import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split,cross_val_score

from sklearn.tree import DecisionTreeClassifier, plot_tree

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

df=pd.read_csv("/content/heart.csv")

df

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
	0	52	1	0	125	212	0	1	168	0	1.0	2	2
	1	53	1	0	140	203	1	0	155	1	3.1	0	0
	2	70	1	0	145	174	0	1	125	1	2.6	0	0
	3	61	1	0	148	203	0	1	161	0	0.0	2	1
	4	62	0	0	138	294	1	1	106	0	1.9	1	3
	1020	59	1	1	140	221	0	1	164	1	0.0	2	0
	1021	60	1	0	125	258	0	0	141	1	2.8	1	1
	1022	47	1	0	110	275	0	0	118	1	1.0	1	1
	1023	50	0	0	110	254	0	0	159	0	0.0	2	0
	1024	54	1	0	120	188	0	1	113	0	1.4	1	1

1025 rows × 14 columns

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.describe()

-		_
•		•
	➾	$\overline{}$
_	•	
-		_

age	sex	ср	trestbps	chol	fbs	I	
0000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025	
4146	0.695610	0.942439	131.611707	246.00000	0.149268	О	
2290	0.460373	1.029641	17.516718	51.59251	0.356527	О	
0000	0.000000	0.000000	94.000000	126.00000	0.000000	О	
0000	0.000000	0.000000	120.000000	211.00000	0.000000	О	
0000	1.000000	1.000000	130.000000	240.00000	0.000000	1	
0000	1.000000	2.000000	140.000000	275.00000	0.000000	1	
0000	1.000000	3.000000	200.000000	564.00000	1.000000	2	

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1025 entries, 0 to 1024
 Data columns (total 14 columns):

#	Column	Non-N	Null Count	Dtype				
0	age	1025	non-null	int64				
1	sex	1025	non-null	int64				
2	ср	1025	non-null	int64				
3	trestbps	1025	non-null	int64				
4	chol	1025	non-null	int64				
5	fbs	1025	non-null	int64				
6	restecg	1025	non-null	int64				
7	thalach	1025	non-null	int64				
8	exang	1025	non-null	int64				
9	oldpeak	1025	non-null	float64				
10	slope	1025	non-null	int64				
11	ca	1025	non-null	int64				
12	thal	1025	non-null	int64				
13	target	1025	non-null	int64				
	67 16	4/41	. 164/42)					

dtypes: float64(1), int64(13)

memory usage: 112.2 KB

df.shape

→ (1025, 14)

df.isnull().sum().sum()

 \rightarrow np.int64(0)

df.duplicated().sum()

→ np.int64(723)

df[df.duplicated()]

<u> </u>														
→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	
	15	34	0	1	118	210	0	1	192	0	0.7	2	0	
	31	50	0	1	120	244	0	1	162	0	1.1	2	0	
	43	46	1	0	120	249	0	0	144	0	8.0	2	0	
	55	55	1	0	140	217	0	1	111	1	5.6	0	0	
	61	66	0	2	146	278	0	0	152	0	0.0	1	1	
	1020	59	1	1	140	221	0	1	164	1	0.0	2	0	
	1021	60	1	0	125	258	0	0	141	1	2.8	1	1	
	1022	47	1	0	110	275	0	0	118	1	1.0	1	1	

0

0

254

188

110

120

159

113

0

0

1

0.0

1.4

2

1

0

1

723 rows × 14 columns

50

54

1023

1024

0

1

0

0

```
df = df.groupby(df.columns.tolist()).size().reset_index(name='count')
df.duplicated().sum()
→ np.int64(0)
num cols = df.columns.tolist()
for col in num_cols:
    plt.figure(figsize=(6, 4))
    sns.histplot(df[col], kde=True, bins=30)
    plt.title(f" ∠ Distribution of {col}", fontsize=14)
    plt.xlabel(col)
    plt.ylabel("Frequency")
    plt.grid(True, alpha=0.3)
    plt.show()
```

 $\overline{2}$

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

thalach

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)

/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
 fig.canvas.print_figure(bytes_io, **kw)


```
for col in num_cols:
    sns.boxplot(x=df[col])
    plt.title(f"Outliers in {col}")
    plt.show()
```


Outliers in age

Outliers in sex

Outliers in cp

Outliers in trestbps

Outliers in chol

Outliers in fbs

Outliers in restecg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 restecg

Outliers in thalach

Outliers in exang

Outliers in oldpeak

Outliers in slope

Outliers in ca

Outliers in thal

Outliers in target

