Appendix

A Algorithms

We begin by recalling the algorithms derived by Mensch and Blondel (2018) for computing the value, gradient, directional derivative and Hessian product of $SDTW_{\gamma}(C)$ in O(mn) time and space. The lines in light gray indicate values that must be set in order to handle edge cases. The Gibbs distribution (5) is equivalent to a random walk (finite Markov chain) on the directed acyclic graph pictured in Figure 1. The matrix $P \in (0,1]^{m \times n \times 3}$ computed in Algorithm 1 contains the transition probabilities for this random walk. Although modern automatic differentiation frameworks can in principle derive Algorithms 2–4 automatically from the first output of Algorithm 1, these frameworks are typically not well suited for tight loops operating over triplets of values, such as the ones in Algorithm 1. We argue that a manual implementation of the algorithms below is more efficient on CPU. The algorithms also play an important role to compute SHARP_{\gamma}(C) and MEAN_COST(C), as we describe later.

Algorithm 1 Soft-DTW value and transition probabilities

```
Input: Cost matrix C \in \mathbb{R}^{m \times n}, \gamma \ge 0

V_{:,0} \leftarrow \infty, V_{0,:} \leftarrow \infty, V_{0,0} \leftarrow 0

for i \in [1, \dots, m], j \in [1, \dots, n] do

V_{i,j} \leftarrow C_{i,j} + \min_{\gamma}(V_{i,j-1}, V_{i-1,j-1}, V_{i-1,j}) \in \mathbb{R}

P_{i,j} \leftarrow \nabla \min_{\gamma}(V_{i,j-1}, V_{i-1,j-1}, V_{i-1,j}) \in \Delta^3

Return: SDTW_{\gamma}(C) = V_{m,n} \in \mathbb{R}, P \in (0, 1]^{m \times n \times 3}
```

Algorithm 2 Soft-DTW gradient (expected alignment)

```
Input: P \in (0,1]^{m \times n \times 3} (Algorithm 1 or Algorithm 5)

E_{m+1,:} \leftarrow 0, E_{:,n+1} \leftarrow 0, E_{m+1,n+1} \leftarrow 1, P_{m+1,:} \leftarrow (0,0,0), P_{:,n+1} \leftarrow (0,0,0), P_{m+1,n+1} \leftarrow (0,1,0)

for j \in [n,\ldots,1], i \in [m,\ldots,1] do

E_{i,j} \leftarrow P_{i,j+1,1} \cdot E_{i,j+1} + P_{i+1,j+1,2} \cdot E_{i+1,j+1} + P_{i+1,j,3} \cdot E_{i+1,j}

Return: \nabla_{\mathbf{C}\text{SDTW}_{\gamma}}(\mathbf{C}) = \mathbf{E} \in (0,1]^{m \times n}
```

Algorithm 3 Soft-DTW directional derivative in the direction of Z and intermediate computations

```
Input: P \in (0, 1]^{m \times n \times 3} (Algorithm 1 or Algorithm 5), Z \in \mathbb{R}^{m \times n} \dot{V}_{:,0} \leftarrow 0, \dot{V}_{0,:} \leftarrow 0 for i \in [1, \dots, m], j \in [1, \dots, n] do \dot{V}_{i,j} \leftarrow Z_{i,j} + P_{i,j,1} \cdot \dot{V}_{i,j-1} + P_{i,j,2} \cdot \dot{V}_{i-1,j-1} + P_{i,j,3} \cdot \dot{V}_{i-1,j} Return: \langle \nabla_{C} \text{SDTW}_{\gamma}(C), Z \rangle = \dot{V}_{m,n} \in \mathbb{R}, \dot{V} \in \mathbb{R}^{m \times n}
```

Algorithm 4 Soft-DTW Hessian product

```
Input: P \in (0, 1]^{m \times n \times 3} (Algorithm 1), \dot{V} \in \mathbb{R}^{m \times n} (Algorithm 3), Z \in \mathbb{R}^{m \times n}

\dot{E}_{m+1,:} \leftarrow 0, \ \dot{E}_{:,n+1} \leftarrow 0 \ \dot{P}_{m+1,:} \leftarrow (0,0,0) \ \dot{P}_{:,n+1} \leftarrow (0,0,0)

for j \in [n, \dots, 1], \ i \in [m, \dots, 1] do

s \leftarrow P_{i,j,1} \cdot \dot{V}_{i,j-1} + P_{i,j,2} \cdot \dot{V}_{i-1,j-1} + P_{i,j,3} \cdot \dot{V}_{i-1,j}

\dot{P}_{i,j,1} \leftarrow P_{i,j,1} \cdot (s - \dot{V}_{i,j-1}), \ \dot{P}_{i,j,2} \leftarrow P_{i,j,2} \cdot (s - \dot{V}_{i-1,j-1}), \ \dot{P}_{i,j,3} \leftarrow P_{i,j,3} \cdot (s - \dot{V}_{i-1,j})

\dot{E}_{i,j} \leftarrow \dot{P}_{i,j+1,1} \cdot \dot{E}_{i,j+1} + P_{i,j+1,1} \cdot \dot{E}_{i,j+1} + \dot{P}_{i+1,j+1,2} \cdot \dot{E}_{i+1,j+1} + P_{i+1,j+1,2} \cdot \dot{E}_{i+1,j+1} + P_{i+1,j,3} \cdot \dot{E}_{i+1,j}

Return: \nabla^2_C \text{SDTW}_{\gamma}(C) Z = \dot{E} \in \mathbb{R}^{m \times n}
```

Since $SHARP_{\gamma}(C)$ is the directional derivative of $SDTW_{\gamma}(C)$ in the direction of C, we can compute it using Algorithm 3 with P coming from Algorithm 1 and Z = C. The gradient of $SHARP_{\gamma}(C)$ w.r.t. C, see (15), involves the product with the Hessian of $SDTW_{\gamma}(C)$ and can be computed using Algorithm 4, again with Z = C.

We continue with an algorithm to compute MEAN_COST(C). This algorithm is new to our knowledge. We start by a known recursion for computing the cardinality $|\mathcal{A}(m,n)|$ (Sulanke, 2003). The key modification we make is to build a transition probability matrix P along the way, mirroring Algorithm 1.

Algorithm 5 Cardinality $|\mathcal{A}(m,n)|$ and transition probabilities

```
Input: Cost matrix C \in \mathbb{R}^{m \times n}

V_{:,0} \leftarrow 0, \ V_{0,:} \leftarrow 0, \ V_{0,0} \leftarrow 1

for i \in [1, \dots, m], \ j \in [1, \dots, n] do

V_{i,j} \leftarrow V_{i,j-1} + V_{i-1,j-1} + V_{i-1,j}

P_{i,j,1} \leftarrow V_{i,j-1}/V_{i,j}, \ P_{i,j,2} \leftarrow V_{i-1,j-1}/V_{i,j}, \ P_{i,j,3} \leftarrow V_{i-1,j}/V_{i,j}.

Return: |\mathcal{A}(m,n)| = V_{m,n} \in \mathbb{N}, \ P \in (0,1]^{m \times n \times 3}
```

This modification allows us to reuse previous algorithms. Indeed, we can now compute MEAN_COST(C) by using Algorithm 3 with the above P and Z = C as inputs. Alternatively, we can use Algorithm 2 to compute $E = \mathbb{E}[A]$, where A is uniformly distributed over A(m,n), to then obtain MEAN_COST(C) = $\langle E, C \rangle$. Note that E is also the gradient of MEAN_COST(C) w.r.t. C.

To summarize, we have described algorithms for computing $SDTW_{\gamma}(C)$, $SHARP_{\gamma}(C)$ and $MEAN_COST(C)$ in O(mn) time and space. These, in turn, can be used to compute $D_{\gamma}^{C}(X,Y)$ (soft-DTW divergence), $S_{\gamma}^{C}(X,Y)$ (sharp divergence) and $M^{C}(X,Y)$ (mean-cost divergence) in $O(\max\{m,n\}^{2})$ time.

B Proofs

B.1 Sensitivity analysis w.r.t. γ

Proposition 6. Derivatives w.r.t. γ

We have for all $C \in \mathbb{R}^{m \times n}$

$$\frac{\partial \text{SDTW}_{\gamma}(\boldsymbol{C})}{\partial \gamma} = -H(\boldsymbol{p}_{\gamma}(\boldsymbol{C})) \leq 0 \quad and \quad \frac{\partial^{2} \text{SDTW}_{\gamma}(\boldsymbol{C})}{\partial \gamma^{2}} = \frac{1}{\gamma^{3}} \langle \boldsymbol{C}, \nabla_{\boldsymbol{C}}^{2} \text{SDTW}_{\gamma}(\boldsymbol{C}) \boldsymbol{C} \rangle \leq 0.$$

Proof. Recalling that $SDTW_{\gamma}(C) = \gamma SDTW_{1}(C/\gamma)$, we have

$$\frac{\partial \text{SDTW}_{\gamma}(\boldsymbol{C})}{\partial \gamma} = \text{SDTW}_{1}(\boldsymbol{C}/\gamma) - \frac{1}{\gamma} \langle \boldsymbol{E}_{1}(\boldsymbol{C}/\gamma), \boldsymbol{C} \rangle$$
$$= \frac{1}{\gamma} \text{SDTW}_{\gamma}(\boldsymbol{C}) - \frac{1}{\gamma} \langle \boldsymbol{E}_{\gamma}(\boldsymbol{C}), \boldsymbol{C} \rangle$$
$$= -H(\boldsymbol{p}_{\gamma}(\boldsymbol{C})) \leq 0,$$

where we used (13) and the fact that H is non-negative over the simplex. Similarly, we have

$$\begin{split} \frac{\partial^2 \text{SDTW}_{\gamma}(\boldsymbol{C})}{\partial \gamma^2} &= -\frac{1}{\gamma^2} \langle \boldsymbol{E}_1(\boldsymbol{C}/\gamma), \boldsymbol{C} \rangle + \frac{1}{\gamma^2} \langle \boldsymbol{E}_1(\boldsymbol{C}/\gamma), \boldsymbol{C} \rangle + \frac{1}{\gamma^3} \langle \boldsymbol{C}, \nabla_{\boldsymbol{C}}^2 \text{SDTW}_1(\boldsymbol{C}/\gamma) \boldsymbol{C} \rangle \\ &= \frac{1}{\gamma^3} \langle \boldsymbol{C}, \nabla_{\boldsymbol{C}}^2 \text{SDTW}_{\gamma}(\boldsymbol{C}) \boldsymbol{C} \rangle \leq 0, \end{split}$$

where we used the concavity of SDTW $_{\gamma}$ w.r.t. C.

B.2 Product with the Jacobian of the squared Euclidean cost

For the squared Euclidean cost (1), we have

$$C(\boldsymbol{X}, \boldsymbol{Y}) = \frac{1}{2}\operatorname{diag}(\boldsymbol{X}\boldsymbol{X}^{\top})\mathbf{1}_{n}^{\top} + \frac{1}{2}\mathbf{1}_{m}\operatorname{diag}(\boldsymbol{Y}\boldsymbol{Y}^{\top})^{\top} - \boldsymbol{X}\boldsymbol{Y}^{\top} \in \mathbb{R}^{m \times n}$$

where $\operatorname{diag}(M)$ is a vector containing the diagonal elements of M. With some abuse of notation, we denote

$$C(X) := C(X, X) \in \mathbb{R}^{m \times m}$$
.

Product with the Jacobian transpose ("VJP"). For fixed $Y \in \mathbb{R}^{n \times d}$, we have for all $E \in \mathbb{R}^{m \times n}$

$$[(J_{\mathbf{X}}C(\mathbf{X},\mathbf{Y}))^{\top}\mathbf{E}]_{i,k} = \sum_{j=1}^{n} e_{i,j}(x_{i,k} - y_{j,k}) \quad i \in [m], k \in [d]$$
(18)

or equivalently

$$(J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{Y}))^{\top}\boldsymbol{E} = \boldsymbol{X} \circ (\boldsymbol{E}\boldsymbol{1}_{n\times d}) - \boldsymbol{E}\boldsymbol{Y} \in \mathbb{R}^{m\times d},$$

where \circ denotes the Hadamard product. Similarly, we have for all $E \in \mathbb{R}^{m \times m}$

$$[(J_{\mathbf{X}}C(\mathbf{X}))^{\top}\mathbf{E}]_{i,k} = \sum_{j=1}^{n} (e_{i,j} + e_{j,i})(x_{i,k} - x_{j,k}) \quad i \in [m], k \in [d]$$
(19)

or equivalently

$$(J_{\boldsymbol{X}}C(\boldsymbol{X}))^{\top}\boldsymbol{E} = \boldsymbol{X} \circ ((\boldsymbol{E} + \boldsymbol{E}^{\top})\boldsymbol{1}_{m \times d}) - (\boldsymbol{E} + \boldsymbol{E}^{\top})\boldsymbol{X} \in \mathbb{R}^{m \times d}.$$

If E is symmetric, we therefore have at X = Y

$$(J_{\mathbf{X}}C(\mathbf{X}))^{\top}\mathbf{E} = 2(J_{\mathbf{X}}C(\mathbf{X}, \mathbf{Y}))^{\top}\mathbf{E}.$$
(20)

Product with the Jacobian ("JVP"). For fixed Y, we have for all $Z \in \mathbb{R}^{m \times d}$

$$[J_{\mathbf{X}}C(\mathbf{X},\mathbf{Y})\mathbf{Z}]_{i,j} = \sum_{k=1}^{d} z_{i,k}(x_{i,k} - y_{j,k}) \quad i \in [m], j \in [n]$$

or equivalently

$$J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{Y})\boldsymbol{Z} = \operatorname{diag}(\boldsymbol{X}\boldsymbol{Z}^{\top})\boldsymbol{1}_n^{\top} - \boldsymbol{Z}\boldsymbol{Y}^{\top} \in \mathbb{R}^{m \times n}.$$

Similarly, we have for all $\boldsymbol{Z} \in \mathbb{R}^{m \times d}$

$$[J_{\mathbf{X}}C(\mathbf{X})\mathbf{Z}]_{i,j} = \sum_{k=1}^{d} (z_{i,k} - z_{j,k})(x_{i,k} - x_{j,k}) \quad i \in [m], j \in [m]$$

or equivalently

$$J_{\boldsymbol{X}}C(\boldsymbol{X})\boldsymbol{Z} = \operatorname{diag}(\boldsymbol{X}\boldsymbol{Z}^{\top})\boldsymbol{1}_{m}^{\top} + \boldsymbol{1}_{m}\operatorname{diag}(\boldsymbol{Z}\boldsymbol{X}^{\top})^{\top} - \boldsymbol{Z}\boldsymbol{X}^{\top} - \boldsymbol{X}\boldsymbol{Z}^{\top} \in \mathbb{R}^{m \times m}.$$

We therefore have at X = Y

$$J_{\mathbf{X}}C(\mathbf{X})\mathbf{Z} = J_{\mathbf{X}}C(\mathbf{X}, \mathbf{Y})\mathbf{Z} + (J_{\mathbf{X}}C(\mathbf{X}, \mathbf{Y})\mathbf{Z})^{\top}, \tag{21}$$

i.e., $J_{\mathbf{X}}C(\mathbf{X})\mathbf{Z}$ is the symmetrization of $J_{\mathbf{X}}C(\mathbf{X},\mathbf{Y})\mathbf{Z}$.

B.3 Proof of Proposition 2 (limitations of sdtw $_{\gamma}$)

We assume assumptions A.1-A.3 hold.

- 1. The fact that $SDTW_{\gamma}(C) \xrightarrow{\gamma \to \infty} -\infty$ follows from (13). From Proposition 6, for all $C \in \mathbb{R}^{m \times n}$, $SDTW_{\gamma}(C)$ is concave w.r.t. γ and non-increasing on $[0, \infty)$. Since $DTW(C) \geq 0$ and $SDTW_{\gamma}(C) \xrightarrow{\gamma \to \infty} -\infty$, from the intermediate value theorem, there exists $\gamma_0 \in [0, \infty)$ such that $SDTW_{\gamma}(C) \leq 0$ for all $\gamma \geq \gamma_0$.
- 2. If the cost C satisfies assumption A.2, then for any $X \in \mathbb{R}^{m \times d}$ the diagonal alignment $I_m \in \mathcal{A}(m,m)$ satisfies $\langle I_m, C(X,X) \rangle = \sum_{i=1}^m [C(X,X)]_{i,i} = 0$. Therefore, DTW(C(X,X)) = 0. Using the fact that $\gamma \mapsto \text{SDTW}_{\gamma}(C)$ is non-increasing on $\gamma \in [0,\infty)$, we obtain $\text{SDTW}_{\gamma}(C(X,X)) \leq 0$ for all $\gamma \in [0,\infty)$.
- 3. If the minimum of $SDTW_{\gamma}(C(X, Y))$ is achieved at X = Y, then the gradient (9) should be equal to $\mathbf{0}_{m \times d}$ or put differently, $\mathbf{E}_{\gamma}(C(X, Y))$ should be in the nullspace of $(J_X C(X, Y))^{\top}$. For the squared Euclidean cost, from (18), a matrix $\mathbf{E} \in \mathbb{R}^{m \times n}$ is in the nullspace of $(J_X C(X, Y))^{\top}$ if for all $i \in [m], k \in [d]$

$$\sum_{i=1}^{n} e_{i,j}(x_{i,k} - y_{j,k}) = 0.$$

Since $e_{i,j} > 0$, this is equivalent to

$$x_{i,k} = \frac{\sum_{j=1}^{n} e_{i,j} y_{j,k}}{\sum_{j=1}^{n} e_{i,j}} \neq y_{i,k}.$$

B.4 Proof of Proposition 3 (valid divergence)

Positivity with the log-augmented squared Euclidean cost. The fact that (10) is positive definite (p.d.) under the cost (11) was proved by Cuturi et al. (2007). More precisely, in their Theorem 1, the authors show that the kernel $K_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) = \exp(-\operatorname{SDTW}_{1}(\boldsymbol{X}, \boldsymbol{Y})/\gamma)$ is positive definite if the kernel $k(\boldsymbol{x}, \boldsymbol{y}) \coloneqq \exp(-c(\boldsymbol{x}, \boldsymbol{y}))$ is such that $\tilde{k} \coloneqq \frac{k}{1+k}$ is positive definite. In particular, setting

$$k(\boldsymbol{x}, \boldsymbol{y}) = \frac{\frac{1}{2} \exp(-||\boldsymbol{x} - \boldsymbol{y}||_2^2/2)}{1 - \frac{1}{2} \exp(-||\boldsymbol{x} - \boldsymbol{y}||_2^2/2)} = \frac{\exp(-||\boldsymbol{x} - \boldsymbol{y}||_2^2/2)}{2 - \exp(-||\boldsymbol{x} - \boldsymbol{y}||_2^2/2)}$$

ensures that $\tilde{k}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} \exp(-||\boldsymbol{x} - \boldsymbol{y}||_2^2/2)$ is positive definite, and therefore so is K_{γ}^C . The associated cost is then, for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$,

$$c(x, y) = -\log(k(x, y)) = \frac{||x - y||_2^2}{2} + \log\left(2 - \exp\left(-\frac{||x - y||_2^2}{2}\right)\right),$$

which is exactly the cost (11). Using this cost, the fact that the kernel K_{γ}^{C} is positive definite implies that the Gram matrix

$$\boldsymbol{K} = \begin{bmatrix} K_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{X}) & K_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{Y}) \\ K_{\gamma}^{C}(\boldsymbol{Y},\boldsymbol{X}) & K_{\gamma}^{C}(\boldsymbol{Y},\boldsymbol{Y}) \end{bmatrix}$$

is positive semi-definite (p.s.d.), i.e., its determinant is non-negative. Using (10), we obtain using the cost (11)

$$\det(\boldsymbol{K}) = K_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{X})K_{\gamma}^{C}(\boldsymbol{Y},\boldsymbol{Y}) - K_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{Y})^{2} \geq 0 \Leftrightarrow D_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{Y}) \geq 0,$$

which proves the non-negativity of D_{γ}^{C} . We are now going to prove the converse, i.e., the fact that if $D_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) = 0$ then $\boldsymbol{X} = \boldsymbol{Y}$. First notice from the previous equation that if $D_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) = 0$ then $\det(\boldsymbol{K}) = 0$, i.e., \boldsymbol{K} is of rank at most 1 (\boldsymbol{K} is a 2 × 2 matrix). Cuturi et al. (2007) showed that when \tilde{k} is a positive definite kernel, then

$$K = \sum_{i=1}^{\infty} K_i, \qquad (22)$$

where, for any $i \geq 1$, K_i is the p.s.d. Gram matrix of the positive definite kernel K_i given by:

$$K_i(\boldsymbol{X}, \boldsymbol{Y}) = \sum_{\boldsymbol{A} \in \tilde{\mathcal{A}}(i,n)} \sum_{\boldsymbol{B} \in \tilde{\mathcal{A}}(i,m)} \prod_{j=1}^{i} \tilde{k}([\boldsymbol{A}\boldsymbol{X}]_j, [\boldsymbol{B}\boldsymbol{Y}]_j),$$

where $\tilde{\mathcal{A}}(u,v) \subset \mathcal{A}(u,v)$ is the set of path matrices that only use the \downarrow and \searrow moves. In other words, K_i compares X and Y by first "extending" them to length i by repeating some entries (corresponding to the $i \times d$ sequences AX and BY), and then comparing each of the the i terms of AX with the corresponding term in BY with \tilde{k} . When X and Y have the same length (m=n), we notice that $\tilde{\mathcal{A}}(n,n)$ is reduced to the identity matrix (there is a single way to "extend" X and Y to length n, which is not to repeat any entry), and therefore:

$$K_n(\boldsymbol{X}, \boldsymbol{Y}) = \prod_{j=1}^n \tilde{k}([\boldsymbol{X}]_j, [\boldsymbol{Y}]_j).$$

This shows in particular that $K_n(\boldsymbol{X}, \boldsymbol{X}) = K_n(\boldsymbol{Y}, \boldsymbol{Y}) = \frac{1}{2^n}$ and $K_n(\boldsymbol{X}, \boldsymbol{Y}) < \frac{1}{2^n}$ if and only if $\boldsymbol{X} \neq \boldsymbol{Y}$ (because $\tilde{k}(\boldsymbol{x}, \boldsymbol{y}) < 1/2$ if and only if $\boldsymbol{x} \neq \boldsymbol{y}$). In particular, \boldsymbol{K}_n has rank 2 if and only if $\boldsymbol{X} \neq \boldsymbol{Y}$. Since by (22) rank(\boldsymbol{K}) $\geq \max_i \operatorname{rank}(\boldsymbol{K}_i)$, this shows that $D_{\gamma}^C(\boldsymbol{X}, \boldsymbol{Y}) = 0 \Longrightarrow \operatorname{rank}(\boldsymbol{K}) < 2 \Longrightarrow \operatorname{rank}(\boldsymbol{K}_n) < 2 \Longrightarrow \boldsymbol{X} = \boldsymbol{Y}$. When \boldsymbol{X} and \boldsymbol{Y} do not have the same length, on the other hand (assuming without loss of generality m < n), then $\tilde{\mathcal{A}}(m,n) = \emptyset$ which gives $K_m(\boldsymbol{X},\boldsymbol{X}) = \frac{1}{2^m}$ and $K_m(\boldsymbol{X},\boldsymbol{Y}) = K_m(\boldsymbol{Y},\boldsymbol{Y}) = 0$, i.e.,

$$\boldsymbol{K}_m = \begin{bmatrix} 1/2^m & 0 \\ 0 & 0 \end{bmatrix} ,$$

showing that rank $(\mathbf{K}_m) = 1$ and $\ker(\mathbf{K}_m) = \operatorname{span}\{(0,1)^{\top}\}$. Similarly,

$$\boldsymbol{K}_n = \begin{bmatrix} >0 & >0 \\ >0 & 1/2^n \end{bmatrix},$$

showing that $K_n \times (0,1)^{\top} \neq 0$ and therefore $\ker(K_m) \cap \ker(K_n) = \{0\}$. By (22), $\ker(K) \subset \ker(K_m) \cap \ker(K_n)$, and therefore $\ker(K) = \{0\}$. In other words, when X and Y do not have the same length (which implies in particular that $X \neq Y$), then $\det(K) > 0$ and therefore $D_{\gamma}^{C}(X, Y) > 0$. This finishes to prove that $D_{\gamma}^{C}(X, Y) = 0$ if and only if X = Y.

Positivity with absolute value cost. We now consider the absolute value on $\mathbb{R} \times \mathbb{R}$

$$c(x,y) = |x - y|,$$

and show that K_{γ}^{C} is positive definite for this cost. The corresponding kernel is

$$k(x, y) = \exp(-c(x, y)) = \exp(-|x - y|),$$

namely the Laplacian kernel. Following the paragraph above, we show that $\tilde{k} = \frac{k}{1+k}$ is p.d. We first note that \tilde{k} is translation invariant and rewrites $\tilde{k}(x,y) = f(x-y)$, where

$$f(w) \coloneqq \frac{1}{1 + \exp(|w|)}.$$

From Bochner's theorem, the function $f: \mathbb{R} \to \mathbb{R}$ is p.d. (i.e. \tilde{k} is p.d.) if and only if it is the Fourier transform of a positive measure. Since f is integrable and square integrable, it suffices to study the sign of its Fourier transform. For all $\omega \in \mathbb{R}$,

$$\mathcal{F}[f](\omega) \coloneqq \int_{-\infty}^{\infty} \frac{e^{-i\omega x}}{1 + e^{|x|}} dx = \int_{-\infty}^{0} \frac{e^{-i\omega x}}{1 + e^{-x}} dx + \int_{0}^{\infty} \frac{e^{-i\omega x}}{1 + e^{x}} dx$$

$$= \int_{0}^{\infty} \frac{e^{-i\omega x}}{1 + e^{x}} dx + \int_{0}^{\infty} \frac{e^{i\omega x}}{1 + e^{x}} dx$$

$$= 2 \int_{0}^{\infty} \frac{\cos(\omega x)}{1 + e^{x}} dx$$

$$= \frac{2}{\omega} \int_{0}^{\infty} \frac{\cos(x)}{1 + e^{x/\omega}} dx$$

$$= \frac{2}{\omega} \sum_{k=0}^{\infty} \int_{0}^{2\pi} \frac{\cos(x)}{1 + e^{x/\omega + 2k\pi/\omega}} dx$$

$$\coloneqq \frac{2}{\omega} \sum_{k=0}^{\infty} \int_{0}^{2\pi} a_{k}.$$

Let us further decompose the sequence $(a_k)_{k=0}^{\infty}$ by splitting the integral into four parts and using the periodicity of the cosine function. For all $k \geq 0$,

$$a_k = \int_0^{\frac{\pi}{2}} \cos(x) \Big(\sigma_k(x) + \sigma_k(2\pi - x) - \sigma_k(\pi + x) - \sigma_k(\pi - x) \Big) dx := \int_0^{\frac{\pi}{2}} \cos(x) f_k(x) dx$$

where $\sigma_k(x) \coloneqq \frac{1}{1+e^{\frac{2k\pi+x}{\omega}}}$. Note that σ_k is convex, so that its derivative σ_k' is increasing on \mathbb{R} . Therefore, for all $x \in [0, \frac{\pi}{2}]$, we have $\sigma_k'(x) \le \sigma_k'(\pi-x)$ and $\sigma_k'(\pi+x) \le \sigma_k'(2\pi-x)$. Hence, for all $x \in [0, \frac{\pi}{2}]$, $f_k'(x) \le 0$, which implies $f_k(x) \ge f_k(\frac{\pi}{2}) = 0$. We conclude that $\mathcal{F}[f] \ge 0$ on \mathbb{R} , and therefore $\tilde{k} = \frac{k}{1+k}$ is p.d. Theorem 1 of Cuturi et al. (2007) ensures that K_γ^C is positive definite, so that D_γ^C is non-negative. To prove that $D_\gamma^C(\boldsymbol{X}, \boldsymbol{Y}) = 0$ if and only if $\boldsymbol{X} = \boldsymbol{Y}$, we proceed exactly as for the log-augmented squared Euclidean cost.

B.5 Numerical verifications for the squared Euclidean cost case

Numerical evidence of the positive definiteness of K_{γ}^{C} . We conjecture that K_{γ}^{C} is positive definite when C is the squared Euclidean cost (1). This is evidenced by the following numerical experiment. Given M time series X_{1}, \ldots, X_{M} , we can form the $M \times M$ Gram matrix defined by

$$[\boldsymbol{K}]_{i,j} = K_{\gamma}^{C}(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}) \quad i, j \in [M].$$

If K_{γ}^{C} were not positive definite, the following minimization problem

$$\min_{\boldsymbol{X}_1,...,\boldsymbol{X}_M,\boldsymbol{v}} \; \frac{1}{||\boldsymbol{v}||^2} \boldsymbol{v}^\top \boldsymbol{K} \boldsymbol{v}$$

would give negative values. We solved this non-convex optimization problem for different values of M using L-BFGS, and could never find negative values. The positive definiteness of K_{γ}^{C} would imply the non-negativity of D_{γ}^{C} using the squared Euclidean cost.

Disproving a conjecture. Cuturi et al. (2007) notice that the Gaussian kernel $k(x, y) := \exp(-||x - y||^2/2)$ is such that $\frac{k}{1+k}$ empirically yields positive semidefinite Gram matrices, and leave open the question of whether $\frac{k}{1+k}$ is indeed a p.d. kernel, which would prove that K_{γ}^{C} is p.d. as well (cf. Appendix B.4). We rigorously derive a counter-example showing that this is not the case. The kernel $\tilde{k} = \frac{k}{1+k}$ is translation invariant and rewrites

$$\tilde{k}(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x} - \boldsymbol{y})$$
 where $f(\boldsymbol{t}) \coloneqq \frac{\exp(-\|\boldsymbol{t}\|^2/2)}{1 + \exp(-\|\boldsymbol{t}\|^2)}$.

From Bochner's theorem, the function $f: \mathbb{R}^d \to \mathbb{R}$ is p.d. if and only if it is the Fourier transform of a positive measure. Since f is integrable and square integrable, it suffices to study the sign of its Fourier transform. For that purpose, let us rewrite f as a power series:

$$\forall t \in \mathbb{R}^d: \quad f(t) = \frac{e^{-\frac{||t||^2}{2}}}{1 + e^{-\frac{||t||^2}{2}}} = \sum_{n=1}^{\infty} (-1)^{n+1} e^{-\frac{n||t||^2}{2}}.$$

The convergence is absolute since

$$\sum_{n=1}^{\infty} e^{-\frac{n||\mathbf{t}||^2}{2}} = \frac{1}{e^{\frac{||\mathbf{t}||^2}{2}} - 1} < \infty.$$

Moreover, this function is integrable. By the theorem of dominated convergence, the Fourier transform of f,

$$\mathcal{F}[f](\boldsymbol{\omega}) \coloneqq \int_{\mathbb{R}^d} f(\boldsymbol{x}) e^{-i\boldsymbol{\omega}^{\top} \boldsymbol{x}} d\boldsymbol{x},$$

is equal to a converging series of Fourier transforms:

$$\mathcal{F}[f](\boldsymbol{\omega}) = \sum_{n=1}^{\infty} (-1)^{n+1} \mathcal{F}\left[e^{-\frac{n||\cdot||^2}{2}}\right](\boldsymbol{\omega}).$$

It is well-known that, for any $a \in \mathbb{R}_+$,

$$\mathcal{F}\left[e^{-a||\cdot||^2}\right](\boldsymbol{\omega}) = \left(\frac{\pi}{a}\right)^{\frac{d}{2}} e^{-\frac{||\boldsymbol{\omega}||^2}{4a}},$$

which gives with $a = \frac{n}{2}$

$$\mathcal{F}[f](\omega) = (\pi)^{\frac{d}{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\frac{d}{2}}} e^{-\frac{||\omega||^2}{2n}}.$$

Figure 5: Fourier transform of $\tilde{k} = \frac{k}{1+k}$ when k is the Gaussian kernel. The Fourier transform can be negative.

We may thus compute approximately the coefficients $\mathcal{F}[f](\omega)$ for all $\omega \in \mathbb{R}^d$. In dimension d=1, truncating the series at $N=10^6$, we obtain the curve presented in Figure 5, and observe negative coefficients. To ensure that the infinite sum is negative, we now bound the residual when we truncate the sum at 2N (for d=1):

$$R_{N}(\omega) = \sqrt{\pi} \sum_{n=2N+1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} e^{-\frac{||\omega||^{2}}{2n}}$$

$$= \sqrt{\pi} \sum_{n=N}^{\infty} \left[\frac{e^{-\frac{||\omega||^{2}}{2(2n+1)}}}{\sqrt{2n+1}} - \frac{e^{-\frac{||\omega||^{2}}{2(2n+2)}}}{\sqrt{2n+2}} \right]$$

$$\leq \sqrt{\pi} \sum_{n=N}^{\infty} \left[\frac{e^{-\frac{||\omega||^{2}}{2(2n+2)}}}{\sqrt{2n+1}} - \frac{e^{-\frac{||\omega||^{2}}{2(2n+2)}}}{\sqrt{2n+2}} \right]$$

$$\leq \sqrt{\pi} \sum_{n=N}^{\infty} \left[\frac{1}{\sqrt{2n+1}} - \frac{1}{\sqrt{2n+2}} \right]$$

$$= \sqrt{\pi} \sum_{n=N}^{\infty} \frac{1}{\sqrt{2n+1}} \left[1 - \sqrt{1 - \frac{1}{2n+2}} \right]$$

$$\leq \sqrt{\pi} \sum_{n=N}^{\infty} \frac{1}{\sqrt{2n+1}(2n+2)}$$

$$\leq \sqrt{\frac{\pi}{8}} \sum_{n=N}^{\infty} \frac{1}{n\sqrt{n}}$$

$$\leq \sqrt{\frac{\pi}{8}} \int_{N-1}^{\infty} \frac{dx}{x\sqrt{x}}$$

$$= \sqrt{\frac{\pi}{2(N-1)}}.$$

For $N=10^6$, this gives $R_N(\omega) < 2 \times 10^{-3}$. We observed numerically some values strictly smaller than -2×10^{-3} for the truncation at $N=10^6$ of the series: in particular, $\mathcal{F}[f](2.65)=-.012$, which implies that the infinite sum is negative. We therefore conclude that $\frac{k}{k+1}$ is not positive definite when k is the Gaussian kernel. Note, however, that this does not disprove the positive definiteness of K_γ^C using the squared Euclidean cost.

B.6 Proof of Proposition 4 (stationary point using the squared Euclidean cost)

Soft-DTW divergence. We recall that we denote $C(X) := C(X, X) \in \mathbb{R}^{m \times m}$. Using (9), we have

$$\nabla_{\boldsymbol{X}}D_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{Y}) = (J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{Y}))^{\top}\boldsymbol{E}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y})) - \frac{1}{2}(J_{\boldsymbol{X}}C(\boldsymbol{X}))^{\top}\boldsymbol{E}_{\gamma}(C(\boldsymbol{X})).$$

Under the squared Euclidean cost, C(X) is a symmetric matrix. For any $A \in \mathcal{A}(m,m)$, there exists $A^{\top} \in \mathcal{A}(m,m)$. Moreover for any symmetric matrix C, the probability $\mathbb{P}_{\gamma}(A;C)$ is the same as $\mathbb{P}_{\gamma}(A^{\top};C)$. From (6), we therefore have that $E_{\gamma}(C(X)) \in \mathbb{R}^{m \times m}$ is a symmetric matrix. In order to have $\nabla_{X} D_{\gamma}^{C}(X,Y) = \mathbf{0}_{m \times d}$ at X = Y, it suffices that $(J_{X}C(X,Y))^{\top}$ and $\frac{1}{2}(J_{X}C(X))^{\top}$ map symmetric matrices to the same matrix. From (20), this is indeed the case for the squared Euclidean cost.

Sharp divergence. Using (15), we get

$$\begin{split} \nabla_{\boldsymbol{X}} \mathrm{SHARP}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) &= (J_{\boldsymbol{X}} C(\boldsymbol{X}, \boldsymbol{Y}))^{\top} \nabla_{\boldsymbol{C}} \mathrm{SHARP}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) \\ &= (J_{\boldsymbol{X}} C(\boldsymbol{X}, \boldsymbol{Y}))^{\top} [\boldsymbol{E}_{\gamma}(\boldsymbol{C}) + \frac{1}{\gamma} \nabla_{\boldsymbol{C}}^{2} \mathrm{SDTW}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) C(\boldsymbol{X}, \boldsymbol{Y})] \\ &= \nabla_{\boldsymbol{X}} \mathrm{SDTW}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) + \frac{1}{\gamma} (J_{\boldsymbol{X}} C(\boldsymbol{X}, \boldsymbol{Y}))^{\top} \nabla_{\boldsymbol{C}}^{2} \mathrm{SDTW}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) C(\boldsymbol{X}, \boldsymbol{Y}). \end{split}$$

We therefore have

$$\nabla_{\boldsymbol{X}} S_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) = \nabla_{\boldsymbol{X}} D_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) + \frac{1}{\gamma} (J_{\boldsymbol{X}} C(\boldsymbol{X}, \boldsymbol{Y}))^{\top} \nabla_{\boldsymbol{C}}^{2} \text{SDTW}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) C(\boldsymbol{X}, \boldsymbol{Y})$$

$$- \frac{1}{2\gamma} (J_{\boldsymbol{X}} C(\boldsymbol{X}))^{\top} \nabla_{\boldsymbol{C}}^{2} \text{SDTW}_{\gamma}(C(\boldsymbol{X})) C(\boldsymbol{X}).$$
(23)

From the previous paragraph, we know that $\nabla_{\mathbf{X}} D_{\gamma}^{C}(\mathbf{X}, \mathbf{Y}) = \mathbf{0}_{m \times d}$ at $\mathbf{X} = \mathbf{Y}$ using the squared Euclidean cost. It remains to show that the sum of the other two terms in (23) is also equal to $\mathbf{0}_{m \times d}$. Since $(J_{\mathbf{X}} C(\mathbf{X}, \mathbf{Y}))^{\top}$ and $\frac{1}{2} (J_{\mathbf{X}} C(\mathbf{X}))^{\top}$ map symmetric matrices to the same matrix using the squared Euclidean cost, it suffices to show that $\nabla_{C}^{2} \mathrm{SDTW}_{\gamma}(C(\mathbf{X})) C(\mathbf{X})$ is a symmetric matrix.

It is well-known that the Hessian of the log-partition under a Gibbs distribution is equal to the covariance matrix (Wainwright and Jordan, 2008). The Hessian can be seen as a $mn \times mn$ matrix. Accounting for the negative sign in (4), we have

$$\nabla_{\boldsymbol{C}}^{2} \operatorname{SDTW}_{\gamma}(\boldsymbol{C}) = -\mathbb{E}_{\gamma} [\operatorname{vec}(\boldsymbol{A} - \boldsymbol{E}_{\gamma}(\boldsymbol{C})) \operatorname{vec}(\boldsymbol{A} - \boldsymbol{E}_{\gamma}(\boldsymbol{C}))^{\top}]$$

$$= -\sum_{\boldsymbol{A} \in \mathcal{A}(m,n)} \mathbb{P}_{\gamma}(\boldsymbol{A}; \boldsymbol{C}) \operatorname{vec}(\boldsymbol{A} - \boldsymbol{E}(\boldsymbol{C})) \operatorname{vec}(\boldsymbol{A} - \boldsymbol{E}(\boldsymbol{C}))^{\top}$$

$$= \mathbb{E}_{\gamma} [\operatorname{vec}(\boldsymbol{A})] \mathbb{E}_{\gamma} [\operatorname{vec}(\boldsymbol{A})]^{\top} - \mathbb{E}_{\gamma} [\operatorname{vec}(\boldsymbol{A}) \operatorname{vec}(\boldsymbol{A})^{\top}],$$

where A is a random alignment matrix distributed according to $\mathbb{P}_{\gamma}(A; C)$. Equivalently, we can see the Hessian as linear map from $\mathbb{R}^{m \times n}$ to $\mathbb{R}^{m \times n}$. Applying that map to a matrix $M \in \mathbb{R}^{m \times n}$, we obtain

$$\begin{split} \nabla_{\boldsymbol{C}}^2 \text{SDTW}_{\gamma}(\boldsymbol{C}) \boldsymbol{M} &= -\sum_{\boldsymbol{A} \in \mathcal{A}(m,n)} \mathbb{P}_{\gamma}(\boldsymbol{A}; \boldsymbol{C}) (\boldsymbol{A} - \boldsymbol{E}_{\gamma}(\boldsymbol{C})) \langle \boldsymbol{A} - \boldsymbol{E}_{\gamma}(\boldsymbol{C}), \boldsymbol{M} \rangle \\ &= \langle \boldsymbol{E}_{\gamma}(\boldsymbol{C}), \boldsymbol{M} \rangle \boldsymbol{E}_{\gamma}(\boldsymbol{C}) - \sum_{\boldsymbol{A} \in \mathcal{A}(m,n)} \mathbb{P}_{\gamma}(\boldsymbol{A}; \boldsymbol{C}) \langle \boldsymbol{A}, \boldsymbol{M} \rangle \boldsymbol{A} \\ &= \langle \boldsymbol{E}_{\gamma}(\boldsymbol{C}), \boldsymbol{M} \rangle \boldsymbol{E}_{\gamma}(\boldsymbol{C}) - \mathbb{E}_{\gamma}[\langle \boldsymbol{A}, \boldsymbol{M} \rangle \boldsymbol{A}]. \end{split}$$

We now assume C = M = C(X). We already proved that $E_{\gamma}(C)$ is a symmetric matrix. Using the same argument $\mathbb{E}_{\gamma}[\langle A, M \rangle A]$ is also symmetric. Therefore $\nabla_{C}^{2} \text{SDTW}_{\gamma}(C)M$ is a symmetric matrix, concluding the proof.

B.7 Multiplication with the Hessian

For completeness, we also include a discussion on the multiplication with the Hessian w.r.t. X. The product between the Hessian $\nabla^2_X \text{SDTW}_{\gamma}(C(X,Y))$ and any $Z \in \mathbb{R}^{m \times d}$ is equal to the product between the Jacobian of $\nabla_X \text{SDTW}_{\gamma}(C(X,Y))$ and Z:

$$\nabla_{\boldsymbol{X}}^2 \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y})) \boldsymbol{Z} = J_{\boldsymbol{X}}[\nabla_{\boldsymbol{X}} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y}))] \boldsymbol{Z} = J_{\boldsymbol{X}}[J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{Y})^{\top} \boldsymbol{E}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y}))] \boldsymbol{Z}.$$

Using the product rule and the chain rule, we obtain

$$\nabla_{\boldsymbol{X}}^{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y})) \boldsymbol{Z} = \underbrace{[J_{\boldsymbol{X}}(J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{Y}))^{\top} \boldsymbol{E}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y}))]}_{\boldsymbol{B}_{\gamma}(\boldsymbol{X},\boldsymbol{Y})} \boldsymbol{Z} + (J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{Y}))^{\top} \nabla_{\boldsymbol{C}}^{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y})) J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{Y}) \boldsymbol{Z}.$$

Similarly,

$$\nabla_{\boldsymbol{X}}^{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X})) \boldsymbol{Z} = \underbrace{[J_{\boldsymbol{X}}(J_{\boldsymbol{X}}C(\boldsymbol{X}))^{\top} \boldsymbol{E}_{\gamma}(C(\boldsymbol{X}))]}_{\boldsymbol{B}_{\gamma}(\boldsymbol{X})} \boldsymbol{Z} + (J_{\boldsymbol{X}}C(\boldsymbol{X}))^{\top} \nabla_{\boldsymbol{C}}^{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X})) J_{\boldsymbol{X}}C(\boldsymbol{X}) \boldsymbol{Z}.$$

From now on, we assume the squared Euclidean cost. Using (18), we obtain

$$[B_{\gamma}(X,Y)Z]_{i,k} = \sum_{j=1}^{n} [E_{\gamma}(C(X,Y))]_{i,j} z_{i,k} \quad i \in [m], k \in [d]$$

or equivalently

$$B_{\gamma}(X,Y)Z = Z \circ (E_{\gamma}(C(X,Y))1_{n \times d}) \in \mathbb{R}^{m \times d}.$$

Similarly, using (19) and the fact that $E_{\gamma}(C(X))$ is a symmetric matrix, we obtain

$$[\boldsymbol{B}_{\gamma}(\boldsymbol{X})\boldsymbol{Z}]_{i,k} = 2\sum_{j=1}^{n} [\boldsymbol{E}_{\gamma}(C(\boldsymbol{X}))]_{i,j}(z_{i,k} - z_{j,k})$$

or equivalently

$$\boldsymbol{B}_{\gamma}(\boldsymbol{X})\boldsymbol{Z} = 2\boldsymbol{Z} \circ (\boldsymbol{E}_{\gamma}(C(\boldsymbol{X})\boldsymbol{1}_{m \times d}) - 2\boldsymbol{E}_{\gamma}(C(\boldsymbol{X}))\boldsymbol{Z} \in \mathbb{R}^{m \times d}.$$

At X = Y, we therefore get

$$\boldsymbol{B}_{\gamma}(\boldsymbol{X}, \boldsymbol{Y})\boldsymbol{Z} - \frac{1}{2}\boldsymbol{B}_{\gamma}(\boldsymbol{X})\boldsymbol{Z} = \boldsymbol{E}_{\gamma}(C(\boldsymbol{X}))^{\top}\boldsymbol{Z} = \boldsymbol{E}_{\gamma}(C(\boldsymbol{X}))\boldsymbol{Z}.$$

At X = Y, from (20) and (21), we also have

$$(J_{\boldsymbol{X}}C(\boldsymbol{X}))^{\top}\nabla_{\boldsymbol{C}}^{2}\boldsymbol{E}_{\gamma}(C(\boldsymbol{X}))J_{\boldsymbol{X}}C(\boldsymbol{X})\boldsymbol{Z} = 2J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{X})^{\top}\nabla_{\boldsymbol{C}}^{2}\mathrm{SDTW}_{\gamma}(C(\boldsymbol{X}))(J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{X})\boldsymbol{Z} + (J_{\boldsymbol{X}}C(\boldsymbol{X},\boldsymbol{X})\boldsymbol{Z})^{\top}).$$

Putting everything together, at X = Y, we have

$$\nabla_{\boldsymbol{X}}^{2} D_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) \boldsymbol{Z} = \nabla_{\boldsymbol{X}}^{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) \boldsymbol{Z} - \frac{1}{2} \nabla_{\boldsymbol{X}}^{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X})) \boldsymbol{Z}$$
$$= \boldsymbol{E}_{\gamma}(C(\boldsymbol{X})) \boldsymbol{Z} - J_{\boldsymbol{X}} C(\boldsymbol{X}, \boldsymbol{X})^{\top} \nabla_{\boldsymbol{C}}^{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X})) (J_{\boldsymbol{X}} C(\boldsymbol{X}, \boldsymbol{X}) \boldsymbol{Z})^{\top}.$$

An open question is to prove that $\boldsymbol{X} = \boldsymbol{Y}$ is a local minimum, i.e., $\langle Z, \nabla_{\boldsymbol{X}}^2 D_{\gamma}^C(\boldsymbol{X}, \boldsymbol{Y}) \boldsymbol{Z} \rangle > 0$ for all $\boldsymbol{Z} \in \mathbb{R}^{m \times d}$.

