3D 打印机-Ender3 机型闭环驱动模组安装说明

闭环驱动模组安装

1. 所需材料: (单个轴)

- A. 闭环驱动控制板 S42B
- B. 电机与闭环驱动板连接线,长度 5cm
- C. 闭环驱动板与主控板连接线,长度 1m
- D. 磁铁: 径向磁铁, 直径 5mm, 厚度 2mm
- E. 白色垫片: 1.4mm 厚, M3, 数量 8 个
- F. Eender3 机型装配螺丝: M3,长度 34mm,数量 4 个
- G. 其他机型装配螺丝: M3,长度 40mm ,数量 4个
- H. 热床螺母: 孔径 M4,外直径约 40mm
- 1. 驱动电路转接板
- J. 42 步进电机, 步距角 1.8°
- K. OLED 屏

- L. 3d 打印机主板 (只需一块): SKR E3-DIP + TMC2209 (Z 轴、E0) +BTT TFT35 V3.0
- 2. 磁铁安装, 务必在电机轴中心位置!

磁铁规格: 径向磁铁, 直径 5mm x 2mm 厚。最好在轴中心用胶水固定磁铁, 若果使用的是液体胶水, 注意不要让液体流入电机轴缝隙

3. 垫片安装,大约 1.4mm 厚的垫片 2 个,加了垫片之后原电机上的螺杆可能不够长,需要更换同类型,大约要 34mm 长的螺杆。

4. Y轴安装需要特别注意,由于热床的螺帽比较大,因此靠近电机这个角的螺帽需要更换为小号的螺帽,在参数设置好后,可以将屏幕拆除。避免在打印时,Y轴出现不能回家的现象。

需更换热床螺帽为:

5. 按装完成后上电,如图 X 轴

Y轴,参数设置完成后需要将屏幕拆下即可。

二、开发工具安装

- 1) 在官网 http://www2.keil.com/mdk5/527 下载安装包, 其他 MDK 版本安装方式相同,建议用 MDK5 以后的版本。
- 2) 找到刚下载完成的安装包,如图:

3) 双击打开 MDK527, 点击 Next

5) 设置安装路径,这里只修改了安装路径,点击 Core 后面的 Browse 更改安装路径,建议安装在除 C 盘以外的其它盘可以在 D 盘或其它盘创建一个 MDK 文件夹,然后点击 Next.

6) 任意填写上述用户信息, 然后点击 Next

7) 安装中...

8) 若弹出下面的额界面,点击安装即可

您想安装这个设备软件吗?

9) 点击 Finish

10) 若安装完成以后弹出以下界面,点击 OK 或是即可

11) 等待芯片库更新到本地,需要有网才能自动完成。

12) 选择需要安装的库 STM32F0 系列,点击 Install

13) 等待安装完成...

14) 芯片库安装完成后,以管理员身份运行电脑桌面的 Keil uVision5

若出现以下界面点击是即可

15) 点击菜单栏 File,然后点击 Licence Management 选项

16) 复制 CID 中的内容

17) 以管理员身份运行注册机

18) 在 CID 中粘贴上两步中的 CID 然后选择 Target 选项中的 ARM 选项,再点击 Generate 按钮

19) 复制最下面方框中的内容

20) 把复制的内容粘贴在 Licence Mangement 中的 LIC 方框中

21) 点击 Add LIC, 若此时出现下面的警告界面则说明 没有以管理员身份运行。

22) 出现以下界面后 点击 Close

23) 恭喜您!软件安装完成

24) 以上安装完成之后就可以用仿真器(jlink 或者 ST-Link 或其它仿真器)连接我们的闭环驱动模组, 进行在线仿真调试啦!这里以 ST-link 的 SWD 烧录 仿真模式为例作说明,J-link 同理。

硬件连接,如图:

25) 从 https://github.com/下载固件源码文件,双击打开工程

名称	修改日期	类型	大小
DebugConfig	2019/11/22 10:18	文件夹	
ITEM	2019/11/25 10:20	文件夹	
RTE	2019/11/22 10:18	文件夹	
EventRecorderStub.scvd	2019/11/25 10:20	SCVD 文件	1 KB
☐ ITEM.uvguix.BiQu_	2019/11/25 18:47	BIQU_文件	183 KB
TTEM.uvguix.Bruce	2019/9/17 20:53	BRUCE 文件	177 KB
TTEM.uvguix.Vsion	2019/10/31 0:04	VSION 文件	183 KB
TEM.uvoptx	2019/11/25 18:47	UVOPTX 文件	21 KB
ITEM.uvprojx	2019/11/21 18:07	礦ision5 Project	18 KB
JLinkLog.txt	2019/11/25 10:26	文本文档	3,904 KB
yLinkSettings.ini	2019/10/10 9:49	Configuration Se	1 KB
startup_stm32f030x8.lst	2019/11/21 18:07	MASM Listing	30 KB
🛂 startup_stm32f030x8.s	2019/4/15 10:43	Assembler Source	11 KB

26) 点击"魔术棒"

27) 选择 Debug 选项

28) 选择仿真器类型为 ST-Link, 并点击 Settings , 按 图示完成 3 步操作

29) 如果是 J-Link 仿真器,需要选择仿真器仿真模式为 SWD 模式,如果不是,忽略这一步

30) 出现如下图示,恭喜您硬件连接成功

31) 点击 Flash Download 选项卡,设置烧录时,块擦除方式擦除 flash,设置 Reset and Run,选择芯片 Flash 大小,如下图标所示,完成后点击确定

32) 点击 按钮,开始编译程序


```
Compiling stm32f0xx_ll_exti.c...
compiling stm32f0xx_ll_gpio.c...
compiling stm32f0xx_ll_utils.c...
compiling oled.c...
compiling usart.c...
compiling display.c...
linking...
Program Size: Code=15176 RO-data=11108 RW-data=144 ZI-data=3104
FromELF: creating hex file...
"ITEM\ITEM.axf" - 0 Error(s), 1 Warning(s).
Ruild Time Flapsed: 00:00:11
```

33) 点击 LOAD 按钮,完成程序烧录

34) 在工程界面,点击 可以进行仿真调试。

三、 Marlin2.0 固件配置

以 X、Y 轴闭环驱动模组, Z 轴 TMC2209 UART 模式,挤出机

EO, TMC2209 UART 模式为例, 作如下说明:

主控制板: BOARD_BIGTREE_SKR_E3_DIP

闭环驱动板: 42 步进电机闭环驱动板

显示屏型号: BIGTREETECH TFT35V3.0

配置如下:修改板的环境

```
platformio.ini × C Configuration.h C Configuration_adv.h
platformio.ini
     # By default platformio build will abort after 5 errors.
     # Remove '-fmax-errors=5' from build_flags below to see all.
     [platformio]
      src_dir = Marlin
boards_dir = buildroot/share/PlatformIO/boards
      default_envs = STM32F103RE_bigtree
      [common]
      default_src_filter = +<src/*> -<src/config> -<src/HAL> +<src/HAL/shared>
      extra scripts = pre:buildroot/share/PlatformIO/scripts/common-cxxflags.py
      build_flags = -fmax-errors=5 -g -D_MARLIN_FIRMWARE_
       U8glib-HAL=https://github.com/MarlinFirmware/U8glib-HAL/archive/bugfix.zip
       LiquidCrystal@1.3.4
        TMCStepper@>=0.5.2,<1.0.0
        Adafruit NeoPixel@1.2.5
        LiquidTWI2=https://github.com/lincomatic/LiquidTWI2/archive/master.zip
        Arduino-L6470=https://github.com/ameyer/Arduino-L6470/archive/dev.zip
        SailfishLCD=https://github.com/mikeshub/SailfishLCD/archive/master.zip
        SailfishRGB_LED=https://github.com/mikeshub/SailfishRGB_LED/archive/master.zip
        SlowSoftI2CMaster=https://github.com/mikeshub/SlowSoftI2CMaster/archive/master.zip
```

设置串口号和波特率

选择板的 pin 配置文件

```
#If Morther Morther Boundards of the Morther Boards of the Morther
```

打开热床 (默认加热棒 0 是打开的)

