PLSC 503 – Spring 2022 Generalized Linear Models

April 27, 2022

Generalized Linear Models

"GLMs" are:

- A class of regression models
- ... that includes a lot of things you already know about:
 - Linear-normal regression (/ "OLS")
 - (Binary-response) logit / probit
 - Ordinal-response models
 - Nominal-response models
 - Models for event counts
 - Others...
- ...and unites them all under a common framework for estimation and inference.

The Exponential Family

Start with a random variable with density:

$$f(z|\psi) = \Pr(Z = z|\psi)$$

Exponential if:

$$f(z|\psi) = r(z)s(\psi)\exp[q(z)h(\psi)]$$

provided that r(z) > 0 and $s(\psi) > 0$.

$$f(z|\psi) = \exp\left[\underbrace{\ln r(z) + \ln s(\psi)}_{\text{"additive"}} + \underbrace{q(z)h(\psi)}_{\text{"interactive"}}\right]$$

Canonical Forms

"Canonical form" is when q(z) = z. That means we can always transform z into our usual "response" variable:

$$y = q(z)$$

 $h(\theta)$ is the "natural parameter" of the distribution, often written:

$$\theta = h(\psi)$$

In canonical form, the distribution is:

$$f[y|\theta] = \exp[y\theta - b(\theta) + c(y)].$$

where"

- $b(\theta)$ is a "normalizing constant"
- c(y) is a function solely of y
- $y\theta$ is a "multiplicative" term.

A Familiar Family Member: Poisson

Poisson density:

$$f(y|\lambda) = \frac{\exp(-\lambda)\lambda^y}{y!}.$$

Rewritten:

$$f(y|\lambda) = \exp \left\{ \ln \left[\exp(-\lambda)\lambda^{y}/y! \right] \right\}$$
$$= \exp \left[\underbrace{y \ln(\lambda)}_{y\theta} - \underbrace{\lambda}_{b(\theta)} - \underbrace{\ln(y!)}_{c(y)} \right]$$

Family Nuisances

Other parameters = "nuisance" parameters...

$$f(y|\theta,\phi) = \exp\left[rac{y heta - b(heta)}{a(\phi)} + c(y,\phi)
ight]$$

Familiar Family Member II: Normal

$$f(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{(y-\mu)^2}{2\sigma^2}\right]$$

$$f(y|\mu, \sigma^2) = \exp\left[-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(y^2 - 2y\mu + \mu^2)\right]$$

$$= \exp\left[-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}y^2 + \frac{1}{2\sigma^2}2y\mu - \frac{1}{2\sigma^2}\mu^2\right]$$

$$= \exp\left[\frac{y\mu}{2} - \frac{\mu^2}{2\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)\right]$$

 $= \exp\left\{\frac{y\mu - \frac{\mu^2}{2}}{\sigma^2} + \frac{-1}{2}\left[\frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2)\right]\right\}$

Normal, continued

$$f(y|\mu,\sigma^2) = \exp\left\{\frac{y\mu - \frac{\mu^2}{2}}{\sigma^2} + \frac{-1}{2}\left[\frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2)\right]\right\}$$

 $\theta = \mu$, so:

- $y\theta = y\mu$
- $b(\theta) = \frac{\mu^2}{2}$
- $a(\phi) = \sigma^2$
- $c(y,\phi) = \frac{-1}{2} \left[\frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2) \right]$

Other Family Members

- Binomial (⊃ Bernoulli; also Multinomial)
- Exponential
- Gamma
- Logarithmic
- Inverse Gaussian
- Negative Binomial
- others...

