Problem 7.1: KKT Conditions for Equality Constrained Problems

Let $X \subset \mathbb{R}^n$ be a nonempty open set, and let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Moreover, let $q_i:\mathbb{R}^n\to\mathbb{R}$ be differentiable for all $i=1,\ldots,m$, and let $h_i:\mathbb{R}^n\to\mathbb{R}$ be differentiable for all $i = 1, \dots, l$. Consider the following optimization problem P:

$$(P): \min f(x)$$
 subject to: $g_i(x) \le 0$, $i = 1, ..., m$

$$h_i(x) = 0, \qquad i = 1, ..., l$$

$$x \in X$$

Let \overline{x} be a feasible solution to P, and let $I = \{i : g_i(\overline{x}) = 0\}$ be the index set of active inequality constraints. Also, let $\nabla q_i(\overline{x})$ for $i \in I$ and $\nabla h_i(\overline{x})$ for i = 1, ..., l be linearly independent (to enforce constraint qualification). Derive KKT conditions for the problem P.

Hint: Notice that $h_i(x) = 0$ can be equivalently replaced by the two inequalities

$$h_i(x) \le 0$$
 and $-h_i(x) \le 0$.

Problem 7.2: KKT Transformation of a Bilevel Optimization Problem

Consider the following bilevel optimization problem:

$$\min_{x} c_1^{\mathsf{T}} x + c_2^{\mathsf{T}} y \tag{1}$$

subject to:
$$Ax + By \le \alpha$$
 (2)

$$y \in \underset{y}{\operatorname{argmin}} \quad c_3^{\top} y$$
 (3)
subject to: $Dx + Ey \le \beta$

subject to:
$$Dx + Ey \le \beta$$
 (4)

In problem (1) - (4), we seek an optimal value of x knowing that y, which minimizes another optimization problem, depends on the value of x. This is a way of modeling hierarchical decision problems such as Stackelberg competition.

Reformulate the problem (1) - (4) by replacing the constraints (3) - (4) that form the inner optimization problem:

$$y \in \underset{y}{\operatorname{argmin}} \ c_3^{\top} y$$

subject to: $Dx + Ey \leq \beta$

with the KKT optimality conditions of this problem. You can assume that $\beta \in \mathbb{R}^m$, which implies that (4) has $i = 1, \ldots, m$ inequality constraints. Is the resulting problem convex? Justify your answer.

Hint: You can write the constraint (4) as

$$d_i x + e_i y \le \beta_i, \quad i = 1, \dots, m$$

where d_i and e_i correspond to the *i*th rows of the matrices D and E, respectively, and β_i is the ith element of the vector $\beta \in \mathbb{R}^m$.

Problem 7.3: Example of a Bilevel Transformation

Consider the following bilevel optimization problem:

$$\min_{x} x - 4y \tag{5}$$

subject to:
$$x \ge 0$$
 (6)

$$y \in \operatorname*{argmin}_{y} y \tag{7}$$

subject to:
$$-x - y \le -3$$
 (8)

$$-2x + y \le 0 \tag{9}$$

$$2x + y \le 12\tag{10}$$

$$-3x + 2y \le -4\tag{11}$$

$$y \ge 0 \tag{12}$$

Reformulate the problem (5) – (12) by replacing the constraints (7) – (12) that form the inner optimization problem:

$$y \in \underset{y}{\operatorname{argmin}} \quad y$$
 subject to:
$$-x - y \le -3$$

$$-2x + y \le 0$$

$$2x + y \le 12$$

$$-3x + 2y \le -4$$

$$y \ge 0$$

with the KKT conditions of this problem. Try to model and solve the reformulated problem with Julia using JuMP. One locally optimal solution for the problem is (x,y)=(2,1) with objective value f(x,y)=x-4y=-2. Can you find this local optimum by trying different initial (starting) values for the different variables? Is the reformulated problem convex? Justify your answer.