华师大二附中高一数学12月质量调研

2024.12.3

(考试时间 120 分钟 满分 150 分)

一、填空题 (本大题共有12 題,满分54 分,第1~6 题每题 4 分,第7~12 題每题 5 分) 考生应在答题纸的相应位置直接填写结果.

1. 函数
$$f(x) = \sqrt{x+3} + \frac{1}{x-2}$$
 的定义域是______.

【答案】[-3,2)∪(2,+∞)

2. 若 $3^a = 2.3^b = 5$,求 $3^{2a-b} =$.

【答案】 4/5

3. 函数
$$y = \frac{1}{x-1} + 1$$
 的对称中心是_____.

【答案】(1, 1)

4.若函数 $f(x) = x + \frac{1}{x}$ 在区间 $(a, +\infty)$ 上是严格增函数,则a的取值范围是_____.

【答案】 a ∈ [1,+∞).

5.设
$$f(x) = -x^3 + (a-2)x^2 + x$$
 是定义在R 上的奇函数,则 $f(a) =$

【答案】-6

6. 函数 $y = x^2 - 4|x| + 5$ 的严格减区间是 .

【答案】(-∞.-21和[0.2]

7.已知
$$x > 0$$
, $y > 0$, $\lg 2^x + \lg 4^y = \lg 2$, 则 $\frac{1}{x} + \frac{1}{2y}$ 的最小值为______

【答案】4

【详解】因为 $\lg 2^x + \lg 4^y = \lg 2$, 所以 $\lg (2^x \times 4^y) = \lg 2$, 所以 $\lg 2^{x+2y} = \lg 2$, 所以x + 2y = 1,

$$\text{Fit VA} \frac{1}{x} + \frac{1}{2y} = (\frac{1}{x} + \frac{1}{2y})(x + 2y) = 1 + \frac{2y}{x} + \frac{x}{2y} + 1 \ge 2 + 2\sqrt{\frac{2y}{x} \times \frac{x}{2y}} = 4,$$

当且仅当
$$\frac{2y}{x} = \frac{x}{2y}$$
, 即 $x = \frac{1}{2}$, $y = \frac{1}{4}$ 时等号成立,

所以 $\frac{1}{x} + \frac{1}{2y}$ 的最小值为4.

8.若函数y = f(x)的定义域为 **R**,则函数y = f(x-1)与 y = f(1-x)的图象关于_____对称

【答案】x=1

9. 已知函数 f(x) 是定义在[-4,a-1] 上的偶函数,在[-4,0] 上为严格增函数。若

$$f\left(x+\frac{a}{5}\right) < f\left(-2\right)$$
,则实数x的取值范围是_____.

【答案】-5≤x<-3或1<x≤3

【详解】因为f(x) 为偶函数,故-4+a-1=0 即a=5 ,

而 f(x) 在 [-4,0] 上严格增且 f(x) 为偶函数、故 f(x) 在 [0,4] 上为严格减函数、

而
$$f\left(x+\frac{a}{5}\right) < f\left(-2\right)$$
 即为 $f\left(x+1\right) < f\left(-2\right)$,

故 $4 \ge |x+1| > 2$,故 $-5 \le x < -3$ 或 $1 < x \le 3$,

10. 设函数
$$f(x) = \begin{cases} -x^2 + 2x, x \le 2 \\ 2x - 6, x > 2 \end{cases}$$
 关于 x 的方程 $f(x) = a$ 有三个不等实根 x_1, x_2, x_3 ,

则 $x_1 + x_2 + x_3$ 的取值范围是______

【答案】
$$\left[5,\frac{11}{2}\right)$$

【详解】画出函数图象,

结合图形可知,仅当 $-1 < a \le 0$ 时,方程f(x) = a有三个不等实根,

分别对应直线y=a与图象三个交点的横坐标,其中两个交点位于二次函数图像上,

不妨设 $x_1 < x_2 < x_3$, 显然 x_1, x_2 关于x = 1 对称, 故 $x_1 + x_2 = 2$,

另一个交点位于一次函数图象上,令2x-6=1,解得 $x=\frac{7}{2}$,

显然它在y = 2x - 6 和y = 0 以及y = 1的交点(3,0) 和 $\left(\frac{7}{2},1\right)$ 之间,

故
$$x_3 \in \left[3, \frac{7}{2}\right)$$
, 所以 $x_1 + x_2 + x_3 \in \left[5, \frac{11}{2}\right)$,

故答案为: $\left[5,\frac{11}{2}\right)$.

11. 已知函数 $f(x) = x^2 + 2mx + 2m + 3$ 至少有一个零点在区间(0,2) 内,求实数m的取值范围

是_____。 【答案】-³/₂<m≤-1

【详解】对于函数 $f(x) = x^2 + 2mx + 2m + 3$,

$$\Delta = 4m^2 - 4(2m+3) = 4(m^2 - 2m - 3) = 4(m+1)(m-3).$$

当 Δ <0, 即-1<m<3时, f(x)没有零点, 不符合题意.

