Optimalizace

1. Optimalizační úlohy

Tomáš Kroupa Tomáš Werner 2023 LS

Fakulta elektrotechnická ČVUT v Praze

O čem je optimalizace?

Mathematical optimization

The selection of a best element with regard to some criterion from some set of available alternatives. (Wikipedia)

Optimalizační úloha je zadána

- 1. množinou prvků, ze kterých vybíráme,
- 2. kritériem, které prvky ohodnocuje reálným číslem a
- 3. požadavkem na minimalizaci/maximalizaci toho kritéria.

Optimalizace v kontextu

Motivace pro studium optimalizace na FEL

Základní otázky

PROČ? Al, ML, robotika, řízení, statistika, teorie her

JAK? Programování

CO? Optimalizační úlohy jsou formulovány matematicky

- Rozpoznávání a strojové učení
- Kombinatorická optimalizace
- Robotika
- Umělá inteligence v robotice
- Julia for Optimization and Learning
- Výpočetní teorie her
- Statistical Machine Learning
- Optimální a robustní řízení

O čem to bude

- 1. Aplikace lineární algebry
 - Metoda nejmenších čtverců, lineární regrese
 - PCA, ortogonální Prokrustův problém
 - Maticové rozklady: QR, spektrální, Choleského, SVD
- 2. Analýza a numerické metody
 - Podmínky optimality pro volné lokální extrémy
 - Iterační metody: gradientní, Newtonova, Gauss-Newtonova, Levenberg-Marquardtova
 - Omezení ve tvaru rovností, Lagrangeovy multiplikátory
- 3. Lineární programování
 - Konvexní polyedry
 - Simplexová metoda
 - Dualita
- 4. Úvod do konvexní optimalizace
 - Konvexní množiny a funkce
 - Třídy konvexních úloh

Výpočetní nástroje

Programovací jazyky a balíky

- Python + NumPy + SciPy
- Matlab
- Rychle se prosazuje Julia + JuMP

Solvery (řešiče)

• SeDuMi, GLPK, Gurobi, MOSEK

Úvodní definice a příklady

Úloha minimalizace

Minimalizuj f(x) za podmínky $x \in X$

- Účelová funkce $f: Y \to \mathbb{R}$
- Množina přípustných řešení $X \subseteq Y$
- Minimum funkce f na množině X je prvek $x^* \in X$ splňující

$$f(x^*) \le f(x) \quad \forall x \in X$$

a množinu všech minim funkce f na X značíme arg min $\underset{x \in X}{\operatorname{vec}}$

Funkce a jejich minima

Úloha maximalizace

Maximalizuj
$$f(x)$$
 za podmínky $x \in X$

• Maximum funkce f na množině X je prvek $x^* \in X$ splňující

$$f(x^*) \ge f(x) \quad \forall x \in X$$

a množinu všech maxim funkce f na X značíme arg $\max_{x \in X} f(x)$

Převod maximalizace na minimalizaci

$$\underset{x \in X}{\arg\max} f(x) = \underset{x \in X}{\arg\min} - f(x)$$

Prokládáme body přímkou

Modelujeme vztah váhy x a výšky y na základě dat.

Cíl

Hledáme přímku, která co nejtěsněji proloží černé body.

Prokládáme body přímkou – formulace modelu

Máme m měření $(x_i, y_i) \in \mathbb{R}^2$ váhy a výšky. Vztah vyjádříme lineární funkcí

$$f(x, \theta_1, \theta_2) = \theta_1 + \theta_2 x,$$

kde θ_1 a θ_2 jsou neznámé parametry.

Soustava lineárních rovnic $y_i = \theta_1 + \theta_2 x_i$, i = 1, ..., m, s neznámými θ_1 a θ_2 je vlivem náhody přeurčená.

Úloha nejmenších čtverců

Minimalizuj
$$\sum_{i=1}^m (y_i - f(x_i, heta_1, heta_2))^2$$
 za podmínky $heta_1, heta_2 \in \mathbb{R}$

Prokládáme body přímkou – formulace modelu maticově

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^{m \times 1} \quad \mathbf{A} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix} \in \mathbb{R}^{m \times 2} \quad \boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \in \mathbb{R}^{2 \times 1}$$

Úloha nejmenších čtverců

Minimalizuj $\|\mathbf{y} - \mathbf{A} \mathbf{ heta}\|^2$ za podmínky $\mathbf{ heta} \in \mathbb{R}^2$

Prokládáme body přímkou – řešení

Pomocí lineární algebry lze úlohu reformulovat jako hledání řešení soustavy lineárních rovnic

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{\theta} = \mathbf{A}^{\mathsf{T}}\mathbf{y}.$$

Ta má v našem případě jediné řešení $heta^* = (\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{y}$.

