

基础必修—管综(数学)

算术

(主讲老师: 媛媛老师)

邮箱:family7662@dingtalk.com

实数

比与比例

数据描述

数轴与绝对值

一、实数

常见无理数
$$\begin{cases} \pi = 3.14 \cdots, e = 2.7182 \cdots \\ \text{开不尽的根号: 如 } \sqrt{2} \\ \text{取不尽的对数: 如 } \log_2 3 \end{cases}$$

1.实数 $-2.3, \sqrt{7}, 0, \sqrt[3]{27}, 0.15, -\pi$ 中,有理数的个数为a,无理数的个数为b,则a-b

的值是()

A.1

B.3

C.2

D.5

E.-2

1.实数 $-2.3, \sqrt{7}, 0, \sqrt[3]{27}, 0.15, -\pi$ 中,有理数的个数为a,无理数的个数为b,则a-b

的值是(C)

A.1

B.3

C.2

D.5

E.-2 【解析】 $-2.3,0,\sqrt[3]{27}=3,0.15$ 是有理数, $\sqrt{7},-\pi$ 是无理数,则a=4,b=2,a-b=4-2=2,故选C.

2.若a是最大的负整数 , b是绝对值最小的有理数 , 则 $a^{2022} + \frac{b^{2023}}{2024} = ()$

A. - 1

B.1

C.0

D.2

E. - 2

2.若a是最大的负整数 , b是绝对值最小的有理数 , 则 $a^{2022} + \frac{b^{2023}}{2024} = (B)$

B.1
C.0
1,
$$b = 0$$
, $a^{2022} + \frac{b^{2023}}{2024} = 1$

D.2

$$E_{\bullet} - 2$$

整除

能被2整除的数	个位为0,2,4,6,8.(偶数)		
能被3整除的数	各数位数字之和必能被3整除.		
能被4整除的数	末两位(个位和十位)数字必能被4整除.		
能被5整除的数	个位为0或5.		

整除

3.不超过100的正整数,能够被7或5整除的有多少个()

A.35

B.36

C.32

D.34

E.39

整除

3.不超过100的正整数,能够被7或5整除的有多少个(℃)

```
A.35
```

【解析】不超过100的正整数,能够被7整除的有14个;能被5整除的

B.36 有20个;减去既能够被7又能够被5整除的有2个.故共有14+20-2=

C.32 32个. 故选C.

D.34

E.39

) 质数、合数

1.质数 (素数)

如果一个大于1的正整数,**只能被1和它本身整除**,那么这个**正整数**叫作质数(或素数).如2,3,5,7,11,13,17,19,...

2.合数

如果一个大于1的正整数除了**能被1和它本身整除**外,还能被**其他的正整数**整除,这个正整数叫作合数(或复合数).如4,6,8,9,...

注意:1既不是质数也不是合数.

2是唯一的偶质数

) 质数、合数

3.互质

公约数只有1的两个整数称为互质整数,如4和9.(注意:不一定是质数才互质)

4.既约分数

又称最简分数,指的是分子与分母互质的分数,其中分子、分母不一定为质数.

) 质数、合数

4.将420分解为若干质数之积,则这些质数之和为()

A.17

B.18

C.19

D.20

E.21

> 质数、合数

D.20

E.21

> 质数、合数

5. (2021)设p, q是小于10的质数,则满足条件 $1 < \frac{q}{p} < 2$ 的p, q有____组. ()

- **A.2**
- B.3
- **C.4**
- D.5
- E.6

> 质数、合数

```
5. (2021)设p, q是小于10的质数,则满足条件1 < \frac{q}{p} < 2的p, q有____组.(B)
```

- A.2 【解析】小于10的质数有2, 3, 5, 7, 满足条件1 $<\frac{q}{p}<$ 2的情况有 $\frac{3}{2}$, B.3
- C.4 $\frac{5}{3}$, $\frac{7}{5}$ 共3组. 故选B
- D.5
- E.6

偶数:能被2整除的数,记作2n

奇数:不能被2整除的数,记作2n + 1或2n - 1

奇数±奇数=	奇数×奇数=奇数	
奇数±偶数 =	奇数×偶数 = 偶数	
偶数±偶数=偶数	偶数×偶数=偶数	

注意: 0是偶数,两个相邻整数必为一奇一偶

偶数:能被2整除的数,记作2n

奇数:不能被2整除的数,记作2n + 1或2n - 1

奇数±奇数=偶数	奇数×奇数=奇数	
奇数±偶数=奇数	奇数×偶数=偶数	
偶数±偶数=偶数	偶数×偶数=偶数	

注意: 0是偶数,两个相邻整数必为一奇一偶

加减口诀:同偶异奇★

乘法口诀:有偶则偶

6.已知a是质数 , b是大于2的质数 , 且 $a^2 + b = 2021$, 则a + b的值为()

