

**Umar Faiz** 

- A regular expression (RE) is a pattern that describes some set of strings.
- Regular expressions describe regular languages.
- A language generator model instead of language acceptor.

#### Example:

$$(a+b\cdot c)^*$$

describes the language

$${a,bc}^* = {\lambda,a,bc,aa,abc,bca,...}$$

- Definition: A regular expression over an alphabet  $\Sigma$  is recursively defined as follows:
  - ø denotes language ø
  - 2. ε denotes language {ε}
  - 3. a denotes language  $\{a\}$ , for all  $a \in \Sigma$ .
  - 4. (P + Q) denotes L(P) U L(Q), where P, Q are r.e.'s.
  - 5. (PQ) denotes L(P) ·L(Q), where P, Q are r.e.'s.
  - 6.  $P^*$  denotes  $L(P)^*$ , where P is r.e.

• Operations on Regular Expressions

| RE          | Regular Language Description                  |
|-------------|-----------------------------------------------|
| a+b         | {a <b>,</b> b}                                |
| (a+b) (a+b) | {aa, ab, ba, bb}                              |
| a*          | $\{\lambda$ , a, aa, aaa, $\ldots\}$          |
| a*b         | {b,ab, aab, aaab,}                            |
| (a+b)*      | $\{\lambda$ , a, b, aa, ab, ba, aaa, bbb $\}$ |

Primitive regular expressions:  $\emptyset$ ,  $\lambda$ ,  $\alpha$ 

Given regular expressions  $r_1$  and  $r_2$ 

$$r_1 + r_2$$
 $r_1 \cdot r_2$ 
 $r_1 *$ 
 $(r_1)$ 

are regular expressions

A regular expression:

$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:

$$(a+b+)$$

- If r is a regular expression, we will let L(r) denote the language associated with r.
- For primitive regular expressions  $\varnothing$ ,  $\lambda$ ,  $\alpha$ :

$$L(\varnothing) = \varnothing$$
$$L(\lambda) = \{\lambda\}$$
$$L(a) = \{a\}$$

L(r): Language of regular expression r

Example:

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

For regular expressions  $r_1$  and  $r_2$ 

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

#### Example:

Regular expression: 
$$(a+b) \cdot a^*$$
  
 $L((a+b) \cdot a^*) = L((a+b)) L(a^*)$   
 $= L(a+b) L(a^*)$   
 $= (L(a) \cup L(b)) (L(a))^*$   
 $= (\{a\} \cup \{b\}) (\{a\})^*$   
 $= \{a,b\} \{\lambda,a,aa,aaa,...\}$   
 $= \{a,aa,aaa,...,b,ba,baa,...\}$ 

#### Example:

Regular expression

$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

#### Example:

Regular expression

$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

#### Example:

$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings with at least two consecutive 0's }

## Equivalent Regular Expressions

#### Definition:

Regular expressions  $r_1$  and  $r_2$ 

are equivalent if

$$L(r_1) = L(r_2)$$

#### Equivalent Regular Expressions

#### Example:

 $L = \{ all strings without two consecutive 0 \}$ 

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 $r_1$  and  $r_2$  are equivalent regular expressions

# Algebraic Laws for REs

| Axiom                   | Description                                         |
|-------------------------|-----------------------------------------------------|
| r + s = s + r           | + is commutative                                    |
| (r+s)+t=r+(s+t)         | + is associative                                    |
| (rs)t = r (st)          | concatenation is associative                        |
| r(s+t) = rs+rt          | concatenation distributes over +                    |
| (s+t)r = sr + tr        |                                                     |
| $\lambda r = r$         | $\lambda$ is the identity element for concatenation |
| $r\lambda = r$          |                                                     |
| $r^* = (r + \lambda)^*$ | relation between * and $\lambda$                    |
| $r^{**} = r^*$          | * is idempotent, i.e., taking the closure of a      |
|                         | regular expression under closure does not           |
|                         | change the language                                 |

# Algebraic Laws for REs

Laws Involving Closures

$$- (L^*)^* = L^*$$

• i.e., taking the closure of a regular expression under closure does not change the language

$$-\phi*=\epsilon$$

$$- \epsilon^* = \epsilon$$

$$- L^+ = LL^* = L^*L$$

$$- L^* = L^+ + \epsilon$$

## Algebraic Laws for REs

- Operator Precedence
  - I. Kleene star (\*)
  - 2. Concatenation (.)
  - 3. Union (+)

#### Equivalence of RE and Finite Automata

Finite Automata and Regular Expressions are equivalent.

- There is an algorithm for converting any RE into an NFA.
- 2. There is an algorithm for converting any NFA to a DFA.
- 3. There is an algorithm for converting any DFA to a RE.

