	Histor	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110,1917 (2009)	30-Jun-2009

 $Q(\beta^{-})=-1.06\times10^{4} \text{ syst}; S(n)=13442 11; S(p)=5632 8; Q(\alpha)=-3267 8$ 2012Wa38

Note: Current evaluation has used the following Q record -10650 syst 13442 11 5632 8 -3267 8 2009AuZZ,2003Au03.

 $\Delta Q(\beta^-) = 400 \text{ (syst,} 2009 \text{AuZZ)}. \text{ S(2n)} = 25070 \text{ } 40, \text{ s(2p)} = 8738 \text{ } 8 \text{ (2009AuZZ, 2003Au03)}.$

Values in 2003Au03: S(n)=13441 12, S(p)=5638 11; others are same as in 2009AuZZ.

 $Q(\beta^-)$: 2007WeZX estimate -10940 200 from ⁷⁸Y half-life and ft value from systematics of 0^+ to 0^+ superallowed β transitions.

Mass measurements: 1994Tr08.

Isotope shifts, mean-square radius: 1990Bu12, 1988Si06, 1987Ea01. Theory and syst: 1996Li25, 1994Bu06, 1992Ne09.

1986Ni07: 54 Fe(28 Si,X) at E=75-145 MeV, measured γ -ray multiplicity, evaporation residue σ (E).

Structure calculations (rotational band, identical bands, etc): 1997Pe18, 1994Na09, 1983Bu09, 1979Bu20.

Additional information 1.

⁷⁸Sr Levels

Cross Reference (XREF) Flags

- A 78 Y ε decay (53 ms)
- B 78 Y ε decay (5.8 s)
- $58 \text{Ni}(^{28} \text{Si}, 2\alpha \gamma)$

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0&	0+	160 s 8	ABC	$%ε+%β^+=100$ $< r^2>^{1/2}=4.255$ fm 4 (2004An14 evaluation). $T_{1/2}$: weighted average of 168 s $I2$ (1997Mu02, timing of 46.8γ), 159 s 8 (1992Gr09, timing of 103.5γ) and 150 s $I8$ (1982Li17, timing of x-rays and γ-rays). Other: 170 s 30 (quoted by 1992Gr09 from H. Grawe et al., 1981 Ann Rep HMI B373, 89 (1982)). Note that 1982Li17 quote an uncertainty of 18 s in the abstract but 12 s in the text with no decay plot shown. Additional information 2. Isotope shift and mean-square radius determined (1990Bu12).
277.60 <mark>&</mark> 10	2+	155 ps <i>19</i>	ВС	J^{π} : $\Delta J=2$, E2 γ to g.s.
780.80 <mark>&</mark> <i>15</i> 1477.6? ^a <i>10</i>	4+	5.1 ps 5	BC C	J^{π} : $\Delta J=2$, E2 γ to 2^{+} .
1493.19 <mark>&</mark> 25	6+		С	J^{π} : $\Delta J=2 \gamma$ to 4^{+} .
1903.3 8			C	
2243.6? ^a 15			C	
2310.5? ^d 8	(3^{-})		C	J^{π} : γ to 4^{+} ; possible bandhead of an octupole band.
2388.4 & 4	8+		C	J^{π} : $\Delta J=2 \gamma$ to 6^+ .
2537.1? ^b 8	(4^{-})		C	J^{π} : γ to 4 ⁺ ; possible bandhead; similar band structures in ⁷⁴ Kr and ⁸² Zr.
2606.0 ^e 5	(4^{-})		C	J^{π} : $\Delta J=(0) \gamma$ to 4^{+} ; possible member of octupole band.
2712.0? ^c 12	(5^{-})		C	J^{π} : γ to 4 ⁺ ; possible bandhead; similar band structures in ⁷⁴ Kr and ⁸² Zr.
2860.1 ^d 5	(5^{-})		C	J^{π} : $\Delta J=1 \gamma$ to (4^{-}) ; γ to 4^{+} .
3080.1 6	(6^{-})		С	J^{π} : γ' s to (4 ⁻) and (5 ⁻).
3138.9 ^b 8	(6^{-})		C	J^{π} : $\Delta J=(0) \gamma$ to 6^+ ; γ to (4^-) .
3173.1 ^e 6	(6-)		C	J^{π} : $\Delta J=1 \ \gamma \text{ to } (5^-); \ \gamma \text{ to } (4^-).$
3230.6? ^a 18 3385.0 ^c 9	(7-)		C C	IA : $AI = 2$ or to (5^-) : $AI = 1$ or to 6^+
3385.0° 9 3446.2 <mark>&</mark> 4	(7-)			J^{π} : $\Delta J = 2 \gamma$ to (5^-) ; $\Delta J = 1 \gamma$ to 6^+ .
	10+		C	J^{π} : $\Delta J = 2 \gamma$ to S^{+} .
3525.6 ^d 6	(7^{-})		С	J^{π} : γ' s to (5 ⁻) and (6 ⁻).

⁷⁸Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3927.3 ^b 10	(8-)	С	J^{π} : $\Delta J=2 \gamma (6^{-})$.
3963.9 ^e 9	(8-)	C	J^{π} : γ' s to (6 ⁻) and (7 ⁻).
4251.1 ^c 9	(9-)	C	J^{π} : γ' s to (7^{-}) and 8^{+} .
4400.6 ^d 12	(9^{-})	C	J^{π} : γ to (7^{-}) .
4657.5 ^{&} 5	12+	C	J^{π} : $\Delta J=(2) \gamma$ to 10^+ .
4883.3 ^b 11	(10^{-})	С	J^{π} : γ to (8^{-}) .
5281.1 ^c 11	(11^{-})	C	J^{π} : γ to (9^{-}) .
5468.6 ^d 16	(11^{-})	C	J^{π} : γ to (9^{-}) .
5982.0 ^b 12	(12^{-})	C	J^{π} : γ to (10^{-}) .
6025.4 <mark>&</mark> 7	14+	C	J^{π} : $\Delta J=2 \gamma$ to 12^+ .
6035.8 [@] 9	(14^{+})	C	J^{π} : γ to 12^{+} .
6436.3 ^c 12	(13^{-})	C	J^{π} : γ to (11 ⁻).
7190 <mark>b</mark> 2	(14^{-})	C	J^{π} : γ to (12 ⁻).
7559.1 <mark>&</mark> 8	16 ⁺	C	J^{π} : $\Delta J=2 \gamma$ to 14^{+} .
7671.3 ^c 14	(15^{-})	C	J^{π} : γ to (13 ⁻).
8474 ^b 2	(16^{-})	C	J^{π} : γ to (14^{-}) .
8987 ^c 2	(17^{-})	C	J^{π} : γ to (15 ⁻).
9253.8 ^{&} 9	18+	C	J^{π} : $\Delta J=2 \gamma$ to 16^+ .
9870 ^b 3	(18^{-})	C	J^{π} : γ to (16 ⁻).
10448 ^c 2	(19^{-})	C	J^{π} : γ to (17^{-}) .
10995 <u>&</u> <i>1</i>	(20^{+})	C	J^{π} : γ to 18^+ .
11195 [@] <i>1</i>	(20^{+})	C	J^{π} : γ to 18^+ .
11428 ^b 4	(20^{-})	C	J^{π} : γ to (18 ⁻).
12109? ^c 3	(21^{-})	C	J^{π} : possible γ to (19 ⁻).
12981 <mark>&</mark> 2	(22^{+})	C	J^{π} : γ to (20^+) .
13294 [@] 2	(22^{+})	C	J^{π} : γ to (20^+) .
15233? <mark>&</mark> 4	(24^{+})	C	J^{π} : possible γ to (22 ⁺).
17764? <mark>&</mark> 6	(26+)	С	J^{π} : possible γ to (24 ⁺).

[†] From least-squares fit to E γ 's.

 $^{^{\}ddagger}$ As proposed by 1997Ru03 based on $\gamma\gamma(\theta)$ (DCO) data and band associations, with the exception that parentheses have been added by the evaluators when strong arguments are lacking. It is assumed that the spin ascend with excitation energy in heavy-ion fusion reactions.

For excited states, values are from neutron-gated recoil-distance method (1982Li08).

[@] Level connected with g.s. band.

[&]amp; Band(A): $K^{\pi}=0^{+}$, g.s. band. Strongly deformed structure with a deformation parameter of $\beta_2 \approx 0.40$ and Q(transition)=3.29 19 for 2^+ state and 3.47 17 for 4^+ state. ^a Band(B): $\Delta J=2$ band (?).

^b Band(C): Band based on (4⁻).

^c Band(D): Band based on (5⁻).

^d Band(E): Possible octupole band, $\alpha=1$.

^e Band(e): Possible octupole band, α =0.

γ (⁷⁸Sr)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}^π_f	Mult.†#	α^{a}	Comments
277.60	2+	277.6 1	100	0.0	0+	E2	0.0252	B(E2)(W.u.)=103 <i>13</i> α (K)=0.0220 <i>3</i> ; α (L)=0.00266 <i>4</i> ; α (M)=0.000447 <i>7</i> ; α (N+)=5.76×10 ⁻⁵ <i>9</i> α (N)=5.45×10 ⁻⁵ <i>8</i> ; α (O)=3.11×10 ⁻⁶ <i>5</i>
780.80	4+	503.2 <i>I</i>	100	277.60		E2		B(E2)(W.u.)=169 17
1477.6?	6+	1200 ^b 1	100	277.60		0		
1493.19 1903.3	ο.	712.4 <i>2</i> 1626 <i>I</i>	100 100	780.80 277.60		Q		
		766 ^b 1		1477.6?	2			
2243.6?	(2=)	1530^{2} ab ab	100		4+			
2310.5? 2388.4	(3 ⁻) 8 ⁺	895.2 2	100 100	780.80 1493.19		0		
2537.1?	o (4 ⁻)	1756 <i>I</i>	100	780.80		Q		
2606.0	(4^{-})	703 1	18 9	1903.3	•			
	(·)	1825.0 5	100 9	780.80	4+	&		
2712.0?	(5 ⁻)	1931‡ 2	100	780.80				
2860.1	(5^{-})	254.0 2	100 14	2606.0	(4^{-})	D		
2000.1	(5)	550 <i>1</i>	29 14	2310.5?		_		
		2080 2	71 <i>14</i>	780.80	4+			
3080.1	(6-)	219.8 <i>3</i>	100 50	2860.1	(5^{-})			
2120.0	((-)	475 1	100 50	2606.0	(4-)			
3138.9	(6-)	601.7 5	67 17	2537.1?		&		
2172 1	(6-)	1646 <i>I</i> 313.0 <i>4</i>	100 17	1493.19				
3173.1	(6-)	513.0 4 567 <i>1</i>	100 <i>33</i> 67 <i>33</i>	2860.1 2606.0	(5 ⁻) (4 ⁻)	D		
3230.6?		987 ^b 1	100	2243.6?	(+)			
3385.0	(7-)	673 1	50 17	2712.0?	(5 ⁻)	Q		
3303.0	(,)	1892 <i>I</i>	100 17	1493.19		D		
3446.2	10 ⁺	1057.8 2	100	2388.4	8+	Q		
3525.6	(7^{-})	352 <i>1</i>	17 <i>17</i>	3173.1	(6-)			
		445.4 <i>4</i>	33 17	3080.1	(6-)			
2027.2	(0-)	665.6 3	100 17	2860.1	(5^{-})	0		
3927.3 3963.9	(8 ⁻)	788.4 <i>5</i> 438 <i>I</i>	100 50 <i>50</i>	3138.9 3525.6	(6^{-}) (7^{-})	Q		
3903.9	(0)	791 <i>I</i>	100 50	3173.1	(6 ⁻)			
4251.1	(9^{-})	866.1 3	100 12	3385.0	(7^{-})			
		1862 2	62 12	2388.4	8+			
4400.6	(9^{-})	875 1	100	3525.6	(7^{-})			
4657.5	12+	1211.3 [‡] <i>3</i>	100	3446.2	10+	(Q)		
4883.3	(10^{-})	956.0 <i>5</i>	100	3927.3	(8-)			
5281.1	(11^{-})	1030.0 5	100	4251.1	(9 ⁻)			
5468.6	(11^{-})	1068 1	100	4400.6	(9 ⁻)			
5982.0 6025.4	(12 ⁻) 14 ⁺	1098.7 <i>6</i> 1367.9 <i>4</i>	100 100	4883.3 4657.5	(10^{-}) 12^{+}	Q		
6035.8	(14^{+})	1378 1	100	4657.5	12 ⁺	Q		
6436.3	(13^{-})	1155.2 6	100	5281.1	(11^{-})			
7190	(14^{-})	1208 [‡] <i>1</i>	100	5982.0	(12^{-})			
7559.1	16+	1523 <i>1</i>	38 5	6035.8	(14^{+})			
		1533.7 4	100 5	6025.4	14+	Q		
7671.3	(15^{-})	1235.0 7	100	6436.3	(13^{-})			
8474 8987	(16^{-})	1284 <i>I</i>	100	7190 7671 3	(14^{-})			
9253.8	(17 ⁻) 18 ⁺	1316 <i>I</i> 1694.7 <i>5</i>	100 100	7671.3 7559.1	(15 ⁻) 16 ⁺	Q		
1233.0	10	10/1.13	100	1007.1	10	~		

γ (⁷⁸Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
9870	(18-)	1396 2	100	8474	(16 ⁻)		. ,	1661 <mark>b</mark> 2			(19 ⁻)
10448	(19^{-})	1461 <i>I</i>	100	8987	(17^{-})	12981	(22^{+})	1986 2	100	10995	(20^{+})
10995	(20^+)	1741 <i>1</i>	100	9253.8	18 ⁺	13294	(22^{+})	2099 2	100	11195	(20^+)
11195	(20^+)	1941 [‡] <i>1</i>	100	9253.8	18 ⁺	15233?	(24^{+})	2252 ^b 3	100	12981	(22^{+})
11428	(20^{-})	1558 <i>3</i>	100	9870	(18^{-})	17764?	(26^+)	2531 ^b 4	100	15233?	(24^{+})

[†] From 58 Ni(28 Si, $2\alpha\gamma$).

[†] Unresolved doublet structure. # From DCO ratios in 58 Ni(28 Si, $^{2}\alpha\gamma$) and RUL (when level lifetime is known). @ From level-energy difference.

[&]amp; DCO consistent with ΔJ =0, dipole transition.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{78}_{38}{\rm Sr}_{40}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Type Author Citation Literature Cutoff Date

Full Evaluation J. K. Tuli, E. Browne NDS 157, 260 (2019) 1-Mar-2019 $Q(\beta^-) = -7946 \ 8; \ S(n) = 12553 \ 7; \ S(p) = 7842 \ 8; \ Q(\alpha) = -4257 \ 6$ 2017Wa10

1989Ku11: 12 C(72 Ge,2ny), E=215 MeV. Transient-field method, deduced g-factors.

1979Al19: Measured $\sigma(\theta)$, neutron time-of-flight, for g.s. in (3 He,n), E=25.4 MeV,. Enriched target.

Isotope shift, RMS radii, hyperfine structure studies: 1993He12, 1993Hi11, 1993Ku19, 1994Bu06, 1994Lo12, 1990Bu12 (also

Theoretical calculations:

2016Da01 SDB band-head spin.

2016Mo18 Charge and mass rms radii.

2015Sa26 Low-lying levels, bands pn interacting boson model.

2014Zh43 Deformation parameter.

2010Fa08,2010ZhZQ,2009Fa14 spin-dependence of g-factors in gs band.

1988Si06), 1987Ea01 (also 1986Ea01), 1987An02 (also 1986An39).

2008Mi17 Half-life shell model.

2003Me26 2⁺ states, g-factors.

2003ReZZ Studied SDB.

2002Bu13 SDB transition quadrupole moments.

2002Li18 SDB transition energies, moements of inertia.

1999Gu11 Calculated cluster-decay probability.

1999Sa46 Hartree-Fock plus RPA.

1997Da16 SD band data, cranked-shell model.

1995Ba45 RMS radii, mean field.

1995Ba78 level energy vs deformation, constrained Hartree-Fock.

1995La07 relativistic mean-filed theory.

1994Do19 levels, mean field.

1994Iw05 level energies, Hartree Fock.

1994Na09 quasi-particle RPA.

1991Ch01 structure of superdeformed GDR.

1991Bo27, 1985Bo36, 1985Na02 microscopic analysis of deformation.

1990Ba11, 1983Bu09, 1984He07, 1995Ke09, 1996Ca10,1997Su08 interacting-boson model.

1982Fu03 cranked-shell model.

1983Ta03 pairing vibrations.

1980Ca23 Hartree-Fock calculation of binding energy and charge radius.

1971Ki16, 1973Og01 shell-model calculations.

82Sr Levels

Cross Reference (XREF) Flags

A $^{82}Y \beta^{+}$ decay E $^{84}Sr(p,t)$ B $^{56}Fe(^{29}Si,2pn\gamma)$ F $^{80}Kr(\alpha,2n\gamma)$ C $^{52}Cr(^{34}S,2p2n\gamma)$ G $^{58}Ni(^{30}Si,\alpha 2p\gamma),(^{28}Si,4p\gamma):SD$ D $^{70}Ge(^{16}O,2n2p\gamma)$

 $\begin{array}{cccc}
\underline{\text{E(level)}^{\dagger}} & \underline{\text{J}^{\pi \ddagger}} & \underline{\text{T}_{1/2}}^{\textcircled{@}} & \underline{\text{XREF}} \\
0^{d} & 0^{+} & 25.35 \text{ d } 3 & \underline{\text{ABCDEF}}
\end{array}$

Comments

%ε=100
T_{1/2}: from T_{1/2}=25.36 d *3* (HPGe, 2009Pi02; Ge(Li) 1987Ho06), 25.34 d *2* (ic, 2009Pi02), 25.34 d *5* (1987Ju02). others: 25.55 d *15* (1978Gr17) 25.0 d *4* (1958Sa20), 25.5 d *5* (1953Kr10).

Continued on next page (footnotes at end of table)

⁸²Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{@}$	XREF	Comments
573.54 ^d 8	2+	8.9 ^{&} ps 4	ABCDEF	$\Delta < r^2 > (^{88}Sr - ^{82}Sr) = 0.179 \text{ fm}^2$ 24 (1990Bu12,1988Si06); 0.182 fm ² 6 (1988Si06, deduced from data of 1987Ea01,1986Ea01); 0.169 fm ² 13 or 0.220 fm ² 15 (1987An02,1986An39). $\Delta < r^2 > (^{83}Sr - ^{82}Sr) = -0.017 \text{ fm}^2$ 7 (1996Li25). $\Delta < r^2 > (^{82}Sr - ^{81}Sr) = -0.053 \text{ fm}^2$ 8 (1996Li25). $\mu = +0.88$ 38 (2014Ku10)
				g=+0.44 <i>19</i> (2014Ku10) measured using the transient-field (tf) technique in inverse kinematics with perturbed angular correlation method in ¹² C(⁷⁸ Kr,2αγ). Other g=0.47 <i>7</i> (2008Yu04,2010Fa08); values of g factors were read from figure 1 of 2008Yu04. J ^π : L(p,t)=2. T _{1/2} : other: 10.7 ps <i>21</i> from 1996Jo05 In ⁵⁸ Ni(²⁷ Al,3p), while studying ⁸² Y.
1175.71 ^c 8 1310.89 <i>13</i>	2 ⁺ 0 ⁺	7.5 ^{&} ps 24 <3.5 ns	ABCDEF A E	J^{π} : L(p,t)=2. J^{π} : L(p,t)=0.
J		0_		$T_{1/2}$: from $\gamma\gamma$ and $\beta\gamma$, ^{82}Y β^+ decay.
1328.54 ^d 10	4+	1.0 ^{&} ps 2	BCD F	 μ=+2.1 16 (2014Ku10) g=+0.53 39 (2014Ku10) measured using the transient-field (tf) technique in inverse kinematics with perturbed angular correlation method in ¹²C(⁷⁸Kr,2αγ). Other g=0.46 8 (2008Yu04,2010Fa08); values of g factors were read from figure 1 of 2008Yu04. J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ).
1688.96 ^b 11	3+		BCD F	J^{π} : J=3 from $\gamma(\theta)$ of 1115 γ in (16 O,2n2p γ); E1 γ from 4 $^{-}$.
1865 5	2+	- 2 &r	A E	J^{π} : L(p,t)=2.
1996.02 ^c 10 2195 5	4 ⁺ 2 ⁺	1.3 ^{&} ps 4	BCD F E	J^{π} : stretched E2 cascade indicated by angular distribution and polarization in ($^{16}O,2n2p\gamma$). J^{π} : L(p,t)=2.
2229.47 ^d 11	6 ⁺	0.37 ps +15-11	BCD F	μ =3.5 5 (2008Yu04)
2229.17	O	0.57 ps 115 11	DCD 1	μ: From g=0.58 8 (2008 Yu04,2010 Fa08) measured by transient-magnetic field ion-implantation perturbed angular distribution method in ⁵⁸ Ni(²⁸ Si,4pγ); values of g factors were read from figure 1 of 2008 Yu04. Jπ: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶ O,2n2pγ).
2101.02 f 10	-			$T_{1/2}$: other value: 0.9 ps <i>I</i> from RDM, 70 Ge(16 O,2n2p γ).
$2401.82^{f} 10$ $2525.80^{b} 12$	3 ⁻		B DE	J^{π} : L(p,t)=3.
2525.80° 12 2665 5	5 ⁺ 0 ⁺		BCD E	J^{π} : $L(p,t)=0$.
2817.31 ^f 11	5-	3.0 ^{&} ps 6	BCDEF	μ =+2 2 (2014StZZ)
				J^{π} : from $\gamma(\theta)$ and polarization in (16 O,2n2p γ) indicating E1 transition to 4^+ . μ : From g-factor=+0.3 4 (1989Ku11), transient-field method.
2824.40 ^j 12	4-		BCD	J^{π} : based on $\gamma(\theta)$ and polarization of the 1136-keV decay γ , $^{70}\text{Ge}(^{16}\text{O},2\text{p2n}\gamma)$.
2836.26 ^c 12	6+	0.6 ^{&} ps 4	BCD F	J^{π} : stretched E2 cascade indicated by angular distribution and polarization in ($^{16}O,2n2p\gamma$).
2885 <i>5</i> 2920 <i>5</i>	(2+)		E E	J^{π} : $L(p,t)=(2)$.
3006.91 ⁱ 12 3073.28 ^g 14	4 ⁻ (5 ⁻)		B B	J^{π} : D γ' s to 3 ⁺ and 4 ⁺ levels; decays to 3 ⁻ . J^{π} : tentative assignment from the seven linking gammas which connect this
3013.20° 14	(3)		D	state to 4^+ , 6^+ , 5^- , 6^- , and 7^- states. The four DCO ratios measured in $(^{29}\text{Si},2\text{pn}\gamma)$ are consistent with this assignment.

⁸²Sr Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{@}$	XREF	Comments
3086.23 ^j 12	6-		BCD	J ^{π} : γ to (5) ^{$-$} shows ΔJ=1 angular distribution, (¹⁶ O,2p2n γ); γ to 4 ^{$-$} is consistent with stretched E2.
3142.30 ^h 22	(5^{-})		В	J^{π} : fed by 465 γ from 7 ⁻ , and decays to 4 ⁺ .
3242.82 ^d 12	8+	0.24 ps +10-6	BCD F	 μ=6.6 10 (2008Yu04) μ: From g=0.82 12 (2008Yu04,2010Fa08) measured by transient-magnetic field ion-implantation perturbed angular distribution method in ⁵⁸Ni(²⁸Si,4pγ); values of g factors were read from figure 1 of 2008Yu04. J^π: stretched E2 γ to 6⁺ state. g-factor=+0.7 1 (1989Ku11) transient-field method. T_{1/2}=0.76 ps 14 (1989Ku11).
3339.57 ⁱ 12	6-		B F	μ =+5.4 6 μ : From g-factor=+0.9 <i>I</i> (1989Ku11), transient-field method.
3476.96 ^b 15	7+		BCD	
3511.15 <i>13</i>	(7)-		CD	J^{π} : stretched E2 γ cascade indicated by angular distribution and polarization in (^{16}O ,2n2p γ).
3525.75 ^f 12	7-		BCD	J ^π : from $\gamma(\theta)$ in (16 O,2n2p γ), consistent with DCO ratios of decay γ 's obtained in (29 Si,2pn γ).
3565.75 ⁸ 13	7-		BCD	J^{π} : DCO ratio of 801γ from 9 ⁻ state is consistent with Q.
3607.94 ^h <i>13</i>	7-		BCD	J^{π} : DCO ratio of 758 γ from 9 ⁻ state is consistent with Q.
3622.78 ^c 12	8+	0.7 ^{&} ps 4	BCD F	 μ=+5.6 8 (2014StZZ) J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ). μ: From g-factor=+0.7 <i>I</i> (1989Ku11), transient-field method.
3686.07 ^e 15	(8 ⁺) [#]		BCD F	J ^{π} : $\gamma(\theta)$ indicates probable ΔJ=0 transition to 8 ⁺ . DCO ratio of γ to 6 ⁺ is consistent with Q.
4033.49 ⁱ 15	8-		В	J^{π} : DCO ratio of γ to 6^- is consistent with Q.
4142.60 ^{<i>j</i>} 14 4248.4 10	8-		B C	J^{π} : stretched E2 γ to 6 ⁻ state.
4350.30 ^d 15	10 ⁺	0.14 ps +6-4	BCD F	J^{π} : DCO ratio of γ to 8^{+} is consistent with Q, M2 ruled out by RUL.
4366.82 ^f 14	9-		BCD	J^{π} : 841 γ to 7 ⁻ is consistent with Q.
4387.09 <i>14</i>	(9-)		CD	J^{π} : stretched E2 cascade indicated by angular distribution in (^{16}O ,2n2p γ).
4423.85 ^c 14	10 ⁺	0.9 ^{&} ps 2	BCD	 μ=+11 5 (2014StZZ) J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ). μ: From g-factor=+1.1 5 (1989Ku11), transient-field method.
4472.85 ⁸ 14	9-		В	J^{π} : from DCO ratios of decay γ' s.
4492.5 ^b 4	9+		В	J^{π} : DCO ratio of γ to 7^+ is consistent with Q.
4637.34 ^e 18	$(10^+)^{\#}$	0.04	BC	J^{π} : DCO ratio of 1395 γ to 8 ⁺ state is consistent with Q.
4909.39 ⁱ 18	10-	0.36 ps +11-8	BC	J^{π} : stretched E2 γ to 8 ⁻ state.
$5237.4^{j} 4$ $5308.15^{f} 17$	10 ⁻ 11 ⁻	0.30 ps +10-7	B BCD	J^{π} : stretched E2 γ to 9 ⁻ state.
5333.8 <i>15</i> 5392.31? <i>18</i>			C D	
5427.12° 17	12 ⁺	0.33 ps +11-8	BCD	J^{π} : stretched E2 γ to 10 ⁺ state.
5468.9 <i>10</i> 5479.09 ⁸ <i>25</i>	(11-)		B B	,
5569.0 ^d 4 5738.2 ^e 5	12 ⁺ (12 ⁺) [#]	0.06 ps 6	BC BC	J^{π} : DCO ratio of γ to 10^{+} is consistent with Q, M2 ruled out by RUL.
5913.9 ⁱ 4	12-	0.27 ps +11-8	BCD	J^{π} : stretched E2 γ to 10 ⁻ state.
6367.2 ^f 3 6450.1 11	13-	0.15 ps +8-6	BCD B	J^{π} : stretched E2 γ to 11 ⁻ state.

82 Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
6543.6 ^c 4 6556.4 18	14+	0.25 ps +11-9	BCD C	J^{π} : stretched E2 γ to 12 ⁺ state.
6564.8 ⁸ 4	(13^{-})		В	
6937.0 ^d 5	(14^{+})	0.04 ps +6-3	BC	
7066.5 ⁱ 5 7534.6 11	14-	0.08 ps +5-4	BC B	J^{π} : stretched E2 γ to 12 ⁻ state.
7545.5 ^f 4 7788.2 ^g 5	15 ⁻ (15 ⁻)	0.12 ps 5	BC B	J^{π} : stretched E2 γ to 13 ⁻ state. J^{π} : DCO ratio of γ to (13 ⁻) state is consistent with Q, M2 ruled out by RUL.
7812.0 ^c 6 7936.1 20	16 ⁺	0.09 ps +5-4	BC C	J^{π} : stretched E2 γ to 14 ⁺ state.
8377.6 ⁱ 6	16-	0.14 ps 6	ВС	J^{π} : stretched E2 γ to 14 ⁻ state.
8434.6 ^d 6	(16^+)	<0.18 ps	ВС	J^{π} : stretched E2 γ to (14 ⁺) state.
8842.0 <i>f</i> 7	17-	0.08 ps 6	ВС	J^{π} : stretched E2 γ to 15 ⁻ state.
9167.4 ^g 7 9237.8 ^c 7 9478.1 23	(17 ⁻) 18 ⁺	0.05 ps +7-4	B BC C	J^{π} : DCO ratio of γ to 16 ⁺ is consistent with Q, M2 ruled out by RUL.
9842.6 ⁱ 12 10061.6 12	(18 ⁻) (18 ⁺)	<0.19 ^a ps	BC C	
10258.8 ^f 9 10709.4 ^g 12	(19 ⁻) (19 ⁻)	0.08 ps +6-4	BC B	
10872.4 ^c 9	(20^{+})	<0.21 ^a ps	BC	
11379.6 ⁱ 16	(20^{-})		BC	
11798.4 ^f 10	(21^{-})	<0.06 ^a ps	BC	
11837.6? <i>16</i>	(20^{+})		C	
12758.8 <i>13</i>	(22^{+})		C	
13005.7 ⁱ 19 13489.4 ^f 14	(22-)		BC	
13489.4 ⁷ 14 14832.7? 21	(23 ⁻) (24)		BC C	
14910.8 17	(24) (24^+)		C	
15409.4 <i>17</i>	(25)		C	
17246.9? 20	(26-)		C	
17616.5 20 x ^k	(27)		С	
	J		(J^{π} : ≈ 18 from 2003Le08. Others: $J\approx (19)$ from 1995Sm08.
1432.0+x ^k 10	J+2		(
$3027.0+x^{k}$ 15	J+4		(
$4783.0+x^{k}$ 18	J+6		(
$6703.1 + x^{k} 20$	J+8		(
$8780.1 + x^{k}$ 23	J+10		(
$11010.1 + x^{k} 25$	J+12		(
13393+x ^k 3	J+14		(
15938+x ^k 3	J+16		(
18674+x? ^k 3	J+18		(

[†] Levels with $\Delta E=5$ keV are from (p,t), all others are deduced from the adopted gammas. [‡] Within each band, the firm assignments come from DCO ratios in (29 Si,2pn γ), except as noted otherwise, whereas the uncertain assignments for the high energy members indicate that the DCO ratios are either not available or not conclusive.

⁸²Sr Levels (continued)

- # Tentative assignment in (29Si,2pnγ) supported by DCO ratios; positive parity from decay to positive parity states only.
- [®] From DSAM in ⁵⁶Fe(²⁹Si,2pnγ), unless stated otherwise.
- $^{\&}$ From recoil-distance Doppler shift, $^{66}Zn(^{19}F,p2n\gamma)$ (1981DeYW).
- ^a Effective half-life, not corrected for direct or side feeding (1994Ta01).
- ^b Band(A): π =+.
- ^c Band(B): π =+.
- d Band(C): π=+.
- ^e Band(D): π =+.
- ^f Band(E): π =-. Yrast odd-spin band.
- ^g Band(F): π =-. Second odd-spin band.
- ^h Band(G): π =-. Third odd-spin band.
- ⁱ Band(H): π =-. Yrast even-spin band.
- ^j Band(I): π =-. Second even-spin band.
- ^k Band(J): SD band (1995Sm08,1998Yu01,2003Le08). Q(intrinsic)=3.54 +15−14 (1999Le56,2003Le08,2004La18), 4.5 9 (1998Yu01). $β_2$ =0.50 from Q(intrinsic)=4.5 (1999Le56), calculated Q(intrinsic)=3.3 2 (for ⁷⁰Ge+¹²C cluster), 5.6 2 (for ⁵⁴Cr+²⁸Si cluster) (2001Bu02). Percent population=1.0-1.5 (1995Sm08), ≈2.5 (1998Yu01), 0.63 (2003Le08). Probable configuration= $v5^2π5^1(π1/2[431] α=-1/2)$ with π=-, α=1 (1998Yu01), $v5^1π5^0$ (1999Le56,2003Le08).

Adopted I	Levels,	Gammas	(continued)
-----------	---------	--------	-------------

$\gamma(^{\circ 2}Sr)$

							7 (22)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} &	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. ^c	δ^{cf}	α^{e}	Comments
573.54	2+	573.64 [#] 10	100	0 0+	E2		0.00245	$\alpha(K)$ =0.00216 3; $\alpha(L)$ =0.000243 4; $\alpha(M)$ =4.07×10 ⁻⁵ 6 $\alpha(N)$ =5.07×10 ⁻⁶ 7; $\alpha(O)$ =3.16×10 ⁻⁷ 5 B(E2)(W.u.)=48.3 22
1175.71	2+	602.15 [#] 10	100 ^b 7	573.54 2+	M1(+E2)	+1.2 14	0.00196 24	B(M1)(W.u.) \leq 0.012; B(E2)(W.u.) \leq 49 α (K)=0.00173 21; α (L)=0.00019 3; α (M)=3.2×10 ⁻⁵ 5 α (N)=4.0×10 ⁻⁶ 6; α (O)=2.6×10 ⁻⁷ 3
		1175.6 <i>I</i>	10.4 8	0 0+	[E2]		4.07×10 ⁻⁴	B(E2)(W.u.)=0.15 5 α (K)=0.000356 5; α (L)=3.86×10 ⁻⁵ 6; α (M)=6.47×10 ⁻⁶ 9 α (N)=8.12×10 ⁻⁷ 12; α (O)=5.28×10 ⁻⁸ 8; α (IPF)=5.06×10 ⁻⁶ 8
1310.89	0_{+}	737.35 [‡] <i>10</i>	100	573.54 2 ⁺				
1328.54	4+	754.9 1	100	573.54 2+	E2		1.15×10 ⁻³	B(E2)(W.u.)=109 22 α (K)=0.001020 15; α (L)=0.0001127 16; α (M)=1.89×10 ⁻⁵ 3 α (N)=2.36×10 ⁻⁶ 4; α (O)=1.503×10 ⁻⁷ 21
1688.96	3 ⁺	359.9 <i>3</i> 512.9 2 1114.9 <i>I</i>	9 <i>3</i> 80 <i>12</i> 100 <i>15</i>	1328.54 4 ⁺ 1175.71 2 ⁺ 573.54 2 ⁺				
1865	2+	688.9 [‡] 4	31 19	1175.71 2+				
		1291.0 [‡] 6	100 19	573.54 2 ⁺				
		1865.3 [‡] <i>15</i>	31 19	$0 0^{+}$				
1996.02	4+	667.53 [#] 10	60 9	1328.54 4+	M1(+E2)	+0.3 7	0.00137 11	B(M1)(W.u.)=0.019 10; B(E2)(W.u.) \leq 25 α (K)=0.00122 10; α (L)=0.000132 12; α (M)=2.22×10 ⁻⁵ 20 α (N)=2.79×10 ⁻⁶ 24; α (O)=1.82×10 ⁻⁷ 12
		820.25 [#] 10	100 12	1175.71 2+	E2		9.34×10 ⁻⁴	B(E2)(W.u.)=34 <i>12</i> α (K)=0.000826 <i>12</i> ; α (L)=9.08×10 ⁻⁵ <i>13</i> ; α (M)=1.524×10 ⁻⁵ <i>22</i>
								$\alpha(N)=1.91\times10^{-6} \ 3; \ \alpha(O)=1.219\times10^{-7} \ 17$
2220 45	~ ±	1422.4 3	5 2	573.54 2+	F2		7 41 10-4	P(F2)(YI) \ 1.0 \ 10 ² \ 4.5
2229.47	6 ⁺	900.84 [#] <i>10</i>	100	1328.54 4+	E2		7.41×10^{-4}	B(E2)(W.u.)=1.2×10 ² +4-5 α (K)=0.000656 10; α (L)=7.18×10 ⁻⁵ 10; α (M)=1.205×10 ⁻⁵ 17
								$\alpha(N)=1.508\times10^{-6} 22; \ \alpha(O)=9.70\times10^{-8} 14$
2401.82	3-	712.4 [#] <i>I</i>	100 ^b 8	1688.96 3+				
	- 1	1828.4 [#] <i>I</i>	29 ^b 8	573.54 2+				
2525.80	5 ⁺	529.8 2 837.1 <i>I</i>	13 <i>4</i> 100 22	1996.02 4 ⁺ 1688.96 3 ⁺				
		837.1 <i>1</i> 1197.1 2	21 6	1328.54 4 ⁺				
2817.31	5-	415.17# 10	13 ^b 13	2401.82 3	[E2]		0.00655	$\begin{array}{l} \alpha(\mathrm{K}){=}0.00576~8;~\alpha(\mathrm{L}){=}0.000664~10;~\alpha(\mathrm{M}){=}0.0001115~16\\ \alpha(\mathrm{N}){=}1.377{\times}10^{-5}~20;~\alpha(\mathrm{O}){=}8.31{\times}10^{-7}~12 \end{array}$

6

γ (82Sr) (continued)

						/(51)	(continued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} &	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. ^C	δ^{cf}	$\alpha^{m{e}}$	Comments
2817.31	5-	1489.00# 10	100 ^b 13	1328.54 4+	E1		3.59×10 ⁻⁴	B(E1)(W.u.)= 3.2×10^{-5} 10 α (K)= 0.0001086 16; α (L)= 1.154×10^{-5} 17; α (M)= 1.93×10^{-6} 3 α (N)= 2.43×10^{-7} 4; α (O)= 1.602×10^{-8} 23; α (IPF)= 0.000237
2824.40	4-	422.6 <i>3</i> 828.4 2	7 2 16 4	2401.82 3 ⁻ 1996.02 4 ⁺				,
		1135.52 [#] 10	100 13	1688.96 3+	E1(+M2)	+0.03 5	2.11×10 ⁻⁴ 5	$\alpha(K)$ =0.000175 5; $\alpha(L)$ =1.86×10 ⁻⁵ 5; $\alpha(M)$ =3.12×10 ⁻⁶ 9 $\alpha(N)$ =3.93×10 ⁻⁷ 11; $\alpha(O)$ =2.58×10 ⁻⁸ 7; $\alpha(IPF)$ =1.430×10 ⁻⁵ 22
		1494.9 <i>3</i>	5 2	1328.54 4+				
2836.26	6+	606.65 [#] 10	50 ^b 3	2229.47 6+	M1(+E2)	+0.2 3	0.00170 7	B(M1)(W.u.)=0.05 4; B(E2)(W.u.) \leq 28 α (K)=0.00150 6; α (L)=0.000163 8; α (M)=2.74×10 ⁻⁵ 13 α (N)=3.45×10 ⁻⁶ 16; α (O)=2.26×10 ⁻⁷ 8
		840.24 [#] <i>10</i>	100 ^b 8	1996.02 4+	E2		8.79×10^{-4}	B(E2)(W.u.)=7.E+1 5 α (K)=0.000778 II ; α (L)=8.54×10 ⁻⁵ $I2$; α (M)=1.434×10 ⁻⁵ 20
								$\alpha(N)=1.79\times10^{-6} \ 3; \ \alpha(O)=1.148\times10^{-7} \ 16$
3006.91	4-	605.1 <i>1</i> 1010.7 2 1318.3 3 1677.6 4	60 20 20 10 100 20 40 10	2401.82 3 ⁻ 1996.02 4 ⁺ 1688.96 3 ⁺ 1328.54 4 ⁺				
3073.28	(5-)	255.4 <i>3</i> 843.6 2 1077.4 2	7 7 64 14 100 21	2817.31 5 ⁻ 2229.47 6 ⁺ 1996.02 4 ⁺				
3086.23	6-	261.83 [#] 10 269.02 [#] 10 560.8 2	100 <i>9</i> 78 <i>9</i> 22 <i>4</i>	2824.40 4 ⁻ 2817.31 5 ⁻ 2525.80 5 ⁺				
3142.30	(5^{-})	1812.8 <i>4</i>	100	1328.54 4+				
3242.82	8+	1013.36 [#] 10	100	2229.47 6+	E2		5.61×10 ⁻⁴	B(E2)(W.u.)= $1.0 \times 10^2 + 3 - 5$ α (K)= $0.000497 \ 7; \ \alpha$ (L)= $5.41 \times 10^{-5} \ 8; \ \alpha$ (M)= $9.08 \times 10^{-6} \ 13$ α (N)= $1.138 \times 10^{-6} \ 16; \ \alpha$ (O)= $7.36 \times 10^{-8} \ 11$
3339.57	6-	266.2 2 332.5 2 522.1 <i>I</i> 813.9 <i>I</i> 1110.3 2	4 <i>I</i> 8 2 100 <i>I</i> 2 16 <i>3</i> 16 <i>3</i>	3073.28 (5 ⁻) 3006.91 4 ⁻ 2817.31 5 ⁻ 2525.80 5 ⁺ 2229.47 6 ⁺				
3476.96	7+	951.15 [#] <i>10</i>	100	2525.80 5 ⁺				
3511.15	$(7)^{-}$	424 [@] g		3086.23 6-				
		694.04 10	100 7	2817.31 5	E2		1.44×10^{-3}	$\alpha(K)$ =0.001273 18; $\alpha(L)$ =0.0001413 20; $\alpha(M)$ =2.37×10 ⁻⁵ 4 $\alpha(N)$ =2.96×10 ⁻⁶ 5; $\alpha(O)$ =1.87×10 ⁻⁷ 3

Adopted Levels,	Gammas (continued)

γ (82Sr) (continued)

							/(")	(**************************************	
E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathtt{J}_f^{π}	Mult. ^C	δ^{cf}	α^e	Comments
3511.15	(7)	1281.1 [#] 2	4.6 ^b 8	2229.47	6+				
3525.75	7-	439.88 [#] <i>10</i>	8 2	3086.23	6-				
		451.9 <i>3</i>	4 1	3073.28					
		707.9 2	7 2	2817.31					
	_	1296.19 [#] <i>10</i>	100 12	2229.47		D(+Q)	+0.5 5		
3565.75	7-	479.3 2 492.7 <i>4</i>	17 <i>6</i> 1 <i>1</i>	3086.23 3073.28					
		748.3 2	1 <i>1</i> 14 <i>1</i>	2817.31					
		1336.5 2	100 13	2229.47					
3607.94	7-	465.4 2	30 8	3142.30					
		522.09 [#] 10	100 14	3086.23	6-	(M1+E2)	-0.7 5	0.0027 3	$\alpha(K)=0.00234$ 22; $\alpha(L)=0.00026$ 3; $\alpha(M)=4.4\times10^{-5}$ 5
		534.6 2	35 8	3073.28	(5-)				$\alpha(N)=5.5\times10^{-6} \ 6; \ \alpha(O)=3.5\times10^{-7} \ 3$
		771.8 2	68 68	2836.26					
		790.6 2	32 8	2817.31	5-				
		1378.6 2	73 19	2229.47					
3622.78	8+	379.96 [#] 10	8.8 ^b 9	3242.82					
		786.36 [#] <i>10</i>	100 <mark>b</mark> 7	2836.26	6+	E2		1.04×10^{-3}	$B(E2)(W.u.)=1.0\times10^2 6$
									$\alpha(K)=0.000918 \ 13; \ \alpha(L)=0.0001013 \ 15; \ \alpha(M)=1.699\times10^{-5}$
									24 $\alpha(N)=2.12\times10^{-6} \ 3; \ \alpha(O)=1.355\times10^{-7} \ 19$
		1393.5 [#] 1	18 <mark>b</mark> 6	2229.47	6+	[E2]		3.31×10^{-4}	$a(N)=2.12\times10^{-3}$, $a(O)=1.333\times10^{-19}$ B(E2)(W.u.)=1.0 7
		1393.3 1	10 0	2229.47	U	[E2]		3.31×10	$\alpha(K)=0.000249 \ 4; \ \alpha(L)=2.68\times10^{-5} \ 4; \ \alpha(M)=4.49\times10^{-6} \ 7$
									$\alpha(N)=5.65\times10^{-7} \text{ 8; } \alpha(O)=3.69\times10^{-8} \text{ 6; } \alpha(IPF)=5.01\times10^{-5} \text{ 7}$
3686.07	(8^{+})	443.28 [#] 10	100 15	3242.82					
		1456.2 [#] 3	36 11	2229.47					
4033.49	8-	507.9 3	8 2	3525.75 3339.57					
4142.60	8-	693.9 <i>1</i> 534.7 2	100 22 26 8	3607.94					
1112.00	O	577.0 2	31 8	3565.75					
		617.1 4	8 3	3525.75	7-				
		1056.3 <i>1</i>	100 23	3086.23	6-	E2 ^d		5.10×10^{-4}	$\alpha(K)=0.000452$ 7; $\alpha(L)=4.91\times10^{-5}$ 7; $\alpha(M)=8.25\times10^{-6}$ 12 $\alpha(N)=1.034\times10^{-6}$ 15; $\alpha(O)=6.69\times10^{-8}$ 10
4248.4		1005.6 [@]	100	3242.82	8+				4(1) 1100 1110 12, 4(0) 0107/110 10
4350.30	10 ⁺	1107.47 [#] <i>10</i>	100	3242.82	8+	(E2)		4.60×10^{-4}	$B(E2)(W.u.)=1.1\times10^2 +4-5$
									$\alpha(K)$ =0.000406 6; $\alpha(L)$ =4.41×10 ⁻⁵ 7; $\alpha(M)$ =7.40×10 ⁻⁶ 11 $\alpha(N)$ =9.28×10 ⁻⁷ 13; $\alpha(O)$ =6.02×10 ⁻⁸ 9; $\alpha(IPF)$ =8.58×10 ⁻⁷ 13
4366.82	9-	758.8 [#] 1	30 <mark>b</mark> 3	3607.94	7-				
	-		-		-				

