1

0.1 Cascode 放大器

0.1.1 共源共栅极放大电路

图 1: 共源共栅极放大电路

0.1.1.1 Large Signal Behavior:

• Input:

$$V_{in} > V_{th1}$$

• Output:

$$V_x > V_{gs1} - V_{th2}$$

$$V_b > V_x + V_{th2}$$

$$V_{out} - V_x > V_{qs2} - V_{th2}$$

• So:

$$V_{out} > V_{gs1} - V_{th1} + (V_{gs2} - V_{th2})$$

为了使 V_{out} 的 swing 尽可能大,要使 V_b 尽可能低。最低值就是:

$$V_b = V_x + V_{gs2} > V_x + V_{th2} > V_{gs1} - V_{th1} + V_{th2}$$
 (1)

0.1.2 小信号增益 Gain

图 2: Cascode 小信号模型图

$$A_{V} = G_{m}r_{out}$$

$$= -g_{m1}r_{o1}[(g_{m2} + g_{mb2})r_{o2} + 1]$$

$$= A_{V1} \times A_{V2}$$
(2)

0.1.2.1 输出电阻

图 3: 测量小信号输出电阻

0.1.2.2 Transconductance G_m

$$G_m = -\frac{g_{m1}r_{o1}[r_{o2}(g_{m2} + g_{mb2}) + 1]}{r_{o1}r_{o2}(g_{m2} + g_{mb2}) + r_{o1} + r_{o2}}$$
(4)

0.1.3 Triple Cascode 放大器

图 4: Triple Cascode 放大器

3

0.1.3.2 输出电阻

$$r_{out} = (g_{m3} + g_{mb3})\{[1 + (g_{m2} + g_{mb2})r_{o2}]r_{o1} + r_{o2}\}r_{o3} + r_{o3}$$
 (6)

0.1.4 另一种 Cascode 放大器

0.1.4.1 Gain

$$A_{V} = g_{m1}[(g_{m2}r_{o1}r_{o2}) + (g_{m3}r_{o4}r_{o3})]$$
(7)

0.1.4.2 r_{out}

$$r_{out} = (r_{o1} + r_{o2} + r_{o1}r_{o2}(g_{m2} + g_{mb2}))$$

$$||(r_{o3} + r_{o4} + r_{o3}r_{o4}(g_{m3} + g_{mb3}))|$$

图 5: 另一种 Cascode 共源共栅放大器

这个电路有一个问题: Output Swing 特别小,为 $(V_{dd}-4\times$ 过驱动电压)。

0.1.5 Folded-Cascode 放大器

图 6: Folded-Cascode 放大器

图 7: Folded-Cascode 放大器

0.1.5.1 大信号特性

- $V_{in} > V_{DD} |V_{TH1}|$, M_1 关断, M_2 承载了所有电流 I_1
- $V_{in} < V_{DD} |V_{TH1}|$, M_1 开启并工作在饱和区
- V_{in} 继续降低, 到达 $I_{D1}=I_1$ 的时候, M_2 关断, 此时 $V_{in}=V_{in1}$
- 当 V_{in} 继续降低, $V_{in} < V_{in1}$ 的时候, M_1 进入三极管区

0.1.5.2 小信号分析