概率论

1 事件与概率

1.1 随机现象与统计规律性

- 不确定性
- 随机试验
- 事件
- 样本空间 Ω : 所有可能的实验结果组成的集合
- 概率 P(A)的含义: 1°事件的频率(客观); 2°事件的置信度(主观)

1.2 样本空间与事件

- 样本/点: 一个试验结果, ω
- 样本空间/全集: 所有试验结果, Ω
- 事件/子集: 部分试验结果, A,B,.....,Ω,Ø
- 事件 A 发生: 本次试验结果 ω ∈ A
- 概率: 可能性, P(A)
- "交", A∩B, AB: 事件 A 发生且事件 B 发生
- "并", A∪B: 事件 A 发生或事件 B 发生
- 不交, AB=Ø: 不相容, 互斥; 此时 A∪B 也记为 A+B
- "补", Ā=A^c={ω:ω∉A}: 逆事件, 对立事件
- "差", A\B=A B; 当 B ⊂ A 时, 记为 A-B
- 有限交: A₁,…,A_n全部发生
- 有限并: A₁,…,A_n中至少有一个发生
- 可列交: 所有事件 A_i,i≥1 都发生
- 可列并: 存在某个事件 A_i 发生
- 若 $B_1 \subseteq B_2 \subseteq \cdots$,则 $\lim_{n \to \infty} B_n \stackrel{def}{=} \bigcup_{n=1}^{+\infty} B_n$
- $\exists B_1 \supseteq B_2 \supseteq \cdots, \quad \bigcup \lim_{n \to \infty} B_n \stackrel{def}{=} \bigcap_{n=1}^{+\infty} B_n$

1.3 古典概型

- 有限样本空间: $\Omega = \{1,2,3,\dots,n\}$; 基本事件: $\{i\}$; 概率: $P(A) = \Sigma_{i \in A} p_i$; 其中 p_i ≥ 0 , $\forall i$; $\Sigma_i p_i = 1$; 含义: 权分配, p_i , $P(\{i\})$
- 古典概率模型: p_i=1/n, 事件 A 的概率定义为 P(A)=|A|/|Ω|

• Jordan 公式:
$$\left| \bigcup_i A_i \right| = \sum_i |A_i| - \sum_{i < j} |A_i A_j| + \sum_{i < j < k} |A_i A_j A_k| + \cdots$$

• 基本性质: 1. 非负性; 2. 规范性; 3. 可加性

1.4 几何概型

• 几何概率模型: $\Omega \subset \mathbb{R}^d$, $|\Omega| < \infty$,事件 A 的概率定义为 $P(A) = \frac{|A|}{|\Omega|}$ 。

• 基本性质: 1. 非负性; 2. 规范性; 3. 可加性; 4. 连续性

1.5 概率空间

- •基本假设: 非负性, P(A)≥0; 归一化, P(Ω)=1;
- 直观要求:可列可加性, $P(\sum_{n}A_{n})=\sum_{n}P(A_{n})$;
- 若 $F \subset 2^{\Omega}$ 满足下列三条,则称 $F \to \Omega$ 的一个σ-代数:1° $\Omega \in F$; 2° 若 $A \in F$,

则 $A^c \in F$; 3^c 若 $A_1, A_2, ... \in F$,则 $\bigcup_i A_i \in F$ 。

- · σ-代数的含义: 观测能力、信息量
- A 生成的σ-代数:包含 A 的最小σ-代数, $\sigma(A) = \bigcap_{F \neq \sigma \text{代数}, F \supseteq A} F$
- ・ 离散σ-代数,基本事件: $A_i, i \in I$,其中 $I = \{1,2,3,\cdots,n\}$ 或 $\{1,2,3,\cdots\}$ 是 Ω 的划分; $A = \{A_i: \forall i \in I\}$, $F = \sigma(A) = \{\bigcup_{i \in I} A_i: J \subseteq I\}$
- Borel σ-代数 B(·): 开集生成的σ-代数
- 假设 F 是 Ω 的一个 σ -代数,若 P:F \rightarrow R 满足下列三条,则称 P 为(Ω ,F)上的一个概率: 1° 非负性; 2° 规范性; 3° 可列可加性。其中 Ω 是样本空间,(Ω ,F)是可测空间,(Ω ,F,P)是概率空间。
- 概率的性质:
- 1° $P(A \cup B)=P(A)+P(B)-P(AB)$;
- $2^{\circ} P(A \cup B) \leq P(A) + P(B);$
- 3° $P(\cup_n A_n)$ ≤Σ_n $P(A_n)$ (可列次可加性);
- $4^{\circ} P(AB) \geqslant P(A) + P(B) 1_{\circ}$

