Introduction to Machine Learning

Random Forest Out-of-Bag Error Estimate

Learning goals

- Understand the concept of out-of-bag and in-bag observations
- Learn how out-of-bag error provides an estimate of the generalization error during training

OUT-OF-BAG VS IN-BAG OBSERVATIONS

ID	Color	Form	Length	Origin	Banana	ООВ
1	yellow	oblong	14	imported	yes	ІВ
2	brown	oblong	10	imported	yes	
3	red	round	16	domestic	no	predict
	Во Во	otstrapping to	train tree 1			\downarrow
ID	Bo Color	otstrapping to	train tree 1	Origin	Banana	Tree 1
ID 1	<u> </u>			Origin imported	Banana yes	Tree 1
	Color	Form	Length			Tree 1

• IB observations for *m*-th bootstrap:

$$\mathrm{IB}^{[m]} = \{i \in \{1, \dots, n\} | (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}^{[m]} \}$$

- OOB observations for *m*-th bootstrap: OOB^[m] = $\{i \in \{1, ..., n\} | (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \notin \mathcal{D}^{[m]} \}$
- Nr. of trees where *i*-th observation is OOB:

$$S_{\text{OOB}}^{(i)} = \sum_{m=1}^{M} \mathbb{I}(i \in \text{OOB}^{[m]}).$$

OUT-OF-BAG ERROR ESTIMATE

Predict *i*-th observation with all trees $\hat{b}^{[m]}$ for which it is OOB:

ID	Color	Form	Length	Origin	Banana	OOB trees
1	yellow	oblong	14	imported	yes	{2}
2	brown	oblong	10	imported	yes	{1, 3, 4}
3	red	round	16	domestic	no	{2, 4}
Tree 1 Tree 2 Tree 3 Tree 4						
			$\overline{\mathbb{Q}}$			
	yes			yes	no	
	yes classification observation	on of	OOB classi observ	ification of	ООВ с	lassification of servation 3
	classification	on of		ification of	ООВ с	servation 3

OUT-OF-BAG ERROR PSEUDO CODE

Out-Of-Bag error estimation

1: **Input:** $OOB^{[m]}, \hat{b}^{[m]} \forall m \in \{1, ..., M\}$

2: for $i = 1 \rightarrow n$ do

3: Compute the ensemble OOB prediction for observation i, e.g., for regression:

$$\hat{f}_{\text{OOB}}^{(i)} = \frac{1}{S_{\text{OOB}^{(i)}}} \sum_{m=1}^{M} \mathbb{I}(i \in \text{OOB}^{[m]}) \cdot \hat{f}^{[m]}(\mathbf{x}^{(i)})$$

4: end for

5: Average losses over all observations:

$$\widehat{\mathrm{GE}}_{\mathrm{OOB}} = \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, \hat{f}_{\mathrm{OOB}}^{(i)})$$

USING THE OUT-OF-BAG ERROR ESTIMATE

- Gives us a (proper) estimator of GE, computable during training
- Can even compute this for all smaller ensemble sizes (after we fitted M models)

OOB ERROR: COMPARABILITY, BEST PRACTICE

OOB Size: The probability that an observation is out-of-bag (OOB) is:

$$\mathbb{P}\left(i \in \text{OOB}^{[m]}\right) = \left(1 - \frac{1}{n}\right)^n \stackrel{n \to \infty}{\longrightarrow} \frac{1}{e} \approx 0.37$$

 \Rightarrow similar to holdout or 3-fold CV (1/3 validation, 2/3 training)

Comparability Issues:

- OOB error rather unique to RFs / bagging
- To compare models, we often still use CV, etc., to be consistent

Use the OOB Error for:

- Get first impression of RF performance
- Select ensemble size
- Efficiently evaluate different RF hyperparameter configurations

