PROYECTO COMPILANDO CONOCIMIENTO

MATEMÁTICAS AVANZADAS

Análisis Complejo

Una Pequeña (Gran) Introducción

AUTORES:

Rosas Hernandez Oscar Andrés Lopez Manriquez Angel

Índice general

Ι	Νú	imeros Complejos	4
1.	Defi	iniciones	5
	1.1.	Definición de Números Complejos	6
	1.2.	Definiciones Utiles	6
	1.3.	Repeticiones de i	6
	1.4.	Funciones Trigonometricos	7
		1.4.1. Evaluación Rápida	7
		1.4.2. Identidades Importantes	7
2.	Arit	tmética Compleja	8
	2.1.	Operaciones Básicas	9
	2.2.	Elemento Identidad	10
	2.3.	Inverso Multiplicativo	10
	2.4.	Campo de los Complejos	11
	2.5.	Conjugados	12
		2.5.1. Coordenadas Conjugadas	13
	2.6.	Módulo o Valor Absoluto	15
	2.7.	Producto Punto y Cruz	18
		2.7.1. Producto Punto	18
		2.7.2. Producto Punto	18
3.	Fori	ma Polar y Argumentos	19
	3.1.	Forma Polar	20

		3.1.1. De forma Polar a forma Rectangular	20			
		3.1.2. De forma Rectangular a forma Polar	20			
	3.2.	Argumento de z	21			
	3.3.	Leyes de Aritmetica	22			
	3.4.	Ley de Moivre's	24			
4.	For	ma Exponencial ó de Euler	25			
	4.1.	Forma de Euler	26			
		4.1.1. e^z	26			
		4.1.2. Lemmas y Propiedades	27			
	4.2.	Identidad de Lagrange	28			
5 .	Ecu	aciones y Raíces	2 9			
	5.1.	n-Raíces de un Numero Complejo	30			
		5.1.1. Teorema Fundamental del Álgebra	30			
		5.1.2. Encontrar las Raíces de un Número Complejo	31			
II	F	unciones Complejas	32			
6.	Fun	ciones Complejas	33			
	6.1.	Funciones en General	34			
	6.2.	Funciones Hiperbolicas $cosh(x)$ y $senh(x)$	35			
	6.3.	Trigonometricas Complejas: $cos(z)$ y $sin(z)$	36			
	6.4.	Funciones e^z y $Ln(z)$	37			
	6.5.	$z_1^{z_2}$	37			
7.	Límites					
	7.1.	Límites en Cálculo Real	39			
		7.1.1. Definición Formal	39			
8.	Der	ivación	4 0			
	8.1.	Funciones Analíticas	41			

ÍNDICE GENERAL ÍNDICE GENERAL

	8.2.	Continuidad	41
	8.3.	Definición Formal	41
	8.4.	Ecuaciones de Cauchy - Riemann en Rectangular	42
	8.5.	Ecuaciones de Cauchy - Riemann en Forma Polar	43
		8.5.1. Demostración usando Rectangular	43
		8.5.2. Comprobación usando Rectangular	46
	8.6.	Funciones Analíticas y Cauchy - Riemann	48
	8.7.	Funciones Armonicas y Ecuaciones de Laplace	48
9	Inte	egración	49
υ.			
	9.1.	Integrales Complejas	50
		9.1.1. Calcular un Integral Compleja sobre C	51
	9.2.	Integrales Bonitas: Antiderivadas	52
	9.3.	Teorema de Cauchy	53

Parte I Números Complejos

Capítulo 1

Definiciones

1.1. Definición de Números Complejos

Definición 1.1.1 (Números Complejos) Definamos al Conjunto de los números complejos \mathbb{C} como:

$$\mathbb{C} = \left\{ a + bi \mid a, b \in \mathbb{R} \quad y \quad i = \sqrt{-1} \right\}$$
 (1.1)

Podemos usar la notación a + bi, a + ib y (a, b) de manera intercambiable (pero personalmente la primera se me hace la más cool pero la ultima mas concreta).

1.2. Definiciones Utiles

- Unidad Imaginaria: Usamos el símbolo i para simplificar $i = \sqrt{-1}$, de ahí la propiedad famosa $i^2 = -1$.
- Parte Real: Considere el complejo $z = a + bi \in \mathbb{C}$, entonces decimos que Re(z) = a
- Parte Imaginaria: Considere el complejo $z = a + bi \in \mathbb{C}$, entonces decimos que Im(z) = b

1.3. Repeticiones de i

- $\forall n \in \mathbb{Z}, i^{4n} = 1$
- $\forall n \in \mathbb{Z}, i^{4n+1} = i$
- $\forall n \in \mathbb{Z}, i^{4n+2} = -1$

1.4. Funciones Trigonometricos

1.4.1. Evaluación Rápida

•
$$\cos(n \cdot \theta) = \begin{cases} = 1 & \text{Si } n \text{ es par} \\ = -1 & \text{Si } n \text{ es impar} \end{cases}$$

$$\cos\left(\frac{2n+1}{2}\pi\right) = 0$$

$$\sin(n \cdot \theta) = 0$$

•
$$\sin\left(\frac{2n+1}{2}\pi\right) \begin{cases} = 1 & \text{Si } n \text{ es par} \\ = -1 & \text{Si } n \text{ es impar} \end{cases}$$

1.4.2. Identidades Importantes

- Pitagórica: $\cos(\theta)^2 + \sin(\theta)^2 = 1$
- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\bullet \sin(a \pm b) = \cos(a)\sin(b) \pm \sin(a)\cos(b)$

Capítulo 2

Aritmética Compleja

2.1. Operaciones Básicas

Si $z_1 = a_1 + b_1 i \in \mathbb{C}$ y $z_2 = a_2 + b_2 i \in \mathbb{C}$ entonces:

■ Definición 2.1.1 (Suma de Complejos)

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i (2.1)$$

■ Definición 2.1.2 (Resta de Complejos)

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i (2.2)$$

■ Definición 2.1.3 (Multiplicación de Complejos)

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 + b_1 b_2 i^2) + (a_1 b_2 + b_1 a_2) i$$

= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$ (2.3)

■ Definición 2.1.4 (División de Complejos)

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 a_2 + b_1 b_2) - (a_1 b_2 - a_2 b_1) i}{(a_2)^2 + (b_2)^2} \qquad z_2 \neq 0$$
(2.4)

2.2. Elemento Identidad

- Denotamos a 0 = 0 + 0i como el elemento cero o identidad aditiva, ya que se cumple $\forall z \in \mathbb{C}, \ z + 0 = 0 + z = z$
- Denotamos a 1=1+0i como el elemento identidad multiplicatica, ya que se cumple $\forall z \in \mathbb{C}, \ z \cdot 1 = 1 \cdot z = z$

2.3. Inverso Multiplicativo

Si $z = a + bi \in \mathbb{C} - \{0\}$ entonces podemos denotar al inverso de z como z^{-1}

Creo que es más que obvio que $z^{-1} = \frac{1}{a+bi}$.

