Описание решенных задач

1 Задача составления расписания лекций

1.1 Алгоритм сведения поставленной задачи к форме QUBO

Бинарными переменными являются величины

$$x_{td}^{gps}$$
, (1)

равные единице, если у группы g в день d и время t проводится занятие, которое ведет преподаватель p по дисциплине s, причем $0 \le g \le 2$, $0 \le d \le 11$ (всего дней 12, так как воскресенье - выходной у всех), $0 \le t \le 7$ (в день возможно 8 занятий), $0 \le p \le 5$, $0 \le s \le 1$ (индекс s показывает, что каждый преподаватель ведет ровно два предмета).

В такой постановке ценовая функция строится из ограничений, опишем каждое из них. Нумерация для удобства соответствует нумерации, предложенной в задании.

2. В день может быть поставлено не более 6 лекций в расписании группы. Это условие эквивалентно соотношению:

$$\forall g, \ \forall d: \sum_{s,p,t} x_{td}^{gps} \le 6. \tag{2}$$

3. В день не может быть более двух занятий по одному предмету у группы.

$$\forall g, \ \forall d, \ \forall s, \ \forall p : \sum_{t} x_{td}^{gps} \le 2.$$
 (3)

- 4. Так получилось, что преподаватель n_1 не может вести лекции в среду, а n_2 в понедельник, а n_3 никак не может работать по субботам, n_4 , n_5 не могут вести занятия по вторникам. Это ограничение выполняется, если занулить переменные, отвечающие определенным парам (p,d) (например, для преп. n_1 имеются пары (p,d) = (0,2) и (0,8)).
- 5. По требованию учебной программы для каждого предмета должно быть выделено 4 часа за период T=2 недели для каждой группы.

$$\forall g, \ \forall s, \ \forall p: \sum_{t,d} x_{td}^{gps} = 4. \tag{4}$$

6. Каждый преподаватель имеет ограниченное число часов в неделю на работу $E \le 20$.

$$\forall p: \sum_{d=0}^{5} \sum_{s,a,t} x_{td}^{gps} \le 20; \tag{5}$$

$$\forall p: \sum_{d=6}^{11} \sum_{s,g,t} x_{td}^{gps} \le 20. \tag{6}$$

6.1 Условие на то, что каждый преподаватель может может вести ровно два предмета, выполняется автоматически.

Кроме того, необходимо внести ограничения на то, что у каждой группы в любой момент времени может быть не более одной пары, и то, что каждый преподаватель в каждый момент времени может вести не более чем у одной группы.

$$\forall d, \ \forall g, \ \forall t: \sum_{p,s} x_{td}^{gps} \le 1; \tag{7}$$

$$\forall s, \ \forall p, \ \forall d, \ \forall t : \sum_{q} x_{td}^{gps} \le 1.$$
 (8)

Для того, чтобы построить QUBO - матрицу, необходимо свести ограничения в форме неравенств к ограничениям в форме равенств. Для этого вводятся дополнительные переменные, которые дискретизуются, например, для условия 2:

$$\forall g, \ \forall d: \sum_{s,n,t} x_{td}^{gps} + \sum_{i=0}^{i=2} 2^i s_{2gd} = 6, \tag{9}$$

где s_{2qd} - новые бинарные переменные, первый индекс отвечает за номер условия.

Итоговый ценовой функционал будет являться суммой штрафов, предусмотренных за невыполнение различных условий, например, слагаемее, отвечающее условию 2, будет в него входить как

$$\sum_{a,d} \left| \sum_{s,p,t} x_{td}^{gps} + \sum_{i=0}^{i=2} 2^i s_{2gd} - 6 \right|^2.$$
 (10)

Подобная постановка позволяет стразу узнать минимум функционала - при условии, что решение существует, минимум будет равен нулю. Непосредственный вид матрицы QUBO нами был получен с использованием библиотеки qubovert.

Точное количество бинарных переменных равно

$$|G||P||S||T||D| + 3|G||D| + 2|G||D||S||P| + 3|G||S||P| + (5*2)|P| + |D||G||T| + |S||P||D||T| - 2|G||S||T|,$$
(11)

где G - множество всех g, |G|=2 - его мощность, и т д. Подставляя данные из задачи получаем количество переменных в 3673. К плюсам данной постановки относится масштабируемость, так как вид целевой функции (принципиально) не зависит от горизонта планирования, и конкретных значений в ограничивающих условиях. Для определения численных коэффициентов необходимо взять $\lceil \log m \rceil$ (m - число, входящее в данное ограничение - напр., число занятий в день по одному предмету у группы).

