ME 3109: Measurement & Instrumentation

Azmir Hasan Mojumder

Lecturer

Department of Mechanical and Production Engineering Ahsanullah University of Science and Technology

ME 3109: Measurement & Instrumentation

Topic_05: Measurement System Error & Uncertainty ^[1]					
1	Basic Terminology & Errors				
2	Uncertainty Analysis				
3	Probability Distribution				

[1] Figliola's "Theory & Design for Mechanical Measurements", 5th Edition

(C) AHM

1. Basic Terminology & Errors

Ennor - Diff. between the measured value and the true value being measured True value -> value that would be obtained from a theoretical perfect measurement. Accuracy -> Describes how close a set of measurements are to the frue value. Precision -> Describes the spread of repeated measurements. Repeatability -> Closeruss of agreement betwo repeated measurements of same thing, carpied out by same person, at same time, in same way, or same equipments etc.

1. Basic Terminology & Errors

Reproducibility -> Closeness of agreement between measurements of some thing carried out in different cincumstances.

Range -> limits defining the min. and max. values for which the measurement system is to be used.

Resolution -> Smallest increament in the measured value that can be discensed.

Uncertainty -> Quantifies the quality of result.

Errors are a property of the measurement & Uncertainty is a property of the result

1. Experimental Errors

2. Uncertainty Analysis

Electrical Power,
$$P = EI$$
; where $E = 50 \text{ V} \pm 4 \text{ V}$

$$I = 5 \text{ A} \pm 0.1 \text{ A}$$
Nominal Power, $P = E \times I = 50 \times 5 = 250 \text{ W}$
Max Power, $P = E \times I = 50 \times 5 = 250 \text{ W}$
Min Power, $P = E \times I = 50 \times 5 = 250 \text{ W}$
Min Power, $P = E \times I = 50 \times 5 = 250 \text{ W}$
Min Power, $P = E \times I = 50 \times 5 = 250 \text{ W}$
Min Power, $P = E \times I = 50 \times 5 = 250 \text{ W}$
Sol Uncertainty in the power $I = 46 \times 4.9 = 225.4 \text{ W}$

It is quite unlikely that the power would be in error by these amounts because the voltmeter variations would probably not correspond with the ammeter variations

2. Uncertainty Analysis: Propagation of Uncertainty

Result,
$$R = R(x_1, x_2, x_3, ..., x_n)$$
, where x_i 's are independent variable w_i 's — uncentainties in the independent variables $w_R \longrightarrow v_r$ uncentainty in the nextle

If the uncertainties in the independent variables are all given with the same odds, then the uncertainty in the result having these odds is given,

2. Uncertainty Analysis: Uncertainties of Additive Functions

Result function,
$$\longrightarrow R = a_1x_1 + a_2x_2 + \dots + a_nx_n = \sum a_ix_i$$

partial derivatives, $\longrightarrow \frac{\partial R}{\partial x_i} = a_i$

The uncertainty, $\longrightarrow w_R = \left\{\sum \left[\left(\frac{\partial R}{\partial x_i}\right)^2 w_{x_i}^2\right]\right\}^{1/2}$
 $= \left[\sum \left(a_iw_{x_i}\right)^2\right]^{1/2}$

2. Uncertainty Analysis: Uncertainties of Product Functions

Result function
$$\rightarrow R = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

Partial derivation $\rightarrow \frac{\partial R}{\partial x_i} = x_1^{a_1} x_2^{a_2} \left(a_i x_i^{a_i - 1} \right) \cdots x_n^{a_n}$

Divide by $R \rightarrow \frac{1}{R} \frac{\partial R}{\partial x_i} = \frac{a_i}{x_i}$

Uncertainty $\rightarrow \frac{w_R}{R} = \left[\sum \left(\frac{a_i w_{x_i}}{x_i} \right)^2 \right]^{1/2}$

Statistical Analysis of Experimental Data

Arithmetic mean,
$$x_m = \frac{1}{n} \sum_{i=1}^n x_i$$

Population Standard deviation, $\sigma = \left[\frac{1}{n} \sum_{i=1}^n (x_i - x_m)^2\right]^{1/2}$

sample standard deviation, $\sigma = \left[\frac{\sum_{i=1}^n (x_i - x_m)^2}{n-1}\right]^{1/2}$

standard deviation of mean, $\sigma_m = \frac{\sigma}{\sqrt{n}}$

Normal Distribution True mean Goussian or normal distribution

Problem 01:

The population of a well-defined varying voltage signal are described by $x_1 = 8.5 \text{ V}$ and $\sigma^2 = 2.25 \text{ V}^2$. If a single measurement of the voltage signal is made, determine the probability that this measured value will have a value of between 10.0 and 11.5 V. Signal has a normal distribution about x_m .

$$\frac{56^{11.5} \circ - 1.5^{2}}{7.5} = \frac{1.5^{2}}{1.5^{2}} = \frac{1.5^{2}}{1.5^{2}} = 2$$

$$\frac{7}{7.5} = \frac{10 - 8.5}{1.5} = 1$$

$$P(10 \le \alpha \le 11.5) = P(8.5 \le \alpha \le 11.5) - P(8.5 \le \alpha \le 10)$$

