(1) Publication number:

0 305 216 A1

12)

EUROPEAN PATENT APPLICATION

21) Application number: 88307980.8

(5) Int. Cl.4: C 12 N 15/00

C 12 N 9/20

22 Date of filing: 26.08.88

(30) Priority: 28.08.87 DK 4500/87 15.12.87 DK 6560/87 15.04.88 DK 2054/88

Date of publication of application: 01.03.89 Bulletin 89/09

Ø4 Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE (7) Applicant: NOVO INDUSTRI A/S Novo Allé DK-2880 Bagsvaerd (DK)

inventor: Boel, Esper 25 Lyngbakkevej DK-2840 Holte (DK)

> Huge-Jensen, Ida Birgitte 11 Ved Kignaes DK-3630 Jaegerspris (DK)

Representative: Brown, John David et al FORRESTER & BOEHMERT Widenmayerstrasse 4/1 D-8000 München 22 (DE)

Recombinant Humicola lipase and process for the production of recombinant humicola lipases.

(g) A process for the production of a recombinant <u>Humicola</u> lipase is provided. The process comprises cultivating an <u>Aspergillus sp.</u> host transformed with a vector system comprising <u>DNA</u> sequences encoding functions facilitating gene expression and optionally a sultable marker for selection of transformants, and a <u>DNA</u> sequence encoding the <u>Humicola</u> lipase. A preferred host organism is <u>Aspergillus oryzae</u>. The recombinant <u>Humicola</u> lipase from <u>A. oryzae</u> differs from the native lipase in having a greater glycosylation and in exhibiting an improved thermostability.

Description

RECOMBINANT HUMICOLA LIPASE AND PROCESS FOR THE PRODUCTION OF RECOMBINANT HUMICOLA LIPASES

5

20

25

45

BACKGROUND OF THE INVENTION

The present invention relates to a process for recombinant DNA production of <u>Humicola</u> lipases and a recombinant Humicola lipase.

Humicola lipases are obtainable from strains of thermophilic Humicola sp., including thermophilic Thermomyces sp., such as H. lanuginosa (Griffon and Maublanc) Bunce, H. stellata Bunce, H. grisea var. thermoidea, Cooney & Emerson, H. insolens, Cooney & Emerson, Thermomyces ibadanensis, Apinis & Eggins, H. hyalothermophila Moubasher, Mazen and Abdel-Hafez, H. grisea var. indica Subrahmanyam, H. brevis var. thermoidea, Subrahmanyam and Thirumalachar.

H. lanuginosa has also been described under the synonyms Thermomyces lanuginosus Tsiklinsky, Sepedonium lanuginosum Griffon and Maublanc, Sepedonium thermaphilum cyclosporum and S. thermaphilum ovosporum Velich, Acremoniella sp. Rege, Acremoniella thermophila Curzi and Monotospora lanuginosa (Griffon and Maublanc) Mason.

Moreover, the species Scytalidium thermophilum (Cooney & Emerson) Austwich was by Hedger (1975, The ecology of thermophilic fungi in Indonesia. In Biodegradation et Humification. Rapport du 1er Colloque Internationel - Nancy 1974 (ed. G. Kilbertius, O. Reisinger, A. Mourey & J.A. Cancela Da Fonseca), Sarrequemines: Pierron Editeur - 57206) considered to belong to Humicola insolens.

Production of a <u>Humicola lanuginosa</u> lipase is described in Japanese unexamined patent publication No. 48-62990, and in <u>EP</u> patent application No. 87307684.8. The latter also teaches use of this lipase in lipolytic detergent additives.

Due to the world wide use of enzyme additives in detergents and due to the fact that <u>Humicola lipases have</u> turned out to be superior to known detergent lipases both as regards detergency and <u>stability</u>, commercial interest in such lipases is high.

In the production of industrial enzymes yields have always been important for the profitability of the production process. The traditional way of improvement is to mutate the wild strain so as to obtain higher yielding mutants. By means of recombinant DNA technology a further possibility is to transform the gene for the desired product into a host microorganism capable of producing higher yields than the wild strain or with other favourable characteristics.

Accordingly, it is the aim of the present invention to develop a method for the production of <u>Humicola</u> lipases by recombinant DNA-technology.

In the past, numerous processes have been developed for the production of polypeptides or proteins by means of the recombinant DNA technology. The main interest has been concentrated on bacteria and yeast, e.g. <u>E. coli, Bacillus subtilis and Saccharomyces cerevisiae</u> being well characterized species as regards for instance expression and selection systems.

Besides the above mentioned microorganisms, filamentous fungi, notably <u>Aspergillus sp.</u> such as <u>Aspergillus niger</u> and <u>Aspergillus oryzae</u>, being well-characterized and widely used microorganisms for the commercial production of enzymes, are attractive candidates as host microorganisms for recombinant DNA vectors.

In the last few years different selection markers for the transformation of <u>Aspergillus nidulans</u> have been described and procedures have recently been developed for integrative transformation of the filamentous fungus <u>Aspergillus nidulans</u> for the purpose of investigation of the genetic and molecular processes controlling fungal cell differentiation.

Transformation of A. nidulans has been demonstrated by using plasmids containing the Neurospora crassa pyr-4 gene (Ballance, D.J. et al., Biochem.Biophys.Res.Commun., 112 (1983) 284-289), the A. nidulans amdS gene (Tilburn, J.G. et al., Gene 26 (1983) 205-221), the A. nidulans trpC gene (Yelton, M.M. et al., Proc.Natl.Acad.Sci. U.S.A., 81 (1984) 1470-1474) and the A. nidulans argB gene (John, M.A. and Peberdy J., Microb.Technol. 6 (1984) 386-389). The transforming DNA was found to be integrated into the host genome at rather low frequencies (typically < 1000 transformants/μg of DNA).

Transformation of Aspergillus niger with the amdS gene of A. nidulans was described (Kelly, J.M. and Hynes, M.J., EMBO Journal 4 (1985), 475-479) and amdS was shown to be a potential selection marker for use in transformation of Aspergillus niger that cannot grow strongly on acetamide as a sole nitrogen source. Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans has also been described (Buxton, F. P. et al., Gene 37 (1985), 207-214).

A process for preparing transformants of Aspergillus niger is described in EP No. 0184,438A and EP No. 0215,594 and 0249,350 describe expression of heterologous polypetides in filamentous fungi. Finally WO87/04464 describes expression of higher eucaryotic genes in Aspergillus.

BRIEF DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

35

40

45

50

55

60

65

According to the present invention it has now been shown that it is possible to obtain a high level of expression of the <u>Humicola sp.</u> lipase in <u>Aspergillus sp.</u> strains or to enhance the production of the lipase in Humicola strains.

In its broadest aspect the present invention provides a method for the production of <u>Humicola</u> lipases comprising the steps of

- (a) providing a suitable recombinant DNA cloning vector comprising DNA sequences encoding functions facilitating gene expression and a DNA sequence encoding the Humicola lipase;
 - (b) transforming a suitable host organism with the cloning vector from step (a);
- (c) culturing the transformed host in a suitable culture medium and optionally recovering the lipase from the culture medium.

In a more narrow aspect of the present invention there is provided a process for the production of <u>Humicola</u> lipases in Aspergillus comprising the steps of:

- (a) providing a recombinant DNA cloning vector system capable of integration into the genome of an Aspergillus host in one or more copies and comprising: DNA sequences encoding functions facilitating gene expression; a suitable marker for selection of transformants; and a DNA sequence encoding the Humicola linase.
- (b) transforming the <u>Aspergillus</u> host which does not harbour a functional gene for the chosen selection marker with the recombinant <u>DNA</u> cloning vector system from step a; and
- (c) culturing the transformed <u>Aspergillus</u> host in a suitable culture medium and optionally recovering of the lipase from the culture medium.

According to a second aspect of the present invention there is provided a method for production of Humicola lipases in Aspergillus by which method an Aspergillus strain being transformed with a recombinant DNA cloning vector system as described above is cultured in a suitable culture medium and the lipase is recovered from the culture medium.

According to a third aspect of the invention there is provided a novel recombinant <u>Humicola</u> lipase product characterized by a difference in glycosylation from the native <u>Humicola</u> lipases previously known. That is, the nature and optionally the extent of glycosylation of the recombinant <u>Humicola</u> lipase of the present invention is different from the lipase obtained from the naturally occuring <u>Humicola</u> strains. The <u>Humicola</u> lipase product of this invention is furthermore characterized by an improved thermostability compared to the corresponding native Humicola lipase.

More specifically the novel recombinant <u>Humicola</u> lipase is characterized in that the carbohydrate content is of about the same level or is greater than the carbohydrate content in the native lipase whereas the nature of the glycosylation is different from the native <u>Humicola</u> lipase, i.e. the novel <u>Humicola</u> lipase contains other carbohydrates than the native lipase. The carbohydrate content may typically be from about 5 to about 30% (w/w), whereas the carbohydrate content in the native lipase is about 4.9% (w/w). More specifically the carbohydrate content may be in the range from about 5 to about 15% (w/w) and even more specifically it may be in the range from about 7.5% to about 8.5% (w/w).

The recombinant <u>Humicola</u> lipase product of this invention may be used as an enzymatic detergent additive for use in detergents in a similar way as the native lipase, i.e. as described in EP patent application No. 87307684.8.

As used in the present specification the term "recombinantHumicola lipase" is applied to Humicola lipase produced by culturing a microorganism transformed with the cDNA encoding the native Humicola lipase. The term "native Humicola lipase" is applied to the Humicola lipase obtained from natural sources of thermophilic Humicola sp., including thermophilic Thermomyces sp. described in the introductory part of the present specification.

It has been found that recombinant Humicola lipase from A. oryzae is not identical with native Humicola lipase, notwithstanding that the peptide sequence is the same. Apparently the host microorganism glycosylates the expressed polypetide to a different extent than the donor microorganism and with different sugar moieties. In A. niger the extent of glycosylation seems to be on the same level whereas the sugar moities seem to be of the same kind as in A. oryzae. Differentiation and identification of the native lipase and of the recombinant lipase is possible through measurement of their glycosylation. Thus, taking as exemplary the native Humicola lanuginosa lipase and the recombinant form of this lipase from an A. oryzae transformant, both lipases are N-glycosylated, but with different sugar residues. The native lipase does not have any galactose and has less mannose than the recombinant lipase and also is glycosylated to a different degree, the native lipase having carbohydrate moieties that add approximately 1500 Daltons to its molecular weight (about 5%) and the recombinant lipase having moieties that add about 2600 Daltons (about 8%). For details see Example 5 hereinafter.

The novel recombinant <u>Humicola</u> lipase according to the present invention may comprise from about 1 to about 12 mol galactose per mol lipase protein and more specifically from about 1 to about 6 mole galactose per mol lipase protein. The content of mannose may be from about 3 to about 20 and more specifically from

about 3 to about 12 mol mannose per mol lipase protein. The recombinant Humicola lipase will typically comprise about 2 mol N-acetylglucosamine, from about 3 to about 20 mol mannose and from about 1 to about 12 mol galactose per mol lipase protein. More specifically the recombinant Humicola lipase will contain about 2 mol N-acetylglucoseamine, about 3 to about 12 mol mannose and about 1 to about 6 mol galactose per mol lipase product. Even more specifically the recombinant Humicola lipase will contain about 2 mol N-acetylglycoseamine, about 6 to about 9 mol mannose and about 2 to about 4 mol galactose per mol lipase protein.

The differences in glycosylation have some effect on the enzyme properties. In particular, the thermal stability of highly purified H. lanuginosa recombinant lipase is superior vis a vis the thermal stability of comparably purified native lipase. In addition, the stability of the pure recombinant lipase in the presence of an alkaline Bacillus protease (Esperase®) tested at 40°C and at 55°C is superior vis a vis comparably pure native lipase.

Characteristically, enzyme products, here lipase products, particularly extracellular lipase products contain other enzyme activities notably proteolytic activity and non-enzymatically active peptides and amino acids derived from culture broth constituents.

In the instance of the <u>Humicola sp.</u> lipase, the recombinant lipase product has been found to be thermally more stable than the comparable native lipase product. According to the data of the inventors hereof part of the improvement in thermal stability may be attributed to the different glycosylation, and another part may be attributed to the absence of the <u>Humicola</u> proteolytic activity in the recombinant lipase product. In the instance of the lipase native to <u>H. lanuginosa</u> a brief description thereof in U.S. patent 4,707,291 reports that a commercially available <u>H. lanuginosa</u> lipase product (Amano CE) contained a substantial level of proteolytic activity. The inventors' native <u>H. lanuginosa</u> lipase product contained a comparable level of proteolytic activity. At elevated temperatures in particular the protease can be expected to degrade other enzymes. The improvement in thermal stability attributable to absence of the protease is cumulative of the improvement attributable to different glycosylation (see Example 6).

As has already been pointed out the present invention provides a method for producing high yields of the Humicola lipases by cultivation of transformed Aspergillus strains, and in a preferred embodiment a method for production of the Humicola lanuginosa lipase by cultivation of a transformant A. oryzae or A. niger host cell. A. oryzae is the most preferred host microorganism.

A. oryzae has for years been used in commercial scale for the production of the TAKA-amylase enzyme and of proteolytic enzymes, and accordingly fermentation technology for cultivating this microorganism is well developed and the microorganism itself is approved for use in the food industry. The present invention offers the possibility of using A. oryzae for industrial production of large quantities of recombinant Humicola lipases.

The present invention furthermore provides a recombinant <u>Humicola</u> lipase product superior to the native <u>Humicola</u> lipase for having increased thermostability, and increased stability in the presence of alkaline Bacillus proteases, see Figures 6 and 9 herein.

BRIEF DESCRIPTION OF THE DRAWINGS

20

25

35

40

45

50

55

60

The present invention is further illustrated by reference to the accompanying drawings in which:

Fig. 1 shows the DNA-sequence of the TAKA-amylase promoter and upstream promoter regions, the preregion and the 5'part of the structural gene for the TAKA-amylase.

Fig. 2 shows an endonuclease restriction map of plasmid pTAKA17,

Fig. 3 illustrates the construction of plasmid pHLL,

Fig. 4 illustrates the construction of plasmid p960,

Fig. 5a and b shows the DNA sequence of prepro Humicola lanuginosa lipase cDNA together with the deduced amino acid sequence given by three-letter abbreviations,

Fig. 6 shows the residual activity of the recombinant <u>Humicola</u> lipase product compared to the residual activity of the native Humicola lipase product at 55°C and 60°C at different pH,

Fig. 7 shows an SDS-PAGE gradient gel,

Fig. 8 shows the residual activity at 55°C of the recombinant <u>Humicola</u> lipase product and the native <u>Humicola</u> lipase product along with the residual activity of the native <u>Humicola</u> lipase containing a protease inhibitor (PMSF), and

Fig. 9 shows the residual activity at 40°C and at 55°C of native and recombinant Humicola lipase in the presence of an alkaline Bacillus protease product (Esperase®)

DETAILED DESCRIPTION OF THE INVENTION

The transformation technique used for the transformation of Aspergillus strains was a method adapted from the methods for transformation of A. nidulans (Ballance et al. Biochem.Biophys.Res.Commun., 112 (1983), 284-289; Tilburn et al., Gene 26 (1983), 205-221, Yelton et al. Proc.Natl.Acad.Sci. USA, 81 (1984), 1470-1474) and similar to the method of Buxton et al. (Gene 37 (1985), 207-214) for transformation of A. niger. In the process of the present invention an Aspergillus strain is transformed with a vector system containing a selection marker which is capable of being incorporated into the genome of the host strain, but which is not harboured in the host strain before the transformation. Transformants can then be selected and isolated from

nontransformants on the basis of the incorporated selection marker.

Preferred selection markers are the argB (A. nidulans or A. niger), trpC (A. nidulans), amdS (A. nidulans), or pyr4 (Neurospora crassa) genes, or the DHFR (dihydrofolate reductase or mutants hereof) gene. More preferred selection markers are the argB or the amdS gene. Wild type A. oryzae strains are normally argB+ (i.e. the argB gene is functional in A. oryzae). If argB is chosen as the selection marker an argB mutant strain of A. oryzae which has a defect in the gene for this marker must be used as host strain. A. oryzae argB mutants can be prepared as described by F.P. Buxton et al. (Gene 37 (1985), 207-214). An argB mutant is defined as a mutant having a defect in the ornithin transcarbamylase gene. On the other hand the amdS gene may be used as selection marker for the transformation of wild type A. oryzae as the wild type strains do not contain this gene.

