24.01.01

REC'D 16 MAR 2001

WIPO FOT

日本国特許庁

EUU

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2000年 1月24日

出 願 番 号 Application Number:

特願2000-052507

出 願 人 Applicant (s):

株式会社トーキン

J.

VINCON WAS INVENIOUS

Walling Con-

DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2001年 3月 2日

特許庁長官 Commissioner, Patent Office 及川耕

出証番号 出証特2001-3012065

【書類名】

特許願

【整理番号】

T-8965

【提出日】

平成12年 1月24日

【あて先】

特許庁長官殿

【国際特許分類】

H01F

【発明者】

【住所又は居所】

宮城県仙台市太白区郡山六丁目7番1号 株式会社トー

キン内

【氏名】

▲吉▼田 栄▲吉▼

【発明者】

【住所又は居所】

宮城県仙台市太白区郡山六丁目7番1号 株式会社トー

キン内

【氏名】

松言

【発明者】

【住所又は居所】 宮城県仙台市太白区郡山六丁目7番1号 株式会社トー

キン内

【氏名】

安藤 慎輔

【茶明老】

【住所又は居所】

Mari Cook

所) 宮城県仙台市太白区郡山六丁目7番1号 株式会社

キン内

【氏名】

李 衛東

【発明者】

【住所又は居所】

宮城県仙台市青葉区桜ケ丘七丁目37番10号

【氏名】

島田 寛

【特許出願人】

【識別番号】

000134257

【氏名又は名称】

株式会社トーキン

【代理人】

【識別番号】

100071272

【弁理士】

【氏名又は名称】 後藤 洋介

【代理人】

【識別番号】

100077838

【弁理士】

【氏名又は名称】

池田 憲保

【代理人】

【識別番号】

100101959

【弁理士】

【氏名又は名称】

山本 格介

【手数料の表示】

【予納台帳番号】

12416

(納付金額)

21.000

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

亜約里 1

[包括装在认品]

.. 02450

2

【プルーフの要否】

要

出証特2001-3012065

【発明の名称】 磁気損失材料とその製造方法およびそれを用いた高周波電流抑制体

【特許請求の範囲】

【請求項3】 M (Mは、Fe、Co、Niのいづれか、もしくはそれらの混在物) -X (Xは、MおよびY以外の元素、もしくはそれらの混在物) -Y (Yは、F, N, Oのいづれか、もしくはそれらの混在物) からなる磁気損失材料

KINKE

10GHzの周波数範囲に存在すると共に、前記 μ"が前記 μ" maxに対し50%以上となる周波数帯域をその中心周波数で規格化した半値中μ" 50%以上であることを特徴とする広帯域磁気損失材料。

【請求項4】 前記M-X-Y磁性体の飽和磁化の大きさが、M成分のみからなる金属磁性体の飽和磁化の60%から35%の範囲に有る事を特徴とする請求項3に記載の広帯域磁気損失材料。

【請求項5】 前記M-X-Y磁性体は、直流電気抵抗率が100μΩ・cm乃至700μΩ・cmの範囲にあることを特徴とする請求項1乃至2に記載の狭帯域磁気損失材料。

【請求項6】 前記M-X-Y磁性体は、直流電気抵抗率が500μΩ・cmよりも大きい値であることを特徴とする請求項3乃至4に記載の広帯域磁気損

失材料。

【請求項7】 前記M-X-Y磁性体のX成分が、C、B、Si、A1、Mg、Ti、Zn、Hf、Sr、Nb、Ta、或いは希土類元素のいづれか、もしくはそれらの混在物であることを特徴とする請求項1乃至6に記載の磁気損失材料。

【請求項8】 前記M-X-Y磁性体は、前記Mが前記X-Y化合物のマトリックス中に分散されたグラニュラー状の形態で存在する事を特徴とする請求項1万至7に記載の磁気損失材料。

【請求項9】 前記グラニュラー状の形態を有する粒子Mの平均粒子径が、 1 n mから40 n mの範囲にある事を特徴とする請求項1乃至8に記載の磁気損失材料。

【請求項11】 前記M-X-Y磁性体が、 $Fe_{\alpha}-A1_{\beta}-O_{\gamma}$ である請求項1万至10に記載の磁気損失材料。

【請求項13】 前記M-X-Y磁性体は、スパッタ法に、デー製された 膜磁性体であることを特徴とする請求項1乃至12に記載の磁気損失材料。

【請求項14】 前記M-X-Y磁性体は、蒸着法により作製された薄膜磁性体であることを特徴とする請求項1乃至12に記載の磁気損失材料。

【請求項15】 請求項1乃至14に記載のM-X-Y磁性体からなり、前記磁性体の厚さが0.3 μ mから20 μ mの範囲にあることを特徴とする高周波電流抑制体。

【請求項16】 請求項15に記載の高周波電流抑制体を、電子回路に密着 乃至その近傍に配設することを特徴とする高周波電流の抑制方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野及び従来技術】

