

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

QUESTION BANK

Department	INFOR	INFORMATION TECHNOLOGY			
Course Title	THEOR	Y OF COMP	UTATION		
Course Code	AITC04				
Program	B.Tech				
Semester	IV	IV			
Course Type	Core	Core			
Regulation	UG-20				
		Theory		Pract	ical
Course Structure	Lecture Tutorials Credits Laboratory Credits				
	3 1 4				
Course Coordinator	Dr.U Siv	Dr.U Sivaji, Associate Professor			

COURSE OBJECTIVES:

The students will try to learn:

I	The fundamental knowledge of automata theory which is used to solve computational problems.
II	TThe reorganization of context free language for processing infinite information using push down automata
III	The computer based algorithms with the help of an abstract machine to solve recursively Enumerable problems.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of deterministic finite automata and non deterministic finite automata for modeling lexical analysis and text editors.	Apply
CO 2	Extend regular expressions and regular grammars for parsing and designing programming languages.	Understand
CO 3	Illusrate the pumping lemma on regular and context free languages for perform negative test.	Understand

CO 4	Demonstarte context free grammars, normal forms for generating	Understand
	patterns of strings and minimize the ambiguity in parsing the given	
	strings.	
CO 5	Construct push down automata for context free languages for	Apply
	developing parsing phase of a compiler.	
CO 6	Apply Turing machines and Linear bounded automata for	Apply
	recognizing the languages, complex problems.	

QUESTION BANK:

Q.No	QUESTION	Taxonomy	How does this subsume	$\mathbf{CO's}$		
			the level			
		MODULE	I			
	FINITE AUTOMATA					
PAI	RT A-PROBLEM SOLVIN	G AND CRI	FICAL THINKING QUEST	ΓΙΟΝS		
1	Describe NFA for accepting	Understand	This would require the	CO 1		
	any binary string that		learner to recall the Non			
	contains 11 as a substring		Deterministic finite			
	and Convert to DFA.		automata and discuss the			
			steps for the construction of			
			NFA and the conversion of			
			NFA to DFA.			
2	Convert NFA with ϵ to	Understand	This would require the	CO 1		
	equivalent DFA		learner to recall the finite			
	\ \rightarrow \bar{b}		automata and show the			
			steps for the conversion of			
	$ \longrightarrow (q_0) \xrightarrow{a} (q_1) \xrightarrow{\varepsilon} (q_2) $		NFA with ϵ to DFA.			
3	Describe a DFA that any	Understand	This would require the	CO 1		
	given decimal number is		learner to recall the			
	divisible by 5		Deterministic finite			
			automata and discuss the			
			steps for the construction of			
			DFA.			
4	Describe a DFA for the	Understand	This would require the	CO 1		
	followinglanguage		learner to recall the			
	$L=\{w/ w \mod 5=0,w$		Deterministic finite			
	belongs to $(a,b)^*$		automata and discuss the			
	$L=\{w/ w \mod 5=1,w$		steps for the construction of			
	belongs to $(a,b)^*$		DFA.			

5	Convert NFA with ϵ to equivalent NFA M=({q0,q1,q2},{0,1,2}, δ , q0, {q2}) where δ is given by [δ (q0,0)={q0}, δ (q0,1)= ϕ , δ (q0,2)= ϕ , δ (q1,0)= ϕ , δ (q1,1)=q1, δ (q1,2)= ϕ , δ (q1, ϵ)=q2] [δ (q2,0)= ϕ , δ (q2,1)= ϕ , δ (q2,2)= {q2}, δ (q2, ϵ)= ϕ].	Understand	This would require the learner to recall the finite automata, and show the steps for the conversion of NFA with ϵ to NFA.	CO 1
6	Demonstrate NFA that strings such that the third symbol from the right end is a 0 over an alphabet $\sum = \{0,1\}$. And Convert it into equivalent DFA.	Understand	This would require the learner to recall the Non Deterministic finite automata and discuss the steps for the construction of NFA and the conversion of NFA to DFA.	CO 1
7	Convert the NFA to equivalent DFA, as shown in fig. below a, b q b q q d p	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA to DFA.	CO 1
8	Describe the transition Table for the below NFA and then convert its equivalent transition diagram for DFA.	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA to DFA.	CO 1

9	Describe a DFA that will accept those words from $\Sigma = \{a, b\}$ where the number of a's is divisible by two and the number of b's is divisible by three. Sketch the transition table of the finite automata.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO 1
10	Describe a DFA that will accept those words from alphabets $\sum = \{a, b\}$ where the number of bs is divisible by three. Sketch the transition table and diagram of the finite Automata.	Understand	This would require the learner to recall the finite automatand discuss the steps for the construction of DFA.	CO 1
11	Design a Moore machine for a binary input sequence such that if it has a substring 101, the machine output A, if the input has substring 110, it outputs B otherwise it outputs C.	Understand	This would require the learner to recall the finite automat and discuss the steps for the construction of Moore machine.	CO 1
12	Design a Mealy machine for a binary input sequence such that if it has a substring 101, the machine output A, if the input has substring 110, it outputs B otherwise it outputs C.	Understand	This would require the learner to recall the finite automata and discuss the steps for the construction of mealy machine.	CO 1
			R QUESTIONS	~ .
1	Explain the concept of alphabet, string and language with suitable examples each.	Understand	This would require the learner to recall the finite automata and discuss with the basic example.	CO 1
2	Give a brief note on deterministic finite automaton and non-deterministic finite automaton with example each.	Understand	This would require the learner to recall the finite automata and discuss the steps for the construction of DFA and NFA	CO 1
3	List out the various differences between DFA and NFA	Remember	-	CO 1

