MMAL3

Jaouad Sahbani

Licence Mathématiques 2019-2020

Rappels d'algèbre linéaire (3 séances)

- 1. Séance 6: Rappels sur les espaces vectoriels, sous espaces vectoriels. Famille libres, liées, bases, dimension. Somme directe de n sous-espaces.
- 2. Séance 7 : Rappels sur les applications linéaires. Noyau, image, théorème du rang. Matrices.
- 3. Séance 8 : Représentations matricielles d'une application linéaire. Formules de changement de bases. Matrices semblables.

Espaces vectoriels

Dans tout ce qui suit $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Définition

On appelle espace vectoriel sur \mathbb{K} , ou \mathbb{K} -espace vectoriel, un triplet $(E, +, \cdot)$ où

- E est un ensemble non vide
- + est une loi de composition interne sur E;
- $\cdot : \mathbb{K} \times E \to E, (\lambda, x) \mapsto \lambda \cdot x$ ou λx , une application appelée loi de composition externe ou action de \mathbb{K} sur E;

tels que:

- 1. (E, +) est un groupe commutatif :
 - + est associative : $\forall (u, v, w) \in E^3$, (u+v)+w=u+(v+w);
 - + possède un élément neutre : il existe un élément de E noté 0_E tel que $\forall u \in E, u + 0_E = 0_E + u = u$;
 - tout élément u de E possède un élément symétrique $u' \in E$ tel que $u + u' = u' + u = 0_E$. On notera u' = -u;
 - + est commutative : $\forall (u, v) \in E^2, u + v = v + u$;
- 2. $\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2, \lambda(\mu \cdot u) = (\lambda \cdot \mu)u \text{ et } 1 \cdot u = u;$
- 3. $\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2, (\lambda + \mu)u = \lambda u + \mu u.;$
- 4. $\forall (u, v) \in E^2, \forall \lambda \in \mathbb{K}, \ \lambda(u+v) = \lambda u + \lambda v.$

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel.

- Les éléments de K sont appelés scalaires
- \bullet les éléments de E sont appelés **vecteurs**
- Le vecteur 0_E s'appelle le vecteur nul.
- Souvent, quand il n'y a pas de confusions, l'espace vectoriel $(E, +, \cdot)$ sera abusivement noté par la lettre E et le vecteur nul sera noté par 0.

Conséquences immédiates des axiomes

Voici quelques conséquences immédiates de la définition d'un espace vectoriel :

- 1. $\forall u \in E, 0 \cdot u = 0_E$.
- 2. $\forall \lambda \in \mathbb{K}, \ \lambda \cdot 0_E = 0_E$.
- 3. Soit $u \in E$ et $\lambda \in \mathbb{K}$. Pour que $\lambda \cdot u = 0$, il faut et il suffit que $\lambda = 0$ ou $u = 0_E$.
- 4. $\forall u \in E, (-1)u = -u.$
- 5. $\forall u \in E, \forall \lambda \in \mathbb{K}, \ \lambda(-u) = (-\lambda)u = -(\lambda u) = -\lambda u.$
- 6. $\forall (u, v) \in E^2, \forall \lambda \in \mathbb{K}, \ \lambda(u v) = \lambda u \lambda v.$
- 7. $\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2, (\lambda \mu)u = \lambda u \mu u.$

Exemples

- 1. Muni de l'addition et de la multiplication usuelles des nombres réels, \mathbb{R} est un espace vectoriel sur \mathbb{R} .
- 2. Muni de l'addition et de la multiplication usuelles des nombres complexes, \mathbb{C} est un espace vectoriel sur \mathbb{C} .
- 3. Muni de l'addition et de la multiplication usuelles des nombres complexes, \mathbb{C} est un espace vectoriel sur \mathbb{R} .
- 4. $E = \mathbb{K}^n$ est un espace vectoriel sur \mathbb{K} .

Exemples

- 1. $M_{n,p}(\mathbb{K})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} est un \mathbb{K} -espace vectoriel.
- 2. Soit X un ensemble et $E = \mathbb{K}^X$ l'ensemble des applications X à valeurs dans \mathbb{K} . Muni de l'addition et de la multiplication par un scalaire, E est un espace vectoriel sur \mathbb{K} .
- 3. L'ensemble $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K} est un espace vectoriel sur \mathbb{K} .
- 4. L'ensemble $\mathbb{K}_n[X]$ des polynômes à coefficients dans \mathbb{K} de degré au plus n est un \mathbb{K} -espace vectoriel.

Sous-espaces vectoriels

Définition

Soit E un espace vectoriel sur \mathbb{K} et $F \subset E$. On dit que F est un sous-espace vectoriel de E si

- 1. $0_E \in F$:
- 2. F est stable pour l'addition : $\forall (u, v) \in F^2$, $u + v \in F$;
- 3. F est stable par multiplication par tout scalaire : $\forall u \in F, \forall \lambda \in \mathbb{K}, \ \lambda u \in F$.

Les assertions suivantes sont équivalentes :

1. F est un sous espace vectoriel de E

2.
$$\begin{cases} 0_E \in F \\ \forall (u, v) \in F^2, \quad \forall \lambda \in \mathbb{K}, \ u + \lambda v \in F \end{cases}$$

3. (F, +) est un sous groupe de (E, +) stable par multiplication par tout scalaire.

Dans ce cas, F muni des restrictions + et \cdot à F est un espace vectoriel sur \mathbb{K} . En fait, pour montrer qu'un ensemble est muni d'une structure d'espace vectoriel, très souvent, on montre que c'est un sous espace vectoriel d'un espace vectoriel connu.

Exemples

- 1. $\{0_E\}$ et E sont toujours des sous-espaces vectoriels de E.
- 2. $\mathbb R$ et $i\mathbb R$ sont des sous-espaces vectoriels de l'espace vectoriel $\mathbb C$ sur $\mathbb R$.
- 3. \mathbb{R} et $i\mathbb{R}$ ne sont pas des sous-espaces vectoriels de l'espace vectoriel \mathbb{C} sur \mathbb{C} .
- 4. Soit $C(I, \mathbb{K})$ l'ensemble des fonctions continues d'un intervalle réel I à valeurs dans \mathbb{K} . $C(I, \mathbb{K})$ est un sous-espace vectoriel de \mathbb{K}^I . De même, pour les sous espaces $C^n(I, \mathbb{K})$, $C^{\infty}(I, \mathbb{K})$ des fonctions de classe C^n respectivement C^{∞} sur I à valeurs dans \mathbb{K} .
- 5. L'ensemble $\mathbb{K}[X]$ est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$. L'ensemble $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$.
- 6. $D_n(\mathbb{K}) \subset M_n(\mathbb{K})$, l'ensemble des matrices diagonales, est un sous-espace vectoriel de $M_n(\mathbb{K})$. De même, $T_n(\mathbb{K}) \subset M_n(\mathbb{K})$, l'ensemble des matrices triangulaires supérieures, est un sous-espace vectoriel de $M_n(\mathbb{K})$.
- 7. L'ensemble $GL_n(\mathbb{K})$ des matrices inversibles de taille n à coefficients dans \mathbb{K} n'est pas un sous-espace vectoriel de $M_n(\mathbb{K})$

Proposition

Soit E un espace vectoriel sur \mathbb{K} . L'intersection d'une famille de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Attention : la réunion de deux sous espaces vectoriels n'est pas toujours un sous-espace vectoriel de E. Par exemple, soit F_1 et F_2 les deux sous espaces vectoriels de \mathbb{R}^2 donnés par

$$F_1 = \{(x,0) \mid x \in \mathbb{R}\} \text{ et } F_2 = \{(0,x) \mid x \in \mathbb{R}\}.$$

La réunion $F_1 \cup F_2$ n'est clairement pas un sous espace vectoriel de \mathbb{R}^2 , car il n'est pas stable pour l'addition.

Exercice

Soit F_1 et F_2 deux sous-espaces vectoriels de E. Montrer que $F_1 \cup F_2$ est un sous-espace vectoriel de E si, et seulement si, $F_1 \subset F_2$ ou $F_2 \subset F_1$.

Solution : Si $F_1 \subset F_2$ alors $F_1 \cup F_2 = F_2$ qui est un sous espace vectoriel. De même, si $F_2 \subset F_1$ alors $F_1 \cup F_2 = F_1$ qui est un sous espace vectoriel.

Réciproquement, supposons que $F_1 \cup F_2$ est un sous-espace vectoriel de E. Si $F_1 \not\subset F_2$ et $F_2 \not\subset F_1$ alors il existe $x_1 \in F_1$ et $x_1 \notin F_2$ et il existe $x_2 \notin F_1$ et $x_2 \in F_2$. Comme $x_1, x_2 \in F_1 \cup F_2$ on a $x_1 + x_2 \in F_1 \cup F_2$. Or si $x_1 + x_2 \in F_1$ alors $x_2 = (x_1 + x_2) - x_1 \in F_1$ ce qui est impossible. De même, si $x_1 + x_2 \in F_2$ alors $x_1 = (x_1 + x_2) - x_2 \in F_1$ ce qui est impossible. Finalement, $F_1 \subset F_2$ ou $F_2 \subset F_1$.

Définition

Soit E un espace vectoriel et $A \subset E$. On appelle **combinaison linéaire des éléments de** A tout élément u de E pour lequel il existe des scalaires $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ et des vecteurs $v_1, \dots, v_n \in A$ tels que $u = \lambda_1 v_1 + \dots + \lambda_n v_n$.

Théorème

Soit E un espace vectoriel et A une partie non vide de E.

- 1. L'ensemble de toutes les combinaisons linéaires d'éléments de A est un sous espace vectoriel de E contenant A noté Vect(A) et appelé le sous-espace vectoriel engendré par A.
- 2. Vect(A) est le plus petit sous espace vectoriel de E contenant A, c-à-d l'intersection de tous les sous-espaces vectoriels de E qui contiennent A.
- 1. Vect(A) se caractérise par

$$u \in \text{Vect}(A) \iff \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \exists (v_1, \dots, v_n) \in A^n, \ u = \lambda_1 v_1 + \dots + \lambda_n v_n.$$

2. En particulier, si $A = \{u_1, \dots, u_n\}$ sont n vecteurs de E alors

$$Vect(u_1, \dots, u_n) = \{\lambda_1 u_1 + \dots + \lambda_n u_n / (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n\}.$$

3. F est un sous espace vectoriel de E si, et seulement si, Vect(F) = F.

Somme de sous-espaces vectoriels

Définition

Soit E un espace vectoriel et F_1, F_2 deux sous-espace vectoriels de E. Le sous-espace vectoriel de E engendré par $F_1 \cup F_2$ s'appelle **somme de** F_1 et F_2 et se note $F_1 + F_2$.

Autrement dit,

$$F_1 + F_2 = Vect(F_1 \cup F_2)$$

et c'est le plus petit sous espace vectoriel contenant F_1 et F_2 .

Proposition

$$F_1 + F_2 = \{u + v, u \in F_1 / v \in F_2\}.$$

Somme directe de sous-espaces vectoriels

Définition

Soient F_1 et F_2 deux sous-espaces vectoriels de E. On dit que la somme $F_1 + F_2$ est **directe** si

$$F_1 \cap F_2 = \{0_E\}.$$

Dans ce cas, on note $F_1 + F_2$ par $F_1 \oplus F_2$.

Proposition

Soient F_1 et F_2 deux sous-espaces vectoriels de E. Les assertions suivantes sont équivalentes :

- 1. la somme $F_1 + F_2$ est directe;
- 2. $\forall u \in F_1 + F_2$, $\exists ! (u_1, u_2) \in F_1 \times F_2$, $u = u_1 + u_2$;
- 3. $\forall u_1 \in F_1, \forall u_2 \in F_2, (u_1 + u_2 = 0 \Longrightarrow u_1 = u_2 = 0).$

Définition

Soit F_1 et F_2 deux sous-espace vectoriels de E. On dit que F_1 et F_2 sont **supplémentaires dans** E si $F_1 \oplus F_2 = E$. Plus explicitement,

$$F_1 \oplus F_2 = E \iff \begin{cases} F_1 + F_2 &= E \\ F_1 \cap F_2 &= \{0\} \end{cases}$$

Théorème

Soient F_1 et F_2 deux sous-espaces vectoriels de l'espace vectoriel E. Les assertions suivantes sont équivalentes :

- 1. $F_1 \oplus F_2 = E$
- 2. $\forall u \in E, \exists ! (u_1, u_2) \in F_1 \times F_2, u = u_1 + u_2.$
- 3. $F_1 + F_2 = E$ et

$$\forall u_1 \in F_1, \ \forall u_2 \in F_1, (u_1 + u_2 = 0 \Longrightarrow u_1 = u_2 = 0).$$

Définition

Soient F_1, F_2, \dots, F_n des sous-espaces vectoriels de E. Le sous espace vectoriel de E engendré par $\bigcup_{i=1}^n F_i$ s'appelle la somme de F_1, F_2, \dots, F_n et se note $F_1 + F_2 + \dots + F_n$.

Autrement dit,

$$\operatorname{Vect}\left(\bigcup_{i=1}^{n} F_{i}\right) = F_{1} + F_{2} + \dots + F_{n}$$

et c'est le plus petit sous espace vectoriel contenant tous les F_i .

Proposition

Soient F_1, F_2, \dots, F_n des sous-espaces vectoriels de E. Alors

$$F_1 + F_2 + \dots + F_n = \{ u \in E \mid \exists (u_1, \dots, u_n) \in F_1 \times \dots \times F_n, \ u = u_1 + \dots + u_n \}$$

Démonstration : Soit $u \in E$. Il s'agit de montrer l'équivalence suivante :

$$u \in F_1 + F_2 + \dots + F_n \iff \exists (u_1, \dots, u_n) \in F_1 \times \dots \times F_n, \ u = u_1 + \dots + u_n.$$

$$\Leftarrow$$
) S'il existe $(u_1, \dots, u_n) \in F_1 \times \dots \times F_n$ tels que $u = u_1 + \dots + u_n$ alors $u \in \text{Vect}\left(\bigcup_{i=1}^n F_i\right) = F_1 + F_2 + \dots + F_n$.

$$\Rightarrow$$
) Réciproquement, si $u \in F_1 + F_2 + \dots + F_n = \text{Vect}\left(\bigcup_{i=1}^n F_i\right)$ alors il existe une famille de vecteurs $(v_1, \dots, v_N) \in \bigcup_{i=1}^n F_i$ et des scalaires $\lambda_1, \dots, \lambda_N$ tels que

$$u = \sum_{i=1}^{N} \lambda_i v_i = \sum_{i \in [1,N]} \lambda_i v_i$$

où nous avons noté $[1, N] = \{1, \dots, N\}$. Posons

$$I_1 = \{i \in [1, n] / v_i \in F_1\}, I_2 = \{i \in [1, n] / v_i \in F_2\}, \dots, I_n = \{i \in [1, n] / v_i \in F_n\}.$$

Posons alors

$$\forall j \in [1, N], \quad u_j = \begin{cases} \sum_{i \in I_j} \lambda_i v_i & \text{si } I_j \neq \emptyset \\ 0_E & \text{si } I_j = \emptyset \end{cases}$$

Ainsi, $u = u_1 + \dots + u_n$ avec $(u_1, \dots, u_n) \in F_1 \times \dots \times F_n$.

Exemples

1. Soit $E = \mathbb{K}^n$ et $F_1 = \{(x, 0, \dots, 0) / x \in \mathbb{R}\}, F_2 = \{(0, x, 0, \dots, 0) / x \in \mathbb{R}\}, \dots, F_n = \{(0, \dots, 0, x) / x \in \mathbb{R}\}.$ Alors $E = F_1 + \dots + F_n$. En effet, pour tout $(x_1, x_2, \dots, x_n) \in E$,

$$(x_1, x_2, \dots, x_n) = (x_1, 0, \dots, 0) + (0, x_2, 0, \dots, 0) + \dots + (0, \dots, 0, x_n).$$

- 2. Dans l'espace $E = \mathbb{K}^4$ on considère les sous espaces vectoriels suivants :
 - $F_1 = \{(x, y, z, t) / x + y + z + t = 0\},\$
 - $F_2 = \{(x, y, z, t) / x + y + z t = 0\},\$
 - $F_3 = \{(x, y, z, t) / x + y z t = 0\}.$

On a

$$F_1 + F_2 + F_3 = E$$
.

En effet, pour tout $(x, y, z, t) \in E$ on a:

$$(x, y, z, t) = (x, y, 0, -x - y) + \frac{1}{2}(x + y + z + t)(0, 0, 1, 1) + \frac{1}{2}(-x - y + z - t)(0, 0, 1, -1).$$

Définition

Soient F_1, F_2, \dots, F_n des sous-espaces vectoriels de E. On dit que la somme $F_1 + F_2 + \dots + F_n$ est une **somme directe** si

$$\forall u \in F_1 + F_2 + \dots + F_n, \exists ! (u_1, u_2, \dots, u_n) \in F_1 \times \dots \times F_n, \quad u = u_1 + u_2 + \dots + u_n.$$

Dans ce cas, on note la somme $F_1 + F_2 + \cdots + F_n$ par $\bigoplus_{i=1}^n F_i$.

Proposition

Les assertions suivantes sont équivalentes :

1.
$$F_1 + F_2 + \dots + F_n = \bigoplus_{i=1}^n F_i$$
;

2.
$$\forall (u_1, u_2, \dots, u_n) \in F_1 \times F_2 \times \dots \times F_n$$

$$u_1 + u_2 + \dots + u_n = 0 \Longrightarrow u_1 = u_2 = \dots = u_n = 0.$$

3.

$$\forall i = 1, \dots, n, F_i \cap (F_1 + \dots + F_{i-1}) = \{0\}.$$

Démonstration : $1) \Rightarrow 2)$ est évidente.

2) \Rightarrow 3) est facile aussi. En effet, si $u \in F_i$ et $u \in F_1 + \cdots + F_{i-1}$ alors $(u_1, u_2, \cdots, u_{i-1}) \in F_1 \times F_2 \times \cdots \times F_{i-1}$ tel que $u = u_1 + u_2 + \cdots + u_{i-1}$. Donc

$$u_1 + u_2 + \dots + u_{i-1} - u = 0.$$

La condition 2) montre que $u_1 = u_2 = \cdots = u_{i-1} = u = 0$. D'où la condition 3).

