TP4 – Força de Coulomb e determinação das linhas equipotenciais entre duas cargas.

1ª Parte – Força de Coulomb

Nesta 1ª Parte, foi usada uma balança de Coulomb:

Vista lateral

Vista de cima

Temos que a força de coulomb, F que atua entre duas cargas pontuais q_1 e q_2 separadas a uma distância r é dada por:

$$F = k \frac{q_1 q_2}{r^2}$$

conhecida pela lei de coulomb onde k é uma constante de proporcionalidade.

Quando as esferas são colocadas próximas uma da outra carga não se distribui uniformemente sobre a sua superfície. Por isso a expressão de cima só poderá ser usada para distâncias muito maiores que o raio das esferas.

Sendo o raio das esferas *a*, que corresponde a 3,8 cm:

$$\beta = \frac{a}{r}$$

Nesta análise apenas se corrigirá o valor da força para $\beta > 0,15$ (Este parâmetro é de escolha pessoal).

A força corregida corresponderá,

$$F' = F(1 - 4\beta^3)$$

Foram registados os seguintes valores (Sendo feita a medição do ângulo duas vezes),

n (m)	Âı	Àngulo (Graus)	
r (m)	1ª	2ª	Média
0,2	3	2	2,5
0,14	4,5	5	4,75
0,1	7	6	6,5
0,09	7,5	7	7,25
0,08	8	8	8
0,07	9	9	9
0,06	10	10	10
0,05	12	11	11,5

com $a = 0.038 \, m$, temos os seguintes valores de β :

r (m)	Fator B
0,2	0,095
0,14	0,136
0,1	0,190
0,09	0,211
0,08	0,238
0,07	0,271
0,06	0,317
0,05	0,380

Ou seja, os valores de r e θ (com os valores para $\beta > 0,15$ já corrigidos):

r (m)	Fator B	Ângulo corrigido
		(Graus)
0,2	0,095	2,5
0,14	0,136	4,8
0,1	0,190	6,7
0,09	0,211	7,5
0,08	0,238	8,5
0,07	0,271	9,8
0,06	0,317	11,5
0,05	0,380	14,7

Se considerarmos as cargas constantes,

$$F = br^{-2}$$

onde $b=kq_1q_2$, usando a balança de torção, sabemos que o angulo é proporcional á força entre as forças.

$$F \propto \theta \Rightarrow \theta = br^{-2}$$

Com,

$$\theta=br^n$$

então:

$$\log(\theta) = n\log(r) + \log(b)$$

Obtendo-se os seguintes valores de log(r) e $log(\theta)$:

log (Ângulo)	log(r)
0,9	-1,61
1,6	-1,97
1,9	-2,30
2,0	-2,41
2,1	-2,53
2,3	-2,66
2,4	-2,81
2,7	-3,00

Traçando-se o seguinte ajuste linear, onde como visto anteriormente n corresponde ao declive e a ordenada na origem corresponde ao logaritmo de b.

Log (θ corrigido) em função de Log (r)

Cujas estatísticas da regressão linear são,

Regressão linear		
Variável	Valor	
Declive, m	-1,11	
Ordenada na	-0,67	
origem, log(b)		
Quadrado de R	1,00	

Por isso temos que n=-1,11 com um desvio percentual de 156% do valor teórico (n=-2).

2ª Parte – Linhas equipotenciais entre duas cargas.

O campo elétrico deriva de um potencial escalar, designado potencial elétrico V, definido a menos de uma constante:

$$\vec{E} = -\vec{\nabla}V$$

Uma superfície equipotencial é o lugar geométrico dos pontos, no espaço tridimensional, onde V é constante. Se a análise for feita num plano, o lugar geométrico dos pontos onde V é constante é uma linha equipotencial.

Nesta segunda parte simula-se a interação entre duas cargas pontuais com uma diferença de potencial entre dois elétrodos e estes estão assentes numa folha de alta condutividade elétrica e foram traçadas as linhas equipotenciais (potencial elétrico constante).

Foram registados um conjunto de pontos equipotenciais de forma a formar uma linha equipotencial, para vários potenciais diferentes (3,4,5 e 6 Volts):

Conclusão

Em relação á primeira parte da experiência, o desvio do valor de n ao valor teórico mostra-nos a existência de um erro sistemático! Possivelmente devido ao facto de as esferas não serem carregadas novamente aos o afastamento máximo!