Kolmogorov-Smirnov Test

Samahriti Mukherjee, Aytijhya Saha

8 August 2021

Let $X_1, X_2, ..., X_n$ be a sample from distribution function F and $Y_1, Y_2, ..., Y_m$ be another sample from distribution function G. We want to test $H_0: F = G$ vs $H_1: F \neq G$.

K-S Test Statistic = $\sup_{x \in \mathbb{R}} |\hat{F_n}(x) - \hat{G_m}(x)|$

We shall reject the null hypothesis for large values of test-statistic. We have to check that we can calculate the K-S test Statistic by evaluating $\hat{F_n}$ and $\hat{G_m}$ only at finitely many points. Relate this thing with a Random Walk problem.

We know that

$$\hat{F}_n(x) = \frac{\sum_{i=1}^n 1_{[X_i \le x]}}{n}$$

and

$$\hat{G}_m(x) = \frac{\sum_{i=1}^m 1_{[X_i \le x]}}{m}$$

 $\hat{F_n}(x)$ is a step function discontinuous only at distinct elements of the set . Also, $\hat{G_m}(x)$ is a step function discontinuous only at distinct elements of the set $\{Y_1,Y_2,..,Y_m\}$. So, $\hat{F_n}(x)-\hat{G_m}(x)$ is a step function discontinuous only at distinct elements of the set $\{X_1,X_2,..,X_n,Y_1,Y_2,..,Y_m\}=A$, say. So as we can calculate the difference $\hat{F_n}(x)-\hat{G_m}(x)$ everywhere in the domain $x\in\mathbb{R}$ by evaluating the difference only at distinct elements of A, we can calculate the K-S test Statistic by evaluating $\hat{F_n}$ and $\hat{G_m}$ only at finitely many points.(Proved)

Let us now assume, m=n.

Now we arrange the elements of A in non-decreasing order

Let $z_1 \leq z_2 \leq \leq z_{2m}$ be the elements of A. For an interpretation in terms of paths, we write $\epsilon_p = +1$ or -1 according as z_j equals to X_i , for some i or Y_i , for some i.

Claim: $|\hat{F}_m(t) - \hat{G}_m(t)| > c$ for some t if and only if $|s_k| > cm$ for some k, and c > 0.

Let, $t \in [z_k, z_{k+1})$, for some k.

Now when $|\hat{F}_m(t) - \hat{G}_m(t)| > c$, then $|s_k| = m|\hat{F}_m(t) - \hat{G}_m(t)| > cm$

When given that, $|s_k| > cm$ for some k,take $t = z_k$, then, $|\hat{F}_m(t) - \hat{G}_m(t)| > c$. (proved)

Let, our test statistic, $\sup_{x\in\mathbb{R}}|F_n(x)-G_m(x)|\leq M$, then $F_n(x)-G_m(x)\leq M \forall x$ $\iff |s_k|\leq Mm$ for all $k\in\{1,2,..,m\}$, as if $|s_k|>Mm$ for some k, then $|F_n(x)-G_m(x)|>Mm$ by our claim which we proved earlier, but M is the supremum of $F_n(x)-G_m(x)$ $\iff \sup\{|s_k|:k=1,..,m\}\leq mM$.

Thus, we can relate the test with random walk problem.