ECH4905 ChemE Optimization HW 4

Andres Espinosa

April 14, 2025

1 Problem 1

Consider the following integer programming problem:

maximize
$$1.2y_1 + y_2$$

subject to $y_1 + y_2 \le 1$
 $1.2y_1 + 0.5y_2 \le 1$
 $y_1, y_2 \in \{0, 1\}$

1.1 Part a

Solve the first relaxed LP subproblem by hand using the simplex method and derive Gomory cuts based on the LP relaxation.

Solution: To tackle this problem we first relax the problem and then turn the problem above into the standard form so we can create a simplex tableau from it.

$$\begin{array}{ll} \text{maximize} & 1.2y_1+y_2\\ \text{subject to} & y_1+y_2+s_1=1\\ & 1.2y_1+0.5y_2+s_2=1\\ & y_1+s_3=1\\ & y_2+s_4=1\\ & y_1,y_2,s_1,s_2,s_3,s_4\geq 0 \end{array}$$

In matrix notation,

minimize
$$\mathbf{c}^{\top}\mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \succeq 0$

where

$$\mathbf{c} = \begin{bmatrix} -1.2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1.2 & 0.5 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} y_1 \\ y_2 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix}$$

(with a flipped objective component)

The initial simplex tableau for the problem is as follows:

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
s_1	1	1	1	0	0	0	1	
s_2	1.2	0.5	0	1	0	0	1	
s_3	1	0	0	0	1	0	1	
s_4	0	1	0	0	0	1	1	
obj	-1.2	-1	0	0	0	0	_	_

we can define the slack variables equal to the right hand side, and this is in turn a basic feasible solution, so we can jump into phase 2.

We select the y_1 as the entering variable and calculate the alpha value for each basic variable

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
s_1	1	1	1	0	0	0	1	$\frac{1}{1}$
s_2	1.2	0.5	0	1	0	0	1	$\frac{1}{12}$
s_3	1	0	0	0	1	0	1	$\frac{1}{1}$
s_4	0	1	0	0	0	1	1	$\frac{1}{0}$
obj	-1.2	-1	0	0	0	0	_	_

We pivot this on the 1st column (y_1) and the 2nd row (s_2)

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
$\overline{s_1}$	0	$\frac{7}{12}$	1	$-\frac{5}{6}$	0	0	$\frac{1}{6}$	
y_1	1	$\frac{5}{12}$	0	$\frac{5}{6}$	0	0	$\frac{5}{6}$	
s_3	0	$-\frac{5}{12}$	0	$-\frac{5}{6}$	1	0	$\frac{1}{6}$	
s_4	0	1	0	0	0	1	ĺ	
obj	0	-0.5	_	_	_	_	_	_

With blands rule, we pick y_2 and calculate the alpha value for each basic variable.

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
s_1	0	$\frac{7}{12}$	1	$-\frac{5}{6}$	0	0	$\frac{1}{6}$	$\frac{2}{7}$
y_1	1	$\frac{5}{12}$	0	$\frac{5}{6}$	0	0	$\frac{5}{6}$	$\frac{2}{1}$
s_3	0	$-\frac{5}{12}$	0	$-\frac{5}{6}$	1	0	$\frac{1}{6}$	$-\frac{1}{5}$
s_4	0	1	0	0	0	1	Ĭ	$\frac{1}{1}$
obj	0	-0.5	_	_	_	_	_	_

We pivot on the 2nd column (y_2) and the 1st row (s_1) .

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
y_2	0	1	$\frac{12}{7}$	$-\frac{10}{7}$	0	0	$\frac{2}{7}$	
y_1	1	0	$-\frac{5}{7}$	$\frac{60}{42}$	0	0	$\frac{30}{42}$	
s_3	0	0	$\frac{5}{7}$	$-\frac{60}{42}$	1	0	12	
s_4	0	0	$-\frac{12}{7}$	$\frac{60}{42}^{2}$	0	1	$\frac{30}{42}$	
obj	0	0	0.857	0.286	0	0	0	-1.143

This is the optimal solution to the LP relaxed problem. Now we will derive Gomory cuts from this LP relaxed problem. Since each constraint has a non-integer solution, we can generate a Gomory cut on each constraint.

$$y_{2} + \operatorname{floor}(\frac{12}{7})s_{1} + \operatorname{floor}(\frac{-10}{7})s_{2} \leq \operatorname{floor}(\frac{2}{7})$$

$$y_{1} + \operatorname{floor}(\frac{-5}{7})s_{1} + \operatorname{floor}(\frac{10}{7})s_{2} \leq \operatorname{floor}(\frac{5}{7})$$

$$s_{3} + \operatorname{floor}(\frac{5}{7})s_{1} + \operatorname{floor}(\frac{-10}{7})s_{2} \leq \operatorname{floor}(\frac{2}{7})$$

$$s_{4} + \operatorname{floor}(\frac{-12}{7})s_{1} + \operatorname{floor}(\frac{10}{7})s_{2} \leq \operatorname{floor}(\frac{5}{7})$$

These turn into the cuts

$$y_2 + s_1 - 2s_2 \le 0$$

$$y_1 - s_1 + s_2 \le 0$$

$$s_3 - 2s_2 \le 0$$

$$s_4 - 2s_1 + s_2 \le 0$$

1.2 Part b

Solve the above problem with the branch and bound method by enumerating nodes in the tree and solving the LP subproblems using GAMS.

Solution: The initial LP relaxed problem is solved in 1.1, so we can start with the parent node. An important note for this question, I will be solving the LPs in my custom gatorpy LP solver so that I can use them as verification tests.

$$\begin{split} &[\frac{5}{7},\frac{2}{7},0,0,\frac{2}{7},\frac{5}{7}],z=\frac{8}{7}\\ &\text{maximize}\quad 1.2y_1+y_2\\ &\text{subject to}\quad y_1+y_2+s_1=1,\\ &1.2y_1+0.5y_2+s_2=1,\\ &y_1+s_3=1,\\ &y_2+s_4=1,\\ &y_1,y_2,s_1,s_2,s_3,s_4\geq 0.\\ &UB=\frac{8}{7},LB=-inf \end{split}$$

Since all variables are fractional, we can pick the first one y_1 to branch on

```
 | \begin{bmatrix} \frac{5}{7}, \frac{2}{7}, 0, 0, \frac{2}{7}, \frac{5}{7} \end{bmatrix}, z = \frac{8}{7} \\ \text{maximize} \quad 1.2y_1 + y_2 \\ \text{subject to} \quad y_1 + y_2 + s_1 = 1, \\ 1.2y_1 + 0.5y_2 + s_2 = 1, \\ y_1 + s_3 = 1, \\ y_2 + s_4 = 1, \\ y_1, y_2, s_1, s_2, s_3, s_4 \geq 0. \\ UB = \frac{8}{7}, LB = -inf   | [1, 0, 0, 0, 0, 1], z = 1.2 \\ \text{maximize} \quad 1.2y_1 + y_2 \\ \text{subject to} \quad y_1 \leq 0, \\ y_1 + y_2 + s_1 = 1, \\ 1.2y_1 + 0.5y_2 + s_2 = 1, \\ y_1 + y_3 = 1, \\ y_2 + s_4 = 1, \\ y_1, y_2, s_1, s_2, s_3, s_4 \geq 0. \\ UB = \frac{2}{3}, LB = -inf   | [1, 0, 0, 0, 0, 1], z = 1.2 \\ \text{maximize} \quad 1.2y_1 + y_2 \\ \text{subject to} \quad y_1 \leq 0, \\ \text{maximize} \quad 1.2y_1 + y_2 \\ \text{subject to} \quad y_1 \leq 1, \\ y_1 + y_2 + s_1 = 1, \\ 1.2y_1 + 0.5y_2 + s_2 = 1, \\ y_1 + s_3 = 1, \\ y_2 + s_4 = 1, \\ y_1, y_2, s_1, s_2, s_3, s_4 \geq 0. \\ UB = 1.2, LB = -inf
```