概率论和数理统计公式集锦

一、随机事件与概率

公式名称	公式表达式
德摩根公式	$\overline{A \cup B} = \overline{A \cap B}$, $\overline{A \cap B} = \overline{A \cup B}$
古典概型	$P(A) = \frac{m}{n} = A \odot \land \land \Rightarrow \land \Rightarrow$
几何概型	$P(A) = \frac{\mu(A)}{\mu(\Omega)}$,其中 μ 为几何度量(长度、面积、体积)
求逆公式	$P(\overline{A}) = 1 - P(A)$
加法公式	P(AUB)=P(A)+P(B)-P(AB) 当 P(AB) = 0 时,P(AUB)=P(A)+P(B)
减法公式	$P(A-B)=P(A)-P(AB)$, $B \subset A$ 时 $P(A-B)=P(A)-P(B)$
条件概率公式 与乘法公式	$P(B A) = \frac{P(AB)}{P(A)} \qquad P(AB) = P(A)P(B A) = P(B)P(A B)$ $P(ABC) = P(A)P(B A)P(C AB)$
全概率公式	$P(A) = \sum_{i=1}^{n} P(B_i) P(A B_i)$
贝叶斯公式 (逆概率公式)	$P(B_i A) = \frac{P(B_i) P(A B_i)}{\sum_{i=1}^{n} P(B_i) P(A B_i)}$
两个事件 相互独立	P(AB) = P(A)P(B); $P(B A) = P(B)$; $P(B A) = P(B A)$;

二、随机变量及其分布

1、分布函数

$$F(x) = P(X \le x) = \begin{cases} \sum_{x_k \le x} P(X = x_k) \\ \int_{-\infty}^x f(t) dt \end{cases}, \quad P(a < X \le b) = F(b) - F(a)$$

2、离散型随机变量及其分布

分布名称	分布律
0−1 分布 X ~ b(1, p)	$P(X = k) = p^{k} (1-p)^{1-k}, k = 0,1$
二项分布 X ~ b(n, p)	$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots, n$
泊松分布 X ~ P(え)	$P(X = k) = \frac{\lambda^{k}}{k!} e^{-\lambda}, k = 0, 1, 2, \cdots$

3、连续型随机变量及其分布

分布名称	密度函数	分布函数
均匀分布 X ~ U (a,b)	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & 其他 \end{cases}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$
指数分布 X ~ e(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$
正态分布 X ~ N (μ, σ²)	$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $-\infty < x < +\infty$	$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$
标准正态分布 X ~ N(0,1)	$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ $-\infty < x < +\infty$	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$

4、随机变量函数 Y=g(X)的分布

离散型: $P(Y = y_i) = \sum_{g(x_j) = y_i} p_j, i = 1, 2, \dots$

连续型:①分布函数法,②公式法 $f_{\gamma}(y) = f_{\chi}(h(y)) \cdot |h'(y)| (x = h(y)$ 单调)

— *AW*M+10 - = - + 1 + -

三、多维随机变量及其分布

1、离散型二维随机变量及其分布

分布律:
$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \cdots$$
 分布函数 $F(X, Y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{ij}$

边缘分布律:
$$p_{i,j} = P(X = X_i) = \sum_{j} p_{i,j}$$
 $p_{i,j} = P(Y = Y_j) = \sum_{i} p_{i,j}$

条件分布律:
$$P(X = x_i | Y = y_j) = \frac{p_{ij}}{p_{ij}}, i = 1, 2, \dots, P(Y = y_j | X = x_i) = \frac{p_{ij}}{p_{ii}}, j = 1, 2, \dots$$

2、连续型二维随机变量及其分布

①分布函数及性质

分布函数:
$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv$$

性质:
$$F(+\infty, +\infty) = 1$$
, $\frac{\partial^2 F(x, y)}{\partial x \partial y} = f(x, y)$, $P((x, y) \in G) = \iint_G f(x, y) dx dy$

②边缘分布函数与边缘密度函数

分布函数:
$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, v) dv du$$
 密度函数: $f_X(x) = \int_{-\infty}^{+\infty} f(x, v) dv$

$$F_{Y}(y) = \int_{-\infty}^{y} \int_{-\infty}^{+\infty} f(u, v) \, du dv \qquad \qquad f_{Y}(y) = \int_{-\infty}^{+\infty} f(u, y) \, du$$

③条件概率密度

$$f_{Y \mid X}\left(y \middle| x\right) = \frac{f\left(x, y\right)}{f_{X}\left(x\right)}, -\infty < y < +\infty \quad , \quad f_{X \mid Y}\left(x \middle| y\right) = \frac{f\left(x, y\right)}{f_{Y}\left(y\right)}, -\infty < x < +\infty$$

