## RAČUNALNIŠKA ARHITEKTURA

4 Predstavitev informacije



### 4 Predstavitev informacije - vsebina

- Sestavljeni pomnilniški operandi
- Osnovni tipi informacije v računalniku
- Predstavitev nenumeričnih operandov
  - ASCII abeceda
  - UNICODE abeceda
- Predstavitev numeričnih operandov v fiksni vejici
  - Vrste predstavitev
  - Prenos in preliv
  - Primera
- Aritmetika s števili v fiksni vejici
- Predstavitev numeričnih operandov v plavajoči vejici
  - Splošna oblika
  - Standard za predstavitev v plavajoči vejici
  - Osnovne lastnosti standarda IEEE 754
  - Primer
- Aritmetika s števili v plavajoči vejici
- Dopolnitev standarda IEEE 754-2008



















Operand shranjen v pomnilniku je poravnan operand, kadar velja:

 $A \mod s = 0$ ; kjer je:

- A naslov sestavljenega pomnilniškega operanda
- s število besed sestavljenega pomnilniškega operanda
- Če zgornja enačba velja, je naslov A **naravni naslov**
- Procesor ARM: glej psevdoukaz .align
- Procesor ARM shranjuje operande, ki so daljši od 8 bitov, (sestavljeni pomnilniški operandi) po pravilu tankega konca.





- Zasede v pomnilniku 4 zaporedne 8-bitne pomnilniške besede in lahko predstavlja:
  - □ Strojni ukaz (ARM 9): add r5, r0, r1 /\* R5  $\leftarrow$  R0 + R1
  - □ Celo število brez predznaka: 3.766.505.473
  - □ Celo število s predznakom (dvojiški komplement): 528.461.823

  - □ Štiri znake v ASCII abecedi: r nedefinirano P NUL
  - □ Še marsikaj drugega



## Osnovni tipi informacije v računalniku





## 4.1 Predstavitev nenumeričnih operandov

- Nenumerični operandi
  - □ Znaki (angl. character)
  - □ Nizi (angl. string) sestavljeni iz znakov
  - □ Znak je predstavljen z neko abecedo

Abeceda je predpis, ki določa preslikavo elementov ene množice v elemente druge množice.



## Vrste abeced, ki se uporabljajo v računalnikih

#### ■ BCD abeceda

- $\Box$  6-bitna (2<sup>6</sup> = 64 različnih znakov)
- □ 26 črk angleške abecede, 10 številk, 28 posebnih znakov
- □ V uporabi do leta 1964 (6-bitne besede)

 Danes v uporabi 8-bitni abecedi EBCDIC in ASCII ter 16-bitna abeceda Unicode.





□ Uporabljala predvsem firma IBM na velikih računalnikih (1963/64 IBM System/360 →)

## ■ ASCII abeceda (8-bitna)

- □ V osnovi 7-bitna, vendar se danes v računalnikih uporablja 8-bitna oblika
- ☐ Bit 7 = 0 osnovna oblika
- □ Bit 7 = 1 razširjena ASCII abeceda, definiranih je dodatnih 128 znakov (IBM PC)
- □ Dodatnih 128 znakov je za različne države različnih in tvorijo nacionalne ASCII abecede (npr. Latin2 = ISO 8859-2)



