Functions The rules for function expressions are all similar, though with a few differences between them. All of them create a fresh type variable X_1 to represent the type of their argument, and the resulting type is always $X_1 \rightarrow T_1$, where T_1 is the type of the body of the function.

When calling the collection algorithm on the body of the function (i.e. e), the typing environment Γ is modified by addind a new association between the identifier x and the type X_1 .

$$\frac{\Gamma \vdash fresh(X) = X_1 \qquad \{x \to X_1\} \cup \Gamma \vdash e : T_1 \mid C_1 \mid \gamma_1}{\Gamma \vdash \text{fn } x \Rightarrow e : X_1 \to T_1 \mid C_1 \mid \gamma_1} \tag{T-Fn}$$

Recursive functions add the same association between x and X_1 , but they also create a new association for the name of the function, f. If the function is implicitly typed, a new type variable, X_2 , is used to represent the type of the function. Thus, f is associated to X_2 , and a new constraint between X_2 and $X_1 \rightarrow T_1$ is created.

$$\begin{split} \Gamma \vdash fresh(X) &= X_1 & \Gamma \vdash fresh(X) = X_2 \\ & \{f \rightarrow X_2, x \rightarrow X_1\} \cup \Gamma \vdash e : T_1 | C_1 \mid \gamma_1 \\ \hline \Gamma \vdash \mathsf{rec} \ f \ x \Rightarrow e : X_1 \rightarrow T_1 \mid C_1 \cup \{X_2 = X_1 \rightarrow T_1\} \mid \gamma_1 \end{split} \tag{T-Rec}$$

If the function is explicitly typed, however, no new type variables are created. Instead, f is associated directly to $X_1 \to T$, and a constraint to guarantee that the provided type is correct is created (that is, that T is equal to T_1).

$$\frac{\Gamma \vdash fresh(X) = X_1 \qquad \{f \rightarrow (X_1 \rightarrow T, x \rightarrow X_1)\} \cup \Gamma \vdash e : T_1 \mid C_1 \mid \gamma_1}{\Gamma \vdash \mathsf{rec} \ f : T \quad x \Rightarrow e : X \rightarrow T_1 \mid C_1 \cup \{T_1 = T\} \mid \gamma_1} \ (\mathsf{T-Rec2})$$

Built-in Functions None of the built-in functions create any constraints or unification environment, nor do their types depend on a typing environment. Some functions, because of their polymorphic nature, require creation of fresh type variables.

Numerical Functions These functions all manipulate Int values, with negate (–) being the only function with a single argument.

$$\Gamma \vdash + : Int \rightarrow Int \rightarrow Int$$
 (T-+)

$$\Gamma \vdash -: Int \to Int \to Int$$
 (T-)

$$\Gamma \vdash * : Int \rightarrow Int \rightarrow Int$$
 (T-*)

$$\Gamma \vdash \div : Int \to Int \to Int$$
 (T-÷)

$$\Gamma \vdash -: Int \rightarrow Int$$
 (T-Negate)

Equality Functions These functions do not require a specific type for their arguments, but they both must be equal and conform to the *Equatable* trait.

$$\frac{\Gamma \vdash fresh(X^{\{Equatable\}}) = T}{\Gamma \vdash =: T \to T \to Bool}$$
 (T-=)

$$\frac{\Gamma \vdash fresh(X^{\{Equatable\}}) = T}{\Gamma \vdash \neq : T \to T \to Bool}$$
 (T-\neq)

Inequality Functions Similar to equality, both arguments must have the same type and conform to the *Orderable* trait.

$$\frac{\Gamma \vdash fresh(X^{\{Orderable\}}) = T}{\Gamma \vdash <: T \to T \to Bool}$$
 (T-<)

$$\frac{\Gamma \vdash fresh(X^{\{Orderable\}}) = T}{\Gamma \vdash \leq : T \to T \to Bool}$$
 (T-\leq)

$$\frac{\Gamma \vdash fresh(X^{\{Orderable\}}) = T}{\Gamma \vdash >: T \to T \to Bool}$$
 (T->)

$$\frac{\Gamma \vdash fresh(X^{\{Orderable\}}) = T}{\Gamma \vdash \geq : T \to T \to Bool}$$
 (T-\geq)

Boolean Functions Both functions require two Bool arguments, returning another Bool.

$$\Gamma \vdash \vee : Bool \rightarrow Bool \rightarrow Bool$$
 (T- \vee)

$$\Gamma \vdash \wedge : Bool \rightarrow Bool \rightarrow Bool$$
 (T- \wedge)

