Erő-, nyomaték- és nyomásérzékelők

Programozható irányítóberendezések és szenzorrendszerek

> KOVÁCS Gábor gkovacs@iit.bme.hu

Erő

- Mi az erő?
 - Az erő a testet mozgásállapotának megváltozására kényszeríti
 - SI alapegység
 - Vektor mennyiség

Mértékegységek

- Newton N
 - 1N az az erő, ami egy 1kg tömegű test 1 m/s²-os gyorsításához szükséges
- Font (pound) lb, lbf
 - 1 lb az az erő, ami egy 1 slug tömegű test 1 $\rm ft/s^2$ -os gyorsításához szükséges
 - 1 lbf az az erő, amit egy 1 lbm tömegű testen a standard gravitáció kifejt
 - 1 lb = 4.44822 N
- Kilogramm (kg)
 - 1 kg az az erő, amit egy 1 kg tömegű testen a standard gravitáció kifejt

Mechanikai feszültség

Feszültség (stress):

$$\bar{\sigma} = \frac{\bar{F}}{A} \left[\frac{N}{m^2}, Pa \right]$$

Normális irányú feszültség,
 húzófeszültség (normal stress):

$$\sigma_x$$
, σ_y , σ_z

Nyíró feszültség (shear stress):

$$\tau_{ij} = \tau_{ji}$$

Rugalmas alakváltozás normális irányú feszültség esetén

Egy adott feszültséghatárig a test rugalmasan deformálódik (Hooke-törvény):

$$\begin{bmatrix} \varepsilon_{\chi} \\ \varepsilon_{y} \\ \varepsilon_{z} \end{bmatrix} = \begin{bmatrix} 1/E & -\nu/E & -\nu/E \\ -\nu/E & 1/E & -\nu/E \\ -\nu/E & -\nu/E & 1/E \end{bmatrix} \begin{bmatrix} \sigma_{\chi} \\ \sigma_{y} \\ \sigma_{z} \end{bmatrix}$$

- ahol:
- ε_x az x irányú relatív megnyúlás
- E a Young-modulus (szilícium: 117GPa, acél: 200GPa)
- ν a Poisson-állandó $(\nu \le 0.5, \text{szilícium: 0.22, acél: 0.3})$

Rugalmas alakváltozás

Csak normális irányú feszültség:

$$\sigma_y = \frac{F_y}{A}$$

- Relatív megnyúlások:
 - $\varepsilon_y = \frac{\sigma_y}{E}$
 - $\varepsilon_{\chi} = \varepsilon_{Z} = -\frac{\nu \sigma_{y}}{E}$
- Abszolút megnyúlások:

•
$$\Delta l = l_0 \frac{\sigma_y}{E} > 0$$

•
$$\Delta w = w_0 \frac{-\nu \sigma_y}{E} < 0$$

•
$$\Delta h = h_0 \frac{-\nu \sigma_y}{F} < 0$$

Példa

Mekkora egy 10cm élhosszúságú acél kocka magasságának és alapterületének változása, ha 100kg tömeget helyezünk rá? Az acél Young-modulusa $E=200 \, \mathrm{GPa}$, Poisson-állandója 0.3.

•
$$\varepsilon_Z = \frac{\sigma_Z}{E} = \frac{-mg}{A} / E \approx \frac{-1000}{0.1 \cdot 0.1} / (200 \cdot 10^9) = -\frac{10^5}{2 \cdot 10^{11}} = -5 \cdot 10^{-7}$$

- $\Delta h = \varepsilon_z h_0 = -5 \cdot 10^{-7} \cdot 0.1 = -0.05 \mu m$
- $\varepsilon_x = \varepsilon_y = -\frac{v\sigma_z}{E} = 1.5 \cdot 10^{-7}$
- $\Delta A = \varepsilon_{\chi} l_0 \cdot \varepsilon_{\chi} w_0 = (1.5 \cdot 10^{-7})^2 \cdot 0.1^2 = 2.25 \cdot 10^{-16} = 0.025 \mu \text{m}^2$

Normális irányú feszültségek együttes hatása

Mechanikai feszültség komponensei

- Három független mechanikai feszültség
 - $\sigma_{\scriptscriptstyle \mathcal{V}}$ normál irányú
 - σ_x normál irányú
 - $au_{xy} = au_{yx}$ nyíró

Megnyúlás és nyírás

Megnyúlás (strain):

•
$$\varepsilon_{\chi} = \frac{\delta u}{\delta x}$$

•
$$\varepsilon_y = \frac{\delta v}{\delta y}$$

• Nyírás (shear strain):

•
$$\gamma_{xy} = \frac{\delta_u}{\delta_y} + \frac{\delta_v}{\delta_x}$$

Egy pont koordinátáit (két irányú megnyúlást) mérve nem lehet megmondani, mekkora és milyen irányú volt az azt kiváltó feszültség!

Mechanikai feszültség főirányai

- A főirányban fellépő feszültség csak nyúlást okoz, torzulást nem
- Főirányban fellépő feszültség esetén nincsen nyíró feszültségkomponens
- A főirányban vett megnyúlásból a feszültségek számíthatók
- Sajnos a mért irányok nem mindig esnek egybe a főiránnyal – de létezik forgatás a főirányok és a mért irányok között!

