

LP141WP2
Liquid Crystal Display

Product Specification

SPECIFICATION FOR APPROVAL

 Preliminary Specification Final Specification

Title	14.1" WXGA+ TFT LCD	
-------	---------------------	--

BUYER	Dell	SUPPLIER	LG Display Co., Ltd.
MODEL	Diaz	*MODEL	LP141WP2

*When you obtain standard approval,
please use the above model name without suffix

APPROVED BY	SIGNATURE
/	_____
/	_____
/	_____
Please return 1 copy for your confirmation with your signature and comments.	

APPROVED BY	SIGNATURE
K. J. Kwon / S.Manager	_____
REVIEWED BY	
G. J. Han / Manager	_____
PREPARED BY	
K.Y. Kwon / Engineer	_____
Product Engineering Dept. LG Display Co., Ltd	

LP141WP2
Liquid Crystal Display

Product Specification

Contents

No	ITEM	Page
	CONTENTS	1
	RECORD OF REVISIONS	2
1	GENERAL DESCRIPTION	3
2	ABSOLUTE MAXIMUM RATINGS	4
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTERISTICS	5
3-2	INTERFACE CONNECTIONS	6
3-3	SIGNAL TIMING SPECIFICATIONS	8
3-4	SIGNAL TIMING WAVEFORMS	10
3-5	COLOR INPUT DATA REFERENCE	11
3-6	POWER SEQUENCE	12
4	OPTICAL SPECIFICATIONS	13
5	MECHANICAL CHARACTERISTICS	16
6	RELIABILITY	20
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	21
7-2	EMC	21
8	PACKING	
8-1	DESIGNATION OF LOT MARK	22
8-2	PACKING FORM	22
9	PRECAUTIONS	23

LP141WP2
Liquid Crystal Display

Product Specification

RECORD OF REVISIONS

LP141WP2
Liquid Crystal Display

Product Specification

1. General Description

The LP141WP2 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 14.1 inches diagonally measured active display area with WXGA+ resolution(1440 horizontal by 900 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP141WP2 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP141WP2 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP141WP2 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	14.1 inches diagonal
Outline Dimension	320.0 (H) × 207.0 (V) × 5.7(D, max.) mm
Pixel Pitch	0.2106 mm × 0.2106 mm
Pixel Format	1440 horiz. by 900 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	300 cd/m ² (Typ., @I _{LED} =19mA), 5 points Average
Power Consumption	Total 5.45Watt @ LCM circuit 1.55W(Typ.), B/L 3.3 W (Typ.), LED Driver 0.6W(Typ.)
Weight	390g(Max.)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Hard coating(3H) Glare treatment of the front polarizer
RoHS Comply	Yes

LP141WP2
Liquid Crystal Display

Product Specification

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Values		Units	Notes
		Min	Max		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at $25 \pm 5^\circ\text{C}$
Operating Temperature	TOP	0	50	°C	1
Storage Temperature	HST	-20	60	°C	1
Operating Ambient Humidity	HOP	10	90	%RH	1
Storage Humidity	HST	10	90	%RH	1

Note : 1. Temperature and relative humidity range are shown in the figure below.
Wet bulb temperature should be 39°C Max, and no condensation of water.

LP141WP2
Liquid Crystal Display

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

The LP141WP2 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED BL.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Values			Unit	Notes
		Min	Typ	Max		
MODULE :						
Power Supply Input Voltage	V _{CC}	3.0	3.3	3.6	V _{DC}	
Power Supply Input Current	I _{CC}	400	470	540	mA	1
Power Consumption	P _C	-	1.55	1.78	Watt	1
Differential Impedance	Z _m	90	100	110	Ohm	2
LED Backlight :						
Operating Voltage	V _{LED}	-	28.8	30.6	V	3
Operating Current per string	I _{LED}	-	19	-	mA	4
Power Consumption	P _{BL}	-	3.3	3.5	Watt	5
LED Driver power consumption	P _{Driver}	-	0.6	-	Watt	-
Life Time		10,000	-	-	Hrs	6

Note)

1. The specified current and power consumption are under the Vcc = 3.3V , 25°C, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
3. The variance of the voltage is $\pm 10\%$.
4. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics. I_{LED} is the current of each LEDs' string, LED backlight has 6 strings on it.
5. The LED power consumption shown above does not include power of external LED driver circuit for typical current condition.
6. The life time is determined as the time at which brightness of LED is 50% compare to that of initial value at the typical LED current.

LP141WP2
Liquid Crystal Display

Product Specification

3-2. Interface Connections

This LCD employs two interface connections, a 50 pin connector is used for the module electronics interface and the other connector is used for the internal backlight system.

The electronics interface connector is a model FI-VHP50S manufactured by JAE.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	Test Loop	Test Loop (only to pin 30)	1, Interface chips
2	VEEDID	EDID 3.3V power	1.1 LCD : SW, ST2_BS (LCD Controller) including LVDS Receiver
3	VSS	Ground	1.2 System : * Pin to Pin compatible with LVDS
4	CLK_EEDID	EDID clock	2. Connector
5	DATA_EEDID	EDID data	2.1 LCD : JAE FI-VHP50 or equivalent (1.0 mm thickness, lock-in type, pin 1 starts from left on the front)
6	VSS	Ground	2.2 Mating:JAE FI-VHP50 series or equivalent (micro-coax type)
7	Odd_Rin0-	Negative LVDS differential data input	2.3 Connector pin arrangement
8	Odd_Rin0+	Positive LVDS differential data input	LCD rear view
9	VSS1	Ground	
10	Odd_Rin1-	Negative LVDS differential data input	
11	Odd_Rin1+	Positive LVDS differential data input	
12	VSS2	Ground	
13	Odd_Rin2-	Negative LVDS differential data input	
14	Odd_Rin2+	Positive LVDS differential data input	
15	VSS3	Ground	
16	Odd_ClkIN-	Negative LVDS differential clock input	
17	Odd_ClkIN+	Positive LVDS differential clock input	
18	VSS4	Ground	
19	Even_Rin0-	Negative LVDS differential data input	
20	Even_Rin0+	Positive LVDS differential data input	
21	VSS5	Ground	
22	Even_Rin1-	Negative LVDS differential data input	
23	Even_Rin1+	Positive LVDS differential data input	
24	VSS6	Ground	
25	Even_Rin2-	Negative LVDS differential data input	
26	Even_Rin2+	Positive LVDS differential data input	
27	VSS7	Ground	
28	Even_ClkIN-	Negative LVDS differential clock input	
29	Even_ClkIN+	Positive LVDS differential clock input	
30	Test Loop	Test Loop (only to pin 1)	

[LCD Module Rear View]

LP141WP2
Liquid Crystal Display

Product Specification

1	CONNTEST	Connector test (only to pin 20)
2	VDD	Logic power 3.3V
3	VDD	Logic power 3.3V
4	TEST(BIST_EN)	Panel Self Test
5	+5V_ALW	No connection
6	VSS	Ground
7	VSS	Ground
8	PWM_BL	PWM brightness control
9	VBL-	LED power return
10	VBL-	LED power return
11	VBL-	LED power return
12	VBL-	LED power return
13	NC	No connect
14	VBL+	7V ~ 20V LED power
15	VBL+	7V ~ 20V LED power
16	VBL+	7V ~ 20V LED power
17	VBL+	7V ~ 20V LED power
18	SMB_DATA	SMBus Data
19	SMB_CLK	SMBus Clk
20	CONNTEST	Connector test(only to pin 1)

The LED backlight connector is a model TF12-9S-0.5H, manufactured by Hirose.

Table 4. BACKLIGHT CONNECTOR PIN CONFIGURATION (CN2)

Pin	Symbol	Description	Notes
1	Vdc(1,2,3,4,5,6)	LED Anode(Positive)	
2	Vdc(1,2,3,4,5,6)	LED Anode(Positive)	
3	NC	No Connection	
4	Vdc1	LED Cathode (Negative)	
5	Vdc2	LED Cathode (Negative)	
6	Vdc3	LED Cathode (Negative)	
7	Vdc4	LED Cathode (Negative)	
8	Vdc5	LED Cathode (Negative)	
9	Vdc6	LED Cathode (Negative)	

LP141WP2
Liquid Crystal Display

Product Specification

3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Differential Voltage	$ V_{ID} $	100	600	mV	-
LVDS Common mode Voltage	V_{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V_{IN}^{LVDS}	0.3	2.1	V	-

