"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

Contents

- 6.0 Introduction
- 6.1 0/1-Knapsack
- 6.2 Weighted interval scheduling
- 6.3 Multistage graph
- 6.4 All pairs shortest path

- Definition of multistage graph
 - A directed graph
 - The vertices are partitioned into $k \ge 2$ disjoint sets V_i , $1 \le i \le k$.
 - If $\langle u, v \rangle$ is an edge in E, then $u \in V_i$ and $v \in V_{i+1}$, for some i.
 - $|V_1| = |V_k| = 1$.
 - If $s \in V_1$, then s is the source
 - If $t \in V_k$, then t is the sink
 - Let c(i, j) be the cost of edge <i, j>.
 - The cost of a path from s to t is the sum of the costs of the edges on the path.
 - The multistage graph problem is to find a minimum cost path from s to t.

Definition of multistage graph

- An example of a multistage graph

- Problem
 - Find an optimal path from source to sink

- Strategy
 - -P(i, j)
 - minimum cost path from vertex j in V_i to sink
 - COST(i, j)
 - the cost of P(i, j)

Algorithm

$$COST(i, j) = \min_{l \in V_{i+1}} \{c(j, l) + COST(i+1, l)\}$$

- What is the problem to solve?
 - P(1, 1)
 - COST(1, 1)

Algorithm

- Example (At V₁)
 - -COST(1, 1) =

- Example (At V₄)
 - -COST(4, 9) =
 - -COST(4, 10) =
 - -COST(4, 11) =

- Example (At V₄)
 - -COST(4, 9) = 4
 - -COST(4, 10) = 2
 - -COST(4, 11) = 5

- Example (At V₃)
 - -COST(3, 6) =

$$-COST(3, 7) =$$

$$-COST(3, 8) =$$

$$COST(i, j) = \min_{l \in V_{i+1}} \{c(j, l) + COST(i+1, l)\}$$

Example (At V₃)

$$-COST(3, 6) = min{6 + COST(4, 9), 5 + COST(4, 10)}$$

$$-COST(3, 7) = min{4 + COST(4, 9), 3 + COST(4, 10)}$$

$$-COST(3, 8) = min{5 + COST(4, 10), 6 + COST(4, 11)}$$

```
    Example (At V<sub>3</sub>)

  -COST(3, 6) = min\{6 + COST(4, 9),
                       5 + COST(4, 10)
                = \min\{6 + 4, 5 + 2\} = 7
  -COST(3, 7) = min{4 + COST(4, 9),
                       3 + COST(4, 10)
                = min{4 + 4, 3 + 2} = 5
  -COST(3, 8) = min{5 + COST(4, 10),
                       6 + COST(4, 11)
                = min\{5 + 2, 6 + 5\} = 7
```

- Example (At V₂)
 - COST(2, 2) =

$$- COST(2, 3) =$$

$$- COST(2, 4) =$$

$$- COST(2, 5) =$$

 $COST(i, j) = \min_{l \in V_{i+1}} \{c(j, l) + COST(i+1, l)\}$

Example (At V₂)

-
$$COST(2, 2) = min\{4 + COST(3, 6), 2 + COST(3, 7), 1 + COST(3, 8)\}$$

-
$$COST(2, 3) = min\{2 + COST(3, 6), 7 + COST(3, 7)\}$$

$$- COST(2, 4) = min{11 + COST(3, 8)}$$

-
$$COST(2, 5) = min\{11 + COST(3, 7), 8 + COST(3, 8)\}$$

$$COST(i, j) = \min_{l \in V_{i+1}} \{c(j, l) + COST(i+1, l)\}$$

Example (At V₂)

```
- COST(2, 2) = min{4 + COST(3, 6),
                   2 + COST(3, 7),
                  1 + COST(3, 8)
             = min{4 + 7, 2 + 5, 1 + 7} = 7
- COST(2, 3) = min\{2 + COST(3, 6),
                   7 + COST(3, 7)
             = \min\{2 + 7, 7 + 5\} = 9
- COST(2, 4) = min\{11 + COST(3, 8)\} = 11 + 7 = 18
- COST(2, 5) = min\{11 + COST(3, 7),
                   8 + COST(3, 8)
             = \min\{11 + 5, 8 + 7\} = 15
```

- Example (At V₁)
 - -COST(1, 1) =

$$-P(1, 1) =$$

Example (At V₁)

- COST(1, 1) = min{10 + COST(2, 2),

$$7 + COST(2, 3),$$

 $3 + COST(2, 4),$
 $2 + COST(2, 5)$ }

Example (At V₁)

COST(1, 1) = min{10 + COST(2, 2),
7 + COST(2, 3),
3 + COST(2, 4),
2 + COST(2, 5)}
= min{10 + 7, 7 + 9, 3 + 18, 2 + 15}

= 16

$$-P(1, 1) = 1 \to 3 \to 6 \to 10 \to 12$$

- Application: Resource allocation problem
 - Allocating n units of resources to r projects
 - -N(i, j)
 - The net profit of allocating j units of resources to project i.
 - How to maximize total net profit?
 - Formulate this problem using multistage graph

- Application: Resource allocation problem
 - Multistage graph
 - (r+1) stage graph problem
 - Stage i represents project i.
 - (n+1) vertices V(i, j) are associated with stage i.
 - Stage 1 and r+1 has one vertex: V(1, 0) = s and V(r+1, n) = t.
 - Vertex V(i, j) represents the stage in which a total of j units of resources have been allocated to projects 1, 2, ..., i-1.
 - The edges are of the form <V(i, j), V(i+1, l)>.
 - The cost of the edges is N(i, I-j).

• Example

- 4 units to 3 teams

	1 st team	2 nd team	3 rd team
N=0	0	5	3
N=1	10	15	5
N=2	20	20	10
N=3	25	22	15
N=4	25	25	25

- Application: Resource allocation problem
 - Multistage graph of 4 units to 3 teams

- Application: Resource allocation problem
 - Multistage graph of 4 units to 3 teams

- Application: Resource allocation problem
 - Multistage graph of 4 units to 3 teams

- Application: Resource allocation problem
 - Multistage graph of 4 units to 3 teams
 - -Cost(1, a) = ?

- Application: Resource allocation problem
 - Multistage graph of 4 units to 3 teams
 - -Cost(3, g) =
 - -Cost(3, h) =
 - -Cost(3, i) =
 - -Cost(3, j) =
 - -Cost(3, k) =

- Application: Resource allocation problem
 - Multistage graph of 4 units to 3 teams
 - Cost(2, b) =

$$- Cost(2, c) =$$

$$- Cost(2, d) =$$

$$- Cost(2, e) =$$

- Application: Resource allocation problem
 - Multistage graph of 4 units to 3 teams
 - Cost (1, a) =

All about Dynamic Programming

Туре	Stepwise approach	Recursive structure	Approach	Time	Specialty
0/1 KNAP	Choosing objects	KNAP(1, n, M) = max $\{KNAP(2, n, M),$ $KNAP(2, n, M-w_1)+p_1\}$	Forward	O(2 ⁿ)	Smart Degenerate Case
Weighted Interval Scheduling	Selecting intervals	OPT(j) = max {OPT(p(j)) + v _j , OPT(j-1)}	Backward	O(n)	Auxiliary memory
Multistage Graph	Determining vertex in the next stage	$COST(i, j) = min_{l \in V_{i+1}}$ $\{c(j,l) + COST(i+1, l)\}$	Backward	O(m)	Resource allocation problem
All Pairs Shortest Path					

- 다음 중 옳지 않은 문장을 모두 고르시오.
- (a) multistage graph는 acyclic graph이다.
- (b) multistage graph에서 계층의 수는 vertex의 수에 비례한다.
- (c) multistage graph 문제는 Dijkstra 알고리즘으로 해결할 수 있다.
- (d) multistage graph 문제는 backward approach이다.