Mechanikai feszültség főirányai

- x, y : tetszőleges koordinátarendszer
- 1,2 : főirányok

•
$$\varepsilon_1 = \frac{1}{2} (\varepsilon_x + \varepsilon_y) + \sqrt{\frac{1}{4} (\varepsilon_x + \varepsilon_y)^2 + \gamma_{xy}}$$

•
$$\varepsilon_2 = \frac{1}{2} (\varepsilon_x + \varepsilon_y) - \sqrt{\frac{1}{4} (\varepsilon_x + \varepsilon_y)^2 + \gamma_{xy}}$$

•
$$\tan 2\theta = \frac{2\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$

Megnyúlás hatása a villamos paraméterekre

- Feszültség? Nem
- Áram? Nem
- Ellenállás? Igen!
- $R=
 horac{l}{A}$ ahol $ho=1/\sigma$ a fajlagos ellenállás $[\Omega m]$, l a vezető hossza, A a vezető keresztmetszete

Geometriai hatás normális irányú megnyúlás esetén

$$R' = \rho \frac{l'}{A'} = \rho \frac{l_0 + \Delta l}{(w_0 + \Delta w)(h_0 + \Delta h)} = \rho \frac{l_0(1 + \varepsilon_y)}{w_0(1 + \varepsilon_x)h_0(1 + \varepsilon_z)} = \rho \frac{l_0}{A_0} \frac{1 + \varepsilon_y}{(1 + \varepsilon_x)(1 + \varepsilon_z)}$$

- $\varepsilon_x = \varepsilon_z \Rightarrow (1 + \varepsilon_x)(1 + \varepsilon_z) = 1 + \varepsilon_x + \varepsilon_z + \varepsilon_x \varepsilon_z = 1 + 2\varepsilon_x + \varepsilon_x^2 = 1 2\nu\varepsilon_y + \nu^2\varepsilon_y^2$
- $\varepsilon_y \ll 1, \nu < 1 \Rightarrow 1 2\nu\varepsilon_y + \nu^2\varepsilon_y^2 \approx 1 2\nu\varepsilon_y$
- $1/(1-2\nu\varepsilon_y)\approx 1+2\nu\varepsilon_y$

$$\Rightarrow R' \approx \rho \frac{l_0}{A_0} (1 + \varepsilon_y) (1 + 2\nu \varepsilon_y) \approx \rho \frac{l_0}{A_0} (1 + \varepsilon_y (1 + 2\nu))$$

Piezorezisztív hatás

- Mechanikai feszültség hatására az anyagszerkezetben is változások lépnek fel, a fajlagos ellenállás megváltozik
- Izotróp esetben

Piezorezisztív hatás

• Egyszerűsítve:

$$\frac{\Delta \rho}{\rho} = \pi_l \sigma_l + \pi_t \sigma_t,$$

ahol π_l és π_t az áram irányára nézve longitudinális és transzverzális piezorezisztív konstansok:

$$\pi_{l,NiCr} \approx 10^{-3} \frac{1}{\text{GPa}}, \pi_{l,Si} \approx 0.1 \frac{1}{\text{GPa}}$$

• A transzverzális hatást elhanyagolva: $\frac{\Delta \rho}{\rho} = \pi_l \varepsilon_l E$

Összegzett hatás

•
$$R' = (\rho_0 + \Delta \rho) \frac{l_0}{A_0} \left(1 + \varepsilon_y (1 + 2\nu) \right) =$$

$$\rho_0 \left(1 + \frac{\Delta \rho}{\rho_0} \right) \frac{l_0}{A_0} \left(1 + \varepsilon_y (1 + 2\nu) \right) =$$

$$\rho_0 \frac{l_0}{A_0} \left(1 + \varepsilon_y \pi_l E \right) \left(1 + \varepsilon_y (1 + 2\nu) \right) \approx$$

$$R_0 \left(1 + \varepsilon_y (E\pi_l + 1 + 2\nu) \right)$$

• $\Delta R = R' - R_0 = R_0 \varepsilon (E\pi_I + 1 + 2\nu)$

Gauge-faktor

- $\Delta R = R_0 \varepsilon (E \pi_l + 1 + 2\nu)$
- $g = GF = \frac{\Delta R/R}{\Delta l/l} = \frac{\Delta R/R}{\varepsilon} = E\pi_l + 1 + 2\nu$ [1]
- A relatív ellenállásváltozás és a relatív megnyúlás arányát adja meg
- $R = R_0(1 + g\varepsilon)$
- Értéke
 - fémekre: 2-5
 - félvezetőkre: 125 200 (adalékolástól függően)

Gauge-faktor tényezői

Nyíró feszültségek hatása

- Nyíró feszültségek hatására is létrejöhet piezorezisztív ellenállásváltozás
- Fémeknél a nyíró feszültségnek nincs hatása $(\pi_{44} = 0)$
- Félvezetőknél a hatás jelentős is lehet!

Nyúlásmérő bélyegek

(strain gage / strain gauge)

Dinamikus átalakító, akár kHz-es frekvencián is!

Mekkora ellenállásváltozásra számíthatunk?

