Recitation Note - CS430 Fall 2014

Taeho Jung Illinois Institute of Technology

Aug 29, 2014

- This is my personal note for the recitation, and it may contain some error. Please let me know if you find one (or more).
- I do not guarantee I will prepare a note for every recitation.
- 'lg' stands for the logarithm of base 2, and 'ln' of base $e \approx 2.718$ (per textbook).

1 Growth rates and notations

1.1

Determine whether the following notations are correct.

1.
$$2n^3 + 100n^2 = O(n^3)$$

2.
$$2n^3 + 100n^2 = O(n^4)$$

$$3. \ 2n^3 + 100n^2 = O(n^2)$$

4.
$$2n^3 + 100n^2 = \Omega(n^3)$$

5.
$$2n^3 + 100n^2 = \Omega(n^4)$$

6.
$$2n^3 + 100n^2 = \Omega(n^2)$$

7.
$$2n^3 + 100n^2 = \Theta(n^3)$$

8.
$$2n^3 + 100n^2 = \Theta(n^4)$$

9.
$$2n^3 + 100n^2 = \Theta(n^2)$$

1.2

Order the following lists of functions by their big-theta notations. Also, mark all functions of the same growth rate.

$$\lg(\lg n) \quad \lg(n^2) \quad (\lg n)^2$$

$$2^{\lg n} \quad (\sqrt{2})^{\lg n} \quad n^2 \quad n^n \quad n \lg n$$

$$(n+1)! \quad n! \quad n^n \quad 2^n$$

$$\lg n \quad \ln n \quad \log_{10} n$$

2 Recurrence

2.1

Sequence	Annihilator
$\langle \alpha \rangle$	E-1
	$\mathbf{E} - a$
$\langle \alpha a^i + \beta b^i \rangle$	$(\mathbf{E} - a)(\mathbf{E} - b)$
$\left\langle \alpha_0 a_0^i + \alpha_1 a_1^i + \dots + \alpha_n a_n^i \right\rangle$	$(\mathbf{E} - a_0)(\mathbf{E} - a_1) \cdots (\mathbf{E} - a_n)$
$\langle \alpha i + \beta \rangle$	$({\bf E}-1)^2$
$\langle (\alpha i + \beta) a^i \rangle$	
$\langle (\alpha i + \beta)a^i + \gamma b^i \rangle$	$(\mathbf{E} - a)^2 (\mathbf{E} - b)$
$\langle (\alpha_0 + \alpha_1 i + \cdots \alpha_{n-1} i^{n-1}) a^i \rangle$	$(\mathbf{E}-a)^n$
If X annihilates $\langle a_i \rangle$, then X also annihilates $c \langle a_i \rangle$ for any constant c .	
If X annihilates $\langle a_i \rangle$ and Y annihilates $\langle b_i \rangle$, then XY annihilates $\langle a_i \rangle \pm \langle b_i \rangle$.	

Figure 1: Table of Annihilators, from lecture note Aug27.

Find all solutions of the recurrence relation $T(n) = 2T(n-1) + 2n^2$ using operator methods (annihilator).

2.2

```
The Master Theorem. The recurrence T(n) = aT(n/b) + f(n) can be solved as follows.

• If af(n/b)/f(n) < 1, then T(n) = \Theta(f(n)).

• If af(n/b)/f(n) > 1, then T(n) = \Theta(n^{\log_b a}).

• If af(n/b)/f(n) = 1, then T(n) = \Theta(f(n)\log_b n).

• If none of these three cases apply, you're on your own.
```

Figure 2: Master's Theorem, from lecture note Aug27.

Find growth rate of the function T(n) defined via recurrence relation T(n) = 2T(n/2) + n using Master's Theorem.

2.3

Find all solutions of the recurrence relation T(n) = 2T(n/2) + n using the secondary recurrences.

3 Answers

1.1

Correct: 1, 2, 4, 6, 7. Incorrect: 3, 5, 8, 9.

1.2

**In non-decreasing order.

$$\begin{split} \lg(\lg n), & \lg(n^2) = 2\lg n, & (\lg n)^2 \\ & (\sqrt{2})^{\lg n} = n^{0.5}, & 2^{\lg n} = n, & n\lg n, n^2, & n^n \\ & 2^n, & n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1, & (n+1)! = (n+1)n!, & n^n = n\cdot n\cdots n\cdot n \\ & \lg n, & \ln n = \frac{\lg n}{\lg e}, & \log_{10} n = \frac{\lg n}{\lg 10} \text{ have the same growth rate.} \end{split}$$

2.1

Annihilator of homogeneous part: (E-2), and non-homogeneous part: $(E-1)^3 \Rightarrow$ The annihilator of the relation is $(E-2)(E-1)^3 \Rightarrow$ All solutions containing unknown constants are:

$$k_1 2^n + k_2 + k_3 n + k_4 n^2$$

2.2

$$a=2, b=2, f(n)=n \Rightarrow af(n/b)/f(n)=2(n/2)/n=1 \Rightarrow T(n)=\Theta(n\log_2 n)=\Theta(n\log n).$$

2.3

Let $n = t_i, n/2 = t_{i-1}$, then $t_i = 2t_{i-1}$. Annihilator for t_i is (E-2), which implies $t_i = k2^i$.

Denote $T(t_i) = F(i)$. Then, the original recurrence relation becomes F(i) = 2F(i-1) + n, where $n = t_i = k2^i$. This can be trivially solved by operator methods.