Aproksymacja średniokwadratowa wielomianami algebraicznymi

Metody Obliczeniowe w Nauce i Technice

Laboratorium 5

Aleksandra Smela

SPIS TREŚCI

1.		Opis	zada	ania	1
2.		Użyte	e na	rzędzia i środowisko	2
3.				ealizacji zadania	
	3.			zgotowanie modułu z niezbędnymi funkcjami	
	3.2	2.	Błęd	ly interpolacji	2
	3.3			<u>-y</u>	
4.				ich analiza	
	4.			ele błędów	
		4.1.1		Błąd maksymalny	
		4.1.1		Błąd średniokwadratowy	
	4.2	2.		oksymacja dla różnej liczby wielomianów bazowych	
		4.2.1		Wykresy	4
		4.2.2		Wnioski	
	4.3	3.	Apro	oksymacja dla różnej liczby punktów dyskretyzacji	5
		4.3.1		Wykresy	5
		4.3.2.		Wnioski	
		4.3.3 apro		Porównanie wykresów w zależności od liczby punktów dyskretyzacji nacji z inną liczbą wielomianów bazowych	
4.		Pods	umo	owanie	9
5.		Biblio	ogra	ıfia	0

1. OPIS ZADANIA

- 1.1. Dla funkcji $f(x) = \sin x \cdot \sin(\frac{2x^2}{\pi})$ na przedziale $(-\pi, 2\pi)$ wyznaczyć wartości w n dyskretnych punktach. Następnie w oparciu o te punkty wyznaczyć przybliżenie funkcji wykorzystując **aproksymację średniokwadratową wielomianami algebraicznymi**.
- 1.2. Wykonać eksperymenty numeryczne dla różnej liczby punktów dyskretyzacji oraz układów funkcji bazowych zawierających różną liczbę funkcji.
- 1.3. Oszacować błędy przybliżenia.
- 1.4. Graficznie zilustrować interesujące przypadki.

2. UŻYTE NARZĘDZIA I ŚRODOWISKO

Komputer z systemem Windows 10

Procesor: AMD Ryzen 7 3700X 3,6GHz

Pamięć RAM: 32 GB

Jezyk programowania: Python 3

Użyte biblioteki: numpy, matplotlib, pandas

3. SPOSÓB REALIZACJI ZADANIA

3.1. Przygotowanie modułu z niezbędnymi funkcjami

Przygotowano moduł *approximation.py* zawierający funkcje niezbędne do zrealizowania zadania.

approx(points, m)

Funkcja przyjmuje *points*, jako listę krotek postaci: (x, f(x), w(x)), gdzie x to liczba, f(x) to wartość funkcji aproksymowanej dla x, a w(x) to waga punktu (x, f(x)). Do realizacji tego ćwiczenia przyjęto, że wagi są równe 1 dla każdego punku.

Parametr m określa liczbę funkcji bazowych. Funkcje bazowe to wielomiany x^i , gdzie i=0,1,...,m.

Funkcja zwraca funkcje F(x), która dla zadanego x zwraca wartość funkcji aproksymującej.

 $generate_points(n, interval, f_x)$

Funkcja przyjmuje n jako liczbę punktów do wygenerowania, *interval*, jako krotkę (a, b), która określa przedział, z którego zostaną wygenerowane współrzędne x punktów oraz f_x jako funkcję od *x*.

Funkcja zwraca listę krotek postaci $(x, f_x(x), 1)$, gdzie 1 to waga danego punktu, a liczby x są równomiernie rozłożone na przedziale interval.

max_error(f1, f2, interval) oraz mean_squared_error(f1, f2, interval) Funkcje zwracające odpowiednio błąd maksymalny i błąd średniokwadratowy zgodnie z wzorami opisanymi w punkcie 3.2.. Parametr interval określa przedział, na którym liczone są błędy.

draw_approx(...)

Funkcja rysuje wykres funkcji aproksymującej i aproksymowanej na podstawie 1000 punktów z przedziału, zaznacza punkty dyskretyzacji i zapisuje wykres do pliku o określonej ścieżce.

3.2. Błędy interpolacji

Do wyliczania błędów aproksymacji zastosowano wzory:

- Błąd maksymalny wyliczono z wzoru: : $max_{i=0,\dots,1000}|f_1(\underline{x_i}) f_2(x_i)|$
- Błąd średniokwadratowy wyliczono z wzoru: : $\frac{1}{1000} \sqrt{\sum_{i=0}^{1000} (f_1(x_i) f_2(x_i))^2}$

gdzie f_1 to funkcja aproksymowana, natomiast f_2 to funkcja aproksymująca. Liczby x_i są równomiernie rozmieszczone na określonym przedziale.

