Lista zadań nr 2

"Rachunek funkcyjny. Definicja funkcji. Dziedzina i zbiór spełnienia funkcji zdaniowej. Kwantyfikatory. Prawa rachunku funkcyjnego"

Zad.1. Wyznaczyć zakres zmienności (dziedzinę) i zbiór spełniania następujących funkcji zdaniowych:

a)
$$x^3 - x^2 - 21x + 45 = 0$$

b)
$$2x^3 + x^2 - 9 = 0$$

c)
$$|x-2| + |x-3| + |2x-8| = 9$$

d)
$$\frac{x^3-3x^2-x+3}{x^2+3x+2} > 0$$

e)
$$4x^4 + 8x^3 + x^2 - 3x - 1 = 0$$

f)
$$\sqrt{x+1} - \sqrt{9-2x} = \sqrt{2x-12}$$

g)
$$\frac{2x}{2x^2-5x+3} + \frac{13x}{2x^2+x+3} = 6$$

Zad.2. Wyznacz zbiory spełniania alternatywy i koniunkcji funkcji zdaniowych $\varphi(x)$ i $\psi(x)$:

a)
$$\varphi(x)$$
: $x^2 + 3x + 2 > 0$, $\psi(x)$: $x + 2 < 0$

b)
$$\varphi(x)$$
: $x^2 + 3x + 2 = 0$, $\psi(x)$: $x + 1 < 0$

c)
$$\varphi(x)$$
: $x^2 + 2x - 3 < 0$, $\psi(x)$: $x - 2 > 0$

d)
$$\varphi(x): -x^2 + 2x - 2 > 0$$
, $\psi(x): x + 2 < 0$

Zad.3. Wyznaczyć zbiory spełniania implikacji $\varphi(x) \Rightarrow \psi(x)$ i równoważności $\varphi(x) \Leftrightarrow \psi(x)$ funkcji zdaniowych $\varphi(x)$ i $\psi(x)$:

a)
$$\varphi(x)$$
: $x^2 + x + 5 > 0$, $\psi(x)$: $x + 2 < 0$

b)
$$\varphi(x): x^2 + 4x < 0$$
, $\psi(x): x - 1 < 0$

c)
$$\varphi(x): x^2 - 9 > 0$$
, $\psi(x): x - 3 > 0$

d)
$$\varphi(x): \frac{1}{2x^2} > 8$$
, $\psi(x): x^2 + 5x + 4 = 0$

Zad.4. Zbadać, czy następujące pary funkcji zdaniowych są równoważne:

a)
$$\frac{x^3 - 3x^2 - x + 3}{x^2 + 3x + 2} > 0$$
, $\frac{(x-1)(x-3)}{x+2} > 0$

b)
$$\sqrt{x+7} > 2x-1$$
, $x+7 > (2x-1)^2$

c)
$$\frac{2}{x^2 - x + 1} - \frac{1}{x + 1} - \frac{2x - 1}{x^3} \ge 0$$
, $\frac{2 - x}{x^2 - x + 1} \ge 0$

d)
$$\sqrt{(x-1)^2} = 2$$
, $x-1=2$

e)
$$\sqrt{x^2 + 4x + 4} + \sqrt{x^2 - 10x + 25} = 10$$
. $|x + 2| + |x - 5| = 10$

Zad.5. Zbadać, czy funkcje zdaniowe (a) i (b) są równoważne:

- 1. (a) Nie jest prawdą, że liczba naturalne k jest podzielna przez liczbę naturalną l i przez liczbę naturalną m.
 - (b) Nie jest prawdą, że liczba naturalna k jest podzielna przez liczbę naturalną l lub nie jest prawdą, że liczba naturalna k jest podzielna przez liczbę naturalną m.

- 2. (a) Nie jest prawdą, że prosta a jest równoległa do prostej b lub prosta a jest równoległa do prostej c.
 - (b) Prosta a nie jest równoległa do prostej b i prosta a nie jest równoległa do prostej c.
- 3. (a) Jeżeli czworokąt ABCD jest prostokątem i ma wszystkie boki tej samej długości, to ABCD jest kwadratem.
 - (b) Jeżeli czworokąt ABCD jest prostokątem, to z faktu, że czworokąt ABCD ma wszystkie boki tej samej długości wynika, że jest kwadratem.

Zad.6. Korzystając z prawa zaprzeczenia implikacji, podać zaprzeczenia następujących funkcji zdaniowych:

- a) Jeżeli liczby naturalne a i b są parzyste, to suma a+b jest liczbą parzystą
- b) Jeżeli α i β są kątami ostrymi oraz α + β =90°, to sin α =cos β i cos α =sin β
- c) Jeżeli liczby a i b są niewymierne, to różnica a-b jest liczbą wymierną
- d) Jeżeli liczba naturalna a jest podzielna przez 2 i 3, to liczba a jest podzielna przez 6

Zad.7. Korzystając z prawa kontrapozycji, podać równoważne sformułowania następujących funkcji zdaniowych:

- a) Jeżeli liczba pierwsza p dzieli liczbę a^2 , to liczba p dzieli liczbę naturalną a.
- b) Jeżeli punkt M należy do dwusiecznej kąta wypukłego AOB, to jego odległości od ramion tego kąta są równe.
- c) Jeżeli suma cyfr liczby naturalnej a jest podzielna przez 3, to liczba a jest podzielna przez 3.

Zad.8. Ocenić wartość logiczną następujących zdań:

- a) $\forall x \in \mathbb{R} \ [x^2 > 0]$
- b) $\forall x \in \mathbb{N} \ \exists y \in \mathbb{R} \ [x + y = 2]$
- c) $\forall m \in \mathbb{N} \exists n \in \mathbb{N} [n > m]$
- d) $\exists x \in \mathbb{R} \ [\sim (x \neq 0 \Rightarrow x^2 x \neq 0)]$
- e) $\forall x \in \mathbb{R} [(x < x + 1) \Rightarrow (2 > 3)]$
- f) $\forall x \in \mathbb{R} \left[(x < \sqrt{2}) \lor (x > \sqrt{2}) \right]$
- g) $\exists x \in \mathbb{R} \ [x^2 + 1 \ge 0]$

Zad.9. Napisać zdania będące zaprzeczeniem poniższych zdań i ocenić ich wartość logiczną:

- a) $\forall x \in \mathbb{R} \ [x^2 \ge 0]$
- b) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ [x + y = 0]$
- c) $\exists x \in \mathbb{R} [x^2 = 2x]$
- d) $\forall x \in \mathbb{N} [x^2 + 1 > 0]$
- e) $\forall x \in \mathbb{R} [(x > 2) \lor (x < 2)]$
- f) $\forall x \in \mathbb{R} \left[(x^2 > 0) \Rightarrow (x < 0) \right]$

Zad.10. Zapisać w języku symbolicznym następujące zdania sformułowane w języku naturalnym:

- a) Każda liczba rzeczywista jest równa samej sobie
- b) Kwadrat liczby wymiernej jest liczbą wymierną
- c) Jeżeli dwie liczby całkowite dzielą się wzajemnie jedna przez drugą, to różnią się co najwyżej znakiem

- d) Dla każdej liczby rzeczywistej istnieje większa od niej liczba naturalna
- e) Nie istnieje największa liczba naturalna
- f) Ciąg (a_n) jest rosnący