

Winter Semester 2024-25

Laboratory Assignment – 1 : Sensors& Actuators

Name- Harsh Prakash

Reg. No.- 22BCT0098

Course Code- BCSE311P

Class Number- VL2024250505942

Prof. Name - SIVANESAN S

Problem Statement:

Simulate, Demostrate and illustrate (graphically) the workings of various thermal sensors using C and python programming tools

Scenario

An advanced industrial monitoring system utilizes several temperature sensors to monitor environmental conditions within a manufacturing facility. Given the differences in accuracy, drift rates, and response times, the readings from these sensors can show slight variations, which can impact decision-making. It is essential for the system to enhance decision-making capabilities in light of redundant or inconsistent readings while ensuring operational efficiency. The monitoring system must:

- 1. Systematically record temperature sensor measurements throughout a specified duration.
- 2. Examine sensor drift and redundancy to enhance data processing efficiency.
- 3. Activate cooling (Fan ON) or heating (Heater ON) in response to established temperature thresholds.
- 4. Present a visual depiction of trends and system performance.

Objective:

The objective of this assignment is to replicate the behavior of various temperature-sensing technologies in a real-world context and to evaluate their performance over a specified duration. Students will create C programs to produce sensor data, implement control mechanisms based on predefined thresholds, and utilize Python for the purposes of graphical representation and analysis.

Comprehensive Documentation for Thermal Sensors Simulation

1.Problem Statement

- Clearly define the problem based on the given scenario.
- Explain the significance and real-world applications.

COMPREHENSIVE DOCUMENTATION

1. PROBLEM STATEMENT

DEFINATION

The objective of this assignment is to simulate, demonstrate and illustrate the behaviour of marious temperature. sensing technologies in a real-world industrial monitoring scenario. This includes implementing sensor clata simulation, accounting for delift and measurement everors, activating control mechanisms based on predefined thresholds, and risualizing the result graphically.

Significance and Real-World Application

Temperature sensor are windly used in inclustries for monitoring and maintaining oftimal environmental conditions. This project replicates the behavior of norious sensors to:

- * Evaluate their performance over time:
- * Enhance decision- making in environments prone to data inconsistencies.
- * Ensure operational efficiency in critical applications, such as manufacturing gacilities

2. Problem Analysis with Numerical Example

- Provide a breakdown of sensor drift, accuracy errors, and control logic.
- Include numerical calculations illustrating sensor behavior over time.

2. Problem Analysis with Numerical Example.
Sensor Characteristics noiTATHAMOSO ANZHAMAMAMOS
1. Thermoelectric Sensor: Accuracy: ± 2.5°C, Drift: 0.6.1. der year
2. Thermoresistine Sensory: Accuracy: ±10°C. Bright: 0.616 per lyear
2 T
4. Therma - Acoustic Sensor: Accuracy: 2°C, Drift: 0.6.1. for year
Example Edulation which are a argular priema. Thermore sisting Survey and more more prieman.
Thermaresistine Sensor
Thermoresistive Sensor measuring a temperature of 25°C after 5 years:
the marketing of the same
* Drift factor: 1+ (0.00 6 * 5) = 1.03
* Peristance = RO * (1+ d * Temperature) * Drigt Factor
* Using RO = 100 R and d = 0.00385
* Resistance = 100 * (1+0.00385 * 25) * 1.03
* Encluste ilein programmed and CEE: 011 =

Thermoelectric Sensor

Kor a thermoelectric wonsor measuring a temperature disperence (DT) of 50°C ofter 5 years:

Pasudecode

Theopeld - Brook (introd

- * Drigt gartor = 1+(0.006 * 5)=1.03
- * Voltage = Seablick (coefficient & DT * Drigt factor
- * Seebock Coefficient = 0.041 m V/° C (orium)
- * Voltage = 0.041 * 50 * 1.03 = 2.1115 mV

Thermo- Optical Sensor

For a thermo-offical sensor with a temperature of 100°C, emissivity of 0.98, and area of 0.0001 m2 after 5 years:

- * Drift factor = 1+ (0.006 * 5)=1.03 what stands
- * Radiation Power = Stefan Boltzmann Constant * Emissiwity * Area * (Temperature + 273.15) * Drigt Factor
- * Stefan-Boltzman = 5.67 × 10-8 W/m2 K4 mainarded pringers J
- * Radiation fouler = 5.67 * 0.99 * 0.000 1 * (100 + 273.15) \$ 1.03 = 5.85 × 10-3 W

Thermo - Acoustic Sensor

For a thermo-acoustic isensor impassing a temperature of 30°C after 5 years.

- * Drift factor = 1+ (0.006 * 5) = 1.03
- * Speed of Sound = Base Speed + (Temperature (deflicient * Temperature) * Drift factor
- * Base speed = 331:3 m/s & Temperature (officient = 0.60 6 m/s/°c
- * Speed of Sound = (331.3+0.606*30) * 1.03 = 352.08 m/s

3.Pseudocode

• Present structured pseudocode explaining sensor data generation, threshold-based control, and logging mechanisms.

2 3. Pseudocode
Sensor Oata Creneration
FOR each sensor type: Initialize sensor farameters (accuracy, dript rate, range). FOR each reading:
panelon temperature within range.
ALLOW Orist based on elapsed glads.
Log Data to CSV Bile 1 x 02 x 1200 - 200100 x
Log Data de la
Threshold - Based Control
Threshold - Based Conce
IF average - temperature > 35°C: Activate Fon
ELSE IF average - temperature < 6°C:
Activate Heater Earla (2 *
Keep system ridle monethod - mojet? = restored to the control of t
* Logging Mechanism = 2501X = 01X = 0.2 = nompoled - nopole *
Open CSV file. White headers (Temperature, Senson I. Senson 27, Control Act
FOR each time step:
Write sensor readings and control action to file.
Close file.

4.Implementation and Test Cases

• Include well-commented C code for sensor data simulation.

thermoresistive.h

```
#include <math.h>
#ifndef SENSOR_H
#define SENSOR_H
#define RO 120.0
#define ALPHA 0.0054
#define A 1.009249522e-03
#define B 2.378405444e-04
#define C 2.019202697e-07
// Drift parameters
#define DRIFT_RATE 0.006
#define SENSOR_ERROR_THERMORESSITIVE 1.0
double cal_res_rtd(double temperature, int years) {
   double drift_factor = 1 + (DRIFT_RATE * years);
   double resistance = RO * (1 + ALPHA * temperature) * drift_factor;
    double error = ((rand() % 2001) - 1000) / 1000.0 * SENSOR_ERROR_THERMORESSITIVE;
    return resistance + error;
double cal_res_thermistor(double temperature, int years) {
   double inv_T = 1.0 / (temperature + 273.15);
    double R = (inv_T - A) / (B + C * pow((inv_T - A), 2));
    double resistance = exp(R);
   double drift_factor = 1 + (DRIFT_RATE * years);
   double error = ((rand() % 2001) - 1000) / 1000.0 * SENSOR_ERROR_THERMORESSITIVE;
    return resistance * drift_factor + error;
#endif
```

thermoelectric.h

```
#include <math.h>
#include <stdlib.h>
#ifndef THERMOELECTRIC_H
#define THERMOELECTRIC_H
#define SEEBECK_COEFF 0.041
// Drift parameters
#define DRIFT_RATE 0.006
#define SENSOR_ERROR_THERMOELECTRIC 2.5
// Function to calculate thermoelectric voltage
double cal_thermoelectric_voltage(double hot_temp, double cold_temp, int years) {
    double delta_T = hot_temp - cold_temp;
   // Apply drift over time
    double drift_factor = 1 + (DRIFT_RATE * years);
    double voltage = SEEBECK_COEFF * delta_T * drift_factor;
    double error = ((rand() % 5001) - 2500) / 1000.0;
    voltage += SEEBECK_COEFF * error;
    return voltage;
#endif
```

thermo_optical.h

```
#include <math.h>
#include <stdlib.h>
#ifndef THERMO_OPTICAL_H
#define THERMO_OPTICAL_H
#define STEFAN_BOLTZMANN 5.670e-8
#define DEFAULT_EMISSIVITY 0.43
// Default sensor surface area (m²)
#define DEFAULT_AREA 0.0012
// Drift parameters
#define DRIFT_RATE 0.006
#define SENSOR_ERROR_THERMOOPTICAL 1.5
double cal_thermal_radiation(double temperature, int years, double emissivity, double area) {
   double temp_K = temperature + 273.15;
   double drift_factor = 1 + (DRIFT_RATE * years);
   double power = STEFAN_BOLTZMANN * emissivity * area * pow(temp_K, 4) * drift_factor;
    double error = ((rand() % 3001) - 1500) / 1000.0;
    temp_K += error;
    power = STEFAN_BOLTZMANN * emissivity * area * pow(temp_K, 4) * drift_factor;
    return power;
#endif
```

thermo_acoustic.h

```
#include <math.h>
#include <stdlib.h>
#ifndef THERMO ACOUSTIC H
#define THERMO_ACOUSTIC_H
// Speed of sound constants
#define BASE_SPEED 331.3
#define TEMP COEFF 0.646
// Drift parameters
#define DRIFT RATE 0.006
#define SENSOR ERROR THERMOACOUSTIC 2.0
// Function to calculate speed of sound based on temperature
double cal_sound_speed(double temperature, int years) {
   // Apply drift over time
   double drift_factor = 1 + (DRIFT_RATE * years);
   double speed = (BASE_SPEED + TEMP_COEFF * temperature) * drift_factor;
   // Apply random noise (±2°C)
   double error = ((rand() % 4001) - 2000) / 1000.0;
   speed = (BASE_SPEED + TEMP_COEFF * (temperature + error)) * drift_factor;
    return speed; // Output in m/s
#endif
```

