Teste de Instrumentação Médica Mestrado Integrado Eng. Biomédica

Nome:	<u> </u>					
Número:						
ivuilleto.						

1-Para medição de luz e radiação electromagnética são utilizados sensores ópticos.

a) Compare a performance de um fotodíodo de silício e um tubo fotomultiplicador em termos de maior sensibilidade (MS), complexidade electrónica no seu fabrico (CEF), com arrefecimento a resolução é maior (CARM), e tempo de resposta (TR).

	<u> </u>					
	MS	CEF	CARM	TR		
Fotodíodo em Silício						
Tubo Fotomultiplicador						

b) Porquê o arrefecimento dos sensores ópticos?

2-Na Fig. 1 está representado um filtro variável de estado, com resposta passa-baixo (LP), passa-alto (HP), e passa-banda (BP) e $R=R_1=1$ k Ω , $R_2=10$ k Ω , $R_3=100$ k Ω , C=1 μF .

a) Prove que $V_{HP}=-V_1-V_{LP}+(3R_1/R_1+R_2)*V_{BP}$, use o principio da sobreposição.

b) Sabendo que $Q=(1/3)*(1+(R_2/R_1))$. Calcule a largura da banda passante (BW) e a frequência central f_0 para a resposta passa-banda.

c) Determine a resposta V_{HP} do passa-alto para um sinal de entrada V_i=1+sen(999,96t).

Fig. 1

3-Considere o conversor Analógico-Digital de Aproximações Sucessivas.

a) Explique o funcionamento deste conversor fazendo um desenho esquemático e o papel de cada um dos componentes.

b) Quais são os componentes que limitam a resolução deste conversor?

c) Comparando com o ADC Sigma-Delta de la ordem qual deles apresenta maior resolução. Justifique.

Formulas:
2e)
$$\frac{V_{HP}}{V_i} = \frac{(f/f_0)^2}{1-(f/f_0)^2+(f/Q)(f/f_0)}$$