Sheet 4

November 15, 2015

Assignment 19

Assignment 20

Given an array of patterns P with n elements and a function called random useful to calculate integer random number between a range it is possible to shuffle the original array using the next algorithm:

Randomize elements in an array

- 1: for i = 0 such that i < n do
- $i \leftarrow i + 1$
- 3: $swap \leftarrow random(0, n)$
- 4: $temp \leftarrow N[swap]$
- 5: $N[swap] \leftarrow N[i]$
- 6: $N[i] \leftarrow temp$
- 7: end for

Assignment 21

Backpropagation of errors (BP). After the computation of the output values, we calculate the difference between our teacher value ${}^{p}\hat{y}_{m}$ and each output unit ${}^{p}y_{m}$. We obtain the sum of all these differences and apply to it an error function:

$${}^{p}E = \frac{1}{2} \sum_{m=1}^{M} ({}^{p}\hat{y}_{m} - {}^{p}y_{m})^{2}$$

Now, with a derivation of the error function (ommitted here) is possible to get a new formula to calculate δ values. This calculation is different for the neurons located in the output layer:

$$\delta_m = (\hat{y}_m - y_m) \cdot f'(net_m)$$

and the neurons located in the hidden layers:

$$\delta_h = (\sum_{k=1}^k \delta_k w_{hk}) \cdot f'(net_h)$$

We must be warned that δ_k and w_{hk} are referring to values in the next layer. Now, using the δ value, the output $\widetilde{out_g}$, and a learning rate η we can calculate the weight changes is using this formula:

$$\Delta w_{ij} = \eta \cdot \delta w_{ij} \cdot \widetilde{out_g}$$

We iterate in this process until we reach the input layer. Finally, we update the current weights w_{ij} adding to them the changed weights Δw_{ij} :

$$w_{ij} = w_{ij} + \Delta w_{ij}$$

Assignment 22

Assignment 23