22BCT0098_main.c

```
22BCT0098 main.c > ...
   #include <time.h>
   #include <string.h>
   #include "thermo_acoustic.h"
#include "thermoelectric.h"
   #include "thermo optical.h"
   #define NUM READINGS 1200
   void operation(double temperature, char *status) {
       if (temperature > 35) {
           strcpy(status, "Fan On");
       } else if (temperature < 6) {
           strcpy(status, "Heater On");
       } else {
           strcpy(status, "Stable");
   int main() {
       int choice, years;
       double temperature, sensor_value;
       char filename[50], status[20];
       FILE *logfile;
       srand(time(NULL));
       while (1) {
           printf("HARSH PRAKASH 22BCT0098\n");
           printf("Select Sensor Type:\n");
           printf("1. Thermoresistive (RTD/Thermistor)\n");
           printf("2. Thermoelectric (Thermocouple)\n");
           printf("3. Thermo-Optical (Infrared Sensor)\n");
           printf("4. Thermo-Acoustic (Ultrasonic-based)\n");
           printf("5. Exit\n");
           printf("Enter choice: ");
           scanf("%d", &choice);
            if (choice == 5) {
                printf("Exiting program...\n");
               break;
           printf("Enter years of operation: ");
           scanf("%d", &years);
            switch (choice) {
                case 1:
                    snprintf(filename, sizeof(filename), "thermoresistive_log.csv");
                    logfile = fopen(filename, "w");
                    fprintf(logfile, "Sensor ID, Temperature, Resistance, Status\n");
                    for (int i = 0; i < NUM_READINGS; i++) {</pre>
                        temperature = (rand() % 6001) / 100.0;
                        sensor_value = cal_res_rtd(temperature, years);
                        operation(temperature, status);
                        fprintf(logfile, "RTD %d, %.2f, %.6f, %s\n", i + 1, temperature, sensor value, status);
```

```
tprint+(log+ile, "KID_%d, %.2+, %.6+, %s\n", 1 + 1, temperature, sensor_value, status);
            fclose(logfile);
           break;
        case 2:
            snprintf(filename, sizeof(filename), "thermoelectric_log.csv");
            logfile = fopen(filename, "w");
            fprintf(logfile, "Sensor ID, Temperature, Voltage, Status\n");
            for (int i = 0; i < NUM_READINGS; i++) {
               temperature = (rand() % 6001) / 100.0;
                sensor value = cal thermoelectric voltage(temperature, temperature - 10, years);
               operation(temperature, status);
                fprintf(logfile, "TC_%d, %.2f, %.6f, %s\n", i + 1, temperature, sensor_value, status);
            fclose(logfile);
           break;
        case 3:
           snprintf(filename, sizeof(filename), "thermo_optical_log.csv");
           logfile = fopen(filename, "w");
            fprintf(logfile, "Sensor ID, Temperature, Power, Status\n");
            for (int i = 0; i < NUM_READINGS; i++) {
               temperature = (rand() % 6001) / 100.0;
                sensor_value = cal_thermal_radiation(temperature, years, DEFAULT_EMISSIVITY, DEFAULT_AREA);
                operation(temperature, status);
                fprintf(logfile, "IR_%d, %.2f, %.6f, %s\n", i + 1, temperature, sensor_value, status);
            fclose(logfile);
           break;
        case 4:
            snprintf(filename, sizeof(filename), "thermo_acoustic_log.csv");
            logfile = fopen(filename, "w");
            fprintf(logfile, "Sensor ID, Temperature, Speed, Status\n");
            for (int i = 0; i < NUM READINGS; i++) {
                temperature = (rand() % 6001) / 100.0;
                sensor_value = cal_sound_speed(temperature, years);
               operation(temperature, status);
                fprintf(logfile, "UA_%d, %.2f, %.6f, %s\n", i + 1, temperature, sensor_value, status);
            fclose(logfile);
           break;
        default:
           printf("Invalid choice!\n");
   printf("Sensor data logged in %s\n\n", filename);
return 0;
```

• Display sample output logs and describe different test scenario

```
PS C:\Users\harsh\Documents\DA\SENSOR> gcc 22BCT0098_main.c
PS C:\Users\harsh\Documents\DA\SENSOR> .\a.exe
HARSH PRAKASH 22BCT0098
Select Sensor Type:

    Thermoresistive (RTD/Thermistor)

Thermoelectric (Thermocouple)
Thermo-Optical (Infrared Sensor)
4. Thermo-Acoustic (Ultrasonic-based)
5. Exit
Enter choice: 1
Enter years of operation: 2
Sensor data logged in thermoresistive_log.csv
HARSH PRAKASH 22BCT0098
Select Sensor Type:

    Thermoresistive (RTD/Thermistor)

Thermoelectric (Thermocouple)
3. Thermo-Optical (Infrared Sensor)
4. Thermo-Acoustic (Ultrasonic-based)
5. Exit
Enter choice: 2
Enter years of operation: 3
Sensor data logged in thermoelectric_log.csv
HARSH PRAKASH 22BCT0098
Select Sensor Type:

    Thermoresistive (RTD/Thermistor)

Thermoelectric (Thermocouple)
3. Thermo-Optical (Infrared Sensor)
4. Thermo-Acoustic (Ultrasonic-based)
5. Exit
Enter choice: 3
Enter years of operation: 4
Sensor data logged in thermo_optical_log.csv
HARSH PRAKASH 22BCT0098
Select Sensor Type:

    Thermoresistive (RTD/Thermistor)

Thermoelectric (Thermocouple)
3. Thermo-Optical (Infrared Sensor)
4. Thermo-Acoustic (Ultrasonic-based)
5. Exit
Enter choice: 4
Enter years of operation: 2
Sensor data logged in thermo_acoustic_log.csv
```

5. Screenshots of Output with Different Test Cases

• Capture and annotate sensor reading logs and control action changes.

```
thermoresistive_log.csv
         Sensor ID, Temperature, Resistance, Status
         RTD_1, 25.18, 137.552440, Stable
         RTD_2, 2.54, 122.506671, Heater On
        RTD_3, 36.85, 145.771346, Fan On RTD_4, 59.14, 160.207593, Fan On
         RTD_5, 41.15, 149.367182, Fan On
         RTD_6, 39.74, 147.752538, Fan On
        RTD_7, 26.93, 138.349048, Stable
RTD_8, 22.63, 135.440211, Stable
         RTD_9, 41.11, 147.528951, Fan On
         RTD_10, 15.84, 130.837492, Stable
         RTD_11, 5.31, 125.914171, Heater On
         RTD_12, 13.41, 130.355956, Stable
         RTD_13, 45.35, 150.379442, Fan On
         RTD_14, 49.20, 153.683179, Fan On
        RTD_15, 3.72, 123.597487, Heater On RTD_16, 55.52, 157.633684, Fan On
         RTD_17, 50.33, 154.118206, Fan On
         RTD_18, 7.33, 125.599838, Stable
         RTD_19, 0.33, 120.852406, Heater On
         RTD_20, 20.45, 133.874619, Stable
        RTD_21, 44.20, 149.859299, Fan On RTD_22, 17.54, 132.456311, Stable
         RTD_23, 13.86, 130.587055, Stable
         RTD_24, 20.10, 133.772098, Stable
        RTD_25, 55.76, 157.196070, Fan On
RTD_26, 18.33, 132.625374, Stable
         RTD_27, 1.56, 122.014011, Heater On
         RTD_28, 35.86, 145.421127, Fan On
         RTD_29, 2.35, 122.253074, Heater On
         RTD_30, 28.18, 139.242768, Stable
         RTD_31, 40.03, 146.833713, Fan On
         RTD_32, 56.38, 159.080651, Fan On
         RTD_33, 33.08, 142.665070, Stable
        RTD_34, 5.56, 125.723115, Heater On RTD_35, 32.60, 142.030298, Stable
         RTD 36, 56.18, 157.636496, Fan On
         RTD_37, 15.78, 131.125145, Stable
         RTD_38, 42.39, 149.305345, Fan On
         RTD_39, 9.30, 127.122717, Stable
         RTD 40, 44.82, 150.698880, Fan On
         RTD_41, 22.13, 136.103323, Stable
         RTD_42, 15.52, 132.258644, Stable
        RTD_43, 26.65, 138.087430, Stable
RTD_44, 2.67, 123.905922, Heater On
RTD_45, 39.37, 147.724901, Fan On
         RTD_46, 4.98, 125.523764, Heater On
        RTD_47, 18.91, 134.533724, Stable
RTD_48, 12.03, 128.947985, Stable
         RTD_49, 2.10, 122.640130, Heater On
         RTD_50, 27.32, 139.544800, Stable
         RTD_51, 47.51, 152.840918, Fan On
         RTD_52, 34.73, 143.600100, Stable
         RTD_53, 38.32, 146.497336, Fan On
         RTD 54, 32.91, 143.797588, Stable
         RTD_55, 49.45, 154.578123, Fan On
         RTD_56, 14.65, 131.656118, Stable
         RTD_57, 10.66, 129.292572, Stable
         RTD_58, 16.46, 131.897073, Stable
```

```
    thermoelectric_log.csv

        Sensor ID, Temperature, Voltage, Status
 1
        TC_1, 31.24, 0.512049, Stable
        TC_2, 51.98, 0.420783, Fan On
          3, 0.43, 0.373428, Heater On
          _4, 41.18, 0.433534, Fan On
        TC_5, 5.46, 0.389541, Heater On
        TC_6, 16.44, 0.485645, Stable
        TC_7, 7.74, 0.479454, Stable
        TC_8, 15.82, 0.321932, Stable
        TC 9, 44.70, 0.470557, Fan On
        TC 10, 41.79, 0.367155, Fan On
        TC_11, 19.34, 0.447146, Stable
        TC_12, 50.44, 0.407212, Fan On
        TC_13, 51.33, 0.515370, Fan On
        TC_14, 17.37, 0.392575, Stable
          _15, 43.38, 0.319226, Fan On
          16, 8.27, 0.393026, Stable
        TC_17, 28.75, 0.335995, Stable
        TC_18, 37.13, 0.513115, Fan On
        TC_19, 3.11, 0.337020, Heater On
        TC_20, 19.18, 0.321727, Stable
        TC_21, 19.83, 0.381915, Stable
        TC_22, 34.83, 0.332141, Stable
       TC 23, 54.91, 0.499093, Fan On
        TC_24, 25.88, 0.494870, Stable
        TC_25, 15.79, 0.400283, Stable
        TC_26, 21.34, 0.326442, Stable
          27, 22.28, 0.351944, Stable
          28, 10.29, 0.445219, Stable
        TC_29, 50.80, 0.519716, Fan On
        TC_30, 4.74, 0.413813, Heater On
        TC_31, 3.49, 0.476256, Heater On
        TC_32, 18.78, 0.353256, Stable
        TC_33, 21.38, 0.359488, Stable
        TC_34, 14.17, 0.414592, Stable
        TC_35, 49.39, 0.428368, Fan On
        TC_36, 13.30, 0.489458, Stable
        TC_37, 20.08, 0.519675, Stable
        TC_38, 14.26, 0.369205, Stable
        TC_39, 8.06, 0.357069, Stable
          40, 43.30, 0.420578, Fan On
        TC_41, 6.22, 0.428778, Stable
        TC_42, 43.24, 0.380439, Fan On
        TC_43, 4.68, 0.398069, Heater On
        TC_44, 3.46, 0.379209, Heater On
        TC_45, 13.90, 0.444973, Stable
        TC_46, 24.53, 0.419389, Stable
        TC_47, 8.07, 0.463136, Stable
        TC_48, 35.25, 0.395732, Fan On
        TC_49, 5.62, 0.449975, Heater On
        TC_50, 19.18, 0.326032, Stable
        TC_51, 4.74, 0.331649, Heater On
          52, 1.71, 0.320661, Heater On
          _53, 56.45, 0.440545, Fan On
        TC_54, 26.94, 0.517092, Stable
        TC_55, 39.80, 0.326073, Fan On
        TC_56, 3.31, 0.495239, Heater On
        TC 57, 54.30, 0.391632, Fan On
```

• Show graphs illustrating temperature variations and threshold-based actions.

6. Results and Analysis

- Discuss observed trends from the generated data.
- Compare different sensor types based on accuracy and drift characteristics.
- Analyze system efficiency in handling redundant sensor readings.

6. Result and Analysis

Observed Trends

- · Thermoelectric Sensor: Aligher error marying but consistent drift.
- · Thermoresistive Sensor: Nost accurate with minimal drift
- · Therma-Offical Sensor: Drift offects reliability over extended heriods.
- · Thermo Acoustic Senson: Moderate Accuracy but effective in Specific iscanorios.

COMPARISON OF SENSOR TYPES

Sensor type	Accuracy (°C)	Drift Rote (1.1 year)	NOTES
Thermoelectric	± 2·5	0.6	High error, simple design
Thermoresistine	±1	0.6	Best overall regormance
Thermo-Offical	±1.5	0.6	Sensitive to
Thermo-Acoustic	± 2	0.6	Best for sound - based setup

System Espicioney

- * Redundant readings are averaged to enhance reliability
- * Control mechanisms effectively mitigate temperature deviations.