[0002]

近年、高速動作する高集積な半導体素子の普及が著しい。その例として、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、マイクロプロセッサ(MPU)、中央演算処理装置(CPU)又は画像プロセッサ算術論理演算装置(IPALU)等の論理回路素子がある。これらの能動素子においては、演算速度や信号処理速度が日進月歩の勢いで高速化されており、高速電子回路を伝播する電気信号は、電圧、電流の急激な変化を伴うために、誘導性の高周波ノイズの主要因となっている。

以に信号処理速度の高速化と併わせて、高局級輪差

一方,電子部品や電子機器の軽量化,薄型化,小型化の流れも止まる事を知らぬが如く急速な勢いで進行している。それに伴い,半導体素子の集積度や、プリント配線基板への電子部品実装密度の高密度化が著しい。従って、過密に集積あるいは実装された電子素子や信号線が、互いに極めて接近することになり,前述

なっている。

[0004]

このような近年の電子集積素子あるいは配線基板においては、能動素子への電源供給ラインからの不要輻射の問題が指摘され、電源ラインにデカップリングコンデンサ等の集中定数部品を挿入する等の対策がなされている。しかしながら、高速化された電子集積素子あるいは配線基板においては、発生するノイズが高調波成分を含むために、信号の経路が分布定数的な振る舞いをするようになり、従来の集中定数回路を前提にしたノイズ対策が効を発しない状況が生じていた。

[0005]

本発明は、このような高速動作する半導体素子や電子回路などの不要輻射対策に有効な磁性材料を提供することを目的とするものである。より詳しくは、本発

明は、より体積の小さな磁性体で効果的な不要輻射対策が出来る磁気損失項 μ " の大きな磁気損失材料の提供を目的とする。

[0006]

発明者らは、以前に高周波での磁気損失の大きな複合磁性体を発明し、これを不要輻射源の近傍に配置する事で、上記した半導体素子や電子回路などから発生する不要輻射を効果的に抑制する方法を見出している。この様な磁気損失を利用した不要輻射減衰の作用機構については、最近の研究から、不要輻射源となっている電子回路に対して等価的な抵抗成分が付与されることによることが分かっている。ここで、等価的な抵抗成分の大きさは、磁性体の磁気損失項μ"の大きさに依存している。より詳しくは、電子回路に等価的に挿入される抵抗成分の大きさは、磁性体の面積が一定の場合にはμ"と磁性体の厚さに略比例する。したがって、放射性体の面積が一定の場合にはμ"と磁性体の厚さに略比例する。したがって、水の電気がでは、水の場合にはμ"と磁性体の厚さに略比例する。したがって、水の電気がでは、水の場合には、水気損失がで、半導体素子のモールド内部のような微小領域において磁気損失体を用いた不要輻射対策を行う為には、磁気損失項μ"がきわめて大きな値である必要があり、従来の磁気損失材料に比べて格段に大きなμ"を有する磁性体が求められていた。本発明は、かかる現状に鑑みて

発明者らは、スパッタ法あるいは蒸着法による軟磁性体の研究過程において、 微小な磁性金属粒子が、セラミックスのような非磁性体中に均質に分散されたグ ラニュラー磁性体の優れた透磁率特性に着目し、磁性金属粒子とそれを囲う非磁 性体の微細構造を研究した結果、グラニュラー磁性体中に占める磁性金属粒子の 濃度が特定の範囲にある場合に、高周波領域において優れた磁気損失特性が得ら れる事を見出した。MーXーY(Mは磁性金属元素、YはOあるいはN,Fのい づれか、XはM、Y以外の元素)なる組成を有するグラニュラー磁性体について は、これまでに多くの研究がなされ、低損失で大きな飽和磁化を有する事が知ら れている。このMーXーYグラニュラー磁性体において、飽和磁化の大きさは、 M成分の占める体積率に依存するので、大きな飽和磁化を得るためには、M成分

