10/539213

SEQUENCE LISTING JC20 Rec'd PCT/PTO 1 7 JUN 2005

<110>	Agri	inomics	LLC									
<120>	GENE	ERATION	OF I	PLANTS	WITH	ALTERED	OIL	CONTENT				
<130>	6616-71292-08											
<150> <151>	PCT/US2003/041146 2003-12-18											
<150> <151>	60/434,763 2002-12-18											
<160>	6											
<170>	Pate	entIn v	ersi	on 3.2								
<210><211><211><212><213>		l pidopsi:	s th	aliana								
<400> atgccg	1 cagg	atcacg	cttc	gtggg	atcgg	aaagagct	ct	tgaggcaaag	gaaacacgat	60		
aggcct	gaac	aatctt	ttga	atccc	cgcct	tttcgatg	ıga	gggattcgcc	ttcttctcac	120		
catgtto	cctc	gagagt	tttc	ttctc	gtttg	ggatctgg	jag	acttccgcag	accttcttca	180		
ttaacad	cagc	tcttaa	gatt	gatag	gaagt	gaattgat	ga	ggttactctt	caaaggagca	240		
attttt	aata	ctcagg	gtgg	acggc	accag	tttgtgga	ıgg	agactagtca	tggatacaca	300		
tcttctc	eggt	ccagtg	cccg	aatgt	ttgat	aattatag	ıgc	catcagcatc	gcgtggagac	360		
tggagat	tata	ccagga	attg	caggg	atgat	agagttto	tg	taagccaaaa	ggaatggaaa	420		
tgcaata	acat	gggaga	tgag	caacg	gatct	tctagaag	įtt	ttgagaggcc	atttggtatt	480		
agaaat	ggtc	ggaggt	cagt	tgatg	aaagg	ccgctaca	ıtg	cttcagatac	tcattctacc	540		
gtggtga	aact	ctttgg	atcc	agcca	actcg	gctcatta	itc	tggacaatga	gatcagtacc	600		
ccagta	eggt	ctctta	aaat	taaaa	atgag	cataaatt	tt	cagatcaaag	gttatcactt	66,0		
ccttcag	gatc	ctcatt	ctga	atgta	ttagc	ttgtttga	ac	ggccttcttc	tgagaacaat	720		
tatggca	aata	aggttt	gttc	accag	caaag	caatgcaa	ıtg	atttgatgta	tggtcgaagg	780		
ttagtta	agtg	ataatt	catt	agatg	ctcca	atccccaa	ıtg	cagagctgga	ggggacttgg	840		
gaacaa	cttc	gcctga	aaga	cccgc	aagat	aacaatag	jtt	tacatggtat	caatgatata	900		
gacggt	gata	ggaaat	gtgc	aaagg	agagt	tctctggg	gag	caactgggaa	acttccactg	960		
tagaata	aatt	chagga	attt	tgcat	ctcag	agttcago	1 + +	ttagtcattc	aagtagettg	1020		

