

Figure 2

Type	Application	Incoming	Memory (64B Cell)	Outgoing
0	Ingress TM (ATM=>ATM)	ATM Cells	52B + 12B Pad	0 : 1 0 11
1	IngressTM (ATM⇒ MPLS Packet)	AAL5 Cells	48B + 16B Pad	Switch Cell
2	IngressTM (MPLS Packet⇒ATM)	Packet Bursts	48B + 16B Pad	8/16BHdr + 64B Cell
3	Ingress TM (Packet=>Packet)	Packet Bursts	64B Cells	T 04D Cell
4	ATM Encapsulation	ATM Cells	52B + 12B Pad	OWN CDITTAL
5	Reassembly	AAL5 Cells	48B + 16B Pad	0/8/16B Hdr + Full Packet
- 6	Ingress Packet Bypass	Packet Bursts	64B Cells	+ Full Facket
7		Unused		
8	Egress TM (ATM=>ATM)	Conitate Call	52B + 12B Pad	ATM Cells
9	EgressTM (ATM⇒ MPLS Packet)	Switch Cell 8/16BHdr	48B + 16B Pad	Packet Bursts
10	EgressTM (MPLS Packet ⇒ATM)	+ 64B Cell	48B + 16B Pad	AAL5 Cells
11	Egress TM (Packet=>Packet)	T 04B Cell	64B Cells	Packet Bursts
12	ATM De-Encapsulation	8/16B Hdr *	52B + 12B Pad	ATM Cells
. 13	Segmentation	+ Full Packet	48B + 16B Pad	AAL5 Cells
14	Egress Packet Bypass	+ Fun Packet	64B Cells	Packet Bursts
15	Company of the Compan	Unused		

Note: Incoming and Outgoing ATM Cells are non-AAL5 ATM cells for the purpose of Maximus chipset.

Figure 4

Figure 5

Figure 5A

Figure 6

Figure 6A

Figure 7

Type 1: IngressTM (ATM⇒ MPLS Packet)						
Incoming SPI	Lookup Segmentation		Reassembly	Outgoing SPI		
[Ammata]	ATM Header		Switch Header 8 or 16 Bytes	Switch Header 8 or 16 Bytes		
ATM Header 4 Bytes ATM Data 48 Bytes	4 Bytes 48B AAL-5 Data	AAL-5 Data 48 Bytes	AAL-5 Data 48 Bytes	AAL-5 Data 48 Bytes		
	Pad 4 Bytes	Pad 16 Bytes				
		:	Pad 16 Bytes	Pad 16 Bytes		
52B Cell	56B Cell	48B Cell + 16B Pad	8/16B Hdr + 64B Cell	Switch Cell		

Figure 8

Type 2: Ingress TM (MPLS Packet⇒ATM)						
Incoming SPI	Lookup	Segmentation	Reassembly	Outgoing SPI		
		·	S witch Header 8 or 16 Bytes	Switch Header 8 or 16 Bytes		
Packet Data Nx16 Bytes	Packet Data Nx16 Bytes	AAL-5 Data 48 Bytes Pad 16 Bytes	AAL-5 Data 48 Bytes	AAL-5 Data 48 Bytes		
•	•	:	Pad 16 Bytes	Pad 16 Bytes		
Packet Burst	Packet Burst	48B Cell + 16B Pad	8/16B Hdr + 64B Cell	Switch Cell		

Figure 9

Figure 10

	T	ype 4: ATM Encapsulation)n	
Incoming SPI	Lookup	Segmentation	Reassembly	Outgoing SPI
ATM Header 4 Bytes ATM Data 48 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes Pad 8 Bytes	Switch Header 8 or 16 Bytes ATM Header 4 Bytes ATM Data 48 Bytes Pad 4 Bytes	Switch Header 8 or 16 Bytes ATM Header 4 Bytes ATM Data 48 Bytes Pad 4 Bytes
52B Cell + 4BPad	56B Cell	56B Cell + 8B Pad	8B Hdr + 52B Cell + 4B Pad	64B Packet

Figure 11

	Type 5: Reassembly							
Incoming SPI	Lookup	Segmentation	Reassembly	Outgoing SPI				
			Packet Header 0-16B	Pkt Header 0-16 Bytes				
ATM Header 4 Bytes A'TM Data 48 Bytes	ATM Header 4 Bytes 4 Bytes Pad 4 Bytes 4 Bytes	48B ATM Data	Packet Data Nx16 Bytes	Packet Data Nx16 Bytes				
		16 Bytes	•	•				
52B Cell + 4BPad	56B Cell	48B Cell + 16B Pad	0-16B Hdr + Packet Bursts	0-16B Hdr + Packet Bursts				

Figure 12

Figure 13

	Тур	e 8: Egress TM (ATM⇒A	TM)	
Incoming SPI	Lookup	Segmentation	Reassembly	Outgoing SPI
Switch Header 8 or 16 Bytes ATM Header 4 Bytes ATM Data 48 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes Pad 8 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes Pad 8 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes	ATM Header 4 Bytes ATM Data 48 Bytes
Switch Cell	Strip switch header	64B Cell	Translate ATM Header	52B ATM Cel

Figure 14

	Type 9:	EgressTM (ATM⇒MPLS	S Packet)	
Incoming SPI	- 1		Reassembly	Outgoing SPI
Switch Header 8 or 16 Bytes			Packet Header 0-16B	Pkt Header 0-16 Bytes
AAL-5 Data 48 Bytes	AAL-5 Data 48 Bytes	AAL-5 Data 48 Bytes	Packet Data Nx16 Bytes	Packet Data Nx16 Bytes
	Pad 16 Bytes	Pad 16 Bytes		
Pad 16 Bytes	•	•	•	
52B Cell	56B Cell	48B Cell + 16B Pad	0-16B Hdr + Packet Bursts	0-16B Hdr + Packet

Figure 15

Figure 16

	Type 1	11: Egress TM (Packet=>	Packet)		
Incoming SPI	Lookup	Segmentation	Reassembly	Outgoing SPI	
Switch Header 8 or 16 Bytes			Packet Header 8B/16B	Pkt Header 8/16 Bytes	
AAL-5 like Data 64 Bytes	AAL-5 like Data 64 Bytes	AAL-5 like Data 64 Bytes	Packet Data Nx16 Bytes	Packet Data Nx16 Bytes	
	•	:	•	•	
Packet Burst	Packet Burst	64B Cell	8B/16B Hdr + Packet	8/16 Hdr +	
	·	(AAL5 like)	Bursts	Packet	

Figure 17

	Type 12: ATM De-Encapsulation							
Incoming SPI	Lookup	Segmentation	Reassembly	Outgoing SPI				
Switch Header 8 or 16 Bytes ATM Header 4 Bytes ATM Data 48 Bytes Pad 4 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes Pad 8 Bytes	ATM Header 4 Bytes 48B ATM Data Pad 4 Bytes	ATM Header 4 Bytes ATM Data 48 Bytes				
52B Cell + 4Bpad	56B Cell	56B Cell + 8B Pad	8B Hdr + 52B Cell + 4B Pad	ATM Cell				

Figure 18

		Type 13: Segmentation		
Incoming SPI	Lookup Segmentation		Reassembly	Outgoing SPI
Packet Data Nx16 Bytes	Packet Data Nx16 Bytes	AAL-5 Data 48 Bytes Pad 16 Bytes	ATM Header Pad 4 Bytes 4 Bytes 48B ATM Data	ATM Header 4 Bytes
Packet Burst	Packet Burst	48B Cell + 16B Pad	Append ATM and 4B Pad, Strip 16B Pad	ATM Cell

Figure 19

		ype 14: Egress Packet Bypa			
Incoming SPI	Lookup	Segmentation	Reassembly	Outgoing SPI	
Switch Header 8 or 16 Bytes			Packet Header 0-16B	Pkt Header 0-16 Bytes	
AAL-5 like Data 64 Bytes	Packet Data Nx16 Bytes	AAL-5 like Data 64 Bytes	Packet Data Nx16 Bytes	Packet Data Nx16 Bytes	
	•	•	•	:	
Packet Burst	Packet Burst	64B Cell (AAL5 like)	0-16B Hdr + Packet Bursts	0-16B Hdr Packet Bursts	

Figure 20

Total pins = 8

	<u> </u>	In	comin	g SPI_4		
				Input	Output	
Pin Name	Pad#	Pin#	Dir	Buffer	Buffer	Description
rdclk			IN			400MHz SPI receive
						clock
rdat_15			IN			SPI receive data bit-15
rdat_14		,	IN			SPI receive data bit-14
rdat_13			IN .			SPI receive data bit-13
rdat_12			IN			SPI receive data bit-12
rdat_11			IN			SPI receive data bit-11
rdat_10			IN			SPI receive data bit-10
rdat_9			IN			SPI receive data bit-9
rdat_8			IN			SPI receive data bit-8
rdat_7			IN			SPI receive data bit-7
rdat_6			IN			SPI receive data bit-6
rdat_5			IN			SPI receive data bit-5
rdat_4			IN			SPI receive data bit-4
rdat_3			IN			SPI receive data bit-3
rdat_2			IN			SPI receive data bit-2
rdat_1			IN			SPI receive data bit-1
rdat_0			IN			SPI receive data bit-0

rdclk_l	IN	400MHz SPI receive
Ideix_i	"'	clock
rdat_l_15	IN	SPI receive data bit-15
rdat_1_14	IN	SPI receive data bit-14
rdat_l_13	IN	SPI receive data bit-13
rdat 1 12	IN	SPI receive data bit-12
rdat_l_11	IN IN	SPI receive data bit-11
rdat l 10	IN IN	SPI receive data bit-10
rdat 1 9	IN	SPI receive data bit-10
rdat_1_9	IN	SPI receive data bit-9 SPI receive data bit-8
		
rdat_l_7	IN	SPI receive data bit-7
rdat_l_6	IN	SPI receive data bit-6
rdat_1_5	IN	SPI receive data bit-5
rdat_l_4	IN	SPI receive data bit-4
rdat_1_3	IN IN	SPI receive data bit-3
rdat_l_2	IN	SPI receive data bit-2
rdat_l_1	IN I	SPI receive data bit-1
rdat_l_0	IN	SPI receive data bit-0
rctl	IN	SPI receive control
		input
rctl_l	IN	SPI receive control
		input
rsclk	IN	200MHz SPI receive
		status clock
rsclk_l	IN	200MHz SPI receive
		status clock
rstat_1	IN	SPI receive status bit-1
rstat_0	IN	SPI receive status bit-0
rstat_l_1	IN	SPI receive status bit-1
rstat_l_0	IN	SPI receive status bit-0
	Total pins = 42	

	Outgoing SPI_4					
				Input	Output	
Pin Name	Pad#	Pin#	Dir	Buffer	Buffer	Description
tdclk			OUT			400MHz SPI transmit
						clock
tdat_15			OUT			SPI transmit data bit-15
tdat_14			OUT			SPI transmit data bit-14
tdat_13			OUT			SPI transmit data bit-13
tdat_12			OUT			SPI transmit data bit-12
tdat_11			OUT			SPI transmit data bit-11
tdat_10			OUT			SPI transmit data bit-10
tdat_9			OUT			SPI transmit data bit-9
tdat_8			OUT			SPI transmit data bit-8
tdat_7			OUT	-		SPI transmit data bit-7

	- I or m	1 222
tdat_6	OUT	SPI transmit data bit-6
tdat_5	OUT	SPI transmit data bit-5
tdat_4	OUT	SPI transmit data bit-4
tdat_3	OUT	SPI transmit data bit-3
tdat_2	OUT	SPI transmit data bit-2
tdat_1	OUT	SPI transmit data bit-1
tdat_0	OUT	SPI transmit data bit-0
tdclk_l	OUT	400MHz SPI transmit
		clock
tdat l_15	OUT	SPI transmit data bit-15
tdat_l_14	OUT	SPI transmit data bit-14
tdat_1_13	OUT	SPI transmit data bit-13
tdat_l_12	OUT	SPI transmit data bit-12
tdat_l_11	OUT	SPI transmit data bit-11
tdat_1_10	OUT	SPI transmit data bit-10
tdat_1_9	OUT	SPI transmit data bit-9
tdat_1_8	OUT	SPI transmit data bit-8
tdat_l_7	OUT	SPI transmit data bit-7
tdat_1_6	OUT	SPI transmit data bit-6
tdat_1_5	OUT	SPI transmit data bit-5
tdat_1_4	OUT	SPI transmit data bit-4
tdat_l_3	OUT	SPI transmit data bit-3
	OUT	
tdat_l_2		SPI transmit data bit-2
tdat_l_1	OUT	SPI transmit data bit-1
tdat_l_0	OUT	SPI transmit data bit-0
tctl	OUT	SPI transmit control
		input
tctl_l	OUT	SPI transmit control
	O T TO	input
tsclk	OUT	200MHz SPI transmit
	- I OT ITT	status clock
tsclk_l	OUT	200MHz SPI transmit
		status clock
tstat_1	OUT	SPI transmit status bit-
	<u> </u>	1
tstat_0	OUT	SPI transmit status bit-
		0
tstat_l_1	OUT	SPI transmit status bit-
		1
tstat_l_0	OUT	SPI transmit status bit-
		0
	Output pins $= 42$	
spio_sch_clk	OUT	SPI to scheduler clock
spio_sch_sync	OUT	SPI to scheduler sync
		signal

lut_mem1_addr_15

lut_mem1_addr_14

		
spio_sch_status_8	OUT	SPI to scheduler
	_	status_8
spio_sch_status_7	OUT	SPI to scheduler
_		status_7
spio_sch_status_6	OUT	SPI to scheduler
		status_6
spio_sch_status_5	OUT	SPI to scheduler
		status_5
spio_sch_status_4	OUT	SPI to scheduler
		status_4
spio_sch_status_3	OUT	SPI to scheduler
		status_3
spio_sch_status_2	OUT	SPI to scheduler
		status_2
spio_sch_status_1	OUT	SPI to scheduler
		status_1
spio_sch_status_0	OUT	SPI to scheduler
		status_0
	Scheduler = 11 pins	
	Total pins = 53	

Look Up Engine Input Output Pad# Pin# Dir **Buffer** Buffer Pin Name **Description** lut_mem_i_clk IN lut_mem_o_clk **OUT** OUT Memory#1 write lut_mem1_we_l enable, active low lut_mem1_addr_22 Memory#1 address bit-OUT 22 Memory#1 address bitlut_mem1_addr_21 **OUT** 21 Memory#1 address bitlut_mem1_addr_20 OUT 20 lut_mem1_addr_19 OUT Memory#1 address bit-19 Memory#1 address bitlut_mem1_addr_18 OUT 18 lut_mem1_addr_17 Memory#1 address bit-OUT 17 Memory#1 address bitlut_mem1_addr_16 **OUT** 16

OUT

OUT

Memory#1 address bit-

15

Memory#1 address bit-

14

lut_mem1_addr_13	OUT	Memory#1 address bit-
lut_mem1_addr_12	OUT	Memory#1 address bit-
lut_mem1_addr_11	OUT	Memory#1 address bit-
lut_mem1_addr_10	OUT	Memory#1 address bit-
lut_mem1_addr_9	OUT	10 Memory#1 address bit-
lut_mem1_addr_8	OUT	Memory#1 address bit-
lut_mem1_addr_7	OUT	8 Memory#1 address bit-
lut_mem1_addr_6	OUT	7 Memory#1 address bit-
lut_mem1_addr_5	OUT	6 Memory#1 address bit-
		5
lut_mem1_addr_4	OUT	Memory#1 address bit-
lut_mem1_addr_3	OUT	Memory#1 address bit-
lut_mem1_addr_2	OUT	Memory#1 address bit-
lut_mem1_addr_1	OUT	Memory#1 address bit-
lut_mem1_addr_0	OUT	Memory#1 address bit-
lut_mem1_data_63	BI	Memory#1 data bit-63
lut_mem1_data_62	BI	Memory#1 data bit-62
lut_mem1_data_61	BI	Memory#1 data bit-61
lut_mem1_data_60	BI	Memory#1 data bit-60
lut_mem1_data_59	BI	Memory#1 data bit-59
lut_mem1_data_58	BI	Memory#1 data bit-58
lut_mem1_data_57	BI	Memory#1 data bit-57
lut_mem1_data_56	BI	Memory#1 data bit-56
lut_mem1_data_55	BI	Memory#1 data bit-55
lut_mem1_data_54	BI	Memory#1 data bit-54
lut_mem1_data_53	BI	Memory#1 data bit-53
lut_mem1_data_52	BI	Memory#1 data bit-52
lut_mem1_data_51	BI	Memory#1 data bit-51
lut_mem1_data_50	BI	Memory#1 data bit-50
lut_mem1_data_49	BI	Memory#1 data bit-49
lut_mem1_data_48	BI	Memory#1 data bit-48
lut_mem1_data_47	BI	Memory#1 data bit-47
lut_mem1_data_46	BI	Memory#1 data bit-46

lut_mem1_data_45	BI	Memory#1 data bit-45
lut_mem1_data_44	BI	Memory#1 data bit-44
lut_mem1_data_43	BI	Memory#1 data bit-43
lut_mem1_data_42	BI	Memory#1 data bit-42
lut_mem1_data_41	BI	Memory#1 data bit-41
lut_mem1_data_40	BI	Memory#1 data bit-40
lut_mem1_data_39	BI	Memory#1 data bit-39
lut_mem1_data_38	BI	Memory#1 data bit-38
lut_mem1_data_37	BI	Memory#1 data bit-37
lut_mem1_data_36	BI	Memory#1 data bit-36
lut_mem1_data_35	BI	Memory#1 data bit-35
lut_mem1_data_34	BI	Memory#1 data bit-34
lut_mem1_data_33	BI	Memory#1 data bit-33
lut_mem1_data_32	BI	Memory#1 data bit-32
lut_mem1_data_31	BI	Memory#1 data bit-31
lut_mem1_data_30	BI	Memory#1 data bit-30
lut_mem1_data_29	BI	Memory#1 data bit-29
lut_mem1_data_28	BI	Memory#1 data bit-28
lut_mem1_data_27	BI	Memory#1 data bit-27
lut_mem1_data_26	BI	Memory#1 data bit-26
lut_mem1_data_25	BI	Memory#1 data bit-25
lut_mem1_data_24	BI	Memory#1 data bit-24
lut_mem1_data_23	BI	Memory#1 data bit-23
lut_mem1_data_22	BI	Memory#1 data bit-22
lut_mem1_data_21	BI	Memory#1 data bit-21
lut_mem1_data_20	BI	Memory#1 data bit-20
lut_mem1_data_19	BI	Memory#1 data bit-19
lut_mem1_data_18	BI	Memory#1 data bit-18
lut_mem1_data_17	BI BI	Memory#1 data bit-17
lut_mem1_data_16	BI	Memory#1 data bit-16
lut_mem1_data_15	BI	Memory#1 data bit-15
lut_mem1_data_14	BI	Memory#1 data bit-14
lut_mem1_data_13	BI	Memory#1 data bit-13
lut_mem1_data_12	BI	Memory#1 data bit-12
lut_mem1_data_11	BI	Memory#1 data bit-11
lut_mem1_data_10	BI	Memory#1 data bit-10
lut_mem1_data_9	BI	Memory#1 data bit-9
lut_mem1_data_8	BI	Memory#1 data bit-8
lut_mem1_data_7	BI	Memory#1 data bit-7
lut_mem1_data_6	BI	Memory#1 data bit-6
lut_mem1_data_5	BI	Memory#1 data bit-5
lut_mem1_data_4	BI	Memory#1 data bit-4
lut_mem1_data_3	BI	Memory#1 data bit-3
lut_mem1_data_2	BI	Memory#1 data bit-2
lut_mem1_data_1	BI	Memory#1 data bit-1

lut_mem2_data_22	BI	Memory#2 data bit-22			
lut_mem2_data_21	BI	Memory#2 data bit-21			
lut_mem2_data_20	BI	Memory#2 data bit-20			
lut_mem2_data_19	BI	Memory#2 data bit-19			
lut_mem2_data_18	BI	Memory#2 data bit-18			
lut_mem2_data_17	BI	Memory#2 data bit-17			
lut_mem2_data_16	BI	Memory#2 data bit-16			
lut_mem2_data_15	BI	Memory#2 data bit-15			
lut_mem2_data_14	BI	Memory#2 data bit-14			
lut_mem2_data_13	BI	Memory#2 data bit-13			
lut_mem2_data_12	BI	Memory#2 data bit-12			
lut_mem2_data_11	BI	Memory#2 data bit-11			
lut_mem2_data_10	BI	Memory#2 data bit-10			
lut_mem2_data_9	BI	Memory#2 data bit-9			
lut_mem2_data_8	BI	Memory#2 data bit-8			
lut_mem2_data_7	BI	Memory#2 data bit-7			
lut_mem2_data_6	BI	Memory#2 data bit-6			
lut_mem2_data_5	BI	Memory#2 data bit-5			
lut_mem2_data_4	BI	Memory#2 data bit-4			
lut_mem2_data_3	BI	Memory#2 data bit-3			
lut_mem2_data_2	BI	Memory#2 data bit-2			
lut_mem2_data_1	BI	Memory#2 data bit-1			
lut_mem2_data_0	BI	Memory#2 data bit-0			
	Memory#2 = 88 pins				

Segmentation Engine Output Input Pad# | Pin# Pin Name Dir Buffer Buffer **Description** pfq_seg_clk PFQ=>SEG clock IN PFQ=>SEG valid pfq_seg_valid IN signal pfq_seg_data PFQ=>SEG bit data ΙN seg_sch_clk **OUT** SEG=>SCH clock seg_sch_valid SEG=>SCH valid **OUT** signal seg_sch_data OUT SEG=>SCH bit data

Total pins = 178

Total pins = 6

	Memory Manager					
				Input	Output	
Pin Name	Pad#	Pin#	Dir	Buffer	Buffer	Description
mem_sdr_data_a_64			BI			Controller A data bus
						bit-64
mem_sdr_data_a_63			BI			Controller A data bus
						bit-63

