

Al modeling for wetting hydrodynamics

Andreas Demou, Nikos Savva
The Cyprus Institute

Aqtivate school, 29 Feb. 2024

- 1. Intro to wetting hydrodynamics
- 2. Intro to the FNO
- 3. Using low-fidelity data

- 4. High-fidelity data: gravity-driven
- 5. High-fidelity data: capillary-driven

1. Intro to wetting

hydrodynamics

Wetting hydrodynamics

Wetting hydrodynamics - applications

Water harvesting

Tribology

Self-cleaning

Wetting hydrodynamics - Microfluidic lab-on-a-chip

(MIT Media Lab)

Numerical simulations

Droplet of constant volume migrating from less hydrophilic (darker-shaded) to more hydrophilic (lighter-shaded) regions

2. Intro to the FNO

Al modelling - Fourier Neural Operator (FNO)

Learn contact line dynamics in a data-driven manner, by considering the mapping:

$$G = (aux. data) \rightarrow \{Solution\}$$

Key idea: A neural operator can approximate G through the Fourier space.

Fourier decomposition (1D)

Al modelling - FNO Python implementation

```
def forward(self, x):
    # apply lifting operator
   x = self.P(x)
    # Fourier layer (1)
   x1 = self.conv1(x)
   x2 = self.w1(x)
   x = x1 + x2
   x = F.gelu(x)
    # Fourier layer (L)
   x1 = self.convL(x)
   x2 = self.wL(x)
   x = x1 + x2
   x = F.gelu(x)
    # apply projection operator
   x = self.Q(x)
   return x
```


Al modelling - FNO Python implementation

```
def forward(self. x):
                                class SpectralConv1d(nn.Module):
    # apply lifting operator
                                    def init (self, in_channels, out_channels, modes1):
    x = self.P(x)
    # Fourier layer (1)
                                    def compl_mul1d(self, input, weights):
   x1 = self.conv1(x)
                                        return torch.einsum("bix,iox->box", input, weights)
   x2 = self.w1(x)
   x = x1 + x2
                                    def forward(self. x):
   x = F.gelu(x)
                                        batchsize = x.shape[0]
                                        #Compute Fourier coefficients
                                        x ft = torch.fft.rfft(x)
    # Fourier layer (L)
   x1 = self.convL(x)
                                        # Multiply relevant Fourier modes
   x2 = self.wL(x)
                                        out ft = torch.zeros(...)
   x = x1 + x2
                                        out ft[:.:.:self.modes1] = self.compl mul1d(x ft[:.:.:self.modes1].
   x = F.gelu(x)
                                                                                     self.weights1)
                                        #Return to physical space
    # apply projection operator
                                        x = torch.fft.irfft(out ft, n=x.size(-1))
    x = self.Q(x)
                                        return x
    return x
```


3. Using low-fidelity data

Governing Equations: Long-wave approximation

Assumptions

- strong surface tension
- negligible inertial effects
- small contact angles

Non-dimensional governing PDE

$$\partial_t h + \nabla \cdot [h(h^2 + \lambda^2)\nabla \nabla^2 h] = 0$$

Boundary conditions along the contact line $\mathcal C$ (u is the unit outward normal on $\mathcal C$)

Thickness vanishes: $h|_{\mathcal{C}} = 0$

Contact angle: $\tan \theta|_{\mathcal{C}} = |\nabla h|_{\mathcal{C}} = -h_{\nu} = \vartheta^*$

Kinematic BC: $\left(\partial_t \mathbf{c} - \lambda^2 \nabla \nabla^2 h \Big|_{\mathcal{C}}\right) \cdot \mathbf{\nu} = 0$

Approach A: Fully data-driven solution

Contact line $c(t_i)$ is discretised with 128 points and time t_i is discretised uniformly.

