SEMICONDUCTOR TECHNICAL DATA

Bias Resistor Transistor

NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network

This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SOT-23 package which is designed for low power surface mount applications.

- Simplifies Circuit Design
- · Reduces Board Space and Component Count
- The SOT-23 package can be soldered using wave or reflow. The modified gull-winged leads absorb thermal stress during soldering eliminating the possibility of damage to the die.

MAXIMUM RATINGS ($T_A = 25$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	I_{C}	100	mAdc
Total Power Dissipation @ T _A = 25 C (Note 1.) Derate above 25 C	P_{D}	246 1.5	mW C/W

DEVICE MARKING AND RESISTOR VALUES

Device	Marking	R1(K)	R2(K)	Shipping
DTC101	A8J	4.7	4.7	3000/Tape & Reel
DTC102	A8A	10	10	3000/Tape & Reel
DTC103	A8B	22	22	3000/Tape & Reel
DTC104	A8C	47	47	3000/Tape & Reel
DTC105	A8M	2.2	47	3000/Tape & Reel
DTC106	A8K	4.7	47	3000/Tape & Reel
DTC107	A8D	10	47	3000/Tape & Reel
DTC108	A8L	22	47	3000/Tape & Reel
DTC110	A8F	4.7	80	3000/Tape & Reel
DTC111	A8E	10	8	3000/Tape & Reel
DTC112	A8U	100	∞	3000/Tape & Reel
DTC114	A8T	47	∞	3000/Tape & Reel
DTC117	A8H	2.2	2.2	3000/Tape & Reel
DTC123	A8G	1.0	1.0	3000/Tape & Reel
DTC124	A8R	2.2	∞	3000/Tape & Reel

Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance – Junction-to-Ambient (Note 1.)	$R_{\theta JA}$	508	C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	С
Maximum Temperature for Soldering Purposes, Time in Solder Bath	T_{L}	260 10	C Sec

ELECTRICAL CHARACTERISTICS (T_A = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector-Base Cutoff Current (V_{CB} = 50 V, I_{E} = 0)			-	-	100	nAdc
Collector-Emitter Cutoff Current (V _{CE} = 50	$V, I_B = 0)$	I_{CEO}	_	-	500	nAdc
Emitter-Base Cutoff Current	DTC101	I _{EBO}	-	_	1.5	mAdc
$(V_{EB} = 6.0 \text{ V}, I_{C} = 0)$	DTC102		_	_	0.5	
	DTC103		_	_	0.2	
	DTC104		_	_	0.1	
	DTC105		_	_	0.2	
	DTC106		_	_	0.18	
	DTC107		_	_	0.2	
	DTC108		_	_	0.13	
	DTC110		_	_	1.9	
	DTC111			_	0.9	
	DTC112		_	_	0.1	
	DTC114		_	_	0.2	
	DTC117		_	_	2.3	
	DTC123		_	_	4.3	
	DTC124			_	4.0	
Collector-Base Breakdown Voltage ($I_C = 10\mu A$, $I_E = 0$)		V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note	e 2.), $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	-	-	Vdc
ON CHARACTERISTICS						
DC Current Gain	DTC101	h_{FE}	15	30	_	
$(V_{CE}=10 \text{ V}, I_{C}=5.0\text{mA})$	DTC102		35	60	_	
	DTC103		60	100	_	
	DTC104		80	140	_	
	DTC105		80	140	_	
	DTC106		80	200	_	
	DTC107		80	140	_	
	DTC108		80	150	_	
	DTC110		160	350	_	
	DTC111		160	350	_	
	DTC112		160	350	_	
	DTC114		160	350	_	
	DTC117		8.0	15	_	
	DTC123		3.0	5.0	_	
	DTC124		160	350	_	
Collector-Emitter Saturation Voltage ($I_C = 1$	$0 \text{ mA}, I_B = 0.3 \text{ mA})$	V _{CE(sat)}	_	_	0.25	Vdc
$(I_C = 10 \text{ mA}, I_B = 5 \text{ mA})$	DTC117 / DTC123					
$(I_C = 10 \text{ mA}, I_B = 1 \text{ mA})$	DTC101 / DTC105 /					
	TC106 / DTC108 / DTC111 /					
	DTC114 / DTC110 / DTC124	1		1		1

^{2.} Pulse Test: Pulse Width $<300\mu s,\, Duty\, Cycle <\,2.0\%$.

