系统评价方法

小明已经是一名本科三年级的学生了,面对大四即将到来的毕业选择,他常常在思考:出国,读硕,直博,还是直接工作? 在今天的系统工程课后,小明突然想到可以用AHP 方法帮自己做一个决策。 对于上述4 个毕业选择,小明有3 个考虑的原则:

- 1)以自己的成绩和能力,作这个选择的难度如何;
- 2) 从自己的性格和以往的经验来说,自己是否适合或者喜欢这个选择;
- 3) 这几个选择对自己的职业发展影响如何。

对于第三个原则,小明认为过于宽泛,经深思熟虑,觉得这条原则可分为3小点考虑:

- 3.1) (毕业后) 找工作的难度;
- 3.2) 工作得到的待遇:
- 3.3) 学位和履历对自己长期发展影响。

请同学们合理构想一个小明,简要描述他的基本情况。并利用AHP 方法,替他为这四个选择排序,给出权重。

AHP分析:

1. 绘制决策层次。

2. 通过两两比较方法,完成及判断矩阵A。

2-1. 对第一层影响元素: 《 毕业选择 》

	作选择难度	是否合适或喜欢	对职业发展影响
作选择难度	1	1/2	1/7
是否合适或喜欢	2	1	1/3
对职业发展影响	7	3	1

Matlab 计算结果:

max_lumda_A =	w =	CR =	
3.0385	0.1047 0.2583 0.6370	0.0332	
		C.R.<0.1, Consistent	

2-2. 对第二层影响元素: 《 对自己的职业发展影响 》

	找工作难度	工作得到待遇	长期发展影响
找工作难度	1	1/2	1/5
工作得到待遇	2	1	1/3
长期发展影响	5	3	1

Matlab 计算结果:

2-3. 对可行方案: 《 选择难度 》

	出国	读硕	直博	直接工作
出国	1	1/3	1/7	1/2
读硕	3	1	1/4	2
直博	7	4	1	3
直接工作	2	1/2	1/3	1

Matlab 计算结果:

《自己是否合适或者喜欢》

	出国	读硕	直博	直接工作
出国	1	2	4	5
读硕	1/2	1	4	7
直博	1/4	1/4	1	2
直接工作	1/5	1/7	1/2	1

Matlab 计算结果:

$$max_lumda_A = 0.4708$$

0.3577

4.1130 0.1076 0.0639

C.R.<0.1, Consistent...

《 (毕业后) 找工作难度 》

0.0419

	出国	读硕	直博	直接工作
出国	1	2	6	3
读硕	1/2	1	3	2
直博	1/6	1/3	1	1/5
直接工作	1/3	1/2	5	1

Matlab 计算结果:

《工作得到待遇》

	出国	读硕	直博	直接工作
出国	1	5	3	6
读硕	1/5	1	1/3	1/2
直博	1/3	3	1	4
直接工作	1/6	2	1/4	1

Matlab 计算结果:

《长期发展影响》

长期发展影响	出国	读硕	直博	直接工作
出国	1	7	3	8
读硕	1/7	1	1/2	3
直博	1/3	2	1	5
直接工作	1/8	1/3	1/5	1

Matlab 计算结果:

max_lumda_A =	w =	CR =
4.0878	0.6104 0.1145 0.2235	0.0325
	0.0516	C.R.<0.1, Consistent

3. 计算相对权重

	作选择难度	是否合适 或喜欢				业发展影响	
			找工作难度	工作得到待遇	长期发展影响		
综合权重	0.1047	0.2583	0.0777	0.1463	0.4130		
出国	0.0724	0.4708	0.4769	0.5611	0.6104		
读硕	0.2096	0.3577	0.2620	0.0787	0.1145		
直博	0.5750	0.1076	0.0653	0.2603	0.2235		
直接工作	0.1430	0.0639	0.1957	0.0999	0.0516		

Matlab 计算结果:

Score = {出国,读硕,直博,直接工作}

0.5004 0.1935 0.2235 0.0826

所以,"直接工作"是最好方法。

决策排序为: 直接工作> 出国 > 直博 > 读硕

Matlab代码:

```
function [max lumda A, w] = judge(A)
[\sim, dms] = size(A);
[x,lumda]=eig(A);
r=abs(sum(lumda));
n=find(r==max(r));
max lumda A=lumda(n,n) % eigen value
max_x_A=x(:,n); % eigen vector
sum_x=sum(max_x_A); % vector w
w = max x A/sum x
% C.R. calculation
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.25];
CR=(max lumda A-dms)/(dms-1)/RI(dms)
% consitency judgement
if(CR < 0.1)
    fprintf("C.R.<0.1, Consistent...</pre>
                                            \n");
    fprintf("C.R.>0.1, Not Consistent... \n");
end
% A1~A7: judgement matrix
% A1: first layer
% A2: second layer
% A3~A7: alternatives
A1 = [1 \ 1/3 \ 1/5 ; 3 \ 1 \ 1/3 ; 5 \ 3 \ 1];
A2 = [1 \ 1/2 \ 1/5 ; 2 \ 1 \ 1/3 ; 5 \ 3 \ 1];
A3 = [1 \ 1/3 \ 1/7 \ 1/2 ; 3 \ 1 \ 1/4 \ 2 ; 7 \ 4 \ 1 \ 3 ; 2 \ 1/2 \ 1/3 \ 1];
A4 = [1 \ 2 \ 4 \ 5 ; \ 1/2 \ 1 \ 4 \ 7 ; \ 1/4 \ 1/4 \ 1 \ 2 ; \ 1/5 \ 1/7 \ 1/2 \ 1];
A5 = [1 \ 2 \ 6 \ 3 \ ; \ 1/2 \ 1 \ 3 \ 2 \ ; \ 1/6 \ 1/3 \ 1 \ 1/5 \ ; \ 1/3 \ 1/2 \ 5 \ 1];
A6 = [1 \ 5 \ 3 \ 6 \ ; \ 1/5 \ 1 \ 1/3 \ 1/2 \ ; \ 1/3 \ 3 \ 1 \ 4 \ ; \ 1/6 \ 2 \ 1/4 \ 1];
A7 = [1 \ 7 \ 3 \ 8 \ ; \ 1/7 \ 1 \ 1/2 \ 3 \ ; \ 1/3 \ 2 \ 1 \ 5 \ ; \ 1/8 \ 1/3 \ 1/5 \ 1];
% weight calculation through function [judge]
w = zeros(5);
[\sim, w1] = judge(A1);
[\sim, w2] = judge(A2);
w2 = w1(3) * w2;
w(1, 1 : 3) = w1';
w(1, 3 : 5) = w2';
[\sim, w(2 : 5, 1)] = judge(A3);
[\sim, w(2 : 5, 2)] = judge(A4);
[\sim, w(2:5,3)] = judge(A5);
[\sim, w(2 : 5, 4)] = judge(A6);
[\sim, w(2 : 5, 5)] = judge(A7);
% score calculation
score = zeros(1, 4);
for i = 1 : 4
   for j = 1 : 5
        score(i) = score(i) + w(1, j) * w(1 + i, j);
    end
    if i==4
       score % show score for comparing each meathod
    end
end
```