mem_sdr_data_a_62 mem_sdr_data_a_61 mem_sdr_data_a_61 mem_sdr_data_a_60 BI Controller A data bus bit-61 mem_sdr_data_a_50 mem_sdr_data_a_59 mem_sdr_data_a_58 BI Controller A data bus bit-58 mem_sdr_data_a_57 BI Controller A data bus bit-58 mem_sdr_data_a_56 BI Controller A data bus bit-56 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_56 BI Controller A data bus bit-56 mem_sdr_data_a_55 mem_sdr_data_a_51 BI Controller A data bus bit-56 mem_sdr_data_a_53 BI Controller A data bus bit-53 mem_sdr_data_a_53 BI Controller A data bus bit-51 mem_sdr_data_a_50 BI Controller A data bus bit-51 mem_sdr_data_a_50 BI Controller A data bus bit-51 mem_sdr_data_a_49 BI Controller A data bus bit-47 mem_sdr_data_a_48 BI Controller A data bus bit-48 mem_sdr_data_a_46 BI Controller A data bus bit-47 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_49 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-41 mem_sdr_data_a_40			
mem_sdr_data_a_61 mem_sdr_data_a_60 mem_sdr_data_a_59 mem_sdr_data_a_59 mem_sdr_data_a_58 mem_sdr_data_a_58 mem_sdr_data_a_57 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_40 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_43 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 BI Controller A data bus bit-48 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_49 BI Controller A data bus bit-48 mem_sdr_data_a_49 BI Controller A data bus bit-49 Controller A data bus bit-49 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40	mem_sdr_data_a_62	BI	Controller A data bus
mem_sdr_data_a_60 mem_sdr_data_a_59 mem_sdr_data_a_59 mem_sdr_data_a_58 mem_sdr_data_a_57 mem_sdr_data_a_57 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_56 mem_sdr_data_a_55 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_50 mem_sdr_data_a_51 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_44 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_49 mem_sdr_data_	·		bit-62
mem_sdr_data_a_60 mem_sdr_data_a_59 BI Controller A data bus bit-60 mem_sdr_data_a_59 BI Controller A data bus bit-59 mem_sdr_data_a_58 mem_sdr_data_a_57 BI Controller A data bus bit-58 mem_sdr_data_a_56 BI Controller A data bus bit-57 mem_sdr_data_a_56 BI Controller A data bus bit-56 mem_sdr_data_a_55 BI Controller A data bus bit-56 mem_sdr_data_a_53 BI Controller A data bus bit-53 mem_sdr_data_a_53 BI Controller A data bus bit-53 mem_sdr_data_a_53 BI Controller A data bus bit-53 mem_sdr_data_a_51 BI Controller A data bus bit-51 mem_sdr_data_a_51 BI Controller A data bus bit-51 mem_sdr_data_a_50 BI Controller A data bus bit-51 Controller A data bus bit-51 Controller A data bus bit-51 Controller A data bus bit-40 BI Controller A data bus bit-49 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_46 BI Controller A data bus bit-46 mem_sdr_data_a_46 BI Controller A data bus bit-46 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-46 mem_sdr_data_a_49 BI Controller A data bus bit-46 Controller A data bus bit-41 BI Controller A data bus bit-41 Cont	mem_sdr_data_a_61	BI	Controller A data bus
mem_sdr_data_a_59 mem_sdr_data_a_58 mem_sdr_data_a_58 mem_sdr_data_a_57 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_54 mem_sdr_data_a_54 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 BI Controller A data bus bit-46 Controller A data bus bit-48 Controller A data bus bit-49 mem_sdr_data_a_49 BI Controller A data bus bit-41 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_49 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-42 Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41			bit-61
mem_sdr_data_a_59 mem_sdr_data_a_58 mem_sdr_data_a_58 mem_sdr_data_a_57 mem_sdr_data_a_57 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_51 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data	mem_sdr_data_a_60	BI	Controller A data bus
mem_sdr_data_a_58 mem_sdr_data_a_57 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_56 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_55 mem_sdr_data_a_54 mem_sdr_data_a_54 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_43 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_49 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41			bit-60
mem_sdr_data_a_58 BI Controller A data bus bit-58 mem_sdr_data_a_56 BI Controller A data bus bit-57 mem_sdr_data_a_56 BI Controller A data bus bit-56 mem_sdr_data_a_55 BI Controller A data bus bit-56 mem_sdr_data_a_54 BI Controller A data bus bit-54 mem_sdr_data_a_53 BI Controller A data bus bit-53 mem_sdr_data_a_52 BI Controller A data bus bit-52 mem_sdr_data_a_51 BI Controller A data bus bit-51 mem_sdr_data_a_50 BI Controller A data bus bit-50 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_48 BI Controller A data bus bit-49 mem_sdr_data_a_46 BI Controller A data bus bit-47 mem_sdr_data_a_46 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-43	mem_sdr_data_a_59	BI	Controller A data bus
BI			bit-59
mem_sdr_data_a_57 BI Controller A data bus bit-57 mem_sdr_data_a_56 BI Controller A data bus bit-56 mem_sdr_data_a_55 BI Controller A data bus bit-55 mem_sdr_data_a_54 BI Controller A data bus bit-55 mem_sdr_data_a_53 BI Controller A data bus bit-53 mem_sdr_data_a_52 BI Controller A data bus bit-51 mem_sdr_data_a_51 BI Controller A data bus bit-51 mem_sdr_data_a_50 BI Controller A data bus bit-50 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_46 BI Controller A data bus bit-49 mem_sdr_data_a_46 BI Controller A data bus bit-46 mem_sdr_data_a_45 BI Controller A data bus bit-46 mem_sdr_data_a_44 BI Controller A data bus bit-45 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_49 BI Controller A data bus bit-42	mem_sdr_data_a_58	BI	Controller A data bus
BI			bit-58
mem_sdr_data_a_56 mem_sdr_data_a_55 mem_sdr_data_a_54 mem_sdr_data_a_54 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_44 mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_43 mem_sdr_data_a_49 mem_sdr_data_a_44 mem_sdr_data_a_49 mem_sdr_data_a_44 mem_sdr_data_a_49 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 BI Controller A data bus bit-44 mem_sdr_data_a_49 BI Controller A data bus bit-44 mem_sdr_data_a_49 BI Controller A data bus bit-44 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus	mem_sdr_data_a_57	BI	Controller A data bus
mem_sdr_data_a_55 mem_sdr_data_a_54 mem_sdr_data_a_54 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_40 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41 Controller A data bus			bit-57
mem_sdr_data_a_55 mem_sdr_data_a_54 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_40 mem_sdr_data_a_40 BI Controller A data bus bit-42 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus	mem_sdr_data_a_56	BI	Controller A data bus
mem_sdr_data_a_54 mem_sdr_data_a_53 mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41 Controller A data bus bit-41 Controller A data bus bit-41 Controller A data bus bit-41 Controller A data bus bit-41 Controller A data bus bit-41			bit-56
mem_sdr_data_a_54 BI Controller A data bus bit-54 mem_sdr_data_a_53 BI Controller A data bus bit-53 mem_sdr_data_a_52 BI Controller A data bus bit-52 mem_sdr_data_a_51 BI Controller A data bus bit-51 mem_sdr_data_a_50 BI Controller A data bus bit-50 mem_sdr_data_a_49 BI Controller A data bus bit-49 mem_sdr_data_a_48 BI Controller A data bus bit-49 mem_sdr_data_a_40 BI Controller A data bus bit-47 mem_sdr_data_a_46 BI Controller A data bus bit-45 mem_sdr_data_a_45 BI Controller A data bus bit-45 mem_sdr_data_a_43 BI Controller A data bus bit-44 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41	mem_sdr_data_a_55	BI	Controller A data bus
mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_47 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_40 BI Controller A data bus bit-43 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 BI Controller A data bus bit-41			bit-55
mem_sdr_data_a_53 mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_40 BI Controller A data bus bit-43 Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 Controller A data bus	mem_sdr_data_a_54	BI	Controller A data bus
mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_47 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_40 mem_sdr_data_a_40 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_43 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41			bit-54
mem_sdr_data_a_52 mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_40 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_43 mem_sdr_data_a_43 mem_sdr_data_a_44 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_40 mem_sdr_data_a_40 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41	mem_sdr_data_a_53	BI	Controller A data bus
mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_47 mem_sdr_data_a_48 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-42 Controller A data bus bit-41			bit-53
mem_sdr_data_a_51 mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_47 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-43 Controller A data bus bit-43 Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-41	mem_sdr_data_a_52	BI	Controller A data bus
mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_47 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-45 Controller A data bus bit-45 Controller A data bus bit-44 Controller A data bus bit-43 Controller A data bus bit-43 Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-41			bit-52
mem_sdr_data_a_50 mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_47 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-45 Controller A data bus bit-44 Controller A data bus bit-43 Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-41	mem_sdr_data_a_51	BI	Controller A data bus
mem_sdr_data_a_49 mem_sdr_data_a_48 mem_sdr_data_a_48 mem_sdr_data_a_47 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-45 Controller A data bus bit-44 Controller A data bus bit-44 Controller A data bus bit-44 Controller A data bus bit-43 Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-41	·		bit-51
mem_sdr_data_a_49 mem_sdr_data_a_48 BI Controller A data bus bit-49 BI Controller A data bus bit-48 mem_sdr_data_a_47 BI Controller A data bus bit-48 Controller A data bus bit-47 mem_sdr_data_a_46 BI Controller A data bus bit-46 mem_sdr_data_a_45 BI Controller A data bus bit-45 Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-44 mem_sdr_data_a_43 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41	mem_sdr_data_a_50	BI	Controller A data bus
mem_sdr_data_a_48 mem_sdr_data_a_47 BI Controller A data bus bit-48 Controller A data bus bit-47 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 BI Controller A data bus bit-46 Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-45 Controller A data bus bit-44 mem_sdr_data_a_43 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41			
mem_sdr_data_a_48 mem_sdr_data_a_47 BI Controller A data bus bit-48 Controller A data bus bit-47 mem_sdr_data_a_46 BI Controller A data bus bit-46 mem_sdr_data_a_45 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-45 Controller A data bus bit-44 mem_sdr_data_a_43 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 Controller A data bus	mem_sdr_data_a_49	BI	
mem_sdr_data_a_47 mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_44 mem_sdr_data_a_43 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-43 Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-41			
mem_sdr_data_a_46 mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_43 mem_sdr_data_a_43 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-44 Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-42 Controller A data bus bit-41 Controller A data bus	mem_sdr_data_a_48	BI	
mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-44 mem_sdr_data_a_43 BI Controller A data bus bit-44 Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-42 mem_sdr_data_a_40 BI Controller A data bus bit-41			
mem_sdr_data_a_46 mem_sdr_data_a_45 mem_sdr_data_a_45 BI Controller A data bus bit-45 mem_sdr_data_a_44 BI Controller A data bus bit-44 mem_sdr_data_a_43 BI Controller A data bus bit-44 mem_sdr_data_a_49 BI Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 Controller A data bus bit-41 Controller A data bus	mem_sdr_data_a_47	BI	
mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_43 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-42 Controller A data bus bit-41			
mem_sdr_data_a_45 mem_sdr_data_a_44 mem_sdr_data_a_43 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_41 BI Controller A data bus bit-44 Controller A data bus bit-43 Controller A data bus bit-42 Controller A data bus bit-42 Controller A data bus bit-42 Controller A data bus bit-41	mem_sdr_data_a_46	BI	
mem_sdr_data_a_44 mem_sdr_data_a_43 mem_sdr_data_a_43 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-42 Controller A data bus bit-41 Controller A data bus		· · · · · · · · · · · · · · · · · · ·	
mem_sdr_data_a_44 mem_sdr_data_a_43 BI Controller A data bus bit-44 Controller A data bus bit-43 mem_sdr_data_a_49 BI Controller A data bus bit-42 Controller A data bus bit-42 Mem_sdr_data_a_41 BI Controller A data bus bit-41	mem_sdr_data_a_45	BI	
mem_sdr_data_a_43 mem_sdr_data_a_49 mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-42 Controller A data bus bit-41 Controller A data bus bit-41 Controller A data bus bit-41 Controller A data bus			
mem_sdr_data_a_43 mem_sdr_data_a_49 BI Controller A data bus bit-43 Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-42 Controller A data bus bit-41 BI Controller A data bus bit-41 Controller A data bus bit-41	mem_sdr_data_a_44	BI	I
mem_sdr_data_a_49 mem_sdr_data_a_41 mem_sdr_data_a_41 mem_sdr_data_a_40 BI Controller A data bus bit-42 Controller A data bus bit-41 Controller A data bus			
mem_sdr_data_a_49 BI Controller A data bus bit-42 mem_sdr_data_a_41 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus bit-41 Controller A data bus	mem_sdr_data_a_43	BI	
mem_sdr_data_a_41 mem_sdr_data_a_41 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus	<u> </u>		
mem_sdr_data_a_41 BI Controller A data bus bit-41 mem_sdr_data_a_40 BI Controller A data bus	mem_sdr_data_a_49	BI ·	
mem_sdr_data_a_40 BI Controller A data bus			
mem_sdr_data_a_40 BI Controller A data bus	mem_sdr_data_a_41	BI	
bit-40	mem_sdr_data_a_40	BI	
			bit-40

mem_sdr_data_a_16	BI	Controller A data bus
		bit-16
mem_sdr_data_a_15	BI	Controller A data bus
		bit-15
mem_sdr_data_a_14	BI	Controller A data bus
		bit-14
mem_sdr_data_a_13	BI	Controller A data bus
		bit-13
mem_sdr_data_a_12	BI	Controller A data bus
		bit-12
mem_sdr_data_a_11	BI	Controller A data bus
		bit-11
mem_sdr_data_a_10	BI	Controller A data bus
		bit-10
mem_sdr_data_a_9	BI	Controller A data bus
		bit-9
mem_sdr_data_a_8	BI	Controller A data bus
		bit-8
mem_sdr_data_a_7	BI	Controller A data bus
,		bit-7
mem_sdr_data_a_6	BI	Controller A data bus
		bit-6
mem_sdr_data_a_5	BI	Controller A data bus
		bit-5
mem_sdr_data_a_4	BI	Controller A data bus
		bit-4
mem sdr data a 3	BI	Controller A data bus
		bit-3
mem_sdr_data_a_2	BI	Controller A data bus
		bit-2
mem_sdr_data_a_1	BI	Controller A data bus
		bit-1
mem_sdr_data_a_0	BI	Controller A data bus
		bit-0
mem_sdr_addr0_a_11	OUT	Controller A addr0 bit-
		11
mem_sdr addr0 a 10	OUT	Controller A addr0 bit-
mom_sur_uuuro_u_ro		10
mem_sdr_addr0_a_9	OUT	Controller A addr0 bit-
		9
mem_sdr_addr0_a_8	OUT	Controller A addr0 bit-
		8
mem_sdr_addr0_a_7	OUT	Controller A addr0 bit-
om_sur_uuuro_a_/		7
mem_sdr_addr0_a_6	OUT	Controller A addr0 bit-
moni_sur_audio_a_0		Controller A additional

mem_sdr_addr0_a_5	OUT	Controller A addr0 bit-
mem_sdr_addr0_a_4	OUT	Controller A addr0 bit-
mem_sdr_addr0_a_3	OUT	Controller A addr0 bit-
mem_sdr_addr0_a_2	OUT	Controller A addr0 bit-
mem_sdr_addr0_a_1	OUT	Controller A addr0 bit-
mem_sdr_addr0_a_0	OUT	Controller A addr0 bit-
mem_sdr_addr1_a_11	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_10	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_9	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_8	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_7	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_6	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_5	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_4	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_3	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_2	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_1	OUT	Controller A addr1 bit-
mem_sdr_addr1_a_0	OUT	Controller A addr1 bit-
mem_sdr_bank0_a_1	OUT	0 Controller A bank0
mem_sdr_bank0_a_0	OUT	select bit-1 Controller A bank0
mem_sdr_bank1_a_1	OUT	select bit-0 Controller A bank1
		select bit-1
mem_sdr_bank1_a_0	OUT	Controller A bank1
mem_sdr_cs_a_7	OUT	select bit-0 Controller A chip
		select bit-7

mem_sdr_cs_a_6	OUT	Controller A chip
		select bit-6
mem_sdr_cs_a_5	OUT	Controller A chip
		select bit-5
mem_sdr_cs_a_4	OUT	Controller A chip
		select bit-4
mem_sdr_cs_a_3	OUT	Controller A chip
		select bit-3
mem_sdr_cs_a_2	OUT	Controller A chip
		select bit-2
mem_sdr_cs_a_1	OUT	Controller A chip
		select bit-1
mem_sdr_cs_a_0	OUT	Controller A chip
		select bit-0
mem_sdr_dqs0_a_1	BI	Controller A data
		strobe0 bit-1
mem_sdr_dqs0_a_0	BI	Controller A data
		strobe0 bit-0
mem_sdr_dqs1_a_1	BI	Controller A data
		strobe1 bit-1
mem_sdr_dqs1_a_0	BI	Controller A data
		strobe1 bit-0
mem_sdr_ras0_a	OUT	Controller A RAS0
mem_sdr_cas0_a	OUT	Controller A CAS0
mem_sdr_we0_a	OUT	Controller A write
		enable0
mem_sdr_clk0_a	OUT	Controller A
		differential clock
		output0
mem_sdr_clk0_a_l	OUT	Controller A
		differential clock
·		output0, low active
mem_sdr_ras1_a	OUT	Controller A RAS1
mem_sdr_cas1_a	OUT	Controller A CAS1
mem_sdr_we1_a	OUT	Controller A write
		enable1
mem_sdr_clk1_a	OUT	Controller A
·		differential clock
		output1
mem_sdr_clk1_a_l	OUT	Controller A
		differential clock
		output1, low active
mem_sdr_clke_a	OUT	Controller A clock
		enable
	Controller A = 115 pins	s

mem_sdr_data_b_41	BI	Controller B data bus
		bit-41
mem_sdr_data_b_40	BI	Controller B data bus
		bit-40
mem_sdr_data_b_39	BI	Controller B data bus
		bit-39
mem_sdr_data_b_38	BI	Controller B data bus
		bit-38
mem_sdr_data_b_37	BI	Controller B data bus
		bit-37
mem_sdr_data_b_36	BI	Controller B data bus
		bit-36
mem_sdr_data_b_35	BI	Controller B data bus
		bit-35
mem_sdr_data_b_34	BI	Controller B data bus
		bit-34
mem_sdr_data_b_33	BI	Controller B data bus
		bit-33
mem_sdr_data_b_32	BI	Controller B data bus
		bit-32
mem_sdr_data_b_31	BI	Controller B data bus
		bit-31
mem_sdr_data_b_30	BI	Controller B data bus
		bit-30
mem_sdr_data_b_29	BI	Controller B data bus
		bit-29
mem_sdr_data_b_28	BI	Controller B data bus
		bit-28
mem sdr data b 27	BI	Controller B data bus
		bit-27
mem_sdr_data_b_26	BI	Controller B data bus
		bit-26
mem_sdr_data_b_25	BI	Controller B data bus
		bit-25
mem_sdr_data_b_24	BI	Controller B data bus
		bit-24
mem sdr data b 23	BI	Controller B data bus
		bit-23
mem_sdr_data_b_22	BI	Controller B data bus
		bit-22
mem_sdr_data_b_21	BI	Controller B data bus
		bit-22
mem_sdr_data_b_20	BI	Controller B data bus
		bit-20
mem_sdr_data_b_19	BI	Controller B data bus
		bit-19
	1	

mem_sdr_data_b_18	BI	Controller B data bus
		bit-18
mem_sdr_data_b_17	BI	Controller B data bus
		bit-17
mem_sdr_data_b_16	BI	Controller B data bus
		bit-16
mem_sdr_data_b_15	BI	Controller B data bus
		bit-15
mem_sdr_data_b_14	BI	Controller B data bus
		bit-14
mem_sdr_data_b_13	BI	Controller B data bus
1, 1, 1, 10	DI DI	bit-13
mem_sdr_data_b_12	BI	Controller B data bus
mam admidate h 11	DI	bit-12 Controller B data bus
mem_sdr_data_b_11	BI	bit-11
mem_sdr_data_b_10	BI	Controller B data bus
mem_sur_data_b_ro		bit-10
mem_sdr_data_b_9	BI	Controller B data bus
incii_sui_data_b_9		bit-9
mem_sdr_data_b_8	BI	Controller B data bus
mom_sar_aaa_b_o		bit-8
mem_sdr_data_b_7	BI	Controller B data bus
		bit-7
mem_sdr_data_b_6	BI	Controller B data bus
		bit-6
mem_sdr_data_b_5	BI	Controller B data bus
		bit-5
mem_sdr_data_b_4	BI	Controller B data bus
		bit-4
mem_sdr_data_b_3	BI	Controller B data bus
		bit-3
mem_sdr_data_b_2	BI	Controller B data bus
		bit-2
mem_sdr_data_b_1	BI	Controller B data bus
		bit-1
mem_sdr_data_b_0	BI	Controller B data bus
110111	OLIT	bit-0
mem_sdr_addr0_b_11	OUT	Controller B addr0 bit-
mam adm sdd-0 b 10	OUT	11
mem_sdr_addr0_b_10	OUT	Controller B addr0 bit-
mem ede adde0 h 0	OUT	Controller P addr0 hit
mem_sdr_addr0_b_9	OUT	Controller B addr0 bit-
mem_sdr_addr0_b_8	OUT	9 Controller B addr0 bit-
mem_sur_auurv_v_o	001	Controller B addro bit-

		
mem_sdr_ bank1_b_0	OUT	Controller B bank1
		select bit-0
mem_sdr_cs_b_7	OUT	Controller B chip select
		bit-7
mem_sdr_cs_b_6	OUT	Controller B chip select
		bit-6
mem_sdr_cs_b_5	OUT	Controller B chip select
		bit-5
mem_sdr_cs_b_4	OUT	Controller B chip select
		bit-4
mem_sdr_cs_b_3	OUT	Controller B chip select
		bit-3
mem_sdr_cs_b_2	OUT	Controller B chip select
		bit-2
mem_sdr_cs_b_1	OUT	Controller B chip select
		bit-1
mem_sdr_cs_b_0	OUT	Controller B chip select
		bit-0
mem_sdr_dqs0_b_1	BI	Controller B data
		strobe0 bit-1
mem_sdr_dqs0_b_0	BI	Controller B data
		strobe0 bit-0
mem_sdr_dqs1_b_1	BI	Controller B data
		strobe1 bit-1
mem_sdr_dqs1_b_0	BI	Controller B data
1 01	OT ITT	strobe1 bit-0
mem_sdr_ras0_b	OUT	Controller B RAS0
mem_sdr_cas0_b	OUT	Controller B CAS0
mem_sdr_we0_b	OUT	Controller B write
	OT ITE	enable0
mem_sdr_clk0_b	OUT	Controller B
		differential clock
mam adv allen h 1	OUT	output0
mem_sdr_clk0_b_l		Controller B differential clock
mem_sdr_ras1_b	OUT	output0, low active Controller B RAS1
mem_sdr_cas1_b	OUT	Controller B CAS1
mem_sdr_we1_b	OUT	Controller B write
mem_sur_wer_b		enable1
mem_sdr_clk1_b	OUT	Controller B
mem_sur_ciki_0		differential clock
·		
mem_sdr_clk1b_1	OUT	output1 Controller B
mem_sur_cik10_1		differential clock
		output1, low active
		outputt, low active

	1				· · · · · · · · · · · · · · · · · · ·	
pfq_mem_data_1			IN			PFQ=>MEM data bit-1
pfq_mem_data_0	ļ		IN			PFQ=>MEM data bit-0
mem_pfq_data_19			OUT			MEM=>PFQ data bit-
						19
mem_pfq_data_18			OUT			MEM=>PFQ data bit-
						18
mem_pfq_data_17			OUT			MEM=>PFQ data bit-
						17
mem_pfq_data_16			OUT			MEM=>PFQ data bit-
						16
mem_pfq_data_15			OUT			MEM=>PFQ data bit-
						15
mem_pfq_data_14			OUT			MEM=>PFQ data bit-
					:	14
mem_pfq_data_13			OUT			MEM=>PFQ data bit-
						13
mem_pfq_data_12			OUT			MEM=>PFQ data bit-
						12
mem_pfq_data_11			OUT			MEM=>PFQ data bit-
						11
mem_pfq_data_10			OUT			MEM=>PFQ data bit-
						10
mem_pfq_data_9			OUT			MEM=>PFQ data bit-9
mem_pfq_data_8			OUT			MEM=>PFQ data bit-8
mem_pfq_data_7			OUT			MEM=>PFQ data bit-7
mem_pfq_data_6			OUT			MEM=>PFQ data bit-6
mem_pfq_data_5			OUT			MEM=>PFQ data bit-5
mem_pfq_data_4			OUT			MEM=>PFQ data bit-4
mem_pfq_data_3	İ		OUT			MEM=>PFQ data bit-3
mem_pfq_data_2			OUT			MEM=>PFQ data bit-2
mem_pfq_data_1			OUT			MEM=>PFQ data bit-1
mem_pfq_data_0			OUT			MEM=>PFQ data bit-0
mem_pfq_clk			OUT	-		MEM=>PFQ clock
mem_pfq_valid			OUT			MEM=>PFQ valid
<u> </u>						signal
mem_pfq_com_1			OUT			MEM=>PFQ
	}					command bit-1
mem_pfq_com_0			OUT			MEM=>PFQ
. — . —						command bit-0
mem_pfq_full			OUT			MEM=>PFQ full
-1 1-		To		53 pins		
	Tot			pins or 30	08 pins	
		Rea	ssembl	y Engine	- ` 	
-				Input	Output	
Pin Name	Pad#	Pin#	Dir	Buffer	Buffer	Description
						<u> </u>

ras_mem_data_33	BI	Memory data bit-33
ras_mem_data_32	BI	Memory data bit-32
ras_mem_data_31	BI	Memory data bit-31
ras_mem_data_30	BI	Memory data bit-30
ras_mem_data_29	BI	Memory data bit-29
ras_mem_data_28	BI	Memory data bit-28
ras_mem_data_27	BI	Memory data bit-27
ras_mem_data_26	BI	Memory data bit-26
ras_mem_data_25	BI	Memory data bit-25
ras_mem_data_24	BI	Memory data bit-24
ras_mem_data_23	BI	Memory data bit-23
ras_mem_data_22	BI	Memory data bit-22
ras_mem_data_21	BI	Memory data bit-21
ras_mem_data_20	BI	Memory data bit-20
ras_mem_data_19	BI	Memory data bit-19
ras_mem_data_18	BI	Memory data bit-18
ras_mem_data_17	BI	Memory data bit-17
ras_mem_data_16	BI	Memory data bit-16
ras_mem_data_15	BI	Memory data bit-15
ras_mem_data_14	BI	Memory data bit-14
ras_mem_data_13	BI	Memory data bit-13
ras_mem_data_12	BI	Memory data bit-12
ras_mem_data_11	BI	Memory data bit-11
ras_mem_data_10	BI	Memory data bit-10
ras_mem_data_9	BI	Memory data bit-9
ras_mem_data_8	BI	Memory data bit-8
ras_mem_data_7	BI	Memory data bit-7
ras_mem_data_6	BI	Memory data bit-6
ras_mem_data_5	BI	Memory data bit-5
ras_mem_data_4	BI	Memory data bit-4
ras_mem_data_3	BI	Memory data bit-3
ras_mem_data_2	BI	Memory data bit-2
ras_mem_data_1	BI	Memory data bit-1
ras_mem_data_0	BI	Memory data bit-0
	Mamoru - 60 nie	20 '

Memory = 69 pins Total pins = 69

CPU Interface

				Input	Output	
Pin Name	Pad#	Pin#	Dir	Buffer	Buffer	Description
cpu_config_1						Address/data multiplex
						select
·						0: Non-multiplexed
				_		1: Multiplexed
cpu_config_0						Endian select
						0: Big endian

	 			1: Little endian
cpu_cs_l				CPU chip select, active
				low
cpu_rdwr_l	 			CPU read/write strobe
cpu_addr_9				CPU address bit-9
cpu_addr_8				CPU address bit-8
cpu_addr_7				CPU address bit-7
cpu_addr_6				CPU address bit-6
cpu_addr_5				CPU address bit-5
cpu_addr_4				CPU address bit-4
cpu_addr_3				CPU address bit-3
cpu_addr_2		·		CPU address bit-2
cpu_addr_1				CPU address bit-1
cpu_addr_0				CPU address bit-0
cpu_data_31				CPU data bit-31
cpu_data_30	· _			CPU data bit-30
cpu_data_29				CPU data bit-29
cpu_data_28				CPU data bit-28
cpu_data_27				CPU data bit-27
cpu_data_26				CPU data bit-26
cpu_data_25				CPU data bit-25
cpu_data_24				CPU data bit-24
cpu_data_23				CPU data bit-23
cpu_data_22				CPU data bit-22
cpu_data_21				CPU data bit-21
cpu_data_20				CPU data bit-20
cpu_data_19				CPU data bit-19
cpu_data_18				CPU data bit-18
cpu_data_17				CPU data bit-17
cpu_data_16				CPU data bit-16
cpu_data_15				CPU data bit-15
cpu_data_14				CPU data bit-14
cpu_data_13				CPU data bit-13
cpu_data_12				CPU data bit-12
cpu_data_11				CPU data bit-11
cpu_data_10				CPU data bit-10
cpu_data_9				CPU data bit-9
cpu_data_8				CPU data bit-8
cpu_data_7			_	CPU data bit-7
cpu_data_6				CPU data bit-6
cpu_data_5				CPU data bit-5
cpu_data_4				CPU data bit-4
cpu_data_3				CPU data bit-3
cpu_data_2				CPU data bit-2
cpu_data_1				CPU data bit-1

01	

	,						
cpu_data_0	<u> </u>					CPU data bit-0	
Total pins = 46							
MISC							
*				Input	Output		
Pin Name	Pad#	Pin#	Dir	Buffer	Buffer	Description	
test_mux_31			OUT			Test mux out bit-31	
test_mux_30	-		OUT			Test mux out bit-30	
test_mux_29			OUT			Test mux out bit-29	
test_mux_28			OUT			Test mux out bit-28	
test_mux_27			OUT			Test mux out bit-27	
test_mux_26			OUT			Test mux out bit-26	
test_mux_25			OUT			Test mux out bit-25	
test_mux_24			OUT			Test mux out bit-24	
test_mux_23			OUT			Test mux out bit-23	
test_mux_22			OUT			Test mux out bit-22	
test_mux_21			OUT			Test mux out bit-21	
test_mux_20			OUT			Test mux out bit-20	
test_mux_19			OUT			Test mux out bit-19	
test_mux_18			OUT			Test mux out bit-18	
test_mux_17			OUT			Test mux out bit-17	
test_mux_16			OUT			Test mux out bit-16	
test_mux_15			OUT			Test mux out bit-15	
test_mux_14			OUT			Test mux out bit-14	
test_mux_13			OUT			Test mux out bit-13	
test_mux_12			OUT			Test mux out bit-12	
test_mux_11			OUT			Test mux out bit-11	
test_mux_10			OUT			Test mux out bit-10	
test_mux_9			OUT			Test mux out bit-9	
test_mux_8			OUT			Test mux out bit-8	
test_mux_7			OUT			Test mux out bit-7	
test_mux_6			OUT	-		Test mux out bit-6	
test_mux_5			OUT			Test mux out bit-5	
test_mux_4			OUT			Test mux out bit-4	
test_mux_3			OUT	_		Test mux out bit-3	
test_mux_2			OUT			Test mux out bit-2	
test_mux_1			OUT	-		Test mux out bit-1	
test_mux_0			OUT			Test mux out bit-0	
testmux_clkout			OUT			Test mux clkout	
Tck			IN			JTAG clock	
Tms	1		ĪN			JTAG mux select	
tdi_scan_in			IN			JTAG data in, or scan	
						in	
tdo_bist_scan_out			OUT			JTAG data out, or scan	
						out	
trst_l			IN			JTAG reset, active low	
			<u> </u>				

Figure 22

#	Block's name	Address	Start	Last	Total length
			Address	Address	
		[9:6]			
1	CPU Interface	0000ь			64d
2	Incoming SPI-4	0001b			64d
3	Lookup Engine	0010b			64d
4	Segmentation	0011b			64d
5	Memory Manager	0100b	0000000Ь	1111111b	64d
6	Reassembly	0101b	:		64d
7	Outgoing SPI-4	0110b			64d
8		0111b			64d
	Reserved	-			:
16		1111b			64d

Figure 23

Figure 24

Symbol	Parameter	Min	Max	Units
t _{Sar}	Address/rdwr_l to Valid Read set-up time	0		ns
t _{Har}	Address/rdwr_l to Valid read hold time	0		ns
t _{Salr}	Address to latch set-up time	5		ns
T _{Halr}	Address to latch hold time	5		ns
T_{VL}	Valid latch pulse width	5		ns
T _{Slr}	Latch to Read set-up	0		ns
T _{Hlr}	Latch to Read hold	5		ns
T_{Prd}	Valid Read to valid data propagation delay		50	ns
tzrd	Valid Read negated to output tri-state		10	ns
t _{VRD}	Valid Read pulse width	60		

Figure 25

Figure 26

Symbol	Parameter	Min	Max	Units
t _{Saw}	Address/rdwr_l to Valid Write set-up time	0		ns
t _{Haw}	Address/rdwr_l to Valid Write hold time	0		ns
t _{Salw}	Address to latch set-up time	5		ns
T _{Halw}	Address to latch hold time	5		ns
T _{VL}	Valid latch pulse width	5		ns
T_{Slw}	Latch to Write set-up	0		ns
T _{Hlw}	Latch to Write hold	5		ns
$T_{\sf Sdw}$	Data to valid Write set-up time	0		ns
T _{Hdw}	Data to valid write hold time			ns
T _{VWR}	Valid Write pulse width	60		ns

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31.

Figure 32

Figure 33

Figure 34

Figure 35

Address	Name	Туре	Description					
0 – 31	Reserved							
32	VERSION	R	Read only register to contains the					
			version of the chip.					
			It's value is 0000_0001h					
33	MOD_CTRL	RW	[5:0] – Port number for ingress chip					
			Default value: 0					
			[7:6] – Reserved					
			[8] – Ingress/Egress chip selection					
			0 – ingress chip					
			1 – egress chip					
			Default value: 1					
34	MEM_CTRL	RW	[2:0] – Number of supported BIDs					
			000 – 1M BIDs					
			001 – 2M BIDs					
			010 – 3M BIDs					
			011 – 4M BIDs					
			100 – 5M BIDs 101 – 6M BIDs 110 – 7M BIDs					
			101 – 6M BIDs 110 – 7M BIDs					
			111 – 8M BIDs					
	•		Default value: 001					
			[3] – Reserved					
			[5:4] – Chip select generation					
			00 – based on address[20:19]					
			01 - based on address[21:20]					
			10 - based on address[22:21]					
			11 – Reserved					
			Default value: 00					
	·		[31:6] – Reserved					

35	Soft_Reset	RW	[0] - Soft reset register for Incoming					
	SOIL_Reset		SPI-4 block.					
			0: normal operation (default)					
			1: reset block					
			[1] – Soft reset register for Outgoing					
		ļ	SPI-4 block.					
			0: normal operation (default)					
			1: reset block					
	[2] – Soft reset register for Lo							
		Engine block.						
		0: normal operation (default)						
			1: reset block					
			[3] – Soft reset register for					
			Segmentation block.					
			0: normal operation (default)					
			1: reset block					
			[4] – Soft reset register for Memory					
			Manager block.					
			0: normal operation (default)					
			1: reset block					
			[5] – Soft reset register for Reassembly					
			block.					
			0: normal operation (default)					
			1: reset block					
			[31:6] - Reserved					

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Bit Position	Label	Description
15	Туре	Control Word Type.
		Set to either of the following values: 1: payload control word (payload transfer will immediately follow the control word). 0: idle or training control word (otherwise).
14:13	EOPS	End-of-Packet (EOP) Status.
		Set to the following values below according to the status of the immediately preceding payload transfer.
		0 0: Not an EOP. 0 1: EOP Abort (application-specific error condition). 1 0: EOP Normal termination, 2 bytes valid. 1 1: EOP Normal termination, 1 byte valid.

Figure 43

	Bit [15:12]	Next Word Status	Prior Word Status	Meaning
0	0000	ldle	Continued	Idle, not EOP, training control word
1	0001	Reserved	Reserved	Reserved
2	0010	Idle	EOP w/abort	Idle, Abort last packet
3	0011	Reserved	Reserved	Reserved
4	0100	Idle	EOP w/1 byte	Idle, EOP with 2 bytes valid
5	0101	Reserved	Reserved	Reserved
6	0110	Idle	EOP w/2 bytes	Idle, EOP with 1 byte valid
7	0111	Reserved	Reserved	Reserved
8	1000	Valid	None	Valid, no SOP, no EOP
9	1001	Valid/SOP	None	Valid, SOP, no EOP
Α	1010	Valid	EOP w/abort	Valid, no SOP, abort

	Bit [15:12]	Next Word Status	Prior Word Status	Meaning
В	1011	Valid/SOP	EOP w/abort	Valid, SOP, abort
С	1100	Valid	EOP w/ 2 bytes	Valid, no SOP, EOP with 2 bytes valid
D	1101	Valid	EOP w/ 2 bytes	Valid, SOP, EOP with 2 bytes valid
E	1110	Valid	EOP w/1 byte	Valid, no SOP, EOP with 1 byte valid
F	1111	Valid	EOP w/1 byte	Valid, SOP, EOP with 1 byte valid

Figure 44

Current	C	Word	Word	Next		Comments
State	T	1	2	State		
	R					
	L					
IDLE	11	I_ctrl	I_ctrl	IDLE		
_	11	I_ctrl	P_ctrl	PLOAD		
	11	I_ctrl	T_ctrl	TRAIN_C		
	11	T_ctrl	T_ctrl	TRAIN_C		
	10	P_ctrl	Data	DATA1		,
	01/					Error
	00					
TRAIN_C	11	T_ctrl	T_ctrl	TRAIN_C		
	10	T_ctrl	T_data	TRAIN_D	¥ :	
	00_	T_data	T_data	TRAIN_D		
	01					Error
TRAIN_D	00	T_data	T_data	TRAIN_D	·	
	01	T_data	P_ctrl	PLOAD		
	01	T_data	I_ctrl	IDLE		
	01	T_data	T_ctrl	TRAIN_C		
	10/					Error
_	11		:			
PLOAD	00	Data	Data	DATA2		
	01	Data	P_ctrl	PLOAD		
	01	Data	I_ctrl	IDLE		
	10/					Error
	11					

Figure 45

Figure 46

Figure 47

CALENDER[i] is the round robin sequence of time slots among the lowest data rate channels. This example shows that each time slot coresponds to a OC-12 channel. One OC-48 port will be repeated 4 time slots within each CALENDAR sequence to have the proper data rate.

Figure 48

Figure 49

Figure 50

Name	Туре	Width	Depth	Total size	Access Time
Input FIFO	SSRAM	34 bits	256	8704 bits	2.5ns read/write
	(dual-port)				
Sync FIFO	SSRAM	64 bits	8	512 bits	5ns read/write
	(dual-port)				
SPI Table	SSRAM	29 bits	64	1856 bits	5ns read/write
	(dual-port)				
Data FIFO	SSRAM	64 bits	672	43008 bits	5ns read/write
	(dual-port)				!
Control FIFO	SSRAM	27 bits	84	2268 bits	5ns read/write
	(dual-port)				
Free Buffer List	SSRAM	10 bits	84	840 bits	5ns read/write
	(dual-port)				

Figure 51

Name	Description	Width	Dir	Clock									
•	Chip Pins												
RDCLK	Receive Data Clock (400Mhz)	1	In	Yes									
RDAT	Receive Data	16	In	400									
				MHz									
RCTL	Receive Control	1	. In	400									
				MHz									
RSCLK	Receive Status Clock	1	Out	Yes									
RSTAT	Receive FIFO Status	2	Out	200 Mhz									

Figure 52

Register Name	Address	Description
CALENDAR_LEN		This is the length of the port sequence which is
		programmed upon start-up, depending on the
		number of active ports in the system; the
·		maximum supported length is 64 ports.
CALENDAR_M	,	The number of times the calendar sequence to
		be repeated during the FIFO info transfers.

Figure 53

(Note: In cycle 1, XX and abcd depend on the contents of the interval after the last preceding control word.)

Cycle	TCTL/							TDA	T[i] .	/ RD	AT[i]					
	RCTL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	x	x	0	0	0	0	0	0	0	0	0	а	b	С	đ
2 - 11	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
12 - 21	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
20α -18 20α-9	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
20α-8 - 20α+1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0

Figure 55

Current	Data_	Input	Next State	Word1	Word2	Pos_v	Neg_v	Comments
State	valid							
IDLE	0	X	IDLE	I_ctrl	I_ctrl	1	1	
	1	P_ctrl	PLOAD	I_ctrl	I_ctrl	11	1	
	0	T_ctrl	TRAIN_C	I_ctrl	I_ctrl	1	1	
					_			
TRAIN_C	0	T_ctrl	TRAIN_C	T_ctrl	T_ctrl	1	1	
	0	T_data	TRAIN_D	T_ctrl	T_ctrl	1	1	
TRAIN_D	0	T_data	TRAIN_D	T_data	T_data	0	0	
	1	P_ctrl	PLOAD	T_data	T_data	0	0	
	0	I_ctrl	IDLE	T_data	T_data	0	0	
_	0	T_ctrl	TRAIN_C	T_data	T_data_	0	0	
PLOAD	1	Data	DATA1	P_ctrl	Data	1	0	
	1	EOP	PLOAD	P_ctrl	Data	1	0	
	0	EOP	IDLE	P_ctrl	Data	1	0	
							,	
DATA1	1	Data	DATA3	Data	Data	0	0	
	1	EOP	DATA0	Data	P_ctrl	0	1	
	0	EOP	IDLE	Data	I_ctrl	0	1	
DATA2	1	Data	DATA0	Data	Data	0	0	
	1	EOP	DATA0	Data	P_ctrl_	0	1	
	0	EOP	IDLE	Data	I_ctrl	0	1	•
DATA3	1	Data	DATA1	Data	Data	0	0	
	1	EOP	DATA0	Data	P_ctrl	0	1	
	0	EOP	IDLE	Data	I_ctrl	0	1	
DATA0	1	Data	DATA2	Data	Data	0	0	
	1	EOP	DATA0	Data	P_ctrl	0	1	
	0	EOP	IDLE	Data	I_ctrl	0	1	

Figure 56

Figure 57

Figure 58

	Bit 15	Bit 8	Bit 7		Bit 0
Data Word1	Byte1			Byte2	
Data Word2	Byte3			Byte 4	
Data Word3	Byte5			Byte6	
Data Word4	Byte7	- 1		Byte8	

Figure 59

Figure 60

J: Jump indicates this is the last port on the calender V: Valid indicates the port is valid for data transfer Addr: equivalent of port entry number, range is 0 to 63

Event

1. System Reset

Addr	port ID	J	٧
0	х	0	0
1	x	0	0
2	х	0	0
3	х	0	0
4	х	0	0
5	х	0	0
6	x	0	0
7	х	0	0

2. Add first port (5)

Addr	port ID	J	V
0	5	1	1
1	х	0	0
2	х	0	0
3	х	0	0
4	х	0	0
5	х	0	0
6	х	0	0
7	х	0	0

3. Add port 7

Addr	port ID	J	V
0	5	0	1
1	7	1	1
2	х	0	0
3	х	0	0
4	x	0	0
5	х	0	0
6	х	0	0
7	х	0	0

 $3. \ Add \ port \ 3$

Addr	port ID	J	٧
0 -	5	0	1
1	7	0	1
2	3	1	1
3	х	0	0
4	x	0	0
5	х	0	0
6	x	0	0
7	х	0	0

Figure 61

Figure 62

Figure 63

Figure 64

Name	Description	Width	Dir	Clock
		Chip	pins	
Tdclk	1	Out	Transmit Data Clock (400Mhz)	400
				MHz
Tdat	16	Out	Transmit Data	400
				MHz
Tetl	1	Out	Transmit Control	400
				MHz
Tsclk	1	In	Transmit Status Clock	400
				MHz
Tstat	2	In	Transmit FIFO Status	400
				MHz
		Re-ass	embly	
Ras_spio_data	64	In	64 bit input data bus	200
•				MHz
Ras_spio_data_valid	1	In	Valid signal	200
_				MHz
Ras_spio_sop	1	In	Start of Packet	200
				MHz
Ras_spio_eop	1	In	End of Packet	200
				MHz
Ras_spio_length	8	In	Data length	200
				MHz
Ras_spio_abort	1	In	Re-assembly mark abort for the	200
			packet	MHz
Ras_spio_empty	1	In	Re-assembly mark port data is	200
			empty	MHz
Ras_spio_bv	8	In	Re-assembly mark byte is valid	200
				MHz
spio_ras_ctrl_request	1	Out	Request data from port indicated by	200
			spio_ras_pid	MHz
spio_ras_ctrl_pid	. 6	Out	Request data from port when	200
			spio_ras_ctrl_request is asserted	MHz
ras_spio_cpu_full	1	In	CPU DATA Buffer is full	200
				MHz
		Data	base	
spio_dbs_clk	1	Out	Input clock from the re-assembly	200
·			block (a different chip)	Mhz
spio_dbs_sync	1	Out	A sync indication, if set, start of	200
			message	Mhz
spio_dbs_stt	1	Out	Status of the output ports in the re-	200
			assembly block.	Mhz
		CPU In	terface	
Spio_cpu_data_out	32	Out	Data from SPI to CPU	200
• - •				MHz
Cpu_spio_cs_l	1	In	Chip select	200

				MHz
Cpu_rdwr_l	1	In	Read/Write select.	200
-				MHz
Cpu_addr	20	In	CPU address	200
				MHz
Cpu_data_in	32	In	CPU data	200
				MHz
		Glo	bal	
G_SYNC	1	In	This is the global sync from the	200MHz
			GlobalSync block.	
spio_tst_mux_out	32	OUT	SPIO Test Mux pins.	200MHz
Spio_clk	1	IN	400 MHz system clock to SIPO	400MHz
			block.	
spio_rst_l	1	IN	A combination of POR and SPIO	200MHz
			Soft Reset.	
spio_in_en	1	IN	SPIO Input Enable signal.	200MHz
spio_out_en	1	IN	SPIO Output Enable Signal.	200MHz

Figure 65

Figure 66

Figure 67

Address	Name	Туре	Description
0	calender_len	RW	[15:0] – calender_len
			Corresponds to the number of ports with
			the lowest data rate that can be
			accommodated in the total data rate of
			the given application.
			CALENDAR_LEN must be at least as
			large as the number of active ports in the
			system.
0	calender_m	RW	[31:16] – Calendar sequence repeat M
			times
	131		·
	,		The calendar sequence (of length
20			CALENDAR_LEN) is repeated
			CALENDAR_M times before the DIP-2
			parity and "1 1" framing words are
		i i	inserted.
1	Max_clendar_len	RW	[15:0] – Maximum supported value of
			calendar_len.
			Indicates upper bound limit of the
			calendar_len. Users must ensure that the
			value of CALENDAR_LEN on the
			sending side of a FIFO status channel
			must not exceed
	,		MAX_CALENDAR_LEN on the
			receiving side.

1	Max_burst1	RW	[31:16] - FIFO can accept 16 byte
			blocks when FIFO status channel
-		1	indicates starving.
			The value of the Max_burst1 must be
			greater than 5. Setting the value of
	•		Max_burst1 be greater than 5 is
			equivalent to setting burst size to be
			greater than 80 bytes (e.g. 96 bytes) of
	1		data per transfer. By setting minimum
		}	transfer size to be greater than 80 bytes,
			one entire Maximus cell (80 bytes) can
		1	· · · · · · · · · · · · · · · · · · ·
			be transfer in a given transfer without
			breaking one cell into two transfers.
			Thus avoid partial cell transfer.
2	Max_burst2	RW	[15:0] - FIFO can accept 16 byte blocks
			when FIFO status channel indicates
			starving.
			!
			The value of the Max_burst2 must be
			greater than 5. Setting the value of
			Max_burst2 be greater than 5 is
		İ	equivalent to setting burst size to be
			greater than 80 bytes (e.g. 96 bytes) of
			data per transfer. By setting minimum
			transfer size to be greater than 80 bytes,
			one entire Maximus cell (80 bytes) can
			be transfer in a given transfer without
		i	breaking one cell into two transfers.
			Thus avoid partial cell transfer.
		DW	[31:16] – Number of repetitions of the
2	Data_train_rep	RW	
	-		data training.
			NOTE: the vielue of Date train ren
			NOTE: the value of Data_train_rep
			should be minimum of 5. Since this
			parameter determines the frequency of
			data training pattern, by setting the value
<u> </u>			less than 5 may reduce the data
			bandwidth near or less than 10Gb/sec.
3		RW	[15:0] – Interval between training
	Data_max_t		sequences on data path interface.

Figure 68

Address	Name	Type	Description	
0	COM	R/W	[31:28] – Opcode [27:0] – Address, depending on the command. No default value.	
1-8	R0-R7	R/W	General-purpose register. No default value	
7	R8	R/W	to port 0, and bit [1] corresponds to port 1,etc. When the bit is set to 1'b1, the corresponding port should ignue the SPI status from the SPI interface and send "not full" status.	
			the Database block. Also, when the bit is set to 1'b1, SPI should mark the data as bad while sending data out for the given port. The purpose of the flush bit is to flush data left in the pipe for a given port so the data left from a dead port does not remain inside	
8	R9	R/W	the memory. Port flush indicator for ports 64 to 32. Bit location [0] corresponds to port 32, and bit [1] corresponds to port 33, etc. See R6 for description.	
9–31	Reserved		- Constitution	
32	CONTROL	R/W	[0] – MODE. If set, Outgoing SPI is operating in an Ingress chip. If reset the Outgoing SPI is operating in an Egress chip Default value 0 (egress mode). [1] – OUT_EN Global output enable for all ports, if reset, no output stage will be performed for all ports Default value 0 (output disabled).	
			[31:2] – Reserved	
33	R33 (spio_err)	R	If there is a parity error, the error is reported into the control status register (spio_err [0]) by setting 1'b1 into the bit. This spio_err register is self-cleared upon CPU read.	

Figure 69

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	00001		R[17:0]				Addr[9:0]		
R0		calend	calender_m			calende	r_len		

Figure 70

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	00010		R	[17:0]			Addr[9:0]	
R0		calend	ler_m			calende	r_len	

Figure 71

Register	31-28	27-24	27-24 23-20 19-16 15-12 11-8					3-0
COM	00011		R	17:0]			Addr[9:0]]
R1		Max_l	burst1		1	Max_clen	dar_len	

Figure 72

Figure 73

Register	31-28	27-24	23-20	11-8	7-4 .	3-0		
COM	00101		R[[17:0]			Addr[9:0]]
R2		Data_tr	Data_train_rep			Max_b	urst2	

Figure 74

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01000		R	17:0]			Addr[9:0]]
R3		Fifo_1	nax_t			Data_n	nax_t	

Figure 75

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01001			R[19:0]			Addr	[7:0]
R5	Rese	erved	Rese	rved	Port Entry	number	Port ID	+ J+V

P – Port ID

J – Jump bit

V – Port valid

Figure 76

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01010		R[19:0]				Addr	[7:0]
R5	Rese	rved	Rese	erved	Port Entry	y number	Port ID	+ J+V

P – Port ID

J – Jump bit

V - Port valid

Figure 77

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01011	-		R[19:0]			Addı	r[7:0]
R6			Por	t flush fo	or port [3]	1:0]		
R7			Por	t flush for	r port [63	:32]		

Figure 78

Figure 79

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01101			R[19:0]			Addr	[7:0]
R33				Spic	_err			

Figure 80

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01110			R[19:0]			Addr	[7:0]
R34			SI	PIO_TST	MUX_SI	EL		

Figure 81

Register	31-28	27-24	27-24 23-20 19-16 15-12 11-8 7-4 3					
COM	01111			R[19:0]			Addr	[7:0]
R34			SI	PIO_TST	MUX_SI	EL		

Figure 82

Figure 83

Figure 86

RANGE **NAME WIDTH TYPE** WR **DESCRIPTION PORT** The lookup type of incoming 3 2:0 **ALL** S **TYPE** traffic of the FID The number of bytes to end of Complete 5 7:3 **DIR/DEF** S header to strip that includes INT & SW **HD STRIP** the switch header and the internal header **INT HDR** 5 12:8 **DIR/DEF** S The number of bytes to the start of Internal header **EXTRACT** starting from the end of the complete INT & SW header FID 20 32:13 **ALL** H/S FID used until EOP or always for default type The FID type used until EOP FID TYPE 4 3 6:33 ALL H/S or always for default type **EFCI BIT from SOP burst EFCI** Default-H/S 37 1 CLP H/S **CLP BIT from SOP burst** 1 38 Default H/S OAM BIT from SOP burst **OAM** 39 Default Class of traffic **CLASS** 3 42:40 H/S **ALL RSVD** 43 ALL **RSVD**

Figure 88

NAME	WIDTH	BYTE	RANGE	WR	DESCRIPTION ·
CRC	1	0	0	S	If set, then generate the CRC
LENGTH	5	0	5:1	S	The number of bytes add
RSVD	2	0	7:6	S	N/A
ENCAP HEADER	128	17:1	135:8	S	HEADER to add

Figure 89

PORT TYPE	OPERATION	DESCRIPTION
000	None	Direct Flow ID (packets only)
001	No Hash	Default Flow ID
010	ALL	Special C mode
011	ALL	MPLS (PPP, Frame Relay over SONET 0
100	ALL	ATM (12-bitVPI, VCI)
101	ALL	ATM (8-bitVPI, VCI)
110	ALL	ATM (12-bit VPI only, mask out VCI)
111	ALL	ATM (8-bit VPI only, mask out VCI)

Figure 90

NAME	NO BITS	RANGE	WR	DESCRIPTION
LABEL	34	33:0	S	This is the label that will be compared to the input to
or TAG				the hash table
Valid	1	34	S	If set, then the entry is valid
FID	20	54: 35	S	
Traffic	4	58:55	S	If set, then the head BID is the EOP one for packets.
Type			2	•
CLASS	3	61:59	S	Not used
RSVD	10	71:62		Not Used

Figure 91

NAME	Width in Bits
DATA	64
FID	20
TYPE	4
CLASS	1
EFCI	11
CLP	1
OAM	11
CRC	1
SOP	11
EOP	1
SOB	1
EOB	1
PORT	6
VALID BYTE	3
	1
VALID	

Figure 92

Figure 93

SIGNAL NAME	WIDTH	DIR	DESCRIPTION
	S	PI Interf	ace
SPI_DATA	64	IN	Input data bus
SPI_VALID	1	IN	Input data valid signal
SPI_SOP	1	IN	Start of Packet
SPI_EOP	1	IN	End of Packet
SPI_SOB	1	IN	Start of data burst
SPI_EOB	1	IN	End of data burst
SPI_IPID	6	IN	Input port ID (IPID)
SPI_BYTES	3	IN	# Of valid bytes in the last data word
SPI_ERR	1	IN	Marks bad packets for the
			segmentation engine
SPI_ALMOST_FULL	Nearly Full		
	Segme	ntation	Interface
LKUP_DATA	64	OUT	Output data bus
LKUP_VALID	1	OUT	Output data valid signal
LKUP_SOP	1	OUT	Start of Packet
LKUP_EOP	1	OUT	End of Packet
LKUP_SOB	1	OUT	Start of data burst
LKUP_PID	6	OUT	Input port ID (PID)
LKUP_BYTES	3	OUT	# Of valid bytes in the last data word
LKUP_ERR	1	OUT	Marks bad packets for the segmentation engine
LKUP_TYPE	4	OUT	Type of traffic
LKUP_FID	20	OUT	Flow ID
LKUP_OAM	1	OUT	OAM
LKUP_CLP	1	OUT	CLP
LKUP_EFCI	1	OUT	EFCI
LKUP_CRC	1	OUT	Calculate CRC
SEG_ALMOST_FULL	1	In	Nearly Full

Figure 94

SIGNAL	DESCRIPTION
POR_L	Power on reset.
RST_LU_L	Reset the Look Up engine. It is a level signal.
INPUT_ENABLE	Input block enable. It is zero on power up.
OUTPUT_ENABLE	Output block enable. It is zero on power up.

Figure 95

Figure 96

Figure 97

MEM_SIZE INPUT VALUES	MEMORY SIZE
000	1 M
<u>0</u> 01	2 M
010	3 M
011	4 M
100	5 M
101	5 M
110	7 M
111	8 M

Figure 98

Figure 99

MEM_CS	ADRESS_BITS
00	20:19
01	21:20
10	22:21
11	Not Used

Figure 100

Start address	Last address	Total length		
40h	3Fh	64d		

Figure 101

Address		Type	Description
	Name		
0	Command + Address	R/W	[31:28] – Opcode, [27:0] - Address
1	R0	R/W	[31:0] 32 bits of data
2	R1	R/W	[63:32] 32 bits of data
31-3	Reserved		
32	CPU FID register	R/W	[19:0] 20 bit wide CPU FID that is
			used when there is no match
33	Memory Channel	R/W	[31:2] Reserved
•	Enable		If set enable Memory Channel 1 to
			access memory 1 and CAM 1 during
			lookup, Default value "1". [1]
		!	If set enable Memory Channel 0 to
			access memory 0 and CAM 0 during
	,	L	lookup, Default value "1". [0]
63-33	Reserved		Not Used

Figure 102

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	00000		Don't Care						
R0		Don't Care							
R1			Don't Care						

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	00001	Don't	ADDR [22:0]						
RO		R0 [31:0] Data							
R1		R1 [31:0] Data							
R2		R2 [7:0] Data							

Figure 104

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	00010	Don't Care ADDR [22:0]						
R0		R0 [31:0] Data						
R1		R1 [31:0] Data						
R2		R2 [7:0] Data						

Figure 105

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	00001	Don't	Care	ADDR [22:0]					
R0		R0 [31:0] Data							
R1		R1 [31:0] Data							
R2		R2 [7:0] Data							

Figure 106

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	00010	00010 Don't Care ADDR [22:0]							
R0		R0 [31:0] Data							
R1		R1 [31:0] Data							
R2		R2 [7:0] Data							

Figure 107

Register	31-27	26-24	23-20	19-16 15-12 11-8 7-4				
COM	00011	Don'	t Саге			DDR [5:0]	
RO				R0 [31:0] Data			
R1		R1 [11:0] Data						

Figure 108

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4_	3-0
COM	00100	Don'	t Care		A	DDR [5:0]	<u>]</u>	
RO				R0 [31:0] Data			
R1		R1 [11:0] Data						

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01001				Oon't Care			
RO			LUT_KE	Y [31:0], F	Register Bit	s (31:0)		
R1		LUT_KEY [33:32], Register Bits (1:0) Valid, Register Bit (2) FID [19:0], Register Bits (22:3)						
		LUT_TYPE [3:0], Register Bits (26:23)						
		LUT_CRC_KEY_SEL [1:0], Register Bits (28:27) [CLASS [2:0], Register Bits (31: 29)						

Figure 110

31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
01010				Oon't Care			
		LUT_KE	Y [31:0], R	Register Bit	s (31:0)		
	LU	T_CRC_K	EY_SEL[1:0], Regist	ter Bits (3:	2)	
		01010	01010 LUT_KE LUT_KE LUT_CRC_K	01010	Don't Care LUT_KEY [31:0], Register Bit LUT_KEY [33:32], Register B LUT_CRC_KEY_SEL [1:0], Register	Don't Care LUT_KEY [31:0], Register Bits (31:0) LUT_KEY [33:32], Register Bits (1:0)	Don't Care LUT_KEY [31:0], Register Bits (31:0) LUT_KEY [33:32], Register Bits (1:0) LUT_CRC_KEY_SEL [1:0], Register Bits (3:2)

Figure 111

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01011	Don't Care					•	
RO			LUT_KEY [31:0], Register Bits (31:0)					
R1		LUT_KEY [33:32], Register Bits (1:0) LUT_CRC_KEY_SEL [1:0], Register Bits (3:2) [DONTCARE], Register Bits (31: 4)						

Figure 112

Figure 113

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01100	Don't	Care		A	ADDR [4:0]	
R0		R0 [31:0] Data						
R1		R1 [31:0] Data						
R2		R2 [7:0] Data						

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	Ò1101	Don'	Care		A	ADDR [4:0]	
RO			R0 [31:0] Data					
R1			R1 [31:0] Data					
R2			R2 [7:0] Data					

Figure 115

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01110	Don't	Care		A	DDR [4:0]	
R0				R0 [31:0)] Data			
R1			R1 [31:0] Data				·	
R2			R2 [7:0] Data					

Figure 116

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01111	Don'	t Care			DDR [4:0]	
RO				R0 [31:0] Data			
R1				R1 [31:0] Data			<u></u>
R2		R2 [7:0] Data						_

Figure 117

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0

Figure 118

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	10001				Don't Care			

Figure 119

Figure 120

EFCI	1	7
CLP	1	6
OAM	1	5

Figure 121

Figure 122

Figure 123

PORT TYPE	OPERATION	DESCRIPTION
000	None	Direct Flow ID (packets only)
001	No Hash	Default Flow ID
010	ALL	Special C mode
011	ALL	MPLS (PPP, Frame Relay over SONET 0
100	ALL	ATM (12-bitVPI, VCI)
101	ALL	ATM (8-bitVPI, VCI)
110	ALL	ATM (12-bit VPI only, mask out VCI)
111	ALL	ATM (8-bit VPI only, mask out VCI)

Figure 124

Figure 125

SOP	EOP	CLASS	OAM	CLP	EFCI	TYPE	FID
1 bit	1 bit	3 bits	1 bit	1 bit	1 bit	4 bits	20 bits
0	1	0:3				0:3	0:19
0	1	2:4	5	6	7	8:11	12:31

Figure 126

Figure 127

SPCL LK	HDR ADDR	RSVD	OAM	CLP	EFCI	ТҮРЕ	CLASS	CID
1 bit	3 bits	1 bit	1 bit	1 bit	1 bit	4 bits	3 bits	17 bits
0	1:3	4	5	6	7	8:11	12:14	15:31

Figure 128

CRC	LENGTH	RSVD	ENCAPSULATION HEADER
1	5 Bits	2	16 BYTES

Figure 129

Figure 130

Figure 132

AZA-001/2001-P00			85				
SEG TYPE	ТҮРЕ	Application	SPII Input	SPII OUTPUT	LUT OUTPUT	Operation	SEG OUTPU
1	0	Ingress TM	ATM Cells	52B	52B ATM	Pass cells	52B + 12B
1	Ů	(ATM => ATM)	52B	12B pad	12B pad		(ATM)
	1	Ingress TM	ATM Cells	52B	52B ATM	Remove 4B hdr	48B + 16B

		•						
SEG			SPII	SPII	LUT		SEG	CRC
TYPE	TYPE	Application	Input	OUTPUT	OUTPUT	Operation	OUTPUT	32
1111	0	Ingress TM	ATM Cells	52B	52B ATM	Pass cells	52B + 12B pad	Off
		(ATM => ATM)	52B	12B pad	12B pad		(ATM)	
2	1	Ingress TM	ATM Cells	52B	52B ATM	Remove 4B hdr	48B + 16B pad	Off
2	1	(ATM => MPLS PKT)	52B	12B pad	12B pad	Add 4B pad	(AAL5)	
3	2	Ingress TM	PKT Bursts	64B	64B PKT	Segment AAL5	48B + 16B pad	On
,	_	(MPLS PKT => ATM)	N x 16B			Add 16B pad	(AAL5)	
4	3	Ingress TM	PKT Bursts	64B	64B PKT	Segment 64B	64B Cells	On
. •		(PKT => PKT)	N x 16B				(AAL5 like)	
1	4	ATM Encapsulation	ATM Cells	52B	52B ATM	Pass cells	52B + 12B pad	Off
•			52B	12B pad	12B pad		(ATM)	
2	5	Reassembly	ATM Cells	52B	52B ATM	Remove 4B hdr	48B + 16B pad	Off
_			52B	12B pad	12B pad	Add 4B pad	(ATM)	
4	6	Ingress PKT Bypass	PKT Bursts	64B	64B PKT	Segment 64B	64B Cells	On
_]	N x 16B				(AAL5 like)	
5	7	Status Cell					64B cells	Off
1	8	Egress TM	Switch HDR	swx hdr	52B ATM	Pass cells	52B + 12B pad	Off
1		$(ATM \Rightarrow ATM)$	Switch Cells	ATM	12B pad		(ATM)	ļ
		,	N x 16B	Up to 80B				
1	9	Egress TM	Switch HDR	swx hdr	48B AAL5	Pass cells	48B + 16B pad	Off
1	1	(ATM => MPLS PKT)	Switch Cells	AAL5	16B pad		(AAL5)	
	1	`	N x 16B	Up to 80B				0.00
1	10	Egress TM	Switch HDR	swx hdr	48B AAL5	Pass cells	48B + 16B pad	Off
-	'	(MPLS PKT => ATM)	Switch Cells	AAL5	16B pad		(AAL5)	
	1	`	N x 16B	Up to 80B				0.00
1	11	Egress TM	Switch HDR	swx hdr	64B AAL5	Pass cells	64B	Off
-	-	$(PKT \Rightarrow PKT)$	Switch Cells	AAL5			(AAL5)	
		,	N x 16B	Up to 80B			50D 10D 1	000
1	12	ATM De-Encapsulation	Switch HDR	swx hdr	52B ATM	Add 8B pad	52B + 12B pad	Off
			Switch Cells	ATM	4B pad		(ATM)	
Ĭ			N x 16B	Up to 80B			40D 10D 1	
3	13	Segmentation	Packets Bursts	swx hdr	64B PKT	Calculate CRC	48B + 12B pad	On
İ			N x 16B	PKT	Up to 88B	for new L2 hdr	(AAL5)	
				Up to 80B	for L2	Segment AAL5	8	7
	L			ļ		Add 16B pad	64B	Off
1	14	Egress PKT Bypass	Packets Bursts	swx hdr	64B AAL5	Pass cells	_	UII
	1		N x 16B	AAL5			(AAL5)	
				Up to 80B	ļ		 	
	15	Reserved	I		I	l		

Figure 133

Figure 134

Figure 135

Figure 136

Figure 137

Figure 138

Figure 139

Figure 140

Figure 141

Figure 142

Errors	Description
SOP,SOP,EOP	This error happens when 2 SOPs are received with no EOP between
same port	them for the same port.
EOP,EOP,SOP	This error happens when 2 EOPs are received with no SOP between
same port	them for the same port.
Exceeds MTU	This error happens when the packet length is larger than the
	programmable maximum transfer unit.
PKT_LEN	This happens when the calculated packet length does not match the
Error	one in the trailer.
SEG full	The segmentation is full, i.e. no room in queue or data SRAM
	The threshold is programmable and default to 76 cells

Figure 143

Name	Type	Width	Depth	Total size	Access Time
Free Buffer List	SSRAM	7 bits	80	800 bits	5ns read/write
	(dual-port)				
SEG_TBL	SSRAM	39 bits	65	2535 bits	5ns read/write
_	(dual-port)				
Data SRAM	SSRAM	64 bits	640	40960 bits	5ns read/write
	(dual-port)				
Partial CRC	SSRAM	32 bits	65	2080 bits	5ns read/write
	(dual-port)				
STAT SRAM	SSRAM	80 bits	65	5200 bits	5ns read/write
	(single-port)				
QUE SRAM	SSRAM	70 bits	80	5840 bits	5ns read/write
	(single-port)				

Figure 144

Figure 145

Figure 146

Figure 147

Figure 148

Figure 149

Figure 150

			D 1.4
Signal Name	#bits	DIR	Description
SEG_CLK	1	IN	This is the 200 MHz internal system clock to Segmentation
SEG_CER	•	-	block.
C CVAIC	1	IN	
G_SYNC	<u>_</u>	ш	
CP_SYNC	1	IN	
CPU_ACCESS	1	IN	

Figure 151

Signal Name	#bits	DIR	Description
LUT_SEG_FID	20	IN	Flow ID
LUT SEG_PORT	6	IN	Input port number for input data
LUT_SEG_SOB	1	IN	Start of data burst
LUT_SEG_EOB	1	IN	End of data burst
LUT_SEG_SOP	1	IN	Start of Packet
LUT_SEG_EOP	1	IN	End of Packet
LUT_SEG_CLP	1	IN	Cell Loss Priority
LUT SEG_EFCI	1	IN	EFCI
LUT_SEG_CALC_CRC	1	IN	Calculate L2 CRC
LUT_SEG_CLASS	3	IN	Quality of Service
LUT_SEG_TYPE	4	IN	Type of traffic
LUT_SEG_VALID	1	IN	Port number is valid for sample
LUT_SEG_ERR	1	IN	Discard cell
LUT_SEG_PARITY	1	IN	Parity error indication from SPII
LUT_SEG_OAM	1	IN	Indiacate OAM cell
LUT_SEG_DATA	. 64	IN	Data in
SEG LUT_RDY	1	OUT	Segmentation engine ready to receive data from
			Look up engine

Figure 152

Signal Name	#bits	DIR	Description
MEM_SEG_CTRL_POP	1	IN	Memory Manager pop for data
SEG_MEM_FID	20	OUT	Flow ID to Memory Manager
SEG_MEM_PORT	6	OUT	Output port ID to Memory Manager
SEG_MEM_CLP	1 .	OUT	CLP bit
SEG MEM EFCI	1	OUT	EFCI bit
SEG_MEM_SOP	1	OUT	Start of Packet to Memory Manager
SEG_MEM_EOP	1	OUT	End of Packet to Memory Manager
SEG_MEM_CLASS	3	OUT	Quality of service to Memory Manager
SEG_MEM_TYPE	4	OUT	Types of traffic
SEG_MEM_DISCARD	1	OUT	Indicate packet is to be discarded
SEG_MEM_OAM	1	OUT	Indicate OAM cell
SEG_MEM_AVAILABLE	1	OUT	Cells ready for Memory Manager
SEG_MEM_DATA	64	OUT	Data to Memory Manager

Figure 153

Signal Name	#bits	DIR	Description
PFQ_SEG_CLK	1	IN	Serial clock from PFQ to SEG
PFQ_SEG_VALID	1	IN	Valid signal to start serial transfer
PFO SEG DATA	1	IN	Serial data from PFQ to SEG

Figure 154

Figure 155

Signal Name	#bits	DIR	Description
CPU_SEG_CS_L	1	IN	Block select
CPU_SEG_RDWR_L	1	IN	Block read/write strobe
CPU_SEG_ADDR	6	IN	Block address from CPU
CPU_SEG_DATA_IN	32	IN	Block data from CPU
CPU_SEG_DATA_OUT	32	OUT	Block data from CPU
SEG_RST_L	1	IN	Block reset from CPU
SEG_IN_ENB	1	IN	Block input enable from CPU
SEG_OUT_ENB	1	IN	Block output enable from CPU
SEG_TST_MUX_CLK	1	OUT	Block test clock to CPU
SEG_TST_MUX_OUT	32	OUT	Block test signals to CPU

Figure 156

Figure 157

	Cycle0	Cycle1	Cycle2	Cycle3	Cycle4	Cycle5	Cycle6	Cycle7
FBL	Rd	Rd		_				
TBL	Rd		Wr					
STAT	Rd		Wr					
DATA	Wr/rd	Wr/rd	Wr/rd	Wr/rd	Wr/rd	Wr/rd	Wr/rd	Wr/rd
QUEUE			Wr	Rd				
CRC			,		_	Rd		Wr

Figure 158

Address	Name	Туре	Description
0	COM	R/W	[31:27] – Opcode [26:0] – Address, depending on the
			command. No default value.
1	R0	R/W	General-purpose register. No default

Figure 159

OPCODE	Description
00000	IDLE
00001	Init SEG
00010	Read FBL memory
00011	Write FBL memory
00100	Read CRC memory
00101	Write CRC memory
00110	Read STAT memory
00111	Write STAT memory
01000	Read QUEUE memory
01001	Write QUEUE memory
01010	Read DATA memory
01011	Write DATA memory
01100	Read TBL memory
01101	Write TBL memory
01110	CPU inject packet
01111-	Reserved
11111	

Figure 160

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-	0		
COM	00001	<u>:</u>	<u>. </u>	R[26:2]				S	E		
00111								0	0		
				G !! D . [21				P	P		
R0				Cell Data [3]			·				
R1	-			Cell Data [63							
R2				Cell Data [95	:64]						
R3				Cell Data [127	7:96]						
R4				Cell Data [159	:128]						
R5			(Cell Data [191	:160]						
R6			(Cell Data [223	:192]						
R7			(Cell Data [255	:224]						
R8			(Cell Data [287	:256]						
R9			(Cell Data [319	:288]						
R10			(Cell Data [351	:320]						
R11			(Cell Data [383	3:352]						
R12			(Cell Data [415	5:384]						
R13			Cell Data [447:416]								
R14			(Cell Data [479	:448]						
R15			(Cell Data [511	:480]						

Figure 161

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	00010			FBL_A	FBL_ADDR[6:0]			
RO	-		R[21:	FBL_PT	R[9:0]			

Figure 162

FBL_ADDR only addresses from 0 to 79 since there are only 80 free pointers

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	00100			CRC_A	ADDR[6:0]			
RO								

Figure 164

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	00101			CRC_A	ADDR[6:0]			
RO		L						

CRC_ADDR only addresses from 0 to 64.
Addresses 0-63 are the ports and location 64 is for the CPU port.

Figure 165

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	00110			R[19:0]	ADDR[6:0]				
R0		R [1	R[15:0] DATA_CNT[47:32]						
R1			DATA_CNT[31:0]						
R2			PKT_CNT[31:0]						

Figure 166

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0			
COM	00111		R[19:0] STAT_AD								
R0		R [1	R[15:0] DATA_CNT[47:32]								
R1			DATA_CNT[31:0]								
R2			PKT_CNT[31:0]								

STAT_ADDR only addresses from 0 to 64.
Addresses 0-63 are the ports and location 64 is for the CPU port.

Figure 167

Register	31-27	26-24	23-20	19-16	15-	5-12 11-8 7		7	1-4	3-0			
COM	01000		R[19:0]					TBL_ADDR[6					
RO	F	R[11:0]	[11:0] TYPE[3:0]				S/E/D/C/E O_POF			QOS[2:0]			
R1		PKT_I	EN[20:0]	PTR[9:0] CELL_CN					ELL_CNT[5:0]				
R2		R[20:0]					FID[1	9:0]					

Figure 168

Register	31-27	26-24	23-20	19-16	15-12	1	1-8	7-4		3-0
COM	01001		•	R[19:0]	TBL_ADDR[6:					
R0	I	R[11:0]	[11:0] TYPE[3:0]				E/D/C/E O_PORT[6:0]			QOS[2:0]
R1		PKT_I	EN[20:0]			P	TR[9:0]	CE	ELL_CNT[5:0]
R2		R[20:0]	R[20:0] FID[19:0]							

TBL_ADDR only addresses from 0 to 64.

Addresses 0-63 are the ports and location 64 is for the CPU port.

S/E/D/C/E: [14] SOP [13] EOP [12] DISCARD [11] CLP [10] EFCI [9] OAM

Figure 169

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	01010		R	[16:0]	DATA_ADDR[9:0]				
RO		DATA[63:32]							
R1		DATA[31:0]							

Figure 170

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01011		R	[16:0]	DATA_ADDR[9:0]			
R0		DATA[63:32]						
R1		DATA[31:0]						

DATA_ADDR only addresses from 0 to 639, 640 entries to store data.

Figure 171

Register	31-27	26-24	23-20	19-16	15-1	2 1	1-8	7-4		3-0
COM	01100						Γ	BL	_ADDR[6:0]	
RO	F	R[11:0]	TY	PE[3:0]		S/E/D/C/E O_PO			0]	QOS[2:0]
R1		PKT_LEN[15:0]				R[5:0]				PTR[9:0]
R2		R[20:0]				FID[19	9:0]			

Figure 172

Register	31-28	27-24	23-20	19-16	15	-12	1-8	7-4	 	3-0	
COM	1101		R[20:0]						TBL_ADDR[6:0]		
RO		R[11:0] TY			S/E	S/E/D/C/E O_PO			RT[6:0] QOS[2:0]		
R1		PKT_LEN[20:0]				PTR[9:0] CELL_CNT			ELL_CNT[5:0]		
R2			FID[19:0]								

TBL_ADDR only addresses from 0 to 64.

Addresses 0-63 are the ports and location 64 is for the CPU port.

S/E/D/C/E: [14] SOP [13] EOP [12] DISCARD [11] CLP [10] EFCI

Figure 173

Figure 174

"bypass"	"read- back"	REL =1 BID	REL =1 IMBID	REL =0 BID	REL =0 IMBID	Data Type
0	0	R	R	NR	NR	Non-bypass, has not been transferred to external SDRAM yet
0	1	N/A	N/A	N/A	N/A	N/A
1	0	R	R	NR	NR	Bypass
1	1	R	R	NR	R	Non-bypass, read back from SDRAM

Where: R: release

NR: NOT RELEASE

Figure 176

EN-QUEUE PROCESS

Figure 177

DE-QUEUE PROCESS

Figure 180

Name	Type	Width	Depth	Total size	Access Time
Internal Memory (IM)	SSRAM	128 bits	4K	1Mbits	5ns read/write
, ,	(dual port)				
Internal Memory List	Flip-flops	3	1K	3072 bits	5ns read/write
(IML)					
Free Internal Memory	SSRAM	10 bits	1K	10Kbits	5ns read/write
List (FIML)	(single port)				
Internal Write	SSRAM	128 bits	16	2Kbits	5ns read/write
Manager FIFO	(dual port)	1			
(IWMFIFO)		<u></u>			

Figure 181

[Name	Туре	Width	Depth	Total size	Access Time
ł	CAM (inside MIM)	CAM	23	1K	23Kbits	

Figure 182

Signal Names	Size	Dir	Description
Seg_Mem_Data	128 bits	In	Input data from Segmentation at 10 ns
			period
Mem_Seg_Cntl_Pop	1	Out	To pop control information and data of a
			cell
Seg_Mem_Available	1	In	Data available in Segmentation for MM
Seg_Mem_FID	20	In	Flow ID
Seg_Mem_EOP	1	In	End of Packet
Seg_Mem_SOP	1	In	Start of Packet
Seg_Mem_Discard	1	In	Signal cell to be discard
Seg_Mem_Type	5	In	Туре
Seg_Mem_O_Port	7	In	Output port information
Seg_Mem_Class	3	In	Class information
Seg_Mem_EFCI	1	In	EFCI
Seg_Mem_CLP	1	In	CLP
Seg_Mem_OAM	1	In	

Figure 183

PFO Mem_Valid

PFQ_Mem_Data

Figure 184

Cell control information from PFQ to

MM for both enqueue and dequeue

In

In

24

Signal Names	Size	Dir	Description
Mem_SDR_Data_A	64	In/Out	Data bus for Controller A
Mem_SDR_DQS_Lo_A	1	In/Out	Data strobe of lower 32bit of Data for
			Controller A (one line per SDRAM)
Mem_SDR_DQS_Hi_A	1	In/Out	Data strobe of upper 32bit of Data for
			Controller A (one line per SDRAM)
Mem_SDR_CS_A	8	Out	Chip selects to support up to 512 Mbytes
Mem SDR_Addr0_A	12	Out	Row/column address bus for Controller A
	:		(set 0)
Mem_SDR_Addr1_A	12	Out	Row/column address bus for Controller A
			(set 1, duplication of Mem_SDR_Addr0_A)
Mem_SDR_Bank0_A	2	Out	Bank selection for Controller A (set 0)
Mem_SDR_Bank1_A	2	Out	Bank selection for Controller A (set 1)
Mem_SDR_RASO_A	1	Out	RAS for Controller A (set 0)
Mem_SDR_RAS1_A	1	Out	RAS for Controller A (set 1)
Mem_SDR_CASO_A	1	Out	CAS for Controller A (set 0)
Mem_SDR_CAS1_A	1.	Out	CAS for Controller A (set 1)
Mem_SDR_WE0_A	1	Out	Write enable for Controller A (set 0)
Mem_SDR_WE1_A	1	Out	Write enable for Controller A (set 1)
Mem_SDR_Clk0_A	1	Out	Differential clock output for Controller A

Figure 185

Figure 186

·
J
lux

Figure 187

Signal Names	Size	Dir	Description
GS_Mem_Gsync	1	In	Sync pulse from Global Sync block

Figure 188

* Ctrl O_A, Ctrl O_B: Control Sigals like RAS_, CAS_, WE_, CLK, CLK_for Controller A and B respectively

Figure 189

Data_A[31:0] DQS_Lo_A CS_A[3] Addr0_A[11:0] Bank0_A[1:0] Ctrl 0_A	4Mx32	Data_A[63:32] DQS_Hi_A CS_A[3] Addr1_A[11:0] Bank1_A[1:0] Ctrl 1_A	4Mx32	Data_B[31:0] DQS_Lo_B CS_B[3] Addr0_B[11:0] Bank0_B[1:0] Ctrl 0_B	4Mx32	Data_B[63:32] DQS_Hi_B CS_B[3] Addr1_B[11:0] Bank1_B[1:0] Ctrl 1_B	4Mx32
Data_A[31:0] DQS_Lo_A CS_A[2] Addr0_A[11:0] Bank0_A[1:0] Ctrl 0_A	4Mx32	Data_A[63:32] DQS_Hi_A CS_A[2] Addr1_A[11:0] Bank1_A[1:0] Ctrl 1_A	4Mx32	Data_B[31:0] DQS_Lo_B CS_B[2] Addr0_B[11:0] Bank0_B[1:0] Ctrl 0_B	4Mx32	Data_B[63:32] DQS_Hi_B CS_B[2] Addr1_B[11:0] Bank1_B[1:0] Ctrl 1_B	4Mx32
Data_A[31:0] DQS_Lo_A CS_A[1] Addr0_A[11:0] Bank0_A[1:0] Ctrl 0_A	4Mx32	Data_A[63:32] DQS_Hi_A CS_A[1] Addr1_A[11:0] Bank1_A[1:0] Ctrl 1_A	4Mx32	Data_B[31:0] DQS_Lo_B CS_B[1] Addr0_B[11:0] Bank0_B[1:0] Ctrl 0_B	4Mx32	Data_B[63:32] DQS_Hi_B CS_B[1] Addr1_B[11:0] Bank1_B[1:0] Ctrl 1_B	4Mx32
Data_A[31:0] DQS_Lo_A CS_A[0] Addr0_A[11:0] Bank0_A[1:0] Ctrl 0_A	4Mx32	Data_A[63:32] DQS_Hi_A CS_A[0] Addr1_A[11:0] Bank1_A[1:0] Ctrl 1_A	4Mx32	Data_B[31:0] DQS_Lo_B CS_B[0] Addr0_B[11:0] Bank0_B[1:0] Ctrl 0_B	4Mx32	Data_B[63:32] DQS_Hi_B CS_B[0] Addr1_B[11:0] Bank1_B[1:0] Ctrl 1_B	4Mx32
	_	†	_			†	
		SDRAM Controller A				SDRAM Controller B	

