Finite element programming by FreeFem++

Atsushi Suzuki¹

¹Cybermedia Center, Osaka University atsushi.suzuki@cas.cmc.osaka-u.ac.jp

RIIT Tutorial, Kyushu Univ. 25, November 2016

Numerical simulation with finite element method

- mathematical modeling
- discretization of time for evolution problem
- discretization scheme for the space
 - mesh generation / adaptive mesh refinement
 - stiffness matrix from finite elements and variational formulation
 - ▶ linear solver ← CG, GMRES, direct solver: UMFPACK, MUMPS

FreeFem++ provides vast amounts of tools

- nonlinear solver
- optimization solver

Outline I

Weak formulation for partial differential equations with 2nd order derivatives

Poisson equation with mixed boundary conditions Stokes equations with mixed boundary conditions magneto-static problem with Dirichlet boundary conditions P1/P2 finite elements and numerical quadrature

Finite element stiffness matrix from weak form

positivity of the matrix from coercivity of the bilinear form a penalty method to treat Dirichlet boundary data direct method

CG / GMRES methods for symmetric/unsymmetric sparse matrices

Nonlinear finite element solution by Newton method

stationary Navier-Stokes equations and a weak formulation differential calculus of nonlinear operator and Newton iteration

Outline II

Syntax and data structure of FreeFem++ language control flow data structure; array and FE object sparse matrix function macro procedure to compute SpMV for built-in iterative solver

Schwarz algorithm as preconditioner for global Krylov iteration overlapping subdomains and RAS/ASM 2-level algorithm with a coarse space

Time-dependent Navier-Stokes equations around a cylinder boundary conditions of incompressible flow around a cylinder

Thermal convection problem by Rayleigh-Bénard eqs. governing equations by Boussinesq approximation stationary solution by Newton method from numerical stationary solution

Outline

Weak formulation for partial differential equations with 2nd order derivatives

Poisson equation with mixed boundary conditions Stokes equations with mixed boundary conditions magneto-static problem with Dirichlet boundary conditions P1/P2 finite elements and numerical quadrature

Finite element stiffness matrix from weak form

Nonlinear finite element solution by Newton method

Syntax and data structure of FreeFem++ language

Schwarz algorithm as preconditioner for global Krylov iteration

Time-dependent Navier-Stokes equations around a cylinder

Poisson equation with mixed B.C. and a weak formulation: 1/2

$$\Omega\subset\mathbb{R}^2,\,\partial\Omega=\Gamma_D\cup\Gamma_N$$

$$-\triangle u=f\ \mathrm{in}\ \Omega, \ u=g\ \mathrm{on}\ \Gamma_D, \ rac{\partial u}{\partial n}=h\ \mathrm{on}\ \Gamma_N.$$

weak formulation

$$V$$
 : function space, $V(g) = \{u \in V \, ; \, u = g \text{ on } \Gamma_D\}.$

$$V = C^1(\Omega) \cap C^0(\bar{\Omega}) ?$$

Find $u \in V(g)$ s.t.

$$\int_{\Omega} -\triangle u \, v dx = \int_{\Omega} f \, v dx \quad \forall v \in V(0)$$

Lemma (Gauss-Green's formula)

$$u, v \in V, n = \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$$
: outer normal to $\partial \Omega$

$$\int_{\Omega} (\partial_i u) v \, dx = - \int_{\Omega} u \partial_i v \, dx + \int_{\partial \Omega} u \, n_i v \, ds.$$

Poisson equation with mixed B.C. and a weak formulation: 2/2

$$\begin{split} \int_{\Omega} (-\partial_1^2 - \partial_2^2) u \, v \, dx = & \int_{\Omega} (\partial_1 u \partial_1 v + \partial_2 u \partial_2 v) \, dx - \int_{\partial\Omega} (\partial_1 u \, n_1 + \partial_2 u \, n_2) v \, ds \\ = & \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Gamma_D \cup \Gamma_N} \nabla u \cdot n \, v \, ds \\ v = & 0 \text{ on } \Gamma_D \Rightarrow \quad = \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Gamma} h v \, ds \end{split}$$

Find $u \in V(q)$ s.t.

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f \, v dx + \int_{\Gamma_N} h \, v ds \quad \forall v \in V(0)$$

- $ightharpoonup a(\cdot,\cdot):V\times V\to\mathbb{R}$: bilinear form
- $ightharpoonup F(\cdot): V \to \mathbb{R}$: functional

Find
$$u \in V(g)$$
 s.t. $a(u, v) = F(v) \quad \forall v \in V(0)$

FreeFem++ script to solve Poisson equation

```
finite element basis, span[\varphi_1,\ldots,\varphi_N]=V_h\subset V
u_h \in V_h \implies u_h = \sum_{1 \le i \le N} u_i \varphi_i
Dirichlet data : u(P_i) = g(P_i) P_i \in \Gamma_D
Find u_h \in V_h(q) s.t.
    \int_{\Omega} \nabla u_h \cdot \nabla v_h dx = \int_{\Omega} f \, v_h dx + \int_{\Gamma_{h,h}} h \, v_h ds \quad \forall v_h \in V_h(0).
                                                   example1.edp

→ varf+matrix
mesh Th=square (20,20);
fespace Vh(Th,P1);
Vh uh, vh;
func f=5.0/4.0*pi*pi*sin(pi*x)*sin(pi*y/2.0);
func q=\sin(pi*x)*\sin(pi*y/2.0);
func h=(-pi)/2.0*sin(pi*x);
solve poisson(uh, vh) =
    int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
 - int2d(Th)(f*vh) - int1d(Th, 1)(h*vh)
 + on(2,3,4,uh=g); // boundary 1: (x,0)
plot (uh);
```

Stokes equations and a weak formulation: 1/3

$$\begin{split} \Omega &= (0,1) \times (0,1) \\ &-2\nabla \cdot D(u) + \nabla p = f \text{ in } \Omega \\ &\nabla \cdot u = 0 \text{ in } \Omega \\ &u = g \text{ on } \Gamma_D, \\ &2D(u)n - n \, p = h \text{ on } \Gamma_N. \end{split}$$

strain rate tensor : $[D(u)]_{ij} = \frac{1}{2}(\partial_i u_j + \partial_j u_i)$.

- $V(g) = \{v \in H^1(\Omega)^2 ; v = g \text{ on } \Gamma_D\}, \ V = V(0)$
- $ightharpoonup Q = L^2(\Omega)$

weak formulation : Find $(u, p) \in V(g) \times Q$ s.t.

$$\begin{split} \int_{\Omega} & 2D(u) : D(v) \, dx - \int_{\Omega} \! \nabla \cdot v \, p \, dx = & \int_{\Omega} f \cdot v \, dx + \!\!\! \int_{\Gamma_N} \!\!\! h \cdot v \, dx \quad \forall v \in V, \\ & - \!\!\! \int_{\Omega} \!\!\! \nabla \cdot u \, q \, dx = 0 \quad \forall q \in Q. \end{split}$$

Stokes equations and a weak formulation: 2/3

Lemma (Gauss-Green's formula)

 $u,v\in C^1(\Omega)\cap C^0(\bar\Omega)$, n: outer normal to $\partial\Omega$

$$\int_{\Omega} (\partial_i u) v \, dx = -\int_{\Omega} u \partial_i v \, dx + \int_{\partial \Omega} u \, n_i v \, ds.$$
$$-2 \int_{\Omega} (\nabla \cdot D(u)) \cdot v \, dx =$$

$$= 2 \int_{\Omega} (\nabla D(u)) \nabla u u = \frac{1}{2} \int_{\Omega} \nabla u u du = \frac{1}{2} \int_{\Omega} \nabla u du = \frac{1}{2} \int_{\Omega}$$

$$-2\int_{\Omega} \sum_{i} \sum_{j} \partial_{j} \frac{1}{2} (\partial_{i} u_{j} + \partial_{j} u_{i}) v_{i} dx = \int_{\Omega} \sum_{i,j} (\partial_{i} u_{j} + \partial_{j} u_{i}) \partial_{j} v_{i} dx$$
$$-\int_{\partial \Omega} \sum_{i,j} (\partial_{i} u_{j} + \partial_{j} u_{i}) n_{j} v_{i} ds$$

$$= \int_{\Omega} 2D(u) : D(v) dx - \int_{\Omega} 2D(u) n \cdot v ds$$

from the symmetry of D(u)

$$\sum_{i,j} (\partial_i u_j + \partial_j u_i) \frac{\partial_j v_i}{\partial_j v_i} = \sum_{i,j} (\partial_i u_j + \partial_j u_i) (\frac{\partial_j v_i}{\partial_j v_i} + \frac{\partial_i v_j}{\partial_j v_i}) / 2 = 2D(u) : D(v).$$

Stokes equations and a weak formulation: 3/3

$$\int_{\Omega} \sum_{i} (\partial_{i} p) v_{i} dx = -\int_{\Omega} \sum_{i} p \partial_{i} v_{i} dx + \int_{\partial \Omega} \sum_{i} p n_{i} v_{i}$$
$$= -\int_{\Omega} p \nabla \cdot v + \int_{\partial \Omega} p n \cdot v$$

On the boundary $\partial \Omega = \Gamma_D \cup \Gamma_N$,

$$\begin{split} \int_{\Gamma_D \cup \Gamma_N} (2D(u)n - n\,p) \cdot v \, ds \\ &= \int_{\Gamma_D} (2D(u)n - n\,p) \cdot v \, ds + \int_{\Gamma_N} (2D(u)n - n\,p) \cdot v \, ds \\ &= \int_{\Gamma_V} h \cdot v \, ds. \quad \Leftarrow V = \{v \in H^1(\Omega)^2 \, ; \, v = 0 \text{ on } \partial \Omega\}. \end{split}$$

Remark

$$-2[\nabla \cdot D(u)]_i = -\sum_j \partial_j (\partial_i u_j + \partial_j u_i) = -\sum_j \partial_j^2 u_i = -[\triangle u]_i.$$

FreeFem++ script to solve Stokes equations by P2/P1 Find $(u, p) \in V_h(q) \times Q_h$ s.t. $a(u,v) + b(v,p) + b(u,q) = (f,v) \quad \forall (v,q) \in V_h \times Q_h.$ example2.edp fespace Vh(Th,P2),Qh(Th,P1); func f1=5.0/8.0*pi*pi*sin(pi*x)*sin(pi*y/2.0)+2.0*x;func f2=5.0/4.0*pi*pi*cos(pi*x)*cos(pi*y/2.0)+2.0*y;func $q1=\sin(pi*x)*\sin(pi*y/2.0)/2.0;$ func $q2=\cos(pi*x)*\cos(pi*y/2.0);$ func h1=3.0/4.0*pi*sin(pi*x)*cos(pi*y/2.0);func h2=pi*cos(pi*x)*sin(pi*y/2.0)+x*x+y*y;Vh u1, u2, v1, v2; Qh p, q; macro d12 (u1, u2) (dy(u1) + dx(u2))/2.0 //real epsln=1.0e-6; solve stokes (u1, u2, p, v1, v2, q) =int2d(Th)(2.0*(dx(u1)*dx(v1)+dy(u2)*dy(v2)+2.0*d12(u1,u2)*d12(v1,v2))-p*dx(v1) - p*dy(v2) - dx(u1)*q-dy(u2)*q- int2d(Th)(f1*v1+f2*v1) - int1d(Th,1)(h1*v1+h2*v1)+ on (2, 3, 4, u1=q1, u2=q2);

plot([u1,u2],p,wait=1,value=true,coef=0.1);

stationary Navier-Stokes equations and a weak formulation

$$\begin{split} \Omega &= (0,1) \times (0,1) \\ &-2\nu \nabla \cdot D(u) + u \cdot \nabla u + \nabla p = f \text{ in } \Omega \\ &\nabla \cdot u = 0 \text{ in } \Omega \\ &u = g \text{ on } \partial \Omega \end{split}$$

- $V(g) = \{ v \in H^1(\Omega)^2 ; v = g \text{ on } \partial \Omega \}, \ V = V(0)$
- $Q = L_0^2(\Omega) = \{ p \in L^2(\Omega) ; \int_{\Omega} p \, dx = 0 \}$

bi/tri-linear forms and weak formulation:

$$a(u,v) = \int_{\Omega} 2\nu D(u) : D(v) dx \quad u,v \in H^{1}(\Omega)^{2}$$

$$a_{1}(u,v,w) = \int_{\Omega} (u \cdot \nabla v) \cdot w \quad u,v,w \in H^{1}(\Omega)^{2}$$

$$b(v,p) = -\int_{\Omega} \nabla \cdot v \, p \, dx \quad v \in H^{1}(\Omega)^{2}, \ p \in L^{2}(\Omega)$$

Find $(u, p) \in V(q) \times Q$ s.t.

$$a(u,v) + a_1(u,u,v) + b(v,p) = (f,v) \quad \forall v \in V,$$

$$b(u,q) = 0 \quad \forall q \in Q.$$

Dutflow

magneto-static problem with Dirichlet b.c.: 1/2

constraints on the external force: $\nabla \cdot f = 0$ in $\Omega \subset \mathbb{R}^3$.

$$\begin{split} \nabla\times(\nabla\times u) &= f &\quad \text{in } \Omega,\\ \nabla\cdot u &= 0 &\quad \text{in } \Omega,\\ u\times n &= 0 &\quad \text{on } \partial\Omega. \end{split}$$

$$H_0(\operatorname{curl}\,;\,\Omega) &= \{u\in L^2(\Omega)^3\,;\, \nabla\times u\in L^2(\Omega)^3\,;\, u\times n = 0\}$$

find
$$(u,p) \in H_0(\operatorname{curl};\Omega) \times H_0^1(\Omega)$$

$$(\nabla \times u, \nabla \times v) + (v, \nabla p) = (f, v) \qquad \forall v \in H_0(\operatorname{curl}; \Omega)$$
$$(u, \nabla q) = 0 \qquad \qquad \forall v \in H_0^1(\Omega)$$

has a unique solution.

