2019 ISL G1

LIN LIU

September 26, 2021

Problem

Let ABC be a triangle. Circle Γ passes through A, meets segments AB and AC again at points D and E respectively, and intersects segment BC at F and G such that F lies between B and G. The tangent to circle BDF at F and the tangent to circle CEG at G meet at point T. Suppose that points A and T are distinct. Prove that line AT is parallel to BC.

Solution

Claim 1. $\angle GFT = \angle AGF$

Proof. We have

$$\angle GFT = \angle BFH = \angle BDF = \angle ADF$$

Now consider the cyclic quadrilateral ADFG, this means that $\angle GFT = \angle AGF$. \Box

Claim 2. ATGF is a cyclic quadrilateral.

Proof. It suffices to prove that $\angle TFA = \angle TGA$. Notice that $\angle TGF = \angle TGA + \angle AGF$. Then we have

$$\angle TGF = \angle IGC = \angle GEC = \angle GEA \implies \angle GEA = \angle TGA + \angle AGF$$

Now consider the cyclic quadrilateral AFGE. Thus we have

$$\angle GEA = \angle GFA \implies \angle TGA + \angle AGF = \angle GFT + \angle TFA$$

Since we know that $\angle AGF = \angle GFT$ from Claim 1 we get that $\angle TGA = \angle TFA$. \Box

Claim 3. ATGF is an isosceles trapezoid.

Proof. Obvious. \Box

Because all trapezoids have their bases parallel, we are done.