生物信息学:导论与方法 Bioinformatics: Introduction and Methods

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

北京大学生物信息学中心 高歌、魏丽萍 Ge Gao & Liping Wei Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA
CCTAACCCTAACCCTAACCCTAACCC
CCCTAACCCTAACCCTAACCCTAACCCTAAC
AACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCCAACCCCAACCCCAAC
CTACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCTAACCCTAACCCTAA

Next Generation Sequencing (NGS): Reads Mapping

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAACCCTAA

Unit 1: From Sequencing to NGS

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

TAACCCTAACCCTA ACCCTA ACCCTA ACCCTA ACCCTA ACCCTA ACCCTA ACCCTA ACCCTAACCCTAACCCT AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAACCCTAAACCCTAACCCTAACC ACCCTAACCCCAA CTACCCTAACCCCAA

CTACCCTAACCCT

Human genome has 3.1 billion base pairs. CTAACC ACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTCGCGGTACCCTCAGCCGGC CCCGCCCGGGTCTGACCACACAACTCTCCCCCCTTCACACTACCACCGAAATCTGTGCAGAG AACGCAGCTCCGCCC ~2.9% of the bases encode genes. ACTCCGCCGGCGCAG CAGAGAGGCGCGCCGCCGCCGCCAGGCGCAGACACATGCTAGCGCGTCGGGGTGGAGGCGTGGCGC CGCAGAGAGGCGCCGCCGCCGCCGCCAGGCGCAGAGACACATGCTACCGCGTCCAGGGGTGGAGGCG CGCAGGC ~97% of the genome were previously called "junk". AGGAGCAA But we now found that they contain the regulatory elements c that encode instructions on when, where, which, and how

^T much proteins to make.

Chain Termination Sequencing

"90% of the three billion base pairs comprising the genome have been read and recorded. The completed work delivers surprises. Perhaps the biggest is that the human genome, estimated at the beginning of the project to contain 80,000 to 100,000 coding genes, appears to possess fewer than 25,000."

(Source: http://www.lifesciencesfoundation.org/events-The_Book_of_Life.html)
Copyright © Peking University

Next Generation Genomics: World Map of High-throughput Sequencers ✓ Show all platforms □ 454 □ HiSeq □ Illumina GA2 □ Ion Torrent □ MiSeq □ PacBio □ Polonator □ Proton □ SOLiD □ Service Provider Map Satellite Hybrid $\in \overline{\mathbb{A}} \ni$ Greenland Kazakhstan Mongolia No North Pac Atlantic Afghanistan Oc. Ocean Mali Niger Sudan Chad Nigeria Venezuela Colombia DR Congo Indonesia Papua New Guinea Peru Angola Bolivia Namibia Indian Madagascar Ocean South South Australia Pacific Atlantic Ocean Ocean (Source: http://omicsmaps.com/. 2013 Oct. 23) Google search the map Search Copyright @ Peking University ©2013 Google - Map data ©2013 MapLii 🛗 🛂 📮

Next Generation Sequencing/Deep Sequencing Sanger Sequencing

Sequencer	454 GS FLX	HiSeq 2000	SOLiDv4	Sanger 3730xl	
Sequencing mechanism	Pyrosequencing	Sequencing by synthesis	Ligation and two-base coding	Dideoxy chain termination	
Read length	700 bp	50SE, 50PE, 101PE	50 + 35 bp or 50 + 50 bp	400~900 bp	
Accuracy	99.9%*	98%, (100PE)	99.94% *raw data	99.999%	
Reads	1 M	3 G	1200~1400 M		
Output data/run	0.7 Gb	600 Gb	120 Gb	1.9~84 Kb	
Time/run	24 Hours	3~10 Days	7 Days for SE 14 Days for PE	20 Mins~3 Hour	
Advantage	Read length, fast	High throughput	Accuracy	High quality, long read length	
Disadvantage	Error rate with polybase more than 6, high cost, low throughput	Short read assembly	Short read assembly	High cost low throughput	

(Source: J Biomed Biotechnol. 2012: 251364.)

Copyright © Peking University

Read: A short DNA fragment which is *read out* by sequencer.

