

第六章 抽样分布

概率论与数理统计的关系

概率论

分布已知, 研究性质、 特点和规 律性 基础

重要应用

数理统计

分布未知或 不完全知道, 通过统计对 其分布做出 推断

数理统计学是一门关于数据资料的收集、整理、分析和推断的学科。

参数估计

假设检验

方差分析

回归分析等

随机样本

■ 总体: 试验的全部可能观察值称为总体(或母体)

■ 个体:每一个可能观察值称为个体

■ 容量: 总体中所包含的个体的个数称为总体的容量(有限、无限)

例如,研究杭州电子科技大学二年级学生的年龄分布时,这些同学年龄的全体就组成了总体,其中每个同学的年龄就是个体。

- 在统计学里,我们所关心的往往是研究对象的某一项(或某几项)数量指标,例如上述例子中的大学二年级学生的年龄。
- 总体中的每一个个体是随机试验的一个观察值,因此它是某一随机变量*X*的值。这就意味着一个总体对应一个随机变量*X*,对总体的研究就是对一个随机变量*X*的研究。

如何理解总体和随机变量一一对应?

假设杭州电子科技大学二年级学生共4000人,所有可能出现的年龄不妨设为18,19,20,21,由这些学生年龄全体构成总体为:

$${x_1, x_2, ... x_{4000}} = {19,20,20,19,18,21,20,...,19}$$

不妨设其中18岁占10%, 19岁占40%, 20岁占45%, 21占5%,

若用X来表示二年级同学年龄的分布,则其分布律为:

X	18	19	20	21
p_i	0.1	0.4	0.45	0.05

类似地, 若考虑研究对象的多项指标时 如在研究某地区中学生的营养状况时, 若关心的数量指标是身高和体重,我们 用X和Y分别表示身高和体重,那么此总 体就可用二维随机变量(X,Y)或其联合分 布函数F(x,y)来表示.

二、简单随机样本

在实际中,总体的分布一般是未知的,或只知道它具有某种形式而其中包含着未知参数。在数理统计中,人们都是通过从总体中抽取部分个体,根据获得的数据对总体分布作出推断。被抽出的部分个体叫做总体的一个样本。

由于我们是利用抽样来对总体的分布进行推断,所以抽样必须是随机的.例如前面提到二年同学年龄分布的例子,抽样时就希望每个同学等可能地被抽到,只有这样才能通过抽样比较客观地了解总体。

最常用的一种抽样方法叫作"简单随机抽样",它要求抽取的 样本满足下面两点:

1. 代表性: $X_1, X_2, ..., X_n$ 中每一个与所考察的总体有相同的分布.

2 独立性: $X_1, X_2, ..., X_n$ 是相互独立的随机变量.

由简单随机抽样得到的样本称为简单随机样本,简称样本.

它们的观察值称 $x_1,x_2,...,x_n$ 为样本值。

今后如不加声明,均指简 单随机样本。

总体、样本、样本值的关系

统计是从手中已有的资料——样本值

去推断未知总体的情况——总体分布F(x)。

总体分布决定了样本取值的规律, 因而可以由样本值去推断总体.

- 1、为什么可以把总体看成是一个随机变量? 如何理解个体与总体具有一样的分布?
- 2、简单随机样本有什么特点?有什么意义?

第六章 抽样分布

6.3 抽样分布 (1) 统计量

统计量

样本是总体的代表和反映,但我们在抽取样本后,并不直接利用样本进行推断,而需要对样本进行一番"加工"和"提炼",把样本中所包含的关于我们所关心的事物的信息集中起来,这便是针对不同的问题构造样本的某个函数,称之为统计量。

定义: 设 X_1, X_2, \dots, X_n 是来自总体 X 的一个样本, $g(X_1, X_2, \dots, X_n)$ 是 X_1, X_2, \dots, X_n 的函数,若 g 中不含未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 是一个统计量。 称 $g(x_1, x_2, \dots, x_n)$ 是 $g(X_1, X_2, \dots, X_n)$ 的观察值。