4	Describe how various rules used for construction of ϵ NFA with suitable example and also write th steps for NFA with ϵ to NFA conversion with an example.	Understand	-This would require the learner to recall the finite automata and show the steps for the conversion of NFA with ϵ to NFA.	CO 1
5	Describe a a procedure for converting NFA to DFA with suitable example and also discuss about discuss about Finite Automata with Epsilon- Transitions	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO 1
6	Define Regular Expression? what are the rules of Regular Expression and what operations performed on Regular Expression each with an example.	Remember	-	CO 1
7	Construct a DFA for the Regular expression $(0+1)^*$ $(00+11)$ $(0+1)^*$.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1
8	Design deterministic finite automata (DFA) for the following languages shown below $\Sigma = \{a,b\}$ a) L={w w is any string that max 3 a's and any number of b's} b) L={w w is any string that contain atmost three a's}	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1
9	Convert the following NFA with ϵ to NFA. 0 1 2 0 ϵ	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA with ϵ to NFA	CO 1

10	Describe Finite Automata and draw FA for the strings over an alphabet ∑ = { 0,1} a. The string with even number of 0's and even number of 1's b. The string with odd number of 0's and odd number of 1's	Understand	This would require the learner to recall the finite automata and discuss the steps for the construction of FA	CO 1
11	Describe a DFA, the language recognized by the Automaton being L={w w contains either the substrings ab or ba}.Draw the transition table.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of FA	CO 1
12	Convert the following NFA into DFA a, b p q0 b q1 q2	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA to DFA.	CO 1
13	Design a DFA for the following language $L=\{ w \bmod 3=0, w \text{ belongs} $ to (a,b)*} $L=\{ w \bmod 3=1, w \text{ belongs} $ to (a,b)*}	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1
14	Describe a DFA for the following language over an alphabet $\Sigma = \{0,1\}$ a) The string with odd number of 0's and even number of 1's b) The string with even number of 0's and odd number of 1's	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1

15	Convert the following NFA into equivalent DFA.	Understand	This would require the learner to recall the Deterministic finite automata and show the steps for the conversion of NFA to DFA.	CO 1
16	Convert the following NFA with ϵ to NFA without ϵ	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA- ϵ to DFA.	CO 1
17	Design ϵ -NFA for Regular Language L = $(0+1)*(00 +$ 11) and L = ab + ba	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1
18	Convert the following NFA with ϵ to NFA.	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA- ϵ to DFA.	CO 1
19	Draw transition diagram and also transition table for language that accepts all strings of length at least 2.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1

20	Design a mealy machine that scans sequence of input of 0 and 1 and generates output 'A' if the input string terminates in 00, output 'B' if the string terminates in 11, and output 'C' otherwise.	Understand	This would require the learner to recall the finite automata and discuss the steps for the Mealy machine	CO 1
21	Design a Moore machine with the input alphabet {0, 1} and output alphabet {Y, N} which produces Y as output if input sequence contains 1010 as a substring otherwise, it produces N as output	Understand	This would require the learner to recall the finite automata and discuss the steps for generation of moore machine	CO 1
22	Compare between Mealy	Understand	This would require the	CO 1
	Machine and Moore		learner to recall the finite	
	Machine with examples.		automata and discuss the	
			Difference between Mealy	
			Machine moore machine	
			ER QUESTIONS	00.1
1	Define DFA.	Remember	-	CO 1
2	Differentiate between DFA and NFA.	Understand	This would require the learner to textbfrecall the finite automata and textbfexplain the differences between NFA and DFA	CO 1
3	Define the String with an example.	Remember	-	CO 1
4	Define transition function of DFA.	Remember	-	CO 1
5	Define NFA with ϵ -transitions.	Remember	-	CO 1
6	Define power of an alphabet (\sum^*) .	Remember	-	CO 1
7	List the applications of finite automata.	Remember	-	CO 1
8	Define Null string.	Remember	-	CO 1
9	Define Kleene Star?	Remember	-	CO 1
10	Define NFA with example.	Remember	-	CO 1
11	Describe transition diagram for DFA accepting string ending with 00	Remember	-	CO 1

12	Describe DFA for a string accepting odd number of 1's and even number of 0's.	Remember	-	CO 1	
13	Describe transition diagram for DFA to accept exactly one 'a' defined over an alphabet $\Sigma = \{a,b\}$.	Remember	-	CO 1	
14	Demonstrate DFA for odd number of 1's.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1	
15	Define ϵ - closure.	Remember	-	CO 1	
16	Describe FSM and its structure with an example.	Remember	-	CO 1	
17	State the Mathematical definition of Finite Automata.	Remember	-	CO 1	
18	Demonstrate DFA for even number of 1's.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1	
19	State the reasons of NFA's with epsilon moves more powerful than NFA's without epsilon moves	Remember	-	CO 1	
20	Demonstrate DFA for the language accepting strings which contains 001 as substring.	Understand	his would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA	CO 1	
21	Define Mealy Machine with example.	Remember	-	CO 1	
22	Define Moore Machine with example.	Remember	-	CO 1	
		MODULE	II		
		ULAR LANC			
PA	PART-A PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS				

