"How Bayesian Persuasion can Help Reduce Illegal Parking and Other Socially Undesirable Behavior" by Penélope Hernández and Zvika Neeman

Han Wang

November 27, 2020

Outline

- An application of Bayesian persuasion: the city can allocate enforcement resourses across different neighborhoods and send messages to deter undesirable behavior, for example, illegal parking.
- Two approaches for addressing this problem:
 - 1. recasting it as a linear programming problem
 - We can identify messages with the set of neighborhoods on which they achieve deterrence (sending recommendations of actions).
 - We only need to consider a certain type of allocation rule: the city allocates its enforcement resources proportionally to the deterrence thresholds.
 - 2. dividing it into two sub-problems: knapsack problem + Baysian persuasion
 - Each neighborhood's action depends on posterior's mean (expected resources).
 - Find an optimal "splitting" into a distribution of posterior's means.

Model

- A city with $N \ge 1$ different neighborhoods.
- The city determines the amount of enforcement resourses in each neighborhood out of the total amount of available resourses r.
 - The distribution of r is r_k , $k \in \{1, ..., K\}$, with probability π_k respectively.
 - We refer to k as the state of the world. The city and drivers have common prior. The city knows the realization of the state, but drivers do not.
- The city can send a message $m \in \{1, ..., M\}$ about the state of the world k.
 - "Public signals": The city sends the same message m to all neighborhoods.
 - A $K \times M$ matrix of information structure: The probability that the city sends message m in state k is $p_k(m) = Pr(m|k)$.
 - The unconditional probability of receiving message m is $Pr(m) = \sum_{k=1}^{K} p_k(m)\pi_k$.
 - The posterior belief upon receiving message m is $Pr(k|m) = \frac{p_k(m)\pi(k)}{\sum_{k'=1}^K p_{k'}(m)\pi(k')}$.
 - The expected resources available conditional on message m is $r(m) = \sum_{k=1}^{K} r_k Pr(k|m)$.
- Denote the amount of resources allocated to enforcement in neighborhood i in state k when the city sends the message m by $a_k^i(m)$.
 - $-a_k^i(m) \equiv 0$, if message m is sent with probability zero in state k.
 - Resource constraint:

In each state $k \in \{1, ..., K\}, \sum_{i=1}^{N} a_k^i(m) \leq r_k$ for every message m.

- Deterrence threshold:
 - Define $a^i(m) \equiv \sum_{k=1}^K a_k^i(m) Pr(k|m)$ as the expected resources in neighborhood i upon receiving message m.

The measure of illegal parking in neighborhood i is a threshold function

$$q^{i}(a^{i}(m)) = \begin{cases} 1 & \text{if } a^{i}(m) < \tau^{i} \\ 0 & \text{if } a^{i}(m) \ge \tau^{i} \end{cases}$$

	m_1	m_2
π_1	1	0
π_2	p	1-p
π_3	0	1

(a) The information structure

(b) The allocation of resources

- Denote the social disutility generated by illegal parking in neighborhood i by s^i .
- The city's objective is to allocate the amounts of enforcement resources and send messages with probabilities so as to minimize the expected social cost of illegal parking

$$\min_{\left\{a_{k}^{i}(m)\right\},\left\{p_{k}(m)\right\}} \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{i=1}^{N} q^{i} \left(a^{i}(m)\right) s^{i} p_{k}(m) \pi_{k}$$

subject to the constraint of information structure and the resource constraint

(1)
$$p_k(m) \ge 0$$
 and $\sum_{m=1}^M p_k(m) = 1$ for every k

(2) In each state
$$k \in \{1, ..., K\}$$
, $\sum_{i=1}^{N} a_k^i(m) \le r_k$ for every message m

First Approach – Linear Programming

- We can think messages as directly instructing receiver's action on whether illegal parking occurs in neighborhood i, i.e., $M = 2^{\{1,\dots,N\}}$, with $\emptyset \in M$.
- Denote the set of neighborhoods on which each message m achieves deterrence by $S(m) \subseteq \{1, ..., N\}$. Deterrence here means $i \in S(m) \iff a^i(m) \ge \tau^i$.
- Proposition Given $\{p_k(m)\}$ and an allocation $\{a_k^i(m)\}$ that satisfy feasibility constraints (1) and (2), the same probabilities together with the allocation $\{(a_k^i)^*(m)\}$ achieves equal or better deterrence than $\{a_k^i(m)\}$.
- Definition: $\{(a_k^i)^*(m)\}$ is a "ratio" rule.
 - For every state k, for every message m that is sent with a positive probability at k, and for every neighborhood $i \in S(m)$,

$$\left(a_k^i\right)^*(m) = \frac{\tau^i}{\sum_{j \in S(m)} \tau^j} \cdot r_k$$

- and for every location $i \notin S(m)$, or messages m that are sent with probability zero,

$$\left(a_k^i\right)^*(m) = 0$$

- This proposition says given an information structure $\{p_k(m)\}\$, $a^{i}(m) \equiv \sum_{k=1}^{K} Pr(k|m) a_{k}^{i}(m) \ge \tau^{i} \implies \sum_{k=1}^{K} Pr(k|m) (a_{k}^{i})^{*}(m) \ge \tau^{i}.$
- Allocation according to this optimal ratio rule minimizes unnecessary waste of enforcement resources.

