

Çekirdeklerle öğrenme

Doç. Dr. Mehmet Gönen mehmetgonen@ku.edu.tr

Endüstri Mühendisliği Bölümü, Mühendislik Fakültesi Hesaplamalı Biyoloji Bölümü, Tıp Fakültesi

24 Haziran 2019

Çekirdek nedir?

- Çekirdek iki nesne arasındaki benzerlik miktarını hesaplayan bir fonksiyondur.
 - protein ikilileri
 - resim ikilileri
 - döküman ikilileri
- $lackbox{ iny $x_i \in \mathcal{X}$ ve $x_j \in \mathcal{X}$}$
 - $\mathbf{Z} = \mathbf{D}$ bütün olası proteinler
 - $\mathbf{Z} = \mathbf{D}$ bütün olası resimler
 - $\mathbf{Z} = \mathbf{D}$ bütün olası dökümanlar
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

lacktriangle Veri noktalarımızı genelde $N \times D$ büyüklüğünde bir matris olarak saklarız.

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1D} \\ x_{21} & x_{22} & \dots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{ND} \end{bmatrix}$$

- Vektör şeklinde gösterebildiğimiz girdiler için sıklıkla kullanılan çekirdekler:
 - $b_D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^\top \boldsymbol{x}_j$
 - $\mathbf{k}_P(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^{\top} \mathbf{x}_i + 1)^q$
 - $k_G(\boldsymbol{x}_i, \boldsymbol{x}_j) = (w_i \ w_j + 1)^{-1}$ $k_G(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp(-\|\boldsymbol{x}_i \boldsymbol{x}_j\|_2^2/s^2) = \exp(-d_{ij}^2/s^2)$

■ Doğrusal olmayan öznitelikler çıkarmakta kullanabiliriz.

- Her geçerli çekirdek fonksiyonu yeni bir öznitelik uzayına karşılık gelmektedir.
 - $\Phi \colon \mathbb{R}^D o \mathbb{R}^S$ (genelde $S \gg D$)
- \blacksquare Örneğin D=1 ve S=3

$$\Phi(x_i) = \begin{bmatrix} x_i^2 & \sqrt{2}x_i & 1 \end{bmatrix}^{\top}$$

$$\Phi(x_i)^{\top} \Phi(x_j) = \begin{bmatrix} x_i^2 & \sqrt{2}x_i & 1 \end{bmatrix} \begin{bmatrix} x_j^2 & \sqrt{2}x_j & 1 \end{bmatrix}^{\top} = x_i^2 x_j^2 + 2x_i x_j + 1$$

$$k_P(x_i, x_j) = (x_i x_j + 1)^2 = x_i^2 x_j^2 + 2x_i x_j + 1$$

- 100 piksel \times 100 piksel resimlerde ($D=10^4$) aynısını yapabilir miyiz?
- Doğrusal olmayan öznitelikleri bu şekilde çıkarmak hesaplama maliyeti açısından uygulanabilir değil.

 $lackbox{N} imes D$ matris yerine N imes N matris kullanarak hesaplama ve saklama maliyetini düşürebiliriz.

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1D} \\ x_{21} & x_{22} & \dots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{ND} \end{bmatrix}$$

$$\mathbf{K} = egin{bmatrix} k(oldsymbol{x}_1, oldsymbol{x}_1) & k(oldsymbol{x}_1, oldsymbol{x}_2) & \dots & k(oldsymbol{x}_1, oldsymbol{x}_N) \ k(oldsymbol{x}_2, oldsymbol{x}_1) & k(oldsymbol{x}_2, oldsymbol{x}_2) & \dots & k(oldsymbol{x}_2, oldsymbol{x}_N) \ dots & dots & \ddots & dots \ k(oldsymbol{x}_N, oldsymbol{x}_1) & k(oldsymbol{x}_N, oldsymbol{x}_2) & \dots & k(oldsymbol{x}_N, oldsymbol{x}_N) \ \end{pmatrix}$$

- Belli bir yapıya sahip nesneler arasındaki benzerlik hesaplamakta kullanabiliriz.
- Örnek: İki protein arasındaki benzerlik

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEK FDRVKHLKTEAEMKASEDLKKHGVTVLTALGAILKKKGHHEAE LKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRHPGNFGADAQ GAMNKALELFRKDIAAKYKELGYQG

MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAA KSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLK PVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDE AAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL

- Belli bir yapıya sahip nesneler arasındaki benzerlik hesaplamakta kullanabiliriz.
- Örnek: İki resim arasındaki benzerlik

- Belli bir yapıya sahip nesneler arasındaki benzerlik hesaplamakta kullanabiliriz.
- Örnek: İki metin arasındaki benzerlik

(Reuters) - Developed countries face a sharp year-end slowdown led by a contraction in Germany, the OECD said on Thursday, urging central banks to keep rates low or pursue other forms of monetary easing if the downturn becomes entrenched.

(Reuters) - More than 100 spacecraft have been to the moon, including six with U.S. astronauts, but one key piece of information about Earth's natural satellite is still missing - what's inside.

Daha iyi çekirdekler tasarlayabilir miyiz?

- Evet, yapabiliriz.
 - çekirdek fonksiyonlarının parametrelerini seçerek (polinom çekirdeğinin derecesi, Gaussian çekirdeğinin yarıçapı)
 - yeni çekirdek fonksiyonları önererek
 - alan bilgisini çekirdeğin içerisinde kullanarak
 - basit çekirdekleri birleştirerek (çoklu çekirdek öğrenimi)
 - çekirdek fonksiyonunu veriden öğrenerek

lacksquare Eğitim kümesi: $\{(oldsymbol{x}_i,y_i)\in\mathcal{X} imes\{\pm1\}\}_{i=1}^N$

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1D} \\ x_{21} & x_{22} & \dots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{ND} \end{bmatrix} \qquad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

lacktriangle Yeni verilen bir veri noktası $x_* \in \mathcal{X}$ için sınıf etiketini kestirmek

$$\mathbf{x}_* = \begin{bmatrix} x_{*1} & x_{*2} & \dots & x_{*D} \end{bmatrix} \qquad y_* = \begin{bmatrix} ? \end{bmatrix}$$

X uzayında bir düzlem

$$\{ \boldsymbol{x} \in \mathcal{X} | \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0 \}$$

- Karar fonksiyonu: $f \colon \mathcal{X} \to \{\pm 1\}$ $m{x} \mapsto f(m{x}) = \operatorname{sgn}(\langle m{w}, m{x} \rangle + b)$ $m{w} \in \mathcal{X}$ ve $b \in \mathbb{R}$
- Kanonik düzlem (\boldsymbol{w},b) $\min_{i=1,...,N} |\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b| = 1$

- $\|w\|_2$ 'yi en küçüklersek iki sınıf arasındaki mesafeyi artırabiliriz.
- Karar fonksiyonu ve kanonik düzlem kullanılarak

$$y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \ge 1 \quad \forall i$$

Birincil en iyileme problemi

en küçükle
$$\frac{1}{2}\|m{w}\|_2^2$$
 karar değişkenleri $\mbox{$m{w}\in\mathcal{X}$, $b\in\mathbb{R}$}$ kısıtlar $y_i(\langle m{w}, m{x}_i \rangle + b) \geq 1 \ orall i$

Basit bir örnek

en küçükle
$$w^2-6w+5$$
 karar değişkenleri $w\in\mathbb{R}$ kısıtlar $w-4\geq 0$

Lagrange eşiz fonksiyonu

$$L(w, \alpha) = w^2 - 6w + 5 - \alpha(w - 4)$$

■ Birincil değişkene göre türev

$$\frac{\partial L(w,\alpha)}{\partial w} = 0 \Rightarrow w = \frac{\alpha + 6}{2}$$

■ Eşiz en iyileme problemi (w değerini Lagrange eşiz fonksiyonunun içine yazarak)

en büyükle
$$\frac{-\alpha^2+4\alpha-16}{4}$$
 karar değişkenleri $\ \alpha\in\mathbb{R}_+$

■ En iyi çözüm

$$\alpha^{\star} = 2$$

$$w^* = \frac{\alpha^* + 6}{2} = 4$$

Lagrange eşiz fonksiyonu

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 - \sum_{i=1}^N \alpha_i (y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) - 1)$$

