Lab CAT

April 5, 2025

Name	Tufan Kundu
Reg No.	24MDT0184
Course Name	Regression Analysis and Predictive Models Lab
Course Code	PMDS504P
Set	В
Assessment	Digital Assessment 4

1 QUESTION 1: Data Understanding & Visualization

- 1.1 AIM: To understand the behavior of monthly sunspot activity data and visualize it. Perform exploratory data analysis and required pre processing steps on the data.
- 1.1.1 Loading the necessary libraries

```
[90]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1.2 Data Preprocessing

1.2.1 Loading the dataset

```
[91]: df = pd.read_csv("Sunspot.csv")
df.head() # displaying the first few rows of the dataset
```

```
[91]: Month Sunspots
0 1749-01 58.0
1 1749-02 62.6
2 1749-03 70.0
3 1749-04 55.7
4 1749-05 85.0
```

[92]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2820 entries, 0 to 2819

```
Non-Null Count Dtype
          Column
                    _____
      0
          Month
                    2820 non-null
                                    object
      1
          Sunspots 2820 non-null
                                    float64
     dtypes: float64(1), object(1)
     memory usage: 44.2+ KB
     1.2.2 Renaming month column as Time-Stamp
[93]: df.rename(columns={'Month': 'Time-Stamp'}, inplace=True)
[94]: df.head()
[94]:
        Time-Stamp
                    Sunspots
           1749-01
      0
                        58.0
      1
           1749-02
                        62.6
      2
           1749-03
                        70.0
      3
           1749-04
                        55.7
      4
           1749-05
                        85.0
     1.2.3 Converting the Month column to datetime and setting as index.
[95]: df['Time-Stamp'] = pd.to_datetime(df['Time-Stamp'])
      df.set_index('Time-Stamp', inplace = True)
[96]: df.head()
[96]:
                  Sunspots
      Time-Stamp
      1749-01-01
                      58.0
      1749-02-01
                      62.6
      1749-03-01
                      70.0
      1749-04-01
                      55.7
      1749-05-01
                      85.0
     1.2.4 Handling missing values
[97]: df.isnull().sum()
[97]: Sunspots
      dtype: int64
```

Data columns (total 2 columns):

• the dataset has no missing values

1.3 Exploratory Data Analysis

1.3.1 Display summary statistics (count, mean, std, min, max, etc.).

```
[98]: ## Summary Statistics
print("\nSummary Statistics:\n", df.describe())
```

Summary Statistics: Sunspots 2820.000000 count 51.265957 mean 43.448971 std 0.000000 min 25% 15.700000 50% 42.000000 75% 74.925000 253.800000 max

1.3.2 Plot a line chart showing sunspot activity over time.

```
[99]: plt.figure(figsize = (12,6))
  plt.plot(df.index,df['Sunspots'],label='Trend of Sunspot over time')
  plt.title("Sunspot activity over time")
  plt.xlabel("Time (Year)")
  plt.ylabel("Sunspots")
  plt.grid(True, linestyle='--', alpha = 0.5)
  plt.legend()
  plt.show()
```


- The plot shows sunspot activity trends across time.
- There is a regular cyclic pattern, but the intensity of peaks varies across cycles, indicating periodic but varying sunspot activity

Name	Tufan Kundu
Reg No.	24MDT0184
Course Name	Regression Analysis and Predictive Models Lab
Course Code	PMDS504P
Set	В
Assessment	Digital Assessment 5

2 QUESTION 2: Stationarity Check & Autocorrelation Analysis

- 2.1 AIM: To check Stationarity and perform Autocorrelation Analysis on the monthly sunspot activity dataset.
- 2.2 Stationarity Check
- 2.2.1 Apply the Augmented Dickey-Fuller (ADF) test

```
[100]: from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf
```

```
[101]: # Applying (ADF) Test
       adf_result = adfuller(df['Sunspots'])
       # Printing the results
       print("\n--- ADF Test Results ---")
       print(f"ADF Statistic : {adf_result[0]:.4f}")
                                   : {adf result[1]:.4f}")
       print(f"p-value
       print(f"Number of lags used : {adf_result[2]}")
       print(f"Number of observations used: {adf_result[3]}")
       print("Critical Values
       for key, value in adf_result[4].items():
          print(f"
                    {key}: {value:.4f}")
       # Interpretation
       if adf_result[1] < 0.05:</pre>
          print("\nConclusion: The series is stationary, so we reject the null ⊔
        ⇔hypothesis.")
          print("\nConclusion: The series is not stationary, so we fail to reject the⊔
        onull hypothesis.")
```

⁻⁻⁻ ADF Test Results ---

Number of observations used: 2792

Critical Values :

1%: -3.4327 5%: -2.8626 10%: -2.5673

Conclusion: The series is stationary, so we reject the null hypothesis.

2.3 b) Autocorrelation Analysis

```
[103]: ### Plotting the autocorrelation function

plt.figure(figsize=(10, 4))
  plot_acf(df['Sunspots'], lags=40)
  plt.title('Autocorrelation of Sunspots')
  plt.tight_layout()
  plt.show()
```

<Figure size 1000x400 with 0 Axes>

2.4 Interpretation

- The first lag has a high autocorrelation, which is expected as a time series is always correlated with itself at lag 0.
- The autocorrelation slowly decreases and remains significantly positive for many lags.
- The autocorrelation slowly decreases and remains significantly positive for many lags