Lernzettel

Pascal Diller

November 15, 2024

Contents

Logik	4
Mengen	4
boolesche Algebra	6
Schaltalgebra	7
boolesche Funktionen	8
boolescher Ausdruck	8
Äquivalenz boolescher Ausdrücke	9
Tautologie	9
Vollständiges Operatorensystem	9
Normalformen	9
Kanonische Normalformen	9
	10
Relationen	10
	11
-	11
	12
nunen	12
Vollständige Induktion	13
Idee der vollständigen Induktion	13
Beweis durch vollständige Induktion	13
Abbildungen	14
Reelle Funktionen	15
Funktionsgraphen	15
9 1	15
	16
	$\frac{17}{17}$
	$\frac{17}{17}$
0	17
	18
8	19

Zahlensysteme		19
Binärsystem		19
Carry-Flag		20
Zweierkomplement		20
Hexadezimalsystem		20
Oktalsystem		20
Festkommazahlen		21
Gleitkommazahlen: IEEE 754		21
Aufbau		21
Dezimal zu IEEE 754		21
IEEE 754 zu Dezimal		22
Fehlererkennung		23
Redundanzen		23
Hamming-Distanz		23
Parität		
Zweidimensionale Parität		24
Hamming-Code		
Berechnung der Prüfbits		25
Summenzeichen und Produktzeichen		26
Summenzeichen		26
Produktzeichen		26
Rechenregeln		27
Bruchregeln		27
Potenzgesetze		
Wurzelgesetze		
Logarithmengesetze		27
Trigonometrie		28
Dogarma R		20

Logik

- "∧": Und
- "\": Oder
- "¬": Nicht (Verneinung)
- $A \implies B$: A impliziert B
- $A \iff B$: A wird durch B **impliziert**
- $A \iff B$: A ist äquivalent zu BEs gilt: $A \implies B$ und $A \iff B$
- ∀: Für alle
- ∃: Es existiert (mindestens) ein

Mengen

Eine **Menge** ist eine Zusammenfassung von (mathematischen) Objekten. Die Objekte in einer Menge werden als **Elemente** bezeichnet.

- $x \in M$: x in/Element M
- $x \notin M$: x nicht in/Element M

Defintion einer Menge:

• Aufzählung:

$$M_1 = \{0, 1, 2, 3, 5, 8, -1\}; \quad M_2 = \{1, 2, 3, 4, 5, \dots\}$$

Es kommt nicht auf die Reihenfolge und nicht auf Verdopplungen an: $\{1, 3, 2, 3\} = \{3, 2, 1\} = \{1, 2, 3\}$

• Beschreibung:

$$M_3 = \{x \in \mathbb{R} : x \ge -1 \land x \le 1\} = [-1, 1]$$

Menge B ist eine **Teilmenge** von Menge A, wenn für jedes $x \in A$ auch $x \in B$ gilt.

- $A \subset B$ ("A ist eine Teilmenge von B")
- $A \supset B$ ("B ist eine Teilmenge von A")

Mengenoperationen:

 \bullet Vereinigung der Mengen A und B

$$A \cup B = \{x : x \in A \lor x \in B\}$$
 ("A vereinigt B")

ullet Durchschnitt der Mengen A und B

$$A \cap B = \{x : x \in A \land x \in B\}$$
 ("A geschnitten B")

ullet Differenzmenge der Mengen A und B

$$A \setminus B = \{x : x \in A \land x \notin B\}$$
 ("A ohne B")

Kartesisches Produkt:

sei $n \in \mathbb{N}$ und seien X_1, \dots, X_n Mengen, dann ist

$$X_1 \times \cdots \times X_n = \{(x_1, \dots, x_n) : x_i \in X_i, \text{ für } i = 1, \dots, n\}$$

die Menge der n-**Tupel** mit *i*-ter Koordinate x_i in X_i für i = 1, ..., n.

Potenzmenge:

Die Menge aller Teilmengen einer Menge X heißt Potenzmenge von X und wird mit $\mathcal{P}(\mathcal{X})$ bezeichnet:

$$\mathcal{P}(X) = \{Y : Y \subset X\}$$

Es gilt immer: $\emptyset \in \mathcal{P}(X)$ und $X \in \mathcal{P}(X)$.

Beispiel: Sei $X = \{1, 2, 3\}$. Dann ist

$$\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2.3\}, \{1, 2, 3\}\}\$$

Sei P eine Menge bestehend aus Mengen. Dann steht

$$\bigcup_{Y \in P} Y = \{y : \text{ es gibt } Y \in P \text{ so dass } y \in Y\}$$

für die (möglicherweise unendliche) Vereinigung aller Mengen in P.

