S&DS 365 / 665 Intermediate Machine Learning

Smoothing and Density Estimation

September 8

Topics for today

- Recap of lasso
- Smoothing kernels
- Kernel density estimation
- Bias-variance decomposition and the curse of dimensionality
- Next up: Intro to Mercer kernels

Administrivia

- Quiz 1: Great job!
- Assn 1 posted on Wednesday
- Topics: Lasso, smoothing, Mercer kernels, LOOCV
- Recordings
- Questions?

Reminders

- Notes posted to course page http://interml.ydata123.org
 - Notes on lasso optimization posted last week
- Readings from "Probabilistic Machine Learning: An Introduction" https://probml.github.io/pml-book/book1.html
- Also: "Probabilistic Machine Learning: Advanced Topics"
 https://probml.github.io/pml-book/book2.html

Recap: Lasso

- Lasso navigates bias-variance tradeoff by selecting subsets of predictor variables
- Replaces ℓ_2 norm of ridge regression by ℓ_1 norm
- Key is to combine sparsity with convexity
- Fundamental operation of lasso is soft-thresholding
- A scalable algorithm for computing the lasso estimator is iterative soft thresholding
 - iteratively compute a 1-dimensional lasso using soft-thresholding
 - cycle over the variables one at a time

ℓ_1 and soft thresholding

$$\operatorname{Soft}_{\lambda}(X) \equiv \operatorname{sign}(X) (|X| - \lambda)_{+}.$$

The lasso: Computing $\widehat{\beta}$

To minimize $\frac{1}{2n} \sum_{i=1}^{n} (Y_i - \beta^T X_i)^2 + \lambda \|\beta\|_1$ by coordinate descent:

- Standardize the predictor variables
- Set $\widehat{\beta} = (0, \dots, 0)$ then iterate until converged:
- for j = 1, ..., p:
 - set $R_i = Y_i \sum_{s \neq i} \widehat{\beta}_s X_{si}$
 - ▶ Set $\widehat{\beta}_j$ to be least squares fit of R_i 's on X_j .
 - $\triangleright \ \widehat{\beta}_j \leftarrow \mathsf{Soft}_{\lambda}(\widehat{\beta}_j)$
- Then use least squares $\widehat{\beta}$ on selected subset S.

7

The lasso

To find choose regularization/sparsity level λ :

- **1** Find $\widehat{\beta}(\lambda)$ and $\widehat{S}(\lambda)$ for each λ .
- **2** Compute $\widehat{R}(\lambda)$ for each λ using LOOCV.
- **3** Choose $\hat{\lambda} = \arg\min_{\lambda} \hat{R}(\lambda)$ to minimize estimated risk.
- 4 Let $\widehat{S} = \widehat{S}(\widehat{\lambda})$ be the selected variables.
- **6** Let $\widehat{\beta} = \widehat{\beta}(\widehat{\lambda})$ be the least squares estimator using only \widehat{S} .
- **6** Prediction: $\widehat{Y} = X^T \widehat{\beta}$.

8

Nonparametric Regression

Given $(X_1, Y_1), \dots, (X_n, Y_n)$ predict Y from X.

Assume only that $Y_i = m(X_i) + \epsilon_i$ where where m(x) is a smooth function of x.

The most popular (classical) methods are *kernel methods*. However, there are two types of kernels:

- Smoothing kernels
- Penalization kernels (Mercer kernels)

Smoothing kernels involve local averaging. Mercer kernels involve norms and regularization.

Smoothing Kernels

Smoothing kernel estimator:

$$\widehat{m}_h(x) = \frac{\sum_{i=1}^n Y_i \ K_h(X_i, x)}{\sum_{i=1}^n K_h(X_i, x)} = \sum_{i=1}^n w_i(x) Y_i$$

where $K_h(x, z)$ is a *kernel* such as

$$K_h(x,z) = \exp\left(-\frac{\|x-z\|^2}{2h^2}\right)$$

and h > 0 is called the *bandwidth*.

- $\widehat{m}_h(x)$ is just a local average of the Y_i 's near x.
- The bandwidth h controls the bias-variance tradeoff:
 Small h = large variance while large h = large bias.

