

Lesson Goal

• Understand the statistical properties underpinning all linear regression models.

- The Gaussian, standard, or classical linear regression model (CLRM), is the cornerstone of most econometric theory.
- We'll discuss 7 assumptions in the context of the two-variable regression model.

Assumption 1: Linear Regression Model

• The regression model is linear in the parameters, though it may or may not be linear in the variables.

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

Assumption 2: Fixed *X* Values, or *X* Values Independent of the Error Term

- Values of X are fixed in repeated samples.
- It is assumed that the X variable(s) and the error term are independent.

$$cov(X_i, u_i) = 0$$

Assumption 3: Zero Mean Value of Disturbance u_i

• Given the value of X_i , the mean, or expected, value of the random disturbance term u_i is zero.

$$E(u_i|X_i) = 0$$

 $E(u_i) = 0$ (if X is non-stochastic)

Assumption 3: Zero Mean Value of Disturbance u_i

Assumption 4: Homoscedasticity or Constant Variance of u_i

• The variance of the error, or disturbance, term is the same regardless of the value of X.

$$var(u_i) = E(u_i^2|X_i) = \sigma^2$$

 $var(u_i) = E(u_i^2) = \sigma^2$ (if X is non-stochastic)

Assumption 4: Homoscedasticity or Constant Variance of u_i

Assumption 5: No Autocorrelation between the Disturbances

• Given any two X values, X_i and X_j ($i \neq j$), the correlation between any two u_i and u_j ($i \neq j$) is zero. Simply put, the observations are sampled independently.

$$cov(u_i, u_j | X_i, X_j) = 0$$

 $cov(u_i, u_j) = 0$ (if X is non-stochastic)

Assumption 5: No Autocorrelation between the Disturbances

Assumption 6: The Number of Observations (n) Must Be Greater than the Number of Parameters to Be Estimated

• The number of observations must be greater than the number of explanatory variables.

Assumption 7: The Nature of X Variables

- The X values in a given sample must not all be the same.
- Also, there can be no outliers in the values of the X variable.

Violations of Assumptions of CLRM

- Multicollinearity
- Heteroscedasticity
- Autocorrelation
- Model Misspecification or Specification Bias

THANK YOU!

Next Lesson: Precision or Standard Errors of OLS
Estimates