PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 13

MAT1106 — Introducción al Cálculo

Fecha: 2020-10-13

Problema 1:

Demuestre que las siguientes sucesiones convergen a cero:

1)
$$x_n = \frac{1+2+\ldots+n}{n^3}$$

2)
$$x_n = \frac{1+3+\ldots+(2n+1)}{n^3}$$

3)
$$x_n = \frac{1+4+\ldots+n^2}{n^4}$$

Solución problema 1:

Problema 2:

Sea x_n una sucesión. Demuestre que $\lim_{n\to\infty}x_n=0$ si y solo si para todo $k\in\mathbb{R}$ $\lim_{n\to\infty}k\cdot x_n=0$.

Solución problema 2:

Problema 3:

Sea x_n tal que $\lim_{n\to\infty} x_n = 0$, y sea y_n una sucesión acotada, demuestre que $\lim_{n\to\infty} x_n y_n = 0$.

Solución problema 3:

Problema 4:

Sea x_n tal que $x_n \neq 0$ para todo $n \in \mathbb{N}$. Demuestre que si $\lim_{n \to \infty} x_n = 0$, entonces $\frac{1}{x_n}$ no está acotada.

Solución problema 4:

Problema 5:

Demuestre que si $\lim_{n\to\infty} x_n = \infty$, entonces $\lim_{n\to\infty} \frac{1}{x_n} = 0$. ¿Es verdad el recíproco? Si lo es, demuestrelo, si no lo es, encuentre condiciones necesarias y suficientes.

Solución problema 5: