AACR Feedback Report

Rubric Level Distribution and Description

QUESTION: Example Question

For this question, your students fall into 3 Rubric Levels. Students with similar ideas fall into the same Rubric Level. The 3 Rubric Levels and the percentage of students in each Rubric Level are shown in the pie chart below.

Table 1: Example Response of Each Rubric Level

Table 1. Example Response of Each Rubble Level						
Level 1	Level 2	Level 3				
wrong nucleotide It will not affect	codons to create a stop signal a	made and replication will stop.				
replication The G will be changed	protein may never be made. Oth-	DNA replication will not fully oc-				
to an A in the place of G. How-	erwise an incorrect protein will	cur. The replication process will				
ever	be non functional. It will change	either				
	the code in the genes and cause					
	those genetic codes					

N-gram Overabundance by Rubric Level

Table 2: Overabundance of most frequent n-grams by Rubric Level

Level 1	Overabundance	Level 2	Overabundance	Level 3	Overabundance
influence dna	0.89	translation	2.12	wont	5.67
not	0.89	function	2.12	to stop	5.67
gene	0.89	dna sequence	2.12	stop replication	5.67
effect	0.89	mrna	2.12	earlier	5.67
not affect	0.89	created	2.12	replication	5.67
				would	
affect dna	0.89	up	2.12	into	5.67
instead of	0.89	lead	2.12	becomes stop	5.67
not influence	0.89	lead to	2.12	most	5.67
still	0.89	an amino	2.12	get	5.67
by	0.89	terminated	2.12	thus	5.67
this alteration	0.89	replication of	2.12	asterisk	5.67
replication dna	0.89	shorter	2.12	cause dna	5.67
pair	0.89	strand of	2.12	be stop	5.67
will still	0.89	codon to	2.12	most likely	5.67
alteration will	0.89	signal	2.12	half	5.67
be	0.89	of amino	2.12	premature stop	5.67
does	0.89	would have	2.12	will end	5.67
encoded	0.89	cut	2.12	all of	5.67
it is	0.89	be made	2.12	replication	5.67
				only	
this	0.89	needed	2.12	be shortened	5.67

$$Overabundace = \frac{\frac{N(term|score)}{N(score)} - \frac{N(term)}{N}}{\frac{N(term)}{N}}$$

N-gram Co-occurence Web Diagrams

Warning in brewer.pal(nEdges, "Set2"): n too large, allowed maximum for palette Set2 is 8
Returning the palette you asked for with that many colors

Warning in brewer.pal(nNodes, "Set3"): n too large, allowed maximum for palette Set3 is 12
Returning the palette you asked for with that many colors

Level 1