 ∞

γ (82Sr) (continued)

\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} &	E_f	\mathbf{J}_f^{π}	Mult. ^C	α^{e}	Comments
9-	801.11 [#] <i>10</i>	100 ^b 8	3565.75 7	7-	(E2)	9.91×10 ⁻⁴	$\alpha(K)=0.000876\ 13;\ \alpha(L)=9.65\times10^{-5}\ 14;\ \alpha(M)=1.620\times10^{-5}\ 23$ $\alpha(N)=2.02\times10^{-6}\ 3;\ \alpha(O)=1.293\times10^{-7}\ 19$
	841.3 [#] <i>3</i>	32 ^b 4	3525.75 7	7-			
(9-)	876.0 [#] 1	100 ^b 18	3511.15 ((7)-	(E2)	7.93×10^{-4}	$\alpha(K)=0.000702 \ 10; \ \alpha(L)=7.69\times10^{-5} \ 11; \ \alpha(M)=1.291\times10^{-5} \ 18$ $\alpha(N)=1.616\times10^{-6} \ 23; \ \alpha(O)=1.037\times10^{-7} \ 15$
	1144.20 [#] <i>10</i>	88 <mark>b</mark> 7	3242.82 8	3 ⁺			
10+	801.11 [#] <i>10</i>	100 12	3622.78 8	3+	(E2)	9.91×10 ⁻⁴	B(E2)(W.u.)=78 22 α (K)=0.000876 13; α (L)=9.65×10 ⁻⁵ 14; α (M)=1.620×10 ⁻⁵ 23 α (N)=2.02×10 ⁻⁶ 3; α (O)=1.293×10 ⁻⁷ 19
	1180.98 [#] 10	16 2	3242.82 8	3+	[E2]	4.04×10^{-4}	$\alpha(K)$ =0.000353 5; $\alpha(L)$ =3.82×10 ⁻⁵ 6; $\alpha(M)$ =6.41×10 ⁻⁶ 9 $\alpha(N)$ =8.04×10 ⁻⁷ 12; $\alpha(O)$ =5.23×10 ⁻⁸ 8; $\alpha(IPF)$ =5.65×10 ⁻⁶ 8 B(E2)(W.u.)=1.8 5
9-	907.0 <i>I</i> 947.2 2	62 8 44 4 100 8	3525.75 7	7-			
9+							
(10^{+})	213.5 3	10 3					
	287.0 2	38 7					
		72 10					
10-					A	4	2
	875.9 <i>1</i>	100	4033.49 8	3-	E2 ^{<i>a</i>}	7.94×10 ⁻⁴	B(E2)(W.u.)= $1.4 \times 10^2 + 4 - 5$ α (K)= $0.000702 \ 10$; α (L)= $7.70 \times 10^{-5} \ 11$; α (M)= $1.292 \times 10^{-5} \ 18$ α (N)= $1.616 \times 10^{-6} \ 23$; α (O)= $1.037 \times 10^{-7} \ 15$
10^{-}	1094.8 <i>3</i>	100	4142.60 8	3-			, , , , , , , , , , , , , , , , , , , ,
11-	941.32 [#] <i>10</i>	100	4366.82 9)-	E2	6.67×10 ⁻⁴	$\alpha(K)=0.000590 \ 9; \ \alpha(L)=6.45\times10^{-5} \ 9; \ \alpha(M)=1.082\times10^{-5} \ 16$ $\alpha(N)=1.356\times10^{-6} \ 19; \ \alpha(O)=8.73\times10^{-8} \ 13$ $\alpha(N)=1.2\times10^{2} +3-4$
	1085.4 [@]	100	4248.4				
	1005.43 [#] <i>g</i> 10	100		(9-)			
12+	1003.26 [#] 10	100	4423.85 1	10+	E2	5.74×10^{-4}	B(E2)(W.u.)=80 +20-27 α (K)=0.000508 8 ; α (L)=5.54×10 ⁻⁵ 8 ; α (M)=9.30×10 ⁻⁶ 13 α (N)=1.165×10 ⁻⁶ 17 ; α (O)=7.53×10 ⁻⁸ 11
	1045 /	100	4423 85 1	10 ⁺			$u(11)-1.10J \wedge 10 = 1/1, u(0)-1.JJ \times 10 = 11$
(11^{-})		100 7					
	1128.8 <i>3</i>	62 4	4350.30 1	10+			
12+	1218.7 3	100			[E2]	3.83×10^{-4}	$\alpha(K)=0.000330\ 5;\ \alpha(L)=3.56\times10^{-5}\ 5;\ \alpha(M)=5.98\times10^{-6}\ 9$ $\alpha(N)=7.51\times10^{-7}\ 11;\ \alpha(O)=4.89\times10^{-8}\ 7;\ \alpha(IPF)=1.093\times10^{-5}\ 16$
` ′		100	`	` ′	,		
12-	1004.5 <i>3</i>	100	4909.39 1	10-	E2 ^d	5.73×10^{-4}	$B(E2)(W.u.)=1.0\times10^2 +3-4$
	9 ⁻ (9 ⁻) 10 ⁺ 9 ⁻ 9 ⁺ (10 ⁺) 10 ⁻ 11 ⁻ 12 ⁺ (11 ⁻) 12 ⁺ (12 ⁺)	9- 801.11# 10 841.3# 3 (9-) 876.0# 1 1144.20# 10 10+ 801.11# 10 1180.98# 10 9- 907.0 1 947.2 2 1230.3 2 9+ 1015.5 3 (10+) 213.5 3 287.0 2 951.2 2 1394.7 3 10- 521.7@8 875.9 1 10- 1094.8 3 11- 941.32# 10 1085.4@ 1005.43#8 10 12+ 1003.26# 10 1045 1 (11-) 1006.2 3 1128.8 3 12+ 1218.7 3 (12+) 1100.9 4	9- 801.11# 10 100b 8 841.3# 3 32b 4 (9-) 876.0# 1 100b 18 1144.20# 10 88b 7 10+ 801.11# 10 100 12 1180.98# 10 16 2 9- 907.0 1 62 8 947.2 2 44 4 1230.3 2 100 8 9+ 1015.5 3 100 (10+) 213.5 3 10 3 287.0 2 38 7 951.2 2 100 10 1394.7 3 72 10 10- 521.7@8 875.9 1 100 10- 1094.8 3 100 11- 941.32# 10 100 1085.4@ 100 1005.43#8 10 100 12+ 1003.26# 10 100 1045 1 100 105.43#8 10 100 11- 1045 1 100 11- 1006.2 3 100 7 1128.8 3 62 4 12+ 1218.7 3 100 (12+) 1100.9 4 100	9- 801.11# 10 100b 8 3565.75 841.3# 3 32b 4 3525.75 3511.15 1144.20# 10 88b 7 3242.82 888b 7 10+ 801.11# 10 100 12 3622.78 888b 7 1180.98# 10 16 2 3242.82 888b 7 1230.3 2 100 12 3622.78 888b 7 1230.3 2 100 8 3242.82 888b 7 1230.3 2 100 8 3242.82 889b 7 100 30.3 3 3242.82 899b 7 103 4423.85 103 4423.85 287.0 2 38 7 4350.30 4366.07 1394.7 3 72 10 3242.82 896 10- 521.7@8 4387.09 4387.09 4387.09 4387.09 4423.85 10- 1094.8 3 100 44248.4 1005.43#8 10 100 4	9- 801.11# 10 100b 8 3565.75 7- 841.3# 3 32b 4 3525.75 7- 1144.20# 10 88b 7 3242.82 8+ 10+ 801.11# 10 100 12 3622.78 8+ 1180.98# 10 16 2 3242.82 8+ 1180.98# 10 16 2 3242.82 8+ 9- 907.0 1 62 8 3565.75 7- 1230.3 2 100 8 3242.82 8+ 9+ 1015.5 3 100 3476.96 7+ 1394.7 3 103 4423.85 10+ 287.0 2 38 7 4350.30 10+ 951.2 2 100 10 3686.07 (8+) 1394.7 3 72 10 3242.82 8+ 10- 521.7@8 4387.09 (9-) 875.9 1 100 4033.49 8- 1085.4@ 100 433.49 8- 1085.4@ 100 4387.09 (9-) 1085.4.# 100 100 4248.4 1005.43#8 10 100 4248.4 1005.43#8 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4423.85 10+ 1045 1 100 4387.09 (9-) 12+ 1003.26# 10 100 4423.85 10+ 101- 1045 1 100 4248.4 1005.43#8 10 100 4248.4 1005.43#8 10 100 4248.4 1005.43#8 10 100 4248.4 1005.43#8 10 100 4248.4 1005.43#8 10 100 4248.4 1005.43#8 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4423.85 10+ 1045 1 100 4423.85 10+	9 801.11# 10 100b 8 3565.75 7 (E2) 841.3# 3 32b 4 3525.75 7 (E2) 1144.20# 10 88b 7 3242.82 8+ 10+ 801.11# 10 100 12 3622.78 8+ (E2) 1180.98# 10 16 2 3242.82 8+ 1230.3 2 100 8 3242.82 8+ 1230.3 2 100 8 3242.82 8+ 10+ 1015.5 3 100 3476.96 7+ 1230.3 2 100 8 3242.82 8+ 9+ 1015.5 3 10 3 4423.85 10+ 287.0 2 38 7 4350.30 10+ 951.2 2 100 10 3686.07 (8+) 1394.7 3 72 10 3242.82 8+ 10- 521.7@8 4387.09 (9-) 875.9 1 100 4033.49 8- E2d 10- 1094.8 3 100 4142.60 8- 11- 941.32# 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4423.85 10+ 10- 1045 1 100 100 4423.85 10+ 10- 1045 1 100 1	9

9

γ (82Sr) (continued)

ı		7.T	- +	- 87	-	- T		0	
	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E_f	\mathbf{J}_f^{π}	Mult. ^c	α^{e}	Comments
									$\alpha(K)=0.000507 \ 8; \ \alpha(L)=5.52\times10^{-5} \ 8; \ \alpha(M)=9.27\times10^{-6} \ 13$ $\alpha(N)=1.162\times10^{-6} \ 17; \ \alpha(O)=7.51\times10^{-8} \ 11$
	6367.2	13-	1059.0 2	100	5308.15	11-	E2	5.07×10^{-4}	$\alpha(K)$ =0.000449 7; $\alpha(L)$ =4.88×10 ⁻⁵ 7; $\alpha(M)$ =8.20×10 ⁻⁶ 12 $\alpha(N)$ =1.028×10 ⁻⁶ 15; $\alpha(O)$ =6.66×10 ⁻⁸ 10 B(E2)(W.u.)=1.3×10 ² +6-8
	6450.1		1023 <i>I</i>	100	5427.12	12 ⁺			2(22)((((11))) 115/110 10 0
	6543.6	14+	1116.5 <i>3</i>	100	5427.12	12+	E2 ^d	4.52×10 ⁻⁴	B(E2)(W.u.)=62 +23-28 α (K)=0.000399 6; α (L)=4.33×10 ⁻⁵ 6; α (M)=7.27×10 ⁻⁶ 11 α (N)=9.11×10 ⁻⁷ 13; α (O)=5.91×10 ⁻⁸ 9; α (IPF)=1.133×10 ⁻⁶ 19
	6556.4		1222.6 [@]	100	5333.8				
	6564.8	(13^{-})	1085.7 <i>3</i>	100	5479.09	(11^{-})			
	6937.0	(14+)	1368.0 <i>3</i>	100	5569.0	12+	[E2]	3.35×10^{-4}	$\alpha(K)$ =0.000258 4; $\alpha(L)$ =2.78×10 ⁻⁵ 4; $\alpha(M)$ =4.67×10 ⁻⁶ 7 $\alpha(N)$ =5.87×10 ⁻⁷ 9; $\alpha(O)$ =3.84×10 ⁻⁸ 6; $\alpha(IPF)$ =4.35×10 ⁻⁵ 7 B(E2)(W.u.)=1.4×10 ² +42-8
	7066.5	14-	1152.6 3	100	5913.9	12-	E2 ^d	4.23×10 ⁻⁴	B(E2)(W.u.)= $1.6 \times 10^2 + 9 - 11$ α (K)= $0.000372 \ 6$; α (L)= $4.03 \times 10^{-5} \ 6$; α (M)= $6.76 \times 10^{-6} \ 10$ α (N)= $8.49 \times 10^{-7} \ 12$; α (O)= $5.52 \times 10^{-8} \ 8$; α (IPF)= $3.01 \times 10^{-6} \ 5$
	7534.6		991 <i>I</i>	100	6543.6	14+			
	7545.5	15-	1178.3 <i>3</i>	100	6367.2	13-	E2 ^d	4.06×10 ⁻⁴	B(E2)(W.u.)= 1.0×10^2 4 α (K)= 0.000354 5; α (L)= 3.84×10^{-5} 6; α (M)= 6.44×10^{-6} 9 α (N)= 8.08×10^{-7} 12; α (O)= 5.26×10^{-8} 8; α (IPF)= 5.35×10^{-6} 9
	7788.2	(15^{-})	1223.4 <i>3</i>	100	6564.8	(13^{-})			3, 4(11) 5155/15
	7812.0	16 ⁺	1268.4 4	100	6543.6	14+	E2 ^d	3.62×10 ⁻⁴	B(E2)(W.u.)=9.E+1 +4-5 α (K)=0.000303 5; α (L)=3.27×10 ⁻⁵ 5; α (M)=5.48×10 ⁻⁶ 8 α (N)=6.89×10 ⁻⁷ 10; α (O)=4.49×10 ⁻⁸ 7; α (IPF)=2.04×10 ⁻⁵ 3
	7936.1		1379.6 [@]	100	6556.4				
	8377.6	16-	1311.1 4	100	7066.5	14-	E2 ^d	3.48×10 ⁻⁴	B(E2)(W.u.)=49 22 α (K)=0.000282 4; α (L)=3.05×10 ⁻⁵ 5; α (M)=5.11×10 ⁻⁶ 8 α (N)=6.42×10 ⁻⁷ 9; α (O)=4.19×10 ⁻⁸ 6; α (IPF)=2.98×10 ⁻⁵ 5
	8434.6	(16 ⁺)	1497.6 <i>3</i>	100	6937.0	(14+)	E2 ^d	3.26×10 ⁻⁴	$\alpha(K)$ =0.000215 3; $\alpha(L)$ =2.31×10 ⁻⁵ 4; $\alpha(M)$ =3.88×10 ⁻⁶ 6 $\alpha(N)$ =4.87×10 ⁻⁷ 7; $\alpha(O)$ =3.19×10 ⁻⁸ 5; $\alpha(IPF)$ =8.35×10 ⁻⁵ 12 B(E2)(W.u.)>20
	8842.0	17-	1296.5 5	100	7545.5	15-	E2 ^d	3.53×10 ⁻⁴	B(E2)(W.u.)=9.E+1 7 α (K)=0.000289 4; α (L)=3.12×10 ⁻⁵ 5; α (M)=5.23×10 ⁻⁶ 8 α (N)=6.57×10 ⁻⁷ 10; α (O)=4.29×10 ⁻⁸ 6; α (IPF)=2.65×10 ⁻⁵ 4
	9167.4	(17^{-})	1379.2 4	100	7788.2				
	9237.8	18+	1425.7 4	100	7812.0	16 ⁺	[E2]	3.27×10^{-4}	B(E2)(W.u.)=9.E+1 +36-5 α (K)=0.000237 4; α (L)=2.56×10 ⁻⁵ 4; α (M)=4.29×10 ⁻⁶ 6 α (N)=5.39×10 ⁻⁷ 8; α (O)=3.52×10 ⁻⁸ 5; α (IPF)=5.93×10 ⁻⁵ 9

10

γ (82Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_f^{π}	Mult. ^c	α^{e}	Comments
9478.1		1542 [@]	100	7936.1				
9842.6	(18 ⁻)	1465 <i>I</i>	100	8377.6	16-	[E2]	3.25×10^{-4}	$\alpha(K)$ =0.000225 4; $\alpha(L)$ =2.42×10 ⁻⁵ 4; $\alpha(M)$ =4.05×10 ⁻⁶ 6 $\alpha(N)$ =5.10×10 ⁻⁷ 8; $\alpha(O)$ =3.34×10 ⁻⁸ 5; $\alpha(IPF)$ =7.19×10 ⁻⁵ 11 B(E2)(W.u.)>21
10061.6	(18^{+})	1626.9 [@]	100	8434.6	(16^{+})			
10258.8	(19-)	1416.8 5	100	8842.0	17-	[E2]	3.28×10^{-4}	B(E2)(W.u.)=6.E+1 +3-5 α (K)=0.000240 4; α (L)=2.59×10 ⁻⁵ 4; α (M)=4.34×10 ⁻⁶ 6 α (N)=5.46×10 ⁻⁷ 8; α (O)=3.57×10 ⁻⁸ 5; α (IPF)=5.67×10 ⁻⁵ 8
10709.4	(19 ⁻)	1542 <i>1</i>	100	9167.4	(17^{-})		4	5
10872.4	(20+)	1634.6 5	100	9237.8	18 ⁺	[E2]	3.44×10^{-4}	$\alpha(K)$ =0.000181 3; $\alpha(L)$ =1.94×10 ⁻⁵ 3; $\alpha(M)$ =3.25×10 ⁻⁶ 5 $\alpha(N)$ =4.09×10 ⁻⁷ 6; $\alpha(O)$ =2.69×10 ⁻⁸ 4; $\alpha(IPF)$ =0.0001396 20 B(E2)(W.u.)>11
11379.6	(20^{-})	1537 <i>1</i>	100	9842.6	(18^{-})			
11798.4	(21-)	1539.6 5	100	10258.8	(19 ⁻)	[E2]	3.29×10^{-4}	$\alpha(K)$ =0.000204 3; $\alpha(L)$ =2.19×10 ⁻⁵ 3; $\alpha(M)$ =3.67×10 ⁻⁶ 6 $\alpha(N)$ =4.61×10 ⁻⁷ 7; $\alpha(O)$ =3.02×10 ⁻⁸ 5; $\alpha(IPF)$ =9.96×10 ⁻⁵ 14 B(E2)(W.u.)>51
11837.6?	(20^+)	1776 [@]	100	10061.6	(18^{+})			
12758.8	(22^{+})	1886.4 [@]	100	10872.4	(20^+)			
13005.7	(22^{-})	1626 <i>1</i>	100	11379.6	(20^{-})			
13489.4	(23 ⁻)	1691 <i>I</i>	100	11798.4	(21 ⁻)			
14832.7?	(24)	1827 [@]	100	13005.7	(22^{-})			
14910.8	(24+)	2152 [@]	100	12758.8	(22^{+})			
15409.4	(25)	1920 [@]	100	13489.4	(23 ⁻)			
17246.9?	(26 ⁻)	2336 [@]	100	14910.8	(24+)			
17616.5 1432.0+x	(27) J+2	2207 [@] 1432 <i>I</i>	100 100 ^a	15409.4 x	(25)			
3027.0+x	J+2 J+4	1432 <i>I</i> 1595 <i>I</i>	100 ^a	x 1432.0+x	J I±2			
4783.0+x	J+6	1756 <i>1</i>	100 ^a	3027.0+x				
6703.1+x	J+8	1920 <i>1</i>	100 <mark>a</mark>	4783.0+x				
8780.1+x	J+10	2077 1	100 ^a	6703.1+x				
11010.1+x	J+12	2230 1	100 ^a	8780.1+x				
13393+x	J+14	2383 1	100 ^a 100 ^a	11010.1+x				
15938+x 18674+x?	J+16 J+18	2545 <i>1</i> 2736 ⁸	100 ^a	13393+x 15938+x	J+14 J+16			

[†] From ⁵⁶Fe(²⁹Si,2pn γ), unless otherwise stated. For SD band, values are from ⁵⁸Ni(³⁰Si, α 2p γ),(²⁸Si,4p γ):SD. [‡] From ⁸²Y β ⁺ decay.

γ (82Sr) (continued)

- # From ⁷⁰Ge(¹⁶O,2n2pγ).
- [@] From ${}^{52}Cr({}^{34}S,2p2n\gamma)$.
- & γ branching from each level deduced from (²⁹Si,2pn γ), except as noted otherwise.
- ^a Relative intensity within the SD band.
- ^b From 70 Ge(16 O,2n2p γ).
- ^c From $\gamma(\theta)$ and linear polarization observed in ($^{16}\text{O},2\text{n}2\text{p}\gamma$), except as noted otherwise.
- ^d From DCO ratios obtained in ⁵⁶Fe(²⁹Si,2pnγ) and RUL.
- ^e Additional information 2.
- f If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^g Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(H): π =-

Band(G): *π*=-

3607.94

465 3142.30

 $\frac{7^-}{(5^-)}$

$$^{82}_{38}\mathrm{Sr}_{44}$$

	Histor	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	B. Singh, A. Negret, and K. Zuber	NDS 110,2815 (2009)	30-Sep-2009

 $Q(\beta^{-})=-6756\ 5$; $S(n)=11923\ 7$; $S(p)=8868\ 3$; $Q(\alpha)=-5181.2\ 15$ 2012Wa38

Note: Current evaluation has used the following Q record -6757 5 11923 7 8867.5 27-5181.6 16 2009AuZZ.

Additional information 1.

Values in 2003Au03 are: Q=-6490 90, S(n)=11920 11, S(p)=8858 7, Q(α)=-5176 4.

Theory/calculations:

Additional information 2.

1997Su08: energies of ground state and γ band members, IBA.

1989Sa38: collective bands.

1989Co02: octupole excitation.

1986Ga04, 1979Bu20: nuclear deformation and potential energy surfaces.

1985Na02: microscopic study of high-spin states.

1982De05, 1983Bu09, 1984He07: interacting-boson model.

1971Ki16,1973Og01: shell-model calculations.

Other experiments:

Atomic mass measurements using Penning-trap system: 2007Ke09.

Measurements of isotope shift and mean square charge radius: 1992Ba55, 1990Bu12, 1988Si06, 1987An02, 1986An39, 1986Ea01, 1986Ma43, 1985Bu20, 1983El04, 1983Bo35, 1983Lo13.

⁸⁴Sr Levels

Cross Reference (XREF) Flags

		B 84 Y ε α C 84 Y ε α D 51 V(36)	decay (32.82 d) decay (39.5 min) decay (4.6 s) S,p2nγ) S,2p2nγ)	F G H I	59 Co(28 Si,3p γ) 76 Ge(12 C,4n γ), 81 Br(6 Li,3n γ) 82 Kr(3 He,n) 82 Kr(α ,2n γ) 84 Sr(p,p'),(p,p' γ)	K L M N O	84 Sr(d,d') 84 Sr(α , α'),(α , $\alpha'\gamma$) Coulomb excitation 85 Rb(p,2n γ) 86 Sr(p,t)
E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	_		Comr	ments
0.0&	0+	stable	ABCDEFGHIJKLMN	0	H.J. Kim, presented at 16th Ir Unification of Fundamental In	ouble ble β / it. Conteraction on β	β decay). Other:> 10^{17} y ε decay, preliminary result from f. on Supersymmetry and the ions, Seoul, June 2008 April 16, 2009 revealed that the
793.22 ^{&} 6	2+	3.23 ps <i>35</i>	BCDEFG IJKLMN	0	also 2005St24 compilation. T _{1/2} : weighted average of 3.19 pt (1980Ek03). Other: 6.2 ps 21	easured ps 35 (1982	
1453.93 ^d 10	2+		BC G IJ L N	0	J^{π} : M1+E2 γ to 2 ⁺ ; $\gamma(\theta)$ not con $L(p,t)=(2)$.	nsister	at with $\Delta J=1$ and δ . Also

⁸⁴Sr evaluated by B. Singh, A. Negret, and K. Zuber.

⁸⁴Sr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
1504.2 10	0+		BC J L O	J^{π} : $L(p,t)=0$.
1767.69 ^{&} 9	4+	1.4 ps <i>4</i>	B DEFG IJ L NO	J^{π} : ΔJ =2, E2 to 2 ⁺ . L(p,t)=(4) is consistent. T _{1/2} : unweighted average of 1.73 ps 21 (1982De05) and 0.97 ps 28 (1980Ek03). Other: 4.16 ps 14 (1982De05 value reanalyzed by 1994Ch28).
2056.07 ^d 11 2071.6 8 2297.93 14	$(3)^+$ 0^+		B GIN C JLO G	J^{π} : $\Delta J=1$, $M1+E2$ γ to 2^{+} ; γ to 4^{+} ; band member. J^{π} : $L(p,t)=0$.
2390 5	2		0	J^{π} : $L(p,t)=2$.
2448.11 ^c 11	3-		B G IJKL O	J ^{π} : L(p,t)=L(d,d')=3. Configuration=($g_{9/2}$, $f_{5/2}^{-1}$) or ($g_{9/2}$, $p_{3/2}^{-1}$) (1982De05). B(E3)(\uparrow)=0.043 <i>18</i> (2002Ki06 evaluation, data from 1973Re01). Deduced B(E3)(W.u.)=15 6.
2525 5	(0^{+})		0	J^{π} : $L(p,t)=(0)$.
2598.23 ^d 22	(4+)		B GIJL O	XREF: B(?). J^{π} : 2 ⁺ or 4 ⁺ from 1145 $\gamma(\theta)$ indicating ΔJ =0 or 2; J=4 favored by excitation function and band assignment.
2735.25 ^d 20	(5^{+})		B G J O	J^{π} : $\Delta J=1 \gamma$ to 4^{+} ; excitation function; band member.
2769.03 10	(5 ⁻)	9.5 [@] ps 6	B DEFG IJ L NO	μ =+8.0 10 (1989Ku11,2005St24) μ : transient-field integral perturbed-angular correlation in 74 Ge(12 C,2n γ) (1989Ku11). J ^{π} : ΔJ=1, DIPOLE G TO 4 ⁺ ; L(p,t)=(5).
2807.87 ^{&} 11	6+	1.01 ps <i>21</i>	B DEFG IJ L N	J^{π} : ΔJ=2, E2 γ to 4 ⁺ . $T_{1/2}$: weighted average of 1.04 ps 21 (1982De05), 0.97 ps 28 (1994Ch28). Other: 2.6 ps 4 from (1982BrZO).
2886.99 <i>14</i> 3041.25 ^c <i>13</i>	2 ⁺ (5 ⁻)		B J L O FG J L O	J^{π} : L(p,t)=2. XREF: J(?)L(?). J^{π} : ΔJ=(0), dipole γ to (5 ⁻); γ to 3 ⁻ ; L(p,t)=(4,5).
3098.67 <i>13</i>	6(+)		B G	J^{π} : $\Delta J = 2 \gamma$ to 4^+ ; γ to 6^+ .
3157.05 ^d 22	(7^{+})		G	J^{π} : $\Delta J=2 \gamma$ to (5^{+}) ; excitation function.
3175 5	(2^{+})		J L 0	J^{π} : L(p,t)=(2).
3255 30	3-		J L 0	J^{π} : L(p,t)=3.
3270.58 <i>17</i>	$(4,5,6)^+$		B G	J^{π} : γ to 4 ⁺ ; M1,E2 γ to 6 ⁺ . The β feeding from (6 ⁺) disfavors 4.
3279.15 ^c 14 3330 30	(6 ⁻)		FG I H J L	J^{π} : $\Delta J=1 \ \gamma$ to (5 ⁻); band member. J^{π} : L(3 He,n)=0.
3331.91 ^b 13	8+	157 ps 5	DEFG I	μ =-1.2 6 (1981Br20,1989Ra17)
				J ^π : ΔJ=2, E2 γ to 6 ⁺ . μ: from g factor=-0.15 7 from spin precession in polarized hyperfine fields of a tilted multi-foil target (1981Br20). Other: -0.8 16 from g=-0.1 2 (1989Ku11, transient-field integral perturbed-angular correlation in ⁷⁴ Ge(¹² C,2nγ)) See also 2005St24 compilation.
2455 20			11.0	J ^{π} : Configuration=($vg_{9/2}$) ⁻² ₈₊ ⊗(g.s. of ⁸⁶ Sr core) (1982De05). T _{1/2} : from 1982De05. Others: 163 ps 3 (1982De05 value reanalyzed by 1994Ch28), 170 ps 7 (1982BrZO).
3455 <i>30</i> 3487.92 ^c <i>12</i>	(7-)	4.4 [@] ps 5	J L O DEFG IJ	v=+4.2 I4 (1080Vv11 2005S+24)
3487.92° 12	(7-)	4.4 ° ps 3	DEFG 13	μ =+4.2 <i>14</i> (1989Ku11,2005St24) μ : transient-field integral perturbed-angular correlation in 74 Ge(12 C,2n γ) (1989Ku11). J ^{π} : ΔJ=2, E2 γ to (5 ⁻); ΔJ=1 γ to 6 ⁺ .
3511.77 16	$(4^+,5^-)$		B J L	XREF: L(3520).
				J^{π} : γ' s to 3 ⁻ and 6 ⁺ ; β feeding from (6 ⁺) favors 5 ⁻ .

⁸⁴Sr Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	7		Comments
3578.23? 25 3650.15 ^c 13 3679.94 ^a 13	(7 ⁻) 8 ⁺	3.33 [@] ps <i>14</i>	B G DEFG I	L		J ^π : $\Delta J(2)$ γ to (5 ⁻); $\Delta J=1$ γ to 6 ⁽⁺⁾ ; band member. μ =+7.2 δ (1989Ku11,2005St24) J ^π : configuration= π g _{9/2} =2 $_{8+}$ \otimes ⁸² Kr core (1982De05). μ : transient-field integral perturbed-angular correlation in ⁷⁴ Ge(¹² C,2n γ) (1989Ku11).
3749.07 24 3750 30 3819.58? 15 3918.08? 16 3960 30	(7) (3 ⁻ ,4 ⁺)		G B B	L	0	J^{π} : $\Delta J = 1 \ \gamma \text{ to } 6^{+}$. J^{π} : $L(p,t)=(3,4)$.
4028.78 ^{&} 23 4062.78 17	(8 ⁺) 4 ⁺		G B	L	0	J^{π} : ΔJ=2 γ to 6 ⁺ . XREF: L(?)O(4080). J^{π} : L(p,t)=4. Note that 4 ⁺ is inconsistent with β feeding from (6 ⁺).
4260 <i>30</i> 4268.05 ^c <i>16</i>	(8-)		FG	L	0	XREF: F(?). J^{π} : $\Delta J=2 \gamma$ to (6 ⁻); γ to (7 ⁻); band member.
4365.95 18	(4 ⁺)		В	L		XREF: L(4360). J^{π} : γ' s to 2 ⁺ and 6 ⁺ . Note that (4 ⁺) is inconsistent with β feeding from (6 ⁺).
4370.4 ^d 3 4447.61 ^b 14	(9 ⁺) 10 ⁺	2.22 [@] ps 35	G DEFG I			J^{π} : ΔJ=(2) γ to (7 ⁺); excitation function; band member. μ =+2.0 10 (1989Ku11,2005St24) J^{π} : ΔJ=2, E2 γ to 8 ⁺ . configuration=(ν g _{9/2}) ₈₊ ⁻² ⊗(2 ⁺ of ⁸⁶ Sr core) (1982De05). μ : transient-field integral perturbed-angular correlation in ⁷⁴ Ge(¹² C,2n γ) (1989Ku11).
4534.06 ^a 15 4540 30	10 ⁺	1.66 [@] ps <i>14</i>	DEFG I	L	0	μ =+8.0 20 (1989Ku11,2005St24) μ : transient-field in ⁷⁴ Ge(¹² C,2n γ) (1989Ku11). J $^{\pi}$: Δ J=2, E2 γ to 8 ⁺ .
4540 50 4636.13 ^c 14	(9-)	2.5 [@] ps 4	DEFG I	L	U	μ =0.00 36 (1989Ku11,2005St24) J ^π : ΔJ=2, E2 γ to (7 ⁻). Configuration= $\nu g_{9/2}^{-2} \otimes (3^{-})$ (1982De05). μ : transient-field integral perturbed-angular correlation in 74 Ge(12 C,2nγ) (1989Ku11).
4660 <i>30</i> 4740 <i>30</i> 4745.72 <i>24</i>	(8,9,10+)		G	L L		E(level): γ to 8 ⁺ . It is unlikely that this level is same as 4740 in (α, α') .
5150.7? <i>3</i> 5444.48 ^c <i>15</i> 5653.25 ^a <i>16</i>	(11 ⁻) 12 ⁺	7.5 [@] ps 10 0.61 ps 21	B DEFG DEFG			J ^π : ΔJ=2, E2 γ to (9 ⁻); γ to 10 ⁺ . J ^π : ΔJ=2, E2 γ to 10 ⁺ . T _{1/2} : weighted average of 0.83 ps 28 (1982De05), 0.49 ps 21 (1994Ch28).
5891.6 ^b 10 6069.43 ^c 17 6484.34 ^c 21 6739.65 ^a 19 6916.8 ^c 4 7822.8 7	(12 ⁺) (12 ⁻) (13 ⁻) 14 ⁺ (14 ⁻) (15 ⁺)	0.24 [#] ps 10 0.42 [#] ps 14 0.62 [#] ps 28 0.42 [#] ps 14	D F EFG F DEFG F D			J^{π} : γ to 10^+ ; band member. J^{π} : ΔJ =1, dipole γ to (11^-) ; band member. J^{π} : γ to (12^-) ; possible γ' s to 12^+ and (11^-) ; band member. J^{π} : ΔJ =2, E2 γ to 12^+ ; band member. J^{π} : γ to (13^-) ; band member. J^{π} : γ to 14^+ and a low-energy γ from 16^+ .
8006.4 ^a 5	16 ⁺	0.21 [#] ps 7	DEF			J^{π} : γ to 14 ⁺ ; band member.

⁸⁴Sr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
9098.4 8	$\overline{(17^+)}$		D	J^{π} : γ' s to 16 ⁺ and (15 ⁺).
9424.9 ^a 10	18 ⁺	0.14 [#] ps 6	DEF	J^{π} : γ to 16^+ ; band member.
11059.9 ^a 22	20^{+}	<0.18 ps	DEF	J^{π} : γ to 18 ⁺ ; band member.
				$T_{1/2}$: 0.14 ps 4, effective half-life from 1994Ch28, not corrected for
				side feeding.
12920 ^a 3	22+		DE	J^{π} : γ to 20^{+} ; band member.
15080? ^a 4	(24^{+})		E	J^{π} : possible γ to 22 ⁺ ; band member.

[†] Level energies with $\Delta E < 5$ keV are deduced from least-square fit to the adopted gammas. The others are from (p,t), (α,α') , or weighted averages from (p,t), (α,α') , and (p,p').

[‡] From Doppler-shift attenuation method (DSAM) and/or recoil-distance Doppler shift (RDDS) methods. Measurements are from 1994Ch28 using line-shape analysis in DSA in ⁵⁹Co(²⁸Si,3py) reaction for levels above 5600 keV. For levels up to 5700 keV, measurements are from 1982De05 using recoil-distance Doppler-shift method in ⁷⁶Ge(¹²C,4ny) reaction. For the 5653.5 level, values are measured in both studies. Values from recoil-distance method are also available from 1980Ek03 for 793 and 1768 levels using $(\alpha, 2n\gamma)$ reaction and from 1982BrZO for 2808 and 3331 levels using 76 Ge(12 C,4n γ) reaction.

[#] From 1994Ch28. @ From 1982De05.

[&]amp; Band(A): g.s. band. ^a Band(B): $\pi(g_{9/2}^2)_{8+} \otimes (^{82}\text{Kr core})$. ^b Band(C): $\nu(g_{9/2}^{-2})_{8+} \otimes (^{86}\text{Sr core})$.

^c Band(D): Octupole band.

^d Band(E): quasi γ band.

γ(84 Sr)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. ^a	δ^{b}	α^{d}	Comments
793.22	2+	793.22 6	100	0.0 0+	E2		0.00106	B(E2)(W.u.)=26 3
1453.93	2+	660.85 9	100 3	793.22 2+	M1+E2	+0.59 5	0.00145	
1504.2	0+	1453.9 <i>3</i> 711 [#]	13.3 9	$0.0 0^{+}$				
1504.2 1767.69	0 · 4 ⁺	974.48 <i>7</i>	100	793.22 2 ⁺ 793.22 2 ⁺	E2 ^c			B(E2)(W.u.)=21 6
2056.07	(3) ⁺	288.3 [#] 5	8.3# 21	1767.69 4 ⁺	LL			D(L2)(W.u.)-21 0
2030.07	(3)	602.3 1	100# 5	1453.93 2 ⁺	M1+E2 ^c	+0.24 8		
		1262.6 2	28 [#] 3	793.22 2 ⁺	$D+Q^{c}$	10.210		I_{γ} : others: 11.3 <i>14</i> in (${}^{6}Li,3n\gamma$); 57 in (p,2n γ).
2071.6	0+	617 [@]	20 0	1453.93 2 ⁺	2.4			17. canelov 11.6 17 in (23,6117), 67 in (p,2117).
		1279 [@]		793.22 2 ⁺				
2297.93		844.0 <i>1</i>	100	1453.93 2 ⁺				
2448.11	3-	994.4 <i>4</i>	100 [#] 10	1453.93 2+	D^{c}			
		1654.6 [#] 2	63 [#] 5	793.22 2+				A 679 γ with an intensity 3 times that of 994 γ is reported only in $(\alpha, 2n\gamma)$.
2598.23	(4^{+})	1144.3 2	100 9	1453.93 2+				
		1805.0 [#] <i>e</i> 10	5 5	793.22 2+				
2735.25	(5 ⁺)	680.6 [#] 4	100 [#] 8	2056.07 (3)+				E_{γ} : poor fit, level-energy difference=679.2. Additional information 3.
		967.2 [#] 2	31 [#] 3	1767.69 4+	D+Q ^c			Additional information 4.
2769.03	(5^{-})	321.0 <i>I</i>	2.8 ^{&} 5	2448.11 3-	[E2]		0.0153	B(E2)(W.u.)=22 5
		1001.28 7	100 ^{&} 9	1767.69 4+	(E1)			B(E1)(W.u.)=3.6×10 ⁻⁵ 5 Mult.: $\Delta J=1$, dipole from $\gamma(\theta)$; ΔJ^{π} requires E1.
2807.87	6+	1040.11 9	100	1767.69 4 ⁺	E2			B(E2)(W.u.)=21 5
2886.99	2+	1119.6 <mark>#</mark> 2	100 [#] 10	1767.69 4+				
		2093.3 [#] 2	45 [#] 15	793.22 2+				
3041.25	(5^{-})	272.2 1	100 ^{&} 3	2769.03 (5-)	(D) ^C			
		593.3 2	27 ^{&} 3	2448.11 3-				
3098.67	6 ⁽⁺⁾	290.8 <i>1</i>	37 ^{&} 3	2807.87 6 ⁺				
	- I.S	1331.0 2	100 ^{&} 6	1767.69 4+	Q			
3157.05	(7 ⁺)	421.8 <i>I</i>	100	2735.25 (5+)	Q			
3270.58	$(4,5,6)^+$	462.8 [#] 2	100# 5	2807.87 6 ⁺	M1,E2			1 1 20 10: 76g (12g 4) 81p (61: 2
2270 15	((-)	1502.8 [#] 2	62 [#] 6 17 ^{&} 2	1767.69 4+	Ъ			I_{γ} : other: 30 10 in 76 Ge(12 C,4n γ), 81 Br(6 Li,3n γ).
3279.15	(6-)	237.9 <i>I</i> 510.1 [‡] 5	17& 2 ≈100 ^{‡&}	3041.25 (5 ⁻) 2769.03 (5 ⁻)	D			
		5 TO T+ 5	$\sim 100 \pm \infty$	7760 03 (5-1				

5

γ (84Sr) (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.a	Comments
3487.92	(7-)	680.0 2	21.1 21	2807.87	6+	(E1) ^c	B(E1)(W.u.)= 4.4×10^{-5} 7 Mult.: ΔJ=1, dipole for a doublet (680.0+679.1); E1 from Δ J^{π} .
		718.9 <i>1</i>	100 5	2769.03	(5^{-})	E2 ^c	B(E2)(W.u.)=25 4
3511.77	$(4^+,5^-)$	241.2 [#] 5	5.1 [#] <i>34</i>	3270.58	$(4,5,6)^+$		
		703.6 <mark>#</mark> 2	100 # <i>10</i>	2807.87	6+		
		1063.5 [#] 3	13 [#] 4	2448.11	3-		
		1744.4 <mark>#</mark> 2	38 # 4	1767.69	4+		
3578.23?		980.2 [#] <i>e</i> 10	82 [#] 45	2598.23	(4^{+})		
		1129.6 [#] e 4	36 [#] 18	2448.11	3-		
		1810.8 [#] e 3	100 [#] 45	1767.69			
3650.15	(7^{-})	162.2 <mark>&</mark> 2	91 <mark>&</mark> 4	3487.92			
		371.0 <mark>&</mark> 1	22 <mark>&</mark> 4	3279.15		D^{c}	
		551.5 ^{&} 2	39 <mark>&</mark> 4	3098.67		D^{c}	
		608.9 & 1	100 <mark>&</mark> 4	3041.25			
		881.1 <mark>&</mark> 2	52 ^{&} 4	2769.03		(Q) ^c	
3679.94	8+	348.0 <i>I</i>	29.2 9	3331.91		$(M1+E2)^{\mathbf{c}}$	
		581.3 2	4.4 9	3098.67			
		872.1 <i>1</i>	100 3	2807.87		E2 ^c	B(E2)(W.u.)=11.5 7
3749.07	(7)	650.4 2	100	3098.67		D+Q ^c	
3819.58?		932.2 ^{#e} 2	60 [#] 5	2886.99			
		1370.8 ^{#e} 3	21 [#] 11	2448.11			
		1763.6 [#] e 2	100# 11	2056.07			
		2052.9 [#] e 3	26 [#] 13	1767.69			E_{γ} : poor fit, level-energy difference=2051.9.
3918.08?		1110.3 [#] e 2	100 [#] <i>10</i>	2807.87			
		1469.9 <mark>#e</mark> 2	29 [#] 10	2448.11			
		2150.9 [#] e 5	17 [#] 8	1767.69			
4028.78	(8+)	1220.9 2	100	2807.87		Q	
4062.78	4 ⁺	1255.0# 2	100 [#] 10	2807.87			
		1463.3 ^{#e} 2	6 [#] 3	2598.23			
		1614.5 [#] 2	27# 3	2448.11			
		2006.7 ^{#e} 5	4.5# 30	2056.07			
		2295.3 [#] 4	33 [#] 5	1767.69			
4268.05	(8-)	780.1 ^{&} 2	48 <mark>&</mark> 4	3487.92			
		988.9 <mark>&</mark> 1	100 <mark>&</mark> 4	3279.15	(6^{-})	Q^{C}	

6

γ (84Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^π	Mult.a	α^d	Comments
4365.95	(4^{+})	1479.2 [#] 2	39 [#] <i>13</i>	2886.99	2+			
	()	1557.6 [#] 3	26 [#] 13	2807.87	6+			
		1918.0 [#] 4	100 [#] 13	2448.11	3-			
		2309.5# 4	52# 9	2056.07	$(3)^{+}$			
4370.4	(9^+)	1213.3 2	100	3157.05	(3) (7 ⁺)	(Q) ^c		
4447.61	10+	1215.5 <i>2</i> 1115.7 <i>1</i>	100	3331.91	8 ⁺	E2 ^c		B(E2)(W.u.)=6.7 11
4534.06	10 ⁺	86.3 2	14 5	4447.61	10 ⁺	[M1+E2]	1.0 8	E_{γ} , I_{γ} : from (²⁸ Si,3p γ).
1334.00	10	854.1 <i>I</i>	100 5	3679.94	8+	E2 ^c	1.0 0	B(E2)(W.u.)=27.5
		05 1.1 1	100 5	3077.71	O	22		I_{γ} : from (28 Si, 3 p $^{\gamma}$).
4636.13	(9-)	1148.2 <i>I</i>	100	3487.92	(7^{-})	E2 ^c		B(E2)(W.u.)=5.2 9
4745.72	$(8,9,10^+)$	1413.8 2	100	3331.91				
5150.7?		1232.9 [#] e 3	38 [#] <i>3</i>	3918.08?				
		1330.7 #e 4	100 # <i>10</i>	3819.58?				
		1638.6 ^{#e} 7	12 [#] 9	3511.77	$(4^+,5^-)$			
5444.48	(11^{-})	808.35 10	100 4	4636.13	(9^{-})	E2 c		B(E2)(W.u.)=7.7 12
	(11)	996.9 <i>1</i>	30 4	4447.61	10+	22		2(22)((((a)) /// 12
5653.25	12 ⁺	1119.2 <i>1</i>	100 4	4534.06	10 ⁺	E2 ^c		B(E2)(W.u.)=18 7
		1205.6 2	35 4	4447.61	10+	E2 ^c		B(E2)(W.u.)=4.3 16
5891.6	(12^{+})	1444 <i>I</i>	100	4447.61	10 ⁺	[E2]		B(E2)(W.u.)=17.8
6069.43	(12^{-})	625.0 <i>1</i>	100	5444.48	(11^{-})	$(M1)^{C}$	0.00157	B(M1)(W.u.)=0.21 8
(404.04	(12=)	415.1.0	100 12	(0(0,10	(12-)	E3 643	0.00407	Mult.: $\Delta J=1$, dipole from $\gamma(\theta)$, ΔJ^{π} requires M1.
6484.34	(13^{-})	415.1 2	100 13	6069.43	(12^{-})	[M1]	0.00407	B(M1)(W.u.)=0.44 22
		830.9 <i>2</i> 1040 <i>I</i>	<12 <12	5653.25 5444.48	12 ⁺ (11 ⁻)	[E1] [E2]		B(E1)(W.u.)=5.E-5 +6-5 B(E2)(W.u.)=1.8 +21-18
6739.65	14 ⁺	1040 <i>I</i> 1086.4 <i>I</i>	100	5653.25	12+	E2 ^c		B(E2)(W.u.)=1.8 +21-18 B(E2)(W.u.)=41 14
6916.8	(14^{-})	432.5 3	100	6484.34	(13 ⁻)	E2		D(E2)(W.u.)-41 14
7822.8	(15^{+})	1084	100	6739.65	14+			
8006.4	16 ⁺	184		7822.8	(15^{+})	[M1]	0.0314	E_{γ} : from (36 S,p2n γ) only.
		1266.5 5	100 17	6739.65	14+	[E2]		B(E2)(W.u.)<54
9098.4	(17^+)	1092		8006.4	16 ⁺			
		1276		7822.8	(15^{+})			
9424.9	18 ⁺	327		9098.4	(17^{+})			E_{γ} : from (36 S,p2n γ) only.
		1418 <i>I</i>	100 25	8006.4	16 ⁺	[E2]		B(E2)(W.u.)<50
11059.9	20+	1635 2	100	9424.9	18 ⁺	[E2]		B(E2)(W.u.)>12
12920	22+	1860 2	100	11059.9	20+			F 4 0105 1 4 4 4 1 1 1 360 0 3 6 2 24 1 22 1
15080?	(24^{+})	2160 ^e	100	12920	22+			E_{γ} : A 2125 γ is tentatively assigned in ($^{36}S,p2n\gamma$) from a 24 ⁺ to 22 ⁺ .