B.8 Proof of Proposition 5 (limits w.r.t. γ)

Limit to zero. Since both $SDTW_{\gamma}(C)$ and $SHARP_{\gamma}(C)$ converge to DTW(C) when $\gamma \to 0$, both $D_{\gamma}^{C}(X, Y)$ and $S_{\gamma}^{C}(X, Y)$ converge to

$$\mathrm{DTW}(C(\boldsymbol{X},\boldsymbol{Y})) - \frac{1}{2}\mathrm{DTW}(C(\boldsymbol{X},\boldsymbol{X})) - \frac{1}{2}\mathrm{DTW}(C(\boldsymbol{Y},\boldsymbol{Y})).$$

Since the optimal alignment of $A^*(C(X,X))$ is the identity matrix under assumption A.2, we have DTW(C(X,X)) = 0 and similarly DTW(C(Y,Y)) = 0. Therefore, both $D_{\gamma}^{C}(X,Y)$ and $S_{\gamma}^{C}(X,Y)$ converge to DTW(C(X,Y)).

Limit to infinity. From (7), when $\gamma \to \infty$, the solution becomes the maximum entropy one, $p^* = 1/|\mathcal{A}(m,n)|$. Hence, $\langle p^*, s(C) \rangle$ converge to the mean cost (16). This gives the limit for the S_{γ}^C case. For the D_{γ}^C case, we also need to take into account the entropy terms

$$-\gamma H(\boldsymbol{p}_{\gamma}(C(\boldsymbol{X},\boldsymbol{Y})) + \frac{\gamma}{2}H(\boldsymbol{p}_{\gamma}(C(\boldsymbol{X},\boldsymbol{X}))) + \frac{\gamma}{2}H(\boldsymbol{p}_{\gamma}(C(\boldsymbol{Y},\boldsymbol{Y}))).$$

When $\gamma \to \infty$, each term attains the maximum entropy value and we get

$$-\gamma \log |\mathcal{A}(m,n)| + \frac{\gamma}{2} \log |\mathcal{A}(m,m)| + \frac{\gamma}{2} \log |\mathcal{A}(n,n)| = \frac{\gamma}{2} \log \frac{|\mathcal{A}(m,m)||\mathcal{A}(n,n)|}{|\mathcal{A}(m,n)|^2}.$$

When m = n, the terms cancel out. Hence, $D_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y})$ converge. When, $m \neq n$, the positive terms are stronger, and the limit goes to ∞ . By definition, we have

$$D_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) = \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{Y})) - \frac{1}{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{X}, \boldsymbol{X})) - \frac{1}{2} \operatorname{SDTW}_{\gamma}(C(\boldsymbol{Y}, \boldsymbol{Y}))$$

$$= -\gamma \log \sum_{\boldsymbol{A} \in \mathcal{A}(m,n)} \exp(-\langle \boldsymbol{A}, C(\boldsymbol{X}, \boldsymbol{Y}) \rangle / \gamma)$$

$$+ \frac{\gamma}{2} \log \sum_{\boldsymbol{A} \in \mathcal{A}(m,m)} \exp(-\langle \boldsymbol{A}, C(\boldsymbol{X}, \boldsymbol{X}) \rangle / \gamma) + \frac{\gamma}{2} \log \sum_{\boldsymbol{A} \in \mathcal{A}(n,n)} \exp(-\langle \boldsymbol{A}, C(\boldsymbol{Y}, \boldsymbol{Y}) \rangle / \gamma)$$

$$= -\frac{\gamma}{2} \log \frac{|\mathcal{A}(m,n)|^{2}}{|\mathcal{A}(m,m)||\mathcal{A}(n,n)|} - \gamma \log \left[\frac{1}{|\mathcal{A}(m,n)|} \sum_{\boldsymbol{A} \in \mathcal{A}(m,n)} \exp(-\langle \boldsymbol{A}, C(\boldsymbol{X}, \boldsymbol{X}) \rangle / \gamma) \right]$$

$$+ \frac{\gamma}{2} \log \left[\frac{1}{|\mathcal{A}(m,n)|} \sum_{\boldsymbol{A} \in \mathcal{A}(m,m)} \exp(-\langle \boldsymbol{A}, C(\boldsymbol{X}, \boldsymbol{X}) \rangle / \gamma) \right]$$

$$+ \frac{\gamma}{2} \log \left[\frac{1}{|\mathcal{A}(n,n)|} \sum_{\boldsymbol{A} \in \mathcal{A}(n,n)} \exp(-\langle \boldsymbol{A}, C(\boldsymbol{Y}, \boldsymbol{Y}) \rangle / \gamma) \right]$$

Let us first consider the limit of the second term in this sum when $\gamma \to +\infty$:

$$\gamma \log \left[\frac{1}{|\mathcal{A}(m,n)|} \sum_{\boldsymbol{A} \in \mathcal{A}(m,n)} \exp(-\langle \boldsymbol{A}, C(\boldsymbol{X}, \boldsymbol{Y}) \rangle / \gamma) \right] = \gamma \log \left[\frac{1}{|\mathcal{A}(m,n)|} \sum_{\boldsymbol{A} \in \mathcal{A}(m,n)} \left(1 - \frac{\langle \boldsymbol{A}, C(\boldsymbol{X}, \boldsymbol{Y}) \rangle}{\gamma} + o(1/\gamma) \right) \right]$$

$$= \gamma \log \left[1 - \frac{\text{MEAN_COST}(C(\boldsymbol{X}, \boldsymbol{Y}))}{\gamma} + o(1/\gamma) \right]$$

$$= -\text{MEAN_COST}(C(\boldsymbol{X}, \boldsymbol{Y})) + o(1) .$$

A similar computation for the third and fourth term in (24) leads to

$$\begin{split} D_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{Y}) &= -\frac{\gamma}{2}\log\frac{|\mathcal{A}(m,n)|^{2}}{|\mathcal{A}(m,m)||\mathcal{A}(n,n)|} + \text{mean_cost}(C(\boldsymbol{X},\boldsymbol{Y})) - \frac{1}{2}\text{mean_cost}(C(\boldsymbol{X},\boldsymbol{X})) \\ &- \frac{1}{2}\text{mean_cost}(C(\boldsymbol{Y},\boldsymbol{Y})) + o(1) \\ &= -\frac{\gamma}{2}\log\frac{|\mathcal{A}(m,n)|^{2}}{|\mathcal{A}(m,m)||\mathcal{A}(n,n)|} + M^{C}(\boldsymbol{X},\boldsymbol{Y}) + o(1) \,. \end{split}$$

When m=n, the first term is equal to 0, so we get $\lim_{\gamma\to+\infty}D_{\gamma}^{C}(\boldsymbol{X},\boldsymbol{Y})=M^{C}(\boldsymbol{X},\boldsymbol{Y})$. When $m\neq n$, on the other hand, we can use the fact that for any integers m,n:

$$|\mathcal{A}(m,n)| = \text{Delannoy}(m-1,n-1),$$

where Delannoy(m, n) is the Delannoy number, i.e., the number of paths on a rectangular grid from the origin (0,0) to the northeast corner (m,n), using only single steps north, east or northeast (the (m-1, n-1) term

stems from the fact that alignment matrices represent paths starting from (1,1) and not (0,0)). We can now use Lemma 1 below to get, when $m \neq n$:

$$\log \frac{|\mathcal{A}(m,n)|^2}{|\mathcal{A}(m,m)||\mathcal{A}(n,n)|} = \log \frac{\mathrm{Delannoy}(m-1,n-1)^2}{\mathrm{Delannoy}(m-1,m-1) \times \mathrm{Delannoy}(n-1,n-1)} < 0,$$

and therefore that $\lim_{\gamma \to +\infty} D_{\gamma}^{C}(\boldsymbol{X}, \boldsymbol{Y}) = +\infty$.

Lemma 1. For any $m, n \in \mathbb{N}$, if $m \neq n$ then

$$\log \frac{\mathrm{Delannoy}(m,n)^2}{\mathrm{Delannoy}(m,m) \times \mathrm{Delannoy}(n,n)} < 0.$$

Proof. We use the following characterization of Delannoy numbers (e.g., Banderier and Schwer, 2005):

$$\mathrm{Delannoy}(m,n) = \sum_{k=0}^{\min(m,n)} \left(\begin{array}{c} m \\ k \end{array} \right) \left(\begin{array}{c} n \\ k \end{array} \right) 2^k \,,$$

to obtain, assuming without loss of generality that m < n:

$$Delannoy(m, n)^{2} = \left[\sum_{k=0}^{m} {m \choose k} {n \choose k} 2^{k}\right]^{2}$$

$$\leq \left[\sum_{k=0}^{m} {m \choose k}^{2} 2^{k}\right] \times \left[\sum_{k=0}^{m} {n \choose k}^{2} 2^{k}\right]$$

$$< \left[\sum_{k=0}^{m} {m \choose k}^{2} 2^{k}\right] \times \left[\sum_{k=0}^{n} {n \choose k}^{2} 2^{k}\right]$$

$$= Delannoy(m, m) \times Delannoy(n, n),$$

where we used Cauchy-Schwartz inequality for the first inequality, and the fact that m < n for the second (strict) inequality.

C Additional empirical results

Figure 6: Interpolation between two time series, from the GunPoint dataset.

Figure 7: Barycenters on the ${\bf CBF}$ dataset.

Figure 8: Barycenters on the $\mathbf{ECG200}$ dataset.

Figure 9: Barycenters on the **Medical Images** dataset.

Figure 10: Barycenters on the synthetic control dataset.

Table 4: Three nearest neighbors results. Each number indicates the percentage of datasets in the UCR archive for which using A in the nearest neighbor classifier is within 99% or better than using B.

$A (\downarrow)$ vs. $B (\rightarrow)$	Euc.	DTW	SDTW	SDTW div	Sharp	Sharp div	Mean cost	Mean-cost div
Euc.	-	39.29	29.49	31.17	37.18	28.00	95.24	65.48
DTW	70.24	-	53.85	45.45	57.69	42.67	90.48	83.33
SDTW	82.05	88.46	-	66.23	83.33	58.67	98.72	89.74
SDTW div	90.91	84.42	85.71	-	83.12	70.67	98.70	94.81
Sharp	78.21	82.05	64.10	58.44	-	53.33	98.72	87.18
Sharp div	86.67	90.67	81.33	77.33	89.33	-	98.67	96.00
Mean cost	8.33	13.10	6.41	3.90	5.13	4.00	-	44.05
Mean-cost div	46.43	34.52	24.36	20.78	24.36	21.33	98.81	-

Table 5: Five nearest neighbor results. Each number indicates the percentage of datasets in the UCR archive for which using A in the nearest neighbor classifier is within 99% or better than using B.

$A (\downarrow)$ vs. $B (\rightarrow)$	Euc.	DTW	SDTW	SDTW div	Sharp	Sharp div	Mean cost	Mean-cost div
Euc.	-	40.48	30.77	28.57	33.33	24.68	95.29	70.24
DTW	73.81	-	48.72	44.16	55.13	45.45	88.10	83.33
SDTW	85.90	84.62	-	61.04	74.36	63.64	94.87	82.05
SDTW div	84.42	88.31	81.82	-	81.82	74.03	96.10	85.71
Sharp	85.90	87.18	70.51	58.44	-	59.74	97.44	82.05
Sharp div	90.91	84.42	80.52	76.62	84.42	-	96.10	87.01
Mean cost	10.59	13.10	10.26	7.79	7.69	7.79	-	45.24
Mean-cost div	45.24	32.14	26.92	20.78	26.92	19.48	98.81	-

Table 6: Nearest neighbor classification accuracy with k=1.

Dataset name	Euc.	DTW	SDTW	SDTW div	Sharp	Sharp div	Mean cost	Mean-cost d
50words	63.08	69.01	80.66	81.54	79.12	79.78	58.90	67.91
Adiac	61.13	60.36	61.38	71.36	60.10	72.12	28.39	54.48
ArrowHead	80.00	70.29	77.14	81.71	80.57	79.43	72.57	78.86
Beef	66.67	63.33	63.33	63.33	63.33	63.33	20.00	20.00
BeetleFly	75.00	70.00	70.00	70.00	70.00	75.00	50.00	50.00
BirdChicken	55.00	75.00	75.00	75.00	75.00	75.00	50.00	50.00
CBF	85.22	99.67	99.67	99.67	99.67	99.67	78.78	95.00
Car	73.33	73.33	73.33	75.00	75.00	78.33	23.33	23.33
ChlorineConcentration	65.00	64.84	62.29	64.84	65.05	65.65	38.20	55.44
CinC_ECG_torso	89.71	65.07	93.41	93.55	92.54	93.84	25.36	25.36
Coffee	100.00	100.00	100.00	100.00	100.00	100.00	53.57	96.43
Computers	57.60	70.00	69.60	70.00	69.20	67.20	50.00	50.00
Cricket_X	57.69	75.38	77.69	80.00	77.95	79.23	42.56	61.54
Cricket_Y	56.67	74.36	76.67	78.72	74.36	77.18	47.95	61.28
Cricket_Z	58.72	75.38	77.69	80.26	77.69	79.74	43.08	63.33
DiatomSizeReduction DistalPhalanxOutlineAgeGroup	93.46 78.25	96.73 79.25	92.16 79.25	94.44 79.75	92.81 79.50	93.46 80.50	92.16 59.50	93.46 76.75
DistalPhalanxOutlineCorrect	75.17	76.83	79.23 79.00	76.83	76.83	75.17	36.83	71.33
DistalPhalanxTW	72.75	70.75	73.25	72.25	74.50	72.50	51.00	71.00
CG200	88.00	77.00	86.00	88.00 92.36	82.00	87.00	87.00	88.00
CCG5000	92.49	92.44	93.07		92.78	92.47	91.80	92.38
CCGFiveDays	79.67 67.39	$76.77 \\ 74.22$	61.67	93.50	62.49	91.17 74.22	61.44	83.86
arthquakes llectricDevices	54.93	60.02	82.61 NA	74.53 NA	82.61 NA	NA	81.99 26.17	81.99 59.12
ISH	$\frac{54.93}{78.29}$	82.29	92.00	92.57	90.29	91.43	$\frac{26.17}{12.57}$	12.57
aceAll	78.29 71.36	82.29 80.77	74.38	82.31	76.27	91.43 82.78	25.33	12.57 81.89
aceAn aceFour	78.41	82.95	82.95	89.77	87.50	89.77	62.50	84.09
acerour acesUCR	76.41	90.49	92.34	94.78	92.34	94.54	45.90	80.44
ordA	65.90	56.21	92.34 NA	94.76 NA	92.34 NA	94.54 NA	45.90 51.26	51.26
ordA ordB	55.78	59.41	58.55	NA NA	58.83	NA NA	48.84	48.84
un_Point	91.33	90.67	97.33	98.00	98.00	98.00	82.00	90.00
Iam	60.00	46.67	49.52	58.10	58.10	61.90	48.57	48.57
andOutlines	80.10	79.80	NA	NA	NA	NA	63.80	63.80
aptics	37.01	37.66	39.94	39.94	40.26	41.56	21.75	21.75
erring	51.56	53.12	57.81	57.81	60.94	62.50	59.38	59.38
nlineSkate	34.18	38.36	42.55	43.09	42.00	42.36	15.64	15.64
nsectWingbeatSound	56.16	35.51	55.05	56.87	56.26	57.07	54.55	56.97
alyPowerDemand	95.53	95.04	93.68	95.04	94.07	95.43	90.38	94.95
argeKitchenAppliances	49.33	79.47	79.73	79.73	79.73	79.73	33.33	33.33
ighting2	75.41	86.89	90.16	88.52	90.16	86.89	54.10	54.10
ighting7	57.53	72.60	73.97	78.08	75.34	82.19	57.53	68.49
IALLAT	91.43	93.39	89.72	91.39	90.62	92.24	12.54	12.54
leat .	93.33	93.33	95.00	93.33	95.00	93.33	33.33	33.33
IedicalImages	68.42	73.68	74.61	75.92	76.18	77.76	57.89	69.61
IiddlePhalanxOutlineAgeGroup	74.00	75.00	71.00	73.25	75.25	73.75	66.25	73.25
IiddlePhalanxOutlineCorrect	75.33	64.83	72.67	76.33	66.83	71.83	35.33	70.67
fiddlePhalanxTW	56.14	58.40	58.40	58.40	58.40	58.40	52.63	59.15
IoteStrain	87.86	83.47	90.18	89.86	91.53	87.62	88.18	80.35
onInvasiveFatalECG_Thorax1	82.90	78.98	NA	NA	NA	NA	2.44	2.44
onInvasiveFatalECG_Thorax2	87.99	86.46	NA	NA	NA	NA	2.44	2.44
SULeaf	52.07	59.09	70.25	69.83	70.25	69.83	9.50	9.50
liveOil	86.67	83.33	86.67	86.67	86.67	86.67	16.67	16.67
halangesOutlinesCorrect	76.11	72.61	74.59	77.04	71.91	77.39	42.31	73.08
honeme	10.92	22.84	24.00	22.73	21.89	23.26	2.00	2.00
lane	96.19	100.00	100.00	100.00	100.00	100.00	84.76	96.19
roximal Phalanx Outline Age Group	78.54	80.49	75.12	80.98	80.98	80.98	46.34	76.59
roximalPhalanxOutlineCorrect	80.76	77.66	79.04	83.51	74.23	83.51	31.96	73.20
roximalPhalanxTW	70.75	74.00	74.75	70.25	75.00	73.25	45.25	70.25
efrigerationDevices	39.47	46.40	45.87	44.80	45.60	NA	33.33	33.33
creenType	36.00	40.00	41.33	40.27	39.47	39.47	33.33	33.33
hapeletSim	53.89	65.00	58.33	87.22	64.44	82.78	50.00	50.00
hapesAll	75.17	76.83	83.67	84.33	80.83	82.17	1.67	1.67
mallKitchenAppliances	34.40	64.27	66.67	66.67	67.47	65.87	33.33	33.33
onyAIBORobotSurface	69.55	72.55	72.55	76.71	72.55	76.54	45.42	76.04
onyAIBORobotSurfaceII	85.94	83.11	84.26	84.89	83.11	83.95	76.39	84.05
tarLightCurves	84.88	NA	NA	NA	NA	NA	57.72	NA
trawberry	93.80	93.96	93.96	93.80	93.80	93.64	79.45	93.80
wedishLeaf	78.88	79.20	82.40	88.16	82.24	89.12	46.72	79.84
ymbols	89.95	94.97	96.18	95.38	95.18	95.28	86.93	90.15
oeSegmentation1	67.98	77.19	83.33	82.89	80.26	81.58	63.16	63.16
oeSegmentation2	80.77	83.85	90.77	86.15	92.31	92.31	79.23	83.85
race	76.00	100.00	100.00	100.00	100.00	100.00	47.00	72.00
woLeadECG	74.71	90.52	90.52	90.43	89.73	88.59	57.77	70.15
wo_Patterns	90.68	100.00	100.00	100.00	100.00	100.00	94.78	96.72
WaveGestureLibraryAll	94.81	89.17	NA	NA	NA	NA	12.53	12.53
Vine	61.11	57.41	55.56	62.96	55.56	62.96	50.00	61.11
VordsSynonyms	61.76	64.89	76.80	78.06	74.92	76.49	55.33	65.20
Vorms	36.46	46.41	47.51	48.07	49.17	42.54	41.99	41.99
VormsTwoClass	58.56	66.30	55.80	67.40	57.46	64.09	41.99	41.99
ynthetic_control	88.00	99.33	97.67	99.33	99.33	99.33	76.67	98.67
WaveGestureLibrary_X	73.93	72.75	78.48	78.73	77.58	78.00	72.84	74.37
WaveGestureLibrary_Y	66.16	63.40	70.30	NA	69.82	71.13	64.43	67.42
WaveGestureLibrary_Z	64.96 99.55	65.83 97.99	68.51 99.30	69.65 99.56	68.06	68.90	62.90	64.91
vafer					99.43	99.59	99.25	99.51

Table 7: Nearest neighbor classification accuracy with k=3.