2 条件概率与统计独立性

2.1 条件概率,全概率公式,贝叶斯公式

• 假设 (Ω,F,P) 是一个概率空间, $B \in F \perp P(B) > 0$, $\forall A \in F$,称 $\frac{P(AB)}{P(B)}$ 为在 B 发

生的条件下, A 发生的条件概率。记为 P(A|B)或 $P_B(A)$ 。

- $P_B(A|C)=P(A|BC)$; $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$.
- 全概率公式: 假设 A_i ,i∈I 是 Ω 的一个可数划分,则 $P(B)=\Sigma_i P(A_i)P(B|A_i)$ 。
- 划分可改为 P(A_iA_i)=0; P(∪_iA_i)=1; P(A_i)≥0。
- 贝叶斯公式: 设 $A_i, i \in I$ 是 Ω 的一个可数划分,则 $P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_j P(A_j)P(B|A_j)}$ 。

2.2 事件的独立性

- 若 P(AB)=P(A)P(B),则称 A,B 相互独立。
- 若 $P(A_iA_i)=P(A_i)P(A_i), \forall i \neq j$,则称 $A_i, i \in I$ 两两独立。
- 若 $P(A_{i_1} \cdots A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$, $\forall k \le n, \forall 1 \le i_1 < \cdots < i_k \le n$, 则称 $A_i, i \in I$ 相互独

立。相互独立的事件集可以对每个事件做补集运算,依旧相互独立。

2.3 伯努利试验与直线上的随机游动

• (小) 试验: (Ω_i,F_i,P_i): 第 i 个小试验, i=1,2,···,n (或 i≥1)

- 大试验的样本空间 $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$, $\omega = (\omega_1, \omega_2, \cdots, \omega_n)$
- $\sharp H: \overline{A_i} \to A_i = \{\omega : \omega_i \in A_i\} = \overline{\Omega_1} \times \overline{\Omega_2} \times \cdots \times \overline{\Omega_{i-1}} \times \overline{A_i} \times \overline{\Omega_{i+1}} \times \cdots \times \overline{\Omega_n}$
- σ 代数 $F = \sigma(\{A_1A_2\cdots A_n\})$
- 概率 P: 与小实验相容, $P(A_i) = P_i(\overline{A_i})$
- 相互独立的小试验: $P(A_1 \cdots A_n) = \prod_i P(A_i)$, $P = P_1 \times P_2 \times \cdots \times P_n$
- 独立重复试验: $(\Omega_i, F_i, P_i) = (\Omega_1, F_1, P_1), \forall i$

