МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет кораблебудування імені адмірала Макарова

О. О. ЧЕРНО

МЕТОДИЧНІ ВКАЗІВКИ до виконання курсової роботи

"Проектування цифрового рекурсивного фільтра"

У двох частинах

Частина 2

Приклад розрахунку

Рекомендовано Методичною радою НУК

Електронне видання комбінованого використання на DVD-ROM

МИКОЛАЇВ • НУК • 2017

УДК 004.383.3(076) ББК 32.844-040.21я73

Ч-49

Автор О. О. Черно, канд. техн. наук, доцент Рецензент С. М. Новогрецький, канд. техн. наук, доцент

Черно О. О.

Ч-49 Методичні вказівки до виконання курсової роботи "Проектування цифрового рекурсивного фільтра": у 2 ч. Ч. 2. Приклад розрахунку / О. О. Черно. – Миколаїв: НУК, 2017. – 23 с.

Методичні вказівки містять приклад розрахунку цифрового рекурсивного фільгра як зразок виконання курсової роботи. Розрахунок повністю базується на методиці, викладеній у першій частині даних вказівок.

Призначено для виконання курсових робіт з дисципліни "Основи збору, передачі і обробки інформації" студентами спеціальностей "Комп'югеризовані системи управління та автоматика" й "Автоматизація та комп'ютерно-інтегровані технології". Можуть бути використані студентами інших спеціальностей, викладачами вищих навчальних закладів третього-четверотого рівнів акресцитації.

УДК 004.383.3(076) ББК 32.844-040.21я73

Навчальне видання

ЧЕРНО Олександр Олександрович

МЕТОДИЧНІ ВКАЗІВКИ до виконання курсової роботи "Проектування цифрового рекурсивного фільтра"

У двох частинах

Частина 2

Приклад розрахунку

Комп'ютерне верстання В. В. Москаленко Коректор М. О. Паненко

- © Черно О. О., 2017
- Національний університет кораблебудування імені адмірала Макарова. 2017

Формат 60×84/16. Ум. друк. арк. 1,3. Об'єм даних 2950 кб. Тираж 15 прим. Вид. № 1. Зам. № 35.

Видавець і виготівник Національний університет кораблебудування імені адмірала Макарова просп. Героїв України, 9, м. Миколаїв, 54025 E-mail: publishing@nuos.cdu.ua

Свідоцтво суб'єкта видавничої справи ДК № 2506 від 25.05.2006 р.

ЗАВДАННЯ ДЛЯ КУРСОВОГО ПРОЕКТУВАННЯ

Згідно з варіантом завдання на курсову роботу, необхідно розробити цифровий смуговий фільтр Чебишева І роду. Початкові дані, задані у програмі Mathcad, наведені на рис. 1.

$\omega_{s1} := 15 \cdot 10^3$	перша границя затримування, рад/с
$\omega_{p1} \coloneqq 27{\cdot}10^3$	перша границя пропуску, рад/с
$\omega_{p2} \coloneqq 0.17{\cdot}10^6$	друга границя пропуску, рад/с
$\omega_{s2} \coloneqq 0.37{\cdot}10^6$	друга границя затримування, рад/с
$R_p := 2$	максимальне ослаблення сигналу в смузі пропуску, дБ
$R_s := 40$	мінімальне ослаблення сигналу в смузі затримування, дБ
$\omega_{max} := \pi \cdot 10^6$	частота найвищої гармоніки вхідного сигналу, рад/с

Рис. 1. Початкові дані для розрахунку

У ході проектування необхідно розв'язати наступні задачі:

- розрахунок нормованого фільтра;
- розрахунок аналогового фільтра, що відповідає заданим вимогам до AЧX;
- розрахунок цифрового фільтра на основі аналогового фільтра-прототипу.

1. РОЗРАХУНОК НОРМОВАНОГО ФІЛЬТРА

1.1. Визначення мінімального порядку фільтра

На підставі формул, наведених для фільтра Чебишева І роду в табл. 1 [3], визначаємо мінімальні порядки фільтра верхніх частот (ФВЧ) і фільтра нижніх частот (ФНЧ), що входять до складу смугового фільтра (СФ). На підставі формули (8) [3] визначаємо мінімальний порядок СФ. Текст обчислювальної програми з результатами розрахунків порядку фільтра наведений на рис. 2.

