AUTOMATE LINIARE

S.l. dr. Ing. Vlad-Cristian Miclea

Universitatea Tehnica din Cluj-Napoca Departamentul Calculatoare

- 1) Introducere
- 2) Aritmetica in campuri finite
- 3) Automate Directe
- 4) Automate Inverse
- 5) Functii de transfer rationale
- 6) Automate non-inerte
- 7) Concluzii

PLAN CURS

- Partea 1 VHDL
 - 1. Limbajul VHDL 1
 - 2. Limbajul VHDL 2
 - 3. Limbajul VHDL 3
- Partea 2 Implementarea sistemelor numerice
 - 4. Microprogramare
 - 5. Partea 1 Unitate de comanda exemplu cuptor
 - 5. Partea 2 Unitate de executie exemplu cuptor
- Partea 3 Automate
 - 6. Automate finite
 - 7. Stari
 - 8. Automate sincrone
 - 9. Automate asincrone
 - 10. Identificarea automatelor
 - 11. Automate fara pierderi
 - 12. Automate liniare
- Partea 4 Probleme si discutii

CONTEXT

Cursurile trecute

- Automate finite
 - Abstractizarea circuitelor secventiale
- Stari ale automatelor
- Automate sincrone
- Automate asincrone
- Identificarea automatelor
- Automate fara pierderi
 - Identificarea pierderilor
 - Reconstituirea secventei de intrare

INTRODUCERE

Definiție

- Automatele foarte utile in comunicatii
- De multe ori mesajele trimise trebuie criptate/ascunse
- Un mesaj criptat, depinde de cheie
- Exemplu "simplist"
 - Transmit mesajul "15"
 - Cum stiu care e defapt valoarea transmisa?
 - Poate fi 15, daca numarul e in baza 10;
 - Poate fi 21, daca numarul e in baza 16
- Automate liniare genereaza mesajul + folosim o metoda artimetica pt a stabili "regulile numerelor"

INTRODUCERE

Definiție

- Automatul liniar este o reţea cu un număr finit de intrări şi ieşiri, compusă din interconectarea a 3 componente de bază, fiecare componentă fiind liniară, adică răspunsul la o combinaţie liniară a intrărilor respectă factorul scalar şi principiul superpoziţiei
- Intrările sunt elemente ale câmpului finit Galois GF(p)
 = {0,1, ..., p-1} şi operaţiile efectuate de componentele de bază asupra intrărilor satisfac regulile câmpului
- Aplicaţii: comunicaţii; comprimarea datelor

INTRODUCERE

Inel

- Un set I este inel dacă posedă două operaţii, adunarea şi înmulţirea, care sunt definite pentru orice perechi de elemente din R (∀ a,b ∈ R, a+b şi a x b ∈ R) şi care satisfac următoarele proprietăţi:
 - R conţine un element unic 0
 - fiecare "a" are un element invers
 - asociativitate
 - distributivitate
 - comutativitate a+b = b+a
 - dacă şi a x b = b x a inelul este comutativ

INTRODUCERE

Exemplu

- Inel modulo 4
 - Adunarea modulo 4

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

• Înmulţirea modulo 4

Х	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

INTRODUCERE

Câmp

- Un set C este câmp dacă este inel comutativ şi mai satisface următoarele proprietăţi:
 - există un element neutru, 1, diferit de zero, astfel încât a x 1 = 1 x a
 a
 - pentru \forall a \neq 0 există un element invers **a**⁻¹ sau **1/a** astfelîncât a x a⁻¹ = **1**
- Câmp finit are un număr finit de elemente
 - Observaţie: Inelul modulo 4 definit anterior nu este câmp fiindcă nu are element invers la înmulţire (elementul 2 nu are invers pentru ca a x 2 = 1; de asemenea, 2 x a = 2 are două valori posibile pentrua, a=1 şi a=3)
- Dacă "p" este prim, inelul întregilor "mod p" formează un câmp finit şi se numeşte câmp Galois GF(p) (Exemplu: GF(3) = {0,1,2})