3 随机变量与分布函数

3.1 随机变量及其分布

- 设 F 是 Ω 上的 σ 代数,若 $X:\Omega \to R$ 满足 $\{X \le x\} \in F$, $\forall x \in R$,则称 X 为一个随机变量。
- X 生成的 σ 代数, σ (X):= σ ({X \leq x}|x \in R)={{X \in B}, \forall B \in Borel(R)}。
- X 是随机变量当且仅当 $\sigma(X)$ ⊂ F 。
- 分布 μ : (R,B)上的概率,随机变量 X 的分布 μ X,L(X):B \rightarrow P(X \in B)。
- 分布列, $\mu(\{x_k\})=p_k$,其中 x_i 互不相等, $p_k \ge 0$, $\Sigma_k p_k=1$ 。
- 离散型随机变量 X: P(X=x_i)=p_i。
- 伯努利分布 X~B(1,p), P(X=1)=p, B(X=0)=q=1-p。
- X~B(1,p), A={X=1}, 则 P(X=1_A)=1 记为 X=1_A a.s.。
- 二项分布 $X\sim B(n,p)$, $P(x=k)=C_n^k p^k q^{n-k}$ 。 (独立重复试验)
- •超几何分布, $X\sim H(N,M,n)$, $P(x=k)=C_M{}^kC_{N-M}{}^{n-k}/C_N{}^n$ 。(N 个产品 M 个正品抽 n 次)
- 给定 n, 当 N $\rightarrow \infty$ 时, M/N \rightarrow p 时, h(k;N,M,n) \rightarrow b(k;n,p)。
- 几何分布: $X\sim G(p)$, $P(x=k)=q^{k-1}p$ 。(第 1 次打中是第 k 发的概率)
- 几何分布的无记忆性: P(x-k=m|x>m)=P(x=k)。
- •帕斯卡分布: $X\sim P(r,p)$, $P(x=k)=C_{k-1}^{k-r}q^{k-r}p^r$ 。(打中第 r 次是第 k 次打靶的概率)
- 负二项分布: $X\sim NB(r,p)$, $P(x=k)=C_{r+k-1}{}^kq^kp^r$ 。(打中第 r 次是第 k+r 次打靶的概率)
- 泊松分布: $X \sim P(\lambda)$, $P(x=k) = \frac{\lambda^k}{k!} e^{-\lambda}$.
- 概率密度函数 p(x), $\mu((-\infty,x]) = \int_{-\infty}^{x} p(y)dy$, 其中 $p(x) \ge 0$, $\int p(x)dx = 1$ 。
- 连续型随机变量 $P(X \le x) = \int_{-\infty}^{x} p(y) dy$ 。
- 单独谈论一个点x对应的p(x)是没有意义的。
- 均匀分布: $X \sim U(a,b)$, p(x)=1/b-a, a < x < b.
- 指数分布: $X\sim Exp(\lambda)$, $p(x)=\lambda e^{-\lambda x}$, $x\geq 0$ 。是几何分布的极限,其中 $\lambda=np$,1/n是时间间隔。
- 指数分布无记忆性, $P(X-t>s|X>t)=e^{-\lambda s}$ 。
- 正态分布: X~N(μ , σ^2), $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$.

- Gamma 分布: $X \sim \Gamma(r,\lambda)$, $p(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}$.
- X的分布函数: $F(x)=P(X \leq x)$ 。
- $F=F_X:X\to P(X\leq x)$ 满足: 1°单调性; 2°归一性; 3°右连续性。
- 等价函数: $\hat{F}(x) = P(X < x)$ 。
- 尾分布函数: $G_X(x)=1-F(x)=P(X>x)$, G_X 表示由随机变量 X 诱导的函数。
- 连续型: $F \in \mathbb{R}$ 上的连续函数,在一定条件下 $p_X(x) = -G'_X(x)$ 。
- 同分布: 分布函数/分布列/密度相同。

3.2 随机向量,随机变量的独立性

- 随机向量: 同一个 (Ω,F) 中的多个随机变量。
- $\{X \leq x\}: \{X_1 \leq x_1, \dots, X_n \leq x_n\} = \{X \in D\}, D = (-\infty, x_1) \times \dots \times (-\infty, x_n)$
- 联合分布: B→μ_ξ(B), B 是 Borel(R²)。
- 联合分布函数 $F(x,y)=P(X \le x,Y \le y)$,满足: 1°单调性; 2°归一性; 3°右连续性; 4°对任意 $a_1 < b_1$, $a_2 < b_2$,有 $F(b_1,b_2)+F(a_1,a_2)-F(a_1,b_2)-F(a_2,b_1) \ge 0$ 。
- 边际分布列: $P(X=x_i), i \in I$.
- 条件分布列: 固定 i, $P(Y=y_i|X=x_i)$, $j \in J$.
- 联合分布列: $P(X=x_i,Y=y_i),i,j\in I,J$ 。
- 连续型: (X,Y)有联合概率密度函数 p(x,y), $P(X \le x,Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v) du dv$.
- 边缘密度: $p_X(x) = \int p(x,y)dy$ 。
- 条件密度: 固定 x, $P_{Y|X}(y|x)=p(x,y)/p_X(x)$ 。
- 多元正态分布: $X \sim N(\mu, \Sigma)$, $p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$ 。
- 多元正态分布的边缘分布与条件分布都是正态分布。

• 二元正态分布,
$$\boldsymbol{\mu} = (\mu_1, \mu_2)$$
, $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$,则

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{u^2 - 2\rho uv + v^2}{2(1-\rho^2)}\right\}, \quad \text{$\not\equiv$ $$} \mu = \frac{x - \mu_1}{\sigma_1}, v = \frac{x - \mu_2}{\sigma_2} \ .$$

• 随机变量的相互独立性: $P(X_1 \le x_1, \dots, X_n \le x_n) = P(X_1 \le x_1) \dots P(X_n \le x_n)$, 则称 X_1, \dots, X_n 相互独立。