の比率を高くする必要がある。そのため、高周波インダクタ素子あるいはトラン

ス等の磁心として用いるような一般的な用途にはM-X-Yグラニュラー磁性体 中のM成分の割合は、M成分のみからなるバルク金属磁性体の飽和磁化のおおむ ね80%以上の飽和磁化が得られる範囲に限られていた。

[0008]

- 本発明者らは、M-X-Y(Mは磁性金属元素、YはOあるいはN,Fのいづ-れか、XはM、Y以外の元素)なる組成を有するグラニュラー磁性体において、 M成分の占める割合を広い範囲で検討した結果、いずれの組成系でも磁性金属M が特定濃度の範囲にある場合に、髙周波領域で大きな磁気損失を示すことを見出 し、本発明に至った。

[0009]

M成分の比率が、M成分のみからなるバルク金属磁性体の飽和磁化に対して8 0%以上の飽和磁化を示すような最も高い領域は、従来より盛んに研究されてい

にある材料は、実数部透磁率(μ')と飽和磁化の値が共に大きいため、前述し た高周波インダクタのような高周波マイクロ磁気デバイスに用いられるが、電気 抵抗を左右するX-Y成分の占める割合が少ないので、電気抵抗率が小さい。そ の為に膜厚が厚くなると髙周波領域でのうず電流損失の発生に伴って髙周波での フィスの意に用いるは、反応比較的ない磁性展開

である。M成分の比率が、M成分のみからなるバルク金属磁性体の飽和磁化の 8 0%以下で60%以上となる飽和磁化を示す領域は、電気抵抗率がおおむね10 ΟμΩ・cm以上と比較的大きい為に、材料の厚さが数μm程度あってもうず電 流による損失が少なく、磁気損失はほとんど自然共鳴による損失となる。その為 、磁気損失項μ"の周波数分散巾が狭くなるので、挟帯域な周波数範囲でのノイ ズ対策(髙周波電流抑制)に適している。M成分の比率が、M成分のみからなる バルク金属磁件体の飽和磁化の60%以下で35%以上の飽和磁化を示す領域は 、電気抵抗率がおおむね500μΩ・cm以上と更に大きいために、うず電流に よる損失は極めて小さく、M成分間の磁気的な相互作用が小さくなることで、ス ピンの熱擾乱が大きくなり自然共鳴の生じる周波数に揺らぎが生じ、その結果、 磁気損失項μ"は広い範囲で大きな値を示すようになる。したがって、この組成

領域は広帯域な高周波電流の抑制に適している。

[0.010]

一方、M成分の比率が本発明の領域よりも更に小さな領域は、M成分間の磁気的相互作用がほとんど生じなくなるので超常磁性となる。

[0011]

電子回路の直近に磁気損失材料を配設して高周波電流を抑制する際の材料設計の目安は、磁気損失項 μ "と磁気損失材料の厚さ δ の積 μ "・ δ で与えられ、数100MHzの周波数の高周波電流に対して効果的な抑制を得るには、おおむね μ "・ $\delta \ge 1$ 000(μ m)が必要となる。したがって、 μ "=1000の磁気損失材料では1 μ m以上の厚さが必要になり、うず電流損失の生じ易い低電気抵抗な材料は好ましくなく、電気抵抗率が100 μ 0cm以上となるような組成、す

[0012]

【課題を解決するための手がある。

本発明によれば、M(Mは、Fe、C、N のいつれか、もしくはそれらの混在物)-X(Xは、MおよびY以外の元素、もしくはそれらの混在物)-Y(Yは、F, N, Oのいづれか、もしくはそれらの混在物)からなる磁気損失材料であって,前記磁気損失材料の損失項 μ "の最大値 μ " maxが100 MHz ~ 10 GHz の周波数範囲に存在すると共に、前記 μ "が前記 μ " maxに対し50%以上となる周波数帯域をその中心周波数で規格化した半値中 μ " 50が、150%以上であることを特徴とする広帯域磁気損失材料が得られる。

[0013]

また本発明によれば、前記M-X-Y磁性体の飽和磁化の大きさが、M成分の みからなる金属磁性体の飽和磁化の80%から60%の範囲に有る事を特徴とす る挟帯域磁気損失材料が得られる。

[0014]

また本発明によれば、前記M-X-Y磁性体の飽和磁化の大きさが、M成分の みからなる金属磁性体の飽和磁化の60%から35%の範囲に有る事を特徴とす る広帯域磁気損失材料が得られる。

