Лабораторные задачи по теме : *Циклы с контролем за монотонной величиной*

 $\it 3ada$ ча 1. Напишите программу нахождения суммы, включая в нее начальные слагаемые, абсолютная величина которых не превосходит заданной точности $\it \varepsilon$:

Таблица 1: Таблица 1 заданий к лабораторной работе

№ п/п	Функциональные ряды	Свернутые формулы
1	$S = 1 + 3x^2 + \frac{5x^4}{2} + \frac{7x^6}{6} + \dots$	$\sum_{n=0}^{\infty} \frac{(2n+1)x^{2n}}{n!}$
2	$S = 1 + \frac{\ln 3}{1}x + \frac{\ln^2 3}{2}x^2 + \frac{\ln^3 3}{6}x^3 + \dots$	$\sum_{n=0}^{\infty} \frac{\ln^n 3}{n!} x^n$
3	$S = \frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1}\right)^5 + \dots$ $S = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots$ $S = \frac{x^3}{3} - \frac{x^5}{15} + \frac{x^7}{35} - \frac{x^9}{63} + \dots$ $S = 1 + \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{6} + \dots$	$\sum_{n=0}^{\infty} \frac{1}{2n+1} \left(\frac{x-1}{x+1} \right)^{2n+1}$
4	$S = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
5	$S = \frac{x^3}{3} - \frac{x^5}{15} + \frac{x^7}{35} - \frac{x^9}{63} + \dots$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n-1)(2n+1)}$
6	$S = 1 + \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{6} + \dots$	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$
7	$S = 1 + \frac{x}{2} + \frac{x}{24} + \frac{x^4}{720} + \dots$	$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
8	$S = 1 + \frac{\cos\frac{\pi}{4}}{1} \cdot x + \frac{\cos 2\frac{\pi}{4}}{2} \cdot x^2 + \frac{\cos 3\frac{\pi}{4}}{6} \cdot x^3 + \dots$	$\sum_{n=0}^{\infty} \frac{\cos n \cdot \frac{\pi}{4}}{n!} \cdot x^n$
9	$S = 1 - \frac{3}{2} \cdot x^2 + \frac{9}{24} \cdot x^4 - \frac{19}{720} \cdot x^6 + \dots$ $S = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots$	$\sum_{n=0}^{\infty} (-1)^n \frac{(2n^2+1)}{(2n)!} \cdot x^{2n}$
10	$S = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
11	$S = -\frac{(2x)^2}{2} + \frac{(2x)^4}{24} - \frac{(2x)^6}{720} + \frac{(2x)^8}{40320} + \dots$	$\sum_{n=0}^{\infty} (-1)^n \frac{(2x)^{2n}}{(2n)!}$
12	$S = 1 + \frac{\cos x}{1} + \frac{\cos 2x}{2} + \frac{\cos 3x}{6} + \dots$ $S = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + \dots$	$\sum_{n=0}^{\infty} \frac{\cos nx}{n!}$
13	$S = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + \dots$	$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$
14	$S = \frac{1}{1^2} \left(\frac{x}{2} \right)^2 - \frac{1}{2^2} \left(\frac{x}{2} \right)^4 + \frac{1}{6^2} \left(\frac{x}{2} \right)^6 - \dots$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{((n+1)!)^2} \left(\frac{x}{2}\right)^{2(n+1)}$
15	$S = 1 - \frac{2x}{3} + \frac{3x^2}{9} - \frac{4x^3}{27} + \dots$	$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot (n+1) \cdot x^n}{3^n}$
16	$S = \frac{x}{2} - \frac{1}{1 \cdot 2} \left(\frac{x}{2}\right)^3 + \frac{1}{2 \cdot 3} \left(\frac{x}{2}\right)^5 - \frac{1}{6 \cdot 4} \left(\frac{x}{2}\right)^7 + \dots$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{n! \cdot (n+1)} \left(\frac{x}{2}\right)^{2n+1}$

 $^{^{1}}$ Просчеты закончить, как только $\mid \frac{x^{n}}{n!} \mid (m.e. \ часть \ слагаемого не зависящая от функции <math>\cos$) станет меньше

№ п/п	Функциональные ряды	Свернутые формулы
17	$S = \frac{x^2}{1 \cdot 2} - \frac{x^3}{2 \cdot 6} + \frac{x^4}{3 \cdot 24} - \dots$	$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot x^{n+2}}{(n+1) \cdot (n+2)!}$
18	$S = \frac{1}{x} + \frac{1}{3 \cdot x^3} + \frac{1}{5 \cdot x^5} + \dots$	$\sum_{n=0}^{\infty} \frac{1}{(2n+1)\cdot x^{2n+1}}, x > 1$
19	$S = x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots$	$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdots (2n-1) \cdot x^{2n+1}}{2 \cdot 4 \cdots 2n \cdot (2n+1)}, x < 1$
20	$S = \frac{x-1}{x} + \frac{(x-1)^2}{2 \cdot x^2} + \frac{(x-1)^3}{3 \cdot x^3} + \dots$	$\sum_{n=0}^{\infty} \frac{(x-1)^{n+1}}{(n+1)\cdot x^{n+1}}, x > \frac{1}{2}$