3.3. Testy

W module *test.*py przygotowano wykresy aproksymacji oraz tabele błędów dla następujących parametrów:

- liczba punktów dyskretyzacji: 2, 3, 4, 5, 6, 7, 8, 9;
- liczba wielomianów bazowych: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200.

4. WYNIKI I ICH ANALIZA

Legenda do wykresów:

- kolor niebieski funkcja aproksymowana,
- kolor różowy funkcja aproksymująca,
- kolor fioletowy punkty dyskretyzacji.

4.1. Tabele błędów

Tabele błędów posłużą do analiz przeprowadzonych w kolejnych punktach.

oznaczenia:

- m liczba wielomianów bazowych,
- n liczba punktów dyskretyzacji.

4.1.1. Błąd maksymalny

m →	2	3	4	5	6	7	8	9
n ↓								
10	1,4402	1,4326	1,6381	1,6536	1,8109	1,7897	1,9819	2,1749
20	1,0592	1,0423	1,1084	1,0637	0,9356	1,0913	1,1109	1,0942
30	1,0653	1,0453	1,1037	1,0736	0,9444	1,0863	1,0896	1,0756
40	1,0671	1,0449	1,1014	1,0760	0,9403	1,0820	1,0886	1,0789
50	1,0682	1,0446	1,0999	1,0771	0,9367	1,0794	1,0885	1,0800
60	1,0689	1,0444	1,0990	1,0778	0,9376	1,0775	1,0885	1,0806
70	1,0694	1,0442	1,0982	1,0783	0,9389	1,0762	1,0885	1,0810
80	1,0698	1,0440	1,0977	1,0786	0,9399	1,0751	1,0886	1,0813
90	1,0701	1,0439	1,0973	1,0789	0,9406	1,0743	1,0886	1,0815
100	1,0703	1,0438	1,0969	1,0791	0,9412	1,0736	1,0886	1,0817
200	1,0714	1,0433	1,0953	1,0798	0,9439	1,0702	1,0887	1,0825

tabela I: błąd maksymalny

4.1.1. Bład średniokwadratowy

4.1.1. Biqu Sicumokwaui atowy										
$\begin{array}{c} \mathbf{m} \rightarrow \\ \mathbf{n} \downarrow \end{array}$	2	3	4	5	6	7	8	9		
10	0,0356	0,0355	0,0375	0,0378	0,0385	0,0372	0,0339	0,0356		
20	0,0321	0,0317	0,0314	0,0282	0,0274	0,0258	0,0231	0,0231		
30	0,0321	0,0317	0,0314	0,0279	0,0271	0,0257	0,0230	0,0230		
40	0,0321	0,0317	0,0314	0,0279	0,0270	0,0257	0,0230	0,0230		
50	0,0321	0,0317	0,0314	0,0278	0,0269	0,0256	0,0229	0,0229		
60	0,0321	0,0317	0,0314	0,0278	0,0269	0,0256	0,0229	0,0229		
70	0,0321	0,0317	0,0314	0,0278	0,0268	0,0256	0,0229	0,0229		
80	0,0321	0,0317	0,0314	0,0278	0,0268	0,0256	0,0229	0,0229		
90	0,0321	0,0317	0,0314	0,0278	0,0268	0,0256	0,0229	0,0229		
100	0,0321	0,0317	0,0314	0,0278	0,0268	0,0256	0,0229	0,0229		
200	0,0321	0,0317	0,0314	0,0278	0,0268	0,0255	0,0229	0,0229		

tabela II: błąd średniokwadratowy

4.2. Aproksymacja dla różnej liczby wielomianów bazowych

Aby zbadać aproksymację dla różnej liczby wielomianów bazowych w ramach tej samej liczby punktów przeanalizowano aproksymację dla 70 punktów dyskretyzacji. Ta analiza opiera się na wynikach zobrazowanych przez wykresy I-VIII (4.2.1.) oraz błędy maksymalne i średniokwadratowe, które znajdują się w wierszach tabel I i II (4.1.) wyróżnionych kolorem fioletowym.

4.2.2. Wnioski

- Wraz z wzrostem stopni wielomianów bazowych rośnie liczba ekstremów lokalnych funkcji aproksymujących.
- Funkcja aproksymująca jest najbardziej gładka dla niskich stopni wielomianów.
- Błąd maksymalny nie jest proporcjonalny do maksymalnego stopnia m wielomianów bazowych zależność między tym błędem a liczbą m nie jest monotoniczna.
- Dla analizowanych danych błąd średniokwadratowy jest odwrotnie proporcjonalny do liczby wielomianów bazowych. Jednak zmniejszanie błędu średniokwadratowego wraz z zwiększaniem liczby wielomianów bazowych o 1 jest stosunkowo niewielkie i nie przekracza 0,004.