1080 aaaagcttgg gggctgttga ttccagcgat cggaagattg aggttcttcc taaaattgtt actgtgactc aatcttcttc aggagacgct actgcctgtg ccacaactac tcatctttct 1140 1200 qaqqaqatga gttctagaaa gaaacaacgt ctcgggtggg gtgagggact ggcgaaatat 1260 gagaaaaaga aagttgatgt taacccaaat gaagatggaa caacattgat ggaaaacggt 1320 ttagaggaac tacattcgtt aaacaaaaat attgctgata aaagtcccac agcagccatt 1380 gttccagatt atggttcccc tacaacacca tcctctgtag cttgcagttc atcaccaggg tttgctgata aatcatctcc gaaggctgct atagctgcta gtgatgtcag taacatgtgc 1440 1500 cgttcgccta gtcccgtgtc tagtattcac cttgaacgat tcccaatcaa tatcgaggag ctcgataaca tctcaatgga gcgttttggc tgtttactca atgagttact tggtactgat 1560 gattctggta caggggattc cagttctgtc caattgacat caatgaacac attacttgcc 1620 tggaaaggtg aaattttgaa agctgtggag atgactgaat cagaaattga tctccttgaa 1680 aacaaacata ggacactaaa gcttgaaggt agaagacact ctcgtgttgt tggacccagt 1740 tcatactgtt gtgatggaga tgcaaatgtg cccaaggagc aggcttcttg tagtttggat 1800 1860 cctaaggcaa cagcttette tgtagetaaa acaetggtga gageteetgt geateagget ggtttagcca aggttcctgc tgatgttttt gaagatagtc ctggggaagt taaacctcta 1920 tcccaatctt ttgccactgt tgaaagagag gaagatatac tgcccatacc atctatgaag 1980 gcagctgttt cttcgaaaga gattaacaca cctgcttttg ccaatcagga aactattgag 2040 gtttcttctg ctgatgacag catggcctcc aaagaagact tgttctgggc taagttatta 2100 2160 tctgccaata agaaatatgc ttgtgaatca tctggagtat tcaatcaatt gcttccaaga 2220 gattttaatt cgtctgacaa ctcaagattc cctggcatat gtcaaacgca gtttgattct catgtccaag aaaaaattgc agatagggta ggcctattga gagctaggga gaaaatttta 2280 2340 ctccttcagt ttaaagcgtt tcagctctca tggaagaaag atttggatca gctagcttta 2400 gcaaagtacc aatcaaagtc tagcaaaaaa acagaactat atccgaatgc aaaaaatgga 2460 gggtatctga agcttcccca atctgtacgc ctgaggttct cttcttcagc tccaagaagg 2520 gatagtgtag tccccacaac agagctcgta agttatatgg aaaagctact tccgggtacc catctaaagc cttttagaga cattttgaaa atgcctgcta tgattttgga tgagaaagag 2580 agggtgatgt cgaggtttat ttctagcaat ggactgattg aagatccatg tgacgttgag 2640 2700 aaggaaagaa caatgattaa teettggace teagaggaga aagaaatett tetgaatttg

2760 ctagcaatgc atgggaagga tttcaagaag attgcttcat ctcttaccca aaagacaact 2820 gcggactgta ttgattacta ctacaaaaac cacaagtctg attgttttgg gaaaataaag aagcagcgtg cttatggtaa ggaagggaag cacacctaca tgttggctcc acgaaaaaag 2880 2940 tggaaacgtg agatgggggc tgcctctctt gatattttag gggatgtctc cattatagca 3000 gcaaacgctg gaaaggttgc atcaaccagg ccgatctctt ccaaaaagat cacccttaga ggttgcagca gtgctaattc attgcagcac gatggaaata actctgaagg gtgctcctac 3060 agttttgatt tcccacgtaa gagaactgct ggtgcagatg ttttagctgt tggtcctttg 3120 tcaccagage agataaatte ttgettaagg acttetgtga getetagaga gaggtgtatg 3180 gatcatctga agtttaatca tgtcgtaaag aaacctcgga tatctcatac tctacataat 3240 3300 gagaacagca atactctaca caatgagaac agcaacgaag aagatgactc atgttcggaa gagagctgtg gggaaacagg tcctattcac tggacagatg atgagagatc tgcctttata 3360 cagggttttt cgctttttgg caagaatttt gcttcaatat caaggtacgt cgggacaaga 3420 tctccagatc agtgtaaggt tttcttcagc aaagttcgga aatgtcttgg gttggaatct 3480 3540 ataaagtttg gatctggaaa tgtaagcaca tccgtaagtg ttgataatgg caatgagggt 3600 ggtgggagcg acttggaaga tccttgtcct atggagagta actctggcat agtgaataat 3660 ggagtttgtg ccaagatggg tatgaattct cctacctcac cttttaatat gaatcaggat ggtgttaatc aatcaggctc tgcaaatgtg aaagccgacc ttagtagatc agaagaagag 3720 3780 aatgggcaga aatatttgtg totgaaagat gataataatc togtgaacaa tgcatatgto 3840 aatggcggtt tcccgagtct agtttcagaa tcttgtagag atttggtaga tattaatact 3900 gttgagagcc agtctcaggc tgccggaaaa agcaagagca atgatctcat gtcaatggaa 3960 atcgatgaag gtgtcttaac atctgtcact atatcttccg agccattgta ttgtggccta 4020 agtgttcttt ccaatgttat tgtggaaacc cctacagaaa tctcacgaaa gggctcagga 4080 gatcaaggtg ctacaatgcc taaatttagt tcaaagaatc aagatggagt gatgcaagct 4140 gcaaacagaa ccagaaattc tggccttgaa cctgaaagtg caccttcagg tttcaggtac 4200 cctgagtgtc ttcaccatgt tccgattgag gtgtgtacgg aaaaccctat aggcgtcagt gcaccacgag gaaatccaaa ttgccatgca gagtccgagt caggaaattc tcttgttgga 4260 caagttgacg aaacacatga cttgggttgg cccaagaaca atctggaatt ggatgggagg 4320 4380 cttcaggttt taggccatgt aaaccctgag cagattggtc tactaaaagc gaccaataca gaatcttgtc aaaatcccca gagatcagtc acccaagatc tgagcaggat aagtagatca 4440 aaatctgatt tgatcgtaaa aacccaacgt acaggtgaag gcttctcact caccaagtgt 4500 actagttcag ctcctaagcc tctggcagta tcccataaag agggcagatc tggtcatagc 4560 aggagccatt cgtttagttt gtctgatact gagagactcc acaagaatgg agatgtgaaa 4620 ctqtttqqta caqtacttac tactqatqaq aatqqaataa aacaaaaaca caatccatqt 4680 ggaattgtca ggtcatcatc aaccttgagc agggaccatg atacaagaca tcattacatt 4740 aatcagcaac accttcagaa cgttcccatt acgagctacg gtttttggga tggcaacaga 4800 attcaaaccg ggctcacatc tttgccagag tcggccaagt tgcttgcaag ttgccctgaa 4860 gcattttcca cgcatctaaa gcagcaagtt ggtaacagca aagagattct ggtggatgtt 4920 aatggtggaa ttttgagctt tggtaagcat aacgaagata gagctgagtc ctcaagcgct 4980 aaggatgaag gtaacatagg aggggtaaat ggtgtagcag aggcagccac gtga 5034

<210> 2

<211> 1677

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Pro Gln Asp His Ala Ser Trp Asp Arg Lys Glu Leu Leu Arg Gln 1 5 10 15

