Math 210++: Generating Functions

Puget Sound ACM LogTalk April 19, 2017

First, back to recurrences

Normally we define functions like this: $f(x) = x^2$

But sometimes, we define a function like this:

$$f(n) = f(n-1) + f(n-2),$$

 $f(0) = 0,$ $f(1) = 1.$

Analogous to a recursive computer procedure

Think of the function as a mapping between the integers and a *sequence* of integers (this will show up later!)

Main Technique: Unrolling (Math 210)

Intuit the closed form by expanding the sequence and looking for a pattern

Can't solve any recurrence this way

Real Life Example (CS 475, Operating Systems)

- Determining burst time of a CPU-intensive job based on its previous burst times (moving averages)
- Fortunately we could use the unrolling technique to see the answer. For other recurrences, like Fibonacci, we're not as lucky

Cool Technique: Generating Functions

- Turn the problem into a sum of formal power series, then read off the answer
- "A closeline on which we hang up a sequence of numbers for display" --Herbert Wilf
- Invented by Abraham de Moivre in 1730 to solve general linear recurrences
- "The most important idea in this whole book"
 --Concrete Mathematics (a primer to all the math needed to solve any kind of Computer Science problem)

Ordinary generating function

(There are other kinds too, which add more to the coefficient of xⁿ)

a_n is the sequence; we're not interested in x since we're not plugging in (that means we avoid convergence issues!)

$$G(a_n;x)=\sum_{n=0}^\infty a_n x^n.$$

Simplest generating function: the geometric series

What's the generating function for the sequence of 1's, {1,1,1,...}?

How can we use this to derive other series? (e.g, {1,2,3,4,...}?)

Simplest generating function: the geometric series

What's the generating function for the sequence of 1's, {1,1,1,...}?

How can we use this to derive other series? (e.g, {1,2,3,4,...}?)

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Enumerative Combinatorics (counting) problem

How many solutions of the equation

$$x_1 + x_2 + x_3 + \cdots + x_m = n$$
 (nonnegative integer x_i)

are there? We can represent the set of choices by

$$(x^0 + x^1 + x^2 + \cdots)^m$$

The x_i 's in the problem are the powers of x being added in the product.

The coefficient of x^n is the number of solutions.

The answer ends up using a binomial coefficient, due to Newton's Generalized Binomial Theorem

Takeaway: can be used to solve *any* linear recurrence!

- Closed form of Fibonacci recurrence (can alternatively be found via a characteristic polynomial)
- Generally requires complicated algebra, calculus, knowledge of power series (and, with that, occasionally real and/or complex analysis), and binomial identities
- Bridges the gap between *continuous* and *discrete* mathematical tools needed for computer science (algorithm analysis, etc.)

(Hence the title "Concrete Mathematics")

Further generating functions

- Generatingfunctionology (Wilf, 1994) (online)
- Concrete Mathematics (Graham/Knuth/Patashnik, 1994)
- The Art of Computer Programming (Knuth, 1997)
- The Art of Proving Binomial Identities (Spivey, 2017)
- They show up in other places (probability theory, for example)