f is a function on the interval I.

A1) Suppose f is twice-differentiable at x, prove that

$$f''(x) = \lim_{h o 0} rac{f(x+h) + f(x-h) - 2f(x)}{h^2}.$$

Proof: For any h>0, consider the function g(t)=f(t)-f(t-h), then there exists $\xi\in[0,h]$ such that $g(x+h)=g(x)+hg'(\xi)$, and there exists $\eta\in[\xi-h,\xi]\subset[-h,h]$ such that $f'(\xi)-f'(\xi-h)=hf''(\eta)$

$$\frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \frac{f'(\xi) - f'(\xi - h)}{h} = f''(\eta),$$

therefore

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}.$$

A2) Suppose $x_0 \in I$, and

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o(|x - x_0|^n)$$

= $b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)^n + o(|x - x_0|^n).$

when $x o x_0$, then for any $i = 0, 1, \cdots, n$, $a_i = b_i$.

Proof: Otherwise let $c_i=a_i-b_i$ and take the least k such that $c_k\neq 0$, then

$$c_k(x-x_0)^k + \cdots + c_n(x-x_0)^n + o(|x-x_0|^n) = 0 \implies c_k = -c_{k+1}(x-x_0) - \cdots - c_n(x-x_0)^{n-k} + o(|x-x_0|^{n-k}),$$

which leads to contradiction when $x \to x_0$.

A3) Suppose f is n-times differentiable at 0. Prove that if f is an even (odd) function, then the Taylor expansion of f at 0 has only even (odd) terms.

Proof: Use the fact that if f is even (odd) then f^\prime is odd (even).

A4) If f is differentiable on (a,b) and $\lim_{x\to a^+}f(x)=\lim_{x\to b^-}f(x)$ prove that exists $x_0\in(a,b)$ such that $f'(x_0)=0$.

Proof: Otherwise if $f'(x) \neq 0$ for all $x \in (a,b)$, by Darboux's theorem f'(x) have the same sign over (a,b), hence f is monotonic and non-constant on (a,b), contradicting $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x)$.

A5) Suppose $f\in C([a,b])$ and is differentiable on (a,b). Prove that f is strictly increasing on [a,b] iff for any $x\in (a,b)$, $f'(x)\geqslant 0$ and on any sub-interval $(c,d)\subset (a,b)$, f'(x) does not vanish.

Proof: ==> For any $x\in (a,b)$, $(f(x+h)-f(x))/h\geqslant 0$ so

$$f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h} \geqslant 0.$$

If f'(x) vanish on some sub-interval (c,d) then f(c)=f(d), a contradiction.

<== For any $a\leqslant x< y\leqslant b$, there exists $\xi\in(a,b)$ such that $f(y)-f(x)=(y-x)f'(\xi)$, hence $f(y)\geqslant f(x)$ and f is increasing. If f(x)=f(y) for some x< y then f(t) is constant on [x,y] and hence f' vanish on (x,y), a contradiction.

PSB

Use L'Hôpital theorem to calculate limits:

B1) a>0, then

$$\lim_{x o\infty}rac{\log x}{x^a}=\lim_{x o\infty}rac{x^{-1}}{ax^{a-1}}=0.$$

B2) a > 0, b > 1 then

$$\lim_{x o\infty}rac{x^a}{b^x}=\lim_{x o\infty}rac{ax^{a-1}}{b^x\ln b}=\cdots=\lim_{x o\infty}rac{a(a-1)\cdots\{a\}}{b^x(\ln b)^{\lfloor a
floor}x^{1-\{a\}}}=0.$$

B3)

$$\lim_{x\to 0}\frac{e^{ax}-e^{bx}}{\sin ax-\sin bx}=\lim_{x\to 0}\frac{ae^{ax}-be^{bx}}{a\cos ax-b\cos bx}=1.$$

B4)

$$\lim_{x \to 0} \frac{\tan x - x}{x - \sin x} = \lim_{x \to 0} \frac{\sec^2 x - 1}{1 - \cos x} = \lim_{x \to 0} \frac{1 + \cos x}{\cos^2 x} = 2.$$

B5)

$$\lim_{x \to 0} \frac{1 - \cos x^2}{x^2 \sin x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} = \lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x} = \lim_{x \to 0} \frac{\cos x}{2 \cos x - x \sin x} = \frac{1}{2}.$$

B6)

$$\lim_{x \to 1} \frac{\sqrt{2x - x^4} - \sqrt[3]{x}}{1 - x^{4/3}} = \lim_{x \to 1} \frac{(2x - x^4)^{-1/2}(1 - 2x^3) - x^{-2/3}/3}{-\frac{4}{3}x^{1/3}} = 1.$$

