Applied Probability and Statistics

- ▶ Unit 1: Introduction to Probability
- ▶ Unit 2: Probability Distributions
- ▶ Unit 3: Statistical Inference
- **▶** Unit 4: Introduction to Linear Regression
- ▶ Unit 5: Regression Analysis
- ▶ Unit 6: Regression Modeling

Announcements

► Past:

Unit 3 Team Assignment solutions available and scores posted.

▶ Present:

Unit 4 Individual Assignment due Monday, 23:59 ET (Durham local time).

Future:

Unit 5 materials and team assignment available.

Unit 4: Dependence and Introduction to Regression

▶ Measuring Dependence OF PARS OF UNCERTAINTIES

Covariance: quantifying linear dependence, $\operatorname{Cov}[X,Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

Correlation: measuring the strength of linear dependence, $\operatorname{Corr}(X,Y) = \operatorname{Cov}[X,Y] / \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}$

$$-1 \leq \operatorname{Corr}(X, Y) \leq 1$$

If $Corr(X, Y) \neq 0$, then X and Y are dependent

Unit 4: Dependence and Introduction to Regression

Measuring Dependence

Covariance: quantifying linear dependence,
$$\operatorname{Cov}[X,Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Correlation: measuring the strength of linear dependence, $\operatorname{Corr}(X,Y) = \operatorname{Cov}[X,Y] / \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}$

$$-1 \leq \operatorname{Corr}(X, Y) \leq 1$$

If $Corr(X, Y) \neq 0$, then X and Y are dependent

- Linear regression: population model ${f Y}=eta_0+eta_1{f X}+\epsilon$, where $\epsilon\sim{\sf N}({f 0},\sigma^2_\epsilon)$
 - conceptual description of how Y linearly depends on X
 - regression line: $Y = \beta_0 + \beta_1 X$; error term: $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - Y linearly depends on X only if $\beta_1 \neq 0$
 - accuracy of regression is captured by σ_ϵ (standard deviation of the error term)

Unit 4: Dependence and Introduction to Regression

Measuring Dependence

Covariance: quantifying linear dependence, $\operatorname{Cov}[X,Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

Correlation: measuring the strength of linear dependence,
$$\operatorname{Corr}(X,Y) = \operatorname{Cov}[X,Y] / \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}$$

$$-1 \leq \operatorname{Corr}(X, Y) \leq 1$$

If $Corr(X, Y) \neq 0$, then X and Y are dependent

- **Linear regression: population model** $Y = \beta_0 + \beta_1 + \epsilon$, where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - conceptual description of how Y linearly repen on X
 - regression line: $Y = \beta_0 + \beta_1 X$; error term: $\epsilon \sim N(0, \sigma_\epsilon^2)$
 - Y linearly depends on X only if $eta_1
 eq 0$
 - accuracy of regression is captured by σ_{ℓ} (standard deviation of the error term)
- ▶ Linear regression: sample model $\hat{\mathbf{Y}} = \widehat{\beta_0} + \widehat{\beta_1} \mathbf{X} + \epsilon$, where $\epsilon \sim N(0, \overline{SE}_{reg}^2)$
 - use sample data to estimate the intercept and slope coefficients of the regression line
 - use sample data to estimate the standard deviation of the error term σ_{ϵ}
 - ${\sf SE}_{\sf reg}$ is the estimate of the overall accuracy of the regression, i.e. ${\sf SE}_{\sf reg}$ estimates σ_ϵ
 - each coefficient estimate has its own SE

Data set StocksMonthlyReturns_Data contains monthly returns for APPL and for the SP500 index.

- ▶ Are the Apple monthly returns related to the S&P500 monthly returns?
- ▶ What is the estimate for the regression line equation? What is the standard error of regression?
- \blacktriangleright What is the average change in APPL return if SP return increases by 1%? (marginal rate of change)
- ▶ What is the beta for Apple against the S&P500 index?
- ▶ Confidence that the beta for Apple is larger than one?
- ▶ Confidence that APPL return is positive in a month in which SP return is 10%?

Are the Apple monthly returns related to the S&P500 monthly returns?

Corr(AAPL, SP) = 0.435

Are the Apple monthly returns related to the S&P500 monthly returns?

Corr(AAPL, SP) = 0.435

What is the estimate for the regression line equation? What is the standard error of regression?

- ▶ Population model: $AAPL = \beta_0 + \beta_1 SP + \epsilon$, with $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - **Dependent variable:** AAPL (Monthly return on Apple stocks)
 - Independent variable: SP (Monthly return on the S&P500 index)

What is the estimate for the regression line equation? What is the standard error of regression?

