Lab4: Model Selection

Name: Muskan Goenka | SRN: PES2UG23CS355 | Section: F

1. Introduction

The aim of this lab is to explore hyperparameter tuning for different classification models using both **manual grid search** and **Scikit-learn's GridSearchCV**. By systematically optimizing hyperparameters, we aim to improve model performance and compare implementations across datasets.

We focused on three supervised learning models:

- Decision Tree
- k-Nearest Neighbors (kNN)
- · Logistic Regression

Additionally, we combined them into a **Voting Classifier** to test ensemble performance.

2. Dataset Description

Wine Quality Dataset

• Instances: 1599 red wine samples

• Features: 11 chemical properties (e.g., acidity, sugar, alcohol, etc.)

• Target: Binary classification (good quality vs. not)

• Train/Test Split: 1119 training samples, 480 testing samples

Banknote Authentication Dataset

• Instances: 1372 samples

• Features: 4 numerical features extracted from images of banknotes

• Target: Binary classification (genuine vs. forged)

• Train/Test Split: 960 training samples, 412 testing samples

3. Methodology

We implemented a machine learning pipeline:

StandardScaler → SelectKBest → Classifier

- StandardScaler: Standardizes features for kNN and Logistic Regression.
- SelectKBest: Selects top k features based on ANOVA F-test.
- Classifier: Decision Tree, kNN, or Logistic Regression.

Two approaches were used:

Manual Grid Search

- Implemented using nested loops and 5-fold Stratified CV.
- Calculated average **ROC AUC** for each parameter set.
- Selected the best parameter set and retrained on full training data.

Built-in GridSearchCV

- Used GridSearchCV with pipelines.
- scoring='roc_auc', 5-fold Stratified CV.
- Extracted best parameters and compared results with manual implementation.

Evaluation Metrics:

Accuracy, Precision, Recall, F1-Score, ROC AUC.

4. Results and Analysis

Wine Quality Dataset

Manual Grid Search - Best Parameters

```
• Decision Tree: { select_k=5 , max_depth=5 , min_samples_split=5 }
```

• **kNN:** { select_k=5 , n_neighbors=9 , weights='distance' }

• Logistic Regression: { select_k=10 , C=1 , penalty='12 , solver='liblinear' }

Model Performance (Manual)

Model	Accuracy	Precision	Recall	F1	ROC AUC
Decision Tree	0.7271	0.7716	0.6965	0.7321	0.8025
kNN	0.7750	0.7854	0.7977	0.7915	0.8679
Logistic Regression	0.7396	0.7619	0.7471	0.7544	0.8246
Voting Classifier	0.7417	0.7692	0.7393	0.7540	0.8611

Built-in GridSearchCV - Results

- Parameters and metrics matched **exactly** with manual search.
- Confirms correctness of manual implementation.

Analysis:

- kNN outperformed all models with the highest AUC (0.8679).
- · Voting Classifier did not surpass standalone kNN.

Banknote Authentication Dataset

- Training: (960, 4), Testing: (412, 4)
- **Manual Grid Search:** Failed due to set_params error (likely mismatch in parameter grid or SelectKBest incompatibility with 4 features).
- Built-in GridSearchCV: Not executed due to manual error carry-over.

Analysis:

- Banknote dataset was not successfully processed.
- Error suggests the pipeline configuration must be revised (e.g., SelectKBest k cannot exceed 4 features).

5. Screenshots

```
EVALUATING MANUAL MODELS FOR WINE QUALITY
--- Individual Model Performance ---
Decision Tree:
  Accuracy: 0.7271
 Precision: 0.7716
 Recall: 0.6965
  F1-Score: 0.7321
 ROC AUC: 0.8025
 Accuracy: 0.7750
 Precision: 0.7854
 Recall: 0.7977
  F1-Score: 0.7915
 ROC AUC: 0.8679
Logistic Regression:
 Accuracy: 0.7396
 Precision: 0.7619
 Recall: 0.7471
 F1-Score: 0.7544
 ROC AUC: 0.8246
--- Manual Voting Classifier ---
Voting Classifier Performance:
  Accuracy: 0.7417, Precision: 0.7692
 Recall: 0.7393, F1: 0.7540, AUC: 0.8611
```



```
RUNNING BUILT-IN GRID SEARCH FOR WINE QUALITY

--- GridSearchCV for Decision Tree ---
Best params for Decision Tree: ('classifier_max_depth': 5, 'classifier_min_samples_split': 5, 'select_k': 5)
Best CV score: 8.7832

--- GridSearchCV for kNN ---
Best params for kNN: ('classifier_n_neighbors': 9, 'classifier_weights': 'distance', 'select_k': 5)
Best CV score: 8.8642

--- GridSearchCV for Logistic Regression ---
Best params for Logistic Regression: ('classifier_C': 1, 'classifier_penalty': '12', 'classifier_solver': 'liblinear', 'select_k': 10)
Best CV score: 8.8049
```

```
EVALUATING BUILT-IN MODELS FOR WINE QUALITY
--- Individual Model Performance ---
Decision Tree:
 Accuracy: 0.7271
 Precision: 0.7716
 Recall: 0.6965
  F1-Score: 0.7321
 ROC AUC: 0.8025
kNN:
  Accuracy: 0.7750
 Precision: 0.7854
 Recall: 0.7977
  F1-Score: 0.7915
 ROC AUC: 0.8679
Logistic Regression:
  Accuracy: 0.7396
 Precision: 0.7619
 Recall: 0.7471
  F1-Score: 0.7544
  ROC AUC: 0.8246
```

6. Conclusion

• Wine Quality Dataset:

- kNN was the best model overall.
- Manual and built-in grid search produced identical results, proving correct manual implementation.
- Voting ensemble did not improve beyond standalone kNN.

• Banknote Dataset:

Manual search failed due to pipeline parameter mismatch. Needs fixing (likely reduce in SelectKBest).

• Learnings:

- Hyperparameter tuning significantly improves model performance.
- Manual search is useful for understanding but time-consuming and error-prone.
- GridSearchCV is efficient, reliable, and practical for real applications.