^{*} Ctrl 0_A, Ctrl 0_B: Set 0 of Control Sigals like RAS_, CAS_, WE_, CLK, CLK_for Controller A and B respectively * Ctrl 1_A, Ctrl 1_B: Set 1 of Control Sigals like RAS_, CAS_, WE_, CLK, CLK_for Controller A and B respectively

Figure 190

Address		Type	Description
	Name	· '	
0	COM	R/W	[31:27] - Opcode
•	00		[26:0] - Address, depending on the command.
			No default value.
1	R0	R/W	General-purpose register. No default value
2	R1	R/W	General-purpose register. No default value
3	R2	R/W	General-purpose register. No default value
4	R3	R/W	General-purpose register. No default value
5	R4	R/W	General-purpose register. No default value
6	R5	R/W	General-purpose register. No default value
7	R6	R/W	General-purpose register. No default value
8	R7	R/W	General-purpose register. No default value
9	R8	R/W	General-purpose register. No default value
10	R9	R/W	General-purpose register. No default value
11	R10	R/W	General-purpose register. No default value
12	R11	R/W	General-purpose register. No default value
13	R12	R/W	General-purpose register. No default value
14	R13	R/W	General-purpose register. No default value
15	R14	R/W	General-purpose register. No default value
16	R15	R/W	General-purpose register. No default value
17 – 31	Reserved		
32	MEM_CONFIG	R/W	[2:0] – Memory_Size:
	_		000: 64Mbytes = 1Mcells (default)
			001: 128Mbytes = 2Mcells
			010: 192Mbytes = 3Mcells
			011: 256Mbytes = 4Mcells
			100: 320Mbytes = 5Mcells
			101: 384Mbytes = 6Mcells
			110: 448Mbytes = 7Mcells 111: 512Mbytes = 8Mcells
			111: 512Widytes = divicens
			[3] - Enable_Second_set of SDRAM Address and Control signals (for
			improving signal driving capability
			Improving signal diverse supersity
			[31:4] – Reserved
	MEM_STATUS_0	R/W	[0] - IM_Full: Internal Memory is full.
36	INIEINI_STATUS_U	FV VV	[1] – IM_Full_1: Internal Memory is Full – 1 cell.
1	,		[2] – IM Empty: Internal Memory is empty.
			[3] - Dequeue Queue Full: Dequeue Queue is full.
			[4] - Dequeue_Queue_Empty: Dequeue Queue is empty.
			[31:5] - Reserved

MEM_STATUS_1 R/W [0] - SRRQ_0_Full: SDRAM Read Request queue 0 is [1] - SRRQ_0_Empty: SDRAM Read Request queue 0 is [2] - SRRQ_1_Full: SDRAM Read Request queue 1 is [3] - SRRQ_1_Empty: SDRAM Read Request queue 1 is [4] - SRRQ_2_Full: SDRAM Read Request queue 2 is [5] - SRRQ_2_Empty: SDRAM Read Request queue 2 is [6] - SRRQ_3_Full: SDRAM Read Request queue 3 is [7] - SRRQ_3_Empty: SDRAM Read Request queue 3 is [8] - SRRQ_4_Full: SDRAM Read Request queue 4 is [9] - SRRQ_4_Empty: SDRAM Read Request queue 4 is [10] - SRRQ_5_Full: SDRAM Read Request queue 5 is [11] - SRRQ_5_Empty: SDRAM Read Request queue 5 is	empty. full. empty. full. empty. full. empty. full. empty. full. empty. full. empty. full. empty. full.
[12] – SRRQ_6_Full: SDRAM Read Request queue 3 is [13] – SRRQ_6_Empty: SDRAM Read Request queue 6 is [14] – SRRQ_7_Full: SDRAM Read Request queue 7 is [15] – SRRQ_7_Empty: SDRAM Read Request queue 7 is [16] – SWRQ_0_Full: SDRAM Write Request queue 0 is [17] – SWRQ_0_Empty: SDRAM Write Request queue 0 is [18] – SWRQ_1_Full: SDRAM Write Request queue 1 is [19] – SWRQ_1_Empty: SDRAM Write Request queue 1 is [20] – SWRQ_2_Empty: SDRAM Write Request queue 2 is [21] – SWRQ_2_Empty: SDRAM Write Request queue 2 is [22] – SWRQ_3_Empty: SDRAM Write Request queue 3 is [23] – SWRQ_3_Empty: SDRAM Write Request queue 4 is [26] – SWRQ_4_Empty: SDRAM Write Request queue 4 is [26] – SWRQ_5_Full: SDRAM Write Request queue 5 is [27] – SWRQ_5_Empty: SDRAM Write Request queue 5 is [28] – SWRQ_6_Full: SDRAM Write Request queue 6 is [29] – SWRQ_6_Empty: SDRAM Write Request queue 6 is [29] – SWRQ_6_Empty: SDRAM Write Request queue 6 is [30] – SWRQ_7_Empty: SDRAM Write Request queue 6 is [30] – SWRQ_7_Empty: SDRAM Write Request queue 7 is [31] – SWRQ_7_Empty: SDRAM Write Request queue 7 is	empty. s full. s empty. s full. s empty. s full. s empty. s full. s empty. s full. s empty. s full. s empty. s full. s empty. s full. s empty. s full. s empty. s full.
38 MEM_TSTMUX_ SEL SEL RW [3:0] - Testmux_Selection: 0000: No output (default) 0001: Group 1 = {TBD} 0010: Group 2 = {TBD} 0010: Group 3 = {TBD} 0100: Group 4 = {TBD} 0101: Group 5 = {TBD} 0110: Group 6 = {TBD} 0111: Group 7 = {TBD} 1000: Group 8 = {TBD} 1001: Group 9 = {TBD} 1001: Group 10 = {TBD} 1011: Group 11 = {TBD} 1101: Group 12 = {TBD} 1101: Group 13 = {TBD} 1101: Group 14 = {TBD} 1110: Group 14 = {TBD} 1110: Group 15 = {TBD} 1111: Group 15	

Figure 191

R13

R14

R15

Figure 192

Cell Data [447:416]

Cell Data [479:448]

Cell Data [511:480]

egister	31-27	26-24	23-20	19-16	15-12	11-8	7-4	. 3-0	
COM	00010	R[26:23	[] ·	CELL_ADDR[22:0]					
R0				Cell	Data [31:	0]			
R1				Cell	Data [63:3	32]			
R2				Cell	Data [95:6	54]			
R3				Cell 1	Data [127:	96]			
R4					Data [159:1				
R5		0		Cell I	Data [191:1	[60]			
R6				Cell I	Data [223:	[92]			
R7				Cell I	Data [255:2	224]			
R8				Cell I	Data [287:2	256]			
R9				Cell I	Data [319:2	288]			
R10				Cell I	Data [351::	320]			
R11				Cell I	Data [383::	352]			
R12		Cell Data [415:384]							
R13		Cell Data [447:416]							
R14				Cell I	Data [479:	448]			
R15				Cell I	Data [511:	480]			

Figure 193

Register	31-27	26-24	23-20	19-16	15-12	7-4	3-0
COM	00011		R	[26:10]		FIML_ADD	R[9:0]

Figure 194

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	00100		R[26:10]				FIML_ADD	R[9:0]
RO			R[27:1	[0]	-		FIML[9	:0]

Figure 195

Register	31- 27	26-24	23-20	19- 16	15- 12	11-8	7-4	3-0
COM	00101		R[2	26:10]			CAM_ADI	OR[9:0]
RO		IML[25	:23]			CAM[22:0]	

Figure 196

Register	31-27	26-24 23-2	0 19-16	15-12	11-8	7-4	3-0
COM	00110		R[26:10]			CAM_ADI	DR[9:0]
RO		IML[25:23]			CAM[22:0	0]	

Figure 197

Register	31-27	26-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	00111				R[20	6:0]		

Figure 198

Interface with SDRAM BW Optimizer: SWM requests to Write to SDRAM

Note:

There are 8 queues (i: 0...7) inside SWRQ which associated with 8 banks of SDRAM.

Where
i = 0 ... 7
SBWO: SDRAM BW Optimizer
SWM: SDRAM Write Manager
SWRQ: SDRAM Write Request Queues
IWM: Internal Write Manager
IRM: Internal Read Manager
MIM: Memory ID Manager
CAM: inside MIM
IM: Internal Memory (SRAM)

Interface with SDRAM BW Optimizer:

Figure 201

Where

k = 0 ... 7

Interface with Per Flow Queue: Receive De-Queue Requests from PFQ

Figure 202

Interface with SDRAM BW Optimizer: SRM requests to Read from SDRAM

Note:

There are 8 queues (i: 0...7) inside SWRQ which associated with 8 banks of SDRAM.

Where
i = 0 ... 7
SBWO: SDRAM BW Optimizer
SWM: SDRAM Write Manager
SWRQ: SDRAM Write Request Queues
IWM: Internal Write Manager
IRM: Internal Read Manager
MIM: Memory ID Manager
CAM: inside MIM
IM: Internal Memory (SRAM)

Interface with SDRAM BW Optimizer: SRM Read from SDRAM

Figure 204

Interface with Reassembly

Figure 205

Figure 206

Figure 209

Figure 210

Figure 211

Figure 212

Figure 213

Figure 214

Figure 215

Figure 216

Figure 217

Figure 218

Figure 219

Figure 220

Figure 221

Figure 222

EFCI	1	7
CLP	1	6
OAM	1	5

Figure 223

Figure 224

Figure 225

Figure 226

Figure 227

Figure 228

Figure 229

Figure 230

Figure 231

Figure 232

Figure 233

Figure 234

Figure 235

Figure 236

Figure 239

Signal Name	#bits	DIR	Description
RAS_CLK	1	IN	200 MHz internal system clock to RAS block.
RAS_RST_L	1	IN	A combination of POR and RAS Soft Reset.
G SYNC	1	IN	Global Sync from the Global Sync block.
RAS_IN_EN	1	IN	Reassembly Input Enable signal.
RAS_OUT_EN	1	IN	Reassembly Output Enable Signal.
RAS_TST_MUX_OUT	32	OUT	Reassembly Test Mux pins.

Figure 240

Signal Name	#bits	DIR	Description
MEM_RAS_AVAILABLE	1	IN	Memory Manager has a cell available
MEM_RAS_SOP	1	IN	Start of Packet
MEM_RAS_EOP	1	IN.	End of Packet
MEM_RAS_TYPE	4	IN	Type of traffic
MEM_RAS_PID	7	IN	Port number for output data (MSb marks CPU)
MEM_RAS_FID	20	IN	Flow ID
MEM_RAS_CLP	1	IN	Used to load the CLP bit in ATM Header
MEM_RAS_EFCI	1	IN	Used to load the EFCI bit in ATM Header
MEM_RAS_DATA	128	IN	Data in
RAS_MEM_DATA_POP	1	OUT	Data FIFO read signal from Reassembly to
			MM
RAS_MEM_CTRL_POP	1	OUT	Control FIFO read signal from Reassembly to
			MM

Figure 241

Figure 242

Signal Name	#bits	DIR	Description
CPU_RAS_CS_L	1	IN	CPU RAS Block Select
CPU RDWR_L	1	IN	CPU Read/Write_L
CPU ADDR	6	IN	CPU Address
CPU DATA_IN	32	IN	CPU Data In
RAS_CPU_DATA_OUT	32	OUT	CPU RAS Data Out

Figure 243

Figure 244

Figure 245

Figure 246

Input phase to RAS from Internal Memory Manager

		Put							_		_			-
Memory	0	1	2	3	4	5	6	7	0	1	2	3	4	5
MM Ctrl Mem		R1						_		R2				
MM Data Mem			R1		R1		R1		R1		R2		R2	
HDR Memory				R1	R1	R1	R1					R2	R2	R2
FBL Memory		R1								R2				
RAS Table				R1		W1					R2			W2
Data Memory						W1	W1	W1	W1	W1	W1	W1	W1	
Header Mem								W1		W1				
Par_CRC_Mem				R1								R2		W1
Out Cntrl Mem						W1			<u>.</u>	W0				
Out Port Queue								R1					<u></u>	W1
Statistics Mem								R1						W1
Cpu Data Mem						W1	W1	W1	W1	W1	W1	W1	<u>W</u> 1	

Note: R2 for the Partial CRC Table is dependent on the PID. If the next cell has the same PID as the previous cell then this read information is not used..

Figure 247

Errors	Decode	Description
2 SOP,		This error happens when 2 SOPs are received with no EOP
No EOP,		between them for the same port.
same port		
No SOP,		This error happens when 2 EOPs are received with no SOP
2 EOP,		between them for the same port.
same port		
Exceeds		This error happens when the packet length is larger than the
MTU		programmable maximum transfer unit.
CRC error		This happens when the generated CRC do not match those in
		the trailer for AAL-5 traffic in the others category.
PKT_LEN		This happens when the calculated packet length does not
error		match the one in the trailer.
Queue FIFO		The Q_FIFO is full, no room to queue complete cells
full		
Free pointer		The data FIFO is full, no room for incoming cells
empty		

Figure 248

Address	Name	Туре	Description
0	COM	R/W	[31:28] – Opcode
			[27:0] - Address, depending on the
			command.
			No default value.
1	RO	R/W	[31:0] General-purpose register. No
_			default value

AZA-001/2001-P00	

	OTT A TOTAL OF A CIT	D/XI/	[0] – TWO_SOP_ERR
33	STATUS/MASK	R/W	Error when two SOPs occur with
	•		
			no EOP between for a port.
			Default value 0 (No Error).
			[1] – TWO_EOP_ERR
			Error when two EOPs occur with
		1	no SOP between for a port.
			Default value 0 (No Error).
			[2] – EXD_MTU
			Error when packet exceeds 16KB.
		İ	Default value 0 (No Error).
			[3] – CRC_ERR
			Error for AAL5 CRC mismatch.
			Default value 0 (No Error).
			[4] – LEN_ERR
			Error for AAL5 Length mismatch.
			Default value 0 (No Error).
		!	[5] – FUL_ERR
			Error for Output Queue Full.
			Default value 0 (No Error).
			[6] – CPU_DATA
			CPU has a Data Cell available.
			Default value 0 (No Cell).
			[7] – Reserved
			[/] - Reserved
			[8] – TWO_SOP_ERR_MASK
			Mask when two SOPs occur with
			no EOP between for a port Error.
	•		Default value 0 (No Mask).
			[9] – TWO_EOP_ERR_MASK
			Mask when two EOPs occur with
			no SOP between for a port Error.
	-		_
, ,			Default value 0 (No Mask).
	•		[10] - EXD_MTU_MASK
			Mask packet exceeds 16KB Error.
			Default value 0 (No Mask).
			[11] - CRC_ERR_MASK
			Mask for AAL5 CRC Error.
	,		Default value 0 (No Mask).
			[12] – LEN_ERR_MASK
	•		Mask for AAL5 Length Error.
			Default value 0 (No Mask).
	· .		[13] – FUL_ERR_MASK
			Mask Output Queue FIFO Full
			Error.
			Default value 0 (No Mask).
		-	[31:14] – Reserved.

34	TEST MUX	R/W	[3:0] – TEST GROUP SELECT
			0000 = No Output (Default)
			0001 = Group 1
			0010 = Group 2
1			0011 = Group 3
			Others = Reserved: No output
			[31:4] – Reserved.
35 - 63	Reserved		

Figure 249

Opcode		Description						
Opcode	Command Name	•						
0	NOP							
1	Rd RAS ext mem	36 bits, data to registers R0, R1, R2, R3, R4, R5 (Up to 4M locations)						
2	Wr RAS ext mem	Take data from registers R0, R1, R2, R3, R4, R5						
3	Rd Data mem	64 bits, data to registers R0, R1						
		(Up to 1024 locations)						
4	Wr Data mem	Take data from registers R0, R1						
5	Rd crc1, crc2, ras,	Read 4 memories in one command.						
	outq mem	106 bits, data to registers R0, R1, R2, R3						
		(Up to 64 locations)						
6	Wr crc1, crc2, ras,	Write to 4 memories in one command.						
	outq mem	Take data from registers R0, R1, R2, R3						
7	Rd stat mem	96 bits, data to registers R0, R1, R2						
		(Up to 64 locations)						
8	Wr stat mem	Take data from registers R0, R1, R2						
9	Rd CPU mem	64 bits, data to registers R0, R1						
	<u> </u>	(Up to 32 locations)						
10	Wr CPU mem	Take data from registers R0, R1						
11	Rd FBL, Out Ctrl	Read 2 memories in one command.						
	mem	31 bits, data to register R0						
		(Up to 128 locations)						
12	Wr FBL, Out Ctrl	Write to 2 memories in one command.						
	mem	Take data from register R0						
13	Rd HDR mem	64 bits, data to registers R0, R1						
		(Up to 256 locations)						
14	Wr HDR mem	Take data from registers R0, R1						
15	Get CPU cell	Opcode only, no address, the cell is transferred						
		to R0-R15. This command causes a POP from						
		that FIFO while the regular Rd/Wr commands						
	<u> </u>	just access specific locations.						
16	Init Memories	Opcode only, no address, The command causes						
		the Reassembly block to initialize the Free						
		Buffer List and the Output Port Queue.						

Figure 250

Figure 251

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	00010	R[6	5:0]		FID_	ADDR[19				
R0			R[23	3:0]			CTRL_WD1[7			
R1		WD1_HDR_DATA[63:32]								
R2			W	DI_HDR_I	DATA[31:0	0]				
R3			R[23	3:0]			CTRL_V	VD2[7:0]		
R4		WD2_HDR_DATA[63:32]								
R5			W	D2_HDR_I	DATA[31:	0]				

CTRL_WD1[0] = RSVD CTRL_WD1[1] = TTLD CTRL_WD1[2] = HDR BYTES CTRL_WD1[5:3] = MPLS_OP[2:0] CTRL_WD1[7:6] = HDR_TYPE[1:0]

 $CTRL_WD2[3:0] = RSVD[3:0]$ $CTRL_WD2[7:4] = HDR_BYTES_STRIP[3:0]$

Figure 252

71	63	31										
CONTROL WORD 1	MPLS LABEL 1/ ATM VPL/VCI HEADER				MPLS LA 32 Bits	BE	L2					
CONTROL WORD 2	US ER DEFINED		FLOW_ID		TYPE		E F C	C L P	O A M	CLASS	S V D	R S V D
		31	-	12	11	8	7	. 6	5	4	2 1	0

Figure 253

Figure 254

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0			
COM	00100		F	R[16:0]			Addr[9:0]				
RO		DATA[31:0]									
R1			DATA[63:32]								

Figure 255

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	00101			R[20	:0]		A	\ddr[5:0]	<u> </u>
R1		•		PARTIAL	_CRC1[31	:0]	_		
R1				PARTIAL	_CRC2[31				
R2		R[13:0]			PKT_L	ENGTH[1	7:2]	E	S
R3	R[7	7:0]			OUT_	Q[23:0]			

Figure 256

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-		3-0	
COM	00110			R[20	:0]			A	.ddr[5:0]	
R1				PARTIAL						
R1				PARTIAL						
R2		R[13:0]			PKT_L	ENGTH[1	7:2]		E	S
R3	R[7	7:0]			OUT_	Q[23:0]				

E - EOPS - SOP

OUT_Q[0] = EMPTY OUT_Q[1] = PENDING OUT_Q[3:2] = HEADER_WORDS[1:0] OUT_Q[13:4] = READ_POINTER[9:0] OUT_Q[23:14] = WRITE_POINTER[9:0]

Figure 257

Figure 258

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	01000			R[20	:0]		T A	Addr[5:0]		
R1		DATA_CNT[31:0]								
R2]	PACKET_CNT[15:0] DATA_CNT[48:32]								
R3		ERROR_	CNT[15:0]]		PACKET_	CNT[31:	16]		

Figure 259

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	01001			R[2	21:0]			Addr[4:0]	
RO		DATA[31:0]							
R1		DATA[63:32]							

Figure 260

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01010			R[2	21:0]			Addr[4:0]
RO				DAT	`A[31:0]		•	•
R1				DAT	A[63:32]			

Figure 261

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01011			R[19:0		Ac	ldr[6:0]	
R0	R		OUT_CTRL[20:0]				FBL_PTR	[9:0]

Figure 262

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01100	1		R[19:0]			ldr[6:0]
RO	R		OUT_CTRL[20:0]				FBL_PTR	[9:0]

R - Reserved

OUT_CTRL[5:0] = CELL_LENGTH[5:0]

OUT_CTRL [6] = BAD

OUT_CTRL [7] = SOP

OUT_CTRL [8] = EOP

OUT_CTRL [19:10] = NEXT RD_POINTER[9:0]

OUT_CTRL [21:20] = NEXT HDR_WORDS[1:0]

Figure 263

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4_	3-0	
COM	01101	T	<u> </u>	R[18:0]			Addr	·[7:0]	
RO		DATA[31:0]							
R1		DATA[63:32]							

Figure 264

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	01110			R[18:0]			Addı	:[7:0]
RO				DATA	[31:0]			
R1				DATA	[63:32]			

Figure 265

Figure 266

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	10000				R[27:0]			

Figure 267

No.	Traffic Type	# of Tag bits	Tag word	Tag bits
1	ATM	28	1 st 64-bit word	1-28
2 (a)	MPLS – ATM	20	1 st 64-bit word	41-60
2 (b)	MPLS – PPP	20	1 st 64-bit word	33-52 or 41-60
2 (0)				(depends on PPP mode)
2 (c)	MPLS – Ethernet	20	3 rd & 4 th 64-bit word	49-64 (3 rd wd) & 1-4 (4 th wd)
2 (d)	MPLS – FR	20	1 st 64-bit word	25-44
3	Ethernet	48	2 nd 64-bit word	1-48
4	IP	32	3 rd 64-bit word	1-32
5	Frame Relay (FR)	10	1 st 64-bit word	9-14 & 17-20

Figure 268

Figure 269

Figure 271

Figure 274

Figure 275

Flow Control Entry Byte Number							В	it Po	sitio	n	_					
	7	6	5	4	3	2	1	0	7	6	5_	4	3_	2	1_	0
2/3	Cla	 ass							FC	2	С	P.	Spe	ed		
									En	try	•	•				
									Ту	ре	<u> </u>	<u>L</u>				
4/5		P	C	SIX					Desti	inati	on A	ddre	ss			

Figure 276

¹⁾ The SPEED field is valid for all of the above function

Figure 277

²⁾ All fields being N/A should be set to all "0" by the Fabric

Figure 278

FID	ACT	EOP	SOP	CURREN	NEW
				TLINK	LINK
FID5	ENQ		BID	· BID0	BID10
			ME		
			M		
FID5	DEQ		DEQ	BID0	BID10
			ME		
			M _		
FID42	ENQ	BID		BID50	BID14
		ME			
Į.		M			
FID42	DEQ	DEQ		BID50	BID14
		ME			
		M			

Figure 280

ENQUEUE INTERNAL BLOCK DIAGRAM

Figure 281

DEQUEUE INTERNAL BLOCK DIAGRAM

Figure 282

FREE BUFFER INTERNAL BLOCK DIAGRAM

Figure 283

Figure 284

The default value for the number of BIDS is "001" which corresponds to 2 MEG BIDS.

MEM_SIZE INPUT VALUES	NUMBER_BIDS
000	1 M
001	2 M
010	3 M
011	4 M
100	5 M
101	6 M
110	7 M
111	8 M

Figure 285

The default value for chip select is "00".

MEM_CS	ADRESS_BITS
00	20:19
01	21:20
10	22:21
. 11	Not Used

Figure 286

Figure 287

Figure 288

NAME	OP	BITS RANGE	DESCRIPTION
BYTE_ENABLE	R/W	47:0	Only one byte enable is used for both read and write operations.

Figure 289

Figure 290

NAME	NO. OF BITS	BITS RANGE	WR	DESCRIPTION
OUTPUT PORT NUMBER	6	5:0	S	It is the output port number that the FID will be transmitted on.
RSVD	3	8:6		Not Used
TOTAL CELL CNT	39	47:9	Н	When EOP then the cell count of the packet is added to this counter.
PKT DISCD RED MGMT	16	63:48	H	IT IS INCREMENTED ONCE PER PACKET DISCARD WHEN QUEUE DEPTH COUNTERS PER THE OUTPUT PORT AND CLASS OF THAT FID HAS BEEN EXCEEDED.
PKT DISCD OTHERS	8	71:64	Н	It is incremented once per packet discard when an external command has been received to discard the FID.

Figure 291

Figure 292

NAME	NO BITS	RANGE	WR	DESCRIPTION
BID HEAD	23	22:0	Н	The head is an address to memory. It will point to a buffer. Therefore, it is the Buffer ID head pointer. It is the first buffer pointer that has been enqueued for this FID and the first one to be dequeued. If it is NULL then the queue is empty.
CLASS	3	25:23	Н	Class of FID
RSVD	2	27:26		Not Used
HD OAM	1	28	Н	OAM BIT
HD EOP PKT	1	29	Н	If set, then the head BID is the EOP one for packets.
HD SOP PKT	1	30	Н	If set, then the head BID is the SOP one for packets.
HD EFCI	1	31	Н	EFCI BIT
FID TYPE	4	35:32	Н	The type represents the actions that the device will take in regards to this FID. It is not used in the per flow engine. It will be send to the memory manager. The type will be written with the head pointer after the queue has been empty.

Figure 293

NAME	OP	BITS RANGE	DESCRIPTION
BYTE_ENABLE	R/W	35:0	Only one byte enable is used for both read and write operations.

Figure 294

NAME	NO BITS	RANGE	WR	DESCRIPTION
BID TAIL	23	22:0	Н	The tail is an address to memory. It will point to a buffer. Therefore, it is the Buffer ID tail pointer. It is the last buffer pointer that has been enqueued for this FID and the last one to be dequeued. If it is Null, then the queue is empty
CLP	1	23	Н	
RSVD	3	26:24		
DROP PORT	1	27	Н	Drop Packet because of port parameter
RED/CL ASS DROP	1	28	Н	Drop the cell until EOP then recheck the RED or CLASS algorithm
TTL	2	30:29	Н	When higher than 2, discard & de activate the FID. Reset when dequeue, shaping or empty.
Q-TIME	20	50:31	Н	The start of queue idle time
DROP Timeout	1	51	Н	Drop until next SOP. Keep the queue free of packet fragments because of time out discards.
DROP & discard	1	52	Н	Drop until next EOP. Discard last packet fragment.
DROP FREE THRES	1	53	Н	Drop until next SOP.
RSVD	10	61:54		
RED ASSOC	10	71:62	S	RED Association. This is set with a setup connection command. It should never be overwritten by the logic. When queue is empty, the byte enable has to be used to write null in the tail pointer.

Figure 295

Figure 296

NAME	OP	BITS RANGE	DESCRIPTION
BYTE_ENABLE _0	R/W	26:0	Asserted for all read operation and for all write operations except when writing RED ASSOCIATION.
BYTE_ENABLE _1	R/W	53:27	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue or when the RED ASSOCIACTION.
BYTE_ENABLE _2	R/W	71:54	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue.

Figure 297

NAME	NO BITS	RANGE	WR	DESCRIPTION
BID LINK	23	22:0	Н .	This is the ID of the next buffer that linked to a specific FID. This is a buffer ID that is linked on an FID queue. Also, it can be a BID that is linked on the Free buffer List.
EOP PKT	1	23	Н	This is the END OF PACKET of packet indication for the corresponding BID. The "BID LINK" is the packet cell tail buffer ID. The EOP belongs to the BID link.
SOP PKT	1	24	Н	This is the Start OF PACKET of packet indication for the corresponding BID. The "BID LINK" is the packet cell tail buffer ID. The SOP belongs to the BID link.
EFCI	1	25	Н	It is EFCI pass through Bit
OAM	1	26	Н	It is OAM pass through Bit
DEQ CNT	9	35:27	Н	Total number of de-queues before freeing the BID. It is used in multicast. It has to be decremented every time the BID is dequeued. The count belongs to the BID that is the address of this location.

Figure 298

NAME	OP	BITS RANGE	DESCRIPTION
BYTE_ENABLE	R/W	35:0	Only one byte enable is used for both read and write operations.

Figure 299

NAME	NO BITS	RANGE	WR	DESCRIPTION
BID HEAD	23	22:0	Н	The head is an address to memory. It will point to a buffer. Therefore, it is the Buffer ID head pointer. It is the first buffer pointer that has been enqueued for this FID and the first one to be dequeued. If it is NULL then the queue is empty.
CLASS	3	25:23	Н	Class of FID
RSVD	1	26		Not Used
REL	1	27	Н	When set, release the buffer. The count is zero for the BID.
HD OAM	1	28	Н	OAM BIT
HD EOP PKT	1	29	Н	If set, then the head BID is the EOP one for packets.
HD SOP PKT	1	30	Н	If set, then the head BID is the SOP one for packets.
HD EFCI	1	31	Н	EFCI BIT
FID TYPE	4	35:32	Н	The type represents the actions that the device will take in regards to this FID. It is not used in the per flow engine. It will be send to the memory manager.

Figure 300

NAME	OP	BITS RANGE	DESCRIPTION
BYTE_ENABLE	R/W	35:0	Only one byte enable is used for both read and write operations.

Figure 301

Figure 302

Figure 303

BYTE_ENABLE _0	R/W	26:0	Asserted for all read operation and for all write operations except when writing RED ASSOCIATION or NEXT TUN.
BYTE_ENABLE _1	R/W	53:27	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue or when the RED ASSOCIACTION or NEXT TUN.
BYTE_ENABLE _2	R/W	71:54	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue or NEXT TUN.
BYTE_ENABLE _3	R/W	81:72	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue or when the RED ASSOCIACTION.

Figure 304

Figure 305

NAME	NO	RANGE	WR	DESCRIPTION
	BITS		ļ	It will point to a
BID	23	22:0	H	The head is an address to memory. It will point to a
HEAD			1	buffer. Therefore, it is the Buffer ID head pointer. It is
			1	the first buffer pointer that has been enqueued for this
				FID and the first one to be dequeued. If it is NULL
				then the queue is empty.
CLASS	3	25:23	Н	Class of FID
RSVD	5	27:26		Not Used
HD OAM	1	28	H	OAM BIT
HD EOP	1	29	H	If set, then the head BID is the EOP one for packets.
PKT	1			
HD SOP	1	30	H	If set, then the head BID is the SOP one for packets.
PKT	1] 30	**	
	1	31	H	EFCI BIT
HD EFCI	4	35:32	H	The type represents the actions that the device will
FID	4	33.32	''	take in regards to this FID. It is not used in the per
TYPE				flow engine. It will be send to the memory manager.
	10	15.26	S	It is the root of the tunneled FID.
FID TUN	10	45:36	3	it is the root of the turnered 1 22.
ROOT			 	To see the next EID member of the Tunneled
NXT FID	10	55:46	S	It represents the next FID member of the Tunneled
TUN				FID

Figure 306

NAME	NO	RANGE	WR	DESCRIPTION
NAIVIE	BITS	KANGE	WIX	DESCRIPTION
BID	23	22:0	Н	The tail is an address to memory. It will point to a
TAIL				buffer. Therefore, it is the Buffer ID tail pointer. It is
				the last buffer pointer that has been enqueued for this
				FID and the last one to be dequeued. If it is Null, then
				the queue is empty
CLP	1	23	Н	
RSVD	3	26:24		
DROP	1	27	Н	Drop Packet because of port parameter
PORT				
RED/CL	1	28	Н	Drop the cell until EOP then recheck the RED
ASS				algorithm
DROP				
TTL	2	30:29	Н	When higher than 2, discard & de activate the FID.
·				Reset when dequeue, shaping or empty.
Q-TIME	20	50:31	Н	The start of queue idle time
DROP	1	51	Н	Drop until next SOP. Keep the queue free of packet
Timeout				fragments because of time out discards.
DROP &	1	52	Н	Drop until next EOP. Discard last packet fragment.
discard				·
DROP	1	53	Н	Drop until next SOP.
FREE				
THRES		·	<u></u>	
RSVD	10	61:54		
RED	10	71:62	S	RED Association. This is set with a setup connection
ASSOC				command. It should never be overwritten by the logic.
				When queue is empty, the byte enable has to be used
				to write null in the tail pointer.
RSVD	10	81:72		·

Figure 307

Figure 308

NAME	OP	BITS RANGE	DESCRIPTION
BYTE_ENABLE _0	R/W	26:0	Asserted for all read operation and for all write operations except when writing RED ASSOCIATION or NEXT TUN.
BYTE_ENABLE _1	R/W	53:27	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue or when the RED ASSOCIACTION or NEXT TUN.
BYTE_ENABLE _2	R/W	71:54	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue or NEXT TUN.
BYTE_ENABLE _3	R/W	81:72	Asserted for all read operation and for write operations, except when the dequeue engine is updating the Tail pointer to "NULL" on empty queue or when the RED ASSOCIACTION.

Figure 309

 NAME	_	NO ITS	R	ANGE	WR		DESCRIPTION
CRNT FI	D	10		9:0		H/S	IT IS THE CURRENT FID IN THE TUNNELED FLOW. IT WILL BE UPDATED WHEN THE
TUN					İ		
HEAD							EOP IS REACHED.
FID TU	Ń	10		19:10		H/S	IT IS THE LAST FID IN THE LINK.
TAIL							
FID no	t	1		20		S	If it is set, then the FID is not empty and active.
Empty							

Figure 310

SIGNAL	DESCRIPTION
BID_MEM_SIZE [2:0]	Specifies the BID memory size
BID_MEM_CS [2:0]	Specifies the BID memory Chip Selects with respect to address bits.

Figure 312

NAME	DIR	VALUE
CHIP_MODE	IN	0 – ingress chip 1 – egress chip
		1 –Default
PORT_NUM (6:0)	IN	Switch Device Port Number 0000000 – Default Value

Figure 313

NAME	DIR	VALUE
PFQ_SEG_CLK	OUT	CLOCK
PFQ_SEG_DATA [1:0]	OUT	The transfer takes four clocks
11 6 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3		CLK DATA1 DATA0
		1 6 5
		2 4 3
·		3 2 1
		4 0 F/NF
PFQ_SEG_VALID	OUT	Transfer Valid

Figure 314

PFQ_DBS_VALID	1	0	SIGNALS VALID VALUES ON OTHER SIGNALS	
			FROM PFQ TO SHP	
			000 - NOT VALID COMMAND (IGNORE ALL OTHER	
			FIELDS)	
PFQ_DBS_FLOWID	20	0	FLOWID value to the Shaper block	
PFQ_DBS_NCELL	10	0	Number of cells for the FID	
PFQ_DBS_BID	23	0	Buffer ID/Pkt ID of the fid.	
PFQ SHP_CLPI	1	0	Cell Loss Priority bit, which the SHP modifies according to	
			the Dual Leaky Bucket algorithm.	

Figure 315

DBS_PFQ_PORTID	7	I	PORTID FOR THE SCHEDULED FLOWID
DBS_PFQ_FID	20	I	FLOWID that is scheduled now
DBS_PFQ_VALID	1	I	If asserted, the FID_O and PID are valid, A valid FLOWID
			and PORTID is driven from the scheduler once every 9
i			clocks of 200MHz
DBS_PFQ_CLPO	1	I	CLP bit of the current cells. This bit is modified by the
			shaper and is being sent to the PFQ through the scheduler.
PFQ_DBS_FULL	1	0	It is bypassed from the Memory Manager or generated
114-230-1022			internally for tunneled flow IDS

Figure 316

Figure 317

1	I	MEMORY MANAGER IS FULL
1	I	Clock
2	I	Command
1	I	Valid
24	(Fig.	Parameters
	1 1 2 1	1 I I 2 I I I I I I I I I I I I I I I I

PFQ_MEM_FULL	1	Ι	PFQ IS FULL
PFQ_MEM_CLK	1	0	Clock
PFQ_MEM_COM_(1:0)	2	0	Command
PFQ_MEM_VALID	1	0	Valid
PFQ_MEM_PARAM	24	0	Parameters

Figure 318

From To Command		Description	Opcode
MEM -> PFQ	NOP	No command is performed	00
MEM -> PFQ			01
MEM -> PFQ	Discard	Discard the packet	10
MEM -> PFQ	Release	Release BID	11

Figure 319

Figure 320

CMD	OP	CYCLES NEEDED	CYCLES VAULE
01	Enqueue	D1, D2	D1: {4'b0,
			FID}
			D2: {12'b0,
			OAM, EFCI,
			TYPE [3:0],
			EOP, SOP,
,			CLP, CLASS
			[2:0]}
10	Discard	D1	D1: {4'b0,
			FID}
11	Release	D1	D1: {1'b0,
			BID}

Figure 321

CMD	ОР	CYCLES NEEDED	CYCLES VAULE
01	BID_VALUE	D1	D1: {1'b0, BID}
10	Dequeue	D1, D2, D3	D1: {4'b0, FID} D2: {7'b0, REL, OAM, EFCI, PROTID [6:0], TYPE [3:0], EOP, SOP, CLP} D3: {1'b0, BID}
11	Not Valid	N/A	N/A

Figure 322

Figure 323

Figure 324

Start address	Last address	Total length
80h	7Fh	64d

Figure 326

Address	Name	Typ e	Description
0	COM	R/W	[31:28] – Opcode
U	COM	10 11	[27:0] – Address, depending on the
			command.
		:	No default value.
1	RO	R/W	General-purpose register. No default value
	R1	R/W	General-purpose register. No default value
3	R2	R/W	General-purpose register. No default value
4-31	Reserved	NOP	NOT USED
32	TOTAL FREE_B	R/W	[31:23] – Reserved
5-	UFF		[22:0] – Total number of Free Buffers
			Default: $8M - 1 = FFFFE$
			= 1111 1111 1111 1111 1110
33	THRESHOLD_	R/W	[31:23] – Reserved
	FREE BUFF		[22:0] – Total number of Free Buffers
	_		threshold for empty. It has to be less than
•			TOTAL_FREE_BUFFER VALUE
			Default: 8M – 11H = FFFEE
			= 1111 1111 1111 1110 1110
34	THRESHOLD	R/W	[31:23] – Reserved
	FREE_BUFF_BA		[22:0] – Total number of Free Buffers
	CK PRES		threshold for backpressure. It has to be
	- ,		less than THRESHOLD_FREE_BUFF
			Default: $8M - 11H = FD8FF$
			= 1111 1101 1000 1111 1111
35	FREE_BUFFS_IN	R/W	[31:23] – Reserved
	USE		[22:0] – Buffers currently in use
			Loadable counter for testing

36	CONTROL	R/W	[31:4] – Reserved
			CPU Port blocked [3] if set the CPU port
			is Blocked. Default value is "1".
			Enqueue Multicast as Unicast traffic [2] If
. 1			set the multicast traffic is treated as
			Unicast. Default value "0".
		,	Enable buffer management [1] If set the
			buffer management is enabled. Default
			value "0".
			RED/CLASS [0] If set the buffer
			management is RED. Default value "0".
37	RED TIME Q-TIME	R/W	[31:25] – Reserved, Counter
J.	TELL TEN E		[24:0] - Count
38	Transmission time	R/W	[31:16] Reserved, [15:0] Typical
	"S"		transmission time for a small packet.
39	FID Memory	R/W	[31:20] Reserved, [19:0] MASK
	descriptor		contiguously used. Number of bits used to
	dostriptor		access the FID memory. The number of
			buffers can be less than the available
			storage. Default value "FFFFF"
40	Timeout Rate	R/W	[31:5] Reserved, [4:0] Timeout rate. It is
	1 imoout reaso		the number of clocks to skip before the
1			next timeout. Default value is "00000".
41	FREE Buffer Tail	R/W	Free Buffer tail [22:0]
42	FREE Buffer Head	R/W	Free Buffer Head [22:0]
43	OUTPUT PORT	R/W	[31:0] Output ports 31 downto 0 statuses.
	BLOCKED [31:0]		If set, then the port is blocked and discard
	_		command with EOP cell is asserted.
44	OUTPUT PORT	R/W	[31:0] Output ports 63 downto 32 statuses.
	BLOCKED		If set, then the port is blocked and discard
	[63:32}		command with EOP cell is asserted.
45	CLASS 0	R/W	[23:0] CLASS 0 buffer management
	Threshold		Threshold. Default value "000FFF".
46	CLASS 1	R/W	[23:0] CLASS 1 buffer management
	Threshold		Threshold. Default value "000FFF".
47	CLASS 2	R/W	[23:0] CLASS 2 buffer management
	Threshold		Thresholds. Default value "000FFF".
48	CLASS 3	R/W	[23:0] CLASS 3 buffer management
	Threshold		Thresholds. Default value "000FFF".
49	CLASS 4	R/W	[23:0] CLASS 4 buffer management
	Threshold		Thresholds. Default value "000FFF".
50	CLASS 5	R/W	[23:0] CLASS 5 buffer management
	Threshold	<u></u>	Thresholds. Default value "000FFF".
51	CLASS 6	R/W	[23:0] CLASS 6 buffer management
	Threshold	<u> </u>	Thresholds. Default value "000FFF".

Figure 327

		 		10.16	45 40	11.0	7-4	3-0	
Register	31-28	27-24	23-20	19-16	15-12	11-8_	/-4	3-0	
COM	0000				Don't Care				
RO			Don't Care						
R1			Don't Care						
. T/T	l								

Figure 328

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0			
COM	0001	Don't	1 .	FID_ADDR [20:0]							
RO		R0 [31:0] Data; Written by the PFQ and Read by the CPU									
R1		R1 [31:0] Data; Written by the PFQ and Read by the CPU									
R2		R2 [7:0)] Data; Wr	itten by the	PFQ and	Read by th	e CPU	· _			

Figure 329

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0010	Don't		1 = = =	FID_	ADDR [20):0]			
RO		R0 [31:0] Data; Written by the CPU								
R1		R1 [31:0] Data; Written by the CPU								
R2			R2 7:0)] Data; Wr	itten by the	CPU				

Figure 330

Figure 331

Register	31-28	27-24	23-20	19-16		11-8	7-4	3-0
COM	0100	Don't	Don't Care FID_ADDR [19:					
R0		R0 [31:0] Data; Written by the CPU						
R1			R1 [3:0] Data; Wr	itten by the	CPU		

Figure 332

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0101				ADDR [22			
RO		_	0] Data; Wi					
R1		R1 [3:0]; Writte	n by the P	FQ and Re	ad by the C	PU	

Figure 333

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0110			BID_	ADDR [22	2:0]				
RO			R0 [31:0] Data; Written by the CPU							
R1			R1 [3	3:0]; Writte	en by the C	PU				

Figure 334

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0111		Don't Care FID_ADDR [20:0]						
RO		R0 [31:0] Data; Written by the PFQ and Read by the CPU							
R1		R1 [31:0] Data; Written by the PFQ and Read by the CPU							
R2		R2 [7:0)] Data; Wr	itten by the	PFQ and	Read by th	e CPU		

Figure 335

Register	31-28	27-24	23-20	FID_ADDR [20:0] 31:0] Data; Written by the CPU				3-0		
COM	1000	Don't	Care	FID_ADDR [20:0]						
R0		R0 [31:0] Data; Written by the CPU								
R1		R1 [31:0] Data; Written by the CPU								
R2		,	R2 [7:	0] Data; Wr	itten by the	e CPU				

Figure 336

Figure 337

Register	31-28	27-24	23-20	19-16			7-4	3-0
COM	1010	Don't	Care		FID	_ADDR [1	9:0]	

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	1011		Don't Care						
RO			Don't Care						
R1			Don't Care						

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	1100		Don't Care						
RO			Don't Care						
R1			Don't Care						

Figure 340

Figure 341

Figure 342

	RED											
OP	1	2	3	4	5	6	7	8				
ENQ						RD						
DEQ												
TO							•	1				
FB					·							
CPU	R/W											

Figure 343

			D	EQUEU	E			
OP	1	2	3	4	5	6	7	8
ENQ							WR	
DEQ	RD					WR		
TO	VIII.			RD	WR			
FB								
CPU			R/W					

Figure 344

	BID											
OP	1	2	3	4	5	6	7	8				
ENQ			·				WR	WR				
DEQ						RD						
TO					WR		1					
FB	RD	WR										
CPU			R/W			<u></u>		<u></u>				

Figure 345

			ST	TATISTIC	CS			
OP	1	2	3	4	5 .	6	7	8
ENQ	RD	RD					WR	WR_
DEQ			RD			WR		
TO				J = 1	R/W			
FB								1
CPU				R/W				

Figure 346

Figure 347

Figure 348

Signal Name	#Bits	DIR	Description
		_	16'
		Gen	eral Signals Active Low reset for the DBS block
rst_l	1	1	
clk	1	I	200 MHz input clock
cpu_ingress	1	I	If set, the block is in ingress chip.
			If reset, the block is in egress chip.
cpu_ingress_p	6	I	In case of ingress chip, this is an indication of
			the output port.
cpu_cs_sel	2	I	Control signals to generate chip-select bits to
		ļ , -	packet memory
cpu_bid_len	3_	I	Indication of the amount of supported BIDs
cpu_shp_meter	1	I	If this signal is asserted then traffic has to be
		1	shaped depending on shape bit for the fid. Else traffic is just metered.
		<u> </u>	trame is just metered.
PFQ			
pfq_dbs_valid	1	I	Signals Valid values on other signals from PFQ
prq_uos_varia		1	to DBS.
pfq_dbs_flowid	20	I	FlowID value to the Shaper block
pfq_dbs_ncell	10	Ī	Number of cells for the FID
pfq_dbs_bid	23	Ī	Buffer ID/Pkt ID of the fid.
pfq_dbs_clpi	1	I	Cell Loss Priority bit, which the SHP modifies
prq_uos_orpr			according to the Dual Leaky Bucket algorithm.
,			Scheduler
dbs_sch_i_valid	1	0	Indicates a valid input phase to the scheduler
dbs_sch_i_fid	20	0	FID to schedule
dbs_sch_i_qos	10	0	QOS which the FID belongs to
dbs_sch_i_cpu_p	1	0	If set, the FID belongs to the CPU port,
			otherwise, use the qos memory to find the
			proper port.
dbs_sch_o_port	8	0	Current output port, the scheduler should
			provide a FlowID to that specific port
dbs_sch_o_valid	1	0	If set, Output port valid. If reset, output port is
			not valid. Scheduler should not perform output
			phase.
sch_dbs_o_valid_	1	I	Output FID from the scheduler is valid
sch_dbs_o_fid	20	I	Output FID from the scheduler
sch_dbs_o_middle	1	I	If set, the FlowID from the scheduler is in the
			middle of the packet of the last cell of the
			packet.
	1		If reset, this is the first cell of a packet or a cell
	+ -	+ —	traffic.
dbs_sch_o_empty	1	0	If set, the FlowID has become empty If set, the FlowID has end-of-packet indication
dbs_sch_o_eop	1	0	II set, the Flowid has end-of-packet indication

			1 de la distancha sild
dbs_sch_o_busy	1	0	If set, the port was busy, the scheduler should
			not continue with he output phase.
			Shaper
dbs_shp_i_valid	1	0	Indicates a valid input phase to the scheduler
dbs_shp_i_fid	20	0	FID to schedule
dbs_shp_i_rateid	10	0	Rate ID which the FID belongs to
dbs_shp_i_ncell	16	0	Number of packets in the cell
shp_dbs_o_valid	1	I	If set, a valid output phase from the shaper is in
3hp_dob_o			progress.
shp_dbs_o_fid	20	I	Output FlowID from the shaper
shp_dbs_o_violator	1	I	If set, the output FlowID violated the traffic rate
511p_ u 005_0		_	in the shaper
dbs_shp_o_rateid	10	0	RateID for the FlowID of the output phase. In
r			this case the database just reads the memory
			and feed this field to the shaper directly.
dbs_shp_fid_empty	1	0	If set, the FlowID doesn't have any more packet
wos			to shape, the shaper should remove the FlowID
			from it's links.
			. Lutarfo cos
	<u>Ex</u>	ternal	Memory Interfaces
		F	ID memory
dbs_fid_addr	20	0	Address
dbs_fid_word_en	2	О	Word enable for write accesses
dbs_fid_we_l	1	0	Write enable
dbs_fid_data	91	IO	data
			KT memory
11 1 1.1	23	O	Address
dbs_pkt_addr	55	IO	data
dbs_pkt_data	$\frac{33}{3}$	0	Chip select used when using 2M entries and up
dbs_pkt_cs_l	$\frac{3}{2}$	10	Word enable for write operation.
dbs_pkt_word_en			[0] Controls the write to data bits [23:0] Next
	l l	1	
			[1] Controls the write to data bits [61:24] – ncell, clp, fid
			[1] Controls the write to data bits [61:24] – ncell, clp, fid
			[1] Controls the write to data bits [61:24] – ncell, clp, fid
spio_dbs_clk	1	Ou I	[1] Controls the write to data bits [61:24] – ncell, clp, fid tput SPI block Input clock from the re-assembly block (a different chip)
spio_dbs_clk spio_dbs_sync	1 1		[1] Controls the write to data bits [61:24] – ncell, clp, fid tput SPI block Input clock from the re-assembly block (a

Figure 349

Figure 350

Field name	#bits	Owned by	Description
Rp	24	Hardware	Read pointer of the packets link list for the fid
Wp	24	Hardware	Write pointer of the packets link list for the fid
E	1	Hardware	If set, the packet link list is empty.
_			If reset, the packet link list is not empty.
Ncell	10	Hardware	Holds the total amount of cells for the current packet
cell_cnt	10	Hardware	Cells counter, for the shaper or the scheduler. Start
	1		decrementing from ncell down to 1
clp	1	Hardware	Clp indication of the current packet, modified in the output
Cip	•		phase.
Port	6	Software	An indication of the port that the fid belongs to.
1010			Used for the shaper only.
Qos	10	Software	An indication of the QOS that the fid belongs to in case of
200			un-shaped traffic.
			An indication of the RateID that the fid belongs to in case
			of shaped traffic.
Cpu_port	i	Software	If set, the fid belongs to the cpu port in the scheduler
Cpu_port	1		If reset, the fid belongs to the port specified by the port
			field.
Shape	1	Software	If set, the fid has to be shaped.
Shape			If reset, the fid is not to be shaped, it belongs to the
			scheduler.
Shape_class	3	Software	Priority for the shaped traffic. Each shaped FlowID can
Shape_chase			exist in one of 8 strict priority classes.
			A class address is {port, shape_class}

Figure 351

dbs_pkt_word_en	Write to field	Memory bits
[0]	Next	[23:0]
[1]	Ncell, clp, fid	[54:24]

Figure 352

Field name	#bits	Place	Owned	Description				
			by	The makes of the output port				
PortID	6	[5:0]	Software	The value of the output port				
valid	1	[6]	Software	If set, the portid is valid.				
Valid	1	ا (۲۰)		If reset, the portid is not valid				
Jump	1	[7]	Software	If set, the address to this memory should be reset in the next positive edge of the clock. If reset, the address to this memory should be incremented by 1 in the next positive edge of the clock.				