B7)

$$\lim_{x \to 1^-} (\log x) (\log (1-x)) = \lim_{x \to 1^-} \frac{\log (1-x)}{1/\log x} = \lim_{x \to 1^-} \frac{x \log^2 x}{1-x} = 0.$$

B8)

$$\lim_{x\to 0^+}\frac{\log\sin ax}{\log\sin bx}=\lim_{x\to 0^+}\frac{\sin bx}{\sin ax}\cdot\frac{a\cos ax}{b\cos bx}=1.$$

B9)

$$\lim_{x o 0^+} x^x = \exp \lim_{x o 0^+} rac{\log x}{x^{-1}} = \exp \lim_{x o 0^+} -x = 1.$$

B10)

$$\lim_{x o 1} x^{1/(1-x)} = \exp \lim_{x o 1} rac{\log x}{1-x} = e^{-1}.$$

B11)

$$\begin{split} \lim_{x \to 1} \left(\frac{1}{\log x} - \frac{1}{x - 1} \right) &= \lim_{x \to 1} \frac{x - 1 - \log x}{(x - 1) \log x} = \lim_{x \to 1} \frac{1 - x^{-1}}{1 - x^{-1} + \log x} \\ &= \lim_{x \to 1} \frac{x - 1}{x - 1 + x \log x} = \frac{1}{2}. \end{split}$$

B12)

$$\lim_{x \to 0^+} (\sin x)^x = \exp \lim_{x \to 0^+} \frac{\log \sin x}{x^{-1}} = \exp \lim_{x \to 0^+} -\frac{x^2}{\tan x} = 1.$$

B13)

$$\begin{split} \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/(1 - \cos x)} &= \exp \lim_{x \to 0} \frac{\log \sin x - \log x}{1 - \cos x} = \exp \lim_{x \to 0} \frac{\cot x - x^{-1}}{\sin x} \\ &= \exp \lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin^2 x} = \exp \lim_{x \to 0} \frac{-x \sin x}{\sin^2 x + x \sin 2x} \\ &= e^{-1/3}. \end{split}$$

B14)

$$\lim_{x o a}rac{a^x-x^a}{x-a}=\lim_{x o a}rac{a^x\log a-ax^{a-1}}{1}=a^a(\log a-1).$$

B15)

$$\lim_{x o \infty} rac{(1+1/x)^x - e}{1/x} = \lim_{x o 0} rac{(1+x)^{1/x} - e}{x} = \lim_{x o 0} (1+x)^{1/x} \cdot rac{x/(x+1) - \log(1+x)}{x^2}$$
 $= e \lim_{x o 0} rac{(x+1)^{-2} - (x+1)^{-1}}{2x} = rac{e}{2}.$

B16)

$$\lim_{x o\infty}rac{x^{\log x}}{(\log x)^x}=\exp\lim_{x o\infty}(\log x)^2-x\log\log x=0.$$

B17)

$$\lim_{x o \infty} (x+a)^{1+1/x} - x^{1+1/(x+a)} = \lim_{x o \infty} \frac{(x+a)^{1+1/x} x^{-1} - x^{1/(x+a)}}{x^{-1}}$$

B18)

$$\lim_{x o \infty} \sqrt[3]{x^3 + x^2 + x + 1} - \sqrt{x^2 + x + 1} \cdot rac{\log\left(e^x + x
ight)}{x} = -rac{1}{6}.$$

(Using WolframAlpha)

PSC

Calculate the maximum and minimum values of the following functions:

$$1.f(x) = x^4 - 2x^2 + 5, x \in [-2, 2].$$
 $f(x) = (x^2 - 1)^2 + 4 \in [4, 13].$

$$f(x) = (x^2 - 1)^2 + 4 \in [4, 13]$$

2.
$$f(x)=rac{2x}{1+x^2}$$
 , $x\in\mathbb{R}$

$$1-f(x)=(1+x^2)^{-1}(x-1)^2\geqslant 0$$
, $f(x)+1=(1+x^2)^{-1}(x+1)^2\geqslant 0$, therefore $f(x)\in [-1,1]$.

3.
$$f(x) = \arctan x - \frac{1}{2}\log(1+x^2)$$
, $x \in \mathbb{R}$.

$$f'(x)=rac{1-x}{x^2+1}$$
 , hence $\sup_{x\in\mathbb{R}}f(x)=f(1)=rac{\pi}{4}-rac{\log 2}{2}$, and f has no minimum.

$$4.f(x) = x \log x, x \in (0, \infty).$$

$$f'(x) = \log x + 1$$
, hence $\inf_{x \in (0,\infty)} f(x) = f(e^{-1}) = -e^{-1}$, and f has no maximum.

$$5.f(x) = \sqrt{x} \log x, x \in (0, \infty).$$

$$f'(x)=x^{-1/2}\left(1+rac{\log x}{2}
ight)$$
 , hence $\inf_{x\in(0,\infty)}f(x)=f(e^{-2})=-2e^{-1}$.

$$6.f(x) = 2 an x - an^2 x$$
, $x \in [0, \pi/2)$.

$$f(x) = 1 - (1 - \tan x)^2 \in (-\infty, 1].$$

PSD

f is differentiable on (a,b). Suppose $x_0 \in (a,b)$ and $f'(x_0) = 0$.

D1) Prove that $f(x_0)$ is a local maximum if there exists $(x_0-\delta,x_0+\delta)\subset (a,b)$ such that

$$f'(x) = egin{cases} > 0, & orall x \in (x_0 - \delta, x_0), \ < 0, & orall x \in (x_0, x_0 + \delta). \end{cases}$$

Proof: Trivial by Lagrange mean-value theorem.

D2) Prove that if $f''(x_0)$ exists and $f''(x_0) < 0$ then $f(x_0)$ is a local maximum.

Proof: $f''(x_0) < 0$ and $f'(x_0) = 0$ implies for some $\delta > 0$, f'(x) < 0 for $x \in (x_0, x_0 + \delta)$ and f'(x) > 0 for $x \in (x_0 - \delta, x_0)$. Hence by D1), $f(x_0)$ is a local maximum.

D3) Suppose f is n-times differentiable at x_0 , $f'(x_0)=\cdots=f^{(n-1)}(x_0)=0$ and $f^{(n)}(x_0)\neq 0$. Determine the conditions that $f(x_0)$ is a local maximum.

Solution: n is even and $f^{(n)}(x_0) < 0$.

PSE: Roots of Polynomials

E1) Prove that if all the roots of the polynomial $P_n(x)\in\mathbb{R}[x]$ are real numbers, then so are the polynomials $P_n'(x),P_n''(x),\cdots,P_n^{n-1}(x)$, where $n=\deg P_n$.

Proof: We only need to prove that P'_n has n-1 real roots. By Rolle's mean-value theorem, between any two roots of P_n there is a root of P'_n hence P'_n has n-1 real roots.

E2) Prove that the Legendre polynomial $P_n(x)=rac{1}{2^nn!}rac{\mathrm{d}^n}{\mathrm{d}x^n}(x^2-1)^n$ has n different roots in the interval (-1,1).

Proof: We know that the polynomials $\sqrt{(2n+1)/2}P_n(x)$ form a set of orthogonal base on the space $L^2([-1,1])$, hence it must have n different roots in the interval (-1,1).

E3) Prove that the Laguerre polynomial $L_n(x)=rac{e^x}{n!}rac{\mathrm{d}^n}{\mathrm{d}x^n}(e^{-x}x^n)$ has n different real roots.

Proof: We know that the Laguerre polynomials are orthogonal on the space $L^2([0,\infty))$ with weight e^{-x} , hence it must have n distinct roots.

Or note that $f(x)=x^ne^{-x}$ has a root with multiplicity n at 0 and it vanishes at ∞ , hence use Rolle's theorem and induction we can show that $f^{(k)}(x)$ has a root with multiplicity n-k at 0 and k roots between 0 and ∞ .

E4) Prove that the Hermite polynomial $H_n(x)=(-1)^ne^{x^2}rac{\mathrm{d}^n}{\mathrm{d}x^n}(e^{-x^2})$ has n different real roots.

Proof: We know that the polynomials $H_n(x)/\sqrt{2^n n! \sqrt{n}}$ form a set of orthogonal base on the Hilbert space $L^2(\mu)$ where $\mu(\mathrm{d}x)=e^{-x^2}\mathrm{d}x$, hence it must have n distinct real roots.

PSF: Émile Borel's Lemma

Part 1:

F1) Define $\phi:\mathbb{R}\to\mathbb{R}$:

$$\phi(x)=egin{cases} e^{-1/x^2}, & x>0, \ 0, & x\leqslant 0. \end{cases}$$

Prove that $\phi \in C^{\infty}(\mathbb{R})$.

Proof: We prove by induction that for any $n\in\mathbb{Z}_{\geqslant 0}$, there is a polynomial $P_n\in\mathbb{R}[x]$ such that

$$\phi^{(n)}(x) = egin{cases} P_n(1/x) \cdot e^{-1/x^2}, & x > 0, \ 0, & x \leqslant 0. \end{cases}$$

(Which implies $\phi^{(n)}$ is continuous.)

The case n=0 is trivial. Suppose it holds for n, then for any x>0,

$$\phi^{(n+1)}(x) = e^{-1/x^2} \left(P_n(1/x) rac{2}{x^3} - P_n'(1/x) rac{1}{x^2}
ight),$$

for any x < 0, $\phi^{(n+1)}(x) = 0$, and for x = 0,

$$\phi_+^{(n+1)}(0) = \lim_{x \to 0^+} e^{-1/x^2} P_n(1/x) rac{1}{x} = 0.$$

Hence the claim holds for n+1 too.

Therefore $\phi \in C^{\infty}(\mathbb{R})$.

F2) Define $\chi:\mathbb{R} o \mathbb{R}$:

$$\chi(x) = rac{\phi(2-|x|)}{\phi(2-|x|) + \phi(|x|-1)}.$$

Prove that $\chi(x)\in C^\infty(\mathbb{R})$ and $\chi|_{[-1,1]}\equiv 1$, $\chi|_{(-\infty,-2]\cup[2,\infty)}\equiv 0$, $0\leqslant \chi(x)\leqslant 1$ and χ is an even function. Proof: 2-|x| and |x|-1 cannot be both negative, hence the denominator is always positive, so $\chi\in C^\infty(\mathbb{R})$. The fact that $\chi|_{[-1,1]}\equiv 1$, $\chi|_{(-\infty,-2]\cup[2,\infty)}\equiv 0$, $\chi(x)\in [0,1]$ and χ is even is trivial.

F3) Prove that for any 0 < a < b, there exists a smooth function $\rho(x) \in C^\infty(\mathbb{R})$ such that $\rho|_{[-a,a]} \equiv 1$, $\rho|_{(-\infty,-b]\cup[b,\infty)} \equiv 0$, and $0 \leqslant \rho(x) \leqslant 1$.

Proof: Same as F2), define

$$ho(x)=rac{\phi(b-|x|)}{\phi(b-|x|)+\phi(|x|-a)}.$$

F4) Prove that there exists an even function $\psi\in C^\infty(\mathbb{R}^n)$ such that $\psi|_{\{x:|x|\leqslant 1\}}\equiv 1$, $\psi|_{\{x:|x|\geqslant 2\}}\equiv 0$, and $0\leqslant \psi(x)\leqslant 1$.

Proof: (A special case of Urysohn's lemma)

Define $f:\mathbb{R}^n \to \mathbb{R}$ as $f(\mathbf{x}) = \phi(1-|\mathbf{x}|^2)$ and $g:\mathbb{R}^n \to \mathbb{R}$ as $g(\mathbf{x}) = \phi(|x^2|/4-1)$, then f vanishes on $B(0,1)^C$ and g vanishes on $\bar{B}(0,2)$. Therefore

$$\psi(\mathbf{x}) = rac{f(\mathbf{x})}{f(\mathbf{x}) + g(\mathbf{x})}$$

satisfy the requirements.

Part 2: Interchanging \sum and $\frac{\mathrm{d}}{\mathrm{d}x}$

I=[a,b] is a closed interval, $\{f_k\}_{k\geqslant 0}$ is a sequence of functions in $C^1(I)$. Assume $\sum_{k=0}^{\infty}f_k$ converges point-wise on I, and let $f(x)=\sum_{k=0}^{\infty}f_k(x)$.

F5) Assume the series $\sum_{k=0}^\infty f_k'(x)$ converges absolutely on I, i.e. $\sum_{k=0}^\infty \|f_k'\|_\infty$ converges. Prove that f is differentiable and $f'(x) = \sum_{k=0}^\infty f_k'(x)$.

Proof: Note that

$$rac{f(x+h)-f(x)}{h} = \sum_{k=0}^{\infty} rac{f_k(x+h)-f_k(x)}{h} = \sum_{k=0}^{\infty} f_k'(x+\xi_k).$$

Hence

$$\left| \frac{f(x+h) - f(x)}{h} - \sum_{k=0}^{\infty} f_k'(x) \right| \leqslant \sum_{n=0}^{N} |f_k'(x+\xi_n) - f_k'(x)| + 2\sum_{n=N+1}^{\infty} \|f_k'\|$$

Note that f_k' is uniformly continuous, so

$$\lim_{h o 0} \sum_{n=0}^N |f_k'(x+\xi_k) - f_k'(x)| = 0, \ \lim_{N o \infty} 2 \sum_{n=N+1}^\infty \|f_k'\| = 0.$$

Hence

$$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=\sum_{k=0}^{\infty}f'_k(x).$$

F6) Assume $\sum_{k=0}^\infty f_k'(x)$ converges uniformly on I, then f is differentiable and $f'(x)=\sum_{k=0}^\infty f_k'(x)$.