- DNA sequence (symbols)
- Quality information

In FASTQ format

```
@test_fastq
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAA
+
!''*((((***+))%%%++)(%%%%).1***-+*''
```


Seq ID: test_fastq

<u>Sequence</u>: GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAA

Quality: !''*((((***+))%%%++)(%%%%).1***-+*''

Copyright © Peking University

Quality: Given p = the probability of a base calling is wrong, its Quality Score can be written as

$$Q = -10 * log_{10}(p)$$

p	Q
0.1	10
0.01	20
0.001	30
0.0001	40


```
@test_fastq
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAA
+
!''*((((***+))%%%++)(%%%%).1***-+*''
```


1	0	10	2.0	30	40
1	U	ΤU	∠ 0	30	40
 	!"#\$%&'	() * + , / (0123456789:;	<=>?@ABCI	DEFGHI
I I V	0	10	20	30	40
1					· · · · · · · · · · · · · · · · · · ·

Copyright © Peking University

Seq	Quality Symbol	Quality Score		р
G	ļ.		0	1.00
Α	ı		6	0.25
Т	ı		6	0.25
Т	*		9	0.13
Т	(7	0.20
G	(7	0.20
G	(7	0.20
G	(7	0.20
G	*		9	0.13
Т	*		9	0.13
Т	*		9	0.13
С	+	1	.0	0.10
Α)		8	0.16
Α)		8	0.16
Α	%		4	0.40
G	%		4	0.40
С	%		4	0.40
Α	+	1	0.	0.10
G	+	1	.0	0.10
Т)		8	0.16
Α	(7	0.20
Т	%		4	0.40
С	%		4	0.40
G	%		4	0.40
Α	%		4	0.40
Т)		8	0.16
С		1	.3	0.05
Α	1	1	.6	0.03
Α	*		9	0.13
Α	*		9	0.13
Т	*		9	0.13
Α	-	1	.2	0.06
G	+	1	0.	0.10
Т	*		9	0.13
Α	'		6	0.25
Α			6	0.25

Paired-End Reads


```
@test_fastq/2
ACATACTATTACTCATTACTCCTCATANNNNTNCNN
+
BBB1',9,66<B>9<74<=BB@4=93'!!!!)!'!9</pre>
```

http://www.illumina.com/technology/paired_end_sequencing_assay.ilmn Copyright © Peking University

Association Study: for the given phenotypic trait, "functional variants" could be identified by comparing allele frequencies at hundreds of thousands of polymorphic sites, *i.e* allele A is associated with phenotypic trait P if (and only if) people who have P also have A more (or less) often than would be predicted from individual frequencies of A and P in the assessed population.

Copyright © Peking University

Choi *et al.* used whole-exome sequencing to discover the cause of disease in an individual with an unclear diagnosis. They identified a missense mutations in positions that were highly conserved from invertebrates to humans, in a gene known to cause congenital chloride-losing diarrhoea, consistent with the patient's symptoms.

RNA-Seq: Explore the transcriptome

"A transcriptome is a collection of all the transcripts present in a given cell." (NHGRI factsheet, NIH, US)

http://en.wikipedia.org/wiki/RNA-Seq http://en.wikipedia.org/wiki/Alternative_splicing

	В	С	D	Е	F
1	gene	nsc1	nsc1 SE	nsc2	nsc2 SE
2	brain protein	18. 9574	3. 79952	21. 5848	3. 02241
3	Cluster Incl AW1	110. 513	7. 84625	114. 894	7. 95669
4	Cluster Incl AI8	235. 873	35. 6748	210. 349	27. 612
5	Cluster Incl AV3	47. 4605	3. 94976	29. 6941	3. 6586
6	Cluster Incl AV1	28. 4527	3. 74512	15. 2986	3. 62097
7	Cluster Incl AV1	80. 302	6. 45368	107. 23	8. 09591
8	Cluster Incl AV3	40.8113	5. 13418	54. 0835	3. 18591
9	Cluster Incl AI1	53. 1437	3. 63392	58. 635	5. 50994

Copyright © Peking University

Chromatin ImmunoPrecipitation Sequencing (ChIP-Seq):

Profile Protein-DNA interaction

Source: Nature Methods 4:613

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

