Day 2

题目名称	收益	最短路	未来程序
可执行文件名	value	distance	crack
输入文件名	value.in	distance.in	crack.in
输出文件名	value.out	distance.out	crack.out
每个测试点时	2 秒	1秒	1 秒
限			
内存限制	256MB	256MB	256MB
是否有部分分	否	否	否
题目类型	传统型	传统型	提交答案型
是否有样例文	否	否	否
件			
是否有附加文	否	否	否
件			

提交源程序须加后缀

对于 C++	语	value.cpp	distance.cpp	crack.cpp
言				

编译开关

对于 C++ 语	-O2 -lm	-O2 -lm	-O2 -lm
言			

收益(Value)

【问题描述】

给两个n维向量 $a,b, \forall 0 \le i < n; a_i \ge b_i$ 。 你需要设定两个参数 $x,y,x \ge y$,对于每个i,计算收益:

- 否则,获得0的收益

最大化总收益。

【输入格式】

输入文件为 value.in。

第一行包含1个正整数n。

接下来n行每行包含2个整数 a_i, b_i 。

【输出格式与部分分】

输出文件为 value .out。

共一行包含1个整数,表示总收益的最大值。

【样例1输入】

5

80 20

60 50

40 40

15 10

70 30

【样例1输出】

220

【子任务】

对于100%的数据, $0 \le b_i \le a_i \le 10^9$

编号	分值	n	特殊性质
1	16	≤ 3000	
2	18	≤ 100000	a = b
3	11	≤ 50000	
4	12	≤ 75000	
5	43	≤ 150000	

最短路(Distance)

【问题描述】

给定一个 $n \times m$ 的网格图和包括(1,1),(n,m) 在内的k个标记点,你只能通过标记点进行转移。

任意两个标记点间的距离定义为2的切比雪夫距离次方,即 (x_1,y_1) 和 (x_2,y_2) 间的距离为 $2^{\max(|x_1-x_2|,|y_1-y_2|)}$ 。

输出一条从(1,1)到(n,m)的最短路。

【输入格式】

输入文件为 distance.in。

第一行包含3个正整数n, m, k。

接下来k行每行包含2个正整数 x_i, y_i ,表示一个标记点的坐标,其中1号点一定是(1,1),k号点一定是(n,m)。

【输出格式与部分分】

输出文件为 distance.out。

第一行包含一个正整数t。

第二行包含t个正整数 ans_1 , ans_2 , ..., ans_t ,表示一条最短路。 ans_i 表示最短路中到达的第i个标记点的编号,其中 ans_1 一定是1, ans_t 一定是k。

【样例1输入】

- 5 6 9
- 1 1
- 4 3
- 4 6
- 2 5
- 3 1
- 3 3
- 3 6
- 5 4
- 5 6

【样例1输出】

5

1 6 2 8 9

【子任务】

所有测试数据的范围和特点如下:

对于 100 % 的数据, $1 \leq x_i \leq n$, $1 \leq y_i \leq m$

编号	分值	n, m, k	特殊性质
1	23	≤ 500	
2	36	≤ 10000	每行每列最多一个标记点
3	41	≤ 10000	

未来程序(Crack)

【问题背景】

本题共分为 10 个子任务,下文将有针对每个子任务的具体说明。**每个子任 务各对应一种不同的基础算法,并且保证采用的任意单个算法对所有合法输入 数据具有普适性,即不会针对有限组输入数据采用特例**。你的目标便是还原这些 算法。

为了发掘这些程序所完成的任务,你可以利用下发的可执行文件 crack_force 运行任意自行设计的合法输入数据,具体使用方法将在下文提及。然而由于某些原因,下发的 crack_force 只能处理**规模较小**的输入数据,并且将会花费较多的时间。但你还原的程序必须在规定时间内解决**规模较大**的问题。

crack_force 从 crack_force.in 读取输入数据,并将输出数据写入到 crack force.ans。

本题将采用传统题方式进行评测,针对每个子任务均有若干组赛前已经生成的测试点,以检验你还原出的算法的正确性,只有全部通过才能获得该子任务的全部分数。

【输入格式】

输入文件为 crack.in。

对于所有数据,输入第一行均为1个整数t, $1 \le t \le 10$,表示该组数据所属的子任务编号。

接下来对于每个子任务分别进行描述(描述中出现的变量名均按照小写字母的顺序依次标识):

- ▶ 子任务 1\2
 - 共一行包含1个整数a。
- ▶ 子任务3
 - 第一行包含2个整数a,b。
 - 第二行包含a个整数 $c_1, c_2, ..., c_a$, $-10^9 \le c_i \le 10^9$ 。
 - 接下来b 行每行包含2 个整数 d_i , e_i , $1 \le d_i \le e_i \le a$ 。
- ▶ 子任务 4
 - 第一行包含2个整数a.b。
 - 第二行包含a个整数 $c_1, c_2, ..., c_a$, $0 \le c_i \le 10^9$ 。

- 接下来b 行每行包含2 个整数 d_i , e_i , $1 \le d_i \le e_i \le a$ 。
- ➤ 子任务 5/6
 - 共一行包含1个整数a。
 - 接下来a-1 行每行包含3个整数 $b_i, c_i, d_i, 1 \le b_i, c_i \le a; 0 \le d_i \le 10^9,$ 数据满足:
 - \blacklozenge $\forall 1 \leq i \leq a-1, b_i \neq c_i$

 - ◆ $\forall 1 \leq i, j \leq a,$ 存在序列 $\{e_f\}$ 满足:
 - $e_1 = i$
 - $e_f = j$
 - $\forall 1 \leq k < f$, 存 在 $1 \leq l \leq a 1$ 满 足 $(e_k, e_{k+1}) = (b_l, c_l)$ 或 $(e_k, e_{k+1}) = (c_l, b_l)$
- ▶ 子任务 7/8
 - 共一行包含2个整数a,b。
 - 接下来b行每行包含3个整数 c_i, d_i, e_i , $1 \le c_i, d_i \le a$; $0 \le e_i \le 10^9$, 数据满足:
 - \blacklozenge $\forall 1 \leq i \leq b, c_i \neq d_i$

 - ◆ $\forall 1 \leq i, j \leq \alpha$,存在序列{ f_a }满足:
 - $f_1 = i$
 - $f_a = j$
 - $\forall 1 \leq k < g$, 存 在 $1 \leq l \leq b$ 满 足 $(e_k, e_{k+1}) = (c_l, d_l)$ 或 $(e_k, e_{k+1}) = (c_l, d_l)$
- ▶ 子任务 9/10
 - 共一行包含一个由小写字母组成的字符串 a。

【输出格式】

输出文件为 crack.out。

▶ 子任务 1/2/5/6/7/8/9/10

■ 共一行包含一个整数ans, $-10^{18} \le ans \le 10^{18}$ 。

➤ 子任务 3/4

■ 共b行每行包含一个整数ans, $-10^{18} \le ans \le 10^{18}$.

【子任务】

编号	分值	crack_force数据范围	crack数据范围
1	6	$2 \le a \le 10^5$	$2 \le a \le 10^9$
2	10		
3	7	$2 \le a, b \le 10^3$	$2 \le a, b \le 10^5$
4	11		$2 \le a, b \le 10^4$
5	8	$2 \le a \le 100$	$2 \le a \le 1000$
6	12		
7	9	$2 \le a \le 100$	$2 \le a \le 1000$
8	13	$2 \le b \le 200$	$2 \le b \le 2000$
9	10	$2 \le a \le 100$	$2 \le a \le 1000$
10	14		