Результаты экспериментов с вольфрамовой нитью

Октябрь-ноябрь 2024

Оглавление

Постановка задачи

Для исследования характеристик вольфрамового катода возникла необходимость точного измерения температуры его острия.

Сначала решим более простую задачу — измерим температуру вольфрамовой нити с диаметром d поперечного сечения около 116 мкм, настолько длинной, что в окрестности её центра отсутствует градиент температур.

Измерение относительного сопротивления

Этот метод подразумевает использование моделирования и последующего теоретического расчёта зависимости $T(\frac{R}{R_0})$ для равномерно нагретой вольфрамовой нити. Расчётная формула приведена в Приложении 1.

При измерении относительного сопротивления $\frac{R}{R_0}$ основной проблемой является точное определение R_0 — сопротивления при комнатной температуре. Даже небольшое отклонение от реальной величины даст большую погрешность расчётной температуры.

Сравнение моделирования и эксперимента

 $T_{amb} = 300K$

d = 116 мкм

Модель работает для центральной части достаточно длинной нити (более 3 см). Для более короткой нити - это оценка сверху на температуру в центре.

$$I(T, d) := \sqrt{\pi^2 \cdot d^3 \cdot \sigma \cdot \frac{\left(T^4 - T_{amb}^4\right) \cdot \varepsilon(T)}{4 \cdot \rho(T)}}$$

Экспериментальная температура была получена из измерения сопротивления небольшого участка проволоки (~ 3 cm).

Использование пирометра

Следующим методом является использование пирометра для оценки температуры вольфрамовой проволоки.

Построение зависимости температуры, показываемой пирометром, от значения emissivity ε используемого материала позволит точнее калибровать пирометр.

Предложенная модель хоть и не обоснована теоретически, но позволяет с большой точностью аппроксимировать полученные экспериментальные данные. Приложение 1

Теоретическая зависимость удельного сопротивления вольфрамовой проволоки от температуры

Для модели с постоянным удельным сопротивлением использовалось значение 5.507*10⁻³ Ом^{*}м, для линеаризованной модели – линейная аппроисимация табличных данных.

Источник: База данных пакета COMSOL

20

Постановка задачи

Для исследования характеристик вольфрамового катода возникла необходимость точного измерения температуры его острия.

Сначала решим более простую задачу — измерим температуру вольфрамовой нити с диаметром d поперечного сечения около 116 мкм, настолько длинной, что в окрестности её центра отсутствует градиент температур.

Постановка задачи

Предлагаемые методы

- 1. Измерение относительного сопротивления $\frac{R}{R_0}$, где R_0 сопротивление равномерно нагретого участка нити при комнатной температуре.
- 2. Использование пирометра с окном фокусировки диаметра 1мм.

Этот метод подразумевает использование моделирования и последующего теоретического расчёта зависимости $T(\frac{R}{R_0})$ для равномерно нагретой вольфрамовой нити. Расчётная формула приведена в Приложении 1.

При измерении относительного сопротивления $\frac{R}{R_0}$ основной проблемой является точное определение R_0 — сопротивления при комнатной температуре. Даже небольшое отклонение от реальной величины даст большую погрешность расчётной температуры.

Калибровка KORAD

Была выполнена калибровка измерений КORAD KWR103 по току и напряжению. Калибровка позволила более точно определить R_0 , так как показания для малых значений тока и напряжения ($I\sim 10$ мA, $U\sim 10$ мB) сильно отличаются от реальных.

Калибровка KORAD по току

Калибровка KORAD по напряжению

Определение R_0

После калибровки KORAD была измерена ВАХ вольфрамовой нити, а затем посчитана зависимость сопротивления от тока. По этим графикам возможно определить $R_{\rm 0}$.

$R_{\mathbf{0}}$ по вольт-амперной характеристике

$R_{ m 0}$ по зависимости сопротивления от тока

Сравнение моделирования и эксперимента

- $T_{amb} = 300K$
- d = 116 MKM

Модель работает для центральной части достаточно длинной нити (более 3 см). Для более короткой нити - это оценка сверху на температуру в центре.

$$I(T,d) := \sqrt{\pi^2 \cdot d^3 \cdot \sigma \cdot \frac{\left(T^4 - T_{amb}^4\right) \cdot \varepsilon(T)}{4 \cdot \rho(T)}}$$

Экспериментальная температура была получена из измерения сопротивления небольшого участка проволоки (~ 3 cm).

Сравнение моделирования и эксперимента

Зависимость тока от температуры

Сравнение моделирования и эксперимента

Обсуждение результатов

Хотя эксперимент вкупе с теоретической формулой (приложение 1) дал довольно близкий результат к моделированию, остаются непонятными границы применимости этой формулы и правдоподобность моделированных результатов.

Следующим методом является использование пирометра для оценки температуры вольфрамовой проволоки.

Построение зависимости температуры, показываемой пирометром, от значения emissivity ε используемого материала позволит точнее калибровать пирометр.

Предложенная модель хоть и не обоснована теоретически, но позволяет с большой точностью аппроксимировать полученные экспериментальные данные.

Зависимость температуры от emissivity

Калибровка пирометра по T_{real}

Попытка измерять реальную температуру с помощью пирометра.

Основная проблема — пирометр измеряет объекты, размеры которых ~ 1 мм, наша нить была 116 мкм.

Зависимость T_{real} от показаний пирометра

 $\varepsilon = 1$

Обсуждение результатов

Предложенная модель аппроксимации теоретической формулы зависимости температуры от тока данными пирометра вполне хорошо ложится, но вопрос корректности формулы для нашего случая остаётся открытым.

Приложение 1

Теоретическая зависимость удельного сопротивления вольфрамовой проволоки от температуры

Для модели с постоянным удельным сопротивлением использовалось значение 5.507*10⁻⁸ Ом*м, для линеаризованной модели — линейная аппроксимация табличных данных.

Источник: База данных пакета COMSOL