3.33pt

1

Counterexample-guided Approach to Finding Numerical Invariants

ThanhVu (Vu) Nguyen*,

Timos Antonopoulos[†], Andrew Ruef[‡], Michael Hicks[‡]

*University of Nebraska, †Yale University, ‡University of Maryland

FSE 2017

Introduction

Invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Assertions
- Pre/Post conditions
- Loop invariants

Introduction

Invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Assertions
- Pre/Post conditions
- Loop invariants

Techniques for automatic invariant generation

- *Static*: examine program code, compute sound results, but can be expensive and limited to simple invariants
- Dynamic: analyze exec traces, produce expressive invariants, but unsound

Introduction

Invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Assertions
- Pre/Post conditions
- Loop invariants

Techniques for automatic invariant generation

- Static: examine program code, compute sound results, but can be expensive and limited to simple invariants
- Dynamic: analyze exec traces, produce expressive invariants, but unsound

Numerical invariants, e.g., relations among numerical variables

- E.g., $x = 2y + 3, 0 \le idx \le |arr| 1, x \le y^2, x = qy + r$
- Nonlinear polynomial invariants: $x \le y^2, x = qy + r, ...$

2

Invariants can help understanding programs

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1;
   int b=y;
   while [L1] (r > 2*b){
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

Invariants can help understanding programs

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1:
   int b=y;
   while [L1] (r \ge 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

loop invariants at L1:

$$x = qy + r$$
 $b = ya$
 $y \le b$ $b \le r$
 $r \le x$ $a \le b$
 $2 \le a + y$

postconditions at L2:

$$\begin{aligned} x &= qy + r \\ 1 &\leq q + r \\ 0 &\leq r \end{aligned} \quad \begin{aligned} r &\leq y - 1 \\ r &\leq x \end{aligned}$$

Invariants can help understanding programs

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1:
   int b=y;
   while [L1] (r \ge 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

• loop invariants at L1:

$$x = qy + r$$
 $b = ya$
 $y \le b$ $b \le r$
 $r \le x$ $a \le b$
 $2 \le a + y$

postconditions at L2:

$$\begin{aligned} x &= qy + r \\ 1 &\leq q + r \\ 0 &\leq r \end{aligned} \quad \begin{aligned} r &\leq y - 1 \\ r &\leq x \end{aligned}$$

Describe the semantic the program (e.g., x = qy + r for integer division) and reveal useful information (e.g., remainder r is non-negative)

Invariants can help analyze program complexities

```
void triple(int M, int N, int P){
 assert (0 <= M);
 assert (0 <= N);
 assert (0 <= P);
  int i = 0, j = 0, k = 0;
  int t = 0;
 while(i < N){</pre>
    j = 0; t++;
   while(j < M){</pre>
     j++; k = i; t++;
     while (k < P){
      k++; t++:
     i = k;
    i++;
  [L]
```

Complexity of this program?

Use t to count loop iterations

Invariants can help analyze program complexities

```
void triple(int M, int N, int P){
  assert (0 <= M):
 assert (0 \le N);
  assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0;
 while(i < N){</pre>
   j = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
       k++; t++;
     i = k;
   i++;
  [L]
```

Complexity of this program?

- Use t to count loop iterations
- At first glance: t = O(MNP)
- A more precise complexity bound: t = O(N + NM + P)
- Both are nonlinear invariants

Invariants can help verify programs

```
void g(int n, int u1) {
void f(int u1, int u2) {
 assert(u1 > 0 \&\& u2 > 0);
                                       assert(u1 > 0);
 int a = 1, b = 1, c = 2, d = 2;
                                         int x = 0;
 int x = 3, y = 3;
                                         int m = 0:
 int i1 = 0, i2 = 0;
 while (i1 < u1) {
                                         while (x < n) {
   i1++;
                                           if (u1) {
   x = a + c; y = b + d;
                                             m = x;
   if ((x + y) \% 2 == 0) {
    a++; d++;
                                           x = x + 1;
   } else { a--;}
                                         }
   i2 = 0:
                                         [L]
   while (i2 < u2 ) {
                                         if (n > 0){
     i2++; c--; b--;
                                          assert(0 <= m && m < n);</pre>
  }
  [L]
 assert(a + c == b + d);
```

Invariants can help verify programs

```
void g(int n, int u1) {
void f(int u1, int u2) {
 assert(u1 > 0 \&\& u2 > 0);
                                         assert(u1 > 0);
 int a = 1, b = 1, c = 2, d = 2;
                                         int x = 0:
 int x = 3, y = 3;
                                         int m = 0:
 int i1 = 0, i2 = 0;
 while (i1 < u1) {
                                         while (x < n) {
   i1++:
                                           if (u1) {
   x = a + c; y = b + d;
                                             m = x;
   if ((x + y) \% 2 == 0) {
    a++; d++;
                                           x = x + 1;
   } else { a--:}
                                         }
   i2 = 0:
                                          [L]
   while (i2 < u2 ) {
                                         if (n > 0){
                                          assert(0 <= m && m < n);</pre>
     i2++; c--; b--;
  [L]
 assert(a + c == b + d);
```

Assertions hold if matched or implied by discovered invariants at L

Numlnv: a CEGIR approach to numerical invariants

- Focus on polynomial invariants over numerical variables
- Use CounterExample-Guided Invariant Generation (CEGIR) approach
 - Dynamic Inferrence: use DIG's algorithms to infer nonlinear equalities and linear inequalities from traces
 - Static Checking: use KLEE to check candiate invariants and generate counterexample inputs

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
   assert(x>0; y>0);
   int q=0; int r=x;
   while(r >= y){
      int a=1; int b=y;
      while[L1](r >= 2*b){
        a = 2*a; b = 2*b;
      }
      r=r-b; q=q+a;
   }
   return q;
}
```

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
   assert(x>0; y>0);
   int q=0; int r=x;
   while(r >= y){
      int a=1; int b=y;
      while[L1](r >= 2*b){
        a = 2*a; b = 2*b;
      }
      r=r-b; q=q+a;
   }
   return q;
}
```

			,	Tra	ces:
X	У	а	b	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
			:		
4	1	1	1	0	4
4	1	2	2	0	4
			:		

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
   assert(x>0; y>0);
   int q=0; int r=x;
   while(r >= y){
      int a=1; int b=y;
      while[L1](r >= 2*b){
      a = 2*a; b = 2*b;
    }
   r=r-b; q=q+a;
}
return q;
}
```

Loop invariants at L1:

```
equations: x = qy + r b = ya
inequalities: 2 \le a + y a \le b y \le b
b \le r r \le x
```

7

X	у	a	Ь	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4
	15 15	15 2 15 2	15 2 1 15 2 2 15 2 1 4 1 1	15 2 1 2 15 2 2 4 15 2 1 2 4 1 1 1	15 2 1 2 0 15 2 2 4 0 15 2 1 2 4 4 1 1 1 0

Terms and degrees

$$V = \{r, y, a\}; \ \deg = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

X	y	a	Ь	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4

Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

X	y	a	Ь	q	r
15 15 15	2 2 2	1 2 1	2 4 2	0 0 4	15 15 7
4 4	1 1	1 2	1 2	0	4

Nonlinear equation template

$$c_1 + c_2 r + c_3 y + c_4 a + c_5 r y + c_6 r a + c_7 y a + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0$$

• Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$
 $T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$

X	y	a	Ь	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	\cap	4

Nonlinear equation template

$$c_1+c_2r+c_3y+c_4a+c_5ry+c_6ra+c_7ya+c_8r^2+c_9y^2+c_{10}a^2=0$$

System of *linear* equations

trace 1
$$\rightarrow$$
 { $r = 15, y = 2, a = 1$ } eq 1 \rightarrow $c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0$ \vdots

8

• Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$
 $T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$

X	y	a	Ь	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
/	1	2	2	\cap	1

Nonlinear equation template

$$c_1+c_2r+c_3y+c_4a+c_5ry+c_6ra+c_7ya+c_8r^2+c_9y^2+c_{10}a^2=0$$

System of *linear* equations

trace 1
$$\rightarrow$$
 { $r = 15, y = 2, a = 1$ }
eq 1 \rightarrow $c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0$
 \vdots

Solve for coefficients c;

$$V = \{x, y, a, b, q, r\}; \text{ deg} = 2 \longrightarrow x = qy+r, b = ya$$

8

- Goal: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability

- **Goal**: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability
 - \blacksquare Transform program and invariant into another program consist of a special location L^\prime

- **Goal**: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability
 - \blacksquare Transform program and invariant into another program consist of a special location L^\prime

- L' reachable \implies inv is spurious (inputs reaching L' represent cex's)
- \blacksquare L' not reachable (within a time bound) \Longrightarrow Numlnv accepts the invariant

- **Goal**: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability
 - $lue{}$ Transform program and invariant into another program consist of a special location L'

- L' reachable \implies inv is spurious (inputs reaching L' represent cex's)
- \blacksquare L' not reachable (within a time bound) \Longrightarrow Numlnv accepts the invariant
- Use the symbolic execution tool KLEE to check reachability
 - Unsound: KLEE can timeout, but in practice is very effective in refuting bad invariants and finding cex's
 - Can use other test-input generation tools or verifiers instead of KLEE

Evaluation

Setup

- NumInv is implemented in SAGE/Python (with Z3 backend solver)
- Test machine: 10-core 2.4GHZ CPU, 128GB Ram, Linux OS

Benchmark

- Program Understanding: NLA testsuite, 27 programs with nonlinear invariants
- Complexity Analysis: 19 programs collected from static complexity analysis work
- Program Verification: HOLA benchmark, 46 programs with assertions, compare against PIE

Example: Program Understanding

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1;
   int b=y;
   while [L1] (r \geq 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  ΓL27
 return q;
```

What does this program do? What properties hold at L1 and L2?

Example: Program Understanding

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1:
   int b=y;
   while [L1] (r \geq 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  ΓL27
 return q;
```

What does this program do? What properties hold at L1 and L2?

• loop invariants at L1:

$$x = qy + r$$
 $b = ya$
 $y \le b$ $b \le r$
 $r \le x$ $a \le b$
 $2 \le a + y$

postconditions at L2:

```
x = qy + r
1 \le q + r \qquad r \le y - 1
0 \le r \qquad r \le x
```

Example: Program Understanding

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1:
   int b=y;
   while [L1] (r \geq 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b:
   q=q+a;
  ΓL27
 return q;
```

What does this program do? What properties hold at L1 and L2?

• loop invariants at L1:

$$x = qy + r$$
 $b = ya$
 $y \le b$ $b \le r$
 $r \le x$ $a \le b$
 $2 \le a + y$

postconditions at L2:

$$x = qy + r$$

$$1 \le q + r \qquad r \le y - 1$$

$$0 \le r \qquad r \le x$$

Indicate the exact semantic of integer division and reveal other useful correctness information (e.g., remainder is non-negative)

Results: Program Understanding

Prog	Locs	Invs	Time (s)	Correct
cohendiv	2	11	24.5	✓
divbin	2	12	116.8	✓
manna	1	5	30.8	✓
hard	2	13	71.4	✓
sqrt1	1	5	19.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
dijkstra	2	14	89.3	✓
freire1	1	-	-	-
freire2	1	-	-	-
cohencu	1	5	22.5	✓
egcd1	1	9	284.5	✓
egcd2	2	-	-	-
egcd3	3	-	-	-
prodbin	1	7	45.1	✓
prod4br	1	11	87.3	✓
knuth	1	9	84.6	✓
fermat1	3	26	185.3	✓
fermat2	1	8	101.8	✓
lcm1	3	22	175.2	✓
lcm2	1	7	163.8	✓
geo1	1	7	24.4	✓
geo2	1	9	24.3	✓
geo3	1	7	32.3	✓
ps2	1	3	17.0	✓
ps3	1	4	17.8	✓
ps4	1	4	18.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ps5	1	4	19.3	✓
ps6	1	3	21.0	✓

