

### Cochran's Q

- Traditionally, Cochran's *Q* (Cochran, 1954) has been used to distinguish studies' sampling error from actual between-study heterogeneity.
- Q uses the deviation of each study's observed effect  $\hat{\theta}_k$  from the summary effect  $\hat{\theta}$  weighted by the inverse of the study's variance,  $w_k$ :

$$Q = \sum_{k=1}^{K} w_k (\hat{\theta}_k - \hat{\theta})^2$$

• We assume that, if variability in observed effect sizes is only caused by sampling error (i.e., the EE-model holds), then Q will follow a  $\chi^2$  distribution with K-1 degrees of freedom, where K is the number of studies.

$$Q \sim \chi_{K-1}^2$$

→ If *Q* exceeds this expected value, we are more and more likely to conclude "significant" excess variability (=heterogeneity).





#### Cochran's Q

#### Problems With Q & the Q-Test

- Q increases both when the number of studies K, and when the precision (i.e. the sample size of a study) increases.
- Therefore, *Q* and whether it is significant highly depends on the size of the meta-analysis, and thus its statistical power.
- → We should not only rely on the significance of a Q-test when assessing heterogeneity.
- → Sometimes, meta-analysts decide whether to apply a fixed-effect or random-effects model based on the significance of the *Q*-test. This is also highly discouraged





### Higgins and Thompson's $I^2$

- I<sup>2</sup> is another metric to quantify the between-study heterogeneity in meta-analyses
- In its "classic" definition,  $I^2$  quantifies, in percent, how much the observed value of Q exceeds the expected Q value when there is no heterogeneity (i.e., K-1):

$$I^2 = \max\left\{0, \frac{Q - (K - 1)}{Q}\right\}$$

- The popularity of this statistic may be associated with the fact that there is an (in)famous "rule of thumb" how to interpret it (Higgins & Thompson 2002):
  - $I^2 = 25\%$ : low heterogeneity
  - $I^2 = 50\%$ : moderate heterogeneity
  - $I^2 = 75\%$ : substantial heterogeneity.





### Higgins and Thompson's $I^2$

#### Problems of $I^2$

- $I^2$  is <u>not</u> sensitive to changes in the **number of studies** in the analysis.
- However, it is still a relative measure of heterogeneity, and its value heavily depends on the precision of the included studies
- $I^2$  is the percentage of variability not caused by sampling error.
- If our studies become increasingly large, the sampling error tends to zero, while at the same time, I<sup>2</sup> tends to 100% – simply because the studies have a greater sample size.



$$I^2 = \max\left\{0, \frac{Q - (K - 1)}{Q}\right\}$$



- Only  $\tau^2$  is insensitive to <u>both</u> the number and precision of the included studies
- $\tau$  (square root of  $\tau^2$ ) can be interpreted as the **standard** deviation of the true effect size distribution
- But this is often difficult to communicate to stakeholders without training in meta-analysis





- Solution: calculate prediction intervals (PI), which directly express the impact that  $\tau^2$  has on the scale of the effect size
- Indicates the interval into which effect sizes of new studies are expected to fall, based on present evidence:

**Upper PI:** 
$$\hat{\mu} + t_{K-1,0.975} \sqrt{\widehat{SE}_{\mu}^2 + \hat{\tau}^2}$$

**Lower PI:** 
$$\hat{\mu} - t_{K-1,0.975} \sqrt{\widehat{SE}_{\mu}^2 + \hat{\tau}^2}$$



- PIs can be much wider than the CI.
- As  $\tau^2 \to 0$ , the PI and CI become increasingly identical.

# **Outliers & Model Diagnostics**



- It is possible that very large studies, or studies with very extreme effect sizes may dominate the overall effect
- It is advisable to run sensitivity analyses excluding such studies
- There are no iron-clad rules on how to define outliers in a meta-analysis (but Viechtbauer & Cheung, 2010 provide helpful diagnostics)
- An intuitive way to identify outliers is through a
  Baujat plot



Contribution to overall heterogeneity