一、单项选择题(每小题 2 分,共 30 分)

1. 复数
$$z = 2 - 2j$$
 的模和辐角主值分别是()

A.
$$2 \pi \frac{\pi}{4}$$
; **B.** $2 \pi - \frac{\pi}{4}$; **C.** $2\sqrt{2} \pi \frac{\pi}{4}$; **D.** $2\sqrt{2} \pi - \frac{\pi}{4}$.

2. 方程
$$|z-j|=1$$
表示的曲线是()

3.
$$(1+j)^4 = ($$

A. 4; **B.**
$$-4$$
; **C.** 16; **D.** -16 \circ

4.
$$e^{j\frac{\pi}{2}} = ($$

A.
$$j$$
; **B.** $j\frac{\pi}{2}$; **C.** 1; **D.** 0 •

5.
$$Ln(j) = ($$

A. 0; **B.**
$$\frac{\pi}{2}$$
; **C.** $j\pi$; **D.** $j(2k+\frac{1}{2})\pi$, k 为任意整数。

6.
$$\sin(j) = ($$

A.
$$\frac{1}{2}(e+e^{-1})$$
; **B.** $\frac{1}{2}(e-e^{-1})$; **C.** $\frac{j}{2}(e+e^{-1})$; **D.** $\frac{j}{2}(e-e^{-1})$ •

A.
$$\oint_{|z|=1} \frac{z}{z-3} dz$$
; **B.** $\oint_{|z|=1} \frac{e^z}{z} dz$; **C.** $\oint_{|z|=1} \frac{1}{z} dz$; **D.** $\oint_{|z|=1} \frac{1}{\sin z} dz$

8. 幂级数
$$\sum_{n=0}^{\infty} \frac{n}{2^n} z^n$$
 的收敛半径是()

A.
$$\frac{1}{2}$$
; **B.** 2; **C.** 1; **D.** 4.

9.
$$z = 0$$
 是函数 $\frac{\sin z}{z}$ 的()

10. 留数 Re
$$s[\frac{2z}{z-1},1]=($$
)

A. 1; **B.**
$$-1$$
; **C.** 2; **D.** -2 .

11.
$$\delta(x)$$
的广义傅里叶变换是()

A. 1; **B.**
$$2\pi$$
; **C.** $e^{-j\omega}$; **D.** $\delta(\omega)$.

A.
$$\frac{2}{s^2}$$
; **B.** $\frac{2}{s^3}$; **C.** $\frac{1}{s^2}$; **D.** $\frac{1}{s^3}$ o

13. 下列关于
$$u(x,t)$$
 的偏微分方程中,属于二阶、线性、非齐次的是(

A.
$$\frac{\partial^2 u}{\partial t^2} + 4 \frac{\partial u}{\partial x} + u = \sin t$$
; **B.** $\frac{\partial^2 u}{\partial x^2} - 9e^u = 9x^2$; **C.** $\frac{\partial^2 u}{\partial t^2} + \cos u = 10$; **D.** $(\frac{\partial^2 u}{\partial x^2})^2 + \frac{\partial u}{\partial x} = t$

- **14.** 勒让德方程 $(1-x^2)v''-2xv'+2v=0$ 的一个解是下面哪一个勒让德函数()
 - **A.** $P_1(x)$; **B.** $P_2(x)$; **C.** $P_3(x)$; **D.** $P_6(x)$ \circ
- **15.** 贝塞尔方程 $x^2y'' + xy' + (x^2 9)y = 0$ 的一个解是下面哪一个贝塞尔函数(
- **A.** $J_1(x)$; **B.** $J_2(x)$; **C.** $J_3(x)$; **D.** $J_9(x)$.

)

- 二、证明题(10分)
- **16.** 证明三角函数恒等式: $\sin^2 z + \cos^2 z = 1$
- 三、辨析题(10分)
- **17.** 判断 x = 0 是方程 y''(x) + xy'(x) + y(x) = 0 的常点还是正则奇点,并写出以 x = 0 为中心的 邻域内幂级数解的形式。

四、计算题(18, 19, 20 题每题 10 分, 21 题 12 分, 22 题 8 分, 共 50 分)

