

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ъныи исследовательскии университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 4 по дисциплине «Электротехника и схемотехника»

Тема: «Мультивибратор на основе операционного усилителя с интегрирующей rc – цепью»

Вариант 1

Выполнил: Антипов И.С., студент группы ИУ8-43

Проверил: Ковынёв Н.В., преподаватель каф. ИУ8

1. Цель работы

Изучение принципов построения схем мультивибраторов на основе ОУ, исследование режимов работы.

2. Теоретическая часть

$$+ U_{_2} = + U_{_{\rm HAC}} \, \frac{R_{_2}}{R_{_1} + R_{_2}} \, . \label{eq:hac}$$

$$-U^*_2 = \frac{R_2}{R_1 + R_2} (-U^*_{\text{Hac}}).$$

$$T = 2RC \ln \left(\frac{2R_2}{R_1} + 1 \right).$$

3. Практическая часть

1 задание:

Построим схему для испытания симметричного автоколебательного мультивибратора. (Рис. 1)

Рисунок 1 — Схема для испытания симметричного автоколебательного мультивибратора

Рисунок 2 — Показание осциллографа для схемы для симметричного автоколебательного мультивибратора

Рисунок 3 — Показание частотомера для схемы для симметричного автоколебательного мультивибратора

Результаты измерений приведены в таблице 1.

	U_{Hac}^+	$U_{\rm hac}^-$	U_2^+	U_2^-	t_{u1}	t_{u2}	T	f
Измер.	20,803	-20,803	10,452	-10,451	0,0023995	0,0023995	0,004798	208,415
Расч.	22	-22	11	-11	0,002409	0,002409	0,004819	207,532

Результаты, полученные экспериментально и аналитически совпали.

2 задание:

Построим схему для испытания несимметричного автоколебательного мультивибратора (Рис. 4)

Рисунок 4 — Схема для испытания несимметричного автоколебательного мультивибратора.

Рисунок 5 — Показание осциллографа для испытания несимметричного автоколебательного мультивибратора.

Рисунок 6 — Показание частотомера для испытания несимметричного автоколебательного мультивибратора.

Результаты измерений приведены в таблице 2.

	$U_{\rm hac}^+$	$U_{\rm hac}^-$	U_2^+	U_2^-	t_{u1}	t_{u2}	T	f
Измер.	20,811	-20,803	10,385	-10,403	0,009773	0,004734	0,01507	68,934
Расч.	22	-22	11	-11	0,010197	0,004741	0,01493	66,939

Результаты, полученные экспериментально и аналитически совпали.

3 задание:

Построим схему для испытания автоколебательного мультивибратора на ОУ, с изменяемой скважностью импульсов (Рис. 7)

Рисунок 7 — Схема для испытания автоколебательного мультивибратора на ОУ, с изменяемой скважностью импульсов.

Рисунок 8 – Показание осциллографа для испытания автоколебательного мультивибратора на ОУ, с изменяемой скважностью импульсов.

Рисунок 9 – Показание осциллографа для испытания автоколебательного мультивибратора на ОУ, с изменяемой скважностью импульсов.

Результаты измерений приведены в таблице 3.

	R ₄ 0%	R ₄ 20%	R ₄ 40%	R ₄ 60%	R ₄ 80%	R ₄ 100%
t_{u1}	0,002679	0,003178	0,003670	0,004145	0,004619	0,00509
t_{u2}	0,005087	0,004611	0,004143	0,003663	0,003174	0,002676
T	0,007766	0,007788	0,007813	0,007808	0,007794	0,007766
f	128,766	128,4	127,994	128,072	128,308	128,699

Результаты, полученные экспериментально подходят под аналитическую формулу.

4 задание:

Построим схему для испытания автоколебательного мультивибратора на ОУ, с изменяемой частотой следования импульсов (Рис. 10)

Рисунок 10 — Схема для испытания автоколебательного мультивибратора на ОУ, с изменяемой частотой следования импульсов.

Рисунок 11 — Показание осциллографа для испытания автоколебательного мультивибратора на ОУ, с изменяемой частотой следования импульсов.

Рисунок 12 — Показание частотомера для испытания автоколебательного мультивибратора на ОУ, с изменяемой частотой следования импульсов.

Результаты измерений приведены в таблице 4.

	R ₄ 0%	R ₄ 20%	R ₄ 40%	R ₄ 60%	R ₄ 80%	R ₄ 100%
t_{u1}	0,004963	0,004509	0,004044	0,00573	0,003096	0,002611
t_{u2}	0,004961	0,004505	0,004042	0,00574	0,003095	0,002613
T	0,009924	0,009012	0,008086	0,007146	0,006193	0,005225
f	100,769	110,996	123,669	139,977	161,528	191,556

Результаты, полученные экспериментально подходят под аналитическую формулу.

4. Выводы

В данной лабораторной работе мною были получены навыки работы в среде Multisim. Для выполнения заданий необходимо было построить 4 схемы для испытания работы мультивибратора. Затем, необходимо было посчитать t_{u1} , t_{u2} , T, f. Результаты, полученные экспериментально и аналитически совпали, что говорит о корректности проведенных вычислений.