Topology Inference for Radial Distribution Feeder based on Power Flow

Jie Xu (s181238)

2020-12-12

Contents

1	Intr	roduction	5
2	Rac	lial Distribution Feeder	7
	2.1	Bus and Edge	7
	2.2	Two Special Concepts	8
	2.3	Case with 70 Buses	8
3	Pro	blem Formulation	11
	3.1	Directed Graph	11
	3.2	Remove Overlapping Edge	11
	3.3	IP Formulation	12
	3.4	Combinatorial Optimisation	13
4	Dir	ect Impedance Method	15
	4.1	-	15
	4.2	Fixed Point Method	16
5	Line	earised Power Flow	17
	5.1	Linearised Voltage Drop	17
	5.2	Linearised Voltage	18
	5.3	Bus Resistance Matrix	18
	5.4	Pseudo Linearised Power Flow	20
	5.5	Assessment of Candidate	20
	5.6	Voltage Sensitivity Matrix	21
6	Res	ult and Discussion	23
	6.1	Result for Case-70	23
	6.2		24
	6 2	· ·	25

4 CONTENTS

Introduction

This website hosts slides for defence of my master graduation project in the Department of Electrical Engineering at Technical University of Denmark. How households are connected to distribution network is always unknown. A framework to infer such connections by utilising all kinds of information is proposed in this project.

A simple flowchart for the project is:

Available information and measurement:

- geographical information about buses
- voltage magnitudes of all the phases of all the buses
- some real power injection profiles

Two batches of computer programs:

- $\bullet\,$ alternating current power flow calculation its linearised version
- three algorithms to handle directed graphs

Radial Distribution Feeder

- bus and edge
- two special concepts for power flow
- case with 70 buses

2.1 Bus and Edge

There are roughly two types of electrical devices in power grids.

type	definition	examples	
delivery element	transport power from one place to another	cable, transformer, capacitor	
conversion element	convert power from or to another form	solar panel, battery	

- Ignore conversion elements. Not necessary in power flow calculation.
- Delivery element will be called **edge**.

Another concept, **bus**, represent the place where two different delivery elements joint or end of a delivery element, but there is no physical entity corresponding to a bus. There are three common types of buses:

type	know quantities
slack bus	voltage magnitude and phase angle
PQ bus	real power injection and reactive power injection
PV bus	real power injection and voltage magnitude

It is sufficient to model most of RDFs with PQ buses and one kind of edges, cables:

- One slack bus in RDF, corresponding to the **root**.
- Root not in any matrix.

• Ignore other delivery elements.

2.2 Two Special Concepts

Essential for power flow calculation.

Channel

- channel: refer to one phase in some bus
- active channel: there are non-zero injections (some conversion element is connected in this channel)
- observed active channel: such non-zero injections are known

It is assumed that all active channels are known.

Snapshot

 ${f Snapshot}$ is a concept to include power injections and voltages at one time index

- input: real power injections at all channels of PQ buses
- output: voltages, current flow, power flow
- $\bullet \;$ Duration is 1 s in this project.

Zero-load snapshot is the snapshot where power injections at all the channels are zero and voltages equal to rated voltages in corresponding phases.

• $\bar{V}_{
m zero}$: voltages in zero-load snapshot

2.3 Case with 70 Buses

Assumptions about feeders:

- spanning arborescence
- step-down transformer is not considered
- three-phase four-wire cable
- one phase star connection

A case with 70 buses is primarily used here:

- located in Belgium
- \bullet bus 1 is omitted
- Houses associated with buses 3, 7, 10, 13, 16, 20, 23, 26, 30, 33, 36, 39, 43, 46, 49, 52, 55, 58, 62, 65, 69 are connected through phase A.
- Houses associated with buses 5, 8, 11, 14, 18, 21, 24, 27, 31, 34, 37, 40, 44, 47, 50, 53, 56, 59, 63, 66, 70 are connected through phase B.

