Probability, Week 1, exercises 24

Not Strong Enough

March 7, 2020

1. chain:

For each chain \mathfrak{C} , since each two elements in \mathfrak{C} are comparable, they cannot have same size. So we can have a function $f: \mathfrak{C} \to \mathbb{N}: f(C) = \text{the size of } C$, which is an injection.

So there is $|\mathfrak{C}| \leq |\mathbb{N}| < |2^{\mathbb{N}}|$.

2: antichain:

Construct an antichain \mathfrak{A} by the following step:

Devide numbers by pairs: (0,1); (2,3); ... (2n,2n-1); Denote the pair (2i,2i+1) by p_i .

Each set $A \in \mathfrak{A}$ contains one and only one element in each pair, making them different with each other:

For each two set, they contians different number at least in one pair, so they are uncomparable. So $\mathfrak A$ is an antichain.

Now prove that $|\mathfrak{A}| = |2^{\mathbb{N}}|$:

We construct such a function $f: \mathfrak{A} \to 2^{\mathbb{N}}$

 $f(A) = \{ \text{if } A \text{ contains } 2i, i \text{ is in the set, otherwise}(\text{contains } 2i + 1) i \text{ is not in the set} \}$

It is apparently that f is a bijection between \mathfrak{A} and $2^{\mathbb{N}}$.