ETL is not just DataFrames!

RAPIDS Building bridges into the array ecosystem

Interoperability for the Win

DLPack and __cuda_array_interface__

ETL - Arrays and DataFrames

Dask and CUDA Python arrays

- Scales NumPy to distributed clusters
- Used in climate science, imaging, HPC analysis up to 100TB size
- Now seamlessly accelerated with GPUs

Benchmark: single-GPU CuPy vs NumPy

Operation

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

Also...Achievement Unlocked:

Petabyte Scale Data Analytics with Dask and CuPy

Architecture	Time
Single CPU Core	2hr 39min
Forty CPU Cores	11min 30s
One GPU	1min 37s
Eight GPUs	19s

https://blog.dask.org/2019/01/03/dask-array-gpus-first-steps

3.2 PETABYTES IN LESS THAN 1 HOUR

Distributed GPU array | parallel reduction | using 76x GPUs

Array size	Wall Time (data creation + compute)
3.2 PB (20M x 20M doubles)	54 min 51 s

Cluster configuration: 20x GCP instances, each

instance has:

CPU: 1 VM socket (Intel Xeon CPU @ 2.30GHz),

2-core, 2 threads/core, 132GB mem, GbE ethernet,

950 GB disk

GPU: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU

DRAM across nodes 1.22 TB)

Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1, Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130