Dependable Distributed Systems – 9 CFU A.A. 2022/2023

Instructors: Silvia Bonomi, Giovanni Farina

<u>Syllabus</u>

Topic	References
Introduction to Distributed Systems	[T1] - Chapter 1 [T2] – Chapter 1 and Chapter 2 [S]
Basic Abstractions Distributed Computations Abstracting Processes Abstracting Communications Timing Assumptions Abstracting Time Failure Detector abstractions Leader Election abstractions	[T1] - Chapter 2 (except Section 2.3, Sections 2.4.5- 2.4.7, Sections 2.6.6, Section 2.7) [S] [R11] (*)
Clock Synchronization Internal and External synchronization Christian's algorithm Berkley's algorithm NTP Happened-before relation Application of scalar logical clocks to the mutual exclusion Lamport's algorithm Ricarta-Agrawala's algorithm Ricarta-Agrawala's algorithm Tostributed Mutual Exclusion (*) Coordinator-based strategy Token-based strategy Quorum-based strategy	[T2] - Chapter 14 (until Section 14.4 included) [S] [R1] [T2] - Chapter 11 - section 11.2 [S]
Broadcast	[T1] - Chapter 3 - from Section 3.1 to Section 3.4 (included) [T1] - Chapter 3 - Section 3.8 except Section 3.8.5 [S]

	[mi] 0) = 0
Consensus	[T1] - Chapter 5, Sections
Regular Consensus	5.1.1, 5.1.2, 5.2.1, 5.2.2
 FLP Impossibility Result 	
 Uniform Consensus 	[R2]
 Paxos Algorithm 	
-	[S]
Ordered Communication Primitives	[T1] - Chapter 3 - from
 FIFO Broadcast 	Section 3.9 (except 3.9.6)
Causal Order Broadcast	[T1] - Chapter 6 – Section
Total Order Broadcast	6.1
o TO Hierarchy	[R3]
	[S]
Registers	[T1] - Chapter 4 - until
Regular Register	Section 4.3
Atomic Register	[S]
Message Passing Implementations	
• Transformation from (1, N) Regular to (1,	
N) Atomic	
Software Replication and Consistency Criteria	[R4]
Linearizability	[R12] (*)
D : 1 1	
_	
Active Replication	
Sequential Consistency (*)	
• Causal Consistency (*)	FD #1 FD 61 F01
CAP Theorem	[R5] - [R6], [S]
Byzantine Fault Tolerance	[T1] - Chapter 2 – Section
 Authenticated point-to-point links 	2.4.6
Byzantine Broadcast	[T1] - Chapter 3 – Section
 Reliable Communication (*) 	3.10 (except 3.10.4),
 Authenticated Messages 	Section 3.11
 Authenticated Links 	[T1] - Chapter 4 – Sections
 Globally Bounded Failure Model 	4.6 and 4.7
 Locally Bounded Failure Model 	[R10]
Byzantine Tolerant Registers	[S]
The Byzantine General Problem	[R15] (*), [R16] (*), [R17]
State Machine Replication - PBFT	(*), [R18] (*)
Information Dissemination in large scale	[S] and references listed
Networks (*)	at the end of the slides
 Publish and Subscribe Paradigm 	
o Topic vs content-based	[R13]
dissemination	
 Distributed ENS strategies 	
Overlay Networks	
Basic Graph Metrics	
 Structured Overlay Networks 	
 Unstructured Overlay Networks 	
5 511501 MOUNT ON OVERTUY THOUVENING	

Blockchain and Distributed Ledgers	[S]
Dependability Evaluation in Distributed Systems'	[S] + [T3] + [T4] + [T5] +
(*)	[T6] + [T7] + [T8] + [R13]
 Overview on Capacity Planning 	+ [R14] + detailed
Workload Characterization	references provided in the
 Performance Evaluation 	slides
o Operational Laws	
 Basics of Queueing Theory 	
 Jackson Networks 	
 Simulation Model – Discrete Event 	
Simulation	
 Dependability Evaluation 	
 Availability 	
 Reliability 	
 Interconnections 	
 Introduction to Chaos Engineering 	

