Chap. 5 Building Logistic Regression Models

- Model selection
- Model checking
- Be careful with "sparse" categorical data(infinite estimates possible)

Model Selection with Many Predictors

ex) Horseshoe crab study

Y= whether female crab has satellites (1=yes, 0=no) Explanatory variable - weight, width, color (ML, M, MD, D) (dummy variables $c_1,\ c_2,\ c_3$), Spine condition (3 categories) (dummy var. $s_1,\ s_2$).

Consider model for Crabs:

$$\log it P(Y=1) = \alpha + \beta_1 c_1 + \beta_2 c_2 + \beta_3 c_3 + \beta_4 s_1 + \beta_5 s_2 + \beta_6 (weight) + \beta_7 (width)$$

LR test of $H_0: \beta_1 = \beta_2 = \cdots = \beta_7 = 0$ has test stat.

$$\begin{array}{l} -2\left(L_{0}-L_{1}\right)=difference\ of\ Deviance\\ =225.8-185.2=40.6,\ df=7\ \left(p-vale<0.0001\right) \end{array}$$

Strong evidence at least one predictor has an effect. But, look at Wald test of individual effects(eg. weight). None of individual effects seem "significant"

<u>Multicollinearity</u> (Strong correlations among predictors) also plays havoc with GLMs

eg) corr(weight, width)=0.89

Individual Z- test of $\frac{\widehat{\beta}_i}{SE}$ affected by multicollinearity sufficient to use one of weight/width in model(we use width)

Backward elimination using color, width, spine condition as predictors

- Start with complex model, including all interactions
- lacktriangle Drop "least significant" (eg, largest p- value) variable among highest-order terms
- Refit model
- Continue until all variables left are significant.

<u>Note:</u> If testing many interactions, simpler and perhaps better to test at one time as a group of terms. (like the previous example)

ex) see Table 5.2 (p141 in 2nd edition) or Table 5.1 (p127 in 3rd edition)

 $H_0: {\sf Model}\ C+S+W$ has 3 parameters for C, 2 parameters for S and 1 parameter W.

 $H_a: \text{Model } C*S*W = C+S+W+C\times S+C\times W+S\times W+C\times S\times W.$

$$LR \ stat. = difference \ in \ Deviances \\ = 186.6 - 170.4 = 16.2 \\ df = 166 - 152 = 14 (p - value = 0.30)$$

Simpler model C+S+W is adequate.

At next stage, S can be dropped from model C+S+W

$$diff. in deviance = 187.5 - 186.6 = 0.9, df = 2$$

Results in model fit

Setting $\beta_1 = \beta_2 = \beta_3$ gives

$$\log it \hat{\pi} = -13.0 + 1.3 \, C + 0.48 \, (width)$$

where
$$C = \begin{cases} 1 & ML, M, MD \\ 0 & D \end{cases}$$

Conclude

• Given width, estimated odds of satellite for nondark crabs equal $e^{1.3} = 3.7$ times estimated odds for dark crabs.

95% C.I. :
$$e^{1.3 \pm 1.96(0.525)} = (1.3, 10.3)$$

ullet Given color, estimated odds of satellite multiplied by $e^{0.48\pm1.96(0.104)}=(1.3,\ 2.0)$ for each 1cm increase in width.

Criterion for selecting a model

- Use theory, other research as guide.
- Parsimony (simplicity) is good
- Can use some criterion to choose among set of models. Most popular criterion is Akaike information criterion (AIC):

Choose model with minimum AIC

$$AIC = -2(L - no. \text{ model } parameters)$$

where $L = \log likelihood$

- For explanatory purpose, can use automated procedure such as backward elimination.
- lacktriangle Ideally should have ≥ 10 outcomes of each type per predictor.

```
ex) n=1000, (Y=1) 30 times, (Y=0) 970 times Model should contain \leq 3 predictors n=173 horseshoe crabs (Y=1):111 crabs, (Y=0):62 crabs. use \leq 6 predictors
```

Note:

- Some software (eg. PROC LOGISTIC in SAS) has options for stepwise selection procedures.
- Can further check fit with residuals for grouped data, influence measures, cross validation
- $lackbox{ }$ To summarize predictive power, can use correlation(Y, $\hat{\pi}$)