## Osnovna 7-bitna ASCII abeceda

| b7 b  | 6 b5                          | b4 b       | 3 b2                          | b1 b0                         |     |     |     |     |     |    |     |     |    |    |    |     |
|-------|-------------------------------|------------|-------------------------------|-------------------------------|-----|-----|-----|-----|-----|----|-----|-----|----|----|----|-----|
| 0     |                               |            |                               |                               |     |     |     |     |     |    |     |     |    |    |    |     |
| $2^7$ | 2 <sup>6</sup> 2 <sup>5</sup> | 24, 2      | 2 <sup>3</sup> 2 <sup>2</sup> | 2 <sup>1</sup> 2 <sup>0</sup> | -   |     |     |     |     |    |     |     |    |    |    |     |
|       | 7                             |            | ľ                             |                               |     |     |     |     |     |    |     |     |    |    |    |     |
| Hex   | .0                            | .1         | .2                            | .3                            | .4  | .5  | .6  | .7  | .8  | .9 | .A  | .B  | .C | .D | .E | .F  |
| 0.    | NUL                           | SOH        | STX                           | ETX                           | EOT | ENQ | ACK | BEL | BS  | нт | LF  | VT  | FF | CR | so | SI  |
| 1.    | DLE                           | DC1<br>XON | DC2                           | DC3<br>XOFF                   | DC4 | NAK | SYN | ЕТВ | CAN | EM | SUB | ESC | FS | GS | RS | US  |
| 2.    | SP                            | 1          | ш                             | #                             | \$  | %   | &   | t   | (   | )  | *   | +   | ,  | -  | *  | 1   |
| 3.    | 0                             | 1          | 2                             | 3                             | 4   | 5   | 6   | 7   | 8   | 9  |     | i   | <  | =  | >  | ?   |
| 4.    | @                             | Α          | В                             | С                             | D   | Е   | F   | G   | Н   | I  | J   | K   | L  | М  | N  | 0   |
| 5.    | Р                             | Q          | R                             | S                             | Т   | U   | ٧   | W   | Х   | Υ  | Z   | I   | ١  | ]  | ۸  | _   |
| 6.    |                               | а          | b                             | С                             | d   | е   | f   | g   | h   | i  | j   | k   | I  | m  | n  | 0   |
| 7.    | р                             | q          | r                             | s                             | t   | u   | ٧   | w   | х   | У  | z   | {   | 1  | }  | ?  | del |



# Razširjena 8-bitna ASCII abeceda Latin2 (ISO 8859-2) - dodatni znaki (b<sub>7</sub>=1)



NBSP = AO(hex) Non Breaking Space SHY = AD(hex) Soft Hyphen

| Hex | .0   | .1 | .2 | .3 | .4 | .5 | .6  | .7    | .8    | .9  | .A | .B | .C | .D  | .E | .F |
|-----|------|----|----|----|----|----|-----|-------|-------|-----|----|----|----|-----|----|----|
| 8.  |      |    |    |    |    |    | Nic | unor  | ablia | 20  |    |    |    |     |    |    |
| 9.  |      |    |    |    |    |    | INC | supoi | ablje | 110 |    |    |    |     |    |    |
| Α.  | NBSP | Ą  | ,  | Ł  | n  | L' | Ś   | §     | •     | Š   | Ş  | Ť  | Ź  | SHY | Ž  | Ż  |
| B.  | o    | ą  | ·  | ł  |    | ľ  | 1   | •     | 3     | š   | ş  | ť  | ź  | "   | ž  | Ż  |
| C.  | Ŕ    | Á  | Â  | Ă  | Ä  | Ĺ  | Ć   | Ç     | Č     | É   | Ę  | Ë  | Ě  | ſ   | Î  | Ď  |
| D.  | Đ    | Ń  | Ň  | Ó  | Ô  | Ő  | Ö   | ×     | Ř     | ů   | Ú  | Ű  | Ü  | Ý   |    | ß  |
| E.  | ř    | á  | â  | ă  | ä  | 1  | Ć   | ç     | Č     | é   | ę  | ë  | ě  | í   | î  | ď  |
| F.  | Đ    | ń  | ň  | ó  | ô  | ő  | Ö   | ÷     | ř     | ů   | ú  | ű  | ü  | ý   | t  | •  |



## Razširjena 8-bitna ASCII abeceda Latin2 (ISO 8859-2)

| Hex | .0  | .1         | .2   | .3          | .4  | .5  | .6  | .7  | .8  | .9  | .A  | .B  | .C | .D | .E | .F  |
|-----|-----|------------|------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|-----|
| 0.  | NUL | SOH        | STX  | ETX         | EOT | ENQ | ACK | BEL | BS  | нт  | LF  | VT  | FF | CR | so | SI  |
| 1.  | DLE | DC1<br>XON | DC2  | DC3<br>XOFF | DC4 | NAK | SYN | ЕТВ | CAN | ЕМ  | SUB | ESC | FS | GS | RS | us  |
| 2.  | SP  | 1          | cc . | #           | \$  | %   | &   | ſ   | (   | )   | *   | +   | ,  | -  | -  | 1   |
| 3.  | 0   | 1          | 2    | 3           | 4   | 5   | 6   | 7   | 8   | 9   | ·   | ;   | <  | =  | >  | ?   |
| 4.  | @   | Α          | В    | С           | D   | E   | F   | G   | Н   | - I | J   | К   | L  | М  | N  | 0   |
| 5.  | Р   | Q          | R    | S           | Т   | U   | V   | w   | ×   | Υ   | z   | L   | ١  | ]  | ۸  | _   |
| 6.  |     | а          | b    | С           | d   | е   | f   | g   | h   | i   | j   | k   | I  | m  | n  | 0   |
| 7.  | р   | q          | r    | s           | t   | u   | v   | w   | ×   | У   | z   | {   | 1  | }  | ~  | del |

| 8. |      |   |   |   |   | No  | upor | ablia | no  |   |   |   |   |     |   |    |
|----|------|---|---|---|---|-----|------|-------|-----|---|---|---|---|-----|---|----|
| 9. |      |   |   |   |   | ive | upor | abije | 110 |   |   |   |   |     |   |    |
| A. | NBSP | Ą | í | Ł | n | r,  | Ś    | §     |     | Š | Ş | Ť | Ź | SHY | Ž | Ż  |
| В. | 0    | ą |   | ł |   | I,  | L    | v     | 3   | š | ş | ť | ź |     | ž | ż  |
| C. | Ŕ    | Á | Â | Ă | Ä | Ĺ   | Ć    | Ç     | Č   | É | Ę | Ë | Ě | ı   | î | Ď  |
| D. | Đ    | Ń | Ň | Ó | Ô | Ő   | Ö    | ×     | Ř   | ů | Ú | Ű | Ü | Ý   |   | ß  |
| E. | ŕ    | á | â | ă | ä | ſ   | Ć    | ç     | Č   | é | é | ë | ě | í   | î | ď  |
| F. | Đ    | ń | ň | ó | ô | ő   | ö    | +     | ř   | ů | ú | ű | ü | ý   | t | 16 |



## ■ Unicode abeceda (standard ISO 10646)

- □ 32-bitna: omogoča predstavitev znakov v praktično vseh znanih svetovnih jezikih (2<sup>32</sup> različnih znakov).
- □ UCS ravnine (Universal Character Set): podmnožice 2<sup>16</sup> znakov, pri katerih se elementi (v 32-bitni predstavitvi) razlikujejo samo v spodnjih (najlažjih) 16 bitih.
- □ BMP (Basic Multilingual Plane) ali Plane 0: najbolj pogosto uporabljani znaki, kjer so vključeni tudi vsi starejši standardi, so zbrani v prvi ravnini.
- □ UCS vsakemu znaku določa kodo in tudi uradno ime.

- □ Šestnajstiško število, ki predstavlja UCS ali Unicode kodo, ima predpono U+ npr.: U+0041 za znak A (Latin capital letter A).
- □ Definiranih je več vrst transformacij za predstavitev znakov z zaporedjem bajtov npr. UTF-8 in UTF-16 (UTF - UCS Transformation Format).
- □ UTF-16 (Windows, Java)
  - En znak zasede 2 bajta
  - Spremenljiv vrstni red bajtov (debeli/tanki konec)
- □ UTF-8 (www, e-mail)
  - Spremenljiva dolžina 1 do 4 bajte
  - Kompatibilna s 7-bitno ASCII abecedo (prvih 128 znakov)

