

NOTE

Investigation of all Ricci semi-symmetric and all conformally semi-symmetric spacetimes

Jan E. Åman

Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

E-mail: ja@fysik.su.se

Abstract.

We find all Ricci semi-symmetric as well as all conformally semi-symmetric spacetimes. Neither of these properties implies the other. We verify that only conformally flat spacetimes can be Ricci semi-symmetric without being conformally semi-symmetric and show that only vacuum spacetimes and spacetimes with just a Λ -term can be Ricci semi-symmetric without being conformally semi-symmetric.

PACS numbers: 04.20.Cv, 02.40.Ky, 04.20.Jb

1. Introduction

Semi-symmetric spaces were introduced by Cartan [3] and are characterized by the curvature condition

$$\nabla_{[a} \nabla_{b]} R_{cdef} = 0, \quad (1)$$

where R_{cdef} denotes the Riemann tensor and round and square brackets enclosing indices indicate symmetrization and antisymmetrization, respectively.

A semi-Riemannian manifold is said to be *conformally semi-symmetric* if the Weyl tensor C_{abcd} satisfies

$$\nabla_{[a} \nabla_{b]} C_{cdef} = 0; \quad (2)$$

and *Ricci semi-symmetric* if the Ricci tensor satisfies

$$\nabla_{[a} \nabla_{b]} R_{cd} = 0. \quad (3)$$

The geometrical properties of semi-symmetric spaces were discussed in [11, 6, 8, 9, 4].

In this paper we find all semi-symmetric, Ricci semi-symmetric and all conformally semi-symmetric spacetimes. Eriksson and Senovilla [5] found all such non-conformally flat spacetimes.

It is an advantage to instead of tensors rather to use the Weyl spinor Ψ_{ABCD} , the curvature scalar spinor Λ , and the spinor $\Phi_{ABA'B'}$ for the tracefree part of the Ricci tensor. We also use the spinor $X_{ABCD} = \Psi_{ABCD} + \Lambda(\varepsilon_{AC}\varepsilon_{BD} + \varepsilon_{AD}\varepsilon_{BC})$. The spinor

commutator \square_{AB} operating on spinors with one index is $\square_{AB} \kappa_C = -X_{ABC}{}^E \kappa_E$ and $\square_{AB} \tau_{C'} = -\Phi_{ABC'}{}^{E'} \tau_{E'}$ [7].

In spinors (2) is equivalent to $\square_{AB} \Psi_{CDEF} = 0$ and $\square_{A'B'} \Psi_{CDEF} = 0$, or

$$X_{AB(C}{}^G \Psi_{DEF)G} = 0, \quad (4)$$

$$\Phi_{A'B'(C}{}^G \Psi_{DEF)G} = 0. \quad (5)$$

2. Conditions for semi-symmetry

Calculation of the components of (4) in terms of Ψ_{ABCD} and Λ shows show that it not will have 15 independent components but rather just 5 components and (4) can be replaced by its contraction over BC or

$$\Psi^{GH}{}_{(AD} \Psi_{EF)GH} - 2\Lambda \Psi_{ADEF} = 0. \quad (6)$$

We observe that the spinor commutator \square_{AB} yields 0 if operating on a scalar as the curvature scalar Λ , therefore only its effect on $\Phi_{ABA'B'}$, i.e. on the tracefree part of the Ricci tensor has to be considered. The second condition for Ricci semi-symmetry (5) corresponds to spinor equations

$$\square_{AB} \Phi_{CDC'D'} = -2X_{AB(C}{}^E \Phi_{D)EC'D'} - 2\Phi_{AB(C'}{}^{E'} \Phi_{D')E'CD}, \quad (7)$$

$$\square_{A'B'} \Phi_{CDC'D'} = -2\bar{X}_{A'B'(C'}{}^{E'} \Phi_{D')E'CD} - 2\Phi_{A'B'(C}{}^E \Phi_{D)EC'D'}. \quad (8)$$

The condition (8) is however just the complex conjugate of (7) and will not give any additional conditions for Ricci semi-symmetry.

Equation (7) has three groups of two symmetric indices but will in fact not have 27 independent components as $\square^{AB} \Phi_{ABC'D'} = 0$, it can be replaced by the fully symmetric spinors

$$\square_{(AB} \Phi_{CD)C'D'} = -2\Psi_{(ABC}{}^E \Phi_{D)EC'D'} \quad (9)$$

$$\square_{(A}{}^F \Phi_{C)FC'D'} = 4\Lambda \Phi_{ACC'D'} - \Psi^{EF}{}_{AC} \Phi_{EFC'D'} - 2\Phi^E{}_A{}^{F'}{}_{(C'} \Phi_{D')F'CE} \quad (10)$$

with 15 and 9 components respectively.

The various spacetimes are for simplicity studied in a frame where first Ψ_{ABCD} has been brought to a standard form depending on its Petrov type. Thereafter $\Phi_{ABA'B'}$ is brought to standard form depending on its Segre type [1, 10].

All of the above formulas have been implemented in CLASSI [2].

3. Main Results

The equations for Ricci semi-symmetric spacetimes (9) and (10) and Petrov Types **I**, **II** or **III** in standard frame requires that $\Phi_{ABA'B'} = 0$, while spacetimes with a Λ -term only or vacuum ($\Lambda = 0$) are Ricci semi-symmetric.

For Petrov type **D** spacetimes (with only Ψ_2 nonzero) the conditions both for conformal and for Ricci semi-symmetry require all components of $\Phi_{ABA'B'}$ to be zero except for $\Phi_{11'}$. The conditions for conformal semi-symmetry reduces to $2\Lambda + \Psi_2 = 0$ and

for Ricci semi-symmetry to $\Phi_{11'}(2\Lambda + \Psi_2) = 0$. Spacetimes of Segre type A1[(11)(1,1)] are therefore both Ricci and conformally semi-symmetric if they conform to $\Lambda = -\frac{1}{2}\Psi_2$ with arbitrary $\Phi_{11'}$. Spacetimes with Λ -term only are semi-symmetric if once again $\Lambda = -\frac{1}{2}\Psi_2$ but only Ricci semi-symmetric for other relations between Ψ_2 and Λ .

For Petrov type **N** spacetimes (with only Ψ_4 nonzero) the conditions for Ricci semi-symmetry as well as for conformal semi-symmetry require all components of $\Phi_{ABA'B'}$ to be zero except for $\Phi_{22'}$. The conditions here reduce to $\Lambda\Psi_4 = 0$ for conformal semi-symmetry and $\Lambda\Phi_{11'} = 0$ for Ricci semi-symmetry. They are therefore both Ricci and conformally semi-symmetric for arbitrary Ψ_4 and $\Phi_{22'}$ as long as $\Lambda = 0$. Once again all spacetimes with Λ -term only are Ricci semi-symmetric.

3.1. Conformally flat spacetimes

This is the case not treated by Eriksson and Senovilla [5].

All conformally flat (Petrov type **0**) spacetimes are conformally semi-symmetric.

Calculations with CLASSI shows that all conformally flat spacetimes of Segre type A1[(11)(1,1)] (only $\Phi_{11'}$ nonzero) with $\Lambda = 0$ are also Ricci semi-symmetric.

For conformally flat perfect fluids (Segre type A1[(111),1]), $\frac{1}{2}\Phi_{00'} = \Phi_{11'} = \frac{1}{2}\Phi_{22'}$ as well as for tachyons (Segre type A1[1(11,1)], $-\frac{1}{2}\Phi_{00'} = \Phi_{11'} = -\frac{1}{2}\Phi_{22'}$) the condition for Ricci semi-symmetry reduces to $\Lambda = \Phi_{11'}$. So perfect fluids with $\Lambda = \frac{1}{2}\Phi_{00'} = \Phi_{11'} = \frac{1}{2}\Phi_{22'}$ as well as tachyons with $\Lambda = -\frac{1}{2}\Phi_{00'} = \Phi_{11'} = -\frac{1}{2}\Phi_{22'}$ are also Ricci semi-symmetric.

All spacetimes of Segre type A3[(11,2)] with $\Lambda = 0$ (only $\Phi_{22'}$ nonzero) are also Ricci semi-symmetric.

All conformally flat spacetimes with Λ -term only, including flat spacetimes, are Ricci semi-symmetric.

For all other Segre types the conditions for Ricci semi-symmetry are not satisfied.