Arg Lys His Asp Arg Pro Glu Gln Ser Phe Glu Ser Pro Pro Phe Arg

Trp Arg Asp Ser Pro Ser Ser His His Val Pro Arg Glu Phe Ser Ser 35 40 45

Arg Leu Gly Ser Gly Asp Phe Arg Arg Pro Ser Ser Leu Thr Gln Leu 50 60

Leu Arg Leu Ile Gly Ser Glu Leu Met Arg Leu Leu Phe Lys Gly Ala 65 70 75 80

Ile Phe Asn Thr Gln Gly Gly Arg His Gln Phe Val Glu Glu Thr Ser 85 90 95

His Gly Tyr Thr Ser Ser Arg Ser Ser Ala Arg Met Phe Asp Asn Tyr 100 105 110

Arg I	Pro	Ser 115	Ala	Ser	Arg	Gly	Asp 120	Trp	Arg	Tyr	Thr	Arg 125	Asn	Cys	Arg
Asp A	Asp 130	Arg	Val	Ser	Val	Ser 135	Gln	Lys	Glu	Trp	Lys 140	Сув	Asn	Thr	Trp
Glu N 145	Met	Ser	Asn	Gly	Ser 150	Ser	Arg	Ser	Phe	Glu 155	Arg	Pro	Phe	Gly	Ile 160
Arg A	Asn	Gly	Arg	Arg 165	Ser	Val	Asp	Glu	Arg 170	Pro	Leu	His	Ala	Ser 175	Asp
Thr H	His	Ser	Thr 180	Val	Val	Asn	Ser	Leu 185	Asp	Pro	Ala	Asn	Ser 190	Ala	His
Tyr I	Leu	Asp 195	Asn	Glu	Ile	Ser	Thr 200	Pro	Val	Arg	Ser	Leu 205	Lys	Ile	Lys
Asn C	3lu 210	His	Lys	Phe	Ser	Asp 215	Gln	Arg	Leu	Ser	Leu 220	Pro	Ser	Asp	Pro
His S 225	Ser	Glu	Cys	Ile	Ser 230	Leu	Phe	Glu	Arg	Pro 235	Ser	Ser	Glu	Asn	Asn 240
Tyr (Gly	Asn	Lys	Val 245	Cys	Ser	Pro	Ala	Lys 250	Gln	Cys	Asn	Asp	Leu 255	Met
Tyr (Зlу	Arg	Arg 260	Leu	Val	Ser	Asp	Asn 265	Ser	Leu	Asp	Ala	Pro 270	Ile	Pro
Asn A	Ala	Glu 275	Leu	Glu	Gly	Thr	Trp 280	Glu	Gln	Leu	Arg	Leu 285	Lys	Asp	Pro
Gln A	Asp 290	Asn	Asn	Ser	Leu	His 295	Gly	Ile	Asn	Asp	Ile 300	Asp	Gly	Asp	Arg
Lys (Cys	Ala	Lys	Glu	Ser 310	Ser	Leu	Gly	Ala	Thr 315	Gly	Lys	Leu	Pro	Leu 320
Trp A	Asn	Ser	Ser	Gly 325	Ser	Phe	Ala	Ser	Gln 330	Ser	Ser	Gly	Phe	Ser 335	His
Ser S	Ser	Ser	Leu	Lys	Ser	Leu	Gly	Ala	Val	Asp	Ser	Ser	Asp	Arg	Lys

340 345 350

Ile	Glu	Val 355	Leu	Pro	Lys	Ile	Val 360	Thr	Val	Thr	Gln	Ser 365	Ser	Ser	Gly
Asp	Ala 370	Thr	Ala	Cys	Ala	Thr 375	Thr	Thr	His	Leu	Ser 380	Glu	Glu	Met	Ser
Ser 385	Arg	Lys	Lys	Gln	Arg 390	Leu	Gly	Trp	Gly	Glu 395	Gly	Leu	Ala	Lys	Tyr 400
Glu	Lys	Lys	Lys	Val 405	Asp	Val	Asn	Pro	Asn 410	Glu	Asp	Gly	Thr	Thr 415	Leu
Met	Glu	Asn	Gly 420	Leu	Glu	Glu	Leu	His 425	Ser	Leu	Asn	Гуз	Asn 430	Ile	Ala
Asp	Lys	Ser 435	Pro	Thr	Ala	Ala	Ile 440	Val	Pro	Asp	Tyr	Gly 445	Ser	Pro	Thr
Thr	Pro 450	Ser	Ser	Val	Ala	Cys 455	Ser	Ser	Ser	Pro	Gly 460	Phe	Ala	Asp	Lys
Ser 465	Ser	Pro	Lys	Ala	Ala 470	Ile	Ala	Ala	Ser	Asp 475	Val	Ser	Asn	Met	Cys 480
Arg	Ser	Pro	Ser	Pro 485	Val	Ser	Ser	Ile	His 490	Leu	Glu	Arg	Phe	Pro 495	Ile
Asn	Ile	Glu	Glu 500	Leu	Asp	Asn	Ile	Ser 505	Met	Glu	Arg	Phe	Gly 510	Cys	Leu
Leu	Asn	Glu 515	Leu	Leu	Gly	Thr	Asp 520	Asp	Ser	Gly	Thr	Gly 525	Asp	Ser	Ser
Ser	Val 530	Gln	Leu	Thr	Ser	Met 535	Asn	Thr	Leu	Leu	Ala 540	Trp	Lys	Gly	Glu
Ile 545	Leu	Lys	Ala	Val	Glu 550	Met	Thr	Glu	Ser	Glu 555	Ile	Asp	Leu	Leu	Glu 560

