SUITES

Gabriel ROMON

Version du 2020-07-11 à 14:13:03

Preuves par récurrence

Exercice 1

Exo 1S1 2010

Montrer par récurrence les propositions suivantes

- 1. Pour tout $n \in \mathbb{N}$, $2^n > n$
- 2. Pour tout $n \in \mathbb{N} \setminus \{0, 1, 2, 3, 4\}, 2^n > n^2$
- 3. Pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^{n} k \cdot k! = (n+1)! 1$
- 4. Pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

Exercice 2

Exo 1S1 2010

Soit $(u_n)_{n\geq 0}$ une suite vérifiant pour tout $n\in\mathbb{N}, u_{n+1}=2u_n+1-n$

- 1. Lorsque $u_0 = 0$, conjecturer une formule explicite pour u_n et la démontrer
- 2. Lorsque $u_0 = 1$, montrer que pour tout $n \in \mathbb{N}$, $u_n = 2^n + n$
- 3. Lorsque $u_0 = 6$, montrer que pour tout $n \in \mathbb{N}$, $u_n = 3 \times 2^{n+1} + n$

Suites

Exercice 3

DS5 1S1 2001

DS5 1S1 2001 Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=3$ et pour tout $n\geq 0$, $u_{n+1}=\frac{4u_n-2}{u_n+1}$. On définit $(v_n)_{n\geq 0}$ $par v_n = \frac{u_n - 2}{u_n - 1}.$

- 1. Montrer que (u_n) est bien définie.
- 2. Montrer que (v_n) est bien définie.
- 3. Montrer que (v_n) est géométrique.
- 4. Donner une forme explicite de (v_n) et (u_n)

Exercice 4

DS5 1S1 année inconnue

Trouver a, b, c des réels ≥ 0 tels que

$$\begin{cases} 0 \leq a \leq b \leq c \\ a,b,c \text{ sont } 3 \text{ termes consécutifs d'une suite arithmétique} \\ a^2,3b,c^2 \text{ sont } 3 \text{ termes consécutifs d'une suite géométrique} \\ a+b+c=12 \end{cases}$$

Limites de suites

Exercice 5

Terracher

Calculer la limite des suites suivantes:

1.
$$\frac{5 \times 3^n - 2}{3^n + 1}$$

$$2. \ \frac{1-2^n}{2^{n+1}+1}$$

3.
$$n^2 + (-1)^n n$$

$$4. \sin(n) - n$$

5.
$$3^n + (-2)^n$$

6.
$$3n^2 - n + 1$$

7.
$$2^n \times \frac{1}{n3^n}$$

Exercice 6

Exo 1S1 2010

Soit $(u_n)_{n\geq 1}$ la suite de terme général $u_n=3+\left(-\frac{1}{2}\right)^n$

- 1. Quelle est la limite de (u_n) ?
- 2. Soit $(v_n)_{n\geq 1}$ définie par $v_n=u_{n+1}-u_n$. Montrer que (v_n) est géométrique, donner sa raison et son premier terme.

Exercice 7

Terracher

En utilisant une suite géométrique montrer que $0.555... = \frac{5}{9}$

Exercice 8

Terracher

Soit $(u_n)_{n\geq 1}$ la suite de terme général $u_n=\sum_{k=1}^n\frac{n}{n^2+k}=\frac{n}{n^2+1}+\frac{n}{n^2+2}+\ldots+\frac{n}{n^2+n}$

- 1. Montrer que $\frac{n}{n+1} \le u_n \le \frac{n^2}{n^2+1}$.
- 2. Déterminer la limite de (u_n) .

Exercice 9

DS6 1S1 2001

Soit a un réel strictement positif et différent de 2.

Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0>0$ et pour tout $n\geq 0, u_{n+1}=\frac{au_n+2}{2u_n+a}$.

On définit $(v_n)_{n\geq 0}$ par $v_n = \frac{u_n - 1}{u_n + 1}$.

- 1. Vérifier que (u_n) et (v_n) sont bien définies.
- 2. Calculer une forme explicite de (u_n) et (v_n) .
- 3. Etudier la convergence de (u_n) et (v_n) .

Exercice 10

DS6 1S1 année inconnue

Soit $(u_n)_{n\geq 0}$ une suite décroissante

- 1. Montrer que pour tout $n \ge 1$, $u_n + u_{n+1} \le 2u_n \le u_{n-1} + u_n$
- 2. En déduire que si la suite de terme général $n(u_{n+1}-u_n)$ converge vers 1, alors la suite de terme général nu_n converge vers $\frac{1}{2}$
- 3. En déduire la convergence de (u_n) .

Exercice 11

DS7 1S1 2004

Les propositions suivantes sont-elles vraies ou fausses? Donner une preuve ou un contre-example.

- 1. Si la suite (u_n) est non majorée, alors elle diverge vers $+\infty$.
- 2. Si (u_n) diverge vers $+\infty$ alors elle n'est pas majorée.
- 3. Si (u_n) est croissante, alors elle diverge vers $+\infty$.
- 4. Si (u_n) diverge vers $+\infty$, alors elle est croissante à partir d'un certain rang.
- 5. Si (u_n) converge, alors $(u_{n+1} u_n)$ converge vers 0.
- 6. Si $(u_{n+1} u_n)$ converge vers 0 alors (u_n) converge.
- 7. Si (u_n) converge, alors (u_{2n}) et (u_{2n+1}) convergent.
- 8. Si (u_{2n}) et (u_{2n+1}) convergent alors (u_n) converge.
- 9. Si (u_n) converge, alors $(|u_n|)$ converge.
- 10. Si $(|u_n|)$ converge, alors (u_n) converge.