4. Summary

All conformally flat spacetimes are conformally semi-symmetric, all spacetimes with Λ -term only are Ricci semi-symmetric.

Semi-symmetric spacetimes are flat spacetimes, Λ -term and Segre A1[(11)(1,1)] spacetimes of Petrov type **0** and of type **D** with $\Lambda = -\frac{1}{2}\Psi_2$, Segre type A3[(11,2)] with $\Lambda = 0$ of Petrov types **N** and **0**, as well as conformally flat perfect fluids and tachyons with $\Lambda = \Phi_{11'}$. For a table see appendix A.

Acknowledgments

I thank Brian Edgar (1945-2010) for pointing out ref [5] and introducing me to semi-symmetric spacetimes. I thank Ingemar Bengtsson and José Senovilla for comments on the manuscript.

Appendix A

Segre type	Petrov type	I	II	III	D	N	O
Λ -term $A1[(111,1)]$ or vacuum	Ric s-s	Ric s-s	Ric s-s	Ric s-s	Ric s-s	Ric s-s	semi-sym
Λ -term, $\Lambda = -\frac{1}{2}\Psi_2$	Ric s-s	Ric s-s	#	semi-sym	#	#	#
$A1[(11)(1,1)], \Lambda = -\frac{1}{2}\Psi_2$	-	-	#	semi-sym	#	#	#
$A1[(11)(1,1)]$	-	-	-	see above	-	-	semi-sym
$A3[(11,2)], \Lambda = 0$	-	-	-	-	semi-sym	semi-sym	
$A1[(111),1]$ perfect fluid, $\Lambda = \frac{1}{2}\Phi_{00'} = \Phi_{11'} = \frac{1}{2}\Phi_{22'}$	-	-	-	-	-	-	semi-sym
$A1[1(11,1)]$ tachyon fluid, $\Lambda = -\frac{1}{2}\Phi_{00'} = \Phi_{11'} = -\frac{1}{2}\Phi_{22'}$	-	-	-	-	-	-	semi-sym
All other Ricci tensors	-	-	-	-	-	-	conf s-s

Table 1. Relations between Petrov type, Segre type and conformal semi-symmetry (conf s-s), Ricci semi-symmetry (Ric s-s) and semi-symmetry. A hyphen (-) indicates neither conformal nor Ricci semi-symmetry.

References

- [1] Åman J E, d’Inverno R A, Joly G C and MacCallum M A H 1991 Quartic Equations and Classification of Riemann Tensors in General Relativity *General Relativity and Gravitation* **23** 1023-55
- [2] Åman J E 2002 *Manual for CLASSI: Classification Programs for Geometries in General Relativity*, Department of Physics, Stockholm University, Technical Report, Provisional edition. Distributed with the sources for SHEEP and CLASSI.
- [3] Cartan É 1946 *Leçons sur la Géométrie des Espaces de Riemann* 2nd edn (Paris: Gauthier-Villars)
- [4] Defever F, Deszcz R, Verstraelen L, Vrancken L 1994 On pseudo-symmetric spacetimes, *J. Math. Phys.* **35** 5908-21
- [5] Eriksson I and Senovilla J M M 2010 Note on (conformally) semi-symmetric spacetimes *Class. Quantum Grav.* **27** 027001 [arXiv:0908.3246 [math.DG]]
- [6] Haesen S and Verstraelen L 2004 Classification of the pseudosymmetric space-times *Journal of Mathematical Physics* **45** 2343-6
- [7] Penrose R and Rindler W 1984 *Spinors and spacetime* vol 1 (Cambridge: Cambridge University Press)
- [8] Senovilla J M M 2006 Second-order symmetric Lorentzian manifolds *AIP Conf. Proc.* **841** 370-7
- [9] Senovilla J M M 2008 Second-order symmetric Lorentzian manifolds I: characterization and general results *Classical and Quantum Gravity* **25** 245011
- [10] Stephani H, Kramer D, MacCallum M A H, Hoenselaers C, Herlt E 2003 *Exact Solutions to Einstein’s Field Equations* 2nd edn (Cambridge: Cambridge University Press)
- [11] Szabó Z I 1982 Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$. I. The local version, *J. Diff. Geom.* **17** 531-82