2018/2019 SEMESTER TWO EXAMINATION

Diploma in Electrical and Electronic Engineering 3rd Year Full Time

DIGITAL SIGNAL PROCESSING

<u>Time Allowed</u>: 2 Hours

Instructions to Candidates

- 1. The examination rules as set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 6 Short Questions, 10 marks each.
Section B - 2 Long Questions, 20 marks each.

- 3. ALL questions are COMPULSORY.
- 4. **ALL** questions are to be answered in the answer booklet.
- 5. This paper consists of **5** pages, including 2 pages of mathematical formulae.

2018/2019_S2 Page 1 of 5

SECTION A - SHORT QUESTIONS [10 marks each]

A1. Use partial fraction to find the impulse response of the system described by the following equation,

$$H(z) = \frac{2z}{3z^2 - 4z + 1}$$
 (10 marks)

- A2 Using z-transform and long-division method, find the input x(n) given $y(n)=\{1, 4, 7, 6\}$ and $h(n)=\{1,2\}$ (10 marks)
- A3 Find the z-transform of $x_1(n) = \delta(n-2) + (0.5)^n u(n)$ and $x_2(n) = (0.5)^n \cos(\pi n/3) u(n)$. (10 marks)
- A4 Determine the 4-point DFT of the following sequence, $x(n)=\{1,0,2,0\}$ (10 marks)
- A5 The block diagram of a digital system is given as:

- (a) Find the overall impulse response of the system, $h_T(n)$ in terms of $h_1(n)$ and $h_2(n)$. Find the z-transform of $h_T(n)$, $H_T(z)$. (6 marks)
- (b) If $h_1(n) = \{2,1\}$ and $h_2(n) = \{1,2\}$ respectively, find $h_T(n)$. (4 marks)
- A6 The difference equation of a particular digital network is given as:

$$y(n) = x(n) - x(n-1) - 0.5 y(n-2)$$

- (a) Sketch the digital network. (5 marks)
- (b) Find the z-transform of the transfer function, H(z). (3 marks)
- (c) Given the input x(n) is a unit step function, find y(n) (2 marks)

2018/2019_S2 Page 2 of 5

SECTION B - LONG QUESTIONS [20 marks each]

B1. For the digital filter described by the digital network shown in Fig. B1.

Figure B1

Determine the following:

- (a) The difference equation. (4 marks)
- (b) The system function. (4 marks)
- (c) The gain of the filter at 0 kHz, 2 kHz and 4 kHz if the sampling frequency used is 8 kHz? (9 marks)
- (d) What filtering function does this digital filter perform? (3 marks)
- **B2.** A FIR low pass filter must be designed using the windowing technique with the following specification given below:

Sampling frequency: 10 kHz Pass band: 0 to 1.5 kHz Stop band: 2.25 kHz to 5 kHz Peak approximation error: 0.02

- (a) Determine the type of Window functions to be used. (4 marks)
- (b) Compute the centre of the transition band. (2 marks)
- (c) Compute the first and the centre tap coefficients. (6 marks)
- (d) Draw the digital network of the FIR filter. (4 marks)
- (e) Comment on the shape and stability of the FIR filter. (4 marks)

-End of Paper-

2018/2019_S2 Page 3 of 5

Appendix

The *z*-transform is defined as $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

	<i>n</i> =−∞		
Sequence	Transform		
$\delta[n]$	1		
u[n]	1		
	$1-z^{-1}$		
Δ $[n-m]$	<i>z</i> - ^m		
$a^nu[n]$	1		
	$1-az^{-1}$		
$na^nu[n]$	az^{-1}		
	$(1-az^{-1})^2$		
$[\cos \omega_0 n] u[n]$	$1 - [\cos \omega_0] z^{-1}$		
	$1 - [2\cos\omega_0]z^{-1} + z^{-2}$		
$[\sin \omega_0 n] u[n]$	$[\sin \omega_0]z^{-1}$		
	$\frac{1 - [2\cos\omega_0]z^{-1} + z^{-2}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$		
$[r^n \cos \omega_0 n] u[n]$	$1-[r\cos\omega_0]z^{-1}$		
	$\frac{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$		
$[r^n \sin \omega_0 n] u[n]$	$[r\sin\omega_0]z^{-1}$		
	$\frac{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$		

Some <i>z</i> -transform properties:			
Sequence	Transform		
x[n]	X(z)		
$x_1[n]$	$X_1(z)$		
$x_2[n]$	$X_2(z)$		
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$		
x[n-m]	$z^{-m}X(z)$		

Some trigonometric identities:

$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

Cariac.

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Discrete Fourier Transform:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

Complex number theory:

$$z = a + jb = r \angle \theta = re^{j\theta}$$

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1} \frac{b}{a}$$

Quadratic equation solution:

If
$$ax^2 + bx + c = 0$$

then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The characteristics of the different windowing functions:

Window Type	Peak approximation	Transition
	Error	Band
	$20 \log_{10} \delta dB$	Δω
Rectangular:	-21	4π
$w(n) = \int 1 0 \le n \le M$		$\overline{M+1}$
$w(n) = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		
Bartlett:	-25	8π
Bartlett: $w[n] = \begin{cases} \frac{2n}{M} & 0 \le n \le \frac{M}{2} \\ 2 - \frac{2n}{M} & \frac{M}{2} \le n \le M \\ 0 & \text{otherwise} \end{cases}$		\overline{M}
$w[n] = \begin{cases} 2 - \frac{2N}{M} & \frac{M}{2} \le n \le M \end{cases}$		
0 otherwise		
Hanning:	-44	$\frac{8\pi}{M}$
$w(n) = \begin{cases} 0.5 - 0.5 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		\overline{M}
0 otherwise		
Hamming:	-53	8π
$w(n) = \begin{cases} 0.54 - 0.46\cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		\overline{M}
0 otherwise		
Blackman:	-74	12π
$w(n) = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08\cos\left(\frac{4\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		\overline{M}
0 otherwise		

The impulse response of an ideal low pass filter is: $h_d(n) = \frac{\sin\left(\omega_c\left[n - \frac{M}{2}\right]\right)}{\pi\left(n - \frac{M}{2}\right)}$

2018/2019_S2 Page 5 of 5