Olimpiada Națională de Matematică Etapa Națională, Timișoara, 20 aprilie 2017

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a 12-a

Problema 1. Fie $f:[0,\infty)\to(0,\infty)$ o funcție continuă. Arătați că:

(a) Există un număr natural n_0 , astfel încât oricare ar fi numărul natural $n > n_0$, există un unic număr real $x_n > 0$ pentru care

$$n\int_0^{x_n} f(t) \, \mathrm{d}t = 1;$$

(b) Şirul $(nx_n)_{n>n_0}$ este convergent şi determinaţi limita sa.

Din teorema de medie, aplicată funcției f pe intervalul $[0, x_n]$, există $t_n \in (0, x_n)$, astfel încât $F(x_n) = x_n f(t_n)$, deci $nx_n = 1/f(t_n)$. Cum $\lim_{n\to\infty} t_n = 0$, din continuitatea lui f rezultă că $\lim_{n\to\infty} nx_n = 1/f(0)$ 2 puncte

Problema 2. Fie n un număr natural nenul, fie $a_1 < \cdots < a_n$ numere reale și fie b_1, \ldots, b_n numere reale arbitrare. Arătați că:

- (a) Dacă toate numerele b_i sunt strict pozitive, atunci există un polinom f cu coeficienți reali, care nu are nicio rădăcină reală, astfel încât $f(a_i) = b_i$, i = 1, ..., n;
- (b) Există un polinom f de grad cel puţin 1, care are toate rădăcinile reale, astfel încât $f(a_i) = b_i, i = 1, ..., n$.

Soluție. (a) Dacă a_1, \ldots, a_n sunt numere reale distincte două câte două și b_1, \ldots, b_n sunt numere reale arbitrare, polinomul de interpolare

$$g = \sum_{i=1}^{n} b_i \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}$$

(b) Procedăm prin inducție după n. Dacă n=1, polinomul $f=X-a_1+b_1$ îndeplinește condiția din enunț. Fie $n \geq 2$ și presupunem proprietatea adevărată oricare ar fi numerele reale $a_1 < \cdots < a_{n-1}$ și oricare ar fi numerele reale b_1, \ldots, b_{n-1} .

Dacă toate numerele b_i sunt nenule, fie $I = \{i = 1, ..., n-1 \mid b_i b_{i+1} > 0\}$.

Dacă mulțimea I este vidă, polinomul de interpolare g satisface condițiile cerute.

Dacă I are k elemente, $k \geq 1$, pentru fiecare indice i din I, alegem numerele reale a'_i şi b'_i , astfel încât $a_i < a'_i < a_{i+1}$ şi $b_i b'_i < 0$. Polinomul de interpolare pentru punctele $a_1, \ldots, a_n, a'_1, \ldots, a'_k$ şi valorile $b_1, \ldots, b_n, b'_1, \ldots, b'_k$ are gradul cel mult n + k - 1 şi cel puţin n - k - 1 + 2k = n + k - 1 rădăcini reale, deci îndeplineşte condiția cerută. 2 puncte

Problema 3. Fie G un grup finit care are următoarea proprietate: pentru orice automorfism f al lui G, există un număr natural m, astfel încât $f(x) = x^m$, oricare ar fi $x \in G$. Arătaţi că G este comutativ.

Soluție. Fie a și b două elemente din G, astfel încât ord $a \mid \text{ord } b$, fie $f: G \to G$, $f(x) = bxb^{-1}$, și fie $m \in \mathbb{N}^*$, astfel încât $f(x) = x^m$, oricare ar fi $x \in G$. Cum $b = f(b) = b^m$, rezultă că $b^{m-1} = e$, deci ord $b \mid m-1$. Atunci și $a^{m-1} = e$, deci $a = a^m = f(a) = bab^{-1}$, de unde ab = ba.