- 离散型: X_1, \dots, X_n 独立当且仅当 $P(X_1=x_1, \dots, X_n=x_n)=P(X_1=x_1)\cdots P(X_n=x_n)$ 。
- 连续型: X_1, \dots, X_n 独立当且仅当 $p(X) = p(x_1) \dots p(x_n)$ 。
- 独立充分条件: p(x,y)=f(x)g(y)。
- 独立充分条件: $p_{Y|X}(y|x)=g(y)$ 。
- 随机变量独立的性质: 假设 X_1, \dots, X_n 相互独立,则:
- 1°假设 g_i 是一元可测函数,则 $g_i(X_i)$ 相互独立;
- 2°假设 $f(X_1, \dots, X_k)$ 是k元可测函数,则 $f(X_1, \dots, X_k), X_{k+1}, \dots, X_n$ 相互独立。

3.3 随机变量的函数及其分布

- Y = f(X), f是 Borel 函数。
- 目标: 求 Y 的分布。
- 离散型: $P(Y = y_j) = \sum_{i:f(x_i) = y_j} p_i$ 。
- 分布函数的广义逆: $F^{-1}(u) := \inf\{x : F(x) \ge u\}$.
- *F*⁻¹(*u*)是 Borel 函数。
- $x_0 = F^{-1}(u) \leq x \text{ iff } u \leq F(x)$.
- 取 $U\sim U(0,1)$,令 $X=F^{-1}(u)$,则 $F_X=F$ 。这表明任意分布函数都是某随机变量的分布函数。
- 连续型, f 严格单调, y=f(x), $p_Y(y)|dy|=p_X(x)|dx|$ 。
- 若X与Y独立,则f(X)与g(Y)独立。
- 连续型, $f: \mathbb{R}^n \to \mathbb{R}^n$, $x \to y$.
- $\neg \forall \exists p_X(x)|dx|=p_Y(y)|dy|$, $p_Y(y)=p_X(x)\cdot |dx/dy|$.
- 方法: 分布函数法、补变量法。
- $\mu * \nu = L(x+y)$, 其中 $X \sim \mu$, $Y \sim \nu$, 且 X 与 Y 独立。
- 一族分布 Π 满足可加性/再生性是指 μ * ν ∈ Π , $\forall \mu,\nu$ ∈ Π 。
- $\Xi X_1, X_2, \cdots$ i.i.d., $S_n = \sum_{i=1,2,...} X_i, \cup L(S_n) * L(S_m) = L(S_{n+m})_{\circ}$
- $\chi^2(n) = \Gamma(n/2, 1/2)$,具有自由度 n 的 χ^2 分布。

4 数字特征与特征函数

4.1 数学期望

- •时间平均:大量观测值的算术平均。
- 空间平均: 所有可能值的加权平均。
- 离散型: 若 $\Sigma_k p_k | x_k | < \infty$,则称 $\Sigma_k p_k x_k$ 为 X 的数学期望,记为 EX。反之,则称 X 的期望不存在。
- 分布的数字特征: 若 X=Y i.i.d, 则 EX=EY。
- X 取非负整数, $EX = \sum_{n=1}^{+\infty} P(X \ge n) = \sum_{n=0}^{+\infty} P(X > n)$ 。
- 连续型: 若 $||x||p(x)dx < \infty$, 则称 $|xp(x)dx \to X$ 的数学期望,记为 EX。
- X 取非负, EX= $\int_0^\infty G(x)dx$ 。
- Lebesgue-Stieltjes 积分: $\int x dF(x) = \lim_{\Delta \to 0} \sum_{i} x_i (F(x_{i+1}) F(x_i))$ 。
- 若∫|x|dF(x)<∞,则称∫xdF(x)为X的期望,记为EX。
- 若 X 有界: P(|X|≤M)=1,则期望存在。
- 数学期望的性质: 1° x=c,则 EX=c; 2° 单调性: 若 X≥Y,则 EX≥EY; 3° 线性: E(aX)=aE(X), E(X+Y)=EX+EY。
- 若 X≥0 且 EX=0,则 X=0。
- 若 $X \ge 0$ 且 $EX < \infty$,则 $\lim_{x \to \infty} xG(x) = \lim_{x \to \infty} EX \cdot 1_{X>x} = 0$ 。
- 函数的期望: Y=f(X), 则 EY= $\int f(x)dF(x)$ 。

