Notes on Geometric Group Theory (and Model Theory)

Author: 秦宇轩 (QIN Yuxuan) Last compiled at 2025-10-23

Contents

1.	Day 1	1
2.	Day 2	2

This note is taken on the Nankai Logic Summer School 2025: *Gromov's Randomness & Model Theory of Groups*, lectured by Prof. Rizos Sklinos.

I must admit that I almost know nothing about serious geometric group theory and large-scale geometry, and this note should not be used as a study material. I just written down things interested me.

Reference: Loeh's Notes.

1. Day 1

- 1. Dehn solved the word problem for fundamental groups of surfaces.
- 2. Hyperbolic groups: Those that satisfy Dehn's algorithm and admit a finitely presentation.
- 3. (**Gromov**) If we pick a finite presented group *at random*, then it is almost hyperbolic.
- 4. (**Geodesic Path**) For a metric space (X, d), a geodesic path from x to y in X is an isometry map $c: [0, L] \to X$ for some $L \ge 0$ such that:

$$\begin{cases} c(0) = x \\ c(L) = y \end{cases}$$

In paticular, since c is a isometry, we know that L = d(x, y).

- 5. (**Geodesic Space**) A metric space (X, d) is called a geodesic space if it satisfies: for all $x, y \in X$ there exists a geodesic path connecting x and y.
- 6. (\mathbb{R}^2, d_E) is uniquely geodesic.
- 7. (δ -slim) Let $\delta \geq 0$, a geodesic triangle [x,y,z] is called δ -slim if for any $u \in [x,y]$, there exists a point $v \in [y,z] \cup [z,x]$ such that $d(u,v) \leq \delta$.
 - Remark: By "geodesic triangle", we mean a triple (x, y, z) of points in a metric space, with a set of *chosen* geodesic paths between them.
- 8. (δ -hyperbolic) A geodesic metric space is called δ -hyperbolic if all geodesic triangles are δ -slim.
- 9. (**Hyperbolic**) A geodesic metric space is *hyperbolic* if it is δ -hyperbolic for some δ .
- 10. (**Real Tree**) A 0-hyperbolic space is called a *real tree*.
- 11. (**Tripod**) Given a geodesic triangle [x, y, z], a tripod of it is a real tree with three vertex u_x, u_y, u_z :

such that

$$\begin{cases} a+b=d(x,y)\\ b+c=d(y,z)\\ c+a=d(z,x) \end{cases}$$

In short: a tripod of a geodesic triangle [x, y, z] is a real tree (u_x, u_y, u_z) isometric to it.

- 12. $(\delta$ -thin) For a geodesic triangle $\Delta \coloneqq [x,y,z]$ with a tripod isometry $X_\Delta : \Delta \to T(a,b,c)$, we say Δ is δ-thin if for any $p,q \in X_{\Delta}^{-1}(t)$ where $t \in T(a,b,c)$, we always have $d(p,q) \leq \delta$.
 - *Remark*: δ -thin is proper stronger than δ -slim.
- 13. $((\delta)$ -hyperbolic) A metric space is (δ) -hyperbolic if for any $w, x, y, z \in X$ we have:

$$d(x, y) + d(y, z) \le \max\{d(x, w) + d(y, z), d(x, z) + d(y, w)\} + \delta.$$

- *Problem*: Does the class of (1)-hyperbolic finite graphs have the *amalgmation property*?
 - \triangleright Remark: A theory admit the amalgmation property if for any extensions B, C of a model A, there exists an extension of both B and C such that

commutes.

- *Problem*: What about (δ) -hyperbolic finite graphs for general positive real δ ?
- 14. (Quasi-isometry) Definition of quasi-isometry was given here (but due to my laziness, ommitted).
 - *Remark*: This is indeed an equivalent relation.
 - Examples:

 - $\begin{array}{l} \hbox{$\star$ Any finite diameter space} \overset{\mathrm{qi}}{\sim} \{\mathrm{point}\}. \\ \\ \hbox{\star $(\mathbb{Z} \times \mathbb{Z}, \mathrm{taxi\ metric}) \overset{\mathrm{qi}}{\sim} (\mathbb{R}^2, d_E))$ where d_E is the common Euclid's metric.} \end{array}$

2. Day 2

- 1. "The" Cayley graph of a finitely generated group is unique (up to quasi-isometry).
 - Remark: For group $G = \langle S \mid R \rangle$ finitely generated, we can define the length for any element $g \in$ G as $|g|_G := \min_{q=h} |h|_{\text{Cayley}}$.

- 2. (**Hyperbolic Group**) A group is called hyperbolic if its Cayley graph is hyperbolic as a metric spacee.
 - *Remark:* This is just one of the many definitions of hyperbolic groups.
- 3. Some facts:
 - Cay(G, A) for A a generating set of G, is a proper space with all geodesics.
 - G acts on Cay(G, A) by sendind (r, g) to $r \cdot g$, which is an isometry, i.e. d(rg, rh) = d(g, h).
 - The above action is properly-discontinuous, i.e., for compact $X \subset \text{Cay}(G, A)$, the set $\{g : gX \cap X \neq \emptyset\}$ is finite.
 - The action is co-compact, i.e., Cay(G, A)/G is compact.
- 4. (Svarč-Milnar Theorem) See Loeh's book.
- 5. For surface with genus $g \geq 2$, its fundamental group $\pi_1(\Sigma_q)$ is hyperbolic, since

$$\pi_1(\Sigma_g) \underset{\text{nicely}}{\circlearrowleft} \mathbb{H}^2(\text{the hyperbolic plane}).$$

It acts so nicely that the S-M theorem ensures $\pi_1\big(\Sigma_g\big)$ is hyperbolic.

- 6. Hyperbolicity is stable under finite index.
- 7. Finite groups and free groups are all hyperbolic.
- 8. A group G is free \iff It acts freely without inversions on a simplicial tree.
 - (\Longrightarrow) If G is free, then (assume G = FS)

$$G \circlearrowleft \operatorname{Cay}(G, S),$$

where Cay(G, S) is a simplicial tree.

• (\Leftarrow) Use covering space theory. If $G \circlearrowleft T$ nicely then we obtain a covering map $p: T \to T/G$, which is universal, so $\pi_1(T/G) \cong G$. But T/G is a graph so $\pi_1(T/G)$ is free.