These facts tell us that REs, NFAs and DFAs have equivalent expressive power. All three describe the class of regular languages.

# Roadmap



# Converting Regular Expressions to NFAs

#### RE to $\varepsilon$ -NFAs

We can convert a Regular Expression to a finite automaton.

 We can do this easiest by converting a RE to epsilon-NFA. Recursively build the FSA, mimicking the structure of the regular expression. Each FSA built has one start state, and one final state.

The regular expressions over finite  $\Sigma$  are the strings over the alphabet  $\Sigma$  such that:

- { } (empty set) is a regular expression for empty set
- Empty string  $\epsilon$  is a regular expression denoting  $\{\epsilon\}$



- a is a regular expression denoting  $\{a\}$  for any a in  $\Sigma$ 









• Example I: Convert ab+a and (ab+a)\* into an NFA



## Example 2: Convert (ab\* | a\*b)\* into an NFA





#### Example 2: Convert (ab\* | a\*b)\* into an NFA



#### Example 3: Convert (a+b)\*abb into an NFA



#### Example 3: Convert (a+b)\*abb into an NFA



#### Example 3: Convert (a+b)\*abb into an NFA



# Roadmap



#### Generalized NFAs

 A generalized NFA is an NFA whose transitions are labeled by regular expressions, like



- Moreover
  - It has exactly one accept state, different from its start state
  - No arrows come into the start state
  - No arrows go out of the accept state

## Converting a DFA to a GNFA





#### Conversion Example



- ✓ It has exactly one accept state, different from its start state
- ✓ No arrows come into the start state
- ✓ No arrows go out of the accept state

#### Converting a GNFA to a 2-state GNFA



From any GNFA, we can eliminate every state but the start and accept states

# Converting a GNFA to a 2-state GNFA



# Converting a GNFA to a 2-state GNFA

- State Elimination General Method
  - To eliminate state  $q_k$ , for every pair of states  $(q_i, q_j)$



# Roadmap





A 2-state GNFA is the same as a regular expression R

# Converting DFAs to Regular Expressions

# Converting DFAs to REs

- State Elimination Method
  - I. Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.
    - The result will be one or two state automaton with a Start state and an Accept state.

## DFA to RE: State Elimination

- State Elimination Method
  - 2. If the two sates are different, we get an automaton like the one shown below:



 The regular expression for this automaton is (R+SU\*T)\*SU\*

## DFA to RE: State Elimination

- State Elimination Method
  - 3. If the start state is also an accepting state, then we must also perform a state elimination from the original automaton that gets rid of every state but the Start state. This leads us to:



We can describe this automaton as a regular expression as R\*

## DFA to RE: State Elimination

- State Elimination Method
  - 4. If there are n Accept states, the repeat steps I-3 for each Accept state to get n different regular expressions  $R_1$ ,  $R_2$ , ..... $R_n$ .
  - For each repeat we turn any other Accept state to non-Accept state.
  - The final regular expression for the automaton is then the union of each of the n regular expressions.

- State Elimination
  - Convert the following to a Regular Expression



#### State Elimination

• Eliminate State q<sub>2</sub>



• The regular expression is (0+10)\*11(0+1)\*

#### State Elimination

Automaton that accepts even number of I's



#### State Elimination

Automaton that accepts even number of I's



#### State Elimination

Automaton that accepts even number of I's



Turn off state q<sub>1</sub>



• The regular expression is 0\*+0\*10\*1(0+10\*1)\*

## State Elimination



## State Elimination



#### State Elimination



$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

#### State Elimination

Convert the following to a Regular Expression



## State Elimination – Step I

• If the start state is an accepting state or has transitions in, add a new non-accepting start state and add an  $\epsilon$  transition between the new start state and the former start state.



## State Elimination – Step2

• If there is more than one accepting state or if the single accepting state has transitions out, add a new accepting state, make all other states non-accepting, and add an  $\epsilon$  transition from each former accepting state to the new accepting state.

# State Elimination – Step2



## State Elimination – Step 3

• For each non-start non-accepting state in turn, eliminate the state and update transitions. Eliminating state I, we get



## State Elimination – Step 3

• Eliminating state2, we get



## State Elimination – Step 3

• Eliminating state3, we get



## State Elimination – Step 3

• Eliminating state4, we get

$$(b + a(aa)^*(ab + \epsilon))b^* +$$
  
 $((b + a(aa)^*(ab + \epsilon))b^*b)((a + a(aa)^*(ab + \epsilon))b^*b)^*(\epsilon + (a + a(aa)^*(ab + \epsilon))b^*)$ 

