Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

SUGARBEET RESEARCH

1993 REPORT

FOREWARD

SUGARBEET RESEARCH is an annual compilation of progress reports concerning research by Agricultural Research Service investigators and cooperators who are engaged in sugar beet variety and production research. The report has been assembled and reproduced at the expense of the Beet Sugar Development Foundation, and is for the sole use of its members and the cooperators. Much of the data has not been sufficiently confirmed to justify general release and interpretations may be modified with additional experimentation. The report is not intended for publication and should not be used for cited reference nor quoted in publicity or advertising. Reproduction of any portion of the material contained herein will not be permitted without the specific consent of the contributor and the Beet Sugar Develepment Foundation.

The report presents results of investigations strengthened by contributions received under Cooperative Agreements between Agricultural Research Service, U.S. Department of Agriculture, and the Beet Sugar Development Foundation; the California Beet Growers Association; and the Sugarbeet Research and Education Board of Minnesota and North Dakota.

Trade names occur in this report solely to provide specific information and do not signify endorsement by the U.S. Department of Agriculture or the Beet Sugar Development Foundation.

CONTENTS

SECTION A SALINAS, CALIFORNIA	PAGI
Contents	A1
Abstracts of Papers, 1992	A3
PROJECTS 210, 211, 212, 215	
Development of Breeding Lines and Germplasm	A12
PROJECT 203	
Characteristic of Furo Viruses	A158
PROJECT 250 (UC/Berkeley)	
Detection of BNYVV in Polymya Betae	A162
PROJECT 250	
Evaluation of Photosynthetic Parameters in the Selection of Varieties with Improved Rates of Sugar Production	A165
SECTION B BELTSVILLE, MARYLAND	
Contents	B1
Publications	В3
PROJECT 800	
Engineered Resistance to Bacterial Pathogens	B5
Gene Design for Sugarbeet	В6

	CONTENTS	PAGE
SE	CTION C FORT COLLINS, COLORADO	
	Contents	C1
	PROJECT 402	
	Rhizoctonia Root Rot Research and Development of Genetic Resistance in Sugarbeet	C4
	PROJECT 903	
	Evaluation of Contributed Lines for Resistance to Rhizoctonia Root Rot	C9
	PROJECT 904	
	Evaluation of Contributed Lines for Resistance to Cercospora Leaf Spot	C9
SE	CTION D FARGO, NORTH DAKOTA	
	Contents	D1
	Publications	D3
	PROJECT 600 and 601	
	Development of Cercospora Resistant Breeding Lines	D13
	Examination and Purification of Chitinase in Cercospora Leaf Spot Resistant Germplasm	D13
	Vectors for Delivery of Biological Control Agents for the Sugarbeet Root Maggot	D13
	Transformation of Sugarbeet by Agrobacteria	D15
	Biological Control of Sugarbeet Root Maggott	D15

	CONTENTS	PAGE
PR	OJECT 610	
	Manipulation of a Root Rot Resistance Factor	D17
	Toward Cloning and Sequencing a Root Rot Resistance Gene	D18
PR	OJECT 630	
	Pre-Breeding	D18
PR	OJECT 631	
	World Beta Network	D25
PR	OJECT 641	
	Insect Endogenous Bacteria and Their Influence on Sugarbeet Root Maggott Development	D27
	Isolation and Characterization of <i>Bacillus thuringiensis</i> for Biocontrol of Sugarbeet Insect Pests	D29
	Nematode Research	D31
SECTI	ON E EAST LANSING, MICHIGAN	
	Contents	E1
	Publications	E3
PR	OJECTS 700, 710 and Related Research	
	Somatic Cell Selection for Resistance to Methionine Sulfoximine and to Ethionine	E6
	1993 Experiments of Genotype X Nitrogen Response	E11
	Evaluation of Sugarbet Smooth Root Breeding Lines and Experimental Hybrids - 1993	E18

CONTENTS	PAGE
Field Evaluation of the Relative Performance and Combing Ability of an Agronomic Selection from L19 Versus L19	E28
Rhizoctonia Root Rot Evaluation for Commercial and Experimental Hybrids at East Lansing, MI - 1993	E30
Potential Biocontrol of Rhizoctonia Root Rot	E31
Cercospora Leafspot Evaluation of Smooth Root Selection Blocks, Experimental and Commerical Varieties Made at East Lansing 1993	E32
SECTION F IDAHO	
Contents	F1
PROJECT 300	
Non-chemical Nematode Control	F3
SECTION G BUSHLAND, TEXAS	
Contents	G1
Publications	G3
PROJECT 503	
Etiology and Epidemiology of the Rhizomania Disease	
Complex	G9
PROJECT 520	
Developing Laboratory Techniques for Rearing the Sugarbeet Root Aphid <i>Pemphigus Beta</i> Doane	G13

SUGARBEET RESEARCH

1993 Report

Section A

U.S. Agricultural Research Station, Salinas, California

Dr. J.E. Duffus, Plant Pathologist

Dr. R.T. Lewellen, Geneticist

Dr. H.Y. Liu, Plant Pathologist

Dr. A.L. Pilgeram, Plant Pathologist

Dr. G.C. Wisler, Plant Pathologist

Dr. M.H. Yu, Geneticist

Dr. J.S. McFarlane, Collaborator

Cooperation:

Holly Sugar Company Spreckels Sugar Division California Beet Growers Association California Industry Research Committee

The research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 210, 211, 212, 215, 203, 260, 270, and 280) and the California Beet Growers Association.

CONTENTS

I.	ABSTRACTS OF PAPERS, 1993		А3
II.	DEVELOPMENT OF BREEDING LINES AND GERMPLASM by R.T. LEWELLEN		A12
	Breeding Lines C76-43 and C76-89		A12 A12
	Breeding Lines C909-34 through C911-50 Breeding Line C890		A12 A12 A13
	Sources of Resistance to Rhizomania		A13 A13
	Resistance to Cyst Nematode		A15 A15
	Resistance to Erwinia and Powdery Mildew Virus Yellows Resistance		A16 A17
	Variety Trials, Salinas, CA, 1993 Y54 x <u>B.m.</u> Germplasm Lines		A19
	Self-fertile Lines and Populations		A20
	Multigerm Germplasm Lines		A24 A28
	Experimental Hybrids		A20 A32
	Hybrid Evaluation of Lines from Popns-911,-9		A36
	Virus Yellows Evaluation Trials, 1993		A39
	Multigerm Germplasm Lines		A39 A44
	Hybrid Evaluation of Lines from Popns-911,-9		A48
	Davis Trials (S.Kaffka & G.Peterson)		A50
	Y54 x <u>B.m.</u> Germplasm Lines	• • • • •	A56
	Variety Trials, Brawley, CA, 1993 Variety x Planting Date		A58
	Rhizomania: Variety x Harvest Date		
	Non-rhizomania Checks		A65
	Experimental Hybrids		A66
	Area 5 Coded Variety Trial		A68
	Hybrids of Selected Progeny Lines		A72 A74
	Population Hybrids		A77
	Rhizomania Tests, Salinas, CA		
	IIRB Hybrid Tests		A78
	Evaluation of Multigerm Lines		A79 A90
	Self-fertile Lines and Populations		A90 A92
	Experimental Hybrids		A92
	WS/HS Grower Rhizomania Test		A96
	Coded Rhizomania Test		A99
	S ₁ Progeny Test of Monogerm Lines		A10
	-		

	Observation and Disease Evaluation Trials	
	Curly Top Evaluation, Kimberly, ID	A110
	Bolting Evaluation, Lines	A114
	Bolting Evaluation, Hybrids	A120
	Bolting Evalution, Progenies	A125
	Erwinia/Powdery Mildew, Hybrids	A128
	Erwinia/Powdery Mildew, Lines	A136
	Coded Powdery Mildew Test	A143
	Inheritance of Powdery Mildew Resistance	A149
	Evaluation of Ames PI Accessions	A154
III.	CHARACTERIZATION OF THE VARIATION AMONG FUROVIRUSES INFECTING SUGARBEETS	
	by G.C. WISLER, J.E. DUFFUS, and HY. LIU	A158
IV.	USING THE POLYMEREASE CHAIN REACTION	
	by A. L. Pilgeram and J. E. Duffus	A162

BLUA, M.J., T.M. PERRING, G.S. NUESSLY, J.E. DUFFUS, and N.C. TOSCANO. <u>Impact of cropping patterns on Bemisia tabaci</u> and <u>LIYV</u>. Environmental Entomology (In press). 1994.

The sweetpotato whitefly, Bemisia tabaci (Gennadius), was trapped throughout the southern desert agricultural region of California during two consecutive growing seasons. Trap data revealed changes in whitefly population densities that provide insight into the epidemiology of lettuce infectious yellows virus (LIYV) in fall melon and lettuce. Whitefly abundance increased rapidly from July to September in cotton. During this period, there were significant correlations between the number of cotton fields in a region and the number of whiteflies trapped in that region. Beginning in August and September, whitefly densities increased in melon, and the proportion of viruliferous whiteflies increased in cotton and melon. After the defoliation of cotton was initiated in September, whiteflies migrated to melons, which not only served as their host but also as a reservoir for LIYV. In October and November high numbers of viruliferous whiteflies were found in melon and lettuce. melons were harvested and the fields dried, viruliferous whiteflies migrated to newly emerged lettuce.

CAMPBELL, B.C., J.E. DUFFUS, and P. BAUMAN. <u>Determining</u> whitefly species. Science 261:1333-1334. 1993.

The statement in the report by T. M. Perring et al. that the "superbug" is not a strain of the sweetpotato whitefly, Bemisia tabaci (Gennadius), but a new species, seems premature. When more than 25 pairs of males and females of both strains were placed together, interstrain mating resulted in the production of viable, hybrid females. Field collections made in the Imperial Valley of California in 1992 revealed that feral populations of the two strains had interbred. Hybrid whiteflies that had fixed (not induced) esterase loci from both "A" and "B" strain parents were clearly identified.

Perring et al. used single primer polymerase chain reaction amplification (RAPD-PCR) and found that genetic differences between the strains were at a "species" level, but RAPD-PCR fragments have revealed only arbitrary differences between the DNAs. "Genetic distances" of a size similar to those between B. tabaci strains are likely to be observed if either strain is compared to RAPD-PCR fragments generated from any number of randomly selected taxa (for example, another whitefly strain or species, dogs, or nematodes). The RAPD-PCR results in the report by Perring et al. are of potential diagnostic value, but of little phylogenetic utility.

When one of us (B.C.C.) compared more than 2000 nucleotides of genes in the ribosomal RNA (rRNA) transcript from B. tabaci, which included three variable expansion regions, the rDNA in those strains was identical. Sequences of 28S rDNA D2 expansion regions (550 nucleotides) have been found to be identical in the B. tabaci strains, whereas 40 nucleotide substitutions have been found in ash and greenhouse whiteflies. The D2 expansion region has been used to deduce phylogenies of subgenera and sibling species of Drosophila. Whiteflies also have uncommonly elongated (=2450 nucleotides) 18S rDNAs. length stems from two internal, variable expansion regions (8). The 18S rDNA of the two B. tabaci strains has been found to be identical, whereas 60 to more than 100 nucleotide substitutions have been found in ash, iris, and greenhouse whiteflies. Sternorrhynchans (for example, aphids and whiteflies) have maternally heritable, procaryotic endosymbionts. An earlier study of endosymbiont 16S rDNA found that aphid endosymbiosis resulted from a singular infection of a primordial ancestor during the Triassic. Since that time, aphids and their endosymbionts have cospeciated, resulting in congruent phylogenies. Whitefly endosymbiosis follows a similar congruency, wherein endosymbiont 16S rDNA distinguishes whitefly species. Both strains of B. tabaci have two endosymbionts. The nucleotide sequences of 16S rDNAs (≈1600 nucleotides each) of the respective endosymbionts have been found to be identical in the B. tabaci strains, whereas 70 nucleotide substitutions have been found in greenhouse and ash whiteflies. In summary, our mating and phylogenetic studies do not support the conclusion of Perring et al. that the "superbug" is a new species of whitefly.

DUFFUS, J.E., H.Y. LIU, and S. COHEN. <u>Partial characterization of a new closterovirus, the causal agent of cucurbit yellow stunting disorder</u>. Pg. in Sweetpotato Whitefly: 1994 Supplement to the Five-year Plan, U.S. Dept. Agr. ARS No. 112. (In press). 1994

Whitefly-transmitted yellowing viruses of cucurbits are causing severe economic losses throughout the world. In western USA lettuce infectious yellows (LIYV), vectored by Bemisia tabaci, caused large losses to cucurbits, lettuce and sugarbeet. In the USA, Europe, Asia and the Mediterranean region beet pseudo yellow virus (BPYV), vectored by Trialeurodes vaporariorum, causes major losses in controlled environments and outdoors in warmer regions. In the early 1980's a yellowing and stunting disorder of cucurbits was noticed in the middle east. On the basis of observations and limited serological studies this disease appeared to be distinct from LIYV and BPYV.

This virus, herein named Cucurbit yellow stunting disorder virus (CYSDV), is transmitted by the sweetpotato whitefly (Bemisia tabaci) in a semipersistent manner. The virus appears to have

a narrow host range, mainly in the Cucurbitaceae. The virus can cause economically significant losses on melons and cucumbers. The virus has been purified by differential centrifugation. Purified preparations contained long, flexuous particles 12 x 1200 nm. The host range, insect transmission and serology clearly distinguish CYSDV from previously described viruses.

DUFFUS, J.E., H.Y. LIU, and G.C. WISLER. A new closterovirus of tomato in southern California transmitted by the greenhouse whitefly (*Trialeurodes vaporariorum*). Phytopathology (In press). 1994.

A previously undescribed virus disease of tomato was found in the Orange County area of southern California. Affected tomato plants exhibited interveinal yellowing, necrosis and severe yield losses. The disease affected virtually 100% of the crop in the Irvine hills and valley region. The outbreak was associated with the occurrence of high populations of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Leaf dips showed flexuous filamentous particles of variable length similar to closteroviruses. The virus was transmitted by T. vaporariorum but not by either the A or B biotypes of Bemesia tabaci (sweetpotato whitefly). Further characterization by protein and RNA analysis and insect transmission studies will be necessary to determine the relationship of the new tomato virus to other whitefly-transmitted closteroviruses.

DUFFUS, J.E., H.Y. LIU, and G.C. WISLER. <u>Lettuce chlorosis</u> <u>virus--A new whitefly-transmitted closterovirus in the southwest</u>. Phytopathology (In press). 1994.

Lettuce infectious yellows virus (LIYV) has been a limiting factor in the production of crops in the desert regions of southwestern USA since 1981. Following the introduction of the B biotype of Bemisia tabaci into the region in 1990, the incidence of LIYV dropped significantly. A mixture of viruses including LIYV and a previously undescribed closterovirus herein termed lettuce chlorosis virus (LCV) have been isolated since 1991 from yellowed lettuce plants in the desert. LCV has long filamentous particles, and is transmitted by both the A and B biotypes of Bemisia tabaci. LCV can be distinguished from LIYV and other whitefly-transmitted closteroviruses by serology, dsRNA analysis, host range and insect-virus relationships.

DUFFUS, J.E. and E.G. RUPPEL. <u>Diseases</u>. Pg. 347-427 in The Sugar Beet Crop. D.A. Cooke and R.K. Scott, ed., Chapman and Hall. 1993. (Book Chapter)

Diseases have played an extremely important role in the current distribution of the beet sugar industry. The sugar-beet crop, a product of science, has largely depended for its success upon the ability of science to control destructive plant diseases.

The sugar-beet plants which were introduced from Europe to widely divergent areas of the world encountered numerous diseases unknown in their areas of development. Beet curly top virus virtually destroyed the sugar-beet industry in western USA in the 1920s and continued to be the principal factor limiting production in this region until the 1940s. In the absence of control measures (including resistant varieties and cultural methods) sugar beet could still only be grown in limited areas of western USA. Yellow wilt, first observed in Argentina in the 1920s, caused the complete collapse of the industry in that country and has severely limited the distribution of sugar-beet growing in Chile. Attempts to extend the cane sugar factory operations in the southern USA by using sugar-beet roots as an additional raw material failed completely because of the damage caused by two rots, Rhizoctonia crown rot and Sclerotium root rot. Rhizomania was first discovered in the mid-1950s on the Po river plains of Italy. By 1964 it had infested over 11,000 ha and caused their withdrawal from sugar-beet production. The disease was discovered in California in 1983 and has already been found in over 32,000 ha; it has caused some areas to go out of beet production and has seriously affected cropping in others.

This chapter reviews the literature of the major virus, fungal and bacterial diseases of sugarbeet.

DUFFUS, J.E. and D.C. STENGER. Squash leaf curl virus. C.M.I./A.A.B. Descriptions of Plant Viruses (In press). 1994.

Squash leaf curl virus (SLCV) is a virus with geminate particles, 22 X 38 nm. The circular single-stranded DNA genome is bipartite and consists of two similar-sized species. Known hosts are in the Cucurbitaceae, Leguminosae, Solanaceae, and Euphorbiaceae. The virus is transmitted by the whitefly, Bemisia tabaci and by inoculation with sap. The disease occurs in desert regions of the American Southwest and Mexico.

LEWELLEN, R.T. <u>Case histories of early testing to identify</u> <u>sugarbeet lines with high performance</u>. J. Sugar Beet Research 30:105. 1993.

Early testing is used to estimate the genetic potential of an individual or line at an early stage of development. The efficacy of early testing to identify improved lines of sugarbeet for general combining ability has been inconclusive. Monogerm line C762-17 was released in 1989 and lines C790-6, C790-15, and C790-54 were released in 1992. C762-17 was identified from pair-plant crosses between specific lines without recombination. Individual So plants within and among crosses were tested in 3-2ay hybrids. These tests identified plants that had better hybrid performance for sugar yield than their parental lines. Hybrids generated from So plants within paired crosses were more similar in performance than hybrids

among paired crosses. From population-790(C4) that had been improved by four cycles of S_1 progeny recurrent selection, 100 S_1 progenies were evaluated in three locations for components of yield and disease resistance. Based on these tests, eight S_1 progenies were selected and topcrossed. The S_1 lines that became C790-6, C790-15, and C790-54 had significantly higher hybrid performance than the corresponding population hybrid. The performance of these monogerm lines strongly support the usefulness of early testing in a sugarbeet hybrid breeding program.

LEWELLEN, R.T. <u>Sources</u>, <u>breeding</u>, <u>and performance of resistance</u> to rhizomania in sugarbeet. J. Sugar Beet Research 30:106. 1993.

Rhizomania resistance breeding has been in progress at Salinas since 1984. A wide array of germplasm has been screened. than the factors from Holly (Rz) and Rizor, high levels of resistance are rare within sugarbeet. In contrast, resistance to rhizomania has been identified from many Beta maritima accessions. Eight of these sources of resistance have been enhanced by backcrossing into sugarbeet. Segregation within F₁ and BC populations grown under rhizomania conditions usually suggest single dominant gene action. The allelic relationships of these different sources of resistance are not known. Tests of allelism between Rz and a factor from line PI 206407 (C28) suggested different genes. Field tests also suggested differences in performance. As the severity of disease increased, resistance from PI 206407 gave better protection than Rz. The combined resistance was better than either alone. In greenhouse and field tests, Rz and a factor from WB 42 (C48) reacted differently. In a field test under moderate and severe conditions, Rhizosen (Rz resistance) and Rizor had 30% reduction in yield, whereas a line with B. maritima sources of resistance (C50) had 6% additional loss. The effects of differences in gene frequencies and genetic backgrounds may have confounded these results and could not be discounted.

LEWELLEN, R.T. and E.D. WHITNEY. <u>Registration of germplasm lines developed from composite crosses of sugarbeet x Beta maritima</u>.

C48, C50, and C58 are sugarbeet germplasm lines developed by the USDA-ARS in cooperation with the Beet Sugar Development Foundation. These germplasm lines were derived from crosses between sugarbeet and B. maritima L.

C48 was released in 1988. It was developed from crosses of B. maritima lines WB41 and WB42 to C37 sugarbeet. Field tests showed that C48 is resistant to rhizomania. It has sugarbeet root and canopy type growth, is biennial, but in the absence of rhizomania has relatively low sugar concentration and yield.

C50 was released in 1988. It was developed from crosses of the Salinas collection of *B. maritima* accessions to Y54 sugarbeet. About 60 *B. maritima* accessions from Europe and the middle-East were successfully involved.

C50 is highly heterogeneous with 50% of the germplasm coming directly from B. maritima. It was released as a single population from which to search for desirable traits from B. maritima without the problems of growing many accessions with varying idiotypes and bolting tendencies. In an ongoing breeding program, it has been shown that C50 can be successfully used as a source of resistance to rhizomania and virus yellows.

C58 was released in 1989 as a source of disease resistance. It was developed from a composite of crosses made between C91 sugarbeet and B. maritima lines WB41, WB42, and WB151 from Denmark, WB187 and WB188 from England, WB318 from France, and WB169 from Italy. C58 is 50% B. maritima. It segregates for annualism, leaf and root color and shape, and disease resistance. In a series of greenhouse tests, 62% of the plants were highly resistant to rhizomania.

LIU, H.Y., J.E. DUFFUS and G.C. WISLER. <u>Possible association of two soil-borne viruses with vascular necrosis of sugarbeet</u>. Phytopathology 83:1421. 1993.

Two soil-borne viruses have been isolated recently from sugarbeet roots with vascular necrosis in the Imperial Valley of California. The infectious agents are mechanically transmissible. One of these viruses is isometric and approximately 25 nm in diameter. It contains a single species of single-stranded RNA of approximately 3.70 kb and a single capsid protein of approximately 31.0 kDa. Purified virus was infective and had an A_{260}/A_{280} ratio of 1.66. An antiserum to the purified virus had a titer of 1/512 in immunodiffusion tests. The particle morphology, protein coat subunits, and nucleic acid size are similar to those of tobacco necrosis virus (TNV). However, no serological relationship to TNV has been demonstrated in immunodiffusion and western blot analyses. Another spherical virus isolated form necrotic sugarbeet roots was serologically related to tomato bushy stunt virus. The distribution, economic importance, and the relationship of these viruses to the increasing vascular necrosis syndrome in the Imperial Valley is not known.

PILGERAM, A.L. and J.E. DUFFUS. <u>Molecular analyses of</u>
<u>Polymyxa betae and Polymyxa graminis</u>. Phytopathology
83:1370. 1993

Polymyxa betae, the vector of beet necrotic yellow vein virus and beet soilborne virus, is an intracellular root parasite of plants within the Chenopodiaceae, Amaranthaceae, and Portulacaceae families. Polymyxa graminis is parasitic on

the roots of several grasses and vectors several devastating viruses (soilborne wheat mosaic virus, barley yellow mosaic virus, peanut clump virus, etc.). Although the host ranges of the two species are distinctive, morphologically they are quite similar. Ribosomal internal transcribed spacer sequences (ITS) from Polymyxa-infected root tissues have been amplified, and the products evaluated using restriction and RAPD analyses. ITS products from the two species, from P. betae isolates from different host plants, and from viruliferous and aviruliferous isolates of P. betae are compared.

WISLER, G.C., H.Y. LIU, and J.E. DUFFUS. <u>Serological</u> comparisons of beet necrotic yellow vein virus (BNYVV) with other rod shaped viruses of sugarbeet. Phytopathology 83:1421. 1993.

Five BNYVV isolates (three from California, one from Nebraska, and one from Idaho) and eight other rod-shaped viruses isolated from sugarbeet (two from Texas, five from Nebraska, and one from Idaho) were compared in western blot analyses. those antisera which reacted only to BNYVV were to; (1) the C-terminus of the BNYVV capsid protein (CP), (2) the 14-kDa and 75-kDa nonstructural proteins (courtesy K. Richards) and, (3) four monoclonal antibodies to the CP of BNYVV (courtesy G. Grassi and L. Torrance). An antiserum to the 25-kDa nonstructural protein (K. Richards) reacted with four of the BNYVV isolates, but not with one which had been maintained by mechanical transmission for several years. An antiserum to the whole virion of BNYVV reacted strongly with homologous BNYVV isolates (MW of c. 22-kDa), but weakly with the eight other rodshaped viruses of sugarbeet, with a MW of c. 24-kDa. In reciprocal tests, antisera to the two viruses from Texas reacted strongly with all eight rod-shaped isolates (c. 24-kDa), but weakly with the five BNYVV isolates (c. 22-kDa). An antiserum to the 42-kDa nonstructural protein (K. Richards) reacted with all BNYVV isolates (MW c. 42-kDa) and the eight other rod-shaped virus isolates (MW c. 43-kDa). All BNYVV isolates produced characteristic chlorotic local lesions on Chenopodium quinoa. Thus, BNYVV appears to be distinct form the other rod-shaped viruses of sugarbeet tested, based on the MW of the CP and reactivity with antisera to the 14-, 25-, and 75-kDa proteins.

YU, M.H. <u>Biological Nematode Control in Sugarbeet Production</u>. 7th Intnl. Congr. Soc. Adv. Breed. Res. Asia & Oceania. Abstr. p. 174. 1993.

Cyst nematode and root-knot nematode are important plant pathogens of sugarbeet and are difficult to control. Plant parasitic nematodes spend at least part of their lives in soil; therefore, their activities and populations are influenced by both physical and biological factors in the soil. Control of sugarbeet nematodes is thus predicated on the population

density, activation timing, biological limitation, chemical application, and host plants. Multi-year crop rotation has been used extensively to control the cyst nematode. Several trap crops, such as oil radish, yellow mustard, or resistant sugarbeet lines, can be used for intermediate cropping.

Nematode parasitic bacteria, fungi and other microorganisms are being investigated. Genetic sources of resistance to cyst nematode and root-knot nematode have been identified from Patellares wild beets and sea beet. Breeding sugarbeet resistant to nematode would be the most economical and environmentally sound tactic for the control.

YU, M.H. <u>Growth and Reproduction Performance of Ovule-Induced</u>
<u>Sugarbeet Plants.</u> Sabrao Journal. pp. 24(1):47-55. 1992.

Plants derived from ovule cultures of eight sugarbeet (<u>Betavulgaris</u> L.) breeding lines were studied for growth, seed set, and progeny ploidy. Leaf characteristics of the majority of the ovule-derived plants differed from the donor plants in vigor, size, shape, and texture. Stomatal guard cells of 52% of the ovule-derived plants contained 6.6-9.9 compared to 12-16 chloroplasts for diploids. Monoploid and diploid sugarbeets shared a 10-11.9 chloroplast range. Sixty percent of the plants were found to have 2n root tip chromosomes. Over 73% of ovule-derived plants pollinated with diploids set seed. Seed quantity ranged from only a few to an almost normal amount: 48% had 50 seeds or less per plant. Most of the progeny plants were vigorous and normal in appearance, and had 18 chromosomes. The results indicated that the majority of ovule-derived plants were monoploids, yet their outcrossed progeny were diploids.

YU, M.H. <u>Identification of root-knot nematode resistance for sugarbeet breeding.</u> 17th Intl. Congress of Genet. Volume fo Abstr. p. 118. 1993.

Beta vulgaris L. is one of the top two sucrose producing plants and a favored host of nematodes. Meloidogyne spp. cause root gall symptoms which severely limit sugarbeet yields and quality. Control of nematode in sugarbeet fields is challenging due to the nematode's wide host range and the increasing stringent restrictions on nematicide application. Identification of resistance to root-knot nematode and incorporation of resistance to sugarbeet, thus, becomes important. Screening >300 Beta germplasms, a B. maritima L. accession that segregated plants free from root gall formation and M. incognita reproduction has been identified. This is the first root-knot nematode resistance for sugarbeet breeding.

- DUFFUS, J.E. Whiteflies and whitefly-borne viruses and increasing threat to world agriculture. Proc. Internat. Working Group Legume Viruses. p. 6. 1993.
- DUFFUS, J.E., R.T. LEWELLEN, and H.Y. LIU. <u>Implications of sweetpotato whitefly biotype changes on lettuce infectious yellows virus.</u> J. Sugar Beet Res. 30:90. 1993.
- LIU, H.Y. and J.E. DUFFUS. <u>A new soil-borne virus from California</u>. Sugar Beet Res. 30:106. 1993.
- PILGERAM, A.L. and J.E. DUFFUS. <u>Characterization of single cystosori isolates of Polymyxa betae.</u> International Working Group on Plant Viruses with Fungal Vectors. Notreal, Canada. p. 23. 1993.
- PILGERAM, A.L. and J.E. DUFFUS. <u>Characterization of single cystosori isolates of Polymyxa betae.</u> Sugar Beet Res. 30:111. 1993.
- WISLER, G.C., J.E. DUFFUS, and H.Y. LIU. <u>Partial characterization of some furoviruses infecting sugarbeet</u>. Sugar Beet Res. 30:123. 1993.
- WISLER, G.C., J.E. DUFFUS, and H.Y. LIU. <u>Variations among</u>
 <u>Furoviruses associated with sugarbeet</u>. International Working
 Group on Plant Viruses with Fungal Vectors. Montreal, Canada.
 p. 26. 1993.
- YU, M.H. Root-knot nematode and susceptibility of Beta plants to infection. J. Sugar Beet Res. 30:124. 1993.

DEVELOPMENT OF SUGARBEET BREEDING LINES AND GERMPLASM

R. T. LEWELLEN

BREEDING LINES C76-43 and C76-89 - These multigerm, open-pollinated breeding lines were released in 1993. They should combine resistance to rhizomania (Rz) with good tolerance to virus yellows. Pair crosses were made between plants from C31-43 or C31-89 and R76, a near-isoline of C31/6 with resistance to rhizomania. Full sib seed that was known to segregate for Rz was progeny tested under bolting induction conditions and evaluated for yield and sucrose. Based upon nonbolting tendency, % sucrose, and yield, stecklings of eight pair crosses involving C31-43 and six pair crosses of C31-89 were selected, combined within lines and increased. C76-43 and C76-89 will be evaluated in 1994 tests. Similar material and their hybrids were evaluated in 1993 as R276, R276Y, R276-43, R276-89, and R282 (combined R276-43, R276-89). Results of the performance of these lines and hybrids are presented in this report.

BREEDING LINE C918 - The population C918 was released in 1993. C918 is a self-fertile, multigerm, genetic male-sterile facilitated, random mated population that segregates for resistance to rhizomania (Rz). It also should have moderate tolerance or resistance to virus yellows, curly top, powdery mildew, Erwinia, and bolting. C918 and similar populations (popns-909,-911,-913,-915) were developed so that selfed families could be used for progeny evaluations yet be easily recombined. C918 will have traits similar to C37 or C46, its principal germplasm base. The development of C918 is given in the release notice. It will have a high frequency of self-fertility (S^f) as it was developed from selected S₁ progeny lines that had been selfed at Salinas under paper bags in the greenhouse. ($\underline{S}_{\underline{S}}$ genotypes will not produce seed at Salinas). The performance of populations similar to C918 (2913,2915) and their hybrids is given in this report.

BREEDING LINES C909-34, C909-37, C911-4, C911-12, C911-14, and C911-50 - These lines were released in 1993. See release statement for greater details. As popn-918 (C918) was being developed, C37 and then C46 type lines were used as recurrent parents. As backcrossing and population improvement proceeded, populations-906,-907,-908,-909,-910,-911,-912,-913, and -915 were produced. Within population breeding and selection was done within these sources, including progeny (S₁, FS, HS) evaluations. C909-34 and C909-37 were extracted from popn-909 by S₁ progeny evaluation. C911-4, C911-12, C911-14, and C911-50 were extracted from population-911. These lines segregate for resistance to rhizomania (RZ) and generally to Erwinia root rot and other diseases important in California. Results of the evaluation of these lines has been given in previous reports as well as in this one.

BREEDING LINE C890 - C890 was released in 1993 as a population that segregated for resistance to rhizomania (\underline{Rz}). Subsequently there was

evidence that this may not be so. C890 is a monogerm (segregates for monogerm), O-type, self-fertile ($\underline{S}^{\underline{f}}$), genetic male-sterile facilitated, random-mated population that is similar to C790. It was developed by backcrossing a source of rhizomania resistance to C790mmaa. At the time of its release, it was thought that it could be used as a source for producing monogerm, O-type, rhizomania resistant progeny families for population and line improvement. Earlier versions of C890 have been tested as lines 1890, 2890, and 2891. Progeny families from 2891 were evaluated and results are presented in this report.

BOLTING EVALUATION - The winter/spring/summer of 1992-93 at Salinas appeared to provide good bolting induction conditions. These results need to be viewed with caution, however. Bolting is under the influence of many factors, e.g., vigor of plant, nitrogen status, shading and other micro-climatic effects from intra- and inter-plot competition, plant populations, disease incidence and severity. That is, anything that influences growth rate appears also to influence bolting tendency. One factor that is very difficult to control is environment of the seed development. It is well known that seed developed under cool conditions (e.g., Spence field at Salinas) will express higher bolting than seed produced under warm conditions (e.g., the greenhouse isolation chambers at Salinas). Line vs. the apparent bolting tendency in hybrids can also be misleading, in part due to vigor and growth rate of the hybrid compared to a weaker line. Thus, although these appear to be good bolting tests, caution is needed and data and experience over years, locations, seed lots, etc. are needed to make definitive judgements about bolting tendency. Nonetheless, the rates of bolting in these tests suggest that selection for non-bolting tendency should be effective. A number of both multigerm and monogerm lines and populations were selected for nonbolting tendency in 1993-94.

SOURCES OF RESISTANCE TO RHIZOMANIA - Eleven sources of resistance to rhizomania have been backcrossed into C37 germplasm. All of these are targetted for release in 1994. In most cases it is yet undetermined what the allelic relationship is among these sources. Some are likely to have the same factor(s) for resistance. Sources of resistance include Rz (Holly), PI206407 (chard, C28), R22 (B.maritima, C50), WB42 (C48), WB41 (B.m. from Denmark), R04 (weed beet from Italy), R05 (obsolete Italian sugarbeet), Rima, WB151 (B.m. from Denmark), WB169 (B.m. from Italy collected by Coons), WB258 (B.m. from Italy collected by DeBiaggi in 1979). Results of some of this program are presented in this report. The breeding line numbers used to identify some of this material include R222R4 (R22), R232 (R04), R228 (PI07), R279 (Rz), 90-WIV (WB151), and R207/R208 (R05).

<u>PERFORMANCE OF R22 SYNTHETICS</u> - R22 population (released in unselected version as C50) is about 50% sugarbeet (line C54) and 50% a composite of <u>Beta martima</u> germplasm. From the unselected F_3 synthetic R722, selections have been made for both resistance to virus yellows (see Tests 693, 893, 1393) and resistance to rhizomania (see Tests 693, B293, R793, R593, 2793, 2893, 2393, 2493). These selections were made to help assess

the genetic variability within <u>B.maritima</u> for disease resistance and factors for productivity. Results from the virus yellows selection program suggest that partial resistance to yellows occurs within <u>B.maritima</u>. Even more striking, there is evidence for high resistance to rhizomania. Because these resistance selections were partially based upon root and sugar yield (for virus yellows resistance), there is also evidence that factors for increased productivity may occur in <u>B.maritima</u>. The performance of R22 synthetics is given throughout this report and in the following tables.

SUGAR YIELD (lbs/a) UNDER SEVERE RHIZOMANIA, BRAWLEY, CA

		Da	te of	Harves		% Rot
Variety		4/15	5/12	7/01	5/18*	7/01
US H11 HH 41 Rima Rhizoguard	Susc.Hybrid Susc.Hybrid Resist.Hybrid Resist.Hybrid	2500 2300 4000 3200	1500 2300 3000 2500	0 20 2300 1800	7800 8900 8800 8500	96 92 43 55
R22R4	Cycle 4 Sel.	8400	8200	7000		20

Test B293; Pltd 9/24/92, Harvd 1993.

SUGAR YIELD (lbs/a), SALINAS

			Rhizoma	nia
Va	riety	None I	Severe2	Severe 3
US H11	Susc.Hybrid	11400	3700	1500
Rizor	Resist.Hybrid	13000	6500	4000
Rhizosen	Resist.Hybrid	12100	5400	3300
R22R4	Cycle 4 Sel.	10900	8400	5600
LSD (.05)		1100	1000	500

Test 2293: Pltd 4/20/93; Harvd 10/26/93.

³Test R593: Pltd 6/10/93; Harvd 11/22/93.

US H11 Susc.Hybrid Rhizoguard Resist.Hybrid	 17800	3400 6100	1700 3100
mmCMS x R22R4	16700	7700	4700
LSD (.05)	900	1100	600

Test 1093: Pltd 2/2/93; Harvd 9/22/93.

^{*}Test B793; Pltd 9/24/92. Non-rhizomania check.

²Tests 2493 & 2793: Pltd 5/13/93; Harvd 11/4/93

²Test 2393: Pltd 5/13/93; Harvd 11/2/93. ³Test R793: Pltd 6/10/93; Harvd 11/18/93.

RESISTANCE TO CYST NEMATODE - Cyst nematode resistant line C603 was derived from a cross with B883 from the Netherlands. In field tests at Salinas, it appeared to be resistant to the prevalent populations of Heterodera schachtii. In 1992, seed of C603, B883, B.procumbens, US H11, and others was furnished Dr. Lawrence Miller at VPI and State University. The purpose of these tests was to determine if isolates of H. schachtii from other locations could reproduce on C603. The results of these tests are presented below in the table.

REPRODUCTION OF ISOLATES OF BCN

	Isolates of H. schachtii					
<u>Variety</u>	<u>C1</u>	<u>C2</u>	<u>N1</u>	M1	F1	F2
US H11	+	+	+	+	+	+
B.procumbens	_	_	_	_	_	_
B883	_	_	_	_	_	_
C603	_	_	_	_	_	_

Data from L.Miller, VPI, 1994. Variation in development of five isolates of <u>Heterodera schachtii</u> on six sugarbeet x <u>Beta procumbens interspecific hybrids</u>. J.Nematology 26 (In press); and L. Miller. 1994. Development of four isolates and two intraspecific hybrids of <u>Heterodera schachtii</u> on three sugarbeet x <u>Beta procumbens</u> interspecific hybrids. Phytopathology 84 (In press).

C1 from tomato (CA); C2 from sugarbeet (CA); N1 from cabbage (NY); M1 from sugarbeet (MI); F1 & F2 from cabbage (Florida)

Subsequent to these studies, Dr. Miller identified an isolate called LSOG that in preliminary tests reproduced well on B.procumbens.

PERFORMANCE OF CYST NEMATODE RESISTANT HYBRIDS - Nematode resistant lines, populations, and hybrids were included throughout the testing program in 1993 (see results in this report). These materials are usually identified with an "N" prefix. Emphasis in the nematode resistance program is to combine resistance with rhizomania and other needs in germplasm with adaptation to the Western USA. The one constant with nematode resistant material is the very low sugar concentration. There is preliminary evidence however that under dual rhizomania/cyst nematode infested conditions, a hybrid with dual resistance is protected against both. Hybrid N203H15 which combines nematode resistance from C603 with rhizomania resistance from popn-915 under performed other hybrids in the absence of both diseases but out performed rhizomania resistant hybrids when tested under both conditions. These preliminary results are presented in the following table.

PERFORMANCE OF NEMATODE RESISTANT HYBRIDS

	Sugar	Root Yield	Sucrose
Test Hybrid	lbs/a	<u>t/a</u>	%
1093, Salinas, wi	thout RZM	& BCN	
4757	18400	64	14.5
mm x C603	14700	62	11.8
1293, Salinas, wi	thout RZM	& BCN	
Rhizoguard	15900	55	14.4
mm x C603	14500	59	12.4
Rz x C603	15800	64	12.3
1693, Salinas, BY		ected without	RZM & BCN
mm x R82	11500	37	15.4
mm x C603	7400	31	11.8
		DOM	
2493 & 2793, Sali			12.0
US H11	3700	14	13.0
Rhizosen	5500	18	15.3
Rz x C603	6400	24	13.3
3293, Salinas, Rz	m & BCN		
US H11	4900	21	12.0
Rhizosen	7100	24	15.1
mm x C603	5200	24	10.8
Rz x C603	8200	32	12.9
B493, Brawley, wi	thout RZM	& BCN	
HH 41	8700	31	14.4
mm x C603	6100	26	11.7
DC00 D	the sect DIFF	c DONI	
B693, Brawley, wi			14.2
HH 41	9700	34	14.3
Rz x C603	7000	32	11.0

Starting with B883 as the source of nematode resistance, BC_4 lines will be produced in 1994. These backcross populations theoretically will be about 97% curly top resistant germplasm and will have rhizomania resistance. From these, a selfing program will be initiated to fix resistance to cyst nematode, rhizomania, and other desired traits. Hopefully within these, lines can be identified that will approach commercial usefulness.

RESISTANCE TO ERWINIA and POWDERY MILDEW - The tests to evaluate reactions to Erwinia root rot (ERR) appeared to be good in 1993. A mixture of isolates was used to inoculate the tests. However, tests by Dr. A. Pilgeram suggested that the 1991 isolate from Imperial Valley was the most prevalent one to cause soft rot in the field. With the high emphasis on

rhizomania resistance and the conversion of breeding lines to resistance to rhizomania, there appears to have been a general erosion in resistance to Erwinia, powdery mildew, and bolting, as well as curly top, virus yellows, sucrose percentage, etc. within the base lines. Renewed efforts and emphasis are being made in 1994 to upgrade the combined resistance and performance of the Salinas germplasm base. The following Table summarizes briefly and demonstrates the loss of combined resistance in the rhizomania resistant germplasm.

COMPARISON OF DISEASE REACTIONS BEIWEEN NEAR-ISOLINES

Near- Isoline	Erwinia DI ¹	PM 1	Bolting
C37	<u></u>	Score ¹ 4	<u>%</u>
R79 (C37Rz)	10	5	21
C46/2	6	2	7
R78 (C46/2Rz)	23	3	27
C54	5	3	7
R80 (C54Rz)	24	4	21
C31/6	11	1	15
R76 (C31/6Rz)	23	3	35
C20	10	1	10
C39 C39R	31	1 1	18 39

Test 2193: Planted 4/20/93, Inoc Ecb 7/15/93.
Test 493: Planted 11/12/92. Counted 7/8/93.

VIRUS YELLOWS RESISTANCE - Breeding for resistance to virus yellows (BYV/BWYV) has been an ongoing program at Salinas since 1955. Even though progress has been very slow, particularly for resistance to BYV, it is evident that compared to nonselected materials, tolerance to virus yellows has been achieved in this program. This is evident in the virus yellows tests and is demonstrated in the Table below. The breeding lines developed in the virus yellows program have been used as the base for the rhizomania resistance program. As shown above, there has been a general loss of combined disease resistance during this program. However, it appears that it has been possible to combine rhizomania resistance with the existing levels of virus yellows tolerance.

BYV/BWYV INOC. & NON-INOC. TESTS, SALINAS

Variety ³	Non-s SY S lbs/a	inoc <u> </u>	BYV/ SY lbs/a	/BWYV ² _ Sucrose <u>%</u>	Relative SY4
KW 6770	19700	17.2	8300	16.8	42
US 75	15100	13.4	6100	13.2	40
C31-43,-89	19900	15.7	12900	15.9	65
R82	19500	14.8	12500	15.4	64

1Test 893: Pltd 2/6/93.

⁴Relative loss calculated from adjacent tests that were planted and harvested at different times.

Test 1493: Pltd 3/9/93; BYV/BWYV inoc 5/6/93.

3KW 6770 = high % sugar hybrid for Red River Valley. US75 = obsolete, CTR, NB, OP variety. C31-43, -89 = lines tolerant to virus yellows. R82 = rhizomania resistant near-isoline of C31-43,-89.

EVALUATION OF Y54 x B.m. GERMPLASM LINES, SALINAS, CA., 1993 TEST 693.

12 entries x 8 replication 1-row plots, 20 ft. long	12 entries x 8 replications, RCB 1-row plots, 20 ft. long					Planted: Harvested	Fe.	February 16, 1993 : September 29, 1993	993 , 1993
	٤	Acre Yield	Yield			Root	Beets/	Powdery	
ð	Description ¹	Sugar	Beets	Sucrose	Bolters	Rot	100,	Mildew	RJAP
		Ibs	Tons	%	9/9	0/0	No.	Mean	%ା
IV	Set 1 (693-1) Hybrids								
1	87-309H3 x R080	19817	60.76	16.3	0.4	0.5	134	7.4	85.0
1	87-309H3 x Y854	19459	59.09	16.5	0.0	0.0	141	6.7	84.8
ï	87-309H3 x RZM R122R3	18942	60.49	15.7	2.2	0.0	144	8.0	82.9
6	L893301	18682	57.95	16.1	0.0	1.0	126	7.2	86.1
-3	Set 2 (693-2) Lines								
ZM-	R280Y (Iso) RZM-BYV-ER R080	19374	61.38	15.8	0.0	0.0	135	5.3	84.6
nC	Inc. Y854	19354	58.86	16.4	0.0	0.0	123	4.6	85.6
nc	Inc. R922Y	19246	60.23	16.0	0.0	0.0	132	5.4	84.0
X	BW R922Y	18878	59.55	15.9	0.4	0.0	132	5.0	83.5
M	RZM R022R2	18135	59.87	15.2	4.3	0.4	135	7.7	82.6
M	RZM R122R3	17533	59.11	14.9	8.0	0.5	130	6.9	81.9
M	RZM R121 (C48)	16941	52.83	16.0	0.0	0.0	128	8.9	83.5

Notes: Test was grown in an area without rhizomania. BWYV infection was evident by June, but BYV infection remained low. Powdery mildew developed late, after the effects of Bayleton ceased. PM was scored 9/14 & 9/27/93. Erwinia spread from nearby inoculated trials and accounted for the root rot.

1.4

15.3**

132.3 11.6 8.8 2.2*

> 427.4 1.2NS

93.2

3.0

4.59 7.89 3.76**

7.7

15.8

58.44

18490.9

LSD (.05) C.V. (%) F value

Mean

1.2

0.8

0.0

6.4

83.1

5.6

129

0.0

25.3

15.2

51.20

15531

Inc. $F_2(Y54 \times B.m.)$ (C50)

R722

tion. R3 and R4 are third and fourth cycle synthetics selected for resistance to rhizomania among 4 month old second cycle synthetics selected for resistance to virus yellows (BYV/BWYV) where 7 month old infected plants roots where selection was based upon root type and freedom from rhizomania symptoms. Y and Y2 are first and were selected on the basis of root size, shape, and % sucrose. R221 is C37 type with rhizomania resistance 1 Y854 = C54. R080 is near-isogenic Rz_ line of C54. R722 = $_3$ (sugarbeet x $_3$ maritima) source populafrom WB41 and WB42.

YIELD EVALUATION OF SELF-FERTILE LINES AND POPULATIONS, SALINAS, CA., 1993^{1} TEST 793.

ornary 16, 1993	Powdery	Mildew	Mean		7.8	7.7	6.3	6.3	7.6	7.2	7.4	6.5	1	۲.۶	7.3	3.2	2.9	6.5	0.7	9.6	43.5**	
lary 16,		RJAP	%		85.1	84.1	83.7	85.1	84.3	85.8	83.7	82.0	1	83./	82.9	83.9	84.9	83.9	1.7	1.8	2.5*	
Planted: February 16, 1993	70	100,	No.		123	125	138	130	127	136	139	138	7	L43	130	128	129	132.2	11.5	7.5	2.4*	
Plan Hary	Root	Rot	%																			
		Bolters	0/01		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	7	T.2	20.6	0.0	0.0	1.9	3.4	153.9	24.0**	
		Sucrose	o\0		15.6	15.8	16.4	16.3	15.6	15.1	15.4	14.3	7	14.8	14.3	16.1	15.9	15.5	9.0	3.6	10.1**	
	/ield	Beets	Tons		58.94	51.14	59.49	58.66	58.32	65.09	58.17	60.48	0	64.68	62.58	55.34	56.58	58.62	5.64	8.31	3.38**	
	Acre Yield	Sugar	Ibs		17432	16169	19509	19122	18153	18754	17942	17300	7	19169	17819	17836	17991	18099.7	1863.3	8.0	2.0*	
48 entries x 6 replications, RCB	I-row procs, 20 ic. rong	Description 1		-1)	L893301	Inc. C37, L86443	RZM Z120, Z122, Z124	RZM Z120-Z124aa x 1913,1915	4747aa x A	RZM 9910H47 (A,aa)	Inc. 1210(C)	RZM 0281-#		Inc. 1206(C)	Inc. 1205(C), (x R04)	Inc. 8909A-34, (C909-34)	Inc. 8909A-37, (C909-37)					
48 entries	nord wor-r	Variety ¹		Set 1 (793-1)	Rhizoquard L893301	U86-37	Z220	Z230	5747	0910	2910	R129		R229	R233	0909-34	0909-37	Mean	LSD (.05)	C.V. (%)	F value	

48 entries x 6 replications, Incomplete blocks with 4 subsets, each 12 varieties x 6 replications, RCB. YIELD EVALUATION OF SELF-FERTILE LINES AND POPULATIONS se Tests 793-1 -2 -3 -4 can be compared 1TEST 793.

$= (33-1)^{-2}$, $= \frac{1}{2}$	15.6 0.5 0.2 131.8	0.6 1.7 0.9 11.7	c.V. (%) 8.2 7.80 3.5 292.6 464.9 7.8 2.1 13.1	4.3** 22.7** 1.8** 4.4*
THUS HEADS ACTOSS TESTS	Mean	LSD (.05)	C.V. (%)	F value

mostly BWYV. Powdery mildew was controlled until late summer with Bayleton. Aphids were controlled with Test was grown in a field plot area free of rhizomania and cyst nematode. Virus yellows was mild and Metasystox-R and Lorsban. Root rot was counted at harvest and due to spread of Erwinia. Note:

TEST 793. YIELD EVALUATION OF SELF-FERTILE LINES AND POPULATIONS, SALINAS, CA., 1993^{1}

(cont.)

Powdery Mildew	Mean		6.1	5.8	4.0	5.7	5.0	4.9	5.5	4.7	4.8	4.3	4.3	3.3		4.8	9.0		
RJAP	%		83.8	83.1	82.4	83.1	82.4	84.0	83.1	82.4	83.2	83.3	82.6	84.1		83.1	1.8		0.9NS
Beets/ 100'	No.		133	138	143	135	138	128	134	141	138	134	135	142		136.5	12.5	7.9	1.0NS
Root	%					1		1						1					
Bolters	%																		
Sucrose	%		15.8	15.5	15.8	15.7	16.0	15.3	15.9	15.6	15.3	15.6	15.4	15.9		15.7	9.0	3.4	1.3NS
<u>Vield</u> Beets	Tons		57.75	58.94	90.09	62.44	53.27	62.72	59.96	58.59	69.09	58.85	57.68	57.96		59.08	8.10		S 1.62NS
Acre Yield Sugar Bee	Ibs		18165	18260	19011	19537	17046	19159	19038	18295	18530	18352	17823	18414		18469.1	1725.1	8.1	1.2NS
$\frac{1}{2}$		(2)	9911aa x A	RZM-BVV-ER 0911 (A, aa)	RZM 1911- 4, (C911- 4)	RZM 1911-12, (C911-12)	RZM 1911-14, (C911-14)	RZM 1911-50, (C911-50)	RZM 1913 (A, aa)	RZM-BYV-ER 0913	RZM 1913- 5	RZM 1913-18	RZM 1913-22	RZM 1913-25					
Variety ²		Set 2 (793-2)	0911	2911Y	2911- 4	2911-12	2911-14	2911-50	2913	2913Y	2913- 5	2913-18	2913-22	2913-25		Mean	ISD (.05)	C.V. (%)	F value

¹Evaluation of lines and progeny families per se. Z220 & Z230 combine \overline{Rz} with germplasm from high %S Polish accessions. 4747 = MM, S^{L} , A: aa popn similar to C37. 0910 & 2910 = Rz isoline of 5747. R129 & R229 = C909-34 & -37 5747 with PI206407 resistance to rhizomania. R233 = 5747 with R04 resistance to rhizomania. rhizomania resistant progeny selections.

 2 0911, 2911Y, 2913, 2913Y = MM,S^f,A:aa popns with \overline{Rz} 5747 & 903 (similar to C46) backgrounds. 2911-# & 2913-# = reselected progeny lines from popn-911 and -913.

TEST 793. YIELD EVALUATION OF SELF-FERTILE LINES AND POPULATIONS, SALINAS, CA., 1993¹

(cont.)

Powdery Mildew Mean	. 4 4 w v & o w	0.0.0.4	4 55 54 8 6 7 7 7 8 8 8 7 7 9 8	4.7 0.8 13.7 5 7.6**
RJAP	83.6 83.9 83.7	84.4 83.5 83.1 83.8	84.2 83.6 84.1 84.0	83.8 1.9 1.9 0.3NS
Beets/ 100' No.	137 139 123 135	125 139 139 141	114 143 133 142	134.2 12.1 7.8 4.3**
Root Rot	9.00	0.00	0000	0.3 1.2 349.7 2.6*
Bolters <u>%</u>	9.000	0000	0000	0.1 0.8 608.7 0.9NS
Sucrose 2	15.2 15.5 15.6 15.6	16.4 15.5 16.3 15.8	16.1 15.7 15.8 15.9	15.8 0.5 2.7 4.0**
ield Beets Tons	59.99 60.48 60.76 63.07	57.23 66.43 55.86 58.03	58.75 60.65 60.62 61.60	60.29 4.84 6.93 2.63**
Acre Yield Sugar Beet Lbs Tons	18202 18730 18950 19714	18688 20653 18210 18295	18940 19004 19161 19576	19010.3 1547.6 7.0 1.7NS
Description ³	-3) RZM 1915-# (C) RZM-BYV-ER 0915 (A,aa) RZM 1915, 1913aa x A 9911aa x 9911,9911H49	9911aa x 9911,9911H49 Inc. 0911-24 (A,aa) 9911H49aaa x 9911,9911H49 Inc. 0913-9 (A,aa)	9903aa x 9911,9911H49 Inc. 0915-4 (A,aa) 9903aa x 9911,9911H49 Inc. 0915-7 (A,aa)	
Variety ³	Set 3 (793-3) 2915 2915Y 2915 0911- 1	0911-4B 2911-24 0913-6 2913-9	0915-1 2915-4 0915-6 2915-7	Mean LSD (.05) C.V. (%) F value

 3 2915, 2915Y, 2915 = MM, s^f , A:aa popns with \overline{Rz} and popn-903 background.

VIELD EVALUATION OF SELF-FERTILE LINES AND POPULATIONS, SALINAS, CA., 1993^{1} TEST 793.

(cont.)

		Acre Yield	ield			Root	Beets/		Powdery
Variety*	Description ⁴	Sugar	Beets	Sucrose	Bolters	Rot	100,	RJAP	Mildew
		Ibs	Tons	o\0	%	୬/୧	No.	%	Mean
Set 4 (793-4)	<u>-4</u>)								
0915-22	9903aa x 9911,9911H49	19003	58.94	16.1		0.7	124	83.3	4.7
0915-23	9903aa x 9911,9911H49	19570	63.80	15.3		0.0	120	82.4	4.1
0915-24	9903aa x 9911,9911H49	20122	63.63	15.8		0.0	136	83.6	4.9
0915-27	9903aa x 9911,9911H49	19564	61.93	15.8		0.0	112	84.2	4.5
0915-34	9903aa x 9911,9911H49	18324	58.60	15.6		0.0	101	84.0	4.9
2915-46	Inc. 0915-46 (A,aa)	17286	55.76	15.5		0.0	136	83.8	4.3
0915(C)	9903aa x 9911,9911H49	20549	64.26	16.0	-	0.0	128	83.8	4.6
2916	1905aa x 1913,1915	18994	60.27	15.8		0.0	128	84.9	5.3
0420	8790-S ₁ (C5)aa x A, (C790)	17839	56.07	15.9		0.0	134	82.9	4.5
2890 (C)	0790mmaa x 1890,RZM 1890	17214	57.61	14.9		1.4	126	83.1	5.3
2867m	1867,1867Raa x A	17229	57.67	15.0		9.0	126	83.5	7.0
2865m	RZM 1865-#,1865aa x A	17044	54.60	15.6		0.7	123	81.8	8.9
Mean		18561.5	59.43	15.6		0.3	124.3		5.1
LSD (.05)		1738.0	4.80	0.7		1.2	11.3	5.6	6.0
C.V. (%)		8.1	6.98	4.1		368.0	7.9		15.3
F value		4.1**	3.88**	2.1*		1.2NS	6.4**	0.8NS	8.7**

 4 0915-#'s & 2915-# = progeny lines from popn-915. 0790, 2890, 2867, & 2865 = mm, S^f, A:aa popns. ⁵Powdery mildew scored 9/14/93 and 9/27/93 on a scale of 0 to 9 where 9 = severe mildew.

YIELD EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993 TEST 893.

1993	RJAP	0/01		9.08	82.4	82.3	83.0	7	82.1	82.4	83.5	83.7	83.0	85.4	82.0	83.2	82.7	84.0	84.3	82.8	83.0	2.8	2.9	1.2NS
ortober 12–13,	Powdery Mildew	Mean		4.8	0.9	4.4	4.8	(0.0	6.3	6.7	4.0	0.9	5.1	3.4	4.3	3.2	3.8	3.9	6.8	5.0	1.0	18.0	11.0**
ð	Beets/	No.		140	133	144	142	L (T72	138	147	138	136	138	139	139	127	141	143	135	138.3	10.6	6.7	1.7NS
Planted: F Harvested:	Root	%이		1.2	0.0	0.0	0.0	(0.0	2.5	9.0	9.0	0.0	0.0	9.0	0.0	0.0	9.0	9.0	0.0	0.5	1.4	273.1	1.6NS
ঠ	Bolters	%		0.0	0.0	0.0	0.5	(0.0	6.2	2.1	6.7	14.8	19.7	17.3	9.5	0.0	0.0	0.0	0.0	4.8	4.1	74.2	22.6**
lete bloc	Sucrose			13.4	14.2	14.3	15.0	•	14.4	14.6	15.0	14.2	13.7	13.4	14.9	14.7	15.1	15.6	15.3	14.6	14.5	0.0	5.6	4.0**
in incomp	eld Beets			56.63	51.45	60.24	55.09		28.24	59.08	52.78	63.56	58.52	66.78	51.80	58.17	06.09	61.29	62.16	62.86	58.72	5.61	8.30	4.80**
tries each locks	Acre Yield			15128		17241 (16495		833	203	15811	18025			15439		434		19079 (17059.6	2089.4	10.7	3.5**
64 entries x 6 reps, RCB; 4 sets with 16 entries each in incomplete blocks 1-row plots, 20 ft. long 4 sets with 16 entries each in incomplete blocks	Description		Set 1 (893-1) MM, O.P. Lines	Increase 768 (US 75)		RZM R079, (C37Rz)					RZM 1202-#(C)		RZM 1201-#(C)	RZM R104		PMR 1217,,1224	Inc. C46/2, 86342	z)	RZM-BYV-ER R078	L113401				
64 entries 1-row plot 4 sets wit	Variety2		Set 1 (893	268	U86-37	R279	R279Y		K2/9K2	R128	R228	R230	R232	R204	P201	P202	U86-46/2	R278	R278Y	US H11	Mean	ISD (.05)	C.V. (%)	F value

There was no evidence of rhizomania. ¹Powdery mildew scored 9/14 & 9/21/93 on a scale of 0 to 9 where 9 = 90-100% of mature leaf area covered with Virus yellows and other diseases were mild. Root rot primarily due to Erwinia. Tests 693-1293 were grown under nondiseased or controlled conditions. Note:

mildew. Earlier in season, PM had been very well controlled with Bayleton.

See Test 1493. R204 = rhizomania resistant selection within an accession from Italy with weed beet traits.

 $R232 = F_2(C37 \times R04)$.

TEST 893. YIELD EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993

RJAP	% 1	85.5	84.7	84.8	83.5	83.5	83.2	82.4	81.9	83.3	83.5	82.8	83.4	84.4	80.3	80.5	83.9	83.2	2.2	2.3	3.2**
Powdery Mildew	Mean 1	5.5	3.4	3.3	4.1	4.6	4.1	2.3	o. 6.	3.6	3.0	5.9	3.3	2.5	5.4	5.8	4.1				7.9**
Beets/	No.	126	126	136	140	136	143	137	135	142	154	140	136	138	149	131	138	137.9	14.0	80.80	2.2*
Root	№	1.3	0.0	0.0	9.0	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	3.1	1.2	1.8	9.0	1.7	236.4	2.6**
Roltera	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	5.3	7.7	0.0			183.0	12.5**
OBOADUS.	%I	15.1	15.6	16.2	15.4	15.2	15.8	15.8	15.8	16.3	15.8	15.3	16.1	15.4	14.2	14.0	15.4	15.5	0.7	3.7	7.7**
ield	Tons	60.58	57.68	64.12	59.84	65.52	59.85	61.74	58.59	56.42	62.51	62.09	57.26	62.79	62.12	62.79	59.85	98.09	4.67	6.67	2.37**
Acre Vield	Tps	18253	17987	20775	18380	19949	18940	19518	18498	18425	19783	18974	18428	19386	17600	17577	18433	18806.6	1754.0	8.1	2.0*
Docorintion	COCT DOLL	Set 2 (893-2) MM,O.P. Lines Rhizoquard 1893301	Inc. Y854	BYR-ER-PMR Y854, (C54)	RZM R080, (C54RZ)	RZM-BYV-ER R080	Inc. R080-1	Inc. R080-13	Inc. R080-28	Inc. R080-35	Inc. R080-45	Inc. R080-56	Inc. R080-79	Inc. R080-80	RZM R022R2	RZM R122R3	BYR R922Y				
Varioty	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Set 2 (893-Rhizoquard	Y954	Y054	R280	R280Y	R280- 1	R280-13	R280-28	R280-35	R280-45	R280-56	R280-79	R280-80	R122R3	R222R4	R122Y2	Mean	(30.) OSI	C.V. (%)	F value

 2 See Test 1493. R222R4 = cycle 4 synthetic from F_3 (Y54 x B.maritima).

TEST 893. YIELD EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993

RJAP 2	83.7 83.9 83.6 83.7	84.3 84.0 84.6 83.1	84.4 82.9 83.1 82.5	83.2 83.1 84.6 84.3	83.7 2.1 2.2 0.8NS
Powdery Mildew Mean ¹	4.0 4.0	2.8 2.0 8.8 8.8		4.0 1.2 9.9	3.5 1.0 23.7 9.9**
Beets/ 1 100' 1 No.	144 141 136 148	141 138 143 83	106 138 139 125	137 130 134	133.2 11.1 7.3 18.5**
Root Rot	0.0	0000	2.1 0.0 0.6 0.0	0.000	0.4 1.4 344.5 1.2NS
Bolters	0.0	0.000	0.0	0000	0.2 1.0 370.0 1.5NS
Sucrose	17.2 15.6 15.8 14.3	15.2 16.0 15.6 15.5	15.7 15.1 15.4 14.8	15.4 16.0 15.8 14.6	15.5 0.8 4.5 5.5**
eld Beets Tons	57.47 60.55 57.75 64.54	62.65 66.01 68.25 70.70	57.80 62.71 60.90 65.87	64.61 57.82 59.36 67.34	62.77 6.00 8.31 3.86**
Acre Yield Sugar Beer Lbs Ton	19704 18864 18225 18501	19064 21088 21319 21850	18089 18868 18715 19516	19934 18463 18785 19661	19415.4 2093.4 9.4 2.3**
no	Set 3 (893-3) MM, O.F. Lines 6770 high & S check (Beta) R270Y RZM-BYV-ER R070 F86-31/6 Inc. C31/6, L86263 R276 RZM R076, (C31/6R2)	RZM-BYV-ER R076 Inc. Y131-43 (C31-43) RZM R176-43 Y131-43 x RZM R176-43,-89	Y131-89 x RZM R176-43,-89 RZM R176-89 Inc. Y131-89, (C31-89) Inc. R176-43,-89	rr(C) x R(C) composite cross BYR Y841, (C91) BYR-ER-PMR Y849, (C49) L412307	
Variety ²	Set 3 (893- 6770 R270Y F86-31/6 R276	R276Y Y231–43 R276–43 R281–43	R281-89 R276-89 Y231-89 R282	R283 Y141 Y049 HH 41	Mean LSD (.05) C.V. (%) F value

2See Test 1493.

YIELD EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993 (cont.) TEST 893.

lery RJAP	m ₁		8 84.4				3 84.9				5 82.5		2 83.3		1 83.1			5 84.2				6** 1.0NS
ts/ Powdery			6.8				2.3			5 0.8			9 5.2					3.5			7.5 24.4	2.5** 18.6
ot Beets/					.0 141		.0 128						.0 139	.0 142			.0 143	.0 131		6 11.7		4.1** 2
Root Rolters Rot			0.0	.0 2.4	0.0	1 0.7	2.6 0.0			0.0	0.0 0.0		0.0 0.0	0 0.	0.0 0.0		0.	0 0.			.5 229.8	2.3** 4.
Summer Bol													14.9 0	.5				0				3.9** 2
ין					64.47 16	53.36 15.9	56.53 15.4	62.16 15					61.04 14				62.79 15.1				8.16 4	**
Acre Yield										17864 54				19913 64				19171 64	w		9.1 8	*
16			180	190	212	16972	174	193	197	178	187	192	182	199	196	177	189	193	188	15		
Description	DOZGI INCOL	Set 4 (893-4) MM, O.P. Lines	L113401	L493304	RN3-1021 rec'd 1/93		C5, Inc. R939C5, (C39R)	C7, RZM R039C6	C8, RZM R139C7	YR, BYR Y939, (C39)	CO, YR-ER-PMR Y347	C5, Inc. R947C5, (C47R)			YR, BYR Y947, (C47)	RZM R107	RZM R108	RZM 1915-S ₁ ,1913-S ₁ \times A				
Variot12	A TOTAL	Set 4 (893-	US H11	Rhizosen	Rima	Y439	R039C5	R139C7	R239C8	Y139	Y547	R047C5	R147C7	R247C8	Y147	R207	R208	2915	Mean	LSD (.05)	C.V. (%)	F value

²See Test 1493.

ANOVA to compare means across sets. TEST 893. YIELD EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993 64 entries x 6 reps, RCB; 1-row plots, 20 ft. long.

83.4	2.3	2.4	1.6**
4.1	1.1	23.1	12.6**
136.3	11.9	7.7	2.6**
0.5	1.6	265.2	2.4**
1.5	2.4	136.2	22.3**
15.2	0.8	4.8	6.2**
60.82	5.64	8.16	3.76**
18523.7	2039.5	7.6	3.8**
	05)	` (%) 	, al

EVALUATION OF HYBRIDS FROM SELECTED PROGENY FAMILIES FROM POPN-864 AND R080, SALINAS, CA., 1993 TEST 1093.

1993	RJAP %	84.0 83.4 84.6	83.2 83.1 82.9	83.7 83.7 84.1	83.4 82.3 82.3	83.4 83.7	83.9 83.4 83.3	83.3 83.5 82.9
y 2, 1993 mber 21-23,	Powdery Mildew ²	4. E. A. Q. R.	6.1 6.4 7.0	6.6 6.6	7.2	0.0° 7.80 7.80	6.9	6.3
February 2, : September	Beets/ 100' No.	142 145 141	139 134 144	139 139 144	144 136 139	137 142 124	140 137 125	135 141 131
Planted: Harvested:	Root Rot	0.00	0.00	0.0	0.0	0.0	000	0.0
дд	Bolters	0.00	1.7	000	1.5 6.4	0.0	0.0	0.00
	Sucrose	16.9 14.5 14.7	14.6 15.0 14.6	13.7 14.4 14.4	14.7 14.0 11.8	15.1 14.9 15.0	15.3 14.7 15.0	14.8 14.9 14.7
	Acre Yield ar Beets S Tons	56.42 63.60 60.58	63.63 60.76 62.37	65.17 61.99 61.28	59.82 59.47 62.35	62.58 63.10 62.96	61.43 63.56 62.26	62.21 61.53 59.90
alized)	Acre Sugar Lbs	19072 18423 17814	18577 18257 18161	17839 17816 17601	17564 16686 14747	18856 18816 18815	18760 18681 18626	18344 18342 17544
32 entries x 8 replications, RCB (equalized) 1-row plots, 30 ft. long	Description	High % S check (Beta) Beta (1/6/89) 1899301	<u>orids</u> 87–309H3 x R176–43,–89 87–309H3 x RZM 1911–4 87–309H3 x 1913,1915	C762-17CMS x R080 87-309H3 x R076 F82-546H3 x R080	87-309H3 x R078 87-309H3 x RZM R122R3 87-309H3 x N103,N103-1	es 87-309H3 x R080-79 87-309H3 x R080-1 87-309H3 x R080-28	87–309H3 x R080–45 87–309H3 x R080–13 87–309H3 x R080–35	87-309H3 x R080-80 87-309H3 x R080 (Iso) 87-309H3 x R080-56
32 entries 3 1-row plots	<u>Variety</u>	<u>Checks</u> 6770 4757 Rhizoguard	Topcross Hybrids R282H20 87-2915H20 87-	R280H39 R276H20 R280H8	R278H20 R222R4H20 N203H20	R080 Progenies R280-79H20 8 R280-1H20 8 R280-28H20 8	R280-45H20 R280-13H20 R280-35H20	R280-80H20 R280H20 R280-56H20

EVALUATION OF HYBRIDS FROM SELECTED PROGENY FAMILIES FROM POPN-864 AND R080, SALINAS, CA., 1993 TEST 1093.

		Acre Vield	ield			Root	Reets/	Powderv	
	Description	Sugar	Beets	Sucrose	Bolters	Rot	100,	Mildew ²	RJAP
		Ibs	Tons	%	% 9	જળ	No.	Mean	0/01
Pro	Popn-864 Progenies								
R280H62-14	0864-14aa x R080	19361	66.40	14.6	9.0	0.3	137	4.8	84.8
R280H62-8	0864- 8aa x R080	19133	80.99	14.5	0.5	0.0	128	5.6	83.0
R280H62-34	0864-34aa x R080	18920	99.69	14.4	1.9	6.0	131	5.6	83.9
	1867Raa x R080	18743	65.52	14.3	1.0	0.3	136	0.9	83.8
R280H62-40	0864-40aa x R080	18691	65.28	14.3	1.2	0.0	132	0.9	83.8
R280H62-25	0864-25aa x R080	18352	62.75	14.6	0.3	0.4	119	4.6	83.4
R280H62-19	0864-19aa x R080	18284	61.74	14.8	2.2	0.3	134	6.2	84.4
	1864aa x R080	18154	64.30	14.1	0.3	0.0	126	0.9	83.4
R280H62- 1	0864- laa x R080	18122	62.86	14.4	0.0	1.5	138	5.1	84.0
R280H62-28	0864-28aa x R080	18014	62.16	14.5	1.1	0.0	114	5.1	83.9
R280H62- 5	0864- 5aa x R080	17880	60.63	14.7	0.4	2.2	119	5.3	83.9
		18218.5	62.51		0.7	0.5	134.7		83.6
ISD (.05)		854.2	3.86	0.5		1.6	12.6	9.0	1.6
		6.7				299.3	9.5		1.9
		3.8**	2.43**			**6.9	3.0**		1.0NS

R80 on the basis of per se performance under virus yellows, rhizomania, and bolting conditions. R076, R078, and R176-43, -89 are MM, R_2 lines. R176-43 & -89 are similar to C76-43 & C76-89 combined. 1913/1915 is a S^{L} , MM, R_2 population. Increase of 1911-4 was released as C911-4. R122R3 is 50% Beta maritima population. yield and resistance to rhizomania. R080 = MM,R_2 line. R080-#'s are progeny families selected from line 0864-#'s are progeny families selected from popn-864 on the basis of per se performance for components of 87-309H3 = C562CMS x C309. 1864 & 1867R are S^f , A:aa, R₂ populations. $^{1}F82-546H3 = C562CMS \times C546.$ N103/N103-1 = C603/C603-1.

²Powdery mildew scored on 9/15/93 and 9/21/93. Test was treated with Bayleton for FM control. Development of PM was late and had minimal effect on yield.

Nitrogen status was high at time of harvest. Rhizomania or cyst nematodes were not detected. Note: Agronomically test was very good. BWYV occurred. Some plants were infected with Erwinia.

TEST 1293. EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1993

RJAP %	83.8 82.8 80.3	83.3 83.5 82.5 82.4 82.4	82.5 81.4 82.2 81.8	83.1 82.2 82.2 82.5 83.4	82.3 82.4 82.8
Powdery Mildew ²	4.0 0.0.0	0.4.0.0.0 0.0.0.0	0.0400 40.000		5.7
Beets/ 100' No.	141 134 130	136 127 139 144 139	135 144 132 149 129	134 141 139 131 141	135 130 131
Root Rot	0.0	0.0000	00000	00000	0.00
Bolters §	0.0	00000 00000	8.0000	0.000	0.00
Sucrose	16.3 14.4 12.4	14.3 14.3 14.8 14.8	13.9 14.5 14.2 13.7	13.8 13.8 13.9 14.4	14.1 14.1 14.2
Yield Beets Tons	57.15 55.19 58.49	66.61 63.62 66.32 60.44 59.60	62.83 60.44 61.75 59.74 63.63	62.97 61.28 62.37 62.06 59.33	60.06 59.08 55.39
Acre Sugar Ibs	18631 15857 14483	18939 18193 17918 17782 17602	17529 17501 17468 17457 17439	17380 17378 17183 17161 17057	16965 16633 15758
Description	<pre>und Nema Resist. High % S check (Beta) urd L893301 88-790-68H26 x N103,N103-1</pre>	Hybrids × R080 C790aa × R080 1852-7HO × R080 C762-17CMS × R080 88-790-68H26 × R080 1865aa × R080	1867Raa x R080 1855–59HO x R080 C790–54aa x R080 87–309H3 x R080 C790–6aa x R080	1864aa x R080 C796-43HO x R080 0833HO x R080 1859Raa x R080 1890aa x R080	0722HO x R080 C796-22HO x R080 1852-52HO x R080
<u>Variety</u>	Checks a 6770 Rhizogua N203H18	Topcross R280H90 R280H52 R280H39 R280H18 R280H65	R280H68 R280H51 R280H33 R280H20	R280H64 R280H97 R280H36 R280H58 R280H93	R280H22 R280H92 R280H53
	Acre YieldRootBeets/PowderySugarBeetsSucroseBoltersRot100'Mildew-LbsTons\$\$No.Mean	Description Acre Vield Sugar Beets Sucrose Bolters Root Beets/ Nildew Powdery Mildew d Nema Resist. Ibs Tons \$ \$ \$ No. Mildew High \$ S check (Beta) 18631 57.15 16.3 0.0 0.3 141 4.9 High \$ S check (Beta) 15857 55.19 14.4 1.0 0.6 134 6.3 88-790-68H26 x N103,N103-1 14483 58.49 12.4 0.0 4.4 130 8.0	Description Acre Yield Beets Sucrose Bolters Root 100' Mildew Mildew 100 Mildew 100 Mildew 100 Mildew 100 Mildew 100 Mildew 100 Mildew Mildew 100	Description Acre Yield Sugar Beets Bolters Sucrose Bolters Bolters Root Indo. Beets/ Indo. Powdery Mildew- Milde	Description Acre Yield Sucrose Bolters Root Beets Powdery Milder Root Beets Root Moan Milder Milder

TEST 1293. EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1993 (cont.)

Q ATAD	₹ %I		81.7	82.1	82.1	83.0	82.2	82.0	83.1	82.5	82.8	83.1	9.08	82.4	1.3	1.6	2.7**
Powdery Wilder	Mean		4.9	4.9	5.6	6.1	5.6	6.1	5.3	6.2	5.4	0.9	7.9		9.0		
Beets/	No.		139	144	137	138	144	134	137	146	135	134	139	137.1	0.6	9.9	2.7**
Root	۱۹۰۱ ک		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	9.0	6.0	0.3	1.1	336.9	4.6**
100	%	l	0.0	0.0	0.0	0.0	0.3	0.0	0.3	0.3	0.0	0.0	0.0				2.3**
	SUCT COSE	l	13.2	13.9	13.9	14.3	14.4	14.2	14.2	14.3	14.2	14.0	12.3		0.5		
ield	Tons		70.70	67.44	66.43	61.88	60.38	98.09	62.58	61.95	61.64	06.09	64.33	61.80	4.13	6.79	5.03**
Acre Yield	Ibs		18690	18643	18500	17713	17327	17238	17818	17742	17465	16996	15765	17381.5	1246.5	7.3	4.4*
Documintion	reset thereal	Hybrids	C762-17CMS x RZM 1913, 1915	C790aa x RZM 1913,1915 18643	1867Raa x RZM 1913,1915	1859Raa x RZM 1913,1915	88-790-68HZ6 xRZM 1913,1915	1865aa x RZM 1913,1915	1915aa x 1867,1867R	1915aa x 1865,1865-#	1915aa x 1890,RZM 1890	1915aa x 1859,1859R	1915aa x N103,N103-1				
Varioty	Tage my	Population Hybrids	2915H39	2915H90	2915H68	2915H58	2915H18	2915H65	2867H15	2865H15	2890H15	2859H15	N203H15	Mean	LSD (.05)	C.V. (%)	F value

 $^{^{1}}$ R080 = MM,R_z line. 1913/1915 = S^f,MM,A:aa,R_z population similar to C918. 1859R is similar to C859. 1890 is similar to C890. N103/N103-1 = C603/C603-1. 1867, 1865, & 1864 are S^f,A:aa,R_z populations. 790-68H26 = C309GMS x C790-68. 309H3 = C562GMS x C309.

²Powdery mildew scored on 9/09/93 and 9/15/93. Test was treated with Bayleton for PM control. Development of PM was late and had minimal effect on yield.

TEST 1193. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1993

, 1993	Score Mean ²	3.3 6.0 6.1 3.1	5.0	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7.0	4
February 2, 1993 September 27-28,	Bolters 8	00000	00000	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	0.0 0.0 2.7 0.6
Æ	Root Rot	e.0000	0.00	0.0000	0.0	1.7 0.3 0.0 0.9
Planted: Harvested:	Beets/ 100' <u>No.</u>	139 137 143 126 147	142 146 146 142 139	146 142 147 140 139	144 139 144	139 144 142 140 135
	Sucrose %	15.1 15.1 14.6 15.3	16.0 15.5 15.4 15.2	15.6 15.1 15.1 14.9	15.6 14.7 14.8	15.1 15.4 14.0 14.6
	Vield Beets Tons	64.12 61.25 59.29 63.07 60.21	56.03 58.14 61.04 58.45	57.08 58.57 58.69 57.99 59.01	55.02 57.99 55.65	64.33 62.47 70.32 64.57 66.57
lized)	Acre Yield Sugar Be Lbs To	19359 18542 18371 18426 18405	17931 18032 18066 18026 17795	17841 18147 17767 17696 17623	17172 17066 16428	19445 19278 19635 19198 19409
32 entries x 8 replications, RCB (equalized) 1-row plots, 30 ft. long	Source	Betaseed Holly Holly Holly Betaseed	Holly Spreckels Spreckels Spreckels Holly	Holly Hill Mono-Hy Betaseed Spreckels Spreckels	Holly Holly Betaseed	Description 88-790-68H26 x R176-43,-89 88-790-68H26 x R080 C762-17CMS x 1915 C762-17CMS x R078 C790-54aa x R080
32 entries x 8 replications 1-row plots, 30 ft. long	Variety1	Entries	91C 143-07 SS-242 SS-287R SS-289R 93HX8	93HX20 Hill 2 Beta 4783 SS-NB2 SS-NB3	93HX9 93HX12 Beta 4581	Entries R282H18 88- R280H18 88- 2915H39 C76 R278H39 C76 R278H39 C76
32 ent 1-row	Code	CBGA I 2 7 7 18 16	15 12 13	1 14 8 10	9 111 17	USDA E 23 22 27 27 25 31

TEST 1193. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1993 (cont.)

		F	Acre Yield	<u>eld</u>		Beets/	Root		Æ
	Variety	Variety Description	Sugar	Beets	Sucrose	100,	Rot	Bolters	Score
			Lbs	Tons	%]	No.	୦/୧	%	Mean-
+1	USDA Entries (cont.)								
	R280H89	C790-68CMS x R080	18945	61.85	15.3	141	2.4	9.0	4.3
	R280H20	87-309H3 x R080	18773	62.02	15.1	144	0.3	0.3	5.6
	R278H18	88-790-68H26 x R078	18344	59.50	15.4	147	6.0	0.8	5.5
	2915H20	87-309H3 x 1915	18639	62.79	14.9	139	0.0	0.3	0.9
	R280H39	C762-17CMS x R080	18489	65.31	14.2	144	1.2	0.3	5.1
	R280H90	C790aa x R080	18204	62.47	14.6	138	0.0	0.0	4.1
	R276H18	88-790-68H26 x R076	18216	62.37	14.6	149	0.0	1.5	4.9
	2915H18	88-790-68H26 x 1915	18182	60.65	15.0	138	0.0	0.0	5.6
	6770	High % S check	17458	52.01	16.8	144	0.3	0.0	4.9
			18278.4	60.54	15.1	141.6		0.3	5.0
5	LSD (.05)		1322.4	4.32	0.4	11.4		6.0	0.7
10			7.3	7.25	3.0	8.2 2.		288.0	14.6
F value			2.4**	5.69**	11.2**	1.2NS 1.9**		3.5**	12.1**

There was no powdery mildew did not develope until September. 60 to 70 ton yields were common in this and adjacent evidence of rhizomania or cyst nematode. Some Erwinia root rot occurred, having spread from Erwinia inoculated tests. BWYV was evident in early June. Bayleton was used to control powdery mildew, and USDA tests. At harvest, beets were still growing rapidly and needed 4-6 weeks more to use available Test was grown in a field plot area that had not been in sugarbeets for more than 20 years. nitrogen and fully exploit growing season, so that respectivle yields could be achieved

¹⁹¹⁵ is similar to C918. R076, R078, and R080 are near-isogenic Rz_lines of C31/6, ¹790-68H26 = C309CMS x C790-68. 309H3 = C562CMS x C309. R176-43,-89 is unselected version of C46/2, and C54. C76-43,-89.

Scores were taken ²Powdery mildew was scored on a scale of 0 to 9, where 9 = severe infection. on 9/9/93 and 9/15/93.

TEST 1193. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1993

Impur. Value	9130 8551 7932 8118 9859	7927 8472 8653 9107 7830	8900 10376 9345 9543 9409	8525 9368 10176	9305 8752 9754 9670 10826
NH2-N	280 317 285 272 297	268 319 300 336 280	244 383 282 398 360	272 309 308	323 344 275 311 421
Potassium	1906 1706 1598 1703 2133	1626 1659 1800 1884 1514	1974 2122 1996 1862 1854	1857 1991 2217	1966 1769 2259 2124 2068
Sodium	488 364 351 365 488	377 370 373 346 396	472 411 480 318 388	373 417 489	379 303 426 402 475
Known SugarLoss <u>lbs/a</u>	1748.3 1572.8 1413.3 1533.7 1766.6	1320.1 1467.6 1588.1 1571.5 1366.9	1512.0 1822.5 1635.9 1659.7 1644.2	1409.7 1627.4 1696.5	1796.5 1636.7 2042.0 1871.1 2171.4
Recover. Sugar	90.9 91.5 92.3 90.3	92.6 91.8 91.2 92.3	91.5 90.0 90.8 90.6	91.8 90.5 89.7	90.8 89.5 90.2 88.9
Recover. Sugar 1bs/t	274 277 286 268 277	297 285 271 281 281	286 279 275 277 271	287 267 265	275 283 250 269 260
Recover. Sugar <u>lbs/a</u>	17611 16969 16958 16893 16639	16611 16565 16478 16454 16428	16329 16324 16131 16037 15979	15762 15438 14732	17648 17641 17593 17327 17238
Variety	Entries Beta 4757 HH 66 93HX2 HH 37 Beta 4454	91C 143-07 SS-242 SS-287R SS-289R 93HX8	93HX20 Hill 2 Beta 4783 SS-NB2 SS-NB3	93HX9 93HX12 Beta 4581	Entries
Code	CBGA EN 2 7 7 4 4 18 16	15 13 13	1 6 14 10	9 11 17	USDA En 23 22 27 27 25 31

TEST 1193. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1993

Impur.	<u>Value</u>		9331	10246	8602	10193	9742	9256	9994	10340	8034		1792.6		
N-CHN	wad		272	365	342	357	289	300				312.3	102.2	33.2	1.5NS
Potassium	wdd		2150	2116	1732	2179	2170	2000	2045	2286	1756	1938.1	456.5	23.9	1.6NS
Sodium	wada.		392	425	292	388	449	478	470	407	463	406.6	174.2	43.5	0.8NS
Known SugarLoss	<u>lbs/a</u>		1741.6	1904.8	1516.0	1917.4	1933.6	1792.3	1888.2	1884.1	1245.4	1678.1	342.7	20.7	3.1**
Recover. Sugar	o\ o		6.06	6.68	91.7	89.7	9.68	90.2	89.7	9.68	92.8	8.06	1.9	2.1	2.3**
Recover. Sugar	lbs/t		279	272	283	267	254	263	262	269	312	275.0	10.9	4.0	9.7**
Recover. Sugar	<u>1bs/a</u>		17204	16868	16828	16721	16555	16412	16328	16298	16212	16600.3	1288.9	7.9	2.0**
Variety		JSDA Entries (cont.)	R280H89	R280H20	R278H18	2915H20	R280H39	R280H90	R276H18	2915H18	6770		05)	0/0	Φ
Code		USDA E	30	29	21	28	26	32	20	24	19	Mean	(30.) OSI	C.V. (%)	F value

EVALUATION OF HYBRIDS FROM SELECTED PROGENY FAMILIES FROM POPNS-911, -913, -915, SALINAS, CA., 1993 TEST 993.

1993	RJAP	%	82.5	83.7	84.1	84.1	83.0	84.0	82.3	83.1	84.8	83.1	83.8	83.2	82.8	83.5	83.8	83.3	83.4	1.7	2.1	1.1NS	
ruary 16, 1993 October 19-20,	Powdery Mildew	Mean	6.9	6.3	5.4	6.3	6.3	6.5	6.4	8.9	6.4	5.9	5.9	6.9	9.9	6.5	6.9	9.9	6.4	0.7	10.6	2.9NS	
ਰ	Beets/ 100'	No.	92	122	126	129	127	126	131	132	123	128	126	127	125	128	130	128	125.0	10.2	8.3	6.4**	
Planted: F Harvested:	Root Rot-3	 	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.5	0.0	3.1	0.0	0.5	0.0	0.0	0.3	1.5	539.5	2.0*	
lized)	Sucrose	%	15.2	15.9	16.0	16.6	15.9	16.1	15.4	14.9	15.7	15.6	15.7	15.3	15.7	15.4	15.8	15.8	15.7	0.5	3.4	4.6**	
x 8 (equa	ield Beets	Tons	57.26	59.03	59.33	55.23	63.53	61.20	63.74	60.11	59.27	64.58	64.21	57.83	58.79	59.11	63.63	61.79	60.54	4.40		3.18**	
3 sets, 16	Acre Yield Sugar Bee	I.bs	17351	18806	19004	18294	20107	19604	19632	17908	18610	20143	20172	17610	18458	18271	20152	19464	18974.1	1375.8	7.3	3.7**	
48 entries x 8 replications, RCB (equalized); 3 sets, 16 x 8 (equalized) 1-row plots, 20 ft. long	Description 1	Set 1: 16 varieties x 8 reps (RCB)	87-309H3 x RZM 1913,1915	87-309H3 x 8909A-34	87-309H3 x 8909A-37	87-309H3 x RZM 1911-4	87-309H3 x RZM 1911-12	87-309H3 x RZM 1911-14	87-309H3 x RZM 1911-50	87-309H3 x RZM 1913-5	87-309H3 x RZM 1913-18	87-309H3 x RZM 1913-22	87-309H3 x RZM 1913-25	87-309H3 x 0911-24	87-309H3 x 0913-9	87-309H3 x 0915-4	87-309H3 x 0915-7	87-309H3 x 0915-46					
48 entries x 8 r 1-row plots, 20	Variety1	Set 1: 16 varie	2915H20	0909-34H20	0909-37H20	2911-4H20	2911-12H20	2911-14H20	2911-50H20	2913-5H20	2913-18H20	2913-22H20	2913-25H20	2911-24H20	2913-9H20	2915-4H20	2915-7H20	2915-46H20	Mean	LSD (.05)	C.V. (%)	F value	

2.2

11.2

10.2

83.2

6.2

122.1

0.4 1.8 478.2 1.8**

3.7

8.39

3.4**

EVALUATION OF HYBRIDS FROM SELECTED PROGENY FAMILIES FROM POPNS-911, -913, -915, SALINAS, CA., 1993

ANOVA to compare means across sets of entries.

15.6

59.53

18576.6

48 entries x 8 replications, RCB (equalized).

TEST 993.

LSD (.05) C.V. (%) F value

Mean

EVALUATION OF HYBRIDS FROM SELECTED PROGENY FAMILIES FROM POPNS-911, -913, -915, SALINAS, CA., 1993 (cont.) TEST 993.

s/ Powdery RJAP Mildew RJAP %	7.1 83.1	6.0 82.5	7.1 84.1	5.9 83.3	7.7 6.2 83.1
	6.9 83.4	5.9 82.2	6.1 83.3	5.6 81.8	4.6 0.4 1.8
	6.4 83.7	5.9 81.9	5.8 83.4	6.0 83.4	2.6 7.3 2.2
	6.3 82.1	6.3 85.0	6.1 83.5	6.4 83.2	3.8** 7.7* 1.7NS
Root Beets, Rot ³ 100'	0.0 116 0.0 129 0.0 117 0.9 90	0.0 0.5 125 0.0 112 1.1	4.3 103 0.6 125 0.0 123 0.0 116	0.0 124 0.0 120 0.5 111 1.6 126	0.6 117.7 2.6 14.6 450.4 12.6 1.4NS 3.8*
Sucrose	14.8 15.2 15.3	15.6 15.8 15.1 18.5	15.3 15.7 16.1 15.6	15.7 15.4 16.1 15.4	15.7 0.6 3.7 * 16.5**
Acre Yield Igar Beets Lbs Tons	54.25	62.59	51.46	58.71	9.9 58.51
	65.57	60.43	60.22	64.44	8.6 5.39
	62.78	57.03	58.61	54.51	9.9 9.31
	54.55	51.20	60.24	59.48	4.2** 5.14**
Sugar	16014	19505	15739	18365	18289.9
	19988	18977	18862	19769	1798.6
	19213	17220	18893	17517	9.9
	16518	18937	18815	18308	4.2
Variety ² Description ²	113401 1865aa x RZM 1913,1915 1913aa x 1865,1865-# 1911-4aa x 1865,1865-#	1911-12aa x 1865,1865-# 1911-14aa x " " 1911-50aa x " " High % Sugar check	1913- 5aa x 1865,1865-# 1913-18aa x " " 1913-22aa x " "	1913-25aa x 1865,1865-# 0911- 1aa x " " 0911-4(B)aa x " " 0911-24aa x " "	
Variety ²	US H11	2865H43-12	Rhizoguard	2865H45-25	Mean
	2915H65	2865H43-14	2865H45- 5	2865H46- 1	ISD (.05)
	2865H13	2865H43-50	2865H45-18	2865H46-4B	C.V. (%)
	2865H3-4	6770	2865H45-22	2865H46-24	F value

of lines 8909-34, 8909-37, 1911-4, 1911-12, 1911-14, and 1911-50 were released in 1993 as C909-34, C909-37, Increases previously tested per se and in testcross hybrids under nondiseased and diseased (rhizomania, BYV/BWYV, Progenies were bolting, Erwinia, powdery mildew, etc.) conditions and selected on the basis of these tests. ¹Evaluation of progeny families from MM,S^f,A:aa,Rz populations 909,911,913, and 915. c911-4, c911-12, c911-14, and c911-50.

²Topcross hybrids of selected progeny families where 1865 tester is a mm, SfA: aa, Rz population similar to C310. 2915H65 and 2865H13/2865H15 would be reciprocal population hybrids. See test 1793 for the same entries under BYV/BWYV inoculated conditions.

EVALUATION OF HYBRIDS FROM SELECTED PROGENY FAMILIES FROM POPNS-911,-913,-915, SALINAS, CA., 1993 (cont.) TEST 993.

KTAP %	85.1 83.8 83.1 83.0	82.5 83.2 82.0 83.1	81.8 83.1 83.5 83.6	82.5 83.8 82.8 81.4	83.0 1.7 2.1 2.1*
Powdery Mildew Mean	0 0 0 0 0 0 4 4 0 4 4	5.11		0000	5.9 0.7 11.6 2.1NS
Beets/ 100' No.	131 126 127 117	126 118 119 128	125 126 123 123	121 124 124 121	123.6 9.4 7.7 1.3NS
Root Roti	2.7	0.00	1.5	0.00	0.3 1.1 418.1 3.0**
Sucrose	15.1 15.2 15.5 15.9	15.6 15.4 15.0 15.9	15.7 15.8 15.8 15.6	15.3 15.8 15.6 15.3	15.5 0.5 3.5 2.3NS
ield Beets Tons	60.00 63.68 63.74 57.03	61.46 56.33 56.51 57.86	56.70 59.75 55.49 59.16	61.37 61.06 61.12 61.26	59.53 4.44 7.54 2.73*
Acre Yield Sugar Bee	18084 19296 19684 18131	19096 17352 17004 18396	17830 18800 17444 18497	18794 19276 18991 18777	18465.9 1506.8 8.2 2.1NS
Variety ² Description ² Set 3. 16 varieties y 8 reps (RCB)	1493304 1865aa x RZM 1913,1915 1915aa x 1865,1865-# 0913-6aa x 1865,1865-#	0913-9aa x 1865,1865-# 0915-1aa x " " 0915-4aa x " " " 0915-6aa x " "	0915- 7aa x 1865,1865-# 0915-16aa x " " 0915-22aa x " " 0915-23aa x " "	0915–24aa x 1865,1865–# 0915–27aa x " " 0915–34aa x " " "	
Variety ²	Rhizosen 2915H65 2865H15 2865H47-6	2865H47-9 2865H48-1 2865H48-4 2865H48-6	2865H48- 7 2865H48-16 2865H48-22 2865H48-23	2865H48-24 2865H48-27 2865H48-34 2865H48-46	Mean ISD (.05) C.V. (%) F value

 $^{^3}$ Root rot to Erwinia. 4 Powdery mildew scored 9/14/93 and 9/21/93 on a scale of 0 to 9 where 9 = 90-100% of the leaf area covered with mildew.

VIRUS YELLOWS EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993 TEST 1493.

1993 31	Virus Yellows4	띪			~		~	7	~	10	10	•		~~	_4		~~	-	12.9**
26, 3	Vi	Mean	,	6.9	M. M.	5.6	ω 	5.7	4.8		4.5	4.9	5.3	2	5.4	5.1	0.0	13.1	
farch 9, 1993 October 25-26, 1993 oc.: May 6, 1993	RJAP	o\o		78.0	83.3	82.7	81.4	81.0	80.1	81.5	80.4	81.5	81.5	85.0	81.3	81.2	1.8	1.9	4.6**
2, 5	Powdery Mildew ³	Mean	1	ω ω	0.0	6.1	8.1	5.5	6.9	6.2	6.4	5.8	5.7	6.3		6.8	0.8	8.6	3 17.2**
Planted: March 9 Harvested: Octok BYV/BWYV Inoc.:	Beets/ 100'	No.		137	134	133	139	140	133	132	132	133	138	134	135	134.9	10.1	6.5	0.6NS
щщщ	Root	%		9.0	0.0	9.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.8	499.0	0.8NS
	Bolting	%		0.0	0.0	0.0	0.0	2.5	12.4	6.1	10.4	0.0	0.0	0.0	0.0	5.6	5.9	97.1 4	18.9**
	Sucrose	%		13.2	15.6	15.2	15.2	14.7	14.2	15.4	14.9	15.4	14.9	15.5	14.6	14.9	9.0	3.3	t 11.5**
gg	Beets	Tons		23.04	35.38	26.75	31.30	36.27	33.11	30.60	28.26	30.60	32.91	31.75	32.19	31.01	3.41	9.49	* 9.22**
lete bloc	Acre Yield	Tps		6108	11060	8118	9525	10668	9378	9383	8428	9394	9819	9822	9401	9258.6	1087.1	10.2	11.1**
CB incomp	Ac elative ²	o\0		40.4	75.4	49.2	60.2	59.2	58.4	8.09	49.3	51.0	51.4	51.5	51.1				
cations, F long es each ir	Acre Yi Description Relative ² Sugar		P. Lines	(ns 75)	86443	R079	#(C)		#(C)	,1216	,1224	2, 86342		R R078					
k 6 replic , 20 ft. 12 entrice	Descr		-1) MM,0.	Inc. 768 (US 75)	Inc. C37, 86443	RZM-BYV-ER R079	RZM 1202-#(C)	RZM R130	RZM 1201-#(C)	PWR 1211,	PMR 1217,,1224	Inc. C46/2, 86342	RZM R078	RZM-BYV-ER R078	L113401				
48 entries x 6 replications, RCB 1-row plots, 20 ft. long 4 sets with 12 entries each in incomplete blocks	Variety ⁵		1 (1493			R279Y	R228	R230		P201	P202	U86-46/2	R278	R278Y	US H11	Mean	LSD (.05)	C.V. (%)	F value

¹Test was uniformly inoculated with beet yellows virus (BYV) and beet western yellows virus (BWYV).

TEST 1493. VIRUS YELLOWS EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993

Virus ,	Yellows4	Mean
Powdery	Mildew- RJAP	Mean %
Beets/	100,	No.
Root	Rot	o\0
	Bolting	%
	Sucrose	0/01
ğ	Beets	Tons
Acre Vield	Sugar	Ibs
7	Relative	%
	Description	
	Variety ⁵	

Set 1 (1493-1) MM, O.P. Lines (cont.)

differences due to cultural practices and random error. In a broad sense, relative gross sugar yield should Relative gross sugar yield between entries in BVV/BWYV inoculated test 1493 and corresponding noninoculated entries in test 893. These tests were planted and harvested at different times. Individual ranking within tests is subject to experimental error. Thus, in addition to the effects of virus yellows, there would be give a fair estimate of the differences in resistance/tolerance to virus yellows. As with all field data, estimates of response to virus yellows infection will be improved by comparisons across tests and over years. Relative yield = 100(inoculated mean/noninoculated mean).

³Powdery mildew scored from 0 to 9 where 9 = 90-100% of mature leaf area covered by mildew.

 4 virus yellows scored from 0 to 9 where 9 = 90-100% of the mature leaf area yellow.

PI206407. P201 & P202 = C37 x (SB x WB97, WB242). R278 = C46/2Rz. US H11 = (C562CMS x C546) x C36. (Erwinia resistant) selection from US75. R279Y = C37Rz. R228 = C37 with rhizomania resistance from ⁵268 = Increase of obsolete O.P. variety US75 grown in the 1950's. C37 = YR (yellows resistant), ER

ANOVA to compare means across sets. TEST 1493. VIRUS YELLOWS EVALUATION OF MULTIGERY GERMPLASM, SALINAS, CA., 1993 48 entries x 6 replications, RCB; 1-row plots, 20 ft. long.

	0.5 1.4 1.3 12.1 0.9 1.6 0.8		
33.94 15.4	3.83 0.5	9.93 2.9	9.78** 14.3**
10476.7	1225.8 3.83	10.3	11.5**
Mean	LSD (.05)	C.V. (%)	F value

**

TEST 1493. VIRUS YELLOWS EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993

Virus ,	<u>Yellows</u> ⁴	າ ໝ	0 4 4	4.8	4.4	3.3	4.0	4.6	5.3	5.0	3.8	4.6	0.8	14.9	6.3**
h	RJAP	82.1	82.1	80.9	82.5	85.6	81.5	81.9	82.9	82.0	81.4	82.1	1.5		
Powdery	Mildew- Mean	7.3	5.8	4.4	4.8	4.8	4.3	3.6	4.3	4.5	6.3	5.2	0.9	14.4	
Beets/	100' No.	131	133	136	133	136	133	128	123	134	132	132.8	10.5	6.9	1.5NS
Root		9.0		0.0	0.0	9.0	0.0	0.7	0.0	0.0	1.2	0.4	1.3	278.2	1.7NS
	Bolting <u>\$</u>	0.0	000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1		
	Sucrose Bolting	15.1	15.6	15.2	16.5	16.4	16.1	15.7	16.1	15.9	15.4	15.8	0.5	2.7	
	Beets Tons	32.98	34.66	31.65	32.42	36.50	34.80	33.87	30.49	32.56	35.13	33.34	4.01	10.40	1.86NS
Acre Yield	Sugar	9973	10821	9568	10698	11983	11181	10642	9760	10355	10814	10539.6	1281.9	10.5	2.2*
Ą	Relative &	53.5	54.2 52.5	49.0	57.8	65.0	56.5	56.1	53.0	53.4	58.7				
	Description Relative Sugar	Set 2 (1493-2) MM, O.P. Lines Rhizoguard L893301	RZM-BYV-ER R080 Inc. R080-1	Inc. R080-13	Inc. R080-28	Inc. R080-35	Inc. R080-45	Inc. R080-56	Inc. R080-79	Inc. R080-80	BYR R922Y				
L	Variety ²	Set 2 (1493-2) MM, Rhizoguard L893301	R280Y R280- 1	R280-13	R280-28	R280-35	R280-45	R280-56	R280-79	R280-80	R122Y2	Mean	LSD (.05)	C.V. (%)	F value

SR280 = C54Rz. R280-#'s = half-sib families selected on basis of per se performance when tested under nondiseased, virus yellows, and rhizomania conditions in 1991. R122Y2 = cycle 2 selection for virus yellows resistance from $F_3(Y54 \times B.maritima)$.

TEST 1493. VIRUS YELLOWS EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993

Virus <u>Yellows</u> 4 <u>Mean</u>	7.3 3.7 3.7	4.2 4.3 5.0 8.3	2.4.2.4. 2.0.4.	4.4 0.8 15.7 15.9**
RJAP	83.3 81.2 82.8 81.4	82.3 83.2 83.2 83.2	82.6 84.3 82.7 81.9	82.7 1.7 1.8 2.1*
Powdery Mildew ²	7.00.00	დ დ დ დ ლ დ 4 ლ	ບ ບ 4 ພ ສ ພ ສ ສ	5.4 1.0 16.3 6.3**
Beets/ 100' No.	143 135 138 131	136 140 148 146	134 138 128 134	137.6 11.2 7.0 2.2*
Root Rot	9.000	0000	0.0	0.3 1.1 359.3 1.3NS
Bolting §	0000	0000	0.00	
Sucrose Bolting	16.8 15.1 16.1 14.9	15.1 16.1 15.4 15.2	15.9 15.4 15.2 16.3	15.6 0.5 2.6 * 12.8**
Beets Tons	24.69 37.23 38.16 38.79	38.10 39.49 39.07 41.45	40.74 40.59 37.83 36.62	37.73 4.03 9.23 * 9.41**
Acre Yield Sugar Ibs	8294 11217 12336 11525	11506 12735 11994 12620	12989 12513 11514 11967	11767.5 1315.5 9.7 7.0**
lative %	42.1 59.5 67.7 62.3	60.4 60.4 56.3 66.9	69.4 64.0 57.8 64.8	
Acre Vi Description Relative ² Sugar \$ Ibs	Set 3 (1493-3) MM,O.P. Lines 6770 high % S check R270Y RZM-BYV-ER R070 F86-31/6 Inc. C31/6, L86263 R276 RZM R076	RZM-BYV-ER R076 60.4 Inc.Y131-43 (C31-43) 60.4 RZM R176-43 56.3 RZM R176-89 66.9	Inc.Y131-89(C31-89) 69.4 Inc. R176-43,-89 64.0 rr(C) x R(C) 57.8 BYR Y841 64.8	
<u>Variety⁵</u>	Set 3 (149 6770 R270Y F86-31/6 R276	R276Y Y231-43 R276-43 R276-89	Y231–89 R282 R283 Y141	Mean LSD (.05) C.V. (%) F value

of R76-43 and R76-89 lines. R283 = composite cross between 0.P. lines selected for virus yellows R276-89 is Rz version of C31-89; C76-89 is a reselection from this line. R282 = composite cross R276, R276Y = C31/6Rz. R276-43 is Rz version of C31-43; C76-43 is a reselection from this line. ⁵6770 = high % S check (Beta) grown in Red River Valley. R270Y = Rz composite of O.P. lines. resistance and O.P. lines selected for rhizomania resistance. Y141 = VY reselection of C91.

TEST 1493. VIRUS YELLOWS EVALUATION OF MULTIGERM GERMPLASM, SALINAS, CA., 1993

Virus 4	Mean	ω.	4.8	.7	m.	۳.	0.	5.2	ω.	4	. α	3.6	.2	(ω.	.1	***0.
																0.8		5.8**18.8**
	조 장 ~~	84.6	84.0	80.2	83.2	83.4	82.6	82.3	80.2	000	210	82.7	81.2			1.7		
Powdery 3	Mean	7.3	5.3	4.2	ω. 	5.0	6.9	5.0	8.5	7.3	۳ کا کا	5.4	7.3	L	ນໍ້ນ	1.0		
Beets/	No.	136	133	138	131	128	136	124	129	134	127	137	126	7	131.4	10.5	6.9	1.6NS
	₩ ₩	9.0	9.0	2.0	0.0	0.0	1.2	0.0	9.0	9		0.0	2.0	(0.0	1.7	224.8	1.6NS
	Sucrose Bolting	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c		0.0	0.0					
ŧ	Sucrose	14.7	16.1	14.5	16.7	16.0	15.0	15.9	14.9	14.4	15.4	15.3	14.9	l 1	15.3	0.5	3.0	
	Tons	32.07	35.36	39.39	37.13	34.41	31.50	36.67	26.47	27 38	35.50	38,16	29.97					** 9.62**
Acre Vield	Sugar	9409	11382	11478	12373	10998	9449	11696	7859	7883	10923	11706	8937		10341.1	1205.3	10.1	13.5**
A	Lative-	49.4	67.1	58.1	69.3	59.6	47.5	59.4	44.3	71 6	57.0		0					
:	Description Relative Sugar	<u>33-4)</u> .493304	∞, Inc. Y339	28, RZM R139C7	/R, BYR Y939	30, YR-ER-PMR Y347	28, RZM R147C7	YR, BYR Y947	RZM R107	27M D108	D7M1015-# 1013-#5557	1905aa × 1913 1915	0790mmaax1890, RZM1890					
ى - -	<u>Variety</u>	Set 4 (1493-4) Rhizosen L493304		R239C8 (V139	Y547 (R247C8 (R207 I	1 8004					Mean	LSD (.05)	C.V. (%)	F value

with 50% cercospora leaf spot resistant germplasm from Italy. 2915 = self-fertile, MM, A:aa, Rz population. resistant selection from Y39 based upon individual plant performance under severe virus yellows conditions. R247C8 = cycle 8 for resistance to rhizomania. Y147 = continued reselection for VYR. Y207 & Y208 = lines 5Y439 = 1984 seed lot of Y39 and source of selections for virus yellows and rhizomania. R239C8 = cycle 8 from Y39 for resistance to rhizomania based upon root symptoms in 4 mo. old roots. Y139 = continued VY Y547 = 1985 seed lot of Y47 and source of selections for virus yellows and rhizomania resistance.

TEST 1593. VIRUS YELLOWS EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1993

1993 1993	RJAP %	82.2 82.4 81.9 82.9 82.8 81.8 83.6	82.5 2.2 0.6	883.2 883.9 883.9 882.7 982.5 882.9	82.8 2.3 2.7
199 r 21 6,	PM Mean ³		5.8 0.7 12.8 8.7**	00007000 00000000	6.7 0.9 13.4 9.4**
E E	Mean Yellows Rating ⁴	vvv4.vvv6 8804.vv80	5.4 0.4 8.0 11.8**		5.7 0.4 7.8 33.7**
Planted: Harvested: BYV/BWYV I	Beets/ 100' No.	129 134 120 106 124 111 125	120.6 12.5 10.2 4.8**	134 130 130 128 126 125 106	125.9 10.9 8.6 5.2**
	Root Rot	00100100	0.6 1.8 298.7 0.6NS	0.0 1.4 0.0 2.9 2.9	4.2 4.9 115.3 31.5**
	Sucrose	14.1 15.3 14.8 14.9 14.9 5.5	14.8 0.5 3.7 2.4*	14.4 16.2 17.9 15.4 17.3 12.3	14.8 1.1 7.2 9.5**
	Beets	35.60 36.80 36.89 38.22 35.88 32.73	35.57 3.50 9.74 * 2.37*	30.95 24.03 34.59 33.97 35.33 37.97 34.49	39.2 32.89 17.0 3.33 12.4 10.02 11.2**12.82**
Juare	Acre Yield Relative Sugar	10293 11260 10917 11365 10698 9825 9532	10512.8 3 987.7 9.3 3.6**	8879 7801 10357 10414 10826 11665 10201 7771	9739.2 1217.0 12.4 11.2*
alized) Latin S	Relative	53.6 66.4 65.1 56.5 57.0		56.0 44.7 53.7 57.2 59.0 60.0	
24 entries x 8 replications, RCB (equalized) 1-row plots, 20 ft. long 3 sets each with 8 entries x 8 reps, Latin Square	Description	Experimental Hybrids RZ78H39 89-762-17CMS x R078 RZ80H22 0722HO x R080 RO80H29 C790-6aa x R980 RZ80H30 C790-54aa x R080 RZ80H90 C790aa x R080 RZ80H90 C790aa x R080 RZ80H92 F85-796-22HO x R080 RZ80H97 C796-43HO x R080 RZ80H39 89-762-17CMS x R080		(Set 2: 1593-2) 790-68H26 x Pollinator Rhizoguard L893301 6770 high %S check (Beta) R280H18 88-790-68H26 x R080 R276H18 88-790-68H26 x R076 R278H18 88-790-68H26 x R176-43,-89 2915H18 88-790-68H26 x 1915 N203H18 88-790-68H26 x 1915	
24 entrie 1-row plo 3 sets ea	Variety ⁵	(Set 1: Experiment R278H39 R278H39 R280H22 R280H33 R280H90 R280H92 R280H97 R280H97	Mean LSD (.05) C.V. (%) F value	(Set 2: 1593-2) 790-68H26 x Pollin Rhizoguard L893301 6770 high %S R280H18 88-790- R276H18 88-790- R278H18 88-790- R282H18 88-790- 2915H18 88-790- 2915H18 88-790-	Mean ISD (.05) C.V. (%) F value

VIRUS YELLOWS EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1993 (cont.) TEST 1593.

	F	cre Yleid			100Y	beets/	Mean		
Variety ² Description	Relative	Relative Sugar	Beets	Sucrose	Rot	100,	Yellows	PM	RJAP
	%	Ibs	Tons	%	o\0	No.	Rating ⁴	Mean	o\0
(Set 3: 1593-3)									
309H3 x progenies from popn-911,-913,-915	13,-915								
2915H20 87-309H3 x 1913,1915	57.3	9939	33.34	14.9	0.4	136	5.5	7.3	82.1
2911-4H20 87-309H3 x RZM C911-4	59.4	10864	34.23	15.9	0.5	134	5.5	7.3	81.5
2911-12H20 87-309H3 x RZM C911-12	51.0	10258	33.43	15.4	0.0	127	5.8	7.8	82.0
2911-24H20 87-309H3 x 0911-24	51.9	9148	30.01	15.3	0.5	136	5.6	7.4	85.8
2913- 9H20 87-309H3 x 0913-9	61.4	11332	36.69	15.5	0.0	127	5.2	8.9	81.2
2915- 4H20 87-309H3 x 0915-4	54.5	9952	33.10	15.1	0.0	133	5.6	7.3	81.7
2915- 7H20 87-309H3 x 0915-7	54.2	10928	35,33	15.4	0.0	133	5.0	7.3	81.7
2915-46H20 87-309H3 x 0915-46	48.3	9408	30.74	15.3	0.0	133	5.2	7.2	81.2
Mean		10228.6	33.36		0.3	132.2	5.4	7.3	
ISD (.05)		930.2	2.77		1.0	9.9	0.4	0.8	
C.V. (%)		0.6	1.37	3.0	353.1	4.9	7.7	10.8	1.9
F value		5.5**	* 5.14**		0.9NS	2.4*	3.0*	0.9NS	

CA., 1993 SALINAS, 24 entries x 8 replications, RCB (equalized), 1-row plots, 20 ft.long VIRUS YELLOWS EVALUATION OF EXPERIMENTAL HYBRIDS, TEST 1593.

		2.5	
9.9	0.8	12.3	10.8**
5.5	0.4	7.9	15.9**
126.2	10.8	8.6	5.2**
1.7	3.1	186.4	25.2**
		6.7	
33.94	3.26	10.4 9.71	* 6.83**
10160.2	1048.5	10.4	7.4*
Mean	LSD (.05)	C.V. (%)	F value

Trest was uniformly inoculated with BYV/BWYV.

in Tests 993, 1193, & 1293: Test 1593-1 corresponds to Test 1293; Test 1593-2 corresponds to Test 1193; Relative gross sugar yield between entries in BVV/BWVV inoculated test 1593 and corresponding entries Test 1593-3 corresponds to Test 993-1. (See footnote 2 for Test 1493).

 $^{^{3}}$ Powdery mildew scored from 0 to 9 where 9 = 90-100% of mature leaf area covered by mildew. Virus yellows scored from 0 to 9 where 9 = 90-100% of the mature leaf area yellow.

C31/6, C46/2, & C54. R176-43,-89 is unselected version of C76-43,-89. N103, N103-1 are nematode resistant 5790-68HZ6 = C309CMS x C790-68. 309H3 = C562CMS x C309. R076, R078 & R080 are near-isogenic Rz lines of C306, C306-1. 1913, 1915 is similar to C918.

TEST 1693. VIRUS YELLOWS EVALUATION OF SELECTED PROGENIES, SALINAS, CA., 1993

3 , 1993 1993	RJAP	o\0	82.3	83.5	81.3	82.2	81.8	83.7	80.1	83.2	82.3	2.2	2.6	2.5		82.0	81.7	82.5	81.6	80.4	81.4	80.8	80.1	81.3	1.5	1.8	2.6
1993 r 18, 6, 19	PM	Mean	7.1	7.5	7.5	7.4	7.4	7.4	8.6	5.9	7.3	0.5	7.3	15.4**		7.9	7.0	7.2	7.4	6.9	8.9	7.3	7.1	7.2	0.5	7.1	3.6**
: March 9, 3 ed: October V Inoc: May (Mean Yellows	Rating ⁴	7.2	6.3	5.5	5.1			6. 8	4.6	5.8	0.5	0.8	23.2**		5.5	5.4	•	•		•	5.7		5.5	0.5	8.2	1.2NS
Planted: Harvested: BYV/BWYV I	Beets/ 100'	No.	139	134	143	141	134	133	139	113	134.7	10.8	8.0	6.1**		141	139	131	132	139	131	136	131	135.1	9.4	6.9	1.8NS
	Root	o/0	0.4	0.5	0.0	0.0	0.0	0.5	15.6	2.3	2.4	3.9	160.7	15.4**		0.0	0.0	0.4	0.0	0.0	1.6	0.0	0.0	0.3	1.0	367.6	2.9*
	Sucrose	o/o	15.8	14.1	15.0	14.8	14.8	15.4	11.4	14.8	14.5	9.0	3.9	46.9**		15.2	14.5	15.2	15.4	15.2	15.0	15.0	14.9	15.0	0.4	2.5	4.3**
	Beets	Tons	27.62	33.08	34.08	35.44	32.63	36.82	30.74	38.83	33.65	2.95	8.70	18.7**11.54**		33.23	34.70	32.96	34.97	35.28	34.36	•	32.91	33.67		6.59	3.40**
are	Acre Yield Relative ² Sugar	Lbs	8759	9315	10230	10515	9659	11320	7028	11451	9784.9	959.3	9.7	18.7*:		10083	10055	10024	10771	10692	10298	9282	9787	10124.0	788.5	7.7	3.0*
alized) Latin Squ	Relative ²	o/o	45.9	52.3	55.8		55.0	6.09	47.7							53.6	53.8	53.3	57.8	57.0	58.7	49.2	53.4				
24 entries x 8 replications, RCB (equalized) 1-row plots, 20 ft. long 3 sets each with 8 entries x 8 reps, Latin Square	Description	Test 1693-1: Checks and toncrosses	High & sugar check	L893301	87-309H3 x R080	87-309H3 x R076	87-309H3 x R078	87-309H3 x R176-43,-89	87-309H3 x N103,N103-1	88-790-68CMS x R176-43,-89					Test 1693-2: Progenies from R80		87-309H3 x R080-13	87-309H3 x R080-28	87-309H3 x R080-35	87-309H3 x R080-45	87-309H3 x R080-56	87-309H3 x R080-79	87-309H3 x R080-80				
24 entries 1-row plots 3 sets each	Variety ⁵	Test 1693-1	6770	Rhizoquard	R280H20	R276H20	R278H20	R282H20	N203H20	R282H89	Mean	(30°) (ST)	C.V. (%)	F value	Test 1693-2	R280- 1H20	R280-13H20	R280-28H20	R280-35H20	R280-45H20	R280-56H20	R280-79H20	R280-80H20	Mean	LSD (.05)	C.V. (%)	

TEST 1693. VIRUS YELLOWS EVALUATION OF SELECTED PROGENIES, SALINAS, CA., 1993

ı		F	Acre Yield	<u> </u>		Root	Beets/	Mean		
Variety ²	Description	Relative ²	Sugar	Beets	Sucrose	Rot	100,	Yellows	PM	RJAP
		o\ ∘		Tons	%	0/9	8	Rating ⁴	Mean	o\0
Test 1693-	Test 1693-3: Progenies from popn-911,-913,-915	1,-913,-915	3-udod 3 c	364						
2915H20	87-309H3 x 1913,1915	53.7	9746	33.33	14.6	0.0	134	5.9	7.7	80.7
2911-4H20	87-309H3 x RZM 1911-4	57.2	10444	33.93	15.4	0.0	131	5.6	7.2	81.1
2911-12H20	87-309H3 x RZM 1911-12	51.8	10410	34.95	14.9	0.0	134	0.9	8.1	81.8
2913-9H20	87-309H3 x 0913-9	58.7	10844	36.40	14.9	0.0	131	4.9	7.1	81.8
2915-4H20	87-309H3 x 0915-4	56.3	10284	34.72	14.8	0.0	143	5.6	7.5	81.4
R280H68	1867Raa x R080	53.5	10031	34.70	14.5	0.5	126	6.3	7.0	82.3
R280H62-1	0864-1aa x R080	57.2	10372	35.88	14.4	0.0	121	5.7	9.9	85.0
R280H62-28	0864-28aa x R080	59.0	10635	36.07	14.8	0.0	66	5.8	7.2	82.2
Mean			10345.8		14.8	0.1	127.5	5.7	°3	81.7
ISD (.05)			879.3	2.54	9.0	0.5	12.7	0.4	0.7	1.7
C.V. (%)			8.4	7.18	ω 	800.0	6.6	7.7	9.6	2.1
F value			1.2NS	IS 1.44NS	2.4*	1.0NS	8.5**	7.2**	3.3**	0.9NS

24 entries x 8 replications, RCB (equalized), 1-row plots, 20 ft. long. To compare means across sets. VIRUS YELLOWS EVALUATION OF SELECTED PROGENIES, SALINAS, CA., 1993 TEST 1693.

 \overline{S}

.3 81.7	,6 1.7	8.5 2.1	6** 2.4*
		8.6 8.	
		9.3	
0.0	2.3	259.7	14.4**
		3.7	
34.11	2.58	7.63	**60.9
10084.9	860.9	8.6 7.63	8.5*
Mean	ISD (.05)	C.V. (%)	F value

¹ Test was uniformly inoculated with BYV/BWYV.

Relative gross sugar yield between entries in BYV/BWYV inoculated test 1693 and corresponding non-inoculated entries in test 1093. See footnote 2 for Test 1493.

Powdery mildew scored from 0 to 9 where 9 = 90-100% of mature leaf area covered by mildew.

popn-864. R076,R078,R080 = near-isogenic Rz lines of C31/6, C46/2, and C54. R080-# = progeny lines selected 4 Virus yellows scored from 0 to 9 where 9 = 90-100% of the mature leaf area yellow. 5 309H3 = C562CMS x C309. 1867 = S^{L} , A:aa, mm, Rz population. 0864-1 and 0864-28 = progeny lines selected from 1913,1915 are similar to C918. 1911-4 = C911-4. 1911-12 = C911-12. 0913-9 = progeny family from popn-913. from line R80. N103,N103-1 = cyst nematode resistant C603,C603-1. R176-43,-89 are similar to C76-43,-89. 0915-4 from popn-915.

VIRUS YELLOWS EVALUATION OF TOPCROSS HYBRIDS FROM POPN-911,-913, & -915, SALINAS, CA., 1993 TEST 1793.

993 1993	RJAP	0/01	84.0	80.5	81.8	82.3	79.4	82.8	81.0	85.3		81.8	81.9	81.7	83.8	82.0	81.1	81.4	80.5	80.1	79.7	82.5	81.7
rch 9, 1993 W: May 6, 199 September 30,	PM	Rating	7.0	7.0	6.0	0.9	7.0	7.0	7.0	5.0		7.0	0.9	0.9	0.9	5.0	0.9	7.0	5.0	0.9	0.9	0.9	0.9
	Mean Yellows	Mean	5.3	5.5	5.8	5.7	5.9	5.9	5.8	6.9		4.5	5.4	5.3	4.9	5.1	5.1	5.7	5.3	5.4	5.7	5.4	5.6
Planted: Ma Inoc. BYV/BW Harvested:	Beets/ 100'	No.	137	139	139	134	143	128	140	138		148	128	137	138	136	138	137	143	137	141	135	145
	Root	%1	0.7	0.0	0.0	0.0	0.0	1.5	0.0	9.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sucrose	%	15.4	14.6	14.3	14.4	14.1	14.2	14.1	15.2		14.4	14.8	14.7	14.8	14.6	14.6	14.6	14.4	14.3	14.2	14.5	14.6
	Beets	Tons	33.80	35.01	33.89	32.28	32.98	31.93	31,36	27.51		35.71	34.73	34.80	34.45	34.36	34.23	33.61	34.07	34.03	34.17	33.44	33.05
	re Viel	Ibs	10411	10241	9705	9324	9290	9058	8870	8360		10242	10225	10190	10185	8666	9982	9804	9736	9723	9696	9677	9676
	Acre Yield Relative Sugar	%1			49.3	46.6	48.1	57.6	46.2	44.1		53.6	52.4	53.9	55.4	54.4	53.1	55.0	51.7	57.2	49.0	55.8	52.3
32 entries x 6 replications, RCB 1-row plots, 20 ft. long	$\frac{1}{1}$		87-309CMS x R176-43,-89	87-309CMS x 1913,1915	1915aa x 1865,1865-#	1865aa x 1913,1915	1865aa x 1913,1915		1913aa x 1865,1865-#	High % sugar check	MM Progenies x mm Tester	0913- 9aa x 1865,1865-#	1911-12aa x " "	3 1913-18aa x " "	0915- 6aa x " "	1913–25aa x 1865,1865–#		0915- 7aa x " "	1913-22aa x " "	0915- 4aa x 1865,1865-#	= ×	0915- laa x "	0915-23aa x " "
32 entrie 1-row plo	Variety		Checks R282H26	2915H26	2865H15	2915H65	2915H65	Rhizoquard		6770	MM Progen	2865H47-9	2865H43-12	2865H45-18	2865H48-6	2865H45-25	2865H48-24	2865H48-7	2865H45-22	2865H48-4	2865H46-1	2865H48-1	2865H48-23
									A	48													

TEST 1793. VIRUS YELLOWS EVALUATION OF TOPCROSS HYBRIDS FROM POPN-911,-913, & -915, SALINAS, CA., 1993 (cont.)

	RJAP	o/ºI		83.2	80.5	81.6	81.4	81.6	82.2	81.7	80.3	80.5	81.6	80.3	80.8	81.6	2.1	2.2	3.0**
	PM	Rating		0.9	0.9	0.9	2.0	0.9	0.9	0.9	0.9	0.9	8.0	5.0	2.0	0.9	1.2	17.9	2.7**
Mean	Yellows	Mean		5.4	5.3	5.9	5.3	5.3	5.6	5.8	5.8	5.6	5.4	5.8	0.9	5.5	0.5	8.5	4.6**
Beets/	100,	No.		141	133	140	140	135	138	138	140	134	142	137	123	137.5	11.8	7.5	1.4NS
Root	Rot	o\9		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.1	0.7	586.5	1.5NS
	Sucrose	o/ºI		14.7	14.6	14.4	14.4	14.5	14.6	14.7	13.9	14.6	14.3	14.3	14.1				2.9**
K	Beets	Tons		32.63	32.46	32.77	32.77	32.21	31.44	31.16	32.56	30.81	31.30	30.84	31.07	32.86	4.02	10.72	1.5** 1.34NS
cre Yield	Sugar	Ibs		9597	9471	9429	9399	9315	9216	9124	9062	8984	8909	8797	8786	9515.2	1165.5	10.7	1.5
Acre Yield	Relative ²	0/0		55.7	52.2	49.6	48.8	49.4	52.8	52.1	48.2	47.3	48.7	46.8	53.2				
	Description-		ter (cont.)	1911–50aa x 1865,1865-#	= ×	= ×	= ×	1913- 5aa x 1865,1865-#	= ×	= = ×	= = X	1911–14aa x 1865,1865–#	= ×	= = ×	= ×				
	Descri		x mm Tes	1911-50aa	0913-6aa x	0915-34aa x	0915-27aa x	1913- 5aa	0915-22aa x	0911-4(B) x	0915-16aa x	1911-14aa	0911-24aa x	0915-46aa x	1911- 4aa x				
	Variety		MM Progenies x mm Tester (cont.)	2865H43-50	2865H47-6	2865H48-34	2865H48-27	2865H45-5	2865H48-22	2865H46-4B	2865H48-16	2865H43-14	2865H46-24	2865H48-46	2865H43-4	Mean	ISD (.05)	C.V. (%)	F value

Powdery mildew was scored 9/15/93 after the efficacy of Bayleton ceased. Yellows symptoms (9 = severe yellowing) were Notes: Test was uniformly inoculated with virus yellows (BYV/BWYV) on May 6, 1993. Yellows were uniform and severe. scored 8/25 and 9/03/93. See test 993 for the same entries under non-virus yellows inoculated conditions.

The progeny lines are extractions from popns-911,-913,-915. R176-43; -89 is unselected version rhizomania. 1913,1915 is a multigerm, self-fertile, A:aa population that segregates for resistance to of C76-43; -89. 1911-4, -12, -14, -50 are unselected versions of C911-4, C911-12, C911-14, & C911-50. 1865,1865-# tester is a monogerm population similar to C309/C310, but segregates for resistance to ²Relative gross sugar yield between entries in BYW/BWFV inoculated Test 1793 and corresponding noninoculated entries in Test 993. See footnote 2 of Test 1493. rhizomania.

