Graphe planaire

Un graphe est *planaire* s'il peut être représenté dans le plan sans croisement d'arêtes/arcs.

Plan de la partie

- 1. K_5 n'est pas planaire
- 2. $K_{3,3}$ n'est pas planaire
- 3. les graphes non planaires sont ceux pouvant être transformés en K_5 ou $K_{3,3}$

Régions

Région

Une $r\acute{e}gion\ r$ est une partie non vide du plan telle que toute paire de points de r est joignable par une courbe continue composée de points de r.

Remarque

Tout graphe planaire induit une partition du plan en régions.

Régions

Degré d'une région

Le degré d'une région r, noté $\deg_G(r)$, d'un graphe planaire G est la longueur de sa frontière.

Exemples

frontière de r_1 : (1,5,6,5,4,2,3,2,1)

 G_1 :

$$\deg_{G_1}(r_1) = 8 \quad \deg_{G_1}(r_2) = 4$$

 G_2 :

$$\deg_{G_2}(r_1) = 3 \quad \deg_{G_2}(r_2) = 3$$

 $\deg_{G_2}(r_3) = 3 \quad \deg_{G_2}(r_4) = 3$

Régions

Soit G = (V, E) graphe simple non orienté planaire.

Propriété

Soit R l'ensemble des régions induites, alors

$$\sum_{r \in R} \deg_G(r) = 2|E|$$

Idée de preuve

Chaque arête est comptée exactement deux fois dans la somme.

Régions

$$\sum_{i=1}^{2} \deg_{G_1}(r_i) = 8 + 4$$

$$= 12$$

$$= 2|E_1|$$

$$\sum_{i=1}^{4} \deg_{G_2}(r_i) = 3 + 3 + 3 + 3$$

$$= 12$$

$$= 2|E_2|$$

Formule d'Fuler

Formule d'Euler

Soit G = (V, E) graphe simple non orienté non vide planaire et connexe, et R l'ensemble de ses régions, alors :

$$|V| - |E| + |R| = 2$$

$$|V_1| - |E_1| + |R_1| = 6 - 6 + 2$$

= 2

$$|V_2| - |E_2| + |R_2| = 4 - 6 + 4$$

= 2

Formule d'Fuler

Graphe maximal planaire

Un graphe simple non orienté est *maximal planaire* si l'ajout d'une arête rend le graphe non planaire.

Propriété

Dans un graphe maximal planaire toute région est délimitée par 3 arêtes.

Corollaire 1

Soit G = (V, E) maximal planaire et R l'ensemble de ses régions, alors

$$3|R|=2|E|$$

Formule d'Euler

Corollaire 2

Soit G = (V, E) graphe simple planaire et R l'ensemble de ses régions, alors

$$|E| \leq 3|V| - 6$$

Preuve

Soit G' = (V, E') maximal planaire avec $E \subseteq E'$ et R' l'ensemble de ses régions. Alors

$$2|E'| = 3|R'|$$
 (cor. 1)
= $3(2 - |V| + |E'|)$ (formule d'Euler)
= $6 - 3|V| + 3|E'|$

d'où

$$|E| \le |E'| = 3|V| - 6$$

Formule d'Euler

$$|E_1| = 6 \le 12 = 3|V_1| - 6$$

$$|E_2| = 6 \le 6 = 3|V_2| - 6$$

K₅ n'est pas planaire

Proposition

 K_5 n'est pas planaire.

Preuve

On n'a pas

$$|E| = 10 \le 9 = 3|V| - 6$$

donc K_5 n'est pas planaire.

K_{3,3} n'est pas planaire

La condition précédente ne permet pas de montrer que $K_{3,3}$ n'est pas planaire :

$$|E| = 9 \le 12 = 3|V| - 6$$

Remarque

 $|E| \le 3|V| - 6$ est une condition nécessaire pour qu'un graphe soit planaire, mais pas suffisante.

K_{3,3} n'est pas planaire

Proposition

 $K_{3,3}$ n'est pas planaire.

Preuve

Supposons $K_{3,3}$ planaire (\star) , et soit R l'ensemble de ses régions. $K_{3,3}$ étant biparti, il ne contient pas de triangle, donc chaque région est au moins de degré 4, d'où

$$4|R| \le \sum_{r \in R} \deg_G(r) = 2|E|$$

or la formule d'Euler donne 4|V| - 4|E| + 4|R| = 8 d'où

$$8-4|V|+4|E| \le 2|E|$$
 i.e. $|E| \le 2|V|-4$

Mais pour $K_{3,3}$ on a |E|=9 et 2|V|-4=8, contredit (*).

Mineur d'un graphe

Soit G graphe simple non orienté.

Mineur d'un graphe

M est un *mineur de G* s'il est résultat d'une succession des opérations suivantes à partir de G :

Suppression d'un sommet isolé v :

$$(V,E)\mapsto (V\setminus\{v\},E)$$

Suppression d'une arête $\{u, v\}$:

$$(V,E) \mapsto (V,E \setminus \{ \{u,v\} \})$$

Contraction d'une arête $\{u, v\}$:

$$(V, E) \mapsto (\sigma(V), \sigma(E \setminus \{\{u, v\}\}))$$

où $\sigma = \{u \mapsto w, v \mapsto w\}$ avec w un nouveau sommet

Mineur d'un graphe

Exemple

1. contraction de $\{1,6\}$

Mineur d'un graphe

- 1. contraction de $\{1,6\}$
- 2. contraction de $\{2,7\}$

Mineur d'un graphe

- 1. contraction de $\{1,6\}$
- 2. contraction de $\{2,7\}$
- 3. contraction de $\{3,8\}$

Mineur d'un graphe

- 1. contraction de $\{1,6\}$
- 2. contraction de $\{2,7\}$
- 3. contraction de $\{3,8\}$
- 4. contraction de $\{4,9\}$

Mineur d'un graphe

- 1. contraction de $\{1,6\}$
- 2. contraction de $\{2,7\}$
- 3. contraction de $\{3,8\}$
- 4. contraction de $\{4,9\}$
- 5. contraction de $\{5, 10\}$

Mineur d'un graphe

- 1. contraction de $\{1,6\}$
- 2. contraction de $\{2,7\}$
- 3. contraction de $\{3,8\}$
- 4. contraction de $\{4,9\}$
- 5. contraction de $\{5, 10\}$

Caractérisation des graphes planaires

Théorème (Kuratowski / Wagner)

Un graphe simple non orienté est planaire si et seulement s'il n'a ni K_5 ni $K_{3,3}$ pour mineur.

Preuve

- ⇒ Les opérations d'obtention d'un mineur préservent la planarité : si *G* est planaire, la suppression d'un sommet isolé, la suppression d'une arête, ou la contraction d'une arête produit un graphe lui aussi planaire.
- Admis.