Linear Algebra

HECHEN HU

February 14, 2018

Contents

1	Vec	etor Spaces	1			
_	1.1	Definitions	1			
	1.2	Bases	2			
	1.3	Dimension of a Vector Space	3			
	1.4	Sums and Direct Sums	4			
2	Matrices 7					
	2.1	Matrices and Arithmetic Operations on Them	7			
	2.2	The Inverse of a Matrix	9			
3	Lin	ear Mappings	13			
4	Sol	ving Linear Equations	15			
	4.1	Systems of Linear Equations	15			
	4.2	Row Reduction and Echelon Forms	16			
	4.3	Vector Equations	16			
	4.4	The Matrix Equation $\mathbf{A}\mathbf{x} = \mathbf{b}$	17			
	4.5	Solution Sets of Linear Systems	18			
	4.6	Linear Independence	18			
	4.7	Linear Transformations	19			
5	Matrices					
	5.1	Subspaces of \mathbb{R}^n	21			
6	Determinants					
	6.1	Determinants and some other Concepts	23			
	6.2	Properties of Determinants	24			
7	Vector Spaces 2					
	7.1	Coordinate Systems	28			
	7.2	Rank	29			
	7.3	Change of Basis	29			

iv	CONTENTS

8	Eigenvalues and Eigenvectors				
	8.1	Definition	31		
	8.2	Diagonalization	32		
	8.3	Complex Eigenvalues	32		
9	Orthogonality				
	9.1	Orthogonal Sets	33		
	9.2	Orthogonal Projections	34		
10	Svn	ametric Matrices and Quadratic Forms	37		

Vector Spaces

1.1 Definitions

Definition. A vector space over a field F is a set V with two closed operations, vector addition or simply addition and scalar multiplication, that satisfy the following axioms:

- 1. Associativity of addition;
- 2. Commutativity of addition;
- 3. Identity element of addition;
- 4. Inverse elements of addition;
- 5. Compatibility of scalar multiplication with field multiplication;

$$a(b\mathbf{v}) = (ab)\mathbf{v}$$

- 6. Identity element of scalar multiplication;
- 7. Distributivity of scalar multiplication with respect to vector addition;
- 8. Distributivity of scalar multiplication with respect to field addition.

Definition. A *subspace* of a vector space V is a subset H of V that has three properties:

- The zero vector of V is in H.
- \bullet *H* is closed under vector addition.
- \bullet *H* is closed under multiplication by scalars.

If a subspace only contains the zero vector $\mathbf{0}$, it is called a *zero subspace* and written as $\{\mathbf{0}\}$.

Definition. Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in an arbitrary vector space V and given scalars c_1, c_2, \dots, c_n , the vector \mathbf{y} defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ using weights c_1, c_2, \cdots, c_n .

It is easy to verify that the set W of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ is a subspace of V.

The subspace W as above is called the subspace generated by $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. If W = V, then we say that $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ generate V.

Definition. The *dot product* or *scalar product* of two vectors is defined as the sum of the product of their corresponding components. It has the following properties:

- 1. The commutativity of dot product.
- 2. The distributivity of dot product over vector addition and vice versa.
- 3. The associativity of scalar multiplication and dot product.

Two vectors are *perpendicular* or *orthogonal* if their dot product is zero.

1.2 Bases

Definition. An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in V$ is said to be *linearly independent* if the vector equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution. Otherwise it's said to be linearly dependent.

Definition. A collection of linearly independent vectors that generated the vector space V is called a *basis* of V.

Definition. Let V be a vector space and \mathcal{B} be a basis for it. The *coordinate* with respect to basis \mathcal{B} of an element is a n-tuple of numbers such that the desired element can be expressed with the linear combination of the n-tuple and basis elements. By the definition of basis, the coordinate of any element is unique.

Definition. The maximal subset of linearly independent elements is a subset of any collection of vectors of a vector space that adding another element from the original collection that is not in this maximal subset will result in the loss of linearly independence.

Theorem 1.2.1. The maximal subset of linearly independent elements of any collection of vectors that generate the vector space is a basis for it.

1.3 Dimension of a Vector Space

Theorem 1.3.1. Let V be a vector space over the field K. Let \mathcal{B} be a basis that has m elements. Then any collection of more than m vectors in V are linearly dependent.

Proof. Let the basis \mathcal{B} be $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ and the collection of n vectors (n > m) in V be $\mathbf{w}_1, \dots, \mathbf{w}_n$. Assume this collection of vectors are linearly independent. Since \mathcal{B} is a basis, the equation

$$\mathbf{w}_1 = a_1 \mathbf{v}_1 + \dots + a_m \mathbf{v}_m$$

holds for some elements in the field K that are not all zero. Without loss of generality, we can assume that $a_1 \neq 0$ (otherwise we could just rearrange the equation to make it so). Solve for \mathbf{v}_1

$$\mathbf{v}_1 = a_1^{-1} \mathbf{w}_1 - a_1^{-1} a_2 \mathbf{v}_2 - \dots + a_1^{-1} a_m \mathbf{v}_m$$

Then the subspace generated by $\mathbf{w}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ is all of V since it contains \mathbf{v}_1 . Now assume by induction that there is an integer $r, 1 \leq r < m$, such that after a suitable renumbering of $\mathbf{v}_1, \dots, \mathbf{v}_m$, the elements $\mathbf{w}_1, \dots, \mathbf{w}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_m$ generate V. Then the equation

$$\mathbf{w}_{r+1} = b_1 \mathbf{w}_1 + \dots + b_r \mathbf{w}_r + c_{r+1} \mathbf{v}_{r+1} + \dots + c_m \mathbf{v}_m$$

holds for some element in K. c_{r+1}, \dots, c_m can't be all zero, since then we have expressed \mathbf{w}_{r+1} as a linear combination of $\mathbf{w}_1, \dots, \mathbf{w}_r$, contradict out assumption. Without loss of generality, assume that c_{r+1} is not zero. Repeat the same process when we solve for \mathbf{v}_1 to solve for \mathbf{v}_{r+1} , we then find that \mathbf{v}_{r+1} is in the subspace generated by $\mathbf{w}_1, \dots, \mathbf{w}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_m$. By the induction assumption, these vectors also generate V. Therefore vectors $\mathbf{w}_1, \dots, \mathbf{w}_m$ generate V, and for n > m we can expressed \mathbf{w}_n as a linear combination of $\mathbf{w}_1, \dots, \mathbf{w}_m$. The theorem is then proved.

