Name & Student No.:

- Abdel Kader, Schehat & 10064822
- Tarbouch, Johny & 10033994
- Asfari, Mustafa & 10075209
- 1. Reparametrization trick: Explain how the trick works and what problem it addresses.
 - In VAE we need to sample the latent variable z from a distribution $N(\mu, \sigma)$. The problem is that the sampling operation is random and no gradient is defined, which prevents backpropagation
 - The reparametrization trick bypasses the randomness by expressing the sampling operation deterministic with 2 parts.
 - 1. The random part by sampling ε from a standard normal distribution N(0, 1)
 - 2. The deterministic part μ and σ (parameters to learn)
 - Then the computation of z = μ + ϵ * σ is deterministic and allows backpropagation of z through μ and σ
- 2. Explain in your own words why optimization is hard in the case of GANs. What are common ways to improve GAN training stability?
 - Optimization of GAN is hard because the optimization happens in a minimax game format with the generator and discriminator, they need to be equally good to properly train
 - Vanishing gradient: If the discriminator is too good, then the gradient signal for updating is very small and leads to slow or no progress in improving the generator
 - Solution: The generator is especially bad at the beginning, so let learn alone a little to get better. Additionally, adjust the loss of the generator with a minus sign then gradient signal is larger if the discriminator is too good
 - Mode collapse: The generator "collapses" into generating only a few modes (classes or patterns) and produces repetitive outputs. It fails to capture the diversity of the true data distribution.
 - o Solution: Wasserstein GAN, not further discussed in lecture
- 3. Shortly compare GANs and VAEs. In which setting would you select one over the other?
 - Structure
 - GAN consists of a generator and a discriminator playing a minimax game where the generator produces fake data and the discriminator has to distinguish between real and fake data
 - VAE consists of an encoder, mapping the data to a latent space and the decoder reconstructs the data from the latent space
 - Sampling
 - Both sample from a latent space to generate new data, with the generator doing this in GAN and the decoder in VAE
 - Latent Space Distribution
 - \circ GAN assumes standard normal distribution N(0, 1) and VAE assumes N(μ , σ) and tries to approximate real distribution
 - Training objective
 - GAN minimizes the classification error in a minimax game and VAE maximizes ELBO and minimizes reconstruction error

• Output Quality

 GANs often produce more realistic images and VAE tends to create blurrier images due to smoothing the latent space

• Application

- o GAN: Realistic image generation
- VAE: Understanding the latent space for tasks like data reconstruction or anomaly detection