Doğrusal Cebir

Samsun - 2011

Neden Doğrusal Cebir?

- Her bir veri noktası, öznitelik kümesi
 - data_i → feature_i
 - [uzunluk, ağırlık, renk, …]
- Toplanan veri, öznitelik vektör koleksiyonuyla temsil edilir
 - [l1,w1,c1,...], [l2,w2,c2,...],...
- Doğrusal model, basittir ve hesaplanabilirdir

Vektörler

- N-boyutlu satır vektörü $x = [x_1 \ x_2 \ ... \ x_n]$
- Transpoz et

$$\boldsymbol{X}^T = \begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \\ \vdots \\ \boldsymbol{X}_n \end{bmatrix}$$

Vektör/iç/nokta çarpımı

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2 + \ldots + \mathbf{x}_n \mathbf{y}_n = \sum_{i=1\ldots k} \mathbf{x}_i \mathbf{y}_i$$

Vektörler +

• Euclid normu/uzunluğu
$$|\mathbf{x}| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1...n} \mathbf{x}_i^2}$$

- Eğer |x|=1 ise, normalize/birim uzunluk
- x ve y vektörleri arasındaki açı theta ise $\cos \theta =$

$$\cos \theta = \frac{x^T y}{|x||y|}$$

Bu iç çarpım x ve y arasındaki yönü yakalar

Vektör ++

- Orthogonal ve |x|=|y|=1 ise orthonormal vektörlerdir
- x ve y vektörleri arasındaki Euclid mesafesi

$$|x-y| = \sqrt{\sum_{i=1...n} (x_i - y_i)^2}$$

Doğrusal bağımlılık/bağımsızlık

 Herhangi birisi diğerleri cinsinden ifade edilebiliyorsa doğrusal bağımlıdır denilir

$$\alpha_1 \mathbf{X}_1 + \alpha_2 \mathbf{X}_2 + \ldots + \alpha_n \mathbf{X}_n = \mathbf{0}$$

 Eşitlik tüm katsayıların sıfır olmasıyla sağlanabiliyorsa doğrusal bağımsızdır denilir

$$\alpha_1 \mathbf{X}_1 + \alpha_2 \mathbf{X}_2 + \ldots + \alpha_n \mathbf{X}_n = \mathbf{0} \implies \alpha_1 = \ldots = \alpha_n = \mathbf{0}$$

Vektör uzayları ve bazlar

- n-boyutlu vektör kümesi V-vektör uzayı olarak adlanır
- Bu uzaydaki herhangi bir vektörü ifade etmede kullanılan [u1,u2,...,un] vektör kümesine baz vektörler denilir $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + ... + \alpha_n \mathbf{u}_n$
- u1,u2,...,un doğrusal bağımsızdır
- Birbirilerine dik ve genlikleri bir ise orthonormaldir

Matrisler

nXm matris ve onun transpozu

$$\mathbf{A} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{1m} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{X}_{n1} & \mathbf{X}_{n2} & \cdots & \mathbf{X}_{nm} \end{bmatrix} \qquad \mathbf{A}^{T} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{n1} \\ \mathbf{X}_{12} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{X}_{1m} & \mathbf{X}_{2m} & \cdots & \mathbf{X}_{nm} \end{bmatrix}$$

Matris çarpımı

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nd} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1m} \\ b_{21} & \cdots & b_{2m} \\ b_{31} & \cdots & b_{3m} \\ \vdots & \cdots & \vdots \\ b_{d1} & \cdots & b_{dm} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{ij} \\ \mathbf{c}_{ij} \end{bmatrix} = \mathbf{C}$$

$$\mathbf{c}_{ij} = \langle \mathbf{a}^i, \mathbf{b}_j \rangle$$

$$\mathbf{a}^i \text{ is row } \mathbf{i} \text{ of } \mathbf{A}$$

$$\mathbf{b}_j \text{ is column } \mathbf{j} \text{ of } \mathbf{B}$$

- A2nın sütun sayısı = B'nin satır sayısı
- AB <> BA

Matrisler

- Matrisin rankı, doğrusal bağımsız satır/sütun sayısıdır
- Rank=satır sayısı ise kare matris tekil olmayandır. Rank daha düşükse, tekil olarak adlanır.
- Birim matris-I
- Transpozu kendisine eşit matris simetriktir:
 A=A'

matrisler

Şartı sağlayan matris pozitif tanımlıdır

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \sum_{i,j} \mathbf{A}_{i,j} \mathbf{x}_{i} \mathbf{x}_{j} > \mathbf{0}$$

Pozitif-yarı tanımlıdır

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \sum_{i,j} \mathbf{A}_{i,j} \mathbf{x}_i \mathbf{x}_j \geq \mathbf{0}$$

 A-kare matrisinin izi, köşegen üzerindeki elemanlar toplamıdır

$$tr[A] = \sum_{i=1}^{n} a_{ii}$$

matrisler

- Matrisin tersiyle çarpımı birim matristir
- Tekil ve karesel olmayan matrisin tersi yoktur.
 Sözde tersinden ise A'A tekil değilse söz edilebilir

•
$$A^{\dagger} = (A^{T}A)^{-1}A^{T}$$

• $A^{\dagger}A = (A^{T}A)^{-1}A^{T}A = I$

Matrisler

nXn kare matrisin determinanti

$$\det(A) = \sum_{k=1}^{n} (-1)^{k+i} a_{ik} \det(A_{ik})$$

 Bura A_ik: i. satır ve k. sütun uzaklaştırılarak elde edilen matristir

Doğrusal Dönüşümler

 V vektör uzayından U uzayına doğrusal dönüşüm, M-haritalama matrisiyle temsil edilebilir

- -u = Mv
- U ve V aynı boyutlu ise M karedir
- Örüntü tanımada U daha küçük boyutludur.
 Örneğin öznitelik azaltma

$$M$$
 $v = u$

Özdeğerler ve özvektörler

- nXn boyutlu A matrisi ve sıfırdan farklı x-vektörü verilsin
 - Eşitliğini sağlayan lambda varsa

- x, A'nın özvektörü
- Lambda ise özdeğeri olarak adlanır
- Doğrusal dönüşüm A, v-özvektörünü haritalar. Lambda genliği ve yönü değiştirir

Özdeğerler ve özvektörler

- A gerçel ve simetrikse, tüm özdeğerler gerçeldir
- A tekil değilse, tüm özdeğerler sıfırdan farklıdır
- A pozitif tanımlıysa tüm özdeğerler pozitiftir

Matlab

- Starting matlab
 - xterm -fn 12X24
 - matlab
- Basic Navigation
 - quit
 - more
 - help general
- Scalars, variables, basic arithmetic
 - Clear
 - + */ ^
 - help arith
- Relational operators
 - ==,&,|,~,xor
 - help relop
- Lists, vectors, matrices
 - A=[2 3;4 5]
 - A'
- Matrix and vector operations
 - find(A>3), colon operator
 - * / ^ .* ./ .^
 - eye(n),norm(A),det(A),eig(A)
 - max,min,std
 - help matfun

- Elementary functions
 - help elfun
- Data types
 - double
 - Char
- Programming in Matlab
 - .m files
 - scripts
 - function y=square(x)
 - help lang
- Flow control
 - if i== 1else end, if else if end
 - for i=1:0.5:2 ... end
 - while i == 1 ... end
 - Return
 - help lang
- Graphics
 - help graphics
 - help graph3d
- File I/O
 - load,save
 - fopen, fclose, fprintf, fscanf