A.2 019

B.2 020

C.2 021

D.2 022

E.2 023

6.已知a是质数 , b是大于2的质数 , 且 $a^2 + b = 2021$, 则a + b的值为(**A**)

A.2 019

B.2 020 【解析】因为b是大于2的质数,可知b是奇数,又因等式中2021是奇数,可得 a^2 为偶数,即可知a为偶数,由题目知a为偶数也是质数,

C.2 021 即a=2, b=2017, 所以a+b=2019. 故选A.

D.2 022

E.2 023

二、比与比例

上 比例定理

(1)更比定理

$$\frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a}{c} = \frac{b}{d}$$

(2)反比定理

$$\frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{b}{a} = \frac{d}{c}$$

> 比例定理

(3) 合比定理

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a+b}{b} = \frac{c+d}{d}$$

(4)分比定理

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a-b}{b} = \frac{c-d}{d}$$

(5)合分比定理

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d}$$

> 比例定理

(6)等比定理

$$\operatorname{Im} \frac{a+c+e+\cdots+m}{b+d+f+\cdots+n} = \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \cdots = \frac{m}{n}.$$

上 比与比例

7.设
$$\frac{1}{x}$$
: $\frac{1}{y}$ = 4:5, $x + y = 36$, 则 $y = ($)

A.12

B.14

C.16

D.18

E.36

> 比与比例

7.设
$$\frac{1}{x}$$
: $\frac{1}{y}$ = 4:5, $x + y = 36$, 则 $y = (C)$

$$C.16 \frac{5+4}{5}$$

上 比与比例

8.若
$$\frac{a+b-c}{c} = \frac{a-b+c}{b} = \frac{-a+b+c}{a} = k$$
,则 k 的值为()

A.1

> 比与比例

8.岩
$$\frac{a+b-c}{c} = \frac{a-b+c}{b} = \frac{-a+b+c}{a} = k$$
,则 k 的值为(B)

A.1 【解析】根据等比定理当
$$a+b+c\neq 0$$
时, $\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a-b+c}{a}$

B.1或 - 2
$$\frac{a+b+c}{a+b+c} = 1 = k$$
 , 当 $a+b+c = 0$ 时, $\frac{a+b-c}{c} = \frac{-c-c}{c} = -2 = k$. 故选B.

三、数据描述

> 极差、方差与标准差

1.极差

极差=最大值-最小值

2.方差

$$S^{2} = \frac{1}{n} [(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}]$$

3.标准差

$$S = \sqrt{\frac{1}{n} \left[(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2 \right]}$$

注意:方差和标准差都是反应一组数据离散程度的统计量

) 方差、标准差

9. (2017) 甲、乙、丙三人每轮各投篮10次,投了三轮.投中数如下表:

	第一轮	第二轮	第三轮
甲	2	5	8
乙	5	2	5
丙	8	4	9

 $\[\mathbf{l}\sigma_1 \,,\, \sigma_2 \,,\, \sigma_3 \mathcal{O} \, \mathbf{J} \, \mathcal{O} \,$

$$A.\sigma_1 > \sigma_2 > \sigma_3$$

$$B.\sigma_1 > \sigma_3 > \sigma_2$$

$$C.\sigma_2 > \sigma_1 > \sigma_3$$

$$D.\sigma_2 > \sigma_3 > \sigma_1$$

$$\mathsf{E}.\sigma_3 > \sigma_2 > \sigma_1$$

)方差、标准差

9.(2017)甲、乙、丙三人每轮各投篮10次,投了三轮.投中数如下表:

	第一轮	第二轮	第三轮
甲	2	5	8
乙	5	2	5
丙	8	4	9

 $il\sigma_1$, σ_2 , σ_3 分别为甲、乙、丙投中数的方差,则(**B**)

$$A.\sigma_1 > \sigma_2 > \sigma_3$$

$$B.\sigma_1 > \sigma_3 > \sigma_2$$

【解析】①求平均值,甲=
$$\frac{2+5+8}{3}$$
=5,乙= $\frac{5+2+5}{3}$ =4,丙= $\frac{8+4+9}{3}$ =7.

