DISTRIBUITED LEDGER TECHNOLOGY (DLT)

ARTIFICIAL INTELLIGENCE (AI)

EXTENDED REALITY (XR)

QUANTUM COMPUTING (QC)

Artificial Intelligence

Creating the Future

Inteligencia Artificial

1. Subdisciplina del campo de la Informática, que busca la creación de máquinas que puedan imitar comportamientos inteligentes.

Usado por primera vez: 1955

Inteligencia Artificial

Robótica

Procesamiento del lenguaje natural

Árboles de decisión Aprendizaje automático (Machine Learning)

Modelos de regresión Modelos de clasificación

Clusterización

Deep Learning

CNN

Voz

planteados con el propósito de crear máquinas que presenten las mismas capacidades que el ser humano.

Machine Learning: Rama de la
Inteligencia artificial (IA) que estudia
como dotar a las máquinas de
capacidad de aprendizaje

peep Learning: algoritmo automático jerárquico que emula el aprendizaje humano con el fin de obtener ciertos conocimientos.

TYPES OF ARTIFICIAL INTELLIGENCE

DEEP LEARNING **MACHINE LEARNING** PREDICTIVE ANALYTICS NATURAL LANGUAGE PROCESSING TRANSLATION CLASSIFICATION, CLUSTERING INFORMATION EXTRACTION SPEECH TO TEXT **SPEECH** TEXT TO SPEECH INFERENCE ENGINE **EXPERT SYSTEMS** KNOWLEDGE BASE REDUCTION PLANNING, SCHEDULING, OPTIMIZATION CLASSICAL PROBABILISTIC, TEMPORAL **ROBOTICS** REACTIVE MACHINES LIMITED MEMORY

VISION

DESIGN: CLOUD-NQB.COM

THEORY OF MIND, SELF-AWARE

IMAGE RECOGNITION

MACHINE VISION

Naïve Bayes Supervised Classifiers **Decision Trees** Regression Trees Automatic Language Medical Diagnosis Recognition Model Trees **Franslation** Neural Networks Stock Speech Support Vector Mach. Recognition Market ction trading Associative **Applications** Online of Learners Fraud Traffic Machine learning Prediction Detection K-means Virtual pert Systems Personal **Product** and Mall Spann Filtering are **Assistant** recommend itelligent DA -ations Self driving Cars itelligent DSS Intelligent Agents

Nearest Neighbor

Artificial Intelligence And Intelligent Systems

MACHINE LEARNING

Aprendizaje Automático

1. Rama del campo de la Inteligencia Artificial, que busca como dotar a las máquinas de capacidad de aprendizaje.

Usado por primera vez: 1959

MACHINE LEARNING: TIPOS DE APRENDIZAJE

Los algoritmos de *machine learning* se pueden clasificar en tres grupos dependiendo de la salida que produzcan, que reciben el nombre de tipos de aprendizaje:

- •El **aprendizaje supervisado** consiste en inferir una función a partir de datos de entrenamiento etiquetados, es decir, para cada uno de los datos se tiene tanto la entrada como la salida esperada.
- •El **aprendizaje no supervisado** consiste en inferir una función a partir de datos de entrenamiento no etiquetados, es decir, sólo se conoce la entrada de cada uno de los datos.
- •El aprendizaje por refuerzo se preocupa por cómo los agentes de software deben tomar acciones en un entorno para maximizar algún tipo de recompensa acumulativa.

Types of Machine Learning

Machine Learning

Supervised

Unsupervised

Reinforcement

Task Driven (Predict next value)

Data Driven (Identify Clusters)

Learn from Mistakes

REDES NEURONALES

Las redes neuronales pueden ser el algoritmo de Machine Learning más potente y a la vez más complejo. Su meta es la de intentar emular la forma de tomar decisiones de un ser humano, de modo "similar" a como lo hacen nuestras neuronas, unidades encargas de interpretar información e interconectarse entre sí. Las redes neuronales son, por tanto, un conjunto de algoritmos diseñados especialmente para reconocer patrones.

El ejemplo mas frecuente de red neuronal es el **Deep Learning**, un tipo de red neuronal que funciona por capas jerarquizadas. La primera capa se centra en aprender un concepto básico, la segunda capa en algo más complejo, y así, capa a capa, va profundizando hasta alcanzar el resultado deseado.

DNN Neural Network

A typical RNN cell Output Output Output at t-1 at t+1 at t hŧ tanh Input Input at Input at at t-1 t+1

REDES NEURONALES CONVOLUCIONALES

(GANs)? ¿Qué son las redes generativas adversarias

También llamadas **redes generativas** antagónicas (RGAs), las **redes generativas adversarias** son un sistema de aprendizaje no supervisado en que dos inteligencias artificiales compiten entre sí para lograr un objetivo.

COMPETENCIA INTERNACIONAL KAGGLE

CENTRO GRADUADOS DE INGENIERIA (YOLOV5)

TRANSFER LEARNING

https://github.com/titu1994/Neural-Style-Transfer

¿Es GITHUB Copilot el FIN de los PROGRAMADORES?

¿Es esta lA el FIN de los DISEÑADORES GRÁFICOS? ¿Puede la lA ser CREATIVA? -(DALL-E)

Herramientas a tener en cuenta

- 1. Tokenizador
- 2. Embedding
- 3. Redes Recurrentes

Herramientas a tener en cuenta

1. Tokenizador

El proceso de convertir nuestras secuencias de caracteres, palabras o párrafos en inputs para la computadora se llama tokenización. Se puede pensar al token como la unidad para procesamiento semántico.

Herramientas a tener en cuenta

2. Embedding

Asigna un vector a cada palabra. Este vector guarda información semántica, lo que permite que pueda ser asociado o disociado a otros vectores (palabras) según distintos contextos gramaticales.

Modelos Secuenciales

Los modelos de secuencias (en inglés sequence models) son las técnicas utilizadas cuando el orden y la secuencia de los datos aportan mucho valor predictivo.

A typical RNN cell

Transformer

Attention Is All You Need

NATURAL LANGUAGE PROCESSING

Usos del PLN

- •Resumen de textos, consiste en encontrar la idea principal del texto e ignorar lo que no sea relevante.
- •ChatBots, deberán ser capaces de mantener una charla fluida con el usuario y responder a sus preguntas de manera automática.
- Generación automática de keywords y generación de textos
- •Reconocimiento de entidades, encontrar personas, entidades comerciales o gubernamentales, países, ciudades, marcas...etc.
- •Análisis de sentimientos, deberá comprender si un tweet, una review o comentario es positivo o negativo y en qué magnitud (neutro). Muy utilizado en redes sociales, en política, opiniones de productos y en motores de recomendación.
- •Machine Translation, Ofrece la posibilidad traducir el texto o el audio de un idioma a otro rápidamente y cada vez con más exactitud.
- •Clasificación automática de textos, en categorías pre-existentes, de recurrentes y crear las categorías.

Proyectos Al

Gainfy

SingularityNET

Blackbird.Al

Neureal

VectorSpace

De Al a AC Llegaremos a la conciencia artificial? La habitación china

La habitación china es un experimento mental, propuesto originalmente por John Searle y popularizado por Roger Penrose, mediante el cual se trata de rebatir la validez del test de Turing y de la creencia de que el pensamiento es simplemente computación.¹
Searle se enfrenta a la analogía entre mente y ordenador cuando se trata de abordar la cuestión de la conciencia. La mente implica no solo la manipulación de símbolos (gramática o sintaxis), sino que además posee una capacidad semántica para darse cuenta, o estar consciente, de los significados de los símbolos.

