Tree-width Driven SDP for The Max-Cut Problem

Ivan Voronin

Supervisor: Alexander Bulkin

Moscow Institute of Physics and Technology

May 23, 2024

Outline

Problem statement

SDP

Dual

k-diagonal

k-treewidth

Computational experiment

Problem statement

Given a weighted, undirected graph G=(V,E) i.e. each edge (i,j) has a weight $w_{ij}=w_{ji}$. The set of vertices is partitioned into two parts S and $\bar{S}:=V\setminus S$. Let us define the weight of this cut as the sum of the weights of edges which endpoints are contained in different parts

$$W(S) := \sum_{(i,j) \in S \times \bar{S}} w_{ij}$$

The aim is to find the cut with maximal possible weight.

S	W(S)
Ø	0
{1,2,4}	1+4+3+5+1=14
{1,5,4}	1+2+3+5=11
{1,3,5}	2+4+3+1+5=15

The maximum cut is 15. Indeed, the graph is not bipartite, the total weight of all edges is 16, and there are no edges lighter than 1.

SDP

Let us paraphrase the issue within the context of an optimization problem.

For each vertex i in the graph we define the indicator $x_i \in \{-1, +1\}$ characterizing the affiliation of $i \in S$ or $i \in \bar{S}$, respectively.

Similarly, for each edge (i,j) we define the indicator $y_{ij} = y_{ji} = x_i x_j \in \{-1,+1\}$ characterizing the belonging of the edge to the cut. Let \mathbf{x} represent the vector $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ where n = |V|.

$$\mathsf{MaxCut} := \max_{y_{ij} \in \{-1, +1\}} \frac{1}{4} \sum_{i \in V} \sum_{j \in V} w_{ij} (1 - y_{ij}) =$$

$$= \max_{x_i^2 = 1} \frac{1}{4} \sum_{i \in V} \sum_{j \in V} w_{ij} (1 - x_i x_j) = \max_{\substack{X = \mathbf{x} \mathbf{x}^\top \\ X_{ii} = 1}} \frac{1}{4} \sum_{i \in V} \sum_{j \in V} w_{ij} (1 - X_{ij})$$

Clearly,
$$X_{ij} = x_i x_j$$
 hence $x_i^2 = X_{ii} = 1 \implies x_i \in \{-1, +1\}$

In particular, the matrix X is

- 1. Symmetric with units on the diagonal
- 2. Positive semi-definite:

$$\forall \mathbf{v} \in \mathbb{R}^n : \quad \mathbf{v}^\top X \mathbf{v} = \mathbf{v}^\top \mathbf{x} \mathbf{x}^\top \mathbf{v} = (\mathbf{x}^\top \mathbf{v})^\top (\mathbf{x}^\top \mathbf{v}) = (\mathbf{x}^\top \mathbf{v})^2$$

Finally, let us consider the following problem

$$SDP = \max_{X} \frac{1}{4} \sum_{i \in V} \sum_{j \in V} w_{ij} (1 - X_{ij}), \ X = \begin{pmatrix} 1 & x_{12} & \dots & x_{1n} \\ x_{12} & 1 & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & 1 \end{pmatrix} \geqslant 0$$

The difference between the MaxCut and SDP is as follows

	MaxCut	SDP		
X	$X = \mathbf{x}\mathbf{x}^{T}, \ \mathbf{x} \in \mathbb{R}^n$	$X = VV^{\top}, \mathbf{x} \in \mathbb{R}^{n \times m}$		
X_{ij}	$X_{ij} = x_i x_j \in \{-1, +1\}$	X_{ij} is an arbitrary element		

Hence $\mathbf{MaxCut} \leq \mathbf{SDP}$ (requirement $X = \mathbf{xx}^{\top}$ is a particular case of $X = VV^{\top}$ therefore maximization in \mathbf{MaxCut} is being performed on the subspace of constraint space of \mathbf{SDP})


```
1 import numpy as np
2 import cvxpy as cp
3
4 n = 5
    = np.array([[0, 2, 1, 0, 0],
                [2, 0, 4, 0, 3],
6
                [1, 4, 0, 5, 0],
7
                [0, 0, 5, 0, 1],
8
                [0, 3, 0, 1, 0]
9
10 X = cp. Variable((n, n), symmetric=True)
11 constraints = [X >> 0]
12 constraints += [X[i][i] == 1 for i in range(n)]
13 objective = cp.Maximize(cp.sum(cp.multiply(W, (1-X))))
prob = cp.Problem(objective, constraints)
15 prob.solve()
16 print("The optimal value is ", 0.25*round(prob.value))
print("The solution is", X.value)
```