[0015]

また本発明によれば、前記M-X-Y磁性体は、直流電気抵抗が10°0μΩ・ cm万型 (1000) μΩ・cmの範囲にあることを特徴と、 (1000) (

[0016]

また本発明によれば、前記M-X-Y磁性体は、直流電気抵抗率が500μΩ cmよりも大きい値であることを特徴とする広帯域磁気損失材料が得られる。

また本発明によれば、前記M-X-Y磁性体のX成分が、C、B、Si、Al、Mg、Ti、Zn、Hf、Sr、Nb、Ta、或いは希土類元素のいづれか、もしくはそれらの混在物であることを特徴とする磁気損失材料が得られる。

[0018]

また本発明によれば、前記M-X-Y磁性体は、前記Mが前記X-Y化合物のマトリックス中に分散されたグラニュラー状の形態で存在する事を特徴とする磁気損失材料が得られる。

[0019]

また本発明によれば、前記グラニュラー状の形態を有する粒子Mの平均粒子径が、1 nmから40 nmの範囲にある事を特徴とする磁気損失材料が得られる。

[0020]

また本発明によれば、前記M-X-Y磁性体は、異方性磁界Hkが600(Oe)以下である事を特徴とする磁気損失材料が得られる。

[0021]

また本発明によれば、前記M-X-Y磁性体が、 $Fe_{\alpha}-Al_{\beta}-O_{\gamma}$ である 磁気損失材料が得られる。

[0022]

また本発明によれば、前記M-X-Y磁性体が、 $Fe_{\alpha}-Si_{\beta}-O_{\gamma}$ である 磁気損失材料が得られる。

[0023]

また本発明によれば、前記M-X-Y磁性体は、スパッタ法により作製された 薄膜磁性体であることを特徴とする磁気損失材料が得られる。

磁性体であることを特徴とする磁気損失材料が得られる。

[0025]

また本発明によれば、前記M-X-Y磁性体からなり、前記磁性体の厚さが0

[0026]

また本発明によれば、前記高周波電流抑制体を、電子回路に密着乃至その近傍に配設することを特徴とする高周波電流の抑制方法が得られる。

[0027]

【発明の実施の形態】

以下、本発明についていくつかの実施例に基づき具体的に説明する。

[0028]

まず、本発明によるグラニュラー状磁性体M-X-Yの構造と、その製造方法の 一例について説明する。

[0029]

(試料1)

本発明のグラニュラー磁性薄膜を、表1に示す条件にてスパッタ法でガラス基 板上に作製した。得られたスパッタ膜を300℃にて2時間真空磁場中熱処理を 施し、試料1を得た。

[0030]

得られた試料1を蛍光X線分析分析したところ膜の組成は、Fe₇₂Al₁₁ O₁₇であった。

[0031]

また、試料1の膜厚は2.0μm、直流抵抗率は、530μΩ·cm、Hkは1 80eであり、Msは16800Gauss、中心周波数で規格化したμ"の半 値巾である μ " $_{50}$ は148%であった。試料1の飽和磁化とM成分のみからな る金属磁性体の飽和磁化の比率 {Ms (M-X-Y) / Ms (M)} ×100の

表 1

製膜前真空度

 $<1 \times 10^{-6}$ Torr

製膜時雰囲気

Aτ

Al 20sチップ(120個)

(チップサイズ: 5mm×5mm×2mm t)

試料の磁気損失特性を検証するために $\mu-f$ 特性を調べた。 $\mu-f$ 特性の測定 は、短冊状に加工した検出コイルに挿入して、バイアス磁場を印加しながらイン ピーダンスを測定することにより行い、磁気損失項μ"の周波数特性を得た。

[0033]

(試料2)

 $A1_2O_3$ チップの数を150個に代えた以外は、試料1と同様な条件、方法 にて試料2を得た。

[0034]

[0035]

(比較試料1)

 $A1_2O_3$ チップの数を90個とした以外は試料1と同様な条件、方法にて比較試料1を得た。

[0036]

 $A1_2O_3$ チップの数を200個とした以外は試料1と同様な条件、方法にて比較試料1を得た。

[0038]

得られた比較試料 2 を蛍光 X 線分析分析したところ膜の組成は、 F e $_{19}$ A $_{13}$ $_{40}$ $_{70}$ であった。また、試料膜厚は $_{10}$

[0039]

