1. Sets and Events

(a) Algebra

Closed under

- i. Complement
- ii. Finite union
- (b) σ -algebra

Closed under

- i. Complement
- ii. Countable union
- (c) σ -algebra generated by \mathcal{C} The intersection of all the σ -algebras that contain \mathcal{C} .
- (d) Borel sets on the real line

$$\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C}), \quad \mathcal{C} = \{(a, b], -\infty \le a \le b < \infty\}$$

- 2. Probability Spaces: (Ω, \mathcal{B}, P)
 - (a) Probability measure P:
 - i. $P(A) \ge 0$
 - ii. $P(\sum_{1}^{\infty} A_n) = \sum_{1}^{\infty} P(A_n)$
 - iii. $P(\Omega) = 1$
 - (b) Proeprties of P
 - i. $P(\lim A_n) = \lim P(A_n)$ for monotonic A_n .
 - ii. $P(\liminf A_n) \le \liminf P(A_n) \le \limsup P(A_n) \le P(\limsup A_n)$
- 3. Integration and Expectation
 - (a) Simple functions: $X(\omega) = \sum_{i=1}^{k} a_i 1_{A_i}(\omega)$.
 - i. Measurability Theorem: Suppose $X(\omega) \geq 0$ for all ω . Then X is measurable iff $0 \leq X_n \uparrow X$ for some simple functions X_n .
- 4. Convergence
 - (a) Almost sure convergence: $P(\lim X_n = X) = 1$.
 - i. If X_i is iid with distribution F(x) < 1 for all x, then $\bigvee_{i=1}^{n} X_i \uparrow \infty$ a.s.
 - (b) Convergence in probability: $\lim P[|X_n X| > \epsilon] = 0$
 - i. Caucy criterion: $X_n \stackrel{P}{\to} \text{iff } X_n X_m \stackrel{P}{\to} 0.$

- ii. Subsequence criterion: $X_n \stackrel{P}{\to} X$ iff each subsequence X_{n_k} contains a $X_{n_{k_i}} \stackrel{a.s.}{\to} X$.
- (c) L_p convergence: $E(|X_n X|^p) \to 0$.
 - i. Variation of Scheffe: $X_n \stackrel{L_1}{\rightarrow} X$ iff

$$\sup_{A \in \mathcal{B}} \left| \int_A X_n dP - \int_A X dP \right| \to 0.$$

- ii. If $X_n \stackrel{L_p}{\to} X$, then $||X_n||_p \to ||X||_p$.
- iii. Let $p \ge 1$ and $X_n \in L_p$. The following are equivalent:
 - A. X_n is L_p convergent.
 - B. X_n is L_p Cauchy $(\|X_n X_m\|_p \to 0)$.
 - C. $|X_n|^p$ is ui and X_n converges ip.
- (d) Properties
 - i. Connections
 - A. If $X_n \stackrel{a.s.}{\to} X$, then $X_n \stackrel{P}{\to} X$.
 - B. If $X_n \stackrel{L_p}{\to} X$, then $X_n \stackrel{P}{\to} X$.
 - ii. Continuous transformation: Let g be continuous.
 - A. If $X_n \stackrel{a.s.}{\to} X$, then $g(X_n) \stackrel{a.s.}{\to} g(X)$.
 - B. If $X_n \stackrel{P}{\to} X$, then $g(X_n) \stackrel{P}{\to} g(X)$.
 - iii. Lebesgue Dominated Convergece: If $X_n \stackrel{P}{\to} X$ and $|X_n| \le \xi$ for some $\xi \in L_1$, then $E(X_n) \to E(X)$.
- (e) Uniformly integrable: $\sup_{t \in T} \int_{[|X_t| > a]} |X_t| dP \to 0$ as $a \to \infty$.
 - i. X_t is ui if
 - A. $T = \{1\}$.
 - B. $|X_t| \leq Y$ for some $Y \in L_1$.
 - C. $T = \{1, \dots, n\}.$
 - D. $|X_t| \leq |Y_t|$ for some ui $\{Y_t\}$.
 - ii. $\{|X_n|^p\}$ is ui if $\sup_n E(|X_n|^{p+\delta}) < \infty$ for some $\delta > 0$.
 - iii. Let $X_t \in L_1$. Then $\{X_t\}$ is ui iff
 - A. For all $\epsilon > 0$, there exists ξ such that $\sup_{t \in T} \int_A |X_t| dP < \epsilon$ for all $P(A) \leq \xi$.
 - B. $\sup_{t \in T} E(|X_t|) < \infty.$
- (f) Inequalities
 - i. Schwartz