Problem Formulation

3.1 Directed Graph

weighted directed graph $G = (\mathcal{N}, \mathcal{E}, \sigma, \tau, \omega)$

- set of nodes: \mathcal{N}
- set of edges: \mathcal{E}
- incidence functions: source σ , target τ
- (edge) weighting function, $\omega : E \to \mathbb{R}$.
- 2-D Euclidean distance as weight
- association network inference cannot be used

complete graph for a set of nodes

- all edges are potential edges
- some are impossible to exist

spanning arborescence

- subgraph of a directed graph
- root
- include every node (bus, in our case)

feasible region

- Composed of all the spanning arborescences of the directed graph.
- Number of spanning arborescences is finite, making it a combinatorial optimisation problem.
- To count number of spanning arborescences.

3.2 Remove Overlapping Edge

For example, in case-70:

shortest path	<	direct edge	imesthreshold	-> remove direct edge
"b17-b43-b29"	<	"b17-b29"	$\times 1.1$	-> remove "b17-b29"
"b44-b43-b29"	>	"b44-b29"	$\times 1.1$	-> keep "b44-b29"

However:

- 446 possible potential edges
- \bullet over 1045 spanning arborescences

3.3 IP Formulation

Symbols and definitions of sets:

symbol	definition
\mathcal{E}	all the potential edges (edges in the complete graph)
${\mathcal C}$	available measurements of voltages and power injections
$\mathcal{E}_{\mathrm{impossible}}$	potential edges that are impossible to exist

Symbols, definitions, types and sets of variables:

symbol	definition	type	\mathbf{set}
$\overline{x_{ij}}$	if edge from i to j is in the solution	$\{0, 1\}$	\mathcal{E}

Symbols, definitions, sets of constants:

symbol	definition	
$d_{i,j}$	Euclidean distance from i to j	\mathcal{E}

The integer programming formulation is:

$$\begin{split} \min_{x_{ij} \forall (i,j) \in \mathcal{E}} \quad & (1-\alpha) \sum_{(i,j) \in \mathcal{E}} d_{ij} x_{ij} + \alpha \mathcal{H} \left(\{ x_{ij} \forall (i,j) \in \mathcal{E} \}, \mathcal{C} \right) \\ \text{s.t.} \quad & \sum_{(i,j) \in \delta^-(j)} x_{ij} = 1 \quad \forall j \in V' \quad \text{(a directed forest)} \\ & \sum_{(i,j) \in \delta^-(S)} x_{ij} \geq 1 \quad \forall S \subseteq V', |S| \geq 2 \quad \text{(a connected graph)} \\ & x_{ij} = 0 \quad \forall (i,j) \in \mathcal{E}_{\text{impossible}} \quad \text{(remove impossible potential edges)} \end{split}$$

Two terms in the objective function:

term	definition	coefficient
$(1-\alpha)\sum_{(i,j)\in\mathcal{E}}d_{ij}x_{ij}$	weight of candidate arborescence	$1-\alpha$
$\alpha\mathcal{H}\left(\{x_{ij} \forall (i,j) \in \mathcal{E}\}, \mathcal{C}\right)$	assessment of candidate arborescence	α

Three sets of constraints:

- First two sets ensure arborescence.
- Last set removes impossible potential edges.

3.4 Combinatorial Optimisation

At least two possible values for α :

	term lefted	to find	disadvantage
1	$\mathcal{H}\left(\{x_{ij}\forall (i,j)\in\mathcal{E}\},\mathcal{C}\right)$	ground truth	NP-hard and non-linear
0	$\sum_{(i,j)\in\mathcal{E}} d_{ij} x_{ij}$	topology with min total cable length	cannot find ground truth

Such two situations can be visualised:

In this project, **local search heuristic algorithm** is proposed to to move from \bigotimes to \bigoplus :

function	what it does	in this project	
objective	assess candidate	pseudo linearised power flow	
neighbourhood	generate candidate	rank spanning arborescence	

- $\bullet\,$ The starting point is found by minimum spanning arborescence
- Every candidate is reachable from the starting point.
- Ground truth should be found before long.
- Not in parallel.