DNA-sequences encoding functions facilitating gene expression are typically promoters, transcription terminators and polyadenylation signals.

The promoter, which might be preceded by upstream activating sequences and enhancer sequences as well known in the art, may be any DNA-sequence that might show strong transcriptional activity in Aspergillus and may be derived from genes encoding both extracellular and intracellular proteins, such as amylases, glucoamylases, proteases, lipases, cellulases and glycolytic enzymes. Suitable promoters may be derived from genes for A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger glucoamylase, A. niger neutral α -amylase, A. niger acid stable α -amylase, and Rhizomucor miehei lipase. Examples of promoters from genes for glycolytic enzymes are TPI, ADH and PGK.

A preferred promoter according to the present invention is the A. oryzae TAKA-amylase promoter. The TAKA amylase is a well known α -amylase (Toda et al., Proc.Japan Acad. 58 Ser. B (1982) 208-212). DNA encoding the promoter region was derived from the TAKA-amylase genomic clone as described in EP patent application No. 87103806.3. The sequence of the promoter and regions upstream to the promoter together with the preregion and the 5'end of the structural gene for the TAKA-amylase is illustrated in Fig. 1.

The TAKA-amylase promoter is available from plasmid pTAKA 17 being deposited in connection with EP patent application No. 87103806.3. The endonuclease restriction map of plasmid pTAKA17 is shown in fig. 2.

From pTAKA 17 the whole promoter sequence including sequences upstream to the promoter or functional parts thereof may be derived by means evident to the person skilled in the art. The promoter sequence may be provided with linkers with the purpose of introducing specific restriction sites facilitating the ligation of the promoter sequence with further DNA, for instance the gene encoding the desired protein product or different preregions (signal peptides).

In the method according to the present invention the sequence from nucleotide -1144 (see Fig. 1) (representing a Sall site) to nucleotide -10 has been used as one example of a well functioning part of the promoter region. In another embodiment of the present invention the nucleotide sequence from nucleotide -1176 to -1 was preceded by the still not sequenced 1.05 kb fragment from pTAKA 17. It is evident for the person skilled in the art that different fragments can be used.

According to one embodiment of the present invention the promoter and upstream activating sequences have the following sequence or a functionally equivalent nucleotide sequence:

40

45

.5

10

15

20

25

30

35

50

55

60

GTCGACGC ATTCCGAATA CGAGGCCTGA TTAATGATTA CATACGCCTC CGGGTAGTAG ACCGAGCAGC CGAGCCAGTT CAGCGCCTAA AACGCCTTAT ACAATTAAGC AGTTAAAGAA GTTAGAATCT ACGCTTAAAA AGCTACTTAA AAATCGATCT CGCAGTCCCG ATTCGCCTAT CAAAACCAGT TTAAATCAAC TGATTAAAGG TGCCGAACGA GCTATAAATG ATATAACAAT ATTAAAGCAT TAATTAGAGC AATATCAGGC CGCGCACGAA AGGCAACTTA AAAAGCGAAA 10 GCGCTCTACT AAACAGATTA CTTTTGAAAA AGGCACATCA GTATTTAAAG CCCGAATCCT TATTAAGCGC CGAAATCAGG CAGATAAAGC CATACAGGCA GATAGACCTC TACCTATTAA ATCGGCTTCT AGGCGCGCTC CATCTAAATG 15 TTCTGGCTGT GGTGTACAGG GGCATAAAAT TACGCACTAC CCGAATCGAT AGAACTACTC ATTTTTATAT AGAAGTCAGA ATTCATAGTG TTTTGATCAT TTTAAATTTT TATATGGCGG GTGGTGGGCA ACTCGCTTGC GCGGGCAACT 20 CGCTTACCGA TTACGTTAGG GCTGATATTT ACGTGAAAAT CGTCAAGGGA TGCAAGACCA AAGTAGTAAA ACCCCGGAAG TCAACAGCAT CCAAGCCCAA 25 GTCCTTCACG GAGAAACCCC AGCGTCCACA TCACGAGCGA AGGACCACCT CTAGGCATCG GACGCACCAT CCAATTAGAA GCAGCAAAGC GAAACAGCCC AAGAAAAAGG TCGGCCCGTC GGCCTTTTCT GCAACGCTGA TCACGGGCAG 30 CGATCCAACC AACACCCTCC AGAGTGACTA GGGGCGGAAA TTTAAAGGGA TTAATTTCCA CTCAACCACA AATCACAGTC GTCCCCGGTA TTGTCCTGCA GAATGCAATT TAAACTCTTC TGCGAATCGC TTGGATTCCC CGCCCCTAGT 35 CGTAGAGCTT AAAGTATGTC CCTTGTCGAT GCGATGTATC ACAACATATA AATACTAGCA AGGGATGCCA TGCTTGGAGG ATAGCAACCG ACAACATCAC ATCAAGCTCT CCCTTCTCTG AACAATAAAC CCCACAG representing the 40 sequence from nucleotide -1144 to -10 in Fig. 1.

According to a further embodiment the promoter and upstream activating sequences have the following sequence or a functionally equivalent nucleotide sequence:

50

55

60

AGATCTGCCC	TTATAAATCT	CCTAGTCTGA	TCGTCGACGC	ATTCCGAATA		
CGAGGCCTGA	TTAATGATTA	CATACGCCTC	CGGGTAGTAG	ACCGAGCAGC		
CGAGCCAGTT	CAGCGCCTAA	AACGCCTTAT	ACAATTAAGC	AGTTAAAGAA		5
GTTAGAATCT	ACGCTTAAAA	AGCTACTTAA	AAATCGATCT	CGCAGTCCCG		
ATTCGCCTAT	CAAAACCAGT	TTAAATCAAC	TGATTAAAGG	TGCCGAACGA		
GCTATAAATG	ATATAACAAT	ATTAAAGCAT	TAATTAGAGC	AATATCAGGC		10
CGCGCACGAA	AGGCAACTTA	AAAAGCGAAA	GCGCTCTACT	AAACAGATTA		
CTTTTGAAAA	AGGCACATCA	GTATTTAAAG	CCCGAATCCT	TATTAAGCGC		
CGAAATCAGG	CAGATAAAGC	CATACAGGCA	GATAGACCTC	TACCTATTAA		15
ATCGGCTTCT	AGGCGCGCTC	CATCTAAATG	TTCTGGCTGT	GGTGTACAGG		
GGCATAAAAT	TACGCACTAC	CCGAATCGAT	AGAACTACTC	ATTTTTATAT		
AGAAGTCAGA	ATTCATAGTG	TTTTGATCAT	TTTAAATTTT	TATATGGCGG		20
GTGGTGGCA	ACTCGCTTGC	GCGGGCAACT	CGCTTACCGA	TTACGTTAGG		
GCTGATATTT	ACGTGAAAAT	CGTCAAGGGA	TGCAAGACCA	AAGTAGTAAA		
ACCCCGGAAG	TCAACAGCAT	CCAAGCCCAA	GTCCTTCACG	GAGAAACCCC		25
AGCGTCCACA	TCACGAGCGA	AGGACCACCT	CTAGGCATCG	GACGCACCAT		
CCAATTAGAA	GCAGCAAAGC	GAAACAGCCC	AAGAAAAAGG	TCGGCCCGTC		
GGCCTTTTCT	GCAACGCTGA	TCACGGGCAG	CGATCCAACC	AACACCCTCC		30
AGAGTGACTA	GGGGCGGAAA	TTTAAAGGGA	TTAATTTCCA	CTCAACCACA		
AATCACAGTC	GTCCCCGGTA	TTGTCCTGCA	GAATGCAATT	TAAACTCTTC		
TGCGAATCGC	TTGGATTCCC	CGCCCTAGT	CGTAGAGCTT	AAAGTATGTC		35
CCTTGTCGAT	GCGATGTATC	ACAACATATA	AATACTAGCA	AGGGATGCCA		
TGCTTGGAGG	ATAGCAACCG	ACAACATCAC	ATCAAGCTCT	CCCTTCTCTG		
AACAATAAAC	CCCACAGAAG	GCATTT r	epresenting	the sequence	from	40
nucleotide	-1176 to -	l in Fig. 1	•			

According to a further aspect of the present invention the latter sequence may be preceded by the 1.05 kb unsequenced upstream region from pTAKA 17 (position 0 to 1.05 in Fig. 2).

