Implementação do algoritmo Needleman-Wunsch

O algoritmo Needleman-Wunsch é utilizado para alinhamento global de sequências de DNA ou aminoácidos. Esse algoritmo retorna o melhor alinhamento possível, porém, o resultado obtido não necessariamente tem uma significância biológica, nesse sentido, é muito importante a escolha de um sistema de pontuação e/ou matriz de substituição adequados ao problema.

Implementou-se o algoritmo, em Python 3.8, para o alinhamento de duas sequencias. O código fonte está disponível no *Github* (https://github.com/glenjasper/needleman-wunsch.git). O algoritmo aceita um arquivo fasta contendo as duas sequencias biológicas, para o qual é requerido escolher a matriz de substituição (BLOSUM ou PAM) e o *gap penalty* para sequencias proteicas, entretanto para sequencias de DNA podem-se configurar o *match* e o *mismatch*. Além do alinhamento feito, o algoritmo retorna a matriz de pontuação em um arquivo TXT. Também, é possível visualizar o alinhamento através do *framework* Dash (https://dash.plotly.com), que oferece uma visualização simples é amigável em HTML.

Pré-requisitos

pip install dash pip install dash-bio

Uso básico

```
$ python needleman_wunsch.py --help
usage: needleman_wunsch.py [-h] -t {nt,aa} [-sm {BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80,
BLOSUM90, PAM30, PAM70, PAM250}] -f FILE [-m MATCH] [-mi MISMATCH PENALTY] [-gap
GAP PENALTY] [-o FOLDER] [--version]
Implementation of the Needleman-Wunsch algorithm
optional arguments:
-h, --help
              show this help message and exit
-t {nt,aa}, --type {nt,aa}
           nt: Nucleotide sequence | aa: Amino acid sequence
-sm {BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM90, PAM30, PAM70, PAM250}, --
substitution_matrix {BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM90, PAM30, PAM70,
PAM250}
          Substitution Matrix type (Only for amino acid sequence) [default: BLOSUM62].
-f FILE, --fasta FILE
          Fasta file
-m MATCH, --match MATCH
          Match value (Only for nucleotide sequence) [default: 1].
-mi MISMATCH_PENALTY, --mismatch_penalty MISMATCH_PENALTY
           Mismatch penalty value (Only for nucleotide sequence) [default: 0].
 -gap GAP_PENALTY, --gap_penalty GAP_PENALTY
           Gap penalty value [default: 0].
-o FOLDER, --output FOLDER
          Output folder
              show program's version number and exit
 --version
```

Parâmetros

Parâmetro	Descrição	Possíveis valores	Default
-t type	Tipo de sequências a alinhar. Podem ser de aminoácidos ou nucleotídeos.	nt, aa	
-sm substitution_matrix	Matriz de substituição BLOSUM ou PAM, usado quando as sequencias forem proteicas.	BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM90, PAM30, PAM70, PAM250	BLOSUM62
-f fasta	Arquivo fasta que contem as sequências biológicas a serem alinhadas.		
-m match	Valor de <i>match</i> . Usado quando as sequencias forem de DNA.		1
-mi mismatch_penalty	Valor de <i>mismatch</i> . Usado quando as sequencias forem de DNA.		0
-gap gap_penalty	Valor de <i>gap penalty</i> .		0
-o output	Pasta de saída.		

Exemplos

1. Alinhar as sequências proteicas DRQTAQAAGTTTIT e DRNTAQLLGTDTT (contidas no arquivo **file.fa**), com a matriz de substituição BLOSUM80 e *gap penalty -*1.

\$ python needleman_wunsch.py -t aa -f file.fa -gap -1 -o out_align1

Output:

Matriz de substituição (ver arquivo alignment_matrix.txt):

```
2 | 1
                        3|1
                                         0|1
                                             -1|1
                                                  -2|1
                                                        -3|1
                                                                   -5|1
                                                                        -6|1
                        9|1
                              8|1
                                         6|1
                                              5|1
                                                         3|1
                                                              2 | 1
                                                                   1|1
               d
                  10
                                          1
                       10 d
                             9|1
                                   8 d
                                         7
                                              6|1
                                                   5 d
                                                        4 d
                                                              3 d
                             15 1
                                       13|1
                                             12 1
                       16|d
                                  14 | 1
                                                  11|1
                                                        10 d
                                                              9 d
                                                                   8 d
                  10 u
                                  19|1
             8 u
                             20 d
                                       18 d
                                             17 d
                                                  16 | 1
                                                        15 | 1
                                                             14 | 1
                                                                  13 | 1
                   9 | u
                       15 u
Q
                                  25 d
                                             23 | 1
                                                  22 1
                                                             20 1
                  13 d
                       14 u
                             19 u
                                       24 1
                                                       21 1
                                                                  19
        0 u
                  12|u 13|u 18|u 24|u 24|d 23|d
                                                  22 1
             6 u
                                                       21 d
                                                             20 d
                                                                  19 d
    -8
             5 | u
                  11|u 12|u 17|u 23|u 23|d 23|d 22|1 21|d
                                                             20 d
                                                                  19 d
       -1|u
    -9
       -2 u
             4 u
                  10|u 11|u 16|u 22|u 23|d 23|d 29|d 28|1
                                                             27 1 26 1 25 1
   -10
       -3|u
             3 u
                  9|u 15|d 15|u 21|u 22|d 23|d 28|u 34|d 33|d 32|d 31|1 30|d
   -11
       -4 d
             2 u
                   8 u 14 u 14 u 20 u 21 u 22 u 27 u 33 u 33 d 32 d 31 l 30 d
       -5 u
                   7 u 13 d 14 d 19 u 20 d 21 d 26 u 32 d 38 d 38 d 37 1 36 d
   -12
             1 | u
                  6|u 12|d 13|d 18|u 19|d 20|d 25|u 31|d 37|d 43|d 42|1 42|d
             0 u
```