Dition	Б.	DOM		sification				M
Dataset name	Euc.	DTW	SDTW	SDTW div	Sharp	Sharp div	Mean cost	Mean-cost o
50words Adiac	61.98 55.24	66.37 57.29	$80.22 \\ 56.78$	$80.66 \\ 69.05$	77.80 54.99	78.90 66.50	59.34 26.34	66.81 49.10
Adiac ArrowHead	79.43	70.86	80.57	79.43	78.86	82.86	72.57	84.57
Beef	60.00	56.67	53.33	56.67	56.67	56.67	20.00	20.00
BeetleFly	65.00	70.00	50.00	65.00	75.00	75.00	50.00	50.00
BirdChicken	45.00	60.00	60.00	60.00	60.00	60.00	50.00	50.00
CBF	83.78	99.67	99.67	99.67	99.67	99.67	82.56	89.78
Car	66.67	55.00	61.67	66.67	56.67	56.67	23.33	23.33
ChlorineConcentration	56.59	56.69	56.12	56.54	56.69	56.69	38.44	51.54
CinC_ECG_torso	85.22	49.78	86.67	86.67	85.87	85.58	24.78	24.78
Coffee	100.00	92.86	92.86	92.86	92.86	92.86	53.57	92.86
Computers	62.00	71.20	71.20	71.20	71.20	71.20	50.00	50.00
Cricket_X	51.79	74.36	75.38	77.44	72.56	75.13	42.05	55.38
Cricket_Y Cricket_Z	50.51 54.62	70.51 75.38	71.03 77.95	76.41 78.72	71.03 76.92	73.33 78.97	44.62 42.31	56.92 59.23
DiatomSizeReduction	89.22	92.81	89.22	89.87	89.87	89.87	87.58	89.54
DistalPhalanxOutlineAgeGroup	78.50	83.50	83.75	79.75	83.25	79.25	59.25	79.25
DistalPhalanxOutlineCorrect	75.83	79.83	79.33	79.83	79.83	80.67	36.67	74.33
DistalPhalanxTW	75.75	73.00	72.75	75.00	75.00	76.75	53.75	72.75
ECG200	90.00	80.00	88.00	89.00	88.00	89.00	86.00	88.00
CG5000	93.49	93.98	94.00	94.16	93.98	94.20	93.44	93.47
CGFiveDays	73.98	62.02	67.25	82.00	66.32	82.81	52.50	80.02
Earthquakes	74.22	78.88	78.88	78.88	78.88	78.88	81.99	81.99
ElectricDevices	56.40	61.08	NA	NA	NA	NA	25.77	60.42
ISH	75.43	79.43	90.29	90.29	90.29	91.43	12.57	12.57
aceAll	67.22	80.77	79.94	83.37	75.09	84.97	28.46	80.53
FaceFour	65.91	68.18	68.18	72.73	59.09	77.27	46.59	69.32
CacesUCR	67.76	88.63	90.44	93.90	91.32	93.41	47.17	71.32
FordA	67.15	57.46	NA	NA	NA	NA	51.26	51.26
ordB	58.33	61.83	61.94	NA	61.83	NA	51.16	51.16
Gun_Point	87.33	88.67	97.33	98.00	98.00	98.00	84.67	84.67
Iam IandOutlines	59.05	51.43	52.38 NA	62.86	57.14 NA	61.90	51.43	51.43
landOutlines Iaptics	84.90 38.64	81.00 42.86	NA 41.23	NA 41.56	NA 37.01	NA 43.51	63.80 21.75	63.80 21.75
laptics lerring	56.25	48.44	64.06	60.94	62.50	65.62	59.38	59.38
nlineSkate	23.82	35.64	37.45	37.64	35.82	35.45	15.64	15.64
nsectWingbeatSound	59.24	36.21	56.67	58.18	57.22	58.33	57.07	58.28
talyPowerDemand	95.63	94.56	94.95	95.14	94.56	95.04	89.60	94.95
argeKitchenAppliances	45.60	80.00	80.00	77.60	80.00	77.07	33.33	33.33
ighting2	77.05	86.89	91.80	90.16	83.61	85.25	45.90	45.90
ighting7	60.27	71.23	79.45	82.19	78.08	82.19	57.53	71.23
MALLAT	91.98	92.84	92.54	92.88	92.15	92.75	12.45	12.45
Meat	93.33	93.33	93.33	93.33	93.33	91.67	33.33	33.33
MedicalImages	67.76	70.92	72.11	73.42	72.76	74.61	57.24	69.21
MiddlePhalanxOutlineAgeGroup	73.50	76.00	76.00	74.50	76.00	76.00	67.75	74.50
MiddlePhalanxOutlineCorrect	77.17	72.17	74.50	77.67	73.67	76.00	35.50	75.33
IiddlePhalanxTW	58.40	61.15	60.65	61.15	61.65	62.16	51.88	58.65
MoteStrain	86.18	81.39	88.18	87.46	89.54	87.86	85.14	83.87
VonInvasiveFatalECG_Thorax1	82.54	78.63	NA	NA	NA	NA	2.54	2.54
IonInvasiveFatalECG_Thorax2	88.40	86.31	NA	NA	NA	NA	2.54	2.54
SULeaf	50.41	57.44	59.50	61.98	64.88	65.29	19.01	19.01
OliveOil	90.00	86.67	86.67	86.67	86.67	86.67	40.00	40.00
PhalangesOutlinesCorrect	77.97	75.41	76.57	79.37	76.57	79.14	42.07	73.66
Phoneme Plane	10.34	23.95	21.99	23.58	23.10 100.00	25.05	7.07	7.07
riane ProximalPhalanxOutlineAgeGroup	96.19 81.95	100.00 80.98	100.00 81.46	100.00 80.98	81.95	$100.00 \\ 81.95$	84.76 48.78	96.19 80.49
roximalPhalanxOutlineAgeGroup roximalPhalanxOutlineCorrect	81.95 84.88	80.98	81.46	80.98 85.57	78.01	81.95 84.19	48.78 31.62	74.91
ProximalPhalanxTW	77.00	79.00	78.50	77.50	77.25	78.75	45.50	78.00
defrigerationDevices	39.20	46.40	46.13	45.87	46.67	46.13	33.33	33.33
creenType	38.40	39.20	42.13	36.53	39.20	37.07	33.33	33.33
hapeletSim	52.78	62.78	62.78	80.00	68.33	81.67	50.00	50.00
hapesAll	69.00	71.00	77.33	77.67	75.67	NA	1.67	1.67
mallKitchenAppliances	36.53	67.47	70.67	70.67	67.73	67.20	33.33	33.33
onyAIBORobotSurface	57.40	61.73	61.73	61.73	61.73	61.73	43.59	67.22
onyAIBORobotSurfaceII	79.85	80.27	77.65	79.12	79.01	80.90	76.50	80.06
tarLightCurves	84.82	NA	NA	NA	NA	NA	NA	NA
trawberry	92.33	91.84	91.68	92.01	90.05	91.03	78.96	90.38
wedishLeaf	71.84	77.92	80.48	86.56	78.88	87.36	47.84	77.44
ymbols	85.03	92.86	96.18	96.18	95.98	96.08	81.91	86.13
oeSegmentation1	60.53	75.44	82.02	77.63	75.88	78.51	57.46	63.60
oeSegmentation2	82.31	81.54	89.23	89.23	91.54	93.08	82.31	86.15
race	65.00	100.00	100.00	100.00	100.00	100.00	47.00	64.00
WoLeadECG	63.48	85.16	85.34	63.48	82.44	63.74	55.66	63.21
Patterns	85.95	100.00	100.00	100.00	100.00	100.00	90.72	94.20
JWaveGestureLibraryAll	94.39	89.53	NA	NA	NA	NA	12.62	12.62
Vine	55.56	57.41	62.96	62.96	51.85	61.11	50.00	61.11
VordsSynonyms Vorms	56.74 26.46	59.56	72.41	69.59	70.85	72.10	54.23	59.56
	36.46 50.12	42.54	42.54	42.54	42.54 65.10	42.54 65.10	13.81	13.81
VormsTwoClass	59.12	64.09	70.17	70.17 98.33	65.19	65.19	58.01 74.67	58.01 98.67
ynthetic_control ıWaveGestureLibrary_X	91.00 73.03	98.33 73.73	98.33 78.00	98.33 78.31	98.33 76.97	98.33 77.41	74.67 71.94	98.67 73.84
iWaveGestureLibrary_X iWaveGestureLibrary_Y	66.67	63.18	78.00	78.31 71.36	70.18	77.41 NA	65.47	67.17
WaveGestureLibrary_Y WaveGestureLibrary_Z	65.75	66.78	68.37	69.43	67.87	68.87	64.38	66.50
vafer	99.38	97.52	99.06	99.42	99.06	99.45	99.06	99.45
,	79.23	82.17	82.53	82.33	82.23	82.33	46.43	46.43

Table 8: Nearest neighbor classification accuracy with k=5.

Dataset name	Euc.	DTW	SDTW	SDTW div	Sharp	Sharp div	Mean cost	Mean-cost
50words	61.98	66.15	77.80	79.12	75.60	77.80	57.80	65.93
Adiac	52.17	53.20	59.34	63.68	55.75	61.64	25.06	46.55
ArrowHead	66.86	68.57	62.86	64.57	63.43	66.86	62.29	68.57
Beef	50.00	43.33	46.67	43.33	43.33	43.33	20.00	20.00
BeetleFly	60.00	70.00	60.00	65.00	70.00	80.00	50.00	50.00
BirdChicken	55.00	65.00	70.00	75.00	65.00	60.00	50.00	50.00
BF	76.67	98.22	98.22	98.22	98.22	98.22	75.56	88.78
Car	63.33	50.00	66.67	66.67	63.33	66.67	31.67	31.67
ChlorineConcentration	54.87	54.82	54.87	54.87	54.82	54.66	44.32	51.46
CinC_ECG_torso	77.39	42.61	80.14	80.22	82.46	83.26	24.78	24.78
offee	96.43	96.43	96.43	96.43	96.43	96.43	60.71	96.43
Computers	60.40	68.80	69.60	68.40	69.60	68.00	50.00	50.00
ricket_X	48.21	72.56	71.79	71.79	71.54	72.82	40.77	57.18
ricket_Y	50.26	68.46	68.46	71.79	68.72	73.85	42.82	55.64
ricket_Z	49.49	76.67	77.18	79.49	76.15	80.26	39.23	58.46
iatomSizeReduction	86.93	70.92	85.62	85.62	80.07	78.43	87.25	86.93
istalPhalanxOutlineAgeGroup	79.75	83.50	83.50	83.50	83.50	82.75	60.50	80.00
istalPhalanxOutlineCorrect	76.33	78.17	79.17	78.17	78.17	79.67	35.83	74.83
istalPhalanxTW	76.75	76.25	78.25	78.00	76.50	79.00	53.25	73.50
CG200	90.00	79.00	86.00	87.00	87.00	88.00	85.00	89.00
CG5000	93.91	93.84	94.33	93.84	94.24	93.84	93.89	93.87
CGFiveDays	61.21	60.16	75.38	77.82	68.99	77.93	51.34	77.00
arthquakes	78.57	79.19	79.19	79.19	79.19	79.19	81.99	81.99
lectricDevices	58.38	61.03	NA	NA	NA	NA	27.19	60.80
ISH	72.00	73.14	89.14	90.86	90.86	91.43	16.57	16.57
aceAll	64.62	81.01	71.66	85.03	74.44	80.89	30.59	79.59
aceFour	52.27	68.18	68.18	68.18	44.32	67.05	42.05	50.00
acesUCR	62.20	86.20	88.20	92.78	89.61	91.76	45.07	67.22
ordA	68.62	58.71	NA	NA	NA	NA	51.26	51.26
ordB	58.33	63.97	64.11	NA NA	63.28	NA NA	48.84	48.84
oras un_Point	58.33 80.00	82.67	92.67	94.67	92.00	92.67	48.84 81.33	48.84 80.67
am andOutlines	62.86 85.10	53.33 81.40	60.95 NA	63.81 NA	62.86 NA	64.76 NA	51.43 63.80	51.43 63.80
aptics	41.56	41.23	51.30	50.97	47.73	49.03	19.16	19.16
erring	51.56	54.69	54.69	56.25	59.38	56.25	59.38	59.38
nlineSkate	22.55	33.27	37.64	33.82	33.45	33.45	15.45	15.45
nsectWingbeatSound	59.90	35.45	57.27	59.55	56.67	59.80	56.01	59.65
alyPowerDemand	95.24	94.36	95.04	94.46	95.04	94.46	88.34	94.46
argeKitchenAppliances	45.60	78.67	78.93	78.67	78.67	75.47	33.33	33.33
ighting2	72.13	81.97	85.25	83.61	85.25	85.25	54.10	54.10
ighting7	57.53	75.34	76.71	75.34	79.45	75.34	49.32	63.01
IALLAT	78.89	82.77	81.32	81.75	80.68	81.49	12.54	12.54
[eat	91.67	93.33	91.67	90.00	90.00	93.33	33.33	33.33
IedicalImages	66.05	69.74	71.45	71.45	71.18	71.32	54.74	69.47
IiddlePhalanxOutlineAgeGroup	76.50	76.75	76.75	75.50	76.25	77.25	68.00	74.50
IiddlePhalanxOutlineCorrect	76.00	74.50	74.33	77.17	74.50	77.50	35.67	74.67
IiddlePhalanxTW	62.16	62.91	60.15	61.15	63.66	60.65	51.38	59.90
IoteStrain	85.14	82.43	87.54	85.62	88.82	88.18	83.95	82.91
onInvasiveFatalECG_Thorax1	82.60	78.78	NA	NA	NA	NA	2.90	2.90
onInvasiveFatalECG_Thorax2	88.65	85.24	NA	NA	NA	NA	2.90	2.90
SULeaf	47.11	54.55	57.44	58.26	64.46	62.40	18.18	18.18
liveOil	83.33	73.33	80.00	80.00	80.00	76.67	40.00	40.00
halangesOutlinesCorrect	77.86	75.64	78.55	79.60	77.16	79.37	42.89	75.87
honeme	12.03	24.95	25.95	25.58	24.74	26.85	7.07	7.07
lane	96.19	100.00	100.00	100.00	100.00	100.00	83.81	96.19
roximalPhalanxOutlineAgeGroup	82.44	82.44	83.41	83.41	82.93	85.85	48.78	81.46
roximalPhalanxOutlineCorrect	84.19	80.76	84.54	86.94	80.07	86.25	31.62	79.38
roximalPhalanxTW	79.75	79.50	79.00	78.75	79.25	79.25	45.00	80.25
efrigerationDevices	38.93	48.27	46.40	48.27	47.47	47.47	33.33	33.33
creenType	41.60	42.67	42.13	40.53	42.67	39.20	33.33	33.33
hapeletSim	54.44	63.89	63.89	72.22	63.89	76.67	50.00	50.00
hapesAll	65.83	68.17	72.00	72.83	72.83	73.33	1.67	1.67
mallKitchenAppliances	36.53	68.00	68.00	67.73	68.80	68.27	33.33	33.33
onyAIBORobotSurface	46.92	52.25	52.25	52.25	52.25	52.25	42.93	56.57
onyAIBORobotSurfaceII	77.12	77.65	74.29	76.92	77.33	77.75	75.13	79.33
tarLightCurves	84.51	NA	NA	NA	NA	NA	57.72	NA
trawberry	92.33	91.68	87.77	90.86	91.19	90.54	79.45	89.40
wedishLeaf	71.84	78.72	78.24	85.12	77.76	85.44	48.48	78.88
ymbols	73.37	90.45	93.47	77.39	94.37	77.89	71.36	76.58
peSegmentation1	61.40	71.49	72.81	76.32	73.25	72.81	58.33	61.40
peSegmentation2	84.62	83.08	83.85	84.62	85.38	84.62	84.62	86.92
race	54.00	100.00	100.00	100.00	100.00	100.00	49.00	53.00
woLeadECG	59.70	81.39	74.54	81.56	72.61	72.87	55.14	60.76
wo_Patterns	82.50	100.00	100.00	100.00	100.00	100.00	87.62	91.52
WaveGestureLibraryAll	93.89	89.06	NA	NA	NA	NA	12.67	12.67
/ine	53.70	48.15	59.26	51.85	66.67	59.26	50.00	53.70
VordsSynonyms	54.70	55.33	67.40	64.89	66.93	68.03	51.88	58.62
vordssynonyms vorms	38.12	44.20	49.17	50.28	46.96	48.62	13.81	13.81
orms ormsTwoClass	60.22	66.85	70.72	70.72	67.40	67.96	58.01	58.01
ynthetic_control	87.00	97.33	97.33	97.33	97.33	97.33	76.00	98.67
WaveGestureLibrary_X	72.89	73.73	77.22	77.69	76.52	77.05	71.50	73.73
WaveGestureLibrary_Y	66.36	64.10	70.46	71.08	69.74	70.71	65.75	67.59
WaveGestureLibrary_Z	65.97	67.11	68.79	68.90	68.57	69.29	64.82	66.22
f	99.17	97.13	98.91	99.01	99.01	99.08	98.78	99.08
vafer	00.11	01.110						