Asn Lys His Arg Thr Leu Lys Leu Glu Gly Arg Arg His Ser Arg Val 565 570 575

Val Gly Pro Ser Ser Tyr Cys Cys Asp Gly Asp Ala Asn Val Pro Lys Glu Gln Ala Ser Cys Ser Leu Asp Pro Lys Ala Thr Ala Ser Ser Val Ala Lys Thr Leu Val Arg Ala Pro Val His Gln Ala Gly Leu Ala Lys Val Pro Ala Asp Val Phe Glu Asp Ser Pro Gly Glu Val Lys Pro Leu Ser Gln Ser Phe Ala Thr Val Glu Arg Glu Glu Asp Ile Leu Pro Ile Pro Ser Met Lys Ala Ala Val Ser Ser Lys Glu Ile Asn Thr Pro Ala Phe Ala Asn Gln Glu Thr Ile Glu Val Ser Ser Ala Asp Asp Ser Met Ala Ser Lys Glu Asp Leu Phe Trp Ala Lys Leu Leu Ser Ala Asn Lys Lys Tyr Ala Cys Glu Ser Ser Gly Val Phe Asn Gln Leu Leu Pro Arg Asp Phe Asn Ser Ser Asp Asn Ser Arg Phe Pro Gly Ile Cys Gln Thr Gln Phe Asp Ser His Val Gln Glu Lys Ile Ala Asp Arq Val Gly Leu Leu Arg Ala Arg Glu Lys Ile Leu Leu Cln Phe Lys Ala Phe Gln Leu Ser Trp Lys Lys Asp Leu Asp Gln Leu Ala Leu Ala Lys Tyr Gln Ser Lys Ser Ser Lys Lys Thr Glu Leu Tyr Pro Asn Ala Lys Asn Gly

Gly Tyr Leu Lys Leu Pro Gln Ser Val Arg Leu Arg Phe Ser Ser Ser Ala Pro Arg Arg Asp Ser Val Val Pro Thr Thr Glu Leu Val Ser Tyr Met Glu Lys Leu Leu Pro Gly Thr His Leu Lys Pro Phe Arg Asp Ile Leu Lys Met Pro Ala Met Ile Leu Asp Glu Lys Glu Arg Val Met Ser Arg Phe Ile Ser Ser Asn Gly Leu Ile Glu Asp Pro Cys Asp Val Glu Lys Glu Arg Thr Met Ile Asn Pro Trp Thr Ser Glu Glu Lys Glu Ile Phe Leu Asn Leu Leu Ala Met His Gly Lys Asp Phe Lys Lys Ile Ala Ser Ser Leu Thr Gln Lys Thr Thr Ala Asp Cys Ile Asp Tyr Tyr Tyr Lys Asn His Lys Ser Asp Cys Phe Gly Lys Ile Lys Lys Gln Arg Ala Tyr Gly Lys Glu Gly Lys His Thr Tyr Met Leu Ala Pro Arg Lys Lys Trp Lys Arg Glu Met Gly Ala Ala Ser Leu Asp Ile Leu Gly Asp Val Ser Ile Ile Ala Ala Asn Ala Gly Lys Val Ala Ser Thr Arg Pro Ile Ser Ser Lys Ile Thr Leu Arg Gly Cys Ser Ser Ala Asn Ser Leu Gln His Asp Gly Asn Asn Ser Glu Gly Cys Ser Tyr Ser Phe Asp

