Calculus 1- Exercise 4

All exercises should be submitted by November 29th by 23:00. Delays won't be accepted aside for special cases which will be approved beforehand. These are the submission regulations (also available on the Moodle):

- 1. Exercises are personal and cannot be submitted in groups.
- 2. Write your name, ID and tutorial group in the header of the exercise.
- 3. They should be written clearly on A4 pages. Hard-to-read exercises will not be graded.
- 4. Serious effort has to be shown by the student. Unreadable or extremely partial answers will be disregarded.
- 5. Exercises submitted late without the TA's approval will not be accepted.

Questions:

- Define each of the following terms. Give a full and complete mathematical definition, without using any negation symbol, except for maybe ≠.
 If your definition includes a secondary term that was defined in class, you must define it as well! You do not have to define any term that appears prior to the words "Define the term".
 - Let f be a function defined on $(-\infty, b]$ for some $b \in \mathbb{R}$.
 - (a) Define the term: 5 is not a limit of f as $x \to -\infty$.
 - (b) Define the term: the limit $\lim_{x\to-\infty} f(x)$ does not exist.
- 2. Prove each of the following claims:
 - (a) For every $x \in \mathbb{R}$, we have $|-3x+3| \ge ||x+2| |5-2x||$.
 - (b) For every $x, y \in \mathbb{R}$, we have $\min \{x, y\} = \frac{1}{2} (x + y |x y|)$.
 - (c) For every $x \in \mathbb{R}$ such that $\left|x-7\right| < \frac{1}{2}$, we have $\left|\frac{x^2-4x-21}{x-6}\right| < \frac{21}{2}$.

- (d) For every $L, y \in \mathbb{R}$ and for every $r \geq 0$, we have $\mid y L \mid \leq r$ if and only if $L r \leq y \leq L + r$.
- (e) For every $a,b,x\in\mathbb{R}$ such that $a\leq x\leq b$, we have $|x|\leq \max\{|a|,|b|\}$. Hint: denote $r=\max\{|a|,|b|\}$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and suppose that $\lim_{x \to \infty} f(x) = 4$. Prove that there exists an M > 0 such that for every x > M, we have $15.5 < [f(x)]^2 < 16.5$.
- 4. Prove each statement by using the definition of the corresponding limit. In items (a) and (b), find a value of M>0 (or M<0 when $x\to-\infty$), such that for every x>M (or x< M), $|f(x)-L|<\frac{1}{100}$.

(a)
$$\lim_{x \to \infty} \frac{2x+5}{-x+2} = -2$$

(b)
$$\lim_{x \to -\infty} \frac{2x+5}{-x+2} = -2$$

(c)
$$\lim_{x \to -\infty} (\sqrt{x^2 - 4x + 3} + x) = 2$$

(d)
$$\lim_{x \to -\infty} \frac{5}{\lfloor x \rfloor} = 0$$

Hint: for every $x \in \mathbb{R}$, we have $x - 1 \le \lfloor x \rfloor \le x$.

- 5. Let f be a function that is defined on $[a, \infty)$ for some $a \in \mathbb{R}$ and let $L \in \mathbb{R}$. Prove or disprove each of the following claims:
 - (a) $\lim_{x\to\infty} f(x) = L$ if and only if there exists an M>0 such that for every $\epsilon>0$ and every x>M, we have $|f(x)-L|<\epsilon$.
 - (b) $\lim_{x\to\infty} f(x) = L$ if and only if for every $0<\epsilon \le 0.04$ there exists an $M\ge 70$ such that for every x>M, we have $|f(x)-L|<\epsilon$.