Mathématiques Discrètes

Exercices du chapitre 3

1) Soient les ensembles $E = \{a, b, c, d\}$ et $F = \{x, y, z, t, v\}$ et les applications $f_i: E \to F$, i = 1..3 définies par le tableau ci-dessous :

	f_1	f_2	f_3
а	х	ν	Z.
b	Z	х	х
С	у	у	t
d	х	Z	ν

- a) Dire quelles applications sont injectives, surjectives ou bijectives;
- b) Si on pose $A = \{a, b, c\} \subset E$ et $B = \{x, y, z\} \subset F$, calculer $f_i(A)$ et $f_i^{-1}(B)$;
- 2) Soit la fonction double

$$f: \mathbb{N} \longrightarrow \mathbb{N}$$

$$n \mapsto 2n$$
et $A = \{1, 2, 3, 4, 5\}$

- a) calculer $f(A), f(f(A)), f^{-1}(A), f(f^{-1}(A)), f^{-1}(f(A)), f(\mathbb{N}), f^{-1}(\mathbb{N})$.
- b) la fonction f est-elle injective, surjective?
- 3) Soit $f(x) = x^2 + 2x + 1$; calculer $f(x^2)$, f(x-1), f(1/x), f(x+1/x), f(f(x)).
- 4) Soit $f(x) = 3 x^2$; étudier la fonction f et dire pourquoi $f: \mathbb{R} \to \mathbb{R}$ n'est ni injective, ni surjective. Donner deux sous ensembles A et B de \mathbb{R} tels que $f: A \to B$ soit bijective.
- 5) Soit $f(x) = \frac{2x+4}{3x-3}$; donner deux sous ensembles A et B de \mathbb{R} tels que $f: A \to B$ soit bijective. Donner alors sa réciproque.
- 6) Soit l'ensemble $E = \{-2, -1, 0, 1, 2\}$ et l'on considère la fonction f définie sur le produit cartésien $E \times E$ par

$$f: E \times E \longrightarrow \mathbb{Z}$$

$$(x, y) \longmapsto x + y$$

$$f(E \times E) \quad f(\{2\} \times E) \quad f^{-1}$$

- a) Donnez les ensembles $f(E \times E)$, $f(\{2\} \times E)$ et $f^{-1}(\{0\})$.
- b) Dites, en justifiant vos réponses si f est injective et/ou surjective.
- 7) Parmi les relations suivantes, lesquelles sont des relations d'équivalence ?
 - a) Sur \mathbb{N} , xRy si |x-y| est impair;
 - b) Sur l'ensemble des cercles du plan, cRc' si c et c' sont concentriques ;
 - c) Sur l'ensemble des cercles du plan, cRc' si c et c' sont sécants ;
 - d) Sur l'ensemble des mots français, MRM' si M et M' sont des anagrammes.

Mathématiques Discrètes

8) Soit la relation R sur l'ensemble $E = \{a, b, c, d\}$ donnée par le tableau suivant :

R	a	b	c	d
a	X		X	
b		X	X	
c			X	
d			X	X

Dites en justifiant vos réponses si cette relation est :

- a. une application de E dans E;
- b. une relation d'équivalence sur E;
- c. une relation d'ordre sur E;
- 9) On considère les diagrammes de Hasse suivant :

- a) Quelles sont les flèches inutiles ?
- b) Donnez la représentation cartésienne de ces relations d'ordre. Est-ce un ordre total, partiel ? Justifiez vos réponses.
- c) Quels sont les éléments maximaux, minimaux, plus petit élément, plus grand élément ?
- 10) Les représentations cartésiennes suivantes sont-elles des relations d'ordre ? Si oui, dessiner le diagramme de Hasse. L'ordre est-il total ou partiel ? Donner les éléments minimaux, maximaux, plus grand élément et plus petit élément

R	a	b	c	d	e	f
a	X					
b	X	X		X	X	
c	X		X	X	X	X
d				X		
e	X			X	X	X
f		X				X

R	a	b	c	d	e	f
a	X		X			
b		X	X		X	X
c			X			
d	X	X	X	X	X	X
e			X		X	
f			X			X