

Lecture 5: Nodal and Mesh Analysis

ELEC1111 Electrical and Telecommunications Engineering

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

NETWORK ANALYSIS

Recall: Things we need to know in solving any resistive circuit with current and voltage sources only:

- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)
- Ohm's Law

How else should we apply these laws?

NODAL ANALYSIS

It provides a general procedure for analyzing circuits using node voltages as the circuit variables.

Objective: To solve for these node voltages

- ✓ In general, an *N-node* circuit will need *N*-1 voltages and *N*-1 equations.
- ✓ Apply KCL at each node except for one node the reference node.
- ✓ Any node can be chosen as the reference node. Most common choices are: the ground node, top or bottom node, node connected to the highest number of branches

NODE VOLTAGE

NODAL ANALYSIS (INDEPENDENT CURRENT SOURCES ONLY)

NODAL ANALYSIS (INDEPENDENT CURRENT SOURCES ONLY)

KCL for node a:

$$i_s = \frac{v_a}{R_2} + \frac{v_a - v_b}{R_1}$$

$$\frac{v_a - v_b}{R_1} - \frac{v_b}{R_3} = 0$$

PROCEDURE FOR NODAL ANALYSIS

- 1. Find all essential nodes (more than 2 branches).
- 2. Select a node as the reference node.
- 3. <u>Assign</u> voltages $v_1, v_2, ..., v_{n-1}$ to the remaining n-1 nodes. The voltages are referenced with respect to the reference node.
- 4. Apply KCL to each of the *n*-1 non-reference nodes. Use Ohm's law to express the branch currents in terms of node voltages.
- 5. <u>Solve</u> the resulting simultaneous equations to obtain the unknown node voltages.

KCL for node a:

$$\frac{v_a}{3} + \frac{v_a - v_b}{2} + 3 = 0$$

$$\frac{v_a - v_b}{2} + 3 + 1 = 0$$

KCL for node a:

What are the voltages at node 1 and 2?

NODAL ANALYSIS (INDEPENDENT VOLTAGE SOURCES)

Case 1: between a node and reference.

Case 2: between two non-reference nodes.

NODAL ANALYSIS - CONCEPT OF SUPERNODE

A supernode is formed by <u>enclosing</u> a (dependent or independent) voltage source connected between two non-reference nodes and any elements connected in parallel with it.

*Note: We analyse a circuit with super-nodes using the same three steps mentioned above except that the super-nodes are treated differently.

CONCEPT OF SUPERNODE

Algebraic sum of currents at a supernode = 0

$$\frac{v_b - v_a}{R_1} + \frac{v_b}{R_2} + \frac{v_c}{R_3} = i_s \qquad v_b - v_c = v_{s2}$$

METHOD FOR A SUPERNODE

- 1. Create a supernode combining the two nodes (with voltage source lying between them)
- 2. Apply KCL to supernode(s) sum of all currents into this node is zero.
- 3. Apply voltage equation to supernode(s).

METHOD FOR A SUPERNODE

METHOD FOR A SUPERNODE

Apply KVL => $-v_1 - 2 + v_2 = 0$ (or) $v_2 - v_1 = 2$

For node a:

Source between b and c:

KCL to supernode:

For node a: $v_a = 30$

Source between *b* and *c*: $v_b - v_c = 15$

KCL to supernode: $3 = \frac{v_b - v_a}{10} + \frac{v_b}{10} + \frac{v_c}{10}$

Solve: $v_b = 25$ $i = \frac{v_b}{10} = 2.5A$

KCL for supernode:

KCL for supernode:
$$\frac{v_a - v_b}{10} + \frac{v_c - v_b}{40} + 2 = 5$$

V source

I source

- ✓ Dependent source = a voltage or current generator whose value is controlled by another circuit variable
- ✓ e.g. transistors, amplifiers

V source

I source

Amplifier types:

current controlled voltage source (CCVS) current controlled current source (CCCS) voltage controlled voltage source (VCVS) voltage controlled current source (VCCS)

Node *a*: Node *c*:

Node *b*:

$$i_{1} = \frac{v_{a} - v_{b}}{R_{1}}$$

$$i_{1} = \frac{v_{a} - v_{b}}{R_{1}}$$

$$i_{2} = \frac{R_{2}}{R_{2}}$$

$$i_{3} = \frac{r_{1}}{R_{1}}$$

$$r_{2} = \frac{r_{1}}{R_{1}}$$

Node a: $V_a = V_s$

Node *b*: $\frac{v_a - v_b}{R_1} + i_s = \frac{v_b - v_c}{R_2}$

Node c:

$$v_c = r \frac{v_a - v_b}{R_1}$$

$$i_s = \frac{v_a}{R_1} + \frac{v_b}{R_2} \qquad v_a - v_b = -\beta v_a$$

- 1 KCL equation for supernode
- 1 KCL equation for node c
- 2 equations for two voltage sources

- 1 KCL equation for supernode
- 1 KCL equation for node c
 - 2 equations for two voltage sources

$$\frac{v_a - v_b}{R_2} + i_x + \frac{v_c - v_d}{R_3} + gv_y = 0$$
, where $v_y = v_a - v_c$ and $i_x = -\frac{v_b}{R_4}$

$$\frac{v_a - v_c}{R_1} = i_s + \frac{v_c - v_d}{R_3}$$

$$v_a = v_s$$
 $v_b - v_d = ri_x = r\left(-\frac{v_b}{R_4}\right)$

MESH CURRENT ANALYSIS

- 1. Mesh analysis provides another general procedure for analysing circuits using mesh currents as the circuit variables.
- 2. Nodal analysis applies KCL to find unknown voltages in a given circuit, while mesh analysis applies KVL to find unknown currents.
- 3. A mesh is a loop which does not contain any other loops within it.