Pero además podemos escribir a z^{-1} como $\frac{a-ib}{a^2+b^2}$

Demostración:

Veamos como llegar a eso paso a paso:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \left(\frac{a-bi}{a-bi}\right) = \frac{a-bi}{(a+bi)(a-bi)}$$
$$= \frac{a-bi}{a^2+b^2}$$

Gracias a lo anterior podemos escribirlo de distintas maneras:

■ De forma Rectangular:

$$\frac{1}{z} = \frac{a - bi}{a^2 + b^2} = \left(\frac{a}{a^2 + b^2}\right) - \left(\frac{b}{a^2 + b^2}\right)i\tag{2.5}$$

Con Magnitudes y Conjugados:

$$\frac{1}{z} = \frac{a - bi}{a^2 + b^2} = \frac{\overline{z}}{|z|^2} \tag{2.6}$$

2.4. Campo de los Complejos

Recuerda que el hecho de que los Complejos sean un campo nos dice que cumple con que:

■ Definición 2.4.1 (Ley Aditiva Asociativa)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$
(2.7)

■ Definición 2.4.2 (Ley Aditiva Conmutativa)

$$\forall z_1, z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 \tag{2.8}$$

■ Definición 2.4.3 (Elemento Indentidad Aditivo)

$$\exists 0 \in \mathbb{C}, \ \forall z_1 \in \mathbb{C}, \ 0 + z_1 = z_1 + 0 = z_1 \tag{2.9}$$

■ Definición 2.4.4 (Existen Inversos Aditivos)

$$\forall z_1 \in \mathbb{C}, \ \exists z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 = 0 \tag{2.10}$$

■ Definición 2.4.5 (Ley Distributiva)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ z_1 \cdot (z_2 + z_3) = (z_1 \cdot z_2) + (z_1 \cdot z_3) \forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_2 + z_3) \cdot z_1 = (z_2 \cdot z_1) + (z_3 \cdot z_1)$$

$$(2.11)$$

■ Definición 2.4.6 (Ley Multiplicativa Asociativa)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ z_1 \cdot z_2 = z_2 \cdot z_1 \tag{2.12}$$

Definición 2.4.7 (Ley Multiplicativa Distributiva)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3) \tag{2.13}$$

Definición 2.4.8 (Elemento Indentidad Multiplicativo)

$$\exists 1 \in \mathbb{C}, \ \forall z_1 \in \mathbb{C}, \ 1 \cdot z_1 = z_1 \cdot 1 = z_1 \tag{2.14}$$

Definición 2.4.9 (Existen Inversos Multiplicativos)

$$\forall z_1 \in \mathbb{C} - \{0\}, \ \exists z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 = 1$$
 (2.15)

2.5. Conjugados

Tenemos que el Conjugado de $z = a + bi \in \mathbb{C}$ que lo definimos como: $\overline{z} = a - bi$ Usando la definición podemos demostrar algunas propiedades muy importantes:

• $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ y mas general tenemos que: $\overline{z_1 + z_2 + \dots + z_n} = \overline{z_1} + \overline{z_2} + \dots + \overline{z_n}$

Demostración:

Definidos $z_1 = a_1 + ib_1$ y $z_2 = a_2 + ib_2$. Entonces tenemos que:

$$\overline{z_1 + z_2} = \overline{a_1 + ib_1 + a_2 + ib_2} = \overline{(a_1 + a_2) + i(b_1 + b_2)}$$

$$= (a_1 + a_2) - i(b_1 + b_2) = a_1 - ib_1 + a_2 - ib_2$$

$$= \overline{z_1} + \overline{z_2}$$

Ahora para la parte mas general:

Creo que cuando k=1 es demasiado sencillo hasta para escribirlo y lo que acabamos de demostrar es para cuando k=2, por lo tanto lo único que tenemos que probar es que:

Si
$$\overline{z_1+\cdots+z_n}=\overline{z_1}+\cdots+\overline{z_n}$$
 se cumple entonces también lo hará $\overline{z_1+\cdots+z_{n+1}}=\overline{z_1}+\cdots+\overline{z_{n+1}}$

Lo cual se logra dandote cuenta que $z_a = \overline{z_1 + z_2 + \cdots + z_n}$. y dandote cuenta que volviste al caso de k = 2.

 $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ y mas general tenemos que: $\overline{z_1 \cdot z_2 \cdot \cdots \cdot z_n} = \overline{z_1} \cdot \overline{z_2} \cdot \cdots \cdot \overline{z_n}$

Demostración:

Definidos $z_1 = a_1 + ib_1$ y $z_2 = a_2 + ib_2$. Entonces tenemos que:

$$\overline{z_1 \cdot z_2} = \overline{a_1 + ib_1 \cdot a_2 + ib_2} = \overline{(a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i}$$

$$= (a_1 a_2 - b_1 b_2) - (a_1 b_2 + b_1 a_2)i = (a_1 - ib_1) \cdot (a_2 - ib_2)$$

$$= \overline{z_1} \cdot \overline{z_2}$$

Ahora para la parte mas general se demuestra de manera casi identica a la propiedad pasada.

$$\bullet \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\left(\frac{\overline{z_1}}{\overline{z_2}}\right)}$$

Demostración:

Definidos $z_1 = a_1 + ib_1$ y $z_2 = a_2 + ib_2$

Entonces tenemos que:

$$\begin{split} \overline{\left(\frac{z_1}{z_2}\right)} &= \overline{z_1 \cdot \frac{1}{z_2}} = \overline{z_1} \cdot \overline{\frac{1}{z_2}} = \overline{z_1} \cdot \overline{\left(\frac{a}{a^2 + b^2}\right)} - \left(\frac{b}{a^2 + b^2}\right) i \\ &= \overline{z_1} \cdot \left[\left(\frac{a}{a^2 + b^2}\right) + \left(\frac{b}{a^2 + b^2}\right) i\right] = \overline{z_1} \cdot \left[\left(\frac{a}{a^2 + b^2}\right) - \left(\frac{-b}{a^2 + b^2}\right) i\right] = \overline{z_1} \cdot \frac{1}{\overline{z_2}} \\ &= \frac{\overline{z_1}}{\overline{z_2}} \end{split}$$

$$\blacksquare \ \overline{\overline{z}} = z$$

Demostración: $\overline{\overline{z}} = \overline{\overline{a+bi}} = \overline{a-bi} = a+bi$

$$z \cdot \overline{z} = |z|^2$$

Demostración: $z \cdot \overline{z} = (a+ib) \cdot (a-ib) = a^2 + b^2 = |z|^2$

$$Re(z) = \frac{z + \overline{z}}{2}$$

Demostración:

Dado a z = a + ib

$$\frac{z+\overline{z}}{2} = \frac{(a+bi)+(a-bi)}{2} = \frac{2a}{2} = a$$
$$= Re(a+bi)$$

$$Im(z) = \frac{z - \overline{z}}{2i}$$

Demostración:

Dado a z = a + ib

$$\frac{z-\overline{z}}{2i} = \frac{(a+bi)-(a-bi)}{2i} = \frac{2bi}{2i} = b$$
$$= Im(a+bi)$$

2.5.1. Coordenadas Conjugadas

Hay alguien que usando las propiedades de a + ib donde tenemos que:

$$= a = \frac{(z + \overline{z})}{2}$$

$$b = \frac{(z - \overline{z})}{2i}$$

Para hablar de coordenadas conjugadas a los que denominamos de manera similiar a las polares y rectanguales (que veremos mas a detalle en este libro):

- z = (a, b)
- $z = (r, \theta)$
- $z = (z, \overline{z})$

2.6. Módulo o Valor Absoluto

Tenemos que definir el Módulo de $z=a+bi\in\mathbb{C}$ como $|z|=\sqrt{a^2+b^2}$.