- $\nabla \cdot f = 0 \Rightarrow p = 0.$
- $\nabla (\nabla \times \cdot, \nabla \times \cdot)$: coercive on W. $W = H_0(\operatorname{curl}; \Omega) \cap \{u \in H(\operatorname{div}; \Omega) : \operatorname{div} u = 0\}.$
- $ightharpoonup H_0(\operatorname{curl};\Omega)=\operatorname{grad} H_0^1(\Omega)\oplus W.$

magneto-static problem with Dirichlet b.c.: 2/2

vector valued Sobolev space:

 $H(\operatorname{curl};\Omega) = \{u \in L^2(\Omega)^3; \, \nabla \times u \in L^2(\Omega)^3\}.$

with essential boundary conditions on $\partial\Omega$:

$$H_0(\operatorname{curl};\Omega) = \{ u \in L^2(\Omega)^3 ; \nabla \times u \in L^2(\Omega)^3 ; u \times n = 0 \}.$$

$$\int_{\Omega} \nabla \times u \cdot v dx = \int_{\Omega} \left(\begin{bmatrix} \partial_{1} \\ \partial_{2} \\ \partial_{3} \end{bmatrix} \times \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} \right) \cdot \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} dx$$

$$= \int_{\Omega} \left(\frac{(\partial_{2} u_{3} - \partial_{3} u_{2})v_{1} +}{(\partial_{3} u_{1} - \partial_{1} u_{3})v_{2} +} \right) dx$$

$$= \int_{\Omega} \left(\frac{(u_{3} \partial_{2} v_{1} - u_{2} \partial_{3} v_{1}) +}{(\partial_{1} u_{2} - \partial_{2} u_{1})v_{3}} \right) dx$$

$$= -\int_{\Omega} \left(\frac{(u_{3} \partial_{2} v_{1} - u_{2} \partial_{3} v_{1}) +}{(u_{1} \partial_{3} v_{2} - u_{3} \partial_{1} v_{2}) +} \right) dx + \int_{\partial\Omega} \left(\frac{(n_{2} u_{3} - n_{3} u_{2})v_{1} +}{(n_{3} u_{1} - n_{1} u_{3})v_{2} +} \right) ds$$

$$= \int_{\Omega} u \cdot \nabla \times v dx + \int_{\partial\Omega} (n \times u) \cdot v ds$$

stiffness matrix of magneto-static problem by FreeFem++

```
load "msh3"
load "Dissection"
defaulttoDissection;
mesh3 Th=cube (20, 20, 20);
fespace VQh(Th, [Edge03d, P1]); // Nedelec element
VQh [u1, u2, u3, p], [v1, v2, v3, q];
varf aa([u1, u2, u3, p], [v1, v2, v3, q]) =
  int3d(Th)((dy(u3)-dz(u2)) * (dy(v3)-dz(v2)) +
             (dz(u1)-dx(u3)) * (dz(v1)-dx(v3)) +
             (dx(u2)-dy(u1)) * (dx(v2)-dy(v1)) +
            dx(p) *v1+dy(p) *v2+dz(p) *v3 +
            dx(q) *u1+dy(q) *u2+dz(q) *u3);
matrix A = aa(VQh, VQh, solver=sparsesolver,
              tolpivot=1.0e-2, strategy=102);
```

Nédélec element of degree 0 and P1

$$N_0(K)=(P_0(K))^3\oplus [x\times (P_0(K))^3], \qquad P_1(K)$$
 fespace VQh(Th,[Edge03d,P1]);

P1 finite element and sparse matrix

 \mathcal{T}_h : triangulation of a domain Ω , triangular element $K \in \mathcal{T}_h$ piecewise linear element: $\varphi_i|_K(x_1,x_2) = a_0 + a_1x_1 + a_2x_2$ $\varphi_i|_K(P_j) = \delta_{ij}$

$$[A]_{ij} = a(\varphi_j, \varphi_i) = \int_{\Omega} \nabla \varphi_j \cdot \nabla \varphi_i \, dx = \sum_{K \in \mathcal{T}_h} \int_{K} \nabla \varphi_j \cdot \nabla \varphi_i \, dx.$$

 ${\cal A}$: sparse matrix, CRS (Compressed Row Storage) format to store

P2 finite element

 \mathcal{T}_h : triangulation of a domain Ω , triangular element $K \in \mathcal{T}_h$ piecewise quadratic element : 6 DOF on element K.

$$\varphi_{i}|_{K}(x_{1},x_{2}) = a_{0} + a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{1}^{2} + a_{4}x_{1}x_{2} + a_{5}x_{2}^{2}$$

$$\varphi_{i}|_{K}(P_{j}) = \delta_{ij}$$
P1

P3

P3

P4

by using area coordinates $\{\lambda_1,\lambda_2,\lambda_3\},\ \lambda_1+\lambda_2+\lambda_3=1.$

fespace Vh(Th, P2);

numerical integration

Numerical quadrature:

 $\{P_i\}_{i\leq i\leq m}$: integration points in K, $\{\omega_i\}_{i\leq i\leq m}$: weights

$$|u - u_h|_{0,\Omega}^2 = \sum_{K \in \mathcal{T}_h} \int_K |u - u_h|^2 dx \sim \sum_{K \in \mathcal{T}_h} \sum_{i=1}^m |(u - u_h)(P_i)|^2 \omega_i$$

formula: degree 5, 7 points, qf5pT,

P.C. Hammer, O.J. Marlowe, A.H. Stroud [1956]

Remark

it is not good idea to use interpolation of continuous function to finite element space, for verification of convergence order.

 $|\Pi_h u - u_h|_{1,\Omega}$ may be smaller (in extreme cases, super convergence)

treatment of Neumann data around mixed boundary

Neumann data is evaluated by line integral with FEM basis φ_i .

For given discrete Neumann data, h is interpolated in FEM space, $h=\sum_j h_j \varphi_j|_{\Gamma_N}$,

$$\sum_{j} h_{j} \int_{\Gamma_{N}} \varphi_{j} \varphi_{i} \, ds.$$

On the node $Q \in \bar{\Gamma}_D \cap \bar{\Gamma}_N$, both Dirichlet and Neumann are necessary.

advantages of finite element formulation: 1/2

- weak formulation is obtained by integration by part with clear description on the boundary
- Dirichlet boundary condition, called as essential boundary condition, is embedded in a functional space
- Neumann boundary condition, called as natural boundary condition, is treated with surface/line integral by Gauss-Green's formula
- computation of local stiffness matrix is performed by numerical quadrature formula

Outline

Weak formulation for partial differential equations with 2nd order derivatives

Finite element stiffness matrix from weak form positivity of the matrix from coercivity of the bilinear form a penalty method to treat Dirichlet boundary data direct method CG / GMRES methods for symmetric/unsymmetric sparse matrices

Nonlinear finite element solution by Newton method

Syntax and data structure of FreeFem++ language

Schwarz algorithm as preconditioner for global Krylov iteration

Time-dependent Navier-Stokes equations around a cylinder 22/70

discretization and matrix formulation: 1/2

finite element basis, $\operatorname{span}[\varphi_1,\ldots,\varphi_N]=V_h\subset V$ $u_h\in V_h \Rightarrow u_h=\sum_{1\leq i\leq N}u_i\varphi_i$ finite element nodes $\{P_j\}_{j=1}^N,\, \varphi_i(P_j)=\delta_{i\,j}$ Lagrange element $\Lambda_D\subset \Lambda=\{1,\ldots,N\}$: index of node on the Dirichlet boundary

$$V_h(g) = \{u_h \in V_h ; u_h = \sum u_i \varphi_i, u_k = g_k \ (k \in \Lambda_D)\}\$$

Find $u_h \in V_h(g)$ s.t.

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h(0).$$

Find $\{u_j\}, u_k = g_k (k \in \Lambda_D)$ s.t.

$$a(\sum_{i} u_{j}\varphi_{j}, \sum_{i} v_{i}\varphi_{i}) = F(\sum_{i} v_{i}\varphi_{i}) \ \forall \{v_{i}\}, v_{k} = 0 (k \in \Lambda_{D})$$

Find $\{u_i\}_{i\in\Lambda}$ s.t.

$$\sum_{j} a(\varphi_{j}, \varphi_{i}) u_{j} = F(\varphi_{i}) \qquad \forall i \in \Lambda \setminus \Lambda_{D}$$

$$u_{k} = g_{k} \qquad \forall k \in \Lambda_{D}$$

discretization and matrix formulation: 2/2

Find
$$\{u_j\}_{j\in\Lambda\setminus\Lambda_D}$$
s.t.

$$\sum_{j \in \Lambda \setminus \Lambda_D} a(\varphi_j, \varphi_i) u_j = F(\varphi_i) - \sum_{k \in \Lambda_D} a(\varphi_k, \varphi_i) g_k \quad \forall i \in \Lambda \setminus \Lambda_D$$

$$A = \{a(\varphi_j, \varphi_i)\}_{i,j \in \Lambda \setminus \Lambda_D} \quad A \in \mathbb{R}^{n \times n}, f \in \mathbb{R}^n, n = \#(\Lambda \setminus \Lambda_D)$$

Lemma

A : positive definite (coercive) \Leftrightarrow $(Au, u) > 0 \ \forall u \neq 0$ $\Rightarrow Au = f$ has a unique solution.

A: bijective

- injective: Au = 0, $0 = (Au, u) > 0 \Rightarrow u = 0$.
- surjective:

$$\mathbb{R}^n = \operatorname{Im} A \oplus (\operatorname{Im} A)^{\perp}, \ u \in (\operatorname{Im} A)^{\perp} \Rightarrow (Av, u) = 0 \ \forall v \in \mathbb{R}^n$$
 by putting $v = u, \ 0 = (Au, u) \Rightarrow u = 0$ $(\operatorname{Im} A)^{\perp} = \{0\} \Rightarrow \operatorname{Im} A = \mathbb{R}^n.$

unymmetric \Rightarrow solution by LDU-factorization, GMRES method symmetric \Rightarrow solution by LDL^T -factorization, CG method

Sobolev space

P1 element element space does not belong to $C^1(\Omega)$.

$$V = H^{1}(\Omega),$$

$$(u, v) = \int_{\Omega} u v + \nabla u \cdot \nabla v, \quad ||u||_{1}^{2} = (u, u) < +\infty$$

$$||u||_{0}^{2} = \int_{\Omega} u u,$$

$$|u|_{1}^{2} = \int_{\Omega} \nabla u \cdot \nabla u.$$

$$H^1_0=\{u\in H^1(\Omega)\,;\, u=0 \text{ on }\partial\Omega\}.$$

Lemma (Poincaré's inequality)

$$\exists C(\Omega) \ u \in H_0^1 \ \Rightarrow \ ||u||_0 \le C(\Omega)|u|_1.$$

$$\begin{array}{l} a(u,v)=\int_{\Omega}\nabla u\cdot\nabla v \text{ is coercive on }V.\\ a(u,u)=|u|_1^2\geq \frac{1}{C^2}||u||_0^2. \end{array}$$

FreeFem++ script to solve Poisson eq. using matrix

```
Find u_h \in V_h(q) s.t. a(u_h, v_h) = F(v_h) \ \forall v_h \in V_h(0).
                                             example3.edp

⇒ solve

Vh u, v;
varf aa (u, v) = int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))
              +on(2,3,4,u=q);
varf external (u, v) = int2d(Th)(f*v) + int1d(Th, 1)(h*v)
              +on(2,3,4,u=q);
real tgv=1.0e+30;
matrix A = aa(Vh, Vh, tgv=tgv, solver=CG);
real[int] ff = external(0, Vh, tgv=tgv);
u[] = A^-1 * ff; // u : fem unknown, u[] : vector
plot(u);
useful liner solver; solver=
                   iterative solver for SPD matrix
       CG
                   iterative solver for nonsingular matrix
     GMRES
    UMFPACK
                   direct solver for nonsingular matrix
                   other solvers called by dynamic link
 sparsesolver
```

penalty method to solve inhomogeneous Dirichlet problem

modification of diagonal entries of A where index $k \in \Lambda_D$ penalization parameter $\tau = 1/\varepsilon$; tgv

$$\tau u_k + \sum_{j \neq k} a_{kj} u_j = \tau g_k \iff u_k - g_k = \varepsilon \left(-\sum_{j \neq k} a_{kj} u_j \right),$$
$$\sum_j a_{ij} u_j = f_i \qquad \forall i \in \{1, \dots, N\} \setminus \Lambda_D.$$

keeping symmetry of the matrix without changing index numbering.

