

Quantum Computing from Theory to Practice

Chapter 1

<u>Topics</u>

- Quantum Platform and Circuit Composer
 - ✓ Bell
 - ✓ GHZ
 - ✓ Toffoli
- Quantum Lab with Qiskit
 - ✓ Hello World
 - ✓ Simulators and Real Devices
 - ✓ Mystery Circuit
 - ✓ Quantum Teleportation
 - ✓ Bloch Sphere

IBM Quantum Platform and Circuit Composer

- Start here: https://quantum.ibm.com/
- Compute Resources
- API Token
- Learning > Explore Courses and Tutorials
- IBM Quantum Composer
 - ✓ Play with Quantum Gates
 - ✓ Bell State (4 variants)
 - ✓ GHZ State
 - ✓ Toffoli Gate
 - ✓ Show results on real device

<u>Topics</u>

- Quantum Platform and Circuit Composer
 - ✓ Bell
 - ✓ GHZ
 - ✓ Toffoli
- Quantum Lab with Qiskit
 - ✓ Hello World
 - ✓ Simulators and Real Devices
 - ✓ Mystery Circuit
 - ✓ Quantum Teleportation
 - ✓ Bloch Sphere

Hello World

https://www.qbraid.com/

Exercise

- Start from qBraid
- File > New Notebook
- Together with the instructor, create a Jupyter Notebook from Scratch: "Hello World"

Mystery Circuit

https://www.qbraid.com/

Develop this Quantum Circuit starting from a copy of the result of Exercise 1. Try out with different Initialization Gates I and X on q0 and q1. How would you name this Circuit?

In other words:

- $> I \otimes I |00\rangle$
- $> I \otimes X |00\rangle$
- $> X \otimes I |00\rangle$
- $> X \otimes X |00\rangle$

Quantum Teleportation

- **No-Cloning Theorem**: it is impossible to create an independent and identical copy of an arbitrary unknown quantum state
- How to transfer a Quantum State from Qubit 0 (Alice) to Qubit 2 (Bob), using Qubit 1 (Auxiliary or Spock)?
- This is the Quantum Circuit that allows to do so and that we are going to program in Qiskit (by completing a Jupyter Notebook)

Pauli Matrices (2 out of 4)

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X = \blacksquare$$

BIT FLIP

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = Z$$

SIGN FLIP

Bell State ("EPR pair")
$$\left|\Phi^{+}\right\rangle = \frac{1}{\sqrt{2}}(\left|00\right\rangle + \left|11\right\rangle)$$

time

time

Source: https://en.wikipedia.org/wiki/Quantum_teleportation

$$|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$$
 (Alice's State to be teleported)

$$|\psi
angle = lpha \, |0
angle + eta \, |1
angle$$
 (Alice's State to be teleported)

$$\frac{1}{\sqrt{2}}(|00>+|11>)\otimes(\alpha\,|0>+\beta|1>)$$

$$= \frac{1}{\sqrt{2}} (\alpha |000\rangle + \alpha |110\rangle + \beta |001\rangle + \beta |111\rangle)$$

$$= \frac{1}{2} \left(\alpha |000\rangle + \alpha |001\rangle + \alpha |110\rangle + \alpha |111\rangle \right)$$
$$= \frac{1}{2} \left(\beta |010\rangle - \beta |011\rangle + \beta |100\rangle - \beta |101\rangle \right)$$

$$= \frac{1}{\sqrt{2}} (\alpha |000\rangle + \alpha |110\rangle + \beta |011\rangle + \beta |101\rangle)$$

3 Qubit Circuit with Bell measurement

$$= \frac{1}{2} \left(\frac{\alpha |000\rangle + \alpha |001\rangle + \alpha |110\rangle + \alpha |111\rangle}{+\beta |010\rangle - \beta |011\rangle + \beta |100\rangle - \beta |101\rangle}$$

$$=\frac{1}{2} (\alpha |0> + \beta |1>) |00> + (\alpha |0> - \beta |1>) |01> + (\alpha |1> + \beta |0>) |10> + (\alpha |1> - \beta |0>) |11>)$$