1st iteration

```
Input: \{c(t_1), c(t_2), ..., c(t_{10}), \vartheta_c^*(t_1), \vartheta_c^*(t_2), ..., \vartheta_c^*(t_{10})\}
```

Output: $c(t_{11})$, i.e. subsequent solution

Approach A: Fully data-driven solution

Contact line $c(t_i)$ is discretised with 128 points and time t_i is discretised uniformly.

1st iteration

```
Input: \{c(t_1), c(t_2), ..., c(t_{10}), \vartheta_c^*(t_1), \vartheta_c^*(t_2), ..., \vartheta_c^*(t_{10})\}
Output: c(t_{11}), i.e. subsequent solution
```

2nd iteration

```
Input: \{c(t_2), c(t_3), ..., c(t_{11}), \vartheta_c^*(t_2), \vartheta_c^*(t_3), ..., \vartheta_c^*(t_{11})\}
Output: c(t_{12})
```

•••

This procedure is applied iteratively to get the solution up to t_{fin} .

Approach A: Fully data-driven solution

Contact line $c(t_i)$ is discretised with 128 points and time t_i is discretised uniformly.

1st iteration

```
Input: \{c(t_1), c(t_2), ..., c(t_{10}), \vartheta_c^*(t_1), \vartheta_c^*(t_2), ..., \vartheta_c^*(t_{10})\}
Output: c(t_{11}), i.e. subsequent solution
```

2nd iteration

Input:
$$\{c(t_2), c(t_3), ..., c(t_{11}), \vartheta_c^*(t_2), \vartheta_c^*(t_3), ..., \vartheta_c^*(t_{11})\}$$

Output: $c(t_{12})$

...

This procedure is applied iteratively to get the solution up to t_{fin}

Cumulative error:

$$\frac{1}{N_{train}} \sum_{n=1}^{N_{train}} \frac{1}{i_{fin} - 10} \sum_{i=11}^{I_{fin}} \frac{\left\| \boldsymbol{c}_{AI}^{n}(t_{i}) - \boldsymbol{c}_{ref}^{n}(t_{i}) \right\|_{2}}{\left\| \boldsymbol{c}_{ref}^{n}(t_{i}) \right\|_{2}}$$

Approach A: Testing

Approach A: Testing

Inspiration: Matched asymptotic analysis

Compare reduced model with PDE solutions:

$$c = (x_c + a\cos\phi, y_c + a\sin\phi)$$
 with $a = \sum_{m=0}^{m} a_m(t)e^{im\phi}$

$$\begin{split} &\frac{\theta^3 - \vartheta^{*3}}{3} = \partial_t c \cdot \nu |\ln \lambda| + \partial_t c \cdot \nu \ln (ea\vartheta^*) \\ &- \sum_{m=0}^M \left[\beta_m U_m - m \tilde{\beta}_m^0 \frac{a_m}{a_0} U_0 + \frac{m-1}{2a_0} (\gamma_m - \tilde{\beta}_m^-) a_{m-1} U_1 \right. \\ &- \frac{m+1}{2a_0} (2\beta_m - \gamma_m + \tilde{\beta}_m^+) a_{m+1} U_1^* \right] e^{im\phi}, \end{split}$$

with
$$U_m=\dot{a}_m, m
eq 1$$
 and $U_1=\dot{x}_c-\mathrm{i}\dot{y}_c$

Inspiration: Matched asymptotic analysis

Compare reduced model with PDE solutions:

$$c = (x_c + a\cos\phi, y_c + a\sin\phi)$$
 with $a = \sum_{m=0}^{m} a_m(t)e^{im\phi}$