- Unicode abecedo so kot standard sprejeli IBM, Microsoft, Apple, HP, Sun, Oracle in drugi.
- Uporaba: programski jezik Java, JavaScript, XML, ...
- http://www.unicode.org

| Znak | Unicode | UTF-16<br>Pravilo debelega konca | UTF-16<br>Pravilo tankega konca | UTF-8             |
|------|---------|----------------------------------|---------------------------------|-------------------|
| Z    | U+005A  | 005A                             | 5A00                            | 5A                |
| Ž    | U+017D  | 017D                             | 7D01                            | C5BD <sup>1</sup> |

- □ Pravilo za transformacijo v obliko UTF-8 za znake s kodami od U+00000080 do U+000007FF je:
- □ 110XXXXX 10XXXXXX



$$\Box$$
 1) Ž (Unicode) = U+017D = 0000 0001 0111 1101 0001 0111 1101  $\Box$  Ž (UTF-8) = 110X XXXX 10XX 1101



$$\Box$$
 1)  $\check{Z}$  (Unicode) = U+017D = 0000 0001 0111 1101  $0001$  0111 1101  $0001$  0111 1101  $0001$  0111 1101  $0001$  0111 1101



□ ¹) Ž (Unicode) = U+017D = 0000 0001 0111 1101 
$$\downarrow$$
  $\downarrow$   $\downarrow$  0001 0111 1101



$$\Box$$
 1) Ž (Unicode) = U+017D = 0000 0001 0111 1101

$$\Box$$
 1) Ž (Unicode) = U+017D = 0000 0001 0111 1101

$$\Box$$
 1) Ž (Unicode) = U+017D = 0000 0001 0111 1101

$$\Box$$
 1) Ž (Unicode) = U+017D = 0000 0001 0111 1101

$$\Box$$
  $\check{Z}$  (UTF-8) = 1100 0101 1011 1101  $\dot{Z}$  C 5 B D



$$\Box$$
 1) Ž (Unicode) = U+017D = 0000 0001 0111 1101

$$\square$$
 Ž (UTF-8) = 1100 0101 1011 1101 = C5BD (hex)

C 5 B D



## 4.2 Predstavitev numeričnih operandov v fiksni vejici

- Vejica je na vnaprej določenem fiksnem mestu zapis s fiksno vejico.
- Če je vejica desno od bita z najnižjo težo, je število celo število (integer).
- Cela števila ali integerji so pravzaprav sinonim za predstavitev s fiksno vejico.



- Za cela števila s predznakom se uporabljajo (ali so se uporabljali) štirje načini predstavitev:
  - □ Predznak in velikost
  - □ Predstavitev z odmikom
  - □ Eniški komplement (v komplementu so samo negativna števila)
  - □ Dvojiški komplement (v komplementu so samo negativna števila)
- n-bitno zaporedje  $b_{n-1}...b_2b_1b_0$  v vsakem od načinov predstavlja neko predznačeno celo število

b7 b6 b5 b4 b3 b2 b1 b0

 $2^7$   $2^6$   $2^5$   $2^4$   $2^3$   $2^2$   $2^1$   $2^0$  uteži posameznih bitov

8-bitno zaporedje



■ Najmanjše in največje predstavljivo nepredznačeno (pozitivno) število, ki ga lahko predstavimo z *n - biti* je:

$$0 \le x \le 2^n - 1$$

$$n = 8 \qquad 0_D \le x \le 255_D$$

■ **Prenos** (angl. carry) - če je rezultat seštevanja ali odštevanja pozitivnih (nepredznačenih) števil izven območja, pride do prenosa iz najvišjega bita (mesta)



■ Največje in najmanjše število, ki ga lahko z *n* – *biti* predstavimo v dvojiškem komplementu je:

$$-2^{n-1} \le x \le 2^{n-1} - 1$$

■ Pri 8-bitni dolžini

$$n = 8$$
  $-128_D \le x \le +127_D$ 

■ Preliv (angl. overflow) - če je rezultat operacije izven področja, ki je predstavljivo v dvojiškem komplementu



■ Preliv ali prenos je lahko vzrok za napako.