1	Convert Regular Expression [ab + (b + aa)b* a] to Finite Automata.Draw the Transition Table For NFA	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO 2
2	convert the given finite automata to regular expression.	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO 2
3	Describe Pumping Lemma for Regular Languages. Prove that the language $L = \{a^i b^i \mid i >= 0\}$ is not regular	Understand	This would require the learner to recall the Regular Languages and show the steps for for the checking the language is not regular.	CO 2
4	Describe the DFA Transition diagram for equivalent Regular expression (bb)*(aa)*	Understand	This would require the learner to recall the Regular Expression and show the steps for for the conversion of Regular Expression to Deterministic Finite Automata	CO 1
5	Convert the following Regular Expression $(0 + 1)*(00 + 11)$ to epsilon NFA.	Understand	This would require the learner to recall the Regular Expression and show the steps for for the conversion of Regular Expression to Deterministic Finite Automata	CO 2
6	Convert the following Regular expression (0+1)*(01+110)10 + (0 + 11)0*1 to DFA.	Understand	This would require the learner to recall the Regular Expression and show the steps for for the conversion of Regular Expression to Non Deterministic Finite Automata	CO 1

7	Convert the following automata into Regular expression $M=(\{q1,q2,q3\},\{0,1\}, \delta, q1, \{q2,q3\})$ where δ is given by $[\delta \ (q1,0)=\{q2\}, \delta \ (q1,1)=\{q3\}]$ $[\delta \ (q2,0)=\{q1\}, \delta \ (q2,1)=\{q3\}]$ $[\delta \ (q3,0)=\{q2\}, \delta \ (q3,1)=\{q2\}]$	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Expression.	CO 2
8	Describe the following language is not regular $i)L = \{ a^n b^n \mid n \text{ is a positive integer } \}$ over alphabet $\sum = \{ a,b \}$ ii) $L = \{ a^n b^{2n} \mid n \ge 0 \}$	Understand	This would require the learner to recall the Regular Languages and show the steps for the checking the language is not regular.	CO 2
9	Convert the automata in which strings end with 101 over an alphabet $\sum = \{0,1\}$ to the Left Linear Grammar and Right Linear grammar.	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Grammars.	CO 2
10	Convert the following Finite Automata to regular expression.	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Expression.	CO 1
	PART-B LO	NG ANSWE	R QUESTIONS	
1	Convert Regular Expression 01* + 1 to Finite Automata.	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO 1

2	Convert Regular Expression 01* + 1 Right linear, Left linear Regular Grammars	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Regular Grammars.	CO 2
3	Describe Regular expression? Simplify the following Regular Expression $i)\epsilon+1*(011)*(1*(011)*)*=(1+011)*$ $ii)(0+11*0)+(0+11*0)(10+10*1)*(10+10*1)*=1*0(10+10*1)*$	Remember	-	CO 2
4	Convert the given Finite Automata (a+b)*ab* to Regular grammar.	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Grammar.	CO 1
5	Convert the given Finite Automata 0*11(0+1)*to Regular grammar .	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Grammar.	CO 1
6	Describe Regular expression, Regular set and Finite Automata. Distinguish those with example representations.	Remember	-	CO 2
7	Convert Regular Expression $(0+1)*00(0+1)*$ to the Finite Automata(NFA- ϵ).	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO 2
8	Convert Regular Expression $(b+aa)*a*$ to Finite Automata(NFA- ϵ).	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO 2

9	State Pumping Lemma for Regular Languages with a suitable example and also write about the identity rules of Regular Expressions.	Remember	-	CO 2
10	Convert given Regular expression ($a^* + b^*$) to NFA- ϵ .	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO 2
11	Convert the following automata into Regular expression $M=(\{q1,q2,q3\},\{0,1\}, \delta, q1, \{q1\})$ where δ is given by $[\delta \ (q1,0)=\{q1\}, \delta \ (q1,1)=\{q2\}]$ $[\delta \ (q2,0)=\{q3\}, \delta \ (q2,1)=\{q2\}]$ $[\delta \ (q3,0)=\{q1\}, \delta \ (q3,1)=\{q2\}]$	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular expression	CO 2
12	Describe Pumping lemma. Prove that the language $L=\{ww^ry\mid w,y$ belongs $\{0,1\}^+\}$ is not regular.	Remember	-	CO 2
13	Describe Regular grammar? Explain the types of regular grammar with examples.	Remember	-	CO 2
14	IIustrate the steps for conversion of regular grammar to finite automata? Construct the FA for the following grammar S→aS/bA/b, A→aA/bS/a	Understand	This would require the learner to recall the Regular Grammar and show the steps for the conversion of Regular Grammar to Finite Automata.	CO 2
15	Convert the given Regular Expression $10 + (0 + 11)0^*$ 1 to FA and convert it into NFA.	Remember	-	CO 2

