(3 marks)

Year 12 Mathematics Methods

Test 1

Calculator Free

Basic antidifferentiation Differentiaton, applications and Optimisation.

Year 12 Mathematics Methods Semester One 2018

SOMO TITO BOOK
15

PEKTH MODERN SCHOOL

Question 1

Perth Modern School

zətuniM 02 LS/lstoT	
	nistt2 TM
	offist2 TM
You may have a formula sheet for this section of the test.	Ms Cheng
	Мг Саппоп
Date Monday 20^{th} February 7.45 am	Mrs. Carter
	Mr McClelland
byan	
узте:	Теасhет:

Given that the function f has a rule of the form $f(x) = ax^2 + bx$ and f(1) = 6 and f'(1) = 0, find the

səanurw 07

f(1) = 30x+6 = 20+6=0 9 = 9 + 10 = (17)

/ rel = 9

Page 1 of 9

Test 1 2018

Year 12 Mathematics Methods

Question 3

(10 marks)

Let
$$f(x) = -(x+1)^2(x-3)$$
.

(a) Use calculus to locate and classify all the stationary points of f(x) and find any points of

(7±7≈) \frac{\xi\zeta}{8\zeta}= $(\xi - \xi)_2(1+\xi) - = \int_1^2 (\xi - \xi)^2$

f(-1) = 0 becal ww (-1,0) of [f"(-1) = -6(-1)+2>0

~ mu Lood (0, L), 0 = (1-) f = 1 (212 2) xom Lood 225 = (2) f

 $\sim \mathcal{L}_1^{1}+\mathcal{C}_2$ (b) On the axes provided sketch the graph of f(x), $-1 \le x \le 4$, labelling all key features.

Stui-2. I'O'd

I.O.A.

Page 8 of 8

· demain

Perth Modern School

Year 12 Mathematics Methods

(a) Graph the gradient function

Test 1 2018

Question 2

(8 marks)

Consider the gradient function $f'(x) = 12(x+2)^2(x+5)$.

(4 marks)

What kind of feature is at the point (-5, -225) on the graph of f(x)?

(2 marks)

(c) What kind of feature is at the point (-2, -144) on the graph of f(x)?

(2 marks)

$$(-5,-2)$$
 $(-2,+46)$

+ + Horgantal
i. point of inflection.

Page 2 of 9

Year 12 Mathematics Methods

Test 1 2018

Question 2

(6 marks)

A beverage company has decided to release a new product. "Modmash" is to be sold in $375\,mL$ cans that are perfectly cylindrical. {Hint: $1mL = 1cm^3$ }

(a) If the cans have a base radius of x cm show that the surface area of the can, S, is given

by:
$$S = 2\pi x^2 + \frac{750}{x}$$
.

$$S = 2\pi x^2 + 2\pi x \times h$$

$$= 2\pi x^2 + 2\pi x \times \frac{375}{\pi x^2}$$

$$= 2\pi x^2 + \frac{750}{x}$$

$$= 2\pi x^2 + \frac{750}{x}$$
(2 marks)

(b) Using calculus methods, and showing full reasoning and justification, find the dimensions of the

can that will minimise its surface area
$$S(x) = 2\pi x^{2} + 750 \times x^{-1}$$
 (4 marks)
$$S'(x) = 4\pi x - 750 x^{-2} = 0$$

$$\chi \approx 3.90796 \text{ cm}$$
. $\sqrt{(-\infty, 3.90796)}$ (3.90796, + ∞)

$$h = \frac{375}{\pi \times 3.90796^2} = 7.82 \text{ cm},$$

OF (s.A)" = 37.70 .: MIN

Page 7 of 9

Perth Modern School

Perth Modern School

Test 1 2018

(5 marks)

Year 12 Mathematics Methods

(e marks)

Question 3

Clearly showing your use of the product, quotient or chain rule differentiate the following.

 $g(d-1)dob - b(d-1)O1 = \frac{xp}{mp}$ $(1-) \times g(d-1)b \times do1 + b(d-1)O1 = \frac{xp}{mp}$ (S marks)

 $\frac{\sqrt[3]{2}}{\sqrt[3]{2}} = \sqrt{\frac{2}{x}} \left(x+x\right) = \sqrt{\frac{2}{x}} - 2\frac{\sqrt[3]{2}}{x^2}$ = (x+3)

(\$ marks)

If f'(x) = (x-1)(ux+v), where u and v are constants, use calculus to find the

$$S - = A \quad (\xi = N)$$

$$S + x8 - \chi\xi = (S - x\xi) (1 - x) =$$

$$(1 - x) + (x - x\xi) (1 - x) =$$

$$(1 - x) + (x - x) (1 - x) =$$

$$(1 - x) + (x - x) (1 - x) =$$

$$(1 - x) + (x - x) (1 - x) =$$

Page 3 of 9

Perth Modern School

Test 1 2018

Year 12 Mathematics Methods

A further 4 seconds later its displacement is 178 cm. ... 🕇 = 6 The model train has an initial velocity of 5cm/s. After 2 seconds, it has a displacement of -50cm.

(4 marks)

 $QS - = \gamma_0 + OI + \frac{\varepsilon}{4 \times \varepsilon_1} - \frac{9}{4R} = (\varepsilon - \frac{1}{2})\gamma_0$ 1 p + 79 + 2781 - 3d = (App 1 S = D = (0) (=) +7 E1 - 27 = (7) (b) Determine the value of the constant p.

(5 marks)

V= 5+781-279 = 5+781-271 = (77) (c) When is the model train at rest?

O = (2-4)(1-4) O = (2-4)(1-4) O = (2-4)(1-4) O = (2-4)(1-4) O = (2 - 4)(1-4) O = (2 - 4)(1-4) O = (3+4)(1-4) O = (3+4)(1-4)

 $\frac{2+7\times2+\frac{2}{5}}{5} + \frac{2}{5}\times51 - \frac{9}{5} + \frac{2}{5}\times51 - \frac{9}{5}\times51 - \frac{9}{5}\times51$ (t=77) = 1(8=77)

Page 6 of 8

Perth Modern School

Year 12 Mathematics Methods

To we manh

Test 1 2018

Question 4

(4 marks)

The time T seconds, for one complete swing of a pendulum of length l m, is given by the rule $T=2\pi\sqrt{\frac{l}{g'}}$ where g is a constant.

(a) Determine $\frac{d\tau}{dl}$, $T = 2\pi \left(\frac{1}{g}\right)^{\frac{1}{2}} = 2\pi g^{-\frac{1}{2}} \ell^{\frac{1}{2}}$ (2 marks) $\frac{d\tau}{d\ell} = \frac{1}{2} \times 2\pi \times \left(\frac{1}{g}\right)^{-\frac{1}{2}} \times \left(\frac{1}{g}\right) = \frac{1}{2} \times 2\pi \times g^{-\frac{1}{2}} \ell^{\frac{1}{2}}$ $= \pi \times \frac{\sqrt{3}}{\sqrt{c}} \times \frac{1}{g} = \frac{\pi}{\sqrt{9}\ell} = \frac{\pi}{\sqrt{9}\ell}$

(b) Using the formula $\partial T \approx \frac{dT}{dl} \times \partial l$, find the approximate increase in T when l is increased from 1.6 to 1.7. Give the answer in terms of g. (2 marks)

$$8T = \frac{\pi}{\ln \epsilon g} \times 0.1 \quad \text{see}$$

$$= \frac{\pi}{\sqrt{\alpha_{16}}} \times \sqrt{10} \times \sqrt{g} \times 10$$

$$= \frac{\pi}{0.4 \times 10 \times \sqrt{g}} \times 10$$

$$= \frac{\pi}{40} \sqrt{g}$$

$$= \frac{\pi}{40} \sqrt{\frac{10}{g}} \quad \text{sec}.$$

Page 4 of 8

Year 12 Mathematics Methods

Test 1 2018

Test 1

PERTH MODERN SCHOOL

Differentiaton , applications and Optimisation.

Basic antidifferentiation

Semester One 2018

Semester One 2018 Year 12 Mathematics Methods Calculator Assumed

Name: CHEN	9	Teacher:
Date th February 7.45an	1	Mr McClelland Mrs. Carter Mr Gannon
You may have • a formula sheet • one page of A4 no	Ms Cheng Mr Staffe Mr Staffe Mr Strain	
a scientific calculaa classpad	ttor	
Total/24	25 m	ninutes
Question 1		(9 marks
	n a straight track such that its accele $0 \leq t \leq 10$, where p is a constant.	eration after \emph{t} seconds is given by
(a) Determine the $au0$ = $p - l$	ie initial acceleration of the model tra	ain. (1 mark

Page 5 of 9