CRITTOGRAFIA 2015/16 - Appello del 30 maggio 2016

Nome e Cognome:

Matricola:

Esercizio 1 – RSA [14 punti]

- 1. **Spiegare** in cosa consiste il cifrario RSA, **definendone** i parametri e **indicando** le operazioni eseguite per ottenerli e la loro complessità computazionale.
- 2. **Dimostrare** che il cifrario è corretto per qualunque messaggio m.
- 3. **Indicare** in quali intervalli, in ordine di grandezza, devono essere scelti i parametri $p \in q$.

Esercizio 2 – Cifrari a composizione di blocchi [8 punti]

Si consideri un cifrario simmetrico a blocchi. Nel metodo FSM (Fischer Spiffy Mixer) ogni blocco m_i del messaggio in chiaro viene cifrato come

$$c_i = m_{i-1} \oplus C(m_i \oplus c_{i-1}, k), i \ge 1$$

usando due sequenze di inizializzazione fissate (e pubbliche) m_0 e c_0 .

- 1. **Descrivere** come eseguire la decifrazione di un blocco.
- 2. Nel caso in cui il blocco di crittogramma c_i sia danneggiato, quali blocchi di testo in chiaro diventano indecifrabili?

Esercizio 3 – Firma digitale [8 punti]

Descrivere un protocollo di firma digitale resistente agli attacchi di tipo man-in-the-middle.

Esercizio 4 – [1 punto]

Decifrare

LOCE LOCE LOCE

LOCE LOCE LOCE LOCE LOCE LOCE LOCE

[Suggerimento: 5, 6]

CRITTOGRAFIA 2015/16 - Appello del 21 giugno 2016

Nome e Cognome:

Matricola:

Esercizio 1 – Cifrari [12 punti]

Discutere in massimo trenta righe quali sono le differenze d'impiego tra i tre cifrari One-Time Pad, AES e RSA, **giustificando** le affermazioni fatte.

Esercizio 2 – Scambio di chiavi [12 punti]

L'algoritmo DH per lo scambio pubblico di chiavi è basato sull'uso di un primo p e di un generatore g di Z^*p .

- 1. **Descrivere** l'algoritmo e sviluppare un esempio numerico utilizzando il numero primo p = 11 e il generatore g = 7 di Z^*_{11} .
- 2. **Descrivere** un attacco di tipo *man-in-the-middle* al protocollo DH.

Esercizio 3 – RSA [6 punti]

Si supponga che Eve intercetti un crittogramma $c = m^e \mod n$ diretto ad Alice. Si supponga inoltre che Alice sia disposta a decifrare per Eve qualsiasi crittogramma c', a patto che c' sia diverso da c.

Descrivere come Eve possa decifrare m in tempo polinomiale, richiedendo ad Alice la decifrazione del crittogramma $c' = c x^e$, dove x < n è un intero casuale, co-primo con n.

CRITTOGRAFIA 2015/16 - Appello del 14 luglio 2016

Nome e	Cognome

Matricola:

Esercizio 1 – Cifrari perfetti [12 punti]

- 1. **Definire** i cifrari perfetti, e **spiegare** a parole il significato di tale definizione.
- 2. **Definire** il cifrario One-Time Pad e le assunzioni standard su di esso.
- 3. **Dimostrare** che il cifrario del punto 2 è perfetto.
- 4. Spiegare se la crittoanalisi statistica può essere usata per attaccare One-Time Pad

Esercizio 2 – Cifrari storici [6 punti]

In riferimento ai cifrari a griglia;

- 1. spiegare in cosa consiste un tale cifrario;
- 2. dimostrare quante chiavi diverse si possono costruire per una griglia $q \times q$;
- 3. discutere (senza pretesa di profondità) la propria opinione sulla possibilità di un attacco statistico per cifrari a griglia.

Esercizio 3 – Crittografia ellittica [12 punti]

Impiegando una curva ellittica $E_P(a,b)$ su un campo finito:

- 1. **Spiegare** come si esegue in modo efficiente la moltiplicazione di un punto *P* per una costante intera *k*.
- 2. **Spiegare** cosa si intende per "logaritmo discreto" (se esiste) di un punto R in base P.
- 3. **Descrivere** un algoritmo di scambio di chiavi basato sulla crittografia ellittica e **spiegare** perché può ritenersi sicuro.

CRITTOGRAFIA 2015/16 - Appello del 7 settembre 2016

Nome:		
Cognome:		
Matricola:		

Esercizio 1 – Crittografia ellittica [12 punti]

Impiegando una curva ellittica $E_p(a,b)$ su un campo finito:

- 1. **Descrivere** l'algoritmo di Koblitz per trasformare un messaggio *m,* codificato come numero intero, in un punto di una curva ellittica prima.
- 2. **Spiegare** cosa si intende per "logaritmo discreto" (se esiste) di un punto *R* in base *P*.
- 3. **Descrivere** un algoritmo di scambio di messaggi cifrati e **spiegare** perché può ritenersi sicuro.

Esercizio 2 – Identificazione [10 punti]

Indicare un protocollo di identificazione basato su un protocollo Zero Knowledge e **spiegare** vantaggi e svantaggi che un tale protocollo offre rispetto a uno basato su un cifrario a chiave pubblica.

Esercizio 3 – RSA [8 punti]

- 1. Spiegare perché nel cifrario RSA il parametro e deve essere scelto primo con $\Phi(n)$.
- 2. **Spiegare** se nel cifrario RSA la scelta dei parametri \mathbf{p} , \mathbf{q} tale che sia $|\mathbf{p} \mathbf{q}| = \mathbf{\Theta} ((\log \mathbf{n})^2)$ è da considerarsi opportuna.