Recall:

- $\min_{\substack{\{a_k^i(m)\},\{p_k(m)\}}} \sum_{k=1}^K \sum_{m=1}^M \sum_{i=1}^N q^i (a^i(m)) s^i p_k(m) \pi_k, \text{ s.t.,}$ (1) $p_k(m) \ge 0$ and $\sum_{m=1}^M p_k(m) = 1$ for every k(2) In each state $k \in \{1, ..., K\}, \sum_{i=1}^N a_k^i(m) \le r_k$ for every message m.

This problem can be rewritten as:

- $\min_{\{p_k(m)\}} \sum_{k=1}^K \sum_{m=1}^M \sum_{i \in \{1,\dots,N\} \setminus S(m)} s^i p_k(m) \pi_k, \text{ s.t.,}$ $(1) \ p_k(m) \ge 0 \text{ and } \sum_{m=1}^M p_k(m) = 1 \text{ for every } k$ $(2^*) \ \sum_{k=1}^K p_k(m) \pi(k) \left(a_k^i\right)^*(m) \ge \tau^i \sum_{k=1}^K p_k(m) \pi(k) \text{ for every } m \text{ and } i \in S(m).$

Note: S(m) is determined through the condition (2^*) .

$$i \in S(m) \iff \sum_{k=1}^{K} Pr(k|m)(a_k^i)^*(m) \ge \tau^i \iff \sum_{k=1}^{K} \frac{p_k(m)\pi_k}{\sum_{k=1}^{K} p_k(m)\pi_k} (a_k^i)^*(m) \ge \tau^i$$

We have a linear programming exercise with the size of input $K \times 2^N$. It is computationally hard with large N.

Second Approach – Splitting

• Knapsack problem without persuasion

Define
$$D_S(r) = \begin{cases} \sum_{i \in \{1, ..., N\}} s^i & \text{if } r < \sum_{i \in S} \tau^i \\ \sum_{i \in \{1, ..., N\} \setminus S} s^i & \text{if } \sum_{i \in S} \tau^i \le r \end{cases}$$
 and $D(r) = \min_{S \subseteq \{1, ..., N\}} D_S(r)$.

The city's payoff D(r) is a non-increasing step function.

Figure 2: D(r) and the convexification of D(r) from below

• Baysian persuasion problem

- The goal is to split E[r] into a distribution of r(m), $m \in M$.
 - $-E[r] = \sum_{m=1}^{M} Pr(m) \cdot r(m)$, implied by the fact that the mean of posteriors is prior.
 - By Blackwell & Girshick (1954), the distribution of posterior's mean is a meanpreserving contraction of (second-order stochastically donimated by) the prior distribution.
- Main take-away: Baysian plausibility implies that two messages may be not enough.

• An example

- Suppose there are 3 states.
- $(r_1, r_2, r_3) = (0, \frac{1}{2}, 1)$ with prior $(\pi_1, \pi_2, \pi_3) = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$. $E[r] = \frac{1}{2}$.
- Suppose the city has 2 neighborhoods with thresholds $\tau^1 = \frac{1}{2}$ and $\tau^2 = 1$ and social disutilities $s^1 = \frac{1}{4}$ and $s^2 = 1$.

Figure 3: Three messages are better than two

– The optimal deterrence with two messages L and H requires that r(H) = 1 and r(L) as low as possible.

Figure 4: Distribution of posterior's mean

- The lowest possible value of r_L depends on r_H and is given by $\max\left\{\frac{3r_H-2}{8r_H-5},0\right\}$.
 - * $1/2 < r_H \le 2/3$: $r_L < 1/2$ is unrestricted;
 - * $2/3 < r_H < 1$: the lowest possible value of r_L is increasing in r_H ;
 - * $r_H = 1$: then the lowest possible value of r_L is 1/3.
- -r(L) = 1/3. Because $E[r] = \sum_{m=1}^{M} Pr(m) \cdot r(m)$, Pr(L) = 3/4 and Pr(H) = 1/4.
- With two messages: $\frac{3}{4} \cdot \frac{5}{4} + \frac{1}{4} \cdot \frac{1}{4} = 1$.
- With three messages that reveals the state of the world: $\frac{1}{4} \cdot \frac{5}{4} + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot \frac{1}{4} = \frac{7}{8} < 1$.