

Pattern Recognition Homework 5 announcement

TA: 楊証琨, Jimmy

Ph.D. student at National Taiwan Universitiy

d08922002@csie.ntu.edu.tw

Homework 5

- Deadline: June 12 Sun. at 23:59
 - 1. Code assignment (100%): Implement the deep neural network by any deep learning frameworks, e.g., Pytorch, TensorFlow and Keras, and then train DNN model on the Cifar-10 dataset
- Submit your 1) code (.py/.ipynb) and 2) reports (.pdf) on <u>E3</u>
 - Sample Code
 - ☐ <u>HW5 questions</u>
- Please follow the file naming rules <STUDENT ID>_HW5.pdf, otherwise, you will get penalty of your scores

Reports

- Include the implementation details, model architecture,
 hyperparameters, and used deep learning framework
 https://github.com/paperswithcode/releasing-research-code
- Include the accuracy of your model in the reports!

DO NOT MODIFY CODE BELOW!

Please screen shot your results and post it on your report

```
In [ ]: y_pred = your_model.predict(x_test)
In [14]: assert y_pred.shape == (10000,)
In [15]: y_test = np.load("y_test.npy")
    print("Accuracy of my model on test set: ", accuracy_score(y_test, y_pred))
```


Cifar-10 dataset

- 60,000 (50,000 training + 10,000 testing) samples, 32x32 RGB images in 10 classes
 - airplane, automobile, ship, truck, bird, cat, deer, dog, frog, horse

Leaderboard of CIFAR-10

- Baseline: accuracy over 70%
- Note that you should only train and evaluate your model on the provided dataset HERE
- DO NOT download the data from other resources.

CIFAR-10

who is the best in CIFAR-10?

CIFAR-10 49 results collected

Units: accuracy %

Classify 32x32 colour images.

Result	Method	Venue	Details
96.53%	Fractional Max-Pooling	arXiv 2015	Details
95.59%	Striving for Simplicity: The All Convolutional Net	ICLR 2015	Details
94.16%	All you need is a good init ⊱	ICLR 2016	Details
94%	Lessons learned from manually classifying CIFAR-10 2	unpublished 2011	Details
93.95%	Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree	AISTATS 2016	Details
93.72%	Spatially-sparse convolutional neural networks	arXiv 2014	
93.63%	Scalable Bayesian Optimization Using Deep Neural Networks	ICML 2015	
93.57%	Deep Residual Learning for Image Recognition	arXiv 2015	Details
93.45%	Fast and Accurate Deep Network Learning by Exponential Linear Units	arXiv 2015	Details
93.34%	Universum Prescription: Regularization using Unlabeled Data	arXiv 2015	
93.25%	Batch-normalized Maxout Network in Network	arXiv 2015	Details
93.13%	Competitive Multi-scale Convolution 📐	arXiv 2015	
92.91%	Recurrent Convolutional Neural Network for Object Recognition	CVPR 2015	Details
92.49%	Learning Activation Functions to Improve Deep Neural Networks	ICLR 2015	Details
92.45%	cifar.torch 🏲	unpublished	Details

2015

Deep learning framework

- If you are a newbie in a deep learning framework, we recommend you learn Keras or Pytorch.
 - Keras: Only Few lines of code to build a CNN model
 - TensorFlow: Easy for depolyment
 - Pytorch: Flexible for research

	Keras K	TensorFlow	PyTorch C	
Level of API	high-level API ¹	Both high & low level APIs	Lower-level API ²	
Speed	Slow	High	High	
Architecture	Simple, more readable and Not very easy to use		Complex ³	
Debugging	No need to debug	Difficult to debugging	Good debugging capabilities	
Dataset Compatibility	Slow & Small	Fast speed & large	Fast speed & large datasets	
Popularity Rank	1	2	3	
Uniqueness	Multiple back-end support	Object Detection Functionality	Flexibility & Short Training Duration	
Created By	Not a library on its own	Created by Google	Created by Facebook ⁴	
Ease of use	User-friendly	Incomprehensive API	Integrated with Python language	
Computational graphs used	Static graphs	Static graphs	Dynamic computation graphs ⁵	

Keyword for boosting your performance

- Beat the baseline
 - CNN structure (number of filters, number of CNN layers,...)
 - Data augmentation
 - Regularization

- Score over 90%!
 - Read some papers from <u>leaderboard of Cifar-10</u>

Accelerate your training by GPU

- You may need GPU to accelerate the training of deep neural network. We provide several free GPU resources for you, some of resources need registration and limited by usage.
 - ☐ Google Colab: Free GPU usage for continuous 24 hours

Reference

- Convolutional Neural Networks Tutorial in PyTorch
- Building a Convolutional Neural Network (CNN) in Keras

Late Policy

No late policy on homework 5!

Notice

- Submit your homework on <u>E3-system</u>!
- Check your email regularly, we will mail you if there are any updates or problems of the homework
- If you have any questions or comments for the homework, please mail TAs and cc Prof. Lin
 - ☐ Prof. Lin, <u>lin@cs.nctu.edu.tw</u>
 - ☐ TA Jimmy, <u>d08922002@csie.ntu.edu.tw</u>
 - □ TA 晨軒, <u>derekt.cs06@nctu.edu.tw</u>
 - □ TA 政儒, ace52751208@gmail.com

Have fun!