Спецификация ввода : \boldsymbol{x} ε

Спецификация вывода: значение суммы

 $\it 3adaua~2.$ Напишите программу нахождения суммы числового ряда, включая в нее начальные слагаемые, абсолютная величина которых не превосходит заданной точности $\it \epsilon$:

Таблица 2: Таблица 2 заданий к лабораторной работе

№ п/п	Числовые ряды	Свернутые формулы
1	$S = 1 + \frac{2}{6} + \frac{3}{120} + \frac{4}{5040} + \dots$	$\sum_{n=1}^{\infty} \frac{n}{(2n-1)!}$
2	$S = 1 - \frac{2}{1} + \frac{3}{2} - \frac{4}{6} + \frac{5}{24} - \dots$	$\sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{n!}$
3	$S = \frac{1}{1+25} + \frac{1}{4+125} + \frac{1}{16+625} + \frac{1}{64+3125} + \dots$	$\sum_{n=0}^{\infty} \frac{1}{4^n + 5^{n+2}}$
4	$S = 1 - \frac{1}{1} + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \dots$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e}$
5	$S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} = \frac{2}{3}$
6	$S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots$	$\sum_{n=1}^{\infty} \frac{1}{(2n-1)\cdot (2n+1)} = \frac{1}{2}$
7	$S = \frac{1}{3 \cdot 5} + \frac{1}{7 \cdot 9} + \frac{1}{11 \cdot 13} + \frac{1}{15 \cdot 17} + \dots$	$\sum_{n=1}^{\infty} \frac{1}{(4n-1)\cdot (4n+1)} = \frac{1}{2} - \frac{\pi}{8}$
8	$S = \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \frac{1}{4 \cdot 5 \cdot 6} + \dots$	$\sum_{n=1}^{\infty} \frac{1}{n \cdot (n+1) \cdot (n+2)} = \frac{1}{4}$
9	$S = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \dots$	$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$
10	$S = 1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \dots$	$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$

Спецификация ввода : ε

Спецификация вывода: значение суммы

 $3a\partial a$ ча 3. Напишите программу нахождения первого члена числовой последовательности $\{a_n\}$, который отличается от предыдущего ему члена не более, чем на ε :

Таблица 3: Таблица 3 заданий к лабораторной работе

№ п/п	Вид общего члена последовательности	Контроль, нач. условие
1	$a_n = \frac{\sum\limits_{i=1}^n i}{n^2}$	$\mid a_{n-1} - a_n \mid < \varepsilon, a_1 = 1$
2	$a_n = \frac{n}{\sqrt{n^2 + 1} - \sqrt{n^2 - 1}}$	$ a_{n-1} - a_n < \varepsilon, a_1 = \frac{1}{\sqrt{2}} $
3	$a_n = \prod_{k=2}^{n+1} \left(1 - \frac{1}{k} \right)$	$\mid a_{n-1} - a_n \mid < \varepsilon, a_1 = \frac{1}{2}$
4	$a_n = \prod_{k=2}^{n+1} \left(1 + \frac{(-1)^{k-1}}{k!} \right)$	$ a_{n-1} - a_n < \varepsilon, a_1 = \frac{1}{2} $
5	$a_n = \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \cdot \dots \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}} + \dots + \frac{1}{2}\sqrt{\frac{1}{2}}}$	$ a_{n-1} - a_n < \varepsilon, a_1 = \sqrt{\frac{1}{2}} $
6	$a_n = \sqrt{ 4a_{n-1}^2 - 2x }$	$\mid a_{n-1} - a_n \mid < \varepsilon, a_1 = x$
7	$a_n = \frac{16 + x}{1 + a_{n-1}^3 } + 3a_{n-1}$	$\mid a_{n-1} - a_n \mid < \varepsilon, a_1 = x$
8	$a_n = 2a_{n-1} + \frac{x}{4 + a_{n-1}^2}$	$\mid a_{n-1} - a_n \mid < \varepsilon, a_1 = x$
9	$a_n = 3 + \frac{1}{2^n} \cos^2 \left(a_{n-1} - x \right)$	$\mid a_{n-1} - a_n \mid < \varepsilon, a_1 = x$
10	$a_n = \frac{1}{2}(a_{n-1} + b_{n-1}); b_n = \sqrt{a_{n-1} \cdot b_{n-1}}$	$ a_n - b_n < \varepsilon, a_1 = x; b_1 = y$

Спецификация ввода 2 : ε Спецификация ввода 3 : ε x Спецификация ввода 4 : ε x y

Спецификация вывода: значение суммы

 $^{^2}$ Для задач 1 ÷ 5

 $^{^3}$ Для задач 6 ÷ 9

 $^{^4}$ Для задачи 10