123

Template

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 29. Februar 2023

Abgabe: 6. März 2023

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	
2	Theorie 2.1 Allgemein	2 2 2
3	Durchführung	2
4	Auswertung	3
5	Diskussion	4
Lit	teratur	4
Ar	nhang	5

1 Zielsetzung

Dieser Versuch dient als Muster für ein Protokoll im Fortgeschrittenenpraktikum.

2 Theorie

Der Satz des Pythagoras beschreibt Seitenverhältnisse.

2.1 Allgemein

Für jedes rechtwinklige Dreieck kann

$$a^2 + b^2 = c^2 (1a)$$

$$a^2 = c^2 - b^2 (1b)$$

geschrieben werden.

2.2 Speziell

Mit a = b kann aus dem allgemeinen Fall (1a) direkt auf

$$2a^2 = c^2 \tag{2}$$

geschlossen werden.

3 Durchführung

Es wird ein Geodreieck genutzt.

Abbildung 1: Schematische Darstellung eines Geodreiecks.

4 Auswertung

Tabelle 1: Allgemeine Messergebnisse.

a / mm	b / mm	c / mm
1	2	2,25
2	3	3,60
3	4	5,00
4	5	$6,\!40$

Tabelle 2: Spezielle Messergebnisse.

a / mm	c / mm
1	1,4
2	2,8
3	4,2
4	5,7
5	7,1

 ${\bf Abbildung~2:~Messwerte~und~Theoriegerade.}$

Für
$$c^2=ma^2+n$$
 liefert numpy.polyfit $[1]$

$$m = 2.03 \pm 0.01$$
 $n = (-0.24 \pm 0.21) \,\mathrm{mm}^2$

als Parameter.

5 Diskussion

Die Messung weist eine gute Übereinstimmung mit der Theorie auf.

Literatur

[1] Charles R. Harris u. a. "Array programming with NumPy". In: *Nature* 585.7825 (Sep. 2020), S. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/s41586-020-2649-2.

Anhang

