Brushless – DC Motor 4: Commutation – Sinusoidal Control

TI Precision Labs - Motor Drivers

Presented and prepared by Vishnu Balaraj

Sinusoidal Brushless DC Motor Construction

Sinusoidal BEMF waveform

Source: Electric Drives, an Integrative Approach, by Ned Mohan, University of Minn. Printing Services, 2000

Rotating magnetic field in Sinusoidal BLDC Motors

Source: http://people.ece.umn.edu/users/riaz/animations/abcvec.html

How to generate sinusoidal current?

Sinusoidal Voltage from phase to Phase

Sinusoidal Voltage with Third-Order Harmonics from Phase to GND

PWM output and the average value

Space Vector Modulation

$$T_1 = T imes Duty\ cycle imes sin(60 - lpha)$$
 $T_2 = T imes spd_cmd imes sin lpha$
 $T_0 = T - T_1 - T_2$
 $Duty\ cycle - ratio\ of\ phase\ voltage\ over\ supply\ voltage$
 $lpha - Rotor\ angle$
 $T - PWM\ switching\ frequency$

Sensored and Sensorless Sinusoidal Commutation

Sensored sinusoidal commutation

Sensorless sinusoidal commutation

BEMF Voltage and Rotor angle Estimation

- What we know:
 - Applied phase voltage $U = Duty \ cycle * Vm$
 - Motor Inductance L
 - Motor Resistance R
 - Motor BEMF constant Ke
 - Motor speed ω
- What we don't know
 - $-V_{BEMF}$
 - Rotor angle α
 - Phase current I

$$V_{BEMF} = Vm - I \times R - L \times \frac{di}{dt}$$

$$V_{BEMF} = \omega \times Ke \times \sin(\alpha)$$

Advantages and Disadvantages

- Advantages
 - Ultra quiet
 - Highly efficient for sinusoidal motors
 - Low torque ripple
- Disadvantages
 - More switching losses
 - Poor speed and torque regulation for dynamic loads.
 - Increased complexity as it involves solving complex mathematical equations to estimate rotor angle.

To find more Motor Driver technical resources and search products, visit ti.com/motor-drivers.