DAVIS 1993-1. EVALUATION OF HYBRIDS FOR REACTION TO VIRUS YELLOWS, DAVIS, CA., 1993

Sucrose 1993 Harvested: November 3, 1993 14.5 14.4 13.6 14.3 13.9 14.3 14.4 14.3 14.2 0/9 BYV/BWYV Inoc.: July 9, Planted: May 28, 1993 21.84 20.90 22.34 23.02 21.90 21.87 22.82 21.48 Beets 23.69 22.56 tons Acre Yield³ Sugar थ्वी 6535 9209 5952 6434 6316 6129 7031 6291 6391 6611 6133 Sucrose² 14.0 14.1 13.6 14.0 13.5 14.0 13.9 14.2 13.7 0/0 17.36 15.95 16.39 14.63 15.97 15.74 13.95 tons Beets 14.12 16.41 15.78 16.21 Acre Yield² Sugar व 4218 4592 4808 4375 3935 4613 3983 4604 3795 4493 4263 Sucrose1 14.2 14.5 13.6 13.7 14.2 14.3 14.0 13.9 14.1 0/01 20.19 19.04 19.38 Beets tons 19.15 17.51 20.04 18.23 19.37 19.21 18.84 17.71 Acre Yield1 12 entries x 2 virus trtmts x 6 reps (Split-plot) Sugar 201 5005 4967 5492 5709 5198 5460 5455 4962 5822 5464 5254 x R176-43,-89 x R076 x R078 x 1915 (3309 x C790-68) x R080 Description Spreckels 1921068 (C309 x C/30-68) C790-54aa x R080 C796-43aa x R080 (309 x C790-68) (309 x C790-68) C309 x C790-68) USDA Experimental Hybrids 1-row plots, 28 ft. long Hilleshog-MH Betaseed Holly Commercial checks R276H18 R278H18 R282H18 Variety 2915H18 R280H18 R280H33 R280H97 SS-VY1 99 HH 4454 6027

5336.0 18.77 14.2 4285.2 15.41 13.9 6386.8 22.12 411.6 1.44 0.3 582.0 2.04 0.5 582.0 2.04 9.5 9.48 2.9 9.5 9.48 2.9 9.5 9.48 3.6** 4.45** 21.8** 6.6* 5.70* 12.8* 6.6* 5.70* NS NS *	0 18.77 14.2 4285.2 15.41 13.9 6386.8 6 1.44 0.3 582.0 2.04 0.5 582.0 5 9.48 2.9 9.5 9.48 2.9 9.5 6** 4.45** 21.8** 6.6* 5.70* 12.8* 6.6* * * *	5336.0 18.77 14.2 4285.2 15.41 13.9 6386.8 411.6 1.44 0.3 582.0 2.04 0.5 582.0 9.5 9.48 2.9 9.5 9.48 2.9 9.5 3.6** 4.45** 21.8** 6.6* 5.70* 12.8* 6.6* NS NS *	5336.0 18.77 14.2 4285.2 15.41 13.9 6386.8 411.6 1.44 0.3 582.0 2.04 0.5 582.0 9.5 9.48 2.9 9.5 9.48 2.9 9.5 3.6** 4.45** 21.8** 6.6* 5.70* 12.8* 6.6* NS NS *
0 18.77 14.2 4285.2 15.41 13.9 6 1.44 0.3 582.0 2.04 0.5 5 9.48 2.9 9.5 9.48 2.9 6** 4.45** 21.8** 6.6* 5.70* 12.8* * *	0 18.77 14.2 4285.2 15.41 13.9 6 1.44 0.3 582.0 2.04 0.5 5 9.48 2.9 9.5 9.48 2.9 6** 4.45** 21.8** 6.6* 5.70* 12.8* * *	5336.0 18.77 14.2 4285.2 15.41 13.9 411.6 1.44 0.3 582.0 2.04 0.5 9.5 9.48 2.9 9.5 9.48 2.9 3.6** 4.45** 21.8** 6.6* 5.70* 12.8* * * * * * NS NS *	5336.0 18.77 14.2 4285.2 15.41 13.9 411.6 1.44 0.3 582.0 2.04 0.5 9.5 9.48 2.9 9.5 9.48 2.9 3.6** 4.45** 21.8** 6.6* 5.70* 12.8* * * * * * NS NS *
0 18.77 14.2 4285.2 15.41	0 18.77 14.2 4285.2 15.41	5336.0 18.77 14.2 4285.2 15.41	5336.0 18.77 14.2 4285.2 15.41
6 1.44 0.3 582.0 2.04	6 1.44 0.3 582.0 2.04	411.6 1.44 0.3 582.0 2.04	411.6 1.44 0.3 582.0 2.04
5 9.48 2.9 9.5 9.48	5 9.48 2.9 9.5 9.48	9.5 9.48 2.9 9.5 9.48	9.5 9.48 2.9 9.5 9.48
6** 4.45** 21.8** 6.6* 5.70*	6** 4.45** 21.8** 6.6* 5.70*	3.6** 4.45** 21.8** 6.6* 5.70*	3.6** 4.45** 21.8** 6.6* 5.70*
NS *	NS *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
0 18.77 14.2 4285.2	0 18.77 14.2 4285.2	5336.0 18.77 14.2 4285.2	5336.0 18.77 14.2 4285.2
6 1.44 0.3 582.0	6 1.44 0.3 582.0	411.6 1.44 0.3 582.0	411.6 1.44 0.3 582.0
5 9.48 2.9 9.5	5 9.48 2.9 9.5	9.5 9.48 2.9 9.5	9.5 9.48 2.9 9.5
6** 4.45** 21.8** 6.6*	6** 4.45** 21.8** 6.6*	3.6** 4.45** 21.8** 6.6*	3.6** 4.45** 21.8** 6.6*
* * *	* * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
0 18.77 14.2	0 18.77 14.2	5336.0 18.77 14.2	5336.0 18.77 14.2
6 1.44 0.3	6 1.44 0.3	411.6 1.44 0.3	411.6 1.44 0.3
5 9.48 2.9	5 9.48 2.9	9.5 9.48 2.9	9.5 9.48 2.9
6** 4.45** 21.8**	6** 4.45** 21.8**	3.6** 4.45** 21.8**	3.6** 4.45** 21.8**
* * *	* * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *
0 18.77	0 18.77	5336.0 18.77	0 18.77
6 1.44	6 1.44	411.6 1.44	6 1.44
5 9.48	5 9.48	9.5 9.48	5 9.48
6** 4.45**	6** 4.45**	3.6** 4.45**	6** 4.45**
NS	NS	NS NS	NS
* * 0 0 0 0	* * 0 0 0 0	5336.0 411.6 9.5 3.6**	5336.0 411.6 9.5 3.6**
		***	irus ar x virus

16.4

20.53

6743

15.0

12.48

3741

15.7

16.50

5242

High % S, susc. check

Susceptible check

Variety means over both virus treatments analyzed as split-plot. 3 Variety means for noninoculated treatment. 2 Variety means for inoculated treatment.

A50

DAVIS 1993-1. EVALUATION OF HYBRIDS FOR REACTION TO VIRUS YELLOWS, DAVIS, CA., 1993 (cont.)

Impur. Value	12660 12939 12760 13589	12869 12558 13025 13173	13158 12514 13448	12896.4 675.8 6.5	12930.4 12862.3 NS
NH2-N	615 611 613 633	593 633 655 680	649 591 604	555 619.3 55.1 11.0 2.9**	634.9 603.7 NS NS
Potassium	2123 2329 2107 2428	2313 2113 2142 2196	2207 2190 2531	2232.4 241.4 13.4 2.6**	2169.5 2295.3 *
Sodium	431 376 476 431	415 361 414 349	421 407 395	435 409.2 75.3 22.7 1.7NS	421.6 396.8 NS
Known Sugar/Loss <u>lbs/a</u>	672.2 790.1 704.4 795.9	739.9 731.6 793.3 754.8	756.3 734.5 716.9	731.9 73.8 12.5 4.8**	859.0 604.8 NS NS
Recover. Sugar	86.6 86.0 85.0	85.9 86.7 85.2 85.6	86.2 85.6 85.5	88 88 .0 0.8 1.1 **	86.5 86.1 NS NS
Recover. Sugar <u>lbs/t</u>	247 250 234 243	rids 236 246 243 235	246 243 238	245.0 7.0 3.5 22.0**	250.1 240.0 *
14	<u>checks</u> 4333 5032 4263 4668	USDA Experimental Hybrids R276H18 4515 2 R278H18 4760 2 R282H18 4916 2 S915H18 4443 2	4704 4721 4245 le check	4650 4604.1 355.9 9.6 var 3.9**	5527.8 1 3680.4 *
Variety	Commercial SS-VY1 4454 HH 66 6027	USDA Exper R276H18 R278H18 R282H18 2915H18	R280H18 4704 R280H33 4721 R280H97 4245 Susceptible check	Mean LSD (.05) C.V. (%) F value -	Mean Inoc. Mean Virus

Recoverable sugar, sodium, potassium, and NH₂-N values should be considered estimates as there were many missing plots. Tests were planted late due to wet field conditions. Grown by Dr. S. Kaffka and G. Peterson, U.C. Davis. Sugar and impurity analyses by Spreckels Variety means over both virus treatments analyzed as split-plot (12 var x 12 reps). Sugar, Woodland. Note:

EVALUATION OF SELECTED PROGENY LINES FOR PERFORMANCE UNDER VY CONDITIONS, DAVIS, CA., 1993 DAVIS 1993-2.

, 1993 9, 1993	Clean	%I	93.4	93.9	95.4	93.6	94.2	92.1	90.6	92.2	95.6	94.2	93.1	93.2	0.0	2.2	2.5**
Planted: May 28, 1993 Harvested: November 3, BYV/BWYV Inoc.: July 9,	900000	000	15.1	13.4	13.6	14.2	13.9	14.6	14.2	14.2	13.6	14.4	13.5	14.0	0.0	3.0	11.5**
	<u>ield</u> Roots	tons	11.77	16.70	16.86	15.12	14.53	14.01	14.80	14.24	14.64	13.87	13.85	14.85	1.62	9.40	8.16**
	Acre Yield		3554	4339	4576	4303	4027	4079	4185	4021	3978	4003	3738	4131.1	460.6	9.6	4.3**
12 entries x 6 replications, RCB (equalized) 1-row plots, 28 ft. long	Documintion	DESCRIPTION I	High % S, susc. check	RZM-VY-ER R076 PZM-VX-FR R070	RZM-VY-ER R080	Inc. R080- 1	Inc. R080-13	Inc. R080-28	Inc. R080-35	Inc. R080-45	Inc. R080-56	Inc. R080-79	Inc. R080-80				
12 entries x 1-row plots,	(1)	variety	6770	R276Y	R280Y	R280- 1	R280-13	R280-28	R280-35	R280-45	R280-56	R280-79	R280-80	Mean	(30°) (31)	C.V. (%)	F value

Recoverable sugar, sodium, potassium, and NH_2 -N values should be considered estimates as there were many missing plots. Tests were planted late due to wet field conditions. Grown by Dr. S. Kaffka and G. Peterson, U.C. Davis. Sugar and impurity analyses by See Tests 893, 1093, 1493, 1693 & 2793 at Salinas. Note:

Spreckels Sugar, Woodland.

A52

EVALUATION OF SELECTED PROGENY LINES FOR PERFORMANCE UNDER VY CONDITIONS, DAVIS, CA., 1993 DAVIS 1993-2.

Impur.	Value	12816	13804	13997	14602	13710	13613	13451	13833	13329	15425	14098	13823				0.8NS
NH2-N	widd	009	546	571	533	592	548	527	561	562	643	618	574	572.9	69.4	10.4	2.0NS
Potassium	wdd	2378	2824	2843	3264	2766	2928	2918	2955	2774	3122	2781	2804				1.0NS
Sodium	widd	333	445	418	395	334	311	329	318	301	433	365	390	364.2	103.6	24.5	1.9NS
Known Sugar/Loss	<u>lbs/a</u>	455	969	757	747	616	589	568	620	569	671	589	571	620.6	119.0	16.5	4.1**
Recover. Sugar	0/0	87.2	84.0	84.2	83.8	85.5	85.3	86.1	85.3	85.9	82.9	85.3	84.5	85.0	2.5	2.5	1.8NS
Recover. Sugar	lbs/t	264	219	227	228	243	237	251	242	243	225	246	228	237.7	13.6	4.9	7.3**
Recover. Sugar	<u>lbs/a</u>	3099	3643	4012	3830	3687	3438	3511	3565	3453	3308	3414	3167	3510.5	425.7	10.5	3.1**
Variety		6770	R276Y	R270Y	R280Y	R280- 1	R280-13	R280-28	R280-35	R280-45	R280-56	R280-79	R280-80	Mean	ISD (.05)	C.V. (%)	F value

DAVIS 1993-3. EVALUATION OF TOPCROSS HYBRIDS OF SELECTED PROGENY LINES UNDER VY CONDITIONS, DAVIS, CA., 1993

O.ONS Clean 0.0 BYV/BWYV Inoc.: July 9, 1993 Beets 0.4 90.5 91.6 91.3 95.6 89.4 91.5 91.7 92.0 90.7 91.1 Harvested: November 3, 1993 **ু** Planted: May 28, 1993 3.1 1.7NS Sucrose 12.8 12.6 0.5 13.0 12.8 12.6 12.8 12.7 12.5 12.7 12.9 12.7 13.3 12.7 0/9 3.09** 8.42 1.40 14.37 12.69 14.88 tons 15.06 15.94 15.04 14.21 Beets 13.74 14.02 13.52 15.01 14.31 13.97 Acre Yield 4.3** 350.6 8.2 3665.6 Sugar a Sal 3630 3198 3609 3736 3479 3820 3429 4230 3833 3807 3667 3551 12 entries x 6 replications, RCB (equalized) Description 1911-12aa x 1865 1911-14aa x 1865 1911-50aa x 1865 1913-18aa x 1865 1913-22aa x 1865 0911-24aa x 1865 1911- 4aa x 1865 1913- 5aa x 1865 1913-25aa x 1865 0913-9aa x 1865 0915-4aa x 1865 0915-7aa x 1865 1-row plots, 28 ft. long 2865H43-12 2865H43-14 2865H43-50 2865H45- 5 2865H45-18 2865H43- 4 2865H45-22 2865H45-25 2865H46-24 2865H47-9 2865H48-4 2865H48-7 (SO.) QSJ C.V. (%) F value Variety Mean

as there were many missing plots. Tests were planted late due to wet field conditions. Recoverable sugar, sodium, potassium, and NH2-N values should be considered estimates Grown by Dr. S. Kaffka and G. Peterson, U.C. Davis. Sugar and impurity analyses by See Tests 793, 993, 1793 & 2993 at Salinas. Note:

Spreckels Sugar, Woodland.

DAVIS 1993-3. EVALUATION OF TOPCROSS HYBRIDS OF SELECTED PROGENY LINES UNDER VY CONDITIONS, DAVIS, CA., 1993

NH2-N Impar.	ppm Value		31 15231 50 13248	51 14781 53 14671 16 14116		76 14528 14394 37 15730 77 14940	672.4 14748.5 69.3 1348.5 8.9 7.9
Potassium NH2			2564 731 2258 650	2572 661 2647 653			2600.3 522.0 17.3
Sodium		577	536 407	593 529 523	483	611 506 593 518	531.3 88.6 14.4
Known Sugar/Loss	<u>10s/a</u>	633	629 559	600 701	670	551 618 671 665	635.5 85.5 11.6
Recover.	o/∘I	81.8	82.3	82.5	82.4	82.7 83.1 81.4 82.2	82.6 1.8 1.9
Recover.	lbs/t	204	213 220	210 221	210	209 213 207 206	211.2 10.8 4.4
Recover. Sugar	<u>lbs/a</u>	2846	2922 3072	3529	3136	2647 3049 2938 3071	3030.2 303.7 8.6
Variety		2865H43- 4 2865H43-12	2865H43-14 2865H43-50	2865H45- 5 2865H45-18	2865H45-25	2865H46-24 2865H47-9 2865H48-4 2865H48-7	Mean LSD (.05) C.V. (%)

VIRUS YELLOWS EVALUATION OF Y54 x B.m. GERMPLASM LINES, SALINAS, CA., 1993 TEST 1393.

oer 8, 1993 May 6, 1993	Virus <u>Yellows</u> <u>Mean</u>	0.0 0.0 0.1 0.4	4 4 .0 .0 .0 .0 .0 .1 .1 .1 .1	ວ ເນີດ ເນື່ອ ເກ	5.5 0.6 10.6 * 8.1**
이 성	RJAP	81.5 80.6 79.6 81.8	80.1 80.2 81.0 82.4	78.5 77.3 79.8 78.1	80.1 1.8 2.3 5.7**
Planted: March Harvested: Oct BYV/BWYV Inoc.:	Powdery Mildew Score	88.0 0.0.0	0.000	8.0	7.1 0.8 10.9 14.2**
Planted: Harvested: BYV/BWYV I	Beets/ 100' No.	140 141 144 135	131 130 135 129	135 138 131 129	134.8 9.6 7.1 2.1*
	Root Rot	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	1.8 0.5 3.3	1.3 2.2 163.0 3.9**
	Bolting <u>\$</u>	0000	0000	0.00	0.9 1.2 135.7 23.1**
	Sucrose	14.4 14.6 13.4 13.8	14.1 14.0 13.9 14.9	13.5 12.8 13.6 12.6	13.8 0.5 3.3 17.8**
ete blocks	Vield Beets Tons	34.18 33.71 33.98 31.72	35.96 36.05 34.81 32.08	34.40 33.86 31.60 32.72	4 33.76 0 3.15 9 9.37 9** 1.79NS
n incompl	Acre Yield Sugar Bee	9877 9841 9098 8767	10151 10080 9687 9518	9279 8631 8596 8248	9314.4 921.0 9.9 3.9
12 entries x 8 replications, RCB 1-row plots, 20 ft. long 2 sets with 4 entries and 8 entries in incomplete blocks	Variety ¹ Description ¹	Set 1 (1393-1) Hybrids R280H20 U87-309H3 x R080 Y954H20 U87-309H3 x Y854 R222R4H20 87-309H3 x RZM R122R3 Rhizoguard L893301	Set 2 (1393-2) Lines R022Y Inc. R922Y R122Y2 BYV R922Y R280Y (Iso) RZM-BYV-ER R080 Y954 Inc. Y854	R722 Inc. F ₂ (Y54 x B.m.) (C50) R122R3 RZM R022R2 R221 RZM R121 (C48) R222R4 RZM R122R3	Mean LSD (.05) C.V. (%) F value
12 1 1 2 2 5	Va	Sed Y25 R25 R25 R25 R25 R25 R25 R25 R25 R25 R	Set 2 R022 R1227 R2807 Y954	R722 R1221 R221 R2221	Mean LSD C.V. F val

yellows resistance selection were particular for factors for resistance to rhizomania and virus yellows, See Test 693 for performance under nondiseased conditions and Tests 2793-2 & R593 for performance under rhizomania conditions. Data from these tests suggested that rhizomania resistance selection and virus respectively. Notes:

¹See footnote 1 for Test 693.

VARIETY TRIALS, BRAWLEY, CALIFORNIA, 1992-93 USDA-ARS. Irrigated Desert Research Station

Tests were located on 104 beds (3 acres) on south side of block J. Rotation previously had not included sugarbeet. All fertilizer was applied pre-plant as 46:0:0 and 11:52:0 for a total of 142 units of N and 125 units of P_2O_5 . Rhizomania test B293 was located on 20 beds in block K. For many years a 3-year rotation included sugarbeet trials. Rhizomania was recognized in trials in 1989-90. Beets were not grown in 1990-91, but rhizomania trials were grown in 1991-92 and 1992-93. Rhizomania was severe in 1992-93. For block K, 129 units of N and 149 units of P_2O_5 were applied preplant.

		Summary:	Arrang	ement of 19	92-93 Te	ests	
	Entries		Rows				Sugar
Test	per	No.	per	Plot	Harv	Test	Samples/
No.	Test	Reps	Plot	Length	Date	Design	Plot
B193 ¹	4	6	1	14 ft	5/20	1	1
B293 ²	12	6	1	14	5.	2	2
B393 ³	16	4	1	10	3	3	3
B493	32	8	1	24	5/14	RCB	1
B593	32	8	1	24	5/17	RCB	2
B693	16	8	1	24	5/18	RCB	1
B793	8	8	1	24	5/18	RCB	1
B893	48	8	1	15	5/19	RCB	1
B993	24	8	1	15	5/20	RCB	1

Planted September 24, 1992. Watered 9/28/92 by sprinkler. After emergence, watered by furrow on 10/20/92, 11/13, 2/21, 3/9/93, 3/31, 4/21, & 5/4. Thinned 11/2/92. Poast (0.50 pt/A) for grass control. Thiodan (2 pts/A) and Lorsban (0.75 pts/A) for flea beetle control.

<u>Remarks</u> - Nitrogen status was moderately high. Tests were off water only 3 weeks at harvest, so still lush. Powdery mildew not controlled and moderate at harvest. Low incidence of <u>Empoasca</u> but high infestation of mites. No significant problems or incidence of other diseases or pests noted. Field was uniform and test results should be reliable.

<u>Acknowledgements</u> - Clifford Brown, IDRS, for managing these trials. Holly Sugar at Brawley for field plot harvesting equipment and running sugar samples.

¹Variety x Date of Planting Effects of Whitefly infestation: Split-plot design with planting (watering) dates of 9/11, 9/28, 10/9 and 10/23/92.

 $^{^2}$ Effects of Variety x Harvest Dates on Rhizomania: Split-plot design with harvest dates on 4/16/93, 5/12/93, and 7/1/93.

³Root Rot Test: Split-plot design with 3 disease treatments. Inoculated with <u>Phytophthora</u>, <u>Pythium aphanidermatum</u> and noninoc. control. Not harvested for yield. Scored for root rot 7/1/93. Root rot did not occur. (Test in cooperation with Dr. J. Gerik, Holly Sugar).

EFFECTS OF VARIETY x DATE OF PLANTING ON WHITEFLY INFESTATION, BRAWLEY, CA., 1992-93	10/22/92	NO3-N Mean	355 311 316 446	322 399 321 387	433 370 223 264 264 320 307 406 404 338 385
	Planted: 09/10/92, 09/24/92, 10/08/92, 10/22/92 Harvested: May 20, 1993	Clean Beets	93.8 95.1 92.1	93.0 93.0 93.0	922 93.6 96.1 96.1 97.2 97.1 97.1 97.1
		Beets/100' No.	140 139 148 143	125 139 137 168	124 133 112 141 134 135 179 169
		Bolters §	0.0	0.7 0.0 0.0	000000000000000000000000000000000000000
		Sucrose	12.12 12.54 12.60 11.38	12.46 12.18 12.23 11.77	11.73 12.16 13.36 12.96 11.30 12.73 12.43 12.43 12.58 11.89
	pplications, Split-plot ft. long (24 blocks)	Yield Beets Tons	30.87 29.01 27.27 23.82	29.34 29.33 28.73 23.57	25.07 33.38 30.12 28.78 24.22 34.74 28.32 30.02 25.08 31.02 27.38 31.44 20.90 24.35 23.24
		Acre Sugar Lbs	7474 7294 6885 5414	7339 7140 7031 5556	5707 8128 8040 7482 5470 8287 7165 7639 5744 7912 4734 5795 6144
TEST B193. EFFECT	4 entries x 6 replications, 1-row plots, 18 ft. long (2	Treatment	<u>Varieties</u> (2) HH 41 (4) SS-IV1 (3) 4823 (1) US H11	Planting Date (1) 09/10/92 (2) 09/24/92 (3) 10/08/92 (4) 10/22/92	PD × VAR × × × × × × × × × × × × × × × × × × ×

EFFECTS OF VARIETY X DATE OF PLANTING ON WHITEFLY INFESTATION, BRAWLEY, CA., 1992-93 (cont.) TEST B193.

		Treatment	Grand Mean	ISD (.05) - P	C.V. (%) - PD x V	F value - P	F value - V	F value - P
		1		D x Q	D x Q	Ω		D x d
Acre Yi	Sugar	Tps	6766.7		13.6		24.7**	1.3NS
ield	Beets	Tons	27.74		13.01	46.80**	16.60**	1.27NS
	Sucrose	o/ol	12.16		6.87	2.56NS	10.77**	0.86NS
	Bolters	%	0.2		466.8	2.1NS	2.4NS	1.5NS
	Beets/100'	No.	142.3		9.5	23.1**	2.1NS	1.9NS
Clean	Beets	o/o	93.18		3.28	0.70NS	6.11**	0.66NS
	NO3-N	Mean	357.1		38.9	1.8NS	4.6.4	1.1NS

Note: Strain B of whitefy does not vector LIYV but may cause direct feeding injury. Four dates of planting were used to monitor whitefly populations on sugarbeet and to see if planting date caused significant differences in whitefy populations. Whitefly data were inconclusive, but trial was kept to see if differences occurred for varieties x dates of planting. Trial was at south edge of Block J and appeared to have a very high N status.

TEST B293.^{1,2} EVALUATION OF DATE OF HARVEST x VARIETY ON PERFORMANCE UNDER RHIZOMANIA BRAWLEY, CA., 1992-93

September 24, 1992 : April 15, May 12, & July 1, 1993	Bolting §			0.0	0.0	0.0	c		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N-SON			119.7	107.1	180.0	7 202	213.8	187.6	116.6	34.9	53.1		89.2	62.3	177.8	72.5	206.8	109.8	70.1	29.5	151.8	114.8	110.9	165.7
	Clean Beets			90.4	86.9	84.9	0 78	88.4	87.2	89.2	85.6	86.0		91.3	89.2	91.3	91.5	90.2	89.1	84.8	88.0	88.9	87.9	86.5	85.0
	Beets/ 100' No.			156	148	153	161	150	159	145	152	148		152	158	152	145	158	171	146	151	151	138	155	146
3 harvest dates x 12 varieties x 6 reps (Split-plot) ³ Flanted: 1-row plots, 14 ft. long	Harvest Count No.			21	17	ω	17	18	17	14	12	12		21	21	22	18	21	24	15	14	20	15	18	18
	Stand Count No.			22	21	21	23	21	22	20	21	21		21	22	21	20	22	24	21	21	21	19	22	21
	Root Rot4			3.29	19.99	64.31	21 87	15.81	23.03	28.85	44.82	40.81		1.29	7.72	-2.90	9.87	3.98	-0.20	24.99	34.49	7.56	20.89	17.66	14.36
	Sucrose			13.83	12.27	7.39	12 21	13.16	11.85	13.38	8.84	7.56		12.24	13.21	15.19	14.50	13.78	14.10	10.44	12.34	13.02	•	13.05	11.62
	Yield Beets Tons	(9		11.92	10.00	6.27	12 98	11.37	10.64	9.33	6.22	5.86		96.6	8.74	13.01	11.05	16.14	12.62	7.06	9.21	11.35	9.84	10.52	12.02
	Acre Yield Sugar Be Libs To	(Varieties 1-6)		3350	2467	1316	3000	3077	2591	2495	1536	1343		2492	2336	4014	3219	4460	3581	1537	2250	2966	2494	2809	2746
		HYBRID SET (Val	Treatment	Harvest Date (1) 04/15/93		(3) 07/01/93	Varieties				(2) HH 41	(1) US H11	HD × VAR	1 x 1	1 x 2	1 × 3	1 × 4	1 x 5	1 × 6	2 x 1	2 × 2	2 x 3	2 x 4	2 X 5	2 x 6

TEST B293.1,2 EVALUATION OF DATE OF HARVEST x VARIETY ON PERFORMANCE UNDER RHIZOMANIA BRAWLEY, CA., 1992-93 (cont.)

TEST B293.^{1,2} EVALUATION OF DATE OF HARVEST x VARIETY ON PERFORMANCE UNDER RHIZOMANIA BRAWLEY, CA., 1992-93 (cont.)

Bolting 8				13.0	0.0	3.0	0.0	0.0	0.0	24.6	0.0	2.2	0.0	0.0	0.0	25.3	1.5	5.6	1.9	0.0	0.0	4.3	5.4	108.4	2.8NS	55.9**	2.2*
MO3-N				167.1	19.9	68.3	74.3	88.7	55.4	123.7	12.6	41.6	31.0	56.3	34.0	243.8	69.4	89.2	100.3	105.8	109.4				8.6**		
Clean Beets				8.68	88.9	81.9	92.8	93.6	92.4	88.8	85.2	81.6	84.9	86.5	87.8	90.3	89.1	87.7	91.0	91.8	8.06	88.6	4.0	4.0	3 16.11**	**06.6	3 1.76NS
Beets/ 100' No.				164	174	171	169	157	165	174	163	140	171	176	173	168	158	170	167	161	175	166.5	20.9	10.9	0.0NS	0.8NS	1.9NS
Harvest Count No.				25	24	22	22	23	25	25	20	19	24	24	21	19	12	13	16	12	15	20.1	4.4	19.2	45.6**	3.7**	1.3NS
Stand Count No.				23	24	24	24	22	23	24	23	20	24	25	24	24	22	24	23	23	25	23.3	2.9	10.9	O.ONS	0.8NS	1.9NS
Root Rot4				-9.49	1.09	6.92	8.42	-6.58	-9.98	-2.85	13.43	0.72	-0.91	4.97	9.00	20.17	47.44	46.60	30.92	48.77	38.53	13.73	19.47	123.31	105.80**	2.47*	1.23NS
Sucrose	(cont.)			13.89	15.51	14.21	14.68	14.65	15.59		•	13.08		•	13.58	•	13.11	•	12.36	•	•		.14	27	22.99**	78**	47NS
ets	ties 7-12)			29.99	10.68	13.97	23.00	19.77	21.20	31.24	10.95	13.56	20.48	22.37	17.68	29.37	10.85	14.99	23.29	15.66	19.42	19.36	5.92	26.58	0.13NS	30.67**	0.79NS
Acre Yield Sugar Be Lbs To	SET (Varie	$\hat{\cdot}$		8849	3410	4024	6973	6013	6770	8174	3288	3515	5737	6287	5137	2969	2857	3744	5693	3945	4919	5327.8	1580.0	25.8	2.9NS	27.1**	1.0NS
	OPEN-POLLINATED SET (Varieties 7-12)	Treatment (cont.)	HD × VAR		1 x 8	1 x 9	1 x 10		1 x 12				×	×	×	3 x 7	3 × 8	3 x 9	3 x 10	3 x 11	3 x 12	Grand Mean	LSD (.05)	C.V. (%) - HDXV	F value - HD	F value - V	F value - HDxV

EVALUATION OF DATE OF HARVEST x VARIETY ON PERFORMANCE UNDER RHIZOMANIA BRAWLEY, CA., 1992-93 TEST B293.5

Planted: September 24, 1992 Harvested: April 15, 1993	Known Sugar Loss lbs/acre	369 362	498	504	543		1210	341	459	854	748	731			35.0	
Septembe sd: April	Imp. <u>Value</u>	12619	13033	13278	15283		13893	12379	11730	13131	14668	12162	13150.0	4195.6	27.6 0.6NS	
Planted: Harveste	Recov. Sugar 1bs/ton	207	265	236	236		236	273	249	254	249	275	246.4	31.7	11.1	,
	Recov.	84.0	87.0	85.5	83.5		84.5	87.8	87.5	86.5	84.4	88.0	85.9	5.2	5.3 0.9NS	
	Recov. Sugar lbs/acre	2123	3516	3856	3038		7238	3069	3564	6119	5265	6039	4053.0	1633.3	34.8	
plot)	Amino <u>Nitrogen</u> <u>ppm</u>	136	262	205 236	199		424	186	183	197	288	245	224.8	109.5	42.1	
cions (Split-	Potassium ppm_	2894	2473	2581	2966	es 7-12)	2792	2792	2618	3418	3030	2728	2800.7	719.6	22.2 1.2NS	
x 6 replicat 14 ft. long	Sodium	<u>leties 1-6)</u> 1170 1501	1246	1094 1309	1707	TED (Varietie	825	1038	984	776	1246	862	1146.4	689.7	52.0 1.3NS	
12 varieties x 6 replications (Split-plot) 1-row plots, 14 ft. long	Variety	HYBRIDS (Varieties 1-6) US H11 1170 HH 41 1501	Rima	R1120guard R280H68	2915H68	OPEN-POLLINATED (Varieties 7-12)	R222R4	R228	R232	R239C8	R276Y	R280	Mean	ISD (.05)	C.V. (%) F value)

⁵Na, K and NH₂-N data were collected only for harvest date 1 (April 15, 1993) of test B293. See test B293 split-plot for remainder of data.

TEST B293. 1,2 EVALUATION OF DATE OF HARVEST x VARIETY ON PERFORMANCE UNDER RHIZOMANIA BRAWLEY, CA., 1992-93 (cont.)

Except for effects of rhizomania, performance in tests B293 and B793 (without rhizomania) should be similar. ¹Harvest Date 2 (May 12) closely corresponds to the harvest date of Test B793.

moderate with little bearding; most symptoms involved internal vascular discoloration and necrosis followed by root rot as soils warmed. R222R4 always showed the most vigorous growth. Cyst nematode were also ²Rhizomania infection was severe at top of field to moderate at bottom of field. Root symptoms were prevalent in this test. ³Two sets of 6 varieties were maintained together. These two sets would be 3 harvest dates x 6 replications split-plots. However, treatment means can be compared across these sets.

experimental error in making these counts and probably are primarily due to doubles counted as a single plant 4% rot was calculated from the difference between stand counts and harvest counts. Negative values reflect during stand counts.

placed under increasing stress, they ceased to grow and accumulate sugar. As the season progressed, more and more susceptible varieties also showed reduced yields and high levels of root rot. Only R222R4 with germplasm derived Conclusion: (Also see Test B692, p.63, 1992 Sugarbeet Research Report.) Test B293 was grown in same field plot area as Test B692. Consequently, effects of rhizomania were more severe in 1993 than in 1992. The results suggest that rhizomania can be devastating in the Imperial Valley. Effects of severe infestation showed in the root rot occurred. By July, highly susceptible varieties like US H11 had completely died (rotted). Moderately fall growth and resulted in lower yield in the early harvest period. As conditions warmed and the beets were from wild beet (Beta maritima) has near normal yields and resists high levels of root rot.

TEST B793. NON-DISEASED CHECK FOR RHIZOMANIA TEST B293 CORRESPONDING TO SECOND DATE OF HARVEST, BRAWLEY, CA., 1992-93

1-row plots, 27 ft. long (16 blocks) 8 entries x 8 replications, RCB

Planted: September 24, 1992 Harvested: May 18, 1993

	۲	Acre Y	ield				Clean	
Variety	Description ¹	Sugar	Beets	Sucrose	Bolters %	Beets/100'	Beets %	NO3-N Mean
US H11	1113401	7813	29.64	13.24	0.0	153	90.1	148
HH 41 Rima	L41138 SES	8907	30.58 29.76	14.59	0.0	150	92.7	110
Rhizoguard	Rhizoguard Holly L893301	8510	30.06	14.20	2.2	143	0.96	81
R280H68	1867Raa x R080	8573	31.14	13.73	4.1	143	93.7	109
2915H68	1867Raa x RZM 1913,1915	9654	34.06	14.17	2.5	147	93.2	79
R239C8	RZM R139C7	8589	32.45	13.24	25.9	148	94.4	103
R276Y	RZM-BYV-ER R076	8651	30.89	14.00	1.0	137	96.4	105
Mean		8688.2	31.07	14.00	4.7	146.3	93.9	100.3
ISD (.05)		1024.5	3.11	0.98	4.8	12.4	2.5	45.6
C.V. (%)		11.7	9.95	6.98	102.6	8.5	2.7	45.2
F value		2.0NS	1.91NS	2.69*	26.5**	1.3NS	4.6.4	2.4*

 1 1867R = Rz version of popn-767. R080 = C54Rz. 1913,1915 = MM,S^f,A:aa,Rz population. R139C7 = 2 additional cycles of selection from C39R5. R076 = Rz version of C31/6. R139C7 and R076 are open-pollinated lines.

EVALUATION OF EXPERIMENTAL HYBRIDS, BRAWLEY, CA., 1992-93 TEST B493.

23, 1992 1993	NO3-N Mean	83	67 91 94	77 81 89	73 97 56 185	84 102 45 49	71 73 66 66
September 2 May 14, 1	Clean Beets	96.4	96.1 94.4 95.3	95.5 95.6 95.0	94.9 94.9 92.2	94.5 95.4 93.2	95.2 95.0 94.7 95.9
Planted: Seg Harvested: N	Beets/100'	138 138	141 143 141	141 140 125	143 137 133 133	133 137 124 150	131 137 147 135
	Bolters 8	0.0	4.0	2.9	1.9 4.1 7.6 0.0	2.0	0.0 0.6 2.6 1.4
	Sucrose	14.36	14.02 13.83 14.49	15.01 14.35 14.91	14.79 13.98 15.52 11.74	14.76 13.96 14.81 15.48	14.76 13.67 15.07 14.55
	Acre Yield Far Beets	30.45	38.24 36.07 34.52	32.81 32.15 30.16	29.41 30.24 25.71 25.69	33.59 34.09 31.59 29.21	30.44 32.76 28.40 29.22
ized)	Acre Sugar Ibs	8733	10717 9958 9956	9772 9224 9014	8694 8453 7900 6068	9935 9480 9333 9031	8968 8921 8551 8531
32 entries x 8 replications, RCB (equalized) 1-row plots, 27 ft. long (16 blocks)	iety <u>Description¹</u>	<u>scks</u> 41 L41138 H11 L113401	mm CMS x MM R282H37 9807H0 x R176-43,-89 2915H39 C762-17CMS x RZM 1913,1915 R278H37 C306CMS x R078	3H18 790-68H26 x RZM 1913,1915 3H39 C762-17CMS x R078 3H18 790-68H26 x R176-43,-89	3109H37 x R076 3H18 790-68H26 x R076 3H18 790-68H26 x R078 3H18 790-68H26 x C603, C603-1	rum CMS x R80 R080H30 C790-15aa x R080 R280H37 9807H0 x R080 R280H33 C790-54aa x R080 R280H50 1855-24H0 x R080)H52 1852- 7HO x R080)H39 C762-17CMS x R080)H89 C790-68CMS x R080)H36 0833HO x R080
32 e 1-ro	Variety	Checks HH 41 US H11	mm CMS R282H37 2915H39 R278H37	2915H18 R278H39 R282H18	R276H23 R276H18 R278H18 N203H18	mm CMS R080H30 R280H37 R280H33 R280H50	R280H52 R280H39 R280H89 R280H36

EVALUATION OF EXPERIMENTAL HYBRIDS, BRAWLEY, CA, 1992-93 TEST B493.

(cont.)

:	Mean Mean		59	99	133	72	06	107	48		63	96	50	66	74	82.3	46.1	56.9	3.0**
Clean	Beets %		95.2	95.2	95.8	94.4	94.5	93.1	94.4		96.4	95.0	95.8	96.2	94.7	95.0	1.8	1.9	2.4**
	Beets/100/ No.		134	143	137	142	137	141	124		124	122	135	136	139	136.2	12.1	0.6	2.4**
	Bolters %		0.7	0.0	1.4	1.3	5.0	1.6	1.9		3.4	2.3	2.1	2.3	3.3	2.5	2.8	115.3	5.9**
	Sucrose		14.86	14.93	13.76	14.74	14.74	14.15	14.80		15.33	14.26	15.31	14.21	14.47	14.46	0.69	4.82	9.33**
Yield	Beets Tons		28.23	27.58	29.09	27.18	26.72	27.82	26.18		30.63	32.56	29.71	30.66	29.88	30.18	3.02	10.17	
Acre Yield	Sugar		8371	8242	8034	8007	7866	7857	7756		9384	9302	9105	8730	8654	8719.1	644.5	10.6	8.7**
	Description [±]	mm CMS x R80 (cont.)	1852-52HO x R080	309H3 x R080	546H3 x R080	1855-59HO x R080	790-68H26 x R080	0722HO x R080	C790- 6aa x R080	R80	1859Raa x R080	1864aa x R080	1890aa x R080	1867Raa x R080	1865aa x R080				
	Variety	mm CMS x]	R280H53	R280H20	R280H8	R280H51	R280H18	R280H22	R280H29	popn-aa x R80	R280H58	R280H64	R280H93	R280H68	R280H65	Mean	ISD (.05)	C.V. (%)	F value

populations -764, -C310, -767, and -790. R080, R076, R078, R176-43, R176-89 = Rz versions of C54, C31/6, C46/2, C31-43, C31-89. 1913,1915 = MM, S^{f} , A:aa, Rz populations. C603,C603-1 = cyst nematode resistant 1 790-68H26 = C309CMS x C790-68. 309H37 = C306CMS x C309. 9807H0 = reselection of C306CMS. 546H3 = C562CMS x C546. C309H3 = C562CMS x C309. 1859 = popn-C859. 1864,1865,1867,1890 = Rz versions of lines.

TEST B593. AREA 5 CODED VARIETY TRIAL, BRAWLEY, 1992-93

2992	N-EON	57 71 87	71 76 74 78	84 65 53	53 97 47 60	68 62 62
23, 1 1993		10 L W 4				
ember y 17,	Clean Beets	91.8 92.5 94.6 93.4	92.8 94.2 95.2	94.6 93.4 94.3 95.9	94.1 91.9 93.1 92.8	92.8 93.5 94.5
Sept.	7007					
Planted: September 23, 1992 Harvested: May 17, 1993	Beets/100'	150 144 150 143	137 151 151 149	130 149 150 142	150 135 144 153	152 147 139 141
д д	Bolters %	0.00	0.00	0.0	0.0	0.0
		11000				
	Sucrose	15.53 15.70 15.56 15.91	15.17 15.02 15.12 14.99	15.47 15.32 15.70 15.65	15.80 14.97 15.30 15.33	15.22 14.92 15.45
	eld Beets Tons	36.75 35.83 35.48	35.59 36.48 35.45 34.66	33.80 33.60 32.62 31.97	31.42 32.78 32.27 32.46	32.33 32.58 30.84 30.66
	Yie					
(equalized)	Acre Yield Sugar Beet Lbs To	11432 11237 11029 10800	10808 10947 10715 10567	10450 10298 10242 10007	9916 10039 9894 9956	9821 9704 9529 9538
	9	五五五	ed ed	F-H els	ed ed	ed ed els
32 entries x 8 replications, RCB 1-row plots, 27 ft. long	Source	USDA Hill M-H Hill M-H Hill M-H	Betaseed Spreckels Betaseed Holly	Holly Hill M-H Spreckels Holly	Holly Betaseed Spreckels Betaseed	Betaseed Betaseed Holly Spreckels
ication	1					2BG6069 2BG6066 90-1459-0189 H89299
repl	Variety	78H39 HM 3013 HM 3012 HM 3005	2BG6067 H92566 9BG6346 HH 51	93HX01 HM 3022 H90636 Rhizoguard	92HX2 2BG6068 SS-IV1 4823	2BG6069 2BG6066 90-1459- H89299
s x 8 ts, 27	Ve	R278H39 HM 30 HM 30 HM 30	2BG60 H9256 9BG63 HH 51	93E HM H90 Rhi	92HX2 2BG60 SS-IV 4823	2BG 2BG 90-
ntrie w plo	No.	A5-32 ¹ A5-01 -22 -28	-29 -26 -14	-10 -05 -20 -03	-18 -04 -08	-31 -21 -09
32 e 1-ro	Code No.	A5 A5				, , , ,

TEST B593. AREA 5 CODED VARIETY TRIAL, BRAWLEY, 1992-93

(cont.)

NO3-N	80 38 70 76	37 41 81 45	38 36 47 108	61.4 40.9 67.6 1.6NS
Clean Beets	92.6 93.9 94.5	93.8 91.2 95.1	93.3 92.7 93.0 91.7	93.6 2.2 2.4 2.1**
Beets/100'	131 148 156 153	146 143 73 146	149 163 155 153	144.4 9.5 6.7 18.8**
Bolters §	0000	m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	0.2 0.7 335.6 2.8**
Sucrose	15.05 15.74 14.97 14.35	15.62 15.37 14.57 15.55	16.05 15.31 15.99 14.22	15.33 0.58 3.81 4.50**
ield Beets Tons	32.01 29.80 31.46 33.30	29.45 30.39 32.51 29.41	28.29 29.28 28.20 28.66	32.32 2.82 8.85 5.76**
Acre Yield Sugar Beets Lbs Tons	9649 9363 9411 9544	9218 9336 9446 9151	9059 8964 9008 8167	9913.9 876.0 9.0 5.8**
Source	Betaseed Hill M-H Holly Holly	Betaseed Betaseed Betaseed Holly	Holly Holly Hill M-H USDA	
Variety	0BG6392 HM 3019 HH 41 HH 77	2BG6079 0BG6178 2BG6345 HH 66	90-1459-0110 HH 79 HM 3031 US H11	
Code No.	-02 -23 -15	-27 -30 -13 -25	-17 -19 -12	Mean LSD (.05) C.V. (%) F value

1code 32, R278H39 is a USDA filler. R278H39 = C762-17CMS x R078

²Beets/100' x 174 = beets/acre, or beets/100'x 430 = beets/h. Test mean would be 25,000 beets/acre or 62,000 beets/h.

TEST B593. AREA 5 CODED VARIETY TRIAL, BRAWLEY, 1992-93

(cont.)

Known Sugar Loss 1bs/acre	1294 1198 1151 1049	1190 1389 1206 1151	1185 1107 1063 1098	1014 1149 1006 1142	1090 1157 989 1027	1168 959 1030 1205
Imp. Value	11811 11097 10797 10258	11149 12684 11346 11064	11640 11007 10890 11372	10740 11736 10462 11767	11253 11884 0651 11211	12247 10678 10925 12101
Recov. Sugar lbs/ton	275 281 279 288	270 262 268 273	275 273 281 279	284 271 275 271	271 263 277 278	264 283 267 251
Recov.	88 89.4 89.6 90.3	88.9 87.3 88.7 89.1	88 89.2 89.6 89.0	89.7 88.5 89.7 88.5	88 88.0 89.6 89.2	87.7 89.8 88.8 87.3
Recov. Sugar 1bs/acre	10138 10040 9878 9751	9619 9558 9510 9416	9266 9192 9180 8909	8903 8890 8888 8815	8730 8547 8540 8511	8481 8404 8381 8339
Amino <u>Nitrogen</u> <u>ppm</u>	354 364 363 303	312 430 360 349	397 355 380 384	327 353 329 420	359 393 380 391	430 381 366 446
Potassium ppm	2950 2590 2546 2551	2858 2902 2648 2654	2695 2620 2510 2664	2652 2925 2502 2685	2729 2860 2449 2520	2808 2473 2544 2808
Sodium	307 332 281 286	296 384 374 318	323 311 287 304	287 307 310 304	292 287 263 342	326 251 310 242
Variety	R278H39 HM 3013 HM 3005	2BG6067 H92566 9BG6346 HH 51	93HX01 HM 3022 H90636 Rhizoguard	92HX2 2BG6068 SS-IV1 4823	2BG6069 2BG6066 90-1459-0189 H89299	OBG6392 HM 3019 HH 41 HH 77

TEST B593. AREA 5 CODED VARIETY TRIAL, BRAWLEY, 1992-93

(cont.)

Known	Sugar Loss lbs/acre	892 1026	1197	905	842	1000	1063	1065	1093.9			
Imp.	Value	10161	12216	10250	9854	11357	12553	12442	11277.2	1228.0	11.1	2.7**
Recov.	Sugar 1bs/ton	282	255	280	292	272	282	247	273.2	13.4	5.0	4.4*
Recov.	Sugar %	90.2	87.2	90.1	7.06	88.8	88.2	8.98				3.2**
Recov.	Sugar_ lbs/acre	8326	8249	8246	8217	7963	7945	7101	8820.1	824.2	9.5	5.4**
Amino	Nitrogen	293	404	342	342	436	524	417	377.3	79.4	21.4	2.7**
	Potassium ppm	2569	2937	2368	2308	2562	2610	2899	2657.9	256.4	8.6	3.4**
	Sodium	274 263	295	309	239	232	299	352	299.5	63.0	21.4	2.4**
	Variety	2BG6079 0BG6178	2BG6345	HH 66	90-1459-0110	HH 79	HM 3031	US H11	Mean	LSD (.05)	C.V. (%)	F value

Empoasca were light but a heavy infestation of mites occurred just prior to harvest. The beetle control. Powdery mildew was not controlled and incidence was moderate at harvest. R278H39 is USDA filler; R78 = Rz version of C46/2. Entry 13 had poor stands. Yield was test was off water for just three weeks prior to harvest and the beets were lush. Test adjusted for missing feet of row but because of extent of gaps, should be considered an estimate. Poast was applied post emergence. Thiodan and Lorsban were applied for flea appeared to be uniform and reliable. Footnote:

HYBRID EVALUATION OF SELECTED PROGENY FAMILLES FROM POPN-864 AND R80, BRAWLEY, CA., 1992-93 TEST B993.

24, 1992 1993	NO3-N Mean	160 248 77 99	68 178 77	128 77 184	155 157 161	125 149 168	235 203 256
September 2 May 20, 1	Clean Beets	95.0 94.4 94.0 91.0	93.7 94.0 93.5	94.6 94.6 94.8	93.4 93.9 95.4	95.0 94.7 93.7	94.5 94.9 94.7
Planted: Se Harvested:	Beets/100'	140 144 145	145 137 140	138 144 143	138 145 137	108 124 104	136 128 129
	Bolters %	0000	0.0	0.0	0.0	2.6 2.9	8.0 3.7
	Sucrose %	14.06 13.30 13.98 14.19	14.87 14.24 14.37	14.78 14.29 14.27	14.26 14.63 13.94	14.05 14.06 14.04	13.77 14.02 13.53
	Acre Yield ar Beets a Tons	34.02 33.48 30.37 26.29	31.29 32.16 31.15	30.34 30.42 30.23	29.69 27.29 28.51	33.85 33.35 33.44	32.58 31.74 32.91
	Acre Sugar Lbs	9545 8936 8553 7456	9312 9147 8974	8970 8715 8603	8476 7990 7945	9507 9400 9367	9000 8942 8895
24 entries x 8 replications, RCB 1-row plots, 18 ft. long (24 blocks)	Description 1	L41138 309H3 x R076 309H3 x R078 L113401	309H3 x R080–28 309H3 x R080–56 309H3 x R080–35	309H3 x R080–45 309H3 x R080 309H3 x R080–1	309H3 x R080–80 309H3 x R080–79 309H3 x R080–13	864- 5aa x R080 0864- 8aa x R080 0864-28aa x R080	1867Raa x R080 0864-14aa x R080 0864-34aa x R080
24 entries > 1-row plots,	Variety	<u>Checks</u> HH 41 R276H20 R278H20 US H11	R80 progenies R280-28H20 R280-56H20 R280-35H20	R280-45H20 R280H20 R280-1H20	R280-80H20 R280-79H20 R280-13H20	864 progenies R280H62- 5 R280H62- 8 R280H62-28	R280H68 R280H62-14 R280H62-34

TEST B993. HYBRID EVALUATION OF SELECTED PROGENY FAMILIES FROM POPN-864 AND R80, BRAWLEY, CA., 1992-93

(cont.)

Clean	Wean Wean		94.8 205		93.9 237		94.1	1.8 121.2	1.9	440 0
	Beets/100'	124	120	123	129	104	131.9	14.7	11.3	*O U
	Bolters %	8.7	2.8	2.4	2.2	9.0	2.4	3.2	136.7	770 /
	Sucrose %	13.75	13.36	14.00	12.88	13.81		0.94		
Vield	Beets	32.28	33.13	31.64	32.50	29.47		3.34		
Acre	Sugar Beets Lbs Tons	8893	8861	8823	8386	8169	8785.9	1188.4	13.7	
٢	Description ¹	s (cont.) 0864- laa x R080	0864-40aa x R080	0864-19aa x R080	1864aa x R080	0864-25aa x R080				
	Variety	864 progenies (cont.) R280H62- 1 0864- 1	R280H62-40	R280H62-19	R280H64	R280H62-25	Mean	LSD (.05)	C.V. (%)	7

0864-#'s = half-sib families selected from popn-864 on basis of per se performance under diseased and nondiseased conditions. R080 = C54Rz. R080-#'s = half-sib families selected from R80 on the basis of per se performance under nondiseased, virus yellows, and rhizomania condtions. R076 = $1_{309H3} = C562CMS \times C309$. 1864 = early version of popn-867. 1867R = Rz version of popn-767. C31/6Rz. R078 = C46/2Rz.

TEST B893-11. HYBRID EVALUATION OF SELECTED PROGENY FAMILIES FROM POPNS-909, -911, -913, -915 BRAWLEY, CA., 1992-93

24, 1992 1993		NO3-N	Mean	133	86	108	91	29	104	117	107	104	130	46	95	80	77	77	104	0.96	61.9	65.1	1.1NS
September 24 May 19, 19	Clean	Beets	%	94.1	94.8	92.8	92.8	93.9	92.8	94.6	93.4	93.1	98.6	92.2	95.0	95.8	93.6	95.6		93.1			
Planted: Sep Harvested: M		Beets/100'	No.	140	146	141	146	140	144	136	128	140	144	151	145	141	145	143	142	142.1	11.8	8.4	1.5NS
		Bolters	% ।	0.0	0.5	0.0	0.0	0.5	0.5	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	1.0	445.9	2.2**
		Sucrose	o/0	14.24	14.32	14.08	14.90	14.32	14.71	14.61	14.11	14.03	13.89	14.64	13.36	14.64	15.08	14.60		14.36			
	Yield	Beets	Tons	30.69	32.28	34.38	27.41	30.89	29.38	33.70	30.11	31.03	29.38	29.87	26.58	29.70	31.00	31.11		30.30			
lized)	Acre 1	Sugar	I.bs	8677	9225	9653	8170	8854	8667	9849	8486	8672	8151	8747	7143	8706	9352	9094	7803	8703.0	730.6	12.0	3.4**
16 entries x 8 replications, RCB (equal 1-row plots, 18 ft. long (24 blocks)		Description ²		309H3 x RZM 1913,1915	309H3 x 8909A-34		309H3 x RZM 1911-4	309H3 x RZM 1911-12	309H3 x RZM 1911-14	309H3 x RZM 1911-50	309H3 x RZM 1913-5	309H3 x RZM 1913-18	309H3 x RZM 1913-22	309H3 x RZM 1913-25	309H3 x 0911-24	309H3 x 0913-9	309H3 x 0915-4	309H3 x 0915-7	309H3 x 0915-46				
16 entries x 1-row plots,		Variety		2915H20	0909-34H20	0909-37H20	2911-4H20	2911-12H20	2911-14H20	2911-50H20	2913-5H20	2913-18H20	2913-22H20	2913-25H20	2911-24H20	2913-9H20	2915-4H20	2915-7H20	2915-46H20	Mean	LSD (.05)	C.V. (%)	F value

94.8 70.0 75.0 0.9NS ¹TEST B893. HYBRID EVALUATION OF SELECTED PROGENY FAMILIES FROM MM, S^{f} , A:aa, Rz POPNS. 48 entries x 8 replications, Incomplete blocks with 3 subsets each with 16 varieties x 8 reps, RCB. 30.18 3.08 10.38 2.57** Thus, means across tests B893-1,-2,-3 can be compared.

2.5

9.5

2.7**

7.21 1.22NS 1.02 14.38

12.4

LSD (.05) C.V. (%) F value

Mean

8674.5 1053.9

93.2

137.3 12.8

0.4 286.6

HYBRID EVALUATION OF SELECTED PROGENY FAMILIES FROM POPNS-911, -912, -913 BRAWLEY, CA., 1992-93 TEST B893-2.

September 24, 1992

Harvested: May 19, 1993 Planted: 16 entries x 8 replications, RCB (equalized) 1-row plots, 18 ft. long (24 blocks)

Variety	Description ³	i le	Yield Beets	Sucrose	Bolters	Beets/100'		NO3-N
				%	%	No.	৩\৭।	Mean
US H11	L113401			14.31	0.0	140		149
2915H65	1865aa x RZM 1913,1915			14.41	1.0	139		145
2865H13	1913aa x 1865,1865-#			14.06	0.0	135		122
2865H43-4	1911-4aa x 1865,1865-#			14.26	0.0	128		78
2865H43-12	1911–12aa x 1865,1865–#	8243		13.68	0.0	130		136
2865H43-14	1911-14aa x " "	8999		14.70	2.0	138		94
2865H43-50	1911-50aa x " "	9183	31.26	14.68	3.6	137	94.0	74
2865H44- 3	1912- 3aa x " "	8519		14.57	0.5	128		56
2865H44-11	1912-11aa x " "	8399	29.41	14.26	0.7	115	93.7	65
2865H45- 5	1913- 5aa x " "	8860	31.22	14.21	0.0	131	93.1	88
2865H45-18	1913-18aa x " "	8960	30.24	14.83	2.1	134	93.6	63
2865H45-22	1913-22aa x " "	8391	29.20	14.36	0.5	135	92.0	06
2865H45-25	1913-25aa x " "	8840	30.91	14.33	0.0	134	93.1	87
2865H46- 1	0911- laa x " "	8913	32.47	13.75	0.0	141	93.6	108
2865H46-4B	0911-4(B)aa x "	8247	28.93	14.25	0.5	136	93.7	116
2865H46-24	0911-24aa x " "	8332	29.14	14.30	1.1	140	92.8	104
			(**************************************	1	()	(L
		8623.6	30.16	14.31	٥٠.	133.8	93.1	78.D
LSD (.05)		896.2	2.86	0.88	1.5	12.4	1.7	62.9
C.V. (%)		10.5	9.58	6.19	197.3	9.4	1.9	9.79
F value		2.2*	2.49**	0.97NS	3.9**	2.1NS	1.8NS	1.5NS

means line was reselected for resistance to rhizomania using mother roots. aa = genetic male sterile Selected progeny lines increased in greenhouse isolation chambers and crossed to C309H3 tester. RZM Progeny families 8909-#'s thru 0915-#'s from early cycles of progeny tests. 2 309H3 = C562CMS x C309. plants used as females.

1911-#'s thru 1913-#'s = selected half-sib progeny families from popns-911,-912, and -913.

 3 1865,1865-# = Rz version of popn-C310 (-755), but with a large component of line C309.

TEST B893-3. HYBRID EVALUATION OF SELECTED PROGENY FAMILIES FROM POPNS-913,-915 BRAWLEY, CA., 1992-93

, 1992 93	NO3-N Mean	110 108 72 109	86 83 137 80	110 75 78 83	70 85 70 83	89.9 69.9 78.5 0.6NS
September 24, 1992 : May 19, 1993	Clean Beets	94.3 93.7 93.7	93.4 94.1 93.2	93.0 94.4 91.5 94.1	93.5 93.6 95.1 91.8	93.5 2.6 2.8 1.1NS
Planted: September Harvested: May 19,	Beets/100'	144 142 138 132	139 140 137 129	135 138 138	129 138 141 122	136.0 14.0 10.4 1.3NS
	Bolters %	0.000	0.5	0.000	0000	0.3 1.1 350.1 0.7NS
	Sucrose	14.26 13.77 14.54 14.24	14.32 14.95 13.75 14.91	14.52 14.88 15.23 13.65	14.82 14.37 14.93 14.18	14.46 0.87 6.11 2.32**
	field Beets Tons	31.26 32.05 30.80 28.58	29.91 29.74 31.06 26.36	28.81 30.88 30.08 31.95	29.92 30.07 32.39 27.51	30.09 3.17 10.64 2.12*
zed)	Acre Yield Sugar Bee	8915 8820 8945 8129	8581 8886 8523 7826	8451 9173 9170 8784	8873 8633 9662 7782	8697.0 1073.2 12.5 1.6NS
16 entries x 8 replications, RCB (equalized) 1-row plots, 18 ft. long (24 blocks)	Description 4	L41138 1865aa x RZM 1913,1915 1915aa x 1865,1865-# 0913-6aa x 1865,1865-#	0913-9aa x 1865,1865-# 0915-1aa x " " 0915-4aa x " "	0915- 7aa x 1865,1865-# 0915-16aa x " " 0915-22aa x " " " 0915-23aa x " "	0915-24aa x 1865,1865-# 0915-27aa x " " " 0915-34aa x " " "	
16 entries 1-row plots	Variety	HH 41 2915H65 2865H15 2865H47-6	2865H47-9 2865H48-1 2865H48-4 2865H48-6	2865H48- 7 2865H48-16 2865H48-22 2865H48-23	2865H48-24 2865H48-27 2865H48-34 2865H48-46	Mean LSD (.05) C.V. (%) F value

40913-#'s thru 0915-#'s = selected half-sib progeny families from popns-913,-915.

TEST B693. EVALUATION OF POPULATION HYBRIDS, BRAWLEY, CA, 1992-93

16 entries x 8 replications, RCB (equalized) 1-row plots, 27 ft. long (16 blocks)

Planted: September 24, 1992 Harvested: May 18, 1993

Varietv	Description 1	Acre Vield	ield Roots	90000	Roltera	Boots/100/	Clean	NO3-N
Checks		Tpe	Tons	%I %I	 	No.	} ∾	Mean
HH 41 US H11	L41139 L113401	9673	33.84	14.29	0.0	149	93.7	80
CMS x popn-913,-915	1-913,-915 7767-17048 × RZM 1913 1915	1 7 7 8	98 LE	41	C	143	91.2	22
2915H18	790-68H26 x RZM 1913,1915	10460	34.42	15.23	2.3	148	93.6	56
2915H26	C309CMS x RZM 1913, 1915	9110	29.58	15.39	4.4	153	92.7	49
2915H20	309H3 x RZM 1913,1915	9013	31.14	14.50	0.0	149	94.8	69
popn-aa x	popn-aa x popn-913,-915	05/1	30 05	11 52	9		94.3	σα
2915H58	1859Raa x RZM 1913,1915	9460	32.36	14.55	0.3	148	95.2	67
2915H68	1867Raa x RZM 1913,1915	9173	32.27	14.24	2.5	150	94.1	78
2915H90	0790aa x RZM 1913,1915	8706	30.53	14.20	9.0	151	93.6	86
2	ומז					1	(C
2890H15	×	9587	32.60	14.70	4.0	144	93.0 0.10	7,3
286/HI5	×:	9524	33.96	14.05	ء ن ن د	141 146	94.7	133 00
2859H15	1915aa X 1865,1865-# 1915aa Y 1859 1859B	9148 8733	31.84 31.36	14.37	7 C	139	94.2	C & C
N203H15	< ×	6955	31.63	11.03	1.3	143	94.1	209
Mean		9169.7	32.28	14.20	1.3	146.4	93.7	91.4
LSD (.05)		7.997	3.64	0.70	1.8	8.7	1.9	48.3
C.V. (%)		11.9	11.40	5.01	138.3	0.9	2.0	53.4
F value		5.7**	2.57*	15.48**	6.7**	1.9NS	2.5**	5.1**
1790–68H26 1859R = E	$^{1790-68H26} = \text{C309GMS} \times \text{C790-68}. 309H3 = 1859R = \text{popn-C859}.$	S	0	1913,1915 = = Rz versi	= MM,S ^f ,A:	1913,1915 = MM, s^f ,A:aa,Rz population. = Rz versions of popns-767, -C310, -C790.	ion. ', -C790.	

TEST R793. RHIZOMANIA YIEID TEST OF HYBRIDS WITH RESISTANCE TO RHIZOMANIA (IIRB RHIZOMANIA TEST), SALINAS, CA., 1993

16 entries 1-row plots	16 entries x 8 replications, RCB (equalized) 1-row plots, 18 ft. (5.5 M) long, 71 cm wide	nlized) m wide				Planted: J Harvested:	sd: June Sted: Nove	June 10, 1993 November 18,	, 1993
Varietv	Description	Acre Yield Sugar Bee	ield Beets	Sucrose	Bolters	Beets/ 100'	Powdery Mildew	RJAP	CLS
		Ibs	Tons	o/ol	o/ol	NO.	10/06	%	Score
Test R793-1 Rizor	TTRR	4677	14.80	15,8	0.0	202	7.5	76.0	2,5
R039C5	Inc. R939C5	4458	15.05	14.8	9.0	243	2.6	75.9	1.5
C48 (KWS)	IIRB	4437	15.46	14.3	0.0	169	5.0	75.9	3.0
Stratos	IIRB	3746	12.92	14.4	0.0	238	4.1	75.7	ى 0.0
Monodoro	IIRB	3475	12.46	13.9	0.0	211	4.6	76.4	1.6
Roxane	IIRB	2289	9.25	12.2	0.0	150	4.3	73.5	3.4
Accord	IIRB	2069	8.85	11.6	0.0	158	2.8	71.6	4.3
US H11	L113401 (April 1993)	1720	7.27	11.7	0.0	215	ວ•2	72.6	5.6
Test R793-2									
R222R4H20		4721	17.29	13.6	0.0	251	8.3	74.7	1.6
2915H18	68HZ6	3763	13.06	14.4	0.0	250	ວ•ນ	75.0	2.9
R280H68	1867Raa x R080	3628		14.0	0.0	254		77.1	2.8
R282H18	88-790-68H26 xR176-43,-89	3551	12.51	14.2	0.0	229	4.8	76.0	3.1
R280H18	88-790-68H26 x R080	3417	11.56	14.8	0.0	257	5.0	0.97	3.9
R278H18	88-790-68H26 x R078	3370	11.28	14.9	0.0	220	4.8	77.6	4.4
Rhizoguard	L893301	3094	11.02	14.1	0.0	224	5.6	7.77	2.5
6770	% S check	1681	6.02	13.9	0.0	188	4.5	74.1	4.6
Mean		3381.0	11.99	13.9	0.0	216.3	4.9	75.4	3.2
ISD (.05)		574.0	1.94	9.0	0.3	29.5	1.2	2.5	0.8
C.V. (%) F value		17.2	16.36	4.2	747.2	13.7	25.4 t 10.4**	% °°°° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	27.0

RHIZOMANIA VIELD TEST OF HYBRIDS WITH RESISTANCE TO RHIZOMANIA (IIRB RHIZOMANIA TEST), SALINAS, CA., 1993 TEST R793.

(cont.)

	CLS	Score
	RJAP	o\0
Powdery	Mildew	Mean
Beets/	100,	No.
	Bolters	% I
	Sucrose	% I
cre Yield	Beets	Tons
Acre	Sugar	I.bs
	Description	
	Variety	

NOTES: Test R793 was planted in a field plot area with moderate to severe rhizomania about 8 kilometers from the location of tests 2293 and 2693. Unlike tests 2293 and 2693, the plots were hand harvested and weighed in the tare laboratory after being trimmed and washed. Powdery mildew was not controlled in this test, but was not severe. Natural infection with Cercospora leaf nematodes were evident at harvest. The development of rhizomania symptoms was very good. This should be spot (CLS) occurred late. Except for the most susceptible entries, CLS probably did not affect yield. a good test of differentiate reaction and performance under rhizomania conditions.

In the USDA entries, a hybrid of R222R4 was grown rather than R222R4 per se. 2915, R078, R176-43,-89, R080, and 1867R are breeding lines under development at Salinas with the Rz (Holly) source of resistance

Powdery mildew was scored on 10/06/93 on a scale of 0 to 9, where 9 is most severe. Cercospora leaf spot was scored on a scale of 0 to 9, where 9 would represent 90-100% defoliation of mature leaves. To convert pounds sugar per acre to kg/ha, multiply by 1.12. For tons roots per acre to tonnes/h, multiply by 2.24. % S = pol. RJAP = raw juice apparent purity = (total soluble solids x 100)/%S. To convert beets/100 ft. to beets per acre, multiply by 233. To convert beets/100 ft. to beets per hectare, multiply by

Irrigation frequency was regulated to promote severe rhizomania and prevent loss of highly diseased plants. Test was grown under sprinkler irrigation.