Proof: Let $g(x)=\sum_{k=0}^\infty f_k'(x)$, since the series converges uniformly, g(x) is continuous on I. By Lebesgue's Dominated Convergence Theorem,

$$\int_{x_0}^x g(t) \, \mathrm{d}t = \sum_{k=0}^\infty f_k(t) \Big|_{x_0}^x = f(x) - f(x_0).$$

Hence $f'(x) = g(x) = \sum_{k=0}^{\infty} f'_k(x)$

F7) Calculate the derivative of e^x using F6).

Solution: On any closed interval [-M, M],

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$

converges uniformly. Hence

$$(e^x)' = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)' = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

Part 3: Borel's Lemma

Given an arbitrary sequence $\{a_k\}_{k\geq 0}$.

F8) For any $t_k>0$, let $f_k(x)=rac{a_k}{k!}x^k\chi(t_kx)$, determine the derivatives of any order of f_k at x=0.

Solution: Note that when x=0, $\chi^{(m)}(t_kx)=0$ for any $m\geqslant 1$ and $\chi(t_kx)=1$. Hence

$$f_k^{(n)}(0) = rac{a_k}{k!} \sum_{j=0}^n inom{n}{j} (x^k)^{(j)} \chi^{(n-j)}(t_k x) \Big|_{x=0} = rac{a_k}{k!} (x^k)^{(n)} \Big|_{x=0} = a_k \delta_{n,k}.$$

F9) Prove that when $k \geqslant 2n$,

$$f_k^{(n)}(x) = a_k \sum_{\ell=0}^n inom{n}{\ell} rac{t_k^{n-\ell}}{(k-\ell)!} x^{k-\ell} \chi^{(n-\ell)}(t_k x).$$

Proof: Leibniz's Formula.

F10) (Borel's lemma) Prove that for any sequence $\{a_k\}_{k\geqslant 0}$, there exists a smooth function f on \mathbb{R} , such that for any $k\geqslant 0$, $f^{(k)}(0)=a_k$.

Proof: Let $f_k(x) = rac{a_k}{k!} x^k \chi(t_k x)$ where t_k is yet to be determined, and

$$f(x)=\sum_{k=0}^{\infty}f_k(x)=\sum_{k=0}^{\infty}rac{a_kx^k}{k!}\chi(t_kx).$$

For any $n\geqslant 0$, we want to show that $\sum_{k=0}^\infty f_k^{(n)}(x)$ converges uniformly on $\mathbb R$. Suppose $M_n=\sup_{x\in\mathbb R, m\leqslant n}|\chi^{(n)}(x)|$, and

$$C_k = \sup_{n < k/2} \sum_{\ell=0}^n rac{inom{n}{\ell}}{(k-\ell)!},$$

then for any $x \in \mathbb{R}$,

$$|f_k^{(n)}(x)|\leqslant |a_k|C_kM_kt_k^{-k/2}.$$

Hence if we choose t_k such that

$$|a_k| C_k M_k t_k^{-k/2} < 2^{-k},$$

then the series

$$\sum_{k=0}^{\infty} f_k^{(n)}(x)$$

converges uniformly on $\mathbb R$. By F6) we know that $f(x)=\sum_{k=0}^\infty f_k(x)$ is smooth, and by F8) we obtain $f^{(n)}(0)=a_n$ for any $n\geqslant 0$,

Part 4: Peano's Proof

F11) $\{c_k\}$ and $\{b_k\}$ are two sequences, and $b_k>0$. Prove that

$$\left(rac{c_kx^k}{1+b_kx^2}
ight)^{(n)}(0)=egin{cases} n!(-1)^jc_{n-2j}b_{n-2j}^j, & ext{if } k=n-2j, j\in\mathbb{Z}_{\geqslant 0}; \ 0, & ext{otherwise}. \end{cases}$$