IMPORTANT NOTE: Items marked with (*) are part of the 9 CFU course but can be skipped by whoever needs to take the Distributed Systems 6 CFU module

Main Text Book

- [T1] C. Cachin, R. Guerraoui and L. Rodrigues. Introduction to Reliable and Secure Distributed Programming, Springer, 2011
- [S] Slides from Lectures

Suggested Readings

- [T2] George Coulouris, Jean Dollimore and Tim Kindberg, Gordon Blair "Distributed Systems: Concepts and Design (5th Edition)". Addison Wesley, 2012.
- [T3] D. A. Menascé, V. A. F. Almeida: Capacity Planning for Web Services: metrics, models and methods. Prentice Hall, PTR
- [T4] M. Law Simulation modeling and analysis
- [T5] R. Jain, "The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling"
- [T6] Quantitative System Performance, Computer System Analysis Using Queueing Network Models. Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik
- [T7] L. Kleinrock: Queueing Systems, Vol. 1:Theory, John Wiley & Sons
- [T8] Ken Chen. Performance Evaluation by Simulation and Analysis with

Applications to Computer Networks

- [R1] Roberto Baldoni, Michel Raynal, "Fundamentals of Distributed Computing: A Practical Tour of Vector Clock Systems", IEEE Distributed Systems Online 3(2) (2002) https://www.computer.org/csdl/mags/ds/2002/02/02001.pdf
- [R2] L. Lamport "Paxos Made Simple", https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/paxos-simple-Copy.pdf
- [R3] Stefano Cimmino, Carlo Marchetti, Roberto Baldoni "A Guided Tour on Total Order Specifications" WORDS Fall 2003: 187-194
- [R4] Rachid Guerraoui and André Schiper: "Fault-Tolerance by Replication in Distributed Systems". In Proceedings of the 1996 Ada-Europe International Conference on Reliable Software Technologies (Ada-Europe '96).
- [R5] Brewer "CAP twelve years later: How the "rules" have changed" http://ieeexplore.ieee.org/document/6133253/
- [R6] Abadi "Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part of the Story" http://ieeexplore.ieee.org/document/6127847/ (see NOTE above)
- [R10] Leslie Lamport, Robert Shostak, and Marshall Pease "The Byzantine Generals Problem" in ACM TOPLAS 1982 Available at https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/The-Byzantine-Generals-Problem.pdf
- [R11] T. Chandra, S. Toueg Unreliable Failure Detectors for Reliable Distributed Systems https://dl.acm.org/doi/pdf/10.1145/226643.226647
- [R12] Michel Raynal and André Schiper: "A suite of formal definitions for consistency criteria in distributed shared memories" available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.6880&rep=rep1 & type=pdf
- [R13] Calzarossa, Massari, Tessera. "Workload characterization: A survey revisited." ACM Computing Surveys (CSUR) 48.3 (2016): 1-43 https://doi.org/10.1145/2856127
- [R14] A. Avizienis, J.-C. Laprie, B. Randell, C. E. Landwehr: Basic Concepts and Taxonomy of Dependable and Secure Computing. https://ieeexplore.ieee.org/document/1335465/
- [R15] Danny Dolev. Unanimity in an unknown and unreliable environment https://doi.org/10.1109/SFCS.1981.53
- [R16] Andrzej Pelc and David Peleg. Broadcasting with locally bounded byzantine faults $\frac{https://doi.org/10.1016/j.ipl.2004.10.007}{https://doi.org/10.1016/j.ipl.2004.10.007}$

[R17] - Chris Litsas, Aris Pagourtzis, and Dimitris Sakavalas. A graph parameter that matches the resilience of the certified propagation algorithm https://doi.org/10.1007/978-3-642-39247-4 23.

 $[R18] \hbox{ - Giovanni Farina. Tractable Reliable Communication in Compromised Networks $$ \underline{https://tel.archives-ouvertes.fr/tel-03118108}$$