Chenxi Lei

+65-84033137 | 1 chenxi@nus.edu.sg

EDUCATION

School of Architecture, Tianjin University, China

Sep. 2021 - Jan. 2024

- Master of Architecture, Major in Architectural Technology and Science.
- GPA: 3.80/4.0

School of Civil Engineering and Architecture, Wuhan University of technology, China

Sep. 2016 - June 2021

- Bachelor of Architecture, Major in Architecture.
- GPA: 3.75/4.0 for core courses

PUBLICATION

Conference Paper (Oral Presentation)

Sep. 2023

 Chenxi Lei , Yuzhuo Kang , Zhen Han, Xiaoqian Li , Chiming Liu, Xianwei Liu , Gang Liu. A User-centered Interactive Optimization Approach based on Immersive Virtual Reality. The 18th International IBPSA Conference and Exhibition, Building Simulation, Shanghai, China, 2023.

Research Article (JCR Q1, Under review)

May. 2023

• Chenxi Lei, Yue Liu, Zhen Han, Xiaoqian Li, Gang Liu. Research on the Difference of Brightness Perception Between Virtual Reality Environment and Real Environment. *Building and Environment*.

Patent (202310976082.2)

Aug. 2023

 Gang Liu, Chenxi Lei, Yuzhuo Kang, Zhen Han, Xiaoqian Li, Yue Liu. A lighting assistant design system based on virtual reality. 2023.

RESEARCH EXPERIENCES

Low-carbon and sustainable design strategy for large sized railway stations

Sept. 2021 - Nov. 2022

- Employed Grasshopper and Ladybug tools for building energy modeling and simulation to assess energy consumption within typical railway stations.
- Conducted sensitivity analyses on key design parameters for thermal zones across China.
- Presented passive design strategies aimed at enhancing performance and improving energy efficiency.

Interactive lighting design assistant system based on virtual reality

Oct. 2021 - Aug. 2022

- Developed a virtual reality-based architectural lighting design system encompassing modeling, simulation, data transfer, and interactive modules, enabling real-time data exchange across different platforms.
- Integrated architectural performance simulation values and lighting rendering scenes into a virtual environment, allowing users to combine subjective environmental perception with objective performance metrics in an immersive virtual setting to aid in lighting design.
- Embedde the lighting design expert system into the design assistance system, and proposes a dimension-adaptive
 particle swarm algorithm, which is applied to different lighting design decision-making processes, and adds the
 intelligent recommendation function of the scheme to the system.

A user-centered interactive optimization approach based on immersive virtual reality Nov. 2022 - May. 2023

- Established an immersive indoor daylight evaluation process using Rhino, Grasshopper, and D5 Render.
- Developed a multi-objective optimization framework that combines user-subjective evaluations with building objective performance.
- Validated the methodology through a case study based on a small office, comparing it to traditional objectivefocused optimization methods.

The difference of brightness perception between virtual reality and real environment May. 2022 - Apr. 2023

- Established test environments to assess lighting consistency between virtual reality and reality in the Artificial Climate Laboratory and Unreal Engine. Conducted brightness threshold tests and subjective evaluations using psychophysical methods.
- Analyzed brightness perception threshold experiment data, revealing the impact of light temperature and intensity on virtual reality brightness perception.
- Developed and validated predictive models for brightness and luminance thresholds in virtual reality using artificial neural networks.
- Investigated disparities in brightness and luminance thresholds, along with subjective brightness perception ratings, between real and virtual environments through statistical analysis, shedding light on differences in brightness perception.

Energy-efficiency intelligent control platform

July. 2022 - July. 2023

- Established a real-time detection system to promptly identify internal and external disturbances within buildings.
- Utilized historical temperature and building loads datasets to train a predictive model that enables accurate predictions of future building loads over a specified time period based on LSTM Network.
- Implemented the predictive results to dynamically control water supply temperature and pressure for ground source heat pumps.

Effects of spatial characteristics on detection thresholds of gains in redirected walking Oct. 2022 - Nov. 2023

- Identified prototypical spatial features in virtual reality settings, affecting spatial perception in both single and combined spaces.
- Used psychophysical experiments to measure translational, rotational, and curvature gains in single spaces under various spatial conditions.
- Conducted psychophysical experiments to assess gains in translational, rotational, and curvature movements in different spatial combinations.
- Analyzed data with psychometric functions and neural networks to uncover patterns in how specific spatial characteristics influence redirected walking thresholds.

WORKING EXPERIENCES

Teaching assistant of the course Parametric Modeling in Design	Sept. 2022 - July. 2023
Research assistant in Center for Low carbon Architecture in Tianjin University	Sept. 2021 - Dec. 2023

HONORS & AWARDS

Outstanding Graduate, Tianjin University	Jan. 2024
Outstanding Student Leader at School Level, Tianjin University	Sept. 2023
Postgraduate Scholarship (First class), Tianjin University	Sept. 2023 & Sept. 2022 & Sept. 2021
Outstanding Graduate, Wuhan University of technology	June. 2021
May Fourth Youth Medal, Wuhan University of technology	May. 2021

SKILLS

Language: Mandarin & English

Software & Tool: Modeling & Building Performance Simulation & Game Engines & Graphics

- Modeling: Rhino, SketchUp, 3ds Max
- Building Performance Simulation; Ladybug Tools (Ladybug, Honeybee, Butterfly), Fluent, EnergyPlus
- Game Engines: Unity, Unreal Engine
- Graphics: Photoshop, Adobe Illustrator, InDesign

Programming Languages: Python, Matlab, C#