# CM1604 Computer Systems Fundamentals

Operating System
Memory Management













## This week ...

- Categories of Operating Systems
- Key functions of Operating System
- Memory Management
  - Logical, Physical addressing
  - Partitioning of memory
  - Memory management techniques
  - Paged memory
  - Virtual memory







## By the end of this lecture, you will:

- Distinguish among different classifications of OS
- List down the key functions of OS
- Define Memory management
- Explain the relationship between physical and logical address
- Compare and contrast different memory management techniques





A system → Software

+ Hardware

Software →

System Software + Application Software

Operating System (OS)  $\Rightarrow$  A System Software







## What is an Operating System

Program that act as a interface between the hardware and the user

Eg: Windows, Linux, Android, RedHat, Mac OS







## How the OS is loaded



On pressing 'Power Button' on a computer

- Perform a POST (Power-On Self Test)
- Read the BIOS (Basic Input Output System)- ROM
- Read Disk Sector Zero
- Read partition Boot Sector
- Loads the OS (OS starts)







## Classification of OS

- Hardware on which they run
- Number of active programs
- Type of the interaction



## Classification of OS - Hardware which they run

- Mainframe computer
  - Used for bulk data processing
  - 1000+ concurrent user
- Minicomputer
  - Step down version of mainframe
  - 100+ concurrent users
- Microcomputer
  - Modern personal computers PC, laptop, mobile devices





## <u>Classification of OS - no. of active programs</u>

- Single-programmed OS
  - Only one program/ process operation
  - MS-DOS
- Multi-programmed OS
  - multiple programs in the memory and switches between
  - modern OSs



## <u>Classification of OS - interaction provided</u>

- Batch processing systems
  - No interaction between the running program and the user
  - Jobs are submitted in batches
- Interactive systems
  - User can interact with the running program
- Real time systems
  - Time critical systems the response time is crucial
  - Military, air traffic control







- Control Flow
- → Data Flow







## Functions of Operating System

- Process Management
- Memory Management
- Disk management
- File Management
- Security
- Control over system performance
- Error detecting aids
- Coordination between other software and users

# Memory Management











## What is computer memory

Where the instruction and information about current active process are being stored

- Working memory of CPU
- Transient

 OS should have techniques to keep track of / manage how the memory is utilized

#### **Memory Management**



## Memory Management

- Allocate memory for process when needed
- Deallocate when no longer needed
- Keep track of the areas of memory which as used
- Enable memory sharing between processes
- Protect the memory allocation of a process from another
- Manage memory swapping between the memory and secondary storage
- Conversion of logical address into physical address







## Logical Address vs Physical Address

Memory is a continuous set of bits referenced by specific addresses

#### **Logical Address:**

Location in the memory relative to the program

#### **Physical Address:**

Actual address in the main memory







## Single Contigious MM

- Apart from the Operating System,
   only one application will be in the memory
- Simplest form of memory management

Operating system

Application program







## Partition MM

- Can accommodate multiple applications in the memory by partitioning the memory
- Two techniques are used
  - Fixed Partition
  - Variable / Dynamic Partition







## Partition MM ...

### **Fixed Partition MM**

- Memory is partitioned into equal sized fixed number of partitions
- Memory may wasted- for smaller programs
- Will not have enough memory for larger programs









# Partition MM ... Variable/Dynamic Partition MM

Partitions are created
 dynamically as per the need
 of the program







## Partition MM ...

- At a given instance, the memory is divided into partitions, some of them are allocated while others are empty
- To keep track of individual memory -

#### **Base Register**

Register that keeps track of the beginning address of the current partition

#### **Bounce Register**

Register that holds the length of the current partition



## Partition MM ...



Base Register A

Bounds Register Length

lf

L < Length





## Partition Selection Algoithms

How to select a partition for a process to accommodate

#### First fit

- Allocate the first empty partition that is size enough to hold the process
  - Fastest

#### **Best fit**

- Allocate the smallest partition that is big enough to hold the process
  - Unused space is minimized

#### **Worst fit**

- Allocate the largest empty partition
  - Leaves larger unused space in the partition







## Partition Selection Algoithms ...

When a process of 80 kB size request for a memory partition

| TTTTCTTCTD | • |
|------------|---|
| OS         |   |
| 150 kB     |   |
|            |   |
| 200 kB     |   |
|            |   |
| 180 kB     |   |
|            |   |
| 90 kB      |   |









## Paged Memory Management

**Process** are divided into fixed sized pages and

stored in memory when loaded

#### Frame

Fixed sized portion of the **main memory** that holds a process page

#### **Page**

Fixed sized portion of a **process** that is stored in the main memory





## Paged Memory Management ...

#### **Demand Paging**

Pages are brought to the memory on demand

#### Page swapping

Brining a page from secondary memory while writing back a page to the secondary memory

#### **Thrashing**

Inefficient process caused due to the continuous page swaps



## Virtual Memory

- Allocating a part of secondary storage (hard disk) as an extension for main memory
- Disk area is ued as swap space
- Addressing used is called as Virtual **Address**





## Memory Map Table (MMT)





Translate: 0000, 5363, 3071, 3072, 3073, 2048, 4196





## Result

•

| Virtual | Physical   |
|---------|------------|
| 0000    | 2048       |
| 5363    | page fault |
| 3071    | 2047       |
| 3072    | 3072       |
| 3073    | 3073       |
| 2048    | 1024       |
| 4196    | page fault |
|         |            |



## REFERENCE

- Dale, N.B. and Lewis, J., 2007. Computer science illuminated. Jones
   & Bartlett Learning.
- http://web.cs.ucla.edu/classes/fall14/cs111/scribe/15e/index.html





## **READING**

Chapter # 10

Computer science illuminated. Jones & Bartlett Learning.