NIA

RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following CRF diskette:

Application Serial Number:

09/423,545

Art Unit / Team No.:

16.46

Date Processed by STIC:

2/28/2000

THE ATTACHED PRINTOUT EXPLAINS THE ERRORS DETECTED.

PLEASE BE SURE TO FORWARD THIS INFORMATION TO THE APPLICANTS BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANTS ALONG WITH A NOTICE TO COMPLY or,
- 2) CALLING APPLICANTS AND FAXING THEM A COPY OF THE PRINTOUT WITH A NOTICE TO COMPLY

THIS WILL INSURE THAT THE NEXT SUBMISSION RECEIVED FROM THEM WILL BE ERROR FREE.

IF YOU HAVE ANY FURTHER QUESTIONS, PLEASE CALL:

MARK SPENCER 703-308-4212

RECEIVED
HAR-9 2000
TC 1690 MAIL ROOM

Raw Sequence Listing Error Summary

1	ERROR DETECTED	SUGGESTED CORRECTION SERIAL NUMBER: 09/423545						
ATT):	NEW RULES CASES: P Wrapped Nucleics	LEASE DISREGARD ENGLISH "ALPHA" HEADERS, WHICH WERE INSERTED BY PTO SOFTWARE The number/text at the end of each line "wrapped" down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to .3, as this will prevent "wrapping".						
2	Wrapped Aminos	The amino acid number/text at the end of each line "wrapped " down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to .3, as this will prevent "wrapping".						
3	Incorrect Line Length	The rules require that a line not exceed 72 characters in length. This includes spaces.						
4	Misaligned Amino Acid Numbering	The numbering under each 5th amino acid is misaligned. This may be caused by the use of tabs between the numbering. It is recommended to delete any tabs and use spacing between the numbers.						
5	Non-ASCII This file was not saved in ASCII (DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text so that it can be processed.							
6	Variable Length	Sequence(s) contain n's or Xaa's which represented more than one residue. As per the rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the (ix) feature section that some may be missing.						
7	Palentin ver. 2.0 "bug"	A "bug" in Patentin version 2.0 has caused the <220>-<223> section to be missing from amino acid sequence(s) Normally, Patentin would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220>-<223> section to the subsequent amino acid sequence.						
8	Skipped Sequences (OLD RULES)	Sequence(s) missing. If intentional, please use the following format for each skipped sequence: (2) INFORMATION FOR SEQ ID NO:X: (i) SEQUENCE CHARACTERISTICS:(Do not insert any headings under "SEQUENCE CHARACTERISTICS") (xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: This sequence is intentionally skipped						
9	Skipped Sequences (NEW RULES)	Please also adjust the "(iii) NUMBER OF SEQUENCES:" response to include the skipped sequence(s). Sequence(s) missing. If intentional, please use the following format for each skipped sequence. <210> sequence id number <400> sequence id number 000						
10	Use of n's or Xaa's (NEW RULES)	Use of n's and/or Xaa's have been detected in the Sequence Listing. Use of <220> to <223> is MANDATORY if n's or Xaa's are present. In <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents.						
11	Use of <213>Organism (NEW RULES)	Sequence(s) are missing this mandatory field or its response.						
12	Use of <220>Feature (NEW RULES)	Sequence(s) are missing this mandatory field or its response. Sequence(s) are missing the <220>Feature and associated headings. Use of <220> to <223> is MANDATORY if <213>ORGANISM is "Artificial" or "Unknown" Please explain source of genetic material in <220> to <223> section. (See "Federal Register," 6/01/98, Vol. 63, No. 104, pp. 29631-32) (Sec. 1.82336 new-Rules)						
13	Patentin ver. 2.0 "bug"	Please do not use "Copy to Disk" function of Patentin version 2.0. This causes a corrupted Isline, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other means to copy file to floppy disk. AKS-Biotechnology Systems Branch- 5/15/99						

NH

PAGE: 1

RAW SEQUENCE LISTING

PATENT APPLICATION US/09/423,545

DATE: 02/28/2000

TIME: 16:34:20

Input Set: I423545.RAW

This Raw Listing contains the General Information Section and those Sequences containing ERRORS.

```
<110> KenjI SHIBATA
                                                             Does Not Comply
                                                         Corrected Diskette Needed
 2
           Motoo YAMASAKI
 3
           Tetsuo YOSHIDA
 4
           Tamio MIZUKAMI
 5
           Akeo SHINKAI
           Hideharu ANAZAWA
 6
 7
     <120> Peptides having a cyclic structure and restoring the
           activities of P53 protein to mutant P53 protein
8
     <130> 1061
9
     <140> US/09/423,545
10
     <141> 1999-11-12
11
     <150> JP97/126113
12
13
     <151> 1997-05-15
     <160> 32
```

ERRORED SEQUENCES FOLLOW

	15	\(\text{210} \) 8 \(\text{211} \) 32 \(\text{212} \) DNA \(\text{Cubr, all bosis} \) \(\text{213} \) Artificial Sequence \(\text{220} \) \(\text{220} \) \(\text{223} \) Other nucleic acid Synthetic DNA \(\text{Letters} \) \(\text{20NA} \) \(\text{200} \) \(\text{223} \) \(\text{200} \) \(\
E>	16	<211> 32
	17	<212> DNA Kur, all hour
	18	<213> Artificial Sequence had to be lown-case -//
	19	<220>
	20	<223> Other nucleic acid Synthetic DNA / la Huss
	21	<400>8
E>	22	CTAGACAGCC AGACTGCCTT CCGGGTCACT GC
	23	32
	24	<210> 9
E>	25	<211> 32
	26	<212> DNA
	27	<213> Artificial Sequence
•	28	<220>
	29	<223> Other nucleic acid Synthetic DNA
	30	<400> 9
E>	31	CATGGCAGTG ACCCGGAAGG CAGTCTGGCT GT
	32	32
	33	<210> 10
E>	34	<211> 26
	35	<212> DNA
	36	<213> Artificial Sequence
	37	<220>

DAGD	_	DAME OF THE O	/20/2000
PAGE:	2	2 RAW SEQUENCE LISTING DATE: 02 PATENT APPLICATION US/09/423,545 TIME: 16	:/28/2000 ::34:20
		Input Set: I42354	5.RAW
		_	,
	38	<223> Other nucleic acid Synthetic DNA	enot
_	39		
E>	40	TCGAGAGACA TGCCTG	
	41	26	
	42	<210> 11	
E>	43	<211> 26	
	44	<212> DNA	
	45	<213> Artificial Sequence	
	46	<220>	
	47	<223> Other nucleic acid Synthetic DNA	
	48	<400> 11	
E>	49	TCGACAGGCA TGTCTC	
	50	26	
	51	<210> 12	
E>	52	<211> 22	
	53	<212> DNA	
	54	<213> Artificial Sequence	
	55	<220>	
	56	<223> Other nucleic acid Synthetic DNA	
	57	<400> 12	
E>	58	TCGAGCCCGG GGGTACCGCA TG	•
	59	22	
	60	<210> 13	
E>	61	<211> 14	
	62	<212> DNA	
	63	<213> Artificial Sequence	
	64	<220>	
	65	<223> Other nucleic acid Synthetic DNA	
	66	<400> 13	
E>	67	CGGTACCCCC GGGC	
	68	14	
	69	<210> 14	
E>	70	<211> 32	
	71	<212> DNA	
	72	<213> Artificial Sequence	
	73	<220'>	
	74	<223> Other nucleic acid Synthetic DNA	
	75	<400> 14	
E>	76	TCGAGGGACT TGCCTGTCGA CG	
	77	32	
	78	<210> 15	
E>	79	<211> 32	
	80	<212> DNA	
	81	<213> Artificial Sequence	
	82	<220>	

DATE: 02/28/2000

TIME: 16:34:20

Input Set: I423545.RAW

PAGE: 3 RAW SEQUENCE LISTING PATENT APPLICATION US/09/423,545 <223> Other nucleic acid Synthetic DNA 83 <400> 15 84 GTACCOTCGA CAGGCAAGTC CAGGCAAGTC CC 85 86 87 <210> 24 <211>*(*16) E--> 88 89 <212> PRT <213> Artificial Sequence 90 <220> 91 <221> BINDING 92 <222> (7)..(13) 93 <223> BINDING type is -CONH2-. 94 95 <220> <221> SITE 96 97 <222> (15) <223> Xaa represents L-Leucine amide. 98 99

<223> Synthetic peptide

runtur dereitly

with perturent anero

avid. DO NOT use TAB

codes between runtus; use

space characters,

L

<400> 24

Please Note:

100

101

102 103

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Leu Lys Ser Lys Lys Gly Asp Ser Thr Ser Arg His Lys Lys Xaa

VERIFICATION SUMMARY PATENT APPLICATION US/09/423,545

PAGE:

Input Set: I423545.RAW

DATE: 02/28/2000 TIME: 16:34:20

ine	?	Error/Warning		Original Text				
16	E	Input	32, Calc# Bases 0 differ	<211>	32			
		_	Amino Acid Designator	CTAGACA	.GCC	AGACTGCCTT	CCGGGTCACT	GC
22	Ε	Wrong	Amino Acid Designator	CTAGACA	.GCC	AGACTGCCTT	CCGGGTCACT	GC
22	E	Wrong	Amino Acid Designator	CTAGACA	.GCC	AGACTGCCTT	CCGGGTCACT	GC
			Amino Acid Designator	CTAGACA	.GCC	AGACTGCCTT	CCGGGTCACT	GC
25	E	Input	32, Calc# Bases 0 differ	<211>	32			
31	E	Wrong	Amino Acid Designator	CATGGCA	GTG.	ACCCGGAAGG	CAGTCTGGCT	GT
31	E	Wrong	Amino Acid Designator	CATGGCA	GTG	ACCCGGAAGG	CAGTCTGGCT	GT
31	E	Wrong	Amino Acid Designator	CATGGCA	GTG	ACCCGGAAGG	CAGTCTGGCT	GT
31	E	Wrong	Amino Acid Designator	CATGGCA	GTG	ACCCGGAAGG	CAGTCTGGCT	GT
34	E	Input	26, Calc# Bases 0 differ	<211>	26			
40	E	Wrong	Amino Acid Designator	TCGAGAG	ACA	TGCCTAGACA	TGCCTG	
40	E	Wrong	Amino Acid Designator	TCGAGAG	ACA	TGCCTAGACA	TGCCTG	
40	E	Wrong	Amino Acid Designator	TCGAGAG	ACA	TGCCTAGACA	TGCCTG	
43	E	Input	26, Calc# Bases 0 differ	<211>	26		•	
49	E	Wrong	Amino Acid Designator	TCGACAG	GCA	TGTCTAGGCA	TGTCTC	•
49	E	Wrong	Amino Acid Designator	TCGACAG	GCA	TGTCTAGGCA	TGTCTC	
49	E	Wrong	Amino Acid Designator	TCGACAG	GCA	TGTCTAGGCA	TGTCTC	
52	E	Input	22, Calc# Bases 0 differ	<211>	22			
58	E	Wrong	Amino Acid Designator	TCGAGCC	CGG	GGGTACCGCA	TG	
58	E	Wrong	Amino Acid Designator	TCGAGCC	CGG	GGGTACCGCA	TG	
58	E	Wrong	Amino Acid Designator	TCGAGCC	CGG	GGGTACCGCA	TG	
61	E	Input	14, Calc# Bases 0 differ	<211>	14			
67	E	Wrong	Amino Acid Designator	CGGTACC	CCC	GGGC		
			Amino Acid Designator	CGGTACC	CCC	GGGC		
			32, Calc# Bases 0 differ	<211>	32			
76	E	Wrong	Amino Acid Designator	TCGAGGG	ACT	TGCCTGGACT	TGCCTGTCGA	CG
76	E	Wrong	Amino Acid Designator	TCGAGGG	ACT	TGCCTGGACT	TGCCTGTCGA	CG
76	E	Wrong	Amino Acid Designator	TCGAGGG	ACT	TGCCTGGACT	TGCCTGTCGA	CG
76	E	Wrong	Amino Acid Designator	TCGAGGG	ACT	TGCCTGGACT	TGCCTGTCGA	CG
79	E	Input	32, Calc# Bases 0 differ	<211>	32			•
85	E	Wrong	Amino Acid Designator	GTACCGT	CGA	CAGGCAAGTC	CAGGCAAGTC	CC
85	E	Wrong	Amino Acid Designator	GTACCGT	CGA	CAGGCAAGTC	CAGGCAAGTC	CC
		-	_	GTACCGT	CGA	CAGGCAAGTC	CAGGCAAGTC	CC
		_		GTACCGT	CGA	CAGGCAAGTC	CAGGCAAGTC	CC
		_	16, Calc Seq.Length 15 differ	<211>	16			
				Leu Lys	Ser	Lys Lys Gl	y Asp Ser T	hr Ser A