Optimální řešení úlohy nejmenších čtverců:

$$\theta_1^* = 130.2, \quad \theta_2^* = 0.6.$$

Hledáme optimální směs zeleniny

Pro 3 druhy syrové zeleniny udává tabulka výživové hodnoty, ceny a nejmenší předepsaný obsah živin v jedné příloze jídla.

	Mrkev	Bílé zelí	Okurka	Požadavek
Vitamín A (mg/kg)	35	0.5	0.28	0.5 mg
Vitamín C (mg/kg)	60	300	80	15 mg
Vláknina (g/kg)	30	20	10	4 g
Cena (Kč/kg)	26	22	60	

Cíl

Nalézt množství každého druhu zeleniny, které minimalizuje cenu přílohy jídla při splnění předepsaných výživových limitů.

Hledáme optimální směs zeleniny – formulace modelu

	Mrkev	Bílé zelí	Okurka	Požadavek
Vitamín A (mg/kg)	35	0.5	0.28	0.5 mg
Vitamín C (mg/kg)	60	300	80	15 mg
Vláknina (g/kg)	30	20	10	4 g
Cena (Kč/kg)	26	22	60	

Úloha lineárního programování

min
$$26x_1+22x_2+60x_3$$
 za podmínek $x_i\geq 0,$ $i=1,2,3$ $35x_1+0.5x_2+0.28x_3\geq 0.5$ $60x_1+300x_2+80x_3\geq 15$ $30x_1+20x_2+10x_3\geq 4$

Hledáme optimální směs zeleniny – řešení

Úloha lineárního programování

min
$$26x_1+22x_2+60x_3$$
 za podmínek $x_i \geq 0,$ $i=1,2,3$ $35x_1+0.5x_2+0.28x_3 \geq 0.5$ $60x_1+300x_2+80x_3 \geq 15$ $30x_1+20x_2+10x_3 \geq 4$

- Optimální řešení je (0.115, 0.027, 0) za cenu 3.592
- Při požadavku na okurku $x_3 \geq 0.1$ dostaneme řešení (0.097, 0.004, 0.1) za cenu 8.618

Minimalizujeme Himmelblauovu funkci

Funkce $f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ má 4 lokální minima (např. (3,2)) a 1 lokální maximum.

Gradientní metoda z bodu $\mathbf{x}_0 = (2,1)$ s krokem $\alpha = 0.01$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)$$

Nejkratší křivka

Cíl

Nalezněte nejkratší křivku spojující 2 body v rovině.

Nejkratší křivka – formulace a řešení úlohy

- Uvažujme $\mathbf{x},\mathbf{y}\in\mathbb{R}^2$ a předpokládejme, že $x_1\neq y_1$.
- Křivka spojující **x** a **y** je grafem spojitě diferencovatelné funkce $f: [x_1, y_1] \to \mathbb{R}$, kde $f(x_1) = x_2$ a $f(y_1) = y_2$.
- Délka křivky je $D(f) = \int_{x_1}^{y_1} \sqrt{1 + f'(t)^2} \ dt$

Úloha variačního počtu

min
$$D(f)$$

kde f je spojitě diferencovatelná funkce vyhovující omezením výše

Úlohu řeší afinní funkce procházející body x a y.

Kategorie optimalizačních úloh

Podle typu množiny přípustných řešení X mluvíme o

- spojité optimalizaci, kde $X \subseteq \mathbb{R}^n$ je nespočetná množina,
- diskrétní optimalizaci, kde X je konečná/spočetná,
- variačním počtu, kde X obsahuje reálné funkce.

V tomto kurzu se budeme zabývat spojitou optimalizací.

Obecně o úloze spojité optimalizace

Úloha spojité optimalizace

Obecný tvar

min
$$f(x_1,\ldots,x_n)$$
 za podmínek $g_i(x_1,\ldots,x_n)\leq 0, \quad i=1,\ldots,m$ $h_i(x_1,\ldots,x_n)=0, \quad i=1,\ldots,\ell$ $x_1,\ldots,x_n\in\mathbb{R}$

Vektorový zápis:

$$\min \{ f(\mathbf{x}) \mid \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \ \mathbf{h}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in \mathbb{R}^n \}$$

Příklad

Řešíme úlohu

$$\min_{\mathbf{x}\in\mathbb{R}^2}e^{x_1+x_2}$$

za podmínky $x_1^2 \le x_2$.

