Esercizi set 9 1.1 Quale delle seguenti è un'ipotesi statistica? □ Un campione di dati. □ Un insieme di valori assunti dal campione. □ Una stima per un parametro incognito di una distribuzione. ĭ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione. □ Un'affermazione su un parametro incognito di una distribuzione su un parametro incognito di una distribuzione su un parametro incognito di una distribuzione su un parametro di una di una di una distribuzione su un parametro di una 1.2 Commettere un errore di prima specie nella verifica di un ipotesi significa: □ rifiutare l'ipotesi; rifiutare l'ipotesi quando essa è vera; □ accettare l'ipotesi; □ accettare l'ipotesi quando essa è falsa. 1.3 In un certo test di verifica di ipotesi la regione critica è della forma $\{ST > k\}$. Inoltre, vale $\mathbb{P}_{H_0}(ST > 10) = 0.05$, dove \mathbb{P}_{H_0} denota la probabilità calcolata assumendo vera l'ipotesi nulla H_0 . Siano α il livello di significatività del test e x_1, \ldots, x_n un campione di dati osservati. Quale delle seguenti affermazioni è vera? \square Se $\alpha = 0.01$ e $ST(x_1, \ldots, x_n) = 9$, allora H_0 viene rifiutata. \square Se $\alpha = 0.1$ e $ST(x_1, \dots, x_n) = 12$, allora H_0 viene accettata. \bowtie Se $\alpha = 0.05$, rifiuto H_0 se $ST(x_1, \ldots, x_n) > 10$. □ Nessuna delle affermazioni precedenti è necessariamente vera. 1.4 Sia $\bar{\alpha}$ il valore-p di un test per la verifica dell'ipotesi nulla H_0 . Sia inoltre α il livello di significatività a cui viene effettuato il test. Allora \bowtie se $\alpha > \bar{\alpha}$, l'ipotesi H_0 viene rifiutata; \square se $\alpha < \bar{\alpha}$, l'ipotesi H_0 viene rifiutata; \Box $\bar{\alpha}$ è la probabilità di commettere un'errore nella verifica dell'ipotesi H_0 ; \Box $\bar{\alpha}$ è un parametro incognito nella distribuzione del campione.

1.5
Sia $\bar{\alpha}$ il valore- p di un test sulla media di un campione normale. Allora
$\mathbf{Z} \bar{\alpha}$ dipende dai dati osservati;
\Box $ar{lpha}$ è sicuramente maggiore di 0.5;
\Box se il livello di significatività del test è maggiore di $\bar{\alpha}$ allora l'ipotesi nulla viene accettata; $_$
□ nessuna delle affermazioni precedenti è vera.
1.6
La regione critica di un test di verifica dell'ipotesi H_0 è
$\hfill\Box$ il valore- p dei dati del test;
$\hfill\Box$ un insieme di valori del parametro incognito che contrasta con i dati sperimentali; \hfill
$oldsymbol{\boxtimes}$ un insieme di valori che, se assunti dalla statistica test, conduce al rifiuto di H_0 ;
$\hfill\Box$ un insieme di valori del livello di significatività per i quali H_0 viene respinta.
1.7
In un test per la verifica dell'ipotesi $H_0: \mu \geq 1$ per un campione normale, il valore- p calcolato sui dati è $\bar{\alpha}=0.03$. Quale delle seguenti affermazioni è sicuramente vera?
Sulla base degli stessi dati, H_0 viene rifiutata a livello di significatività $\alpha=0.05$.
\Box La probabilità di rifiutare H_0 è 0.97.
\square I dati sono in sostanziale accordo con l'ipotesi H_0 .
\square Sulla base degli stessi dati, H_0 viene accettata a livello di significatività $\alpha=0.15.$
1.8
In un test per la verifica di $H_0: \mu = \mu_0$ contro $H_1: \mu \neq \mu_0$, per un campione normale, la statistica test è ST . Quando H_0 è vera, si ha che $\mathbb{P}(ST \geq 2) = 0.04$. Si raccolgono dei dati x_1, \ldots, x_n in corrispondenza dei quali si ottiene $ST(x_1, \ldots, x_n) = 2$. Allora
\Box H_0 viene rifiutata al 1%;
\Box H_0 viene accettata al 10%;
$ \boxtimes H_0 $ viene rifiutata al 7%;
$\hfill\Box$ H_0 viene accettata al 7%. $\hfill\Box$
1.9
Effettuando un test d'ipotesi di livello di significatività α sono sicuro che
\square $\mathbb{P}(\text{accetto } H_0 \text{ quando è corretta}) \leq \alpha;$
\square $\mathbb{P}(\text{accetto } H_0 \text{ quando è sbagliata}) \leq \alpha;$
$ \boxtimes \mathbb{P}(\text{rifiuto } H_0 \text{ quando è corretta}) \leq \alpha; $
\square $\mathbb{P}(\text{rifiuto } H_0 \text{ quando è sbagliata}) \geq \alpha.$