V CPE mora biti vgrajen mehanizem, s pomočjo katerega lahko programer ugotovi, ali je pri rezultatu operacije prišlo do prenosa ali preliva.

Bita C (Carry) in V (oVerflow) v registru pogojev v CPE, ki se postavita na 1, kadar pride pri operaciji do prenosa oziroma preliva.



 Primer: register CPSR (Current Program Status Register) procesorja ARM



- Biti N, Z, C in V zastavice (flag bits, status flags)
- Biti zastavic se postavijo v stanje 1 ali 0 po izvršeni aritmetični ali logični operaciji glede na rezultat operacije.







- □ **oVerflow** (bit 28 v CPSR) V = 1: pri rezultatu je prišlo do preliva; V = 0: ni preliva
- □ **Carry** (bit 29 v CPSR) C = 1: pri rezultatu je prišlo do prenosa; C = 0: ni prenosa
- Zero (bit 30 v CPSR) Z = 1: rezultat je 0;
   Z = 0: rezultat je različen od 0
- Negative (bit 31 v CPSR) N = 0: bit 31 rezultata je 0;
   N = 1: bit 31 rezultata je 1

#### Predstavitev števil v fiksni vejici – primer

Katero desetiško število predstavlja 8-bitna kombinacija 10010100 v vsaki od štirih predstavitev s fiksno vejico?

Predstavitev predznak in velikost: b7 = 1  $\Rightarrow$  število je negativno Vrednost =  $0x2^6 + 0x2^5 + 1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 0x2^0 = 16 + 4 = 20(dec)$ V predstavitvi predznak in velikost predstavlja ta kombinacija število – 20(dec)

<u>Predstavitev z odmikom:</u> odmik je lahko 2<sup>n-1</sup>=128 ali 2<sup>n-1</sup>-1=127; izberemo npr. 128(dec) Desetiška vrednost 8-bitne kombinacije 10010100 vključuje odmik in je 128+16+4=148 Odštejemo odmik 148 – 128 = 20

V predstavitvi z odmikom 128 predstavlja ta kombinacija število + 20(dec)

Predstavitev z eniškim komplementom: b7 = 1 ⇒ število je negativno torej je kombinacija 10010100 komplement ustreznega pozitivnega števila. 10010100 ⇒ eniški komplement = 01101011 = 64+32+8+2+1=107(dec) Kombinacija 10010100 v eniškem komplementu predstavlja število −107(dec)



Predstavitev z dvojiškim komplementom: b7 = 1 ⇒ število je negativno torej je kombinacija 10010100 komplement ustreznega pozitivnega števila. 10010100 ⇒ dvojiški komplement = 01101100 = 64+32+8+4=108(dec) Kombinacija 10010100 v dvojiškem komplementu predstavlja število −108(dec)

#### Predstavitev števil v fiksni vejici – primer

Katero desetiško število predstavlja 8-bitna kombinacija 00010100 v vsaki od štirih predstavitev s fiksno vejico?

Predstavitev predznak in velikost: b7 = 0  $\Rightarrow$  število je pozitivno Vrednost =  $0x2^6 + 0x2^5 + 1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 0x2^0 = 16 + 4 = 20(dec)$ V predstavitvi predznak in velikost predstavlja ta kombinacija število +20(dec)

Predstavitev z odmikom: odmik je lahko 2<sup>n-1</sup>=128 ali 2<sup>n-1</sup>-1=127; izberemo npr. 128(dec) Desetiška vrednost 8-bitne kombinacije 00010100 vključuje odmik in je 16+4=20 Odštejemo odmik 20 − 128 = −108

V predstavitvi z odmikom predstavlja ta kombinacija število −108(dec)

<u>Predstavitev z eniškim komplementom:</u> b7 = 0 ⇒ število je pozitivno torej kombinacija 00010100 ni komplement in lahko vrednost izračunamo direktno. 00010100 =16+4 = +20(dec) Kombinacija 00010100 v eniškem komplementu predstavlja število +20(dec)



<u>Predstavitev z dvojiškim komplementom:</u> b7 =  $0 \Rightarrow$  število je pozitivno torej kombinacija 00010100 ni komplement in lahko vrednost izračunamo direktno. 00010100 =16+4 = +20(dec)

Kombinacija 00010100 v dvojiškem komplementu predstavlja število +20(dec)

| b7 b6 b5 b4 b3 b2 b1 b0                         |                                                    |
|-------------------------------------------------|----------------------------------------------------|
| 0 0 0 1 0 1 0 0                                 | = +20(dec) v predstavitvi predznak in velikost     |
| $2^7$ $2^6$ $2^5$ $2^4$ $2^3$ $2^2$ $2^1$ $2^0$ |                                                    |
| b7 b6 b5 b4 b3 b2 b1 b0                         |                                                    |
| 0 0 0 1 0 1 0 0                                 | = −108(dec) v predstavitvi z odmikom               |
|                                                 |                                                    |
| b7 b6 b5 b4 b3 b2 b1 b0                         |                                                    |
| 0 0 0 1 0 1 0 0                                 | = +20(dec) v predstavitvi z eniškim komplementom   |
|                                                 |                                                    |
| b7 b6 b5 b4 b3 b2 b1 b0                         |                                                    |
| 0 0 0 1 0 1 0 0                                 | = +20(dec) v predstavitvi z dvojiškim komplementom |



# 4.3 Aritmetika s števili v fiksni vejici

Aritmetika - štiri osnovne operacije: seštevanje, odštevanje, množenje in deljenje.

 Aritmetične operacije se izvajajo v aritmetično-logični enoti (ALE), ki je del CPE.

Vrsta in število operacij, ki jih zna izvajati ALE, se med računalniki razlikujeta - pri najpreprostejših samo seštevanje in logične operacije, druge operacije so realizirane s programi.

### Aritmetika s števili v fiksni vejici

Ključno vezje za realizacijo aritmetičnih operacij je n-bitni paralelni dvojiški seštevalnik, ki iz dveh nepredznačenih celih števil tvori njuno vsoto.

Z njim so narejene vse operacije, tudi odštevanje (za predstavitev negativnih števil se običajno uporablja dvojiški komplement), množenje in deljenje.

■ Osnovni element, s katerim zgradimo *n*-bitni seštevalnik, je *1*-bitni polni seštevalnik.



1-bitni polni seštevalnik ima tri vhode

- □ Dva sumanda x<sub>i</sub> in y<sub>i</sub>
- □ Vhodni prenos c<sub>i</sub>
- in dva izhoda
  - □ Vsota s<sub>i</sub>
  - □ Izhodni prenos c<sub>i+1</sub>



#### Pravilnostna tabela

| Vhodi |                |                | lzh | odi              |
|-------|----------------|----------------|-----|------------------|
| Xi    | y <sub>i</sub> | C <sub>i</sub> | S i | C <sub>i+1</sub> |
| 0     | 0              | 0              | 0   | 0                |
| 0     | 0              | 1              | 1   | 0                |
| 0     | 1              | 0              | 1   | 0                |
| 0     | 1              | 1              | 0   | 1                |
| 1     | 0              | 0              | 1   | 0                |
| 1     | 0              | 1              | 0   | 1                |
| 1     | 1              | 0              | 0   | 1                |
| 1     | 1              | 1              | 1   | 1                |



■ *n*-bitni seštevalnik dobimo, če povežemo *n* eno-bitnih seštevalnikov - seštevalnik s plazovitim prenosom.





