ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

P1. (10 points)

Design the modulo-5 counter which counts in the sequence 0, 1, 2, 3, 4, 0, 1, 2, 3, 4... when input w=1, and stops counting when w=0. Use D flip-flops in your circuit.

Solution:

Grading criteria

- (3 points) state-assigned table
- (3 points) simplified logic expressions for next state and output
- (4 points) circuit diagram

Stat.	e tab	le			State-ass	igned tal	ble	
Present State A B C D	Next W=0 A B C D E	State W=1 B C b E A	Output O I Z 3	A	Present State 7: 4.40 0 0 0 0 0 1		State W=1 Y=Y/0 001 010	Output 2,2,20 000 001 010
				D1 = D0 =	Y2 = W	12 + W 9, 1, + 9, 50 5, + W 92	yo + wy, y	1 0 0 So = Wyo⊕y,

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

P2. (10 points)

Repeat P1 using T flip-flops.

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

P3. (10 points)

Repeat P1 using JK flip-flops.

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

P4. (10 points)

Design the modulo-12 up-counter which counts in the sequence 0, 1, 2, 3, ..., 9, 10, 11, 0... with input w as an enable. Use JK flip-flops in your circuit.

Solution:						
Present State 93 9, 9, 90 0 0 0 0 0 1 0 0 0 1 2 0 0 0 1 4 0 1 0 0 5 0 1 1 1 8 1 0 0 0 11 1 0 1 1 12 1 1 0 0 13 1 1 0 1 14 1 1 1 0 15 1 1 1 1	0000 0000	X O O X X O X O X O O X O X X O X O O X O X	J3K3 J2 K2 J, K1 J0 K0 OX OX OX IX OX OX X0 IX OX OX X0 IX OX X X X X X X X X X X X X X X X X X			
		J3 K3, J2 K2, J1 K				

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

Cpr E 281 HW11

ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

P5. (40 points)

A counter has a special counting sequence: 0, 5, 7, 1, 0, 5, 7, 1, and so on. Design this counter with minimal number of states.

- a) (5 points) Draw a state diagram for the counter.
- b) (5 points) Construct a state-assigned table including the next state and output.
- c) (10 points) Draw the circuit diagram for the counter using D flip-flops.
- d) (10 points) Repeat (c) using T flip-flops.
- e) (10 points) Repeat (c) using JK flip-flops.

Solution:

This counter does not require an enable. Students may have different state assignments from this solution which could also be a correct approach.

a)

(optional)
-----------	---

Present	Next	Output
State	State	
Α	В	0
В	C	5
C	D	7
D	A	ı

6)

Present State	Next State Y. Yo		Output 2, 2, 30		
00	0	1	0	0	0
01	- 1	0	1	0	1
10	'	1	1	ı	1
1. (0	0	٥	0	1

$$Y_1 = y_1 \oplus y_0$$
 $Z_2 = y_1 \oplus y_0 = Y_1$
 $Z_3 = y_1 \oplus y_0 = Y_1$
 $Z_4 = y_1 \oplus y_0 = Y_1$

C)

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

P6. (10 points)

Draw a state transition diagram for:

- a) (5 points) A state machine that reads in a sequence of binary digits, one at a time, and stops when it has read in a total of five 1s (need not to be consecutive). To "stop" the machine, merely have it loop repeatedly in a final state.
- b) (5 points) A state machine that stops when it has read in at least three consecutive 1s followed by a 0.

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: Monday, Nov. 28, 2016

P7. (10 points) Arbiter Circuits

The arbiter FSM defined in Section 6.8 (Figure 6.72) may cause device 3 to never get serviced if devices 1 and 2 continuously keep raising requests, so that in the Idle state it always happens that either device 1 or device 2 has an outstanding request. Modify the proposed FSM to ensure that device 3 will get serviced, such that if it raises a request, the device 1 and 2 will be serviced only once before the device 3 is granted its request.