$\gamma(^{84}Sr)$ (continued)

- † From weighted averages of all available data. Energies from $(\alpha, 2n\gamma)$ have not been used in the averaging procedure due to consistently low values.
- [‡] Doublet. Approximate intensity given.
- # From 84 Y ε decay (39.5 min). [@] From 84 Y ε decay (4.6 s).
- & From 1982De05 in 81 Br(6 Li,3n γ) reaction.
- ^a From ce data in ⁸⁴Y ε decay (39.5 min) unless otherwise stated. ^b From $\gamma\gamma(\theta)$ in ⁸⁴Y ε decay (39.5 min), unless otherwise stated.
- ^c From $\gamma(\theta)$ data in in-beam γ -ray studies. From RUL, $\Delta J=2$, quadrupole transitions are assigned as E2.
- ^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^e Placement of transition in the level scheme is uncertain.

 ∞

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{84}_{38}\mathrm{Sr}_{46}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{84}_{38}\mathrm{Sr}_{46}$

History

Type Author Citation Literature Cutoff Date
Full Evaluation Alexandru Negret, Balraj Singh NDS 124,1 (2015) 30-Nov-2014

 $Q(\beta^{-})=-5240 \ 14$; $S(n)=11491 \ 3$; $S(p)=9644.8 \ 11$; $Q(\alpha)=-6357.8 \ 14$ 2012Wa38

S(2n)=20016.3 16, S(2p)=16661.8 11 (2012Wa38).

⁸⁶Sr identified by mass spectrographic techniques by Aston, Nature 113, 856 (1924).

Other reactions:

⁸⁵Rb(p,n): IAR. Six resonances reported. See ⁸⁵Rb(p,n) dataset.

⁸⁶Sr(d,d): 1968Ko20.

⁸⁶Sr(t,t): 1970Ra10.

Measurements of isotope shifts, hyperfine structure, radii, etc.:

1992Ba55, 1991As06, 1990Bu12 (also 1988Si06), 1987Ea01, 1987An02, 1986Ma43, 1986An39, 1985Bu20, 1984Be44, 1983Lo13, 1983El04, 1983Bo35, 1981Be42, 1961He18.

⁸⁸Sr(¹²C, ¹⁴C) E=87.5 MeV: 1995Ro11, Measured $\sigma(\theta)$, deduced reaction mechanisms.

Additional information 1.

⁸⁶Sr Levels

All B(EL) values, given under comments, are from (e,e').

Cross Reference (XREF) Flags

		B 86 Y C 86 Y D 74 G E 76 G F 82 S G 84 K	b β^- decay (18.642 d) ε decay (14.74 h) ε decay (47.4 min) $e(^{18}O,2n\alpha\gamma)$ $e(^{13}C,3n\gamma)$ $e(^{9}Be,5n\gamma)$ $r(^{3}He,n)$ $r(\alpha,2n\gamma)$	I J K L M N O	85 Rb(p,n) IAR 85 Rb(³ He,d) 86 Sr(e,e') 86 Sr(γ,γ') 86 Sr(p,p'),(pol p,p') 86 Sr(d,d),(t,t) Coulomb excitation 87 Sr(p,d),(pol p,d)	Q R S T U V	87 Sr(d,t) 88 Sr(p,t) 89 Y(μ^{-} ,3n γ) 89 Y(p, α) 90 Zr(d, 6 Li) 90 Zr(3 He, 7 Be)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF				Comments
0.0&	0+	stable	ABCDEFGH JKLMNOPC	RSTUV	RMS charge radius	<r<sup>2></r<sup>	(1931Fr01). 1,1/2=4.2307 fm 20 (2013An02). 50 fm ² 8 (1990Bu12).
1076.68 ^{&} 4	2+	1.46 ps +9-8	ABCDEF H JKLM OPC	RSTUV	μ =+0.57 3 (2012K B(E2)↑=0.134 8 (2 $β_2$ (p,p')=0.158 16. J ^π : L(p,t)=2; E2 γ T _{1/2} : weighted aver 1.39 ps 7 (DSAN 1988Ku01), B(E (1963Al31). Oth μ: transient field in	to 0 ⁺ rage of M, 20 er: Bottegral	014StZZ) 6ZY) . of values from Coulomb excitation; 12Ku14), 1.46 ps 15 (DSAM, 118 16 (1964Sy01), 0.087 26 (E2)=1.121 5 in (e,e') (1992Ki20). I perturbed angular correlations.
1854.22 7	2+	0.386 ps <i>20</i>	B EF H JKLM OPC	QR TUV	μ =+0.8 3 (2012Ku B(E2)↑=0.0145 7 J ^{π} : L(p,p')=2. T _{1/2} : from B(E2) a	14,20 nd ad	sient field, 1998Ku01). 14StZZ) opted branching ratio. I perturbed angular correlations.

 $^{^{92}}$ Mo(n,X) E=2-250 MeV: 2000Ga46, measured excitation function for 86 Sr yield through the intensity of γ ray from the first excited state.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
2106 6	0+		J LM PQR Tu	E(level): from (p,t).
2203 6	0+		CD L PQR Tuv	J^{π} : L(p,t)=0. E(level): from (p,t). J^{π} : L(p,t)=0.
2229.81& 7	4+	1.73 ps 2 <i>I</i>	BCDEF H JK M O QR Tuv	μ =-2.7 20 (2012Ku14,2014StZZ) B(E4)↑=0.000308 22 XREF: T(2223). T _{1/2} : from DSAM in Coul. ex. (2012Ku14). J ^π : L(p,t)=L(e,e')=4; ΔJ=2, E2 γ to 2 ⁺ . μ : transient field integral perturbed angular correlations.
2365 <i>12</i> 2481.96 ^a 7	3-	0.90 ps 7	B EF H JKLM OPQR TU	E(level): very weakly populated level. B(E3) \uparrow =0.0497 18 (1992Ki20,2002Ki06) $\beta_3(p,p')$ =0.185 19. J ^{π} : L(p,t)=L(p,p')=L(e,e')=3. T _{1/2} : from DSAM (2012Ku14).
2499 6 2642.18 25	2+	87 fs <i>19</i>	L B JKLM PQR T	B(E2) \uparrow =0.0121 <i>I3</i> XREF: B(?). J ^{π} : L(p,t)=2. T _{1/2} : from B(E2) and branching ratio as quoted here. T _{1/2} =182 fs <i>20</i> if the level decays by g.s. transition only.
2672.89 ^a 8	5-	<5# ns	B EF H JK M OPQR T v	B(E5) \uparrow =0.000289 21 J ^{π} : L(p,t)=L(e,e')=5, L(p,d)=1 from 9/2 ⁺ .
2788.9 6	2+	25 fs <i>12</i>	B JKLM PQR T V	B(E2) \uparrow =0.0038 3 J ^{π} : L(p,t)=2. T _{1/2} : from B(E2) in (e,e') and adopted branching ratio.
2857.41 ^{&} 12	6+	<5 [#] ns	CDEF H K PQR T	$B(E6)\uparrow=8.3\times10^{-7}$ 76 J^{π} : $L(p,t)=6$, $L(p,d)=4$ from $9/2^{+}$.
2878.32 8	$(4)^{+}$		B J M Q T	J^{π} : L(3 He,d)=1 from 5/2 ⁻ ; γ to 2 ⁺ ; γ from 5 ⁻ .
2956.09 ^{&} 12	8+	0.455 μs 7	CDEF H K PQR T	%IT=100 μ =-1.93 2 (1978Ha52,2014StZZ) μ : Differential perturbed angular distribution of γ rays (1978Ha52). Others: -1.944 32 (Stroboscopic method, 1975Ma02), 1.93 12 ($\gamma(\theta,H,t)$, 1973Ha36).
				J ^π : L(e,e')=8; L(p,t)=(8). L(p,d)=4 from 9/2 ⁺ . T _{1/2} : from γ (t). Weighted average of 0.40 μ s 4 (1997Is13), 0.457 μ s 7 (1978Ha52), 0.41 μ s 5 (1975Ma02) and 0.46 μ s 3 (1971Is04). Unweighted average is 0.432 μ s 16.
2997.41 9	3-		B G JKLM PQR T v	B(E3) \uparrow =0.014 3 J ^{π} : L(e,e')=L(p,t)=3. L(p, α)=4 from 1/2 ⁻ . L(p,d)=4+1 from 9/2 ⁺ . E(level): doublet in (p,d) from L=4+1; other component with
3047 6			L v	$J=0$ to 9, $\pi=+$.
3055.87 ^a 9	5-	<5 [#] ns	B EF H JK M PQR T v	B(E5)↑=0.00061 6
	Ü			J^{π} : L(e,e')=L(p,t)=5. Also L=4+1 in (p,d) from 9/2 ⁺ . In 82 Se(9 Be,5n $_{7}$) J^{π} is assigned (6 ⁻) based on an unlikely [M2+E3] multipolarity assigned for 826.02 $_{7}$ (2014Li25). E(level): doublet in (p,d) from L=4+1; other component with J=0 to 9, π =+.
3104 6	(0+)		L QR t v	E(level): from (p,t). (p,t) and (p, α) indicate a doublet. J^{π} : L(p,t)=(0,3). Strong γ from (1).
3185	+	ш	J m t	J^{π} : L(3 He,d)=1 from 5/2 $^{-}$.
3185.29 7	(3)	<5 [#] ns	B H m PQR t	J^{π} : L(p,t)=3; L(p,d)=1 from 9/2 ⁺ ; M1 γ to (3) ⁻ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREI	7	Comments
3291.46 ^a 13	6-	<5# ns	B EF H J	Q	J ^{π} : L(³ He,d)=4 from 5/2 ⁻ ; Δ J=1, M1 γ from 7 ⁻ ; Δ J=1 γ to 5 ⁻ .
3317.70 <i>10</i> 3362.11 <i>11</i>	(5) ⁻ 4 ⁺		B M B K M		J^{π} : L(p,t)=5; L(p,d)=1 from 9/2 ⁺ . B(E4)↑=0.00197 12 J^{π} : L(e,e')=L(p,t)=4.
3392 7 3430 2	+ 2 ⁺		J M	T v R T v	J^{π} : L(³ He,d)=1 from 5/2 ⁻ . E(level): from (p,t). J^{π} : L(p,t)=2.
3482.3 4	6+	<5# ns	н к	pQR v	B(E6)↑=5.4×10 ⁻⁶ 14 E(level): doublet indicated by L(d,t)=3+4 from 9/2 ⁺ ; other component with negative parity and J=1 to 8. J ^π : L(e,e')=6.
3500.00 <i>10</i> 3500.5 <i>4</i>	(3,4,5)-		B m		J^{π} : L(d,t)=1 from 9/2 ⁺ . Also L(p,d)=3 from 9/2 ⁺ . J^{π} : L(3 He,d)=3 from 5/2 ⁻ .
3555.87 <i>12</i> 3645.00 8 3664.41 ^a 20	(4 ⁺) (3 ⁻) 7 ⁻		B J M B M	T	J^{π} : L(³ He,d)=(3) from 5/2 ⁻ ; γ rays to (3) ⁻ and 5 ⁻ . J^{π} : L(p,t)=3. J^{π} : ΔJ=1, E1 γ rays to 6 ⁺ and 8 ⁺ .
3665.3 <i>13</i> 3686.0 <i>5</i>	(5,6,7) ⁻ 2 ⁺ 3 ⁻	<5# ns	H J m		J ^π : L(p,d)=3 from 9/2 ⁺ gives J=2 to 8, π =-; γ to 6 ⁺ . J ^π : L(p,t)=2. J ^π : L(p,d)=3. log f t=7.0 (log f ¹ u t=8.0) from 4 ⁻ . γ to 2 ⁺ .
3686.84 <i>21</i> 3765.74 <i>8</i>	3-,4-,5-	<5# ns	B m B H M		XREF: r(3770). J^{π} : log $f^{t}=6.1$ (log $f^{1}u^{t}=7.0$) from 4 ⁻ . M1,E2 γ to 5 ⁻ . $\pi=-$ from the L(p,d)=1 component from 9/2 ⁺ .
3774.98 18	$(4,5)^+$		В	prT	XREF: B(?)r(3770). J^{π} : log $ft=7.4$ (log $f^{1}ut=8.3$) from 4 ⁻ . γ to 5 ⁻ . $\pi=+$ from the L(p,d)=4 component from 9/2 ⁺ .
3782.70 ^b 24 3831.12 <i>I</i> 2	6 ⁺ (3,4) ⁻		EF B	PQ T	J ^π : ΔJ=2, E2 γ to 4 ⁺ ; γ to 6 ⁺ . J ^π : log ft =5.8 from 4 ⁻ . (M1) γ to (3) ⁻ . L(p,d)=1 from 9/2 ⁺ .
3871.5 <i>4</i>	3-		В	P T	J^{π} : log $ft=7.4$ (log $f^{1}ut=8.3$) from 4^{-} . γ to 2^{+} . $L(p,d)=3$ from $9/2^{+}$.
3926.04 <i>9</i> 3942.46 <i>20</i>	(4) ⁺ 3 ⁻		B M	P T v	J ^π : E1 γ to (5) ⁻ ; γ to (3) ⁻ . J ^π : log $f^{t=7.1}$ (log $f^{1u}t=7.9$) from 4 ⁻ . γ to 2 ⁺ . L(p,d)=1 from 9/2 ⁺ .
3968.96 <i>13</i>	3-,4-,5-		В	P v	J ^π : log ft =6.8 (log $f^{1u}t$ =7.5) from 4 ⁻ . γ rays to 3 ⁻ and 5 ⁻ . L(p,d)=3 from 9/2 ⁺ .
3973.1 <i>5</i> 4096 <i>10</i>	(6,7,8 ⁺)	<5 [#] ns	Н	v P	J^{π} : γ to 6^+ . J^{π} : $L(p,d)=1$ from $9/2^+$.
4146.21 23	3,4+		В	r	XREF: r(4160). J^{π} : log f^{1} t =7.6) from 4 $^{-}$. γ to 2 $^{+}$.
4148.5 5	(9)	<5 [#] ns	Н	r	XREF: r(4160). J^{π} : ΔJ =(1), dipole γ to 8 ⁺ .
4154.28 ^b 18 4173 10	8+		EF	P	J ^{π} : ΔJ =2, E2 γ to 6 ⁺ ; ΔJ =1, E1 G to 7 ⁻ . E(level),J ^{π} : doublet from L(p,d)=(4+1) from 9/2 ⁺ ; one with J=0 to 9 with positive parity, other with J=3 to 6 with negative parity.
4206.11 <i>10</i> 4251 <i>10</i> 4270 <i>10</i>	(3-,4,5-)		В	P T	J^{π} : log $ft=6.8$ (log $f^{1u}t=7.4$) from 4 ⁻ . γ rays to 3 ⁻ and 5 ⁻ . J^{π} : L(p,d)=3 from 9/2 ⁺ .
4285 <i>10</i> 4285 <i>10</i> 4339.3? <i>15</i>	_		В	P	J^{π} : L(p,d)=3 from 9/2 ⁺ .
4410.7 5	3-		В	P	J ^π : log $ft=7.3$ (log $f^{1u}t=7.7$) from 4 ⁻ . γ to 2 ⁺ . L(p,d)=3+1 from 9/2 ⁺ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments
4478 <i>15</i> 4526 <i>15</i>	-			P P	J^{π} : L(p,d)=3+1 from 9/2 ⁺ . J^{π} : L(p,d)=3 from 9/2 ⁺ .
4600.6 <i>11</i> 4665 <i>15</i>	(6,7,8)	<5 [#] ns	Н	P P	J^{π} : L(p,d)=3 from 9/2 ⁺ ; γ to (6,7,8 ⁺).
4709.13 ^{&} 19	10 ⁺	<14 [@] ps	DEF H	-	J^{π} : $\Delta J=2$, E2 γ to 8^{+} ; band member.
4718.0 <i>17</i>	$3,4^{(+)}$	•	В	P	J^{π} : log $f^{1u}t=7.4$ (log $f^{1u}t=7.4$) from 4 ⁻ . γ to 2 ⁺ .
4738 <i>15</i> 4845 <i>20</i>	-			P P	J^{π} : L(p,d)=3 from 9/2 ⁺ .
4890 <i>15</i>	+			P	J^{π} : L(p,d)=4 from 9/2 ⁺ .
4924.6 ^a 7	(9) ⁻		EF	_	J^{π} : $\Delta J=2$, E2 γ to 7 ⁻ ; band member.
4954 6	$3,4^{(+)}$		В	P	XREF: P(4963). J^{π} : log $ft=6.9$ (log $f^{1}ut=6.3$) from 4^{-} . γ to 2^{+} .
L					E(level): doublet in (p,d) from L=4+1 from 9/2+; one with J=0 to 9 with positive parity, other with J=3 to 6 with negative parity.
4976.22 ^b 24	$(10)^{+}$	ш	EF		J^{π} : $\Delta J=2$, E2 G to 8^{+} ; band member.
5012.7 <i>4</i> 5035 <i>20</i>	(11-)	<5 [#] ns	EF H	P	J^{π} : $\Delta J=1$, (E1) γ to (10 ⁺). E(level), J^{π} : doublet from L(p,d)=4+1 from 9/2 ⁺ ; one with J=0 to 9 with positive parity, other with J=3 to 6 with negative parity.
5102 <i>15</i>				P	with negative parity.
5166 20				P	
5191 20				P	E(level), J^{π} : doublet from L(p,d)=(4+3) from 9/2 ⁺ ; one with J=0 to 9 with positive parity, other with J=1 to 8 with negative parity.
5300 20				P	
5357 20				P	E(level), J^{π} : doublet from L(p,d)=(4+1) from 9/2+; one with J=0 to 9 with positive parity, other with J=3 to 6 with negative parity.
5403 20				P	The logarity party.
5425.6 15		<5 [#] ns	Н		J^{π} : γ to $(6,7,8)^{-}$.
5454 <i>20</i> 5544.0 <i>4</i>	- (9) ⁻		EF	P	J^{π} : L(p,d)=3 from 9/2 ⁺ . J^{π} : ΔJ=1, E1 γ to 8 ⁺ ; γ to (10) ⁺ .
5660.6 6	(12^{-})		EF		J^{π} : $\Delta J=1$, $D+Q$ γ to (10).
5834.6 ^d 3	$(11)^{-}$	<21 [@] ps	DEF H		J^{π} : $\Delta J=1$, E1 γ to 10^{+} .
5847.9 <i>5</i> 5984.3 <i>8</i>	(10)-		EF EF		J^{π} : $\Delta J=1$, M1 γ to (9) ⁻ . XREF: E(5985.0).
5984.8 ^a 4	(11)		E		J^{π} : γ to (9) ⁻ . J^{π} : ΔJ=1, E1 γ to 10 ⁺ .
6041.1 6	(11)		EF		J^{π} : $\Delta J=1$, $D+Q$ γ to $(10)^{-}$.
6061.3 ^d 3	$(12)^{-}$	10 [@] ps 3	DEF H		J^{π} : $\Delta J=1$, M1(+E2) γ to (11) ⁻ .
6191.2 ^d 3	$(13)^{-}$	4.9 [@] ps <i>14</i>	DEF H		J^{π} : $\Delta J=1$, M1(+E2) γ to (12) ⁻ .
6205.1 ^b 3	$(12)^{+}$		EF		J^{π} : $\Delta J = 2$, E2 γ to (10) ⁺ .
6315.3 <i>6</i> 6687.4 <i>5</i>	(13-)		E EF		J^{π} : γ to (12) ⁻ . J^{π} : ΔJ =1, D+Q γ to (12 ⁻); γ to (11).
6879.0 ^c 3	12+		E		J^{π} : $\Delta J = 2$, E2 γ to (12°) , γ to (11) .
6890.6 ^d 4 7071.7 8	(14)		E E		J^{π} : $\Delta J = 1$, M1 γ to (13) ⁻ .
7241.1 5	(14 ⁻)		E		J^{π} : $\Delta J=1$, (M1) γ to (13 ⁻).
7336.7° 4	(13 ⁺)		E		J^{π} : $\Delta J=1$, (M1) γ to 12^+ .
7461.8 ^d 5 7640.7 ^b 4	(15^{-})		EF		J^{π} : $\Delta J=1$, M1 transition to (14 ⁻).
7640.78 4 7822.0 23	(14 ⁺) (1)	4.6 fs 23	EF :	L	J^{π} : E2 transition to (12 ⁺). J^{π} : from systematics of g.s. widths (see (γ, γ')).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF Comments
				$T_{1/2}$: from Γ =0.10 eV 5 measured in (γ, γ') .
7844.4 ^c 4	(14^{+})		E	J^{π} : (M1) transition to (13 ⁺).
7895.0 <i>6</i>			E	
8158.8? 7			F	
8267.4 8			E	
8338.0 ^C 4	(15^{+})		E	J^{π} : (M1) transitions to (14 ⁺) states.
8814.3 ^c 5	(16^{+})		E	J^{π} : (M1) γ (15 ⁺).
8964.7 <i>7</i>	(16^{-})		E	J^{π} : (E2) γ to (14 ⁻).
9402.7 8			E	
9431.0 ^c 6	(17^+)		E	J^{π} : M1 γ to (16 ⁺).
10005.6 ^c 7	(18^{+})		E	J^{π} : M1 γ to (17 ⁺).
10873.8 ^c 8	(19^+)		E	J^{π} : (M1) γ to (18 ⁺).
12064 10	(2^{-})	47 keV 5	I	E(level): analog of ⁸⁶ Rb g.s., 2 ⁻ .
14328 10	. ,	36 keV 5	I	
14437 10		25 keV 5	I	
14857 10		26 keV 5	I	
14960 <i>10</i>			I	
15079 10			I	

[†] From least-squares fit to Eγ values for levels populated in γ-ray studies. [‡] In (p,t), only L=0 and L=2 are considered as reliable. [#] From γγ(t) in ⁸⁴Kr(α ,2nγ). [@] From recoil-distance Doppler-shift observed in (¹⁸O,2nγ) (1986Wa25). [&] Band(A): Yrast cascade. Probable member of $\nu g_{9/2}^{-2}$ multiplet.

^a Band(B): γ cascade based on 3⁻.

 ^b Band(C): Band based on 6⁺.
 ^c Band(D): Band based on 12⁺.

^d Band(E): Band based on 11⁻.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.‡	δ^{\ddagger}	α#	Comments
1076.68	2+	1076.65 4	100	$0.0 0^{+}$	E2			B(E2)(W.u.)=11.9 7
1854.22	2+	777.39 12	100 <i>3</i>	1076.68 2+	M1+E2	+0.251 17		B(M1)(W.u.)=0.065 4; B(E2)(W.u.)=7.7 11
		1854.38 <i>13</i>	76.5 22	$0.0 0^{+}$	E2			B(E2)(W.u.)=1.28 8
2229.81	4 ⁺	1153.04 8	100	1076.68 2+	E2		0.00600	B(E2)(W.u.)=7.1 9
2481.96	3-	252.05 <i>13</i>	1.14 5	2229.81 4+	E1		0.00690	$\alpha(K)=0.00611$ 9; $\alpha(L)=0.000665$ 10; $\alpha(M)=0.0001113$ 16
								$\alpha(N)=1.386\times10^{-5}\ 20;\ \alpha(O)=8.73\times10^{-7}\ 13$ B(E1)(W.u.)=0.000269 25
		627.73 9	100 3	1854.22 2 ⁺	E1+M2	-0.07 3		B(E1)(W.u.)=0.000269 25 B(E1)(W.u.)=0.00152 12; B(M2)(W.u.)=9.E+1 8
		027.73 9	100 3	1634.22 2	E1+IVIZ	-0.07 3		B(M2)(W.u.): exceeds RUL(IV)=1.
		1404.8 <i>4</i>	0.56 15	1076.68 2 ⁺				2(112)((11a))
		2482.08 17	0.354 25	$0.0 0^{+}$	[E3]			B(E3)(W.u.)=18.3 20
2642.18	2+	1564.4 [@] 5	110 <i>30</i>	1076.68 2+				
	-	2641.9 <i>4</i>	100 25	$0.0 0^{+}$	[E2]			B(E2)(W.u.)=1.1 4
2672.89	5-	190.73 <i>13</i>	6.00 20	2481.96 3-	E2		0.0958	$\alpha(K)=0.0831$ 12; $\alpha(L)=0.01073$ 16; $\alpha(M)=0.00180$ 3
								$\alpha(N)=0.000217 \ 3; \ \alpha(O)=1.135\times10^{-5} \ 17$
								B(E2)(W.u.)>0.9
								I_{γ} : from ⁸⁶ Y ε decay (14.74 h). In in-beam γ -ray data, branching
								ratio of 11.0 <i>10</i> in $(\alpha,2n\gamma)$ (1983Fi05) and 22.1 8 in (⁹ Be,5n γ)
								are high by a factor of 2 to 4 as compared to that in decay data
		443.14 8	100 <i>3</i>	2229.81 4+	E1+M2	+0.083 11	0.00159 <i>3</i>	$\alpha(K)=0.00141 \ 3; \ \alpha(L)=0.000153 \ 3; \ \alpha(M)=2.56\times10^{-5} \ 5$
								$\alpha(N)=3.20\times10^{-6} \ 6; \ \alpha(O)=2.06\times10^{-7} \ 4$
								$B(E1)(W.u.) > 7.4 \times 10^{-7}$; $B(M2)(W.u.) > 0.083$
2788.9	2+	1711.6 7	100 <i>19</i>	1076.68 2+				
		2790.0 <i>10</i>	6 3	$0.0 0^{+}$	[E2]			B(E2)(W.u.)=0.34 24
2857.41	6+	184.5 <i>4</i>	5.7 25	2672.89 5	D			I_{γ} : unweighted average of values from (${}^{9}\text{Be},5n\gamma$) and (${}^{13}\text{C},3n\gamma$).
		627.61 <i>10</i>	100 <i>I</i>	2229.81 4+	E2		0.00190	$\alpha(K)=0.001675\ 24;\ \alpha(L)=0.000187\ 3;\ \alpha(M)=3.14\times10^{-5}\ 5$
								$\alpha(N)=3.91\times10^{-6} \ 6; \ \alpha(O)=2.46\times10^{-7} \ 4$
								B(E2)(W.u.)>0.052
	404	< · · · · · · · · · · · · · · · · · ·						Mult.: from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ($^{18}\text{O},2\text{n}\gamma$).
2878.32	$(4)^{+}$	648.6 10	100 4	2229.81 4+	(E2)			M.L. M1FOC (W) FOC 1 4 1 A 17
		1024.04 10	100 4	1854.22 2 ⁺	(E2)			Mult.: M1,E2 from $\alpha(K)$ exp. E2 from adopted ΔJ^{π} . Mult.: M1,E2 from $\alpha(K)$ exp. E2 from adopted ΔJ^{π} .
2956.09	8+	1801.70 <i>10</i> 98.68 <i>3</i>	43.5 <i>13</i> 100	1076.68 2 ⁺ 2857.41 6 ⁺	(E2) E2		1.068	Mult.: M1,E2 from $\alpha(K)$ exp. E2 from adopted ΔJ^{α} . $\alpha(K) = 0.895 \ 13$; $\alpha(L) = 0.1461 \ 21$; $\alpha(M) = 0.0246 \ 4$
4730.09	0	90.00 3	100	2037.41 0	£Z		1.000	$\alpha(K) = 0.893 \ 15; \ \alpha(L) = 0.1401 \ 21; \ \alpha(M) = 0.0240 \ 4$ $\alpha(N) = 0.00284 \ 4; \ \alpha(O) = 0.0001137 \ 16$
								B(E2)(W.u.)=2.85 5
								Mult.: from α deduced from intensity balance in IT decay.
2997.41	3-	355.1 <i>3</i>	0.48 12	2642.18 2 ⁺				
		515.18 20	23.5 7	2481.96 3-	M1,E2		0.0029 5	$\alpha(K)=0.0026$ 4; $\alpha(L)=0.00029$ 5; $\alpha(M)=4.8\times10^{-5}$ 9
					,			
								$\alpha(N)=6.0\times10^{-6}\ 10;\ \alpha(O)=3.8\times10^{-7}\ 6$

γ (86Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	$lpha^{\#}$	Comments
2997.41	3-	767.63 <i>13</i> 1142.3 [@] <i>10</i> 1920.72 <i>13</i>	11.5 <i>16</i> 0.48 <i>16</i> 100 <i>3</i>	2229.81 4 ⁺ 1854.22 2 ⁺ 1076.68 2 ⁺	E1(+M2)	-0.01 3		
		2997.6 5	0.040 20	$0.0 0^{+}$	[E3]			
3055.87	5-	383.04 <i>18</i>	100 3	2672.89 5	M1		0.00494	$\alpha(K)$ =0.00437 7; $\alpha(L)$ =0.000481 7; $\alpha(M)$ =8.08×10 ⁻⁵ 12 $\alpha(N)$ =1.015×10 ⁻⁵ 15; $\alpha(O)$ =6.61×10 ⁻⁷ 10 Mult.: from 2014KuZZ.
		826.04 12	90.9 23	2229.81 4+	E1			B(E1)(W.u.)>5.9×10 ⁻⁸ Mult.: [M2+E3] in 82 Se(9 Be,5n γ) from DCO (2014Li25) seems unlikely in view of short half-life of 3055.87 level. δ (M2/E1)=+0.012 <i>19</i> .
3185.29	(3)-	187.87 <i>13</i>	8.18 27	2997.41 3	M1		0.0297	$\alpha(K)=0.0262 \ 4; \ \alpha(L)=0.00294 \ 5; \ \alpha(M)=0.000495 \ 7$ $\alpha(N)=6.20\times10^{-5} \ 9; \ \alpha(O)=3.99\times10^{-6} \ 6$ $\beta(M1)(W.u.)>3.9\times10^{-5}$
		307.00 10	22.5 5	2878.32 (4)+	E1		0.00399	$\alpha(K)$ =0.00354 5; $\alpha(L)$ =0.000384 6; $\alpha(M)$ =6.43×10 ⁻⁵ 9 $\alpha(N)$ =8.02×10 ⁻⁶ 12; $\alpha(O)$ =5.10×10 ⁻⁷ 8 B(E1)(W.u.)>3.9×10 ⁻⁷
		512.42 <i>16</i>		2672.89 5				
		703.34 10	100 3	2481.96 3	M1+E2	+0.25 5	$1.21 \times 10^{-3} \ 2$	B(M1)(W.u.)>8.4×10 ⁻⁶ ; B(E2)(W.u.)>0.00077 α (K)=0.001076 <i>16</i> ; α (L)=0.0001167 <i>17</i> ; α (M)=1.96×10 ⁻⁵ <i>3</i> α (N)=2.46×10 ⁻⁶ 4; α (O)=1.614×10 ⁻⁷ 24
		955.35 <i>20</i> 2108.9 <i>3</i>	6.74 <i>27</i> 0.32 <i>5</i>	2229.81 4 ⁺ 1076.68 2 ⁺				
3291.46	6-	235.47 19	100 4	3055.87 5	D+Q			Mult.: from DCO in 82 Se(9 Be,5n γ) (2014Li25) and in 76 Ge(13 C,3n γ) (2014KuZZ).
		503.0 [@] 4	23 8	2788.9 2+	[M4]			E_{γ} : placement of 503.0 γ to 2 ⁺ level in ⁸⁶ Y ε decay (14.74 h) is highly questionable as its implied M4 multipolarity is inconsistent with short half-life of 3291 level. Also this γ ray has not been confirmed in (α ,2n γ) (1983Fi05), (9 Be,5n γ) (2014Li25) and (13 C,3n γ) (2014KuZZ) experiments.
		619.06 <i>23</i>	54 8	2672.89 5-				<u>-</u>
3317.70	(5)	132.34 <i>10</i> 439.5 <i>3</i>	3.77 <i>19</i> 4.5 <i>15</i>	3185.29 (3) ⁻ 2878.32 (4) ⁺				
		644.8 10	50 8	2672.89 5	(M1+E2)	+0.27 6	$1.48 \times 10^{-3} \ 2$	$\alpha(K)=0.001313 \ 2I; \ \alpha(L)=0.0001429 \ 23; \ \alpha(M)=2.40\times10^{-5} \ 4$ $\alpha(N)=3.02\times10^{-6} \ 5; \ \alpha(O)=1.97\times10^{-7} \ 3$
3362.11	4+	835.7 <i>10</i> 1087.6 <i>5</i> 689.29 <i>25</i>	100 <i>13</i> 0.94 <i>19</i> 49 <i>9</i>	2481.96 3 ⁻ 2229.81 4 ⁺ 2672.89 5 ⁻	(E2)			

γ (86Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${ m I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\#}$	Comments
3362.11	4+	1133.3 10	84 7	2229.81	4 ⁺				
		1507.86 <i>10</i>	100 12	1854.22					
3482.3	6+	809.4 <i>4</i>	100	2672.89					
3500.00	$(3,4,5)^{-}$	182.34 [@] 20	16 5	3317.70 ((5)-				
2200.00	(0,1,0)	444.18 23	99 25	3055.87					
		1017.93 23	28 18	2481.96					
		1270.16 <i>13</i>	100 15	2229.81					
3555.87	(4^+)	237.9 3	25 5	3317.70 (
	,	264.53 13	100 5	3291.46					
		882.96 17	46 15	2672.89					
3645.00	(3^{-})	144.5 <i>3</i>	1.39 15	3500.00 ($(3,4,5)^{-}$				
		1163.03 <i>10</i>	52.4 18	2481.96		M1+E2(+E0)			
		1415.20 23	15 4	2229.81	4 ⁺	. ,			
		1790.90 <i>10</i>	44.3 18	1854.22	2+	E1+M2	-0.167		
		2567.97 18	100 5	1076.68	2+	E1+M2	+0.19 2	1.03×10^{-3}	$\alpha(K)=5.03\times10^{-5}\ 10;\ \alpha(L)=5.32\times10^{-6}\ 11;$ $\alpha(M)=8.91\times10^{-7}\ 18$ $\alpha(N)=1.123\times10^{-7}\ 22;\ \alpha(O)=7.43\times10^{-9}\ 15;$
									$\alpha(IPF) = 0.000971 \ 15$
3664.41	7-	372.8 4	8 4	3291.46	6-	M1		0.00528	$\alpha(K)$ =0.00467 7; $\alpha(L)$ =0.000514 8; $\alpha(M)$ =8.64×10 ⁻⁵ 13
									$\alpha(N)=1.084\times10^{-5}\ 16;\ \alpha(O)=7.06\times10^{-7}\ 10$
		708.5 <i>5</i>	10 <i>3</i>	2956.09 8	8+	E1			γ reported in (13 C, 3 n γ) only.
		807.0 <i>3</i>	100 5	2857.41	6+	E1			
3665.3	$(5,6,7)^{-}$	183.0 <i>12</i>	100	3482.3					
3686.84	3-	2610.11 20	100	1076.68	2+				
3765.74	3-,4-,5-	209.80 [@] 23	8.3 <i>3</i>	3555.87 ((4^{+})				
		448.10 [@] 10	1.6 5	3317.70 ($(5)^{-}$				
		580.57 10	100.0 29	3185.29		(M1)		0.00186	B(M1)(W.u.)>1.1×10 ⁻⁵ α (K)=0.001644 23; α (L)=0.000179 3; α (M)=3.01×10 ⁻⁵ 5
									$\alpha(N)=3.78\times10^{-6} 6$; $\alpha(O)=2.47\times10^{-7} 4$
		709.90 10	54.8 <i>16</i>	3055.87		M1,E2			
		768.3 10	6.7 22	2997.41					
		887.40 <i>17</i>	9.1 9	2878.32 (
		1092.68 <i>13</i>	14.5 9	2672.89					
		1283.96 <i>13</i>	6.0 22	2481.96					
2774.00	(4.5)+	1535.67 13	2.4 7	2229.81					
3774.98	$(4,5)^+$	719.17 <i>23</i> 1102.02 <i>23</i>	100 <i>15</i> 89 <i>11</i>	3055.87 ± 2672.89 ±					
		1102.02 23	09 11	2012.09	J				

 ∞

γ (86Sr) (continued)

							_	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α #	Comments
3782.70	6+	1552.9 <i>4</i>	100 4	2229.81 4+	E2			
3831.12	(3,4)	331.08 23	9.10 27	3500.00 (3,4,5)	M1(+E2)	0.3 3	0.0076 13	$\alpha(K)$ =0.0067 11; $\alpha(L)$ =0.00075 14; $\alpha(M)$ =0.000126 23
								$\alpha(N)=1.6\times10^{-5} \ 3; \ \alpha(O)=1.01\times10^{-6} \ 15$
		645.9 10	100 12	3185.29 (3)-	(M1)		1.46×10^{-3}	$\alpha(K)=0.001290 \ 19; \ \alpha(L)=0.0001401 \ 21;$ $\alpha(M)=2.35\times10^{-5} \ 4$ $\alpha(N)=2.96\times10^{-6} \ 5; \ \alpha(O)=1.94\times10^{-7} \ 3$
		833.7 10	16 <i>4</i>	2997.41 3-				$\alpha(N)=2.90\times10^{-5}$; $\alpha(O)=1.94\times10^{-5}$
		1349.15 10	32.2 10	2481.96 3	M1,E2			
3871.5	3-	2017.1 6	64 8	1854.22 2 ⁺	W11,E2			
3071.3	3	2794.9 <i>4</i>	100 8	1076.68 2 ⁺				
3926.04	$(4)^{+}$	370.28 17	41.0 20	3555.87 (4 ⁺)				
3720.01	(1)	425.97 23	15.2 8	3500.00 (3,4,5)				
		608.29 10	100 7	3317.70 (5)	E1+M2	0.2 1	0.00087 19	$\alpha(K)=0.00077 \ 17; \ \alpha(L)=8.4\times10^{-5} \ 19;$ $\alpha(M)=1.4\times10^{-5} \ 4$
		@						$\alpha(N)=1.8\times10^{-6} \ 4; \ \alpha(O)=1.1\times10^{-7} \ 3$
		634.78 [@] 10	4.5 12	3291.46 6				
		740.81 <i>13</i>	67.6 25	3185.29 (3)				
		1253.11 10	76.2 25	2672.89 5	E1(+M2)	0.2 2		
		1696.25 <i>13</i>	31.6 8	2229.81 4+				
3942.46	3-	256.4 [@] 4	20 7	3686.84 3-				
		2088.09 25	65 7	$1854.22 \ 2^{+}$				
		2865.9 <i>3</i>	100 17	1076.68 2+				
3968.96	3-,4-,5-	469.24 25	55 5	3500.00 (3,4,5)				
		783.6 <i>3</i>	48 6	3185.29 (3)				
		971.43 <i>18</i>	50 6	2997.41 3-				
		1296.03 23	100 6	2672.89 5				
3973.1	$(6,7,8^+)$	490.80 20	100	3482.3 6+				
4146.21	3,4+	380.4 <i>3</i>	100 7	3765.74 3-,4-,5-				
		2291.8 5	27.3 18	1854.22 2+				
4440 =	(0)	3069.7 4	25 4	1076.68 2+	-			
4148.5	(9)	1192.4 4	100	2956.09 8+	D		0.00020	(II) 0.00004 10 (I) 0.000061 14
4154.28	8+	371.6 3	20 6	3782.70 6 ⁺	E2		0.00938	$\alpha(K)=0.00824 \ 12; \ \alpha(L)=0.000961 \ 14;$ $\alpha(M)=0.0001613 \ 23$ $\alpha(N)=1.99\times10^{-5} \ 3; \ \alpha(O)=1.182\times10^{-6} \ 17$
		489.85 23	100.0 18	3664.41 7-	E1		1.18×10^{-3}	$\alpha(K)$ =0.001049 <i>15</i> ; $\alpha(L)$ =0.0001133 <i>16</i> ; $\alpha(M)$ =1.90×10 ⁻⁵ <i>3</i>
		1198.15 <i>21</i>	35 11	2956.09 8+	(E2)			$\alpha(N)=2.38\times10^{-6} 4$; $\alpha(O)=1.533\times10^{-7} 22$

γ (86Sr) (continued)

E_i (level)	\mathbf{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.‡	δ^{\ddagger}	α#	Comments
4206.11	$(3^-,4,5^-)$	1150.3 10		3055.87	5-				
		1327.5 5	16 7	2878.32					
		1533.19 <i>13</i>	40 6	2672.89					
		1724.15 <i>10</i>	100 7	2481.96	3-				
4339.3?		1154.0 [@] 15	100	3185.29	$(3)^{-}$				
4410.7	3-	2180.8 <i>10</i>	27 7	2229.81	4+				
		3334.0 5	100 <i>13</i>	1076.68	2+				
4600.6	$(6,7,8)^{-}$	627.5 10	100	3973.1	$(6,7,8^+)$				
4709.13	10 ⁺	1753.03 <i>15</i>	100	2956.09	8+	E2			B(E2)(W.u.)>0.11
									Mult.: from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ($^{18}\text{O},2\text{n}\gamma$), and from DCO in $^{76}\text{Ge}(^{13}\text{C},3\text{n}\gamma)$.
4718.0	3,4 ⁽⁺⁾	2862 <i>3</i> 3642 2	22 <i>10</i> 100 <i>20</i>	1854.22 1076.68					
4924.6	(9)	1260.2 6	100	3664.41	7-	E2			Mult.: from DCO in 76 Ge(13 C,3n γ) (2014KuZZ).
4954	3,4 ⁽⁺⁾	3877 6	100	1076.68					, , , , , , , , , , , , , , , , , , , ,
4976.22	$(10)^{+}$	821.9 2	100	4154.28		E2			
5012.7	(11-)	303.6 <i>3</i>	100	4709.13	10 ⁺	(E1)		0.00412	$\alpha(K)=0.00365 \ 6$; $\alpha(L)=0.000396 \ 6$; $\alpha(M)=6.63\times10^{-5} \ 10$ $\alpha(N)=8.27\times10^{-6} \ 12$; $\alpha(O)=5.25\times10^{-7} \ 8$
5425.6		825.0 10	100	4600.6	$(6,7,8)^{-}$, , , , , , , , , , , , , , , , , , , ,
5544.0	(9)	567.8 <i>4</i>	72 27	4976.22					
		1389.8 <i>4</i>	100 7	4154.28	8+	E1			
5660.6	(12^{-})	648.0 7	100	5012.7	(11^{-})	D+Q			
5834.6	$(11)^{-}$	1125.59 22	100	4709.13	10 ⁺	E1			$B(E1)(W.u.)>1.2\times10^{-5}$
									Mult., δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ($^{18}\text{O},2\text{n}\gamma$); $\delta(\text{E2/M1}) = -0.02$ 4.
5847.9	(10)	303.9 4	100	5544.0	(9)	M1		0.00871	$\alpha(K)$ =0.00770 11; $\alpha(L)$ =0.000852 13; $\alpha(M)$ =0.0001434 21 $\alpha(N)$ =1.80×10 ⁻⁵ 3; $\alpha(O)$ =1.166×10 ⁻⁶ 17
5984.3		1059.7 4	100	4924.6	$(9)^{-}$				
5984.8	$(11)^{-}$	1275.5 5	100	4709.13	10+	E1			
6041.1	(11)	193.4 6	100	5847.9	$(10)^{-}$	D+Q			
6061.3	$(12)^{-}$	76.3 5	13 <i>3</i>	5984.8	$(11)^{-}$				
		226.68 4	100 5	5834.6	(11)	M1(+E2)	-0.05 5	0.0183 4	$\alpha(K)=0.0162 \ 4; \ \alpha(L)=0.00181 \ 4; \ \alpha(M)=0.000304 \ 7$ $\alpha(N)=3.82\times10^{-5} \ 8; \ \alpha(O)=2.46\times10^{-6} \ 5$ $B(M1)(W.u.)=0.19 \ 6; \ B(E2)(W.u.)=10 \ +21-10$ $Mult.,\delta$: from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(^{18}O,2n\gamma)$.
6191.2	(13)	129.83 <i>3</i>	100	6061.3	(12)	M1(+E2)	-0.02 3	0.0795 13	$\alpha(K)$ =0.0701 12; $\alpha(L)$ =0.00796 14; $\alpha(M)$ =0.001340 24 $\alpha(N)$ =0.000168 3; $\alpha(O)$ =1.069×10 ⁻⁵ 17 B(M1)(W.u.)=1.9 5 B(M1)(W.u.)=1.9 6; B(E2)(W.u.)=5.E+1 +16-5 Mult., δ : from $\gamma(\theta)$; $\gamma(\text{lin pol) in } (^{18}O,2n\gamma)$.

