Conversion of Geodetic coordinates into ECEF-r, LTP into ECEF-r and vice versa

Table of Contents

Conversion of Geodetic coordinates into ECEF-r, LTP into ECEF-r and vice versa	1
Conversion of Geodetic coordinates into ECEF-r.	
Conversion of ECEF-r into LTP[1]	
Conversion of LTP into ECEF-r[1]	
Conversion of ECEF-r into Geodetic coordinates	

Conversion of Geodetic coordinates into ECEF-r

To be able to simulate a GPS-sensor P (the Blender origin) must be defined in the properties in Geodetic coordinates (longitude, latitude, altitude). For the transformation^[1] the coordinates must be in decimal degrees (no North, minutes, etc.). The result is a point x0 in the ECEF-r coordinates.

Conversion of ECEF-r into LTP[1]

For this conversion x0 is the base. A point xe is given in the ECEF-r coordinates and the goal is to get xt (= xe in the LTP-coordinates).

Step 1: Transform P (Blender origin, geodetic coordinates (stored in the properties)) into x0 (geocentric (ECEF-r) coordinates)

Step 2: calculate Rte[1] with longitude, latitude and altitude; matrix is the rotation part of the transformation

Step 3: transform xe into xt with xt = Rte * (xe-x0)

Conversion of LTP into ECEF-r[1]

Known: P in Geodetic coordinates (\rightarrow x0 in ECEF-r) and xt in LTP-coordinates

Goal: xe (= xt in ECEF-r coordinates)

Based on the transformation described above the transformation is calculated with the transposed matrix Rte:

$$xe = x0 + (Rte)' * xt$$

Conversion of ECEF-r into Geodetic coordinates

The last transformation is from ECEF-r coordinates into Geodetic coordinates. This transformation is calculated with the Vermeille's method^[2]. The result is the point xe in "GPS-coordinates" in radians.

[1] "Conversion of Geodetic coordinates to the Local Tangent Plane", Version 2.01 (http://psas.pdx.edu/CoordinateSystem/Latitude_to_LocalTangent.pdf)
[2]"3.4 Vermeille's Method(2002)" in "Comparative Analysis of the Performance of Iterative and Non-iterative Solutions to the Cartesian to Geodetic Coordinate Transformation", Hok Sum Fok and H. Bâki Iz, (http://www.lsgi.polyu.edu.hk/staff/zl.li/Vol_5_2/09-baki-3.pdf)