Experiment

- NLA suite: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- **Goal**: obtain invariants and compare to ground truths

Results: Program Understanding

Locs Inve Time (c) | Correct

Drog

Prog	Locs	Invs	Time (s)	Correct
cohendiv	2	11	24.5	✓
divbin	2	12	116.8	\ \ \ \ \
manna	1	5	30.8	✓
hard	2	13	71.4	✓
sqrt1	1	5	19.3	✓
dijkstra	2	14	89.3	✓
freire1	1	-	-	-
freire2	1	-	-	-
cohencu	1	5	22.5	- - - /
egcd1	1	9	284.5	✓
egcd2	2	-	-	-
egcd3	3	-	-	- · · · · · · · · · · · · · · · · · · ·
prodbin	1	7	45.1	✓
prod4br	1	11	87.3	✓
knuth	1	9	84.6	✓
fermat1	3	26	185.3	✓
fermat2	1	8	101.8	✓
lcm1	3	22	175.2	✓
lcm2	1	7	163.8	✓
geo1	1	7	24.4	✓
geo2	1	9	24.3	✓
geo3	1	7	32.3	✓
ps2	1	3	17.0	✓
ps3	1	4	17.8	✓
ps4	1	4	18.5	✓
ps5	1	4	19.3	✓
ps6	1	3	21.0	✓

Experiment

- NLA suite: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- Goal: obtain invariants and compare to ground truths

Results: Numlnv found correct invariants in 23/27 progs

- Most results equiv to or stronger than (imply) ground truths
- Several unexpected and undocumented invariants
- Some invariants reveal "how" program works in details

Example: Complexity Analysis

```
void triple(int M, int N, int P){
  assert (0 <= M);
  assert (0 <= N);
  assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0;
 while(i < N){</pre>
   j = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
      k++; t++;
     i = k;
   i++;
  [L]
```

Complexity of this program?

• Existing result: t = O(N + NM + P)

Example: Complexity Analysis

```
void triple(int M, int N, int P){
  assert (0 \le M);
  assert (0 \le N);
  assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0:
 while(i < N){</pre>
   j = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
      k++; t++:
     i = k;
   i++;
  [L]
```

Complexity of this program?

- Existing result: t = O(N + NM + P)
- NumInv found a very unexpected inv:

$$P^{2}Mt + PM^{2}t - PMNt - M^{2}Nt$$
$$-PMt^{2} + MNt^{2} + PMt - PNt - 2MNt$$
$$+Pt^{2} + Mt^{2} + Nt^{2} - t^{3} - Nt + t^{2} = 0$$

Example: Complexity Analysis

```
void triple(int M, int N, int P){
 assert (0 <= M):
 assert (0 \le N);
 assert (0 \le P);
 int i = 0, j = 0, k = 0;
 int t = 0:
 while(i < N){</pre>
   j = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
      k++; t++:
     i = k;
   i++;
  [L]
```

Complexity of this program?

- Existing result: t = O(N + NM + P)
- NumInv found a very unexpected inv:

$$P^{2}Mt + PM^{2}t - PMNt - M^{2}Nt$$

 $-PMt^{2} + MNt^{2} + PMt - PNt - 2MNt$
 $+Pt^{2} + Mt^{2} + Nt^{2} - t^{3} - Nt + t^{2} = 0$

• Solve for t yields the most precise, unpublished bound:

$$\begin{split} t &= 0 & \text{when} & N &= 0, \\ t &= P + M + 1 & \text{when} & N &\leq P, \\ t &= N - M(P - N) & \text{when} & N > P \end{split}$$

 Nonlinear invariants can represent disjunctive properties capturing different complexity bounds

Results: Complexity Analysis

Prog	Invs	Time (s)	<u> </u>
cav09_fig1a	1	14.3	\
cav09_fig1d	1	14.2	✓
cav09_fig2d	3	36.0	✓
cav09_fig3a	3	14.2	✓
cav09_fig5b	5	46.8	✓
pldi09_ex6	7	54.1	✓
pldi09_fig2 (triple)	6	93.5	11
pldi09_fig4_1	3	44.2	✓
pldi09_fig4_2	5	43.7	✓
pldi09_fig4_3	3	37.5	✓
pldi09_fig4_4	4	56.6	-
pldi09_fig4_5	3	31.6	✓
popl09_fig2_1	2	211.7	V
popl09_fig2_2	2	65.1	11
popl09_fig3_4	4	54.7	✓
popl09_fig4_1	2	42.7	✓
popl09_fig4_2	2	158.3	11
popl09_fig4_3	5	39.2	✓
popl09_fig4_4	3	34.2	✓

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
- Goal: compare against results from prev work

Results: Complexity Analysis

Prog	Invs	Time (s)	
cav09_fig1a	1	14.3	√
cav09_fig1d	1	14.2	✓
cav09_fig2d	3	36.0	✓
cav09_fig3a	3	14.2	✓
cav09_fig5b	5	46.8	✓
pldi09_ex6	7	54.1	✓
pldi09_fig2 (triple)	6	93.5	11
pldi09_fig4_1	3	44.2	✓
pldi09_fig4_2	5	43.7	✓
pldi09_fig4_3	3	37.5	✓
pldi09_fig4_4	4	56.6	-
pldi09_fig4_5	3	31.6	✓
popl09_fig2_1	2	211.7	V
popl09_fig2_2	2	65.1	11
popl09_fig3_4	4	54.7	✓
popl09_fig4_1	2	42.7	✓
popl09_fig4_2	2	158.3	11
popl09_fig4_3	5	39.2	✓
popl09_fig4_4	3	34.2	✓

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
- Goal: compare against results from prev work

Results: Obtain equiv (14) or more precise bounds (4) in 18/19 progs

Example: Verification

```
void f(int u1, int u2) {
                                       void g(int n, int u1) {
  assert(u1 > 0 \&\& u2 > 0);
                                         assert(u1 > 0);
  int a = 1, b = 1, c = 2, d = 2;
                                         int x = 0;
  int x = 3, y = 3;
                                         int m = 0:
  int i1 = 0, i2 = 0;
  while (i1 < u1) {</pre>
                                         while (x < n) {
                                           if (u1) {
   i1++:
   x = a + c; y = b + d;
                                             m = x;
   if ((x + y) \% 2 == 0) {
   a++: d++:
                                           x = x + 1:
   } else { a--;}
   i2 = 0:
                                          [L] //NumInv found:
   while (i2 < u2 ) {
                                         //m^2 = nx - m - x, mn = x^2 - x
     i2++; c--; b--;
                                         //-m \le x, x \le m + 1, n \le x
                                         if (n > 0)
                                          assert(0 \le m \&\& m \le n);
  [L] //NumInv found:
  //b + 1 = c, a + 1 = d,
  //a + b \le 2, 2 \le a
  assert(a + c == b + d);
```

Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)
- Goal:
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE

Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)
- Goal:
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE

Results: Found equiv (23) or stronger (13) invariants in 36/46 programs

- Time: mean 30s, median 13s
- Nonlinear invariants can prove many nontrivial and unsupported properties

Conclusion

NumInv

- Use CEGIR for *numerical* invariant generation
 - Dynamic Inference: use DIG to compute nonlinear invariants
 - Static Checking: use KLEE to check candidate invariants and obtain cex's
- Unsound, but experience shows practical and effective in removing invalid results and can handle complex invariants

Conclusion

NumInv

- Use CEGIR for numerical invariant generation
 - Dynamic Inference: use DIG to compute nonlinear invariants
 - Static Checking: use KLEE to check candidate invariants and obtain cex's
- Unsound, but experience shows practical and effective in removing invalid results and can handle complex invariants

Results

- Discover necessary nonlinear invariants to understand programs
- Find useful invariants capturing nontrivial runtime complexity
- Compete well with existing work
- General polynomial invariants (e.g., nonlinear properties) can surprisingly represent/prove many nontrivial, complex, and unsupported properties

https://bitbucket.org/nguyenthanhvuh/dig2/