August 6–11, 2017 ICML 2017

Tensor Balancing on Statistical Manifold

Mahito Sugiyama^{1,2} Hiroyuki Nakahara³ Koji Tsuda^{4,5,6}
¹NII, ²JST PRESTO, ³RIKEN BSI, ⁴UTokyo, ⁵RIKEN AIP, ⁶NIMS

Results

- Balancing of higher order (more than two) tensors is firstly (theoretically) achieved
 - We present a balancing algorithm and prove its global convergence
- A fast balancing algorithm with quadratic convergence using Newton's method
 - An existing algorithm is linear convergence
- [Theory] We provide dually flat Riemannian manifold of probability distributions with the structured outcome space
 - Information Geometry
 - Tensor balancing is an instance

Matrix Balancing

```
\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}
```

Matrix Balancing

Matrix Balancing

• Problem setting: Given a nonnegative matrix $P = (p_{ij}) \in \mathbb{R}^{n \times n}_+$, find $r, s \in \mathbb{R}^n$ s.t.

```
(RPS)_1 = 1 and (RPS)_1 = 1
```

- -R = diag(r), S = diag(s)
- Each entry is given as $p'_{ij} = p_{ij}r_is_j$
- A fundamental process to analyze and compare matrices in a wide range of applications
 - Input-output analysis in economics, seat assignments in elections,
 Hi-C data analysis, Sudoku puzzle
 - Approximate Wasserstein distance

Results on Hessenberg Matrix

Overview of Our Approach

Partially Ordered Set

- Partially ordered set (poset) (S, ≤)
 - (i) $x \le x$ (reflexivity)
 - (ii) $x \le y, y \le x \Rightarrow x = y$ (antisymmetry)
 - (iii) $x \le y, y \le z \Rightarrow x \le z$ (transitivity)
 - We assume that S is finite and includes the least element (bottom) $\bot \in S$
- Equivalent to a DAG
 - Each $x \in S$ is a node
 - $-x \le y \iff y \text{ is reachable from } x$

Log-Linear Model on Poset

Each $x \in S$ has a triple: $(p(x), \theta(x), \eta(x))$

- A probability vector $p:S \to (0,1)$ s.t. $\sum_{x \in S} p(x) = 1$
 - (Normalized) weight for each node
- We introduce $\theta:S \to \mathbb{R}$ and $\eta:S \to \mathbb{R}$ as $\log p(x) = \sum_{s \le x} \theta(s)$, $\eta(x) = \sum_{s \le x} p(s)$

Our Model Includes Binary Case

Our model:

$$\log p(x) = \sum_{s \le x} \theta(s), \quad \eta(x) = \sum_{s \ge x} p(s)$$

is generalization of the log-linear model on binary vectors with $\mathbf{x} \in \{0, 1\}^n = S$:

$$\log p(\mathbf{x}) = \sum_{i} \theta^{i} x^{i} + \sum_{i < j} \theta^{ij} x^{i} x^{j} + \dots + \theta^{1 \dots n} x^{1} x^{2} \dots x^{n} - \psi,$$

$$\eta^{i} = \mathbf{E}[x^{i}] = \Pr(x^{i} = 1),$$

$$\eta^{ij} = \mathbf{E}[x^{i} x^{j}] = \Pr(x^{i} = x^{j} = 1), \dots$$
8/18

Dually Flat Structure

• θ and η form a dual coordinate system:

$$\nabla \psi(\theta) = \eta, \ \nabla \varphi(\eta) = \theta$$
$$- \psi(\theta) = -\theta(\bot) = -\log p(\bot), \ \varphi(\eta) = \sum_{x \in S} p(x) \log p(x)$$

- $\psi(\theta)$ and $\varphi(\eta)$ are connected via the Legendre transformation:

$$\varphi(\eta) = \max_{\theta'} \left(\theta' \eta - \psi(\theta') \right), \quad \theta' \eta = \sum_{x \in S \setminus \{\bot\}} \theta'(x) \eta(x)$$

 $\circ \psi(\theta)$ and $\varphi(\eta)$ should be convex

Gradient and Riemannian Manifold

• The gradients: $g(\theta) = \nabla \nabla \psi(\theta) = \nabla \eta$, $g(\eta) = \nabla \nabla \varphi(\eta) = \nabla \theta$

$$\begin{cases} g_{xy}(\theta) = \frac{\partial \eta(x)}{\partial \theta(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p(s) - \eta(x) \eta(y) \\ g_{xy}(\eta) = \frac{\partial \theta(x)}{\partial \eta(y)} = \sum_{s \in S} \mu(s, x) \mu(s, y) p(s)^{-1} \end{cases}$$

- ζ and μ are the zeta function and the Möbius function determined by the partial order (DAG) structure
- The manifold $(S, g(\xi))$ is a Riemannian manifold with the set S of probability vectors and the Riemannian metric $g(\xi)$ 10/18

