CPSC 340: Machine Learning and Data Mining

Logistic Regression

Admin

Assignment 3:

Due in 9 days

Midterm:

- March 1st in class
- closed-book, cheat sheet: 1-page double-sided

Partners

You can open issues now for hw4, hw5, hw6

Office hours

- Two extra office hours created for the end of next week, to help with hw3
- My office hours will move around to accommodate different schedules
- See calendar for details

Summary of Last Lecture

1. Error functions:

- Squared error is sensitive to outliers.
- Absolute (L₁) error and Huber error are more robust to outliers.
- Brittle (L_{∞}) error is more sensitive to outliers.
- 2. L_1 and L_{∞} error functions are non-differentiable:
 - Finding 'w' minimizing these errors is harder.
- 3. We can approximate these with differentiable functions:
 - L₁ can be approximated with Huber
 - I was naughty in the demo and didn't do this.
 - $-L_{\infty}$ can be approximated with log-sum-exp.
- 4. Gradient descent finds local minimum of differentiable function.
- 5. For convex functions, any local minimum is a global minimum.

Very Robust Regression

Consider data with extreme outliers:

- Non-convex errors can be very robust:
 - Eventually 'give up' on trying to make large errors smaller.
- But with non-convex errors, finding global minimum is hard.
- But with non-convex crisis,
 Absolute value is the most robust convex error function.
 \(\chi_{\chi\toket\chi_{\chi\inptga\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}\chi_{\chi\ting\tine\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}\chi_{\chi\ting\ti}\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}\chi_{\chi_{\chi\ti}\chi_{\chi\ti}\chi_{\chi\ti}\chi\chi\ti}\chi\chi\ti}\chi_{\chi_{\chi\ti}\chi\ti}\chi\chi\chi\ti}\chi\ti}\chi\chi\chi\ti\chi

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.

Consider $f(w) = e^{w}$

We have $f'(w) = e^{w}$ and $f''(w) = e^{w} > 0$ By definition of exponential function

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.

We showed that
$$f(w) = e^w$$
 is convex, so $f(w) = 10e^w$ is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.

$$f(x) = |0e^w + \frac{\pi}{2}||w||^2$$
 is convex

From constant norm

earlier squared

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff f''(w) ≥ 0 for all 'w'
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function

$$f(w) = \max \{ \frac{1}{2} , \frac{2}{2} , \frac{2}{3} \} \text{ is convex}$$

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.
- But: not true that composition of convex with convex is convex:

Even if 'f' is convex and 'g' is convex,
$$f(g(w))$$
 might not be convex.
E.g. x^2 is convex and $-log(x)$ is convex but $-log(x^2)$ is not convex.

Example: Convexity of Linear Regression

• Consider linear regression objective with error function 'g':

$$f(w) = \sum_{i=1}^{n} g(w^{T}x_{i} - y_{i})$$

- Sufficient for 'g' to be convex for 'f' to be convex:
 - Then each term is composition of convex with linear.
 - And sum of convex is convex.
- Examples:

For squared error
$$g(r_i) = \frac{1}{2}r_i^2$$
 so $g''(r_i) = 1$ and 'f' is convex.
For absolute error $g(r_i) = |r_i|$ which is a norm so 'f' is convex.

Example: Convexity of Linear Regression

Consider linear regression objective with error function 'g':

$$f(w) = \sum_{i=1}^{n} g(w^{T}x_{i} - y_{i}) + \frac{1}{2} ||w||^{2}$$

- Sufficient for 'g' to be convex for 'f' to be convex:
 - Then each term is composition of convex with linear.
 - And sum of convex is convex.
- Same condition applies with L₂-regularization.

Classification Using Regression?

- Usual approach to do classification with regression:
 - Code y_i as '-1' for one class and '+1' for the other class.
 - E.g., '+1' means 'important' and '-1' means 'not important'.
- At training time, fit a linear regression model:

$$y_i = w_i x_{ii} + w_2 x_{i2} + \cdots + w_d x_{id}$$
$$= w^T x_i$$

• To predict, we take the sign:

$$y_i = \text{Sign}(w^T x_i)$$

$$\sum_{j=1}^{\infty} \text{Set } y_i = +1 \text{ if } w^T x_i > 0$$

$$\sum_{j=1}^{\infty} \text{Set } y_i = -1 \text{ if } w^T x_i < 0$$

Classification using Regression

Classification using Regression

Classification Using Regression

- Can use regression tricks (basis, regularization) for classification.
- But, usual error functions do weird things:

Classification Using Regression

What went wrong?

 $f(w) = \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$

Classification Using Regression

What went wrong?

Comparing Loss Functions

Comparing Loss Functions

Comparing Loss Functions

0-1 Loss Function

- The 0-1 loss function is the number of classification errors:
 - Unlike regression, in classification it's reasonable that $sign(w^Tx_i) = y_i$.