$$\begin{split} &\frac{\theta^3 - \vartheta^{*3}}{3} = \partial_t \boldsymbol{c} \cdot \boldsymbol{\nu} |\ln \lambda| + \partial_t \boldsymbol{c} \cdot \boldsymbol{\nu} \ln \left(e a \vartheta^* \right) \\ &- \sum_{m=0}^{M} \left[\beta_m U_m - m \tilde{\beta}_m^0 \frac{a_m}{a_0} U_0 + \frac{m-1}{2a_0} (\gamma_m - \tilde{\beta}_m^-) a_{m-1} U_1 \right. \\ &- \frac{m+1}{2a_0} (2\beta_m - \gamma_m + \tilde{\beta}_m^+) a_{m+1} U_1^* \right] e^{i m \phi}, \end{split}$$

with
$$U_m=\dot{a}_m, m
eq 1$$
 and $U_1=\dot{x}_c-\mathrm{i}\dot{y}_c$

Approach B: Al-assisted modelling

The data-driven model corrects an analytically derived imperfect model, in the spirit of Wan & Sapsis (JFM 2018).

Approach B: Al-assisted modelling

The data-driven model corrects an analytically derived imperfect model, in the spirit of Wan & Sapsis (JFM 2018).

Droplet velocity normal to the contact line, u_{ν} ,

$$u_{\nu} = \bar{u}_{\nu} + G(c, \bar{u}_{\nu})$$
 with $\bar{u}_{\nu} = \frac{\theta^{3} - \vartheta^{*3}}{3 |\ln \lambda|}$

- heta and $heta^*$ are the apparent and local contact angles
- λ the slip length
- $G\left(r,u_{\nu}\right)$ higher-order terms, weak dependence on $artheta^*$.

```
Input: \{c(t_i), \bar{u}_{\nu}(t_i)\}
Output: G(c, \bar{u}_{\nu})
```


Approach B: Al-assisted modelling

The data-driven model corrects an analytically derived imperfect model, in the spirit of Wan & Sapsis (JFM 2018).

Droplet velocity normal to the contact line, $u_{
u}$,

$$u_{\nu} = \bar{u}_{\nu} + G(c, \bar{u}_{\nu})$$
 with $\bar{u}_{\nu} = \frac{\theta^{3} - \vartheta^{*3}}{3 |\ln \lambda|}$

- heta and $heta^*$ are the apparent and Jocal contact angles
- \bullet λ the slip length
- $G(r, u_{\nu})$ higher-order terms, weak dependence on ϑ^* .

Input: $\{c(t_i), \bar{u}_{\nu}(t_i)\}$ data-driven, implicit in t Output: $G(c, \bar{u}_{\nu})$

x = c

Al-assisted approach - Tests

Al-assisted approach - Tests

Al-assisted approach - Out of distribution

Published in **Data-centric Engineering** (Cambridge Univ. Press)

4. High-fidelity data:

gravity-driven

Governing Equations:

Two-phase Navier-Stokes equations

$$\vec{\nabla} \cdot \vec{u} = 0,$$

$$\rho \left[\frac{\partial \vec{u}}{\partial t} + \vec{\nabla} \cdot (\vec{u}\vec{u}) \right] = -\vec{\nabla}\rho + \vec{\nabla} \cdot \left[\mu \left(\vec{\nabla}\vec{u} + \vec{\nabla}\vec{u}^T \right) \right] + \sigma \kappa \delta_{\Gamma}\vec{n} + \hat{\rho}\vec{g},$$

$$\frac{\partial C}{\partial t} + \vec{\nabla} \cdot (\vec{u}C) = 0, \text{ where } C(\vec{x}, t) = \begin{cases} 1 & \text{if } \vec{x} \in \text{liquid}, \\ 0 & \text{if } \vec{x} \in \text{gas}. \end{cases}$$

Physical properties ξ calculation: $\xi(\vec{x}, t) = \xi_1 C(\vec{x}, t) + \xi_2 (1 - C(\vec{x}, t))$.

Boundary conditions: impose local contact angle (chemical heterogeneity) on surface.

