Painel / Meus cursos / SC26EL / 4-Projeto de Controlador PD pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador PD pelo Método do Lugar das Raízes

Iniciado em	segunda, 8 mar 2021, 16:59
Estado	Finalizada
Concluída em	quarta, 17 mar 2021, 18:01
Tempo	9 dias 1 hora
empregado	
Notas	3,0/3,0
Avaliar	10,0 de um máximo de 10,0(100 %)
Questão 1	
Correto	

Assinale a(s) alternativa(s) correta(s):

Atingiu 1,0 de 1,0

- a. O controlador PD pode ser empregado quando deseja-se melhorar a resposta transitória de sistemas. Seu projeto e similar od controlador de avanço, porém, tem-se apenas um zero para ser posicionado ao invés de um zero e um polo como no controlador de avanço.
- ☐ b. A existência de ruídos na malha de controle não afeta a ação e controle fornecida pelo controlador PD.
- c. Uma alternativa para se reduzir os efeitos de ruídos na malha de controle quando desejamos um controlador PD é a inserção de um polo no controlador. Esse polo tem frequência maior do que a do zero do PD. Neste caso, o controlador resultante é um controlador de avanço.
- d. Para limitarmos o ganho do controlador PD nas altas frequências inserimos um polo no controlador em uma frequência maior do que a do zero do PD. Neste caso, o controlador resultante é um controlador de atraso.

As respostas corretas são:

O controlador PD pode ser empregado quando deseja-se melhorar a resposta transitória de sistemas. Seu projeto e similar ao do controlador de avanço, porém, tem-se apenas um zero para ser posicionado ao invés de um zero e um polo como no controlador de avanço.,

Uma alternativa para se reduzir os efeitos de ruídos na malha de controle quando desejamos um controlador PD é a inserção de um polo no controlador. Esse polo tem frequência maior do que a do zero do PD. Neste caso, o controlador resultante é um controlador de avanço.

Questão **2**Correto
Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{1}{s^2-2}$. Esta planta, em malha fechada com realimentação unitária e sem controlador é instável. Deseja-se projetar um controlador PD $C(s)=K_p(T_ds+1)$ para que o sistema, em malha fechada, seja estabilizado e tenha polos dominantes com coeficiente de amortecimento $\zeta=0$, 707 e frequência natural $\omega_n=2\ rad/s$. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Os polos dominantes de malha fechada após a compensação devem estar em : $s_{1,2} =$ -1,414 **∨** ± j 1,414 A contribuição angular que o compensador PD deve inserir no lugar das raízes é $\phi=$ 63,421 ✓ graus. O zero do compensador PD deve estar em s =-2,122 A constante de tempo derivativo vale $T_d =$ 0,471 ✔ . O ganho proporcional do compensador projetado é $K_p =$ 6 A função de transferência do controlador PD $\,$ é: $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ 2,828 **√** s+

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{1}{s(s^2+2)}$. Esta planta, em malha fechada com realimentação unitária e sem controlador é instável. Deseja-se que o sistema, em malha fechada, tenha polos dominantes $s_{1,2}=-1+j\sqrt{3}$. Utilize compensação PD na forma $C_{PD}(s)=K_p(T_ds+1)$ para atender o requisito de projeto. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

A contribuição angular que o controlador deve inserir no lugar das raízes é $\phi=$

210

graus.

Como essa contribuição angular é muito elevada, um único controlador PD não é capaz de resolver o problema. Assim, propõe-se o uso de dois controladores PD idênticos em cascata. Com isso, a contribuição angular de cada controlador no lugar das raízes é $\phi_1 = \phi_2 =$

105

graus.

O zero de cada compensador PD deve estar em s=

-0,536

~

A constante de tempo derivativo para cada compensador PD vale $T_d =$

1,866

✓ .

O ganho proporcional de cada compensador projetado é $K_{
ho} =$

0,787

✓ .

A função de transferência do controlador C(s) para atender a especificação do problema é: C(s) =

2,155

✓ s²+

✓ s+

0,619

~ .

→ Comparação PD x Avanço - Xcos

Seguir para... \$

Aula 5 - Projeto de Compensador PI pelo Método do Lugar das Raízes >