Software Reliability and Security

Module 6

Winter 2017

Presentation/Lecture Schedule and Report Due Dates

- Presentation 1
 - Related background paper
 - Jan 27, Feb 1, 3
- Presentation 2
 - Project proposal
 - March 1, 3, 8
- Presentation 3
 - Final project report
 - March 24, 29, 31

- Lectures
 Jan 13, 18, 20, 25, 27
 Feb 1, 3, 8, 10, 15, 17
 March 1, 3, 8, 10, 15, 17, 22, 24, 29, 31
- Project Proposal Due Tuesday, February 28
- Final Project Report Due Monday, April 10
- Final Exam
 Wednesday, April 12, 10:00am

Outline

- Dependability A Generic Concept
 - Attributes
 - Impairments
 - Means
- The Impairments to Dependability
 - Faults, errors, and failures
 - Classifications of faults, errors, and failures
- Means for Dependability Fault Tolerance
 - Phases of fault tolerance
 - Approaches for software fault tolerance

Dependability as a Generic Concept

- Historically many disciplines considered other related disciplines as special cases
- Similar trends for reliability, safety, and ...
- An wider concept due to the complex nature of current system's quality of service - "Dependability"
 - Available: readiness for usage
 - Reliable: continuity of service
 - Safe: avoidance of catastrophic consequences
 - Secure: unauthorized access and/or handling of information

Dependability

- Defined by Working Group 10.4: Dependable Computing and Fault Tolerance of International Federation for Information Processing (IFIP)
- Trustworthiness of a computer system so that we can rely on the delivered service
 - The service is its behavior as it is observed by its user(s)
 - A user may be another system (human or physical)

Why is this course not called as "Software Dependability"?

- The term "dependability" is still not well-known among the software engineering community
- The term "reliability" and "security" are more popular in relevant disciplines such as software engineering
- Reliability and security issues of software are addressed while safety and availability are not addressed directly
- Books on "Reliability" & "Security" mainly focus on
 - How to evaluate, measure, and predict the reliability of systems (reliability)
 - How to protect computer networks (security)
 - Methods and issues for building reliable and secure software systems are ignored (except a few)

The Dependability Tree

Dependability: Basic Definitions

- Impairments to dependability
 - Failure: Delivered service does not meet its specification (predefined expected service)
 - Fault: Hypothesized cause of an error
 - Error: A system state which may lead to subsequent failure

Fault Pathology - A Fundamental Chain

Error

- An error is "latent" when it has not been discovered ("detected")
- An error may disappear before detection
- An error usually propagate and may create new errors
- During operation, the existence of faults is determined by detecting errors

Failure

- A failure occurs when an error "passes through" the system-user interface and affects the service delivered by the system
- A failure often caused from the combined action of several faults

Fault Pathology - A Fundamental Chain

Fault

- A fault is active when it produces an error
- Most internal faults cycle between their dormant and active states
- A given fault in a component may result from different sources
- A type of fault may create another type of fault through error propagation

Fault Pathology - contd.

- A Fundamental Chain
- ... --> failure --> fault --> error --> failure --> fault --> ...
- An Example
 - A memory cell always returns the value O independent of what is stored in it – it contains a fault
 - This fault may not manifest as an error until that faulty memory cell is used for storing 1 in it
 - An error may be overwritten before creating an error or a failure
 - If you use AND operation with another cell which contains O, it may not appear as failure (result of an AND operation: X AND O = O)

Error, Fault, and Failure

- Different people may view a failure differently
 - If there is no definition in the requirements specification
- There exist other special situation terminologies
 - Faults bugs, defect (no clear difference between fault and failure) deficiency
 - Failures breakdown, malfunction, denial-of-service, outage

Dependability: Basic Definitions - contd.

- Means for Dependability
 - Procurement: enable the system to deliver a specified service
 - Fault prevention prevent fault occurrence or introduction
 - Fault tolerance provide a specified service in spite of faults
 - Validation: certify that the system delivers a specified service
 - Fault removal reduce the number or consequence of faults
 - Fault forecasting estimate the future number or consequence of faults

Fault Classification

- Based on origin
 - Phenomenological causes
 - Physical due to adverse physical phenomena
 - Human made due to human imperfection
 - System boundaries
 - Internal parts of the system state that generates an error
 - External due to the interference with its physical (electromagnetic, radiation, etc.) or human environment
 - Phase of creation with respect to system's life
 - Design from requirement specification to implementation phases
 - Operational appear at system's runtime

Fault Classification - contd.

- Based on nature
 - Accidental
 - Intentional
- Based on temporal persistence
 - Permanent
 - Temporary
- There may be different combinations of the above faults as many as 32 – only 11 are usually used in practice

Classification of Faults - contd.

Combinations of Faults - contd.

Conventional Labeling	Persistence		Phase of Creation		System Boundaries		Phenomenologica I Cause		Nature	
	Temporary	Permanent	Operational	Design	Externa I	Internal	Human made	Physica I	Intentional	Accidental
Physical		X	X			X		х		х
		X	Х		X			х		х
Transient	X		X		X			Х		Х
Intermittent	X		X			X		х		Х
	X			X		X	Х			х
Design		X		X		X	Х			х
Interaction	X		Х		X		Х			х
Malicious Logic		X		X		X	Х		х	
	X			X		X	х		х	
Intrusions		X	X		X		Х		Х	
	X		X		X		Х		Х	

Types of Failures

- Types of failures from three perspectives
 - Failure Domain
 - Failure Perception
 - Consequences of the Failures Failure Severities

Failure Types - Failure Domain

- Value failures the output value is not consistent with the specification
- Timing failures the timing of output does not meet the specification: late or early
- Stopping failures a constant value (e.g., last correct value, some predetermined value) is delivered
 - Related to both value and timing failures
 - A system whose failures are stopping failures is called a fail-stop system
- Omission failures a special case of stopping failures where no service is delivered
 - A common limiting case for both value (null value) and timing failures (infinitely late failures)
 - Crash failures a persistent omission failure
 - A system whose failures are crash failures is called a fail-silent system

Failure Types - Failure Perception and Severities

- Failure Perception
 - Consistent failures all users have the same perception of the failures
 - Inconsistent failures Also called Byzantine failures. The system users may have different perceptions of a given failure (arbitrary failure)
- Consequences Failure Severities
 - Benign failures the consequence are of the same order of magnitude (generally in terms of cost) as the benefit provided by the service delivery in the absence of failure
 - A system whose failures are benign failures is called a fail-safe system.
 - Catastrophic failures the consequences are incommensurably greater than the benefit provided by service delivery in the absence of failure.

Summary

- Concept of Dependability
 - Attributes, impairments, and means
- The Impairments to Dependability
 - Faults, errors, and failures
 - Classifications of faults, errors, and failures
- Phases of Fault Tolerance
- Software Fault Tolerance Approaches

Lecture Sources

- J.C. Laprie, Dependability: Basic Concepts and Terminology in English, French, German, Italian and Japanese, Springer-Verlag, NY, 1991.
- Dependable Computing and Fault Tolerance: Concepts and Terminology,
 J.C. Laprie, FTCS-15, IEEE 1985.
- Pankaj Jalote, Fault Tolerance in Distributed Systems, Prentice-Hall, New Jersy, 1998, Chap 1 and 6.