrine Tumo<br>Ratio | ors          |
|---------------------------------|--------------|---------------|-----------------------|--------------|
| No. of Gene<br>161117<br>161163 | Observed F   | Expression    | Datia                 |              |
| No. of Gene<br>161117<br>161163 |              |               | Ratio                 | Observed     |
| 161117<br>161163                |              |               |                       | Expression   |
| 161163                          | 2.52         | 1 12          | 2 25                  | 1 12         |
|                                 | 0.18         | 80.0          | 2 25                  | 0 35         |
| 100303                          | 0 45         | 0 17          | 2.65                  | 0.50         |
| 164504                          | 0 51         | 0 24          | 2 13                  | 0 80         |
| 165171                          | 0.30         | 0 05          | 6.00                  | 0.25         |
| 161211                          | 0 27         | 0.12          | 2.25<br>5.60          | 0 35<br>0.78 |
| 160605                          | 5.94         | 1 06          | 3 84                  | 0.78         |
| 160617                          | 3 57         | 0 93<br>0,19  | 2 11                  | 0 80         |
| 167906                          | 0 40<br>0 61 | 0.28          | 2 18                  |              |
| 167948<br>164642                | 0.69         | 0.27          | 2.56                  | 0.45         |
| 164646                          | 0.39         | 0 15          | 2 60                  | 0 42         |
| 164652                          | 2 63         | 1 18          | 2 23                  |              |
| 101002                          | SC/LC        |               |                       |              |
|                                 |              | T.C.          | SCT C                 | Normal Cells |
|                                 | SC           | LC            | SC/LC                 |              |
| 161244                          | 0 38         | 0 10          | 3.80                  | 0.20         |
| 161223                          | 071          | 0 20          | 3 55                  | 0.40         |
| 162391                          | 0 60         | 0 17          | 3.50                  | 0.40         |
| 166635                          | 0.63         | 0.18<br>0.21  | 3.50                  | 0.50         |
| 160035                          | 0 72<br>0 58 | 0 17          | 3 41                  | 0 55         |
| 162207                          | 0 60         | 0 18          | 3 33                  | 0 50         |
| 165052<br>161954                | 0.78         | 0.24          | 3.25                  | 0 20         |
| 164927                          | 1 65         | 0.51          | 3 24                  |              |
| 160127                          | 0 44         | 0 14          | 3 14                  | 0.47         |
| 160262                          | 0.58         | 0.19          | 3.05                  |              |
| 161643                          | 1.16         | 0 39          | 2.97                  | 0.80         |
| 165483                          | 0 98         | 0 33          | 2 97                  | 0 73         |
| 166195                          | 0 56         | 0 19          | 2.95                  | 0.30<br>0.22 |
| 161948                          | 0 56         | 0 19          | 2 95                  | 0 35         |
| 161163                          | 0 53         | 0.18          | 2 94<br>2 90          | 0.65         |
| 167223                          | 0 87         | 0 30<br>0.20  | 2.85                  | 0.55         |
| 161774                          | 0.57<br>0 94 | 0.20          | 2.85                  | 0 67         |
| 160715                          | 0 48         | 0 17          | 2 82                  | 0 35         |
| 164586<br>161790                | 0 45         | 0.16          | 2 81                  |              |
| 165583                          | 0.28         | 0.10          | 2.80                  | 0 20         |
| 168638                          | 0 58         | 0 21          | 2 76                  | 0.58         |
| 160802                          | 0 44         | 0 16          | 2 75                  |              |
| 160102                          | 1 07         | 0 39          | 2 74                  |              |
| 165039                          | 0 19         | 0 07          | 2 71                  | 0 10         |
| 163762                          | 1 44         | 0.54          | 2 67                  | 0.55         |
| 161374                          | 0 89         | 0 34          | 2.62                  | 0.55         |
| 163787                          | 0.81         | 0 31<br>0 28  | 2 61                  | 0 55         |
| 161012                          | 0 73<br>0 99 | 0 38          | 2 61                  |              |
| 187931                          | 0 44         | 0.17          | 2.59                  | 0.30         |
| 160467<br>165614                | 0.82         | 0 32 ~        | 2.56                  | 0.50         |
| 167591                          | 0.52         | 0 18          | 2.56                  |              |
| 165790                          | 0 45         | 0 18          | 2 50                  | 0 30         |
| 162244                          | 0 74         | 0 30          | 2.47                  | 0 70         |
| 182631                          | 1 06         | 0 43          | 2 47                  |              |
| 161635                          | 1 06         | 0 43          | 2 47                  | 0.80         |
| 162006                          | 0.71         | 0 29          | 2 45                  | 0 31         |
| 162247                          | 1 62         | 0.67          | 2.42                  |              |
| 169071                          | 0 72         | 0.30          | 2.40                  |              |
| 159889                          | 0.79         | 0 33          | 2.39                  | 0.55         |
| 160323                          | 0 43         | 0.18          | 2 39                  |              |
| 161211                          | 0 64         | 0.27          | 2 37                  | 0.35         |

