

- Compostos inorgânicos contendo elementos metálicos e não metálicos;
- ✓ Ligações iónicas e/ou covalentes;
- ✓ Materiais duros e frágeis (quebradiços);
- ✓ Materiais com estrutura cristalina e amorfa (vidro);
- ✓ Baixa tenacidade e ductilidade; elevada resistência ao desgaste;
- Estáveis em condições severas, elevada estabilidade química;
- Excelente biocompatibilidade;
- ✓ Elevado ponto de fusão;
- ✓ Bons isolantes térmicos e elétricos;
- ✓ Exemplos: óxidos (Al₂O₃, ZrO₂, MgO, SiO₂, etc.), nitretos, carbonetos (SiC) e sais iónicos (NaCl, CsCl, ZnS).

Ligação química:

- √ iónica e/ou covalente
- ✓ caráter iónico aumenta com a diferença de eletronegatividade.

Determinação do caráter iónico/covalente em compostos cerâmicos:

% caráter iónico =
$$\left(1 - \exp\left(-\frac{1}{4}(x_A - x_B)^2\right)\right) \times 100$$
 Equação de Pauling

 x_A – eletronegatividade do átomo A

 x_{B} – eletronegatividade do átomo B

Composto cerâmico	Átomos ligados	Diferença de eletronegatividades	% de caráter iónico	% de caráter covalente
Óxido de magnésio, MgO	Mg, O	2,3	73	27
Óxido de alumínio, AlO	Al, O	2,0	63	37
Dióxido de silício, SiO ₂	Si, O	1,7	51	49
Nitreto de silício, Si ₃ N ₄	Si, N	1,2	30	70
Carboneto de silício, SiC	Si, C	0,7	11	89

Fatores que determinam a estrutura do cristal

1. Tamanho relativo dos iões – formação de estruturas estáveis: maximizar NC

- 2. Manutenção da neutralidade elétrica:
 - > nula
 - > refletida na fórmula química:

A_m X_p

m, p valores para atingir a neutralidade

Para formar uma estrutura estável, quantos aniões são necessários para envolver o catião central?

Determinação da razão $r_{\text{catião}}/r_{\text{anião}}$ mínima (ou crítica) para:

interstício triangular

$$\overline{AP} = r_{ani\tilde{a}o}$$

$$\overline{AO} = r_{ani\tilde{a}o} + r_{cati\tilde{a}o}$$

$$\cos \alpha = \frac{\overline{AP}}{\overline{AO}}$$

$$\frac{r_{catião}}{r_{anião}} = 0,155$$

interstício octaédrico

$$2r_{ani\tilde{a}o} + 2r_{cati\tilde{a}o} = 2\sqrt{2}r_{ani\tilde{a}o}$$

$$\frac{r_{catião}}{r_{anião}} = 0,414$$

Com base nos raios iónicos prever a estrutura para o FeO:

catião	raio iónico(nm)	
Al ³⁺	0,053	
Fe ^{2 +}	0,077	
Fe ³⁺	0,069	
Ca ²⁺	0,100	

anião

$$\frac{r_{catião}}{r_{anião}} = \frac{0,077}{0,140}$$
$$= 0,550$$

Com base nesta razão,

$$NC = 6$$

Estrutura do cristal: octaédrica

Defeitos

Lacunas (ou vazios)

> falta de um ião (anião ou catião)

Defeitos intersticiais

> se o fator de empacotamento for baixo, um ião extra pode alojar-se na estrutura cristalina

Defeito de Frenkel

> deslocamento de um ião da sua posição normal na rede para um interstício

Defeito de Shottky

> envolve vazios de par de iões de cargas opostas

Comportamento mecânico

Ensaio de flexão

(à temperatura ambiente: comportamento geralmente elástico com fratura frágil)

Determinação do módulo elástico:

$$E = \frac{F}{\delta} \frac{L^3}{4bd^3}$$
 (secção reta rectangular)

$$E = \frac{F}{\delta} \frac{L^3}{12\pi R^4}$$
 (secção reta circular)

Propriedades mecânicas

- ✓ Elevado módulo de elasticidade (ligações químicas mais fortes)
- ✓ Baixa densidade
- ✓ Materiais duros
- ✓ Baixa ductilidade (em geral são frágeis)
- ✓ Resistência a temperaturas elevadas
- ✓ Resistência à corrosão
- ✓ Resistência ao desgaste (remoção de material devida a ação mecânica)