The optimal value is 15 The solution X is

$$\begin{pmatrix} 1 & -1.00000047 & 1.0000005 & -1.00000052 & 1.00000057 \\ -1.00000047 & 1 & -1.00000027 & 1.00000038 & -1.00000037 \\ 1.0000005 & -1.00000027 & 1 & -1.00000026 & 1.0000004 \\ -1.00000052 & 1.00000038 & -1.00000026 & 1 & -1.00000042 \\ 1.00000057 & -1.00000037 & 1.0000004 & -1.000000042 & 1 \end{pmatrix}$$

Indeed, the matrix
$$X = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 \\ -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 \\ -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 \end{pmatrix}$$

corresponds to the maximum cut $S = \{1, 3, 5\}$ of the value W(S) = 15

Lemma

 $\mathbf{MaxCut} = \frac{1}{4} \max_{\mathbf{x}^2 = 1} \mathbf{x}^\top L \mathbf{x}, \text{ where } L \text{ is the Laplacian of the graph.}$

$$\begin{aligned} \mathbf{MaxCut} &= \frac{1}{4} \max_{x_i^2 = 1} \mathbf{x}^\top L \mathbf{x} = \frac{1}{4} \max_{\lambda \geqslant 0} \min_{\mathbf{x}} \left(\mathbf{x}^\top L \mathbf{x} + \sum_{i=1}^n \lambda_i (1 - x_i^2) \right) = \\ &= \frac{1}{4} \max_{\lambda \geqslant 0} \min_{\mathbf{x}} \left(\mathbf{x}^\top (L - Diag(\lambda)) \mathbf{x} + \mathbf{1}^\top \lambda \right) \leqslant \\ &\leqslant \frac{1}{4} \min_{\lambda \geqslant 0} \max_{\mathbf{x}} \left(\mathbf{x}^\top (L - Diag(\lambda)) \mathbf{x} + \mathbf{1}^\top \lambda \right) = \max_{\substack{Diag(\lambda) \geqslant L \\ \mathbf{x} \geqslant 0}} \frac{\mathbf{1}^\top \lambda}{4} =: \mathbf{Dual} \\ &\Leftrightarrow \lambda \geqslant 0 \implies \lambda \geqslant$$

```
1 import numpy as np
2 import cvxpy as cp
3
4 n = 5
5 L = np.array([[3, -2, -1, 0, 0]],
                 [-2, 9, -4, 0, -3],
6
                 [-1, -4, 10, -5, 0],
                 [0, 0, -5, 6, -1],
8
                 [0, -3, 0, -1, 4]])
9
 X = cp.Variable((n, n), diag=True)
11 constraints = [X >> L]
  objective = cp.Minimize(0.25 * cp.trace(X))
prob = cp.Problem(objective, constraints)
14 prob.solve()
15 print("The optimal value is", round(prob.value))
16 print(" The solution is\n", X.value.toarray())
```

The optimal value is 15 The solution X is

/3.99998606	0	0	0	0 \
0	17.99998614	0	0	0
0	0	17.99998614	0	0
0	0	0	11.9999861	0
\ 0	0	0	0	7.99998608

The question arises as to how to retrieve real cut from solution matrix X.

Lemma

SDP = Dual

k-diagonal extension

Instead of solving

$$\mathbf{Dual} = \min_{\substack{Diag(\lambda) \geqslant L \\ \lambda \geqslant 0}} \frac{\mathbf{1}^{\top} \lambda}{4} = \min_{\substack{Diag(\lambda) \geqslant L \\ \lambda \geqslant 0}} \max_{\substack{X^{\top}Diag(\lambda) \mathbf{x} \\ \mathbf{4}}} \frac{\mathbf{x}^{\top} Diag(\lambda)\mathbf{x}}{4}$$

Let us expand the space of minimization to the k-diagonal matrices (symmetric matrices having at most $\frac{k-1}{2}$ leading diagonals on both sides of main diagonal)

$$\mathbf{D_k} := \min_{\substack{T \colon T = T^\top \succcurlyeq L \\ T \text{ is } k\text{-diagonal}}} \frac{1}{4} \max_{x_i^2 = 1} x^\top T x, \qquad k \equiv 1$$

Therefore,

$$\text{SDP} = \text{Dual} = \text{D}_1 \ \geqslant \ \text{D}_3 \ \geqslant \ \text{D}_5 \ \geqslant \ \dots \ \geqslant \ \text{D}_{2n-1} = \text{MaxCut}$$

Let us define an inner function as

$$f(T) := \frac{1}{4} \max_{x_i^2 = 1} x^\top T x$$

Hence, the aim is to solve

$$\min_{\substack{T: \ T = T^\top \succcurlyeq L \\ T \text{ is } k\text{-diagonal}}} f(T)$$

The obstacle here is that f(T) is not easily differentiable. Let us now consider derivative-free methods.