 $|Re(z)| \le |z| y |Im(z)| \le |z|$

Demostración:

Ya habiamos visto que $|z|^2 = x^2 + y^2 = Re(z)^2 + Im(z)^2$

Entonces podemos ver que $|z|^2 - Im(z)^2 = Re(z)$ (recuerda que $Im(z)^2 > 0$) por lo tanto tenemos que $|Re(z)|^2 \le |z|^2$ ya que |Re(z)| = Re(z)

Entonces podemos ver que $|z|^2 - Re(z)^2 = Im(z)$ (recuerda que $Re(z)^2 > 0$) por lo tanto tenemos que $|Im(z)|^2 \le |z|^2$ ya que |Im(z)| = Im(z)

 $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2Re(z_1\overline{z_2})$

Demostración:

Ya sabemos que $|z + \overline{z}|^2 = z\overline{z}$ y recuerda que $2Re(z) = z + \overline{z}, |z|^2 = z\overline{z}$ entonces tenemos que:

$$|z_1 + z_2|^2 = (z_1 + z_2)\overline{(z_1 + z_2)}$$

$$= (z_1 + z_2)(\overline{z_1} + \overline{z_2})$$

$$= z_1\overline{z_1} + (z_1\overline{z_2} + \overline{z_1}z_2) + z_2\overline{z_2}$$

$$= z_1\overline{z_1} + (z_1\overline{z_2} + \overline{z_1}\overline{z_2}) + z_2\overline{z_2}$$

$$= |z_1|^2 + 2Re(z_1\overline{z_2}) + |z_2|^2$$

 $(|z_1| + |z_2|)^2 = |z_1|^2 + |z_2|^2 + 2|z_1\overline{z_2}|$

Demostración:

Esta la vamos a empezar al réves, solo recuerda que $|z| = |\overline{z}|$:

$$|z_1|^2 + |z_2|^2 + 2|z_1\overline{z_2}| = |z_1|^2 + |z_2|^2 + 2|z_1||\overline{z_2}|$$

$$= |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$

$$= (|z_1| + |z_2|)^2$$

• Designaldad del Triangulo: $|z_1| - |z_2| \le |z_1 + z_2| \le |z_1| + |z_2|$

Demostración:

Ok, esto aún estará intenso, así que sígueme, vamos a hacerlo más interesante, ya tenemos las piezas necesarias. Así que vamos a hacerlo al réves:

 $|z_1 + z_2| \le |z_1| + |z_2|$ si y solo si $|z_1 + z_2|^2 = (|z_1| + |z_2|)^2$ y además $|z_1 + z_2|, |z_1|, |z_2| \ge 0$ lo cual si que se cumple, pues los módulos nunca son negativos.

Y lo que dije anteriormente se cumple si y solo si $|z_1 + z_2|^2 = (|z_1| + |z_2|)^2 + k$ donde $k \ge 0$.

Ya sabemos que $|z_1+z_2|^2=|z_1|^2+|z_2|^2+2Re(z_1\overline{z_2})$ y $(|z_1|+|z_2|)^2=|z_1|^2+|z_2|^2+2|z_1\overline{z_2}|$, ahora vamos a acomodar un poco, podemos poner lo último como $(|z_1|+|z_2|)^2-2|z_1\overline{z_2}|=|z_1|^2+|z_2|^2$

Ahora veamos que:

$$|z_1 + z_2|^2 = [|z_1|^2 + |z_2|^2] + 2Re(z_1\overline{z_2}) = [(|z_1| + |z_2|)^2 - 2|z_1\overline{z_2}|] + 2Re(z_1\overline{z_2})$$
$$= (|z_1| + |z_2|)^2 + k$$

Donde $k=2Re(z_1\overline{z_2})-2|z_1\overline{z_2}|$, ahora además podemos decir que si $k\geq 0$ entonces así lo será $\frac{k}{2}$, por lo tanto: $\frac{k}{2}=Re(z_1\overline{z_2})-|z_1\overline{z_2}|$, pero si les cambias en nombre ves que todo se simplifica $w=z_1\overline{z_2}$ y tenemos que Re(w)-|w|. Espera, recuerda que ya habíamos demostrado que $|Re(z)|\leq |z|$, así que por lo tanto $k\geq 0$ y la propiedad siempre se cumple.

Sabemos que $z_1 = z_1 + z_2 + (-z_2)$ además ahora sabemos que: $|z_1| = |z_1 + z_2 + (-z_2)| \le |z_1 + z_2| + |-z_2|$ y como |z| = |-z| Que es lo mismo que $|z_1| - |z_2| \le |z_1 + z_2|$.

Y listo, todas las propiedades están listas.

Además creo que es bastante obvio que por inducción tenemos que:

$$|z_1 + z_2 + z_3 + \dots + z_n| \le |z_1| + |z_2| + |z_3| + \dots + |z_n|$$

 $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$

Demostración:

Recuerda que: $z \cdot \overline{z} = |z|^2$ Entonces $|z| = \sqrt{z \cdot \overline{z}}$

Entonces tenemos que:

$$\begin{aligned} |z_1 \cdot z_2| &= \sqrt{z_1 z_2 \cdot \overline{z_1 z_2}} \\ &= \sqrt{z_1 z_2 \cdot \overline{z_1}} \, \overline{z_2} \\ &= \sqrt{z_1 \overline{z_1}} z_2 \overline{z_2} \\ &= \sqrt{z_1 \overline{z_1}} \sqrt{z_2 \overline{z_2}} \\ &= |z_1| \cdot |z_2| \end{aligned}$$

$$\left| \left(\frac{z_1}{z_2} \right) \right| = \frac{|z_1|}{|z_2|}$$

Demostración:

Usando la idea de que: $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$

Entonces tenemos que:

$$\begin{split} \left| \left(\frac{z_1}{z_2} \right) \right| &= \left| z_1 \cdot \frac{1}{z_2} \right| = |z_1| \cdot \left| \frac{1}{z_2} \right| = |z_1| \cdot \left| \frac{a - bi}{a^2 + b^2} \right| \\ &= |z_1| \cdot \sqrt{\frac{a^2 + b^2}{(a^2 + b^2)^2}} = |z_1| \cdot \frac{\sqrt{a^2 + b^2}}{\sqrt{(a^2 + b^2)^2}} = |z_1| \cdot \frac{\sqrt{a^2 + b^2}}{(a^2 + b^2)} \\ &= |z_1| \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2} \sqrt{a^2 + b^2}} = |z_1| \frac{1}{\sqrt{a^2 + b^2}} = |z_1| \cdot \frac{1}{|a + bi|} = |z_1| \cdot \frac{1}{|z_2|} \\ &= \frac{|z_1|}{|z_2|} \end{split}$$

2.7. Producto Punto y Cruz

2.7.1. Producto Punto

De manera muy parecido a como definimos el producto punto entre dos vectores, podemos definir el producto punto entre dos números complejos como:

$$z_1 \cdot z_2 = (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1 a_2) + (b_1 b_2) = |z_1||z_2|\cos(\theta) \tag{2.16}$$

Donde θ es el angulo más pequeño entre dichos números.

