

Constraint Satisfaction Problems

Chapter 5

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local search for CSPs

Constraint satisfaction problems (CSPs)

- Standard search problem:
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test

CSP:

- state is defined by variables X_i with values from domain D_i
- goal test is a set of constraints specifying allowable combinations of values for subsets of variable
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

Tasmania

- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \{\text{red,green,blue}\}$
- Constraints: adjacent regions must have different colors
- e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

Solutions are complete and consistent assignments,
 e.g., WA = red, NT = green,Q = red,NSW =
 green,V = red,SA = blue,T = green

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraint

Incremental formulation

- Initial state : empty assignment in which all variables are unassigned
- Successor fn: assign a value to a variable so that it does not conflict with other variables
- Goal test: current assignment is complete
- Path cost: a constant cost (e.g. 1) for every step.

Varieties of CSPs

Discrete variables

- finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
- infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 ≤ StartJob_3$

Continuous variables

- e.g., start/end times for Hubble Space Telescope observations
- linear constraints solvable in polynomial time by linear programming

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints

Example: Cryptarithmetic

- Domains: {0,1,2,3,4,5,6,7,8,9}
- Constraints: Alldiff (F,T,U,W,R,O)
 - $O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $X_2 + T + T = O + 10 \cdot X_3$
 - $X_3 = F$, $T \neq 0$, $F \neq 0$

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Notice that many real-world problems involve realvalued variables

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

- Initial state: the empty assignment { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - → fail if no legal assignments
- Goal test: the current assignment is complete
- 1. This is the same for all CSPs
- Every solution appears at depth n with n variables→ use depth-first search
- 3. Path is irrelevant, so can also use complete-state formulation

Backtracking search

- Variable assignments are commutative}, i.e.,
 [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each node
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve *n*-queens for $n \approx 25$

Backtracking search

```
function BACKTRACKING-SEARCH (csp) returns a solution, or failure
  return Recursive-Backtracking(\{\}, csp)
function RECURSIVE-BACKTRACKING (assignment, csp) returns a solution, or
failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variables}(variables/csp), assignment, csp)
   for each value in Order-Domain-Values(var, assignment, csp) do
     if value is consistent with assignment according to Constraints [csp] then
        add { var = value } to assignment
        result \leftarrow Recursive-Backtracking(assignment, csp)
        if result \neq failue then return result
        remove { var = value } from assignment
  return failure
```


Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Most constrained variable

Most constrained variable:
 choose the variable with the fewest legal values

 a.k.o. minimum remaining values (MRV) heuristic

Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{Remove-First}(queue)
      if RM-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to gueue
function RM-INCONSISTENT-VALUES (X_i, X_j) returns true iff remove a value
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy constraint(X_i, X_i)
         then delete x from DOMAIN[X_i]; removed \leftarrow true
  return removed
```

Time complexity: O(n²d³)

Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns $(4^4 = 256 \text{ states})$
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

 Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice