

Departamento de Matemática, Universidade de Aveiro

Cálculo I — Ano lectivo 06/07

Resolução do Trabalho Teórico-Prático 1

Seja $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função.

a) Defina zero (ou raiz) de f.

Resolução:

Chama-se zero de f a todo o $x_0 \in D_f$ tal que $f(x_0) = 0$.

- b) Seja $g: D_g \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função tal que $g \circ f$ está definida.
 - i) Mostre que se $y_0 \in D_g$ é um zero de g e $y_0 \in CD_f$, então $g \circ f$ admite pelo menos um zero.

Resolução:

Por hipótese tem-se que $y_0 \in D_g$ é um zero de g, o que significa que

$$g(y_0) = 0. (1)$$

Também por hipótese $y_0 \in CD_f$, o que significa que existe $x_0 \in D_f$ tal que

$$f(x_0) = y_0. (2)$$

Uma vez que $D_{g \circ f} = \{x \in D_f : f(x) \in D_g\}$, podemos concluir que $x_0 \in D_{g \circ f}$.

Conjugando (1) e (2) e, atendendo à definição de composta, concluímos que existe $x_0 \in D_{g \circ f}$ tal que $g(f(x_0)) = 0 \iff (g \circ f)(x_0) = 0$ o que, de acordo com a definição apresentada na alínea anterior, significa que x_0 é um zero de $g \circ f$.

ii) Seja h a restrição de f ao conjunto $D_{g \circ f}$. Mostre que se h não é injectiva, então $g \circ f$ não é injectiva. **Resolução:**

Por definição de restrição de uma função temos que

$$h: D_{g \circ f} \longrightarrow \mathbb{R}$$

 $x \longmapsto h(x) = f(x)$.

Admitamos que h não é injectiva. Então, por definição de função injectiva e por definição de h, existem $x_1, x_2 \in D_{g \circ f}$ tais que $x_1 \neq x_2$ e $f(x_1) = f(x_2)$.

Desta última igualdade resulta que $g(f(x_1)) = g(f(x_2))$, ou seja, por definição de composição de funções, $(g \circ f)(x_1) = (g \circ f)(x_2)$.

Está então provado que existem $x_1, x_2 \in D_{g \circ f}$ tais que $x_1 \neq x_2$ e $(g \circ f)(x_1) = (g \circ f)(x_2)$, o que significa que $g \circ f$ não é injectiva.

Cálculo I — Ano lectivo 06/07

- c) Suponha que a função f é definida por $f(x) = \frac{x^3 + x^2 3x + 1}{x^2 + x + 1}$, para todo o $x \in D_f$, e que a função g é definida por $g(x) = \ln x$, para todo o $x \in D_g$.
 - i) Determine o domínio da função $g \circ f$.

Resolução:

Inicialmente vamos determinar o domínio das funções f e g separadamente.

$$D_f = \left\{ x \in \mathbb{R} : x^2 + x + 1 \neq 0 \right\}$$

= \mathbb{R} atendendo a (*)

$$D_g = \{x \in \mathbb{R} : x > 0\}$$
$$= \mathbb{R}^+$$

Tendo em conta a definição de domínio de uma função composta obtemos

$$D_{g \circ f} = \left\{ x \in \mathbb{R} : x \in D_f \land f(x) \in D_g \right\}$$

$$= \left\{ x \in \mathbb{R} : x \in \mathbb{R} \land \frac{x^3 + x^2 - 3x + 1}{x^2 + x + 1} > 0 \right\}$$

$$= \left\{ x \in \mathbb{R} : \frac{x^3 + x^2 - 3x + 1}{x^2 + x + 1} > 0 \right\}$$

$$= \left\{ x \in \mathbb{R} : -1 - \sqrt{2} < x < -1 + \sqrt{2} \lor x > 1 \right\}, \text{ atendendo a } (2*)$$

$$= \left[-1 - \sqrt{2}, -1 + \sqrt{2} \middle[\cup \right] 1, +\infty \middle[$$

Cálculos Auxiliares (*)

Determinação de D_f

Uma vez que

$$x^{2} + x + 1 = 0 \quad \Leftrightarrow x = \frac{-1 \pm \sqrt{1^{2} - 4 \times 1 \times 1}}{2 \times 1} \quad \Leftrightarrow \qquad \underbrace{x = \frac{-1 \pm \sqrt{-3}}{2}}_{\text{Condicão Impossível om } \mathbb{P}},$$

concluímos que $x^2 + x + 1 \neq 0$ para todos os $x \in \mathbb{R}$.

Cálculos Auxiliares (2*)

Zeros do numerador da fracção considerada

Tendo em conta a regra de Ruffini e uma vez que x = 1 é uma raiz do polinómio $x^3 + x^2 - 3x + 1$, podemos fazer a seguinte simplificação

Assim

$$x^{3} + x^{2} - 3x + 1 = 0 \Leftrightarrow (x - 1)(x^{2} + 2x - 1) = 0$$

$$\Leftrightarrow x - 1 = 0 \lor x^{2} + 2x - 1 = 0$$

$$\Leftrightarrow x = 1 \lor x = \frac{-2 \pm \sqrt{2^{2} - 4 \times 1 \times (-1)}}{2 \times 1}$$

$$\Leftrightarrow x = 1 \lor x = \frac{-2 \pm \sqrt{8}}{2}$$

$$\Leftrightarrow x = 1 \lor x = \frac{-2 \pm 2\sqrt{2}}{2}$$

$$\Leftrightarrow x = 1 \lor x = -1 \pm \sqrt{2},$$

Cálculo I — Ano lectivo 06/07

o que nos permite concluir que os zeros do numerador são x = 0, $x = -1 - \sqrt{2}$, $x = -1 + \sqrt{2}$. Uma vez que já sabemos os zeros do numerador podemos construir o seguinte quadro de sinais

X	_∞	$\left -1 - \sqrt{2} \right $		$-1+\sqrt{2}$		1	+∞
x-1	_	_	-	_	-	0	+
$x^2 + 2x - 1$	+	0	_	0	+	+	+
$x^3 + x^2 - 3x + 1$	_	0	+	0	_	0	+

Zeros do denominador da fracção considerada

Tendo em conta os cálculos efectuados em (*) podemos dizer que o denominador não tem zeros reais. Uma vez que o denominador não tem zeros podemos dizer que o seu gráfico corresponde a uma parábola que não intersecta o eixo das abcissas e que se encontra voltada para cima (porque o coeficiente do x^2 é positivo).

Assim, obtemos o seguinte quadro de sinais

$$\begin{array}{c|c|c} x & -\infty & +\infty \\ \hline x^2 + x + 1 & + & + & + \\ \hline \end{array}$$

Elaboração e estudo do quadro de sinal

Uma vez que anteriormente se estudou a variação do sinal do numerador e do denominador podemos construir um quadro para estudar a variação do sinal da nossa fracção

X	-∞	$\left -1 - \sqrt{2} \right $		$-1+\sqrt{2}$		1	+∞
$x^3 + x^2 - 3x + 1$	_	0	+	0	_	0	+
$x^2 + x + 1$	+	+	+	+	+	+	+
$\frac{x^3 + x^2 - 3x + 1}{x^2 + x + 1}$	_	0	+	0	_	0	+

Da análise do quadro anterior resulta

$$\frac{x^3 + x^2 - 3x + 1}{x^2 + x + 1} > 0 \quad \Leftrightarrow \quad -1 - \sqrt{2} < x < -1 + \sqrt{2} \lor x > 1$$

Cálculo I — Ano lectivo 06/07

ii) Determine o(s) zero(s) da função $g \circ f$.

Resolução:

Pretendemos determinar os valores de $x \in D_{g \circ f}$ tais que

$$(g \circ f)(x) = 0 \Leftrightarrow g(f(x)) = \ln(f(x)) = 0.$$

Uma vez que $ln(x) = 0 \iff x = 1$ concluímos que

$$\ln(f(x)) = 0 \quad \Leftrightarrow \quad f(x) = 1$$

$$\Leftrightarrow \quad \frac{x^3 + x^2 - 3x + 1}{x^2 + x + 1} = 1$$

$$\Leftrightarrow \quad \frac{x^3 + x^2 - 3x + 1}{x^2 + x + 1} - 1 = 0$$

$$\Leftrightarrow \quad \frac{x^3 + x^2 - 3x + 1 - x^2 - x - 1}{x^2 + x + 1} = 0$$

$$\Leftrightarrow \quad \frac{x^3 - 4x}{x^2 + x + 1} = 0$$

$$\Leftrightarrow \quad x^3 - 4x = 0 \land \qquad \underbrace{x^2 + x + 1 \neq 0}_{\mathbf{Condição universal em } \mathbb{R}}$$

$$\Leftrightarrow \quad x(x^2 - 4) = 0$$

 $\Leftrightarrow x(x-4) = 0$ $\Leftrightarrow x = 0 \lor x^2 - 4 = 0$

 $\Leftrightarrow x = 0 \lor x = \pm 2.$

Logo, os zeros de $g \circ f$ são -2, 0 e 2.

iii) O que pode afirmar sobre a injectividade da função $g \circ f$?

Resolução:

Como a função $g \circ f$ tem mais do que um zero concluímos que se trata de uma função não injectiva, uma vez que temos -2, $0 \in D_{g \circ f}$ com $-2 \neq 0$ e $(g \circ f)(-2) = (g \circ f)(0) = 0$.