# 4.4 Predstavitev numeričnih operandov v plavajoči vejici

- Obseg števil, ki jih lahko predstavimo v predstavitvi s fiksno vejico, je za tehnične probleme običajno premajhen.
- Ta števila pišemo običajno v znanstveni notaciji, ki omogoča predstavitev z razmeroma malo številkami.

■ Predstavitev števil v plavajoči vejici je samo za računalnik prirejena oblika znanstvene notacije.



Splošna oblika

 $m \cdot r^e \to npr.: 0.03200000 \cdot 10^8$ 

- $\square$  m mantisa (koeficient, fraction, significand) = 0,03200000
- $\Box$  r baza (osnova, radiks) = 10
- $\Box$  e eksponent (karakteristika) = 8



## Standard za predstavitev v plavajoči vejici

- Števila v plavajoči vejici se da predstaviti na veliko načinov:
  - □ različno število bitov za predstavitev mantise in eksponenta,
  - □ različni načini predstavitve eksponenta in mantise,
  - različni načini zaokroževanja.
- Proizvajalci računalnikov so veliko let uporabljali različne formate, ki med seboj niso bili kompatibilni. Isti program je zato na različnih računalnikih dal različne rezultate.
- Leta 1981 je bil v okviru organizacije IEEE predlagan standard za aritmetiko s plavajočo vejico, leta 1985 pa sprejet v končni obliki z oznako IEEE 754 in ga danes uporablja večina računalnikov.
- Poleg formata za predstavitev števil določa standard še načine izvajanja aritmetičnih operacij (zaokroževanje) in postopke v primeru napak (preliv, deljenje z 0, itn.).



Osnovne lastnosti predstavitve števil v standardu IEEE 754

□ Standard uporablja bazo r = 2.

Mantisa je predstavljena v načinu predznak in velikost.

 Implicitna predstavitev normalnega bita. Vejica je desno od normalnega bita (= levo od prvega bita mantise).

□ Eksponent je predstavljen v predstavitvi z odmikom.

□ Definirana sta dva formata: 32-bitni format ali enojna natančnost in 64-bitni format ali dvojna natančnost.



## Predstavitev števil v plavajoči vejici – standard IEEE 754 32-bitni in 64-bitni format



32-bitni format (enojna natančnost)

vrednost števila =  $(-1)^S$  (1,m)  $2^{E-127}$  približni obseg ± 2,0 x 10<sup>-38</sup> do ± 2,0 x 10<sup>38</sup>

## 64-bitni format (dvojna natančnost)







## Predstavitev števil po standardu IEEE 754

| Predstavljeno število   | Eksponent E      | Mantisa m     |  |
|-------------------------|------------------|---------------|--|
| Normalizirano število   | 000001 do 111110 | karkoli       |  |
| Denormalizirano število | 000000           | različna od 0 |  |
| Ničli ±0                | 000000           | 000000        |  |
| Neskončnost ± ∞         | 111111           | 000000        |  |
| Neveljavno število NaN  | 111111           | različna od 0 |  |



■ Negativno desetiško število −4,625 v predstavitvi s plavajočo vejico v enojni natančnosti.

V dvojiško obliko pretvorimo posebej celi del in posebej ulomljeni del števila (za vejico)

$$4(\text{dec}) = 100(\text{bin})$$
 $0,625(\text{dec}) = 0,101(\text{bin})$ 
 $0,625 \times 2 = 1,25 \Rightarrow 0,1$ 
 $-4,625 \text{ (dec)} = 100,101000... (bin)}$ 
 $0,25 \times 2 = 0,5 \Rightarrow 0,10$ 
 $0,5 \times 2 = 1,0 \Rightarrow 0,101$ 
 $0,5 \times 2 = 1,0 \Rightarrow 0,101$ 
 $0,0 \times 2 = 0 \Rightarrow 0,1010$ 
 $0,0 \times 2 = 0 \Rightarrow 0,1010$ 