Little Red Likelihood

$$\begin{array}{rcl} \ln L(\theta, \phi | y) & = & \ln f(y | \theta, \phi) \\ & = & \ln \left\{ \exp \left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \right] \right\} \\ & = & \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \end{array}$$

$$\frac{\partial \ln L(\theta, \phi | y)}{\partial \theta} \equiv \mathbf{S} = \frac{\partial}{\partial \theta} \left[\frac{y\theta - b(\theta)}{\mathbf{a}(\phi)} + c(y, \phi) \right] \\
= \frac{y - \frac{\partial}{\partial \theta} b(\theta)}{\mathbf{a}(\phi)}.$$

Among family members:

- **S** is a sufficient statistic for θ .
- E(S) = 0.
- $Var(S) \equiv \mathcal{I}(\theta) = E[(S)^2 | \theta]$

More Estimation

For GLMs, under some standard regularity conditions:

$$\mathsf{E}(\mathsf{Y}) = \frac{\partial}{\partial \theta} b(\theta)$$

and

$$Var(Y) = a(\phi) \frac{\partial^2}{\partial \theta^2} b(\theta)$$

Example: Poisson Again

$$E(Y) = \frac{\partial}{\partial \theta} \exp(\theta)$$

$$= \exp(\theta)|_{\theta = \ln(\lambda)}$$

$$= \lambda$$

$$\begin{aligned} \mathsf{Var}(Y) &= 1 \times \frac{\partial^2}{\partial \theta^2} \exp(\theta)|_{\theta = \mathsf{ln}(\lambda)} \\ &= \exp[\mathsf{ln}(\lambda)] \\ &= \lambda \end{aligned}$$

Example: Normal Again

$$E(Y) = \frac{\partial}{\partial \theta} \left(\frac{\theta^2}{2} \right)$$
$$= \theta|_{\theta=\mu}$$
$$= \mu$$

$$Var(Y) = \sigma^2 \times \frac{\partial^2}{\partial \theta^2} \left(\frac{\theta^2}{2}\right)$$
$$= \sigma^2 \times \frac{\partial}{\partial \theta} \theta$$
$$= \sigma^2$$

The Models Part

Linear model:

$$Y_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

$$\mathsf{E}(Y_i) \equiv \boldsymbol{\mu}_i = \mathbf{X}_i \boldsymbol{\beta}$$

The "generalized" part:

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}.$$

$$\eta_i = \mathbf{X}_i \boldsymbol{\beta} \\
= \mathbf{g}(\boldsymbol{\mu}_i)$$

$$\mu_i = g^{-1}(\eta_i)$$

$$= g^{-1}(\mathbf{X}_i\beta)$$

Random component $\sim \mathsf{EF}(\cdot)$ with

$$\mathsf{E}(Y_i) = \mu_i$$
.

Systematic component:

$$g(\mu_i) = \eta_i$$

"Link function":

$$g(\mu_i) = \eta_i$$

or (equivalently):

$$g^{-1}(\boldsymbol{\eta}_i) = \boldsymbol{\mu}_i.$$

The Return of The Family

$$\theta_i = g(\mu_i)$$

$$= \eta_i$$

$$= X_i\beta$$

$$g^{-1}(\theta_i) = \eta_i$$

GLM Example: Linear-Normal

Density = Normal:

$$f(y|\mu,\sigma^2) = \mathcal{N}(\mu,\sigma^2)$$

Link function = Identity:

$$\mu_i = \eta_i$$

Yields:

$$egin{array}{lll} oldsymbol{\mu}_i \equiv oldsymbol{ heta}_i &=& oldsymbol{\eta}_i \ Y_i &\sim& \mathcal{N}(oldsymbol{\mu}_i, \sigma^2) \end{array}$$

GLM Example: Binary

Density = Bernoulli:

$$f(y|\pi) = \pi^y (1-\pi)^{1-y}$$

Link function = Logistic:

$$oldsymbol{ heta}_i = \ln\left(rac{oldsymbol{\mu}_i}{1-oldsymbol{\mu}_i}
ight)$$

Yields:

$$\mu_i = g^{-1}(\theta_i)$$

$$= \frac{\exp(\eta_i)}{1 + \exp(\eta_i)}$$
 $Y_i \sim \text{Bernoulli}(\mu_i)$

GLM Example: Counts (Independent Events)

Density = Poisson:

$$f(y|\lambda) = \frac{\exp(-\lambda)\lambda^y}{y!}$$

Link function = Exponential:

$$ln(\lambda_i) = \eta_i$$

Yields:

$$\mu_i = g^{-1}(\theta_i)$$
 $= \exp(\eta_i)$
 $Y_i \sim \text{Poisson}(\lambda_i)$

