Digital twin in the Environment: Urban microclimate

Hanna CHETOUANE, Narmimane ZAOUACHE
October 9, 2025

UFR of Mathematics and Informatics - University of Strasbourg

How do digital twins help us understand the effects of urban development on the microclimate?

Plan

- Context
- What is a digital twin?
- 4 How a digital twin works
- Methods
- Architecture and Pipeline
- Data & Instrumentation Data Budget (Urban Microclimate)
- V&V & UQ Verification, Validation & Uncertainty Quantification
- Transfer & Deployment CI/CD, Edge vs Cloud, Observability, Risks
- Perspectives
- Limitations

Context

- Ecology and climate have become major issues, especially in cities where heat islands are developing
- Solutions: Greening, choice of suitable materials, and redesigned urban planning

- Local authorities must therefore make decisions on the development strategies to be adopted and evaluate their environmental and health impact.
- \to Simulate and predict the effects of these choices on the urban microclimate and public health \Rightarrow Digital twin

What is a digital twin?

- Virtual and dynamic replica of a real system, which, when coupled with simulation tools, allows its behavior to be analyzed and predicted under different conditions
- Based on real data (meteorological and urban) from sensors, observations, or physical models

Current challenge in France: JNFT project led by IGN, Cerema, and Inria, which aims to create a multi-thematic digital twin covering the French territory

How a digital twin works

Methods

Physical:

- Data (weather, material properties, air composition)
- Microclimate

Digital:

- Parameters
- 3D mesh model

Physical models:

- Continuous physical phenomena: PDEs (Navier-Stokes, heat, transport, diffusion)
- Interaction between buildings, wind, vegetation: Fluid-Structure Interaction (NS + Elasticity)
- Airflow and heat exchange: Computational Fluid Dynamics (NS + Heat; Transport; radiative transfer)

ROM usage: Reducing the order of physical models to speed up simulations

- Offline: Model preparation (hours / days)
 - Dimension reduction by capturing the essence of the system: Proper Orthogonal Decomposition (POD), Reduced Basis Method (RBM)
 - Hyper-reduction: Reduces computation time of nonlinear terms (DEIM: Discrete Empirical Interpolation Method, gappy POD: gappy Proper Orthogonal Decomposition)
- **Online:** Simulation of the reduced model to quickly test different scenarios (seconds / minutes)

Data-Driven Models: data-driven, fast prediction

- Regression: predicts phenomena (temperature, air quality, wind) from variables (materials, vegetation...)
- Gaussian Process: predicts and provides uncertainty for areas with little data
- Neural Networks: capture complex and non-linear relationships between variables
- Ensemble models: improving prediction accuracy and robustness by combining multiple models

Data assimilation: Combining physical models and data to correct simulations, achieve maximum accuracy, and make these simulations usable

- Vector Auto-Regression (VAR): adjusts the physical model so that simulations match observations (over one or more time steps)
- Kalman Filter: Updates predictions in real-time for dynamic tracking
- Parameterized-Background Data-Weak (PBDW), Generalized Empirical Interpolation Method (GEIM): reconstructs the system with little data, for an overview
- Virtual sensors: estimation of variables where there are no measurements, see the effect of new developments

Data & Instrumentation — Data Budget (Urban Microclimate)

Goal: quantify sensor data rates and daily volumes to size network & storage for real-time operation.

Sensor	#	Freq (Hz)	sample	Throughput (kB/s)	Vol/day (GB)	Comments
Air thermometer (T)	20	1.00	8	0.16	0.014	Ambient temperature
Hygrometer (RH)	10	1.00	8	0.08	0.007	Relative humidity
Anemometer (3-axis)	5	1.00	12	0.06	0.005	Wind speed & direction
Pyranometer (solar)	5	0.20	16	0.016	0.0014	Global irradiance
Thermal camera*	2	0.033	500,000	33.0	2.85	H.264, store temperature maps

Formulas:

Throughput (kB/s) & Volume/day (GB)

$$Throughput(kB/s)$$
: = $\frac{\# \times \text{sample} \times \text{Freq}}{1000}$
 $Volume/day(GB)$: = $\frac{\text{Throughput (kB/s)} \times 86400}{106}$

Protocols/latency: LoRaWAN for low-rate sensors (2–5 s latency); Wi-Fi/4G for cameras (< 0.5 s).

Privacy: camera streams anonymized on edge; only thermal maps stored.

V&V & UQ — Verification, Validation & Uncertainty Quantification

Goal

Goal: ensure accuracy, reliability, and safety of decisions in the urban microclimate digital twin.

Step	Purpose	Methods / Indicators
1 Verification	Check model implementation and nu-	Compare the Reduced Order Model (ROM)
	merical stability.	with the full CFD model. Ensure no numerical
		or stability errors.
2 Validation	Evaluate how well the model matches	Compare predictions with sensor measure-
	real-world data.	ments (T°, wind, humidity). Metrics: MAE,
		RMSE, R ² .
3 Uncertainty Quantifica-	Estimate the confidence level of model	Methods: Monte Carlo, sensitivity analysis,
tion (UQ)	predictions.	Bayesian estimation. Example: $T=32\pm$
		1.5°C.
4 Veto / Alert Mechanism	Prevent wrong or unsafe decisions	If confidence interval > threshold → trigger
	when uncertainty is too high.	alert or model recalibration.

Outcome: a validated, uncertainty-aware model ensuring trustworthy real-time decisions.

Transfer & Deployment — CI/CD, Edge vs Cloud, Observability, Risks

Goal

ensure a smooth transition from R&D to real-time operation of the urban microclimate digital twin.

Aspect	Description	Tools / Key Points	
CI/CD (Continuous Inte-	Automate the update cycle for models	GitHub Actions, Docker, unit tests for	
gration & Deployment)	and data.	ROM/data, dashboard updates.	
Containers & Orchestra- tion	Ensure portability and scalability of digital twin services.	Docker / Kubernetes: deployment of ROM model, APIs, dashboards.	
Edge vs Cloud Computing	Balance local computing (edge) and centralized storage (cloud).	Edge: low latency (cameras, sensors). Cloud: heavy computations (assimilation, ROM training).	
Observability & Monitor- ing	Track performance, errors, and model drifts.	Logs, metrics, and alerts through Grafana / Prometheus.	
Costs & Risks (CAPEX/OPEX)	Optimize hardware resources and min- imize downtime.	CAPEX: servers / sensors. OPEX: mainte- nance, energy, network. Risk: failure, model drift.	

Outcome: a reliable, automated, and maintainable digital twin for long-term operation.

Perspectives — Toward a Sustainable Digital Twin

- Scalability: extend the model to larger urban areas using cloud computing and ROM optimization.
- **Continuous improvement:** integrate new sensors (CO2, fine particles) and additional data sources (satellite, weather).
- Optimization: further automate calibration and data assimilation for faster model updates.

Goal: make the digital twin more complete, faster, and more useful for urban decision-making.

Limitations and Current Challenges

- Robustness: sensors may fail or produce noisy data so adaptive models are needed.
- **Bias:** the model can overfit to one district which means multi-scenario validation is required.
- Costs: find the right balance between accuracy, speed, and budget (cloud, maintenance).

These challenges highlight what must be improved to make the digital twin reliable and sustainable in the long term.

Thank you for your attention!

Any questions?

University of Strasbourg – 2025

Références L

Roberta Belanova.

Modélisation du microclimat : ce que c'est et pourquoi c'est important, 2025.

Accessed: 2025-10-05.

Roland Billen and Imane Jeddoub.

Les jumeaux numériques urbains : Un nouvel outil pour l'urbanisme et l'aménagement ?, 2024.

Accessed: 2025-10-05.

CNIG. Pôle Territoires.

Présentation : Jumeau numérique de la france - pilotage de la transition écologique.

https://cnig.gouv.fr/IMG/pdf/2025.01_20_jnft_ presentation_cnig_pole_territoires.pdf, 2025. Consulté le 5 octobre 2025.

Références II

Amaury et Christine.

Impact des villes sur le climat urbain : analyse des microclimats, 2025.

Accessed: 2025-10-05.

IGN.

Un jumeau numérique de la france pour piloter la transition écologique.

https://www.ign.fr/institut/ un-jumeau-numerique-de-la-france-pour-piloter-la-trans 2025.

Consulté le 5 octobre 2025.

Références III

IGN, Cerema, and Inria.

Fondateurs de la démarche : Jumeau numérique de la france, 2025.

Présentation institutionnelle du projet national de jumeau numérique.

OpenAI.

Chatgpt (gpt-5) — assistance à la rédaction et à la structuration du rapport sur le jumeau numérique du microclimat urbain.

https://chat.openai.com, 2025.

Modèle de langage développé par OpenAI, utilisé pour la reformulation, la traduction et la génération de contenu technique.

Références IV

Siradel.

Le jumeau numérique pour atténuer les îlots de chaleur urbains (icu), 2025.

Accessed: 2025-10-05.

Université Paris-Saclay.

Mieux comprendre les microclimats urbains : un défi pour faire face au changement climatique dans les villes, 2025.

Accessed: 2025-10-05.

Author Unknown.

Digital twins for sustainable urban planning.

Journal of Cleaner Production, 2025.

Consulté le 5 octobre 2025.