

Motorised handtool e.g. impact drill

Patent Number: DE19600339

Publication date: 1996-12-19

Inventor(s): BINDER ALFRED (DE)

Applicant(s): KRESS ELEKTRIK GMBH & CO (DE)

Requested Patent: DE19600339

Application Number: DE19961000339 19960108

Priority Number(s): DE19961000339 19960108

IPC Classification: H02K7/116; H02K5/20; H02K9/06; B25D17/00; B25F5/02

EC Classification: B25D17/00, H02K5/20, H02K9/06, B25F5/00F, H02K7/116B

Equivalents:

Abstract

A motorised handtool has two fans to send cooling air past the motor (20) and gearbox (30) down separate channels within the housing, divided by a wall. The fans work independently. The fans are formed by a double fan wheel (40), driven off the motor shaft and lying between the motor and the gearbox. There are separate air inlets and outlets (51 to 54) for the two cooling paths. The cooling channel for the gearbox is directed upon at least one bearing (31) of the box and past a thermally conducting mounting flange.

Data supplied from the esp@cenet database - I2

BEST AVAILABLE COPY

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Patentschrift
⑯ DE 196 00 339 C 1

⑯ Int. Cl. 6:
H 02 K 7/116
H 02 K 5/20
H 02 K 9/06
B 25 D 17/00
B 25 F 5/02

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑦ Patentinhaber:
Kress-Elektrik GmbH & Co Elektromotorenfabrik,
72406 Bisingen, DE

⑧ Vertreter:
Otte und Kollegen, 71229 Leonberg

⑦ Erfinder:
Binder, Alfred, 72406 Bisingen, DE

⑨ Für die Beurteilung der Patentfähigkeit
in Betracht gezogene Druckschriften:
DE-AS 10 06 950

⑩ Handwerkzeug

⑪ Um ein Handwerkzeug mit einem Gehäuse, in dem ein Motor, ein diesem nachgeordnetes Getriebe und ein Lüftermittel angeordnet sind, wobei das Lüftermittel Kühlluft durch wenigstens eine Ansaugöffnung im Gehäuse ansaugt, über Motor und Getriebe leitet und über wenigstens eine Ausblasöffnung in dem Gehäuse wieder ausbläst, dahingehend zu verbessern, daß eine möglichst optimale Kühlung von Motor und Getriebe, insbesondere auch eine optimale Kühlung hochbelasteter Getriebekomponenten, erreicht wird, wird vorgeschlagen, daß das Lüftermittel wenigstens zwei Teillüftermittel umfaßt, die jeweils über getrennte Luftkanäle wenigstens den Motor und das Getriebe getrennt und unabhängig voneinander kühlen.

Beschreibung

Die Erfindung betrifft ein Handwerkzeug mit einem Gehäuse, in dem ein Motor, ein diesem nachgeordnetes Getriebe und ein Lüftermittel angeordnet sind, wobei das Lüftermittel Kühlluft durch wenigstens eine Ansaugöffnung in dem Gehäuse ansaugt, über Motor und Getriebe leitet und über wenigstens eine Ausblasöffnung in dem Gehäuse wieder ausbläst.

Ein solches ist bekannt durch die DAS 1 006 950.

Zur Kühlung von Handwerkzeugen, insbesondere Bohrhämmern und Schlagbohrmaschinen, ist es bekannt, Kühl Luft über ein einseitig wirkendes Lüfterrad über den Motor anzusaugen. Die Luft wird dabei durch den je nach Arbeitseinsatz belasteten Motor vorgewärmt, wobei die Temperaturen der Kühl Luft zwischen 40°C und 100°C variieren können, und zum Teil zur Getriebekühlung über Getriebeteile ausgeblasen.

Nachteilig bei dieser Art der Getriebekühlung ist es jedoch, daß die "Kühl Luft" immer durch den betriebswarmen Motor angewärmt wird und hierdurch an dem Getriebe nur noch eine verminderte Kühlleistung erzielt wird.

Des weiteren ist es bekannt, Luft über ein großdimensioniertes Lüfterrad, welches in der Regel an einem Ende des Motors, d. h. an dem Ende der gesamten Anordnung aus Getriebe und Motor, positioniert ist. Auch in diesem Falle ist die Kühlleistung an dem Motor verringert, da die Kühl Luft bereits durch das belastete und dadurch erwärmte Getriebe erwärmt wird und sich durch eine solche Anordnung auch große Luftsaugwiderstände ergeben.

