TIMING DIAGRAMS OF INSTRUCTIONS

Note: Any Operation that is performed within the μP does not require a machine cycle and hence is not shown in timing diagrams.

1) MVI B, 25H

B ← 25 H

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	25	3
		Total	7

2) LXI B, 2000H

BC ← 2000 H

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00	3
Memory Read	PC + 2	20	3
		Total	10

3) LDA 2000H

A ← [2000H]

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Read	2000	[2000]	3
		Total	13

4) STA 3000H

 $A \rightarrow [3000H]$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	30 (W)	3
Memory Write	3000	А	3
		Total	13

5) LDAX B

 $A \leftarrow [BC]$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	ВС	[BC]	3
		Total	7

6) STAX D

 $A \rightarrow [DE]$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Write	DE	Α	3
		Total	7

7) LHLD 2000H

L ← [2000H], H ← [2001H]

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Read	2000	[2000]	3
Memory Read	2001	[2001]	3
		Total	16

8) SHLD 5140H

 $L \rightarrow [5140H], H \rightarrow [5141H]$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	40 (Z)	3
Memory Read	PC + 2	51 (W)	3
Memory Write	5140	L	3
Memory Write	5141	Н	3
		Total	16

9) MOV B,C

 $B \leftarrow C$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
		Total	4

10) PCHL

PC ← HL

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
		Total	6

11) SPHL

 $SP \leftarrow HL$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
		Total	6

12) ADD B {all 8 bit arithmetic operations using register addressing mode}

 $A \leftarrow A + B$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
		Total	4

13) INR B

 $B \leftarrow B + 1$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Total			4

14) INX B

 $BC \leftarrow BC + 1$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
		Total	6

<u>Instructions Involving "M" – Memory Pointer</u>

15) MVI B, 25H

 $\mathsf{B} \leftarrow \mathsf{B} + \mathsf{1}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	25	3
Memory Write	HL	25	3
		Total	10

16) MOV B, M

 $B \leftarrow M$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	HL	М	3
		Total	7

17) MOV M, B

 $M \leftarrow B$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Write	HL	В	3
	_	Total	7

18) INR M {Very Important}

 $M \leftarrow M + 1$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	HL	М	3
Memory Write	HL	M + 1	3
		Total	10

19) ADD M

 $A \leftarrow A + M$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	HL	М	ε
		Total	7

Stack Operations

20) PUSH B

 $SP \leftarrow SP - 1$... internal operation $[SP] \leftarrow B$... memory write $SP \leftarrow SP - 1$... internal operation $[SP] \leftarrow C$... memory write

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Write	SP - 1	В	3
Memory Write	SP - 2	С	3
		Total	12

21) POP B

 $\begin{array}{lll} \textbf{C} \leftarrow [\textbf{SP}] & \dots & \text{memory read} \\ \textbf{SP} \leftarrow \textbf{SP} + 1 & \dots & \text{internal operation} \\ \textbf{B} \leftarrow [\textbf{SP}] & \dots & \text{memory read} \\ \textbf{SP} \leftarrow \textbf{SP} + 1 & \dots & \text{internal operation} \end{array}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	SP	[SP]	3
Memory Read	SP +1	[SP + 1]	3
		Total	10

Branch Operations

22) JMP 2000H

PC ← 2000 H

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
		Total	10

23) JC 2000H

If CF = 1 then condition is true hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
		Total	10

If CF = 0 then condition is false hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read (Idle)			3
		Total	7

24) Call 2000H

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Write	SP - 1	PCH	3
Memory Write	SP - 2	PCL	3
		Total	18

25) CC 2000H

If CF=1 then condition is true hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Write	SP - 1	PCH	3
Memory Write	SP - 2	PCL	3
		Total	18

If CF = 0 then condition is false hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read (Idle)			3
		Total	9

26) RET

 $\begin{array}{lll} \text{PCL} \leftarrow [\text{SP}] & \dots & \text{Memory Read} \\ \text{SP} \leftarrow \text{SP} + 1 & \dots & \text{internal operation} \\ \text{PCH} \leftarrow [\text{SP}] & \dots & \text{Memory Read} \\ \text{SP} \leftarrow \text{SP} + 1 & \dots & \text{internal operation} \end{array}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	SP	[SP]	3
Memory Read	SP + 1	[SP + 1]	3
		Total	12

27) RC

If CF = 1 then condition is true hence,

 $\begin{array}{lll} \mathsf{PCL} \leftarrow [\mathsf{SP}] & \dots & \mathsf{Memory\ Read} \\ \mathsf{SP} \leftarrow \mathsf{SP} + 1 & \dots & \mathsf{internal\ operation} \\ \mathsf{PCH} \leftarrow [\mathsf{SP}] & \dots & \mathsf{Memory\ Read} \\ \mathsf{SP} \leftarrow \mathsf{SP} + 1 & \dots & \mathsf{internal\ operation} \end{array}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read	SP	[SP]	3
Memory Read	SP + 1	[SP + 1]	3
		Total	12

If CF = 0 then condition is false hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Total			9

28) RSTn

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Write	SP - 1	PCH	3
Memory Write	SP - 2	PCL	3
		Total	12

I/O Operations

29) IN 80H

 $A \leftarrow [80]_{I/O}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	80	3
I/O Read	80	[80]	3
		Total	10

30) OUT 80H

 $A \rightarrow [80]_{I/O}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	80	3
I/O Write	80	А	3
		Total	10

Additional Instructions

31) DAD D

 $HL \leftarrow HL + DE$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Bus Idle			3
Bus Idle			3
		Total	10

32) HLT

Halt $F/F \leftarrow 1$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4T +1T
		Total	5

33) XTHL

$$\begin{split} Z \leftarrow [SP] & \dots & \text{Memory Read} \\ W \leftarrow [SP+1] \dots & \text{Memory Read} \\ [SP+1] \leftarrow H \dots & \text{Memory Write} \\ [SP] \leftarrow L & \dots & \text{Memory Write} \\ HL \leftarrow WZ & \dots & \text{internal operation} \end{split}$$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	SP	[SP]	3
Memory Read	SP + 1	[SP + 1]	3
Memory Write	SP + 1	Н	3
Memory Write	SP	L	3
		Total	16

34) XCHG

 $DE \leftarrow \rightarrow HL$... internal operation

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
		Total	4

Call 2000 H