Reste à montrer l'implication 3) \Rightarrow 1). Soit $u \in F_1 + \cdots + F_n$. Donc il existe $(u_1, u_2, \cdots, u_n) \in F_1 \times F_2 \times \cdots \times F_n$ tel que

$$u = u_1 + u_2 + \dots + u_n.$$

Supposons qu'il existe $(v_1, v_2, \dots, v_n) \in F_1 \times F_2 \times \dots \times F_n$ tel que

$$u = v_1 + v_2 + \dots + v_n.$$

Donc

$$(u_1 - v_1) + (u_2 - v_2) + \dots + (u_{n-1} - v_{n-1}) = u_n - v_n$$

et la condition 3) appliquée pour i = n implique que

$$(u_1 - v_1) + (u_2 - v_2) + \dots + (u_{n-1} - v_{n-1}) = u_n - v_n = 0.$$

Ainsi $u_n = v_n$ et

$$(u_1 - v_1) + (u_2 - v_2) + \dots + (u_{n-1} - v_{n-1}) = 0$$

En appliquant la condition 3) de proche en proche à i=n-1 puis $i=n-2,\ldots,i=2$ on obtient $u_n-v_n=u_{n-1}-v_{n-1}=\cdots=u_2-v_2=u_1-v_1=0$. D'où la condition 1).

ATTENTION! Si $F_1 + F_2 + \cdots + F_n = \bigoplus_{i=1}^n F_i$ alors $F_i \cap F_j = \{0_E\}, \forall i \neq j$ mais la réciproque est fausse en général.

Par exemple, dans $E = \mathbb{R}^2$ les sous espaces

$$F_1 = \{(x,0) \mid x \in \mathbb{R}\}, \quad F_2 = \{(0,x) \mid x \in \mathbb{R}\} \text{ et } F_3 = \{(x,x) \mid x \in \mathbb{R}\}.$$

vérifient

$$F_1 \cap F_2 = F_1 \cap F_3 = F_2 \cap F_3 = \{0_E\}$$

mais $F_1 + F_2 + F_3 = E$ n'est pas une somme directe, car (0,0) = (0,1) + (1,0) - (1,1). En fait, on a

$$F_1 \oplus F_2 = F_1 \oplus F_3 = F_2 \oplus F_3 = E$$

Définition

Soient F_1, F_2, \dots, F_n des sous-espaces vectoriels de E. On dit que E est **somme directe** de F_1, F_2, \dots, F_n si $E = \bigoplus_{i=1}^n F_i$.

Familles génératrices

Définition

Soit E un espace vectoriel sur \mathbb{K} . Soit u_1, \dots, u_n des vecteurs de E. On dit que la famille (u_1, \dots, u_n) est **génératrice de** E si $E = \text{Vect}(u_1, \dots, u_n)$ ou plus explicitement, si

$$\forall u \in E, \ \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \ u = \sum_{i=1}^n \lambda_i u_i.$$

On dit aussi que les vecteurs u_1, \dots, u_n engendrent l'espace E.

Exemple

- 1. 1 engendre le \mathbb{R} -espace vectoriel \mathbb{R} .
- 2. Dans le \mathbb{R} -espace vectoriel \mathbb{C} la famille (1,i) est génératrice.
- 3. Les vecteurs

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$$

engendrent l'espace \mathbb{K}^n .

4. Les polynômes $1, X, X^2$ sont engendrent l'espace $\mathbb{R}_2[X]$.

De même, on dit qu'une partie A de E est génératrice de E si $E = \operatorname{Vect}(A)$, ou plus explicitement, pour tout élément u de E il existe des scalaires $\lambda_n, \dots, \lambda_n$ et des éléments u_1, \dots, u_n de A tels que $u = \sum_{i=1}^n \lambda_i u_i$. Par exemple, la famille $\{1, X, X^2, \dots\}$ est génératrice de l'espace $\mathbb{R}[X]$.

Familles libres et liées

Théorème

Soit E un espace vectoriel sur \mathbb{K} et u_1, \dots, u_n des vecteurs de E. Les conditions suivantes sont équivalentes :

- 1. il existes des scalaires $\lambda_1, \dots, \lambda_n$, non tous nuls, tels que $\sum_{i=1}^n \lambda_i u_i = 0$;
- 2. l'un des u_j est combinaison linéaire des autres $(u_i)_{1 \leq i \leq n, i \neq j}$.

Dans ce cas, on dit que la famille $(u_i)_{1 \le i \le n}$ est **liée** ou que les vecteurs u_1, \dots, u_n sont **linéairement dépendants**.

Exemple

- 1. Dans le \mathbb{R} -espace vectoriel \mathbb{C} la famille $(1,e^{-\frac{2i\pi}{3}},e^{\frac{2i\pi}{3}})$ est liée.
- 2. Dans \mathbb{K}^3 les vecteurs $u_1=(1,1,1),\ u_2=(1,-2,2),\ u_3=(2,-1,3)$ sont linéairement dépendants.
- 3. Dans $\mathbb{R}_2[X]$ les polynômes $1+X+X^2, 1-2X+2X^2, 2-X+3X^2$ sont linéairement dépendants.

On remarque que dans chacun des exemples précédents, les vecteurs considérés ne sont pas proportionnels deux à deux.