Um bei dieser Anordnung noch eine befriedigende Kühlleistung erzielen zu können, muß entweder der Lüfter sehr groß dimensioniert werden, damit noch ein entsprechender Saugkühlstrom erreicht wird, und/oder es muß der Motor so groß dimensioniert werden, daß durch den bei dieser Anordnung erzeugten Kühlstrom noch eine ausreichende Kühlung des Motors gewährleistet ist.

Ein weiterer Nachteil besteht darin, daß die Getriebearsaugöffnung meistens nahe des (Bohr)Werkzeugs angeordnet ist, so daß beim Betrieb des Handwerkzeugs entstehende Staubpartikel durch den ganzen Motor gesaugt werden und so den Motor beschädigen können.

Aufgabe der Erfindung ist es daher, ein Handwerkzeug der gattungsgemäßen Art derart zu verbessern, daß eine möglichst optimale Kühlung von Motor und Getriebe, insbesondere auch eine optimale Kühlung hochbelasteter Getriebekomponenten, erreicht wird.

Diese Aufgabe wird bei einem Handwerkzeug der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß das Lüftermittel wenigstens zwei Teillüftermittel umfaßt, die jeweils über getrennte Luftkanäle wenigstens den Motor und das Getriebe trennen und unabhängig voneinander kühlen.

Die unabhängige und getrennt voneinander vorgenommene Kühlung von Motor und Getriebe durch die beiden Teillüftermittel hat den großen Vorteil, daß zwei getrennte Kühl Luftströme jeweils für Motor und Getriebe vorhanden sind, so daß der Kühl Luftstrom zur Kühlung des Motors nicht durch das erwärmte Getriebe aufgewärmt wird und umgekehrt der Kühl Luftstrom zur Kühlung des Getriebes nicht durch den belasteten Motor aufgewärmt wird. Hierdurch wird eine optimale Kühlung des Motors und des Getriebes erreicht.

Grundsätzlich können die unterschiedlichsten Lüftermittel zum Einsatz kommen. Vorzugsweise ist bei der

erfindungsgemäßen Lösung das Lüftermittel jedoch ein Doppellüfterrad, dessen beide Teillüftermittel jeweils ein dem Getriebe und dem Motor zugewandtes Lüfterrad sind. Hierdurch kann mit einem einzigen Bauteil auf einfache und damit kostengünstige Weise jeweils ein getrennter Kühl Luftstrom für Motor und Getriebe erreicht werden.

Das Doppellüfterrad ist dabei vorteilhafterweise zwischen dem Motor und dem Getriebe angeordnet.

10 Vorteilhafterweise sind die Ansaug- und die Ausblasöffnungen voneinander getrennt. Hierdurch läßt sich eine vollständige Trennung der beiden Kühl Kreisläufe jeweils für Motor und Getriebe erzielen, so daß es zu keinerlei unerwünschter "Vermischung" der beiden

15 Kühl Luftströme durch Turbulenzen u. dgl. und dadurch bei unterschiedlichen Betriebstemperaturen von Motor und Getriebe gegebenenfalls zu einer Erwärmung jeweils eines Kühl Luftstromes durch den anderen kommen kann.

20 Insbesondere um eine besonders effektive Kühlung des Motors und des Getriebes zu erzielen, führen ein zur Motorkühlung vorgesehener erster Luftkanal direkt über den Motor und ein zur Getriebekühlung vorgesehener zweiter Luftkanal direkt über das Getriebe.

25 Dabei ist zur unmittelbaren Kühlung der Getriebelagerung der zweite Luftkanal vorteilhafterweise so angeordnet, daß der Kühl Luftstrom an wenigstens einem die Lager aufnehmenden, gut wärmeleitenden, vorzugsweise aus Metall bestehenden Aufnahmeflansch vorbeibeführt wird und auf wenigstens ein Lager der Getriebewelle gerichtet ist.

30 Grundsätzlich könnte auf Trennwände zwischen dem ersten und dem zweiten Luftkanal im Gehäuse verzichtet werden, da die beiden Kühl Luftströme durch das 35 Doppellüfterrad an sich schon getrennt in dem Gehäuse bewegt werden. Um eine besonders effektive Kühlung von Motor und Getriebe zu erzielen ist es aber von Vorteil, die beiden Kühl Kreisläufe durch in dem Gehäuse angeordnete Trennwände vollständig voneinander zu trennen sind.

