제 4장. 모집단과 표본

4.1 정규분포

정규분포는 가우스(Gauss, 1777-1855)에 의해 제시된 분포로써 가우스 분포(Gauss distribution)라고 불리며 가장 대표적인 연속형 확률 분포이다. 평균이 μ 이고 표준편차가 σ 인 정규분포의 밀도 함수는 다음과 같다.

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad -\infty < x < \infty$$

확률변수 X 가 평균이 μ , 표준편차가 σ 인 정규분포를 따를 때, 이를 $X \sim N(\mu, \sigma^2)$ 로 나 타낸다. 정규분포는 평균을 중심으로 좌우 대칭의 모양이며 대칭점과 변곡점 사이의 거리가 표준편차이다.

<표준편차는 같고 평균이 다른 두 정규분포> < 평균은 같고 표준편차가 다른 두 정규분포>

X가 정규분포 $N(\mu, \sigma^2)$ 을 따를 때

표준 정규분포 : 평균이 0이고 표준편차가 1인 정규분포.

$$X \sim N(\mu, \, \sigma^2)$$
일 때, $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

4.1.1 정규분포의 확률밀도함수 그리기

정규분포의 확률밀도는 dnorm() 함수를 사용한다.

> dnorm(x, mean=mu, sd=sigma)

 $: X \sim N(\mu, \sigma^2)$ 일 때 $\Pr(X = x)$ 값을 구함

다음은 표준 정규분포의 확률밀도함수를 그리는 방법이다.

x<-seq(from=-3, to=3, by=0.1) fx<-dnorm(x, mean=0, sd=1) plot(x, fx, type="l", main="표준정규분포 확률밀도함수")

- ▶ seq(from=a, to=b, by=c) : a부터 b의 구간에서 간격이 c인 벡터를 생성
- ▶ plot(x, y, type="l") : (x,y)의 산점도를 선으로 연결하여 그림

4.1.2 정규분포의 확률 계산

정규분포의 누적 분포는 pnorm()을 사용한다.

> pnorm(x, mean=mu, sd=sigma)

 $: X \sim N(\mu, \sigma^2)$ 일 때 $\Pr(X \leq x)$ 값을 구함

- 예) A회사에서 생산되는 전구의 수명은 평균이 2000시간이고 표준편차가 200시간인 정규분 포를 따른다고 한다.
- 1) 이 회사 제품인 전구의 수명이 2500 시간 이하일 확률을 구하여라

: 전구의 수명을 X 라고 한다면 $X \sim N(2000,\,200^2)$ 의 분포를 따른다. 따라서 구하는 확률은 $\Pr(X < 2500)$ 이므로 결과를 확인해 보면 다음과 같다.

```
> pnorm(2500, mean=2000, sd=200)
[1] 0.9937903
>
```

2) 이 회사 제품인 전구의 수명이 1800 시간 이상일 확률을 구하여라: 구하는 확률은 Pr(X > 1800) 이므로 다음과 같이 구할 수 있다.

```
> 1-pnorm(1800, mean=2000, sd=200)
[1] 0.8413447
>
```

또는 pnorm()의 lower.tail 옵션을 이용하면 다음과 같다.

```
> pnorm(1800, mean=2000, sd=200, lower.tail=F)
[1] 0.8413447
>
```

4.1.3 정규 분위수의 계산

정규분포의 분위수를 구하기 위해서는 qnorm()을 사용한다.

```
> qnorm(p, mean=mu, sd=sigma) : \ X \sim \ N(\mu, \ \sigma^2) \ \ \mbox{일 때, } \ \Pr(X \leq x) = p \ \ \mbox{를 만족하는 } x \mbox{를 구함}
```

예) IQ 테스트에서 상위 2% 이내의 점수를 받아야 멘사 회원의 자격이 주어진다고 한다. 만약 IQ 테스트의 점수가 평균이 100이고 표준편차가 15인 정규분포를 따를 때, 멘사 회원이되기 위해서는 약 몇 점 이상의 점수를 받아야 하는가?

: IQ 테스트의 점수를 X 라고 한다면 $X \sim N(100, 15^2)$ 이고 구하는 값은 $\Pr(X \leq x) = 0.98$ 을 만족하는 점수 x 이다. 결과는 다음과 같다.

```
> qnorm(0.98, mean=100, sd=15)
[1] 130.8062
> qnorm(0.02, mean=100, sd=15, lower.tail=F)
[1] 130.8062
>
```

qnorm() 함수도 pnorm() 함수와 마찬가지로 lower.tail 옵션을 사용할 수 있다.

4.2 이항 분포

베르누이 시행

: 시행의 결과가 (성공, 실패)와 같이 두 가지 결과 중의 하나로 나타나는 시행

이항 분포

: 성공 확률이 p인 베르누이 시행을 n회 반복할 때, 'X = 성공의 횟수'의 분포

시행 횟수가 n 이고 성공의 확률이 p인 이항분포의 확률밀도함수는 다음과 같다.

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, 2, \dots, n$$

이항분포의 평균, 분산

: X가 이항분포 B(n,p)를 따를 때

$$E(X) = np$$
, $Var(X) = np(1-p)$

이항분포의 정규근사 : X가 이항분포 B(n,p)를 따를 때

(1) $X \stackrel{!}{\sim} N(np, np(1-p))$

(2)
$$Z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \stackrel{!}{\sim} N(0,1)$$

참고. 이항분포의 정규근사는 n이 충분히 커서 ' $np \geq 5$ 이고 $n(1-p) \geq 5$ '일 때 사용하는 것이 안 전하다.

연속성 수정(continuity correction)

: 두 정수 a, b에 대하여

$$P(a \le X \le b) = P(a - 0.5 \le X \le b + 0.5)$$

$$= P\left(\frac{a - 0.5 - np}{\sqrt{np(1 - p)}} \le Z \le \frac{b + 0.5 - np}{\sqrt{np(1 - p)}}\right)$$

4.2.1 이항 분포의 밀도함수 그리기

이항분포의 확률 밀도는 dbinom()을 사용한다.

> dbinom(x, size=n, prob=p)

 $: X \sim B(n, p)$ 일 때, $\Pr(X = x)$ 의 값을 구함

이항분포의 확률밀도함수는 다음과 같이 그릴 수 있다.

x<-0:6

fx<-dbinom(x, 6, 0.5)

plot(x, fx, main="이항분포의 확률밀도함수", type="h")

▶ plot(x, fx, type="h") : 막대 형태의 히스토그램으로 그래프를 그리는 옵션

4.2.2 이항 분포의 확률 계산

이항 분포의 누적확률은 pbinom()을 이용한다.

```
> pbinom(x, size=n, prob=p) 
: X \sim B(n,p) 일 때, \Pr(X \leq x)의 값을 구함
```

예 1) 어느 생산 공정의 불량률은 10%라고 한다. 이 공정에서 임의로 5개의 표본을 추출 할때, 불량품이 3개일 확률을 구하여라.

: 불량품의 개수를 X라고 하면 $X \sim B(5, 0.1)$ 을 따른다. 따라서 구하는 확률 $\Pr(X=3)$ 은 다음과 같다.

```
> dbinom(3,size=5, prob=0.1)
[1] 0.0081
>
```

예 2) 그렇다면 임의로 추출한 20개의 표본 중에서 불량품이 5개 이하일 확률은 얼마인가? : 불량품의 개수 $X \leftarrow B(20, 0.1)$ 의 분포를 따르고, 구하는 확률은 $\Pr(X \le 5)$ 이다.

```
> pbinom(5,size=20, prob=0.1)
[1] 0.9887469
>
```

4.2.3 이항 분포의 정규 근사

표본의 크기에 따라 이항분포의 정규근사가 어떻게 달라지는 지 확인해보자. 다음의 코드를 스크립트 창에 입력하고 실행한 후, 결과를 확인해보면 다음과 같다.

```
p < -0.1
n < -c(10,30,50)
par(mfrow=c(1,3))
for (i in 1:3){
 x < -seq(from = 0, to = n[i], by = 1)
                                             #이항 분포의 그래프를 그리는 부분
 fx < -dbinom(x, n[i], p)
 plot(x, fx, pch=16, xlim=c(-3,15), ylab="probability",xlab="",
    main=paste("이항분포의 정규근사(p=",p,", n=",n[i],")"))
 lines(x, fx)
 y < -seq(from = -5, to = 15, by = 0.1)
                                         #근사된 정규분포의 그래프를 그리는 부분
 mu < -n[i]*p
 sd < -sqrt(n[i]*p*(1-p))
 fy<-dnorm(y, mu, sd)
 lines(y, fy, col="red")
}
```

- ▶ par(mfrow=c(nc, nr)) : nr개의 행과 nc개의 열을 갖는 다중 그래프 창을 생성함. 여러개의 그래프를 한 화면에 그리고자 할 때 사용한다
- ▶ plot(x,y, pch=16) : 산점도를 그릴 때 점의 모양을 바꾸는 명령어. 각 번호에 해당되는 점의 모양이 사전에 지정되어 있다.
- ▶ lines(x, y) : (x, y) 의 그래프를 선으로 이어서 그리는 명령어. 기존에 이미 생성되어 있는 그래프 위에 선 그림을 더해서 그린다.

예) p=0.5 인 경우에 이항분포의 정규근사를 실행해 보고 결과를 확인해보자

4.3 표본 평균의 분포

- 1) 모집단의 분포가 정규분포인 경우 모집단의 분포가 정규분포 $N\left(\mu,\sigma^2\right)$ 일 때, 표본평균 \overline{X} 는 정규분포 $N\left(\mu,\frac{\sigma^2}{n}\right)$ 를 따른다.
- 2) 모집단의 분포가 정규분포가 아닌 경우 평균이 μ 이고 분산이 σ^2 인 임의의 무한 모집단에서 표본의 크기 n이 충분히 크면, 랜덤 표본의 표본평균 \overline{X} 는 근사적으로 정규분포 $N\Big(\mu,\frac{\sigma^2}{n}\Big)$ 를 따른다.

: 중심극한정리 (Central Limit Theorem)

예 1) 균등분포 U(0,1) 에서 10개의 표본을 추출하여 표본평균 \overline{X} 를 구하는 실험을 200회 반복하고, 이들 200개의 표본평균들을 히스토그램으로 나타내보자.

n<-10 # 1회 시행에서 추출할 표본의 개수
x.mean<-c() # 각 시행에서 추출된 표본의 평균을 저장할 벡터

for (j in 1:200){ # 총 200번의 반복시행을 위한 반복문
 x<-runif(n, min=0, max=1)
 x.mean[j]<-mean(x) }
hist(x.mean, xlim=c(0,1), probability=T, main=paste("표본평균의 분포 n=",n))

▶ runif(n, min=a, max=b) : (a,b)를 모수로 갖는 균등분포에서 n개의 랜덤 표본을 생성 한다

예 2) 이번에는 표본의 개수를 20개, 30개, 50개로 증가시키며 실험을 반복해보자. 표본 평균의 분포는 어떻게 달라지는가? 주어진 스크립트를 실행해보고 그 결과를 확인해보자.

```
n<-c(10,30,50,100)
par(mfrow=c(1,4))
                                   # 다중 그래프창 생성
                                   # 총 4번의 서로 다른 표본의 개수로 실험
for (i in 1:4){
 x.mean<-c()
                                  # 각 표본의 크기별로 1000번씩 반복
 for (j in 1:1000){
   x < -runif(n[i], 0, 1)
   x.mean[j] < -mean(x)
 hist(x.mean, xlim=c(0,1), probability=T, main=paste("표본평균의 분포 n=",n[i]))
 y < -seq(0, 1, 0.01)
 mu<-0.5
                               # (0,1) 균등분포의 모평균
                               # (0,1) 균등분포의 모표준편차
 sigma < -sqrt(1/12)
 fy<-dnorm(y, mu, sigma/sqrt(n[i]))</pre>
                              #표본평균이 근사적으로 따르는 정규 분포
 lines(y, fy) }
```


4.4 정규분포 분위수 대조도

: 정규모집단의 가정을 검토하는 방법으로 정규분포의 분위수와 이에 대응하는 자료 분포의 분위수를 좌표평면에 나타낸 그림을 말한다. 점들이 직선 주위에 밀집하여 나타날수록 모집 단의 분포가 정규분포라는 가정이 타당하다고 할 수 있다.

예) (bodydims.csv) 주어진 자료는 247명의 남성과 260명의 여성에 관한 신체 측정 자료이다. 원 자료는 신체의 각 부위를 측정한 총 25개의 변수가 있으며 본 예제에서는 그 중 8개 변수만 간추린 자료를 이용하기로 한다. 아래는 8개의 변수에 대한 설명이다. (원자료에 관한 자세한 설명은 다음을 참조하도록 한다.:

http://www.openintro.org/stat/data/bdims.php)

- bii.di : 숫자형 변수, 응답자의 골반의 넓이 (cm)

- che.de : 숫자형 변수, 응답자의 가슴 깊이 (cm)

- elb.di : 숫자형 변수, 응답자의 양쪽 팔꿈치 지름의 합. (cm)

- kne.di : 숫자형 변수, 응답자의 양쪽 무릎의 지름의 합. (cm)

- age : 숫자형 변수, 응답자의 나이 (years)

- wgt : 숫자형 변수, 응답자의 몸무게 (kg)

- hgt : 숫자형 변수, 응답자의 신장 (cm)

- sex : 범주형 변수, 응답자의 성별 (1=남성, 0=여성)

csv 형태의 자료를 읽기 위해서는 read.csv()를 사용한다.

> read.csv(" 파일 저장 경로", header=T)

다음은 bodydims.csv 파일을 불러와서 bodydims 라는 변수명으로 저장한 결과이다. 자료를 확인해 보면 총 507개의 관찰치와 8개의 변수로 구성된 것을 볼 수 있다.

예 1) 주어진 자료를 성별에 따라 두 개의 데이터셋으로 나누어 보자. 이 중 여성의 데이터셋을 이용하여 bii.di 변수에 대해 히스토그램과 정규분포 분위수 대조도를 그려보자. 자료는 정규분포를 따른다고 말 할 수 있는가?

먼저 주어진 자료를 성별에 따라 나누어서 각각 bodydims.m 과 bodydims.f 로 저장해보자. 주어진 데이터 프레임의 성별 변수값 중 남성은 1, 여성은 0으로 되어있다. 특정 조건을 만족

하는 부분집합을 선택하기 위해서는 논리 연산자를 다음과 같이 이용할 수 있다. 주어진 스크 립트를 실행하면 두 개의 새로운 데이터셋이 생성된 것을 확인할 수 있다.

정규분포 분위수 대조도를 그리기 위해서는 qqnorm()을 사용하고 qqline()을 이용해서 데이터가 만족해야 하는 직선관계를 그릴 수 있다.

> qqnorm(bodydims.f\$bii.di)
> qqline(bodydims.f\$bii.di, col=2)

아래는 주어진 변수의 히스토그램과 정규분포 분위수를 나타낸 것이다.

예 2) 여성의 데이터셋을 이용하여 elb.di, che.de 변수에 대해서도 각각 히스토그램과 정규 분포 분위수 대조도를 그려보자. 주어진 변수들은 정규분포를 따른다고 볼 수 있는가?

4.5 자료를 이용한 예제 (ames.csv)

주어진 자료는 Iowa의 도시 Ames의 2006년부터 2010년 사이의 부동산 거래내역 자료이다. 5년 동안 이 지역에서 발생한 총 2930건의 부동산 거래내역이 모두 기록되어 있다. 자료에 대한 자세한 설명은 다음을 참조한다.

(http://www.openintro.org/stat/data/?data=ames)

예제 1. 현재 주어진 자료는 일정 기간동안 지역 내의 모든 부동산 거래를 기록한 자료이 므로 일종의 모집단이라고 생각할 수 있다. SalePrice 변수에 대해 히스토그램을 그려보고 수치적 요약값을 구해보자. 모집단의 분포는 어떠한가?

예제 2. 이 지역에서 발생한 전체 부동산 거래 가격의 평균값(μ)을 추정해보려고 한다. 지금처럼 모집단 전체를 알게 되는 경우는 매우 드물기 때문에 대부분의 경우에는 모집단의 부분집합인 표본을 선택하여 모수를 추정하게 된다. SalePrice에서 50개의 랜덤 표본을 선택해보자. 이 때, 모평균의 추정값은 무엇인가?

예제 3. 예제 2의 과정을 5000번 반복하여 표본 평균의 표본 분포를 구해보자. 즉, 크기가 50인 랜덤 표본을 선택하여 표본평균을 구하는 과정을 5000번 반복하고 이 결과를 sample_mean50이라는 이름의 벡터에 저장을 한다. sample_mean50을 이용하여 히스토그램을 sample_mean50 그려보자. 표본 평균의 분포는 어떠한가?

예제 4. 예제 3의 sample_mean50의 평균과 분산을 계산해보자. sample_mean50의 평균 값은 모집단의 평균과 어떠한 관계가 있는가? sample_mean50의 분산값은 모분산과 어떠한 관계가 있는가?

예제 5. 예제 3의 과정을 표본의 크기를 150으로 증가시켜 반복해보자. 이 결과는 sample_mean150에 저장한다. 표본의 크기에 따른 표본 평균의 분포는 어떠한가?