- Fém nyúlásmérő bélyegek
 - maximális megnyúlás: $\varepsilon_{max} \approx \pm 0.2\% \dots \pm 2\%$
 - gauge-faktor: $g \approx 2 5$
 - $-\Delta R = g\varepsilon < 10\%$, általában $\Delta R \approx 1-5\%$
- Szilícium alapú nyúlásmérő bélyegek
 - maximális megnyúlás: $\varepsilon_{max} \approx \pm 0.5\%$
 - gauge-faktor: $g \approx 125 200$
 - $-\Delta R = g\varepsilon > 50\%$, akár 100%
- De mindez attól is függ, hogy a mért test mennyire nyúlik meg!
 - Acél: kb. 0.12%
 - Alumínium: kb. 0.35%

Nyúlásmérő bélyegek rögzítése

- Fontos a próbatest és a nyúlásmérő bélyeg kapcsolata
- Bélyeg: szigetelő hordozóra vitt aktív réteg (fém vagy félvezető)
- Rögzítés: ragasztással
- Fő hibaforrás: eltérő hőtágulás okozta kúszás

Fém nyúlásmérő bélyegek

- Cél: minél nagyobb ellenállás minél kisebb területen
- Megoldás: meander
- A főirányra kitűnő érzékenység
- Az erre merőleges irányra is létezik érzékenysége: $g_t = K_t g$, ahol $K_t < 10\%$, de általában $K_t < 1\%$

Fém nyúlásmérő bélyegek kialakítása

- Hordozó (backing)
 - Szigetelés
 - Rögzítés (ragasztással)
 - Általában epoxi
- Fém fóliaréteg (foil)
- Hozzávezetés vagy forraszpad (lead, solder pad)
- Esetleg külső burkolat

Nyúlásmérő bélyegekben használt fémötvözetek

- Konstantán (Cu-Ni) $g \approx 2$
 - Olcsó
 - Hőtágulása beállítható
 - Tág linearitási tartomány
 - Általános használatra megfelelő
 - Magas hőmérsékleten irreverzibilis változást szenved
- Karma (K-alloy, Ni-Cr, Nichrome) $g \approx 2 2.4$
 - Kiemelkedő linearitás
 - Pontos, nagy érzékenységű
 - Stabil
 - 269 +260 °C-os hőmérséklettartományon használható

Nyúlásmérő bélyegekben használt fémötvözetek

- Platina ötvözet $g \approx 4-5$
 - Magas hőmérsékleten is használható
 - Kiemelkedő stabilitás
 - Drága
- Isoelastic $g \approx 3.5$
 - Dinamikus igénybevételre
 - Hőtágulása nagy, hőmérsékletváltozásra érzékeny

Fém nyúlásmérő bélyegek paraméterei

- Alapellenállás: 90-120-300-350-600-1000 Ω
- Méret: 1.5 50 mm
- Vastagság: mikronos nagyságrend
- Gauge-faktor: 2 5
- Rugalmasság (hajlítási sugár)
- Pontosság
 - Alapellenállás: $\pm 0.1 1\%$
 - Gauge-faktor: szériánként változó

Kéttengelyű bélyeg (Biaxial, Tee)

- Két, merőlegesen elhelyezett mintázat
- Jól alkalmazható, ha a főirányok ismertek, nincs nyíró feszültség

Rozetta

- Alkalmasak a sík feszültség meghatározására
 - 3 megnyúlás
 - 3 paraméter (normál feszültségek és nyíró feszültség)
- Mintázatok elhelyezése
 - Egymás mellett vagy egymáson
 - 45° vagy 60° szögben

Különleges kivitelek

Félvezető nyúlásmérő bélyegek

- Adalékolt egykristály vagy polikristály (Si, Ge)
- Adalékolással az alapellenállás pontosan beállítható
- Nincs szükség komplex mintázatra
- Nagy gauge-faktor
 - Egykristály: $g \approx -100 +200$
 - Polikristály: $g \approx 30 45$
- Akár hordozó nélkül (diffundált)
- Az anyag tulajdonságai miatt több irányra és a nyíró feszültségre is érzékeny
- Jelentős hőmérsékletfüggés
- Drága

Félvezető nyúlásmérő bélyegek

Félvezető nyúlásmérő bélyegek

Nyúlásmérő bélyegek mérőkapcsolásai

Ha ellenállás, akkor hídkapcsolás!

Az ellenállás-hőmérőknél már megismert lineáris kimenetű híd

Hőmérsékletfüggés

• Mint ismert: $R = R_0(1 + \alpha(\vartheta - \vartheta_0))$, ahol R_0 az ellenállás ϑ_0 fokon vett hőmérséklete, α a hőmérsékleti együttható, ϑ pedig a mért hőmérséklet:

$$\frac{\Delta R}{R} = \alpha(\vartheta - \vartheta_0)$$

• Látszólagos megnyúlás:

$$\varepsilon = \frac{1}{g} \frac{\Delta R}{R} = \frac{\alpha}{g} (\vartheta - \vartheta_0)$$

Hőmérsékletfüggés - példa

Egy konstantán nyúlásmérő bélyeg hőmérsékletét 10°C-al megnöveljük. Mekkora látszólagos megnyúlást okoz a hőmérsékletváltozás?