严格地说,一个统计量就是样本 (X_1, X_2, \dots, X_n) 的一个函数,且要求它不包含总体的任何未知参数。因此,统计量也是一个随机变量。

常用统计量

1.样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

2.样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

推导:
$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} (X_i^2 - 2X_i \overline{X} + \overline{X}^2) = \sum_{i=1}^{n} X_i^2 - 2\overline{X} \sum_{i=1}^{n} X_i + \sum_{i=1}^{n} \overline{X}^2$$
$$= \sum_{i=1}^{n} X_i^2 - 2\overline{X} \cdot n\overline{X} + n\overline{X}^2 = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2.$$

常用统计量

总体k阶原点矩:

 $E(X^k)$

3.样本
$$k$$
阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, $k = 1, 2, \dots$

总体k阶中心矩: $E([X-E(X)]^k)$

4.样本
$$k$$
阶中心矩 $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k$, $k = 1, 2, \cdots$

容易看出,一阶样本原点矩即为 \overline{X} .

常用统计量的观察值

设 X_1 , X_2 , …, X_n 是来自总体X的一个样本, x_1 , x_2 , …, x_n 是相应于样本 X_1 , X_2 , …, X_n 的观察值.

1)样本均值:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 — 观察值: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

2)**样本方差**:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
,样本标准差 $S = \sqrt{S^2}$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$

3) **样本k阶**(原点)矩:
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \cdots$$
 $a_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$

4)样本k阶(中心)矩:
$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$$
, $k = 2,3 \cdots b_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$, $k = 2,3 \cdots$

总体k阶矩与样本k阶矩

1) 总体X的k阶(原点)矩: $\mu_k = E(X^k)$,(期望存在)

比较:**样本**k阶(原点)矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

2) 总体X的k阶(中心)矩: $E\{[X - E(X)]^k\}, k = 2,3,\cdots$

比较:**样本**k阶(中心)矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$, $k = 2,3 \cdots$

总体k阶矩与样本k阶矩的关系

1) 当 $n \to \infty$ 时, $A_k \stackrel{P}{\to} \mu_k$ (样本矩**依概率**收敛总体矩)

2) 当n → ∞ 时 , $g(A_1, A_2, \dots, A_k) \stackrel{P}{\to} g(\mu_1, \mu_2, \dots, \mu_k)$ (样本矩的连续函数

依概率收敛总体矩的函数)

统计量满足什么条件?

为什么统计量中不能含有未知参数?

练习题

设总体X前期服从0-1分布, X_1 , X_2 ,…, X_5 是来自总体X的一个简单随机样本, \bar{X} 是样本均值,p是介于0与1之间的常数但未知,则下列各选项中不是统计量的为().

(A) $\min\{X_1, X_2, \dots, X_5\}$ (B) $X_1 - (1-p)\overline{X}$

(C) $\max\{X_1, X_2, \dots, X_5\}$ (D) $5\bar{X}$

参考答案:(B)

注: 大写改成小写则称为相应的观察值;

总体矩是常数,样本矩是随机变量;

统计量是样本函数,实质上是随机变量,对应的分布,称为抽样分布;

重点掌握样本均值、样本方差。

第六章 抽样分布

6.3 抽样分布 (2)

χ² (卡方) 分布

杨建芳

$1.\chi^2$ (卡方)分布的构造定义

★设 X_1 , X_2 ,…, X_n 服从标准正态分布N(0,1), 且相互独立.

则随机变量
$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

服从自由度为
$$n$$
的 χ^2 分布. (也记 $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$)

- ★自由度n指的是随机变量 χ^2 等式右端的独立变量的个数.
- ★或 X_1 , X_2 , ……, X_n 是来自总体为标准正态分布N(0,1)的样本(样本有独立性).