Common GLM Flavors

Distribution	Range of Y	Link(s) g(⋅)	Inverse Link $g^{-1}(\cdot)$
Normal	$(-\infty, \infty)$	Identity: $oldsymbol{ heta} = oldsymbol{\mu}$ (Canonical)	θ
Binomial	$\{0,n\}$	Logit: $oldsymbol{ heta} = \operatorname{In}\left(rac{oldsymbol{\mu}}{1-oldsymbol{\mu}} ight)$ (Canonical)	$\frac{\exp(\boldsymbol{\theta})}{1+\exp(\boldsymbol{\theta})}$
		Probit: $oldsymbol{ heta} = \Phi^{-1}(oldsymbol{\mu})$	$\Phi(\boldsymbol{\theta})$
		C-Log-Log: $oldsymbol{ heta} = \ln[-\ln(1-oldsymbol{\mu})]$	$1 - \exp[-\exp(\theta)]$
Bernoulli	{0,1}	(same as Binomial)	(same as Binomial)
Multinomial	{0,J}	(same as Binomial)	(same as Binomial)
Poisson	$[0,\infty]$ (integers)	Log: $oldsymbol{ heta} = In(oldsymbol{\mu})$ (Canonical)	$\exp(\boldsymbol{\theta})$
Gamma	(0, ∞)	Reciprocal: $ heta = -rac{1}{\mu}$ (Canonical)	$-\frac{1}{\theta}$

Note: The Bernoulli is a special case of the Binomial with n=1. The multinomial is the *J*-outcome variant of the Binomial, and is also related to the Poisson (see, e.g., Agresti 2002).

GLMs: How-To

- Pick your (exponential family) density f(Y)
- Pick your link function $g(\cdot)$
- Specify your model (i.e., choose Xs)
- Estimate!

Model Fitting

- MLE
- IRLS (≈ MLE):

$$\hat{oldsymbol{eta}}^{(t+1)} = [\mathbf{X}'\mathbf{W}^{(t)}\mathbf{X}]^{-1}\mathbf{X}'\mathbf{W}^{(t)}\mathbf{z}^{(t)}$$

with

$$\mathbf{W}_{N \times N}^{(t)} = \operatorname{diag}\left[\frac{\left(\partial \mu_i^{(t)}/\partial \eta_i^{(t)}\right)^2}{\operatorname{Var}(Y_i)}\right]$$

and

$$\mathbf{z}^{(t)} = \boldsymbol{\eta}^{(t)} + (Y - \boldsymbol{\mu}^{(t)}) \left(\frac{\partial \boldsymbol{\eta}^{(t)}}{\partial \boldsymbol{\mu}} \right).$$

IRLS, Intuitively

At iteration t:

- 1. Calculate $\mathbf{z}^{(t)}$, $\mathbf{W}^{(t)}$
- 2. Regress $\mathbf{z}^{(t)}$ on \mathbf{X} , using $\mathbf{W}^{(t)}$ as weights, to obtain $\hat{\boldsymbol{\beta}}^{(t+1)}$
- 3. Generate $\eta^{(t+1)} = \mathbf{X}\hat{\boldsymbol{\beta}}^{(t+1)}$
- 4. Generate $\mu^{(t+1)} = g^{-1}(\eta^{(t+1)})$
- 5. Use ${\pmb{\eta}}^{(t+1)}$ and ${\pmb{\mu}}^{(t+1)}$ to calculate ${\pmb{\mathsf{z}}}^{(t+1)}$ and ${\pmb{\mathsf{W}}}^{(t+1)}$
- 6. Repeat until convergence.