Konstantán bélyegre: $\alpha = 3 \cdot 10^{-5}$, g = 2

A látszólagos megnyúlás:

$$\varepsilon = \frac{\alpha}{g}(\vartheta - \vartheta_0) = \frac{3 \cdot 10^{-5}}{2} \cdot 10 = 0.015\%$$

Mekkora hibát jelent ez a mérési tartomány arányában, ha a maximális megnyúlás $\varepsilon_{max}=1\%=10^{-2}$?

$$\frac{0.015}{1} = 0.015 = \mathbf{1.5}\%_{FS}$$

- Mivel kompenzáljunk?
 - Legyen azonos alapellenállása
 - Legyen azonos hőfokfüggése
- Legyen egy ugyanolyan nyúlásmérő bélyeg!
 - Ne érje mechanikai feszültség
 - Ha ez nem megoldható, akkor érje keresztirányú

• Ha nincs más mechanikai feszültség a kompenzáló bélyegen, akkor $R_K=R_0(1+gK_t\varepsilon)(1+\alpha\Delta\vartheta)$

•
$$U_{KI} = \frac{U_T}{2} \frac{R_0(1+g\varepsilon)(1+\alpha\Delta\vartheta) - R_0(1+gK_t\varepsilon)(1+\alpha\Delta\vartheta)}{R_0(1+g\varepsilon)(1+\alpha\Delta\vartheta) + R_0(1+gK_t\varepsilon)(1+\alpha\Delta\vartheta)} = \frac{U_T}{2} \frac{(1+g\varepsilon) - (1+gK_t\varepsilon)}{(1+g\varepsilon) + (1+gK_t\varepsilon)} = \frac{U_T}{2} \frac{g\varepsilon - gK_t\varepsilon}{2+g\varepsilon + gK_t\varepsilon} = \frac{U_T}{2} \frac{g\varepsilon(1-K_t)}{2+g\varepsilon(1+K_t)}$$

- Egyszerűsítés: $0 \le K_t \le 0.1$, így $(1 + K_t) \approx (1 K_t) \approx 1$
- $U_{KI} = \frac{U_T}{2} \frac{g\varepsilon}{2+g\varepsilon} \approx \frac{U_T}{2} \frac{g\varepsilon}{2} = \frac{U_t}{4} \frac{\Delta R}{R_0}$

•
$$U_{KI} = \frac{U_T}{2} \frac{g\varepsilon}{2+g\varepsilon} \approx \frac{U_T}{2} \frac{g\varepsilon}{2} = \frac{U_t}{4} \frac{\Delta R}{R_0}$$

- Tehát a kimeneti feszültség
 - Független a hőmérséklettől
 - Jó közelítéssel lineáris függvénye a megnyúlásnak

Bélyegek önkompenzálása

- Probléma: a próbatest hőtágulása megnyúlással jár
- Önkompenzáló bélyeg (selftemperature-compensation): megfelelő ötvözéssel a leggyakrabban használt hőmérséklettartományon a bélyeg hőmérsékletfüggése jól kompenzálja a hőtágulás okozta látszólagos megnyúlást
- Különböző próbatestanyagokhoz különböző bélyegötvözetek

Önmelegedés

- A nyúlásmérő bélyeg is ellenállás, hajlamos az önmelegedésre!
- A mérőáramot célszerű kicsire választani: néhány mA

Két aktív bélyeges elrendezés

- Két azonos nyúlásmérő bélyeg
- Egyik nyomott
 (compressed),
 másik húzott
 (tension)
 konfigurációban
- Relatív megnyúlásuk azonos

Két aktív bélyeges kapcsolás

$$U_{KI} = \frac{U_T}{2} \frac{R_1 - R_2}{R_1 + R_2} = \frac{U_T}{2} \frac{R_0 (1 + \alpha \Delta \vartheta)(1 + g\varepsilon) - R_0 (1 + \alpha \Delta \vartheta)(1 - g\varepsilon)}{R_0 (1 + \alpha \Delta \vartheta)(1 + g\varepsilon) + R_0 (1 + \alpha \Delta \vartheta)(1 - g\varepsilon)} = \frac{U_T}{2} \frac{2g\varepsilon}{2} = \frac{\boldsymbol{U}_T}{2} \boldsymbol{g}\varepsilon$$

 $\varepsilon \sim F \Rightarrow U_{KI} \sim F$

$$g = \frac{\Delta R/R}{\varepsilon} \Rightarrow U_{KI} = \frac{U_T}{2} \frac{\Delta R}{R}$$

Két aktív bélyeges elrendezés

•
$$U_{KI} = \frac{U_T}{2} \frac{R_1 - R_2}{R_1 + R_2} = 0$$

- Az elrendezés csak a hajlító irányú erőre érzékeny, a nyújtó irányúra nem!
- Természetesen csak az egyik bélyeget (esetleg egy harmadik bélyeget) használva az is mérhető

Négy aktív bélyeges elrendezés

- Négy azonos nyúlásmérő bélyeg
- R_2 és R_3 nyomott, R_1 és R_4 húzott konfigurációban
- Relatív megnyúlásuk azonos

Négy aktív bélyeges kapcsolás

R₁, R₄: húzott

 R_2 , R_3 : nyomott

$$U_{KI} = U_T \frac{R_1}{R_1 + R_2} - U_T \frac{R_3}{R_4 + R_3} = U_T \frac{R_1 - R_2}{R_1 + R_2}$$

$$=U_T\;\frac{R_0(1+\alpha\vartheta)(1+g\varepsilon)-R_0(1+\alpha\vartheta)(1-g\varepsilon)}{R_0(1+\alpha\vartheta)(1+g\varepsilon)+R_0(1+\alpha\vartheta)(1-g\varepsilon)}=U_T\;\frac{2g\varepsilon}{2}$$

$$=U_Tg\varepsilon$$

Cellatényező

- Legyen a hídkapcsolás kimenete lineáris, azaz $U_{KI}=U_{T}aF$, ahol a valamilyen konstans
- A cellatényező:

$$C = \frac{U_{KI}}{U_T} \bigg|_{F = F_{max}} = \frac{U_{FS}}{U_T} [\text{mV/V}]$$

A kimeneti feszültség adott F erő hatására:

$$U_{KI} = C \cdot U_T \cdot \frac{F}{F_{max}}$$

Cellatényező - példa

Egy erőmérő cella négy konstantán nyúlásmérő bélyeget tartalmaz (g=2), maximális terhelhetősége 10kg, aminek hatására a bélyegek $\varepsilon_{max}=0.1\%$ megnyúlás szenvednek. Mekkora az erőmérő cella cellatényezője? Milyen kimeneti feszültséget mérhetünk 2.5kg-os terhelés mellett, ha a tápfeszültség $U_T=24$ V?

