

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Домашнее задание 2 (Реферат) по дисциплине «Архитектура АСОИУ» на тему:

«Методы принятия решений в условиях неопределенности»

Выполнил: студентка группы ИУ5-24Б Ромашко Д. В. подпись, дата

Проверил: к.т.н., доц., Г.И. Афанасьев подпись, дата

Содержание

1. Описание, общая математическая постановка задачи принятия решени	ий
в условиях неопределенности	2
2. Критерий Лапласа (описание, общая математическая постановка	
задачи, пример с комментариями, решение примера с комментариями)	3
3. Критерий оптимизма (описание, общая математическая постановка	
задачи, пример с комментариями, решение примера с комментариями)	4
4. Критерий пессимизма Вальда (описание, общая математическая	
постановка задачи, пример с комментариями, решение примера с	
комментариями)	5
5. Критерий Сэвиджа (описание, общая математическая постановка	
задачи, пример с комментариями, решение примера с комментариями)	6
6. Критерий Гурвица (описание, общая математическая постановка	
задачи, примеры для коэффициентов доверия < 0,5 и > 0,5 с	
комментариями, решение примеров с комментариями)	7

1. Описание, общая математическая постановка задачи принятия решений в условиях неопределенности

Задача принятия решений (ЗПР) направлена на определение наилучшего (оптимального) способа действий для достижения поставленных целей. Под целью понимается идеальное представление желаемого состояния или результата деятельности. Решения в условиях неопределенности принимаются в ситуациях, когда хотя бы один из параметров решения является неопределенным, а все остальные — определенными и/или вероятностными. Для лица, принимающего решения (ЛПР), действующего в условиях неопределенности и невозможности получения дополнительной информации о неопределенных факторах, элементами описания ситуации планирования являются:

- множество допустимых стратегий (множество возможных альтернатив действий ЛПР) $A = \{A_1, A_2 \dots A_n\}$
- множество возможных состояний внешней среды (множество гипотез) $E = \{E_1, E_2 \dots E_m\}$

Постановка задачи:

Пусть ЛПР способен перечислить все возможные состояния внешней среды («состояния природы»), однако в каком конкретном состоянии находится среда ЛПР точно неизвестно. Существует d состояний среды $E_1, ..., E_d$, а из имеющихся альтернатив $A_1, ..., A_m$ требуется выделить наиболее предпочтительный вариант. Считается, что ЛПР, самостоятельно или привлекая экспертов, может каким-либо способом численно оценить частную эффективность или полезность $y_{ij} = f_j(A_i)$ варианта A_i для каждого j — состояния среды E_i , i=1...m, j=1...d.

Модель принятия решения в условиях полной неопределенности представляет из себя матрицу полезности $Y=(y_{ij})_{m*d}$, где $y_{ij}=f_j(A_i)$, а і-строка матрицы соответствует вектору $y_i=(y_{i1},...,y_{id})$, составленному из значений функции полезности y_{ij} варианта A_i

Функция полезности (частной эффективности) $f_j(A_i)$ варианта A_i в ј-состоянии среды E_j характеризует возможность достижения цели, возможный доход или выигрыш, получаемый при выборе варианта A_i .

Y	E_1	E_2		E_d
A_1	y ₁₁	y ₁₂	•••	y_{1d}
A_2	y_{21}	y ₂₂	•••	y_{2d}
	•••	•••	•••	•••
A_m	y_{m1}	y_{m2}		y_{md}

2. Критерий Лапласа (описание, общая математическая постановка задачи, пример с комментариями, решение примера с комментариями)

Данный критерий применяется, если варианты развития ситуации (состояния «природы») неизвестны, но их можно считать равновероятными. Для принятия решения необходимо рассчитать функцию полезности $f_j(A_i)$ для каждой альтернативы, равную среднеарифметическому показателей привлекательности по каждому «состоянию природы». Выбирается та альтернатива, для которой функция полезности максимальна.

$$A^* \in \arg\max_i \left[(1/d) \sum_{i=1}^d f_i(A_i) \right].$$

Пример: Директор сети кофеен планирует открывать заведение в другом городе. У него имеется 5 вариантов размещения и 4 варианта развития ситуации. Прибыль кофейни зависит от развития ситуации в конкретной точке города и представлена матрицей выигрышей $Y=(y_{ij})_{5*4}$ (тыс.р/месяц).

