معمل هندسة الإتمالات تانسة التمسالات شرم ثاني 2013_ 2014 المسمد عمد المرام

Exp 1: VO

What is a VCO?

A Voltage Controlled Oscillator is a circuit that Produces [Square wave] whose frequency defends on the 1/p voltage. Changing ilp Voltage change olp frequency.

Applications:

a range of * Function generated (to get different frequencies by adjusting a rotator).

* PLL (Phase-Locked Loop)

* trequency Synthesizers (a circuit that can be used to generate a range of tres

* AM modulation (used to generate the Carrier), it is Common that the Carrier is Sinusoidal with a single Frequency, a sin signal can be extracted From the square using a filter centered around to which is the Square Fundamental Frequency) "our objective now to=465 KHZ

of FM modulator (the VCO achieves the concept of FM as the O/P signal Freq. can change with the change in the input [message signal amplitude].

module 15 9 2950. Electronic Comm. Loule dua de assarbitables 11. Irainer

1900 Function receive so [2950 A] so VCO II The cip dule les generator Supply

- . The O/P Square has Amplitude, frequency.
- . How to Control Amplitude?
 - * Variable attenuator Knob
 - * Fixed O/P/attenuator Sockets
 Total att = fixed + Variable
- . How to Gartrol frequency?

 C=1 C=5

 Ground: Low range ~ (IKHZ→5KHZ)

> open: high range ~ (loo kHz > 1 MHz)

* Internal _ using C knob [This is it is

* External T Ax
By

VA X (0→1) Garse changes VB X (0→0·1) +...

Practice 1.1. :- Calibration of VCO

· A, B, not connected, variable attenuator = 0 Change C, oboxe f

	$\widehat{\mathbb{O}}$	(2)
C	Low range of B Cond +	High range D DoPen
1	≥ KHŁ	
2	~ a KHZ	
3		
4	:	
5	25 KHZ	1. MHZ

ctice! 1.2. .. Use of external freq. Control Pins

I D Ground (Low range) Cin, change Ax, observe F * adjust C for 5 KHZ

* adjust Power supply to +4 V

* Connect variable dc socket to Ax.

* Try A=1 and watch \$ 4 or 1 = ???

A=0.5

* Do the Same with B

2 * Refeat for D un connected (ungrounded).

لا داعمی لحبولہ

Practice 1:32- Attenuator

هنشت ال على و و و و و الدول ال

attenuation (

- * A, B, D not connected
 - er Set C into dot (AM freq. Již) or a certain level.

Atten.	Vo 0/P P-P	<u>~</u>	20 lag <u>Vo</u>
0 -3 -6 -9 	V=1.6v For any f	1 <1	0 -3

VOO is a relaxation OSC. made by IC 566 that has Square & tri o/p but

Piter II is only oscillated is used present of the heterodyne RX II is.

Jorial Laboratory of Labora

Function generator

romg France 3 ENDE 18 0B

In one 1000 Ship I all Jacob Ship I all part of part of

m(t) __ Base C(t) __ emitter

S(t)_ Glector

Ic = Is (& = 1)

 $e^{\chi} = 1 + \chi + \frac{\chi^2}{2!} + \frac{\chi^2}{3!} + \dots$ (Maclaurin Series)

Ic = 6+ G. VBE + C. VBE + C3. VBE3 +

M(F) at 2 fm m(t) = Ain cos (2 1 fmt)

 $I_{c} = G + C_{1} \left(m(t) - C(t) \right) + C_{2} \left(m^{2} - 2mc + c^{2} \right) + C_{3} \left(m^{2} - 2mc + c^{2} \right) + C_{4} \left(m(t) - C(t) \right) + C_{4} \left(m(t) - C(t) \right) + C_{5} \left(m^{2} - 2mc + c^{2} \right) + C_{6} \left(m(t) - C(t) \right) + C_{6}$

S(t) = c(t) + ka. m(t) c(t)

Carrier + message & Carrier

Using BPF that is tuned at Fc we will Pass the AM components.

