Dérivation

Rappel : La pente d'une droite (non verticale) est le nombre relatif m qui indique de combien d'unités la droite monte (ou descend si m < 0) lorsqu'on avance d'une unité vers la droite.

Propriété. La pente d'une droite d'équation « y = mx + p » est son coefficient directeur m.

Idée : La dérivée d'une fonction en un point (de sa courbe) est la pente de la fonction en ce point. C'est un nombre qui sert à mesurer la vitesse de variation de la fonction au point considéré.

La dérivée généralise la notion de pente à une fonction. Elle dépend du point. Elle n'existe pas toujours.

Définitions. On se place en un point d'abscisse a de la courbe représentative d'une fonction f.

Si en faisant un zoom infini sur le point, la courbe se déforme et devient une droite (non verticale), alors :

- Cette droite est appelée tangente à la courbe représentative de f en a.
- On dit que la fonction f est **dérivable en** a, (elle admet une dérivée en a)
- La **dérivée de la fonction** f **en** a, notée f'(a) est la pente de la tangente (à f en a).

Propriété. La tangente est la droite passant par A = (a; f(a)) et de coefficient directeur f'(a).

Propriété. L'équation de la tangente est : « y = f'(a)(x - a) + f(a) »

Définition. f est dérivable sur I si elle est dérivable <u>en tout</u> réel x de I.

Dans ce cas, on appelle fonction dérivée de la fonction f,

la fonction $f': I \to \mathbb{R}: x \mapsto f'(x)$

Dérivées usuelles . A chaque ligne, f est définie et
vaut l'expression de la colonne à gauche sur tout D_f .
On déduit que f est dérivable sur $D_{f'}$, et $f'(x)$ vaut
l'expression dans la dernière colonne sur tout $D_{f'}$.

Opérations sur les dérivées. A chaque ligne :

- On suppose que u et v sont dérivables.
- On déduit que *f* est dérivable sur *I*.

respices on the definition colorine surface $D_{f'}$.							
f(x)	Conditions	D_f	$D_{f'}$	f'(x)	f Conditions		f'
С	$c \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	0	u + v	$u, v: I \to \mathbb{R}$	u' + v'
x		\mathbb{R}	\mathbb{R}	1	u-v	$u, v: I \to \mathbb{R}$	u'-v'
ax	$a \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$a \times u$	$a \in \mathbb{R}, \ u:I \to \mathbb{R}$	au'
ax + b	$a,b \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$u \times v$	$u, v: I \to \mathbb{R}$	u'v + v'u
x ²		\mathbb{R}	\mathbb{R}	2 <i>x</i>	<u>1</u>	$v:I\to\mathbb{R}^*$	-v'
<i>x</i> ³		\mathbb{R}	\mathbb{R}	$3x^2$	v		$\overline{v^2}$
11		\mathbb{R}^*	\mathbb{R}^*	1	$\frac{u}{}$	$u: I \to \mathbb{R}, \ v: I \to \mathbb{R}^*$	u'v-v'u
$\frac{1}{x} = x^{-1}$				$-\frac{1}{x^2} = -x^2$	v		v^2
e^x		\mathbb{R}	\mathbb{R}	e^x	e^u	$u:I\to\mathbb{R}$	$u'e^u$

Hypothèse. Soit f une fonction définie et <u>dérivable</u> sur un intervalle I non trivial.

Théorème. Etudier les variations d'une fonction, c'est étudier le signe de sa dérivée.

f est croissante sur I si et seulement si, pour tout $x \in I$, $f'(x) \ge 0$.

f est décroissante sur I si et seulement si, pour tout $x \in I$, $f'(x) \le 0$.

f est constante sur I si et seulement si, pour tout $x \in I$, f'(x) = 0.

Exemple. Soit *f* la fonction définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 9$.

Par somme et produits de fonctions dérivables sur \mathbb{R} , f est dérivable sur \mathbb{R} .

Pour déterminer ses variations, on peut étudier le signe de f'.

Pour tout $x \in \mathbb{R}$, $f'(x) = 5 \times 2x - 3 \times 1 + 0 = 10x - 3$

Or
$$10x - 3 = 0 \Leftrightarrow x = \frac{3}{10}$$
 et $10x - 3 > 0 \Leftrightarrow 10x > 3 \Leftrightarrow x > \frac{3}{10}$. Donc :

x	-∞		$\frac{3}{10}$		+∞
Signe de $f'(x)$		_	0	+	
Variations de f	01	*	$\frac{81}{10}$		