2.7.2. Producto Punto

De manera muy parecido a como definimos el producto cruz entre dos vectores, podemos definir el producto cruz entre dos números complejos como:

$$z_1 \times z_2 = (0, 0, a_1b_2 - a_2b_1) \tag{2.17}$$

Nota que dicho "vector" es perpendicular al plano complejo.

Pero generalmente lo que nos importa es su magnitud, que recuerda que se puede entender como el área del paralelogramo formado por esos dos números.

Lo entendemos como:

$$|z_1 \times z_2| = a_1 b_2 - a_2 b_1 = |z_1||z_2|\sin(\theta)$$
(2.18)

Donde θ es el angulo más pequeño entre dichos números.

Capítulo 3

Forma Polar y Argumentos

3.1. Forma Polar

Podemos expresar un punto en el plano complejo mediante la tupla (r,θ) , donde $r\geq 0$ y θ esta medido en radianes.

Entonces podemos pasar rápido y fácil de un sistema de coordenadas a otro como:

3.1.1. De forma Polar a forma Rectangular

Supongamos que tenemos un punto que podemos describir como (r, θ) , donde $r \ge 0$ y θ medido como radianes.

Entonces tenemos que:

- $a = r \cos(\theta)$
- $b = r \sin(\theta)$

Otra forma de escribirlo es $r(\cos(\theta) + i\sin(\theta))$

3.1.2. De forma Rectangular a forma Polar

Supongamos que tenemos un punto que podemos describir como (a + bi), entonces podemos decir que:

$$r = \sqrt{a^2 + b^2}$$

$$\bullet \ \theta = \begin{cases} \tan(\frac{b}{a})^{-1} & \text{si } a > 0 \\ \tan(\frac{b}{a})^{-1} + \pi & \text{si } a < 0 \text{ y } b > 0 \\ \tan(\frac{b}{a})^{-1} - \pi & \text{si } a < 0 \text{ y } b < 0 \end{cases}$$

3.2. Argumento de z

Definimos al argumento de un número $z = a + bi \in \mathbb{C}$ como $\theta = arg(z)$, es decir, al final del día arg(z) es un ángulo.

Este ángulo tiene que cumplir las dos siguientes ecuaciones:

$$\bullet \cos(\theta) = \frac{x}{\sqrt{a^2 + b^2}}$$

$$\bullet \sin(\theta) = \frac{y}{\sqrt{a^2 + b^2}}$$

Pero como sin y cos con funciones periodicas con 2π , es decir arg(z) no es único.

Además para encontrarlo usamos $\tan(\frac{b}{a})^{-1}$ pero resulta que esta función solo regresa ángulos entre $-\frac{\pi}{2}$ y $\frac{\pi}{2}$ por lo tanto habrá problemas con números en el segundo y tercer cuadrante.

Argumento Principal

Ya que arg(z) es más bien un conjunto de ángulos, podemos considerar al ángulo o argumento principal de z como Arg(z) y que será el ángulo que cumpla con que:

$$\bullet \cos(Arg(z)) = \frac{x}{\sqrt{a^2 + b^2}}$$

$$\bullet \sin(Arg(z)) = \frac{y}{\sqrt{a^2 + b^2}}$$

$$-\frac{\pi}{2} < Arg(z) \leq \frac{\pi}{2}$$

Podemos probar que Arg(z) para alguna z cualquiera será única.

Por lo tanto ahora podemos definir a arg(z) como:

$$arg(z) = \{ Arg(z) + 2n\pi \mid n \in \mathbb{Z} \}$$
(3.1)

3.3. Leyes de Aritmetica

Supón dos números complejos de manera polar como $z_1 = (r_1, \theta_1)$ y $z_1 = (r_2, \theta_2)$ es decir $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ y $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$ entonces tenemos que:

Producto de Números Complejos:

$$z_1 z_2 = [(r_1 r_2), (\theta_1 + \theta_2)]$$

Demostración:

Esto es muy sencillo, primero ya que tenemos los dos números en forma rectangular podemos multiplicar como ya sabemos:

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i$$

$$z_1 z_2 = r_1 r_2 [(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)) + (\cos(\theta_1)\sin(\theta_2) + \sin(\theta_1)\cos(\theta_2))i]$$

Usando las leyes de senos y cosenos:

- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$

Podemos reducirlo a: $z_1z_2 = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$ y creo que de ahí podemos reducirlo casi mentalmente ya que $(r, \theta) = r(\cos(\theta) + i\sin(\theta))$

División de Números Complejos:

$$\frac{z_1}{z_2} = [(\frac{r_1}{r_2}), (\theta_1 - \theta_2)]$$

Demostración:

Esto es muy sencillo, primero ya que tenemos los dos números en forma rectangular podemos dividir como ya sabemos, pero vamos a hacer un poco de trampa ingeniosa, usamos la idea de que $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$ y hacer:

$$\begin{split} \frac{z_1}{z_2} &= z_1 \frac{\overline{z_2}}{|z_2|^2} = z_1 \frac{\overline{z_2}}{(r_2)^2} \\ &= \frac{1}{(r_2)^2} z_1 \overline{z_2} = \frac{1}{(r_2)^2} (a_1 + ib_1)(a_2 - ib_2) \\ &= \frac{1}{(r_2)^2} (a_1 a_2 - b_1 b_2) + (a_1 b_2 - b_1 a_2)i \\ &= \frac{r_1}{r_2} [(\cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)) + (\cos(\theta_1)\sin(\theta_2) - \sin(\theta_1)\cos(\theta_2))i] \end{split}$$

Usando las leyes de senos y cosenos:

- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$

Podemos reducirlo a: $z_1z_2=\frac{r_1}{r_2}[\cos{(\theta_1-\theta_2)}+i\sin{(\theta_1-\theta_2)}]$ y creo que de ahí podemos reducirlo casi mentalmente ya que $(r,\theta)=r(\cos{(\theta)}+i\sin{(\theta)})$

• Simplificar Potencias de z:

$$z^n = [(r^n), (n \cdot \theta)]$$

${\bf Ideas:}$

No considero a esto una demostración, por basta con darte cuenta que z^n es $z \cdot z \cdot z \dots$ n veces

Por lo tanto puedes aplicar la regla: $z_1z_2=[(r_1r_2),(\theta_1+\theta_2)]$ que ya que $z_1=z_2$ se puede simplificar a $z\cdot z=[2r,2\theta]$.

Y llegar a ese resultado mediante la inducción.

3.4. Ley de Moivre's

$$z^{n} = r^{n} (\cos (n \cdot \theta) + i \sin (n \cdot \theta))$$
 donde $n \in \mathbb{Z}$

Demostración:

Se puede dar una demostracion muy sencilla, no se porque los libros usan induccion matematica para demostrar el teorema de Moivre...