TEST 2293. NON-RHIZOMANIA YIELD TEST OF HYBRIDS WITH RESISTANCE TO RHIZOMANIA (IIRB RHIZOMANIA TEST), SALINAS, CA., 1993

TEST 2293. NON-RHIZOMANIA YIELD TEST OF HYBRIDS WITH RESISTANCE TO RHIZOMANIA (IIRB RHIZOMANIA TEST), SALINAS, CA., 1993

	RJAP	0/0
Powdery	Mildew	Mean
Beets/	100,	No.
Root	Rot	0/0
	Bolters	o/0
	Sucrose	%
Yield	Beets	Tons
Acre	Sugar	Ibs
	Description	
	Variety	

plot area for this non-rhizomania test had not been in sugarbeet for more than 20 years and rhizomania and NOTES: Test was planted in field plot area about 500 meters from rhizomania plot area (see test 2693). nematodes were not evident at harvest.

25 and September 1. This test was also near the virus yellows inoculated trials and after August 1, gradually mildew-Erwinia root rot tests. Although powdery mildew control was attempted by two applications of Bayleton, infection pressure was very high and mildew occurred from about August 1, on. Powdery mildew was scored on a scale of 0 to 9 where 9 = 90 to 100% of the mature leaf area covered by mildew. Ratings were made on August The root rot in this test was caused by Erwinia carotovora betavasculorum and spread from adjacent powdery many plants became naturally infected with virus yellows (BYV/BWYV). Earlier aphids were controlled with Metasystox-R and Lorsban.

In the IIRB set of entries, US H11 was added as a highly rhizomania susceptible check and C39R (R039C5) as a susceptible, high %S entry and "Rhizoguard" as a moderately resistant hybrid. R276Y, R280Y, R080, and R078 susceptible F1CMS hybrid. R222R4 is the fourth cycle synthetic from a population that is 50% Beta maritima $R\bar{2}$ 32 is an F_2 line between C37 sugarbeet and a rhizomania resistant, half-wild beet accession moderately resistant line with quantitative resistance. In the set of USDA entries, 6770 was used as a are breeding lines developed at Salinas with the \underline{Rz} (Holly) source of resistance. 88-790-68H26 is a germplasm.

acre, multiply by 233. To convert to beets per hectare, multiply by 575. To convert pounds/acre sugar yield To convert beets/100 ft. to beets per to kg/h, multiply by 1.12. For tons roots/acre to tonnes/h, multiply by 2.24 RJAP = raw juice apparent purity = (total soluble solids x 100)/%S.

See tests 2693 and R793 for results under rhizomania conditions.

RHIZOMANIA YIELD TEST OF HYBRIDS WITH RESISTANCE TO RHIZOMANIA, (IIRB RHIZOMANIA TEST), SALINAS, CA., 1993 TEST 2693.

. 5, 1993	Powdery	Mean	9.0	1.4	1.2	2.6	3.5	6.3	2.4	3,3	1.4	42.3	12.7**
Planted: May 17, 1993 Harvested: November 5,	מאדם	Z %1	82.3	82.5	82.9	82.6	80.1	79.9	78.0	81.5	2.3	2.8	5.8**
Planted: Harvested:	Beets/	No.	178	175	181	173	153	205	159	175.4	10.2	8	19.1**
		₩ % %	17.1	16.0	15.7	14.8	13.5	12.3	12.6	14.7	0.5	3.7	79.8**
	ield	Tons	22.80	20.44	19.30	18.48	15.70	15.30	12.73	18.28	3.27	17.81	8.97**
RCB long, 71 cm wide	Acre Yield	Tibs	7764	6504	6045	5452	4205	3772	3187	5448.3	1051.3	19.2	18.5**
replications, RCB 20 ft. (6.1M) long,		Description	IIRB	IIRB	Inc. R939C5	IIRB	IIRB	L113401	IIRB				
8 entries x 8 replications, 2 row plots, 20 ft. (6.1M)	110	Variety	Rizor C48 (KWS)	Stratos	R039C5	Monodoro	Roxane	US H11	Accord	Mean	LSD (.05)	C.V. (%)	F value

See test 2293-1 for same IIRB Also see test R793 for the IIRB entries tested under NOTES: US H11 is a highly rhizomania susceptible hybrid. R039C5 (=C39R) is a multigerm breeding line with quantitative resistance developed at Salinas. rhizomania conditions in a different location. entries under non-rhizomania conditions.

To convert pounds/acre sugar yield to kg/h, multiply by 1.12. For tons roots/acre to tonnes/h, To convert beets/100 multiply by 2.24. %S = pol. RJAP = raw juice apparent purity = (total soluble solids x 100)/%S. To convert beets/100 ft. to beets per acre, multiply by 233. ft. to beets per hectare, multiply by 575.

mature leaf area covered by mildew. Through most of the growing season, PM was controlled with Powdery mildew was scored on 10/20 and 10/28, on a scale of 0 to 9, where 9 = 90-100% of the Bayleton.

TEST R593. RHIZOMANIA EVALUATION OF LINES, SALINAS, CA., 1993

l6 entries L-row plot	16 entries x 8 replications, RCB (equalized) 1-row plots, 18 ft. long	ed)	ر او ا		Planted: Harveste	J. d: ets/	June 10, 1993 November 22,	1993
Variety	Description	Sugar	Beets	Sucrose	Bolters 2	100' No.	Mildew 10/22	RJAP %
<u>Checks</u> Rizor Rhizosen US H11	RZ3/1022 IA93304 (9/11/92) L113401 (April 1993)	4038 3341 1461	12.74 11.77 6.14	15.8 14.2 12.0	000	278 215 193	4.6	76.1 78.1 70.8
R39 Synthetics R139C7 C7 R039C5 C5 R239C8 C8 Y439 C0	cics C7, RZM R039C6 C5, Inc. R939C5 C8, RZM R139C7 C0, Inc. Y339	4702 4564 4528 2625	15.75 15.36 14.88 8.75	14.9 14.9 15.2 15.0	0.000.000.00000000000000000000000000000	250 226 272 238	6 4 6 4	76.4 76.2 78.1 76.6
R47 Synthetics R247C8 C8 R147C7 C7	cs, RZM R147C7 C7, RZM R047C6	3876 3871	13.00	14.9	0.0	277	5.0	77.5
Near-isogenic R276–89 R Y231–89 Ir	nic RZM R176–89(C) Inc.Y131–89	3980 2114	13.52	14.7	0.0	242	2.5	76.8
R22 Synthetics R122R3 C3 R222R4 C4 R280 RZ R722 C0	C3, RZM R022R2 C4, RZM R122R3 RZM R080, (Y54RZ) C0, Inc. F ₂ (Y54 x B.m.) Inc. Y854	5662 5642 3904 2715 2168	20.42 20.45 12.90 10.24 7.81	13.9 13.8 15.1 13.3	00000	235 235 274 215 211	2.7 8.7 8.0 1.0	76.5 75.5 77.3 73.4 75.4
Mean LSD (.05) C.V. (%) F value		3699.4 530.3 14.5 41.8**	12.76 1.90 15.01 37.80**	14.4 0.5 3.4 28.7**	0.4 1.1 280.1 4.7**	239.9 29.1 12.3 6.8**	4.5 1.2 26.4 18.3**	76.1 2.2 2.9 5.8**

NOTES: See test R693.

TEST R693. RHIZOMANIA EVALUATION OF LINES, SALINAS, CA., 1993

	16 entries 1-row plot	16 entries x 8 replications, RCB (equalized) 1-row plots, 18 ft. long	d)			Planted: Harvesteo	ced: June ested: No	Planted: June 10, 1993 Harvested: November 19,	1993
	Variety1	Description	Acre Yield Sugar Bee	ield Beets	Sucrose	Bolters	Beets/ 100'	Powdery Mildew	RJAP
			90 11	Tons	o/VI	o⁄∕•I	o N	10/22	0/0
	R222R4	RZM R122R3	5846	21.59	13.6	0.0	227	8.4	77.2
	R139C7	RZM R039C6 (C39R7)	4732	16.01	14.8	1.6	206	3.8	78.4
	Z230	RZM Z120,2,4aa x 1913,1915	4275	14.62	14.6	0.0	225	5.4	78.6
	R230	RZM R130	4104	14.78	13.9	0.0	245	4.5	78.3
	R278	RZM R078, (C46/2RZ)	3961	12.97	15.3	0.0	248	3.9	79.8
	2915	RZM 1913-#, 1915-#aa x A	3956	13.81	14.3	0.0	222	3.9	78.0
	N203H15	1915aa x N103-1,N103	3413	14.29	11.9	0.0	208	8.0	75.2
0.1	N244	NR-RZM N144-1-#(C)	3393	14.60	11.6	0.0	206	9.9	77.0
	2916	1905aa x 1913-#, 1915-#	3327	12.51	13.3	0.0	217	4.8	75.3
	R232	RZM 1201-#(C)	3068	11.66	13.2	0.0	218	5.3	77.2
	R279	RZM R079, (C37Rz)	2614	9.00	14.5	0.0	233	4.1	76.8
	P201	FMR 1211,,1216	2438	8.70	14.0	2.4	195	4.5	76.2
	R228	RZM 1202-#(C)	2364	8.19	14.4	0.0	239	0.9	78.2
	U86-46/2	Inc. C46/2 (86342)	1970	7.33	13.4	0.0	216	4.6	76.0
	U86-37	Inc. C37 (86443)	1728	6.44	13.4	0.0	182	5.4	75.7
	US H11	L113401 (April 1993)	1661	6.79	12.3	0.0	192	5.1	76.0
	Mean		3303.1	12.08	13.6	0.2	217.4	5.3	77.1
	LSD (.05)		572.2	2.02	0.7	1.0	27.5	1.1	2.0
	C.V. (%)		32.1**	16.8/ 32.57**	5.4	400.3	3.7**	21.2 * 12.5**	٧. د
	, , ,								

TEST R693. RHIZOMANIA EVALUATION OF LINES, SALINAS, CA., 1993

(cont.)

	RJAP	0/9
Powdery	Mildew	10/22
Beets/	100,	No.
	Bolters	o\o
	Sucrose	%
Acre Yield	Beets	Tons
Acre	Sugar	Tips
1, 40 1, 10 1	variety- Description	

Cercospora infection occurred late but caused little damage. Test was grown in Field C under moderate to severe rhizomania conditions. Powdery mildew was not con-Cyst nematodes were evident at harvest. trolled.

¹R230 combines resistance from Rz and C28 (PI206407) in a C37 background. R228 = C28 backgrossed to C37. P201 = WB97 & 242 in a C37 background. R232 = Italian wild beet (weed beet) source crossed to C37. N244 = F_3BC_1 nematode resistant line. N203H15 = F_1BC_1 cyst nematode resistant hybrid between rhizomania resistant (Rz) popn-915 and C306, C603-1. R222R4 = 4th cycle selection synthetic from population that is 50% Beta maritima. 2916 = new composite population. Z230 = population that is 25% high sugar Polish germplasm.

TEST 2793-1,2,3,4. RHIZOMANIA EVALUATION OF LINES, SALINAS, CA., 1993^{1,8}

Planted: May 13, 1993 Harvested: November 8-9, 1993 Root: Reets/ Powdery	100'		0.4 181 4.4	0.0 185 2.3	0.0 0.0 196 0.3 81.6	0.7 176 0.1 82	0.3 179 0.2	0.0 0.3 196 0.1 83.0	188 3.4	0.0 0.0 186 3.4 81.1	177	0.0 195 0.8 81	0.0 0.0 171 0.0 81.8	0.0 0.0 183 1.6 78.9	0.4 183 1.1	0.0 179 0.9	0.0 0.0 178 2.1 82.1	0.1 183.2 1.6 81.4	21.2 1.5	11.7 95.2 3.	NS 8.4**	8 replications,	sts 2/91-1,-2,-3,-4 can be compared.	0.5 21.6 1.6	12 3 94 1
	Sucrose	۱۵ <u>د</u>	14.7	16.5	14.7		15.1		14.3	14.4			14.9	13.9	15.2	14.2	14.4	14.7			NS 12.3**	entries	s across Tests 14.5		4.9
Ame Vield	Sugar Beets				4943 16.84			6216 20.56	5029 17.79	5378 18.73			5008 16.93	5012 17.83	5568 18.43		5521 19.18	538.2 18.91	1056.7 3.46	.3 1	2.7** 1.30NS	01	KCB. Inus means 5533 5 19 21		
64 entries x 8 replications, RCB 1-row plots, 20 ft. long	Variety ² Description ² Si	793-1.	(9/11/92)	RZ3/1022	Y439 CO, Inc. Y339 45	25 C5, Inc. R939C5	C7, RZM R039C6	RZM R139C7	R147C7 C7, RZM R047C6 50	RZM R147C7	R270Y RZM-BYV-ER R070 6.	Y231-43 Inc. Y131-43 54	R276-43 RZM R176-43(C) 50	Y231-89 Inc.Y131-89 50	R276-89 RZM R176-89(C) 59	R276 RZM R076 55	R276Y RZM-BYV-ER R076 59	Mean 55	LSD (.05) 1(C.V. (%)	F value	RHIZOMANIA EVALUATION OF	4 subsets each, 16 x 8 replications, RO	(*05)	

(SPENCE 2793) TEST 2793-1,2,3,4. RHIZOMANIA EVALUATION OF LINES, 1993 (cont.)

Powdery Mildew RJAP	Mean ⁶ 8		1.6 81.8		3.9 78.8 3.9 78.4	1.0 80.8		1.1 81.0	1.3 79.7	0.0 82.3			0.4 82.2	0.3 82.1	4.2 77.3	1.3 80.2		6.0** 4.0**
Beets/ Po 100' Mi		182 0			185 2 185 3		169 0.			186 0,		181 0.			184 4.	180.2		0.7NS 6.0
Root	0/0	0.4	0.0	0.0	1.1	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.1	9.0	436.5
Bolters	% I	0.0	0.0	3.1	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.7	351.9 10.3**
Sucrose	o\ ∘ I	15.2	15.1	13.3	14.1 13.5	ر ر	15.1	15.3	15.2	15.6	14.8	15.4	15.1	15.3	12.6	14.7	0.7	5.1 14.1**
<u>Yield</u> Beets	Tons	15.14	20.94	22.64	29.84 31.24	16 91	17.25	14.96	15.24	18.77	15.41	15.25	17.67	19.65		19.13	3,33	
Acre Vield Sugar Bee	SqT	3905	6539	6049	8389	5178	5179	4546	4605	5837	4531	4676	5292	5951	3853	5543.4	983.3	14.5**
Description ³	C	1nc. Y854 RZM RORO	RZM-BYV-ER R080	Inc. F_2 (Y54 x B.m.)	RZM R022R2 RZM R122R3	The R080-1	Inc. R080-13	Inc. R080-28	Inc. R080-35	Inc. R080-45		Inc. R080-79	Inc. R080-80	RZM R039C6	L113401		0	
Variety ³	+ + + + + + + + + + + + + + + + + + +	Y954 I	R280Y	R722	R122R3 R222R4	R280-1	R280-13	R280-28	R280-35	R280-45	R280-56	R280-79	R280-80	R139C7	US H11	Mean	LSD (.05)	C.V. (%) F value

Y439 = CO = unselected source. Resistance was based upon visual symptoms in 4 mon. old plants. R231-#'s and 2R039C5,C7, and C8 are synthetics from cycles 5, 7, and 8 for mass selection for resistance to rhizomania.

R276-#'s are selections from C31/6. R122R3 and R222R4 are synthetics from cycles 2 and 3 for mass selection for resistance to rhizomania from R722. R722 = F_3 popn between Y54 sugarbeet and <u>B.maritima</u> accessions. R280 & R280Y are near-isolines of Y54 (C54). R280-#'s are increases of half-sib lines selected from line R80.

(SPENCE 2793) TEST 2793-1,2,3,4. RHIZOMANIA EVALUATION OF LINES, 1993 (cont.)

RJAP	79.0 82.0 79.9 79.5	80.7 80.0 76.7 82.2	81.1 80.0 82.7 82.4	77.9 82.8 79.3 80.5	80.4 2.8 3.5
Powdery Mildew Mean ⁶	2.4 4.3 9.1 9.9	1 4 1 5 4 0 4 6	1.0	4 0 0 0 4 4 4 C	2.4 1.7 74.7 7.7**
Beets/ 100' No.	176 190 174 181	193 185 182 168	166 186 185 189	176 173 175 181	179.9 18.3 10.3 1.5NS
Root Rot	0000	0000	0000	0.00	0.1 0.4 623.9 1.8*
Bolters %	0000	0.0	0000	0000	0.1 0.7 803.9 0.9NS
Sucrose	13.7 15.2 14.7	14.2 14.2 13.4 13.9	12.9 14.1 15.6 15.8	12.9 14.8 15.7 14.4	14.4 0.7 5.0 12.7**
Acre Yield Jar Beets See Tons	13.88 15.22 13.61 15.57	20.12 16.91 19.52 20.55	26.59 16.88 21.46 20.78	20.80 18.51 20.09 29.50	19.37 3.33 17.32 12.95**
Acre Sugar Lbs	3785 4564 4009 4461	5683 4790 5262 5712	6818 4758 6663 6503	5356 5472 6284 8437	5534.8 980.6 17.9 11.8**
Description 4	Inc. C37 (86443) RZM R079 RZM-BYV-ER R079 RZM 1204-#(C)	RZM R130 RZM 1202-#(C) FWR 1211,,1216 RZM 1201-#(C)	RZM R104 Inc. C46/2 (86342) RZM R078 RZM-BYV-ER R078	NR-RZM N144-1-#(C) RZM 1914 RZM W4-89 RZM R122R3	
Variety4	U86-37 R279 R279Y R279R2	R230 R228 P201 R232	R204 U86-46/2 R278 R278Y	N244 2914 90-WIV R222R4	Mean LSD (.05) C.V. (%) F value

are lines with rhizomania resistance in a C37 background. R278 and R278Y are near-isolines of C46/2. N244 segregates for resistance to rhizomania (Rz) and cyst nematode. 2914 is S^f version of C39R. 90-WIV has ⁴R279, R279Y, and R279R2 are near-isolines of C37. R230 (Rz & PI07), R228 (PI07), P201 (WB97), R232 (R04) rhizomania resistance from WB151. R222R4 see footnote 2.

⁸See Tests 793, 893 and 1493 for the performance of these lines under nondiseased and virus yellows conditions. See R593 and R693 for other rhizomania tests. See 493 for bolting evaluation and 2193 for Erwinia root rot

evaluation.

(SPENCE 2793) TEST 2793-1,2,3,4. RHIZOMANIA EVALUATION OF LINES, 1993 (cont.)

Ů.		200				ROCL	DCC (2)	LOWCEL Y	
Variety ²	Description ²	Sugar	Beets	Sucrose	Bolters	Rot	100,	Mildew	RJAP
		Lbs	Tons	%	o/ºI	ا%	No.	Mean	%
Test 2793-4.	13-4.								
P202	PMR 1217,,1224	4319	16.63	13.0	0.0	0.0	169	1.1	78.5
R233	Inc. 1205(C)	5497	20.90	13.3	0.0	0.0	160	2.6	9.08
R229	Inc. 1206(C)	4569	17.20	13.6	0.0	0.0	166	1.9	80.9
5747	4747aa x A	4039	16.31	12.4	0.0	0.0	163	1.5	78.4
2911Y	RZM-BYV-ER 0911 (A,aa)	6033	21.21	14.4	0.0	0.0	181	9.0	80.9
2913	RZM 1913 (A,aa)	5976	19.87	15.2	0.0	0.0	182	1.1	82.0
2913Y	RZM-BYV-ER 0913 (A,aa)	5119	17.29	14.9	0.0	0.0	176	0.8	81.5
2915	RZM 1915-#(C) (A,aa)	4836	17.50	13.9	0.0	0.4	157	0.1	80.8
2915Y	RZM-BYV-ER 0915 (A,aa)	5529	19.04	14.5	0.0	0.0	173	0.2	81.9
2916	1905aa x 1913-#, 1915-#	5547	19.41	14.3	0.0	0.7	181	1.3	82.2
Z230	RZM Z120,2,4aa x 1913,1915	6591	21.06	15.7	0.0	0.0	171	1.7	82.7
Z220	RZM Z120,2,4 (A,aa)	5861	19.03	15.4	0.0	0.0	179	3.4	81.2
2915	RZM 1913-#. 1915-#aa x A	5894	20.30	14.6	0.0	0.0	176	0.3	80.2
N203H15	1915aa x N103-1, N103 (C603)	5966	22.73	13.1	0.0	1.0	166	5.5	77.4
R207	RZM R107	6463	21.59	15.0	0.0	0.0	182	3.8	79.9
R208	RZM R108	6038	20.44	14.8	0.0	0.0	174	1.1	82.1
									1
Mean		5517.3	19.41	14.2		0.1	172.2	1.7	80.7
ISD (.05)		995.9	3.36	0.7		9.0	21.0	1.6	5.6
C.V. (%)		18.2	17.45	4.7	-	429.6	12.3	93.5	3.2
F value		4.4**	2.64**	16.5**		2.3**	1.2NS	7.0**	2.7**

^{25%} Polish %S germplasm. N203H15 is a hybrid with resistance to rhizomania and cyst nematode. R207 and R208 ⁵P202 is from a cross to WB242. R233 (Rz & PI07) and R229 (Rz) are backcross lines to 5747. 2911Y, 2913, 2913Y, 2915Y, 2915Y, & 2916 are MM,S[£],A:aa populations with Rz. Z220 is 50% Polish %S germplasm. Z230 is

have rhizomania resistance from Rz and Italian gp. 6 Powdery mildew scored 10/20/93 and 10/28/93 on a scale of 0 to 9 where 0 = no visable infection. Root rot due to Erwinia.

TEST 3093. RHIZOMANIA EVALUATION OF SELF-FERTILE, A:aa POPULATIONS, 1993

1993	RJAP	82.2 77.3 77.4	81.7 83.4 81.3 82.3	80.9 79.2 80.3 78.8 82.6	80.5 81.0 81.9	84.7 81.4 81.7 80.8
Planted: May 14, 1993 Harvested: November 16,	Powdery Mildew 10/18/93	1.0.4 7.0.4 7.0.5	6.3 7.8 6.0 7.0	4 7 0 4 7 8 7 8 8 7	3.5 5.0 4.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
anted: M rvested:	Beets/ 100' No.	163 173 165	170 168 174 160	173 163 184 166 171	155 180 173	175 191 170 165
Pla Ha	Sucrose 2	15.6 12.6 13.5	15.6 15.9 15.8	15.9 16.2 15.0 15.6	15.0 14.5 15.2	16.0 15.8 15.5
	Acre Yield ar Beets s Tons	21.53 16.07 9.35	13.97 16.37 16.01 16.59	15.81 14.90 17.43 16.94 18.36	16.84 18.72 18.53	21.18 19.32 19.93 21.95
	Acre Sugar Ibs	6681 4015 2495	4354 5121 4895 5177	5032 4788 5551 5050 5630	5013 5432 5591	6747 6081 6200 6549
24 entries x 4 replications, RCB 1-row plots, 20 ft. long	Description ²	RZM R039C6 L113401 (April 1993) C562HO x C546	RZM 1859R (A,aa) RZM 1859 (A,aa) 1859, 1859Rmaa x A, (C859) 1859,1859RMaa x A	RZM 1865-#(S ₁) (A,aa) 1865, 1865-#mmaa x A 1865, 1865-#Maa x A RZM 1866 (A,aa) RZM 1864 (A,aa)	RZM 1867 (A,aa) 1867, 1867Rmmaa x A 1867, 1867RMaa x A	Comp B mmaa x Comp A,B Comp B Maa x Comp A,B Comp C mmaax Comp A,B Comp C Maa x Comp A,B
24 entries x 4 replicati 1-row plots, 20 ft. long	Variety ²	R139 <i>C7</i> US H11 F82–546H3	2859R 2859 2859m 2859M	2865 2865m 2865M 2866 2864	2867 2867m 2867M	2888M 2888M 2889m 2889M

RHIZOMANIA EVALUATION OF SELF-FERTILE, A:aa POPULATIONS, 1993 TEST 3093.

(cont.)

(C	Acre Yield	ield		Beets/	Powdery	
Variety ²	Description ²	Sugar	Beets	Sucrose	100,	Mildew	RJAP
		Ibs	Tons	o/e	No.	Score	%
0420	8790-S ₁ (C) aa x A, (C790)	4399	15.75	14.0	180	2.0	80.5
2890		5731	19.36	15.0	166	2.8	81.4
2891m	1890mmaa x A	5959	19.85	15.1	174	4.5	82.6
2891M	1890Maa x A	5184	17.38	15.1	188	4.5	80.3
92-790-15H39	89-762-17CMS x C790-15	4117	14.53	14.4	176	2.0	81.7
Mean		5241.4	17.36	15.2	171.7	4.7	81.1
LSD (.05)		1275.8	4.46	1.0	25.3	2.4	3.0
C.V. (%)		17.3	18.23	4.8	10.5	36.7	5.6
F value		4.5**	3.09**	5.6**	SN6.0	3.4**	2.6**

¹Except for R139C7 and US H11 checks, these are S^f,A:aa populations that segregate for Rz and monogerm.

hybrid. Popn-859 has a high proportion of C562, C563 type germplasm. Popn-865 & -866 are similar to C310. Popns-864, -866, -867 have popn-767 type germplasm (popn-310 x C546). Popn-888 & -889 are 2546H3 is F1CMS and seed bearing parent of US H11. 790-15H39 is F1CMS rhizomania susceptible composites. Popns-890 & -891 have popn-790 background.

TEST 3293. NEWATODE/RHIZOMANIA YIELD EVALUATION, SALINAS, CA., 1993

Harvested: November 17, 1993 Planted: May 14, 1993 8 entries x 8 replications, RCB 1-row plots, 20 ft. long

Root Beets/ Powdery		<u>8 No. 10/18/93 8</u>	177 4.4	189 5.5	0.0 159 1.0 72.7	184 2.9	175 6.4	1.2 173 3.9 73.1	166 4.8	169 4.8	174.1 4.2	1.2 24.9 1.4 3.3	4.4 33.2	JAC L
	Sucrose	o/ol	12.0	15.1	11.7	6.3	12.9	10.8	13.1	12.8	12.2	1.1	8.6	21 6**
<u>lield</u>	Beets	Tons	20.57	23.76	19.29	17.96	32.18	23.99	22.74	25.32		2.88	•	18 92**
Acre Yield	Sugar	Ips	4894	7125	4535	3326	8196	5164	5917	6428	5698.0	765.4	13.4	**U CC
٢	Description ¹		L113401 (April 1993)	L493304	Betaseed (4/20/93)	Betaseed (4/20/93)	1915aa x N103,N103-1	88-790-68CMS x N103,N103-1	NR-RZM N144-#-#(C)	NR-RZM 0204-2(C)				
٢	Variety		US H11	Rhizosen	2J0181	2J5025	NZO3H15	N203H89	N244	N152	Mean	LSD (.05)	C.V. (%)	. סוולמז ש

nematode resistant lines. N203H89 is rhizomania susceptible, cyst nematode resistant hybrid. N244 & N152 1 2J0181 & 2J5025 are rhizomania susceptible, cyst nematode resistant hybrids from Betaseed. N203H15 is resistant to both cyst nematode and rhizomania. N103, N103-1 = C603, C603-1 which are homozygous, cyst are populations that segregate for Rz and cyst nematode resistance.

Note: Test was grown under moderate to severe rhizomania conditions in a field plot area known to be infested with cyst nematode.

RHIZOMANIA EVALUATION OF USDA HYBRIDS, SALINAS, CA., 1993 TEST 2893.

tries x plots,	16 entries x 8 replications, RCB 1-row plots, 20 ft. long				Planted: Harveste	Σ. Σ	May 14, 1993 November 15,	1993
	Description 1	Acre Yield Sugar Bee Lbs Ton	ield Beets Tons	Sucrose	Root Rot	Beets/ 100' No.	Powdery Mildew 10/18/93	RJAP %
US H11 Rizor Rhizoguard HH 41	L113401 (April 1993) RZ3/1022 893301 L412307	3628 6881 5112 3323	13.75 20.53 16.60 13.02	13.1 16.8 15.4 12.8	0000	197 178 175 184	4.0 1.8 1.3	78.9 79.4 81.2 77.9
R222RH20 2915H18 R276H18 R278H18	87-309H3 x RZM R122R3 88-790-68H26 x 1913,1915 88-790-68H26 x R076 88-790-68H26 x R078	7438 6687 5732 6054	23.74 20.53 17.49 18.32	15.7 16.3 16.4 16.5	0000	194 187 192 179	5.2 2.4 1.6	79.8 81.0 82.3 81.9
	88-790-68H26 x R176-43,-89 88-790-68H26 x R080 1859Raa x R080 1864aa x R080	5530 6744 6384 6531	17.11 20.70 19.77 20.66	16.2 16.4 16.1 15.8	0.00	173 196 164 164	1.24 E 8.44.6	82.0 81.2 80.6 80.0
	1865aa x R080 1867Raa x R080 0790aa x R080 1890aa x R080	7553 6647 5730 6575	22.69 20.72 18.42 20.81	16.6 16.1 15.6 15.8	0.00	196 179 185 178	5.4 1.4 2.8	81.4 82.1 80.3 81.9
Mean LSD (.05) C.V. (%) F value		6034.3 982.2 16.4 11.6**	19.05 3.00 15.86 7.53**	15.7 0.6 4.1 26.1**	0.1 0.4 646.5 0.9NS	182.7 20.2 11.2 2.2**	3.3 1.8 53.9 5.4**	80.7 1.9 2.3 3.7**

 $¹_{309H3} = C562CMS \times C309$. $790-68H26 = C309CMS \times C790-68$. For popus-859, -864, -865, -867, -790, and -890, see Test 3093. For pollinator lines, see Test 2793.

EVALUATION OF RHIZOWANIA RESISTANCE OF TEST CROSS HYBRIDS, SALINAS, CA., 1993¹ TEST 2993.

1993	RJAP %	80.2 79.3 81.3 78.9	80.2 80.0 80.7 79.8	79.8 79.2 81.1	80.6 76.1 78.6 80.5	81.6 80.1 80.3 81.7
May 14, 1993 November 15,	Powdery Mildew Score	4 K S 4 K 8 Z Z	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		4	. 4 . 4
Planted: Ma Harvested:	Beets/ 100' No.	165 194 146	156 176 164 175	176 168 168 189	183 168 170 173	171 191 165 165
P1; Ha	Sucrose %	15.5 16.1 16.9 15.5	16.0 16.0 16.0 15.3	15.9 15.9 16.3	16.4 15.4 15.8 15.7	16.1 15.8 16.0
	Acre Yield Par Beets	23.00 22.06 21.30 21.78	20.07 22.58 21.90 23.09	23.59 20.81 22.37 21.95	22.27 19.75 20.67 19.26	21.62 19.95 21.98 20.79
	Acre Sugar Libs	7100 7077 7173 6722	6395 7191 6943 6984	7469 6580 7282 7071	7287 6028 6475 6067	6929 6300 6999 6765
32 entries x 4 replications, RCB 1-row plots, 20 ft. long	Description ²	1913aa x 1865 1915aa x 1865 0909-34aa x 1865 1911- 4aa x 1865	1911–12aa x 1865 1911–14aa x 1865 1911–50aa x 1865 1913– 5aa x 1865	1913–18aa x 1865 1913–22aa x 1865 1913–25aa x 1865 0911– 1aa x 1865	0911-4(B)aa x 1865 0911-24aa x 1865 0913- 6aa x 1865 0913- 9aa x 1865	0915- laa x 1865 0915- 4aa x 1865 0915- 6aa x 1865 0915- 7aa x 1865
32 entries x 1-row plots,	Variety ²	2865H13 2865H15 2865H42-34 2865H43- 4	2865H43-12 2865H43-14 2865H43-50 2865H45- 5	2865H45-18 2865H45-22 2865H45-25 2865H46- 1	2865H46-4 (B) 2865H46-24 2865H47- 6 2865H47- 9	2865H48- 1 2865H48- 4 2865H48- 6 2865H48- 7

EVALUATION OF RHIZOMANIA RESISTANCE OF TEST CROSS HYBRIDS, SALINAS, CA., 1993 TEST 2993.

(cont.)

%/ Powdery Mildew RJAP Score &	4.0 79.7 2.8 81.1 3.5 79.2 4.5 78.8		1 3.9 80.1 6 2.9 2.3 4NS 1.0NS 1.9*
Beets/ = 100' No.	168 166 181 169	180 176 164 161 184	185 186 172.1 26.6 11.0
Sucrose	15.7 15.8 15.3 15.1	15.6 16.1 15.8 15.7 15.9	15.1 16.2 15.8 0.7 3.2 3.2
Acre Yield Nugar Beets Lbs Tons	19.85 20.07 22.58 25.09	22.27 22.44 20.27 21.11 21.73	24.14 23.74 21.77 4.75 15.54 IS 0.67NS
Acre Sugar Lbs	6210 6343 6927 7565	6950 7216 6378 6640 6918	7244 7690 6870.2 1491.2 15.5 0.7NS
Description ²	0915-16aa x 1865 0915-22aa x 1865 0915-23aa x 1865 0915-24aa x 1865	0915-27aa x 1865 0915-34aa x 1865 0915-46aa x 1865 1859Raa x 1913,1915 1865aa x 1913,1915 1867aa x 1913,1915	0790aa x 1913,1915 1865aa x R080
Variety ²	2865H48-16 2865H48-22 2865H48-23 2865H48-24	2865H48-27 2865H48-46 2915H58 2915H65 2915H65	2915H90 R280H65 Mean LSD (.05) C.V. (%) F value

¹Test 2993 set astraddle of Test 2893 (2 reps on each side); therefore, see checks and entries for

Test 2893 for close approximation of yield.

21865 = popn-865 = monogerm, S¹, A:aa population that segregates for Rz. Hybrids 2865H13 & 2865H15 vs. 2915H65 would be near reciprocal population hybrids. Lines 909-34, 911-#'s, 913-#'s, & 915-#'s are progeny selections from MM, S¹, A:aa, Rz. Populations-909, -911, -913, & -915. Selection was based upon performance under rhizomania and/or other criteria (virus yellows, Erwinia, powdery mildew, bolting, %S...). 0909-34, 1911-4, -12, -14, & -50 were released in 1983 as C909-34, C911-4, -12, -14, & -50.

TEST 2493. WESTERN SUGAR AND JOINT GROWER HOLLY RHIZOMANIA TEST, SALINAS, CA., 1993

1993	RJAP	o/0	83.5	83.6	83.3	83.6	81.9	80.9	82.4	81.2	81.7	81.3	82.8	84.0	83.1	82.0	79.3		80.0	79.9	80.8	81.3	82.7	82.1	81.4	82.2
Planted: May 17, 1993 Harvested: November 4,	Powdery Mildew ²	Mean	0.4	2.1	5.1	4.3	2.9	2.3	2.8	5.4	5.9	2.9	3.6	4.0	3.8	3.1	3.3		3.4	5.7	1.6	3.5	2.1	9.0	œ ۱ ۳ ۰	3.1
Planted: Ma Harvested:	Beets/ 100'	No.	173	189	188	139	171	194	182	175	163	142	174	178	185	181	172		180	187	189	187	191	174	171	164
Plar	Root	୬/ବା	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1.6	9.0	0.0	0.0	0.0	0.0	0.0	0.0
	Bolters	o/o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0		1.2	0.0	0.0	0.0	0.0	0.0	4.0	000
	Sucrose	%	16.6	15.2	15.8	16.2	15.2	15.8	15.5	15.7	15.5	15.5	15.5	14.9	14.7	14.4	13.4		14.6	13.6	16.5	15.7	15.8	15.7	14.3	13.3
	Acre Yield ar Beets	Tons	21.10	21.84	18.22	17.38	18.46	17.75	17.64	16.22	16.26	16.02	15.63	15.60	15.37	15.02	14.45		28.90	25.43	18.89	19.22	19.03	17.62	19.30	13.53
	Acre	Ibs	9669	6621	5755	5643	2600	5580	5456	5105	5028	4988	4840	4607	4517	4283	3873		8430	6843	6237	0009	5971	5534	5519	3604
24 entries x 6 replications, RCB 1-row plots, 20 ft. long	Description	$\overline{\text{WS}}^3$ $\overline{\text{JG-H}}^4$	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×		RZM R122R3	1915aa x N103,N103-1	RZ3/1022 (1993)	88-790-68H26 x R080	88-790-68H26 x R078	Inc. R939C5, (C39R5)	RZM 1201-#(C)	L113401 (4/93)
24 entries x 6 replication 1-row plots, 20 ft. long	Variety1		2J0152	Beta 4581	Rhizosen	SX 0212	SS-596R	Maribo 9372	SS 595R	Rhizosen Plus	Rhizoguard	270179	SS-781R	Rhizosen CT	Monohikari	Rhizoguard CT	ACH 9250332	TICHA Entries and Charks	R222R4	N203H15	Rizor	R280H18	R278H18	R039C5	R232	KZ / 61 US H11

TEST 2493. WESTERN SUGAR AND JOINT GROWER HOLLY RHIZOMANIA TEST, SALINAS, CA., 1993 (cont.)

	RJAP	%	81.9	2.8	3.0	1.6NS
Powdery	Mildew ²	Mean	3.7	1.7	41.5	6.2**
_		No.	177.0	20.6	10.2	3.7**
		o/o	0.1	0.4	647.0	1.8*
	Bolters	o\ 0	0.1	0.5	6.869	0.9NS
	Sucrose	%	15.1	0.8	4.7	10.1**
Yield	Beets	Tons		3.02		
Acre	Sugar	Lbs Tons	5927.1	1015.0	15.0	9.0**
	Description	$\overline{\text{WS}}^3$ $\overline{\text{JG-H}}^4$				
**	Variety ¹		Mean	LSD (.05)	C.V. (%)	F value

occured. Following emergence, many seedlings appeared to be infected by Aphanomyces. Thinning was delayed and the field. Roots at harvest were often sprangled. Cyst nematodes were evident at harvest and may have reduced yields. Cyst nematode infestation may account for the better than expected performance of nematode resistant best plants were saved when thinned. However, an Aphanomyces like disorder continued to show in some areas of hybrid N203H15. The wide dispersion in yield is thought to be primarily caused by differential reaction to Test was in a field with severe rhizomania but in addition, other soil-borne problems apparently rhizomania, but many other factors appeared to significantly influence yield in this test also.

Foliar diseases and other viruses did not appear to be important in this test.

% sugar is higher than usual for rhizomania infected tests. Sugar concentration and appearance of plants at harvest suggested that a nitrogen deficiency occurred. A total of more than 240 units of nitrogen was applied preplant and in two sidedress applications. Frequent sprinkler irrigations (2x per week) to promote severe rhizomania and keep infected plants alive may have moved the nitrogen out of the root zone of the disease impaired plants growing in this sandy loam soil.

R222R4 would appear to have a normal, nondiseased performance. This has been observed in other tests at Salinas One entry gave very encouraging results. Despite all the soil-borne problems, for a five-month crop, maritima accessions. It is yet unknown whether this is high resistance to rhizomania and/or resistance to and Imperial Valley for this line that was derived from composite crosses between sugarbeet and many Beta rhizomania and other soil-borne disease (Aphanomyces, cyst nematodes, etc.).

WESTERN SUGAR AND JOINT GROWER HOLLY RHIZOMANIA TEST, SALINAS, CA., 1993 (cont.) TEST 2493.

plots for rhizomania symptoms would be meaninful. Gross sugar yield has appeared at Salinas to be the significantly higher yielding than the susceptible check (US H11) should be considered to have partial Because of the complexity of root problems, it did not appear that scoring individual plants or most useful criterion for evaluating a variety's reaction to rhizomania. Entries that are resistance or tolerance to rhizomania.

and Japan. N203H15 is a cyst nematode resistant hybrid between rhizomania resistant (Rz) population-915 and homozygous, nematode resistant lines C603 and C603-1. R222R4 is the 4th cycle selection for the Rz near-isogenic line of C31/6. R078 and R080 are the Rz near-isogenic lines of C46/2 and C54. than previous versions. Rizor is a commercial hybrid with resistance to rhizomania used in Europe rhizomania resistant, partially wild beet accession from Italy crossed to C37 sugarbeet. R276Y is resistance to rhizomania from a population that is half Beta maritima. R232 is an F, line from a This version, however, appeared to be more tolerant to rhizomania 88-790-68H26 is a rhizomania susceptible, monogerm, F₁CMS hybrid. ^LUS H11 is a susceptible check.

acre of Bayleton on August 4, 1993 and remained free of mildew until late in September. Mildew probably had little affect on yield. Powdery mildew scored from 0 to 9 where 9 = 90-100% of mature leaf area covered with mildew. Powdery mildew reaction is thought to be influenced by severity of ²Powdery mildew was scored twice on 10/20/93 and 10/28/93. Test was treated with 16 ounces a.i./ rhizomania; therefore, partially rhizomania resistant varieties may appear relatively more susceptible to powdery mildew than the rhizomania susceptible entries.

3WS: Entries submitted by Western Sugar Committee.

4JG-H: Entries submitted by Joint Grower-Holly Committee.

TEST 2393. CBGA/BSDF CODED RHIZOMANIA VARIETY TRIAL, SALINAS, CA., 1993

3, 1993	RJAP %	84.3 81.8 82.8 79.3	82.7 81.7 81.9 81.1	81.3 83.3 82.4 81.6	82.0 81.5 81.5	81.5 82.7 82.0 81.2	81.9 83.1 80.9 81.8
May 17, 1993 November 1-3,	Powdery Mildew ²	3.2	0 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.5.20	4.0 6.5 7.3	6.3 1.0 0.1	0 m 0 m m
Planted: Marvested:	Beets/ 100' No.	167 179 148 184	182 203 212 162	185 190 193 169	203 190 195 191	175 172 182 179	168 194 192 183
Pla	Root Rot %	0000	0.00	0.000	0.000	0000	0000
	Sucrose %	16.7 15.0 15.6 13.2	15.6 15.0 15.1	16.0 15.2 15.9 15.4	15.3 15.3 16.0	15.4 14.4 16.2 14.7	15.2 16.2 15.2 14.9
	Acre Yield ar Beets Anns	21.30 20.47 17.80 13.09	23.27 23.69 23.49 23.49	21.50 22.34 21.17 21.41	21.50 20.92 21.13 20.19	20.86 22.09 19.40 21.28	20.50 19.13 20.38 19.99
	Acre Sugar The	7148 6130 5540 3427	7294 7134 7078 6954	6893 6809 6706 6580	6580 6519 6504 6479	6387 6309 6301 6235	6233 6218 6190 5924
us, RCB	Company	check check check check	Betaseed Hill-MH Hill-MH Betaseed	Holly Holly Holly Holly	Spreckels Spreckels Betaseed Holly	Spreckels Holly Holly Betaseed	Holly Holly Holly Holly
58 entries x 5 replications, RCB 1-row plots, 20 ft. long	Variety ¹	ecks Rima Rhizoguard C39R US H11	CBGA Coded Entries RS-10 2BG6241 - 5 HM 3041 - 3 HM 3042 - 9 2BG6247	93HX29 93HX15 93HX27 93HX13	SS-781R SS-289R 2BG6243 Rhizosen	SS-334R 93HX24 93HX28 2BG6237	90C 64-05 93HX06 Rhizosen CT 90C 68-03
58 entri 1-row pl	Code No.	CBGA Checks RS-18 Ri -34 Rh - 2 C3 -47 US	CBGA COC RS-10 - 5 - 3 - 9	-51 -49 -23	-30 -26 -14 -32	-25 -39 -43	-27 -22 -13

TEST 2393. CBGA/BSDF CODED RHIZOMANIA VARIETY TRIAL, SALINAS, CA., 1993 (cont.)

RJAP	82.4 82.2 83.1 82.5	82.3 81.4 81.9 79.8	82.0 80.7 81.6 80.8	83.3 80.3 81.9 81.7	81.1 81.5 81.6 80.2	81.9 82.7 81.4 82.1	81.5 77.0 78.5
Powdery Mildew ²	4 7 H 4 7	0.00	0 4 4 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.4.0.0.0.0.0	3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	3.0	2.2. 4.6.1.
Beets/ 100' No.	168 171 179 182	91 188 189 131	165 153 164 190	165 194 169 173	150 144 171 148	157 164 165 156	159 166 170
Root Rot	0.0	0000	0.0	0000	0.0	0000	0.00
Sucrose	14.6 15.4 15.6	15.4 15.3 15.0	15.4 14.6 14.7	15.4 14.3 15.0 14.8	15.0 15.3 15.4 14.5	15.1 14.7 13.9 14.1	13.4 13.9 12.8
Acre Yield ar Beets s Tons	20.16 19.15 18.97 19.15	18.80 18.90 19.32 19.83	18.16 18.77 18.38 18.02	17.23 18.28 17.44 17.72	17.22 16.85 16.83 17.28	16.69 16.98 16.12 15.72	15.87 15.12 15.05
Acre Sugar Lbs	5895 5884 5878 5820	5799 5795 5717 5703	5570 5523 5385 5362	5306 5296 5238 5230	5177 5160 5154 5041	5032 4962 4469 4400	4289 4247 3888
Company	Spreckels Holly Betaseed Spreckels	Betaseed Holly Betaseed Spreckels	Hill-MH Betaseed Holly Holly	Holly Spreckels Spreckels Spreckels	Holly Holly Holly Spreckels	Holly Hill-MH Holly Holly	Holly Betaseed Betaseed
1 11	RS-29 SS-780R -28 93HX07 - 4 2BG6245 -19 SS-NB2R	2BG6249 93HX14 2BG6239 SS-293R	HM 3027 Beta 4581 93HX25 Rhizosen Plus	93HX05 SS-287R SS-595R SS-596R	Rhizoguard 90C 68-04 90-88C11-09 SS-593R	90-1459-0188 HM 3026 93HX26 90-87C34-06	93HX11 0BG6333 1BG6131
Code No.	RS-29 -28 -4 -19	-24 -31 -37 -40	-50 -44 -35	-33 - 8 -41 -42	-45 -17 -12	-11 -46 -15 -48	-20 -21 - 6

TEST 2393. CBGA/BSDF CODED RHIZOMANIA VARIETY TRIAL, SALINAS, CA., 1993 (cont.)

RJAP	o/ol	79.6	80.9	85.8	80.8	82.4	79.7	80.5	81.7	2.0	2.5	2.0**
Powdery Mildew ²	Mean	5.8	0.3	0.5	5.1	2.1	4.4	2.8	3.5	1.6	45.9	9.1**
Beets/ 100'	N N	198	191	175	195	181	165	150	172.7	23.4	13.8	3.6**
Root	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	675.0	0.9NS
Sucrose	%	15.3	16.4	15.2	15.6	14.5	13.0	14.1	15.1	0.7	_	6.5**
ield Beets	Tons	25.12	22.51	23.19	20.13	21.59	18.91	16.01	19.51	3.65	19.01	2.47**
Acre Yield Sugar Beet	Ibs	7688	7355	7044	6247	6230	4930	4545	5905.9	1146.6	19.7	3.4**
Description		ies and Checks R222R4H20 87-309H3 x RZM R122R3	RZ3/1022 (1993)	RZM R039C6, (C39R7)	87-309H3 x R080	RZM-BYV-ER R076	L113401 (April 1993)	KW 6770 (1993)				
Variety ¹		USDA entries and Checks R222R4H20 87-	Rizor	R139C7	R280H20	R276Y	US H11	0229		(6		
Code No.		USDA ent							Mean	1SD (.05	C.V. (%)	F value

TEST 2393. BETASEED ENTRIES RHIZOMANIA VARIETY TRIAL, SALINAS, CA., 1993

, 1993	RJAP	84.3 81.8 82.8 79.3	82.6 84.0 85.1	82.6 82.4 81.5	79.6 80.9 82.8	80.8 82.4 79.7 80.5	81.7 2.0 2.5 2.5
May 17, 1993 November 1-3,	Powdery Mildew ² Mean	3.22	1.0	0.8	5.3 5.3 5.5	0.4.0 1.4.8 8.	3.5 1.6 45.9 *1.*
Planted: May Harvested: N	Beets/ 100' <u>No.</u>	167 179 148 184	172 143 177	190 164 130	198 191 175	195 181 165 150	172.7 23.4 13.8 3.6**
Plar	Root Rot	0.000	0.00	0.00	000	0.000	0.1 0.4 675.0 0.9NS
	Sucrose	16.7 15.0 15.6 13.2	16.3 16.5 15.8	15.2 16.1 15.5	15.3 16.4 15.2	15.6 14.5 13.0 14.1	15.1 0.7 4.7 67 6.5**
	Vield Beets Tons	21.30 20.47 17.80 13.09	23.67 22.10 22.26	22.42 15.84 16.18	25.12 22.51 23.19	20.13 21.59 18.91 16.01	19.51 3.65 19.01 2.47**
	Acre Yield Sugar Beer	7148 6130 5540 3427	7783 7300 7035	6840 5153 5043	7688 7355 7044	6247 6230 4930 4545	5905.9 1146.6 19.7 3.4**
ications, RCB long	Description	Check Check Check Check	Betaseed (1993) Betaseed (1993) Betaseed (1993)	Betaseed (1993) Betaseed (1993) Betaseed (1993)	ecks 87-309H3 x RZM R122R3 RZ3/1022 (1993) RZM R039C6, (C39R7)	87-309H3 x R080 RZM-BYV-ER R076 L113401 (April 1993) KW 6770 (1993)	
17 entries x 5 replications, RCB 1-row plots, 20 ft. long	Variety ¹	CBGA Checks RS-18 Rima -34 Rhizoguard - 2 C39R -47 US H11	BSDF Entries 2J0152 1N7238 2J5088	1J7002 2J0156 2J0179	entries and Checks R222R4H20 87 Rizor RZ R139C7 RZ	R280H20 R276Y US H11 6770	Mean LSD (.05) C.V. (%) F value
17 e 1-ro	Code No.	CBGA (RS-18 -34 - 2 - 2 -47	BSDE		USDA		Mean LSD (.05 C.V. (%) F value

checks included by the USDA. Because of cultural and disease problems within replications 2,3, and 7, these Entries 58 thru 64 were entries and NOTES: Test was designed as a 64 entry x 8 replication test. Entries 1 thru 51 were for the coded were deleted from the ANOVA, and final results are presented as a five replication test. rhizomania test. Entries 52 thru 57 were from a private seed company.

A gradient in soil fertility and disease expression occurred from the top to the bottom (direction of test. Rhizomania and other soil-borne problems were moderate to severe. In addition to rhizomania, what replication) of the field. A more serious gradient also occurred from the left to the right side of the appeared to be Aphanomyces caused seedling loss, sprangling, and stunted growth. Cyst nematodes were observed at harvest. Other foliar and virus diseases did not appear to be significant.

to be different (more tolerant) than US H11 previously used. 6770 is a high % sugar, susceptible check used in most 1993 tests at Salinas. Rizor was obtained from SES in 1993. R076 and R080 are Rz near-isogenic lines of C31/6 and C54. R222R4H20 is a hybrid between a susceptible F₁CMS hybrid and pollinator derived 'USDA entries and checks: US H11 accessed in April 1993; it appeared in this and other rhizomania tests from a sugarbeet x Beta maritima population; it is 50% B.maritima.

²Powdery mildew was controlled until late September with 16 ounces a.i./acre Bayleton. It was scored on 10/18/93 and 10/28/93 on a scale of 0 to 9 where 9 is highly susceptible.

TEST 3193. RHIZOMANIA EVALUATION/SELECTION OF S₁ MONOGERM LINES, SALINAS, CA., 1993

Planted: May 14, 1993 112 entries x 2 replications ft. long 1-row plots, 20

79.3 80.1 81.6 81.2 81.2 80.0 83.9 80.5 81.7 78.1 82.2 73.2 77.8 77.8 81.9 79.5 79.1 RJAP 84.3 80.3 Harvested: November 16-17, 1993 0/0| Powdery 10/18/93 Mildew 2.0000 2.0 0.4.0 0.5 4.0 5.5 6.5 0.00 0.00 0.00 0.00 Beets/ 100, 160 155 165 175 110 168 120 163 160 160 140 148 150 58 160 180 153 163 155 160 168 No. 150 Root Rot 0.0 3.2 0000 0.0 0.00 0.0 0.0 000000 0/0 Unif5 22222 45004 466660 245824 Vigor² Color⁴ rating rating rating ひひひとひり 000> マッショウ ひ > > ひ > 2266 044 m44 E 4 E 4 C 4 Rz^{2} 422642 22222 22222 222212 Sucrose 15.5 16.0 13.5 14.9 15.6 15.1 16.0 15.9 15.5 14.0 15.5 16.9 15.6 16.1 14.8 15.8 14.9 16.0 15.1 0/0 10.29 10.16 Beets 16.59 8.40 14.24 16.65 14.26 16.17 11.13 12.39 12.60 8.40 7.98 13.01 12.18 Tons Acre Yield Sugar 4430 5288 2970 2327 3030 4325 5285 5048 3450 4572 3484 4785 3475 2647 4389 3387 3907 2392 3000 1062 2257 2417 T. Do 3801 Lines from popn-859 7 6 4 4 9 9 -10 ~ ∞ -11 -12 -14 -15 -16 -17 **-19** -21 -22 -23 -24 -18 Variety1 2859Am(Sp)-

TEST 3193. RHIZOMANIA EVALUATION/SELECTION OF S₁ MONOGERM LINES, SALINAS, CA., 1993 (cont.)

RJAP %	77.7	80.1	79.0	77.3	75.3			•	79.2		•	82.1	•	76.5			•	•
Powdery Mildew 10/18/93		. 4 6 . 5 . 5 . 5		0.5	•		4.0	•	4.5	•		•	2.0	4.0	•	5.0	•	•
Beets/ 100' No.	145	103 163 155	140	158	170		188	180	213	198	180	185	195	110	180	175	170	158
Root Rot	0.0	000	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	1.4
Unif ⁵	ю 4°	4.00	ល	2	т		m	2	2	7	7	2	2	က	2	m	m	т
Color4 rating	> > 1	> >> >	+ >	>	>		Ŋ	ტ	ტ	ტ	ტ	ტ	ტ	ტ	Λ	>	>	>
Vigor ³ Color ⁴ rating rating	വ	w 4 4	r 4	4	т		2	က	ო	7	2	2	m	က	က	4	ო	4
Rz ² rating	2 8	0 0 6	n 0	т	m		2	2	2	_	٦	2	2	2	2	2	2	2
Sucrose 8	14.0	15.1	15.8	13.4	12.7		14.5	15.1	16.0	16.5	15.8	15.6	15.1	15.1	14.4	15.2	15.6	15.7
lield Beets Tons	9.66	12.60	9.45	4.83	11.34		12.93	5.25	14.28	20.37	7.77	12.60	13.02	10.87	10.58	12.60	12.93	10.17
Sugar Bee Ibs Ton	2734	3794 4063 2721	2987	1311	2871	-865	3750	1591	4590	6720	2451	3945	3920	3283	3032	3836	4051	3202
Variety ¹ Sugar I hes from popp-859 (cont	2859Am(Sp)-25 -26	-27 -28 -29	08-	<u>Checks</u> F82-546	87 - 309H3	TEST 3193-2. Lines from popn-865	2865mA(Sp)-1	- 2	۳ ا	- 4	SI	9	- 7	∞ 1	6 1	-10	-11	-12

TEST 3193. RHIZOMANIA EVALUATION/SELECTION OF s_1 MONOGERM LINES, SALINAS, CA., 1993 (cont.)

RJAP	79.0 78.0 78.2 80.3 76.8	72.2 75.9 79.3 73.8 79.5	80.5	79.7 77.2 80.6 79.9	81.3 82.5 80.8 79.9
Powdery Mildew 10/18/93	2 2 2 7 7 4 0 2 2 0 2 2	0.00 0.00 0.00 0.00	2.5	1. 2.0 2.0	2.4.8.1 1.3.5.5 1.5.5
Beets/ 100' No.	190 118 170 185 150	105 143 135 188 183	178	153 148 178 160	178 173 125 165
Root Rot	000000	1.7	0.0	0000	0000
Unif ⁵	пп 2 2 п 4	440106	4 K	4 m m m	m m m m
Color4	> ७ > > > > > > > > > > > > > > > > > >	> > > ७	K K	0 0 0 0	> U > >
Vigor ³ Color ⁴ rating	N H m m 4 N	M 4 N 4 M 4	K 4	w w w 4	4 H W W
Rz ² rating	2 4 4 8 8 2	321122	мм	0000	8 H B
Sucrose	15.3 15.3 15.1 15.6	12.6 15.0 14.4 15.9	13.6 13.6	16.0 14.3 15.1 14.5	15.4 14.8 15.0 14.0
lield Beets Tons	12.81 18.06 16.80 11.67 14.81 16.09	7.50 8.61 16.38 12.93 12.04 15.54	11.13	13.71 12.39 13.77 12.60	15.75 22.27 12.82 9.45
Acre Yield Sugar Beer	ont.) -865 (cont.) 3908 5762 5087 3522 4606 5030	1851 2556 5089 3711 3547 4908	2974	867 4327 3495 4167 3571	4795 6496 3794 2598
Variety ¹	TEST 3193-2. (cont.) Lines from popn-865 2865mA(Sp)-13 3-14 5-15 5-16 3-17 44 -17	-19 -20 -21 -22 -23	<u>Checks</u> 87–309H3 F82–546H3	<u>TEST 3193-3.</u> <u>Lines from popn-867</u> 2867Am(Sp) - 1 - 2 - 3 - 3	1111

TEST 3193. RHIZOMANIA EVALUATION/SELECTION OF S1 MONOGERM LINES, SALINAS, CA., 1993 (cont.)

RJAP		80.0		80.2	81.6	78.0	81.6	80.3		(77.3	81.4	81.6		78.0	77.7	9.08	73.9	78.9	89.5	85.9	79.0
Powdery Mildew 10/18/93		1.5		ນໍານ	2.0	2.0	0.5	0.5	1.5	(0.5	1.5	2.5	3.5	0.5	2.0					2.5	
Beets/ 100' No.		178		180	183	160	185	188	165		180	178	195	163	150	128	153	200	158	180	153	195
Root Rot		0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unif ⁵		т N		2	2	2	က	4	4		7	2	ന	m	က	4	2	2	က	က	2	7
Vigor ³ Color ⁴		KK		\triangleright	>	X	ტ	>	X		ტ	X	>	>	ტ	X	ტ	X	>	>	K	ტ
		m 0		m	m	4	4	4	4		က	ന	က	က	4	ო	m	4	4	7	4	4
$\frac{Rz^2}{rating}$		7 7		m	m	က	7	7	က		2	က	7	2	7	7	2	n	2	2	က	Н
Sucrose		14.0		14.1	14.6	14.9	16.5	14.5	13.9		14.9	15.5	15.1	15.9	13.8	13.4	14.1	11.9	15.1	16.3	14.6	14.5
Acre Yield Beets Tons	~	13.44		11.76	18.27	18.69	15.96	13.02	8.40		18.27	15.37	16.80	16.38	19.11	16.38	19.11	10.08	14.71	23.95	15.39	14.12
Sugar Lbs	nt.) <u>867</u> (cont.)	3756 3392		3299	5358	5287	5074	3726	2294		5287	4683	5024	5145	5019	4344	5362	2304	4394	7872	4416	4032
Variety ¹	TEST 3193-3. (cont.) Lines from popn-867	<u>Checks</u> F92-790-15H39 F92-790-15CMS	TEST 3193-4.	<u>Lines from popn-891</u> 2891Am(Sp)- 1	1	e 1	- 4	9	9			∞ 	6 -	-10	-11	-12	-13	-14	-15	-16	-17	-18

TEST 3193. RHIZOMANIA EVALUATION/SELECTION OF S₁ MONOGERM LINES, SALINAS, CA., 1993 (cont.)

RIAP %	82.0 81.8 81.1 82.4 83.3 76.2	78.5 79.9 82.0 80.4 80.0	82.5 79.9 80.5 75.4 80.3	77.9 79.2 78.1 80.7 79.7	81.3
Powdery Mildew 10/18/93	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0000000	4 K H S S 4 7 K R R S S S S S S S S S S S S S S S S S	6 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3.5
Beets/ 100' No.	188 165 175 128 185 148	155 178 175 173 125	158 150 135 95 158	185 190 155 160 160	173
Root Rot	0.00001	000000	000000	000000	0.0
Unif ⁵	7 8 8 8 8 8 B	1 2 1 4 4 E	222222	n n n n n n n	2 2
3 <u>Color⁴</u> g <u>rating</u>	> 0 0 < 0 0 €	X C C C C K		ʊ > > > ৩	K K
Vigor ³ grating	m m m 4 v m	w w w 4 4 4	N M M 4 M M	4 6 6 4 6 8	7 7
$\frac{Rz^2}{\text{rating}}$	000000	m N N M N M	пичнии	H N N N N N	0 0
Sucrose	15.0 15.1 14.4 14.7 15.9	13.1 14.3 13.5 12.1	14.6 13.0 13.4 14.8	14.9 13.3 14.0 15.1 14.8	14.8
Acre Yield ar Beets s Tons	13.23 15.12 16.94 14.94 21.64	14.99 13.02 16.59 13.05 13.54	21.01 17.85 21.01 12.25 20.93 14.98	15.75 18.48 13.77 16.59 14.70	15.33
	W 4 4 4 0 4	3879 3674 4769 3510 3852 2794	6133 5225 6266 3280 6171 4416	4654 4922 3843 4948 4449 4856	4539 5247
Variety ¹ S TEST 3193-4. (cont. Lines from popp-891	- (SD) u	-25 -26 -27 -28 -29	-31 -32 -34 -35 -35	-37 -38 -39 -40 -41 -42	F92-790-15H26

TEST 3193. RHIZOMANIA EVALUATION/SELECTION OF S₁ MONOGERM LINES, SALINAS, CA., 1993 (cont.

	P.TAD	@ ~!	79.4	۲ c	2.0	3.3	2.4**
Downlow,	Mildew	10/18/93	0	1 4	4.0	79.7	1.2NS
Roots/	100,	No.	162.4	7 96	100	11.4	3.4**
Root	Rot	0/0	0.2	α 0 C	0.3	731.5	1.0NS
	Unif ⁵						
	Rz^2 Vigor ³ Color ⁴	rating rating rating					
Acre Yield	Sucrose	9/01	14.8) (5.6	3.1**
lield	Beets	Tons	3995.3 13.53	6.30		73.51	3.12**
Acre 1	Sugar	Ibs	3995.3	1726.2	0,50	217	4.1**
•	Variety		Mean	ISD (.05)	(%) \(\Lambda\)	(%)	r value

12859Am(Sp)-#'s, 2865Am(Sp)-#'s, 2867Am(Sp)-#'s, and 2891Am(Sp)-#'s are S₁ lines from their respective populations. The populations segregated for both Rz and monogerm. Unbagged, monogerm, fully fertile plants Visual rating of canopy where 1 = homozygous resistant (RZRz), 2 = segregation, 3 = homozygous susceptible. were tagged in field increases to produce S_1 seed. Some plants in these lines may be from outcrosses, within the population and be half-sibs rather than S_1 's.

