Вопрос №1

Функции одной переменной

Открытые и замкнутые множества на числовой оси

Определение. Точка x_0 множества $G \subset \mathbb{R}$ называется внутренней точкой множества G, если существует окрестность $O(x_0) \subset G$.

Определение. Множество чисел называется открытым, если все его точки - внутренние.

Определение. Пустое множество – по определению, открытое. **Примеры**:

- 1. \mathbb{R} открытое множество
- 2. Интервал (a, b) открытое множество
- 3. Промежутки [a,b), (a,b] не являются открытыми множествами (полуоткрытые множества)
- 4. Для любого отрезка [a,b), (a,b] его крайние точки a и b не имеют окрестности, содержащейся в [a,b], следовательно, отрезок не является открытым множеством.

Определение. Множество $G \subset \mathbb{R}$ называется замкнутым, если оно содержит все свои предельные точки.

Замечание. Пустое множество замкнуто.

Примеры.

- 1. \mathbb{R} замкнутое множество
- 2. Вещественный отрезок замкнутое множество

Замечание. Объединение/пересечение открытых множеств - открытое множество.

Теорема. Пусть $X \subset \mathbb{R}$ и X - замкнутое. Если X ограничено сверху, то $\sup X \in X$, т.е. среди элементов X есть наибольший.

Доказательство. X ограничено сверху, следовательно, $\exists b: \forall x \in X: x \leq b$, где b - наименьшая верхняя грань. Возьмем любую окрестность b. В левой части окрестности всегда есть точки из X, т.к. b - точная верхняя грань. Выходит, b - предельная точка X. А X - замкнуто, то есть содержит все свои предельные точки. Значит, $b \in X \Rightarrow \sup X \in X$.

Определение. Пусть $G \subset \mathbb{R}$. Точка $x_0 \in \mathbb{R}$ называется предельной точкой G, если $\forall O(x_0) \exists x_1 \in O(x_0) : x_1 \in G$ и $x_1 \neq x_0$.

Замечание. $+\infty$ - предельная точка любого неограниченного сверху множества X.

Замечание. Предельная точка множества не обязательно в нем лежит.

Пример. $[a,b] \subset \mathbb{R}$ точка $x \in [a,b]$ ($\forall x$) - предельная точка этого отрезка. Для конечного интервала (a,b) все точки отрезка [a,b] являются предельными.

Теорема. Если $X \subset \mathbb{R}$ и X - открытое множество, то среди его элементов нет наибольшего и наименьшего.

Доказательство. Пусть $\sup X \in X$. Тогда $\forall x \in X : x \leq b$. Не существует окрестности b, такой что она включена в X. Выходит, b не является внутренней точкой. Противоречие.

Граничные и предельные точки

Пусть $G \subset \mathbb{R}$. Точка $x_0 \in \mathbb{R}$ называется граничной точкой G, если любая ее окрестность содержит точку из G и не из G.

Определение. Границей множества $G \subset \mathbb{R}$ называется множество всех его граничных точек. Границу множества G обозначают δG .

Если G - замкнутое, то $\delta G \subset G$.

Если G - открытое, то $\delta G \cap G = \emptyset$.

Примеры:

- 1. $\delta\{[a,b]\} = \{a\} \cup \{b\}$
- 2. $\delta\{(a,b)\} = \{a\} \cup \{b\}$
- 3. Пусть X рациональные числа из интервала (0,1). Тогда $\delta X = [0,1] \colon X = \mathbb{Q} \cap (0,1) \Rightarrow \delta X = [0,1] \Rightarrow X \subset \delta X, \, X \neq \delta X$
- 4. Любая точка числового множества G это либо внутренняя, либо граничная точка: $x \in G \Rightarrow x \in G$, следовательно, совокупность всех внутренних точек G или $x \in \delta G \ \forall x \in \delta G \Rightarrow x \in G$ или x предельная точка G

Определение. Объединение числового множества G с множеством всех его предельных точек называется замыканием множества G, обозначается \overline{G} .

Числовые функции

Определение. Пусть $X \subset \mathbb{R}$ и $\forall x \in X$ по некоторому правилу f сопоставляется число y = f(x). Тогда множество пар (x, f(x)), где $x \in X$ называется числовой функцией и обозначается как f, либо как f(x), $x \in X$, либо как f(x), f(x) насокак f(x) насоках f(x) насоках

Определение. X - область определения функции f, обозначается D(f).

Определение. Множество $y \in \mathbb{R}: \exists x \in X, \ y = f(x)$ - множество значений функции f.

Определение. Графиком функции f называется множество точек плоскости с координатами $(x, f(x)), x \in X$.

Определение. Числовую функцию $f: X \to \mathbb{R}$ называют также отображением множества X в числовую ось. Если $Y \equiv f(x)$, то $f: X \to Y$ называют отображением X на множество Y.

Определение. Точка y = f(x) - образ точки x, а точка x - прообраз y.

Определение. Пусть $M \subset X$. Тогда множество $f(M) \equiv y \in \mathbb{R} : y = f(x), x \in M$ - образ множества M при отображении f.

Определение. Если область определения не указана, предполагается естественная область определения – множество чисел, для которых исходная формула имеет смысл.

Обратимые и обратные функции

Пусть задана функция f(x). Тогда для всех $y \in Y$ уравнение f(x) = y имеет хотя бы одно решение относительно x.

Определение. Функция $y = f(x), x \in X$ называется обратимой, если $\forall y \in Y = f(X)$ уравнение f(x) = y имеет единственное решение $x = \phi(y)$. При этом формула $x = \phi(y)$ - обратная к функции f и обозначается f^{-1} .

Пример. $y = x^2$ на отдельных ветках параболы имеет обратную функцию $(D(f) = [0, +\infty]$, например). Но вся парабола обратной функции не имеет.

Обратимость строго монотонных функций

Теорема. Любая строго возрастающая функция имеет обратную, которая также является строго возрастающей.

Доказательство. $\forall x_1 < x_2 \in X : f(x_1) < f(x_2). \ \forall y \in Y \ \exists x, \ \text{и притом только один} : f(x) = y.$

Возьмем $y_1 < y_2$. Из $f(x_1) < f(x_2)$ следует, что $x_1 < x_2$. Получили, что обратная функция также возрастает.

Сложные функции (композиции, суперпозиции). Примеры

Определение. Функция y = g(f(x)), где f и g - функции, называется сложной функцией (композицией) функций f и g (суперпозиция f и g).

Определение. Область определения сложной функции — ее естественная область определения. Если область определение равна \emptyset , композиция не имеет смысла.

```
Пример. y = g(u), где u = f(x). В частности, f(g(x)) \neq g(f(x)). Если f - обратимая функция, то f^{-1}(f(x)) = x, \forall x \in D_f. Пример. y = x^a, x \ge 0 \Leftrightarrow y = e^a \ln(x).
```

Показательная и логарифмическая функции

Пусть c>0 и $c\neq 1$. Тогда функция $y=c^x, x\in \mathbb{R}$ - показательная. Обратная к ней: $x=\log_c y, y>0$ - логарифмическая.

Экспонента

Если основание показательной функции c равно e, функция $y = e^x$, $x \in \mathbb{R}$ - экспоненциальная (или экспонента) (также $y = \exp(x)$).

Основные элементарные функции

К ним относятся: тождественно постоянные, показательная, степенная, логарифмическая, тригонометрические и обратные тригонометрические.

Определение. Все функции, полученные из основных элементарных при помощи конечного числа композиций и арифметических операций – элементарные.

Классификация множества функций одной переменной

- 1. Полиномы (многочлены): $y=a+ax+\ldots+ax^n,\ a\neq 0.\ n$ степень полинома. Тождественно нулевая функция тоже полином. Полиномы целые рациональные функции.
- 2. Рациональные (дробно-рациональные) функции: $y = \frac{P(x)}{Q(x)}, \ Q(x) \neq 0, \ P$ и Q полиномы.
- 3. Иррациональные функции это функции, которые не являются рациональными, но при этом могут быть представлены с помощью конечного числа композиций, например, рациональных и степенных функций с дробными показателями.
- 4. Трансцендентные функции элементарные, не являющиеся рациональными и иррациональными (показательная, логарифмическая, тригонометрические и обратные тригонометрические).