En fin, expresando a z en su forma polar y usando la fórmula de Euler, tenemos:

$$z^{n} = (a + bi)^{n}$$

$$= [r (\cos(\theta) + i \sin(\theta))]^{n}$$

$$= r^{n} (\cos(\theta) + i \sin(\theta))^{n}$$

$$= r^{n} (e^{\theta i})^{n}$$

$$= r^{n} e^{(\theta i)n}$$

$$= r^{n} e^{(n\theta)i}$$

$$= r^{n} (\cos(n \cdot \theta) + i \sin(n \cdot \theta))$$

Capítulo 4

Forma Exponencial ó de Euler

4.1. Forma de Euler

Podemos también expresar un número complejo de la siguiente manera:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{4.1}$$

Ideas:

Esta fórmula sale de a partir de las Series de Taylor para la función exponencial:

$$e^{k} = \sum_{n=0}^{\infty} \frac{\theta^{n}}{n!} = 1 + \frac{k}{1!} + \frac{k^{2}}{2!} + \frac{k^{3}}{3!} + \cdots$$
(4.2)

Pasa algo muy interesante al hacer $k=i\theta$, pues vemos que aparecen claramente la forma en que tenemos de representar a las funciones seno y coseno como polinomios infinitos:

$$\bullet \sin(\theta) = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$$

$$\bullet \cos(\theta) = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}$$

$$e^{i\theta} = \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^5}{5!} \cdots\right) + \left(-\theta + \frac{\theta^3}{3!} - \frac{\theta^5}{5!} + \frac{\theta^7}{7!} \cdots\right)i$$

$$= \cos(\theta) + \sin(\theta)i$$

4.1.1. e^z

También podemos ver más generalmente que e^z se puede reducir a:

$$e^{z} = e^{a+bi} = e^{a} \cdot e^{bi} = e^{a} \cdot (\cos(b) + i\sin(b)) = e^{a}(\cos(b) + i\sin(b))$$

4.1.2. Lemmas y Propiedades

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

Demostración:

$$\frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{\left[\cos(\theta) + i\sin(\theta)\right] + \left[\cos(-\theta) + i\sin(-\theta)\right]}{2} \qquad \text{Tip: } \cos(\theta) = \cos(-\theta) \text{ y } \sin(-\theta) = -\sin(\theta)$$

$$= \frac{\cos(\theta) + i\sin(\theta) + \cos(\theta) - i\sin(\theta)}{2} \qquad \text{Y si simplificamos}$$

$$= \frac{2\cos(\theta)}{2}$$

$$= \cos(\theta)$$

$$\bullet \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Demostración:

$$\begin{split} \frac{e^{i\theta}-e^{-i\theta}}{2} &= \frac{\left[\cos\left(\theta\right)+i\sin\left(\theta\right)\right]-\left[\cos\left(-\theta\right)+i\sin\left(-\theta\right)\right]}{2} & \text{Tip: } \cos\left(\theta\right)=\cos\left(-\theta\right) \text{ y } \sin\left(-\theta\right)=-\sin\left(\theta\right) \\ &= \frac{\cos\left(\theta\right)+i\sin\left(\theta\right)-\cos\left(\theta\right)+i\sin\left(\theta\right)}{2} & \text{Y si simplificamos} \\ &= \frac{2i\sin\left(\theta\right)}{2i} \\ &= \sin\left(\theta\right) \end{split}$$

4.2. Identidad de Lagrange

$$1 + \cos(1\theta) + \cos(2\theta) + \dots + \cos(n\theta) = \frac{1}{2} \left(\frac{\sin\left((n + \frac{1}{2})\theta\right)}{\sin\left(\frac{\theta}{2}\right)} + 1 \right)$$
(4.3)

$$\begin{split} \sum_{k=0}^{n}\cos\left(k\theta\right) &= \frac{1}{2}\sum_{k=0}^{n}\left(e^{ik\theta}+e^{-ik\theta}\right) & \text{Recuerda que: }\cos\left(x\right) = \frac{e^{ix}+e^{-ix}}{2} \\ &= \frac{1}{2}\left(\frac{e^{(n+1)i\theta}-1}{e^{i\theta}-1}+\frac{e^{(n+1)-i\theta}-1}{e^{-i\theta}-1}\right) & \text{Recuerda que: }\sum_{k=0}^{n}r^{k} = \frac{r^{n+1}-1}{r-1} \\ &= \frac{1}{2}\left(\frac{e^{(n+1)i\theta}-1}{e^{i\theta}-1}\left(\frac{e^{-i\frac{\theta}{2}}}{e^{-i\frac{\theta}{2}}}\right)+\frac{e^{(n+1)-i\theta}-1}{e^{-i\theta}-1}\left(\frac{-e^{i\frac{\theta}{2}}}{-e^{i\frac{\theta}{2}}}\right)\right) & \text{Multiplica por Uno ;}) \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta}-e^{i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}+\frac{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}\right) & \text{Expande} \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta}-e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}+\frac{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}\right) & \text{Organizando, gracias denominador común} \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta}-e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}+1\right) & \text{Simplificar} \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta}-e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}}+1\right) & \text{Añadimos esto} \\ &= \frac{1}{2}\left(\frac{\sin\left((n+\frac{1}{2})\theta\right)}{\sin\left(\frac{\theta}{2}\right)}+1\right) & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix}-e^{-ix}}{2i} \end{split}$$

Capítulo 5

Ecuaciones y Raíces

5.1. n-Raíces de un Numero Complejo

En general decir que un número w es un raíz enesíma de un número complejo $z \in \mathbb{C} - \{0\}$ es que cumple que:

$$w^n = z$$

Donde obviamente $n \in \mathbb{Z}^+$.

5.1.1. Teorema Fundamental del Álgebra

Teorema 5.1.1 Teorema Fundamental del Álgebra Todo polinomio de grado n tiene mínimo 1 raíz

No desmotraremos este asombroso teorema por ahora, pero si un colorario (específicamente) en el campo de los complejos: "Un polinomio de grado n tiene exactamente n raíces".

5.1.2. Encontrar las Raíces de un Número Complejo

Teorema 5.1.2 Existen exactamente n raíces para $w^n = z$ donde $w, z \in \mathbb{C}$

Suponiendo a $z=(r,\theta)$ entonces las podemos encontrar tan fácil como:

$$w_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta + (2\pi)k}{n} \right) + i \sin \left(\frac{\theta + (2\pi)k}{n} \right) \right] \quad k = 0, 1, 2, \dots, n - 1$$
 (5.1)

Demostración:

Tengamos dos números: $z = r \left[\cos(\theta) + i \sin(\theta)\right]$ y $w = p \left[\cos(\phi) + i \sin(\phi)\right]$

Entonces de la ecuación decir $w^n = z$ es lo mismo que decir que:

$$(p[\cos(\phi) + i\sin(\phi)])^n = r[\cos(\theta) + i\sin(\theta)]$$
$$p^n[\cos(\phi) + i\sin(\phi)]^n = r[\cos(\theta) + i\sin(\theta)]$$

De esta ecuación tenemos que:

 $p^n = r$

Por lo tanto podemos definir a $p = \sqrt{r}$ donde \sqrt{r} es la raíz enesíma del módulo de dicho número.

