TAREA 2: BASES DE ESPACIOS VECTORIALES

Trabajo en equipo

1. Decida la dependencia o independencia en \mathbb{R}^2 y \mathbb{R}^3 de

- a) los vectores (1,1) y (1,-2).
- b) los vectores (1, -3, 2), (2, 1, -3) y (-3, 2, 1).
- c) los vectores (1,3,2), (2,1,3) y (3,2,1).

2. Demuestre que el siguiente subconjunto de las matrices 2×2

$$\left\{ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

es linealmente independiente

3. Demostrar que los siguientes vectores forman una base para \mathbb{R}^2 .

$$\alpha_1 = (1, 1), \quad \alpha_2 = (1, -1)$$

a)
$$\alpha_1 = (1,1), \quad \alpha_2 = (1,-1)$$
 b)
$$\alpha_1 = (-1,1), \quad \alpha_2 = (-1,0)$$

4. Demostrar que los siguientes vectores forman una base para \mathbb{R}^3 .

a)
$$\alpha_1 = (1, 0, 1), \quad \alpha_2 = (1, 1, 0), \quad \alpha_3 = (0, 1, 1)$$

b)
$$\alpha_1 = (1, 0, -1), \quad \alpha_2 = (1, 2, 1), \quad \alpha_3 = (0, 3, -2)$$

c)
$$\alpha_1 = (1, 0, -1), \quad \alpha_2 = (1, 1, 1), \quad \alpha_3 = (1, 0, 0)$$

- 5. Encuentre una base para cada uno de los siguientes subespacios de \mathbb{R}^4
 - a) Todos los vectores cuyas componentes son iguales.

- b) Todos los vectores tales que la suma de sus componentes es cero.
- 6. Encuentre una base para cada uno de los siguientes subespacios de matrices 3 por 3:
 - a) Todas las matrices diagonales
 - b) Todas las matrices simétrica
- c) Todas las matrices sesgadas simétricas $(A^T = -A)$
- 7. Encontrar la dimensión y una base para la siguiente matriz.

$$\begin{pmatrix} 2 & 1 & 2 \\ 0 & 3 & -1 \\ 4 & 1 & 1 \end{pmatrix}$$

8. Encontrar la dimensión y una base para la siguiente matriz.

$$\begin{pmatrix} 1 & 1 & 0 & 0 & -1 \\ 2 & 2 & 0 & 1 & 0 \\ -1 & 0 & -1 & 4 & 2 \end{pmatrix}$$

9. Sea V el espacio vectorial de las matrices 2×2 sobre el campo \mathbb{R} . Demuestre que V tiene dimensión 4 encontrando una base de V que tenga cuatro elementos.