Effect of hydrogen peroxide on TiB₂-based materials

Online: 2009-04-01

Fei Huang^{1,a}, Zhengyi Fu^{1,b}, Aihua Yan^{2,c}, Tiekun Jia^{1,d}, Weimin Wang^{1,a}, Hao Wang^{1,a}, Yucheng Wang^{1,a}, Jinyong Zhang^{1,a}

¹State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

²Nanomaterial and Smart Sensor Research Laboratory, Department of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

^ahuangfei7804@163.com, ^bzyfu@whut.edu.cn, ^cyanaihua111@yahoo.com.cn, ^dtiekunjia@126.com

Keywords: Titanium dioxide; titanium diboride; H₂O₂; heterostructure

Abstract. $\text{TiO}_2/\text{TiB}_2$ heterostructures were successfully synthesized by a facile hydrothermal approach in an aqueous solution of hydrogen peroxide (H_2O_2). The influence of H_2O_2 on TiB_2 -based materials was systematically investigated using X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that TiB_2 is prone to oxidize in the presence of H_2O_2 . $\text{TiO}_2/\text{TiB}_2$ heterostructure which high-density anatase- TiO_2 stand on the surface can be gained in the presence of H_2O_2 solvent and the final composition can be controlled by the temperature and time. The investigation may provide a path to further understand the chemical property of TiB_2 -based materials and synthesis method of heterostructure.

Introduction

Titanium diboride (TiB₂) with C32 structure and P6/mmm space group symmetry possesses mixed bonding nature, such as strong covalent bonding between boron, metallic and covalent bonding between titanium, ionic and weak covalent bonding between boron and titanium [1, 2]. Such special electronic properties and structure make it being an increasing important boride in modern engineering ceramic due to its excellent wearing resistance, good chemical stability and extremely high hardness with high thermal and electronic conductivities [3-5]. Therefore, TiB₂-based materials have attracted a significant attention as high-temperature electrode, armor, cutting tools and structural materials [6-9].

However, it is hard to get superfine TiB₂ powders and dense TiB₂ ceramics because of its strong covalent bond, low self-diffusion coefficient and slow mass transportation [10, 11]. Therefore, current studies for TiB₂ materials appear to be limited to its strong covalent property, namely, mechanical property. To the best of our knowledge, there are few references to be involved in other properties of TiB₂ materials in the last several decades, especially, in chemical property. After all, investigation in depth of chemical properties may lead to a potentially wet-chemical synthesis method for TiB₂ materials and a discernable trend of its' wider application, such as catalyst carrier in PEMFC, electrode materials, microelectronic divice, *etc* [12]. Therefore, it is all the more important to insight the potential properties of TiB₂ with the progress in science and technology.

Here we demonstrated a facile hydrothermal synthesis of TiO₂/TiB₂ heterostructure using TiB₂ as raw material. Our purpose is mainly involved in the chemical properties of TiB₂-based materials, preparation of TiO₂/TiB₂ heterostructurue and its rational characterization.

Experimental

Materials. Titanium diboride (TiB₂, 99.6%) were purchased from Alfa Aesar Inc. (USA). hydrogen peroxide (H₂O₂, 30%)were purchased from Sinopharm Chemical Reagent Co., Ltds (China). All the chemicals were of analytic grade and used without further purification.

Synthesis of TiO₂/**TiB**₂. In a typical procedure, TiB₂ (0.746g) and H₂O₂ (30%, 3.04g) was added into an aqueous deioned water, respectively. Then the mixed solution was transfered to a 50 mL teflon-lined autoclave. Subsequently, the autoclave was sealed and maintained at 80 °C, 120 °C, 160 °C and 180 °C for 24h, respectively, followed by natural cooling to room temperature. Afterwards, the products were centrifugated and washed with deionized water and absolute ethanol for several times, respectively. The final products were dried under vacuum at 80 °C for 12h.

Characterization. The morphologies of TiO_2/TiB_2 heterostructure were investigated by field emission scanning electron microscopy (FESEM, Hitachi S-4800, Japan). The composition of the products was analyzed by an energy dispersive X-ray detector (EDX, Thermo Noran VANTAG-ESI, 120 kV), X-ray diffraction (XRD, Rigaku D/MAX-rB, Japan) with Cu K α irradiation, λ = 0.154056 nm) and VG Multilab 2000 X-ray photoelectron spectroscopy (XPS, Thermalelectron Corporation, USA).

