Modern Fizika Laboratórium Fizika Bsc. 10.Pozitron annihiláció vizsgálata

A mérést végezte:

Kőmíves Janka, Albert Andrea

A mérés ideje: 2020.03.04, 8.00-12.00

Szerdai csoport

A beadás ideje: 2020. május 16.

1. A mérés célja

A mérés célja a pozitron annihiláció vizsgálata volt, olyan módon, hogy az orvosi gyakorlatban is használt diagnosztikai eljárás, a pozitronemissziós tomográfia (PET) segítségével térképeztünk fel radioaktív izotópokat egy próbatest belsejében.

2. A mérőberendezés

A mérés során a PET tomográf egyszerűsített modelljével (az ún. pozitronszkennerrel, amelyet a PET előtt használtak az orvosi gyakorlatban) dolgoztunk két dimenzióban. Ezzel végeztünk vizsgálatokat a próbababán.

- Pozitív béta-bomló ²²Na izotóp
- Próbatest, amelyben korábban elhelyezésre került az izotóp
- Számítógép
- Detektoregység (Szcintillátor, Számláló, Erősítő, Fotonelektron-sokszorozó,DD (Differenciál diszkriminátor), Koincidencia-egység)

1. ábra. A mérőberendezés logikai rajza: F: gamma forrás, NaI: szcintillátor; FS: fotoelektronsokszorozó; KK: illesztő áramkör; E: erősítő; DD: differenciál diszkriminátor; KJ: késleltető és jelformáló áramkör; K: koincidencia-egység; Sz: számláló

A mérés során olyan szcintillációs mérőfejeket használunk, amelyekben a fotoelektron- sokszorozóra NaI(Tl) szcintillátor kristály illeszkedik. Az egyik detektor a mérés alatt mindvégig mozdulatlan maradt, a másik helyzetét ehhez képest 120°-tól 240°-ig beépített szögmérő segítségével állítottuk be. A detektorok feszültségét egy közös tápegység biztosította. A Differenciál diszkriminátorokkal választottuk ki a mérés során a mérni kívánt teljes energiájú csúcsot. A DD-ből kijövő jeleket kettéosztottuk, az egyik ág számolta a két detektor jeleit (külön-külön), A másik ágban az álló detektor jelei közvetlenül, a mozgó detektor jelei késleltetés után a koincidencia- egységbe jutnak, és a koincidencia- egység kimenő jeleit is számláltuk.

A mérési elv bővebben az alábbi oldalon olvasható: http://wigner.elte.hu/koltai/labor/parts/modern10.pdf

3. Mérési eredmények

3.1. A fotoenergia-spektrum felvétele

A differenciál diszkriminátorok alapszintjét 0.4 V-tól 0.1 voltonként változtatva kimértük a ^{22}Na spektrumát, úgy, hogy lejegyeztük a két detektorba érkező beütéseket és a koincidenciát. A diszkriminátorok csatornaszélessége 0.1 V-ra, a mérési idő pedig 0.2 percre (12~s) volt állítva.

A mért értékeket a következő táblázat tartalmazza:

		2.detektor [db]	
0.4	241	271	3
0.5	117	156	0
0.6	89	87	0
0.7	162	89	6
0.8	225	343	65
0.9	51	137	0
1.0	37	37	0
1.1	22	27	0
1.2	36	28	0
1.3	15	32	0
1.4	22	36	0
1.5	19	33	0
1.6	21	21	0
1.7	18	17	0
1.8	16	15	0
1.9	25	13	0
2.0	38	64	0
2.1	11	40	0
2.2	13	7	0
2.3	12	12	0
2.4	3	9	0
2.5	0	4	0
2.6	2	0	0
2.7	3	0	0
2.8	2	4	0
2.9	3	1	0
3.0	0	3	0

1. táblázat. Mért adatok

A grafikonon két csúcs látható: az egyik a minket érdeklő 511 energiájú fotonokhoz tartozik, melyek a pozitron annihilációja során keletkeztek, míg a másik ahhoz a 1280 energiájú fotonhoz tartozik amelyik akkor keletkezik amikor a gerjesztett mag alapállapotba kerül.

3.2. Koincidencia szögfüggése

A mintatartót egy tetszőleges pozícióba állítva megmértük a koincidencia szögfüggését úgy, hogy a mozgatható detektor szögét változtattuk 120°-tól 240°-ig 5°-ként.