- Unfortunately the 0-1 loss is non-convex in 'w'.
 - It's easy to minimize if a perfect classifier exists.
 - Otherwise, finding the 'w' minimizing 0-1 loss is a hard problem.
 - It's not differentiable, so you don't know "which way to go" in w-space.
- Convex approximations to 0-1 loss:
 - Hinge loss (non-smooth) and logistic loss (smooth).

Convex Approximations to 0-1 Loss

Convex Approximations to 0-1 Loss

Hinge Loss and Support Vector Machines

Hinge loss is given by:

$$f(w) = \sum_{i=1}^{n} \max_{i=1}^{n} 20, 1 - y_i w^7 x_i$$

- Convex upper bound on number of classification errors.
- Solution will be a perfect classifier, if one exists.
- Support vector machine (SVM) is hinge loss with L2-regularization.

$$f(w) = \sum_{j=1}^{6} \max_{i=1}^{6} 0_{i} - y_{i} w^{7} x_{i}^{3} + \frac{1}{2} \|w\|^{2}$$

- Next time we'll see that it "maximizes the margin".
- Note: it's important that we define y in {-1,+1} rather than {0,1}
 - This allows convenient/compact notation for the loss, as above

Logistic Regression

Logistic regression minimizes logistic loss:

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^7 x_i))$$

You can/should also add regularization:

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^7 x_i)) + \frac{1}{2} ||w||^2$$

Convex and differentiable: minimize this with gradient descent.

Probabilistic interpretation

- One can arrive at logistic regression from a completely different viewpoint
- It's in a class called Generalized Linear Models (GLMs)
- You can interpret the logistic function as turning w^Tx into a probability:

$$\Pr(y_i = +1) = \frac{1}{1 + \exp(-w^{\top} x_i)}$$

- This function maps the real line to [0,1] and is "symmetric"
- We set 'w' to the maximum likelihood estimate given the data
- Note: don't confuse the logistic loss with the logistic function (below)

Logistic Regression and SVMs

Logistic regression and SVMs are used EVERYWHERE!

Why?

- Training and testing are both fast.
- It is easy to understand what the weights ' w_i ' mean.
- With high-dimensional features and regularization, often good test error.
- Otherwise, often good test error with RBF basis and regularization.
- Smoother predictions than random forests.

Linear Models with Binary Features

What is the effect of a binary feature on linear regression?

Year	Gender
1975	1
1975	0
1980	1
1980	0

Height
1.85
2.25
1.95
2.30

• Adding a bias w_0 , our linear model is:

Linear Models with Binary Features

- You can use gender-specific feature (as if d=4).
- But now the two models are completely separate.

Year	Gender
1975	1
1975	0
1980	1
1980	0

Bias (gender = 1)	Year (gender = 1)	Bias (gender = 0)	Year (gender = 0)
1	1975	0	0
0	0	1	1975
1	1980	0	0
0	0	1	1980

Linear Models with Binary Features

- That trick fits separate 'local' variable for each gender.
- To share information across genders, include a 'global' version.

Year	Gender		Year	Year (if gender = 1)	Year (if gender = 0)
1975	1	_	1975	1975	0
1975	0	=	1975	0	1975
1980	1		1980	1980	0
1980	0		1980	0	1980

- 'Global' year feature: influence of time on both genders.

	Feature 1	Feature 2	
ſ	0.5	Χ	
	3	0	
χ=	5	0	
	2.5	Δ	/
	1.5	Χ	
	3	Δ	
L			

Motivation: Identifying Important E-mails

How can we automatically identify 'important' e-mails?

- We have a big collection of e-mails:
 - Mark as 'important' if user takes some action based on them.
- There might be some "universally" important messages:
 - "This is your mother, something terrible happened, give me a call ASAP."
- But your "important" message may be unimportant to others.
 - Similar for spam: "spam" for one user could be "not spam" for another.

The Big Global/Local Feature Table

Predicting Importance of E-mail For New User

- Consider a new user:
 - Start out with no information about them.
 - Use global features to predict what is important to generic user.

- With more data, update global features and user's local features:
 - Local features make prediction personalized.

- What is important to this user?
- Gmail's system: classification with logistic regression.

Summary

- Convex functions an be identified using a few simple rules.
- Classification using regression works if done right.
- 0-1 loss is the ideal loss, but is non-smooth and non-convex.
- Logistic regression uses a convex and smooth approximation to 0-1.
- Global vs. local features allows 'personalized' predictions.

- Next time:
 - Support Vector Machines

Bonus Slide: Perceptron Algorithm

- One of the first "learning" is the perceptron algorithm.
 - Searches for a 'w' such that $w^Tx_i > 0$ when $y_i = +1$, $w^Tx_i < 0$ for $y_i = -1$.

- Perceptron Algorithm:
 - Start with $w^0 = 0$.
 - Go through examples in any order until you make a mistake predicting yⁱ.
 - Set $w^{t+1} = w^t + y_i x_i$.
 - Keep going through examples until you make no errors on training data.

- If a perfect classifier exists, this algorithm converges to one.
 - In fact, "perceptron mistake bound" result says that number of mistakes is finite.