- **18.** 设 C 为逆时针方向沿圆周 |z|=3 的闭合曲线,计算积分 $\oint_C \frac{e^z}{z} dz$ 。
- **19.** 在区域 0 < |z| < 1 内把函数 $f(z) = \frac{1}{z^2(1-z)}$ 以 $z_0 = 0$ 为中心展开为罗朗级数。
- **20.** 求函数 $f(x) = \begin{cases} 1, & 0 \le x \le \tau \\ 0 & x < 0 \Rightarrow x > \tau \end{cases}$ 的傅里叶变换,其中 τ 为大于零的实数。
- **21.** 用**分离变量法**求解如下定解问题(常数l > 0, K > 0)。

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & x \in (0, l), t > 0 \\ u(0, t) = u(l, t) = 0, & t \ge 0 \\ u(x, 0) = K \sin \frac{3\pi x}{l}, & u_t(x, 0) = 0, & x \in [0, l] \end{cases}$$

22. 求解如下初值问题。

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0 & (-\infty < x < \infty, t > 0, a > 0) \\ u(x,0) = \sin x, & u_t(x,0) = \sin(x - \frac{\pi}{4}) \end{cases}$$

-、单项选择题

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	A	В	A	D	D	A	В	A	С	A	В	A	A	С

二、证明题

16. 证明: 因为
$$\sin z = \frac{e^{jz} - e^{-jz}}{2j}$$

$$\cos z = \frac{e^{jz} + e^{-jz}}{2}$$

所以
$$\sin^2 z + \cos^2 z = -\frac{(e^{jz})^2 - 2 + (e^{-jz})^2}{4} + \frac{(e^{jz})^2 + 2 + (e^{-jz})^2}{4} = 1$$

四、辨析题

17. x = 0 是方程的常点

方程的幂级数解:
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $|x| < \infty$

四、计算题

18. 留数: Re
$$s[\frac{e^z}{z-2},2] = e^2$$

$$\oint_C \frac{e^z}{z - 2} dz = j2\pi \operatorname{Re} s[\frac{e^z}{z - 2}, 2] = j2\pi e^2$$

19.
$$\frac{1}{z^{2}(1-z)} = \frac{1}{z^{2}} \frac{1}{1-z}$$
$$\frac{1}{z^{2}(1-z)} = \sum_{n=0}^{\infty} z^{n-2} = \sum_{n=-2}^{\infty} z^{n}, \quad 0 < |z| < 1$$

20. 傅里叶变换:
$$\bar{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-j\omega x} dx$$

$$\bar{f}(\omega) = \int_0^{\tau} e^{-j\omega x} dx$$
, $\bar{f}(\omega) = \frac{1}{j\omega} (1 - e^{-j\omega \tau})$

21. 把分离变量形式的解u(x,t) = X(x)T(t)代入方程和边界条件可得:

$$(1) T''(t) + \lambda a^2 T(t) = 0$$

(2)
$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ X(0) = X(l) = 0 \end{cases}$$

方程(2)的本征值:
$$\lambda_n = (\frac{n\pi}{I})^2$$

方程(2)的本征函数:
$$X_n(x) = \sin(\frac{n\pi}{l}x)$$
, $n = 1,2,3,\cdots$

方程(1)的通解:
$$T_n(t) = C_n \cos(\frac{an\pi}{l}t) + D_n \sin(\frac{an\pi}{l}t)$$

定解问题的本征解:
$$u_n(x,t) = [C_n \cos(\frac{an\pi}{l}t) + D_n \sin(\frac{an\pi}{l}t)]\sin(\frac{n\pi}{l}x)$$

定解问题的解:
$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} \left[C_n \cos(\frac{an\pi}{l}t) + D_n \sin(\frac{an\pi}{l}t) \right] \sin(\frac{n\pi}{l}x)$$

展开系数:
$$C_n = \begin{cases} K, & n=3\\ 0, & n \neq 3 \end{cases}$$
, $D_n = 0$

所以:
$$u(x,t) = K\cos(\frac{3\pi a}{l}t)\sin(\frac{3\pi}{l}x)$$

22. 由达朗贝尔公式
$$u(x,t) = \frac{1}{2} [\varphi(x+at) + \varphi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\zeta) d\zeta$$
 可得:

$$u(x,t) = \frac{1}{2} [\sin(x+at) + \sin(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \sin(\zeta - \frac{\pi}{4}) d\zeta$$

$$u(x,t) = \sin x \cos at + \frac{1}{a}\sin(x - \frac{\pi}{4})\sin at$$