I. <u>AMENDMENTS TO THE CLAIMS:</u>

- 1-3. (Canceled)
- 4. (Original) The method of claim 7 according to Claim 1, in which R is as defined by group VIA) (formula la), wherein R_1 is the group OCOR₃ with $R_3 = CH_3$, $R_2 = H$ and X = O; R_1 is in the ortho position to CO.
- 5. (Currently Amended) A method for treatment of gastrointestinal tumors, according to Claim [[1]] 7, by administering compounds having the following formulas:

6. (Canceled)

7. (New) A method for treatment of gastrointestinal tumors by administering compounds, having the formula:

or their salts, where:

 $A = R(COX)_t$ wherein

t is 1;

X = O, NH, NR_{1C} wherein R_{1C} is a linear or branched alkyl having from 1 to 10 C atoms;

R is Group VIA), where:

 R_1 is group OCOR₃; where R_3 is methyl, ethyl or a linear or branched C_3 - C_5 alkyl, or the residue of a single-ring heterocycle having 5 or 6 atoms which can be aromatic, partially or totally hydrogenated, containing one or more heteratoms independently chosen from O, N and S; R_2 is hydrogen, hydroxy, halogen, a linear or whenever possible branched alkyl having from 1 to 4 C atoms, a linear or whenever possible branched alcoxyl having from 1 to 4 C atoms; a linear or whenever possible branched perfluoroalkyl having from 1 to 4 C atoms, for example trifluoromethyl, nitro, amino, mono- or di (C_{1-4}) alkylamino; or

 R_1 and R_2 jointly are the dioxymethylene group, with the proviso that when X = NH, then X_1 is ethylene and $R_2 = H$; R_1 cannot be OCOR₃ at position 2 when R_3 is methyl;

X₁ in formula A-X₁-NO₂ is a bivalent connecting bridge chosen from the following:

- YO

where Y is a linear or branched C_1 - C_{20} alkylene, or an optionally substituted cycloalkylene having from 5 to 7 carbon atoms;

_ 4 _

Application Serial No. 10/686,907 Attorney-Docket No. 026220-00039

where n_3 is an integer from 0 to 3;

where nf is an integer from 1 to 6;

where R_{1f} = H or CH_3 and nf is an integer from 1 to 6.