| Ma               | lecular Signat | Table 4<br>ure of Neuroen | docrine Tumo | rs                     |
|------------------|----------------|---------------------------|--------------|------------------------|
| Unique ID        | Observed 1     | Expression                | Ratio        | Observed<br>Expression |
| No. of Gene      | <del></del>    |                           |              | 0.55                   |
| 160803           | 0 71           | 0 30                      | 2 37         | 1 00                   |
| 160303           | 1 45           | 0 62                      | 2.32         | 0.70                   |
| 161794           | 0 95           | 0 41<br>0 35              | 2.32         | 0.70                   |
| 168110           | 080            | 0 28 ·                    | 2 29         | <del></del>            |
| 167706           | 0 64           | 0 15                      | 2 27         |                        |
| 169691           | 0 34<br>0 81   | 0 36                      | · 2.25       |                        |
| 168386<br>162587 | 0 63           | 0 28                      | 2 25         |                        |
| 168266           | 0.45           | 0 20                      | 2 25         |                        |
| 164850           | 0.45           | 0.20                      | 2.25         | 0 38                   |
| 162727           | 0 45           | 0.20                      | 2 25         | 0 25                   |
| 162220           | 0.76           | 0 34                      | 2.24         | 0.60                   |
| 161955           | 0.38           | 0 17                      | 2 24         |                        |
| 162623           | 0 51           | 0.23                      | 2 22         | 0 36                   |
| · 160038         | 1 04           | 0.47                      | 2 21         |                        |
| 167964           | 0 33           | 0 15                      | 2 20         |                        |
| 166010           | 0 99           | 0 45                      | 2 20         | 0.55                   |
| 167170           | 0.88           | 0.40                      | 2 20         | 0.52                   |
| 167219           | 1.25           | 0 57                      | 2.19         |                        |
| 183682           | 0 59           | 0.27                      | 2 19         | 0.00                   |
| 162178           | 0 24           | 0.11                      | 2.18         | 0.20                   |
| 166960           | 0 37           | 0 17                      | 2 18         | 0.25                   |
| 160367           | 1 26           | 0 58                      | 2 17         | <del></del>            |
| 160630           | 1.15           | 0 53                      | 2 17<br>2 17 | 0.60                   |
| 160999           | 0 91           | 0.42<br>0 25              | 217          | 0.00                   |
| 160275           | 0 53           | 0 53                      | 2.09         | 0 60                   |
| 161754           | 1.11<br>0 52   | 0.25                      | 2 08         | 0.55                   |
| 163921           | 0 60           | 0.29                      | 2 07         | 0.28                   |
| 169254           | 0 53           | 0 26                      | 2 04         | 0 40                   |
| 164206<br>166914 | 0 61           | 0 30                      | 2 03         |                        |
| 162343           | 0.67           | 0.33                      | 2.03         | 0 62                   |
| 163824           | 0 79           | 0.39                      | 2 03         | 0.65                   |
| 167607           | 0.81           | 0.40                      | 2 03         |                        |
| 160098           | 0.91           | 0 45                      | 2.02         | 0 50                   |
| 168079           | 0.93           | 0 46                      | 2.02         | 0 56                   |
| 161178           | 1 05           | 0.52                      | 2 02         | 0.60                   |
| 160938           | 0.82           | 0.41                      | 2 00         | 0.50                   |
| 167738           | 0 64           | 0 32                      | 2 00         | 0.51                   |
| 167505           | 0 77           | 0 39                      | 1 97         |                        |
| 159859           | 1 44           | 0.73                      | 1 97         | 0 90                   |
| 167553           | 0.67           | 0 34                      | 1.97         | <del> </del>           |
| 162150           | 1 10           | 0.56                      | 1 96         | <del> </del>           |
| 160678           | 0 94           | 0.48                      | 1 96         | 0.50                   |
| 163690           | 0.82           | 0 42<br>0.37              | 1.95<br>1 95 | 0.50                   |
| 160486           | 0 72           | 0.55                      | 1 95         | - 0 30                 |
| 160478           | 1 07           |                           | 1 94         | +                      |
| 165648           | 0.60           | 0 31                      | 1 93         | 0 70                   |
| 161391           | 0.83           | 0.25                      | 1 92         |                        |
| 169564           | 1 16           | 0.61                      | 1 90         | 1                      |
| 167948<br>166574 | 0 89           | 0.51                      | 1 89         | <del></del>            |
| 167135           | 0.63           | 0 34                      | 1 85         |                        |
| 107 100          | LC/SC          |                           |              |                        |
|                  | LC             | SC                        | LC/SC        | Normal Cell            |
| 165393           | 2 66           | 0.96                      | 2,77         |                        |
| 168700           | 1 91           | 0.82                      | 2 33         |                        |
| 169384           | 2 28           | 0 77                      | 2 96         | <del></del>            |
| 165400           | 1 70           | 0 76                      | 2 24         |                        |

|                                              |                     | Table 4     |      |            |  |          |
|----------------------------------------------|---------------------|-------------|------|------------|--|----------|
| Molecular Signature of Neuroendocrine Tumors |                     |             |      |            |  |          |
| Unique ID                                    | Observed Expression |             |      |            |  | Observed |
| No. of Gene                                  |                     |             |      | Expression |  |          |
| 161533                                       | 1.59                | 0 67        | 2 37 | 1.00       |  |          |
| 160957                                       | 3 20                | <u>0 77</u> | 4.16 |            |  |          |
| 169429                                       | 4 52                | 0 80        | 5.65 | <u> </u>   |  |          |
| 169432                                       | 2.04                | 0 65        | 3.14 |            |  |          |
| 165576                                       | 1 93                | 0.66        | 2.92 | <u> </u>   |  |          |
| 165617                                       | 2 90                | 0.73        | 3 97 |            |  |          |
| 161709                                       | 1 89                | 0 95        | 1 99 |            |  |          |
| 165784                                       | 1 46                | 0 69        | 2.12 |            |  |          |
| 162475                                       | 2 00                | 1 06        | 1.89 |            |  |          |
| 161896                                       | 2 12                | 0.75        | 2 83 | <u> </u>   |  |          |
| 167103                                       | 1 70                | 0 72        | 2 36 |            |  |          |
| 167125                                       | 3 23                | 0 88        | 3 67 | <u> </u>   |  |          |
| 167153                                       | 6.27                | 1 00        | 6 27 |            |  |          |
| 167316                                       | 1 94                | 0.88        | 2 20 |            |  |          |
| 166789                                       | 1 76                | 0 75        | 2 35 |            |  |          |
| 168061                                       | , 1.32              | 0 64        | 2 06 |            |  |          |
| 160233                                       | 2.07                | 0 97        | 2.13 | <u> </u>   |  |          |
| 160237                                       | 3 50                | 0 92        | 3 80 |            |  |          |
| 168141                                       | 2.51                | 0 95        | 2 64 |            |  |          |
| 168169                                       | 2.78                | 1 17        | 2.38 |            |  |          |
| 168276                                       | 1 61                | 0.63        | 2.56 |            |  |          |
| 159813                                       | 1 99                | 0 83        | 2 40 |            |  |          |
| 160429                                       | 2 54                | 0.71        | 3 58 | 0.90       |  |          |
| 161117                                       | 2 52                | 0 75        | 3 36 | ·          |  |          |
| 165171                                       | 0 30                | 0 16        | 1.88 |            |  |          |
| 164573                                       | 2.23                | 0.82        | 2.72 |            |  |          |
| 160605                                       | 5 94                | 0 84        | 7.07 | 0 78       |  |          |
| 160617                                       | 3 57                | 0.86        | 4 15 | 0 90       |  |          |
| 169180                                       | 1,88                | 0.86        | 2 19 |            |  |          |
| 164652                                       | 2 63                | 0.97        | 2 71 |            |  |          |

