CFA CONCLAVE

Analytica X

A Data Science Challenge

Background

Swine flu, often known as swine flu, is caused by a type of flu virus (influenza) known as H1N1. This is an influenza A virus, and H1N1 is one of numerous flu viruses that can cause seasonal flu. The symptoms of H1N1 flu are similar to those of seasonal flu. In the spring of 2009, scientists identified a strain of the H1N1 flu virus. This virus is a mash-up of viruses that cause disease in people from pigs, birds, and humans. H1N1 caused a respiratory tract infection in humans known as swine flu during the 2009-2010 flu season. Because so many individuals have become ill, the World Health Organization (WHO) proclaimed the H1N1 virus a pandemic in 2009. WHO declared the outbreak over in August 2010. Following the end of the pandemic, the H1N1 flu virus became one of the strains that cause seasonal flu. Fortunately, flu vaccines are now available that can help protect against H1N1 flu (swine flu). Seasonal flu vaccines, including those produced in 2020 and 2021, include the H1N1 flu virus strain. The COVID-19 pandemic struck the world in 2019. Following the findings of several studies on H1N1 and SARS, experts concluded that COVID-19 is likewise categorized as a seasonal flu disease. The sickness is also delaying attempts to produce a vaccine to combat seasonal flu.

Goal

Your goal is to anticipate how likely people are to get H1N1 and their yearly flu vaccine. You would specifically forecast two probabilities: one for vaccine_h1n1 and one for vaccine_seasonal. Each row in the data set represents one individual from the 2009 National H1N1 Flu Survey (NHFS) by CDC.

Needs Must Be Done:

- 1. Exploratory Data Analysis
- 2. Research Design

Evaluation:

Performance metric:

Performance will be evaluated according to the area under the receiver operating characteristic curve (ROC AUC) for each of the two target variables. The mean of these two scores will be the overall score. A higher value indicates stronger performance. In Python, you can calculate this using sklearn.metrics.roc_auc_score for this multilabel setup with the default average="macro" parameter...

Dataset

<u>Training_set Features</u>

Training set Labels

Test Set Features

Dataset Description

For this competition, there are two target variables:

- h1n1_vaccine Whether respondent received H1N1 flu vaccine.
- seasonal_vaccine Whether respondent received seasonal flu vaccine
 Both are binary variables: 0 = No; 1 = Yes.

Some respondents didn't get either vaccine, others got only one, and some got both.

This is formulated as a multilabel (and not multiclass) problem

Features

You are provided a dataset with 36 columns.

The first column respondent_id is a unique and random identifier. The remaining 35 features are described below.

For all binary variables:

- 0 = No; 1 = Yes.
- h1n1_concern Level of concern about the H1N1 flu.
- 0 = Not at all concerned; 1 = Not very concerned; 2 = Somewhat concerned; 3 = Very concerned.
- h1n1_knowledge Level of knowledge about H1N1 flu.
- O = No knowledge; 1 = A little knowledge; 2 = A lot of knowledge.
- •behavioral_antiviral_meds Has taken antiviral medications. (binary):
- •behavioral avoidance Has avoided close contact with others with flulike symptoms. (binary)
- behavioral_face_mask Has bought a face mask. (binary)
- behavioral_wash_hands Has frequently washed hands or used hand sanitizer. (binary)
- behavioral_large_gatherings Has reduced time at large gatherings.(binary)
- behavioral_outside_home Has reduced contact with people outside of own household. (binary)
- behavioral_touch_face Has avoided touching eyes, nose, or mouth.(binary)
- doctor_recc_h1n1 H1N1 flu vaccine was recommended by doctor.
 (binary)
- doctor_recc_seasonal Seasonal flu vaccine was recommended by doctor. (binary)

- chronic_med_condition Has any of the following chronic medical conditions: asthma or an other lung condition, diabetes, a heart condition, a kidney condition, sickle cell anemia or other anemia, a neurological or neuromuscular condition, a liver condition, or a weakened immune system caused by a chronic illness or by medicines taken for a chronic illness. (binary)
- child_under_6_months Has regular close contact with a child under the age of six months. (binary) health_worker - Is a healthcare worker. (binary) health_insurance - Has health insurance. (binary)
- opinion_h1n1_vacc_effective Respondent's opinion about H1N1 vaccine effectiveness. 1 = Not at all effective; 2 = Not very effective; 3 = Don't know; 4 = Somewhat effective; 5 = Very effective.
- opinion_h1n1_risk Respondent's opinion about risk of getting sick with H1N1 flu without vaccine. 1 = Very Low; 2 = Somewhat low; 3 = Don't know; 4 = Somewhat high; 5 = Very high.
- opinion_h1n1_sick_from_vacc Respondent's worry of getting sick
 from taking H1N1 vaccine. 1 = Not at all worried; 2 = Not very worried; 3 =
 Don't know; 4 = Somewhat worried; 5 = Very worried.
- opinion_seas_vacc_effective Respondent's opinion about seasonal flu vaccine effectiveness. 1 = Not at all effective; 2 = Not very effective; 3 = Don't know; 4 = Somewhat effective; 5 = Very effective.
- opinion_seas_risk Respondent's opinion about risk of getting sick with seasonal flu without vaccine. 1 = Very Low; 2 = Somewhat low; 3 = Don't know; 4 = Somewhat high; 5 = Very high.
- opinion_seas_sick_from_vacc Respondent's worry of getting sick from taking seasonal flu vaccine. 1 = Not at all worried; 2 = Not very worried; 3 = Don't know; 4 = Somewhat worried; 5 = Very worried. age_group Age group of respondent.

- education Self-reported education level.
- race Race of respondent.
- sex Sex of respondent.
- •income_poverty Household annual income of respondent with respect to 2008 Census poverty thresholds.
- marital_status Marital status of respondent.
- rent_or_own Housing situation of respondent.
- employment_status Employment status of respondent.
- hhs_geo_region Respondent's residence using a 10-region geographic classification defined by the U.S. Dept. of Health and Human Services.
 Values are represented as short random character strings.
- census_msa Respondent's residence within metropolitan statistical areas (MSA) as defined by the U.S. Census.
- household_adults Number of other adults in household, top-coded to
 3.
- household_children Number of children in household, top-coded to 3.
- employment_industry Type of industry respondent is employed in.
 Values are represented as short random character strings.
- employment_occupation Type of occupation of respondent. Values are represented as short random character strings.

Submission Format

You need to submit the following files:

1. Sample Submission File

The format for the submission file is three columns: respondent_id, h1n1_vaccine, and seasonal_vaccine. The predictions for the two target variables should be float probabilities that range between 0.0 and 1.0. Because the competition uses ROC AUC as its evaluation metric, the values you submit must be the probabilities that a person received each vaccine, not binary labels. As this is a multilabel problem, the probabilities for each row do not need to sum to one.

2. Research Design- You can use any data visualization tools for that. E.g. Tableau etc. 3. Report in the form of pdf not exceeding 10 pages