Y	E_1	E_2	E_3	E_4
A_1	57	78	67	70
A_2	54	91	75	63
A_3	71	65	87	75
A_4	80	70	64	89
A_5	59	95	65	72

$$F_1 = (57+78+67+70)/4=68$$

$$F_2 = (54+91+75+63)/4=70,75$$

$$F_3 = (71+65+87+75)/4=74,5$$

$$F_4 = (80+70+64+89)/4=75,75$$

$$F_5 = (59+95+65+72)/4=72,75$$

Видно, что функция полезности максимальна для альтернативы A_4 , следовательно ее рациональнее всего принять.

3. Критерий оптимизма (описание, общая математическая постановка задачи, пример с комментариями, решение примера с комментариями)

Критерий оптимизма (максимакса) предполагает возможность получения максимального уровня желательности результата. Он основывается на идее, что ЛПР, имея возможность в некоторой степени управлять ситуацией, рассчитывает, что произойдет такое развитие ситуации, которое является для него наиболее выгодным. Принимается альтернатива, соответствующая максимальному элементу матрицы выигрышей.

$$A^* \in \arg\max_i \max_i f_i(A_i).$$

Пример: Руководитель фирмы по производству спортивных батончиков выбирает места, в которых возможны продажи его продукции. Всего возможно 5 альтернатив решения. Успех зависит от того, как сложится ситуация на рынке предоставляемых услуг. Выделяют 4 возможных варианта развития событий. Прибыль фирмы для каждой альтернативы при каждой ситуации представлена матрицей выигрышей $Y=(y_{ij})_{5*4}$ (тыс.р./месяц)

Y	E_1	E_2	E_3	E_4
A_1	47	39	34	37
A_2	31	49	43	30
A_3	44	47	36	39
A_4	47	48	31	30
A_5	35	45	33	40

Для приведенного примера максимальный элемент - $y_{22} = 49$, поэтому выбираем альтернативу A2.

4. Критерий пессимизма Вальда (описание, общая математическая постановка задачи, пример с комментариями, решение примера с комментариями)

Критерий пессимизма Вальда (максимина, принцип гарантированного результата) заключается в выборе в качестве оптимальной альтернативы, которая имеет наибольшее среди наименее благоприятных состояний внешней среды значение функции полезности. Критерий Вальда лучше использовать, когда необходимо свести риск от принятого решения к минимуму. Он основывается на принципе максимального пессимизма, то есть ан предположении, что скорее всего произойдет наиболее худший вариант развития ситуации, поэтому требуется свести к минимуму риск наихудшего варианта. Для применения критерия нужно для каждой альтернативы выбрать наихудший показатель привлекательности y_i (наименьшее число в каждой строке матрицы выигрышей) и выбрать ту альтернативу, для которой этот показатель максимальный.

$$A^* \in \arg\max_i \min_j f_j(A_i).$$

Пример: Владелец бренда одежды решает, с какой фирмой выгодно было бы сделать коллаборацию. На выбор предоставлено 5 производителей, и для сотрудничества с каждым возможно 4 развития событий. Прибыль основателя бренда для каждой альтернативы при каждой ситуации представлена матрицей выигрышей $Y=(y_{ij})_{5*4}$ (млн.р.).

Y	E_1	E_2	E_3	E_4
A_1	11	21	10	6
A_2	27	4	10	18
A_3	22	14	23	10
A_4	4	21	13	12
A_5	7	30	19	5

Для нашего примера $y_1 = 6$, $y_2 = 4$, $y_3 = 10$, $y_4 = 4$, $y_5 = 5$. Видно, что наилучшим из наихудших показателей обладает альтернатива A_3 , для нее $y_3 = 10$ наибольшее.

