MASTERY QUIZ DAY 23

Math 237 – Linear Algebra Fall 2017

Version 5 Fall 2017 Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$S: \mathbb{R}^4 \to \mathbb{R}^3$$
 where $S(\vec{e_1}) = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $S(\vec{e_2}) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $S(\vec{e_3}) = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$, and $S(\vec{e_4}) = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$,

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 where $T(\vec{e_1}) = \begin{bmatrix} 2\\2\\1 \end{bmatrix}$, $T(\vec{e_2}) = \begin{bmatrix} 1\\0\\4 \end{bmatrix}$, and $T(\vec{e_3}) = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}$.

A4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \end{bmatrix}$$

Compute a basis for the kernel and a basis for the image of T.