C. Monety

Dostępna pamięć: 32 MB

Jaś dostał monety w nieprzezroczystym woreczku. Po zważeniu okazało się, że sumaryczna masa monet to F gramów. (Masa woreczka jest zaniedbywalnie mała.) Jaś zastanawia się, czy można — bez otwierania woreczka i macania — stwierdzić, ile pieniedzy jest w środku.

Przykładowo załóżmy, że dostępne na rynku monety to moneta 1-groszowa ważąca 1 gram oraz moneta 30-groszowa ważąca 50 gramów, zaś całość waży F=100 gramów. Wtedy minimalna możliwa suma pieniędzy znajdująca się w woreczku to 60 groszy (2 monety 30-groszowe), zaś maksymalna możliwa suma pieniędzy to 100 groszy (100 monet jednogroszowych).

Specyfikacja danych wejściowych

W pierwszym wierszu wejścia znajduje się dodatnia liczba całkowita $F \leq 100\,000$, będąca sumaryczną masą monet w woreczku w gramach. W drugim wierszu wejścia znajduje się dodatnia liczba całkowita $C \leq 100$, będąca liczbą dostępnych na rynku monet. W każdym z kolejnych C wierszy wejścia znajduje się para liczb całkowitych dodatnich (p_i, w_i) oddzielonych spacją, opisujących monetę $i \in \{1, \ldots, C\}$, gdzie $p_i \leq 100\,000$ jest jej nominałem w groszach, zaś $w_i \leq 100\,000$ jest jej wagą w gramach. Może istnieć wiele monet o takim samym nominale, ale różnych wagach i wiele monet o takiej samej wadze, ale różnych nominałach.

Specyfikacja danych wyjściowych

Pierwszy wierwsz wyjścia powinien zawierać słowo TAK, jeśli masa F jest możliwa do uzyskania za pomocą dostępnych na rynku monet, zaś słowo NIE w przeciwnym przypadku.

W przypadku odpowiedzi pozytywnej twój program powinien wypisać cztery dodatkowe wiersze. W drugim wierszu wyjścia powinna znajdować się wtedy liczba P_{\min} , będąca możliwą sumaryczną minimalnq wartością monet (w groszach) znajdujących się w woreczku. Trzeci wiersz wyjścia powinien zawierać opis uzyskania wartości P_{\min} : C liczb naturalnych x_1, x_2, \ldots, x_C oddzielonych pojedynczymi spacjami, oznaczających że i-tą monetę bierzemy x_i razy. Precyzyjniej mówiąc, wartości x_i powinny spełniać warunki $\sum_{i=1}^C x_i \cdot p_i = P_{\min}$ oraz $\sum_{i=1}^C x_i \cdot w_i = F$. Jeśli istnieje wiele możliwych sposobów uzyskania wartości P_{\min} , twój program powinien opisać dowolną z nich. W czwartym wierszu wyjścia powinna znajdować się liczba P_{\max} będąca możliwą sumaryczną maksymalnq wartością monet w woreczku, zaś piąty wiersz powinien zawierać opis uzyskania P_{\max} w identycznym formacie jak w przypadku wiersza trzeciego.

Przykład A

Wejście:	Wyjście:
100	TAK
2	60
1 1	0 2
30 50	100
	100 0

Przykład B

Wejście:	Wyjście:
10	TAK
3	6
1 1	2 2 0
2 4	10
4 16	10 0 0

Przykład C

12) 111dd 0	
Wejście:	Wyjście:
5	NIE
3	
1 2	
1 4	
2 4	