

Algoritmia =

= tratamiento sistemático de técnicas fundamentales para el diseño y análisis de algoritmos eficientes

 Computadores cada vez más rápidos y a más bajo precio:

- Se resuelven problemas de cálculo antes impensables.
- Inconscientemente se tiende a restar importancia al concepto de eficiencia.

 Existen problemas que seguirán siendo intratables si se aplican ciertos algoritmos por mucho que se aceleren los computadores

importancia de nuevas soluciones eficientes

* Ejemplo:

"En Agosto de 1977, Scientific American proponía a sus lectores el reto consistente en descifrar un mensaje secreto, para así ganar cien dólares. Parecía algo seguro: se estimaba en aquel momento que el ordenador más rápido existente, empleando el algoritmo más eficiente de los conocidos, no podría ganar la apuesta salvo funcionando sin interrupción durante un tiempo equivalente a millones de veces la edad del Universo. Sin embargo, ocho meses de cálculo que comenzaron dieciséis años después bastaron para la tarea. ¿Qué había pasado?..."

G. Brassard y P. Bratley *Fundamentos de Algoritmia* (Prólogo)

 Un curso de algoritmia (o "esquemas algorítmicos")

NO ES

- ni un curso de programación (ya debéis saber programar)

- ni un curso de estructuras de datos (ya debéis conocer las fundamentales)

TAMPOCO ES

- una colección de "recetas" o algoritmos listos para ser introducidos en el computador para resolver problemas específicos

Si tu problema es ordenar un fichero secuencial de enteros entonces ejecuta el algoritmo A026.

- Un curso de algoritmia tiene como objetivo principal:
 - dar más herramientas fundamentales para facilitar el desarrollo de programas

¿qué herramientas?:

técnicas o "esquemas" de diseño de algoritmos eficientes

* Un medio para alcanzar ese objetivo es:

- presentar cada esquema de forma genérica, incidiendo en los principios que conducen a él, e

- ilustrar el esquema mediante ejemplos concretos de algoritmos tomados de varios dominios de aplicación

Un ejemplo muy sencillo:

1210554

Multiplicación de dos enteros positivos con lápiz y papel.

- En Inglaterra: - En España: 981 981 1234 1234 3924 981 1962 2943 1962 2943 981 3924

- Ambos métodos son muy similares, los llamaremos algoritmo "clásico" de multiplicación.

1210554

- Algoritmo de multiplicación "a la rusa":

/ (981	1234	1234
	490	2468	
✓	245	4936	4936
	122	9872	
✓	61	19744	19744
	30	39488	
✓	15	78976	78976
✓	7	157952	157952
✓	3	315904	315904
✓	1	631808	631808
			1210554

- Ventaja: no hay que almacenar los productos parciales.
- Sólo hay que saber sumar y dividir por 2.

- Todavía otro algoritmo:
 - De momento, exigimos que ambos números tengan igual nº de cifras y que éste sea potencia de 2.

Por ejemplo: 0981 y 1234.

 En primer lugar, partimos ambos números por la mitad y hacemos cuatro productos:

Es decir, hemos reducido un producto de nos de 4 cifras en cuatro productos de nos de 2 cifras, varios desplazamientos y una suma.

 Los productos de números de 2 cifras pueden hacerse con la misma técnica. Por ejemplo, 09 y 12:

multiplicar			desplazar	resultado
1)	0	1	2	0 • •
2)	0	2	1	0 •
3)	9	1	1	9•
4)	9	2	0	18
				108

- Es un ejemplo de algoritmo que utiliza la técnica de "divide y vencerás".
- Tal y como lo hemos presentado...
 NO mejora en eficiencia al algoritmo clásico.
- Pero, puede mejorarse:

Es posible reducir un producto de dos números de muchas cifras a 3 (en vez de 4) productos de números de la mitad de cifras,

y éste SI que mejora al algoritmo clásico.

 Y aún se conocen métodos más rápidos para multiplicar números muy grandes.

Ideas clave:

- Incluso para un problema tan básico pueden construirse MUCHAS soluciones.
- El método clásico lo usamos con lápiz y papel porque nos resulta muy **familiar** (lo que se aprende en la infancia...).
- El método "a la rusa" se implementa en hardware en los computadores por la naturaleza elemental de los cálculos intermedios.
- El método de divide y vencerás es más rápido si se quiere multiplicar números grandes.
- La **algoritmia** estudia las propiedades de los algoritmos y nos ayuda a **elegir** la solución más adecuada en cada situación.

En muchos casos, una buena elección **ahorra tiempo** y **dinero**.

En algunos casos, una buena elección marca la diferencia entre **poder** resolver un problema y **no poder** hacerlo.

* ¿A quién puede interesar este curso?

