Zadania z Analizy Matematycznej I.1- seria VII

3 grudnia 2013

Zadanie 1. Wykazać, że kryterium pierwiastkowe Cauchy'ego jest silniejsze od kryterium ilorazowego d'Alemberta.

Zadanie 2. Podać przykład szeregu, takiego że w wyniku kryterium pierwiastkowego Cauchy'ego dostaniemy 1, a szereg jest:

- a) zbieżny,
- b) rozbieżny.

Zadanie 3. Zbadać zbieżność szeregów:

- a) $\sum_{n=1}^{\infty} \frac{n^n}{e^n n!},$
- b) $\sum_{n=1}^{\infty} \frac{n!}{(a+1)(a+2)\dots(a+n)}$ w zależności od a>0,
- c) $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$,
- d) $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^2},$
- e) $\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}}$,
- f) $\sum_{n=1}^{\infty} \frac{1}{2^{\sqrt{n}}},$
- g) $\sum_{n=1}^{\infty} \frac{x^n}{n!},$
- h) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}$
- i) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{4 \cdot 6 \cdot 8 \cdot \dots \cdot (2n+2)}.$

Zadanie 4. Niech $u_n \ge 0$ i $\lim_{n\to\infty} u_n = \infty$. Zbadać zbieżność następujących szeregów:

- a) $\sum_{n=1}^{\infty} \frac{u_n}{1+u_n},$
- b) $\sum_{n=1}^{\infty} \frac{u_n}{1+nu_n},$
- c) $\sum_{n=1}^{\infty} \frac{u_n}{1+n^2 u_n},$
- d) $\sum_{n=1}^{\infty} \frac{u_n}{1+u_n^2}.$

Zadanie 5. Szereg $\sum_{n=1}^{\infty} u_n$ jest zbieżny, $u_n \geq 0$. Wykazać, że

$$\lim_{n\to\infty}\frac{u_1+2u_2+\ldots+nu_n}{n}=0.$$