Functional Analysis

Adrian Perez Keilty

HTN3

Problem 1

Let $X = \{a, b, c, d\}$

a) 2 Hausdorff topologies on X:

This is impossible since the only Hausdorff topology on a finite set is the discrete one, i.e, $\tau(X) = \mathcal{P}(X)$.

(proof: If X is finite and τ is Hausdorff, then, given any $x \in X$ and a neighborhood $O_x \in \tau$, if $O_x \neq x$, let $x_1 \in O_x \setminus \{x\}$. By hypothesis there exists neighborhoods O_{x_1} and O_x^1 such that $O_{x_1} \cap O_x^1 = \emptyset$. By relabeling $O_x^1 = O_x^1 \cap O_x$, if in turn $O_x^1 \neq \{x\}$ we repeat this process, obtaining $|O_x| > |O_x^1| > |O_x^1|$... and since X is finite, in a finite number of steps we will obtain $O_x^n = \{x\}$ for some $n \in \mathbb{N}$ showing that τ is in fact the discrete topology on X.)

b) 2 non Hausdorff topologies on X:

$$\tau_1 = \{X, \emptyset\}$$

$$\tau_2 = \{X, \emptyset, \{a\}\}$$

Problem 2

Consider $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a, b\}, \{b, c\}, \{b\}\}$ and the following functions:

$$\begin{array}{cccc} f\colon X \longrightarrow X &, & g\colon X \longrightarrow X \\ & a \longmapsto c & & a \longmapsto c \\ & b \longmapsto c & & b \longmapsto a \\ & c \longmapsto a & & c \longmapsto b \end{array}$$

It is clear that $f^{-1}(\{b,c\}) = \{a,c\} \notin \tau$ and $g^{-1}(\{a,b\}) = \{c\} \notin \tau$, so f and g are not continuous on (X,τ) .