Phe Pro Arg Lys Arg Thr Ala Gly Ala Asp Val Leu Ala Val Gly Pro Leu Ser Pro Glu Gln Ile Asn Ser Cys Leu Arg Thr Ser Val Ser Ser Arg Glu Arg Cys Met Asp His Leu Lys Phe Asn His Val Val Lys Lys Pro Arg Ile Ser His Thr Leu His Asn Glu Asn Ser Asn Thr Leu His Asn Glu Asn Ser Asn Glu Glu Asp Asp Ser Cys Ser Glu Glu Ser Cys Gly Glu Thr Gly Pro Ile His Trp Thr Asp Asp Glu Arg Ser Ala Phe Ile Gln Gly Phe Ser Leu Phe Gly Lys Asn Phe Ala Ser Ile Ser Arg Tyr Val Gly Thr Arg Ser Pro Asp Gln Cys Lys Val Phe Phe Ser Lys Val Arg Lys Cys Leu Gly Leu Glu Ser Ile Lys Phe Gly Ser Gly Asn Val Ser Thr Ser Val Ser Val Asp Asn Gly Asn Glu Gly Gly Ser Asp Leu Glu Asp Pro Cys Pro Met Glu Ser Asn Ser Gly Ile Val Asn Asn Gly Val Cys Ala Lys Met Gly Met Asn Ser Pro Thr Ser Pro Phe Asn Met Asn Gln Asp Gly Val Asn Gln Ser Gly Ser Ala Asn Val Lys Ala Asp Leu Ser Arg Ser Glu Glu Glu Asn Gly Gln Lys Tyr Leu Cys Leu

1235	1240	1245

Lys	Asp 1250		Asn	Asn	Leu	Val 1255		Asn	Ala	Tyr	Val 1260	Asn	Gly	Gly
Phe	Pro 1265	Ser	Leu	Val	Ser	Glu 1270	Ser	Cys	Arg	Asp	Leu 1275	Val	Asp	Ile
Asn	Thr 1280	Val	Glu	Ser	Gln	Ser 1285		Ala	Ala	Gly	Lys 1290	Ser	Lys	Ser
Asn	Asp 1295	Leu	Met	Ser	Met	Glu 1300	Ile	Asp	Glu	Gly	Val 1305	Leu	Thr	Ser
Val	Thr 1310	Ile	Ser	Ser	Glu	Pro 1315	Leu	Tyr	Cys	Gly	Leu 1320	Ser	Val	Leu
Ser	Asn 1325	Val	Ile	Val	Glu	Thr 1330	Pro	Thr	Glu	Ile	Ser 1335	Arg	Lys	Gly
Ser	Gly 1340	_	Gln	Gly		Thr 1345		Pro	Lys	Phe	Ser 1350	Ser	Lys	Asn
Gln	Asp 1355	Gly	Val	Met	Gln	Ala 1360	Ala	Asn	Arg	Thr	Arg 1365	Asn	Ser	Gly
Leu	Glu 1370	Pro	Glu	Ser	Ala	Pro 1375	Ser	Gly	Phe	Arg	Tyr 1380	Pro	Glu	Cys
Leu	His 1385	His	Val	Pro	Ile	Glu 1390	Val	Cys	Thr	Glu	Asn 1395	Pro	Ile	Gly
Val	Ser 1400	Ala	Pro	Arg	Gly	Asn 1405	Pro	Asn	Cys	His	Ala 1410	Glu	Ser	Glu
Ser	Gly 1415	Asn	Ser	Leu	Val	Gly 1420	Gln	Val	Asp	Glu	Thr 1425	His	Asp	Leu
Gly	Trp 1430	Pro	Lys	Asn	Asn	Leu 1435	Glu	Leu	Asp	Gly	Arg 1440	Leu	Gln	Val
Leu	Gly 1445	His	Val	Asn	Pro	Glu 1450	Gln	Ile	Gly	Leu	Leu 1455	Lys	Ala	Thr

Asn Thr Glu Ser Cys Gln Asn Pro Gln Arg Ser Val Thr Gln Asp Leu Ser Arg Ile Ser Arg Ser Lys Ser Asp Leu Ile Val Lys Thr Gln Arg Thr Gly Glu Gly Phe Ser Leu Thr Lys Cys Thr Ser Ser Ala Pro Lys Pro Leu Ala Val Ser His Lys Glu Gly Arg Ser Gly His Ser Arg Ser His Ser Phe Ser Leu Ser Asp Thr Glu Arg Leu His Lys Asn Gly Asp Val Lys Leu Phe Gly Thr Val Leu Thr Thr Asp Glu Asn Gly Ile Lys Gln Lys His Asn Pro Cys Gly Ile Val Arg Ser Ser Ser Thr Leu Ser Arg Asp His Asp Thr Arg His His Tyr Ile Asn Gln Gln His Leu Gln Asn Val Pro Ile Thr Ser Tyr Gly Phe Trp Asp Gly Asn Arg Ile Gln Thr Gly Leu Thr Ser Leu Pro Glu Ser Ala Lys Leu Leu Ala Ser Cys Pro Glu Ala Phe Ser Thr His Leu Lys Gln Gln Val Gly Asn Ser Lys Glu Ile Leu Val Asp Val Asn Gly Gly Ile Leu Ser Phe Gly Lys His Asn Glu Asp Arg Ala Glu Ser Ser Ala Lys Asp Glu Gly Asn Ile Gly Gly

