Teorico Estructuras Algebraicas

Javier Vera

October 11, 2024

1 Clase 11

Definición 1.1

Sean G grupo y $X \neq \emptyset$ conjunto. Una accion de G en X es una funcion

$$G \times X \longrightarrow X$$

 $(g, x) \longmapsto g.x$

Que cumple:

1. gh.x = g.(h.x)

2. $e.x = x \quad \forall x \in X$

En este caso se dice que G actua (opera) en X mediante $G \times X \longrightarrow X$

Ejemplo 1.1. 1. $G, X \neq \emptyset$ cualesquiera la accion trivial de G en X es aquella tal que $g.x = x \quad \forall x \in X \quad \forall g \in G$

- 2. S(x) actua en X en la forma $S \times X \longrightarrow X$ $\sigma.x = \sigma(x)$ $\forall \sigma \in S(x)$ $\forall x \in X$. En particular S actua en $I_n = \{1, \dots n\}$
- 3. Sea G grupo actua en si mismo de distintas formas, en este caso mediante el producto $G \times G \longrightarrow G$ es decir g.x = gx esto se llama *accion regular*
- 4. $H \subseteq G$ entonces G actua por conjugacion $G \times H \longrightarrow H$ dada por $g \in G$ $x \in H$
- 5. $S(G) = \{\text{subgrupos de } G\}$. entonces G actua en S por conjugacion $g \in G$ $H \subseteq G$
- 6. $H \le G$ entonces G actua en las coclases G/H Ejercicio probar que satisfacen (A1) y (A2)

Proposición 1

Sea G grupo X $\neq \emptyset$ *conjunto. Son equivalentes:*

- 1. Una accion $G \times X \longrightarrow X$
- 2. Un homomorfismo $\alpha: G \to \mathcal{S}(x)$

Proof. pendiente

Ejemplo 1.2. 1. La accion trivial $G \times X \to X$ corresponde a

$$G \longrightarrow \mathcal{S}(x)$$
$$g \longmapsto Id_x$$

2. La accion regular $G \times G \longrightarrow G$ corresponde al homomorfismo de Cayley G

Definición 1.2

Sea $G \times X \longrightarrow X$ una accion de un grupo G en $X \neq \emptyset$. Dos elementos $x,y \in X$ se dicen G-conjugados mediante esta accion si $\exists g \in G$ tal que g.x = y (notacion $x \sim y$)

Esto define una relacion de equivalencia en X (Ejercici). Asi, tal relacion particiona a X en clases de equivalencia Sea $x \in X$ entonces G.x o $\mathcal{O}_G(x)$ es la clase de equivalencia de x que se llamara G-Orbita de x

$$X = \bigcup_{x \in X} G.x$$

Observación

 $Si\ G \times X \longrightarrow X$ es accion entonces cualquier subgrupo de G actua en X por restriccion. De este modo $G = \mathcal{S}_n$ actua naturalmente en I_n

$$<\sigma>.j=\mathcal{O}_{\sigma}=\{\sigma^k:k\geq 0\}\quad\forall\sigma\in\mathcal{S}_n$$

Definición 1.3

Una accion se dice transitiva si posee una unica orbita es decir si $\exists x \in X$ *tal que* X = G.x

Definición 1.4

Sea $G \times X \longrightarrow X$ accion. Dado $x \in X$ el G-estabilizador de xes

$$G_x = \{g \in G : g.x = x\}$$

 G_x es un subgrupo de G, $\forall x \in X \quad \forall g, h \in G_x$ (No necesariamente normal) $Si \alpha : G \longrightarrow S$ homomorfismo correspondiente a la accion dada entonces:

$$Ker(\alpha) = \bigcap_{x_i X} G_x$$

Ejemplo 1.3. 1. $G \times X \longrightarrow G$ accion trivial $g.x = \{x\}$ entonces $G_x = G$

- 2. $G \times G \longrightarrow G$ accion regular g.x = gx G.x = G pues $y = (yx^{-1})x = yx^{-1}.x$ (Entonces es transitiva) $G_x = \{e\}$ pues $gx = x \iff g = e$
- 3. $H \subseteq G$, $G \times H \longrightarrow H$ por conjugacion $g.x = gxg^{-1}$

$$G.x = \{gxg^{-1} : g \in G\} = Cl(X)$$
$$G_x = \{g \in G : gxg^{-1} = x\} = C_G(x)$$

(ejercicios calcular estabilizador y centralizador de traslaciones para alfguna coclase)

4. Sea $H \leq G$ con

$$G \times {}^{G}/_{H} \longrightarrow {}^{G}/_{H}$$

dada por $g.aH = ga.H \operatorname{con}^{G}/_{H} = \{aH : a \in G\}$

Es accion transitiva porque $G.^{G}/_{H} = ^{G}/_{H}$

$$G_H = \{g \in G : g.eH = ge.H = H\} = H \text{ (DUDA)}$$

Proposición 2

Sea $G \times X \longrightarrow X$ *una accion de* G *en* X, *se tienen:*

1.
$$\forall x \in X, G_{g,x} = gG_xg^{-1} \quad \forall g \in G$$

2.
$$|G.x| = [G:G_x]$$

Proof. Pendiente

Teorema 1.1 (Ecuacion de Clase)

Sean G grupo y $G \times X \longrightarrow X$ una accion de G en $X \neq \emptyset \exists$ famlia $\{G_i\}_{i \in I}$ de sugrupos propios de G tales que:

$$|X| = |X^G| + \sum_{n=1}^{\mathbb{N}}$$

 $\textit{donde } X^G = \{x \in X : g.x = x \quad \forall g \in G\} \; (\textit{BG-invariante})$

Proof. pendiente

Teorema 1.2 (Teorema de Cauchy)

Sea G grupo de orden n y sea p > 0 primo tal que p | n entonces G tiene un elemento de orden p

Proof. Pendiente