Residuals

"Response" Residuals:

$$\hat{u}_i = Y_i - \hat{\mu}_i
= Y_i - g^{-1}(\mathbf{X}_i \hat{\boldsymbol{\beta}})$$

"Pearson" Residuals:

$$\hat{P}_i = \frac{\hat{u}_i}{[\mathsf{Var}(\hat{u}_i)]^{1/2}}$$

More Residuals

"Deviance":

$$\hat{d}_{i} = -2[\ln L_{i}(\hat{\theta}) - \ln L_{i}(\theta_{S})]$$

$$= 2\left\{ \left[\frac{Y_{i}\theta_{S} - b(\theta_{S})}{a(\phi)} + c(Y_{i}, \phi) \right] - \left[\frac{Y_{i}\hat{\theta} - b(\hat{\theta})}{a(\phi)} + c(Y_{i}, \phi) \right] \right\}$$

$$= 2\left[\frac{Y_{i}(\theta_{S} - \hat{\theta}) - b(\theta_{S}) + b(\hat{\theta})}{a(\phi)} \right]$$

"Deviance" Residuals:

$$\hat{r}_{Di} = \left(\frac{\hat{u}_i}{|\hat{u}_i|}\right) \sqrt{\hat{d}_i^2}$$

Toy Example: Linear-Normal

$$X = \{1, 1, 2, 2, 3, 3, 4, 4, 5, 5\}$$
 $Y = \{0, 2, 1, 3, 2, 4, 3, 5, 4, 6\}$
 $Y_i = 0 + 1X_i + u_i$
 $\hat{u}_i^2 = 1 \, \forall \, i$

"TSS" $\equiv \sum (Y_i - \bar{Y})^2 = 30$
"RSS" $\equiv \sum \hat{u}_i^2 = 10$

"MSS" / "ESS" = 20

Toy Example: Plot

Toy Example: OLS

```
> linmod<-lm(v~x)
> summary(linmod)
Call:
lm(formula = v ~ x)
Residuals:
      Min
                  10 Median
                                       30
                                                 Max
-1.000e+00 -1.000e+00 1.110e-16 1.000e+00 1.000e+00
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.617e-16 8.292e-01 -6.77e-16 1.00000
            1.000e+00 2.500e-01
                                   4 0.00395 **
x
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.118 on 8 degrees of freedom
Multiple R-squared: 0.6667, Adjusted R-squared: 0.625
F-statistic: 16 on 1 and 8 DF, p-value: 0.00395
```

Toy Example: Linear-Normal GLM

```
> linglm<-glm(v~x,family="gaussian")</pre>
> summarv(linglm)
Deviance Residuals:
      Min
                  10
                          Median
                                          30
                                                    Max
-1.000e+00 -1.000e+00 -5.551e-17 1.000e+00 1.000e+00
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.617e-16 8.292e-01 -6.77e-16 1.00000
            1.000e+00 2.500e-01 4 0.00395 **
х
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for gaussian family taken to be 1.25)
   Null deviance: 30 on 9 degrees of freedom
Residual deviance: 10 on 8 degrees of freedom
AIC: 34.379
Number of Fisher Scoring iterations: 2
```

Better GLM Example: Political Knowledge

- 2008 NES political knowledge
- Identify Speaker of the House, VP, British PM, and Chief Justice
- Y_i = number of correct answers (out of four)

$$f(Y_i, p_i) = {4 \choose Y_i} p_i^{Y_i} (1 - p_i)^{4 - Y_i}$$

 $Y \sim \text{Binomial}(4, p)$

$$\mathsf{E}(Y_i) = \frac{\mathsf{exp}(\mathbf{X}_i \boldsymbol{\beta})}{1 + \mathsf{exp}(\mathbf{X}_i \boldsymbol{\beta})}$$

GLM Example Data (2008 NES)

> summary(NES08[,4:16])