Corollary. Any two basis of the same vector space have the same number of elements.

Definition. The number of vectors in a basis is called the *dimension* of this vector space.

Definition. The maximal set of linearly independent elements of a vector space V is a collection of linearly independent vectors such that adding extra "outside" vectors would result in the loss of its linearly independence.

Theorem 1.3.2. The maximal set of linearly independent elements of a vector space V is a basis for it.

Proof. Let this maximal set be $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and \mathbf{w} be a element of the vector space V. By hypotheses the union of the maximal set and \mathbf{w} is linearly dependent, then

$$x_0\mathbf{w} + x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n = 0$$

has a nontrivial solution. By the linearly independence of $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, x_0 is not zero. Then we can solve for \mathbf{w}

$$\mathbf{w} = -\frac{x_1}{x_0}\mathbf{v}_1 - \dots - \frac{x_n}{x_0}\mathbf{v}_n$$

Corollary. For a vector space of dimension n, any collection of n linearly independent vectors is a basis for it.

Corollary. Let V be a vector space and let W be a subspace for it. If $\dim W = \dim V$, then V = W.

Corollary. Any linearly independent collections of a vector space can be made to a basis for it by adding some (or 0) vectors that are/is linearly independent to its elements.

Theorem 1.3.3. The dimension of the subspace W that does not consist of the zero vector alone of a vector space V is no greater than $\dim V$.

1.4 Sums and Direct Sums

Definition. If U and W are subspaces of a vector space V, then U+W, the set of all elements $\mathbf{u} + \mathbf{w}$ with $\mathbf{u} \in U$ and $\mathbf{w} \in W$, is a subspace of V, said to be generated by U and W, and called the sum of U and W. V is a direct sum of U and W if for any $\mathbf{v} \in V$ there exist **unique** elements $\mathbf{u} \in U$ an $\mathbf{w} \in W$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$. When V is the direct sum of subspaces U, W, we write

$$V = U \oplus W$$

Theorem 1.4.1. Let V be a vector space over the field K, and let U, W be subspaces. If U + W = V and $U \cap W = \{0\}$, then $V = U \oplus W$.

Theorem 1.4.2. Let V be a finite dimensional vector space over the field K. Let W be a subspace. Then there exists a subspace U such that $V = W \oplus U$.

Theorem 1.4.3. If V is a finite dimensional vector space and is the direct sum of subspaces U and W, then

$$\dim V = \dim W + \dim U$$

Definition. The *direct product* of two vector spaces U and W over the field K is the cartesian product of elements in U and W, i.e $(u_1, w_1) \in U \times W$. The vector addition and scalar multiplication are defined to be componentwise.

Immediately, the direct product of two vector spaces over the same field is a vector space.

Theorem 1.4.4.

$$\dim(U \times W) = \dim U + \dim W$$

Proof. For two basis in each space $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$, the collection of vectors in $U \times W$ consists of $\{(\mathbf{u}_1, \mathbf{0}), \dots, (\mathbf{u}_n, \mathbf{0}), (\mathbf{0}, \mathbf{w}_1), \dots, (\mathbf{0}, \mathbf{w}_m)\}$ is a basis for $U \times W$ of n + m elements.

The notion of direct sum and direct product can be extended to several factors with \sum and \prod . In this circumstance vector addition and scalar multiplication are also defined to be componentwise.

Matrices

2.1 Matrices and Arithmetic Operations on Them

Definition. A *diagonal matrix* is a square matrix whose nondiagonal entries are zero.

Definition. Two matrices are equal if they have the same size and each entries are equal.

Definition. The *sum* of two matrices is the sum of each corresponding entries in these two matrices. Thus the sum is defined only when they have the same size.

Definition. The *scalar multiple* of a matrix has entries of the product of the scalar and each corresponding original entries.

Theorem 2.1.1. The set of matrices of the same size with respect to matrix addition and scalar multiplication over the field of real numbers is a vector space.

Definition. A square matrix is called *lower triangular* if all the entries above the main diagonal are zero. Similarly, a square matrix is called *upper triangular* if all the entries below the main diagonal are zero. A triangular matrix is one that is either lower triangular or upper triangular. A matrix that is both upper and lower triangular is called a *diagonal matrix*.

Definition. If **A** is an $m \times n$ matrix, and if **B** is an $n \times p$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_p$, then the *product* **AB** is the $m \times p$ matrix whose columns are $\mathbf{A}\mathbf{b}_1, \dots, \mathbf{A}\mathbf{b}_p$. Multiplication of matrices corresponds to composition of linear transformations.

Theorem 2.1.2. The multiplication has the following properties:

• Associativity of multiplication;

8 2. MATRICES

- Left distribution;
- Right distribution;
- Associativity over scalar multiplication;
- Identity for matrix multiplication; i.e. If **A** is a matrix of size $m \times n$, then

$$\mathbf{I}_m \mathbf{A} = \mathbf{A} = \mathbf{A} \mathbf{I}_n$$

where \mathbf{I}_n is the $n \times n$ identity matrix.

Definition. In general, matrix multiplication is not commutative and the cancellation law do not hold. When two matrices' multiplication is commutative, they are said to be *commute* with one another. Also, if a product AB is the zero matrix, in general it does not mean that either A = 0 or B = 0.

Definition. If **A** is an $m \times n$ matrix and k is a positive integer, then \mathbf{A}^k denoted the product of k copies of **A**, i.e. the kth power of **A**. The 0th power of a matrix is the identity matrix.

Definition. If **A** is an $m \times n$ matrix, the *transpose* of **A** is the $n \times m$ matrix, denoted \mathbf{A}^T , whose columns are formed from the corresponding rows of **A**.

Definition. If **A** is an $m \times n$ matrix, the *transpose* of **A** is the $n \times m$ matrix, denoted \mathbf{A}^T , whose columns are formed from the corresponding rows of **A**.

Definition. A matrix is said to be *symmetric* if it is equal to its transpose.

