Application No.: 10/075,258

AMENDMENTS TO THE CLAIMS

Please CANCEL claims 2, 3, 15, and 24 without prejudice or disclaimer.

Please AMEND claims 1, 10, 14, and 23 as shown below.

The following is a complete list of all claims in this application.

- 1. (Presently Amended) A poly amic acid precursor comprising at least one anhydride and at least one diamine in a cosolvent of tetrahydrofuran and N-methylpyrrolidinone, wherein said tetrahydrofuran is in an amount ranging from about 60% to about 90% by volume of tetrahydrofuran and N-methylpyrrolidinone.
 - 2. (Presently Cancelled)
 - 3. (Presently Cancelled)
- 4. (Original) The poly amic acid precursor of claim 1 wherein said at least one anhydride is a combination of 4,4'-oxydiphthalic anhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride.
- 5. (Original) The poly amic acid precursor of claim 4 wherein the mole ratio of 3,3',4,4'-biphenyltetracarboxylic dianhydride to 4,4'-oxydiphthalic anhydride ranges from about 25% to about 75% 3,3',4,4'-biphenyltetracarboxylic dianhydride.

Application No.: 10/075,258

- 6. (Original) The poly amic acid precursor of claim 4 wherein the mole ratio of 3,3',4,4'-biphenyltetracarboxylic dianhydride to 4,4'-oxydiphthalic anhydride is about 50% 3,3',4,4'-biphenyltetracarboxylic dianhydride.
- 7. (Original) The poly amic acid precursor of claim 1 wherein the diamine is 3,4'-oxydianiline.
- 8. (Original) The poly amic acid precursor of claim 1 further comprising at least 1 weight % of an inorganic filler selected from the group consisting of mica, silica, calcium carbonate, calcium phosphate, calcium silicate, talc, and a combination thereof.
 - 9. (Original) A polyamic acid precursor comprising:
- 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydiphthalic anhydride in a molar ratio of about 50% 3,3',4,4'-biphenyltetracarboxylic dianhydride;
- 3,4'-oxydianiline in a molar ratio of about 50% 3,4'-oxydianiline to 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydiphthalic anhydride; and

a cosolvent comprising about 70% tetrahydrofuran and about 30% N-methylpyrrolidinone by volume of cosolvent.

10. (Presently Amended) A method for producing a polyimide comprising:

heating a poly amic acid precursor comprising at least one anhydride and at least one diamine in a cosolvent of tetrahydrofuran and N-methylpyrrolidinone, wherein said tetrahydrofuran is in an amount ranging from about 1% 60% to about 90% by volume of

Application No.: 10/075,258

tetrahydrofuran and N-methylpyrrolidinone, whereby a portion of the cosolvent is removed and a polyimide is formed.

- 11. (Original) The method of claim 10 further comprising adding at least 1 weight % of an inorganic filler selected from the group consisting of mica, silica, calcium carbonate, calcium phosphate, calcium silicate, talc, and a combination thereof to said poly amic acid precursor.
- 12. (Original) The method of claim 10 wherein the at least one anhydride is 4,4'-oxydiphthalic anhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride and the mole ratio of 3,3',4,4'-biphenyltetracarboxylic dianhydride to 4,4'-oxydiphthalic anhydride ranges from about 25% to about 75% 3,3',4,4'-biphenyltetracarboxylic dianhydride.
 - 13. (Original) The method of claim 10 wherein the diamine is 3,4'-oxydianiline.
 - 14. (Presently Amended) A polyimide laminate comprising:
 - a polyimide layer; and
- a metal foil, wherein said polyimide laminate is produced by casting a polyamic acid precursor comprising at least one diamine and at least one anhydride in a cosolvent of tetrahydrofuran and N-methylpyrrolidinone onto a surface of the metal foil, followed by heating the polyamic acid solution to form the polyimide layer, wherein said tetrahydrofuran is in an amount ranging from about 60% to about 90% by volume of tetrahydrofuran and N-methylpyrrolidinone.

Application No.: 10/075,258

15. (Presently Cancelled)

16. (Original) The polyimide laminate of claim 14 wherein said polyamic acid

precursor further contains at least 1 weight % of an inorganic filler selected from the group

consisting of mica, silica, calcium carbonate, calcium phosphate, calcium silicate, talc, and a

combination thereof.

17. (Original) The polyimide laminate of claim 14 wherein the at least one

anhydride comprises 4,4'-oxydiphthalic anhydride and 3,3',4,4'-biphenyltetracarboxylic

dianhydride.

18. (Original) The polyimide laminate of claim 17 wherein the mole ratio of

3,3',4,4'-biphenyltetracarboxylic dianhydride to 4,4'-oxydiphthalic anhydride ranges from about

25% to about 75% 3,3',4,4'-biphenyltetracarboxylic dianhydride.

19. (Original) The polyimide laminate of claim 17 wherein the mole ratio of

3,3',4,4'-biphenyltetracarboxylic dianhydride to 4,4'-oxydiphthalic anhydride is about 50%

3,3',4,4'-biphenyltetracarboxylic dianhydride.

20. (Original) The polyimide laminate of claim 14 wherein the diamine is 3,4'-

oxydianiline.

-5-

Application No.: 10/075,258

21. (Original) The polyimide laminate of claim 14 wherein the poly amic acid precursor is quantitatively pumped and fed through a slit die and cast onto a surface of a metal foil.

- 22. (Original) The polyimide laminate of claim 14 wherein the metal foil is copper.
- 23. (Presently Amended) A process for producing a polyimide laminate comprising the steps of:

adding a poly amic acid precursor onto a surface of a substrate, wherein the polyamic acid precursor comprises at least one diamine and at least one anhydride in a cosolvent of tetrahydrofuran and N-methylpyrrolidinone, wherein said tetrahydrofuran is in an amount ranging from about 1% 60% to about 90% by volume of tetrahydrofuran and N-methylpyrrolidinone; and

heating the poly amic acid precursor on the substrate to remove tetrahydrofuran and N-methylpyrrolidinone thereby forming a polyimide laminate.

- 24. (Presently Cancelled)
- 25. (Original) The process of claim 23 wherein the poly amic acid precursor contains about 90% tetrahydrofuran and about 10% N-methylpyrrolidinone.

Application No.: 10/075,258

26. (Original) The process of claim 23 wherein the step of heating the poly amic acid precursor solution removes at least about 75% of the solvent.