45

50

55

60

65

The terminators and polyadenylation sequences may be derived from the same sources as the promoters. Enhancer sequences may also be inserted into the construction.

The expressed product may be accumulated within the cells requiring disruption of the cells to isolate the product. To avoid this further process step and also to minimize the amount of possible degradation of the expressed product within the cells it is preferred that the product is secreted from the cells. For this purpose the gene for the desired product is provided with a preregion ensuring effective direction of the expressed product into the secretory pathway of the cell. This preregion which might be a naturally occurring signal or leader peptide or functional parts thereof or a synthetic sequence providing secretion is generally cleaved from the desired product during secretion leaving the mature product ready for isolation from the culture broth.

The preregion may be derived from genes for secreted proteins from any source of organism.

According to the present invention the preregion may be derived from a glucoamylase or an amylase gene from an Aspergillus species, an amylase gene from a Bacillus species, a lipase or proteinase gene from Rhizomucor miehel, the gene for the α -factor from S. cerevisiae or a Humicola lipase gene. More preferably the preregion may be derived from the gene for the Humicola lanuginosa lipase, A. oryzae TAKA amylase, A. niger neutral α -amylase, A. niger acid-stable α -amylase, B. licheniformis α -amylase, the maltogenic amylase from Bacillus NCIB 11837, B. stearothermophilus α -amylase or B. licheniformis subtilisin. The Humicola lanuginosa signal peptide has the following sequence

 $\label{eq:atgaggaggtccttggcc} ATGAGGAGGTCCCTTGTGCTGTTCTTTGTCTCTGCGTGGACGGCCTTGGCC\\ Met Arg Ser Ser Leu Val Leu Phe Phe Val Ser Ala Trp Thr Ala Leu Ala Reu A$

5

The TAKA-amylase signal has the following sequence

10

ATGATGGTCGCGTGGTCTCTATTTCTGTACGGCCTTCAGGTCGCGGCACCT MetMetValAlaTrpTrpSerLeuPheLeuTyrGlyLeuGlnValAlaAlaPro

15

GCTTTGGCT

AlaLeuAla

20

25

30

35

The gene for the desired product functionally linked to promoter and terminator sequences may be incorporated in a vector containing the selection marker or may be placed on a separate vector or plasmid capable of being integrated into the genome of the host strain. As used herein the expression "vector system" includes a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA-information to be integrated into the host genome. Vectors or plasmids may be linear or closed circular molecules. According to a preferred embodiment of the present invention the host organism is cotransformed with two vectors, one including the selection marker and the other comprising the remaining foreign DNA to be introduced in the host strain, including promoter, the gene or cDA for the desired product and transcription terminator and polyadenylation sequences.

Normally the transformants are stable and can be cultured in the absence of a selection pressure. If the transformants turn out to be unstable the selection marker may be used for selection during cultivation. The transformed cells are then cultured under a selection pressure corresponding to the marker in question.

Plasmids used as starting materials in the following examples are as follows:

p285: (ATCC No. 20681)

pSal43: Berse et al. Gene 25 (1983), 109-117 John & Peberdy, Enzyme Microb. Technol. 6 (1984), 386-389. p3SR2: J.M. Kelly and M.J. Hynes, EMBO Journal 4 (1985), 475-479.

pSP62-K2 and pCDVI-PL: Noma et al. Nature, 319, (1986), 640-646)

p775: European patent application No. 87103806.3,

pUC19: Vieira et al., Gene 19 (1982), 259- 268 and Messing, Meth. in Enzymology 101 (1983), 20-27.

The strains used are as follows:

A. oryzae*: ATCC 20423, IFO 4177, ATCC 1011, ATCC 9576, ATCC 14488-11491, ATCC 11601 and ATCC 12892.

E. coli: MC1000 (Casabadan, M.J. and Cohen, S.N., J.Mol.Biol. 138, 179-207) (NCIB 11956)

H. lanuginosa: DSM 4109

A. niger*: ATCC 1015, ATCC 10582.

* ArgB mutants of these strains can be prepared as described by F.P., Buxton et al. (Gene <u>37</u> (1987) 207-214). An ArgB mutant is defined as a mutant having a defect in the ornithine transcarbamylase gene.

50

Identification of Humicola lanuginosa lipase (HLL) amino acid sequence

In order to obtain information which allows the construction of a specific oligonucleotide probe, a partial sequence determination was carried out on the purified <u>Humicola lanuginosa</u> lipase. The supernatant from a culture broth of <u>Humicola lanuginosa</u>, from which mycelia and low molecular weight substances had been removed was subjected to a column chromatography performed by use of DEAE-sepharose (anion exchange chromatography), phenyl sepharose (hydrophobic interaction chromatography) followed by gel filtration on TSK G3000 SW. The sequence determination was performed with a Gas Phase Sequencer (Applied Biosystems Model 470A) as described by Thim, L. et al. (FEBS Lett. 212, 307-312 (1987).

The following N-terminal sequence was found:

65

5 10 15

Glu-Val-Ser-Gln-Asp-Leu-Phe-Asn-Gln-Phe-Asn-Leu-Phe-Ala-Gln20 25

5

10

20

25

40

45

50

55

65

Tyr-Ser-Ala-Ala-Ala-Tyr-X-Gly-Lys-Asn-

This sequence allows the construction of two specific mixed oligonucleotide probes comprising the sequences from amino acid residue No. 7 - No. 11 (Phe-Asn-Gin-Phe-Asn) and amino acid residue No. 13 - No. 16 (Phe-Ala-Gin-Tyr), respectively. The screening of a <a href="https://example.com/humanosc

Example 1

Construction of a Humicola lanuginosa cDNA library in E. coli

Total RNA was extracted from homogenized H. lanuginosa mycelium using methods as described by Boel et al. (EMBO J., 3: 1097-1102, 1984) and Chirgwin et al., (Biochemistry (Wash.), 18, 5294-5299, 1979). Poly(A)-containing RNA was obtained by two cycles of affinity chromatography on oligo(dT)-cellulose as described by Aviv and Leder (PNAS, USA, 69, 1408-1412, 1972). cDNA was synthesized with the use of methods described by Okayama and Berg (Molec.Cell.Biol., 2: 161-170, 1982), and with the vectors pSP62-K2 and pCDVI-PL described by Noma et al. (Nature, 319: 640-646, 1986). The synthesized cDNA was transformed into a hsdR⁻, M⁺ derivative of E. coli MC1000 (Casadaban and Cohen, J. Mol.Biol., 138, 179-207, 1980) to generate recombinant clones.

Identification of Humicola lanuginosa lipase (HLL) specific cDNA recombinants

A mixture of 32 pentadecamer oligodeoxyribonucleotides

d(ATTAAATGATTAAA),
GGGGGG

one of which is complementary to HLL mRNA in the region coding for Phe-Asn-Gln-Phe-Asn was synthesized on an Applied Biosystems, Inc. DNA synthesizer and purified by polyacrylamide gel electrophoresis. Approximately 10,000 E. coli recombinants from the Humicola lanuginosa cDNA library were transferred to Whatman 540 paper filters. The colonies were lysed and immobilized as described by Gergen et al. (Nucleic Acids Res. 7, 2115-2135, 1979). The filters were hybridized with the ³²P-labelled HLL-specific pentadecamer-mixture as described by Boel et al. (EMBO J. 3, 1097-1102, 1984). Hybridization and washing of the filters were done at 37°C and 43°C respectively, followed by autoradiography for 24 hours with an intensifier screen. Miniprep plasmid DNA was isolated from two hybridizing colonies, pHLL 702,3 and pHLL 702,4 by standard procedures (Birnboim and Doly, Nucleic Acids Res., 7, 1513-1523, 1979), and the DNA sequence of the cDNA insert was established by the procedure of Maxam and Gilbert (Methods Enzymol. 65, 499-560, 1980).

to facilitate further construction work with the HLL cDNA, DNA sequences containing unique restriction sites were added to the 5' and the 3' ends of the cDNA as follows. pHLL 702,3 was digested with Sau96l which digests HLL cDNA in the 3' untranslated region and the resulting ends were filled in with E. coli DNA polymerase (Klenow fragment) and the four dNTPs. This DNA was subsequentially digested with SacI which cuts the HLL cDNA once just 3' to the initiating methionine codon. The resulting 0.9 kb HLL cDNA fragment was purified by agarose gel electrophoresis, electroeluted and made ready for ligation reactions. As a 5' adaptor two oligonucleotides, 927 and 928, were synthesized. The sequence of the adaptor is shown in fig. 3. This adaptor was designed to add a HindIII and a BamHI site just 5' to the initiating Met codon of HLL cDNA. The two oligos were kinased with ATP and T4 polynucleotide kinase, annealed to each other and ligated to the purified 0.9 kb HLL cDNA sequence in a pUC19 vector that had been digested with HindIII and HincIII and purified on a 0.7% agarose gel. The resulting plasmid pHLL carried the HLL cDNA as a portable 0.9 kb BamHI fragment. The construction of pHLL is shown in fig. 3.

After BamHI digestion and purification of the 0.9 kb HLL cDNA fragment on an agarose gel it was ligated to BamHI digested and phosphatased p775 to generate p960 in which HLL cDNA is under transcriptional control of the TAKA promotor from <u>Aspergillus oryzae</u> and the AMG terminator from <u>Aspergillus niger</u>. The construction of p960 is shown in fig. 4.

The construction of p775 is described in European patent application No. 87103806.3.

p775 contains the TAKA promoter and AMG terminator and has a unique BamHI site as a cloning site. Figure 5a and b gives the sequence of prepro HLL cDNA with its deduced amino acid sequence. Nucleotides are numbered from the first base in the cloned cDNA. From this cDNA sequence it can be concluded that HLL is synthesized as a 291 amino acid residue long precursor with a signal peptide of 17 residues, and a short propeptide of 5 residues. The putative signal peptidase processing site (von Heijne, Eur.J.Biochem. 133, 17-21, 1983) is indicated with an arrow pointing to the peptide bond between an Ala and a Ser residue. The amino terminus of the mature enzyme as identified by amino terminal amino acid sequencing is indicated.

O Amino acid composition of Humicola lanuginosa (HLL)

Amino acid analysis was carried out by means of a Beckman Amino Acid Analyzer (Model JL1 MB) on samples (40 μ g) previously hydrolyzed in sealed ampoules in 6 M HCl or 4 M methanesulfonic acid at 110°C for 24, 48 and 96 hours. Half-cystine was determined as S- β -(4-pyridylethyl)-cysteine after reduction by tributylphosphin followed by coupling with 4-vinylpyridine. All chemicals were of highest purity.

The results are shown in the following table and compared to the amino acid composition determined from cDNA sequencing.

	Amino Acid	Found	Nearest integer	CDNA
	Ala	20.85	21	21
25	Arg	14.42	14	14
	Asn	36.91	37	19
	Asp			19
30	Cys ^C	5.54	6	6
	Gln	18.20	18	6
	Glu			12
<i>35</i>	Gly	27.51	28	28
	His	5.94	6	6
	${\tt Ile}^{\tt b}$	14.99	15	16
40	Leu	20.06	20	20
	Lys	7.05	7	7
	Met	0	0	0
45	Phe	14.80	15	15
	Pro	11.90	12	12
	Ser ^a	16.76	17	17
50	Thr ^a	18.46	18	19
	Trp	3.58	4	4
	Tyr	9.84	10	10
55	Val ^b	18.24	18	18

a) extrapolated value to zero hydrolysis time

b) extrapolated value to infinite hydrolysis time

c) determined as $S-\beta-(4-pyridylethyl)$ -cysteine.

65

60

Example 2

Transformation of Aspergillus oryzae or Aspergillus niger (general procedure)

100 ml of YPD (Sherman et al., Methods in Yeast Genetics, Cold Spring Harbor Laboratory, 1981) was inoculated with spores of A. oryzae, A. niger or argB mutants hereof and incubated with shaking at 37°C for about 2 days. The mycelium was harvested by filtration through miracloth and washed with 200 ml of 0.6 M MgSO₄. The mycelium was suspended in 15 ml of 1.2 M MgSO₄, 10 mM NaH₂PO₄, pH = 5.8. The suspension was cooled on ice and 1 ml of buffer containing 120 mg of Novozym® 234, batch 1687 was added. After 5 min., 1 ml of 12 mg/ml BSA (Sigma type H25) was added and incubation with gentle agitation continued for 1.5-2.5 hours at 37°C until a large number of protoplasts was visible in a sample inspected under the microscope.

5

10

15

25

35

40

45

50

55

60

The suspension was filtered through miracloth, the filtrate transferred to a sterile tube and overlayered with 5 ml of 0.6 M sorbitol, 100 mM Tris-HCl, pH = 7.0. Centrifugation was performed for 15 min. at 1000 g and the protoplasts were collected from the top of the MgSO₄ cushion. 2 volumes of STC (1.2 M sorbitol, 10 mM Tris-HCl pH = 7.5, 10 mM CaCl₂) were added to the protoplast suspension and the mixture was centrifugated for 5 min. at 1000 g. The protoplast pellet was resuspended in 3 ml of STC and repelleted. This was repeated. Finally the protoplasts were resuspended in 0.2-1 ml of STC.

100 µl of protoplast suspension was mixed with 5-25 µg of the appropriate DNA in 10 µl of STC. Protoplasts from the argB strains were mixed with pSal43 DNA (an A. nidulans argB gene carrying plasmid) and protoplasts from the argB+ strains were mixed with p3SR2 (an A. nidulans amdS gene carrying plasmid). The mixture was left at room temperature for 25 min. 0.2 ml of 60% PEG 4000 (BDH 29576), 10 mM CaCl₂ and 10 mM Tris-HCl pH = 7.5 was added and carefully mixed (twice) and finally 0.85 ml of the same solution was added and carefully mixed. The mixture was left at room temperature, for 25 min., spun at 2500 g for 15 min. and the pellet was resuspended in 2 ml of 1.2 M sorbitol. After one more sedimentation the protoplasts were spread on the appropriate plates. Protoplasts from the argB strains transformed with pSal43 were spread on minimal plates (Cove, Biochem.Biophys.Acta 113 (1966) 51-56) with glucose and urea as carbon and nitrogen sources respectively, and containing 1.2 M sorbitol for osmotic stabilization. Protoplasts from the argB+ strains transformed with p3SR2 were spread on minimal plates (Cove, Biochim.Biophys.Acta 113 (1966) 51-56) containing 1.0 M sucrose, pH = 7.0, 10 mM acetamide as nitrogen source and 20 mM CsCl to inhibit background growth. After incubation for 4-7 days at 37°C spores were picked, suspended in sterile water and spread for single colonies. this procedure was repeated and spores of a single colony after the second reisolation were stored as a defined transformant.

Example 3

Expression of recombinant Humicola lipase (RHL) in an A. oryzae strain

p960 is transformed into A. oryzae IFO 4177 by cotransformation with p3SR2 containing the amdS gene from A. nidulans as described with a mixture of equal amounts of p960 and p3SR2 (approximately 5 μg of each). Transformants which can use acetamide as sole nitrogen source are reisolated twice. After growth on YPD (Sherman et al, 1981) for three days culture supernatants are analysed by SDS-PAGE. The gels are stained with coomassie brilliant blue R. The best transformants are selected for further studies and grown in a 2 liter Kieler fermentor on 4% soy bean meal and supplied with glucose during growth. The culture is heavily agitated during fermentation. The recombinant Humicola lipase product (RHL) was isolated from the culture broth by removal of the cells by centrifugation, ultrafiltration of the supernatant and freeze drying.

Example 4

Expression of Humicola lipase in an A. niger strain

p960 was transformed into A. niger argB by cotransformation with pSal43 containing the argB gene form A. nidulansas described in Example 2. Protoplast were incubated with equal amounts, approximately 5µg, of each plasmid. Transformants were selected on minimal plates (Cove Biochim. Biophys.Acta 113 (1966), 55-56) by relief of argenine requirement.

After two reisolations of conidiospores the transformants were cultured for seven days in YPD (Sherman et al., 1981) at 30°C. The culture supernatants were analyzed by SDS-PAGE. Most of the transformants produced Humicola lipase in their supernatants.

The carbohydrate content was analyzed by Endo H treatment as described in Example 5. It was found that the carbohydrate content was of about the same magnitude as for the native <u>Humicola</u> lipase. The Endo H sensitivity was the same as for the recombinant Humicola lipase from A. oryzae. It was accordingly assumed

that the nature of the glycosylation is the same in A. oryzae and A. niger.

Example 5

5

15

20

25

30

35

40

65

Determination of carbohydrate content in RHL (recombinant lipase product from example 3) and HLL (native lipase product from cultivaton of DSM4109).

70 Treatment with enzymes capable of cleaving off carbohydrate side chains (Endo H and Glycopeptidase F).

RHL and HLL were treated with glycopeptidase F (Boehringer No. 91378, 100 units. 1 vial dissolved in 500 μ l water) and Endo H (Sigma No. E6878, dissolved in citrate buffer pH 5.5).

HLL and RHL were each dissolved in 10 mM Tris pH 7.5 (1 mg/ml). To 100 μ l HLL and RHL, respectively 2 μ l glycopeptidase F was added and the samples were incubated at 37°C for 20 hours.

HLL and RHL were furthermore each dissolved in 10 mM Tris pH 7.5 (1 mg/ml) and 25 μ l Endo H and 50 μ l 0.1 M sodium acetate pH 5.0 were added to 25 μ l of HLL and RHL, respectively. The samples were incubated at 37°C for 20 hours.

The samples were run on SDS-PAGE gradient gels 7.5-20% together with untreated HLL and RHL. The SDS-PAGE gradient gel is shown in fig. 7. The samples in fig. 7 are a follows:

- 1) Standard: 92K, 67K, 43K, 30K, 20.1K, 14.4K
- 2) HLL, 1 mg/ml in 10 mM Tris pH 7.5.
- 3) HLL + Endo H
- 4) RHL + Endo H
 - 5) RHL + Glycopeptidase F
 - 6) HLL + Glycopeptidase F
 - 7) RHL + Endo H
 - 8) RHL + Glycopeptidase F
 - 9) RHL, 1 mg/ml in 10 mM Tris pH 7.5.

It appears from fig. 7 that glycopeptidase F is capable of cleaving off the carbohydrate part of both HLL and RHL and that the remaining protein is of the same size. Endo H is on the other hand only capable of cleaving off carbohydrates of RHL whereas Endo H treatment of HLL does not have any effect.

Accordingly, both HLL and RHL are N-glycosylated. The glycosylation is, however, of a different nature. Carbohydrate analysis was performed by use of methods described by Thim et. al., submitted for publication in Biochemistry, Chaplin, M.F. (1982), Anal.Biochem. 123, 336-341, and Jentoft, N. (1985), Anal.Biochem. 148, 424-433.

Briefly, samples containing lipase was subjected to methanolysis followed by re-N-acetylation of the amino sugars and elimination of O-acetyl groups by a second, mild methanolysis step. Derivatives suitable for analysis by reverse phase high pressure liquid chromatography was obtained by perbenzoylation of the methyl glycosides.

The result of the analysis is shown in the following table.

45		Native	Recombinant	
45		Humicola lipase	Humicola lipase	
		HLL	RHL	
50		mol/mol	mol/mol	
50	N-acetylglucosamine	1.2	1.2	
	Mannose	5.7	8.6	
55	Galactose	0	3.3	

The carbohydrate moiety of the native <u>Humicola lipase</u>, HLL is composed of the two monosaccharides found in N-glycosylations of the high-mannose type (Montrenil, J. et al., (1986) in "Carbohydrate analysis: a practical approach", Chaplin, M.F. and Kenndey, J.F. (Eds.), IRL Press, Oxford, p 143). The result for N-acetylglucosamine (< 2 mol/mol) indicates that the primary sequence only contains a single N-glycosylation. This could further be deduced from the cDNA sequence (Fig. 5a + 5b). In addition mannose could be O-glycosidic linked to serine or threonine residues.

Besides N-acetylglucosamine and mannose, the recombinant <u>Humicola</u> lipase, RHL comprises galactose in significant amount. As for the native lipase the content of N-acetylglucosamine indicates the presence of a

single N-glycosylation, although this is of the complex or hybrid type if galactose is part hereof. O-glycosylation at serine or threonine residues, however, has to be responsible for the presence of galactose if the N-glycosylation of the recombinant RHL lipase is of the high-mannose type as was the case for the native HLL lipase. In average, the carbohydrate moieties add approximately 1500 D and 2600 D to the molecular weight of the native Humicola lipase HLL and the recombinant Humicola lipase RHL, respectively. This corresponds to a carbohydrate content of about 4.9% and 8.1%, respectively. Example 6 10 Effect of pH and temperature on the stability of RHL and HLL RHL (1.4 x 106 LU/g) and HLL (0.2 x 106 LU/g), respectively, were dissolved in buffer solutions of various pH and incubated for two hours at temperatures 55° and 60°C. 15 The buffer solutions were made up of 47,5 mM Naacetate, MOPS (3-(N-morpholine)-propane sulphonic acid), and boric acid, with pH-adjustments to 4, 5, 6, 7, 8, 9, and 10 by means of 1 N HCl or 1 N NaOH. In addition the buffer solution used in a separate test of a sample of HLL that had been purified to $1.5\,\mathrm{x}\,10^6\,\mathrm{LU/g}$ was added PMSF (phenylmethan sulfonyl fluorid) to inhibit protease content in this native lipase product. Lipase concentrations in the solutions were equated to approx. 10-15 LU/ml. 20 Immediately after the incubations the lipase solutions were cooled down in an ice-water bath and kept there until analysis the same day (LU-method, AF 95). The results are given in fig. 6 and in fig. 8. It appears from fig. 6 that the thermostability of RHL is greater than that of HLL at pH 5-10 both at 55°C and 25 60°C, respectively. It appears from fig. 8 that the greater thermostability of RHL is due only in part to absence of the H. lanuginose protease activity. Example 7 30 Stability of RHL and HLL of comparable unit activity levels of 4 x 106 LU/g in the presence of a typical alkaline Bacillus sp. protease, (here the commercially available detergent enzyme Esperase®). The incubation conditions were 0.1 M boric acid, pH 9.5 and 40°C or 55°C using concentrations of 3600 LU/liter and 0.057 AU/liter (AU/LU = 0.016 x 10^{-3}). The residual activities were calculated on the basis of 35 reference incubations. The results are given in Figure 9. It appears from Fig. 9 that the thermostability of RHL in presence of an alkaline Bacillus protease is superior to that of HLL, indicating thereby differences in their susceptibility to attack by proteases. The features disclosed in the foregoing description, in the following claims and/or in the accompanying drawings may, both separately and in any combination thereof, be material for realising the invention in diverse 40 forms thereof. 45 Claims 1. A process for the production of a recombinant Humicola lipase comprising the steps of (a) providing a suitable recombinant DNA cloning vector comprising DNA-sequences encoding functions facilitating gene expression and a DNA-sequence encoding the Humicola lipase; 50 (b) transforming a suitable host organism with the cloning vector from step (a); (c) culturing the transformed host in a suitable culture medium and optionally recovering the lipase from the culture medium. 2. A process according to claim 1, wherein the host is an Aspergillus strain and comprising the steps of: (a) providing a recombinant DNA cloning vector system capable of integration into the genome of a 55 suitable Aspergillus host in one or more copies and comprising: DNA sequences encoding functions facilitating gene expression; a suitable marker for selection of transformants; and a DNA sequence encoding the Humicola lipase; (b) transforming the Aspergillus host which does not harbour a functional gene for the chosen selection marker with the recombinant DNA cloning vector system from step a; and 60 (c) culturing the transformed Aspergillus host in a suitable culture medium and optionally recovering the lipase from the culture medium. 3. A process according to claim 2, wherein the DNA-sequences encoding functions facilitating gene

expression comprises a promoter, transcription initiation sites, and transcription terminator and polyadenyla-

tion functions.

- 4. A process according to claim 3, wherein the promoter is preceded by upstream activating sequences. 5. A process according to claim 2, wherein the selection marker is derived from the gene for <u>A</u>. <u>nidulans</u> or A. niger argB, A. nidulans trpC, A. nidulans amdS, Neurospora crassae Pyr4 or DHFR.
- 6. A process according to claim 5, wherein the selection marker is the ArgB gene derived from A. nidulans or A. niger or the amdS gene derived from A. nidulans.
- 7. A process according claim 4, wherein the promoter and upstream activating sequences are derived from a gene encoding an extracellular or intracellular protein, such as an amylase, a glucoamylase, a protease, a lipase, a cellulase or a glycolytic enzyme.
- 8. A process according to claim 7, wherein the promoter and upstream activating sequences are derived from the gene for A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α-amylase, A. niger acid stable α-amylase, A. niger glucoamylase or Rhizomucor miehei lipase.
 - 9. A process according to claim 2, wherein the Aspergillus host is an Aspergillus oryzae strain.
 - 10. A process according to claim 9, wherein the promoter is the A. oryzae TAKA amylase promoter or functional parts thereof.
- 11. A process according to claim 10, wherein the promoter and upstream activating sequences have the following sequence:
- GTCGACGC ATTCCGAATA CGAGGCCTGA TTAATGATTA CATACGCCTC 20 CGGGTAGTAG ACCGAGCAGC CGAGCCAGTT CAGCGCCTAA AACGCCTTAT ACAATTAAGC AGTTAAAGAA GTTAGAATCT ACGCTTAAAA AGCTACTTAA AAATCGATCT CGCAGTCCCG ATTCGCCTAT CAAAACCAGT TTAAATCAAC 25 TGATTAAAGG TGCCGAACGA GCTATAAATG ATATAACAAT ATTAAAGCAT TAATTAGAGC AATATCAGGC CGCGCACGAA AGGCAACTTA AAAAGCGAAA GCGCTCTACT AAACAGATTA CTTTTGAAAA AGGCACATCA GTATTTAAAG 30 CCCGAATCCT TATTAAGCGC CGAAATCAGG CAGATAAAGC CATACAGGCA GATAGACCTC TACCTATTAA ATCGGCTTCT AGGCGCGCTC CATCTAAATG TTCTGGCTGT GGTGTACAGG GGCATAAAAT TACGCACTAC CCGAATCGAT AGAACTACTC ATTTTTATAT AGAAGTCAGA ATTCATAGTG TTTTGATCAT TTTAAATTTT TATATGGCGG GTGGTGGGCA ACTCGCTTGC GCGGGCAACT CGCTTACCGA TTACGTTAGG GCTGATATTT ACGTGAAAAT CGTCAAGGGA TGCAAGACCA AAGTAGTAAA ACCCCGGAAG TCAACAGCAT CCAAGCCCAA GTCCTTCACG GAGAAACCCC AGCGTCCACA TCACGAGCGA AGGACCACCT CTAGGCATCG GACGCACCAT CCAATTAGAA GCAGCAAAGC GAAACAGCCC AAGAAAAAGG TCGGCCCGTC GGCCTTTTCT GCAACGCTGA TCACGGGCAG CGATCCAACC AACACCCTCC AGAGTGACTA GGGGCGGAAA TTTAAAGGGA TTAATTTCCA CTCAACCACA AATCACAGTC GTCCCCGGTA TTGTCCTGCA 50 GAATGCAATT TAAACTCTTC TGCGAATCGC TTGGATTCCC CGCCCTAGT CGTAGAGCTT AAAGTATGTC CCTTGTCGAT GCGATGTATC ACAACATATA AATACTAGCA AGGGATGCCA TGCTTGGAGG ATAGCAACCG ACAACATCAC ATCAAGCTCT CCCTTCTCTG AACAATAAAC CCCACAG or a functionally equivalent nucleotide sequence.

12. A process according to claim 10, wherein the promoter and upstream activating sequences have the following sequence:

65

AGATCTGCCC	TTATAAATCT	CCTAGTCTGA	TCGTCGACGC	ATTCCGAATA	
CGAGGCCTGA	TTAATGATTA	CATACGCCTC	CGGGTAGTAG	ACCGAGCAGC	
CGAGCCAGTT	CAGCGCCTAA	AACGCCTTAT	ACAATTAAGC	AGTTAAAGAA	5
GTTAGAATCT	ACGCTTAAAA	AGCTACTTAA	AAATCGATCT	CGCAGTCCCG	
ATTCGCCTAT	CAAAACCAGT	TTAAATCAAC	${\tt TGATTAAAGG}$	TGCCGAACGA	
GCTATAAATG	ATATAACAAT	ATTAAAGCAT	TAATTAGAGC	AATATCAGGC	10
CGCGCACGAA	AGGCAACTTA	AAAAGCGAAA	GCGCTCTACT	AAACAGATTA	
CTTTTGAAAA	AGGCACATCA	GTATTTAAAG	CCCGAATCCT	TATTAAGCGC	
CGAAATCAGG	CAGATAAAGC	CATACAGGCA	GATAGACCTC	TACCTATTAA	15
ATCGGCTTCT	AGGCGCGCTC	CATCTAAATG	TTCTGGCTGT	GGTGTACAGG	
GGCATAAAAT	TACGCACTAC	CCGAATCGAT	AGAACTACTC	ATTTTTATAT	
AGAAGTCAGA	ATTCATAGTG	TTTTGATCAT	TTTAAATTTT	TATATGGCGG	20
GTGGTGGGCA	ACTCGCTTGC	GCGGGCAACT	CGCTTACCGA	TTACGTTAGG	
GCTGATATTT	ACGTGAAAAT	CGTCAAGGGA	TGCAAGACCA	AAGTAGTAAA	
ACCCCGGAAG	TCAACAGCAT	CCAAGCCCAA	GTCCTTCACG	GAGAAACCCC	25
AGCGTCCACA	TCACGAGCGA	AGGACCACCT	CTAGGCATCG	GACGCACCAT	
CCAATTAGAA	GCAGCAAAGC	GAAACAGCCC	AAGAAAAAGG	TCGGCCCGTC	
GGCCTTTTCT	GCAACGCTGA	TCACGGGCAG	CGATCCAACC	AACACCCTCC	30
AGAGTGACTA	GGGGCGGAAA	TTTAAAGGGA	TTAATTTCCA	CTCAACCACA	
AATCACAGTC	GTCCCCGGTA	TTGTCCTGCA	GAATGCAATT	TAAACTCTTC	
TGCGAATCGC	TTGGATTCCC	CGCCCTAGT	CGTAGAGCTT	AAAGTATGTC	35
CCTTGTCGAT	GCGATGTATC	ACAACATATA	AATACTAGCA	AGGGATGCCA	
TGCTTGGAGG	ATAGCAACCG	ACAACATCAC	ATCAAGCTCT	CCCTTCTCTG	
AACAATAAAC	CCCACAGAAG	GCATTT or	a function	ally equivalent	40
nucleotide	sequence.				
					15
					45
13. A process a	ccording to claim	12, wherein the se	quence in claim 1	I is preceded by the 1.05 kb	
unsequenced upst	ream region from I	oosition 0 to 1.05 ir	n plasmid pTAKA 1	7. prises a preregion providing for	50
secretion of the ex	xpressed product i	nto the culture med	dium.		50
gene from an Aspe	ergillus species, an a	amylase gene from a	ı Bacillus species, a	a glucoamylase or an amylase lipase or proteinase gene from	
Rhizomucor miehe	ei, the gene for the ecording to claim 1	α-factor from <u>S. c</u> 5. wherein the prer	erevisiae or a <u>Hum</u> egion is derived fr	icola lipase gene. om the gene for the Humicola	55
lanuginosa lipase.	the gene for A. or	vzae TAKA amylase	e, A. niger neutral d	x-amylase, A. niger acid-stable NCIB 11837, B. stearothermo-	55
philus α-amylase o	or B. licheniformis	subtilisin.			
17. A process acc	cording to claim 2, ver and the other cor	vherein the vector s ntains DNA-sequenc	ystem comprises tv ses encoding function	vo vectors, where one contains ons facilitating gene expression	.60
and a DNA-sequer	nce encoding the o	lesired protein prod nbinant <u>Humicola</u> lip	duct.		
(a) cultivatir	ng an Aspergillus sp	. host transformed v	vith a recombinant 🛭	NA cloning vector system, said	
vector system sequence enc	n comprising DNA s oding the Humicola	equences encoding sp. lipase, and	j tunctions facilitatir	ng gene expression and a DNA	65