Definition. The *unit* $n \times n$ matrix, denoted by \mathbf{I}_n , is the square matrix having all its components equal to 0 except the diagonal components, equal to 1.

Theorem 2.1.3. The transpose operation has the following properties:

- $\bullet \ (\mathbf{A}^T)^T = \mathbf{A};$
- $\bullet \ (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T;$
- $\bullet \ \ Associativity \ with \ scalar \ multiplication;$
- $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$, that is, the transpose of a product of arbitrary number of matrices equals the product of their transpose in the reverse order.

2.2 The Inverse of a Matrix

Definition. If **A** is an $n \times n$ matrix, then if

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n$$

we say that **A** is *invertible* and \mathbf{A}^{-1} an *inverse* of **A**. The inverse of a matrix is unique. If a matrix is not invertible, it is called a *singular matrix*.

Theorem 2.2.1. A matrix **A** is invertible only if $det(\mathbf{A}) \neq 0$, and in this case

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \operatorname{Adj}(\mathbf{A})$$

Theorem 2.2.2. If **A** is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^n$, the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Theorem 2.2.3. • The inverse of the inverse of a invertible matrix is the matrix itself.

- The inverse of the product of arbitrary number of invertible square matrices is the product of the inverse of themselves multiplied in the reverse order.
- The transpose of a invertible matrix is also invertible. Moreover, the inverse of a matrix's transpose is the transpose of the matrix's inverse.

Definition. An *elementary matrix* is a matrix obtained by performing a single elementary row operation on a identity matrix.

Theorem 2.2.4. If an elementary row operations is performed on an $m \times n$ matrix \mathbf{A} , the resulting matrix can be written as $\mathbf{E}\mathbf{A}$, where the $m \times m$ matrix \mathbf{E} is created by performing the same row operation on \mathbf{I}_m .

Theorem 2.2.5. Each elementary matrix \mathbf{E} is invertible. The inverse of \mathbf{E} is the elementary matrix of the same type that transforms \mathbf{E} back into \mathbf{I} .

Theorem 2.2.6. An $n \times n$ matrix **A** is invertible iff **A** is a row equivalent to \mathbf{I}_n , and in this case, any sequence of elementary row operations that reduces **A** to \mathbf{I}_n also transforms \mathbf{I}_n into \mathbf{A}^{-1} .

Theorem 2.2.7 (The Invertible Matrix Theorem). Let **A** be a square $n \times n$ matrix. Then the following statements are equivalent.

- A is an invertible matrix.
- A is row equivalent to the $n \times n$ identity matrix.
- A has n pivot positions.

10 2. MATRICES

- The equation Ax = 0 has only the trivial solution.
- The columns of A form a linearly independent set.
- The linear transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is injective.
- The equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- The columns of **A** span \mathbb{R}^n .
- The linear transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- There is an $n \times n$ matrix \mathbf{C} such that $\mathbf{C}\mathbf{A} = \mathbf{I}$.
- There is an $n \times n$ matrix **D** such that AD = I.
- \mathbf{A}^T is an invertible matrix.
- The columns of **A** form a basis of \mathbb{R}^n .
- $\operatorname{Col} \mathbf{A} = \mathbb{R}^n$
- $\dim \operatorname{Col} \mathbf{A} = n$
- rank $\mathbf{A} = n$
- Nul $\mathbf{A} = \{\mathbf{0}\}$
- $\dim \operatorname{Nul} \mathbf{A} = 0$

Proposition. Let **A** and **B** be square matrices. If AB = I, then **A** and **B** are both invertible, with $B = A^{-1}$ and $A = B^{-1}$

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is *invertible* if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$(\forall \mathbf{x} \in \mathbb{R}^n)$$
 $S(T(\mathbf{x})) = \mathbf{x}$
 $(\forall \mathbf{x} \in \mathbb{R}^n)$ $T(S(\mathbf{x})) = \mathbf{x}$

and S is called the *inverse* of T and denoted T^{-1} .

Theorem 2.2.8. A linear transformation is invertible iff its standard matrix is invertible. In this case its inverse is unique.

Theorem 2.2.9. If **A** is $m \times n$ and **B** is $n \times p$, then

$$\mathbf{AB} = \begin{bmatrix} \operatorname{Col}_{1}(\mathbf{A}) & \operatorname{Col}_{2}(\mathbf{A}) & \cdots & \operatorname{Col}_{n}(\mathbf{A}) \end{bmatrix} \begin{bmatrix} \operatorname{Row}_{1}(\mathbf{B}) \\ \operatorname{Row}_{2}(\mathbf{B}) \\ \vdots \\ \operatorname{Row}_{n}(\mathbf{B}) \end{bmatrix}$$
$$= \operatorname{Col}_{1}(\mathbf{A}) \operatorname{Row}_{1}(\mathbf{B}) + \cdots \operatorname{Col}_{n}(\mathbf{A}) \operatorname{Row}_{n}(\mathbf{B})$$

Definition. A *block matrix* is a partitioned matrix with zero blocks off the main diagonal. Such matrix is invertible iff each block on the diagonal is invertible.

Definition. A factorization of a matrix is an equation that expresses it as a product of two or more matrices.

Definition. An square matrix is said to be *strictly diagonally dominant* if the absolute of each diagonal entry exceeds the sum of the absolute values of the other entries in the same row.

12 2. MATRICES

Linear Mappings

Definition. Let V, W be vector spaces over K, and let $F : V \to W$ be a linear map. The *kennel* of F, denoted Ker F, is the set of elements $\mathbf{v} \in V$ such that $F(\mathbf{v} = \mathbf{0})$.

The kernel of a linear map on vector space is a subspace of the vector space.

Proposition. The following two conditions are equivalent

- 1. The kernel of F is $\{0\}$.
- 2. F is injective.

Proof.

Theorem 3.0.1. Let $F: V \to W$ be a linear map whose kernel is $\{0\}$. If $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent elements of V, then $F(\mathbf{v}_1), \dots, F(\mathbf{v}_n)$ are linearly independent elements of W.

Proof. content...

Theorem 3.0.2. Let V be a vector space. Let $L: V \to W$ be a linear map of V into another space W. Then

 $\dim V = \dim \operatorname{Ker} L + \dim \operatorname{Im} L$

Proof. content...