図3に本発明の試料1の μ " -f特性を示す。これをみると、そのピークは非常に大きく、また、分散も急峻になっており、共鳴周波数も700MHz付近と高くなっていることがわかる。

[0040]

図4は本発明の試料 $2 \, o \, \mu^{\, n} - f$ 特性である。試料 $1 \, c$ 比べて直流抵抗率の値が非常に大きくなっており、 $\mu^{\, n}$ のピーク値は試料 $1 \, c$ 同様に大きな値を示している。また、 $\mu^{\, n}$ の分散は熱擾乱のためになだらかになっており、広帯域に拡がっている。共鳴周波数も $1 \, G \, H \, z$ 付近にピークがあり、優れた高周波数特性を示している。

[0041]

図5に、比較試料 $1 \, ou$ " -f 特性を示す。比較試料1 は、飽和磁化Ms が大きいことを反映して大きな μ "を示しているが、試料の抵抗値が低い為に周波数の上昇と共に渦電流損失が発生し、そのために低周波数領域から透磁率(磁気損失特性)の劣化が生じており、高周波での透磁率特性が悪くなっていることが分かる。

[0042]

比較試料とでは、酸化物性は大きいために担抗値は非常

- Formalie

いる反面、磁性を担う相が少なく磁性粒子間の磁気的相互作用も極めて小さくなり、その結果、超常磁性的な振る舞いを示し、軟磁気特性は観測されない。

[0043]

これらの結果より、本発明の試料1~2の磁性体は、高周波領域において非常

きな磁気損失復しる。

de tillstelle

[0044]

次に別な組成を有するグラニュラー薄膜での実施例を示す。

[0045]

(試料4)

表2に示す条件で、反応性スパッタ法によりガラス基板上にグラニュラー磁性 薄膜試料を作製し、真空磁場中で300℃-2時間の熱処理を施し、試料4を得 た。製膜時のN₂分圧は20%とした。

[0046]

得られた試料4の磁気特性を表3に示す。

[0047]

製膜前真空度

 $< 1 \times 10^{-6}$ Torr

製膜時雰囲気

Ar+N₂

電源

RF

ターゲット

Fe (径 0 1 0 0 mm)

+

Alチップ(150個)

(チップサイズ: 5mm×5mm×2mm t)

表3

膜厚

 \cdots 1.5 μ m

 $\{Ms(M-X-Y)/Ms(M)\}\times 1$

Utta ta in ia ia

μ" max

·· 520

 $f(\mu^{n} \max)$

... 830MHz

μ" s o

... 175%

まります。 ・ えんに示す条件で、スパッタ法によりガラス基板上にグラニュラー磁性薄膜試験

料を作製し、真空磁場中で300℃−2時間の熱処理を施し、試料5を得た。

[0048]

得られた試料5の磁気特性を表5に示す。

[0049]

表4

製膜前真空度

 $<1\times10^{-6}$ Torr

製膜時雰囲気

Ar

電源

RF

ターゲット

Co (径 f 1 0 0 mm)

+

Al 20sチップ (130個)

(チップサイズ:5mm×5mm×2mmt)

表 5.

膜厚

 \cdots 1.1 μ m

 $\{Ms (M-X-Y) / Ms (M) \} \times 100 \cdots 64.7\%$

 μ "

. 850

- 11/12

f.(°'max)

... 800MHz

refolities in

(試料6)

表6に示す条件で、反応性スパッタ法によりガラス基板上にグラニュラー磁性 薄膜試料を作製し、真空磁場中で300℃-2時間の熱処理を施し、試料6を得 た。なお、製膜時のN₂分圧は10%とした。

100501

e quidalité

試料6の特性を表7に示す。

[0051]

表 6

製膜前真空度

 $<1\times10^{-6}$ Torr

製膜時雰囲気

Ar+N₂

電源

RF

ターゲット

Co (径 o 1 0 0 mm)

+

Alチップ(170個)

(チップサイズ: 5 mm $\times 5$ mm $\times 2$ mm t)

表 7

膜厚

 \cdots 1. 2 μ m

 $\{Ms (M-X-Y) / Ms (M) \} \times 100 \cdots 37.2\%$

,, "

... 3 5 0

 $f(\mu^n \max)$

... 1 GHz

μ" 5 o

... 191%

(試料7)

an ha habibana

件で、スパネジなよりガラス基板上にグラニュラー磁性薄膜試

|磁場中では100円でである。 ○ 2時間の熱処理を施し、試料 / を得た。得

られた試料7の磁気特性を表9に示す。

[0052]