 $(\cos(\theta) + i\sin(\theta))^n = \cos(\phi) + i\sin(\phi)$

Gracias a $\cos(n\theta) + i\sin(n\theta) = \cos(\phi) + i\sin(\phi)$ Por lo tanto podemos decir que:

- $\cos(n\theta) = \cos(\phi)$
- $\sin(n\theta) = \sin(\phi)$

Y gracias a que ambas funciones son periodicas cada 2π , por lo tanto:

•
$$\sin(\phi) = \sin\left(\frac{\theta + (2\pi)k}{n}\right)$$

•
$$\cos(\phi) = \cos\left(\frac{\theta + (2\pi)k}{n}\right)$$

Y finalmente podemos generalizar los resultados como:

$$w_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta + (2\pi)k}{n} \right) + i \sin \left(\frac{\theta + (2\pi)k}{n} \right) \right]$$
 (5.2)

Parte II Funciones Complejas

Capítulo 6

Funciones Complejas

6.1. Funciones en General

Una función compleja es aquella que toma un número complejo y regresa otro número complejo es decir $f: \mathbb{C} \to \mathbb{C}$.

Podemos decir entonces que bajo una función compleja f dada un número z este será "mapeado" a w.

$$z \xrightarrow{f(z)} w$$

$$x + yi \xrightarrow{f(z)} u + iv$$

Si te das cuenta podemos ver que tanto la parte imaginaria de w (v) como su parte real (u) depende de los valores de x, y por lo tanto podemos verlas como funciones multivariables, por lo tanto tenemos que:

Cualquier función compleja w = f(z) puede ser representada como:

$$f(z) = f(x+yi) = u_{(x,y)} + iv_{(x,y)} \quad \text{donde } x, y \in \mathbb{R}$$

$$(6.1)$$

Ahora que las hemos definido formalmente podemos mostar las funciones complejas mas famosas.

6.2. Funciones Hiperbolicas cosh(x) y senh(x)

A ver, antes que nada, estas no son funciones complejas en si, pero nos van a servir mucho.

Recuerda que dijimos que:

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\bullet \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Por lo tanto podemos ver que:

$$cos(ix) = \frac{e^{i(ix)} + e^{-i(ix)}}{2}$$

$$= \frac{e^{-x} + e^{x}}{2}$$

$$= \frac{e^{x} + e^{-x}}{2}$$

$$= cosh(x)$$

$$(6.2)$$

$$sen(ix) = \frac{e^{i(ix)} - e^{-i(ix)}}{2i}$$

$$= \frac{e^{-x} - e^x}{2i}$$

$$= \frac{-1}{2i}e^x - e^{-x}$$

$$= \frac{i}{2}e^x - e^{-x}$$

$$= i\left(\frac{e^x - e^{-x}}{2}\right)$$

$$= i \cdot senh(x)$$

$$(6.3)$$

Estas funciones tiene unas propiedades bien locas como:

 $sinh(x)^2 + cosh(x)^2 = 1$

Demostración:

$$\cosh(x)^{2} - \sinh(x)^{2} = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} \\
= \left(\frac{e^{x} + e^{-x}}{4}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} \\
= \left(\frac{e^{2x} + 2 + e^{-2x}}{4}\right) - \left(\frac{e^{2x} - 2 + e^{-2x}}{4}\right) \\
= \left(\frac{e^{2x} + 2 + e^{-2x}}{4}\right) + \left(\frac{-e^{2x} + 2 - e^{-2x}}{4}\right) \\
= \left(\frac{e^{2x} + 2 + e^{-2x} + -e^{2x} + 2 - e^{-2x}}{4}\right) \\
= \left(\frac{4}{4}\right) \\
= 1$$

6.3. Trigonometricas Complejas: cos(z) y sin(z)

$$cos(a+bi) = cos(a)cos(bi) - sen(a)sen(bi)$$

= $cos(a)cosh(b) - i(sen(a)senh(b))$ (6.4)

$$sin(a+bi) = sin(a)cos(bi) + cos(a)sen(bi)$$

$$= sin(a)cosh(b) + i(cos(a)senh(i))$$
(6.5)

6.4. Funciones e^z y Ln(z)

La función exponencial es demasiado sencilla de definir:

$$e^{a+bi} = e^a e^{bi}$$

$$= e^a \cos(b) + i \sin(b)$$

$$= e^a \cos(b) + i e^a \sin(b)$$
(6.6)

Vamos a definir de manera completamente arbitraria al logaritmo de un número complejo:

$$Ln(z) = ln(|z|) + iArg(z)$$
(6.7)

Esta definición nos permite que esta nueva función herede las propiedades comunes del logaritmo.

6.5. $z_1^{z_2}$

Gracias a la definición podemos definir esta operación como:

$$z_1^{z_2} = (z_1)^a + (z_2)^{bi}$$
$$= (z_1)^a e^{Ln(z_2^{bi})}$$
$$= (z_1)^a e^{bi \cdot Ln(z_2)}$$

Capítulo 7

Límites

7.1. Límites en Cálculo Real

Antes de empezar a hablar sobre como podemos definir el límite en el campo de los complejos, veamos como llegamos a esa definición en los números reales.

$$\lim_{x \to a} f(x) = L \tag{7.1}$$

De manera completamente informal podemos decir que el Límite de arriba es cierto si cuando f(x) se acerca a L, x se acerca a a.

Es decir, si se acerca, la distancia entre f(x) y L y x y a cada vez se va haciendo más pequeña, lo cuando lo podemos añadir para hacer a la definición más precisa.

Límite: |f(x) - L| se hace casi cero cuando |x - a| se acerca a cero.

Ahora simplemente vamos a formalizar lo que significa pequeño:

- δ hablará de lo pequeño que será |x-a|
- ϵ hablará de lo pequeño que será |f(x) L|

Por lo tanto estamos listo para la definición formal en todo su esplendor:

7.1.1. Definición Formal

- En forma geométrica, si a es un punto en la recta númerica, entonces $\lim_{x\to a} f(x) = L$ si el valor absoluto de la diferencia entre f(x) y L puede hacerse tan pequeña como se desee al eligir puntos lo bastante cercanos a a (excluyendo a x=a).
- Se dice que un número L es el límite de f(x) cuando x tiende a a si para todo número positivo ϵ (tan pequeño como se desee) se halla un número positivo δ (que por lo general depende de ϵ) tal que si $0 < |x a| < \delta$ entonces $|f(x) L| < \epsilon$.
- Decimos que $\lim_{x\to a} f(x) = L$ si y solo si se cumple que:

$$\forall \epsilon > 0, \ \exists \delta > 0 \text{ tal que si } 0 < |x - a| < \delta \text{ entonces } |f(x) - L| < \epsilon$$

Capítulo 8

Derivación

8.1. Funciones Analíticas

Eventualmente nuestra meta con estas funciones complejas es hacer calculo con ellas, es derivarlas e integrarlas (en especial integrales de contorno o de línea), hacer un montón de cosas locas, y para poder hacer todo eso tendremos que hacer que nuestra funciones se porten bien, es decir que sean diferenciables, que sus derivadas esten definidas y que sean continuas.

Si recuerdas de Análisis Real teníamos que para que una función fuera continua ambos límites, tanto por la derecha como por la izquierda tenian que existir y ser iguales.

Ahora bien, con las funciones complejas la restricción es mucho mas fuerte pues no solo nos podemos acercar por la derecha o por la izquierda, sino que por todos lados.

Despúes veremos que hay algo llamado las Ecuaciones de Cauchy Riemann que nos hablan mucho de si una función es analítica o no.