Theorem 3.0.3. Let $L: V \to W$ be a linear map. Assume that

$$\dim V = \dim W$$

If $\operatorname{Ker} L = \{0\}$, or if $\operatorname{Im} L = W$, then L is bijective.

Solving Linear Equations

4.1 Systems of Linear Equations

Definition. A linear equation in the variables x_1, \dots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where b and coefficients a_i are real or complex numbers. A linear system is a collection of one or more linear equations involving the same variables. A solution of the system is a list of numbers that makes each equation a true statement when their values are substituted for x_1, \dots, x_n respectively. The set of all possible solutions is called the solution set of the linear system. Two linear systems are called equivalent if they have the same solution set.

Definition. A linear system is *consistent* if it has either one solution or infinitely many solutions. If it has no solution, it is called *inconsistent*.

Definition. The *coefficient matrix* is the matrix where the coefficients of each variable in a system aligned in columns. If additionally the coefficient of the right-hand side of equations are added to the coefficient matrix, a new matrix called *augmented matrix* is generated.

Definition. Elementary row operations on a matrix include:

- (*Replacement*) Replace one row by the sum of itself and a multiple of another row.
- (Interchange) Interchange two rows.
- (Scaling) Multiply all entries in a row by a nonzero constant.

Two matrices are *row equivalent* if there is a sequence of elementary operations that transforms one matrix into the other.

Theorem 4.1.1. If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

4.2 Row Reduction and Echelon Forms

Definition. A rectangular matrix is in *echelon form* if it has the following properties:

- All nonzero rows are above any rows of all zeros;
- Each leading entry of a row is in a column to the right of the leading entry of the row above it;
- All entries in a column below a leading entry are zero.

If a matrix in echelon form satisfies the following additional conditions, then it is in *reduced echelon form*:

- The leading entry in each nonzero row is 1;
- Each leading 1 is the only nonzero entry in its column.

Theorem 4.2.1. Each matrix is row equivalent to an unique reduced echelon matrix.

If a matrix A is row equivalent to an (reduced)echelon matrix U, U is called an *(reduced) echelon form of* A. The abbreviation RREF and REF are used for reduced (row) echelon form and (row) echelon form respectively.

Definition. A pivot position in a matrix A is a location in A that corresponds to a leading entry in an echelon form of A. A pivot column is a column of A that contains a pivot position.

Theorem 4.2.2. A linear system is consistent iff the rightmost column of the augmented matrix **is not** a pivot column, that is, iff an echelon form of the augmented matrix has **no** row of the form

$$\begin{bmatrix} 0 & \cdots & 0 & b \end{bmatrix}$$
 with b nonzero

If a linear system is consistent, then the solution set contains either

- a unique solution, when there are no free variables.
- infinitely many solutions, when there is at least one free variable.

4.3 Vector Equations

Definition. A matrix with only one column is called a *column vector*, or simply a *vector*.

Definition. If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of them is denoted by $\operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ and is called the *subset of* \mathbb{R}^n *spanned (or generated) by* $\mathbf{v}_1, \dots, \mathbf{v}_p$. That is, $\operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p$$

with c_1, c_2, \cdots, c_p scalars.

4.4 The Matrix Equation Ax = b

Definition. If **A** is an $m \times n$ matrix, with columns a_1, \dots, a_n , and if **x** is in \mathbb{R}^n , then the product of **A** and **x**, denoted by **Ax**, is the linear combination of the columns of **A** using the corresponding entries in **x** as weights, that is,

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix} = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

 $\mathbf{A}\mathbf{x}$ is defined only if the number of columns of \mathbf{A} equals the number of entries in \mathbf{x} .

Definition. Equations having the form Ax = b are called *matrix equations*.

Theorem 4.4.1. If **A** is an $m \times n$ matrix, with columns a_1, \dots, a_n , and **b** is in \mathbb{R}^m , the matrix equation

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_1 + \dots + x_na_n = \mathbf{b}$$

which has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & \mathbf{b} \end{bmatrix}$$

Definition. A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^m spans (or generates) \mathbb{R}^m if $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\} = \mathbb{R}^m$.

Theorem 4.4.2. Let A be an $m \times n$ coefficient matrix. Then the following statements are logically equivalent, that is, for a particular A, either they are all true statements or they are all false.

- For each **b** in \mathbb{R}^m , the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution.
- The columns of **A** spans \mathbb{R}^m .

• A has a pivot position in every row.

Theorem 4.4.3. If **A** is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then

- $\bullet \ \mathbf{A}(\mathbf{u} + \mathbf{v}) = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v}.$
- $\mathbf{A}(c\mathbf{u}) = c(\mathbf{A}\mathbf{u}).$

4.5 Solution Sets of Linear Systems

Definition. A system of Linear equations is said to be *homogeneous* if it can be written in the form $\mathbf{A}\mathbf{x} = \mathbf{0}$. Such a system always has at least one solution, namely, $\mathbf{x} = \mathbf{0}$, and this solution is usually called the *trivial solution*. A homogeneous equation has a nontrivial solution iff the equation has at least one free variable.

Definition. Vector addition can be considered as a *translation*. e.g. the vector \mathbf{v} is *translated by* \mathbf{p} to $\mathbf{v} + \mathbf{p}$.

Definition. A parametric vector equation can be written as

$$\mathbf{x} = s\mathbf{u} + t\mathbf{v} \qquad (s, t \in \mathbb{R})$$

which describes explicitly the spanned plane by \mathbf{u} and \mathbf{v} . Whenever a solution set is described explicitly with vectors, we say that the solution is in parametric vector form.

Theorem 4.5.1. Suppose the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a nonzero solution. Then the solution set of it is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $\mathbf{A}\mathbf{x} = \mathbf{0}$.

4.6 Linear Independence

Definition. An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be linearly independent if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be *linearly dependent* if there exist weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

and this equation is called a linear dependence relation among $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Theorem 4.6.1. The columns of a matrix A are linearly independent iff the equation Ax = 0 has **only** the trivial solution.

Theorem 4.6.2. A set of two vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent iff one of the vectors is a multiple of the other.

Theorem 4.6.3. An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combination of the others.