METHOD TO DETERMINE MESH CURRENT

- 1. Assign mesh currents $i_1, i_2, ..., i_n$ to the *n* meshes.
- 2. Apply KVL to each of the *n* meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. <u>Solve</u> the resulting *n* simultaneous equations to get the mesh currents.

MESH ANALYSIS (INDEPENDENT VOLTAGE SOURCES ONLY)

Mesh equation: KVL around each mesh

Note: Remember the sign convention!

MESH ANALYSIS (INDEPENDENT VOLTAGE SOURCES ONLY)

Note: I₁, I₂ and I₃ are branch currents

i₁ and i₂ are mesh currents

$$I_1 = i_1; I_2 = i_2$$

 $I_3=i_1-i_2$ (two mesh currents i_1 & i_2 cover through branch I_3)

MESH ANALYSIS (INDEPENDENT VOLTAGE SOURCES ONLY)

Mesh (Loop) 1

$$-v_1 + i_1 R_1 + (i_1 - i_2) R_3 = 0$$

Mesh (Loop) 2

$$-(i_1 - i_2)R_3 + i_2R_2 + v_2 = 0$$

MESH ANALYSIS - EXAMPLE 8

MESH ANALYSIS WITH CURRENT SOURCE

A **super-mesh** results when two meshes have a (dependent or independent) current source in common as shown in (a). We create a super-mesh by excluding the current source and any elements connected in series with it as shown in (b).

SUPERMESH PROPERTIES

- 1. The current source in the super-mesh is not completely ignored; it provides the constraint equation necessary to solve for the mesh currents.
- 2. A super-mesh has no current of its own.
- 3. A super-mesh requires the application of both KVL and KCL.

SUPERMESH EXAMPLE 9

Solve for *V*

NODAL VERSUS MESH ANALYSIS

To select the method that results in the smaller number of equations.

- Choose nodal analysis for circuit with fewer nodes than meshes.
- Choose mesh analysis for circuit with fewer meshes than nodes.
- Networks that contain many series connected elements, voltage sources, or supermeshes are more suitable for mesh analysis.
- Networks with parallel-connected elements, current sources, or supernodes are more suitable for nodal analysis.
- If node voltages are required, it may be expedient to apply nodal analysis. If branch or mesh currents are required, it may be better to use mesh analysis.
- Wherever possible, go for source conversion.

Calculate v_0 using mesh analysis. Verify using nodal analysis.

Mesh analysis:

Write the mesh-current equations for the circuit

Write the nodal voltage equations for the circuit

Calculate v_0 using mesh analysis. Verify using nodal analysis.

Use mesh analysis to find the current i₀ in the following circuit

CRAMER'S RULE

Cramer's rule is a theorem, which gives an expression for the solution of a system of linear equations with as many equations as unknowns

Consider the linear system of equations given by $\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$

In matrix format it is
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix}$$
.

Then, x and y can be found with Cramer's rule as

$$x = \frac{\Delta x}{\Delta} = \begin{vmatrix} e & b \\ f & d \end{vmatrix} / \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \frac{ed - bf}{ad - bc}$$

$$y = \frac{\Delta y}{\Delta} = \begin{vmatrix} a & e \\ c & f \end{vmatrix} / \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \frac{af - ec}{ad - bc}$$

CRAMER'S RULE - 3x3 matrix

Given
$$\begin{cases} ax + by + cz &= j \\ dx + ey + fz &= k \\ gx + hy + iz &= l \end{cases}$$
 In matrix form,
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} j \\ k \\ l \end{bmatrix}$$

The values of x, y and z are,

$$x = \frac{\Delta x}{\Delta} = \frac{\begin{vmatrix} j & b & c \\ k & e & f \\ l & h & i \end{vmatrix}}{\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}}, \quad y = \frac{\Delta y}{\Delta} = \frac{\begin{vmatrix} a & j & c \\ d & k & f \\ g & l & i \end{vmatrix}}{\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}}, \quad \text{and} \quad z = \frac{\Delta z}{\Delta} = \frac{\begin{vmatrix} a & b & j \\ d & e & k \\ g & h & l \end{vmatrix}}{\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}}$$

SOURCE TRANSFORMATION

(b) Dependent source transform

- The arrow of the current source is directed toward the positive terminal of the voltage source.
- The source transformation is not possible when R = 0 for voltage source and R = ∞ for current source.

Find v_0 in the following circuit using source transformation

Ans: Vo = 20V

Find i₀ in the following circuit

Ans: i_o =8A