Развертывание ML-моделей в продакшн

Ирина Степановна Трубчик

Лекция 7

Цели занятия

- Понять жизненный цикл модели от обучения до продакшена
- 2 Изучить паттерны развертывания (batch, online, streaming)
- 3 Освоить инструменты: Docker, Kubernetes, облачные платформы
- 4 Научиться мониторить и обновлять модели в production

Сталкивались ли вы с развертыванием моделей? Какие проблемы возникали?

Что такое deployment ML-модели

Model Deployment — процесс интеграции обученной ML-модели в production-окружение, где она будет делать предсказания на реальных данных.

<u>ключевые компоненты:</u>

- Model artifacts сериализованная модель (pickle, joblib, ONNX)
- > Inference service сервис, обрабатывающий запросы
- > Dependencies библиотеки и окружение
- > Infrastructure серверы, контейнеры, оркестраторы

Схема жизненного цикла

Паттерны развертывания

Batch Prediction (пакетная обработка)	Online/Real-time Prediction (реалтайм)	Streaming Prediction
> Обработка данных по	API-сервис отвечает на	> Обработка потоковых данных
расписанию (daily, hourly)	запросы немедленно	(Kafka, Kinesis)
> Подходит для некритичных	Низкая latency (<100ms)	Для непрерывных потоков
по времени задач	Пример: fraud detection,	событий
> Пример: рекомендации	рекомендации в е-	Пример: мониторинг IoT-
email-рассылок	commerce	датчиков

Диаграмма паттернов

Serving архитектуры

Контейнеризация с Docker

Зачем контейнеры для ML?

- > Изоляция зависимостей
- > Воспроизводимость окружения
- > Портабельность между средами

Минимальный Dockerfile:

```
text
FROM python:3.10-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY models/ models/
COPY src/ src/
EXPOSE 8080
CMD ["uvicorn", "src.api:app", "--host", "0.0.0.0", "--port", "8080"]
```

Сборка и запуск:

```
docker build -t ml-model:v1 .
docker run -p 8080:8080 ml-model:v1
```

Какие еще зависимости нужно включить в образ?

Kubernetes для ML

Почему Kubernetes?

- > Автоматическое масштабирование (НРА)
- > Self-healing (перезапуск упавших pods)
- > Обнаружение служб и балансировка нагрузки
- > Управление secrets и configs

Минимальный Deployment manifest:

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: ml-model
spec:
  replicas: 3
  selector:
    matchLabels:
      app: ml-model
  template:
    metadata:
      labels:
        app: ml-model
    spec:
      containers:
      - name: model
        image: ml-model:v1
        ports:
        - containerPort: 8080
        resources:
          requests:
            memory: "512Mi"
            cpu: "500m"
          limits:
            memory: "1Gi"
            cpu: "1000m"
```

apiVersion: v1
kind: Service
metadata:
 name: ml-model-service
spec:
 selector:
 app: ml-model
 ports:
 - port: 80
 targetPort: 8080
 type: LoadBalancer

Стратегии развертывания

Blue-Green Deployment Canary Deployment А/В тестирование text text text [Blue (v1)] ← 100% traffic [v1] ← 90% traffic Group A → [Model v1] [Green (v2)] ← ready [v2] ← 10% traffic Group B → [Model v2] → Switch traffic instantly → Gradually increase text **У** Бизнес-метрики text [Blue (v1)] \leftarrow idle [v1] ← 50% traffic **X** Требует аналитику [Green (v2)] ← 100% traffic [v2] ← 50% traffic ✓ Мгновенный rollback ✓ Снижение рисков **X** Требует 2х ресурсов Х Сложность мониторинга

Облачные платформы


```
python
from sagemaker.sklearn import SKLearnModel
model = SKLearnModel(
    model_data="s3://bucket/model.tar.gz",
    role=role,
    entry_point="inference.py"
predictor = model.deploy(
    instance_type="ml.m5.large",
    initial_instance_count=2
```

python

```
from google.cloud import aiplatform
endpoint = aiplatform.Endpoint.create(display_name="ml-model")
endpoint.deploy(
    model=model,
    machine_type="n1-standard-4",
    min_replica_count=1,
    max_replica_count=10
)
```