Figure 353

Field name	#bits	Place	Owned by	Description
Empty	8	[7:0]	Hardware	An indication of empty or not empty per class of the strict priority of the shaped traffic. If a bit is set, the corresponding class is empty.
Prev_qos_v	1	[8]	Hardware	If previous QOS is valid and in middle of packet
Prev_qos_ptr	3	[11:9]	Hardware	This is the QOS to be serviced irrespective of strict priority if prev_qos_v is valid

Figure 354

Figure 355

Address	Name	Type	Description
0	COM	R/W	[31:28] – Opcode
	001.1		[27:0] - Address, depending on the
			command.
1			No default value.
1	RO	R/W	General-purpose register. No default value
$\frac{1}{2}$	R1	R/W	General-purpose register. No default value
$\frac{2}{3}$	R2	R/W	General-purpose register. No default value
4	R3	R/W	General-purpose register. No default value
5-31	Reserved		
32	Control	R/W	[0] – Modify CLP enable
			If reset, no modification is allowed
			to the CLP bit
			If set, CLP bit can be modified
			according to shapers outputs.
			Default value: 0
			[31:1] – Reserved
33	TEST_REG	R/W	[31:0] – Test mode.
55	1201_1		TBD
34-63	Reserved		

Figure 356

Registe r	31-28	27-24	23-20		19)-16	15-12	11-				3-0
COM	0001		R		FID[19:0]							
RO	R[7:0]	':0] S Pri				Qos[9:0] A F				Po	ort[5:0]
R1	R[7:0]			rp[23:0]							
R2	R[9:8]				wp[23:0]						
R3		R[9:0]				Cell_	cnt[9:0]	С		No	ell[9:	0]

Figure 357

Register	31-28	27-24	23-20	19-16	15-12	11-8	7	-4	3-0
COM	0011	I	₹	FID[19:0]					
RO		3	S Pri	R	Qos[9:0	0]	Α	Po	ort[5:0]

Figure 359

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0100	R			Pkt[2	23:0]		
RO			Fid[19:0]			L	Ncell[9:	0]
R1]	R			Next	23:0]		

Figure 360

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0101	R			Pkt[2	23:0]		
RO			Fid[19:0]	L Ncell[9:0]				
R1]	R			Next	[23:0]		

Figure 361

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0110		R		Data	[7:0]	Port_ac	dr[7:0]

Figure 362

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0111		R		Data	[7:0]	Port_ac	ldr[7:0]

							_		
Registe	31-28	27-24	23-20	19-16	15-12	11-8	7	/-4	3-0
COM	1000]	R	P[3:0]	Empt	y[7:0]	R	port_	_add[5:0]

Figure 364

Figure 365

Register	31-28	27-24	4	23-20	19-16	15-12	11-8	7-4	3-0
COM	1010				R			class_ad	dr[8:0]
RO	R		E			rp[2		_	
R1	1	R	wp[23:0]						

Figure 366

Register	31-28	27-2	4	23-20	19-16	15-12	11-8	7-4	3-0
COM	1011				R			class_ad	dr[8:0]
R0	R		Е	rp[23:0]					
R1	1	R		wp[23:0]					

Figure 367

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1100				R			

Figure 368

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1101				R			

Figure 369

Memory	0	1	2	3	4	5	6	7	0	1	2	3_	4	5
FID Memory	R1	<u>R1</u>	R1		W1		W1	<u>W1</u>						
PKT	WO	WO	RI		R1	<u>R1/</u>	W1	W1n	WI	W1				
Memory														
Port								R3						
Calender			-							<u> </u>		<u> </u>		
Shp port		R2			R1		W1	WI		<i>R3</i>				
Shp port strict				<u> </u>	ļ								 	├
Shp out port					<u>R1</u>	R2	W1	WI		<u> </u>	<u> </u>			

Figure 370

CLK	DBS	Shaper
6		
7	dbs_shp_i_valid, dbs_shp_I_fid, dbs_shp_i_rateid	Shp_dbs_o_fid, shp_dbs_o_violator, shp_dbs_o_valid
0		
1		
2		
.3	dbs_shp_o_rateid	
4	dbs_shp_fid_empty	
5		
6		

Figure 371

CLK	DBS	Scheduler
7	dbs_sch_i_valid, dbs_sch_i_fid, dbs_sch_I_qos, dbs_sch_i_cpu_p	sch_dbs_o_valid, sch_dbs_o_fid, sch_dbs_o_middle
0		·
1.	dbs_sch_o_port, dbs_sch_o_valid(for next slot)	
2		
3		
4		
5	dbs_sch_o_empty, dbs_sch_eop, dbs_sch_o_busy	
6		

Figure 372

CLK	DBS	PFQ
7	dbs_pfq valid, dbs_pfq_fid, dbs_pfq_port, dbs_pfq_clpo,	pfq_dbs_valid, pfq_dbs_ncell, pfq_dbs_clpi, pfq_dbs_bid, pfq_dbs_fid, pfq_dbs_full
0		
1		· ·
2		
3		
4		
. 5		
6		·

Figure 373

Figure 374

Figure 375

Figure 376

_							
Control (2 pins)							
#Bits	DIR	Description					
1	I	200MHz clock					
1	I	Asynchronous active high reset signal					
		DBS					
20	I	FlowID value. This is unshaped flowID which is to be					
		scheduled based QOS in available bandwidth.					
10	I	Qos address of the FID.					
1	I	If set, the FID belongs to the CPU port and the					
		input/output stages are by-passed.					
1	I	If asserted, the fid and all other inputs to the input stage					
	1	are valid. FlowID is driven by the DBS once every 8					
		clocks of 200MHz.					
7	I	This is the port number currently being scheduled by					
		DBS. Scheduler selects flow id based on QOSs strict					
		priority and WRR to schedule from this					
		If bit [6] is set (the MSB) then the Database requests a					
		FlowID for the CPU port.					
1	I	This assertion qualifies dbs_sch_o_port. If this is not					
	_	asserted then it means DBS is not scheduling any port in					
		this slot.					
20	0	The current scheduled FlowID used as a read address for					
	1 1 20 10 1 7	1 I I I I I I I I I I I I I I I I I I I					

Egress Status

scheduling shaped traffic and scheduler not to update any parameters.

Egress Status						
and i alle	1	Ţ	Input clock for the status bits			
egress_sch_i_clk			Input data for status			
egress_sch_i_data	1	1				
		T	When set input data is valid			
egress_sch_i_valid	<u> </u>	<u> </u>				

CPU Interface (73 pins)

1 - valid when as lis asserted								
cpu_addr 6		I	Address for CPU commands, valid when cs_l is asserted.					
cpu_data_in 3		Ī	Data in for write commands, valid when cs_l is asserted.					
	32	0	Data out for read commands, valid when cs_l is asserted.					
cpu_sch_data_out			Active low chip select, when asserted all other signals are					
cpu_sch_cs_l	1	1	valid					
			If set, the CPU issued a read command, if reset the CPU					
cpu_rdwr_l	1	I	If set, the CPU issued a read command, it reset are					
• -			issued a write command, valid when cs_l is asserted.					
asimo	1	I	One cycle pulse asserted once every 520 cycles of 200					
gsync	1	_	MHz. It has to be sampled before use.					
	1	T	If set, indicate the chip is in ingress mode.					
mode 1 1 1 1 1 1 Set, indicate the emp is in ingress me External Memory Interface (43 chip pins)								
			Address to the FID next memory.					
sch_fid_addr	20_	0						
sch_fid_data_in	20	I	Read data in from the memory.					
sch_fid_data_out	20	0	Write data to the memory.					
	1	0	Write enable: 0 – write and 1 – read.					
sch_fid_we_l	1 1		Data write enable for the bi-dir pads.					
sch_fid_data_en	1_1_	0	The clock to the memory (200 MHz) - External					
sch_fid_o_clk	11	0	The clock to the melliory (200 MHz) External					
sch_fid_i_clk	1	0	The clock to the memory (200 MHz) - Internal					

Figure 377

Figure 378

Figure 379

Figure 380

#	Description
1	No Strict priority WRR QoS0-QoS6 QOS7 is best effort
2	Strict priority: OoS0, WRR QoS1-QoS6, QOS7 is best effort
3	Strict priority: QoS0-QoS1, WRR QoS2-QoS6, QOS7 is best effort
4	Strict priority: QoS0-QoS2, WRR QoS3-QoS6, QOS7 is best effort
5	Strict priority: QoS0-QoS3, WRR QoS4-QoS6, QOS7 is best effort
$\frac{3}{6}$	Strict priority: QoS0-QoS4, WRR QoS5-QoS6, QOS7 is best effort
7	Strict priority: QoS0-QoS5, WRR QoS6, QOS7 is best effort
'	This is exactly like a complete strict priority for all QOSs.

Figure 381

Figure 382

Figure 383

Figure 384

Figure 385

Field name	#bits	Range	Owned by	Description
F_NEXT	20	19:0	Scheduler	The next Flow ID, which is linked to the previous Flow ID. The address to the memory is the current Flow ID.

Figure 386

Field name	#bits	Range	Owned	Description
			by	15.000
PortID	6	16:11	Software	Indication of which port the specific QOS is
				assigned to. Since total number of ports is 256
				(64*4) there are 8 bits descriptor.
O WEIGHT	8	10:3	Software	Weight of the QOS for the weighted round
Q_WEIGHT		2012		robin algorithm.
O NUM	3	2:0	Software	QOS number in the sequence of the QOSs per
Q_1\to\v1				port. Since it's only 3 bits, the limit is 8 QOSs
				per port.

Figure 387

Figure 388

Field name	#bits	Range	Owned by	Description
PRIORITY	8	20:13	Software	Selecting Strict priority and WRR to the QoSs, see table above for complete description of his field.
FACTOR	3	12:10	Software	In order to make the traffic less bursty, each QOS weight will be divided by 2^FACTOR. That means that there will be some rotation of QOSs in the active link list before moving them to the waiting list.
Q_BASE_AD DR	10	9:0	Software	A pointer to the QOS memory, which is the first QOS that is assigned to this port.

Figure 389

Field name	#bits	Range	Owned by	Description
PREV_QOS	3	46:44	Scheduler	The QOS that was services last to be serviced
TREV_QOS	5	, , , , ,		for this port
PREV_QOS_V	1	43	Scheduler	If set, PREV_QOS has to be scheduled with
TREV_Qoo_				no connection to priority since in the middle of
				a packet.
				If reset, choose a QOS according to priority
				and WRR.
ACTIVE_PTR	3	42:40	Scheduler	This pointer to points to current QOS to be
ACTIVE_T IN		3 12.10		served in round robin arbitration. When
	ļ			Q_WEIGHT_M is either zero or negative and
				eop is received for the current flow ID, this
	1			pointer moves to next QOS in round robin.
				This pointer also moves when empty (no more
				packets pending for this flow ID) is received
·				from DBS and F_RP & F_WP are same,
				irrespective of q_weight_m as link list
				becomes empty for this QOS. Note that this

•				
				pointer moves around only on round robin QOSs. When strict priority QOS is served, this
				pointer is not altered.
Q_WEIGHT_M F	24	39:16	Scheduler	A count down counter of weight/factor for the current QOS. When this count becomes zero and eop arrives, next qos available will be serviced. And new QOS Weight/port factor is loaded to this counter.
QA_EMPTY	8	15:8	Scheduler	Indication per QOS if it's empty or some flow ids are linked to it. (Used for the priority scheme). This is active empty list and when any of the QOS weight becomes zero or negative, it is moved to QW_EMPTY list. QW_EMPTY is loaded to this list when all round robin QOS's weight become zero or negative. If any strict priority QOS is pending in QW_EMPTY list it is serviced first before resuming round robin operation.
QW_EMPTY	8	7:0	Scheduler	This is waiting empty list. Scheduler Input phase updates this list when new QOS arrives. Also non_empty QOSs are moved from active list to this list when there is eop and weight is decremented to zero or negative.

Figure 390

Field name	#bits	Range	Owned by	Description
P NEXT	6	5:0	Scheduler	Used for port calendar.
1_112211]	In case of an Ingress Chip, the ports are linked
	!			together to a virtual ports link list. An input
				phase to an empty port will cause the linking
				of the port, an output phase with cell_cnt = 0
				will de-link the virtual port from the list.

Figure 391

Address		Type	Description
	Name COM	R/W	[31:28] – Opcode
U	COM	10 **-	[27:0] – Address, depending on the
		i l	command.
			Default value for bits [31:28] – 0
			No default value for bits [27:0]
1	R0	R/W	General-purpose register. No default value
2	R1	R/W	General-purpose register. No default value

3	R2	R/W	General-purpose register. No default value
4 – 31	Reserved		
32	CONTROL	R/W	[0] - OUT_EN
32			Global output enable for all ports, if
			reset, no output stage will be
			performed for all ports
			Default value 0 (output disabled).
		ļ	[31:1] – Reserved
33	INGRESS_PTR	R/W	[7:0] – Head pointer of the virtual port
33	II/ORLOS_I IR	10 "	list.
			Used only in case of an ingress
	,	ļ	chip. No default value.
ļ			[15:8] – Tail pointer of the virtual port
ļ		1	list.
			Used only in case of an ingress
			chip.
			No default value.
			[16] – Empty indication of the virtual
			port list.
·			Used only in case of an ingress
			chip. If set, the virtual port list is
			empty.
			Default value 1 (empty list)
			[31:17] – Reserved.
24	CPU_R_PTR	R/W	[19:0] – Head pointer to the FlowID list
34	CFU_K_FIK	10 **	of the CPU port. No default
			value.
35	CPU_W_PTR	R/W	[19:0] – Tail pointer to the FlowID list of
33	Cro_w_rrk	10 11	the CPU port. No default value.
36	CPU_CTRL	R/W	[0] – Empty indication of the CPU
30	CI O_CIKL	10 11	FlowID list.
		i	If set, the FlowID linked list is
			empty.
			Default value 1 (empty list)
			[1] – CPU output port enable.
			If set, the scheduler can schedule
			FlowIDs for the CPU port.
		· ·	Default value 0 (Disable the CPU
			port)
			[31:2] - Reserved
27	WEIGHT_QUOTA	R/W	[15:0] – weight_quota
37	WEIGHT_QUUTA	10.44	This value is a multiplicand to
			calculate the weight per QOS.
		1	Default value 1
			[31:16] - Reserved
20	TECT DEC	R/W	[31:0] - Test mode.
38	TEST_REG	10.44	TBD
			100

Figure 392

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0001	1	R			Fid[19:0]			
RO		R		Next[19:0]					

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0010	1	R			Fid[19:0]		
R0		R				Next[19:0]		

Figure 394

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0010	I	3	Fid[19:0]				
RO		R		Next[19:0]				

Figure 395

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	
COM	0100		R[17:0]			Addr	
R0	•	R[12:0]		qnum	Wei	ght	R[1 :0]	PortID

Register	31-28	27-24	23-20	1	9-16	15-12	11-8	7-4	3-0_	
COM	0101			र[17:	0]			Addr[9:0)]	
RO		R[10:0]		Е		Read PTR[19:0]				
R1		R[11:0]		Write PTR[19:0]						
R2	R[6:	0]	W_M[24:0]							

Figure 397

Derictor	31-28	27-24	23-20	1	9-16	15-12	11-8	7-4	3-0	
Register	0110	21-24		R[17				Addr[9:0)]	
COM	0110	D[10.0]		E	<u>,</u>	R	ead PTR[19:01		
R0		R[10:0]		<u> </u>	Write PTR[19:0]					
R1		R[11:0]								
R2	R[6:	0]	Q_WEIGHT_FM[24:0]							

Figure 398

Register	31-28	27-24	23-20	19-16	15-12	11-8	7	-4	3-0
COM	1000			R[21:0			0.1	L	ldr[5:0]
R0	Priori	ty[7:0]	R[4:0]	Facto r[2:0]	R[5:	0]	L_Q_I		lr[9:0]

Figure 400

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	1001	1		Addr[5:0]						
		8:0]	PQ	[6:0]	Qa_Em	pty[7:0]	Qw_Empty[7:0]			
			Q_WEIGHT_FM[23:0]							
R0 R1	R[7		10					<u>-</u> -		

Figure 401

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
	1010			R[21:0	0]			Addr[5:0]	
COM		8:0]	PO	[6:0]	Qw_	Qw_Empty[7:0]			
R0	R[7		PQ[6:0] Qa_Empty[7:0] Qw_Empty[7 Q_WEIGHT_FM[23:0]						
R1	K[/	.0]	<u> </u>						

Figure 402

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
	1011			R[21:0]		A	ddr[5:0]
COM	1011		D	[25:0]			N	ext[5:0]
R0	_			[23.0]				

Figure 403

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	1100		Ac	ddr[5:0]					
			R[25:0]						
R0									

27-24						
	R		Addr[9:0]			
R[12:0]		qnum	Weigh	nt[7:0]	PortID[7:0]	
-	R[12:0]		R[17:0] R[12:0] qnum		777 1 467-01	K[17.0] DortH

Figure 405

				10.16	15 12	11-8	7-4	3-0	
Register	31-28	27-24	27-24 23-20 19-10 13-12 11-0 7						
COM	1101	R[21:0]						Addr[5:0]	
		<u> </u>	Facto	Factor[7:0]					
R0	R[5:0]	l	Q_B_Addı	[9.0]	Priorit	.,[,,0]	1 1000		

Figure 406

					CIT TZ 4	CI IZE	CI V6	CLK7
Memory	CLK0	CLK1	CLK2	CLK3	CLK4	CLK5	CLK6	
Extern	al Memor	y (The F	ID parar	<u>neter men</u>	nory is in	the data	base bloc	CK)
FID Next	\overline{Wr}	Rd		<u>CPU</u>	l		Wr	
]			Rd/Wr				
			Interna	al Memor	ies			ı — ·— ·
QOS	CPU	Rd				Rd		
Parameter	Rd/Wr							***
OOS	CPU	Rd				Rd	Wr	Wr
Descriptor	Rd/Wr							
Port	<u>C</u>	Rd		Rd			Wr	Wr
Descriptor	\overline{P}			1				
Descriptor	<u>P</u> <u>U</u> <u>R</u> <u>D/</u>							
	$\frac{1}{R}$							
	D/							}
	$\frac{\underline{\underline{w}}}{\underline{W}}$							
	R							
Port Next	CPU	Rd					Wr	Wr.
1 OIL NOAL	Rd/Wr						<u> </u>	
				– output s				
			Input Ph	ase Oper	ations	,		т — —
FID Next	CPU						Wr [f_wp]	
memory	Rd/Wr			× .			{Next}	
		Rd		Register		 	Wr	
QOS Desc		[Qos]		[Qos]			[Qos]	
memory	Rd/Wr	{descr}		{descr}			{descr}	
Port	CPU			Rd		Register	Wr	
memory	Rd/Wr			[Port]	1.	[Port]	[Port] {descr}	
		<u> </u>	<u> </u>	{descr}		{descr}	(ueser)	J
			Output F	hase Ope	rations_			
· .		D 10		<u>CPU</u>	1	1	1	1
FID Next	Wr-1	Rd0	1					· [
FID Next memory	[f_wp]	[f_rp]		Rd/Wr				
memory	[f_wp] {Next}					Rd1		Wr0
	[f_wp] {Next}	[f_rp] {Next}				Rd1 [Qos] [descr]		Wr0 [Qos] {descr

				 		W/JO
Port	CPII	RdI				Wr0
Foit	<u> </u>					[Port]
mamani	Rd/Wr	[Port]				[10/1]
memory	IXW VVI	Idocarl	1			{descr}
1	1	[descr]			 L	لكتنا

Figure 407

Figure 408

Figure 409

Figure 410

Figure 411

Figure 412

Figure 413

Figure 414

Figure 415

Figure 416

Time Slot	0	1	2	3	4	5	6	7	8	9	10
Future time	1.28	1.56	1.84	2.12		1.40	1.68	2.96		2.24	
Residue	0.28	0.56	0.84		0.12	.40	0.68		0.96		0.24
FlowID out	V	V	V		V	V	V		V		V
		V – valid output									

Figure 417

Figure 418

Figure 419

Rate	STS1	OC3	OC12	OC48	OC192	T1	10M
	51.67M	155M	620M	2.480G	9.92G	2.048M	Ethernet
K	247.74	82.58	20.65	5.16	1.290	6250	128

Figure 420

Figure 421

BG_CNT_	Interval of time [mSec]
0	40
1	80
2	120
3	160
4	200
5	240
6	280
7	320
8	360
9	400
10	440
11	480
12	520
13	560
14	600
15	640

Figure 422

Mode	Ex	Internal Memory		
	Slot memory 41 bits	FID1 memory 65 bits	FID2 memory 24 bits	RateID/ Threshold
Shaper – Single leaky bucket	41 bits of data	36 bits of data only	21 bits of data only	23 bits used only
Shaper – Dual leaky bucket	41 bits of data	65 bits of data	24 bits of data	79 bits used
Meter	Not in use	36 bits of data only	20 bits of data only	27 bits used

Figure 423

Field name	#bits	Owned by	Description
Mtr thrs	27	Software	Number of accumulated cells before flagging as a
_			violator.

Field name	#bits	Owned by	Description
rp_slot	20	Hardware	Read pointer of the FlowID link list.
Wp_slot	20	Hardware	Write pointer of the FlowID link list.
E_slot	1	Hardware	Empty indication for this slot

Figure 426

#bits	Owned by	Description	
18	Hardware	Residue from input/output phase calculation	
18	Hardware	Indication of the time when a slot arrives to the	
		output FIFO and removed all FlowIDs to the output	
		FIFO. Valid only if start==1.	
	Addition f	or dual leaky bucket only:	
18	Hardware	For the dual bucket. Time of last shaped cell.	
17	Hardware	For dual leaky bucket. Amount of credit	
· .		accumulated for the FlowID.	
1	Hardware	If set, use peak rate to calculate future slot during	
		output phase.	
		If reset, use sustained rate to calculate future slot	
	-	during output phase.	
	18 18	18 Hardware 18 Hardware Addition f 18 Hardware 17 Hardware	

Shp_fid1_word_en	Write to field	Memory bits
[0]	Residue	[17:0]
[1]	arrival_time	[35:18]
[2]	last_time	[53:36]
[3]	Credit, d_s	[64:54]

Figure 427

Field name	#bits	Owned by	Description
cell_cnt	27	Hardware	The accumulation of cells between measures.
Mark	1	Hardware	If set, the FlowID violated the assigned rate.
bg_cnt	4	Hardware	Current count of the number of times the
3			background process accessed the FlowID since the
			last measurement against the threshold.
bg_cnt_value	4	Sotfware	Assigned by the user during setup connection
, <u>, , , , , , , , , , , , , , , , , , </u>	i		command. The amount of times the FlowID should
			be accessed by the background process before
	į		comparing to the threshold value.

Figure 428

Field name	#bits	Owned by	Description	
fid_next	20	Hardware	A pointer to the next FlowID	
	Addition for single/dual leaky bucket only:			
start	1	Hardware	If set, this FlowID was the head of the link list in	
			one of the slots, used in the output FIFO to replace	
			the time of arrival to all the FlowIDs from this one	
			until the next FlowID that has this bit set.	
		Addition f	or dual leaky bucket only:	
bg_stt	2	Hardware	For dual leaky bucket. Set to 11 during setup	
og			connection command used to mark the FlowID for	
		1	time count wrapping around.	
time_msb	1	Hardware	Bit [20] (the 21 th bit) of the free running time	
			counter. Used for the background process.	