- ▶ Population model: AAPL = $\beta_0 + \beta_1 SP + \epsilon$, with $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - Dependent variable: AAPL (Monthly return on Apple stocks)
 - Independent variable: SP (Monthly return on the S&P500 index)
- ▶ Sample model: $\widehat{AAPL} = 0.016 + (1.289)SP$, with $\epsilon \sim N(0, 0.113^2)$

Dependent Variable: AAPL **Independent Variables:** SP

Regression Statistics						
	R Square	Adj.RSqr	Std.Err.Reg.	# Cases	# Missing	t(2.5%,366)
	0.189	0.187	0.113	368	0	1.966
Summary Table	AAPL = 0.	016 + 1.289	SP			
Variable	Coeff	Std.Err.	t-Stat.	P-value	Lower95%	Upper95%
Intercept	0.016	0.005953	2.673	0.008	0.004204	0.028
SP	1.289	0.140	9.239	0.000	1.015	1.564

What is the estimate for the regression line equation? What is the standard error of regression?

- ▶ Population model: AAPL = β_0 β_1 $P + \epsilon$, with $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - Dependent variable: AARL (Monthly return on Apple stocks)
 - Independent variable: S₱ (Monthly return on the S&P500 index)
- Sample model: $\widehat{AAPL} = (0.016 + (1.289))$ SP, with $\epsilon \sim N(0, 0.113^2)$

Dependent Variable: AAPL **Independent Variables:** SP

Regression Statistics

	R Square 0.189	Adj.RSqr 0.187	Std.Err.Reg. 0.113	# Cases 368	# Missing 0	t(2.5%,366) 1.966
Summary Table	AAPL = 0.	016 + 1.289	SP			
Variable	Coeff	Std.Err.	t-Stat.	P-value	Lower95%	Upper95%
Intercept	0.016	0.005953	2.673	0.008	0.004204	0.028
SP	1.289	0.140	9.239	0.000	1.015	1.564

What is the estimate for the regression line equation? What is the standard error of regression?

- Population model: AAPL = $\beta_0 + \beta_1$ SP + ϵ , with $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - Dependent variable: AAPL (Monthly return on Apple stocks)
 - Independent variable: SP (Monthly return on the S&P500 Index)
- ▶ Sample model: $\widehat{\mathsf{AAPL}} = 0.016 + (1.289)\mathsf{SP}$, with $\epsilon \sim N(0, 0.113^2)$

Dependent Variable: AAPL **Independent Variables:** SP

Regression Statistics

-	R Square 0.189	Adj.RSqr 0.187	Std.Err.Reg. 0.113	# Cases 368	# Missing 0	t(2.5%,366) 1.966
Summary Table Variable	AAPL = 0. Coeff	016 + 1.289 Std.Err.	SP t-Stat.	P-value	Lower95%	Upper95%
Intercept	0.016	0.005953	2.673	0.008	0.004204	0.028
SP	1.289	0.140	9.239	0.000	1.015	1.564

More on the standard error of regression

Standard error of regression:

- ▶ Best guess for the standard deviation of the error term σ_{ϵ} (recall that the error term $\epsilon \sim N(0, \sigma_{\epsilon}^2)$)
- Graphically, it indicates how large the deviations around the regression line are
- \blacktriangleright The smaller σ_{ϵ} the better accuracy of the model predictions

More on the standard error of regression

Standard error of regression:

- ▶ Best guess for the standard deviation of the error term σ_{ϵ} (recall that the error term $\epsilon \sim N(0, \sigma_{\epsilon}^2)$)
- Graphically, it indicates how large the deviations around the regression line are
- ▶ The smaller σ_{ϵ} the better accuracy of the model predictions

In the Apple vs. S&P500 context: Std.Err.Reg = 0.113

- ▶ The standard error of regression is a measure of the unsystematic risk (a.k.a. the idiosyncratic risk)
- ▶ The unsystematic risk is inherent to a specific company and is not explained by fluctuations of S&P500

What is the average change in APPL return if SP return increases by 1%? (marginal rate of change)

▶ Population model: AAPL =
$$\beta_0 + \beta_1$$
SP + ϵ , where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$

$$ARPL_{NEN} = \beta_0 + \beta_1 SP_{NEN} + \mathcal{E}$$

$$= \beta_0 + \beta_1 (SP_{0LD} + 0.01) + \mathcal{E}$$

$$= \beta_0 + \beta_1 SP_{0LD} + \beta_1 (0.01) + \mathcal{E}$$

$$= AAPLDLD + \beta_1 (0.01) + \mathcal{E}$$

$$= AAPLDLD + \beta_1 (0.01) + \mathcal{E}$$

$$= SP_{NEN}$$

$$= Chonoc.$$

AAPL change

What is the average change in APPL return if SP return increases by 1%? (marginal rate of change)

- ▶ Population model: AAPL = $\beta_0 + \beta_1 SP + \epsilon$, where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - If the S&P500 return equals r (that is, if SP = r), then the Apple return is

$$\mathsf{AAPL} = \beta_0 + \beta_1(r) + \epsilon$$

- If the S&P500 return changes to r+0.01 (that is, if SP = r+0.01) and $\epsilon' \sim N(0, \sigma_{\epsilon}^2)$, then the new Apple return is

$$\mathsf{AAPL}_{\mathrm{new}} = \beta_0 + \beta_1(r + 0.01) + \epsilon'$$

- The average change in the Apple return is the expected value of the difference between the Apple returns above:

$$\mathbb{E}\left[\mathsf{AAPL}_{\mathrm{new}} - \mathsf{AAPL}\right] = \beta_1(0.01) + \underbrace{\mathbb{E}\left[\epsilon' - \epsilon\right]}_{=0} = \beta_1(0.01)$$