使能 TMC2209 UART 模式

设置细分和最大加速度

设置 Z 轴和 EO 的方向

```
C Configuration_adv.h
platformio.ini
                  C Configuration.h ×
                                     C boards.h
Marlin > C Configuration.h > ☐ INVERT_X_DIR
       #detine DISABLE_Y talse
       #define DISABLE_Z false
       // Warn on display about possibly reduced accuracy
       #define DISABLE E false
       #define DISABLE_INACTIVE_EXTRUDER // Keep only the active extruder enabled
       // @section machine
        // Invert the stepper direction. Change (or reverse the motor connector) if an
       #define INVERT X DIR false
       #define INVERT_Y_DIR true
       #define INVERT_Z_DIR true
       // @section extruder
       // For direct drive extruder vg set to true, for geared extruder set to false.
     #define INVERT E0 DIR false
        #define INVERT E1 DIR false
        #define INVERT_E2_DIR false
        #define INVERT E3 DIR false
        #define INVERT E4 DIR false
       #define INVERT E5 DIR false
```

设置热床的大小,默认 200mm 以实际为准

```
C Configuration.h ×
platformio.ini
                                      C boards.h
                                                      C Configuration_adv.h
Marlin > C Configuration.n > I Z_MAX_POS
       // Direction of endstops when homing; 1=MAX, -1=MIN
       //:[-1,1]
       #define X_HOME_DIR -1
       #define Y_HOME_DIR -1
       #define Z HOME DIR -1
       // @section machine
       // The size of the print bed
       #define X_BED_SIZE 200
      #define Y_BED_SIZE 200
       // Travel limits (mm) after homing, corresponding to endstop positions.
       #define X_MIN_POS 0
       #define Y_MIN_POS 0
        #define Z MIN POS 0
        #define X MAX POS X BED SIZE
       #define Y MAX POS Y BED SIZE
      #define Z MAX POS 200
```

打开 SD 卡功能

```
platformio.ini

C Configuration.h X

Marlin > C Configuration.h > ...

1601

1601

1602

*:['JAPANESE', 'WESTERN', 'CYRILLIC']

1603

*/

1604

#define DISPLAY_CHARSET_HD44780 JAPANESE

1605

1606

/**

1607

* Info Screen Style (0:Classic, 1:Prusa)

1608

*

1609

*:[0:'Classic', 1:'Prusa']

1610

*/

1611

#define LCD_INFO_SCREEN_STYLE 0

1612

1613

/**

1614

* SD CARD

1615

* You must uncomment the following option or it won't work.

1618

*

1619

*/

#define SDSUPPORT

1620

#define SDSUPPORT
```

打开屏幕显示

设置 Z 轴和 EO 的电流和细分

```
platformio.ini
                  C Configuration.h
                                      C boards.h
                                                       C Configuration_adv.h ×
Marlin > C Configuration_adv.h > ...
          #if AXIS_IS_TMC(Z)
            #define Z_CURRENT
            #define Z_CURRENT_HOME
                                    Z_CURRENT
            #define Z MICROSTEPS
                                      32
            #define Z RSENSE
                                       0.11
           #define Z CHAIN POS
          #endif
1871
          #if AXIS IS TMC(Z2)
           #define Z2 CURRENT
           #define Z2 CURRENT HOME Z2 CURRENT
           #define Z2 MICROSTEPS
           #define Z2 RSENSE
                                      0.11
           #define Z2 CHAIN POS
          #endif
          #if AXIS IS TMC(Z3)
           #define Z3 CURRENT
           #define Z3 CURRENT HOME Z3 CURRENT
           #define Z3 MICROSTEPS
                                       0.11
           #define Z3 CHAIN POS
          #if AXIS_IS_TMC(E0)
            #define E0_CURRENT
                                     800
            #define E0_MICROSTEPS
                                      32
            #define E0_RSENSE
                                       0.11
            #define E0_CHAIN_POS
          #endif
```

打开 TMC_Debug 功能,便于用串口调试助手查看驱动异常信息

以上设置完成后,在编译器的左下方点击编译按钮,开始编译

编译成功后,直接在.pio\build\STM32F103RE_bigtree 路径下 找到 firmware.bin 文件,考入文件到 TF 卡中,然后将 TF 卡插入主板,按下复位键完成固件更新。

四、打印不良图示

原因:皮带比较松,导致结构不稳,造成打印件错位。

原因:皮带比较松,导致结构不稳,造成打印件错位。

打印正常

打印时,有角没粘住,或有异物从挤出头掉落到打印件里。

以上是在调试打印时遇到比较突出的问题,主要异常是结构稳定性不好导致,如有其它疑问可以联系我们的售后!!!