16	Show that the following languages is not regular $L = \{a^n b^n n \ge 1\}$ $L = \{a^P p \text{ is prime}\}$	Remember	-	CO 2
17	Convert the following regular expression to Regular grammar $(0+1)*00(0+1)*$	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Regular Grammar.	CO 2
18	Describe the Left Linear Grammar for the strings start with 'a' over an alphabet $\sum = \{a,b\}$.	Remember	-	CO 2
19	Illustrate the steps for conversion from Finite Automata to Regular Expression with example?	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Expression.	CO 1
20	Describe Pumping lemma. Prove that the language is reular $L = \{xww^r y w,x,y \text{ belongs to } \{a,b\}^+\}$	Remember	-	CO 3
	PART-C SHO	ORT ANSWI	ER QUESTIONS	
1	Define Regular Languages.	Remember	-	CO 2
2	List out any two applications of regular expression.	Remember	-	CO 2
3	Define Pumping Lemma for Regular Languages.	Remember	-	CO 3
4	Show an example for a regular set?	-	CO 2	
5	Define the Regular Expression for the empty string.	Remember	-	CO 2
6	Describe regular expression for denoting language containing empty.	Understand	This would require the learner to recall regular languages and explain the regular expressions for given laguage.	CO 2
7	Define right linear grammars.	Remember	-	CO 4

8	Show the Regular Expression for the set of	Remember	-	CO 2	
	binary strings.				
9	Define Regular grammars.	Remember	-	CO 3	
10	List out the advantages of regular expressions.	Remember	-	CO 2	
11	Define Regular set?	Remember	-	CO 2	
12	Describe regular expressions for the Set of strings over 0, 1 whose last two symbols are the same.	Understand	This would require the learner to recall strings, regular expressions and explain the regular expressions for given set of strings.	CO 2	
13	Describe the regular language generated by regular expression $(0+1)*001(0+1)*$.	Understand	This would require the learner to recall regular expressions and explain the languages for given expression.	CO 2	
14	List the difference between left linear and right linear grammars.	Remember	-	CO 4	
15	Describe the Regular Expression to generate at least one b over $\Sigma = \{a,b\}$	Understand	This would require the learner to recall regular sets and explain the regular expression for given regular set.	CO 3	
16	Describe that following languages are not regular $L=\{a^nb^m n, m \text{ and } n < m \}$	Remember	-	CO 2	
17	Describe that following languages are not regular $L=\{a^n \text{ n is a perfect square }\}$	Remember	-	CO 2	
18	Define Regular Expression for even number of 0's.	Remember	-	CO 2	
19	Define Regular Expression for odd number of 0's.	Remember	-	CO 2	
20	Define Regular Expression for the regular sets consists strings having two consecutive a's.	Remember	-	CO 2	
		MODULE 1			
	CONTEXT FREE GRAMMARS				

CONTEXT FREE GRAMMARS

PA	PART A-PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS				
1	Describe a grammar for valid expressions over operator - and /. The arguments of expressions are valid identifiers over symbols a,b, 0 and Derive Left Most Derivation and Right Most Derivation for string W= (a11-b0) / (b00-a01). Draw parse tree for Left Most Derivation.	Understand	This would require the learner to recall the context free grammars and explain the left most derivation and Right most derivation	CO 3	
2	Describe Leftmost Derivation., Rightmost Derivation, Derivation Tree for the following grammar with respect to the string aaabbabbba. $S\rightarrow aB \mid bA$, $A\rightarrow aS \mid bBA \mid a$, $B\rightarrow bS \mid$ $aAB \mid b$	Understand	This would require the learner to recall the context free grammars and explain the left most derivation and Right most derivation.	CO 3	
3	Convert the following grammar into GNF $S\rightarrow ABA/AB/BA/AA/B$ $A\rightarrow aA/a, B\rightarrow bB/b$	Understand	This would require the learner to recall the context free grammars and explain the steps for the conversion of the CFG to GNF.	CO 4	
4	Describe the context free grammars in the four tuple form.(V,T,P,S) for the given languages on ∑={a,b} i. All strings having at least two a's ii. All possible strings not containing triple b's	Understand	This would require the learner to recall the context free grammars and explain the CFG for the given set of strings.	CO 4	
5	Describe the string "aabbabba" for leftmost derivation and rightmost derivation using a CFG given by $S\rightarrow Ab Ba$ $A\rightarrow a aS Baa$ $B\rightarrow b bS aBB$	Understand	This would require the learner to recall context free grammars and explain the rleft most derivation and Right most derivation	CO 4	

6	Describe the minimized CFG productions for CFG S→Ab Bb , A→a aS Baa B→b bS aBB	Understand	This would require the learner to recall context free grammars and explain the steps for the minimization of the CFG.	CO 4
7	Convert the following grammar into GNF $A1\rightarrow A2A3$, $A2\rightarrow A3A1 \mid b$, $A3\rightarrow A1 \mid A2 \mid a$	Understand	This would require the learner to recall context free grammars and explain the steps for the conversion of the CFG to GNF	CO 4
8	Convert the following grammar into Chomsky Normal form $L(G)$ – $S\rightarrow AaA \mid CA \mid$ $BaB,A\rightarrow aaBa \mid CDA \mid aa \mid$ $DC,B\rightarrow bB \mid bAB \mid bb \mid$ $aS,C\rightarrow Ca \mid bC \mid D,D$ $\rightarrow bD \mid A$	Understand	This would require the learner to recall context free grammars and explain the steps for the conversion of the CFG to CNF.	CO 4
9	Describe the steps to show the following is not CFG. L= $\{ a^n b^n c^n \mid n \ge 0 \}$	Understand	This would require the learner to recall context free grammars and explain the steps for the checking of the given grammar is CFG or not.	CO 4
10	Describe the CFG for the language $L=\{a^nb^{2n}\text{where} \\ n\geq 1\}$ and Explain the steps for the minimization of the CFG	Understand	This would require the learner to recall context free grammars and explain the for the minimization of the CFG"	CO 4
	PART-B LO	NG ANSWE	R QUESTIONS	
1	Describe Leftmost Derivation. , Rightmost Derivation, Derivation Tree for the following grammar with respect to the string aaabbabbba. $S\rightarrow aB \mid bA,A\rightarrow aS\mid bAA\mid aB\rightarrow bS\mid aBB\mid b$	Remember	-	CO 4
2	Describe a CFG for the languages $L=\{a^ib^j \ i\leq 2j\}$	Remember	-	CO 4

