Lista de Exercícios 1 - ECOM02A - Teoria dos Grafos

28/4/2023

prof. Luciano Bertini

1. Cite 5 exemplos de situações do mundo real que poderiam ser representadas (modeladas) utilizando a notação de um grafo.

2. Considere a seguinte terminologia de grafos:

Tipo	Aresta	Arestas múltiplas?	Laços permitidos?
Grafo simples	Não dirigida	Não	Não
Multigrafo	Não dirigida	Sim	Não
Pseudografo	Não dirigida	Sim	Sim
Grafo dirigido	Dirigida	Não	Sim
Multigrafo dirigido	Dirigida	Sim	Sim

Dê um exemplo de grafo para cada tipo.

3. Desenhe um Grafo simples com 6 vértices, sendo um vértice de grau 5, três vértices de grau 4, um vértice de grau 2 e um vértice de grau 1.

4. Desenhe um Multigrafo com 6 vértices, sendo um vértice de grau 5, três vértices de grau 4, um vértice de grau 2 e um vértice de grau 1.

5. O complemento de um grafo simples G=(V,A,g) é o grafo simples G'=(V,A',g') no qual existe uma aresta entre dois vértices se, e somente se, não existe uma aresta entre os mesmos vértices em G. Desenhe o complemento dos seguintes grafos:

6. Seja G um grafo com v vértices e a arestas. Quantas arestas contém o grafo G'?

7. Um grafo cúbico é um grafo simples regular de grau 3. Construa 2 grafos cúbicos não isomorfos. Desenhe um grafo isomorfo para um dos dois.

8. Um grafo roda é também regular? Justifique.

- 9. Considerando o grafo orientado G da figura abaixo, pede-se:
 - (a) Encontrar o grau de entrada e o grau de saída de cada vértice de G.
 - (b) Achar a lista de adjacentes de cada vértice de G.
 - (c) Verificar se existem fontes e sumidouros.

- 10. Considere um grafo G com \mathbf{n} vértices e \mathbf{a} arestas, tal que qualquer vértice possua grau \mathbf{k} ou $\mathbf{k+1}$. Prove que se G possui $\mathbf{n_k}$ vértices de grau \mathbf{k} e $\mathbf{n_{k+1}}$ vértices de grau $\mathbf{k+1}$, então $\mathbf{n_k} = \mathbf{n(k+1)} \mathbf{2a}$.
- 11. Descreva as matrizes de adjacência e de incidência e a lista de adjacências de cada grafo a seguir:

12. Desenhe o grafo direcionado cuja matriz de adjacência tem todos os 1s na linha 1 e na coluna 1 e nas demais posições tem 0.

13. A matriz de adjacência para um grafo não direcionado é dada em sua forma triangular inferior conforme abaixo. Desenhe o grafo que ela representa.

$$\begin{bmatrix}
2 & & & \\
1 & 0 & & \\
0 & 1 & 1 & \\
0 & 1 & 2 & 0
\end{bmatrix}$$

14. 4. A matriz de adjacência para um grafo direcionado não ponderado é dada conforme abaixo. Desenhe o grafo que ela representa.

$$\left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 \end{array}\right]$$

- 15. Faça uma função, em Python, que verifique se um grafo qualquer, representado por sua matriz de adjacência, é um grafo completo.
- 16. Faça uma função, em Python, que determine o grau de cada vértice de um grafo, devolvendo o resultado em uma lista. Considere a representação por lista de adjacência. Exemplo de uma lista de adjacencias:

```
graph = {
   '5' : ['3','7'],
   '3' : ['2', '4'],
   '7' : ['8'],
   '2' : [],
   '4' : ['8'],
   '8' : []
}
```

17. Seja A a matriz:

$$\left[\begin{array}{ccccc}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]$$

Encontre $A^{(2)}$ e $A^{(3)}$.

18. Seja G um dígrafo representado pela matriz de adjacência abaixo:

$$\left[
\begin{array}{ccccc}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}
\right]$$

Encontre a matriz de alcançabilidade correspondente.

- 19. Escreva a matriz A para o grafo completo de 4 vértices. Calcule A² (multiplicação convencional de matrizes). Explique o significado de A².
- 20. Desenhar um grafo cuja matriz de adjacência é tal que:

$$A^2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

21. Realize uma busca em largura nos seguintes grafos, desenhando a árvore de busca resultante; sempre que existir uma escolha entre vértices, selecionar aquele que vem primeiro numericamente. Mostre a evolução da fila.

- 22. Realize uma busca em profundidade nos grafos do exercício anterior; sempre que existir uma escolha entre vértices, selecionar aquele que vem primeiro alfabeticamente. Classifique cada aresta como aresta de árvore, ou aresta de retorno e dê os números pré e pós de cada vértice.
- 23. Realize uma busca em profundidade no seguintes grafos; sempre que existir uma escolha entre vértices, selecionar aquele que vem primeiro alfabeticamente. Classifique cada aresta como aresta de árvore, ou aresta de avanço, aresta de retorno ou aresta cruzada e dê os números pré e pós de cada vértice.

