Géométrie et Arithmétique

EXERCICES COMPLÉMENTAIRES

Exercice 1 Pour tout réel m, on considère le plan P_m de \mathbb{R}^3 défini par l'équation cartésienne :

$$m^2x + (2m - 1)y + mz = 3$$

- 1. Pour quelles valeurs du paramètre m le point $A \left(egin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$ appartient-il à P_m ?
- 2. Pour quelle valeur de m le vecteur $n=\begin{pmatrix}2\\-\frac{5}{2}\\-1\end{pmatrix}$ est-il normal à P_m ?
- 3. Monter qu'il existe un unique point Q appartenant à tous les plans P_m .

Exercice 2 Soient A et B deux points de \mathbb{R}^2 . Notons C l'ensemble des points M de \mathbb{R}^2 tels que le produit scalaire $\langle \overrightarrow{AM}, \overrightarrow{BM} \rangle$ soit égal à zéro.

1. Soit I le milieu du segment \overline{AB} . Démontrer qu'un point M appartient à $\mathcal C$ si et seulement si

$$<\overrightarrow{IM},\overrightarrow{IM}>=<\overrightarrow{AI},\overrightarrow{IB}>.$$

2. En déduire que $\mathcal C$ est un cercle dont on précisera le centre et le rayon.

Exercice 3 Soient A et B deux points distincts de \mathbb{R}^3 muni du repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

- 1. Décrire l'ensemble des points M de l'espace vérifiant $\overrightarrow{AM} \wedge \overrightarrow{BM} = \overrightarrow{0}$.
- 2. Décrire l'ensemble des points M de l'espace vérifiant $\langle \overrightarrow{AM}, \overrightarrow{BM} \rangle = \overrightarrow{0}$.
- 3. Décrire l'ensemble des points M de l'espace vérifiant $\langle \overrightarrow{AM}, \overrightarrow{AM} \rangle = \langle \overrightarrow{AB}, \overrightarrow{AB} \rangle$.
- 4. Décrire l'ensemble des points M de l'espace vérifiant $\overrightarrow{AM} \wedge \overrightarrow{BM} = \overrightarrow{AB}$.