2) Demod

S(t) - RE TO SRL

Cond lake R, ske G Inf | 5nl | 20 nf | Amp | m(

Rell Ra with smallest C RCH ripples
Releaks , largest C (CIIC = Sum) duyonal

الز

* Charging happens through Ro of the diade which is a very small resistance Ro. C. H. So charging happens fact which is required Churging. Vc (t). VP. (1 - t/RC) VP L. Final voltage or supply uttage value because: i. P. RC io very small The supply uttage Vc(t). Vs. English RP reples Vc(t). Vs. English RP Color (4.71110) kg and Information or (4.71110) kg and Information Sight RV checkergoing Vc = VS. Et/RC L. Supply willage I. RC io very large — diagonal diatortion Checkergoing in through Ro. optimum Volume RC (1.71110) kg and Information RC (1.71110) kg and Information Vc = VS. Et/RC L. Supply willage Vc = VS. Et/RC Vc = VS. Et/					
Churging Vc (t). VP. (1 = t/RC) VP. (2 = t/RC) VP. (3 = t/RC) VP. (4 = t/RC) VP.	* Charging happens through Ro of the diade which				
Churging: Vc (t). VP. (1 = e ^t /RC) VP. Churging: Vc (t). VP. (1 = e ^t /RC) VP. Final voltage or supply ultage a discharging through RC which is designed Such that it is suitable value because: IF RC is very Small Try 47 Ke and 1nf or (47110) Ke and 1nf 319 Kr churchenging Vc = VS. ē ^t /RC L. Supply voltage IF RC is very large diagonal distortion Ch. RC (RC) Try optimum.	15 a very small resistance				
Churging: Vc (t)= VP. (1 = e ^{t/RC}) VP. (2 = e ^{t/RC}) VP. (3 = e ^{t/RC}) VP. (4.7 1.10) KP. and Inf. 3.19 KP. (4.7 1.10) KP. and Inf. 3.19 KP. (4.8 1.10) KP. (4.8	Rs. C ++ So charging happens tast				
Churging: Vc (t)= VP. (1 = e ^{t/RC}) VP. (2 = e ^{t/RC}) VP. (3 = e ^{t/RC}) VP. (4.7 1.10) KP. and Inf. 3.19 KP. (4.7 1.10) KP. and Inf. 3.19 KP. (4.8 1.10) KP. (4.8	which is required.				
* discharging through RC which is designed such that it is suitable value because: IF RC is very Small RP ripples Vc(t). Vs. ear Try 4.7 Ke and Inf or (4.7 IIIo) Ke and Inf 3.19 Kr checkinging Vc = VS. et IRC L supply voltage IP RC is very large — diagonal distortion Cob. Evic. RCK poptimum.	Churging Vc (t) = VP. (1 = t/RC) VP (1) = t/RC) VP (1) = t/RC (1) VP (1) VP (1) = t/RC (1) VP (1) V				
value because: if RC is very small Try Li7ke and Inf or (4.711.10) ke and Inf 3.19 ke checking very L. Supply voltage if RC is very large — diagonal distortion CRC — poptimum RC — poptimum RC — poptimum	* discharging through RC which is designed such that it is suitable				
if RC io very 8mall RP ripples Vc(t) Vs. e ^{rest} Try 47 Ke and Inf or (4.7110) Kr and Inf 3.19 Kr checkenging Vc = Vs. e t/RC L. Supply voltage if RC io very large — diagonal diotortion Color RC	Value because:				
Vc(t) Vs. equilibrity St. F. Re and Inf or (4.71110) Kr. and Inf 3.19 Kr. checkinging Vc = Vs. et/RC L. Supply voltage i. R. R. io very large — diagonal distortion of the Record o	· if RC is very small A Mark Mark				
or (4.711.10) Kr and Inf 3.19 Kr cheschenging Vc = V8. e t1RC L. Supply voltage IF RC is very large -, diagonal distortion Color River L. RCK	Tingles > Repples				
or (4.711.10) Kr and Inf 3.19 Kr cheschenging Vc = V8. e t1RC L. Supply voltage IF RC is very large -, diagonal distortion Color River L. RCK	Vc(t) Vs. east Try 47 Ke and 1nt				
checkinging $Vc = V$ \mathbf{E} \mathbf{E} \mathbf{V} \mathbf{E} \mathbf{E} \mathbf{V} \mathbf{E} \mathbf	or (4.71110) kr and Inf				
checkinging $Vc = V$ \mathbf{E} \mathbf{E} \mathbf{V} \mathbf{E} \mathbf{E} \mathbf{V} \mathbf{E} \mathbf	3.19 KZ				
if RC is very large -, diagonal distortion And is a superior optimum. I (RC) - optimum.	Vc = Vs. et/RC				
if RC is very large -, diagonal distortion And is a superior optimum. I (RC) - optimum.	L Supply voltage				
Je RCK I poptimum.					
Je RCK I poptimum.					
$\frac{1}{fc} \ll RC \ll \frac{1}{fm} \rightarrow optimum.$	if RC is very large - diagonal distortion				
1 (RC fm) optimum. H65 ke/ 10 Kr a inf ()300 2-15 x 15 3 (165 (3.33 x 163					
465 km/ loka a inf ()300 2-15 x 15 3 (105 (3.33 x 103	1 (RC) - optimum.				
	465 km 10 Kr a Inf 300 215 x 15 (15 3.33 x 15 3				

Exp 5 FM modulation & demodulation
In full AM (DSBTC), the B.W. of the AM signal was 2 fm
. In FM signals we have two types:
(NBFM (Norrow Band FM) - B.W. = 2 fm
2) WBFM (Wide Band FM) - B.W. = 2(B+1) Fm
where $\beta = \Delta F$, $\Delta F = KF$. Am
Maximum trequency deviation
أقتمين زيارة أو نقصان سيحث في نزد
index FM 11 21 bulger for 11
If o(B(1) NBFM you will need only B.W.=2fm B>1 , WBFM " " " - 2(B.D.)
==(P+)+m
· What is the benefit of FM over AM system & what are the drawbacks?
In NBFM > Same AM B.W. which doesn't have benefit over AM in term's of Less B.W. But as any FM signal it has high noise immunity because m(t) is carried in the frequency of the course m(t)
is carried in the frequency of the Carrier not in its amplitude. So, as noise only affects the Signal amplitude, m(t) will not be affected.
LE allected.

	In WBFM > B.W. > B.	which is		
	a drawback be	it Still it has noise		
	immunity.			
$m(t) \rightarrow Me$	ssage Signal (Modulating Signa	المِسَانَ الْمُعَدِّلَةِ		
$C(t) \rightarrow \omega$	rier Signal odulated Signal ليعديل	~! - 11		
	Damated Syrad July	الجمر الع		
S(t) = Ac	ه (عرراً) على على المعربة (عربة على المعربة المعربة المعربة المعربة المعربة المعربة المعربة المعربة المعربة الم	losic Carriet 11 so		
	سعيرة مع الزمن و (±) m في متعيرة مع الزمن و (±) m	مع الزمن بالتالي O (+) م		
	Oi(t)= furtholt O)	من تعریف ا		
$= 2\pi \int_{-\infty}^{\infty} f(t) dt$				
النزدد الله طي وهو نزدد ال (t) على النزدد الله طي وهو نزدد ال (t) على النزدد و (fc + kf.m(t) على النزدد و (t) على النززد و (t) على النزدد و (t) على النزد و (t) على النزدد و (t				
	= 21 / tc + Kf.m(t).dt	ب میں اعدود		
	= 211 fet + 211 KF Sm	u(t) d F		
· S(1)	Ac GS (2 mfct + 2 m Kf Sm(t) dt			
)(L)=	AC DS (ZITCL+ ZITCH J.M.(L) AE			
0 .	0	cos u d/dt - sin u du		
- fi(t)=	fc + kg. m(t)	46		
L. At d	emodulation m(t) 813	. 1		
d S(t) =	K Sin (2 Pc L+ 2 TKE Porch)	* FM		
at	$L_{\bullet} = 4.2\pi fc + 4.2\pi kf \cdot m(t) = 2$	211 fc (1+ Kf. m(t)). Ac		
to the state of th		- fc		
		HM		

Steps :-

الفكرة هو ضبط اله أولاً عن طريق C حتى تكون الله و المحل المحدة السابقة وإدخال اله (m(t) على Bx وبتعبيل المردد الخارج عن اله على الد (t) الخارج عن اله المحد الداخل على الردد الخارج عن اله على الد

called : fi(t) = fc + kf.m(t)

- 1) Adjust C until fc = 465 KHZ, at this Point you must not connect Bx.
- 2) Connect m(t) from the fn generator to Bx, choose m(t) square wave, fm = 0.1 HZ
 - . For 0.1 Hz frequency Ochoose the least range on Pr. generator (2 Hz)
 - 2 Choose least freq: from the range بتحریل ال طعمل لدّقل قبه وهاتکون Hz 2 و الی 1 أو 2 ك
 - 3) Press the filo button on the for generator
- 3) Let the Bx multiplier = 1 So you can see the effect of changing Am through changing the amplitude by the fr. generator only.

