DNA sequence analysis: data handling, visualization and (some) multivariate statistics in R

R roundtable 21.1.2016 – Christiane Hassenrück

outline

Sequencing technologies and sequence analysis pipelines	Major steps, sequencing errors, OTU clustering algorithms, taxonomy
2. Data handling in R	Reading data: Data subsetting, parsing taxonomic paths
3. Diversity concepts	Alpha and beta diversity, random subsampling, effective species number, symmetric vs. asymmetric diversity indices
4. Plotting community data in R	Custom functions (alpha diversity, abundant taxa, networks), ordination plots
5. Pitfalls of sequence analysis	Compositionality, sampling design and replication
6. Multivariate statistics	Overall patterns (ANOSIM, PERMANOVA, RDA), differential OTU abundance
7. Estimating bacterial functions	Tax4Fun

NGS technologies

Sequencing technology	Principle	Read length	Errors	Comments
454		< 450 bp SE	homopolymers	discontinued
Ion torrent	T T T T T T T T T T T T T T T T T T T	< 400 bp SE	homopolymers	
Illumina	Analysis Ana	< 300 bp SE < 550 bp PE	substitutions	Currently preferred for amplicon and shotgun sequencing
PacBio	Alumnum Glass Excitation	> 10 kb	~ 10% error rate (single pass)	
nanopore	The state of the s	> 10 kb	< 4% error rate	In development

Bioinformatic analysis

OTU clustering methods

Algorithm	Pro's	Con's
Hierarchical	Better defined OTUs than heuristic clustering	Very slow
Heuristic (greedy)	 Fast compared to hierarchical clustering 	Low reproducibility
Swarm	FastVariable OTU cut-offHigh reproducibility	Large swarms
Oligotype	FastOmits stochastic variationSub-species resolution (SNPs)	No rare biosphere

Taxonomic classification

Domain; Phylum; Class; Order; Family; Genus

Bacteria; Proteobacteria; Gammaproteobacteria; Chromatiales; Chromatiaceae; Nitrosococcus

- Truncated paths:
 - Bacteria; Proteobacteria; Gammaproteobacteria; Chromatiales; Chromatiaceae; unclassified
- Incomplete paths:
 - Bacteria; Proteobacteria; Gammaproteobacteria; Incertae Sedis; Incertae Sedis; Sedimenticola

Sample-by-OTU table
OTU-by-taxonomy table
Environmental data

Consistent sample and OTU names!

Alpha diversity

- Community richness and eveness per sample
- Classical indices:
 - OTU number
 - Shannon
 - Chao 1
 - Inverse Simpson
- Hill numbers: effective species number
 - 1 formula for all indices -> only changing 1 parameter (q)

$${}^qD=\left(\sum_{i=1}^S p_i^q\right)^{1/(1-q)}$$
 0 D = OTU number 1 D = exp (Shannon) 2 D = inverse Simpson

Influence of rare biosphere

- Rarefaction curves
- Unequal sequencing depth → random subsampling to compare alpha diversity indices across samples

Beta diversity

Community (dis)similarity between samples

_		OTU1	OTU2	OTU3	OTU4	_			OTU1	OT	U2	OTU3	OTU4
	S1	14	2	14	14	_ pr	presence/		1	1		1	1
	S2	10	14	0	8	<u> </u>	absence	S 2	1	1		0	1
	S3	0	5	0	2	ab		S3	0	1		0	1
	S4	0	0	1	0			S4	0	0)	1	0
Asymmetrical vs. symmetrical													
Bray-Curtis vs. euclidean						Jaccard							
	S1	S2 :	S3 S4		S1	S2	S3	S4		S1	S2	2 S3	S4
S1	0			S1	0				S1	0			
S2	0.5	0		S2	19.8	0			S2	0.25	0		
S3	0.8	0.6	0	S3	23.3	14.7	0		S3	0.5	0.3	3 0	
S4	1.0	1	1 0	S4	23.8	19	5.5	0	S4	0.75	1	1	0

Zeros in ecology: Is this species really not there or did we just not find it?
 → double zeros not relevant

Plotting in

Alpha diversity indices
Abundant taxa
OTU networks
Ordination plots

Pitfalls of sequence analysis

- Compositionality: OTU abundances not independent
- Centered log-ration transformation (clr): $\log(x_i) \log(n\sqrt{product(x_1 ... xn)})$

→ Difference between OTUs independent of library size

Pitfalls of sequence analysis

Sampling design

Factor 1:

Factor 2:

Factor 3:

Replication:

Estimated costs:

 $3 \times 3 \times 2 \times 5 = 90$

~ 5000 € consumables

• To reduce costs, i.e. only sequencing selected samples:

Better to remove a condition than to reduce the number of replicates!

Multivariate statistics in (

ANOSIM and PERMANOVA

Redundancy analysis

Differential OTU abundance (ALDEx2)

Path analysis

→ check out: http://mb3is.megx.net/gustame

Estimating bacterial functions

Tax4Fun: http://tax4fun.gobics.de/

Sample-by-OTU table

Taxonomic paths

Taxonomic reference database

Useful links

Web links:

- http://www.arb-silva.de/
- http://www.arb-silva.de/download/archive/
- <u>http://mb3is.megx.net/gustame</u>
- http://tax4fun.gobics.de/
- https://github.com/chassenr/NGS

References:

- Aßhauer, K.P., Wemheuer, B., Daniel, R., and Meinicke, P. (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. *Bioinformatics* 31: 2882–2884.
- Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., and Ellison, A.M. (2014)
 Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. *Ecol. Monogr.* 84: 45–67.
- Eren, A.M., Morrison, H.G., Lescault, P.J., Reveillaud, J., Vineis, J.H., and Sogin, M.L. (2014) Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. *Isme J* 9: 968–979.
- Fernandes, A.D., Reid, J.N., Macklaim, J.M., McMurrough, T.A., Edgell, D.R., and Gloor, G.B. (2014)
 Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. *Microbiome* 2: 15.
- Mahé, F., Rognes, T.T., Quince, C., de Vargas, C., and Dunthorn, M. (2014) Swarm: robust and fast clustering method for amplicon-based studies. *PeerJ* 1–12.
- Sinclair, L., Osman, O.A., Bertilsson, S., Eiler, A. (2015) Microbial Community Composition and Diversity via 16S rRNA Gene Amplicons: Evaluating the Illumina Platform. *PLoS ONE* 10: e0116955.