Métodos para Seleção de Atributos em Mineração de Dados

Stanley Robson de M. Oliveira

Agenda

□ Seleção de atributos:

■ Necessidade, motivação e objetivos.

□ Abordagens para seleção de atributos:

- Métodos não-Supervisionados;
- Métodos Supervisionados;
- Métodos estatísticos.

■ Aspectos relevantes:

- Estudo de caso:
- Benchmark (comparação de métodos);
- Limitações;
- Desafios de pesquisa.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

_

A seleção de variáveis é sempre necessária?

- □ Alguns **métodos** de aprendizado fazem **seleção de atributos** implicitamente.
- □ Árvores de decisão:
 - Usam ganho de informação para decidir quais os atributos serão considerados pela árvore gerada.
 - Alguns atributos podem não ser usados.

□ Redes Neurais:

- Backpropagation "aprende" fortes conexões para algumas entradas (inputs); e
- Fracas conexões (near-zero) para outras entradas.

A seleção de variáveis é sempre necessária?

□ kNN, MBL:

- Pesos na Distância Euclideana ponderada determina a importância de uma variável.
- Pesos próximos a zero significa que o atributo não é usado.

□ Redes Bayesianas:

- Estatísticas demonstram que algumas variáveis têm pouco ou nenhum efeito no modelo.
- □ Por que a gente precisa de seleção de atributos?

Motivação

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

5

Motivação ...

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

6

Motivação ...

□ Seleção de variáveis (feature selection) tem recebido atenção especial em aplicações que usam conjuntos de dados com muitos atributos.

□ Exemplos:

- Processamento de texto.
- Recuperação de informação em banco de imagens.
- Bioinformática.
- Química combinatorial.
- etc.

Objetivos

- □ Os alvos principais do processo de seleção de variáveis são:
 - Melhorar a performance dos algoritmos de aprendizado de máquina.
 - Simplificar os modelos de predição e reduzir o custo computacional para "rodar" esses modelos.
 - Fornecer um melhor entendimento sobre os resultados encontrados, uma vez que existe um estudo prévio sobre o relacionamento entre os atributos.

Objetivos ...

□ IDEIA GERAL: Processo que escolhe um subconjunto ótimo de atributos de acordo com uma função objetivo.

■ Objetivos:

- Reduzir dimensionalidade e remover ruído.
- Melhorar a performance da mineração de dados:
 - Aumenta a velocidade do aprendizado.
 - □ Melhora a acurácia de modelos preditivos.
 - □ Facilita a compreensão dos resultados minerados.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

9

Objetivos ...

- Obter uma representação reduzida do dataset, em termos de atributos, mas que produza os mesmos (ou quase os mesmos) resultados analíticos.
- □ Eliminar atributos redundantes:
 - Variáveis altamente correlacionadas não agregam informação para a construção de um modelo.
 - Exemplo: o preço de um produto e a quantidade de imposto pago por ele.
- □ Eliminar atributos Irrelevantes:
 - Não contém informação útil para o processo de mineração.
 - Exemplo: RA de um estudante é irrelevante para a tarefa de predição do CR (coeficiente de rendimento).

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

10

Métodos Supervisionados

Métodos supervisionados

- □ O foco é o **ranqueamento** de atributos.
- Diferentes conjuntos de atributos podem ser selecionados.
- □ Consideram os pontos com a presença do atributo-meta.
- Em algumas aplicações, se existem muitos atributos (features):
 - Selecionar os top K atributos (scored features).

Abordagem Força Bruta

Determinação de Relevância (Embedded)

Abordagem Força-Bruta

- □ Tentar todas as combinações de atributos possíveis.
- □ Ideia: Tentar achar um subconjunto de atributos que melhor representa o conjunto original.
- □ Dados N atributos, existem 2^N subconjuntos de atributos:
 - Método impraticável para datasets com muitos atributos.
 - Perigo de "overfitting".
- □ Computacionalmente proibitivo!!

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

14

Determinação de relevância (Embedded)

□ Ideia geral:

- A seleção ocorre naturalmente como parte dos algoritmos de mineração.
- Essa abordagem baseia-se no ganho de informação.
- **□ Exemplos** de algoritmos:
 - ID3;
 - C4.5 (J48 no Weka);
 - CART (Classification And Regression Trees).