8.2. Continuidad

Decimos que una función f(z) es continua en un punto si y solo si:

- La función f(z) tiene que estar valuado en z_0
- El $\lim_{z\to z_0} f(z)$ tiene que existir
- Sin importar desde donde te aproximes los límites existen y son iguales

8.3. Definición Formal

Podemos definir formalmente a nuestra derivada de una manera muy sencilla:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

=
$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 (8.1)

8.4. Ecuaciones de Cauchy - Riemann en Rectangular

Recuerda que el hecho de que una función f(z) = u(x,y) + iv(x,y) sea diferenciable nos da grandes restricciones sobre como son u(x,y), v(x,y), veamos que dichas restricciones salen de la misma definición:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{u(x + \Delta x, y + \Delta y) + iv(x\Delta x, y + \Delta y) - u(x, y) + iv(x, y)}{\Delta x + i\Delta y}$$

Además sabemos que si es diferenciable, los límites tiene que coincidir sin importar de por donde nos acercamos al valor, por lo tanto tenemos que:

$$f'(z) = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{u(x + \Delta x, y + \Delta y) + iv(x\Delta x, y + \Delta y) - u(x, y) + iv(x, y)}{\Delta x + i\Delta y}$$

$$= \lim_{\substack{\Delta x \to 0 \\ \Delta y = 0}} \left[\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \right]$$

$$= \lim_{\substack{\Delta x = 0 \\ \Delta y \to 0}} \left[\frac{u(x, y + \Delta y) - u(x, y)}{i\Delta y} + \frac{v(x, y + \Delta y) - v(x, y)}{\Delta y} \right]$$

Y si te das cuentas, estos dos límites estan mostrando derivadas parciales, así que al igualar ambas tenemos que:

$$\frac{\partial u(x,y)}{\partial x} + i \frac{\partial v(x,y)}{\partial x} = -i \frac{\partial u(x,y)}{\partial y} + \frac{\partial v(x,y)}{\partial y}$$

Por lo tanto podemos comparar la parte real e imaginaria como:

Estas son conocidas como las ecuaciones de Cauchy-Riemann.

Por lo tanto formalizamos como que una condición necesaria para que f(z) = u(x, y) + iv(x, y) sea analítica en una región es que cumplan las Ecucaciones de Cauchy-Riemann.

8.5. Ecuaciones de Cauchy - Riemann en Forma Polar

8.5.1. Demostración usando Rectangular

Sea una función $f(r,\theta)=u(r,\theta)+iv(r,\theta)$ ananlítica, entonces se satisface las ecuaciones en forma rectangular:

Y dado que $z = x + iy = r(\cos(\theta) + i\sin(\theta))$, entonces:

$$r(x,y) = (x^2 + y^2)^{\frac{1}{2}}$$

•
$$\theta(x,y) = \arctan\left(\frac{y}{x}\right)$$

y también tenemos que:

•
$$x(r,\theta) = r\cos(\theta)$$

•
$$y(r,\theta) = r\sin(\theta)$$

Ahora, hay que demostrar estas 4 ecuaciones:

$$\frac{\partial r}{\partial x} = \cos(\theta)$$
 $\frac{\partial r}{\partial y} = \sin(\theta)$ $\frac{\partial \theta}{\partial x} = \frac{-\sin(\theta)}{r}$ $\frac{\partial \theta}{\partial y} = \frac{\cos(\theta)}{r}$

Demostración

$$\frac{\partial r}{\partial x} = \frac{\partial (x^2 + y^2)^{\frac{1}{2}}}{\partial x} \qquad \frac{\partial r}{\partial y} = \frac{\partial (x^2 + y^2)^{\frac{1}{2}}}{\partial y}
= \frac{1}{2} (x^2 + y^2)^{\frac{-1}{2}} (2x) \qquad = \frac{1}{2} (x^2 + y^2)^{\frac{-1}{2}} (2y)
= x (x^2 + y^2)^{\frac{-1}{2}} \qquad = y (x^2 + y^2)^{\frac{-1}{2}}
= r \cos(\theta) (r^2)^{\frac{-1}{2}} \qquad = r \sin(\theta) (r^2)^{\frac{-1}{2}}
= r \cos(\theta) r^{-1} \qquad = r \sin(\theta) r^{-1}
= \cos(\theta) \qquad = \sin(\theta)$$

$$\frac{\partial \theta}{\partial x} = \frac{\partial \arctan\left(\frac{y}{x}\right)}{\partial x}$$

$$= \frac{1}{1 + \left(\frac{y}{x}\right)^2} \frac{-y}{x^2}$$

$$= \frac{1}{\left(\frac{y^2 + x^2}{x^2}\right)} \frac{-y}{x^2}$$

$$= \frac{1}{\left(\frac{y^2 + x^2}{x^2}\right)} \frac{-y}{x^2}$$

$$= \frac{1}{\left(\frac{y^2 + x^2}{x^2}\right)} \frac{1}{x}$$

$$= \frac{1}{\left(\frac{y^2 + x^2}{x^2}\right)} \frac{1}{x}$$

$$= \frac{-y}{y^2 + x^2}$$

$$= \frac{-r \sin(\theta)}{r^2}$$

$$= \frac{-\sin(\theta)}{r}$$

$$= \frac{\cos(\theta)}{r}$$

Entonces usando la gran regla de la cadena tenemos que:

$$\frac{\partial u(r,\theta)}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x}$$
 Regla de la Cadena
$$= \frac{\partial u}{\partial r} \cos(\theta) - \frac{\partial u}{\partial \theta} \frac{\sin(\theta)}{r}$$
 Sustituyendo

Por otro lado:

$$\frac{\partial v(r,\theta)}{\partial y} = \frac{\partial v}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial y}$$
 Regla de la Cadena
$$= \frac{\partial u}{\partial r} \sin(\theta) + \frac{\partial u}{\partial \theta} \frac{\cos(\theta)}{r}$$
 Sustituyendo

Ahora de las ecuaciones de Cauchy - Riemann tenemos que:

$$0 = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$$

$$= \left(\frac{\partial u}{\partial r}\cos(\theta) - \frac{\partial u}{\partial \theta}\frac{\sin(\theta)}{r}\right) - \left(\frac{\partial u}{\partial r}\sin(\theta) + \frac{\partial u}{\partial \theta}\frac{\cos(\theta)}{r}\right)$$

$$= \cos(\theta)\left(\frac{\partial u}{\partial r} - \frac{\partial v}{\partial \theta}\frac{1}{r}\right) + \sin(\theta)\left(-\frac{\partial u}{\partial \theta} - \frac{\partial v}{\partial r}\frac{1}{r}\right)$$

Y ya que $\sin(\theta)$ y $\cos(\theta)$ son linealmente independientes (si no me creen intenten hacer el Wroksiano, porque yo no lo intentaré) tenemos que todo lo que las multiplique tiene que ser cero, es decir:

Tenemos que $0 = \frac{\partial u}{\partial r} - \frac{\partial v}{\partial \theta} \frac{1}{r}$ por lo que un simple despeje tenemos que: $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ Tenemos que $0 = -\frac{\partial u}{\partial \theta} - \frac{\partial v}{\partial r} \frac{1}{r}$ por lo que un simple despeje tenemos que: $\frac{\partial u}{\partial \theta} = \frac{-1}{r} \frac{\partial v}{\partial r}$ Por lo tanto tenemos que:

8.5.2. Comprobación usando Rectangular

Sea una función f(x+iy) = u(x,y) + iv(x,y) analítica, entonces se satisface las ecuaciones en forma rectangular:

Y dado que $z = x + iy = r(\cos(\theta) + i\sin(\theta))$, entonces:

•
$$x(r,\theta) = r\cos(\theta)$$

•
$$y(r, \theta) = r \sin(\theta)$$

Entonces usando la gran regla de la cadena tenemos que:

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}$$
 Regla de la Cadena
$$= \frac{\partial u}{\partial x} \frac{\partial r \cos(\theta)}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial r \sin(\theta)}{\partial r}$$
 Expandamos
$$= \frac{\partial u}{\partial x} \cos(\theta) + \frac{\partial u}{\partial y} \sin(\theta)$$
 Resolvemos
$$= \frac{1}{r} \left(\frac{\partial u}{\partial x} r \cos(\theta) + \frac{\partial u}{\partial y} r \sin(\theta) \right)$$
 Creamos una r mágica
$$= \frac{1}{r} \left(\frac{\partial v}{\partial y} r \cos(\theta) - \frac{\partial v}{\partial x} r \sin(\theta) \right)$$
 Usando Cauchy - Riemann
$$= \frac{1}{r} \left(\frac{\partial v}{\partial x} - r \sin(\theta) + \frac{\partial v}{\partial y} r \cos(\theta) \right)$$
 Reordenamos
$$= \frac{1}{r} \left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta} \right)$$
 Ve que son iguales
$$= \frac{1}{r} \left(\frac{\partial v}{\partial \theta} \right)$$
 Regla de la Cadena a la inversa

De manera analoga tenemos que:

Por lo tanto tenemos que:

8.6. Funciones Analíticas y Cauchy - Riemann

Recapitulemos todo lo que hemos visto de las ecuaciones de Cauchy - Riemann usando estos dos teoremas:

Teorema 8.6.1 Si $f(z) = u_{(x,y)} + iv_{(x,y)}$ es analítica en una región R entonces se satisface estas ecuaciones dentro de R.

$$\frac{\partial u_{(x,y)}}{\partial x} = \frac{\partial v_{(x,y)}}{\partial y} \qquad \frac{\partial u_{(x,y)}}{\partial y} = -\frac{\partial v_{(x,y)}}{\partial x}$$

Por otro lado también tenemos que:

Teorema 8.6.2 Si las siguientes condiciones se cumplen en una región R entonces la función es analítica.

■ Todas las derividas parciales existen y son continuas

$$\frac{\partial u}{\partial x}$$
 $\frac{\partial u}{\partial y}$ $\frac{\partial v}{\partial x}$ $\frac{\partial v}{\partial y}$

• Satisfacen las Relaciones de Cauchy Riemann:

$$\frac{\partial u_{(x,y)}}{\partial x} = \frac{\partial v_{(x,y)}}{\partial y} \qquad \frac{\partial u_{(x,y)}}{\partial y} = -\frac{\partial v_{(x,y)}}{\partial x}$$

8.7. Funciones Armonicas y Ecuaciones de Laplace

Teorema 8.7.1 Si $f(z) = u_{(x,y)} + iv_{(x,y)}$ es analítica en una región R entonces se satisface estas ecuaciones dentro de R.

$$\nabla^2 u_{(x,y)} = 0 \quad y \quad \nabla^2 v_{(x,y)} = 0$$

Este Teorema sale simplemente derivando las Ecuaciones de Cauchy - Riemann y haciendo un poco de algebra.

Debido a que $u_{(x,y)}, v_{(x,y)}$ satisfacen la Ecuación de Laplace tenemos que son consideradas funciones armonicas.

Capítulo 9

Integración

9.1. Integrales Complejas

Supongamos que tenemos una función f(z) si queremos integrarla desde un punto complejo a hasta otro punto complejo b.

Si estuvieramos hablando de una simple integral en los números reales entonces tenemos que basta con recorrer la recta númerica desde a hasta b.

Pero ¡Sorpresa! Eso no se puede hacer con una integral compleja porque ya que son efectivamente números en dos dimensiones, no hay un camino para llegar, sino una infinidad de caminos.

Y el gran problema es que cada camino podría darte un valor diferente al momento de calcular la integral.

Así que para integrar una función compleja es necesario que me digas cual será la curva por la cual integraremos dicha función, debido a esto hay grandes relaciones sobre como funciona una integral compleja y una integral de línea.

Esto se debe basicamente a que los números complejos no viven en una línea, una recta númerica, sino en todo un plano complejo.

Figura 9.1: ¿Qué camino sigo? C_1 ó C_2

9.1.1. Calcular un Integral Compleja sobre C

Supongamos que tenemos una función $f(z) = u_{(x,y)} + iv_{(x,y)}$ sobre una curva arbitraria \mathcal{C} desde el punto a hasta b

Supongamos que dicha curva se puede expresar usando ecuaciones parametricas de tal manera que x, y son funciones de un párametro t tal que así: x(t) y y(t).

Entonces tenemos que podemos expresar a a y a b como:

- $a = x(\alpha) + iy(\alpha)$
- $\bullet b = x(\beta) + iy(\beta)$

Entonces ya podemos definir lo que significa una integral compleja:

$$\int_C f(z)dz = \int_C f(x+iy)(dx+idy)$$

$$= \int_C (u+iv)(dx+idy)$$

$$= \int_C udx - vdy + i \int_C vdx + udy$$

Apliquemos un cambio de variable: $dx = \frac{dx}{dt}dt$ y $dy = \frac{dy}{dt}dt$

Por lo tanto finalmento podemos decir que:

$$\int_{c} f(z)dz = \int_{\alpha}^{\beta} u \frac{dx}{dt} dt - v \frac{dy}{dt} dt + i \int_{\alpha}^{\beta} v \frac{dx}{dt} dt + u \frac{dy}{dt} dt$$

$$= \int_{\alpha}^{\beta} u_{(x,y)} x'(t) dt - v_{(x,y)} y'(t) dt + i \int_{\alpha}^{\beta} v_{(x,y)} x'(t) dt + u_{(x,y)} y'(t) dt$$

Otra forma complemente igual de valida es no parametrizar las funciones en parte real e imaginaria, con lo cual podemos reducir a que si supongamos que tenemos una función f(z) si queremos integrarla a lo largo de una curva \mathcal{C} como:

$$\int_{\mathcal{C}} f(z)dz = \int_{\alpha}^{\beta} f(z(t)) \ z'(t) \ dt$$

Donde z(t) es una función parametrica de z.

9.2. Integrales Bonitas: Antiderivadas

Ya que hemos aprendido todo esto sobre las integrales podemos ver que el hecho de parametrizar simplifica enormemente todo el trabajo que tenemos que hacer sobre las mismas, llegando a esto tan bonito:

Sea z(t) = x(t) + iy(t) entonces suponiendo que sean continuas en [a, b] tenemos que:

$$\int_a^b z(t)dt = \int_a^b (x(t) + iy(t))dt = \int_a^b x(t)dt + i \int_a^b y(t)dt$$

9.3. Teorema de Cauchy

Si f(z) es analítica y estamos hablando de una curva simple, es decir en la que no se cruza consigo mismo, entonces tenemos que:

$$\oint_C f(z)dz = 0$$