edwynjavier@gmail.com

1 Proyectos

1.1 Evaluador de expresiones polinomiales

En general el evaluador deberá permitir analizar y ejecutar expresiones de la forma:

$$a_{m-1}x^m + a_{m-2}x^{m-1} + a_{m-3}x^{m-2} + \dots + a_1x + a_0$$
 (1)

donde a_i , x y m son valores en R que corresponden a los coeficientes, variable independiente y exponenentes respectivamente. La expresion polinomial podrá aceptar más de una variable independiente como se ilustra en la siguiente expresión.

$$3.58x^{5} + 6.28x^{2}yz + xyz^{3} + 3 (2)$$

La expresión polinomial deberá poder incluir funciones trigonométricas, trigonométricas inversas, exponencial, logaritmo natural, logaritmo en base 2 y base 10, raíz cuadrada y módulo.

1.2 Evaluador de expresiones booleanas

El algebra de Bool es un conjunto de postulados que define operaciones de variables en el espacio B $\{0, 1\}$, denominadas variables binarias. Una expresión o función booleana está definida por variables binarias típicamente representadas por literales (por ejemplo x, y, z), las constantes 0 y 1 y los operadores lógicos $\{+, \cdot, '\}$ representando las operaciones Y, O y negación respectivamente. Típicamente el símbolo \cdot es omitido. Se requiere evaluar y ejecutar expresiones booleanas de la forma:

$$x'y'z' + x'yz' + x'yz + xy'z + xyz'$$
 (3)

$$x'y'z' + x'yz' + 0'yz + xy'z + xyz' + 1$$
 (4)

El valor de la variables x, y, z puede ser asignado apriori por el usuario. En su defecto el evaluador mostrará la tabla de verdad (sujeta a las restricciones que considere convenientes el diseñador del programa). No existirá explícitamente restricción para el número de variables.

1.3 Evaluador de operaciones entre conjuntos

En este caso el evaluador deberá analizar y ejecutar las operaciones básicas entre conjuntos unión \cup , intersección \cap , diferencia simétrica g y diferencia \setminus . Los conjuntos deberán ser denotados con letras mayúsculas (A,B,C,...Z). El evaluador deberá considerar dos conjuntos especiales: el conjunto vacio \emptyset y el conjunto universal U. Adicionalmente se deberá considerar el operador unario de complemento ('). Como ejemplo de expresiones válidas se tienen:

$$(A' \cap B) \cup (\emptyset \cup \mathsf{U}) \tag{5}$$

$$(A g B) \cap C \cup (B \setminus C') \tag{6}$$

El usuario definirá los elementos de cada conjunto previo a la ejecución de la expresión. Como salida se obtendrá el conjunto resultante. Por ejemplo, dada la expresión $A \cup B$ donde el usuario define $A = \{1, 2, 3\}$ y $B = \{2\}$, la salida del programa será $\{1, 2, 3\}$.

1.4 Evaluador de números complejos

Un número complejo es una expresión de la forma:

$$a + bi$$
 (7)

donde a y b son números reales e $i = \sqrt[4]{-1}$. El evaluador deberá poder analizar y ejecutar las operaciones de suma, resta, multiplicación y división de números complejos. Para está última operación es posible usar el inverso multiplicativo. Ejemplo de expresiones válidas se presentan a continuación:

$$(a+bi)+(c+di) \tag{8}$$

$$(a + bi)(c + di)$$
 (9)
 $(a + bi)/(c + di)$ (10)
 $a = 3.16$
 $b = 6.82$
 $z = (a + bi)$ (11)
 $w = (5.8 + 3.0i)$

2 Especificaciones Generales

Cada estudiante realizará una implementación del primer proyecto. También deberá seleccionar uno de los proyectos restantes y realizar su presentación. Se deberá entregar el código y un reporte del trabajo realizado en el que se deberá incluir un breve manual de usuario. Estos elementos deberán cargarse a la carpeta asignada. La fecha de entrega será el viernes28 de octubre de 2022.

y = z + w