

Studies of semileptonic B decays with the BaBar experiment: Measurement of |V_{cb}| and Heavy Quark Parameters

hep-ex/0403030, 0403031, 0404017

Jeffrey Berryhill
University of California, Santa Barbara
For the BaBar Collaboration

APS Meeting Denver, Colorado May 1, 2004

Why study semileptonic B decays?

Tree level, short distance:

Precision electroweak physics

- •Decay properties depend directly on fundamental Standard Model parameters: $|V_{ch}|$, m_b , m_c
- |V_{cb}| : essential ingredient in tests of CKM unitarity
- •m_b, m_c: important in predictions of B decay rates, precision electroweak observables

Why study semileptonic B decays?

QCD phenomenology of heavy quarks

- •Higher order QCD (α_s^n) corrections to short-distance interaction
- Non-perturbative, long-distance interactions of b quark with light quark
- •Need theoretical technology to factorize these two effects and produce observables with precise relation to short distance parameters

The Heavy Quark Expansion (HQE)

An operator product expansion in the heavy quark limit

- Short-distance, perturbative physics in the coefficients of operator products (to some order in α_s). Calculable!
- Long-distance, non-perturbative physics in exp. values of products of quark operators (to some order in 1/m_b). NOT calculable. Measure them!

$$\Gamma_{c\ell\nu} = \frac{G_F^2 m_b^5}{192\pi^3} V_{cb}^2 (1 + A_{ew}) A_{pert}(r, \mu) \times \left[z_0(r) \left(1 - \frac{\mu_\pi^2 - \mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b}}{2m_b^2} \right) - 2(1 - r)^4 \frac{\mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b}}{m_b^2} + d(r) \frac{\rho_D^3}{m_b^3} + \mathcal{O}(1/m_b^4) \right].$$

$$r = m_c^2 m_b^2$$

N.B. Several HQE schemes exist; op's and coeff's are scheme dependent

HQE and spectral moments

- •Multiple b \rightarrow c $l \nu$ observables needed for simultaneous extraction of all **HQE** parameters
- •HQE calculations now exist for several inclusive spectral moments of the semileptonic decay products, as a function of the minimum (B rest frame) lepton energy , E_{cut} , required:

$$\langle X^{n} \rangle (E_{cut}) = \frac{\int (X - X^{0})^{n} \frac{d\Gamma}{dX} dX}{\int \frac{d\Gamma}{dX} dX} \Big|_{E_{l} > E_{cut}}$$

- Partial branching fraction n = 0 moment
- •Lepton-energy spectrum $<E_{i}^{n}> n = 1, <E_{i}^{n} <E_{i}^{1}>>, n = 2,3$
- •Hadronic-mass distribution <M_xⁿ> n= 1,2,3,4
- •photon energy spectrum in $b \rightarrow s\gamma$ decays $\langle E_{\gamma}^{n} \rangle$ (not discussed here)

Lepton Energy Spectrum: Selection

- Tag Y(4S) events with high energy electron (p* > 1.4 GeV in Y(4S) frame) "e_{tag}"
- Measure spectrum of any second electron in the event (p* > 0.5 GeV in Y(4S) frame) "e_{sig}"
- •Split into same sign (mostly from D to X l v) and opposite sign (mostly signal) samples

APS Meeting

Lepton Energy Spectrum: Background

•Suppress charm decay electrons in opp. sign sample with opening angle cut and J/psi veto

Subtract remaining background:

- continuum with off-resonance data
- charm decays with same sign dielectron data (corrected for mixing)
- fake/conversion/Dalitz electrons estimated from data
- •b to ccs and b to cτν decays from MC

Lepton Energy Spectrum: Corrections

- •Electron ID efficiency precisely measured in radiative Bhabhas vs. (p, $\cos \theta$, +/-)
- •Detector Bremsstrahlung corrected via inversion of smearing matrix (detector material model X₀ agrees with data to 0.14%!)
- B momentum correction from
 B spectrum in data
- B →X_uIv background estimated from measured BF,
 MC spectral shape

Lepton Energy Spectrum: Moments

Individual measurements are highly correlated!

submitted to Phys. Rev. D: hep-ex/0403030

Lepton Energy Spectrum: Moments

Individual measurements are highly correlated!

submitted to Phys. Rev. D: hep-ex/0403030

Hadronic-Mass Spectrum: Selection

- •Tag Y(4S) decays with fully reconstructed hadronic B decays "B_{reco}"
- •Measure X_c mass in "B_{recoil}" side of the event:
 - •exactly one "right sign" lepton (e or μ)
 - •lepton p* in B rest frame > 0.9 GeV
 - •|net charge| <= 1
 - •E_{miss} and P_{miss} consistent with neutrino

7000 events

APS Meeting

Hadronic-Mass Spectrum: Background

B_{reco} mass peak in selected events

M_x extracted from kinematic fit to the entire event

Small remaining background spectrum estimated from MC

Hadronic-Mass Moments: Corrections

- Exploit observed linear relations between measured and generated masses
- Calibrate on an event-by-event basis, separately for each moment
- 9 MC calib. curves for each moment: 3X3 bins of (multiplicity, Emiss Pmiss)

Hadronic-Mass Moments

Moments < $M_X^n>$ (n=1,...4) of the hadronic mass spectrum in B \rightarrow X_c lv decays for 0.9 GeV < E_{cut} < 1.6 GeV