Val Asn Gly Val Ala Glu Ala Ala Thr 1670 1675

<210> 3 <211> 1012

<211> 1012 <212> DNA	
<212> DNA <213> Lycopersicon esculentum	
<pre><400> 3 caggaaattt gtagaatttg aatttgagtt taatattttg gccagaaatt tgttgatttc</pre>	60
ttcaagtttt ggattaatct gctgctgatt gtttcaggaa gttgcttctg gcgatattcc	120
ctactccgag ttacgaatgt cagaaaaagc agagcttgca gcggtgaggg cgtactttgg	180
agtgctgtgg ccgcaacgta atgagggatt atcctaccat gacatcgtcc gacccaccga	240
tgctggtctt acattgatcg aattctactt taggaagtac aaaaattcag ctcctttaca	300
aggttggttg cagagaattc aaaataaaca gataacaatt gatggtaaag ttgttatctt	360
accagatact gaactcagag caggtgctga attagtatat catcgccttc cttggagaga	420
acctgatgca ccttacttgc tagaagtact atttgaagat gactacttga ttgttgtaaa	480
taaaccttct ggtttgcaag ttcttcctgg agggttatat cagcagcgga ccgtcttgac	540
gcaactccag tggcatgcat gtaagctgac aaccacttcg tcaggttgtc aaaaaacaca	600
tccagtccca gttcatcgct taggaagggg tacatcagga atactgctct gtgcaaaaac	660
aaagctttgt aaatctcgcc ttgcagcata ttttgctgag gggacgtcag ttgttgaaga	720
aaaatgcacc aactcagagt gcaatacaat gaggaagatt tgcaagatat atcgggcgct	780
agtaagtggt gtgatggata tggatgaggc tgtcatcaag caaccaattg gtacaattaa	840
atateetgga gttgetaaag ggttgtatgt tgetteteet teagggaage eagetttgag	900
cagtgttcgc gttcttgaaa gagattcaga gagtaactgc acattggttc aggttgaaat	960
tcaatctgga aggccacacc aaatccgcat ccacctctct ttcataggat at	1012
<210> 4 <211> 737 <212> DNA <213> Glycine max	
<400> 4 cttggcctga atgcaacgac ggtctgtcct acgacgacgt cgttcgagcc tctgatgccg	60
gggcgacact catagagttt tactccacca agtacaagag ttctgctccc ttacaaggtt	120
ggttgcagcg aataaaaagt gggcagataa cagttgatgg aggagttgtt actgattcta	180

```
acacagteet cagagttgga teaaagetaa tetateatag aetteeatgg aaggageeag
                                                                      240
atgcaccgca catgatcgac gtcttatatg aagatgatga catgattgct ctaaataaac
                                                                      300
cgtctggcct gcaagttttg cctggaggtc tctaccagca gaggacaatt ttaacacagc
                                                                      360
ttcaatggga agccaacaat cagggtacct gtgaaatgca caaaaggctg cattctggtc
                                                                      420
ccgtgcatcg cctagggagg gggacttcag gaattttatt atgtgcgaag acaaaactag
                                                                      480
ccagageteg tettgeatet cattttgetg acggaactte teaegttgga ggaaaaagag
                                                                      540
atacaaagca ggaacttggg aagattgcaa agatgtaccg agctcttgtg agtgggatag
                                                                      600
ttgagaatga caaggtgact attaatcaac caattggaat agtaaaatat cctggtgttg
                                                                      660
ctaaagggtt atacgttgct tctgaatcag gaaaaccagc actcagtgta gtggacattc
                                                                      720
tagagacgaa catacaa
                                                                      737
<210>
      5
      1308
```

