Processamento de Sinal (2013/14)

Teste 2 – 21 de janeiro de 2014

N	Nome:	Nº	Curso
	Grupo I		
Classific	fique, neste enunciado, as questões que se seguem indicando se	são verdado	eiras (V) ou falsas (F). Duas
respost	stas erradas anulam uma resposta correta. Atenção às siglas que s	e seguem:	
	SFTC - Série de Fourier em Tempo Contínuo		
	SFTD - Série de Fourier em Tempo Discreto		
	TFTC - Transformada de Fourier em Tempo Contí	าน๐	
	TFTD - Transformada de Fourier em Tempo Discre	eto	
	f_a – Frequência de amostragem		
1.	. Os coeficientes da SFTD são periódicos, com período igual a 2π	F	
2.	. Tal como na SFTC, na SFTD os coeficientes $ a_k = a_{-k} $ desde qu	ie o sinal sej	a realV
3.	Caso o sinal seja real e observe uma simetria ímpar, então os coeficientes da sua SFTD serão puramente		
4.	imagináriosV A TFTC pode ser usada caso o sinal seja aperiódico ou periódico.	V	
5.			
6.			
o.	resulta do cálculo da TFTCV	30, 00 usun	do o conteddo espetiai que
7.		riódico	F
8.			
9.	Um sinal amostrado pode ser recuperado desde que usemos uma f_a superior a duas vezes a largura de banda do sinalV		
10.	0. Se a f_a for inferior a duas vezes a largura de banda do sinal, en um filtro passa-baixo idealF	tão podemo	os recuperar o sinal usando
11.	 O espetro de um sinal que foi amostrado só é periódico F	se o sina	l original também o era
12.	2. O aliasing pode ser evitado usando filtros passa-bandaF_		
	Grupo II		
Respon	onda às seguintes questões numa folha separada. Todas as re	spostas car	ecem de uma justificação
adequa	ıada.		
1.	. Sabendo que um sinal $x[n]$ é periódico com período 4 e que os	coeficiente	s da série de Fourier que c
	define são dados pela expressão:		
	$a_k = \frac{1}{4} \sin\left(\frac{k\pi}{4}\right)$		
	a) Defina os coeficientes da série de Fourier dos seguintes sina	is:	
	a. $g[n] = 3x[n-2] + 1$		
	b. $f[n] = x[n] * x[n]$, (em que * é o operador de con		
	b) Calcule a potência média total associada a um período de x	n].	

2. Um sistema LIT é caracterizado pela seguinte resposta em frequência:

$$H(j\omega) = \frac{e^{-j\omega 2}}{\frac{1}{2} + j\omega}$$

- a) Calcule a resposta impulsional do sistema.
- b) Calcule o espetro de uma entrada x(t) que é definida pelo seguinte gráfico:

- c) Calcule o espetro da saída deste sistema, $Y(j\omega)$, quando a entrada é x(t)
- d) Calcule a resposta do sistema, y(t), quando a entrada é x(t).

Caso não tenha conseguido resolver c), considere $Y(j\omega)=\frac{e^{-j\omega}}{(1+j\omega)^2}-e^{j\omega}$

3. Um sistema LIT em tempo discreto é descrito pela seguinte equação às diferenças

$$2y[n] = -2x[n] + y[n-1]$$

- a) Calcule a resposta em frequência deste sistema.
- b) Calcule a saída do sistema, y[n], quando a entrada é o sinal $x[n] = \delta[n] + \frac{1}{2}\delta[n-1]$.

(Caso não tenha conseguido resolver a) considere o seguinte resultado: $H(\Omega) = \frac{1}{e^{j\Omega}(4+2e^{-j\Omega})}$)

1)
$$a_k = \frac{1}{4} \text{ Sen} \left(\frac{k_{17}}{4} \right), \quad N_0 = 4$$

a.
$$g(m) = 3x(m+2) + 1$$

 $g(m) \longrightarrow b_{K}$
 $b_{K} = 3 a_{K} e^{-jK} e^{0} e^{2}$, $k \neq 0$
 $= \frac{3}{4} sen(\frac{k\pi}{4}) e^{-jK\pi}$, $k \neq 0$
 $= \frac{3}{4} sen(\frac{k\pi}{4}) e^{-jK\pi}$, $k \neq 0$

$$f(m) = x(m) * x(m)$$

$$f(m) \longrightarrow c_{K}$$

$$c_{K} = N_{0} \cdot a_{K} \cdot a_{K} = 4 \cdot \frac{1}{4^{2}} \operatorname{fen}^{2}\left(\frac{K\pi}{4}\right) = \frac{1}{4} \operatorname{fen}^{2}\left(\frac{K\pi}{4}\right)$$