 4 Color rating of canopy where G = green, Y = yellowish, V = segregation or variable. Uniformity of canopy where 1 = highly uniform to 5 = highly variable. $\sqrt[3]{\text{Vigor rating of canopy where 1 = vigorous to 5 = weak.}}$

CURLY TOP EVALUATION OF SALINAS ENTRIES AT KIMBERLY, IDAHO, 1993

150 entries x 3 replications

Test Conducted by Terry Brown, BSDF

Description CT Grade 1st 2nd	l Sign	ade 2			Description	CT Grade	ade 2nd
EN EN		Ratin	Image: section of the property o	Variety HYBRIDS (cont.)	Ţ.	ומ	Rating
Check 4.1* 5.3*		5.3	14	R278H39	89-762-17CMS x R078	3.7	4.3
3.8* 4.5*		4.5*		2915H39	89-762-17QMS x 1913,1915	3.7	4.7
C546H3 x C36 3.3 4.0	3.3 4.0	4.0		2915H58	C859aa x 1913,1915	3.7	4.3
Hilleshog-MH 3.0 4.0		4.0		2915H68	1867Raa x 1913,1915	3.3	4.3
Spreckels L921068 3.7 4.7	3.7 4.7	4.7		2915H90	C790aa x 1913,1915	3.3	4.0
Betaseed 4.0 5.7	0.	5.7		R280H90	C790aa x R080	3.3	4.0
.7	.7	5.3		R280H93	1890aa x R080	3.0	4.0
(C562CMS x C309) x R122R3 4.3 5.0	۳.	2.0		R280H91	C790HO x R080	3.0	4.0
87-309H3 x R080 3.7 4.7	.7	4.7		R280H65	1865aa x R080	3.3	4.3
87-309H3 x R076 3.7 4.7		4.7		R280H68	1867aa x R080	4.3	2.0
87-309H3 x R078 3.7 4.3		4.3		R280H64	1864aa x R080	4.3	2.0
87-309H3 x R176-43,-79 3.7 4.7	4	4.7		R280H62-1	0864-laa x R080	4.3	2.7
87-309H3 x 1913,1915 3.7 4.7	3.7 4.7	4.7		R280H62-5	0864-5aa x R080	4.7	2.7
F82-546H3 x R080 3.7 4.3	3.7 4.3	4.3		R280H62-8	0864-8aa x R080	4.3	5.3
0722HO x R080 3.7 4.7	3.7 4.7	4.7		R280H62-14	0864-14aa x R080	4.7	5.7
.7	.7	4.0		R280H62-19	0864-19aa x R080	4.3	5.3
.7	.7	2.0		R280H62-25	0864-25aa x R080	4.7	2.0
1852-7HO x R080 3.7 4.3	.7	4.3		R280H52-28	0864-28aa x R080	4.7	5.7
1852-52HO x R080 3.7 4.7	.7	4.7		R280H62-34	0864-34aa x R080	4.3	5.3
F85-796-22HO x R080 3.3 4.7	.3	4.7		R280H62-40	0864-40aa x R080	4.0	5.0
C796-43HO x R080 3.7 4.3	3.7 4.3	4.3		US H11	C546H3 x C36	4.0	5.0
89-762-17CMS x R080 3.3 4.3	3.3 4.3	4.3		2915H65	1865aa x 1913,1915	4.3	5.3

¹Mean of 3 replications.
* = average of 23 to 26 times repeated in test

	44 44 60 60	w www.4 w	5.3 5.0 4.0	4.4 6.0 7.0 8.0 8.0
CT Galst Rating 4.0 3.3 3.7	0.4 0.6 7.6 0.4 0.4 0.8	4 8 3	4444	4 K K K K K K K K K K K K K K K K K K K
O.P. C37, 86443 Inc. R079 (C37RZ) RZM BYV-ER R079	KZM 1204-#(C) Inc. 768 (US 75) RZM 1202-# (C28) Inc. R121 (C48) Inc. R080 RZM-BYV-ER R080	Inc. R080-1 Inc. R080-13 Inc. R080-28 Inc. R080-45 Inc. R080-56	Inc. R080-79 Inc. R080-80 RZM R122R3 RZM-BYV-ER R070 Inc. Y746 (C46/2)	RZM R078 (C46/2RZ) RZM-BYV-ER R078 Inc. C31/6 RZM R076 (C31/6RZ) BYV-ER R076
Variety MULTIGERM, U86-37 R279 R279Y	K279K2 268 R228 R221 R280 R280Y	R280-1 R280-13 R280-28 R280-35 R280-45	R280-79 R280-80 R222R4 R270Y Y846	R278 R278Y F86-31/6 R276
[명 역	7.0 4.4.4 7.0 7.4.4	5.0 7.4 7.4 7.0	4	4 4 4 4 7
CT G1 1st Rating 4.0 4.0 3.7	24 4444 70 0000	4 8 4 4 8 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 .0 0 .0 4 .0 7 .0 .0	
Descrip 915aa x 186 911-4aa x 1 911-12aa x	C911-14aa x 1865,1865-# C911-50aa x 1865,1865-# 1913-5aa x 1865,1865-# 1913-22aa x 1865,1865-# 1913-25aa x 1865,1865-#	0911-1aa x 1865,1865-# 0911-48aa x 1865,1865-# 0911-24aa x 1865,1865-# 0913-6aa x 1865,1865-# 0913-9aa x 1865,1865-# 0915-1aa x 1865,1865-#	0915-4aa x 1865,1865-# 0915-6aa x 1865,1865-# 0915-7aa x 1865,1865-# 0915-16aa x 1865,1865-# 0915-22aa x 1865,1865-#	0915-23aa x 1865,1865-# 0915-24aa x 1865,1865-# 0915-27aa x 1865,1865-# 0915-34aa x 1865,1865-# 0915-46aa x 1865,1865-#
Variety HYBRIDS (cont.) 2865H15 2865H3-4 C2865H3-12	2865H43-14 2865H43-50 2865H45-5 2865H45-18 2854H45-22 2865H45-22	286546-1 286546-4 (B) 2865446-24 2865447-6 2865447-9 2865448-1	2865H48-4 2865H48-6 2865H48-7 2865H48-16 2865H48-16	2865H48-23 2865H48-24 2865H48-27 2865H48-34 2865H48-46

CURLY TOP EVALUATION OF SALINAS ENTRIES AT KIMBERLY, IDAHO, 1993

	December	Topicato do	1000		Documention	E	رابوديل لي
	Description	1 1	2nd		Describeron	14	2nd
Variety		Rating	Rating			Rating	Rating
MULTIGERM,	O.P. (cont.)	C	7	NR LINES AND) POPNS 1915-2 & C603	·	7
K2/0-43	RAM K1/6-45	0 5	, u	NZOSILO	1915aa A COO3	, 4 , 6	, c
K2/0-89	KZM KI/6-89	4. r	? · · ·	N244	77.	ე. ე. ძ	า เ ก เ
K282	Inc. KI/6-43,-89	2.0	٥.٦	N254-#	1915aa X N144-#	4.0	5.3
Y139	BYR Y939, (C39)	4.7	5.3	N203	Inc. C603	4.7	0.9
R239C8	RZM R139C7, (C39R)	4.3	5.0	N203-1		5.0	7.3
Y147	BYR Y947, (C47)	4.0	5.3	N204	Inc. 1226-1, (C604)	7.0	ω°3
R247C8	RZM R147C7, (C47R)	4.0	0.0	for the state of t			
R232	RZM 1201-#(C)	4.0	5.3	MONOGERM, S	1	3.7	4.3
P201	Inc.1211,,1216(WB97,242)	4.3	5.0	2890	C790aa x 1890, RZM 1890	3.7	5.0
MULTIGERM,	Sf, A:aa POPNS & LINES						
R207	RZM R107	4.3	0.9	2891m	1890aa x A	3.7	4.7
R208	RZM R108	4.7	0.9	2888m	6,90,1859Raa x	4.0	4.7
2220	RZM Z120,Z122,Z124	4.7	0.9	2889m	0790, 0787, 0755aa x A	3.7	4.7
2230	Z120,Z122,Z124aa x 1915	4.3	5.7	2859		3.7	4.3
2916	1905aa x 1913,1915	4.0	4.7	2859R			4.7
5747	4747aa x A	3,3	4.0	2859m	1859, 1859Raa x A, (C859)		4.7
2910	Inc. 1210 (C)	3.7	4.3	2867	RZM 1867	3.7	4.7
2914	RZM 1914	3.7	4.3	2867m	1867, 1867Raa x A	3.7	4.7
2911Y	BYV-ER 0911	4.0	4.3	2866	Inc. 1866	3.7	4.7
2913	RZM 1913	4.0	4.3	2865m	1865-#, 1865aa x A	4.0	5.7
2913Y	RZM-BYV-ER 0913	3.7	4.3				
, ,	מיטר אשת	,	,	MONOGERM LINES	NES CECOMO VY CEAC	7	7
2915 2015V	KAM 1915 RV77-FD 0015	7.6	v. 4 ∪ ⊂	F02-346H3	C362HO X C346	٠,٠	7. 4
29151 2915	DIV-EX 0913 1915-#aa x 1913.1915	4.0	7.4	F92-790-6H39		3.7	4. 4 5. 5.
)

CURLY TOP EVALUATION OF SALINAS ENTRIES AT KIMBERLY, IDAHO, 1993 (cont.)

	Description	CT Grade	rade-		Description	CT	CT Grade
		1st	2nd			1st	2nd
Variety		Rating Rating	Rating	Variety		Rating	Rating Rating
MONOGERM LINES (cont.)	(cont.)			MONOGERM LINES (cont.)	ES (cont.)		
F92-790-15H39	F92-790-15H39 C762-17CMS x C790-15	3.7 4.3	4.3	87-309	Inc. C309	3.7	4.7
F92-790-54H39	C762-17CMS x C790-54	3.7	4.3	89-190-68	Inc. C790-68	4.0	5.0
88-790-68H92	C796-22CMS x C790-68	4.0	5.0	F92-790-6	Inc. C790-6	4.0	5.0
F92-790-6H97	C796-43 CMS x C790-6	4.0	4.7	F92-790-15	Inc. C790-15	3.7	4.7
F92-790-15H97	C796-43CMS x C790-15	3.7	4.7	F92-790-54	Inc. C790-54	4.0	4.7
F92-790-54H97	C796-43CMS x C790-54	3.7	4.3	91-762-17	Inc. C762-17	3.7	4.3
F82-546	Inc. C546	3.7	4.7	F82-562	Inc. C562	4.0	4.3

Test was severely infested with black bean aphids making differences in curly top reactions difficult to rate. Note:

TEST 493. BOLTING EVALUATION OF LINES, SALINAS, CA., 1992-93

160 entries x 3 replications 1-row plots, 18 ft. long Planted: November 12, 1992 Not harvested for yield

		Beets			Powdery
<u>Variety</u>	Description	100′		olting	Mildew
		No.	<u>07/08</u>	09/01	<u>Mean</u>
Block 1					
MM,O.P. line	25				
SP 7622-0	L80466 (8/87)	126	83.8	85.3	4.8
Y009	Inc. US 22/3	120	82.6	82.6	6.8
768	Inc. 868 (US 75)	130	28.4	31.2	7.0
268	Inc. 768 (US 75)	115	9.5	9.5	6.7
U86-37	C37, 86443	126	10.6	18.5	5.8
R279 Iso	RZM R079	111	19.7	25.7	5.0
R279Y Iso	RZM-BYV-ER R079	113	26.9		5.8
R279R2	RZM 1204-#(C)	117	12.8	21.1	7.2
R128	RZM 0271-#	117	33.4	35.4	5.7
R228	RZM 1202-#(C)	102	4.8	4.8	5.2
R130	RZM R030	106	46.3	57.9	5.0
R230	RZM R130	115	37.1	38.4	4.3
R221	RZM R121	76	48.0		5.5
Y954	Inc. Y854	119	6.3	12.6	5.2
Y054 Iso	BYR-ER-PMR Y854	102	8.7	10.2	4.3
R080 Iso	RZM R980	109	22.2	30.6	4.7
Block 2					
R280 (SpMR)	RZM R080 (Iso)	117	28.8	35.4	5.7
R280 Iso	RZM R080 (Iso)	98	18.4	24.4	5.5
R280Y Iso	RZM-BYV-ER R080	93	13.9	19.9	6.0
R280- 1	Inc. R080-1	119	14.3	14.3	5.3
- 13	Inc. R080-13	100	8.8	16.2	4.5
- 28	Inc. R080-28	96	10.2	11.7	3.7
- 35	Inc. R080-35	96	1.4	4.4	3.8
- 45	Inc. R080-45	95	3.2	3.2	4.0
R280-56	Inc. R080-56	115	7.0	11.9	4.3
- 79	Inc. R080-79	130	9.8	18.2	4.5
- 80	Inc. R080-80	119	1.6	4.7	4.2
R122R3	RZM R022R2	119	60.6	71.6	7.0
R222R4	RZM R122R3	100	69.4	75.3	7.3
R122Y2	BYR R922Y	107	40.7	40.7	5.3
R070	Inc. R971-R980	104	23.7	34.7	5.8
R270Y	RZM-BYV-ER R070	107	9.1	15.8	5.2

TEST 493. BOLTING EVALUATION OF LINES, SALINAS, CA., 1992-93 (cont.)

TT	B 1 11	Beets	0.5	7.1.1	Powdery
<u>Variety</u>	Description	100′		lting	<u>Mildew</u>
		No.	<u>07/08</u>	09/01	<u>Mean</u>
Dlogle 2					
Block 3	04612 06242	100	4 0	٥. ٦	F 3
U86-46/2	C46/2, 86342	133	4.2	8.5	5.3
Y846	Inc. Y746	100	3.3	4.7	5.0
R278 (SpMR)	RZM R078	113	33.7	41.6	6.7
R278 Iso	RZM R078	106	21.1	26.9	6.5
R278Y Iso	RZM-BYV-ER R078	113	6.9	11.1	5.7
F86-31/6	86263, Inc. C31/6	120	15.3		
R276 (SpMR)		109	42.7		
R276 Iso	RZM Ro76	111	32.6	35.6	5.8
R276Y Iso	RZM-BYV-ER R076	109	29.6	34.6	6.3
Y231-43	Inc. Y131-43	139	8.4	16.6	4.8
R276-43 Iso	RZM R176-43	113	14.1	25.1	6.5
R281-43	Y131-43 x RZM R176-43,-89	70	21.4	30.6	
Y231 - 89	Inc. Y131–89	111	0.0	2.1	6.5
R276-89 Iso		115	34.1	38.5	5.8
		91	16.3	27.6	6.0
R281-89	Y131-89, x R176-43,-89	111	30.0	43.2	6.2
R282 Sp	Inc. R176-43,-89	TTT	30.0	43.2	0.2
Block 4					
R283	rr composite x R(C)	120	21.8	25.8	5.3
Y141	BYR Y841	130	10.9	12.6	3.3
Y148	BYR Y948	115	24.4	40.8	5.5
Y049	BYR-ER-PMR Y849	111	35.2	44.7	4.7
Y156	BYR Y956	98	26.5	31.1	5.5
Y139	BYR Y939	117	18.3	29.0	4.7
R039C5	Inc. R939C5	117	36.6		
R239C8	RZM R139C7	122	41.7	50.6	5.2
R239C6	KIN KINCI	122		30.0	3.2
Y147	BYR Y947	113	14.8	19.6	4.8
R047C5	Inc. R947C5	113	68.6	72.1	6.0
R247C8	RZM R147C7	122	39.1	49.4	6.5
R204	RZM R104	109	74.1	74.1	6.7
R232	RZM 1201-#(C)	120	61.6	61.6	6.0
P201	PMR 1211,13,15;1212,14,16	113	55.4	57.3	6.0
P202	PMR 1217,19,21,23;				
1202	1218,20,22,24	113	48.2	51.0	6.0
U86-37	C37, 86443	115	12.9	14.5	6.3
Block 5					
	lines and populations	100	22.2	27.0	6.3
R207	RZM R107	130	33.8	37.8	6.3
R208	RZM R108	122	29.6	40.7	6.2
Z220	RZM Z120,Z122,Z124	109	27.9	40.6	6.5
Z230	RZM Z120,Z122,Z124aa x				
	1913,191	107	29.4	40.3	6.3

TEST 493. BOLTING EVALUATION OF LINES, SALINAS, CA., 1992-93 (cont.)

Variety	Description	Beets 100'	% Bo	lting	Powdery Mildew
		No.	07/08	09/01	<u>Mean</u>
Block 5 MM,S ^I ,A:aa	lines and populations (conf	:.)			
1905 2916	BYR 9905 (A,aa) 1905aa x 1913,1915	111 98	26.4 32.8	33.1 35.0	4.3 5.3
5747 2910	4747aa x A Inc. 1210(C)	120 111	21.5	32.3 19.9	7.5 7.2
R129 R229	RZM 0281-# Inc. 1206(C)	113 124	32.2 43.2	33.5 56.0	7.3 7.5
R229-4-1 R233	Inc. R029-4-1 Inc. 1205(C)	135 111	43.8 75.3	45.2 76.8	6.7 7.2
2910 - 1 - 1 2910 - 12 - 1	Inc. 1910-1-1 Inc. 1910-12-1	11 5 89	0.0 48.0	0.0 48.0	7.3 6.2
2914 U86 - 37	RZM 1914 C37, 86443	111 126	6.6 12.2	14.8 27.0	6.0 6.5
Block 6 SP7622-0	L80466 (8/87)	133	92.0	92.0	6.0
9903 8909 (Sp)	YR-ER-PMR 7903 (A,aa) 7909aa x A	109 133	8.9 16.8	19.0 23.7	5.7 5.3
9911 (Sp) 0911 (Sp)	8911aa x A 9911(Iso)aa x A	133 122	6.9 13.5	11.1 25.5	5.7 6.3
2911Y Iso 2911- 4	RZM-BYV-ER 0911,0911 RZM 1911- 4	117 95	15.8 0.0	23.9 4.2	5.8 5.3
2911 - 12 2911 - 14	RZM 1911-12 RZM 1911-14	122 113	6.1 20.1	9.3 33.7	6.2 5.5
2911 - 50 9912	RZM 1911-50	111	14.3	26.8	5.5
2912- 3 2912-11	RZM 8908,9,10,11aa x A RZM 1912- 3 RZM 1912-11	109 117 122	32.1 31.2 19.9	33.8 31.2 27.8	6.5 6.5 7.0
0909- 7 0909-34	Inc. 8909A-7 Inc. 8909A-34	100 98	63.0	68.5 47.2	6.0
0909-37	Inc. 8909A-37	113	21.3		4.7
Block 7 2913 Iso 2913Y Iso	RZM 1913 (A,aa) RZM-BYV-ER 0913	104	12.8	17.4	5.3
2913 5 2913-18	RZM 1913- 5 RZM 1913-18	106 115 107	19.5 6.2 28.7	19.5 8.0 33.5	5.0
2913 - 22 2913 - 25	RZM 1913-22 RZM 1913-25	128 96			5.2 5.5 5.2
	RZM 1915-#(C) (A,aa) RZM-BYV-ER 0915	109 120	5.2 1.4	6.6	4.7 5.8

TEST 493. BOLTING EVALUATION OF LINES, SALINAS, CA., 1992-93 (cont.)

**		Beets	0.5	21.1	Powdery
<u>Variety</u>	Description	100′		olting	Mildew
		<u>No.</u>	<u>07/08</u>	09/01	<u>Mean</u>
Plock 7 (con	+ \				
Block 7 (con 2915 Sp	RZM 1915-#,1913-#aa x A	122	31.0	32.4	5.7
0911 - 1	9911aa x 9911,9911H49	130	1.6	2.9	4.8
	•	117	9.7	14.7	6.0
0911-4 (B)	9911aa x 9911,9911H49			31.5	7.2
2911-24	Inc. 0911-24 (A,aa)	130	30.1		
0913-6	9911H49aa x 9911,9911H4	122	0.0	2.9	7.0
2913-9	Inc. 0913-9 (A,aa)	102	0.0	14.3	6.3
0915-1	9903aa x 9911,9911H49	98	26.5	34.6	6.3
2915-4	Inc. 0915-4 (A,aa)	120	18.5	45.3	5.8
71 1 0					
Block 8			10.6	15.6	
0915-6	9903aa x 9911,9911H49	93	13.6	17.6	5.7
2915 - 7	Inc. 0915-7 (A,aa)	100	0.0	3.0	4.5
U86-37	C37, 86443	113	10.0	18.2	5.8
0915-22	9903aa x 9911,9911H49	107	0.0	0.0	5.5
0915-23	9903aa x 99 11, 9911H49	87	13.9	16.7	4.8
0915-24	9903aa x 9911,9911H49	119	10.9	21.8	4.8
0915 - 27	9903aa x 9911,9911H49	93	11.8	15.4	4.2
0915-34	9903aa x 9911,9911H49	80	9.7	12.2	5.5
2915 - 46	Inc. 0915-46 (A,aa)	119	3.0	6.1	3.8
0915(C)	9903aa x 9911,9911H	117	9.4	10.9	5.2
1915	RZM 0915 (A,aa)	117	2.2	9.4	5.2
4	e				
monogerm, S	,A:aa populations				
0790	8790-S ₁ (C5) aa x A	126	4.2	11.4	6.8
2890Sp	0790mmāa x 1890,RZM 1890	93	3.9	8.1	6.7
2890HO	0790HO x 1890,RZM 1890	78	3.3	6.7	6.5
289 1 m	1890mmaa x A	111	6.3	16.4	6.5
2888m	Composite B aa x (C)A&B	96	24.8	32.4	7.0
Block 9					
2889m	Composite C aa x (C)A&B	91	31.4	31.4	6.2
2889mHO	1890HO x Composite A & B	82	15.5	21.6	6.7
2859 Iso	RZM 1859	111	17.4	20.1	7.7
2859R Iso	RZM 1859R	113	11.7	13.4	6.8
2859m Sp	1859,1859Raa x A	111	34.3	34.3	8.0
2000M bp	1039,1039144 21 11				
2859M Sp	1859,1859Raa x A	117	25.6	29.0	7.0
2859m HO	0859HO x 1859,1859R	107	27.7	33.0	7.2
2864 Iso	RZM 1864	115			7.0
	NB 9867m (A,aa)	106	26.7		
1867	RZM 1867 (A,aa)	98	17.0	17.0	6.7
2867 Iso	1867,1867Raa x A	102	14.5	23.5	7.2
2867m Sp	1007,1007144 X A	102			

TEST 493. BOLTING EVALUATION OF LINES, SALINAS, CA., 1992-93 (cont.)

		Beets			Powdery
<u>Variety</u>	Description	100′		olting	<u>Mildew</u>
		No.	<u>07/08</u>	<u>09/01</u>	<u>Mean</u>
Block 9 (cor	·				
2867m HO	0867HO x 1867,1867R	95	32.7	40.4	6.7
2866	RZM 1866 (A,aa)	132	12.8	22.8	6.8
2865 Iso	RZM 1865-#(C) (A,aa)	113	41.9	48.0	7.5
2865m <i>S</i> p	1865-#,RZM 1865-#,				
	1865aa x A	126	57.7	60.7	7.8
2865HO	87-309CMS x 1865,1865-#	109	40.4	54.8	7.8
Block 10					
NR Lines and	l Selections				
N801(A)Sp	Inc. B883	93	94.9	94.9	9.0
N203 Sp	Inc. N103	120	95.5	97.0	9.0
N203-1 Sp	Inc. N103-1	100	90.0	100.0	9.0
N203-1 Iso	NR-RZM N103-1	59	89.5	97.0	9.0
N204	Inc. 1226-1	98	100.0	100.0	8.5
N205	Inc. 1227-3	113	29.1	30.6	7.3
N206	Inc. 1227-7	102	30.6	47.4	7.3
N207	Inc. 1227-12	72	30.8	44.1	7.3
N244 Iso	NR-RZM N144-1-#(C)	102	41.6	46.0	8.0
N254-#-#(C)	1915aa x N144-#	69	12.8	16.1	7.2
N203H15	1915aa x N103,N103-1	95	36.2	44.6	8.3
N203H18	790-68H23 x N103,N103-1	98	39.9	63.3	8.8
N203H20	309H3 x N103,N103-1	95	41.6	73.3	8.7
N203H89	790-68CMS x N103,N103-1	95	66.5	71.2	9.0
N203H15	1915aa x N103,N103-1	100	43.0	47.2	8.0
N203 Sp	Inc. N103	113	75.1	88.0	8.7
Mean		109.6	26.7	32.7	6.1
LSD (.05)		29.1	16.7	18.4	1.5
C.V. (%)		16.5	38.9	35.0	15.7
F value		1.8**	14.4**	12.2**	4.7**

TEST 193. EVALUATION/SELECTION FOR RESISTANCE TO BOLTING, SALINAS, CA., 1992-93

27 entries; 10,15, and 30 blocks long 1-row plots, 18 ft. long

Planted: November 12, 1992 Not Harvested For Yield

Variety_	Description	Beets/	% Bol	lting	Powdery Mildew
		No.	07/08	09/21	Mean*
Rorder and/or	Evaluation/Selection				
R282	RZM R176-43,-89	112	32.3	36.3	5.3
R283	rr Composite x R(C)	105	25.3	29.3	4.9
R278 (SpMR)	RZM R078	106	32.1	43.6	6.5
R280 (SpMR)	RZM R080	111	27.3		5.4
MM, S ^S S ^S lines					
R270Y	RZM-BYV-ER R070	101	13.1	17.1	5.9
R276Y	RZM-BYV-ER R076	93	28.4	34.0	6.3
R276-43	RZM R176-43	112	26.9	30.6	5.0
R276-89	RZM R176-89	125	29.4	29.7	5.8
R276	RZM R076	118	31.9		5.0
R280	RZM R080	120	18.2	21.3	5.8
R280Y	RZM-BYV-ER R080	124	24.0	27.3	5.8
R278	RZM R078	116	20.7		5.0
R278Y	RZM-BYV-ER R078	124	14.8	15.2	5.1
MM, Sf, A:aa pop	wlahiana				
		100	0 1	11 1	4 0
2915Y	RZM-BYV-ER 0915 (A,aa)	120	9.1		4.2
2915 (Sp)	RZM 1913-#,1915-#aa x A	132	31.4	31.4	3.9
2915	RZM 1915-# (A,aa)	97	28.6	34.4	3.0
2913	RZM 1913 (A,aa)	123	4.8	4.8	5.0
2913Y	RZM-BYV-ER 0913 (A,aa)	115	16.3	16.3	4.4
2911Y	RZM-BYV-ER 0911 (A,aa)	118	22.8	22.8	5.3
mm, S ^f , A: aa pop	ulations and lines				
2859	RZM 1859 (A,aa)	89	13.1	13.1	5.0
2859R	RZM 1859 (A,aa)	107	19.3	19.3	8.0
2859m (Sp)	1859,1859Raa x A	67	52.1	52.1	8.0
2865m (Sp)	1865-#,RZM1865aa x A	138	56.0	56.0	6.3
2890 (Sp)	0790mmaa x 1890, RZM1890	108	5.3	7.2	6.1
F92-790-6	Inc. C790-6	55	5.7	6.0	4.9
F92-790-15	Inc. C790-15	82	11.5	18.5	3.8
F92-790-13	Inc. C790-13	84	4.9	6.9	4.7
192-190 34	IIIC. C/30 34	04	7.0	0.5	7.1

*PM Mean = Average of reading taken 07/02 & 08/03/93.

Up to 1200 feet of row per entry were grown for the purpose of evaluating and selecting for nonbolting tendency. Nonbolted mother roots reselected on the basis of % sugar were selected from lines R276Y, R276-43, R276-89, R276, R280, R280Y, R278, R278Y, 2915, 2865m, and F92-790-15. Seed will be produced in 1994.

TEST 593. BOLTING EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1992-93

160 entries x 3 replications 1-row plots, 18 ft. long Planted: November 12, 1992 Not harvested for yield

		Beets			Powdery
<u>Variety</u>	Description	100′	% Bo	lting	Mildew
		No.	<u>07/08</u>	09/01	<u>Mean</u>
Block 1					
US H11	L113401	120	12.6	17.3	6.3
WS-PM9	2/4/91	115	26.3	27.9	5.8
SS-NB3	11/9/92	132	1.3	9.9	5.7
HH 41	L412307 (9/14/92)	109	12.4	19.6	5.5
Rhizosen	L493304 (9/11/92)	109	29.9	42.2	5.5
Rhizoguard	893301 (9/14/92)	135	33.0	33.0	6.2
R222R4H20	87-309H3 x R122R3	106	48.5	56.9	7.3
N203H18	88-790-68H26 x N103	98	32.1	37.8	8.5
R276H18	88-790-68H26 x R076	117	27.2	33.7	5.5
R278H18	88-790-68H26 x R078	102	31.3	35.9	6.3
R282H18	88-790-68H26 x R176-43,-89	61	52.6	60.0	5.7
2915H18	88-790-68H26 x 1913,1915	70	24.9	35.6	5.8
R280H18	88-790-68H26 x R080	100	23.1	29.2	6.2
R080H23	87-309H37 x R980	100	33.4	48.3	5.8
R280H89	88-790-68CMS x R080	91	23.4	30.0	5.3
R282H89	88-790-68CMS x R176-43,-89	48	47.2	47.2	5.0
Block 2					
R280H3	F82-562HO x R080	128	19.2	20.6	6.0
R280H8	F82-546H3 x R080	117	30.4	39.9	5.7
R280H36	0833HO x R080	111	24.2	27.1	5.8
R280H22	0722HO x R080	128	14.5	21.8	6.2
R280H29	0790-6aa x R080	100	12.9	24.2	6.5
R080H29	8790A-6aa x R980	93	10.0	11.8	5.2
R080H30	8790A-15aa x R980	63	21.8	21.8	4.2
R280H33	0790-54aa x R080	104	21.2	21.2	5.3
R080H33	8790A-54aa x R980	89	20.0	24.1	5.7
R080H72	83-718HO x R980	89	6.3	10.6	5.8
R080H34	8790A-55aa x R980	98	14.6	18.5	5.5
R280H50	1855-24HO x R080	78	46.7	64.1	5.5
R280H51	1855-59HO x R080	96	18.9	21.2	6.3
R280H52	1852-7HO x R080	54	19.7	21.2	5.3
R280H53	1852-52HO x R080	107	16.4	22.1	
R280H92	F85-796-22HO x R080	95	15.6		5.8
12001172	100 / 70 ZZIIO X ROOU	90	13.0	29.9	6.2

TEST 593. BOLTING EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1992-93 (cont.)

		Beets			Powdery
Variety	Description	100′		lting	Mildew
Block 3		No.	07/08	09/01	<u>Mean</u>
R280H97	0796-43HO x R080	113	27.7	44.8	6.5
R276H23	87 - 309H37 x R076	130	30.6	38.9	6.2
R278H37	84-306CMS x R078	128	52.3	56.0	5.5
R280H37	84-306CMS x R080	115	24.4	37.6	5.8
R282H37	84-306CMS x R176-43,-89	104	20.1	24.0	5.5
R278H39	89-762-17CMS x R078	122	46.0	51.5	7.3
R280H39	89-762-17CMS x R080	124	27.8	34.1	6.7
2915H39	89-762-17CMS x 1913,1915	95	9.4	17.1	6.3
R280H26	87-309CMS x R080	89	27.2	35.9	7.2
R282H26	87-309CMS x R176-43,-89	70	34.5	38.4	7.2
2915H26	87-309CMS x 1913,1915	111	35.3	35.3	7.7
R080H39	89-762-17CMS x R980	91	8.2	14.7	6.3
R280H20	87-309H3 x R080	119	28.5	34.7	7.8
R280-1H20	87-309H3 x R080-1	120	22.1	30.0	7.5
R280-13H20	87-309H3 x R080-13	115	2.9	4.7	6.3
R280-28H20	87-309H3 x R080-28	85	11.6	21.6	6.0
Block 4					
R280-35H20	87-309H3 x R080-35	95	35.9	39.1	7.3
R280-45H20	87-309H3 x R080-45	111	1.5	3.0	5.7
R280-56H20	87-309H3 x R080-56	85	16.0	16.0	6.3
R280-79H20	87-309H3 x R080-79	119	16.8	16.8	6.8
R280-80H20	87-309H3 x R080-80	109	17.1	17.1	6.0
R276H20	87-309H3 x R076	132	29.5	48.0	6.5
R278H20	87-309H3 x R078	111	34.6	63.1	7.7
R282H20	87-309H3 x R176-43,-89	89	23.2	25.2	7.0
2915H20	87-309H3 x 1913,1915	120	27.8	35.5	7.5
2911 - 4H20	87-309H3 x RZM 1911- 4	113	6.7	11.4	7.0
2911 - 12H20	87-309H3 x RZM 1911-12	109	18.0	23.3	7.3
2911 - 14H20	87-309H3 x RZM 1911-14	89	24.0	46.7	6.8
2911-50H20	87-309H3 x RZM 1911-50	78	15.6	26.6	6.3
2912- 3H20	87-309H3 x RZM 1912- 3	106	23.7	29.6	7.0
2912-11H20	87-309H3 x RZM 1912-11	91	15.9	17.5	7.3
2913- 5H20	87-309H3 x RZM 1913- 5	74	12.9	20.2	7.8
Block 5		00	15.5		
2913-18H20	87-309H3 x RZM 1913-18	98	17.5	28.5	7.3
2913-22H20	87-309H3 x RZM 1913-22	87	31.2	42.4	6.3
2913-25H20	87-309H3 x RZM 1913-25	82	25.8	42.8	6.8
2911-24H20	87-309H3 x 0911-24	111	17.0	22.4	7.3 7.2
2913-9H20	87-309H3 x 0913-9	82 111	3.5	3.5 27. 9	7.2
2915-4H20	87-309H3 x 0915-4 87-309H3 x 0915-7	111	21.9 6.2	8.1	7.5
2915-7H20	87-309H3 x 0915-7 87-309H3 x 0915-46	78	6.5	9.3	7.5
2915-46H20	07-303U3 X 0313-40	70	0.0	9.3	/ • /

TEST 593. BOLTING EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1992-93 (cont.)

		Beets			Powdery
Variety	Description	100'	% Bo	lting	Mildew
		No.	07/08	09/01	Mean
Block 5 (con	t.)				
N203H15	1915aa x N103,N103-1	109	22.3	30.0	8.2
2859H15	1915aa x 1859,1859R	93	15.5	17.7	6.5
2867H15	1915aa x 1867,1867R	83	31.5	40.6	5.8
2865H15	1915aa x 1865,1865-#	115	28.8	38.7	6.5
2865H13	1913aa x 1865,1865-#	117	25.1	26.8	6.8
2865H43- 4	1911- 4aa x RZM 1865-#	107	20.7	30.7	6.7
2865H43-12	1911-12aa x RZM 1865-#	113	13.5	20.0	6.5
2865H43-14	1911-14aa x RZM 1865-#	113	28.5	34.5	6.8
Block 6					
2865H43-50	1911-50aa x RZM 1865-#	113	24.1	32.1	6.8
2865H44- 3	1912- 3aa x RZM 1865-#	115	51.8	51.8	6.3
2865H44-11	1912-11aa x RZM 1865-#	111	29.7	31.1	6.3
2865H45- 5	1913- 5aa x RZM 1865-#	115	9.8	18.6	5.7
2865H45-18	1913-18aa x RZM 1865-#	102	31.1	36.5	5.7
2865H45-22	1913-22aa x RZM 1865-#	104	18.6	20.1	5.8
2865H45-25	1913-25aa x RZM 1865-#	117	31.6	39.2	5.3
2865H46- 1	0911- 1aa x RZM 1865-#	122	15.2	21.4	5.5
2865H46-4 (B)	0911-4(B)aa x RZM 1865-#	122	23.8	34.5	7.0
2865H46-24	0911-24aa x RZM 1865-#	104	17.6	23.1	6.7
2865H47-6	0913- 6aa x RZM 1865-#	111	10.4	16.6	6.7
2865H47 - 9	0913- 9aa x RZM 1865-#	111	11.0	19.4	7.0
2865H48-1	0915- 1aa x RZM 1865-#	107	21.6	24.9	6.5
2865H48-4	0915- 4aa x RZM 1865-#	117	13.8	23.0	6.7
2865H48-6	0915- 6aa x RZM 1865-#	111	14.6	18.1	6.3
2865H48-7	0915- 7aa x RZM 1865-#	85	22.3	27.8	6.8
Block 7					
2865H48-16	0915-16aa x RZM 1865-#	126	36.5	45.6	6.7
2865H48-22	0915-22aa x RZM 1865-#	106	26.4	28.1	5.8
2865H48-23	0915-23aa x RZM 1865-#	126	30.4	38.7	6.3
2865H48-24	0915-24aa x RZM 1865-#	120	29.5	32.5	6.0
2865H48-27	0915-27aa x RZM 1865-#	128	24.7	27.7	6.2
2865H48-34	0915-34aa x RZM 1865-#	126	40.3	44.4	7.0
2865H48-46	0915-46aa x RZM 1865-#	109	20.3	32.7	6.2
2915H65	1865aa x 1913,1915	76	37.9	43.1	7.0
	·				, , ,
2915H58	1859Raa x 1913,1915	107	27.7	31.2	7.3
2915H68	1867Raa x 1913,1915	113	28.0	36.3	6.8
2915H90	0790aa x 1913,1915	85	19.8	24.6	6.8
R280H90	0790aa x R080	76	24.3	32.8	6.7
R280H91	0790HO x R080	87	17.2	16.8	5.5
R280H93	1890aa x R080	120	32.5	36.6	6.7
R280H58	1859Raa x R080	102	23.9	27.6	6.8
R280H65	1865aa x R080	113	51.4	51.4	6.8
					7.0

TEST 593. BOLTING EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1992-93 (cont.)

	Description	Beets 100'	% Bol	ting	Powdery Mildew
		No.	07/08	09/01	Mean
Block 8					<u> </u>
R280H66	1865-#(C)aa x R080	100	35.2	43.6	6.8
R280H68	1867Raa x R080	98	34.5	43.7	6.5
R280H64	1864aa x R080	80	42.0	54.6	5.8
R280H62- 1	0864- 1aa x R080	93	33.6	41.2	5.8
R280H62- 5	0864- 5aa x R080	56	44.4	56.5	5.3
R280H62- 8	0864- 8aa x R080	104	28.5	35.8	6.0
R280H62-14	0864-14aa x R080	106	42.5	42.5	6.0
R280H62-19	0864-19aa x R080	72	56.8	60.2	6.2
R280H62-25	0864-25aa x R080	70	23.5	23.5	6.2
R280H62-28	0864-28aa x R080	74	33.6	41.4	5.7
R280H62-34	0864-34aa x R080	109	27.0	34.9	5.7
R280H62-40	0864-40aa x R080	100	46.3	47.9	5.8
R280H63	0864HO x R080	102	19.9	31.0	6.0
US H11	L113401SS-NB3	120	22.2	23.6	6.5
SS-NB3	11/9/92	119	3.1	6.1	6.2
Rhizoguard	893301	104	33.1	37.3	7.0
monogerm, self-					
F82-546H3	82460, C562HO x C546	143	10.5	22.2	7.3
87-309H3	87671, C562HO x C309	126	39.8	45.7	8.2
87-309H37	87242, C306HO x C309	128	15.8	22.8	7.0
88-790-68H37	88191, C306HO x C790-68	102	23.7	34.5	6.2
88-790-68H26	88189, C309HO x C790-68	113	21.2	32.8	8.5
F92-790-6H26	921186, C309HO x C790-6	115	10.0	18.7	7.8
F92-790-15H26	921191, C309HO x C790-15	87	10.7	16.2	6.8
F92-790-54H26	921196, C309HO x C790-54	104	10.6	19.5	7.0
F92-790-6H39	921187, C762-17CMS x C790-6	95	3.9	9.5	5.5
F92-790-15H39	921192, C762-17CMS x C790-15		14.6	19.4	4.2
F92-790-54H39	921197, C762-17CMS x C790-54		6.3	13.0	5.0
88-790 - 68H92	88190, C796-22CMS x C790-68		11.9	17.9	6.3
F92-790-6H97	921188, C796-43CMS x C790-6	85	4.3	11.2	6.5
F92-790-15H97	921193, C796-43CMS x C790-15		14.9	18.1	5.8
F92-790-54H97	921198, C796-43CMS x C790-54		1.7	16.5	6.2
F82-562	82196, C562	119	34.3	45.0	7.5

TEST 593. BOLTING EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1992-93 (cont.)

		Beets			Powdery
Variety	Description	100′	% Bc	olting	<u>Mildew</u>
		No.	<u>07/08</u>	<u>09/01</u>	<u>Mean</u>
Block 10					
F82-546	82372, C546	124	24.9	33.7	7.5
87-309	87672, C309	111	26.9	49.8	7.7
88-790-68	88192, C790-68	113	30.7	42.1	6.7
88-790-68CMS	88187, C790-68CMS	113	9.2	23.5	6.0
F92-790-6	921189, C790-6	107	0.0	0.0	5.3
F92-790-6CMS	921185, C790-6CMS	98	5.8	11.5	6.5
F92-790-15	92 11 94, C 790 - 15	115	9.7	21.2	4.0
F92-790-15CMS	921190, C790-15CMS	93	7.9	14.1	5.3
F92-790-54	921199, C 790 - 54	113	1.7	3.2	5.0
F92-790-54CMS	921195, C790-54CMS	67	12.7	27.6	6.0
89-762-17	89121, C762 - 17	83	24.4	36.5	5.8
91-762-17	10/22/91, C762 - 17	78	3.3	5.2	6.2
91-767-46	10/22/91, C767 - 46	91	53.1	55.5	6.7
F82-562HO	82195, C562HO	120	36.6	44.5	7.8
1512	Inc. 6512 (NB6) (1981)	87	0.0	0.0	7.3
9600 (A)	Inc. 8600 (Annual)	115	100.0	100.0	
` '	,				
Mean		103.5	23.4	29.9	6.4
LSD (.05)		28.4	18.2	19.5	1.5
C.V. (%)		17.1	48.4	40.5	14.3
F value		3.1*	* 4.5**	4.5**	2.4**

TEST 393. BOLTING EVALUATION/SELECTION OF LINES WITHIN POPN-859, SALINAS, CA., 1992-93

30 entries x 1 replication 1-row plots, 18 ft. long Planted: November 12, 1992 Not harvested for yield

Variety	Description	Beets	2 Rc	olting	Powdery Mildew
variety	Description	No.	07/08	09/01	Mean
Lines from popr	n=859	110.	07700	02/01	reari
2859Am(Sp) - 1	Inc. 1859, 1859R (A-)	89	6.3	25.0	5.0
- 2	ine. 1033,10331(11)	117	33.3	33.3	4.0
- 3		122	9.1	13.6	6.5
- 4		89	31.3	31.3	5.5
- 5		67	33.3	33.3	7.0
3		07	33.3	33.3	7.0
- 6		83	33.3	33.3	7.0
- 7		95	29.4	29.4	6.5
- 8		56	90.0	90.0	7.5
- 9		106	15.8	26.3	8.5
-1 0		56	20.0	20.0	8.5
-11		111	25.0	25.0	9.0
- 12		89	25.0	25.0	7.0
-1 3		117	28.6	28.6	7.0
-14		95	76.5	76.5	7.5
- 15		95	17.6	23.5	8.5
- 16		95	23.5	23.5	7.0
- 17		111	45.0	45.0	7.5
- 18		67	100.0	100.0	5.0
- 19		111	20.0	20.0	6.5
- 20		95	17.6	17.6	8.0
- 21		72	15.4	15.4	8.0
- 22		106	26.3	26.3	7.0
- 23		83	6.7	20.0	6.5
- 24		78	42.9	42.9	6.0
- 25		100	11.1	16.7	6.5
- 26		111	20.0	30.0	6.5
- 27		56	50.0	50.0	5.5
- 28		128	0.0	8.7	6.5
- 29		89	6.3	18.8	6.5
- 30		106	10.5	10.5	8.5

Note: See test 3193, S₁ progeny test of monogerm lines for rhizomania resistance. Progeny lines of 2859Am were evaluated for nonbolting tendency (Test 393) and resistance to rhizomania (Test 3193). Stecklings from the best lines have been selected and will be topcrossed using genetic male sterile segregates to determine GCA. Popn-859 is nearly equal to C859.

TEST 293. BOLTING EVALUATION/SELECTION OF LINES WITHIN POPN-790 LINES, SALINAS, CA., 1992-93

60 entries x 1 replication 1-row plots, 18 ft. long

Planted: November 12, 1992 Not harvested for yield

		Beets			Powdery
Variety	Description	100′		lting	Mildew
		<u>No.</u>	<u>07/08</u>	<u>09/01</u>	<u>Mean</u>
<u>Lines C790-6</u>					
2790-6- 1	0790-6-#	100	0.0	0.0	1.5
- 2		117	0.0	0.0	4.5
- 3		100	0.0	0.0	5.0
- 4		1 45	0.0	7.7	5.0
- 5		72	0.0	7.7	5.5
- 6		56	0.0	10.0	3.5
- 7		100	0.0	22.2	5.0
- 8		106	0.0	31.6	5.5
- 9		39	0.0	42.9	6.0
<u>Lines C790-15</u>					
2790-15- 1	0790-15-#	106	5.3	5.3	5.0
- 3		78	50.0	50.0	7.0
- 5		89	31.3	31.3	5.0
- 6		78	21.4	21.4	4.5
- 7		83	20.0	20.0	4.5
- 9		78	14.3	35.7	4.5
-1 0		89	43.8	43.8	8.5
-11		72	15.4	23.1	3.0
- 12		106	10.5	15.8	4.0
-1 3		106	31.6	31.6	4.0
-1 4		100	0.0	38.9	4.5
-1 5		89	0.0	12. 5	4.0
-1 6		78	7.1	7.1	4.5
- 17		111	35.0	35.0	4.5
- 18		111	45.0	45.0	4.0
			32.00		
-1 9		89	6.3	6.3	5.5
- 20		39	14.3	14.3	4.0
- 21		106	5.3	5.3	4.0
- 22		106	10.5	10.5	3.5
- 23		72	0.0	0.0	4.5
- 24		33	0.0	0.0	6.5
			0.0	0.0	0.5

TEST 293. BOLTING EVALUATION/SELECTION OF LINES WITHIN POPN-790 LINES, SALINAS, CA., 1992-93 (cont.)

	Description	Beets 100'	% Bo	olting	Powdery Mildew
		No.	07/08	09/01	Mean
Line C790-54 2790-54- 1 - 2 - 3 - 4 - 5	0790-54-#	117 133 122 106 111	0.0 0.0 9.1 0.0	19.0 8.3 18.2 31.6 20.0	2.5 3.0 3.0 3.0 4.5
- 6		106	42.1	42.1	5.5
- 7		56	30.0	60.0	5.5
- 8		44	0.0	37.5	4.5
- 9		100	16.7	16.7	6.0
-10		100	0.0	50.0	6.5
-11		89	0.0	0.0	6.0
-12		78	0.0	50.0	4.5
-13		78	7.1	14.3	5.0
-14		67	0.0	0.0	5.0
-15		83	0.0	6.7	4.5
-16		67	8.3	8.3	5.0
-17		67	0.0	8.3	4.5
-18		95	5.9	29.4	3.5
-19		128	39.1	39.1	5.0
-20		67	0.0	0.0	6.0
-21		117	57.1	57.1	6.0
-22		67	8.3	33.3	5.0
-23		56	30.0	30.0	5.5
-24		117	28.6	28.6	4.5
-25		111	0.0	45.0	6.5
F92-790-15	Inc. C790-15	111	10.0	10.0	4.5
F92-790-15	Inc. C790-15	100	33.3	33.3	4.5
F92-790-15	Inc. C790-15	122	18.2	18.2	4.0
F92-790-15	Inc. C790-15	100	16.7	16.7	6.0
F92-790-15	Inc. C790-15	56	30.0	30.0	6.5

Single plants of C790-6, C790-15, and C790-54 were selfed under bags in the greenhouse. The selfed progeny were planted for evaluation and selection for nonbolting tendency. Among line variability suggests genetic difference for bolting resistance. Based upon these data, a mother root and steckling nonbolting selection was made within C790-15. Seed will be produced in 1994.

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

Stand Harv. Count / Plot Enviria Reaction / Plot P.M. iption Plot Plot DI & Resistant Avg. 2 x E440, E640 24 25 98.3 1.7 7.0 x E440, E640 24 25 91.6 5.3 7.1 x E12Ex3 24 25 21 7.0 4.0 x R1762x 103 22 21 79.5 12.2 8.0 H26 x R076 24 24 33.2 47.0 4.2 H26 x R080 25 24 24 47.0 4.8 H26 x R080 25 <t< th=""><th>^ _</th><th>160 entries x 3 replications 1-row plots, 18 ft. long</th><th></th><th>可用の</th><th>Planted: E.c.b. In Scored:</th><th>: April 20,1993 Inoc.: July 15, October 6, 199</th><th>.993 15, 1993 1993</th></t<>	^ _	160 entries x 3 replications 1-row plots, 18 ft. long		可用の	Planted: E.c.b. In Scored:	: April 20,1993 Inoc.: July 15, October 6, 199	.993 15, 1993 1993
23	Description	otion ¹	Stand Count/	Harv. Count/	Erwinia nr %	1 1	P.M.
23 22 5.1 79.6 640 25 98.3 1.7 7 7 2 640 25 25 98.3 1.7 7 7 7 2 640 25 25 98.3 1.7 7 7 7 2 640 25 23 42.5 33.3 4 4 2 2 2 24 24 23 37.2 47.0 25 25 24 21.4 60.2 25 25 24 21.4 60.2 25 25 24 21.4 60.2 25 25 24 21.4 60.2 25 22 21 24.3 37.4 41.7 41.3 37.4 41.7 41.3 37.4 41.7 41.3 37.4 41.7 41.3 37.4 41.7 41.3 37.4 41.7 41.3 37.4 24 22.5 24 23.5 58.6 55.9 22 22 23.7 59.3 33.3 22 23.7 59.3 33.3 22 23.7 59.3 33.3 22 23.7 59.3 33.3 22 23.7 59.3 33.3 22 23.7 59.3 33.3 22 23.7 59.3 33.3 22 23.7 66.3 2	Experimental Hybrids						
0) 25 23 98.3 1.7 7 640 24 25 91.6 5.3 7 640 25 23 43.5 36.8 4 25 23 43.5 36.8 4 24 23 21 54.0 33.3 4 24 23 51.4 33.7 6 24 24 39.8 44.0 4 24 24 39.8 44.0 4 25 24 24 39.8 44.0 4 25 24 29.8 51.6 4 26 22 23.0 66.2 5 27 22 21 41.3 37.4 4 28 25 24 21.4 60.2 5 29 26 27 41.3 37.4 4 21 24.2 55 29.8 51.6 4 22 25 24 21.4 60.2 5 25 24 21.4 60.2 5 25 24 21.4 60.2 5 25 24 23.5 58.6 55 26 25 24 23.5 58.6 55 27 22 23.7 41.7 4 28 22 22 23.7 59.3 3 28 22 22 23.7 59.3 3 28 22 22 23.7 59.3 3 28 22 22 23.7 59.3 3 29 22 22 23.7 59.3 3 20 21 17.1 63.6 22 21 17.1 63.6 22 22 22 23.7 59.3 3	1.113401		23	22	•	•	6.2
40 24 25 21 21 24 23 24 23 24 24 25 27 28 29 24 24 24 24 24 24 24 24 24 24	40.		25	23	98.3	•	
640 19 21 64.8 17.4 6 25 23 23 43.5 36.8 4 23 21 54.0 33.3 4 24 23 21 79.5 12.2 8 24 24 24 23 44.0 43,-89 24 23 37.2 47.0 25 25 29.8 51.6 4 25 25 29.8 51.6 4 25 25 29.8 51.6 60.2 25 22 21 41.3 37.4 4 24 23.5 58.6 55.6 25 24 23.0 66.2 55 25 24 24 21.4 60.2 4 25 25 29.8 51.6 4 26 25 29.8 51.6 64.2 27 20 23.0 66.2 55 28 24 23.5 58.6 55 28 25 24 23.5 58.6 55 28 25 24 23.5 58.6 55 28 25 24 23.5 58.6 55 28 25 22 23.7 59.3 33 28 22 23.7 59.3 33 29 22 23.7 59.3 33 20 21 17.1 63.6 22 21 24.2 63.5 52 22 22 23.7 59.3 33 23 22 15.8 69.3 33	. 5d		24	25	91.6		7.1
25 23 43.5 36.8 4 23 21 54.0 33.3 24 23 21 54.0 33.3 24 23 21 79.5 12.2 25 23 42.2 42.7 24 24 39.8 44.0 44.0 25 24 23 37.2 47.0 44.0 25 24 25 29.8 51.6 4 24 25 29.8 51.6 4 25 25 29.8 51.6 4 26 25 29.8 51.6 66.2 27 20 23.0 66.2 55 28 21 24.3 37.4 4 29 28 21.4 60.2 55 21 20 23.0 66.2 55 22 21 24.3 37.4 4 24 20.6 67.7 41.7 4 24 20.6 67.7 4 25 25 24 23.5 58.6 55 26 25 47.0 37.3 55 26 25 24 20.6 67.7 4 27 28.4 55.9 4 28 20 21 17.1 63.6 2 29 21 17.1 63.6 2 20 21 17.1 63.6 2 20 21 17.1 63.6 2	×		19	21	64.8	17.4	6.1
23 21 54.0 33.3 4 24 23 51.4 33.7 25 22 21 79.5 12.2 8 25 23 42.2 42.7 4 24 24 39.8 44.0 4 25 24 29.8 51.6 4 25 24 25 29.8 51.6 4 25 25 24 21.4 60.2 4 25 25 24 21.4 60.2 5 25 24 21.4 60.2 5 25 24 21.4 60.2 5 25 24 21.4 60.2 5 25 24 21.4 60.2 5 25 24 21.4 60.2 66.2 5 25 24 21.4 60.2 66.2 5 25 24 21.4 60.2 66.2 5 25 24 21.4 60.2 66.2 5 25 24 21.4 60.2 66.2 5 25 22 21 41.3 37.4 4 25 25 22 22 22 66.2 5 26 25 47.0 37.3 5 26 25 24 20.6 67.7 4 27 28.4 55.9 4 28 22 22 23.7 59.3 3 29 22 15.8 69.3 3	9/1	1/92)	25	23	43.5	•	4.0
24 23 51.4 33.7 6 25 21 79.5 12.2 8 24 24 39.8 44.0 24 23 37.2 47.0 25 24 29.8 51.6 27 24 29.8 51.6 28 21 20 23.0 66.2 29 21 41.3 37.4 44.0 25 22 21 41.3 37.4 44.0 25 25 24 24.0 27 44.0 28 25 29.8 60.2 29 24 21.4 60.2 25 21 41.3 37.4 44.0 25 22 21 24.3 26 25 24 23.5 58.6 27 24 20.6 67.7 28 22 23.7 59.3 29 22 23.7 59.3 20 21 17.1 63.6 20 21 17.1 63.6 20 21 17.1 63.6	893301 (9/14/	(92)	23	21	54.0	•	4.8
(C603) 22 21 79.5 12.2 8 25 23 42.2 42.7 4 24 39.8 44.0 4 24 24 39.8 44.0 4 24 25 29.8 51.6 4 25 24 21.4 60.2 4 25 24 21.4 60.2 5 21 20 23.0 66.2 5 25 21 41.3 37.4 4 44.3 39.7 41.7 4 25 22 24 23.5 58.6 55 26 25 24 20.6 67.7 4 23 22 28.4 55.9 4 24 20.6 67.7 4 23 22 28.4 55.9 2 25 22 23.7 59.3 3 25 22 23.7 59.3 3 25 22 23.7 59.3 3 25 22 23.7 59.3 3 25 22 23.7 59.3 3 25 22 23.7 59.3 3	, E	122K3	24	23	51.4	•	6.7
25 23 42.7 44.0 44.0 44.0 24 24 23 37.2 44.0 44.0 44.0 24 23 37.2 47.0 44.0 25 29.8 51.6 24 21.4 60.2 25 29.8 51.6 66.2 25 21.4 60.2 25 21 41.3 37.4 44.0 25 25 22 24 21.4 60.2 25 22 24 21.4 60.2 25 22 24.3 37.3 25 22 22 23.7 59.3 22 22 23.7 59.3 22 22 23.7 59.3 22 22 23.7 59.3 22 22 23.7 59.3 22 23.7 59.3 23 22 23.7 59.3 33.4 69.3 33.4 69.3	3H26	.03	22	21	79.5		•
24 24 39.8 44.0 4 -43,-89 24 23 37.2 47.0 4 25 29.8 51.6 4 25 24 21.4 60.2 4 21 20 23.0 66.2 5 25 21 41.3 37.4 4 -43,-89 18 18 39.7 41.7 4 22 21 24.2 63.5 5 24 22 24 23.5 58.6 5 25 24 23.5 58.6 5 26 25 24 23.5 58.6 5 27 24 20.6 67.7 4 23 22 28.4 55.9 4 20 21 17.1 63.6 2 21 27.1 63.6 2 22 22 23.7 59.3 3 23 22 23.7 59.3 3	88-790-68H26 >	< R076	25	23	42.2	42.7	4.2
-43,-89 24 23 37.2 47.0 4 ,1915 24 25 29.8 51.6 4 ,1915 25 24 21.4 60.2 4 21 20 23.0 66.2 5 21 20 23.0 66.2 5 22 21 41.3 37.4 4 41.3 37.4 4 4 44.3 39.7 41.7 4 22 21 24.2 63.5 5 24 23.5 58.6 5 5 24 24 20.6 67.7 4 23 22 23.5 59.3 3 20 21 17.1 63.6 2 20 22 23.7 59.3 3 20 23 23.7 59.3 3 21 17.1 63.6 2 22 23.7 59.3 3 23 23 23.6 59.3 3 23 <td>88-790-68H26 ></td> <td></td> <td>24</td> <td>24</td> <td>39.8</td> <td>44.0</td> <td>•</td>	88-790-68H26 >		24	24	39.8	44.0	•
25 29.8 51.6 4 25 24 21.4 60.2 21 20 23.0 66.2 5 21 41.3 37.4 4 25 21 41.3 37.4 4 4 25 21 41.3 37.4 4 4 26 22 21 24.2 63.5 5 26 25 24 23.5 58.6 5 26 25 24 20.6 67.7 4 27 24 20.6 67.7 4 28 22 22 28.4 55.9 4 29 20 21 17.1 63.6 2 20 21 17.1 63.6 2 21 27.3 59.3 3 22 22 23.7 59.3 3 23 22 15.8 69.3 3	88-790-68H26	R176-43,	24	23	37.2	47.0	•
25	88-790-68H26 x	~	24	25	29.8	51.6	•
21 20 23.0 66.2 5 25 21 41.3 37.4 4 4 41.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.4 4 4 1.3 37.3 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55	88-790-68H26 x R080	K R080	25	24	21.4	60.2	•
25 21 41.3 37.4 4 -43,-89 18 18 39.7 41.7 4 22 21 24.2 63.5 5 25 24 23.5 58.6 5 26 25 47.0 37.3 5 24 24 20.6 67.7 4 23 22 28.4 55.9 4 25 22 23.7 59.3 3 20 21 17.1 63.6 2 21 20.5 69.3 3	87-309H37 x R6	980	21	20	•	66.2	•
76-43,-89 18 18 39.7 41.7 4 76-43,-89 18 18 39.7 41.7 4 22 21 24.2 63.5 5 25 24 23.5 58.6 5 26 25 47.0 37.3 5 24 24 20.6 67.7 4 23 22 28.4 55.9 4 25 22 23.7 59.3 3 20 21 17.1 63.6 2 23 22 23.7 59.3 3 22 23.7 59.3 3	88-790-68CMS x R080	r R080	25	21	•	37.4	•
22 21 24.2 63.5 5 25 24 23.5 58.6 5 26 25 47.0 37.3 5 24 20.6 67.7 4 23 22 28.4 55.9 4 25 22 23.7 59.3 3 20 21 17.1 63.6 2 23 22 25.5 59.3 3	88-790-68CMS >	R176-43,	18	18	o	41.7	•
25 24 23.5 58.6 5 26 25 47.0 37.3 5 24 24 20.6 67.7 4 23 22 28.4 55.9 4 25 22 23.7 59.3 3 20 21 17.1 63.6 2 23 22 23.7 59.3 3		Ç	Ç	21			Ω Ω
26 25 47.0 37.3 5 26 25 47.0 37.3 5 24 24 20.6 67.7 4 23 22 28.4 55.9 4 20 21 17.1 63.6 2 23 22 23.7 59.3 3 23 22 15.8 69.3 3		000	7 C	1 7 6	•		•
26 25 47.0 37.3 5 24 24 20.6 67.7 4 23 22 28.4 55.9 4 25 22 23.7 59.3 3 20 21 17.1 63.6 2 23 22 15.8 69.3 3	~	080	52	77 1	•		•
24 24 20.6 67.7 4 23 22 28.4 55.9 4 25 22 23.7 59.3 3 20 21 17.1 63.6 2 23 22 15.8 69.3 3	0833HO x R080		56	25	•	•	
23 22 28.4 55.9 4 25 22 23.7 59.3 3 20 21 17.1 63.6 2 23 22 15.8 69.3 3	0722HO x R080		24	24			
25 22 23.7 59.3 3 20 21 17.1 63.6 2 23 22 15.8 69.3 3	C790-6aa x R080	180	23	22		•	•
20 21 17.1 63.6 2 23 22 15.8 69.3 3	C790A-6aa x I	2980	25	22	23.7	•	3.7
23 22 15.8 69.3	C790A-15aa x R980	R980	20	21	17.1	•	2.4
	C790-54aa x I	3080	23	22	15.8	•	3.0

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

P.M. Avq. 3	64480400 7877778	7.00.04.64.00.00.00.00.00.00.00.00.00.00.00.00.00	0.0.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
a Reaction ² % Resistant	70.0 33.8 79.8 0.0 43.8 43.5 57.8	48.6 35.7 24.0 25.3 11.0 36.2 30.9	40.6 61.2 46.4 31.7 45.8 50.7 67.8
Erwinia DI %	13.3 50.4 11.1 98.0 34.9 42.3 38.5	29.0 45.8 56.9 51.8 69.7 69.7 54.5	40.8 22.5 36.6 45.5 36.2 22.0 18.9
Harv. Count/ Plot	20 23 23 24 24 24	21 23 20 21 24 23 20	23 21 21 23 24 26 23
Stand Count/ Plot	21 23 26 25 25 24	22 24 21 21 24 23	25 22 24 25 25 25 23
Description ¹	ont.) C790A-54aa x R980 83-718HO x R980 C790A-55aa x R980 Inc. E440 (C40) 1855-59HO x R080 1852-7HO x R080 1852-52HO x R080 F85-796-22HO x R080	C796-43HO x R080 87-309H37 x R076 84-306CMS x R078 84-306CMS x R080 84-306CMS x R176-43,-89 89-762-17CMS x R078 89-762-17CMS x R080 89-762-17CMS x R080	Hybrids 87–309CMS x R080 87–309CMS x R176–43,-89 87–309CMS x 1913,1915 89–762–17CMS x R980 87–309H3 x R080–1 87–309H3 x R080–1 87–309H3 x R080–1
Variety	Block 2 R080H33 R080H72 R080H34 E840 R280H51 R280H52 R280H53 R280H53 R280H53	Block 3 R280H97 R276H23 R278H37 R280H37 R282H37 R278H39 R278H39	Topcross H R280H26 R282H26 2915H26 R080H39 R280H20 R280-1H20 R280-13H20

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

	P.M. Avg. 3	r L	D.T		•	•	4.7	•	•	•	5.6	4.8	5.4	5.9	5.0	7.1	5.4	5.6		5.3	5.1	5.2	9.9	5.4	5.4	5.4	5.2
	a Reaction ⁴ % Resistant		•	68.2	75.9	64.0	74.5	53.0	46.7	37.7		70.7	53.2	•	66.4		84.3	68.7		68.7	56.8	•	27.7	•	0.69	56.6	80.6
	Erwinia DI %		44.2	•	11.4	•	16.9	•	39.5	•	20.4	13.0	20.8	42.8	10.7	93.3	7.4	19.7		12.2	18.4	7.3	56.2	•	•	•	3.2
Harv.	Count/ Plot	ţ	25	26	24	25	25	26	24	23	21	23	26	26	24	25	26	25		20	21	23	23	23	24	24	19
Stand	Count/ Plot	!	25	27	24	25	25	27	26	24	23	25	27	26	25	24	26	25		22	22	23	23	24	23	25	19
	Description ¹		×	87-309H3 x R080-45	87-309H3 x R080-56	×		87-309H3 x R076	87-309H3 x R078	87-309H3 x R176-43,-89	87-309H3 x 1913,1915	×		87-309H3 x RZM 1911-14	87-309H3 x RZM 1911-50	Inc. E440 (C40)	L113401	87-309H3 x RZM 1913- 5		87-309H3 x RZM 1913-18	x RZM	87-309H3 x RZM 1913-25		87-309H3 x 0913-9	×	87-309H3 x 0915-7	87-309H3 x 0915-46
	Variety	Block 4	R280-35H20	R280-45H20	R280-56H20	R280-79H20	R280-80H20	R276H20	R278H20	R282H20	2915H20	2911-4H20	2911-12H20	2911-14H20	2911-50H20	E840	US H11	2913- 5H20	Block 5	2913-18H20	2913-22H20	2913-25H20	2911-24H20	2913-9H20	2915-4H20	2915-7H20	2915-46H20

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

P.M. 3	5.444 6.64.6 7.94.8	4 4 7 0 4 4	0.0000.44 0.0010.70	4 \(\cdot \
Erwinia Reaction ² DI % Resistant	34.7 57.5 64.2 71.2 38.9	70.3 62.9 55.9	72.2 0.0 81.6 71.3 78.7 87.8 80.4	66.0 21.4 73.1 76.8 56.1 80.8
Erwini	34.2 24.7 20.5 13.4 43.8	16.5 23.8 32.1	14.3 99.8 5.2 16.6 7.5 8.0	17.6 65.2 14.1 14.7 29.2 9.8 9.7
Harv. Count/ Plot	22 23 18 22 21	22 21 25	24 27 22 25 24 24	23 26 26 22 27 27
Stand Count/ Plot	23 24 21 22	23 26 26	25 27 27 26 27 27 27	25 25 25 26 27 27
Description ¹	5aa x N103 (C603) 5aa x 1859,1859R 5aa x 1867,1867R 5aa x 1865,1865-# 3aa x 1865,1865-#	rids, MMaa x mm Tester C911- 4aa x RZM 1865-# C911-12aa x RZM 1865-# C911-14aa x RZM 1865-#	C911-50aa x RZM 1865-# Inc. E440 (C40) L113401 1913- 5aa x RZM 1865-# 1913-18aa x RZM 1865-# 1913-22aa x RZM 1865-# 1913-25aa x RZM 1865-# 0911- 1aa x RZM 1865-#	0911-4(B)aa x RZM 1865-# 0911-24aa x RZM 1865-# 0913- 6aa x RZM 1865-# 0913- 9aa x RZM 1865-# 0915- 1aa x RZM 1865-# 0915- 4aa x RZM 1865-# 0915- 6aa x RZM 1865-#
Variety	Block 5 (cont.) N203H15 1915aa 2859H15 1915aa 2867H15 1915aa 2865H15 1915aa 2865H13 1913aa	Reciprocal Hybrids, 2865H43-4 C911- 2865H43-12 C911- 2865H43-14 C911-	Block 6 C91 2865H43-50 C91 E840 Inc US H11 L11 2865H45-5 191 2865H45-18 191 2865H45-22 191 2865H45-25 191 2865H46-1 091	2865H46-4(B) 0911- 2865H47-6 0913- 2865H47-9 0913- 2865H48-1 0915- 2865H48-4 0915- 2865H48-6 0915- 2865H48-7 0915-