Table 9: Nearest centroid classification accuracy.

Dataset name	Euc.	DTW	SDTW	SDTW div	Sharp	Sharp div	Mean cost	Mean-cost of
50words	51.65	59.78	76.26	78.02	69.45	76.70	50.33	51.21
Adiac	54.99	47.06	67.52	68.54	66.75	67.26	44.25	46.55
ArrowHead	61.14	50.86	51.43	57.71	49.71	61.14	58.86	59.43
Beef	53.33	43.33	46.67	36.67	43.33	46.67	20.00	20.00
BeetleFly	85.00	80.00	70.00	70.00	80.00	70.00	50.00	50.00
BirdChicken	55.00	60.00	65.00	60.00	60.00	60.00	50.00	50.00
CBF	76.33	96.89	97.11	97.11	97.00	97.00	73.00	74.44
Car	61.67	61.67	70.00	73.33	73.33	75.00	23.33	23.33
ChlorineConcentration	33.31	32.45	35.23	32.19	31.98	33.41	34.82	34.95
CinC_ECG_torso	38.55	40.29	71.88	70.36	59.49	64.42	25.36	25.36
Coffee	96.43	96.43	96.43	96.43	96.43	96.43	89.29	89.29
Computers	41.60	63.20	51.60	56.80	62.80	63.20	50.00	50.00
Cricket_X	23.85	57.69	56.92	56.67	58.46	58.97	25.64	26.15
Cricket_Y	34.87	52.56	55.64	54.87	53.59	55.13	33.59	33.59
Cricket_Z	30.51	60.00	61.03	60.00	58.21	62.31	30.26	30.26
DiatomSizeReduction	95.75	95.10	96.73	96.41	96.08	95.42	94.44	95.42
DistalPhalanxOutlineAgeGroup	81.75	84.00	84.50	84.75	84.50	85.00	80.25	81.25
DistalPhalanxOutlineCorrect	47.17	48.17	48.00	47.33	47.00	47.17	48.17	47.17
DistalPhalanxTW	74.75	75.75	74.50	74.50	74.50	73.00	73.00	72.75
CG200	75.00	75.00	72.00	73.00	69.00	73.00	74.00	74.00
ECG5000	86.04	84.53	86.73	85.98	86.02	86.09	81.44	83.64
CGFiveDays	68.99	65.27	80.60	83.39	80.95	85.60	79.56	80.26
Earthquakes	75.47	58.07	82.30	65.22	71.12	72.98	81.99	81.99
lectricDevices	48.27	53.60	57.07	61.57	53.61	51.28	50.55	50.37
ISH	56.00	65.71	81.14	84.00	81.14	82.86	13.71	13.71
aceAll	49.17	80.71	81.60	88.58	85.98	89.17	58.88	64.56
aceFour	84.09	82.95	86.36	89.77	88.64	90.91	78.41	77.27
FacesUCR	53.95	79.22	88.98	91.07	90.78	91.85	57.37	59.46
FordA	49.60	55.57	55.62	52.43	54.96	56.32		51.26
							51.26	
FordB	49.97	60.70	47.58	55.94	58.33	54.81	51.16	51.16
Gun_Point	75.33	68.00	82.00	81.33	92.00	86.00	68.67	71.33
Iam	76.19	73.33	71.43	75.24	79.05	72.38	48.57	48.57
IandOutlines	81.80	79.20	82.40	NA	NA	NA	36.20	36.20
Iaptics	39.29	35.71	46.10	46.10	48.38	47.73	19.48	19.48
Ierring	54.69	60.94	64.06	64.06	59.38	62.50	59.38	59.38
nlineSkate	19.27	22.73	23.45	26.36	22.73	21.45	9.64	9.64
nsectWingbeatSound	60.10	29.80	58.18	58.64	58.43	58.79	58.43	58.38
talyPowerDemand	91.84	74.15	88.14	90.48	85.62	87.37	71.62	84.35
argeKitchenAppliances	44.00	71.47	72.00	73.60	74.67	72.53	33.33	33.33
ighting2	68.85	62.30	67.21	72.13	65.57	62.30	45.90	45.90
ighting7	58.90	72.60	78.08	83.56	56.16	58.90	61.64	63.01
MALLAT	96.67	94.93	95.74	94.84	94.80	94.88	12.54	12.54
Meat	93.33	94.93 93.33		85.00	90.00		33.33	33.33
			85.00			85.00		
MedicalImages	38.55	44.21	40.39	40.92	45.53	45.00	32.11	33.55
MiddlePhalanxOutlineAgeGroup	73.25	72.50	72.75	72.75	72.75	75.25	73.75	73.25
MiddlePhalanxOutlineCorrect	55.17	48.50	52.17	52.83	51.83	52.83	51.83	52.83
MiddlePhalanxTW	59.15	56.64	58.15	58.15	58.90	58.65	59.40	59.40
MoteStrain	86.10	82.43	90.42	90.18	82.27	88.82	82.99	83.87
VonInvasiveFatalECG_Thorax1	76.95	70.13	81.63	82.29	81.12	NA	2.44	2.44
VonInvasiveFatalECG_Thorax2	80.20	76.28	87.23	87.68	87.74	NA	2.44	2.44
SULeaf	35.95	45.87	52.07	51.24	50.00	50.41	13.22	13.22
OliveOil	86.67	76.67	83.33	86.67	83.33	83.33	16.67	16.67
PhalangesOutlinesCorrect	62.59	63.64	63.75	64.45	64.45	63.99	61.42	62.47
honeme	7.86	17.67	20.15	20.57	19.83	20.99	2.00	2.00
Plane	96.19	99.05	99.05	99.05	100.00	100.00	95.24	96.19
roximalPhalanxOutlineAgeGroup	81.95	82.93	84.39	84.39	84.39	83.90	81.46	80.49
ProximalPhalanxOutlineCorrect	64.60	64.95	64.95	64.95	64.95	64.95	64.26	64.60
ProximalPhalanxTW	70.75	73.50	81.25	81.50	80.00	80.75	69.75	68.50
RefrigerationDevices	35.47	57.87	58.13	55.20	61.60	58.13	33.33	33.33
creenType	44.27	38.13	37.33	40.00	37.60	40.80	33.33	33.33
hapeletSim	50.00	61.67	73.33	72.78	57.22	68.89	50.00	50.00
ShapesAll	51.33	62.17	65.50	68.67	64.50	66.83	1.67	1.67
mallKitchenAppliances	41.87	64.53	68.00	68.80	65.87	64.53	33.33	33.33
SonyAIBORobotSurface	81.20	82.86	82.70	82.86	80.37	81.53	80.70	78.70
SonyAIBORobotSurfaceII	79.33	76.60	79.85	76.50	80.27	78.91	77.12	76.92
StarLightCurves	76.17	82.93	83.57	83.35	81.64	NA	14.29	14.29
trawberry	66.88	61.17		68.84	67.54	72.43	65.74	65.58
			65.58					
wedishLeaf	70.24	70.40	79.36	81.12	77.12	80.00	71.36	71.52
ymbols	86.43	95.78	95.08	95.58	95.58	96.08	88.74	87.84
oeSegmentation1	57.46	62.72	73.25	71.05	69.30	74.56	52.63	54.39
CoeSegmentation2	54.62	86.92	86.15	85.38	80.77	84.62	55.38	54.62
race	58.00	98.00	98.00	97.00	99.00	99.00	56.00	57.00
WoLeadECG	55.49	76.21	78.05	83.06	78.49	89.38	57.33	57.16
Wo_Patterns	46.48	98.40	98.65	98.18	98.42	98.55	56.30	50.75
JWaveGestureLibraryAll	84.95	83.45	89.31	90.90	90.09	NA	12.20	12.20
Vine	55.56	53.70	57.41	55.56	57.41	55.56	55.56	55.56
VordsSynonyms	27.12	34.33	52.19	51.72	49.84	50.78	26.33	26.49
Vorms	21.55	40.33	43.65	44.75	42.54	42.54	41.99	41.99
VormsTwoClass	54.14	62.98	67.96	70.72	65.19	56.91	41.99	41.99
ynthetic_control	91.67	98.33	98.00	98.67	98.33	98.00	90.33	93.00
iWaveGestureLibrary_X	63.12	69.96	67.98	69.71	68.40	69.40	63.34	63.18
iWaveGestureLibrary_Y	54.83	53.24	61.25	62.09	60.61	60.72	54.30	54.69
iWaveGestureLibrary_Z	53.74	60.58	63.34	64.52	62.53	63.04	53.38	53.69
					67.86			
vafer	65.44	31.86	68.82	68.93		85.92	64.93	65.07