Direct Impedance Method

Discussion is based on one-line model. Can be generalised for multi-phase model.

- Model RDF with one bus impedance matrix.
- Calculate power flow using fixed point method.

4.1 Bus Impedance Matrix

Current injection to flow:

$$\bar{I}_{\rm edge} = -K\bar{I}$$

where edge path incidence matrix (EPI), K.

Voltage drop to nodal voltage:

$$\bar{\boldsymbol{V}} = \bar{\boldsymbol{V}}_{\text{zero}} - \boldsymbol{K}^{\top} \bar{\boldsymbol{Z}}_{\text{edge}} \bar{\boldsymbol{I}}_{\text{edge}}$$

where edge impedance diagonal block matrix (EIDB), \bar{Z}_{edge} .

Alternating current power flow:

$$\bar{V} = \bar{V}_{\text{zero}} + \left(K^{\top} \bar{Z}_{\text{edge}} K \right) \bar{I}$$

Bus impedance matrix (BIM), \bar{Z} , is defined as:

$$\begin{split} \bar{Z} &= \boldsymbol{K}^{\top} \bar{Z}_{\text{edge}} \boldsymbol{K} \\ &= \boldsymbol{R} + j \boldsymbol{X} \end{split}$$

where **bus resistance matrix (BRM)**, R: real part of entries in BIM.

Five steps to build BIM:

- 1. Define a unit impedance matrix.
- 2. Calculate edge impedance matrices for cables.
- 3. Build EIDB.
- 4. Obtain EPI based on topology.
- 5. Calculate BIM using EIDB and EPI.

4.2 Fixed Point Method

To calculate power flow in one snapshot, given power injections, the following procedure is repeated:

$$\begin{split} & \bar{I} = \underline{P} \otimes \underline{V}_{\text{previous}} \\ & \bar{V} = \bar{Z} \bar{I} + \bar{V}_{\text{zero}} \\ & \epsilon = \left(\bar{V} - \bar{V} \right)^{\top} \left(\bar{V} - \bar{V} \right) \end{split}$$

until ϵ is smaller than a pre-defined threshold.

Linearised Power Flow

Three ways to calculated BRM:

- Real part of entries in BIM.
- Using EPI and ERDB.
- Lowest common ancestor problem.

5.1 Linearised Voltage Drop

With power flow at source of edge k, $\bar{S}_{\text{source},k}$:

$$\bar{I}_{\mathrm{edge},k} = \frac{\underline{S}_{\mathrm{source},k}}{\underline{V}_i}$$

Voltage drop:

$$\begin{split} \bar{V}_{\text{edge},k} &= \bar{I}_{\text{edge},k} \bar{Z}_{\text{edge},k} \\ &= \frac{\underline{S}_{\text{source},k} \bar{Z}_{\text{edge},k}}{\underline{V}_{i}} \\ &= \frac{\left(P_{\text{source},k} - jQ_{\text{source},k}\right) \left(R_{\text{edge},k} + jX_{\text{edge},k}\right)}{\underline{V}_{i}} \\ &= \frac{R_{\text{edge},k} P_{\text{source},k} + X_{\text{edge},k} Q_{\text{source},k}}{\underline{V}_{i}} + j \frac{X_{\text{edge},k} P_{\text{source},k} - R_{\text{edge},k} Q_{\text{source},k}}{\underline{V}_{i}} \end{split}$$

Then:

$$V_{\mathrm{edge},k} = \frac{R_{\mathrm{edge},k}}{V_{\mathrm{rate}}} P_{\mathrm{source},k}$$

- Ignore imaginary part.
- Replace \underline{V}_i with V_{rate} .

18

5.2 Linearised Voltage

Voltage drop to nodal voltage:

$$V = V_{\text{zero}} - \frac{1}{V_{\text{rate}}} \boldsymbol{K}^{\top} \boldsymbol{R}_{\text{edge}} \boldsymbol{P}_{\text{source}}$$

Power injection to flow:

$$P_{\rm source} = K \left(P - P_{\rm loss} \right)$$

Voltage magnitude can be calculated using BRM and real power injections:

$$\begin{split} V &= V_{\text{zero}} + \frac{1}{V_{\text{rate}}} \left(\boldsymbol{K}^{\top} \boldsymbol{R}_{\text{edge}} \boldsymbol{K} \right) \boldsymbol{P} \\ &= V_{\text{zero}} + \frac{1}{V_{\text{rate}}} \boldsymbol{R} \boldsymbol{P} \end{split}$$

• To assess candidate by calculating power injection using voltage magnitudes.

5.3 Bus Resistance Matrix

- $\bullet\,$ Step-down transformer is ignored, so bus 1 is not included.
- Bus 2 is the root.
- There are 69 PQ buses, and there are 207 channels.
- 207 rows and 207 columns.

Lowest Common Ancestor Problem

Entry (i, j) is the sum of edge resistances in the common path to the root of bus i and j. That is sum of edge resistances in the path from the root to the lowest common ancestor (LCA) of bus i and j:

$$R_{i,j} = \sum_{k \in U_i \cap U_j} R_{\text{edge },k}$$

where U_i is set of edges on path from the root to bus i.

- BRM can be calcualted efficiently using LCA for all pairs of buses.
- The pattern can be used in future work.

For example,

- LCA of b3 and b5 is b2. Entry for b3, b5 is $R_{\rm e1}+R_{\rm e2}$
- LCA of b4 and b5 is still b2. Entry for b4, b5 is still $R_{\rm e1}+R_{\rm e2}.$

5.4 Pseudo Linearised Power Flow

Based on linearised power flow, $V = V_{
m zero} + \frac{1}{V_{
m rate}} RP$:

$$\boldsymbol{P}_{\mathrm{assess}} = \boldsymbol{V}_{\mathrm{rate}} \boldsymbol{R}^{\top} \left(\boldsymbol{V} - \boldsymbol{V}_{\mathrm{zero}} \right)$$

which is referred to as pseudo linearised power flow.

The inversed BRM for case-70 looks like:

- Voltage magnitude at any channel can have a huge impact.
- The pattern can be used in future work.

5.5 Assessment of Candidate

The second term in the objective function is:

$$\mathcal{H}(R) = \left[\left(P_{\mathrm{assess}} - P \right) \otimes O \right]^{\top} \cdot \left[\left(P_{\mathrm{assess}} - P \right) \otimes O \right] / |\mathcal{O}|$$

where:

- \mathcal{O} : set of observed active channels
- \bullet O: binary vector indicating observed active channels
- Entries for unobserved active channel are ignored.

Error from Linearisation

Box plot for assessment results of case-70 with respect to different number of observed active channels, based on ground truth and 50 snapshots¹.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 number of observed active channels

- Error is alrady reduced to 1.7 \sim 2.2.
- Rated voltage magnitudes will increase the error dramatically.
- Full observability over voltage magnitudes for now.

5.6 Voltage Sensitivity Matrix

 $^{^1\}mathrm{during}~00:00:00$ and 00:00:50 on Dec 2, 2020 from Sonnen data set.

Result and Discussion

6.1 Result for Case-70

6.2 Project Flowchart

6.3. SUMMARY 25

6.3 Summary

All in all, there are four steps in the proposed framework for topology inference:

- 1. Shrink feasible region (reduce the number of SAs) by removing overlapping edges.
- 2. Measure the size of feasible region by counting number of SAs.
- 3. Get candidates sequentially by ranking SAs according to total cable lengths.
- 4. Assess candidates based on available measurements.

Issues

- 1. Too many spanning arborescences. (remove overlapping edges)
- 2. Full observability over voltage magnitudes. (matrices with full rank)
- 3. Error in linearised power flow calculation. (voltage sensitivity matrix)

Future Work

- How to detect more impossible potential edges. (for issue 1)
- How to assess candidates based on a fraction. (for issue 2)
- How to use voltage sensitivity matrix in linearised power flow. (for issue 3)