- Na obrázku jsou vrstevnice účelové funkce a množina přípustných řešení
- Globální minimum $\left(-\frac{1}{2},\frac{1}{4}\right)$ lze snadno nalézt úvahou

Základní otázky

$$\min \left\{ f(\mathbf{x}) \mid \underbrace{\mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \ \mathbf{h}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in \mathbb{R}^n}_{X} \right\}$$

Je úloha přípustná?

Je množina X neprázdná?

Existuje globální/lokální minimum?

- Nabývá funkce f na X minima, neboli $\underset{\mathbf{x} \in X}{\operatorname{arg min}} f(\mathbf{x}) \neq \emptyset$?
- Jak velká je množina arg min $f(\mathbf{x})$?
- Pokud $\underset{\mathbf{x} \in X}{\operatorname{arg\,min}} f(\mathbf{x}) = \emptyset$, spokojíme se s lokálním minimem?

Příklad

Řešíme úlohu

$$\min_{x \in \mathbb{R}} x^2 - x^4$$

bez omezujících podmínek.

- Globální minimum neexistuje: $\lim_{x \to \pm \infty} x^4 (\frac{1}{x^2} 1) = -\infty$
- Nutná podmínka $f'(x) = 2x 4x^3 = 2x(1 2x^2) = 0$
- Lokální extrém může nastat pouze v bodech 0, $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$
- Jen bod 0 je lokální minimum, protože f''(0) = 2

Různé formy řešení optimalizačních úloh

Analytický tvar

Globální minimum úlohy nejmenších čtverců pro lineární regresi je vektor parametrů $\theta^* = (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{y} \in \mathbb{R}^2$.

Algoritmus

Globální minimum v úloze lineárního programování je směs zeleniny $\mathbf{x}^* \in \mathbb{R}^3$ na výstupu simplexové metody.

Iterační metoda

Lokální minimum \mathbf{x}^* funkce $f \colon \mathbb{R}^n \to \mathbb{R}$ aproximuje posloupnost $\mathbf{x}_1, \mathbf{x}_2, \dots$ generovaná gradientní metodou.

Úloha na optimální umístění

Hledáme lokaci pro heliport, z něhož dolétne helikoptéra po úsečce do nejvzdálenějšího z míst $\mathbf{a}_1,\dots,\mathbf{a}_m\in\mathbb{R}^2$ v nejkratším čase:

Definice úlohy

Minimalizuj
$$f(\mathbf{x}) = \max_{i=1}^m \|\mathbf{x} - \mathbf{a}_i\|$$
 za podmínky $\mathbf{x} \in \mathbb{R}^2$

Účelová funkce je konvexní, ale nehladká. Minimum existuje.

$$\mathbf{a}_1 = (0,0), \ \mathbf{a}_2 = (5,-1), \\ \mathbf{a}_3 = (1,-4), \ \mathbf{a}_4 = (-4,3)$$

Ekvivalentní úlohy

- Formulujeme úlohy, které jsou ekvivalentní té předchozí
- Najděte nejmenší kruh obsahující body $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^2$:

Úloha s nehladkými omezeními

Min
$$r$$
 z.p. $\|\mathbf{x} - \mathbf{a}_i\| \le r$, $i = 1, ..., m$, $\mathbf{x} \in \mathbb{R}^2$, $r \in \mathbb{R}$

Kvadratické programování s kvadrat. omezeními (QCQP)

Min
$$r^2$$
 z.p. $\|\mathbf{x} - \mathbf{a}_1\|^2 \le r^2$, $i = 1, ..., m$, $\mathbf{x} \in \mathbb{R}^2$, $r \in \mathbb{R}$

Kvadratické programování (QP)

$$\mathsf{Min}\ \rho + \|\mathbf{x}\|^2 \quad \mathsf{z.p.}\ \rho + 2\mathbf{a}^\mathsf{T}\mathbf{x} \geq \|\mathbf{a}\|^2, \quad \mathbf{x} \in \mathbb{R}^2, \ \rho \in \mathbb{R}$$