Skriftlig eksamen på økonomistudiet LINEÆRE MODELLER

Tirsdag d.17 december 2013.

(3 timers skriftlig eksamen. Alle sædvanlige hjælpemidler er tilladt, dvs. bøger, noter osv., men lommeregner og andre elektroniske hjælpemidler er ikke tilladt.)

Eksamenssproget er dansk.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

2013V-2LM ex

Eksamen i Lineære Modeller

Tirsdag d.17 december 2013.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

I \mathbb{R}^n er der givet to lineært uafhængige vektorer u_1 og u_2 . Lad u_3 og u_4 være givet ved $u_3 = 2u_1 + 2u_2$ og $u_4 = u_1 - u_2$. Vi kalder span $\{u_1, u_2, u_3, u_4\} = U$

- (1) Vis at u_1, u_2 er en basis for U, samt at span $\{u_1, u_2, u_3, u_4\} = \text{span}\{u_3, u_4\}$.
- (2) Bestem koordinaterne for vektoren $v=\alpha u_3+\beta u_4$ med hensyn til basen u_1,u_2 i U .
- (3) Lad en lineær afbildning $L: U \to U$ være givet ved $Lu_1 = u_2 + u_3$, $Lu_4 = u_1 u_3$. Bestem matricen hørende til L med hensyn til basen u_1, u_2 for U.
- (4) Gør rede for, at L er invertibel.
- (5) Bestem Lu_3 og $L^{-1}(u_1 u_3)$.

Opgave 2.

Om en symmetrisk, 3×3 -matrix A, vides, at den har tre forskellige egenværdier a, b og c, med tilhørende egenvektorer (1, -1, 1), (1, 0, -1) og (x_1, x_2, x_3) .

- (1) Bestem en mulig egenvektor (x_1, x_2, x_3) , hørende til egenværdien c.
- (2) Bestem matricen A.
- (3) Bestem matricen f(A), hvor f er en reel funktion defineret på spektret for A.
- (4) Bestem determinanten for f(A).
- (5) Gør rede for, at matricen e^A er veldefineret, samt invertibel.

Opgave 3.

- (1) Beregn integralet $\int \cos^2(x) \sin(2x) dx$.
- (2) Løs den komplekse førstegradsligning (2+i)z (3+4i) = (1+2i)z. Løsningen ønskes angivet på rektangulær form a+ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} e^{n(x^2+x-2)}.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f, og undersøg om funktionen er injektiv.
- (4) Løs ligningen $f(x) = \frac{e}{e e^{-1}}$ (med hensyn til x).