Définition

Soit E un espace vectoriel sur \mathbb{K} . On dit qu'une famille $(u_i)_{1 \leq i \leq n}$ de vecteurs de E est **libre** ou que les vecteurs u_1, \dots, u_n sont **linéairement indépendants** dans E si $(u_i)_{1 \leq i \leq n}$ n'est pas liée.

Proposition

Soit E un espace vectoriel sur \mathbb{K} . Une famille $(u_i)_{1 \leq i \leq n}$ de vecteurs de E est libre si, et seulement si, toute combinaison linéaire nulle des vecteurs $(u_i)_{1 \leq i \leq n}$ est à coefficients tous nuls, ou plus explicitement,

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \left(\sum_{i=1}^n \lambda_i u_i = 0 \implies \lambda_1 = \lambda_2 = \dots \lambda_n = 0\right).$$

Exemple

- 1. Si u est un vecteur non nul d'un espace vectoriel alors $\{u\}$ est libre.
- 2. Dans le \mathbb{R} -espace vectoriel \mathbb{C} la famille (1,i) est libre.
- 3. Les vecteurs $e_1=(1,0,\cdots,0),\ e_2=(0,1,0,\cdots,0),\cdots,\ e_n=(0,\cdots,0,1)$ sont linéairement dépendants dans \mathbb{K}^n .
- 4. Les polynômes $1, X, X^2$ sont linéairement indépendants dans $\mathbb{R}[X]$.

Bases

Proposition

- 1. Toute sous-famille d'une famille libre est libre.
- 2. Toute famille contenant une sous-famille liée est liée.
- 3. Toute famille contenant une sous-famille génératrice de E est une famille génératrice de E.

Définition

Soit E un espace vectoriel sur \mathbb{K} et u_1, \dots, u_n des vecteurs de E. On dit que (u_1, \dots, u_n) est une base de E si la famille (u_1, \dots, u_n) est libre et génératrice de E.

Théorème

La famille (u_1, \dots, u_n) est une base de E si, et seulement si, pour tout élément u de E, il existe une **unique** famille $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ telle que $u = \sum_{i=1}^n \lambda_i u_i$.

Les scalaires $(\lambda_1, \dots, \lambda_n)$ s'appellent les coordonnées de u dans la base (u_1, \dots, u_n) .

Dimension d'un espace vectoriel

Définition

Soit E un espace vectoriel sur \mathbb{K} . On dit que E est **de dimension finie** si E peut être engendré par une famille finie de vecteurs. Sinon, on dit que E est **de dimension infinie**.

Lemme

Soit E un espace vectoriel sur \mathbb{K} , (u_1, u_2, \dots, u_p) une famille libre de E et $v \in E$. $(u_1, u_2, \dots, u_p, v)$ est libre si, et seulement si, v n'est pas une combinaison linéaire de u_1, u_2, \dots, u_p .

Démonstration : Si $(u_1, u_2, \dots, u_p, v)$ est libre alors v n'est pas une combinaison linéaire de u_1, u_2, \dots, u_p . Réciproquement, supposons que v n'est pas une combinaison linéaire de u_1, \dots, u_p . Soit $\lambda_1, \dots, \lambda_p, \lambda_{p+1}$ des scalaires tels que $\lambda_1 u_1 + \dots + \lambda_p u_p + \lambda_{p+1} v = 0$. Si $\lambda_{p+1} \neq 0$ alors

$$v = -\frac{\lambda_1}{\lambda_{p+1}} u_1 \cdots - \frac{\lambda_p}{\lambda_{p+1}} u_p.$$

ce qui est impossible car v n'est pas une combinaison linéaire de u_1, u_2, \cdots, u_p . Ainsi $\lambda_{p+1} = 0$ et donc

$$\lambda_1 u_1 + \dots + \lambda_p u_p = 0.$$

Mais (u_1, u_2, \dots, u_p) est libre et donc $\lambda_1 = \dots = \lambda_p = 0$.

Théorème de la base incomplète

Soit L et G deux parties finies d'un espace vectoriel E tels que $L \subset G$. Si L est **libre** et G est **génératrice** alors il existe une **base** B de E telle que $L \subset B \subset G$.

Démonstration : L'ensemble \mathcal{L} des familles libres de E contenant L et contenues dans G est non vide car \mathcal{L} contient L. Un élément de \mathcal{B} dont la cardinal est maximal est une base de E grâce au lemme précédent.

Corollaire

Tout espace vectoriel de dimension finie admet une base.

En effet, si l'espace vectoriel E est réduit au vecteur nul, i.e. $E = \{0\}$, alors E possède une seule famille libre qui est l'ensemble vide, c'est l'unique base de E. On dit que l'espace est dimension nulle.

