# DEVOIR SURVEILLÉ 4

Calculatrice autorisée Jeudi 6 avril 2023

### **EXERCICE 1 (6 POINTS)**

Un annonceur recense les médias les plus utilisés selon l'âge des utilisateurs afin de cibler les publicités proposées, en milliers de personnes.

|                 | Télévision | Radio | Presse |
|-----------------|------------|-------|--------|
| Moins de 18 ans | 46,4       | 20,7  | 52,9   |
| 18-63 ans       | 24,9       | 21,6  | 102,5  |
| Plus de 63 ans  | 50,2       | 24,0  | 24,8   |

On choisit une personne au hasard.

1. Quelle est la probabilité que son média favori soit la radio et qu'elle ait plus de 63 ans?

**2.** Sachant que la personne choisie a moins de 18 ans, quelle est la probabilité que son média favori soit la presse?

**3.** 30% des moins de 18 ans qui regardent la télévision le font sur leur smartphone. Combien de jeunes cela représente-t-il?

4. Parmi les personnes utilisant majoritairement la radio, quelle est la fréquence des moins de 63 ans?

5. Calculer la fréquence conditionnelle des 18-63 ans parmi les personnes qui ne préfèrent pas la presse.

#### CORRECTION

1. On a besoin de connaître le total total. Il est de 368, c'est-à-dire qu'on considère 368 000 personnes.

La probabilité attendue est  $p = \frac{24}{368} \approx 0,065$ .

**2.** 
$$p = \frac{52,9}{46,2+20,7+52,9} = \frac{52,9}{120} \approx 0,441$$

3. Il y a  $0.3 \times 46400 = 13920$  jeunes qui regardent la télévision sur leur smartphone.

**4.** La fréquence attendue est  $f = \frac{20,7+21,6}{20,7+21,6+24,0} \simeq \boxed{0,638.}$ 

5. Il y a 46,4+20,7+24,9+21,6+50,2+24,0=187,8 milliers de personnes qui ne préfèrent pas la presse.

Ainsi, la fréquence conditionnelle attendue est  $f = \frac{24,9+21,6}{187,8} \simeq \boxed{0,248.}$ 

## **EXERCICE 2 (8 POINTS)**

Un adepte des paris sportifs recueille des données sur 350 matchs de son équipe favorite. Il remarque que cette équipe gagne le match 75% des fois où elle mène à la première mi-temps, ce qui est arrivé 200 fois. Il note aussi qu'il y a match nul sur 8% des matchs qu'elle a joués. Parmi ces matchs nuls, l'équipe a mené 16 fois à la première mi-temps. Enfin, cette équipe a gagné 60% de ses matchs.

1. Compléter, sur le sujet, le tableau suivant sans justifier.

|                                            | Gagne | Nul | Perd | Total |
|--------------------------------------------|-------|-----|------|-------|
| Mène à la 1 <sup>ère</sup> mi-temps        | 150   | 16  | 34   | 200   |
| Ne mène pas à la 1 <sup>ère</sup> mi-temps | 60    | 12  | 78   | 150   |
| Total                                      | 210   | 28  | 112  | 350   |

- 2. L'équipe joue un match.
  - a. Calculer la probabilité qu'il y ait match nul sachant que l'équipe mène à la première mi-temps.
  - **b.** Calculer la probabilité qu'il y ait match nul sachant que l'équipe ne mène pas à la première mi-temps.
  - **c.** A-t-on plus intérêt à parier sur un match nul quand l'équipe mène à la première mi-temps ou quand elle ne mène pas? **Justifier.**
- **3.** A-t-on plus intérêt à parier qu'elle va perdre quand elle ne mène pas à la première mi-temps ou qu'elle va gagner quand elle mène à la mi-temps? **Justifier.**

#### **CORRECTION**

- 1. Voir tableau.
- **2. a.**  $p = \frac{16}{200} = \frac{2}{25} \approx 0.08$ .

**b.** 
$$p = \frac{12}{150} = \frac{2}{25} \approx 0.08.$$

- c. Les deux probabilités précédentes étant égales, il n'est pas plus intéressant de parier dans le premier cas que dans le second
- **3.** La probabilité qu'elle perde sachant qu'elle ne mène pas à la première mi-temps est  $p = \frac{78}{150} \approx 0,52$ .

La probabilité qu'elle gagne sachant qu'elle mène à la première mi-temps est  $p = \frac{150}{200} = 0,75$ . Ainsi, il vaut mieux parier dans le second cas.

# EXERCICE 3 (6 POINTS)

On lance 3 fois de suite une pièce équilibrée. On compte le nombre de *Pile* obtenus. L'expérience est représentée par l'arbre suivant.



Pour les questions suivantes, cocher la ou les réponses correctes, sans justification attendue.

1. Donner le nombre d'issues de cette expérience aléatoire.

$$\Box$$
 14

2. Donner la probabilité d'obtenir exactement deux Pile.

$$\Box \frac{2}{3}$$

$$\frac{3}{8}$$

3. Donner la probabilité d'obtenir un Pile ou plus.

$$\Box \frac{1}{0}$$

$$=\frac{7}{8}$$

4. Donner la probabilité d'avoir obtenu Pile au second tirage.

$$\Box \frac{3}{7}$$

$$=\frac{4}{8}$$

$$\Box \frac{5}{9}$$

$$\Box \frac{6}{10}$$

**5.** Soit *A*: "Obtenir un seul *Pile*". Donner  $\mathbb{P}(\overline{A})$ .

$$\square \mathbb{P}(A) - 1$$

$$1 - \mathbb{P}(A)$$

$$\Box \frac{4}{14}$$

$$\Box \frac{1}{3}$$

**6.** Soient B: "Obtenir  $Pile\ Pile\ Face"$  et C: "Obtenir exactement deux Face". Donner  $\mathbb{P}(B)$ .

0,125

□ 0,25

 $\square$  2 $\mathbb{P}(C)$ 

 $\square \mathbb{P}(C)$