Į	限	教	師	參	ţ

 Marks	

1A

(6)

<u>'</u>	>ChtaXhh.≥ Ist	UUL U		
`,	Solution	Marks	Remarks	
l. (a)	When $x = 1$, $e^{3} = \frac{2^{3}}{2} = 4$ $y = \ln 4$ (or $y = 2 \ln 2$) (or $y = 1.3863$)	IA	a-1 for r.t. 1.386	
(b)	$e^{xy} = \frac{x(x+1)^3}{x^2+1}$			
	$xy = \ln\left(\frac{x(x+1)^3}{x^2+1}\right)$	1A	taking log on both sides (one side must correct)	
	$xy = \ln x + 3\ln(x+1) - \ln(x^2+1)$ $x\frac{dy}{dx} + y = \frac{1}{x} + \frac{3}{x+1} - \frac{2x}{x^2+1}$	lM+iM	IM for product rule IM for differentiating log	
-	When $x = 1$ $\frac{dy}{dx} + \ln 4 = 1 + \frac{3}{2} - 1$ $\frac{dy}{dx} = \frac{3}{2} - \ln 4$ (or 0.1137)	1A ,	a-1 for r.t. 0.114	
	Alternatively, $e^{xy} \left(x \frac{dy}{dx} + y \right) = \frac{(x^2 + 1)[(x+1)^3 + 3(x+1)^2 x] - x(x+1)^3 (2x)}{(x^2 + 1)^2}$	1M+1M+1A	1M for differentiating e ^{xy} 1M for product/quotient rule	
	When $x = 1$, $e^{xy} \left(\frac{dy}{dx} + \ln 4\right) = 6$ $\frac{dy}{dx} = \frac{3}{2} - \ln 4$	1A		
		(5)		
2. (a)	$e^{-2x} = 1 - 2x + \frac{(-2x)^2}{2!} + \frac{(-2x)^3}{3!} + \cdots$	1		

(b)
$$(1+x)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right)x + \left(\frac{1}{2!}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)x^2 + \left(\frac{1}{3!}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)x^3 + \cdots$$

$$= 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \cdots$$
1A for any 3 terms

$$\frac{(1+x)^{\frac{1}{2}}}{e^{2x}} = \left(1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \cdots\right) \left(1 - 2x + 2x^2 - \frac{4x^3}{3} + \cdots\right)$$

$$= 1 - \frac{3}{2}x + \frac{7}{2}x^2 - \frac{1}{2}x^3 + \cdots$$
IA applying the result in (a)

$= 1 - \frac{1}{2}x + \frac{1}{8}x - \frac{1}{48}x + \cdots$		'^	
			pp-1 for missing '+···' in all cases
The expansion is valid for $ x < 1$.	(or -I < x < 1)	IA	

-AS-M & S-17

FOR TEACHERS' USE ONLY 只限教師參閱

只限教師參閱

FOR TEACHERS' USE ONLY

FOR TEACHERS' USE ONLY 只限教師參閱

,	只限教師參閱 FUR TEACHERS	USE U	YL T	只限教師參閱 FUR TEACHERS	09E 0	∀ L I
	Solution '	Marks	Remarks	Solution	Marks	Remarks
	Let X be the no. of passengers using Octopus in a compartment. (a) $P(X = 5) = C_5^{10}(0.6)^5(1 - 0.6)^5$ ≈ 0.200658 $\approx 0.2007 \{ p_1 \}$ (b) $E(X) = np = 10 \times 0.6 = 6$	1A 1A 1A+1A	a-1 for r.t. 0.201	 7. Let E_X be the event that cable X is operative, E_Y be the event that cable Y is operative, E_Z be the event that cable Z is operative, and F be the event that A and B are not able to make contact. (a) (i) P(E_X ∩ E_Z) = (0.015)(0.030) 		
	The mean number of passengers using Octopus in a compariment is 6 .	174.17		= 0.00045 (p ₁)	1A	a=1 for r.t. 0.0005 (method must be shown)
	(c) The probability that the third compartment is the first one to have exactly 5 passengers using Octopus = (1-0.200658) ² (0.200658) = 0.1282	1M 1A(6)	$(1-p_1)^2 p_1$ a-1 for r.t. 0.128	(ii) $P(E_{x'} \cap E_{y'} \cap E_{z'}) = (0.015)(0.025)(0.030)$ = 0.00001125 (p_{z}) (iii) $P(F) = P(E_{x'} \cap E_{z'}) + P(E_{y'} \cap E_{z'}) - P(E_{x'} \cap E_{z'})$	1A	a-1 for r.t. 0.0000 (method must be shown)
6.		•		(iii) $P(F) = P(E_X \cap E_Z) + P(E_Y \cap E_Z) - P(E_X \cap E_Y \cap E_Z)$ = 0.00045 + (0.025)(0.030) - 0.00001125 ≈ 0.00118875	1 M	$p_1 + (0.025)(0.030) - p_2$
	= $5 \times 4 \times C_{10}^{16}$ (or $P_2^5 \times C_{10}^{16}$) = 160160	IM+IA	IM for P_2^5 or C_{10}^{10}	≈ 0.001189 (p ₃)	1A	r.t. 0.001189 , a=1 for r.t. 0.0012 (method must be shown)
	(b) The possible numbers of boys are 10, 11, 12, 13, 14, 15, 16. (c) Using (b) and the method of "try and error": Number of boys Probability of having a time keeping group	1 A		(b) $P(F E_X) = P(E_Z)$ = 0.030 (p_4)	1 A	or 0.03
	Number of boys among the students with all the time keepers being boys $ \frac{C_{10}^{10}}{C_{10}^{16}} = \frac{1}{8008} $	1 M	for $\frac{C_{10}^n}{C_{10}^{16}}$	(c) $P(E_X' F) = \frac{P(E_X')P(F E_X')}{P(F)}$		
	$\frac{C_{10}^{11}}{C_{10}^{16}} = \frac{1}{728}$			$= \frac{(0.015)(0.030)}{0.00118875}$ ≈ 0.3785489	1M	$\frac{(0.015)p_4}{p_3}$
	$\frac{C_{10}^{12}}{C_{10}^{16}} = \frac{3}{364}$	1A		≈ 0.3785	<u>1A</u> (7)	r.t. 0.3785
	∴ There are 12 boys among the students.	<u>lA</u>				
		ı				
99-A	S-M & S-19			99-AS-M & S-20	ı	

	只收款即参阅 FUN TEACHENS	USL U	AL I
	Solution	Marks	Remarks
S. (a)	$S_A = \frac{256}{9625} \left(\frac{1}{3} t^3 - \frac{47}{4} t^2 + 120t \right)$		
	$\frac{dS_A}{dt} = \frac{256}{9625} \left(t^2 - \frac{47}{2} t + 120 \right)$	IA	
	$=\frac{128}{9625}(t-16)(2t-15)$		
	$0 \text{ when } 0 \le t < \frac{15}{2}$		
	$\begin{vmatrix} dS_A \\ dt \end{vmatrix} = 0 \text{when} 0 \le t < \frac{15}{2} \\ = 0 \text{when} t = \frac{15}{2} \\ < 0 \text{when} \frac{15}{2} < t \le 12.5$	IM	
	$\therefore A \text{ attains its top speed at } t = \frac{15}{2} \qquad \text{(or 7.5)}$		
-	Top speed of $A = \frac{256}{9625} \left[\frac{1}{3} \left(\frac{15}{2} \right)^3 - \frac{47}{4} \left(\frac{15}{2} \right)^2 + 120 \left(\frac{15}{2} \right) \right] \text{ m/s}$		·
	≈ 10.0987 m/s	lA	a-1 for r.t. 10.099 pp-1 for missing unit
a .v	n 183 - in		
(b)	$S_B = \frac{183}{50} t e^{-kt}$		
	$\frac{\mathrm{d}S_R}{\mathrm{d}t} = \frac{183}{50} e^{-kt} (1-kt)$	1 A	
	·· k>0		
	$\therefore \frac{dS_{s}}{dt} \begin{cases} > 0 & \text{when } 0 \le t < \frac{1}{k} \\ = 0 & \text{when } t = \frac{1}{k} \\ < 0 & \text{when } t > \frac{1}{k} \end{cases}$		for solving $\frac{dS_B}{dt} = 0$
	$\therefore \frac{ds}{dt} = 0 \text{when} t = \frac{1}{k}$	1M	or sub. $t = \frac{15}{2}$ into $\frac{dS_B}{dt} = 0$
	<0 when $t>\frac{1}{k}$	•	2 d <i>t</i>
	B attains its top speed at $t = \frac{1}{k}$.		
	From (a), $\frac{1}{k} = \frac{15}{2}$		
	$k = \frac{2}{15}$ (or 0.1333)	IA	a-1 for r.t. 0.133
	,		
(c)	t 0 2.5 5 7.5 10 12.5 S _B 0 6.55626 9.39553 10.09829 9.64766 8.64106 (6.5563) (9.3955) (10.0983) (9.6477) (8.6411)	1M	correct to 4 d.p.
	The distance covered by B in 12.5 seconds		
	$= \int_0^{12.5} S_B dt m$		
	$\approx \frac{2.5}{2} [0 + 8.64106 + 2(6.55626 + 9.39553 + 10.09829 + 9.64766)]$ m	1M	
	2 ≈ 100.0457 m	1 A	accept 100.0457 to 100.0699
			α—I for r.t. 3 d.p.
9-AS-M	& S-21	l	l