Visualização do alinhamento com o *framework* Dash (HTML+CSS), através do endereço http://127.0.0.1:8050:

2. Alinhar as glicoproteínas Spike sp|P11223|SPIKE_IBVB e sp|P12651|SPIKE_IBVM (contidas no arquivo **file2.fa**), com a matriz de substituição BLOSUM62 e *gap penalty* -2.

\$ python needleman_wunsch.py -t aa -f file2.fa -gap -2 -o out_align2

Output:

```
2021-02-05 00:25:56
2021-02-05 00:25:56
2021-02-05 00:25:56
2021-02-05 00:25:56
                    Fasta file: C:\Users\Glen\Dropbox\UFMG\Disciplinas\Bioinformática\Atividades\TP1\script\needleman-wunsch\file2.fa
                  Parameters:
Matrix: BLOSUM62
2021-02-05 00:25:56
2021-02-05 00:25:56
                    Gap penalty: -2
2021-02-05 00:25:56
2021-02-05 00:26:13
                  Alignment:
Score: 5869
2021-02-05 00:26:13
2021-02-05 00:26:13
2021-02-05 00:26:13
2021-02-05 00:26:13
2021-02-05 00:26:13
2021-02-05 00:26:13
                    sp P11223 SPIKE_IBVB
                                          MLVTPLLLVTLLCALCSAVLYDSSSYVYYYQSAFRPPSGWHLQGGAYAVWNISSEFNNAG
                    sp|P12651|SPIKE_IBVM
                    sp|P11223|SPIKE_IBVB
                                           sssgctvgiihggrvvnassiamtapssgmamsssgfctahcnfsdttvfvthcykhggc
||-||-||-||-|||||||||||||||-|||
                    sp|P12651|SPIKE IBVM
 021-02-05 00:26:13
2021-02-05 00:26:13
2021-02-05 00:26:13
                    sp|P11223|SPIKE_IBVB
                                          2021-02-05 00:26:13
2021-02-05 00:26:13
                    sp|P12651|SPIKE_IBVM
021-02-05 00:26:13
021-02-05 00:26:13
                    sp|P11223|SPIKE_IBVB
                                           sp|P12651|SPIKE IBVM
 021-02-05 00:26:13
021-02-05 00:26:13
021-02-05 00:26:13
                    sp|P11223|SPIKE IBVB
                                          sp|P12651|SPIKE IBVM
021-02-05 00:26:13
 021-02-05 00:26:13
021-02-05 00:26:13
                    splP11223|SPIKE IBVB
                                           GYYNFNFSFLSSFVYKESNFMYGSYHPSCKFRLETINNGLWFNSLSVSIAYGPLQGGCKQ
                    sp P12651 SPIKE_IBVM
                    sp|P11223|SPIKE_IBVB
                                           021-02-05 00:26:13
                    sp|P12651|SPIKE_IBVM
 021-02-05 00:26:13
 021-02-05 00:26:13
021-02-05 00:26:13
                    sp|P11223|SPIKE_IBVB
                                          NNYNNITLNTCVDYNIYGRTGQGFITNVTDSAVSYNYLADAGLAILDTSGSIDIFVVQGE
                    sp P12651 SPIKE IBVM
                    sp|P11223|SPIKE_IBVB
                                           021-02-05 00:26:13
                    sp|P12651|SPIKE_IBVM
          00:26:13
```

Matriz de substituição (ver arquivo **alignment_matrix.txt**). Apenas uma parte é mostrada porque a matriz é muito extensa:

