

## The DO Loop and Random Number Generation

## SP4R04d01.sas

- 1. Create a data table with 10 random deviates from four different probability distributions. Use the random seed **123** and drop the DO loop index variable. Let the distributions be a normal distribution with a mean of 20 and standard deviation of 5, a Bernoulli distribution with a probability of 0.25, a uniform distribution from 0 to 10, and an exponential distribution with a mean of 5. Print the data table.
  - The uniform distribution and the exponential distribution have no inputs.

```
data sp4r.random (drop=i);
  call streaminit(123);
  do i=1 to 10;
    rnorm = rand('Normal',20,5);
    rbinom = rand('Binomial',.25,1);
    runif = rand('Uniform')*10;
    rexp = rand('Exponential')*5;
    output;
  end;
run;

proc print data=sp4r.random;
run;
```

| Obs | rnorm   | rbinom | runif   | rexp    |
|-----|---------|--------|---------|---------|
| 1   | 20.4197 | 0      | 3.87845 | 5.55589 |
| 2   | 17.6145 | 0      | 3.37595 | 8.88334 |
| 3   | 19.8906 | 1      | 8.46208 | 5.39953 |
| 4   | 22.1470 | 1      | 0.18005 | 4.14268 |
| 5   | 24.5320 | 1      | 7.51251 | 3.26894 |
| 6   | 25.0477 | 1      | 4.59901 | 0.40410 |
| 7   | 19.8704 | 0      | 2.95333 | 2.64741 |
| 8   | 21.0267 | 1      | 9.21826 | 2.31966 |
| 9   | 20.3133 | 1      | 5.06738 | 0.52389 |
| 10  | 22.7076 | 0      | 7.32552 | 1.20990 |

2. Add an additional variable to the data table above. Generate random numbers from a geometric distribution with a probability parameter of 0.1. Use the same random seed of 123. Print the data table upon completion.

```
data sp4r.random;
   call streaminit(123);
   set sp4r.random;
   rgeom = rand('Geometric',.1);
run;

proc print data=sp4r.random;
run;
```

| Obs | rnorm   | rbinom | runif   | rexp    | rgeom |  |
|-----|---------|--------|---------|---------|-------|--|
| 1   | 20.4197 | 0      | 3.87845 | 5.55589 | 2     |  |
| 2   | 17.6145 | 0      | 3.37595 | 8.88334 | 1     |  |
| 3   | 19.8906 | 1      | 8.46208 | 5.39953 | 6     |  |
| 4   | 22.1470 | 1      | 0.18005 | 4.14268 | 1     |  |
| 5   | 24.5320 | 1      | 7.51251 | 3.26894 | 9     |  |
| 6   | 25.0477 | 1      | 4.59901 | 0.40410 | 4     |  |
| 7   | 19.8704 | 0      | 2.95333 | 2.64741 | 33    |  |
| 8   | 21.0267 | 1      | 9.21826 | 2.31966 | 4     |  |
| 9   | 20.3133 | 1      | 5.06738 | 0.52389 | 1     |  |
| 10  | 22.7076 | 0      | 7.32552 | 1.20990 | 1     |  |

3. Create a data table with 15 random deviates from two different probability distributions. Use the random seed 123. Let the distributions be Poisson with a mean of 25 and a Beta with parameters 0.5 and 0.5. Group these 15 observations into five different groups of three observations each. Finally, create a sequence from 1 to 15 to be included in the data table. Print the data table upon completion.

```
data sp4r.doloop (drop=j);
  call streaminit(123);
  do group=1 to 5;
    do j=1 to 3;
       rpois = rand('Poisson',25);
       rbeta = rand('Beta',.5,.5);
       seq+1;
       output;
    end;
end;
run;
```

| Obs | group | rpois | rbeta   | seq |  |
|-----|-------|-------|---------|-----|--|
| 1   | 1     | 25    | 0.95447 | 1   |  |
| 2   | 1     | 31    | 0.73901 | 2   |  |
| 3   | 1     | 30    | 0.07951 | 3   |  |
| 4   | 2     | 24    | 0.00319 | 4   |  |
| 5   | 2     | 22    | 0.27194 | 5   |  |
| 6   | 2     | 31    | 0.42317 | 6   |  |
| 7   | 3     | 29    | 0.94307 | 7   |  |
| 8   | 3     | 20    | 0.98216 | 8   |  |
| 9   | 3     | 26    | 0.30177 | 9   |  |
| 10  | 4     | 26    | 0.97667 | 10  |  |
| 11  | 4     | 15    | 0.08009 | 11  |  |
| 12  | 4     | 27    | 0.57148 | 12  |  |
| 13  | 5     | 29    | 0.03174 | 13  |  |
| 14  | 5     | 28    | 0.97330 | 14  |  |
| 15  | 5     | 19    | 0.00528 | 15  |  |

4. Use a DO loop to create quantiles from -3 to 3 by 0.5. This creates 13 iterations. For the remaining arguments, use a normal distribution with a mean of 0 and a standard deviation of 1. For each iteration, identify the density and the cumulative density and create new variables, **PDF** and **CDF**.

Finally, use the new CDF variable to create a quantile variable that mirrors the DO loop values. Print the data table upon completion.

```
data sp4r.quants;
  do q=-3 to 3 by .5;
    pdf = pdf('Normal',q,0,1);
    cdf = cdf('Normal',q,0,1);
    quantile = quantile('Normal',cdf,0,1);
    output;
  end;
run;

proc print data=sp4r.quants;
run;
```

## You can use function names as variable names in SAS.

| Obs | q    | pdf     | cdf     | quantile |  |
|-----|------|---------|---------|----------|--|
| 1   | -3.0 | 0.00443 | 0.00135 | -3.0     |  |
| 2   | -2.5 | 0.01753 | 0.00621 | -2.5     |  |
| 3   | -2.0 | 0.05399 | 0.02275 | -2.0     |  |
| 4   | -1.5 | 0.12952 | 0.06681 | -1.5     |  |
| 5   | -1.0 | 0.24197 | 0.15866 | -1.0     |  |
| 6   | -0.5 | 0.35207 | 0.30854 | -0.5     |  |
| 7   | 0.0  | 0.39894 | 0.50000 | 0.0      |  |
| 8   | 0.5  | 0.35207 | 0.69146 | 0.5      |  |
| 9   | 1.0  | 0.24197 | 0.84134 | 1.0      |  |
| 10  | 1.5  | 0.12952 | 0.93319 | 1.5      |  |
| 11  | 2.0  | 0.05399 | 0.97725 | 2.0      |  |
| 12  | 2.5  | 0.01753 | 0.99379 | 2.5      |  |
| 13  | 3.0  | 0.00443 | 0.99865 | 3.0      |  |