Število je negativno  $\Rightarrow$  S = 1

Mantisa brez normalnega bita  $\Rightarrow$  m = 001010...0

Eksponent  $\Rightarrow$  e = 2

Eksponent v predstavitvi z odmikom  $127(dec) \Rightarrow E = e+127 = 2 + 127 = 129(dec)$ 

E = 129(dec) = 10000001(bin)



# Aritmetika s števili v plavajoči vejici

- Aritmetika v plavajoči vejici se je v računalnikih obravnavala ločeno od aritmetike v fiksni vejici
- Osnovni razliki glede na operacije v fiksni vejici sta:
  - □ Pri operacijah je treba poleg mantise uporabiti še eksponent za te operacije je potrebna aritmetika v fiksni vejici
  - □ Zaokroževanje rezultat operacije mora biti enak matematično točni vrednosti, ki se nato zaokroži na dolžino bitov mantise

## Aritmetika s števili v plavajoči vejici

- Preliv (overflow)
  - $\square$  Če pride do preliva, se rezultat predstavi kot  $+\infty$  ali  $-\infty$ .

- Podliv (underflow)
  - □ Pri predstavitvi števil v plavajoči vejici lahko pride tudi do podliva (undreflow), če je rezultat operacije manjši kot je najmanjše predstavljivo število.
  - □ Če pride do podliva, se število zamenja z ničlo, ali pa predstavi kot denormalizirano število.



Primer številske premice desetiških realnih števil z dvomestnim eksponentom in trimestno mantiso z območjem 0,1 ≤ |m| < 1





# Dopolnitev standarda IEEE 754: IEEE 754r → IEEE 754-2008

Avgusta 2008 je bil objavljen dopolnjen standard IEEE 754-2008, ki zamenjuje Standard IEEE 754 iz leta 1985.

Najpomembnejše dopolnitve

□ Dodan nov 128-bitni dvojiški format (štirikratna natančnost) z bazo r = 2, 112-bitno mantiso in 15- bitnim eksponentom.

## Predstavitev števil v plavajoči vejici – dopolnjen standard IEEE 754-2008

- □ Dva nova desetiška formata z bazo r = 10
  - 64-bitni format s 16 mestno mantiso (16 desetiških številk)
  - 128-bitni format s 34 mestno mantiso
- Standard tako definira
  - Pet osnovnih formatov, tri dvojiške in dva desetiška.
  - Aritmetične formate, ki se uporabljajo pri aritmetičnih in drugih operacijah.
  - □ Formate za izmenjavo, ki se uporabljajo pri izmenjavi operandov v plavajoči vejici.



## Predstavitev števil v plavajoči vejici – dopolnjen standard IEEE 754-2008

| Oznaka     | lme                       | Osnova | Število<br>mest<br>mantise * | E min  | E max  | Desetiška<br>natančnost | Max<br>desetiški<br>eksponent |
|------------|---------------------------|--------|------------------------------|--------|--------|-------------------------|-------------------------------|
| binary32   | Enojna<br>natančnost      | 2      | 24                           | -126   | +127   | 7,22                    | 38,23                         |
| binary64   | Dvojna<br>natančnost      | 2      | 53                           | -1022  | +1023  | 15,95                   | 307,95                        |
| binary128  | Štirikratna<br>natančnost | 2      | 113                          | -16382 | +16383 | 34,02                   | 4931,77                       |
| decimal64  |                           | 10     | 16                           | -383   | +384   | 16                      | 384                           |
| decimal128 |                           | 10     | 34                           | -6143  | +6144  | 34                      | 6144                          |

\* skupaj s predznakom



## Predstavitev števil v plavajoči vejici – dopolnjen standard IEEE 754-2008

- Algoritme za zaokroževanje, ki določajo metode zaokroževanja števil pri računanju in pretvorbah.
- □ Aritmetične in druge operacije nad aritmetičnimi formati.
- □ Obravnavo izjemnih dogodkov (deljenje z 0, preliv, podliv, ...).