γ (86Sr) (continued)

$E_i(level)$	J_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	$\alpha^{\#}$	Comments
6205.1	$(12)^{+}$	1228.8 2	100	4976.22	$(10)^{+}$	E2		
6315.3		254.0 5	100	6061.3	$(12)^{-}$			
6687.4	(13^{-})	646.4 5	77 25	6041.1	(11)			
		1026.8 5	100 25	5660.6	(12^{-})			Mult.: D+Q in 2014Li25 and (E2) in 2014KuZZ.
6879.0	12+	674.0 5	100 11	6205.1	$(12)^{+}$	(E2)		Mult.: $\Delta J=0$ transition (2014KuZZ).
		817.9 7	20 8	6061.3	$(12)^{-}$			
		894.2 7	23 8	5984.8	$(11)^{-}$			
		1044.0 7	16 9	5834.6	$(11)^{-}$			
		1902.6 7	19 5	4976.22	$(10)^{+}$	(E2)		
		2169.7 5	50 11	4709.13	10 ⁺	E2		
6890.6	$(14)^{-}$	699.6 <i>3</i>	100	6191.2	$(13)^{-}$	M1		
7071.7		756.4 <i>5</i>	100	6315.3				
7241.1	(14^{-})	554.0 5	100	6687.4	(13^{-})	(M1)	0.00207	$\alpha(K)=0.00183 \ 3; \ \alpha(L)=0.000199 \ 3; \ \alpha(M)=3.35\times10^{-5} \ 5$
	` ′				` ′	. ,		$\alpha(N)=4.21\times10^{-6}$ 6; $\alpha(O)=2.76\times10^{-7}$ 4
7336.7	(13^{+})	457.6 <i>3</i>	100 6	6879.0	12 ⁺	(M1)	0.00323	$\alpha(K)=0.00286$ 4; $\alpha(L)=0.000313$ 5; $\alpha(M)=5.26\times10^{-5}$ 8
7550.7	(13)	137.03	100 0	0077.0	12	(1111)	0.00323	$\alpha(N)=6.61\times10^{-6}$ 10; $\alpha(O)=4.31\times10^{-7}$ 6
		649.0 7	27 9	6687.4	(13^{-})			$u(1) = 0.01 \times 10 10, \ u(0) = 4.51 \times 10 0$
		1131.8 7	15 6	6205.1	$(13)^{+}$	M1+E2		
7461.0	(15=)						0.00102	$\alpha(K)=0.001706\ 24;\ \alpha(L)=0.000186\ 3;\ \alpha(M)=3.12\times10^{-5}\ 5$
7461.8	(15 ⁻)	571.3 <i>3</i>	100	6890.6	(14)	M1	0.00193	$\alpha(N)=0.001700\ 24$; $\alpha(L)=0.000180\ 5$; $\alpha(M)=3.12\times10^{-5}\ 3$ $\alpha(N)=3.92\times10^{-6}\ 6$; $\alpha(O)=2.57\times10^{-7}\ 4$
7640.7	(14^{+})	1435.5 <i>3</i>	100	6205.1	$(12)^{+}$	E2		
7822.0	(1)	4718 <i>5</i>	33 9	3104	(0^+)			
		4775 5	21 7	3047				
		5034 5	30 8	2788.9	2+			
		5180 5	15 7	2642.18	2+			
		5323 5	20 7	2499				
		5619 <i>5</i>	16 7	2203	0_{+}			
		5716 5	29 6	2106	0_{+}			
		5969 <i>5</i>	59 8	1854.22				
		6744 5	21 5	1076.68				
		7820 <i>5</i>	100 9	0.0	0_{+}			
7844.4	(14^+)	507.6 <i>3</i>	100 12	7336.7	(13^{+})	(M1)	0.00253	$\alpha(K)=0.00224$ 4; $\alpha(L)=0.000245$ 4; $\alpha(M)=4.11\times10^{-5}$ 6 $\alpha(N)=5.17\times10^{-6}$ 8; $\alpha(O)=3.38\times10^{-7}$ 5
		603.7 5	35.7 22	7241.1	(14^{-})			w(1) 511/110 0, w(0) 5150/10 5
		1639.3 7	12 4	6205.1	$(12)^{+}$			
7895.0		1833.7 5	100	6061.3	$(12)^{-}$			
8158.8?		697.0 [@] 5		7461.8	(15^{-})			
8267.4		1376.7 7	100	6890.6				
	(15+)				$(14)^{-}$	(M1)	0.00271	(IZ) 0.00220 4 - (I) 0.0002(2 4 - (M) 4.40\(\)10=5 7
8338.0	(15^+)	493.5 3	100 11	7844.4	(14+)	(M1)	0.00271	$\alpha(K)=0.00239$ 4; $\alpha(L)=0.000262$ 4; $\alpha(M)=4.40\times10^{-5}$ 7 $\alpha(N)=5.52\times10^{-6}$ 8; $\alpha(O)=3.61\times10^{-7}$ 5

γ (86Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	$\alpha^{\#}$	Comments
8338.0	(15+)	697.2 3	78 8	7640.7 (14 ⁺)	(M1)	1.23×10^{-3}	$\alpha(K)$ =0.001087 16; $\alpha(L)$ =0.0001178 17; $\alpha(M)$ =1.98×10 ⁻⁵ 3 $\alpha(N)$ =2.49×10 ⁻⁶ 4; $\alpha(O)$ =1.634×10 ⁻⁷ 23
8814.3	(16+)	476.2 <i>3</i>		8338.0 (15+)	(M1)	0.00294	$\alpha(K) = 0.00260 \ 4; \ \alpha(L) = 0.000285 \ 4; \ \alpha(M) = 4.78 \times 10^{-5} \ 7$ $\alpha(N) = 6.01 \times 10^{-6} \ 9; \ \alpha(O) = 3.93 \times 10^{-7} \ 6$
		1353.0 7		7461.8 (15 ⁻)			
8964.7	(16^{-})	2074.0 5	100	6890.6 (14)	(E2)		
9402.7	. ,	1507.6 <i>5</i>	100	7895.0			
9431.0	(17+)	616.7 <i>3</i>	100	8814.3 (16 ⁺)	M1	1.62×10^{-3}	$\alpha(K)=0.001433\ 21;\ \alpha(L)=0.0001557\ 22;\ \alpha(M)=2.62\times10^{-5}\ 4$ $\alpha(N)=3.29\times10^{-6}\ 5;\ \alpha(O)=2.16\times10^{-7}\ 3$
10005.6	(18+)	574.6 <i>3</i>	100	9431.0 (17+)	M1	0.00190	$\alpha(K)$ =0.001684 24; $\alpha(L)$ =0.000183 3; $\alpha(M)$ =3.08×10 ⁻⁵ 5 $\alpha(N)$ =3.87×10 ⁻⁶ 6; $\alpha(O)$ =2.53×10 ⁻⁷ 4
10873.8	(19^+)	868.2 5	100	10005.6 (18+)	(M1)		

[†] Weighted averages taken when a level is populated in more than one decay or reaction. [‡] From $\gamma\gamma(\theta)$ and ce data in ε decay (14.74 h), unless indicated otherwise.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan and A. A. Sonzogni	NDS 115,135 (2014)	1-Nov-2013

 $Q(\beta^{-})=-3622.6\ 15$; $S(n)=11112.64\ 16$; $S(p)=10612.5\ 11$; $Q(\alpha)=-7906.9\ 11$ 2012Wa38 S(2n)=19540.79 20; S(2p)=19233.6 11 (2012Wa38).

 α : Additional information 1.

⁸⁸Sr Leve<u>ls</u>

Cross Reference (XREF) Flags

		A 88 Rb $β^-$ decay B 88 Y $β^+$ decay C 80 Se(11 B,p2nγ) D 86 Kr($α$,2nγ) E 86 Sr(t,p) F 87 Sr(n,γ) E=the G 87 Rb(3 He,d) H 87 Sr(d,p)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level) [†]	J^{π}	${ m T}_{1/2}^{\cprescript{\ddagger}}$	XREF	Comments
0 1836.090 8	0 ⁺ 2 ⁺	stable 0.154 ps 8	ABCDEFGHIJKLMNO QRSTUVW ABCDEFGHIJKLMNO QRSTUVW	μ =+2.44 22 J ^π : E2 1826γ to 0 ⁺ , L(p,t)=2. T _{1/2} : weighted average of 0.155 ps 8 from (γ,γ') and 0.152 ps 12 from DSAM in Coul. Ex. Others: 0.159 ps 13 from B(E2) in (e,e') and 0.185 ps 14 from DSAM in (n,n'γ). μ : from transient field technique in Coul. Ex.
2734.137 8	3-	0.70 ps <i>5</i>	ABCDEFGH JKLMNO Q S VW	(2012Ku14). J ^{π} : L(t,p)=3. T _{1/2} : weighted average of 0.78 ps 5 from B(E3) in (e,e') and 0.67 ps 3 from DSAM in Coul. Ex. Other: 0.67 ps +19-13 from DSAM in (n,n' γ).
3156.19 <i>10</i> 3218.489 <i>22</i>	0 ⁺ 2 ⁺	1.5 ps +8-4 0.155 ps 10	E G KLM O UV AB EFGHIJKLM R T	J^{π} : L(t,p)=0. J^{π} : L(t,p)=2. $T_{1/2}$: Other: 0.13 ps 6 from B(E2)=0.0014 7 in (e,e').
3378.2 10	1	22 [@] ps 3	I	J^{π} : D 3378 γ to 0 ⁺ .
3486.56 <i>4</i>	1+	2.78 [@] fs 24	A FGIKLM RT	J^{π} : M1 3487 γ to 0 ⁺ .
3522.77 7	(2 ⁺)	46 fs <i>15</i>	A F M	$T_{1/2}$: Other: 4.6 fs 39 from DSAM in $(n,n'\gamma)$. J^{π} : 3523 γ to 0 ⁺ , 2167 γ from 4 ⁺ .
3584.784 19	5-	0.14 [#] ns 4	BCD FGH KLM S VW	J^{π} : L(p,p')=5, E2 851 γ to 3 ⁻ . T _{1/2} : Other: 1.7 ps +6-3 from DSAM in (n,n' γ).
3635.09 4	(3) ⁺	0.76 ps +21-14	A FGH JKLM RST	J ^{π} : L(³ He,d)=1 on 3/2 ⁻ target; primary γ from 4 ⁺ ,5 ⁺ capture state; Δ J=1, M1+E2 1779 γ to 2 ⁺ .
3952.636 22 3990 5	(4)	0.8 ps +7-3	FG KLM E	J^{π} : L(p,p')=5, M1+E2 1219 γ to 3 ⁻ . J^{π} : May be identical to the 3993.8 level if L(t,p)=4,3 is incorrect.
3992.42 7	(0^{+})	>0.48 ps	KLM	J^{π} : $L(p,p')=(0)$, $\gamma(\theta)$ in $(n,n'\gamma)$.
4019.56 <i>4</i>	(6)	<10 [#] ps	CD FG J M vW	J^{π} : L(³ He,d)=4 on 3/2 ⁻ target, M1+E2 434 γ to 5 ⁻ .
4035.52 7	2+	15 fs <i>3</i>	A E IKM Uv	$T_{1/2}$: Other: >1.9 ps from DSAM in $(n,n'\gamma)$. J^{π} : $L(t,p)=2$. $T_{1/2}$: weighted average of 21 fs 7 from DSAM in $(n,n'\gamma)$, 13 fs 3 from (γ,γ') , and 20 fs 11 from

E(level) [†]	J^{π}	T _{1/2} ‡		XREF		Comments
4039.04 <i>3</i> 4170.41 <i>3</i> 4171? <i>4</i>	(3) ⁺ (3 ⁻) (6 ⁺ ,7 ⁻)	83 fs 7 1.6 ps +22-6	F H F	LM K M L		B(E2)=0.013 7 in (e,e'). J ^π : L(p,p')=(2), M1(+E2) 842γ from 4 ⁺ . J ^π : 586γ to 5 ⁻ , 1436γ to 3 ⁻ , 4171γ to 0 ⁺ . E(level): possibly identical to 4170.4 level if L(p,p') is incorrect.
4224.10 <i>10</i>			A	k M		J^{π} : L(p,p')=(6,7). $T_{1/2}$: 170 ps 60 based on DSAM in (n,n' γ) of 1006 γ which has only a tentative assignment to this level.
4226.98 12	1	0.15 [@] ps 4]	[J^{π} : D 4227 γ to 0 ⁺ .
4227.20 <i>4</i>	(3 ⁻)	84 fs 26	EF	kLM		J^{π} : L(p,p')=3; D 2391 γ to 2 ⁺ . L(t,p)=4 is discrepant.
4232 10	4 ⁺		E			J ^π : L(t,p)=4. Possibly identical to the 4227.2 level if L(t,p) is incorrect.
4262.9 10	$(1,2^+)$]	Ι		J^{π} : 4263 γ to 0 ⁺ .
4268.70 <i>4</i>	$(3^-,4,5^-)$	0.37 ps 4	F	JKLM		J^{π} : 684 γ to 5 ⁻ , 1534 γ to 3 ⁻ . Decay pattern inconsistent with L(p,p')=(2).
4299.52 5	4+	30 fs 5	EF H			J^{π} : L(t,p)=4.
4353.95 7	(3 ⁻)	0.68 ps +22-14		KLM		J^{π} : D 1136 γ to 2 ⁺ , 769 γ to 5 ⁻ .
4367.94 8	(7-)	<10 [#] ps	CD	KLM	VW	J^{π} : L(d, ⁶ Li)=(7) on 0 ⁺ target, E2 783 γ to 5 ⁻ . $T_{1/2}$: Other: >600 fs from DSAM in (n,n' γ).
4413.96 4	(2)+	16 fs 3	A EF H	KLM		J^{π} : L(d,p)=2(+0) on 9/2 ⁺ target. 1970Ra10 deduced L(t,p)=2+6 for an unresolved doublet. Also 1987Li02 concluded this level to be a doublet from the large L(d,p)=2 strength.
4440.72 8		367 fs 49	F	KLM		doublet from the large 2(u,p) 2 strength
4451.97 <i>3</i>	$(4)^{+}$	222 fs 42	F H	LM		J^{π} : L(d,p)=2(+0) on 9/2 ⁺ target; 2616 γ to 2 ⁺ .
4484.83 7	0+	97 fs 7	E	KLM	V	XREF: $V(4470)$. J^{π} : $L(t,p)=0$.
4514.028 <i>17</i>	2-	0.9 ps <i>3</i>	A	k M		J ^π : log ft =5.5 from 2 ⁻ . J=1,3 rejected by $\gamma\gamma(\theta)$ in ⁸⁸ Rb β ⁻ decay.
4514.54 7	+	27 fs 8	F H	k M		J^{π} : L(d,p)=2 on 9/2 ⁺ target indicates a positive parity level near the 4514-keV level.
4521.43 <i>12</i> 4556 <i>3</i>	(6) ⁻		C H	LM	W	J^{π} : L(p,p')=5, M1(+E2) 936 γ to 5 ⁻ . J^{π} : L(d,p)=2 on 9/2 ⁺ target.
4613.8 6	(3-)		H		V	J^{π} : L(d, 6 Li)=(3).
4622.19 9	2+	21 fs 5	E	KLM	•	XREF: E(4619)L(4626).
1622.0.6	+		TT			J^{π} : L(t,p)=2. J^{π} : L(d,p)=2 on 9/2 ⁺ target.
4632.0 <i>6</i> 4640.40 <i>7</i>		132 fs <i>14</i>	Н	LM		$L(a,p)=2$ on $9/2^{-1}$ target. XREF: $L(4645)$.
4680.19 10		0.15 ps +15-7		M		MCI . L(4043).
4687.38 24	(7)	one po tre ,	С	K		XREF: K(4695).
						J^{π} : D 2153 γ from (8).
4742.50 6	1-	2.6 [@] fs 2	A H	[LM	V	J^{π} : E1 γ to 0^+ g.s. E(level): Candidate for 2^+ x 3^- two-phonon state (2002Pi08).
4743?	(6-)			K		$T_{1/2}$: Other: <6 fs from DSAM in $(n,n'\gamma)$. J^{π} : from (e,e'). Form factor is significantly different from that expected for a 1 ⁻ level, suggesting this level is distinct from the 4742.5 level.
4761.8 <i>14</i>	2+	70 fs <i>40</i>	Е Н	K		J ^π : L(t,p)=2. T _{1/2} : from B(E2)=0.0016 8 measured in (e,e') if level decays mainly to g.s.

E(level) [†]	J^π	$T_{1/2}^{\ddagger}$		XREF		Comments
4770.12 <i>5</i> 4801.3 <i>6</i>	2 ⁺ 0 ⁺	6.2 fs 27 16 fs 5		I LM KLM o		J^{π} : L(p,p')=2, 2036 γ to 3 ⁻ , 4771 γ to 0 ⁺ . XREF: E(4794)h(4789)L(4804)o(4800). J^{π} : L(t,p)=0.
4801.4 10	1	0.13 [@] ps 3	h	I k o		XREF: $h(4789)k(4798)o(4800)$. J^{π} : D 4801 γ to 0 ⁺ .
4845.62 <i>3</i>	(3)-	19 fs 5	A EF H	K M	V	XREF: E(4838)V(4850). J^{π} : L(t,p)=(3), log ft =5.5 from 2 ⁻ .
4853.026 <i>16</i>	1-	0.17 ps 2	A	LM		J^{π} : log f_t =5.2 from 2 ⁻ , 1366 γ to 1 ⁺ , 4853 γ to 0 ⁺ . $L(p,p')$ =(2) is discrepant.
4880.57 5	4+	30 fs 3	Н	KLM		$XREF: H(4873)K(4873)L(4886).$ $J^{\pi}: L(d,p)=0+2 \text{ on } 9/2^{+} \text{ target, } 3044\gamma \text{ to } 2^{+}.$
4914.6 <i>10</i>	₁ &	56 [@] fs 9		I		3. E(d,p)=0+2 on 3/2 target, 30447 to 2.
4923.61 6	(2,3,1)	51 fs <i>10</i>	H			J^{π} : (D+Q) 3088 γ to 2 ⁺ .
4930.6 5	2+,3+,4+	64 fs +80-42		KLM		J^{π} : L(p,p')=2.
4988.23 6	2+	12 fs 3	E H	I KLM		J^{π} : $L(t,p)=2$.
5010.59 4	$(3,4^+)$	14 fs 3	F	KLM		J^{π} : 558 γ to (4) ⁺ , 1058 γ to (4) ⁻ , 1792 γ to 2 ⁺ .
5076.65 7			EF H			, , , , , , , , , , , , , , , , , , , ,
5085.49 7	$(2)^{+}$	6.3 fs 28		KLM		XREF: L(5091).
						J^{π} : L(p,p')=2, (E2) 5086 γ to 0 ⁺ .
5092.12 <i>6</i>	(4^{+})	57 fs 8	F H	LM		J^{π} : D 1507 γ to 5 ⁻ , D 2358 γ to 3 ⁻ ,3256 γ to 2 ⁺ .
5103.31 <i>19</i>	(7)		C	K1	W	. () ()
						J^{π} : D 1084 γ to (6) ⁻ .
5113.06 <i>5</i>	$(2^+,3)$	5.3 fs <i>35</i>	F	KlM		XREF: K(5119)I(5109).
						J^{π} : fed by primary γ from $4^+,5^+$ capture state, D
5100.0.3	(1.0+)	0.16 . 0.5		7.00		3277γ to 2^+ .
5123.8 3	$(1,2^+)$	0.16 ps +8-5		1M		J^{π} : 5124 γ to 0 ⁺ .
5127.40 9 5136.95 <i>11</i>	(2)	23 fs 7 33 fs <i>10</i>	Н	lM M	V	J^{π} : (Q) 5128 γ to 0 ⁺ .
5163.91 <i>14</i>	2+	51 fs <i>13</i>	E H		V	XREF: H(5157).
3103.71 14	2	31 13 13		K II		J^{π} : L(t,p)=2.
5168.80? 5		23 fs <i>3</i>		klM		3 . L(t,p)-2.
5170.1 3	(2^{+})	48 fs 23		klM		J^{π} : (E2) 5170 γ to 0 ⁺ .
	(- /					E(level): measured $F(\tau)$ of 5169.9 depopulating transition is sufficiently different from $F(\tau)$'s of γ 's depopulating the 5168.8 level to suggest that the 5170.1 level is distinct.
5199 8	4+		H		V	J^{π} : L(d, ⁶ Li)=4 on 0 ⁺ target.
5253.92 7	(3^{-})	33 fs 8	E	KLM		J^{π} : L(t,p)=(3), L(p,p')=(3).
5263.06 20		18 fs 4		M		
5275.98 8	$(1^-,2^+)$	17 fs 4		M		J^{π} : 1284 γ to 0 ⁺ , 2542 γ to 3 ⁻ .
5307.53 12	(1)	35 fs 6	Н			J^{π} : (D) 1315 γ to 0 ⁺ .
5321.36 3	4+	104 f- 20	F	KL		J^{π} : L(p,p')=4, 1737 γ to 5 ⁻ , 2103 γ to 2 ⁺ .
5322.39 7	(2,3)	104 fs 28		М		J ^{π} : 1095 γ to 1, 1687 γ to (3 $^+$), 2588 γ to 3 $^-$. Possibly identical to the 5321.36 level, however, depopulating transitions observed by (n, γ), E=thermal and (n,n' γ) are different.
5370.5 <i>3</i>			C		W	
5383 5	4+		E	L	٧	XREF: $E(5376)V(5360)$. J^{π} : $L(t,p)=4$.
5393.25 7	(2^{+})	32 fs 12		M		J^{π} : 941 γ to (4) ⁺ , 5393 γ to 0 ⁺ .
5396.0 <i>3</i>	(2+)	0.18 ps +9-6		M		J^{π} : (E2) 5396 γ to 0 ⁺ .
5415.7 28	$4^{+},5^{+}$		Н			J^{π} : L(d,p)=0(+2) on 9/2 ⁺ target.
5424.61 5	(3-)	83 fs <i>35</i>	F	LM		XREF: L(5419).
						J^{π} : L(p,p')=(3), 3589 γ to 2 ⁺ .
5427.6 <i>3</i>	(8)		С		W	J^{π} : D 324γ to (7).

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF		Comments
5427.71 <i>4</i>	(4-,5)		F		J^{π} : fed by primary γ from $4^+,5^+$ capture state,
5465.0 <i>21</i>	4 ⁺		Е Н К		$1408\gamma \text{ to } (6)^{-}$. XREF: E(5470).
3403.0 21	+		E H K		J^{π} : L(t,p)=4, L(d,p)=0 on 9/2 ⁺ target.
					E(level): from (d,p) .
5472.88 10	$(2^-,3^-,4^-)$	<0.7 fs	LM		XREF: L(5467).
					L(p,p')=(3).
5485.6 <i>16</i>	1	0.7 ps +30-4	H KLM		J^{π} : D 5486 γ to 0 ⁺ .
5498.7 <i>11</i> 5517.2 <i>3</i>	$(1,2^+)$ (1,2,3)	>0.7 ps 19 fs + <i>19</i> - <i>15</i>	M M		J^{π} : 5499 γ to 0 ⁺ . J^{π} : (D) 3681 γ to 2 ⁺ .
5518.23 5	(1,2,3) 4 ⁺	19 18 +19-13	F H KL	V	XREF: V(5490).
2010.20				•	J^{π} : L(d,p)=0 on 9/2 ⁺ target. 2300 γ to 2 ⁺ .
5528.9 <i>6</i>			H K		E(level): from (d,p).
5537? 6	2-,3-,4-		L		Possibly identical to 5529 level.
5540 00 10	(1)	20.5.10	W		J^{π} : L(p,p')=3.
5542.20 <i>10</i> 5583.3 <i>3</i>	(1)	29 fs <i>10</i> >3.3 ps	M E LM		J^{π} : (D) 5542 γ to 0 ⁺ .
5590.32 <i>14</i>	$(1^-,2,3^+)$	45 fs <i>15</i>	M M		J^{π} : 2103 γ to 1 ⁺ , 2856 γ to 3 ⁻ .
5600.6 10	$(1,2^+)$		I		J^{π} : 5600 γ to 0 ⁺ .
5614 <i>6</i>			L		·
5655.3 <i>3</i>	(8)	<10 [#] ps	CD	W	J^{π} : D 1287 γ to (7 ⁻).
5656.50 <i>10</i>	$(2^+,3,4^+)$	<12 fs	H LM		J^{π} : 1357 γ to 4 ⁺ , 3821 γ to 2 ⁺ .
5678.34 <i>14</i>	(4) ⁺	23 fs 6	н км	V	J^{π} : L(d,p)=2(+0) on 9/2 ⁺ target, L(d, Li)=(4) on 0 ⁺ target.
5689.00 <i>4</i>	3+,4+	0.29 ps 8	EF H LM		J^{π} : L(p,p')=4, 2955 γ to 3 ⁻ .
5691.3 <i>10</i>	1	38 [@] fs 9	I		J^{π} : D 5691 γ to 0 ⁺ .
5693.93 9	2+	67 fs <i>19</i>	E M		XREF: E(5699).
5706.5 <i>7</i>			Н		J^{π} : 1394 γ to 4 ⁺ , 5693 γ to 0 ⁺ .
5710.78 10		<9 fs	M		
5730.18 20	4+	>0.2 ps	E H KLM		XREF: E(5724).
					J^{π} : L(d,p)=0 on 9/2 ⁺ target, 3894 γ to 2 ⁺ .
5738.3 7	0+	25 f. 11	H		VDEE, E/57/6\
5772.23 12	0^+	25 fs <i>11</i>	E H KLM		XREF: $E(5766)$. J^{π} : $L(t,p)=0$.
5800.71 <i>10</i>	$(1^-,2,3^+)$	32 fs 10	KLM		XREF: K(5806).
	() /- /				J^{π} : 2314 γ to 1 ⁺ , 3006 γ to 3 ⁻ .
5812.08 <i>6</i>	3-	7 fs 5	EF H KLM		XREF: K(5821).
					J^{π} : L(p,p')=3, fed by primary γ from 4 ⁺ ,5 ⁺ capture
5831.5 5	$(1,2^+)$	>1 ps	M		state, 3976γ to 2^+ . J^{π} : 5831γ to 0^+ .
5835.58 6	$(3^-,4^+)$	33 fs 9	F H LM		J^{π} : 2251 γ to 5 ⁻ , 4000 γ to 2 ⁺ .
5858.5 6	4+,5+	00 10 /	E H KL		J^{π} : L(p,p')=4, L(d,p)=2(+0) on 9/2 ⁺ target;
					L(t,p)=(3) is discrepant.
5866.0 <i>4</i>	$(1,2^+)$	0.9 ps +9-3	M		J^{π} : 5866 γ to 0 ⁺ .
5876? 8 5925 <i>6</i>			Н		E(laval): from (n n')
5951.09 <i>4</i>	(4^{-})		KL F KL		E(level): from (p,p') . J^{π} : 1723 γ to (3^{-}) , 1912 γ to (3^{+}) , 1931 γ to $(6)^{-}$.
5990.0 <i>3</i>	$(1,2^+)$	0.033 ps 9	I M		J^{π} : 5989 γ to 0 ⁺ .
5996.24 6	4+	23 fs 8	F H KLM		J^{π} : L(d,p)=0(+2) on 9/2 ⁺ target, 4160 γ to 2 ⁺ .
6010.0 <i>10</i>	1-	1.4 [@] fs <i>I</i>	I L		J^{π} : E1 6010 γ to 0 ⁺ .
6011.15 6	(2^{+})		EF		XREF: E(6005).
6011 59 3	(2=)	41 f- + 20 22	34		J^{π} : L(t,p)=(2).
6011.5? 3	(3 ⁻)	41 fs +29-22	М		E(level): possibly identical to 6011.15 level, however, depopulating transitions observed in $(n,n'\gamma)$ are
					depopulating transitions observed in (ii,ii y) are

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}^{\ddagger}$	XREF	Comments
6021.5 5 6034? 6 6052.2 3	+ (2 ⁺)	>1.1 ps	H KL E H K1M	different. J^{π} : 2058 γ to 5 ⁻ , 2856 γ to 0 ⁺ . J^{π} : L(d,p)=2 on 9/2 ⁺ target. Possibly identical to 6021.5 level. XREF: H(6047).
6053.86 <i>21</i> 6065.7 <i>4</i>	(2) ⁺	44 fs <i>16</i>	lM H	J^{π} : L(t,p)=(2). J^{π} : L(t,p)=(2); L(d,p)=2(+0) on 9/2 ⁺ target. J^{π} : L(d,p)=2+0 on 9/2 ⁺ target.
6074.5? 7 6099.01 20 6101.4 3 6106.00 24	(3,4 ⁺) (1,2 ⁺) (1,2,3)	61 fs +91-45 17 fs 8 >0.8 ps <0.2 ps	H M M M KLM	J^{π} : D 2146 γ to (4) ⁻ , 4263 γ to 2 ⁺ . J^{π} : 6101 γ to 0 ⁺ . J^{π} : (D) 2070 γ to 2 ⁺ .
6125.20 6		·	eF kl	J ^π : L(t,p)=(3). E(level): depopulating transitions observed in (n,n'γ) and (n,γ), E=thermal for levels at ≈6125 keV are different, suggesting two closely spaced levels.
6126.6 4		0.26 ps +26-10	e klM	J^{π} : L(t,p)=(3). E(level): depopulating transitions observed in $(n,n'\gamma)$ and (n,γ) , E=thermal for levels at \approx 6125 keV are different, suggesting two closely spaced levels.
6132.92 17	+	<29 fs	к м	IT. I (d n) 2 0/2+ 44
6140.4 <i>5</i> 6153.50 <i>20</i>	(1-)	<0.3 ps	H E LM	J^{π} : L(d,p)=2 on 9/2 ⁺ target. J^{π} : L(t,p)=(1).
6168.1 6	(1,2,3)	0.13 ps + 8 - 5	M	J^{π} : (D) 4332 γ to 2 ⁺ .
6173.06 <i>9</i> 6188.0 <i>5</i>	$(1,2^+)$	15 fs 7	H M H	J^{π} : 2180 γ to 0 ⁺ .
6200.63 20	1+	3.5 [@] fs 5	I K M	J^{π} : M1 6202 γ to 0 ⁺ .
6213.9 7	1-	0.247 [@] fs 15	E I 1M	$T_{1/2}$: Other: 0.4 ps +43-2 from DSAM in (n,n' γ). J^{π} : E1 6214 γ to 0 ⁺ .
6216 <i>4</i>	$4^{+},5^{+}$		H 1	J^{π} : L(d,p)=0 on 9/2 ⁺ target.
6233.8 6	(-)		Н	J^{π} : L(d,p)=(1) on 9/2 ⁺ target.
6235.50 17	(7)		C W	J^{π} : D 1714 γ to (6) ⁻ .
6241.5 <i>4</i> 6249.26 <i>7</i>	$(2^-,3^+)$		H F H	J^{π} : 2297 γ to (4) ⁻ , 2764 γ to 1 ⁺ .
6257.85 9	3 ⁺		FH L	J^{π} : L(p,p')=4, 2771 γ to 1 ⁺ .
6270 4	(2^{+})		E	J^{π} : L(t,p)=(2).
6282.8 4	$3^+, 4^+, 5^+$		Н	J^{π} : $L(p,p')=4$.
6292.9? 11			H L	E(level): from (d,p) .
6302.1 <i>4</i>	(2^{+})		E H	XREF: E(6307).
				J^{π} : L(t,p)=(2).
(222 44 10	1-	0.160 [@] fs 10	_	E(level): from (d,p) .
6333.44 10	1-		I	J^{π} : E1 6335 γ to 0 ⁺ .
6346.45 20	1-	1.4 [@] fs <i>1</i>	I	J^{π} : E1 6346 γ to 0 ⁺ . J^{π} : L(d,p)=2 on 9/2 ⁺ target.
6350.7 5			н к	F(d,p) = 2 on 9/2 target. F(d,p) = 2 on 9/2 target.
6362 <i>6</i>			E L	E(level): from (q,p) . E(level): from (p,p') .
6367.0 <i>10</i>	$(1,2^+)$		I	J^{π} : 6367 γ to 0 ⁺ .
6378.1 4	(+)		H	J^{π} : L(d,p)=(2) on 9/2 ⁺ target.
6382.0 10	1&	18 [@] fs 5	I	
6397.7 <i>4</i>			Н	
6417.3 3	+		H KL	XREF: K(6411). J^{π} : L(d,p)=2 on 9/2 ⁺ target.
6430.8 <i>4</i>			ЕН	

E(level) [†]	J^π	T _{1/2} ‡	XREF		Comments
6462 <i>3</i> 6471.05 22 6507.74 <i>6</i>	+ (+) (4+)		H H L F H K		J^{π} : L(d,p)=2 on 9/2 ⁺ target. J^{π} : L(d,p)=(2) on 9/2 ⁺ target. XREF: K(6498).
6518.83 21	(2+)		E H L		J^{π} : L(d,p)=(0) on 9/2 ⁺ target, 3773 γ to 3 ⁻ . XREF: E(6512). J^{π} : L(t,p)=(2). E(level): from (d,p).
6542.9 <i>3</i> 6551.5 <i>3</i>	$(3,4,5)^+$		H H KL		XREF: $K(6558)$. J^{π} : $L(p,p')=4$.
6565.94 22 6575.25 23 6583.70 5 6591.7 9	(1 ⁻ ,2,3 ⁺) 1& 2 ⁻ 2 ⁻	5.2 [@] fs <i>13</i>	H H EF I K	v v	J^{π} : 3850 γ to 3 ⁻ , 3097 γ to 1 ⁺ .
6612.75 <i>6</i> 6618.12 23 6622.96 23	2-,3-		EF L H H		XREF: E(6605). J^{π} : L(p,p')=3, 3125 γ to 1 ⁺ . J^{π} : L(d,p)=2 on 9/2 ⁺ target.
6627.24 24 6634.59 20 6640 6 6666.2? 3 6672.17 26	+ (0 ⁻ ,1 ⁻ ,2 ⁻)		H H L H 1 H 1	V	J^{π} : L(d,p)=2 on 9/2 ⁺ target. J^{π} : L(p,p')=(1).
6692.46 7	$(3^+,2^+)$		EF H	V	J ^{π} : 2241 γ to (4) ⁺ , 3205 γ to 1 ⁺ , fed by primary γ from 4 ⁺ ,5 ⁺ capture state.
6710.4 <i>7</i> 6739 <i>5</i>	1&+	0.0025 [@] ps 13	HI L E H L		XREF: L(6703). XREF: L(6746). J^{π} : L(d,p)=2 on 9/2 ⁺ target.
6770 <i>6</i> 6782.69 <i>19</i> 6798.23 <i>22</i>	+		L H H L		J^{π} : L(d,p)=2 on 9/2 ⁺ target.
6806.89 <i>6</i> 6814.7 <i>3</i>	(4 ⁺)		EF H H		J^{π} : L(t,p)=(4).
6831.9 <i>4</i> 6840.64 <i>17</i> 6854.6 <i>3</i>	(8) 1&	2.1 [@] fs 4	H C HI 1	W	J^{π} : L(d,p)=2 on 9/2 ⁺ target. J^{π} : D 605γ to (7).
6874 <i>10</i> 6897 <i>5</i>			E 1 E L	v	E(level): from (t,p). E(level): weighted average of 6892 10 from (t,p) and 6899 6 from (p,p').
6910.7 <i>4</i> 6916.68 <i>7</i>	$(3^-,2^+)$		H F H		J^{π} : fed by primary γ from $4^+,5^+$ capture state, weak 6916 γ to 0^+ .
6938.6 <i>5</i> 6961.5 <i>5</i>	+ 3 ⁺ ,4 ⁺ ,5 ⁺		H H L		J ^π : L(d,p)=2 on 9/2 ⁺ target. XREF: L(6973). J ^π : L(p,p')=4. E(level): from (d,p).
6987 7011.2 <i>4</i>	1-&	0.81 [@] fs 7	I e H K		XREF: K(7000).
7022.6 <i>4</i> 7056 <i>8</i> 7060.5 <i>5</i> 7071.64 28	3 ⁺ ,4 ⁺ ,5 ⁺ 2 ⁻ ,3 ⁻ ,4 ⁻		e H L L H H		J^{π} : L(p,p')=4. J^{π} : L(p,p')=3. J^{π} : L(d,p)=(2) on 9/2 ⁺ target.
7071.04 28 7089.11 <i>10</i> 7103.2 <i>4</i>	1-&	0.109 [@] fs 7	H I H L		
7119.3 3	(10)		C	W	J^{π} : Q 1464 γ to (8).

E(level) [†]	J^π	$T_{1/2}^{\ddagger}$	XREF	Comments
7129.3 <i>7</i> 7138.84 <i>6</i>	(4 ⁺)		F H	W J^{π} : L(d,p)=(2) on 9/2+ target, 3554 γ to 5-, 5303 γ to 2+.
7169.21 <i>20</i> 7194.7 <i>4</i>	1&	2.9 [@] fs 5	I L H L	J^{π} : L(d,p)=2 on 9/2 ⁺ target.
7207.88 6	(3,4+,2+)		F	E(level): from (d,p). J^{π} : fed by primary γ from $4^+,5^+$ capture state, 5372γ to 2^+ .
7223 <i>5</i> 7255 <i>6</i>	(+)		H H L	J^{π} : L(d,p)=(2) on 9/2 ⁺ target. E(level): weighted average of 7251 10 in (d,p) and 7257 8 in (p,p').
7281.8 <i>3</i>	1-&	0.55 [@] fs 5	I	/[.]
7299.9 <i>3</i>	$(1)^{-}$ &	1.11 [@] fs <i>16</i>	ΙK	
7330.55 <i>19</i> 7333 <i>6</i>	(9)		C H L	W J ^π : D 490γ to (8). E(level): weighted average of 7337 10 in (d,p) and 7330 8 in (p,p').
7360 8			L	
7402 8 7427 <i>6</i>	+		H L	J^{π} : L(d,p)=4 on 9/2 ⁺ target. E(level): weighted average of 7426 <i>10</i> in (d,p) and 7427 8 in (p,p').
7434.2 <i>3</i>	(10)		С	$W J^{\pi}$: Q 1779 γ to (8).
7460 8 7481 8			L L	
7492.8 3	1-&	2.5 [@] fs 7	I	
7526 8	1	2.3 15 /	L	
7533.95 20	1-&	0.32 [@] fs 3	I	
7573.20 6	$(3,4^+,2^+)$		FH L	XREF: H(7561). J ^{π} : fed by primary γ from 4 ⁺ ,5 ⁺ capture state, 5737 γ to 2 ⁺ .
7591.4 <i>3</i>	1-&	0.91 [@] fs 15	HI	
7623 8			L	
7640 <i>10</i> 7641.86 <i>21</i>	(10)		H C	$W = J^{\pi}$: D 311 γ to (9).
7679 6	(10)		H L	E(level): weighted average of 7674 10 in (d,p) and 7682 8 in (p,p').
7749 6			H KL	E(level): weighted average of 7742 10 in (d,p) and 7753 8 in (p,p').
7774.8 3	(11) 1 ^{-&}	0.51@ 0.0	C	$V = V^{\pi}$: D 341 γ to (10).
7807.8 <i>3</i>	1-&	0.54 [@] fs 8 0.221 [@] fs 22	I L	XREF: L(7819).
7838.27 20	(1) ^{-&}	0.221 s 22 0.65 fs 11	HI L	XREF: L(7847).
7877.3 <i>3</i> 7908.76 <i>23</i>	(11)	0.65 18 11	HI L C	XREF: H(7889)L(7874). W J^{π} : (D) 267 γ to (10).
7911 8			L	(2) 20,7 to (10).
7964.19 20	1-&	0.31 [@] fs 3	HI L	
7987.59 <i>20</i> 8003 <i>10</i>	1-&	0.52 [@] fs 7	I H	
8040.79 10	1-&	0.138 [@] fs <i>13</i>	I L	TT T (1) (0)
8069 8 8094.8 <i>4</i>	$(0^+,1^+)$ (12)	<5.1 ps	C	J ^π : L(p,p')=(0). W J ^π : (D) 320γ to (11). T _{1/2} : effective half-life from DSAM in 80 Se(¹¹ B,p2nγ); feeding corrections have not been incorporated.

