Financial Engineering & Risk Management Pricing American Options

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Pricing American Options

- Can also price American options in same way as European options
 - but now must also check if it's optimal to early exercise at each node.
- But recall never optimal to early exercise an American call option on non-dividend paying stock.
- **e.g.** Price American put option: expiration at t = 3, K = \$100 and R = 1.01.

Pricing American Options

Price option by working backwards in binomial the lattice.

e.g.
$$\frac{12.66}{R} = \max \left[12.66, \frac{1}{R} \left(q \times 6.54 + (1-q) \times 18.37 \right) \right]$$

A Simple Die-Throwing Game

Consider the following game:

- 1. You can throw a fair 6-sided die up to a maximum of three times.
- 2. After any throw, you can choose to 'stop' and obtain an amount of money equal to the value you threw.

e.g. if 4 thrown on second throw and choose to 'stop', then obtain \$4.

Question: If you are risk-neutral, how much would you pay to play this game?

Solution: Work backwards, starting with last possible throw:

- 1. You have just 1 throw left so fair value is 3.5.
- 2. You have 2 throws left so must figure out a strategy determining what to do after 1^{st} throw. We find

fair value =
$$\frac{1}{6} \times (4+5+6) + \frac{1}{2} \times 3.5 = 4.25$$
.

3. Suppose you are allowed 3 throws. Then ...

Question: What if you could throw the die 1000 times?

Financial Engineering & Risk Management

Replicating Strategies in the Binomial Model

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Trading Strategies in the Binomial Model

- Let S_t denote the stock price at time t.
- Let B_t denote the value of the cash-account at time t
 - assume without any loss of generality that $B_0=1$ so that $B_t=R^t$
 - so now explicitly viewing the cash account as a security.
- Let x_t denote # of shares held between times t-1 and t for $t=1,\ldots,n$.
- Let y_t denote # of units of cash account held between times t-1 and t for $t=1,\ldots,n$.
- Then $\theta_t := (x_t, y_t)$ is the portfolio held:
 - (i) immediately after trading at time t-1 so it is known at time t-1
 - (ii) and immediately **before** trading at time t.
- θ_t is also a random process and in particular, a trading strategy.

Trading Strategies in the Binomial Model

Self-Financing Trading Strategies

Definition. The value process, $V_t(\theta)$, associated with a trading strategy, $\theta_t = (x_t, y_t)$, is defined by

$$V_{t} = \begin{cases} x_{1}S_{0} + y_{1}B_{0} & \text{for } t = 0\\ x_{t}S_{t} + y_{t}B_{t} & \text{for } t \ge 1. \end{cases}$$
 (3)

Definition. A self-financing trading strategy is a trading strategy, $\theta_t = (x_t, y_t)$, where changes in V_t are due entirely to trading gains or losses, rather than the addition or withdrawal of cash funds. In particular, a self-financing strategy satisfies

$$V_t = x_{t+1}S_t + y_{t+1}B_t, t = 1, ..., n-1.$$
 (4)

The definition states that the value of a self-financing portfolio just before trading is equal to the value of the portfolio just after trading

so no funds have been deposited or withdrawn.

Self-Financing Trading Strategies

Proposition. If a trading strategy, θ_t , is self-financing then the corresponding value process, V_t , satisfies

$$V_{t+1} - V_t = x_{t+1} (S_{t+1} - S_t) + y_{t+1} (B_{t+1} - B_t)$$

so that changes in portfolio value can only be due to capital gains or losses and not the injection or withdrawal of funds.

Proof. For $t \geq 1$ we have

$$V_{t+1} - V_t = (x_{t+1}S_{t+1} + y_{t+1}B_{t+1}) - (x_{t+1}S_t + y_{t+1}B_t)$$
$$= x_{t+1}(S_{t+1} - S_t) + y_{t+1}(B_{t+1} - B_t)$$

and for t = 0 we have

$$V_1 - V_0 = (x_1 S_1 + y_1 B_1) - (x_1 S_0 + y_1 B_0)$$

= $x_1 (S_1 - S_0) + y_1 (B_1 - B_0).$

Risk-Neutral Price = Price of Replicating Strategy

- We have seen how to price derivative securities in the binomial model.
- The key to this was the use of the 1-period risk neutral probabilities.
- But we first priced options in 1-period models using a replicating portfolio
 - and we did this without needing to define risk-neutral probabilities.
- In the multi-period model we can do the same, i.e., can construct a self-financing trading strategy that replicates the payoff of the option
 - this is called dynamic replication.
- The initial cost of this replicating strategy must equal the value of the option
 - otherwise there's an arbitrage opportunity.
- The dynamic replication price is of course equal to the price obtained from using the risk-neutral probabilities and working backwards in the lattice.
- And at any node, the value of the option is equal to the value of the replicating portfolio at that node.

The Replicating Strategy For Our European Option

The Replicating Strategy For Our European Option

e.g. $.802 \times 107 + (-74.84) \times 1.01 = 10.23$ at upper node at time t = 1