- (3) Fie $n_i = |G|/p_i^{\alpha_i}$. Cum $(n_1, \ldots, n_k) = 1$, există β_1, \ldots, β_k în \mathbb{Z} , astfel încât $\sum_{i=1}^k \beta_i n_i = 1$. Atunci, pentru orice $x \in G$, rezultă că $x = x^1 = x^{\beta_1 n_1 + \cdots + \beta_k n_k} = x^{\beta_1 n_1} \cdots x^{\beta_k n_k} = x_1 \cdots x_k$, unde $x_i = x^{\beta_i n_i} \in G_i$, $i = 1, \ldots, k$.

Problema 4. (a) Dați un exemplu de funcție continuă $f:[0,\infty)\to\mathbb{R}$, astfel încât

$$\lim_{x \to \infty} \frac{1}{x^2} \int_0^x f(t) \, \mathrm{d}t = 1,$$

dar f(x)/x nu are limită când $x \to \infty$.

(b) Fie $f:[0,\infty)\to\mathbb{R}$ o funcție crescătoare, astfel încât

$$\lim_{x \to \infty} \frac{1}{x^2} \int_0^x f(t) \, \mathrm{d}t = 1.$$

Arătați că f(x)/x are limită când $x \to \infty$ și determinați valoarea acesteia.

Soluţie. (a) Fie $f: [0, \infty) \to \mathbb{R}$, $f(x) = 4x(\cos x)^2$. Evident, $f(x)/x = 4(\cos x)^2$ nu are limită când $x \to \infty$ și

$$\lim_{x \to \infty} \frac{1}{x^2} \int_0^x f(t) dt = \lim_{x \to \infty} \frac{1}{x^2} \left(x^2 + x \sin 2x + \frac{1}{2} \cos 2x \right) = 1.$$

Un alt exemplu de astfel de funcție este $x \mapsto 2x + 2x \cos x^2, x \ge 0$; verificările sunt evidente.

(b) Fie $\epsilon \in (0,1)$ și fie $a_{\epsilon} > 0$, astfel încât

$$(1 - \epsilon^2)x^2 < \int_0^x f(t) \, \mathrm{d}t < (1 + \epsilon^2)x^2, \tag{1}$$

(3)

Fie $b_{\epsilon}=a_{\epsilon}/(1-\epsilon)$ și $x>b_{\epsilon}$. Cum $x-\epsilon x,\,x$ și $x+\epsilon x$ sunt strict mai mari decât a_{ϵ} , rezultă că

$$\int_0^{x-\epsilon x} f(t) \, dt < (1+\epsilon^2)(1-\epsilon)^2 x^2 \quad \text{si} \quad \int_0^{x+\epsilon x} f(t) \, dt < (1+\epsilon^2)(1+\epsilon)^2 x^2. \tag{2}$$

Din (1) şi (2) rezultă că

$$\int_{x-\epsilon x}^{x} f(t) dt = \int_{0}^{x} f(t) dt - \int_{0}^{x-\epsilon x} f(t) dt > (1-\epsilon^{2})x^{2} - (1+\epsilon^{2})(1-\epsilon)^{2}x^{2}$$

$$=x^2\epsilon(1-\epsilon)(2-\epsilon+\epsilon^2)$$
 şi

 $\int_{x}^{x+\epsilon x} f(t) dt = \int_{0}^{x+\epsilon x} f(t) dt - \int_{0}^{x} f(t) dt < (1+\epsilon^{2})(1+\epsilon)^{2}x^{2} - (1-\epsilon^{2})x^{2}$

$$= x^{2} \epsilon (1 + \epsilon)(2 + \epsilon + \epsilon^{2}).$$

Cum f este crescătoare, rezultă că

$$\int_{x-\epsilon x}^{x} f(t) dt \le \epsilon x f(x) \quad \text{si} \quad \int_{x}^{x+\epsilon x} f(t) dt \ge \epsilon x f(x),$$

deci

$$\frac{1}{\epsilon x} \int_{x-\epsilon x}^{x} f(t) \, \mathrm{d}t \le f(x) \le \frac{1}{\epsilon x} \int_{x}^{x+\epsilon x} f(t) \, \mathrm{d}t.$$