$$C.\sigma_2 > \sigma_1 > \sigma_3$$

C.
$$\sigma_2 > \sigma_1 > \sigma_3$$
 ②求方差, $\sigma_1 = \frac{1}{3} \times [(2-5)^2 + (5-5)^2 + (8-5)^2] = 6$.

$$D.\sigma_2 > \sigma_3 > \sigma_1$$

$$E.\sigma_3 > \sigma_2 > \sigma_1$$

$$\sigma_2 = \frac{1}{3} \times [(5-4)^2 + (2-4)^2 + (5-4)^2] = 2$$

$$\sigma_3 = \frac{1}{3} \times [(8-7)^2 + (4-7)^2 + (9-7)^2] = \frac{14}{3}$$
. 故选B.

四、数轴与绝对值

>数轴与绝对值

1.绝对值代数意义

$$|a| = \begin{cases} a & a > 0 \\ 0 & a = 0 \\ -a & a < 0 \end{cases}$$

2.绝对值几何意义

|a|表示在数轴上a点与原点0的距离.

|a-b|表示在数轴上a点与b点之间的距离.

数轴与绝对值

10.若
$$|a-1|=3$$
, $b=4$, 则 $|a-1-b|=()$

A.1

B.1或7

C.7

D.1或8

E.4或7

数轴与绝对值

10.若
$$|a-1|=3$$
, $b=4$, 则 $|a-1-b|=(B)$

A.1

B.1或7 【解析】因为
$$a-1=\pm 3$$
,所以 $a=-2$ 或4,且 $b=4$. 所以 $|a-1-$

C.7
$$b|=|-2-1-4|=7$$
或 $|a-1-b|=|4-1-4|=1$ 故选B.

D.1或8

E.4或7

>数轴与绝对值

11.已知2x - 3的绝对值与x + 6的绝对值相等,则x的相反数为()

A.9

B.1

C.1或-9

D.9或-1

E.-1或-9

> 数轴与绝对值

11.已知2x - 3的绝对值与x + 6的绝对值相等,则x的相反数为(C)

A.9

【解析】因为|2x-3|=|x+6|,所以|2x-3|=x+6或

B.1

2x-3=-(x+6), x=9或x=-1,则x的相反数为-9或1,故选C.

C.1或-9

D.9或-1

E.-1或-9

> 数轴与绝对值

3.绝对值的性质

(1) 对称性:|-a|=|a|,即互为相反数的两个数的绝对值相等.

(2)等价性:
$$|a| = \sqrt{a^2}$$
, $|a|^2 = |a^2| = |-a^2| = a^2$

(3) 自比性:
$$\frac{|a|}{a} = \frac{a}{|a|} = \begin{cases} 1, a > 0 \\ -1, a < 0 \end{cases}$$

(4) 非负性: $|a| \ge 0$

具有非负性的数还有偶次方(根), 如 a^2 , a^4 , \sqrt{a}

若干个具有非负性质的数之和等于零时,则每个非负数应该为零;有限个非负数之和仍为非负数.

$$|a|+b^2+\sqrt{c}\leq 0\Rightarrow a=b=c=0$$

$$(5) |a \cdot b| = |a| \cdot |b|, \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

数轴与绝对值

12.若
$$a, b, c$$
满足 $|a-3| + \sqrt{3b+5} + (5c-4)^2 = 0$,则 $abc = ()$.

B.
$$-\frac{5}{3}$$

A.-4 B.
$$-\frac{5}{3}$$
 C. $-\frac{4}{3}$

$$D_{-\frac{4}{5}}^{4}$$

>数轴与绝对值

12.若
$$a, b, c$$
满足 $|a-3| + \sqrt{3b+5} + (5c-4)^2 = 0$,则 $abc = ()$.

B.
$$-\frac{5}{3}$$
 C. $-\frac{4}{3}$ D. $\frac{4}{5}$

$$C.-\frac{4}{3}$$

$$D_{-5}^{4}$$

【解析】由非负性可得
$$\begin{cases} a-3=0 \\ 3b+5=0 \Rightarrow \\ 5c-4=0 \end{cases} \Rightarrow \begin{cases} a=3 \\ b=-\frac{5}{3} \Rightarrow abc=-4, \text{ 故选A.} \end{cases}$$

学习→点击课程→点击评价(5星好评)→提交评价

感谢您的观看

(主讲老师: 媛媛老师)

邮箱:family7662@dingtalk.com