

VI Semester B.E. (E & E) Degree Examination, June/July 2017 (2K11 Scheme) EE603: ELECTRIC DRIVES

Time: 3 Hours Max. Marks: 100

Instruction: Answer **any five full** questions choosing atleast **two** questions from **each** Part.

		questions nom each art.				
PART – A						
1.	a)	State essential parts of a electric drives. What are the functions of a power modulator?	6			
	b)	What are the main factors which decide the choice of electrical drive for a given application?	6			
	c)	Explain what do you understand by the steady state stability? What is the main assumption?	8			
2.	a)	Explain the different operating modes of a dc series motor and separately exited dc motor with its electrical equivalent circuit.	8			
	b)	The speed of a 20 hp, 300 v, 1800 rpm, separately excited dc motor is controlled by a three phase full converter drive. The field current is also controlled by a three phase full converter and is set to the maximum possible value. The ac input is a 3ϕ Y connected 208 v, 60 Hz supply. The armature resistance $R_a=025\Omega$, the field resistance is $R_f=245\Omega$ and the motor voltage constant is Kv = 1.2 V/A rad/s. The armature and field currents can be assumed to be continuous and ripple free. The viscous friction is negligible. Determine :				
		 a) The delay angle of the armature converter α_a if the motor supplies the rated power at the rated speed. b) The no-load speed if the delay angles are same as in (a) and the armature current at no load is 10% of the rated value. 	10			
		c) The speed regulation.	12			
3.	·	Explain the principle of regenerative brake control of a separately excited do motor.	10			
	b)	Explain the open loop block diagram of a dc-dc converter fed dc series motor drive.	10			

UJ – 106

4.	•	A three phase 11.2 kW, 1750 rpm, 460 v, 60 Hz, 4 pole, Y connected induction motor has the following parameters : $R_s = 0.66 \Omega$, $R_r' = 0.38 \Omega$, $X_s = 1.14 \Omega$,	10
		$X_r'=1.71\Omega$ and $X_m=33.2\Omega$. The motor is controlled by varying both voltage and frequency. The volts/hertz ratio, which corresponds to the rated voltage and rated frequency is maintained constant.	
		a) Calculate the maximum torque $\rm T_{\rm m}$ and the corresponding speed $\rm W_{\rm m}$ for 60 and 30 Hz.	
		b) Repeat (a) if R _s is negligible.	10
		PART-B	
5.	a)	What are the similarities between a brushless dc motor and a conventional dc motor? Describe the operation of a brushless dc motor drive.	10
	b)	Explain the current source inverter feel synchronous motor drive.	10
6.	a)	Explain the constructional details of a switched reluctance motor and design a driver circuit to control the switched reluctance motor.	10
	b)	Obtain the expression for the torque developed in a variable reluctance stepper motor.	10
7.	a)	Starting from heat balance equation obtain a relationship between the temperature rise and time.	12
	b)	The temperature rise of an electric motor is 40°C after 1 hour and 60°C after 2 hours. The motor current is 100 A. Determine approximately its final temperature rise when if works on load cycle of 4 minutes working, 8 minutes rest with a current of 125 A. Neglect the effect of iron losses.	8
8.	a)	Explain the drive requirements for textile mills.	10
	b)	Explain the drive requirements for paper mills.	10
			