E(level) [†]	J^{π}	T _{1/2} ‡		Σ	KREF		Comments
8109.5 <i>3</i> 8142 <i>10</i>	1-&	0.54 [@] fs 9		HI H	L		XREF: H(8103)L(8119).
8171 8	$(0^+,1^+)$			п	L		J^{π} : $L(p,p')=(0)$.
8180.7 <i>3</i>	1-&	0.48 [@] fs 6		I	_		() 2(p,p) (0).
8191.11 20	1-&	0.33 [@] fs 4		I	L		XREF: L(8200).
8215.31 20	1-&	0.35 [@] fs 4		I	_		AREI : E(0200).
8228 8	1	0.55 15 7			L		
8271.5 <i>3</i>	1-&	0.54 [@] fs 9		I	L		XREF: L(8268).
							J^{π} : L(p,p')=(0) is discrepant.
8276.1 5	(13)		С			W	J^{π} : D 181 γ to (12).
8302 8	$(0^+,1^+)$ 1^{-}	0.39 [@] fs 6		_	L		J^{π} : $L(p,p')=(0)$.
8325.7 <i>3</i> 8336.3 <i>4</i>	(12)	<2.4 ps	С	I			$T_{1/2}$: effective half-life from DSAM in 80 Se(11 B,p2ny);
6330.3 4	(12)	<2.4 ps	C				feeding corrections have not been incorporated. J^{π} : (D) 561 γ to (11).
8374.9? 5			C				
8375.8 <i>6</i>	₁ &	1.2 [@] fs 4		I			
8407.0 4	1 ^{&}	0.75 [@] fs 16		I			
8437.2 4	(12)	0.55 ps 21	С			W	$T_{1/2}$: from DSAM in 80 Se(11 B,p2n γ). J^{π} : D 528 γ to (11).
8453.4 <i>3</i>	1-&	0.20 [@] fs 3		HI	1		XREF: 1(8470).
8469.0 <i>3</i>	1-&	0.62 [@] fs 12		I	1		XREF: 1(8470).
8500.8 <i>3</i> 8517.9 <i>8</i>	1&	0.35 [@] fs 5		HI		W	XREF: H(8493).
8518.8 <i>4</i>	1-	0.67 fs 15		ΗI			J^{π} : E1 8518 γ to 0 ⁺ .
8553.0? 9		1.7 [@] fs 5		I	L		·
8561.3? 6		0.83 [@] fs 18		I			
8580.6? <i>5</i>		1.0 [@] fs 2		I			
8588.8 <i>4</i>		0.58 [@] fs 12		I			
8626.3 10		1.3 [@] fs 4		I			
8668.7 <i>6</i>	₁ &	1.2 [@] fs 2		I	L		
8682.0 <i>6</i>	₁ &	2.5 [@] fs 6		I			
8713.7 9	1-&	0.6 [@] fs 3		I			
8735.8 9		0.74 [@] fs 12		I			
8754.6 8	1 &	0.52 [@] fs 9		I			
8764.7 5		2.4 [@] fs 6		I			
8779.8 <i>6</i>		0.95 [@] fs 18		I	L		
8791.9 6	1 &	0.97 [@] fs 19		I			
8840.1 <i>4</i>		0.61 [@] fs 11		I			
8850.6 12		2.9 [@] fs 9		I			
8874.4 <i>5</i>	₁ &	1.5 [@] fs 3		I			
8928.5 <i>3</i>	1-&	0.21 [@] fs 3			L		
8935.9 4	(13)		C				J^{π} : D 600 γ to (12).
8980.8 <i>6</i>		0.67 [@] fs 12		I			
9019.2 6		1.6 [@] fs 4		I	1		
9043.6 4	1-&	0.33 ^a fs 9		I	1		
9069.7 6	1-&	0.61 [@] fs <i>11</i>		I			

E(level) [†]	${f J}^\pi$	$T_{1/2}^{\ddagger}$		XREF	Comments
9078.3 <i>3</i>	1-&	0.37 [@] fs 6		I	
9098.3 7	1 <mark>&</mark>	1.2 [@] fs 4		I	
9116.3 5		0.52 [@] fs 8		I	
9125.1 3	1 &	0.34 [@] fs 5		I L	
9148.31 20	1-&	0.183 [@] fs 22		I	
9191.42 <i>14</i>	1-&	0.123 ^a fs 23		I	
9214.4 7	1 &	0.72 [@] fs 14		I	
9255.2 9	₁ &	1.6 [@] fs 6		I L	
9305.7 <i>3</i>	1-&	0.157 [@] fs 22		I	
9341.1 <i>3</i>	1-&	0.55 [@] fs 9		I L	
9384.6 7	1 &	0.71 [@] fs <i>13</i>		I	
9393.3 5	1 &	0.42 [@] fs 7		I	
9402.4 5	1 &	0.55 [@] fs 9		I	
9410.1 6	(13)		C		J^{π} : D 973 γ to (12).
9431.8 10	1&	0.58 [@] fs 12		I	
9445.5 <i>4</i>	1-&	0.163 [@] fs 23		I L	
9470.5 <i>4</i>	$(1^{-})^{\&}$	0.26 [@] fs 4		I	
9478.8 <i>4</i>	1(-)&	0.33^a fs 9		I	
9497.05 20	1-&	0.104 [@] eV <i>12</i>		I	20
9528.3 4	(14)	0.28 ps 10	С		$T_{1/2}$: from DSAM in 80 Se(11 B,p2n γ). J^{π} : D 592 γ to (13).
9550.8 7		1.1 [@] fs 4		I	, , ,
9568.3 <i>5</i>	1 &	0.44 [@] fs 8		I	
9576.8 11		1.2 [@] fs 3		I L	
9597.9 11	1 &	1.1 [@] fs 3		I	
9616.3 <i>6</i>	1 <mark>&</mark>	0.54 [@] fs 10		I	
9646.1 8		1.8 [@] fs 5		I	
9704.1 5	1-&	0.23 [@] fs 5		I L	
9728.2 18		2.3 [@] fs 10		I	
9738.1 <i>16</i>	1&	0.72 [@] fs 18		I	
9746.0 <i>6</i>	1-&	0.18 [@] fs 3		I	
9804.7 9	1&	1.1 [@] fs 3		I	
9816.5 <i>3</i>	1-&	0.39 [@] fs 7		I	
9881.2 <i>4</i>	1(-)&	0.26 [@] fs 4		I L	
9944.1 8	1-&	0.46 [@] fs 8		I	
9953.3 5		0.32 [@] fs 5		I	
9965.8 <i>6</i>	1(-)&	0.52 [@] fs 9		I	00 11
9977.9 <i>5</i>	(15)	0.17 ps +10-3	С		$T_{1/2}$: from DSAM in 80 Se(11 B,p2n γ). J^{π} : D 450 γ to (14).
10056.3 4	₁ &	0.61 [@] fs 10		I	
10089.2 10		1.5 [@] fs 5		I	
10106.9 8	₁ &	0.86 [@] fs 23		I	
10128.2 7		0.93 [@] fs 21		I L	
10139.5 8		1.06 [@] fs 24		I	

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
10150.3 8		0.88 [@] fs 24	I	
10184.0 <i>4</i>		3.5 [@] fs 11	I	
10248.6 4	1 &	1.6 [@] fs 4	I	
10288.6 7	1(-)&	0.45 [@] fs 9	I	
10297.7 <i>13</i>		1.1 [@] fs 3	I	
10326.7 6		1.9 [@] fs 6	I	
10341.3 6		1.7 [@] fs 6	I	
10372.5 5		0.5 [@] fs 5	I	
10406.6 <i>14</i>		0.35 [@] fs 24	I	
10421.1 10		0.8 [@] fs 6	I	
10453.2 12		1.3 [@] fs 5	I	
10481.1 9		1.1 [@] fs 3	I	
10512.1 19		0.77 [@] fs 22	I	
10522.7 5	1 &	0.18 [@] fs 3	I	
10550.3 5	1&	0.40 [@] fs 7	I	
10600.2 16	-	0.61 [@] fs 17	I	
10608.7 14		0.41 [@] fs 11	I	
10644.1 8	1-&	0.30 [@] fs 6	I	
10657.8 16	1 &	0.38 [@] fs <i>13</i>	I	
10698.4 8	•	1.2 [@] fs 4	I	
10726.4 15	₁ &	0.8 [@] fs 3	I	
10739.4 6	(16)	<4.2 ps	С	$T_{1/2}$: effective half-life from DSAM in 80 Se(11 B,p2n γ);
				feeding corrections have not been incorporated. J^{π} : D 762 γ to (15).
10744.9 8		0.80 [@] fs 22	I	, , ,
10759.7 <i>16</i>		1.0 [@] fs 3	I	
10767.1 <i>15</i>	₁ &	0.7 [@] fs 3	I	
10783.6 5	1 &	0.18 [@] fs 4	I	
10804.8 <i>4</i>		0.27 ^a fs 11	I	
10857.4 <i>4</i>		1.7 [@] fs 4	I	
10888.4 9	0	0.51^{a} fs 22	I	
10914.6 5	1 ^{&}	0.35 [@] fs 7	I	
10929.9 7		0.50 [@] fs 12	I	
10950.4 6		0.43 [@] fs 9	I	
10979.7 <i>12</i>	0_	0.9 [@] fs 4	I	
11012.0 5	1&	0.20 [@] fs 3	I	
11059.0 <i>11</i>		0.75 [@] fs 23	I	
11083.1 8	1.8	0.46^{a} fs 18	I	
11111.8 16	1& 1&	0.53 [@] fs 17	I	
11125.4 <i>14</i> 11169.6 <i>8</i>	I.c.	0.43 [@] fs 14 0.46 ^a fs 18	I I	
11109.0 8		1.0 [@] fs 5	I	
11224.2 13		0.68 [@] fs 21	I	
11231.8 12	₁ &	0.30 [@] fs 7	I	
112/8.9 10	1	0.30 - 18 /	1	

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$		XREF	7	Comments
11313.8 6		0.22 [@] fs 12		I		
11326 <i>3</i>		2.2 [@] fs 8		I		
11335.3 <i>13</i>	1 &	0.11 [@] fs 4		I		
11355 <i>3</i>		0.15 [@] fs 7		I		
11356.1? 7	(17)		C			J^{π} : D 617 γ to (16).
11370 <i>3</i>	1&	0.14 [@] fs 5		I		
11393.6 <i>6</i>	1 ^{&}	0.75 [@] fs 18		I		
11413.2 <i>15</i>		0.9 [@] fs 4		I		
11548.0 7		2.0 [@] fs 6		I		
11593.7 <i>16</i>		1.7 [@] fs 6		I		
11607.6 <i>12</i>		1.2 [@] fs 4		I		
11633.0 <i>14</i>		1.7 [@] fs 5		I		
11658.0 <i>16</i>		2.2 [@] fs 8		I		
11743.1 <i>14</i>		1.3 [@] fs 4		I		
11782.4 <i>14</i>		1.5 [@] fs 6		I		
11920.6 7		1.2 [@] fs 3		I		
11935.5 10		2.2 [@] fs 7		I		
11958.9 <i>14</i>		4.1 [@] fs 19		I		
12026.5 10		2.0 [@] fs 7		I		
15645 ^b	$(2^{-})^{b}$	35 keV 5			P	
15674 <mark>b</mark>	$(3^{-})^{b}$	27 keV 5			P	
15918 <mark>b</mark>	$(4^{-})^{b}$	31 keV 4			P	
16500 <mark>b</mark>	$(2^{-})^{b}$	28 keV 5			P	
$17.2 \times 10^3 $ <i>b</i>					P	
$17.8 \times 10^3 $ <i>b</i>					P	
$19.2 \times 10^3 $ <i>b</i>					P	
$20.5 \times 10^{3} $ <i>b</i>					P	

 $^{^{\}dagger}$ From least-squares fit to Ey for levels with y-ray information.

[‡] From Doppler-shift attenuation method in $(n,n'\gamma)$, except where noted. ‡ From Doppler-shift attenuation method in $^{86}{\rm Kr}(\alpha,2n\gamma)$.

[@] From (γ, γ') assuming γ branching ratio to g.s. equal to 100%.

[&]amp; From D, M1, or E1 γ to 0⁺ g.s.

^a Calculated from Γ_0^2/Γ using the adopted branching ratios.

^b Isobaric analog resonance.

							•		
$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ	α	Comments
1836.090	2+	1836.063 12	100	0	0+	E2		3.93×10 ⁻⁴	$\alpha(K)$ =0.0001449 21; $\alpha(L)$ =1.550×10 ⁻⁵ 22; $\alpha(M)$ =2.60×10 ⁻⁶ 4; $\alpha(N)$ =3.27×10 ⁻⁷ 5; $\alpha(O)$ =2.15×10 ⁻⁸ 3 B(E2)(W.u.)=7.6 4 Mult.: from $\gamma(\theta)$ and $\gamma(\theta)$ (lin pol) in (γ, γ') ; $\alpha(K)$ exp in ⁸⁸ Y ε decay. E _{γ} : from ⁸⁸ Y ε decay.
2734.137	3-	898.042 3	100.00 17	1836.090	2+	E1		3.07×10 ⁻⁴	E _γ : from ⁸ Y ε decay. $\alpha(K)=0.000273$ 4; $\alpha(L)=2.92\times10^{-5}$ 4; $\alpha(M)=4.89\times10^{-6}$ 7; $\alpha(N)=6.14\times10^{-7}$ 9; $\alpha(O)=4.02\times10^{-8}$ 6 B(E1)(W.u.)=6.6×10 ⁻⁴ 5 Mult.: from $\gamma(\theta)$ and $\alpha(K)$ exp in ⁸⁸ Y ε decay. E _γ : from ⁸⁸ Y ε decay. δ: $\delta(M2/E1)=-0.002$ 9 from ⁸⁸ Y ε decay.
		2734.086 13	0.69 4	0	0+	(E3)		5.64×10 ⁻⁴	$\alpha(\text{K})$ =0.0001098 16 ; $\alpha(\text{L})$ =1.176×10 ⁻⁵ 17 ; $\alpha(\text{M})$ =1.97×10 ⁻⁶ 3 ; $\alpha(\text{N})$ =2.48×10 ⁻⁷ 4 $\alpha(\text{O})$ =1.639×10 ⁻⁸ 23 B(E3)(W.u.)=22.6 21 E _γ : from ⁸⁸ Rb β ⁻ decay. Mult.: from $\alpha(\text{IPF})$ in ⁸⁸ Y ε decay.
3156.19	0+	1320.1 <i>I</i>	100	1836.090	2+	E2		3.46×10 ⁻⁴	$\alpha(K)$ =0.000278 4; $\alpha(L)$ =3.00×10 ⁻⁵ 5; $\alpha(M)$ =5.04×10 ⁻⁶ 7; $\alpha(N)$ =6.33×10 ⁻⁷ 9; $\alpha(O)$ =4.13×10 ⁻⁸ 6 B(E2)(W.u.)=4.0 +15-14 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL
3218.489	2+	484.44 12	2.3 10	2734.137	3-	[E1]		1.22×10 ⁻³	$\alpha(K)$ =0.001078 16; $\alpha(L)$ =0.0001165 17; $\alpha(M)$ =1.95×10 ⁻⁵ 3; $\alpha(N)$ =2.44×10 ⁻⁶ 4 $\alpha(O)$ =1.575×10 ⁻⁷ 22 B(E1)(W.u.)=0.00034 15
		1382.41 3	100 4	1836.090	2+	M1+E2	+0.04 2	3.25×10 ⁻⁴	$\alpha(K) = 0.000255 \ 4; \ \alpha(L) = 2.73 \times 10^{-5} \ 4; \ \alpha(M) = 4.58 \times 10^{-6} \ 7; \ \alpha(N) = 5.77 \times 10^{-7} \ 8; \ \alpha(O) = 3.82 \times 10^{-8} \ 6$ $B(E2)(W.u.) = 0.038 \ 3; \ B(M1)(W.u.) = 0.041 \ 3$ Mult.: D+Q from $\gamma \gamma(\theta)$ in 88 Rb β^- decay, $\Delta \pi =$ no from level scheme. δ : from $\gamma \gamma(\theta)$ in 88 Rb β^- decay. Other: +0.01 β from $\gamma(\theta)$ in $(n,n'\gamma)$.
		3218.46 6	28.9 16	0	0+	E2		9.30×10 ⁻⁴	$\alpha(K) = 5.45 \times 10^{-5} 8$; $\alpha(L) = 5.77 \times 10^{-6} 8$; $\alpha(M) = 9.67 \times 10^{-7} 14$; $\alpha(N) = 1.219 \times 10^{-7} 17$; $\alpha(O) = 8.08 \times 10^{-9} 12$ B(E2)(W.u.)=0.100 10
3378.2	1	3378.1	100	0	0+	D		4	
3486.56	1+	3486.43 8	100	0	0_{+}	M1		9.66×10^{-4}	$\alpha(K)=4.69\times10^{-5}$ 7; $\alpha(L)=4.96\times10^{-6}$ 7; $\alpha(M)=8.32\times10^{-7}$ 12;

γ (88Sr) (continued)

							γ (°°Sr) (cont	inued)	
E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ	α	Comments
3522.77	(2+)	1687.35 19	100 5	1836.090	2+				$\alpha(N)=1.049\times10^{-7}$ 15; $\alpha(O)=6.97\times10^{-9}$ 10 B(M1)(W.u.)=0.187 17
3322.11	(2.)	3523.4 3	57 <i>4</i>	0	0+	(E2)		1.04×10^{-3}	$\alpha(K)=4.71\times10^{-5} \ 7; \ \alpha(L)=4.98\times10^{-6} \ 7;$ $\alpha(M)=8.35\times10^{-7} \ 12; \ \alpha(N)=1.053\times10^{-7} \ 15;$ $\alpha(O)=6.98\times10^{-9} \ 10$ B(E2)(W.u.)=0.35 \ 12
3584.784	5-	850.647 24	100	2734.137	3-	E2		8.53×10 ⁻⁴	$\alpha(K)=0.000754 \ 11; \ \alpha(L)=8.28\times 10^{-5} \ 12; \ \alpha(M)=1.390\times 10^{-5} \ 20; \ \alpha(N)=1.739\times 10^{-6} \ 25 \ \alpha(O)=1.114\times 10^{-7} \ 16 \ B(E2)(W.u.)=0.39 \ 12 \ E_{\gamma}: \ from \ (n,\gamma), \ E=thermal. \ Mult.: \ Q \ from \ \gamma(\theta) \ in \ ^{80}Se(^{11}B,p2n\gamma), \ M2 \ excluded \ by \ comparison \ to \ RUL.$
3635.09	(3)+	416.74 18	3.86 22	3218.489	2+	M1(+E2)		0.0053 13	$\alpha(K)$ =0.0046 11; $\alpha(L)$ =0.00052 14; $\alpha(M)$ =8.8×10 ⁻⁵ 23; $\alpha(N)$ =1.1×10 ⁻⁵ 3; $\alpha(O)$ =6.8×10 ⁻⁷ 15 B(M1)(W.u.)=0.015 3 Mult.: D(+Q) from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi$ =no from level scheme.
		1799.04 <i>12</i>	100.0 2	1836.090	2+	M1+E2&	-0.08 [@] 2	3.53×10 ⁻⁴	$\alpha(K)$ =0.0001525 22; $\alpha(L)$ =1.626×10 ⁻⁵ 23; $\alpha(M)$ =2.73×10 ⁻⁶ 4; $\alpha(N)$ =3.44×10 ⁻⁷ 5; $\alpha(O)$ =2.28×10 ⁻⁸ 4 B(E2)(W.u.)=0.010 6; B(M1)(W.u.)=0.0048 +14-9
3952.636	(4)	1218.505 25	100	2734.137	3-	M1+E2&	-0.11 [@] 2	3.80×10 ⁻⁴	$\alpha(K)=0.000329$ 5; $\alpha(L)=3.53\times10^{-5}$ 5; $\alpha(M)=5.93\times10^{-6}$ 9; $\alpha(N)=7.47\times10^{-7}$ 11; $\alpha(O)=4.93\times10^{-8}$ 7 B(E2)(W.u.)=0.14 +13-7; B(M1)(W.u.)=0.015 +14-6 E _{\gamma} : from (n,\gamma), E=thermal.
3992.42	(0+)	505.9 1	100.0 5	3486.56	1+	M1		0.00255	$\alpha(K)$ =0.00226 4; $\alpha(L)$ =0.000247 4; $\alpha(M)$ =4.15×10 ⁻⁵ 6; $\alpha(N)$ =5.21×10 ⁻⁶ 8; $\alpha(O)$ =3.41×10 ⁻⁷ 5 B(M1)(W.u.)<0.31 Mult.: D from comparison to RUL, $\Delta\pi$ =no from level scheme.
		2156.0 2	15.3 5	1836.090	2+	[E2]		5.05×10 ⁻⁴	$\alpha(K)$ =0.0001079 16; $\alpha(L)$ =1.150×10 ⁻⁵ 17; $\alpha(M)$ =1.93×10 ⁻⁶ 3; $\alpha(N)$ =2.43×10 ⁻⁷ 4 $\alpha(O)$ =1.602×10 ⁻⁸ 23 B(E2)(W.u.)<0.14
4019.56	(6)-	434.89 6	100	3584.784	5-	M1+E2#	+0.25 3	0.00376	$\alpha(\text{K})$ =0.00333 6; $\alpha(\text{L})$ =0.000366 6; $\alpha(\text{M})$ =6.16×10 ⁻⁵ 10; $\alpha(\text{N})$ =7.72×10 ⁻⁶ 13; $\alpha(\text{O})$ =5.00×10 ⁻⁷ 8 B(E2)(W.u.)>7; B(M1)(W.u.)>0.025

γ (88Sr) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	α	Comments
4035.52	2+	2200.4 4035.5 <i>1</i>	19 <i>4</i> 100	1836.090 2 ⁺ 0 0 ⁺	E2	1.23×10^{-3}	$\alpha(K)=3.81\times10^{-5}$ 6; $\alpha(L)=4.02\times10^{-6}$ 6; $\alpha(M)=6.74\times10^{-7}$ 10; $\alpha(N)=8.50\times10^{-8}$ 12; $\alpha(O)=5.64\times10^{-9}$ 8 B(E2)(W.u.)=1.3 3
4039.04	(3)+	1304.90 4	21.1 5	2734.137 3	E1 [@]	2.66×10 ⁻⁴	$\alpha(K)=0.0001359 \ 19; \ \alpha(L)=1.446\times10^{-5} \ 21; \ \alpha(M)=2.42\times10^{-6} \ 4; \ \alpha(N)=3.05\times10^{-7} \ 5; \ \alpha(O)=2.00\times10^{-8} \ 3$ B(E1)(W.u.)=0.00032 3 δ : $\delta(M2/E2)=+0.5 +5-2$ from $\gamma(\theta)$ in $(n,n'\gamma)$ results in M2 transition strength which exceeds RUL.
		2202.92 7	100.00 24	1836.090 2+	M1+E2&	5.01×10 ⁻⁴ 24	$\alpha(K)=0.0001041\ 15;\ \alpha(L)=1.109\times10^{-5}\ 16;\ \alpha(M)=1.86\times10^{-6}\ 3;$ $\alpha(N)=2.34\times10^{-7}\ 4$ $\alpha(O)=1.550\times10^{-8}\ 23$ δ : +0.20 10 or +1.5 +3-2 from $\gamma(\theta)$ in $(n,n'\gamma)$.
4170.41	(3-)	585.626 25	100.0 5	3584.784 5	[E2]	0.00231	$\alpha(K)$ =0.00204 3; $\alpha(L)$ =0.000228 4; $\alpha(M)$ =3.83×10 ⁻⁵ 6; $\alpha(N)$ =4.77×10 ⁻⁶ 7; $\alpha(O)$ =2.98×10 ⁻⁷ 5 B(E2)(W.u.)=1.9×10 ² +12-11 E _{γ} : from (n, γ), E=thermal.
		1436.27 4	12.8 5	2734.137 3-			E _y : from (n, γ) , E=thermal. I _y : from $(n, n'\gamma)$. Other: 31 5 in (n, γ) , E=thermal.
		4170.71 20	0.71 7	0 0+	[E3]	9.95×10 ⁻⁴	$\alpha(K)=5.08\times10^{-5} 8; \ \alpha(L)=5.39\times10^{-6} 8; \ \alpha(M)=9.05\times10^{-7} 13; \ \alpha(N)=1.140\times10^{-7} 16; \ \alpha(O)=7.56\times10^{-9} 11 \ B(E3)(W.u.)=0.5 3 \ E_{\gamma}: \text{ not observed in } (n,n'\gamma).$
4224.10		1005.6 ^d 1		3218.489 2+			E_{γ} : tentative placement from $(n,n'\gamma)$ based solely on level energy differences.
4226.98	1	2388.0 <i>6</i> 4226.6	100	1836.090 2 ⁺ 0 0 ⁺	D		E_{γ} : not observed in $(n,n'\gamma)$.
4227.20	(3 ⁻)	1008.7 1	6.4 4	3218.489 2+	[E1]	2.45×10 ⁻⁴	$\alpha(K)$ =0.000217 3; $\alpha(L)$ =2.32×10 ⁻⁵ 4; $\alpha(M)$ =3.89×10 ⁻⁶ 6; $\alpha(N)$ =4.89×10 ⁻⁷ 7; $\alpha(O)$ =3.20×10 ⁻⁸ 5 B(E1)(W.u.)=1.8×10 ⁻⁴ 6
		1493.01 <i>4</i>	33.1 4	2734.137 3-			B(E1)(w.u.)−1.8×10 0
		2391.0 3	100.0 4	1836.090 2 ⁺	(E1)	9.43×10 ⁻⁴	$\alpha(K)=5.23\times10^{-5}~8;~\alpha(L)=5.52\times10^{-6}~8;~\alpha(M)=9.25\times10^{-7}~13;~\alpha(N)=1.165\times10^{-7}~17;~\alpha(O)=7.71\times10^{-9}~11~B(E1)(W.u.)=2.1\times10^{-4}~7~Mult.:~D~from~\gamma(\theta)~in~(n,n'\gamma),~\Delta\pi=no~from~level~scheme.$
4262.9	$(1,2^+)$	4262.8	100	$0 0^{+}$			
4268.70	(3-,4,5-)	683.97 <i>5</i>	31.6 11	3584.784 5-			I_{γ} : from $(n,n'\gamma)$. Other: <17 for multiply placed transition in (n,γ) , E=thermal.
		1534.42 7	100.0 11	2734.137 3-			

γ (88Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
4299.52	4+	1565.40 9	86.2 9	2734.137	3-	E1 [@]	4.10×10 ⁻⁴	$\alpha(K)=0.0001000\ 14;\ \alpha(L)=1.062\times10^{-5}\ 15;\ \alpha(M)=1.779\times10^{-6}\ 25;$ $\alpha(N)=2.24\times10^{-7}\ 4$ $\alpha(O)=1.475\times10^{-8}\ 21$ B(E1)(W.u.)=0.00137 23 I _y : from (n,n' γ). δ : δ (M2/E1)=+0.05 5 from $\gamma(\theta)$ in (n,n' γ).
		2463.51 19	100.0 9	1836.090	2+	E2 [@]	6.29×10 ⁻⁴	$\alpha(K)=8.53\times10^{-5}$ 12; $\alpha(L)=9.07\times10^{-6}$ 13; $\alpha(M)=1.521\times10^{-6}$ 22; $\alpha(N)=1.92\times10^{-7}$ 3; $\alpha(O)=1.266\times10^{-8}$ 18 B(E2)(W.u.)=4.8 8 I_{γ} : from $(n,n'\gamma)$.
4353.95	(3-)	768.8 <i>I</i>	42.9 6	3584.784	5-	[E2]	1.10×10^{-3}	$\alpha(K)=0.000973 \ 14; \ \alpha(L)=0.0001074 \ 15; \ \alpha(M)=1.80\times10^{-5} \ 3; \ \alpha(N)=2.25\times10^{-6} \ 4 \ \alpha(O)=1.435\times10^{-7} \ 20 \ B(E2)(W.u.)=38 \ +10-9$
		1135.8 <i>I</i>	100.0 5	3218.489	2+	(E1)	2.11×10 ⁻⁴	$\alpha(K)$ =0.0001741 25; $\alpha(L)$ =1.86×10 ⁻⁵ 3; $\alpha(M)$ =3.11×10 ⁻⁶ 5; $\alpha(N)$ =3.91×10 ⁻⁷ 6; $\alpha(O)$ =2.57×10 ⁻⁸ 4 B(E1)(W.u.)=2.2×10 ⁻⁴ +6-5
		2518.1 4	8.6 5	1836.090	2+	[E1]	1.02×10^{-3}	Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi = no$ from level scheme. $\alpha(K) = 4.85 \times 10^{-5} \ 7$; $\alpha(L) = 5.12 \times 10^{-6} \ 8$; $\alpha(M) = 8.58 \times 10^{-7} \ 12$; $\alpha(N) = 1.082 \times 10^{-7} \ 16$; $\alpha(O) = 7.16 \times 10^{-9} \ 10$ B(E1)(W.u.)=1.8×10 ⁻⁶ +5-4
4367.94	(7-)	348.42 8	100.0 20	4019.56	(6)	(M1)	0.00622	B(E1)(W.u.)=1.8×10 ⁻⁵ +3-4 α (K)=0.00550 8; α (L)=0.000607 9; α (M)=0.0001020 15; α (N)=1.280×10 ⁻⁵ 18 α (O)=8.32×10 ⁻⁷ 12 B(M1)(W.u.)>0.046 Mult.: D from γ (θ) in ⁸⁰ Se(¹¹ B,p2n γ), D(+Q) from γ (θ) in (n,n' γ), $\Delta \pi$ =no from level scheme.
		782.9 3	11.8 8	3584.784	5-	(E2)	1.05×10^{-3}	$\alpha(K)$ =0.000929 13; $\alpha(L)$ =0.0001024 15; $\alpha(M)$ =1.719×10 ⁻⁵ 25; $\alpha(N)$ =2.15×10 ⁻⁶ 3 $\alpha(O)$ =1.370×10 ⁻⁷ 20 B(E2)(W.u.)>0.87
4413.96	(2)+	891.31 <i>12</i> 1679.65 <i>9</i>	11.9 23 34.9 10	3522.77 2734.137		[E1]	4.89×10 ⁻⁴	E(E2)(W.u.)>0.87 E _γ : observed only in (n,γ), E=thermal. $\alpha(K)=8.93\times10^{-5}$ 13; $\alpha(L)=9.47\times10^{-6}$ 14; $\alpha(M)=1.586\times10^{-6}$ 23; $\alpha(N)=2.00\times10^{-7}$ 3; $\alpha(O)=1.317\times10^{-8}$ 19 B(E1)(W.u.)=0.00105 20
		2577.78 5	100.0 4	1836.090	2+	(M1)	6.20×10^{-4}	$\alpha(K)=7.87\times10^{-5}$ 11; $\alpha(L)=8.36\times10^{-6}$ 12; $\alpha(M)=1.401\times10^{-6}$ 20; $\alpha(N)=1.767\times10^{-7}$ 25 $\alpha(O)=1.172\times10^{-8}$ 17

γ (88Sr) (continued)

						<i>y</i> (51) (con	illiaca)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ	α	Comments
4413.96	(2)+	4413.7 ^b 3	<7.0 ^b	0 0+	[E2]		1.34×10 ⁻³	B(M1)(W.u.)=0.053 11 Mult.: D from $\gamma(\theta)$ in (n,n' γ), $\Delta \pi$ =no from level scheme. $\alpha(K)=3.32\times10^{-5}$ 5; $\alpha(L)=3.50\times10^{-6}$ 5; $\alpha(M)=5.87\times10^{-7}$ 9; $\alpha(N)=7.40\times10^{-8}$ 11; $\alpha(O)=4.92\times10^{-9}$ 7 B(E2)(W.u.)<0.04 E _γ : observed only in (n,γ), E=thermal.
4440.72		1706.57 12	100	2734.137 3	Q [@]			E_{γ} . Observed only in (n, γ) , E—merman.
	(4) ⁺	867.09 6	7.5 12	3584.784 5	[E1]		3.30×10 ⁻⁴	$\alpha(K)$ =0.000293 4; $\alpha(L)$ =3.13×10 ⁻⁵ 5; $\alpha(M)$ =5.25×10 ⁻⁶ 8; $\alpha(N)$ =6.60×10 ⁻⁷ 10; $\alpha(O)$ =4.31×10 ⁻⁸ 6 B(E1)(W.u.)=0.00016 5 E _{γ} : not observed in (n,n' γ).
		1717.71 8	100 15	2734.137 3	[E1]		5.14×10^{-4}	$\alpha(K)=8.61\times10^{-5}$ 12; $\alpha(L)=9.13\times10^{-6}$ 13; $\alpha(M)=1.530\times10^{-6}$ 22; $\alpha(N)=1.93\times10^{-7}$ 3; $\alpha(O)=1.271\times10^{-8}$ 18 B(E1)(W.u.)=0.00028 8
		2615.91 <i>10</i>	1.31 14	1836.090 2+	[E2]		6.90×10 ⁻⁴	$\alpha(K)=7.69\times10^{-5}$ 11; $\alpha(L)=8.17\times10^{-6}$ 12; $\alpha(M)=1.370\times10^{-6}$ 20; $\alpha(N)=1.726\times10^{-7}$ 25 $\alpha(O)=1.142\times10^{-8}$ 16 B(E2)(W.u.)=0.011 3 E _{γ} : not observed in (n,n' γ).
4484.83	0_{+}	998.4 <i>1</i>	100.0 3	3486.56 1+				
		2648.5 1	8.6 <i>3</i>	1836.090 2+	[E2]		7.04×10^{-4}	$\alpha(K)=7.53\times10^{-5}$ 11; $\alpha(L)=8.00\times10^{-6}$ 12; $\alpha(M)=1.342\times10^{-6}$ 19; $\alpha(N)=1.690\times10^{-7}$ 24 $\alpha(O)=1.118\times10^{-8}$ 16 B(E2)(W.u.)=0.152 13
4514.028 2	2-	1027.3 3	0.55 22	3486.56 1+	[E1]		2.37×10 ⁻⁴	$\alpha(K)$ =0.000210 3; $\alpha(L)$ =2.24×10 ⁻⁵ 4; $\alpha(M)$ =3.76×10 ⁻⁶ 6; $\alpha(N)$ =4.72×10 ⁻⁷ 7; $\alpha(O)$ =3.09×10 ⁻⁸ 5 B(E1)(W.u.)=1.7×10 ⁻⁶ 9
		1779.870 <i>21</i>	11.0 7	2734.137 3			2	
		2677.892 21	100.0 14	1836.090 2+	E1+M2	+0.073 6	1.10×10 ⁻³	$\alpha(K)=4.49\times10^{-5}$ 7; $\alpha(L)=4.74\times10^{-6}$ 7; $\alpha(M)=7.94\times10^{-7}$ 12; $\alpha(N)=1.001\times10^{-7}$ 15; $\alpha(O)=6.63\times10^{-9}$ 10 B(E1)(W.u.)=1.8×10 ⁻⁵ 6; B(M2)(W.u.)=0.060 23 Mult., δ : from $\gamma\gamma(\theta)$ measured in ⁸⁸ Rb β^- decay. Parity from adopted $\Delta\pi$. Other: $-0.06 + 7 - 6$ from $\gamma(\theta)$ in $(n,n'\gamma)$.
4514.54	+	2678.38 ^d 9	100	1836.090 2+				Possibly identical to 2677.89γ.
4521.43	(6)-	936.61 <i>13</i>	100	3584.784 5	M1(+E2)	-0.03 [@] 7	6.44×10^{-4}	$\alpha(K)=0.000571 \ 8; \ \alpha(L)=6.15\times10^{-5} \ 9; \ \alpha(M)=1.032\times10^{-5} \ 15; \ \alpha(N)=1.300\times10^{-6} \ 19; \ \alpha(O)=8.56\times10^{-8} \ 12$
4622.19	2+	1888.0 <i>I</i>	100.0 6	2734.137 3	E1		6.26×10^{-4}	Mult.: D(+Q) from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi = no$ from level scheme. $\alpha(K) = 7.43 \times 10^{-5} \ II$; $\alpha(L) = 7.87 \times 10^{-6} \ II$; $\alpha(M) = 1.318 \times 10^{-6}$

γ (88Sr) (continued)

							/(51)	(00111111111111111111111111111111111111	
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ	α	Comments
	_								19; $\alpha(N)=1.660\times10^{-7}$ 24 $\alpha(O)=1.096\times10^{-8}$ 16 B(E1)(W.u.)=0.0020 5 Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=yes$ from level scheme.
4622.19	2+	2786.2 2	20.3 6	1836.090	2+				
4640.40		1906.2 <i>I</i>	100.0 6	2734.137	3-	Q [@]	_		
		2804.3 <i>1</i>	46.0 6	1836.090		D+Q [@]	-0.18^{2} 5		
4680.19		1095.4 ^a 1	100	3584.784					
4687.38	(7)	319.6 ^c 3	100 ^C	4367.94					
4742.50	1-	1524.6	18 5	3218.489	2+	[E1]		3.83×10^{-4}	$\alpha(K)=0.0001044 \ 15; \ \alpha(L)=1.109\times10^{-5} \ 16;$ $\alpha(M)=1.86\times10^{-6} \ 3; \ \alpha(N)=2.34\times10^{-7} \ 4$ $\alpha(O)=1.541\times10^{-8} \ 22$ B(E1)(W.u.)=0.0055 \ 16
		2906.1 <i>I</i>	3.5 14	1836.090	2+	[E1]		1.22×10 ⁻³	$\alpha(K)=3.97\times10^{-5}$ 6; $\alpha(L)=4.19\times10^{-6}$ 6; $\alpha(M)=7.02\times10^{-7}$ 10; $\alpha(N)=8.84\times10^{-8}$ 13; $\alpha(O)=5.86\times10^{-9}$ 9 B(E1)(W.u.)=0.00015 7 I _{\gamma} : from (γ,γ') . Other: 12.1 3 from $(n,n'\gamma)$. E _{\gamma} : from $(n,n'\gamma)$.
		4742.52 8	100	0	0+	E1		0.00195	$\alpha(K)=2.10\times10^{-5} \ 3; \ \alpha(L)=2.21\times10^{-6} \ 3; \ \alpha(M)=3.70\times10^{-7} $ $6; \ \alpha(N)=4.66\times10^{-8} \ 7; \ \alpha(O)=3.09\times10^{-9} \ 5$ $B(E1)(W.u.)=0.00101 \ 9$
4770.12	2+	734.7 1	3.7 4	4035.52	2+	M1		1.09×10 ⁻³	$\alpha(K)$ =0.000968 14; $\alpha(L)$ =0.0001048 15; $\alpha(M)$ =1.759×10 ⁻⁵ 25; $\alpha(N)$ =2.21×10 ⁻⁶ 3 $\alpha(O)$ =1.454×10 ⁻⁷ 21 B(M1)(W.u.)=0.27 12 Mult.: D from comparison to RUL, $\Delta\pi$ =no from level scheme.
		1283.6 ^a 1	2.4 4	3486.56	1+				
		2035.7 ^a 1	100.0 4	2734.137	3-	[E1]		7.24×10 ⁻⁴	$\alpha(K)=6.62\times10^{-5}\ 10;\ \alpha(L)=7.01\times10^{-6}\ 10;\ \alpha(M)=1.174\times10^{-6}\ 17;\ \alpha(N)=1.479\times10^{-7}\ 21$ $\alpha(O)=9.77\times10^{-9}\ 14$ B(E1)(W.u.)=0.0053 24
		2933.9 1	16.2 4	1836.090	2+	M1(+E2)		0.00079 4	$\alpha(K)=6.31\times10^{-5}\ 10;\ \alpha(L)=6.69\times10^{-6}\ 10;\ \alpha(M)=1.122\times10^{-6}\ 17;\ \alpha(N)=1.414\times10^{-7}\ 21$ $\alpha(O)=9.38\times10^{-9}\ 14$ Mult.: D(+Q) from $\gamma(\theta)$ in (n,n' γ), $\Delta\pi=$ no from level scheme.
		4770.7 2	0.7 4	0	0+	E2		1.45×10^{-3}	$\alpha(K)=2.95\times10^{-5}$ 5; $\alpha(L)=3.11\times10^{-6}$ 5; $\alpha(M)=5.22\times10^{-7}$

							γ (88Sr) (continu	ed)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ	α	Comments
4801.3	0+	2965.2 6	100	1836.090	2+	[E2]		8.32×10 ⁻⁴	8; $\alpha(N)=6.58\times10^{-8}$ 10; $\alpha(O)=4.37\times10^{-9}$ 7 B(E2)(W.u.)=0.009 7 Mult.: Q from $\gamma(\theta)$ in (n,n' γ), $\Delta\pi$ =no from level scheme. $\alpha(K)=6.23\times10^{-5}$ 9; $\alpha(L)=6.61\times10^{-6}$ 10; $\alpha(M)=1.108\times10^{-6}$ 16; $\alpha(N)=1.396\times10^{-7}$ 20; $\alpha(O)=9.25\times10^{-9}$ 13 B(E2)(W.u.)=6.6 21
4801.4	1	4801.3	100	0 3218.489	0+	D			
4845.62	(3)	1627.01 <i>19</i> 2111.47 <i>5</i>	3.7 <i>7</i> 48.1 <i>12</i>	2734.137		M1+E2&	-2.0 + <i>1</i> 2−∞		E _{γ} : observed only in (n,γ) , E=thermal. B(E2)(W.u.)=7.7 20; B(M1)(W.u.)=0.0078 21
		3009.50 4	100.0 6	1836.090		E1+M2	+0.075 15	1.27×10 ⁻³	$\alpha(K)=3.82\times10^{-5}~6$; $\alpha(L)=4.03\times10^{-6}~6$; $\alpha(M)=6.75\times10^{-7}~10$; $\alpha(N)=8.51\times10^{-8}~13$; $\alpha(O)=5.64\times10^{-9}~9$ B(E1)(W.u.)=0.00043 12; B(M2)(W.u.)=1.2 6 Mult., δ : D+Q from $\gamma\gamma(\theta)$ in 88 Rb β^- decay. $\Delta\pi=$ yes from level scheme.
		4845.19 <i>18</i>	0.60 5	0	0+	[E3]		1.18×10^{-3}	$\alpha(K)=3.93\times10^{-5} 6$; $\alpha(L)=4.17\times10^{-6} 6$; $\alpha(M)=6.99\times10^{-7} 10$; $\alpha(N)=8.81\times10^{-8} 13$; $\alpha(O)=5.85\times10^{-9} 9$ B(E3)(W.u.)=8.7 24
4853.026	1-	338.95 <i>7</i> 439.2 <i>3</i>	3.2 9	4514.028 4413.96	(2) ⁺	M1		0.00666	$\alpha(K)$ =0.00588 9; $\alpha(L)$ =0.000649 9; $\alpha(M)$ =0.0001092 16 ; $\alpha(N)$ =1.371×10 ⁻⁵ 20 $\alpha(O)$ =8.90×10 ⁻⁷ 13 B(M1)(W.u.)=0.26 4 Mult.: D from comparison to RUL, $\Delta\pi$ =no from level scheme. E _{γ} ,I _{γ} : from ⁸⁸ Rb β ⁻ decay. I _{γ} : Other: 85.9 9 in (n,n' γ).
		1217.97 <i>18</i> 1366.26 <i>12</i>	11.1 9 34 5	3635.09 3486.56	(3) ⁺ 1 ⁺	E1+M2	-0.05 2	2.94×10 ⁻⁴	$\alpha(K)$ =0.0001266 21; $\alpha(L)$ =1.347×10 ⁻⁵ 22; $\alpha(M)$ =2.26×10 ⁻⁶ 4; $\alpha(N)$ =2.84×10 ⁻⁷ 5; $\alpha(O)$ =1.87×10 ⁻⁸ 3 B(E1)(W.u.)=0.00016 4; B(M2)(W.u.)=1.0 9 Mult., δ : D+Q from $\gamma\gamma(\theta)$ in ⁸⁸ Rb β ⁻ decay. $\Delta\pi$ =yes from level scheme.
		2118.867 20	100.0 13	2734.137	3-	(E2)		4.91×10 ⁻⁴	$\alpha(K)=0.0001114 \ 16; \ \alpha(L)=1.187\times10^{-5} \ 17;$ $\alpha(M)=1.99\times10^{-6} \ 3; \ \alpha(N)=2.51\times10^{-7} \ 4$

γ (88Sr) (continued)

						, , ,	
E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	α	Comments
							$\alpha(K)=0.0001114\ 16;\ \alpha(L)=1.187\times10^{-5}\ 17;\ \alpha(M)=1.99\times10^{-6}$ 3; $\alpha(N)=2.51\times10^{-7}\ 4$ $\alpha(O)=1.653\times10^{-8}\ 24$ B(E2)(W.u.)=2.0 3 E _{\gamma} : from 88 Rb β^{-} decay. Mult.: (Q) from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ no from level scheme.
4853.026	1-	3017.19 20	1.0 5	1836.090 2+	[E1]	1.27×10^{-3}	Mult.: (Q) from $\gamma(\theta)$ in (ii,ii γ), Δt =no from lever scheme. $\alpha(K)=3.77\times10^{-5}$ 6; $\alpha(L)=3.98\times10^{-6}$ 6; $\alpha(M)=6.67\times10^{-7}$ 10; $\alpha(N)=8.40\times10^{-8}$ 12; $\alpha(O)=5.56\times10^{-9}$ 8 B(E1)(W.u.)=4.5×10 ⁻⁷ 23
		4852.882 24	1.6 9	0 0+	(E1)	0.00199	$\alpha(K)=2.04\times10^{-5}\ 3;\ \alpha(L)=2.14\times10^{-6}\ 3;\ \alpha(M)=3.59\times10^{-7}\ 5;$ $\alpha(N)=4.53\times10^{-8}\ 7;\ \alpha(O)=3.01\times10^{-9}\ 5$ $B(E1)(W.u.)=1.7\times10^{-7}\ 10$ E_{γ} : from ${}^{88}\text{Rb}\ \beta^-$ decay. Mult.: (D) from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=\text{yes}$ from level scheme.
4880.57	4 ⁺	581.2 <i>I</i>	19.2 6	4299.52 4+	M1(+E2)	0.0021 3	$\alpha(K)$ =0.00186 23; $\alpha(L)$ =0.00021 3; $\alpha(M)$ =3.5×10 ⁻⁵ 5; $\alpha(N)$ =4.3×10 ⁻⁶ 6; $\alpha(O)$ =2.8×10 ⁻⁷ 3 Mult.: D from comparison to RUL, $\Delta\pi$ =no from level scheme.
		841.6 <i>I</i>	58.3 20	4039.04 (3)	⁺ M1(+E2)	0.00084 4	$\alpha(K)$ =0.00075 3; $\alpha(L)$ =8.1×10 ⁻⁵ 4; $\alpha(M)$ =1.37×10 ⁻⁵ 7; $\alpha(N)$ =1.71×10 ⁻⁶ 8; $\alpha(O)$ =1.11×10 ⁻⁷ 4 Mult.: D from comparison to RUL, $\Delta \pi$ =no from level scheme.
		1245.5 <i>I</i>	0.6 6	3635.09 (3)	+		Mult.: D from comparison to Rob, ZM=no from level scheme.
		2146.2 <i>I</i>	17.6 6	2734.137 3	E1(+M2)	7.91×10 ⁻⁴ <i>12</i>	$\alpha(K)=6.26\times 10^{-5}\ 17;\ \alpha(L)=6.62\times 10^{-6}\ 18;\ \alpha(M)=1.11\times 10^{-6}\ 3;$ $\alpha(N)=1.40\times 10^{-7}\ 4;\ \alpha(O)=9.23\times 10^{-9}\ 25$ Mult.: D(Q) from $\gamma(\theta)$ in (n,n' γ), $\Delta\pi=$ yes from level scheme.
		3044.4 <i>I</i>	100.0 16	1836.090 2+	[E2]	8.63×10 ⁻⁴	$\alpha(K)=5.97\times10^{-5}$ 9; $\alpha(L)=6.33\times10^{-6}$ 9; $\alpha(M)=1.060\times10^{-6}$ 15; $\alpha(N)=1.336\times10^{-7}$ 19; $\alpha(O)=8.85\times10^{-9}$ 13 B(E2)(W.u.)=1.58 17 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ no from level scheme.
4914.6 4923.61	1 (2,3,1)	4914.5 1288.5 <i>I</i> 2189.3 <i>I</i>	100 16.7 <i>4</i> 8.0 <i>4</i>	0 0 ⁺ 3635.09 (3) 2734.137 3 ⁻			Marc. Q from y(0) in (ii,ii y), \(\Delta k\)-no from level scheme.
4930.6 4988.23	2 ⁺ ,3 ⁺ ,4 ⁺ 2 ⁺	3087.6 <i>1</i> 3094.5 <i>5</i> 1769.6 <i>1</i>	100.0 <i>4</i> 100 53.8 <i>8</i>	1836.090 2 ⁺ 1836.090 2 ⁺ 3218.489 2 ⁺	(D+Q) [@]		
		2253.9 1	26.4 8	2734.137 3	[E1]	8.61×10^{-4}	$\alpha(K)=5.69\times10^{-5} 8$; $\alpha(L)=6.02\times10^{-6} 9$; $\alpha(M)=1.008\times10^{-6} 15$; $\alpha(N)=1.270\times10^{-7} 18$; $\alpha(O)=8.40\times10^{-9} 12$ B(E1)(W.u.)=0.00031 8
		3152.2 <i>1</i>	100 4	1836.090 2+	M1(+E2)	0.00087 4	$\alpha(K)=5.59\times10^{-5} 9$; $\alpha(L)=5.93\times10^{-6} 10$; $\alpha(M)=9.94\times10^{-7} 16$;

γ (88Sr)	(continued)

	E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
	4988.23	2+	4988.7 2	31 3	0	0+	[E2]	1.51×10 ⁻³	$\alpha(N)=1.253\times10^{-7}\ 20;\ \alpha(O)=8.31\times10^{-9}\ 13$ Mult.: D(+Q) from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ no from level scheme. $\alpha(K)=2.76\times10^{-5}\ 4;\ \alpha(L)=2.91\times10^{-6}\ 4;\ \alpha(M)=4.88\times10^{-7}\ 7;$ $\alpha(N)=6.16\times10^{-8}\ 9;\ \alpha(O)=4.09\times10^{-9}\ 6$ B(E2)(W.u.)=0.10 3 E $_{\gamma}$: from $(n,n'\gamma)$. Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ no from level scheme.
	5010.59	(3,4+)	558.49 <i>6</i> 1058.06 <i>6</i> 1791.69 <i>19</i> 2276.44 <i>15</i>	19 <i>3</i> 22.7 <i>6</i> 3.1 <i>6</i> 100 <i>I</i>	4451.97 3952.636 3218.489 2734.137	(4) ⁻ 2 ⁺ 3 ⁻	D(+Q) [@]		
	5076.65 5085.49	(2)+	1442.06 22 2342.82 22 1450.4 <i>I</i> 1866.9 <i>I</i> 3249.5 2	1.0×10 ² 3 22 4 9.5 4 10.2 6 100.0 7	3635.09 2734.137 3635.09 3218.489 1836.090	3 ⁻ (3) ⁺ 2 ⁺			
•			5086.1 5	3.7 4		0+	(E2)	1.54×10^{-3}	$\alpha(K)=2.68\times10^{-5}\ 4;\ \alpha(L)=2.83\times10^{-6}\ 4;\ \alpha(M)=4.74\times10^{-7}\ 7;\ \alpha(N)=5.98\times10^{-8}\ 9;\ \alpha(O)=3.97\times10^{-9}\ 6$ B(E2)(W.u.)=0.034 <i>16</i> Mult.: (Q) from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ no from level scheme.
	5092.12	(4 ⁺)	1052.90 ^b 12 1507.22 9	<71 ^b 49.5 15	4039.04 3584.784		(E1)	3.71×10 ⁻⁴	E _γ : observed only in (n,γ), E=thermal. $\alpha(K)=0.0001064\ 15$; $\alpha(L)=1.130\times10^{-5}\ 16$; $\alpha(M)=1.89\times10^{-6}\ 3$; $\alpha(N)=2.38\times10^{-7}\ 4$ $\alpha(O)=1.570\times10^{-8}\ 22$ B(E1)(W.u.)=0.00037 9 I _γ : from (n,n'γ). Other: <60 for multiply placed transition in (n,γ), E=thermal. Mult.: D from $\gamma(\theta)$ in (n,n'γ), $\Delta\pi=$ yes from level scheme.
			1571.2 ^b 7	<23 ^b	3522.77	(2+)	[E2]	3.33×10 ⁻⁴	$\alpha(K)=0.000196\ 3;\ \alpha(L)=2.10\times10^{-5}\ 3;\ \alpha(M)=3.52\times10^{-6}\ 5;$ $\alpha(N)=4.43\times10^{-7}\ 7;\ \alpha(O)=2.90\times10^{-8}\ 4$ B(E2)(W.u.)<3.5 E _{\gamma} : observed only in (n,\gamma), E=thermal.
			1606.2 ^{bd} 8	<22 b	3486.56	1+			E _{γ} : placement is questionable, if J^{π} =(4 ⁺) assignment to 5092 level is correct, as this transition would imply M3 multipolarity. E _{γ} : observed only in (n, γ), E=thermal.
			2358.08 19	100 2	2734.137	3-	(E1) [@]	9.23×10 ⁻⁴	$\alpha(K)=5.33\times10^{-5}~8;~\alpha(L)=5.63\times10^{-6}~8;~\alpha(M)=9.44\times10^{-7}~14;~\alpha(N)=1.189\times10^{-7}~17;~\alpha(O)=7.86\times10^{-9}~11$ B(E1)(W.u.)=0.00020 5 Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ yes from level scheme.

