General information about GAMs

Pablo E. Gutiérrez-Fonseca

3/18/2022

Model construction

s (Both GAMs)

s = represent smooth function

gam(value ~s(date,...

Define knots (Both GAMs)

k = knots. 12 month per year or 24 sampling event per year. Seleccione 12 por Simpson, del siguiente enlace https://fromthebottomoftheheap.net/2014/05/09/modelling-seasonal-data-with-gam/

bs= basis spline (Both GAMs)

bs= basis spline Smooth classes are invoked directly by s terms https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/smooth.terms.html

bf (Bayesian GAMs)

Note that we use the bf() argument to specify this nonlinear model.

Output

Hay que ver el Smooth Terms: -> $sds(sdate_1)$ -> $sds(stimes_1)$ is the variance parameter, which has the effect of controlling the wiggliness of the smooth - the larger this value the more wiggly the smooth. https://fromthebottomoftheheap.net/2018/04/21/fitting-gams-with-brms/

Check models

pp_check()

https://tem11010.github.io/regression_brms/ The pp_check allows for graphical posterior predictive checking. We can generate figures to compare the observed data to simulated data from the posterior predictive distribution. This is a great graphical way to evaluate your model.

Here, nsamples refers to the number of draws from the posterior distribution to use to calculate yrep values.

pp_check(model, nsamples=100)

$bayes_r2$

Bayes R2 quantifies the expected fit or variance explained by a model

We can also get an R-squared estimate for our model, thanks to a newly-developed method from Andrew Gelman, Ben Goodrich, Jonah Gabry and Imad Ali, with an explanation here. http://www.stat.columbia.edu/~gelman/research/unpublished/bayes_R2.pdf https://tem11010.github.io/regression_brms/

r2(cc.qp_A.Bayes_mod) Existe esta otra, pero usare la de Gelman

bayes_R2(model)