Math 240 Tutorial Questions

May 23

Question 1. For each part, explain whether or not the stated matrix–vector multiplication can be carried out. If it can, do the multiplication.

(a)

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

(b)

$$\begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Question 2. Write the following linear system first as a vector equation and then as a matrix equation

$$u + 2v - w - 2x + 3y = b_1,$$

$$x - y + 2z = b_2,$$

$$2u + 4v - 2w - 4x + 7y - 4z = b_3,$$

$$-x + y - 2z = b_4,$$

$$3u + 6v - 3w - 6x + 7y + 8z = b_5,$$

where $b_1, b_2, b_3, b_4, b_5 \in \mathbf{R}$.

Question 3. For each of the following lists of row vectors in \mathbb{R}^3 , determine whether the first vector can be expressed as a linear combination of the other two vectors.

(a)
$$(-2,0,3)$$
, $(1,3,0)$, $(2,4,-1)$.

(b)
$$(1,2,-3), (-3,2,1), (2,-1,-1).$$

(c)
$$(3,4,1), (1,-2,1), (-2,-1,1).$$

(d)
$$(2,-1,0)$$
, $(1,2,-3)$, $(1,-3,2)$.

(e)
$$(5,1,-5)$$
, $(1,-2,-3)$, $(-2,3,-4)$.

(f)
$$(-2,2,2)$$
, $(1,2,-1)$, $(-3,-3,3)$.

Question 4. Consider the following three vectors in \mathbb{R}^3

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

1

Show that $\mathbf{R}^3 = \text{span}\{\vec{u}_1, \, \vec{u}_2, \, \vec{u}_3\}.$

Question 5. Show that span $\{\vec{u}, \vec{v}, \vec{w}\} = \text{span}\{\vec{u}, \vec{v} + \vec{w}, \vec{v} - \vec{w}\}.$

Question 6. Consider the following four vectors in \mathbb{R}^4 given by

$$\vec{v}_1 = \begin{pmatrix} +1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} -1 \\ +1 \\ -1 \\ -1 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} -1 \\ -1 \\ +1 \\ -1 \end{pmatrix}, \quad \vec{v}_4 = \begin{pmatrix} -1 \\ -1 \\ -1 \\ +1 \end{pmatrix}.$$

- (a) Show whether $\vec{v}_1 \in \text{span}\{\vec{v}_2, \vec{v}_3, \vec{v}_4\}$ or not by solving the corresponding system of linear equations.
- (b) Let $a_1, a_2, a_3, a_4 \in \mathbf{R}$. Under what conditions on a_1, a_2, a_3, a_4 is $a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 + a_4\vec{v}_4 = \vec{0}$ true?
- (c) How can we use part (b) to provide a second proof of part (a)? Can you generalize to answer the following question: Is $\vec{v_i} \in \text{span}\{\vec{v_i}, \vec{v_k}, \vec{v_l}\}$ for i, j, k, l distinct?

Question 7. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbf{R}^n$ be such that if $a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_n\vec{v}_n = \vec{0}$ then $a_1 = a_2 = \cdots = a_n = 0$. Show this implies that every vector in span $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ can be written *uniquely* as a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.

Question 8. Let V_1 and V_2 be two subsets of \mathbf{R}^n , and define $V_1+V_2=\{\vec{v}_1+\vec{v}_2:\vec{v}_1\in V_1\text{ and }\vec{v}_2\in V_2\}$. Show (a) $\operatorname{span}(V_1\cup V_2)=\operatorname{span}(V_1)+\operatorname{span}(V_2)$, and (b) $\operatorname{span}(V_1\cap V_2)\subseteq\operatorname{span}(V_1)\cap\operatorname{span}(V_2)$. Further, give an example of subsets V_1 and V_2 of \mathbf{R}^n , for some n, for which $\operatorname{span}(V_1\cap V_2)\subseteq\operatorname{span}(V_1)\cap\operatorname{span}(V_2)$.