Results and Discussion

Fig. 1. Typical FESEM images of TiB₂ powders and the products synthesized at 160°C for 24h: a) FESEM image of TiB₂ powders; b) low-magnification FESEM image; c) high-magnification FESEM image in the Q area

Fig. 1 presents a set of typical SEM images of TiB_2 raw materials and the samples synthesized at 160 °C for 24 h. It is clearly observed that the H_2O_2 plays a positive role in controlling the morphology of final products. Without H_2O_2 , that is, TiB_2 raw powders are composed of numerous smooth hexagonal structures with the mean particle size of about 7 μ m (Fig. 1a). However, when TiB_2 was treated in the solution of H_2O_2 under a certain hydrothermal condition, the surface was evolved to protruding and unsmooth structure, which was composed of numerous nanoparticles on the surface of the products (Fig. 2c). That is, the products form a pineapple structure. Further amplificatory FESEM images indicate that this complex architecture is composed of high-density nanoparticle-built networks, which are about tens of nanometers in diameter (Fig. 1c and 1d). Interestingly, the products are hollow. The results may be because H_2O_2 rapidly decompose at high temperature and a certain pressure (to see Eq. 1). Then the oxygen can react with TiB_2 and get TiO_2 according to Eq. 2. The

reacted products accumulate rapidly through attaching each other and form hollow structure. Further work is in progress to explore the formation mechanism.

Fig.2 XRD and EDX patterns of the samples: a) XRD pattern of the samples synthesized at different temperatures, b) EDX pattern of the sample synthesized at 160 °C for 24h

2 Theta/ deg.

Energy / KeV

Fig.3 XPS spectrum of TiB₂ raw powders and the sample synthesized at 160 °C

To verify above-mentioned results, XRD measurements for all the samples were carried out. As shown in Fig.2, it can be seen that the final product is still retained the same phase as raw materials at 80 °C and all the diffraction peaks can be indexed as standard patterns of two-dimensional hexagonal TiB₂ (JCPDS 75-1045). When the hydrothermal temperature increased to 120 °C, the products consisted of two kinds of phase, namely, TiB₂ and A-TiO₂ (JCPDS 84-1286), and the main peaks can still be indexed as TiB₂, only six weak peaks can be indexed as A-TiO₂, indicating that the sample was partly converted to the crystalline form of A-TiO₂. With further increasing the hydrothermal temperature to 160 °C for 24h, the main phase was A-TiO₂, and a few peaks can be indexed as TiB₂. However, Pure A-TiO₂ was obtained at 180 °C, and no other characteristic peaks were detected. That is, the TiB₂/TiO₂ hybrid material can be gained when the hydrothermal temperature is 160 °C. EDX patterns further verify the results, which only Ti, B, O elements are present in the Fig. 2b.

Fig. 3 shows the XPS spectrum. According to the American National Institute of Standards and Technology (NIST), when Mg is used as the excitation source, the binding energy of TiB₂ is as follows: Ti2 $p_{3/2}$ at 454.4 eV; B1s at 187.5 eV; the binding energy of anatase TiO₂ is as following: Ti2 $p_{3/2}$ at 458.1 eV; O1s at 532.1 eV, Ti3 $p_{3/2}$ at 37.4 eV; and the binding energy of B₂O₃ is as follows: B1s at 193.1 eV. From the wide-scan XPS spectrum, the peak of TiB₂ raw powder appears at 532.004 eV, 458.004 eV and 193.004 eV, which is in agreement with O1s in TiO₂, Ti2 $p_{3/2}$ in TiO₂ and

BIs in B₂O₃. The results indicate that TiB₂ raw powder has been oxidized on the surface. In fact, the phenomenon is normal for non-oxide ceramic. However, the peak of TiB₂/TiO₂ hydrid material is present at 532.004 eV, 458.004 eV, 37.004 eV, which is in well agreement with OIs in TiO₂, Ti2p3/2 in TiO₂ and Ti3p3/2 in TiO₂. It should be noted that the peak of BIs wasn't present in TiB₂/TiO₂ hydrid material, instead of the strong peak of Ti3p3/2. The difference between TiB₂ raw material and TiB₂/TiO₂ hydrid material may be because B₂O₃ was dissolved in the hot water during the hydrothermal reaction and removed after succedent centrifugation. That is, TiB₂ may be wrapped completely by anatase TiO₂, not by TiO₂ and B₂O₃. Therefore, TiB₂/TiO₂ hydrid material is a heterostructural material in fact.

