Chapter 6 Q- Leavening Q(St, At) = Q(St, At) + X[Rite + (max & (St+1, a) - & (St, At) a greedy-t folicy wp 1-6 max & (St, At) = &-value associated with tuple (St, At) will give oftimal &-value. $\mathcal{R}(S_{t},A_{t}) \longrightarrow \mathcal{R}^{+}(S_{t},A_{t})$ maximising action (oftimal action) in state S_{t} argman $\mathcal{R}^{+}(S_{t},A_{t})$ -Cliff Walking: -Safe fath -Oftimal path for any action that takes you to "non Giff" position -100 for any action that takes to the elift 3 7 Sumof SARSA 3 1 Exisodes 500 3 3 3

Mercedes-Benz R & D India Junction Approx Based Methods. Newal N/W based architecture No of states - 10 retates i.e., large 1. State i is encoded as $x = (x_1(i), \dots, x_2(i))$ 2. x is transformed to linearly through a layer as $\sum_{l=1}^{\infty} r(k_l l) x_k(i), k=1...k$ 3. Non-linear transformation via a sigmad $t(\cdot)$ we obtain $t(\sum_{l=1}^{k} \gamma(k_l) \chi_{\ell}(i))$ T(.) are differentiable of Satisfying T (.) are non-develosing eg: $t(z) = \tanh(z) = \frac{e^2 - e^2}{e^2 + e^{-2}}$ $\sqrt{(z)} = \frac{1}{1 + e^{-z}}$ 4) Final 0/p $\widetilde{\mathcal{J}}(i,r) = \underset{k=1}{\overset{k}{\geq}} \Upsilon(k) \, \nabla \left(\underset{a=1}{\overset{k}{\geq}} \eta(k,1) \, \mathcal{H}_{L}(i) \right)$

recedes-Bellz R & D India
Let I be the projection operator into 8 wet this norm
For any JER", TT is the unique vector in
$S = \{ \oint_{\mathbb{R}} \mathbf{r} \in \mathbb{R}^{3} \}$ that minimizes $ \mathbf{J} - \hat{\mathbf{J}} _{V}^{2}$ over
all Jes. Since & has rank &, any vector JES
i uniquely written as $\hat{J} = \phi_V$ for some $x \in \mathbb{R}^n$. Thus $\ J - \hat{J}\ _V^2 = \ J - \phi_V\ _V^2 = (J - \phi_V)^T V (J - \phi_V)$
Thus,
$TJ = pr_J$ where $r_J = \operatorname{argmin} J - pr _v^2$, $J \in \mathbb{R}^r$
In orde to fing of,
Vn (11 J- 48112)=0
or pt (J-pry) =0
or $\phi^{T} V J - \phi^{T} V \phi n_{J} = 0$
B) proy = pry
$\Rightarrow \varphi_{\mathcal{J}} = (\phi^{7} \vee \phi)^{-1} \phi^{T} \vee \mathcal{J}$

Mercedes-Benz R & D India 89 TJ = g + x PJ Where $g = (g_1 - g_n)^T$ south $g_i = \sum_{i=1}^{n} p_{ij} g(ij), i=1.$ P= [[Pij]]inie Bellaman Egn: $\phi r = TT(\phi r)$ Too T(pr) = g + x p(p on) > rojected Bellman Equ Vis replaced suite steady state frob of markov chain in the *******

*

1

1

43

3

3

Numerical Sol to PBE: Value Itocation: Фякн - ТТ (ФЯк), R=0,1,2-2 Since TT is a contraction, Ep 91 & generaled by PVI converges to the enique fixed point dx* of XT por -> port suhere port = TT (p ort) Note that 91 RH Story = augmin 11 & pr - (g+x p 91x) 1/2 Consider Vo (pr-g+xPpr) D (pr-g-rppr) = 2 \$ TD (\$ SIRTI - (got + x p \$ V_K)) =0 $= \phi^{T} \mathcal{D} \phi \mathcal{H}_{k+1} = \phi_{D} \mathcal{D} (g + \alpha P \phi r_{k})$:. 9(k+1 = (\$\partition \mathbb{D} \phi) \partition \mathbb{D} \partition \mathbb{D} \partition \mathbb{D} \partition \mathbb{D} \partition \mathbb{D} \phi \mathbb{D} \ma d = Pag. 91 km = 91 k + (\$TD\$) d - (\$TD\$) \$TD\$ x + X(pTDp)TpTRPpHR = 9R - (PTDP) PTD (I-XI) PHR + (PTDP) d = 91k - (pt Dp) (Qk-d) where c = dt D (I-XP) p

77777

3

Mercedes-Benz R & D India C=[\$TD(I-XP)\$] is a +'le definite matrix D Bortsekas Oftemal Control & Dynamic Pogram Material: Chap 6
[Approx Agranic Programming] Chapter 9: On-Policy prediction with Approx Mean Square Value Error: VE(W) = ∑ µ (x) [V_x(x) - Î (3, w)] = $\mu(s) = (\mu(1), --\mu(r))^{T}$ [ready state dist. of the markov chain] $\mu(s) = \text{fraction of markov chain spends in state } s.$ On-policy distribution for episodic tasks: let h(s) = Prob-that an efisode begins in state s. Let $\eta(s) = no of times step spent in state 's' on any$ Then 1(8) = h(8) + Z n(5) Z T (a 15) p(s 15,a), + 8 + S $\mu(s) = \frac{\eta(s)}{2}$