DEVOIR À LA MAISON N°12

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ► Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 -

On définit deux suites de polynômes $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ en posant $P_0=0, Q_0=1$ et pour tout $n\in\mathbb{N}$

$$P_{n+1} = P_n + XQ_n$$
$$Q_{n+1} = -XP_n + Q_n$$

Il est évident que $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ sont des suites de polynômes à coefficients *réels*, ce que l'on ne demande pas de montrer. On pose enfin $\mathbf{R}_n = \frac{\mathbf{P}_n}{\mathbf{Q}_n}$ et $\mathbf{Z}_n = \mathbf{Q}_n + i\mathbf{P}_n$ pour tout $n \in \mathbb{N}$.

Dans une première partie, on étudiera certains cas particuliers puis on étudiera le cas général dans la partie suivante.

Il est *fortement conseillé* de vérifier si les résultats obtenus dans le cas général sont cohérents avec ceux obtenus dans les cas particuliers.

Partie I - Etude de cas particuliers

- **1.** Calculer P₁, Q₁, P₂, Q₂, P₃, Q₃, P₄, Q₄.
- 2. Donner la décomposition en facteurs irréductibles de P_2 , Q_2 , P_3 , Q_3 , P_4 , Q_4 dans $\mathbb{R}[X]$.
- **3.** Donner la décomposition en éléments simples de R_2 , R_3 , R_4 dans $\mathbb{R}(X)$.

Partie II - Etude du cas général

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $Z_n = (1 + iX)^n$.
- **2.** Soit $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Montrer que pour tout $n \in \mathbb{N}$.

$$P_n(\tan \alpha) = \frac{\sin(n\alpha)}{\cos^n(\alpha)} \qquad Q_n(\tan \alpha) = \frac{\cos(n\alpha)}{\cos^n(\alpha)}$$

A partir de maintenant, on suppose n non nul.

On sera amené dans plusieurs questions à distinguer des cas selon la *parité* de *n*.

- 3. Donner une expression développée de Z_n à l'aide de la formule du binôme de Newton et en déduire des expressions de P_n et Q_n .
- 4. Déterminer la parité, le degré et le coefficient dominant des polynômes P_n et Q_n .
- 5. A l'aide de la question II.2, déterminer les racines de P_n et Q_n . Montrer en particulier que toutes les racines de P_n et Q_n sont réelles et simples.
- **6.** Factoriser P_n et Q_n sous forme de produits de facteurs irréductibles de $\mathbb{R}[X]$.
- 7. Calculer la partie entière de la fraction rationnelle R_n .
- **8.** Calculer P'_n et Q'_n en fonction de P_{n-1} et Q_{n-1} .
- 9. Déterminer la décomposition en éléments simples de la fraction rationnelle R_n .
- 10. Calculer les produits suivants

$$A_n = \prod_{0 < 2k < n} \tan \frac{k\pi}{n}$$

$$B_n = \prod_{0 < 2k+1 < n} \tan \frac{(2k+1)\pi}{2n}$$