Proof: For $x \to 0$

$$rac{c_k x^k}{1 + b_k x^2} = c_k \sum_{n=0}^{\infty} (-1)^n x^{2n+k} b_k^n.$$

Which converges absolutely on the interval $[-b_k^{-1/2}/2, b_k^{-1/2}/2]$, and so are its n-times derivations, hence by F5)

$$\left(\frac{c_k x^k}{1+b_k x^2}\right)^{(n)}(0) = c_k \sum_{j=0}^{\infty} (-1)^j \frac{(2j+k)!}{(2j+k-n)!} x^{2j+k-n} b_k^j \Big|_{x=0} = \begin{cases} n! (-1)^j c_k b_k^j, & k=n-2j, \\ 0, & \text{otherwise.} \end{cases}$$

F12) Prove that there is a constant C such that for any $k\geqslant n+2$, and any x,

$$\left| \left(\frac{c_k x^k}{1 + b_k x^2} \right)^{(n)} (x) \right| \leqslant C(n+1)! \frac{|c_k| k!}{b_k} |x|^{k-n-2}.$$

Proof: Use du Bois-Reymond, we can let C=1.

F13) Prove that for a given $\{c_k\}$, we can choose $\{b_k\}$ such that b_k depends only on the value of c_k , and the function

$$f(x) = \sum_{k=0}^{\infty} rac{c_k x^k}{1 + b_k x^2}$$

is infinitely differentiable.

Proof: Let $b_k=(k!)^2c_k$, then by F12),

$$\left|\sum_{k\geqslant n+2}\left(\frac{c_kx^k}{1+b_kx^2}\right)^{(n)}\right|\leqslant (n+1)!\sum_{k\geqslant n+2}\frac{|x|^{k-n-2}}{k!}$$

hence the series

$$\sum_{k=0}^{\infty} \left(\frac{c_k x^k}{1 + b_k x^2} \right)^{(n)}$$

converges uniformly for any $n\geqslant 1$. By F6) the function f(x) is infinitely differentiable, and

$$f^{(n)}(x) = \sum_{k=0}^{\infty} \left(\frac{c_k x^k}{1 + b_k x^2} \right)^{(n)}.$$

F14) Prove that $f(0)=c_0, f'(0)=c_1$ and when $n\geqslant 2$,

$$rac{f^{(n)}(0)}{n!} = c_n + \sum_{i=1}^{\lfloor n/2
floor} (-1)^j c_{n-2j} b_{n-2j}^j.$$

Proof: Combine F11) and F13).

F15) Prove that by carefully choosing $\{c_k\}$ and $\{b_k\}$, we can prove Borel's lemma.

Proof: Let $b_k=(k!)^2c_k$ and define c_k inductively such that

$$c_n=rac{a_n}{n!}+\sum_{j=1}^{\lfloor n/2
floor}(-1)^jc_{n-2j}b_{n-2j}^j$$

Then let $f(x) = \sum_{k=0}^{\infty} \frac{c_k x^k}{1 + b_k x^2}$

PSG: Midterm Test Part B

- Let $\mathcal B$ be all bounded function on $\mathbb R$.
- Let $\mathcal L$ be all Lipschitz functions on $\mathbb R$.

Suppose $a,\lambda\in\mathbb{R}$, $f\in\mathcal{B}\cap\mathcal{L}$, the goal is to find a function $F\in\mathcal{L}$ to solve:

$$F(x) - \lambda F(x+a) = f(x), \ x \in \mathbb{R}.$$
 (*)

Part 1: Basic Properties of Lipschitz Functions

B1) Prove that if $f,g\in\mathcal{B}\cap\mathcal{L}$, then $fg\in\mathcal{L}$.

Proof: Suppose $|f(x)-f(y)|, |g(x)-g(y)|\leqslant A|x-y|$, and $|f(x)|, |g(x)|\leqslant C$, then for any $x,y\in\mathbb{R}$,

$$|f(x)g(x) - f(y)g(y)| \leqslant 2MA|x - y|.$$

Hence $fg \in \mathcal{L}$.

B2) Prove that if f is differentiable and $f \in \mathcal{L}$ then $f' \in \mathcal{B}$.

Proof: If $|f(x)-f(y)|\leqslant C|x-y|$ then for any $x\in\mathbb{R}$,

$$|f'(x)| = \lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right| \leqslant C.$$

Hence $f' \in \mathcal{B}$.

B3) Prove that if f is differentiable and $f' \in \mathcal{B}$ then $f \in \mathcal{L}$.

Proof: For any $x,y\in\mathbb{R}$, there exists $\xi\in(x,y)$ such that

$$|f(x)-f(y)|=|x-y|\cdot |f'(\xi)|\leqslant \sup_{t\in\mathbb{R}}|f'(t)|\cdot |x-y|.$$

Hence $f \in \mathcal{L}$.