Partitionen:

Sei X eine Menge. Eine Partition von X ist eine Teilmenge $P \in \mathcal{P}(X) \setminus \{\emptyset\}$ sodass

- für alle $Y, Z \in P$ mit $Y \neq Z, Y \cap Z = \emptyset$ (Y und Z sind disjunkt).
- $\bullet \ \bigcup_{Y \in P} Y = X.$

Definierte Mengen:

- Leere Menge: $\emptyset = \{\}$
- Natürliche Zahlen: $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots\} \ (0 \notin \mathbb{N})$
- Ganze Zahlen: $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, \dots\}$
- Rationale Zahlen: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$
- \bullet Relle Zahlen: \mathbb{R} , Menge aller **rellen Zahlen**, die man **nicht abzählen** kann

Es gilt: $\mathbb{N} \in \mathbb{Z} \in \mathbb{Q} \in \mathbb{R}$

boolesche Algebra

Als eine **boolesche Algebra** bezeichnet man eine Menge $V = \{a, b, c, \dots\}$, auf der zwei zweistellige Operationen \oplus und \otimes derart definiert sind, dass durch ihre Anwendung auf Elemente aus V wieder Elemente aus V enstehen (Abgeschlossenheit).

Abgeschlossenheit: für alle $a, b \in V$ gilt:

$$a\otimes b\in V$$

$$a \oplus b \in V$$

Zudem müssen die vier **Huntingtonischen Axiome** gelten:

• H1: Kommutativgesetz

$$a \otimes b = b \otimes a$$

$$a \oplus b = b \oplus a$$

• H2: Distributivgesetz

$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

$$a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c)$$

• H3: Neutrale Elemente Es existieren zwei Elemente $e, n \in V$, so dass gilt:

$$a \otimes e = a$$
 (e wird **Einselelement** genannt)
 $a \oplus n = a$ (n wird **Nullelement** genannt)

• H4: Inverse Elemente

Für jedes $a \in V$ existiert ein Element $a^{-1} \in V$, so dass gilt:

$$a \otimes a^{-1} = n$$

$$a \oplus a^{-1} = e$$

${\bf Schalt algebra}$

Die Schaltalgebra $(\{0,1\}, \wedge, \vee)$ ist eine spezielle boolesche Algebra. 0 und 1 können als die logischen Werte wahr und falsch interpretieren. Es gelten die vier Huntingtonischen Axiome:

(H1) Kommutativgesetz
$$a \lor b = b \lor a$$

$$a \wedge b = b \wedge a$$

(H2) Distributivg
esetz
$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

(H3) Neutrale Elemente
$$a \wedge 1 = a$$

$$a \lor 0 = a$$

(H4) Invere Elemente
$$a \land \neg a = 0$$

$$a \vee \neg a = 1$$

Es lassen sich folgende Sätze ableiten:

(R1) Assoziativgesetz
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$

$$(a \lor b) \lor c = a \lor (b \lor c)$$

(R2) Idempotenzgesetz
$$a \wedge a = a$$

$$a \lor a = a$$

(R3) Absorptionsgesetz
$$a \wedge (a \vee b) = a$$

$$a \lor (a \land b) = a$$

(R4) DeMorgan-Gesetz
$$\neg(a \land b) = \neg a \lor \neg b$$

$$\neg(a \lor b) = \neg a \land \neg b$$

boolesche Funktionen

Eine Funktion $f: \{0,1\}^n \to \{0,1\}$ wird als boolesche Funktion bezeichnet.

boolescher Ausdruck

Sei $V = \{x_1, x_2, \dots, x_n\}$ eine Menge boolescher Variablen. Dann ist die Menge der booleschen Ausdrücke wie folgt definiert:

- $0, 1, x_i$ sind boolesche Ausdrücke.
- Ist Φ ein boolescher Ausdruck, dann ist auch $\neg \Phi$ ein boolescher Ausdruck.
- Wenn Φ und Ψ boolesche Ausdrücke sind, dann sind auch $\Phi \wedge \Psi$ und $\Phi \vee \Psi$ boolesche Ausdrücke.
- Ist Φ ein boolescher Ausdruck, dann ist auch (Φ) ein boolescher Ausdruck.

Äquivalenz boolescher Ausdrücke

Zwei boolesche Ausdrücke Φ und Ψ sind äquivalent, falls sie dieselbe Funktion repräsentieren.

Sie sind genau dann äquivalent, wenn für alle Variablenbelgungen x_1, \dots, x_n die folgende Beziehung gilt:

$$\Phi(x_1,\cdots,x_n)=\Psi(x_1,\cdots,x_n)$$

Tautologie

Ein boolescher Ausdruck, der immer wahr ist, wird als **Tautologie** bezeichnet.

Das heißt zwei boolesche Ausdrücke A und B sind äquivalen, wenn $A \leftrightarrow B$ eine Tautologie ist.

Vollständiges Operatorensystem

M sei eine beliebige Menge von Operatoren. M ist ein **vollständiges Operatorensystem**, wenn sich jede boolesche Funktion auch durch einen Ausdruck bescreiben lässt, in dem neben den Variablen x_1, \dots, x_n ausschließlich Operatoren aus M vorkommen.

Normalformen

Kanonische Normalformen

Eine kanonische Normalform ist eine **eindeutige Darstellung** mit UND, ODER und NICHT.

• kanonische disjunktive Normalform (DNF)

Die Disjunktion (Verbinden mit ODER) von Mintermen der Funktion Die **nicht kanonische** Form ist eine Disjunktion beliebiger konjunktiv verknüpfter boolescher Ausdrücke.

Konstruktion einer DNF: Für jede **Einszeile** der Wahrheitstabelle wird ein **Minterm** konstruiert, welcher für genau diese Variablenbelgungen 1 wird. Alle so erstellten Minterme werden **disjunktiv verknüpft**.

• kanonische konjuntive Normalform (KNF)

Die Konjunktion (Verbinden mit UND) von Maxtermen der Funktion

Die **nicht kanonische** Form ist eine Konjunktion beliebiger disjuntiv verknüpfter boolescher Ausdrücke.

Konstruktion einer KNF: Für jede **Nullzeile** der Wahrheitstabelle wird ein **Maxterm** konstruiert, welcher für genau diese Variablenbelgungen 0 wird. Alle so erstellten Maxterme werden **konjunktiv verknüpft**.

Es wird **ausschließlich** die **kanonische Form** behandelt und deswegen das Wort kanonisch häufig wegelassen.

Minterm, Maxterm

Sei $f(x_1, ..., x_n)$ eine beliebige n-stellige boolesche Funktion. Ein **Minterm** ist jeder Ausdruck der Form

$$\hat{x}_1 \wedge \cdots \wedge \hat{x}_n \text{ mit } \hat{x}_i \in \{\overline{x}_i, x_i\}$$

Ein Maxterm ist jeder Ausdruck der Form

$$\hat{x}_1 \vee \cdots \vee \hat{x}_n \text{ mit } \hat{x}_i \in \{\overline{x}_i, x_i\}$$

Ein **Literal** ist der Teilausdruck \hat{x}_i , der entweder aus einer negierten oder einer unnegierten Variablen besteht.

Relationen

Eine (binäre) Relation zwischen zwei Mengen X und Y ist eine Teilmenge

$$R \subset X \times Y$$

Im Falle X=Y sprechen wir von einer Relation auf X. $x\in X$ steht in Relation zu $y\in Y$ genau dann wenn $(x,y)\in R$. Auch geschrieben: x R y oder $x\sim_R y$ für $(x,y)\in R$ und $x\not x y$ oder $x\not\sim_R y$ für $(x,y)\notin R$.

Seien X, Y und Z Mengen und $R \subset X \times Y$, $S \subset Y \times X$ Relationen.

• Die zu R inverse Relation ist

$$R^{-1} = \{(y, x) \in Y \times X : (x, y \in R)\}$$

• Die Verkettung von R und S ist

$$S \circ R = \{(x, z) \in X \times Z : \text{es gibt } y \in Y \text{ mit } (x, y) \in R \text{ und } (y, z) \in S\}$$

Eine binäre Relation R auf der Menger X heißt:

- relfexiv, wenn x R x für alle $x \in X$.
- symmetrisch, wenn für alle $x, y \in X$ aus x R y stets y R x folgt.
- antisymmetrische, wenn für alle $x, y \in X$ aus x R y und y R x stets x = y folgt.
- asymmetrisch, wenn für alle $x, y \in X$ aus x R y stets $y \mathbb{X} x$ folgt.
- **transitiv**, wenn für alle $x, y, z \in X$ aus x R y und y R z stets x R z folgt.

Äquivalenzrelationen

Sei X eine nicht leere Menge. Eine Relation R auf X die relfexiv, symmetrisch und transitiv ist, heißt Äquivalenzrelationen. Für $x \in X$ nennt man die Menge

$$[x] \sim_{\mathbf{R}} = \{ y \in X : x \mathbf{R} y \}$$

die Äquivalenzklasse von x. Man nennt x und jedes andere Element aus $[x] \sim_{\mathbb{R}}$ einen Vertreter oder Repräsentanten dieser Äquivalenzklasse.

Sei X eine Menge und \sim eine Äquivalenzrelation auf X. Ein **Vertretersystem** ist eine Teilmenge von X, die für jede Äquivalenzklasse genau ein Element enthält.

Ordnungsrelationen

Sei X eine Menge. Eine **Ordnung** auf X ist eine reflexive, antisymmetrische und transitive Relation. Eine **strikte Ordnung** auf X ist eine asymmetrisch und transitive Relation. Wir nennen eine (strikte) Ordnung \leq **total**, wenn je zwei Elemente vergleichbar sind:

für alle
$$x, y \in X$$
 gilt $x \leq y$ oder $y \leq x$

Ansonsten nennen wir sie **partiell**.

Hüllen

Sei R eine Relation auf der Menge X. Wir definieren:

• Für $n \in \mathbb{N}_0$

$$R^{n} = \begin{cases} I_{X} & n = 0 \\ R \circ R^{n-1} & n \ge 1 \end{cases}$$

Es gilt, dass $R^1 = R$

 $\bullet\,$ Die transitive Hülle von R ist

$$R_{trans} = \bigcup_{n \in \mathbb{N}} R^n$$

• Die **reflexive Hülle** von R ist

$$R_{refl} = R \cup I_X$$

• Die **symmetrische Hülle** von R ist

$$R_{sym} = R \cup R^{-1}$$

Vollständige Induktion

Das **Prinzip der vollständigen Induktion** ist ein Beweisverfahren, mit dem man Aussagen A(n) beweisen kann, die von $n \in \mathbb{N}_0$ abhängen.

Idee der vollständigen Induktion

Zu zeigen sei die Aussage A(n) für alle $n \in \mathbb{N}_0$ mit $n \geq n_0$ für ein $n_0 \in \mathbb{N}$. Angenommen, man kann zeigen, dass $A(n_0)$ gilt, und weiter kann man beweisen, dass A(n+1) gilt, wenn man voraussetzt, dass A(n) gilt, d.h. die Implikation $A(n) \Longrightarrow A(n+1)$ ist für alle $n \in \mathbb{N}$, $n \geq n_0$ gültig. Dann gilt A(n) für alle $n \in \mathbb{N}$ mit $n \geq n_0$.

Beweis durch vollständige Induktion

- 1. Induktionsanfang (I.A.): Es gibt ein $n_0 \in \mathbb{N}_0$, sodass $A(n_0)$ wahr ist.
- 2. Induktionsvoraussetzung (I.V.): Annahme: A(n) ist wahr (für ein $n \ge n_0$).
- 3. Induktionsschluss (I.S.): Zeige: $A(n) \implies A(n+1)$.

Abbildungen

Eine **Abbildung** $f: X \to Y$ besteht aus:

- einer Menge X, der **Definitionsbereich** von f;
- einer Menge Y, der Wertebereich von f;
- einer Vorschrift, die jedem $x \in X$ eindeutig ein $y \in Y$ zuordnet.

Notation: $f: X \to Y, x \mapsto f(x)$

Seien X, Y Mengen, $f: X \to Y$ eine Abbildung und $x \in X, y \in Y$ sodass f(x) = y. Dann ist y das **Bild** von x und x ein **Urbild** von y. Für eine Teilmenge $X_0 \subset X$ ist

$$f(X_0) := \{ y \in Y : \text{ es gibt } x \in X_0, \text{ sodass } f(x) = y \} \subset Y$$

das **Bild** von X_0 und für eine Teilmenge $Y_0 \subset Y$ ist

$$f^{-1}(Y_0) := \{x \in X : f(x) \in Y_0\} \subset X$$

das **Urbild** von Y_0 .

Seien X und Y Mengen und $f: X \to Y$ eine Abbildung.

f ist **injektiv** falls aus $x_1, x_2 \in X$ mit $f(x_1) = f(x_2)$ stets $x_1 = x_2$ folgt.

"zu jedem v höchstens 1 x-Wert"

f ist **surjektiv** falls es für jedes $y \in Y$, ein $x \in X$ existiert so dass f(x) = y.

"zu jedem y mindestens 1 x-Wert"

f ist bijektiv falls f injektiv und surjektiv ist.

Seien X, Y, Z Mengen und $f: X \to Y$ und $g: Y \to Z$ Abbildungen. Die **Komposition** oder **Verknüpfung** von f und g ist die Abbildung $g \circ f: X \to Z$, definiert durch $(g \circ f)(x) = g(f(x))$.

Reelle Funktionen

Sei M eine Menge. Eine Abbildung $f: M \to \mathbb{R}$ heißt Funktion.

Für Funktionen $f,g:M\to\mathbb{R}$ sind $f+g,f\cdot g,\frac{f}{g}$ defintiert durch

- (f+g)(x) := f(x) + g(x) für $x \in M$
- $(f \cdot g)(x) := f(x) \cdot g(x)$ für $x \in M$
- $\frac{f}{g}(x) := \frac{f(x)}{g(x)}$ für $x \in M \setminus \{x \in M : g(x) = 0\}$

"punktweise" Entsprechend

- |f|(x) := |f(x)|, $\max\{f, g\}(x) := \max\{f(x), g(x)\}$, $\min\{f, g\}(x) := \min\{f(x), g(x)\}$ für $x \in M$
- $f \leq g$ genau dann wenn $f(x) \leq g(x)$ für alle $x \in M$.

Für eine Abbildung $f: N \to M$ mit $N, M \subset \mathbb{R}$ wird $f^{-1}: M \to N$ als **Umkehrfunktion** von f bezeichnet. (!!! $f^{-1} \neq x \mapsto \frac{1}{f(x)}$ für $x \in M$)

Funktionsgraphen

Seien M eine Menge und $f:M\to\mathbb{R}$ eine Funktion. Dann ist der **Graph** von f

$$\Gamma(f) := \{(x, f(x)) : x \in M\} \subset M \times \mathbb{R}$$

Intervalle

Definitionsbereiche von reellen Funktionen sind oft Intervalle.

 $\bullet\,$ beschränkte Intervalle für $a,b\in\mathbb{R},a\leq b$

$$\begin{split} [a,b] &:= \{x \in \mathbb{R} : a \leq x \leq b\} \text{ "abgeschlossen", "kompakt"} \\ (a,b) &:= \{x \in \mathbb{R} : a < x < b\} \text{ "offen"} \\ [a,b) &:= \{x \in \mathbb{R} : a \leq x < b\} \text{ "halboffen"} \\ (a,b] &:= \{x \in \mathbb{R} : a < x \leq b\} \text{ "halboffen"} \end{split}$$

mit
$$[a, b] = [a, a] = a$$
 für $a = b$ und $(a, b) = [a, b) = (a, b] = \emptyset$ für $a = b$.

• unbeschränkte Intervalle für $a \in \mathbb{R}$

$$[a,\infty) := \{x \in \mathbb{R} : a \le x\} \text{ "abgeschlossen"}$$

$$(-\infty,a] := \{x \in \mathbb{R} : x \le a\} \text{ "abgeschlossen"}$$

$$(a,\infty) := \{x \in \mathbb{R} : a < x\} \text{ "offen"}$$

$$(-\infty,a) := \{x \in \mathbb{R} : x < a\} \text{ "offen"}$$

Beschränkte Mengen und Funktionen

Eine Menge $M \subset \mathbb{R}$ heißt

• nach oben beschränkt genau dann wenn $\exists C \in \mathbb{R} \forall x \in M : x \leq C$ C heißt obere Schranke

Falls $M \subset \mathbb{R}$ ein Maximum besitzt ist M nach oben beschränkt.

• nach unten beschränkt genau dann wenn $\exists c \in \mathbb{R} \forall x \in M : x \leq c$ c heißt untere Schranke

Falls $M \subset \mathbb{R}$ ein Minimum besitzt ist M nach unten beschränkt.

- \bullet beschränkt genau dann wenn Mnach oben und nach unten beschränkt Betrachte die Funktion $f:M\to\mathbb{R}$
 - f heißt nach **oben/unten beschränkt** genau dann wenn f(M) nach oben/unten beschränkt ist.
 - f besitzt ein **Maximum/Minimum** auf M genau dann wenn f(M) ein Maximum/Minimum besitzt.
 - Ein Punkt $x_0 \in M$ mit

$$f(x_0) = \max f(M) =: \max_{x \in M} f(x)$$
 heißt **Maximalstelle** von f , $f(x_0) = \min f(M) =: \min_{x \in M} f(x)$ heißt **Minimalstelle** von f .

• Ein Punkt $x_0 \in M$ heißt **Extremstelle** von f, wenn x_0 eine Maximaloder Minimalstelle ist.

Monotone Funktionen

Sei $M \subset \mathbb{R}$ und $f: M \to \mathbb{R}$. Dann heißt f

- monoton wachsend, falls $\forall x, y : x \leq y \rightarrow f(x) \leq f(y)$
- streng monoton wachsend, falls $\forall x, y : x < y \rightarrow f(x) < f(y)$
- monoton fallend, falls $\forall x, y : x \leq y \rightarrow f(x) \geq f(y)$
- streng monoton fallend, falls $\forall x, y : x < y \rightarrow f(x) > f(y)$

Trigonometrische Funktionen

Betrachte einen Winkel α mit Schenkeln der Länge 1 und Spitze im Ursprung $(0,0)\in\mathbb{R}^2$

Wenn $\alpha > 0$, dann ist der Winkel orientiert, d.h. Die Strecke des Winkels wird **gegen den Uhrzeigersinn** gedreht.

Wenn $\alpha < 0$, dann ist die Strecke des Winkels **im Uhrzeigersinn** gedreht. Für die Länge $x = x(\alpha)$ des Kreisbogens die Verhältnisgleichung

$$\frac{x}{2\pi} = \frac{\alpha}{360^{\circ}} \iff x = x(\alpha) = \frac{\alpha \cdot 2\pi}{360^{\circ}}$$

Sinus- und Cosinus-Funkton

Betrachte den Vektor (u(x), v(x)) auf dem Einheitskreis um 0, der mit der positiven x-Achse den Winkel $x = x(\alpha)$ bildet.

Dann ist die Cosinus-Funktion definiert als

$$\cos(x) := u(x) \text{ für } x \in \mathbb{R}$$

und die Sinus-Funktion definiert als

$$\sin(x) := v(x) \text{ für } x \in \mathbb{R}$$

Es folgen wesentliche Eigenschaften von Sinus und Cosinus:

- cos und sin sind 2π -periodisch. Für alle $x \in \mathbb{R}$ und $k \in \mathbb{Z}$ gilt $\cos(x + 2k\pi) = \cos(x)$ und $\sin(x + 2k\pi) = \sin(x)$
- $\cos(-x) = \cos(x) \implies \cos$ ist eine **gerade** Funktion.

- $\sin(-x) = -\sin(x) \implies \sin \text{ ist eine } \mathbf{ungerade}$ Funktion.
- $\cos^2(x) + \sin^2(x) = 1$
- $|\cos(x)| \le 1$, $|\sin(x)| \le 1$, $|\sin(x)| \le |x|$

Für $x, y \in \mathbb{R}$ gelten die **Additionstheoreme**

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$

Spezialfälle:

$$\sin\left(x + \frac{\pi}{2}\right) = \sin(x)\underbrace{\cos\left(\frac{\pi}{2}\right)}_{=0} + \cos(x)\underbrace{\sin\left(\frac{\pi}{2}\right)}_{=1} = \cos(x)$$
$$\cos\left(x - \frac{\pi}{2}\right) = \cos(x)\underbrace{\cos\left(\frac{\pi}{2}\right)}_{=0} + \sin(x)\underbrace{\sin\left(\frac{\pi}{2}\right)}_{=1} = \sin(x)$$

Tangens-Funktion

$$\tan(x) := \frac{\sin(x)}{\cos(x)} \text{ für } x \in D := \mathbb{R} \setminus \{(k + \frac{1}{2})\pi : k \in \mathbb{Z}\}$$

Eigenschaften des Tangens:

• Die Tangens-Funktion ist π -periodisch, d.h. für $k \in \mathbb{Z}$ und $x \in D$ gilt

$$\tan(x+k\pi) = \frac{\sin(x+k\pi)}{\cos(x+k\pi)} = \frac{\sin(x)\cos(k\pi) + \cos(x)\sin(k\pi)}{\cos(x)\cos(k\pi) - \sin(x)\sin(k\pi)} = \frac{\mp\sin(x)}{\mp\cos(x)} = \tan(x).$$

• Die Tangens-Funktion ist ungerade, es gilt für $x \in D$

$$\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin(x)}{\cos(x)} = -\tan(x)$$

Polynome

Sei t eine <u>Variable</u> oder <u>Unbestimmte</u>. Ein **Polynom mit Koeffizienten** in \mathbb{R} oder ein **Polynom über** \mathbb{R} ist ein formaler Ausdruck der Gestalt

$$P(t) := \sum_{k=0}^{m} a_k t^k = a_m t^m + a_{m-1} t^{m-1} + \dots + a_1 t + a_0$$

mit $a_0, \ldots, a_m \in \mathbb{R}$. Die Menge aller Polynome über \mathbb{R} wird mit $\mathbb{R}[t]$ bezeichnet. Falls $a_m \neq 0$ (**Leitkoeffizient**) gilt, dann heißt m der **Grad** von P.

Notation:

- Wir bezeichnen mit $\deg P$ den Grad von P.
- Für das Nullpolynom N, bei dem alle a_i Null sind, ist deg $N := -\infty$.
- $\mathbb{R}_m[t] := \{ P \in \mathbb{R}[t] : \deg P \le m \}.$
- Polynome von Grad 0 ($P(x) = a_0$) sind die konstanten Polynome.
- Polynome von Grad 1 $(P(x) = a_1x + a_0)$ sind die **linearen Polynome**.
- Polynome von Grad 2 $(P(x) = a_2x^2 + a_1x + a_0)$ sind die **quadratischen** Polynome.

Eine **Polynomfunktion** ist eine Funktion der Form $\mathbb{R} \to \mathbb{R}, x \mapsto P(x)$ für ein Polynom $P \in \mathbb{R}[t]$.

Seien $M \subset \mathbb{R}, x_0 \in M$ und $f : M \to \mathbb{R}$. Dann heißt x_0 Nullstelle von f, falls $f(x_0) = 0$ gilt.

Ein Polynom $P \in \mathbb{R}_m[x]$ vom Grad $m \in \mathbb{N}$ hat höchstens m Nullstellen.

Zahlensysteme

Binärsystem

Eine Binärzahl b mit n+1 Stellen hat die Form $b_n \dots b_1 b_2$ mit $b_i \in \{0,1\}$.

Sie entspricht der Dezimalzahl dmit $d=b_n\cdot 2^n+\cdots+b_1\cdot 2^1+b_0\cdot 2^0$

Beispiel: $1101_2 = 1 \cdot 2^3 + 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13_{10}$

Carry-Flag

Wenn bei einer Addition oder Subtraktion ein **Übertrag in der höchsten Stelle** auftritt, wird die Carry-Flag gesetzt. Dieser kann von nachfolgenden Befehlen aufgerufen werden.

Zweierkomplement

Um negative Zahlen darzustellen wird der entsprechende Wert des höchsten Bits negiert.

Beispiel bei 4 Bit:
$$1011_{2c} = 1 \cdot (-2^3) + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = -5$$

Um von einer positiven ganzen Zahl zur negativen Zahl (oder umgekehrt) gleichen Betrags zu gelangen werden alle Bits invertiert und 1 zum Ergebnis addiert.

Hexadezimalsystem

Eine Hexadezimalzahl h mit n+1 Stellen hat die Form $h_n ... h_1 h_0$ mit $h_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(=10), B(=11), C(=12), D(=13), E(=14), F(=15)\}.$

Sie entspricht der Dezimalzahl d mit $d = h_n \cdot 16^n + h_1 \cdot 16^1 + h_0 \cdot 16^0$.