5. Критерий Сэвиджа (описание, общая математическая постановка задачи, пример с комментариями, решение примера с комментариями)

Критерий Сэвиджа (минимаксного сожаления), стратегия выбора по данному принципу характеризует те потенциальные потери, которые будут, если выбрать неоптимальное решение. Он основывается на минимизации потерь, связанных с тем, что ЛПР принял неоптимальное решение. Для решения задачи составляется матрица потерь — матрица рисков r_{ij} , которая получается из матрицы выигрышей y_{ij} путем вычитания из максимального элемента каждого столбца $r_j(A_i) = \max_k f_j(A_k) - f_j(A_i)$ всех остальных элементов. Для каждой альтернативы определяем b_i , равные максимальному риску (наибольшее число в каждой строке матрицы рисков) и выбираем ту альтернативу, для которой максимальный риск минимален.

$$A^* \in \arg\min_i \max_j r_j(A_i), r_j(A_i) = \max_k f_j(A_k) - f_j(A_i).$$

Пример: Инвестор выбирает акции, в которые лучше вложиться, чтобы получить максимальный заработок. На выбор представлено 5 компаний, эксперты выделяют 4 варианта развития ситуации. Прибыль инвестора для каждой альтернативы при каждой ситуации представлена матрицей выигрышей $Y=(y_{ij})_{5*4}$ (тыс.р.).

Y	E_1	E_2	E_3	E_4
A_1	57	166	136	116
A_2	84	160	111	186
A_3	80	123	173	105
A_4	188	51	187	74
A_5	83	99	170	81

Составляем матрицу рисков.

Y	B_1	B_2	B_3	B_4
A_1	131	0	51	70
A_2	104	6	76	0
A_3	108	43	14	81
A_4	0	115	0	112
A_5	105	67	17	105

В нашем примере максимальные риски $b_1 = 131$, $b_2 = 104$, $b_3 = 108$, $b_4 = 115$, $b_5 = 105$ минимальным является $b_2 = 104$. Принимаем альтернативу A_5 .

6. Критерий Гурвица (описание, общая математическая постановка задачи, примеры для коэффициентов доверия < 0,5 и > 0,5 с комментариями , решение примеров с комментариями)

Критерий возвышенного оптимизма-пессимизма Гурвица является комбинацией принципа гарантированного результата и принципа оптимизма. Коэффициент в критерии Гурвица выбирается из объективных соображений: чем опаснее ситуация, тем больше руководитель или любое другое лицо, принимающее решение, желает подстраховаться.

$$A^* \in \arg\max_i \left[\gamma \max_j f_j(A_i) + (1-\gamma) \min_j f_j(A_i) \right],$$

где величина параметра γ задается ЛПР в пределах $0 \le \gamma \le 1$.

γ- коэффициент доверия(оптимизма). По-другому, вероятность, с которой произойдет наилучший для ЛПР исход. Следовательно, наихудший вариант с вероятностью (1-γ). γ показывает, насколько ЛПР может управлять ситуацией и

рассчитывать на благоприятный исход. Если вероятности благоприятной и неблагоприятной ситуации для ЛПР равны, то γ =0,5. Выбирается та альтернатива, для которой функция полезности максимальна.

При γ =0 критерий Гурвица переходит в пессимистический критерий Вальда, а при γ =1 – в критерий максимального оптимизма.

Пример: Руководитель студии танца планирует открыть новый зал в другом месте, на выбор предоставлено 5 различных вариантов, для каждого эксперты выделяют 4 различных варианта развития ситуации. Прибыль для каждой альтернативы при каждой ситуации представлена матрицей выигрышей $Y=(y_{ij})_{5*4}$ (тыс.р./месяц).

Y	E_1	E_2	E_3	E_4
A_1	272	174	394	142
A_2	347	453	136	440
A_3	330	260	430	200
A_4	345	454	307	144
A_5	174	320	116	443

Пусть ЛПР достаточно уверен в положительном результате и оценивает вероятность максимального успеха в γ =0,75, тогда:

$$F_1 = 394*0,75+142*(1-0,75)=331$$

$$F_2 = 453*0,75+136*0,25=373,75$$

$$F_3 = 430*0,75+200*0,25=372,5$$

$$F_4 = 454*0,75+144*0,25=376,5$$

$$F_5 = 443*0,75+116*0,25=361,25$$

В соответствии с расчетами ЛПР следует выбрать альтернативу A_4 . Если же, например, ЛПР не уверен в положительном результате и считает его

вероятность γ=0,15, то функции полезности равны:

$$F_1 = 394*0,15+142*(1-0,15)=179,8$$

$$F_2 = 453*0,15+136*0,85=183,55$$

$$F_3 = 430*0,15+200*0,85=234,5$$

$$F_4 = 454*0,15+144*0,85=190,5$$

$$F_5 = 443*0,15+116*0,85=165,05$$

В этом случае следует принять A_3 , для которого функция полезности максимальна.