Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea G. Ivetta S. Arranz Olmos

FaMAF, segundo cuatrimestre 2021

Aula virtual

Aquí pondremos toda la información actualizada:

https://famaf.aulavirtual.unc.edu.ar/course/view.php?id=809

Aula virtual

Aquí pondremos toda la información actualizada:

https://famaf.aulavirtual.unc.edu.ar/course/view.php?id=809

Ediciones anteriores de la materia

En la Wiki de Ciencias de la Computación y en mi web de la materia 2020.

Regularidad

Deberán aprobar **dos de tres parciales**, con fechas tentativas 22 de septiembre, 27 de octubre y 26 de noviembre.

Regularidad

Deberán aprobar **dos de tres parciales**, con fechas tentativas 22 de septiembre, 27 de octubre y 26 de noviembre.

Finales

Los exámenes tendrán un ejercicio extra muy fácil pero obligatorio para las personas en situación de libres.

Clases virtuales

■ Santiago Arranz y Guido Ivetta serán moderadores del chat.

Clases virtuales

- Santiago Arranz y Guido Ivetta serán moderadores del chat.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.

Clases virtuales

- Santiago Arranz y Guido Ivetta serán moderadores del chat.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Prácticos: 3 comisiones a cargo de Mariana, Héctor y Mauricio, respectivamente.

Clases virtuales

- Santiago Arranz y Guido Ivetta serán moderadores del chat.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- **Prácticos**: 3 comisiones a cargo de Mariana, Héctor y Mauricio, respectivamente.

¿Sólo ver el teórico?

Clases virtuales

- Santiago Arranz y Guido Ivetta serán moderadores del chat.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Prácticos: 3 comisiones a cargo de Mariana, Héctor y Mauricio, respectivamente.

¿Sólo ver el teórico?

Al 85% (*) del alumnado no le sirve eso.

Clases virtuales

- Santiago Arranz y Guido Ivetta serán moderadores del chat.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Prácticos: 3 comisiones a cargo de Mariana, Héctor y Mauricio, respectivamente.

¿Sólo ver el teórico?

Al 85% (*) del alumnado no le sirve eso.

■ Cada clase (aproximadamente) tendrá indicada una lectura previa.

Clases virtuales

- Santiago Arranz y Guido Ivetta serán moderadores del chat.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Prácticos: 3 comisiones a cargo de Mariana, Héctor y Mauricio, respectivamente.

¿Sólo ver el teórico?

Al 85% (*) del alumnado no le sirve eso.

- Cada clase (aproximadamente) tendrá indicada una lectura previa.
- De esta manera podrán sacarse más dudas en vivo.

Una materia con tres partes

Ejes de Contenidos

Estructuras Ordenadas

Lógica Proposicional

$$\frac{[\varphi \wedge \psi]_1}{\frac{\psi}{\varphi \wedge \varphi} \wedge E} \wedge \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge I$$

$$\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1$$

Lenguajes y Autómatas

Parte 1: Estructuras Ordenadas

Bibliografía

- A. Tiraboschi y H. Gramaglia, Apunte sobre estructuras ordenadas (en la web de la materia).
- B.A. Davey y H.A. Priestley *Introduction to lattices and order*. Cambridge University Press.

Contenidos estimados para hoy

- Relaciones
 - Propiedades de relaciones sobre un único conjunto
 - Relaciones de equivalencia
 - Particiones de un conjunto

- Conjuntos parcialmente ordenados
 - Diagramas de Hasse y Ejemplos

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

Las siguientes son relaciones:

■ "es múltiplo de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

Las siguientes son relaciones:

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

"es igual a".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que remos decir.

Definición

■ Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos a R b para denotar $(a, b) \in R$ y a R b en lugar de $(a, b) \notin R$.

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos a R b para denotar $(a,b) \in R$ y a R b en lugar de $(a,b) \notin R$.

Ejemplo

Si $A:=\{2,4,8,10\}$ y $B:=\{1,3,9\}$, entonces la relación "es menor que" (restringida a $A\times B$) corresponde al conjunto de pares

$$R = \{(2,3), (2,9), (4,9), (8,9)\}$$

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos a R b para denotar $(a,b) \in R$ y a R b en lugar de $(a,b) \notin R$.

Ejemplo

Si $A:=\{2,4,8,10\}$ y $B:=\{1,3,9\}$, entonces la relación "es menor que" (restringida a $A\times B$) corresponde al conjunto de pares

$$R = \{(2,3), (2,9), (4,9), (8,9)\}$$

Luego, tenemos que 2 R 9 y 8 R 3.

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos a R b para denotar $(a,b) \in R$ y a R b en lugar de $(a,b) \notin R$.

Ejemplo

Si $A:=\{2,4,8,10\}$ y $B:=\{1,3,9\}$, entonces la relación "es menor que" (restringida a $A\times B$) corresponde al conjunto de pares

$$R = \{(2,3), (2,9), (4,9), (8,9)\}$$

Luego, tenemos que 2 R 9 y 8 R 3. 69 R 10?

