Proposition de projet d'option DataSIM 2024-2025

Période 1: novembre 2024- janvier 2025 **Période 2**: février 2024 – mars 2025

Titre	Amélioration de la segmentation des lésions tumorales en imagerie
	TEP par une approche « curriculum learning »
Acronyme	CLIPS (Curriculum learning for improved PET segmentation)
Tuteur	Thomas CARLIER, CHU Nantes
	thomas.carlier@chu-nantes.fr
Collaborateur(s	Diana MATEUS, Pr, LS2N - SIMS
)	diana.mateus@ls2n.fr
	Mira RIZKALLAH, LS2N – SIMS
	mira.rizkallah@ls2n.fr
	Oriane THIERY, LS2N – SIMS
	oriane.thiery@ls2n.fr

Contexte, objectifs et développements attendus :

Le lymphome B-diffus à grandes cellules (ou DLBCL) est une hémopa 40 % des patients atteints de lymphome non-hodgkinien. Le bilan d thérapeutique de cette maladie se fait par imagerie TEP (Tomograp Positons). Il a été montré récemment qu'un calcul du volume métab à l'échelle du corps entier (TMTV : Total Metabolic Tumoral Volume pronostic de la maladie permettant de classer les patients à risque même l'initiation du traitement. Le calcul du TMTV ne peut pas clinique de façon manuelle du fait des nombreuses lésions à identific lecteur doit dédier à cette tâche. De nombreuses approches automa

de développement, voir déjà proposées commercialement. Nou Exemple d'image l'Université de Vancouver qui a récemment développé une approch TEP d'un patient de segmentation lésionnelle pour l'imagerie TEP, TMTV-Net basé su attaint d'un patient U-Net [1]. La première évaluation que nous avons réalisé sur un d'environ 550 patients a montré quelques faiblesses de cette approche dans des cas jugés difficiles. L'apprentissage par « curriculum learni aider à améliorer TMTV-Net et fait l'objet de cette proposition de proche de learning s'attache à entraîner un réseau sur des tâches graduelleme compliquées.

Références bibliographiques :

[1] F. Yousefirizi et al, TMTV-Net: fully automated total metabo segmentation in lymphoma PET/CT images — a multi-center general Eur J Nucl Med Mol Imaging 2024

[2] S. Sinha et al, Curriculum by smoothing, Adv Neural Inf Process Syst, 2020

[3] F. Yousefirizi et al, Curriculum learning for improved tumor segmentation in PET imaging, Proc IEEE Nuclear Science Symp Medical Imaging Conf, 2022