

Nachrichtentechniklabor

Wintersemester 2014

Übung F: Messung des Störverhaltens in nachrichtentechnischen Systemen

Übungsdatum: 10.12.2014

Gruppe: 05

Protokollführer: Martin Winter

Laborteilnehmer:

- 1. Daniel Freßl 1230028
- 2. Thomas Neff 1230319
- 3. Thomas Pichler 1230320
- 4. Martin Winter 1130688

Laborleiter: Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Gerhard Graber

Betreuer: Stud.Ass. Vincent Ederle

Wildon, am 15. Dezember 2014

Inhaltsverzeichnis

1	Sim	ulation mit MATLAB	2							
	1.1	Aliasing	2							
		1.1.1 Aufgabenstellung	2							
		1.1.2 Tabellen	2							
		1.1.3 Formeln	2							
		1.1.4 Berechnungsbeispiele	2							
		1.1.5 Diagramme	2							
		1.1.6 Diskussion	2							
	1.2	Quantisierungsfehler, Leistungsdichtespektrum								
		1.2.1 Aufgabenstellung	2							
		1.2.2 Tabellen	3							
		1.2.3 Formeln	3							
		1.2.4 Berechnungsbeispiele	3							
		1.2.5 Diagramme	3							
		1.2.6 Diskussion	3							
	1.3	Granularrauschen und Dither	3							
	1.4	Geräteliste	3							
2		(1.3)	1 0 10							
	2.1	0								
	2.2	2 Messaufbau								
	2.3	Formeln	10							
	2.4	Berechnungsbeispiele	10							
	2.5	Diagramme	10							
		2.5.1 Messung mit Jitter	10							
		2.5.2 Klirrfaktor	10							
	2.6		10							
	2.7	Diskussion	10							

1 Simulation mit MATLAB

1.1 Aliasing

1.1.1 Aufgabenstellung

- 1. Wählen sie Frequenz und Abtastfrequenz so, dass eine Aliasingfrequenz von 440Hz auftritt. Überprüfen sie das Resultat graphisch und akustisch (Klavier).
- 2. Erzeugen Sie einen Frequenzsweep, bei dessen Abtastung Aliasing auftritt. Wählen Sie als Anfangsfrequenz eine Frequenz im Hörfrequenzbereich, und als Endfrequenz eine Frequenz um $3 \cdot f_c$.
 - Überprüfen Sie das Resultat graphisch (sowohl im Zeitbereich als auch im Frequenzbereich) und akustisch.
- 3. Wählen Sie die Datei "Flöte" aus. Durch Eingabe einer neuen Samplingfrequenz (44100/L), wobei L ganzzahlig sein muss), kann das eingelesene Audiosignal ohne Bandbegrenzung unterabgetastet werden. Schätzen Sie die Auswirkungen ab. Überprüfen sie akustisch die Auswirkungen des Downsamplings ohne Einhaltung des Abtasttheorems. Ab welcher Frequenz werden Aliasing Effekte hörbar? Wodurch ergibt sich diese Frequenz? Ab welcher Frequenz werden Aliasingeffekte hörbar? Wodurch ergibt sich diese Frequenz?
- 1.1.2 Tabellen
- 1.1.3 Formeln
- 1.1.4 Berechnungsbeispiele
- 1.1.5 Diagramme
- 1.1.6 Diskussion

Abbildung 1: Test

1.2 Quantisierungsfehler, Leistungsdichtespektrum

1.2.1 Aufgabenstellung

- 1. Wie sieht der Quantisierungsfehler bei Vollaussteuerung und 8 bit Wortbreite aus? In welchem Bereich liegt die Amplitude des Quantisierungsfehlers? Sind die Voraussetzungen für $SNR = 6.02 \cdot k$ erfüllt? Welche Charakteristik hat das Fehlersignal? Verwenden Sie das Simulationsprogramm zum Anzeigen des Quantisierungsfehlers in auf 1 normierten Spannungswerten und Quantisierungsstufen.
- 2. Berechnen Sie den erwarteten Signal-Rauschabstand (SNR) und die Quantisierungsrauschleistungs dichte für die gewählte Auflösung. Welchen Einfluss hat die FFT-Fensterbreite auf das Amplitudenspektrum bzw. die Leistungsdichteverteilung des Quantisierungsrauschens? Überprüfen Sie den berechneten SNR und Quantisierungsrauschleistungsdichteverteilung bei verschiedenen FFT-Fensterbreiten mit dem Simulationsprogramm.
- 3. Berechen Sie die Rauschleistung in einem Terzband und überprüfen Sie das Ergebnis

Abbildung 2: Test

mit dem Simulationsprogramm (empfohlene Wahl: $f_c = 48kHz, f_{Signal} = 890.625Hz).$

- 1.2.2 Tabellen
- 1.2.3 Formeln
- 1.2.4 Berechnungsbeispiele
- 1.2.5 Diagramme
- 1.2.6 Diskussion

1.3 Granularrauschen und Dither

Diese Unterübung wurde aus Zeitgründen nur mündlich mit dem Laborbetreuer erarbeitet.

1.4 Geräteliste

Abbildung 3: Test

Abbildung 4: Test

Abbildung 5: Test

Abbildung 6: Test

Abbildung 7: Test

Abbildung 8: Test

Abbildung 9: Test

Abbildung 10: Test

2 Messungen mit Audio Precision (System Two Cascade)

2.1 Aufgabenstellung

- 1. Messung des Quantisierungsrauschens (SNR) am Mischpult D/A Umsetzer (Line Ausgang des Lawo mc^266) mit 14-20Bit Auflösung, Schrittweite 1 Bit. Vergleichen Sie mit den erwarteten werten. Was kann aus den Messergebnissen gefolgert werden?
- 2. Messung mit Jitter
 - Messung der FFT-Spektren verjitterter Signale. Untersuchung für verschiedene Jitterfrequenzen und verschiedene Signalfrequenzen.
 - Vergrößerung der Jitteramplitude, bis die Übertragung zusammenbricht.
 - Aufzeichnung der THD+N Kennlinie bei Vergrößerung der Jitteramplitude bei den Jitterfrequenzen 500Hz, 5kHz und 10kHz.
- 3. Klirrfaktor (THD+N) und Rauschmessungen am Mischpult D/A-Umsetzer
 - Messen einer THD+N-Kennlinie über den Dynamikbereich mit und ohne Dither
 - Messen einer THD+N-Kennlinie über der Frequenz mit und ohne Dither
- 2.2 Messaufbau
- 2.3 Formeln
- 2.4 Berechnungsbeispiele
- 2.5 Diagramme
- 2.5.1 Messung mit Jitter
- 2.5.2 Klirrfaktor
- 2.6 Geräteliste
- 2.7 Diskussion

Abbildung 11: Test

Abbildung 12: Test

Abbildung 13: Test

Abbildung 14: Test

Abbildung 15: Test

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1 2 3 4	1 1 1	Cyan Green Yellow Red	Solid Solid Solid Solid	1 1 1 1	Anir.THD+N Ampl Anir.THD+N Ampl Anir.THD+N Ampl Anir.THD+N Ampl	Left Left	dither triangle dither rectangle

3_a_Klirr.at2c

Abbildung 16: Test

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
2	1	Green	Solid	1	Anir.THD+N Ampl	Left	dither off
3	1	Yellow	Solid	1	Anir.THD+N Ampl	Left	dither triangle
4	1	Red	Solid	1	AnIr.THD+N Ampl	Left	dither rectangle
5	1	Magenta	Solid	1	Anir.THD+N Ampi	Left	dither shaped

3_b_Klirr.at2c

Abbildung 17: Test