3	Describe leftmost and rightmost derivations for the strings, if the language is given as $S\rightarrow AS \mid \epsilon$, $A\rightarrow aa ab ba bb$ Strings: aabbba baabab aaabbb	Remember	-	CO 4
4	Explain about the enumeration of properties of context free language	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG.	CO 4
5	write the procedure for finding Ambiguity in context free grammars and also minimization of CFG with example.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO 4
6	Discuss about: a) Context Free Grammar b) Left Most Derivation c) Right Most Derivation.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO 4
7	Convert the grammar to CNF $S\rightarrow aSa/aa,S\rightarrow bSb/bb$ $S\rightarrow a/b.$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO 4
8	Describe Chomsky Normal Form and Greibach Normal Form each with an example.	Remember	-	CO 4
9	Define Normalization of CFG? What is the use of Normalization? Explain different types of normal forms.	Remember	-	CO 4
10	Illustrate the construction of Greibach normal form with an example.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG into GNF	CO 4

11	Show that the following CFG ambiguous. $S\rightarrow iCtS \mid iCtSeS \mid a, C\rightarrow b.$	Understand	-	CO 4
12	Describe the Pumping lemma for Context Free Languages concept with example $\{a^nb^nc^n$ where $n\geq 0\}$.	Remember	-	CO 4
13	Describe the minimized CFG productions in S \rightarrow aS1b, S1 \rightarrow a S1b/ ϵ	Remember	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG.	CO 4
14	Convert the following CFG into GNF. $S\rightarrow AA/a, A\rightarrow SS/b$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO 4
15	Describe unit production? Explain the procedure to eliminate unit production.	Remember	-	CO 4
16	Describe the procedure to eliminate ϵ productions in grammar.	Remember	-	CO 4
17	Convert the following grammar into GNF $G=(\{A1,A2,A3\},\{a,b\},P,A)$ $A1\rightarrow A2A3,\ A2\rightarrow A3A1/b$ $A3\rightarrow A1A2/a$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO 4
18	Describe the minimized CFG productions from the following grammar $A\rightarrow aBb/bBa$, $B\rightarrow aB/bB/\epsilon$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO 4
19	Describe CFG and Explain a CFG for the following language $L = \{ 0^i 1^j 0^k j > i + k \}$ and write the minimization steps.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG.	CO 4
20	Describe the minimized CFG for the following grammar S \rightarrow ABCa bD, A \rightarrow BC b, B \rightarrow b ϵ C \rightarrow ϵ , D \rightarrow d	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG.	CO 4

21	Covert the CFG to Greiback Normal form by taking an example	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO 4
22	Convert the grammar G given by S→aAa, A→Sb bcc DaA, C→abb DD, E→ ac, D→aDa into an equivalent grammar by removing useless symbols and useless productions from it.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG.	CO 4
	PART-C SHO	ORT ANSWE	R QUESTIONS	
1	Define a context free grammar (CFG).	Remember	-	CO 4
2	Define the parse tree with example.	Remember	-	CO 2
3	Differentiate the Rightmost derivation with Left most derivation with example.	Understand	This would require the learner to recall the context free grammars and Explain the differences between right most derivation and left most derivation.	CO 4
4	Describe a short notes about leftmost derivation with example.	Remember	-	CO 4
5	CList any two applications of Context Free Grammar.	Remember	-	CO 4
6	Define the left sentential form?	Remember	-	CO 4
7	Describe the different ways to derive a string from a CFG.	Remember	-	CO 4
8	Describe the language generated by CFG or G?	Remember	-	CO 4
9	Describe the concept of parse tree?	URemember	-	CO 2
10	Describe the concept of subtree.	Remember	-	CO 2
11	DDescribe the CFL for $S\rightarrow aSb \mid aAb$, $A\rightarrow bAa$, $A\rightarrow ba$.	Remember	-	CO 4

