Let
$$\mathbf{u} = \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$.

- (a) Determine $\mathbf{u} \cdot \mathbf{v}$.
- (b) Determine the angle in degrees (to the nearest degree) between \mathbf{u} and \mathbf{v} .

Solution

(a)
$$\mathbf{u} \cdot \mathbf{v} = 5 \cdot 2 + -1 \cdot -1 + -3 \cdot 3$$

= $10 + 1 - 9$
= 2

(b) From (a)
$$\mathbf{u} \cdot \mathbf{v} = 2$$
.
 $||\mathbf{u}|| = \sqrt{5^2 + (-1)^2 + (-3)^2}$
 $= \sqrt{35}$
 $||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 3^2}$
 $= \sqrt{14}$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

So $2 = \sqrt{35}\sqrt{14}\cos \theta$.

So
$$2 = \sqrt{35}\sqrt{14}\cos\theta$$
.
Therefore $\theta = \arccos\frac{2}{\sqrt{35}\sqrt{14}}$
So $\theta \approx XX^{\circ}$