Dos tipos de relaciones

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Dos tipos de relaciones

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Estas relaciones se dan entre conjuntos A y B distintos.

Dos tipos de relaciones

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Estas relaciones se dan entre conjuntos *A* y *B* distintos.

Nuestro interés estará en las relaciones R entre un conjunto A y él mismo, relaciones **sobre** A (es decir, tales que $R \subseteq A \times A$).

Sea R una relación sobre un conjunto A. Decimos que R es:

■ reflexiva si y sólo si para todo $a \in A$, a R a

Sea *R* una relación sobre un conjunto *A*. Decimos que *R* es:

- reflexiva si y sólo si para todo $a \in A$, a R a
- **simétrica** si y sólo si para todos $a, b \in A$, $a R b \implies b R a$

Sea *R* una relación sobre un conjunto *A*. Decimos que *R* es:

- reflexiva si y sólo si para todo $a \in A$, a R a
- **simétrica** si y sólo si para todos $a, b \in A$, $a R b \implies b R a$
- antisimétrica si y sólo si para todos $a, b \in A$, $a R b \& b R a \implies a = b$

Sea *R* una relación sobre un conjunto *A*. Decimos que *R* es:

- reflexiva si y sólo si para todo $a \in A$, a R a
- **simétrica** si y sólo si para todos $a, b \in A$, $a R b \implies b R a$
- antisimétrica si y sólo si para todos $a, b \in A$, $a R b \& b R a \implies a = b$
- transitiva si y sólo si para todos $a, b, c \in A$, $a R b \& b R c \implies a R c$

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es menor que" $\subseteq \mathbb{Z} \times \mathbb{Z}$

Es la relación "<" definida entre números enteros:

-10 < -1, 2020 < 2021, etcétera.

- **reflexiva**: $\forall a \in A$, a R a.
- simétrica: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es menor que" $\subseteq \mathbb{Z} \times \mathbb{Z}$

Es la relación "<" definida entre números enteros:

$$-10 < -1$$
, $2020 < 2021$, etcétera.

$$a < b \iff \text{existe } q \in \mathbb{N} \text{ tal que } a + q = b.$$

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es menor que" $\subseteq \mathbb{Z} \times \mathbb{Z}$

Es la relación "<" definida entre números enteros:

$$-10 < -1$$
, $2020 < 2021$, etcétera.

$$a < b \iff \text{existe } q \in \mathbb{N} \text{ tal que } a + q = b.$$

¿Qué propiedades cumple?

- **reflexiva**: $\forall a \in A$, a R a.
- simétrica: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es menor que" $\subseteq \mathbb{Z} \times \mathbb{Z}$

Es la relación "<" definida entre números enteros:

$$-10 < -1$$
, $2020 < 2021$, etcétera.

$$a < b \iff \text{existe } q \in \mathbb{N} \text{ tal que } a + q = b.$$

¿Qué propiedades cumple?

- **reflexiva**: $\forall a \in A$, a R a.
- simétrica: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"divide a"
$$\subseteq \mathbb{N} \times \mathbb{N}$$

 $a \mid b$ si existe $q \in \mathbb{N}$ tal que $a \cdot q = b$.

¿Qué propiedades cumple?

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"divide a" $\subseteq \mathbb{N} \times \mathbb{N}$

 $a \mid b$ si existe $q \in \mathbb{N}$ tal que $a \cdot q = b$.

¿Qué propiedades cumple? ¿Y si estuviera definida sobre \mathbb{Z} ?

- **reflexiva**: $\forall a \in A$, a R a.
- simétrica: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es congruente módulo k a" $\subseteq \mathbb{Z} \times \mathbb{Z}$

 $(k \neq 0, \text{ fijo})$

 $a \equiv_k b$ si y sólo si k es divide a b - a

¿Qué propiedades cumple?

Relaciones de equivalencia

Definición

Una relación es de **equivalencia** si satisface las propiedades de reflexividad, simetría y transitividad.

Relaciones de equivalencia

Definición

Una relación es de **equivalencia** si satisface las propiedades de reflexividad, simetría y transitividad.

Por ejemplo, la relación "congruente módulo k" es una relación de equivalencia para todo $k\in\mathbb{Z}\smallsetminus\{0\}.$

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Por ejemplo, la relación "congruente módulo 3" tiene sólo tres clases de equivalencia

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Por ejemplo, la relación "congruente módulo 3" tiene sólo tres clases de equivalencia

$$[0] = \{0, 3, -3, 6, -6, 9, -9, \dots\}$$
$$[1] = \{1, 4, -2, 7, -5, 10, -8, \dots\}$$
$$[2] = \{2, 5, -1, 8, -4, 11, -7, \dots\}$$

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Por ejemplo, la relación "congruente módulo 3" tiene sólo tres clases de equivalencia

$$[0] = \{0, 3, -3, 6, -6, 9, -9, \dots\}$$
$$[1] = \{1, 4, -2, 7, -5, 10, -8, \dots\}$$
$$[2] = \{2, 5, -1, 8, -4, 11, -7, \dots\}$$

Se dan las siguientes igualdades:

$$[3] = [0], \quad [4] = [1], \quad [5] = [2], \dots$$

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

1 $P_1 := \{\{a\}, \{b, c\}\};$ Los *elementos* de la partición $A_1 := \{a\}$ y $A_2 := \{b, c\}$ son *subconjuntos* de A.

