ID1020: Balanced Search Trees

Dr. Per Brand pbrand@kth.se

kap 3.3

Slides adapted from Algoritms 4th Edition, Sedgewick.

2-3 Trees

- Nodes either
 - 2-node: One key, two children (as before)
 - 3-node: Two keys, three children
- 3 -node
 - Left branch: keys less than left key
 - Right branch: keys more than right key
 - Middle branch: keys lie between left and right key

Example 2-3 tree

- Note: perfectly balanced
- Search simple
 - but maybe2 comparisonsneeded

Insertion (maintaining balance)

- First case
 - search reaches a 2-node
 - -e.g I
 - -e.g. N

Creating a temporary 4-node

- Adding to 3-node
 - Create a temporary 4-node
 - Then split
- In the picture
 - Move 4-node one level up

All cases

- All insertion cases shown below
 - Note splitting the root 4-node increases depth by 1 the only time depth increases

2-3 tree properties

- All paths same length
- Tree depth
 - Worst case Ig N
 - Best case Ig₃ N
- Guaranteed logarithmic performance

Summary

implementation	worst-case cost (after N inserts)			average case (after N random inserts)			ordered iteration?	key interface
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	?	yes	compareTo()

Implementation

- Could be done
- Bit complicated
- We won't
- Instead present red-black trees
 - Which may be seen as encoding for 2-3 trees

Red-black BSTs

The 3-node is encoded as a pair of 2-nodes

- Note:
 - Left-leaning
 - We distinguish between black and red links
 - At most one red link per node
 - Our goal perfect black balance

1:1 correspondence

- 1:1 correspondence between 2-3 and LLRB
 - LLRB: left-leaning red-black BST

Most operations

- Same as for other BSTs
 - Ignore color

- E.g., get, floor, rank, iteration, selection
- Note: this would not be the case if we directly encode 2-3 trees.
- Differences in put, delete, etc.
- First we introduce 3 helper funtions

Helper function: Left rotation

- Left rotation
 - Fixes a (temporary) right-leaning red link

Left rotation


```
private Node rotateLeft(Node h)
{
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Right rotation

- Re-orient left leaning to (temporarily) lean right
- Will be made clear why we need this

Color flip

Note that the parent link is made red


```
private void flipColors(Node h)
{
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Insertion

- Case 1: Insert into 2-node at bottom
 - If new red link is right do a left rotation

Insertion (2)

- Case 2: Insert into 3-node at botoom
 - Do standard insert (color link red)
 - Rotate to balance 4-node(if needed)
 - Flip colors to pass red link up one level
 - Rotate to balance (if needed)
 - Repeat up the tree if needed

Insertion Implementation

• ,

```
private Node put(Node h, Key key, Value val)
                                                                              insert at bottom
   if (h == null) return new Node(key, val, RED);
                                                                              (and color it red)
   int cmp = key.compareTo(h.key);
           (cmp < 0) h.left = put(h.left, key, val);
   else if (cmp > 0) h.right = put(h.right, kev. val);
   else if (cmp == 0) h.val = val;
   if (isRed(h.right) && !isRed(h.left))
                                                                              lean left
                                                h = rotateLeft(h);
   if (isRed(h.left) && isRed(h.left.left))
                                                                              balance 4-node
                                                h = rotateRight(h);
                                                                              split 4-node
   if (isRed(h.left) && isRed(h.right))
                                                flipColors(h);
   return h;
                  only a few extra lines of code provides near-perfect
                  balance
```

Visualization

Ascending order

255 insertions in ascending order

Visualization (2)

Descending order

Visualization

Random order

255 random insertions

Comparison

implementation	worst-case cost (after N inserts)			average case (after N random inserts)			ordered iteration?	key interface
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()
red-black BST	2 lg N	2 lg N	2 lg N	1.00 lg N *	1.00 lg N *	1.00 lg N *	yes	compareTo()

^{*} exact value of coefficient unknown but extremely close to 1

True story

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.

- Red-black BST search and insert; Hibbard deletion.
- Exceeding height limit of 80 triggered error-recovery process.

allows for up to 240 keys

Extended telephone service outage.

Hibbard deletion was the problem

- Main cause =height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:

"If implemented properly, the height of a red-black BST with N keys is at most $2 \lg N$." — expert witness

Other trees

B-trees

- Generalizes 2-3 trees
- Each node has up to M-1 keys
- Typically M is large so that M-1 keys just fits into a page

AVL trees

- Binary tree where depth varies by at most one
- Rotation operations rebalance tree where needed

Hardware-dependent optimizations

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

B-trees

choose M as large as possible so that M links fit in a page, e.g., M = 1024

B-tree. Generalize 2-3 trees by allowing up to M-1 key-link pairs per node.

- At least 2 key-link pairs at root.
- At least M/2 key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

Anatomy of a B-tree set (M = 6)

Large B-tree illustrated

Some applications

- Red-black trees widely used
 - Java
 - Linux kernel
 - Emacs
- B-trees and variants
 - Widely used for file systems and databases.
 - E.g., Windows, Mac, Linux
 - E.g, Oracle, DB2