SAMSUNG SDS

Realize your vision

Partner

Disrupt

Foresee

2019.11.14 • SAMSUNG SDS Tower B1F

{ Magellan Hall / Pascal Hall }

Track 3 | Security

정보손실/유출 없이 고객 데이터를 분석해보자!

문덕재 프로 (보안알고리즘Lab) / 삼성SDS **김동우 박사과정** (Crypto Lab) / 서울대학교

AGENDA

- 1. 프라이버시관련 동향
- 2. 동형암호기술
- 3. 동형암호 적용사례
- 4. 클라우드 적용시 고려사항

1

프라이버시관련 동향

들어가며

데이터가 중심이 되는 세상 도래에 따라 글로벌 GDPR(EU), CCPA(US), PIPEDA(CA), 국내 개인정보보호법 등의 법/규제들이 데이터 보호와 활용간 전쟁을 중재하기 시작함

국제표준 비식별화 기술

국제표준 ISO/IEC 20889 (IS*, 2018) 에서 비식별화 기술 표준화 완료

주요 비식별화 기술

- 1 Pseudonymization Hashing
- 2 Generalization Rounding
- 3 Randomization Noise addition
- 4 Cryptographic tools
 - Homomorphic Encryption
 - Homomorphic Secret Sharing

#	성명	연령	주소	방문일	
1	홍길동	21	서울 서초구 성촌길 56	'17.12.21	
2	금잔디	35	전라남도 여수시 이상 5로	'18.5.23	
3	전우치	54	서울 도봉구 방학로 4길	'18.6.2	
4	장보고	29	서울 강동구 조정대로 43번길	'18.6.2	
5	장희진	36	전라남도 여수시 갈월 5길	'18.10.31	
1 2 2					
#	성명	연령	주소	방문일	
1	01111010	20대	서울 서초구	'17.12.23	
2	10011110	30대	전라남도 여수시	'18.5.25	
3	00010010	50대	서울 도봉구	'18.6.4	
4	00111001	20대	서울 강동구	'18.6.3	
5	00110010	30대	전라남도	'18.10.29	

^{*} IS (International Standard)

프라이버시 보호기술의 변화

기존 프라이버시 보호기술의 한계로 암호기반 프라이버시 보호기술 연구 및 사업적용 요구 증가

Microsoft, Intel, SAP, Google, ANT Financial 등이 암호기반 프라이버시 보호기술 도입 진행 中

암호기반 프라이버시 보호기술

- 1. 동형암호
- 2. 다자간계산
- 3. 차등정보보호

2

동형암호기술

동형암호란?

동형암호는 <mark>덧셈/곱셈 연산을 보존</mark>하여, 암호화된 데이터의 연산 결과를 복호화하면 원본 데이터의 연산 결과와 동일

^{*} 동형(Homomorphic): 동일한 유형의 두 대수 구조 사이의 연산을 보존하는 사상을 의미하는 동형성(Homomorphism) 에서 유래됨

일반 암호화 vs. 동형 암호화

일반 암호화된 데이터 분석 원본데이터 141109-1234567 010-1234-5678 황진이 090209-2312345 010-9876-5432 분석 서비스

동형암호화된 데이터 분석

동형암호기반 암호화된 데이터분석

데이터의 손실/유출 없이 암호화된 상태에서 데이터분석 (머신러닝/딥러닝) 이 가능 (머신러닝과 딥러닝 분석함수들은 모든 산술연산으로 표현 가능)

親 동형암호 연산

▶ 산술연산들 중 덧셈/곱셈 연산의 조합으로 표현 가능한 親 동형 암호연산(예, 다항식 연산) 의 경우 동일한 분석 정확도를 제공

여사이 ㅈ하ㅇㄹ ㅍ혀 보기

非親 동형암호 연산

▶ 덧셈/곱셈 연산의 조합으로 표현 불가능한 연산들 (예, 지수/로그, 비교함수 등) 의 경우 근사식을 통해 표현가능하나 근사정도에 따라 정확도에 차이가 존재

Source: https://en.wikipedia.org/wiki/Sigmoid_function

삼상SDS 동형암호기술 로드맵

세계 최고의 동형암호기술기반 데이터분석분야 신규 사업기회 마련을 위한 분석기술 개발

삼성 SDS 는 세계 최고의 동형암호기술 (HeaAn) 확보를 위해 서울대학교 암호랩과 협업

- ▶ 학계 검증 완료
 - Asiacrypt 2017, Eurocrypt 2018, SAC 2018 등 Top-tier 암호학회 발표를 통해 학계 검증 완료
- ▶ 암호화된 분석지원 국제대회 검증 완료
 - 2017 iDash 우승
 - 2018 iDash 모든 예선 통과자들이 HeaAn 사용
- ▶ 분석속도 및 정확도 비교 (2017 iDash 기준)

순위	참여사	분석속도	오차
1	서울대 (당사 산학)	10분	1%미만
2	M社 (미국)	6시간(36배)	5%미만
3	C硏 (프랑스)	36시간(216배)	1%미만

Use Case(1/3) | Learning(사용자 데이터 분석지원)

사용자가 데이터 유출 걱정없이 퍼블릭 클라우드 등의 외부 분석 서비스를 이용할 수 있는 환경 제공

Use Case(2/3) | Learning(분산 데이터 결합분석지원)

데이터 유출 걱정없이 2개 이상의 데이터 주체로부터 데이터 결합이 가능하여 더 정밀한 분석모델 도출 가능

Use Case(3/3) | Prediction(고객 질의/응답내용 보호)

질의하는 데이터의 유출없이 원하는 분석 서비스 이용 가능

3

동형암호 적용사례

기술PoC(1/2) | 삼성카드사 카드거래 데이터

동형암호화된 카드거래 데이터 기반 프리미엄카드 신청자 분석 모델 개발 및 예측 PoC

	PoC 개요	분석 데이터 (삼성카드 제공)				
PoC 명	동형암호 기반 프리미엄카드 신청자 분석 모델 개발 및 예측	1.데이터 개요 . 전체 데이터: 1,001,153건 . Feature 수: 125종 2. 데이터 셋 구성				
PoC 목표	원본 데이터와 암호화된 데이터問 분석 모델 개발 및 예측에 대한 정확도와 성능 비교					
분석함수	l함수 Logistic Regression	. 데이터 제공형태: CSV 파일 . 모델 개발용 데이터 셋: 700,807건 (미신청 700,013건, 신청 794건 . 모델 검증용 데이터 셋: 300,346건 (미신청 299,987건, 신청 359건				

기술PoC(2/2) | 삼성카드사 카드거래 데이터

카드 거래내역 데이터를 사용한 분석(Logistic Regression) 수행결과 확인

- 수행 결과: 원본데이터와 동형암호화된 데이터간 분석 정확도(AUROC) 일치

• Sample 개수: 300,346개

- -	SDS 분	카드 분석함수	
구분	원본 데이터	동형암호화된 데이터	Python (삼성카드 테스트)
AUROC	0.7717	0.7722	0.8357

- SDS 분석함수 계수비교: 대체로 같음

• Sample 개수: 700,807개 / Feature 개수 : 125개

SDS	원본 데이터	0.0159	0.0095	 -0.0503	-0.0191	 -0.3446
분석함수	암호화된 데이터	0.0159	0.0095	 -0.0527	-0.0201	 -0.3534

4

클라우드 적용시 고려사항

배경 | 계산 외주 (Outsourced Computation)

신뢰할 수 없는 기관에 중요한 계산 요청시 결과를 어떻게 효율적으로 검증할 수 있을까?

해결방안 | 계산 검증 기술 (Verifiable Computation)

역사 | 계산 검증 기술

1985~1998

- ✓ 계산 복잡도 이론
- ✓ 관련 개념 등장

2010~2015

- ✓ 이론적 성능 개선
- ✓ 구현

2015~

- √ 최적화
- ✓ 응용

2005~2010

✓ 계산 검증 기술이론적 설계

프로세스(1/2) | 계산 검증 기술

프로그램 (C/C++, JAVA, Python…)

Front-End

연산 비용 증가 1x - 10,000x

프로세스(2/2) | 계산 검증 기술

성능 | 계산 검증 기술

- ✓ Key생성 비용
- √ 증명 생성 비용
- (프로그램) 산술 연산 회로 크기

 $\sim 0.1 |C| \text{ ms}$

- ✓ 증명 크기 일정

 $\sim 5 + 0.001 |N| \text{ ms}$ 288 Byte

연산	증명 시간	시간 (산술 회로)	검증 시간	연산 시간 (프로그램)
행렬곱 (128 × 128)	1200 sec	510 ms	15 ms	16 ms
해쉬 (SHA-1) 계산	16 sec	19 ms	10 ms	1 us

Ref) Ben-Sasson, Eli, et al. "Succinct non-interactive zero knowledge for a von Neumann architecture." USENIX Security 14. 2014. & updated version 2019. Parno, Bryan, et al. "Pinocchio: Nearly practical verifiable computation." IEEE Symposium on Security and Privacy 2013.

응용 | 계산 검증 기술

✓ 클라우드 컴퓨팅 / 분산 컴퓨팅 : 신뢰성 보장

✓ 고성능 하드웨어의 수행 검증 [S&P'16, CCS'17]

동형암호기술 연계 | 계산 검증 기술

계산 검증 기술: 분석 과정 수행 증명

- ✓ 데이터 프라이버시와 계산의 신뢰성을 동시에 보장!
- ✓ 성능의 한계 극복 필요

마치며 고속동형암호 분석기술 동형암호기반 Training 리테일 제조 동형암호기반 2021. Inference 4Q 2020. 4Q 2019. 4Q 동형암호기반고속분석기술개발 의료 공공

다양한 사업분야에서 요구하는 분석함수들에 신규 프라이버시 보호기술을 적용하여 고객의 데이터를 안전하게 분석할 수 있는 세계최고의 프라이버시 강화 분석기술을 제공

Thank You

Partner Disrupt Foresee