$|V_{ID}|$

3-3-2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skew Margin	t_{SKEW}_{OV}	- 400	+ 400	ps	$\# V_{ID} = (LVDS+) - (LVDS-) $ $\# V_{CM} = \{(LVDS+) + (LVDS-)\}/2$ 85MHz > Fclk ≥ 65MHz
	t_{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t_{SKEW_EO}	- 1/7	+ 1/7	T_{clk}	-
Maximum deviation of input clock frequency during SSC	F_{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F_{MOD}	-	200	KHz	-

LP141WP2
Liquid Crystal Display

Product Specification

< Clock skew margin between channel >

LVDS Even Data
< Spread Spectrum >

3-3-3. Data Format

- LVDS 2 Port

< LVDS Data Format >

LP141WP2
Liquid Crystal Display

Product Specification

3-3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 5. TIMING TABLE

ITEM	Symbol	Min.	Typ.	Max.	Unit	Note
DCLK	Frequency	f_{CLK}	-	51	-	MHz
Hsync	Active	t_{WH}	900	916	932	tCLK
	Period	t_{HP}	16	16	16	
	Width-Active	t_{WHA}	720	720	720	
Vsync	Active	t_{WVA}	920	926	939	tHP
	Period	t_{VP}	3	6	10	
	Width-Active	t_{WV}	900	900	900	
Data Enable	Horizontal back porch	t_{HBP}	148	156	164	tCLK
	Horizontal front porch	t_{HFP}	20	24	28	
	Vertical back porch	t_{VBP}	12	17	23	tHP
	Vertical front porch	t_{VFP}	2	3	6	

3-4. Signal Timing Waveforms

Condition : $V_{CC} = 2.5V$

LP141WP2
Liquid Crystal Display

Product Specification

3-5. Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color ; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

Color		Input Color Data																					
		RED						GREEN						BLUE									
		MSB	R5	R4	R3	R2	R1	R0	MSB	G5	G4	G3	G2	G1	G0	MSB	B5	B4	B3	B2	B1	B0	
Basic Color	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Cyan	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
RED	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	
	RED (62)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
GREEN	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
	
	GREEN (62)	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
BLUE	GREEN (63)	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	
BLUE	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1

LP141WP2
Liquid Crystal Display

Product Specification

3-6. Power Sequence

Table 7. POWER SEQUENCE TABLE

Parameter	Value			Units
	Min.	Typ.	Max.	
T_1	0	-	10	(ms)
T_2	0	-	50	(ms)
T_3	200	-	-	(ms)
T_4	200	-	-	(ms)
T_5	0	-	50	(ms)
T_6	0	-	10	(ms)
T_7	400	-	-	(ms)

Note)

1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
2. Please avoid floating state of interface signal at invalid period.
3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
4. Lamp power must be turn on after power supply for LCD and interface signal are valid.

LP141WP2
Liquid Crystal Display

Product Specification

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 20 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0°.

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 8. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, fv=60Hz, f_{CLK}= 102MHz, I_{LED} = 19mA

Parameter	Symbol	Values			Units	Notes
		Min	Typ	Max		
Contrast Ratio	CR	500	-	-		1
Surface Luminance, white	L _{WH}	250	300	-	cd/m ²	2
Luminance Variation(13points)	δ _{WHITE}		1.4	1.6		3
Response Time	Tr _R + Tr _D		16	25	ms	4
Color Coordinates						
RED	RX	0.547	0.577	0.607		
	RY	0.319	0.349	0.379		
GREEN	GX	0.299	0.329	0.359		
	GY	0.520	0.550	0.580		
BLUE	BX	0.132	0.162	0.192		
	BY	0.103	0.133	0.163		
WHITE	WX	0.283	0.313	0.343		+/- 0.030
	WY	0.299	0.329	0.359		+/- 0.030
Viewing Angle						5
x axis, right($\Phi=0^\circ$)	Θr	60	70	-	degree	
x axis, left ($\Phi=180^\circ$)	Θl	60	70	-	degree	
y axis, up ($\Phi=90^\circ$)	Θu	50	60	-	degree	
y axis, down ($\Phi=270^\circ$)	Θd	50	60	-	degree	
Gray Scale		-	-	-		6

LP141WP2
Liquid Crystal Display

Product Specification

Notes)

1. Contrast Ratio(CR) is defined mathematically as

$$\text{Contrast Ratio} = \frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}$$

2. Surface luminance is the 5point (1~5)average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2.

When $I_{LED} = 19mA$, $L_{WH}=300cd/m^2$ (Typ.)