$2. \chi^2$ (卡方)分布的概率密度(了解)

★ $\chi^2(n)$ 分布的概率密度为

$$f(y) = \begin{cases} \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} y^{\frac{n}{2} - 1} e^{-y/2}, y > 0\\ 0, y \le 0 \end{cases}$$

★其中Γ(x) (伽马)函数的定义为

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt \quad (x > 0)$$

$3. \chi^2$ (卡方)分布的图形

$4. \chi^2$ (卡方)分布的性质

★ 1) χ^2 分布的可加性:

设
$$\chi_1^2 \sim \chi^2(n_1)$$
, $\chi_2^2 \sim \chi^2(n_2)$,且 χ_1^2 , χ_2^2 相互独立,则有 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$.

*证:设 $X_i \sim N(0,1)$, 独立,记 $\chi_1^2 = {X_1}^2 + {X_2}^2 + \dots + {X_{n_1}}^2$ $\chi_2^2 = {X_1}^2 + {X_2}^2 + \dots + {X_{n_2}}^2,$

两式相加 , $\chi_1^2 + \chi_2^2 = X_1^2 + X_2^2 + \dots + X_{n_1}^2 + X_1^2 + X_2^2 + \dots + X_{n_2}^2$ 独立变量的个数相加 , 故 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$.

$4. \chi^2$ (卡方) 分布的性质

★ 2) χ^2 分布的期望与方差:

设
$$\chi^2 \sim \chi^2(n)$$
 , 则有 $E(\chi^2) = n$, $D(\chi^2) = 2n$.

*证:设 $X_i \sim N(0,1)$, $i = 1,2,\cdots,n$,相互独立,记 $\chi^2 = {X_1}^2 + {X_2}^2 + \cdots + {X_n}^2$,则 $E(X_i^2) = D(X_i) + [E(X_i)]^2 = 1 + 0 = 1$

故
$$E(\chi^2) = E(X_1^2 + X_2^2 + \dots + X_n^2) = nE(X_i^2) = n$$

$$\nabla D(\chi^2) = D(X_1^2 + X_2^2 + \dots + X_n^2) = nD(X_i^2)$$

而
$$D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2 = \int_{-\infty}^{+\infty} x^4 \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx - 1 = 2$$
,故 $D(\chi^2) = 2n$.

5. χ^2 (卡方)分布的上 α 分位点

★设 $\chi^2 \sim \chi^2(n)$,对于给定的正数 α (0 < α < 1),满足条件 $P\{\chi^2 > \chi_\alpha^2(n)\} = \alpha$

的点 $\chi_{\alpha}^{2}(n)$ 称为卡方分布的**上** α **分位点**.

$$\bigstar \exists t P\{\chi^2 > \chi_{\alpha}^2(n)\} = \int_{\chi_{\alpha}^2(n)}^{+\infty} f(y) dy$$

如查表 $\chi_{0.025}^{2}(8) = 17.534$

$$\chi_{0.975}^{2}(8) = 2.180$$

当n充分大时(n > 40) ,近似地有 $\chi_{\alpha}^{2}(n) \approx \frac{1}{2}(z_{\alpha} + \sqrt{2n-1})^{2}$ 其中 z_{α} 是 N(0,1) 的上 α 分位点。 例如, $z_{0.05} = 1.645$, $\chi_{0.05}^{2}(50) \approx \frac{1}{2}(1.645 + \sqrt{99}) = 67.221$. 精确, $\chi_{0.05}^{2}(50) = 67.505$.

6. 标准正态分布的上α分位点

★设 $X \sim N(0,1)$,对于给定的正数 $\alpha(0 < \alpha < 1)$,满足条件 $P\{X > z_{\alpha}\} = \alpha$ 的点 z_{α} 称为标准正态分布的**上** α **分位点**.(没有自由度)

1)
$$z_{1-\alpha} = -z_{\alpha}$$
 (对称性)

2)查表
$$z_{0.025} = 1.96$$
 $z_{0.05} = 1.645$

例 1

★设 X_1 , X_2 , …, X_n 服从正态分布 $N(\mu, \sigma^2)$, 且

相互独立.则随机变量 $Y = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$.