Predictors	Correlation
color	0.280
width	0.400
color+width	0.452
color=dark+width	0.447

input program crab(genmode and logistic)

```
data crab;
 infile 'C:Wcrabs_SAS.dat';
 input color spine width satell weight;
 if satell>0 then y=1 if satell=0 then y=0 n=1;
weight=weight/1000 color=color-1;
if color=4 then dark=0 if color<4 then dark=1:
run:
/* Model with color and width */
proc genmod:
class color;
model y/n=color width / dist=bin link=logit;
/* Model with dark and width */
proc genmod;
model y/n=dark width / dist=bin link=logit;
/* Model with color and width using logistic regression */
proc logistic order=data;
class color (ref='4')/param=ref;
model y/n=color width;
run:
proc logistic order=data;
class color (ref='4')/param=ref;
model y/n=color width/selection=backward;
```

Another summary : Classification table predict $\hat{Y}=1$ if $\hat{\pi}>0.50$ and $\hat{Y}=0$ if $\hat{\pi}<0.50$

SAS: Get with CTABLE option in PROC LOGISTIC for various "cutpoints"

Predictive Power

classification table

Predict
$$\begin{cases} \hat{Y} = 1 & \text{if } \hat{\pi} > \pi_0 \\ = 0 & \text{if } \hat{\pi} \leq \pi_0 \end{cases}$$
 for some cutoff π_0 (for example, $\pi_0 = 0.5$)

Sensitivity =
$$P(\hat{Y}=1|Y=1) = \frac{94}{94+17} = 0.85$$

$$Specificity = P(\hat{Y}=0|Y=0) = \frac{28}{34+28} = 0.45$$

ex) Horseshoe crab (model using width and color)

ROC (receiver operating characteristic) Curve

- lacktriangle Plot of sensitivity as a function of (1-specificity) for the possible cutoffs π_0
- Summarize predictive power for all possible π_0 . When π_0 gets near 0, almost all predictions are $\hat{y}=1$ (sensitivity is near 1 and specificity is near 0)
- For a given specificity, better predictive power correspond to higher sensitivity (The better the predictive power, the higher the ROC curve)
- lacktriangle The area under the ROC curve the value of a measure of predictive power (concordance index). concordance index c estimates the probability that the

predictions and the outcomes are concordant.(the observation with the large y also has the larger $\hat{\pi}$)

input program crab(ROC)

```
data crab;
 infile 'C:\Wcrabs_SAS.dat';
 input color spine width satell weight;
 if satell>0 then y=1; if satell=0 then y=0; n=1;
 weight=weight/1000;
 color=color-1;
 if color=4 then dark=0; if color<4 then dark=1;</pre>
run;
proc logistic data=crab order=data;
class color (ref='4')/param=ref;
model y=width color / outroc=ROCData;
run;
symbol v=dot i=join;
proc gplot data=ROCData;
plot _sensit_*_lmspec_;
run;
quit;
```

The LOGISTIC Procedure Model Information

Data Set WORK.CRAB
Response Variable y
Number of Response Levels 2

Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 173 Number of Observations Used 173

Response Profile
Ordered Total
Value y Frequency
1 1 111
2 0 62
Probability modeled is y=1.

Class Level Information Value Design Variables Class color 1 1 0 0 3 ō Ŏ Õ 0 4 0 0 0

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	227.759	197.457
SC	230.912	213.223
-2 Log L	225.759	187.457

The LOGISTIC Procedure
Testing Global Null Hypothesis: BETA=0
Chi-Square DF D

TODOTHS GIO	bur murr mpoom	CDID. DHI	1 0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	38.3015	4	<.0001
Score	34.3384	4	<.0001
Wald	27.6788	4	<.0001

Type 3 Analysis of Effects

		wald	
Effect	DF	Chi-Square	Pr > ChiSq
width	1	19.6573	<.0001
color	3	6.6246	0.0849

Analysis	of	Maximum	Likelihood	Estimates
_			tandard.	Mald

				Standard	Wald	
Paramete	er	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercep	ot	1	-12.7151	2.7618	21.1965	<.0001
width		1	0.4680	0.1055	19.6573	<.0001
color	1	1	1.3299	0.8525	2.4335	0.1188
color	2	1	1.4023	0.5484	6.5380	0.0106
color	3	1	1.1061	0.5921	3.4901	0.0617

0dds	Ratio	Estimates
------	-------	-----------

Point	95% Wa	ld.
Estimate	Confidence	Limits
1.597	1.298	1.964
3.781	0.711	20.102
4.065	1.387	11.909
3.023	0.947	9.646
	Estimate 1.597 3.781 4.065	Estimate Confidence 1.597 1.298 3.781 0.711 4.065 1.387

Association of Predicted Probabilities and Observed Responses
Percent Concordant 76.9 Somers' D 0.543
Percent Discordant 22.6 Gamma 0.546
Percent Tied 0.5 Tau-a 0.251
Pairs 6882 c 0.771

Model Checking

Is the chosen model adequate?

