Problem 1:

(a) To solve this problem, I took advantage of the fact that $z_{ij} = \boldsymbol{x}_i^T \boldsymbol{v}_j$ (1-2) and $\boldsymbol{v}_j^T \boldsymbol{v}_j = 1$ (3-4), as the problem statement suggested. Beyond the few points where I used those substitutions, the steps shown below use simple algebraic steps.

$$\begin{aligned} \left\| \boldsymbol{x}_{i} - \sum_{j=1}^{k} z_{ij} \boldsymbol{v}_{j} \right\|_{2}^{2} &= \left(\boldsymbol{x}_{i} - \sum_{j=1}^{k} z_{ij} \boldsymbol{v}_{j} \right)^{T} \left(\boldsymbol{x}_{i} - \sum_{j=1}^{k} z_{ij} \boldsymbol{v}_{j} \right) \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{T} \sum_{j=1}^{k} z_{ij} \boldsymbol{v}_{j} - \boldsymbol{x}_{i} \left(\sum_{j=1}^{k} z_{ij} \boldsymbol{v}_{j} \right)^{T} + \left(\sum_{j=1}^{k} z_{ij} \boldsymbol{v}_{j} \right)^{T} \sum_{j=1}^{k} z_{ij} \boldsymbol{v}_{j} \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} + \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{z}_{ij}^{T} \boldsymbol{z}_{ij} \boldsymbol{v}_{j} \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} + \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} \right)^{T} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} \right) \boldsymbol{v}_{j} \quad (1) \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} + \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} \boldsymbol{v}_{j} \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} + \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \right) \left(\boldsymbol{v}_{j}^{T} \boldsymbol{v}_{j} \right) \boldsymbol{v}_{j} \quad (3) \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} + \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \left(\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \right) \left(1 \right) \boldsymbol{v}_{j} \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} + \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \right) \boldsymbol{v}_{j} \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} + \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} \\ &= \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j}, \end{aligned}$$

as desired.

(b) To solve this problem, I took advantage of the fact that $\sum_{i=1}^{n} \boldsymbol{v}_{j}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} = \boldsymbol{v}_{j}^{T} \boldsymbol{\Sigma} \boldsymbol{v}_{j} = \lambda_{j} \boldsymbol{v}_{j}^{T} \boldsymbol{v}_{j}$ (5-7), as the problem statement suggested, and that $\boldsymbol{v}_{j}^{T} \boldsymbol{v}_{j} = 1$ (7-8), from the previous problem. Beyond the few points where I used those substitutions, the steps shown below use simple algebraic steps.

$$J_k = \frac{1}{n} \sum_{i=1}^n \left(\boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^k \boldsymbol{v}_j^T \boldsymbol{x}_i \boldsymbol{x}_i^T \boldsymbol{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i^T \boldsymbol{x}_i - \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^k \boldsymbol{v}_j^T \boldsymbol{x}_i \boldsymbol{x}_i^T \boldsymbol{v}_j \right)$$

$$\tag{5}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - \sum_{j=1}^{k} \boldsymbol{v}_{j}^{T} \boldsymbol{\Sigma} \boldsymbol{v}_{j}$$
 (6)

$$= \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - \sum_{i=1}^{k} \lambda_{j} \boldsymbol{v}_{j}^{T} \boldsymbol{v}_{j}$$
 (7)

$$= \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^{k} \lambda_j(1)$$
 (8)

$$=\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{x}_{i}^{T}\boldsymbol{x}_{i}-\sum_{j=1}^{k}\lambda_{j}.$$

(c) Using our insights from part (b), notice that

$$J_d = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^d \lambda_j,$$

which implies that

$$J_k = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^k \lambda_j.$$

We can expand J_d , since k < d, as the problem statement suggests, to become

$$J_d = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{i=1}^k \lambda_j - \sum_{j=k+1}^d \lambda_j.$$

Furthermore, since $J_d = 0$, we know that

$$J_d = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^{k} \lambda_j - \sum_{j=k+1}^{d} \lambda_j = 0.$$

Rearranging this, we see

$$\sum_{j=k+1}^d \lambda_j = rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i^T oldsymbol{x}_i - \sum_{j=1}^k \lambda_j = J_k,$$

as desired.

Problem 2:

Figure 1: This figure shows both the norm-ball $B_k = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_1 \leq k \}$ in blue, and the norm-ball $A_k = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_2 \leq k \}$ in red, where k = 1 (and so too does the black line).

I wasn't able to solve the second part of this problem myself, so I referred to the solution sheet on the MATH 189 website. After reviewing that, I now understand that the optimization problem in question is equivalent to the Lagrangian expansion:

$$inf_x sup_{\lambda \geq 0} \mathcal{L}(\boldsymbol{x}, \lambda) = inf_x sup_{\lambda \geq 0} f(\boldsymbol{x}) + \lambda (\|\boldsymbol{x}\|_p - k).$$

Which we can flip the inf and sup to become:

$$sup_{\lambda \geq 0}inf_x f(\boldsymbol{x}) + \lambda(\|\boldsymbol{x}\|_p - k) = sup_{\lambda \geq 0}g(\lambda).$$

Optimizing \boldsymbol{x} to minimize $f(\boldsymbol{x}) + \lambda (\|\boldsymbol{x}\|_p - k)$ is the same as optimizing \boldsymbol{x} to minimize $f(\boldsymbol{x}) + \lambda \|\boldsymbol{x}\|_p$, thereby solving the optimization problem

minimize:
$$f(\boldsymbol{x}) + \lambda \|\boldsymbol{x}\|_{n}$$

for some $\lambda \geq 0$, as desired.

Viewed this way, ℓ_1 regularization can be seen as projecting the optimal solution onto some ℓ_1 norm ball. The ℓ_1 norm-ball has less surface area along its faces than the ℓ_2 norm ball, meaning the optimal solution is more likely to land on an edge (where the x or y dimension of the solution is 0) in the ℓ_1 case than in the ℓ_2 case. This feature generalizes to higher dimensions too, meaning the ℓ_1 norm-ball projection is more likely to generate 0-weights dimensions, relative to the ℓ_2 and ℓ_n (where n>2) cases.