CSCI 340 Data Structure and Algorithm Analysis

Graphs Part I
Basic concepts

Graph

 Graph is a collection of nodes and the connections between them.

There are many different types of graphs:

- Simple graph
- Directed graph
- Multi-graph
- Weighted graph
- Complete graph

— ...

Simple Graph

• A simple graph G = (V, E) consists of a nonempty set V of vertices and a possibly empty set E of edges. Each edge connects two vertices from V:

$$\{v_i, v_j\} = \{v_j, v_i\}$$

- V denotes the number of vertices
- | E | denotes the number of edges

$$|E| = 7$$

 $|V| = 5$

Directed Graph

A <u>directed graph</u> (digraph) G=(V,E) consists of a nonempty set V of vertices and a possibly empty set E of edges (or archs). Each edge connects two vertices from V:

$$\{v_i, v_j\}$$
 != $\{v_j, v_i\}$

$$\begin{vmatrix} \mathbf{E} & \mathbf{E} & \mathbf{E} \\ \mathbf{V} & \mathbf{E} & \mathbf{E} \end{vmatrix}$$

Weighted Graph

- A graph where edges have assigned numbers.
- The numbers could be distances values, lengths, costs, ... etc.

$$|E| = 7$$

 $|V| = 5$

Complete Graph

 For each pair of vertices, there is exactly one edge connecting them.

$$|E| = 3$$

 $|V| = 3$

$$|E| = 10$$

$$|V| = 5$$

More terms

- **Subgraph** G' of G=(V,E) is a graph (V',E') such that $V' \subseteq V$ and $E' \subseteq E$.
- Adjacent vertices: two vertices v_i and v_j are adjacent if edge $(v_i, v_j) \subseteq E$.
 - Such edge is called incident with vertices v_i and v_j .
- The degree of a vertex v, deg(v), is the number of edges incident with v.
 - If deg(v) = 0, v is called isolated vertex.

More terms

- Path of v_1 , v_2 , ..., v_n is a sequence of edges (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n) , denoted as path $v_1, v_2, v_3, ..., v_{n-1}, v_n$.
- Circuit: There exists a path $v_1, v_2, ..., v_n$ where $v_1 == v_n$ and no edge is repeated.
- Cycle: if all vertices in a circuit are different.

Path, Circuit, and cycle

Paths:

- (v1,v4), (v4,v6), (v6,v5)

- (v3, v6), (v6, v4), (v4, v1), (v1, v2)

- ...

Circuit:

(v1, v3), (v3, v6), (v6, v4), (v4, v3), (v3, v2), (v2, v1)

Cycle:

(v1, v2), (v2, v3), (v3, v6), (v6, v5), (v5, v4), (v4, v1)

Graph representations

Adjacency list

- Vertices are stored as records or objects, and every vertex stores a list of adjacent vertices.
- This data structure allows the storage of additional data on the vertices.

$$a \rightarrow c \rightarrow d \rightarrow f$$

 $b \rightarrow d \rightarrow e$
 $c \rightarrow a \rightarrow f$
 $d \rightarrow a \rightarrow b \rightarrow e \rightarrow f$
 $e \rightarrow b \rightarrow d$
 $f \rightarrow a \rightarrow c \rightarrow d$

Graph representations

- Adjacency matrix
 - A two-dimension matrix
 - rows represent source vertices
 - columns represent destination vertices
 - Data on edges and vertices are stored externally

	а	b	С	d	e	f	g
а	0	0	1	1	0	1	0
b	0	0	0	1	1	0	0
С	1	0	0	0	0	1	0
d	1	1	0	0	1	1	0
е	0	1	0	1	0	0	0
f	1	0	1	1	0	0	0
g	0	0	0	0	0	0	0

Graph representations

- Adjacency matrix (cont.)
 - Symmetric for simple graphs
 - Non-symmetric for digraphs
 - In case of weighted graphs, values in matrix indicate weights of edges

	a	b	C	d	e	f	g
a	0	0	2	3	0	7	0
b	0	0	0	2	4	0	0
С	2	0	0	0	0	4	0
d	3	2	0	0	7	8	0
e	0	4	0	7	0	0	0
f	7	0	4	8	0	0	0
g	0	0	0	0	0	0	0

Typical operations in graph

Operation	Adjacency matrix	Adjacency list
Add a node	$O(V ^2)$	<i>O</i> (1)
Remove a node	$O(V ^2)$	O(E)
Add an edge	<i>O</i> (1)	<i>O</i> (1)
Remove an edge	<i>O</i> (1)	O(V)
Get neighbors of a node	O(V)	O(V)
Test an edge	<i>O</i> (1)	O(V)
Get/set edge	<i>O</i> (1)	O(V)
Storage	$O(V ^2)$	O(V + E)