ELECTRICAL CHARACTERISTICS (TA = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
ON CHARACTERISTICS (Note 3.)						
Output Voltage (on) $(V_{CC} = 5.0 \text{ V}, V_B = 2.5 \text{V}, R_L = 1.0 \text{K}\Omega)$	DTC101 DTC102 DTC103	V _{OL}	- - -	- - -	0.2 0.2 0.2	Vdc
	DTC105 DTC106		- -	_ _	0.2 0.2	
	DTC107 DTC108		- -	_	0.2	
	DTC110 DTC111 DTC117		- - -	_ _ _	0.2 0.2 0.2	
	DTC123 DTC124		_ _ _	_	0.2	
$(V_{CC} = 5.0 \text{ V}, V_B = 3.5 \text{ V}, R_L = 1.0 \text{K}\Omega)$	DTC104 DTC114		_	-	0.2	
$(V_{CC} = 5.0 \text{ V}, V_B = 5.0 \text{ V}, R_L = 1.0 \text{ K}\Omega)$ Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, V_B = 0.5 \text{ V})$	DTC112	V _{OH}	4.9	_	0.2	Vdc
$(V_{CC} = 5.0 \text{ V}, V_B = 0.05 \text{V}, R_L = 1.0 \text{K}\Omega)$ $(V_{CC} = 5.0 \text{ V}, V_B = 0.25 \text{V}, R_L = 1.0 \text{K}\Omega)$	DTC123 DTC111 DTC106 DTC110 DTC124	Von	4.7			vac
Input Resistor	DTC101 DTC102 DTC103	R1	3.3 7.0 15.4	4.7 10 22	6.1 13 28.6	ΚΩ
	DTC104 DTC105		32.9 1.54	47 2.2	61.1 2.86	
	DTC106 DTC107 DTC108		3.3 7.0 15.4	4.7 10 22	6.1 13 28.6	
	DTC110 DTC111		3.3 7.0	4.7 10	6.1 13	
	DTC112 DTC114 DTC117		70 32.9 1.5	100 47 2.2	130 61.1 2.9	
	DTC123 DTC124		0.7 1.54	1.0	1.3 2.88	
	DTC101 / DTC123 / DTC117 DTC102 / DTC103 / DTC104 DTC105 DTC106	R1/R2	0.8 0.8 0.038 0.055	1.0 1.0 0.047 0.1	1.2 1.2 0.056 0.185	
7	DTC106 DTC107 DTC108 DTC110 / DTC111 / DTC124		0.033 0.17 0.38	0.1 0.21 0.47	0.183 0.25 0.56	
1	DTC112 / DTC114		_	_	_	

^{3.} Pulse Test: Pulse Width $<300\mu s,\, Duty\,\, Cycle <\,2.0\%$.

Figure 22. V_{CE(sat)} vs. I_C

Figure 23. DC Current Gain

Figure 24. Output Capacitance

Figure 25. Output Current vs. Input Voltage

Figure 26. Output Voltage vs. Input Current

TYPICAL ELECTRICAL CHARACTERISTICS **DTC103**

V_R, REVERSE BIAS VOLTAGE (VOLTS) Figure 9. Output Capacitance

30

40

20

10

V_{IN}, INPUT VOLTAGE (VOLTS) Figure 10. Output Current vs. Input Voltage

8

10

0.01

0.001

Figure 11. Input Voltage vs. Output Current

TYPICAL ELECTRICAL CHARACTERISTICS DTC104

1000

 $V_{CE} = 10 \text{ V}$ $T_{A} = 75 \text{ C}$ 25 C -25 C -25 C 100 $I_{C}, COLLECTOR CURRENT (mA)$

Figure 13. DC Current Gain

Figure 14. Output Capacitance

Figure 15. Output Current vs. Input Voltage

Figure 16. Input Voltage vs. Output Current

Figure 27. V_{CE(sat)} vs. I_C

Figure 28. DC Current Gain

Figure 29. Output Capacitance

Figure 30. Output Current vs. Input Voltage

Figure 31. Input Voltage vs. Output Current

Figure 17. VCE(sat) vs. IC

Figure 18. DC Current Gain

Figure 19. Output Capacitance

Figure 20. Output Current vs. Input Voltage

Figure 21. Input Voltage vs. Output Current

Figure 27. V_{CE(sat)} versus I_C

Figure 28. DC Current Gain

Figure 29. Output Capacitance

Figure 30. Output Current versus Input Voltage

Figure 31. Input Voltage versus Output Current

TYPICAL ELECTRICAL CHARACTERISTICS **DTC111**

Figure 22. V_{CE(sat)} versus I_C

Figure 24. Output Capacitance

Figure 25. Output Current versus Input Voltage

Figure 26. Input Voltage versus Output Current

TYPICAL ELECTRICAL CHARACTERISTICS DTC117

Figure 37. V_{CE(sat)} versus I_C

Figure 38. DC Current Gain

Figure 39. Output Capacitance

Figure 40. Output Current versus Input Voltage

Figure 41. Input Voltage versus Output Current

TYPICAL ELECTRICAL CHARACTERISTICS DTC108

Fig.1 Input voltage vs. output current (ON characteristics)

Fig.2 Output current vs. input voltage (OFF characteristics)

Fig.3 DC current gain vs. output current

Fig.4 Output voltage vs. output current

Figure 32. V_{CE(sat)} versus I_C

Figure 33. DC Current Gain

Figure 34. Output Capacitance

Figure 35. Output Current versus Input Voltage

Figure 36. Input Voltage versus Output Current

TYPICAL APPLICATIONS FOR NPN BRTs

Figure 32. Level Shifter: Connects 12 or 24 Volt Circuits to Logic

Figure 33. Open Collector Inverter: Inverts the Input Signal

Figure 34. Inexpensive, Unregulated Current Source

SOT-23

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS		
Divi	MIN	MAX	MIN	MAX	
A	0.1102	0.1197	2.80	3.04	
В	0.0472	0.0551	1.20	1.40	
С	0.0350	0.0440	0.89	1.11	
D	0.0150	0.0200	0.37	0.50	
G	0.0701	0.0807	1.78	2.04	
Н	0.0005	0.0040	0.013	0.100	
J	0.0034	0.0070	0.085	0.177	
K	0.0140	0.0285	0.35	0.69	
L	0.0350	0.0401	0.89	1.02	
S	0.0830	0.1039	2.10	2.64	
V	0.0177	0.0236	0.45	0.60	

