

Paper Reading

2022.01.05 Guan Yunyi

MetaView: Few-shot Active Object Recognition

Wei Wei, Haonan Yu, Haichao Zhang, Wei Xu and Ying Wu

Key words: few-shot learning, active object recognition(AOR)

Why this paper?

1.1 Standard framework of AOR

Reinforcement Learning

- (1) Select camera moving strategy with viewing history
- (2) Use **RNN** to aggregate visual and action information
- (3) Use aggregated information for classification

1.2 Comparison with previous works

Previous works	MetaView	
rely on a massive amount of training data	learn view selection policies from few samples	
testing categories have to be seen during training	recognize new categories in testing with few samples	
category-level recognition: many training samples for each label	instance-level recognition: one training sample for each label	

New problem of few-shot AOR: learning a way to learn from few-shot samples of new categories, rather than just learning to recognize.

-> Meta Learning

Approaches of MetaView

View grid / world

View grid / world

yields a trajectory $(s_1, a_1, s_2, ..., s_{T-1}, a_{T-1}, s_T)$

2.1 AOR system – loss function

$$\mathscr{L} = \mathscr{L}_{cls} + \lambda_1 \mathscr{L}_{policy} + \lambda_2 \mathscr{L}_{ent}$$

Classification loss: cross entropy between output and label y

$$\mathcal{L}_{cls} = -\sum_{c=1}^{C} y_c \log(f(s_T)_c)$$

• <u>Policy loss</u>: (REINFORCE algorithm) the sum of log action probabilities weighted by negative rewards, averaged over time steps

$$\mathscr{L}_{policy} = -\frac{1}{T-1} \sum_{t=1}^{T-1} \log \pi(a_t|s_t) R$$

• Entropy loss: minimize the negative policy entropy = maximize the entropy of action distribution (in order to encourage exploration)

$$\mathscr{L}_{ent} = \frac{1}{T-1} \sum_{t=1}^{T-1} \pi(a_t | s_t) \log \pi(a_t | s_t)$$

2.2 Few shot – Meta Learning

N-ways: N categories in training data

K-shot: K samples in each category

	Machine Learning	Model-agnostic Meta-learning (MAML)	
Training unit	data	(1) N-way-K-shot tasks (2) data	
Division	training, validation and test dataset	training, validation and testing tasks	
Purpose	Find a mapping f between feature and labels	Output a function f that can be applied to a new task	

2.2 Few shot – updating parameters in meta learning

- Meta-learning process can be divided into <u>META-TRAIN, META-VALIDATION and META-TEST</u> phases, in each of which several tasks are sampled.
- For each task T_i sampled from task distribution P(T):
- Support set S_i : adapts θ via a single step of gradient descent,

$$\theta_i \leftarrow \theta - \alpha \nabla_{\theta} L_{S_i}(\theta)$$

 $L_{S_i}(\theta)$ = average of the single object losses L over S_i $\mathscr{L} = \mathscr{L}_{cls} + \lambda_1 \mathscr{L}_{policy} + \lambda_2 \mathscr{L}_{ent}$

- Query set Q_i : evaluates θ_i and produce query set loss $L_{Q_i}(\theta_i)$.
- After sampling a number of tasks for each epoch, $L_{Q_i}(\theta_i)$ are averaged together to actually update θ :

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \mathbb{E}_{T_i \sim P(T)} [L_{Q_i}(\theta_i)]$$

Experiments

3. Two kinds of experiments

MetaView can solve both kind of recognition:

- Support phase: view each sample for a limited budget to learn new category/instance
- <u>Query phase</u>: given the same budget, predict the label of a new sample which is belonging to one of the categories/instances in Support phase.