当
$$m = -1$$
时、 $f(x) = x^2 - 2x + 1 = (x - 1)^2$ 、零点为1、

1∈(0,2), 符合题意.

当
$$m=3$$
时、 $f(x)=x^2+6x+9=(x+3)^2$ 、零点为-3、

-3 € (0,2), 不符合题意

 $\leq \Delta > 0$,即m < -1 或m > 3 时,f(x) 有两个不相等的零点 x_1, x_2

至少有一个零点在区间(0,2) 内,

则需
$$f(0) f(2) = (2m+3)(6m+7) < 0$$
 或
$$\begin{cases} f(0) = 2m+3 > 0 \\ f(2) = 6m+7 > 0 \\ 0 < -m < 2 \end{cases}$$

解得
$$-\frac{3}{2}$$
< m < $-\frac{7}{6}$, $-\frac{7}{6}$ < m < -1 ,

另外若
$$f(0) = 2m+3=0, m=-\frac{3}{2}$$
,

则 $f(x) = x^2 - 3x = x(x-3)$, 零点为0或3, 不符合题意

若
$$f(2) = 4 + 4m + 2m + 3 = 6m + 7 = 0, m = -\frac{7}{6}$$

则
$$f(x) = x^2 - \frac{7}{3}x + \frac{2}{3} = (x-2)\left(x - \frac{1}{3}\right)$$
, 零点为2 或 $\frac{1}{3}$,

 $\frac{1}{2} \in (0,2)$,符合题意.

综上所述,m的取值范围是: $-\frac{3}{2} < m \le -1$.

12. 已知集合 $A = B = \mathbb{N}$, 定义集合 $A \ni B$ 的函数 $f: x \to x$ 除以 3 的余数,例如 f(27) =

0. f(2024) = 2,求出函数f(x)的图像与 $y = x^2 - 13x + 43$ 的图像的所有交点

【答案】(7,1)

【详解】设 $g(x) = x^2 - 13x + 43$,

设 $x = 3k + r, k \in \mathbb{N}, r \in \{0,1,2\}$, 则f(x) = r,

设两函数交点为(x,y), 则y=0或1或2.

①y = 0 时, $x^2 - 13x + 43 = 0$,

则 $\Delta = 169 - 4 \times 43 < 0$,方程无解,即此时两图象不相交;

②y=1 时, $2x^2-13x+43=1$,即 $x^2-13x+42=0$ 解得x=6,或x=7.

当 x = 6 时, f(6) = 0 , 而 g(6) = 1 ≠ f(6) , 即此时两函数图象不相交;

当x = 7时、f(7) = 1、且g(7) = 1、故(7,1)是两函数图象的交点;

③当y = 2时, $\diamondsuit x^2 - 13x + 43 = 2$,即 $x^2 - 13x + 41 = 0$,

此时 $\Delta = 169 - 4 \times 41 = 5$,解得 $x = \frac{13 \pm \sqrt{5}}{2} \in \mathbb{N}$,方程无自然数解,

即此时两函数图象也不相交.

综上所述, (7,1)是两函数图象的唯一交点。

二、单选题 (本大题共有 4 題、满分 18 分、第 13、14 题每题 4 分、第 15、16 題每题 5 分) 每题有且只有一个正确选项, 考生应在答题纸的相应位置, 将代表正确选项的小方格涂黑, 13. 下列函数中, 既是奇函数又在其定义域上为增函数的是()

A.
$$y = 3x$$

A.
$$y = 3x$$
 B. $y = -\frac{1}{x}$ C. $y = \sqrt{x}$ D. $y = |x|$

C.
$$y = \sqrt{x}$$

D.
$$y = |x|$$

【答案】A

14. 霉菌有着很强的繁殖能力, 主要依靠孢子进行繁殖已知某种霉菌的数量, 与其繁殖时间 t (天) 满足关系式: y = ma' .若繁殖 5 天后,这种霉菌的数量为 20,10 天后数量为 40,则 要使数量达到 200 大约需要 () (lg 2 ≈ 0.3 , 结果四舍五入取整)

A. 20 天

B. 21 天

C. 22 天

D. 23 天

【答案】C

【详解】由题可得: $\begin{cases} 20 = ma^5 \\ 40 = ma^{10} \end{cases}$ 两式相除可得 $2 = a^5$,即 $a = 2^{\frac{1}{5}}$,

设繁殖 t 天后数量达到 200,

则
$$200 = ma^t$$
, 又 $20 = ma^5$, 则 $\frac{200}{20} = \frac{ma^t}{ma^5}$,

$$\therefore \log_2 10 = \frac{t}{5} - 1,$$

$$\therefore t = 5\log_2 10 + 5 = 5 \times \frac{\lg 10}{\lg 2} + 5 = 5 \times \frac{1}{0.3} + 5 \approx 22,$$

则要使数量达到200大约需要22天.

