

Session: 6 New Covered Conductor technologies for High Ampacity and reduced Line losses

Presented By

MANISH PATEL, Sr. GM -BD APAR INDUSTRIES LTD.

Distribution Utility Meet | 02 - 03 November 2023 | www.dumindia.in

Challenges for Utilities in Distribution Lines

Earlier Challenges Bare Conductors

- Conductor clashing leading to outages
- Conductor slashing due to corrosion
- Outages due to temporary tree contact
- Corrosion at joints
- Wide Right of Way (ROW)
- Electromagnetic field effect on electronic surveillance
- Safety (Road /Rail/River crossings etc.)

New Challenges after Covered Conductor

Use of AAAC /ACSR MVCC

- Strength of the conductor with insulation wt .
- Losses increased
- Temperature limitations
- Degradation of conductor operational life due to wrong installations
- Use of unbranded accessories not as per EN50397-2

AL59 ACS Covered Conductor Construction

High Ampacity and Reduced Line losses

A Solution for 11 /22 / 33 KV system with Triple Extrusion

A - Semiconducting Layer

Semiconducting Layer:

- Reduces stress, transforms strands into a single uniform cylinder
- Extend service life of the covered conductor

Inner Insulating Layer –XLPE Insulation

- More flexible
- High impulse strength: protect from phase-to-phase and phase-to-ground contact
- Crosslinking properties helps in retain its strength and shape even when heated

Outer Insulation Layer – XLPE insulation with UV and Track resistant Properties

- Abrasion and Impact Resistant; Stress-Crack Resistant
- Provides effective UV and best track resistance

Technical Comparison of ACSR , AAAC Vs AL59 ACS Dog								
	Parameters	ACSR CC	AAAC CC	AL59-ACS	Remarks			
1	Strand/wire dia	Alu. 6/4.72 + St. 7/1.57	7/4.26	Alu. 6/4.72 + ACS 1/4.72				
2	Resistivity (Ohm.m)	2.8264E-08	3.28E-08	2.905E-08				
3	Conductivity (S/m)	35380696.29	30487804.88	34423407.92				
4	Current Carrying capacity	Current carrying capacity In air at 40°C Ambient Temp. & 75°C max. operating temp will be 285 A	Current carrying capacity In air at 40°C Ambient Temp. & 80°C max. operating temp will be 282 A	Current carrying capacity In air at 40°C Ambient Temp. & 90°C max. operating temp will be 344 A	approx 30% higher current carrying capaity			
5	DC resistance at 20°C (Ohm/Km.)	0.2792	0.339	0.274	Lower Losses			
6	Continuous operating temp	75°C	80°C	95°C	AL59 ensures much higher operating temperature and higher current carrying capacity			
7	Breaking Strength	32.41 kN	29.26 kN	39.56	ALEO has higher in breaking			
8	Conductor breaking strength to weight ratio	5.33	6.48	6.9	AL59 has higher in breaking strength. This in turn produces less mechanical tension on crossarms, poles etc.			
9	AL Cross-section of CC	104.98 sq.mm.	99.77 sq.mm.	104.98 sq.mm.				
10	Overall Diameter (100 sq.mm dog)	Conductor dia 14.15 mm with in sulation overall outer dia approx. 22.00	Conductor dia 12.78 with insulation overall outer dia Approx. 20 mm	Conductor dia 14.16 mm with insulation overall outer dia approx. 21.5				
11	Weight(100 sq.mm dog)	620 kg/km.	460 kg/km	620 kg/km				

	PAYBACK CALCULAT	ION SHEET				
Cross Sectional Area	104.987 sq.mm.	99.77 sq.mm.	104.987 sq.mm.			
Current Carrying Capacity in Amperes						
IEC 1597: 1995 Calculation Procedure	Temp	ACSR DOG MVCC	AAAC DOG MVCC	AL59ACS DOG MVCC		
Assumed Conditions for Calculations :	at 65°C	220	203	223		
Ambient Temp = 40°C ,	at 70°C	245	225	247		
Solar Absorption coefficient =0.8,	at 75°C	265	245	269		
Emissivity Coefficient = 0.45,	at 80°C	285	264	290		
Intensity of Solar Radiation = 1045 W/m2,	at 85°C	-	282	309		
Wind Speed = 0.56 m/s.	at 90°C	-	-	327		
	at 95°C	-	-	344		
Power Transfer Capability in MW						
(Assumed Load Factor = 0.95)	Op. Temp.		POWER TRANSFER IN 11KV leve			
Power Transfer = (v3 * KV * 0.95 * * conductor Ampacity)		level		level		
	at 75°C	4.80	4.43	4.87		
	at 80°C	5.16	4.78	5.25		
	at 85°C	-	5.10	5.59		
	at 90°C	-	-	5.92		
	at 95°C	<u> </u>	-	6.23		
NET POWER TRANSFER USING SINGLE CONDUCTOR FOR SAME POWER TRAN	SFER					
Required Current capacity of conductor	Amperes	282	282	282		
Operating temperature of conductor for required current transfer	°C	80	85.00	78.00		
AC Resistance at above operating temperature	Ohm/Km	0.37	0.4430	0.3600		
Total Units transferred (MWh/annum) = Total MW *No. of hours in a year*Ava	38410	38410	38410			
Power Loss kW/km = I^{2} *R (R= AC Resistance at max. operating temperature)	88.272	105.687	85.886			
Power Loss MWh/km (per Anum) (With 85% Availability Factor)	657.27	786.95	639.51			
Reduction in Power Loss MWh/km (per Anum)	0.00	-129.68	17.76			
Additional revenue generation (in Rs./Km/Annum) due to saving in Power los	0	-518711	71056			
NET POWER TRANSFER AND ADDITIONAL REVENUE GENERATION USING SING	GLE CONDUCTOR					
Operating temperature of conductor for required current transfer	°C	80	85.00	95.00		
AC Resistance at above operating temperature	Ohm/Km	0.37	0.4430	0.3600		
Total Units transferred (MWh) = Total MW *No. of hours in a year*Availability	38410	38006	46362			
Power Loss kW/km (per Anum)= I ² *R (R= AC Resistance at max. operating tem	90.160	105.687	127.803			
Power Loss MWh/km (per Anum) (With 85% Availability Factor)	671.33	786.95	951.62			
Total Power loss for 10 KM line (MWh)	6713.3	7869.5	9516.2			
Net power transmission (MWh)	31696.7495	30136.2	36845.4			
Additional power transfer in % w.r.t ACSR Conductor.		100.0%	95.1%	116.2%		

CENELEC THE EUROPEAN COMMITTEE FOR ELECTRO TECHNICAL STANDARDIZATION

HAS RECENTLY ISSUED TWO STANDARDS FOR COVERED CONDUCTORS FOR

OVERHEAD LINES AND THE RELATED ACCESSORIES FOR RATED VOLTAGES ABOVE 1

KV AC AND NOT EXCEEDING 36 KV AC

- SS-EN 50397-1- PART 1: COVERED CONDUCTORS
- SS-EN 50397-2- PART 2: ACCESSORIES.
- SS-EN 50397-3- PART 3: INSTALLATION OF MVCC

Type Test requirement as per EN 50397-1: 2006

Construction requirements	Type Test on Insulation Ref: EN 50397-1:2006 Specification	
	Aluminium alloy or steel reinforced aluminium	
	Nom. cross-section: 35 mm² to 240 mm² (aluminium alloy), 50 mm² to 150 mm² (total cross-section for steel reinforced aluminium)	
Conductor	the conductors may be compacted or non-compacted	
	The stranded conductor may be longitudinally watertight by means of adequate measures as e.g. filling with an adequate mass. The filling mass or other materials for obtaining the longitudinal water tightness, shall be compatible with the conductor material and the material of the covering	
	Basic material XLPE 90 Deg C Operating	
	Mechanical Properties : Before & After Aging Test for Elongation and Tensile Strength as per (EN 60811-1-2)	
Covering	Physical and chemical properties tested for hot set test, pressure test at high temperature, water absorption, shrinkage test, Shore D hardness.	
Covering	Electrical tests comprising of High voltage test, Spark test on the covering, Leakage current, Tracking resistance	
	Non-Electrical tests on the covering comprising of Mechanical properties ,Carbon black content, Resistance to UV rays, Test of compatibility, Thermal properties of the covering, Test of the longitudinal water tightness, Slippage test.	

Maintenance for Covered Conductors (CC) System

- Occasional Tree Cutting for maintaining the ROW
- ☐ Tree Falling OR Branch Touching Line will not Trip if

 Phase to Phase get shorted , but Line should be switched off during next inspection & tree can be cut /removed
- ☐ In the event of Conductor Snapping, use Mid Span Joints OR Tension Clamps to Join the two end of Covered conductor after stripping the insulation Jacket

Distribution Utility Meet | 02 - 03 November 2023 | www.dumindia.in

Advantages of AL59 ACS over conventional MVCC

- ☐ Lower operation and maintenance cost.
- ☐ Cheaper in Life cycle cost to underground cables and ABC cables
- ☐ Higher Mechanical Strength in comparison of AAAC & ACSR type conductor.
- □ AL59 ACS gives better Corrosion resistance as ACS Steel wire is protected by thick EC grade aluminium covering.
- AL59 ACS is having Higher operating temperature up to 95 °C for same Sag and to give better performance and upto 20-30 %higher current carrying capacity.
- ☐ AL59 ACS has less working tension as compared to AAAC and ACSR.
- ☐ AL59 ACS has lower power loss and higher power transfer capacity as compared to AAAC and ACSR

Covered Conductor Accessories

REFERNCE STANDARD: EN 50397-PART 2

- □ Proper Accessories as per EN 50397 Part 2a Must
- Qualification of accessories with MV CC is a necessity
- ☐ Any "Jugad" can collapse the system

With Tracking resistance

Alignment Ties

Insulation Piercing Connector

Mid Span Joint

Snapshots of Challenges During MVCC Project Work

Highly Congested & Illegal Colonies

MVCC 66KV Installations

Below EHV Lines

MVCC Market Presence

MVCC Approved Descom

- TSECL
- APDCL*
- UPCL*
- SBPDCL*
- NBPDCL*
- MSEDCL
- MPMKVVCL*
- TSSPDCL
- TSNPDCL
- KSEB
- PGVCL*
- GUVNL*
- HPSEBL
- BESCOM
- MESCOM
- PSEB*
- UJVNL
- DNHPDCL
- GED
- CSPDCL
- DHBVN*
- BSES Rajadhani
- BSES Yamuna Power
- TPDDL
- Power Dept. Sikkim
- MePDCL*
- N-E Region *
- JKPDCL

THANK YOU

For discussions/suggestions/queries email: manish.patel@apar.com

www.apar.com

Links/References (If any)

India Smart Grid Forum

THANK YOU

Distribution Utility Meet | 02 - 03 November 2023 | www.dumindia.in