- A híd kimeneti feszültsége $U_{KI} = U_T g \varepsilon$
- A maximális terheléshez tartozó kimeneti feszültség:

$$U_{FS} = U_T g \varepsilon_{max} = 0.002 U_T$$

A cellatényező:

$$C = \frac{U_{FS}}{U_T} = 2\text{mV/V}$$

• A kimeneti feszültség 2.5 kg-os terhelés és 24V-os tápfeszültség mellett:

$$U_{KI} = C \cdot U_t \cdot \frac{F}{F_{max}} = 0.002 \cdot 24 \cdot 0.25 = 12 \text{mV}$$

Mérőhidak finomhangolása

- A valóságban a mérőhidakban hibák léphetnek fel
 - Hőmérséklet okozta nullponteltolódás: hőtágulás, a híd bélyegeinek gyártási szórása miatt
 - Híd kiegyenlítetlensége: a híd bélyegeinek gyártási szórása miatt
 - Hőmérséklet okozta érzékenységváltozás: Youngmodulus és gauge-faktor hőmérsékletfüggése
- A mérőhíd kimeneti tartományát adott értékre kell beállítani

Mérőhidak finomhangolása

- A hangolás eszközei: ellenállások
- Kis vagy nagy hőmérsékleti együtthatójú ("high-TC" és "low-TC") ellenállások
- Speciális, a bélyegekhez hasonló elemek
- Az ellenállás értéke beállítható (átvágható ellenálláslétra)

Mérőhidak finomhangolása - példa

- A mérőhíd alapellenállásainak értéke $R_0 = 350\Omega$
- Tápfeszültség: $U_T = 10V$
- Referencia hőmérséklet: $\theta_0 = 20$ °C

Hőmérséklet okozta nullponteltolódás

Hőmérséklet okozta nullponteltolódás

Jelenség: a hőmérséklet változására a terheletlen híd kimenete változik

Kompenzáció:

- 1. Növeljük meg a mérőhíd hőmérsékletét $\Delta \vartheta$ °C-al (pl. 100°C) és mérjük le a látszólagos megnyúlás ($\Delta \varepsilon$) okozta feszültségkülönbséget (Δu)!
- 2. Számítsuk ki, hogy a híd egyetlen ellenállását mennyivel kéne megnövelni ugyanekkora feszültségkülönbség létrehozásához: ΔR
- 3. Számítsuk ki, hogy egy adott nagy α_c hőmérsékleti együtthatójú kompenzáló anyagból mekkora ellenállás okoz ugyanekkora változást $\Delta\vartheta$ hőmérsékletváltozás hatására:

$$R_{\vartheta 0} = \frac{\Delta R}{\alpha_C \Delta \vartheta}$$

Helyezzük el az adott ellenállást a híd megfelelő ágába!

Hőmérséklet okozta nullponteltolódás kompenzálása

Szokásos megoldás: létra elhelyezése a híd sarkába, majd a megfelelő ág ellenállásának beállítása

Hőmérséklet okozta nullponteltolódás kompenzálása

• Egy próbatestre rögzített terheletlen, 350Ω alapellenállású bélyegeket tartalmazó mérőhídnál $U_T=10V$ tápfeszültség mellett a kimeneti feszültség

$$20^{\circ}\text{C-on } U_{\text{KI},20} = 0.0761 \text{V},$$

 $120^{\circ}\text{C-on } U_{\text{KI},120} = 0.0786 \text{V}$

• A 3.3%-os hiba oka a mérőhíd ellenállásainak jelentős eltérése mind egymástól, mind a (20°C-on adott) katalógusadatoktól

Hőmérséklet okozta nullponteltolódás kompenzálása - példa

- $U_{KI.20} = 0.0761V$
- $U_{KI,120} = 0.0786V$
- Amennyiben feltételezzük, hogy csak R_1 ellenállás értéke változott meg, mekkora ellenállásváltozás (r_1) esetén lenne ekkora feszültség mérhető a híd kimenetén?

$$U_{KI} = U_T \left(\frac{R_1 + r_1}{R_1 + r_1 + R_2} - \frac{R_3}{R_3 + R_4} \right) \xrightarrow{R_1 = R_2 = R_3 = R_4}$$

$$r_1 = \frac{4U_{KI}}{U_T - 2U_{KI}} R_1$$

Hőmérséklet okozta nullponteltolódás kompenzálása - példa

- A hőmérséklet okozta ellenállás-változás tehát $\Delta R = r_1 = 0.3346\Omega = 334.6 \mathrm{m}\Omega$
- Mekkora az a réz ellenállás ($\alpha_{Cu}=0.004~1/^{\circ}$ C), amely $\Delta\vartheta=100^{\circ}$ C hőmérsékletváltozásra ugyanennyit változtatja az ellenállását?
- $R_{\vartheta 0} \cdot \alpha_{Cu} \cdot \Delta \vartheta = \Delta R \Rightarrow R_{\vartheta 0} = 0.8635\Omega$