γ (88Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
5092.12	(4+)	3256.44 21	24 3	1836.090	2+	[E2]	9.45×10 ⁻⁴	$\alpha(K)=5.34\times10^{-5} 8$; $\alpha(L)=5.66\times10^{-6} 8$; $\alpha(M)=9.49\times10^{-7} 14$; $\alpha(N)=1.196\times10^{-7} 17$; $\alpha(O)=7.93\times10^{-9} 11$ B(E2)(W.u.)=0.12 3 E _{γ} : observed only in (n, γ), E=thermal.
5103.31	(7)	581.8 <i>5</i>	18 6	4521.43	$(6)^{-}$	(D)#		
5113.06	(2+,3)	1083.6 <i>3</i> 1074.12 <i>8</i> 1477.99 <i>8</i> 1894.5 <i>3</i>	100 6 50 4 130 22 56 4	4019.56 4039.04 3635.09 3218.489	$(6)^{-}$ $(3)^{+}$ $(3)^{+}$ $(3)^{+}$	D [#]		E_{γ} : observed only in (n,γ) , E=thermal.
		2377.9 4	5.4 14	2734.137				E_{γ} : observed only in (n,γ) , E=thermal.
5123.8	$(1,2^+)$	3276.80 <i>9</i> 3287.5 <i>5</i> 5123.7 <i>3</i>	100 <i>4</i> 100.0 <i>8</i> 2.8 <i>8</i>	1836.090 1836.090 0		D _@		
5127.40	(2)	3291.1 <i>I</i>	100.0 8	1836.090	-			
		5127.8 2	4.1 8	0	0_{+}	(Q) [@]		
5136.95		1501.8 <i>1</i> 5137.8 <i>5</i>	100 <1	3635.09 0	$(3)^+$ 0^+	D(+Q)@		
5163.91	2+	2007.7 ^d 1	100	3156.19	0+	[E2]	4.50×10^{-4}	$\alpha(K)$ =0.0001228 18; $\alpha(L)$ =1.311×10 ⁻⁵ 19; $\alpha(M)$ =2.20×10 ⁻⁶ 3; $\alpha(N)$ =2.77×10 ⁻⁷ 4; $\alpha(O)$ =1.82×10 ⁻⁸ 3 B(E2)(W.u.)=15 4
5168.80?		1682.3 <i>1</i> 1950.2 <i>1</i> 2434.5 <i>1</i>	56 6 45 11 77 4	3486.56 3218.489 2734.137	2+			
		3332.8 <i>1</i>	100 6	1836.090	2+	$D(+Q)^{\textcircled{0}}$		
5170.1	(2+)	5169.9 3	100	0	0+	(E2)	1.56×10^{-3}	$\alpha(K)=2.62\times10^{-5}\ 4;\ \alpha(L)=2.76\times10^{-6}\ 4;\ \alpha(M)=4.63\times10^{-7}\ 7;\ \alpha(N)=5.84\times10^{-8}\ 9;\ \alpha(O)=3.88\times10^{-9}\ 6$ B(E2)(W.u.)=0.14 7 Mult.: (Q) from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.
5253.92	(3-)	2035.7 ^a 1	100 4	3218.489	2+	[E1]	7.24×10 ⁻⁴	$\alpha(K)=6.62\times10^{-5}\ 10;\ \alpha(L)=7.01\times10^{-6}\ 10;\ \alpha(M)=1.174\times10^{-6}\ 17;$ $\alpha(N)=1.479\times10^{-7}\ 21$ $\alpha(O)=9.77\times10^{-9}\ 14$ $\alpha(E)=0.00087\ 22$
		2519.6 2	22.5 14	2734.137	3-			D(L1)(W.u.)=0.00001 22
		3417.5 1	18 6	1836.090		[E1]	1.47×10^{-3}	$\alpha(K)=3.19\times10^{-5} 5$; $\alpha(L)=3.36\times10^{-6} 5$; $\alpha(M)=5.64\times10^{-7} 8$; $\alpha(N)=7.10\times10^{-8} 10$; $\alpha(O)=4.71\times10^{-9} 7$ B(E1)(W.u.)=3.3×10 ⁻⁵ 14
5263.06 5275.98	$(1^-,2^+)$	3426.9 <i>2</i> 1283.6 ^{<i>a</i>} <i>I</i> 2541.8 <i>I</i>	100 18.8 <i>18</i> 100 <i>7</i>	1836.090 3992.42 2734.137	(0^+)			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
5275.98	$(1^-,2^+)$	3439.5 <i>3</i>	1.9 19	1836.090		_		
5307.53	(1)	1315.1 <i>1</i>	100	3992.42	(0^+)	(D) [@]		
5321.36	4+	1052.90 ^b 12	<7.6 ^b	4268.70	$(3^-,4,5^-)$			
		1368.67 3	100 15	3952.636				
		1736.51 ^b 8	<48 ^b	3584.784				
5322.39	(2,3)	2103.14 <i>10</i> 1095.4 ^a <i>1</i>	4.4 <i>5</i> 47 <i>6</i>	3218.489 4227.20	(3-)			
3322.37	(2,3)	1687.2 <i>I</i>	100 6	3635.09	$(3)^{+}$			
		2588.3 <i>1</i>	85 5	2734.137	3-			
5370.5		267.1 <i>3</i>	100	5103.31	(7)		4	
5393.25	(2^{+})	941.4 <i>I</i>	43 4	4451.97	$(4)^{+}$	[E2]	6.67×10^{-4}	$\alpha(K)=0.000590 \ 9; \ \alpha(L)=6.45\times10^{-5} \ 9; \ \alpha(M)=1.082\times10^{-5} \ 16;$
								$\alpha(N)=1.355\times10^{-6}$ 19; $\alpha(O)=8.73\times10^{-8}$ 13 B(E2)(W.u.)=2.2×10 ² 9
		2174.6 <i>I</i>	100 6	3218.489	2+			
		5393.2 ^d	61 8	0	0+	[E2]	1.62×10^{-3}	$\alpha(K)=2.46\times10^{-5} 4$; $\alpha(L)=2.60\times10^{-6} 4$; $\alpha(M)=4.35\times10^{-7} 6$; $\alpha(N)=5.49\times10^{-8} 8$; $\alpha(O)=3.65\times10^{-9} 6$
5396.0	(2^{+})	5395.8 <i>3</i>	100	0	0^{+}	(E2)	1.62×10^{-3}	B(E2)(W.u.)=0.050 20 α (K)=2.46×10 ⁻⁵ 4; α (L)=2.60×10 ⁻⁶ 4; α (M)=4.35×10 ⁻⁷ 6;
3370.0	(2)	3373.0 3	100	O	O	(12)	1.02/10	$\alpha(N)=5.48\times10^{-8} \text{ 8; } \alpha(O)=3.64\times10^{-9} \text{ 6}$
								B(E2)(W.u.)=0.030 +15-10
								Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; M2 excluded by comparison to RUL.
5424.61	(3-)	1404.98 ^d 5	450 70	4019.56	(6)-			E_{γ} : observed only in (n,γ) , E=thermal. Tentative placement as transition would imply M3/E4 multipolarity if $J^{\pi}=(3^{-})$ for 5424.61 level is correct.
		1471.76 <i>16</i>	113 <i>21</i>	3952.636	$(4)^{-}$			E_{γ} : observed only in (n, γ) , E=thermal.
		2690.64 <i>14</i>	100 <i>3</i>	2734.137				
		3588.7 2	60.5 22	1836.090	2+	[E1]	1.54×10^{-3}	$\alpha(K)=2.99\times10^{-5}$ 5; $\alpha(L)=3.15\times10^{-6}$ 5; $\alpha(M)=5.28\times10^{-7}$ 8; $\alpha(N)=6.66\times10^{-8}$ 10; $\alpha(O)=4.41\times10^{-9}$ 7
								B(E1)(W.u.)=7.E-6 4
						ш		E_{γ} : observed only in $(n,n'\gamma)$.
5427.6	(8)	324.3 3	100	5103.31	(7)	D#		
5427.71	$(4^-,5)$	975.64 <i>7</i> 1158.95 <i>11</i>	50 8 31 6	4451.97 4268.70	$(4)^+$ $(3^-,4,5^-)$			
		1408.23 5	100 16	4019.56	(6)			
		2693.41 ^b 13	<9.5 ^b	2734.137	. ,			
5472.88	(2-,3-,4-)	2738.7 1	100	2734.137		M1,E2	0.00071 3	$\alpha(K)$ =7.09×10 ⁻⁵ 11; $\alpha(L)$ =7.53×10 ⁻⁶ 11; $\alpha(M)$ =1.263×10 ⁻⁶ 19; $\alpha(N)$ =1.592×10 ⁻⁷ 23

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^{π}	Mult.‡	α	Comments
								$\alpha(O)=1.055\times10^{-8} \ I5$
								Mult.: from comparison to RUL.
5485.6	1	5485.4 <i>16</i>	100	0	0_{+}	$D^{@}$		
5498.7	$(1,2^+)$	5498.5 11	100	0	0_{+}			
5517.2	(1,2,3)	3681.0 <i>3</i>	100	1836.090	2+	(D) [@]		
5518.23	4+	1565.49 ^b 9	<100 ^b	3952.636				
		2299.78 23	2.3 5	3218.489				
		2784.12 7	16.7 <i>17</i>	2734.137	3-			
5542.20	(1)	3706.0 <i>1</i>	100.0 <i>13</i>	1836.090	2+			
		5542.5 <i>4</i>	5.6 13	0	0_{+}	(D) [@]		
5583.3		3747.1 <i>3</i>	100	1836.090				
5590.32	$(1^-,2,3^+)$	2103.2 2		3486.56				
		2856.0 7		2734.137				
		3754.7 2		1836.090				
5600.6	$(1,2^+)$	5600.4	100	0	0_{+}	ш		
5655.3	(8)	1287.4 <i>3</i>	100		(7^{-})	D#		
5656.50	$(2^+,3,4^+)$	1356.7 <i>1</i>	100 6	4299.52	4+			
		3821.4 2	85 6	1836.090				
5678.34	$(4)^{+}$	2944.1 2	35.5 <i>23</i>	2734.137	3-	[E1]	1.24×10^{-3}	$\alpha(K)=3.90\times10^{-5} 6$; $\alpha(L)=4.12\times10^{-6} 6$; $\alpha(M)=6.89\times10^{-7} 10$;
								$\alpha(N)=8.69\times10^{-8} \ 13; \ \alpha(O)=5.75\times10^{-9} \ 8$
		2012.2	4000	1006.000	a.+		1 1 7 10-3	B(E1)(W.u.)=0.00015 5
		3842.2 2	100.0 23	1836.090	2	[E2]	1.15×10^{-3}	$\alpha(K) = 4.11 \times 10^{-5} 6$; $\alpha(L) = 4.34 \times 10^{-6} 6$; $\alpha(M) = 7.28 \times 10^{-7} 11$;
								$\alpha(N)=9.18\times10^{-8}$ 13; $\alpha(O)=6.09\times10^{-9}$ 9
								B(E2)(W.u.)=0.93 25
5689.00	3+,4+	1669.0 ^d 5	3.5 12	4019.56	$(6)^{-}$			E_{γ} : observed only in (n,γ) , E=thermal. Tentative placement as transition
		1.	L					would imply M2 or E3 multipolarity.
		1736.51 ^b 7	<100 ^b	3952.636				E_{γ} : observed only in (n,γ) , E=thermal.
		2166.50 <i>21</i>	4.3 6	3522.77				E_{γ} : observed only in (n,γ) , E=thermal.
5601.2	1	2954.67 7	53 5	2734.137		ъ		
5691.3	1	5691.1	100	0	0+	D	2 21. 10-4	(IZ) 0.000240 4 (I) 0.00140=5 4 (A.D. 440-40=6 7)
5693.93	2+	1394.5 <i>1</i>	27 7	4299.52	4+	[E2]	3.31×10^{-4}	$\alpha(K) = 0.000248 \ 4; \ \alpha(L) = 2.68 \times 10^{-5} \ 4; \ \alpha(M) = 4.49 \times 10^{-6} \ 7;$
								$\alpha(N)=5.64\times10^{-7} 8; \alpha(O)=3.69\times10^{-8} 6$
		2060.2.2	57 5	2724 127	2-	FE:13	1.25.:10=3	B(E2)(W.u.)=8 4
		2960.2 2	57 5	2734.137	5	[E1]	1.25×10^{-3}	$\alpha(K) = 3.87 \times 10^{-5} 6$; $\alpha(L) = 4.08 \times 10^{-6} 6$; $\alpha(M) = 6.84 \times 10^{-7} 10$;
								$\alpha(N)=8.62\times10^{-8} \ 12; \ \alpha(O)=5.71\times10^{-9} \ 8$
		2057.2.2	100.0	1026 000	2+			$B(E1)(W.u.)=4.9\times10^{-5}$ 15
		3857.2 2	100 9	1836.090		Ε0	1.6010=3	$(X) = 2.20 \cdot 10^{-5}$ $(X) = 2.40 \cdot 10^{-6}$ $(X) = 4.00 \cdot 10^{-7}$
		5693.1 <i>3</i>	43 7	0	0_{+}	E2	1.69×10^{-3}	$\alpha(K)=2.28\times10^{-5} 4$; $\alpha(L)=2.40\times10^{-6} 4$; $\alpha(M)=4.02\times10^{-7} 6$;

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	<u>α</u>	Comments
5710.78		3874.6 <i>1</i>	100	1836.090	2+			$\alpha(N)=5.07\times10^{-8}~8;~\alpha(O)=3.37\times10^{-9}~5$ B(E2)(W.u.)=0.011 4 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ no from level scheme.
5730.18	4+	3894.0 2	100	1836.090		[E2]	1.17×10 ⁻³	$\alpha(K)=4.02\times10^{-5}$ 6; $\alpha(L)=4.25\times10^{-6}$ 6; $\alpha(M)=7.13\times10^{-7}$ 10; $\alpha(N)=8.99\times10^{-8}$ 13; $\alpha(O)=5.96\times10^{-9}$ 9 B(E2)(W.u.)<0.14
5772.23	0+	1736.7 1	100 14	4035.52	2+	[E2]	3.66×10 ⁻⁴	$\alpha(K)$ =0.0001610 23; $\alpha(L)$ =1.724×10 ⁻⁵ 25; $\alpha(M)$ =2.89×10 ⁻⁶ 4; $\alpha(N)$ =3.64×10 ⁻⁷ 5; $\alpha(O)$ =2.39×10 ⁻⁸ 4 B(E2)(W.u.)=36 18
		3935.8 6	69 14	1836.090	2+	[E2]	1.19×10^{-3}	$\alpha(K)=3.96\times10^{-5}$ 6; $\alpha(L)=4.18\times10^{-6}$ 6; $\alpha(M)=7.01\times10^{-7}$ 10; $\alpha(N)=8.84\times10^{-8}$ 13; $\alpha(O)=5.86\times10^{-9}$ 9 B(E2)(W.u.)=0.42 21
5800.71	$(1^-,2,3^+)$	2314.2 <i>I</i> 3066.2 <i>2</i>		3486.56 2734.137				
5812.08	3-	1513.5 6	26 13	4299.52		[E1]	3.75×10 ⁻⁴	$\alpha(K)$ =0.0001057 <i>15</i> ; $\alpha(L)$ =1.123×10 ⁻⁵ <i>16</i> ; $\alpha(M)$ =1.88×10 ⁻⁶ <i>3</i> ; $\alpha(N)$ =2.37×10 ⁻⁷ <i>4</i> $\alpha(O)$ =1.559×10 ⁻⁸ 22 B(E1)(W.u.)=0.0012 <i>11</i>
		1643.1 7	20 10	4170.41	(3-)			E_{γ} : observed only in (n,γ) , E=thermal. E_{γ} : observed only in (n,γ) , E=thermal.
		2177.22 <i>21</i>	39 6	3635.09	(3)+	[E1]	8.14×10 ⁻⁴	$\alpha(K)=5.99\times10^{-5}$ 9; $\alpha(L)=6.34\times10^{-6}$ 9; $\alpha(M)=1.062\times10^{-6}$ 15; $\alpha(N)=1.337\times10^{-7}$ 19; $\alpha(O)=8.84\times10^{-9}$ 13 B(E1)(W.u.)=0.0006 5 E _{\gamma} : observed only in (n,\gamma), E=thermal.
		3077.94 9	88 5	2734.137	3-			
		3975.66 14	100 10	1836.090	2+	[E1]	1.69×10^{-3}	$\alpha(K)=2.62\times10^{-5} 4$; $\alpha(L)=2.76\times10^{-6} 4$; $\alpha(M)=4.62\times10^{-7} 7$; $\alpha(N)=5.83\times10^{-8} 9$; $\alpha(O)=3.87\times10^{-9} 6$ B(E1)(W.u.)=0.00026 19
		5811.79 <i>15</i>	23.5 14	0	0+	[E3]	1.43×10 ⁻³	$\alpha(K)=2.91\times10^{-5} \ 4; \ \alpha(L)=3.08\times10^{-6} \ 5; \ \alpha(M)=5.17\times10^{-7} \ 8; \ \alpha(N)=6.52\times10^{-8} \ 10; \ \alpha(O)=4.33\times10^{-9} \ 6$ B(E3)(W.u.)=1.3×10 ² 10 E _y : observed only in (n, γ), E=thermal.
5831.5 5835.58	(1,2 ⁺) (3 ⁻ ,4 ⁺)	5831.3 <i>5</i> 1608.2 ^{<i>b</i>} 8 1665.31 <i>13</i> 2250.72 <i>11</i> 2349.21 ^{<i>d</i>} 20	100 <26 ^b 100 17 36 4 13.7 21	0 4227.20 4170.41 3584.784 3486.56	0 ⁺ (3 ⁻) (3 ⁻) 5 ⁻ 1 ⁺			 E_γ: observed only in (n,γ), E=thermal. E_γ: placement is questionable, if J^π=(4⁺) assignment to 5835.58 level is correct, as this transition would imply M3 multipolarity. E_γ: observed only in (n,γ), E=thermal.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	$\underline{\hspace{1cm}}_{f}^{\mathbf{\pi}}$	Mult.‡	α	Comments
5835.58 5866.0	$(3^-,4^+)$ $(1,2^+)$	3999.64 <i>20</i> 5865.8 <i>4</i>	26 <i>4</i> 100	1836.090 0	2 ⁺ 0 ⁺		1	
5951.09	$(1,2)$ (4^{-})	1510.3 3	37 9	4440.72	U			
3731.07	(+)	1723.48 15	46 8	4227.20	(3^{-})			
		1911.94 <i>12</i>	42 7	4039.04	$(3)^{+}$			
		1931.33 <i>16</i>	26 5	4019.56	$(6)^{-}$			
		1998.46 9	80 12	3952.636	` '			
		2315.7 ^b 3	<23.0 ^b	3635.09	(3) ⁺			
5990.0	$(1,2^+)$	2366.42 <i>7</i> 4154.0 <i>4</i>	100 <i>10</i> 100 <i>3</i>	3584.784 1836.090				E_{γ},I_{γ} : from $(n,n'\gamma)$.
3990.0	(1,2)	5989.1 7	71 3	0	0+			E_{γ},I_{γ} . Holli $(n,n'\gamma)$. E_{γ},I_{γ} : from $(n,n'\gamma)$.
5996.24	4 ⁺	1150.55 16	109 23	4845.62	(3)	[E1]	2.11×10^{-4}	$\alpha(K)=0.0001701 \ 24; \ \alpha(L)=1.81\times10^{-5} \ 3; \ \alpha(M)=3.04\times10^{-6} \ 5;$
	•				(-)	[]	_,_,	$\alpha(N)=3.82\times10^{-7}$ 6; $\alpha(O)=2.51\times10^{-8}$ 4
								B(E1)(W.u.)=0.0020 9
			10	42.50 =0				E_{γ} : observed only in (n,γ) , E=thermal.
		1727.57 24	77 18		$(3^-,4,5^-)$			E_{γ} : observed only in (n,γ) , E=thermal.
		1977.17 ^d 20	51 10	4019.56	(6)-			E_{γ} : observed only in (n,γ) , E=thermal.
								E_{γ} : tentative as placement would require M2+E3 multipolarity for the transition.
		2043.5	46 <i>1</i>	3952.636	(4)-	[E1]	7.29×10^{-4}	$\alpha(K)=6.59\times10^{-5}\ 10;\ \alpha(L)=6.97\times10^{-6}\ 10;\ \alpha(M)=1.168\times10^{-6}\ 17;$
								$\alpha(N)=1.470\times10^{-7} 21$
								α(O)=9.71×10 ⁻⁹ 14 B(E1)(W.u.)=0.00015 6
								E_{γ} : observed only in $(n,n'\gamma)$.
		2473.49 15	33 5	3522.77	(2^{+})	[E2]	6.33×10 ⁻⁴	$\alpha(K)=8.47\times10^{-5}$ 12; $\alpha(L)=9.01\times10^{-6}$ 13; $\alpha(M)=1.510\times10^{-6}$ 22;
		2.,0.,,	000	0022	(=)	[22]	0.007.110	$\alpha(N)=1.90\times10^{-7}$ 3; $\alpha(O)=1.257\times10^{-8}$ 18
								B(E2)(W.u.)=0.7 3
								E_{γ} : observed only in (n,γ) , E=thermal.
		2509.49 ^d 17	25 4	3486.56	1+			E_{γ} : observed only in (n,γ) , E=thermal.
								E_{γ} : tentative as placement would require M3+E4 multipolarity for the transition.
		3261.8 2	98 7	2734.137	3-	[E1]	1.39×10^{-3}	transition. $\alpha(K)=3.40\times10^{-5} 5$; $\alpha(L)=3.58\times10^{-6} 5$; $\alpha(M)=6.00\times10^{-7} 9$;
		3201.0 2	70 7	2734.137	3	[LI]	1.57×10	$\alpha(N)=7.56\times10^{-8}$ 11; $\alpha(O)=5.01\times10^{-9}$ 7
								B(E1)(W.u.)=8.E-5 3
								E_{γ} : observed only in $(n,n'\gamma)$.
		4160.05 <i>13</i>	100 5	1836.090	2+	[E2]	1.26×10^{-3}	$\alpha(K)=3.63\times10^{-5}$ 5; $\alpha(L)=3.84\times10^{-6}$ 6; $\alpha(M)=6.43\times10^{-7}$ 9;
								$\alpha(N)=8.11\times10^{-8} \ 12; \ \alpha(O)=5.38\times10^{-9} \ 8$
								B(E2)(W.u.)=0.16 6
6010.0	1-	6009.8	100	0	0^{+}	E1		B(E1)(W.u.)=0.00113 8

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
6011.15	(2 ⁺)	1595.6 ^b 6	<5.4 ^b	4413.96	(2)+			
		1972.7 5	1.5 5	4039.04	$(3)^{+}$			
		4174.89 <i>10</i>	18 9	1836.090	2+			
6011.5?	(3^{-})	2058.7 ^d 3		3952.636	$(4)^{-}$			
		2856.0 ^a 7			0+			
6052.2	(2^{+})	6052.0 <i>3</i>	100	0	0_{+}			
6053.86	$(2)^{+}$	2567.0 <i>3</i>		3486.56	1+			
		3319.9 <i>3</i>		2734.137				
		4218.2 <i>19</i>		1836.090				
6074.5?		2856.0 ^a 7	100	3218.489	2+			
6099.01	$(3,4^+)$	2146.5		3952.636	$(4)^{-}$	$D^{@}$		
		4262.8 2		1836.090				
6101.4	$(1,2^+)$	6101.2 <i>3</i>	100	0	0^{+}			
6106.00	(1,2,3)	2070.1 4		4035.52		(D)		
		4270.0 <i>3</i>		1836.090				
6125.20		1857.0 <i>4</i>	22 6		$(3^-,4,5^-)$			
		2172.51 <i>10</i>	52 6	3952.636				
		2602.3 <i>3</i>	6.8 14	3522.77				
		3391.03 9	100 5	2734.137				
6126.6		2091.1 4	100	4035.52	2+			
6132.92		2180.3 ^a 2		3952.636				
		4296.6 <i>3</i>		1836.090		@		
6153.50	(1^{-})	4317.3 2	100	1836.090	2+	(E1) [@]	0.00181	$\alpha(K)=2.36\times10^{-5} 4$; $\alpha(L)=2.48\times10^{-6} 4$; $\alpha(M)=4.16\times10^{-7} 6$;
								$\alpha(N)=5.24\times10^{-8} 8; \alpha(O)=3.48\times10^{-9} 5$
								$B(E1)(W.u.)>1.4\times10^{-5}$
								Mult.: (D) from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =yes from level scheme.
6168.1	(1,2,3)	4331.9 6	100	1836.090	2+	(D) [@]		
6173.06	$(1,2^+)$	2180.3 ^a 2		3992.42				
		2954.6 <i>1</i>		3218.489				
6200.63	1+	6200.4 2	100	0	0^{+}	M1		B(M1)(W.u.)=0.026 4
								E_{γ},I_{γ} : from (γ,γ') .
6213.9	1-	4377.8	2.4 4	1836.090	2+	[E1]	0.00184	$\alpha(K) = 2.32 \times 10^{-5} \ 4; \ \alpha(L) = 2.44 \times 10^{-6} \ 4; \ \alpha(M) = 4.09 \times 10^{-7} \ 6;$
								$\alpha(N)=5.15\times10^{-8} 8$; $\alpha(O)=3.42\times10^{-9} 5$
								B(E1)(W.u.)=0.00039 7
								E_{γ},I_{γ} : from (γ,γ') .
		6213.6	100	0	0^{+}	E1		B(E1)(W.u.)=0.0056 4
								E_{γ},I_{γ} : from (γ,γ') .
6235.50	(7)	1132.1 <i>3</i>	88 8	5103.31	(7)			
		1713.9 <i>3</i>	100 <i>17</i>	4521.43	$(6)^{-}$	D		
		1867.4 <i>3</i>	94 8	4367.94	(7^{-})			

γ (88Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${ m I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
6249.26	$(2^-,3^+)$	560.9 6	100 24	5689.00	3+,4+		
		1980.13 <i>19</i>	41 8	4268.70	$(3^-,4,5^-)$		
		2020.6 5	20 8	4227.20	(3^{-})		
		2079.4 3	22 4	4170.41	(3^{-})		
		2297.4 6	10 4	3952.636			
		2763.7 5	6.9 17	3486.56	1+		
		3030.84 <i>21</i>	29 4	3218.489	2+		
		4413.7 ^b 3	<63 ^b	1836.090	2+		
6257.85	3 ⁺	1742.74 <i>24</i>	100 <i>21</i>	4514.54	+		
		1806.22 25	79 <i>18</i>	4451.97	$(4)^{+}$		
		2238.9 ^{bd} 3	<75 ^b	4019.56	(6)-		E_{γ} : tentative placement as transition would imply E3/M4 multipolarity if $J^{\pi}=3^+$ for 6257.85 level is correct.
		2770.9 <i>4</i>	20 5	3486.56	1+		
6333.44	1-	6333.2 <i>1</i>	100	0	0_{+}	E1	B(E1)(W.u.)=0.0084 6
6346.45	1-	6346.2 2	100	0	0^{+}	E1	B(E1)(W.u.)=0.00096 7
6367.0	$(1,2^+)$	6366.8	100	0	0_{+}		
6382.0	1	6381.8	100	0	0^{+}	D	
6507.74	(4^{+})	1662.15 <i>16</i>	46 8	4845.62	$(3)^{-}$		
		2055.4 ^b 4	<11.0 ^b	4451.97	$(4)^{+}$		
		2067.5 3	12.3 <i>21</i>	4440.72			
		2093.4 <i>3</i>	30 10	4413.96	$(2)^{+}$		
		2208.41 13	17.4 23	4299.52	4 ⁺		
		2238.9 <mark>b</mark> 3	<17.0 <mark>b</mark>	4268.70	$(3^-,4,5^-)$		
		2337.56 19	8.4 13	4170.41	(3^{-})		
		2469.2 7	100 10	4039.04	$(3)^{+}$		
		3773.38 10	56 <i>3</i>	2734.137	3-		
6583.70	$(1^-,2,3^+)$	1507.30 ^b 21	<100 ^b	5076.65			
		1571.2 <mark>b</mark> 7	<40 ^b	5010.59	$(3,4^+)$		
		2169.62 18	53 7	4413.96	(2)+		
		2315.7 ^b 3	<47 ^b	4268.70	$(3^-,4,5^-)$		
		2544.43 19	35 5	4039.04	$(3)^{+}$		
		3097.15 22	21 3	3486.56	1+		
		3849.53 11	48 3	2734.137			
		4747.32 12	46 3	1836.090			
6591.7	1	6591.4 9	100	0	0^{+}	D	
6612.75	2-,3-	1768.0 <i>4</i>	67 18	4845.62	$(3)^{-}$		
	-	2573.23 19	55 7	4039.04	$(3)^{+}$		
		2660.22 8	100 11	3952.636			
		3125.4 <i>3</i>	55 <i>13</i>	3486.56	1+		
6692.46	$(3^+,2^+)$	2241.3 6	22 8	4451.97	$(4)^{+}$		

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
6692.46	$(3^+,2^+)$	3205.42 21	28 3	3486.56	1+		
	, ,	3958.36 11	100 6	2734.137			
6710.4	1	4874.2	42 11	1836.090		D	
		6710.0	100	0	0^{+}	D	
6806.89	(4^{+})	1694.7 <i>4</i>	30 10	5113.06	$(2^+,3)$		
		1730.50 <i>17</i>	100 18	5076.65			
		2768.16 <i>17</i>	32 4		$(3)^{+}$		
		3222.14 <i>11</i>	60 4	3584.784			
		4072.41 16	22.2 16	2734.137			
		4970.82 25	10.9 <i>16</i>	1836.090	2+		
6840.64	(8)	605.1 <i>1</i>	100 4	6235.50	(7)	D#	
		1470.1 <i>3</i>	23 5	5370.5			
		2153.4 3	30 4	4687.38	(7)	D#	
		2473.3 5	11.2 22	4367.94	(7^{-})		
6854.6	1	6854.3 <i>3</i>	100	0	0+	D	
6916.68	$(3^-,2^+)$	1595.6 ^b 6	<100 ^b	5321.36	4+		
0,10.00	(5 ,2)	2070.5 3	46 8	4845.62	(3)		
		2647.64 13	63 8		$(3^-,4,5^-)$		
		4182.52 <i>18</i>	22.5 19	2734.137			
		6915.6 7	6.3 13	0	0^{+}		
6987	1-	6987.6 2	100	0	0^{+}	E1	B(E1)(W.u.)=0.00124 11
7089.11	1-	7088.8 <i>1</i>	100	0	0^{+}	E1	B(E1)(W.u.)=0.0088 6
7119.3	(10)	1464.0 <i>I</i>	100	5655.3	(8)	O [#]	
7129.3	,	1474.0 6	100	5655.3	(8)		
7138.84	(4^{+})	1449.77 <i>17</i>	100 22	5689.00	3+,4+		
		2127.9 3	6.6 16	5010.59	$(3,4^+)$		
		3099.76 20	10.9 <i>14</i>	4039.04	$(3)^{+}$		
		3554.02 10	24.8 14	3584.784			
		3616.17 <i>17</i>	90 7	3522.77	(2^{+})		
		4404.62 20	5.2 5	2734.137			
		5302.61 <i>16</i>	35 <i>3</i>	1836.090			
7169.21	1	7168.9 2	100	0	0_{+}	D	
7207.88	$(3,4^+,2^+)$	2094.8 4	$1.0 \times 10^2 5$	5113.06	$(2^+,3)$		
		2693.41 ^b 13	<84 ^b	4514.54	+		
		2793.96 22	27 5	4413.96	$(2)^{+}$		
		3989.11 <i>12</i>	84 5	3218.489			
		5371.59 <i>14</i>	63 4	1836.090			
7281.8	1-	7281.5 <i>3</i>	100	0	0+	E1	B(E1)(W.u.)=0.00161 15
7299.9	$(1)^{-}$	7299.6 <i>3</i>	100	0	0_{+}	(E1)	B(E1)(W.u.)=0.00079 12
	(9)	489.9 <i>1</i>	100 4	6840.64	(8)	$D^{\#}$	

γ (88Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
7330.55	(9)	1902.9 3	13.3 18	5427.6	(8)		
7434.2	(10)	1778.9 <i>1</i>	100	5655.3	(8)	Q [#]	
7492.8	1-	7492.5 <i>3</i>	100	0	0+	Ē1	B(E1)(W.u.)=0.00033 10
7533.95	1-	7533.6 2	100	0	0^{+}	E1	B(E1)(W.u.)=0.00250 24
7573.20	$(3,4^+,2^+)$	1323.95 6	100 <i>16</i>	6249.26	$(2^-,3^+)$		
		1761.6 <i>3</i>	7.1 17	5812.08	3-		
		2055.4 ^b 4	<4.8 ^b	5518.23	4+		
		2145.72 20	12.6 23	5427.71	$(4^{-},5)$		
		2147.6 <i>4</i>	6.5 21	5424.61	(3^{-})		
		3158.84 <i>13</i>	6.4 5	4413.96	$(2)^{+}$		
		4839.7 5	1.4 3	2734.137			
7501.4	1-	5736.55 19	6.3 6	1836.090		E-1	D/E4\/HI \ \ 0.00007 15
7591.4	1-	7591.0 <i>3</i>	100	0	0+	E1	B(E1)(W.u.)=0.00086 15
7641.86	(10)	311.3 <i>I</i>	100 4	7330.55	(9)	D#	
		522.7 5	10.9 11	7119.3	(10)	(D)#	
7774.8	(11)	340.5 <i>3</i>	100 4	7434.2	(10)	D#	
		655.4 <i>3</i>	98 <i>5</i>	7119.3	(10)	D#	
7807.8	1-	7807.4 <i>3</i>	100	0	0^{+}	E1	B(E1)(W.u.)=0.00133 20
7838.27	1-	7837.9 2	100	0	0_{+}	E1	B(E1)(W.u.)=0.0032 4
7877.3	(1)	7876.9 <i>3</i>	100	0	0+	(E1)	B(E1)(W.u.)=0.00108 19
7908.76	(11)	266.9 <i>1</i>	100	7641.86	(10)	(D)#	
7964.19	1-	7963.8 2	100	0	0+	E1	B(E1)(W.u.)=0.00218 22
7987.59	1-	7987.2 2	100	0	0+	E1	B(E1)(W.u.)=0.00129 18
8040.79	1-	8040.4 <i>1</i>	100	0	0+	E1	B(E1)(W.u.)=0.0048 5
8094.8	(12)	319.6 ^c 1	100° 4	7774.8	(11)	(D)#	
		661.3 ^d 6	51 4	7434.2	(10)		E_{γ} : seen only in ${}^{176}\mathrm{Yb}({}^{28}\mathrm{Si},\mathrm{F}\gamma)$.
8109.5	1-	8109.1 <i>3</i>	100	0	0+	E1	B(E1)(W.u.)=0.00119 20
8180.7	1-	8180.3 <i>3</i>	100	0	0+	E1	B(E1)(W.u.)=0.00130 17
8191.11	1-	8190.7 2	100	0	0+	E1	B(E1)(W.u.)=0.00189 23
8215.31	1-	8214.9 2	100	0	0+	E1	B(E1)(W.u.)=0.00176 21
8271.5	1-	8271.1 3	100	0	0+	E1	B(E1)(W.u.)=0.00112 19
8276.1	(13)	181.4 3	100	8094.8	(12)	D#	D/E1//II \ 0.00150.24
8325.7	1-	8325.3 3	100	0	0+	E1	B(E1)(W.u.)=0.00152 24
8336.3	(12)	241.6 <i>3</i>	100 9	8094.8	(12)	(D)#	
		561.3 <i>3</i>	88 6	7774.8	(11)	(D)#	
8374.9?		1255.5 ^d 5	100	7119.3	(10)		
8375.8	1	8375.4 6	100	0	0+	D	
8407.0	1	8406.6 <i>4</i>	100	0	0_{+}	D	

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}^\pi_f$	Mult.‡	Comments
ı	9.427.2		529.4.2	100	7908.76	(11)	D#	
ı	8437.2 8453.4	(12) 1 ⁻	528.4 <i>3</i> 8453.0 <i>3</i>	100	/908./6 0	(11) 0 ⁺	E1	B(E1)(W.u.)=0.0028 5
ı	8469.0	1-	8468.6 <i>3</i>	100	0	0+	E1	B(E1)(W.u.)=0.00028 3 B(E1)(W.u.)=0.00091 18
ı	8500.8	1	8500.4 <i>3</i>	100	0	0+	D	D(E1)(W.u.)=0.00091 16
ı	8517.9	1	241.8 6	100	8276.1	(13)	D	
ı	8518.8	1-	8518.4 <i>4</i>	100	0	0+	E1	B(E1)(W.u.)=0.00083 19
ı	8553.0?	1	8552.6 9	100	0	0+	LI	B(E1)(W.d.)=0.00083 19
ı	8561.3?		8560.9 <i>6</i>	100	0	0+		
ı	8580.6?		8580.2 <i>5</i>	100	0	0+		
ı	8588.8		8588.3 <i>4</i>	100	0	0+		
ı	8626.3		8625.8 10	100	0	0+		
ı	8668.7	1	8668.2 6	100	0	0+	D	
ı	8682.0	1	8681.5 <i>6</i>	100	0	0+	D	
ı	8713.7	1-	8713.2 9	100	0	0+	E1	B(E1)(W.u.)=0.0009 5
ı	8735.8	1	8735.3 9	100	0	0+	LI	B(E1)(W.d.)=0.00007
ı	8754.6	1	8754.1 8	100	0	0^{+}	D	
ı	8764.7	•	8764.2 5	100	0	0^{+}	2	
ı	8779.8		8779.3 <i>6</i>	100	0	0^{+}		
ı	8791.9	1	8791.4 <i>6</i>	100	0	0^{+}	D	
ı	8840.1	_	8839.6 <i>4</i>	100	0	0^{+}	_	
ı	8850.6		8850.1 <i>12</i>	100	0	0^{+}		
ı	8874.4	1	8873.9 <i>5</i>	100	0	0^{+}	D	
ı	8928.5	1-	8928.0 <i>3</i>	100	0	0_{+}	E1	B(E1)(W.u.)=0.0023 4
ı	8935.9	(13)	560.9 <i>5</i>	≈9.8	8374.9?			
			599.5 <i>3</i>	100 5	8336.3	(12)	D#	
ı			659.8 <i>3</i>	46 <i>3</i>	8276.1	(13)	(D)#	
ı			841.2 <i>3</i>	46 <i>3</i>	8094.8	(12)	(D)#	
ı	8980.8		8980.3 <i>6</i>	100	0	0^+		
ı	9019.2		9018.7 6	100	0	0_{+}		
ı	9043.6	1-	7207.3 5	29 8	1836.090			
ı			9043.0 5	100	0	0_{+}	E1	B(E1)(W.u.)=0.0011 3
ı	9069.7	1-	9069.2 <i>6</i>	100	0	0_{+}	E1	B(E1)(W.u.)=0.00075 14
ı	9078.3	1-	9077.8 <i>3</i>	100	0	0_{+}	E1	B(E1)(W.u.)=0.00124 20
ı	9098.3	1	9097.8 <i>7</i>	100	0	0_{+}	D	
I	9116.3		9115.8 <i>5</i>	100	0	0+		
	9125.1	1	9124.6 <i>3</i>	100	0	0+	D	
۱	9148.31	1-	9147.8 2	100	0	0+	E1	B(E1)(W.u.)=0.0024 3
	9191.42	1-	7355.1 2	16 3	1836.090			
I			9190.8 2	100	0	0+	E1	B(E1)(W.u.)=0.0031 6
	9214.4	1	9213.9 7	100	0	0+	D	
l	9255.2	1	9254.7 9	100	0	0_{+}	D	
П								