3. Luminance variation is measured for 13 point For more information see FIG 2.

δ WHITE = Maximum(LN1,LN2, LN13) ÷ Minimum(LN1,LN2, LN13)

4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

6. Gray scale specification

* $f_V=60Hz$

Gray Level	Luminance [%] (Typ)
L0	0.33
L7	1.47
L15	4.5
L23	10.7
L31	19.9
L39	33.0
L47	50.8
L55	73.0
L63	100

LP141WP2
Liquid Crystal Display

Product Specification

FIG. 2 Luminance

<Measuring point for Average Luminance & measuring point for Luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

FIG. 4 Viewing angle

LP141WP2
Liquid Crystal Display

Product Specification

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP141WP2.
In addition the figures in the next page are detailed mechanical drawing of the LCD.

Outline Dimension	Horizontal	319.5 ± 0.50mm
	Vertical	206.5 ± 0.50mm
	Depth	5.7mm(Max.)
Bezel Area	Horizontal	308.4mm
	Vertical	193.8mm
Active Display Area	Horizontal	303.264mm
	Vertical	189.54 mm
Weight	390g (Max.)	
Surface Treatment	Hard coating(3H) Glare treatment of the front polarizer	

LP141WP2
Liquid Crystal Display

Product Specification

<FRONT VIEW>

Note) Unit:[mm], General tolerance: $\pm 0.5\text{mm}$

LP141WP2
Liquid Crystal Display

Product Specification

<REAR VIEW>

LP141WP2
Liquid Crystal Display

Product Specification

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

- * Mounting Screw Length (A)
= 2.0(Min) / 2.5(Max)
- * Mounting Screw Hole Depth (B)
= 2.5(Min)
- * Torque : 2.5 kgf.cm(Max)
(Measurement gauge : torque meter)

Notes : 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.

[DETAIL INFORMATION OF PPID LABEL AND REVISION CODE]

* PPID Label Revision :
It is subject to change with Dell event. Please refer to the below table for detail.

Classification	No Change	1st Revision	2nd Revision	...	9th Revision	...
SST(WS)	X00	X01	X02	...	A09	...
PT(ES)	X10	X11	X12	...	A19	...
ST(CS)	X20	X21	X22	...	A29	...
XB(MP)	A00	A01	A02	...	A09	...

LP141WP2
Liquid Crystal Display

Product Specification

LPL Proposal for system cover design.(Appendix)

1	Gap check for securing the enough gap between LCM and System cover.
Define	<p>1.Rear side of LCM is sensitive against external stress, and previous check about interference is highly needed.</p> <p>2.In case there is something from system cover comes into the boundary above, mechanical interference may cause the FOS defects. (Eg: Ripple, White spot..)</p>
2	Check if antenna cable is sufficiently apart from T-CON of LCD Module.
Define	
	<p>1.If system antenna is overlapped with T-CON, it might be cause the noise.</p>

LP141WP2
Liquid Crystal Display

Product Specification

LPL Proposal for system cover design.

3	Gap check for securing the enough gap between LCM and System hinge.
Define	<p>1. At least 2.0mm of gap needs to be secured to prevent the shock related defects.</p> <p>2. "L" type of hinge is recommended than "I" type under shock test.</p>
4	Checking the path of the System wire.
Define	<p>1. COF area needs to be handled with care.</p> <p>2. GOOD → Wire path design to system side. OK → Wire path is located between COFs. BAD → Wire path overlapped with COF area.</p>

LP141WP2
Liquid Crystal Display

Product Specification

LPL Proposal for system cover design.