Accessor Functions These functions manipulate accessors, creating fresh type variables to represent all necessary types.

$$\frac{\Gamma \vdash fresh(X) = T_1 \qquad \Gamma \vdash fresh(X) = T_2}{\Gamma \vdash \text{get} : T_2 \# T_1 \to T_2 \to T_1} \tag{T-GET}$$

$$\frac{\Gamma \vdash fresh(X) = T_1 \qquad \Gamma \vdash fresh(X) = T_2}{\Gamma \vdash \text{set} : T_2 \# T_1 \to T_1 \to T_2 \to T_2}$$
 (T-set)

$$\frac{\Gamma \vdash fresh(X) = T_1 \qquad \Gamma \vdash fresh(X) = T_2 \qquad \Gamma \vdash fresh(X) = T_3}{\Gamma \vdash \text{stack}: T_2 \# T_1 \to T_1 \# T_3 \to T_2 \# T_3} \text{ (T-stack)}$$

$$\frac{\Gamma \vdash fresh(X) = T_1 \qquad \Gamma \vdash fresh(X) = T_2 \qquad \Gamma \vdash fresh(X) = T_3}{\Gamma \vdash \text{distort}: T_2 \# T_1 \to (T_1 \to T_3) \to (T_3 \to T_1 \to T_1) \to T_2 \# T_3} \text{ (T-distort)}$$

Constructors The rule for typing constructors is very simple. The type is extracted from the environment, and then a fresh instance is generated from that type.

$$\frac{\Gamma(con) = T \qquad \Gamma \vdash fresh(T) = T'}{\Gamma \vdash con : T'}$$
 (T-Con)

Application The constraint collection rule for an application is simple, creating just one fresh type variable and one new constraint. The type variable X_1 , represents the type of the result of the application, and, therefore, is the return type of the collection. Furthermore, the type of e_1 , T_1 , must be equal to a function that takes T_2 (the type of e_2) as an argument and returns X_1 .

$$\frac{\Gamma \vdash e_1 : T_1 \mid C_1 \mid \gamma_1 \qquad \Gamma \vdash e_2 : T_2 \mid C_2 \mid \gamma_2 \qquad \Gamma \vdash fresh(X) = X_1}{\Gamma \vdash e_1 \mid e_2 : X_1 \mid C_1 \cup C_2 \cup \{T_1 = T_2 \rightarrow X_1\} \mid \gamma_1 \cup \gamma_2}$$
 (T-App)

Identifiers The type of an identifier is, like for constructors, completely defined by its typing association in the environment. The typing rule does not create a fresh instance of this type, since the environment already does this when returning types that are universally bound.

$$\frac{\Gamma(x) = T}{\Gamma + x : T} \tag{T-IDENT}$$

Records The constraint collection rule for a record is relatively straightforward. Each field of the record is passed through the collection algorithm, and the resulting types are combined into a single record type with their matching labels. Similarly, the resulting constraints and unification environments are combined by union.

$$\frac{\forall k \in [1, n] \quad \Gamma \vdash e_k : T_k \mid C_k \mid \gamma_k}{\Gamma \vdash \{l_1 : e_1, \dots l_n : e_n\} : \{l_1 : T_1, \dots l_n : T_n\} \mid \bigcup_{i=1}^n C_i \mid \bigcup_{i=1}^n \gamma_i} \quad \text{(T-Record)}$$

Accessors The constraint rules for simple label accessors relies on type variables and record label traits. A new fresh type variable, T_1 , is generated, representing the type of the field being accessed. Another new fresh type variable, T_2 , which must conform to the record label trait associating the label l to the type T_1 , is generated, representing the type of the record that is being accessed.

$$\frac{\Gamma \vdash fresh(X) = T_1 \qquad \Gamma \vdash fresh(X^{\{l:T_1\}}) = T_2}{\Gamma \vdash \#l : T_2 \# T_1} \tag{T-Label}$$

A joined accessor does not use record label traits, but instead relies on type variables and constraints to guarantee the correct type information.

A single type variable X_0 , represents the record being accessed. For every component e_i of the accessor, a new type variable X_i is generated, along with the resulting type T_i of calling the constraint collection algorithm. The type T_i is then constrained to be equal to $X_0 \# X_i$, indicating that all components refer the same record, but access fields with (possibly) different types.