15. 已知函数f(x+1) 是偶函数、当 $1 < x_1 < x_2$ 时、 $[f(x_1) - f(x_2)](x_1 - x_2) > 0$ 恒成立、设

$$a=f\left(-\frac{1}{2}\right)$$
, $b=f(2)$, $c=f(3)$, 则 a , b , c 的大小关系为()

A. c < b < a B. b < a < c C. b < c < a D. a < b < c

【答案】B

【详解】·· 当 $1 < x_1 < x_2$ 时、 $[f(x_1) - f(x_2)](x_1 - x_2) > 0$ 恒成立。

$$\therefore$$
 当 $1 < x_1 < x_2$ 时、 $f(x_2) - f(x_1) > 0$ 、即 $f(x_2) > f(x_1)$

· 函数 f(x) 在 $(1,+\infty)$ 上为单调增函数.

: 函数
$$f(x+1)$$
 是偶函数,即 $f(1+x) = f(1-x)$,

...函数
$$f(x)$$
的图象关于直线 $x=1$ 对称, ... $a=f\left(-\frac{1}{2}\right)=f\left(\frac{5}{2}\right)$,

又函数 f(x) 在 $(1,+\infty)$ 上为单调增函数, f(x) f(x) f(x)

即
$$f(2) < f\left(-\frac{1}{2}\right) < f(3)$$
, $\therefore b < a < c$

16. 德国数学家狄利克雷定义了著名的狄利克雷函数: D(x)是定义在IR上的函数, 且

$$D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$$
,狄利克雷函数 $D(x)$ 具体而深刻地显示了函数是数集到数集的映射这个现

代函数的观点。下面给出下列四个结论: ①函数y = D(x) 是偶函数; ②存在常数m 使得函数 y = D(x+m) 是奇函数; ③函数y = D(x-1)-1 有无数个零点; ④D(x+2024) = D(x) 对任意 $x \in \mathbf{R}$ 恒成立。其中,所有正确结论的个数是(

A. 1 个

B. 2 个

C.3 个

D.4 个

【答案】C

【详解】解:因为当 $x \in Q$,则 $-x \in Q$,所以D(-x) = 1 = D(x),

当 $x \in \mathbf{Q}$, 则 $-x \in \mathbf{Q}$, 所以D(-x) = 0 = D(x),

所以对 $x \in \mathbb{R}$, D(-x) = D(x),

所以函数y = D(x) 是偶函数,故①正确;

因为
$$y = D(x+m) = \begin{cases} 1, x+m \in \mathbb{Q} \\ 0, x+m \notin \mathbb{Q} \end{cases}$$

所以
$$D(-x+m) = \begin{cases} 1, -x+m \in \mathbb{Q} \\ 0, -x+m \notin \mathbb{Q} \end{cases}$$

所以
$$D(-x+m) \neq -D(x+m)$$
,

所以不存在常数m使得函数y = D(x+m)是奇函数,故②错误:

由
$$D(x-1)-1=0$$
,即 $D(x-1)=1$ 解得 $x-1∈Q$,即 $x∈Q$,

所以函数y = D(x-1)-1有无数个零点,故③正确;

当
$$x \in Q$$
 时 $x + 2024 \in Q$ 所以 $D(x + 2024) = 1 = D(x)$;

当
$$x \in \mathbb{Q}$$
时, $x + 2024 \notin \mathbb{Q}$, 所以 $D(x + 2024) = 0 = D(x)$,

所以D(x+2024) = D(x)对任意 $x \in R$ 恒成立,故④正确.

三、解答题 (本大题共有5 題,满分78 分) 解答下列各题必须在答题纸的相应位置写出必要的步骤.

17. (本题满分14分, 第1小题满分7分, 第2小题满分7分)

求下列函数的值域:

(1)
$$f(x) = \frac{\sqrt{x^2 + 4}}{x^2 + 5}$$

【答案】 $\left(0,\frac{2}{5}\right)$

【详解】因为
$$\sqrt{x^2+4} \ge 2$$
, 所以 $f(x) = \frac{\sqrt{x^2+4}}{x^2+5} = \frac{\sqrt{x^2+4}}{(x^2+4)+1} = \frac{1}{\sqrt{x^2+4} + \frac{1}{\sqrt{x^2+4}}}$

令
$$y=t+\frac{1}{t}(t \ge 2)$$
,根据对勾函数的单调性可知 $y=t+\frac{1}{t}$ 在[2,+∞) 上单调递增,

所以
$$y \ge 2 + \frac{1}{2} = \frac{5}{2}$$
,所以 $\sqrt{x^2 + 4} + \frac{1}{\sqrt{x^2 + 4}} \ge \frac{5}{2}$,所以 $0 < \frac{1}{\sqrt{x^2 + 4} + \frac{1}{\sqrt{x^2 + 4}}} \le \frac{2}{5}$,

所以
$$f(x)$$
的值域为 $\left(0,\frac{2}{5}\right]$

(2)
$$f(x) = \frac{2x^2 + 3x + 8}{x^2 + x + 4}$$

【答案】 $\left[\frac{5}{3},\frac{11}{5}\right]$

【详解】函数
$$f(x) = \frac{2x^2 + 3x + 8}{x^2 + x + 4} = \frac{2(x^2 + x + 4) + x}{x^2 + x + 4} = 2 + \frac{x}{x^2 + x + 4}$$

当
$$x \neq 0$$
时, $f(x) = 2 + \frac{1}{x + \frac{4}{x} + 1}$,

根据对勾函数的性质可知:

当
$$x > 0$$
 时, $x + \frac{4}{x} \ge 4$, 则 $0 < \frac{1}{x + \frac{4}{x} + 1} \le \frac{1}{5}$, 所以 $2 < f(x)$ £ $\frac{11}{5}$,

当
$$x < 0$$
 时, $x + \frac{4}{x} \le -4$, 则 $-\frac{1}{3} \le \frac{1}{x + \frac{4}{x} + 1} < 0$, 所以 $\frac{5}{3}$ £ $f(x) < 2$,

综上所述,函数
$$f(x) = \frac{2x^2 + 3x + 8}{x^2 + x + 4}$$
 在 $x \in \mathbb{R}$ 上的值域是 $[\frac{5}{3}, \frac{11}{5}]$.

故答案为: $\left[\frac{5}{3}, \frac{11}{5}\right]$

【注】或用判别式法求解。

18. (本题满分14分, 第1小题满分6分, 第2小题满分8分)

已知函数f(x) 是定义在R 上的偶函数,且y=f(x) 的图象关于直线x=2 对称.

(1)证明: f(x) 是周期函数.

(2)若当
$$x \in [-2,2]$$
 时, $f(x) = x^2 + x^{-2}$, 求当 $x \in [2,6]$ 时, $f(x)$ 的解析式.

【答案】(1)证明见解析 (2)
$$f(x) = (x-4)^2 + (x-4)^{-2}, x \in [2,6]$$

【详解】(1) 由函数y = f(x) 的图象关于直线x = 2 对称,

所以
$$f(x+2) = f(2-x)$$
,即有 $f(-x) = f(x+4)$,

又函数 f(x) 是定义在R 上的偶函数, 有 f(-x) = f(x),

所以
$$f(x+4) = f(-x) = f(x)$$
,

即f(x)是周期为4的周期函数;

(2) 当
$$x \in [-2,2]$$
时, $f(x) = x^2 + x^{-2}$, 又 $f(x)$ 是周期为4的周期函数,

所以
$$f(x) = f(x-4) = (x-4)^2 + (x-4)^{-2}$$

所以
$$f(x) = (x-4)^2 + (x-4)^{-2}$$
, $x \in [2,6]$

19. (本题满分14分, 第1小题满分6分, 第2小题满分8分)

已知函数
$$f(x) = x - 2$$
, $g(x) = mx^2 - 2mx + 1 (m \in \mathbf{R}, m \neq 0)$.

- (1)若对任意 $x \in \mathbb{R}$, 不等式g(x) > f(x)恒成立, 求m 的取值范围;
- (2)若对任意 $x_1 \in [1,2]$,存在 $x_2 \in [3,4]$,使得 $g(x_1) = f(x_2)$,求m 的取值范围.

【答案】(1)
$$\left(\frac{2-\sqrt{3}}{2}, \frac{2+\sqrt{3}}{2}\right)$$
 (2)[-1,0)

[
$$i \neq m$$
] (1) $mx^2 - 2mx + 1 > x - 2 \Rightarrow mx^2 - (2m+1)x + 3 > 0$, $m \neq 0$,

需满足
$$\begin{cases} m > 0 \\ \Delta = (2m+1)^2 - 12m < 0 \end{cases}$$
,解得 $\frac{2-\sqrt{3}}{2} < m < \frac{2+\sqrt{3}}{2}$,

故
$$m$$
的取值范围为 $\left(\frac{2-\sqrt{3}}{2},\frac{2+\sqrt{3}}{2}\right)$.

(2) 对任意 $x_1 \in [1,2]$, 存在 $x_2 \in [3,4]$, 使得 $g(x_1) = f(x_2)$,

故 f(x) = x - 2 在 $x \in [3,4]$ 上的值域包含 $g(x) = mx^2 - 2mx + 1 (m \in \mathbb{R}, m \neq 0)$ 在 $x \in [1,2]$ 上的值域,

其中
$$x \in [3,4]$$
时, $f(x) = x-2 \in [1,2]$,

$$g(x) = mx^2 - 2mx + 1(m \in \mathbb{R}, m \neq 0)$$
 的对称轴为 $x = 1$,

若
$$m>0$$
, 则 $g(x)=mx^2-2mx+1(m\in\mathbf{R},m\neq0)$ 在 $x\in[1,2]$ 上单调递增,

故
$$g(x) \in [g(1),g(2)] = [-m+1,1],$$

但[-m+1,1] 不会是[1,2] 的子集, 舍去;

当m < 0时,则 $g(x) = mx^2 - 2mx + 1(m \in \mathbb{R}, m \neq 0)$ 在 $x \in [1,2]$ 上单调递减,

故
$$g(x) \in [g(2),g(1)] = [1,-m+1]$$

[1,-m+1] 是[1,2]的子集,则 $1<-m+1\le 2$,解得 $-1\le m<0$.

综上, m的取值范围是[-1,0).

20. (本题满分18分, 第1小题满分4分, 第2小题满分6分, 第3小题满分8分)

若函数f(x)在区间[a,b]上的值域恰为 $\left[\frac{1}{b},\frac{1}{a}\right]$,则称区间[a,b]为f(x)的一个"倒域区间".

已知定义在[-2,2]上的奇函数g(x), 当 $x \in [0,2]$ 时, $g(x) = -x^2 + 2x$.

- (1)求g(x)的解析式;
- (2) 若关于x的方程g(x) = -mx m 在(0,2) 上恰有两个不相等的根,求m 的取值范围;
- (3)求函数g(x)在定义域内的所有"倒域区间".

【答案】

$$(1) g(x) = \begin{cases} -x^2 + 2x, 0 \le x \le 2, \\ x^2 + 2x, -2 \le x < 0. \end{cases}$$

$$(2) 2\sqrt{3} - 4 < m < 0$$

$$(3)$$
 $\left[1, \frac{1+\sqrt{5}}{2}\right]$ $\Re \left[\frac{-1-\sqrt{5}}{2}, -1\right]$

【详解】(1) 当 $x \in [-2,0)$ 时,则 $-x \in (0,2]$,

由奇函数的定义可得 $g(x) = -g(-x) = -[-(-x)^2 + 2(-x)] = x^2 + 2x$,

所以
$$g(x) = \begin{cases} -x^2 + 2x, 0 \le x \le 2, \\ x^2 + 2x, -2 \le x < 0. \end{cases}$$

(2) 方程
$$g(x) = -mx - m$$
 即 $x^2 - (m+2)x - m = 0$, 设 $h(x) = x^2 - (m+2)x - m, 0 < x < 2$,

由题意知
$$\begin{cases} h(0) = -m > 0 \\ h(2) = -3m > 0 \\ \Delta = (m+2)^2 + 4m > 0, \quad \text{解得 } 2\sqrt{3} - 4 < m < 0. \\ 0 < \frac{m+2}{2} < 2 \end{cases}$$

(3) 因为g(x)在区间[a,b]上的值域恰为 $\left[\frac{1}{b},\frac{1}{a}\right]$,

其中
$$a \neq b$$
且 $a \neq 0, b \neq 0$,所以
$$\begin{cases} a < b \\ \frac{1}{b} < \frac{1}{a}, \end{bmatrix}$$
则
$$\begin{cases} a < b \\ ab > 0 \end{cases}$$

所以0<a<b≤2或-2≤a<b<0.

①当 $0 < a < b \le 2$ 时,因为函数g(x)在[0,1]上单调递增,在[1,2]上单调递减,

故当 $x \in [0,2]$ 时, $g(x)_{max} = g(1) = 1$,则 $\frac{1}{a} \le 1$,所以 $1 \le a < 2$,所以 $1 \le a < b \le 2$,

所以
$$g(x)$$
在[1,2]内的"倒域区间"为 $\left[1,\frac{1+\sqrt{5}}{2}\right]$;

②当 $-2 \le a < b < 0$ 时,g(x)在[-2,-1]上单调递减,在[-1,0]上单调递增,

故当 $x \in [-2,0]$ 时, $g(x)_{\min} = g(-1) = -1$,所以 $\frac{1}{L} \ge -1$,所以 $-2 < b \le -1$,所以 $-2 \le a < b \le -1$,

则
$$\begin{cases} g(a) = a^2 + 2a = \frac{1}{a} \\ g(b) = b^2 + 2b = \frac{1}{b} \\ -2 \le a < b \le -1 \end{cases}$$
 解得
$$\begin{cases} a = -\frac{1 + \sqrt{5}}{2} \\ b = -1 \end{cases}$$

所以
$$g(x)$$
在 $[-2,-1]$ 内的"倒域区间"为 $\left[\frac{-1-\sqrt{5}}{2},-1\right]$.

综上所述,函数
$$g(x)$$
在定义域内的"倒域区间"为 $\left[1,\frac{1+\sqrt{5}}{2}\right]$ 和 $\left[\frac{-1-\sqrt{5}}{2},-1\right]$.

- 21. (本题满分 18 分,第 1 小题满分 4 分,第 2 小题满分 6 分,第 3 小题满分 8 分) 设 f(x)是定义在 D 上的函数, 若对任何实数 $\alpha \in (0,1)$ 以及 D 中的任意两数 α_1, α_2 恒有 $f(\alpha_1, \alpha_2) \leq \alpha_1 f(\alpha_1) + (1-\alpha_2) f(\alpha_2)$,则称 $f(\alpha_1)$ 为定义在 D 上的 C 函数。
- (1) 判断函数 $f_1(x)=x^2, f_2(x)=\frac{1}{x}$ (x<0)中哪些是各自定义域上的 $\mathbb C$ 函数,并说明理由。
- (2) 已知f(x)是 \mathbb{R} 上的 \mathbb{C} 函数,m是给定的正整数,设 $a_n=f(n),\;n=0,1,2,\cdots,m$,且

 $a_0=0,\ a_m=2m,\$ 记 $S_f=a_1+a_2+\cdots+a_m,\$ 对于满足条件的任意函数 $f(x),\$ 试求 S_f 的最大值.

(3)若f(x)是定义在 \mathbb{R} 上的函数,且最小正周期为T,试证明f(x)不是 \mathbb{R} 上的 \mathbb{C} 函数。

【详解】

(1) f₁(x) = x² 是C函数, 证明如下:

对于任意实数
$$x_1$$
, x_2 , 及 $\alpha \in (0,1)$, 有: $f(\alpha x_1 + (1-\alpha)x_2) - \alpha f(x_1) - (1-\alpha)f(x_2) =$

$$(\alpha x_1 + (1-\alpha)x_2)^2 - \alpha x_1^2 - (1-\alpha)x_2^2 = -\alpha(1-\alpha)(x_1-x_2)^2 \leq 0$$

即:
$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$$
, 所以 $f_1(x) = x^2$ 是C函数.

$$f_2(x) = \frac{1}{2}(x < 0)$$
 不是C函数, 证明如下:

反例: 取
$$x_1 = -3$$
, $x_2 = -1$, $\alpha = \frac{1}{2}$, 有: $f(\alpha x_1 + (1 - \alpha)x_2) - \alpha f(x_1) - (1 - \alpha)f(x_2) =$

$$f(-2) - \frac{1}{2}f(-3) - \frac{1}{2}f(-1) = -\frac{1}{2} + \frac{1}{6} + \frac{1}{2} > 0$$

即:
$$f(\alpha x_1 + (1 - \alpha)x_2) > \alpha f(x_1) + (1 - \alpha)f(x_2)$$
, 所以 $f_2(x) = \frac{1}{x}$ $(x < 0)$ 不是C函数.

(2) 对任意
$$0 \le n \le m$$
, 取 $x_1 = m$, $x_2 = 0$, $\alpha = \frac{n}{m} \in [0,1]$

因为 f(x)是**R**上的**C**函数, $a_n = f(n)$, 且 $a_0 = 0$, $a_m = 2m$,

则:
$$a_n = f(n) = f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2) = \frac{n}{m} \times 2m = 2n$$

那么:
$$S_f = a_1 + a_2 + ... + a_m \le 2 \times (1 + 2 + ... + m) = m^2 + m$$

可证
$$f(x)=2x$$
是 \mathbb{C} 函数,且使得 $a_n=2n,\ n=0,\ 1,\ 2,\ \ldots,m$ 都成立,此时 $S_f=m^2+m$.

综上所述, S_f 的最大值为 $m^2 + m$ 。

(3) 反证法: 假设 f(x)是定义在 ℝ上的 C 函数.

若存在 m < n,且 m, n \in [0,T), 使得 f(m) \neq f(n).

则有:
$$f(n) = f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2) = \alpha f(m) + (1 - \alpha)f(m + T) = f(m)$$
, 与 $f(m) < f(n)$ 矛盾。

若
$$f(m) > f(n)$$
, 记 $x_1 = n$, $x_2 = n - T$, $\alpha = 1 - \frac{n-m}{T}$ 类似可得矛盾.

所以 f(x)在[0,T)上是常函数,又因为 f(x)是周期为 T 的周期函数,所以 f(x)是 \mathbb{R} 上的常函数,与 f(x)最小正周期为 T 矛盾。

因此, 假设不成立, f(x)不是 \mathbb{R} 上的 \mathbb{C} 函数.

21/21 取X,=m, X=0. Q= n, n∈{0,1,2,..., m} 得到fch·m+(1-h)·0) = hfcm) +(1-h)f(0) \mathbb{R}^{n} an $\leq \frac{h}{m}$ m $a_{m} + (1 - \frac{h}{m}) a_{0}$ BP an \ Zn. tà $Sf = \sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} z_n = m(m+1)$ Afix)=1x. Vx, x ER, QE10,1) top to flax, +(1-d)x2)=afix, >t(1-d)fus, 那fx,为R上的C函数,且an=fin=zn.此时\$Sf=m(mT1) 故Sf~最大值分Mimti).