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}^{π}_f	Mult.‡	Comments
9305.7	1- 1-	9305.2 3	100 100	0	0_{+}	E1	B(E1)(W.u.)=0.0027 4
9341.1 9384.6	1	9340.6 <i>3</i> 9384.1 <i>7</i>	100	0	0+	E1 D	B(E1)(W.u.)=0.00076 13
9393.3	1	9384.1 / 9392.8 5	100	0	0+	D D	
9402.4	1	9401.9 5	100	0	0+	D	
						D#	
9410.1 9431.8	(13)	972.9 <i>5</i> 9431.3 <i>10</i>	100 100	8437.2 0	(12) 0 ⁺	D	
9431.6	1-	9431.3 <i>10</i> 9445.0 <i>4</i>	100	0	0+	E1	B(E1)(W.u.)=0.0025 4
9470.5	(1-)	9470.0 <i>4</i>	100	0	0+	(E1)	B(E1)(W.u.)=0.00155 24
9478.8	1(-)	7642.5 5	14 4	1836.090		(L1)	D(E1)(W.u.)=0.00133 27
9476.6	1.	9478.2 5	100	0	0+	(E1)	B(E1)(W.u.)=0.0011 3
9497.05	1-	9496.5 2	100	0	0+	E1	$B(E1)(W.u.)=9.1\times10^{-5} II$
						D [#]	D(E1)(W.u.)-2.1\(\text{1}\) 11
9528.3	(14)	592.4 1	100	8935.9	(13) 0 ⁺	ט"	
9550.8 9568.3	1	9550.2 <i>7</i> 9567.7 <i>5</i>	100 100	0	0_{+}	D	
9508.5 9576.8	1	9576.2 11	100	0	0+	D	
9570.8	1	9570.2 11	100	0	0+	D	
9616.3	1	9615.7 6	100	0	0+	D	
9646.1	1	9645.5 8	100	0	0+	D	
9704.1	1-	9703.5 5	100	0	0+	E1	B(E1)(W.u.)=0.0016 4
9728.2	-	9727.6 18	100	0	0+		2(21)(\tag{11a}) 00010 1
9738.1	1	9737.5 16	100	0	0^{+}	D	
9746.0	1-	9745.4 6	100	0	0_{+}	E1	B(E1)(W.u.)=0.0021 4
9804.7	1	9804.1 9	100	0	0_{+}	D	
9816.5	1-	9815.9 <i>3</i>	100	0	0_{+}	E1	B(E1)(W.u.)=0.00093 17
9881.2	1(-)	9880.6 <i>4</i>	100	0	0_{+}	(E1)	B(E1)(W.u.)=0.00136 21
9944.1	1-	9943.5 8	100	0	0_{+}	E1	B(E1)(W.u.)=0.00076 14
9953.3		9952.7 5	100	0	0_{+}		
9965.8	1 ⁽⁻⁾	9965.2 6	100	0	0_{+}	(E1)	B(E1)(W.u.)=0.00066 12
9977.9	(15)	449.6 <i>3</i>	100	9528.3	(14)	$D^{\#}$	
10056.3	ì	10055.7 4	100	0	0+	D	
10089.2		10088.6 <i>10</i>	100	0	0_{+}		
10106.9	1	10106.3 8	100	0	0_{+}	D	
10128.2		10127.6 7	100	0	0+		
10139.5		10138.9 8	100	0	0+		
10150.3		10149.7 8	100	0	0+		
10184.0		10183.4 4	100	0	0+	_	
10248.6	1	10248.0 4	100	0	0+	D	
10288.6	1 ⁽⁻⁾	10288.0 7	100	0	0+	(E1)	B(E1)(W.u.)=0.00070 14
10297.7		10297.1 <i>13</i>	100	0	0_{+}		

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
	10326.7		10326.0 6	100	0	0+		
ı	10341.3		10340.6 <i>6</i>	100	0	0_{+}		
ı	10372.5		10371.8 5	100	0	0_{+}		
ı	10406.6		10405.9 <i>14</i>	100	0	0_{+}		
ı	10421.1		10420.4 10	100	0	0_{+}		
ı	10453.2		10452.5 12	100	0	0_{+}		
ı	10481.1		10480.4 9	100	0	0_{+}		
ı	10512.1		10511.4 <i>19</i>	100	0	0_{+}		
ı	10522.7	1	10522.0 5	100	0	0_{+}	D	
ı	10550.3	1	10549.6 5	100	0	0_{+}	D	
ı	10600.2		10599.5 <i>16</i>	100	0	0_{+}		
l	10608.7		10608.0 <i>14</i>	100	0	0+		
l	10644.1	1-	10643.4 8	100	0	0+	E1	B(E1)(W.u.)=0.00095 19
l	10657.8	1	10657.1 <i>16</i>	100	0	0^{+}	D	
l	10698.4		10697.7 8	100	0	0+		
l	10726.4	1	10725.7 <i>15</i>	100	0	0_{+}	D	
ı	10739.4	(16)	761.5 <i>3</i>	100	9977.9	(15)	$D^{\#}$	
ı	10744.9		10744.2 8	100	0	0_{+}		
ı	10759.7		10759.0 <i>16</i>	100	0	0_{+}		
ı	10767.1	1	10766.4 <i>15</i>	100	0	0_{+}	D	
ı	10783.6	1	10782.9 5	100	0	0_{+}	D	
ı	10804.8		8968.3 <i>6</i>	26 11	1836.090	2+		
ı			10804.0 <i>6</i>	100	0	0_{+}		
ı	10857.4		7370.6 <i>6</i>	52 18	3486.56	1+		
ı			10856.6 <i>6</i>	100	0	0_{+}		
ı	10888.4		7669.7 <i>13</i>	33 14	3218.489			
l			10887.6 <i>13</i>	100	0	0+		
l	10914.6	1	10913.9 5	100	0	0+	D	
l	10929.9		10929.2 7	100	0	0^{+}		
l	10950.4		10949.7 6	100	0	0^{+}		
l	10979.7		10979.0 <i>12</i>	100	0	0+	_	
l	11012.0	1	11011.3 5	100	0	0+	D	
l	11059.0		11058.3 11	100	0	0+		
l	11083.1		7864.3 <i>11</i>	26 11	3218.489			
l	44444.0		11082.3 11	100	0	0_{+}		
l	11111.8	1	11111.0 16	100	0	0+	D	
l	11125.4	1	11124.6 14	100	0	0+	D	
l	11169.6		7682.9 12	35 15	3486.56	1+		
l	110016		11168.7 12	100	0	0+		
l	11224.2		11223.4 13	100	0	0+		
l	11251.8		11251.0 <i>12</i>	100	0	0_{+}		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π
11278.9	1	11278.1 10	100	0	0+	D	11593.7		11592.9 16	100	0	0+
11313.8		11313.0 6	100	0	0_{+}		11607.6		11606.8 <i>12</i>	100	0	0^{+}
11326		11325 <i>3</i>	100	0	0_{+}		11633.0		11632.2 <i>14</i>	100	0	0^{+}
11335.3	1	11334.5 <i>13</i>	100	0	0_{+}	D	11658.0		11657.2 <i>16</i>	100	0	0_{+}
11355		11354 <i>3</i>	100	0	0_{+}		11743.1		11742.3 <i>14</i>	100	0	0_{+}
11356.1?	(17)	616.7 ^d 3	100	10739.4	(16)	D#	11782.4		11781.6 <i>14</i>	100	0	0^{+}
11370	1	11369 <i>3</i>	100	0	0_{+}	D	11920.6		11919.7 7	100	0	0_{+}
11393.6	1	11392.8 6	100	0	0_{+}	D	11935.5		11934.6 <i>10</i>	100	0	0_{+}
11413.2		11412.4 <i>15</i>	100	0	0_{+}		11958.9		11958.0 <i>14</i>	100	0	0_{+}
11548.0		11547.2 7	100	0	0_{+}		12026.5		12025.6 10	100	0	0_{+}

[†] Weighted average of all available measurements, except where noted. ‡ From $\gamma(\theta)$, $\gamma(\theta)$ (lin pol) in (γ,γ') , except where noted. # From $\gamma(\theta)$ in ${}^{80}\text{Se}({}^{11}\text{B},\text{p2n}\gamma)$.

[@] From $\gamma(\theta)$ in $(n,n'\gamma)$.

[&]amp; D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.

^a Multiply placed.

^b Multiply placed with undivided intensity.

^c Multiply placed with intensity suitably divided.

^d Placement of transition in the level scheme is uncertain.

Adopted Levels, GammasLegendLevel SchemeI $\gamma < 2\% \times I_{\gamma}^{max}$ Intensities: Type not specifiedI $\gamma < 10\% \times I_{\gamma}^{max}$

Level Scheme (continued)

Intensities: Type not specified

Legend

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued)

Intensities: Type not specified @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Type not specified

& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Legend

Intensities: Type not specified & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend Level Scheme (continued) Intensities: Type not specified $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$

& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 I_{γ} > 10%× I_{γ}^{max} γ Decay (Uncertain)

Legend Level Scheme (continued) Intensities: Type not specified $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $\bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max}$ & Multiply placed: undivided intensity given I_{γ} > 10% × I_{γ}^{max} @ Multiply placed: intensity suitably divided γ Decay (Uncertain) 131 - 35, 13430 | 57, 1345, 10 16,000 5321.36 (1) 5307.53 35 fs 6 $(1^-,2^+)$ 5275.98 17 fs 4 5263.06 18 fs 4 (3-) 5253.92 33 fs 8 (2^{+}) 5170.1 48 fs 23 5168.80 23 fs 3 5163.91 51 fs 13 5136.95 33 fs 10 (2) 5127.40 23 fs 7 $(1,2^+)$ 0.16 ps +8-5 5123.8 $(2^+,3)$ 5113.06 5.3 fs 35 (7) 5103.31 (4⁺) 5092.12 $(2)^{+}$ 5085.49 6.3 fs 28 5076.65 $(6)^{-}$ 4521.43 $(3^-,4,5^-)$ 0.37 ps 4 4268.70 $(3)^{+}$ 4039.04 83 fs 7 (6) 4019.56 < 10 ps (0^{+}) >0.48 ps 3992.42 (4) 3952.636 0.8 ps + 7 - 3 $(3)^{+}$ 0.76 ps +21-14 3635.09 3584.784 0.14 ns 4 (2+) 3522.77 46 fs 15 3486.56 2.78 fs 24 0.155 ps *10* 3218.489 3156.19 1.5 ps +8-4 2734.137 0.70 ps 5 1836.090 0.154 ps 8 0 stable $^{88}_{38}{\rm Sr}_{50}$

Legend Level Scheme (continued) Intensities: Type not specified $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $\bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max}$ & Multiply placed: undivided intensity given I_{γ} > 10% × I_{γ}^{max} @ Multiply placed: intensity suitably divided γ Decay (Uncertain) 4<u>622.19</u> 21 fs 5 (6) 4521.43 4514.54 27 fs 8 2-4514.028 0.9 ps 3 $\overline{0_+}$ 4484.83 97 fs 7 $(4)^{+}$ 4451.97 222 fs 42 4440.72 367 fs 49 (2)+ 4413.96 16 fs 3 (7^{-}) ${<}10~ps$ 4367.94 (3^{-}) 4353.95 0.68 ps +22-14 30 fs 5 4299.52 $(3^-,4,5^-)$ 4268.70 0.37 ps 4 $\overline{(1,2^+)}$ 4262.9 (3-) 4227.20 84 fs 26 0.15 ps 4 4226.98 1 4224.10 (3-) 1.6 ps +22-6 4170.41 $(3)^{+}$ 4039.04 83 fs 7 4035.52 15 fs 3 (6) 4019.56 <10 ps (0^{+}) 3992.42 >0.48 ps 3584.784 0.14 ns 4 (2+) 3522.77 46 fs 15 1+ 3486.56 2.78 fs 24 3218.489 0.155 ps 10 2734.137 0.70 ps 5 1836.090 0.154 ps 8 0 stable $^{88}_{38}{\rm Sr}_{50}$

н	16	: t	0	117	7

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020

 $Q(\beta^-)=545.9$ 14; S(n)=7810.4 21; S(p)=11525 6; $Q(\alpha)=-5107.4$ 21 2017Wa10 S(2n)=14169.1 21; S(2p)=20835 6 (2017Wa10). α : Additional information 1.

90Sr Levels

For charge radii of strontium nuclei by LASER spectroscopy, see 1987An02 and 1992Ne09.

Cross Reference (XREF) Flags

 $\begin{array}{lll} {\tt A} & ^{90}{\tt Rb}\;\beta^-\;{\rm decay}\;(158\;{\rm s}) \\ {\tt B} & ^{90}{\tt Rb}\;\beta^-\;{\rm decay}\;(258\;{\rm s}) \\ {\tt C} & ^{88}{\tt Sr}(t,p) \\ {\tt D} & ^{82}{\tt Se}(^{11}{\tt B},{\tt p}2{\tt n}\gamma),^{12}{\tt C}(^{86}{\tt Kr},2\alpha\gamma) \end{array}$

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0#	0+	28.91 y <i>3</i>	ABCD	%β [−] =100 T _{1/2} : from 10558 y 11 obtained from weighted average of 10527 d 51 (1965An07, decay measured over 11.2 y), 10557 d 11 (2004Sc04, decay measured over 17 y), and 10561 d 14 (1994Ma50, decay measured over 33 y). Conversion from days to years calculated using tropic year (1 year =365.24 d). Others: 10702 d 584 (1958An40, specific activity), 10227 d 146 (1965Fl01, decay), 10410 d 329 (1965Fl01, specific activity), 10513 d 14 (1992ScZZ, decay measured over 4 y), 10495 d 4 (1996Wo06, decay measured over 6 y), 7270 d 110 (1950Po67, decay), 10117 d 146, (1955Wi15, specific activity), 10282 d 13 (1978La21, decay), 10589 d 92 (1983Ra09, decay), 10665 d 37 (1989Ko57, decay). Δ <r²>(89 Sr, 90 Sr)=0.153 fm² 4, LASER spectroscopy (1992Ne09).</r²>
831.68 [#] 4	2+	7 [‡] ps 2	ABCD	μ =-0.24 22 (2014Ku10) μ : from transient-field (TF) technique in inverse kinematics (2014Ku10). J^{π} : E2 832 γ to 0 ⁺ .
1655.92 [#] 7	4+	12 [‡] ps 2	ABCD	μ =-0.08 68 (2014Ku10) μ : from transient-field (TF) technique in inverse kinematics (2014Ku10). J ^π : E2 824 γ to 2 ⁺ .
1892.36 <i>4</i>	2+	2 [‡] ps <i>1</i>	ABC	J^{π} : M1+E2 1060.7 γ to 2 ⁺ , 1892.3 γ to 0 ⁺ .
2207.02 4	(3-)	≤1 [‡] ps	ABCD	J^{π} : L(t,p)=3,(4); D(+Q) 1375.4 γ to 2 ⁺ . $\gamma\gamma(\theta)$ in 90 Kr β^{-} decay yields J=2 or 3, with J=2 providing the better fit. Combined with data from (t,p) experiment, J=3 is tentatively adopted here.
2497.32 6	(2^{+})	≤3 [‡] ps	ABC	J^{π} : $\gamma\gamma(\theta)$ in ${}^{90}{\rm Kr}\beta^-$ decay yields J=2 or 3; 2497.3 γ to 0 ⁺ makes J=3 less likely.
2527.92 7	$3^{-},4^{+}$	≤6 [‡] ps	BC	J^{π} : L(t,p)=3,4.
2570.60 8		10 [‡] ps 7	AB	
2586 10	2+		C	J^{π} : L(t,p)=2.
2674.0 5	(0^+)		A C	J^{π} : L(t,p)=(0).
2927.70 <i>7</i> 2971.12 <i>12</i>	4 0 ⁺		AB D ABC	J^{π} : D 720.7 γ to (3 ⁻), 1271.8 γ to 4 ⁺ . J^{π} : L(t,p)=0.
3032.87 7	Ü	≤1 [‡] ps	AB	
3039.26 7	1	_1 Po	ABC	J^{π} : from $\gamma \gamma(\theta)$ in 90 Kr β^- decay.
3144.45 10	(5^{-})		ABCD	J^{π} : L(t,p)=(5).
3268.69 24	$3^{-},4^{+}$		CD	J^{π} : L(t,p)=3,4.
3383.39 7			AB	

⁹⁰Sr Levels (continued)

$E(level)^{\dagger}$ J^{π} $T_{1/2}$ XREF Comments	
3394 <i>10</i>	
3449.83 5 3 $\leq 4^{\frac{1}{4}}$ ps B J^{π} : from $\gamma\gamma(\theta)$ in 90 Kr β^- decay.	
3468.43 22 (5 ⁻) D J^{π} : D 1812.5 γ to 4 ⁺ , 55.6 γ from (7 ⁻).	
$3479 \ 10$ $3^-,4^+$ $C \ J^{\pi}: L(t,p)=3,4.$	
$3494.84 \ 11 \ 6^{(+)} \ D \ J^{\pi}$: Q 1838.9γ to 4^{+} .	
3584.43 8 B $3594 \ 10$ $3^-,4^+$ C J^{π} : $L(t,p)=3,4$.	
$E(\text{level})$: possibily the same as the 3584.4 level observed in 90 Kr	0- 1
3627.01 23 AB	b decay.
3720 $10 \ge 6$ C J^{π} : $L(t,p) > 5$. 3742.16 $13 = 6$ D J^{π} : Q 814.5 γ to 4.	
$3764.36 \ 18$ (6 ⁺) D J ^{π} : Q 1291.2 γ from (8 ⁺), D 619.9 γ to (5 ⁻).	
$J^{\pi}: Q = 1291.27 \text{ Holli (8), } D = 19.37 \text{ to (3).}$ $J^{\pi}: L(t,p)=(5).$	
$3804 \ 10$ 2^+ $C \ J^{\pi}: L(t,p)=(3).$	
3845 10 C	
3915 <i>10</i> C	
3954.32 18 AB	
4019.4 <i>4</i> A	
4036.88 <i>13</i> B	
4037.12 9 A	
4043 10 $3^-,4^+$ C J^{π} : L(t,p)=3,4.	
4066.32 [@] 16 (7 ⁻) D J ^{π} : D 342.2 γ to (6), Q 955.3 γ from (9 ⁻).	
4073 10 $3^-,4^+$ C J^{π} : L(t,p)=3,4.	
4135.63 10 (1,2 ⁺) ABC J^{π} : 4135.5 γ to 0 ⁺ .	
4137.6 9 A	
4148.85 7 AB	
4240 IO 2 ⁺ C J^{π} : $L(t,p)=2$.	
4288 10 3 ⁻ ,4 ⁺ C J^{π} : L(t,p)=3,4.	
4335.37 7 BC	
4366.06 <i>11</i> AB	
4404.62 <i>18</i> B	
4430.91 <i>24</i> B	
4493 <i>10</i> C	
4522 <i>10</i> C	
4580.8 <i>3</i> A C	
4646.35 <i>14</i> A C	
4660 <i>10</i>	
4685.6 3 B	
4742 10 $3^-,4^+$ C J^{π} : L(t,p)=3,4.	
4748.93 19 8 D J^{π} : Q 1006.7 γ to 6, D 1050.3 γ to (7 ⁻). 4774 10 3 ⁻ ,4 ⁺ C J^{π} : L(t,p)=3,4.	
•	
4804.0 5 B 4805.12 22 B	
4808.52 23 B	
$4824 \ 10$ 2^+ C J^{π} : $L(t,p)=2$.	
4854.2? 5 B	
4881.7 3 8 D J^{π} : D 1183.1 γ to (7 ⁻).	
4919.07? 20 A	
4947.5 4 (2 ⁺) BC J^{π} : L(t,p)=(2).	
4973.99 <i>17</i> A C	
5021.62 [@] 16 (9 ⁻) D J^{π} : Q 1323.1 γ to (7 ⁻), D 140.0 γ to 8.	

90 Sr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
5024.54 23		В	
5026.8? 4		BC	
5041.01 <i>13</i>		AB	
5041.44 12		В	
5055.56 14	(8^{+})	CD	J^{π} : Q 1560.7 γ to 6 ⁽⁺⁾ , D 1357.0 γ to (7 ⁻).
5089.46 16	(0)	В	3. Q 1500.17 to 6 7, D 1557.07 to (7).
5095 10	$3^{-},4^{+}$	C	J^{π} : L(t,p)=3,4.
5142 10	- ,.	Ċ	- (-(-(-))
5187.51 6	$(1^-,2^+)$	A C	J^{π} : 5187.4 γ to 0 ⁺ , 2980.7 γ to (3 ⁻).
5239.2 5	, , ,	В	
5254.32 12		A	
5285.89 19		BC	
5298.48 <i>21</i>	(9^{-})	D	J^{π} : (E2) 1599.9 γ to (7 ⁻), D 549.6 γ to 8.
5333.15? 23		Α	
5343 10		C	
5426.65 <i>13</i>		ABC	
5431.2 <i>3</i>		В	
5557.9 <i>3</i>		В	
5591.8 <i>3</i>	10	D	J^{π} : D 570.2 γ to (9 $^{-}$).
5600.3? <i>4</i>		A C	
5623.3 <i>3</i>		A	
5785.1? 7		В	
5822.0 <i>5</i>		В	
5827.9 <i>3</i>	(401)	В	
5923.56 16	(10^{+})	D	J^{π} : Q 868.0 γ to (8 ⁺).
5961.1 [@] 3	(11^{-})	D	J^{π} : Q 939.5 γ to (9 ⁻).
6712.3 <i>3</i>	12	D	J^{π} : Q 1120.5 γ to 10, D 751.2 γ to (11 ⁻).
6794.56 <i>19</i>	(12^{+})	D	J^{π} : Q 871.0 γ to (10 ⁺).
7371.2 5	13	D	J^{π} : D 658.9 γ to 12.
7705.77 21		D	
7959.7 3		D	
8772.4 3		D	
9060.7 5		D	
9199.7 4		D	
9957.5 5		D	

 $^{^{\}dagger}$ From least-squares fit to E γ , by evaluators for levels connected by γ -ray transitions. Levels with uncertainty of 10 keV are from (t,p). ‡ From $\beta\gamma$ (t) with scintillators in $^{90}{\rm Kr}~\beta^-$ decay.

[#] Band(A): γ sequence based on g.s. [@] Seq.(B): γ sequence based on (7⁻).

$\gamma(^{90}\mathrm{Sr})$

						/(5	1)	
E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ	α	Comments
831.68	2+	831.69 5	100	0.0 0+	E2		9.02×10 ⁻⁴	$\alpha(K)=0.000798\ 12;\ \alpha(L)=8.77\times10^{-5}\ 13;\ \alpha(M)=1.471\times10^{-5}\ 21;\ \alpha(N)=1.84\times10^{-6}\ 3$ $\alpha(O)=1.178\times10^{-7}\ 17$ $B(E2)(W.u.)=8.5\ +33-19$ Mult.: Q from $\gamma(\theta)$ in $^{82}Se(^{11}B,p2n\gamma),^{12}C(^{86}Kr,2\alpha\gamma);$
1655.92	4+	824.23 10	100	831.68 2+	E2		9.22×10 ⁻⁴	M2 excluded by comparison to RUL. $\alpha(K)=0.000816$ 12; $\alpha(L)=8.97\times10^{-5}$ 13; $\alpha(M)=1.506\times10^{-5}$ 21; $\alpha(N)=1.88\times10^{-6}$ 3 $\alpha(O)=1.204\times10^{-7}$ 17 B(E2)(W.u.)=5.2 +11-7
1892.36	2+	1060.70 4	100 3	831.68 2+	M1+E2	+0.50 3	4.97×10 ⁻⁴	Mult.: Q from $\gamma(\theta)$ in ⁸² Se(¹¹ B,p2n γ), ¹² C(⁸⁶ Kr,2 $\alpha\gamma$) and $\gamma\gamma(\theta)$ in ⁹⁰ Kr β ⁻ decay; M2 excluded by comparison to RUL. $\alpha(K)$ =0.000440 7; $\alpha(L)$ =4.75×10 ⁻⁵ 7; $\alpha(M)$ =7.97×10 ⁻⁶ 12; $\alpha(N)$ =1.002×10 ⁻⁶ 14; $\alpha(O)$ =6.59×10 ⁻⁸ 10
		1892.28 8	6.0 3	0.0 0+	[E2]		4.11×10 ⁻⁴	B(E2)(W.u.)=1.7 +15-6; B(M1)(W.u.)=0.0070 +57-24 Mult., δ : D+Q from $\gamma\gamma(\theta)$ in 90 Rb β^- decay, E1+M2 excluded by comparison to RUL. $\alpha(K)$ =0.0001370 20; $\alpha(L)$ =1.464×10 ⁻⁵ 21; $\alpha(M)$ =2.45×10 ⁻⁶ 4; $\alpha(N)$ =3.09×10 ⁻⁷ 5; $\alpha(O)$ =2.03×10 ⁻⁸
2207.02	(3-)	314.5 3	4.97 23	1892.36 2+	[E1]		0.00374	B(E2)(W.u.)=0.028 +24-10 α (K)=0.00331 5; α (L)=0.000359 6; α (M)=6.02×10 ⁻⁵ 9; α (N)=7.51×10 ⁻⁶ 11; α (O)=4.78×10 ⁻⁷ 7
		551.20 25	5.1 4	1655.92 4+	[E1]		8.91×10 ⁻⁴	B(E1)(W.u.)>4.5×10 ⁻⁴ α (K)=0.000790 <i>11</i> ; α (L)=8.52×10 ⁻⁵ <i>12</i> ; α (M)=1.427×10 ⁻⁵ 20; α (N)=1.79×10 ⁻⁶ 3 α (O)=1.157×10 ⁻⁷ <i>17</i>
		1375.36 3	100 4	831.68 2+	(E1(+M2))	-0.02 6	2.98×10 ⁻⁴	B(E1)(W.u.)>8.3×10 ⁻⁵ α (K)=0.000124 3; α (L)=1.32×10 ⁻⁵ 4; α (M)=2.22×10 ⁻⁶ 6; α (N)=2.79×10 ⁻⁷ 7; α (O)=1.83×10 ⁻⁸ 5 B(E1)(W.u.)>0.00012 Mult.,δ: D(+Q) from $\gamma\gamma(\theta)$ in ⁹⁰ Rb β ⁻ decay; $\Delta\pi$ =yes
2497.32	(2+)	1665.61 7	100 3	831.68 2+				from adopted level scheme.
2527.92	3-,4+	2497.27 <i>15</i> 872.00 <i>15</i>	15.9 <i>16</i> 32.0 <i>23</i>	$0.0 0^{+}$ $1655.92 4^{+}$				
2570.60		1696.16 <i>7</i> 1738.93 <i>8</i>	100 <i>4</i> 100	831.68 2 ⁺ 831.68 2 ⁺				
2674.0 2927.70	(0 ⁺)	1842.3 [@] 5 720.70 9	100 35 <i>3</i>	831.68 2 ⁺ 2207.02 (3 ⁻) D#			

γ (90Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α	Comments
2927.70	4	1271.77 7	100 7	1655.92 4+	D#		
2971.12	0+	2139.33 18	100	831.68 2+	E2	4.99×10 ⁻⁴	$\alpha(K)$ =0.0001094 <i>16</i> ; $\alpha(L)$ =1.167×10 ⁻⁵ <i>17</i> ; $\alpha(M)$ =1.96×10 ⁻⁶ <i>3</i> ; $\alpha(N)$ =2.46×10 ⁻⁷ 4 $\alpha(O)$ =1.625×10 ⁻⁸ 23 Mult.: Q from $\gamma\gamma(\theta)$ in ⁹⁰ Kr β^- decay; $\Delta\pi$ =no from level scheme.
3032.87		1140.50 6	100	1892.36 2+			Mult Q from $yy(0)$ in Ki p decay, Δx – no from lever scheme.
3039.26	1	1146.96 25	5.7 7	1892.36 2 ⁺			
		2207.47 11	61 <i>3</i>	831.68 2+	D		Mult.: from $\gamma\gamma(\theta)$ in 90 Kr β^- decay.
		3039.17 <i>12</i>	100 4	$0.0 0^{+}$			
3144.45	(5^{-})	216.8 [‡] 5	0.70 [‡] 18	2927.70 4			
		937.3 [‡] 5	≈1.8 [‡]	2207.02 (3 ⁻)	(E2)	6.74×10^{-4}	Mult.: Q from $\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$), $\Delta\pi$ =no from level scheme.
		1488.5 [‡] <i>1</i>	100.0 [‡] 14	1655.92 4+	(E1)	3.59×10^{-4}	Mult.: D from $\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$), $\Delta\pi$ =yes from level scheme.
3268.69	$3^{-},4^{+}$	1612.8 [‡] <i>3</i>	100 [‡]	1655.92 4 ⁺			
3383.39	- ,	886.3 <i>3</i>	0.95 18	$2497.32 (2^{+})$			
		1176.9 9	0.60 24	2207.02 (3-)			
		3383.24 12	100 <i>3</i>	$0.0 0^{+}$			
3449.83	3	522.10 <i>13</i>	13.0 10	2927.70 4			
		921.20 24	9.9 22	2527.92 3-,4+			
		952.44 <i>7</i> 1242.84 <i>4</i>	55.6 <i>19</i> 100 <i>6</i>	2497.32 (2+)	D		Mult.: from $\gamma\gamma(\theta)$ in 90 Kr β^- decay.
		1242.84 <i>4</i> 1793.89 <i>11</i>	27.6 <i>16</i>	2207.02 (3 ⁻) 1655.92 4 ⁺	D D		Mult.: from $\gamma \gamma(\theta)$ in ${}^{-3}$ Kr β decay. Mult.: from $\gamma \gamma(\theta)$ in 90 Kr β decay.
		2617.8 3	20.3	831.68 2+	D		Mult Holli $\gamma\gamma(\theta)$ iii Ki β decay.
3468.43	(5^{-})	324.0^{\ddagger} 5	‡	3144.45 (5 ⁻)			
3400.43	(5)	1812.5 [‡] 3	100‡	1655.92 4+	D#		
3494.84	6(+)	1812.5* 3 1838.9 [‡] <i>I</i>	100‡	1655.92 4 ⁺		3.94×10^{-4}	$\alpha(K)=0.0001445\ 21;\ \alpha(L)=1.545\times10^{-5}\ 22;\ \alpha(M)=2.59\times10^{-6}\ 4;$
3494.84	0(1)	1838.9* 1	100*	1033.92 41	(E2)	3.94×10 ⁴	$\alpha(K)$ =0.0001445 21; $\alpha(L)$ =1.545×10 5 22; $\alpha(M)$ =2.59×10 5 4; $\alpha(N)$ =3.26×10 ⁻⁷ 5; $\alpha(O)$ =2.15×10 ⁻⁸ 3
							$\alpha(N)=3.26\times10^{-5}$ 5; $\alpha(O)=2.13\times10^{-5}$ 5 Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$), assumed E2
3555.79		985.4 5	18 6	2570.60			with. Q from $\gamma\gamma(\sigma)$ in Sc($\mathbf{D},\mathbf{p}z_{11}\gamma$), C($\mathbf{K}_{1},2\alpha\gamma$), assumed E2
5555.19		2724.26 21	100 13	831.68 2+			
3584.43		1013.95 19	2.21 25	2570.60			
		1086.7 8	0.61 12	2497.32 (2+)			
		1377.2 5	20 7	2207.02 (3-)			
		1692.07 25	2.4 4	1892.36 2+			
		2752.68 8	100 4	831.68 2+			
3627.01	(7-)	3627.4 <i>7</i>	100	$0.0 0^{+}$			
3698.55	(7^{-})	203.7‡ 5	≈3.0 [‡]	3494.84 6 ⁽⁺⁾			
		554.1 [‡] 1	100.0 [‡] 18	3144.45 (5 ⁻)	(E2)	0.00271	$\alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000269 \ 4; \ \alpha(M)=4.51\times10^{-5} \ 7;$ $\alpha(N)=5.61\times10^{-6} \ 8; \ \alpha(O)=3.49\times10^{-7} \ 5$
							Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E2

S

γ (90Sr) (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}_{_f}^\pi$	Mult.	α	Comments
3698.55	$\frac{\sigma_i}{(7^-)}$	$\frac{27}{2042.6^{\ddagger} 3}$	19.3‡ 3	1655.92		(E3)	4.07×10^{-4}	$\alpha(K)=0.000197 \ 3; \ \alpha(L)=2.13\times10^{-5} \ 3; \ \alpha(M)=3.57\times10^{-6} \ 5; \ \alpha(N)=4.49\times10^{-7}$
3096.33	(7)	2042.013	19.5 3	1033.92	4	(E3)	4.07X10	7; $\alpha(O)=2.94\times10^{-8}$ 5
								Mult.: O from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E3.
3742.16	6	597.7 [‡] 1	100.0‡ 24	3144.45		D#		
		814.5 [‡] <i>3</i>	16.6 [‡] <i>12</i>	2927.70		Q#		
3764.36	(6+)	495.7 [‡] <i>3</i>	36 [‡] 6	3268.69	3-,4+	Q#		$\alpha(K)=0.00332\ 5;\ \alpha(L)=0.000377\ 6;\ \alpha(M)=6.34\times10^{-5}\ 9;\ \alpha(N)=7.85\times10^{-6}$
		619.9 [‡] <i>3</i>	82 [‡] 12	2144.45	(5-)	D#		11; $\alpha(O)=4.83\times10^{-7}$ 7
		619.9 [‡] 3 2108.4 [‡] 3	82* 12 100 [‡] 3	3144.45		D.		
3954.32		2108.4* 3 1027.1 4	100# 3 36 5	1655.92 2927.70				
3934.32		1027.1 4	68 <i>7</i>	2497.32				
		1747.3 3	68 8	2207.02				
		2298.1 9	$1.0 \times 10^2 5$	1655.92				
4019.4		1522.1 4	100 23	2497.32				
1015.1		4019.3 13	$9.\times10^{1}\ 5$	0.0				
4036.88		1109.2 8	12 7	2927.70				
1000.00		1829.82 20	31 5	2207.02				
`		2381.5 5	15 6	1655.92				
		3205.09 16	100 8	831.68	2+			
4037.12		892.5 7	6 3	3144.45	(5^{-})			
		997.85 6	100 4	3039.26				
4066.32	(7^{-})	324.2‡ 3	100.0 ‡ 10	3742.16		D#		
		367.8 [‡] <i>3</i>	83.8 [‡] 20	3698.55		D#		
		571.5 [‡] 3	14 [‡] 4	3494.84				
		597.9 [‡] <i>3</i>	55.6 [‡] 20	3468.43	(5^{-})			
4135.63	$(1,2^+)$	752.1 3	1.05 13	3383.39				
		3303.91 <i>13</i>	13.2 6	831.68				
4127.6		4135.51 <i>17</i>	100 4	0.0	0 ⁺			
4137.6 4148.85		2245.2 <i>9</i> 765.1 <i>7</i>	100 0.60 <i>20</i>	1892.36 3383.39	2.			
4140.03		1003.9 9	0.39 20	3144.45	(5-)			
		1941.81 <i>17</i>	4.4 <i>4</i>	2207.02				
		2256.55 17	4.6 3	1892.36				
		3317.00 12	100 3	831.68				
4335.37		779.9 <i>4</i>	5.3 11	3555.79				
		1764.5 9	1.8 9	2570.60				
		1838.15 <i>14</i>	15.8 <i>11</i>	2497.32				
		2128.30 7	100 <i>3</i>	2207.02				
		2442.9 5	5.1 13	1892.36				
1266.66		3503.52 <i>15</i>	45.5 20	831.68	2+			
4366.06		739.2 4	0.63 11	3627.01				

Adopted Levels, Gammas (continued)

γ (90Sr) (continued)

	$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^π	Mult.	α
ı	4366.06		1326.46 21	1.65 20	3039.26 1		
ı			1438.3 8	0.40 15	2927.70 4		
ı			2473.94 20	7.7 8	1892.36 2+		
ı			4365.90 18	100 4	$0.0 0^{+}$		
ı	4404.62		1021.9 7	4.9 19	3383.39		
ı			3572.82 18	100 7	831.68 2+		
ı	4430.91		1391.6 <i>3</i>	100 18	3039.26 1		
ı			1460.1 6	43 11	2971.12 0+		
ı			1903.1 6	30 13	2527.92 3-,4+		
ı	4.500.0		2537.8 9	39 <i>16</i>	1892.36 2+		
ı	4580.8		543.6 10	52 <i>23</i>	4037.12		
ı			1547.8 5	52 <i>13</i>	3032.87		
ı			2688.9 5	100 20	1892.36 2 ⁺		
ı	1616 25		2924.3 <i>7</i> 3814.36 <i>20</i>	58 20 26.1 <i>18</i>	1655.92 4 ⁺ 831.68 2 ⁺		
ı	4646.35		4646.45 20	20.1 18 100 4	831.68 2 ⁺ 0.0 0 ⁺		
ı	4685.6		1302.2 <i>3</i>	100 4	3383.39		
ı	4005.0		4685.0 <i>14</i>	20 15	$0.0 0^{+}$		
ı	4748.93	8	1006.7 [‡] 3	100.0 [‡] 17	3742.16 6	Q [#]	
ı	17 10.55	O	1050.3‡ 3	86 [‡] 5	3698.55 (7 ⁻)	D#	5.05×10^{-4}
	4790.3?	$(1,2^+)$	3958.4 [@] 8	$1.0 \times 10^2 \ 3$	831.68 2+	2	0.007.120
ı		. , ,	4790.2 [@] 7	80 20	$0.0 0^{+}$		
ı	4804.0		2911.7 11	34 19	1892.36 2 ⁺		
ı			3972.2 5	100 19	831.68 2+		
ı	4805.12		1877.40 <i>21</i>	100	2927.70 4		
ı	4808.52		442.3 <i>4</i>	39 10	4366.06		
ı			1425.2 <i>3</i>	94 10	3383.39		
ı			2311.2 6	$1.0 \times 10^2 4$	$2497.32 (2^{+})$		
ı	4854.2?		1298.5 [@] 5	100 19	3555.79		
ı			3197.9 [@] <i>10</i>	$7.\times10^{1} \ 3$	1655.92 4 ⁺		
ı	4881.7	8	1183.1 [‡] <i>3</i>	100 [‡]	3698.55 (7-)	D#	
ı	4919.07?		4087.26 [@] 23	100 7	831.68 2+		
ı			4919.0 [@] 4	30 4	$0.0 0^{+}$		
ı	4947.5	(2^{+})	2741.0 [@] 12	41 22	2207.02 (3-)		
ı			4115.6 [@] 4	100 17	831.68 2+		
ı	4973.99		1590.3 <i>3</i>	67.8	3383.39		
ı			2476.7 11	$5.\times10^{1} 4$	$2497.32 (2^{+})$		
I			3081.3 4	75 14	1892.36 2 ⁺		
I			4974.14 25	100 8	$0.0 0^{+}$		
	5021.62	(9-)	140.0 [‡] 5	4.8 [‡] 7	4881.7 8	D#	
1							

γ (90Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α	Comments
5021.62	(9-)	272.5 [‡] 3	23.8 [‡] 7	4748.93 8	$\overline{\mathrm{D^{\#}}}$		
	,	955.3 [‡] 1	100.0‡ 14	4066.32 (7-)	(E2)		Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E2.
		1323.1 [‡] <i>3</i>	31.3 [‡] 7	3698.55 (7-)	(E2)		Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E2.
5024.54		4192.75 23	100	831.68 2+	(22)		11alin Q 11olin //(0) in 50(2,p2n/), 0(11,20/), assumed 221
5026.8?		1576.9 [@] 7	29 10	3449.83 3			
		3370.8 [@] 4	100 15	1655.92 4 ⁺			
5041.01		1485.6 7	16 5	3555.79			
		3148.58 <i>12</i>	100 4	1892.36 2 ⁺			
5041.44		2543.9 <i>3</i>	17.9 <i>21</i>	$2497.32 (2^{+})$			
		2834.43 <i>13</i>	100 7	2207.02 (3-)			
		4209.5 3	49 5	831.68 2+			
5055.56	(8^{+})	1291.2 [‡] <i>3</i>	32.6 [‡] 7	3764.36 (6 ⁺)	(E2)	3.54×10^{-4}	$\alpha(K)=0.000291 \ 4; \ \alpha(L)=3.15\times10^{-5} \ 5; \ \alpha(M)=5.28\times10^{-6} \ 8;$
							$\alpha(N)=6.63\times10^{-7}\ 10; \alpha(O)=4.32\times10^{-8}\ 6$
							Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E2.
		1357.0 [‡] <i>1</i>	100.0 [‡] 21	3698.55 (7-)	(E1)	2.89×10^{-4}	$\alpha(K)=0.0001270\ 18;\ \alpha(L)=1.351\times10^{-5}\ 19;\ \alpha(M)=2.26\times10^{-6}\ 4;$
							$\alpha(N)=2.85\times10^{-7} \ 4; \ \alpha(O)=1.87\times10^{-8} \ 3$
							Mult.: D from $\gamma \gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha \gamma$); $\Delta \pi$ = yes
							from level scheme.
		1560.7 [‡] <i>3</i>	69.5 [‡] <i>14</i>	3494.84 6 ⁽⁺⁾	(E2)	3.32×10^{-4}	$\alpha(K)=0.000198 \ 3; \ \alpha(L)=2.13\times10^{-5} \ 3; \ \alpha(M)=3.57\times10^{-6} \ 5;$
							$\alpha(N)=4.49\times10^{-7}$ 7; $\alpha(O)=2.94\times10^{-8}$ 5
							Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E2.
5089.46		2592.32 20	87 9	$2497.32 (2^{+})$			
5105 51	(1 - 2 ±)	4257.34 24	100 8	831.68 2+			
5187.51	$(1^-,2^+)$	1038.63 7	26.7 11	4148.85			
		1631.78 <i>20</i> 1804.10 <i>7</i>	7.2 <i>14</i> 52.1 <i>18</i>	3555.79 3383.39			
		2148.2 3	18.8 24	3039.26 1			
		2216.29 <i>14</i>	42.8 24	2971.12 0 ⁺			
		2980.7 6	8.2 18	2207.02 (3 ⁻)			
		3295.09 <i>14</i>	74 <i>4</i>	1892.36 2 ⁺			
		4355.78 22	38.0 21	831.68 2+			
		5187.44 <i>23</i>	100 5	$0.0 0^{+}$			
5239.2		3032.1 5	100	2207.02 (3-)			
5254.32		1870.7 4	7.8 17	3383.39			
		3361.88 <i>13</i>	100 5	1892.36 2+			
5285.89		5254.27 <i>25</i> 1658.9 <i>3</i>	23.8 <i>17</i> 37 <i>5</i>	0.0 0 ⁺ 3627.01			
3203.09		1038.9 <i>3</i> 4454.07 <i>21</i>	100 7	831.68 2 ⁺			
5298.48	(9-)	416.8‡ 5	18 [‡] 3	4881.7 8	D#	0.00403	$\alpha(K)=0.00357\ 5;\ \alpha(L)=0.000392\ 6;\ \alpha(M)=6.58\times10^{-5}\ 10;$
J290.48	(9)	410.61 3	10, 3	4001./ 0	D.	0.00403	$\alpha(K)=0.00357$ 3; $\alpha(L)=0.000392$ 6; $\alpha(M)=0.38\times10^{-5}$ 10; $\alpha(N)=8.27\times10^{-6}$ 12; $\alpha(O)=5.39\times10^{-7}$ 8
		540 6 7	71 + 6	4740.02.0	ъ#	0.00211	
		549.6 [‡] 3	71 [‡] 6	4748.93 8	D#	0.00211	$\alpha(K)=0.00186 \ 3; \ \alpha(L)=0.000203 \ 3; \ \alpha(M)=3.41\times10^{-5} \ 5;$
							$\alpha(N)=4.29\times10^{-6} 6$; $\alpha(O)=2.81\times10^{-7} 4$

 ∞

γ (90Sr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α	Comments
5298.48	(9-)	1599.9‡ 3	100‡ 3	3698.55 (7 ⁻)	(E2)	3.37×10 ⁻⁴	$\alpha(K)$ =0.000189 3; $\alpha(L)$ =2.02×10 ⁻⁵ 3; $\alpha(M)$ =3.40×10 ⁻⁶ 5; $\alpha(N)$ =4.27×10 ⁻⁷ 6; $\alpha(O)$ =2.80×10 ⁻⁸ 4 Mult.: Q from $\gamma\gamma(\theta)$ in ⁸² Se(¹¹ B,p2n γ), ¹² C(⁸⁶ Kr,2 $\alpha\gamma$); assumed E2.
5333.15?		4500.8 [@] 10	8 4	831.68 2+			
		5333.01 [@] 24	100 5	$0.0 0^{+}$			
5426.65		3534.24 <i>13</i>	100	1892.36 2+			
5431.2		3538.6 [@] 6	100 22	1892.36 2 ⁺			
		4599.4 [@] 3	96 8	831.68 2+			
5557.9		1603.52 20	100 11	3954.32			
		4726.1 7	24 7	831.68 2+	_#		
5591.8	10	570.2‡ 3	100‡	5021.62 (9-)	D#		
5600.3?		1973.3 [@] 10	$1.0 \times 10^2 \ 4$	3627.01			
5600.0		5600.1 [@] 5	83 14	$0.0 0^{+}$			
5623.3		196.8 <i>4</i> 1668.9 <i>6</i>	59 <i>10</i> 9.×10 ¹ <i>3</i>	5426.65			
		1996.0 <i>10</i>	9.×10 ⁻ 3 24 10	3954.32 3627.01			
		2239.7 8	$1.0 \times 10^2 6$	3383.39			
5785.1?		2335.2 [@] 10	$1.0 \times 10^2 \ 4$	3449.83 3			
3703.11.		3214.5 [@] 11	$6.\times10^{1}~3$	2570.60			
5822.0		395.8 8	27 14	5426.65			
		1686.2 <i>6</i>	43 14	4135.63 (1,2 ⁺)			
		2789.1 22	$1.0 \times 10^2 7$	3032.87			
		3929.4 14	$5.\times10^{1} \ 3$	1892.36 2 ⁺			
5827.9		2200.9 3	84 10	3627.01			
		2900.3 <i>13</i> 3620.8 <i>11</i>	$20 12$ $1.0 \times 10^2 4$	2927.70 4			
		4996.2 <i>11</i>	11.0×10 4	2207.02 (3 ⁻) 831.68 2 ⁺			
5923.56	(10^{+})	625.1‡ 3	21.4 [‡] <i>16</i>	5298.48 (9 ⁻)	D#		
3723.30	(10)	868.0 [‡] <i>I</i>	$100.0^{\ddagger} 19$	5055.56 (8+)	(E2)		Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E2.
		901.9 [‡] 3	8.2 [‡] 8	5021.62 (9 ⁻)	(E2)		white. Q from $\gamma\gamma(0)$ in Set B,p2n γ), Set K1,2 $\alpha\gamma$), assumed E2.
5961.1	(11^{-})	939.5 [‡] 3	100‡	5021.62 (9)	(E2)	6.70×10^{-4}	$\alpha(K)=0.000593 \ 9; \ \alpha(L)=6.48\times10^{-5} \ 9; \ \alpha(M)=1.088\times10^{-5} \ 16;$
0901.1	(11)	939.31 3	100	3021.02 (9)	(E2)	0.70×10	$\alpha(K)=0.000393$ 9; $\alpha(L)=0.48\times10^{-9}$ 9; $\alpha(M)=1.088\times10^{-10}$ 70; $\alpha(N)=1.362\times10^{-6}$ 19; $\alpha(O)=8.77\times10^{-8}$ 13 Mult.: Q from $\gamma\gamma(\theta)$ in ${}^{82}Se({}^{11}B,p2n\gamma), {}^{12}C({}^{86}Kr,2\alpha\gamma)$; assumed E2.
6712.3	12	751.2 [‡] 3	100 [‡] 3	5961.1 (11-)	D#		
		1120.5 [‡] 3	48 [‡] 3	5591.8 10	Q#		
6794.56	(12^{+})	871.0 [‡] <i>I</i>	100‡	5923.56 (10 ⁺)	(E2)	8.05×10^{-4}	$\alpha(K)=0.000712 \ 10; \ \alpha(L)=7.80\times10^{-5} \ 11; \ \alpha(M)=1.310\times10^{-5} \ 19;$
5177.50	(12)	0/1.0 1	100	3723.30 (10)	$(\mathbf{L} \mathcal{L})$	0.03/10	$u(\mathbf{x}) = 0.00071270, u(\mathbf{L}) = 7.00 \land 10$ 11, $u(\mathbf{x}) = 1.510 \land 10$ 17,

	Adopted	Levels,	Gammas	(continued)
--	---------	---------	--------	-------------

γ (90Sr) (continued)

Comments

 $\alpha(N)=1.639\times 10^{-6} \ 23$ $\alpha(O)=1.052\times 10^{-7} \ 15$ Mult.: Q from $\gamma\gamma(\theta)$ in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$); assumed E2.