- (b) recovering said recombinant lipase.
- 19. A process according to claim 18, wherein the DNA sequences encoding functions facilitating gene expression comprises a promoter, transcription initiation sites, and transcription terminator and polyadenylation functions.
- 20. A process according to claim 12, wherein the promoter is the A. oryzae TAKA amylase promoter or functional parts thereof.
 - 21. The method of claim 18 which further comprises recovering said <u>Humicola sp.</u> lipase from the cultivation medium, said recombinant DNA cloning vector system further comprising a preregion providing for secretion operatively linked to the DNA sequence encoding said Humicola sp. lipase.
 - 22. The method of claim 18, wherein the DNA sequence encodes a Humicola lanuginosa lipase.
 - 23. A process according to claim 18, wherein the Aspergillus sp. host is an Aspergillus oryzae strain.
 - 24. The recombinant Humicola lanuginosa lipase product produced by the process of claim 23, said recombinant lipase product being characterized by greater thermal stability than the native Humicola lanuginosa product and by having a glycosylation different than the glycosylation of the native Humicola lanuginosa lipase.
 - 25. A recombinant <u>Humicola sp. lipase characterized by having a glycosylation different from the glycosylation of the native Humicola sp. lipase.</u>
 - 26. Recombinant Humicola sp. lipase according to claim 25, wherein the carbohydrate content is from about 5 to about 30% (w/w).
- 27. Recombinant <u>Humicola</u> lipase according to claim 26, wherein the carbohydrate content is from about 5 to about 15% (w/w).
 - 28. Recombinant Humicola lipase according to claim 25, wherein the carbohydrate content is from about 6 to about 10% (w/w).
 - 29. Recombinant <u>Humicola</u> lipase according to claim 25, wherein the carbohydrate content is from about 7.5 to about 8.5% (w/w).
 - 30. Recombinant Humicola lipase according to claim 25, characterized in that it comprises galactose.
 - 31. Recombinant Humicola lipase according to claim 25, characterized in that it comprises N-acetylglucosamine, mannose and galactose.
 - 32. Recombinant Humicola lipase according to claim 30, characterized in that it comprises from about 1 to about 12 mol galactose per mol lipase protein.
 - 33. Recombinant <u>Humicola</u> lipase according to claim 30, characterized in that it comprises from about 1 to about 6 mol galactose per mol lipase protein.
 - 34. Recombinant <u>Humicola</u> lipase according to claim 25, characterized in that it comprises from about 3 to about 20 mol mannose per mol lipase protein.
- 35. Recombinant <u>Humicola</u> lipase according to claim 25, characterized in that it comprises from about 3 to about 12 mol mannose per mol lipase protein.
 - 36. Recombinant <u>Humicola</u> lipase according to claim 31, characterized in that it per mol lipase protein comprises about 2 mol N-acetylglucosamine, from about 3 to about 20 mol mannose and from about 1 to about 12 mol galactose.
- 37. Recombinant Humicola lipase according to claim 32, characterized in that it per mol lipase protein comprises about 2 mol N-acetylglucosamine, about 3 to about 12 mol mannose and about 1 to about 6 mol galactose
 - 38. Recombinant <u>Humicola</u> lipase according to claim 32, characterized in that it per mol lipase protein comprises about 2 mol N-acetylglucosamine from about 6 to about 9 mol mannose and from about 2 to about 4 mol galactose.
 - 39. Recombinant Humicola lipase according to claim 25, characterized in having a residual activity after 2 hours at 60°C of at least 90% at pH from about 6 to about 9.
 - 40. Recombinant <u>Humicola</u> lipase according to claim 25, characterized in having a residual activity after 2 hours at 60°C of at least 80% at pH from about 5.5 to about 9.2.
 - 41. Recombinant Humicola lipase according to claim 25, characterized in having a residual activity after 2 hours at 55°C of at least 95% at pH from about 6 to about 9.5.
 - 42. Recombinant <u>Humicola</u> lipase according to claim 25, characterized in having a residual activity at 55°C at pH 9 of at about 99%.
- 43. Recombinant <u>Humicola</u> lipase according to claim 25, characterized in having a residual activity at 55°C at pH 10 of at least 85%.

60

50

10

15

25

FIG. 1 EP 0305216 A1

FIG. 4

AGTGGTACATAACGCAATGCCGTATTATTTGA polyA

FIG. 6

Fig. 7

1 2 3 4 5 6 7 8 9

FIG. 8

(2 hours at 55°C)

FIG. 9

EUROPEAN SEARCH REPORT

EP 88 30 7980

i	DOCUMENTS CONSID		Relevant	CLASSIFICATION OF THE
ategory	Citation of document with indic of relevant passa		to claim	APPLICATION (Int. Cl. 4)
Y,D P	EP-A-0 258 068 (NOVO * Whole document *	INDUSTRI A/S)	1-43	C 12 N 15/00 C 12 N 9/20
Y	BIOLOGICAL ABSTRACTS, no. 68797, Philadelph LIU et al.: "Purifica properties of the lip thermophillic fungus lanuginosa S-38", & A37(1): 157-163, 1973. * Whole abstract *	nia, PA, ÜS; W. H. ution and general pase of Humicola GRIC. BIOL. CHEM.	1-43	
Υ	CHEMICAL ABSTRACTS, v 401, abstract no. 112 Ohio, US; & JP-A-75 6 SHOYU CO., LTD) 29-05 * Whole abstract *	2391y, Columbus, 53 188 (YAMASA	1-43	·
Y,D P	EP-A-0 238 023 (NOVO * Examples 8,9,14; fi claims *		1-43	TECHNICAL FIELDS
Υ	EP-A-0 215 594 (GENE * Whole document *	ENCOR INC.)	1-9,14- 16,18- 19,21- 23	C 12 N
Y	EP-A-0 184 438 (ALLE * Whole document *	ELIX INC.)	1-9,14- 16,18- 19,21- 23	
		-/-		
	The present search report has been	n drawn up for all claims Date of completion of the sear	reh	Examiner
	Place of search E HAGUE	22-11-1988	i	TRO Y GONZALEZ R.F

EPO FORM 1503 03.82 (P0401)

X: particularly relevant it taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document

- D: document cited in the application L: document cited for other reasons
- &: member of the same patent family, corresponding document

EUROPEAN SEARCH REPORT

Application Number

EP 88 30 7980

of relevant passages THE EMBO JOURNAL, vol. 4 Dages 475-479, IRL Press England; J.M KELLY et al Transformation of Asper The amdS gene of Aspergi Whole article * BIOCHEMICAL AND BIOPHYSI COMMUNICATIONS, vol. 141 November 1986, pages 185 Press Inc.; W. KUGIMIYA Molecular cloning and resequence of the lipase of	Ltd, Oxford, .: gillus niger by llus nidulans" CAL RESEARCH , no. 1, 26th -190, Academic	1-9,14- 19,21- 23	APPLICATION (Int. Cl. 4)
COMMUNICATIONS, vol. 141 November 1986, pages 185 Press Inc.; W. KUGIMIYA 'Molecular cloning and n	, no. 1, 26th -190, Academic	1-43	
Pseudomonas fragi ^{ll} Whole article *	ucleotide		
			TECHNICAL FIELDS SEARCHED (Int. Cl.4)
Place of search	on up for all claims Date of completion of the search 22-11-1988	CAST	Examuner RO Y GONZALEZ R.F
ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category	T: theory or principle E: earlier patent docu after the filing date D: document cited in L: document cited for	underlying the ment, but public the application other reasons	invention shed on, or
1	Place of search HAGUE ATEGORY OF CITED DOCUMENTS ularly relevant if taken alone ularly relevant if combined with another	HAGUE ATEGORY OF CITED DOCUMENTS Inlarly relevant if taken alone ularly relevant if combined with another nent of the same category ological background written disclosure ATEGORY OF CITED DOCUMENTS T: theory or principle E: earlier patent docu after the filling date D: document cited in L: document cited for written disclosure E: member of the sam	Place of search HAGUE 22-11-1988 CAST T: theory or principle underlying the E: earlier patent document, but publication to the same category ological background ATEGORY OF CITED DOCUMENTS Ularly relevant if taken alone ularly relevant if combined with another nent of the same category ological background ATEGORY OF CITED DOCUMENTS E: earlier patent document, but publication to the same category ological background ATEGORY OF CITED DOCUMENTS E: earlier patent document, but publication to the same category ological background ATEGORY OF CITED DOCUMENTS E: earlier patent document, but publication to the same category ological background ATEGORY OF CITED DOCUMENTS E: earlier patent document, but publication to the same patent family ological background ATEGORY OF CITED DOCUMENTS E: earlier patent document, but publication to the same patent family ological background E: document cited in the application to document cited in the application to document cited for other reasons ological background ATEGORY OF CITED DOCUMENTS E: earlier patent document, but publication to the same category ological background ATEGORY OF CITED DOCUMENTS E: earlier patent document, but publication to the same category ological background ATEGORY OF CITED DOCUMENTS