B4) If $f\in\mathcal{B}$ and there exists B>0 such that for any $x,y\in\mathbb{R}$, $|x-y|\leqslant 1$ implies $|f(x)-f(y)|\leqslant B|x-y|$. Prove that $f\in\mathcal{L}$.

Proof: Suppose $M=\sup_{x\in\mathbb{R}}|f(x)|$, then for any $x,y\in\mathbb{R}$,

$$|f(x) - f(y)| \leqslant \max\{B, 2M\}|x - y|.$$

Hence $f \in \mathcal{L}$.

Part 2: Solution of (\star) when $|\lambda| < 1$.

Suppose $f \in \mathcal{B} \cap \mathcal{L}$ and $|\lambda| < 1$.

B5) Suppose F satisfy (\star) . Prove that for any $x\in\mathbb{R}$ and $n\in\mathbb{Z}_{\geqslant 1}$,

$$F(x) = \lambda^n F(x+na) + \sum_{k=0}^{n-1} \lambda^k f(x+ka),$$

$$F(x) = \lambda^{-n}F(x-na) - \sum_{k=1}^n \lambda^{-k}f(x-ka).$$

Proof: Use induction and apply (*).

(Let $n o \infty$ and we can obtain F formally.)

B6) Prove that for any $x \in \mathbb{R}$, $\sum_{k\geqslant 0} \lambda^k f(x+ka)$ converges.

Proof: Since f is bounded,

$$\left|\sum_{k=n}^{n+p}\lambda^kf(x+ka)
ight|\leqslant rac{M\lambda^n}{1-\lambda}.$$

Hence the series converges.

B7-8) Let $F(x) = \sum_{k \geqslant 0} \lambda^k f(x+ka)$. Prove that $F \in \mathcal{L}$ and solve (\star) .

Proof: For any $x,y\in\mathbb{R}$,

$$|F(x)-F(y)|\leqslant \sum_{k=0}^\infty \lambda^k |f(x+ka)-f(y+ka)|\leqslant \sum_{k=0}^\infty \lambda^k C|x-y|=rac{C}{1-\lambda}|x-y|.$$

Hence $F \in \mathcal{L}$. For any $x \in \mathbb{R}$,

$$F(x)-\lambda F(x+a)=\sum_{k\geqslant 0}\lambda^k f(x+ka)-\sum_{k\geqslant 1}\lambda^k f(x+ka)=f(x).$$

Therefore F solves (\star) .

If F' also solves (\star) , let G=F-F', then G is bounded and

$$G(x) = \lambda G(x+a), x \in \mathbb{R}.$$

Therefore for any $x \in \mathbb{R}$,

$$|G(x)| = \lambda^n |G(x + na)| \leqslant M\lambda^n \to 0.$$

Hence $G\equiv 0$ and $F\equiv F'$, so the solution to (\star) is F.

B9) Solve (\star) when $f(x) \equiv 1$ and $f(x) = \cos x$.

Solution: When $f(x) \equiv 1$,

$$F(x) = \sum_{k=0}^{\infty} \lambda^k f(x+ka) = rac{1}{1-\lambda}.$$

When $f(x) = \cos x$,

$$egin{aligned} F(x) &= \sum_{k=0}^{\infty} \lambda^k \cos\left(x + ka
ight) = \sum_{k=0}^{\infty} \lambda^k rac{e^{i(x+ka)} + e^{-i(x+ka)}}{2} = rac{1}{2} igg(rac{e^{ix}}{1 - \lambda e^{ia}} + rac{e^{-ix}}{1 - \lambda e^{-ia}}igg) \ &= rac{\cos x - \lambda \cos\left(x - a
ight)}{1 - 2\lambda \cos a + \lambda^2}. \end{aligned}$$

Part 3: Solution of (\star) when $|\lambda|>1$.

B10) Solve (\star) as in Part 2.

Solution: By B5), the solution should be

$$F(x) = -\sum_{k=1}^\infty \lambda^{-k} f(x-ka).$$

 $f \in \mathcal{B}$ implies the series converges. Same as B8) we can show that the solution to (\star) is unique, and like B7) we can show that $F \in \mathcal{L}$ and F satisfy (\star) .

B11) Solve (\star) for $f(x) \equiv 1$ and $f(x) = \cos x$.

Solution: When $f(x) \equiv 1$,

$$F(x) = -\sum_{k=1}^{\infty} \lambda^{-k} f(x-ka) = rac{1}{1-\lambda}.$$

When $f(x) = \cos x$, same as B9) we have

$$F(x) = -\sum_{k=1}^{\infty} \lambda^{-k} f(x - ka) = \frac{\cos x - \lambda \cos (x - a)}{1 - 2\lambda \cos a + \lambda^2}.$$

Part 4: The Case when $|\lambda|=1$.

