ACKNOWLEDGEMENTS

Foremost, I would like to express my deep sense of gratitude to my project guide **Dr.S.Muthukumaran**, Assossiate Professor, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli for his support and motivation throughout this project. I would also like to thank **Mr. Saran**, M.S scholar, and **Mr. Maxwell Rejil**, Ph.D scholar, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, for their guidance which in turn led to the successful completion of this project.

I sincerely thank **Dr.Srinivasan Sundarrajan**, Director, National Institute of technology, Tiruchirappalli, and **Dr.S.Raman Sankaranarayanan**, Professor and Head, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, for permitting me to carry out this project of research relevance in the department with comfort.

I would like to thank all the faculty of Department of Metallurgical and Materials Engineering, NITT for their encouragement and insightful comments.

Sincere thanks are extended to all my friends for their numerous ideas and useful suggestions. They provided me a warm and friendly environment for completing this work.

Finally, and most importantly, I would like to thank the almighty God, for his grace that we live, learn and flourish.

SOORAJ R

TABLE OF CONTENTS

Title	Page	No.
ABSTRACT		iii
ACKNOWLEDG	EMENTS	iv
TABLE OF CON	TENTS	v
LIST OF TABLE	S	vii
LIST OF FIGUR	ES	viii
ORGANIZATIO	N OF THE THESIS	X
CHAPTER 1	INTRODUCTION	1
1.1	General	1
1.2	Solid state welding	1
1.3	Friction welding	2
1.4	Friction welding of tube to tube plate using an external tool	
	(FWTPET)	2
1.5	Application of FWTPET process	4
1.6	Base material properties	5
	1.6.1 Aluminium 6061-T651	5
	1.6.2 Application of aluminium 6061 alloy	6
	1.6.3 Titanium Grade V (TIAl6V4)	7
1.7	Objective	9
1.8	Work plan	10
CHAPTER 2	LITERATURE REVIEW	11
2.1	Summary	11
CHAPTER 3	EXPERIMENTAL DETAILS	17
3.1	Materials	17
	3.1.1 Workpiece	17
	3.1.2 Tool	17

3.2	Experimental set up	18
3.3	Step in FWTPET	19
	3.3.1 Sample preparation	19
	3.3.2 Assembly	19
	3.3.3 Alignment	20
	3.3.4 Welding	20
3.4	Welding parameters	21
3.5	Tube profiles	21
3.6	Metallographic studies	22
3.7	Microhardness measurements	23
3.8	Shear test	23
3.9	Scanning Electron Microscopy (SEM) and Energy	
	Dispersive X ray (EDX)	23
3.10	X ray diffraction analysis	23
CHAPTER 4	RESULTS AND DISCUSSIONS	24
4.1	Metallographic analysis	24
	4.1.1 Macrostructure analysis	24
	4.1.2 Microstructure analysis	25
4.2	Microhardness	27
4.3	Weld strength	29
4.4	X-ray diffraction analysis	30
4.5	SEM analysis	31
4.6	Fractography	33
CHAPTER 5	CONCLUSIONS AND FUTURE SCOPE	35
5.1	Conclusions	35
5.2	Future scope	35
REFERENCES		36

LIST OF TABLES

Table No.	Title	Page No.
3.1	Chemical composition of AA6061-T6	17
3.2	Chemical composition of TiAl6V4	17
3.3	Chemical composition of tool material	17
3.4	Dimension of tool used	18
4.1	Shear strength for different tube profile	29

LIST OF FIGURES

Figure	Title	Page
No.		No.
1.1	Friction welding process	2
1.2	(a)FWTPET (b)Plastic metal flow towards tube axis-clearance method	3
1.3	FWTPET- interference method.	4
1.4	Application of tube to tube plate joints	4
1.5	Application of dissimilar FWTPET process	5
1.6	General characteristics and typical application of Titanium Alloys	8
3.1	External tool.	17
3.2	Modified milling machine for FWTPET	18
3.3	Sample preparation.	19
3.4	(a) Backing block (b) Assembly of the tool, tube and plate	20
3.5	Schematic illustration of FWTPET process	20
3.6	Schematic illustration of projection given to the tube	21
3.7	(a) Holes (b) Slots (c) Petals	22
3.8	Petaling done using an oval tool.	22
4.1	Top view of FWTPET with (a) petal (b)hole (c) slot	24
4.2	Macrostructure of FWTPET with (a) Hole (b) Slot (c) Petal	24
4.3	Microstructure of base material (a) AA6061-T651 (b) TiAl6V4	25
4.4	Microstructure of TiAl6V4 (a) at the interface (b) away from the interface	26

4.5	Change in the microstructure of TiAl6V4	26
4.6	Microstructure of AA6061-T651 (a) at interface (b) away from the interface	26
4.7	Hardness profile across the interface	27
4.8	Microstructure of the heat treated sample (a) Al at the top interface (b) Al at the interface (c) Ti at the interface	28
4.9	Hardness profile across the interface of the aged sample	29
4.10	Weld strength for different tube profiles	30
4.11	XRD plot of Ti-Al weld interface	30
4.12	Line scan across Ti-Al interface	31
4.13	EDS plot showing the composition along the line scan	32
4.14	SEM image at the interface along with the composition at various points	32
4.15	EDS pattern at zone 3	33
4.16	Titanium tube after shear test	33
4.17	SEM images of the fracture surface on the Aluminium plate	34

ORGANIZATION OF THE THESIS

This report is divided into following five chapters:

- > Chapter 1 deals with introduction.
- > Chapter 2 deals with literature review.
- > Chapter 3 deals with experimental procedure.
- ➤ Chapter 4 deals with results and discussion.
- > Chapter 5 deals with conclusion and future scope.