

Linear Regression Assumptions and Statistical Inference

Contents

- 1. Discussion Questions
- 2. Linear Regression Recap
- 3. Assumptions of linear regression
- 4. Statistical inference from linear regression

Questions to discuss

- 1. What is simple and multiple linear regression?
- 2. What are the assumptions of linear regression?
- 3. What are the statistical inferences we can make from a linear regression model?

- Linear regression is a way to identify a relationship between the independent variable(s) and dependent variable
- We can use these relationships to predict values for one variable for the given value(s) of the other variable(s)
- The variable which is used in prediction is termed as independent/explanatory/regressor, and the predicted variable is termed as dependent/target/response variable.
- In the case of linear regression with a single explanatory variable, the linear combination can be expressed as

response = intercept + constant * explanatory variable

- Multiple linear regression is just the extension of the concept of simple linear regression with one variable
- It can be represented by

target = intercept + constant1*feature1 + constant2*feature2 + constant3*feature3 +

• The model aims to find the constants and intercept such that the hyperplane is the best fit

Assumption	How to test	How to fix		
No multicollinearity in independent variables	Heatmaps of correlations or VIF (Variance inflation factor)	Remove correlated variables		
There should be a linear relationship between dependent and independent variables	Plot residuals vs. fitted values and check the plot	Transform variables that appear non-linear (log, square root, etc.)		
The residuals should be independent of each other	Plot residuals vs. fitted values and check the plot	Transform variables (log, square root, etc.)		
Residuals must be normally distributed	Plot residuals or use Q-Q plot	Non-linear transformation of the independent or dependent variable		
No heteroscedasticity, i.e., residuals should have constant variance	Use statistical test (like goldfeldquandt test)	Non-linear transformation of the dependent variable or add other important variables		

Testing Multicollinearity using VIF

- Multicollinearity occurs when predictor variables in a regression model are correlated.
- When we have multicollinearity in the linear model, the coefficients that the model suggests are unreliable.
- We can detect or test for multicollinearity using the Variance Inflation Factor or VIF.
- Variance inflation factors measure the inflation in the variances of the regression parameter estimates due to collinearities that exist among the predictors.
 - If VIF is 1, then there is no correlation between the selected predictor and the remaining predictor variables, and hence, the variance of its coefficient is not inflated at all.
- General Rule of thumb:
 - 1 < VIF <= 5: There is low multicollinearity
 - 5 < VIF <= 10: There is moderate multicollinearity
 - VIF > 10: There is high multicollinearity

Testing Linearity and Independence using residuals vs fitted values plot

Great Learning

- Predictor variables must have a linear relation with the dependent variable.
- If the residuals are not independent, then the confidence intervals of the coefficient estimates will be narrower and make us incorrectly conclude a parameter to be statistically significant.
- We can check for linearity and independence by checking a plot of fitted values vs residuals.
 - o If they don't follow any pattern, then we say the model is linear and residuals are independent.
 - Otherwise, the model is showing signs of non-linearity and residuals are not independent.

Some non-linearity spotted

Testing Normality using QQ plots

- If the error terms are not normally distributed, the confidence intervals of the coefficient estimates may become too wide or narrow.
- Non-normality suggests that there are a few unusual data points that must be studied closely to make a better model.
- The shape of the histogram of residuals can give an initial idea about the normality.
- We can also check normality via a Q-Q plot of residuals.
 - If the residuals follow a normal distribution, they will make a straight line plot, otherwise not.

Not normal

Close to normal

If the variance of the residuals is symmetrically distributed across the regression line, then the data is said to be homoscedastic. Else, they are heteroscedastic.

- Generally, non-constant variance arises in presence of outliers.
- The residual vs fitted values plot can be looked at to check for homoscedasticity.
 - In the case of heteroscedasticity, the residuals can form an arrow shape or any other non-symmetrical shape.
- The goldfeldquandt test can also be used.
 - If we get a p-value > 0.05 we can say that the residuals are homoscedastic. Otherwise, they are heteroscedastic.
 - Null hypothesis: Residuals are homoscedastic
 - Alternate hypothesis: Residuals have heteroscedasticity

Homoscedasticity

Standardized Predicted Values

Heteroscedasticity

Standardized Predicted Values

What are the statistical inferences we can make from a linear regression model?

G Great Learning

- Confidence interval: Give us the 95% confidence interval for the coefficient
 - The 95% confidence interval for Alcohol is [-0.146, -0.015].
- p-values: Give us an idea of whether a particular predictor variable has a statistically significant effect on the target variable or not. If p-value > 0,05, the variable is not statistically significant
 - The p-value for Alcohol is 0.017, indicating that it is statistically significant in predicting life expectancy

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squar Fri, 01 Oct 20 13:13: 20 20 nonrobu	NLS Adj Nes F-S: 121 Pro 106 Log 149 AIC 129 BIC 19	R-squared: atistic: (F-statistic): Likelihood:		0.843 0.842 575.6 0.00 -5636.5 1.131e+04 1.143e+04		
		coef		t	P> t	[0.025	0.975]
const		23.1832	39,635	-0.585	0,559	-100.913	54,547
Year			0.020				
Adult Mortality		-0.0162		-17.819			
Alcohol		-0.0801		-2.395		-0.146	
Percentage expenditu							
Hepatitis B		-0.0163		-3.821		-0.025	-0.008
BMI		0.0346	0.006	5.860	0.000	0.023	0.046
Under-five deaths		-0.0023	0.001	-3.794	0.000	-0.004	-0.001
Polio		0.0346	0.005	6.960	0.000	0.025	0.044
Diphtheria		0.0344	0.005	6.688	0.000	0.024	0.045
HIV/AIDS		-0.3813		-18.604		-0.422	
Thinness 5-9 years		-0.0777		-2.669		-0.135	
Income composition of		4.5468	0.721	6.302		3.132	
Schooling		0.6184	0.048			0.524	
Status_Developing		-2.6234				-3.315	
Continent_Asia		4.7406				4.189	
Continent_Europe		4.3902				3.585	
Continent_North Amer	ica	6.2753				5.569	
Continent_Oceania		2.7757	0.456	6.089	0.000	1.882	3.670

10.062

0.000

2.014

214.140

3.16e-47

3.563

5.289

OLS Repression Results

Notes:

Omnibus:

Kurtosis:

Skew:

Prob(Omnibus):

Continent South America

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

Durbin-Watson:

Jarque-Bera (JB):

[2] The condition number is large, 1.14e+06. This might indicate that there are strong multicollinearity or other numerical problems.

-0.138

4.559

greatlearning Power Ahead

Happy Learning!

