Linear Algebra I: Practice Midterm

October 10, 2025

Problem 1. Suppose W is a subspace of V and $v_1 + W, \ldots, v_m + W$ is a basis of V/W. Let w_1, \ldots, w_n be a basis of W. Show that $v_1, \ldots, v_m, w_1, \ldots, w_n$ is a basis of V.

Problem 2. Let V be a finite dimensional vector space. Let $\varphi \in V^*$ be nonzero. Show that there exists $v \in V$ with $\varphi(v) = 1$ and $V = \operatorname{span}\{v\} \oplus \ker \varphi$.

Problem 3. Let V be a two-dimensional vector space over \mathbb{R} and $T:V\to V$ a linear transformation. Suppose that $\beta=(v_1,v_2)$ and $\gamma=(w_1,w_2)$ are two bases in V such that

$$w_1 = v_1 + v_2, \quad w_2 = v_1 + 2v_2.$$

Find $[T]^{\beta}_{\beta}$ if

$$[T]_{\gamma}^{\gamma} = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}.$$

Problem 4. Let V be the subspace of $C(\mathbb{R})$ given by $\operatorname{span}(e^{3x}\cos x, e^{3x}\sin x)$. Consider the linear map $L:V\to C(\mathbb{R})$ defined by L(f)=f'-f, where the prime denotes differentiation with respect to x.

- (i) Show that $e^{3x}\cos x$, $e^{3x}\sin x$ are linearly independent.
- (ii) Show that the image of L is in V, that is im $L \subset V$.
- (iii) Let $\beta = (e^{3x} \cos x, e^{3x} \sin x)$, find $[L]_{\beta}^{\beta}$.
- (iv) Find $\ker L$ and $\operatorname{im} L$.
- (v) Find a solution to the differential equation $f' f = 2e^{3x} \cos x$.

Problem 5. Consider the matrix

$$A = \begin{pmatrix} 2 & 4 & 1 \\ -3 & -6 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$

- (i) Find all $x \in \mathbb{R}^3$ such that $Ax = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$.
- (ii) Let $V \subset \mathbb{R}^3$ be the set of vectors $b \in \mathbb{R}^3$ such that the system Ax = b is solvable. Find a basis for V.