12	Describe the usage of normalization?	Remember	-	CO 4		
13	Define the ambiguous grammar with example?	Remember	-	CO 3		
14	Describe the language generated by the following grammar $S \rightarrow AB$ $A \rightarrow aAa bAb a b$ $B \rightarrow Ab Bb \epsilon$	Remember	-	CO 3		
15	List the steps for the CFG to reduce UNIT production.	Remember	-	CO 3		
16	Describe the elimination of useless symbols in productions.	Remember	-	CO 3		
17	List the steps for the given grammar to get the minimized CFG $S \rightarrow a S/A, A \rightarrow a / B$	Remember	-	CO 3		
18	Describe the ambiguity concept in CFG with an example	Remember	-	CO 3		
19	Differentiate the CNF and GNF.	Understand	This would require the learner to recall the normalization of context free grammars and Explain the differences between CNF and GNF.	CO 3		
20	List the steps for the given grammar to get the minimized CFG - S? aS1b S1?aS1b/?.	Remember	-	CO 3		
		MODULE 1				
DAI	PUSH DOWNAUTMATA PART A- PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS					
			· · · · · · · · · · · · · · · · · · ·	CO 5		
1	Construct PDA for equal number of x's and y's. eg: xyyxxy	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO 5		

2	Construct NDPDA for L = $ \{ WW^R \mid W \in (X + Y)^* \} $	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the NPDA	CO 5
3	Convert the following PDA to CFG $\delta(q0,0,z0)=q0,xz0$) $d(q0,0,x)=(q0,xx)$ $\delta(q0,1,x)=(q1,\epsilon)$ $\delta(q1,1,x)=(q1,\epsilon)$ $\delta(q1,\epsilon,x)=(q1,\epsilon)$ $\delta(q1,\epsilon,z0)=(q1,\epsilon)$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA CFG	CO 5
4	Construct DPDA for $L = \{$ $W = W^R W \in (X + Y)^* \}$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the DPDA	CO 5
5	Design the pushdown automata for language $\{a^nb^n \mid n>0\}$ using final state.	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO 5
6	Construct a PDA with final state acceptance for the language $B=\{bin(i)\$mir(bin(i+1)) \mid i \ge 0\} \subseteq \{0,1,\$\}^*$ Here is $bin(i) \in \{0,1\}^*$ the binary representation (without leading zero's) of the number i. Eg. $bin(11) = 1011$ and $mir(bin(12)) = 0011$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO 5

7	Construct CFG corresponding to PDA whose transition mapping is as follows. $\delta(S,a,X) = (s, A,X)$ $\delta(S,b,A) = (s, AA)$ $\delta(S,a,A) = (s, AA)$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the conversion of the PDA to CFG.	CO 5
8	Show that given CFG with following productions S→aBc A→abc,B→aAb,C→AB, C→c constructs a PDA M such that the language generated by M and G are equivalent.	Apply	This would require the learner to recall the Context Free Grammars and Understand the concept of the PDA and Apply the concepts for the construct of the PDA.	CO 5
9	Construct a PDA for the following grammar. $S\rightarrow 0A$ $A\rightarrow 0AB$, $B\rightarrow 1$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO 5
10	Construct PDA for the following grammar $S \rightarrow AA \mid a$ $A \rightarrow SA \mid b$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA.	CO 5
1	PART-B LO Define the NPDA(Nondeterministic PDA) and DPDA(deterministic PDA) equivalent? Illustrate with an example.	Remember	R QUESTIONS	CO 5

2	Describe the grammar for the following PDA. $M = (\{q0, q1\}, \{0,1\}, \{X,z0\}, \delta, q0, Z0, \phi)$ and where δ is given by $\delta(q0,0,z0) = \{(q0,XZ0)\},$ $\delta(q0,0,X) = \{(q0,XX)\},$ $\delta(q0,1,X) = \{(q1, e)\},$ $\delta(q1,1,X) = \{(q1, e)\},$ $\delta(q1, e,X) = \{(q1, e)\},$ $\delta(q1, e,Z0) = \{(q1, e)\}.$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the CFG from PDA	CO 5
3	Describe PDA for string of form a^nb^{2n} n ≥ 1	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA.	CO 5
4	Define PDA mathematically. With a neat diagram explain the working of a acceptance by final state and acceptance by empty stack and its equivalence		-	CO 5
5	Describe the equivalence of context free language and pushdown automata	Understand	This would require the learner to recall the Push Down Automata and Explain the CFG accepts the given language.	CO 5
6	Describe a PDA for the following grammar $S\rightarrow 0A$, $A\rightarrow 0AB/1, B\rightarrow 1$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5
7	Prove that L is accepted by a PDA M1 by empty store, if and only if L is accepted by a PDA M2 by final state	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG	CO 5
8	Describe the PDA mathematically. Describe the PDA for the following language. L= $\{w \mid w \text{ of form } a^n b^n\}$.	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5

9	Describe PDA For the language $L = \{xcx^r x \in \{a,b\}^*\}$ and trace it for string 'bacab'	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5
10	Describe the Pushdown automaton A is specified by $M=(\{q0,q1\},\{a,b\},\{X,Z\},\delta,q_{in},Z,\phi)$ and where δ contains the following transitions: $\delta(q0,a,Z)=(q0,\lambda)$ $\delta(q0,a,Z)=(q0,Xz_{in})$ $\delta(q0,a,X)=(q0,XX)$ $\delta(q0,b,X)=(q1,\lambda)$ $\delta(q1,b,X)=(q1,\lambda)$ $\delta(q1,a,z0)=(q0,Z)$ Infer a (reduced) context-free grammar G for the empty stack language of A, i.e., $L(G)=Le(A)$.	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5
11	Describe PDA for the below grammar as shown below $S\rightarrow aABB \mid aAA$ $A\rightarrow aBB \mid a$ $B\rightarrow BB \mid A$ that accepts the language generated by given grammar	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5
12	Describe a PDA for the below CFG which generates the palindrome accepted by $L(G) S \rightarrow aSa bSb a b$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5
13	Define a PDA and describe a context free grammar for the language $L=\{a^ib^jc^k;i< jorj< k\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5