Вопрос №2

Линейные и Евклидовы пространства

Определение евклидова векторного пространства

Определение. Евклидовым векторным пространством называется вещественное линейное пространство X с заданным на нем скалярным произведением $\langle x,y \rangle$, для которого выполнены следующие условия:

- 1. $\langle x, x \rangle > 0 \ \forall x \neq 0$, иначе $\langle x, x \rangle = 0$
- 2. $\langle x, y \rangle = \langle y, x \rangle$
- 3. $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, x \rangle$

 $\forall x,y \in X$ скалярное произведение – вещественное число.

Скалярное произведение и его свойства

По определению, $\langle x,y\rangle$ - это произведение длин векторов на косинус угла между ними: $\langle x,y\rangle=|x|\cdot|y|\cdot\cos\phi$. Если $x=(x_1,x_2,x_3)$, разложение по базису пространства \mathbb{R}^3 , $x=x_1e_1+x_2e_2+x_3e_3$, то длина $|x|=\sqrt{x_1^2+x_2^2+x_3^2}$. Если $y=y_1e_1+y_2e_2+y_3e_3$, то $\langle x,y\rangle=x_1y_1+x_2y_2+x_3y_3$.

Длина вектора в евклидовом пространстве

Пусть X - евклидово векторное пространство со скалярным произведением $\langle x, y \rangle$.

Определение. Длиной или нормой вектора $x \in X$ называется неотрицательное вещественное число $|v| = \sqrt{\langle v, v \rangle} = \langle v, v \rangle^{\frac{1}{2}}$.

Пример. поле вещественных чисел \mathbb{R} представляет собой одномерное евклидово векторное пространство, длина вектора в котором совпадает с абсолютным значением (модулем) соответствующего вещественного числа.

Линейно зависимые и линейно независимые векторы

Пусть X - линейное пространство над полем k.

Определение. Векторы v_1, v_2, \ldots, v_n из X называются линейно-зависимыми, если существует некоторая их нетривиальная линейная комбинация, равная нулю: $\exists \alpha_1 \alpha_2 \ldots \alpha_n \in k : \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0$, причем $\exists j : \alpha_j \neq 0$.

Определение. Если векторы v_1, v_2, \ldots, v_n не являются линейно зависимыми, то их называют линейно независимыми: $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

Теорема. Векторы v_1, v_2, \ldots, v_n , где $n \ge 2$, линейно зависимы $\Leftrightarrow \exists j : v_j$ является линейной комбинацией остальных векторов.

Если некоторая подсистема векторов v_1, v_2, \ldots, v_n линейно зависима, то и вся система v_1, v_2, \ldots, v_n линейно зависима.

Если система линейно независима, то и любая ее подсистема линейно независимая.

Теорема $(s \leq t)$. Если каждый из векторов линейно независимой системы e_1, e_2, \ldots, e_s является линейной комбинацией векторов f_1, f_2, \ldots, f_t , то $s \leq t$.

Базис в \mathbb{R}^n

Определение. Пусть X - линейное пространство, $\dim X = n$. Любая система из n линейно независимых векторов $e_1, e_2, \ldots, e_n \in X$ называется базисом пространства X. Базис нульмерного пространства – пустое множество.

Теорема о свойствах базиса. Следствия

Пусть X - линейное пространство над полем k с базисом (e_1, e_2, \ldots, e_n) . Тогда

I каждый вектор v из X можно представить единственным образом в виде линейной комбинации базисных векторов.

Доказательство. Возьмем базис и дополнительный вектор v из X. В этом множестве n+1 элементов и по определению $\dim X$ это линейно зависимая система векторов, или $\exists a, a_1, a_2, \ldots, a_n \in k \colon av + a_1e_1 + a_2e_2 + \ldots + a_ne_n = 0$ (существует такой набор коэффициентов, при которых система сводится в ноль). Из неравенства нулю следует наличие обратного элемента, поэтому v представим в виде $v = -a^{-1}a_1e_1 - a^{-1}a_2e_2 - \ldots - a^{-1}a_ne_n$. То есть вектор представлен в виде линейной комбинации базиса.