3、随机变量的独立性

随机变量 X、Y 相互独立 \Leftrightarrow $F(x, y) = F_x(x)F_y(y)$,

离散型: $p_{ij} = p_i p_{ij}$, 连续型: $f(x,y) = f_x(x) f_y(y)$

4、二维随机变量和函数的分布

离散型: $P(Z=Z_k) = \sum_{x_i+y_j=z_k} P(X=X_j, Y=y_j)$

连续型: $f_z(z) = \int_{-\infty}^{+\infty} f(x, z-x) dx = \int_{-\infty}^{+\infty} f(z-y, y) dy$

四、随机变量的数字特征

- 1、数学期望
- ①定义: 离散型 $E(X) = \sum_{k=1}^{+\infty} x_k p_k$, 连续型 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$

②性质: E(C) = C, E[E(X)] = E(X), E(CX) = CE(X), $E(X \pm Y) = E(X) \pm E(Y)$

 $E(aX \pm b) = aE(X) \pm b$, 当 X、Y 相互独立时: E(XY) = E(X)E(Y)

- 2、方差
- ①定义: $D(X) = E[(X E(X))^2] = E(X^2) E^2(X)$

②性质: D(C) = 0 , $D(aX \pm b) = a^2 D(X)$, $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$

当 X、Y 相互独立时: $D(X \pm Y) = D(X) + D(Y)$

- 3、协方差与相关系数
- ①协方差: Cov(X,Y) = E(XY) E(X)E(Y), 当 X、Y 相互独立时: Cov(X,Y) = 0
- ②相关系数: $\rho_{xy} = \frac{Cov(X,Y)}{\sqrt{D(X)}}$, 当 X、Y 相互独立时: $\rho_{xy} = 0$ (X,Y 不相关)
- ③协方差和相关系数的性质: Cov(X,X) = D(X), Cov(X,Y) = Cov(Y,X)

 $Cov\left(X_{1}+X_{2},Y\right)=Cov\left(X_{1},Y\right)+Cov\left(X_{2},Y\right)\;,\;\;Cov\left(aX+c,bY+d\right)=abCov\left(X,Y\right)$

4、常见随机变量分布的数学期望和方差

分布	数学期 望	方差
0-1 分布 b(1, p)	р	p(1-p)
二项分布 b(n, p)	np	np(1-p)

泊松分布 P(λ)	2	λ
均匀分布 U (a, b)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
正态分布 N (μ, σ²)	μ	$\sigma^{\scriptscriptstyle 2}$
指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\chi^2}$

五、大数定律与中心极限定理

1、切比雪夫不等式

若
$$E(X) = \mu, D(X) = \sigma^2$$
, 对于任意 $\varepsilon > 0$ 有 $P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$

2、大数定律: ①切比雪夫大数定律: 若 x, ··· x "相互独立,

$$E(X_i) = \mu_i, D(X_i) = \sigma_i^2 \coprod \sigma_i^2 \le C \quad , \quad \emptyset : \quad \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^n E(X_i), (n \to \infty)$$

②伯努利大数定律:设 n_A 是n次独立试验中事件A发生的次数,p是事件A在每次试验中

发生的概率,则
$$\forall \varepsilon > 0$$
 ,有: $\lim_{n \to \infty} P\left(\left|\frac{n_A}{n} - p\right| < \varepsilon\right) = 1$

③辛钦大数定律: 若
$$X_1, \dots, X_n$$
 独立同分布,且 $E(X_i) = \mu$,则 $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu$

3、中心极限定理

①列维-林德伯格中心极限定理:独立同分布的随机变量 $X_i(i=1,2,\cdots)$,均值为 μ ,方差为 $\sigma^2>0$,当 n 充分大时有: $Y_n=(\sum_{k=1}^n X_k-n\mu)\left/\sqrt{n}\sigma\right.$ $\longrightarrow N(0,1)$

②棣莫弗-拉普拉斯中心极限定理:随机变量 $X \sim B(n, p)$,则对任意 X 有:

$$\lim_{n \to \infty} P\{\frac{X - np}{\sqrt{np(1 - p)}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x)$$

③近似计算:
$$P(a \le \sum_{k=1}^{n} X_k \le b) \approx \Phi(\frac{b-n\mu}{\sqrt{n\sigma}}) - \Phi(\frac{a-n\mu}{\sqrt{n\sigma}})$$

六、数理统计的基本概念

1、总体和样本的分布函数

设总体 $X \sim F(x)$,则样本的联合分布函数 $F(x_1, x_2 \cdots x_n) = \prod_{k=1}^n F(x_k)$

2、统计量

样本均值:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i^2 - n \overline{X}^2)$

样本标准差:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 , 样本 k 阶原点距: $A_k = \frac{1}{n} \sum_{i=1}^{n} x_i^k$, $k = 1, 2 \cdots$

样本
$$k$$
 阶中心距: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 1, 2, 3 \cdots$

3、三大抽样分布

(1) χ^2 分布: 设随机变量 $X_i \sim N(0,1)$ ($i=1,2,\cdots,n$) 且相互独立,则称统计量 $\chi^2 = X_1^2 + X_2^2 + \cdots \times X_n^2$ 服从自由度为n的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$

性质:① $E[\chi^2(n)] = n, D[\chi^2(n)] = 2n$ ② 设 $X \sim \chi^2(m), Y \sim \chi^2(n)$ 且相互独立,则 $X + Y \sim \chi^2(m+n)$

(2) t 分布:设随机变量 $X \sim N(0.1), Y \sim \chi^2(n)$,且 X 与 Y 独立,则称统计量: $T = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$

性质: ①
$$E(T) = 0$$
 $(n > 1)$, $D(T) = \frac{n}{n-2} (n > 2)$ ② $\lim_{n \to \infty} f_n(x) = \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

(3) F 分布: 设随机变量 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$,且 X 与 Y 独立,则称统计量 $F(m,n) = \frac{X/m}{Y/n}$ 服从第一自由度为 m,第二自由度为 n 的 F 分布,记为 $F \sim F(m,n)$,性质: 设 $F \sim F(m,n)$,则 $\frac{1}{F} \sim F(n,m)$

七、参数估计

1.参数估计

①定义:用 $\hat{\theta}(X_1, X_2, L_1, X_n)$ 估计总体参数 θ ,称 $\hat{\theta}(X_1, X_2, L_1, X_n)$ 为 θ 的估计量,相应的 $\hat{\theta}(X_1, X_2, \cdots, X_n)$ 为总体 θ 的估计值。

- ②当总体是正态分布时,未知参数的矩估计值=未知参数的极大似然估计值
- 2.点估计中的矩估计法:

基本思想:用样本矩来估计相应的总体矩

求法步骤:设总体 X 的分布中包含有未知参数 $\theta_1, \theta_2, \cdots, \theta_k$,它的前 k 阶原点

矩 $\mu_i = E(X')(i=1,2,\cdots,k)$ 中包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_k$,

即 $\mu_i = g_i(\theta_1, \theta_2, \cdots, \theta_k)$ $(i=1,2,\cdots,k)$; 又设 x_1, x_2, L_i, x_n 为总体 X 的 n 个样本值,用样本

矩代替 μ_i ,在所建立的方程组中解出的 k 个未知参数即为参数 θ_1 , θ_2 ,…, θ_k 的矩估计量 $\hat{\theta}_1$, $\hat{\theta}_2$,…, $\hat{\theta}_k$ 。

注意:分布中有几个未知参数,就求到几阶矩。

3.点估计中的极大似然估计

设 X_1, X_2, L X_n 取自 X 的样本,设 $X \sim f(x, \theta)$ 或 $X \sim P(x, \theta)$, 求法步骤:

①似然函数:
$$L(\theta) = \prod_{i=1}^n f(x_i, \theta)$$
(连续型)或 $L(\theta) = \prod_{i=1}^n P_i(x_i, \theta)$ (离散型)

②取对数:
$$\ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i, \theta)$$
 或 $\ln L(\theta) = \sum_{i=1}^{n} \ln p_i(x_i, \theta)$

③解方程:
$$\frac{\partial \ln L}{\partial \theta_1} = 0$$
, L, $\frac{\partial \ln L}{\partial \theta_k} = 0$,解得:
$$\begin{cases} \hat{\theta_1} = \hat{\theta_1}(x_1, x_2, \dots, x_n) \\ \dots \\ \hat{\theta_k} = \hat{\theta_k}(x_1, x_2, \dots, x_n) \end{cases}$$

4.估计量的评价标准

	HEN TENNE		
估计	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, L_1, x_n)$ 为未知参数 θ 的估计量。若 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的无偏估计量。	
量的评价	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, L_1, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, L_1, x_n)$ 是未知参数 θ 的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。	
标准	一致性	设 $\hat{\theta}_n$ 是 θ 的一串估计量,如 $\forall \varepsilon > 0$,有 $\lim_{n \to \infty} P(\hat{\theta}_n - \theta > \varepsilon) = 0$ 则称 $\hat{\theta}_n$ 为 θ 的一致估计量(或相合估计量)。	