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

Ganho de Informação

- □ Ranqueia os atributos através do **ganho de informação**.
 - Ganho de Informação → redução da entropia.
- □ O valor da **entropia** corresponde à **impureza do atributo**, a falta de homogeneidade.
- □ O ganho de informação corresponde à variação da impureza.
- Os atributos com o maior ganho de informação são retidos, pois ajudam a discriminar o atributo-meta.
- Estes atributos minimizam a informação necessária para classificar as instâncias com classes desconhecidas e refletem a menor aleatoriedade ou impureza.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

17

Ganho de Informação ...

□ Assim, a **informação esperada** (ou **entropia**) para classificar uma instância in *D* é dada por:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- onde pi é a probabilidade de que uma instância arbitrária em D pertença a classe C_i e seja estimada por $|C_i,D| / |D|$.
- □ A função *log* é usada na base 2 porque a informação é codificada em bits.
- □ Atributos com menores entropia terão maior ganho de informação → devem ser selecionados.
- Essa abordagem pode se tornar impraticável quando o número de atributos é muito grande.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

18

Ganho de Informação ...

- □ A medida ganho de informação tem um vício natural
 (bias) ela favorece atributos com muito valores.
- □ Por exemplo, um atributo (feature) tendo diferentes valores em diferentes amostras gera uma medida (ganho de informação) pobre (viciada).
- □ **Solução**: Usar a taxa de ganho de informação (*information gain ratio*).
- A medida (taxa de ganho de informação) tenta corrigir o "vício" dos atributos que contêm muitos valores através da incorporação de quantidade de informação segmentada (amount of split information).

Taxa de Ganho de Informação

□ A quantidade de informação segmentada é sensível a faixa de valores de um atributo.

$$SplitInformation(f,S) = -\sum_{i=1}^{w} \frac{|S_i|}{|S|} \times \log_2 \frac{|S_i|}{|S|}$$

Onde:

- \square $S_1 \dots S_w$ são os w subconjuntos das amostras resultantes do particionamento de S pelos w intervalos de f.
- □ A taxa de ganho de informação é data por:

$$GainRation(f,S) = \frac{Gain(f,S)}{SplitInformation(f,S)}$$

Wrappers

Wrappers

□ Ideia geral:

- Avalia conjuntos de atributos usando um algoritmo de aprendizado de máquina.
- O algoritmo funciona como uma caixa preta para encontrar os melhores subconjuntos de atributos.
- O propósito é encontrar o conjunto de atributos que melhor se adequa ao algoritmo de aprendizado.
- Essa abordagem é **totalmente dependente** do algoritmo de aprendizado.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

22

Wrappers ...

- □ Os melhores atributos para o algoritmo kNN e redes neurais pode não ser os melhores para árvores de decisão.
- □ Forward stepwise selection:
 - Começa com um conjunto vazio A. Os melhores atributos são determinados e adicionados ao conjunto A.
- **□** Backwards elimination:
 - Começa com um conjunto de todos os atributos. Os piores atributos são determinados e removidos do conjunto inicial.
- ☐ Bi-directional stepwise selection & elimination:
 - Combina as duas abordagens acima.

Qui-quadrado (χ^2)

Qui-quadrado (χ^2)

- Esse método avalia os atributos individualmente usando a medida χ² com relação ao atributo-meta.
- Quanto maior o valor de χ², mais provável é a correlação das variáveis (atributo e classe).
- □ χ² (teste do qui-quadrado)

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

□ As frequências observadas são obtidas diretamente dos dados das amostras, enquanto que as frequências esperadas são calculadas a partir destas.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

25

Qui-quadrado (χ^2) ...

- O analista de dados estará sempre trabalhando com duas hipóteses:
 - H₀: não há associação entre os atributos (independência)
 - H₁: há associação entre os atributos.
- \square A hipótese H₀ é rejeitada para valores elevados de χ^2 .
- □ O cálculo dos **graus de liberdade** de χ^2 é dado por: gl = (número de linhas – 1) × (número de colunas – 1)
- A perda de um grau de liberdade, isto é, o uso de num_linhas - 1, deve-se ao fato de empregarmos na fórmula a média amostral em vez da média populacional.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

26

Qui-quadrado (χ^2) ...