表8

創體前言空度

<1×10-6 Torr

製膜時雰囲気

Ar

電源

RF

ターゲット

Ni (径 ø 1 0 0 mm)

+

Al 20sチップ (140個)

(チップサイズ: 5mm×5mm×2mm t)

表9

膜厚

 \cdots 1.7 μ m

 $\{Ms (M-X-Y) / Ms (M)\} \times 100$

280

 $f(\mu^* max)$

240MHz

...169%

(試料8)

表10に示す条件で、反応性スパッタ法によりガラス基板上にグラニュラー磁 性薄膜試料を作製し、真空磁場中で300℃-2時間の熱処理を施し、試料8を 得た。なお、製膜時の N_2 分圧は10%とした。

[0053]

得られた試料8の磁気特性を表11に示す。

(0054)

製膜前真空度

<1×10⁻⁶

製膜時雰囲気

Ar+N2

電源

RF

Yi(管も主

Alチップ (100個)

(チップサイズ: 5mm×5mm×2mm t)

表11

 $1.3 \mu \mathrm{m}$

 $\{Ms (M-X-Y) / Ms (M) \} \times 100 \cdots 76.2\%$

11.

··· 410

 $f(\mu^{n} \max)$

... 170MHz

μ" 50

... 158%

(試料9)

表12に示す条件で、スパッタ法によりガラス基板上にグラニュラー磁性薄膜試料を作製し、真空磁場中で300 \mathbb{C} -2時間の熱処理を施し、試料9を得た。得られた試料9の特性を表13に示す。

[0055]

表12

製膜前真空度

 $<1\times10^{-6}$ Torr

門膜時寒期**身**

ターゲット

Fe (径 o 1 0 0 mm)

+

TiOsチップ(150個)

of horolands in change

(チップサイズ: 5 mm× 5 mm× 2 mm t)

) All Casting o

表13

腹區

··· 1. 4μm

 $\{M_S (M-X-Y) / M_S (M) \} \times 100 \cdots 43.6\%$

ш"

. 920

 $f(\mu^* max)$

··· 1. 5GH z

 $\mu^{\prime\prime}$ 50

.. 188%

(試料10)

表14に示す条件で、反応性スパッタ法によりガラス基板上にグラニュラー磁 性薄膜試料を作製し、真空磁場中で300℃-2時間の熱処理を施し、試料10 を得た。なお、酸素分圧は15%とした。

[0056]

得られた試料10の磁気特性を表15に示す。

[005.7]

表14

製膜前真空度 <1×10⁻⁶ Torr

製膜時雰囲気 Ar +02

電源 RF

ターゲット Fe

Siチップ:130個

(チップサイズ:5mm×5mm×2mmt)

表15

+

 \cdots 1. 5 μ m

 $\{Ms\ (M-X-Y)\ /Ms\ (M)\ \} \times 100\ \cdots\ 55.2\%$

incommon and the contraction

Gir I

 $f(\mu^{n} \text{max})$

... 1. 2GH z

 μ " 50

膜厚

... 182%

(試料11)

表 16 に示す条件で、スパッタ法によりガラス基板上にグラニュラー磁性薄膜試料を作製し、真空磁場中で 300 C-2 時間の熱処理を施し、試料 11 を得た。 試料 11 の特性を表 17 に示す。

[0058]

製膜前真空度 <1×10⁻⁶ Torr

製膜時雰囲気 Ar

電源 RF

ターゲット Fe

Hf0sチップ:100個

(チップサイズ:5mm×5mm×2mmt)

表17

膜厚

 \cdots 1.8 μ m

(M - X - Y)

s(M-X-Y) > Ms(G)

 μ " \cdots 1800

 $f(\mu^* max)$... 450 MHz

μ"₅₀ … 171%

(試料]?`

表18に示す条件で、スパッタ法によりガラス基板上にグラニュラー磁性薄膜 試料を作製し、真空磁場中で300℃-2時間の熱処理を施し、試料12を得た

[0059]

得られた試料12の磁気特性を表19に示す。

[0060]

製膜前真空度 <1×10⁻⁶ Torr

製膜時雰囲気 Ar

電源 RF

ターゲット Fe (φ100mm)

+

BNチップ:130個

表19

膜厚 ··· 1.9μm

WITE LIGHT X

of the town

 $f(\mu^* max)$

... 680MHz

11." = 0

... 185%

(試料13)