$$||XY||_1 \le ||X||_2 ||Y||_2.$$

ii. Holder: If p>1, q>1, $\frac{1}{p}+\frac{1}{q}=1,$ and $E(|X|^p)<\infty,$ $E(|Y|^q)<\infty,$ then

$$||XY||_1 \le ||X||_p ||Y||_q$$
.

iii. Minkowski: Let $1 \le p < \infty$ and $X, Y \in L_p$. Then

$$||X + Y||_p \le ||X||_p + ||Y||_p.$$

iv. Jensen: If $u:\mathbb{R}\to\mathbb{R}$ is convex, $E|X|<\infty$ and $E|u(X)|<\infty$, then

$$E(u(X)) \ge u(E(X)).$$

(g) Quantile estimation: Fill in the blank.

1 Laws of large numbers

- 1. Tail equivalence: $\sum_{n} P[X_n \neq X'_n] < \infty$.
 - (a) $\sum_{n} (X_n X'n)$ converges a.s.
 - (b) $\sum_{n} X_n$ converges a.s. iff $\sum_{n} X'_n$ converges a.s.
 - (c) If $\frac{1}{a_n} \sum_{j=1}^n X_j \overset{a.s.}{\to} X$ for $a_n \uparrow \infty$, then $\frac{1}{a_n} \sum_{j=1}^n X_j' \overset{a.s.}{\to} X$.
- 2. General weak law of large numbers: If $\{X_n\}$ are independent,

$$\sum_{j=1}^{n} P[|X_j| > n] \to 0,$$

and

$$\frac{1}{n^2} \sum_{j=1}^n EX_j^2 1_{[|X_j| \le n]} \to 0,$$

then

$$\frac{S_n - a_n}{n} \stackrel{P}{\to} 0,$$

where

$$a_n = \sum_{j=1}^n E(X_j 1_{[|X_j| \le n]}).$$

- (a) If $\{X_n\}$ are iid with $E(X_n) = \mu$ and $E(X_n^2) < \infty$, then $\frac{1}{n}S_n \stackrel{P}{\to} \mu$.
- (b) If $\{X_n\}$ are iid with $E(X_n) = \mu$ and $E(|X_1|) < \infty$, then $\frac{1}{n}S_n \stackrel{P}{\to} \mu$.
- (c) If $\{X_n\}$ are iid with

$$\lim_{x \to \infty} x P[|X_1| > x] = 0$$

then

$$\frac{S_n}{n} - E(X_1 1_{[|X_1| \le n]}) \stackrel{P}{\to} 0$$

- 3. Sum of independent r.v.
 - (a) If $\{X_n\}$ is independent and $\alpha > 0$, then

$$P[\sup_{j < N} |S_j| > 2\alpha] \le \frac{1}{1 - c} P[|S_N| > \alpha]$$

where

$$c = \sum_{j \le N} P[|S_N - S_j| > \alpha]$$

- (b) If $\{X_n\}$ is independent, then TFAE:
 - i. S_n converges i.p.
 - ii. S_n is Cauchy i.p.
 - iii. S_n converges a.s.
 - iv. S_n is Cauchy a.s.
- (c) If $\{X_n\}$ is independent and $\sum_n Var(X_n) < \infty$, then $\sum_n (X_n \mu_n)$ converges a.s. and L_2 .
- 4. Strong laws of large numbers
 - (a) If $0 < a_n \uparrow \infty$ and $\sum_n \frac{x_n}{a_n}$ converges, then