Möbius Function on Poset

- Zeta function $\zeta: S \times S \to \{0, 1\}$ $\zeta(s, x) = \begin{cases} 1 & \text{if } s \leq x, \\ 0 & \text{otherwise.} \end{cases}$
- Möbius function $\mu: S \times S \to \mathbb{Z}$

$$\mu(x,y) = \begin{cases} 1 & \text{if } x = y, \\ -\sum_{x \le s < y} \mu(x,s) & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

– We have $\zeta \mu = I$ (convolutional inverse):

$$\sum_{s \in S} \zeta(s, y) \mu(x, s) = \sum_{x \le s \le y} \mu(x, s) = \delta_{xy}$$
11/18

e-Projection and m-Projection

e-Projection and m-Projection

Compute e-Projection by Newton's Method

Each step of Newton's method:

$$\begin{bmatrix} \eta_{P_{\beta}}^{(t)}(x) - \beta(x) \\ \vdots \\ \theta_{P_{\beta}}^{(t+1)}(y) - \theta_{P_{\beta}}^{(t)}(y) \end{bmatrix} = \mathbf{o},$$

- J is the $|dom(\beta)| \times |dom(\beta)|$ Jacobian matrix given as

$$J_{xy} = \frac{\partial \eta_{P_{\beta}}^{(t)}(x)}{\partial \theta_{P_{\beta}}^{(t)}(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p_{\beta}^{(t)}(s) - \eta_{P_{\beta}}^{(t)}(x) \eta_{P_{\beta}}^{(t)}(y)$$

for each $x, y \in dom(\beta)$

View Matrix as Poset

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

$$\eta_{11} = 4, \, \eta_{21} = 3, \, \eta_{31} = 2, \, \eta_{41} = 1$$
 $\eta_{11} = 4, \, \eta_{12} = 3, \, \eta_{13} = 2, \, \eta_{41} = 1$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

$$\eta_{11} = 4, \, \eta_{21} = 3, \, \eta_{31} = 2, \, \eta_{41} = 1$$
 $\eta_{11} = 4, \, \eta_{12} = 3, \, \eta_{13} = 2, \, \eta_{41} = 1$

$$p_{11}$$
 p_{12}
 p_{13}
 p_{14}
 p_{21}
 p_{22}
 p_{23}
 p_{24}
 p_{31}
 p_{32}
 p_{33}
 p_{34}
 p_{41}
 p_{42}
 p_{43}
 p_{44}

$$\eta_{11} = 4, \, \eta_{21} = 3, \, \eta_{31} = 2, \, \eta_{41} = 1$$
 $\eta_{11} = 4, \, \eta_{12} = 3, \, \eta_{13} = 2, \, \eta_{41} = 1$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

$$\eta_{11} = 4, \, \eta_{21} = 3, \, \eta_{31} = 2, \, \eta_{41} = 1$$
 $\eta_{11} = 4, \, \eta_{12} = 3, \, \eta_{13} = 2, \, \eta_{41} = 1$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

$$\eta_{11} = 4, \, \eta_{21} = 3, \, \eta_{31} = 2, \, \eta_{41} = 1$$
 $\eta_{11} = 4, \, \eta_{12} = 3, \, \eta_{13} = 2, \, \eta_{41} = 1$

e-Projection = Balancing

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

Matrix balancing is achieved if:

$$\eta_{11} = 4, \, \eta_{21} = 3, \, \eta_{31} = 2, \, \eta_{41} = 1$$
 $\eta_{11} = 4, \, \eta_{12} = 3, \, \eta_{13} = 2, \, \eta_{41} = 1$

17/18

Conclusion

- We have achieved efficient tensor balancing with Newton's method
- We have introduced the dually flat structure into distribution of partially ordered outcome space
 - e-projection =
 - Tensor balancing
 - Maximum Likelihood Estimation
- Discrete structure + Information Geometry
 - = original and significant data analysis methods!

Appendix

Möbius Inversion

• The Möbius inversion formula [Rota (1964)]:

$$g(x) = \sum_{s \in S} \zeta(s, x) f(s) = \sum_{s \le x} f(s)$$

$$\Leftrightarrow f(x) = \sum_{s \in S} \mu(s, x) g(s),$$

Möbius Function Is Generalization of Inclusion-Exclusion Principle

- For sets A, B, C, $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |A \cap C| + |A \cap B \cap C|$
- In general, for A_1, A_2, \ldots, A_n ,

$$\left|\bigcup_{i} A_{i}\right| = \sum_{J \subseteq \{1, \dots, n\}, J \neq \emptyset} (-1)^{|J|-1} \left|\bigcap_{j \in J} A_{j}\right|$$

• The Möbius function μ is the generalization of " $(-1)^{|J|-1}$ "

Fisher Information Matrix and Orthogonality

• Since $q(\xi)$ coincides with the Fisher information matrix,

$$\mathbf{E}\left[\frac{\partial}{\partial\theta(x)}\log p(s)\frac{\partial}{\partial\theta(y)}\log p(s)\right] = \sum_{s\in S} \zeta(x,s)\zeta(y,s)p(s) - \eta(x)\eta(y),$$

$$\mathbf{E}\left[\frac{\partial}{\partial \eta(x)}\log p(s)\frac{\partial}{\partial \eta(y)}\log p(s)\right] = \sum_{s\in S}\mu(s,x)\mu(s,y)p(s)^{-1}$$

