## **0.1** Model: $\Lambda K_S^0$ , $\Lambda K^{\pm}$ , $\Xi^{ch} K_S^0$

The two-particle relative momentum correlation function may be written theoretically by the Koonin-Pratt equation [?, ?]:

$$C(\mathbf{k}^*) = \int S(\mathbf{r}^*) |\Psi_{\mathbf{k}^*}(\mathbf{r}^*)|^2 d^3 \mathbf{r}^*$$
 (1)

In the absence of Coulomb effects, and assuming a spherically gaussian source of width R, the 1D femtoscopic correlation function can be calculated analytically using:

$$C(k^*) = 1 + \lambda [C_{QI}(k^*) + C_{FSI}(k^*)]$$
(2)

 $C_{QI}$  describes plane-wave quantum interference:

$$C_{OI}(k^*) = \alpha \exp(-4k^{*2}R^2)$$
 (3)

where  $\alpha = (-1)^{2j}/(2j+1)$  for identical particles with spin j, and  $\alpha = 0$  for non-identical particles. Obviously,  $\alpha = 0$  for all analyses presented in this note.  $C_{FSI}$  describes the s-wave strong final state interaction between the particles:

$$C_{FSI}(k^*) = (1+\alpha) \left[ \frac{1}{2} \left| \frac{f(k^*)}{R} \right|^2 \left( 1 - \frac{d_0}{2\sqrt{\pi}R} \right) + \frac{2\mathbb{R}f(k^*)}{\sqrt{\pi}R} F_1(2k^*R) - \frac{\mathbb{I}f(k^*)}{R} F_2(2k^*R) \right]$$

$$f(k^*) = \left( \frac{1}{f_0} + \frac{1}{2} d_0 k^{*2} - ik^* \right)^{-1}; \quad F_1(z) = \int_0^z \frac{e^{z^2 - z^2}}{z} dx; \quad F_2(z) = \frac{1 - e^{-z^2}}{z}$$

$$(4)$$

where R is the source size,  $f(k^*)$  is the s-wave scattering amplitude,  $f_0$  is the complex scattering length, and  $d_0$  is the effective range of the interaction.