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

P.M. 3	4 4 4 4 4 0 0 0 0 1 1 4 0 0 4 0 0 8	4 N W W 4 4 N 4 8 0 8 W 0 V 0 V	6.4.4.4.4.4.4.0.2.2.4.4.4.2.2.2.2.2.2.2.2
a Reaction ² % Resistant	62.2 67.3 70.5 80.1 54.0 69.5 37.4	58.3 49.2 51.5 51.5 45.0	53.6 50.4 46.0 53.5 57.3 44.1
Erwinia DI %	24.0 17.3 12.2 12.6 30.1 18.4 19.1	20.7 29.0 26.3 25.8 28.7 35.5 43.0	28.9 31.5 41.7 29.8 49.6 34.3 45.0
Harv. Count/ Plot	25 23 23 23 22	24 22 23 24 21 24 24	24 23 22 19 23 20
Stand Count/ Plot	25 24 25 24 24 24	24 24 21 23 23 26	25 23 23 22 25 25
Description ¹	0915-16aa x RZM 1865-# 0915-22aa x RZM 1865-# 0915-23aa x RZM 1865-# 0915-24aa x RZM 1865-# 0915-27aa x RZM 1865-# 0915-34aa x RZM 1865-# 0915-46aa x RZM 1865-#	<u>Vbrids</u> C859Raa x 1913,1915 1867Raa x 1913,1915 C790aa x 1913,1915 C790HO x R080 C790HO x R080 C890aa x R080 C859Raa x R080	1865-#(C)aa x R080 1867Raa x R080 1864aa x R080 0864- 1aa x R080 0864- 5aa x R080 0864- 8aa x R080 0864-19aa x R080
Variety	Block 7 2865H48-16 2865H48-22 2865H48-23 2865H48-24 2865H48-27 2865H48-34 2865H48-46 2915H65	Population Hybrids 2915H58 C859 2915H68 1867 2915H90 C790 R280H90 C790 R280H91 C790 R280H93 C859 R280H58 C859 R280H65 1865	Topcross Hybrids Block 8 18 R280H66 18 R280H64 18 R280H62-1 08 R280H62-5 08 R280H62-8 08 R280H62-14 08 R280H62-19 08

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

77.000	1 .6	Stand	Harv.	2 2 2 2 2	Dozotion	Q
variety	Description_	Count/ Plot	Count/ Plot	DI %	Resistant	Avg. 3
Block 8 (cont.)		Č	C			·
KZ8UH6Z-Z5	U864-25aa X KU8U	77	07	•	40.4	•
R280H62-28	0864-28aa x R080	21	21	•	52.9	4.9
R280H62-34	0864-34aa x R080	24	24	•	50.8	4.2
R280H62-40	0864-40aa x R080	23	23		40.7	4.7
R280H63	0864HO x R080	23	23	25.5	59.6	4.4
US H11	L113401	26	23			5.4
E840	Inc. E440, E640 (C40)	26	27			7.8
E840H8	F82-546H3 x C40	21	21		24.4	•
Block 9						
m,	self-fertile lines (F1CMS Hybrids)					
F82-546H3		26	26		71.5	7.2
87-309H3	87671, C562HO x C309	23	24		37.6	•
87-309H37	87242, C306HO x C309	25	22		29.1	6.7
88-790-68H37	88191, C306HO x C790-68	24	21	60.2	12.6	4.0
88-790-68H26	88189, C309HO x C790-68	25	25			
F92-790-6H26	921186, C309HO x C790-6	26	27			•
F92-790-15H26	С309НО х	25	24		37.1	5.1
F92-790-54H26	921196, C309HO x C790-54	26	25	•		•
F92-790-6H39	921187, C762-17CMS x C790-6	23	25	47.3	22.7	4.0
F92-790-15H39	_	27	26		13.8	•
F92-790-54H39	921197, C762-17CMS x C790-54	25	25		17.4	3.6
88-790-68H92	\circ	24	25		51.6	•
F92-790-6H97	921188, C796-43CMS x C790-6	26	21		57.4	•
F92-790-15H97	C796-43CMS x	25	23			4.7
F92-790-54H97	C796-43CMS x	26	25	25.2	65.8	4.3
F82-546H3	82460, C562HO x C546	25	22		•	6.7

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

Monogerm, Self-fertile lines Block 10	Variety	Description ¹	Stand Count/ Plot	Harv. Count/ Plot	Erwinia DI %	Erwinia Reaction ² DI % Resistant	P.M. 3
82372, C546 87672, C396 87672, C396 88192, C790-68 88192, C790-68 88192, C790-68 88187, C790-68 88187, C790-68 22 19 37.9 37.9 62.8 88187, C790-68 24 22 16 22 22 16 28.5 56.5 60.1 60.0 921199, C790-15 60.0 921199, C790-54 60.0 922 90.0 90.0 90.0 90.0 90.0 90.0 90	n, Self-	fertile lines					
## SETTORY CASOLOGY SETTORY STATES AND STATES AND STATES AND SETTORY CASOLOGY SETTORY CASOL	OI.		24	24	თ ო	86.0	6.4
88192, C790-68 88187, C790-68CMS 21 921189, C790-68CMS 22 16 22 16 28.5 56.5 50.0 23.0 24 21 28.5 56.5 50.1 50.0 52.0 23.0 23.0 24 23 22 27.4 43.1 50.0 50.0 16.8 50.0 50.0 16.8 50.0 50.0 16.8 4 921199, C790-54CMS 22 22 22 21 48.7 24 24 22 22 22 23 34.4 51.3 40.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0			24	22	17.3	62.8	7.1
CMS 88187, C790-68CMS 21 20 52.0 23.0 22.189, C790-6 921189, C790-6 921185, C790-6CMS 24 21 43.5 30.1 55.5 55.5 55.5 55.5 55.5 55.5 55.5 5	28		22	19	37.9	37.9	3.2
921189, C790-6 WS 921185, C790-6CMS 24 21 43.5 30.1 5 921194, C790-15 23 22 27.4 43.1, 5 GWS 921199, C790-15 4 921199, C790-54 24 22 27.4 43.1, 4 921199, C790-54 22 27.4 43.1, 23 22 27.4 43.1, 24 22 27.4 43.1, 25 21195, C790-54 27 24 23 34.4 51.3 27 24 8.7 32.2 28 32.2 4 WS.7 32.2 28 34.4 51.3 27 4 8.7 32.2 28 32.2 29 0.0 5.9 10/22/91, C762-17 10/22/91, C762-17 10/22/91, C762-17 24 23 44.7 86.8 81919, C760-46 24 23 34.4 113401 24 25 98.5 1.4 1.1 23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 2.9** 2.2** 19.4** 11.2**	68CMS	$\overline{}$	21	20	52.0	23.0	3.2
CMS 921185, C790-6CMS 24 21 43.5 30.1 5 921194, C790-15 23 22 27.4 43.1, 5 921199, C790-15CMS 23 22 27.4 43.1, 4 921199, C790-54 24 22 57.0 16.8 89121, C762-17 22 22 90.0 5.9 10/22/91, C762-17 19 19 97.6 0.0 10/22/91, C767-46 24 24 25 98.5 1.4 Inc. E440, E640 (C40) 24 25 98.5 1.4 Inl3401 23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 11.2**	9-		22	16	28.5	56.5	2.8
5 921194, C790–15 5 921199, C790–15GMS 2 23 22 27.4 43.1, 2 22 27.0 16.8 4 921199, C790–54 2 22 21 48.7 32.2 89121, C762–17 10/22/91, C762–17 10/22/91, C767–46 82196, C562 2 2 2 90.0 5.9 10/22/91, C767–46 82196, C562 2 2 90.0 5.9 10/22/91, C767–46 2 20 20 66.1 13.4 Inc. E440, E640 (C40) 2 4 25 98.5 1.4 Ind. E440, E640 (C40) 2 2 2 3.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 2.9** 2.2** 19.4** 11.2**	-6CMS		24	21	43.5	30.1	3.4
6GWIS 921190, C790-15GWIS 23 22 57.0 16.8 4 921199, C790-54 24 23 34.4 51.3 4 QYIS 921195, C790-54GMIS 22 22 90.0 5.9 10/22/91, C762-17 19 19 97.6 0.0 10/22/91, C767-46 24 23 4.7 86.8 82196, C562 20 20 66.1 13.4 Inc. E440, E640 (C40) 24 25 98.5 1.4 L113401 23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 2.9** 2.2** 19.4** 11.2**	-15		23	22	27.4	43.1	2.8
4 921199, C790-54 22 21 48.7 32.2 89121, C762-17 10/22/91, C762-17 10/22/91, C767-46 82196, C562 Inc. E440, E640 (C40) 23.9 23.9 23.0 23.9 23.0 24.0 25 25 26 20 20 20 66.1 13.4 24 25 25 28 298.5 1.4 24 25 28.5 29.0 20 20 20 20 20 20 20 20 20 20 20 20 20	-15CMS		23	22	57.0	16.8	3.3
4QMS 921195, C790-54QMS 22 21 48.7 32.2 22 90.0 5.9 10/22/91, C762-17 19 19 97.6 0.0 5.9 10/22/91, C762-17 24 23 4.7 86.8 82196, C562 20 66.1 13.4 25 98.5 1.4 13.4 25 98.5 1.4 22 7.6 81.9 1.13401 24 25.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 11.2**	-54	921199, C790-54	24	23	34.4	51.3	2.7
89121, C762-17 10/22/91, C762-17 10/22/91, C762-17 10/22/91, C767-46 10/22/91, C767-46 24 23 4.7 86.8 20 20 66.1 13.4 24 25 98.5 1.4 24 25 98.5 1.4 24 25 28.5 1.4 24 25 28.5 1.4 27 81.9 23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 1 23.9 23.9 23.0 34.0 50.1 23.9 23.9 23.0 34.0 50.1 24 25.6 22.3 11.2**	-54CMS	921195, C790-54CMS	22	21	48.7	32.2	2.8
10/22/91, C762-17 10	17	89121, C762-17	22	22	0.06	5.9	3.8
10/22/91, C767-46 24 23 4.7 86.8 82196, C562 1.3.4 24 25 98.5 1.4 13.4 24 25 98.5 1.4 1.13401 23.9 23.0 34.0 50.1 3.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 1 2.9** 2.2** 19.4** 11.2**	17	10/22/91, C762-17	19	19	97.6	0.0	3.8
82196, C562 20 20 20 66.1 13.4 21 11.4 24 25 98.5 1.4 24 27.6 81.9 23.9 23.0 34.0 50.1 3.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 11.2**	46	10/22/91, C767-46	24	23	4.7	86.8	0.9
Inc. E440, E640 (C40) 24 25 98.5 1.4 24 11.3401 24 22 7.6 81.9 23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 12.9** 19.4** 11.2**		82196, C562	20	20	66.1	13.4	6.8
23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 2.9** 2.2** 19.4** 11.2**		Inc. E440, E640 (C40)	24	25	98.5	1.4	7.1
23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 2.9** 2.2** 19.4** 11.2**		L113401	24	22	7.6	81.9	5.9
23.9 23.0 34.0 50.1 3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 2.9** 2.2** 19.4** 11.2**							
3.1 3.9 14.0 17.9 8.2 10.4 25.6 22.3 1 2.9** 2.2** 19.4** 11.2**			23.9	23.0	34.0	50.1	5.0
8.2 10.4 25.6 22.3 1 2.9** 2.2** 19.4** 11.2**	5)		3.1	3.9	14.0	17.9	1.2
2.9** 2.2** 19.4** 11.2**			8.2	10.4	25.6	22.3	14.8
			2.0**	2.2**	19.4**	11.2**	6.6**

TEST 2093. ERWINIA/POWDERY MILDEW EVALUATION OF HYBRIDS AND MONOGERM SELF-FERTILE LINES, SALINAS, CA., 1993

(cont.)

	P.M.	Avg
	Erwinia Reaction	% Resistant
	Erwin	DI
Harv.	Count/	Plot
Stand	Count/	Plot
	Description ¹	
	Variety	

Valley isolate from 1991. Based upon the checks, these tests should be reliable for evaluating of four isolates was used. The most virulent and aggressive one appeared to be the Imperial Tests 2093 and 2193 appeared to be good tests to evaluate Erwinia root rot. Mixed inoculum reaction to Erwinia.

1See Test 2193 for more detailed descriptions of components of hybrids and releases.

²Erwinia root rot: DI = average % rot per root at harvest; % resistant = percentage of roots scored 0 and 1% rotted. ³Powdery mildew not controlled. Scored on a scale of 0 to 9, where 9 = 90-100% of mature leaf area covered by visible mildew. Powdery mildew scored on 08/24, 09/02, & 09/16/93.

TEST 2193. ERWINIA POWDERY MILDEW EVALUATION OF LINES, SALINAS, CA., 1993

1993 15, 1993 1993		P.M. Avg.		5.0		8.0		•	•	•	5.3	4		2.8	•	•	•	•	4.3		3.8	4.0	•	•	•	2.5	•	•
Planted: April 20, 1999 E.c.b. Inoc.: July 15, Scored: October 5, 1999		Erwinia Reaction DI % Resistant			•	3.2		•				ນ	0 9	84.4	76.3	78.4	90.2	92.6	66.2		56.4	62.6	69.4		87.9	86.7	36.3	79.5
Planted: E.c.b. Inc Scored: C		Erwini DI %		4.5	97.4	8.06	45.1	3.5	11.2	8.7	ω. 0.	24.6	י מר מי מר	11.7	13.0	13.4	9.9	•	24.6		26.1	25.1	21.7	19.5	6.2	7.9	•	۳. 8
다 편 있	Stand	Count/ Plot		18	22	24	23	21	22	20	25	17	76	788	25	21	23	22	24		19	25	24	29	22	25	25	28
	Harv.	Count/ Plot		22	25	25	21	22	21	22	24	17	, T.C.	26	26	23	23	23	25		18	25	23	29	21	25	25	28
160 entries x 3 replications 1-row plots, 18 ft. long		Description	v	<u>=</u> 1113401	Inc. E440, E640 (C40)	x C40	F82-546H3 x C40	C37, 86443	RZM R079 (C37Rz)	RZM-BYV-ER R079	RZM 1204-#(C)	DZW 0271-# (C28)	1241 0211 # (020)	RZM R030		RZM R121	Inc. Y854	BYR-ER-PMR Y854	RZM R980		RZM R080	RZM R080	RZM-BYV-ER R080	Inc. R080-1	Inc. R080-13	Inc. R080-28	Inc. R080-35	Inc. R080-45
160 entries x 3 1-row plots, 18		Variety	Block 1		E840	E840H72	E840H8	U86-37	R279	R279Y	R279R2	0100	0220 0220	R130	R230	R221	Y954	Y054	R080	Block 2	R280 (SpMR)		R280Y	R280- 1	-13	-28	-35	-45

TEST 2193. ERWINIA POWDERY MILDEW EVALUATION OF LINES, SALINAS, CA., 1993 (cont.)

		Harv.	Stand			
Variety	Description	Count/ Plot	Count/ Plot	Erwini DI %	Erwinia Reaction DI & Resistant	P.M. Avg.
Block 2 (cont.)						
R280-56	inc. R080-56	22	23	5.3	84.5	1.5
-79	Inc. R080-79	23	22	17.3	70.7	1.8
-80	Inc. R080-80	24	23	5.8	89.9	2.3
R122R3	RZM R022R2	26	24	57.5	24.2	5.5
R222R4	RZM R122R3	26	26	44.2	40.7	6.2
R122Y2	BYR R922Y	24	22	37.4	44.3	3.5
R070	Inc. R971-R980	24	22	24.0		3.5
R270Y	RZM-BYV-ER R070	26	25	20.3	59.5	3.7
Block 3						
U86-46/2	C46/2, 86342	22	22	6.2	86.5	2.2
X846	Inc. Y746	22	21	5.9	86.2	1.2
R278 (SpMR)	RZM R078	23	22	22.4	63.8	2.3
R278	RZM R078 (C46Rz)	24	24	19.4	71.3	2.7
R278Y	RZM-BYV-ER R078	19	20	28.6	54.5	3.3
F86-31/6	86263, Inc. C31/6	23	22	17.4	9.99	1.3
R276 (SpMR)	RZM R076	23	22	H	67.7	•
R276	RZM RO76 (C31/6RZ)	24	24	26.2	56.2	2.7
R276Y	RZM-BYV-ER R076	21	18	25.5	0.09	4.3
Y231-43	Inc. Y131-43 (C31-43)	24	23	0.5	97.1	
R276-43	RZM R176-43	26	25	17.0	70.8	1.2
R281-43	Y131-43 x RZM R176-43,-89	18	18	4.9	83.2	
Y231-89	Inc. Y131-89 (C31-89)	26	28	15.2	74.3	2.5
R276-89	RZM R176-89	25	24			•
R281-89	Y131-89 x R176-43,-89	20	20	15.9	78.3	1.5
R282	Inc. R176-43,-89	23	24	27.8	60.1	2.8

TEST 2193. ERWINIA POWDERY MILDEW EVALUATION OF LINES, SALINAS, CA., 1993 (cont.)

P.M. Avg.	7.5	10.23.00.00.00.00.00.00.00.00.00.00.00.00.00	6 4 6 4 6 6 6 4 6 8 6 7 6 0 8 6 7	4 % 4 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 %	2.4 8.4 8.0 0.0
Erwinia Reaction DI % Resistant	1.4	83.7 95.8 61.2 61.1	82.1 83.8 90.2 78.5 91.5	66.0 57.7 68.7 71.4 87.8	81.1 88.9 88.0 80.7 67.4
Erwin	98.3	16.2 20.2 20.2 20.0 20.0	0.7.2 0.2.2 0.0.5 0.0.0 0.0.0	18.5 30.5 24.8 14.9 5.0	11.9 3.8 5.1 11.7
Stand Count/ Plot	26	25 25 24 24 24	19 21 22 24 22 22	23 23 22 18	21 24 25 20
Harv. Count/ Plot	25 25	25 26 24 23 26	18 21 25 23 23 23	24 23 22 18	22 24 21 21
Description	Inc. E440, E640 (C40) BYR Y841 (C91)	BYR Y948 (C93) BYR-ER-PMR Y849 (C49) BYR Y956 BYR Y939 (C39) Inc. R939C5 (C39R5)	BYR Y947 (C47) Inc. R947C5 (C47R5) RZM R147C7 RZM R104 RZM 1201-#(C) PWR 1211,,1216 PWR 1217,,1224 C37, 86443	lines and populations RZM R107 RZM R108 RZM Z120, Z122, Z124 RZM Z120, -4aa x 1913, 1915 BYR 9905 (A,aa)	1905aa x 1913,1915 4747aa x A Inc. 1210(C) RZM 0281-# Inc. 1206(C)
Variety	Block 4 E840 Y141	Y148 Y049 Y156 Y139 R039C5	Y147 R047C5 R247C8 R204 R232 P201 P202 U86-37	Block 5 MM, S ^I , A. aa R207 R208 Z220 Z230 1905	2916 5747 2910 R129 R229

TEST 2193. ERWINIA POWDERY MILDEW EVALUATION OF LINES, SALINAS, CA., 1993 (cont.)

P.M.	Avg.		4.2		•	3.7	•	8.5			3.7		•	3.2			ω 	3.2	3.0	•		°3		2.3	
Erwinia Reaction	% Resistant		57.7	91.7	30.8	79.1	83.5	0.0		67.0	9.98	91.1	76.7	80.0	77.5	96.3	73.4	61.3	78.0	84.0	0.0	0.0	40.0	82.0	82.8
Erwin	DI		20.2	3.0	40.9	3.0	0.9	100.0		12.5	3.6	3.8	16.0	12.2	8.0		15.2	22.6	11.3	4.8	99.5	96.3	50.0	11.4	9.6
Stand Count/	Plot		24	23	21	21	21	22		19	25	27	26	25	22	28	25	22	23	21	22	25	22	22	25
Harv. Count/	Plot		23	24	22	22	23	23		24	25	25	26	25	22	26	25	24	24	25	24	26	21	23	26
Description	4	lines and populations (cont.)	Inc. R029-4-1	Inc. 1205(C)	Inc. 1910-1-1	Inc. 1910-12-1	RZM 1914	Inc. E440, E640 (C40)		L113401	YR-ER-PMR 7903 (A, aa)	7909aa x A	8911aa x A	9911aa x A	RZM-BYV-ER 0911	RZM 1911- 4 (C911- 4)	RZM 1911-12 (C911-12)	RZM 1911-14 (C911-14)	RZM 1911-50 (C911-50)	L113401	Inc. E440, E640 (C40)	83-718HO x C40	F82-546H3 x C40		Inc. 8909A-37 (C909-37)
Variety	1	Block 5 MM, S ^E , A: aa lines	R229-4-1	R233	2910-1-1	2910-12-1	2914	E840	Block 6	US H11	9903	6068	9911	0911	2911Y	2911- 4	2911–12	2911-14	2911-50	US H11	E840	E840H72	E840H8	0909-34	0909-37

TEST 2193. ERWINIA POWDERY MILDEW EVALUATION OF LINES, SALINAS, CA., 1993 (cont.)

P.M. Avg.	2.0	22.08.2	2.2	2.7	3.7.8	2.0	32.7.5.2 32.5.8 3.3.5.8	3.5
Erwinia Reaction DI % Resistant	61.6	88.1 81.8 95.4	79.7	71.0	88.7 37.7 91.0	97.0 92.7 75.5	93.9 89.4 95.4 92.5 90.7	100.0 78.4 84.1
Erwin	28.5	4.5 0.3 1.6	7.5	14.6	43.5 6.9	0.2 2.6 12.5	96.1.99 96.2.99 96.2.99	0.0
Stand Count/ Plot	17 24	22 23 23 25 25	23	22	25 22	22 21 22	23 25 25 22 24 21	21 23 23
Harv. Count/ Plot	16 23	23 20 21	24	21 24	25 23	21 21 23	23 25 23 22 24 21	20 24 24
Description	RZM 1913 (A, aa) RZM-BYV-ER 0913	RZM 1913- 5 RZM 1913-18 RZM 1913-22 RZM 1913-25	RZM 1915-#(C) (A, aa) RZM-BYV-ER 0915	RZM 1915-#,1913-#aa x A 9911aa x 9911,9911H49	9911aa x 9911,9911h49 Inc. 0911-24 (A,aa) 9911H49aa x 9911,9911H49	Inc. 0913-9 (A,aa) 9903aa x 9911,9911H49 Inc. 0915-4 (A,aa)	9903aa x 9911,9911H49 Inc. 0915-7 (A,aa) Inc. E440, E640 (C40) 9903aa x 9911,9911H49 9903aa x 9911,9911H49 9903aa x 9911,9911H49 9903aa x 9911,9911H49	Inc. 0915-46 (A,aa) 9903aa x 9911,9911H49 RZM 0915 (A,aa)
Variety	Block 7 2913 2913Y	2913-5 2913-18 2913-22 2913-25	2915 2915Y	2915 Sp 0911-1	0911-4(B) 2911-24 0913-6	2913-9 0915-1 2915-4	Block 8 0915-6 2915-7 E840 0915-22 0915-23 0915-27 0915-27	2915-46 0915(C) 1915

TEST 2193. ERWINIA POWDERY MILDEW EVALUATION OF LINES, SALINAS, CA., 1993 (cont.)

P.M. Avg.	4 4 7 7 7 7 0 2 0 2 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	6.7 8.0 8.0 8.0
Erwinia Reaction DI % Resistant	35.2 31.7 30.1 39.0 21.4	32.7 1.3 36.2 17.1 26.8 17.9 18.4	34.7 16.7 44.7 61.7 34.1 23.0	17.2 25.1 0.0
Erwin	40.9 40.7 40.4 43.4 54.9	43.4 97.6 51.1 66.7 63.3 67.6 64.8	51.0 67.5 33.7 19.1 54.0 52.9	73.5 54.8 98.6 98.3
Stand Count/ Plot	27 19 23 23	17 23 23 20 23 23 25	18 20 20 20 22 21 21	19 21 23 24
Harv. Count/ Plot	28 19 23 24	16 24 25 24 20 22 E) 23	19 22 21 26 19 23 23	18 22 23 25
Description	<u>Sf, A: aa populations</u> 8790-S ₁ (C5) aa x A (C790) 0790mmaa x 1890, RZM 1890 0790HO x 1890, RZM 1890 1890mmaa x A Composite B aa x (C) A&B	Composite C aa x (C)A&B Inc. E440, E640 (C40) RZM 1859 RZM 1859Raa x A (C859) 1859,1859Raa x A (C859) 1859,1859Raa x A (C859) 1859,1859Raa x A (C859CMS)	NB 9867m (A,aa) RZM 1867 (A,aa) 1867,1867Raa x A 82460 (C562CMS x C546) RZM 1866 (A,aa) RZM 1865-#(C) (A,aa) RZM 1865-#,1865aa x A 87-309CMS x 1865,1865-#	and Selections Inc. B883 Inc. N103 (C603) Inc. N103-1 (C603-1) Inc. E440, E640 (C40)
Variety	monogerm, S ^f , A 0790 2890 2890HO 2891m 2888m	Block 9 2889m E840 2859 2859R 2859R 2859M Sp 2859M HO 2864	1867 2867 2867 2866 2866 2865 2865 2865m Sp 2865m Sp	Block 10 NR Lines and S N801(A) N203 Sp N203-1 Sp E840

TEST 2193. ERWINIA POWDERY MILDEW EVALUATION OF LINES, SALINAS, CA., 1993 (cont.)

Erwinia Reaction P.M. DI & Resistant Avg.	8.3 6.3 20.5 5.3 41.2 6.3		56.5 5.8 10.1 8.2 7.3 8.0 6.0 8.0 74.8 5.5	61.8 4.1 17.5 1.5 17.6 23.2 21.4** 11.8**
Erwinia DI % R	88.0 62.1 39.1 12.6		27.6 74.7 75.9 85.3 99.8	27.1 13.6 31.3 32.9**
Stand Count/ Plot	18 21 22 18	20	24 22 22 21 21	22.5 6.1 16.8 1.1NS
Harv. Count/ Plot	19 23 19	22	26 23 24 25 25 25	23.0 5.9 16.0 1.2NS
Description	lections (cont.) Inc. 1226-1 (C604) Inc. 1227-3 (C605) Inc. 1227-7 (C606) Inc. 1227-12 (C607)	NR-RZM N144-1-#(C) 1915aa x N144-#	1915aa x N103,N103-1 790-68H23 x N103,N103-1 309H3 x N103,N103-1 790-68CMS x N103,N103-1 Inc. E440, E640 (C40) L113401	
Variety	Block 10 (cont.) NR Lines and Selections N204 Inc. 1 N205 Inc. 1 N206 Inc. 1 N206 Inc. 1	N244 N254-#-#(C)	N203H15 N203H18 N203H20 N203H89 E840 US H11	Mean LSD (.05) C.V. (%) F value

Note: Erwinia tests were inoculated with four isolates. Tests by Dr. Alice Pilgeram suggest experience with Erwinia tests over the past 20 years, these are particularly good trials for that most infection was due to a 1991 isolate from the Imperial Valley. Based upon evaluating differences.

Planted: March 9, 1993

192 entries x 6 reps, RCB 1-row plots, ft. long

Entry			Beets/		Powd	lery Mi	ldew S	core	
No		Co	Plot	<u>8/06</u>	8/10	8/24	8/31	9/16	<u>Mean</u>
			No.						
TMF 0	******	a 1	40.5		. .				4.0
PM- 3	H90293	Spreck	12.7	0.8	0.7	2.2	2.7	3.3	1.9
- 5	H92528	Spreck	12.8	2.7	3.2	4.7	6.2	7.0	4.7
- 7	H89349	Spreck	12.8	1.0	3.0	4.0	5.2	6.2	3.9
- 10	H92661	Spreck	13.0	1.3	1.8	3.8	4.7	6.3	3.6
- 18	SS-502	Spreck	13.0	1.7	2.0	3.2	5.0	6.5	3.7
- 19	H90663	Spreck	13.3	1.3	2.5	4.0	5.3	7.0	4.0
- 23	SS-595R	Spreck	12.8	1.8	2.7	4.0	5.2	6.8	4.1
- 26	H88335	Spreck	13.3	1.2	2.3	3.0	4.5	5.2	3.2
- 29	H88200	Spreck	13.5	0.2	0.7	1.7	3.3	4.2	2.0
- 34	SS-NB2	Spreck	13.7	1.3	2.2	4.0	5.5	7.0	4.0
- 41	SS-377	Spreck	12.2	1.2	2.8	3.2	4.0	5.5	3.3
- 42	H91667	Spreck	11.5	0.8	2.3	3.5	4.5	5.7	3.4
- 47	H89272	Spreck	12.8	1.2	3.0	4.3	6.2	7.8	4.5
- 49	SS-VY1	Spreck	12.2	0.7	1.5	2.8	3.8	4.7	2.7
- 51	H92660	Spreck	12.3	1.2	2.5	3.2	3.8	5.0	3.1
- 52	H92632	Spreck	12.7	0.7	3.2	4.0	4.3	6.2	3.7
- 54	H90376	Spreck	13.2	0.7	1.7	2.7	4.5	5.7	3.0
- 55	SS-334	Spreck	12.7	1.7	3.2	3.3	5.3	6.7	4.0
- 56	H89401	Spreck	13.5	1.2	1.3	2.7	4.0	5.5	2.9
- 60	SS-NB5	Spreck	12.0	0.8	2.0	3.7	5.2	6.3	3.6
		•							
- 61	Н90636	Spreck	12.8	1.3	3.0	4.5	6.2	6.7	4.3
- 66	H90586	Spreck	13.3	1.0	2.3	3.5	5.0	6.3	3.6
- 69	SS-781R	Spreck	11.7	1.0	2.2	4.0	5.2	6.0	3.7
- 70	SS-270	Spreck	11.8	1.0	2.2	3.2	5.0	5.3	3.3
- 74	H90448	Spreck	12.0	0.5	1.7	2.5	4.0	4.8	2.7
- 76	SS-287R	Spreck	12.3	0.8	2.7	3.5	4.7	5.8	3.5
- 83	H90273	Spreck	12.5	0.8	2.5	4.0	4.7	5.2	3.4
- 89	SS-Y1	Spreck	13.2	1.2	1.3	2.7	4.3	5.5	3.0
- 92	SS-289R	Spreck	13.0	2.8	3.5	4.7	6.7	7.5	5.0
- 94	H89303	Spreck	13.3	1.0	2.5	3.7	5.8	7.0	4.0
- 99	SS - 231	Spreck	12.8	1.2	2.7	3.0	4.3	6.5	3.5
-102	SS-NB2R	Spreck	11.7	1.8	2.7	3.8	5.8	7.7	4.4
-102 -105	H90556	Spreck	11.7	1.0	2.5	3.8	5.2	6.5	3.8
-105 -109	H91598	Spreck	13.3	0.3	1.8	3.3	5.0	5.7	3.2
-1 09	SS-596R	Spreck	12.5	0.7	2.2	3.0	4.5	5.7	3.2
-110	22-2301	phrcar	12.5	0.7	2.5	0.0			

Entry			Beets/		Powd	lery Mi	ldew S	core	
No.	<u>Variety</u>	Co	Plot	8/06	8/10	8/24	8/31	9/16	<u>Mean</u>
			<u>No.</u>						
PM-112	H89299	Spreck	12.5	0.7	2.2	3.5	4.8	6.3	3.5
-120	SS-IV1	Spreck	13.3	0.7	2.2	3.5	4.5	6.3	3.4
-12 3	SS-242	Spreck	13.5	0.5	2.3	4.0	6.0	6.8	3.9
-126	SS-593R	Spreck	12.2	0.8	2.8	3.5	5.3	6.8	3.9
- 129	H92566	Spreck	13.2	2.0	3.3	5.2	7.0	8.5	5.2
-134 -137	H91570 H91706	Spreck	12.7	1.7	2.3	4.2	5.8	6.7	4.1
-137 -141	SS-790R	Spreck Spreck	13.2 12.5	0.7 0.8	2.3	1.8 3.8	4.0 5.2	6.0 6.5	3.0 3.8
- 146	SS-293R	Spreck	12.2	0.3	2.7	3.2	4.3	5.2	3.1
- 151	H92535	Spreck	13.5	2.0	3.2	3.7	5.5	6.0	4.1
		- P							
- 152	H90631	Spreck	12.8	1.3	3.0	3.8	5.2	6.0	3.9
-1 53	SS-NB3	Spreck	12.2	2.0	3.5	4.5	5.8	7.5	4.7
-1 55	H88313	Spreck	13.2	1.0	2.7	4.0	5.2	6.5	3.9
-156 -161	SS-246 H90272	Spreck Spreck	13.3 13.2	1.0 1.2	1.3 2.7	2.7 3.8	4.3	6.0 6.5	3.1
- 166	SS-334R	Spreck	11.8	1.3	3.2	5.0	6.3	7.3	3.8 4.6
-172	H91572	Spreck	12.2	0.7	1.2	3.0	4.5	4.8	2.8
-1 73	SS-181	Spreck	12.7	0.3	1.5	3.0	4.3	5.7	3.0
- 175	H90771	Spreck	10.5	0.7	1.2	3.2	4.3	5.5	3.0
PM- 1	9BG6371	Beta	12.2	1.0	1.8	3.3	3.7	5.5	2 1
- 9	Beta 4823	Beta	13.2	2.5	3.3	5.0	6.5	6.7	3.1 4.8
- 14	2BG6338	Beta	13.3	0.5	1.2	1.8	3.5	5.2	2.4
- 17	Beta 4757	Beta	12.8	0.3	1.8	1.7	2.5	4.8	2.2
- 24	2BG6101	Beta	13.7	1.3	2.5	4.7	5.3	6.7	4.1
- 30	2BX6218	Beta	12.7	0.0	0.5	1.5	3.0	4.5	1.9
- 31	1BG6541	Beta	13.7	0.8	2.5	3.8	5.5	6.8	3.9
- 32	0BG6350	Beta	13.3	0.2	1.2	1.2	2.7	5.0	2.0
- 33 - 37	2BG6092 1J5087	Beta Beta	11.0	0.3	2.3	3.3	4.5	5.7	3.2
- 37	ш5087	beta	13.2	1.0	1.7	2.7	4.5	5.3	3.0
- 39	0BG6108	Beta	13.0	0.2	1.2	2.5	4.2	5.0	2.6
- 40	0BG6134	Beta	12.8	0.3	1.2	2.5	3.7	5.5	2.6
- 43	0BG6147	Beta	12.3	1.0	2.0	3.8	4.8	6.5	3.6
- 45	0BG6333	Beta	11.7	0.2	1.3	3.2	4.3	5.8	3.0
- 48	1BG6131	Beta	13.0	0.3	1.0	2.2	3.2	5.0	2.3
- 58 - 59	2BG6249 Beta 4454	Beta Beta	6.5	0.3	0.2	0.5	1.7	3.2	1.2
- 62	0BG6109	Beta	13.5 13.8	0.5 0.8	0.2 1.7	1.0	2.8	3.7	1.6
- 64	Beta 4587	Beta	13.2	1.3	2.3	3.0 3.7	4.8	5.7 7.0	3.2 3.9
- 68		Beta	14.0	0.8	1.8	3.0	4.0	5.0	2.9

Entry			Beets/		Powd	lery Mi	ldew S	core	
No.	<u>Variety</u>	Co	Plot No.	8/06	8/10	8/24	8/31	9/16	Mean
PM- 72 - 84 - 88 - 96 - 97 -100 -107 -117 -127 -131	OBG6182 OBG6392 2BG6067 2BG6345 2BG6079 2BG6066 9BG6272 Beta 4284 1BG6585 OBG6560	Beta Beta Beta Beta Beta Beta Beta Beta	13.5 11.8 12.5 6.0 12.3 13.5 13.2 14.0 13.2	0.7 0.3 0.2 0.2 0.5 0.5 0.5 2.3 1.3	2.7 1.5 1.5 1.0 1.8 2.3 2.0 3.2 2.0	4.0 3.5 2.3 1.8 3.2 2.8 3.2 4.8 4.0 2.5	5.0 4.5 3.3 3.3 4.5 4.7 5.8 6.5 4.7	6.0 5.3 5.0 5.2 5.3 5.5 7.2 7.5 6.3 5.7	3.7 3.0 2.5 2.3 3.1 3.2 3.7 4.9 3.7 2.8
-136 -138 -142 -143 -144 -149 -159 -160 -163 -165 -170 -171	2BG6068 2BG6069 0BG6430 0BG6450 Beta 4783 Beta 4452 9BG6346 2BG6250 9BG6380 Beta 4581 0BG6178 2BG6100 0BG6330	Beta Beta Beta Beta Beta Beta Beta Beta	13.0 13.3 12.2 12.7 13.8 12.5 11.7 11.5 12.7 12.8 13.7 13.0 11.7	0.2 1.2 0.2 1.3 0.2 0.0 1.2 0.3 0.0 0.7	1.5 3.0 1.0 1.3 0.3 0.2 2.0 2.3 0.7 1.8	2.3 3.8 2.5 3.5 2.3 1.2 3.5 3.3 1.5 3.0 4.8 3.7 2.0	3.5 5.8 3.5 5.5 3.0 5.0 4.7 3.2 3.8 6.2 5.0	4.8 7.0 5.2 7.7 5.5 4.2 6.5 5.5 4.3 4.8 7.7 6.5 5.2	2.5 4.2 2.5 3.9 2.4 1.7 3.6 3.2 1.9 2.8 5.0 3.9 2.3
PM- 2 - 4 - 6 - 12 - 13 - 16 - 20 - 25 - 27 - 28 - 38 - 44 - 53 - 57 - 63	93HX9 92HX2 90C 68-03 93HX8 HH77 90C 64-05 89C 58-03 93HX12 93HX11 USC-1 93HX23 93HX1 93HX6 93HX7 93HX7	Holly	12.5 12.3 12.3 13.2 12.5 11.3 11.5 12.3 12.5 12.2 11.8 11.5 12.2	2.5 0.3 1.3 1.5 0.8 1.5 1.0 1.3 0.3 0.5	3.0 2.7 3.5 2.2 2.2 3.7 3.0 3.2 2.8 1.3 2.8 2.0 1.2 2.3 1.8	5.0 3.2 4.7 4.0 4.7 4.3 4.3 4.7 3.8 3.2 4.2 3.3 3.2	6.3 4.7 6.0 5.2 5.7 6.0 5.5 5.7 5.5 4.2 5.7 4.8 5.3 5.3	7.5 5.0 6.3 6.5 6.3 7.5 6.5 7.0 6.7 5.8 6.7 5.3 6.5 6.2 6.8	4.9 3.2 4.4 3.9 3.9 4.6 4.1 4.4 3.8 3.0 4.1 3.1 3.2 3.7 3.6

Entry			Beets/		Powd	ery Mi	ldew S	core	
No.	<u>Variety</u>	Co	Plot	8/06	8/10	8/24	8/31	9/16	Mean
			No.						
PM- 65	90-1459-0112	Holly	13.3	1.7	2.0	4.2	5.3	6.2	3.9
- 67	HH-84	Holly	13.3	0.7	2.8	4.0	5.5	6.5	3.9
- 73	92HX1	Holly	12.2	1.0	2.5	3.8	5.3	6.3	3.8
- 75	HH-45	Holly	13.5	1.3	2.7	3.7	5.0	6.0	3.7
- 78	Rhizosen	Holly	12.8	1.3	3.2	5.7	7.3	7.8	5.1
- 80	90-88C11-09	Holly	10.8	2.7	3.8	5.8	7.7	8.7	5.7
- 81	93HX5	Holly	12.8	1.2	3.2	4.5	6.2	6.8	4.4
- 82	HH-66	Holly	12.5	1.3	2.8	5.0	6.5	7.5	4.6
- 86	90-1459-0188	Holly	12.7	0.3	2.0	3.8	5.0	6.0	3.4
- 87	86-1459-026	Holly	13.8	1.0	3.0	3.8	4.7	6.0	3.7
- 91	93HX10	Holly	12.5	1.2	2.7	3.5	5.7	7.0	4.0
- 93	91C 143-07	Holly	12.8	1.2	2.0	3.5	4.8	5.5	3.4
-101	HH-46	Holly	12.5	1.5	3.2	4.0	5.5	7.5	4.3
-104	HH-38	Holly	12.8	0.3	1.5	2.8	4.2	5.7	2.9
- 108	90-87C34-06	Holly	11.0	1.7	3.7	5.5	7.0	8.0	5.2
-111	90C 68-04	Holly	12.0	0.2	2.2	3.7	4.7	5.7	3.3
- 113	90C 63-010	Holly	12.7	0.8	3.2	4.2	5.7	6.7	4.1
- 115	91-89C58-06	Holly	8.5	1.7	3.3	4.3	5.3	6.3	4.2
- 118	93HX22	Holly	12.8	1.0	3.0	4.7	5.5	6.7	4.2
- 119	Rhizoguard	Holly	11.2	1.0	3.0	4.5	5.3	6.8	4.1
-121	HH-55	Holly	13.2	0.2	1.5	2.8	4.0	4.8	2.7
- 122	Rhizosen CT	Holly	12.5	0.3	1.7	3.2	4.7	6.2	3.2
- 125	HH-51	Holly	13.0	1.8	3.2	3.7	4.5	5.2	3.7
- 128	93HX3	Holly	13.0	2.2	2.8	4.7	6.3	7.7	4.7
- 132	93HX4	Holly	12.3	0.5	0.7	2.8	4.0	5.5	2.7
- 133	90C 63-04	Holly	11.5	1.7	1.8	3.3	5.0	6.0	3.6
- 135	Rhizosen Plus		12.2	1.3	2.7	3.8	5.5	6.5	4.0
- 139	90-1459-0108	Holly	12.2	0.8	2.7	4.0	5.7	6.0	3.8
-140	89C 58-07	Holly	12.7	1.2	2.3	4.5	6.2	7.5	4.3
- 154	93HX20	Holly	12.3	0.8	2.3	3.7	5.0	6.2	3.6
150	IIII 01	77-13							
- 158	HH-91	Holly	12.0	1.7	2.0	4.3	6.5	7.8	4.5
	HH-41	Holly	11.2	1.5	2.3	4.0	5.5	6.5	4.0
- 167	HH-37	Holly	12.5	0.8	1.2	3.2	4.8	6.3	3.3
- 169	HH-79	Holly	13.0	2.0	3.8	5.2	7.0	8.3	5.3

TEST 1893. CODED POWDERY MILDEW TEST, SALINAS, CA., 1993

Entry			Beets/		Powd	lery Mi	ldew S	core	
No.		Co.	Plot	8/06	8/10	8/24	8/31	9/16	Mean
			No.						
PM- 8	HM 5330	Hill-MH	12.8	0.3	2.0	3.0	4.8	5.7	3.2
- 11	HM 3022	Hill-MH	12.8	1.7	2.8	4.3	6.0	7.0	4.4
- 15	HM 3027	Hill-MH	13.2	0.2	2.5	3.3	4.5	5.7	3.2
- 21	HM 3024	Hill-MH	13.3	1.7	3.0	3.7	5.0	5.7	3.8
- 22	HM 3019	Hill-MH	11.3	0.8	2.8	4.2	5.2	6.3	3.9
- 35	HM 3037	Hill-MH	12.7	1.5	3.0	3.8	5.2	6.7	4.0
- 36	HM 3029	Hill-MH	12.5	1.3	2.3	4.5	6.5	7.5	4.4
- 46	HM 3032	Hill-MH	12.8	0.8	1.8	3.3	4.7	5.8	3.3
- 50	HM 3034	Hill-MH	13.2	1.8	3.3	4.0	5.8	7.5	4.5
- 71	Hill 2	Hill-MH	12.5	0.2	0.7	2.7	4.0	5.8	2.7
- 77	HM 6036	Hill-MH	13.2	0.8	1.3	2.8	4.5	5.3	3.0
- 85	HM 3036	Hill-MH	13.7	0.2	0.3	0.8	3.3	2.7	1.5
- 90	HM 3033	Hill-MH	13.8	0.7	1.3	2.3	4.2	6.0	2.9
- 95	HM 3035	Hill-MH	13.7	0.3	0.8	2.0	2.7	3.8	1.9
-1 03	HM 3031	Hill-MH	13.3	1.3	2.2	3.2	6.2	7.8	4.1
-1 06	HM 3040	Hill-MH	12.7	1.3	2.5	4.0	5.7	6.8	4.1
-116	HM 6027	Hill-MH	13.7	1.5	2.5	3.7	4.7	6.2	3.7
-1 30	HM 3026	Hill-MH	12.5	0.7	2.7	3.8	5.8	6.8	4.0
-145 -147	HM 3005 HM 3013	Hill-MH Hill-MH	13.2	1.0	1.5 2.5	3.8 4.2	5.2	6.7 7.0	3.6 4.1
-14/	Ши 20Т2	HTTT-MU	12.2	0.5	2.5	4.2	6.5	7.0	4.1
-148	HM 3030	Hill-MH	13.2	0.2	1.0	2.3	4.7	5.8	2.8
-1 50	HM 3012	Hill-MH	12.7	2.2	3.5	5.2	7.5	7.8	5.2
-1 57	HM 3016	Hill-MH	12.2	0.8	2.5	3.3	4.7	6.2	3.5
- 162	HM 3038	Hill-MH	12.7	0.3	1.7	2.3	4.7	6.5	3.1
-168	HM 3025	Hill-MH	13.0	1.3	3.0	4.7	6.5	7.5	4.6
PM-176	H90446	Klamath	12.8	1.0	2.3	4.0	4.7	5.8	3.6
-177	H90451	Klamath	12.3	1.2	1.7		4.5	5.5	3.2
- 178	H91258	Klamath	12.8	0.3	2.5	2.0	3.0	4.3	2.4
- 179	H92510	Klamath	12.7	0.5	2.0	3.0	4.3	6.8	3.3
- 180	H92848	Klamath	12.8	0.8	1.7	2.5	4.3	5.2	2.9
PM- 79	US H11	Check	13.0	2.0	3.3	5.3	7.0	7.3	5.0
- 98	US H11	Check	13.2	2.2	4.2	4.8	6.7	7.0	5.0
-114	US H11	Check	13.0	1.7	3.2	4.5	6.2	6.5	4.4
-124	US H11	Check	13.3	1.7	3.3	5.2	6.8	7.8	5.0

TEST 1893. CODED POWDERY MILDEW TEST, SALINAS, CA., 1993 (cont.)

Entry			Beets/		Powe	lery Mi	ldew S	core	
No.	Variety	Co.	Plot No.	8/06	8/10	8/24	8/31	9/16	<u>Mean</u>
Ohoolea i	maludad by HC	TD A							
Checks 1	ncluded by US	<u>DA</u>							
PM-181	US H11	USDA	12.7	1.3	3.3	4.7	6.0	7.7	4.6
- 182	US H11	USDA	13.0	2.3	3.8	4.7	6.3	7.2	4.9
-1 83	US H11	USDA	13.7	1.2	3.8	4.5	6.3	7.3	4.6
- 184	US H11	USDA	13.0	0.8	2.8	4.5	5.5	6.5	4.0
-185	WS-PM-9	USDA	12.2	0.2	0.2	1.0	1.7	2.3	1.1
- 186	WS-PM-9	USDA	12.8	0.0	0.8	0.7	2.3	2.7	1.3
- 187	WS-PM-9	USDA	13.0	0.0	0.0	0.7	2.3	2.3	1.1
-188	WS-PM-9	USDA	13.3	0.2	0.2	0.3	2.0	2.7	1.1
- 189	C39	USDA	11.3	0.0	0.2	0.8	1.8	3.3	1.2
-190	C39	USDA	10.7	0.0	0.2	0.5	1.3	2.5	0.9
- 191	C39	USDA	9.5	0.0	0.0	0.2	1.2	2.8	0.8
- 192	C39	USDA	11.8	0.2	0.3	0.5	1.8	2.5	1.1
Mean			12.6	1.0	2.2	3.4	4.8	6.0	3.5
LSD (.05	5)		1.5	1.3	1.5	1.3	1.4	1.4	1.0
C.V. (%)			10.6	115.3	61.6	34.7	25.3	20.6	26.5
F value			3.5**	2.0*	* 2.9*	5.4**	6.0**	6.0*	6.5**

Footnote: Powdery mildew scored on a scale of 0 to 9; where 9 = 90-100% of visible leaf area infected. Mean value (area under disease progress curve) most likely represents varietal reaction and differences among varieties. Scoring was stopped when most susceptible entries and US H11 started having lower values.

TEST 1993. INHERITANCE OF POWDERY MILDEW RESISTANCE, SALINAS, CA., 1993

March 10, 1993 sted for yield	PM Susc. 1	0/0	50.0	25.0	•	•	75.0	83.5			•	•	•	•	•	62.5	•	•	50.0	•	•	•	•		•	62.5			83.5	•
		Mean	4.0				5.4				4.2	•	4.2	3.4	3.0		3.8			4.6	•	•	•	•	•	5.2	•	•	4.8	5.4
Planted: Not harve		09/16	Ŋ	4	വ	വ	9	വ	7		വ	∞	4	4	Ŋ	വ	9	വ	വ	വ	9	7	9	9	വ	7	9	7	7	9
	Score	08/30	4	4	4	വ	9	വ	9		2	വ	വ	വ	ო	4	9	Ŋ	т	വ	7	2	4	വ	2	9	2	7	9	9
	Powdery Mildew	08/24	4	4	က	ო	വ	വ	9		4	4	വ	4	n	4	4	4	4	Ŋ	9	4	4	വ	4	4	5	7	4	വ
thecks)	Powdery	08/10	4	4	ო	т	വ	വ	9		4	4	4	4	4	4	m	4	4	4	വ	വ	m	4	4	വ	4	വ	m	വ
rep (except checks)		90/80	m	0	П	0	വ	വ	വ		٣	Ŋ	3	0	0	က	0	4	0	4	4	П	П	വ	⊣	4	0	2	4	വ
	Stand	Count	9	0	7	7	10	വ	10		13	11	13	7	14	11	7	13	11	10	11	7	9	0	7	12	13	11	11	15
118 PM inheritance lines, 144 entries x 1 10 ft. long, 48 blocks, 3 rows	Variety Description	37 × 1211 F	- 2		4 -	-13	-16	-17	-19	2211-#P = 1211-#, $1213-#$, $1215-#$ x C37	1P		- 3P	- 4P	- 5P	- 6P	- 7P	- 9P	-10P	-11P	-12P	-13P	-14P	-15P	-17P	-19P	-20P	-21P	-23P	-24P

TEST 1993. INHERITANCE OF POWDERY MILDEW RESISTANCE, SALINAS, CA., 1993

	PM Susc. 1	0/0	71.0	7.0	50.0	71.0	50.0	62.5	7.0	16.0	0.96	16.0	37.5	100.0	71.0	41.0	71.0	71.0		7.0	7.0	25.0	83.5	25.0	62.5	62.5	16.0	71.0	7.0	100.0	7.0	53.5
		Mean	4.6	2.8	5.8	5.2	3.0	4.0	1.4		•	1.6	•	•	•		•	•		4.6		3.4						3.6				
		09/16	9	m	œ	7	വ	œ	7	വ	O	Н	വ	0	ന	4	7	9		വ	ო	വ	σ	വ	9	വ	വ	7	4	ത	4	6
	Score	08/30	4	4	9	2	ო	വ	ო	ო	9	m	4	6	4	m	9	വ		4	ო	വ	œ	4	വ	വ	4	4	m	o .	4	m
	Powdery Mildew Score	08/24	4	4	9	2	ო	4	П	ო	വ	m	m	6	m	က	വ	4		4	ო	4	7	က	വ	4	4	4	m	o	ო	က
	Powdery	08/10	4	က	9	വ	ო	m	7	m	വ	П	က	9	m	Н	4	4		വ	ო	က	9	က	4	ო	m	က	Н	ഗ	m	m
(cont.)		90/80	2	0	က	4	П	0	П	П	0	0	က	വ	က	0	Н	Н		വ	വ	0	0	-	က	Н	0	0	0	വ	m	Н
	Stand	<u>Count</u>		∞	0	σ	11	10	11	10	11	13	10	12	വ	11	12	11		13	12	13	12	13	0	11	15	11	12	12	13	11
	Description		1																1214-#, 1216-# x C37													
	Variety	2212-# = C37 x 1212	- 2	۳ ا	- 4	9 -	- 7	6 1	-10	-12	-13	-15	-16	-17	-18	-19	-20	-21	2212-#P = 1212-#,	11	- 2P	- 3P	- 4P	- 5P	- 6P	- 7P	- 8P	– 9P	40I-	-11P	-12P	- 13P

TEST 1993. INHERITANCE OF POWDERY MILDEW RESISTANCE, SALINAS, CA., 1993

PM Susc. 1	o\ o		16.0	0.96	0.96	62.5	25.0	28.5	50.0	50.0	0.0		0.96	25.0	50.0	62.5	0.96	83.5	62.5	50.0	50.0	50.0	100.0	100.0	0.96	20.0
	<u>Mean</u>		•		5.4								2	2.4	3,00	4.2	4.8	4.0	4.4			3.4	6.4	0.9	6.2	
	09/16		വ	7	∞	9	വ	വ	വ	വ	0		0	4	വ	∞	7	7	9	9	9	7	0	0	∞	9
core	08/30		4	7	œ	4	4	m	വ	4	0		0	m	വ	4	7	വ	വ	വ	4	വ	∞	7	∞	വ
Mildew S	08/24		ო	വ	9	4	4	4	4	က	0		9	က	4	4	വ	4	വ	4	സ	4	9	2	വ	4
Powdery Mildew Score	08/10		т	വ	വ	4	m		m	Н	0		4	7	4	4	4	m	വ	m	m	7	9	2	2	Н
	90/80		4	4	0	4	0	0	0	0	m		Т	7	Н	7	Н			1	0	0	n	4	വ	Н
Stand	Count	cont.)	10	11	7	11	10	0	11	4	10	× WB97)]	11	10	11	13	11	12	11	13	4	11	13	∞	10	12
Description		C37 ($E_1[5747aa \times (SB)]$														
Varietv		2212-#P = 1212-#, 1214-#, 1216-# x	-15P	- 16P	-17P	- 18P	– 19P	- 20P	-21P	-22P	-23P	$2217 - \# = 5747aa \times 1217$	2217- 1	- 2	ო 1	4 -	1 5	9	- 7	ω 1	<u>ه</u> ا	-10	-11	-12	-13	-14

TEST 1993. INHERITANCE OF POWDERY MILDEW RESISTANCE, SALINAS, CA., 1993

PM Susc. 1	0/0]	3,5	62.5	37.5	34.0	37.5	25.0		, I	/1.0	50.0	100.0	7.0	50.0	87.5	71.0	25.0	37.5	71.0	50.0	87.5	16.0	3.5	16.0		7.0	7.0	58.5	ກ• ຄ	16.0	
	Mean	9.0	5.2	3.0	2.2	4.2	1.6																	3.4		1.2	•	•	•	•	
	09/16	m	œ	2	വ	9	4		(∞	വ	σ	4	വ	σ	7	വ	9	7	9	0	9	ო	വ		4	4	9	വ	2	
Score	08/30	C	9	4	က	വ	က		•	4	4	ω	m	വ	7	4	ო	ო	9	ო	9	4	ო	4		П	m	സ	0	4	
Powdery Mildew Score	08/24	C	വ	m	က	വ	Н		(n	ო	7	4	4	9	4	ო	ო	വ	ო	വ	4	е	4		7	ო	m	Н	4	
Powdery	08/10	C	4	М	0	m	0		,	-	Н	വ	ო	4	4	4	ო	4	4	4	4	ო	П	4		0	0	7	0	Н	
	90/80	0	m	0	0	2	0	_	,	-1	П	0	Н	٦	П	7	0	4	⊣		ო	0	0	0		0	0	0	0	0	
Stand	Count	12	10	12	14	12	12	V 1/1007	100M V	12	വ	12	11	10	œ	13	9	0	12	11	13	12	σ	12		13	12	11	12	11	
Description	1219	1 1617, 1661, 1663						2 1210	A 1610 110/4/88																3, 1220, 1222, 1244 selfed						
Variety	7101 = 0#-7100	2217- 2P		-10P	-11P	-13P	-14P	2010_# - E7/172	14/C - #-0177	2218- 1	- 2	г Г	- 4	۱ کا	9 -	- 7	∞ I	6 -	-10	-11	-12	-13	-14	-15	2218 - #P = 1218	2818- 1P	- 2P	-10P	-11P	-13P	

INHERITANCE OF POWDERY MILDEW RESISTANCE, SALINAS, CA., 1993 TEST 1993.

PM Susc. 2	o/o		37.5	37.5	83.5	71.0	100.0	92.0	0.96	62.5	100.0	62.5		82.9	0.96	24.5	33.0	80.3
	<u>Mean</u>		4.0	4.4	5.0	5.4	8.4	6.2	5.6	4.2	0.9	4.6		9	7	4	4	വ
:	09/16		വ	9	9	∞	0	0	0	9	0	O		7	7	5	2	7
core-	08/30		4	5	വ	വ	0	∞	9	m	œ	വ		7	7	4	4	9
Mildew S	08/24		4	4	2	വ	0	œ	വ	4	വ	4		9	7	4	4	വ
Powdery	08/10 08/24 08/30		4	4	വ	വ	∞	9	വ	m	4	m		Ŋ	9	m	m	2
	90/80		ო	т	4	4	7	0	m	വ	4	2		Ŋ	9	2	m	n
Stand	Count		12	13	13	12	0	10	14	12	12	12		95	43	51	52	42
Description		2219-# = 5816aa x 1211, 1212, 1217, 1218												Inc. C37 (L86443)	C309CMS x C309 (87083)	PWR 1211, 1216	PMR 1217, 1224	4747aa x A
Variety		2219-# = 581	2219- 1	- 2	۳ ا	4 -	- 5	9 -	- 7	∞ 1	6 -	-10	Checks*	U86-37	87-309CMS	P201	P202	5747

^{*}Mean of 4 to 8 replications.

Plants resistant plant were selected and will be entered into an inheritance study. Backcrosses will continue to A high level of resistance to powdery mildew was identified in <u>Beta maritima</u> WB97 and WB242 by Dr. E.D. Whitney. Without prior selection, BC_2F_1 testcrosses (87% sugarbeet) were made and evaluated for the occurrence of highly resistant plants and to get some information on the inheritance of resistance. within individual testcross families appeared to segregate. From a few of these families, the most be made to sugarbeet to transfer this resistance.

¹Powdery mildew scored 8/30 and 9/16 on a plot basis on a scale of 0 to 9 where 9 = highly susceptible.

²Rating of % susceptible plants within a plot. A plant was considered resistant if it showed no powdery mildew until near leaf sevescence (ratings of 0 and 1).

TEST RZM 393. 1993 EVALUATION OF AMES PI #'s FOR VIRUS YELLOWS AND RHIZOMANIA SALINAS, CA., 1993

1993 So BWYV C 6, 1993	RZM	Score Annuals 10	7 0	2:		!					1	3.7	5.7	5.7	5.0	4.3	5.0	•	•	6.3	•	•
Planted: June 10, 1993 Natural infection to BWYV Harvested: December 6, 19	†L#	Rhizomania DI %H			7.0 5.7						6.7 0.0					0.0 0.9						5.0 0.0
Planted: Natural : Harveste	99#	PM ⁸	1	3.7	3.3	5.0	5.3	3.7	4.7	3.7	2.7	1				4.0				!		
	#62	CLS7		5.7	2.3	2.0	2.1	5.0	5.3	4.7	2.0	2.0	1	3.0		3.0						
	#61	BWYV ⁶ Mean	0	7.0	3.0	3.0	3.7	2.7	2.3	4.7	3,3	3.7	4.3	4.3	4.3	4.0	3.7	4.3	3.0	4.3	3.0	4.3
	7 ting	d. ⁵ 9/25	٢	1 C	2 1	7	7	2	7	2	7	П	Н	Н	Н	ო	Н	m	-	Н	⊣	m
	#37 Bolti	e Tend 8/11	۲	٦ ،	2	7	7	7	7	7	7	Н	т	М	Н	т	Н	m	Н	Н	Н	m
	#19	Petiole Color 8		7 ←	+ ←	Н	Н	Н	Н	Н	Н	4	4	4	4	4	4	4	4	4	4	4
	#12 Mature	Leaf Blade Pigment ³	c	13.2	142	2	2	2	2	2	1&2	2	1&2	1&2	2	1&2	2	т	2	2	7	2
	42	Pop. Unif. ²	C	7 -	ı —	1	П	Н	2	Н	7	Н	2	2	٦	2	Н	2	Н	1	П	Н
s, RCB	#1	End Use ¹	c	ນ ແ	വ	Ŋ	Ŋ	വ	2	വ	വ	ω	ω	ω	ω	œ	ω	œ	ω	ω	œ	ω
x 3 reps s, 10 ft.		Harvill Count		5	53	54	26	54	59	57	56	2				4					-	വ
64 entries x 3 reps, RCB 1-row plots, 10 ft. long		P.I.# Variety		PI 408965 DI 470090		PI 470092	PI 470093	PI 470094	PI 470095	PI 486358		PI 504172	PI 504174	PI 504175	PI 504176			PI 504183	PI 504184	PI 504185	PI 504186	PI 504187

TEST RZM 393. 1993 EVALUATION OF AMES PI #'s FOR VIRUS YELLOWS AND RHIZOMANIA SALINAS, CA., 1993

M re als 10	7 3 7 3 0	7 7 3 8 9	00000	1.1.00.0
RZM Score Annuals ¹	0.0000	40466	0.03 4 6 7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	4.8
ania ⁹ %H				32.5 56.4 5.0 30.0
#74 Rhizomania ⁹ DI %H				4 ú 4 ữ 4 ພ ໝ ወ O A
#66 PM ⁸		1.0	3.0	0.0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#62 CLS ⁷				3.7 2.7 4.0
#61 <u>BWYV</u> <u>6</u> Mean	7.0 7.0 4.3 8.3	8.00 6.00 7.00 8.30	4 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6	0.1 0.2 2.3 8.8 8.8
7 ting d.59 9/25	ннн т	пеннн	нанан	2222
#3 Bol Ten /11	ннеен	ненее	еччеч	N N M M M
#19 Petiole Color 8	4 4 4 4 4	44444	44444	4 4 4 4 4
#12 Mature Leaf Blade Pigment ³	00000	00000	00000	m N N m N
#5 Pop. Unif.2	ннннн	7777		н н п п п
#1 End Use ¹	∞ ∞ ∞ ∞ ∞	\(\omega	∞ ∞ ∞ ∞ ∞	00000
Harv, 11				43 39 20 23
P.I.# Variety	504189 504190 504191 504193 504197	504198 504200 504204 504208 504210	504213 504216 504247 504254 504255	518311 518403 540596 540598 540599
	PI PI PI PI	PI PI PI	PI PI PI	E E E E E E E E E E E E E E E E E E E

TEST RZM 393. 1993 EVALUATION OF AMES PI #'s FOR VIRUS YELLOWS AND RHIZOMANIA SALINAS, CA., 1993

DOM	Score Annuals ¹⁰	3.0	2.0	4.3	5.0	3.0	5.0	5.0	4.0	5.0	3.0	5.0			-		-					-					
	Rhizomania ⁹ DI %H	54.5	38.6	15.8	37.2	44.7		22.2			•	26.7	1.5		21.9	9.1	6.1	4.8	7 7	10°/	٧.٠	52.4	32.3	4.0	21.2	22.4	9.5
#74	Rhizor DI	4.2		0.0		4.1	4.6	•	•	•	4.3	4.6	6.2		4.9	5.6	6.2	6.1		ֆ. Ո	•	3.8	4.4	6.4	5,0	7,0	5.9
99#	PM ⁸	2.7	1.7	2.3	3.3	2.4	3.0	4.0		5.6		ļ	4.3		7.3	0.9	4.0	3.0		7.7	•	6.3	6.7	•		3 6	
#62	CLS ⁷	3.0	2.7	3,3	3.3	3,3	4.0	4.3	5.3	3.7	4.0	4.0	7.3		4.7	0.9	3.7	2.1		4, c	0.0	2.0	4.7	5.0	3,3	3.7	3.0
#61	BWYV ⁶ Mean	3.0	2.5	2.7	5.9	2.5	•	3.9	•	•	•	•	5.7		3.0	2.0	2.3	2.0	,	۲•, ۲	T.5	3,3	1.3	3.0	2.0	0.7	3.0
#37	d.5 9/25	m (m	m	m	m	ო	т	က	ო	m	т	2		2	2	2	7	c	7 (7	2	2	2	~	1 0	2
#37	le Tend 4 8/11	m (က	m	က	ო	2	2	7	ო	ო	m	7		2	7	7	7	C	۷ ر	V	7	7	2	~	· ~	2
#19	Petiole Color 8	4	4	4	4	4	4	4	4	4	4	4	1		1	1	1	П	٢	٦ -	7	4	4	-	-	- ۱	1
#12	rature Leaf Blade Pigment ³	2	7	2	2	2	2	7	2	2	m	m	П		1	П	П	7	C	ν (7	2	7	-	0	1 (1&2
45	Pop. 2 Unif. 2		Н	7		П	-		7	7	Н	1	٦		1	Н	2	П	c	7 -	-	Н	Н	-	0) (1
#1	End Use	9	9	9	9	9	9	9	9	9	9	9	വ		വ	Ŋ	വ	വ	L	റെച	n	വ	9	2	ی	ى (5
	Harv. Count ¹¹	33	22	57	43	38	64	63	56	32	24	30	65		73	77	99	63	9	00	24	82	65	75	99	26	74
	P.I.# Variety			PI 540602	PI 540603	PI 540604	PT 540605			PI 540608		PI 540610		7 ()	NZ03H15	N244	P201	P202	2000	K204	K221	R222R4	R223	11S H11	R139C7	R276-89	SP 7622-0

1993 EVALUATION OF AMES PI #'s FOR VIRUS YELLOWS AND RHIZOMANIA SALINAS, CA., 1993 (cont.) TEST RZM 393.

#1 End use based upon field plot appearance where: 1=chard; 2=DDR-like; 3=DDR, chard, spinach; 4=fodder;

5=sugar; 6=wild beet type; 7=mixed, 8=annual.

