Introduction
Méthode de Thomas
Réduction cyclique
Réduction cyclique parallèle
Performances et applications
Conclusion

M2 Projet en CUDA 2020-21

Dany Uy & Jijun Tang

Sorbonne Université

4 janvier 2021

- Introduction
- 2 Méthode de Thomas
- Réduction cyclique
- 4 Réduction cyclique parallèle
- 5 Performances et applications
- 6 Conclusion

Objectif:

Résoudre un système de la forme Ax = d, avec d un vecteur de \mathbb{R}^n connu et x un vecteur de \mathbb{R}^n à déterminer.

$$A = \begin{pmatrix} b_1 & c_1 & & & & \\ a_2 & b_2 & c_2 & & 0 & & \\ & a_3 & b_3 & c_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & 0 & & \ddots & \ddots & c_{n-1} \\ & & & b_n & a_n \end{pmatrix} \in M_n(\mathbb{R}).$$

2 Méthode de Thomas

• Elimination de Gauss-Jordan (n étapes) :

$$c'_1 = \frac{c_1}{b_1}, c'_i = \frac{c_i}{b_i - c'_{i-1}a_i}, i = 2, ..., n - 1$$

$$d'_1 = \frac{d_1}{b_1}, d'_i = \frac{d_i - d'_{i-1}a_i}{b_i - c'_{i-1}a_i}, i = 2, ..., n - 1$$

• Substitution ascendante (n étapes) :

$$x_n = d'_n, x_i = d'_i - c'_i x_{i+1}, i = 2, ..., n-1.$$

Réduction cyclique

Principe:

• Réduction descendante sur les équations d'indices pairs $(log_2(n) - 1 \text{ étapes})$:

$$k_1 = \frac{a_i}{b_{i-1}}, k_2 = \frac{c_i}{b_{i+1}},$$

$$a'_i = -a_{i-1}k_1, b'_i = b_i - c_{i-1}k_1 - a_{i+1}k_2,$$

$$c'_i = -c_{i+1}k_2, d'_i = d_i - d_{i-1}k_1 - d_{i+1}k_2.$$

- Résolution du système à deux inconnues (par substitution, 1 étape).
- Résolution des équations restantes (par substitution ascendante (log₂(n) - 1 étapes):

$$x_i = \frac{d_i' - a_i' x_{i-1} - c_i' x_{i+1}}{b_i'}.$$

IMPLÉMENTATION : chaque thread calcule les indices des équations dont il a besoin

Figure 1. Communication pattern for CR in the 8-unknown case, showing the dataflow between each equation, labeled e1 to e8. Letters e' and e'' stand for updated equation.

Introduction
Méthode de Thomas
Réduction cyclique
Réduction cyclique parallèle
Performances et applications
Conclusion

4 Réduction cyclique parallèle

PRINCIPE:

- Réduction descendante sur toutes les équations $(log_2(n) 1$ étapes) avec les mêmes équations que la réduction cyclique.
- Résolution des systèmes à deux inconnues (1 étape).

IMPLÉMENTATION : chaque thread calcule les indices des équations dont il a besoin

Figure 2: Communication pattern for PCR in the 8-unknown case, showing the dataflow between each equation, labeled e1 to e8. Letters $e^{'}$ and $e^{''}$ stand for updated equations.

5 Performances et applications

Résultats des tests sur Google Colab :

Méthodes	Matrice 1024×1024	Matrice 1023×1023
Thomas	10.8 microsecondes	
CR	14.3 microsecondes	
PCR	4.4 microsecondes	
$PCR_{-}odd$		8.2 microsecondes

Introduction
Méthode de Thomas
Réduction cyclique
Réduction cyclique parallèle
Performances et applications
Conclusion

6 Conclusion

- CR est le plus lent des 3 dans la version actuelle
- PCR permet un gain notable en temps de calcul.