- Dla innych parametrów (np. dla 10 punktów dyskretyzacji), opisana zależność nie zachodzi i błąd średniokwadratowy nie jest proporcjonalny do liczby wielomianów bazowych.
- Mimo braku bezpośredniej proporcjonalności między wartością błędu a liczbą m wielomianów bazowych można ocenić, że dla większej liczby m funkcja aproksymująca lepiej przybliża funkcję aproksymowaną biorąc pod uwagę również kształt funkcji widoczny na wykresach.
- Biorąc pod uwagę, że dla małej liczby wielomianów bazowych funkcja aproksymująca jest gładsza, a dla większej lepiej przybliża funkcję, przy doborze tego parametru w aproksymacji należy kierować się potrzebami i oczekiwanym rezultatem.

4.3. Aproksymacja dla różnej liczby punktów dyskretyzacji

Aby zbadać aproksymację dla różnej liczby punktów dyskretyzacji w ramach tej samej liczby wielomianów bazowych przeanalizowano aproksymację dla 6 wielomianów bazowych. Ta analiza opiera się na wynikach zobrazowanych przez wykresy IX-XIX (4.3.1.) oraz błędy maksymalne i średniokwadratowe, które znajdują się w wierszach tabel I i II (4.1.) wyróżnionych kolorem błękitnym.

4.3.2. Wnioski

- Dla badanej funkcji aproksymowanej funkcja aproksymująca ma bardzo podobny kształt dla 6 wielomianów bazowych i różnej liczby n punktów dyskretyzacji. Dla badanych parametrów n od 20 do 200 (wykresy X-XIX) funkcja aproksymująca ma podobne przedziały monotoniczności oraz liczbę i rozmieszczenie ekstremów lokalnych. Podobne zjawisko można zauważyć dla innych liczb wielomianów bazowych, przy zmiennej liczbie punktów dyskretyzacji. Zostało to zobrazowane na wykresach XX-XXXIII (4.3.3.).
- Mimo podobieństw w kształcie wykresów, błędy przedstawione w tabelach I i II są różne dla różnej liczby punktów dyskretyzacji. W szczególności błąd maksymalny przyjmuje różne wartości.
- Nie ma proporcjonalności między wartością błędu maksymalnego, a liczbą punktów dyskretyzacji.
- Wartość błędu średniokwadratowego jest odwrotnie proporcjonalna do liczby punktów dyskretyzacji. Błąd ten jednak nie zmienia się znacznie (z dokładnością do 4 miejsc dziesiętnych) w zależności od liczby punktów dyskretyzacji. W szczególności dla dużej liczby punktów, błąd jest niemal stały. Dla analizowanego przypadku z 6 wielomianami bazowymi wartość ta ustabilizowała się na poziomie 70 punktów dyskretyzacji. Dla innych liczb wielomianów również można zaobserwować podobne zjawisko.
- Podsumowując, im więcej danych, tym aproksymacja jest dokładniejsza (korzystamy z dużej ilości informacji), na co wskazuje wyliczony błąd średniokwadratowy. Jednak dla pewnego rzędu wielkości dodatkowe dane nie powodują istotnej poprawy dokładności aproksymacji.

4.3.3. Porównanie wykresów w zależności od liczby punktów dyskretyzacji dla aproksymacji z inną liczbą wielomianów bazowych

Na przedstawionych wykresach XX-XXXIII można zauważyć, że dla badanej funkcji aproksymowanej kształt funkcji aproksymującej bardziej zależy od liczby wielomianów bazowych niż liczby punktów dyskretyzacji.

4. PODSUMOWANIE

- Przyjmijmy oznaczenia: n liczba punktów dyskretyzacji, m liczba wielomianów bazowych. Aby dokonać aproksymacji musi zachodzić n>m, jednak najlepsze wyniki można otrzymać, gdy $n\gg m$.
- Parametr m należy dobrać mając na uwadze oczekiwany rezultat czy funkcja aproksymująca powinna być gładka, czy dokładniej przybliżać funkcję aproksymowaną. Wraz z wzrostem parametru n wzrasta dokładność aproksymacji, jednak dla pewnego rzędu wielkości nie ma znaczących różnic. Zależność między dokładnością aproksymacji i parametrami n i m szczegółowo opisano w punkcie 4.

5. BIBLIOGRAFIA

- [1] Wykłady dr Katarzyny Rycerz;
- [2] "Analiza numeryczna" David Kincaid, Ward Cheney