Okun's Law

Summary and Demonstration in R

Robert Schnitman January 10, 2020

Contents

1	Introduction	1
2	Definition	1
3	Demonstration	1
	3.1 Loading Libraries	. 1
	3.2 Importing Data	. 1
	3.3 Plotting the Data	. 2
	3.4 Regression Results	
	3.5 Diagnostics	. 5
4	Conclusion	10
5	References	10

1 Introduction

The purpose of this document is to summarize and demonstrate Okun's Law in the R programming language.

2 Definition

Named after Arthur Melvin Okun, Okun's Law states that there is an inverse relationship between the unemployment rate and an economy's productivity.¹

3 Demonstration

3.1 Loading Libraries

First, we'll load two libraries that will be used to display our data and plot the unemployment rate (UR) against Real GDP, Pecent Change from Last Year (RGDP).

```
library(knitr)  # For tables.
library(kableExtra) # For extending tables.
library(ggplot2) # For graphing.
library(stargazer) # For regression tables.
library(magrittr) # For chaining functions.
```

3.2 Importing Data

Second, we'll import our data downloaded from Federal Reserve's FRED (Federal Reserve Economic Data) database.²

```
# 1. Import the unemployment rate.
ur <- read.csv('UR.csv', stringsAsFactors = FALSE)

# 2. Import the GDP LY (last year) percent change data.
gdp <- read.csv('GDP_DELTA.csv', stringsAsFactors = FALSE)

# 3. Merge our data.
ur_gdp <- merge(ur, gdp, by = 'DATE')</pre>
```

¹Prachowny 1993. https://ideas.repec.org/a/tpr/restat/v75y1993i2p331-36.html

²https://fred.stlouisfed.org/series/UNRATE and https://fred.stlouisfed.org/series/GDPC1

Table 1: FRED Data Preview

Date	Unemployment Rate	Real GDP LY Percent Change
1948-01-01	4.0	3.88681
1949-01-01	6.6	-1.53303
1950-01-01	4.3	13.36853
1951-01-01	3.1	5.47138
1952-01-01	2.7	5.36785

Note: Data are end-of-period and seasonally adjusted. Only the first few years are shown.

Table 1 presents the first few years of UR and RGDP data. W ewill use this dataset to plot the latter against the former to showcase Okun's Law.

3.3 Plotting the Data

Fig. 1 – Okun's Law Demonstration, 1948–2018

Real Gross Domestic Product, Percent Change from Last Year

Note. Data are end-of-period, seasonally adjusted values.

Fig. 2 – Okun's Law Demonstration, 1948–2018, Log-transformed

3.4 Regression Results

Let's estimate regressions for more details on how UR relates to RGDP.

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Jan 10, 2020 - 3:38:01 PM

Based on Table 2, the untransformed model performed better than the log-transformed counterpart (Adjusted R^2 of 12.9% vs. 6.8%, respectively). Both show a negative, linear relationship between the unemployment rate and GDP.

Table 2: Unemployment Rate vs. Real GDP

	$Dependent\ variable:$		
	Unemployment Rate	log(Unemployment Rate)	
	(1)	(2)	
Real GDP LY % Change	-0.239^{***} (0.071)		
log(Real GDP LY % Change)		-0.094^{**} (0.040)	
Constant	6.529*** (0.290)	1.785*** (0.053)	
Observations	71	65	
\mathbb{R}^2	0.141	0.083	
Adjusted R^2	0.129	0.068	
Residual Std. Error	1.519 (df = 69)	0.263 (df = 63)	
F Statistic	$11.344^{***} (df = 1; 69)$	$5.672^{**} (df = 1; 63)$	
Note:	*.	p<0.1; **p<0.05; ***p<0.01	

3.5 Diagnostics

To further check the performance of our models, let us examine the residuals from both models.

Fig. 6 – Model 2 Predicted Values vs. Residuals

4 Conclusion

Based on Figures 1 and 2, as well as the regression results in Table 2, Okun's Law generally still holds to this day: one should note the overall declining trend despite the relatively low Adjusted R^2 values.

5 References

Prachowny, Martin F J, 1993. "Okun's Law: Theoretical Foundations and Revised Estimates," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 331-336, May.

U.S. Bureau of Economic Analysis, Real Gross Domestic Product [GDPC1], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GDPC1, January 10, 2020.

U.S. Bureau of Labor Statistics, Unemployment Rate [UNRATE], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/UNRATE, January 10, 2020.