MSO202A COMPLEX ANALYSIS Solutions-2

Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

Problems for discussion:

1. Let z = x + iy and $f(z) = x^2 - y^2 - 2y + i(2x - 2xy)$. Write f(z) as a function of z and \overline{z} .

Solution: Using $x = \frac{z+\overline{z}}{2}, y = \frac{z-\overline{z}}{2i}$ we get $f(z) = \overline{z} + 2iz$.

2. Verify Cauchy-Riemann equation for z^2 , z^3 .

Solution: For z^2 , $u = x^2 - y^2$, $v = 2xy \Rightarrow u_x = 2x$, $u_y = -2y$, $v_x = 2y$, $v_y = 2x$. Similarly for z^3 .

3. Let $z, w \in \mathbb{C}$, |z|, |w| < 1 and $\overline{z}w \neq 1$. Prove that $\frac{|w-z|}{|1-\overline{w}z|} < 1$. Further, show that the equality holds if either |z| = 1 or |w| = 1.

Solution: Sufficient to show that $|w-z|^2 < |1-\overline{w}z|^2$, i.e. $w\overline{w}+z\overline{z}-w\overline{z}-z\overline{w} < 1-w\overline{z}-\overline{w}z+w\overline{w}z\overline{z}$. Since $(1-z\overline{z})(1-w\overline{w})>0$, the above is true.

In the case of equality, we see that either $(1 - z\overline{z})$ or $(1 - w\overline{w})$ is zero. Hence, in this case either |z| = 1 or |w| = 1.

4. Using the relations $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$ and the chain rule show that $\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})$; $\frac{\partial}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$. Further show that

$$\frac{\partial^2}{\partial z \partial \overline{z}} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}.$$

Solution: Straight forward.

5. Suppose that f = u + iv is twice continuously differentiable function on an open connected set Ω . Use CR equations to prove that u and v are harmonic functions i.e., they satisfy $\Delta u = 0 = \Delta v$ where

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

(Note: Later we'll see that a holomorphic function is infinitely many times differentiable. So the conclusion holds for any holomorphic function.)

Solution: As $u_x = v_y$, $u_y = -v_x \Rightarrow u_{xx} = v_{yx} = v_{xy}$, $u_{yy} = -v_{xy} \Rightarrow \Delta u = 0$. Similarly $\Delta v = 0$.

6. Show that in polar coordinates (r, θ) , the CR equations for the function f = u + iv takes the form $u_r = \frac{1}{r}v_\theta$ and $u_\theta = -\frac{1}{r}v_r$.

Solution: In polar coordinates, $x = r \cos \theta$, $y = r \sin \theta$? By chain rule, we see that $u_r = u_x x_r + u_y y_r = u_x \cos \theta + u_y \sin \theta = v_y \cos \theta - v_x \sin \theta$. $v_\theta = v_x x_\theta + v_y y_\theta = -r v_x \sin \theta + r v_y \cos \theta = r u_r$ and so $u_r = \frac{1}{r} v_\theta$ and similarly, $u_\theta = -\frac{1}{r} v_r$.

Problems for tutorial:

- 1. For a fixed w in the unit disk \mathbb{D} , define the mapping $F: z \to \frac{w-z}{1-\overline{w}z}$. Show that
 - (a) F is a map from \mathbb{D} to \mathbb{D} and is differentiable at every point of \mathbb{D} .
 - (b) F(0) = w and F(w) = 0, i.e. F interchanges 0 and w.
 - (c) |F(z)| = 1 if |z| = 1.
 - (d) $F: \mathbb{D} \to \mathbb{D}$ is bijective.

Solution:

- (a) Since both |w| and |z| are less than 1, from by solution (3), $F(z) \in \mathbb{D}$. Since $|1 \overline{w}z| \ge 1 |w||z| > 0$, F(z), being a rational function is differentiable everywhere.
- (b) direct
- (c) Since |w| < 1, it follows from (1), that F(z) < 1 only if |z| = 1.
- (d) Note $F \circ F(z) = z$
- 2. Suppose that f = u + iv is holomorphic on an open connected set Ω . Prove that in each one of the following cases f is constant. (a) If u is constant (b) v is constant or if (c) |f| is constant.

Solution: (a) As that f = u + iv is holomorphic u, v satisfy CR equations. As u is constant this implies $u_x = 0 = v_y, u_y = 0 = -v_x \Rightarrow u$ is constant and v is constant using real variable calculus. Hence f is constant.

- (b) is similar.
- (c) |f| is constant $\Rightarrow u^2 + v^2 = const$. Thus $uu_x + vv_x = 0$ and $uu_y + vv_y = 0$. Using CR equations $u_x = v_y$, $u_y = -v_x$, it follows that $(u^2 + v^2)v_x = 0 = (u^2 + v^2)u_x \Rightarrow v_x = 0 = u_x \Rightarrow u_x = 0 = u_y$ and $v_x = 0 = v_y$. Hence u and v are constant $\Rightarrow f$ is constant.
- 3. Show that f = u + iv satisfy CR-equations if and only if $\partial f/\partial \overline{z} = 0$. Moreover, if f is holomorphic, then $f'(z) = \partial f/\partial z$. Here f is being thought of as a function of z and \overline{z} .

Solution: As $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y}), \ \partial f / \partial \overline{z} = \frac{1}{2} [(u_x + i v_x) + i(u_y + i v_y)] = 0.$

Further, $f'(z) = u_x + iv_x$ and $\partial f/\partial z = \frac{1}{2} [(u_x + iv_x) - i(u_y + iv_y)] = u_x + iv_x$ and therefore $f'(z) = \partial f/\partial z$.

4. Consider the following functions:

(a)
$$f(z) = \begin{cases} \frac{\overline{z}^3}{|z|^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$$

(b)
$$f(z) = \sqrt{|xy|}$$

In both the above cases, show that f satisfies the CR conditions at 0 but it is not differentiable there.

Solution: (a) u(x,0)=x, v(x,0)=0, u(0,y)=0, v(0,y)=y. Hence, $u_x(0,0)=1=v_y(0,0)$ and $u_y(0,0)=0=?v_x(0,0)$. But, $\lim_{z\to 0}\frac{f(z)-f(0)}{z-0}=\lim_{\overline{z}^2}\frac{\overline{z}^2}{z^2}$ which is 1 along the x-axis and -1 along the line y=x and hence does not exists.

(b) $u_x(0,0)=v_y(0,0)=u_y(0,0)=v_x(0,0)=0$. But, $\lim_{z\to 0}\frac{f(z)-f(0)}{z-0}$ is 0 along the x-axis and $\pm\frac{1-i}{2}$ along the line y=x and hence does not exists.