Shp_fid2_word_en	Write to field	Memory bits
[0]	fid_next	[19:0]
[1]	start, bg_stt,	[27:24]
	time_msb	

Figure 429

Γ	Field name	#bits	Owned by	Description
T	fid_next	20	Hardware	A pointer to the next FlowID

Figure 430

Address		Type	Description
	Name		
0	COM	R/W	[31:28] – Opcode
			[27:0] – Address, depending on the command.
			No default value.
1	R0	R/W	General-purpose register. No default value
2	R1	R/W	General-purpose register. No default value
3	R2	R/W	General-purpose register. No default value
4	R3	R/W	General-purpose register. No default value
5 – 31	Reserved		
32	CONTROL	R/W	[0] – mode
			if 1: shaper mode
			if 0: meter mode
			Default value: 0
			[1] – Shaper output enable
			if 1: output is enabled for the shaper
			if 0: output is disabled for the shaper
			Default value: 0
			[2] – Dual/Single leaky bucket
			If 0, single leaky bucket is supported for all FIDs
			If 1, duall leaky bucket is supported for all FIDs
			Default value – 0
			[31:3] – Reserved
33	RP_OUT	R/W	[31:21] Reserved
			[20] – empty indication to the output FIFO.
			If 1 the output FIFO is empty, no FID for
			the Output Phase to process.
			If 0 the output FIFO is not empty
			Default value: 1
			[19:0] Read Pointer for the Output FIFO.
34	WP_OUT	R/W	[31:20] Reserved
			[19:0] Write Pointer for the Output FIFO.
35	MARK_RP	R/W	[31:21] – Reserved
			[20] marked link list empty indication for meter
			block
•			If 1 the output FIFO is empty
			If 0 the output FIFO is not empty
			[19:0] Read Pointer for the marked link list
36	MARK_WP	R/W	[31:20] – Reserved
			[19:0] Write pointer for the marked link list for
			meter block
37	TEST_REG	R/W	[31:0] – Test mode.
			TBD
38-63	Reserved		

Figure 431

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0				
COM	0010]	R		FID[19:0]							
R0		R[13:0	0]		Residue[17:0]							
R1		R[13:0	0]		A	rrival_time	[17:0]					
R2		R[13:	0]			Last_time[17:0]					
R3		R[13:	0]	P		Credit[16:0]					

Figure 433

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0011	R[7:0]			1	FID[19:0]		
RO	R[′	7:0] SBT		FID_NEXT[19:0]				

Figure 434

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0100	R[7:0]			I	FID[19:0]		_
RO	R[′	7:0] SBT			FID_NEXT[19:0]			

Figure 435

Register	31-28	27-24	23-	20	19	-16	15-12	11-8	7-4	3-0	
COM	0101	I	R[9:0]				5	SLOT_AD	DR[17:0]		
RO	R	[31:20] E				RP_SLOT[19:0]					
R1		R[31:20]			-		V	VP_SLOT	[19:0]		

Register	31-28	27-24	23-20	19	-16	15-12	11-8	7-4	3-0		
COM	0110	F	R[9:0]		SLOT_ADDR[17:0]						
RO	R	[31:20] E			RP_SLOT[19:0]						
R1		R[31:20]				V	VP_SLOT	[19:0]			

Figure 437

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0111							9:0]	
RO	R	[8:0]			Ks	[22:0]			
R1	R	[8:0]	:0] Kp[22:0]						
R2	R	[8:0]		InvKs[22:0]					
R3		R[14	R[14:0] Shp_threshold[16:0]						

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0						
COM	1000								R Rateid_addr[9:0]
RO	R	[8:0]	0] Ks[22:0]											
R1	R	[8:0]	8:0] Kp[22:0]											
R2	R[8:0]		R2 R[8:0]			R2 R[8:0]			InvKs[22:0]					
R3		R[14	R[14:0] Shp_threshold[16:0]											

Figure 439

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1001	R	cnt[3:0]			FID[19:0]		

Figure 440

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0001		R			FID[19:0]		
RO	R	MI			Cell_cnt[26:0]		
R1		<u> </u>		R			cnt[3:0]	cur[3:0]

Figure 441

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0010	I	₹			FID[19:0]		
RO	R	M			Cell_cnt[2	6:0]		
R1				R			cnt[3:0]	cur[3:0]

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0011	R			FID[19:0]					
RO		R			Fi	d_next[19:	0]			

Figure 443

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0100		R			FID[19:0]		
RO		R			Fi	d_next[19:	0]	

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0_	
COM	0101		R			thre	threshold_addr[9:0]		
RO.	R				threshold[2	26:0]			

Figure 445

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0110		R				threshold_addr[9:0]		
RO	R				threshold[2	26:0]			

Figure 446

Register	31-28	27-24	4 23-20	19-16	15-12	11-8	7-4	3-0
COM	0111		R FID[19:0]					
RO	R	MI	Cell_cnt[26:0]					
R1			R cnt[3:0] cur[3:0				cur[3:0]	

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1000	R	cnt[3:0]			FID[19:0]	-	

Figure 448

Figure 449

#	Block's name	Address	Start	Last	Total
			Address	Address	length
		[9:6]			
1	CPU Interface	0000b			64d
2	Per-Flow Queue	0001b			64d
3	Shaper	0010b			64d
4	Scheduler	0011b			64d
5	DBS	0100b	0000000Ь	1111111b	64d
6		0110b			64d
:	Reserved	-			:
16		1111b			64d

Figure 450

Figure 451

Symbol	Parameter	Min	Max	Units
t_{Sar}	Address/rdwr_l to Valid Read set-up time	0	<u></u>	ns
t _{Har}	Address/rdwr_l to Valid read hold time	0		ns
t _{Salr}	Address to latch set-up time	5		ns
T _{Halr}	Address to latch hold time	5		ns
T_{VL}	Valid latch pulse width	5		ns
T_{Slr}	Latch to Read set-up	0		ns
T _{Hlr}	Latch to Read hold	5		ns
T _{Prd}	Valid Read to valid data propagation delay		50	ns
t _{Zrd}	Valid Read negated to output tri-state		10	ns
t _{VRD}	Valid Read pulse width	60		

Figure 452

Figure 453

Symbol	Parameter	Min	Max	Units
t _{Saw}	Address/rdwr_l to Valid Write set-up time	0		ns
t _{Haw}	Address/rdwr_l to Valid Write hold time	0		ns
t _{Salw}	Address to latch set-up time	5		ns
T _{Halw}	Address to latch hold time	5		ns
T _{VL}	Valid latch pulse width	5		ns
T _{Slw}	Latch to Write set-up	0		ns
T _{Hlw}	Latch to Write hold	5		ns
T _{Sdw}	Data to valid Write set-up time	0		ns
T _{Hdw}	Data to valid write hold time	5		ns
T _{VWR}	Valid Write pulse width	60		ns

Figure 454

Figure 455

Configuration bit	mode	Description
CPU CONFIG[0]	Endian select	If reset, big Endian
		If set, little Endian
CPU CONFIG[1]	Addr/Data	If reset, Non-multiplexed
02 0 _ 0 0 1 1 1 0 [-]	multiplex	If set, Multiplexed

Figure 456

Figure 457

Figure 458

Figure 459

Figure 460

Figure 461

Figure 462

ADDR[9:0]	address bus, bits[9:6] selects the block, bits [5:0] select the
110011[5.0]	register inside the block.
DATA[31:0]	32 bits of bi-directional data bus
CS_L	Chip select. All CPU transactions are valid when this signal is
05_2	asserted
RDWR_L	Read/Write indication
AJ F	For Multiplexed bus mode. When set, the address is latched

Figure 463

#	Block's name	Address	Start Address	Last Address	Total length
		[9:6]			
1	CPU Interface	0000b			64d
2	Per-Flow Queue	0001b		ļ	64d
3	Shaper	0010b			64d
4	Scheduler	0011b			64d
5	CBWFQ	0100b	0000000ь	1111111b	64d
6		0101b			64d per
7	Reserved	-			blcok
8		1111b			

Figure 464

	D.C.T. CIEDI	DW	[2.0] Poset per block
3	RST_CTRL	RW	[3:0] – Reset per block
			0000 – no reset
		1	0001 – reset CPU IF block
			0010 – reset PFQ block
			0011 – reset shaper block
			0100 – reset scheduler block
			0101 – reset DBS block
			0111 – reset all blocks
			1000:1111 – Reserved
			The reset signal to a block is an OR gate
			between global reset and this indication.
			This register is cleared by the hardware
		1	8 cycles after writing.
4	TEST_CTRL	RW	[3:0] – Block selection for driving test
!			bus to the pins:
	•		0000 – CPU Interface block
			0001 – PFQ block
			0010 - Shaper/Meter block
			0011 – Scheduler block
			0100 – DBS block
			0101 – CBWFQ block
			0110:1111 - Reserved
			[31:4] – Reserved
5-63	Reserved		

Figure 465.

Address		Тур	Description
	Name	e	
0	COM	R/W	[31:28] – Opcode
,			[27:0] – Address, depending on the
			command.
			No default value.
1	R0	R/W	General-purpose register. No default value
2	R1	R/W	General-purpose register. No default value
3	R2	R/W	General-purpose register. No default value
4-31	Reserved	NOP	NOT USED
32	TOTAL_FREE_B	R/W	[31:23] – Reserved
	UFF	·	[22:0] – Total number of Free Buffers
			Default: $8M - 1 = FFFFE$
			= 1111 1111 111 <u>1</u> 1111 1110
33	THRESHOLD	R/W	[31:23] – Reserved
	FREE_BUFF		[22:0] – Total number of Free Buffers
·			threshold for empty
			Default: 8M – 11H = FFFEE
			= 1111 1111 1111 1110 1110

24	THRESHOLD_	R/W	[31:23] – Reserved
34	FREE_BUFF_BA	10 11	[22:0] – Total number of Free Buffers
	CK_PRES		threshold for backpressure
	CK_FKES	ļ	Default: 8M – 11H = FD8FF
			= 1111 1101 1000 1111 1111
25	FREE_BUFFS_IN	R/W	[31:23] – Reserved
35	USE	10 "	[22:0] – Buffers currently in use
	USE		Loadable counter for testing
26	CONTROL	R/W	[31:4] – Reserved
36	CONTROL		CPU Port blocked [3] if set the CPU port
		ļ	is Blocked. Default value is "1".
		1	Enqueue Multicast as Unicast traffic [2] If
			set the multicast traffic is treated as
		j	Unicast. Default value "0".
			Enable buffer management [1] If set the
			buffer management is enabled. Default
			value "0".
			RED/CLASS [0] If set the buffer
			management is RED. Default value "0".
37	RED TIME Q-TIME	R/W	[31:25] – Reserved, Counter
"	TEE TEE CIME		[24:0] - Count
38	Transmission time	R/W	[31:16] Reserved, [15:0] Typical
	"S"	ļ	transmission time for a small packet.
39	FID Memory	R/W	[31:20] Reserved, [19:0] MASK
	descriptor		contiguously used. Number of bits used to
			access the FID memory. The number of
			buffers can be less than the available
			storage. Default value "FFFFF"
40	Timeout Rate	R/W	[31:5] Reserved, [4:0] Timeout rate. It is
		,	the number of clocks to skip before the
			next timeout. Default value is "00000".
41	FREE Buffer Tail	R/W	Free Buffer tail [22:0]
42	FREE Buffer Head	R/W	Free Buffer Head [22:0]
43	OUTPUT PORT	R/W	[31:0] Output ports 31 downto 0 statuses.
	BLOCKED [31:0]	1.	If set, then the port is blocked and discard
		 	command with EOP cell is asserted.
44	OUTPUT PORT	R/W	[31:0] Output ports 63 downto 32 statuses.
	BLOCKED		If set, then the port is blocked and discard command with EOP cell is asserted.
	[63:32]	- D. GT.	[23:0] CLASS 0 buffer management
45	CLASS 0	R/W	Threshold. Default value "000FFF".
	Threshold	D 777	
46	CLASS 1	R/W	Threshold. Default value "000FFF".
	Threshold	DATE	
47	CLASS 2	R/W	Thresholds. Default value "000FFF".
	Threshold		Inresnoids. Detault value 000171.

Figure 466

Register	31-28	27-24	23-20	19-16 15-12 11-8 7-4						
COM	0001	Don't	Care	FID_ADDR [20:0]						
R0		R0 [31:0] Data; Written by the PFQ and Read by the CPU								
R1		R1 [31:0] Data; Written by the PFQ and Read by the CPU								
R2		R2 [7:0] Data; Written by the PFQ and Read by the CPU								

Figure 467

Register	31-28	27-24	7-24 23-20 19-16 15-12 11-8 7-4							
COM	0010									
R0		R0 [31:0] Data; Written by the CPU								
R1		R1 [31:0] Data; Written by the CPU								
R2		R2 7:0] Data; Written by the CPU								

Figure 468

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0100	Don't	Care		FID_ADDR [19:0]					
RO		R0 [31:0] Data; Written by the CPU								
R1		R1 [3:0] Data; Written by the CPU								

Figure 470

_										
Register	31-28	27-24	23-20		15-12		7-4	3-0		
COM	0101		BID_ADDR [22:0]							
RO		R0 [31:0] Data; Written by the PFQ and Read by the CPU								
R1		R1 [3:0]; Written by the PFQ and Read by the CPU								

Figure 471

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0110		BID_ADDR [22:0]							
RO			R0 [31:0] Data; Written by the CPU							
R1			R1 [3:0]; Written by the CPU							

Figure 472

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0111	Don't				ADDR [20				
RO		R0 [31:0] Data; Written by the PFQ and Read by the CPU								
R1		R1 [31:0] Data; Written by the PFQ and Read by the CPU								
R2		R2 [7:0] Data; Written by the PFQ and Read by the CPU								

Register	31-28	27-24	23-20							
COM	1000	Don't	Don't Care FID_ADDR [20:0]							
R0		R0 [31:0] Data; Written by the CPU								
R1		R1 [31:0] Data; Written by the CPU								
R2		R2 [7:0] Data; Written by the CPU								

Figure 474

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	1001	Don't	Don't Care FID_ADDR [19:0]						
R0			RED	ASSOCIA? PORT [5:		9:0			

Figure 475

Registe	r 31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1010	Don'	t Care		FID	_ADDR [1	9:0]	

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	1011		Don't Care							
RO			Don't Care							
R1	_		Don't Care							

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	1100		Don't Care							
RO		Don't Care								
R1		Don't Care								

Figure 478

Address		Type	Description
	Name		
0	COM	R/W	[31:28] – Opcode
			[27:0] - Address, depending on the
			command.
			No default value.
1	R0	R/W	General-purpose register. No default value
2	R1	R/W	General-purpose register. No default value
3	R2	R/W	General-purpose register. No default value
4 .	R3	R/W	General-purpose register. No default value
5-31	Reserved		
32	Control	R/W	[0] – Modify CLP enable
			If reset, no modification is allowed
			to the CLP bit
			If set, CLP bit can be modified
			according to shapers outputs.
			Default value: 0
			[31:1] – Reserved
33	TEST_REG	R/W	[31:0] – Test mode.
	_		TBD
34-63	Reserved		

Figure 479

Registe r	31-28	27-24	2	3-20	19)-16	15-12	11-	8	7	-4	3-0
COM	0001]	R	FID[19:0]								
R0	R[7:0]	S	Pri	R Qos[9:0] A				Po	ort[5:0]		
R1	R[7:0]						23:0]				
R2	R[9:8]		wp[23:0]								
R3	R[9:0]				Cell_	cnt[9:0]	C		No	:ell[9:	0]	

Figure 480

Register	31-28	27-24	2	3-20	19	-16	15-12	11-	8	7-4	3-0
COM	0010]	R		FID[19:0]						
R0	R[7	7:0]	S	Pri	R		Qos[9:0]			A P	ort[5:0]
R1	R[7	7:0]	rp[23:0]								
R2	R[7:0]		wp[23:0]							
R3	-	R[9:0]				Cell_	cnt[9:0]	С		Ncell[9	:0].

Figure 481

	-	34		7, 74 30					
Register	31-28	27-24	23-20	19-16	10 1-	1-8	7	-4	3-0
COM	0011]	R	D.T.	Qos[9:0]	[19:0]	A	Po	ort[5:0]
RO		R	S Pri	R	Qualitation				

				10.16	15 13	11-8	7-4	3-0
Register	31-28	27-24	23-20	19-16	15-12			
		R			Pkt[23:0]		
COM	0100		1512.23			L	Ncell[9:	0]
R0			Fid[19:0]					
		0			Next	[23:0]		
R1		K	L					

Figure 483

			,	10.46	15 10	11-8	7-4	3-0
Register	31-28	27-24	23-20	19-16	15-12		7-4	
	0101	R			Pkt[23:0]		
COM_	0101		7: 1(10.01			L	Ncell[9:0	0]
R0	1	_	Fid[19:0]			[02:0]		
		R			Next	[23:0]		
R1	L	<u> </u>						

Figure 484

	24.00	27.24	23-20	19-16	15-12	11-8	7-4	3-0
Register		27-24	<u> 23-20</u>	17-10		[7:0]	Port_ac	idr[7:0]
COM	0110		K			[,		

Figure 485

Register	21 20	27-24	23-20	19-16	15-12	11-8	7-4	3-0
Register	31-20	21-24	D		Data	[7:0]	Port_ac	ddr[7:0]
COM	0111	<u> </u>						

Figure 486

						11.0	-	7.4	3-0
Register	21 20	27-24	23-20	19-16	15-12	11-8	-	/-4	
Register		21-24		P[3:0]	Empt	y[7:0]	R	port_	_add[5:0]_
COM	1000	<u> </u>	· ·	1 [3.0]		<u></u>			

Figure 487

	1 24 22 20	19-16	15-12	11-8	7-4	3-0
Register 31-28 COM 1001	21-24 20 20	P[3:0]		y[7:0]	R port	add[5:0]

					40.16	15-12	11-8	7-4	3-0
Register	31-28	27-2	4	23-20	19-16	15-12	11-0	class_ad	
COM	1010				K	[2	3:0]		
RO	R		E				23:0]		
R1]	R				wpt.	25.0]		

Figure 489

Register	31-28	27-2	24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	1011				R			class_ad	dr[8:0]	
RO	R		E rp[23:0]							
R1]	R		wp[23:0]						

Figure 490

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1100				R			

Figure 491

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1101				R			

Figure 492

Address		Type	Description
	Name		•
0	COM	R/W	[31:28] – Opcode
			[27:0] – Address, depending on the command.
			No default value.
1	R0	R/W	General-purpose register. No default value
2	R1	R/W	General-purpose register. No default value
3	R2	R/W	General-purpose register. No default value
4	R3	R/W	General-purpose register. No default value
5-31	Reserved		
32	CONTROL	R/W	[0] – mode
	·		if 1: shaper mode
			if 0: meter mode
			Default value: 0
			[1] – Shaper output enable
			if 1: output is enabled for the shaper
			if 0: output is disabled for the shaper
		ľ	Default value: 0
			[2] – Dual/Single leaky bucket
			If 0, single leaky bucket is supported for all FIDs
			If 1, duall leaky bucket is supported for all FIDs
	,		Default value – 0
			[31:3] – Reserved

	_		
33	RP_OUT	R/W	[31:21] Reserved
			[20] – empty indication to the output FIFO.
			If 1 the output FIFO is empty, no FID for
			the Output Phase to process.
			If 0 the output FIFO is not empty
			Default value: 1
			[19:0] Read Pointer for the Output FIFO.
34	WP_OUT	R/W	[31:20] Reserved
34	W1_001	10	[19:0] Write Pointer for the Output FIFO.
35	MARK_RP	R/W	[31:21] – Reserved
33			[20] marked link list empty indication for meter
			block
			If 1 the output FIFO is empty
ļ			If 0 the output FIFO is not empty
			[19:0] Read Pointer for the marked link list
36	MARK_WP	R/W	[31:20] – Reserved
	1411 1141 1411	,	[19:0] Write pointer for the marked link list for
	}		meter block
37	TEST_REG	R/W	[31:0] – Test mode.
) 3/		''	TBD
38-63	Reserved		
30 05	1		

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0001]	R	FID[19:0]						
RO	R[13:0]			Residue[17:0]						
R1	·	R[13:	0]			rrival_time				
R2		R[13:	0]]	Last_time[
R3		R[13:	0]	P Credit[16:0]						

Figure 494

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0010]	3	FID[19:0]						
RO		R[13:0	0]	Residue[17:0]						
R1		R[13:	0]	Arrival_time[17:0]						
R2		R[13:	0]	Last_time[17:0]						
R3		R[13:	0]	P Credit[16:0]						

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0011	R[7:0]			FID[19:0]		
RO	R[7:0]	SBT		FID.	_NEXT[19	0:0]	

Figure 496

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0100	R[7	7:0]			FID[19:0]		
RO	R[7:0]	SBT		FID	_NEXT[19):0]	

Register	31-28	27-24	23-20								
COM	0101	F	R[9:0]		SLOT_ADDR[17:0]						
R0	R	[31:20] E			RP_SLOT[19:0]						
R1		R[31:20]				V	VP_SLOT	[19:0]			

Figure 498

Register	31-28	27-24	23-20	19-16 15-12 11-8 7-4 3-6						
COM	0110	F	R[9:0]	SLOT_ADDR[17:0]						
R0	R	[31:20]	Е	RP_SLOT[19:0]						
R1		R[31:20]		WP_SLOT[19:0]						

Figure 499

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0111			R		Rateid_addr[9:0				
R0	R	[8:0]			Ks	[22:0]				
R1	R	[8:0]			Kp	[22:0]				
R2	R	[8:0]		InvKs[22:0]						
R3		R[14	Shp_threshold[16:0]							

Figure 500

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	1000			R Rateid_addr						
RO	R	[8:0]		Ks[22:0]						
R1	R	[8:0]			Kp	[22:0]				
R2	R	[8:0]				s[22:0]				
R3		R[14	:0]] Shp_threshold[16:0]						

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1001	R	cnt[3:0]			FID[19:0]		

Figure 502

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0001]	R	i		FID[19:0]		
RO	R	MI			Cell_cnt[26:0]		
R1]	R			cnt[3:0]	cur[3:0]

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0010	1	3			FID[19:0]		
R0	R	M			Cell_cnt[2	6:0]		52.03
R1				R			cnt[3:0]	cur[3:0]

Figure 504

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0011	I	R			FID[19:0]		
RO		R		Fid_next[19:0]				

Figure 505

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0100	I	3		,	FID[19:0]		
RO		R			Fi	d_next[19:	0]	

Figure 506

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0101			R			shold_add	r[9:0]
RO	R				threshold[2	26:0]		

Figure 507

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0110			R		thre	shold_add	r[9:0]
RO	R		•	_	threshold[2	26:0]		

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0111		R			FID[19:0]		
RO	R	MI			Cell_cnt[26:0]		
R1		· · · · · · · · · · · · · · · · · · ·	R cnt[3:0]			cur[3:0]		

Figure 509

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	1000	R	cnt[3:0]			FID[19:0]		

Figure 510

Address	Name	Type	Description
	Name	R/W	[31:28] – Opcode
0	COM	K/W	[27:0] – Address, depending on the
			command.
			Default value for bits [31:28] – 0
			No default value for bits [27:0]
1	R0	R/W	General-purpose register. No default value
1	R1	R/W	General-purpose register. No default value
2	R2	R/W	General-purpose register. No default value
3		IV/ W	General-purpose register. 140 deraut value
4-31	Reserved	R/W	[0] – OUT_EN
32	CONTROL	K/W	Global output enable for all ports, if
			reset, no output stage will be
			performed for all ports
			Default value 0 (output disabled).
			[31:1] – Reserved
33	INGRESS_PTR	R/W	[7:0] – Head pointer of the virtual port
,	II/OKLSS_I IK	10 11	list.
i			Used only in case of an ingress
			chip. No default value.
			[15:8] – Tail pointer of the virtual port
			list.
			Used only in case of an ingress
			chip.
			No default value.
			[16] – Empty indication of the virtual
			port list.
		9	Used only in case of an ingress
			chip. If set, the virtual port list is
			empty.
			Default value 1 (empty list)
			[31:17] – Reserved.
34	CPU_R_PTR	R/W	[19:0] – Head pointer to the FlowID list
			of the CPU port. No default
			value.
35	CPU_W_PTR	R/W	[19:0] – Tail pointer to the FlowID list of
			the CPU port. No default value.

36	CPU_CTRL	R/W	[0] – Empty indication of the CPU
30	CI O_CIICD	10 11	FlowID list.
			If set, the FlowID linked list is
			empty.
1			Default value 1 (empty list)
			[1] – CPU output port enable.
			If set, the scheduler can schedule
			FlowIDs for the CPU port.
i			Default value 0 (Disable the CPU
			port)
			[31:2] – Reserved
37	WEIGHT_QUOTA	R/W	[15:0] – weight_quota
			This value is a multiplicand to
			calculate the weight per QOS.
			Default value 1
			[31:16] – Reserved
38	TEST_REG	R/W	[31:0] – Test mode.
	_		TBD
39 - 63	Reserved		

Figure 511

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0001	R		Fid[19:0]					
RO		R		Next[19:0]					

Figure 512

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0010	I	R	Fid[19:0]					
RO		R				Next[19:0]			

Figure 513

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0011		R[17:0]		Addr[9:0]			
RO		R[12:0]		qnum	Wei	ight	R[1 :0]	PortID	

Figure 514

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0
COM	0100		R[17:0]		Addr[9:0]		
R0		R[12:0]		qnum	We	ight 	ht R[1 Por :0]	

Figure 515

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	0101		R	17:0]	Addr[9:0]					
RO		R[10:0]		Е	Read PTR[19:0]					
R1		R[11:0]		Write PTR[19:0]						
R2	R[6:	0]		W_M[24:0]						

Register	31-28	27-24							
COM	0110		R	[17:0]		Addr[9:0]			
RO	9	R[10:0]	R[10:0] E Read PTR[19:0]						
R1		R[11:0]		Write PTR[19:0]					
R2	R[6:0	0] Q_WEIGHT_FM[24:0]							

Figure 517

Register	31-28	27-24	23-20	19-16	15-12	11-8	7	-4	3-0	
COM	0111		R[21:0] Addr[5:0]							
RO	Priorit	y[7:0]	R[4:0]	Facto r[2:0]	R[5:	0]	Q_I	3_Add	lr[9:0] 	

Figure 518

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0		
COM	1000		R[21:0] Addr[5:0							
R0	Priorit	y[7:0]	R[4:0]	Facto r[2:0]	R[5:0	0]	Q_B_Add	dr[9:0]		

Figure 519

31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0				
1001			Add	Addr[5:0]							
R[8:0]	PQ[6:0] Qa_Empty[7:0]				Qw_Em	pty[7:0]				
R[7	:0]	Q_WEIGHT_FM[23:0]						Q_WEIGHT_FM[23:0			
	1001 R[1001 PQ	1001 R[21:0] R[8:0] PQ[6:0]	1001 R[21:0] R[8:0] PQ[6:0] Qa_Em	1001 R[21:0] R[8:0] PQ[6:0] Qa_Empty[7:0]	1001 R[21:0] Add R[8:0] PQ[6:0] Qa_Empty[7:0] Qw_Em				

Register	31-28	27-24	23-20	19-16	15-12	11-8	7	-4	3-0	
COM	1010		R[21:0] Addr[5							
RO	R[8:0]	PQ[6:0] Qa_Empty[7:0]					Qw_Empty[7:0]		
R1 ·	R[7	':0]	Q_WEIGHT_FM[23:0]							

Figure 521

Register	31-28	27-24	23-20	19-16	15-12	11-8_	7-4	3-0 idr[5:0]	
COM	1011		R[21:0]						
R0		R[25:0]						Next[5:0]	

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	1100		R[21:0]						
RO		R[25:0]						Next[5:0]	

Figure 523

Register	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
COM	0100	R[17:0]					Addr[9:0]		
RO		R[12:0]		qnum	Weight[7:0]		PortID[7:0]		

Register	31-28	27-24	23-20	19-16	15-12	11-8	7	-4	3-0	
COM	1101	R[21:0]							Addr[5:0]	
RO	R[5:0]	Q_B_Addr		[9:0]	Priority[7:0]			Factor[7:0]		

Figure 525

#	Block	Parameter	Size [Bits]	Description		
1	All		20	Flow ID to setup		
1	PFQ					
	DBS	Port	6	The value of the output port the FID		
				belongs to (not including the CPU port)		
	DBS	CPU_PORT	1	If set, the FID belongs to the CPU port		
				(ignore the PORT field).		
			-	If reset, the FID belongs to the port defined		
				by the PORT field		
	DBS	SHAPE	1	If set, the FID has to be shaped		
				If reset, the FID is not to be shaped (it will		
				be scheduled in the scheduler block)		
	DBS	QOS/RATE	10	If SHAPE is set, the field represent the		
Ì				location of the rate to be shaped in the		
				RateID memory inside the Shaper.		
				If SHAPE is reset, the field represent the		
		·	į	location of the QOS in the QOS memory		
				inside the scheduler.		
	DBS	SHAPE_	3	Used only if SHAPE bit is set. This field		
		CLASS	Ì	defines the priority of the FID during the		
				output phase from he shaper.		
	SHP	BG_CNT	4	Used only if SHAPE bit is set. This field		
				defines the amount of times the background		
				process of the Meter should count.		

Figure 526

<u>#</u>	<u>Block</u>	<u>Name</u>				4M cells, #devices 512Kx36		2M cells, #devices 512Kx36	
1	PFQ	EnQueue	2Mx72	8	4	8	4	8	4
•		DeQueue	1Mx36	2	1	2	1	2	1
		BID	8Mx36	16	8	8	4	4	2
		Statistics	2Mx72	8	4	8	4	8	4
2	SHAPER	FID1	1Mx72	4	2	4	2	4	2
		FID2	1Mx24	2	1	2	1	2	1
		SLOT	256Kx41	2	2	2	2	2	2
3	DATABASE	FID	1Mx91	6	3	6	3	6	3
		PKT	8Mx55	32	16	16	8	8	4
4	SCHEDULER	FID	2Mx25	4	2	4	2	4	2
total mem units				84	43	60	31	48	25

Figure 527