### Correlation Between Gene Expression Profiles And Genomic

5

10

Imbalance. To compare the results obtained from cDNA array expression in accordance with the present invention with previously available information on genomic imbalances in neuroendocrine tumors, a search of the literature for published data on comparative genomic hybridization (CGH) and loss of heterozygosity (LOH) in neuroendocrine tumors was conducted. It was found that, among 198 genes identified by the Class Comparison (F-test) analysis, over ninety percent of genes with significant changes in LCNEC, and over 80% of genes from SCLC and TC, had previously been reported to have chromosomal imbalances by gain or loss (CGH) or to be associated with LOH (Table 5). Loss of chromosomal material by LOH closely correlated with genes whose expression significantly decreased in our analysis. Deletions of several genes, such as cyclin-dependent kinase inhibitor (CDKN2A, 9p21) and multiple endocrine neoplasia 1 (MEN1,

11q13) have been studied extensively in pulmonary neuroendocrine tumors (Oliveira, A.M. et al. (2001) "FAMILIAL PULMONARY CARCINOID TUMORS," Cancer 91:2104-2109; Debelenko, L.V. et al. (2000) "MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma," Genes Chromosomes Cancer. 28:58-65). However, several genes whose expression has been found to be decreased herein were previously reported to have a gain of chromosomal material by CGH. These include BAK, excision repair cross-complement (ERCC1), DNA ligase (LIG1), tubulin beta (TUBB) and others (Table 2).

5

10

15

20

25

30

Of interest, none of the genes which encode for growth factor/receptors identified herein have been reported by LOH. However, loss of genetic material by CGH in these genes has been reported. The potential loss of repressor activity in the promoter regions of these genes may result in their over-expression as detected herein. In sum, the expression profiling of significantly altered genes derived from microarray data reported herein closely correlates with chromosomal imbalances reported by LOH but not by CGH.

# Example 3 Analysis of Gene Expression Profiles

Analysis of clusters of differentially expressed mRNAs from 9,984 human transcripts assigned to each subtype of neuroendocrine tumors identified multiple genes (198 genes with a probability of 0.004) exhibiting differential expression. This highly selected group of genes contained valuable information which correlated with biological behavior of these tumors. The identified genes are involved in regulation of apoptosis, cell-cell and cell-matrix interactions, cell cycle, DNA synthesis and repair, drug resistance, RNA synthesis and processing, receptors and growth factors. Previous studies using microarray analysis of lymphomas (Dodson, J.M. et al. (2002) "QUANTITATIVE ASSESSMENT OF FILTER-BASED CDNA MICROARRAYS: GENE EXPRESSION PROFILES OF HUMAN T-LYMPHOMA CELL LINES," Bioinformatics 18:953-960; Ramaswamy, S. et al. (2001) MULTICLASS CANCER DIAGNOSIS USING TUMOR GENE EXPRESSION SIGNATURES," Proc Natl Acad Sci U S A. 98(26):15149-15154), gastrointestinal (Hippo, Y. etal. (2002) "GLOBAL GENE EXPRESSION ANALYSIS OF GASTRIC

CANCER BY OLIGONUCLEOTIDE MICROARRAYS," Cancer Res. 62(1):233-240; Selaru, F.M. et al. (2002) "ARTIFICIAL NEURAL NETWORKS DISTINGUISH AMONG SUBTYPES OF NEOPLASTIC COLORECTAL LESIONS," Gastroenterology 122:606-613), ovarian (Ramaswamy, S. et al. (2001) MULTICLASS CANCER DIAGNOSIS

- 5 USING TUMOR GENE EXPRESSION SIGNATURES," Proc Natl Acad Sci U S A. 98(26):15149-15154), and other types of human tumors found that over-expression of specific genes is a prominent feature that facilitated the molecular classification of these tumors. In contrast, a significant decrease in expression in the majority of the selected genes was found. One of the major survival pathways is regulated by protection of the mitochondrial membrane by BCL2 which is frequently over-expressed in tumor cells (Cleary, M.L. et al. (1986) "CLONING AND STRUCTURAL ANALYSIS OF CDNAS FOR BCL-2 AND A HYBRID BCL-2/IMMUNOGLOBULIN TRANSCRIPT RESULTING FROM THE T(14;18) TRANSLOCATION," Cell. 47(1):19-28).
  - Decreased expression of BCL2 antagonists, BAD and BAK1 was observed in samples from TC and LCNEC. This feature may provide survival advantage without the need for over-expression of BCL2 as occurs in certain types of lymphomas. BAD and BAK1 are located on chromosomes 11q13 and 6p21, respectively, which are in the regions of loss of heterozygosity (LOH) in neuroendocrine tumors (Hofmann, W.K. (2002) "RELATION BETWEEN RESISTANCE

15

. 20

- OF PHILADELPHIA-CHROMOSOME-POSITIVE ACUTE LYMPHOBLASTIC LEUKAEMIA
  TO THE TYROSINE KINASE INHIBITOR STI571 AND GENE-EXPRESSION PROFILES: A
  GENE-EXPRESSION STUDY," Lancet 359:481-486). Expression of BAK was further suppressed in TC and LCNEC below the level expected for LOH which suggests an additional regulatory mechanism. Interestingly, gain of chromosomal material
- in 6p21 was reported in LCNEC by CGH (Michelland, S. et al. (1999)

  "COMPARISON OF CHROMOSOMAL IMBALANCES IN NEUROENDOCRINE AND NONSMALL-CELL LUNG CARCINOMAS," Cancer Genet Cytogenet 114:22-30).

  Suppression of other apoptosis-promoting genes, such as caspase 4 (CASP4), may also provide survival advantage and has not been previously reported in
- Neuroendocrine tumors. Loss of expression of many genes which regulate cell-cell and cell-matrix interactions as well as DNA and RNA synthesis and repair were

apparent in all tumor types (Table 2). Table 2 shows representative deregulated genes classified by function. Genes selected by F-test with probability of <0.004 were genes assigned to functional categories and compared with the published comparative genomic hybridization (CGH) results (Michelland, S. et al. (1999) "COMPARISON OF CHROMOSOMAL IMBALANCES IN NEUROENDOCRINE AND NON-SMALL-CELL LUNG CARCINOMAS," Cancer Genet Cytogenet 114:22-30; Lui, W.-O. et al. (2001) "High Level Amplification Of 1p32-33 And 2p22-24 in Small Cell Lung Carcinomas" Intl. J Oncol. 19:451-457; Ullmann, R., et al. (2001) "Chromosomal Aberrations in A Series Of Large-Cell Neuroendocrine Carcinomas: Unexpected Divergence From Small-Cell Carcinoma Of The Lung," Hum Pathol. 32:1059-63; Walch, A.K. et al. (1998) "Typical And Atypical Carcinoid Tumors Of The Lung Are Characterized By 110 Deletions As Detected By Comparative Genomic Hybridization" Am J Pathol. 153:1089-98).

10

15

20

25

30

In the table, SC denotes small cell; LC denotes large cell neuroendocrine carcinoma; and TC denotes typical carcinoid.

Most studies performed to-date compare tumor samples with cDNA from normal tissues of an individual patient, pooled normal tissues or pooled cell lines as reference. To illustrate the invention, RNA from a single human cell line derived from normal bronchial epithelium, BEAS-2B (Amstad, P. et al. (1988) "NEOPLASTIC TRANSFORMATION OF A HUMAN BRONCHIAL EPITHELIAL CELL LINE BY A RECOMBINANT RETROVIRUS ENCODING VIRAL HARVEY RAS," Mol Carcinog. 1988 1:151-60), was used as a reference RNA. This cell line has minimal chromosomal rearrangements in early passages and neuroendocrine tumor features (Lee, B.H et al. (1998) "IN VITRO CHROMOSOME ABERRATION ASSAY USING HUMAN BRONCHIAL EPITHELIAL CELLS," J. Toxicol Environ. Health A. 55:325-9). Thus, the data indicate that accurate classification of neuroendocrine tumors can be achieved by comparing gene expression profiles of tumors to a single cell line derived from the same cell type. This method is applicable to analysis of tumorderived gene expression profiles from other organs, such as brain, where availability of normal tissue is limited.

In addition to suppression of the apoptotic pathway, only LCNEC tumors had increased expression (2-6- fold) of several receptors and growth factors. Increased expression of PDGFRB in conjunction with suppression of PDGFA-associated protein, which can down regulate the activity of PDGFA, could result in additional proliferative signal and contribute to the aggressive behavior of this tumor. In addition, high expression of an adhesion plaque-associated protein, P311, which has been recently identified as a glioblastoma invasion gene (Mariani, L. et al. (2001) "IDENTIFICATION AND VALIDATION OF P311 As A GLIOBLASTOMA INVASION GENE USING LASER CAPTURE MICRODISSECTION," Cancer Res 61:4190-4196) was detected.

5

10

20

25

30

The lack of a similar pattern of gene expression in SCLC may result from the small number of samples examined or may result from different transforming mechanisms since oncogenic mutations (p21<sup>ms</sup>, p53 and others) but not over-expressions are associated with SCLC (Wistuba, I.I. *et al.* (2001) "MOLECULAR GENETICS OF SMALL CELL LUNG CARCINOMA," Semin Oncol 28: 3-13). Functional analysis of genes whose expression significantly altered in pulmonary neuroendocrine tumors provides insight into the underlying biological mechanism, leading to survival and slow progression of TC whereas LCNEC and SCLC have an aggressive behavior.

Many studies have identified genes whose expression is significantly suppressed in neuroendocrine tumors. High incidence of LOH at 3p, 5q, llq, and 17p (Ohnuki, Y. et al. (1996) "CHROMOSOMAL CHANGES AND PROGRESSIVE TUMORIGENESIS OF HUMAN BRONCHIAL EPITHELIAL CELL LINES," Cancer Genet. Cytogenet. 92:99-110), except for chromosome 13q, correlates with significant decrease in expression of genes assigned to these locations, including MENI (11q13). The data adds to previously reported studies and confirms that expression profiling of lung neuroendocrine tumors provides accurate tumor classification. The molecular signature of relative abundance of gene expression derived by comparing mean gene expression of each 3 tumor subtypes is independent of the reference RNA and is of particular interest because of its clinical relevance. These results indicate that gene expression profiling of pulmonary neuroendocrine tumors

provides a diagnostic tool for tumor classification, particularly when histopathology interpretation is ambiguous.