A koincideniára és a két detektorba érkező beütésekre a következő értékeket kaptuk:

Szög[fok]	1.d[db]	2.d[db]	Koinc[db]	Szög[fok]	1.d[db]	2.d[db]	Koinc[db]
120	3086	3892	12	185	3201	3955	391
125	3116	3862	8	190	3207	3919	400
130	3096	3736	11	195	3199	3895	310
135	3064	3843	9	200	3142	3850	150
140	3113	3928	12	205	3115	3857	66
145	3226	3809	15	210	3225	3912	15
150	3277	3851	15	215	3268	3829	26
155	3059	4016	11	220	3233	3874	9
160	3175	3966	12	225	3201	3824	11
165	3082	3933	10	230	3176	3884	12
170	3154	3930	26	235	3181	3906	13
175	3060	3910	126	240	3187	3884	13
180	3127	3885	205				

2. táblázat. Mért adatok: első pozíció

2. ábra. Az első mérés koincidencia szögösszefüggése.

A maximális koincidenciához tartozó szögértékhez (190°) visszaállítottuk a detektort és a detektorok középpontjai között egy cérnát megfeszítve, annak mentén berajzoltuk a fóliára a válaszegyenest.

Ezután a mintán fordítottunk valamekkorát és az előző eljárással azonosan megmértük koincidencia szögfüggését.

Az így kapott értékek:

Itt már két csúcs is megfigyelhető, amiből arra lehet következtetni, hogy két sugárforrás is van a mintában.

A detektort szintén beállítottuk a maximumokhoz tartozó helyzetekbe és meghúztuk a két válaszegyenest (a fólián a nagyobb maximumhoz tartozó vonal mellé írtunk egy n betűt)

Szög[fok]	1.d[db]	2.d[db]	$\mathbf{Koinc}[\mathbf{db}]$	Szög[fok]	1.d[db]	2.d[db]	Koinc[db]
120	3147	3674	7	185	3161	3532	130
125	3162	3546	12	190	3172	3517	156
130	3151	3516	7	195	3041	3698	190
135	3110	3502	9	200	3281	3598	239
140	3214	3479	16	205	3059	3485	216
145	3186	3613	8	210	3161	3594	142
150	3233	3602	10	215	3236	3499	74
155	3141	3573	9	220	3219	3580	24
160	3249	3519	7	225	3315	3619	18
165	3207	3597	26	230	3344	3569	17
170	3087	3645	91	235	3391	3596	14
175	3312	3564	171	240	3300	3465	19
180	3237	3589	198				

3. táblázat. Mért adatok: második pozíció

3. ábra. A második mérés koincidencia szögösszefüggése.

Még egy utolsót fordítottunk a mintán és ugyancsak megmértük a koincidenciákat. Ebben az esetben a maximumot 172,5°-hoz állítottuk, mivel nem volt egyértelmű, hogy hol volt a legnagyobb koincidencia

4. Hibaszámítás

4.1. Szögmérés hibája

A mérési szögek beállításánál adódhatnak hibák a leolvasás pontatlanságából, mivel a szögmérő skála egész fokonként volt beosztva, ez egy $\pm 0.5^{\circ}$ -os járulékot ad a hibához. Ennél nagyobb

Szög[fok]	1.d[db]	2.d[db]	Koinc[db]	Szög[fok]	1.d[db]	2.d[db]	Koinc[db]
120	3145	3692	5	185	3142	3589	122
125	3342	3763	6	190	3157	3782	153
130	3222	3640	10	195	3108	3673	186
135	3241	3689	11	200	3091	3650	161
140	3150	3767	14	205	3034	3815	80
145	3305	3608	11	210	3021	3617	44
150	3137	3684	21	215	3178	3681	18
155	3233	3704	24	220	3102	3668	16
160	3050	3699	82	225	3142	3648	8
165	3139	3665	154	230	3106	3692	12
170	3178	3766	234	235	3140	3721	9
175	3145	3785	233	240	3119	3729	11
180	3200	3579	173				

4. táblázat. Mért adatok: harmadik pozíció

4. ábra. A harmadik mérés koincidencia szögösszefüggése.

pontatlanság adódik az emberi tényező miatt, mivel a skálát kb. 20 cm-ről láttuk, és onnan sem volt merőleges a rálátás. Az ebből származó hiba körülbelül 2°lehet. Valamint a mérési feladatoknál nem mindig ugyanaz az ember állította a szögmérőt, ez is okozhat különbséget a leolvasások pontosságában. A szögmérés hibájának járuléka az egyenesek helyzetnének pontosságát rontja.

4.2. A válaszegyenesek metszéspontjának hibája

Látható, hogy a válaszegyenesek metszeteivel kijelölt háromszögek területe jóval kisebb, mint a sugárforrások kiterjedése. Ebből következtethetünk arra, hogy a mérésünk elég pontos lett.

5. ábra. A plüssmedve vonalrajza a behúzott válaszegyenesekkel.

5. Diszkusszió

A válaszegyenesek berajzolásával megállapítottuk, hogy két darab 22-es Na izotóp lett korábban elhelyezve, az alábbi ábra szerint egy a plüssmedve mellkasánál, egy pedig a nyakánál.