- •相互独立则: E(XY)=(EX)(EY)。
- Jensen 不等式: f(x)是凸函数,则 Ef(X)≥f(EX)。
- Y 关于事件 A 的条件期望: $E(Y|A)=\int x dF_A(x)$, 其中 $F_A(x)=P(Y \leq x|A)$.
- Y 关于 X 的条件变量: E(Y|X)=f(X)。
- X 是离散型: f(x)=E(Y|X=x), Σ_iy_iP(Y=y_i|X=x)。
- X 是连续型: $f(x)=E(Y|X=x):=\lim_{\epsilon\to 0}E(Y|x-\epsilon < X < x+\epsilon)$, $\int yp_{Y|X}(y|x)dy$.
- 重期望公式: EY=EE(Y|X)=Ef(X)。
- 离散型: Ef(X)=\(\Sigma_i f(x_i) P(X=x_i) = \Si_{i,j} y_i P(X=x_i, Y=y_i) = EY\).

4.2 方差、相关系数、矩

- 方差:假设 $E|X|<\infty$,若 $E(X-EX)^2=E(X^2)-(EX)^2$ 有限,则称它为 X 的方差,记为 var(X)或 DX。
- 标准差: $\sigma_{X} = \sqrt{\text{var}(X)}$ 称为标准差。
- 矩: EX^k, E(X-EX)^k, Ee^{aX}。
- 线性变换: var(a+bX)=b²var(X)。
- 标准化: X*=(X-μ)/σ, EX*=0, DX*=1。
- Chebyshev's 不等式: P(|X-EX|≥ε)≤DX/ε²。
- 假设 EX²,EY²<∞,称 E(X-EX)(Y-EY)为 X,Y 的协方差,记为 cov(X,Y)。
- •和的方差: var(X+Y)=var(X)+var(Y)+2cov(X,Y), 独立 var(X+Y)=var(X)+var(Y)。
- 计算公式: cov(X,Y)=E(XY)-(EX)(EY)。
- 对称双线性函数: X'=aX+c, Y'=bX+d, 则 cov(X',Y')=ab cov(X,Y)。
- Cauchy 不等式: (EXY)²≤EX² EY², 取等号条件 Y=aX。
- L²={X|EX²<∞}, 定义内积(X,Y)=EXY, 夹角<X,Y>=||X||·||Y||·cosθ。
- 相关系数: $\rho = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}}$ 。
- 若 X'=aX+c, Y'=bY+d, 则 $\rho_{X,Y}=\rho_{X,Y}(ab>0)$ 或 $-\rho_{X,Y}(ab<0)$ 。
- $\rho=1$ iff Y=aX+b, a>0; $\rho=-1$ iff Y=aX+b, a<0
- 不/正/负相关; ρ=0/≥0/≤0。
- 完全正/负相关: ρ=1/-1。
- 独立则线性不相关, 但反之不然。
- 假设 A,B 是事件: A,B 不/正/负相关: P(AB)=/≥/≤P(A)P(B)。
- •二维正态分布时:不相关(ρ=0)当且仅当独立。
- $X=(X_1,\dots,X_n)^T$,期望: $EX=(EX_1,\dots,EX_n)^T$,协方差矩阵 $\sum=(\sigma_{ij})_{n\times n}$, $\sigma_{ij}=cov(X_i,X_j)$, \sum 是半正定对称矩阵,正定 iff $1,X_1,\dots,X_n$ 线性无关。
- 最佳预测:目标:找 Y'∈Y,使得 E(Y-Y')²=min_{V∈Y}E(Y-V)²。结论:Y'是垂足。
- 若 **Y**=R,则 Y'=EY。
- 若 Y={ $a+bX|a,b\in R$ }, 其中 EX=0, EX²=1, 则 b=cov(X,Y)。
- 若 $\mathbf{Y} = \{f(X) : \mathbb{E}f(X)^2 < \infty\}$,则 $f(X) = \mathbb{E}(Y|X)$ 。
- 随机变量 X,Y 线性相关的强弱由 $\rho_{X,Y}$ 刻画, $|\rho_{X,Y}|$ 越接近 1,越线性相关。

4.4 母函数

• 设 X 取**非负整数**, $P(X=k)=p_k$, 称 $\sum_{k=0}^{+\infty} p_k s^k, s \in [-1,1]$ 为 X 的母函数,记为 $g_X(s)$ 。

