Optymalizacja hiperparametrów xgboost Dokumentacja wstępna

Przemysław Stawczyk, Piotr Zmyślony

15 kwietnia 2020

Spis treści

1	Treść zadania	•
2	Dane testowe2.1 Analiza danych2.2 Uzupełnienie brakujących danych	
3	Propozycja rozwiązania	ę
4	Funkcja celu - TODO : REWORK	;
5	Sposób mierzenia jakości rozwiązania 5.1 Weryfikacja rozwiązania na innych danych	4

1 Treść zadania

Naszym zadaniem jest przetestowanie różnych algorytmów heurystycznych/populacyjnych w kontekście problemu strojenia hiperparametrów algorytmu xgboost. Problem wyboru hiperparametrów wynika z ich bardzo dużej ilości, co często rozwiązyne jest poprzez manualny dobór parametrów klasyfikatora.

Projekt zostanie zrealizowany w języku Python 3+.

2 Dane testowe

Jako dane na których będziemy trenować i testować klasyfikatory przyjęliśmy proponowany zestaw danych https://www.kaggle.com/c/porto-seguro-safe-driver-prediction. Zawiera on 57 atrybutów opisujących klientów firmy ubezpieczeniowej i jeden atrybut binarny sygnalizujący, czy w ciągu roku od zawarcia umowy, klient skorzystał z ubezpieczenia.

Rysunek 1: Brakujące atrybuty

2.1 Analiza danych

Po wstępnej analizie danych odkryliśmy, że w zbiorze danych posiadamy około 79% niekompletnych wierszy. Rysunek 1 przedstawia pokrycie niekompletnych atrybutów - jest ich jedynie 13, z czego większość jest wybrakowana w bardzo niewielkim stopniu.

Największym winowajcą jest atrybut binarny $ps_car_03_cat$, którego brakuje aż w 70% wierszy, oraz atrybut $ps_car_05_cat$ (brakuje go w 44% przypadków).

Dodatkowo, wystaępuje znaczna dysproporcja między klasami rekordów - tylko 3% wierszy opisuje klientów, którzy skorzystali z ubezpieczenia. Stąd niezbędna będzie interpolacja danych, tak aby ilość rekordów obu klas była równa.

2.2 Uzupełnienie brakujących danych

W związku z powyższym, planujemy uzupełnić brakujące atrybuty na bazie kompletnych wierszy danych. Do tego zastosujemy bibliotekę pythonową *impyute*, ale nie będziemy analizować, jaka jest zależność między konkretnymi metodami interpolacji wybrakowanych atrybutów a hiperparametrami trenowanego klasyfikatora - ręcznie wybierzemy tą, która daje najlepsze (i najszybsze) rezultaty.

3 Propozycja rozwiązania

Planujemy zaimplementować następujące algorytmy:

- stochastyczny algorytm wspinaczkowy z tabu. W wariantach:
 - z prawdopodobieństwem P mutacji jednego z parametrów
 - z prawdopodobieństwem P mutacji każdego z parametrów [w szczególności mogą zmutować wszystkie]
- przegląd wyczerpujący hipersiatki

Trenowane parametry

nazwa parametu	zakres
eta	0.2,0.3,0.4,0.5
min_split_loss gamma	0, 1, 2, 3
\max_depth	1, 2 16
min_child_weight	1, 2
max_delta_step	0, 1, 2
subsample	0.5,0.6,0.7,0.8,0.9
$colsample_bytree$	0.6, 0.8, 1

4 Funkcja celu - TODO : REWORK

Jako funkcję celu planujemy wykorzystać przewidywany koszt

```
Expected cost = p(p) \times [p(tp) \times benefit(tp) + p(fn) \times cost(fn)] + p(n) \times [p(tn) \times benefit(tn) + p(fp) \times cost(fp)]
```

gdzie:

- \bullet P(x) to prawdopodonieństwo x
- benefit(x) to zysk z x
- cost(x) to koszt/kara za x
- x może oznaczać :
 - p pozytywną predykcję
 - n negatywną predykcję
 - tp pozytywną prawidłową predykcję

fp - pozytywną fałszywą predykcję

tn - negatywną prawidłową predykcję

fn - negatywną fałszywą predykcję

Gdzie przewidywane koszta i straty preedykcji będą możliwe do zmiany jako parametry uruchomienia.

5 Sposób mierzenia jakości rozwiązania

Będziemy porównywać algorytm pod kątem czasu działania względem wyczerpującego przeglądu, analizując czy zysk z szybszego doboru parametrów jest wystarczająco duży, by go stosować dla różnych limitów przejrzanych kombinacji dla naszych algorytmów.

Zbiór danych zostanie podzielony na 2 podzbiory - uczenia i testowy uczący odpowiednio większy. Na zbiorze testowym nie będziemy uczyć i podejmować decyzji - zostanie on wykorzystany do zmierzenia działania algorytmu po dobraniu wszystkich parametrów. Zbiór uczący będzie działać z k-krotną walidacją krzyrzową lub podzielony na zbiór uczenia i weryfikacji.

5.1 Weryfikacja rozwiązania na innych danych

Końcową wersję naszego algorytmu heurystycznego planujemy przetestować przy użyciu dodatkowego zbioru danych dot. przewidywania bankructwa polskich firm, który analizowaliśmy w innym projekcie.