SCHEMA BLOC

COMPONENTE

Componente de bază

■ 1. Element de memorie

$$Y(t) \longrightarrow y(t)$$

$$D \longrightarrow y(t) = Y(t-1)$$

2. Sumator mod p

■ 3. Multiplicator scalar mod p

C este un scalar care aparţine GF(p)

COMPONENTE

- Fiecare componentă de bază este liniară
- Un automat liniar are în fiecare buclă de reacţie cel puţin un element de memorie (care produce o întârziere egală cu intervalul de timp dintre două impulsuri de ceas)
- Numărul de elemente de memorie prezente determină dimensiunea k a automatului
- **Exemplu**: automat liniar mod 3, dimensiunea k=4

Turs Automatel ini

AUTOMATE LINIARE INERTE

- În starea iniţială au în elementele de memorie valoarea 0
- Se folosesc la:
 - codificarea şi decodificarea informaţiei
 - în aplicaţii care necesită transformări de secvenţă

REGISTRE DE DEPLASARE CU LEGĂTURI DIRECTE

Schema bloc

- Dimensiunea = k
- leşirea z este descrisă ca un polinom în D:

$$z = a_0x + a_1Dx + a_2D^2x + ... + a_kD^kx$$

- Dⁱ este un operator de întârziere face operaţia de întârziere i
- **Exemplu**: $z = D^2x$
 - pt. \forall t \geq 2 avem z(t) = x(t-2).

REGISTRE DE DEPLASARE CU LEGĂTURI DIRECTE

Schema bloc

- D⁰ = 1 operaţia de identitate
- D¹ produce o întârziere cu un impuls de ceas
- D^k produce o întârziere cu k impulsuri de ceas
- Ecuaţia pentru z este valabilă numai pentru automate inerte, când:

$$y1(0) = y2(0) = ... = yk(0) = 0$$

■ leşirea se poate scrie:

$$z = (a_0 + a_1D + a_2D^2 + ... + a_kD^k)x$$

■ Funcţia de transfer a automatului este:

$$T(D) = z/x = a_0 + a_1D + a_2D^2 + ... + a_kD^k$$

REGISTRE DE DEPLASARE CU LEGĂTURI DIRECTE

Exemplu

- Câmpul pe care este definit automatul: GF(2)
- Dimensiunea: k = 3
- Scalarul folosit la multiplicare este 1 sau 0 după cum există sau nu există legătură la sumatoarele automatului
- leşirea: z(t) = x(t) + x(t-1) + x(t-3)
- Polinomul corespunzător: $\mathbf{z} = \mathbf{x} + \mathbf{D}\mathbf{x} + \mathbf{D}^3\mathbf{x}$
- Funcţia de transfer: $T = z/x = 1 + D + D^3$

Tipuri de legături

■ 1. Conectare serie

2. Conectare paralelă

 Conectarea automatelor poate reduce numărul elementelor de memorie

Tipuri de legături

- Exemplu
 - $T_1 = D^2 + 2D + 1$ funcţie de transfer pe GF(3) = $\{0,1,2\}$
 - $T_2 = D + 1$ funcție de transfer pe $GF(2) = \{0,1\}$
 - Funcţiile de transfer pentru legarea serie şi paralel:
 - Ts = T_1T_2 = (D² + 2D + 1) (D + 1) = D³ + 2D² + D + D² + 2D + 1 = D³ + 3D² + 3D + 1 = D³ + 1
 - Observaţie: în GF(3) nu există factorul scalar 3!
 - $Tp = T_1 + T_2 = D^2 + 2D + 1 + D + 1 = D^2 + 3D + 2 = D^2 + 2$
 - funcţiile de transfer sunt pe GF(3) → în urma conectării se poate ajunge la un rezultat care poate fi interpretat pe alt GF - în cazul nostru GF(2)

Tipuri de legături

- Exemplu
 - $T_1 = D^2 + 2D + 1$ funcție de transfer pe $GF(3) = \{0,1,2\}$
 - T_2 = D + 1 funcție de transfer pe GF(2) = {0,1}
 - Schemele pentru legarea serie

Răspunsul la impuls

- Definiţie: Răspunsul la impuls h al unui automat liniar inert este răspunsul la o secvenţă de intrare de tipul 100.....0
- Exemplu 1: Răspunsul la impuls a unui registru cu legături directe (înainte): a₀a₁a₂...a₀00...0
 - După cel mult k+1 unități de timp ieşirea registrului k dimensional va fi o secvență de 0
- **Exemplu 2**: Automat inert cu $T = 1 + D + D^3$
 - Răspuns la impuls 110100...0
 - Răspuns la o secvenţă de intrare: 1001 suprapunerea efectelor 1101000000...

```
______
```

00000000...

0000000...

1101000...

1100101000...0

Secvența de ieșire

Secvenţa nulă

- Starea iniţială a unui automat inert este 00000...0
- Dacă se aplică o secvenţă de intrare 000...0 se obţine ieşirea 000... 0
- Există posibilitatea să se găsească o secvenţă de intrare diferită de 0 care să producă o secvenţă de ieşire 0. O astfel de secvenţă de intrare se numeşte secvenţă nulă şi se notează X₀.
- $z = TX_0 = 000...0$
- Orice combinaţie de secvenţe nule este o secvenţă nulă

Secvenţa nulă

- Exemplu 1: Se dă automatul inert cu funcţia de transfer: T = 1 + D + D³ pe GF(2)
- Relaţia pe baza căreia se obţine secvenţa nulă se determină astfel:
 - $0 = (1 + D + D^3)X_0 = X_0 + DX_0 + D^3X_0$

 $|+X_0$ în mod 2

- $X_0 = X_0 + X_0 + DX_0 + D^3X_0 \text{ deci } X_0 = DX_0 + D^3X_0$
- Pe baza ecuaţiei obţinute, elementul prezent al lui X_0 este găsit prin suma modulo 2 (SAU EXCLUSIV) între primul şi al treilea simbol al lui X_0
- Secvenţa nulă X₀ este determinată prin alegerea unei secvenţe arbitrare de lungime k (dimensiunea automatului)

Secvenţa nulă

- Exemplu 1
 - Luăm secvenţa iniţială arbitrară 001 (numărul elementelor de memorie k = 3)
 - Pe baza relaţiei se obţine $X_0 = (001)1101001$
 - După 7 biţi secvenţa nulă se repetă
- Numărul de elemente după care secvenţa nulă se repetă este dat de p^k – 1 (p provine de la GF(p), k este dimensiunea automatului)
 - În exemplu avem 2³ − 1 = 7, unde p = 2 provine de la GF(2), iar k = 3 este dimensiunea automatului, adică numărul elementelor de memorie

Secvenţa nulă

- Exemplu 2: Se dă automatul inert cu funcţia de transfer: T = 1 + 2D² + D³ peGF(3)
- Relaţia pe baza căreia se obţine secvenţa nulă se determină astfel:

$$0 = X_0 + 2D^2X_0 + D^3X_0$$

 $|+2X_0$ în mod 3

$$2X_0 = 2D^2X_0 + D^3X_0$$

| · 2 în mod 3

$$X_0 = D^2X_0 + 2D^3X_0$$

- Alegem secvenţa iniţială arbitrară 111 şi obţinem X_0 = (111)00202122102220010121120111
- Repetiţia are loc după $3^3-1=26$ pentru că suntem pe GF(3) şi dimensiunea automatului este 3

AUTOMATE INVERSE

Considerații generale

- Registrele de deplasare cu legături înainte se folosesc de obicei pentru codificarea informaţiei
- Determinarea unui automat invers, folosit ca şi decodor → dacă există, să se construiască!
- Un polinom T(D) care satisface ecuaţia z = Tx are un polinom invers 1/T(D) dacă există o reţea care să realizeze funcţia $z = (1/T)x = T^{-1}x$
- Considerăm acele automate inverse care realizează operaţia de decodare fără nici o întârziere (simultan)

AUTOMATE INVERSE

Schema automatului invers

- Dacă aplicăm automatului invers răspunsul la impuls al registrului direct (a₀a₁...a_k00...0) se obţine la ieşire 100...00
- Dacă automatul invers este liniar şi inert el decodifică orice mesaj sosit de la automatul original: scalarii negativi sunt întregi pozitivi deoarece (-a)mod p = (p-a)mod p
- Un automat liniar inert descris de un polinom T are un automat invers descris de T-1, care decodifică fără întârziere, dacă şi numai dacă T conţine un termen constant diferit de 0, care e prim faţă de mod p (automatul invers este realizabil numai dacă a₀ este diferit de 0)

AUTOMATE INVERSE

Exemplu

- Avem automatul direct cu funcţia de transfer:
 - $T = 1 + 2D^2 + D^3 peGF(3)$
 - Operaţiile sunt modulo 3
 - Coeficienţii sunt: $a_0 = 1$; $a_1 = 0$; $a_2 = 2$ şi $a_3 = 1$
- Schema automatului direct este:

AUTOMATE INVERSE

Exemplu

- Automatul invers are funcţia de transfer 1/T
 - $T^{-1} = 1/(1 + 2D^2 + D^3)$
- Calculul coeficienţilor pentru automatul invers:

■
$$1/a_0 = 1$$
; $(-a_1) = 3-0 = 0$; $(-a_2) = 3-2 = 1$; $(-a_3) = 3-1 = 2$

Schema automatului invers este:

AUTOMATE NON-INERTE

Generalități

- Automatele liniare non-inerte au elementele de memorie cu condiţiile iniţiale diferite de 0
- Inversul unui automat liniar inert poate să nu fie inert, adică răspunsul la o secvenţă de intrări 0 nu duce necesar la secvenţe de ieşiri 0
- Poate exista o secvenţă nulă X_0 ai cărei biţi de start sunt determinaţi de starea iniţială a automatului invers. Atunci funcţia de transfer a automatului invers este $T^{-1} = x/z$ sau z = Tx = 0, pentru că intrarea z a automatului invers trebuie să fie o secvenţă de 0. În mod evident soluţia ecuaţiei este secvenţa nulă X_0 .

AUTOMATE NON-INERTE

Generalități

- Considerăm automatele liniare direct şi invers, primul cu funcţia de transfer T şi al doilea cu funcţia de transfer T-1
 - Presupunem că se aplică intrări de 0 şi la T şi la T-1
 - Dacă cele două automate sunt inerte, ieşirile vor fi 0
 - Dacă automatele nu sunt inerte, ieşirile respective nu vor fi 0, dar depind de starea iniţială a automatelor
 - Dacă automatul direct conține reacții directe, răspunsul la secvențe de intrare 0 poate să nu fie inițial 0, în funcție de starea inițială
 - În general, pentru automatul direct k dimensional, la secvențe de intrare 0, după k+1 perioade de timp, ieşirea va fi 0
 - În cazul în care registrul nu este inert şi conţine căi inverse T⁻¹, răspunsul la secvenţe de intrare 0 nu e necesar să fie 0

AUTOMATE NON-INERTE

Comportarea autonomă

 Comportarea unui automat liniar non-inert a cărui secvență de intrare este 0 este o comportare autonomă şi poate fi descrisă cu ajutorul unei diagrame de stări a automatului respectiv

Exemplu

Avem automatele direct şi invers cu funcţiile de transfer:

$$T = 1 + D + D^3$$
şi $T^{-1} = 1/(1 + D + D^3)$ pe $GF(2)$

AUTOMATE NON-INERTE

Comportarea autonomă

- Exemplu
 - Avem automatele direct şi invers cu funcţiile de transfer:

$$T = 1 + D + D^3$$
şi $T^{-1} = 1/(1 + D + D^3)$ pe $GF(2)$

AUTOMATE NON-INERTE

Comportarea autonomă

Exemplu

 Evoluţia se face pe impulsul de ceas şi se presupune că automatul este determinist, adică este permisă o singură tranziţie în fiecare stare

Stare actuală T	Stare următoare T	Stare actuală T ⁻¹	Stare următoare T ⁻¹	Х
000	000	000	000	0
001	000	001	101	1
010	001	010	001	0
011	001	011	100	1
100	010	100	010	0
101	010	101	111	1
110	011	110	011	0
111	011	111	110	1

(reg. de deplasare)