knowledge	sex	race	age	female
Min. :0.00	Min. :1.00	Min. :1.00	Min. :18.0	Min. :0.000
1st Qu.:1.00	1st Qu.:1.00	1st Qu.:1.00	1st Qu.:33.0	1st Qu.:0.000
Median :2.00	Median :2.00	Median :1.00	Median:45.0	Median :1.000
Mean :1.77	Mean :1.53	Mean :1.56	Mean :46.2	Mean :0.535
3rd Qu.:3.00	3rd Qu.:2.00	3rd Qu.:2.00	3rd Qu.:57.0	3rd Qu.:1.000
Max. :4.00	Max. :2.00	Max. :7.00	Max. :90.0	Max. :1.000
white	oftenvote	conservative	prayfreq	heterosexual
Min. :0.000	Min. :1.0	Min. :1.00	Min. :1.00	Min. :0.000
1st Qu.:0.000	1st Qu.:2.0	1st Qu.:3.00	1st Qu.:3.00	1st Qu.:1.000
Median :1.000	Median :3.0	Median:4.00	Median:4.00	Median :1.000
Mean :0.692	Mean :2.8	Mean :4.15	Mean :3.55	Mean :0.954
3rd Qu.:1.000	3rd Qu.:4.0	3rd Qu.:5.00	3rd Qu.:5.00	3rd Qu.:1.000
Max. :1.000	Max. :4.0	Max. :7.00	Max. :5.00	Max. :1.000
married	yrsofschool	income		
Min. :0.000	Min. : 0.0	Min. : 1.0		
1st Qu.:0.000	1st Qu.:12.0	1st Qu.: 7.0		
Median:0.000	Median:14.0	Median:12.0		
Mean :0.451	Mean :13.6	Mean :11.4		
3rd Qu.:1.000	3rd Qu.:16.0	3rd Qu.:16.0		
Max. :1.000	Max. :17.0	Max. :25.0		

Political Knowledge (2008 NES)

GLM Results

```
> nes08.binom<-glm(cbind(knowledge,4-knowledge)~age+female+white+oftenvote+conservative+
                   prayfreq+heterosexual+married+yrsofschool+income,data=NESO8,family=binomial)
> summarv(nes08.binom)
Call:
glm(formula = cbind(knowledge, 4 - knowledge) ~ age + female +
   white + oftenvote + conservative + prayfreg + heterosexual +
   married + vrsofschool + income, family = binomial, data = NESO8)
Deviance Residuals:
  Min
           10 Median
                                 Max
-2.856 -1.339 -0.034
                               3.610
                       1.015
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.12090
                       0.24933 -8.51 < 2e-16 ***
age
           0.01097
                       0.00192
                                 5.72 1.0e-08 ***
female
          -0.20793
                       0.05961 -3.49 0.00049 ***
white
           0.15193
                       0.06487 2.34 0.01917 *
          0.09633
                       0.02755
oftenvote
                                 3.50 0.00047 ***
                       0.01935 -1.12 0.26425
conservative -0.02160
           -0.05034
                       0.02227 -2.26 0.02378 *
prayfreq
heterosexual -0.06604
                       0.13853 -0.48 0.63358
married
           0.16896
                       0.05848
                                 2.89 0.00386 **
yrsofschool 0.09320
                       0.01316 7.08 1.4e-12 ***
income
             0.00831
                       0.00527
                                 1.58 0.11515
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 3163.9 on 1355 degrees of freedom
Residual deviance: 2933.8 on 1345 degrees of freedom
ATC: 4542
Number of Fisher Scoring iterations: 4
```

Example: In-Sample Predictions

GLMs: Other Topics + Extensions

Other Topics:

- Residual-Based Diagnostics (leverage, model fit, etc.)
- Generalizations for Overdispersion (binomial)
- Joint Mean-Dispersion Models

Extensions:

- Bias-reduced models (a la Firth 1993)
- "Generalized additive models" (GAMs)
- "Generalized estimating equations" (GEEs)
- "Vector" GLMs (Yee and Wild 1996; Yee and Hastie 2003)

GLMs: References

McCullagh, P., and J. A. Nelder. 1989. *Generalized Linear Models*, 2nd Ed. London: Chapman & Hall.

Dobson, Annette J., and and Adrian G. Barnett. 2018. *An Introduction to Generalized Linear Models*, 4th Ed. London: Chapman & Hall.

Faraway, Julian J. 2016. Extending the Linear Model with R: Generalized Linear, Mixed Effects, and Nonparametric Regression Models, 2nd Ed. London: Chapman & Hall / CRC.

Dunn, Peter K., and Gordon K. Smyth. 2018. *Generalized Linear Models With Examples in R*. New York: Springer.

Paul Roback and Julie Legler. 2020. Beyond Multiple Linear Regression: Applied Generalized Linear Models And Multilevel Models in R. London: Chapman & Hall/CRC Press.