

CSC3100 Data Structures Lecture 18: Graph shortest path

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- Single-Source Shortest Path Algorithm
 - · Non-negative weights: Dijkstra's algorithm
 - Non-negative and negative weights: Bellman-Ford algorithm
- All-Pair Shortest Path Algorithm
 - Floyd's algorithm

Bellman-Ford Algorithm

- Single-source shortest path problem
 - Computes $\delta(s, v)$ and p[v] for all $v \in V$
- Allows negative edge weights can detect negative cycles
 - Returns TRUE if no negative-weight cycles are reachable from the source s
 - Returns FALSE otherwise => no solution exists

Bellman-Ford Algorithm (cont'd)

▶ Idea:

- \circ Each edge is relaxed |V|-1 times by making |V|-1 passes over the whole edge set
- Any path will contain at most |V|-1 edges

Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Relaxation:

If
$$d[v] > d[u] + w(u, v)$$

 $\Rightarrow d[v] = d[u] + w(u,v)$

BELLMAN-FORD(V, E, w, s)

Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Pass 3

Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Detecting Negative Cycles (perform extra test after V-1 iterations)

- for each edge (u, v) ∈ E
- **do if** d[v] > d[u] + w(u, v)
- then return FALSE
- return TRUE

Look at edge (s, b):

$$d[b] = -1$$

 $d[s] + w(s, b) = -4$

$$\Rightarrow$$
 d[b] > d[s] + w(s, b)

7.

BELLMAN-FORD(V, E, w, s)

```
1. INITIALIZE-SINGLE-SOURCE(V, s) \leftarrow \Theta(|V|)

2. for i \leftarrow 1 to |V| - 1 \leftarrow O(|V|)

3. do for each edge (u, v) \in E \leftarrow O(|E|) O(|V||E|)

4. do RELAX(u, v, w)

5. for each edge (u, v) \in E \leftarrow O(|E|)

6. do if d[v] > d[u] + w(u, v)
```

8. return TRUE

Running time: O(|V|+|V||E|+|E|)=O(|V||E|)

then return FALSE

Key points of BELLMAN-FORD

- After |V|-1 iterations, d values will not be updated or can't be lower any more, and d values store the measure of the shortest path. Why?
 - Using a counter example to help you do the analysis
 - How to prove its correctness?

Shortest Path Properties

Upper-bound property

- We always have $d[v] \ge \delta(s, v)$ for all v
- The estimate never goes up relaxation only lowers the estimate

Shortest Path Properties

Convergence property

If $s \sim u \rightarrow v$ is a shortest path, and if $d[u] = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $d[v] = \delta(s, v)$ at all times after relaxing (u, v)

- If $d[v] > \delta(s, v) \Rightarrow$ after relaxation: d[v] = d[u] + w(u, v) d[v] = 5 + 2 = 7
- Otherwise, the value remains unchanged, because it must have been the shortest path value

Shortest Path Properties

Path relaxation property

Let $p=\langle v_0, v_1, \ldots, v_k \rangle$ be a shortest path from $s=v_0$ to v_k

If we relax, in order, (v_0, v_1) , (v_1, v_2) , . . . , (v_{k-1}, v_k) , even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$

Correctness of Belman-Ford Algorithm

▶ **Theorem:** Show that $d[v] = \delta(s, v)$, for every v, after |V| - 1 passes

<u>Case 1:</u> G does not contain negative cycles which are reachable from s

- Assume that the shortest path from s to v is $p = \langle v_0, v_1, \dots, v_k \rangle$, where $s = v_0$ and $v = v_k, k \le |V|-1$
- Use mathematical induction on the number of passes i to show that:

$$d[v_i] = \delta(s, v_i), i=0,1,...,k$$

Correctness of Belman-Ford Algorithm (cont.)

Base Case: i=0, $d[v_0] = \delta(s, v_0) = \delta(s, s) = 0$

Inductive Hypothesis: $d[v_{i-1}] = \delta(s, v_{i-1})$

Inductive Step: $d[v_i] = \delta(s, v_i)$

After relaxing (v_{i-1}, v_i) (convergence property): $d[v_i] \le d[v_{i-1}] + w = \delta(s, v_{i-1}) + w = \delta(s, v_i)$

From the upper bound property: $d[v_i] \ge \delta(s, v_i)$

Therefore, $d[v_i] = \delta(s, v_i)$

Correctness of Belman-Ford Algorithm (cont.)

 Case 2: G contains a negative cycle which is reachable from s

Proof by
Contradiction:
suppose the
algorithm
returns a
solution

After relaxing (v_{i-1}, v_i) : $dist[v_i] \le dist[v_{i-1}] + w(v_{i-1}, v_i)$

$$\implies \sum_{i=1}^{k} dist[v_i] \le \sum_{i=1}^{k} dist[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\implies \sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0 \left(\sum_{i=1}^{k} dist[v_i] = \sum_{i=1}^{k} dist[v_{i-1}] \right)$$

Floyd's Algorithm

(all pairs shortest paths)

All pairs shortest path

- The graph: may contain negative edges but no negative cycles
- A representation: a weight matrix where

```
W(i,j)=0 if i=j

W(i,j)=\infty if there is no edge between i and j

W(i,j)="weight of edge"
```

- The problem: find the shortest path between every pair of vertices of a graph
- Note: we have shown principle of optimality applies to shortest path problems

The weight matrix and the graph

	1	2	3	4	5
1	0	1	∞	1	5
2	9	0	3	2	∞
3 4	∞	∞	0	4	∞
4	∞	∞	2	0	3
5	∞ 3	∞	∞	∞	0

A straightforward method

- A naïve method is to run a single-source shortest path algorithm for each vertex
 - Run Dijkstra's algorithm |V| times
 - Dijkstra's algorithm's time complexity: O(|E| x |g|V|)
 - Total time cost: O(|V| x |E| x |g|V|)
- Floyd's algorithm
 - Total time cost: O(|V|³)
 - For dense subgraphs, Floyd's algorithm is faster
 - It is easier to implement

The subproblems

- How can we define the shortest distance $d_{i,j}$ in terms of "smaller" problems?
- One way is to restrict the paths to only include vertices from a restricted subset
- Initially, the subset is empty
- Then, it is incrementally increased until it includes all the vertices

The subproblems

- Let $D^{(k)}[i,j]$ =weight of a shortest path from v_i to v_j using only vertices from $\{v_1,v_2,...,v_k\}$ as intermediate vertices in the path
 - D(0)= W
 - $D^{(n)}=D$ which is the goal matrix
- ▶ How do we compute $D^{(k)}$ from $D^{(k-1)}$?

The Recursive Definition:

Case 1: A shortest path from v_i to v_j restricted to using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices does not use v_k Then $D^{(k)}[i,j] = D^{(k-1)}[i,j]$

Case 2: A shortest path from v_i to v_j restricted to using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices does use v_k Then $D^{(k)}[i,j] = D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$

Shortest path using intermediate vertices $\{V_1, \ldots, V_k\}$

The recursive definition

Since

$$D^{(k)}[i,j] = D^{(k-1)}[i,j]$$
 or $D^{(k)}[i,j] = D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$

We conclude:

$$D^{(k)}[i,j] = \min\{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$

Shortest path using intermediate vertices

Shortest Path using intermediate vertices $\{V_1, V_{k-1}\}$

The pointer array P

- Used to enable finding a shortest path
- Initially the array contains 0
- Each time that a shorter path from i to j is found the k that provided the minimum is saved (highest index node on the path from i to j)
- To print the intermediate nodes on the shortest path a recursive procedure that print the shortest paths from i and k, and from k to j can be used

Floyd's Algorithm Using n+1 D matrices

Floyd//Computes shortest distance between all pairs of //nodes, and saves P to enable finding shortest paths

```
1. D^{0} \leftarrow W // initialize D array to W[]
2. P \leftarrow 0 // initialize P array to [0]
3. for k \leftarrow 1 to n
4. do for i \leftarrow 1 to n
5. do for j \leftarrow 1 to n
6. if (D^{k-1}[i,j] > D^{k-1}[i,k] + D^{k-1}[k,j])
7. then D^{k}[i,j] \leftarrow D^{k-1}[i,k] + D^{k-1}[k,j]
8. P[i,j] \leftarrow k;
9. else D^{k}[i,j] \leftarrow D^{k-1}[i,j]
```


		1		<u> </u>
$W = D^0 =$	1	0	4	5
	2	2	0	8
	3	8	-3	0

		1	2	3
	1	0	0	0
P =	2	0	0	0
	3	0	0	0

- 0	1	2	3
$D^0 = \frac{1}{1}$	0	4	5
2	2	0	∞
3	8	-3	0

k = 1
Vertex 1 can be
intermediate node

$$D^{1} = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 0 & 4 & 5 \\
 & 2 & 0 & 7 \\
 & 3 & \infty & -3 & 0
\end{array}$$

$$D^{1}[2,3] = min(D^{0}[2,3], D^{0}[2,1]+D^{0}[1,3])$$

= min (\infty, 7)
= 7

$$P = \begin{array}{c|cccc} & 1 & 2 & 3 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 \end{array}$$

$$D^{1}[3,2] = min(D^{0}[3,2], D^{0}[3,1]+D^{0}[1,2])$$

= min (-3,\infty)
= -3

	1	2	3
$D^1 = 1$	0	4	5
2	2	0	7
3	8	-3	0

k = 2
Vertices 1, 2 can be
intermediate

$$D^{2} = \begin{array}{c|cccc} & 1 & 2 & 3 \\ \hline 1 & 0 & 4 & 5 \\ \hline 2 & 2 & 0 & 7 \\ \hline 3 & -1 & -3 & 0 \end{array}$$

$$D^{2}[1,3] = min(D^{1}[1,3], D^{1}[1,2]+D^{1}[2,3])$$

= min (5, 4+7)
= 5

$$P = \begin{array}{c|cccc} & 1 & 2 & 3 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 \\ 3 & 2 & 0 & 0 \end{array}$$

$$D^{2}[3,1] = min(D^{1}[3,1], D^{1}[3,2]+D^{1}[2,1])$$

= min (\infty, -3+2)
= -1

Floyd's Algorithm: Using 2 D matrices

```
Floyd
 1. D \leftarrow W // initialize D array to W[]
 2. P \leftarrow 0 // initialize P array to [0]
 3. for k \leftarrow 1 to n
      // Computing D' from D
      do for i \leftarrow 1 to n
 5.
             do for j \leftarrow 1 to n
 6.
                  if (D[i,j] > D[i,k] + D[k,j])
                      then D'[i,j] \leftarrow D[i,k] + D[k,j]
 8.
                              P[i,j] \leftarrow k;
 9.
                     else D'[ i, j ] \leftarrow D[ i, j ]
  10. Move D' to D
```


Can we use only one D matrix?

- D[i,j] depends only on elements in the kth column and row of the distance matrix
- We will show that the kth row and the kth column of the distance matrix are unchanged when D^k is computed
- This means D can be calculated in-place

The main diagonal values

Before we show that kth row and column of D remain unchanged we show that the main diagonal remains O

$$D^{(k)}[j,j] = \min\{ D^{(k-1)}[j,j], D^{(k-1)}[j,k] + D^{(k-1)}[k,j] \}$$

$$= \min\{ 0, D^{(k-1)}[j,k] + D^{(k-1)}[k,j] \}$$

$$= 0$$

Based on which assumption?

The kth column

- kth column of D^k is equal to the kth column of D^{k-1}
- Intuitively true a path from i to k will not become shorter by adding k to the allowed subset of intermediate vertices

```
For all i, D^{(k)}[i,k] =
= min{ D^{(k-1)}[i,k], D^{(k-1)}[i,k] + D^{(k-1)}[k,k] }
= min { D^{(k-1)}[i,k], D^{(k-1)}[i,k] + 0 }
= D^{(k-1)}[i,k]
```


• kth row of D^k is equal to the kth row of D^{k-1}

```
For all j, D^{(k)}[k,j] =
= \min\{ D^{(k-1)}[k,j], D^{(k-1)}[k,k] + D^{(k-1)}[k,j] \}
= \min\{ D^{(k-1)}[k,j], O + D^{(k-1)}[k,j] \}
= D^{(k-1)}[k,j]
```


- ▶ Can we claim that D^k equals to D^{k-1} , D^{k-2} ?
 - No, we can only claim that
 - The 1-st row and 1-st column of D^1 equal to the 1-st row and 1-st column of D^0 , respectively
 - The 2-nd row and 2-nd column of D^2 equal to the 2-nd row and 2-nd column of D^1 , respectively

•

Floyd's Algorithm using a single D

```
Floyd

1. D \leftarrow W // initialize D array to W[]

2. P \leftarrow 0 // initialize P array to [0]

3. for k \leftarrow 1 to n

4. do for i \leftarrow 1 to n

5. do for j \leftarrow 1 to n

6. if (D[i,j] > D[i,k] + D[k,j])

7. then D[i,j] \leftarrow D[i,k] + D[k,j]

8. P[i,j] \leftarrow k;
```

Total time cost: $O(|V|^3)$

Printing intermediate nodes on shortest path from q to r

```
path(index q, r)
  if (P[ q, r ]!=0)
      path(q, P[q, r])
      println( "v"+ P[q, r])
      path(P[q, r], r)
      return;
```

//no intermediate nodes else return

Before calling path check $D[q, r] < \infty$, and print node q, after the call to path print node r

		1	2	3
	1	0	3	0
P =	2	0	0	1
	3	2	0	0

	1	2	3	4	5	6
1	0	2(6)	2(6)	4(6)	3	1
2	2(6)	0	2(6)	4(6)	5(6)	1
$D^6 = 3$	2(6)	2(6)	0	2	5(4)	1
4	4(6)	4(6)	2	0	3	3(3)
5	3	5(6)	5(4)	3	0	4(1)
6	1	1	1	3(3)	4(1)	0

The values in parenthesis are the non zero P values

The call tree for Path(1, 4)

The intermediate nodes on the shortest path from 1 to 4 are v6, v3. The shortest path is v1, v6, v3, v4.

Recommended Reading

- Reading this week
 - Textbook Chapters 24-25
- Next Week
 - DAG checking and topological sort, Chapter 22