In summary, light microscopy-based classification of pulmonary neuroendocrine tumors is often difficult. To search for molecular markers of neuroendocrine tumors, cDNA microarrays of 9,984 human transcripts were used 5 to identify classification-associated genes at a global genomic scale. Laser-capture microdissection was used to harvest tumor cells from frozen sections. The gene expression profiles in primary pulmonary neuroendocrine tumors from 17 surgical specimens (11 Typical Carcinoids, (TC), 3 Small Cell lung cancers (SCLC), 2 Large Cell Neuroendocrine tumors (LNEC), and one sample which had features of 10 SCLC and LNEC) were compared. The BRB ArrayTool (National Cancer Institute, NIH; http://linus.nci.nih.gov/BRB-ArrayTools.html) was employed to analyze gene expression patterns. An unsupervised, hierarchical clustering algorithm used to analyze these 17 tumors based only on similarities in gene expression resulted in a precise classification of each tumor type. The Class 15 Comparison Tool used to compare each tumor type identified 198 statistically significant genes (p<0.004) that accurately discriminated between 3 pre-defined tumor types. Analysis of these genes revealed that deletions were more frequent than were amplifications in pulmonary neuroendocrine tumors. Using comparative analysis of gene expression variance, a molecular signature for each tumor type 20 was identified. The signature genes included decreased expression of proapoptotic genes, cell-cell and cell matrix interacting components, cell cycle control and DNA repair, and anti-oncogenes. In particular, decreased expression of the BCL2 antagonist, BAK1, was found in all tumor types, whereas BAD was decreased in LCNEC and TC tumors. Over-expression of several growth factors 25 and receptors (CSF2RB, PDGFRB, IL13RA2, and IL6ST (gpI30)) was detected only in LCNEC tumors, and increased expression of IL-8R $\beta$  was shared by TC tumor cells. High expression of a neuronal marker, P311, previously reported to promote invasive phenotype in brain tumors, was detected in LCNEC, and a peptide processing enzyme, Carboxypeptidase E (CPE), was found in TC. The 30 analysis indicates that functional genomic comparison of expression profiles can

accurately classify pulmonary neuroendocrine tumors and will therefore facilitate the development of new therapies for patients having these malignancies.

Table 5 lists genes that are differentially expressed in different neuroendocrine tumors.

|                    | Table 5                              | (201.0)                              |
|--------------------|--------------------------------------|--------------------------------------|
| Genes Differential | ly Expressed In Small Cel            | ll Lung Cancer (SCLC)                |
| Nauroendocrine Tu  | mor Cells Relative To Lai            | rge Cell Neuroendocrine              |
| Carcinoma          | a (LCNEC) Neuroendocri               | ne Tumor Cells                       |
| IncytePD:523635    | IncytePD:1734113                     | IncytePD:2074154                     |
| IncytePD:561992    | IncytePD:1743234 ,                   | IncytePD:2104145                     |
| IncytePD:605019    | IncytePD:1749727                     | IncytePD:2172334                     |
| IncytePD:614679    | IncytePD:1755793                     | IncytePD:2180031                     |
| IncytePD:629077    | IncytePD:1808260                     | IncytePD:2182907                     |
| IncytePD:637639    | IncytePD:1810821                     | IncytePD:2200079                     |
| IncytePD:696002    | IncytePD:1821971                     | IncytePD:2205246                     |
| IncytePD:740878    | IncytePD:1824957                     | IncytePD:2308525                     |
| IncytePD:771715    | IncytePD:1841920                     | IncytePD:2356635                     |
| IncytePD:820580    | IncytePD:1853163                     | IncytePD:2374294                     |
| IncytePD:849425    | IncytePD:1857493                     | IncytePD:2469592                     |
| IncytePD:942207    | IncytePD:1872067                     | IncytePD:2506427                     |
| IncytePD:958513    | IncytePD:1890919                     | IncytePD:2507648                     |
| IncytePD:961082    | IncytePD:1921567                     | IncytePD:2508570                     |
| IncytePD:998069    | IncytePD:1931265                     | IncytePD:2568547                     |
| IncytePD-1258790   | IncytePD:1942845                     | IncytePD:2610374                     |
| IncytePD:1297269   | IncytePD:1960722                     | IncytePD:2663948                     |
| IncytePD:1308112   | IncytePD:1968721                     | IncytePD:2674277                     |
| IncytePD:1339241   | IncytePD:1988239                     | IncytePD:3038508                     |
| IncytePD:1382374   | IncytePD:1990361                     | IncytePD:3115514                     |
| IncytePD:1402615   | IncytePD:1997937                     | IncytePD:3123858<br>IncytePD:3179113 |
| IncytePD: 1405652  | IncytePD:1997967                     | IncytePD:3202075                     |
| IncytePD:1431819   | IncytePD:2048144                     | IncytePD:3255437                     |
| IncytePD:1435374   | IncytePD:2050085                     | IncytePD:3333130                     |
| IncytePD:1445203   | IncytePD:2054529                     | IncytePD:3360476                     |
| IncytePD: 1453450  | IncytePD:2055640                     | IncytePD:3381870                     |
| IncytePD:1481225   | IncytePD:2055687                     | IncytePD:3427560                     |
| IncytePD:1486983   | IncytePD:2055773                     | IncytePD:3432534                     |
| IncytePD:1501080   | IncytePD:2055926                     | IncytePD:3518380                     |
| IncytePD:1555545   | IncytePD:2056149                     | IncytePD:3562795                     |
| IncytePD:1561352   | IncytePD:2056172                     | IncytePD:3842669                     |
| IncytePD:1567995   | IncytePD:2056987                     | IncytePD:3967780                     |
| IncytePD:1603584   | IncytePD:2057547                     | IncytePD:3990209                     |
| IncytePD:1610083   | IncytePD:2057823                     | IncytePD:3999291                     |
| IncytePD.1624024   | IncytePD:2058537                     | IncytePD:4014715                     |
| IncytePD:1625169   | IncytePD:2060308                     | IncytePD:4016254                     |
| IncytePD:1635008   | IncytePD:2679117                     | IncytePD:4059193                     |
| IncytePD:1637517   | IncytePD:2740235                     | IncytePD:4144001                     |
| IncytePD:1653911   | IncytePD:2751387                     | IncytePD:4287342                     |
| IncytePD:1685342   | IncytePD:2852403                     | IncytePD:4626895                     |
| IncytePD:1691161   | IncytePD:2956581<br>IncytePD:2956906 | IncytePD:5017148                     |
| IncytePD:1699149   | Incyter D:2930900                    | HICYCH D.3017140                     |

|                                      | v + DD-2022601                       | IncuteDD:5006075       |
|--------------------------------------|--------------------------------------|------------------------|
| IncytePD:1702266                     | IncytePD:3032691                     | IncytePD:5096975       |
| IncytePD:1969563                     | IncytePD:3032825                     | III Coor (SCI C)       |
| Genes Differentially                 | y Expressed in Small Ce              | ell Lung Cancer (SCLC) |
| Neuroendocrine T                     | umor Cells Relative To               | Colle                  |
|                                      | Neuroendocrine Tumor                 | IncytePD:2453436       |
| IncytePD:477045                      | IncytePD:1748705                     | IncytePD:2469592       |
| IncytePD:478960                      | IncytePD:1749727<br>IncytePD:1755793 | IncytePD:2506427       |
| IncytePD:523635                      |                                      | IncytePD:2508570       |
| IncytePD:557451                      | IncytePD:1773638                     | IncytePD:2610374       |
| IncytePD:561992                      | IncytePD:1807294<br>IncytePD:1808260 | IncytePD:2622566       |
| IncytePD:588157                      | IncytePD:1810821                     | IncytePD:2663948       |
| IncytePD:605019                      | IncytePD:1812955                     | IncytePD:2674277       |
| IncytePD:696002                      | IncytePD:1822716                     | IncytePD:2679117       |
| IncytePD:740878                      | IncytePD:1824957                     | IncytePD:2722572       |
| IncytePD:771715                      | IncytePD:1841920                     | IncytePD:2728840       |
| IncytePD:818568                      | IncytePD:1853163                     | IncytePD:2740235       |
| IncytePD:820580                      | IncytePD:1857493                     | IncytePD:2748942       |
| IncytePD:885601                      | IncytePD:1858365                     | IncytePD:2751387       |
| IncytePD:899102                      | IncytePD:1872067                     | IncytePD:2758740       |
| IncytePD:958513<br>IncytePD:961082   | IncytePD:1890919                     | IncytePD:2798872       |
| IncytePD:1240748                     | IncytePD:1920650                     | IncytePD:2806778       |
| IncytePD:1258790                     | IncytePD:1921567                     | IncytePD:2852403       |
|                                      | IncytePD:1931265                     | IncytePD:2888814       |
| IncytePD:1297269<br>IncytePD:1308112 | IncytePD:1942845                     | IncytePD:2914719       |
| IncytePD:1402615                     | IncytePD:1960722                     | IncytePD:2923082       |
| IncytePD:1405652                     | IncytePD:1968721                     | IncytePD:2956906       |
| IncytePD:1431819                     | IncytePD:1988239                     | IncytePD:3010959       |
| IncytePD:1435374                     | IncytePD:1997792                     | IncytePD:3032691       |
| IncytePD:1445203                     | IncytePD:2050085                     | IncytePD:3032825       |
| IncytePD:1453450                     | IncytePD:2054529                     | IncytePD:3038508       |
| IncytePD:1481225                     | IncytePD:2055640                     | IncytePD:3115514       |
| IncytePD:1486983                     | IncytePD:2055687                     | IncytePD:3123858       |
| IncytePD:1488021                     | IncytePD:2055773                     | IncytePD:3179113       |
| IncytePD:1505977                     | IncytePD:2055926                     | IncytePD:3202075       |
| IncytePD:1513989                     | IncytePD:2056149                     | IncytePD:3334367       |
| IncytePD:1559756                     | IncytePD:2056172                     | IncytePD:3381870       |
| IncytePD:1561867                     | IncytePD:2056642                     | IncytePD:3432534       |
| IncytePD:1562658                     | IncytePD:2056987                     | IncytePD:3518380       |
| IncytePD:1567995                     | IncytePD:2057547                     | IncytePD:3562795       |
| IncytePD: 1603584                    | IncytePD:2057823                     | IncytePD:3728255       |
| IncytePD:1610083                     | IncytePD:2057908                     | IncytePD:3805046       |
| IncytePD:1624024                     | IncytePD:2058537                     | IncytePD:3871545       |
| IncytePD:1625169                     | IncytePD:2060308                     | IncytePD:3954785       |
| IncytePD:1635008                     | IncytePD:2074154                     | IncytePD:3967780       |
| IncytePD:1653911                     | IncytePD:2104145                     | IncytePD:3990209       |
| IncytePD:1669254                     | IncytePD:2153373                     | IncytePD:3999291       |
| IncytePD:1672749                     | IncytePD:2172334                     | IncytePD:4014715       |
| IncytePD:1691161                     | IncytePD:2180031                     | IncytePD:4059193       |
| IncytePD:1693847                     | IncytePD:2182907                     | IncytePD:4144001       |
| IncytePD:1699149                     | IncytePD:2304121                     | IncytePD:4253663       |
| IncytePD:1702266                     | IncytePD:2356635                     | IncytePD:4626895       |
| IncytePD:1704168                     | IncytePD:2369544                     | IncytePD:5017148       |
| IncytePD:1712663                     | IncytePD:2374294                     | IncytePD:5096975       |
| IncytePD:1734113                     | IncytePD:2383065                     |                        |

