ECE 477 Design Review Team 2 - Spring 2015 R.I.S.K.

Colin Graber Jason Kohl Jacob C Varnau

Cameron Young

Outline

- Project overview
- Project-specific success criteria
- Block diagram
- Component selection rationale
- Packaging design
- Schematic and theory of operation
- PCB layout
- Software design/development status
- Project completion timeline
- Questions / discussion

Project Overview

- Electronic implementation of the board game RISK
- Game state information will be displayed via LED displays
- Cards will be managed via a mobile web app
- Goal: improve ease of setting up/playing game

Project-Specific Success Criteria

- 1. An ability to keep track of the game state, such as troop numbers, country ownership, and battle information.
- 2. An ability to display troop counts and country ownership to the players via LEDs, 7-segment displays, and an LCD screen.
- 3. An ability to modify game state based on user input.
- 4. An ability to coordinate the distribution, display, and usage of Country Cards via a mobile web app.
- 5. An ability to collect statistical data related to gameplay and to compute and display statistics about gameplay and random events.

Block Diagram

(Daisy-chained)

- Microcontroller: PIC32MZ2048ECM064
 - 50 Mb/s SPI modules
 - Powerful enough for our needs

Family	Part	Clock	RAM	Pins	Cost
PIC32MZEC	PIC32MZ 2048M064	200 MHz	512 kB	64	\$13.52
PIC24	PIC24FJ25 6DA206	16 MIPS	98 kB	64	\$7.15

- Web Server: Raspberry Pi
 - Easy-to-use WiFi adapter

	Shows Card Type			Hardware Required
LED	Yes	No	No	Lots
LCD	Yes	Yes	No	Some
Web App	Yes	Yes	Yes	Minimal

- Shift Registers: 74HC595D
 - Most bits we could find for reasonable cost
 - Easy to daisy chain
 - Has separate clocks for shifting data and latching it to output pins
 - Surface mount to save board space
- Original Idea: I2C
 - Each country would have its own address
 - Too complex to be feasible

- LCD Display: Gravitech 20x4 LCD
 - Enough space for relevant game information
 - Uses very common HD44780 controller
- Original Idea: 16x2 LCD
 - Readily available
 - Not enough space to describe game actions

Packaging Design

- Frosted acrylic for top surface, opaque acrylic for others
- Rotary encoder and two buttons

Country Schematic

Country PCB (Components)

Country PCB (Full)

Main Board Schematic

Main Board Layout

LCD Display 4x20

- Hardware drivers
 - LCD and SPI drivers in development
 - Main loop in design
- Game logic
 - o Complete

- Raspberry Pi
 - Ad-hoc network setup complete
 - SPI commands in development
 - Must be master
 - Websockets are in development

- Web app
 - Graphics complete
 - Webpage in development
 - Submitting cards in development

Project Timeline

•Week 8:

- Finalize Country PCB revisions, submit
- Finish Main PCB Schematic
- Start Main PCB Layout

•Week 9:

- Finish designing and order Main PCB
- Start Microcontroller IO (SPI) programming
- Continue Web app: fetch card info from Pi (server)

•Week 10 / 11:

- Solder parts onto country PCBs
- Connect Raspberry Pi and microcontroller over SPI

Project Timeline

- Week 12:
 - Solder parts onto country PCBs
 - Solder parts onto main PCB
 - Pi / Web app: send cards successfully
 - Micro: compute statistics
 - Web App: display statistics
- •Week 13 / 14 / 15:
 - Debugging
- •Week 16:
 - Packaging

Questions?