Dataset Overview & Data Quality

No. of features: 22 Null Values: 24 (income)

No. of Records: 2240 Duplicates: 182

Outlier chart

- Fairly clean data
- Few outliers in Income
- After removal we were left with
 ~98% of the data

Customer Demographics

Education Level

Income Distribution

Age Distribution

Household composition

Marital Status Distribution

- Diverse Education Levels
- **Older** Customer Base
- Household Composition & Income Variability
- Marital Status Influence

Purchasing Behaviour

- Millennials & Gen Z Are Digital Shoppers
- Luxury & Bulk Purchases Increase with Age
- Younger customers prioritize discounted purchases

Spend per Category by Generation (Age)

- Store Purchases Dominate for Traditional Shoppers
- Web & Catalog Sales Are Growing
- Deals & Discounts Drive Volume

Campaign Response

Overall Response Rate: ~15%

Campaign Acceptance by Generation

CUSTOMER SEGMENTATION AND TARGETED MARKETING

Scree Plot: Optimal no of clusters = 3

Elbow Method for Optimal Clusters --- Optimal Clusters: 3 30000 27500 25000

22500

20000

17500

15000

Clusters formed after PCA

Business context based on clusters formed

_								
	Clusters	Customer Segment	Demographics	Purchase Behaviour	Online Acitvity	Business Label		
	Cluster 0: Purple	Low-Income Price sensitive shoppers	Low Income	all categories, particularly in wines, meat, and gold products.		Budget-Conscious Occasional Buyers		
	Cluster 1: Yellow	High Income High spending Loyal customers	High Income	categories. Consistently engages in high-value	High web, catalog, and store purchases. Lower web visits, indicating they shop efficiently and with intent	Premium Loyalists		
	Cluster 2: Teal	Mid Income Digital Savvy Shoppers	Mid Income	categories. Higher engagement in catalog purchases.	Highest engagement in web purchases. Frequent visits to the website, showing preference for digital shopping	Digital-First Shoppers		

Engagement with Past Campaigns

Cluster 0: **Least engaged** with past campaigns. Likely price-sensitive, cautious buyers.

Cluster 1:

Highly engaged in past campaigns. Likely to accept premium offers and exclusive deals.

Cluster 2:

Moderately engaged in campaigns. More likely to respond to digital promotions.

Predictive Modeling for Campaign Response

	1 0 1	
Feature Engineering Technique	Columns	Class used
Feature Extraction	Loyal customer flag etc	Pandas
Feature Trasformation	Age Customer Tenure etc	Pandas
Feature Encoding	Education Marital status	Label Encoder
Feature Aggregation	Kidhome & Teenhome	Childrenhome
Missing value Imputation	Income	Median Imputation
Outlier detection and removal	Income	Interquartile range(IQR)
Feature Scaling	Income Age Total_spend etc	Standard Scaler

Algorithma Hand	A	Recall		F1-Score	
Algorithms Used	Accuracy	Class 0	Class 1	Class 0	Class 1
Logistic Regression	0.8904	0.96	0.49	0.94	0.58
Decision Trees	0.8501	0.93	0.42	0.91	0.46
Random Forests	0.8658	0.97	0.29	0.92	0.4
Gradient Boosting	0.877	0.98	0.32	0.93	0.44
XgBoost	0.8658	0.96	0.38	0.92	0.46

The ROC curve shows good model performance with an **AUC of 0.88**, indicating strong discrimination between classes.

Confusion Matrix for Logistic Regression Model

Binary Classification Model: Based on the evaluation metrics "Logistic Regression is the best performing model"

On performing GridSearchCV, Logistic Regression model accuracy improved a bit to **0.8949**. With the best parameter of regularization strength as 0.1

Best parameters for Logistic Regression: {'C': 0.1} Logistic Regression Accuracy: 0.8949					
	recision	_		support	
0	0.91	0.97	0.94	378	
1	0.75	0.48	0.58	69	
accuracy			0.89	447	
macro avg	0.83	0.72	0.76	447	
weighted avg	0.89	0.89	0.88	447	

Key Drivers of Campaign Success:

Positive Impact on campaign success

Total Accepted Campaigns (+1.40)

Customers who have previously accepted campaigns are highly likely to respond positively again.

Total Purchases (+1.08)

Customers with a higher total number of purchases are more likely to respond to campaigns

Customer Tenure (+0.80)

The number of days since a customer joined has a positive impact, indicating that longterm customers are more responsive

Total Spending (+0.59)

Higher spending customers are more engaged, likely because they perceive value in the promotions.

campaign success

No impact on

Children (-0.59)

Households with children are less likely to respond to campaigns, possibly due to financial constraints or time limitations

Recency (-0.03)

More recent buyers do not necessarily respond better, contradicting the assumption that recent activity signals engagement

Accepted Campaign 4 (-**0.27)** This specific campaign may have been less successful or targeted a less receptive audience.

Higher education levels show better engagement. TrendStyle Outfitters should tailor messaging to highlight quality, brand prestige, and sustainability.

0.75 1.00 1.25 Customers with higher online purchase engagement respond better. TrendStyle Outfitters should boost digital marketing with personalized emails, online discounts, and retargeting ads.

Education Level vs Campaign Response

No Response

Responded

Actionable Recommendations for TrendStyle Outfitters

Target Audience Segmentation

•High-Income Shoppers:

VIP programs, luxury branding, early access offers.

•Moderate-Income

Shoppers: Seasonal promotions, personalized emails, social media ads.

Price-Sensitive Shoppers:

Flash sales, referral programs, app notifications.

Campaign Message & Offer Personalization

•Luxury Buyers: "Exclusive VIP Access to Premium Collections!"

•Moderate Shoppers: "Your Perfect Seasonal Picks - Special Offers for You!"

•Budget Buyers: "Big Savings Alert! Limited-Time Deals Just for You!"

Channel Optimization

- •Premium Shoppers: Highend influencers, exclusive emails, digital ads.
- •Moderate Shoppers: Facebook/Instagram ads, search ads, email promotions.
- Price-Sensitive Shoppers: SMS, flash sale notifications, TikTok ads.

Budget Allocation for Maximum ROI

- •60% in high-ROI channels (social media, digital ads, personalized emails).
- •A/B testing to optimize spending & adjust based on customer responses.

Expected Impact

- √ 15-30% increase in customer engagement.
- 10-20% higher conversion rates.
- ✓ 20-30% improvement in ROI through targeted promotions.

Increase in conversion =
$$\frac{C_{\text{high}} - C_{\text{base}}}{C_{\text{base}}} \times 100$$
 ROI Improvement = $\frac{S_{\text{high}} - S_{\text{base}}}{S_{\text{base}}} \times 100$

ROI Improvement =
$$\frac{S_{\text{high}} - S_{\text{base}}}{S_{\text{base}}} \times 100$$

Increase in engagement = $\frac{R_{engaged} - R_{base}}{R_{base}} \times 100$