Theorem 4.6.4. Any set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p > n (Same as the criterion for the existence of solutions in a system of equations).

Proof. Since p > n, there are more variables than equations, and therefore nontrivial solutions exist.

Theorem 4.6.5. If a set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

4.7 Linear Transformations

Definition. A transformation (or function or mapping) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector $\mathbf{x} \in \mathbb{R}^n$ a vector $T(\mathbf{x}) \in \mathbb{R}^m$. \mathbb{R}^n is called the domain of T, and \mathbb{R}^m is called the codomain of T. For $\mathbf{x} \in \mathbb{R}^n$, the vector $T(\mathbf{x}) \in \mathbb{R}^m$ is called the image of \mathbf{x} under T. The set of all images $T(\mathbf{x})$ is called the range of T.

Example 4.1. Given a scalar r, define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$. T is called a contraction when $0 \le r \le 1$ and a dilation when r > 1.

Theorem 4.7.1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix \mathbf{A} such that

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^n$$

In fact, **A** is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n .

$$\mathbf{A} = \begin{bmatrix} T(\mathbf{e}_1) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

The matrix A is called the standard matrix for the linear transformation T.

Theorem 4.7.2. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is injective iff the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem 4.7.3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let **A** be the standard matrix for T. Then

- T is surjective iff the columns of **A** span \mathbb{R}^m ;
- ullet T is injective iff the columns of ${\bf A}$ are linearly independent.

Definition. If there is a matrix ${\bf A}$ such that

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k \quad \text{ for } k = 0, 1, 2, \cdots$$

then the equation above is called a $linear\ difference\ equation$ (or $recurrence\ relation$).

Matrices

5.1 Subspaces of \mathbb{R}^n

Definition. A subspace of \mathbb{R}^n is any set $H \in \mathbb{R}^n$ that has three properties:

- The zero vector is in H;
- For each vector **u** and **v** in H, their sum is in H (addition is closed on H);
- For each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H (scalar multiplication is closed on H).

Definition. The *column space* of a matrix \mathbf{A} is the set $\operatorname{Col} \mathbf{A}$ of all linear combinations of the columns of \mathbf{A} .

Definition. The *null space* of a matrix **A** is the set Nul **A** of all solutions to the homogeneous equation $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Theorem 5.1.1. The null space of a $m \times n$ matrix is a subspace of \mathbb{R}^n .

Definition. A basis for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.

Example 5.1. The standard basis for \mathbb{R}^n are vectors $\mathbf{e}_1, \dots, \mathbf{e}_n$, where

$$\mathbf{e}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, \cdots, \mathbf{e}_n = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}$$

Theorem 5.1.2. The pivot columns of a matrix \mathbf{A} form a basis for the column space of \mathbf{A} .

22 5. MATRICES

Definition. Suppose the set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is the basis for a subspace H. For each $\mathbf{x} \in H$, the *coordinates of* \mathbf{x} *relative to the basis* \mathcal{B} are the weights c_1, \dots, c_p such that $\mathbf{x} = c_1\mathbf{b}_1 + \dots + c_p\mathbf{b}_p$, and the vector in \mathbb{R}^p

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \cdots \\ c_p \end{bmatrix}$$

is called the *coordinate vector of* \mathbf{x} *relative to* \mathcal{B} .

Definition. The *dimension* of a nonzero subspace H, denoted by dim H, is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

Definition. The rank of a matrix \mathbf{A} , denoted by rank \mathbf{A} , is the dimension of the column space of \mathbf{A} .

Theorem 5.1.3 (The Rank Theorem). If a matrix **A** has n columns, then rank $\mathbf{A} + \dim \text{Nul } \mathbf{A} = n$.

Proof. The nonpivot columns correspond to the free variables in $\mathbf{A}\mathbf{x} = \mathbf{0}$, and since the number of pivot columns plus the number of nonpivot columns are the number of columns in the matrix, the proof completes.

Theorem 5.1.4 (The Basis Theorem). Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is a basis for H.

Determinants

6.1 Determinants and some other Concepts

Definition. The determinant of the matrix **A**

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

denoted det \mathbf{A} and equals ad-bc. Determinant is only defined for a square matrix, but the procedure above can be repeated on higher dimension matrices, for example

$$\det \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} = a \det \begin{bmatrix} f & g & h \\ j & k & l \\ n & o & p \end{bmatrix} - b \det \begin{bmatrix} e & g & h \\ i & k & l \\ m & o & p \end{bmatrix} + c \det \begin{bmatrix} e & f & h \\ i & j & l \\ m & n & p \end{bmatrix} - d \det \begin{bmatrix} e & f & g \\ i & j & k \\ m & n & o \end{bmatrix}$$

By the Leibniz formula for the determinant of an $n \times n$ matrix **A** is

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} (\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma_i})$$

Here the sum is computed over all permutations σ of the set $\{1, 2, ..., n\}$. A permutation is a function that reorders this set of integers. The value in the *i*th position after the reordering σ is denoted by σ_i . For example, for n=3, the original sequence 1, 2, 3 might be reordered to $\sigma=[2,3,1]$, with $\sigma_1=2$, $\sigma_2=3$, and $\sigma_3=1$. The set of all such permutations (also known as the symmetric group on n elements) is denoted by S_n .

For each permutation σ , $\operatorname{sgn}(\sigma)$ denotes the signature of σ , a value that is +1 whenever the reordering given by σ can be achieved by successively interchanging two entries an even number of times, and -1 whenever it can be achieved by an odd number of such interchanges.

Definition. If **A** is a square matrix, then the *minor* of the entry in the *i*-th row and *j*-th column (also called the (i, j) *minor*, or a *first minor*) is the determinant of the submatrix formed by deleting the *i*-th row and *j*-th column. This number is often denoted $M_{i,j}$. The (i, j) cofactor is obtained by multiplying the minor by $(-1)^{i+j}$ and is denoted $C_{i,j}$.

In general, let A be an $m \times n$ matrix and k an integer with $0 < k \le m$, and $k \le n$. A $k \times k$ minor of **A**, also called minor determinant of order k of **A** or, if m = n, (n - k)th minor determinant of **A**, is the determinant of a $k \times k$ matrix obtained from **A** by deleting m - k rows and n - k columns.