Birincil değişkenlere göre türev

$$\frac{\partial L(\boldsymbol{w}, b, \boldsymbol{\alpha})}{\partial \boldsymbol{w}} = 0 \Rightarrow \boldsymbol{w} = \sum_{i=1}^{N} \alpha_i y_i \boldsymbol{x}_i$$
$$\frac{\partial L(\boldsymbol{w}, b, \boldsymbol{\alpha})}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_i y_i = 0$$

■ Eşiz en iyileme problemi

en büyükle
$$\sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$$
 karar değişkenleri $\boldsymbol{\alpha} \in \mathbb{R}_+^N$ kısıtlar
$$\sum_{i=1}^N \alpha_i y_i = 0$$

Karar fonksiyonu

$$f(oldsymbol{x}) = extstyle exts$$

Sınıflandırma hatasına izin verdiğimiz durumda kısıtımız şu hale gelmektedir.

$$y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \ge 1 - \xi_i \quad \forall i$$

■ Birincil en iyileme problemi

en küçükle
$$\frac{1}{2}\|\boldsymbol{w}\|_2^2+C\sum_{i=1}^N\xi_i$$
 karar değişkenleri $\boldsymbol{w}\in\mathcal{X},\ b\in\mathbb{R},\ \boldsymbol{\xi}\in\mathbb{R}_+^N$ kısıtlar $y_i(\langle\boldsymbol{w},\boldsymbol{x}_i\rangle+b)\geq 1-\xi_i$

Lagrange eşiz fonksiyonu

$$L(\boldsymbol{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$
$$- \sum_{i=1}^{N} \alpha_{i} (y_{i}(\langle \boldsymbol{w}, \boldsymbol{x}_{i} \rangle + b) - 1 + \xi_{i})$$

Birincil değişkenlere göre ek bir türev

$$\frac{\partial L(\boldsymbol{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \xi_i} = 0 \Rightarrow C = \alpha_i + \beta_i \Rightarrow C \ge \alpha_i \ge 0 \quad \forall i$$

Eşiz en iyileme problemi

en büyükle
$$\sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$$
 karar değişkenleri $\boldsymbol{\alpha} \in \mathbb{R}_+^N$ kısıtlar
$$\sum_{i=1}^N \alpha_i y_i = 0$$

$$C > \alpha_i > 0 \qquad \forall i$$

 $\langle x_i, x_i \rangle$ terimini $k(x_i, x_i)$ ile değiştiriyoruz.

en büyükle
$$\sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j k(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

karar değişkenleri $\; oldsymbol{lpha} \in \mathbb{R}_+^N \;$

kısıtlar
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$
 $C > \alpha_i > 0 \quad \forall i$

■ Karar fonksiyonu

$$f(x) = \operatorname{sgn}\left(\sum_{i=1}^{N} \alpha_i y_i k(x_i, x) + b\right)$$

lacksquare Eğitim kümesi: $\{(oldsymbol{x}_i, y_i) \in \mathcal{X} imes \mathbb{R}\}_{i=1}^N$

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1D} \\ x_{21} & x_{22} & \dots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{ND} \end{bmatrix} \qquad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

lacktriangle Yeni verilen bir veri noktası $x_* \in \mathcal{X}$ için hedef çıktıyı kestirmek

$$x_* = \begin{bmatrix} x_{*1} & x_{*2} & \dots & x_{*D} \end{bmatrix} \quad y_* = \begin{bmatrix} ? \end{bmatrix}$$

Normal dağılım: $\mathcal{N}(x; \mu, \sigma^2)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

lacksquare Çok değişkenli normal dağılım: $\mathcal{N}(oldsymbol{x};oldsymbol{\mu},oldsymbol{\Sigma})$

$$p(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

$$y_i = f(\mathbf{x}_i) + \xi_i \quad \forall i$$

$$f \sim \mathcal{GP}(f; m(\cdot), k(\cdot, \cdot))$$

$$\xi_i \sim \mathcal{N}(\xi_i; 0, \sigma^2) \quad \forall i$$

 y_i : x_i için ölçülen çıktı değeri

 $f(oldsymbol{x}_i)\colon \ oldsymbol{x}_i$ için gerçek çıktı değeri

 $m(\cdot)$: ortalama fonksiyonu

 $k(\cdot,\cdot)$: kovaryans fonksiyonu

 ξ_i : ölçüm hatası

- Gauss süreci fonksiyonlar üzerinde tanımlanmış bir dağılımdır.
- Gözlemlenen değişkenler beraberce normal dağılım izlemektedir.

