

Лекция 3 Методы снижения размерности Отбор признаков

Владимир Гулин https://goo.gl/p8BjOD

20 февраля 2016 г.

План лекции

Мотивация

Задача отбора признаков

Критерии выбора моделей

Переборные алгоритмы

Теоретико-информационные методы

Отбор признаков в реальной жизни. Оценка качества признаков

Мотивация

- Визуализация
- Скорость обучения
- Качество обучения
- Экономия при эксплуатации
- ▶ Понимание данных и гибкость построения новых моделей

Проклятие размерности (curse of dimensionality)

- ▶ Сложность вычислений возрастает экспоненциально
- ▶ Требуется хранить огромное количество данных
- ▶ Большое число признаков являются шумными
- ▶ В линейных классификаторах увеличение числа признаков приводит к мультиколлинеарности и переобучению.
- ightharpoonup Для метрических классификаторов (в пространсвах с I_p нормой) согласно закону больших чисел расстояния становятся неинформативны.

Подходы к снижению размерности

Feature Extraction

Data space \rightarrow Feature space Пространство данных может быть представлено сокращенным количеством "эффективных" признаков

Feature Selection

Data space \rightarrow Data subspace Отбирается некоторое подмножество наиболее "полезных" признаков

Задача отбора признаков

Feature Selection

Дано. *N* обучающих *D*-мерных объектов $\mathbf{x}_i \in \mathcal{X}$, образующих тренировочный набор данных (training data set) \mathbf{X} , а также каждому \mathbf{x}_i соответсвует метка $y_i \in \mathcal{R}$.

Найти. Найти подмножество признаков F исходного признакового пространства $\mathcal{F} = \{f_1, f_2, \dots, f_D\}$, содержащее наиболее "информативные" признаки.

Классификация методов отбора признаков:

- Wrapper methods
- ▶ Filter methods
- Embedded methods

Wrapper methods

Filter methods

Выбор модели обучения

Дано:

```
X - пространство объектов; Y - множество ответов; X^N = (x_i, y_i)_{i=1}^N - обучающая выборка, y_i = f(x_i); a_k = \{a: X \to Y\} - типы моделей, k \in K; \mu_k: (X \times C)^N \to a_k - методы обучения, k \in K.
```

Найти:

Метод обучения μ с лучшей обобщающей способностью

Частные случаи:

- lacktriangle Выбор метода обучения μ оптимизация параметров модели a
- Model selection a
- ► Feature selection:

 $F = \{f_{j_1}, \dots, f_{j_d}\}$ такое, что метод обучения μ использует только признаки из подмножества F.

Как оценить качество

L(a,x) - функция потерь (loss function) алгоритма a на примере x; $J(a,X^N)=rac{1}{N}\sum_{i=1}^N L(a,x_i)$ - функционал эмпирического риска для a на выборке X^N ;

Внутренний критерий:

Оцениваем качество на обучающей выборке

$$J_{\mu}(X^N) = J(\mu(X^N), X^N).$$

Однако получаем смещенную оценку

Внешний критерий:

Оцениваем качество на данных, не участвующих в процессе обучения, например, на проверочной выборке X^Q

$$J_{\mu}(X^N, X^Q) = J(\mu(X^N), X^Q).$$

Оценка зависит от разбиения $X^Z = X^N \sqcup X^Q$

Кросс-валидация

Усреднение оценок внешних критериев по заданному T - множеству разбиений $X^Z=X_t^N\sqcup X_t^Q,\ t=1,\ldots,T$

$$CV(\mu, X^Z) = \frac{1}{|T|} \sum_{t=1}^{T} J_{\mu}(X_t^N, X_t^Q)$$

Варианты кросс-валидации

- 1. Случайное множество разбиений
- 2. Полная кросс-валидация. Используем все возможные подмножества размера Q из Z. Сколько их?
- 3. Скользящий контроль (Leave one out). Z=1
- 4. Проверка по блокам
- 5. Многократная проверка по блокам

Задача отбора признаков по внешнему критерию

 $F = \{f_{j_1}, \dots, f_{j_d}\}$ - множество признаков такое, что метод обучения μ использует только признаки из подмножества F. $J(F) = J(\mu_F, X^N)$ - выбранный внешний критерий

$$J(F) \rightarrow min$$

Отбор признаков "в лоб"

- Экспертный подход
- Full Search (NP hard)
- Жадные алгоритмы (Forward selection, Backward elimination, Bidirectional elimination etc.)

Жадные алгоритмы отбора признаков

Forward selection

```
function forwardselection(F, J, n):
       # F - original feature set
       # J - external criterion
       # n - parameter
5
        initialize F_0 = {} # empty set
        initialize Q = J(F_0) # compute score
       for j in 1..D:
8
            fbest = find_best_feature(J, F_j-1, F)
            F_j = add_new_feature(F_j-1, fbest) # add feature
10
            if J(F_j) < Q:
11
                jbest = j
12
                Q = J(F_j) # save best
13
            if j - jbest >= n:
14
               return F_jbest
```

Backward elimination

Все аналогично. Только ислючаем

Жадные алгоритмы отбора признаков

DFS. Основные идеи:

- ▶ Избегаем повторов при переборе
- ► Если подмножество признаков бесперспективно, то не будем пытаться его дальше наращивать.

Оценка бесперспективности:

$$\exists j: \quad J(F) \geq \eta J(F_i^*), \quad |F| \geq j + n$$

Жадные алгоритмы отбора признаков

Итоги

- ▶ Не все признаки "полезны"
- ▶ Отбор признаков проводится по внешним критериям (CV)
- ▶ Для сокращения перебора хороши любые эвристики
- ▶ Предполагаем, что перебор по подмножествам устойчив
- НАДО ПЕРЕОБУЧАТЬ АЛГОРИТМ

Теоретико-информационные методы. Интуиция

А можно ли что-то сказать о фиче не применяя алгоритм обучения?

- Не берем фичи с малой дисперсией
- ▶ Не берем фичи "не похожие" на ответ
- ▶ Не берем фичи похожие, на те, которые уже взяли

Теоретико-информационные методы. Интуиция

"Нерелевантность" признака

Рассмотрим задачу бинарной классификации $X \in \mathcal{R}^D, \quad Y \in \{-1, +1\}$

$$P(X_i, Y) = P(X_i) P(Y)$$

 $P(X_i| Y) = P(X_i)$
 $P(X_i| Y=1) = P(X_i| Y=-1)$

"Нерелевантность" признака

Рассмотрим задачу многоклассовой классификации $X \in \mathcal{R}^D, \quad Y = \{y_1, y_2, \dots y_k\}$

$$\chi^2 = \sum_{ij} \frac{(M_{ij} - m_{ij})^2}{m_{ij}}, \quad m_{ij} = \frac{1}{N} M_{i.} M_{.j.}$$

где M_{ij} — количество примеров в датасете с $f=f_i, y=y_j.$

▶ Какое значение соответсвует релевантности признака?

"Нерелевантность" признака

Рассмотрим задачу бинарной классификации $X \in \mathcal{R}^D, \quad Y \in \{-1, +1\}$

Отношение "сигнал-шум"

$$\mu(X,Y) = \frac{\mu(y_{+}) - \mu(y_{-})}{\sigma(y_{+}) + \sigma(y_{-})}$$

$$\mu(y_{+}) = \frac{1}{N_{+}}X(:|y_{+}), \quad \mu(y_{-}) = \frac{1}{N_{-}}X(:|y_{-})$$

$$\sigma(y_{+}) = \sqrt{\frac{1}{N_{+} - 1} \sum_{j \in N_{+}} (X(j|y_{+}) - \mu(y_{+}))^{2}},$$

$$\sigma(y_{-}) = \sqrt{\frac{1}{N_{-} - 1} \sum_{j \in N_{-}} (X(j|y_{-}) - \mu(y_{-}))^{2}}$$

Методы основанные на корреляции/взаимной информации

Интуиция

- ▶ Хотим найти признаки "похожие" на ответы
- Хотим, чтобы признаки сами между собой были "не похожи"

Методы основанные на корреляции/взаимной информации

Коэффициент корреляции

$$r(X,Y) = \frac{\sum_{x} (x - \bar{x}) \sum_{y} (y - \bar{y})}{\sqrt{\sum_{x} (x - \bar{x})^{2}} \sqrt{\sum_{y} (y - \bar{y})^{2}}}$$

Correlation feature selection (cfs)

Взаимная информация

$$I(X,Y) = \sum_{x} \sum_{y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right) = D_{KL}(p(X,Y)||p(X)p(Y))$$

Minimum Redundancy maximum Relevance (mRMR)

CFS

$$r_{yf} = \frac{\sum_{y} (y - \bar{y}) \sum_{f} (f - \bar{f})}{\sqrt{\sum_{y} (y - \bar{y})^{2}} \sqrt{\sum_{f} (f - \bar{f})^{2}}}$$

$$r_{f_{i}f_{j}} = \frac{\sum_{f_{i}} (f_{i} - \bar{f}_{i}) \sum_{f_{j}} (f_{j} - \bar{f}_{j})}{\sqrt{\sum_{f_{i}} (f_{i} - \bar{f}_{i})^{2}} \sqrt{\sum_{f_{j}} (f_{j} - \bar{f}_{j})^{2}}}$$

Критерий *CFS*:

$$CFS = \max_{F_d} \left[\frac{r_{yf_1} + r_{yf_2} + \ldots + r_{yf_d}}{\sqrt{d + 2(r_{f_1f_2} + r_{f_1f_3} + \ldots r_{f_{d-1}f_d})}} \right]$$

Вопрос:

▶ Оцените сложность алгоритма CFS

mRMR

Идея

- Будем отбирать признаки, которые имеют наибольшую взаимную информацию с ответами
- Будем штрафовать признаки за избыточность, в контексте уже отобранных фичей

$$Relevance(F, y) = \frac{1}{|F|} \sum_{f_i \in F} I(f_i, y)$$

$$Redundancy(F) = \frac{1}{|F|^2} \sum_{f_i, f_j \in F} I(f_i, f_j)$$

Тогда критерий mRMR имеет вид:

$$mRMR = \max_{F} (Relevance(F, y) - Redundancy(F))$$

Linear Regression with Regularization

$$a(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$
 - линейная модель

$$J(a, X^{N}) = \sum_{i=1}^{N} (a(x_{i}) - c_{i})^{2}$$

Регуляризация

$$J(a, X^{N}) = \sum_{i=1}^{N} (a(x_{i}) - c_{i})^{2} + \lambda ||\mathbf{w}||_{q}$$

Decision Trees with pruning

Деревья решений обладают бесконечной VC размерностью

Decision Trees with pruning

Ранжирование признаков

- ▶ Как понять какие признаки более важны?
- В линейных моделях?
- ▶ В нелинейных моделях (деревьях)?
- В ансамблях?

Feature impotance for decision tree

Feature impotance for ensembles

- ▶ Просуммируем по всем базовым моделям
- ► Как быть с нелинейными композициями (stacking)?

Wrapper methods

Выводы

- ✓ Непосредственно проводит процедуру выбора модели. Что зачастую позволяет найти "почти" оптимальное подмножество
- ★ Требует построения алгоритма для каждого подмножества признаков. ОООЧЕНЬ дорого с вычислительной точки зрения.

Filter methods

Выводы

- ✓ Легко масштабируются для датасетов высокой размерности
- ✓ Дешевы с вычислительной точки зрения
- ✓ Можно применить метод только один раз и затем использовать для большого числа алгоритмов машинного обучения
- ★ He "ловит" feature interaction

Выводы

- ✓ Менее вычислительно затратны, чем wrapper методы
- **Х** Результат сильно зависит от используемого алгоритма обучения
- **Х** Результат сильно зависит от датасета

Отбор признаков в реальной жизни. Оценка качества признаков

Как понять, что новая фича реально работает и приносит профит?

Отбор признаков в реальной жизни. Оценка качества признаков

Как понять, что новая фича реально работает и приносит профит?

- ▶ Надо проверить статистическую гипотезу о том, что с этой фичой качество выше, чем без нее
- На практике это выраждается в многократную кроссвалидацию по блокам со сравнением scora

Домашнее задание №2

Требуется: Реализовать embedded метод отбора признаков для своего варианта из дз 1. Провести сравнительный анализ своего метода с каждым из подходов, описанных на лекции (т.е. нужно минимум реализовать один wrapper и один filter метод). Построить графики.

Критерии анализа

- 1. Быстродействие
- 2. Качество полученных моделей, в зависимости от количества признаков
- 3. ...

Вопросы

