Listing Of The Claims

1. (Withdrawn) A method for reducing the carbon monoxide content of a hydrogen rich gas, comprising:

providing a reactor having a catalyst bed containing an oxidation catalyst; distributing an oxygen-containing stream throughout the catalyst bed in the presence of the hydrogen rich gas and the oxidation catalyst bed;

maintaining the reactor operating temperature in a desired range.

- 2. (Withdrawn) The method of claim 1, wherein the reactor has a porous tube substantially positioned within the catalyst bed for distributing the oxygen containing stream throughout the catalyst bed.
- 3. (Withdrawn) The method of claim 2, wherein the oxygen containing stream is maintained at a higher pressure than the hydrogen rich gas.
- 4. (Withdrawn) The method of claim 1, wherein the desired range for the reactor operating temperature minimizes the oxidation of hydrogen.
- 5. (Withdrawn) The method of claim 1, wherein the desired range for the reactor operating temperature is from about 90°C to about 180°C.
- 6. (Withdrawn) The method of claim 1, wherein the desired range for the reactor operating temperature is from about 90°C to about 150°C.
- 7. (Withdrawn) The method of claim 1, wherein the reactor has a cooling jacket for maintaining the reactor operating temperature.

- 8. (Withdrawn) The method of claim 7, wherein the cooling jacket contains a circulating coolant selected from the group consisting of water, steam, air, and hydrocarbon fuel.
- 9. (Previously Amended) An apparatus for selectively reducing the carbon monoxide content of a hydrogen rich has, comprising:

an oxidation reactor having a catalyst bed;

the catalyst bed containing an oxidation catalyst;

- a porous tube positioned substantially within the catalyst bed for distributing an oxygen-containing stream throughout the catalyst bed; and
- a cooling jacket for maintaining the oxidation reactor operating temperature from about 90°C to about 180°C.
- 10. (Original) The apparatus of claim 9, wherein the porous tube is a sintered stainless steel tube.
- 11. (Original) The apparatus of claim 9, wherein the porous tube is an alumina tube.
- 12. (Original) The apparatus of claim 9, wherein the porous tube is substantially positioned along the catalyst bed length.
- 13. (Cancelled)
- 14. (Original) The apparatus of claim 9, wherein the desired range for the reactor operating temperature is from about 90°C to about 150°C.

Amendment U.S.S.N. 10/006,876 Art Unit 0041-DV4

- 15. (Original) The apparatus of claim 9, wherein the cooling jacket contains a circulating coolant selected from the group consisting of water, steam, air, and hydrocarbon fuel.
- 16. (Previously Amended) A reactor module for use in a compact fuel processor for selectively reducing the carbon monoxide content of a hydrogen rich gas, comprising:

an oxidation reactor having a catalyst bed;

the catalyst bed containing an oxidation catalyst;

a porous tube positioned substantially within the catalyst bed along the catalyst bed length for distributing an oxygen-containing stream throughout the catalyst bed; and

a cooling jacket surrounding the catalyst bed for maintaining the oxidation reactor operating temperature from about 90°C to about 180°C.

- 17. (Original) The apparatus of claim 16, wherein the porous tube is a sintered stainless steel tube.
- 18. (Original) The apparatus of claim 16, wherein the porous tube is an alumina tube.
- 19. (Cancelled)
- 20. (Original) The apparatus of claim 16, wherein the desired range for the reactor operating temperature is from about 90°C to about 150°C.
- 21. (Original) The apparatus of claim 16, wherein the cooling jacket contains a circulating coolant selected from the group consisting of water, steam, air, and hydrocarbon fuel.

Amendment U.S.S.N. 10/006,876 Art Unit 0041-DV4

- 22. (Previously Presented) The apparatus of claim 9, wherein the oxidation reactor is a carbon monoxide oxidation reactor for a fuel processor.
- 23. (Previously Presented) The apparatus of claim 16, wherein the oxidation reactor is a carbon monoxide oxidation reactor for a fuel processor.