Supposons que E est un espace vectoriel de dimension finie sur \mathbb{K} non réduit au vecteur nul. Donc il existe (u_1, \dots, u_q) une famille génératrice de E. Par conséquent, grâce au théorème de la base incomplète, (u_1, \dots, u_q) contient une sous-famille $(u_{i_1}, u_{i_2}, \dots, u_{i_n})$ qui est une base de E.

Lemme

Soit E un espace vectoriel sur \mathbb{K} .

- 1. Soit (u_1, \dots, u_p) une famille de vecteurs de E et v_1, \dots, v_{p+1} des combinaisons linéaires de u_1, \dots, u_p . Alors (v_1, \dots, v_{p+1}) est liée.
- 2. En particulier, toute famille libre contient moins d'éléments que toute famille génératrice : si (u_1, \dots, u_p) une famille génératrice de E et (v_1, \dots, v_q) une famille libre de E alors $q \leq p$.

Démonstration : Le deuxième point du lemme est une conséquence immédiate du premier. La suite de la preuve est une récurrence sur p pour montrer le premier point.

La proposition est vraie pour p=0 car il n'y a rien à montrer. On vérifie la proposition pour p=1 afin de comprendre l'idée de la preuve. Soit u_1 un vecteur et supposons que $v_1=\alpha_1u_1$ et $v_2=\alpha_2u_1$. Si $\alpha_2=0$ alors (v_1,v_2) est liée. Sinon, $\alpha_2\neq 0$. Alors $u_1=(1/\alpha_2)v_2$. Il vient que,

$$v_1 = \alpha_1 u_1 = \frac{\alpha_1}{\alpha_2} v_2$$

et donc (v_1, v_2) est liée dans ce cas aussi.

Supposons que la proposition est vraie à l'ordre p-1 et montrons la proposition à l'ordre p. Supposons que, pour tout $k=1,\cdots,p+1,$ v_k est combinaison linéaire de u_1,\cdots,u_p ; et notons α_k le coefficients de u_p dans une telle combinaison. Si tout les α_k sont nuls alors v_1,\cdots,v_{p+1} sont des combinaisons linéaires de u_1,\cdots,u_{p-1} alors (v_1,\cdots,v_{p+1}) est liée, par hypothèse de récurrence. Sinon, quitte à changer de notations, on peut supposer que $\alpha_{p+1}\neq 0$. Posons alors

$$\forall k = 1, \cdots, p, \quad w_k = v_k - \frac{\alpha_k}{\alpha_{p+1}} v_{p+1}.$$

Il s'agit de p vecteurs qui sont tous des combinaisons linéaires de u_1, \dots, u_{p-1} et l'hypothèse de récurrence permet de dire (w_1, \dots, w_p) est liée. Ainsi, il existe des scalaires, $\lambda_1, \dots, \lambda_p$, non tous nuls.

$$\lambda_1 w_1 + \dots + \lambda_p w_p = 0$$

ou encore

$$\lambda_1 v_1 + \dots + \lambda_p v_p - \left(\sum_{k=1}^p \frac{\lambda_k \alpha_k}{\alpha_{p+1}} \right) v_{p+1} = 0$$

Comme les λ_i ne sont pas tous nuls on déduit que (v_1, \dots, v_{p+1}) est liée.

Théorème

Dans un espace vectoriel de dimension toutes les bases possèdent le même nombre d'éléments. Ce nombre s'appelle la dimension de E et se note dim E.

Démonstration : Conséquence immédiate du lemme précédent.

Corollaire : complétion d'une famille libre en une base

Soit E un espace vectoriel de dimension n sur \mathbb{K} . Si (u_1, u_2, \dots, u_p) est une famille libre de E alors il existe des vecteurs $(u_{p+1}, u_{p+2}, \dots, u_n)$ tels que (u_1, \dots, u_n) soit une base de E.

De plus, si (v_1, v_2, \dots, v_q) est une famille génératrice, on peut choisir $u_{p+1}, u_{p+2}, \dots, u_n$ parmi les vecteurs de la famille (v_1, v_2, \dots, v_q) .

Théorème

Les assertions suivantes sont équivalentes :

- 1. E est un espace vectoriel de dimension n sur \mathbb{K} .
- 2. Toute base de E a exactement n vecteurs.
- 3. Tout système générateur de E a au moins n éléments.
- 4. Tout système générateur à n éléments est libre (donc une base).
- 5. Tout système libre a au plus n éléments.
- 6. Tout système libre à n éléments est générateur (donc une base).

Proposition

Si E est un espace vectoriel de dimension finie et $F \subset E$ est un sous-espace vectoriel de E, alors

- 1. F est de dimension finie;
- 2. $\dim F \leq \dim E$;
- 3. $si \dim F = \dim E$, alors F = E;
- 4. F admet au moins un supplémentaire (en fait une infinité).