1.10
Si consideri un test di verifica di ipotesi su un parametro incognito μ e si supponga di testare l'ipotesi $H_0: \mu \geq 0$. Quale delle seguenti affermazioni è corretta?
\square La regione critica del test è $\{\mu \in \mathbb{R} : \mu < 0\}$.
$ ot\boxtimes$ La regione critica del test è l'insieme dei valori della statistica test per cui H_0 viene rifiutata.
$\hfill\Box$ La regione critica del test è l'insieme dei valori della statistica test per cui H_0 viene accettata.
$\hfill\Box$ La regione critica del test è $\{\mu\in\mathbb{R}:\mu\geq 0\}.$
1.11
Viene effettuato un test per verificare una certa ipotesi nulla H_0 . Se il valore- p , calcolato sui dati osservati, vale 0.73, si può concludere che:
\bowtie i dati sono in accordo con H_0 ;
\square i dati sono in forte disaccordo con H_0 ; —
\square H_0 è vera; —
$\ \square \ H_0$ è falsa. —
1.10
1.12
Un'associazione di consumatori ha il sospetto che il contenuto medio μ di grassi in un prodotto dietetico sia maggiore del valore dichiarato μ_0 . Si fissi un livello di significatività α e si denoti con H_0 l'ipotesi che viene verificata a livello α . In quale dei seguenti casi possiamo concludere che il sospetto sia fondato?
$\Box \ H_0: \mu \leq \mu_0 \ { m e} \ H_0 \ { m viene} \ { m accettata}$
$\Box \ \ H_0: \mu \geq \mu_0$ e H_0 viene accettata
$\Box \ \ H_0: \mu \geq \mu_0$ e H_0 viene rifiutata
1.13
Si vuole stimare la percentuale q di membri di una popolazione che hanno una data caratteristica.
Viene selezionato un campione di 100 individui, di cui 15 hanno la data caratteristica. Quale delle seguenti affermazioni è <i>vera</i> ?
$\hfill\Box$ L'ipotesi $H_0: q=0.20$ viene rifiutata a livello di significatività 0.05.
$\hfill\Box$ L'ipotesi $H_0:q\geq 0.20$ viene rifiutata a livello di significatività 0.05.
$\hfill\Box$ L'ipotesi $H_0:q\leq 0.20$ viene accettata a livello di significatività 0.05.
$\hfill\Box$ L'ipotesi $H_0: q \leq 0.10$ viene accettata a livello di significatività 0.05.
?
1.14
In un test per la verifica dell'ipotesi H_0 , viene usata la statistica test ST e la regione critica
risulta $\{ST > 10\}$. Supponiamo che H_0 sia vera e che i dati osservati x_1, \ldots, x_n siano tali per cui $ST(x_1, \ldots, x_n) = 2$. Allora
□ si commette un errore di prima specie;
□ si commette un errore di seconda specie:

≼ non si commette alcun errore;

 $\hfill\Box$ nessuna delle affermazioni precedenti è vera.

1.15

Effettuando un test sulla media di un campione normale con varianza incognita, il campione di dati cade all'interno della regione critica per il livello di significatività 1%. Allora

 \boxtimes l'ipotesi H_0 viene rifiutata al 5% di significatività;

- $\hfill\Box$ l'ipotesi H_0 viene accettata all'1% di significatività;
- \square il valore-p del test è maggiore di 0.01;
- \square l'ipotesi H_0 è falsa.

1.16

Per verificare l'efficacia di un farmaco per la riduzione del livello di trigliceridi nel sangue, vengono utilizzati due gruppi di volontari. Ad un gruppo viene somministrato il farmaco, all'altro una sostanza dall'identico aspetto, ma del tutti inerte. Quale dei seguenti metodi statistici verrà usato per effettuare la verifica?

□ Un test di confronto di medie per dati accoppiati.

🗶 Un test di confronto di medie per campioni indipendenti.

 $\hfill\Box$ Un test-t su una media.

□ Un test di confronto di due proporzioni.

1.17

Due campioni x_1, \ldots, x_n e y_1, \ldots, y_n hanno la stessa ampiezza e le loro varianze campionarie sono rispettivamente pari a $\hat{s}_X^2 = 4$ e $\hat{s}_Y^2 = 6$. Allora la varianza campionaria combinata \hat{s}_P^2 vale

 $\boxtimes 5$;

 \square 4.5;

 \square 5.5;

 $\hfill\Box$ non è possibile calcolarla senza conoscere l'ampiezza n dei campioni.

$$\frac{6+4}{2} = \frac{40}{2} = 5$$