7 (PACFACINE SOLD TO THE TENTO		
Solution	Marks	Remarks
(d) $\frac{d^2 S_B}{dt^2} = \frac{183}{50} k^2 e^{-kt} (t - \frac{2}{k})$ (or $\frac{183}{50} k e^{-kt} (kt - 2)$)	lM	
$= \frac{122}{1875}e^{-\frac{2t}{15}}(t-15) \qquad \qquad \text{(or } \frac{61}{125}e^{-\frac{2t}{15}}(\frac{2}{15}t-2)\text{)}$ $\leq 0 \qquad \qquad \text{for } 0 \leq t \leq 12.5$ $\therefore \text{ The graph of } S_B \text{ is concave downward for } 0 \leq t \leq 12.5$ i.e., The estimated distance covered by B in (c) is underestimated. Hence B covers more than 100 m in 12.5 seconds. B finishes the race ahead of A .	1M I	
(e) $\int_0^{12.5} \frac{50(\ln(t+2) - \ln 2)}{t+2} dt$		
$= \int_0^{12.5} \frac{25 \left[\ln \frac{t+2}{2} \right]}{\frac{t+2}{2}} dt \qquad \text{(or } 50 \int_0^{12.5} \left(\frac{\ln(t+2)}{t+2} - \frac{\ln 2}{t+2} \right) dt \text{)}$		
$=25\left[\left(\ln\frac{t+2}{2}\right)^2\right]_0^{12.5} \qquad (\text{ or } 50\left[\frac{\left(\ln(t+2)\right)^2}{2}-\ln 2\ln(t+2)\right]_0^{12.5})$	1 A	
≈ 98.1092	1A	
C covers only 98.1092 m but both A and B finish the race in 12.5 seconds. C is the last one to finish the race among the three athletes	I	
Alternatively, $\int_{0}^{x} \frac{50[\ln(t+2) - \ln 2]}{t+2} dt = 25 \left[\left(\ln \frac{t+2}{2} \right)^{2} \right]^{x}$	1 A	
- 70	IA.	
If $25\left(\ln\frac{x+2}{2}\right)^2 = 100$		
then $\ln \frac{x+2}{2} = 2$		
$x \approx 12.78$ \therefore C needs 12.78 seconds to finish the race but both A and B	IA	
finish the race within 12.5 seconds. C is the last one to finish	1	
the race among the three athletes.	<u>.</u>	
•		
99-AS-M & S-22		