- Clear dependence on E_{cut} of lepton.
- Comparable statistical and systematic errors.
- Individual measurements are highly correlated!

submitted to Phys. Rev. D: hep-ex/0403031

Fit of HQE Parameters to Moments

We use calculations in kinetic mass scheme by Gambino and Uraltsev (HQE to order $1/m_b^3$, α_s^2) hep-ph/0401063 hep-ph/0403166

8 Fit Parameters:

- •BF(B \rightarrow X_cIv), |V_{cb}|, m_b, m_c and 4 HQE parameters:
- μ_{π}^2 exp. value of kinetic energy of b quark inside B meson
- $O(1/m_h^2)$ μ_G^2 exp. value of chromomagnetic moment operator
 - ρ_D^3 exp. value of Darwin operator
- $O(1/m_b^3)$ ρ_{LS}^{-3} exp. value of Spin-Orbit operator

27 lepton-energy and hadronic-mass moment measurements
27 separate HQE prediction functions in the 8 fit parameters
(higher order moments sensitive to higher order HQE parameters)

HQE Fit Results

- All parameters unconstrained.
- Only solid points are used in the fit.
 - Correlations taken into account.

- Error bars show experimental errors (stat. & syst.)
- Bands correspond to theoretical uncertainties.

Fit Results

$$|V_{cb}| = (41.4 \pm 0.4_{\text{exp}} \pm 0.4_{\text{HQE}} \pm 0.2_{\alpha_s} \pm 0.6_{\Gamma_{\text{SL}}}) \times 10^{-3}$$

$$Br(B \to X_c e v) = (10.61 \pm 0.16_{\text{exp}} \pm 0.06_{\text{HQE}})\%$$

$$m_b(1 \text{ GeV}) = (4.61 \pm 0.05_{\text{exp}} \pm 0.04_{\text{HQE}} \pm 0.02_{\alpha_s}) \text{ GeV}$$

$$m_c(1 \text{ GeV}) = (1.18 \pm 0.07_{\text{exp}} \pm 0.06_{\text{HQE}} \pm 0.02_{\alpha_s}) \text{ GeV}$$

$$\mu_{\pi}^{2} = (0.45 \pm 0.04_{\text{exp}} \pm 0.04_{\text{HQE}} \pm 0.01_{\alpha_{s}}) GeV^{2}$$

$$\mu_{G}^{2} = (0.27 \pm 0.06_{\text{exp}} \pm 0.03_{\text{HQE}} \pm 0.02_{\alpha_{s}}) GeV^{2}$$

$$\rho_{D}^{3} = (0.20 \pm 0.02_{\text{exp}} \pm 0.02_{\text{HQE}} \pm 0.00_{\alpha_{s}}) GeV^{3}$$

$$\rho_{LS}^{3} = (-0.09 \pm 0.04_{\text{exp}} \pm 0.07_{\text{HQE}} \pm 0.01_{\alpha_{s}}) GeV^{3}$$

submitted to Phys. Rev. Lett. hep-ex/0404017

2D projections of the fit result:

 $\Delta \chi^2 = 1$ ellipses of separate fits to lepton or hadron moments are consistent

APS Meeting

kinetic mass scheme

U1 May U4

Jettrey Berryhill (UCSB)

17 of 20

Comparison with previous Determinations

First measurement with all parameters floating to order 1/m_b³

Comparison with other Determinations

Measurements and Predictions of the b-Quark Mass (MS scheme) PDG2003

Measurements and Predictions of the c-Quark Mass

$$\overline{m}_b(\overline{m}_b) = 4.22 \pm 0.06 \text{ GeV}$$
 BABAR

$$\overline{m}_{c}(\overline{m}_{c}) = 1.33 \pm 0.10 \text{ GeV}$$

Conversion from kinetic mass scheme to MS scheme with hep-ph/9708372, hep-ph/0302262 See also report from CKM WS hep-ph/0304132

APS Meeting 01 May 04

Summary

New Measurements of

- Hadronic Mass Moments up to 4^{th} order for 0.9 GeV $\leq E_{cut} \leq 1.6$ GeV hep-ex/0403031
- Lepton Energy Moments up to 3^{rd} order for $0.6 \text{ GeV} < E_{cut} < 1.5 \text{ GeV}$ hep-ex/0403030

Serve as input to **OPE fit** with no external constraints:

$$|V_{cb}| = (41.4 \pm 0.4_{\text{exp}} \pm 0.4_{\text{HQE}} \pm 0.2_{\alpha_s} \pm 0.6_{\Gamma_{SL}}) \times 10^{-3}$$

$$Br(B \to X_c e v) = (10.61 \pm 0.16_{\text{exp}} \pm 0.06_{\text{HQE}})\%$$

$$m_b(1 \text{ GeV}) = (4.61 \pm 0.05_{\text{exp}} \pm 0.04_{\text{HQE}} \pm 0.02_{\alpha_s}) \text{ GeV}$$

$$m_c(1 \text{ GeV}) = (1.18 \pm 0.07_{\text{exp}} \pm 0.06_{\text{HQE}} \pm 0.02_{\alpha_s}) \text{ GeV}$$

$$m_b(1 \text{ GeV}) - m_c(1 \text{ GeV}) = (3.44 \pm 0.03_{\text{exp}} \pm 0.02_{\text{HQE}} \pm 0.01_{\alpha_s}) \text{ GeV}$$

2% error on |V_{cb}| from BaBar

submitted to Phys. Rev. Lett. hep-ex/0404017