Докажем, что такое представление единственное. Пусть $v = b_1 e_1 + b_2 e_2 + \ldots + b_n e_n$. $v = f_1 e_1 + f_2 e_2 + \ldots + f_n e_n$. Тогда $(b_1 - f_1)e_1 + (b_2 - f_2)e_2 + \ldots + (b_n - f_n)e_n = 0$. Так как базис линейно независим, такое возможно, только если все коэффициенты равны 0. Это означает, что разложения одинаковы.

II любую систему из $s \leq n$ линейно независимых векторов пространства X можно дополнить до базиса.

Доказательство. Пусть $1 \le s \le n$ и имеется система f_1, f_2, \ldots, f^s линейно независимых векторов из X. Рассмотрим следующее множество из s+n элементов:

$$f_1, f_2, \dots, f_s, e_1, e_2, \dots, e_n.$$
 (1)

Преобразуем это множество следующим образом: если вектор e_n линейно выражается через предыдущие векторы цепочки, то исключим его из нашего множества, иначе оставим и перейдем к e_{n-1} . Если выражается — снова убираем и так далее до e_1 .

Получили такое множество:

$$f_1, f_2, \dots, f_s, e_{i1}, e_{i2}, \dots, e_{it}$$
. (BCefo $t + s$). (2)

Предположим, что имеется такая нетривиальная (содержащая ненулевые элементы) линейная комбинация векторов, что $a_1f_1 + \ldots + a_sf_s + b_1e_{i1} + \ldots + b_{it}e_{it} = 0$. Среди b найдётся хотя бы один ненулевой элемент (иначе в силу линейно независимости f получим что все a равны 0, что будет противоречить нетривиальности комбинации).

Таким образом, множество номеров $\{j\colon b_j\neq 0\}\neq\emptyset$. Возьмем такой максимальный номер k. Тогда элемент b_k будет иметь обратный \Rightarrow значит мы можем выразить $e_k=-b^{-1k}a_1f_1+\ldots+b^{-1k}a_sf_s+\ldots$ Получается, что система линейно зависима, это противоречит ее построению. Следовательно, не существует нетривиальных линейных комбинаций $f_1,\ldots,f_s,e_{i1},\ldots,e_{it}$: из них можно составить ноль. Выходит, эта система линейно независима.

Но в соответствии с I, любой вектор выражается через базис, а значит и через систему 1. Но все векторы системы 1 линейно выражаются через векторы системы 2.

Таким образом, система 2 максимальна и линейно независима. То есть существует базис.

Следствия:

- 1. Любой вектор $v \in x, v \neq 0$ может быть включён в базис X
- 2. Пусть X_1, X_2 подпространства $X, \dim X_1 = M_1, \dim X_2 = M_2, X_1 \subset X_2, X_1 \neq X_2.$ Тогда $M_1 < M_2$

Матрицы

Определение. Пусть есть поле k. Матрицей называется прямоугольная таблица элементов k, содержащая m строк одинаковой длины n.

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = \underbrace{a_{ij}}_{i \in 1, \dots, n, \ j \in 1, \dots, m}$$

i - номер строки, j -номер столбца матрицы. Матрица размера $m \cdot n$ (иногда пишут $A_{m \times n}$). Также элементы матрицы называются её коэффициентами. $a_{11}, a_{22}, \ldots, a_{nn}$ - образуют главную диагональ матрицы. Матрицы, у которых все элементы, за исключением элементов главной диагонали, равны 0, называются, диагональными.

Определение. Суммой двух матриц A и B называется матрица C, в которой все элементы попарно складываются: $c_{ij} = a_{ij} + b_{ij}$

Определение. Произведение матрицы A на скаляр λ - умножение каждого элемента a_{ij} на скаляр λ .

