(1) Sea $\Sigma = \{@, !\}$ y sea $\mathcal{P}_0 \in \operatorname{Pro}^{\Sigma}$. Sea

$$L = \{ \alpha \in \Sigma^* : (\exists \beta \in \Sigma^*) \ \Psi_{\mathcal{P}_0}^{0,1,\#}(\alpha\beta) \le \Psi_{\mathcal{P}_0}^{0,2,\#}(\alpha,\alpha) \}$$

- (a) Justifique que $\varepsilon \in L$.
- (b) De un programa \mathcal{P} tal que $\mathrm{Dom}(\Psi^{1,0,*}_{\mathcal{P}}) = \omega$ y $\mathrm{Im}(\Psi^{1,0,*}_{\mathcal{P}}) = L$.
- (2) Sea $\Sigma = \{@,!\}$. Supongamos $S_1, S_2 \subseteq \omega \times \omega \times \Sigma^*$ son conjuntos Σ -enumerables tales que $(0,0,\varepsilon) \in S_1 \cap S_2$.
 - (a) De un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ (usando macros) tal que:
 - i. Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1, x_2, y_1, ...), (\alpha_1, \beta_1, ...))$, donde $(x_1, x_2, \alpha_1) \in S_1 \cap S_2$.
 - ii. Para cada $(x_1, x_2, \alpha_1) \in S_1 \cap S_2$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1, x_2, y_1, ...), (\alpha_1, \beta_1, ...))$.
 - (b) Use la existencia de \mathcal{P} para probar que $S_1 \cap S_2$ es Σ -enumerable.

NOTA: para cada macro usado dar en forma matematica precisa la funcion o predicado asociado, dependiendo si el macro es de asignacion o de tipo IF. Para describir la funcion o predicado use la notacion clasica para funciones (i.e. la enseñada en la Guia 1), NO mescle notacion propia del lenguaje S^{Σ} cuando quiere describir matematicamente una funcion. Luego justificar la existencia del macro explicando por que dicha funcion es Σ -computable. Finalmente (y solo despues de haber hecho lo anterior) si le parece mas agradable denote el macro en una forma mas simpatica.