

01 - Introduction

Infrastructure de données 1

Données

Faits, observations, mesures brutes

Information et connaissance

Types

- O Structurées : tableaux, bases de données.
- Semi-structurées : JSON, XML
- Non structurées : textes, images, vidéos.

Bases de données

• Base de données : stockage structuré, performant, sécurisé.

 Excel : adapté aux petites données, mais limité en scalabilité, collaboration, et fiabilité.

Avantages bases de données

Avantages bases de données

• Fiabilité : contraintes d'intégrité, transactions

• Scalabilité : gestion efficace des grandes données

 Multi-utilisateur : accès concurrent, gestion des droits.

• Sécurité : permissions, cryptage, audit.

 Automatisation : requêtes SQL, procédures stockées.

Histoire

Base de données relationnelles

- Tables (relations) : lignes = enregistrements, colonnes = attributs.
- Clés primaires et étrangères : intégrité et relations entre tables.
- Normalisation : éviter la redondance, optimiser la structure.
- SQL (Structured Query Language) : interrogation et manipulation des données.

Base de données relationnelles toujours dominantes, malgré la montée des NoSQL et bases cloud.

OLTP vs OLAP

OLTP (Online Transaction Processing)

Bases optimisées pour les transactions rapides et fréquentes

- Petites transactions fréquentes.
- Réponse rapide et faible latence.
- Forte cohérence et intégrité des données.
- Accès concurrentiel multi-utilisateur.

OLAP (Online Analytical Processing)

Bases optimisées pour l'analyse de grands volumes de données.

- Requêtes complexes et agrégations.
- Traitement de gros volumes de données historiques.
- Moins d'écritures, principalement des lectures.
- Performances optimisées pour les analyses avancées.

Utilisations majeures: reporting d'entreprise, business intelligence, prévisions et analyses, tableaux de bords décisionnels

Systèmes de Gestion de Base de Données (SGBD)

- MySQL: Open-source, rapide, très utilisé pour le web.
- PostgreSQL: Open-source, robuste, conforme aux standards SQL.
- DuckDB: Base analytique en mémoire, optimisée pour OLAP.
- Autres: Oracle, SQL Server, SQLite,
 MongoDB (NoSQL), BigQuery, Snowflake.

Objectifs du cours

- Connaître la problématique générale des infrastructures de données et du stockage de l'information en fonction des différents types de données.
- Maîtriser la transformation de la modélisation conceptuelle de données dans un modèle physique.
- Connaître les problématiques liées à l'optimisation d'une base de données relationnelles
- Pratiquer la mise en place d'une base de données relationnelle.

Evaluation

EXAMEN INTERMÉDIAIRE 30%

PROJET 40%

EXAMEN FINAL 30 %

3 avril

Fondamentaux SQL

Format papier

Plus de détails dans les slides d'après...

13 juin

Ensemble du cours

Format papier

Objectif

Concevoir une **base de données relationnelle** pour un hôpital à partir d'un fichier Excel brut.

Contexte

L'hôpital dispose de plusieurs types de données :

- o Patients: informations personnelles
- Médecins : spécialités, hôpitaux
- o Rendez-vous : dates, motifs, patients et médecins
- Médicaments : nom, dosage, type
- Prescriptions : attribution de médicaments aux patients

Equipes

Groupes de 4/5 personnes

Rôles

Répartitions des rôles comme suit:

- Chef de projet : Coordination, documentation et interaction avec client
- Database Architect: Analyse et modélisation UML
- Développeur SQL : Création et gestion de la base de données
- Data Engineer : Rédaction et optimisation des requêtes SQL

Évaluation des pairs

Mesurer l'implication et la contribution de chaque étudiant dans le projet

Livrables

- Schéma UML optimisé 7 mars
- Script SQL pour la création de la base de données et l'import des données
- Requêtes SQL répondant aux besoins du client 2 mai
- Présentation orale du projet
 5/6 mai
- Rapport final détaillant l'ensemble du projet et les différentes étapes du projet (schéma UML, 6 mai scripts SQL, optimisation etc).

Accès aux données

github.com/MediaComem/comem-infradon-1/

Aujourd'hui

- Création des groupes
- Première lecture des données Excel

Questions?