1 Монотонность. Экстремумы

Теорема 1.1 (Критерий монотонности). $f \in C(\langle a,b \rangle)$ f - $\partial u \phi$. на (a,b), $mor \partial a \ f \uparrow \Leftrightarrow f'(x) \geq 0, \forall x \in (a,b)$

Доказательство. \Rightarrow по определению производной $\Leftarrow x_1 > x_2$ по т. Лагранжа $\exists c: f(x_1) - f(x_2) = f(c) \cdot (x_1 - x_2) \geq 0$

Следствие 1.1.1.
$$f:\langle a,b\rangle\to\mathbb{R},\ mor\partial a$$
 $f=const\Leftrightarrow f\in C(\langle a,b\rangle),\ \partial u\phi\phi\ na\ (a,b)f'=0$

Следствие 1.1.2. $f \in C(\langle a,b \rangle), \ \partial u \phi \phi \ \ na\ (a,b), \ mor \partial a \ f$ - строго возрастает \Leftrightarrow

- 1. $f' \ge 0$ на (a, b)
- 2. $f' \neq 0$ ни на каком промежутке

 $Доказательство. \Rightarrow$ очев.

← по Лемме о возрастании в точке

Следствие 1.1.3 (Доказательство неравенств). $g,f\in C(\langle a,b\rangle),\ \partial u\phi\phi.$ на (a,b)

$$f(a) \leq g(a), \forall x \in (a,b) f'(x) \leq g'(x), \ mor \partial a \ \forall \alpha \in (a,b) f(\alpha) \leq g(\alpha)$$