Definition. The matrix formed by all of the cofactors of a square matrix A is called the *cofactor matrix*.

Definition. The *adjugate* is the transpose of the cofactor matrix of it, that is, if **A** is a matrix and **C** is its cofactor matrix, then

$$Adj(\mathbf{A}) = \mathbf{C}^T$$

Theorem 6.1.1. For a invertible matrix $n \times n$ **A**

$$\mathbf{A} \operatorname{Adj}(\mathbf{A}) = \det(\mathbf{A})\mathbf{I}$$

or equivalently

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \operatorname{Adj} \mathbf{A}$$

Theorem 6.1.2. The determinant of an square matrix can be computed by a cofactor expansion across any row or down any column. The expansion across the ith row is

$$\det \mathbf{A} = a_{i1}C_{i1} + \dots + a_{in}C_{in}$$

Theorem 6.1.3. If \mathbf{A} is a triangular matrix, then $\det \mathbf{A}$ is the product of the entries on the main diagonal of \mathbf{A} .

6.2 Properties of Determinants

Definition. An elementary matrix is called an *row replacement* if it is obtained from the identity matrix by adding a multiple of one row to another; it's called an *interchange* if it is obtained by interchanging two rows of identity; and it's called a *scale by* r if it is obtained by multiplying a row of identity by a nonzero scalar r.

Theorem 6.2.1. Let **A** be a square matrix.

• If a multiple of one row of A is added to another row to produce a matrix B, then $\det A = \det B$.

- If two rows of **A** are interchanged to produce **B**, then $\det \mathbf{B} = -\det \mathbf{A}$.
- If one row of **A** is multiplied by k to produce **B**, then $\det \mathbf{B} = k \cdot \det \mathbf{A}$.

or, equivalently, if **A** is an $n \times n$ matrix and **E** is an $n \times n$ elementary matrix, then

$$\det \mathbf{E} \mathbf{A} = (\det \mathbf{E})(\det \mathbf{A})$$

where det \mathbf{E} assumes 1, -1, r respectively for \mathbf{E} is a row replacement, an interchange, and a scale by r.

Theorem 6.2.2. If **A** is an $n \times n$ matrix, then $\det \mathbf{A}^T = \det \mathbf{A}$.

Theorem 6.2.3. If **A** and **B** are $n \times n$ matrices, then $\det \mathbf{AB} = (\det \mathbf{A})(\det \mathbf{B})$.

Example 6.1. If all columns except one are held fixed in a square matrix, then its determinant is a linear function of that one(vector) variable.

Let $\mathbf{A}_i(\mathbf{b})$ denote the matrix obtained from \mathbf{A} by replacing column i by the vector \mathbf{b} .

Theorem 6.2.4. If **A** is an invertible $n \times n$ matrix. For any $\mathbf{b} \in \mathbb{R}^n$, then unique solution \mathbf{x} of $\mathbf{A}\mathbf{x} = \mathbf{b}$ has entries given by

$$x_i = \frac{\det \mathbf{A}_i(\mathbf{b})}{\det \mathbf{A}}, \qquad i = 1, 2, \cdots, n$$

Theorem 6.2.5. If **A** is a 2×2 matrix, the area of the parallelogram determined by the columns of **A** is $|\det \mathbf{A}|$. If **A** is a 3×3 matrix, the volume of the parallelepiped determined by the columns of **A** is $|\det \mathbf{A}|$.

Theorem 6.2.6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix **A**. If S is a parallelogram in \mathbb{R}^2 , then

$$\{area\ of\ T(S)\} = |\det \mathbf{A}| \cdot \{area\ of\ S\}$$

and similar, if in \mathbb{R}^3 S is a parallelepiped, then

$$\{volume\ of\ T(S)\} = |\det \mathbf{A}| \cdot \{volumn\ of\ S\}$$

These conclusions hold whenever S has finite area or finite volume.

Vector Spaces

Theorem 7.0.1. If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, then $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V and is called the subspace spanned (or generated) by $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$. Given any subspace H of V, a spanning (or generating) set for H is a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in H such that $H = \mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

Definition. The *null space* of an $m \times n$ matrix **A**, written as Nul **A**, is the set of all solutions to the homogeneous equation $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Theorem 7.0.2. The null space of an $m \times n$ matrix **A** is a subspace of \mathbb{R}^n .

Definition. The *column space* of an $m \times n$ matrix, written as $\operatorname{Col} \mathbf{A}$, is the set of all linear combinations of the columns of \mathbf{A} .

Theorem 7.0.3. The column space of an $m \times n$ matrix is a subspace of \mathbb{R}^n .

Theorem 7.0.4. The column space of an $m \times n$ matrix \mathbf{A} is all of \mathbb{R}^m iff the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^m$.

Definition. For a linear transformation T from a vector space V into a vector space W, the $kernel(\text{or }null\ space)$ of T is the set of all $\mathbf{u} \in V$ such that $T(\mathbf{u}) = \mathbf{0}$. The range of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some $\mathbf{x} \in V$. If T can be written as a matrix transformation, then the kernel and the range of T are just the null space and the column space of that matrix. Kernel is a subspace of V, and range is a subspace of W.

Theorem 7.0.5. An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 = \mathbf{0}$, is linearly dependent iff some \mathbf{v}_j with j > 1 is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Definition. Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a *basis* for H if

- 1. \mathcal{B} is a linearly independent set;
- 2. the subspace spanned by \mathcal{B} coincides with H.

Theorem 7.0.6. Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set in V and let $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- 1. If one of the vectors in S is a linear combination of the remaining vectors in S, then the set formed from S by removing this vector still spans H.
- 2. If $H \neq \{0\}$, some subset of S is a basis for H.

Theorem 7.0.7. The pivot columns of a matrix **A** form a basis for Col **A**.

7.1 Coordinate Systems

Theorem 7.1.1. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ be a basis for a vector space V. Then for each $\mathbf{x} \in V$, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

Definition. Suppose the set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for V and $\mathbf{x} \in V$. The *coordinate of* \mathbf{x} *relative to the basis* \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1\mathbf{b}_1 + \dots + c_n\mathbf{b}_n$.

The vector

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of \mathbf{x} (relative to \mathcal{B}), or the \mathcal{B} -coordinate vector of \mathbf{x} . The mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the coordinate mapping (determined by \mathcal{B}).