Data generation - Direct Numerical Simulations

Code: Basilisk

- random heterogeneities, from a 6-parameter functional form
- 20–90 dimensionless times, snapshot saved every 0.1 time units
- adaptive mesh refinement, local grid size between $1/2^5 1/2^8$

Dataset:

- 200 DNS cases
- 80,000 contact line snapshots

Analysis near the contact line reveals

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F\left(\vartheta_{*}\right) - F\left(\theta\right)}{\ln\left(\frac{\lambda}{r_{0}}\right) + \frac{Q_{o}}{f\left(\theta\right)} - \frac{Q_{i}}{f\left(\vartheta_{*}\right)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- ullet Q_o and Q_i are unspecified
- F and f are known

Analysis near the contact line reveals

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F(\vartheta_*) - F(\theta)}{\ln\left(\frac{\lambda}{r_0}\right) + \frac{Q_o}{f(\theta)} - \frac{Q_i}{f(\vartheta_*)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

Obtaining θ assuming quasi-static dynamics

Given \emph{c} , obtain θ from the slope of the solution to the Young-Laplace eqn

$$-\sigma \nabla \cdot \hat{\mathbf{n}} = \Delta p$$
, $\hat{\mathbf{n}}$ the surface unit normal

 Δp is constant specified by the volume constraint.

An approximate model for the solution of this equation was analystically derived, considering weakly deformed contact lines.

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F(\vartheta_*) - F(\theta)}{\ln\left(\frac{\lambda}{r_0}\right) + \frac{Q_{\theta}}{f(\theta)} - \frac{Q_{\theta}}{f(\vartheta_*)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

Cox's model does not include gravity effects

Al Approach: Train a model $\hat{\textit{u}}_{\textit{c}}$ to incorporate gravity in the simulations

$$u_c^{DNS} \approx u_c^{COX} + \hat{u}_c$$

Al model for introducing gravity effects

Net transport captured by the first harmonic of the contact line velocity

Input: snapshots of first harmonics of θ and ϑ_* , including Bo, a_i

Output: snapshots of first harmonics of $u_c^{DNS} - u_c^{COX} \rightarrow \hat{u}_c$

Al model for introducing gravity effects

Net transport captured by the first harmonic of the contact line velocity

Input: snapshots of first harmonics of θ and ϑ_* , including Bo, a_i

Output: snapshots of first harmonics of $u_c^{DNS} - u_c^{COX} \rightarrow \hat{u}_c$

Test - evolution in time

Tests - Variation of Bo and a_i

5. High-fidelity data:

capillary-driven

Governing Equations:

Two-phase Stokes equations

$$\vec{\nabla} \cdot \vec{u} = 0,$$

$$\rho \frac{\partial \vec{u}}{\partial t} = -\vec{\nabla} \rho + \vec{\nabla} \cdot \left[\mu \left(\vec{\nabla} \vec{u} + \vec{\nabla} \vec{u}^T \right) \right] + \sigma \kappa \delta_{\Gamma} \vec{n} + \hat{\rho} \vec{g},$$

$$\frac{\partial C}{\partial t} + \vec{\nabla} \cdot (\vec{u}C) = 0, \text{ where } C(\vec{x}, t) = \begin{cases} 1 & \text{if } \vec{x} \in \text{liquid}, \\ 0 & \text{if } \vec{x} \in \text{gas}. \end{cases}$$

Physical properties ξ calculation: $\xi(\vec{x}, t) = \xi_1 C(\vec{x}, t) + \xi_2 (1 - C(\vec{x}, t))$.

Boundary conditions: impose local contact angle (chemical heterogeneity) on surface.