Bob receives bits from Alice and Applies Appropriate Gate

$$= \frac{1}{2} (\alpha |0> + \beta |1>) |00> + (\alpha |0> - \beta |1>) |01> + (\alpha |1> + \beta |0>) |10> + (\alpha |1> - \beta |0>) |11>)$$

Bob receives the following Qubits:

$$(\alpha | 0 > + \beta | 1 >)$$

 $(\alpha | 0 > - \beta | 1 >)$
 $(\alpha | 1 > + \beta | 0 >)$
 $(\alpha | 1 > - \beta | 0 >)$

Bits Received	\rightarrow	Apply Gate
00	\rightarrow	I
01	\rightarrow	Z
10	\rightarrow	X
11	\rightarrow	ZX

Measurements

I
$$(\alpha | 0 > + \beta | 1 >) = (\alpha | 0 > + \beta | 1 >)$$

Z $(\alpha | 0 > - \beta | 1 >) = (\alpha | 0 > + \beta | 1 >)$
X $(\alpha | 1 > + \beta | 0 >) = (\alpha | 0 > + \beta | 1 >)$
ZX $(\alpha | 1 > - \beta | 0 >) = (\alpha | 0 > + \beta | 1 >)$

= Qubit sent by Alice !!!

But how to apply the right gates before measurement?

Make use of

- Conditional bit-flip X
- Conditional sign-flip Z

C1

Remember (or check):

$$HXH=Z$$

Controlled Z Gate (This is an Optional Step)

Note:
$$HXH = Z$$

3 Qubit Circuit for Quantum Teleportation

3 Qubit Circuit for Quantum Teleportation

3 Qubit Circuit for Quantum Teleportation

3 Qubit Circuit for Quantum Teleportation: |1 angle

Let us now complete the Jupyter Notebook

- This is the Quantum Circuit that allows to run a Quantum Teleportation
- We are going to program this with Qiskit (by completing a Jupyter Notebook)
- We teleport the Quantum State $\psi = \sqrt{0.7} \, |0\rangle + \sqrt{0.3} \, |1\rangle$

<u>An Overview of some famous Quantum Algorithms</u>

Quantum Algorithms

- Deutsch-Josza
- Bernstein-Vazirani
- Simon
- Shor
 - Quantum Fourier Transform
 - Quantum Phase Estimation
- Grover
- Counting
- Teleportation
- Superdense Coding
- Key Distribution

Quantum Algorithms for Applications

- HHL
- VQE
- QAOA
- Quantum Neural Network
- QSVM
- •

Bernstein-Vazirani

Guess a Secret Number "s" that is represented as a bit string and that is hidden in a "Black Box"

What is the Challenge?

Guess a Secret Number "s" that is represented as a bit string and that is hidden in a "Black Box"

Preliminary

An "Oracle" is an operation that has some properties you do not know, and you are trying the find out what these properties are

- Equivalent term: "Black Box"
- You cannot see inside it
- You do not know what it is doing upfront
- But... you can supply inputs and receive outputs → "Queries"

Formal Explanations

- Let s be an unknown non-negative integer less than 2ⁿ
- Let f(x) take any integer x into the modulo-2 sum of the products of corresponding bits of s and x, which we denote by $s \cdot x$ (bitwise modulo-2 inner product):

$$\mathbf{s} \cdot \mathbf{x} = \mathbf{s}_0 \mathbf{x}_0 \oplus \mathbf{s}_1 \mathbf{x}_1 \oplus \mathbf{s}_2 \mathbf{x}_2 \cdots$$

- Example:
 - n = 6
 - s = 110101
 - x = 0011111
 - $f(x) = s \cdot x = 1.0 + 1.0 + 0.1 + 1.1 + 0.1 + 1.1 = 1 + 1 \mod 2 = 0$
- Suppose that we have a subroutine that evaluates $f(x) = s \cdot x$
- How many times do we have to call that subroutine f to determine the value of the integer s?
- With a classical computer we can learn the n bits of s by applying f just n times:
 - For n=6, this are 000001, 000010, 000100, 001000, 010000, 100000
- This requires n different invocations of the subroutine

More Explanations

With a Quantum Computer a single invocation is enough to determine a completely, regardless of how big n is!