What is the average change in APPL return if SP return increases by 1%? (marginal rate of change)

- Population model: AAPL = $\beta_0 + \beta_1 SP + \epsilon$, where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
 - If the S&P500 return equals r (that is, if SP = r), then the Apple return is

$$\mathsf{AAPL} = \beta_0 + \beta_1(r) + \epsilon$$

- If the S&P500 return changes to r+0.01 (that is, if SP=r+0.01) and $\epsilon'\sim N(0,\sigma_{\epsilon}^2)$, then the new Apple return is

$$\mathsf{AAPL}_{\mathrm{new}} = \beta_0 + \beta_1(r + 0.01) + \epsilon'$$

- The average change in the Apple return is the expected value of the difference between the Apple returns above:

$$\mathbb{E}\left[\mathsf{AAPL}_{\mathrm{new}} - \mathsf{AAPL}\right] = \beta_1(0.01) + \underbrace{\mathbb{E}\left[\epsilon' - \epsilon\right]}_{=0} = \beta_1(0.01)$$

Best estimate for the average change: estimate β_1 with its point estimate $\hat{\beta}_1 = 1.289$ from the regression output and multiply it with the amount of change c:

The (finance) beta of Apple against the S&P500 index

What is the beta for Apple against the S&P500 index?

- ▶ If c is the change in the S&P500 return, then the best estimate for the average change in the Apple return is equal to (1.289)c (Note: this is regardless of the initial value of the S&P500 return)
- \blacktriangleright Positive or negative changes in APPL tend to be 1.289 times larger than positive or negative changes in SP

1.289 is the beta of Apple against the S&P500 index; it is just the slope of the regression line

The (finance) beta of Apple against the S&P500 index

What is the beta for Apple against the S&P500 index?

- ▶ If c is the change in the S&P500 return, then the best estimate for the average change in the Apple return is equal to (1.289)c (Note: this is regardless of the initial value of the S&P500 return)
- lacktriangle Positive or negative changes in APPL tend to be 1.289 times larger than positive or negative changes in SP

1.289 is the beta of Apple against the S&P500 index; it is just the slope of the regression line

The (finance) beta:

- ▶ The beta is a financial measure of risk that quantifies how the individual investment (APPL) and the market benchmark (SP) returns move together
- ▶ The beta represents the systematic risk of the investment (APPL) that is inherent to the entire market (SP).
- ▶ Beta above 1.0: investment is more risky than the market benchmark
- ▶ Beta below 1.0: investment is less risky than the market benchmark

Confidence that the beta for Apple is larger than one?

Dependent Variable: Independent Variables:	AAPL SP					
Regression Statistics	R Square	Adi.RSar	Std.Err.Reg.	# Cases	# Missing	t(2.5%,366)
	0.189	0.187	0.113	368	0	1.966
Summary Table	AAPL = 0.016 + 1.289 SP					
Variable	Coeff	Std.Err.	t-Stat.	P-value	Lower95%	Upper95%
Intercept	0.016	0.005953	2.673	0.008	0.004204	0.028
SP	1.289	0.140	9.239	0.000	1.015	1.564

Confidence that the beta for Apple is larger than one?

Dependent Variable: AAPL **Independent Variables:** SP

Regression Statistics

	R Square 0.189	Adj.RSqr 0.187	Std.Err.Reg. 0.113	# Cases 368	,, ,	t(2.5%,366) 1.966	
Summary Table	AAPL = 0.		SP t-Stat	P-value	Lower95%	Upper95%	

Variable Coeff Std.Err. t-Stat. Lower95% Upper95% 0.016 0.005953 2.673 0.008 0.004204 0.028 Intercept SP 1.289 0.140 9.239 0.000 1.015 1.564

Confidence that APPL return is positive in a month in which SP return is 10%?

Dependent Variable:	AAPL					
Independent Variables:	SP					
Regression Statistics						
J	R Square	Adj.RSqr	Std.Err.Reg.	# Cases	# Missing	t(2.5%,366)
	0.189	0.187	0.113	368	0	1.966
Forecasted : AAPL		AAPL = 0	.016 + 1.289 SP	1		
	SP	Forecast	StErrFst	Lower95%	Upper95%	
Fcst# 1	0.100	0.145	0.113	-0.078	0.368	

Confidence that APPL return is positive in a month in which SP return is 10%?

Unit 4 Individual Assignment

- ▶ Due Monday, 23:59 ET (Durham local time).
- ▶ Six questions: includes multiple choice and numeric response formats
- ▶ No need to show your work, i.e., no supporting documents needed.

Assignment questions:

- ▶ Question 1: correlation
- ▶ Questions 2-3: sample model estimates (regression line, standard error of regression)
- ▶ Question 4: confidence based on coefficient estimate (about finance beta)
- ▶ Questions 5-6: forecast and confidence based on a forecast