Example: Some Data – Plot of Y_i versus X_i

Example: $\widehat{m}(x)$

$\widehat{m}(x)$ is a local average

$\widehat{m}(x)$ is a local average

The estimator minimizes a weighted least squares criterion

$$\widehat{m}(x) = \underset{c}{\operatorname{arg\,min}} \sum_{i=1}^{n} w_i(x)(y_i - c)^2$$

Effect of the bandwidth h

Smoothing Kernels

$$Risk = \mathbb{E}(Y - \widehat{m}_h(X))^2 = bias^2 + variance + \sigma^2$$
.

 $\sigma^2 = \mathbb{E}(Y - m(X))^2$ is the unavoidable prediction error.

small h: low bias, high variance (undersmoothing)

large h: high bias, low variance (oversmoothing)

Risk Versus Bandwidth

optimal h

The kernel shape doesn't really matter Let's go to the notebook

Estimating the Risk: Cross-Validation

To choose h we need to estimate the risk R(h). We can estimate the risk by using *cross-validation*.

- **1** Omit (X_i, Y_i) to get $\widehat{m}_{h,(i)}$, then predict: $\widehat{Y}_{(i)} = \widehat{m}_{h,(i)}(X_i)$.
- 2 Repeat this for all observations.
- 3 The cross-validation estimate of risk is:

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_{(i)})^2.$$

Shortcut formula: Whenever $\hat{Y} = LY$ we can use the shortcut

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i}{1 - L_{ii}} \right)^2.$$

In this case $L_{ij} = K_h(X_i, X_j) / \sum_t K_h(X_i, X_t)$.

You'll prove this on Assignment 1.

Summary so far

- **1** Compute \widehat{m}_h for each h
- ② Estimate the risk $\widehat{R}(h)$ using LOOCV
- **3** Choose bandwidth \hat{h} to minimize $\hat{R}(h)$

Example

The curse of dimensionality

The method is easily applied in high dimensions — but it doesn't work well.

- The squared bias scales as h^4 and the variance scales as $\frac{1}{nh^p}$
- As a result, the risk goes down no faster than $n^{-4/(4+p)}$
- Suppose we want to make this small, of size ϵ —how many data points do we need?

$$n \ge \left(\frac{1}{\epsilon}\right)^{1+p/4}$$

Grows exponentially with dimension—the curse of dimensionality

Kernel density estimation

To estimate a density, use the same idea behind kernel smoothing:

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_h(X_i, x)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{X_i - x}{h}\right)$$

We require that $\int K(u) du = 1$ and $K \ge 0$ is symmetric around zero (an even function).

This places a "bump function" around each data point, and averages them (a mixture model)

Kernel density estimation

In p dimensions:

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_h(X_i, x)$$
$$= \frac{1}{n h^p} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

We require that $\int K(u) du = 1$ and K is symmetric around zero.

This places a "bump function" around each data point, and averages them (a mixture model)

KDE demo: Fiji earthquakes

Kernel density estimation

The bias-variance tradeoff:

$$bias^2(x) \approx h^4$$
 $var(x) \approx \frac{1}{nh^p}$

Note that the variance scales according to the expected number of data points in a cube of side length h in p-dimensions.

We'll go through the calculation of this on the board. Notes are posted to http://interml.ydata123.org

Back to regression

Using a kernel density estimator, the "plug-in" regression estimate gives us back the kernel smoother:

$$\widehat{m}(x) = \int y \, \widehat{f}(y \mid x) \, dy$$

$$= \frac{\int y \, \widehat{f}(x, y) \, dy}{\widehat{f}(x)}$$

$$= \frac{\sum_{i} Y_{i} K_{h}(X_{i}, x)}{\sum_{i} K_{h}(X_{i}, x)}$$

- A density estimate is a generative model
- We can sample from the density to "generate" a new data point
- What is an algorithm for sampling from the estimated distribution?

- ② Sample a point x from a Gaussian with mean X_i and variance h^2

As we'll see later in the course, Transformers can be naturally seen as a form of kernel smoothing and kernel density estimation.

Summary

- Smoothing methods compute local averages, weighting points by a kernel
- Shape of the kernel doesn't matter (much)
- KDE places a density around each data point, and averages
- The curse of dimensionality limits use of both approaches to low dimensions