A todo aquél a quien:

- le guste diseñar algoritmos para resolver nuevos problemas o algoritmos mejores a los triviales para resolver viejos problemas, y

- tenga dificultades en resolver, por ejemplo, los siguientes problemas:

- \square Diseñar un algoritmo de coste $O(|V|^3)$ para determinar si un grafo no dirigido G = (V,A)contiene un cuadrado (i.e., un circuito de longitud 4) como subgrafo. Mejorar el algoritmo hasta conseguir que sea de coste $O(|V| \cdot |A|)$.
- □ Dada una secuencia de datos, $S = x_1, x_2, ..., x_n$, la multiplicidad de x en S es el número de veces que x aparece en S. Un dato x es mayoritario en Ssi su multiplicidad es mayor que n/2. Se trata de diseñar un algoritmo de coste promedio lineal que, dada un secuencia de datos, determine si existe un dato mayoritario y, en caso afirmativo, cuál es éste.

- □ Sobre el río Tajo hay *n* estafetas de correos. En cada estafeta se puede alquilar un bote que permite ir a cualquier otra estafeta río abajo (es casi imposible remontar la corriente). La tarifa indica el coste del viaje de *i* a *j* para cualquier punto de partida *i* y cualquier punto de llegada *j* más abajo en el río. Puede suceder que un viaje de *i* a *j* sea más caro que una sucesión de viajes más cortos, en cuyo caso se tomaría un primer bote hasta una estafeta *k* y un segundo bote para continuar a partir de *k*. No hay coste adicional por cambiar de bote. Diseñar un algoritmo eficiente que determine el coste mínimo para ir de *i* a *j*.
- □ Dadas dos cadenas de caracteres, $A = a_1 \ a_2 \dots a_n \ y$ $B = b_1 \ b_2 \dots b_n$, diseñar un algoritmo de coste O(n) para determinar si B es una permutación cíclica de A (i.e., responder a la pregunta $\exists k$, $1 \le k \le n$, tal que $a_i = b_{(k+i) \bmod n}$, $\forall i$: $1 \le i \le n$?).
- ☐ Diseñar un algoritmo eficiente para decidir con un porcentaje bajo de error si un número dado muy grande (de varios cientos de cifras) es primo o no.

Esquemas algorítmicos: Contenidos de la asignatura

- & Introducción a los esquemas algorítmicos
- Algoritmos voraces
- * Divide y vencerás
- Programación dinámica
- Búsqueda con retroceso
- * Ramificación y acotación
- Precondicionamiento y reconocimiento de patrones
- Algoritmos probabilistas
- Algoritmos genéticos
- Lectura complementaria: Recorridos de grafos

[BB96] G. Brassard y P. Bratley.

Fundamentos de Algorítmia.

Prentice Hall, 1997.

[Cam98] J. Campos.

Esquemas Algorítmicos.

Transparencias de la asignatura, 1998.

Esquemas algorítmicos: Bibliografía complementaria

- [AHU88] A.V. Aho, J.E. Hopcroft y J.D Ullman.

 Estructuras de datos y algoritmos.

 Addison-Wesley Iberoamericana, S.A., 1988.
- [BB90] G. Brassard y P. Bratley.

 Algorítmica. Concepción y análisis.

 Masson, S.A., 1990.
- [CLR90] T.H. Cormen, C.E. Leiserson y R.L. Rivest. *Introduction to Algorithms*. The MIT Press, 1990.
- [Fra94] X. Franch Gutiérrez.

 Estructuras de datos. Especificación, diseño e implementación.

 Edicions UPC, 1994.
- [GBY91] G.H. Gonnet y R. Baeza-Yates.

 Handbook of Algorithms and Data Structures. In Pascal and C.

 Addison-Wesley, 1991.
- [GC97] M. Gen y R. Cheng.Genetic Algorithms & Engineering Design.John Wiley and Sons, 1997.
- [GGSV93] J. Galve, J.C. González, A. Sánchez y J.A. Velázquez.

 Algorítmica. Diseño y análisis de algoritmos funcionales e imperativos.

 RA-MA Ed., 1993.

Esquemas algorítmicos: Bibliografía complementaria

- [HS78] E. Horowitz y S. Sahni.

 Fundamentals of Computer Algorithms.

 Computer Science Press Inc., 1978.
- [Knu87] D.E. Knuth.

 El arte de programar ordenadores. Volumen III:

 Clasificación y búsqueda.

 Editorial Reverté, 1987.
- [Koz92] D.C. Kozen. *The Design and Analysis of Algorithms.*Springer-Verlag, 1992.
- [Man89] U. Manber.
 Introduction to Algorithms. A Creative
 Approach. Addison-Wesley, 1989.
- [MS91] B.M.E. Moret y H.D. Shapiro.

 Algorithms: From P to NP. Volume I: Design & Efficiency.

 The Benjamin/Cummings Pub. Co., 1991.
- [Pea84] J. Pearl.

 Heuristics. Intelligent Search Strategies for

 Computer Problem Solving.

 Addison-Wesley, 1984.
- [Wei95] M.A. Weiss.Estructuras de datos y algoritmos.Addison-Wesley Iberoamericana, S.A., 1995.