$$\lim_{n \to \infty} a_n^{-1} \sum_{k=1}^n x_k = 0$$

(b) If is $\{X_n\}$ independent with $E(X_n^2) < \infty$ and

$$\sum_{n} Var(\frac{X_n}{b_n}) < \infty$$

for $b_n \uparrow \infty$, then

$$\frac{S_n - E(S_n)}{b_n} \stackrel{a.s.}{\to} 0$$

- 5. Strong law of large numbers for iid
 - (a) If X_n is iid, then TFAE:

i.
$$E|X_1| < \infty$$

ii.
$$\left|\frac{X_n}{n}\right| \stackrel{a.s.}{\to} 0$$

ii.
$$\left|\frac{X_n}{n}\right| \stackrel{a.s.}{\to} 0$$

iii. $\sum_n P[|X_1| \ge \epsilon n] < \infty$ for all $\epsilon > 0$.

- (b) If X_n is iid, then $\bar{X}_n \stackrel{a.s.}{\to} c < \infty$ iff $\mu < \infty$, in which case $c = \mu$.
- (c) If X_n is iid, then

$$E|X_1| < \infty \Rightarrow \bar{X}_n \stackrel{a.s.}{\to} \mu$$

$$EX_1^2 < \infty \Rightarrow S_n^2 \stackrel{a.s.}{\to} \sigma^2$$

(d) Let $X_n \stackrel{\text{iid}}{\sim} F(x)$ and define

$$\hat{F}_n(x,\omega) = \frac{1}{n} \sum_{i=1}^n 1_{[X_j \le x]}(\omega)$$

Then

$$\sum_{x} |\hat{F}_n(x) - F(x)| \stackrel{a.s.}{\to} 0$$

- 6. Let X_n be independent. Then $\sum_n X_n$ converges a.s. if and only if there exists c>0 such that
 - (a) $\sum_{n} P[|X_n| > c] < \infty$
 - (b) $\sum_{n} Var(X_n 1_{\lceil |X_n| \le c \rceil}) < \infty$
 - (c) $\sum_n E(X_n 1_{[|X_n| < c]})$ converges

2 Convergence in distribution

- 1. Distribution function:
 - (a) $0 \le F(X) \le 1 \forall x \in \mathbb{R}$
 - (b) F is nondecreasing
 - (c) F is right continuous
 - (d) $F(-\infty) = 0$, $F(\infty) = 1$ (To be proper/nondefective/prob. df)
 - (e) $C(F) := \{x : F \text{ is continuous at } x\}$
 - i. $(\mathcal{C}(F))^c$ is at most countable
 - ii. Interval of continuity: endpoints are finite and are in C(F).
- 2. Lem: If F is a pdf on a dense set, then its extension to \mathbb{R} is a pdf and is unique.
- 3. Notions of convergence
 - (a) Vague: Convergence for any (a, b] with $a, b \in \mathcal{C} \cap \mathbb{R}$
 - (b) Proper: Vague convergence and the limit is proper
 - (c) Weak: Convergence for any $(-\infty, a]$ with $a \in \mathcal{C}$.
 - (d) Compete: Weak convergence and the limit is proper.
- 4. Thm: If F is proper, then all four convergence are equivalent. (Write $F_n \Rightarrow F$.)
- 5. Rmk: The Weak limit is unique.
- 6. Def: Convergence in total variation: $\sup_{A \in \mathcal{B}(\mathbb{R})} |F_n(A) F(A)| \to 0$.

7. Thm (Scheffe):

$$\sup_{B \in \mathcal{B}(\mathbb{R})} |F_n(B) - F(B)| = \frac{1}{2} \int |f_n(x) - f(x)| dx$$