$$egin{bmatrix} f(oldsymbol{x}_1) \ dots \ f(oldsymbol{x}_N) \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} f(oldsymbol{x}_1) \ dots \ f(oldsymbol{x}_N) \end{bmatrix}; egin{bmatrix} m(oldsymbol{x}_1) \ dots \ m(oldsymbol{x}_N) \end{bmatrix}, egin{bmatrix} k(oldsymbol{x}_1, oldsymbol{x}_1) & \ldots & k(oldsymbol{x}_1, oldsymbol{x}_N) \ dots \ k(oldsymbol{x}_N, oldsymbol{x}_1) & \ldots & k(oldsymbol{x}_N, oldsymbol{x}_N) \end{bmatrix}
ight)$$

Ortalama fonksiyonu olarak genelde 0 fonksiyonu kullanılmaktadır.

$$m(\boldsymbol{x}_i) = 0$$

■ Kovaryans fonksiyonu olarak Gauss çekirdeği sıklıkla kullanılmaktadır.

$$k(x_i, x_j) = \exp(-\|x_i - x_j\|_2^2/s^2)$$

$$oldsymbol{y} = oldsymbol{f} + oldsymbol{\xi} \ oldsymbol{f} \sim \mathcal{N}(oldsymbol{f}; oldsymbol{0}, \mathbf{K})$$

$$\boldsymbol{\xi} \sim \mathcal{N}(\boldsymbol{\xi}; \boldsymbol{0}, \sigma^2 \mathbf{I})$$

■ Bayes teoremini kullandığımızda:

$$p(\boldsymbol{f}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f})}{p(\boldsymbol{y})}$$

$$p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f})$$

$$\propto p(\mathbf{y} - \mathbf{f})p(\mathbf{f})$$

$$\propto \mathcal{N}(\mathbf{y} - \mathbf{f}; \mathbf{0}, \sigma^2 \mathbf{I})\mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

■ En büyük ardıl olasılık kestirimini kullanarak:

$$\begin{split} \boldsymbol{f}^{\star} &= \arg\max_{\boldsymbol{f}} p(\boldsymbol{f}|\boldsymbol{y}) = \arg\max_{\boldsymbol{f}} \log p(\boldsymbol{f}|\boldsymbol{y}) \\ &\log p(\boldsymbol{f}|\boldsymbol{y}) = -\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{f}\|_2^2 - \frac{1}{2} \boldsymbol{f}^{\top} \mathbf{K}^{-1} \boldsymbol{f} + \text{constant} \end{split}$$

• f değişkenini $\mathbf{K}\alpha$ ile yer değiştirdiğimizde:

$$\log p(\boldsymbol{\alpha}|\boldsymbol{y}) = -\frac{1}{2\sigma^2}\|\boldsymbol{y} - \mathbf{K}\boldsymbol{\alpha}\|_2^2 - \frac{1}{2}\boldsymbol{\alpha}^\top\mathbf{K}\boldsymbol{\alpha} + \text{constant}$$

Kısıtsız en iyileme problemi

$$\boldsymbol{\alpha}^{\star} = \arg \max_{\boldsymbol{\alpha}} \log p(\boldsymbol{\alpha}|\boldsymbol{y})$$

$$= \arg \max_{\boldsymbol{\alpha}} -\frac{1}{2\sigma^{2}} \left(\boldsymbol{y}^{\top} \boldsymbol{y} - 2 \boldsymbol{y}^{\top} \mathbf{K} \boldsymbol{\alpha} + \boldsymbol{\alpha}^{\top} \mathbf{K} \mathbf{K} \boldsymbol{\alpha} \right) - \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha}$$

lacktriangledown lpha değişkenine göre türev alıp en iyi değeri bulabiliriz.