= $0.4772 - 0.3413$
= 0.1359

So, there is a 13.59% probability that the measurement will yield a value between 10.0 and 11.5 V

ons for

$z_1 = \frac{x_1 - x'}{\sigma}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1809	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2794	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.362
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.383
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.401
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.417
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.444
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.454
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.463
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.470
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.476
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4799	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.485
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.489
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.491
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.493
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.495
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.496
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.497
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.498
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.498
3.0	0.49865	0.4987	0.4987	0.4988	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990

Confidence Interval & Level of Significance

The <u>confidence interval</u> expresses the probability that the mean value will lie within a certain number of σ values and is given by the symbol z,

The *level of significance* is 1 minus the confidence level

Confidence Interval	Confidence Level, %	Level of Significance, %		
3.30	99.9	0.1		
3.0	99.7	0.3		
2.57	99.0	1.0		
2.0	95.4	4.6		
1.96	95.0	5.0		
1.65	90.0	10.0		
1.0	68.3	31.7		

Student's t-Distribution

True mean value,
$$z_{+}$$
, from the finite sized data set can be estimated $z_{+} = z_{m} \pm t_{(v,p)} \circ_{m} = z_{m} \pm \Delta$ (%p)

here: $\Delta = t_{(v,p)} \circ_{m} = t_{(v,p)} \frac{C}{\sqrt{m}}$
 $v = \text{degree of freedom}, v = n-1$
 $v = \text{given confidence level}$
 $\Delta = \int z_{m} \cdot z_{m}$

Subscript designates percent confidence level.

Degrees of freedom							
v	150	t ₈₀	190	195	198	199	199,9
1	1.000	3.078	6.314	12.706	31.821	63.657	636.619
2	0.816	1.886	2.920	4.303	6.965	9.925	31.598
3	0.765	1.638	2.353	3.182	4.541	5.841	12.941
4	0.741	1.533	2.132	2.776	3.747	4.604	8.610
5	0.727	1.476	2.015	2.571	3.365	4.032	6.859
6	0.718	1.440	1.943	2.447	3.143	3.707	5.959
7	0.711	1.415	1.895	2.365	2.998	3.499	5.405
8	0.706	1.397	1.860	2.306	2.896	3.355	5.041
9	0.703	1.383	1.833	2.262	2.821	3.250	4.781
10	0.700	1.372	1.812	2.228	2.764	3.169	4.587
11	0.697	1.363	1.796	2.201	2.718	3.106	4.437
12	0.695	1.356	1.782	2.179	2.681	3.055	4.318
13	0.694	1.350	1.771	2.160	2.650	3.012	4.221
14	0.692	1.345	1.761	2.145	2.624	2.977	4.140
15	0.691	1.341	1.753	2.131	2.602	2.947	4.073
16	0.690	1.337	1.746	2.120	2.583	2.921	4.015
17	0.689	1.333	1.740	2.110	2.567	2.898	3.965
18	0.688	1.330	1.734	2.101	2.552	2.878	3.922
19	0.688	1.328	1.729	2.093	2.539	2.861	3.883
20	0.687	1.325	1.725	2.086	2.528	2.845	3.850
21	0.686	1.323	1.721	2.080	2.518	2.831	3.819
22	0.686	1.321	1.717	2.074	2.508	2.819	3.792
23	0.685	1.319	1.714	2.069	2.500	2.807	3.767
24	0.685	1.318	1.711	2.064	2.492	2.797	3.745
25	0.684	1.316	1.708	2.060	2.485	2.787	3.725

Problems: Homework

- Two resistors R₁ and R₂ are connected in series and parallel. The values of the resistances are R₁ = 100.0 ± 0.1 Ω and R₂ = 50.0 ± 0.03 Ω. Calculate the uncertainty in the combined resistance for both the series and the parallel arrangements.
- 2. A capacitor discharges through a resistor according to the relation E/E₀ = e^{-t/RC}; where E₀ = voltage at time zero, R = resistance, C = capacitance. The value of the capacitance is to be measured by recording the time necessary for the voltage to drop to a value E₁. Assuming that the resistance is known accurately, derive an expression for the percent uncertainty in the capacitance as a function of the uncertainty in the measurements of E₁ and t.
- 3. A certain steel bar is measured with a device which has a known precision of ±0.5 mm when a large number of measurements is taken. How many measurements are necessary to establish the mean length \(\bar{x}\) with a 5% level of significance such that \(\bar{x}_t = \bar{x} \pm 0.2 mm\).

Problems: Homework

- 4. A resistor is measured with a device which has a known precision of ±0.1 kΩ when a large number of measurements is taken. How many measurements are necessary to ensure that the resistance is within ±0.05 kΩ with a 5% level of significance? Make the calculation both with and without the t-distribution. Repeat for a 5% level of significance of ±0.1 kΩ.
- Ten measurements are made of the thickness of a metal plate which give 3.61, 3.62, 3.60, 3.63, 3.61, 3.62, 3.60, 3.62, 3.64, and 3.62 mm. Determine the mean value and the tolerance limits for a 90% confidence level. Use t-distribution.

Reading

Experimental Methods for Engineers, 8th Edition, J. P. Holman

- Chapter 3
 - \checkmark 3.1 3.4
 - $\checkmark 3.6 3.8$
 - **√** 3.15
 - ✓ Example problem: 3.1-3.9, 3.12, 3.22-3.26

Theory and Design for Mechanical Measurements, 7th Edition, *Richard S. Figliola & Donald E. Beasley*

- Chapter 4
 - **√** 4.3
 - ✓ Example problem: 4.3, 4.4

ME 3109: Measurement & Instrumentation

Thank you