1(a) No 1º Caro Tenus un vote que importar de Z'Exferi. 2222=0 E) 20 UX=2 Como 26[13] 1 Li 1= +0, para alem de mes estan defemide me ponto 2, a funças também se torm strunted fint al. No 2' com, temms: por pur lade un integral imprifico de la especial, pois a himita de instigued é infrents. por onto ledo, e tour bein de 2ª espera pois li 1 / x (lucus) 1/2 = +00, par alein de mos eston defruid per font ! a funct e ilvanted funt a 1, suide fon; - M(luon))/2
continue our Ji+00 [é intigrével eur

qualquer intront [x, B], con 16x63.

Estudando à rentureza de primera lutiquella termos:

$$\int_{1}^{2} \frac{1}{n^{2} 2n} dx = \int_{1}^{\infty} \frac{1}{n^{2} 2n} dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \left(-\frac{1}{2} \cdot \frac{1}{n^{2} 2n} + \frac{1}{2} \frac{1}{n^{2} 2n} \right) dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} dn dn$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} dn dn$$

o integral diverge

(ii) lousider os seguints integrais inforoprios.

[ii) lousider os seguints integrais inforoprios.

[iii) lousider os seguints integrais inforoprios.

[too (luin) 1/2] du e

[too (luin) 1/2] du

Estadoudo a petinete do segundo intiquel temor:

Li $\int_{2}^{3} (\ln \ln x)^{-1/2} dx = \lim_{\beta \to +\infty} \left[2 (\ln \ln x)^{1/2} \right]_{2}^{3}$ $= \lim_{\beta \to +\infty} 2 (\ln \beta)^{1/2} - 2 (\ln \alpha)^{1/2}$ $= \lim_{\beta \to +\infty} 2 (\ln \beta)^{1/2} - 2 (\ln \alpha)^{1/2}$

= 40

-. o integral diverge

Seja $a_n = \frac{(-1)^n}{n^2} \arcsin\left(\frac{n}{n+1}\right)$; então $|a_n| = \frac{1}{n^2} |\arcsin\left(\frac{n}{n+1}\right)|$. Sabemos que $|\arcsin x| \le \pi/2$ para todo o $x \in [-1, 1]$; portanto

$$|a_n| \le \frac{\pi}{2} \, \frac{1}{n^2}.$$

Sabemos que a série de Dirichlet $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, daqui segue que a série $\sum_{n=1}^{\infty} \frac{\pi}{2} \frac{1}{n^2}$ também converge, logo pelo Critério de Comparação concluimos que a série $\sum_{n=1}^{\infty} |a_n|$ converge.

Desta forma, a série original converge absolutamente.

Seja
$$b_n = \frac{3(n+1)^2}{\pi^{n+1}}$$
. Temos

$$\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = \lim_{n \to \infty} \frac{3(n+2)^2}{\pi^{n+2}} \frac{\pi^{n+1}}{3(n+1)^2} = \lim_{n \to \infty} \frac{1}{\pi} \frac{(n+2)^2}{(n+1)^2} = \lim_{n \to \infty} \frac{1}{\pi} \left(\frac{n+2}{n+1}\right)^2 = \frac{1}{\pi} < 1.$$

Pelo Critério de D'Alembert concluimos que a série **converge** (e como é de termos positivos, também **converge absolutamente**).

A série $\sum_{n=2}^{\infty} \frac{(-2)^{n-1}}{3^{n-1}}$ é geométrica, com o primeiro termo $a=-\frac{2}{3}$ e com a razão $r=-\frac{2}{3}$. O módulo da razão é $|r|=\frac{2}{3}<1$, logo a série converge e a sua soma é

$$\frac{a}{1-r} = \frac{-2/3}{1+2/3} = -\frac{2}{5}.$$

A série $\sum_{n=2}^{\infty} \frac{2}{n^2-1}$ é telescópica, pois o seu termo geral tem a forma $\frac{2}{n^2-1} = \frac{1}{n-1} - \frac{1}{n+1}$. Denotando $b_n = \frac{1}{n}$, obtemos $\sum_{n=2}^{\infty} \frac{2}{n^2-1} = \sum_{n=1}^{\infty} b_n - b_{n+2}$, logo p=2. Como existe o limite $\lim_{n\to\infty} b_n = 0$, concluimos que a série telescópica dada é convergente e a sua soma é $b_1 + b_2 - \lim_{n\to\infty} (b_{n+1} + b_{n+2}) = 1 + \frac{1}{2} - 0 = \frac{3}{2}$.