```
python
from azureml.core.webservice import AciWebservice
deployment_config = AciWebservice.deploy_configuration(
    cpu_cores=2,
   memory_gb=4
service = Model.deploy(
   workspace=ws,
    name="ml-model",
   models=[model],
    deployment_config=deployment_config
```


Российские облачные платформы

Yandex.Cloud	VK Cloud (бывший MCS)	Ростелеком/Ростелеком Cloud	
 Container Registry — хранилище Docker образов Managed Kubernetes — управляемый K8s сервис Полная интеграция с Russian Federation, соответствие законам о локализации данных 	 Kubernetes as a Service Хранение данных в России (Frankfurt, Moskva regions) Интеграция с VК экосистемой 	 Ростелеком/Ростелеком Cloud ► Ha базе OpenStack + Kubernete 	
bash # Пример: создание K8s кластера в Yar yc k8s cluster create \name my-cluster \region ru-central1 \version 1.28	ndex.Cloud	 Для госзаказов особенно популярно 	

сравнительная таблица

Решение	Тип	Российское	Функциональность	Сложность	Best for
Kubernetes	Open- source	Нет (Google)	☆☆☆☆	Высокая	Production, большие системы
Yandex.Cloud K8s	Managed		☆☆☆☆☆	Средняя	Облачные системы в России
Docker Swarm	Open- source	Нет	☆ ☆ ☆	Низкая	Небольшие проекты, быстрый старт
Apache Mesos	Open- source	Нет	☆☆☆☆	Высокая	Дата-центры, высоконагруженные
VK Cloud K8s	Managed	~	☆☆☆☆☆	Средняя	VK экосистема
Ростелеком Cloud	Managed	~	☆☆☆☆	Средняя	Госзаказы, on-premise

Мониторинг в production

Operational Metrics	Model Quality Metrics	Business Metrics	Инструменты:
 Latency (p50, p95, p99) Throughput (requests/sec) Error rate Resource utilization (CPU, RAM) 	 Prediction distribution drift Feature drift Accuracy degradation Outlier detection 	 Conversion rate Revenue impact User satisfaction 	 Prometheus + Grafana Evidently AI WhyLabs Seldon Alibi

Пример Prometheus метрик:

```
from prometheus_client import Counter, Histogram

predictions_total = Counter('predictions_total', 'Total predictions')
prediction_latency = Histogram('prediction_latency_seconds', 'Prediction latency')

@app.post("/predict")
def predict(data):
    with prediction_latency.time():
        result = model.predict(data)
        predictions_total.inc()
        return result
```


Model Registry и версионирование

```
import mlflow
# Регистрация модели
mlflow.register_model(
    model_uri="runs:/abc123/model",
    name="flight-delay-predictor"
# Продвижение в Production
client = mlflow.tracking.MlflowClient()
client.transition_model_version_stage(
    name="flight-delay-predictor",
    version=3,
    stage="Production"
# Загрузка для deployment
model = mlflow.pyfunc.load_model(
    model_uri="models:/flight-delay-predictor/Production"
```

Stages:

- ✓ None → только что зарегистрирована
- ✓ Staging → тестируется
- ✓ Production → активно используется
- ✓ Archived → устаревшая

развертывание модели (demo)

Подготовка модели

```
python
# train.py
import mlflow
import joblib
from sklearn.ensemble import RandomForestClassifier
with mlflow.start_run():
    model = RandomForestClassifier()
    model.fit(X_train, y_train)
    mlflow.sklearn.log_model(model, "model")
    mlflow.register_model("runs:/.../model", "demo-model")
```

развертывание модели (demo)

```
Создание API:
python
# api.py
from fastapi import FastAPI
import mlflow.pyfunc
app = FastAPI()
model = mlflow.pyfunc.load_model("models:/demo-model/Production")
@app.post("/predict")
def predict(features: dict):
    prediction = model.predict([list(features.values())])
    return {"prediction": prediction[0]}
```

развертывание модели (demo)

Развертывание

```
bash
docker build -t demo-model .
docker run -p 8080:8080 demo-model
# Тест
curl -X POST http://localhost:8080/predict \
  -H "Content-Type: application/json" \
  -d '{"feature1": 0.5, "feature2": 0.3}'
```

Чек-лист best practices

Pre-deployment:	Deployment:	Post-deployment:
 □ Модель зарегистрирована в Model Registry □ Все тесты пройдены (unit, integration, model quality) □ Документация API обновлена □ Определены SLA и resource limits □ Настроен мониторинг и алерт 	 □ Используется версионирование образов □ Применяется canary/blue-green стратегия □ Настроен health check endpoint □ Логируются все предсказания для аудита □ Есть rollback plan 	 □ Мониторинг latency и throughput □ Отслеживание data drift □ Сравнение business metrics c baseline □ Регулярный review логов □ План обновления модели

Ключевые вопросы для самопроверки:

1. Что такое model deployment и какие этапы он включает?

2. В чем разница между batch и online inference?

3. Зачем нужен Model Registry?

4. Что такое canary deployment?

5. Какие метрики важно мониторить в production?

Материалы и ссылки

Документация и туториалы:

- 1. MLflow Model Registry
- 2. Kubernetes ML Patterns
- 3. AWS SageMaker Deployment Guide
- 4. Seldon Core open-source ML deployment

Книги:

- 1. "Building Machine Learning Powered Applications" by Emmanuel Ameisen
- 2. "Machine Learning Design Patterns" by Lakshmanan, Robinson, Munn

Курсы:

- 1. DeepLearning.Al: "MLOps Specialization"
- 2. DataLens: анализ и визуализация данных: https://yandex.cloud/ru/training/datalens

Материалы и ссылки

Инструменты:

- 1. BentoML framework для packaging и serving
- 2. TorchServe deployment для PyTorch
- 3. TensorFlow Serving
- 4. KServe (ex-KFServing)
- 5. https://datalens.ru/

Домашнее чтение:

Изучить документацию одной из облачных платформ для ML deployment и написать краткое сравнение.

Вопросы

Телеграм https://t.me/+PsC-JDrwrvsxNmVi

СКИФ (https://do.skif.donstu.ru/course/view.php?id=7508)