

Doc. Number:

■ Tentative Specification
☐ Preliminary Specification
□ Approval Specification

MODEL NO.: G156BGE SUFFIX: L03

Customer:				
APPROVED BY	SIGNATURE			
Name / Title Note				
Please return 1 copy for your signature and comments.	ur confirmation with your			

Approved By	Checked By	Prepared By

Version 2.0 25 July 2016 1 / 26 The

CONTENTS

1	GENERAL DESCRIPTION	4
	1.1 OVERVIEW	4
	1.2 GENERAL SPECIFICATIONS	4
2	MECHANICAL SPECIFICATIONS	4
3	ABSOLUTE MAXIMUM RATINGS	5
	3.1 ABSOLUTE RATINGS OF ENVIRONMENT	5
	3.2 ELECTRICAL ABSOLUTE RATINGS	5
	3.2.1 TFT LCD MODULE	
	3.2.2 BACKLIGHT CONVERTER	6
4	ELECTRICAL SPECIFICATIONS	6
	4.1 FUNCTION BLOCK DIAGRAM	6
	4.2. INTERFACE CONNECTIONS	
	4.3 ELECTRICAL CHARACTERISTICS	
	4.3.1 LCD ELETRONICS SPECIFICATION	
	4.3.2 Vcc Power Dip Condition	10
	4.3.3 BACKLIGHT UNIT	
	4.3.4 BACKLIGHT PIN ASSIGNMENT	.11
	4.4 LVDS INPUT SIGNAL SPECIFICATIONS	
	4.4.1 LVDS DATA MAPPING TABLE	
	4.4.2 COLOR DATA INPUT ASSIGNMENT	
	4.5 DISPLAY TIMING SPECIFICATIONS	13
	4.6 POWER ON/OFF SEQUENCE	
5	OPTICAL CHARACTERISTICS	16
	5.1 TEST CONDITIONS	
	5.2 OPTICAL SPECIFICATIONS	16
	RELIABILITY TEST ITEM	
7	PACKING	20
	MODULE LABEL	
9	PRECAUTIONS	23
	9.1 ASSEMBLY AND HANDLING PRECAUTIONS	23
	9.2 STORAGE PRECAUTIONS	23
	9.3 OPERATION PRECAUTIONS	23
	9.4 SAFETY PRECAUTIONS	23
	9.5 SAFETY STANDARDS	24
	9.6 OTHER	24

REVISION HISTORY

Version	Date	Page	Description
0.0	Mar.17, 2016	All	Spec Ver. 2.0 was first issued.

Version 2.0 25 July 2016 3 / 26 The

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G156BGE-L01 is a 15.6" TFT Liquid Crystal Display module with WLED Backlight unit and 30 pins 1ch-LVDS interface. This module supports 1366 x 768 WXGA mode and can display up to 16.7M colors. The converter module for Backlight is built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	15.6" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1366 x R.G.B. x 768	pixel	-
Pixel Pitch	0.252 (H) x 0.252 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	AG type, 3H hard coating,	-	-
Luminance, White	500(Typ.)	Cd/m2	
Color Gamut	65 % of NTSC(Typ.)	-	-
Power Consumption	10.95	W	

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	363.3	363.8	364.3	mm	
Module Size	Vertical (V)	215.42	215.92	216.42	mm	
	Thickness (T)	8.8	9.3	9.8	mm	
Bezel Area	Horizontal	347.03	347.53	348.03	mm	
Bezei Area	Vertical	196.34	196.84	197.34	mm	
Active Area	Horizontal	-	344.232	-	mm	
Active Area	Vertical	-	193.536	-	mm	
Weight		-	TBD	TBD	g	

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
iteiii	Syllibol	Min.	Max.	Offic		
Storage Temperature	TST	-20	60	$^{\circ}\!\mathbb{C}$	(1)	
Operating Ambient Temperature	TOP	0	(60)	$^{\circ}\!\mathbb{C}$	(1), (2)	

Note (1)

(a) 90 %RH Max. (Ta < 40 $^{\circ}$ C).

(b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta < 40 $^{\circ}$ C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 $^{\circ}\mathrm{C}$ min. and 65 $^{\circ}\mathrm{C}$ max.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note	
itom	Cymbol	Min.	Max.	Offic		
Power Supply Voltage	Vcc	-0.3	6.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	4.0	V	(1)	

Version 2.0 25 July 2016 5 / 26 The

3.2.2 BACKLIGHT CONVERTER

Item	Symbol	Value			Unit	Note	
Item	Symbol	Min.	lin. Typ Max.		Offic	Note	
Converter Voltage	LED_V _{in}	0	12.0	18.0	V	(1), (2)	
Enable Voltage	LED_EN	0	3.3 / 5	7	V	Duty=100%	
Backlight Adjust	LED_PWM	0	3.3 / 5	7	V	(1), (2) Pulse Width≦10msec. and Duty≦10%	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 °C (Refer to 4.3.3 and 4.3.4 for further information).

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

Version 2.0 25 July 2016 6 / 26 The

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Name	Description
1	GND	Ground
2	NC	Not connection, this pin should be open.
3	NC	Not connection, this pin should be open.
4	GND	Ground
5	RX0-	Negative LVDS differential data input. Channel 0
6	RX0+	Positive LVDS differential data input. Channel 0
7	GND	Ground
8	RX1-	Negative LVDS differential data input. Channel 1
9	RX1+	Positive LVDS differential data input. Channel 1
10	GND	Ground
11	RX2-	Negative LVDS differential data input. Channel 2
12	RX2+	Positive LVDS differential data input. Channel 2
13	GND	Ground
14	RXCLK-	Negative LVDS differential clock input.
15	RXCLK+	Positive LVDS differential clock input.
16	GND	Ground
17	RX3-	Negative LVDS differential data input. Channel 3
18	RX3+	Positive LVDS differential data input. Channel 3
19	GND	Ground
20	NC	Not connection, this pin should be open.
21	NC	Not connection, this pin should be open.
22	NC	Not connection, this pin should be open.
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	Vcc	+5V power supply
27	Vcc	+5V power supply
28	Vcc	+5V power supply
29	Vcc	+5V power supply
30	Vcc	+5V power supply

Note (1) Connector Part No.:

MSCK2407P30.D (STM) 需待材評確認

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Parameter		Symbol	Symbol			Unit	Note
		Symbol	Min.	Тур.	Max.	Offic	NOLE
Power Supply '	√oltage	Vcc	4.5	5	5.5	V	-
Ripple Volta	age	V_{RP}	-	-	150	mV	-
Rush Current		I _{RUSH}	-	-	3	Α	(2)
	White	-	TBD	TBD	Α	(3)a	(3)a
Power Supply Current	Black	-	TBD	TBD	Α	(3)b	(3)b
	Vertical Stripe	-	TBD	TBD	Α	(3)c	(3)c
Power Consumption		PLCD	-	TBD	TBD	Watt	
LVDS differential input voltage		Vid	200		600	mV	(4)
LVDS common input voltage		Vic	1.0	1.2	1.4	V	(4)
LVDS terminating	g resistor	R_T		100		ohm	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Version 2.0 25 July 2016 8 / 26 The

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, Fr = 60Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

Version 2.0 25 July 2016 9 / 26 The

4.3.2 Vcc Power Dip Condition

Dip condition:4.0 ≤ Vcc ≤ 4.5, Td ≤ 20ms

4.3.3 BACKLIGHT UNIT

Param	Symbol		Value		Unit	Note	
i arani	Cyrribor	Min.	Тур.	Max.	Offic	Note	
Converter Power	Supply Voltage	LED_Vin	10.8	12.0	13.2	V	
Converter Power	Supply Current	li	0.6	0.8	1	Α	@LED_Vin= 12V Duty=100%
Converter Input	Rush Current	lirsh			3	Α	@LED_Vin rising = 1mS
Power Con	Power Consumption			9.6		W	@ LED_Vin = 12V Duty=100%
EN Control Level	Backlight on	LED_EN	2.0	5	5.5	V	
EN COMIONECVEN	Backlight off	LLD_LIV	0	0	0.8	V	
PWM Control Level	PWM High Level	LED PWM	2.0	3.3	5.0	V	
F VV IVI CONTION Level	PWM Low Level			0	0.15	V	
PWM Control		10		100	%		
PWM Control	f _{PWM}	190	200	20k	Hz		
LED Life	Time	LL	50,000			Hrs	(2)

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

Note (2) The lifetime of LED is estimated and defined as the time when it continues to operate under the conditions at $Ta = 25\pm2^{\circ}C$ and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

4.3.4 BACKLIGHT PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	V_{i}	Converter input voltage	12V
2	$V_{\sf GND}$	Converter ground	Ground
3	EN	Enable pin	3.3 / 5 V
4	ADJ	Backlight Adjust	PWM Dimming (Hi: $3.3 / 5V_{DC}$, Lo: $0V_{DC}$)
5	NC	Not Connect	

Note (1) Connector Part No.:

CI4205M2HRP-NH,CVILUX

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 LVDS DATA MAPPING TABLE

LVDS Channel 0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Grianner 0	Data order	G0	R5	R4	R3	R2	R1	R0
LVDS Channel 1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel 1	Data order	B1	В0	G5	G4	G3	G2	G1
LVDS Channel 2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Chamiler 2	Data order	DE	NA	NA	B5	B4	В3	B2
LVDS Channel 3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Chamiler 3	Data order	NA	B7	B6	G7	G6	R7	R6