平方和?标准正 态分布?

$$\mathbb{P} Y = \frac{1}{\sigma^2} [(X_1 - \mu)^2 + (X_2 - \mu)^2 + \dots + (X_n - \mu)^2] \sim \chi^2 (n)$$

例 1 证明

证明:因 X_1 , X_2 , ……, X_n 服从正态分布 $N(\mu, \sigma^2)$,

则
$$\frac{X_i - \mu}{\sigma} \sim N(0,1)$$
,或($\frac{X_i - \mu}{\sigma}$)² $\sim \chi^2(1)$, $i = 1, 2, \dots, n$

且相互独立,由卡方分布的定义或可加性,

得
$$Y = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$
.

什么样的统计量服从 χ^2 分布,即 χ^2 分布的构造?

 χ^2 分布的性质?

如何理解 χ^2 分布上 α 分位点?

练习题

※设 X_1 , X_2 , X_3 , X_4 , X_5 为来自总体N(0,1)的样本,若 $Y = a[(X_1 + X_2)]^2 + b[(X_3 - X_4 + X_5)]^2$ 服从 χ^2 分布,则常数a, b的值(). (A) a = 1/2, b = 1/3 (B) a = 2, b = 3 (C) a = 1/3, b = 1/2 (D) a = 3, b = 2

※参考答案:(A).

第六章 抽样分布

6.3 抽样分布 (3) *t*分布

1. t分布的构造定义

★设 $X\sim N(0,1)$, $Y\sim \chi^2(n)$, 且X,Y相互独立.则随机变量 $t=\frac{X}{\sqrt{Y/n}}$

服从自由度为n的t分布.记为 $t \sim t(n)$,也称学生氏(Student)分布.

★自由度n与分母中随机变量Y中的 χ^2 分布的自由度一样.

<u>威廉·戈塞</u>,1908年,都柏林,健力士酿酒厂.因为不能以他本人的名义发表, 所以论文使用了学生(Student)这一笔名.

2. t分布的概率密度、图形、性质

★ t分布的概率密度为(了解)

$$h(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} (1 + \frac{t^2}{n})^{-(n+1)/2} , \infty < t < \infty$$

性质:

★偶函数. 当较大时, t分布接近于标准正态分布

$$\star \lim_{n \to \infty} h(t) = \varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

3. t分布的上α分位点

★设 $t\sim t(n)$,对于给定的正数 α ($0<\alpha<1$),满足条件 $P\{t>t_{\alpha}(n)\}=\alpha$ 的点 $t_{\alpha}(n)$ 称为t分布的**上\alpha分位点**.

- 1) $t_{1-\alpha}(n) = -t_{\alpha}(n)$ (对称性)
- 2) 查表 $t_{0.025}(15) = 2.1315$

$$t_{0.05}(15) = 1.7531$$

当n充分大时, $t_{\alpha}(n) \approx z_{\alpha}$.

例 1

★设 X_1 , X_2 , X_3 是来自总体N(0,4) 的样本.试确定随机变量

$$Y = \frac{\sqrt{2}X_3}{\sqrt{{X_1}^2 + {X_2}^2}}$$
的分布.

分子:标准正态分布?

HANGE THOU DIANZI WHITE

例 1 解

解:1)分子化成标准正态分布形式: $U = \frac{X_3}{2} \sim N(0,1)$

2)分母找 χ^2 形式: $\frac{X_1}{2} \sim N(0,1)$, $\frac{X_2}{2} \sim N(0,1)$

由独立性,卡方的定义, $V = (\frac{X_1}{2})^2 + (\frac{X_2}{2})^2 \sim \chi^2(2)$

3)显然U,V相互独立.则由t分布的定义: $\frac{U}{\sqrt{V/2}} = \frac{X_3/2}{\sqrt{(X_1^2 + X_2^2)/8}} \sim t(2)$

即:随机变量 $Y = \frac{\sqrt{2}X_3}{\sqrt{X_1^2 + X_2^2}}$ 服从自由度为2的t分布.

什么样的统计量服从t分布,即t分布的构造?

t分布的性质?

如何理解t分布上 α 分位点?

上 $1 - \alpha$ 分位点上 α 分位点关系?