B12) Suppose $\lambda=1.$ Prove that there exists $F\in\mathcal{L}$ not identically zero, such that for any x, F(x)-F(x+a)=0.

Proof: Let $F(x)=|\{x/a\}-1/2|$, then F(x)=F(x+a), and $F\in\mathcal{L}\cap\mathcal{B}$.

B13) Let $f(x) = \cos x$ in (\star) . Prove that if $\cos a \neq 1$, then there exists $F \in \mathcal{L}$ that solves (\star) . Determine whether the solution is unique.

Proof: The equation (\star) becomes $F(x) = F(x+a) + \cos x$. Let

$$F(x) = \{x/a\} - \sum_{k=0}^{\lfloor x/a
floor -1} \cos{(k+\{x/a\})}a,$$

(if x < 0 the sum is viewed as from $\lfloor x/a \rfloor - 1$ to 0) then clearly $F(x) = F(x+a) + \cos x$, and F is bounded since $\cos a \neq 1$.

For any $x,y \in \mathbb{R}$, if |x-y| < a/2, then suppose $na \leqslant x < y < (n+1)a$,

$$\begin{aligned} |F(x) - F(y)| &\leqslant \left| \left\{ \frac{x}{a} \right\} - \left\{ \frac{y}{a} \right\} \right| + 2 \left| \sin \frac{\{x/a\} - \{y/a\}}{2} a \right| \cdot \left| \sum_{k=0}^{n-1} \sin \left(k + (\{x/a\} + \{y/a\})/2 \right) a \right| \\ &\leqslant \frac{|x-y|}{a} + \frac{|x-y|}{|\sin a|}. \end{aligned}$$

Hence $F \in \mathcal{L}$ by B4), so F solves (\star) .

The solution is clearly not unique since we can add any factor of the F in B12) to the solution.

B14) Following B13), if $a=2\pi$, then (\star) has no solution in \mathcal{L} .

Proof: If $a=2\pi$ and F is a solution to (\star) , then for any $x,y\in\mathbb{R}$,

$$|F(x+2\pi n)-F(y+2\pi n)|=n|\cos x-\cos y| o\infty.$$

Hence $F \notin \mathcal{L}$.

B15) Suppose $\lambda=-1$, Prove that there exists $F\in\mathcal{L}$ not identically zero, such that for any x, F(x)+F(x+a)=0.

Proof: Let $F(x)=|2\{x/2a\}-1|-1/2$, then $F\in\mathcal{L}$ and F(x)+F(x+a)=0.

B16) Suppose $\lambda=-1$, a=1, $f\in\mathcal{L}$ is monotonically decreasing and $\lim_{x\to\infty}f(x)=0$, f is differentiable and f' is increasing. Prove that there exists $F\in\mathcal{L}$ such that

$$F(x) + F(x+1) = f(x), x \in \mathbb{R}.$$

Further show that if we require $F\in\mathcal{L}$ and $\lim_{x\to\infty}F(x)=0$, then the solution is unique. Proof: Since f is monotonically decreasing, for any $x\in\mathbb{R}$, the series

$$F(x) = \sum_{n=0}^{\infty} \left(-1\right)^n f(x+n)$$

converges.

For any $x,y\in\mathbb{R}$, |x-y|<1, there exists $\xi_n\in(x+n,y+n)$ such that $f(y+n)-f(x+n)=(y-x)f'(\xi_n)$, hence (by B3) f' is bounded)

$$|F(x)-F(y)|=|y-x|\cdot\left|\sum_{n=0}^{\infty}{(-1)^nf'(\xi_n)}
ight|\leqslant \sup_{t\in\mathbb{R}}|f'(t)|\cdot|y-x|.$$

so $F \in \mathcal{L}$. Clearly F(x) + F(x+1) = f(x), so F solves (\star) , and 0 < F(x) < f(x) so $\lim_{x \to \infty} F(x) = 0$. If $F' \in \mathcal{L}$ also satisfy (\star) and $\lim_{x \to \infty} F(x) = 0$, let G = F - F', then G(x) + G(x+1) = 0 and $\lim_{x \to \infty} G(x) = 0$. Hence $G(x) = \lim_{n \to \infty} (-1)^n G(x+n) = 0$ for any $x \in \mathbb{R}$, so $G \equiv 0$. Therefore F is the unique solution.