5. 单正态总体参数的置信区间

条件	估计 参数	枢轴量	枢轴量 分布	置信水平为1-α的置信区间
已知 $\sigma^{\scriptscriptstyle 2}$	μ	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	N (0,1)	$\left(\frac{1}{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\frac{1}{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$
未知 σ^2	μ	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	t(n-1)	$\left(\frac{-}{x-t_{\alpha/2}}(n-1)\frac{S}{\sqrt{n}}, \frac{-}{x+t_{\alpha/2}}(n-1)\frac{S}{\sqrt{n}}\right)$

合肥工业大学学生会学习资源部

已知	$\sigma^{\scriptscriptstyle 2}$	$\chi^2 = \sum_{i=1}^n \left(\frac{\chi_i - \mu}{\sigma} \right)^2$	χ² (n)	$\left(\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right)$
未知 <i>µ</i>	$\sigma^{\scriptscriptstyle 2}$	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	χ²(n-1)	$\left(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right)$

STUDENT UNION

八、假设检验

1.假设检验的基本概念

I IFX I	2位亚的基本概念			
基本思想	假设检验的统计思想是小概率原理。 小概率事件的概率就是显著性水平a,常取a=0.05,0.01或 0.10。			
基本步骤	查表找; 域 W;	原假设 H_0 ; ②选择检验统计量 $g(X_1, L_1, X_n)$; ③对于α分位数 λ ,使 $P(g(X_1, L_1, X_n) \in W) = \alpha$,从而定出拒绝本观测值计算统计量实测值 $g(x_1, \cdots, x_n)$; 并作出判断:		
	当实测值	直落入 W 时拒绝 H_0 ,否则认为接受 H_0 。		
两类错	第一类错误	当 H_0 为真时,而样本值却落入了拒绝域,应当否定 H_0 。 这时,我们把客观上 H_0 成立判为 H_0 为不成立(即否定 了真实的假设),称这种错误为"弃真错误"或第一类错误, 记 α 为犯此类错误的概率,即: $P{拒绝 H_0 H_0$ 为真}= α ;		

合肥工业大学学生会学习资源部

	第二类错	当 H, 为真时,而样本值却落入了接受域,应接受 H。。 这时,我们把客观上 H。不成立判为 H。成立(即接受了不真实的假设),称这种错误为"取伪错误"或第二类错误,
	误	记 β 为犯此类错误的概率,即: $P{接受 H_0 H_1}为真}=\beta。$
误		人们当然希望犯两类错误的概率同时都很小。但
	两类 错误	是,当容量 n 一定时, α 变小,则 β 变大;相反地, β
	的关 系	变小,则 α 变大。取定 α 要想使 β 变小,则必须增加
		样本容量。

2.单正态总体均值和方差的假设检验

条件	原假设	检验统计量	统计量 分布	拒绝域
1 -	$H_{0}: \mu = \mu_{0}$			$ z > z_{\alpha/2}$
已知 σ^2	$H_0: \mu \leq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	N (0,1)	$z > z_{\alpha}$
	$H_0: \mu \geq \mu_0$			$z < -z_{\alpha}$
	$H_{0}: \mu = \mu_{0}$			$ t > t_{\alpha/2} (n-1)$
未知 σ²	$H_0: \mu \leq \mu_0$	$T = \frac{X - \mu_0}{S / \sqrt{n}}$	t(n-1)	$t > t_{\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$	104		$t < -t_{\alpha}(n-1)$
	$H_0: \sigma^2 = \sigma^2$			$\chi^2 < \chi^2_{1-\alpha/2}(n-1)$
未知 μ	H_0 . $O = O$	$\chi^2 = \frac{(n-1)S^2}{2}$	202 (2 1 1)	或 $\chi^2 > \chi^2_{\alpha/2}(n-1)$
/NAH /A	$H_0: \sigma^2 \leq \sigma_0^2$	$\chi = \sigma_0^2$	$\chi^2(n-1)$	$\chi^2 > \chi^2_{\alpha}(n-1)$
	$H_0: \sigma^2 \geq \sigma_0^2$			$\chi^2 < \chi^2_{1-\alpha} \ (n-1)$
已知 <i>μ</i> (少见)	11 · 2 2	$\chi^2 = \frac{\sum_{j=1}^{n} (X_j - \mu)^2}{\sigma_0^2}$	$\chi^2(n)$	$\chi^2 < \chi^2_{_{1-}\alpha/_2}(n)$ 或
	$H_{_0}: \sigma^2 = \sigma^2$	σ_0^2		$\chi^2 > \chi^2_{\alpha/2}(n)$
	$H_0: \sigma^2 \leq \sigma_0^2$			$\chi^2 > \chi^2_{\alpha}(n)$

$H_{_{0}}:\sigma^{_{2}}\geq\sigma_{_{0}}^{_{2}}$	$\chi^2 < \chi^2_{1-\alpha} (n)$
--	----------------------------------