$$\boldsymbol{lpha}^{\star} = (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y}$$

$$egin{aligned} oldsymbol{a} &\sim \mathcal{N}(oldsymbol{a}; oldsymbol{\mu}_a, oldsymbol{\Sigma}_a) \ oldsymbol{b} &\sim \mathcal{N}(oldsymbol{b}; oldsymbol{\mu}_b, oldsymbol{\Sigma}_b) \ oldsymbol{a} + oldsymbol{b} &\sim \mathcal{N}(oldsymbol{a} + oldsymbol{b}; oldsymbol{\mu}_a + oldsymbol{\mu}_b, oldsymbol{\Sigma}_a + oldsymbol{\Sigma}_b) \end{aligned}$$

lacktriangleq y and y_* için bileşik olasılık dağılımı

$$egin{bmatrix} egin{bmatrix} oldsymbol{y} \ y_* \end{bmatrix} \sim \mathcal{N}igg(egin{bmatrix} oldsymbol{y} \ y_* \end{bmatrix}; egin{bmatrix} oldsymbol{0} \ 0 \end{bmatrix}, egin{bmatrix} oldsymbol{K} + \sigma^2 oldsymbol{I} & oldsymbol{k}_* \ oldsymbol{k}_*^ op & k(oldsymbol{x}_*, oldsymbol{x}_*) + \sigma^2 \end{bmatrix} igg) \ oldsymbol{k}_* = egin{bmatrix} k(oldsymbol{x}_1, oldsymbol{x}_*) \ dots \ k(oldsymbol{x}_N, oldsymbol{x}_*) \end{bmatrix}$$

$$egin{aligned} egin{aligned} egin{aligned} egi$$

■ y_{*} değerini kestirmek için aşağıdaki dağılımı kullanabiliriz.

$$y_*|\boldsymbol{y} \sim \mathcal{N}\left(y_*; \boldsymbol{k}_*^{\top} \underbrace{(\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y}}_{\boldsymbol{\alpha}}, k(\boldsymbol{x}_*, \boldsymbol{x}_*) + \sigma^2 - \boldsymbol{k}_*^{\top} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{k}_*\right)$$

Çekirdek tasarımı

Destek vektör makinesinin eşiz en iyileme problemi dual standart halde şu şekilde yazılabilir.

en küçükle
$$-\mathbf{1}^{ op} \boldsymbol{\alpha} + \frac{1}{2} \boldsymbol{\alpha}^{ op} ((\boldsymbol{y} \boldsymbol{y}^{ op}) \odot \mathbf{K}) \boldsymbol{\alpha}$$
 karar değişkenleri $\boldsymbol{\alpha} \in \mathbb{R}^N$ kısıtlar $\boldsymbol{y}^{ op} \boldsymbol{\alpha} = 0$ $0 \leq \boldsymbol{\alpha} \leq C \mathbf{1}$

En iyilemenin uygun bir şekilde gerçekleşebilmesi için K matrisinin yarı-kesin pozitif matris olması gerekmektedir. \blacksquare $\mathbb{R}^{N \times N}$ kümesinden alınan simetrik bir matris \mathbf{K} eğer bütün özdeğerleri sıfırdan büyük eşit ise yarı-kesin pozitiftir.

$$\boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha} > 0 \quad \forall \boldsymbol{\alpha} \in \mathbb{R}^{N}.$$

 Bütün geçerli çekirdek fonksiyonları yarı-kesin pozitif çekirdek matrisleri oluşturmaktadır.

$$\boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha} = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} \langle \Phi(\boldsymbol{x}_{i}), \Phi(\boldsymbol{x}_{j}) \rangle$$
$$= \left\langle \sum_{i=1}^{N} \alpha_{i} \Phi(\boldsymbol{x}_{i}), \sum_{j=1}^{N} \alpha_{j} \Phi(\boldsymbol{x}_{j}) \right\rangle = \left\| \sum_{i=1}^{N} \alpha_{i} \Phi(\boldsymbol{x}_{i}) \right\|_{2}^{2} \geq 0$$

