Digital Observation of Educational Practice

by Jon Hasenbank and Jennifer Kosiak Math Education, UW-La Crosse Work funded in part by ESEA WITQ grant #07-0711

Presented at the 2008 Wisconsin Research Seminar: "Closing the Gap: Highly Qualified to Highly Effective" Tuesday, June 17, 2008

Motivation: the Parent Project

- Project: "Professional Development Partnership for Improving Understanding in Algebra"
 - Foundation: the Framework for Procedural Understanding
- Project components:
 - One-week institute (13 teachers)
 - 8 algebra, 2 geometry, 1 AP calculus, 1 physical science, 1 special education
 - Academic year follow-up:
 - Classroom observations
 - Weekend meetings
 - Online component

Our Framework for Procedural Understanding

Objective: To help students develop deep connected knowledge of procedures.

To that end, we ask students:

- 1a) What is the goal of the procedure?
- 1b)What sort of answer should I expect?
- 2a)Can I execute the procedure?
- 2b)What other procedures could I use to compete the task?
- 3) Why does the procedure work?
- 4)How can I verify my answer?
- 5) When is this the "best" procedure to use?
 - 6) What else can I use this procedure to do?

Adapted from NCTM's Navigating through Algebra in Grades 9-12 (Burke, Lott, Erickson, & Obert, 2001)

Framework Question	WMAS for Mathematics	
1a. What is the goal of the procedure?	"Students need to knowwhy [skills and knowledge] are being applied."	
1b. What sort of answer should I expect?	"Students must be able to communicate their thinking to others.	
2a. How do I execute the procedure?	"Students need to knowhow to apply skills and knowledge"	
2b. What are some other procedures I could use instead?	"Learning is easier when students see the connections between various concepts and procedures"	
3. Why is the procedure effective and valid?	"Students should be able to <u>provide a reason why [a] skill</u> works the way it does."	
4. What connections or contextual features could I use to verify my answer?	"Students should habitually check their results and conclusions for their reasonableness; that is, 'does this make sense?""	
5. When is this the "best" procedure to use?	"Students should be able to provide a reason why they have chosen to apply a particular skill or concept"	
6. What can I use this procedure to do?	"Important goals for students are to master specific knowledge necessary for its <u>application to real problems</u> "	

Framework Question	WMAS for Mathematics	
1a. What is the goal of the procedure?	"Students need to knowwhy [skills and knowledge] are being applied."	
1b. What sort of answer should I expect?	"Students must be able to communicate their thinking to others."	
2a. How do I execute the procedure?	"Students need to knowhow to apply skills and knowledge"	
2b. What are some other procedures I could use instead?	"Learning is easier when students see the connections between various concepts and procedures"	
3. Why is the procedure effective and valid?	"Students should be able to <u>provide a reason why [a] skill</u> works the way it does."	
4. What connections or contextual features could I use to verify my answer?	"Students should habitually check their results and conclusions for their reasonableness; that is, 'does this make sense?""	
5. When is this the "best" procedure to use?	"Students should be able to provide a reason why they have chosen to apply a particular skill or concept"	
6. What can I use this procedure to do?	"Important goals for students are to master specific knowledge necessary for its application to real problems"	

Framework Question	WMAS for Mathematics	
1a. What is the goal of the procedure?	"Students need to knowwhy [skills and knowledge] are being applied."	
1b. What sort of answer should I expect?	"Students must be able to communicate their thinking to others."	
2a. How do I execute the procedure?	"Students need to knowhow to apply skills and knowledge"	
2b. What are some other procedures I could use instead?	"Learning is easier when students see the connections between various concepts and procedures"	
3. Why is the procedure effective and valid?	"Students should be able to <u>provide a reason why [a] skill</u> works the way it does."	
4. What connections or contextual features could I use to verify my answer?	"Students should habitually check their results and conclusions for their reasonableness; that is, 'does this make sense?""	
5. When is this the "best" procedure to use?	"Students should be able to provide a reason why they have chosen to apply a particular skill or concept"	
6. What can I use this procedure to do?	"Important goals for students are to master specific knowledge necessary for its application to real problems"	

Framework Question	WMAS for Mathematics	
1a. What is the goal of the procedure?	"Students need to knowwhy [skills and knowledge] are being applied."	
1b. What sort of answer should I expect?	"Students must be able to communicate their thinking to others."	
2a. How do I execute the procedure?	"Students need to knowhow to apply skills and knowledge"	
2b. What are some other procedures I could use instead?	"Learning is easier when students see the connections between various concepts and procedures"	
3. Why is the procedure effective and valid?	"Students should be able to <u>provide a reason why [a] skill</u> works the way it does."	
4. What connections or contextual features could I use to verify my answer?	"Students should habitually check their results and conclusions for their reasonableness; that is, 'does this make sense?""	
5. When is this the "best" procedure to use?	"Students should be able to <u>provide a reason why they have</u> chosen to apply a particular skill or concept"	
6. What can I use this procedure to do?	"Important goals for students are to master specific knowledge necessary for its application to real problems"	

Observing Teacher Practice – Pilot

- Pilot study (college algebra, 2005)
 - Study goal: Improve understanding without declines in skill
 - Need: assess fidelity of implementation
 - Observation methods:
 - Pairs of observers
 - Tally marks of desired classroom events
 - Holistic perception on 0 to 6 scale.

Observing Teacher Practice – Pilot

Brief Instructions: An event refers to a classroom episode in which a Framework Objective is addressed. As you observe the lesson, place a tick mark in the appropriate box for each event that you observe.

- An event in which a majority of students are engaged (either through dialog, discussion, or writing) should be marked under the Active heading.
- An event in which the instructor is lecturing, having a dialog with just one or two students, or answering his or her own question, should be marked under the Passive heading.

	della madisse		Passive (Q&A / Monolog / Lectur	
Framework Objective		Related Questions	Emphasis (focus of instructor's lecture / monolog; esp. when written on the board)	(men passin students mis
la.	The Overall Goal of the procedure.	la. "What are we trying to accomplish?"	1	11
1b.	Predicting & Estimating.	1b, "What sort of answer should we expect?"	1	1111
2a.	Performing the procedure.	2a. "How do we carry out this procedure? What are the steps?"	LAT LAT LAT LIT	
2b.	Alternate Methods / Representations.	2b. "How else could we have done this?"	1	n
3.	Why the procedure is Effective & Valid.	3. "Why does this work? Why is it valid?"		
4.	Evaluate Results by using context, other procedures, etc.	"How can we verify the answer? Does it make sense?"	1111	
5.	Assess relative Efficiency & Accuracy.	5. "What is the most efficient method to use?"		
6.	Empowerment as a problem solver.	6. "What types of problems can we solve with this?"		

0 = "Absent"

2 = "Infrequent"

4 = "Frequent"

6 = "Pervasive"

Observing Teacher Practice – Pilot

Primary Limitations:

- No record of sequencing of events
- No record of time spent in each category
 - (Cannot say, "Instructors devoted 15% of class time to...")

Additional limitations

- Holistic score was subjective
- Holistic score could mask disagreements between observers about specific events

Observing Teacher Practice – Round 2

Vision:

- Digital checklist would keep track of sequencing and duration of desired events.
- Observer selects category (with optional notes); computer keeps record of the changes.

Benefits:

- Record of sequencing of events.
- Precisely measures time spent in each category.

Observing Teacher Practice – Round 2 (format similar to Praxis III checklist)

Observing Teacher Practice – Round 2

Revised instrument provides more precise information and greater detail.

Lesson A

Lesson B

20%

10%

0%

Inter-rater Reliability

Comparing independent observations is possible by merging the graphs:

Inter-rater Reliability - Options

- Options for assessing inter-rater reliability:
 - Association
 - Linear correlation (*R* or *R*²), using *aggregate* data (overall frequency per category, per observer)
 - Agreement
 - Raw agreement (%), moment by moment
 - Cohen's kappa (Agresti, 1990, p. 366), moment by moment agreement beyond that expected by chance.

Inter-rater Reliability – Correlation

- Simple correlations are not appropriate.
 - High-leverage points skew regression.
 - Clustering near (0,0) inflates R^2 .
 - Strong correlation does not guarantee high agreement.

Inter-rater Reliability – % Agree

- Magreement (moment to moment) is easy to calculate from our data...
 - Triangulate with plots to see where we differed.
- % Agreement for all joint observations:

4

5|91

6|6

7|9522

8|861

9|2

Inter-rater Reliability – % Agree

When necessary, we can drill down to explore the areas of disagreement.

Inter-rater Reliability - kappa

- Cohen's kappa is a measure of agreement beyond what is expected by chance.
- Range of kappa for our joint-observations:

```
<0.0 (worse than chance) -</p>
```

0.0-0.2 (slight agreement) -

```
■ 0.2-0.4 (fair) .22, .24
```

■ 0.4-0.6 (moderate) .42, .45, .48, .48

■ 0.6-0.8 (substantial) .60, .61, .70, .74, .75, .79

0.8-1.0 (almost perfect) -

Inter-rater Reliability - Remarks

- Remarks about reliability:
 - Categories should be mutually exclusive...
 - ...our Framework items may not be.
 - "% agreement" and kappa are influenced by long unbroken periods in a single category (e.g. homework time at end of period.)
 - Next steps include trimming data to explore only teacher-centered time.

Preliminary Results – The Nature of Algebra Instruction

- We observed 14 *algebra* lessons (11 hr. 45 min.) using the instrument (7 jointly).
- Teachers were told to "sprinkle in" Framework-related items. How well did they do?

Algebra Results – ES and AE

Algebra Results – KE and BE

Algebra Results – EZ

Nov. 2007

Preliminary Results – The Nature of Algebra Instruction

- Allocation of time in 14 algebra periods:
 - 64% "How do we do it? What are the steps?"
 - 18% Other *Framework* questions.
 - 17% "Other activities (taking attendance, etc.)"

Connections to Other Projects

- Praxis III: "Classroom Performance Assessments" instrument uses an observation sheet with:
 - Time, Comment, Evaluation Code
- "Instructional Skills Observation Instrument" based on Hunter's Lesson Design Model with:
 - esson Design Model With:
 Categorical codes: Set/Focus, Instruction, Guided
 Practice, and Independent Practice

References

- Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons, Inc.
- Burke, M., Erickson, D., Lott, J. W., & Obert, M. (2001). *Navigating Through Algebra in Grades 9-12*. Reston, VA: National Council of Teachers of Mathematics.
- Carpenter, T. P., & Lehrer, R. (1999). Teaching and Learning Mathematics with Understanding. In E. Fennema & T. A. Romberg (Eds.), *Mathematics classrooms that promote understanding* (pp. 19-32). Mahwah, N.J.: Lawrence Erlbaum Associates.
- Chappell, K. K., & Killpatrick, K. (2003). Effects of Concept-Based Instruction on Students' Conceptual Understanding and Procedural Knowledge of Calculus. *Primus*, *13*(1), 17-37.
- Educational Testing Service (1993). Formative Studies of Praxis III: Classroom Performance Assessment. Princeton NJ: Author.
- Hasenbank, J. F. (2006). *The Effects Of A Framework For Procedural Understanding On College Algebra Students' Procedural Skill And Understanding*. Unpublished Doctoral Dissertation, Montana State University, Bozeman.

References

- Hiebert, J., & Carpenter, T. P. (1992). Learning and Teaching with Understanding. In D. A. Grouws (Ed.), *Handbook of Research on Mathematics Teaching and Learning* (pp. 65-97). New York: Macmillan.
- Hunter, M. (1976). Teacher competency: Problem, theory, and practice. *Theory into Practice* 15(2), 162-171.
- Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. *Biometrics*, 33(1), 159-174.
- No Child Left Behind Act. (2001).
- Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics. In D. A. Grouws (Ed.), *Handbook of Research on Mathematics Teaching and Learning* (pp. 334-370): Macmillan.
- Stallings, J., Robbins, P., Presbry, L., & Scott, J. (1986). Effects of instruction based on the Madeline Hunter Model on students' achievement: Findings from a follow-through project. *The Elementary School Journal* 86(5), 571-587.