Определение. Матрица -A = (-1)A называется противоположной матрицы A. Справедливы равенства:

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$A + 0 = A$$

4.
$$A - A = 0$$

5.
$$1 \cdot A = A$$

6.
$$\lambda(A+B) = (\lambda A) + (\lambda B)$$

7.
$$(\lambda + \mu)A = \lambda A + \mu A$$

8.
$$\lambda(\mu a) = (\lambda \mu)A$$

Таким образом, квадратные матрицы образуют линейное пространство над полем k. Обозначение: $M_n(k)$.

Определение. Произведением матриц A и B называется матрица C = AB, в которой элементы: $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{ki}, i \in 1, \dots, n, j \in 1, \dots, m.$

Векторное пространство $M_n(k)$ с введенной операцией умножения является кольцом.

Определители матриц произвольных порядков, их свойства

Формулы нахождения определителя матрицы

$$\bullet \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{11} a_{22} a_{33} - a_{11} a_{22} a_{33} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31}$$

Определение. Алгебраическим дополнением элемента a_{ij} матрицы A называется число $A_{ij} = (-1)^{i+j} M_{ij}$, где M_{ij} - дополнительный минор, определитель матрицы, получающейся из исходной матрицы A путём вычёркивания i-й строки и j-го столбца.

Пусть $A = (a_{ij})$ - квадратная матрица размера nn. Пусть также задан некоторый номер строки i либо номер столбца j матрицы A. Тогда определитель $\det A$ может быть вычислен по следующим формулам:

- Разложение по i-й строке: $\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3} + \ldots + a_{in}A_{in}$
- Разложение по j-му столбцу: $\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + a_{3j}A_{3j} + \dots + a_{nj}A_{nj}$,

где A_{ij} - алгебраическое дополнение к минору, расположенному в строке с номером i и столбце с номером j. A_{ij} также называют алгебраическим дополнением к элементу a_{ij} .

Свойства определителей

- $\det E = 1$ (Определитель единичной матрицы равен 1);
- $\det CA = C^n \det A$ (Определитель является однородной функцией степени n на пространстве матриц размера nn;
- $\det A = A$ (Определитель матрицы не меняется при её транспонировании);
- $\det AB = \det A \cdot \det B$ (Определитель произведения матриц равен произведению их определителей, A и B квадратные матрицы одного и того же порядка);
- $\det A^{-1} = (\det A)^{-1}$, причём матрица A обратима тогда и только тогда, когда обратим её определитель $\det A$;

- При перестановке двух строк (столбцов) матрицы её определитель умножается на ?1;
- Если две строки (столбца) матрицы совпадают, то её определитель равен нулю;
- Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя;
- Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю;
- Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю;
- При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится;
- Пусть A матрица размера nn. Тогда $\det AX = \det A \cdot \det X$ для любой матрицы X размера nn;
- Если произведение матриц равно нулю CX=0, и матрица C квадратная, тогда $(\det C)X=0$.

Обращение квадратных матриц

Определение. Обратная матрица - такая матрица A^{-1} , при умножении на которую исходная матрица A даёт в результате единичную матрицу $E\colon AA^{-1}=A^{-1}A=E$

Квадратная матрица обратима тогда и только тогда, когда она невырождена, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует.

Методы нахождения обратных матриц

.

1. С помощью матрицы алгебраических дополнений. Матрица, обратная матрице A, представима в виде $A^{-1}=\frac{\operatorname{adj}(A)}{\det A}$, где $\operatorname{adj}(A)$

- присоединенная матрица (матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы).
- 2. Метод Гаусса. Пусть задана квадратная матрица: $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{nn} & \vdots & \vdots & \vdots & \vdots$

припишем к столбцам матрицы A справа столбцы единичной мат-

припишем к столбцам матрицы
$$A$$
 справа столбцы единичной матрицы того же порядка. Получим матрицу: $M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{pmatrix}$.

С помощью элементарных преобразований строк приведем матрицу M к матрице, в левой части которой будет стоять единичная мат-

рица:
$$N = \begin{pmatrix} 1 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & 1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$
. Полученная таким

образом матрица, стоящая в правой части матрицы N, и будет об-

ратной матрицей к матрице
$$A$$
: $A^{-1} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$.

