MATH 7752 Homework 11

James Harbour

April 29, 2022

Problem 1

In this problem you will need the following two definitions.

Definition 1: Let L/F be a finite separable extension and let \overline{F} be an algebraic closure of F containing L. A subfield L' of \overline{F} is called **conjugate to** L **over** F if $L' = \sigma(L)$ for some F-embedding $\sigma: L \to \overline{F}$. (Note: L/F is Galois if and only if the only conjugate to L over F is itself.)

Definition 2: A finite extension K/F is called a *p*-extension if K/F is Galois and Gal(K/F) is a *p*-group.

(a): Let L/F be a separable extension of degree n and let K be the Galois closure of L over F. Prove that K can be written as a compositum $L_1L_2\cdots L_n$, where L_1,\ldots,L_n are (not necessarily distinct) conjugates of L over F.

Proof. By the primitive element theorem, there exists some $\alpha \in L$ such that $L = F(\alpha)$. Let $\alpha_1, \ldots, \alpha_n$ be the roots of $\mu_{\alpha,F}$ (all inside K as K/F is Galois). By the simple extension lemma, for each $i \in \{1,\ldots,n\}$ the inclusion $F \subseteq \overline{F}$ extends to an F-embedding $\sigma_i : F(\alpha) \hookrightarrow \overline{F}$ such that $\sigma_i(\alpha) = \alpha_i$. Now set $L_i = \sigma_i(L) = \sigma_i(F(\alpha))$.

Then $L_1 \cdots L_n = F(\alpha_1, \dots, \alpha_n)$ is a splitting field for the separable polynomial $\mu_{\alpha,F}$ over F, whence $L_1 \cdots L_n/F$ is Galois. Thus by minimality of the Galois closure, $K \subseteq L_1 \cdots L_n$. On the other hand, as $\alpha_1, \alpha_n \in K$, it follows that $L_1 \cdots L_n = F(\alpha_1, \dots, \alpha_n) \subseteq K$. Thus $K = L_1 \cdots L_n$.

(b):Let K/F and L/F be finite p-extensions. Prove that KL/F is also a p-extension.

Proof. By homework 10 problem 4 part (ii), KL/F is finite Galois and we have an injective group homomorphism $\iota : \operatorname{Gal}(KL/F) \hookrightarrow \operatorname{Gal}(K/F) \times \operatorname{Gal}(L/F)$. As both $\operatorname{Gal}(K/F)$ and $\operatorname{Gal}(L/F)$ are finite p-groups, it follows then that $\operatorname{Gal}(KL/F) \cong \iota(\operatorname{Gal}(KL/F)) \subseteq \operatorname{Gal}(K/F) \times \operatorname{Gal}(L/F)$ is a finite p-group. \square

(c): Suppose that K/L and L/F are both p-extensions, and let M be the Galois closure of K over F (note: we do not know whether K/F is Galois or not). Prove that M/F is also a p-extension.

Proof. By part (a), $M = K_1 \cdots K_n$ for some conjugates K_i of K over F. Then for $i \in \{1, \ldots, n\}$, there is some F-embedding $\sigma_i : K \hookrightarrow \overline{F}$ such that $K_i = \sigma_i(K)$. By normality of L/F, $\sigma_i(L) = L$. Thus each extension K_i/L is F-isomorphic to K/L via σ_i and is thus a p-extension. Now by part (b), $M/L = K_1 \cdots K_n/L$ is a p-extension, whence we observe that

$$|\operatorname{Gal}(M/F)| = [M:F] = [M:L][L:F] = |\operatorname{Gal}(M/L)| \cdot |\operatorname{Gal}(L/F)|$$

implies that M/F is also a p-extension.

(d): Now assume only that L/F is a separable extension with $[L:F]=p^r$, for some $r \geq 1$. Let M be the Galois closure of L over F. Prove that [M:F] need not be a power of p.

Proof. Consider the example $L/F = \mathbb{Q}(\sqrt[p^r]{2})/\mathbb{Q}$. Then $M = \mathbb{Q}(\sqrt[p^r]{2}, \zeta_{p^r})$ where ζ_{p^r} is a primitive p^r th root of unity. On one hand $[\mathbb{Q}(\zeta_{p^r}):\mathbb{Q}] = \varphi(p^r) = p^r - p^{r-1} = p^{r-1}(p-1)/2$ is not a power of p. On the other hand, $p^{r-1}(p-1)/2 = [\mathbb{Q}(\zeta_{p^r}):\mathbb{Q}] \mid [M:\mathbb{Q}]$, so it follows that $[M:\mathbb{Q}]$ is not a power of p.

Problem 2

Let f(x) and g(x) be irreducible polynomials in $\mathbb{F}_p[x]$ of the same degree. Let $F = \mathbb{F}_p[x]/(f(x))$. Prove that g(x) splits completely over F.

Proof. By a vector space counting argument, $|F| = p^n$. By uniqueness of splitting fields, F is \mathbb{F}_p -isomorphic to \mathbb{F}_{p^n} which is \mathbb{F}_p -isomorphic to $\mathbb{F}_p[x]/(q(x))$ which contains a root of q(x). Thus, F contains a root of q(x) whence by normality of the extensions F/\mathbb{F}_p , q(x) splits over F.

Problem 3

Consider the polynomial $f(x) = x^4 - 2x^2 - 5 \in \mathbb{Q}[x]$.

(a): Determine the Galois group G of the splitting field K of f(x) over \mathbb{Q} .

Proof. Let $\alpha = \sqrt{1 + \sqrt{6}}$ and $\beta = \sqrt{1 - \sqrt{6}}$. Then $f(x) = (x - \alpha)(x + \alpha)(x - \beta)(x + \beta)$ and $K = \mathbb{Q}(\alpha, \beta)$. Noting that $\alpha^2 + \beta^2 = 2$, it follows that $\mu_{\beta,\mathbb{Q}(\alpha)} = x^2 + (\alpha^2 - 2)$ and thus $[K : \mathbb{Q}(\alpha)] = 2$. Note that f(x) is irreducible as none of the choices of pairs of linear factors provide a polynomial in $\mathbb{Q}[x]$ by appealing to Vieta's formulae and the fact that $\alpha^2, \beta^2, \alpha \pm \beta \notin \mathbb{Q}$. Hence, $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ and thus $|G| = [K : \mathbb{Q}] = 8$.

Letting $\alpha_1 = \alpha$, $\alpha_2 = -\alpha$, $\alpha_3 = \beta$, $\alpha_4 = -\beta$, it follows that the action of G on $\{\alpha_1, \dots, \alpha_4\}$ induces an injective group homomorphism $\rho: G \hookrightarrow S_4$. Thus $G \cong \rho(G) \subseteq S_4$ is an order 8 subgroup of S_4 , all of which are isomorphic to D_4 so $G \cong D_4$.

(b): Find all subgroups of G and their corresponding fixed fields. Which of those are normal extensions of \mathbb{Q} ?

Solution. Let $\alpha_1, \ldots, \alpha_4$ and ρ be as in part (a). Set $\gamma = \alpha\beta = \sqrt{-5}$. Note that if $\sigma \in G$, then $\sigma(\alpha), \sigma(\gamma)$ are roots of the minimal polynomials of α and γ respectively, whence $\sigma(\alpha) \in \{\alpha_1, \ldots, \alpha_4\}$ and $\sigma(\gamma) \in \{\pm \gamma\}$. Moreover, as $K = \mathbb{Q}(\alpha, \gamma)$, the images of α and γ completely determine the \mathbb{Q} -automorphism σ . Since there are only 8 such choices of images and |G| = 8, it follows that G contains automorphisms with all possible images of these elements.

Let $\sigma, \tau \in G$ such that

$$\sigma(\alpha) = \beta$$
 $\tau(\alpha) = \alpha$ $\sigma(\gamma) = -\gamma$ $\tau(\gamma) = -\gamma$.

Then $\rho(\sigma) = (1324)$ and $\rho(\tau) = (34)$. Moreover, $\rho(\tau \sigma \tau) = \rho(\sigma)^{-1}$. Thus, ρ, σ generate G and satisfy the relations defining D_4 .

For the subgroup diagram, we have

with its corresponding subfield diagram

 $\sigma\tau(\alpha+\beta)=\alpha+\beta$, so $\alpha+\beta\in K^{\langle\sigma\tau\rangle}$. As $[K:K^{\langle\sigma\tau\rangle}]=|\langle\sigma\tau\rangle|=2$, $[K^{\langle\sigma\tau\rangle}:F]=4$, so $K^{\langle\sigma\tau\rangle}=F(\alpha+\beta)$. Using identical reasoning, we also conclude that $K^{\langle\sigma^3\tau\rangle}=F(\alpha-\beta)$.

 $\sigma^2(\alpha\beta) = \alpha\beta$ and $\sigma\tau(\alpha\beta) = \alpha\beta$, so $\gamma \in K^{\langle \sigma^2, \sigma\tau \rangle}$. By degree constraints, $K^{\langle \sigma^2, \sigma\tau \rangle} = F(\gamma)$.

 $\tau(\alpha) = \alpha$, so $\alpha \in K^{\langle \tau \rangle}$. By degree constraints, $K^{\langle \tau \rangle} = F(\alpha)$, and likewise $K^{\langle \sigma^2, \tau \rangle} = \mathbb{Q}(\alpha^2)$.

 α^2, β are both fixed by $\langle \sigma^2 \tau \rangle$, so degree constraints force $K^{\langle \sigma^2 \tau \rangle} = F(\alpha^2, \beta)$.

Note that $\sigma(\gamma(\alpha^2 - \beta^2)) = \sigma(\gamma)(\sigma(\alpha^2) - \sigma(\beta^2)) = -\gamma(\beta^2 - \alpha^2) = \gamma(\alpha^2 - \beta^2)$, so $\gamma(\alpha^2 - \beta^2) \in K^{\langle \sigma \rangle}$. We compute that $\gamma(\alpha^2 - \beta^2) = 2\sqrt{-30}$, which is clearly of degree 2 over \mathbb{Q} , so degree constraints give that $K^{\langle \sigma \rangle} = \mathbb{Q}(\gamma(\alpha^2 - \beta^2))$.

Lastly $\sigma^2(\gamma) = \gamma$, $\sigma^2(\alpha^2 - \beta^2) = \alpha^2 - \beta^2$, so $\gamma, \alpha^2 - \beta^2 \in K^{\langle \sigma^2 \rangle}$. Both elements are degree 2 over $\mathbb Q$ and only one is complex, so $\gamma \notin \mathbb Q(\alpha^2 - \beta^2)$ implies that $[\mathbb Q(\gamma, \alpha^2 - \beta^2) : \mathbb Q] = 4$. Thus, degree constraints force $K^{\langle \sigma^2 \rangle} = \mathbb Q(\gamma, \alpha^2 - \beta^2)$.

Problem 4

Let p and q be distinct primes with q > p, and let K/F be a Galois extension of degree pq. Prove the following:

(a): There exists a field L with $F \subset L \subset K$ and [L:F] = q.

Proof. Let $G = \operatorname{Gal}(K/F)$. Then |G| = pq, whence by Sylow's existence theorem there is some subgroup $H \subseteq G$ such that |H| = p. Setting $L = K^H$, by the fundamental theorem of Galois theory, $p = |H| = [K : K^H]$ whence $[K^H : F] = q$ as desired.

(b): There exists a unique field M with $F \subset M \subset K$ and [M : F] = p.

Proof. Let $G = \operatorname{Gal}(K/F)$. Let n_q denote the number of Sylow q-subgroups of G. Then as $n_q \mid p$ and $n_q \equiv 1 \mod q$, the restriction that q > p forces $n_q = 1$. Thus there is a unique subgroup of Q of G of order q, whence by the fundamental theorem of Galois theory there is a unique intermediate subfield $M = K^Q$ of K/F with [K:M] = q or equivalently [M:F] = p

Problem 5

Prove the following analogue of Kümmer's theorem for abelian extensions: Let $n \in \mathbb{N}$ and let F be a field containing a primitive n^{th} root of unity.

(a): Let K/F be a finite Galois extension such that $G = \operatorname{Gal}(K/F)$ is abelian of exponent n. Then there exists $a_1, \ldots, a_t \in F$ such that $K = F(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_t})$. More precisely, there exists $\alpha_1, \ldots, \alpha_t \in K$ such that $K = F(\alpha_1, \ldots, \alpha_t)$ and $\alpha_i^n \in F$ for all i.

Proof. Write $G \cong C_{n_1} \times \cdots C_{n_t}$ where $n_i \in \mathbb{N}$ and $C_{n_i} = \mathbb{Z}/n_i\mathbb{Z}$. For $j \in \{1, \dots, t\}$, set $G_j = \prod_{i \neq j} C_{n_i}$ and $K_j = K^{G_j}$. As $G_j \triangleleft G$, it follows that K_j/F is Galois and $\operatorname{Gal}(K_j/F) \cong \operatorname{Gal}(K/F)/\operatorname{Gal}(K/K_j) = G/G_j \cong C_{n_j}$. Hence, by Kümmer's theorem, there exists some $\alpha_j \in K_j$ such that $K_j = F(\alpha_j)$ and $\alpha_j^{n_j} \in F$, whence $\alpha_j^n = (\alpha_j^{n_j})^{n/n_j} \in F$.

Observe that

$$K = K^{\{e\}} = K^{\bigcap_{i=1}^t G_i} = K_1 K_2 \cdots K_t = F(\alpha_1, \alpha_2, \cdots, \alpha_t).$$

(b): Conversely, suppose that $K = F(\sqrt[n]{a_1}, \dots, \sqrt[n]{a_t})$ for some $a_1, \dots, a_t \in F$. Prove that K/F is Galois and $G = \operatorname{Gal}(K/F)$ is abelian of exponent n. **Hint:** For part (b) use one of the problems from the previous homework.

Proof. Write $\alpha_i = \sqrt[n]{a_i}$, so $\alpha_i^n = a_i$. As F contains a primitive n^{th} root of unity, Kümmer's theorem implies that each $F(\alpha_i)/F$ is Galois with $Gal(F(\alpha_i)/F) \cong \mathbb{Z}/n_i\mathbb{Z}$ for some $n_i \mid n$. Applying homework 10 problem 4(b) part(ii) iteratively, we obtain an embedding

$$\iota: \operatorname{Gal}(K/F) \hookrightarrow \prod_{i=1}^{t} \operatorname{Gal}(F(\alpha_{i})/F) \cong \prod_{i=1}^{t} \mathbb{Z}/n_{i}\mathbb{Z}$$

Problem 6

Let F be a field containing a primitive n^{th} root of unity. Let $a, b \in F$ be such that the polynomials $f(x) = x^n - a$, and $g(x) = x^n - b$ are both irreducible over F. Consider the Kümmer extensions $F(\alpha)$, $F(\beta)$, where α is a root of f(x) and β is a root of g(x). Prove that $F(\alpha) = F(\beta)$ if and only if $\beta = c\alpha^r$, for some $c \in F$ and some integer r which is coprime to r (equivalently, if and only if r if r in some r is a root of r in the polynomials r is a root of r in the polynomials r in the polynomials r is a root of r in the polynomials r in the polynomials r in the polynomials r is a root of r in the polynomials r in the polynomials r in the polynomials r is a root of r in the polynomials r in the polyn

Proof.

 $\underline{\longleftarrow}$: Suppose that $\beta = c\alpha^r$, for some $c \in F$ and some integer r which is coprime to n. Note that we immediately have the equality and inclusion $F(\beta) = F(c\alpha^r) = F(\alpha^r) \subseteq F(\alpha)$, thus it suffices to show that $[F(\alpha):F(\alpha^r)] = |\operatorname{Gal}(F(\alpha)/F(\alpha^r))| = 1$. We will show that the Galois group of this extension is trivial.

Suppose that $\sigma \in \text{Gal}(F(\alpha)/F(\alpha^r))$. Noting that $\sigma(\alpha)$ is also a root of f(x) (since f(x) is irreducible), it follows that $\sigma(\alpha) = \zeta^k \alpha$ for some $0 \le k \le n-1$. Observe that

$$\alpha^r = \sigma(\alpha^r) = (\zeta^k \alpha)^r \implies \alpha^r (\zeta^{kr} - 1) = 0 \implies \zeta^{kr} - 1 = 0,$$

so $(\zeta^r)^k = 1$. As r is coprime to n, we have that ζ^r is also a primitive n^{th} root of unity, whence $n \mid k$. As $0 \le k \le n-1$, it must hold that k=0, so $\sigma(\alpha)=\alpha$ whence $\sigma=id$ as desired.

 \Longrightarrow : Suppose that $F(\alpha) = F(\beta)$.