PRIME PROVE INTERMEDIE 2013, 2015, 2016, 2017, 2018

1. Prima prova intermedia 2013

Esercizio 1.1 (Prima prova intermedia, 19 Novembre 2013, eserc. 1).

Nel gruppo simmetrico S_6 si considerino le permutazioni $\sigma=(12356)$ e $\tau=(26)(35)$ e sia $G=\langle \sigma,\tau\rangle$ il sottogruppo di S_6 generato da σ e τ . Determinare:

- (a) l'ordine di G e il periodo di tutti i suoi elementi
- (b) se G è isomorfo ad un sottogruppo di S_4
- (c) se G è isomorfo ad un sottogruppo di S_5
- (d) se G è isomorfo al gruppo dei movimenti fisici di un poligono regolare nel piano (i.e. se G è un gruppo diedrale)

Esercizio 1.2 (Prima prova intermedia, 19 Novembre 2013, eserc. 2). Sia G il gruppo delle matrici 2x2 invertibili a coefficienti in \mathbb{R} (con l'ordinario prodotto righe per colonne), e sia

$$H = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) : a, b, c \in \mathbb{R}, ac \neq 0 \right\},\,$$

Provare che:

- (a) H è un sottogruppo non normale di G.
- (b) Posto $N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$, si mostri che N è un sottogruppo normale di H. Si determini poi se H/N è abeliano e se è ciclico, costruendo un opportuno omomorfismo di H in $\mathbb{R}^{\times} \times \mathbb{R}^{\times}$ (dove \mathbb{R}^{\times} indica il gruppo moltiplicativo dei reali non nulli).

Esercizio 1.3 (Prima prova intermedia, 19 Novembre 2013, eserc. 3).

Sia ϕ un omomorfismo definito su un gruppo finito G, e sia H un sottogruppo di G. Provare che:

- (a) $|\phi(G):\phi(H)|$ divide |G:H|.
- (b) $|\phi(H)|$ divide |H|.

Nel prossimo esercizio c'è un errore: al punto (b) bisogna assumere che G sia finito.

Esercizio 1.4 (Prima prova intermedia, 19 Novembre 2013, eserc. 4).

- (a) Sia G un gruppo e $g \in G$ un elemento di periodo finito $n = p^k m$, con p primo che non divide m. Provare che esistono due elementi g_1 e g_2 in G, di periodo rispettivamente p^k e m, tali che $g_1g_2 = g = g_2g_1$. (Sugg.: esistono $a, b \in \mathbb{Z}$ tlai che $n = ap^k + bm$; allora $g = g^{ap^k + bm} \dots$)
- (b) Sia $\phi: G \to H$ un omomorfismo suriettivo, e sia $h \in H$ un elemento di periodo p^k (con p primo). Provare che esiste $g \in G$, di periodo una potenza di p, tale che $\phi(g) = h$. (Sugg.: sia $g \in G$ una preimmagine di h tramite ϕ ; si usi il punto precedente su g...)

Esercizio 2.1 (Prima prova intermedia, 19 Novembre 2015, eserc. 1).

Sia K un campo. Provare che ciascuno degli insiemi

$$H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in K, ad \neq 0 \right\},$$

$$M = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in K, a \neq 0 \right\},$$

$$L = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in K \right\}$$

è un sottogruppo di GL(2, K). Inoltre:

- (a) Provare che $L \subseteq H$.
- (b) Provare che L non è normale in GL(2, K).
- (c) Provare che L è isomorfo a (K, +).
- (d) Provare che H/L è isomorfo a $K^* \times K^*$, dove $K^* = (K \setminus \{0\}, \cdot)$.
- (e) Se possibile, determinare K in modo tale che L sia ciclico. Si faccia lo stesso per H/L.

Esercizio 2.2 (Prima prova intermedia, 19 Novembre 2015, eserc. 2).

Sia G un gruppo. Provare che l'insieme $H = \{(x, x) : x \in G\}$ è un sottogruppo del prodotto diretto $G \times G$, e che H è isomorfo a G. Dimostrare poi che $H \subseteq G \times G$ se e solo se G è abeliano.

Esercizio 2.3 (Prima prova intermedia, 19 Novembre 2015, eserc. 3).

Sia n un intero positivo, e sia $\sigma \in S_n$ un ciclo di lunghezza k. Determinare il tipo di σ^2 .

Esercizio 3.1 (Prima prova intermedia, 17 Novembre 2016, eserc. 1).

Sia G il prodotto cartesiano di insiemi $(\mathbb{R} \setminus \{0\}) \times \mathbb{R}$), e si consideri l'applicazione definita su $G \times G$ che a $((a,b),(c,d)) \in G \times G$ associa (ac,bc+d).

- (a) Provare che questa applicazione definisce su G una struttura di gruppo non abeliano.
- (b) Posto $H = \{(1, n) \mid n \in \mathbb{N}\}$ e $K = \{(q, 0) \mid q \in \mathbb{Q} \setminus \{0\}\}$, determinare il sottogruppo di G generato da H e quello generato da K.

