3. Given the following CUDA program, how can you improve the performance? Justify your answer. [10 pts]

```
even 21 odding 2714 Lenne 12 Hatelit
                                                                                  * assume appropriate cudaMalloc and cudaMemcpy called to \star create and initialize d_a and d_b.
                                                                                                                                                                                                                    --global__ compute(float *a, float *b) {
   const int tid = threadIdx.x + blockIdx.x * blockDim.x;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Warp divergence
                                                                                                                                                    compute<<<16, 256>>>(d_a,d_b);
                                                                                                                                                                                                                                                                                   if(tid % 2 == 0){
    operation_even(a, b);
int main() {
   float h_a[1024], h_b[1024];
                                                                                                                                                                                                                                                                                                                                                                        operation_odd(a, b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Your answer:
                                                                                                                                                                                                                                                                                                                               }
else {
```

- 4. Prim's algorithm is a greedy algorithm that finds MST. Given the following graph, we run three processes to find its MST in parallel starting from b, then d, a, c, e, and f.
- (a) How will you partition given input numbers? [5 pts] Your answer:

							1
Ψ.	8	~	8	8	8	2	0
Φ	8	8	8	Н	4	0	2
σ	-	8	\leftarrow	7	0	4	8 [
U	2	~	<u>.</u>	0	7	\leftarrow	8
۵	0	-	. 0	2	Н	8	8
σ	_	10	· -	m	8	8	7
	믕	π	5 4	U	σ	Ð	4

(b) Describe four necessary steps in parallel Prim's algorithm. [10 pts]

Partition inputs first.
For each iteration,
Step 1: IMM

加强的人 P: 7t local min d: [U] & Global min AMS 9134 Pool All-to-One reductions ない Step 2:

- to- All Broadcast one Step 3:

d [u] el loral update of Step 4:

The following figure shows a lock-free recursive split-ordering hash table. The capacity of each bucket is 2. Keys are guaranteed to be smaller than 8, hence only 3 bits are needed for keys. We insert a sentinel node when the first item is inserted into a bucket. 5.

(a) Illustrate how the split-ordering hash table will be changed after we insert a new key 3. [5 pts]

(b) Illustrate how the split-ordering hash table will be changed from (a) after we insert two more keys: 5 and 7. [10 pts]

Academic Honor Pledge

with cheating or plagiarism while enrolled as a student in I promise or affirm that I will not at any time be involved Operating Systems class at Sungkyunkwan University. penalties as severe as Indefinite suspension from the I understand that violation of this code will result in University

	17.0.	:	
•	anghire	משונעו)
(1	2	
	7110	7	

	[1,									
	H			\triangleright						
True or False: Choose the correct answer [40 pts]	SIMD is a parallel programming model for distributed memory.	MPI is an SPMD programming library.	MPI is an SPMD programming library.) Data stored in GPU local memory is visible only to a single CUDA thread.	Data stored in GPU shared memory is visible to every CUDA thread in the GPU device.	Access to the shared memory in the same bank by two CUDA threads in different warps creates a bank conflict.) In block-stripe analysis of PageRank, each stripe contains only source nodes in the corresponding block of the new rank vector.	One of the major performance bottlenecks in Hadoop compared to Spark is disk I/O for shuffling.		
True	(a)	(b)	(c)	(p)	(e)	(f)	(g)	(h)		

2. Do the following codes have a loop-carried dependence? If so, identify the type of each dependence (i.e., true dependence, anti dependence, or output dependence). If possible, remove the dependence.

口中国系 部部 anti - dependence Your answer:

```
(b) [10 pts]

for (i = 0; i < N - 1; i++) {

(j) → a[i] = a[i] + b[i];

(2) → b[i+1] = c[i] + d[i];
```

山野 (00) 多(0 True dependence KIL Your answer: