Proofs from the Lebesgue theory

Viet Duc Nguyen Technical University of Berlin Analysis III

December 23, 2018

Contents

8 Properties of measurable functions

1

8 Properties of measurable functions

• Let $f, g: \Omega \to \mathbb{R}$ be \mathcal{F} -measurable. Then $f+g, f^2$ and fg are measurable.

Proof. We want to show that f + g is measurable. It is measurable if

$$\forall a \in \mathbb{R} : \{ f + g < a \} \in \mathcal{F}.$$

Idea: First, we will show that $\{h < i\} \in \mathcal{F}$ for measurable functions h and i. Setting h := f and i := a - g gives the result because f is measurable and a - g is measurable.

Note: We cannot directly set h := f + g and i := a, for we do not know if f + g is measurable!

Now, let's show that $\{h < i\}$ is measurable if $h, i \in \mathcal{F}$. It holds

$$\{h < i\} = \bigcup_{q \in \mathbb{Q}} \{h < q\} \cap \{q < i\} \in \mathcal{F},$$

for $\{h < q\} \in \mathcal{F}$ and $\{q < i\} \in \mathcal{F}$ (after the assumption).

Geometrically speaken, we have divided the half plane below the line f + g = a in countably many boxes.

Bonus: we show $\{h \leq i\}$ is measurable by using that $\{h < i\}$ is measurable. It holds

$$\{h \leq i\} = \bigcap_{\substack{q \in \mathbb{Q} \\ q > 0}} \{h < i + q\} \in \mathcal{F}.$$

Figure 1: The subplane below the line is covered by boxes. Source: Lecture notes 2018, Prof. Charles Batty

We show that f^2 is measurable, and if that holds true, we can easily show that fg is measurable because $fg = \frac{1}{4} \Big((f+g)^2 - (f-g)^2 \Big)$. Note that f-g is measurable because -g is measurable and thus f+(-g).

Consider $\{f^2 > a\}$. If a < 0, then this set is Ω , which is indeed measurable. For a > 0:

$$\{f^2 > a\} = \{f > \sqrt{a}\} \cup \{f < -\sqrt{a}\} \in \mathcal{F},$$

for $\{f > \sqrt{a}\}$ and $\{f < -\sqrt{a}\}$ are measurable.

• Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions in \mathbb{R} . Then, $\sup f_n$, $\inf f_n$, $\lim \sup f_n$ and $\lim \inf f_n$ are measurable.

Proof. We show that sup f_n is measurable. For any $k \in \mathbb{N}_{\geq 1}$ and $a \in \mathbb{R}$, it holds:

$${x: (\sup_{n \ge k} f_n)(x) > a} = \bigcup_{n \ge k} {x: f_n(x) > a} \in \mathcal{F}.$$

Similarly,

$$\{x: (\inf_{n\geq k} f_n)(x) \geq a\} = \bigcap_{n\geq k} \{x: f_n(x) \geq a\} \in \mathcal{F}.$$

Note that we must take \geq since the intersection of open sets may not be open. Another idea to show that inf is measurable: $\inf(f_n) = -\sup(-f_n)$.

Now,

$$\limsup f_n = \inf_{k \in \mathbb{N}} \sup_{n \ge k} f_n \in \mathcal{F} \quad \text{and} \quad \liminf f_n = \sup_{k \in \mathbb{N}} \inf_{n \ge k} f_n \in \mathcal{F},$$

because as shown inf f_n and $\sup f_n$ is measurable for any sequence $(f_n)_{n\in\mathbb{N}}$ of measurable functions.

Alternatively, $\{x: (\sup_{n\geq k} f_n)(x) \leq a\} = \bigcup_{n\geq k} \{x: f_n(x) \leq a\} \in \mathcal{F} \text{ (note that we must use } \leq).$

Note that, we shall check that $\{x : (\sup f)(x) = \infty\} \in \mathcal{F}$, since $\sup f$ is a numerical function. The case is omitted, however it is easy to show.

• f^+, f^- and |f| are measurable if f is measurable.

Proof. The positive part is defined as $f^+(x) := \begin{cases} f(x), & f(x) \ge 0 \\ 0, & f(x) < 0 \end{cases} = \max\{f(x), 0\}.$ Consider the characteristic function χ_A where $A = \{f \ge 0\}$. Since A is a mea-

Consider the characteristic function χ_A where $A = \{f \geq 0\}$. Since A is a measurable set, χ_A is a measurable function. Thus, the product $f \cdot \chi_A$ is measurable, since f is measurable, and so is $f^+(x) = f\chi_A \in \mathcal{F}$.

Similarly, $f^- = (-f)^+$ is measurable, since -f is measurable.

The absolute value of f can be stated as $|f| = f^+ + f^-$, which is measurable as a sum of two measurable functions.

• $\max(f, g)$, $\min(f, g)$ are measurable if f and g are measurable.

Proof. $\{x : \max\{f(x), g(x)\} > a\} = \{x : f(x) > a\} \cup \{x : g(x) > a\} \in \mathcal{F}$. Now, it holds that $\min\{f, g\} = -\max\{-f, -g\} \in \mathcal{F}$.