Importing the Dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
```

Data Collection

			1 to 5 of 5 entries Filter				
index	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total s
0	7.4	0.7	0.0	1.9	0.076	11.0	
1	7.8	0.88	0.0	2.6	0.098	25.0	
2	7.8	0.76	0.04	2.3	0.092	15.0	
3	11.2	0.28	0.56	1.9	0.075	17.0	
4	7.4	0.7	0.0	1.9	0.076	11.0	
4							>

Show 25 ➤ per page

Like what you see? Visit the <u>data table notebook</u> to learn more about interactive tables.

Values

Distributions

2-d distributions

Time series

checking for missing values
wine_dataset.isnull().sum()

0
0
0
0
0
0
0
0
0
0
0

quality 0 dtype: int64

Data Analysis and Visulaization

ا دوق

statistical measures of the dataset
wine_dataset.describe()

	1 to 8 of 8 entries Filter					
index	fixed acidity	volatile acidity	citric acid	residual sugar		
count	1599.0	1599.0	1599.0	1599.0		
mean	8.31963727329581	0.5278205128205128	0.2709756097560976	2.53880550343965	0.08	
std	1.7410963181276953	0.17905970415353537	0.19480113740531857	1.4099280595072798	0.0	
min	4.6	0.12	0.0	0.9		
25%	7.1	0.39	0.09	1.9		
50%	7.9	0.52	0.26	2.2		
75%	9.2	0.64	0.42	2.6		
max	15.9	1.58	1.0	15.5		
4						

Show 25 v per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

Values

residual

Distributions

volatile acidity

citric acid

residual sugar

Categorical distributions

2-d distributions

Faceted distributions

number of values for each quality
sns.catplot(x='quality', data = wine_dataset, kind = 'count')

volatile acidity vs Quality
plot = plt.figure(figsize=(5,5))
sns.barplot(x='quality', y = 'volatile acidity', data = wine_dataset)

<Axes: xlabel='quality', ylabel='volatile acidity'>

citric acid vs Quality
plot = plt.figure(figsize=(5,5))
sns.barplot(x='quality', y = 'citric acid', data = wine_dataset)

<Axes: xlabel='quality', ylabel='citric acid'>

Correlation

- 1. Positive Correlation
- 2. Negative Correlation

```
correlation = wine_dataset.corr()
```

tand the correlation between the columns

, square=True, fmt = '.1f', annot = True, annot_kws={'size':8}, cmap = 'Blues')

<Axes: >

Data Preprocessing

```
# separate the data and Label
X = wine_dataset.drop('quality',axis=1)
print(X)
```

	fixed acidity	volatil	le acidity	citric ac	id resid	ual su	gar	chlori	des	\
0	7.4		0.700	0.	00		1.9	0.	076	
1	7.8		0.880	0.	00		2.6	0.	098	
2	7.8		0.760	0.	04		2.3	0.	092	
3	11.2		0.280	0.	56		1.9	0.	075	
4	7.4		0.700	0.			1.9		076	
					• •					
1594	6.2		0.600	0.			2.0		090	
1595	5.9		0.550	0.			2.2		062	
1596	6.3		0.510	0.			2.3		076	
1597	5.9		0.645	0.			2.0		075	
1598	6.0		0.310	0.			3.6		067	
	free sulfur di	loxide t	otal sulfu	r dioxide	density	рН	sulp	hates	\	
0		11.0		34.0	0.99780	3.51	·	0.56		
1		25.0		67.0	0.99680	3.20		0.68		
2		15.0		54.0	0.99700	3.26		0.65		
3		17.0		60.0	0.99800	3.16		0.58		
4		11.0		34.0	0.99780	3.51		0.56		
				• • •						
1594		32.0		44.0	0.99490	3.45		0.58		
1595		39.0		51.0	0.99512	3.52		0.76		
1596		29.0		40.0	0.99574	3.42		0.75		
1597		32.0		44.0	0.99547	3.57		0.71		
1598		18.0		42.0	0.99549	3.39		0.66		
	alcohol									
0	9.4									
1	9.8									
2	9.8									
3	9.8									
4	9.4									
	• • •									
1594	10.5									
1595	11.2									
1596	11.0									
1597	10.2									
1598	11.0									

[1599 rows x 11 columns]

Label Binarizaton

1597

0

```
Y = wine_dataset['quality'].apply(lambda y_value: 1 if y_value>=7 else 0)
print(Y)

0      0
1      0
2      0
3      0
4      0
...
1594      0
1595      0
1596      0
```

```
1598 0
Name: quality, Length: 1599, dtype: int64
```

Train & Test Split

Model Training:

Random Forest Classifier

```
model = RandomForestClassifier()
model.fit(X_train, Y_train)

v RandomForestClassifier
RandomForestClassifier()
```

Model Evaluation

Accuracy Score

```
# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy : ', test_data_accuracy)

Accuracy : 0.93125
```

Building a Predictive System

```
input_data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5)

# changing the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the data as we are predicting the label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if (prediction[0]==1):
    print('Good Quality Wine')
else:
    print('Bad Quality Wine')
```

[0] Bad Qı

Bad Quality Wine
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not
warnings.warn(

✓ 0s completed at 12:06 PM

https://colab.research.google.com/drive/19EM5h3DaOK54ZkgUdKakjxyRiZCq7Nmb#scrollTo=-PSySulcjhHe&printMode=true