

IRLML0060TRPbF

HEXFET® Power MOSFET

V _{DSS}	60	٧
V _{GS}	±16	V
R _{DS(on)} max (@ V _{GS} = 10V)	92	mΩ
$R_{DS(on)}$ max (@ V_{GS} = 4.5V)	116	mΩ

G	D	S
Gate	Drain	Source

Applications

Load/System Switch

Features

Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1

Benefits

Base part number	part number Package Type Standard Pack		Orderable Part Number	
Dase part number	Fackage Type	Form	Quantity	Olderable Fait Number
IRLML0060TRPbF	Micro 3™ (SOT-23)	Tape and Reel	3000	IRLML0060TRPbF

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	60	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	2.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	2.1	Α
I _{DM}	Pulsed Drain Current	11	
P _D @T _A = 25°C	Maximum Power Dissipation	1.25	10/
P _D @T _A = 70°C	Maximum Power Dissipation	0.80	W
	Linear Derating Factor	0.01	mW/°C
V _{GS} Gate-to-Source Voltage		± 16	
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range	-95 (0 + 150	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta,JA}$	Junction-to-Ambient (t < 10s) @		99	C/VV

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.06		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		98	116	mΩ	$V_{GS} = 4.5V, I_D = 2.2A$
$R_{DS(on)}$	Static Drain-to-Source On-Resistance		78	92	11122	$V_{GS} = 10V, I_D = 2.7A$
$V_{GS(th)}$	Gate Threshold Voltage	1.0		2.5	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 60V, V_{GS} = 0V$
I _{DSS}	Dialii-to-Source Leakage Current			250	μΑ	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
ı	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -16V
R_G	Internal Gate Resistance		1.6		Ω	
gfs	Forward Trans conductance	7.6			S	$V_{DS} = 25V, I_{D} = 2.7A$
Q_g	Total Gate Charge		2.5			I _D = 2.7A
Q_{gs}	Gate-to-Source Charge		0.7		nC	$V_{DS} = 30V$
Q_{gd}	Gate-to-Drain ('Miller') Charge		1.3			V _{GS} = 4.5V ②
$t_{d(on)}$	Turn-On Delay Time		5.4			V _{DD} = 30V2
t _r	Rise Time		6.3]	I _D = 1.0A
$t_{d(off)}$	Turn-Off Delay Time		6.8		ns	$R_G = 6.8\Omega$
t _f	Fall Time		4.2			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		290			V _{GS} = 0V
C _{oss}	Output Capacitance		37		pF	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		21			f = 1.0MHz

Source-Drain Ratings and Characteristics

Source-Drain Ratings and Characteristics						
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			1.6		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			11		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 2.7A, V_{GS} = 0V ②$
t _{rr}	Reverse Recovery Time		14	21	ns	$T_J = 25^{\circ}C$, $V_R = 30V$, $I_F = 1.6A$
Q_{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 100A/µs ②

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

② Pulse width ≤ 400μs; duty cycle ≤ 2%.
 ③ Surface mounted on 1 in square Cu board

Refer to application note #AN-994.

2016-12-20

Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

4

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3™ (SOT-23) Package Outline (Dimensions are shown in millimeters (inches))

DIMENSIONS						
SYMBOL	MILLIM	ETERS	INC	HES		
STIVECE	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

Recommended Footprint

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: MILLIMETER. ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.
- ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H
 DIMENSIONS D AND E1 ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD FLASH, MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.
- ⚠ DIMENSION LIS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE. 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3™ (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

DATE CODE MARKING INSTRUCTIONS

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YE	AR	Υ	WORK WEEK	W	
2011	2001	1	01	Α	
2012	2002	2	02	В	
2013	2003	3	03	0	
2014	2004	4	04	D	
2015	2005	5			
2016	2006	6			
2017	2007	7			
2018	2008	8	1	1	
2019	2009	9	7	•	
2020	2010	0	24	X	
			25	Y	
			26	7	

WW = (27-52) IF PRECEDED BY A LETTER

YE	AR	Υ	WORK WEEK	W
2011	2001	Α	27	Α
2012	2002	В	28	В
2013	2003	С	29	C
2014	2004	D	30	D
2015	2005	Ε		
2016	2006	F		
2017	2007	G		
2018	2008	Н		1
2019	2009	J	7	•
2020	2010	K	50	X
			51	Y
			50	7

Note: For the most current drawing please refer to Infineon's web site www.infineon.com

2016-12-20

Micro3™ Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to Infineon's web site www.infineon.com

2016-12-20

Qualification Information

Qualification Level	Consumer (per JEDEC JESD47F) [†]				
Moisture Sensitivity Level	MSL1 (per JEDEC J-STD-020D) †				
RoHS Compliant	Yes				

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments
12/20/16	 Changed datasheet with Infineon logo - all pages. Removed typo "Industrial" on Feature and Benefits Table on page1. Corrected typo for Igss test condition from "V_{GS} = 20V" to "V_{GS} = 16V" on page 2.

Trademarks of Infineon Technologies AG

HVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie").**

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.