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ta S	Sign	al										
	Color				Re									een							Bl				
	<u> </u>	R7	R6	R5	R4	R3		R1	R0		G6		G4				G0	B7	B6	B5		ВЗ		B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ixeu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	63	76	96	MHz	-
	Period	Tc		13.15		ns	
	Input cycle to cycle jitter	T_{rcl}	-0.02*Tc		0.02*Tc	ns	(3)
	Input clock to data skew	TLVCCS	-0.02*Tc		0.02*Tc	ns	(4)
LVDS Clock	Spread spectrum modulation range	Fclkin_ mod	FC*98%		FC*102%	MHz	(F)
	Spread spectrum modulation frequency	F_{SSM}			200	KHz	(5)
	Frame Rate	Fr	50	60	76	Hz	Tv=Tvd+Tvb
	Total	Tv	800	806	815	Th	-
Vertical Display Term	Active Display	Tvd	768	768	768	Th	-
	Blank	Tvb	32	38	47	Th	-
	Total	Th	1500	1560	1570	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	1366	1366	1366	Тс	-
	Blank	Thb	134	194	204	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (4) Input Clock to data skew is defined as below figures.

Note (5) The SSCG (Spread spectrum clock generator) is defined as below figures.

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Parameter		Units		
Parameter	Min	Тур	Max	Offics
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	ı	ms
T5	200	-	ı	ms
T6	20	-	-	ms
T7	5	-	300	ms
Т8	10	-	-	ms
Т9	10	-	-	ms

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Version 2.0 25 July 2016 15 / 26 The

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	$^{\circ}$			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	VCC	5.5	V			
Input Signal	According to typica	value in " ELECTRICAL SPECIFICATIONS				
LED Light Bar Input Current Per Input Pin	IPIN	60 ±1.95	mADC			
PWM Duty Ratio	D	100	%			
LED Light Bar Test Converter	CMI 35-D065452					

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			TBD				
	Red	Ry			TBD				
	Green	Gx			TBD				
Color	Oreen	Gy		Тур –	TBD	Тур +		(1) (E)	
Chromaticity (CIE 1931)	Dlue	Вх	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	0.045	TBD	0.045	_	(1), (5)	
(6.2 1661)	Blue	Ву	CS-2000 R=G=B=255		TBD				
)	Wx	Gray scale		0.313				
	White	Wy	•		0.329				
Center Lumina (Center of		L _C		400	500	-	cd/m ²	(4), (5)	
Contrast	Ratio	CR		500	600	-	-	(2), (5)	
Respons	o Timo	T_R	0 -00 0 -00	-	3	8	ms	(3)	
Respons	e mine	T_F	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	7	13	1115	(3)	
White Va	White Variation		θ_x =0°, θ_Y =0°	65	-	-	%	(5), (6)	
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR ≧ 10	140	160		Deg.	(1) (5)	
viewing Angle	Vertical	θy- + θy+	ON ≦ 10	140	160		Deg.	(1), (5)	

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_{C} = L (5)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = (Minimum [L (1) \sim L (9)] / Maximum [L (1) \sim L (9)]) *100%$

Version 2.0 25 July 2016 18 / 26 The

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C , 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 60℃ , 50%RH , 240hours	
Low Temperature Operation (LTO)	Ta= 0°C , 240hours	
High Temperature Storage (HTS)	Ta= 60°C , 240hours	
Low Temperature Storage (LTS)	Ta= -20°C , 240hours	
	Acceleration: 1.5 Grms Wave: Half-sine	
Vibration Test	Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G	
	Wave: Half-sine	
	Active Time: 11 ms	
Shock Test	Direction : $\pm X$, $\pm Y$, $\pm Z$.(one time for each	
(Non-operation)	Axis)	
Thermal Shock Test (TST)	-20°C/30min , 60°C / 30min , 100 cycles	
	25°C ,On/10sec , Off /10sec , 30,000	
On/Off Test	cycles	
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω)	
	Air Discharge: ± 15KV, 150pF(330Ω)	
	Operation:10,000 ft / 24hours	
Altitude Test	Non-Operation:30,000 ft / 24hours	

Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

7. PACKING

7.1 PACKING SPECIFICATIONS

- (1) 10 pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 17Kg (10 modules per box)

7.2 PACKING METHOD

Figure. 7-1 Packing

Figure. 7-2 Packing

7.3 UN-PACKING METHOD

Figure. 7-3 UN-Packing

8. MODULE LABEL

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G156BGE -L03

(b) Revision: Rev. XX, for example: A1, B1, C1, C2 ...etc.

(c) * * * * : Factory ID

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2011~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

INNOLUX

PRODUCT SPECIFICATION

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10[°]C may reduce the display quality. For example, the response time will become slowly.

9.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° to 35° and relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

9.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : 20±15°C Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude, display pattern or operation time etc... It is strongly recommended to contact CMI for application engineering advice. Otherwise, Its reliability and function may not be guaranteed.

9.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

9.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur