影像空間濾波

Image Spatial Filtering

台科大色彩與照明科技研究所 色彩與影像實作技術 補充資料 孫沛立 副教授

空間濾波 Spatial filtering

FILTERS

Fig. 6.2

Principal filter operation. Each new pixel value I'(x, y) is computed as a function of the pixels in a corresponding region of source pixels R_{xy} in the original image I.

6 FILTERS

Fig. 6.3 Filter matrix and coordinate system.

- 1.以Hot Spot為中心,由左至右,由上至下移動濾鏡矩陣。
- 2. 將濾鏡的數值乘上對應的影像灰階值。
- 3. 將數值總和填入輸出影像 Hot Spot 的位置。
- 4. 重覆步驟1~3至輸出影像被填滿。

線性空間濾波 Linear Spatial filtering

$$I'(\mathbf{x}, \mathbf{y}) \leftarrow \sum_{(i,j) \in R_H} I(\mathbf{x} + i, \mathbf{y} + j) \cdot H(i,j),$$
 (6.5)

where R_H denotes the set of coordinates covered by the filter H. For a typical 3×3 filter with centered origin, this is

Fig. 6.4

Linear filter. The filter matrix H is placed with its origin at position (x, y) on the image I. Each filter coefficient H(i, j) is multiplied with the corresponding image pixel I(x+i, y+j), the results are added, and the final sum is inserted as the new pixel value I'(x, y).

- 1.以Hot Spot為中心,由左至右, 由上至下移動濾鏡矩陣。
- 2. 將濾鏡的數值乘上對應的影像灰階值。
- 3. 將數值總和填入輸出影像 Hot Spot 的位置。
- 4. 重覆步驟1~3至輸出影像被填滿。

用平均值濾鏡(mean filter)作影像模糊化處理

 $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

3x3 平均值濾鏡

7x7 平均值濾鏡

11x11 平均值濾鏡

影像的梯度與一階導數

Fig. 7.2 Sample image and first derivative in one dimension: original image (a), horizontal intensity profile f(x) along the center image line (b), and first derivative f'(x) (c).

影像梯度(gradient):像素單方向灰階值的落差相當於影像的一階導數

影像梯度(Gradient)

Edge detectors

a b c d e f g

FIGURE 10.8

A 3 × 3 region of an image (the z's are gray-level values) and various masks used to compute the gradient at point labeled z_5 .

		Z ₄		75	Z,	5			
		Z ₇	1	ζ8	Z	9			
-1	1	0			0	-	-1		
0		1			1		0		
			Rol	erts	i .				
-1	1	-	1	-	-1		0	1	
0		0		-	-1		0	1	
1		1			-1		0	1	
			Pre	witt					
-2	2	-:	1	_	-1		0	1	
0		0		-	-2		0	2	

-1

Sobel

a b c d

-1

0

-1

0

2

 z_1 z_2 z_3

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.

邊緣偵測(Edge detection)的步驟

- 3. 邊界線:|f'(x)|灰階影像二值化。高於門檻值的設為1 (edge),其餘為0。
- 4. 邊界點:可取|f'(x)|的區域極大值,或其梯度(二階導數f"(x))的零穿越點, 作為邊界點。

Edge detection: Compare 3 filters

Original

Robert

Prewitt

Sobel (vertical)

Sobel (horizontal)

Sobel (horizontal) threshold=0.01

First and second derivatives of an edge

Fig. 7.8

Principle of edge detection with the second derivative: original function (a), first derivative (b), and second derivative (c). Edge points are located where the second derivative crosses through zero and the first derivative has a high magnitude.

影像的二階導數: 梯度的梯度,用於檢測影像 細紋或小顆粒

影像梯度(Gradient)

Laplacian filter (二階導數)

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

FIGURE 3.38

- (a) Blurred image of the North Pole of the moon.(b) Laplacian
- without scaling.
- (c) Laplacian with scaling. (d) Image sharpened using the mask in Fig. 3.37(a). (e) Result of using the mask in Fig. 3.37(b). (Original image courtesy of NASA.)

7.6 EDGE SHARPENING

Fig. 7.11

Edge sharpening with the second derivative. The original intensity function f(x), first derivative f'(x), second derivative f''(x), and sharpened intensity function $\dot{f}(x) = f(x) - w \cdot f''(x)$ are shown.

影像銳化:

將影像減去二階導數紋理, 相當於影像疊加了輪廓細紋, 有銳化效果

灰階影像經由下列四種3x3濾波器處理所獲得結果

(b)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

-1	-2	-1
0	0	0
1	2	1

0	-1	0
-1	4	-1
0	-1	0

(c)

0	-1	0
-1	5	-1
0	-1	0

影像模糊化

(a)

輪廓邊界 (線偵測)

高頻資訊 (點偵測)

(d)

影像銳利化

均值濾波器 Mean filter 一階導數 Sobel 二階導數 Laplacian 原影像 + 二階導數

形態學影像處理 Morphological Image Processing

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring element. (c) The set padded with background elements to form a rectangular array and provide a background border. (d) Structuring element as a rectangular array. (e) Set processed by the structuring element.

膨脹(dilation)

移動B, 所有A與B有交集的Z位置

a b c d e

FIGURE 9.4

- (a) Set A.
- (b) Square structuring element (dot is the center).
- (c) Dilation of *A* by *B*, shown shaded.
- (d) Elongated structuring element.
- (e) Dilation of *A* using this element.

$$A \oplus B = \left\{ z \mid (\hat{B})_z \cap A \neq \phi \right\}$$
$$= \left\{ z \mid [(\hat{B})_z \cap A] \subseteq A \right\}$$

Matlab: imdilate()

$$d/4$$

$$\bullet d/4$$

$$\hat{B} = B$$

侵蝕(erosion)

移動B, 使B完全沒入A中的所有Z位置

$$A\Theta B = \{z \mid (B)_z \subseteq A\}$$
$$= \{z \mid (B)_z \cap A^c = \phi\}$$

Matlab: imerode()

FIGURE 9.6 (a) Set A. (b) Square structuring element. (c) Erosion of A by B, shown shaded. (d) Elongated structuring element. (e) Erosion of A using this element.

斷開(Opening): 使物體輪廓平滑,吃掉細小連線

abcd

FIGURE 9.8 (a) Structuring element B "rolling" along the inner boundary of A (the dot indicates the origin of B). (c) The heavy line is the outer boundary of the opening. (d) Complete opening (shaded).

$$A \circ B = (A \Theta B) \oplus B$$

Matlab: imopen()

閉合(Closing): 消除小洞,連結細小連線

a b c

FIGURE 9.9 (a) Structuring element *B* "rolling" on the outer boundary of set *A*. (b) Heavy line is the outer boundary of the closing. (c) Complete closing (shaded).

$$A \bullet B = (A \oplus B) \Theta B$$

Matlab: imclose()

比較(b)侵蝕(c)斷開(d)膨脹(e)閉合

實例 1 (白色部份為處理對象)

Original

The term watershed refers to a ridge that idea by different systems.

Dilation

... divides areas drained by different meres river systems. ...

Erosion

... divides areas drained by different per river systems.

Opening

... divides areas drained by different persent properties in page 1... in page 1...

Closing

The term watershed refers to a ridge that a reas drained by different river systems.

實例 2 (白色部份為處理對象)

Original (BW)

Dilation

Erosion

Original (Grayscale)

Opening

Closing