Goodness of fit test

But test using deviance G^2 , X^2 limited to "non-sparse" contingency tables.

 Check whether fit improves by adding other predictors, interactions between predictors.

 $LR\ stat.=$ change in deviance is useful for comparing models even when G^2 not valid as overall test of fit.

ex) Revisit Florida death penalty data

Victim's	Suspect's	Death Pe	Death Penalty(Y)	
Race	Race	Yes	No	n
Pleal	Black	4	139	143
Black	White	0	16	16
7A71a:+ a	Black	11	37	48
White	White	53	44	467

$$\pi = P(Y = Yes)$$

data death;

input v \$ d \$ p total @@;

cards;

b b 4 143 b w 0 16 w b 11 48 w w 53 467

run;

• proc genmod data=death;

class v d;

model p/total = d v / dist=bin link=logit lrci type3;

run;

proc genmod data=death;

class v d;

model p/total = v / dist=bin link=logit lrci;

run;

OUTPUT:

0

The GENMOD Procedure Model Information

Data Set Distribution Link Function	WORK.DEATH Binomial Logit
Response Variable (Events)	p
Response Variable (Trials)	total
Number of Observations Read	4
Number of Observations Used	4
Number of Events	68
Number of Trials	674

 $\begin{array}{cccc} \text{Class Level Information} \\ \text{Class Levels} & \text{Values} \\ \text{V} & 2 & \text{b w} \\ \text{d} & 2 & \text{b w} \end{array}$

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	1	0.3798	0.3798
Scaled Deviance	1	0.3798	0.3798
Pearson Chi-Square	1	0.1978	0.1978
Scaled Pearson X2	1	0.1978	0.1978
Log Likelihood		-209.4783	

Algorithm converged.

Analysis Of Parameter Estimates

				Standard	Likelihood	Ratio 95%	Chi-	
Parameter		DF	Estimate	Error	Confidence	e Limits	Square	Pr > ChiSq
Intercept		1	-2.0595	0.1458	-2.3565	$-1.78\overline{36}$	199.40	<.0001
d	b	1	0.8678	0.3671	0.1140	1.5633	5.59	0.0181
d	W	0	0.0000	0.0000	0.0000	0.0000		
v	b	1	-2.4044	0.6006	-3.7175	-1.3068	16.03	<.0001
V	W	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0000	0.0000	1.0000	1.0000		
v v Scale	b W	1 0 0	0.0000	0.0000	0.0000	0.0000	16.03	<.0001

NOTE: The scale parameter was held fixed.

The GENMOD Procedure LR Statistics For Type 3 Analysis Chi-

		CILL	
Source	DF	Square	Pr > ChiSq
d	1	5.01	0.0251
v	1	20.35	<.0001

The GENMOD Procedure **2**

Model Information
Nata Sat WORK DEATH

Data Set	WORK.DEATH
Distribution	Binomial
Link Function	Logit
Response Variable (Events)	p
Response Variable (Trials)	total
Number of Observations Read	4
Number of Observations Used	4
Number of Events	68
Number of Trials	674

Class Level Information Class Levels Values v 2 b w d 2 b w

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	2	5.3940	2.6970
Scaled Deviance	2	5.3940	2.6970
Pearson Chi-Square	2	5.8109	2.9054
Scaled Pearson X2	2	5.8109	2.9054
Log Likelihood		-211.9854	

Algorithm converged.

Analysis Of Parameter Estimates

				Standard	Likelihood	l Ratio 95%	Chi-	
Parameter		DF	Estimate	Error	Confidence	ce Limits	Square	Pr > ChiSq
Intercept		1	-1.9526	0.1336	-2.2234	-1.6989	213.68	<.0001
v	b	1	-1.7045	0.5237	-2.9072	-0.7995	10.59	0.0011
v	W	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

Goodness of fit

For model fit with d=1 (Black suspect) or d=0 (White) and $\nu=1$ (Black victim) or $\nu=0$ (White)

$$\hat{\pi} = \frac{e^{-2.06 + 0.87d - 2.40\nu}}{1 + e^{-2.06 + 0.87d - 2.40\nu}}$$

eg) for 467 cases with white suspect, victim, $d = \nu = 0$

$$\hat{\pi} = \frac{e^{-2.06}}{1 + e^{-2.06}} = 0.113$$

Fitted count "Yes"=467 (0.113)=5.28 (53: observed "Yes") Fitted count "No"=467 (0.887)=414.2 (414: observed "No")