Formula: $H^{\otimes (n+1)}U_fH^{\otimes (n+1)}|0>_n|1>_1=|s>_n|1>_1$

The crucial operator is U_f

With cNOT gates the action of U_f is produced

Pages 50-54

Define the Secret Number

For example, suppose it consists of 6 bits

```
# Define the secret number
secretnumber = '101001'
```

Create and Initialize the Qubits

```
ericcircuit = QuantumCircuit(6+1, 6)

ericcircuit.h([0,1,2,3,4,5])
 ericcircuit.x([6])
 ericcircuit.h([6])
 ericcircuit.barrier()
```


Apply CNOT Gates to implement the Oracle

Control Qubit is a Qubit that has a corresponding 1 in the Secret Number

Apply Hadamard Gates and Measure

```
ericcircuit.h([0,1,2,3,4,5])
ericcircuit.barrier()
ericcircuit.measure([0,1,2,3,4,5], [0,1,2,3,4,5])
```


Execute with just 1 shot

```
from qiskit.visualization import plot_histogram
result = AerSimulator().run(ericcircuit).result()
statistics = result.get_counts()
display(plot_histogram(statistics))
print(statistics)
plot_histogram = image = circuit.draw('mpl')
plt.show()
```

- But ... what if we have a secret number with a variable length and variable bit values?
- E.g. We want to find secret numbers:
- '101010101', '10011', '1111101010010101', and so on...
- Apply Python programming constructs!

Intuitive Proof

- Suppose the secret number is '110101' = ' q_5 q_4 q_3 q_2 q_1 q_0 '
- Initialize the 6 Qubits with H Gate: $H |0\rangle = |+\rangle$
- Initialize the Ancilla Qubit with H.X Gate: $HX|1\rangle = |-\rangle$
- For example, assume q0 and q6, then we initialize as follows:

$$q0 = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$q6 = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

$$\implies |q6 q0\rangle = |q6\rangle \otimes |q0\rangle = \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$$

Intuitive Proof (Cont.)

- So, suppose there is a 1 in position 0 of the bit string, then we apply a CNOT between q0 and q6
- Then we apply a unitary matrix:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \stackrel{1}{=} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

- So, we see how q0 was changed: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- This is called "phase kickback": we see how q0 was changed from $|+\rangle$ into $|-\rangle$
- Qubits representing a 1 of the secret are turned into $|-\rangle$ state
- Qubits representing a 0 of the secret stay in | +> state
- But at the end we measure with H Gate:
 - $\blacksquare H \mid -\rangle = \mid 1\rangle$
 - $\blacksquare H \mid + \rangle = \mid 0 \rangle$
- And this is what we need!
 - If the bit in the secret number was a 1, we will measure a 1 \rightarrow Measure bit = 1
 - If the bit in the secret number was 0, we will measure 0 \rightarrow Measure bit = 0

Additional Materials

- Qiskit: https://qiskit.org/textbook/ch-algorithms/bernstein-vazirani.html
- Videos

https://www.youtube.com/watch?v=sqJIpHYl7oo
https://www.youtube.com/watch?v=m9KtmAi7iW4
https://www.youtube.com/watch?v=xtD8e91kfxc

• And there is so much more ©

What is Efficient?

In complexity
theory,
Algorithms
that take
at most
polynomial time
are considered
"efficient"

Not Efficient

	Name	Running Time	Example
		T(n)	
	Constant Time	0(1)	Check if integer is even or odd
	Loglinear Time	$O(n \log n)$	Sort, Fast Fourier Transform
	Logarithmic Time	$O(\log n)$	Binary search in sorted list
	Linear Time	O(n)	Find largest number in unsorted list
	Quadratic Time	$O(n^2)$	Multiply two n-digit numbers
	Polynomial Time	$O(n^3)$	Naive matrix multiplication
-	Exponential Time	$O(2^n)$	Integer Factorization
_	Factorial Time	O(n!)	Brute –Force TSP

Quantum Computing from Theory to Practice

 $\langle 10|Q\rangle$ for your attention!