Мінімальний порядок ФВЧ:

$$n_1 := ceil \left(\frac{acosh \left(\sqrt{\frac{10^{0.1 \cdot R_s}}{10^{0.1 \cdot R_p} - 1}} \right)}{acosh \left(\frac{\omega_{p1}}{\omega_{s1}} \right)} \right) \qquad n_1 = 5$$

Мінімальний порядок ФНЧ:

$$n_2 := ceil \left(\frac{acosh \left(\sqrt{\frac{10^{-0.1} \cdot R_s}{10^{-0.1} \cdot R_p} - 1} \right)}{acosh \left(\frac{\omega_{s2}}{\omega_{p2}} \right)} \right) \qquad n_2 = 4$$

Мінімальний порядок СФ:

$$n := \max(n_1, n_2) \qquad \qquad n = 5$$

Рис. 2. Програма та результати розрахунку мінімального порядку фільтра

1.2. Розрахунок полюсів фільтра

За формулою (10) [3] визначаємо полюси нормованого фільтра Чебишева I роду. Текст програми та результати розрахунку наведені на рис. 3.

Параметр, що визначає нерівномірність передачі фільтра у смузі пропуску:

$$\epsilon := \sqrt{10^{0.1 \cdot R_{\mathbf{p}}} - 1} \qquad \qquad \epsilon = 0.765$$

Комплексний множник:

i := i

Порядковий номер полюса:

k := 1 .. n

Аргументи полюсів:

$$\alpha_k := \frac{2k-1}{2n} \cdot \pi$$

Попюси

$$P_k := -sin \Big(\alpha_k\Big) \cdot sinh \bigg(\frac{1}{n} \cdot a sinh \bigg(\frac{1}{\epsilon}\bigg)\bigg) + i \cdot cos \Big(\alpha_k\Big) \cdot cosh \bigg(\frac{1}{n} \cdot a sinh \bigg(\frac{1}{\epsilon}\bigg)\bigg)$$

$$P = \begin{pmatrix} 0 \\ -0.067 + 0.973i \\ -0.177 + 0.602i \\ -0.218 \\ -0.177 - 0.602i \\ -0.067 - 0.973i \end{pmatrix}$$

$$Im(P_k) = \begin{pmatrix} 0.5 \\ -0.3 \\ -0.2 \\ -0.3 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.5 \\ -0.5 \\ -0.5 \end{pmatrix}$$
 Розташу вання полюсів на комплексній площині
$$P(x) = \begin{pmatrix} 0.5 \\ -0.5$$

Рис. 3. Програма та результати розрахунку полюсів фільтра

З отриманого графіка видно, що полюси нормованого фільтра на комплексній площині займають місце на лівому півеліпсі, більший радіус якого дорівнює одиниці та спрямований уздовж уявної осі.

1.3. Визначення передавальної функції та розрахунок АЧХ нормованого фільтра

На підставі (11), (12) [3] розраховуємо передавальну функцію нормованого фільтра (рис. 4).

Показник парності порядку фільтра (1-парний, 0-непарний):

$$r := \begin{bmatrix} 1 & \text{if } round \left(\frac{n}{2}\right) = \frac{n}{2} \\ 0 & \text{otherwise} \end{bmatrix}$$

Дійсні частини полюсів:

$$\mathbf{P_{re}_{k}} \coloneqq \text{Re} \Big(\mathbf{P_{k}} \Big) \quad \ \ \mathbf{P_{re}}^{T} = (0 \ -0.067 \ -0.177 \ -0.218 \ -0.177 \ -0.067)$$

Квадрати модулей полюсів:

$$\mathbf{P_{sqr_k}} \coloneqq \left(\left| \mathbf{P_k} \right| \right)^2 \ \ \mathbf{P_{sqr}}^T = \left(\ 0 \ \ 0.952 \ \ 0.393 \ \ 0.048 \ \ 0.393 \ \ 0.952 \right)$$

Коефіцієнт при дробі:

$$K := \left(\frac{1}{\sqrt{1+\epsilon^2}}\right)^r \cdot \prod_{k=1}^n P_k \qquad K = -0.082$$

