Финансовая математика ПМ-1701

Преподаватель:

ЧЕРНОВ АЛЕКСЕЙ ВИКТОРОВИЧ alex_tche@mail.ru

Санкт-Петербург 2020 г., 6 семестр

Список литературы

- [1] Sulsky D., Chen Z., Schreyer H. L. A particle method for history-dependent materials // Computer Methods in Applied Mechanics and Engineering. 1994, V. 118. P. 179–196.
- [2] Liu G. R., Liu M. B. Smoothed particle hydrodynamics: a meshfree particle method. Singapore : World Scientific Publishing. 2003. 449 p.

Содержание

1	Конспекты лекций			
	1.1	Прос	гая и сложная процентная ставка 05.02.2020	2
		1.1.1	Формулы простых процентов	2
		1.1.2	Формулы простых процентов	3
		1.1.3	Срок удвоения вклада	3
		1.1.4	Задача о.в Манхэттен	3
		1.1.5	Смешанная ставка	4
	1.2	09.02.2	2020	4

1 Конспекты лекций

1.1 Простая и сложная процентная ставка 05.02.2020

Для иллюстрации понимания работы сложного и простого процента введем следующие обозначения:

- *i* процентная ставка (по умолчанию годовая)
- \bullet t срок вклада
- $S_0 = P$ начальный вклад
- \bullet S конечный вклад

Опр: *Простыми процентами* называются такие процентные ставки, которые применяются к одной и той же первоначальной сумме на протяжении всей финансовой операции

Опр: *Сложеными процентами* называются ставки, применяемые после каждого интервала начисления к сумме первоначального долга и начисленных за предыдущие интервалы процентов.

t (год)	Простой процент (%)	Сложный процент (%)
0	100	100
1	110	110
2	$\boldsymbol{120}$	121

Таблица 1: Пример использования сложных и простых процентов

1.1.1 Формулы простых процентов

Формула для S_{n+1} :

$$S_{n+1} = S_n + S_0 \cdot i$$

Формула для конечного вклада:

$$S = P + P \cdot i \cdot n = P \cdot (1 + i \cdot n)$$

Формула для начального вклада:

$$P = \frac{S}{1 + i \cdot n}$$

Формула для процентной ставки:

$$i = \frac{\frac{S}{P} - 1}{t} = \frac{S - P}{t \cdot P}$$

Формула для продолжительности вклада:

$$t = \frac{\frac{S}{P} - 1}{i} = \frac{S - P}{i \cdot P}$$

1.1.2 Формулы простых процентов

Формула для S_{n+1} :

$$S_{n+1} = S_n \cdot (1+i) = S_n + S_n \cdot i$$

Формула для конечного вклада:

$$S = P \cdot (1+i)^n$$

Формула для начального вклада:

$$P = \frac{S}{(1+i)^n}$$

Формула для процентной ставки:

$$i = \sqrt[t]{\frac{S}{P}} - 1$$

Формула для продолжительности вклада:

$$t = log_{(1+i)} \frac{S}{P}$$

1.1.3 Срок удвоения вклада

Для простого процента:

$$2P = P \cdot (1 + i \cdot t_{new})$$
$$t_{new} = \frac{1}{i}$$

Для сложного процента:

$$2P = P \cdot (1+i)^{t_{new}}$$
$$2 = (1+i)^{t_{new}}$$
$$t_{new} = log_{(1+i)}2$$

1.1.4 Задача о.в Манхэттен

Таблица 2: Данные о Манхэттене

Вопрос: Какова процентная ставка при простом и сложном проценте?

Решение:

Простой процент:

$$i = \frac{\frac{S}{P} - 1}{t} = \frac{S - P}{(t_2 - t_1) \cdot P} = \frac{49 \cdot 10^9 - 24}{24 \cdot (2019 - 1626)} = 5.19 \cdot 10^6$$

Сложный процент:

$$i = \sqrt[(t_2 - t_1)]{\frac{S}{P}} - 1 = \sqrt[2019 - 1626]{\frac{49 \cdot 10^9}{24}} - 1 = 0.056 = 5.6\%$$

Срок удвоения оклада:

$$t_{new} = log_{(1+i)} 2 = log_{(1+0.056)} 2 = 12.7 \approx 13 \text{ years}$$

1.1.5 Смешанная ставка

Опр: Смешанная процентная ставка - ставка, которая осуществляется по следующему правилу - в пределах года используется простая ставка, а остальные - по сложной.

Формула для смешанной процентной ставки:

$$S = P \cdot (1 + i_c)^{[t]} + P \cdot (1 + i_c)^{[t]} \cdot \{t\} \cdot i_p = P(1 + i_c)^{[t]} \cdot (1 + \{t\} \cdot i_p)$$

где [t] - целая часть числа, а $\{t\}$ - дробная.

Рис. 1: График простой, сложной и процентной ставки

$1.2 \quad 09.02.2020$