Université Ibn Tofail Faculté des Sciences Département de Mathématique Kénitra

Année universitaire 2024-2025

Filière: MIP Semestre: S2

Module: Analyse 2

SÉRIE N° 3

Exercice 1. 1) Déterminer les primitives (sur des intervalles à préciser) des fonctions suivantes :

a)
$$f_1(x) = e^{2x+1}$$
. b) $f_2(x) = \sin(2x)$. c)* $f_3(x) = \cos(3x+\pi)$. d)* $f_4(x) = (2x+1)^3$. e) $f_5(x) = \frac{2}{\sqrt{3x+1}}$.

2) Même question pour les fonctions suivantes :

a)
$$f_1(x) = \frac{x}{x^2 + 1}$$
 b)* $f_2(x) = \frac{e^{2x}}{e^{2x} + 1}$ c) $f_3(x) = \frac{\ln x}{x}$ d)* $f_4(x) = \cos x \sin^2 x$. e) $f_5(x) = \frac{1}{x \ln x}$

Exercice 2. Soit $f: [0, \pi] \longrightarrow \mathbb{R}$ une fonction continue sur $[0, \pi]$ telle que $\int_0^{\pi} \sin(x) f(x) dx = 0$.

Montrer qu'il existe $c \in [0, \pi[$ tel que f(c) = 0.

Exercice 3. 1) Calculer les intégrales suivantes en justifiant leurs existence :

a)*
$$\int_0^1 \frac{1}{x^2 + 1} dx$$
. b) $\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} dx$. c)* $\int_0^1 x^4 dx$. d) $\int_0^1 \frac{x}{x - 2} dx$. e) $\int_0^1 \frac{x}{2x + 1} dx$. f)* $\int_0^1 \frac{x}{\sqrt{x^2 + 1}} dx$.

2) Même question pour les intégrales suivantes :

a)
$$\int_0^{\sqrt{\pi}} x \sin(x^2) dx$$
. b) $\int_1^2 \frac{\sqrt{\ln x}}{x} dx$. c)* $\int_0^1 \frac{x \ln(x^2 + 1)}{x^2 + 1} dx$. d)* $\int_0^1 x e^{x^2} dx$. e) $\int_0^1 \frac{x \arctan(x^2)}{x^4 + 1} dx$.

Exercice 4. 1) Déterminer les primitives (sur des intervalles à préciser) des fonctions suivantes :

- a) $f_1(x) = \ln x$. b)* $f_2(x) = \arctan(x)$. c) $f_3(x) = x \arctan(x)$. d)* $f_4(x) = x^2 \ln x$. e) $f_5(x) = (\ln x)^2$.
- 2) Même question pour les fonctions suivantes :

a)*
$$f_1(x) = \frac{\ln(x+1)}{x^2}$$
 b) $f_2(x) = x(\arctan(x))^2$ c) $f_3(x) = 4x^2e^{2x}$ d)* $f_5(x) = x^2\sin x$.

Exercice 5. Soit $x \in \mathbb{R}$ tel que $x \ge 0$.

1) On pose

$$a=\int_0^x \mathrm{e}^t \cos(2t)\,\mathrm{d}t\quad\text{et}\quad b=\int_0^x \mathrm{e}^t \sin(2t)\,\mathrm{d}t.$$
 Etablir une relation entre a et b . En déduire les valeurs de a et b .

2) Considérons maintenant

$$I=\int_0^x {\rm e}^t \cos^2 t \ {\rm d}t \quad {\rm et} \quad J=\int_0^x {\rm e}^t \sin^2 t \ {\rm d}t.$$
 Calculer $I+J$ et $I-J$. En déduire les valeurs de I et J .

Exercice 6. 1) Calculer les intégrales suivantes en utilisant un changement de variables convenable :

a)*
$$\int_0^4 \frac{1}{1+\sqrt{x}} dx$$
. b) $\int_{-\ln 2}^{\ln 2} \frac{e^x}{e^{2x}+1} dx$. c)* $\int_0^{\ln 2} \sqrt{e^x-1} dx$. d)* $\int_0^{\pi^2} \cos(\sqrt{x}) dx$. e) $\int_{\sqrt[3]{2}}^{\sqrt[3]{3}} \frac{\sqrt{x^3+1}}{x} dx$.

a)*
$$\int_{-1}^{1} \sqrt{1-x^2} \, dx$$
. b)* $\int_{0}^{1} \sqrt{x^2+1} \, dx$. c)* $\int_{0}^{\ln 2} \frac{1}{e^x+1} \, dx$. d)* $\int_{0}^{1} e^{\sqrt{x}} \, dx$. e) $\int_{0}^{\ln 3} \frac{1}{\sqrt{e^x+1}} \, dx$.

Exercice 7*. Considérons la fonction $F: \mathbb{R} \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par :

$$F(x) = \int_0^x \frac{\mathrm{d}t}{\sqrt{t^4 + 1}}.$$

- 1) Vérifier que F est définie sur \mathbb{R} ; et qu'elle est impaire.
- 2) Vérifier que F est dérivable sur \mathbb{R} et déterminer sa dérivée. En déduire les variations de F sur \mathbb{R} .
- 3) Déterminer l'équation de la tangente à la courbe \mathcal{C}_F de F en son point d'absscisse 0.
- 4) Montrer que pour tout $x \ge 1$, F(x) < 2. En déduire que F admet une limite finie en $+\infty$.
- 5) Donner l'allure de la courbe \mathcal{C}_F de F.

Exercice 8* (Intégrales de Wallis). Pour tout $n \in \mathbb{N}$, on pose $W_n = \int_{1}^{\frac{\pi}{2}} \sin^n x \, dx$.

- 1) Vérifier que pour tout $n \in \mathbb{N}$, on a : $W_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$ et $0 < W_n \leqslant \frac{\pi}{2}$
- 2) Montrer que (W_n) est strictement décroissante. En déduire que (W_n) est convergente.
- 3) Établir une relation de récurrence entre W_n et W_{n+2} . En déduire W_{2n} et W_{2n+1} en fonction de n.
- 4)* Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{n}{n+1} < \frac{W_n}{W_{n-1}} < 1$. Montrer aussi que (nW_nW_{n-1}) est constante.
- 5)* Donner un équivalent de W_n . En déduire un équivalent de C_{2n}^n .

Exercice 9. 1) Donner les primitives (en précisant leurs intervalles de définition) des fonctions suivantes :

a)*
$$f_1(x) = \frac{x}{x+1}$$
 b) $f_2(x) = \frac{2x-1}{(x+1)^2}$ c)* $f_3(x) = \frac{x}{(x^2-4)^2}$ d) $f_4(x) = \frac{1}{x^2+4x+5}$ e) $f_5(x) = \frac{1}{x^2-1}$

- 2) Même question pour les fonctions suivantes :
 a) $f_1(x) = \frac{3x+2}{x^2+x+1}$ b)* $f_2(x) = \frac{2x}{x^2-x+1}$ c)* $f_3(x) = \frac{2x+1}{x^2+x-2}$ d) $f_4(x) = \frac{1}{x^3-1}$

a)
$$f_1(x) = \frac{x^3 + 2x}{x^2 + x + 1} \cdot b$$
)* $f_2(x) = \frac{1}{x^3 - 2x^2 - x + 2} \cdot c$)* $f_3(x) = \frac{4x^2}{x^4 - 1} \cdot d$) $f_4(x) = \frac{1}{(x^2 + 4x + 5)^3} \cdot e$)* $f_5(x) = \frac{x - 1}{(x^2 - x + 1)^2} \cdot e$

Exercice 10. 1) Donner les primitives (en précisant leurs intervalles de définition) des fonctions suivantes :

a)
$$f_1(x) = \frac{\sqrt[4]{x^3} + \sqrt{x}}{x(\sqrt{x} - 1)}$$
 b) $f_2(x) = \frac{1}{x} \sqrt{\frac{1 - x}{1 + x}}$ c)* $f_3(x) = \frac{x + 1}{(x - 3)\sqrt{x} - 2}$ d)* $f_4(x) = \frac{x + 2}{\sqrt{x^2 + 2x} + 5}$ e) $f_5(x) = \frac{1}{x\sqrt{x^2 + 1}}$

- 2) Même question pour les fonctions suivantes :
- a) $f_1(x) = \sqrt{\frac{1-x}{1+x}}$ b) $f_2(x) = \sqrt{x^2 + 2x + 2}$.

Exercice 11. 1) Donner les primitives (en précisant leurs intervalles de définition) des fonctions suivantes :

- a) $f_1(x) = \sin^2 x \cos^5 x$. b)* $f_1(x) = \sin^5 x \cos^4 x$. c) $f_2(x) = \cos^2 x \sin^4 x$. d)* $f_2(x) = \cos^3 x \sin^3 x$.
- 2) Même question pour les fonctions suivantes :

a)*
$$f_1(x) = \frac{\cos x - \sin x}{2 + \sin x + \cos x}$$
 b) $f_2(x) = \frac{1}{1 + 2\cos x}$ c)* $f_3(x) = \frac{1}{\cos x}$ d) $f_5(x) = \frac{\sin x}{\sin x + \cos x}$

^{* :} La correction de cette question ne sera pas donné en classe.