Note that f(T) is computable in $O(2^k \cdot n)$ time using dynamic programming, where T is a k-diagonal matrix. Therefore, optimization for this problem could be performed by using a polynomial-time oracle to compute f(T) on each iteration.

Optimizers comparison

Let us now turn our attention to the nevergrad package in Python with ready-made implementations of a wide range of gradient-free optimizers. Visualization of some optimizers' work here.

- 1. CMA
- 2. Powell's method
- 3. TBPSA
- 4. TwoPointsDE

We have selected the Powell's method due to its numerous benefits.

The pertinent issue is how to derive a real cut from the optimal matrix \mathcal{T}^* for $\mathbf{D_k}$. The following approach is suggested: we will run our dynamic oracle on \mathcal{T}^* remembering all transitions that led to the optimal value.

k-treewidth

Another approach is to perform minimization among k-treewidth graphs (having a treewidth of at most k).

$$\mathbf{H_k} := \min_{\substack{T: \ T = T^{\top} \succcurlyeq L, \\ T \text{ is } k\text{-treewidth}}} \frac{1}{4} \max_{x_i^2 = 1} x^{\top} Tx$$

Here again, inner function can be solved by dynamic programming. Therefore,

$$\mathsf{SDP} = \mathsf{Dual} = \mathsf{D}_1 \ \geqslant \ \mathsf{H}_1 \ \geqslant \ \mathsf{H}_2 \ \geqslant \ \ldots \ \geqslant \ \mathsf{H}_n = \mathsf{D}_{2n-1} = \mathsf{MaxCut}$$

Moreover, $\mathbf{D_k} \geqslant \mathbf{H_k}$, $k \equiv 1$

And again, the question arises as to how to derive a real cut from the optimal matrix \mathcal{T}^* for $\mathbf{H_k}$.

This time we proceed with a similar to the k-diagonal case approach, with the exception of the new dynamic oracle.

Datasets

In our research we are using the Biq Mac Library

- 1. g05_60.i: For each dimension ten unweighted graphs with edge probability 0.5. n=60
- 2. g05_80.i: For each dimension ten unweighted graphs with edge probability 0.5. n=80
- 3. g05_100.i: For each dimension ten unweighted graphs with edge probability 0.5. n=100
- pwd_100.i: For each density ten graphs with integer edge weights chosen from [0,10] and density d=0.1, 0.5, 0.9. n=100

Roadmap

- 1. For each graph from dataset
 - 1.1 Use Goemans and Williamson approach to solve **SDP** and retrieve cut, then calculate ratio $\frac{\mathsf{SDP}^{cut}}{\mathsf{MaxCut}}.$
 - 1.2 For $k \in \{1, 3, 5, 7, 19\}$ run k-diagonal solver and retrieve cut from optimum for $\mathbf{D_k}$, then calculate ratio $\frac{\mathbf{D_k}^{cut}}{\mathsf{MaxCut}}$.

 1.3 Solve \mathbf{Dual} and retrieve cut using 1.4.
 - 1.3 Solve **Dual** and retrieve cut using 1-diagonal solver, then calculate ratio $\frac{\textbf{Dual}^{cut}}{\textbf{MaxCut}}.$
- 2. Examine error analysis on a graph of each type.
- 3. Compare the obtained results on the plots and in the table.

Error analysis

The optimizer demonstrates good convergence as the number of iterations increases.

Results comparison

Average ratios comparison

Test	Dual	D_1	D ₃	D_5	D ₇	D ₁₉	SDP
g05-60	0.8951	0.8971	0.902	0.9055	0.9042	0.9187	0.9731
g05-80	0.9042	0.9033	0.9009	0.9079	0.9107	0.9197	0.9743
g05-100	0.9062	0.906	0.9107	0.9102	0.9152	0.923	0.9772
pw01-100	0.7706	0.7658	0.7772	0.7788	0.7767	0.7828	0.9525
pw05-100	0.8919	0.89	0.8947	0.8969	0.8964	0.9036	0.9736
pw09-100	0.9359	0.9378	0.9396	0.943	0.9441	0.9541	0.9839

Conclusion

In this paper, we have discussed a novel approach to solving the Max-Cut problem under specific constraints on the graph's Laplacian. Unfortunately, the implemented k-diagonal solver has not outperformed the **SDP**. In our opinion, the issue lies in the use of gradient-free optimizers which do not operate properly under the specified constraints.

Further research into this topic could be pursued in two directions. First, one could attempt to implement specific gradient-free technique tailored to the task. Apart from that, the solution of the k-treewidth case requires the implementation of a new oracle that solves $\mathbf{H}_{\mathbf{k}}$, based on a polynomial tree decomposition.

The End