40 Von besonders großem Vorteil ist es, daß die Ansaugöffnungen direkt dem Doppellüfterrad gegenüberliegen. Hierdurch wird nicht nur eine äußerst wirkungsvolle Ansaugung der Kühl Luft erreicht, sondern es ist insbesondere auch sichergestellt, daß keine Verunreinigung

45 sowohl in den Motor als auch in das Getriebe gelangt, die bei der Arbeit mit dem Handwerkzeug entsteht, da die Ansaugöffnungen hinreichend weit von dem Werkzeug entfernt sind. So wird beispielsweise im Falle eines 50 Bohrhammers oder einer Schlagbohrmaschine wirkungsvoll das Ansaugen von beim Bohren entstehenden Staub, Spänen u. dgl. verhindert.

Weitere Merkmale und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der 55 zeichnerischen Darstellung eines Ausführungsbeispiels.

In der Zeichnung zeigen:

Fig. 1 eine teilweise weggebrochene und geschnittene Darstellung eines Gehäuses eines erfindungsgemäßen Handwerkzeugs;

60 Fig. 2 die Seitenansicht eines Gehäuses eines erfindungsgemäßen Handwerkzeugs;

Fig. 3 eine Schnittdarstellung entlang der Linie III-III der Fig. 1;

Fig. 4 eine Schnittdarstellung entlang der Linie IV-IV der Fig. 1;

65 Fig. 5 eine Schnittdarstellung entlang der Linie V-V der Fig. 1 und

Fig. 6 Seitenansichten eines Doppellüfterrads sowie

schematisch den durch das Doppellüfterrad erzeugten Luftstrom.

Ein Ausführungsbeispiel eines Handwerkzeugs ist in den Figuren exemplarisch in Form eines Bohrhammers dargestellt. Es versteht sich, daß die Erfindung jedoch nicht auf einen Bohrhammer beschränkt ist, sondern vielmehr bei jeglicher Art von Handwerkzeug eingesetzt werden kann.

Wie aus Fig. 1 hervorgeht, umfaßt ein Bohrhammer 10 ein Gehäuse 11, in dem ein Motor 20 sowie ein diesem nachgeschaltetes Getriebe 30 angeordnet sind. So- wohl der Motor 20 als auch das Getriebe 30 erzeugen beim Betrieb des Bohrhammers 10 Wärme, die abgeleitet werden muß, um eine Überlastung des Motors und/oder des Getriebes, insbesondere eine Überlastung der Motor- und/oder Getriebelager und weiterer Gleitstellen, die beispielsweise durch einen aufgrund der Wärme erzeugten Schmierfilmabriß entstehen kann, zu vermeiden.

Zwischen dem Motor 20 und dem Getriebe 30 ist ein 20 Doppellüfterrad 40 angeordnet, welches insbesondere einstückig miteinander verbundene Lüfterräder 41, 42 umfaßt (vergl. Fig. 6). Dieses Doppellüfterrad 40 wird durch die Ausgangswelle 21 des Motors in Rotation versetzt und erzeugt dadurch einen Kühlstrom, wie er schematisch in Fig. 6 anhand der Pfeile A für den motorseitigen Luftstrom und B für den getriebeseitigen Luftstrom dargestellt ist.

Wie aus Fig. 1 und 2 hervorgeht, sind in dem Gehäuse 11 Ansaugöffnungen 51 zur Ansaugung des zur Motorkühlung verwendeten Kühlstromes A sowie Ansaugöffnungen 52 zur Ansaugung des zur Getriebekühlung verwendeten Kühlstromes B vorgesehen. Des Weiteren sind in dem Gehäuse Ausblasöffnungen 53, 54 vorgesehen, durch die jeweils der zur Motorkühlung verwendete Kühlstrom A und der zur Getriebekühlung verwendete Kühlstrom B ausgeblasen werden.

Die Kühlströmung in dem Gehäuse 11 ist insbesondere in den Fig. 1 bis 5 veranschaulicht. Wie aus Fig. 1 hervorgeht, erzeugt das dem Motor 20 zugewandte Lüfterrad 42 den Kühlstrom A, der nach Ansaugen durch die Öffnungen 51 über den Motor 20 geführt wird und sodann durch die Ausblasöffnung 54 wieder ausgeblasen wird.