练习题

※设
$$X \sim t(10)$$
,若 $P\{X > 1.8125\} = 0.05$,则 $t_{0.95}(10) = ($). (A)1.8125 (B)0.95 (C)-1.8125 (D) -0.95

※参考答案:(C)

第六章 抽样分布

6.3 抽样分布 (4) *P*分布

杨建芳

1. F分布的构造定义

*设 $U\sim\chi^2(n_1)$, $V\sim\chi^2(n_2)$,且U,V相互独立.则随机变量 $F=\frac{U/n_1}{V/n_2}$

服从自由度为 (n_1, n_2) 的F分布.记为 $F \sim F(n_1, n_2)$.

★第一自由度 n_1 与分子中 χ^2 分布的自由度一致,第二自由度 n_2 与分母中 χ^2 分布的自由度一致.

★F分布是1924年英国统计学家费希尔(R.A.Fisher)提出,并以其姓氏的第一个字母命名的.

2. F分布的概率密度、图形、性质

★ F分布的概率密度为(了解)

$$\psi(y) = \begin{cases} \frac{\Gamma(\frac{n_1 + n_2}{2})}{\Gamma(\frac{n_1}{2}) \Gamma(\frac{n_2}{2})} (\frac{n_1}{n_2})^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1} (1 + \frac{n_1}{n_2} y)^{-\frac{n_1 + n_2}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$

性质:

★由F分布的定义,易知:

若
$$F \sim F(n_1, n_2)$$
,则 $\frac{1}{F} \sim F(n_2, n_1)$.

3. F分布的上 α 分位点

★设 $F \sim F(n_1, n_2)$,对于给定的正数 $\alpha(0 < \alpha < 1)$,满足条件 $P\{F > F_\alpha(n_1, n_2)\} = \alpha$ 的点 $F_\alpha(n_1, n_2)$ 称为F分布的**上** α **分位点**.

$$\star \exists P\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{+\infty} \psi(y) dy$$

1)
$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

2) 查表
$$F_{0.05}(9,15) = 2.59$$

$$F_{0.95}(9,15) = \frac{1}{F_{0.05}(15,9)} = \frac{1}{3.01}$$

例 1

★设 X_1 , X_2 , X_3 是来自总体N(0,4) 的样本.

试确定随机变量
$$Y = \frac{2X_3^2}{X_1^2 + X_2^2}$$
的分布.

分析:考虑分子分母的分布形式? χ^2 分

布形式?标准正态分布的平方和?

例 1 解

解:1)分子:
$$\frac{X_3}{2} \sim N(0,1)$$
, $U = (\frac{X_3}{2})^2 \sim \chi^2(1)$

2) 分母:
$$\frac{X_1}{2} \sim N(0,1)$$
, $\frac{X_2}{2} \sim N(0,1)$, $V = (\frac{X_1}{2})^2 + (\frac{X_2}{2})^2 \sim \chi^2(2)$

3)显然
$$U,V$$
相互独立.则由F分布的定义: $\frac{U/1}{V/2} = \frac{2X_3^2}{X_1^2 + X_2^2} \sim F(1,2)$

故:
$$Y = \frac{2X_3^2}{X_1^2 + X_2^2}$$
服从自由度为(1,2)的F分布,即 $Y \sim F(1,2)$.

什么样的统计量服从F分布,即F分布的构造?

F分布的性质?

如何理解F分布上 α 分位点?

 $\pm 1 - \alpha$ 分位点与上 α 分位点关系?

练习题

**设 $X \sim t(n)$,则 X^2 的分布是().

(A) $X^2 \sim F(1, n)$ (B) $X^2 \sim F(n, 1)$

(C) $X^2 \sim \chi^2(1)$ (D) $X^2 \sim \chi^2(n)$

※参考答案: (A) $X^2 \sim F(1, n)$.

注意符号的含义

随机变量	分布	分位点(数)
X	N(0,1)	Z_{lpha}
χ^2	$\chi^2(n)$	$\chi_{\alpha}^{2}(n)$
t	t(n)	$t_{\alpha}(n)$
F	$F(n_1,n_2)$	$F_{\alpha}(n_1,n_2)$

谢谢大家!