Свойства обратной матрицы

- $\bullet \det A^{-1} = \frac{1}{\det A};$
- $(AB)^{-1} = B^{-1}A^{-1}$;
- $(A^T)^{-1} = (A^{-1})^T$;
- $(kA)^{-1} = k^{-1}A^{-1}$;
- $E^{-1} = E$.

Системы линейных алгебраических уравнений

Общий вид системы линейных алгебраических уравнений:

$$\begin{cases}
A_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m
\end{cases}$$
(3)

Здесь m - количество уравнений, а n - количество переменных, x_1, x_2, \ldots, x_n - неизвестные, которые надо определить, коэффициенты $a_{11}, a_{12}, \ldots, a_{mn}$ и свободные члены b_1, b_2, \ldots, b_m предполагаются известными. Индексы коэффициентов в системах линейных уравнений (a_{ij}) формируются по следующему соглашению: первый индекс (i) обозначает номер уравнения, второй (j) - номер переменной, при которой стоит этот коэффициент.

Определение. Система называется однородной, если все её свободные члены равны нулю $(b_1 = b_2 = \ldots = b_m = 0)$, иначе - неоднородной.

Определение. Квадратная система линейных уравнений - система, у которой количество уравнений совпадает с числом неизвестных (m=n). Система, у которой число неизвестных больше числа уравнений является недоопределённой, такие системы линейных алгебраических уравнений также называются прямоугольными. Если уравнений больше, чем неизвестных, то система является переопределённой.

Определение. Решение системы линейных алгебраических уравнений - совокупность n чисел c_1, c_2, \ldots, c_n , таких что их соответствующая подстановка вместо x_1, x_2, \ldots, x_n в систему обращает все её уравнения в тождества.

Определение. Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Решения считаются различными, если хотя бы одно из значений переменных не совпадает. Совместная система с единственным решением называется определённой, при наличии более одного решения - недоопределённой.

Система линейных алгебраических уравнений может быть представ-

лена в матричной форме как:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
(4)

или: AX = B. Здесь A - это матрица системы, X - столбец неизвестных, а B - столбец свободных членов.

Метод Гаусса

Пусть исходная система имеет вид 3, а её матричное представление – 4. Тогда, согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):

- 1. Выбирают первый слева столбец матрицы, в котором есть хоть одно отличное от нуля значение.
- 2. Если самое верхнее число в этом столбце ноль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.
- 3. Все элементы первой строки делят на верхний элемент выбранного столбца.
- 4. Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.
- 5. Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.
- 6. После повторения этой процедуры n-1 раз получают верхнюю треугольную матрицу
- 7. Вычитают из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.

8. Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).

Решение систем с помощью обратных матриц

Метод решения систем линейных алгебраических уравнений с ненулевым определителем через обратную матрицу состоит в следующем.

Пусть дана система линейных уравнений с n неизвестными (над произвольным полем):

$$\begin{cases}
A_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n
\end{cases}$$
(5)

Тогда её можно переписать в матричной форме: AX = B, где A - основная матрица системы, B и X - столбцы свободных членов и решений

системы соответственно:
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \ B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \ X = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Умножим это матричное уравнение слева на A^{-1} - матрицу, обратную к матрице A: $A^{-1}AX = A^{-1}B$. Так как $A^{-1}A = E$, получаем $X = A^{-1}B$. Правая часть этого уравнения даст столбец решений исходной системы.

Правило Крамера

Метод Крамера - это метод решения систем линейных уравнений. Он применяется только к системам линейных уравнений, у которых число уравнений совпадает с числом неизвестных и определитель отличен от нуля.

Любая крамеровская система уравнений размера nn имеет единственное решение (x_1,x_2,\ldots,x_n) , которое определяется формулами $x_i=\frac{\Delta_i}{\Delta}$, где Δ_i - определитель матрицы, полученной из основной матрицы A заменой i-го столбца на столбец свободных членов системы, а Δ - определитель основной матрицы.