Das dem Getriebe 30 zugewandte Lüfterrad 41 des 45 Doppellüfters 40 erzeugt den Kühlstrom B, der durch die Ansaugöffnung 52 angesaugt, über das Getriebe 30 geleitet und durch die Ausblasöffnung 53 wieder ausgeblasen wird.

Wie aus Fig. 1, 3 und 5 zu ersehen ist, ist der zweite 50 Luftkanal so angeordnet, daß der Kühlstrom B darüber hinaus an einem die Lager aufnehmenden, gut wärmeleitenden, vorzugsweise aus Aluminium bestehenden Aufnahmeflansch vorbeigeführt wird und auf wenigstens ein Lager 31 einer Getriebewelle 32 gerichtet ist, 55 wodurch eine besonders effektive Kühlung dieses Getriebewellenlagers 31 erzielt wird.

Besonders vorteilhaft ist es, wenn der erste Lüftungs-kanal von dem zweiten Lüftungs-kanal durch in dem Gehäuse abgetrennte Trennwände (nicht dargestellt) 60 vollständig getrennt ist, so daß eine Vermischung der beiden, gewöhnlich unterschiedlichen Temperaturen aufweisenden Kühlströme und hierdurch die Angleichung auf eine Mischungstemperatur der beiden Kühlströme verhindert wird.

Der große Vorteil oben beschriebenen Handwerk-zeugs besteht darin, daß mit einem einzigen Doppellüf-ter 40 zwei getrennte Kühlkreisläufe in dem Gehäu-

se 11 zur getrennten Kühlung von Motor 20 und Getriebe 30 auf einfache und kostengünstige Weise ermöglicht wird.

Patentansprüche

- 5 1. Handwerkzeug mit einem Gehäuse, in dem ein Motor, ein diesem nachgeordnetes Getriebe und ein Lüftermittel angeordnet sind, wobei das Lüftermittel Kühlstrom durch wenigstens eine Ansaugöffnung in dem Gehäuse ansaugt, über Motor und Getriebe leitet und über wenigstens eine Ausblasöffnung in dem Gehäuse wieder ausbläst, dadurch gekennzeichnet, daß das Lüftermittel wenigstens zwei Teillüftermittel umfaßt, die jeweils über getrennte Luftkanäle wenigstens den Motor (20) und das Getriebe (30) trennen und unabhängig voneinander kühlen.
2. Handwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß das Lüftermittel ein Doppellüfterrad (40) ist, dessen beide Teillüftermittel jeweils ein dem Getriebe (30) und dem Motor (20) zugewandtes Lüfterrad (41, 42) sind.
3. Handwerkzeug nach Anspruch 2, dadurch gekennzeichnet, daß das Doppellüfterrad (40) zwischen dem Motor (20) und dem Getriebe (30) angeordnet und von der Motorwelle (21) angetrieben wird.
4. Handwerkzeug nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß zur getrennten Kühlung von Motor (20) und Getriebe (30) in dem Gehäuse (11) jeweils getrennte Ansaug- und Ausblasöffnungen (51, 52; 53, 54) angeordnet sind.
5. Handwerkzeug nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß ein zur Motorkühlung vorgesehener erster Luftkanal über den Motor (20) und ein zur Getriebekühlung vorgesehener zweiter Luftkanal über das Getriebe (30) führt.
6. Handwerkzeug nach Anspruch 5, dadurch gekennzeichnet, daß der zweite Luftkanal so angeordnet ist, daß der Kühlstrom (B) an wenigstens einem die Lager aufnehmenden, gut wärmeleitenden, vorzugsweise aus Metall bestehenden Aufnahmeflansch (34) vorbeigeführt wird und auf wenigstens ein Lager (31) der Getriebewelle (32) gerichtet ist.
7. Handwerkzeug nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der erste Luftkanal von dem zweiten Luftkanal durch in dem Gehäuse (11) angeordnete Trennwände vollständig getrennt ist.

Hierzu 3 Seite(n) Zeichnungen

BEST AVAILABLE COPY

602 151/412

Fig. 2

BEST AVAILABLE COPY

602 151/412

Fig. 3

Fig. 4

Fig. 5

Fig. 6