- São máquinas capazes reconhecer as Linguagens Livres de Contexto;
- Possuem um maior poder que os Autômatos Finitos, possuindo um "espaço de armazenamento" extra que é utilizado durante o processamento da cadeia;
- Possui uma pilha que caracteriza uma memória auxiliar onde pode-se inserir e remover informações;
- Mesmo pode de reconhecimento das GLC'S.

- Exemplo de LLC: {aⁿbⁿ | n≥0}
- Um AF não é capaz de reconhecer esse tipo de linguagem devido a sua incapadidade de "recordar" (memoriza) informação sobre a cadeia analisada;
- Autômatos com Pilha (AP) possuem uma pilha para armazenar informação, adicionando poder aos AF's.

Definição:

```
AP com estado final é uma sextupla <\Sigma,\Gamma,S,S_0,\delta,B>, onde: \Sigma é o alfabeto de entrada do AP; \Gamma é o alfabeto da pilha; \Gamma é o conjunto finito não vazio de estados do AP; \Gamma o estado inicial, \Gamma o estado inicial, \Gamma o estado estados, \Gamma o estado de transição de estados, \Gamma o estados do S × \Gamma estados do S × \Gamma o estados do S × \Gamma estados do S × \Gamma
```


Abstração de um AP como reconhecedor de cadeias (DELAMARO, 1998).

- Ao contrário da fita de entrada, a pilha pode ser lida e alterada durante um processamento;
- O autômato verifica o conteúdo do topo da pilha, retira-o e substitui por uma cadeia $\alpha \in \Gamma^*$.
- Se α= A, e A ∈ Γ, então o símbolo do topo é substituído por A e a cabeça de leitura escrita continua posicionada no mesmo lugar;
- Se α= A₁A₂...An, n>1 então o símbolo do topo da pilha é retirado, sendo An colocado em seu lugar, An-1 na posição seguinte, e assim por diante. A cabeça é deslocada para a posição ocupada por A₁ que é então o novo topo da pilha;
- Se α= λ então o símbolo do topo da pilha é retirado, fazendo a pilha decrescer.

- A função de transição δ, é função do estado corrente, da letra corrente na fita de entrada e do símbolo no topo da pilha;
- Além disso, esta função determina não só o próximo estado que o AP assume, mas também como o topo da pilha deve ser substituído;
- O AP inicia sua operação num estado inicial especial denotado por S₀ e com um único símbolo na pilha, denotado por B.

- A configuração de um AP é dada por uma tripla <s, x, α> onde s é o estado corrente, x é a cadeia da fita que falta ser processada e α é o conteúdo da pilha, com o topo no início de α;
- O AP anda ou move-se de uma configuração para outra através da aplicação de uma função de transição.

 Se o AP está na configuração <s,ay,Aβ> e temos que δ(s,a,A)=<t,γ>, então o AP move-se para a configuração <t,y, γβ> e denota-se

$$<$$
s,ay, $A\beta$ $>$ $|--<$ t,y, $\gamma\beta$ $>$

 Se o AP move-se de uma configuração <s1,x1,α1> para uma configuração <s2,x2,α2> por meio de um número finito de movimentos, denotamos

$$< S_1, X_1, \alpha_1 > | - * < S_2, X_2, \alpha_2 >$$

Se o valor de δ para uma determinada configuração for Ø o AP pára.

- Note que, segundo esta definição, AP's não possuem estados finais como os AF's;
- Assim, uma cadeia x é aceita se, ao chegar ao final do processamento da mesma, a pilha estiver vazia, independentemente do estado em que o AP se encontra;

- Formalmente temos:
- Dado o AP P = <Σ,Γ,S,S₀,δ,B> e a cadeia x sobre Σ, diz-se que x é aceita por P se existe s ∈ S tal que <S₀,x,B> |—* <s,λ, λ>.
 Caso contrário, x é rejeitada.
- Dado o AP P = $\langle \Sigma, \Gamma, S, S_0, \delta, B \rangle$, a linguagem L(P) definida por P $\acute{e}\{x \in \Sigma^* | \exists s \in S \exists \langle S_0, x, B \rangle \mid -^* \langle s, \lambda, \lambda \rangle\}$

• Exemplo:

Descrição formal para a linguagem livre de contexto:

$$\{a^nb^n|n\geq 0\}$$

$$\Sigma = \{a,b\};$$
 $\Gamma = \{A,B\};$
 $S = \{S,R\};$
 $S_0 = S;$
 $S = B.$

• Exemplo:

Descrição formal para a linguagem livre de contexto:

$$\{a^nb^n|n\geq 0\}$$

Exemplo:

Descrição formal para a linguagem livre de contexto:

$$\{a^n b^m a^n | n > 0, m > 0\}$$

$$< a,Z > /A$$

 $< a,A > /AA$ $< b,A > /A$ $< a,A > /\lambda$
 $< a,A > /A$ $< a,A > /\lambda$
 $< a,A > /\lambda$

Base: Z

Exemplo:

Descrição formal para a linguagem livre de contexto:

$$\{a^n b^m a^n | n > 0, m > 0\}$$

$$\begin{split} \Sigma &= \{a,b\}; \\ \Gamma &= \{A,Z\}; \\ S &= \{q0,q1,q2\}; \\ S_o &= q0; \\ B &= Z. \end{split} \begin{tabular}{l} &/A \\ & /A \\ & /A$$

Exemplo:

Descrição formal para a linguagem livre de contexto:

$$\Delta =$$

$$\delta(q0,a,Z) = \{ < q0,A > \}$$

$$\delta(q0,a,A) = \{ \langle q0,AA \rangle \}$$

$$\delta(q0,b,A) = \{ < q1,A > \}$$

$$\delta(q1,b,A) = \{ < q1,A > \}$$

$$\delta(q1,a,A) = \{ \langle q2,\lambda \rangle \}$$

$$\delta(q2,a,A) = \{ \langle q2,\lambda \rangle \}$$

Exemplo AP para a linguagem $\{a^nb^n|n>0\}$

Exemplo: processamento da cadeia aaabbb

Exemplo: processamento da cadeia aaabbb

Base da Pilha: Z

Pilha

Exemplo: processamento da cadeia aaabbb

Exemplo: processamento da cadeia aaabbb

Exemplo: processamento da cadeia aaabbb

Exemplo: processamento da cadeia aaabbb

Base da Pilha: Z

Pilha

Exemplo: processamento da cadeia aaabbb

Exemplo AP para a linguagem $\{a^nb^n|n\geq 0\}$

Exemplo AP para a linguagem $\{a^nb^n|n\geq 0\}$

Exemplo AP para a linguagem {aⁿb^mc^mdⁿ}

<a,A>/AA

Exemplo: processamento da cadeia aabcdd

Exemplo: processamento da cadeia aabcdd

Exemplo: processamento da cadeia aabcdd

Exemplo: processamento da cadeia aabçdd

Exemplo: processamento da cadeia aabcdd

Exemplo: processamento da cadeia aabcdd

Exemplo: processamento da cadeia aabcdd

Exemplo AP para a linguagem {aⁿb^mc^mdⁿ}
 <a,A>/AA

Base da Pilha: Z

Só adicionar estado final?

Exemplo: processamento da cadeia aabcd

Exemplo: processamento da cadeia aabcd

Base da Pilha: Z

Α

Exemplo: processamento da cadeia aabcd

Pilha

Α

Exemplo: processamento da cadeia aabçd

Exemplo: processamento da cadeia aabcd

Base da Pilha: Z

A

Exemplo: processamento da cadeia aabcd

Base da Pilha: Z

Α

Exemplo: processamento da cadeia aabcd

Exemplo AP para a linguagem {aⁿb^mc^mdⁿ}

Base da Pilha: Z

Só adicionar estado final? Como arrumar?

Exemplo AP para a linguagem {aⁿb^mc^mdⁿ}
 <a,A>/AA

Descreva um AP para a linguagem

$$\{a^n b^m c^m | n \ge 0, m > 0\}$$

Descreva um AP para a linguagem

Descreva um AP para a linguagem

$${X \in {a,b}^*||X|_a = |X|_b}$$

Exemplos de cadeias:

baba

abab

aabbaabb

Resolução Próxima Aula.

Bibliografia

- SIPSER, M. Introdução à Teoria da Computação, 2a edição. Cengage Learning, 2007.
- DIVERIO, Tiarajú A.; MENEZES, Paulo Blauth. Teoria da computação: máquinas universais e computabilidade. Porto Alegre: Sagra Luzzatto, 2008. 205 p.
- MENEZES, Paulo Blauth. Linguagens Formais e Autômatos: Volume 3 da Série Livros Didáticos Informática UFRGS. Bookman Editora, 2009.
- DELAMARO, MARCIO. Linguagens Formais e Autômatos, notas didáticas.