LDL^T/LDU factorization

$$\begin{bmatrix} a_{11} & \beta_1^T \\ \alpha_1 & A_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \alpha_1 a_{11}^{-1} & S_{22} \end{bmatrix} \begin{bmatrix} a_{11} & \beta_1^T \\ 0 & I_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ \alpha_1 a_{11}^{-1} & S_{22} \end{bmatrix} \begin{bmatrix} a_{11} & 0 \\ 0 & I_2 \end{bmatrix} \begin{bmatrix} 1 & a_{11}^{-1} \beta_1^T \\ 0 & I_2 \end{bmatrix}$$

Schur complement $S_{22}=A_{22}-\alpha_1a_{11}^{-1}\beta_1^T$ rank-1 update

LDU-factorization with symmetric pivoting : $A = \Pi^T LDU \Pi$ do $k = 1, \dots, N$

find $k < l \le n \max |A(l, l)|$,

exchange rows and columns : $A(k,*) \leftrightarrow A(l,*)$, $A(*,k) \leftrightarrow A(*,l)$.

rank-1 update

conjugate gradient method

$$A\vec{u} = \vec{f}$$
.

preconditioner $Q \sim A^{-1}$

Krylov subsp. : $K_n(Q\vec{r}^0, QA) = \text{span}[Q\vec{r}^0, QAQ\vec{r}, \dots, (QA)^{n-1}Q\vec{r}^0]$

Find $\vec{u}^n \in K_n(Q\vec{r}^0, QA) + \vec{u}^0$ s.t. $(A\vec{u}^n - \vec{f}, \vec{v}) = 0 \quad \forall \vec{v} \in K_n(Q\vec{r}^0, QA).$

Preconditioned CG method

 $\vec{u}^{\,0}$: initial step for CG.

 $\vec{r}^{\,0} = \vec{f} - A\vec{u}^{\,0}$

 $\vec{n}^{0} = Q\vec{r}^{0}$.

loop n = 0, 1, ...

 $\alpha_n = (Q\vec{r}^n, \vec{r}^n)/(A\vec{p}^n, \vec{p}^n),$ $\vec{u}^{n+1} = \vec{u}^n + \alpha_n \vec{p}^n$.

 $\vec{r}^{n+1} = \vec{r}^n - \alpha_n A \vec{p}^n,$ if $||\vec{r}^{n+1}|| < \epsilon$ exit loop.

 $\beta_n = (Q\vec{r}^{n+1}, \vec{r}^{n+1})/(Q\vec{r}^n, \vec{r}^n),$ $\vec{p}^{n+1} = O\vec{r}^{n+1} + \beta_n \vec{p}^n$.

LinearCG(opA, u, f, precon=opQ, nbiter=100, eps=1.0e-10)

GMRES method: 1/2

Krylov subspace :
$$K_n(\vec{r}^0, A) = \text{span}[\vec{r}^0, A\vec{r}^0, \dots, A^{n-1}\vec{r}^0]$$

Find $\vec{u}^n \in K_n(\vec{r}^0, A) + \vec{u}^0$ s.t. $||A\vec{u}^n - \vec{f}|| \le ||A\vec{v}^n - \vec{f}|| \ \forall \vec{v} \in K_n(\vec{r}^0, A) + \vec{u}^0$.

 ${\it V_m}$: Arnoldi basis generated by Gram-Schmidt orthogonization for Krylov vectors.

$$\vec{u} = V_m \vec{y}, \ \vec{y} \in \mathbb{R}^m \quad J(\vec{y}) := ||AV_m \vec{y} - \vec{r}_0||$$

$$= ||V_{m+1}^T (AV_m \vec{y} - \vec{r}_0)||$$

$$= ||(V_{m+1}^T AV_m) \vec{y} - (V_{m+1}^T \vec{r}_0)||$$

$$= ||\bar{H}_m \vec{y} - \beta \vec{e}_1||. \qquad (\beta = ||\vec{r}_0||)$$

Find
$$\vec{y} \in \mathbb{R}^m$$
 $J(\vec{y}) \leq J(\vec{z}) \quad \forall \vec{z} \in \mathbb{R}^m$.

minimization problem with Hessenberg matrix $\bar{H}_m \in R^{(m+1)\times m}$ is solved by Givens rotation.

GMRES method: 2/2

Arnoldi method (Gram-Schmidt method on Krylov subspace)

$$||\vec{v}_1|| = 1; \text{ do } j = 1, 2, \dots, m$$

$$\text{do } i = 1, 2, \dots, j$$

$$\vec{w}_j := A\vec{v}_j - \sum_{1 \le i \le j} h_{ij}\vec{v}_i, \quad h_{ij} := (A\vec{v}_j, \vec{v}_i)$$

$$\vec{v}_{j+1} := \vec{w}_j/h_{j+1|j}, \quad h_{j+1|j} := ||\vec{w}_j||$$

Givens rotation matrices $\Omega_i \in \mathbb{R}^{(m+1)\times (m+1)}$

$$\Omega_i := \begin{bmatrix} I_{i-1} & c_i & s_i \\ & -s_i & c_i & I_{m-i} \end{bmatrix}, c_1 := \frac{h_{11}}{\sqrt{h_{11}^2 + h_{22}^2}}, s_1 := \frac{h_{21}}{\sqrt{h_{11}^2 + h_{22}^2}}.$$

 $Q_m := \Omega_m \Omega_{m-1} \cdots \Omega_1 \in \mathbb{R}^{(m+1) \times (m+1)}$, $\bar{R}_m := Q_m \bar{H}_m$: upper triangular,

$$ar{q}_m := Q_m \Pi_m$$
. upper triangular, $ar{q}_m := Q_m(\beta e_1) = [\gamma_1 \ \gamma_2 \ \cdots \ \gamma_{m+1}]^T$,

$$\bar{R}_m := \begin{bmatrix} R_m \\ 0 \cdots 0 \end{bmatrix} (R_m \in \mathbb{R}^{m \times m}), \ \bar{g}_m := \begin{bmatrix} g_m \\ \gamma_{m+1} \end{bmatrix} (g_m \in \mathbb{R}^m).$$

 $\min ||\beta e_1 - \bar{H}_m y|| = \min ||\bar{g}_m - \bar{R}_m y|| = |\gamma_{m+1}| = |s_1 s_2 \cdots s_m|\beta$.

 $y_m = R_m^{-1} g_m$ attains the minimum.

Remark: $\exists R_m^{-1} \ (1 \le m \le M)$ for all non-singular matrix A.

advantages of finite element formulation 2/2

 solvability of linear system is inherited from solvability of continuous weak formulation

better to learn for efficient computation

- treatment of Dirichlet boundary conditions in FreeFem++ with explicit usage of matrix and linear solver
- Direct solver like UMFPACK is efficient for 2D problems, but for 3D iterative solvers such as CG/GMERES with good preconditioner (e.g. additive Schwarz method) are necessary.

Outline

Weak formulation for partial differential equations with 2nd order derivatives

Finite element stiffness matrix from weak form

Nonlinear finite element solution by Newton method stationary Navier-Stokes equations and a weak formulation differential calculus of nonlinear operator and Newton iteration

Syntax and data structure of FreeFem++ language

Schwarz algorithm as preconditioner for global Krylov iteration

Time-dependent Navier-Stokes equations around a cylinder

Thermal convection problem by Rayleigh-Bénard egs.

stationary Navier-Stokes equations and a weak formulation

$$\begin{split} \Omega &= (0,1) \times (0,1) \\ &-2\nu \nabla \cdot D(u) + u \cdot \nabla u + \nabla p = f \text{ in } \Omega \\ &\nabla \cdot u = 0 \text{ in } \Omega \\ &u = g \text{ on } \partial \Omega \end{split}$$

- $V(g) = \{v \in H^1(\Omega)^2 ; v = g \text{ on } \partial\Omega\}, V = V(0)$
- $Q = L_0^2(\Omega) = \{ p \in L^2(\Omega) ; \int_{\Omega} p \, dx = 0 \}$

bi/tri-linear forms and weak formulation:

$$a(u,v) = \int_{\Omega} 2\nu D(u) : D(v) dx \quad u,v \in H^1(\Omega)^2$$

$$a_1(u, v, w) = \int_{\Omega} (u \cdot \nabla v) \cdot w \quad u, v, w \in H^1(\Omega)^2$$

$$b(v,p) = -\int_{\Omega} \nabla \cdot v \, p \, dx \quad v \in H^1(\Omega)^2, \ p \in L^2(\Omega)$$

Find $(u, p) \in V(g) \times Q$ s.t.

$$a(u,v) + a_1(u,u,v) + b(v,p) = (f,v) \quad \forall v \in V,$$

$$b(u,q) = 0 \quad \forall q \in Q.$$

Dutflow

nonlinear system of the stationary solution

 $A(u, p; v, q) = a(u, v) + a_1(u, u, v) + b(v, p) + b(u, q)$ nonlinear problem:

Find
$$(u,p) \in V(g) \times Q$$
 s.t. $A(u,p\,;\,v,q) = (f,v) \; \forall (v,q) \in V \times Q$.

$$a_1(\cdot,\cdot,\cdot)$$
: trilinear form,
 $a_2(y+\delta y,y+\delta y,y)=a_2(y,y+\delta y,y)+a_2(\delta y,y+\delta y,y)$

$$a_1(u + \delta u, u + \delta u, v) = a_1(u, u + \delta u, v) + a_1(\delta u, u + \delta u, v)$$

= $a_1(u, u, v) + a_1(u, \delta u, v) + a_1(\delta u, u, v) + a_1(\delta u, \delta u, v)$

$$A(u + \delta u, p + \delta p; v, q) - A(u, p; v, q)$$

$$=a(u+\delta u,v)-a(u,v)$$

$$+b(v,p+\delta p)-b(v,p)+b(u+\delta u,q)-b(u,q)$$

$$+ a_1(u + \delta u, u + \delta u, v) - a_1(u, u, v)$$

$$= a(\delta u, v) + b(v, \delta p) + b(\delta u, q) + a_1(\delta u, u, v) + a_1(u, \delta u, v) + O(||\delta u||^2)$$

Find $(\delta u, \delta p) \in V \times Q$ s.t.

$$a_1 + b(\delta u, a) + a_1(\delta u, u, v) + a_1(u, \delta v)$$

$$a(\delta u, v) + b(v, \delta p) + b(\delta u, q) + a_1(\delta u, u, v) + a_1(u, \delta u, v) =$$

$$-A(u, p; v, q) \quad \forall (v, q) \in V \times Q$$

Newton iteration

```
\begin{array}{l} (u_0,p_0)\in V(g)\times Q\\ \text{loop }n=0,1\ldots\\ &\text{Find }(\delta u,\delta p)\in \textbf{\textit{V}}\times \textbf{\textit{Q}}\text{ s.t.}\\ a(\delta u,v)+b(v,\delta p)+b(\delta u,q)+a_1(\delta u,u_n,v)+a_1(u_n,\delta u,v)=\\ &A(u_n,p_n\,;\,v,q)\quad\forall (v,q)\in V\times Q\\ \text{if }||(\delta u,\delta p)||_{V\times Q}\leq \varepsilon \text{ then break}\\ u_{n+1}=u_n-\delta u,\\ p_{n+1}=p_n-\delta p.\\ \text{loop end.} \end{array}
```

▶ example4.edp

$$\begin{array}{l} (u^{(0)},p^{(0)})\in V(g)\times Q \text{ : solution of the Stokes eqs., } \nu=1.\\ \text{while } (\nu>\nu_{\min})\\ \text{Newton iteration } (u^{(k+1)},p^{(k+1)})\in V(g)\times Q \text{ from } (u^{(k)},p^{(k)}).\\ \nu=\nu/2,\,k++.\\ \text{while end.} \end{array}$$

initial guess from the stationary state of lower Reynolds number

mesh adaptation

```
fespace XXMh(Th,[P2,P2,P1]);
XXMh [u1,u2,p];
real lerr=0.01;
Th=adaptmesh(Th, [u1,u2], p, err=lerr, nbvx=100000);
[u1,u2,p]=[u1,u2,p]; // interpolation on the new mesh
```


 $err: P_1$ interpolation error level

nbvx: maximum number of vertexes to be generated.

FreeFem++ for non-linear problem

- Jacobian of Newton method needs to be obtained from differential calculus
- good initial guess is necessary to achieve fast convergence of Newton method
- combination with mesh adaptation is an effective technique to improve initial conditions for Newton method

Outline

Weak formulation for partial differential equations with 2nd order derivatives

Finite element stiffness matrix from weak form

Nonlinear finite element solution by Newton method

Syntax and data structure of FreeFem++ language control flow data structure; array and FE object sparse matrix function macro procedure to compute SpMV for built-in iterative solver

Schwarz algorithm as preconditioner for global Krylov iteration

Time-dependent Navier-Stokes equations around a cylinder 39/70

syntax of FreeFem++ script

```
for loop
for (int i=0; i<10; i++) {</pre>
  if (err < 1.0e-6) break;
while loop
int i = 0;
while (i < 10) {
  if (err < 1.0e-6) break;
  i++;
procedure (function)
func real[int] ff(real[int] &pp) { // C++ reference
   real [int] qq;
                              // calculate qq from pp
   qq = \dots pp ;
                              // return data real[int]
   return qq;
                                                      40/70
```

```
array and finite element object
    mesh Th=square(20,20);
   fespace Xh(Th, P1); // P1 finite element on Th
   Xh uh;
              // P1 finite element object
   real[int] u(n); //
   u = uh[];
            // copy data from FE object to array
   for (int i = 0; i < n; i++)
    u(i)=uh[](i); // index-wise copy, but slow
   real[int] u; // not yet allocated
   u.resize(10); // same as C++ STL vector
   real[int] vv = v; // allocated as same size of v.n
   a(2)=0.0; // set value of 3rd index
   a += b; // a(i) = a(i) + b(i)
   a = b \cdot * c; // a(i) = b(i) * c(i); element-wise
   a = b < c ? b : c // a(i) = min(b(i), c(i)); C-syntax
                   // sum a(i);
   a.sum;
```

// size of array a.n;

FreeFem++, Ohtsuka-Takaishi [2014].

There are other operations such as $\ell^1, \ell^2, \ell^{\infty}$ -norms, max, min. cf. Finite element analysis by mathematical programming language

41/70

vector-valued finite element object and 2D array

```
vector valued FE object
```

```
mesh Th=square (20, 20);
fespace Xh(Th, [P1, P1]); // P1-P1 finite element on Th
Xh [uh1, uh2]; // P1 finite element object
real[int] u(uh1[].n+uh2[].n); // allocation of array
real[int] v(Xh, nodf); //
u = [uh1[], uh2[]]; // copy of vector-valued object
v = uh1[]; // u1h[] shows a pointer to an array
                   // in [uh1, uh2]
2-D array
mesh Th=square (20,20);
fespace Xh(Th, P1); // P1 finite element on Th
```

Xh[int] uh(10); // 10 sized array of FE object

uu(:,m)=uh[m][](:); // copy each array

real[int,int] uu(Xh.ndof, 10); // 2D array

for (int m = 0; m < 10; m++) {

variational form and sparse matrix mesh Th=square(20,20);

```
fespace Xh(Th, P1); Xh u, v;
func fnc = sin(pi * x + pi * y);
varf a(u, v) = int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))
           + on (1, u=0.0);
varf f(u, v) = int2d(Th)(fnc * v);
matrix AA = a(Xh, Xh, solver=UMFPACK);
real[int] x(Xh.ndof), b(X.ndof);
b = f(Xh, 0); // RHS from external force
x = AA^-1 * b; // solution of linear system
int n = 10;
           // example to generate
real[int, int] mm(n, n); // sparse matrix from 2D array
Xh [int] uh(n);
for (int i = 0; i < n; i++)
 uh[i] = sin(pi * real(i+1) * x);
for (int j = 0; j < n; j++)
  for (int i = 0; i < n; i++)
     mm(i, j)=uh[i][]'*uh[j][]; //' inner product
set (aa, solver=UMFPACK);// set sparse solver
```

function macro and FEM object

quadrature qf5pT

procedure and CG built-in function: 1/2

```
int n = 20;
                                      ▶ example5.edp → varf+matrix
mesh Th=square(n,n);
fespace Vh(Th,P1); Vh u,v;
func f = 5.0/4.0*pi*pi*sin(pi*x)*sin(pi*y/2.0);
func h = (-pi)/2.0*sin(pi*x);
func q = \sin(pi * x) * \sin(pi * y/2.0);
varf aa(u,v) = int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))
                + on (2, 3, 4, u=1.0);
varf external(u,v) = int2d(Th)(f*v) + int1d(Th,1)(h*v);
real tqv=1.0e+30;
matrix A;
real[int] bc = aa(0, Vh, tqv=tqv);
func real[int] opA(real[int] &pp)
  pp = bc ? 0.0 : pp; // SpMV operation only for inner
  real[int] qq = A * pp;// node without Dirichlet bdry.
  pp = bc ? 0.0 : qq;
  return pp;
```

procedure and CG built-in function: 2/2

```
func real[int] opQ(real[int] &pp) // diagonal scaling
  for (int i = 0; i < pp.n; i++) {
   pp(i) = pp(i) / A(i, i);
  pp = bc ? 0.0 : pp;
 return pp;
A = aa(Vh, Vh, tqv=tqv, solver=sparsesolver);
real[int] ff = external(0, Vh);
                    // q is valid only on the bdry 1
v = a;
u[] = bc ? v[] : 0.0; // u[] has Dirichlet data w/o tqv
v[] = bc ? 0.0 : v[];
ff -= v[];
                // ff \{1\} -= A \{12\}*u \{2\}
ff = bc ? 0.0 : ff;
LinearCG(opA, u[], ff, precon=opQ, nbiter=200,
        eps=1.0e-10, verbosity=50);
```

Outline

Weak formulation for partial differential equations with 2nd order derivatives

Finite element stiffness matrix from weak form

Nonlinear finite element solution by Newton method

Syntax and data structure of FreeFem++ language

Schwarz algorithm as preconditioner for global Krylov iteration overlapping subdomains and RAS/ASM 2-level algorithm with a coarse space

Time-dependent Navier-Stokes equations around a cylinder

Thermal convection problem by Rayleigh-Bénard eqs.

Schwarz algorithm: 1/2

Jacobi-Schwarz algorithm

$$\begin{array}{ll} u_1^0,u_2^0 \text{ : given} \\ \operatorname{loop} n=0,1,2,\cdots \\ -\triangle u_1^{n+1}=f \text{ in }\Omega_1 & -\triangle u_2^{n+1}=f \text{ in }\Omega_2 \\ u_1^{n+1}=0 \text{ on }\partial\Omega_1\cap\partial\Omega & u_2^{n+1}=0 \text{ on }\partial\Omega_2\cap\partial\Omega \\ u_1^{n+1}=u_2^n \text{ on }\partial\Omega_1\cap\bar\Omega_2 & u_2^{n+1}=u_1^n \text{ on }\partial\Omega_2\cap\bar\Omega_1 \end{array}$$

- parallel computation, extendable to more than two subdomains
- overlapping subdomain

Restricted Additive Schwarz algorithm: 1/2

$\begin{aligned} & \text{partition of unity} \\ & u = \sum_{i=1}^{2} E_i(\chi_i u_i) \end{aligned}$

- \triangleright E_i : extension from Ω_i to Ω
- $ightharpoonup \chi_i$: partition of unity function in $\bar{\Omega}_i$

$$\mathsf{loop}\; n=0,1,2,\cdots$$

$$\begin{split} -\triangle w_i^{n+1} &= f \text{ in } \Omega_i \\ w_i^{n+1} &= 0 \text{ on } \partial \Omega_i \cap \partial \Omega \\ w_i^{n+1} &= u^n \text{ on } \partial \Omega_i \cap \bar{\Omega}_j \end{split}$$

$$u^{n+1} = \sum_{i=1}^{2} E_i(\chi_i w_i^{n+1})$$

by substituting $\triangle u^n$ that satisfies $u^n = 0$ on $\partial \Omega_i \cap \partial \Omega$

$$\begin{split} -\triangle w_i^{n+1} + \triangle u^n &= f + \triangle u^n \text{ in } \Omega_i \\ w_i^{n+1} - u^n &= 0 \text{ on } \partial \Omega_i \cap \partial \Omega, \qquad w_i^{n+1} - u^n = 0 \text{ on } \partial \Omega_i \cap \bar{\Omega}_j \\ u^{n+1} - u^n &= \sum_{i=1}^2 E_i(\chi_i w_i^{n+1}) - \sum_{i=1}^2 E_i(\chi_i u_i^n) \end{split}$$

$$= \sum_{i=1}^{2} E_i(\chi_i(w_i^{n+1} - u^n))$$

Restricted Additive Schwarz algorithm: 2/2

Restricted additive Schwarz (RAS) algorithm

$$u^0_1,u^0_2$$
 : given loop $n=0,1,2,\cdots$
$$r^n=f+\triangle u^n \\ -\triangle v^{n+1}_i=r^n \text{ in }\Omega_i \\ v^{n+1}_i=0 \text{ on }\partial\Omega_i \\ u^{n+1}=u^n+\sum_{i=1}^2 E_i(\chi_i v^{n+1}_i)$$

 $\mathsf{RAS} \Rightarrow \mathsf{Jacobi\text{-}Schwarz} \ \mathsf{method}$

proof by induction
$$-\triangle(u^n+v^n_i)=-\triangle(u^n)+r^n=f \text{ in }\Omega_i$$

$$u^n+v^n_i=u^n \text{ on }\partial\Omega_i\cap\partial\Omega\ .$$

$$u^n=E_1(\chi_1u^n_1)+E_2(\chi_2u^n_2)$$

$$u^n=E_1(0\cdot u^n_1)+E_2(1\cdot u^n_2)=u^n_2 \text{ on }\partial\Omega_i\cap\bar\Omega_2\ .$$

Additive Schwarz algorithm

$$\begin{aligned} \mathsf{loop} \; n &= 0, 1, 2, \cdots \\ -\triangle w_i^{n+1} &= f \; \mathsf{in} \; \Omega_i \\ w_i^{n+1} &= 0 \; \mathsf{on} \; \partial \Omega_i \cap \partial \Omega \\ w_i^{n+1} &= u^n \; \mathsf{on} \; \partial \Omega_i \cap \bar{\Omega}_j \\ u^{n+1} &= \sum_{i=1}^2 E_i(w_i^{n+1}) \end{aligned}$$

Additive Schwarz Method (ASM)

$$u_1^0, u_2^0$$
 : given loop $n=0,1,2,\cdots$

$$r^n=f+\triangle u^n$$

$$-\triangle v_i^{n+1}=r^n \text{ in } \Omega_i$$

$$v_i^{n+1}=0 \text{ on } \partial \Omega_i$$

$$u^{n+1}=u^n+\sum^2 E_i(v_i^{n+1})$$

Schwarz methods as preconditioner

ASM preconditioner

$$M_{\mathsf{ASM}}^{-1} = \sum_{p=1}^{M} R_p^T (R_p A R_p^T)^{-1} R_p$$

ASM does not converge as fixed point iteration, but $M_{\rm ASM}^{-1}$ is symmetric and works well as a preconditioner for CG method.

RAS preconditioner

$$M_{\mathsf{RAS}}^{-1} = \sum_{p=1}^{M} R_p^T D_p (R_p A R_p^T)^{-1} R_p$$

RAS does converge but $M_{\rm RAS}^{-1}$ is not symmetric and then works as a preconditioner for GMRES method. convergence of ASM, RAS: slow for many subdomains

⇒ coarse space

2-level Schwarz methods with a coarse space

coarse space by Nicolaides

 D_p : discrete representation of the partition of unity

$$\sum_{p=1}^{M} R_p^T D_p R_p = I_N,$$

 $\{ec{z}_p\}\subset\mathbb{R}^N$: basis of coarse space, $Z=[ec{z}_1,\cdots,ec{z}_M].$

$$\vec{z}_p = R_p^T D_p R_p \vec{1},$$

$$R_0 = Z^T$$
.

2-level ASM preconditioner

$$M_{\mathsf{ASM},2}^{-1} = R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{p=1}^M R_p^T (R_p A R_p^T)^{-1} R_p$$

2-level RAS preconditioner

$$M_{\mathsf{RAS},2}^{-1} = R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{p=1}^M R_p^T D_p (R_p A R_p^T)^{-1} R_p$$

FreeFem++ script for a 3D domain computation

Subdomain problems: solved by a direct solver can be distributed in paralle machine.

- domain decomposition by METIS metisdual()
- overlapping subdomain from non-overlapping one using numerical diffusion operator func bool AddLayers()
- ▶ partition of unity func bool SubdomainsPartitionUnity()

cf. V. Dolean, P Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods – Algorithms, Theory, and Parallel Implementation, SIAM, 2015. ISBN 978-1-611974-05-8

Outline

Weak formulation for partial differential equations with 2nd order derivatives

Finite element stiffness matrix from weak form

Nonlinear finite element solution by Newton method

Syntax and data structure of FreeFem++ language

Schwarz algorithm as preconditioner for global Krylov iteration

Time-dependent Navier-Stokes equations around a cylinder boundary conditions of incompressible flow around a cylinder

Thermal convection problem by Rayleigh-Bénard eqs.

incompressible flow around a cylinder: boundary conditions

$$\Omega = (-1,9) \times (-1,1) \qquad \Gamma_3$$

$$\Gamma_4 \qquad \qquad \Gamma_1$$

$$\frac{\partial u}{\partial t} + u \cdot \nabla u - 2\nu \nabla \cdot D(u) + \nabla p = 0 \text{ in } \Omega$$

$$\nabla \cdot u = 0 \text{ in } \Omega$$

$$u = g \text{ on } \partial \Omega$$

boundary conditions:

Poiseuille flow on Γ_4 : $u = (1 - y^2, 0)$. slip boundary condition on $\Gamma_1 \cup \Gamma_3$: $\left\{ egin{array}{ll} u \cdot n = 0 \\ (2 \nu D(u) n - np) \cdot t = 0 \end{array} \right.$ no-slip boundary condition on ω : u=0

outflow boundary condition on Γ_2 : $2\nu D(u)n - np = 0$

56/70

slip boundary conditions and function space

$$\Gamma_3$$
 Γ_4 ω Γ_2 Γ_1

slip boundary condition on
$$\Gamma_1 \cup \Gamma_3$$
 : $\left\{ \begin{array}{c} u \cdot n = 0 \\ (2 \nu \, D(u) n - n \, p) \cdot t = 0 \end{array} \right.$

$$V(g) = \{ v \in H^1(\Omega)^2 \, ; \, v = g \text{ on } \Gamma_4 \cup \omega, \ v \cdot n = 0 \text{ on } \Gamma_1 \cup \Gamma_3 \},$$

$$\begin{split} & & & \sum_{Q} = L^2(\Omega). \\ & \int_{\Gamma_1 \cup \Gamma_3} (2\nu D(u)n - n\,p) \cdot v ds = \int_{\Gamma_1 \cup \Gamma_3} (2\nu D(u)n - n\,p) \cdot (v_n n + v_t t) ds \\ & = \int_{\Gamma_1 \cup \Gamma_3} (2\nu D(u)n - n\,p) \cdot (v \cdot n) n\, ds \end{split}$$

$$+ \int_{\Gamma_t \cup \Gamma_2} (2\nu D(u)n - n p) \cdot tv_t \, ds = 0$$

characteristic line and material derivative

$$u(x_1, x_2, t): \Omega \times (0, T] \to \mathbb{R}^2$$
, given velocity field.

$$\phi(x_1, x_2, t) : \Omega \times (0, T] \to \mathbb{R}.$$

$$X(t):(0,T]\to\mathbb{R}^2$$
, characteristic curve :

$$\frac{dX}{dt}(t) = u(X(t), t), X(0) = X_0$$

$$\frac{d}{dt}\phi(X(t),t) = \nabla\phi(X(t),t) \cdot \frac{d}{dt}X(t) + \frac{\partial}{\partial t}\phi(X(t),t)$$
$$= \nabla\phi(X(t),t) \cdot u(X(t),t) + \frac{\partial}{\partial t}\phi(X(t),t)$$

material derivative :
$$\frac{D\phi}{Dt} = \frac{\partial}{\partial t}\phi + u \cdot \nabla \phi$$
.

approximation by difference

$$\frac{\dot{D}\dot{\phi}(X(t),t)}{Dt} \sim \frac{\dot{\phi}(X(t),t) - \phi(X(t-\Delta t),t-\Delta t)}{\Delta t}$$

characteristic Galerkin method to discretized material derivative

approximation by Euler method:

approximation by Euler method:
$$t_n < t_{n+1}, t_{n+1} = \Delta t + t_n.$$

$$X(t_{n+1}) = x$$

$$X(t_n) = X^n(x) + O(\Delta t^2)$$

$$X^n(x) = x - u(x, t_n)$$

$$\frac{D\phi(X(t_{n+1}), t_{n+1})}{Dt} = \frac{\phi(x, t_{n+1}) - \phi(X^n, t_n)}{\Delta t} + O(\Delta t)$$

$$\sim \frac{\phi^{n+1} - \phi^n \circ X^n}{\Delta t}.$$

 u^n : obtained in the previous time step.

Find $(u^{n+1}, p^{n+1}) \in V(q) \times Q$ s.t.

$$\left(\frac{u^{n+1}-u^n\circ X^n}{\Delta t},v\right)+a(u^{n+1},v)+b(v,p^{n+1})=0\quad\forall v\in V,$$

$$b(u^{n+1},q)=0\quad\forall q\in Q.$$

FreeFem++ script using characteristic Galerkin method

```
FreeFem++ provides convect to compute (u^n \circ X^n, \cdot).
                                               example7.edp
real nu=1.0/Re;
real alpha=1.0/dt;
int i:
problem NS([u1,u2,p],[v1,v2,q],solver=UMFPACK,init=i) =
  int2d(Th)(alpha*(u1*v1 + u2*v2)
       +2.0*nu*(dx(u1)*dx(v1)+2.0*d12(u1,u2)*d12(v1,v2)
                +dy(u2)*dy(v2))
       -p * div(v1, v2) - q * div(u1, u2))
- int2d(Th)(alpha*(convect([up1,up2],-dt,up1)*v1
                    +convect([up1,up2],-dt,up2)*v2))
+ on (1, 3, u2=0) +on (4, u1=1.0-y*y, u2=0) +on (5, u1=0, u2=0);
for (i = 0; i \le timestepmax; i++) {
   up1 = u1; up2 = u2; pp = p;
   NS;
                   // factorization is called when i=0
   plot([up1, up2], pp, wait=0, value=true, coef=0.1);
```

FreeFem++ script for mesh generation around a cylinder

Delaunay triangulation from nodes given on the boundary boundary segments are oriented and should be connected.

stream line for visualization of flow around a cylinder: 1/2

stream function $\psi: \Omega \to \mathbb{R}, \ u = \begin{vmatrix} \partial_2 \psi \\ -\partial_1 \psi \end{vmatrix}$.

inlet:
$$y - \frac{y^3}{y^3} = \int_0^y u_1(x_1, t) dt = \int_0^y \partial_2 u_1(x_2, t) dt$$

inlet:
$$y - \frac{y^3}{3} = \int_0^y u_1(x_1, t) dt = \int_0^y \partial_2 \psi(x_1, t) dt = \psi(x_1, y) - \psi(x_1, 0)$$

inlet:
$$y - \frac{y^3}{2} = \int_0^y u_1(x_1, t) dt = \int_0^y \partial_{2} dt$$

slip: $0 = \int_{-x}^{x} u_2(t, \pm 1) dt = \int_{-x}^{x} -\partial_1 \psi(t, \pm 1) dt = \psi(x_1, \pm 1) - \psi(x, \pm 1)$

 $\psi(x,\pm 1) = \psi(x_1,\pm 1) = \psi(x_1,0) \pm 2/3 = \pm 2/3.$

cylinder: $0 = \int_{-\theta}^{\theta} u \cdot n \, d\theta = \int_{-\theta}^{\theta} -\partial_1 \psi \, r \sin \theta + \partial_2 \psi \, r \cos \theta$

 $= \int_{-\theta}^{\theta} \frac{\partial}{\partial \theta} \psi(r,\theta) d\theta.$

 $\psi|_{\omega} = \psi(x_1,0) = 0.$

center from inlet: $u_2 = 0 \implies$ same as slip wall,

62/70

 $\psi(x_1, y) = \psi(x_1, 0) + y - \frac{y^3}{2} = y - \frac{y^3}{2}.$

stream line for visualization of flow around a cylinder: 2/2

slip boundary condition on $\Gamma_1 \cup \Gamma_3$, outflow on Γ_2 .

Outline

Weak formulation for partial differential equations with 2nd order derivatives

Finite element stiffness matrix from weak form

Nonlinear finite element solution by Newton method

Syntax and data structure of FreeFem++ language

Schwarz algorithm as preconditioner for global Krylov iteration

Time-dependent Navier-Stokes equations around a cylinder

Thermal convection problem by Rayleigh-Bénard eqs. governing equations by Boussinesq approximation stationary solution by Newton method from numerical stationary solution

thermal convection in a box: 1/2

$$\Gamma_3: \theta = \theta_0, u_2 = 0$$

$$\Gamma_4: \partial_n \theta = 0, u_1 = 0$$

$$\Gamma_1: \theta = \theta_0 + \Delta \theta, u_2 = 0$$

$$\Gamma_1: \theta = \theta_0 + \Delta \theta, u_2 = 0$$

Rayleigh-Bénard equations

$$\begin{split} \rho\left(\frac{\partial u}{\partial t} + u\cdot\nabla u\right) - 2\nabla\cdot\mu_0D(u) + \nabla p &= -\rho\,g\vec{e}_2\text{ in }\Omega\,,\\ \nabla\cdot u &= 0\text{ in }\Omega\,,\\ \frac{\partial\theta}{\partial t} + u\cdot\nabla\theta - \nabla\cdot(\kappa\theta) &= 0\text{ in }\Omega\,. \end{split}$$

 \vec{e}_2 : unit normal of y-direction d: height of the box, g: gravity acceleration, κ : thermal diffusivity, μ_0 : viscosity

thermal convection in a box: 2/2

Boussinesq approximation : $\rho = \rho_0 \{1 - \alpha(\theta - \theta_0)\}, \theta_0 = 0.$ ρ_0 : representative density, α : thermal expansion coefficient. non-dimensional Rayleigh-Bénard equations

$$\begin{split} \frac{1}{Pr} \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) - 2 \nabla \cdot D(u) + \nabla p &= Ra\theta \vec{e}_2 \text{ in } \Omega \,, \\ \nabla \cdot u &= 0 \text{ in } \Omega \,, \\ \frac{\partial \theta}{\partial t} + u \cdot \nabla \theta - \triangle \theta &= 0 \text{ in } \Omega \\ u \cdot n &= 0 \text{ on } \partial \Omega \,, \\ \theta &= 1 \text{ on } \Gamma_1 \,, \\ \theta &= 0 \text{ on } \Gamma_3 \,, \\ \partial_n \theta &= 0 \text{ on } \Gamma_2 \cup \Gamma_4 \,. \end{split}$$

- $\begin{array}{l} \blacktriangleright \ Pr = \frac{\mu_0}{\kappa \rho_0} \text{: Prandtl number,} \\ \blacktriangleright \ Ra = \frac{\rho_0 g \alpha \Delta \theta d^3}{\kappa \mu_0} \text{: Rayleigh number.} \end{array}$

a weak form to solve time-dependent Rayleigh-Bénard egs.

- velocity: $V = \{v \in H^1(\Omega)^2 : v \cdot n = 0 \text{ on } \partial\Omega\}$.
- ▶ pressure : $Q = L_0^2(\Omega) = \{ p \in L^2(\Omega) ; \int_{\Omega} p \, dx = 0 \},$
- ▶ temperature : $\Psi_D = \{\theta \in H^1(\Omega) : \theta = 1 \text{ on } \Gamma_1, \theta = 0 \text{ on } \Gamma_3\}.$

bilinear forms:

$$a_0(u,v) = \int_{\Omega} 2D(u) : D(v), \quad b(v,p) = -\int_{\Omega} \nabla \cdot v \, p,$$

 $c_0(\theta,\psi) = \int_{\Omega} \nabla \theta \cdot \nabla \psi.$

using Characteristic Galerkin method:

 $(u^n, \theta^n) \in V \times \Psi_D$: from previous time step

Find $(u^{n+1}, p^{n+1}, \theta^{n+1}) \in V \times Q \times \Psi_D$ s.t.

$$\frac{1}{Pr}\left(\frac{u^{n+1}-u^n\circ X^n}{\Delta t},v\right)+a_0(u^{n+1},v)+b(v,p^{n+1})=Ra(\theta^n\vec{e}_2,v)$$

$$\forall v\in V,$$

$$b(u^{n+1},q)=0 \quad \forall q\in Q,$$

$$\left(\frac{\theta^{n+1} - \theta^n \circ X^n}{\Delta t}, \psi\right) + c_0(\theta^{n+1}, \psi) = 0 \quad \forall \psi \in \Psi_0.$$

example8.edp

a weak form to solve stationary Rayleigh-Bénard eqs.

trilinear forms and bilinear form for the Navier-Stokes eqs.

$$a_1(u, v, w) = \frac{1}{Pr} \int_{\Omega} (u \cdot \nabla v) \cdot w$$

$$ightharpoonup c_1(u,\theta,\psi) = \int_{\Omega} (u \cdot \nabla \theta) \cdot \psi$$

$$A(u, p; v, q) = a_0(u, v) + a_1(u, u, v) + b(v, p) + b(u, q)$$

Newton iteration
$$(u_0,p_0,\theta_0)\in V\times Q\times \Psi_D$$
 loop $n=0,1\dots$

Find
$$(\delta u, \delta p, \delta \theta) \in V \times Q \times \Psi_0$$
 s.t.

$$a_0(\delta u, v) + b(v, \delta p) + b(\delta u, q) + a_1(\delta u, u_n, v) + a_1(u_n, \delta u, v)$$
$$-Ra(\delta \theta \vec{e}_2, v) = A(u_n, p_n; v, q) - Ra(\theta_n \vec{e}_2, v) \quad \forall (v, q) \in V \times Q$$

$$c_0(\delta\theta, \psi) + c_1(u_n, \delta\theta, \psi) + c_1(\delta u, \theta_n, \psi) = c_0(\theta_n, \psi) + c_1(u_n, \theta_n, \psi)$$

$$\forall \psi \in \Psi_0$$

if $||(\delta u, \delta p, \delta \theta)||_{V \times Q \times \Psi} \le \varepsilon$ then break

$$u_{n+1} = u_n - \delta u, \quad p_{n+1} = p_n - \delta p, \quad \theta_{n+1} = \theta_n - \delta \theta.$$

loop end.

initial data \leftarrow stationary solution by time-dependent problem.

Application of finite element method to fluid problems

Time-dependent Navier-Stokes equations

- material derivative is approximated by Characteristic Galerkin method
- functional space of pressure depends on boundary conditions of flow, e.g., inflow, non-slip, slip, and outflow.

Thermal convection problem by Rayleigh-Bénard equations

- time-dependent problems for fluid and temperature by convection are solved by Characteristic Galerkin method
- stationary solution is obtained by Newton iteration using an initial value obtained from time-evolutionary solution

References

FreeFem++:

- ► F. Hecht, FreeFem++ manual, 3rd ed., 2015.
- K. Ohtsuka, T. Takaishi, Finite element analysis by mathematical programming language FreeFem++ (in Japanese), Industrial and Applied Mathematics Series Vol.4, Kyoritsu, 2014.
- ▶ I. Danaila, F. Hecht, O. Pironneau, Simulation numérique en C++, Dunod, 2003.

Finite element theory:

- ▶ D. Braess, Finite elements Theory, fast solvers and application in solid mechanics, 3rd ed., Cambridge Univ. Press, 2007.
- A. Ern, J.-L. Guermond, Theory and practice of finite elements, Springer Verlag, New-York, 2004.
- M. Tabata, Numerical solution of partial differential equations II (in Japanese), Iwanami Shoten, 1994.

example1.edp 1/1

```
// example 1 : poisson-mixedBC.edp [slide page 8]
// finite element solution of Poisson equation with mixed boundary condition
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
int n = 20;
mesh Th=square(n,n);
fespace Vh(Th,P1);
Vh uh, vh;
real err, hh;
func f = 5.0/4.0 * pi * pi * sin(pi * x) * sin(pi * y / 2.0);
func h = (-pi)/2.0 * sin(pi * x);
func g = \sin(pi * x) * \sin(pi * y / 2.0);
// for error estimation
func sol = sin(pi * x) * sin(pi * y / 2.0);
func solx = pi * cos(pi * x) * sin(pi * y / 2.0);
func soly = (pi / 2.0) * sin(pi * x) * cos(pi * y / 2.0);
solve poisson(uh,vh) =
int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
  int2d(Th)( f*vh )
- intld(Th,1) (h * vh)
+ on(2,3,4,uh=g);
hh = 1.0 / real(n) * sqrt(2.0);
// int2d uses qf5pT : 5th order integration quadrature
err = int2d(Th)((dx(uh) - solx) * (dx(uh) - solx) +
                 (dy(uh) - soly) * (dy(uh) - soly) +
                 (uh - sol) * (uh - sol));
err = sqrt(err);
cout << "DOF=" << uh[].n << "\t h=" << hh << " err-H1=" << err << endl;
plot(uh, wait=1);
```

```
example2.edp 1/2
// example 2 : stokes-mixedBC.edp
                                   [slide page 12]
// error estimation for finite element solution of Stokes equations
// with P2/P1 or P1b/P1 element
// for RITT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
int n1 = 20;
int n2 = n1 * 2;
mesh Th1=square(n1,n1);
mesh Th2=square(n2,n2);
// finite element spaces
fespace Vh1(Th1,P2),Qh1(Th1,P1);
fespace Vh2(Th2,P2),Qh2(Th2,P1);
// fespace Vh1(Th1,P1),Qh1(Th1,P1);
// fespace Vh2(Th2,P1),Qh2(Th2,P1);
// fespace Vh1(Th1,P2),Qh1(Th1,P0);
// fespace Vh2(Th2,P2),Qh2(Th2,P0);
// external force
func f1 = 5.0/8.0 * pi * pi * sin(pi * x) * sin(pi * y / 2.0) + 2.0 * x;
func f2 = 5.0/4.0 * pi * pi * cos(pi * x) * cos(pi * y / 2.0) + 2.0 * y;
func h1 = 3.0/4.0 * pi * sin(pi * x) * cos(pi * y / 2.0);
func h2 = pi * cos(pi * x) * sin(pi * y / 2.0) + x * x + y * y;
func sol1 = sin(pi * x) * sin(pi * y / 2.0) / 2.0;
func sol2 = cos(pi * x) * cos(pi * y / 2.0);
func solp = x * x + y * y;
func sol1x = pi * cos(pi * x) * sin(pi * y / 2.0) / 2.0;
func solly = pi / 2.0 * sin(pi * x) * cos(pi * y / 2.0) / 2.0;
func sol2x = (-pi) * sin(pi * x) * cos(pi * y / 2.0);
func sol2y = (-pi / 2.0) * cos(pi * x) * sin(pi * y / 2.0);
// finite element solutions and test functions
Vh1 u11,u12,v11,v12;
Qh1 p1,q1;
Vh2 u21,u22,v21,v22;
Qh2 p2,q2;
real epsln = 1.0e-6;
// definitions of macros for strain rate tensor
macro d11(u1)
                 dx(u1) //
macro d22(u2)
                  dy(u2) //
macro d12(u1,u2) (dy(u1) + dx(u2))/2.0 //
// stokes problem
solve stokes1(u11,u12,p1, v11,v12,q1) =
  int2d(Th1)(
        2.0*(d11(u11)*d11(v11)+2.0*d12(u11,u12)*d12(v11,v12)+d22(u12)*d22(v12))\\
        - p1*dx(v11) - p1*dy(v12)
        - dx(u11)*q1 - dy(u12)*q1)
- int2d(Th1)(f1*v11+f2*v12) - int1d(Th1,1)(h1*v11+h2*v12)
+ on(2,3,4,u11=sol1,u12=sol2);
real meanp, err1, err2, hh1, hh2;
plot([u11,u12],p1,wait=1,value=true,coef=0.1);
solve stokes2(u21,u22,p2, v21,v22,q2) =
  int2d(Th2)(
        2.0*(d11(u21)*d11(v21)+2.0*d12(u21,u22)*d12(v21,v22)+d22(u22)*d22(v22))\\
        - p2*dx(v21) - p2*dy(v22)
        - dx(u21)*q2 - dy(u22)*q2)
- int2d(Th2)(f1*v21+f2*v22) - int1d(Th2,1)(h1*v21+h2*v22)
+ on(2,3,4,u21=sol1,u22=sol2);
plot([u21,u22],p2,wait=1,value=true,coef=0.1);
```

```
hh1 = 1.0 / n1 * sqrt(2.0);
hh2 = 1.0 / n2 * sqrt(2.0);
err1 = int2d(Th1)((dx(u11) - sollx) * (dx(u11) - sollx)
                   + (dy(u11) - solly) * (dy(u11) - solly)
                   + (u11 - sol1) * (u11 - sol1) +
                   (dx(u12) - sol2x) * (dx(u12) - sol2x)
                   + (dy(u12) - sol2y) * (dy(u12) - sol2y)
                   + (u12 - sol2) * (u12 - sol2) +
                   (p1 - solp) * (p1 - solp));
err1 = sqrt(err1);
err2 = int2d(Th2)((dx(u21) - sollx) * (dx(u21) - sollx)
                   + (dy(u21) - solly) * (dy(u21) - solly)
                   + (u21 - sol1) * (u21 - sol1) +
                   (dx(u22) - sol2x) * (dx(u22) - sol2x)
                   + (dy(u22) - sol2y) * (dy(u22) - sol2y)
                   + (u22 - sol2) * (u22 - sol2) +
                   (p2 - solp) * (p2 - solp));
err2 = sqrt(err2);
cout << "coarse mesh: h=" << hh1 << " err-H1/L2=" << err1 << endl;</pre>
cout << "fine mesh: h=" << hh2 << " err-H1/L2=" << err2 << endl;</pre>
cout << "O(h)=" << log(err1/err2)/log(hh1/hh2) << endl;</pre>
```

example3.edp 1/1

```
// example 3 : poisson-matrix.edp [slide page 26]
// finite element solution of Poisson equation with mixed boundary condition
// with P1 element
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
int n = 20;
mesh Th=square(n,n);
fespace Vh(Th,P1);
Vh u,v;
real err, hh;
func f = 5.0/4.0 * pi * pi * sin(pi * x) * sin(pi * y / 2.0);
func h = (-pi)/2.0 * sin(pi * x);
func g = sin(pi * x) * sin(pi * y / 2.0);
// for error estimation
func sol = sin(pi * x) * sin(pi * y / 2.0);
func solx = pi * cos(pi * x) * sin(pi * y / 2.0);
func soly = (pi / 2.0) * sin(pi * x) * cos(pi * y / 2.0);
varf aa(u,v) = int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))
               + on(2,3,4,u=g); // u=1 is enough to say which is Dirichlet node
varf external(u,v) = int2d(Th)( f*v ) + int1d(Th,1) (h * v)
                      + on(2,3,4,u=g); // inhomogenoues Dirichlet data are given
real tgv=1.0e+30;
matrix A = aa(Vh,Vh,tgv=tgv,solver=CG);
real[int] ff = external(0,Vh,tgv=tgv); // containing Dirichlet data with tgv
u[] = A^{-1} * ff;
hh = 1.0 / real(n) * sqrt(2.0);
// int2d uses qf5pT : 5th order integration quadrature
err = int2d(Th)((dx(u) - solx) * (dx(u) - solx) +
                  (\mathbf{dy}(\mathbf{u}) - \mathbf{soly}) * (\mathbf{dy}(\mathbf{u}) - \mathbf{soly}) +
                  (u - sol) * (u - sol));
err = sqrt(err);
cout << "DOF=" << u[].n << "\t h=" << hh << " err-H1=" << err << endl;</pre>
```

```
example4.edp 1/2
// example 4 : cavityNewton.edp [slide page 36]
// stational Navier-Stokes equations in a cavity by Newton iteration
// P2/P1 element
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
// based on examples++-tutorial/cavityNewtow.edp
mesh Th=square(40,40);
fespace Xh(Th,P2);
fespace Mh(Th,P1);
fespace XXMh(Th,[P2,P2,P1]);
XXMh [u1,u2,p], [v1,v2,q];
macro d11(u1)
                  dx(u1) //
macro d22(u2)
                 dy(u2) //
macro d12(u1,u2) (dy(u1) + dx(u2))/2.0 //
macro div(u1,u2) (dx(u1) + dy(u2))//
macro grad(u1,u2) [dx(u1), dy(u2)]//
macro ugrad(u1,u2,v) (u1*dx(v) + u2*dy(v)) //
macro Ugrad(u1,u2,v1,v2) [ugrad(u1,u2,v1), ugrad(u1,u2,v2)]//
real epsln = 1.0e-6;
solve Stokes ([u1,u2,p],[v1,v2,q],solver=UMFPACK) =
  int2d(Th)(2.0*(d11(u1)*d11(v1) + 2.0*d12(u1,u2)*d12(v1,v2) + d22(u2)*d22(v2))
            - p * div(v1,v2) - q * div(u1,u2)
            - p * q * epsln)
  + on(3,u1=4*x*(1-x),u2=0)
  + on(1,2,4,u1=0,u2=0);
plot(coef=0.2,cmm=" [u1,u2] and p ",p,[u1,u2],wait=1);
Mh psi,phi;
problem streamlines(psi,phi,solver=UMFPACK) =
      int2d(Th)(dx(psi)*dx(phi) + dy(psi)*dy(phi))
   + int2d(Th)( -phi*(dy(u1)-dx(u2)))
   + on(1,2,3,4,psi=0);
streamlines;
plot(psi,wait=1);
real nu=1.0;
XXMh [up1,up2,pp];
varf vDNS ([u1,u2,p],[v1,v2,q]) =
  int2d(Th)(nu * 2.0*(d11(u1)*d11(v1)+2.0*d12(u1,u2)*d12(v1,v2)+d22(u2)*d22(v2))
            - p * div(v1, v2) - q * div(u1, u2)
            - p * q * epsln
            + Ugrad(u1,u2,up1,up2)'*[v1,v2] //'
            + Ugrad(up1,up2,u1,u2)'*[v1,v2]) //'
  + on(1,2,3,4,u1=0,u2=0);
// [up1, up2, pp] are obtained from the previous step
varf vNS ([u1,u2,p],[v1,v2,q]) =
  int2d(Th)(nu * 2.0*(d11(up1)*d11(v1)+2.0*d12(up1,up2)*d12(v1,v2)+
                      d22(up2)*d22(v2))
            - pp * div(v1, v2) - q * div(up1, up2)
            - pp * q * epsln
            + Ugrad(up1,up2,up1,up2)'*[v1,v2]) //'
  + on(1,2,3,4,u1=0,u2=0);
Xh uu1=u1, uu2=u2; // initial condition is given by Stokes eqs : Re=0.
up1[] = 0.0; // initialize for [up1, up2, pp]
real reyini = 100.0;
real reymax = 12800.0;
real re = reyini;
int kreymax = log(reymax / reyini)/log(2.0) * 2.0;
for(int k = 0; k < kreymax; k++) {</pre>
  re *= sqrt(2.0);
  real lerr=0.02; // parameter to control mesh refinmente
```

example4.edp 2/2

```
if(re>8000) lerr=0.01;
 if(re>10000) lerr=0.005;
 for(int step= 0 ;step < 2; step++) {</pre>
   Th=adaptmesh(Th, [u1,u2], p, err=lerr, nbvx=100000);
   [u1, u2, p]=[u1, u2, p];
   [up1, up2, pp]=[up1, up2, pp];
   plot(Th, wait=1);
   for (int i = 0 ; i < 20; i++) {</pre>
     nu = 1.0 / re;
     up1[] = u1[];
     real[int] b = vNS(0, XXMh);
     matrix Ans = vDNS(XXMh, XXMh, solver=UMFPACK);
     real[int] w = Ans^-1*b;
     u1[] -= w;
     cout << "iter = "<< i << " " << w.12 << " Reynolds number = " << re</pre>
          << endl;
     if(w.12 < 1.0e-6) break;
   streamlines;
 plot(psi,nbiso=30,wait=1);
 // extract velocity component from [u1, u2, p]
 uu1 = u1;
 uu2 = u2;
 plot(coef=0.2,cmm="rey="+re+" [u1,u2] and p ",psi,[uu1,uu2],wait=1,nbiso=20);
} // loop : re
```

```
example5.edp 1/1
```

```
// example 5 : poisson-LinearCG.edp
                                     [slide page 45]
// finite element solution of Poisson equation with mixed boundary condition
// in matrix form and solved by LinearCG with diagonal preconditioner
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
int n = 20;
mesh Th=square(n,n);
fespace Vh(Th,P1);
Vh u,v;
real err, hh;
func f = 5.0/4.0 * pi * pi * sin(pi * x) * sin(pi * y / 2.0);
func h = (-pi)/2.0 * sin(pi * x);
func g = sin(pi * x) * sin(pi * y / 2.0);
// for error estimation
func sol = sin(pi * x) * sin(pi * y / 2.0);
func solx = pi * cos(pi * x) * sin(pi * y / 2.0);
func soly = (pi / 2.0) * sin(pi * x) * cos(pi * y / 2.0);
varf aa(u,v) = int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))
               + on(2,3,4,u=1.0);
varf external(u,v) = int2d(Th)( f*v ) + int1d(Th,1) (h * v);
real tgv=1.0e+30;
matrix A;
real[int] bc = aa(0, Vh, tgv=tgv);
func real[int] opA(real[int] &pp)
  pp = bc ? 0.0 : pp;
                          // SpMV operation only for node in interior of
                         // the domain without Dirichlet nodes
  real[int] qq = A*pp;
 pp = bc ? 0.0 : qq;
  return pp;
func real[int] opQ(real[int] &pp)
  for (int i = 0; i < pp.n; i++) {</pre>
   pp(i) = pp(i) / A(i, i);
  pp = bc ? 0.0 : pp;
  return pp;
A = aa(Vh, Vh, tgv=tgv, solver=sparsesolver);
real[int] ff = external(0, Vh);
// v[] = A_{12}*g
v[] = A * u[];
v[] = bc ? 0.0 : v[];
ff -= v[];
                      // ff_{1} -= A_{12}*u_{2}
ff = bc ? 0.0 : ff;
LinearCG(opA, u[], ff, precon=opQ, nbiter=200, eps=1.0e-10, verbosity=50);
hh = 1.0 / real(n) * sqrt(2.0);
// int2d uses qf5pT : 5th order integration quadrature
err = int2d(Th)((dx(u) - solx) * (dx(u) - solx) +
                 (\mathbf{dy}(\mathbf{u}) - \mathbf{soly}) * (\mathbf{dy}(\mathbf{u}) - \mathbf{soly}) +
                 (u - sol) * (u - sol));
err = sqrt(err);
cout << "DOF=" << u[].n << "\t h=" << hh << " err-H1=" << err << endl;</pre>
```

```
Schwarz3d.edp 1/5
```

```
// example6 : Schwarz3d
                          [slide page 54]
// Schwarz preconiditoner for Krylov method
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
// based on FreeFem++ manual, section 10 and
// scripts in An Introduction to Domain Decomposition Methods --
//
     Algorithms, Theory, and Parallel Implementation,
//
      V. Dolean, P Jolivet, F. Nataf, SIAM 2015, ISBN 978-1-611974-05-8
load "medit";
load "metis";
include "cube.idp"
bool flagRAS=false;
                        // size of overlap
int sizeoverlaps=1;
int[int] NN=[50,50,50]; //
bool withmetis=true;
int npart= 8;
// using numerical diffusion of mass matrix : FreeFem++ manual Examples 11.9
func bool AddLayers(mesh3 & Th,real[int] &ssd,int n)
  fespace Vh(Th,P1);
  fespace Ph(Th,P0);
  Ph s;
  s[]= ssd;
  Vh u;
  varf vM(u,v)=int3d(Th,gforder=1)(u*v/volume);
  matrix M=vM(Ph,Vh);
  for(int i=0;i<n;++i) {</pre>
   u[]= M*s[];
   u = u > 0.1;
   s[]= M'*u[]; //';
    s = s > 0.1;
  }
  ssd=s[];
  return true;
func bool SubdomainsPartitionUnity(mesh3 & Th, int nnpart, real[int] & partdof,
                                    int sizeoverlaps.
                                    mesh3[int] & Tha,
                                    matrix[int] & Rih, matrix[int] & Dih)
  fespace Vh(Th,P1);
  fespace Ph(Th,P0);
  mesh3 Thi=Th;
  fespace Vhi(Thi,P1); // FreeFem++ trick, formal definition
  Vhi[int] pun(nnpart), dum(nnpart); // local fem functions Vh sun=0, unssd=s0;
  Vh sun = 0, unssd = 0, demo = 0;
  Ph part;
  part[]=partdof;
  for(int i=0;i<nnpart;++i) {</pre>
    Ph suppi = abs(part - i) < 0.1; // boolean 1 in the subdomain 0 elsewhere
    AddLayers(Th, suppi[], sizeoverlaps);
                                           // partitions by adding layers
    Thi=Tha[i]=trunc(Th, suppi>0, label=10, split=1); // mesh interfaces label 10
    Rih[i]=interpolate(Vhi, Vh, inside=true); // Restriction operator : Vh to Vhi
    pun[i][] = 1.0;
    sun[] += Rih[i]'*pun[i][]; // '
  for(int i=0;i<nnpart;++i) {</pre>
    Thi=Tha[i];
         medit("Thi"+i,Thi);
    pun[i]= pun[i]/sun;
    Dih[i]=pun[i][]; //diagonal matrix built from a vector if(verbosity > 1)
    dum[i] = (pun[i] == 1.0 ? 0.0 : pun[i]);
    demo[] += Rih[i]'*dum[i][];
  }
```

```
Schwarz3d.edp 2/5
  plot(demo,cmm="overlapped skelton",wait=1);
  return true;
real [int,int] BB=[[0,1],[0,1],[0,1]];
int [int,int] L=[[1,1],[1,1],[1,1]];
mesh3 Thg=Cube(NN,BB,L);
//medit("Th",Thg);
fespace Ph(Thg,P0);
fespace Vh(Thg,P1);
//fespace Xh(Thg,[P1,P1,P1]);
Ph part;
Vh sun=0,unssd=0;
Ph xx=x,yy=y;
if (withmetis)
  int[int] nupart(Thg.nt);
  metisdual(nupart,Thq,npart);
  for(int n=0;n<nupart.n; n++)</pre>
    part[][n]=nupart[n];
//plot(part,fill=1,cmm="subdomains",wait=false);
mesh3[int] aTh(npart);
matrix[int] Rih(npart);
matrix[int] Dih(npart);
matrix[int] aA(npart);
real[int] partdof(npart);
Vh[int] Z(npart);
                           // coarse space : only used as set of arrays
matrix E;
SubdomainsPartitionUnity(Thq, npart, part[], sizeoverlaps, aTh, Rih, Dih);
//plot(part,fill=1,cmm="subdomains",wait=1);
macro Grad(u) [dx(u), dy(u), dz(u)] // EOM
func f = 1;  // external force
                 // homogeneous Dirichlet data
func g = 0;
func kappa = 30.; // viscosity
func eta = 0;
Vh rhsglobal, uglob; // rhs and solution of the global problem
varf \ vaglobal(u,v) = int3d(Thg)((1.0 + (kappa - 1.0) * x * y * z) *
                                 Grad(u)'*Grad(v)) //'
                     +on(1,u=1.0);
varf vexternal(u,v) = int3d(Thg)(f*v);
matrix Aglobal;
real tgv=1.e+30;
real[int] bc = vaglobal(0, Vh, tgv=tgv);
Aglobal = vaglobal(Vh,Vh,tgv=tgv,solver = CG); // global matrix
rhsglobal[] = vexternal(0,Vh); // global rhs
rhsglobal[] = bc ? 0.0 : rhsglobal[];
//uglob[] = Aglobal^-1*rhsglobal[];
//plot(uglob, value=1, fill=1, wait=1, cmm="Solution by a direct method", dim=3);
for(int n = 0; n < npart; n++) {</pre>
 matrix aT = Aglobal*Rih[n]';
  aA[n] = Rih[n]*aT;
  set(aA[n], solver = sparsesolver);
}
func real[int] opA(real[int] &v)
  v = bc ? 0.0 : v;
 real[int] s = Aglobal * v;
  s = bc ? 0.0 : s;
  return s;
func real[int] opScale(real[int] &v)
```

```
Schwarz3d.edp 3/5
 v = bc ? 0.0 : v;
 real[int] diag(v.n);
 diag = Aglobal.diag;
 real[int] s = v ./ diag;
                            // division on each element of array
 s = bc ? 0.0 : s;
 return s;
func bool CoarseSpace(matrix &EE)
 for (int n = 0; n < npart; n++) {</pre>
   Z[n] = 1.0;
   real[int] zit = Rih[n] * Z[n][];
   real[int] zitemp = Dih[n] * zit;
    Z[n][] = Rih[n]'*zitemp; //'
 real[int,int] Ef(npart,npart); //
 for(int m = 0; m < npart; m++) {</pre>
    real[int] zz = opA(Z[m][]);
    for(int n = 0; n < npart; n++) {</pre>
      Ef(m, n) = Z[n][]'*zz; // '
 EE = Ef;
 set(EE,solver=UMFPACK);
 return true;
func real[int] opQ(real[int] &v)
 real [int] s(v.n);
 s = 0.0;
 real[int] vv(npart);
 v = bc ? 0.0 : v;
 for(int n = 0; n < npart; n++) {</pre>
    vv[n]= Z[n][]'*v; // '
 real[int] zz = E^-1 * vv;
 for(int n = 0; n < npart; n++) {</pre>
    s +=zz[n] * Z[n][];
 return s;
func real[int] opASM(real[int] &v)
 real [int] s(v.n);
 s = 0.0;
 v = bc ? 0.0 : v;
 for (int n = 0; n < npart; n++) {</pre>
   real[int] bi = Rih[n]*v;
    real[int] ui = aA[n]^-1*bi; // local solve
    if (flagRAS) {
      bi = Dih[n]*ui;
    else {
     bi = ui;
                             // ASM is appropriate for preconditioner
    s += Rih[n]'*bi; // '
 s = bc ? 0.0 : s;
 return s;
func real[int] opASM2(real[int] &v)
 real[int] s(v.n);
 s = opQ(v);
 s += opASM(v);
```

```
Schwarz3d.edp 4/5
  return s;
func real[int] opP(real[int] &v) // A-orthogonal projection onto Z^T : I - AQ
  real[int] s(v.n);
 real[int] s2(v.n);
  s = opA(v);
  s2 = opQ(s);
  s = v - s2;
  return s;
func real[int] opPt(real[int] &v)
  real[int] s(v.n);
 real[int] s2(v.n);
  s = opQ(v);
  s2 = opA(s);
  s = v - s2;
  return s;
func real[int] opASMQ(real[int] &v)
  real[int] s(v.n);
  s = opQ(v);
 real[int] ss(v.n);
  ss = opPt(v);
 real[int] sss(v.n);
  sss = opASM(ss);
  ss = opP(sss);
  s += ss;
  return s;
Vh un;
                       // coarse space Vh[int] Z is also generated here
CoarseSpace(E);
if (flagRAS) {
  un = 0.0;
  LinearGMRES(opA, un[], rhsglobal[], nbiter=400, precon=opScale,
              eps=1.0e-10, verbosity=50);
  un = 0.0;
  LinearGMRES(opA, un[], rhsglobal[], nbiter=200, precon=opASM,
              eps=1.0e-10, verbosity=50);
  un = 0;
  LinearGMRES(opA, un[], rhsglobal[], nbiter=200, precon=opASM2,
              eps=1.0e-10, verbosity=50);
  un = 0;
  LinearGMRES(opA, un[], rhsglobal[], nbiter=200, precon=opASMQ,
              eps=1.0e-10, verbosity=50);
  plot(un,value=1,fill=1,wait=1,cmm="solution by GMRES-RAS",dim=3);
  un = un - uglob;
 plot(un, value=1, fill=1, wait=1, cmm="error of GMRES-RAS", dim=3);
 else {
   un = 0.0;
   LinearCG(opA, un[], rhsglobal[], nbiter=400, precon=opScale,
            eps=1.0e-10, verbosity=50);
   un = 0.0;
   LinearCG(opA, un[], rhsglobal[], nbiter=200, precon=opASM,
            eps=1.0e-10, verbosity=50);
   un = 0.0;
   LinearCG(opA, un[], rhsglobal[], nbiter=200, precon=opASM2,
            eps=1.0e-10, verbosity=50);
   un = 0.0;
```