5	Using a bracket on the top of LCM is not recommended.	
<p style="text-align: center;">With bracket</p>		<p style="text-align: center;">Without bracket</p>
<p>Define</p> <ol style="list-style-type: none"> Condition without bracket is good for mechanical noise, and can minimize the light leakage from deformation of bracket. The results shows that there is no difference between the condition with or without bracket. 		
6	Securing additional gap on CNT area..	
<p>A</p> <p>A~A-1</p> <p>cut</p> <p>System cover inner side.</p> <p>User connector area.</p> <p>User connector Cable pathway.</p> <p>FPC:Flexible Printed Circuit.</p>		
Define	<ol style="list-style-type: none"> CNT area is specially sensitive against external stress, and additional gap by cutting on system cover will be helpful on removing the Ripple. Using a thinner CNT will be better. (eg: FPC type) 	

LP141WP2
Liquid Crystal Display

Product Specification

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min 3 axis, 30min/axis
6	Shock test (non-operating)	- No functional or cosmetic defects following a shock to all 6 sides delivering at least 180 G in a half sine pulse no longer than 2 ms to the display module - No functional defects following a shock delivering at least 200 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

LP141WP2
Liquid Crystal Display

Product Specification

7. International Standards

7-1. Safety

- a) UL 1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995.
Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
- b) CAN/CSA C22.2 No. 950-95 Third Edition, Canadian Standards Association, Jan. 28, 1995.
Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
- c) EN 60950 : 1992+A1: 1993+A2: 1993+A3: 1995+A1: 1997+A11: 1997
IEC 950 : 1991+A1: 1992+A2: 1993+A3: 1995+A1: 1996
European Committee for Electrotechnical Standardization(CENELEC)
EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz." American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998

LP141WP2
Liquid Crystal Display

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A	B	C	D	E	F	G	H	I	J	K	L	M
---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C : SIZE(INCH)

E : MONTH

D : YEAR

F ~ M : SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	A	B	C

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module.
This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box : 30 pcs

b) Box Size : 490mm X 393mm X 287mm

LP141WP2
Liquid Crystal Display

Product Specification

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage :
 $V=\pm 200mV$ (Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)
And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

LP141WP2
Liquid Crystal Display

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.
It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer.
This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

LP141WP2

Liquid Crystal Display

Product Specification

	Byte (Dec)	Byte (Hex)	Field Name and Comments	Value (Hex)	Value (Bin)
Header	0	00	Header	00	00000000
	1	01	Header	FF	11111111
	2	02	Header	FF	11111111
	3	03	Header	FF	11111111
	4	04	Header	FF	11111111
	5	05	Header	FF	11111111
	6	06	Header	FF	11111111
	7	07	Header	00	00000000
Vendor / Product	8	08	EISA manufacture code (3 Character ID)	LGD	30 00110000
	9	09	EISA manufacture code (Compressed ASC II)		E4 11100100
	10	0A	Panel Supplier Reserved - Product Code	013Eh	3F 00111111
	11	0B	(Hex LSB first)		01 00000001
	12	0C	LCD Module Serial No - Preferred but Optional ("0" if not used)		00 00000000
	13	0D	LCD Module Serial No - Preferred but Optional ("0" if not used)		00 00000000
	14	0E	LCD Module Serial No - Preferred but Optional ("0" if not used)		00 00000000
	15	0F	LCD Module Serial No - Preferred but Optional ("0" if not used)		00 00000000
	16	10	Week of Manufacture : 00 weeks		00 00000000
	17	11	Year of Manufacture 2008 year		12 00010010
	18	12	EDID structure version # = 1		01 00000001
	19	13	EDID revision # = 3		03 00000011
	20	14	Video input Definition = Digital signal, 6 bit _ Dell only		90 10010000
	21	15	Max H image size (Rounded cm) = 30 cm		1E 00011110
Display	22	16	Max V image size (Rounded cm) = 19 cm		13 00010011
	23	17	Display gamma = (gamma*100)+100 = Example:(2.2*100)+100=120 = 2.2 Gamma		78 01111000
	24	18	Feature Support (no_DPMS,no_Active Off/Very Low Power,RGB color display,Timing BLK 1,no_GTF)		0A 00001010
	25	19	Red/Green Low Bits (RxRy/GxGy)		D7 11010111
	26	1A	Blue/White Low Bits (BxBy/WhWy)		85 10000101
	27	1B	Red X Rx = 0.577		93 10010011
	28	1C	Red Y Ry = 0.349		59 01011001
	29	1D	Green X Gx = 0.329		54 01010100
Vendor / Product	30	1E	Green Y Gy = 0.55		8C 10001100
	31	1F	Blue X Bx = 0.162		29 00101001
	32	20	Blue Y By = 0.133		22 00100010
	33	21	White X Wx = 0.313		50 01010000
	34	22	White Y Wy = 0.329		54 01010100
	35	23	Established timing 1 (00h if not used)		00 00000000
	36	24	Established timing 2 (00h if not used)		00 00000000
	37	25	Manufacturer's timings (00h if not used)		00 00000000
Standard Timing ID	38	26	Standard timing ID 1 (0 lh if not used)		01 00000001
	39	27	Standard timing ID 1 (0 lh if not used)		01 00000001
	40	28	Standard timing ID 2 (0 lh if not used)		01 00000001
	41	29	Standard timing ID 2 (0 lh if not used)		01 00000001
	42	2A	Standard timing ID 3 (0 lh if not used)		01 00000001
	43	2B	Standard timing ID 3 (0 lh if not used)		01 00000001
	44	2C	Standard timing ID 4 (0 lh if not used)		01 00000001
	45	2D	Standard timing ID 4 (0 lh if not used)		01 00000001
	46	2E	Standard timing ID 5 (0 lh if not used)		01 00000001
	47	2F	Standard timing ID 5 (0 lh if not used)		01 00000001
	48	30	Standard timing ID 6 (0 lh if not used)		01 00000001
	49	31	Standard timing ID 6 (0 lh if not used)		01 00000001
	50	32	Standard timing ID 7 (0 lh if not used)		01 00000001
	51	33	Standard timing ID 7 (0 lh if not used)		01 00000001
	52	34	Standard timing ID 8 (0 lh if not used)		01 00000001
	53	35	Standard timing ID 8 (0 lh if not used)		01 00000001