Proposition

Soient F_1 et F_2 deux sous-espace vectoriels de dimension finie de E, alors $F_1 + F_2$ est de dimension finie et :

$$\dim(F_1 + F_2) = \dim(F_1) + \dim(F_2) - \dim(F_1 \cap F_2).$$

En particulier, $F_1 \oplus F_2 = E$ si, et seulement si, $\begin{cases} (i) & F_1 \cap F_2 = \{0\} \\ (ii) & \dim(F_1) + \dim(F_2) = \dim E \end{cases}$

Exemple

Soit $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré au plus 2.

1. Montrer que les polynômes

$$P_0 = 1, P_1 = X - 1, P_2 = \frac{1}{2}(X - 1)^2$$

forment une base de E.

- 2. Soit F le sous espace vectoriel de E formé des polynômes P tels que P'(1) = 0. Trouver une base de F.
- 3. Trouver un supplémentaire de F.
- 1. D'après la formule de Taylor, pour tout $P \in E$, on a

$$P = P(1)P_0 + P'(1)P_1 + P''(1)P_2.$$

Donc $B = (P_0, P_1, P_2)$ est une famille génératrice de E. Comme E est de dimension 3 et B contient 3 éléments on déduit que B est une base de E.

2. Soit $P \in E$. D'après la question précédente, $P \in F$ si, et seulement si, $P = P(1)P_0 + P''(1)P_2$. On en déduit que, $F = \text{Vect}(P_0, P_2)$ et F est de dimension 2.

On peut aussi utiliser la base canonique $B=(1,X,X^2)$ de E. Soit $P=a+bX+cX^2$. Il est clair que $P\in F$ si, et seulement si, b+2c=0. Ainsi $P\in F$ si, et seulement si, $P=a+c(X^2-X)$. Donc

$$F = Vect(1, X^2 - 2X).$$

3. La droite vectorielle $D_0 = \operatorname{Vect}(X)$ est un supplémentaire de F. En effet, $P \in D \cap F$ signifie qu'il existe $\lambda \in \mathbb{R}$ tel que $P = \lambda X$ et $0 = P'(1) = \lambda$, il vient que P = 0. Autrement dit $D_0 \cap F = \{0\}$. Comme dim $F + \dim D_0 = \dim E$ on déduit que $F \oplus D_0 = E$.

En fait, toute droite vectorielle $D = \operatorname{Vect}(Q)$, avec $Q'(1) \neq 0$, est un supplémentaire de F. En effet, $P \in D \cap F$ signifie qu'il existe $\lambda \in \mathbb{R}$ tel que $P = \lambda Q$ et $0 = P'(1) = \lambda Q'(1)$, il vient que P = 0. Autrement dit $D \cap F = \{0\}$. Comme dim $F + \dim D = \dim E$ on déduit que $F \oplus D = E$.

Corollaire

Soit E un espace vectoriel sur \mathbb{K} de dimension finie. Si F_1, F_2, \dots, F_p sont des sous-espaces vectoriels de E, de dimensions finies q_i qui sont en somme directe, et si $(\varepsilon_1(i), \dots, \varepsilon_{q_i}(i))$ est une base de F_i , alors:

$$\dim(F_1 \oplus F_2 \oplus \cdots \oplus F_p) = \dim(F_1) + \dim(F_2) + \cdots + \dim(F_p)$$

et $(\varepsilon_1(i), \dots, \varepsilon_{q_1}(i), \varepsilon_1(2), \dots, \varepsilon_{q_2}(2), \dots, \varepsilon_1(p), \dots, \varepsilon_{q_p}(p))$ est une base de $F_1 \oplus F_2 \oplus \dots \oplus F_p$.

Rang d'un système de vecteurs

Définition

Soit (u_1, \dots, u_p) des vecteurs de E. On appelle **rang de la famille** (u_1, \dots, u_p) , la dimension du sous-espace vectoriel engendré par la famille (u_1, \dots, u_p) .

Remarque

En particulier, si $r = rg(u_1, \dots, u_p)$ alors on a:

- 1. $r \leq p$.
- 2. (u_1, u_2, \dots, u_p) est libre si, et seulement si, r = p.
- 3. Si $(u_{i_1}, u_{i_2}, \dots, u_{i_q})$ est une sous famille libre de (u_1, u_2, \dots, u_p) alors $r \geq q$ avec égalité si, et seulement si, $(u_{i_1}, u_{i_2}, \dots, u_{i_q})$ est une base de $Vect(u_1, \dots, u_p)$.
- 4. le nombre r est le cardinal d'une sous famille libre de (u_1, u_2, \dots, u_p) qui contient un nombre maximal d'éléments, autrement dit
 - Il existe une sous-famille libre $(u_{i_1}, u_{i_2}, \cdots, u_{i_r})$ de (u_1, u_2, \cdots, u_p) ,
 - toute sous-famille à r + 1 vecteurs de (u_1, \dots, u_p) est liée (si r < p).