

Design and Analysis of a Dual-action End-effector for Robotic Assistance in Leafy-vegetables Farming

Master of Technology in Mechanical Engineering

Presented by: Aditya Singh (2024MEM1037)

Under The Supervision of: Dr. Ekta Singla & Dr. Himanshu Tyagi

8-Oct-25

Motivation

- ☐ Automation in agriculture is rapidly expanding, and there is a need of advanced endeffectors to improve the efficiency.
- ☐ Traditional grippers are limited to **single tasks**, while modern agriculture demands multi-task functionality.
- ☐ Harvesting of leafy vegetables requires **delicate handling** to maintain quality, with end-effectors still a major challenge in automation.
- Adaptive grippers can handle varying geometry and soft stems of leafy vegetables.

Figure (ii) Harvesting of leafy vegetables

Figure (iii) Tendon-driven adaptative gripper [1]

Figure (i)

Figure (iv) Fin-ray inspired gripper's finger [4]

Literature

Paper by	Year	Important information taken
Mart Bluiminck et.al.	2023	2-finger , underactuated, tendon-driven gripper with variable stiffness to handle fragile, deformable agri-food products.
Johannes F.Elferich et.al.	2022	This paper gives review of soft robotics grippers for crop handling or harvesting.
Ji Hyeon Shin et.al.	2021	This study enhances the design through structural optimization , switchable grip modes, and friction pads , achieving improvement in load capacity and handling of high—aspect ratio objects.
Xiaowei Shan et.al.	2020	This paper explores Fin Ray-based adaptive robotic fingers , which adapt naturally to an object's shape.
Wenqi Wang et.al.	2020	It gives information about physical and mechanical properties of hydroponic lettuce for automatic harvesting.
Z. Samadikhoshkho et.al.	2019	Robotic grippers are classified based on configuration, actuation, application, size, and stiffness.
Baozeng Jia et.al.	2009	Developed an integrated gripper-cutter mainly targeting peduncle cutting of fruiting vegetables.

Gap/Novelty

- ☐ The literature mainly focuses on the **gripper design for fruits** or flowering vegetables, while limited work has been reported for leafy vegetables.
- ☐ Leafy vegetables require **adaptive gripping** because of their delicate and irregular structure but most vegetable grippers lack this adaptiveness.
- ☐ The robotic assistance normally involves one manipulator, which is the bottleneck in replicating human work using two-arms.

Figure (i) Integrated gripper-cutter mainly targeting peduncle of flowering vegetables [7]

Figure (ii) Harvesting of leafy vegetables

Objectives

- ☐ Concept Design and **CAD Modelling** of an Adaptive Gripper integrated with a cutter mechanism.
- ☐ Analysis of the gripper's finger to determine its optimal shape.
- ☐ Study of cutting and gripping forces of proposed end-effector.
- ☐ Fabrication of the Dual -Action Gripper.

Dual-Action End-Effector

Work Done

- ☐ The initial focus is on the gripping part. For adaptive gripping, the fin-ray inspired gripper has been identified.
- ☐ The fin ray principle draws inspiration from the properties of fish fins.
- ☐ The current focus is to develop CAD model of dual-action gripper.

Figure(ii)

Figure(i) Concept diagram of the dual-action gripper

Figure(iii) Concept diagram of finray inspired finger

Figure(iv) SolidWorks model of fin-ray inspired finger

Timeline

Task	June	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May
Literature review								\longrightarrow				
SolidWorks Modelling												
Analysis of Finger												
Analysis of integrated end-effector											→	
Model fabrication												→
Thesis Report				-								-

Thank You