■ k_1 ve k_2 $\mathcal{X} \times \mathcal{X}$ üzerinde tanımlanmış çekirdek fonksiyonları, $\mathcal{X} \subseteq \mathbb{R}^D$, $a \in \mathbb{R}_+$, $f(\cdot)$ \mathcal{X} üzerinde tanımlanmış gerçel değerler üreten bir fonksiyon, k_3 ise $\mathbb{R}^S \times \mathbb{R}^S$ üzerinde tanımlanmış bir çekirdek fonksiyonu $(\Phi \colon \mathcal{X} \to \mathbb{R}^S)$ ve \mathbf{L} $D \times D$ boyutunda yarı-kesin pozitif bir çekirdek matrisi olmak üzere aşağıdaki fonksiyonlar da geçerli çekirdek fonksiyonlarıdır.

```
\begin{array}{l} \textbf{i} \ \ k(\boldsymbol{x}_i,\boldsymbol{x}_j) = k_1(\boldsymbol{x}_i,\boldsymbol{x}_j) + k_2(\boldsymbol{x}_i,\boldsymbol{x}_j) \\ \textbf{ii} \ \ k(\boldsymbol{x}_i,\boldsymbol{x}_j) = ak_1(\boldsymbol{x}_i,\boldsymbol{x}_j) \\ \textbf{iii} \ \ k(\boldsymbol{x}_i,\boldsymbol{x}_j) = k_1(\boldsymbol{x}_i,\boldsymbol{x}_j)k_2(\boldsymbol{x}_i,\boldsymbol{x}_j) \\ \textbf{iv} \ \ k(\boldsymbol{x}_i,\boldsymbol{x}_j) = f(\boldsymbol{x}_i)f(\boldsymbol{x}_j) \\ \textbf{v} \ \ k(\boldsymbol{x}_i,\boldsymbol{x}_j) = k_3(\Phi(\boldsymbol{x}_i),\Phi(\boldsymbol{x}_j)) \\ \textbf{vi} \ \ k(\boldsymbol{x}_i,\boldsymbol{x}_j) = \boldsymbol{x}_i^{\top}\mathbf{L}\boldsymbol{x}_j \end{array}
```

• $k_1 \mathcal{X} \times \mathcal{X}$ üzerinde tanımlanmış çekirdek fonksiyonu ve $p \mathcal{X}$ üzerinde tanımlanmış katsayıları pozitif olan bir polinom olmak üzere aşağıdaki fonksiyonlar da geçerli çekirdek fonksiyonlarıdır.

■ Tek bir çekirdek fonksiyonu kullanmak yerine çok sayıda çekirdek fonksiyonu kullanabiliriz.

$$k_{\eta}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = f_{\eta}(\{k_{m}(\boldsymbol{x}_{i}^{m}, \boldsymbol{x}_{j}^{m})\}_{m=1}^{P})$$

Birleştirme fonksiyonu $f_{\eta} \colon \mathbb{R}^P \to \mathbb{R}$ çekirdek fonskiyonlarını $(\{k_m(\boldsymbol{x}_i^m, \boldsymbol{x}_j^m)\}_{m=1}^P)$ doğrusal ya da doğrusal olmayan bir yöntemle birleştirebilir.

Sabit kurallar

$$k_{\eta}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \prod_{m=1}^{P} k_{m}(\boldsymbol{x}_{i}^{m}, \boldsymbol{x}_{j}^{m})$$

$$k_{\eta}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \sum_{m=1}^{P} k_{m}(\boldsymbol{x}_{i}^{m}, \boldsymbol{x}_{j}^{m})$$

$$\langle \Phi_{\eta}(\boldsymbol{x}_{i}), \Phi_{\eta}(\boldsymbol{x}_{j}) \rangle = \begin{pmatrix} \Phi_{1}(\boldsymbol{x}_{i}^{1}) \\ \Phi_{2}(\boldsymbol{x}_{i}^{2}) \\ \vdots \\ \Phi_{P}(\boldsymbol{x}_{i}^{P}) \end{pmatrix} \begin{pmatrix} \Phi_{1}(\boldsymbol{x}_{j}^{1}) \\ \Phi_{2}(\boldsymbol{x}_{j}^{2}) \\ \vdots \\ \Phi_{P}(\boldsymbol{x}_{j}^{P}) \end{pmatrix} = \sum_{m=1}^{P} k_{m}(\boldsymbol{x}_{i}^{m}, \boldsymbol{x}_{j}^{m})$$

Çekirdek tasarımı

■ Toplam kuralını parametrik bir hale getirebiliriz.