	_				
7371.2	13	658.9 [‡] 3	100 [‡]	6712.3 12	D#
7705.77		911.2 [‡] <i>1</i>	100 [‡]	6794.56 (12 ⁺)	
7959.7		253.9 [‡] 3	100 [‡]	7705.77	Q#
8772.4		812.7 [‡] 5	20 [‡] 7	7959.7	
		1066.6 [‡] 3	100 [‡] <i>13</i>	7705.77	Q#
9060.7		288.3 [‡] <i>3</i>	100 [‡]	8772.4	D#
9199.7		1493.9 [‡] <i>3</i>	100 [‡]	7705.77	
9957.5		757.8 [‡] <i>3</i>	100 [‡]	9199.7	$D^{\#}$

 I_{γ}^{\dagger}

 \mathbf{J}_f^{π}

Mult.

 \mathbf{E}_f

 E_{γ}^{\dagger}

 $E_i(level)$ J_i^{π}

[†] From 90 Rb β^- decay, except where noted. ‡ From 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$). # From $\gamma\gamma(\theta)$ (DCO) in 82 Se(11 B,p2n γ), 12 C(86 Kr,2 $\alpha\gamma$). @ Placement of transition in the level scheme is uncertain.

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Type not specified

Legend

Seq.(B): γ sequence based on (7 $^-$)

Band(A): γ sequence based on g.s

 $^{90}_{38}\mathrm{Sr}_{52}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012

 $Q(\beta^{-})=1950 \ 10$; $S(n)=7286 \ 7$; $S(p)=12411 \ 9$; $Q(\alpha)=-5601 \ 5$ 2012Wa38

Note: Current evaluation has used the following Q record 1951 9 7286 7 12410 9 -5601 4 2011AuZZ.

 $Q(\beta^-)$,S(n),S(p), $Q(\alpha)$: from 2011AuZZ; values are 1946 9, 7294 6, 12411 9, -5600 14, respectively, from 2003Au03.

For isotope shift data, see 1990Bu12.

For shell-model calculations see, e.g., 1973Wa36, 1978Ba70, 2002St06, 2003Hw01, 2009Rz01.

⁹²Sr Levels

Cross Reference (XREF) Flags

			A B C	92 Rb β ⁻ decay D 208 Pb(18 O,Fxnγ) 93 Rb β ⁻ n decay E 159 Tb(36 S,fxng) 94 Zr(6 Li, 8 B) F 248 Cm SF decay			
E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments			
0.0&	0+	2.611 h <i>17</i>	ABCDEF	$\%\beta^-$ =100 $\Delta < r^2 > (^{88}Sr,^{92}Sr) = 0.512$; uncertainty is 0.005 (statistical only), 0.021 (systematic included) (1990Bu12). For discussion of differential changes in $\Delta < r^2 >$, see 1996Li25. J^π : see comment on 815 level. $T_{1/2}$: unweighted average of 2.594 h 6 (2008Le19) and 2.627 h 9 (2003NiZY) (the weighted average is 2.604 h 15), the two highest precision measurements available. Other GeLi data: 2.71 h 1 (1971Pa31). Other NaI scin data: 2.71 h 2 (1960Fr05), 2.84 h 22, 2.73 h 10, 2.79 h 19, 2.77 h 17, 2.74 h 18, 2.45 h 7, 2.57 h 7 (1956He77). The weighted average of all data is 2.667 h 16; this rises to 2.669 h 15 if the statistical outlier datum (2.45 h 7) is excluded. However, these averages may not be reliable since these data are discrepant. $< r^2 > ^{1/2}$ (charge)=4.295 fm 6 (2004An14). J^π : from 1273 γ -815 $\gamma(\theta)$ and 1712 γ -815 $\gamma(\theta)$ which indicate 0-2-0+			
814.98 ^{&} 3	2+	8 ps <i>3</i>	ABCDEF	J^{π} : from 1273 γ -815 $\gamma(\theta)$ and 1712 γ -815 $\gamma(\theta)$ which indicate 0-2-0 ⁺ cascades; E2 γ to 0 ⁺ .			
1384.79 9	2+	5.1 ps 24	ABC	J^{π} : 704γ-1385γ(θ) establishes J(2088 level)=0, J(1385 level)=2; E2 γ to 0 ⁺ level.			
1673.3 ^{&} 4	$(4)^{+}$		DEF	J ^{π} : E2, ΔJ=2 858 γ to 2 ⁺ 815; energy is close to that for 4 ⁺ level in ⁹⁰ Sr (2000Fo13).			
1778.33 <i>12</i> 2053.9 <i>6</i>	2 ⁽⁺⁾ (2 ⁺)	≤5.0 ps	AB A	J^{π} : 964γ-815γ(θ) allows J=2, not 1,3,4; 1778γ to 0 ⁺ . J^{π} : 1239γ-815γ(θ) allows J=2; datum ≈2σ from J=1,3,4 ellipses. (E2+M1) γ to 2 ⁺ .			
2088.39 17	0(+)		A	J^{π} : 704γ-1385γ(θ) establishes J(2088 level)=0, J(1385 level)=2; Q γ to 2 ⁺ level.			
2140.82 <i>14</i> 2185.0 <i>4</i>	1 ⁺ (3 ⁻)	7.1 ps 25	A DEF	J^{π} : 756 γ - $\gamma(\theta)$ allows J=1, not 2,3,4; E2+M1 γ to 2 ⁺ . J^{π} : analogous to 3 ⁻ states in ⁸⁸ Sr and ⁹⁰ Sr at 2734 and 2207, respectively; D			
2527.18 <i>18</i> 2765.7 <i>5</i>	0 ⁺ (5 ⁻)	6 ps 4	A DEF	1371 γ to 2 ⁺ 815. J ^{\pi} : 1712 γ -815 $\gamma(\theta)$ establishes J(2527 level)=0, J(815 level)=2; E2 γ to 2 ⁺ . J ^{\pi} : energy systematics of lower-N Sr isotopes suggest a 5 ⁻ level in this vicinity (2000Fo13); D 1092 γ to (4) ⁺ 1673.			
2783.6 <i>4</i> 2820.89 <i>18</i>	2 ⁽⁺⁾ ,(1)		A A	J^{π} : $\gamma\gamma(\theta)$ rules out J=4, favors J=2, but also permits 1,3; strong γ to 0^+ g.s.			
2849.6 <i>6</i> 2924.8 <i>7</i>			A E	If J=2, $\gamma\gamma(\theta)$ implies $\delta(2007\gamma)<-0.53$, favoring $\pi=+$.			

⁹²Sr Levels (continued)

E(level) [†]	Jπ#	XREF	Comments
3014.6 6		EF	J^{π} : 1341 γ to (4) ⁺ 1673 so J=(2 to 6). J^{π} =(4 ⁺) proposed in (³⁶ S,Fxn γ) but (5,6 ⁺) in ²⁴⁸ Cm SF decay. Possible dominant configuration: π (1p _{3/2} ⁻¹ 1p _{1/2}) ₂ ν (1d _{5/2} ⁴) ₂) (2002St06) if J=4.
3128.8 7	(6 ⁺)	EF	J^{π} : 1455 γ to (4) ⁺ 1673; (5,6 ⁺) from ²⁴⁸ Cm SF decay; possible configuration: π (1p $_{3/2}^{-1}$ 1p $_{1/2}$) ₂ ν (1d $_{5/2}^{4}$) ₄) (2002St06).
3362.4 5	(5^{-})	EF	J^{π} : 1177 γ to (3 ⁻) 2185, 1689 γ to (4) ⁺ 1673; 597 γ to (5 ⁻) 2766 in ²⁴⁸ Cm SF decay.
3558.5 7	$(6^-,7^-)^{\textcircled{0}}$	DEF	XREF: D(4579).
3786.0 7	$(6^-,7^-)^{@}$	DEF	
4021.4 9	$(6^-,7^-)^{\textcircled{0}}$	EF	
4637.8 5	1	Α	J^{π} : log ft ≈6.6 from 0 ⁻⁹² Rb; γ to 2 ⁺ and 0 ⁺ .
4928.5 9	$(8^-,9^-)^{\textcircled{0}}$	EF	Configuration involves ($\nu g_{7/2}$) \otimes ($\nu h_{11/2}$) (2009Rz01).
5053.8 4	1	Α	J ^{π} : log ft ≈6.5 from 0 ⁻⁹² Rb; $γ$ to 2 ⁺ .
5056.7 10		E	
5727.2 10		E	
5738.4 9	1	A	J^{π} : log $ft \approx 6.1$ from 0^{-92} Rb; γ to 2^{+} and 0^{+} .
5893.6 7	1 ⁽⁻⁾	Α	J^{π} : log $ft \approx 6.0$ from 0^{-92} Rb; γ to 2^{+} .
5901.1 <i>10</i>	1 ⁽⁻⁾	Α	J^{π} : log $ft \approx 6.0$ from 0^{-92} Rb; γ to 0^{+} and 2^{+} .
6003.5 7	1-	Α	J^{π} : log $ft \approx 5.7$ from 0^{-92} Rb; γ to 0^{+} and 2^{+} .
6030.0 8	1-	A	J^{π} : log $ft \approx 5.8$ from 0^{-92} Rb; γ to 0^{+} and 2^{+} .
6116.1 <i>10</i>	1-	A	J^{π} : log ft ≈5.8 from 0 ⁻⁹² Rb; γ to 0 ⁺ and 2 ⁺ .
6527.7? 12		E	
6949.1? <i>7</i>	$0^{-},1^{-}$	Α	
7363.0 8	1-	A	J ^π : log ft ≈4.0 from 0 ⁻⁹² Rb; $γ$ to 2 ⁽⁺⁾ and 0 ⁺ .

[†] From least-squares fit to E γ , allowing 1 keV uncertainty in E γ data (3 lines) for which the authors do not state the uncertainty.

 $\gamma(^{92}Sr)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^{\ddagger}	Comments
814.98	2+	814.98 3	100	0.0	0+	E2		B(E2)(W.u.)=8 3 Other E γ : 814.4 in 208 Pb(18 O,Fxn γ). Mult.: Q Δ J=2 from $\gamma\gamma(\theta)$ in 248 Cm SF decay; not M2 from RUL.
1384.79	2+	569.8 <i>1</i>	100 6	814.98	2+	(M1+E2)	+0.21 2	B(M1)(W.u.)=0.014 7; B(E2)(W.u.)=1.9 10 Mult.: D+Q from $\gamma\gamma(\theta)$; adopted $\Delta\pi$ =no.
		1384.6 <i>3</i>	65 12	0.0	0+	E2		B(E2)(W.u.)=0.35 18 Mult.: Q to 0^+ in $\gamma\gamma(\theta)$; not M2 from RUL.
1673.3	(4) ⁺	858.4 [@] 5	100	814.98	2+	E2		Mult.: Q from DCO ratio in 159 Tb(36 S,Fxn γ); partial $T_{1/2}$ <5 ns because seen in prompt coin in 248 Cm SF decay, so not M2 from RUL.
1778.33	2 ⁽⁺⁾	393.5 1	83 4	1384.79	2+	(M1)		B(M1)(W.u.) \geq 0.029 Mult.: D from $\gamma\gamma(\theta)$ in β^- decay; $\Delta\pi$ =(no) from level scheme.

[‡] From $\beta \gamma \gamma(t)$ in Rb β^- decay, except as noted.

[#] Values given without comment are tentative values from 159 Tb(36 S,Fxn γ), consistent with DCO measurements but suggested primarily by analogy with 90 Sr which exhibits a very similar level sequence.

[®] From ²⁴⁸Cm SF decay, assuming that M2 transitions are unlikely if $E\gamma$ <1200, and that such a reaction predominantly populates yrast states in the secondary fission fragments so J is expected to rise with increasing level energy.

[&]amp; Band(A): π =+ sequence. Based on 0⁺ g.s. Principal configuration: ν 1d⁴_{5/2} (2002St06).

γ (92Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^{\ddagger}	Comments
1778.33	2 ⁽⁺⁾	963.5 2	100 9	814.98	2+	(E2+M1)	+1.7 +13-15	B(E2)(W.u.) \geq 1.2 Mult.: Q(+D) with significant Q component (from $\gamma\gamma(\theta)$).
2053.9	(2+)	1778.3 <i>10</i> 1238.9 <i>6</i>	24 <i>13</i> 100	0.0 814.98	0 ⁺ 2 ⁺	(E2+M1)		Mult.: $Q(+D)$ from $\gamma\gamma(\theta)$ with large Q component.
2088.39	0(+)	703.6 3	47 10	1384.79	2+	(E2)		δ : <-3.3 or >+11.8. Mult.: Q from $\gamma\gamma(\theta)$; J=0 to
		1273.4 2	100 13	814.98	2+	(E2)		J^{π} =2 ⁺ transition. Mult.: Q from $\gamma\gamma(\theta)$; J=0 to J^{π} =2 ⁺ transition.
2140.82	1+	756.0 2	81 7	1384.79	2+	M1(+E2)	-0.09 3	B(M1)(W.u.)=0.0032 12; B(E2)(W.u.)=0.05 4 Mult.: D(+Q) from $\gamma\gamma(\theta)$; adopted $\Delta\pi$ =no.
		1325.8 2	100 12	814.98	2+	E2+M1	-0.27 5	B(M1)(W.u.)=0.0007 3; B(E2)(W.u.)=0.030 16 Mult.: D+Q from $\gamma\gamma(\theta)$; not E1+M2 from RUL.
2185.0	(3^{-})	512.2 [#]		1673.3	$(4)^{+}$			
		1370.0 [@] 5		814.98	2+	D		Other Ey: 1371.1 in ²⁰⁸ Pb(¹⁸ O,Fxny).
								Mult.: D $\Delta J=1$ from $\gamma \gamma(\theta)$ in ²⁴⁸ Cm SF decay.
2527.18	0+	386.1 <i>3</i>	5.8 10	2140.82	1+	(M1)		B(M1)(W.u.)=0.0035 25 Mult., δ : pure D from $\gamma\gamma(\theta)$ in β^- decay: $\Delta\pi$ =no from level scheme.
		1712.3 2	100 8	814.98	2+	E2		B(E2)(W.u.)=0.25 17 Mult., δ : pure Q from $\gamma\gamma(\theta)$; not M2 from RUL.
2765.7	(5-)	580.7 [@] 5	58.0 [@] 17	2185.0	(3-)			WIZ HOM RCE.
2,00	(0)	1092.3 [@] 5	100.0 [@] 22	1673.3	$(4)^{+}$	D		Mult.: from DCO ratio in ¹⁵⁹ Tb(³⁶ S,Fxnγ).
2783.6		1399.0 <i>6</i> 1968.6 <i>6</i>	76 24 100 29	1384.79 814.98				10(З,ғхиу).
2820.89	2 ⁽⁺⁾ ,(1)	2006.5 5	12 3	814.98				Mult=Q(+D), δ <-0.53 if J(2821 level)=2; from β ⁻ decay.
2849.6		2820.6 2 1071.4 1464.7 6	100 7 33 100 <i>33</i>	0.0 1778.33 1384.79				ievei)=2, iioiii p decay.
2924.8		1251.4 [@] 5	100	1673.3	$(4)^{+}$			
3014.6		1341.2 [@] 5	100	1673.3	(4) ⁺			E_{γ} : for contaminated line; E_{γ} =1342.3 in ²⁴⁸ Cm SF decay.
3128.8	(6^+)	1455.4 [@] 5	100	1673.3	$(4)^{+}$,
3362.4	(5^{-})	597.2		2765.7	(5^{-})			E_{γ} : from ²⁴⁸ Cm SF decay.
		1177.4 [@] 5	100 [@] 3	2185.0	(3^{-})			
		1689.0 [@] 5	36.4 [@] 21	1673.3	(4)+			
3558.5	(6-,7-)	792.8 [@] 5	100	2765.7	(5 ⁻)			E_{γ} : for contaminated line; 792.8 from ²⁴⁸ Cm SF decay also. γ is placed differently in ²⁰⁸ Pb(¹⁸ O,Fxn γ) (feeding a 3786 level), implying a 4579 level

γ (92Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	J_f^π	Mult.	Comments
3786.0	(6-,7-)	771.3 [@] 5	≥24 [@]	3014.6			which has not been adopted by the evaluator. E_{γ} : for contaminated line. Other E_{γ} : 771.3 in 248 Cm SF decay.
		1020.6 [#]	100 3	2765.7	(5-)		Other Eγ: 1020.2 5 in ¹⁵⁹ Tb(³⁶ S,Fxnγ), but may be a doublet in that reaction; 1020.8 in ²⁴⁸ Cm SF decay. I _γ : from ¹⁵⁹ Tb(³⁶ S,Fxnγ).
4021.4	(6-,7-)	235.4 [@] 5	59.6 [@] 22	3786.0	(6-,7-)	(D)	E_{γ} : for contaminated line. Mult.: from DCO ratio in 159 Tb(36 S,Fxn γ).
4637.8	1	658.9 [@] 5 1816.7 5 2860.3 2 <i>I</i> 3823.6 <i>I</i> 6 4637.7 9	100 [@] 4 27 6 12 12 16 10 100 13	3362.4 2820.89 1778.33 814.98 0.0	(5 ⁻) 2 ⁽⁺⁾ ,(1) 2 ⁽⁺⁾ 2 ⁺ 0 ⁺		
4928.5	(8-,9-)	1142.5 [@] 5 1799.6 [@] 5	100 13 100 [@] 4 31 [@] 3	3786.0 3128.8	(6 ⁻ ,7 ⁻) (6 ⁺)		
5053.8	1	2232.0 5 2913.2 6 3670.8 12 4240.4 16	100 25 92 25 54 25 42 25		2 ⁽⁺⁾ ,(1) 1 ⁺ 2 ⁺		
5056.7		1035.3 [@] 5	100	4021.4	$(6^-,7^-)$		
5727.2		798.7 [@] 5	100	4928.5	$(8^-,9^-)$		
5738.4	1	4922.6 <i>11</i> 5739.4 <i>14</i>	100 <i>18</i> 64 <i>24</i>	814.98 0.0	2 ⁺ 0 ⁺		
5893.6	1(-)	3110.0 <i>7</i> 4508.2 <i>12</i>	100 <i>30</i> 63 <i>17</i>	2783.6 1384.79	2+		
5901.1	1 ⁽⁻⁾	5086.2 <i>12</i> 5900.6 <i>14</i>	93 <i>43</i> 100 <i>29</i>	814.98 0.0	2 ⁺ 0 ⁺		
6003.5	1-	5188.1 <i>8</i> 6004.1 <i>15</i>	100 <i>17</i> 24 8	814.98 0.0			
6030.0	1-	3502.0 <i>16</i> 5215.1 <i>10</i> 6030.0 <i>15</i>	33 21 100 36 73 21	2527.18 814.98 0.0	0_{+}		
6116.1	1-	5301.7 <i>13</i> 6114.8 <i>15</i>	100 <i>32</i> 100 <i>32</i>	814.98 0.0	2 ⁺ 0 ⁺		
6527.7?		800.5 [@] 5	100	5727.2			
6949.1?	$0^{-},1^{-}$	1895.1 ^{&} 6	53 16	5053.8	1		
7363.0	1-	4809.3 ^{&} 15 4835.9 11 5584.2 11	100 <i>50</i> 62 <i>16</i> 100 <i>20</i>	2140.82 2527.18 1778.33	0^{+}		

 $^{^{\}dagger}$ From $^{92}{\rm Rb}~\beta^-$ decay, except as noted.

[†] From $\gamma\gamma(\theta)$ in Rb β^- decay.

From 208 Pb(18 O,Fxn γ).

@ From 159 Tb(36 S,Fxn γ).

& Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(A): π =+ sequence

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	A. Negret, A. A. Sonzogni	ENSDF	31-Mar-2011

 $Q(\beta^-)=3507\ 7;\ S(n)=6831\ 8;\ S(p)=13515\ 8;\ Q(\alpha)=-6311.4\ 25$ 2012Wa38 Note: Current evaluation has used the following Q record 3510 8 6828 10 13512 11 -6309 7 2011AuZZ. $S(2n)=12118\ 8,\ S(2p)=24652\ 8\ (2011AuZZ).$ α : Additional information 1.

⁹⁴Sr Lev<u>els</u>

Cross Reference (XREF) Flags

- A 94 Rb $β^-$ decay B 95 Rb $β^-$ n decay C 248 Cm SF decay
- D ²⁵²Cf SF decay

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0‡	0+	75.3 s 2	ABCD	$%β^-=100$ $T_{1/2}$: from 1986Ok03. Others: 75.1 s 4 (1983Ok07), 76.7 s 9 (1979En02), 78.9 s 10 (1976KiZK), 75.3 s 7 (1974Gr29), 74.1 s 3 (1973Gr14), 78.9 s 8 (1973Ta09). < $r^2 > 1/2 = 4.324$ fm 8 (2004An14).
836.9 [‡] 1	2+	6.9 [†] ps 28	ABCD	J^{π} : E2 γ to 0^+ .
1926.28 <i>14</i>	(3^{-})	≤4.9 [†] ps	ABCD	J^{π} : (E1) γ to 2^+ , no γ to 0^+ .
2146.00 [‡] <i>14</i>	4+	$\leq 4.2^{\dagger}$ ps	ABCD	J^{π} : E2 γ to 2 ⁺ , member of g.s. cascade.
2271.22 <i>16</i>	(2^{+})		A	J^{π} : log ft =7.16 in β^- decay of $3^{(-)}$ parent, γ' s to 0^+ and 2^+ .
2414.11 <i>18</i>	(3 ⁻)	4.2 ps <i>14</i>	AB D	J^{π} : (E1) γ to 2^+ , no γ to 0^+ .
2603.94 <i>14</i>	(4 ⁻)#	$\leq 7.6^{\dagger}$ ps	ABCD	J^{π} : (E1) G to $3^{(-)}$.
2614.1 4	$(2,3,4)^{\#}$		AB	
2649.78 <i>15</i>	4 ^{(+)#}	$\leq 4.2^{\dagger}$ ps	ABCD	
2703.94 <i>16</i>	$(2,3,4)^{\#}$		AB	
2710.6 4	$(2,3,4)^{\#}$		AB	
2739.19 <i>16</i> 2788.1?	(4 ⁻) [#]	$\leq 5.5^{\dagger}$ ps	ABC D	
2851.27 <i>17</i>	$(2,3,4)^{\#}$		A	
2856.89 <i>15</i>	(5)-	25 [†] ps <i>11</i>	A CD	J^{π} : assignment adopted from 2009Rz01 based on E1 γ to 4 ⁺ . 1980Ju03 (94Rb β^- decay makes the (4 ⁺) assignment based on log ft =7.21 from 3 ⁽⁻⁾ parent.
2921.8 4	(2^{+})		A	J^{π} : log ft =7.4 in β^- decay of $3^{(-)}$ parent, γ to 0^+ level.
2929.81 <i>16</i>	$(2,3,4)^{\#}$		AB	
2965.0 5	$(2,3,4)^{\#}$		A	
2972.07 16	(5-)	$\leq 6.2^{\dagger}$ ps	A CD	J^{π} : Q γ to 3 ⁽⁻⁾ and D+Q γ to 4 ⁺ reported in 2009Rz01; Based on log $ft=7.34$ in β^- decay from 3 ⁽⁻⁾ parent J^{π} should be (2,3,4).
2981.1 5	$(2,3,4)^{\#}$		Α	
3047.38 19	$(2,3,4)^{\#}$ 2^{+}		A	
3077.70 <i>15</i>			A	J^{π} : γ' s to 0^+ and 4^+ .
3155.3 [‡]	6+		CD	J^{π} : E2 G to 4 ⁺ , member of g.s. cascade.
3262.34 <i>21</i>	$(2,3,4)^{\#}$		A	

⁹⁴Sr Levels (continued)

E(level)	${ m J}^{\pi}$	T _{1/2}	XREF	Comments
3310.73 21	(5 ⁻) [#]		A C	J^{π} : adopted from 2009Rz01 based on (Q) γ to 3 ⁽⁻⁾ ; from the log ft =7.28 in the β^- decay from 3 ⁽⁻⁾ parent the spin should be (2,3,4).
3338.42 <i>17</i>	$(2,3,4)^{\#}$		A	p decay from 3 parent the spin should be (2,5,1).
3340.9? 3	$(2,3,4)^{\#}$		A	
3438.61 24	$(2,3,4)^{\#}$	≤9.7 [†] ps	AB	
3485.41? 24	$(2,3,4)^{\#}$	_ 1	A	
3580.35? 25	$(2,3,4)^{\#}$		A	
3705.4	(6 ⁺)		C	J^{π} : G to 4^+ .
3724.7? <i>3</i>	$(2,3,4)^{\#}$		A	
3768.9 7	$(2,3,4)^{\#}$		A	
3793.1	(6 ⁻)		C	J^{π} : D G to 6^+ , G to 4^- .
3815.7? <i>8</i> 3922.8	$(2,3,4)^{\#}$ $(7)^{-}$		A CD	J^{π} : E1 G to 6^+ .
3948.63 19	$(2,3,4)^{\#}$	$\leq 4.2^{\dagger}$ ps	A	
3953.3? 10	$(2,3,4)^{\#}$		Α	
3968.9 10	$(2,3,4)^{\#}$		A	
3982.5 10	$(2,3,4)^{\#}$		Α	
4024.2? 10	$(2,3,4)^{\#}$		A	17 C . (+ 15-
4034.5	(7 ⁻)		C	J^{π} : G to 6 ⁺ and 5 ⁻ .
4066.4? <i>10</i> 4087.1? <i>10</i>	$(2,3,4)^{\#}$ $(2,3,4)^{\#}$		A	
4087.17.10	$(2,3,4)^{\#}$ $(2,3,4)^{\#}$		A	
4117.47 3	$(2,3,4)^{\#}$ $(2,3,4)^{\#}$		A A	
4142.3? 10 4168.2 4	(2,3,4) $(2,3,4)$ #		A A	
4198.49 23	(2,3,4)#		A	
4211.0? 10	(2,3,4)#		A	
4268.4? 10	(2,3,4)#		A	
4281.65? 23	$(2,3,1)^{\#}$		A	
4308.4? 10	$(2,3,4)^{\#}$		A	
4361.0 5	$(2,3,4)^{\#}$		A	
4366.8? 10	$(2,3,4)^{\#}$		A	
4382.8	(8-)		CD	J^{π} : D G to (7) ⁻ .
4481.1 7	$(2,3,4)^{\#}$		A	
4631.6	(8^{-})		CD	
4653.5? <i>6</i> 4673.7 <i>4</i>	(2,3,4) (2,3,4)#		A	
	(2,3,4)#		A	
4838.4 <i>3</i> 4857.4	$(2,3,4)^n$ (9^-)		A CD	
5213.0? 10	$(2,3,4)^{\#}$		A	
5223.2? 10	$(2,3,4)^{\#}$		A	
5267.3? 10	$(2,3,4)^{\#}$		A	
5289.1 4	$(2,3,4)^{\#}$		A	
5312.9? 10	$(2,3,4)^{\#}$		A	
5402.4? 8	$(2,3,4)^{\#}$		A	
5735.4? 10	$(2,3,4)^{\#}$		A	

⁹⁴Sr Levels (continued)

E(level)	J^{π}	XREI
5739.7	$\overline{(10^+,11^-)}$	CD
5828.2? 9	$(2,3,4)^{\#}$	A
5831.1? 5	$(2,3,4)^{\#}$	A
6063.7? 10	$(2,3,4)^{\#}$	A

 $^{^\}dagger$ From $^{94}{\rm Rb}~\beta^-$ decay. ‡ Band(A): Ground-state band. # From log ft=6.7-8.1 in β^- decay of $3^{(-)}$ parent.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α	Comments
836.9	2+	836.9 1	100	0.0 0+	E2		0.000888 13	$\alpha(K)$ =0.000785 11; $\alpha(L)$ =8.63×10 ⁻⁵ 12; $\alpha(M)$ =1.448×10 ⁻⁵ 21 $\alpha(O)$ =1.160×10 ⁻⁷ 17; $\alpha(N+)$ =1.93×10 ⁻⁶ B(E2)(W.u.)=8 4
1926.28	(3-)	1089.4 2	100	836.9 2+	(E1)		0.000212 3	Mult.: From $\gamma\gamma(\theta)$ and B(E2)=8.4. $\alpha(K)$ =0.000188 3; $\alpha(L)$ =2.01×10 ⁻⁵ 3; $\alpha(M)$ =3.36×10 ⁻⁶ 5; $\alpha(N)$ =4.23×10 ⁻⁷ 6 $\alpha(O)$ =2.77×10 ⁻⁸ 4; $\alpha(N+)$ =4.50×10 ⁻⁷ 7
2146.00	4+	1309.1 2	100	836.9 2+	E2		0.000349 5	$\alpha(K)=0.000283 \ 4; \ \alpha(L)=3.06\times10^{-5} \ 5; \ \alpha(M)=5.13\times10^{-6} \ 8; \ \alpha(N)=6.44\times10^{-7} \ 9 \ \alpha(O)=4.20\times10^{-8} \ 6; \ \alpha(N+)=3.01\times10^{-5} \ 5$
2271.22	(2+)	1434.4 2 2271.4 5	20.8 <i>17</i> 100 <i>13</i>	836.9 2 ⁺ 0.0 0 ⁺				u(0) 1.20/10 0, u(1/1.) 3.01/10 3
2414.11	(3-)	1577.5 2	100	836.9 2+	(E1+M2)	-0.02 2	0.000419 6	$\alpha(K)=9.89\times10^{-5}$ 15; $\alpha(L)=1.050\times10^{-5}$ 16; $\alpha(M)=1.76\times10^{-6}$ 3; $\alpha(N)=2.21\times10^{-7}$ 4 $\alpha(O)=1.459\times10^{-8}$ 22; $\alpha(N+)=0.000308$ 5 B(E1)(W.u.)=(2.0×10 ⁻⁵ 7); B(M2)(W.u.)=(0.015 +30-15)
2603.94	(4-)	458.0 <i>1</i> 677.7 <i>1</i>	14.6 <i>13</i> 100 <i>4</i>	2146.00 4 ⁺ 1926.28 (3 ⁻)	(M1+E2)	-0.54 24	0.001308 19	$\alpha(K)$ =0.001158 <i>17</i> ; $\alpha(L)$ =0.0001256 <i>18</i> ; $\alpha(M)$ =2.11×10 ⁻⁵ <i>3</i> $\alpha(O)$ =1.742×10 ⁻⁷ <i>25</i> ; $\alpha(N+)$ =2.83×10 ⁻⁶
2614.1	(2,3,4)	1766.8 [#] <i>4</i> 1777.2 <i>3</i>	3.6 <i>5</i> 100	836.9 2 ⁺ 836.9 2 ⁺				
2649.78	4 ⁽⁺⁾	503.8 1	100 4	2146.00 4+	(M1+E2)	-0.35 8	0.00269 6	$\alpha(K)$ =0.00238 6; $\alpha(L)$ =0.000261 7; $\alpha(M)$ =4.39×10 ⁻⁵ 11; $\alpha(N)$ =5.50×10 ⁻⁶ 13; $\alpha(O)$ =3.57×10 ⁻⁷ 8 $\alpha(N+)$ =5.86×10 ⁻⁶ 14
		723.7 <i>2</i> 1812.74 <i>24</i>	27 <i>5</i> 89 <i>6</i>	1926.28 (3 ⁻) 836.9 2 ⁺	(E2)		0.000386 6	$\alpha(K)$ =0.0001485 21; $\alpha(L)$ =1.588×10 ⁻⁵ 23; $\alpha(M)$ =2.66×10 ⁻⁶ 4 $\alpha(O)$ =2.20×10 ⁻⁸ 3; $\alpha(N+)$ =0.000219 Mult.: measured to be Q in ²⁴⁸ Cm SF decay.
2703.94	(2,3,4)	558.0 <i>I</i> 1866.9 <i>3</i>	5.8 <i>6</i> 100 <i>9</i>	2146.00 4 ⁺ 836.9 2 ⁺				Mult measured to be Q in Cin Sr decay.
2710.6 2739.19	(2,3,4) (4 ⁻)	1873.7 <i>3</i> 812.9 <i>I</i> 1902.2 <i>3</i>	100 100 7 8.5 11	836.9 2 ⁺ 1926.28 (3 ⁻) 836.9 2 ⁺				
2788.1? 2851.27	(2,3,4)	374.0 [#] 925.0 <i>I</i> 2014.0 <i>4</i>	100 60 5 100 <i>12</i>	2414.11 (3 ⁻) 1926.28 (3 ⁻) 836.9 2 ⁺				
2856.89	(5)-	117.7 2 207.14 [#] 9	14 <i>3</i> 29 <i>4</i>	2739.19 (4 ⁻) 2649.78 4 ⁽⁺⁾				

γ (94Sr) (continued)

$E_i(level)$	J_i^π	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α	Comments
2856.89	(5)-	253.0 <i>1</i>	95 4	2603.94 ((4^{-})			
	,	710.76 2	100 8	2146.00 4		E1	0.000500 7	$\alpha(K)=0.000444\ 7;\ \alpha(L)=4.77\times10^{-5}\ 7;\ \alpha(M)=7.99\times10^{-6}\ 12;$ $\alpha(N)=1.002\times10^{-6}\ 14$
								$\alpha(O)=6.52\times10^{-8} \ 10; \ \alpha(N+)=1.068\times10^{-6} \ 15$
2021.0	(2±)	2004.5.4	100 10	0260	2 +			$B(E1)(W.u.)=1.5\times10^{-5}$ 7
2921.8	(2^{+})	2084.7 4	100 10		2 ⁺			
2929.81	(2.2.4)	2922.3 <i>7</i> 783.8 <i>1</i>	24.4 <i>24</i> 27.4 <i>17</i>	0.0 0 2146.00 4				
2929.81	(2,3,4)	783.8 <i>1</i> 2093.0 <i>4</i>	100 9		2+			
2965.0	(2,3,4)	2128.1 4	100 9		2 2 ⁺			
2972.07	(5^{-})	826.1 <i>I</i>	100 8	2146.00 4		D+Q		
2712.01	(5)	1045.7 2	82 6	1926.28 (Q		
2981.1	(2,3,4)	2144.2 4	100	836.9		~		
3047.38	(2,3,4)	633.7 2	7.5 10	2414.11 (
2017120	(=,0,.)	1120.8 2	10.5 10	1926.28 (
		2209.9 4	100 10	836.9				
3077.70	2+	806.5 <i>1</i>	22 8	2271.22 (
		931.6 <i>I</i>	50 <i>3</i>	2146.00				
		1151.7 2	100 9	1926.28 ((3^{-})			
		3076.6 <mark>#</mark> 9	41 5	0.0	0+			
3155.3	6+	183.5 2	15.6 <i>17</i>	2972.07 (
		299.2	100 11	2856.89 (D		
		1009.7	67 <i>6</i>	2146.00 4	4+	E2	0.000566 8	$\alpha(K)=0.000501 \ 7; \ \alpha(L)=5.46\times10^{-5} \ 8; \ \alpha(M)=9.16\times10^{-6} \ 13;$
								$\alpha(N)=1.148\times10^{-6} 16$
								$\alpha(O) = 7.42 \times 10^{-8} II; \alpha(N+) = 1.222 \times 10^{-6} I8$
3262.34	(2,3,4)	658.5 2	21 3	2603.94 ((4^{-})			, , , , , , , , , , , , , , , , , , , ,
		1336.0 <i>3</i>	30 <i>3</i>	1926.28 (
		2424.9 5	100 10	836.9				
3310.73	(5^{-})	660.7 4	44 6	2649.78 4				
		1384.40 <i>24</i>	100 6	1926.28 ((3^{-})	(Q)		
		2474.2 [#] 5	25 <i>3</i>	836.9	2+			
3338.42	(2,3,4)	734.5 <i>1</i>	55 8	2603.94 (
		2501.0 5	100 11	836.9	2+			
3340.9?	(2,3,4)	601.7 2	100	2739.19 (
3438.61	(2,3,4)	1292.6 2	100	2146.00 4	4+			
3485.41?	(2,3,4)	1339.4 <mark>#</mark> 2	100	2146.00 4	4 ⁺			
3580.35?	(2,3,4)	976.4 [#] 2	100	2603.94 ((4^{-})			
	(6^+)	1559.4 4	100	2146.00 4				
3705.4	(0.)	1333.4 7	100	2140.00 4	+			

S

γ (94Sr) (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α	Comments
	3768.9 3793.1	(2,3,4) (6^{-})	2931.9 <i>7</i> 482.3 <i>4</i>	100 60 8	836.9 3310.73	2 ⁺			
	3/93.1	(6)	482.3 <i>4</i> 637.5 <i>4</i>	100 12		(5) 6 ⁺	D		
			1189.0	100 12	2603.94				
	3815.7?	(2,3,4)	2978.7 [#] 8	100		2+			
	3922.8	$(7)^{-}$	130.0 2	44 4		(6-)			
			217.5 4	8 3		(6^{+})	E1	0.000425 6	(IX) 0.000277 6 - (IX) 4.04×10=5 6 - (M) 6.77×10=6 10.
			767.3 4	100.0	3155.3	6+	E1	0.000423 0	$\alpha(K)=0.000377$ 6; $\alpha(L)=4.04\times10^{-5}$ 6; $\alpha(M)=6.77\times10^{-6}$ 10; $\alpha(N)=8.50\times10^{-7}$ 12
									$\alpha(N)=0.50\times 10^{-12}$ $\alpha(O)=5.54\times 10^{-8}$ 8; $\alpha(N+)=9.06\times 10^{-7}$ 13
			951.0 [#] 4	18 <i>3</i>	2972.07	(5^{-})			3, 4(4) 11
			1066.1 <i>4</i>	12 <i>3</i>	2856.89	$(5)^{-}$			
	3948.63	(2,3,4)	1244.9 2	23.5 23	2703.94				
			1345.0 1534.3 2	15.2 50 <i>4</i>	2603.94 2414.11				
			2022.3 4	100 11	1926.28				
	3953.3?	(2,3,4)	3116.3 [#] <i>10</i>	100		2+			
`	3968.9	(2,3,4)	3131.9 10	100	836.9	2+			
	3982.5	(2,3,4)	3145.5 10	100		2+			
	4024.2?	(2,3,4)	3187.2 [#] 10	100		2+	D 0		
	4034.5	(7^{-})	878.8 <i>4</i> 1177.5 <i>4</i>	100 <i>13</i> 41 <i>6</i>	3155.3 2856.89	6 ⁺	D+Q		
	4066.4?	(2,3,4)	3229.4 [#] 10	100		2+			
	4087.1?	(2,3,4) $(2,3,4)$	3250.1 [#] 10	100		2 ⁺			
	4117.4?	(2,3,1) $(2,3,4)$	1703.3 [#] 4	100	2414.11				
	4142.5?	(2,3,1) $(2,3,4)$	3305.5 [#] 10	100		2+			
	4168.2	(2,3,4)	1755.8 8	100 25	2414.11				
			2241.5 4	60 8	1926.28				
	4198.49	(2,3,4)	1594.5 2 2272.2 <i>5</i>	22.7 <i>20</i> 100 <i>20</i>	2603.94 1926.28				
			3362.2 10	15.3 20	836.9				
	4211.0?	(2,3,4)	3374.0 [#] 10	100		2 ⁺			
	4268.4?	(2,3,1) $(2,3,4)$	3431.4 [#] 10	100	836.9				
	4281.65?	(2,3,4)	1632.0 [#] 2	100 9	2649.78				
			2354.4 [#] 5	62 6	1926.28				
	4308.4?	(2,3,4)	3471.4 [#] <i>10</i>	100	836.9				
	4361.0	(2,3,4)	1757.0 4	100	2603.94				

γ (94Sr) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$
4366.8?	(2,3,4)	3529.8 [#] 10	100	836.9	2+		4857.4	(9-)	935.6 4	24 4	3922.8	(7)
4382.8	(8^{-})	459.9 <i>4</i>	100	3922.8	$(7)^{-}$	D	5213.0?	(2,3,4)	3286.7 [#] 10	100	1926.28	(3^{-})
4481.1	(2,3,4)	2554.8 6	100	1926.28	(3^{-})		5223.2?	(2,3,4)	3296.9 [#] 10	100	1926.28	(3^{-})
4631.6	(8^{-})	249.6 2	33 7	4382.8	(8^{-})		5267.3?	(2,3,4)	3341.0 [#] <i>10</i>	100	1926.28	(3^{-})
		598.1 <i>4</i>	78 11	4034.5	(7^{-})		5289.1	(2,3,4)	2317.1 5	100 11	2972.07	. ,
		709.6 <i>4</i>	100 <i>16</i>	3922.8	$(7)^{-}$				2684.9 <i>6</i>	81 7	2603.94	(4^{-})
4653.5?	(2,3,4)	2507.5 [#] 5	100	2146.00	4+		5312.9?	(2,3,4)	3386.6 [#] 10	100	1926.28	(3^{-})
4673.7	(2,3,4)	1934.5 <i>4</i>	15 4	2739.19	(4^{-})		5402.4?	(2,3,4)	2798.4 [#] 7	100	2603.94	(4^{-})
		3836.4 10	100 10	836.9	2+		5735.4?	(2,3,4)	3809.0 [#] <i>10</i>	100	1926.28	(3^{-})
4838.4	(2,3,4)	2098.9 4	69 7	2739.19	(4^{-})		5739.7	$(10^+,11^-)$	882.2 4	100	4857.4	(9^{-})
		2189.0 4	76 <i>7</i>	2649.78	4(+)		5828.2?	(2,3,4)	3224.9 [#] <i>15</i>	$9.\times10^{1} \ 4$	2603.94	(4^{-})
		2692.1 6	100 11	2146.00	4+				3681.8 [#] <i>10</i>	100	2146.00	4+
4857.4	(9^{-})	226.6 2	100 10	4631.6	(8^{-})		5831.1?	(2,3,4)	4994.0 [#] 5	100	836.9	2+
		475.7 <i>4</i>	80 10	4382.8	(8-)		6063.7?	(2,3,4)	3917.6 [#] <i>10</i>	100	2146.00	4+

[†] From angular correlations studied in 94 Rb β^- decay, and 248 Cm SF Decay unless stated otherwise. [‡] The gamma energies and the BRs are calculated as weighted average from 94 Rb β^- decay and 248 Cm SF Decay, where available. [‡] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{94}_{38}\mathrm{Sr}_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{94}_{38}\mathrm{Sr}_{56}$ -9

 $^{94}_{38}\mathrm{Sr}_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → Y Decay (Uncertain)

Band(A): Ground-state band

$$^{94}_{38}\mathrm{Sr}_{56}$$