| Genes Differentially Expressed In Large Cell Neuroendocrine<br>Carcinoma (LCNEC) Neuroendocrine Tumor Cells Relative To |                                            |                                             |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|--|--|--|
| Carcinoma (LCI                                                                                                          | NEC) Neuroendocrine Trinoid (TC) Neuroendo | umor Cells Relative 10<br>crine Tumor Cells |  |  |  |
|                                                                                                                         |                                            | IncytePD:2507648                            |  |  |  |
| IncytePD:629077                                                                                                         | IncytePD:1748705                           | IncytePD:2508570                            |  |  |  |
| IncytePD:637639                                                                                                         | IncytePD:1773638                           |                                             |  |  |  |
| IncytePD:818568                                                                                                         | IncytePD:1807294                           | IncytePD:2622566                            |  |  |  |
| IncytePD:885601                                                                                                         | IncytePD:1812955                           | IncytePD:2679117                            |  |  |  |
| IncytePD:899102                                                                                                         | IncytePD:1821971                           | IncytePD:2728840                            |  |  |  |
| IncytePD:942207                                                                                                         | IncytePD:1822716                           | , IncytePD:2806778                          |  |  |  |
| IncytePD:1308112                                                                                                        | IncytePD:1858365                           | IncytePD:2888814                            |  |  |  |
| IncytePD:1402615                                                                                                        | IncytePD:1872067                           | IncytePD:2914719                            |  |  |  |
| IncytePD:1435374                                                                                                        | IncytePD:1990361                           | IncytePD:2956581                            |  |  |  |
| IncytePD:1488021                                                                                                        | IncytePD:1997967                           | IncytePD:3255437                            |  |  |  |
| IncytePD:1501080                                                                                                        | IncytePD:2048144                           | IncytePD:3333130                            |  |  |  |
| IncytePD:1505977                                                                                                        | IncytePD:2153373                           | IncytePD:3360476                            |  |  |  |
| IncytePD:1555545                                                                                                        | IncytePD:2205246                           | IncytePD:3427560                            |  |  |  |
| IncytePD:1559756                                                                                                        | IncytePD:2299818                           | IncytePD:3518380                            |  |  |  |
| Incyter D. 1559750                                                                                                      | IncytePD:2304121                           | IncytePD:3805046                            |  |  |  |
| IncytePD:1561352                                                                                                        | IncytePD:2308525                           | IncytePD:4016254                            |  |  |  |
| IncytePD:1561867                                                                                                        |                                            | IncytePD:4144001                            |  |  |  |
| IncytePD:1610993                                                                                                        | IncytePD:2369544                           | IncytePD:4287342                            |  |  |  |
| IncytePD:1704168                                                                                                        | IncytePD:2453436                           | Hicytol D.4207542                           |  |  |  |
| IncytePD:1712663                                                                                                        | IncytePD:2469592                           |                                             |  |  |  |
| IncytePD:1743234                                                                                                        | IncytePD:2506427                           |                                             |  |  |  |

The methods employed in the present invention can be similarly employed to facilitate the diagnosis of other tumor types, for example, adenocarcinomas, which are distinct from neuroendocrine tumors and exhibit significant differences in gene expression (Garber, M. E. et al. (2001) "Diversity Of Gene Expression

5 IN ADENOCARCINOMA Of The Lung" Proc. Natl. Acad. Sci. (U.S.A.) 98:13784–13789; Bhattacharjee, A. et al. (2001) "Classification Of Human Lung Carcinomas By MRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses" Proc. Natl. Acad. Sci. (U.S.A.) 98:13790–13795). cDNA microarrays that can be used to identify profiles of genes expressed in adenocarcinomas are disclosed by Miura, K. et al. (2002) ("Laser Capture Microdissection And Microarray Expression Analysis Of Lung Adenocarcinoma Reveals Tobacco Smoking- And Prognosis-Related Molecular Profiles," Canc. Res. 62:3244-3250).

All publications and patents mentioned in this specification are herein
incorporated by reference to the same extent as if each individual publication or
patent application was specifically and individually indicated to be incorporated by
reference. Having now generally described the invention, the same will be more

readily understood through reference to the following examples, which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

5

- 51 -

#### SEQUENCE LISTING

|    |        | He. P. | s, Curtis<br>ing |                           |            | ·         |          |    |
|----|--------|--------|------------------|---------------------------|------------|-----------|----------|----|
| 5  |        | Varti  | covski, 1        | Lyuba                     |            |           |          |    |
|    |        | Travi  | s, Willia        | am .                      |            |           |          |    |
| 10 | <120>  |        |                  | ompositions<br>E Lung Can |            | Diagnosis | of       |    |
| 10 | <130>  | 3514.  | 108              |                           |            |           |          |    |
|    | <140>  |        |                  |                           |            |           |          |    |
| 15 | <141>  |        |                  |                           |            |           |          |    |
| 13 | <160>  | 1      |                  |                           |            |           |          |    |
|    | <170>  | Paten  | tIn Ver.         | 2.1                       |            |           |          |    |
| 20 | <210>  | 1      |                  |                           |            |           |          |    |
|    | <211>  | 66     |                  |                           |            |           |          |    |
|    | <212>  |        |                  |                           |            |           |          |    |
|    | <213>  | Bacte  | riophage         | <b>T</b> 7                |            |           |          |    |
| 25 | <220>  |        |                  |                           |            |           |          |    |
|    | <221>  | promo  | ter              |                           |            |           |          |    |
|    | <222>  | (1)    | (66)             |                           |            |           |          |    |
| 30 | <400>  | 1      |                  |                           | •          |           |          |    |
|    | tctagt | cgac g | gccagtgaa        | ttgtaatacg                | actcactata | gggcgtttt | tttttttt | 60 |
|    | ttttt  | :      |                  |                           |            |           |          | 66 |

