Arterial Blood Flow Model: Test Cases

L. J. Barratt*1,2, Y. Somani³, Al Benson³, T. Lassila², and M. Bailey⁴

¹EPSRC CDT in Future Fluid Dynamics ²School of Computer Science, University of Leeds, LS2 9JT ³School of Biomedical Sciences, University of Leeds, LS2 9JT ⁴Schools of Medicine, University of Leeds, LS2 9JT

September 17, 2025

1 Macrovasculature Blood Flow Model

All simulations use a reflective boundary condition where outflow is defined by a reflective coefficient R_t ,

$$W_b = -W_f R_t. (1)$$

where, $0 \le R_t \le 1$ and $W_{f,b}$ are the forward and backward propagating characteristics.

1.1 Gaussian Wave in a Continuous Artery

Figure 1: Three time steps presenting the change in area, velocity, and pressure across the vessel's length for the continuous case.

^{*}Corresponding author: scljb@leeds.ac.uk

1.2 Gaussian Wave in an Expanding Artery

Figure 2: Three time steps presenting the change in area, velocity, and pressure across the vessel's length for the expanding case.

1.3 Gaussian Wave in a Tapered Artery

Figure 3: Three time steps presenting the change in area, velocity, and pressure across the vessel's length for the tapered case.

1.4 Gaussian Wave in a Partially Narrowed Artery

Figure 4: Three time steps presenting the change in area, velocity, and pressure across the vessel's length for the partially narrowed case.

1.5 Gaussian Wave in a Partially Stiffened Artery

Figure 5: Three time steps presenting the change in area, velocity, and pressure across the vessel's length for the partially stiffened case.

1.6 Gaussian Wave in a Stenotic Artery

Figure 6: Three time steps presenting the change in area, velocity, and pressure across the vessel's length for the stenotic case.

1.7 Gaussian Wave in a Singly Splitting Arterial Network

...

1.8 Gaussian Wave in a Singly Merging Arterial Network

. . .

1.9 Heartbeat Cycle in a Full Arterial Network

...