CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Cache Organization

Lecture No.- 02

Recap of Previous Lecture

Topics to be Covered

Topic: Cache Memory

Topic: Working of Cache Memory

- 1. Cache Hit
- 2. Cache Miss
- 3. Hit Ratio

Topic: Average Memory Access Time

Mem. Reference
Miss

Avg. mem. access time = H * Time needed to + (1-H) * Time needed to access mem access memory when hit when miss

=> 100 times mem. reference > 300 times hit > 20 times miss > for every hit, mem. access time = 10 ns

-> for -11-miss, ----- = 100 hs

Total time, for all hit = 80 *10 = 800 nsec —— 11 —— 11 — miss = 20 *100 = 2000 nsec Total = 2800 nsec

ong for 1 mem. 9 ccem = 2800 nsec = 28 nsec

tet ratio =
$$\frac{80}{100}$$
 = 0.8

Avg. mem. access time = 0.8 * 10 + 0.2 * 100= 8 + 20- 28 rsec

$$\frac{80 \times 10}{100} + \frac{20 \times 100}{100} = \frac{80 \times 10}{100} + \frac{20 \times 100}{100}$$

$$= 0.8 \times 10 + 0.2 \times 100$$

Topic: Types of Cache Accesses

Simultaneous Access: (Parallel access)

Request for cache and main-memory are generated simultaneously

Topic: Types of Cache Accesses

Hierarchical Access: (Serial access)

Only cache is accessed first

Towy =
$$t_{cm} + (1-H) t_{mm}$$

Topic: When to Use Which Formula

<u>simultaneous</u>:- Cache searching time is Zero (negligible)

cache look-up time — 11

#Q. Assume that for a certain processor, a read request takes 200 nanoseconds on a cache miss and 25 nanoseconds on a cache hit. Suppose while running a program, it was observed that 60% of the processor's read requests result in a cache hit. The average read access time in nanoseconds is______?

Cremeral formula:

Tawg =
$$0.6 * 25 \text{ ns} + 0.4 * 200$$

= $15 + 80$
= 95 nsec

[NAT]

#Q. In a two-level hierarchy, if the top level has an access time of 8 ns and the bottom level has an access time of 60 ns, what is the hit rate on the top level required to give an average access time of 10ns?

$$t_{cm} = 8 \text{ ns}$$

$$t_{mm} = 60 \text{ ns}$$

$$t_{owg} = 10 \text{ ns}$$

$$H = 8 \text{ ns}$$

Hierarchical access:-

$$10 = 8 + (1-H) 60$$
 $H = 0.96$ or 96%

[NAT]

#Q. In previous question if hit rate of the top-level memory is 100%, then the access time of bottom level memory will be ___6o__ns?

$$Tang = 1 * 8 + 0 * 60) = 8 = tcm$$

Ques) Top mem. access time = 12hs

Bottom — II — = 200ns

Tang = 10 NSEC

pierarchical accord

→ invalid Questⁿ
because

tang < tcm

#Q. A computer system contains a cache. Uncached memory access takes 7 times longer than access to cache. If cache has a hit ratio 0.9. The ratio of cached memory access time to uncached memory access time is?

cached mem. => The cache

cached mem. => mem. system with cache => cache & main memory

uncached mem. => mem. system without cache => only main mem.

 $t_{cm} = x$ $t_{mm} = 4x$

= cached mem access time uncached mem access time

$$= \frac{0.9 * \times + 0.1 * 7 \times}{7 \times}$$

$$= \frac{1.6}{7} \stackrel{\sim}{=} 0.23 \text{ Avs}$$

aus) tom = 15 ns

tom = 200ns

H = 90%

Hierarchical access

1 Mem. access time without cache = 200 nsec

performance gain (speed up) by using cache = $\frac{200 \text{ ns}}{35 \text{ ns}} \leq 5.7$

Topic: Tavg When Locality of Reference is Used

replace temm by Colock transfer time from mon to con

tawg =
$$H * t_{cm} + (I-H) t_{bt}$$

Hier access:
$$t_{avg} = H * t_{cm} + (I-H) (t_{cm} + t_{bt})$$

$$t_{avg} = H * t_{cm} + (I-H) (t_{cm} + t_{bt})$$

$$= t_{cm} + (I-H) t_{bt}$$

#Q. In a two-level hierarchy, the top level has an access time of 10 ns and hit rate of 90%. If the block transfer from main memory to cache takes 500ns in case of miss then average memory access time is ____?

$$t_{avg} = 0.9 * 10 + 0.1 * (10 + 500) = 9 + 51 = 60 \text{ ns}$$

$$cor$$

$$= 10 + 0.1 (500)$$

Ewom mm to cache 1 byte transfer time = 50 ns block size = 16 bytes

#a From mm to cache 1 byte transfer time = 50ns

block size = 8 words = 8 * 4 bytes = 32 bytes

1 word = 4 bytes

#a. from mm to cache, I word transfer time = 100 ns
block size = 128 bytes = \frac{128B}{4B} = 32 words

1 word = 4 bytes

tot = 32 * 100 = 3200 ns

#a.) block size = 16 bytes

first byte transfer from mm to cache = 10 nsec

remaining each byte — 11 — = 2 nsec

GATE-PYQ

#Q. A direct mapped cache memory of 1 MB has a block size of 256 bytes. The cache has an access time of 3 ns and a hit rate of 94%. During a cache miss, it takes 20ns to bring the first word of a block from the main memory, while each subsequent word takes 5 ns. The word size is 64 bits. The average memory access time in ns (round off to 1 decimal place) is _____?

block size = 256 B =
$$\frac{256B}{8B}$$
 = 32 words
tom = 3ns
H = 94%
= 175 nsec

2 mins Summary

Topic

Cache Memory

Topic

Average Memory Access Time

Topic

Cache Write

Happy Learning

THANK - YOU