8. Prop: Suppose $k \to \infty$ and $n-k \to \infty$. Let $\sigma_n^2 = \frac{k}{n}(1-\frac{k}{n})$. Then

$$X_n := \frac{n^{1/2}(U_{(k,n)} - k/n)}{\sigma_n} \to N(0,1) \text{ in TV}$$

- 9. If $X_n \stackrel{P}{\to} X$, then $X_n \Rightarrow X$.
- 10. Thm (Baby Shorohod): If $X_n \Rightarrow X_0$, then there exist $X_n^{\#}$ on $([0,1], \mathcal{B}([0,1]), \lambda)$ such that $X_n \stackrel{d}{=} X_n^{\#}$ and $X_n^{\#} \stackrel{a.s.}{\to} X_0^{\#}$.
- 11. Lem: If $X_n \Rightarrow X_0$, then $F_n^{\leftarrow}(t) \to F_0^{\leftarrow}(t)$ for $t \in (0,1) \cap \mathcal{C}(F_0^{\leftarrow})$.
- 12. Thm (Continuous mapping): If $X_n \Rightarrow X_0$ and $h : \mathbb{R} \to \mathbb{R}$ satisfies $P[X_0 \in (\mathcal{C}(h))^c] = 0$, then $h(X_n) \Rightarrow h(X_0)$. Moreover, if h is bounded, then $Eh(X_n) \to Eh(X_0)$.
- 13. Thm (Delta method):

$$\sqrt{n}\left(\frac{g(\bar{X}) - g(\mu)}{\sigma g'(\mu)}\right) \Rightarrow N(0, 1)$$

- 14. Thm (Portmanteau): Let F_n be proper. TFAE:
 - (a) $F_n \Rightarrow F_0$
 - (b) $Eg(X_n) \to Eg(X_0)$ for any bounded continuous $g: \mathbb{R} \to \mathbb{R}$.
 - (c) $F_n(A) \to F(A)$ for any $A \in \mathcal{B}(\mathbb{R})$ with $F_0(\partial(A)) = 0$ (boundary has zero probability).
- 15. Prop: If $X_n \Rightarrow c \in \mathbb{R}$, then $X_n \stackrel{P}{\rightarrow} c$.
- 16. Thm (Slutsky): If $X_n \Rightarrow X$ and $X_n Y_n \stackrel{P}{\rightarrow} 0$, then $Y_n \Rightarrow X$.
- 17. Thm (Second convergence together)
- 18. Thm (Hoeffding and Robbins)
- 19. Thm (Convergence to type):
 - (a) If

$$\frac{X_n - b_n}{a_n} \Rightarrow U, \quad \frac{X_n - \beta_n}{\alpha_n} \Rightarrow V, \tag{1}$$

then

$$\frac{\alpha_n}{a_n} \to A > 0, \quad \frac{\beta_n - b_n}{a_n} \to B \in \mathbb{R}$$
 (2)

and

$$V \stackrel{d}{=} \frac{U - B}{A}.$$
 (3)

(b) If eq. (2) holds, then either of eq. (1) implies the other and eq. (3) holds.

3 Central Limit Theorem

3.1 Characteristic Functions

1. Def: The characteristic function of $X \sim F$ is

$$\phi(t) = E[\exp\{itX\}] = E[\cos(tX) + i\sin(tX)] = E\cos(tX) + iE\sin(tX)$$

Note

$$|\phi(t)| \le E|\exp(itX)| = 1$$

- 2. Properties
 - (a) $\phi(t)$ is uniformly continuous
 - (b) $|\phi(t)| \le 1$, $\phi(0) = 0$
 - (c)

$$E[\exp\{it(aX+b)\}] = \phi(at)\exp(itb)$$

- (d) $\bar{\phi}(t) = \phi(-t) = E \exp(-itX)$
- (e) $Re(\phi(t))$ is even, $IM(\phi(t))$ is odd
- (f) $X_1 \perp X_2$, then $\phi_{X_1+X_2}(t) = \phi_1(t)\phi_2(t)$
- 3. Taylor expansion

$$\exp(ix) = \sum_{0}^{n} \frac{(ix)^{k}}{k!} + \frac{i^{n+1}}{n!} \int_{0}^{x} (x-s)^{n} \exp(is) ds$$

by integration by part which implies

$$|\exp(ix) - \sum_{i=0}^{n} \frac{(ix)^k}{k!}| \le \frac{|X|^{n+1}}{(n+1)!}$$

Final result:

$$|\exp(ix)|$$

- 4. Prop: $\int \phi(x-\mu)dx = 1$ for all complex μ
- 5. Corollary: If $Z \sim N(0,1)$, then $E[\exp(itZ)] = \exp(-t^2/2)$.
- 6.