#### What Is Claimed Is:

- 1. A method for determining whether a candidate cell is a neuroendocrine tumor cell, wherein said method comprises the steps of:
  - (A) determining the profile of expression of a plurality of genes of said candidate cell; and
  - (B) comparing such determined profile of expression with the profile of expression of said genes of a small cell lung cancer cell, a large cell neuroendocrine carcinoma cell, a typical carcinoid tumor cell or an atypical carcinoid tumor cell;
- to thereby determine whether said candidate cell is a neuroendocrine tumor cell.
  - 2. The method of claim 1, wherein said method additionally permits a determination of neuroendocrine tumor cell type.
- The method of claim 2, wherein said method determines whether said
   candidate cell is a small cell lung cancer (SCLC) neuroendocrine tumor
   cell.
  - The method of claim 2, wherein said method determines whether said candidate cell is a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell.
- 20 5. The method of claim 2, wherein said method determines whether said candidate cell is a typical carcinoid (TC) neuroendocrine tumor cell.
  - 6. The method of claim 2, wherein said method determines whether said candidate cell is an atypical carcinoid (AT) neuroendocrine tumor cell.
- 7. The method of claim 2, wherein said step (A) comprises incubating RNA of said candidate cell, or DNA or RNA amplified from such RNA, in the presence of a plurality of genes, or fragments or RNA transcripts thereof,

under conditions sufficient to cause RNA to hybridize to complementary DNA or RNA molecules; and detecting hybridization that occurs.

8. The method of claim 7, wherein said plurality of genes, or polynucleotide fragments or RNA transcripts thereof, are distinguishably arrayed in a microarray.

- The method of claim 8, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in neuroendocrine tumor cells relative to normal cells.
- 10 10. The method of claim 8, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells.
- 15 11. The method of claim 8, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.
- 12. The method of claim 8, wherein said microarray comprises arrayed genes,
  20 or polynucleotide fragments or RNA transcripts thereof, that are
  differentially expressed in small cell lung cancer (SCLC) neuroendocrine
  tumor cells relative to atypical carcinoid (AT) neuroendocrine tumor cells.
- The method of claim 8, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.

14. The method of claim 8, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to atypical carcinoid (AT) neuroendocrine tumor cells.

- 15. The method of claim 8, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in typical carcinoid (TC) neuroendocrine tumor cells relative to atypical carcinoid (AT) neuroendocrine tumor cells.
- 16. A microarray of genes, or polynucleotide fragments or RNA transcripts
  thereof for distinguishing a neuroendocrine tumor cell, said microarray
  comprising a solid support having greater than 10 genes, or polynucleotide
  fragments or RNA transcripts thereof, distinguishably arrayed in spaced
  apart regions, wherein said microarray comprises a sufficient number of
  genes, or polynucleotide fragments or RNA transcripts thereof, that are
  differentially expressed in a small cell lung cancer (SCLC) cell, a large cell
  neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell, a typical
  carcinoid (TC) neuroendocrine tumor cell, or an atypical carcinoid (AT)
  neuroendocrine tumor cell, relative to a normal cell or a cell belonging to a
  different neuroendocrine tumor cell type, to permit said microarray to
  distinguish a neuroendocrine tumor cell.
  - 17. The microarray of claim 16, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a neuroendocrine tumor cell relative to a normal cell to permit said microarray to distinguish between a neuroendocrine tumor cell and a normal cell.
    - 18. The microarray of claim 16, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC)

neuroendocrine tumor cell relative to a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell to permit said microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell.

19. The microarray of claim 16, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit said microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and a typical carcinoid (TC) neuroendocrine tumor cell.

5

10

- 20. The microarray of claim 16, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to an atypical carcinoid (AT) neuroendocrine tumor cell to permit said microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and an atypical carcinoid (AT) neuroendocrine tumor cell.
- 20 21. The microarray of claim 16, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit said microarray to distinguish between a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell and a typical carcinoid (TC) neuroendocrine tumor cell.
  - 22. The microarray of claim 16, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma

(LCNEC) neuroendocrine tumor cell relative to an atypical carcinoid (AT) neuroendocrine tumor cell to permit said microarray to distinguish between a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell and an atypical carcinoid (AT) neuroendocrine tumor cell.

5 23. The microarray of claim 16, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a typical carcinoid (TC) neuroendocrine tumor cell relative to an atypical carcinoid (AT) neuroendocrine tumor cell to permit said microarray to distinguish between a typical carcinoid (TC) neuroendocrine tumor cell and an atypical carcinoid (AT) neuroendocrine tumor cell.

## Abstract of the Invention:

This invention relates to methods and compositions for the diagnosis of neuroendocrine lung cancers. In particular, the invention concerns the use of cDNA microarrays to facilitate the differential diagnosis of neuroendocrine tumor types..

1/5

Figure 1A



Figure 1B



2/5

Figure 1C



Figure 1D





Figure 2



Figure 3

5/5

Figure 4A



Genes Overexpressed in LCNEC Tumors

Figure 4B



Genes Overexpressed in TC Neuroendocrine Tumors

### United States Patent & Trademark Office Office of Initial Patent Examination — Scanning Division



| application deficiencies found during scanning: |    |                  | -                |
|-------------------------------------------------|----|------------------|------------------|
| □ Page(s)                                       | of |                  | were not present |
| for scanning.                                   |    | (Document title) |                  |
|                                                 |    |                  |                  |
|                                                 |    | ,                | •                |
| ☐ Page(s)                                       | of |                  | were not present |
| for scanning.                                   |    | (Document title) |                  |

Scanned copy is best available. Parts of drawings are dark