試料を作製し、真空磁場中で300℃−2時間の熱処理を施し、試料13を得た

[0061]

得られた試料13の磁気特性を表21に示す。

と しにかず条件で、スパックなによっカラス墨板

[0062]

製膜前真空度 <1×10⁻⁶ Torr

製膜時雰囲気 Ar

電源 RF

ターゲット Fe₅₀Co₅₀ (φ 1 0 0 mm)

+

Al₂0₈チップ:130個

表21

事 … 1.6μm

IMS (M-X-Y)

 $\{Ms\ (M-X-Y)\}$... 720

 μ " ··· 720

 $f(\mu^*max)$... 1 GHz

μ" 5.0 ··· 180%

[[0063]

(試料14)

表22に示す条件で、蒸着法によりグラニュラー磁性薄膜試料をガラス基板上 に作製し、真空磁場中で300℃-2時間の熱処理を施し、試料14を得た。得 られた試料14の磁気特性を表23に示す。

[0064]

表22

製膜前真空度

 $<1\times10^{-6}$ Torr

製膜時酸素流量

3.0 sccm

母材

FezoAlso合金

表23

膜厚

 \cdots 1.1 μ m

 $\{Ms (M-X-Y) / Ms (M) \} \times 100 \cdots 41.8\%$

 μ "

... 590

 $f(\mu^* max)$

... 520MHz

... 190%

試料を用い

の検証実験に

ついて説明する。

[0065]

ノイズ抑制効果の検証には図9に示す測定系を用い、更に、図4に示した透磁 窓特性を有し、一辺が2.0 mの正方形をなし、膜厚が2.0 μmであるグラニー 磁性薄膜試料 1 ch (100) μm κ を線路 5 / 5 mm 、 特性コンピーダン Δ 5

Ο Ωのマイクロストリップ線路の直上に配置し、ネットワークアナライザ (HP 8753D) を用いて2Port間の伝送特性を求めた。

[0066]

表24

グラニュラー磁性薄膜試料1と複合磁性体シートの透磁率特性

	グラニュラー 磁性薄膜	複合磁性体 シート
μ "/700MHz	約1800	約3.0
μ "50 [%]	148	196

表24に、グラニュラー磁性薄膜試料1の透磁率特性を、比較試料とした偏平状センダスト粉末とポリマーからなる同面積の複合磁性体シートの特性と共に示す。グラニュラー磁性薄膜試料1の μ "は準マイクロ波帯に分散を示し、その大きさは700MHz付近で μ "max=約1800であり、同じ帯域に μ "分散を示す比較試料の μ "に比べて600倍程大きい。また、前記 μ "が前記 μ "maxの50%となる半値巾 μ "50の中心周波数に対する比率は比較試料に比べて小さく、狭帯域であることがわかる。ノイズ伝送路の直近に磁気損失材料を配置して伝送路に等価的な抵抗成分を付与することで高周波電流を抑制する場合において、抑制効果の大きさは μ "の大きさと磁性体の厚さの積(μ "・ δ)にほぼ比例すると考えられるので、抑制効果の比較にあたり、 μ "・ δ の値が同じオーダーとなる様 μ " = 3 で δ = 1.0 mmの複合磁性体シートを比較試料とした

interior in the fire formula and the standard of the standard

図9に示すようにマイクロストリップ線路の直上に磁性体を配置し、伝送特性 S_{21} の変化を求めた。図10-a)およびb)に、各々グラニュラー磁性薄膜 試料1、および複合磁性体シートを配置したときの S_{21} 特性を示す。グラニュ

一磁性薄膜試料1の配置により、S はいませんでは、 A というでは、 A

ートの場合は、数100MHzから単調に減少し、3GHzで約-10dBを示した。これらの結果は、 S_{21} 伝送特性が磁性体の μ "分散に依存すると共に、抑制効果の大きさが μ "・ δ 積に依存することを示している。そこで、磁性体を図11に示すような寸法の分布定数線路とみなし、伝送特性 S_{11} および S_{21} から、単位長さ(Δ)当たりの等価回路定数を求めた後、試料寸法()に換算した等価回路定数を算出した。本検討のように、磁性体をマイクロストリップ線路上に配置した場合には、伝送特性の変化は主に直列に付加される等価抵抗成分によるものであることから、等価抵抗Rを求めその周波数依存性を調べてみた。図12-a)およびb)に、各々本発明及び比較試料である複合磁性体シートにおける等価抵抗Rの周波数変化を示す。等価抵抗Rはいずれの場合も準マイクロ波帯の領域で単調に増加し、3GHzでは数10 Ω となる。等価抵抗Rの周波数依

存性は、共に1GHz付近に極大をもつμ"の周波数分散とは異なる傾向にみえるが、これは前述のμ"・δ積に加えて波長に対する試料寸法の比率が単調増加することを反映している結果と考えられる。

[0068]

本発明の実施例では、スパッタ法乃至真空蒸着法による製造例を示したが、イ オンビーム蒸着法やガス・デポジション法などの製造方法でも良く、本発明の磁 気損失材料が均一に実現できる方法であれば、製法に限定されない。

[0069]

また、本発明の実施例では、製膜後に真空磁場中での熱処理を施しているが、 アズ・デポジションの膜で、本発明の性能が得られる組成あるいは製膜法であれば、実施例に記載の製膜後処理に限定されない。

[0070]

以上より、遵、イクロ波帯に、一分散とかす本発明の試料は、見さが混らり()

倍の複合磁性体シートと同等の高周波電流抑制効果を示し、1GHzに近い高速 クロックで動作するような半導体集積素子等のEMI対策に用いる材料として有 望であるといえる。

従って、本発明によれば、半導体集積回路素子のような高密度集積された微少な電子回路の高周波伝導ノイズの除去に極めて有効な高周波磁気損失特性に優れた磁気損失材料とその製造方法及びそれを用いた高周波電流抑制体が得られる。

【図面の簡単な説明】

【図1】

グラニュラー磁性体の構造を模式的に示す図である。

【図2】

- (a) はスパッタ法による試料作製装置の概略図であり、
- (b) は蒸着法による試料作製装置の概略図である。

【図3】

本発明の試料1にかかるμ"の周波数依存性例である。

【図4】

本発明の試料 2 にかかる μ "の周波数依存性例である。

【図5】

比較試料1にかかるμ"の周波数依存性例である。

【図6】

本発明による磁気損失材料からなる高周波電流抑制体の抑制効果を見るための測定系を示す斜視図である。

【図7】

- (a) は本発明の実施の形態による試料1の伝送特性(S21)であり、
- (b) は比較試料であるの複合磁性体シートの伝送特性(S21)である。

【図8】

- (a) は本発明の実施の形態による、試料1の伝送特性より算出したR値を示す図であり、
- (b) は比較試料である複合磁性体シートの伝送特性より算出した R 値を示す図

(単位) (特号の説明)

A STATE OF THE PARTY OF THE PAR

- 1.1 M成分
- 12 X-Y成分
- 21 シャッター
- 22 ガス
- 23 基板
- 24 $fy \mathcal{J}(X-Y \text{ or } X)$
- 25 ターゲット (M)
- 26 RF電源
- 27 真空ポンプ
- 28 るつぼ (X-Y)
- 6 測定系

特2000-052507

- 61 マイクロストリップ線路 ($Zc = 50\Omega$)
- 62 マイクロストリップ線路とネットワークアナライザを接続する同軸線路
- 63 磁性体試料
- 64 試料配置部分

Giritanysi k

was of E

【書類名】 図面

【図1】

【図2】

【図7】

【書類名】

要約書

【要約】

【課題】 半導体集積回路素子のような高密度集積された微少な電子回路の高周波伝導ノイズの除去に極めて有効な高周波磁気損失特性に優れた磁気損失材料と その製造方法及びそれを用いた高周波電流抑制体を提供する。

【解決手段】 M(Mは、Fe、Co、Ni のいづれか、もしくはそれらの混在物)-X(Xは、MおよびY以外の元素、もしくはそれらの混在物)-Y(Yは、F, N, Oのいづれか、もしくはそれらの混在物)からなる磁気損失材料であって,前記磁気損失材料の損失項 μ "の最大値 μ " maxが100 M Hz \sim 10 GHz の周波数範囲に存在すると共に、前記 μ "が前記 μ " max に対し50%以上となる周波数帯域をその中心周波数で規格化した半値中 μ " 50が、200 %以内である。

Pill W

【選択図】

図 1

Androus fair e

idi.

THE MILES

出願人履歴情報

識別番号

[000134257]

変更年月日
 変更理由]

1990年 8月10日 新規登録 宮城県仙台市太白区郡山6丁目7番1号

株式会社トーキン

住 所 氏 名

WIS