<211> <212> DNA <213> Zea mays

<220>

<221> misc_feature <222> (661)..(665)

<223> n is a, c, g, or t

<220>

<221> misc feature (1186)..(1186) <222> n is a, c, g, or t <223>

<400> 5

gcacgaggcg gccgcggcag aaacacagat gggcgacggg gctccgccgc caggggctct 60 120 atactectic ggaacgeegt ggeeggaget caateaagge etcacetaca eegacaegtt ccgttgcgct gatgcggacg ccgctaccac cttgattgag ttctactcta ctaaccacaa 180 gageteggeg ceattgeeag ggtggateaa gaggattegt aatgggeaga taacegttga 240 tggtgaagtt gtcactgatc cagatatgac tctggtggat gggtctaagt tggtatatca 300 tegtttteet tggcaggage catttgegee gtatttgetg gaagtgetet acgaggatga 360 tgacatggtt gcccttaata agccttctgg cttgcaagtt ctgcctaaag gactgtttca 420 gcagcgaact gttttagcac agcttcaatt gaaagactgg aagatggcct catcttgccg 480 gttcaagaga aaagatgtgc agtcacatcc agtacctgtt catcgtttag ggaggggaac 540

atcaggcctc	ctgctttgtg	ccaagacaaa	agttgccaaa	gttcgacttg	catcttattt	600
tgctgaaggt	gctataaatg	ctgcaaagaa	aagggataaa	tcagagttca	gtgaagagcg	660
nnnnntttca	aaattttatc	gagccttagt	gactggcata	cttgatgatg	atgaggttgt	720
tgttacgcaa	cctatagggt	tagttcatta	tcctggagtt	gcagagggac	tttatgcagc	780
atgttcctca	ggaaagccag	caatgagcaa	agtatgtgtt	cttgagagac	ttgcacacca	840
aaatcacaca	ctggtccagg	ttgaaattca	ttcaggacga	cctcaccaaa	taaggataca	900
ccttgcatac	attgggcacc	cacttgtaga	tgaccctctc	tatggtattg	gtgggcaccc	960
caattttgtt	gagccagaat	ctactggcac	agatagttct	tttgcatctg	atgggggtta	1020
tgagagacct	ttgcaacctg	ttcctggaga	ctgtgggtat	cacctgcatg	cacattggct	1080
ggttctttgc	cacccaacaa	ccaataagat	ggtaaaaatt	accgctcctc	ttccacaaat	1140
tctacagaca	cgggaggaac	gccgcgctgc	agctgagcaa	accggnggtt	gaacatgtag	1200
aatcttgaaa	atgtatattt	cttgaagtta	gcaagcagca	ggttctcaca	gacgttagag	1260
ttagacactc	agacatctgc	tcctctgtca	actgtacaac	ggcgagct		1308

<210> 6

<211> 566

<212> DNA

<213> Triticum aestivum

<400> 6

atactccgcc gctgcaggcg aactacgtct tcgggagggc atggccggat ctcaacgaag 60 gactetecta cacegatacg tteegeggeg etgatgegga aaceaeegee acettgacea 120 180 atttctactc tgagaactac aagagctcgg cgccattgcc agggtggatt cataggattc 240 gcaatggaca gataacggtt gatggccaag ttgtcactga tccagatatg attctcaggg 300 agggttctaa gttggtatat catcgcctcg catggaagga gccatttgca ccacatttgc ttcaagtgct ttatgaagat gacgacatgg tagcccttaa taagccttcc ggtttgcaag 360 ttctgccaaa aggactcttc cagcagcgca ctgttctagc acaacttcag tggaaagagt 420 480 ggaagatgcc cccatcaagc tgctctaaga gaaaaaatgt gcagttacat cctgtacctg ttcatcgatt aggaagggc acgtcaggtc tactgctttg tgccaagaca aagcttgcca 540 566 aagttcaact tgcatcttat tttgca