MoskaliovYV 11102024-154400

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.533	166.8	5.967	75.6	0.051	56.7	0.274	-43.8
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.6	0.752	83.4	1.190	-2.1	0.171	28.2	0.227	-134.2

Найти точку (см. рисунок 1), соответствующую s_{22} на частоте 3.4 ГГц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Задан двухполюсник на рисунке 2, причём R1 = 48.93 Om.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.486	-129.9	19.485	99.7	0.029	50.5	0.431	-62.4
1.5	0.482	-133.8	18.353	97.3	0.030	50.5	0.411	-64.2
1.6	0.481	-137.6	17.321	95.0	0.031	50.4	0.392	-66.2
1.7	0.477	-141.2	16.400	92.8	0.032	50.5	0.376	-67.9
1.8	0.476	-144.1	15.511	90.9	0.033	50.8	0.362	-69.6
1.9	0.475	-147.3	14.763	89.0	0.034	50.8	0.349	-71.5
2.0	0.473	-149.7	14.054	87.3	0.035	51.0	0.338	-72.9
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
2.2	0.471	-155.0	12.813	83.7	0.037	51.2	0.318	-76.5
2.3	0.470	-157.3	12.285	82.3	0.038	51.4	0.309	-78.2
2.4	0.470	-159.6	11.766	80.7	0.039	51.5	0.301	-79.9

и частоты $f_{\mbox{\tiny H}}=1.8$ ГГц, $f_{\mbox{\tiny B}}=2.3$ ГГц.

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B},$ используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 2.0 дБ 2) 4.4 дБ 3) 1.0 дБ 4) 2.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.5	0.637	119.8	2.216	37.1	0.109	48.7	0.231	-69.8
2.6	0.646	117.5	2.122	34.8	0.112	47.8	0.229	-72.4
2.7	0.653	115.2	2.038	32.5	0.116	46.7	0.227	-75.2
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
2.9	0.667	110.9	1.887	28.2	0.122	44.8	0.223	-80.9
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.1	0.679	106.9	1.757	24.4	0.129	42.9	0.219	-86.9
3.2	0.685	105.0	1.697	22.5	0.132	42.0	0.217	-89.9
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
3.5	0.708	99.4	1.531	16.1	0.142	39.4	0.218	-99.3

и частоты $f_{\scriptscriptstyle \rm H}=2.6$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=3.2$ $\Gamma\Gamma$ ц.

Найти модуль $s_{12}\;$ в дБ на частоте $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

- 1) 4.6 дБ
- 2) -3.3 дБ
- 3) -13.3 дБ
- 4) -17.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.457	-132.2	25.328	102.5	0.023	55.5	0.430	-61.0
1.8	0.458	-157.0	16.042	86.9	0.031	57.1	0.299	-74.1
2.5	0.463	-171.7	11.579	76.3	0.039	57.9	0.246	-87.0
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
3.9	0.483	169.3	7.357	60.8	0.057	56.5	0.218	-105.9
4.6	0.496	162.1	6.204	53.4	0.067	54.1	0.206	-114.3
5.3	0.499	156.2	5.323	46.8	0.077	51.9	0.193	-120.7
6.0	0.505	149.5	4.716	40.2	0.087	48.2	0.181	-128.9
6.8	0.521	140.3	4.133	32.2	0.097	43.9	0.159	-143.1

и частоты $f_{\scriptscriptstyle \rm H}=1.8$ ГГц, $f_{\scriptscriptstyle \rm B}=6.8$ ГГц.

Найти обратные потери по входу $\,$ на $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

1) 3.4 дБ 2) 6.8 дБ 3) 5.7 дБ 4) 11.3 дБ

Найти точку (см. рисунок 5), соответствующую коэффициенту отражения от нормированного импеданса $z=1.66+3.95\mathrm{i}$.

Рисунок 5 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.