昆明理工大学 2010 级硕士研究生 数理统计 试卷

专业年级:

考试时间:

学生姓名:

学号:

题	1 1	111	四	五.	六	总分
分						

- 一、填空题(每空3分,共计30分)
- 1. 设随机变量 $X \square N(0,1)$, $Y \square P(2)$, 且 X 与 Y 独立, 则 D(X-2Y) = ______.
- 3.设总体 X,Y 都服从正态分布 $N(0,3^2)$, $X_1,X_2,...,X_9$ 与 $Y_1,Y_2,...,Y_9$ 分别是来自 X,Y 的样本,且这两个样本独立,记 $T=\frac{X_1+\cdots+X_9}{\sqrt{Y_1^2+\cdots+Y_9^2}}$,则 T 的抽样分布为
- 4.在处理快艇的 6 次试验中,得到下列最大速度值(m/s):27,38,30,37,35,31,则最大艇速的均值的无偏估计是______.
- 6. 对于多元线性回归模型 $\begin{cases} \overline{Y} = X \overline{\beta} + \overline{\varepsilon} \\ \overline{\varepsilon} \square N_n(\overline{0}, \sigma^2 I_n) \end{cases}, \ \ \text{其中} \ X \ \text{为} \ n \times (k+1) \ \text{的系数矩阵}, \ \overline{\beta} \ \text{为}$
- k+1阶未知系数向量,则 β \square ______分布, σ ²的无偏估计 $\hat{\sigma}$ ²=_____

(其中, $S_E^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$).

7. 单 因 素 方 差 分 析 模 型 $\begin{cases} y_{ij} = \overline{\mu} + \alpha_i + e_{ij}, (i = 1, 2, \cdots, r, j = 1, 2, \cdots, n_i) \\ e_{ij} \square N(0, \sigma^2), 且诸 e_{ij} 相互独立 \\ \sum_{i=1}^r n_i \alpha_i = 0 \end{cases}$

$$S_T^2 = S_A^2 + S_E^2 ,$$

$$S_T^2 = \sum_{i=1}^r \sum_{j=1}^{n_i} (y_{ij} - \overline{y})^2$$
, $S_E^2 = \sum_{i=1}^r \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i\square})^2$, $S_A^2 = \underline{\hspace{1cm}}$.

二、(16 分)设总体 X 服从指数分布,其概率密度函数为 $f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, x > 0 \\ 0, x \le 0 \end{cases}$

 $X_1,...,X_n$ 为X的样本, $\lambda > 0$ 未知。求:

- (1) λ的最大似然估计量;
- (2) 待估函数 $u(\lambda) = \frac{1}{\lambda}$ 的无偏估计的 C-R 下界。
- 三、(16 分) 假设 0.5, 1.25, 0.8, 2.0 是总体 X 的简单随机样本值,已知 $Y = \ln X \square N(\mu, 1)$,
- (1) 求参数 μ 的置信度为0.95的置信区间;
- (2) 求 EX 的置信度为 0.95 的置信区间。(其中 $U_{0.975} = 1.96$)

四、 $(12 \, \mathcal{H})$ 某农用车厂根据以往的资料知道,本厂的农用车分别以 20%,28%,8%,12%和 32%的比例卖给 A, B, C, D 和 E 五个地区。从今年生产的农用车中,观察到其中 500 辆分别售于上述五个地区 120,123,43,66,148 辆。问今年这五个地区的销售比列与以往是否有显著不同? $\left(\alpha=0.05,\chi_{0.05}^{2}(4)=9.488\right)$ 。

五、 $(16 \, \mathcal{G})$ 某建材实验室做陶粒混凝土实验中,考察每立方米 (m^3) 混凝土的水泥用量(kg)对混凝土抗压强度 (kg/m^3) 的影响,测得如下数据:

水泥编号	150	160	170	180	190	200	210	220	230	240	250	260
抗压 强度	56. 9	58. 3	61. 6	64. 6	68. 1	71. 3	74. 1	77.4	80. 2	82.6	86. 4	89. 7

- (1) 求经验回归直线方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (2) 检验一元线性回归的显著性($\alpha = 0.05, F_{0.05}(1,10) = 4.96$);
- (3)设 $x_0 = 225kg$,求y的预测值。

(已知: $\bar{x} = 205, \bar{y} = 72.6, l_{xx} = 14300, l_{yy} = 1323.82$)

六、(10分)为了提高某化工厂产品的转化率,选择了三个有关因素:反应温度 A,反应时间 B 和用碱量 C,每个因素取三个水平:

A: $80^{\circ}C$ $85^{\circ}C$ $90^{\circ}C$ (分别记为 A_1, A_2, A_3)

B: 90min 120min 150min (分别记为 B₁, B₂, B₃)

C: 5% 6% 7% (分别记为 C_1, C_2, C_3)

请根据下面的实验结果,用直观分析法		В	С	空白列	转化率(%)
寻找最佳水平组合。	j=1	j=2	j=3	j=4	
试验号 水平					
因素 (列号)					
1	1	1	1	1	31
2	1	2	2	2	54
3	1	3	3	3	38
4	2	1	2	3	53
5	2	2	3	1	49
6	2	3	1	2	42
7	3	1	3	2	57
8	3	2	1	3	62
9	3	3	2	1	64
k_{1j}					
k_{2j}					
k_{3j}					
\overline{k}_{1j}					
\overline{k}_{2j}					
\overline{k}_{3j}					
极差 R_j					