ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (12)

РЕСПУБЛИКА БЕЛАРУСЬ

(19) **BY** (11) **4990**

(13) **C1**

 $(51)^7$ A 01K 41/00

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(54)

ИНКУБАТОР КОРОЛЕВА

- (21) Номер заявки: а 20010053
- (22) 2001.01.22 (46) 2003.03.30

- (71) Заявитель: Королев Геннадий Витальевич (ВҮ)
- (72) Автор: Королев Геннадий Витальевич (ВҮ)
- (73) Патентообладатель: Королев Геннадий Витальевич (BY)

(57)

Инкубатор, включающий опорный каркас, инкубационную камеру с размещенными в ней лотками для яиц и средства для поддержания режима инкубации, отличающийся тем, что опорный каркас выполнен трубчатым, на двух его вертикальных стойках закреплены оси шарнирных направляющих для лотков, внутренняя полость трубчатого опорного каркаса сопряжена с вентилятором, оснащенным нагревательным устройством, а в нижней перемычке опорного трубчатого каркаса выполнены отверстия.

BY 4990 C1

BY 4990 C1

(56) BY 960181 A, 1997 SU 1273041 A1, 1986 US 3817214 A, 1974 EP 0128387 A2, 1984 RU 2063683 C1, 1996

Изобретение относится к области сельскохозяйственного машиностроения, а именно к конструкциям, используемым в личном хозяйстве для выведения молодняка птицы.

Наиболее близкой к предлагаемой является конструкция [1], в которой стенки инкубационной камеры выполнены в виде эластичных матов, а каркас имеет шарнирноразборную конструкцию.

Недостатком этой конструкции является ее низкая эксплуатационно-технологическая надежность, вызванная стремлением к чрезмерному уменьшению стоимости и материалоемкости инкубационной установки: отсутствие принудительной вентиляции создает местные перегревы инкубационной камеры в зоне установки обогревателей; консольная, достаточно тяжелая конструкция инкубатора усложняет работу шарнирного агрегата смещения корпуса; крепление достаточно тяжелой конструкции на стене здания ненадежно и не в каждом здании возможно с точки зрения безопасности.

Общими признаками рассмотренных аналогов являются: стремление к максимальному снижению цены и материалоемкости инкубатора приводит к серьезным эксплуатационно-технологическим недостаткам.

Задачей, решаемой изобретением, является повышение эксплуатационной надежности инкубатора при сохранении его низкой стоимости и материалоемкости.

Для этого инкубационная камера оснащается опорным трубчатым каркасом, который служит основой для монтажа всей конструкции, причем внутренняя полость трубы каркаса является каналом для перемещения подогретого воздуха и его равномерного распределения внутри инкубационной камеры. Эластичными сохранены боковые стенки инкубатора, которые подвержены деформациям в процессе работы механизма поворота инкубируемых яиц. Основными конструктивными элементами инкубатора, в том числе используемыми для изготовления лотков, являются антисептированные древесина, фанера и ДВП, а в качестве утеплителя используется, чаще всего, строительный уплотнитель, паралон, пенопласт и пенополиуретан. В отличие от прототипа инкубационная камера имеет не консольную конструкцию, а закреплена на трубчатом каркасе по центральной оси шарниров, что упрощает эксплуатационное обслуживание и уменьшает усилия при работе автомата поворота шарниров, направляющих, на которых расположены лотки с инкубируемыми яйцами.

Сущность изобретения поясняется чертежом, на котором в двух проекциях представлен общий вид инкубатора.

Инкубатор включает трубчатый каркас 1, шарнирные направляющие 2, на которых в инкубационной камере размещаются лотки 3 с инкубируемыми яйцами, вентилятор 4, оснащенный нагревательным устройством.

Терморегулятор и механизм поворота на чертеже не указаны. Боковые стенки камеры 6 выполнены из эластичного материала. Оси 7 шарнирных направляющих 2 закреплены на вертикальных стойках каркаса 1. На передней панели инкубатора расположены дверцы 8. Камера инкубатора располагается на полу здания на четырех опорах 9. В нижней перемычке каркаса и инкубатора расположены отверстия 10.

Обслуживают инкубатор следующим образом. Лотки 3 после заполнения инкубируемыми яйцами по шарнирным направляющим 2 помещают в инкубационную камеру, в которой с помощью терморегулятора и увлажнителей 5 поддерживаются заданные

BY 4990 C1

температурные режимы и влажность. Через определенные интервалы времени осуществляется шарнирное смещение торцевой части камеры и направляющих 2 вместе с находящимися на них лотками 3 относительно центральной оси инкубационной камеры на определенный угол от горизонтального положения вверх-вниз. Терморегулятор при охлаждении камеры до определенной температуры включает нагреватель и вентилятор 4, который забирает воздух из верхней зоны инкубационной камеры, прогоняет его через нагреватель и по внутренней полости двух вертикальных трубчатых опор, на которых смонтирован шарнирный каркас, перемещает нагретый воздух и равномерно его распределяет через отверстия 10 в нижних слоях камеры. Теплый воздух поднимается вверх, проходя через увлажнитель 5, сетчатую основу лотков 3, омывает инкубируемые яйца, при достижении заданной температуры воздействует на датчик терморегулятора, который отключает нагреватель и вентилятор. Через определенный интервал времени процесс повторяется.

Инкубатор прост в обслуживании, надежен в эксплуатации, имеет небольшую материалоемкость, выполнен из дешевых материалов и узлов.

Источники информации:

1. Заявка РБ 960181, 1997 (прототип).