Передавальна функція нормованого фільтра:

$$W_{\mathbf{n}}(\mathbf{p}) := \frac{K}{\left(\mathbf{p}^2 + 2 \cdot \mathbf{p} \cdot 0.067 + 0.952\right) \cdot \left(\mathbf{p}^2 + 2 \cdot \mathbf{p} \cdot 0.177 + 0.393\right) \cdot (\mathbf{p} + 0.218)}$$

Знаменник передавальної функції:

$$D_{\mathbf{n}}(\mathbf{p}) := (\mathbf{p}^2 + 2 \cdot \mathbf{p} \cdot 0.067 + 0.952) \cdot (\mathbf{p}^2 + 2 \cdot \mathbf{p} \cdot 0.177 + 0.393) \cdot (\mathbf{p} + 0.218)$$

$$D_{\mathbf{n}}(\mathbf{p}) \text{ expand}, \mathbf{p} \rightarrow \mathbf{p}^5 + .706 \cdot \mathbf{p}^4 + 1.498820 \cdot \mathbf{p}^3 + .693221048 \cdot \mathbf{p}^2 + .459084060 \cdot \mathbf{p} + 8.1561648 \cdot 10^{-2}$$

Рис. 4. Програма та результати розрахунку передавальної функції нормованого фільтра

За рівнянням (13) [3] розраховуємо АЧХ нормованого фільтра та будуємо її графік (рис. 5). Побудована АЧХ має рівнохвильові пульсації у смузі пропуску і ϵ монотонною у смузі затримування.

Рівняння АЧХ нормованого фільтра:

$$A_{\mathbf{n}}(\omega) := |W_{\mathbf{n}}(i \cdot \omega)|$$

Діапазон зміни частоти:

 $\omega := 0.01, 0.02...100$

Графік АЧХ нормованого фільтра:

Рис. 5. Програма та результати розрахунку АЧХ нормованого фільтра

За графіком визначаємо максимальне ослаблення сигналу в зоні пропуску:

$$-20 \lg(0.798) = 1.96.$$

Отримане значення приблизно дорівнює величині R_p , заданій у початкових даних. Це підтверджує правильність розрахунку нормованого фільтра.

2. РОЗРАХУНОК АНАЛОГОВОГО СМУГОВОГО ФІЛЬТРА

2.1. Визначення передавальних функцій фільтрів нижніх та верхніх частот

На основі (6), (20)–(23), (28), (29) [3] розраховуємо частоти зрізу і передавальні функції ФВЧ та ФНЧ, що входять до складу С Φ (рис. 6).

Частота зрізу ФВЧ:

$$\omega_{c1} := \omega_{p1}$$

$$\omega_{c1} = 2.7 \times 10^4$$

Частота зрізу ФНЧ:

$$\omega_{c2} := \omega_{p2}$$

$$\omega_{c2} = 1.7 \times 10^5$$

Знаменник передавальної функції ФВЧ:

$$D_1(p) := D_n \left(\frac{\omega_{c1}}{p}\right) \cdot p^n$$

 $+\ 505358143.992000000 \cdot \mathbf{p}^3 + 12395.269620000 \cdot \mathbf{p}^4 + 8.1561648 \cdot 10^{-2} \cdot \mathbf{p}^5$

Коефіцієнти знаменника:

$$\mathbf{a}_1 := \begin{pmatrix} 1434890700000000000000 & 37519734600000000.00 & 29501274060000.00000 & 505358143.992000000 \end{pmatrix}$$

Передавальна функція ФВЧ:

$$W_1(p) := K \frac{p^n}{D_1(p)}$$

Знаменник передавальної функції ФНЧ:

$$D_2(p) := D_n \left(\frac{p}{\omega_{c2}} \right)$$

$$\begin{split} \mathbf{D}_2(\mathbf{p}) \ & \text{expand} \,, \mathbf{p} \ \to 7.0429627772374260223 \cdot 10^{-27} \cdot \mathbf{p}^5 \, + \, 8.4529639252403587119 \cdot 10^{-22} \cdot \mathbf{p}^4 \, + \\ & + \, 3.0507225727661306737 \cdot 10^{-16} \cdot \mathbf{p}^3 \, + \, \big| 2.3986887474048442906 \cdot 10^{-11} \cdot \mathbf{p}^2 \, + \\ & + \, 2.7004944705882352941 \cdot 10^{-6} \cdot \mathbf{p} \, + \, 8.1561648 \cdot 10^{-2} \end{split}$$
 Коефіцієнти знаменника:
$$\mathbf{a}_2 := \left(8.1561648 \cdot 10^{-2} \, \, 2.7004944705882352941 \cdot 10^{-6} \, \, \, 2.3986887474048442906 \cdot 10^{-11} \right) \end{split}$$

3.0507225727661306737·10⁻¹⁶ 8.4529639252403587119·10⁻²² 7.0429627772374260223·10⁻²⁷)^Т Передавальна функція ФНЧ:

$$\mathrm{W}_2(p) := \mathrm{K} {\cdot} \frac{1}{\mathrm{D}_2(p)}$$

Рис. 6. Програма та результати розрахунку частот зрізу та передавальних функцій ФВЧ та ФНЧ

Отримані передавальні функції фільтрів верхніх та нижніх частот ϵ основою структури смугового фільтра.

2.2. Визначення передавальної функції та розрахунок АЧХ аналогового смугового фільтра

За (30), (32) [3] визначаємо передавальну функцію та АЧХ СФ (рис. 7).

Визначаємо максимальне ослаблення сигналу в смузі пропуску і мінімальне — у смузі затримування (рис. 8) та перевіряємо виконання умов (33), (34) [3].

Оскільки умова (33) [3] не виконується (ослаблення в смузі пропуску перевищує величину R_p), вводимо коригуючий коефіцієнт, перераховуємо передавальну функцію та АЧХ за формулами (35) і (32) [3] (рис. 9).

Передавальна функція СФ:

$$W(p) := W_1(p) \cdot W_2(p)$$

АЧХ смугового фільтра:

$$A(\omega) := |W(i \cdot \omega)|$$

$$\omega := 0.5\omega_{s1}, 0.5\omega_{s1} + 0.01 \cdot \omega_{s1}...2\omega_{s2}$$

Рис. 7. Розрахунок передавальної функції та АЧХ С Φ

Максимальне ослаблення сигналу в смузі пропуску:

$$-20 \cdot \log(0.67) = 3.479$$

Мінімальне ослаблення сигналу в смузі затримування:

$$-20 \cdot \log(A(\omega_{s1})) = 43.885$$

Рис. 8. Розрахунок ослаблення сигналу у смугах пропуску та затримування

Передавальна функція смугового фільтра з урахуванням корекції:

$$W(p) := W_1(p) \cdot W_2(p) \cdot K_{cor}$$

Перераховуємо АЧХ смугового фільтра:

$$A(\omega) := |W(i \cdot \omega)|$$

$$\omega := 0.5\omega_{s1}, 0.5\omega_{s1} + 0.01 \cdot \omega_{s1}...2\omega_{s2}$$

Рис. 9. Програма і результати перерахунку передавальної функції та АЧХ фільтра з урахуванням корекції

Повторно перевіряємо умови (33), (34) [3] (рис. 10).

Максимальне ослаблення сигналу в смузі пропуску:

$$-20 \cdot \log(0.818) = 1.745$$

Мінімальне ослаблення сигналу в смузі затримування:

$$-20 \cdot \log(A(\omega_{s1})) = 41.885$$

Рис. 10. Повторний розрахунок ослаблення сигналу у смугах пропуску та затримування

Після корекції умови (33), (34) [3] виконуються. Це означає, що АЧХ фільтра задовольняє вимогам, заданим у початкових даних.

3. РОЗРАХУНОК ЦИФРОВОГО РЕКУРСИВНОГО СМУГОВОГО ФІЛЬТРА

3.1. Визначення дискретних передавальних функцій фільтрів нижніх та верхніх частот

Згідно з п. 3.1 [3], обираємо частоту дискретизації як подвійну частоту найвищої гармоніки вхідного сигналу (рис. 11).

Частота дискретизації, рад/с:

$$\omega_{\rm d} := 2 \cdot \omega_{\rm max}$$
 $\omega_{\rm d} = 6.283 \times 10^6$

Частота дискретизації, Гц:

$$f_d := \frac{\omega_d}{2\pi}$$
 $f_d = 1 \times 10^6$

Рис. 11. Завдання частоти дискретизації

Для визначення дискретних передавальних функцій цифрових фільтрів верхніх та нижніх частот $W_{d1}(z)$ і $W_{d2}(z)$ на базі неперервних передавальних функцій аналогових фільтрівпрототипів $W_1(p)$ і $W_2(p)$ застосуємо метод білінійного z-перетворення [1], який полягає у підстановці:

$$p = 2f_d \frac{z-1}{z+1}.$$

На основі рівнянь (39), (47)–(52) [3] складаємо програму (рис. 12).

Шляхом підстановки двох різних значень *z* робимо перевірку (рис. 12), результати якої свідчать про правильність виконаних розрахунків.

Функція визначення коефіцієнтів бінома Ньютона:

$$C(i,j) := \begin{array}{|c|c|} \hline i! & \text{if } 0 \leq j \leq i \\ \hline j! \cdot (i-j)! & \text{if } 0 \leq j \leq i \\ \hline 0 & \text{otherwise} \end{array}$$

k := 0..n

Коефіцієнти знаменника дискретної передавальної функції ФВЧ:

$$c_{1_{k}} := (2f_{d})^{-n} \cdot \sum_{m=0}^{n} a_{1_{m}} \cdot (2f_{d})^{m} \cdot \sum_{h=0}^{k} (-1)^{m-h} \cdot C(m,h) \cdot C(n-m,k-h)$$

$$c_{1}^{T} = (-0.0754866881 \quad 0.3893452947 \quad -0.802975949 \quad 0.8277517466 \quad -0.4265237237 \quad 0.0878893339)$$

Коефіцієнти чисельника дискретної передавальної функції ФВЧ:

$$d_{1_k} := (-1)^{n-k} \cdot C(n,k)$$

$$\mathbf{d_1}^{\mathsf{T}} = (-1 \ 5 \ -10 \ 10 \ -5 \ 1)$$

Дискретна передавальна функція ФВЧ:

$$W_{d1}(z) := K \cdot \frac{\sum_{k=0}^{n} d_{1_{k}} \cdot z^{k}}{\sum_{k=0}^{n} c_{1_{k}} \cdot z^{k}}$$

Перевірка:

$$\begin{aligned} z_1 &:= 0.78 & z_2 &:= 1.28 \\ W_{d1}(z_1) &= -2.1608594113 & W_{d1}(z_2) &= -0.5734294431 \\ W_1\left(2f_d \cdot \frac{z_1 - 1}{z_1 + 1}\right) &= -2.1608594113 & W_1\left(2f_d \cdot \frac{z_2 - 1}{z_2 + 1}\right) &= -0.5734294431 \end{aligned}$$

Коефіцієнти знаменника дискретної передавальної функції ФНЧ:

$$c_{2_{k}} := \sum_{m=0}^{n} a_{2_{m}} \cdot (2f_{d})^{m} \cdot \sum_{h=0}^{k} (-1)^{m-h} \cdot C(m,h) \cdot C(n-m,k-h)$$

$$\begin{aligned} \mathbf{c_2}^T &= \left(-2.1420001653 \times 10^5 \quad 1.088820548 \times 10^6 \quad -2.2220193295 \times 10^6 \quad 2.2757361397 \times 10^6 \\ &-1.1697762909 \times 10^6 \quad 2.4144155931 \times 10^5 \right) \end{aligned}$$

Коефіцієнти чисельника дискретної передавальної функції ФНЧ:

$$d_{2_k} := C(n,k)$$
 $d_2^T = (1 \ 5 \ 10 \ 10 \ 5 \ 1)$

Дискретна передавальна функція ФНЧ:

$$W_{d2}(z) := K \cdot \frac{\sum_{k=0}^{n} d_{2k} \cdot z^{k}}{\sum_{k=0}^{n} c_{2k} \cdot z^{k}}$$

Перевірка:

$$\begin{split} z_1 &:= 0.78 & z_2 := 1.28 \\ W_{d2}(z_1) &= 0.0115554055 & W_{d2}(z_2) = -5.0810613722 \times 10^{-3} \\ W_2\bigg(2f_d \cdot \frac{z_1 - 1}{z_1 + 1}\bigg) &= 0.0115554055 & W_2\bigg(2f_d \cdot \frac{z_2 - 1}{z_2 + 1}\bigg) = -5.0810613722 \times 10^{-3} \end{split}$$

Рис. 12. Програма і результати розрахунку дискретних передавальних функцій ФВЧ та ФНЧ, що входять до складу СФ

3.2. Побудова структурної схеми цифрового рекурсивного смугового фільтра

На підставі рівняння (53) [3] будуємо структурні схеми цифрових ФВЧ і ФНЧ у програмі Simulink. Коефіцієнти чисельників та знаменників передавальних функцій задаємо як коефіцієнти підсилення відповідних блоків "Gain". Для всіх ланок

затримки задаємо період дискретизації $T=10^{-6}\,\mathrm{c}$. Оскільки фільтр смуговий, ФВЧ та ФНЧ з'єднуємо послідовно, а на виході встановлюємо додатковий підсилюючий елемент з коефіцієнтом K_{cor} (рис. 7) [3]. У результаті отримуємо структурну схему цифрового рекурсивного смугового фільтра (рис. 13).

Рис. 13. Динамічна модель цифрового рекурсивного смугового фільтра у програмі Simulink

3.3. Моделювання цифрового рекурсивного фільтра та дослідження його характеристик

Метою моделювання є дослідження реакції фільтра на гармонічні впливи різної частоти та отримання його амплітудночастотної характеристики [3]. Для цього, за допомогою блоків "Ramp", "Integrator" і "Trigonometric function" (рис. 13), подаємо на вхід фільтра синусоїдальний сигнал одиничної амплітуди, частота якого лінійно наростає.

Згідно з (56), (57) [3], визначаємо швидкість наростання частоти вхідного сигналу і час моделювання (рис. 14).

За структурною схемою, наведеною на рис. 8 [3], збираємо у програмі Simulink детектор амплітуди (рис. 15) і встановлюємо його на виході фільтра (рис. 13).

Похідна від АЧХ за частотою:

За графіком визначаємо максимальне за модулем значення похідної від АЧХ за частотою: $\max \ dA \ d\omega := 3.095 \times 10^{-4}$

Максимально припустиме значення вільної складової амплітуди:

$$Y_{f,max} := 0.1$$

Модулі полюсів нормованого фільтра:

$$\mathbf{P}_{re.abs_k} := \ \begin{vmatrix} \mathbf{P}_{re_k} \\ \end{vmatrix} \qquad \mathbf{P}_{re.abs_0} := 1 \qquad \quad \min(\mathbf{P}_{re.abs}) = 0.067$$

Швидкість зростання частоти:

$$v_{\varpi} := 0.5 \frac{Y_{f.max}.min(P_{re.abs}) \cdot \omega_{c1}}{max_dA_d\omega} \qquad v_{\varpi} = 2.943 \times 10^{5}$$

Час моделювання:

$$t_{\text{max}} := \frac{2\omega_{\text{s}2}}{v_{\text{o}}} \qquad t_{\text{max}} = 2.515$$

Рис. 14. Розрахунок швидкості наростання частоти та часу моделювання

Рис. 15. Детектор амплітуди

Задаємо параметри моделювання і блоку "Scope" згідно з п. 3.3 [3].

Виконавши моделювання до часу $t_{\text{max}} = 2,515$ с, отримуємо осцилограму амплітуди вихідного сигналу (рис. 16).

Рис. 16. Осцилограма амплітуди сигналу на виході фільтра

Для побудови АЧХ необхідно привести вісь часу отриманої осцилограми до осі частот. За формулою (66) [3] визначаємо коефіцієнт пропорційності між частотою ω та номером відліку i:

$$k_{\omega i} = \frac{f_d}{v_{\omega}} = \frac{10^6}{2,943 \cdot 10^5} = 3,398$$
 (c).

За допомогою команди "plot" [2, 3] будуємо АЧХ фільтра (рис. 17), використовуючи $k_{\omega i}$ як коефіцієнт перетворення масштабів за віссю X (рис. 18).

Рис. 17. Залежність Υ(ω)

Рис. 18. Параметри осі X

Отримана залежність $Y(\omega)$ (рис. 17) практично збігається з АЧХ фільтра $A(\omega)$ (рис. 9). Максимальна різниця між цими характеристиками має місце на частоті 26700 рад/с (максимум похідної $dA/d\omega$) і складає близько 0,04, що не перевищує припустимого значення $Y_{\text{в.max}} = 0,1$. Це означає, що при відсутності у вхідному сигналі гармонічних складових з частотою, більшою ніж ω_{max} (що є половиною від частоти дискретизації), розроблений цифровий фільтр має такі самі властивості, що й аналоговий фільтр-прототип.

Для дослідження явища періодичного повторення АЧХ з періодом, що дорівнює частоті дискретизації, необхідно розрахувати АЧХ фільтра на інтервалі $0...3\omega_{\text{max}}$ [3]. Задаємо $Y_{\text{в.max}} = 0.5$ і розраховуємо швидкість наростання частоти вхідного сигналу та час моделювання за формулами (56) і (67) [3] (рис. 19).

Швидкість зростання частоти:

$$v_{\omega} := 0.5 \frac{Y_{f.max} \cdot min(P_{re.abs}) \cdot \omega_{c1}}{max dA d\omega}$$
 $v_{\omega} = 1.471 \times 10^{6}$

Час моделювання:

$$t_{max} := \frac{3\omega_{max}}{v_{\omega}}$$
 $t_{max} = 6.406$

Рис. 19. Визначення швидкості наростання частоти і часу моделювання для розрахунку АЧХ фільтра на інтервалі $0...3\omega_{max}$

Визначаємо коефіцієнт пропорційності між частотою ω та номером відліку i:

$$k_{\omega i} = \frac{f_d}{v_{\omega}} = \frac{10^6}{1.471 \cdot 10^6} = 0,68$$
 (c).

Після моделювання та приведення масштабу отримуємо АЧХ фільтра (рис. 20).

Рис. 20. Залежність $Y(\omega)$

На отриманому графіку видно, що АЧХ на інтервалі $\omega_{\max}...2\omega_{\max}$ є дзеркальним відображенням АЧХ на інтервалі $0...\omega_{\max}$, а далі характеристика періодично повторюється з періодом, що дорівнює частоті дискретизації $\omega_d = 6.28 \cdot 10^6$ рад/с.

ВИСНОВКИ

У результаті виконання курсової роботи було визначено структуру і параметри цифрового рекурсивного смугового фільтра Чебишева І роду. Результати моделювання розробленого фільтра показали, що він повністю задовольняє вимогам до амплітудно-частотної характеристики, заданим у початкових даних, при умові обмеження спектра вхідного сигналу частотою $\omega_{d\, \rm max} = 3.14\cdot 10^6\, \rm pag/c$. Для реалізації розробленого фільтра необхідно: обрати АЦП, ЦАП і мікроконтролер; на основі структурної схеми (рис. 13) скласти керуючу програму; розробити та виготовити друковану плату; провести налагодження схеми. При виборі АЦП необхідно враховувати, що частота вибірки повинна складати 1 МГц.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. **Вадутов, О. С.** Математические основы обработки сигналов: учебное пособие [Текст] / О. С. Вадутов. Томск: Изд-во Томского политехнического университета, 2011.—212 с.
- 2. **Дьяконов**, **B.** Simulink 4. Специальный справочник [Текст] / В. Дьяконов. СПб. : Питер, 2002. 528 с.
- 3. **Черно, О. О.** Методичні вказівки до виконання курсової роботи "Проектування цифрового рекурсивного фільтра" : у 2 ч. Ч. 1. Теоретичні основи та методика проектування [Електронний ресурс] / О. О. Черно. Миколаїв : НУК, 2017. 31 с.

3MICT

ЗАВДАННЯ ДЛЯ КУРСОВОГО ПРОЕКТУВАННЯ 3
1. РОЗРАХУНОК НОРМОВАНОГО ФІЛЬТРА 4
1.1. Визначення мінімального порядку фільтра4
1.2. Розрахунок полюсів фільтра5
1.3. Визначення передавальної функції та розрахунок АЧХ
нормованого фільтра
2. РОЗРАХУНОК АНАЛОГОВОГО СМУГОВОГО ФІЛЬТРА 8
2.1. Визначення передавальних функцій фільтрів нижніх та
верхніх частот
2.2. Визначення передавальної функції та розрахунок АЧХ
аналогового смугового фільтра9
3. РОЗРАХУНОК ЦИФРОВОГО РЕКУРСИВНОГО
СМУГОВОГО ФІЛЬТРА 12
3.1. Визначення дискретних передавальних функцій фільтрів
нижніх та верхніх частот
3.2. Побудова структурної схеми цифрового рекурсивного
смугового фільтра
3.3. Моделювання цифрового рекурсивного фільтра та
дослідження його характеристик
ВИСНОВКИ21
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ22