IVCL

Basic Summary of Super Resolution

백전능

Apply Deep Learning

Regression

Apply Deep Learning

Classification

Apply Deep Learning

Detection, Segmentation, Tracking

Image generation

Input: floating city street

Super Resolution

SR(super resolution): Upsampling with deep learning

Necessity of SR

- Noise occur during image, video transmission.
- Some image, video may be of low quality in the original
- SR is required to improve the resolution of image, video

SR Loss Function

L1 (MAE)

$$\mathcal{L}_{\text{pixel_l1}}(\hat{I}, I) = \frac{1}{hwc} \sum_{i,j,k} |\hat{I}_{i,j,k} - I_{i,j,k}|$$

■ L2 (MSE)

$$\mathcal{L}_{\text{pixel} \perp 12}(\hat{I}, I) = \frac{1}{hwc} \sum_{i,j,k} (\hat{I}_{i,j,k} - I_{i,j,k})^2$$

SR Assessment

PSNR (Peak Signal-to-Noise Ratio)

PSNR =
$$10 \cdot \log_{10} \left(\frac{L^2}{\frac{1}{N} \sum_{i=1}^{N} (I(i) - \hat{I}(i))^2} \right)$$

SSIM (Structural Similarity)

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

SR Frameworks

- Pre-upsampling
 - Traditional upsampling method
 - cost of time and space

conv

- Post-upsampling
 - learnable upsampling layer
 - end-to-end, high efficiency

Upsampling Method

- Interpolation
 - Traditional upsampling method
 - Nearest Neighbor, Bilinear, Bicubic, etc...

100	102	_	100	102	100	101	102
110	106				105	104	104
			110	106	110	108	106

Upsampling Method

- Transposed Convolution Layer
 - Learning-Based Upsampling
- 3x3 6x6

 (a) Starting (b) Expanding (c) Convolution (a) Starting (b) Convolution (c) Reshaping

Pixel Shuffle Layer

- Learning-Based Upsampling

SR Network: SRCNN

CNN(Convolutional Neural Network)

SR Network: SRCNN

- Light weight structure
- Fast learning speed

SR Network: VDSR

- Residual Learning
 - -Reduce the impact of vanishing gradients
 - -Deeper neural network design

SR Network: VDSR

- Multi scale factor
- Deeper neural networks due to residual learning
- Fast convergence due to high learning rates

SR Network: SRResNet, SRGAN

GAN (Generative Adversarial Network)

SR Network: SRResNet, SRGAN

For HVS(Human Visual System), use perceptual loss instead of MSE

SR Network: EDSR

Residual block modification

SR Performance Comparison

Models	$PSNR/SSIM(\times 4)$	Train data	Parameters	Mult&Adds
SRCNN_EX [48]	30.49/0.8628	ImageNet subset	57K	52.5G
ESPCN [49]	30.90/-	ImageNet subset	20K	1.43G
VDSR [61]	31.35/0.8838	G200+Yang91	665K	612.6G
DRCN [63]	31.53/0.8838	Yang91	1.77M(recursive)	17974.3G
DRRN [70]	31.68/0.8888	G200+Yang91	297K(recursive)	6796.9G
LapSRN [84]	31.54/0.8855	G200+Yang91	812K	29.9G
SRResNet [68]	32.05/0.9019	ImageNet subset	1.5M	127.8G
MemNet [76]	31.74/0.8893	G200+Yang91	677K(recursive)	2265.0G
RDN [78]	32.61/0.9003	DIV2K	22.6M	1300.7G
EDSR [71]	32.62/0.8984	DIV2K	43M	2890.0G
MDSR [71]	32.60/0.8982	DIV2K	8M	407.5G
DBPN [90]	32.47/0.898	DIV2K+Flickr+ ImageNet subset	10M	5715.4G

Thank you for listening.