Beispiel:
$$5F_{16} = 5 \cdot 16^1 + 15 \cdot 16^0 = 95_{10}$$

4 Binärziffern lassen sich zu einer Hexadezimalzahl zusammenfassen:

$$\underbrace{1101}_{13_{10}=D_{16}}\underbrace{0011_2}_{3_{16}}=\mathrm{D3_{16}}$$

Oktalsystem

Eine Oktalzahl o mit n+1 Stellen hat die Form $o_n \dots o_1 o_0$ mit $o_i \in \{0,1,2,3,4,5,6,7\}$

Sie entspricht der Dezimalzahl d mit $d = o_n \cdot 8^n + \dots + o_1 \cdot 8^1 + o_0 \cdot 8^0$.

Beispiel:
$$36_8 = 3 \cdot 8^1 + 6 \cdot 8^0 = 30_{10}$$

3 Binärziffern lassen sich zu einer Oktalzahl zusammenfassen:

$$\underbrace{11}_{38}\underbrace{010}_{28}\underbrace{011_2}_{30} = 323_8$$

Festkommazahlen

Eine Festkommazahl besteht aus einer festen Anzahl von Ziffern vor und nach dem Komma.

Gleitkommazahlen: IEEE 754

3 Formate:

• Single Precision: 32 Bit

• Double Precision: 64 Bit

• Extended Precision: 80 Bit

Basiert auf der wissenschaftlichen Notation.

Aufbau

Single Precision: 1 Bit Vorzeichen 8 Bit Exponent 23 Bit normalisierte Mantisse

Double Precision: 1 Bit Vorzeichen 11 Bit Exponent 52 Bit normalisierte Mantisse

Vorzeichen: 0 = +; 1 = -

Exponent: wird gespeichert, indem man den festen Biaswert (127:SP, 1023:DP) addiert.

Die Mantisse beginnt mit einem "Hidden Bit" (immer 1).

Dezimal zu IEEE 754

Beispiel: -62.058

1. Vorzeichen Bit bestimmen

Vorzeichen Bit = 1

2. Zu pur Binär umwandeln

 $62.058_{10} = 111110.10010100_2$

- 3. Normalisieren für Mantisse und Exponent (ohne Bias) $111110.10010100_2=1.1111010010100_2\cdot 2^5$
- 4. Exponent mit Bias bestimmen

$$5 + 127 = 132_{10} = 10000100_2$$

5. Führende 1 der Mantisse abschneiden

$$1.1111010010100_2 \rightarrow 1111010010100_2$$

6. Zusammenfügen

$$-62.058_{10} = \underbrace{1}_{\substack{\text{Vorzeichen} \\ \text{Bit}}} \underbrace{10000100}_{\substack{\text{Exponent}}} \underbrace{1111010010100}_{\substack{\text{Mantisse}}}$$

IEEE 754 zu Dezimal

1. Vorzeichen bestimmen

2. Exponent bestimmen (Bias muss abgezogen werden)

$$10000100_2 - 127_{10} = 132_{10} - 127_{10} = 5_{10}$$

3. Mantisse bestimmen

- 4. 1 zur Mantisse addieren (Hidden Bit) und Vorzeichen einrechnen 1.828125
- 5. Ergebnis berechnen

$$1.828125 \cdot 2^5 = 58.5_{10}$$

Fehlererkennung

Redundanzen

Eine Einheite von n Datenbits und k Redundanzbits nennt man **Codewort**. Die **Länge** eines Codeworts ist insgesammt n + k.

Die Menge aller gültigen Codewörter nennt man Code.

Hamming-Distanz

Die Hamming Distanz zweier Codewörter ist gegeben als die Anzahl der Bitpositionen, in denen sie sich unterscheiden.

Beispiel: 11110000 und 11001100 \implies Hamming-Distanz beträgt 4

Die Hamming Distanz eines Codes ist die kleinste Hamming-Distanz zweier Codewörter

Beispiel: $\{1100,0011,1111\} \implies \text{Hamming-Distanz beträgt } 2$

c-Bit Fehler können erkannt werden, wenn die Hamming-Distanz c+1 beträgt. c-Bit Fehler können korrigiert werden, wenn die Hamming-Distanz 2c+1 beträgt.

Parität

Durch Hinzufügen eines **Paritätsbits** wird ein Code mit Hamming-Distanz 2 erzeugt.

Das Paritätsbit wird gesetzt sodass die Gesamtzahl der 1en...

 $\begin{array}{c} \dots \text{ gerade ist} \\ \underbrace{00100101}_{Datenbits} \underbrace{1}_{Parit"ats"bit} \\ \dots \text{ ungerade ist} \\ \underbrace{00100101}_{Datenbits} \underbrace{0}_{Parit"ats"bit} \\ \end{array}$

Zweidimensionale Parität

Die zweidimensionale Parität konstruiert einen Code mit Hamming-Distanz 4.