14	Covert the following context free grammar to push down automata $S\rightarrow aAbB$ $A\rightarrow aB-a$ $B\rightarrow b$ Verify the string aab accepted by equivalent PDA	Understand	This would require the learner to recall the Context Free Grammars and Explain the steps for the conversion of CFG to PDA	CO 5
15	Describe DPDA for L= $a^n b^n$ where $n \ge 1$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the DPDA	CO 5
16	Describe PDA accepts PDA M for the language $L=\{WW^R W\in\{a,b\}^*\}$ such that $L=L(M)$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5
17	Illustrate PDA M for the language L= $\{x \in \{a,b\}^* \mid n_a(x) > n_b(x)\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA.	CO 5
18	Show that the below languages are deterministic context free languages $L1=\{0^n1^m n=m \text{ and } n\geq 1\}$ $L2=\{0^n1^m n=2m \text{ and } n\geq 1\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the checking DCFL or not.	CO 5
19	Describe deterministic context free languages and deterministic push down automata	Remember	-	CO 5
20	Describe PDA that recognizes the language $L=\{x=x^R:x\in\{a,b\}^+\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO 5
			R QUESTIONS	
1	Differentiate between deterministic and nondeterministic PDA.	Understand	This would require the learner to recall the context free grammars and Explain the difference between DPDA - NPDA	CO 5
2	Define the concept of PDA.	Remember	_	CO 5

3	Describe the concept of NPDA.	Remember	_	CO 5
4	Define the language of DPDA.	Remember	_	CO 5
5	Generate CFG for the PDA which accepts the lanuage $L=\{0^n1^n \ n\ge 0\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG	CO 5
6	Obtain CFG for given PDA $M = (\{q_0, q_1\}, \{0, 1\}, \{X, Z_o\}, \delta, q_0, Z_o, \{\}))$ $\delta(q_0, 0, Z_0) = (q_0, XZ_o)$ $\delta(q_0, 0, X) = (q_0, XX)$ $\delta(q_0, 1, X) = (q_1, \epsilon)$ $\delta(q_1, 1, X) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, X) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, Z_o) = (q_1, \epsilon)$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG	CO 5
7	Illustrate the processing steps for convertion from PDA to CFG and vice versa.	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG	CO 5
8	Generate CFG for the non-deterministic PDA which accepts strings that contain the same number of 0s and 1s.	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG	CO 5
9	List out the steps to convert CFG to PDA	Remember	_	CO 5
10	Describe the acceptance of PDA by final state.	Remember	_	CO 5
11	Describe the acceptance of PDF by empty stack.	Remember	_	CO 5
12	Construct a PDA that accepts the language L over {0, 1} by empty stack which accepts all the string of 0's and 1's in which a number of 0's are twice of number of 1's.	Understand	This would require the learner torecall the Push Down Automata and Explain the steps for the conversion of PDA to CFG	CO 5

13	Design a non deterministic	Understand	This would require the	CO 5
	PDA for accepting the		learner to recall the Push	
	language $L = \{w \ w \in \{a,b\}^* \mid$		Down Automata and	
	w contains equal no. of a's		Explain the steps for the	
	and b's}		conversion of PDA to CFG	
14	Construct PDA for the	Understand	This would require the	CO 5
	given CFG, and test		learner to recall the Push	
	whether 010000 is		Down Automata and	
	acceptable by this PDA.		Explain the steps for the	
	$S \rightarrow 0BB$		conversion of PDA to CFG	
	$B \rightarrow 0S \mid 1S \mid 0$			
15	Define the PDA and design	Remember	_	CO 5
	PDA for L= $\{x \in \{a,b\}^* $			
	$n_a(x) > n_b(x) \}$			
16	How push down automata	Remember		CO 5
	differ from the finite state			
17	automata?	Remember		CO 5
	Why stack is used in PDA?		_	
18	what equivalences of context free language and	Remember	_	CO 5
	pushdown automat			
19	Define the PDA acceptance	Remember		CO 5
19	by final state and	Remember		00 0
	acceptance by empty stack			
20	How PDA perform	Remember		CO 5
	acceptance of context free	1001110111001		
	languages			
		MODULE	V	
	T	JRING MAC	CHINE	
PAI	RT A-PROBLEM SOLVING	G AND CRIT	TICAL THINKING QUEST	CIONS)
1	Construct a Turing Machine	Apply	This would require the	CO 6
	that accepts the language L		learner to recall the	
	$= \{a^{2n}b^n n\geq 0\}$. Give the		Chomsky hierarchy of	
	transition diagram for the		languages and Explain the	
	Turing Machine obtained.		concept of the TM and	
			Apply the concepts for the	
			construct of the TM	
2	Construct a Turing Machine	Apply	This would require the	CO 6
	that gives two's compliment		learner to recall the	
	for the given binary		Chomsky hierarchy of	
	representation.		languages and Explain the	
			concept of the TM and	
			Apply the concepts for the construct of the TM.	
			construct of the TM.	

3	Examine Type 3 and Type 2 grammars with example.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO 6
4	Extend the Type 1 and Type 0 grammars with example.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM.	CO 6
5	Design a Turing Machine that accepts the set of all even palindromes over {0,1}	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and AApply the concepts for the construct of the TM	CO 6
6	Design Turing Machine for $L=\{a^nb^nc^n \ n=1\}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM.	CO 6
7	Construct Turing Machine to calculate GCD of two given numbers	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO 6
8	Compare and contrast the Finite state machine, PDA and Turing Machine	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM.	CO 6

9	Construct a Turing Machine to accept the following languages $L = \{ w^n x^n y^n z^n n \ge 1 \}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM.	CO 6
10	Design a Turing Machine that accepts the language denoted by regular expression (000)*	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM.	CO 6
	PART-B LO	NG ANSWE	R QUESTIONS	
1	Describe short notes on Context sensitive language and linear bounded automata.	Remember	-	CO 6
2	Classify briefly about Chomsky hierarchy of languages	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the all types of languages.	CO 6
3	Describe a Turing Machine. With a neat diagram explain the working of a Turing Machine.	Remember	-	CO 6
4	Write short notes on the following. a) Chomsky Hierarchy of Languages b) Linear Bounded Automata c) context sensitive language.	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the differences between TM and other automata.	CO 6
5	Construct a Transition diagram for Turing Machine to accept the language $L=\{w\neq w^R w\in (a+b)^*\}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM.	CO 6

6	Express short notes on Recursive and Recursively Enumerable languages.	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the Recursive and Recursively enumerable languages.	CO 6
7	Describe the properties of recursive and recursively enumerable languages.	Remember	-	CO 6
8	Develop a Turing Machine to accept strings formed with 0 and 1 and having the set of strings with an equal number of 0's and 1's.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO 6
9	Construct a Transition diagram for Turing Machine to accept the language L= $\{ww^R \text{w is any string of 0's and 1's}\}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO 6
10	Design a Transition table for Turing Machine L= $\{a^nb^nc^n n\geq 1\}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO 6
11	Construct a Transition table for Turing Machine to accept the following language. $L = \{ 0^n 1^n 0^n n = 1 \}$	Remember		CO 6
12	Construct a Turing Machine that accepts the language L = $\{1^n 2^n 3^n n \ge 1\}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 111222333.	Apply	This would require the learner to Recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO 6

13	Enumerate Linear bounded automata and explain its model?	Remember	-	CO 6
14	Demonstrate the power and limitations of Turing machine.	Remember	-	CO 6
15	Construct Transition diagram for Turing Machine $L=\{a^{nb}nc^n n\geq 1\}$	Remember	-	CO 6
16	Construct a Transition diagram for Turing Machine to implement addition of two unary numbers(X+Y).	Understand	This would require the learner to recall the concept of the TM and explain the construction of the transition diagram for the TM.	CO 6
17	Construct a Linear Bounded automata for a language where L= $\{a^nb^n n\ge 1\}$	Understand	This would require the learner to recall the concept of the LBA and explain the construction of the Linear Bounded automata for the given language.	CO 6
18	Classify the types of Turing machines	Understand	This would require the learner to recall the Turing machines and Explain the all types of Turing machines.	CO 6
19	Describe briefly about the following a)Church's Hypothesis b)Counter machine	Remember	-	CO 6
20	Construct Transition diagram for Turing Machine that accepts the language $L = \{0^n 1^n 2^n n \ge 1 \}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 001122	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the differences between FSM,PDA,TM.	CO 6
			ER QUESTIONS	
1	Describe the Chomsky hierarchy of languages.	Remember	_	CO 6

2	Define Context sensitive language.	Remember	_	CO 6
3	Describe the Turing Machine	Remember	_	CO 6
4	Describe the Type 0 grammars .	Remember	_	CO 6
5	Describe the Type 1 grammars .	Remember	_	CO 6
6	Describe the Type 2 grammars .	Remember	_	CO 6
7	Describe the Type 3 grammars	Remember	_	CO 6
8	List out the types of grammars.	Remember	_	CO 6
9	Describe the moves in Turing Machine.	Remember	_	CO 6
10	Define an Instantaneous Description of a Turing Machine.	Remember	_	CO 6
11	Describe the Language of Turing Machine.	Remember	_	CO 6
12	List out types of TMs.	Remember	_	CO 6
13	Differentiate the PDA and TM	Remember	_	CO 6
14	Describe the multi head Turing Machine	Remember	_	CO 6
15	Describe the multi dimensional Turing Machine.	Remember		CO 6
16	Describe the multiple tapes Turing Machine.	Remember	_	CO 6
17	Describe the recursive languages	Remember	_	CO 6
18	Describe the recursively enumerable languages.	Remember	_	CO 6
19	Describe the two way infinite Turing Machine.	Remember	_	CO 6
20	Describe the the non deterministic Turing Machine.	Remember	_	CO 6
21	Describe the Turing Machine for 1's complement for binary numbers.	Understand		CO 6

22	Describe the Recursive	Remember	This would require the	CO 6
	languages and Recursively		learner to recall the	
	enumerable languages.		concept of the TM and	
			explain the construction of	
			the TM.	
23	Define Church's Hypothesis	Remember	_	CO 6

Course Coordinator: Dr.U.Sivaji, Associate Professor HOD-IT