大连工业大学 2018~2019 学年 第 二 学期

《高等数学 2》试卷(模拟 2)共 3 页 第 1 页

衣 川	= 1									
题号	1	1 1	: 11	四	五.	六	七	八	阅卷 总分	复核 总分
得分										

说明:"阅卷总分"由阅卷人填写;"复核总分"由复核人填写,复核总分不得有改动。

分

一、选择题: (每小题 2 分, 共 18 分)

1、设可微函数 z = f(x, y)在 (x_0, y_0) 取得极小值,则下列结论正确的是(

(A) $f(x_0, y)$ 在 $y = y_0$ 处的导数等于零(B) $f(x_0, y)$ 在 $y = y_0$ 处的导数大于零(C) $f(x_0, y)$ 在 $y = y_0$ 处的导数小于零(D) $f(x_0, y)$ 在 $y = y_0$ 处的导数不存在

2、设 y_1, y_2 是方程 y'' + py' + qy = 0 的两个特解, c_1, c_2 为两个任意常数,则下列命题正确的为(

A. $c_1y_1+c_2y_2$ 为该方程的通解

B. $c_1y_1 + c_2y_2$ 不可能为该方程的通解 C. $c_1y_1 + c_2y_2$ 为该方程的解

 $D. c_1 y_1 + c_2 y_2$,不是该方程的解

4、已知 Ω 为 $x^2 + y^2 + z^2 \le 2z$,下列等式错误的是(

(A) $\iint_{\Omega} x(y^2 + z^2) dv = 0$ (B) $\iint_{\Omega} y(x^2 + z^2) dv = 0$ (C) $\iint_{\Omega} z(x^2 + y^2) dv = 0$ (D) $\iint_{\Omega} (x + y) z^2 dv = 0$ 5、已知函数 $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$,在 (0,0) 点下列叙述正确的是()。

(A)函数 f(x, y)连续,但偏导不存在 (B)函数 f(x, y)连续,偏导也存在 (C)函数 f(x, y)不连续,但偏导存在 (D)函数 f(x, y)不连续,偏导也不存在

(B) 1,0,2 (C) 2, 1,3 (D) 2, 1, 4

8、设 $f(x,y) = 4(x-y) - x^2 - y^2$,则点 (2,-2) 是 f(x,y) 的 (A) 极小值点 (B) 极大值点 (C) 非极值点 (D) 最小值点

9、设函数 $y_1 = x + e^x$, $y_2 = x + e^{2x}$, $y_3 = x + e^x + e^{2x}$ 都是某个二阶常系数线性微分方程的解,则该方程的通解为(A

(A) $y = x + C_1 e^x + C_2 e^{2x}$ (B) $y = e^x + C_1 x + C_2 e^{2x}$ (C) $y = e^{2x} + C_1 x + C_2 e^x$ (D) $y = C_1 e^x + C_1 x + C_2 e^{2x}$

得分

二、填空题: (每小题 2 分, 共 18 分)

1、微分方程 $y'' + 2y' + y = xe^x$ 的特解可设为型如 $y* = ______$

3、(a,b 是常数)则 $\iint_{x^2+y^2 \le R^2} (ax+by)dxdy$ ______。

5、L 为逆时针方向的圆周: $(x-2)^2 + (y+3)^2 = 4$,则 $\oint y dx - x dy =$ ______。

 $6 \times u = 2xy - z^2$,则 u 在点(2,-1,1)处的方向导数的最大值为__

7、函数z = f(x, y)在点 (x, y) 偏导数存在是函数在该点可微的_____条件。

9、设 $z = u^2 \ln v \, \overline{m} \, u = \frac{x}{y}, v = 3x - 2y$,则 $\frac{\partial z}{\partial x}$

三、计算题(每小题4分,共16分)

得分

2. 己知平面区域 $D = \{(x, y) | x^2 + y^2 \le 2y\}$, 计算二重积分 $\iint_{\mathbb{R}} (x+1)^2 dx dy$ 。

《高等数学 2》试卷(模拟 2) 共 3 页 第 2页

- 3. 计算 $\int_1^3 dx \int_{x-1}^2 e^{y^2} dy$ 。
- 4. 设函数 f(u,v) 具有 2 阶连续偏导数, $y = f(e^x,\cos x)$, 求 $\frac{dy}{dx}\bigg|_{x=0}$, $\frac{d^2y}{dx^2}\bigg|_{x=0}$

得分

四、计算题(每小题5分,共30分)

- 1. 已知函数 y = y(x) 满足微分方程 $x^2 + y^2 y' = 1 y'$, 且 y(2) = 0, 求 y(x).
- 2. 求 $\iiint_{\Omega} \sqrt{x^2 + y^2} dv$,其中 Ω 是由抛物面 $z = 4 x^2 y^2$ 及 z = 0 所围成的空间闭区域。
- 3. 计算曲面积分 $I = \iint\limits_{\Sigma} xzdydz + z^2dxdy$, 其中 Σ 是旋转抛物面 $z = x^2 + y^2$ ($0 \le z \le 1$) 的外侧。
- 4. 求曲面 $y e^{2x-z} = 0$ 在点 (1, 1, 2) 处的切平面方程和法线方程。
- 5、曲面 Σ 由锥面 $z = \sqrt{x^2 + y^2}$ 及平面 z = 1 所围的整个曲面的边界,计算 $\iint_{\Sigma} (x^2 + y^2) ds$

··- 装 订 线

6、设Σ为曲面 $x^2 + y^2 + 4z^2 = 4(z \ge 0)$ 的上侧,求 $\iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} dx dy$ 。

得分

五、计算题(4分)曲线 S 由 $x^2 + y^2 + z^2 = 1$ 与 x + y + z = 0 相交而成,求 $\oint_S xyds$ 。

得分

六、(5分)设 $f(x) = x \sin x - \int_0^x (x-t)f(t)dt$,其中 f(x)连续,求 f(x)。

得分

七、(4分) 证明: $\iint_{\Omega} f(z)dv = \pi \int_{-1}^{1} f(t)(1-t^{2})dt$, 其中 Ω 是球体 $x^{2} + y^{2} + z^{2} \le 1$, f(x)在 $(-\infty, +\infty)$ 内有连续的导函数。

得分

八、(5分)设 a, b 为实数, 函数 $z = 2 + ax^2 + by^2$ 在点(3,4)处的方向导数中,沿方向

 $\vec{l} = -3i - 4j$ 的方向导数最大,最大值为 10. (1) 求 a, b; (2) 求曲面 $z = 2 + ax^2 + by^2 (z \ge 0)$ 的面积.