hert Bergeralizing a Complexmentry given $A\left(\frac{2}{1-i}\right) = \bar{A}^T = A^H$ 1+i 3 Indits Elvertor Matrx 1 and E vector matrix S. · I take A The equals to whether Att det (A-1I) =0 Note Entres 9 Ac Compan $\det \begin{pmatrix} 2-1 & 1-i \\ 1+i & 3-1 \end{pmatrix} = 0$ -> EVailves or But Started aut MYX Ove Cayolix (2-1)(3-1) = (1+i)(1-i)=0 $6^{-5/4}/^2 - 2 = 0$ $1^2 - 5/4 + 4 = 0$ $\Rightarrow (1-1)(1-4) = 0$ $\Rightarrow (1-1)(1-4) = 0$

Hermitan matrices alwayshare real Elvatures Find Elvectas.

$$A = 1 \cdot \frac{1}{1 - i} \cdot \frac{1}{1$$

 $S = \begin{cases} \frac{1}{\sqrt{3}} & \left(\frac{1}{\sqrt{1 + c}} \right) \\ -1 & \frac{1}{\sqrt{3}} & \left(\frac{1}{\sqrt{1 + c}} \right) \end{cases}$

 $A = S \wedge S^{\dagger} = S \wedge S^{\dagger}$ $A = \frac{1}{13} \left(\frac{1 - i}{1 + i} \right) \left(\frac{10}{0} \right) \left(\frac{1 + i}{1 + i} \right)$ $A = \frac{1}{13} \left(\frac{1 - i}{1 + i} \right) \left(\frac{10}{0} \right) \left(\frac{1 + i}{1 + i} \right)$