Introduction to Mixture of Experts (MoEs)

Yatin Nandwani Research Scientist, IBM Research

Large Language Models: Introduction and Recent Advances

IBM Research, India Conversational-Al

Yatin Nandwani

Sonam Mishra

Dinesh Khandelwal

Gaurav Pandey

Vineet Kumar

Dinesh Raghu

Sachindra Joshi

Pretraining

 Pretrain the model on a large dataset.

Finetuning

 Fine-tune of a specific task using a small dataset

	Approx. Training
Size	Time
255 Mn	410 A100-days
333 1411	(410 A100s on 1 day)
175 Bn	60k A100-days
	(2k A100 on 30 days)
	355 Mn

	Approx. Training
Size	Time
255 Mn	410 A100-days
333 1411	(410 A100s on 1 day)
175 Bn	60k A100-days
	(2k A100 on 30 days)
	355 Mn

Switch Transformer 1.6 Trillion

VGG-Net 144 mn

 \bigcirc

RoBERTa-L 355 mn GPT2-XL 1.5 Bn

Switch Transformer 1.6 Trillion

VGG-Net 144 mn GPT2-XL 1.5 Bn

RoBERTa-L 355 mn GPT 3 175 Bn

Model	Size	Approx. Training Time
RoBERTa-L	L 355 Mn	410 A100-days
NODEINIA E		(410 A100s on 1 day)
GPT-3	175 Bn	60k A100-days
GP1-3		(2k A100 in 1 Month)
	1.6T	540k A100-days
		(2k A100 in 9 Months!)

Why care about model size?

Neural Scaling Laws

• Performance improve smoothly as we increase the compute, dataset size, or the model size

Source: Scaling Laws for Neural Language Models, Kaplan et al. 2020, Open Al

Neural Scaling Laws

Performance improve smoothly as we increase the compute, dataset size, or the model size

Neural Scaling Laws

- Performance improve smoothly as we increase the compute, dataset size, or the model size
- Large models are more sample efficient -- given a fixed computing budget, training a larger model for fewer steps is better than training a smaller model for more steps.

Source: Scaling Laws for Neural Language Models, Kaplan et al. 2020, Open Al

How to efficiently increase model size?

Switch Transformer
1.6 Trillion

GPT2-XL 1.5 Bn

RoBERTa-L 355 mn XL GPT 3 175 Bn

Adaptive Mixtures of Local Experts

Robert A. Jacobs Michael I. Jordan

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Steven J. Nowlan Geoffrey E. Hinton

Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A4

We present a new supervised learning procedure for systems composed of many separate networks, each of which learns to handle a subset of the complete set of training cases. The new procedure can be viewed either as a modular version of a multilayer supervised network, or as an associative version of competitive learning. It therefore provides a new link between these two apparently different approaches. We demonstrate that the learning procedure divides up a vowel discrimination task into appropriate subtasks, each of which can be solved by a very simple expert network.

Expert 1 Expert 2 Expert n -1 Expert n

Expert 1 Expert 2 Expert n -1 Expert n

Expert 1 Expert 2 Expert n -1 Expert n Gating Network Χ

Χ

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_q)$$

$$y = \sum_{i=1}^n G(x)_i E_i(x)$$

➤ Mixture of Experts Model [Jacobs et al., 1991; Jordan and Jacobs, 1994; Jordan et al., 1997; Tresp, 2001; Collobert et al., 2002;]

- Mixture of Experts Model [Jacobs et al., 1991; Jordan and Jacobs, 1994; Jordan et al., 1997; Tresp, 2001; Collobert et al., 2002;]
- ➤ MoE layer in Deep Learning [Eigen et al., 2013; Shazeer et al., 2017; Dauphin et al., 2017; Vaswani et al., 2017]

- ➤ Mixture of Experts Model [Jacobs et al., 1991; Jordan and Jacobs, 1994; Jordan et al., 1997; Tresp, 2001; Collobert et al., 2002;]
- ➤ MoE layer in Deep Learning [Eigen et al., 2013; Shazeer et al., 2017; Dauphin et al., 2017; Vaswani et al., 2017]
- MoE layer in Transformer based LLMs [Fedus et al., 2021; Du, Nan, et al., 2021]

- ➤ Mixture of Experts Model [Jacobs et al., 1991; Jordan and Jacobs, 1994; Jordan et al., 1997; Tresp, 2001; Collobert et al., 2002;]
- ➤ MoE layer in Deep Learning [Eigen et al., 2013; Shazeer et al., 2017; Dauphin et al., 2017; Vaswani et al., 2017]
- ➤ MoE layer in Transformer based LLMs [Fedus et al., 2021; Du, Nan, et al., 2021]
- ➤ Mixtral-8x7B [Jiang et al. 2024] Apache 2.0 license; surpasses GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B chat model on human benchmarks

Content credits: https://www.youtube.com/watch?v=TwHPxUAuqy4

Mixture of Experts as a Layer

Mixture of Experts as a Layer

Mixture of Experts as a Layer

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$y=\sum_{i=1}^n G(x)_i E_i(x)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$y = \sum_{i=1}^n G(x)_i E_i(x)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$y = \sum_{i=1}^n G(x)_i E_i(x)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$y = \sum_{i=1}^n G(x)_i E_i(x)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$y = \sum_{i=1}^n G(x)_i E_i(x)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$
 $y = \sum_{i=1}^n G(x)_i E_i(x)$

d-dim.

Scalar

 $\frac{\nabla L}{\nabla E_i(x)} = G(x)_i \frac{\nabla L}{\nabla y}$

d-dim. vector

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$
 $y = \sum_{i=1}^n G(x)_i E_i(x)$
 y_i
 $rac{
abla L}{
abla E_i(x)} = G(x)_i rac{
abla L}{
abla y}$

d-dim.

Scalar

d-dim. vector

$$\frac{\nabla L}{\nabla G(x)_i} = (E_i(x))^T \frac{\nabla L}{\nabla y}$$

Scalar

d-dim. vector

d-dim. vector

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

 $i * = argmax G_{\sigma}(x)$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$i * = argmax G_{\sigma}(x)$$

$$y = G(x)_{i*} E_{i*}(x)$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$i * = argmax G_{\sigma}(x)$$

$$y = G(x)_{i*} E_{i*}(x)$$

$$\frac{\nabla L}{\nabla E_{i*}(x)} = G(x)_{i*} \frac{\nabla L}{\nabla y}$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$i * = argmax G_{\sigma}(x)$$

$$y = G(x)_{i*} E_{i*}(x)$$

$$\frac{\nabla L}{\nabla E_{i*}(x)} = G(x)_{i*} \frac{\nabla L}{\nabla y}$$

$$\frac{\nabla L}{\nabla G(x)_{i*}} = (E_{i*}(x))^T \frac{\nabla L}{\nabla y}$$

$$G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$i * = argmax G_{\sigma}(x)$$

$$y = G(x)_{i*}E_{i*}(x)$$

$$\frac{\nabla L}{\nabla E_{i*}(x)} = G(x)_{i*} \frac{\nabla L}{\nabla y}$$

$$\frac{\nabla L}{\nabla G(x)_{i*}} = (E_{i*}(x))^T \frac{\nabla L}{\nabla y}$$

$$\frac{\nabla L}{\nabla E_i(x)} = \mathbf{0}$$
; $\frac{\nabla L}{\nabla G(x)_i} = 0$ for $i \neq i *$

Content credits: Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer

$$G_{\sigma}(x) = Softmax(H(x))$$

$$H(x)_i = (x \cdot W_g)_i + StandardNormal()$$

$$G_{\sigma}(x) = Softmax(H(x))$$

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$

$$G_{\sigma}(x) = Softmax(H(x))$$

 $H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$

Learnable parameter
Mean

Learnable parameter Std. Dev

$$ext{Softplus}(x) = rac{1}{eta} * \log(1 + \exp(eta * x))$$

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot \underbrace{Softplus}_{\text{($x \cdot W_{noise}$)}_i)}$$
 Learnable parameter Mean Std. Dev

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$
 Learnable parameter Mean Learnable parameter Std. Dev

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$
 Ensures 0 probability after softmax

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$
 Learnable parameter Mean Learnable parameter Std. Dev

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$
 Ensures 0 probability after softmax

H(x)

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$
 Learnable parameter Mean Learnable parameter Std. Dev

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$
 Ensures 0 probability after softmax

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$
 Learnable parameter Mean Learnable parameter Std. Dev

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$
 Ensures 0 probability after softmax

$$G(x) = Softmax(KeepTopK(H(x), k))$$

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$
 Learnable parameter Mean Learnable parameter Std. Dev

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$
 Ensures 0 probability after softmax

$$G(x) = Softmax(KeepTopK(H(x), k))$$

Only k non-zero elements; add up to 1

- ❖ All experts have:
 - Same architecture
 - Same initialization scheme
 - Trained with same optimizer
- So why don't they collapse? I.e.

Towards Understanding the Mixture-of-Experts Layer in Deep Learning

Zixiang Chen

Department of Computer Science University of California, Los Angeles Los Angeles, CA 90095, USA chenzx19@cs.ucla.edu

Yue Wu

Department of Computer Science University of California, Los Angeles Los Angeles, CA 90095, USA ywu@cs.ucla.edu

Yihe Deng

Department of Computer Science University of California, Los Angeles Los Angeles, CA 90095, USA yihedeng@cs.ucla.edu

Quanquan Gu

Department of Computer Science University of California, Los Angeles Los Angeles, CA 90095, USA qgu@cs.ucla.edu

Yuanzhi Li

Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213, USA yuanzhil@andrew.cmu.edu

- ✓ Synthetically generated 50 dim. data
- √ Visualization in 2-D space
- √ 4 clusters
- ✓ Each cluster is linearly separable
- ✓ Ideally, a mixture of 4 linear experts sufficient for classification

Initialization

Initialization

- > Exploration stage:
 - > experts diverge; router nearly untrained
- Router learning stage:
 - router learns to dispatch

- > Exploration stage:
 - > experts diverge; router nearly untrained
- > Router learning stage:
 - router learns to dispatch

 $n_{k,m}$: # of samples from Cluster k routed to Expert m

 n_m : # of samples routed to Expert $m = \sum_{k=1}^K n_{k,m}$

n : # of total samples = $\sum_{m=1}^{M} n_m$

> Exploration stage:

> experts diverge; router nearly untrained

> Router learning stage:

router learns to dispatch

entropy =
$$-\sum_{m=1,n_m\neq 0}^{M} \frac{n_m}{n} \sum_{k=1}^{K} \frac{n_{k,m}}{n_m} \cdot \log\left(\frac{n_{k,m}}{n_m}\right)$$

 $n_{k,m}$: # of samples from Cluster k routed to Expert m

 n_m : # of samples routed to Expert $m = \sum_{k=1}^K n_{k,m}$

n: # of total samples = $\sum_{m=1}^{M} n_m$

Entropy is high if an input from cluster k is routed uniformly to all the experts

Entropy is low if an input from cluster k is routed to one expert

Pros and Cons of Sparse MoE Layer

Pros

Increased model parameters

Efficient pretraining due to conditional (sparse) computation

Faster inference

Cons

Unstable training

- Router collapse– router sends all tokens to the same expert
- May diverge

High memory requirement - all parameters need to be loaded in vRAM (GPU memory)