LP141WP2

Liquid Crystal Display

Product Specification

	Byte (Dec)	Byte (Hex)	Field Name and Comments	Value (Hex)	Value (Bin)
<i>Timing Descriptor #1</i>	54	36	Pixel Clock/10,000 (LSB)	102 MHz @ 60.13Hz	D8 11011000
	55	37	Pixel Clock/10,000 (MSB)		27 00100111
	56	38	Horizontal Active (lower 8 bits)	1440 Pixels	A0 10100000
	57	39	Horizontal Blanking(Tvp-HA) (lower 8 bits)	392 Pixels	88 10001000
	58	3A	Horizontal Active / Horizontal Blanking(Tvp-HA)(upper 4:4bits)		51 01010001
	59	3B	Vertical Active	900 Lines	84 10000100
	60	3C	Vertical Blanking (Tvp-HA)(DE Blanking typ for DE only panels)	26 Lines	1A 00011010
	61	3D	Vertical Active : Vertical Blanking (Tvp-HA) (upper 4:4bits)		30 00110000
	62	3E	Horizontal Sync. Offset(Trip)	48 Pixels	30 00110000
	63	3F	Horizontal Sync Pulse Width(HSPW)	32 Pixels	20 00100000
	64	40	Vertical Sync Offset(Trip) : Sync Width(VSPW)	3 Lines : 6 Lines	36 00110110
	65	41	Horizontal Vertical Sync Offset/Width (upper 2bits)		00 00000000
	66	42	Horizontal Image Size (mm)	304 mm	30 00110000
	67	43	Vertical Image Size (mm)	190 mm	BE 10111110
	68	44	Horizontal Image Size / Vertical Image Size		10 00010000
	69	45	Horizontal Border = 0 (Zero for Notebook LCD)		00 00000000
	70	46	Vertical Border = 0 (Zero for Notebook LCD)		00 00000000
	71	47	Non-Interlace, Normal display,no stereo, Digital Separate (Vsync_NEG, Hsync_POS)		1A 00011010
<i>Timing Descriptor #2</i>	72	48	Pixel Clock/10,000 (LSB)	102 MHz @ 60.13Hz	D8 11011000
	73	49	Pixel Clock/10,000 (MSB)		27 00100111
	74	4A	Horizontal Active (lower 8 bits)	1440 Pixels	A0 10100000
	75	4B	Horizontal Blanking(Tvp-HA) (lower 8 bits)	392 Pixels	88 10001000
	76	4C	Horizontal Active / Horizontal Blanking(Tvp-HA)(upper 4:4bits)		51 01010001
	77	4D	Vertical Active	900 Lines	84 10000100
	78	4E	Vertical Blanking (Tvp-HA)(DE Blanking typ for DE only panels)	26 Lines	1A 00011010
	79	4F	Vertical Active : Vertical Blanking (Tvp-HA) (upper 4:4bits)		30 00110000
	80	50	Horizontal Sync. Offset(Trip)	48 Pixels	30 00110000
	81	51	Horizontal Sync Pulse Width(HSPW)	32 Pixels	20 00100000
	82	52	Vertical Sync Offset(Trip) : Sync Width(VSPW)	3 Lines : 6 Lines	36 00110110
	83	53	Horizontal Vertical Sync Offset/Width (upper 2bits)		00 00000000
	84	54	Horizontal Image Size (mm)	304 mm	30 00110000
	85	55	Vertical Image Size (mm)	190 mm	BE 10111110
	86	56	Horizontal Image Size / Vertical Image Size		10 00010000
