ISI 2011

Leveraging social networks to detect of anomalous insider actions in collaborative environments

You Chen, Steve Nyemba, Wen Zhang, Bradley Malin Health Information Privacy Lab, Vanderbilt University

Outline

- Motivation
- Typical attacks
- Methods
- Experiments
- Limitations and future works

Motivation

Electrical Health Records Systems: multiple users access common patients' records

Privacy requirements, especially for sensitive information For different tasks, the roles and permissions are always evolving and changing, it is difficult to define these roles and permissions. Hackers can steal different roles to illegally Poles and permission. access subjects' sensitive information without being detected **Behavior** Modeling Information requirements which leads to Information exposure

Outline

- Motivation
- Typical attacks
- Methods
- Experiments
- Limitations and future works

Typical Attacks

Detecting anomalous users from a global view is a cool way to protect privacy of subjects information, and CADS is a typical model by using global social network

Outline

- Motivation
- Typical attacks
- Methods
- Experiments
- Limitations and Future works

Methods

The methods were both based on access patterns which can be retrieved from a bipartite graph of users and subjects

SNAD: A specialized network anomaly detection model

SNAD hypothesizes that if a user in the local network is anomalous, the similarity between this user to the network will be lower than the remaining users

Framework of SNAD

User Modeling

$IDF(u_i) = log_{-}$		S	
$IDF(u_i) = log \frac{1}{1}$	$+ \{s_j,$	where	$SU(j,i) > 0\}$

	u ₁	u ₂	u ₃	U ₄	u ₅	u ₆
s_1	1	0	1	0	0	0
s ₂	1	1	1	1	1	0
S ₃	1	1	0	1	1	1
S ₄	1	0	0	0	0	1
s ₅	0	1	0	1	1	0
S ₆	0	0	1	0	0	1
57	0	1	1	1	1	0

		u ₁	u ₂	u ₃	u ₄	u ₅	u ₆	
	s_1	0.15	0	0.15	0	0	0	
1	s ₂	0.15	0.15	0.15	0.15	0.15	0	
	S ₃	0.15	0.15	0.00	0.15	0.15	0.24	
ı	S ₄	0.15	0	0	0	0	0.24	

0.15

0.15

0.15

0

0.15

0.15

0

0.15

0.24

0

0.15

0

0.15

57

Access Network Construction

Access Network Measurement

$$SIM(Net_{s_i}) = \frac{\sum_{i=1}^{|U_{s_i}|-1} \sum_{j=i+1}^{|U_{s_i}|} Sim(u_i, u_j)}{\frac{|U_{s_i}| \times (|U_{s_i}|-1)}{2}}$$

Anomaly Evaluation - Access Measurement

Anomaly Evaluation – Anomaly detection

Anomaly Evaluation

 $Score(u_j \rightarrow s_3) = SIM(Net_{s_{3j}}) - SIM(Net_{s_3})$

Compared Models: Spectral Anomaly Detection Model

Experiments

- Motivation
- Typical attacks
- Methods
- Experiments
- Limitations and future works

Data Sets

Vanderbilt Medical Center. From a very large EHR systempatients' records are considered as subjects

-Private dataset

Wiki editing system-pages are considered as subjects

-Public dataset and can be replicated SNAD on this dataset

Dataset	Weeks	Users/week	Subjects/week	Accesses/week
EHR	30	2,281	13,148	44,250
Wiki	50	3,952	240	28,186

In EHR System-one week

In Wiki-one week

Evaluation

For a random user, verifying how number of simulated access injected into this user influence the performances of SNAD

For a fixed number of simulated accesses, verifying how number of intruded users influence the performances of SNAD

The number of simulated accesses and intruded users are both diverse

Model Evaluation-setting 1

For a random user, injecting simulated accesses

S ₁	S ₂	S ₃		S _i	 S _n	
0	1	0		0	 0	
0	1	1		0	 0	1
1	1	1		0	 0	2
		I				
			· 			
1	1	1		1	 1	100

Model Evaluation-setting 2

Fixing number of simulated accesses, number of intruders is random

S ₁	Sa	Sa	•••	Si	•••	Sn
_ T	- Z	- 3		-1		- N

Intruder_2

0	1	1		1		1	
---	---	---	--	---	--	---	--

•

 1
 1
 ...
 1
 ...
 0
 Intruder_k

Model Evaluation-setting 3

Fixing number of simulated accesses, number of intruders is random

Dataset	SNAD	Spectral IDF	Spectral Binary
EHR	0.83 ± 0.03	0.74 ± 0.06	0.69 ± 0.05
Wiki	0.91 ± 0.02	0.76 ± 0.04	0.64 ± 0.04

Experiments

- Motivation
- Typical attacks
- Methods
- Experiments
- Limitations and future works

Limitations and Future Works

Only mining access patterns on users and subjects will lead to high false positive rates and low true positive rates

When mining normal patterns, we can include semantic information of users and subjects to decrease false positive rates and increase true positive rates

SNAD is not appropriate on large access network with low network similarity. In this case, the suppression of a user has little influence on the similarity of access network. In HER system and Wiki system, SNAD has high performance, since these systems are collaborative and access networks have high network similarity

Questions? You.chen@vanderbilt.edu

This research was sponsored by grants CCF-0424422 and CNS-0964063 from the National Science Foundation and 1R01LM010207 from the National Institutes of Health.