Solutions due by 10.30am Friday 19th February.

- 1. Show that a closed ball is a closed set.
- 2. Show that if $A \subset X$ is a closed set, and $a_n \in A$ is a sequence, then $a_n \to a \implies a \in A$.
- 3. Show that if a sequence is convergent, then it is Cauchy.
- 4. Let $\{a_n\}_{n=1}^{\infty}$ be a Cauchy sequence. Show that if there is a convergent subsequence, $\{a_{n_k}\}_{k=1}^{\infty}$, such that $a_{n_k} \to c$ then $a_n \to c$.
- 5. The Bolzano-Weirstrass theorem states that every bounded sequence of real numbers has a convergent subsequence. Use this property to show that the metric space (X, d), where X is a compact subset of reals, is complete.
- 6. Solve the following systems of linear equations.

a) b) c)
$$x + 2y + z - w = 1 \qquad x + 2z = 0 \qquad x + y = 15$$
$$3x + 6y - z - 3w = 2 \qquad x + y + 2z = 2 \qquad 2y = 20$$
$$2x + y + 4z = 3 \qquad x + 3y = 35$$
$$5x + 10z = 0 \qquad 2x + 4y = 50$$

- 7. Do the vectors $v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$, form a basis for \mathbb{R}^3 ?
- 8. Consider the map $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.
 - a) Find a basis for the column space.
 - b) Find a basis for the nullspace.
 - c) Show that the column space and null space are orthogonal.

9. Let Ax = b be an $m \times n$ system of equations and let $S = \{x \in \mathbb{R}^n \mid Ax = b\}$ be the solution set. Show that if S is non-empty, such that there is at least one particular solution, x^* , then S is the affine subspace $S = \{x^* + v \mid v \in \text{Null}(A)\}.$

(Hint: Show that if some vector $x' \in \{x \in \mathbb{R}^n \mid Ax = b\}$ then it must also be in $\{x^* + v \mid v \in \text{Null}(A)\}, \text{ and vice versa}\}$

10. Let X be an $n \times p$ matrix with full column rank. Show that X'X is invertible.

(Hint: Show that the nullspace of X'X only contains 0)