Summary

To sum up, we have systemically discussed the effect of H_2O_2 on the TiB_2 -based materials. Obviously, H_2O_2 has important influence on TiB_2 -based materials. Through controlling the process, such as temperature and time, TiO_2/TiB_2 heterostructure can be successfully synthesized, which high-density anatase- TiO_2 nanoparticles stand on the surface and cover unreacted TiB_2 .

Acknowledgements

The work was supported by the National Natural Science Foundation of China (50772081, A3 Foresight Program- 50821140308) and the Ministry of Education of China (PCSIRT0644).

References

- [1] H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber and H. Scherrer: J. Appl. Phys. Vol. 93 (2003), p. 907
- [2] X. Y. Ma, C. G. Li, Z. M. Du, W. J. Zhan: J. Alloy. Comp. Vol. 370 (2004), p. 149
- [3] N. Panich, Y. Sun: Surface Coatings Technol. Vol. 198 (2005), p. 14
- [4] H. Y. Zhai, H. M. Christen, and C. Cantoni: Appl. Phys. Lett. Vol. 80 (2002), p. 1963
- [5] R. K. Williams, R. S. Graves, and F. J. Weaver: J. Appl. Phys. Vol. 59 (1986), p. 1986
- [6] G. Will: J. Solid State Chem. Vol. 177 (2004), p. 628
- [7] P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani: Phys. Rev. B Vol. 63 (2001), p. 045115
- [8] R. G. Munro: J. Res. Inst. Stand. Technol. Vol. 105 (2000), p. 709
- [9] R. K. Williams, P. F. Becher and C. B. Finch: J. Appl. Phys. Vol. 56 (1984), p. 2295
- [10] M. Shibuya and M. Ohyanagi: J. Eur. Ceram. Soc. Vol. 27 (2007), p. 301
- [11] N. Kumar, Y. Yang, W. Noh, G. S. Girolami and J. R. Abelson: Chem. Mater. Vol. 19 (2007), p. 3802
- [12] C. S. Choi, G. C. Xing, G. A. Ruggles and C. M. Osbum; J. Appl. Phys. Vol. 69 (1991), p. 7853

Advanced Synthesis and Processing Technology for Materials

10.4028/www.scientific.net/AMR.66

Effect of Hydrogen Peroxide on TiB₂-Based Materials

10.4028/www.scientific.net/AMR.66.222

DOI References

[1] H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber and H. Scherrer: J. Appl. Phys. Vol. 93 (2003), p. 907

doi:10.1063/1.1530715

[11] N. Kumar, Y. Yang, W. Noh, G. S. Girolami and J. R. Abelson: Chem. Mater. Vol. 19 (2007), p. 3802 doi:10.1021/cm070277z

[1] H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber and H. Scherrer: J. Appl. Phys. Vol. 3 (2003), p. 907

doi:10.1063/1.1530715

[3] N. Panich, Y. Sun: Surface Coatings Technol. Vol. 198 (2005), p. 14 doi:10.1016/j.surfcoat.2004.10.096

[5] R. K. Williams, R. S. Graves, and F. J. Weaver: J. Appl. Phys. Vol. 59 (1986), p. 1986 doi:10.1118/1.595798

[7] P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani: Phys. Rev. B Vol. 63 (2001), p. 045115 doi:10.1103/PhysRevB.63.045115

[10] M. Shibuya and M. Ohyanagi: J. Eur. Ceram. Soc. Vol. 27 (2007), p. 301 doi:10.1016/j.jeurceramsoc.2006.05.081

[11] N. Kumar, Y. Yang, W. Noh, G. S. Girolami and J. R. Abelson: Chem. Mater. Vol. 19 (2007), p. 802 doi:10.1021/cm070277z