

Α

For men only, run a regression of the wage rate regressed on years of education and age.

i. Interpret the coefficients on years of education and on age.

This implies that a unit change in educational years results in 0.451 change in average hourly earnings and a unit change in age results in .12 change in average hourly earnings.

ii. What is the expected wage rate for a 25---year old man with a high school diploma? What is the expected wage rate for a 25---year old man with one more year of education? What is the percent difference of the second man relative to the first?

```
. display _b[ educatn ] * 12 + _b[ age ] * 25 + _b[ _cons ]
5.3136004

. display _b[ educatn ] * 13 + _b[ age ] * 25 + _b[ _cons ]
5.7646395
```

The increase is about 8.4%.

b. For men only, run a regression of the logarithm of the wage rate on years of education and age.

i. Interpret the coefficients on years of education and on age.

. regress log wage educatn age if sex == 1

Source Model	+	df 2	MS 9.22511402	Number of obs F(2, 287) Prob > F	= =	290 66.76 0.0000
Residual	+	287		Adj R-squared	=	0.3128
Total	58.1069546	289	.201062127	Root MSE		.3/1/2
log_wage	Coef. +	Std. Err.	t 	P> t [95% C	onf.	Interval]
educatn age _cons	.0595785 .0163166 .4941712	.0080299 .0016974 .1281422	9.61	0.000 .04377 0.000 .01297 0.000 .24195	56	.0753835 .0196575 .7463889

This implies that a unit change in educational years results in 5.9% change in average hourly earnings and a unit change in age results in 1.6% change in average hourly earnings.

ii. Comparing the two men from part a, and using this regression, what is the percent difference in expected wages of the second man relative to the first? (Approximately, using the rules of thumb.)

The two men according to this model, using rule of thumb would differ by 5.9%. This is different from 8.4% calculated above, but likely more accurate as the r-squared here is better.

For men only, run a regression of the logarithm of the wage rate on years of education, age, and age squared.

. regress log_wage age_squared educatn

Source	SS	df	MS	Number of		457
Model Residual	29.6014289 80.5481177	3 453	9.86714297		= = = red =	55.49 0.0000 0.2687 0.2639
Total	110.149547	456	.241556023		=	.42168
log_wage	Coef.	Std. Err.	t	P> t [95	Conf.	Interval]
age age_squared educatn _cons	.0508079 0004409 .0563233 1915081	.0109947 .0001396 .0081119 .2080805	4.62 -3.16 6.94 -0.92	0.002000 0.000 .040	92008 07152 03817 00431	.0724149 0001666 .0722649 .2174148

i. What is the expected difference in wages, in percent, for a 26---year old man versus a 25- --year old man? For a 65---year old man versus a 64---year old man?

```
. display _b[ educatn ] * 12 + _b[ age ]*24 + _b[ age_squared ]*596 + _b[ _cons ]
1.4409864

. display _b[ educatn ] * 12 + _b[ age ] * 25 + _b[ age_squared ] * 625 + _b[ _cons ]
1.4790083
```

Taking the antilog, the values are 4.22 and 4.38 respectively. There is a 3.7% increase between a 25 year old man and a 26 year old man, assuming 12 years of education.

```
. display _b[ educatn ] * 12 + _b[ age ]*64 + _b[ age_squared ]*4096 + _b[ _cons ]
1.9301687

. display _b[ educatn ] * 12 + _b[ age ]*65 + _b[ age_squared ]*4225 + _b[ _cons]
1.9241011
```

Taking the antilog, the values are 6.89 and 6.84 respectively. There is a 0.7% decrease between a 64 year old man and a 65 year old man, assuming 12 years of education.

ii. For what age does the regression predict that wage rates are expected to peak?

```
. display -_b[age] / (2*_b[age_squared])
57.619018
```

It appears as if wages peak at 57.6 years, assuming our model is correct.

For men with a 4-year college degree, graph their expected wage rate age profile. The wage rate age profile has the logarithm of the wage rate on the vertical axis, and age on the horizontal axis.