-	-	М	L	V	T	Р	L	L	L	V	T	L	L	C	Α	L	C	S
-	0		-4	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-30	-32	-34
М		5 d	3 1	1 1	-1 1	-3 1	-5 1	-7 1	-9 1	-11 1	-13 1	-15 1	-17 1	-19 1	-21 1	-23 1	-25 1	-27 1
L	-4	3 u	9 d	7 1	5 1	3 1	1 d	-1 d	-3 d	-5 1	-7 1	-9 d	-11 d	-13 1	-15 1	-17 d	-19 1	-21 1
V	-6	1 u	7 u	13 d	11 1	9 1	7 1	5 1	3 1	1 d	-1 1	-3 1	-5 1	-7 1	-9 1	-11 1	-13 1	-15 1
T	-8	-1 u	5 u	11 u	18 d	16 1	14 1	12 1	10 1	8 1	6 d	4 1	2 1	0 1	-2 1	-4 1	-6 1	-8 1
P	-10	-3 u	3 u	9 u	16 u	25 d	23 1	21 1	19 1	17 1	15 1	13 1	11 1	9 1	7 1	5 1	3 1	1 1
L	-12	-5 u	1 d	7 u	14 u	23 u	29 d	27 d	25 d	23 1	21 1	19 d	17 d	15 1	13 1	11 d	9 1	7 1
L	-14	-7 u	-1 d	5 u	12 u	21 u	27 d	33 d	31 d	29 1	27 1	25 d	23 d	21 1	19 1	17 d	15 1	13 1
L	-16	-9 u	-3 d	3 u	10 u	19 u	25 d	31 d	37 d	35 1	33 1	31 d	29 d	27 1	25 1	23 d	21 1	19 1
V	-18	-11 u	-5 u	1 d	8 u	17 u	23 u	29 u	35 u	41 d	39 1	37 1	35 1	33 1	31 1	29 1	27 1	25 1
T	-20	-13 u	-7 u	-1 u	6 d	15 u	21 u	27 u	33 u	39 u	46 d	44 1	42 1	40 1	38 1	36 1	34 1	32 1
L	-22	-15 u	-9 d	-3 u	4 u	13 u	19 d	25 d	31 d	37 u	44 u	50 d	48 d	46 1	44 1	42 d	40 1	38 1
L	-24	-17 u	-11 d	-5 u	2 u	11 u	17 d	23 d	29 d	35 u	42 u	48 d	54 d	52 1	50 1	48 d	46 1	44 1
C	-26	-19 u	-13 u	-7 u	0 u	9 u	15 u	21 u	27 u	33 u	40 u	46 u	52 u	63 d	61 1	59 1	57 d	55 1
V	-28	-21 u	-15 u	-9 d	-2 u	7 u	13 u	19 u	25 u	31 d	38 u	44 u	50 u	61 u	63 d	62 d	60 1	58 1
L	-30	-23 u	-17 d	-11 u	-4 u	5 u	11 d	17 d	23 d	29 u	36 u	42 d	48 d	59 u	61 u	67 d	65 1	63 1
C	-32	-25 u	-19 u	-13 u	-6 u	3 u	9 u	15 u	21 u	27 u	34 u	40 u	46 u	57 d	59 d	65 u	76 d	74 1
S	-34	-27 u	-21 u	-15 u	-8 u	1 u	7 u	13 u	19 u	25 u	32 u	38 u	44 u	55 u	58 d	63 u	74 u	80 d
Α	-36	-29 u	-23 u	-17 u	-10 u	-1 u	5 u	11 u	17 u	23 u	30 u	36 u	42 u	53 u	59 d	61 u	72 u	78 u
Α	-38	-31 u	-25 u	-19 u	-12 u	-3 u	3 u	9 u	15 u	21 u	28 u	34 u	40 u	51 u	57 d	59 u	70 u	76 u
L	-40	-33 u	-27 d	-21 u	-14 u	-5 u	1 d	7 d	13 d	19 u	26 u	32 d	38 d	49 u	55 u	61 d	68 u	74 u
Y	-42	-35 u	-29 u	-23 u	-16 u	-7 u	-1 u	5 u	11 u	17 u	24 u	30 u	36 u	47 u	53 u	59 u	66 u	72 u
D	-44	-37 u	-31 u	-25 u	-18 u	-9 u	-3 u	3 u	9 u	15 u	22 u	28 u	34 u	45 u	51 u	57 u	64 u	70 u
S	-46	-39 u	-33 u	-27 u	-20 u	-11 u	-5 u	1 u	7 u	13 u	20 u	26 u	32 u	43 u	49 u	55 u	62 u	68 d
S	-48	-41 u	-35 u	-29 u	-22 u	-13 u	-7 u	-1 u	5 u	11 u	18 u	24 u	30 u	41 u	47 u	53 u	60 u	66 d
S	-50	-43 u	-37 u	-31 u	-24 u	-15 u	-9 u	-3 u	3 u	9 u	16 u	22 u	28 u	39 u	45 u	51 u	58 u	64 d

Visualização do alinhamento com o *framework* Dash (HTML+CSS), através do endereço http://127.0.0.1:8050:

3. Alinhar as sequências de DNA AATTTACGCGGCATTATAGATACAATCGTGTCT e GCAATTGGCCGGAATTTAATTGATACAGCGC (contidas no arquivo **file3.fa**), com valores de *match* +2, *mismatch* -1 e *gap penalty* -2.

\$ python needleman_wunsch.py -t nt -f file3.fa -m 2 -mi -1 -gap -2 -o out_align3

Output:

Visualização do alinhamento com o *framework* Dash (HTML+CSS), através do endereço http://127.0.0.1:8050:

