Homework 7 for **MATH 561**, Set Theory

Due: Thursday April 5

In the following, M is always a countable transitive model of ZFC, \mathbb{P} is a partial order in M, and G is \mathbb{P} -generic over M.

Problem 1 – Union in M[G]

Suppose $\tau \in M^{\mathbb{P}}$. Let

$$\pi = \{ (\rho, p) \colon \exists (\sigma, q) \in \tau \ \exists r \ ((\rho, r) \in \sigma \land p \le r \land p \le q) \}.$$

Show that $\pi_G = \bigcup (\tau_G)$.

Problem 2 – Images of mappings

Suppose $f: A \to M$ and $f \in M[G]$. Show that there is a $B \in M$ so that $f: A \to B$.

(*Hint*: Suppose $f = \tau_G$. Consider $B = \{b : \exists p \in \mathbb{P} (p \Vdash \check{b} \in \text{ran}(\tau))\}$)

Problem 3 - Iterated forcing

Let \mathbb{P} be non-atomic. Suppose

$$M = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_n \subset \cdots$$

with $M_{n+1} = M_n[G_n]$ for some G_n which is \mathbb{P} -generic over M_n . Show that $\bigcup_n M_n$ does not satisfy the power set axiom.

Furthermore, show that the G_n may be chosen so that there is no c.t.m. N of ZFC with $\langle G_n \colon n \in \omega \rangle \in N$ and o(N) = o(M). (*Hint*: $\{n \colon p \in G_n\}$ can code o(M).)