7600017 - Introdução à Física Computacional - 2022

Sexto Projeto

07/11/2022

Entrega: 12/12/2022

Instruções

- Use o diretório proj6 #usp em /home/public/IntroFisComp22/projeto6
- Deixe no diretório os arquivos abaixo:
 - exerA.f90, tabA1 out.dat, grafA.ps
- Os códigos devem seguir rigorosamente os padrões especificados abaixo para entrada/saída
- Use precisão dupla em seus resultados

Exercícios

Consideraremos neste projeto o efeito da atração gravitacional entre os Planetas e o Sol. De acordo com a lei da gravitação de Newton, a força de atração gravitacional entre um Planeta (de massa M_P) e o Sol (de massa M_S) é dada por:

$$\vec{F}_G = -G \frac{M_S M_P}{r^3} \vec{r}$$

sendo G a constante gravitacional de dimensão $[G] = [L^3 T^{-2} M^{-1}]$ e \vec{r} o vetor distância entre o Sol e o Planeta. Como os raios médios das translações dos Planetas, bem como

seus períodos, são números grandes no sistema MKS, é conveniente usarmos unidades astronômicas de espaço e de tempo. A unidade de espaço é o UA (unidade astronômica, $1~UA \approx 1.5 \times 10^{11}~m$), correspondendo à distância média Terra-Sol, e a unidade de tempo é o ano (1 ano $\approx 3.2 \times 10^7~s$), período de translação da Terra. A unidade de massa correspondente pode ser obtida aproximando-se a órbita terrestre como circular:

$$\frac{M_T v^2}{r} = \text{força centrípeta} = \text{força gravitacional} = \frac{G M_S M_T}{r^2}$$
 .

Assim, obtemos

$$GM_S = v^2 r = \left(\frac{2\pi r}{ano}\right)^2 = 4\pi^2 \frac{(UA)^3}{ano^2}$$

ou seja $GM_S=4\pi^2$ nas unidades astronômicas.

Vamos considerar inicialmente o problema de dois corpos (Sol + Planeta). Neste caso a conservação de momento angular (válida para forças centrais) implica em um movimento planar. Consideremos o Sol parado na origem $(x_S, y_S) = (0, 0)$. A equação de movimento para o planeta — com coordenadas (x, y) - será

$$\frac{d^2x}{dt^2} = \frac{F_{Gx}}{M_P} = -G\frac{M_S}{r^3}x$$

$$\frac{d^2y}{dt^2} = \frac{F_{Gy}}{M_P} = -G\frac{M_S}{r^3}y$$

sendo
$$r = \sqrt{x^2 + y^2}$$

No presente projeto vamos usar, ao invés do método de Euler-Cromer, o método de Verlet, que se baseia na expansão de Taylor

$$y(t_i \pm \Delta t) = y(t_i) \pm \frac{dy}{dt_i} \Delta t + \frac{1}{2} \frac{d^2y}{dt_i^2} (\Delta t)^2 \pm \frac{1}{6} \frac{d^3y}{dt_i^3} (\Delta t)^3 + \dots$$

Somando-se as expressões com os dois sinais obtemos

$$y_{i+1} = 2y_i - y_{i-1} + \frac{d^2y}{dt_i^2}(\Delta t)^2 + \mathcal{O}((\Delta t)^4),$$

que é uma ordem mais precisa do que o método de Euler que usamos até aqui. Contudo, para calcular y_2 precisamos de y_1 e de y_0 . Isso é "consertado" usando-se, por exemplo, na primeira iteração o método de Euler $y_1 = y_0 + v_0 \Delta t$, onde y_0 e v_0 são a posição e a velocidade iniciais (dadas). (Ver mais detalhes no Capítulo 4 e no Apêndice A do livro Computational Physics de N. J. Giordano e H. Nakanishi.)

TAREFA A: Implemente o método acima para calcular o movimento de um Planeta ao redor do Sol, usando unidades astronômicas.

Em seu programa exerA.f90 leia (cada um em uma linha) a partir do terminal:

- r (em UA), i.e. a distância do Planeta à origem, equivalente, no caso circular, ao raio da órbita do Planeta
- v_0 , a velocidade inicial
- Δt , intervalo de tempo usado para a integração das equações do movimento

Use x(0) = r, y(0) = 0, $v_x(0) = 0$ e $v_y(0) = v_0$. A saída do programa será dada por:

- 1. arquivo $trajA1_out.dat$ contendo em cada linha t x(t) y(t) para um período completo do movimento (circular ou elíptico);
- 2. comente sobre a escolha do valor de Δt para obter órbitas estáveis; este resultado deve ser dado no terminal.

Elabore também os seguintes arquivos:

- tabA1_out.dat, contendo uma tabela, com valores de T^2/R^3 para os Planetas, onde T e R são os períodos e raios das respectivas órbitas, usando os dados fornecidos na tabela acima (para o caso de órbita circular). Sua tabela deve conter 3 colunas, i.e., nome do Planeta, velocidade inicial v_0 e razão T^2/R^3 . A primeira linha da tabela pode ser usada para os títulos das colunas.
- grafA.pdf, contendo os gráficos da trajetória no plano x y, i.e. pontos x(t), y(t) para os quatro quartos do período, de forma a ilustrar a lei das áreas (portanto são 4 gráficos em sequência). Neste caso use uma órbita elíptica.

Planeta	massa (kg)	raio (UA)	excentricidade
Mercúrio	$2.4 \ 10^{23}$	0.39	0.206
Venus	$4.9 \ 10^{24}$	0.72	0.007
Terra	$6.0 \ 10^{24}$	1.00	0.017
Marte	$6.6 \ 10^{23}$	1.52	0.093
Júpiter	$1.9 \ 10^{27}$	5.20	0.048
Saturno	$5.7 \ 10^{26}$	9.24	0.056
Urano	$8.8 \ 10^{25}$	19.19	0.046
Netuno	$1.03 \ 10^{26}$	30.06	0.010
Plutão	$1.31 \ 10^{22}$	39.53	0.248

Tabela 1: A massa do Sol é $\approx 2.0 \ 10^{30} \ kg$.

TAREFA B: Podemos agora generalizar o programa anterior para incluir todos os Planetas. Para facilitar, colocaremos os Planetas em um único plano. Diferentemente do problema de dois corpos, a órbita de cada Planeta não será mais exatamente periódica. Para testar esta afirmação consideraremos o problema de 3 corpos em que temos Terra (M_T) , Sol (M_S) e Júpiter (M_J) . Neste caso as equações de movimento para a Terra (x_T, y_T) são

$$\frac{d^2x_T}{dt^2} = -G\frac{M_S}{r_{T-S}^3}x_T - G\frac{M_J}{r_{T-J}^3}(x_T - x_J)$$

$$\frac{d^2y_T}{dt^2} = -G\frac{M_S}{r_{T-S}^3}y_T - G\frac{M_J}{r_{T-J}^3}(y_T - y_J)$$

onde $r_{T-S} = \sqrt{(x_T - x_S)^2 + (y_T - y_S)^2}$ e $r_{T-J} = \sqrt{(x_T - x_J)^2 + (y_T - y_J)^2}$ as equações para Júpiter (x_J, y_J) são análogas.

Apenas para crédito adicional: faça como desafio (com formato livre, deixe os arquivos na pasta, identificando-os com a letra "B" em algum lugar do nome) o cálculo da órbita da Terra colocando Júpiter na posição e velocidade que teria caso sua órbita fosse circular (no problema de dois corpos). Mostre que agora a órbita terrestre não é mais periódica. Multiplique a massa de Júpiter por 100 e 1000 e veja os efeitos mais acentuados.