3.1 Category-level

- <u>Aim</u>: classify different categories with only few training sample.
- <u>Dataset</u>: ModelNet40
 (24 for META-TRAIN, 6 for META-VALIDATION and 10 for META-TEST)
- Set of tasks: 5-way-1-shot and 5-way-5-shot

5-class-1-instance and 5-class-5-instance

3.1 Category-level

TABLE I: Category-level classification accuracy in METAT-

EST

Method	5way-1shot	5way-5shot
LookAhead [13] (T=3)	38.67%	57.33%
RandomOneView (T=1)	43.84%	54.44%
RandomMultiView (T=3)	50.67%	70.42%
LargestMultiView (T=3)	53.59%	68.76%
MetaView (T=3)	59.77%	74.54%

- simply fine-tune the existing AOR method (trained by massive data) on few-shot performed badly
- view selection policy can be trained to improve performance

- Baselines:
- (1) LookAhead: state-of-the-art of AOR, fine-tuned and evaluated in META-TEST
- (2) RandomOneView: meta-learning baseline, only use initial randomized view(T=1)
- (3) RandomMultiView: use non-learnable random view selection policy
- (4) LargestMultiView: chooses the largest allowable action every time

3.2 Instance-level - Intra-category Learning

- Aim: few-shot learning for recognizing new instances within one category
- <u>Dataset</u>: airplane instances from ModelNet40
 (400 for META-TRAIN, 126 for META-VALIDATION and 200 for META-TEST)
- <u>Set of tasks</u>: 5-way-1-shot and 10-way-1-shot 5-instance and 10 instance

3.2 Instance-level - Intra-category Learning

Fig3. Accuracy curves of intra-category learning

TABLE II: METATEST accuracy of intra-category learning

Task	5-way-1-shot	10-way-1-shot
RandomOneView $(T=1)$	75.24%	65.32%
RandomMultiView $(T=3)$	91.32%	85.10%
LargestMultiView $(T=3)$	93.03%	88.03%
MetaView (T=3)	94.65%	91.73%

- MetaView boosts the recognition accuracy even over other two high baselines which do not train policies
- Performance of Random-OneView is worse -> multiple views are necessary for better recognition

3.2 Instance-level - Inter-category Learning

META-TRAIN with airplane -> META-TEST with other category

- For each task, first sample one category, then sample instances.
- Support sets and Query sets contain the same instance, but the initial views are different
- <u>Aim</u>: whether can recognize instances of category A while only trained on instances of category B from few shots
- <u>Dataset</u>: ModelNet40 (not only airplane)
 (24 for META-TRAIN, 6 for META-VALIDATION and 10 for META-TEST)
- <u>Set of tasks</u>: 5-way-1-shot 5-instance

3.2 Instance-level - Inter-category Learning

Fig4. Training curves for inter-category learning

TABLE III: METATEST accuracy for inter-category learning

Task	5-way-1-shot
RandomOneView (T=1)	60.32%
RandomMultiView $(T=3)$	84.09%
LargestmMultiView $(T=3)$	86.29%
MetaView $(T=3,\lambda_2=0.01)$	92.33%
MetaView $(T=3,\lambda_2=0.005)$	90.90%
MetaView ($T=3,\lambda_2=0.003$)	92.78%
MetaView $(T=3,\lambda_2=0.001)$	90.55%

- Recognition of unknown category based on trained categories is possible.
- MetaView is better than baselines, regardless of the choice for λ2.
- The best performance appeared in $\lambda 2 = 0.003$.

$$\mathscr{L} = \mathscr{L}_{cls} + \lambda_1 \mathscr{L}_{policy} + \lambda_2 \mathscr{L}_{ent}$$

3.2 Instance-level - View selection trajectories

- selected views in <u>Support set</u>: cover more diverse visual appearances
- selected views in <u>paired Query set</u>: (partially) match those in the support set

Conclusion

4. Innovation Points

- The proposed method is not novel, but is the initial trial of few-shot
 AOR and may enlighten further research works.
- To summarize, the main contributions of this work are:
- 1. <u>Presented a new problem of AOR</u>: few-shot learning setting, which can embrace more realistic applications.
- 2. <u>Verified the performance of few-shot AOR</u>: view selection policy learned from few-shot can boost the recognition accuracy, and trained model has the capability of fast adaptation to new categories.
- 3. <u>Evaluated the performance in two levels</u>: category-level and instance-level