Finally, the resulting type is an accessor that returns a tuple composed of all X_i when accessing a record of type X_0 .

$$\frac{fresh(X) = X_0 \qquad \forall \ i \in [1,n] \quad \Gamma \vdash fresh(X) = X_i \land \Gamma \vdash e_i : T_i \mid C_i \mid \gamma_i}{\Gamma \vdash \#(e_1, \ldots e_n) : X_0 \#(X_i, \ldots X_n) \mid \bigcup_{i=1}^n C_i \cup \{T_i = X_0 \# X_i\} \mid \bigcup_{i=1}^n \gamma_i}$$
 (T-Joined)

Let Expression The constraint collection rule for a let expression depends on both the unification and the application algorithms.

The expression e_1 is passed through the constraint collection algorithm, resulting in a type T_1 , a set of constraints C_1 and a unification environment γ_1 . The constraints C_1 are then unified (see ??) under the unification environment γ_1 , resulting in a substitution σ .

The substitution σ is then applied (see $\ref{eq:total_point}$) to the type T_1 , resulting in a principle type T_1' . The substitution is also applied to the environment Γ , and the result of this application is used to evaluate a universal match between p and T_1' , resulting in a new set of constraints C_1' and a new typing environment Γ' .

Finally, the type of the expression e_2 is obtained under the environment Γ' .

$$\begin{split} &\Gamma \vdash e_1: T_1 \mid C_1 \mid \gamma_1 \qquad \gamma_1 \vdash \mathcal{U}(C_1) = \sigma \qquad \sigma(T_1) = T_1' \\ &\frac{\sigma(\Gamma) \vdash match_U(p, T_1') = C_1', \Gamma' \qquad \Gamma' \vdash e_2: T_2 \mid C_2 \mid \gamma_2}{\Gamma \vdash \text{let } p = e_1 \text{ in } e_2: T_2 \mid C_1' \cup C_1 \cup C_2 \mid \gamma_2 \cup \gamma_1} \end{split} \tag{T-Let}$$

Match Expression The constraint collection rule for a match expression requires an auxiliary function, much like its operational semantic rule. A fresh type variable X_1 is created, representing the output type of the expression and, along with the type T of the expression e, is used to validate every $match_i$ in the expression.

$$\begin{split} & \Gamma \vdash e : T \mid C \mid \gamma \qquad \Gamma \vdash fresh(X) = X_1 \\ & \forall i \in [1..n] \, \Gamma \vdash validate(match_i, T, X_1) = C_i \mid \gamma_i \\ & \overline{\Gamma \vdash \mathsf{match} \; e \; \mathsf{with} \; match_1, ... \; match_n : X_1 \mid C \cup \bigcup_{i=1}^n C_i \mid \gamma \cup \bigcup_{i=1}^n \gamma_i} \; (\mathsf{T\text{-}Match}) \end{split}$$

The *validate* function takes a *match* expression, a type T_{in} , representing the type of the pattern, and a T_{out} , representing the result of evaluating the *match* expression, as inputs. The function outputs a set of constraints and a unification environment if successful.

For an unconditional *match*, the pattern in matched against the provided input type T_{in} and the type of the expression e is constrained to equal the provided type T_{out} . It is

important to realize that the typing environment returned by the match (i.e. Γ') is used only to obtain the type of e, since any identifiers bound in the pattern p can only be used inside a single match expression.

$$\frac{\Gamma \vdash match(p, T_{in}) = C, \Gamma' \qquad \Gamma' \vdash e : T_1 \mid C_1 \mid \gamma_1}{\Gamma \vdash validate(p \rightarrow e, T_{in}, T_{out}) = C \cup C_1 \cup \{T_1 = T_{out}\} \mid \gamma_1}$$

The same holds true for a conditional *match*, with the added verification that the type of e_1 must be equal to *Bool*.

$$\Gamma \vdash match(p, T_{in}) = C, \Gamma' \qquad \Gamma' \vdash e_1 : T_1 \mid C_1 \mid \gamma_1$$

$$\Gamma' \vdash e_2 : T_2 \mid C_2 \mid \gamma_2$$

$$\Gamma \vdash validate(p \text{ when } e_1 \rightarrow e_2, T_{in}, T_{out}) =$$

$$C \cup C_1 \cup C_2 \cup \{T_1 = Bool, T_2 = T_{out}\} \mid \gamma_1 \cup \gamma_2$$

Exception The *raise* expression simply creates and returns a new fresh type variable.

$$\frac{\Gamma \vdash fresh(X) = X_1}{\Gamma \vdash raise : X_1}$$
 (T-Raise)