A forma da função de densidade de χ^2

Rejeitamos a **hipótese nula** se χ^2 for maior que o **valor crítico** fornecido pela tabela. Para 1 grau de liberdade, o valor crítico é 3,841.

Exemplo do cálculo de χ^2

	Joga xadrez	Não joga xadrez	Soma (linhas)
Gosta de ficção científica	250(90)	200(360)	450
Não gosta de ficção científica	50(210)	1000(840)	1050
Soma (colunas)	300	1200	1500

300*450 / 1500 = 90 , etc.

☐ Os números entre parênteses são os valores esperados, calculados com base na distribuição dos dados das duas categorias.

O resultado mostra que gostar_ficção_científica e jogar_xadrez são correlacionadas nesse grupo:

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

Neste caso, a hipótese nula é rejeitada, pois 507.93 > 3.841. Então, existe associação entre as variáveis estudadas.

Seleção baseada em Correlação (CFS)

Seleção baseada em Correlação

- A maioria dos métodos de seleção de atributos anteriores avaliam os atributos em termos de relevância individual considerando as amostras em diferentes classes.
- □ É possível ranquear **subconjuntos de atributos**?
- □ *Correlation-based feature selection* (CFS) é um método em que um conjunto de atributos é considerado bom se:
 - Contém atributos altamente correlacionados com o atributo-meta;
 - Contém atributos não correlacionados entre si.
- □ O coração do método CFS é uma heurística de avaliação de subconjuntos que considera:
 - Não somente a utilidade de atributos individuais, mas também o nível de correlação entre eles.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

20

Método CFS

- □ CFS primeiro calcula uma matriz de correlação de atributo-classe e atributo-atributo.
- □ Um peso (**score**) de um conjunto de atributos é associado usando a seguinte fórmula:

$$M\acute{e}rito(S) = \frac{k \times \overline{r_{ac}}}{\sqrt{k + k(k - 1)\overline{r_{aa}}}}$$

Onde:

- Mérito(S) é o mérito de um subconjunto de atributos S contendo k atributos;
- r_{ac} é a média da correlação entre atributo-classe;
- r_{aa} é a média da correlação entre atributo-atributo.

Método CFS ...

$$M\acute{e}rito(S) = \frac{k \times \overline{r_{ac}}}{\sqrt{k + k(k - 1)\overline{r_{aa}}}}$$

- O numerador pode ser visto como um indicador do poder preditivo do conjunto de atributos.
- □ O denominador indica o "**grau de redundância**" que existe entre os atributos.
- CFS começa com o conjunto vazio de atributos e usa a heurística best-first-search com um critério de parada de 5 consecutivos subconjuntos que não melhoram o mérito.
- O subconjunto com o maior mérito encontrado pela heurística será selecionado.

Benchmark de Métodos para Seleção de Atributos

Experimentos

■ Metodologia:

- Avaliar a melhor abordagem de seleção de atributos para cada um dos métodos de classificação apresentados.
- Comparar as abordagens de seleção de atributos entre si e com o conjunto original de atributos (sem seleção).

□ Conjuntos de Dados:

Dataset	# Instâncias	# Atributos	# Classes
Soybean	683	36	19
Hortalicas	2000	21	3

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

24

Algoritmos

Método	Algoritmo
Árvore de Decisão	C4.5
Classificador Bayesiano	Naïve Bayes
Rede Neural	Multilayer Perceptron
Support Vector Machine	SMO

■ Software:

- Weka, versão 3.6.5.
- http://www.cs.waikato.ac.nz/ml/weka/

Resultados – Dataset Soybean

Algoritmo	Sem Seleção de atributos	χ²	InfoGain	CFS	Wrapper
C4.5	91.50	90.48	90.77	90.19	92.97
Naïve Bayes	92.97	92.82	92.97	92.24	93.11
Multilayer Perceptron	93.41	93.11	92.97	93.85	92.24
SMO	93.85	94.28	94.43	93.85	93.85

- $\square \chi^2$: atributos removidos: 5, 6, 7, 10.
- □ InfoGain: atributos removidos: 5, 9, 10, 25.
- □ CFS: atributos removidos: 2, 6, 14, 16, 20, 21, 25, 27, 29, 31, 32, 33, 34.
- □ Wrapper (C4.5): atributos removidos: 2, 6, 7, 8, 9, 10, 12, 16, 28, 32.