Data generation - Direct Numerical Simulations

Code: Basilisk

- random heterogeneities, from a 7-parameter functional form
- 10–50 dimensionless times, snapshot saved every 0.1 time units
- adaptive mesh refinement, local grid size between $1/2^5-1/2^8$

Dataset:

- 300 DNS cases
- 80,000 contact line snapshots

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F(\vartheta_*) - F(\theta)}{\ln\left(\frac{\lambda}{r_0}\right) + \frac{Q_o}{f(\theta)} - \frac{Q_i}{f(\vartheta_*)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- ullet Q_o and Q_i are unspecified
- F and f are known

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F(\vartheta_*) - F(\theta)}{\ln\left(\frac{\lambda}{r_0}\right) + \frac{Q_o}{f(\theta)} - \frac{Q_i}{f(\vartheta_*)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- ullet Q_o and Q_i are unspecified
- F and f are known

Obtaining θ assuming quasi-static dynamics

Given \emph{c} , obtain θ from the slope of the solution to the Young-Laplace eqn

$$-\sigma \nabla \cdot \hat{\mathbf{n}} = \Delta p$$
, $\hat{\mathbf{n}}$ the surface unit normal

 Δp is constant specified by the volume constraint.

→ Using the open source code, **Surface Evolver** (SE). Repeated calls to SE during training/testing through a dedicated Python interface.

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F\left(\vartheta_{*}\right) - F\left(\theta\right)}{\ln\left(\frac{\lambda}{r_{0}}\right) + \frac{Q_{0}}{f\left(\theta\right)} - \frac{Q_{i}}{f\left(\vartheta_{*}\right)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F\left(\vartheta_{*}\right) - F\left(\theta\right)}{\ln\left(\frac{\lambda}{r_{0}}\right) + \frac{Q_{o}}{f\left(\theta\right)} - \frac{Q_{i}}{f\left(\vartheta_{*}\right)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

$$u_{\nu}^{COX} = \frac{\sigma}{\mu} \left(\frac{F(\vartheta_*) - F(\theta)}{\ln\left(\frac{\lambda}{r_0}\right) + \frac{Q_0}{f(\theta)} - \frac{Q_i}{f(\vartheta_*)}} \right)$$

- λ , slip length, scales with Δx
- σ surface tension; μ viscosity
- Q_o and Q_i are unspecified
- F and f are known

• λ , slip length, scales with Δx

Al model for correcting net transport motion

Net transport captured by first harmonic; contact line evolves such that contact line has no first harmonic

Input: snapshots of first harmonics of θ and ϑ_*

Output: snapshots of first harmonics of $u_{\nu}^{DNS}-u_{\nu}^{COX}=u_{c}^{DNS}-u_{c}^{COX} \rightarrow u_{c}$

Al model for correcting net transport motion

Net transport captured by first harmonic; contact line evolves such that contact line has no first harmonic

Input: snapshots of first harmonics of heta and $heta_*$

Output: snapshots of first harmonics of $u_{\nu}^{DNS}-u_{\nu}^{COX}=u_{c}^{DNS}-u_{c}^{COX} \rightarrow u_{c}$

Al model for higher-order corrections

Input: snapshots of $\{c, u_{\nu}^{COX} + u_{c}\}$

Output: snapshots of $u_{\nu}^{DNS} - (u_{\nu}^{COX} + u_{c}) \rightarrow \tilde{\mathbf{u}}$

Al model for higher-order corrections

Input: snapshots of $\{c, u_{\nu}^{COX} + u_{c}\}$

Output: snapshots of $u_{\nu}^{DNS} - (u_{\nu}^{COX} + u_{c}) \rightarrow \tilde{u}$

Al-assisted approach for CFD - Tests

Al-assisted approach for CFD - Out of distribution

Paper in preparation, to be submitted in the coming weeks.

The inverse problem

Given a target droplet path, what heterogenity profile ϑ_* can induce it?

General het. profile given by:

$$\vartheta_* = \sum_{m,n} a_{m,n} \exp(\mathrm{i} k_m x + \mathrm{i} k_n y),$$

 $a_{m,n}$ 'design' variables

Optimisation procedure to obtain:

$$a_{m,n}^* = \operatorname{argmin} J$$

where J is a cost function that depends on A and some metric that penalizes non-circular contact lines