Schwarz3d.edp 5/5

```
example7.edp 1/2
// example 7 : NS-cylinder.edp
                                [slide page 60]
// Navier-Stokes flow around a cylinder
// P2/P1 element with Characteristic Galerkin
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
int n1 = 30;
int n2 = 60;
real nu = 1.0/400.0;
real dt = 0.05;
real alpha = 1.0/dt;
int timestepmax = 400;
border ba(t=0,1.0) {x=t*10.0-1.0;y=-1.0;label=1;};
border bb(t=0,1.0) \{x=9.0; y=2.0*t-1.0; label=2; \};
border bc(t=0,1.0) {x=9.0-10.0*t;y=1.0;label=3;};
border bd(t=0,1.0)\{x=-1.0;y=1.0-2.0*t;label=4;\};
border cc(t=0,2*pi) {x=cos(t)*0.25+0.75;y=sin(t)*0.25;label=5;};
mesh Th=buildmesh(ba(n2)+bb(n1)+bc(n2)+bd(n1)+cc(-n1));
plot(Th);
fespace Xh(Th,[P2,P2,P1]);
fespace Vh(Th,P2);
fespace Qh(Th,P1);
Xh [u1,u2,p], [v1,v2,q];
Vh up1, up2;
Qh pp;
macro d11(u1)
                  dx(u1) //
macro d22(u2)
                  dy(u2) //
macro d12(u1,u2) (dy(u1) + dx(u2))/2.0 //
macro div(u1,u2) (dx(u1) + dy(u2)) //
Qh psi,phi;
func stinflow=y-y*y*y/3.0;
problem streamlines(psi,phi,solver=UMFPACK) =
      int2d(Th)(dx(psi)*dx(phi) + dy(psi)*dy(phi))
   + int2d(Th)( phi*(dy(u1)-dx(u2)))
   + on(1,psi=(-2.0/3.0))
   + on(4,psi=stinflow)
   + on(3,psi=(2.0/3.0))
   + on(5,psi=0.0);
streamlines;
plot(psi, wait=1);
problem Stokes([u1,u2,p],[v1,v2,q],solver=UMFPACK) =
  int2d(Th)(
         + 2.0*nu * (d11(u1)*d11(v1)+2.0*d12(u1,u2)*d12(v1,v2)+d22(u2)*d22(v2))
         -p * div(v1, v2) - q * div(u1, u2)) //
+ on (1,3,u2=0)
+ on(4,u1=1.0-y*y,u2=0)
+ on(5,u1=0,u2=0);
problem NS([u1,u2,p],[v1,v2,q],solver=UMFPACK,init=i) =
  int2d(Th)(alpha * (u1*v1 + u2*v2)
         + 2.0*nu * (d11(u1)*d11(v1)+2.0*d12(u1,u2)*d12(v1,v2)+d22(u2)*d22(v2))
         - p * div(v1, v2) - q * div(u1, u2))
- int2d(Th)( alpha * (convect([up1,up2],-dt,up1)*v1
                     +convect([up1,up2],-dt,up2)*v2) )
+ on (1,3,u2=0)
+ on(4,u1=1.0-y*y,u2=0)
+ on(5,u1=0,u2=0);
plot(Th, wait=1);
```

Stokes;

up1 = u1;

for (i = 0; i < timestepmax; i++) {</pre>

```
example7.edp 2/2

    up2 = u2;
    pp = p;
    NS;
    streamlines;
    plot(psi, nbiso=30,wait=0);
    if (i % 20 == 0) {
        plot([up1,up2],pp,wait=0,value=true,coef=0.1);
    }
}
```

```
example8.edp 1/2
```

```
// example 8 : RayleighBenard.edp
                                    [slide page 69]
// Rayleigh-Benard thermal convection in a box
// P2/P1/P2 element with Characteristic Galerkin
// time evolution data will be stored in "rb.data" for Rayleigh-Benard-stat.edp
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
int n1 = 80;
int n2 = 20;
real Pr = 0.71;
real Ra = 1500.0;
real dt = 0.01;
real alpha = 1.0/(dt * Pr);
int timestepmax = 600;
mesh Th=square(n1,n2,[x*4.0,y]);
fespace Xh(Th,[P2,P2,P1]);
fespace Vh(Th,P2);
fespace Qh(Th,P1);
Xh [u1,u2,p], [v1, v2, q];
Vh up1, up2, th, thp, psi;
Qh pp, ss, rr;
macro d11(u1)
                  dx(u1) //
                  dy(u2) //
macro d22(u2)
                  (dy(u1) + dx(u2))/2.0 //
macro d12(u1,u2)
macro div(u1,u2) (dx(u1) + dy(u2)) //
real epsln = 1.0e-6;
                         // penalization parameter to avoid pressure ambiguity
int i;
problem NS([u1,u2,p],[v1,v2,q],solver=UMFPACK,init=i) =
  int2d(Th)(alpha * (u1*v1 + u2*v2)
         + 2.0* (d11(u1)*d11(v1)+2.0*d12(u1,u2)*d12(v1,v2)+d22(u2)*d22(v2))
         - p * div(v1, v2) - q * div(u1, u2)
         - p * q * epsln)
- int2d(Th)( alpha * (convect([up1,up2],-dt,up1)*v1
                     +convect([up1,up2],-dt,up2)*v2) )
- int2d(Th) (Ra * thp * v2)
+ on (1,3,u2=0)
+ on(2,4,u1=0);
problem Heat(th,psi,solver=UMFPACK,init=i) =
   int2d(Th)(alpha * (th * psi)
          + dx(th) * dx(psi) + dy(th) * dy(psi))
 - int2d(Th)(alpha * convect([up1, up2], -dt, thp) * psi)
 + on(1, th=1)
 + on(3, th=0);
problem streamlines(ss,rr,solver=UMFPACK) =
      int2d(Th)(dx(ss)*dx(rr) + dy(ss)*dy(rr))
   + int2d(Th)( rr*(dy(u1)-dx(u2)))
   + on(1,2,3,4,ss=0.0);
plot(Th, wait=1);
u1[] = 0.0; // impulsive start
th = (1.0-y); // conductive solution
for (i = 0; i < timestepmax; i++) {</pre>
   up1 = u1;
   up2 = u2;
   pp = p;
   thp = th;
   NS;
   Heat;
   plot(th,value=true);
   streamlines;
   plot(ss,nbiso=30);
   if (i % 20 == 0) {
     plot ([u1,u2],value=true,wait=0,coef=0.1);
```

```
example8.edp 2/2
// write time-evolution data for RayleighBenrad-stat.edp
up1=u1;
up2=u2;
pp=p;
thp=th;
    ofstream file("rb.data", binary);
    file.precision(16);
    for (int i = 0; i < up1[].n; i++) {</pre>
       file << up1[](i) << " ";
    file << endl;
    for (int i = 0; i < up2[].n; i++) {</pre>
      file << up2[](i) << " ";
    file << endl;
    for (int i = 0; i < pp[].n; i++) {</pre>
      file << pp[](i) << " " ;
    file << endl;</pre>
    for (int i = 0; i < thp[].n; i++) {</pre>
       file << thp[](i) << " ";
    file << endl;
}
```

```
example9.edp 1/2
```

```
// example 9 : RayleighBenard-stat.edp
                                         [slide page 70]
// Navier-Stokes flow around a cylinder
// P2/P1 element with Characteristic Galerkin
// initial data for Newton iteration needs to be prepared in "rb.data"
// by Rayleigh-Benard-stat.edp
// for RIIT Tutorial at Kyushu University, 25 Nov.2016, Atsushi Suzuki
int n1 = 80;
int n2 = 20;
real Pr = 0.71;
real Ra = 1500.0;
int timestepmax = 600;
mesh Th=square(n1, n2, [x*4.0, y]);
fespace Wh(Th,[P2,P2,P1,P2]);
fespace Vh(Th,P2);
fespace Qh(Th,P1);
Wh [u1,u2,p,th], [v1, v2, q, psi];
Vh up1, up2, thp;
Qh pp, ss, rr;
macro d11(u1)
                  dx(u1) //
macro d22(u2)
                  dy(u2) //
                 (dy(u1) + dx(u2))/2.0 //
macro d12(u1,u2)
macro div(u1,u2) (dx(u1) + dy(u2)) //
macro ugrad(u1,u2,v) (u1*dx(v) + u2*dy(v)) //
macro Ugrad(u1,u2,v1,v2) [ugrad(u1,u2,v1), ugrad(u1,u2,v2)]//
real epsln = 1.0e-6;
                         // penalization parameter to avoid pressure ambiguity
varf vDRB ([u1,u2,p,th],[v1,v2,q,psi]) =
    int2d(Th)(2.0*(d11(u1)*d11(v1)+2.0*d12(u1,u2)*d12(v1,v2)+d22(u2)*d22(v2))
              - p * div(v1, v2) - q * div(u1, u2)
              - p * q * epsln
              + (Ugrad(u1,u2,up1,up2)'*[v1,v2] // '
              + Ugrad(up1,up2,u1,u2)'*[v1,v2]) / (2.0 * Pr) //'
  - int2d(Th)( Ra * th * v2 )
  + int2d(Th)(dx(th) * dx(psi) + dy(th) * dy(psi))
  + int2d(Th)( ugrad(up1,up2,th)*psi + ugrad(u1,u2,thp)*psi)
  + on(1,3,u2=0)
  + on (2, 4, u1=0)
  + on (1, th=0)
  + on (3, th=0);
// [up1, up2, pp] are obtained from the previous step
varf vRB ([u1,u2,p,th],[v1,v2,q,psi]) =
    int2d(Th)( 2.0*(d11(up1)*d11(v1)+2.0*d12(up1,up2)*d12(v1,v2)+
                    d22(up2)*d22(v2))
              - pp * div(v1, v2) - q * div(up1, up2)
              - pp * q * epsln
              + Ugrad(up1,up2,up1,up2)'*[v1,v2] / (2.0 * Pr) ) //'
  - int2d(Th)( Ra * thp * v2 )
  + int2d(Th)(dx(thp) * dx(psi) + dy(thp) * dy(psi))
  + int2d(Th)( ugrad(up1,up2,thp)*psi )
  + on (1,3,u2=0)
  + on (2, 4, u1=0)
  + on(1,th=0) // force homogeneous Dirichlet B.C. to be compatible with
  + on(3,th=0); // Jacobian matrix of Newton iteration
problem streamlines(ss,rr,solver=UMFPACK) =
     int2d(Th)(dx(ss)*dx(rr) + dy(ss)*dy(rr))
     int2d(Th)(rr*(dy(up1)-dx(up2)))
   + on(1,2,3,4,ss=0.0);
plot(Th, wait=1);
// read stationary data computed by RayleighBenrad.edp
  ifstream file("rb.data", binary);
```

```
example9.edp 2/2
  for (int i = 0; i < up1[].n; i++) {</pre>
    file >> up1[](i);
  for (int i = 0; i < up2[].n; i++) {</pre>
    file >> up2[](i);
  for (int i = 0; i < pp[].n; i++) {</pre>
    file >> pp[](i);
  for (int i = 0; i < thp[].n; i++) {</pre>
   file >> thp[](i);
}
[u1, u2, p, th] = [up1, up2, pp, thp];
plot(th,cmm="temperature is read from the file",value=true, wait=1);
cout << "start newton" << endl;</pre>
for (int n = 0; n < 20; n++) {
 up1 = u1;
  up2 = u2;
 pp = p;
  thp = th;
  plot(thp,cmm="newton n="+n,wait=0,value=true);
  real[int] b = vRB(0, Wh);
 cout << "||b||_12 " << b.12 << endl;
matrix A = vDRB(Wh, Wh, solver=UMFPACK);</pre>
  real[int] w = A^-1 * b;
  u1[] -= w;
  cout << "iter = "<< n << " " << w.12 << endl;</pre>
  if (w.12 < 1.e-6) break;
plot(thp,value=true);
up1 = u1;
up2 = u2;
streamlines;
plot(ss,nbiso=30);
```