Surs Automate Linia

AUTOMATE LINIARE INERTE ŞI FUNCŢII DE TRANSFER RAŢIONALE

Funcția de transfer rațională

- La automatele liniare avem ieşirea ca funcţie de valorile de intrare prezente sau trecute
- Studiem situaţia în care ieşirea depinde şi de un număr finit de ieşiri trecute → se defineşte o funcţie de transfer polinomială care este raţională: T = P(D)/Q(D)

AUTOMATE LINIARE INERTE ŞI FUNCŢII DE TRANSFER RAŢIONALE

Funcţia de transfer raţională pe GF(2)

- Funcţia de transfer raţională pe GF(2) în cazul general:
- T = P(D) / Q(D) = z/x = = $(a_0 + a_1D + ... + a_kD^k) / (1 + b_1D + ... + b_kD^k)$ pe GF(2)
- Observaţie: Q(D) trebuie să conţină 1 pentru a fi realizabilă!
- Exemplu:
 - Considerăm un automat liniar inert a cărui ieşire z este suma modulo 2 a intrării prezente şi a intrărilor anterioare prima, a doua şi a patra, precum şi a ieşirilor anterioare prima şi a treia
 - $z = x + Dx + D^2x + D^4x + Dz + D^3z$ pe GF(2)
 - Funcţia de transfer a unui astfel de automat va fi:
 - $z(1 + D + D^3) = x(1 + D + D^2 + D^4)$
 - $T = z/x = (1 + D + D^2 + D^4) / (1 + D + D^3)$

AUTOMATE LINIARE INERTE ŞI FUNCŢII DE TRANSFER RAŢIONALE

Funcția de transfer rațională

- Exemplu:
 - Construim automatul pe baza funcţiei sale de transfer
 - Automatul ar trebui să aibă 7 elemente de întârziere
 - Minimizăm la un automat cu maximum (grad P, grad Q) celule de memorie D şi obţinem 4 celule de tip D
 - Rescriem ecuația:

$$z + x = x + Dx + D^2x + D^4x + Dz + D^3z + x$$

= $Dx + D^2x + D^4x + Dz + D^3z$

$$z + x = D\{(x + z) + D[x + D(z + Dx)]\}$$

AUTOMATE LINIARE INERTE ŞI FUNCŢII DE TRANSFER RAŢIONALE

Funcția de transfer rațională

- Exemplu:
 - Realizarea este următoarea (desenăm de la sfârşit spre început):

• cu ieşirea z = (x + z) + x

AUTOMATE LINIARE INERTE ŞI FUNCŢII DE TRANSFER RAŢIONALE

Funcția de transfer rațională

- Exemplu:
- Pentru $T^{-1} = x/z = (1 + D + D^3) / (1 + D + D^2 + D^4)$ se obţine schema schimbând sensul intrărilor şi ieşirilor
- Observaţie: Pentru funcţia de transfer pe GF(2), în cazul general se poate determina o expresie pentru x + z
- $x + z = D[(a_1x + b_1z) + D[... + D(a_kx + b_kz)]$ care se poate realiza alternând elementele de întârziere cu sumatoare mod 2

AUTOMATE LINIARE INERTE ŞI FUNCŢII DE TRANSFER RAŢIONALE

Funcția de transfer rațională

■ Exemplu – cazul general:

- Există k elemente de întârziere și cel mult k sumatoare mod 2
- Una dintre intrările în sumatoarele mod 2 este ieşirea elementului de întârziere anterior
- Cealaltă intrare este x sau z sau x + z, în funcție de prezența coeficienților a;
 și b; la numărător, numitor sau și la numărător și la numitor
- Dacă pentru un sumator nu există ca a doua intrare coeficienți a; şi b;, sumatorul dispare
- Pentru sumatorul cel mai din dreapta, a doua intrare este întotdeauna x
- D_{i-1} lipseşte dacă $a_i = b_i = 0$ şi neexistând o intrare, sumatorul i poate fi şters

Automate liniare

- Aritmetica in campuri finite
- Automate Interte
 - Automate Directe
 - Automate Inverse
- Automate non-inerte
- Functii de transfer rationale