第四章 自然数

定理 4.1 № 是归纳集.

定理 **4.2** 设 \mathbb{N} 为自然数的集合, $\sigma: \mathbb{N} \to \mathbb{N}$,且 $\sigma(n) = n^+$ (称 σ 为后继函数),则 $\langle \mathbb{N}, \sigma, \varnothing \rangle$ 是 Peano 系统.

定理 4.3 任意自然数的元素都是它的子集.

定理 **4.4** 对于任意的自然数 m, n, 则 $m^+ \in n^+$ 当且仅当 $m \in n$.

定理 4.5 任何自然数都不是自己的元素.

定理 4.6 空集属于除零外的一切自然数.

定理 4.7 (三岐性定理) 对于任意的自然数 m, n, 下面三式中有且仅有一式成立:

$$m \in n, m = n, n \in m.$$

定理 **4.8** (N 上的递归定理) 设 A 为一个集合,且 $a \in A$, $F: A \to A$,则存在惟一的一个函数 $h: \mathbb{N} \to A$,使得 h(0) = a,且对于任意 $n \in \mathbb{N}$,

$$h(n^+) = F(h(n)).$$

定理 **4.9** 设 $\langle M, F, e \rangle$ 为任意一个 Peano 系统,则 $\langle \mathbb{N}, \sigma, 0 \rangle \sim \langle M, F, e \rangle$.

定理 **4.10** 设 A 为一个集合,则下面的命题是等价的:

(1) A 是传递集;

 $(2) \cup A \subseteq A;$

(3) 对于任意的 $y \in A$, 则 $y \subseteq A$;

(4) $A \subseteq \mathcal{P}(A)$.

定理 4.11 设 A 为一个集合,则 A 为传递集当且仅当 $\mathcal{P}(A)$ 为传递集.

定理 **4.12** 设 A 是传递集,则 $\cup (A^+) = A$.

定理 4.13 每个自然数都是传递集.

定理 4.14 自然数集合 N 是传递集.

定理 4.15 设 $m, n \in \mathbb{N}$, 则

$$m+0=m, (加法规则 1)$$

$$m + n^+ = (m+n)^+$$
. (加法规则 2)

定理 **4.16** 设 $m, n \in \mathbb{N}$,则

$$m \cdot 0 = 0, \tag{乘法规则 1}$$

$$m \cdot n^+ = m \cdot n + m. \tag{乘法规则 2}$$

定理 4.17 对于任意的自然数 m, n, 则

$$m^0 = 1, (指数运算规则 1)$$

$$m^{n^+} = m^n \cdot m. \tag{指数运算规则 2}$$