• θ and η are orthogonal, i.e.,

$$\mathbf{E}\left[\frac{\partial}{\partial \theta(x)}\log p(s)\frac{\partial}{\partial \eta(y)}\log p(s)\right] = \sum_{s \in S} \zeta(x,s)\mu(s,y) = \delta_{xy}$$

m-Projection

- Submanifold by β : $S(\beta) = \{P \in S \mid \theta_P(x) = \beta(x), \forall x \in \text{dom}(\beta)\}$
- *m*-projection of $P \in \mathcal{S}$ onto $\mathcal{S}(\beta)$ is $P_{\beta} \in \mathcal{S}(\beta)$ s.t.

$$\begin{cases} \theta_{P_{\beta}}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta), \\ \eta_{P_{\beta}}(x) = \eta_{P}(x) & \text{if } x \in (S \setminus \{\bot\}) \setminus \text{dom}(\beta) \end{cases}$$

– This is the minimizer of the KL divergence from P to $S(\beta)$:

$$P_{\beta} = \operatorname{argmin}_{Q \in \mathcal{S}(\beta)} D_{KL}[P, Q]$$

- The projected distribution P_{β} always uniquely exists
- Pythagorean theorem: $D_{KL}[P, Q] = D_{KL}[P, P_{\beta}] + D_{KL}[P_{\beta}, Q]$ for all $Q \in \mathcal{S}(\beta)$

e-Projection

- Submanifold by β : $S(\beta) = \{P \in S \mid \eta_P(x) = \beta(x), \forall x \in \text{dom}(\beta)\}$
- e-projection of $P \in \mathcal{S}$ onto $\mathcal{S}(\beta)$ is $P_{\beta} \in \mathcal{S}(\beta)$ s.t.

$$\begin{cases} \theta_{P_{\beta}}(x) = \theta_{P}(x) & \text{if } x \in (S \setminus \{\bot\}) \setminus \text{dom}(\beta), \\ \eta_{P_{\beta}}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta) \end{cases}$$

– This is the minimizer of the KL divergence from P to $S(\beta)$:

$$P_{\beta} = \operatorname{argmin}_{Q \in \mathcal{S}(\beta)} D_{KL}[P, Q]$$

- The projected distribution P_{β} always uniquely exists
- Pythagorean theorem: $D_{KL}[P, Q] = D_{KL}[P, P_{\beta}] + D_{KL}[P_{\beta}, Q]$ for all $Q \in \mathcal{S}(\beta)$

Computation of e-Projection

• Given P and β , we compute P_{β} such that

$$\begin{cases} \theta_{P_{\beta}}(x) = \theta_{P}(x) & \text{if } x \in (S \setminus \{\bot\}) \setminus \text{dom}(\beta), \\ \eta_{P_{\beta}}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta) \end{cases}$$

- Initialize with $P_{\beta}^{(o)} = P$ and, at each step t, update $\eta_{P_{\beta}}^{(t)}(x)$ for $x \in \text{dom}(\beta)$
 - Since θ and η are orthogonal, we can change $\eta_{P_{\beta}}^{(t)}(x)$ while fixing $\theta_{P_{\beta}}^{(t)}(y)$ for $y \notin \text{dom}(\beta)$

Matrix And Tensor Balancing

- Given a nonnegative matrix $P = (p_{ij}) \in \mathbb{R}^{n \times n}_+$, find $r, s \in \mathbb{R}^n$ s.t. $(RPS)^{\mathbf{1}} = \mathbf{1}$ and $(RPS)^T \mathbf{1} = \mathbf{1}$, where R = diag(r), S = diag(s)
- Given a tensor $P \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_N}$ with $n_1 = \cdots = n_N = n$, find (N-1) order tensors R^1, R^2, \ldots, R^N s.t. $\forall m \in [N]$ $P' \times_m \mathbf{1} = \mathbf{1} (\in \mathbb{R}^{n_1 \times \cdots \times n_{m-1} \times n_{m+1} \times \cdots \times n_N})$
 - Each entry $p'_{i_1 i_2 \dots i_N}$ of the balanced tensor P' is given as $p'_{i_1 i_2 \dots i_N} = p_{i_1 i_2 \dots i_N} \prod_{m \in [N]} R^m_{i_1 \dots i_{m-1} i_{m+1} \dots i_N}$
 - The balanced tensor P' is called multistochastic

Remove Zeros If Exists

$$\begin{bmatrix} p_{11} & p_{12} & 0 & 0 \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & 0 & p_{34} \\ 0 & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

$$\eta_{11} = 4, \, \eta_{21} = 3, \, \eta_{31} = 2, \, \eta_{41} = 1$$
 $\eta_{11} = 4, \, \eta_{12} = 3, \, \eta_{13} = 2, \, \eta_{41} = 1$

Results on Hessenberg Matrix (n = 20)

Results on Trefethen Matrix