99-AS-M & S-23

From the graph,

 $\ln a \approx 3.9$,

只限教師參閱

 $b \approx -\frac{-2.09 - 2.40}{20 - 5} \approx 0.3$

FOR TEACHERS' USE ONLY

accept 3.85 - 3.95 accept 47.0 - 51.9

FOR TEACHERS' USE ONLY 只限教師參閱

7 7 7 7 A B P D G		
Solution	Marks	Remarks
(b) (i) $N(t) = \frac{3000}{1 + ae^{-ht}}$ (or $\frac{3000}{1 + 49.4e^{-0.3t}}$) $N'(t) = \frac{3000abe^{-ht}}{(t + ae^{-ht})^2}$	IM	
$= \frac{3000(49.4)(0.3)e^{-0.3t}}{\left(1 + 49.4e^{-0.3t}\right)^2} \qquad \text{for } \frac{44460e^{-0.3t}}{\left(1 + 49.4e^{-0.3t}\right)^2} $	l A	accept $a \in [47.0, 51.9]$ and $3000ah \in [42300, 46710]$
N'(t) > 0 for all t $N(t) is increasing$		
(ii) If $N'(t) = \frac{1}{100}N(t)$ $\frac{3000abe^{-bt}}{(1+ae^{-bt})^2} = \frac{1}{100} \cdot \frac{3000}{1+ae^{-bt}}$	1M	$a \in [47.0, 51.9], b = 0.3$
$e^{-bt} = \frac{1}{a(100b-1)}$		$a \in [47.0, 51.9], b = 0.3$
$t = \frac{1}{0.3} \ln[a(100b - 1)]$		
$\frac{QR}{\frac{44460e^{-0.3t}}{(1+49.4e^{-0.3t})^2}} = \frac{1}{100} \cdot \frac{3000}{1+49.4e^{-0.3t}}$ $1482e^{-0.3t} = 1+49.4e^{-0.3t}$	1M	
1≈ 24.2242	1A	t ∈ [24.0581, 24.3887]
$N(\frac{1}{0.3}\ln[a(100b-1)]) = \frac{3000}{1+ae^{-b(\frac{1}{0.3}\ln[a(100b-1)])}} = 2900$	IM	
OR $N(24.2242) = \frac{3000}{t + 49.4e^{-0.3(24.2242)}} \approx 2900$	1M	
The greatest number of migrants found at Mai Po is 2900.	1A	
(iii) Suppose all the migrants leave Mai Po in x days. Then $\int_0^x 60\sqrt{s} ds = 2900$	IM	
$\left[40s^{\frac{3}{2}}\right]^{r} = 2900$	1.4	for integration (including limits)
$x \approx 17.3870$ ∴ The number of days in which we can see the migrants is $24.2242^{\circ} + 17.3870 \approx 42$	1A	r.t. 42
99-AS-M & S-24	1	

Marks

1A

1A

1A+1A

1A

1A

lA

points of intersection

shape and asymptotes

intercepts

Remarks

99-AS-M & S-26

* 4 • #	只限教師參閱 FOR TEACHERS'	USE ON	ILY
•	Solution	Marks	Remarks
(e)	$g(x) = \frac{6e}{e^3 - 1} \left(\frac{e^{x+2} - 1}{e^x} \right) - 4$		
	$g'(x) = \frac{6e}{e^3 - 1} \left(\frac{e^x e^{x^2 - 2} - (e^{x^2 - 2} - 1)e^x}{e^{2x}} \right) = \frac{6e}{e^3 - 1} e^{-x}$	IM	must be simplified
	g'(x) > 0 and hence $g(x)$ is (strictly) increasing for all values of x . For $x < -3$, $f(x) > -6$ but $g(x) < -6$. For $x > 8$, $f(x) < -6$ but $g(x) > -6$.	IM	The 2 method marks can be awarded only when all calculations and arguments
	Thus C_1 and C_2 has no point of intersection beyond the range $-3 \le x \le 8$.	1	are correct except the constant a in $g(x)$.
(f)	Area of the region bounded by C_1 and C_2 = $\int_{-\pi}^{1} (g(x) - f(x)) dx$	1M	
-	$= \int_{-2}^{1} \left[\frac{6e}{e^3 - 1} \left(\frac{e^{x+2} - 1}{e^x} \right) - 4 - \frac{6x - 4}{2 - x} \right] dx$		
	$= \frac{6e}{e^3 - 1} \int_{-2}^{1} \left(e^2 - e^{-x} \right) dx - \int_{-2}^{1} 4dx - \int_{-2}^{1} \left(-6 + \frac{8}{2 - x} \right) dx$		$IA \text{ for } \int (e^2 - e^{-x}) dx$
	$= \frac{6e}{e^3 - 1} \left[e^2 x + e^{-x} \right]_{-2}^1 + \left[2x \right]_{-2}^1 + 8 \left[\ln (2 - x) \right]_{-2}^1$ = 12.94312254 + 6 - 11.09035489	IA+IA	1A for $\int (e^2 - e^{-x}) dx$ 1A for $\int \frac{6x - 4}{2 - x} dx$
	≈ 7.8528	1A	a-1 for r.t. 7.853
			·
		ı	I