Dabei werden n Wörter zu je n Bits in einer $n \times n$ -Matrix untereinandergeschrieben und über jede Zeile und jede Spalte je ein Paritätsbit berechnet.

Bei einem 1-Bit-Fehler stimmen die Paritätsbits genau einer Zeile und Spalte nicht.

Dann ist die Position des Fehlers klar und er kann korrigiert werden.

 $1 \mid 0 \mid 0$ $0 \quad 0$ 0 | fehlerfrei: 0 1 0 0 1-Bit-Fehler:

Das Bit ganz unten rechts wird zur Paritätsberechnung der Paritätszeile und -spalte genutzt.

Hamming-Code

Ein Hamming-Code mit n Redundanzbits hat maximal $2^n - 1$ Bits und maximal $2^n - 1 - n$ Datenbits (mit $n \in \mathbb{N}$)

Die Bits des Codewortes werden, beginnend bei 1, durchnummeriert.

Das *i*-te **Prüfbit**(auch Redundanzbit) steht im Codewort an Position 2^i ($\Longrightarrow 1, 2, 4, 8, ...$)

	Position	Bits des Codewortes	
Beispiel (gerade Parität):	1 ₁₀	0	Prüfbit
	2_{10}	1	Prüfbit
	3_{10}	0	
	4_{10}	0	Prüfbit
	5_{10}	1	
	6_{10}	0	
	7_{10}	1	
~		•	

Gespeichertes Datenwort: 0101

Berechnung der Prüfbits

Jedes Prüfbit ist ein Paritätsbit über eine eindeutige Menge von Bits.

Das i-te Prüfbit an Position 2^i wird über alle Stellen aus dem Codewort berechnet, für die in der Binärdarstellung für 2^i das Bit auf der jeweiligen Position auf 1 gesetzt ist.

Beispiel: 0. Prüfbit an Stelle $2^2 = 4_{10} = 100_2 \implies$ jedes Bit aus dem Codewort, in dessen Binärdarstellung der Position das Bit auf Position 2^2 gesetzt ist, wird zur Berechnung des Prüfbits verwendet.

Summenzeichen und Produktzeichen

Summenzeichen

Seien $m, n \in \mathbb{Z}$ mit $m \leq n$. Die Summen der Zahlen $a_m, a_{m+1}, \ldots, a_n$ wird folgendermaßen bezeichnet:

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

Dabei gilt: i = Summationsindex; m/n = untere/obere Summationsgrenze. Rechenregeln:

$$\sum_{i=m}^{n} c \cdot a_i = c \cdot \sum_{i=m}^{n} a_i$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$$

Leere Summe:

$$\sum_{i=m}^{n} := 0, \text{ für } m > n$$

Produktzeichen

Seien $m, n \in \mathbb{Z}$ mit $m \leq n$. Das Produkt der Zahlen $a_m, a_{m+1}, \ldots, a_n$ wird folgendermaßen bezeichnet:

$$\prod_{i=m}^{n} a_i = a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

Dabei gilt: i = Laufindex; m/n = untere/obere Grenze. Leeres Produkt:

$$\prod_{i=m}^{n} := 1, \text{ für } m > n$$

Rechenregeln

Bruchregeln

$$\frac{a}{b} = \frac{a \cdot c}{b \cdot c} \qquad \frac{a}{b} + \frac{c}{b} = \frac{a + c}{b}$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \quad \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Potenzgesetze

$$a^{n} \cdot a^{m} = a^{n+m} \qquad a^{n} \cdot b^{n} = (a \cdot b)^{n}$$
$$(a^{n})^{m} = (a^{m})^{n} = a^{n \cdot m} \qquad a^{-n} = \frac{1}{a^{n}}, a \neq 0$$
$$a^{0} = 1, a \in \mathbb{R}$$

Wurzelgesetze

$$\sqrt[n]{a^n} = a \qquad (\sqrt[n]{a})^n = a$$

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, \ b \neq 0$$

$$a^{\frac{1}{n}} = \sqrt[n]{a} \qquad a^{-\frac{1}{n}} = \frac{1}{\sqrt[n]{a}}, a > 0$$

Logarithmengesetze

$$\log 1 = 0 \qquad \qquad \log e = 1$$

$$a^x = b \Leftrightarrow x = \log_a(b) \qquad \log(a^x) = x \log a$$

$$\log(x \cdot y) = \log x + \log y \quad \log\left(\frac{x}{y}\right) = \log x - \log y$$

Trigonometrie

Bogenmaß

Der Bogenmaß ist die Länge des Kreisbogens des Einheitskreises und gibt den Betrag des Winkels an. Der Umfang des Einheitskreises beträgt 2π .

Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
Gradmaß	0°	30°	45°	60°	90°	180°	270°	360°

Umwandlung von Winkel α von Gradmaß zu Bogenmaß: Bogenmaß = $\alpha \frac{\pi}{180^{\circ}}$ Umwandlung von Winkel α von Bogenmaß zu Gradmaß: Gradmaß = $\alpha \frac{180^{\circ}}{\pi}$