Oscillations: Damped Systems (Reading: Chapter 5.1 - 5.4)

Help:

5.2 The potential energy of two atoms in a molecule can sometimes be approximated by the Morse function,

 $U(r) = A \left[\left(e^{(R-r)/S} - 1 \right)^2 - 1 \right]$

where r is the distance between the two atoms and A, R, and S are positive constants with $S \ll R$. Sketch this function for $0 < r < \infty$. Find the equilibrium separation r_0 , at which U(r) is minimum. Now write $r = r_0 + x$ so that x is the displacement from equilibrium, and show that, for small displacements, U has the approximate form $U = \text{const} + \frac{1}{2}kx^2$. That is, Hooke's law applies. What is the force constant k?

5.19 Consider the mass attached to four identical springs, as shown in Figure 5.7(b). Each spring has force constant k and unstretched length l_0 , and the length of each spring when the mass is at its equilibrium at the origin is a (not necessarily the same as l_0). When the mass is displaced a small distance to the point (x, y), show that its potential energy has the form $\frac{1}{2}k'r^2$ appropriate to an isotropic harmonic oscillator. What is the constant k' in terms of k? Give an expression for the corresponding force.

- **5.25** Consider a damped oscillator with $\beta < \omega_0$. There is a little difficulty defining the "period" τ_1 since the motion (5.38) is not periodic. However, a definition that makes sense is that τ_1 is the time between successive maxima of x(t).
- (a) Make a sketch of x(t) against t and indicate this definition of τ on your graph. Show that $\tau_1 = 2\pi/\omega_1$.
- (b) Show that an equivalent definition is that τ_1 is twice the time between successive zeros of x(t). Show this one on your sketch.
- (c) If $\beta = \omega_0/2$, by what factor does the amplitude shrink in one period?

- **5.27** As the damping on an oscillator is increased there comes a point when the name "oscillator" seems barely appropriate.
- (a) To illustrate this, prove that a critically damped oscillator can never pass through the origin x=0 more than once.
- (b) Prove the same for an overdamped oscillator.