Definition. The matrix

$$\mathbf{P}_{\mathcal{B}} = [\mathbf{b}_1, \cdots, \mathbf{b}_p]$$

is called the *change-of-coordinates matrix* from \mathcal{B} to the standard basis in \mathbb{R}^n , since for a vector $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$ we obtain the relationship

$$\mathbf{x} = \mathbf{P}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Theorem 7.1.2. Let \mathcal{B} be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is an injective linear transformation from V into \mathbb{R}^n .

In general, an injective linear transformation from a vector space V onto another vector space W is called an isomorphism from V onto W.

Theorem 7.1.3. If a vector space V has a basis $\mathcal{B} = \mathbf{b}_1, \dots, \mathbf{b}_n$, then any set in V containing more than n vectors must be linearly dependent.

7.2. RANK 29

Theorem 7.1.4. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Definition. If V is spanned by a finite set, then V is said to be *finite-dimensional*, and the *dimension* of V, written as $\dim V$, is the number of vectors in a basis for V. If V is not spanned by a finite set, then V is said to be *infinite-dimensional*.

Theorem 7.1.5. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

$$\dim H \leqslant \dim V$$

Theorem 7.1.6 (The Basis Theorem). Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is a basis for V.

The dimension of Nul \mathbf{A} is the number of free variables in $\mathbf{A}\mathbf{x} = \mathbf{0}$, and the dimension of Col \mathbf{A} is the number of pivot columns in \mathbf{A} .

7.2 Rank

Definition. The set of all linear combinations of the row vectors in \mathbf{A} is called the *row space* of \mathbf{A} and denoted Row \mathbf{A} .

Theorem 7.2.1. If two matrices **A** and **B** are row equivalent, then their row spaces are the same. If **B** is in echelon form, the nonzero rows of **B** form a basis for the row space of **A** as well as **B**.

Definition. The rank of **A** is the dimension of the column space of **A**.

Theorem 7.2.2 (The Rank Theorem). The dimensions of the column space and the row space of an $m \times n$ matrix \mathbf{A} are equal. This common dimension, the rank of \mathbf{A} , also equals the number of pivot positions in \mathbf{A} and satisfies the equation

$$\operatorname{rank} \mathbf{A} + \dim \operatorname{Nul} \mathbf{A} = n$$

7.3 Change of Basis

Theorem 7.3.1. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is an $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathbf{P}}$, called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} , such that

$$[\mathbf{x}]_{\mathcal{C}} = \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

The columns of $\underset{\mathcal{C}\leftarrow\mathcal{B}}{\mathbf{P}}$ are the C-coordinate vectors of the vectors in the basis \mathcal{B} , that is

$$\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} & \cdots & [\mathbf{b}_n]_{\mathcal{C}} \end{bmatrix}$$

Because the columns of this matrix are linearly independent, since they are the coordinate vectors of the linearly independent set \mathcal{B} , it follows that $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathbf{P}}$ is invertible, and we have

$$(\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}})^{-1} = \mathbf{P}_{\mathcal{B}\leftarrow\mathcal{C}}$$

Eigenvalues and Eigenvectors

8.1 Definition

Definition. An eigenvector of an $n \times n$ matrix **A** is a nonzero vector **x** such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an eigenvalue of **A** if there is a nontrivial solution **x** of $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$; such an **x** is called an eigenvector corresponding to λ .

Definition. The set of all solutions of

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

is a subspace of \mathbb{R}^n and is called the *eigenspace* of **A** corresponding to λ .

Theorem 8.1.1. The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 8.1.2 (The Invertible Matrix Theorem). Let \mathbf{A} be an $n \times n$ matrix. Then \mathbf{A} is invertible iff the number 0 is not an eigenvalue of \mathbf{A} .

Theorem 8.1.3. If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix \mathbf{A} , then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

Definition. The scalar equation $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$ is called the *characteristic* equation of \mathbf{A} . If \mathbf{A} is an $n \times n$ matrix, then $\det(\mathbf{A} - \lambda \mathbf{I})$ is a polynomial of degree n called the *characteristic polynomial* of \mathbf{A} .

Theorem 8.1.4. A scalar λ is an eigenvalue of an $n \times n$ matrix \mathbf{A} iff λ satisfies the characteristic equation.

Definition. If **A** and **B** are $n \times n$ matrices, then **A** and **B** are *similar* if there is an invertible matrix **P** such that $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{B}$. Changing **A** into $\mathbf{P}^{-1}\mathbf{AP}$ is called a *similarity transformation*.

Theorem 8.1.5. If $n \times n$ matrices **A** and **B** are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

8.2 Diagonalization

Definition. A square matrix A is said to be *diagonalizable* if A is similar to a diagonal matrix.

Theorem 8.2.1. An $n \times n$ matrix \mathbf{A} is diagonalizable iff \mathbf{A} has n linearly independent eigenvectors. In other words, \mathbf{A} is diagonalizable iff there are enough eigenvectors to form a basis of \mathbb{R}^n , and such basis is called an eigenvector basis.

Theorem 8.2.2. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Theorem 8.2.3. Let **A** be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \dots, \lambda_p$.

- 1. For $1 \leq k \leq p$, the dimension of the eigenspaces for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- 2. The matrix **A** is diagonalizable iff the sum of the dimensions of the distinct eigenspaces equals n, and this happens iff the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k .
- 3. If **A** is diagonalizable and \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets $\mathcal{B}_1, \dots, \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n .

Definition. The matrix

$$\mathbf{M} = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{C}} & [T(\mathbf{b}_2)]_{\mathcal{C}} & \cdots & [T(\mathbf{b}_n)]_{\mathcal{C}} \end{bmatrix}$$

where $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for the vector space V, C is a basis in W, and T is a linear transformation from V to W, is called the *matrix for* T relative to the bases \mathcal{B} and C. If W is the same as V and the basis C is the same as \mathcal{B} , the matrix \mathbf{M} is called the *matrix for* T relative to \mathcal{B} or the \mathcal{B} -matrix for T, and denoted $[T]_{\mathcal{B}}$.

Theorem 8.2.4 (Diagonal Matrix Representation). Suppose $\mathbf{A} = \mathbf{PDP}^{-1}$, where \mathbf{D} is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^n formed from the columns of \mathbf{P} , then \mathbf{D} is the \mathcal{B} -matrix of the transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$.

8.3 Complex Eigenvalues

The theory of eigenvalues and eigenvectors developed for \mathbb{R}^n applies equally well on \mathbb{C}^n .

Theorem 8.3.1. Let **A** be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi(b \neq 0)$ and associated eigenvector $\mathbf{v} \in \mathbb{C}^2$. Then

$$\mathbf{A} = \mathbf{P}\mathbf{C}\mathbf{P}^{-1}, \quad where \quad \mathbf{P} = \begin{bmatrix} \operatorname{Re}\mathbf{v} & \operatorname{Im}\mathbf{v} \end{bmatrix} \quad and \quad \mathbf{C} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Orthogonality

Definition. If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be *orthogonal* to W. The set of all vectors \mathbf{z} that are orthogonal to W is called the *orthogonal complement* of W and denoted by W^{\perp} .

Theorem 9.0.1. 1. A vector \mathbf{x} is in W^{\perp} iff \mathbf{x} is orthogonal to every vector in a set that spans W.

2. W^{\perp} is a subspace of \mathbb{R}^n .

Proof. Left for Exercise

Theorem 9.0.2. Let \mathbf{A} be an $m \times n$ matrix. Then the orthogonal complement of the row space of \mathbf{A} is the nullspace of \mathbf{A} , and the orthogonal complement of the column space of \mathbf{A} is the nullspace of \mathbf{A}^T :

$$(\operatorname{Row} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}, \qquad (\operatorname{Col} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}^{T}$$

9.1 Orthogonal Sets

Definition. A set of vectors in \mathbb{R}^n is said to be an *orthogonal set* if each pair of distinct vectors from the set is orthogonal.

Theorem 9.1.1. If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition. An *orthogonal basis* for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 9.1.2. Each vector in a subspace of \mathbb{R}^n has a unique representation as a linear combination of its orthogonal basis.

Definition. The *orthogonal projection* of \mathbf{v} on an arbitrary non-zero vector \mathbf{b} can be written as:

$$\operatorname{proj}_{\mathbf{b}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \mathbf{b}$$
 (9.1)

Moreover, we can see that $\mathbf{v}-proj_{\mathbf{b}}\mathbf{v}$ is the vector component of \mathbf{v} orthogonal to \mathbf{b} . The projection $proj_{\mathbf{b}}\mathbf{v}$ is determined by the subspace $\mathrm{Span}\{\mathbf{b}\}$, and we may call it the *orthogonal projection onto* $\mathrm{Span}\{\mathbf{b}\}$.

Definition. A set is an *orthonormal set* if it is an orthogonal set of unit vectors. It is also an *orthonormal basis* for a subspace spanned by it.

Theorem 9.1.3. An $m \times n$ matrix **U** has orthonormal columns iff $\mathbf{U}^T \mathbf{U} = \mathbf{I}$.

Theorem 9.1.4. Let **U** be an $m \times n$ matrix with orthonormal columns, and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then

- 1. $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$.
- 2. $\|\mathbf{U}\mathbf{x}\| \cdot \|\mathbf{U}\mathbf{y}\| = \mathbf{x} \cdot \mathbf{y}$, and it equals zero iff $\mathbf{x} \cdot \mathbf{y} = 0$.

Equivalently, they say that the linear mapping $\mathbf{x} \mapsto \mathbf{U}\mathbf{x}$ preserves lengths and orthogonality.

Definition. An orthogonal matrix is a square invertible matrix **U** such that $\mathbf{U}^{-1} = \mathbf{U}^{T}$.

9.2 Orthogonal Projections

Theorem 9.2.1. Let W be a subspace of \mathbb{R}^n . Then each $\mathbf{y} \in \mathbb{R}^n$ can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \operatorname{proj}_{\mathbf{u}_1} \mathbf{y} + \dots + \operatorname{proj}_{\mathbf{u}_n} \mathbf{y}$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ is called the *orthogonal projection of* \mathbf{y} *onto* W and written as $\operatorname{proj}_W \mathbf{y}$.

Theorem 9.2.2. Let W be a subspace of \mathbb{R}^n , $\mathbf{y} \in \mathbb{R}^n$, and $\hat{\mathbf{y}}$ the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$\|\mathbf{v} - \hat{\mathbf{v}}\| < \|\mathbf{v} - \mathbf{v}\|$$

for all $\mathbf{v} \in W$ distinct from $\hat{\mathbf{y}}$.

Theorem 9.2.3. If $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace $W \in \mathbb{R}^n$, then

$$\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p$$

If
$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_p \end{bmatrix}$$
, then

$$\operatorname{proj}_W \mathbf{y} = \mathbf{U}\mathbf{U}^T\mathbf{y}$$

Symmetric Matrices and Quadratic Forms

Definition. A *symmetric matrix* is a matrix such that it equals to the transpose of itself.

Definition. A quadratic form on \mathbb{R}^n is a function Q defined on \mathbb{R}^n whose value at a vector $\mathbf{x} \in \mathbb{R}^n$ can be computed by an expression of the form $Q(\mathbf{x}) = \mathbf{x} \mathbf{A}^T \mathbf{x}$, where \mathbf{A} is an $n \times n$ symmetric matrix. The matrix \mathbf{A} is called the matrix of the quadratic form. The simplest example of a nonzero quadratic form is where the matrix of the quadratic form is the $n \times n$ identity matrix.

Definition. A quadratic form Q is:

- 1. positive definite if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- 2. negative definite if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- 3. indefinite if $Q(\mathbf{x})$ assumes both positive and negative values.

Theorem 10.0.1. Let **A** be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}\mathbf{A}^T\mathbf{x}$ is:

- 1. positive definite iff the eigenvalues of A are all positive,
- 2. negative definite iff the eigenvalues of A are all negative,
- 3. indefinite iff the eigenvalues of **A** has both positive and negative eigenvalues.

Definition. A positive definite matrix **A** is a symmetric matrix for which the quadratic form is positive definite. The matrix is a positive semidefinite matrix if its quadratic form is nonnegative. Other terms are defined analogously.