Разумное масштабирование будет включать в себя увеличение |G|, |P|, |D|, и тогда количество переменных будет вести себя как:

$$\mathcal{O}(|G||P||D|). \tag{12}$$

1.2 Оценка сходимости алгоритма

Приведем результаты тестирования задачи QUBO на различных солверах.

1. Simulated annealing из qubovert. Сходимость оценивалась как зависимость найденного оптимального решения от числа отжигов (параметр num_anneals в qubo_anneal). Получены следующие результаты:

Количество отжигов	Найденный минимум	Время работы
1	46	60 сек
10	30	90 сек
100	32	110 сек
1000	19	20 мин

Несмотря на то, что в результате работы программы отжиг "застревает" в локальных минимумах, видно, что сходимость имеется, и при увеличении количества отжигов можно будет получить допустимое решение.

2. Для simcim....

Приведем таблицу для лучшего решения:

1.3 Комментарии (по структуре репозитория)

2 Классификация ионов

Решение задачи разобьём на два этапа.

- 1. Нахождение центра иона (если он есть).
- 2. Обработка изображенй из датасета.
- 3. Сведение задачи к QUBO.

Опишем подробно каждый этап

2.1 Нахождение центра иона

Любое цветное изображение состоит из 3-ёх каналов, каждый пиксель считаем 8-битным, то есть его значение в одном канале лежит в диапазоне [0, 255]. Найдем среднее значение интенсивности пикселя для каждого цветового канала. Далее полным перебором по всем пикселям найдем пиксели, значение в которых отличается от среднего более чем на 40%. Усредним коодинаты по x и по y и тем самым найдем приблизительное положение центра иона (если его нет, то не так важно).

2.2 Обработка изображенй из датасета

Обрезаем каждую картинку вокруг центра иона (если иона на картинке нет, то обрезаме её в любом месте) так что полученная картинка содержит 20×20 пикселей. Это нужно для того, чтобы сократить число бинарных переменных. Далее превращаем каждую картинку в одномерный вектор.

2.3 Сведение задачи к QUBO

Заведем целочисленные переменные $\{x_{(i,j),\alpha}\}$, которые кодируют следующую информацию: $x_{(i,j),\alpha} \in [0,255]$ - значение 8-битного пикселя с координатой (i,j) в канале α . Мы делаем следующие предположения (допущения) для еализации математической модели задачи

- 1. $f(\vec{x}) = W\vec{x} = \vec{y}$ функция, которая дает предсказание на наличие ионов (1 есть ион, 0 иона нет). W матрица весов (в нашем случа строчка), которую мы будем искать, используя аннилинг.
- 2. В качестве функции ошибок берем $H(W) = \sum_i |W\vec{x}^i y_{dt}^i|^2$, как функцию от весов.
- 3. Поскольку веса являются вещественными переменными, нужно правильно их дискретизовать. Используем бинарную дискретизацию $W=2^{-j}\tilde{W}_{-j}+...+\tilde{W}_0+...+2^j\tilde{W}_j$.
- 4. Далее используем алгоритм квантового отжига для поиска минимума. Откуда мы получаем оптимальные знаения W, а значит можем предсказывать наличие ионов. Если мы изначально храним информацию о том, какая обрезанная картинка принадлежала которой из исходных необрезанных, то мы сможем восстановить исходный кортеж из четырёх битов.

- 1.Предложен метод сведения задачи классификации ионов на изобра- жении в модель QUBO/Изинга.
- 2. Представлен анализ предложенного алгоритма. Анализ должен вклю- чать оценку масштабирования алгоритма по количеству переменных, оценку сходимости алгоритма, сравнение алгоритма с классическими аналогами.
 - 3. Предоставлен работающий код, реализиующий алгоритм квантового отжига.
- 4. Представлено верное решение задачи классификации ионов. Проведе- на оценка точности решения на предоставленном наборе данных. Ис- пользуются метрики оценки многоклассовой классификации: Precision, Recall, F1.