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

- $\textbf{1} \ P_1 := \{\{a\}, \{b,c\}\}; \\ \text{Los } \textit{elementos} \ \text{de la partición} \ A_1 := \{a\} \ \text{y} \ A_2 := \{b,c\} \ \text{son} \\ \textit{subconjuntos} \ \text{de} \ A.$
- $P_2 := \{\{a\}, \{b\}, \{c\}\};$

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

- $\textbf{1} \ P_1 := \{\{a\}, \{b,c\}\}; \\ \text{Los } \textit{elementos} \ \text{de la partición} \ A_1 := \{a\} \ \text{y} \ A_2 := \{b,c\} \ \text{son} \\ \textit{subconjuntos} \ \text{de} \ A.$
- $2 P_2 := \{\{a\}, \{b\}, \{c\}\};$
- $P_3 := \{\{a, b, c\}\}.$

Las equivalencias dan particiones

Lema

Sea \sim una relación de equivalencia sobre A y sean $x, y \in A$. Entonces

- [x] = [y] si y sólo si $x \sim y$.
- **2** si $x \not\sim y$, entonces [x] e [y] son disjuntas.

Las equivalencias dan particiones

Lema

Sea \sim una relación de equivalencia sobre A y sean $x, y \in A$. Entonces

- 2 $si x \nsim y$, entonces [x] e [y] son disjuntas.

Corolario

El conjunto $A/\sim := \{[x]: x \in A\}$ de las clases de equivalencia de \sim es una partición de A.

Una equivalencia (valga la redundancia)

Lema

Sea $P = \{A_j : j \in J\}$ una partición de A. Definamos, para $a, b \in A$, $a \sim_P b \iff a \ y \ b \ \text{están en la misma parte de la partición}.$

Entonces \sim_P es una relación de equivalencia.

Una equivalencia (valga la redundancia)

Lema

Sea
$$P=\{A_j:j\in J\}$$
 una partición de A . Definamos, para $a,b\in A$,
$$a\sim_P b\iff a\ y\ b\ \text{están en la misma parte de la partición}.$$
 $\iff \text{existe } j\in J.\ a,b\in A_j$

Entonces \sim_P es una relación de equivalencia.

Una equivalencia (valga la redundancia)

Lema

Sea
$$P=\{A_j:j\in J\}$$
 una partición de A . Definamos, para $a,b\in A$,
$$a\sim_P b\iff a\ y\ b\ \text{están en la misma parte de la partición}.$$
 $\iff \text{existe } j\in J.\ a,b\in A_j$

Entonces \sim_P es una relación de equivalencia.

En consecuencia, es exactamente lo mismo tener una partición que una relación de equivalencia.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

1 La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.
- **3** La relación de **inclusión** \subseteq sobre las partes $\mathscr{P}(A)$ de un conjunto A.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.
- **3** La relación de **inclusión** \subseteq sobre las partes $\mathscr{P}(A)$ de un conjunto A.

Definición

Un conjunto parcialmente ordenado (cpo $\acute{\text{o}}$ poset) es un par (A,R) donde A es un conjunto y R es un orden parcial sobre A.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.
- **3** La relación de **inclusión** \subseteq sobre las partes $\mathcal{P}(A)$ de un conjunto A.

Definición

Un conjunto parcialmente ordenado (cpo $\acute{\text{o}}$ poset) es un par (A,R) donde A es un conjunto y R es un orden parcial sobre A.

Luego (\mathbb{R}, \leqslant) , $(\mathbb{N}, |)$ y $(\mathscr{P}(A), \subseteq)$ son posets.

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a, b \in A$ distintos.

Decimos que b cubre a a si

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a, b \in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a,b\in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Diagramas de Hasse

Nos sirven para representar a los órdenes parciales sobre conjuntos finitos.

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a,b \in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Diagramas de Hasse

Nos sirven para representar a los órdenes parciales sobre conjuntos finitos. Ponemos un punto por cada elemento de $\cal A$ y unimos mediante segmentos rectos los puntos que se cubren.

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a,b \in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Diagramas de Hasse

Nos sirven para representar a los órdenes parciales sobre conjuntos finitos. Ponemos un punto por cada elemento de $\cal A$ y unimos mediante segmentos rectos los puntos que se cubren.

Si b cubre a a, entonces b debe ser dibujado más arriba que a.