- 分布的性质: X=Y 当且仅当 $g_X=g_Y$ 。
- $g(s)=Es^{X}$
- 矩: 对 $s \in (-1,1)$, $g'(s) = p_1 + 2p_2s + \dots + kp_ks^{k-2} + \dots = EXs^{X-1}$ 。 $g''(s) = EX(X-1)s^{X-2}$ 。 $g^{(l)}(s) = EX(X-1) \dots (X-l+1)s^{X-l}$ 。 知 $EX = g'(1), EX^2 = g''(1) + g'(1)$ 。
- •乘积: 若X与Y独立,则 $g_{X+Y}(s)=g_X(s)g_Y(s)$ 。
- $X \sim G(p)$, $\text{M} g(s) = \frac{ps}{1 qs}$; $X \sim B(n,p)$, $\text{M} g(s) = (q + ps)^n$; $X \sim P(\lambda)$, $\text{M} g(s) = e^{\lambda(s-1)}$
- 复合: ξ_1,ξ_2,\cdots 独立同分布,且它们与 W 独立。令 $X=\xi_1+\cdots+\xi_W$,则 $g_X=g_W(g_\xi)$ 。
- 凸组合: X,Y,ξ 相互独立, $\xi\sim B(1,p)$ 。令 $W=X\cdot 1_{\{\xi=1\}}+Y\cdot 1_{\{\xi=0\}}$,则 $g_W=pg_X+qg_Y$ 。

4.5 特征函数

- 称 Ee^{itX}=Ecos(tX)+iEsin(tX)为 X 的特征函数,记为 *fx*(*t*)。
- •基本性质: f(0)=1; $||f(t)|| \leq 1$; f 一致连续; f 半正定($t_1,t_2,\cdots,t_n \in R$, $a_{ij}=f(t_i-t_j)$,则(a_{ii})半正定)。
- B-K 定理: f:R→C 满足 f(0)=1, 连续, 半正定, 则存在 X 使得 f=f_X。
- 逆转公式&唯一性定理: $F(x)-F(y)=\frac{1}{2\pi}\lim_{T\to\infty}\int_{-T}^{T}\frac{e^{-ity}-e^{-itx}}{it}f(t)dt$, $x,y\in C(F)$

(连续点)。若 $\int |f(x)| dx < \infty$,则分布函数连续可导,且 $p(x) = \frac{1}{2\pi} \int e^{-itx} f(t) dt$ 。

- 性质: 乘积: X 与 Y 独立,则 f_{X+Y}(t)=f_X(t)f_Y(t)。
- $X \sim B(n,p)$, $f_n(t) = (q + pe^{it})^n$; $X \sim P(\lambda)$, $f_{\lambda}(t) = e^{\lambda(e^{it}-1)}$
- 凸组合: X,Y,ξ 相互独立, $\xi\sim B(1,p)$ 。令 $W=X\cdot 1_{\{\xi=1\}}+Y\cdot 1_{\{\xi=0\}}$,则 $f_W=pf_X+qf_Y$ 。
- 若 EX^k 存在,则 f^(k)(0)=i^kEX^k,且成立 Peano 余项的 Taylor 公式。
- X 与 Y 独立 iff $f_{X,Y}(t,s)=f_X(t)f_Y(s)$ 。
- X 与 Y 独立 $\Rightarrow f_{X+Y}(t) = f_X(t) f_Y(t)$,反之不然(cauchy distribution)。

4.6 多元正态分布

- 密度函数: $p_X(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$
- 非退化线性变换: $Y=v+BX\sim N(v+B\mu,B\Sigma B^T)$ 。取 $B=\sqrt{\Sigma}^{-1}$, $v=\mu$,则 $Y\sim N(0,I)$ 。
- 特征函数: Z~N(0,I), $f_Z(t) = Ee^{itZ} = \prod_{i=1}^n Ee^{it_iZ_i} = e^{-\frac{1}{2}||t||^2}$ 。

$$X \sim N(\mu, \Sigma), \quad f_X(t) = Ee^{itX} = Ee^{it(\mu + \sqrt{\Sigma}Z)} = \exp\{it \cdot \mu - \frac{1}{2}t^T\Sigma t\}$$

- 高斯分布: Σ 半正定,若 X 的联合特征函数为 $f(t) = \exp\{it \cdot \mu \frac{1}{2}t^T\Sigma t\}$,则称 X 服从高斯分布 $N(\mu,\Sigma)$,也称 X 为一个高斯向量。
- 数字特征: 期望: $EX=\mu$, 协方差矩阵: Σ 。
- $X \sim N(\mu, \Sigma)$ iff $\forall a_1, \dots, a_n$, $Y := \sum_i a_i X_i \sim N(\mu, \sigma^2)$.
- 高斯分布: 不相关⇔ 独立。

