CSSSA - NOTM

4 unit mathematics

Trial DSC Examination 1982

- 1. (i) (a) Show that (x-3) is a factor of the polynomial $4x^3 15x^2 + 8x + 3$
- (b) Given that the equation $x^4 5x^3 + 4x^2 + 3x + 9 = 0$ has a root of multiplicity 2, solve the equation completely.
- (ii) The equation $x^4 + px^3 + qx^2 + rx + t = 0$ has roots a, b, c and d. Obtain the monic, quartic (degree 4) equation which has roots 2a, 2b, 2c, 2d, in terms of x, p, q, r, t.
- 2. (a) (i) Sketch y = |x| 2 and $y = 4 + 3x x^2$ on the same number plane.
- (ii) Hence or otherwise, solve $\frac{|x|-2}{4+3x-x^2} > 0$.
- (b) Sketch showing the main features, the graphs of
- (1) $x^2y + y = -4$
- (2) $y = x^2 \ln(\frac{1}{x^3})$
- **3.** (a) Show that $\int_0^{\frac{\pi}{2}} \frac{\sin^2 \theta}{1 + \cos \theta} d\theta = \frac{\pi}{2} 1$.
- (b) Decompose $\frac{1}{x^3-1}$ into partial fractions. Hence determine $\int \frac{dx}{x^3-1}$
- (c) (i) Show that $\frac{d}{d\theta}[\ln(\sec\theta + \tan\theta)] = \sec\theta$
- (ii) By making a suitable substitution show that $\int \frac{dx}{\sqrt{x^2+1}} = \ln(x+\sqrt{x^2+1}) + C$
- (iii) Find $\int \sqrt{1+x^2} dx$, using the method of integration by parts.
- **4.** (a) The complex number Z is given by $Z = 1 + \frac{1+i}{1-i}$.

Find: (i) $\Re(Z)$

- (ii) $\Im(Z)$
- (iii) |Z|
- (iv) $\arg Z$
- (b) Draw neat labelled sketches to indicate each of the subsets of the Argand diagram described below:
- (1) $\{Z: |Z-2-i|=4\}$
- (2) $\{Z: \Re(Z+iZ) \geq 2\}$
- (c) Determine the locus of the complex number Z given $\arg(Z-2) = \frac{\pi}{4} + \arg(Z+2)$. Sketch this locus on an Argand diagram.
- (d) Solve completely $Z^2 + 16 = 30i$
- 5. (a) Obtain the following results, using the "addition" formulæ or otherwise.
- (1) $\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$ (2) $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$

(b) Given
$$\sin x + \sin y = a$$

 $\cos x + \cos y = b$

obtain expressions (in terms of (a, b)) for

- (i) $\tan(\frac{x+y}{2})$
- (ii) $\sin(x+y)$
- (iii) $\cos \frac{x-y}{2}$
- (c) Show that $\frac{1}{\cos(x+h)} \frac{1}{\cos x} = \frac{2\sin(x+\frac{h}{2})\sin\frac{h}{2}}{\cos x\cos(x+h)}$ where $0 < h < \frac{\pi}{2}$. Hence deduce $\lim_{h\to 0} \frac{1}{h} \left[\frac{1}{\cos(x+h)} \frac{1}{\cos x}\right]$. Interpret the result. Prove that in any triangle ABC, $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$
- **6.** The diagram below shows that part of the circle $x^2 + y^2 = a^2$ in the first quadrant. If the horizontal line LM through (0,b), where 0 < b < a, divides the area, between the curve and the coordinate axes, into two equal parts show that $\sin^{-1}\frac{b}{a} + \frac{b\sqrt{a^2-b^2}}{a^2} = \frac{\pi}{4}$. If the radius of the circle is 1 unit, show that b can be found by solving the equation $\sin 2\theta = \frac{\pi}{2} 2\theta$ where $\theta = \sin^{-1}b$.

- 7. The area below the curve $y = bx ax^2$ (where a > 0 and b > 0) and above the x-axis is rotated about the y-axis through a complete revolution. Show, using a "slice" technique or otherwise, that the volume of the solid so formed is $\frac{\pi b^4}{6a^3}$ cubic units.
- **8.** (a) Obtain the Cartesian equation for the curve represented parametrically by $x = 5\cos\theta$, $y = \sin\theta$ for $0 \le \theta \le 2\pi$. Identify the curve and sketch it, showing its main features.
- (b) A point P is moving in an anti-clockwise direction in a circular path with radius r, as shown below. Given $\frac{d\theta}{dt} = k$ (where k is a positive constant)
- (i) Show that the velocity of P at any instant has magnitude rk.

- (ii) If S is the projection of P on the x-axis and T is the projection of P on the y-axis prove that both S and T execute simple harmonic motion as P moves around the circle.
- (iii) Determine the maximum speed of S and T and where these maximum speeds occur.
- (iv) Show that the distance ST is constant and determine its value.
- (v) If M is the midpoint of ST determine the locus of M as P moves around the circle.

