

Introduction

Data models

E-R model

Relational model

SQL

E-R model, Relational model, SQL

Hogeschool Rotterdam Rotterdam, Netherlands

Introduction

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Lecture topics

- E-R model.
- Relational model.
- SQL, and examples.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

database design process

Requirements analysis

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

- Requirements analysis
- Conceptual database design using E-R models

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

- Requirements analysis
- Conceptual database design using E-R models
- Logical database design (sometimes conceptual and logical are merged into one step)

E-R model, Relational model, SQL

Introduction

Data models

F-R model

Relational model

SQL

- Requirements analysis
- Conceptual database design using E-R models
- Logical database design (sometimes conceptual and logical are merged into one step)
- Schema refinement through normalization

E-R model, Relational model, SQL

Introduction

Data models

F-R model

Relational model

SQL

- Requirements analysis
- Conceptual database design using E-R models
- Logical database design (sometimes conceptual and logical are merged into one step)
- Schema refinement through normalization
- Physical database design

E-R model, Relational model, SQL

Introduction

Data models

F-R model

Relational model

SOL

- Requirements analysis
- Conceptual database design using E-R models
- Logical database design (sometimes conceptual and logical are merged into one step)
- Schema refinement through normalization
- Physical database design
- Application and Security Design

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

Overview

- Highest level of database modelling.
- Model the conceptual aspect of the database.
- Far from the physical representation in the DBMS.

←□ → ←□ → ←□ → □ → ○○○

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SOL

Entity

- Anything which can exist on its own on the database
- Consider a database for a space shooter game
- Starships, asteroids are entities, they have a meaning on their own

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SOL

Attributes

- They model characteristics of the entity.
- Starship: velocity, shield, armour, weapon, [...]
- Asteroid: velocity, mass, integrity, [...]

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Relations

- They describe the associations among entities (two or more).
- They have a cardinality: number of participants for each side.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

. . .

Relations - 1:1

- Entity modelling a pilot and one modelling a starship.
- Related by "drives".
- The cardinality is 1:1: one pilot drives at most one starship, and one starship can contain only one pilot.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Relations - 1 : N

- Entity modelling a starship and one modelling a weapon.
 - Realted by "mounted"
 - The cardinality is 1:N: a weapon can be mounted only on one starship, but a starship can mount more than one weapon.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Relations - N: M

- Entity modelling a starship and one modelling an asteroid.
- Realted by "collides with"
- The cardinality is N : M : several starships can collide with several asteroids.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

٠..

Keys

- A way to uniquely identify an entity.
- A key is a set of attributes that have unique values among entities.
- Starship: id number.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SOL

Weak entities

- Entities which do not have a key attribute.
- Asteroids: There can be two asteroids with the same position, same mass, velocity, etc.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Overview

- Halfway between a conceptual model and the physical model.
- Contain an abstraction of physical elements.
- Can be easily mapped to a physical implementation in a DBMS.
- There are mapping rules from E-R model to the relational model.

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Relation

- A relation is a collection of tuples.
- Each element of a tuple is a value taken from an attribute set.
- Each attribute set is identified by a name

Ships					
<u>id</u>	name	shields	armour	integrity	

(38258269, "Battlestar Galactica", 3000, 5000, 1.0)

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Keys

- A Primary key is a set of attributes with unique values in each tuple.
- A Candidate key is the smallest set of attributes which form a superkey.

Example:

Primary key: (id, name, shield)

Candidate key: (id)

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Keys

- A Primary key is the chosen key for a relation among all the candidate keys.
- A Foreign key is a set of attributes in one relation which is a primary key in another relation.

Example (Foreign key):

Mounts			
shipid	weaponName		

Ships					
<u>id</u>	name	shields	armour	integrity	

In the relation Mounts the attribute shipid is a foreign key to Ships.

SQL

E-R model, Relational model, SQL

Introduction

Data models

E-R model

Relational model

SQL

Overview

- Used to create relations (tables).
- Used to insert/modify/extract data from relations (tables).
- Declarative language ("What" not "How").

Introduction

Data models

E-R model

Relational model

SQL

Ships					
<u>id</u>	name	shields	armour	integrity	

Select all ships from the game

Introduction

Data models

E-R model

Relational model

SQL

Ships					
<u>id</u>	name	shields	armour	integrity	

Select all ships from the game

SELECT *

FROM Ships

Introduction

Data models

E-R model

Relational model

SQL

Ships				
<u>id</u>	name	shields	armour	integrity

Select all ships in the game whose pilot is "William Adama"

Introduction

Data models

E-R model

Relational model

SQL

Ships					
<u>id</u>	name	shields	armour	integrity	

Select all ships in the game whose pilot is "William Adama"

```
SELECT *
FROM Ships s
WHERE s.pilot = 'William_Adama'
```


Introduction

Data models

E-R model

Relational model

SQL

Ships					
id	name	shields	armour	integrity	

Find the name of the ships whose pilot is "Starbucks"

Introduction

Data models

E-R model

Relational model

SQL

Ships					
<u>id</u>	name	shields	armour	integrity	

Find the name of the ships whose pilot is "Starbucks"

```
SELECT s.name
FROM Ship s
where s.pilot = 'Starbucks'
```


Introduction

Data models

E-R model Relational

Relational model

SQL

Ships				
<u>id</u>	name	shields	armour	integrity

Mounts			
shipid	weaponName		

Weapons			
<u>name</u>	damage	type	

Find the id of the ships mounting the weapon "Stealthblade MKII"

Introduction

Data models

F-R model

Relational model

model

SQL

Ships id name shields armour integrity

Mounts	
shipid	weaponName

Weapons		
<u>name</u>	damage	type

Find the id of the ships mounting the weapon "Stealthblade MKII"

Introduction

Data models

E-R model

Relational model

SQL

Ships				
<u>id</u>	name	shields	armour	integrity

Mounts	
shipid	weaponName

Weapons		
<u>name</u>	damage	type

Find the name of all the weapons mounted in the ships flown by "Apollo"

Introduction

Data models

E-R model

Relational model

SQL

Ships				
<u>id</u>	name	shields	armour	integrity

Mounts		
shipid	weaponName	

Weapons		
<u>name</u>	damage	type

Find the name of all the weapons mounted in the ships flown by "Apollo"

```
SELECT w.name
FROM Ship s, Mounts m, Weapon w
WHERE s.id = m.Shipid AND
      m.weaponName = w.name AND
      s.pilot = 'Apollo'
```


Introduction

Data models

E-R model

Relational model

SQL

Ships				
<u>id</u>	name	shields	armour	integrity

Mounts		
shipid	weaponName	

Weapons		
name	damage	type

Find the total damage output of the ships flown by "Athena"

Introduction

Data models

E-R model

Relational model

model

SQL

Mounts		
shipid	weaponName	

Weapons		
<u>name</u>	damage	type

Find the total damage output of the ships flown by "Athena"

Ships shields integrity id name armour

Introduction

Data models

E-R model

Relational

SQL

model

Weapon name damage type

Mounts

weaponName

shipid

Count all the ships having more than 3 weapons

shields id name armour Mounts

Introduction

shipid weaponName Data models

F-R model

Weapon damage name

Relational model

SQL

type Count all the ships having more than 3 weapons

Ships

integrity

```
SELECT COUNT (*)
FROM (
 SELECT COUNT(*) AS ShipCount
 FROM Ship s, Mounts m, Weapon w
 WHERE s.id = m.shipid AND
      m.weaponName = w.Name
 GROUP BY s.id
 HAVING COUNT (*) > 3
                                 4 D > 4 A > 4 B > 4 B > B 9 9 0
```