Summarizing fit over 8 cells,

$$X^2 = \sum \frac{(obs-fit)^2}{fit} = 0.20$$

$$G^2 = 2\sum obs. \log \left(\frac{obs}{fit}\right) = 0.38 = deviance \text{ for mod}el$$

$$df = 4-3 \text{ (no. binomial observation - no. model parameters)}$$

For $G^2 = 0.38$, p-value = 0.54 for $H_0:$ model holds (No evidence of lack of fit)

Note:

- lacktriangle Model assumes lack of interaction between d and ν in effects on Y. So goodness of fit test in this example is a test of H_0 : no interaction.
- For continuous predictors or many predictors with small $\hat{\mu}_i$, G^2 and X^2 are not approx. χ^2 . For better approximation, can group data befor applying X^2 , G^2 . Hosmer-Lemershow test groups using ranges of $\hat{\pi}$ values(available in PROC LOGISTIC). Or, can try to group predictor value(if only 1 or 2 predictors)

Residuals for Logistic Regression

At setting i or explanatory variables, let

 $y_i = \text{no. successes}$

 $n_i = \text{no. trials (preferably 'large')}$

 $\hat{\pi}$ =estimated prob. of success, besed on ML model fit.

For a binomial GLM, Pearson residuals are

$$e_i = \frac{y_i - n_i \hat{\pi_i}}{\sqrt{n_i \hat{\pi_i} (1 - \hat{\pi_i})}} \quad (X^2 = \sum_i e_i^2)$$

 e_i (called Reschi in SAS GENMOD) is approx. $N(0,\;\nu)\,,$ when model holds, but $\nu<1$

Standardized Pearson residual (adjusted residual in some books, SPSS)

where h_i is called "leverage" (r_i labelled stReschi in SAS)

- \Rightarrow $0 < h_i < 1$ High values of h_i (close to 1) correspond to extreme points in the design space
- $lackbox{ } r_i$ is approx. N(0, 1) when model holds
- \bullet $|r_i| > 2$ or 3 (approx.) suggests lack of fit
- ex) Y= admitted into graduate school at Berkely (1 = Yes, 0 = No)

Data on textbook

G = gender (g = 0 female, g = 1 male)

D = department (A, B, C, D, E, F)

$$d_1 = \begin{cases} 1 & dept. \ A \\ 0 & otherwise \end{cases}, \quad \cdots \quad , \quad d_5 = \begin{cases} 1 & dept. \ E \\ 0 & otherwise \end{cases}$$

For dept. F, $d_1=d_2=\cdots=d_5=0$

Model

$$\log i \, t \, P(Y=1) = \alpha + \beta_1 d_1 + \dots + \beta_5 d_5 + \beta_6 g \tag{1}$$

Seems to fit poorly (deviance $G^2 = 20.2$, df = 5, p-value = 0.01)

lacktriangle Simpler models fit poorly, eg, model with $eta_6=0$ assumes Y indep, of G controlling for D, has

$$G^2 = 21.7$$
, $df = 6$, $p - value = 0.001$

It seems to fit poorly

• Standardized Pearson residuals for model (1) show model fits well except in Dept. A ($|r_i| = r_2 = 4.03$), where fewer males accepted than model predicts.

In oter dept.s, model with no gender effect is adequate.

Note:

• Simpson's paradox holds

$$\textit{Marginal } \hat{\theta} = \frac{1198 \times 1278}{1493 \times 557} = 1.84 \text{ between } Y \text{ and } g$$

• Controlling for dept.,

$$\hat{\theta}_{\,Yg\,(dept\,)} = e^{-\,0.0999} = 0.90\,$$
 for logit model

- $lackbox{ In dept. } A$, $\hat{ heta} = 0.35$ (odds of admission lower for males)
- If delete dept. A, $G^2 = 2.6$, df = 4 (Good fit).

```
options ls=100 ps=70
data berkeley;
input dept $ gender yes no @@;
  n=yes+no;
cards
a 0 512 313 a 1 89 19
b 0 353 207 b 1 17 8
                                         Enter data as 12 binomials
c 0 120 205 c 1 202 391
                                              (1=female, 0=male)
d 0 138 279 d 1 131 244
e 0 53 138 e 1 94 299
f 0 22 351 f 1 24 317
run;
proc genmod data=berkeley;
 class dept gender;
 model yes/n=gender dept / dist=bin link=logit residuals type3;
proc genmod data=berkeley;
 class dept gender;
 model yes/n=dept / dist=bin link=logit residuals;
run:
```

The GENMOD Procedure

```
Model Information
```

Nata Set Distribution Link Function Desponse Variab Desponse Variab		1	BERKELEY Binomial Logit yes n
Number of Obse Number of Ever Number of Tria	ervations U nts		12 12 1755 4526
Class Class dept gender	Level Info Levels 6 2	ormation Values a b c d o 0 l	e f
Ordered Value 1 2	esponse Pro Binary Outcome Event Nonevent	To Freque 1'	tal ncy 755 771
Parameter Prm1 Prm2 Prm3 Prm4 Prm5 Prm6 Prm7 Prm8 Prm9 Criteria For	meter Infor Effect Intercept gender gender dept dept dept dept dept dept Assessing	dept a b c d e f	gender 0 1

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

		Chi-	
Source	DF	Square	Pr > ChiSq
gender	1	1.53	0.2159
dept	5	763. 4 0	<.0001

Observation Statistics

		UDSEL	vacion pracis	LICS		
				Std	Std	
	Raw	Pearson	Deviance	Deviance	Pearson	Likelihood
Observation	Residual	Residual	Residual	Residual	Residual	Residual
1	-17.26992	-1.253808	-1.248674	-4.010799	-4.027288	-4.025693
2	17.269919	3.5186675	3.7189203	4.2564872	4.027288	4.2033791
3	-0.639509	-0.056021	-0.056009	-0.279662	-0.279722	-0.27972
4	0.6395092	0.2689516	0.270608	0.281445	0.2797222	0.2813152
5	10.754724	1.2628723	1.2533375	1.8666311	1.8808316	1.8744428
6	-10.75472	-0.920778	-0.92434	-1.888107	-1.880832	-1.882578
7	0.7926099	0.0826077	0.0825674	0.1411928	0.1412619	0.1412383
8	-0.79261	-0.085732	-0.085771	-0.141327	-0.141262	-0.141286
9	7.3191902	1.2415132	1.2205137	1.6058628	1.6334923	1.6175896
10	-7.31919	-0.844033	-0.850933	-1.646846	-1.633492	-1.637068
11	-0.957096	-0.206201	-0.207564	-0.304644	-0.302644	-0.303574
12	0.9570957	0.2064808	0.2051779	0.3007342	0.3026438	0.3017565

The GENMOD Procedure

Model Information

Data Set	WORK.BERKELEY
Distribution	Binomial
Link Function	Logit
Response Variable (Events)	yes
Response Variable (Trials)	n
Number of Observations Read	12
Number of Observations Used	12
Number of Events	1755
Number of Trials	4526

Class Level Information
Class Levels Values
dept 6 a b c d e f
gender 2 0 1

Response Profile
Ordered Binary Total
Value Outcome Frequency
1 Event 1755
2 Nonevent 2771

Paramet Prml	Information Effect Intercept	dept
Prm2	dept	а
Prm3	dept	b
Prm4	dept	C
Prm5	dept	d
Prm6	dept	е
Prm7	dept	f

Criterion Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)	Assessing DF 6 6 6 6	Goodness Of Fit Value 21.7355 21.7355 19.9384 19.9384 -2594.5099 -45.3376 102.6752 119.4752 105.5846	Value/DF 3.6226 3.6226 3.3231 3.3231
Algorithm converged.		105.5846	

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Paramete	er	DF	Estimate	Standard Error	Wald 95% Lim	Confidence its	Wald Chi-Square	Pr > ChiSq
Intercep	ot	1	-2.6756	0.1524	-2.9744	-2.3769	308.10	<.0001
dept	a	1	3.2691	0.1671	2.9417	3.5966	382.88	<.0001
dept	b	1	3.2185	0.1749	2.8757	3.5613	338.63	<.0001
dept	С	1	2.0600	0.1674	1.7319	2.3880	151.45	<.0001
dept	d	1	2.0108	0.1699	1.6778	2.3438	140.07	<.0001
dept	e	1	1.5861	0.1798	1.2337	1.9385	77.82	<.0001
dept	f	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0000	0.0000	1.0000	1.0000		
NOTE: The	scale p	arameter	was held	fixed.				

Observation Statistics

				Std	Std	
	Raw	Pearson	Deviance	Deviance	Pearson	Likelihood
Observation	Residual	Residual	Residual	Residual	Residual	Residual
1	-19.43087	-1.412995	-1.40638	-4.133629	-4.153073	-4.150827
2	19.430868	3.9053116	4.1323246	4.3944879	4.1530728	4.3672258
3	-1.188034	-0.104129	-0.10 4 087	-0.503506	-0.503708	-0.503699
4	1.1880342	0.4928272	0.497804	0.5087944	0.5037077	0.5085781
5	6.0021786	0.6976841	0.6949825	0.8647048	0.8680662	0.8658963
6	-6.002179	-0.516503	-0.517671	-0.870029	-0.868066	-0.868762
7	-3.632576	-0.375617	-0.376411	-0.547028	-0.545873	-0.54642
8	3.6325758	0.3960931	0.3951975	0.5446391	0.5458732	0.5452238
9	4.9229452	0.8207706	0.8119543	0.989787	1.0005342	0.9933147
10	-4.922945	-0.572193	-0.575427	-1.00619	-1.000534	-1.002388
11	-2.030812	-0.428298	-0.434127	-0.628187	-0.619753	-0.623795
12	2.0308123	0.4479439	0.4417581	0.6111942	0.6197526	0.6152965

Sparse Data

<u>Caution:</u> Parameter estimates in logistic regression can be infinite.

ex1)

$$\begin{array}{c|ccccc} & S & F \\ \hline 1 & 8 & 2 \\ 0 & 10 & 0 \\ \end{array}$$

Model

$$\log\left(\frac{P(S)}{P(F)}\right) = \alpha + \beta x$$

$$e^{\hat{\beta}} = odds \ ratio = \frac{8 \times 0}{10 \times 2} = 0$$

$$\hat{\beta} = \log odds \ ratio = -\infty$$

ex2) Multi-center clinical trial (5centers, each with 2×2 table)

ex3)
$$y = \begin{cases} 1 & \text{for } x < 50 \\ 0 & \text{for } x > 50 \end{cases}$$

$$logitP(Y=1) = \alpha + \beta x$$

has $\hat{\beta} = \infty$. software may not realize this!

1 PROC GENMOD : $\hat{\beta}$ = 3.84, SE = 15601054

2 PROC LOGISTIC gives warning

3 SPSS : $\hat{\beta}$ = 1.83, SE = 674.8

Infinite estimates exists when we can separate x values where y=1 from x- values where y=0 (perfect discrimination)

Inference about Conditional Associations in $2 \times 2 \times K$ tables(X, Y, Z)

Consider $H_0: X$ and Y independent, given Z

1. Using logistic regression

$$\log it [P(Y=1|X=i,Z=k)] = \alpha + \beta x_i + \beta_k^Z, \ i=1,2, \ k=1,\cdots,K$$

with $x_1=1,\ x_2=0$ (dummy variable), $\left\{\beta_k^Z\right\}$ K parameters for effects of Z with constraint such as $\beta_K^Z=0$ or $\beta_1^Z=0$

 $H_0: \beta = 0$. Test using Wald or LR test.

2. Cochran-Mental-Haenszel Test (CMH): a non-model-base test

Cochran \rightarrow binomial case given k (1950)

Mental-Haenszel \rightarrow Hypergeometric dist. given k (1959)

K 2×2 tables of each

n_{11k}	n_{12k}	n_{1+k}
n_{21k}	n_{22k}	n_{2+k}
n_{+1k}	n_{+2k}	n_{++k}

Under H_0 , Conditional on $\{n_{1+k}, n_{2+k}, n_{+1k}, n_{+2k}\}$ for each partial table, n_{11k} has hypergeometric dist.

$$\mu_{11k} = E_{H_0}(n_{11k}) = \frac{n_{1+k}n_{+1k}}{n_{++k}}$$

$$Var(n_{11k}) = \frac{n_{1+k}n_{2+k}n_{+1k}n_{+2k}}{n_{++k}^2(n_{++k}-1)}$$

Mentel and Haenszel(1959) proposed

Under H_0 , $M^2 \stackrel{d}{\rightarrow} \chi_1^2$

 $(n_{11k}-\mu_{11k}$ is fluctuated around 0 (+ or -). It is bad)

Testing for conditional independence of X and Y given Z

In fact, this is the score test of $H_0: \beta = 0$ in logit model

$$logit[P(Y=1)] = \alpha + \beta x_i + \beta_k^Z$$

(Day and Byar, 1979) (tink about suff. stat.)

ex)

	Group	Resp	onse	0 5 5
Center	Treatment	S	F	0 9 9 0 14 14
1	Treatment	0	5	$n_{111} = 0$
1	Placebo	0	9	$\hat{\mu}_{111} = 0$
	T	1	12	$\widehat{Var}(n_{111}) = 0$
2	F	0	10	No information for
	Т	0	7	treatment effect exists
3	F	0	5	in center 1, 3
	Т	6	3	-
4	F	2	6	-
	T	5	9	-
5	F	2	12	-

CMH test statistic \rightarrow [CMH test does not give any direction(higher or lower). Just give significance. But Wald, LR test give it]

$$M^2 = 5.02$$
, $df = 1$, $p - value = 0.025$

Model

$$logit[P(Y=1)] = \alpha + \beta x + \beta_k^Z$$

has $\hat{\beta}=1.546$, s.e.=0.702 ($e^{1.546}=4.69$ estimated odds for each partial table) Wald~stat.=4.85 for $H_0:\beta=0$ (p-value=0.028)

LR stat. comparing this model to model with $\beta = 0$ is 5.49 (p-value = 0.019)

```
data trial;
input center $ group $ response $ count @@;
cards;
1 treatment success 0 1 treatment failure 5
           success 0 l placebo
1 placebo
                                failure 9
2 treatment success 1 2 treatment failure 12
2 placebo
           success 0 2 placebo
                                failure 10
3 treatment success 0 3 treatment failure 7
3 placebo success 0 3 placebo
                                failure 5
4 treatment success 6 4 treatment failure 3
4 placebo success 2 4 placebo
                                failure 6
5 treatment success 5 5 treatment failure 9
5 placebo success 2 5 placebo
                                failure 12
run;
proc freq data=trial;
weight count;
table center*group*response/cmh;
run;
```

Summary Statistics for group * response Controlling for center

Cochran-Mantel-Haenszel Statistics (Based on table Scores)(CMH)

Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	5.0170	0.0251
2	Row Mean Scores Differ	1	5.0170	0.0251
3	General Association	1	5.0170	0.0251

Estimates of	f the Common Relative	MH	odds ratio estimate	
Types of Study	Method	Value	95% Confi	dence Limits
Case-Control	Mantel-Haenszel	4.7151	1.1840	18.7768
(Odds Ratio)	Logit **	3.9677	1.0978	14.3395
Cohort	Mantel-Haenszel	1.2143	1.0231	1.4413
(Coll Risk)	Logit	1.1252	0.9719	1.3026
Cohort	Mantel-Haenszel	0.3575	0.1350	0.9466
(Co12 Risk)	Logit **	0.3890	0.1547	0.9782

** These logit estimators use a correlation of 0.5 in every cell of those tables that contain a zero. Tables with a zero row or a zero column are not included in computing the logit estimators.

Breslow-Day Test for Homogeneity of the odds Ratios

Chi-Square 0.3611 DF 2 Pr > ChiSq 0.8348

Total Sample Size = 94

```
/* SAS (genmod) showing effects of sampling zeroes(sandoz data) */
data sparse;
input center $ treat success n @@;
cards;
11051009
2 1 1 13 2 0 0 10
31073005
41694028
5 1 5 14 5 0 2 14
run;
proc genmod data=sparse;
class center;
model success/n=treat center/dist=bin link=logit;
```

The GENMOD Procedure Model Information WORK.SPARSE Data Set Distribution Binomial 3 8 1 Link Function Logit Response Variable (Events) Response Variable (Trials) success n Number of Observations Read Number of Observations Used Number of Events Number of Trials 10 10 16 Class Level Information Levels 5 Class 1 2 3 4 5 center Response Profile Ordered Total Binary Frequency 16 78 Value Outcome Event Nonevent Criteria For Assessing Goodness Of Fit Value/DF DF Value 0.5021 4 $\overline{4}$ 0.5021 0.3602 0.3602 -28.8701

0.1255

0.1255

0.0900

0.0900

Criterion Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) -6.4293 24.8587 52.8587 BIC (smaller is better)
Algorithm converged. 26.6742

Analysis Of Maximum Likelihood Parameter Estimates Wald Standard Wald 95% Confidence Pr > ChiSq 0.0025 Chi-Square Parameter Estimate DF Error 0.6700 Limits -3.3354 -0.7092 -2.0223 Intercept 9.11 1.5460 -25.9997 0.7017 0.1708 2.9212 0.0276 treat 4.85 center 213410.4 -418303 418250.7 0.9999 -2.1802 -25.9070 center 2 1.1327 -4.4003 0.0399 0.0543 188688.5 369796.7 center 1 -369849 0.00 0.9999 2.4373 0.0000 0.7011 center **4** 5 1.0631 -0.3110 2.30 0.1294 0 0.0000 center Scale 0.0000 Õ 0.0000 1.0000 1.0000 NOTE: The scale parameter was held fixed. too large in absolute values. (\because) center 1 and center 3 : $n_{+\,1k}=0,\ k=1,3$ estimated odds ratio= $e^{1.546} = 4.69$

