A Comparative Analysis of Support Vector Machines and Random Forests on the Breast Cancer Dataset

Introduction

This study examines the performances of Support Vector Machines and Random Forests in classifying a tumour as malignant or benign on the Breast Cancer dataset. It compares two modern and popular machine learning models: Support Vector Machines and Random Forests. The support vector machine performs a binary classification problem that finds the best hyperplane, whereas RF uses a set of decision trees for effective prediction. The following sections present data preprocessing, model implementations, and key performance metrics.

Data Preprocessing

- Removing Invalid Data: No invalid rows were found in the Breast Cancer dataset.
- **Feature Scaling**: Normalized features to [0, 1] for SVM to ensure improved performance with distance-based calculations.
- **Feature Selection**: All 10 numerical features, such as Clump Thickness and Bare Nuclei, were retained for both models.
- Target Variable: Transformed class labels into binary form (0 for benign, 1 for malignant).
- **Dataset Split**: 80% of data was used for training and 20% for testing to ensure robust evaluation.

Comparison Table:

Aspect	SVM (RBF Kernel)	Random Forest
Objective	Classify tumours as malignant or benign	Classify tumours as malignant or benign
Features Used	All 10 numerical features	All 10 numerical features
Performance Metrics	Accuracy: 98%, ROC-AUC: 99.7%	Accuracy: 96%, ROC-AUC: 99.5%
Strengths	Handles high-dimensional data effectively	Provides feature importance insights
Weaknesses	Lacks interpretability	Computationally expensive

Model Implementations and Results

Subtopic 1: Support Vector Machines (SVMs)

Description: SVMs find the optimal hyperplane for classification by maximizing the margin between data points of different classes. They use kernel functions, such as radial basis function (RBF), for non-linear decision boundaries.

Objective: To classify tumours as malignant or benign based on 10 features.

Metrics:

Accuracy: 98%, ROC-AUC: 99.7%, Classification Report: Precision (0.97), Recall (1.00), F1-Score (0.98)

Key Observations:

- The model achieved high accuracy with minimal misclassifications.
- **Figure 1** illustrates the confusion matrix, showing 71 true benign predictions, 41 true malignant predictions, and only 2 false negatives.

Figure 1: Confusion Matrix for SVM and Random Forest

Subtopic 2: Random Forests (RF)

Description: RF is an ensemble learning method that combines multiple decision trees to reduce overfitting and improve accuracy. Each tree is trained on a bootstrap sample, and predictions are aggregated using majority voting.

Objective: To classify tumours as malignant or benign based on 10 features.

Metrics:

Accuracy: 96%, ROC-AUC: 99.5%, Classification Report: Precision (0.97), Recall (0.95), F1-Score (0.96)

Key Observations:

- The model showed slight misclassifications with 3 false negatives and 1 false positive.
- Figure 2 represents the confusion matrix, highlighting most samples classified correctly.
- Feature importance analysis revealed "Feature 24" (Importance: 15.4%) and "Feature 28" (Importance: 14.5%) as significant predictors.

Conclusion

The models developed using SVM and Random Forest performed well on the Breast Cancer dataset, yielding good accuracy and reliability. The SVM marginally outperformed RF regarding ROC-AUC and classification accuracy, thus making it more suitable for precision-focused applications like medical diagnostics. However, the importance of the features given by Random Forest makes it a perfect choice for performing exploratory analysis and feature engineering.

Code: https://github.com/sravanth-space/dm 23001152

DataSet: https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original

Student Register Number: 23001152

Name: Sravanth Baratam

References

- 1. Tan, Pang-Ning, et al. Introduction to Data Mining. Pearson Education, 2019.
- 2. UCI Machine Learning Repository: Breast Cancer Dataset. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(original).
- 3. Scikit-learn Documentation. https://scikit-learn.org.