Filtragem de Imagens - Processamento de Imagens

João Pedro Picolo - GRR20182659 Julho de 2022

1 Introdução

Na literatura existem diversas técnicas da área de processamento de imagens que quando aplicadas a imagens com ruído suavizam imperfeições existentes.

Neste trabalho propõe-se a análise de ténicas que utilizam o domínio espacial para atingir tal objetivo. Estas técnicas dividem-se nas seguintes categorias: Filtros da Média, Filtro da Mediana e Empilhamento de Imagens. Para os Filtros da Média foram feitas avaliações sobre o Filtro 2D, Borramento e o Filtro Gaussiano.

Nas seções seguintes nos aprofundaremos sobre a metodologia utilizada, os resultados obtidos e por fim apresentaremos as conclusões.

2 Metodologia

Nesta seção pretende-se explicitar qual foi a metodologia utilizada para a obtenção dos resultados.

2.1 Métricas

Para a avaliação das abordagens propostas utilizou-se a métrica *Peak Signal-to-Noise Ratio (PSNR)*. Esta métrica retorna alto valores para imagens semelhantes e baixos valores para imagens distintas, ou seja, procurou-se maximar este valor.

Além do PSNR, como veremos adiante, o tempo de execução foi uma métrica decisiva no método de Empilhamento de Imagens.

2.2 Ruído

Para a gereação de ruído sobre a imagem original foi utilizada a função fornecida (sp_noise) com os seguintes níveis: 0,01, 0,02, 0,05, 0,07 e 0,10.

Notou-se ao longo do desenvolvimento do trabalho que está função ocupava uma parte considerável do tempo total. Desta forma seu tempo de

execução foi desconsiderado nos resultados finais, visto que a avaliação aqui proposta é somente sobre a execução dos métodos de filtragem de ruídos.

2.3 Testes

Percebeu-se que para os filtros de média e mediana a imagem fica mais borrada conforme aumenta-se o valor da máscara utilizada. Desta forma implementou-se um script de teste com o seguinte funcionamento: a cada iteração aumenta-se a máscara até que o PSNR da (i+1)-ésima iteração seja menor do que o PSNR da i-ésima iteração. Isto nos possibilita concluir que a i-ésima iteração possui o maior PSNR e as iterações seguintes ficarão com valores menores, dado que o borramento tornará a imagem muito diferente da imagem original.

Como citado anteriormente, a função (sp_noise) eleva consideravelmente o tempo de execução do programa. Desta forma, a abordagem de teste para a função de empilhamento de imagens foi diferente: no mesmo script implementado considera-se que a quantidade de imagens ideal é atingida quando o tempo de execução da função atinge 0.8 segundos. Note que, como citado anteriormente, este tempo desconsidera o tempo adicional para a geração de imagens pela função geradora de ruídos.

3 Resultados

Nesta seção, serão discutidos os resultados obtidos para cada uma das categorias citadas anteriormente.

3.1 Filtros da média

No desenvolvimento deste trabalho testou-se 3 métodos de filtros de média: Filtro 2D, Borramento e Filtro Gaussiano. Apresentamos os melhores valores para cada um desses nas Tabelas 1, 2 e 3, respectivamente.

Ruído	Kernel	PSNR	Tempo de execução (s)
0,01	(5, 5)	24,06	0,018
0,02	(5, 5)	23,67	0,017
0,05	(5, 5)	22,50	0,017
0,07	(5, 5)	21,69	0,017
0,10	(5, 5)	20,52	0,017

Tabela 1: Teste automatizado - Filtro 2D

Como é possível observar, o filtro Gaussiano apresentou os melhores valores de PSNR em todos os níveis de ruído, tornando-o a opção escolhida

Ruído	Kernel	PSNR	Tempo de execução (s)
0,01	(3, 3)	25,63	0,002
0,02	(3, 3)	24,52	0,002
0,05	(5, 5)	22,47	0,002
0,07	(5, 5)	21,69	0,002
0,10	(7, 7)	20,73	0,002

