

Friday, October 15, 2021

Basics of classical system

A single bit

Reversibility

$$0 \rightarrow 0 \} \text{ idutity} = 1 \rightarrow 0, L3 \rightarrow 2$$

$$1 \rightarrow 1 \} \text{ idutity} = 1 \rightarrow 0, L3 \rightarrow 2$$

$$1 \rightarrow 0 \} \text{ idutity} = 1 \rightarrow 0, L3 \rightarrow 2$$

$$1 \rightarrow 0 \} \text{ idutity} = 1 \rightarrow 0, L3 \rightarrow 2$$

$$1 \rightarrow 0 \} \text{ idutity} = 1 \rightarrow 0, L3 \rightarrow 2$$

$$1 \rightarrow 0 \} \text{ idutity} = 1 \rightarrow 0, L3 \rightarrow 2$$

$$1 \rightarrow 0 \Rightarrow L3 \Rightarrow 2$$

$$2600 \Rightarrow 0 \Rightarrow 2600 \Rightarrow 0 \Rightarrow L3 \Rightarrow 2000 \Rightarrow 2$$

Two bits

Transition table

of operators

$$N \rightarrow 5its$$
 $0 \quad 0 \quad 0$
 $2^{n} = N \quad N \rightarrow \# \circ f \circ pr$
 $N! \rightarrow reversible$

Probabilistic bit

Probabilistic 6if)

O deterministiz basis

I states state
$$Pr = \frac{1}{3}$$
, $Pr = \frac{1}{3}$, P

Linear state

Coefficients

Probablistic state

$$h_{-}(t_{n}+t_{n}) = h_{n}(t_{n}+t_{n})$$
 $h_{-}(t_{n}+t_{n}) = h_{n}(t_{n}+t_{n})$
 $h_{-}(t_{n}+t_{n}) = h_{n}(t_{n}+t_{n})$

Stochastic vector

Probabilistic operator

Transition matrix

Coin-flipping

Coin Proping

Biased coins

$$\frac{\left(\frac{1}{0}\right) \cos^{2} \cos^$$

Finding bias

Correlation

CNOT

State
$$1 = 0$$

State $1 = 0$

Size 1

Chot = Conditioner

Condition

Correlated bits