

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Nickel(II)

Equilibrium reactions	$\lg K$ at infinite dilution and $T=298~\mathrm{K}$							
	Feitknecht and Schindler, 1963	Baes and Mesmer, 1976	NIST46	Gamsjäger et al., 2005	Thoenen et al., 2014	Brown and Ekberg, 2016		
$Ni^{2+} + H_2O \rightleftharpoons NiOH^+ + H^+$		-9.86	-9.9	-9.54 ± 0.14	-9.54 ± 0.14	-9.90 ± 0.03		
$Ni^{2+} + 2 H_2O \rightleftharpoons Ni(OH)_2 + 2 H^+$		-19	-19		<-18	-21.15 ± 0.06		
$Ni^{2+} + 3 H_2O \rightleftharpoons Ni(OH)_3^- + 3 H^+$		-30	-30	-29.2 ± 1.7	-29.2 ± 1.7			
$Ni^{2+} + 4 H_2O \rightleftharpoons Ni(OH)_4^{2-} + 4 H^+$		< -44						
$2 \text{ Ni}^{2+} + \text{H}_2\text{O} \rightleftharpoons \text{Ni}_2(\text{OH})^{3+} + \text{ H}^+$		-10.7		-10.6 ± 1.0	-10.6 ± 1.0	-10.6 ± 1.0		
$4 \text{ Ni}^{2+} + 4 \text{ H}_2\text{O} \rightleftharpoons \text{Ni}_4(\text{OH})_4^{4+} + 4 \text{ H}^+$		-27.74	-27.7	-27.52 ± 0.15	-27.52 ± 0.15	-27.9 ± 0.6		

$β$ -Ni(OH) ₂ (s) + 2 H ⁺ \rightleftharpoons Ni ²⁺ + 2 H ₂ O		10.8			11.02 ± 0.20	10.96 ± 0.20
						11.75 ± 0.13 (microcr)
$Ni(OH)_2(s) \rightleftharpoons Ni^{2+} + 2 OH^-$	-17.2 (inactive)		-17.2	-16.97± 0.20 (β) -17.2 ± 1.3 (cr)		
$Ni(OH)_2(s) + OH^- \rightleftharpoons Ni(OH)_3^-$	-4.2 (inactive)					
$NiO(cr) + 2 H^+ \rightleftharpoons Ni^{2+} + H_2O$				12.38 ± 0.06		12.48 ± 0.15

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 246.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 632-649.
- W. Feitknecht and P. Schindler, Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution. Pure and Applied Chemistry, 6, 126-199 (1963).
- H. Gamsjäger, J. Bugajski, T. Gajda, R.J. Lemire and W. Preis, Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6, OECD, Paris, 2005.
- NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46
- T. Thoenen, W. Hummel, U. Berner and E. Curti, The PSI/Nagra Chemical Thermodynamic Database 12/07, 2014.

Distribution diagrams

These diagrams have been computed at two Ni(II)i concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

