SUPPLY FORECASTING

By DIKSHYA ARADHANA

Content

- Domain
- Problem Statement
- Data Collection
- Data Processing
- Data Modelling
- Implementation

Domain

Inventory Management

It refers to the process of ordering, storing and using a company's inventory. This includes the management of raw materials, components and finished products, as well as warehousing and processing such items.

Problem Statement

Data:

Yearly Sales Data of a Grocery Shop in Poland

■ Goal:

Forecasting Gross Sale Per Day

Understanding the Dataset

Date of Sale :

Concerned Date of Purchase

Net Purchase Per Day :

Total amount of purchases made in that particular day. Net sales are calculated by deducting sales allowances, sales discounts, and sales returns from gross sales.

Understanding the dataset

Gross Sale Per Day :

Gross sales are the grand total of all sale transactions reported in a period, without any deductions included within the figure.

Tax of Sale Per Day :

It is the amount of money, calculated as a percentage, that is added to the cost of a product or service when purchased by a consumer at a retail location.

Understanding the dataset

Margin Per Day :

It is the Marginal interest which is the difference between a product or service's selling price and the cost of production, or the ratio of profit to revenue.

Data PreProcessing

- Cleaning up the data by Removing the commas from the last column
- Changing the datatype of Date of Sale from object to datetime
- Dropping the null values

Graph between Date of Sale and Gross Sale Per Day

SARIMAX Model

```
ARIMA(0,1,0)(0,1,1)[12]
                                    : AIC=inf, Time=0.24 sec
ARIMA(0,1,0)(0,1,0)[12]
                                    : AIC=6075.009, Time=0.04 sec
ARIMA(1,1,0)(1,1,0)[12]
                                    : AIC=5940.851, Time=0.46 sec
                                    : AIC=inf, Time=0.58 sec
ARIMA(0,1,1)(0,1,1)[12]
ARIMA(1,1,0)(0,1,0)[12]
                                    : AIC=6029.314, Time=0.08 sec
ARIMA(1,1,0)(2,1,0)[12]
                                    : AIC=5910.289, Time=1.27 sec
                                    : AIC=inf, Time=3.78 sec
ARIMA(1,1,0)(2,1,1)[12]
ARIMA(1,1,0)(1,1,1)[12]
                                    : AIC=inf, Time=0.66 sec
ARIMA(0,1,0)(2,1,0)[12]
                                    : AIC=5971.910, Time=0.29 sec
ARIMA(2,1,0)(2,1,0)[12]
                                    : AIC=5881.428, Time=1.97 sec
ARIMA(2,1,0)(1,1,0)[12]
                                    : AIC=5920.122, Time=0.80 sec
                                    : AIC=inf, Time=4.01 sec
ARIMA(2,1,0)(2,1,1)[12]
ARIMA(2,1,0)(1,1,1)[12]
                                    : AIC=inf, Time=1.02 sec
ARIMA(2,1,1)(2,1,0)[12]
                                    : AIC=inf, Time=4.29 sec
                                    : AIC=inf, Time=3.14 sec
ARIMA(1,1,1)(2,1,0)[12]
                                    : AIC=5883.429, Time=2.44 sec
ARIMA(2,1,0)(2,1,0)[12] intercept
```

Best model: ARIMA(2,1,0)(2,1,0)[12]

Total fit time: 25.080 seconds

5881.42844098615

Plot between actual and predicted values

Graph after Forecasting

Implementation

- Can be used for future growth and for managing the cash flow
- Helps in budgeting, and risk management

THANK YOU