Resultados – Dataset Hortaliças

Algoritmo	Sem Seleção de atributos	χ²	InfoGain	CFS	Wrapper
C4.5	90.75	89.91	90.75	94.11	94.11
Naïve Bayes	72.54	77.03	75.35	60.06	73.10
Multilayer Perceptron	82.35	91.59	90.75	66.10	92.43
SMO	82.07	80.95	80.95	61.06	80.39

- \square χ^2 : atributos removidos: 3, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17.
- □ InfoGain: atributos removidos: 3, 6, 9, 10, 14, 15, 17.
- □ CFS: atributos selecionados: 5, 11, 18, 19.
- □ Wrapper (C4.5): atributos selecionados: 3, 4, 5, 7, 18, 19.

Ranqueamento de Variáveis

Ranqueamento de Variáveis

□ Cuidado!!

- Redução de ruído e melhor precisão de uma classificação podem ser obtidos adicionando-se variáveis que presumidamente são redundantes.
- □ Variáveis perfeitamente correlacionadas são redundantes no sentido de que não agregam nenhuma informação se forem adicionadas ao modelo.
- □ Duas variáveis que não têm grande significado isoladas podem ser úteis quando estão juntas em um modelo.

Seleção de Atributos: Aspectos Relevantes

- □ A Seleção de atributos (SA) <u>quase</u> sempre melhora a precisão de modelos em problemas reais.
- □ Aspectos relevantes sobre SA:
 - Simplifica modelos;
 - Torna os modelos mais inteligíveis;
 - Ajuda a explicar melhor um problema real;
 - Evita o problema: "Princípio de Economia Científica"

Princípio de Economia Científica:

"Quanto menos se sabe a respeito de um fenômeno, maior o número de variáveis exigidas para explicá-lo"

Seleção de Atributos: Limitações

- Considerando um dataset com muitos atributos, a seleção de atributos pode causar overfit.
- Wrappers requerem que os algoritmos de aprendizado rodem muitas vezes, o que é muito caro!
- □ Quando um **atributo não é selecionado**, não significa que esse atributo não é importante.
- □ Alguns atributos descartados podem ser muito importantes para especialistas do domínio.
- Muitos dos métodos são gulosos e não trabalham com otimização do conjunto de atributos selecionados.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

41

Seleção de Atributos: Desafios

- □ Heurísticas para acelerar o processo de seleção de atributos (Exemplo: 1000 atributos).
- Métodos para prevenir overfitting.
- Métodos para selecionar atributos relevantes sem depender dos algoritmos de aprendizado de máquina.
- □ Detecção de Irrelevância:
 - Atributos realmente irrelevantes podem ser ignorados;
 - Melhores algoritmos;
 - Melhores definições para formulação de heurísticas.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte 2/2)

42

Referências para consulta

- □ JMLR Special Issue on Variable and Feature Selection. Disponível em http://jmlr.csail.mit.edu/papers/special/feature03.html
- J. T. Tou; R. C. Gonzalez. Pattern Recognition Principles. Addison-Wesley, 1974.
- □ Lui,H and Setiono,R. (1996). Feature selection and classification a probabilistic wrapper approach. In Proceedings of the 9th Intl. Conf. on Industrial and Engineering Applications of AI and ES.
- Kohavi, R., and Sommerfield, D. (1995). Feature subset selection using the wrapper model: Overfitting and dynamic search space topology. Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95).
- M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transaction on Knowledge and Data Engineering, 15(3):in press, May/June 2003.

Referências para consulta ...

- M.A. Hall. Correlation-based feature selection for machine learning. PhD thesis, Department of Computer Science, University of Waikato, Hamilto, New Zealand, 1998.
- U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1022–1029, 1993.
- H. Liu and R. Setiono. Chi2: Feature selection and discretization of numeric attributes. Proceedings of the IEEE 7th International Conference on Tools with Artificial Intelligence, pages 388–391, November 1995.
- □ T.M. Mitchell. *Machine Learning*. McGrawHill, USA, 1997.
- P.J. Park, M. Pagano, and M. Bonetti. A non-parametric scoring algorithm for identifying informative genes from microarray data. Pacific Symposium on Biocomputing, pages 52–63, 2001.