b)
$$\frac{1}{N} \sum_{M=\langle N \rangle} |\chi[M]|^2 = \sum_{K=\langle N \rangle} |q_K|^2$$

$$q_0 = 0$$
 $a_1 = \frac{1}{4} \text{ sun} \left(\frac{\pi}{a_1}\right) = \frac{1}{4} \cdot \frac{52}{2} = \frac{52}{8}$
 $a_1 = \frac{1}{4} \text{ sun} \left(\frac{\pi}{a_1}\right) = \frac{1}{4}$
 $a_3 = \frac{1}{4} \text{ seun} \left(\frac{3\pi}{a_1}\right) = \frac{1}{4} \cdot \frac{52}{2} = \frac{52}{8}$

$$\sum_{K=\langle N7\rangle} |a_K|^2 = 0 + \left(\frac{\Omega}{8}\right)^2 + \left(\frac{1}{9}\right)^2 + \left(\frac{\Omega}{8}\right)^2 = \frac{2}{69} + \frac{4}{69} + \frac{2}{69} = \frac{1}{8}$$

$$H(j\omega) = \frac{-j\omega^2}{\frac{1}{2} + j\omega}$$

a)
$$h(t) = \mathcal{F}^{-1} \{ H(j\omega) \}$$

$$h(t) = h_1(t-2)$$

$$h(t) = e^{-\frac{t-2}{2}}$$

$$H(j\omega) = \frac{1}{\frac{1}{2} * j\omega} e^{-j\omega z}$$

$$H_1(j\omega)$$

5)
$$n(t) = e^{-t/2} \cdot n(t)$$

 $\times (j\omega) = \frac{1}{1/2 + j\omega}$

c)
$$Y(j\omega) = H(j\omega) \cdot X(j\omega) = \frac{e^{-j\omega z}}{\frac{1}{2} + j\omega} \cdot \frac{1}{\frac{1}{2} + j\omega} = \frac{e^{-j\omega z}}{(\frac{1}{2} + j\omega)^2}$$

d)
$$Y(j\omega) = \frac{1}{(\frac{1}{2}+j\omega)^2} \cdot e^{-j\omega z} = Y_1(j\omega)e^{-j\omega z}, Y_1(j\omega) = \frac{1}{(\frac{1}{2}+j\omega)^2}$$

$$y(t) = (t-1) l^{\frac{-t-1}{2}} m(t-1)$$

(3)
$$24[m] = -2x[m] + 4[m-1]$$
 (1)

a)
$$H(x) = \frac{Y(x)}{X(x)}$$

Aplicando a Transformeda de fourier à egrass (1) 2y(x)=-2x(x)+y(x) (=)

$$\Rightarrow \frac{Y(x)}{X(x)} = \frac{-2}{2 - e^{jx}} = H(x)$$

b)
$$H(x) = \frac{-2}{2 - e^{-jx}} = \frac{-1}{1 - 1/2}e^{-jx}$$

 $\times [m] = S[m] + \frac{1}{2} S[m-i] \Rightarrow \times (-a) = 1 + \frac{1}{2} \bar{e}^{j\cdot a}$

$$Y(x) = H(x). x(x) = -\frac{1}{1 + \frac{1}{2} x^{jx}} (1 + \frac{1}{2} x^{jx}) = 1$$

$$Y(x) = -\frac{1}{1 - \frac{1}{2}e^{-jx}} - \frac{1}{2} \frac{e^{-jx}}{1 - \frac{1}{2}e^{-jx}}$$

$$Y[m] = \frac{2}{3} - \frac{1}{3} \left\{ Y(x) \right\} = -\left(\frac{1}{2}\right)^{m} m \left[m\right] - \frac{1}{2} \left(\frac{1}{2}\right)^{m-1} m \left[m-1\right]$$

ALTERNATIVA

2. d)
$$Y(j\omega) = \frac{e^{-j\omega}}{(1+j\omega)^2} - e^{j\omega}$$

 $Y(t) = \hat{f}^{-1} \{ Y(j\omega) \} = (t-1) e^{-(t-1)} u(t-1) - \delta(t+1)$

3. b)
$$H(n) = \frac{1}{\sqrt{2}} \frac{1}{(4+2\sqrt{2})^n} = \frac{1}{4(1+\sqrt{2})^n}$$

 $X(n) = 1 + \frac{1}{2} e^{in}$
 $Y(n) = H(n) \cdot X(n) = \frac{e^{-in}}{4(1+\sqrt{2})^n} \cdot (1+\sqrt{2})^n = \frac{1}{4}$
 $Y[m] = \int_{-1}^{-1} \{Y(n)\} = \frac{1}{4} \delta[m-1]$