- 一般情形: $rank(\Sigma)=r$,则存在 $1 \leq i_1 < \cdots < i_r \leq n$ 使得 $Y \sim$ 正态分布。
- 存在 Z~N(0,I_{r×r})以及列满秩矩阵 A_{n×r}使得 X=μ+AZ。
- 存在 $Z\sim N(0,I_{n\times n})$ 以及秩为 r 的方阵 $A_{n\times n}$ 使得 $X=\mu+AZ$ 。
- $X=(Y_1,\dots,Y_r,W_{r+1},\dots,W_n)\sim N(\mu,\Sigma)$,假设 Y 服从正态分布,求 L(W|Y=y)。
- 正交分解: 找 B_{(n-r)×r} 使得 V=(W-BY)且 V \(Y \).
- 协方差: $cov(V_k, Y_i) = (\Sigma_{21} B\Sigma_{11})_{ki}$ 。取 $B = \Sigma_{21}\Sigma_{11}^{-1}$,则 $L(By+V) = N(w+B(y-v), \Sigma_{22})$ 。

5 极限定理

5.1 伯努利试验场合的极限定理

- 假设 X=X₁,X₂,…独立同分布, P(X=1)=p, P(X=0)=q。
- 伯努利大数定律: $P(|S_n/n-p| \ge \epsilon) \to 0$ 。
- 如果任意 $\varepsilon > 0$,都有 $\lim P(|\xi \xi_n| \ge \varepsilon) \to 0$,则称 ξ_n 依概率收敛到 ξ , $\xi_n \xrightarrow{P} \xi$ 。

•
$$S_n*=(S_n-np)/\sqrt{npq}$$
 , $\mathbb{N} P(a < S_n* \le b) \rightarrow \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$.

5.2 依概率收敛&几乎必然收敛

- 如果 $\lim E[\xi_n-\xi]^r=0$,称 $\xi_n r$ 阶收敛到 ξ , $\xi_n \xrightarrow{r} \xi$ 。
- ·r 阶收敛⇒依概率收敛, 反之不然。
- ξn 依概率收敛到ξ,Ε|ξ_n|^r→Ε|ξ|^r,则ξ_nr 阶收敛到ξ。
- 弱大数定律: 若 X₁,X₂,…满足***,则 S_n/b_n-a_n 依概率收敛到 0。
- 切比雪夫弱大数定律: ***: 两两不相关, $var(X_i) \leq M$,则 $(S_n-ES_n)/n$ 依概率收敛到 0。
- 马尔可夫弱大数定律: ***: $var(S_n)=o(n^2)$, 则 $(S_n-ES_n)/n$ 依概率收敛到 0。
- 有界收敛定理: ξn依概率收敛到ξ,且 P(|ξn|≤M)=1,则 lim Eξn=Eξ。
- 定理: 设 $X=X_1,X_2,\cdots$ 独立同分布, $E|X|<\infty$,则 S_n/n 依概率收敛于 EX。

5.4 几乎必然收敛&强大数定律

- 如果 $P(\lim \xi_n = \xi) = 1$,那么称 ξ_n 几乎必然收敛到 ξ ,记为 $\xi_n \to \xi$ a.s.。
- $\bullet \ \diamondsuit \ \mathbf{A}_{\mathbf{n},\varepsilon} = \{|\xi_{\mathbf{n}} \xi| > \varepsilon\} \ , \quad \text{if } \{\lim_{n \to \infty} \xi_n = \xi\}^c = \bigcup_{k=1}^{c} \bigcap_{N \geq 1} \bigcup_{n \geq N} A_{n,\frac{1}{k}} \ .$
- 对任意事件 A_1,A_2,\cdots , 令 $\{A_n \ i.o.\} = \overline{\lim_{n \to \infty}} A_n \coloneqq \bigcap_{N \ge 1} \bigcup_{n \ge N} A_n$ 。
- Borel-Cantelli 引理: $s=\sum_{n=1}^{+\infty}P(A_n)$ 。若 $s<\infty$,则 $P(A_n i.o.)=0$;若 $s=\infty$,且 A_1,\cdots