假设和是R上的C函数 XTYXER, fix=fix+T). 取X,=X,Xz=T, Q=对. かりもしまなけといけるけなけり OPFIXIE) = fix) $2 \cdot f(x+1) \leq f(x+2)$ こ、fx)=fx+T)=fx+を). こ、を見fx)の一个正例. 面了为fx)的最和正国期。 漏. 上层地.

【详解】因为
$$\sqrt{x^2+4} \ge 2$$
,所以 $f(x) = \frac{\sqrt{x^2+4}}{x^2+5} = \frac{\sqrt{x^2+4}}{(x^2+4)+1} = \frac{1}{\sqrt{x^2+4}}$, 2

令
$$y=t+\frac{1}{t}(t \ge 2)$$
,根据对勾函数的单调性可知 $y=t+\frac{1}{t}$ 在[2,+∞)上单调递增,4

所以
$$y \ge 2 + \frac{1}{2} = \frac{5}{2}$$
,所以 $\sqrt{x^2 + 4} + \frac{1}{\sqrt{x^2 + 4}} \ge \frac{5}{2}$,所以 $0 < \frac{1}{\sqrt{x^2 + 4} + \frac{1}{\sqrt{x^2 + 4}}} \le \frac{2}{5}$,

所以
$$f(x)$$
 的值域为 $\left(0, \frac{2}{5}\right)$ 7

(2)
$$f(x) = \frac{2x^2 + 3x + 8}{x^2 + x + 4}$$

【答案】
$$[\frac{5}{3}, \frac{11}{5}]$$

【详解】函数
$$f(x) = \frac{2x^2 + 3x + 8}{x^2 + x + 4} = \frac{2(x^2 + x + 4) + x}{x^2 + x + 4} = 2 + \frac{x}{x^2 + x + 4}$$

当
$$x = 0$$
时, $f(x) = 2$; 3

当
$$x \neq 0$$
时, $f(x) = 2 + \frac{1}{x + \frac{4}{x} + 1}$,

根据对勾函数的性质可知:

当
$$x>0$$
时, $x+\frac{4}{x}\ge 4$,则 $0<\frac{1}{x+\frac{4}{x}+1}\le \frac{1}{5}$,所以 $2< f(x)$? $\frac{11}{5}$,

当
$$x < 0$$
时, $x + \frac{4}{x} \le -4$,则 $-\frac{1}{3} \le \frac{1}{x + \frac{4}{x} + 1} < 0$,所以 $\frac{5}{3}$? $f(x)$ 2,

综上所述, 函数
$$f(x) = \frac{2x^2 + 3x + 8}{x^2 + x + 4}$$
 在 $x \in \mathbb{R}$ 上的值域是 $[\frac{5}{3}, \frac{11}{5}]$.

故答案为:
$$\left[\frac{5}{3}, \frac{11}{5}\right]$$

18、11)由建设生于拟的图例是了直发和20对的 my ns f(-x)=f(x+4) - - · 25 ·又五松f(X)上层义在P上的门边数 77ms f(-x)=f(x) - - - 25 77~> f(x+4)=f(-x)=f(x) BPf(X)发展型的每个50周期的函数.~~2分 12) 省入EC-2,27时, f以三大十八, xf(X)是周期为4公园勘点类及。 当xet216], 则x-4e[-2,2], Topus f(x-4)= (x-4)2+ (x-4)4 x f(x-4)= f(x) ですいか f(x)= (x4)+(x4)+(x4)+, xC[2,6]--40分

19. (本题满分14分,第1小题满分6分,第2小题满分8分)

已知函数
$$f(x) = x-2$$
, $g(x) = mx^2 - 2mx + 1 (m \in \mathbb{R}, m \neq 0)$.

(1)若对任意 $x \in \mathbb{R}$, 不等式g(x) > f(x)恒成立, 求m的取值范围;

(2) 若对任意 $x_1 \in [1,2]$, 存在 $x_2 \in [3,4]$, 使得 $g(x_1) = f(x_2)$, 求 m 的取值范围.

【答案】(1)
$$\left(\frac{2-\sqrt{3}}{2}, \frac{2+\sqrt{3}}{2}\right)$$
 (2) $\left[-1, 0\right)$

【详解】(1) $mx^2 - 2mx + 1 > x - 2 \Rightarrow mx^2 - (2m+1)x + 3 > 0$, $m \neq 0$,

故m的取值范围为 $\left(\frac{2-\sqrt{3}}{2},\frac{2+\sqrt{3}}{2}\right)$.

(2) 对任意 $x_1 \in [1,2]$,存在 $x_2 \in [3,4]$,使得 $g(x_1) = f(x_2)$,

其中 $x \in [3,4]$ 时, $f(x) = x-2 \in [1,2]$,

 $g(x) = mx^2 - 2mx + 1(m \in \mathbb{R}, m \neq 0)$ 的对称轴为x = 1,

~ 若m > 0, 则 $g(x) = mx^2 - 2mx + 1(m \in \mathbb{R}, m \neq 0)$ 在 $x \in [1,2]$ 上单调递增,

故
$$g(x) \in [g(1),g(2)] = [-m+1,1]$$
,

但[-m+1,1]不会是[1,2]的子集, 舍去; ²

 $_{2}$ ° 当m < 0时,则 $g(x) = mx^2 - 2mx + 1(m \in \mathbb{R}, m \neq 0)$ 在 $x \in [1,2]$ 上单调递减,

故
$$g(x) \in \lceil g(2), g(1) \rceil = [1, -m+1]$$
,

[1,-m+1]是[1,2]的子集,则 $1<-m+1\le 2$,解得 $-1\le m<0$,2

综上, m 的取值范围是[-1,0).

20 题【详解】(1) 当 $x \in [-2,0)$ 时,则 $-x \in (0,2]$,

由奇函数的定义可得 $g(x) = -g(-x) = -[-(-x)^2 + 2(-x)] = x^2 + 2x$, 3分

所以
$$g(x) = \begin{cases} -x^2 + 2x, 0 \le x \le 2, \\ x^2 + 2x, -2 \le x < 0. \end{cases}$$
 . 1 分

(2) 方程
$$g(x) = -mx - m$$
 即 $x^2 - (m+2)x - m = 0$,设 $h(x) = x^2 - (m+2)x - m$, $0 < x < 2$ 2 分

(3)

因为g(x)在区间[a,b]上的值域恰为 $\left[\frac{1}{b},\frac{1}{a}\right]$, 答案对,只要过程差不多,可以给满分的。 答案不对,分析出 ab 要同号可以给 1 分,判

其中
$$a \neq b$$
且 $a \neq 0, b \neq 0$,所以
$$\begin{cases} a < b \\ \frac{1}{b} < \frac{1}{a} \end{cases}$$
 答案不对,分析出 ab 要同号可以给 1 分,判
$$\begin{cases} a < b \\ \frac{1}{b} < \frac{1}{a} \end{cases}$$
 则
$$\begin{cases} a < b \\ ab > 0 \end{cases}$$

所以 $0 < a < b \le 2$ 或 $-2 \le a < b < 0$. 1分

①当 $0 < a < b \le 2$ 时,因为函数g(x)在[0,1]上单调递增,在[1,2]上单调递减,

故当 $x \in [0,2]$ 时, $g(x)_{\text{max}} = g(1) = 1$,则 $\frac{1}{a} \le 1$,所以 $1 \le a < 2$,所以 $1 \le a < b \le 2$,

则
$$\begin{cases} g(b) = -b^2 + 2b = \frac{1}{b} \\ g(a) = -a^2 + 2a = \frac{1}{a}, & 解得 \begin{cases} a = 1 \\ b = \frac{1 + \sqrt{5}}{2}, \end{cases} \end{cases}$$

所以g(x)在[1,2]内的"倒域区间"为 $\left[1,\frac{1+\sqrt{5}}{2}\right]$; 3分(过程对,结果错,扣2分)

②当 $-2 \le a < b < 0$ 时,g(x)在[-2,-1]上单调递减,在[-1,0]上单调递增,

故当 $x \in [-2,0]$ 时, $g(x)_{\min} = g(-1) = -1$,所以 $\frac{1}{b} \ge -1$,所以 $-2 < b \le -1$,所以 $-2 \le a < b \le -1$,

则
$$\begin{cases} g(a) = a^2 + 2a = \frac{1}{a} \\ g(b) = b^2 + 2b = \frac{1}{b} \end{cases}, \quad \text{解得} \begin{cases} a = -\frac{1+\sqrt{5}}{2} \\ b = -1 \end{cases}, \quad \frac{3 \text{ 分 (过程对, 结果错, 扣 2 分)}}{\text{直接由奇函数对称性得到另外一半区 间给 3 分)}}$$

所以
$$g(x)$$
在 $[-2,-1]$ 内的"倒域区间"为 $\left[\frac{-1-\sqrt{5}}{2},-1\right]$.

综上所述,函数
$$g(x)$$
 在定义域内的"倒域区间"为 $\left[1,\frac{1+\sqrt{5}}{2}\right]$ 和 $\left[\frac{-1-\sqrt{5}}{2},-1\right]$. 综上, 1 分

21题评分标准:

21题 计 7 你 在 . 第一问:两个函数判断各2分 第二问:举出例子并算出最大值给3分,最大值的证明给3分。(如果是画出下凸函数的草图,然后用大量文字说明的话,也只给举例的3分吧) 第三问:证明过程中有"反证法?判断出常值函数?与最小正周期矛盾"的结构可以给4分左右,中间关于常值函数的证明如果完全正确给满分。其他酌情扣分 ~