	只限教師参阅 FUR TERCHERS	USL OF	<u> </u>
	Solution	Marks	Remarks
	Let N be the number of complaints received on a given day and C be the number of complaints involving the time schedule.		-
(time schedule 0.6 resolved 0.4 not resolved		
	0.35 manner of drivers 0.2 resolved not resolved		
	0.13 routes 0.7 resolved 0.3 not resolved		
	other things 0.5 resolved 0.5 not resolved		
	P(manner of drivers not resolved)		IA for p_1 , IA for p_2
	$= \frac{0.35 \times 0.8}{0.4 \times 0.4 + 0.35 \times 0.8 + 0.13 \times 0.3 + 0.12 \times 0.5} \left(\frac{p_1}{p_2}\right)$	1M+1A+1A	1M for $\frac{p_i}{p_j}$
	≈ 0.5195	lA.	a-1 for r.t. 0.519
(b) (i) $P(N=5) = \frac{10^5 e^{-10}}{51}$	1A	
	$= 0.0378 \qquad (p_3)$	1A	
	(ii) $P(N=5 \text{ and } X=3) = \frac{10^5 e^{-10}}{5!} (C_5^5 (0.4)^3 (0.6)^2)$	1M	$p_3(C_3^5(0.4)^3(0.6)^2)$
	≈ 0.0087	1A	a-1 for r.t. 0.009
(c) $n \ge 9$. (or $P(N = n \text{ and } X = 9) = 0 \text{ for } n \le 9$)	1M	
	$P(N=n \text{ and } X=9) = \frac{10^n e^{-10}}{n!} C_9^n (0.4)^9 (0.6)^{n-9}$	1A	
(d) (i) $\sum_{k=0}^{\infty} \frac{x^k}{(k-9)!} = x^9 + \frac{x^{10}}{!!} + \frac{x^{11}}{2!} + \frac{x^{12}}{3!} + \cdots$		
	$=x^{9}\left(1+\frac{x}{11}+\frac{x^{2}}{21}+\frac{x^{3}}{21}+\cdots\right)$	1A	
	$= x^{\circ} e^{x}$	ι	
	(ii) $P(X = 9) = \sum_{n=9}^{\infty} P(N = n \text{ and } X = 9)$		
	$= \sum_{n=9}^{\infty} \frac{10^n e^{-10}}{n!} C_9^n (0.4)^9 (0.6)^{n-9}$	IM	
	$= \sum_{n=9}^{\infty} \frac{10^n e^{-10}}{n!} \cdot \frac{n!}{(n-9)!9!} (0.4)^9 (0.6)^{n-9}$		
	$=\frac{e^{-19}(0.4)^9}{9!(0.6)^9}\sum_{n=9}^{\infty}\frac{6^n}{(n-9)!}$	1A	
	$=\frac{e^{-10}(0.4)^9}{9!(0.6)^9}6^9e^6$ (by (b)(i))		
	$=\frac{4^9 e^{-4}}{9!} $ (or 0.0132)	1A	a=1 for r.t. 0.013
90_4	M & S-28		
27"MO"	111 May 12 May		

			教師參	閱	FOR TE	EACHERS'	USE 0	NLY
	٧		Sc	lution			Marks	Remarks
3.	(a)	Sample mean = 3					1A	-
	(b)	Number of	Exp	ected frequenc	у *]		marks in (b) can be
		medicinal herbs	Po(3)	B(7, 3/7)	Normal			awarded independent of (a)
		3		29.38			!	
		4		22.03			1A+1A	for 29.38 and 22.03
		5	10.08		11.73	(or [1.87]	IA+IA	for 10.08 and 5.04
		6	5.04		5.32	(or 5.23)	lA+lA	for 11.73 and 5.32
		7						
		8		0			1A	
	(c)	The maximum error the maximum errors						
		greater than 1: The Poisson dis					1	provided that entries in the Poisson column are correct
	(d)	(i) Let p be the p then $p = q$			edicinal herb 0498)	in the tea,	1М	for Po(3) only
		The required probability = $(p)^3(1-p)$ = $(e^{-3})^3(1-e^{-3})$						10.10(3) 0.1.3
		≈ 0.0001					1A	a-1 for r.t. 0.0001
		(ii) Let q be the p contains exactly	/ 3 kinds of m		,			
		then $q =$	$\frac{3^3e^{-3}}{3!}$				IM	
		. == (0.22404	(or 0	.2240)			
		The required pr	obability = 1 -	$-[(1-q)^{10}+C]$	$q(1-q)^{9}$		IM	
			= 0.	6924 (or 0	.6923)		1A	a ~ 1 for r.t. 0.692