Hőmérséklet okozta nullponteltolódás kompenzálása - példa

- Mivel $\Delta U_{\rm KI}>0\Rightarrow \Delta R>0$ (R_1 nőtt), így az $R_{\vartheta 0}$ kompenzáló ellenállást R_2 hídágába kell helyeznünk
- Ha $\Delta U_{\rm KI} < 0 \Rightarrow \Delta R < 0$, akkor az $R_{\vartheta 0}$ kompenzáló ellenállást R_1 hídágába kell helyeznünk

Hőmérséklet okozta nullponteltolódás kiegyenlítése - példa

Terheletlen híd

Nullponthiba

Jelenség: nulla terhelés mellett a híd kimenete nem nulla. Ez nem feltétlenül a híd hibája, terhelést okozhat a mérőeszköz is, de azt kompenzálnunk kell.

Kompenzáció:

- Az előzőek szerint kompenzált elrendezésen mérjük le, hogy mekkora a terheletlen híd által mért megnyúlás (a kompenzálás után ez már hőmérsékletfüggetlen)!
- 2. Számítsuk ki, hogy a híd egyetlen ellenállását mennyivel kéne megnövelni ugyanekkora feszültségkülönbség létrehozásához: ΔR
- 3. Ennek kompenzálására helyezzünk a megfelelő hídágba egy ugyanekkora, kis hőmérsékleti együtthatójú (pl. konstantán, karma) ellenállást:

$$R_0 = \Delta R$$

Nullponthiba kompenzálása

Szokásos megoldás: létra elhelyezése a híd sarkán, majd a megfelelő ág beállítása.

Nullponthiba kompenzálása - példa

- Az nullponteltolódás kompenzálása után a terheletlen híd kimeneti feszültsége $U_{KI}=0.07\mathrm{V}.$
- Az ennek megfelelő, most R_3 -ra redukált ellenállásváltozás a kiegyenlített hídhoz ($U_{KI}=0$) képest $\Delta R=\frac{4U_{KI}}{U_T-2U_{KI}}R_3=9.3416\Omega$
- Ha $\rm U_{KI}>0\Rightarrow\Delta R>0$, akkor az offszethibát az R_3 ágba helyezett $R_0=\Delta R$ értékű ellenállással kompenzálhatjuk
- Ha $\rm U_{KI} < 0 \Rightarrow \Delta R < 0$, akkor az offszethibát az R_4 ágba helyezett $R_0 = |\Delta R|$ értékű ellenállással kompenzálhatjuk

Nullponthiba kompenzálása - példa

Terheletlen híd

Hőmérséklet okozta érzékenységváltozás

Jelenség: a hőmérséklet változásával azonos terhelés mellett a híd kimenete változik.

Kompenzáció:

- 1. Mérjük le, hogy mennyit változik az előzőek szerint kompenzált, terhelt (általában teljes terheléssel) híd kimenete a hőmérséklet hatására: ΔS [%/°C]
- 2. Helyezzünk egy nagy hőfokfüggésű (α_c) ellenállást a gerjesztő vezetékbe :

$$R_{\vartheta S} = \frac{\Delta S \cdot R_B}{\alpha_c \Delta \vartheta}$$

 $(R_B \text{ a hid ellenállása}, R_B \approx R)$

Hőmérséklet okozta érzékenységváltozás kompenzálása

Általánosan használt anyag: Balco (Ni-Fe ötvözet)

Hőmérséklet okozta érzékenységváltozás kompenzálása - példa

 A teljes terhelésű híd kimenete a nullponthiba kompenzálása után

$$20^{\circ}\text{C} - \text{on } U_{KI,20} = 0.098\text{V}$$

 $120^{\circ}\text{C} - \text{on } U_{KI,100} = 0.0981\text{V}$

- Érzékenység-változás: $\Delta S = \frac{U_{KI,120} U_{KI,20}}{U_{KI,20}} = 4.52 \cdot 10^{-4}$
- A szükséges kompenzáló ellenállás:

$$R_{\vartheta S} = \frac{\Delta S R_B}{\Delta \vartheta \alpha_{Balco}} = 0.366\Omega$$

Hőmérséklet okozta érzékenységváltozás $\log_{U_{\kappa_I}[V]}$ kompenzálása - példa

Kimeneti tartomány beállítása

- Az előzőek szerint kompenzált híd kimeneti feszültsége teljes terhelésen: U_{KI}
- Beállítani kívánt kimeneti feszültség teljes terhelésen: U_{FS}
- A kívánt kimenet eléréséhez szükséges alacsony hőmérséklet-együtthatójú ellenállás elhelyezése a gerjesztő ágban (osztó létrehozása):

$$R_S = \frac{(U_{KI} - U_{FS})(R_B + R_{\vartheta S})}{U_{FS}}$$

Kimeneti tartomány beállítása

Kimeneti tartomány beállítása - példa

- Az előző lépések után a teljes terhelésű híd kimenete $U_{KI} = 0.0979V = 97.9 \text{mV}$.
- A célunk 5 mV/V cellatényező beállítása, azaz a kimenet teljes terhelés és $U_T=10 \text{V}$ tápfeszültség mellett legyen $U_{FS}=50 \text{mV}$
- A szükséges ellenállás: $R_S = \frac{(U_{KI} U_{FS})(R_B + R_{\vartheta S})}{U_{FS}} = 325.62\Omega$

Mérőhíd teljes kompenzálása - példa

Teljes terhelés mellett

Mérőhidak finomhangolása

Erőmérő cellák

- Próbatest, nyúlásmérő bélyegek és hídkapcsolás egy eszközbe integrálva
- Elvárások a próbatesttel szemben
 - Megnyúlása egyértelmű (lehetőleg lineáris) függvénye a mechanikai feszültségnek
 - Rugalmas a kívánt mérési tartományban
 - Stabil

MEMS erőmérő cellák

- Cella kialakítása közvetlen a szilíciumban
- Kis méret
- Szűk mérési tartomány

Piezoelektromos erőérzékelés

- A piezoelektromos anyagokban a mechanikai feszültség hatására elektromos feszültség jön létre (és fordítva)
- Probléma: a feszültség gyorsan elillan
- Csak dinamikus mennyiségek mérésére alkalmas

Ha erőt tudunk mérni, akkor...

- tudunk tömeget / súlyt mérni
- tudunk nyomatékot mérni
- tudunk nyomást mérni
- tudunk gyorsulást mérni

Nyúlásmérő bélyeges nyomatékmérés

- A tengely rugalmas csavarodása a tengellyel 45°-os szöget bezáró nyíró feszültséget fejt ki
- Ez 2 × 2 nyúlásmérő bélyeggel mérhető

Optikai elvű nyomatékmérés

- A rúd torziója fáziskülönbséget okoz
- Ezt mérve a nyomaték számítható

Magnetoelasztikus nyomatékmérés

- Magnetoelasztikus effektus (Villari-effektus): magnetostriktív anyagok mágneses tulajdonságai mechanikai feszültség hatására megváltoznak (domének átrendeződése)
- Ha egy ilyen anyagból készült gyűrűt a kerület mentén felmágnesezünk, mechanikai feszültség nélkül az erővonalak a gyűrűn belül maradnak
- A gyűrűre nyomatékot adva a domének átrendeződnek, a nyomatékkal arányos fluxus kilép a gyűrűből, ami külső érzékelővel mérhető
- Erőmérésre is használható
- Kontaktus nélküli érzékelés

Hatkomponensű erő-nyomaték mérő cella

(d) Ms

(e) My

(f) Mz

Nyomás

- Mi az nyomás?
 - A nyomás egy test egységnyi felületére kifejtett, normális (felületre merőleges) nyomóerő
 - Skaláris mennyiség

Mértékegységek

- Newton Pa
 - $-1Pa = 1N/m^2$
- Bar
 - -10^6 dyn/cm^2 , azaz $10^6 \cdot 10^{-5} \text{N}/10^{-4} \text{m}^2$
 - $-1 \text{ bar} = 10^5 \text{Pa} = 100 \text{kPa}$
- Pounds per square inch psi
 - $-1 lb/inch^2$
 - $1 Pa ≈ 6.8948 \cdot 10^3 psi$
- Egyes területeken máig használt mértékegységek
 - -1 atm $\approx 1.013 \cdot 10^5$ Pa
 - $1 \text{ Hgmm (torr)} \approx 133.3224 \text{ Pa}$

A nyomásskála típusai

- Relatív nyomás (relative pressure, psid)
 - Tetszőleges másik nyomáshoz viszonyított
- Túlnyomás (gauge pressure, psig)
 - A légköri nyomáshoz viszonyított
 - Magyarországon kb.

$$1000hPa = 10^5Pa = 1bar$$

- Abszolút (absolute pressure, psia)
 - Teljes vákuumhoz viszonyított

Nem villamos nyomásmérés

- Csőmembrán
- Bourdon-cső
 - Nagy pontosság is elérhető
 - Folyamatközeli
 manométerként ma is
 használatos

A nyomásmérés elve

- Nyomás: nyomóerő / nyomott felület
- Tehát erőt kell mérnünk
- A légköri nyomás kb. $10^5 Pa = 10 N/cm^2$
- Ha nem szeretnénk nagy méretű szenzort használni, akkor rugalmas próbatestet kell használnunk

A nyomásmérés elve

- A próbatest: membrán (diafragma, diaphragm)
- Általában kör vagy négyzet alakú, pereménél befogott, részben rugalmas lemez
- A nyomás hatására behajlik

A membrán behajlása

• Sugár irányú

$$- \varepsilon_{RC} = \frac{3PR_0^2(1-\nu^2)}{8t^2E}$$
$$- \varepsilon_{R0} = \frac{3PR_0^2(1-\nu^2)}{4t^2E}$$

Érintő irányú

$$-\varepsilon_{TC} = \frac{3PR_0^2(1-\nu^2)}{8t^2E}$$
$$-\varepsilon_{T0} = 0$$

A középpont elmozdulása

•
$$Y_C = \frac{3PR_0^4(1-\nu^2)}{16t^3E^2}$$

- *RC/TC*: középpontban
- R0/T0: befogás mentén
- P: nyomás (Pa)
- R_0 : membrán sugara (mm)
- ν: Poisson-állandó
- t: membrán vastagsága (mm)
- *E*: Young-modulus (Pa)