Tabela 2: Teste automatizado - Borramento

Ruído	Kernel	PSNR	Tempo de execução (s)
0,01	(3, 3)	26,50	0,075
0,02	(5, 5)	24,90	0,001
0,05	(7, 7)	22,98	0,001
0,07	(9, 9)	22,13	0,002
0,10	(13, 13)	21,02	0,003

Tabela 3: Teste automatizado - Filtro Gaussiano

para representar o filtro de média. Percebeu-se ao analisar os resultados de teste que quanto menor o nível de ruído menor é o kernel ótimo neste filtro, desta forma optou-se por fazer um balanceamento e utilizar os valores (7, 7) como kernel geral deste filtro.

3.2 Filtro da Mediana

Como este filtro trata de um único método, não foram feitas comparações de desempenho. Na Tabela 4 é possível observar os melhores valores para este filtro.

Ruído	Kernel	PSNR	Tempo de execução (s)
0,01	3	27,24	0,026
0,02	3	27,12	0,002
0,05	3	26,72	0,002
0,07	3	26,28	0,002
0,10	3	25,15	0,002

Tabela 4: Teste autmatizado - Filtro da Mediana

A partir destes dados é natural concluirmos que o melhor *kernel* para o filtro da mediana é de tamanho 3, sendo este então o escolhido como *kernel* geral. Ao compararmos com o método escolhido na seção anterior

podemos perceber que o filtro da mediana obteve os melhores resultados apresentados até o momento.

3.3 Empilhamento de Imagens

Como anteriormente, visto que esse se trata de um único método não foram feitas comparações. Na Tabela 5 é possível observar os melhores valores para este filtro.

Ruído	Imagens	PSNR	Tempo de execução (s)
0,01	72	39,00	0,790
0,02	93	35,83	0,800
0,05	93	29,77	0,790
0,07	93	27,33	0,800
0,10	93	24,62	0,800

Tabela 5: Teste automatizado - Empilhamento de Imagens

É importante ressaltar que, diferente dos outros métodos, neste caso o fator de decisão de parada do *script* de teste foi o tempo de execução em 0,8 segundos ao invés do PSNR mais alto possível. Esta decisão metodológica levou em conta o tempo disponível para o levantamento de dados e elaboração deste relatório, os testes do Empilhamento de Imagens demoraram 8 horas para serem executados.

Como forma de verificarmos a hipótese de que o Empilhamento de Imagens pode apresentar resultados superiores ao da Filtro da Mediana caso o tempo de execução dos testes não seja um fator decisivo, decidiu-se rodar uma segunda bateria de testes manuais com 360 imagens com a finalidade de se validar esta ideia. O resultado pode ser visto na Tabela 6.

Ruído	Imagens	PSNR	Tempo de execução (s)
0,01	360	42,53	3,993
0,02	360	37,93	3,971
0,05	360	30,95	3,980
0,07	360	28,22	3,980
0,10	360	25,28	3,973

Tabela 6: Teste Fixo - Empilhamento de imagens

Estes dados demonstram que o Empilhamento de Imagens pode ser o melhor método de filtragem ao considerarmos apenas o PSNR. Ainda, como forma de se manter a consistência metodológica, optou-se por utilizar 93 como o número geral de imagens a serem empilhadas.

4 Conclusão

Pudemos observar que o Empilhamento de Imagens tem potencial de apresentar os melhores resultados, mas conforme aumenta-se o ruído é necessário uma grande quantidade de imagens o que torna o tempo de execução mais elevado. Neste mesmo cenário o método do Filtro de Mediana aparenta ser a melhor escolha, visto que para o nível de ruído 0,10 seu tempo de execução é aproximadamente 1950 vezes menor do que o Empilhamento de Imagens e a diferença no PSNR é de apenas 0,13.