Alignment-free distance estimation ...

This manuscript (<u>permalink</u>) was automatically generated from <u>bluegenes/2021-ani-paper@de414d1</u> on December 28, 2020.

Authors

• N. Tessa Pierce Ward

(D 0000-0002-2942-5331 **(G** bluegenes **У** saltyscientist

Department of Population Health and Reproduction, University of California, Davis \cdot Funded by NSF 1711984, NSF 2018911

• C. Titus Brown

© 0000-0001-6001-2677 · ♠ ctb · ❤ ctitusbrown

Department of Population Health and Reproduction, University of California, Davis · Funded by Moore Foundation GBMF4551

Abstract

Introduction

Pairwise overall genome relatedness forms the basis genome-based taxonomic classification and phylogentic analysis. Average Nucleotide Identity (ANI) is a widely-accepted method for estimating genome similarity. Massive-scale sequencing of microbial genomes has necessitated a transition to alignment-free estimation of genome relatedness. A number of alignment-free similarity estimates exist, including several that closely approximate ANI.

Acknowledgements

Thank you to all the members and affiliates of the Lab for Data-Intensive Biology at UC Davis for providing valuable feedback on earlier versions of this manuscript. This manuscript was written using manubot [1] and is available in a GitHub repository [2].

Author Contributions

Author	Contributions
NTP	Conceptualization; Methodology; Writing - Original Draft; Writing - Review and Editing; Visualization; Supervision; Funding Acquisition
СТВ	Conceptualization; Methodology; Writing - Original Draft; Writing - Review and Editing; Visualization; Supervision; Funding Acquisition

Competing Interests

The authors declare no competing interests.

References

1. Open collaborative writing with Manubot

Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu, Venkat S. Malladi, Casey S. Greene, Anthony Gitter

PLOS Computational Biology (2019-06-24) https://doi.org/c7np

DOI: <u>10.1371/journal.pcbi.1007128</u> · PMID: <u>31233491</u> · PMCID: <u>PMC6611653</u>

2. https://github.com/bluegenes/2021-ani-paper