A membrán behajlása

A membrán behajlása

- Nagyon kis behajlás esetén a behajlás a nyomás lineáris függvénye
- Mekkora a kis behajlás?
 - Ökölszabály: nem nagyobb, mint a membrán vastagsága
 - 0.3%-os linearitási hiba eléréséhez: a membrán vastagságának negyede
- Mennyire tekinthető rugalmasnak a membrán?
 - Ökölszabály: ha a sugár a vastagság 200-szorosa, akkor rugalmasnak tekinthető
 - Rugalmas membrán esetén a linearitási hiba jóval kisebb
- Nyúlásmérő bélyeg esetén a membrán megnyúlása nem lehet nagyobb a bélyeg maximális megnyúlásánál!
- Nyúlásmérő bélyeg használata esetén a maximális behajlás néhány μm

Membrán deformációjának mérése

- Ragasztott fém nyúlásmérő bélyeges (bonded strain gage)
- Vékonyréteg nyúlásmérő bélyeges (thin-film)
- Vastagréteg nyúlásmérő bélyeges (thick-film)
- Integrált félvezető nyúlásmérő bélyeges (piezoresistive, semiconductor)

Ragasztott nyúlásmérő bélyeges

- Jelentős kúszás
- Bélyeg jelentős mechanikai igénybevétele
- Legkevésbé megbízható

Fém vékonyréteg membrán

- Hordozó
 - Rozsdamentes acél
 - Tantál
 - Speciális ötvözetek (Hastelloy, Iconel)
 - Ezüst (klór, fluorid, halogének)
- Rétegnövesztés
 - Szigetelő
 - Ellenállásréteg
- Mintázat kialakítása fotolitográfiával a nem kitett oldalon
- Kis nyomások mérésére nem alkalmas
- Nagy nyomást is elvisel
- Hosszútávon stabil, rezgésnek ellenáll

Kerámia vastagréteg membrán

- Általában Al₂O₃ hordozón
- Mintázat kialakítása szitanyomással a nem kitett oldalon
- Korróziónak rendkívül jól ellenáll
- Viszonylag stabil
- Kerámia törékenysége miatt a hirtelen nyomáslöketre érzékeny

Félvezető nyomásérzékelők

- Membrán és nyúlásmérő bélyeg egyaránt szilíciumból
- Alapszerkezet kialakítása: maratás
- Nyúlásmérő ellenállások: diffúzió
- Ellenállások longitudinális (R₁, R₃) és transzverzális (R2, R4) piezorezisztív együtthatója ellenkező előjelű
- Hozzávezetések, kompenzáló ellenállások kialakítása szintén a

Félvezető nyomásérzékelők

- Fúziós ragasztás (Silicon Fusion Bonding)
- Alsó réteg: üreg kialakítása
- Felső réteg: diafragma és ellenállások kialakítása
- Mérete kb. a hagyományos eljárással készült érzékelő negyede
- Orvosbiológiai alkalmazásokra különösen alkalmas

Félvezető nyomásérzékelők

- Sérülékenyek
 - Védelem extra membránnal
 - Környezettől elszigetelés
 - Szilikonolajos nyomásátvitel
- Hőmérsékletfüggésük jelentős
- A kompenzáló elektronika a szilícium hordozón kialakítható

Nyúlásmérő bélyeges nyomásérzékelők

- Abszolút, differenciális és relatív nyomásra is használhatók
- Akár 1400 MPa nyomás (14 000 bar)
- Pontosság: 0.25%FS
- Stabilitási hiba: 0.25%FS / 6 hónap

Kapacitív nyomásmérés

- A membrán és az alap egy kondenzátor két fegyverzete
- Nem a membrán deformációján, hanem elmozdulásán alapul

Mechanikus behajláskorlát: túl nagy nyomás esetén védi a membránt

Kapacitív nyomásmérés

- Kapacitás: $C = \varepsilon \frac{A}{d} = \varepsilon_0 \varepsilon_r \frac{A}{d}$
- Az elmozdulással egyenesen arányos, akár 25%-os átfogási tartomány
- Referencia-kapacitás
 - A membrán szélénél
 - A fegyverzetek távolsága állandó: $C_{ref} = \frac{\varepsilon A_{ref}}{d_{ref}} =$ áll

Kapacitás mérése

•
$$U_{KI} = -U_T \frac{Z}{Z_{ref}} = -U_T \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C_{ref}}} = -U_T \frac{C_{ref}}{C} = -U_T \frac{C_{ref}}{\varepsilon \frac{A}{d}} =$$

$$= -U_T \frac{C_{ref}}{\varepsilon A} d$$

 A kimenet a membrán-középpont elmozdulásának lineáris függvénye

Differenciál-kapacitív nyomásmérés

- A membrán mozgó fegyverzetet alkot
- Alatta és felette egy-egy fix fegyverzet
- A behajlás mértékében C_1/C_2 arány közel lineárisan változik
- A differenciális kapacitás jól mérhető ld. később

Kapacitív nyomásmérés

- Nagyobb megengedett megnyúlás szélesebb nyomástartomány
- Vákuum 700 bar
- Különösen kis nyomásértékeknél használt, hiszen rugalmasabb membránt enged meg
- A nyúlásmérő bélyeges megoldásokkal szemben nem igényel hőmérsékletkompenzációt
- 0.01%FS pontosság

Egyéb nyomásmérési módszerek

- Piezoelektromos
- Rezgőelemes
- Bourdon-csövön alapuló
 - Induktív
 - Optikai