Notes: Introduction to ARM Cortex $^{\mathrm{TM}}\text{-}\mathrm{M}$ Microcontrollers

K

November 1, 2020

Contents

1	Introduction to Computer Electronics	2
	1.1 Review of Electronics	2

1 Introduction to Computer Electronics

1.1 Review of Electronics

 $V = \text{Voltage (Volts)}, I = \text{Current (Amperes)}, R = \text{Resistance (Ohms/}\Omega)$

$$V = IR, \ I = \frac{V}{R}, \ R = \frac{V}{I}$$

- Voltage
 - potential to cause current to flow, measured between two places
 - has polarity
- Current
 - has direction
- If the electron flow has stopped resistance is infinite, no electrons flow
- If electrons flow freely, resistance is not zero, but some finite amount
- As resistance varies so does current
- potential is defined as the voltage difference between two places
- current/Flow has direction
 - Low resistance, High current
 - High resistance, Low current
 - Example: Temperature Movement
 - * Flow = $\frac{T_1 T_2}{\text{Resistance}}$
 - * T = Temperature
- R-Value
 - used in insulation put in walls and ceiling of a house
 - given in units per square area, e.g. $m^2 \cdot {}^{\circ} C/w$
 - amount of heat flow across a wall:
 - * Flow = $\frac{\text{Area} \cdot (T_1 T_2)}{\text{R-Value}}$
 - *T = Temperature
- Power
 - P in watts
 - does not have power or direction

P=Power(watts), V=Voltage(Volts), I=Current(Amperes)

$$P=VI,\ P=\frac{V^2}{R},\ P=I^2\cdot R$$

- Energy
 - -E in joules
 - stored in a battery

- has neither polarity or direction

$$E = \text{Energy(Joules)}, V = \text{Voltage(Voltage)}, I = \text{Current(Amperes)}, t = \text{time(seconds)}$$

 $E = VIt, E = Pt$

- Switch
 - used to modify the behavior of a circuit
 - ON
 - * closed, resistance is 0, current flows
 - * resistance of a switch is less than 0.1Ω , assume 0 in most cases
 - OFF
 - * open, resistance is ∞ , no current will flow
 - * resistance if greater than 100M Ω , close to ∞ therefore assume ∞
- Rules for solving voltages and currents in a circuit compromised with batteries, switches, and resistors
 - Current always flows in a loop
 - * When there is no loop, no current can flow
 - Kirchoff's Voltage Law (KVL)
 - * The sum of the voltages around the loop is zero
 - Kirchoff's Current Law (KCL)
 - * The sum of the currents into a node equal the sum of the currents leaving a node
 - Observation: If at all possible, draw the circuit so curruent flows down across the resistors and switches. As a secondary rule have currents go left to right across resistors and switches.
 - Series Resistance
 - * If resistor R1 is in series with resistor R2, this combination behaves like one resistor with a value equal to R1 + R2
 - * V equals V1 + V2
 - * By KCL currents through the two resistors are the same
 - Voltage Divider Rule

*

$$V2 = I \cdot R2$$
$$= (V/R) \cdot R2$$
$$= V * R2/(R1 + R2)$$

* The following are equivalent:

