Теортест-1 (Вариант 15)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. Нижняя сумма Дарбу не больше любой интегральной суммы для данного разбиения;
- 2. При измельчении разбиения нижняя сумма Дарбу уменьшается или не изменяется;
- 3. При измельчении разбиения нижняя сумма Дарбу уменьшается;
- 4. При измельчении разбиения нижняя сумма Дарбу увеличивается;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем треугольника равен нулю;
- 2. любое множество имеет неотрицательный объем;
- 3. объем одной точки равен нулю;
- 4. при движении объем не меняется;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a, b];
- 2. Если $f \ge 0$ на [a, b], то $\int_a^b f(x) dx \ge 0$;
- 3. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 4. Если $f \ge 0$ на [a,b] и $\exists c \in [a,b] \colon f(c) > 0$, то $\int_a^b f(x) dx > 0$;

Задача 4

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;
- 2. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 3. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 4. первообразная дробно-рациональной функции выражается через элементарные функции;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x^2)dx = 2 \int f(t)tdt$;
- 2. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;
- 3. $\int f(x)dx = \int f(1/t) \frac{dt}{t^2}$;
- 4. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения:

- 1. Длина любой кривой конечна;
- 2. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 3. Кусочно-гладкая кривая спрямляема;
- 4. Спрямляемы только кусочно-гладкие кривые;
- 5. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;

Задача 7

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. vdt = du;
- 2. v = u';
- 3. udt = dv;
- 4. u = v' + C:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [9; 100];
- 2. [-9; 90];
- 3. [-3; 90];
- 4. [0; 100];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 2. $\int_a^b f(x)dx = F(b) F(a);$
- 3. Если f непрерывна на [a,b], то F первообразная для f на [a,b];
- 4. F имеет разрывы в точках разрыва функции f;

Задача 10

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f возрастает (нестрого) на [a,b] и f(b)=1;
- 2. f непрерывна в точке a и f(a) = 1;
- 3. f(a) > 0, f(b) > 0;
- 4. f непрерывна на [a,b] и f((a+b)/2)=1;