	87	57	Horizontal Border = 0 (Zero for Notebook LCD)		00 00000000
	88	58	Vertical Border = 0 (Zero for Notebook LCD)		00 00000000
	89	59	Non-Interlace, Normal display,no stereo, Digital Separate (Vsync_NEG, Hsync_POS)		1A 00011010
<i>Timing Descriptor #3</i>	90	5A	Flag	00 00000000	
	91	5B	Flag	00 00000000	
	92	5C	Flag	00 00000000	
	93	5D	Data Type Tag : Alphanumeric Data String (ASCII String)	FE 11111110	
	94	5E	Flag	00 00000000	
	95	5F	Dell P/N 1st Character = FF	46 01000110	
	96	60	Dell P/N 2nd Character = RR	52 01010010	
	97	61	Dell P/N 3rd Character = 33	33 00110011	
	98	62	Dell P/N 4th Character = 66	36 00110110	
	99	63	Dell P/N 5th Character = 77	37 00110111	
	100	64	EDID Revision Build Name = MP(X-Build), Revision #= A00	80 10000000	
	101	65	Manufacturer P/N = 11	31 00110001	
	102	66	Manufacturer P/N = 44	34 00110100	
	103	67	Manufacturer P/N = 11	31 00110001	
	104	68	Manufacturer P/N = WW	57 01010111	
	105	69	Manufacturer P/N = PP	50 01010000	
	106	6A	Manufacturer P/N = 22	32 00110010	
	107	6B	Manufacturer P/N(IF<13 char->0Ah, then terminate with ASCII code 0Ah set remaining char = 20h)	0A 000001010	

LP141WP2
Liquid Crystal Display

Product Specification

	Byte (Dec)	Byte (Hex)	Field Name and Comments	Value (Hex)	Value (Bin)
Timing Descriptor #4	108	6C	Flag	00	00000000
	109	6D	Flag	00	00000000
	110	6E	Flag	00	00000000
	111	6F	Data Type Tag : Descriptor Defined by manufacturer	00	00000000
	112	70	Flag	00	00000000
	113	71	SMBUS Value(Step #1) = 10 nits	00	00000000
	114	72	SMBUS Value(Step #2) = 17 nits	00	00000000
	115	73	SMBUS Value(Step #3) = 24 nits	00	00000000
	116	74	SMBUS Value(Step #4) = 30 nits	00	00000000
	117	75	SMBUS Value(Step #5) = 60 nits	00	00000000
	118	76	SMBUS Value(Step #6) = 80 nits	00	00000000
	119	77	SMBUS Value(Step #7) = 110 nits	00	00000000
	120	78	SMBUS Value(Step #8) = 220 nits (Typically = FFh, Maxnits)	00	00000000
Checksum	121	79	Dual channel LVDS, No RTC support	02	00000010
	122	7A	EIST support	01	00000001
	123	7B	(#<13 char->0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h)	0A	00001010
	124	7C	(#<13 char->0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h)	20	00100000
	125	7D	(#<13 char->0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h)	20	00100000
	126	7E	Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0)	00	00000000
	127	7F	Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall = 0)	EE	11101110