Esercizio 3.2 (Prima prova intermedia, 17 Novembre 2016, eserc. 2).

Sia H l'insieme delle radici cubiche dell'unità nel campo complesso. Posto $\mathbb{C}^* = (\mathbb{C} \setminus \{0\}, \cdot)$, provare che H è un sottogruppo normale di \mathbb{C}^* , e che \mathbb{C}^*/H è isomorfo a \mathbb{C}^* .

Esercizio 3.3 (Prima prova intermedia, 17 Novembre 2016, eserc. 3).

Sia G un gruppo, siano H, K sottogruppi normali di G, e siano p, q primi distinti tali che |H| = p e |K| = q. Provare che G ha uno e un solo sottogruppo normale di ordine pq contenente H e K, e che tale sottogruppo è ciclico.

Esercizio 3.4 (Prima prova intermedia, 17 Novembre 2016, eserc. 4).

Sia G un gruppo, e σ un automorfismo di G. Provare le seguenti affermazioni.

- (a) Se $\sigma(x) = x^{-1}$ per ogni $x \in G$, allora G è abeliano.
- (b) Sia G finito. Se $\sigma \circ \sigma$ è l'identità su G e, per ogni $x \in G \setminus \{1_G\}$, si ha $\sigma(x) \neq x$, allora G è abeliano.

(Sugg. per (b): considerare l'applicazione $x \mapsto x^{-1}\sigma(x)$ definita su G e provare che è biettiva; tenendo conto di ciò, provare che σ è la mappa che associa ogni elemento di G al suo inverso.)

Esercizio 4.1 (Prima prova intermedia, 16 Novembre 2017, eserc. 1).

Siano α e β le biezioni da \mathbb{Z}_5 (visto come insieme) in sé, definite da

$$\alpha(x) = x + 1$$
 e $\beta(x) = -x$

per ogni x in \mathbb{Z}_5 . Dunque, α e β sono elementi di $\mathrm{Sym}(\mathbb{Z}_5)$ (il gruppo simmetrico sull'insieme \mathbb{Z}_5), ed è possibile considerare i sottogruppi $A = \langle \alpha \rangle$, $B = \langle \beta \rangle$ di $\mathrm{Sym}(\mathbb{Z}_5)$.

- (a) Si provi che G = AB è un gruppo e si determini il suo ordine.
- (b) Si determinino i possibili omomorfismi di gruppo da G in \mathbb{Z}_5 .
- (c) Si determini la classe di coniugio di β in G.

Esercizio 4.2 (Prima prova intermedia, 16 Novembre 2017, eserc. 2).

Sia G un gruppo, e siano H, K, N sottogruppi di G tali che $N \subseteq G$, HN = KN = G, e $H \cap N = K \cap N = 1$.

- (a) Si provi che H e K sono isomorfi.
- (b) Si mostri che un isomorfismo di H in K può essere definito ponendo f(h) = k se e solo se $hk^{-1} \in N$.

Esercizio 4.3 (Prima prova intermedia, 16 Novembre 2017, eserc. 3).

Sia G un gruppo finito, e sia $N \subseteq G$ tale che |N| sia coprimo con |G/N|. Provare che N contiene tutti e soli gli elementi di G il cui periodo sia un divisore di |N|.

Esercizio 5.1 (Prima prova intermedia, 22 Novembre 2018, eserc. 1).

Nel gruppo simmetrico S_{10} , si consideri la permutazione

- (a) Si scriva la decomposizione in cicli disgiunti di x, x^2 e x^5 .
- (b) Si determini il periodo di x in S_{10} , ed il periodo della classe laterale xA_{10} nel gruppo quoziente S_{10}/A_{10} (dove A_{10} è il gruppo alterno su 10 oggetti).
- (c) È vero che, per ogni scelta di $y \in S_{10}$ avente lo stesso periodo di x, esiste $g \in S_{10}$ tale che $t_g(x) = y$? (Qui t_g indica l'automorfismo interno di S_{10} relativo a g.)
- (d) Si determinino tutti i sottogruppi di $\langle x \rangle$, con i rispettivi ordini.

Esercizio 5.2 (Prima prova intermedia, 22 Novembre 2018, eserc. 2).

Nel gruppo $\operatorname{GL}(2,\mathbb{Z}_7)$ (matrici invertibili 2×2 a coefficienti nel campo con 7 elementi), si considerino i sottoinsiemi G, costituito dagli elementi della forma $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ (che siano invertibili!), e N, costituito dagli elementi della forma $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$.

- (a) Provare che G ed N sono sottogruppi di $\mathrm{GL}(2,\mathbb{Z}_7),$ e che N è normale in G.
- (b) Determinare |G| ed |N|. Determinare poi il periodo della classe laterale di $\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ nel gruppo quoziente G/N.
- (c) Posto $\mathbb{Z}_7^* = (\mathbb{Z}_7 \setminus \{0\}, \cdot)$, si provi che la funzione $\phi : G \to \mathbb{Z}_7^*$, che manda $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ in ac, è un omomorfismo, e se ne determini il nucleo K.
- (d) Esibire un elemento di periodo 14 in K.