Usando a propriedade conveniente das séries (ver o ex. 5(a)), concluimos que

$$\sum_{n=2}^{\infty} \left(\frac{(-2)^{n-1}}{3^{n-1}} + \frac{2}{n^2 - 1} \right) = \sum_{n=2}^{\infty} \frac{(-2)^{n-1}}{3^{n-1}} + \sum_{n=2}^{\infty} \frac{2}{n^2 - 1} = -\frac{2}{5} + \frac{3}{2} = \frac{11}{10}.$$

3 (3 val.)

Seja $\Phi(x)$ uma primitiva da função arctan (x^2) (uma tal primitiva existe porque esta função é contínua); pela Fórmula de Barrow temos

$$F(x) := \int_{\sin(x^2)}^{\sqrt{x^2+1}} \arctan(t^2) dt = \Phi(\sqrt{x^2+1}) - \Phi(\sin(x^2)).$$

Logo

$$F'(x) = \left(\Phi(\sqrt{x^2 + 1}) - \Phi(\sin(x^2))\right)' = \Phi'(\sqrt{x^2 + 1}) (\sqrt{x^2 + 1})' - \Phi'(\sin(x^2)) (\sin(x^2))'$$
$$= \arctan(x^2 + 1) \frac{1}{2\sqrt{x^2 + 1}} 2x - \arctan(\sin^2(x^2)) \cos(x^2) 2x.$$

Substituindo x = 0, temos $F'(0) = \arctan(1) \cdot \frac{1}{2} \cdot 0 - \arctan(0) \cdot 1 \cdot 0 = 0$.

4. (a) \(\int \frac{1}{n \limbol{h} n \limbol{h} \text{ h}} \).

1 e contins en [2,00[, logo trete-re de un integral de 1ª especie.

 $\int_{2}^{\infty} \frac{1}{n \ln n} dn = \lim_{b \to \infty} \int_{2}^{b}$

= $\lim_{\delta \to \infty} \left[\ln(\ln 1)^{\delta}_{2} \right]$ = $\lim_{\delta \to \infty} \left(\ln(\ln \delta) - \ln(\ln 2) \right) = \infty$

: O integral ded a divogente.

(b) \(\sigma_{m=2}^{\infty} \frac{1}{m \lambda_{mm}} \).

Sign f: [2,00[-> 12 / 100] f(n):= 1 mln n.

Tenn fore f(m) = 1 / 1 / 1 / 2, e fore

f is decorrect (pois n.h.n & accents).

Podema inter more o criterio de integral e

afirmer que a resis como ten a menne

maturetz que o integral impríprio de alivea (a).

.". A seis dade & divogente.

5. Em, Elm ning numbler.

(a) Se form amon convoyenter, entry, por definiçat,

lin (a,+...+an) = S, ER & lin (b,+...+bn) = SzER.

Notes

C to the usual propriedules & adição

Comprestenete, want proprietedes & adição (finite) e da limita de manos,

N-)00 ((0,+51)+...+ (0,N+5M)) =

= hi- (6,+6,+ + + 6, + 5 m)

= li- ((6,+--+6N)+(6,+--+6N))

= lin (6,+--+6N) + lin (6,+--+6N) N-100

= S1 + S2 ER,

e postant \(\lambda (6m+\delta m)\) convoge e

受 (antsn)= Sn+Sz= これ+ こるm.
min min min min

(5) Se for mus conveyent a contro divergente,

digenor supetiment = 15 = 25, vegamment

suic possibel \$\int_{max}(\alpha_m+\beta_m)\$ son conveyente:

\$\int_{max}(-\alpha_m)\$ tourbuilt

\$\int_

seix, conjugande con a sliver (a) tu-re-is que
£ ((4m+5m)-4m)
serie conveyante. Le s'elleme rense e Elm, que elemente d'acquite.
eten a amin dolgete.
Tende on other une contradição e impossibil
E (anton) ser convegente, logs et divergente.
(c) Comidne-ne on = 1, VnEN, e bn=-1, their.
Entri Ern i Ebn son dougete (par
00 e - 00 respotraments). No estants,
$\frac{20}{20}(x_m+b_m)=\frac{20}{20}(1-1)=0$
or reje , i conveyante.
Por outs todo, se mantroum ku como e comideranna egos du = 1, tuent, Eku e Edu ma
continuam a un divogete (150 amora par 00),
o men ne passand com
$\sum_{m=1}^{\infty} (a_m + b_m) = \sum_{m=1}^{\infty} (1+1),$
que diveze também pars «.
Amin, mand en river deta seren dvergete,
bet cam en fre E (anton) convey a cam en gre este rive diveze
· -