相互独立,则 P(An i.o.)=1。

- •几乎必然收敛 \Rightarrow 依概率收敛,反之不然,几乎必然收敛和 r 阶矩收敛没有互推关系。
- 若ξn 依概率收敛到ξ,则存在子列{nk}使得ξnk 几乎必然到ξ。
- ξ, 依概率收敛到ξ iff 任意子列都有子列几乎必然收敛到ξ。
- 强大数定律: 若 X₁,X₂满足***,则 S_n/b_n-a_n 几乎必然收敛到 0。
- Borel-Cantelli 强大数律: X₁,X₂…相互独立, E(X_i-EX_i)⁴≤M, 则(Sn-ES_n)/n 几乎必然收敛到 0。

- 定理: $X=X_1,X_2,\cdots$ 独立同分布, $EX^2<\infty$, 则 S_n/n 几乎必然收敛到 EX。
- Kolmogorov 强大数律: $X=X_1,X_2,\cdots$ 独立同分布, $E|X|<\infty$,则 S_n/n 几乎必然收敛到 EX。
- Kolmogorov 强大数律: X_1, \dots 独立, $\sum_{n=1}^{+\infty} \frac{DX_n}{n^2} < \infty$,则 $P(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n (X_i EX_i) = 0)$

=1°

- 若 X₁,X₂,…独立, 且 S_n/n 几乎必然收敛到 Y, 则 Y 退化。
- 若 i.i.d., 且 S_n/n 几乎必然收敛到 a, 则 a=EX。
- 若 i.i.d,则 X_n/n 几乎必然收敛到 0 iff E|X|<∞。
- 定理: $X=X_1,X_2,\cdots$ 独立同分布, $EX=\infty$, S_n/n 几乎必然收敛到 ∞ 。

5.3 依分布收敛&中心极限定理

- •如果 $\forall x \in C(F_{\xi})$,都有 $\lim F_{\xi n}(x) = F_{\xi}(x)$,则称 ξ_n 依分布收敛于 ξ (没有考察 ξ_n 的取值,只考察了 ξ_n 的分布,原像 ω 测度一样,但原像 ω 取值可以不一样)。
- 依概率收敛⇒依分布收敛, 反之不然。
- 依分布收敛于常数 ⇒ 依概率收敛于常数。
- 有界收敛定理: ξ_n有界,依分布收敛于ξ,则 Εξ_n→Εξ。
- ξ_n 依分布收敛到 ξ iff $Ef(\xi_n)=Ef(\xi)$, \forall $f \in F$ 。(F 可取: $1_{(-\infty,b]}$,其中 $b \in C(F_\xi)$ (的 稠密子集); $1_{(a,b]}$,其中 $a,b \in C(F_\xi)$;阶梯函数;有界连续函数;三角函数)
- 定理: ξ_n 依分布收敛到 ξ iff 特征函数 $f_{\xi n}(t) \rightarrow f_{\xi}(t)$ 收敛。
- 定理: 若 f_{εn}(t)→f(t)且 f 在 t=0 连续,则 f 是特征函数, ξn依分布收敛。
- 中心极限定理: X=X₁,X₂,···i.i.d, 0<DX<∞,则 S_n*依分布收敛到 N(0,1)。

•
$$\frac{1}{\sqrt{n}}(S_n - ES_n) \xrightarrow{d} \sigma Z \sim N(0, \sigma^2)$$
.

• 研究对象: $S_n * = \sum_{k=1}^n \frac{X_k - \mu}{\sqrt{\operatorname{var}(S_n)}}$ 。 假设 X_1, X_2, \cdots 独立同分布, $EX_k = \mu_k$, $DX_k = \sigma_k^2$,

$$B_n{}^2\!\!=\!\!\sum\nolimits_{k=1,\dots,n}\!\!\sigma_k{}^2\!\circ\!$$

• Feller 条件:
$$\frac{\max_{1 \le k \le n} \sigma_k}{B_n} \to 0$$
 iff $B_n \to \infty$ and $\frac{\sigma_n}{B_n} \to 0$.

• Lindeberg 条件:
$$\frac{1}{B_{-}^{2}} \sum_{k=1}^{n} E |X_{k} - \mu_{k}|^{2} 1_{\{|X_{k} - \mu_{k}| > \varepsilon B_{n}\}} \to 0$$
.

•Lindeberg-Feller CLT: Lindeberg 成立 iff S_n*依分布收敛到 N(0,1)且 Feller 成立。