■ Doğrusal toplam ($\eta \in \mathbb{R}^P$), konik toplam ($\eta \in \mathbb{R}_+^P$) ve dışbükey toplam ($\eta \in \mathbb{R}_+^P$ ve $\mathbf{1}^\top \eta = 1$)

 \blacksquare Çekirdek matrisleri \mathbf{K}_1 ve \mathbf{K}_2 arasındaki hizalanma miktarı şu şekilde yazılır.

$$A(\mathbf{K}_1, \mathbf{K}_2) = \frac{\langle \mathbf{K}_1, \mathbf{K}_2 \rangle_F}{\sqrt{\langle \mathbf{K}_1, \mathbf{K}_1 \rangle_F \langle \mathbf{K}_2, \mathbf{K}_2 \rangle_F}}$$

$$\langle \mathbf{K}_1, \mathbf{K}_2
angle_F = \sum\limits_{i=1}^N \sum\limits_{j=1}^N k_1(oldsymbol{x}_i, oldsymbol{x}_j) k_2(oldsymbol{x}_i, oldsymbol{x}_j).$$

■ Bu değer iki matrisin N^2 boyutunda vektörlere çevrilip aralarındaki açının kosinüsünü hesaplamaya karşılık gelmektedir ($-1 \le A(\mathbf{K}_1, \mathbf{K}_2) \le +1$).

Çekirdek tasarımı

İkili sınıflandırma için ideal çekirdek fonksiyonu:

$$oldsymbol{y}oldsymbol{y}^ op = egin{bmatrix} y_1y_1 & y_1y_2 & \dots & y_1y_N \ y_2y_1 & y_2y_2 & \dots & y_2y_N \ dots & dots & \ddots & dots \ y_Ny_1 & y_Ny_2 & \dots & y_Ny_N \end{bmatrix}$$

Bu ideal çekirdeğe benzeyen bir çekirdek oluşturmaya çalışabiliriz.

$$\eta_m = rac{A(\mathbf{K}_m, oldsymbol{y} oldsymbol{y}^ op)}{\sum\limits_{h=1}^P A(\mathbf{K}_h, oldsymbol{y} oldsymbol{y}^ op)} \hspace{5mm} orall m$$

 Çekirdek ağırlıklarını birleştirilmiş çekirdekle ideal çekirdek arasındaki hizalanmayı en büyükleyerek seçebiliriz.

$$A(\mathbf{K}_{\eta}, \boldsymbol{y}\boldsymbol{y}^{\top}) = \frac{\sum_{m=1}^{P} \eta_{m} \langle \mathbf{K}_{m}, \boldsymbol{y}\boldsymbol{y}^{\top} \rangle_{F}}{N\sqrt{\sum_{m=1}^{P} \sum_{h=1}^{P} \eta_{m} \eta_{h} \langle \mathbf{K}_{m}, \mathbf{K}_{h} \rangle_{F}}}$$

en büyükle
$$\sum_{m=1}^P \eta_m \langle \mathbf{K}_m, m{y} m{y}^ op
angle_F$$
 karar değişkenleri $m{\eta} \in \mathbb{R}_+^P$ kısıtlar $\sum_{m=1}^P \sum_{h=1}^P \eta_m \eta_h \langle \mathbf{K}_m, \mathbf{K}_h
angle_F = c$

Çekirdek ağırlıklarını birleştirilmiş çekirdekle ideal çekirdek arasındaki mesafeyi en küçükleyerek de seçebiliriz.

en küçükle
$$\langle \mathbf{K}_{\eta} - \boldsymbol{y} \boldsymbol{y}^{\top}, \mathbf{K}_{\eta} - \boldsymbol{y} \boldsymbol{y}^{\top} \rangle_{F}$$
 karar değişkenleri $\boldsymbol{\eta} \in \mathbb{R}_{+}^{P}$ kısıtlar $\sum_{m=1}^{P} \eta_{m} = 1$ en küçükle $\sum_{m=1}^{P} \sum_{h=1}^{P} \eta_{m} \eta_{h} \langle \mathbf{K}_{m}, \mathbf{K}_{h} \rangle_{F} - 2 \sum_{m=1}^{P} \eta_{m} \langle \mathbf{K}_{m}, \boldsymbol{y} \boldsymbol{y}^{\top} \rangle_{F}$ karar değişkenleri $\boldsymbol{\eta} \in \mathbb{R}_{+}^{P}$ kısıtlar $\sum_{m=1}^{P} \eta_{m} = 1$