Note: M^2 is a test sta. for testing conditional independence of X and Y given Z• Mentel and Haenszel (1959) suggested

$$\hat{\theta}_{MH} = \frac{\displaystyle\sum_{k} n_{11k} n_{22k} / n_{++\,k}}{\displaystyle\sum_{k} n_{12k} n_{21k} / n_{++\,k}} \ \, \text{=> the strength of association (simillar to odds ratio)}$$

for estimating an assumed common odds ratio for the K partial tables.

*[It is preferred over the ML estimator when K is large and the data are sparse (The ML estimator $\hat{\beta}$ of the log odds ratio then tends to be too large in absolute value)]

Robins et al. (1986) derived a std. error for $\log \hat{\theta}_{MH}$

ex)
$$\hat{\theta}_{MH} = 4.72$$

95% C.I. (1.18, 18.78) for θ_{MH}

Note:

- For $2 \times 2 \times K$ tables, Breslow and Day (1980) gave large-sample Chi-squared test for equality of K odds ratios (df = K 1)
 - ex) B-D stat.=0.36, df=2 (not 4=K-1[2 centers do not have successes])

or, could use goodness-of-fit test(deviance pearson) of model,

$$\log i t(\pi) = \alpha + \beta x + \beta_k^Z$$

which is equivalent to residual odds ratios (e^{β} in each stratum), with df=K-1

- ⇒ There is also a small-sample test (Zelon, 1972, in statXact)
- $lackbox{ Small-sample exact test of conditional indep. of X and Y given Z (i.e., $H_0:eta=0$) uses dist. of $\sum_k n_{11k}$, conditional on $\{n_{i+k}\}$ and $\{n_{+jk}\}$ (StatXact)$

(SAS V8.2 Proc logistic has this test)

ullet CMH test generalized to test conditional indep. in $I \times J \times K$ table, for ordered and unordered rows and columns (Landis, et al., 1978) see 7.5

PROC FREQ in SAS

Stat.	X	Y	df
Nonzero corr.	Ordinal	Ordinal	1
Row means diff.	Nominal	Ordinal	I– 1
General Assoc.	Nominal	Nominal	(I-1)(J-1)

ex) K case-control pair (matched pairs with $n_{1+k} = n_{2+k} + 1$ for k)

Pair	Exposure	case	Control (no cancer)	
Pall	(Y : response)	(cancer)		
	Yes			
1	N0			
		1	1	
	Yes			
2	N0			
		1	1	
:	:			
	Yes			
K	N0			
		1	1	

(In general ML theory, as $n \rightarrow \infty$, the parameter space is fixed)

LR test of $H_0:\beta=0$ has asymptotic bias on $n\to\infty$ with fixed no. parameter Here n=2K. As $n\uparrow$, so does K and no. parameter.

In fact, $\hat{\beta} \stackrel{p}{\longrightarrow} 2\beta$ (Andersen, 1980)

Note: tables

case	control	
1	1	
0	0	
1	1	an

case	control
0	0
1	1
1	1

make no contribution to CMH M^2 , but for other tables, $\sum_{\it L} n_{11\it k}$ is a sum of i.i.d,

Bernoulli r.v's and $M \to$ normality as no. of such tables $\uparrow (M^2 \xrightarrow{d} \chi_1^2)$

In fact, $\hat{\beta}_{MH} \xrightarrow{p} \theta(e^{\beta})$

In $2 \times 2 \times K$ tables, Model

$$logitP(Y=1) = \alpha + \beta x + \beta_k^Z$$

Note:

- An alternative inference approach is <u>conditional logistic regression</u>. eliminating $\left\{\beta_k^Z\right\}$ by conditioning on their sufficient statistics (see 6.7) (SAS V8.2)
 - * Frequentist: $k \rightarrow \infty$, ML consistency is broken but conditional MLE given Z is consistent.
 - * Bayesian β_k^Z : random effect is considered.
- For multi-center clinical trial data, alternative approach treats center effects as random.

eg)
$$\beta_k^Z = u_k \sim N(\mu, \sigma^2)$$

(Agresti & Hartzel, Stat. in Med., 2000)