Minimal HW

Problem 1: Sigma Notation

$$S = 5 + 9 + 13 + \dots + 89$$

$$a_1=5$$
 and difference $d=4$

$$a_n = a_1 + d(n-1)$$

Let's fit a_1 and d values into equation:

$$89 = 5 + 4n - 4$$

$$88 = 4n \to n = 22$$

Answer:
$$S=\sum_{k=1}^{22}5+4(k-1)$$

Problem 2: Shifting Index in Sigma Notation

$$\sum_{k=3}^{15} (2k+1)$$

start at
$$k=1$$
 then $\sum_{k=3-2}^{15-2}(2(k+2)+1)$

Answer:
$$S = \sum_{k=1}^{13} 2k + 5$$

Problem 3: Recursive Notation

$$a_1=12$$
 and $a_n=a_{n-1}+d$.

if
$$a_{10}=57$$
 then $d=rac{57-12}{10-1}=5$

Answer:
$$a_{25} = 12 + 5(25 - 1) = 132$$

Problem 4: Applied Problem

if we check the first and last $\,$ multiples of 7 then we can easily find d and the sum.

The first multiple above 100 is 105 where 7×15 since 100...104 are not multiples of 7.

The last multiple below 1000 is 994 where 7×142 since 1000, 999, 998, 997, 996, 995 are not multiples of 7.

$$n = \frac{a_n - a_1}{d} + 1 o \frac{994 - 105}{7} + 1 = 127 + 1 = 128$$

Answers:
$$S = rac{a_1 + a_n}{2} imes n = rac{105 + 994}{2} imes 128 = 1099 imes 64 = 70336$$

Problem 5: Sigma notation

$$2650 = \sum_{k=1}^{n} (3k+2)$$

$$S=rac{a_1+a_n}{2} imes n$$
 and $a_1=3 imes 1+2=5$, $a_n=3n+2$

$$S=rac{5+3n+2}{2} imes n
ightarrow 5300=n imes (3n+7)$$

$$3n^2 + 7n - 5300 = 0 \Rightarrow D = 49 + 4 \times 3 \times 5300 = 63649$$

$$n=rac{-7\pm\sqrt{63649}}{6}pprox41$$

Check if n satisfies the S=2650

$$S=rac{5+3 imes41+2}{2} imes41 o41 imes65=2665$$
 slight larger than S

Check if n=40 satisfies the $\,S=2650\,$

$$S = rac{5+3 imes40+2}{2} imes40
ightarrow 20 imes127 = 2540$$
 less than S

Answer: there is no n such that S=2650

Problem 6: Mean Formula

$$a_{10}=a_1+9d$$
 . Let's find a_1 and d

$$a_5=a_1+4d$$
 and $a_{15}=a_1+14d$

$$a_{15}-a_{5}=10d
ightarrow 60-20=10d
ightarrow d=4$$

Answer: $a_{10} - a_5 = 5d \rightarrow a_{10} = 20 + 20 = 40$

Problem 7: Applied Problem

$$a_{20} = a_1 + 19d
ightarrow a_{20} = 5 + 19 imes 0.5 = 29/2$$

Answer:
$$S = rac{a_{20} + a_1}{2} imes n o S = rac{29/2 + 5}{2} imes 20 = 10 imes (14.5 + 5) = 195$$

Problem 8: Sum of the First N terms

$$a_1=11$$
 and $d=3$

$$1000 = rac{11 + a_n}{2} imes n
ightarrow 2000/n = 11 + a_n
ightarrow 2000/n = 11 + a1 + 3 imes (n-1)$$

$$2000/n = 22 + 3n - 3 \rightarrow 2000/n = 19 + 3n$$

$$3n^2 + 19n - 2000 > 0$$

Answer:
$$n=rac{-19\pm\sqrt{19^2-4 imes3 imes-2000}}{2 imes3}pproxrac{-19+156}{6}pprox23$$

Problem 9: Shifting Index in Sigma Notation

$$\sum_{k=3}^{12} 4(rac{1}{2})^k$$
 find S starting from $k=0$

$$\sum_{k=3}^{12-3} 4(\frac{1}{2})^{k+3} \to \sum_{k=0}^{9} 4(\frac{1}{2})^k(\frac{1}{8})$$

Answer: $\sum_{k=0}^{9} (\frac{1}{2})^k (\frac{1}{2})$

Problem 10: N-th Term Formula of geometric sequence

$$a_2=a_1r$$
 and $a_5=a_1r^4$

$$\frac{48}{-6} = r^3 o r = -2$$

Answer:
$$\frac{a_{10}}{a_2}=r^8 o a_{10}=-6*(-2)^8=-1536$$

Problem 11: Finding Common Ratio

Answer:
$$rac{a_7}{a_4}=r^3
ightarrowrac{1458}{54}=r^3
ightarrow r=3$$

Problem 12: Sum of the First N terms

$$S_n=a_1rac{1-r^n}{1-r}$$

Answer:
$$S_{15} = 8 imes rac{1 - (3/4)^{15}}{1 - 3/4} pprox 8 imes 4 = 32$$

Problem 13: Definitions

$$P(x) = x^5 - 4x^3 + x^2 - 7$$

Answer: degree is 5 and there are 4 terms which are 1,-4, 1,-7

Problem 14: Adding Polynomials

Simplify
$$(2x^4 - 3x^3 + x - 5) + (x^3 - 2x^2 + 4x + 7)$$

Answer:
$$2x^4 - 2x^3 + 5x + 2$$

Problem 15: Multiplying Polynomials

$$(x^2-x+2)(x^2+x+1)$$

$$(x(x-1)+2)(x(x+1)+1) o (x^2-x) imes (x^2+x) + x(x-1) + 2x(x+1) + 2$$

Answer:
$$x^4 - x^2 + x^2 - x + 2x^2 + 2x + 2 = x^4 + 2x^2 + x + 2$$

Problem 16: GCD and LCM of Monomials

GCD for $24x^3y^2z^5$ and $36x^5y^3z^2$

$$2,2,2,3,x^3,y^2,z^2,z^3$$
 and $2,2,3,3,x^2,x^3,y,y^2,z^2$

24, 48, 72 and 36, 72

Answers: GCD is $12x^3y^2z^2$ and LCM is $72x^5y^3z^5$

Problem 17: Factoring Quadratics

Factor $x^4 - 13x^2 + 36$

If
$$u=x^2$$
 then $u^2-13u+36
ightarrow (u-4)(u-9)$

Answer: $(x^2-2^2)(x^2-3^2)=(x-2)(x+2)(x-3)(x+3)$

Problem 18: Special Binomial Products

Expand $(2x+3y)^5$

$$C_0^5(2x)^5 + C_1^5(2x)^4(3y) + C_2^5(2x)^(3y)^2 + C_3^5(2x^2)(3y)^3 + C_4^5(2x)(3y)^4 + C_5^5(3y)^5$$

Answer: $32x^5 + 240x^4y + 720x^3y^2 + 1080x^2y^3 + 810xy^4 + 243y^5$

Problem 19: Polynomial division

 $6x^3+11x^2-31x+15$ divide by 3x-2

divide by $2x^2$ then $6x^3 + 11x^2 - (6x^3 - 4x^2) = 15x^2 - 31x + 1$

divide by 5x then $15x^2 - 31x - (15x^2 - 10x) = -21x + 15$

divide by -7 then $-21x+15-\left(-21x+14\right)=1$

Answer: $2x^2 + 5x - 7$ remainder 1.

Problem 20: The remainder theorem

List all possible rational zeros of $f(x)=2x^4-5x^3+x^2-4$

$$a_0=-4$$
 where $p=\pm 1,\pm 2,\pm 4$

$$a_n=2$$
 where $q=\pm 1,\pm 2$

Answer: $\frac{p}{q}=\{\,\pm\frac{1}{1},\pm\frac{1}{2},\pm\frac{2}{1},\pm\frac{2}{2},\pm\frac{4}{1},\pm\frac{4}{2}\,\} \to \{\,\pm\frac{1}{2},\pm1,\pm2,\pm4\,\}$