#5 Population Uniformity: 1=all plants alike; 2=uneven different types; 3=mixed, green, red, yellow, high, low, large leaves, small leaves, etc.

m 4

#37 Bolting Tendency without cold induction: 1=B-(annual)=100%, 2=bb(biennial)-0%, 3=B:bb(mixed) 1-99%. #12 Mature Leaf Blade Pigmentation: 1=light green (chard), 2=green, 3=red & green, 4=red, 5=mutant. #19 Petiole Color: 1=green, 2=pink, 3=red, 4=candy stripe, 5=yellow, 6=mixed. Readings 8/11 and 9/25/93.

#61 Beet Western Yellows (BWYV): 0=immune; 1=very resistant; 3=resistant; 5=intermediate; 7=susceptible; 9=highly susceptible based upon yellowing of leaves. Readings 9/27 and 11/30/93. 9

#62 Cercospora was not severe enough to classify on 9/24/93. Remaining nonbolted plants were classified on 11/30/93 on a scale of 1-9 with 9 having symptoms on every leaf.

#66 Powdery Mildew classified on 10/6/93 on a scale of 0 to 9 where 9 = 100% of leaf area mildewed.

tap root, slight bearding; 5=wine-glass shaped, bearded, moderate damage; 7=severly damaged, loss of tap root; 9=dead due to rhizomania %Healthy=classes (0+1+2+3)/total. Classified at time of harvest, 12/93. #74 Rhizomania: DI-disease index based upon 0=no visual symptoms; 1=very minor root symptoms; 3=normal 10 RZM scored on annual plants only on a plot basis. Notes were taken on Annual plants 9/25/93. Plants ω σ

11 Harvest counts were made only on nonbolting plants when they were scored for DI and & Healthy RZM

were pulled and discarded at that time.

tible to both BWYV and rhizomania; R223 = composite of plants from B.maritima PI lines that showed resistance 64 entries = 52 PI lines from Ames + 12 USDA checks. Checks are: US H11 = highly susceptible to rhizomania, to rhizomania in 1991 test; R222R4 = cycle 4 synthetic of sugarbeet x B.maritima selected for resistance to mod. susceptible to BWYV; R139C7 = C39R = moderately resistant to BWYV and rhizomania; SP 7622-0 = susceprhizomania; R276-89 = sugarbeet line that segregates for Rz resistance to rhizomania.

resistance. Many of the B. maritima lines showed very mild symptoms to BWYV. The dark green, thick leaves of B. maritima have a tendency to mask virus yellows symptoms. Crosses to sugarbeet will be made to determine if this apparent resistance is heritable. Plots were found free of nematode infestation but this is thought to Conclusion: Roots within some lines of B.maritima showed resistance to rhizomania. Two hundred individual plants were selected and will be crossed to sugarbeet to determine the nature and inheritance of this be field variability rather than genetic resistance.

CHARACTERIZATION OF THE VARIATION AMONG FUROVIRUSES INFECTING SUGARBEETS

G. C. Wisler, J. E. Duffus, and H.-Y. Liu

BNYVV was first detected in the U.S. in 1983 (Duffus et al., 1984). Several other viruses with similar particle morphology to BNYVV have been isolated from sugarbeet roots from Texas (Liu and Duffus, 1987), Nebraska, Idaho, and Colorado. Some of these isolates have been shown to cross-react with antisera to the BNYVV virion in ELISA tests and in western blot analyses. Thus, the possibility exists for misdiagnosis in sensitive tests which are based on serology of the capsid protein.

BNYVV isolates from Europe have been extensively studied with regard to the genomic organization, function of encoded proteins, and transmission by *Polymyxa graminis*. Many serological and nucleic probes have been developed to different regions of the BNYVV genome. In order to fully characterize and distinguish BNYVV from the other related furoviruses of sugarbeet, similar investigations must be done.

Serological analyses including enzyme-linked immunosorbent assay (ELISA), western blot, and immunodiffusion have been used to evaluate the BNYVV isolates from the U.S., as well as eight other furoviruses of sugarbeet. Serological probes, both polyclonal and monoclonal antisera, have been kindly supplied by several researchers (K. Richards, L. Torrance, and G. Grassi). antisera have been produced to both structural (i.e., coat protein) and nonstructural (i.e., proteases, polymerases, movement protein) proteins of BNYVV and to two non-BNYVV furoviruses which originated from Texas. In addition, nucleic acid primers specific to the BNYVV genome were used in polymerase chain reaction (PCR) analyses. These techniques were used to evaluate the similarities and differences among the BNYVV isolates and between BNYVV and the other furoviruses of sugar beet. The ability of P. betae to transmit some of the non-BNYVV isolates was also evaluated.

The nature of relatedness between five beet necrotic yellow vein virus (BNYVV) isolates, (three from California, one each from Nebraska and Idaho) and eight other rigid, rod-shaped virus isolates of sugarbeet (two from Texas, five from Nebraska, and one from Idaho) was evaluated in this study using western blot analyses, immunodiffusion, and RT-PCR. Antisera to the BNYVV virion showed strong reactions in western blots at ca. 22-kDa for the five BNYVV isolates, and weak reactions at 24-kDa for the eight other rod-shaped virus isolates. Reciprocal tests using antisera to the whole virion of two rod-shaped virus isolates from Texas (referred to as beet soil-borne mosaic virus-1 and -2; BSBMV-1 and -2, Liu and Duffus, 1987) showed strong bands at 24-kDa for all eight rod-shaped isolates and weak bands at 22-kDa for the five BNYVV isolates. Antisera to the C-terminus of the BNYVV capsid protein, seven BNYVV monoclonal antibodies, and the

75-kDa and 14-kDa nonstructural proteins of BNYVV reacted only with the five BNYVV isolates. Antisera to the 25-kDa nonstructural protein reacted to three of five BNYVV isolates. Antisera to the 42-kDa nonstructural protein reacted with all five BNYVV isolates at ca. 42-kDa, and with the eight other isolates at ca. 44-kDa. Results of western blot analyses are summarized in Table 1.

No cross-reactivity between BNYVV isolates and those isolates related to BSBMV-1 and -2 was seen in reciprocal immunodiffusion tests using purified virus preparations (ca. 0.1 mg/ml) and crude sap as the antigen.

The products observed in RT-PCR among four BNYVV isolates (two from California, one each from Idaho and Nebraska) using primers specific for RNA 1, 2, and 3 were identical, whereas the products for RNA 4 varied. BSBMV-1 and -2 and a related isolate from Nebraska (NE10) did not react with any BNYVV primer pair tested. Results from RT-PCR tests are summarized in Table 2.

Preliminary transmission studies indicate BSBMV-2 and NE10 to be transmitted by *Polymyxa betae* Keskin. Results from this study suggest that the isolates related to BSBMV-1 and -2 belong to the furovirus group, but are distinct from BNYVV.

Summary of Western Blot Analyses of Sugarbeet Furoviruses Table 1.

Antisera

	BNYVV-		coat					MAbs	MAbs
20+01001	coat	BSBMV	protein: C-	anti-	anti-	anti-	anti-	41,	6,7,8,
ISOIGICS	protein	-182	terminus	P75	P42	P14	P25	47	9,10
BNYVV-GH	+,22k	(+,22k)	+,22k	+,75k	+,42k	+,14k	1	+,22k	+,22k
BNYVV-CA-1	+,22k	(+,22k)	+,22k	+,75k	+,42k	+,14k	+,25k	+,22k	+,22k
BNYVV-CA-12	+,22k	(+,22k)	+,22k	+,75k	+,42k	+,14k	+,25k	+,22k	+,22k
NE-8-1	(+,24k)	+,24k	1	-	+,43k	1	1	1	1
NE-8-3	(+,24k)	+,24k	1	1	+,43k	1	ı	1	1
BNYVV-NE-8-4	+,22k	(+,22k)	+,22k	+,75k	+,42k	+,14k	+,25k	+,22k	+,22k
NE-8-5	(+,24k)	+,24k	1	1	+,43k	1	1	1	-
NE-10	(+,24k)	+,24k	-	-	+,43k	1	-	1	1
NE-KW	(+,24k)	(+,22k)						1	1
BNYVV-ID-47	+, 22k	(+,22k)	+,22k	+,75K	+.42k	+,14k	+,25k	+,22k	+,22k
ID-31051	(+,24k)	+,24k	-	-	+,43k	1	1	1	1
BSBMV-1	(+,24k)	+,24k	_	-	+,43k	1	1	1	1
BSBMV-2	(+,24k)	+,24k	-	1	+,43k	1	1	1	1
Healthy C. quinoa	1	1	1	1	1	1	1	1	1
Healthy	1	1	1	1	1	1	ŧ	1	1
B.macro.carpa									

Note: Antisera to genetically engineered proteins are courtesy of K. Richards; to monoclonal antibodies (MAbs) (MAbs 41 and 47) couresty of G. Grassi, and MAbs 6,7,8,9, and 10 courtesy of L.

Torrance.

k=kilodaltons

- = no detectable reaction

(+,24k) or (+,22k) indicate a heterologous reaction, unlike the strongly positive homologous reaction.

Table 2. RT-PCR Analyses of Several Virus Isolates from Sugarbeet

				PR	PRIMER	PAIRS	SS			
	RN	RNA-1		RN	RNA-2		RNA-3		RNA-4	
Isolates	1 & 3	2 & 4	1 & 6	5 & 7	CP	42K	1 & 8	1 & 12	1 & 11	11&13
								320		250
BNYVV	1000a	550	300	220	009	1100	250b	450	006	400
CA-GH								009		800
								320		
BNYVV	1000	550	300	220	009	1100	250	450	1100	250
CA-1								009		450
										250
BNYVV	1000	550	300	220	009	1100	250	400	1100	450
NE 8-4								200		800
BNYVV								450		
ID 47	1000	550	300	220	009	1100	250	009	1100	250
BSBMV-1	1	1	1	ı	1	-	_	-	-	ı
BSBMV-2	•	1	-	1	-	_	_	-		1
NE 10	-	•	•	1	1	,	-	1	'	1
expected										
size (bp)	1039	564	195	209	564	1151	218	465	941	249

a Values shown in table are estimates based on agarose gel and acrylamide gel electrophoresis.

b This product was barely visible on the gel which may correspond to the lack of reactivity of this isolate to the 25-kDa antisera in western blots, corresponding to RNA-3.

- = no products detected

Genetic Analysis of Polymyxa betae infected sugar beet roots using the polymerase chain reaction.

A.L. Pilgeram and J.E. Duffus. USDA-ARS, Sugarbeet Research Unit. Salinas, CA.

Polymyxa betae, the fungal vector of BNYVV, is an obligate root parasite of sugarbeet. Total DNA was isolated from healthy beet tissue and *Polymyxa*-infected root tissue and amplified using the polymerase chain reaction (PCR)(1,2). DNA was amplified using primers specific for fungal ribosomal DNA (ITS 2 and ITS 4) (3) and with several non-specific RAPD (random amplification of polymorphic DNA) primers (4). DNA polymorphisms within the fungal ITS (internal transcribed spacer) regions of the ribosomal DNA were not observed in different isolates of *P. betae* infecting sugarbeet (Fig. 1). A single 750 bp (base pair) amplification product was amplified from noninfected sugarbeet tissue. An additional 480 bp product was present in amplifications from *Polymyxa* -infected sugarbeet roots. The relative intensities of the 750 bp and 480 bp bands were variable in different preparations and may represent differences in the proportion of fungal DNA within the total DNA preparation.

750 bp 480 bp

PCR analysis of the ribosomal ITS1 region of non-infected (USH11) and Polymyxa-infected Beta Fig.1. vulgaris (ATCC (American type culture collection), CA 1, CA 2, ID 1, ID 2, CO, MT, CA 2). Molecular weight standard was λ DNA digested with restriction enzymes HindIII and EcoRII

DNA from Polymyxa-infected Portulaca and Polymyxa-infected Amaranthus was also amplified using the ribosomal ITS primers (Fig.2). A single product (~750 bp) was amplified from DNA isolated from non-infected Amaranthus and no product was

amplified from non-infected *Portulaca*. An additional 620 bp or a 500 bp product were observed when DNA from different *Polymyxa*-infected *Amaranthus* were amplified. A slightly smaller product (~480 bp) was periodically amplified from infected-*Portulaca*.

Fig.2. PCR analysis of the ribosomal ITS1 region of *B.vulgaris* (USH11), *Polymyxa*-infected *B.vulgaris* (CA 2), *A.retroflexus* (Ar), *Polymyxa*-infected *A.retroflexus* (Ar 1, Ar 2), *P.oleraceae* (Po), and *Polymyxa*-infected *P.oleraceae* (Po 1). Molecular weight standard was λ DNA digested with restriction enzymes *Hind*III and *EcoR*I.

Total DNA from sugarbeet roots was also amplified using random DNA primers (RAPD analysis). Several products were present in amplifications of DNA from *Polymyxa*-infected root tissue that were absent from amplifications of DNA from non-infected tissue. In addition, there was some variation in RAPD products when DNA from different sugarbeet isolates of *P. betae* were amplified. Putative *P.betae*-specific RAPD products have been excised from agarose gels and cloned into pCR-Script plasmids (Stratagene). These RAPD clones will be used as probes in Southern hybridizations with DNA isolated from *Polymyxa*-infected beet tissue.

Fig.3. RAPD amplification of Total Root DNA using Operon primer (AB-02). *B.vulgaris* (USH11), *Polymyxa*-infected *B.vulgaris* (ID, CA 1, CA 2). Putative *P.betae*-specific products are indicated. Molecular weight standard was λ DNA digested with restriction enzyme *Hind*III.

References:

- 1. Pilgeram, A.L. and J.E. Duffus, 1993. RAPD Analysis of *Polymyxa betae*. Pages 91-93 *in*: Proceedings of the second symposium of the international working group on plant viruses with fungal vectors. Montreal, Canada.
- 2. Pilgeram, A.L. and J.E. Duffus. 1993. Molecular Analysis of *Polymyxa betae* and *Polymyxa graminis*. Phytopathology 83:1370 (Abstract).
- 3. White, T.J., Bruns, T., Lee, S. and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. Eds. M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, San Diego.
- 4. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.

<u>Project Title:</u> Evaluation of Photosynthetic Parameters in the Selection of Varieties with Improved Rates of Sugar Production

Project Number: # 250

Project Leader: Norman Terry, Professor

Other Personnel: Adel M. Zayed Postdoctoral Researcher

Jodi Azulai Staff Research Associate

Project Location: 111, Koshland Hall, Dept. Plant Biology,

University of California,

Berkeley, CA 94720 Tel: (510) 642-3510

Justification for Research:

overall goal of this research is to identify physiological parameters in young plants which can serve as markers to facilitate the selection of superior-yielding sugar beet genotypes. Specifically we have chosen fluorescence since our results show that the sucrose content of roots is linked physiologically to chlorophyll fluorescence. Large numbers of very young plants can be screened very quickly using the highly portable and sophisticated pulse modulated PAM fluorometer. The idea we wish to test is that pulse-modulated fluorescence can be used as an innovative screening method for the rapid identification of plants with superior yield potentials. In previous years, we found three fluorescence parameters, q_E , $(F_V)_S$ and F_V/F_m , which were highly promising as yield predictors, i.e., selection for these parameters in a population of young plants was successful in predicting which plants would later have high sucrose yields or % sucrose. The long-term goals of our research are 1) to develop the fluorescence approach into a simple and easily-workable technique for the rapid selection of high yielding genotypes, and, 2) to apply the technique for the actual development of new better-yielding varieties.

Summary of Literature Review and Progress-to-Date:

1. Literature Review

Chlorophyll fluorescence emitted by green plants is a measure of the photosynthetic activity of the leaf and originates mainly from chlorophyll a in photosystem II (PS II). Hence, fluorescence yield reflects the properties of excitation and energy conversion at PS II. However, due to the functional connection of PS II to the other components of the photosynthetic apparatus, fluorescence yield is considered to be an indicator of the whole complex process (Schreiber and Bilger, 1987). Recent improvements in fluorescence techniques, particularly the development of the pulse modulation chlorophyll fluorometer, have served to increase the value of fluorescence as a nonintrusive method of monitoring photosynthetic events and judging the

physiological state of the plant (Krause and Weis, 1991). Recent studies have proven that chlorophyll fluorescence provides a rapid non-destructive method for studying heat and drought stress tolerance in plants (Ogren, 1990; Prange et al., 1990; Jefferies, 1992; Smillie, 1992).

Apart from the research conducted in our own laboratory, there are very few if any studies which have attempted to correlate fluorescence parameters with root sucrose yield. It is thought that sucrose storage and partitioning is physiologically linked to photosynthetic rate (Wardlaw, 1990) and that changes in the latter are reflected by changes in fluorescence (see also Krause and Weis, 1991). Interestingly, Krause and Weis (1991) indicated that the $F_{\rm V}/F_{\rm m}$ ratio has become an important and easily measurable parameter of the physiological state of the photosynthetic apparatus in intact plant leaves. Furthermore, Schreiber and Bilger (1987) stated that high levels of $(F_{\rm V})_{\rm S}$ are associated with low $q_{\rm E}$, and that this reflects efficient energy utilization by the Calvin cycle. In our research we found that these three parameters (i.e., $F_{\rm V}/F_{\rm m}$, $(F_{\rm V})_{\rm S}$, $q_{\rm E}$) are the best correlated with sugarbeet sucrose yield and that high $(F_{\rm V})_{\rm S}$ is always associated with low $q_{\rm E}$ and high root sucrose content.

2. 1993 Greenhouse Experiment

During the past year, we sought to optimize the experimental procedure for using pulse-modulated fluorescence to develop new high-yielding genotypes. Our objectives were to: 1) increase the size of the selection sample as well as that of the total population screened, 2) to provide growing conditions which minimized competition between plants for light and nutrients, and 3) to increase the length of time between fluorescence measurement and harvesting (particularly for root sugar content). We carried out the experiment inside a computer-controlled greenhouse which maintains temperatures and irradiance within certain defined limits. This facility enabled us to grow the plants in a single controlled environment, to illuminate the plants at high light intensities (up to 2000 umol m⁻² s⁻¹) and with one plant per 20-L container so that mineral nutrient supply was not limiting.

Two weeks after transplanting, chlorophyll fluorescence of the attached leaves was measured using the pulse modulation chlorophyll fluorometer Model PAM 101 (H. Walz, Effeltritch, FRG). At the end of the fluorescence measurement period (5 days), the 30 plants exhibiting the highest values and the 30 plants with the lowest values of each of the two fluorescence parameters, $F(v)_{\rm S}$ and $F_{\rm V}/F_{\rm m}$, were selected and transferred into 20-L containers. The plants grew significantly faster than in growth chambers and by the end of 6 weeks had reached sufficient size for harvesting.

The 1993 experiment was successful in that we were able to increase the size of the selection sample at screening (increased from 24-27 plants in 1992 to 100 plants in 1993) and

the size of the total population screened (from 195 1992 to 585 plants in 1993). Furthermore, the new greenhouse enabled us to illuminate the plants at much higher light intensities than in the growth chambers and to eliminate competition for nutrients (one plant per pot, nutrients replaced weekly). The plants were re-randomized in their position in the greenhouse weekly also. We did not need to increase the time from selection to harvest because the plants grew so fast under these conditions. However, the use of the greenhouse facility brought with it some new difficulties which we did not encounter in the growth chambers. For example, when the young plants (5 weeks from sowing) were transferred to the greenhouse from the growth chamber, they suffered heat shock and wilted severely. Most plants recovered but some were replaced. Then 2 weeks after transplanting, Berkeley experienced an unusual heat wave for about 1 week. This resulted in damage to the faster-growing plants which wilted more readily than the slower-growing, smaller plants. We also experienced fungal infection of the roots which changed the rate of growth of some plants and increased variability.

What did the results from the 1993 experiment show? We selected at the seedling stage for the two fluorescence parameters, F(v)s and F_v/F_m , i.e., we selected plants which exhibited the 30 highest values and the 30 lowest values for each parameter (giving a total of 100 plants). We grew the plants for 6 weeks and measured the storage root sugar yield and % storage root sucrose as well as fresh and dry weights of plant parts. Ten plants which exhibited serious root damage and other defects were eliminated from the analysis. The remaining 90 plants were tested for statistical correlations between root sugar yield, or sucrose %, with F(v)s or F_v/F_m (Table 1). The results show that young

Table 1. <u>Greenhouse Experiment 1993</u>: Correlation coefficients of fluorescence parameters with important growth and yield attributes of the selected plants

	St.Rt.F.Wt.	St.Rt.D.Wt.	Rt.D.Wt.%	Sugar %	Total sugar
F _O F(_V) _m F _V Q _Q ·F(_V) _s Q _E ·F(_V) _m F _m Q·F(_V) _m Q _Q		-0.414*** -0.296** -0.299** -0.182 0.162 -0.348*** -0.079 0.198 0.184 -0.245*	0.108 0.167 0.259* 0.213* -0.274** 0.163 -0.036 -0.114 -0.275** 0.250*	0.097 0.188 0.357*** 0.240* -0.340*** 0.176 -0.086 -0.255* -0.337** 0.309**	-0.382*** -0.295** -0.277** -0.201 0.174 -0.339*** -0.095 0.137 0.197 -0.249*
F(_v) _s F _v /F _m	-0.306** -0.294**	-0.245*	0.255*	0.388***	-0.215*

*, **, *** = significant at P=0.05, P=0.01, P=0.001, respectively.

plants selected for high $F(v)_s$ or high F_v/F_m subsequently exhibited storage roots which had high % sucrose but low total

root sugar yield (Table 1, Figs. 1,2). This finding confirmed last year's results with respect to sucrose % but differed for root sugar yield which was correlated positively with high $F_{(v)}$ or high $F_{(v)}$ in previous years' experiments (see Reports for 1993, 1992). In this year's experiment, plants selected for high $F_{(v)}$ or high $F_{(v)}$ had smaller root sizes as indicated by the smaller storage root dry and fresh weight (Table 1).

Other significant correlations were obtained (Table 1). For example, high $F(v)_S$ or high F_V/F_m was found to be correlated with high storage root percentage dry matter. When fluorescence parameters other than $F(v)_S$ or F_V/F_m were considered, we found that storage root sugar content correlated positively with high values of F_V and F_V/F_m and correlated with low values of F_V/F_m , F_V/F_m and F_M/F_m , F_V/F_m and F_M/F_m .

3. Field Trial Statistical Analysis

Dr. Harm Schipper (Van der Have) carried out a statistical analysis to see how well fluorescence parameters obtained by the Terry Lab at University of California, Berkeley, correlated with sugar yields in a field trial carried out by Van der Have in The Netherlands. Plants of 39 different seedlots were compared. The objective of Dr. Schipper's analysis was to determine whether high sugar-yielding genotypes exhibited fluorescence characteristics which would identify them as high-yielding genotypes. Dr. Schipper's analysis was exciting because it showed that sugar yield was correlated significantly (in some instances up to P = 0.001) with several different fluorescence parameters. The data show that there was a highly significant positive correlation between white sugar yield (WSY) and F_0 , F_m , F_V , $F(V)_S$, and $F(V)_m$ (Table 2). Similarly, sugar concentration (SC)

Table 2. Field Study Analysis: Correlation coefficients among field sugar yield data of 39 seedlots and laboratory-measured fluorescence parameters. Fluorescence was measured for 15 representative plants of each seedlot and the average was correlated with the average sugar yields obtained from the field trial

	CRY	WSY	SC	
Fo Fm FV/Fm F(v)s F(v)m qE qQ qE.F(v)m qQ.F(v)s q.F(v)m	0.286 0.256 0.463** 0.409** 0.192 0.221 -0.019 -0.444** 0.046 -0.088 -0.060	0.462** 0.465** 0.461** 0.264 0.386* 0.426** -0.063 -0.293 0.054 0.158 0.207	0.199 0.255 -0.150 -0.362* 0.268 0.258 -0.097 0.396* -0.031 0.442** 0.448**	

^{*, ** =} significant at P=0.05 and P=0.01, respectively.

Fig. 1: Relationship between $F_{\rm V}/F_{\rm m}$, measured at selection time, and root sugar concentration (above) and total sugar content (below) in storage root at time of harvest, six weeks later.

Fig. 2: Relationship between $F(v)_s$, measured at selection time, and root sugar concentration (above) and total sugar content (below) in storage root at time of harvest, six weeks later.

was significantly correlated with F_{v}/F_{m} (negative correlation), q_{0} , q_{0} . $F(_{v})_{s}$ and $q.F(_{v})_{m}$ (Table 2). When Group 1 seedlots (1a-25a) only were considered, significant correlations were found between WSY and F_{0} and F_{m} , and between SC and F_{v}/F_{m} and q_{0} (Table 3). With regard to Group 2 seedlots (1b-14b), WSY was highly correlated with F_{v} , F_{v}/F_{m} , $F(_{v})_{s}$ and q_{E} , whereas SC was significantly correlated with $q.F(_{v})_{m}$ (Table 4).

Table 3. Field Study Analysis: Correlation coefficients among field sugar yield data of Group 1 seedlots (1a-25a) and laboratory-measured fluorescence parameters. For each seedlot fluorescence was measured for 15 representative plants and the average was correlated with the average sugar yield obtained from a field trial

	CRY	WSY	SC	
Fo Fm Fv/Fm F(v)s F(v)m qE qQ qE·F(v)m	0.413* 0.411* 0.521** 0.345 0.148 0.356 0.199 -0.465* 0.257	0.472* 0.459* 0.315 0.091 0.216 0.392 0.145 -0.216 0.213	0.009 0.016 -0.438* -0.495* 0.169 0.018 -0.217 0.554**	

^{*, ** =} significant at P=0.05 and P=0.01, respectively.

Table 4. Field Study Analysis: Correlation coefficients among field sugar yield data of Group 2 seedlots (1b-14b) and laboratory-measured fluorescence parameters. For each seedlot fluorescence was measured for 15 representative plants and the average was correlated with the average sugar yield obtained from a field trial

	CRY	WSY	SC	
Fo	0.065	0.427	0.533*	
Fm	0.099	0.462	0.516	
F	0.409	0.645*	0.202	
F_{V}^{V}/F_{m}	0.517	0.565*	-0.126	
F(_V) _S	0.270	0.577*	0.359	
$F(v)_{m}$	0.107	0.458	0.494	
q_{E} ""	-0.684**	-0.713**	0.236	
q _Q	-0.409	-0.470	0.060	
$q_{E}^{\Sigma} \cdot F(v)_{m}$	-0.675**	-0.523	0.509	
	0.078	0.362	0.395	
$q_{Q} \cdot F(_{V})_{g}$ $q \cdot F(_{V})_{m}$	-0.189	0.157	0.602*	

^{* =} significant at P=0.05 and P=0.01, respectively.

Dr. Schipper also developed a number of indices by the addition of the values of several fluorescence parameters as follows:

A1 =
$$F_{O}$$
 + F_{V}
A2 = F_{O} + F_{V} + $F_{(V)}$ s
A3 = F_{O} + F_{V} + $F_{(V)}$ s + F_{m} + $F_{(V)}$ m
B1 = $q_{Q} \cdot F_{(V)}$ s + $q \cdot F_{(V)}$ m
B2 = $(q_{Q} \cdot F_{(V)})$ s + $q \cdot F_{(V)}$ m) * q_{Q}

These indices were then tested for their correlation with sugar yield from the results of the field trials. When all the 39 seedlots were considered, highly significant correlations were found between WYS and A1, A2 and A3, and between SC and B1 and B2 (Table 5). Similar correlations were also obtained when group 1 and group 2 seedlots were considered separately (Table 5). Figure 3 illustrates how well WSY correlated with the fluorescence index A1.

Table 5. <u>Field Study Analysis</u>: Correlation coefficients among field sugar yield data and fluorescence indices derived from laboratory-measured fluorescence parameters (see text above for the meaning of these indices)

	A1	A2	А3	B1	B2	
	All 39 seedlots					
CRY WSY SC		0.501**	0.484**	-0.079 0.193 0.473**	-0.008	
	<u>Group 1 seedlots</u>					
CRY WSY SC	0.582** 0.481* -0.281	0.406*	0.442*		-0.029	
	Group 2 seedlots					
CRY WSY SC		0.611*	0.533*	-0.056 0.265 0.508		
*,**,*** =	significant	at P=0.0	ō, P=0.01,	P=0.001,	respectively.	

4. Conclusions

- 1) Based on Dr. Schipper's analysis and from our results of this and previous years, there is little doubt that high-yielding sugar beet genotypes can be identified by their fluorescence characteristics.
- 2) The 1993 greenhouse experiment, which was designed to show that selection for high values of F(v)s and F_v/F_m can predict those plants with high root sugar yields, was successful

Fig. 3: Relationship between fluorescence index A1 $(A1=F_O+F_V)$, measured in our laboratory for young plants of 39 seedlots, and white sugar yield obtained from plants (of the same seedlots) grown in the field in The Netherlands.

in predicting plants with high root sugar concentration (but not sugar yields).

3) The 1993 greenhouse experiment permitted us to increase the sample size at the time of selection and the total size of population screened, and to increase illumination and mineral nutrient supply. However, we also encountered unanticipated setbacks in that plants wilted after transfer from the growth chamber to the greenhouse, suffered damage following an unusual heat wave, and some plants developed fungal infections of their roots. The faster-growing plants were more prone to damage than their slow-growing counterparts and we believe that this, along with increased variability, reduced our chances of obtaining good correlations of sugar yield with fluorescence.

This year we will continue to use the greenhouse to conduct the experiment but we will avoid the difficulties we encountered last year by conducting the whole experiment, from germination to harvest, in pots filled with vermiculite and peat moss. By this means we should eliminate transplanting shock, and, root cracking and root fungal infection (in the 1993 experiment, the storage roots cracked when they expanded into the lids of the nutrient solution container; this led to fungal infection). Furthermore, we will attempt to simulate field conditions more precisely by withholding nitrogen from the plants for 2 weeks prior to harvest so that sucrose levels build up in roots. The fluorescence measurements will be carried out in the greenhouse. This will require the use of special adapters to intact leaves in situ before measuring dark-adapt the fluorescence emission under daylight illumination.

References:

- Jefferies, R.A. 1992. Effects of drought on chlorophyll fluorescence in potato (Solanum tuberosum L.). I. Plant water status and the kinetics of chlorophyll fluorescence. Potato Res. 35:25-34.
- Jefferies, R.A. 1992. Effects of drought on chlorophyll fluorescence in potato (<u>Solanum tuberosum</u> L.). II. Reltions between plant growth and measurements of fluorescence. Potato Res. 35:35-40.
- Krause, G.H., and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349.
- Ogren, E. 1990. Evaluation of chlorophyll fluorescence as a probe for drought stress in Willow leaves. Plant Physiol. 93:1280-1285.
- Prange, R.K.; McRae, K.B.; Midmore, D.J. and Deng, R. 1990. Reduction in potato growth at high temperature: Role of photosynthesis and respiration. Amer. Potato J. 67:357-369.

- Schreiber, U., U. Schliwa, and W. Bilger. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10:51-62.
- Schreiber, U., and W. Bilger. 1987. Rapid assessment of stress effects on plant leaves by chlorophyll fluoresence measurements. In Tenhunen et al., (eds), Plant response to stress. Springer Verlag. Berlin.
- Smillie, R.M. 1992. Calvin cycle activity in fruit and the effect of heat stress. Scientia Hort. 51:83-95.
- Wardlaw, I.F. 1990. The control of carbon partitioning in plants. New Phytol. 116:341-381.

SUGARBEET RESEARCH

1993 Report

Section B

Plant Molecular Biology Laboratory Agricultural Research Service United States Department of Agriculture Beltsville, Maryland

> Dr. Lowell D. Owens, Plant Physiologist Dr. John C. Ingersoll, Molecular Biologist Dr. Gordon W. Snyder, Molecular Biologist

> > -----

The research was supported in part by funds provided through the Beet Sugar Development Foundation (Project 800)

CONTENTS

PUBLICATIONS	E
Abstracts of Papers Published or Approved for Publication	В3
Papers Published Since Abstracted in Previous Report	В4
ENGINEERED RESISTANCE TO BACTERIAL PATHOGENS	
Introduction and Expression of Cecropin gene in Tobacco Promoter Analysis in Sugarbeet cells	
GENE TRANSFER AND CLONING RELATED TO SUGAR PARTITIO	ONING
Gene Transfer to Sugarbeet	

Abstracts of Papers Published or Approved for Publication

Wozniak, C. A. and L. D. Owens. 1994. Native β-glucuronidase activity in sugarbeet (Beta vulgaris L.). Physiol. Plant. 89: (In press).

β-Glucuronidase activity, initially thought absent from plants, has been found in a number of plant families. During an analysis of Agrobacterium-mediated transformation of sugarbeet (Beta vulgaris L.), significant glucuronidase activity was observed in control (nontransformed) tissues when the fluorogenic substrates methylumbelliferyl-β-D-glucuronic acid, resorufin glucuronic acid 3-carboxyumbelliferyl-\beta-D-glucuronic acid were used to quantify \(\beta\)-glucuronidase activity under standard protocol conditions. Similarly, the colorigenic substrate p-nitrophenyl-β-D-glucuronide hydrolyzed by this sugarbeet-derived glucuronidase. Biochemical and immunological data are presented to indicate significant differences between sugarbeet-derived glucuronidase and that of microbial origin (i.e., encoded by gusA; E.C. 3.2.1.31). These differences provide means of distinguishing between the two activities in extracts that contain a mixture of both. Use of X-gluc, the substrate utilized in histochemical localizations of glucuronidase activity, gave no reaction product (i.e., indigo precipitate) at pH 7.0. However, at pH 3.0, 4.0 and 5.0 formation of the indigo precipitate was evident within 1 h at 37 °C in sugarbeet callus and by 4 h in leaves and petioles. The specific activity of sugarbeet glucuronidase was observed to be strongly pH dependent, with an optimum near pH 4.0. The use of various β -glucuronidase assay techniques applied to transformation of sugarbeet is discussed.

Owens, L. D., R. O. Nordeen, J. B. Philbrick and J. C. Ingersoll. 1993. Design and testing of novel genes for plants to defend against bacterial pathogens. Abstr. of Papers, 206th Amer. Chem. Soc. Nat'l Mtg. AGRO 141.

New sources of resistance to microbial pathogens are needed to maintain productivity of agricultural crops. Modern techniques in molecular biology now enable taking a gene from any source, reconstructing it with appropriate regulatory sequences, inserting it into the target plant and having it expressed and inherited as part of the plant genome. This talk will describe investigations to test the feasibility of engineering the cecropin gene from the insect Hyalophora cecropia to augment the plant's natural defenses against

pathogenic bacteria. Included will be (1) data on the relative toxicity of cecropin to pathogenic bacteria and to cells of their respective host plants, (2) design and construction of the gene, (3) evidence for expression and heritability of the gene in a model test plant and (4) new physical techniques for inserting genes into plant tissues for rapidly determining how efficiently they will be expressed.

Wozniak, C. A., and L. D. Owens. 1993 Use of β -Glucuronidase (GUS) as a marker for transformation in sugarbeet. J. Sugar Beet Res. (In press).

Accurate quantitation of an introduced genetic or biochemical marker into sugarbeet (Beta vulgaris L.) is based on the absence of native activities in the plant that could confound analysis of marker expression. During the course of experiments designed to optimize DNA transfer from Agrobacterium tumefaciens to sugarbeet leaf disc cells, an endogenous enzyme activity was discovered which utilizes all the common substrates recognized by the marker enzyme, βglucuronidase (GUS) from E. coli. This native sugarbeet enzyme (SB-GUS) was characterized immunologically and biochemically. GUS and SB-GUS were found to be distinct with regard to pH optima, thermal inactivation, reaction to denaturants and protein modifying reagents, inhibition by metals and saccharo-lactone, and molecular mass. two activities are not immunologically related, as judged by Western blot and immunoprecipitation analyses. A protocol was developed to accurately quantitate introduced GUS in the presence of SB-GUS, by utilizing selective inhibition of GUS at pH 7.0 by saccharic acid 1,4lactone. Under these conditions GUS activity is completely eliminated, while SB-GUS activity was unaffected.

Papers Published Since Abstracted in Previous Report

Hassan, M., S. L. Sinden, R. S. Kobayashi, R. O. Nordeen and L. D. Owens. 1992. Transformation of potato (*Solanum tuberosum*) with a gene for an anti-bacterial protein, cecropin. *Acta Hort*. 336:127-131.

Hatfield, D., C. I. Soon, S. Mischke and L. D. Owens. 1992. SelenocysteyltRNAs recognize UGA in *beta vulgaris*, a higher plant, and in *Gliocadium virens*, a filamentous fungus. *Biochem. Biophys. Res. Comm.* 184:254-259.

ENGINEERED RESISTANCE TO BACTERIAL PATHOGENS BSDF Project 800

J. C. Ingersoll and L. D. Owens

Expression of cecropin gene in transgenic tobacco plants Cecropins are a family of small polypeptides (~40 amino acids in length) that possess potent antibacterial activity against many bacteria, including a number of plant pathogens. A synthetic version of cecropin B, consisting of the coding region of cecropin fused to the secretory sequence from barley α-amylase and placed under control of two different promoters, was introduced into the model test plant tobacco. The promoters used were the enhanced 35S (En35S) promoter from cauliflower mosaic virus and the proteinase inhibitor II (PI-II) promoter from potato.

Preliminary challenge experiments using *Pseudomonas solanacearum* infection of either wounded roots or punctured stems indicated delayed symptom development with the PI-II but not the En35S promoter. Because these experiments occurred over a period of many months, and because many R0 plants challenged with the En35S construct were lost, a new set of transgenic *Nicotiana tabacum* cv. Bottom Special were produced and vegetatively cloned. One set of cloned lines is being challenged by infiltration of different numbers of *Pseudomonas syringeae* pv. *tabaci* into leaves. The leaves are scored for chlorsis/necrosis symptom development, and leaf discs are punched from replicate infection loci for bacterial counts. Preliminary results with PI-II-cecropin transgenic plants indicate protection at normal levels of infection.

Promoter analysis in sugarbeet cells - Engineered defense genes need to be efficiently expressed in the target plant. In order to study the efficiency of inducible promoters and accompanying 5'-untranslated leader sequences in sugarbeet, various combinations of these elements were fused to the *gusA* gene coding region and used to coat gold microbeads. Previously, these DNA-coated beads were shot into detached sugarbeet leaves to ascertain transient GUS expression. The leaf system, however, gave low numbers of GUS+ (blue) foci and was highly variable.

To develop a more consistent promoter-analysis system, sugarbeet suspension cell cultures were established from leaf-disc callus. Basically the system consists of layering a fine suspension of cells on a membrane, bombarding the cells with DNA-coated beads, culturing for 24 h to allow expression of the promoter-gusA construct and assaying for GUS

expression. The histochemical substrate X-gluc was used in optimization studies. The number of blue foci obtained is an indication of expression efficiency. Highest efficiency was obtained when cells were: layered at a rate of 12 mg FW/cm² of membrane (cellulose nitrate or nylon) using a filtration apparatus; precultured for 4 h on medium supplemented with an osmoticum (0.25 OsM consisting of equal amounts of mannitol and sorbitol); bombarded with particles propelled by 1350 psi He at a distance of 10 cm; and postcultured 24 h on the same high-osmotic medium. The membrane and cells were then transferred to filter paper wetted with X-gluc solution and 30 mM ascorbate (to prevent browning) and incubated overnight at 37 °C. These optimized conditions are being used to analyze promoter-gusA constructs prepared with promoters derived from the wound-inducible genes osmotin, PR-S and PI-II and the constitutive En35S promoter.

GENE TRANSFER AND CLONING RELATED TO SUGAR PARTITIONING

G. W. Snyder and L. D. Owens

Gene transfer to sugarbeet - Transgenic sugarbeet plants were obtained by coculture of leaf discs with an Agrobacterium vector strain. The method used was that described in a French patent held by Le Groupe Limagrain (contact made through Tom Schwartz). Proof of transformation was indicated by growth on kanamycin, strong GUS activity of excised leaf pieces and PCR analysis of DNA. Several defense-gene constructs are currently being introduced.

Cloning of sucrose phosphate synthase gene - A key gene known to exert a major influence in sugar production and export from tomato leaf is the sucrose phosphate synthase (SPS) gene. When a heterologous SPS gene is introduced, the resulting SPS enzyme is less controlled by feedback inhibition mechanisms, and more sucrose is exported from the leaves. We have cloned, in segments, about 3/4 of the SPS gene from maize by PCR techniques. The plan is to place the entire coding region of this gene under control of a taproot-expressed promoter and introduce the construct into sugarbeet.

SUGARBEET RESEARCH 1993 REPORT

Section C

Crops Research Laboratory, Agricultural Research Service U.S. Department of Agriculture, Fort Collins, Colorado

Dr. Earl G. Ruppel, Plant Pathologist Dr. Susan S. Martin, Plant Physiologist Dr. Leonard W. Panella, Geneticist

Cooperation:

Colorado Agricultural Experiment Station

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 402, 903, and 904)

<u>Contents</u>

								P	age
PUBLI	CATIONS								
	Abstract	of Paper App	roved for	Publicati	on		 •		С3
		OOT ROT RESEAR (BSDF Project					•		C4
	Testing Base Por	eld Research o of Materials oulations to D Variation and	Developed evelop Mu	by R.J. H ltiple Dis	Hecker sease Resist	 tance			C5 C5
		CONTRIBUTED L 903)						•	С9
		CONTRIBUTED L 904)						•	С9

PUBLICATIONS

Abstract of Paper Approved for Publication

Ruppel, E. G. and R. J. Hecker. 1994. <u>Rhizoctonia root rot on sugarbeet cultivars having varied degrees of resistance</u>. J. Sugar Beet Res. 31:(in press)

To address a concern that yield losses may be greater in resistant than in susceptible sugarbeet cultivars, five cultivars, including a susceptible and two moderately resistant commercial varieties, a resistant three-way experimental hybrid, and a highly resistant breeding line, were tested in the field in 1989, 1990, and 1991 for their reaction to inoculation with *Rhizoctonia solani* (AG-2-2). Generally, rankings of the cultivars for percent decreases (inoculated versus noninoculated) in root and recoverable sucrose yield and percent sucrose and percent purity tended to be proportional to disease severity indices. With the exception of percent purity in 1990, positive significant or highly significant coefficients of linear correlation between disease index differences (inoculated versus noninoculated) and percent decreases in yield and purity parameters each year indicated that there were no hidden losses to Rhizoctonia root rot in resistant germplasms.

RHIZOCTONIA ROOT ROT RESEARCH AND DEVELOPMENT OF GENETIC RESISTANCE IN SUGARBEET (BSDF Project 402)

1993 Field Research on Rhizoctonia Root Rot of Sugarbeet.--E. G. Ruppel and L. W. Panella.

We have been pleased to lead this cooperative research project of ARS, the BSDF, and the Colorado Agricultural Experiment Station. Our project primarily involved field studies conducted on the Colorado State University South Campus in an area reserved for Rhizoctonia root rot research.

The 1993 field experiments were planted in an area that had been in barley for 3 years and was the site of our inoculated Rhizoctonia nursery in 1989. No Rhizoctonia root rot occurred from residual fungus before inoculation of sugarbeet in 1993. Our 4-year rotation with barley apparently is sufficient for the degradation of *Rhizoctonia*-infected residues in our soils of low organic content.

Rhizoctonia evaluation experiments were planted in one-row plots 56 cm (22 in) apart and 4.3 m (14 ft) long. Experiments were planted in mid-May and thinned to a 20- to 25-cm (8- to 10-in) in-row spacing the third week of June. Dry, ground, barley-grain inoculum of *Rhizoctonia solani* (isolate R-9) was banded over the rows on July 19 at a rate of 8.4 g/4.3-m row with a tractor-mounted four-row granule applicator. Inoculum was banded in a split application, with opposite directions of travel for each application. Immediately after inoculation, we performed a cultivation designed to throw soil into sugarbeet crowns, a practice that we previously identified as being conducive to the development of root and crown rot. Our standard sprinkler irrigation regime was used to moisten and activate the inoculum. Succeeding irrigations were done by furrow. Before field inoculation, we tested inoculum for virulence on 2-mo-old sugarbeets in the greenhouse; our 1993 inoculum was highly virulent, rotting all inoculated plants.

Roots in all experiments were lifted either the last week in September or the first week in October and individually rated for rot on a disease index (DI) scale of 0 to 7, with 0 = no evidence of rot and 7 = plant dead. Percent healthy roots were those with DIs of 0 and 1, roots with no active infection. Roots with DIs 0 through 3 also were analyzed as a class; these roots were sufficiently sound and large to be recovered in a commercial harvest.

Due to the cool, wet summer, our 1993 epidemic of root rot was rather mild, although more intense than our 1992 epidemic. In the critical months of July through September, night low temperatures never exceeded 51°F, and day temperatures also were unseasonably low. With one exception (week four in August), we experienced a departure of -1 to -7 degrees from the 70-yr mean weekly temperature. By the end of September, we were 200 growing-degree-days below the year-to-date 70-yr mean temperature. Thus, our susceptible check mean DI was 2-3 classes below the average of 6-7. Nevertheless, the procedure of throwing soil into the crowns provided adequate contrasts among entries. Mean DIs across all tests for highly resistant, resistant, and susceptible checks were 1.7, 1.8, and 4.2, respectively.

Testing of materials developed by R.J. Hecker.--L. Panella, E. G. Ruppel and R. J. Hecker (retired).

Genetic information developed previously in our research was used for additional cycles of pathogen inoculation, plant selection, and recombination among germplasms that we have in our cyclic improvement program. Germplasms in various stages of improvement were evaluated for resistance in inoculated field tests. Results of these tests were the basis of decisions about specific germplasm, i.e., retain, shelve, discard, recombine, release, register, etc. Germplasms likely to be useful for variety improvement were identified and released for use by other sugarbeet breeders.

We are continuing to field-evaluate lines developed in the breeding program of Dr. R. J. Hecker. Thirteen lines were field-tested in 1993 for resistance to *Rhizoctonia solani*, *Cercospora beticola*, and the curly top virus (Table 1). Seed was increased from three lines, FC709(4X), FC710(4X), and FC712(4X), that were converted to tetraploidy (4X) with colchicine treatment. They are lines that previously were released from the Fort Collins program as diploids (2X), with good combining ability and high resistance to Rhizoctonia root rot. Additional lines developed in Dr. Hecker's program were increased in isolation plots in 1993.

Lines that showed outstanding performance in 1993 field trials will be released in 1994 or 1995. One of the tetraploids, along with a few other lines increased in 1993, will be tested in the summer of 1994 and the best of these lines released.

Base Populations to Develop Multiple Disease Resistance.--L. Panella.

In a hybrid crop like sugarbeets, it is preferable that all of the parents contain some level of resistance to diseases prevalent in the area in which the hybrid is to be grown. Multiple disease resistance is a difficult goal in a crop improvement program, especially when working with an outcrossing species. In alternating generations of selection, some of the progress made in resistance to one disease is lost while selecting for resistance to other diseases.

One way of solving the problem of selecting for multiple disease resistance is the use of progeny testing. By testing the progeny of individual mother roots, plants with multiple disease resistance can be identified and used as parents of the next generation. The most efficient use of progeny testing is when the genotype of both parents is known, and the easiest way to do this is through self-pollination. In sugarbeet, the dominant, self-fertility allele permits self-pollination. Used in conjunction with genetic male sterility to insure cross pollination, a system of full-sib progeny testing can be utilized.

Material from the USDA-ARS breeding program at Salinas, CA, has been crossed with some of the Fort Collins lines most resistant to *Rhizoctonia solani*. The Salinas material had the self-fertility allele, was segregating for genetic male sterility, and also contained a broad spectrum of resistance to diseases of importance in California as well as other sugarbeet production areas (including rhizomania, powdery mildew, virus yellows, curly top virus, and cyst nematode). Crosses were made reciprocally (with some plants from each line as females and some as males) when possible. The genetic male sterile plants in the Salinas lines were used as females, and red (R_) and green (rr) hypocotyl color were used

as markers (if possible) when the Fort Collins material was used as a female ($\delta = R$ and P = rr; only progeny with a red hypocotyl will be used). We also examined the possibility of using isozyme markers or RFLP markers when the plants with the correct hypocotyl color were not available.

Table 1. The performance in three disease nurseries of previously released Fort Collins (FC) germplasms and thirteen lines being considered for release.

			Disease indices			
Source	Designation	Curly top	Leaf spot	Rhizoctonia		
921002H0	FC604		4.5			
921002H01	FC604CMS	•••	3.8			
911026НО	FC715	7.0	3.7	1.3		
911026H01	FC715CMS	6.3	3.5	1.0		
911028	FC716	6.3	3.7	1.2		
911031	FC717	6.7	4.0	1.0		
911032	FC718	6.3	4.2	1.1		
911037	FC719	5.7	4.2	1.2		
931006НО		5.7	5.0	1.4		
931006H01		5.0	4.2	1.3		
931007		5.3	4.2	1.3		
921007		6.3	4.0	1.2		
921008		5.7	4.3	1.2		
921012H0		5.3	4.5	1.1		
921012H01		5.3	4.2	1.2		
931010		6.7	3.5	1.2		
921019		7.0	4.0	0.9		
921021		6.3	3.5	1.0		
921025		7.3	4.7	1.1		
921022		6.3	3.7	1.2		
921024		6.7	3.7	1.0		
Susceptible ch	neck ¹	5.3	6.3	3.0		
Resistant chec	ck ²	4.7	4.5	1.2		
Highly resistant check ³				1.3		
LSD		NS	1.1	0.4		

¹Susceptible check: curly top = US33, leaf spot = LSS synthetic, Rhizoctonia = 831044.

Five lines from the Salinas breeding program, grown in the steckling field, were crossed with two lines from the Fort Collins program. Both multigerm pollinators

²Resistant check: curly top = US41, leaf spot = 821051H2, Rhizoctonia = FC703.

³Highly resistant check: Rhizoctonia = FC705-1.

and monogerm, 0-type maintainers were used (Table 2). Neither isozyme analysis nor the use of RFLPs, obtained from restricting the ITS region in the rDNA region (Figure 1), provided enough discrimination to distinguish hybrid progeny in the crosses between Fort Collins and Salinas material. This provides some indication of the lack of genetic diversity among cultivated sugarbeet populations used in this country.

Table 2. The parents to be used in reciprocal crosses to establish Rhizoctonia resistant base populations.

Line	Origin	Comments
FC708	Fort Collins	Rhizoctonia resistant O-type
921024	Fort Collins	Rhizoctonia resistant Multigerm
93A001	Salinas	2915, Multigerm segregating for self-fertility and male sterility
93A002	Salinas	R278, Multigerm, self-fertile segregating for genetic male sterility
93A003	Salinas	2890, segregating for O-type, self-fertility and genetic male sterility
93A004	Salinas	N244, Multigerm segregating for self-fertility and male sterility
93A005	Salinas	2859, 0-type segregating for self-fertility and genetic male sterility

The Salinas lines from the steckling field will be crossed to the Fort Collins disease-resistant lines and the F_1 populations intracrossed ('selfed'). The resultant populations, together with the materials from Dr. Hecker's program, eventually will form the basis of a Rhizoctonia breeding project, containing a strong laboratory component. This program will focus on understanding the genetics of the $R.\ solani$ -sugarbeet interaction, increasing selection efficiency for resistance to Rhizoctonia root rot, and producing multiple disease resistant sugarbeet germplasms.

Genetic Variation and Pathogenicity in Rhizoctonia solani.--L. Panella and M. K. Hjort.

Currently, it is possible to assay the pathogenicity to sugarbeet of an isolate of $R.\ solani$ through a greenhouse bioassay only, which may take 12 to 16 weeks. Although there has been recent work done on the phylogenetics of this pathogen, evolutionary relationships among isolates have not been well correlated with the host specificity of the fungus. Whether the pathogenicity to sugarbeet has evolved once or more than once could substantially influence the types of host-pathogen interactions.

R. solani is divided into anastomosis groups (AGs) based on the ability of the hyphae to fuse and exchange genetic material, or, more recently, into

intraspecific groups (ISGs) based on molecular markers, especially the internal transcribed spacers (ITS) flanking the 5.8S ribosomal RNA gene (rDNA) (Figure 1). Isolates of $R.\ solani$ from AG-4 cause seedling damping-off in sugarbeet, and isolates from AG-2-2 cause root and crown root in mature beets.

We are using PCR to amplify the DNA of $R.\ solani$ coding for the 5.8S ribosomal RNA gene (rDNA) as well as the two flanking ITS regions. This will be done with the ITS1 and ITS4 primers (Figure 1) (Lee & Taylor, 1990). Restriction enzymes that recognize four base-pair sites are being used to create restriction fragment length polymorphisms (RFLPs) from the amplified DNA. We will use these RFLP markers to identify ISGs within AG-2-2. Isozyme markers may also be used to further discriminate ISGs. The $R.\ solani$ isolates then will be tested for their virulence in sugarbeet. The phylogenetic information will be correlated with the pathogenicity data to see if all the isolates pathogenic to sugarbeet belong to the same evolutionary group. In any case, the sugarbeet-pathogenic group(s) will be delineated with genetic markers.

Currently, DNA from 42 isolates of *R. solani* has been amplified and cut with five restriction enzymes. Some RFLPs were detected with these enzymes, as well as initial differences in the size of the amplified length of DNA, which varies from approximately 700 to 750 base pairs (BPs).

Forty to 60 more isolates of *R. solani* pathogenic to sugarbeet are being obtained from diverse locations. They will be analyzed in a similar fashion to the original 42. The DNA will be separated on agarose gels, visualized with ethidium bromide, and photographed. We will use the enlarged photographs to

Figure 1.

estimate the fragment sizes, using markers of known size (from a HaeIII digest of Φ X174RFI). More enzymes will be used as needed to discriminate among the various ISGs in the different anastomosis groups. Greenhouse tests will be used to determine the pathogenicity of the isolates of R. solani to sugarbeet. These data will be correlated with the phylogenetic information.

Lee, S.B., and J.W. Taylor. 1990. Isolation of DNA from fungal mycelia and single spores. Pages 282-287, *in* M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White (eds.), PCR Protocols: A Guide to Methods and Applications. Harcourt Brace Jovanovich, San Diego.

EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO RHIZOCTONIA ROOT ROT (BSDF Project 903)

We used randomized complete-block designs with five replications to evaluate a total of 173 lines from six companies; additionally, one company had a second test of 12 lines replicated three times. Rhizoctonia resistant FC703 and highly susceptible FC901 were included as internal controls, along with highly resistant FC705-1. Experimental design, plot size, and evaluation method are described in the section "1993 Field Research on Rhizoctonia Root Rot of Sugarbeet." The experimental design, methods, results and statistical analyses were provided to the appropriate company breeders.

Our 1993 root rot epidemic was milder than normal due to a cool, wet summer, but more severe than in 1992. Mean DIs across all tests for highly resistant FC705-1, resistant FC703, and highly susceptible FC901 were 1.7, 1.8, and 4.2, respectively, compared with 0.7, 0.8, and 1.3, respectively, in 1992. Percent healthy roots were 53.0, 49.2, and 8.9 for these controls, respectively; percentages of roots in disease classes 0 through 3 were 97.7, 98.0, and 60.3, respectively. The lowest and highest mean DIs for contributor lines across tests were 1.4 and 5.4, respectively, compared with 0.5 and 2.9 in 1992.

EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO CERCOSPORA LEAF SPOT (BSDF Project 904)

We used randomized complete-block designs with three replications to evaluate 214 lines from six contributors. Internal controls included a highly susceptible synthetic and a resistant check, FC(504 X 502/2) X SP6322-0. Two-row plots were 4.3 m (14 ft) long, with 56 cm (22 in) between rows and a 20- to 25-cm (8- to 10- in) within-row spacing. We inoculated twice (June 29 and July 7).

The 1993 leaf spot epidemic progressed slowly due to our cool summer (see "1993 Field Research on Rhizoctonia Root Rot of Sugarbeet," these reports). Although disease severity by early September was not as great as in previous years, we made our first evaluations on September 7. That afternoon, we had a short, but extremely hard hail storm, which was followed by two nights of severe frost. At our second rating date (September 14), the leaves were severely tattered from the hail, and there was much frost damage. I decided that further evaluations would be useless.

On September 7, means of the resistant and susceptible checks across the nursery were 2.7 and 4.4 (scale of 0.10), respectively. In 1992, these means on September 17 were 4.1 and 6.7. Means of contributor lines ranged from 2.0 to 5.0 on September 7, and 3.0 to 6.0 at the later date. In 1992, means on September 17 ranged from 3.2 to 7.3. Means of contributor tests were tabulated, statistically analyzed, and sent to the appropriate contributor.

SUGARBEET RESEARCH

1993 Report

SECTION D

Northern Crop Science Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Fargo, North Dakota

Dr. G. A. Smith, Research Leader, Geneticist

Dr. W. M. Bugbee, Plant Pathologist

Dr. L. G. Campbell, Geneticist

Dr. D. L. Doney, Geneticist

Mr. J. D. Eide, Plant Physiologist

Ms. R. L. Stolzenberg, Microbiologist

Dr. C. A. Wozniak, Molecular Biologist

Cooperation:

Colorado State University Experiment Station
University of Minnesota Northwest Experiment Station
North Dakota Agricultural Experiment Station
Sugarbeet Research and Education Board of
Minnesota and North Dakota

This research was funded in part by members of the Beet Sugar Development Foundation for support of Projects 600, 601, 610, 630, 631, and 641.

CONTENTS

	PAGE
PUBLICATIONS	D3
Abstracts of Papers Presented, Published or Approved for Publication	
and Germplasm Registrations	D3 D12
Tupors I donished Since Abstracted in Trevious Reports	DIZ
CERCOSPORA LEAF SPOT AND BIOPESTICIDE RESEARCH	D13
Development of Cercospora Resistant Breeding Lines Examination and Purification of Chitinase in Cercospora Leaf Spot	D13
Resistant Germplasm	D13
Root Maggot	D13 D15
Transformation of Sugarbeet by Agrobacteria	D15
Biological Control of Sugarocci Root Maggot	נות
UTILIZING HOST RESISTANCE MECHANISMS AGAINST	
RHIZOCTONIA SOLANI	D16
Manipulation of a Root Rot Resistance Factor	D17 D18
BROADENING THE GENETIC BASE OF SUGARBEET	D18
(Pre-breeding)	р10
Near-sugarbeet Selections	D19
New Populations	D20
Green Leaf Duration	D22 D24
Lan Initiation	521
WORLD BETA NETWORK D. L. DONEY (Project 631)	D25
BIOLOGICAL CONTROL OF SUGARBEET ROOT MAGGOT	D27
C. A. WOZNIAK (Project 641) Insect Endogenous Bacteria and Their Influence on Sugarbeet	DZI
Root Maggot Development	D27
Isolation and Characterization of Bacillus thuringiensis for	
Biocontrol of Sugarbeet Insect Pests	D29
NEMATODE RESEARCH C. A. WOZNIAK, G. A. SMITH and L. G. CAMPBELL	D31

PUBLICATIONS

Abstracts of Papers Presented, Published, or Approved for Publication

BUGBEE, W. M. 1993. Rhizoctonia-induced phytoalexin production in sugarbeet. J. Sugar Beet Res. 30:83.

Resistance of sugarbeet to Rhizoctonia solani increased with age. The shift from susceptibility to resistance occurred about three weeks after planting and was accompanied by the production of phytoalexins. Three-week-old plants produced more phytoalexin when infected by the AG 4 strain than when infected by the AG 2-2 strain of R. solani. At five weeks, more phytoalexin was induced by AG 2-2 than AG 4. AG 4 was more sensitive than AG 2-2 to phytoalexin, which may partially account for the avirulence of AG 4 on older plants. When root slices were inoculated with R. solani, more phytoalexin was produced by the susceptible cultivar Ultramono than the resistant germplasm FC 712. The AG 4 strain induced more phytoalexin than AG 2-2, but neither was significantly different than untreated controls. R. solani cultures with pectin from Ultramono as the only carbon source contained more phytoalexin elicitors than cultures of FC 712 pectin. AG 2-2 induced more elicitors than AG 4, but neither induced more than the uninoculated control. Pectic fragments appeared to be weak elicitors of phytoalexins. Thus phytoalexins were associated with age-related resistance but not varietal resistance. Pre-formed antibiotics were present in ethanol extracts of root.

CAMPBELL, L. G. and A. W. ANDERSON. 1993. Additional sources of resistance to sugarbeet root maggot. *Annual Plant Resistance to Insects Newsletter* 19:18.

Selection for resistance to the sugarbeet root maggot (Tetanops myopaeformis Röder) has been marginally successful. While it seems apparent that one can develop sugarbeet (Beta vulgaris L.) lines with a moderate and perhaps useful level of resistance, the difficulty of selecting under natural infestations and mode of inheritance hinder the incorporation of sugarbeet root magget (SBRM) resistance into commercial hybrids. Because of this, new and more effective resistance genes are especially needed in the SBRM breeding program. The Sugarbeet Crop Advisory Committee (CAC) has sponsored a SBRM screening effort at St. Thomas, North Dakota since 1987. Data has been compiled on 170 accessions of the NC-7 Beta collection (USDA-ARS, Ames, Iowa) and is available on the USDA Germplasm Resources Information Network (GRIN). The following 17 accessions have been characterized as having at least an intermediate level of SBRM resistance and will be reevaluated: PI-165485, PI-232887, PI-266100, PI-266104, PI-274394, PI-285589, PI-285590, PI-285594, PI-286502, PI-293419, PI-355962, PI-357357, PI-467869, PI-467870, PI-467871, PI-467874, PI-467875. All 17 are biennials; nine are sugarbeet types and the remainder table

beets. The resistance of two accessions identified in an earlier screening, PI-179180 and PI-181718, has been confirmed. These two accessions incur damage similar to the most resistant lines in our breeding program. Crosses have been made to transfer this resistance into agronomically useful populations and to study the inheritance of resistance. The CAC screenings included species related to sugarbeet. Although only a few *B. patellaris* accessions have been examined, all exhibit a high level of resistance. Unfortunately, crosses between this species and sugarbeet are not easy.

CAMPBELL, L. G., A. W. ANDERSON, and K. A. PRODOEHL. 1993. The use of exotic and domestic germplasm for resistance to the sugarbeet root maggot. J. Sugar Beet Res. 30:84.

The sugarbeet root maggot (*Tetanops myopaeformis* Röder) is a major insect pest of sugarbeet (*Beta vulgaris* L.). Attempts to develop resistant genotypes have been marginally successful. Breeding lines provide control comparable to that obtained with insecticides. However, the difficulty of selection and the mode of inheritance make it difficult to incorporate maggot resistance into a commercial hybrid development program. Past breeding efforts have utilized mass selection under natural maggot infestations. Alternative methods being explored include selection based upon family performance and the conversion of resistant germplasm to a tetraploid line for testing as a pollinator parent. Portions of the NC-7 *Beta* collection (USDA; Ames, Iowa) have been screened for maggot resistance. PI179180 and PI181718 have confirmed resistance. Both are biennial with red globe-shaped roots. Seventeen biennial *B. vulgaris* accessions identified as resistant in initial screenings are being increased for further evaluation. A 0 to 9 damage rating scale was utilized to differentiate among breeding lines more efficiently than the widely used 0 to 5 scale.

CAMPBELL, L. G. and W. M. BUGBEE. 1994. Pre-breeding for root-rot resistance. *Proc.*, *Third International World Beta Network Conference*, Fargo, ND, August 4-6, 1993.

A number of crown and root rot diseases reduce yield in sugarbeet. Many of these diseases are limited to small geographic areas and their incidence is often sporadic. Hence, development of resistant cultivars has not been a high priority. Rhizoctonia, Aphanomyces, and Erwinia root rots are exceptions. Commercially useful resistance to *Rhizoctonia* and *Aphanomyces* originated from only a few sources. *Erwinia* resistance is available from numerous sources and is relatively easy to select for. Selection for resistance to prevalent storage rot fungi is possible but has not received much attention from commercial sugarbeet breeders. Knowledge of the inheritance of root or storage rots is frequently incomplete and sometimes inconsistent. Results of systematic screenings of the USDA *Beta* collection confirm the scarcity of resistance to *Rhizoctonia* and *Aphanomyces* and the difficulty of broadening the currently narrow genetic base of sugarbeet. Genetic engineering techniques probably will not make a contribution to the development of root rot resistant germplasm in the near future. Understanding

the biochemical basis of resistance will eventually improve selection efficiency and hasten the application of genetic engineering technologies to the problems of host plant resistance.

CAMPBELL, L. G. and A. W. CATTANACH. 1993. Effects of a foliar applied cytokinin on sugarbeet. J. Sugar Beet Res. 30:83.

There have been numerous attempts to increase crop productivity through the manipulation of plant hormones. Although this research has encompassed a wide variety of crop species, environments, and objectives, growth regulator (hormone) usage remains minimal in field crop production; sugarbeet (Beta vulgaris L.) is no exception. Cytokinins are known to influence a number of plant processes including cell division and enlargement, suggesting an influence upon sugarbeet root size and sucrose concentration. Seven rates of a cytokinin containing plant growth regulator (TRIGGRR; Westbridge Agricultural Products, San Diego, CA) were applied to sugarbeets in the 2-, 4-, and 6-leaf stage. Root yield, sucrose concentration, and recoverable sucrose yield were measured in 1989-1991 field trials. Storage respiration rate and response to two storage rot fungi (Phoma betae (Oud.) Frank and Botrytis cinerea Pers. ex Fr.) were measured in 1990 and 1991. Field plots were established using conventional tillage practices in Cass County, ND. Significant year effects for all traits were a reflection of differences in growing season weather conditions. Recoverable sucrose yields in 1989 were 30% less than 1990 yields. Nonsignificant treatment effects for all traits suggested that either foliar applied TRIGGRR does not enhance sugarbeet productivity or that it should be applied differently. Nonsignificant year X application rate interactions for all characters indicated this response was consistent in all three years.

DONEY, D. L. 1993. Wild beet in Egypt. J. Sugar Beet Res. 30:89.

The wild beets of Egypt are considered to be some of the most primitive. Because of the long history of farming in Egypt, it was anticipated that few wild types would be found. On the contrary, many were found, due mainly to their use as a leaf vegetable by local farmers. Collections were made at selected locations scattered throughout the Delta area, west to Matruh, in the Fayyum area of Middle Egypt, and in the Luxor area of Upper Egypt. A more intensive collection effort was made around the Alexandria area. A total of 26 locations were sampled. Wild beets appear to be distributed throughout the Delta. They were more sparsely distributed in the Fayyum and Luxor areas, where farmers were found collecting and growing wild beets as a green vegetable. In these areas, the farmers are serving as a means of preserving the wild *Beta* germplasm; however, their actions may have exerted selection pressure for leaf type beets.

DONEY, D. L. 1994. Broadening the genetic base of sugarbeet. 1993. Proc., Third International World Beta Network Conference, Fargo, ND, August 4-6, 1993.

The narrow base from which sugarbeet originated, the need for disease resistance and the negative relationship between root yield and sugar accumulation have all contributed to make the current gene pool from which most present-day sugarbeets originate narrow. Of the wild germplasm available, Beta vulgaris subspecies maritima offers the greatest promise of broadening the genetic base for future sugarbeet improvement. Crosses between B. maritima and sugarbeet male sterile inbreds have been advanced through four successive cycles of mass selection for root shape. Two of these crosses are approaching sugarbeet in root shape, root yield and sucrose concentration; however, they are still below commercial sugarbeet hybrids in root yield and sugar concentration. Even though these populations are inferior to commercial sugarbeet hybrids, it is the author's belief that superior combining germplasm exists in some of this material and that combining these with commercial germplasm will produce superior hybrids. Additional populations (crosses between sugarbeet and regional populations of B. maritima) are in the developmental stage. Sugarbeet inbreds segregating for mendelian male sterility were used in the initial crosses to insure crossing and recombination in each selection cycle.

DONEY, D. L. and R. J. MARTENS. 1994. Selection for Delayed Leaf Senescence in Sugarbeet. J. Sugar Beet Res. (in press).

Sugarbeet growth is characterized by the continuous dying of old leaves and initiation of new leaves. If the photosynthetic activity of leaves can be extended, fewer leaves may be needed and more photosynthate can be translocated to the root for sucrose production. Two cycles of divergent selection for early and late senescence of the first leaf were conducted in a very heterogeneous population. Significant genetic changes in each direction were obtained for the green leaf duration of the first leaf. Populations produced from the two cycles of divergent selection were evaluated for their effects on canopy in replicated multi-harvest field trials. The early senescing populations had significantly more and smaller leaves than the late senescing populations but equal total leaf area. Root and canopy dry matter were not affected by selecting for extended leaf duration, but selection for reduced leaf duration reduced root dry matter and total dry matter accumulation.

EIDE, J. D. and G. A. SMITH. 1993. Characterization of pathogenesis related proteins in *Cercospora* leaf spot susceptible and resistant leaf tissue. *J. Sugar Beet Res.* 30:91.

Understanding the nature of *Cercospora* resistance on a molecular basis should certainly enhance our ability to control this destructive fungus. The PR proteins are known to be synthesized in response to *Cercospora* infection. The objective of this study is to determine the presence of these proteins and what roles they

play in *Cercospora* resistance. The PR protein chitinase was isolated from leaf spot susceptible (LSS) and resistant (LSR) leaf tissue. Chitinase activity was determined spectrofluorometrically by measuring 4-methyl-umbelliferone released from the substrate 4-methylumbelliferyl- β -D-N,N'-diacetyl-chitobiocide. Sixweek-old sugarbeet LSR leaves had 138% higher levels of chitinase activity than LSS leaves. Chitinase from leaf tissue was purified using ammonium sulfate precipitation followed by a chitin affinity method. The apparent molecular weight of the chitinase was 34 kDa as determined by polyacrylamide gel electrophoresis. Purified chitinase extracts will be used to check for inhibition of *Cercospora* fungal growth.

SMITH, G. A. The theory of pre-breeding. 1994. Proc., Third International World Beta Network Conference, Fargo, ND, August 4-6, 1993.

Population changes and their dependent gene frequencies are affected by mutation, selection, random fluctuations, meiotic drive, and migration. The effects of selection pressure on relatively small populations can have dramatic effects on gene frequency and hence on breeding progress. This selection, driven by necessity, has resulted in "narrow base" sugarbeet populations. This paper presents examples of population changes which can occur (have occurred in sugarbeet) in populations subject to intense selection. The utility of gene frequency analysis and its use as a predictive tool is outlined. Sugarbeet breeders, geneticists, and agronomists now attempting to collect and introgress wild germplasm into breeding populations will be aided by attention to principles presented in this paper.

SMITH, G. A., C. A. WOZNIAK, L. G. CAMPBELL, and J. D. EIDE. 1993. Evaluation of entomopathogenic nematodes for control of *Tetanops myopaeformis*, the sugarbeet root maggot. *J. Sugar Beet Res.* 30:116.

Nematodes which attack insects (not to be confused with those that affect plants) may offer a biological control for the sugarbeet root maggot (SBRM). They have a broad host range, can be easily mass produced, possess the ability to seek out and rapidly kill their host, are environmentally safe, and have been exempted from registration by the U.S. Environmental Protection Agency. The soil offers an excellent site for insect-nematode interaction, and soil is the natural reservoir of steinernematid and heterorhabditid nematodes. To determine the feasibility of potential nematode use for control of the sugarbeet root maggot, we asked the following: (1) Will nematodes infect the SBRM? (2) Will nematodes reproduce following infection? (3) Can nematodes be applied in the field and be infective? (4) If nematodes are infective in the field, how long will they persist? (5) Will nematodes in fect and reproduce in adult flies? We evaluated six strains of nematodes in the laboratory and found that all strains infected, killed, and reproduced in the SBRM larvae. Mortality of the root maggots ranged from 50 to 85 percent in the laboratory. Death of the larvae occurred 24 to 48 hours after

nematode infection. Reproduction within the larval cadavers produced several thousand infective juvenile nematodes 12 to 14 days after infection. Our first-year field tests, conducted in the summer of 1992, indicated that all strains tested infected the larvae in the field. Further laboratory tests determined that adult flies were infected after only two hours of exposure to the nematodes and that reproduction did take place in adult fly cadavers. The results of our investigation show the potential of pathogenic nematodes as a biological control agent for SBRM.

WOZNIAK, C. A. 1993. Influence of native microflora on *in vitro* larval development of *Tetanops myopaeformis* Roder (Diptera:Otitdae). *Proc. North Central Branch Mtg. Ent. Soc. Amer.*, p. 47.

Transmission of endogenous bacteria between generations of the sugarbeet root maggot (SBRM) is via externally carried microflora. Bacteria are transferred to the surface of the chorion during oviposition and transmitted to the first instars upon emergence from the egg sheath. Eggs treated with 0.2% hypochlorite were found to produce gnotobiotic larvae when reared on Luria-Bertani agar or Murashige and Skoog (MS) plant tissue culture medium. Gnotobiotic larvae coincubated on MS medium with axenic sugarbeet cells or roots were observed to feed on the tissue but failed to moult or increase in size. Death of these larvae typically ensued in less than 50 days, at which point they remained as first instars. Addition of Xanthomonas maltophilia (Xm), a bacterium isolated from natural populations of SBRM, at the onset of the coincubation with sugarbeet cells resulted in up to 50% of the larvae reaching the second or third instar stage. At the termination of the culture period, the relative amount of remaining sugarbeet tissue was greatly decreased in the presence of Xm and SBRM versus gnotobiotic SBRM. Comparisons of other isolates of Xm and other bacterial species suggests that the capacity to enhance insect utilization of the sugar beet cells is not limited to this one strain of Xm. This coincubation method may eventually serve as a production method for this maggot as they have been recalcitrant to routine lab rearing.

WOZNIAK, C. A. 1993. Culture of sugarbeet root maggots in sugarbeet cell cultures. *Annual Plant Resistance to Insects Newsletter* 19:18-19.

Axenic root cultures of sugarbeet cultivars 'REL-1', 'H5135' and 'MONOHI' were evaluated for their ability to support *in vitro* growth of gnotobiotic sugarbeet root maggots, *Tetanops myopaeformis* Roder (SBRM). 'REL-1' and 'H5135' were also tested as hairy root transformants resulting from transformation of hypocotyl explants using Agrobacterium rhizogenes. Surface disinfested SBRM eggs were allowed to hatch in the presence of these root cultures on Murashige and Skoog (MS) tissue culture medium. Many first instars survived longer than four weeks but all failed to moult. Similarly, first instar SBRM cultured on axenic suspension cells of 'REL-1' or 'EL48' were observed to feed and grow but

few (8%) moulted. Those advancing to the second instar stage soon succumbed without further development. Addition of *Xanthomonas maltophilia* (Xm), isolated from SBRM third instar larvae, enhanced moulting percentage to 35% of the total, and several larvae reached the third and final instar stage. This bacterium survived on MS medium in the presence of sugarbeet cells but grew very slowly on this minimal medium. The amount of remaining sugarbeet tissue following incubation in the presence of SBRM and Xm was greatly reduced compared to SBRM cocultured with sugarbeet cells only.

WOZNIAK, C. A. and S. E. HINZ. 1993. Native bacterial flora and development of larvae of the sugarbeet root maggot. J. Sugar Beet Res. 30:123.

Collections of third instar sugarbeet root maggots (SBRM), Tetanops myopaeformis Röder, were made in 1991 and 1992 from the Red River Valley, eastern Montana, north central Wyoming, and western Nebraska to determine the identity of bacteria associated with this larval stage. The most commonly encountered species were Serratia marcescens, S. liquefaciens, Pseudomonas fluorescens, Ps. putida, and Xanthomonas maltophilia. Of these, X. maltophilia (Xm) was the only species encountered consistently from third instars regardless of origin. Additionally, Xm was found to be a commensal of the sugarbeet rhizosphere. Bacteria naturally associated with SBRM are transferred to the surface of the chorion during oviposition and transmitted to the first instars upon emergence from the egg sheath. Eggs treated with 0.2% hypochlorite were found to produce gnotobiotic larvae. Gnotobiotic larvae coincubated on MS plant tissue culture medium with axenic sugarbeet cells were observed to feed on the tissue but failed to moult or increase in size. Death of these larvae typically ensued in less than 50 days, at which point they remained as first instars. Addition of Xm (isolated from natural populations of SBRM) at the onset of the coincubation with sugarbeet cells resulted in up to 50% of the larvae reaching the second or third instar stage. At the termination of the culture period, the amount of remaining sugarbeet tissue was greatly decreased in the presence of SBRM with Xm versus gnotobiotic SBRM without Xm. Comparisons of other isolates of Xm and other bacterial species suggests that the capacity to enhance insect utilization of the sugarbeet cells is not limited to this one strain of Xm. This coincubation method may eventually serve as a production method for this maggot as they have been recalcitrant to routine lab rearing.

WOZNIAK, C. A. and L. D. OWENS. 1994. Use of β -glucuronidase (GUS) as a marker for transformation in sugarbeet. *Proc.*, *Third International World Beta Network Conference*, Fargo, ND, August 4-6, 1993.

Accurate detection of an introduced genetic or biochemical marker into sugarbeet (*Beta vulgaris* L.) is based on the absence of native sequences or activities in the plant that could confound the analysis of the introduced marker expression. During the course of experiments designed to optimize DNA transfer from

Agrobacterium tumefaciens to sugarbeet leaf disc cells, an endogenous enzyme activity was discovered which utilizes all the common substrates recognized by the marker enzyme, β -glucuronidase (GUS) from $E.\ coli$. This native sugarbeet enzyme (SB-GUS) was characterized immunologically and biochemically. GUS and SB-GUS were found to be distinct with regard to pH optima, thermal inactivation, reaction to denaturants and protein modifying reagents, inhibition by metals and saccharo-lactone, and molecular mass. The two activities are not immunologically related, as judged by Western blot and immunoprecipitation analyses. A protocol was developed to accurately quantitate introduced GUS in the presence of SB-GUS, by utilizing selective inhibition of GUS at pH 7.0 by saccharic acid 1,4-lactone. Under these conditions GUS activity is completely eliminated, while SB-GUS activity was unaffected.

WOZNIAK, C. A. and L. D. OWENS. 1994. Native β -glucuronidase activity in sugarbeet (Beta vulgaris L.). Physiologia Plantarum (in press).

 β -Glucuronidase activity, initially thought absent from plants, has been found in a variety of plant families. During an analysis of Agrobacterium-mediated transformation of sugarbeet (Beta vulgaris L.), significant glucuronidase activity was observed in control (non-transformed) tissues when the fluorogenic substrates 4-methylumbelliferyl-β-D-glucuronic acid, resorufin glucuronic acid and 3carboxyumbelliferyl- β -D-glucuronic acid were used to quantify beta-glucuronidase activity under standard protocol conditions. Similarly, the colorigenic substrate p-nitrophenyl-beta-D-glucuronide was hydrolyzed by this sugarbeet-derived glucuronidase. Biochemical and immunological data are presented to indicate significant differences between sugarbeet-derived glucuronidase and that of microbial origin (i.e., encoded by gus A; E.C. 3.2.1.31). These differences provide a means of distinguishing the two activities in extracts that contain a mixture of both. Use of X-gluc, the substrate utilized in histochemical localizations of glucuronidase activity, gave no positive reaction products (i.e., indigo precipitate) at pH 7.0. However, at pH 3.0, 4.0 and 5.0, formation of the indigo precipitate was evident within 1 h at 37°C in sugarbeet callus and by 4 h in leaves and petioles. The specific activity of SB-GUS was observed to be strongly pH dependent, with an optimum near pH 4.0. The use of β glucuronidase techniques as applied to transformation of sugarbeet is discussed.

WOZNIAK, C. A., G. A. SMITH, and L. G. CAMPBELL. 1993. Entomopathogenic nematodes for control of larvae and adults of the sugarbeet root maggot (Diptera: Otitidae). *Proc.*, *Beltsville Symposium Biologically Based Technologies of Pest Control*, p. 40.

Entomopathogenic nematodes were evaluated for their ability to infect and reproduce within third instar sugarbeet root maggots (SBRM). Six strains of *Steinernema* representing three species and four strains of *Heterorhabditis bacteriophora* were all capable of infecting and reproducing within third instar SBRM in vitro. Incubation of nematodes at field rates of three billion/acre for

72 h at 24 C resulted in infection and subsequent reproduction of infective juveniles (IJs) within SBRM cadavers. Egress of IJs was observed at 14-21 days post-incubation. Field testing of the six steinernematids indicated that all were capable of infecting SBRM larvae under a typical sugarbeet cropping system. Nematodes were observed to remain viable in soil, as measured by trapping with Galleria larvae, for at least two months following application. Adult flies were also found to be susceptible to all six steinernematids tested. S. glaseri was found capable of infecting adult SBRM with as little as 2 h coincubation over filter paper containing IJs. Egress of nematodes was observed at 5-6 days postincubation. Following challenge of diapaused third instar SBRM with steinernematids, pupae were observed to form at an enhanced rate relative to controls. Emerging imagos were found to consist of 25% aberrant individuals. Aberrants had vestigial or absent wings, reduced sclerotization, poor body segmentation, misshapened head capsules and unretracted ptilina. No evidence of nematode infection was observed with these aberrants. They failed to produce eggs when mated to normal flies.

WOZNIAK, C. A., G. A. SMITH, D. T. KAPLAN, W. J. SCHROEDER, and L. G. CAMPBELL. 1993. Mortality and Aberrant Development of the Sugarbeet Root Maggot (Diptera:Otitidae) After Exposure to Steinernematid Nematodes. *Biological Control* 3:221-225.

Third instar larvae of the sugarbeet root maggot (Tetanops myopaeformis von Röder) were challenged in vitro with three strains of Steinernema carpocapsae (Weiser), two strains of S. feltiae (Filipjev), and one strain of S. glaseri (Steiner). Three larvae were incubated in each well of a polystyrene dish containing 5 g of autoclaved coarse sand with 500 µl of normal saline containing 270 infective juveniles. Larvae and nematodes were co-incubated at 24°C for 72 h in the dark. Larvae were then rinsed with distilled water and transferred to plaster mounts for observation. Infectivity readings were taken at 14 and 21 days post-challenge. Steinernema carpocapsae 'SCANMASK' showed the lowest level of infectivity, followed in ascending order by S. carpocapsae 'ALL', S. carpocapsae '252', S. glaseri '326', S. feltiae 'SN', and S. feltiae 'UK'. In several of the nematode challenges of diapaused larvae, resulting pupae gave rise to adult flies with gross abnormalities. Microscopic examination of these pupae gave no indication of nematode infection or an ensuing septicemia. Overall, 24.4% of the imagos arising from nematode-challenged larvae gave rise to aberrant adults. We have attributed these aberrant adults to an accelerated metamorphosis. These aberrant flies did not produce eggs, although mating attempts were observed.

Papers Published Since Abstracted in Previous Reports

- BUGBEE, W. M. 1993. Storage. pp. 651-670, Chapter in *The Sugar Beet Crop*, D. A. Cooke and R. K. Scott (eds.), 675 pp. Chapman and Hall, London.
- SMITH, G. A. 1993. Biological control holds promise for control of serious sugarbeet pest. Sugar Journal 55:21-22.
- SMITH, G. A., W. M. BUGBEE, L. G. CAMPBELL, J. D. EIDE, and C. A. WOZNIAK. 1993. Controlling pests in the next century. *Agricultural Research* 41:16-19.

CERCOSPORA LEAF SPOT AND BIOPESTICIDE RESEARCH

G. A. Smith and J. D. Eide

BSDF Projects 600 and 601

Development of Cercospora Resistant Breeding Lines. Twenty breeding lines were evaluated at the ARS Fort Collins nursery in 1993. These again included several advanced multigerm leaf spot resistant lines intended for eventual release. The lines of most interest were equal to the resistant check. The 1993 leaf spot epidemic at Fort Collins was not considered reliable, thus these lines will be retested in the 1994 nursery.

Examination and Purification of Chitinase in Cercospora Leaf Spot Resistant Germplasm. Sugarbeets synthesize the pathogenesis related (PR) protein chitinase in response to fungal attack. This enzyme degrades the chitin found in fungal hyphae. We have previously shown that chitinase is expressed at higher levels in resistant lines than susceptible lines (see 1992 Sugarbeet Research Report). We are now purifying leaf chitinase proteins by homogenization, centrifugation, heat treatment, and ammonium sulfate fractionation. The activity in the ammonium sulfate fraction was 15.5 units. Protein concentrations were reduced from 235 mg to 17.45 mg. Electrophoresis of the fractions yielded enrichment of proteins with an apparent molecular weight of 26 to 30 kD. Additional purification by Q Sepharose FF chromatography separated the acidic from the basic and neutral proteins. Further affinity, PBE 94 and Mono P HR will be necessary to purify the chitinases to homogeneity before antibody production can begin. Antibody preparation can be used as a tool for detection of elevated chitinase levels in the plant using ELISA techniques. A simple antibody ELISA test can then be used to screen seedlings for high chitinase levels.

Vectors for Delivery of Biological Control Agents for the Sugarbeet Root Maggot. We are looking for a suitable vector for delivery of a gene or gene product active against the sugarbeet root maggot. A suitable vector for delivery of a biocontrol agent must be able to colonize the roots, be nonpathogenic, and be neutral or growth promoting. We have identified thirteen rhizobacteria from hundreds in our collection that are antifungal to *Aphanomyces cochliodes*, *Botrytis cinerea*, *Cercospora beticola*, *Phoma betae*, *Pythium ultimum* and *Rhizoctonia solani*. These bacteria were tested for effect on sugarbeet seedling growth. Treatments consisted of drenching the sugarbeet seedlings seven days after planting with 1 X 10¹⁰ bacteria per ml or vacuum infiltration of seed with 1% sodium alginate solution containing 1 X 10¹⁰ bacteria per ml. Plants were greenhouse grown and harvested one month after planting.

Results. Enterobacter treatments had the greatest fresh weight but were not significantly different from the control. The treatment with Klebsiella produced the only plants with significantly lower fresh weights (Fig. 1). Plants from the seed treatment had significantly lower fresh weights than the drenched seedlings (Fig. 2). We are presently testing the viability and longevity of the bacteria on the vacuum infiltrated seed.

Seeds vacuum infiltrated with antifungal rhizobacteria were tested for protection of seedlings in Rhizoctonia-Vanderhave hybrid infested soil. 66156 seeds were vacuum infiltrated with 1 X 10¹⁰ bacteria per ml in 1% sodium alginate for 1 h. The slurry was agglutinated with 0.1 M calcium chloride and allowed to dry in a fume hood overnight. Soil mix was infested with 100 CFU of Rhizoctonia solani AG-4 or 59-2. The experimental design was a split plot with 5 replications and 14 treatments. The subplots consisted of soil mix treated with Rhizoctonia AG-4, 59-2 or untreated mix. Five seeds were planted in 3inch square pots containing the soil mix. The experiment was conducted in the greenhouse. Stand counts were taken at three weeks. The treatments

Figure 1 The mean fresh weights of 4-week-old sugarbeet plants treated with different antifungal rhizobacteria. Bars with the same letters are not significantly different according to Duncan's multiple range test (P=0.05).

were: 1 = Flavimonas oryzihabitans, 2 = Pseudomonas fluorescens, 3 = Enterobacter taylorae, 4 = Enterobacter agglomerans, 5 = unknown, 6 = Pseudomonas fluorescens a, 7 = Pseudomonas aurantiaca, 8 = Serratia liquefaciens, 9 = Pseudomonas aurantiaca, 10 = control (no bacteria), 11 = Klebsiella terrigena, 12 = Serratia liquefaciens, 13 = Serratia liquefaciens, 14 = Pseudomonas fluorescens.

Seedlings treated with Pseudomonas (treatment 14) and Serratia (treatment 13) gave the greatest protection to seedlings though not significantly different than the control (treatment 10) (Fig. 3). Flavimonas (treatment 1) provided a significantly lower level of protection than nine other treatments including the control. The use of these naturally occurring antifungal bacteria may help control seedling diseases and be a suitable gene vector against the sugarbeet root maggot. We are continuing to look at different rhizobacteria, delivery conditions and other seedling-associated microbes and their effects on sugarbeet seedling growth.

Figure 2 The mean fresh weight of 4-week-old sugarbeet plants treated with antifungal rhizobacteria by vacuum infiltration of seed or by drenched seedlings seven days after planting.

Transformation of Sugarbeet by Agrobacteria. Agrobacteriamediated transformation is one method for delivery of a biopesticide gene product to the sugarbeet chromosome. Sugarbeetassociated Agrobacterium and type strains were tested for virulence sugarbeet. sunflower tobacco. Strain A281 formed the largest galls on sugarbeets. Total DNA from Agrobacteria were tested for the presence of the virG using polymerase chain reaction (PCR). None of the sugarbeetassociated Agrobacterium contained the 540 base pair fragment associated with the presence of virG. Bacteria not containing virG

Figure 3 Sugarbeet stands three weeks after planting in soil mix with 100 CFU of *Rhizoctonia solani* AG-4 or 59-2. The seed had been treated with bacteria previously identified as antifungal.

were eliminated from our sugarbeet transformation program. We are continuing to look for highly virulent Agrobacteria for use in our transformation program.

Biological Control of Sugarbeet Root Maggot. A biological control method is being formulated to control the sugarbeet root maggot (SBRM) (*Tetanops myopaeformis*). As yet another leg of this program, we are examining the entomopathogenic fungi *Beauveria bassiana* as a control agent. The benefit of this sporulating fungi is that primary infected maggots would amplify inoculum and be available to infect other maggots.

Third instar sugarbeet root maggots were inoculated with 3 x 10⁴ or $2.3 \times 10^7 B$. bassiana spores or conidia per m1 of buffer. Mortality ranged from 5.4 to 23.6% after seven days and to a high of 54.5% after 29 days (Fig. 4). The B. bassiana was isolated from the infected third instar maggots and used to reinfect This satisfied Koch's postulates. We are presently testing B. bassiana and Metarhizium anisopliae on the first instar SBRM. We have obtained infection with both B. bassiana and M. anisopliae in eight days. We are presently isolating, purifying and

Figure 4 Mortality of third instar sugarbeet root maggots inoculated with Beauveria bassiana.

identifying these isolates and attempting to reinfect first instar larvae to satisfy Koch's postulates. We also plan to test infectivity on adult flies. These fungal pathogens may complement our nematode and/or *Bacillus thuringiensis* biocontrol methods, with the added caveat of infecting first and/or second instar larvae. *B. bassiana* will be tested at two field locations in the summer of 1994.

UTILIZING HOST RESISTANCE MECHANISMS AGAINST RHIZOCTONIA SOLANI

W. M. Bugbee

BSDF Project 610

Germplasm lines of sugarbeet (*Beta vulgaris* L.) with resistance to *Rhizoctonia solani* Kühn (teleomorph = *Thanatephorus cucumeris* (Frank) Donk) have been developed and are being used by private breeders as sources of root rot resistance for proprietary cultivars. Efforts to gain higher levels of resistance might be possible if we had a better understanding of the interaction between *R. solani* and sugarbeet. One component of the association is the variable aggressiveness among anastomosis groups (AG) of *R. solani* isolates. Seedling disease is caused by members of both (AG) 2-2 and 4 but, in general, isolates of AG 4 are much less aggressive than AG 2-2 on older plants. Factors that are suspected or have been shown to affect aggressiveness of fungal pathogens are their ability to produce pectolytic enzymes, the suppression of pectolytic enzyme production by sugars, and sensitivity to phytoalexins.

The phytoalexins, betagarin and betavulgarin, are produced in sugarbeet in response to *Cercospora beticola*. Recently, these two phytoalexins plus a third were shown to be produced by sugarbeet roots in response to infection by *R. solani*, but the authors did not report what effect the phytoalexins had on *R. solani*. Therefore, the role of sugarbeet phytoalexins in the aggressiveness of the fungus as a sugarbeet pathogen is unknown.

We reported that an AG 2-2 strain of *R. solani*, pathogenic on sugarbeet, produces pectin lyase (PNL) and exopolygalacturonase (exoPG) in culture and in rotted tissue. PNL was associated more with diseased roots than exoPG. We proposed that a constitutive, cell wall bound, pectin lyase inhibitor protein (PNLIP) is part of the sugarbeet's root rot resistance mechanism. To what extent the aggressiveness among isolates of *R. solani* is affected by PNLIP also is unknown.

To gain a better understanding of factors that might influence the aggressiveness of *R. solani* toward sugarbeet, isolates of AG 2-2 and AG 4 from wide geographic areas were examined for their sensitivity to phytoalexins, production of PNL and exoPG, sugar suppressiveness of pectinase production, and their susceptibility to PNLIP.

Discussion of Results. Sugar suppression of PNL production and the ability of the fungus to produce PNL appear to be more important root rot factors than the sensitivity to PNLIP or

accumulated phytoalexins. Although the two most aggressive isolates of AG 2-2 were more tolerant to phytoalexin than the less aggressive isolates, the response was not consistent because two isolates of AG 4 that did not cause disease were just as tolerant to phytoalexins. Therefore, sensitivity to phytoalexins was not consistently associated with root rot when considering both AGs. The limited role of phytoalexins in disease resistance is recognized. Some of these limitations evidently exist in this *Rhizoctonia*-sugar beet association. If phytoalexin production by infected sugar beets has a major role in biochemical resistance, the effect was not sufficient to account for the inability of the AG 4 isolates to cause disease on older roots.

The absence of root rot consistently was associated with an isolate's inability to produce sufficient amounts of PNL and its susceptibility to sugar suppression of PNL production. Two isolates of AG 2-2 had low aggressiveness, and three of the four isolates of AG 4 were not able to cause root rot. These isolates produced significantly less PNL and their PNL production was suppressed further by sugars compared with the more aggressive isolates of AG 2-2. Altered aggressiveness caused by sugar suppression of pectolytic enzyme production has been reported before. Others have shown that glucose, fructose, sucrose and other sugars decreased the aggressiveness of R. solani on cotton seedlings through suppression of pectolytic enzyme production. The aggressiveness of Fusarium oxysporum f. sp. cepae on onion was related to the suppression of PNL by sugars that had accumulated in tissues. Mean sucrose content of roots assayed in this study was 7% by weight (69 μ g/mg) and would reach 16 to 18% under normal field conditions, while sugars in petioles were only 0.1 to 2%. The sucrose level in roots would be sufficient to suppress PNL production by R. solani. The aggressiveness of AG 4 isolates on seedlings, but not on older plants, may be related to the content of sugars in young plants. The sugar content in seedlings might not be enough to suppress pectolytic enzyme production so the fungus is able to cause disease. Therefore, efforts to enhance early sucrose accumulation in seedlings might improve resistance to R. solani.

The effectiveness of PNLIP was not associated with differential aggressiveness among the isolates tested here. When the ratio of PNLIP to PNL was high enough, complete inhibition of PNL occurred. For this reason, the inhibition of PNL activity, and hence aggressiveness of *R. solani* might be correlated with the PNLIP content in cell walls. Therefore, manipulation of the gene that encodes PNLIP and the transformation of sugarbeet to overproduce PNLIP should enhance the host's resistance by suppressing the activity of PNL. Reduction of PNL activity by elevated PNLIP levels would complement the sugar-suppression of PNL production that apparently already exists in sugarbeet roots.

Manipulation of a Root Rot Resistance Factor. The strategy is to identify an important biochemical mechanism of pathogenesis in the pathogen and then to identify complementary resistance mechanisms in the sugarbeet. If resistance factors can be easily detected, or easily manipulated at the molecular level, then sugarbeets with high levels of the factor could be identified in the greenhouse or created in the laboratory. This approach complements the current, labor-intensive, field method of developing *Rhizoctonia*-resistant germplasm. A positive correlation of high levels of a known resistance factor with root rot resistance would provide the impetus for a novel, more efficient breeding program.

Results. We have shown that the aggressiveness of R. solani toward sugarbeet is due largely to the amount of PNL that is produced by the fungus. PNL is a cell-destroying enzyme. The sugarbeet produces PNLIP as part of its resistance arsenal. Plants with high levels of PNLIP might also have elevated root rot resistance. We have used polyclonal and monoclonal antibodies against purified PNLIP in a double antibody sandwich enzyme-linked immunoassay (DAS-ELISA) to detect PNLIP in sugar beet extract. Out of <1600 greenhouse-grown, three-month-old plants that were assayed, several individuals with high PNLIP values were selected and induced to flower. Tissue cultures were initiated from axillary buds of the selections to produce clones. The selected plants are from: 1) F1001, a germplasm line with resistance to Phoma betae, a storage rot pathogen that was selected from a Russian introduction; 2) F1010, a high sucrose germplasm line from an interpollinated population of individuals from the world collection; 3) 75B7, a germplasm line with resistance to Botrytis cinerea that was developed from another Russian introduction; and 4) 768, a germplasm line with resistance to P. betae also selected from a Russian introduction. The intent is to cross these clones to generate synthetic lines and then to evaluate them for resistance to R. solani.

Toward Cloning and Sequencing a Root Rot Resistance Gene. The objective here is to clone the sugarbeet gene that is responsible for the production of PNLIP and then to manipulate this gene to overproduce the PNLIP under the assumption that plants with very high levels of PNLIP will be more resistant to Rhizoctonia root rot.

mRNA was purified from sugarbeet leaf tissue and used to produce cDNA. A cDNA library was generated in *Escherichia coli* using the plasmid pcDNAII (Invitrogen Corp.) as the vector. The library was probed with an antibody to PNLIP but no clones producing PNLIP were detected. A second library was produced using mRNA from sugarbeet root. Several transformed colonies of *E. coli* were positive when lysates were probed with a polycolonal antibody. These clones are being evaluated for synthesis of PNLIP.

BROADENING THE GENETIC BASE OF SUGARBEET (Pre-breeding)

D. L. Doney

BSDF Project 630

Continued sugarbeet improvement is dependent on the availability of desirable genetic variation. The genetic background from which most present day sugarbeet cultivars originated is considered by most sugarbeet breeders to be narrower than that for other cross-pollinated crops. There appears to be sufficient genetic variability for cultivar improvement in the short term; however, long term improvements may be impeded if significant infusions of new and/or additional genetic variability are not made.

The primary objective of this research is to develop near-sugarbeet type populations containing new genetic variability for use in elite sugarbeet breeding pools. Secondary objectives include

the development of selection criteria that are effective in creating near-sugarbeet type populations.

Near-sugarbeet Selections. Individual family lines derived from a cross between sugarbeet inbred L53 and wild beet accession PI 546420 were tested for combining ability in 1993. L53 is a self-fertile, O type, multigerm inbred with high general combining ability for root yield. PI 546420, *Beta vulgaris* subspecies *maritima*, was collected near Thessaloniki, Greece by C. Goulas in 1978. It is multigerm, annual and prostrate in growth habit.

These family lines resulted from four cycles of mass selection for root shape. By the third cycle, roots were beginning to look like sugarbeet roots. For each cycle, all selected plants were randomly intercrossed in open-pollinated isolation cages and, except for cycle four, harvested in bulk. In cycle four, seed was harvested from each plant and maintained as individual family lines. Annuals were eliminated in the early cycles. Family lines from cycle four were crossed to sugarbeet inbred L33cms for combining ability analyses. The resulting crosses along with the respective family lines were tested in replicated field trials in 1993 (Tables 1 and 2).

Table 1. Root yield, sucrose percentage and sugar yield for eight family lines and their respective test cross and the mean of two commercial hybrid checks.

Family line	Root yield		Su	Sucrose		Sugar yield	
	Line T/A	Test cross T/A	Line %	Test cross %	<u>Line</u> LB/A	Test cross LB/A	
x115-1 x115-4 x115-6 x115-7 x115-9	8.0 14.9 10.8 10.2 11.9	16.3** 16.0 15.2** 19.7** 16.1**	14.1 13.0 14.8 14.8 13.0	14.1 13.8 14.9 14.7 13.9*	2241 3892 3190 3045 3299	4934** 4403 4527** 5798** 4427**	
x115-10 x115-11 x115-13 Commercial	16.6 13.2 15.3 Hybrids	17.6 17.9** 22.3** 20.5	13.0 12.9 12.3	14.2* 13.6 13.5* 15.0	4291 3407 4069	5419** 4853** 5963** 6170	

^{*, ** =} Test cross significantly greater than the family line at P = 0.05 and P = 0.01, respectively.

Table 2. Root yield, sucrose percentage and sugar yield for seven family lines and their respective test crosses and the mean of two commercial hybrid checks.

T*1	Root yield		Sucrose		Sugar yield	
Family line	Line T/A	Test cross T/A	Line %	Test cross %	<u>Line</u> LB/A	Test cross LB/A
x115-14 x115-18 x115-19 x115-20 x115-22 x115-26 x115-28	7.7 15.6 10.9 9.5 8.4 11.8 12.5	16.3** 17.7 17.4** 16.6** 18.6** 18.2** 19.8**	13.5 14.3 13.7 12.9 13.9	14.1 14.4 14.2 13.7* 14.0 13.6* 14.0* 15.1	2076 4466 2921 2451 2322 2815 3245	4598** 5088 4918** 4537** 5200** 4956** 5550** 6036
Commercial LSD 0.05 763	2.7	19.9		0.8		0030

^{*, ** =} Test cross significantly greater than the family line at P = 0.05 and P = 0.01, respectively.

All but three of the family lines tested showed significant heterosis for root yield and sucrose yield (test cross vs. family line). Only those with low sucrose percentages showed a significant increase in sucrose percentage in the test cross. Several of the test crosses are approaching the commercial hybrids in root and sucrose yield (Tables 1 and 2). There were no differences in sodium, potassium and amino nitrogen between the test cross and parent line nor between the family lines and the hybrid checks (data not shown). All but two of the family lines had tare ratings very similar to the hybrid checks, suggesting that the root types were very similar to sugarbeet and generally void of sprangling. Several of these lines will be released to the industry for use in elite breeding pools.

New Populations. New populations derived from crosses between a sugarbeet line segregating for genetic male sterility and regional mixtures of *Beta maritima* or other subspecies of *B. vulgaris* are in the developmental stage. Except for the elimination of annuals, selection was not practiced in the first two cycles of random intercrossing. In the first two cycles, seed was harvested from male sterile plants to insure recombination of the two sources of germplasm (sugarbeet and wild types).

Following the two cycles of random intercrossing, two cycles of selection for early germination and fast leaf initiation have been conducted. Slow germination and slow leaf initiation have been observed by the author in many of these wild populations. Growth chamber selection procedures developed by this lab have proven effective in eliminating germination inhibitors and increasing leaf initiation. Both traits are highly heritable and can be selected against when conditions are properly controlled. The effects of one cycle of selection for early germination and early leaf growth are given in Tables 3 and 4, respectively.

Table 3. Mean emergence of the parent and first cycle populations. Data are for hours post-planting to emergence.

cle tion
2
}
2
2
)
7
7

^{* =} Source of wild germplasm in the initial cross.

Table 4. Mean growth of first leaf at 135 hours post-emergence for parent and 1st cycle populations.

<u>Population</u>	<u>Description*</u>	Parent Population (mm)	1st Cycle Population (mm)
y220	B. patula	18.4	23.3
y222	Belgium	11.0	24.7
y223	Ireland	11.4	17.0
y224	B. macrocarpa	20.9	34.5
z2	Turkey & India	20.7	26.2

^{* =} Source of wild germplasm in the initial cross.

In every cross there was a significant decrease in hours from planting to emergence for the first cycle of selection (Table 3). Hours from planting to emergence were very similar for each first cycle selection population, suggesting that most germination inhibitors had been eliminated in the first cycle.

There were significant differences in the growth rate of the first leaf of the parent populations (Table 4). The slowest were those with the North Atlantic as the source of wild germplasm. A significant increase in growth rate of the first leaf was observed after the first cycle of selection for all populations. These data suggest that the selection procedure was very effective. The parent and selection populations will be grown in the field in 1994.

Green Leaf Duration. Studies over the past three years (see Sugarbeet Research Reports 1991 and 1992) have found that: 1) the green leaf duration of the first leaf can be altered genetically, 2) selections for the green leaf duration of the first leaf affect the green leaf duration of other leaves as well as the leaf canopy in general, and 3) selection for early green leaf duration increased the frequency of annuals in populations segregating for annualism.

Subsequent studies have focused on strong biennial populations. Two cycles of mass selection for divergent green leaf duration have been completed in one broad genetic base population (i32) and one relatively narrow genetic base population (3747). These new populations along with their respective parent populations were evaluated in replicated field trials in 1993 (Tables 5 and 6).

TABLE 5. The effect of mass selection for leaf senescence (green leaf duration) on root yield, sucrose percentage and sugar yield.

Entry	<u>Description</u>	Root yield T/A	Sucrose %	Sugar yield LBS/A
y216 LL x127 L i32 x129 E y218 EE	2nd cycle - late 1st cycle - late Parent 1st cycle - early 2nd cycle - early	12.7a* 15.5a 13.3a 9.2b 10.0b	13.6a 13.5a 13.4a 13.0a 11.6b	3776b 4202a 3576b 2392c 2326c
LSD 0.05		2.9	1.0	628

^{* =} Values followed by the same letter are not significantly different at P = 0.05.

TABLE 6. Effect of mass selection for leaf senescence (green leaf duration) on root yield, sucrose percentage and sugar yield.

Entry	Description	Root yield T/A	Sucrose %	Sugar yield LBS/A
y214 LL x125 L 3747 x126 E y215 EE	2nd cycle - late 1st cycle - late Parent 1st cycle - early 2nd cycle - early	10.9a* 13.3a 12.5a 11.5a 11.5a	13.1a 13.2a 13.2a 13.4a 12.1b	2880ab 3489a 3303a 3076ab 2696b
LSD 0.05		2.9	1.0	628

^{* =} Values followed by the same letter are not significantly different at P = 0.05.

Unfortunately, heavy rains in June and July flooded these yield trials, resulting in very low yields. However, the relative rank of other flooded trials did not change even though the root yields were reduced dramatically. Earlier pilot tests suggested that increasing green leaf duration increased root yield. The first cycle of selection substantiated these earlier data, especially in the i32 population (Table 5). Selection for increased green leaf duration (population x127 L) significantly outyielded the parent population for sugar yield and root yield. The divergent selection, i.e. for decreased green leaf duration (population x129 E), gave significantly lower sugar and root yields than the parent population. Divergent selection in the more genetically uniform population (3747) gave the same but not significant trends, i.e. increased green leaf duration increased yields and decreased green leaf duration decreased yields (Table 6).

The second cycle of divergent selection in each population did not have the same effect on yield (Tables 5 and 6). An additional cycle of selection for early green leaf duration, populations y218 EE and y215 EE, gave yields similar to the first cycle for early green leaf duration. The additional cycle of selection for increased green leaf duration, populations y216 LL and y214 LL, were lower in yield than the first cycle for increased green leaf duration.

The results of the second cycle of selection may reflect some apparent inbreeding depression in the second cycle. However, population numbers were between 30 and 50 selected roots and that number of roots in such a diverse population as i32 should not show significant inbreeding. It may also be suggested that the first selection cycle captured most of the additive genetic variation for this trait. Studies are underway to identify and evaluate the importance of non-additive gene action for this trait.

Leaf Initiation. Carefully controlled growth chamber selection techniques have shown that leaf initiation can be altered genetically. Preliminary evaluation tests in 1992 were inconclusive. This past year field trials were conducted to evaluate the effects of both mass selection and combining ability selection for leaf initiation on yield. These trials also experienced flooding which resulted in reduced yields.

Leaf initiation was measured at three-hour intervals. Those that initiated first (one SD above the mean) were intercrossed to produce the Fast Leaf Initiation population. Those that were the last to initiate leaves (one SD below the mean) were intercrossed to produce the Slow Leaf Initiation population. There was a significant difference in root and sugar yield between the fast and slow leaf initiation population (Table 7). The parent population was between the fast and slow leaf initiation populations but not always significantly different. Sucrose concentration was not affected by selection for leaf initiation.

TABLE 7. Effect of mass selection for leaf initiation on root yield sucrose percentage and sugar yield.

Entry	Root yield	Sucrose	Sugar yield
	T/A	%	Lbs/A
Fast Leaf Initiation	10.8a*	13.7a	2850a
Slow Leaf Initiation	8.1b	13.7a	2010b
Parent	9.6ab	13.6a	2501a
LSD 0.05	2.5	0.8	622

^{* =} values followed by the same letter are not significantly different at P = 0.05.

Recurrent selection for leaf initiation combining ability was accomplished by test crossing each plant from a broad genetic base population to the L53cms inbred. As soon as crossing was complete, the male parent was trimmed and placed in a thermal induction chamber until the evaluation of all the test cross progeny was complete. Test cross progeny were evaluated for leaf initiation in controlled growth chambers. Male plants whose test cross progeny gave the fastest leaf initiation were intercrossed to produce a new Fast Leaf Initiation population, and those plants whose test cross progeny gave the slowest leaf initiation were intercrossed to produce a new Slow Leaf initiation population (Table 8). These new populations, their respective test crosses and the parent were tested in a replicated field trial in 1993.

Recurrent selection for fast leaf initiation resulted in significantly higher root and sugar yields as compared to recurrent selection for slow leaf initiation. The parent population yield was

TABLE 8. Effect of recurrent selection for leaf initiation on root yield, sucrose and sugar yield.

	Root yield		Sucrose		Sugar yield	
	Popu- lation	Test cross	Popu- lation	Test cross	Popu- lation	Test cross
	T/A	T/A	%	%	Lbs/A	Lbs/A
Fast Leaf Initiation Slow Leaf Initiation Parent	10.0 7.6 9.6	12.9* 9.8	13.1 12.2 12.9	13.7 13.5*	2644 1912 2501	3540** 2550**
LSD 0.05	2.9		0.9		719	

^{* =} Significant increase of test cross over population at P = 0.05.

between the new fast and new slow leaf initiation populations but not significantly different from either (Table 8).

These results suggest that both additive and non-additive gene action are operative for leaf initiation and that both indirectly influence root yield. Since these data are from a field severely affected by flooding, additional studies are underway to gain more reliable data.

WORLD BETA NETWORK

D. L. Doney

BSDF Project 631

The Third International *Beta* Genetic Resources Workshop and World *Beta* Network Conference was held in Fargo, North Dakota, August 4-6, 1993. More than 70 scientists from 16 countries, including representatives from China, India, Japan, Poland, Egypt, Morocco, Eastern and Western Europe and the United States attended the three-day conference.

Founded in 1989, the World Beta Network (WBN) objective is to provide a forum for international involvement in Beta germplasm resources. In addition to germplasm activities such

^{**} Significant increase of test cross over population at P = 0.01.

as preservation, documentation, evaluation and utilization of germplasm, scientific sessions were held on Pre-breeding and Gene Transfer.

In the Pre-breeding session, talks covered theory, methods and the development and utilization of wild germplasm. Examples were given of the successful incorporation of foreign germplasm into useful cultivars. Other topics included pre-breeding for root architecture; male sterility; and root rot, nematode, virus yellows, and Rhizomania resistance. Two papers dealt with general aspects of pre-breeding in India and the former Soviet Union.

The Gene Transfer session concentrated on recent efforts to utilize new molecular technology to enhance sugarbeet pest protection and sugarbeet production. Topics encompassed the utilization of RFLP technology in *Beta* and the transfer of herbicide, nematode and root maggot resistance. One paper proposed a revision of the taxonomy of the genus *Beta*. This proposal, to be published in the next issue of the *Journal of Sugar Beet Research*, was considered and accepted by the conference.

A poster session of varied topics was also part of the conference. Contributions included tissue culture, isozyme characterization of wild germplasm, molecular identification of sugarbeet varieties, core collections, collecting beet in Egypt, and resistance to leaf spot, *Polymyxa*, BNYVV, and *Sclerotium* root rot.

The workshop section of the conference consisted of reports of germplasm activities from different parts of the world, proposals, and regional panel discussions and recommendations. Recommendations made by the conference were as follows:

- 1) Areas of naturally occurring *Beta* germplasm deficient in *ex situ* collection were identified. Priorities were centered in Middle Eastern countries with additional needs in several Mediterranean countries.
- 2) Recommended seed multiplication of selected germplasm for evaluation purposes. Several private companies, gene banks and government agencies agreed to participate in the seed increase program.
- 3) Evaluation for specific priority descriptors was identified as a major need. Several companies, gene banks and government agencies agreed to conduct evaluations based on their respective capabilities.
- 4) The proposed revision of the taxonomy of the genus *Beta* was discussed at length and officially accepted by the conference following an official release of the revision.
- 5) The proposal for a WBN newsletter was deemed unnecessary and shelved.
- 6) Past financing of the WBN has been obtained from the IBPGR and private industry. Future funding from both sources is unlikely. Recommendations were made to increase registration to cover conference costs and to petition international institutions to support travel of participants from developing countries.

7) The next WBN conference will be held in Izmir, Turkey (1995), to coincide, either before or after, with the summer meetings of the IIRB.

Other highlights of the conference included a field demonstration of the world *Beta* germplasm, a keynote speech by Henry Shands (Associate Deputy Administrator for Genetic Resources - USDA), and tours of the American Crystal Sugar Co. research facilities and Hilleshög AB research field trials.

Conference papers will be published in a special issue of the Journal of Sugar Beet Research.

BIOLOGICAL CONTROL OF SUGARBEET ROOT MAGGOT

C. A. Wozniak and Sarah E. Hinz

BSDF Project 641

Insect Endogenous Bacteria and Their Influence on Sugarbeet Root Maggot Development. Many multicellular organisms are closely associated with specific microbes and often fail to grow or develop normally in the absence of these symbionts. In most cases the role that these microbes play is unknown. We have demonstrated that the sugarbeet root maggot (SBRM), Tetanops myopaeformis, contains a set of bacterial associates that are reproducibly isolated from larvae originating in separate, distinct locations.

Our analyses of insect endogenous bacteria (IEB) associated with SBRM third instar larvae has led to the isolation and characterization of over 1000 bacteria from five states. Although some species are regularly found associated with SBRM (i.e., Serratia liquefaciens, S. marcescens, Flavobacterium indologenes, F. gleum), they may be absent depending on geographic origin. We have found only one species, Stenotrophomonas maltophilia (formerly Xanthomonas maltophilia), to be ubiquitously encountered in SBRM larvae.

This finding implies some role for *S. maltophilia* (Sm) in the biology of SBRM. We have evaluated larvae reared in the absence of microbes (gnotobiotic) produced via surface disinfestation of SBRM eggs. Attempts to rear these gnotobiotic larvae in culture with sugarbeet suspension culture cells or seedling roots have proved unsuccessful. Growth and morphogenetic development (e.g., moulting) failed to occur despite larval survival for time periods sufficient for development under field conditions.

Assessment of IEB in SBRM Development. To determine the potential of these IEB in SBRM development, gnotobiotic SBRM first instars were cultured with suspension culture cells on gelled medium with and without additions of individual bacterial isolates.

Surface disinfestation of laboratory-reared SBRM eggs was accomplished with detergents (i.e., 1% (w/v) SDS, 0.03% (v/v) Roccal) and sodium hypochlorite (0.2% (v/v)). Lack of aerobic, heterotrophic organisms on nutrient media was confirmed. Gnotobiotic eggs placed on this

Murashige and Skoog Minimal Organics Medium (pH 5.7) with 3% (w/v) sucrose (MS0) hatched within 5 days at 24°C. Two days after egg placement, *Beta vulgaris* 'REL-1' suspension cultured cells (2.0 ml) were added to each 35-ml plate of MS0. Broth cultures of *Pseudomonas syringae* 'aptata' (from lesions on sugarbeet leaves), *Serratia liquefaciens* ATCC 27592, *Escherichia coli* 'JM109' and '2P16A' (from third instar SBRM) were quantified by absorbance measurements at 595 η m and dilution plating. These bacterial cultures were added to MS0 plates in 100 μ l broth containing 5 x 10⁸ to 5 x 10⁹ cfu. Control treatments included the absence of 'REL-1' cells, the absence of bacteria, or eggs-only with no added cells or bacteria. Attempts to rear eggs with total native IEB complement (*i.e.*, without surface disinfestation) resulted in overgrowth of MS0 plates by *Penicillium* or *Aspergillus*, thus precluding observations of SBRM growth and development.

Incubation of MS0 cultures at 24°C (16/8 h photoperiod in diffuse fluorescent lighting) resulted in establishment of the added bacteria in feeding tunnels of the larvae and on 'REL-1' cells. The low available organics and acidic pH minimized spread of bacteria across the medium surface, which prevented sugarbeet cells and larvae from being overgrown with bacteria which could have proved toxic due to production of waste products. Culture samples taken at the end of experiments (approximately 6 weeks) demonstrated the survival of strains added at the onset of egg hatch.

SBRM first instars incubated in the presence of *S. maltophilia* '2P16A' (or type strain ATCC 13637) moulted within 10 days. A concomitant increase in size and change in morphology (e.g., sclerotization of caudal spiracles, development of secondary pharyngeal supports) also was observed. This development (moulting) was within the expected time frame for SBRM of 7 to 12 days based on field observations. Feeding of larvae was observed in all treatments with suspension culture cells regardless of bacterial addition. Utilization of sugarbeet cells and associated calli was observed by a decrease in tissue mass with time and a browning of calli; bacterial influence on tissue browning was not separable from effects of larval feeding.

Co-cultures of 'REL-1' cells and *Ps. syringae* 'aptata', an opportunistic sugarbeet leaf pathogen, resulted in clumping of bacteria and sugarbeet cells into strand-like formations. However, this isolate was capable of providing for moulting and growth of SBRM larvae in the presence of 'REL-1' cells. No development was observed without cells in the presence of bacteria. Greenhouse evaluations of this organism demonstrated capacity for induction of a hypersensitive response (HR; browning, cell collapse) on tobacco and watersoaked lesions or chlorosis on *Beta vulgaris* B1745 and H5135. Hence, the response of suspension cells to *Ps. syringae* contact was not totally unexpected and may be a form of HR or disease etiology.

SBRM development proceeded in the presence of 'REL-1' cells and E. coli 'JM109'. It was apparent that these bacteria were influencing suspension culture cell multiplication and were proliferating at different rates than other bacteria on MS0 medium. Hence, direct comparisons are difficult, especially in these preliminary experiments.

S. liquefaciens ATCC 27592, although capable of inducing moulting in one instance, had an apparent negative influence on SBRM and 'REL-1' cells. This strain proliferated on MS0 and many deceased larvae were observed. The inherent variation in bacterial species and strains to

utilize different substrates as nutrient sources may in part explain the unusual growth of this organism on what would be considered a "minimal medium". In addition, sequestration of particular ions (e.g., iron) by siderophores and antibiosis through secondary metabolite production are known to be responsible for competitive or allelopathic interactions.

The ability of various bacterial species to mediate the interaction between SBRM larvae and sugarbeet cells suggests a common factor(s) shared by many prokaryotes. Such commonality has been demonstrated in rearing of Muscidae (house flies) in vitro. Several unrelated gram negative bacteria were found capable of supplying gnotobiotic maggots with sufficient factor(s) to provide for larval development, however, their capacities to do so varied with individual species (Martin et al., unpublished data). In contrast, many species of Bacillus (gram positive) were found to have inhibitory influence on house fly morphogenesis.

Due to the omnipresence of Sm on sugarbeet roots and within SBRM larvae, this species appears to be the most promising candidate for vectoring a toxic protein (e.g., Bt-ICP, protease inhibitor) to the feeding court of this insect. Our evaluations on plant pathogenic potential of multiple Sm strains indicated that this species is not a plant pathogen. Experiments designed to assess the ability of culture filtrates of Sm to mediate the SBRM feeding interaction with sugarbeet tissue are underway. Fractionation of any active components could yield significant knowledge of the critical interplay of SBRM larvae and microbes. Engineering of Sm with foreign DNA at the chromosomal level could provide a specific, stable biopesticide applicable to sugarbeet hybrids via seed or soil inoculation. Our ongoing studies of microbial influence on SBRM will allow assessment of the sugarbeet rhizosphere with respect to scarring and for identification of a microbial vector for interruption of the SBRM life cycle.

Isolation and Characterization of Bacillus thuringiensis for Biocontrol of Sugarbeet Insect Pests. The naturally occurring soil bacterium Bacillus thuringiensis (Bt) is the most widely used biological pesticide worldwide and currently comprises approximately 2% of the total pesticide market. The ability to obtain isolates from numerous environmental sources without concern over patent or ownership rights has allowed significant commercial input in the development of new product formulations. Strains with biocidal activity towards many key insect orders and a few other invertebrate phyla have provided the target specificity and genetic variability needed to direct products towards specific markets.

Isolates with activity against Diptera (e.g., blackflies, mosquitoes) are known. However, isolates with activity against the sugarbeet root maggot (SBRM; Diptera:Otitidae) or most other insect pests of sugarbeet have not been suitably evaluated. The two primary goals of this project were 1) to isolate, characterize and screen new Bt strains, and 2) to clone the responsible cry or cyt gene from Bt to a suitable rhizospheric bacterial vector (see Project 601 report).

Isolation of Bt. Established methods of Bt isolation were modified and combined to provide for isolation of Bt from a variety of samples. Soil, insects, plant debris and plant roots were sampled by suspending extracts in 0.85% saline and pelleting debris at low centrifugal force. The supernatants from these extractions were adjusted to 0.25 M with sodium acetate and incubated overnight at 30°C, 200 rpm. Under these conditions most microbes initiate growth and division with the exception of Bt endospores. Cultures were subsequently heat treated

 $(80^{\circ}\text{C}, 10 \text{ min})$ and plated onto rich media with ampicillin $(100 \,\mu\text{g/ml})$ and Polymyxin B $(40 \,\mu\text{g/ml})$. After incubation for 24 to 48 h colonies resembling *Bacillus* spp. were subcultured to Bt/Amp/PolB for isolation. Isolates were gram stained, stained with Malachite green/Safranin O to check for crystal/spore production and biochemically characterized using the Biolog 3N database.

All environmental samples collected (soils from root zones, ant hills, horse barns, pastures and river banks) were positive for the presence of Bt. Forty-five isolates were obtained from these samples and were analyzed biochemically and genetically for differentiation into one of the five recognized Bt insecticidal crystal protein (ICP) subgroups. The combination of acetate selection, heat treatment and antibiotic selection during screening of samples yielded Bt strains with few extraneous organisms. *Bacillus* spp. identified were *B. thuringiensis* (Bt), characterized as: bacilliform, gram positive, spore forming aerobes, with crystal inclusion bodies. Although acrystalliferous strains of Bt are known to exist, we did not encounter any in our sampling. Several additional Bt strains were identified from our sugarbeet root and insect studies and similarly characterized.

Analysis of Bt Strains. Isolates were grown to sporulation (i.e., cell lysis) in broth, centrifuged, washed in distilled water and separated on density gradients. Pre-centrifugation preparations of spores/ICP crystals and the fractions from the density gradients were analyzed by SDS-PAGE. Type strains of Bt (from ATCC, Rockville, MD) were also analyzed for comparison.

Protein profiles on SDS-PAGE from presumptive Bt isolates were indistinguishable from crystal preparations of 'israelensis' type strains treated similarly. Peptides in the 25 - 28 kD (Cyt A) range and 68 - 72 kD (Cry IV) range are predominant, with some isolates showing bands of 120 - 130 kD (presumably protoxin). Fractional analyses from NaBr density gradients, however, were hampered by irregular banding on the gradients. Diminution of density fractions in the ranges of presumptive Cry IV toxin proteins (on SDS-PAGE) suggested that some of these isolates were solubilized in NaBr during centrifugation. Solubilization of ICP during NaBr centrifugation has been attributed to Cry III toxins (i.e., coleopteran active strains).

A cry IV-specific oligonucleotide primer was employed in a polymerase chain reaction (PCR) to evaluate the sequence and identity of ICP genes present in our isolates. Cry IV toxins have shown activity against numerous Dipteran insects and thus were chosen as the basis of our selection protocol. After screening over 70 isolates with cry I, cry III, and cry IV - specific primers via PCR, it was apparent that Cry IV ICP were the predominant proteins encoded in these strains. Several isolates, however, contained more than one reactive ICP sequence, as judged by PCR product size on electrophoretograms. This finding was corroborated in part by the complex plasmid profiles found in many of the strains, and by the ability of plasmid DNA preparations to serve as templates for PCR-mediated cry sequence production.

In vitro SBRM Feeding Assay. Latex spheres covalently bound with fluorescein (Fluospheres) were used to demonstrate uptake and ingestion by SBRM larvae of particulates within the known size ranges of Bt spores and ICP crystals. Larvae were observed to ingest and concentrate latex spheres in the size range of Bt spores and crystals, with primary concentration of these particles in the midgut region. The cibarial pharynx of larval SBRM is size selective with respect to

ingestion. Fluosphere uptake and retention in the midgut (evidenced by epifluorescence microscopy) indicated the potential of crystal/spore presentation to these insects during *in vitro* screening assays.

First instar SBRM were co-incubated with crystal/spore preparations from all novel isolates. Application of preparations to filter paper discs or in coarse sand resulted in none of the isolates being demonstrably toxic to the larvae. The lack of an *in vitro* rearing system for SBRM and the phytophagous nature of SBRM larvae preclude the addition of useful feeding adjuvants or stimulants to bioassays. The time provided for ingestion of spores and/or crystals may be insufficient in the absence of normal feeding behavior. Lack of available nutrition in assay mixtures may prevent sufficient uptake of ICP to ensure visible toxicity assessment prior to insect starvation. Investigations of lab rearing systems for culturing/bioassay techniques are underway. The finding by a colleague that one of our *cry* IV isolates has activity against a coleopteran pest of sunflower has influenced our decision to screen all isolates via bioassay and not to preclude any strains based on PCR data. The strict categorization of Cry toxin groups may not be as sound as once thought based on our findings.

NEMATODE RESEARCH

C. A. Wozniak, G. A. Smith and L. G. Campbell

The target specificity of entomopathogenic nematodes for soil-borne insects and their low environmental impact have made them a focus of our work on biological control of the sugarbeet root maggot (SBRM). This dipteran has been a cause of significant loss to sugarbeet growers in several states as larval root feeding reduces stand and severely debilitates surviving plants.

With the advent of large-scale production techniques, several species of entomopathogenic nematodes are now available for evaluation against insect pests. These insect-specific nematodes are known to infest and reproduce within a wide range of insects, but are especially useful and effective against soil-inhabiting larvae. Application and manufacturing methodologies have progressed to the point of economic feasibility for many cropping situations wherein a large, inundative release of infective juvenile (IJ) nematodes to the subsoil profile results in pest decline. The prolific reproduction of IJ within insect cadavers provides for secondary release within the target zone of the insect pest.

Two primary nematode groups, the steinernematids and the heterorhabditids, are the current focus with respect to agricultural use. Although the reproductive biology of these two groups differs somewhat, the basic mechanism of action is the same. Bacteria of the genera *Xenorhabdus* and *Photorhabdus* are symbiotic with nematodes in the Steinernematidae and Heterorhabditidae, respectively. Upon entry into the host insect via mouth, anus or spiracles, the gut-harbored symbionts are released to the haemocoel or blood sinus of the insect. Bacterial septicemia ensues within 24 h and death is usually apparent within 24 to 48 h. IJ nematodes utilize the degradation products of bacterial action as nutrition needed for reproduction. Several thousand new IJ are released from the host cadaver following exhaustion of nutrient supply.

Larval SBRM were assessed for their susceptibility to infestation/parasitism by IJ of three steinernematid species and one heterorhabditid species in laboratory bioassays. Co-incubation of any of the six strains of *Steinernema* spp. or the four strains of *Heterorhabditis bacteriophora* resulted in infection of third instar SBRM larvae. Application of commercially produced steinernematids or lab-reared heterorhabditids to coarse sand containing SBRM for 72 h always resulted in infection of at least some of the third instars. In several experiments, however, the initial presence of IJ observed within deceased larvae failed to result in nematode reproduction and release. The lack of suitable establishment of bacterial septicemia within the host is presumed to be the cause of reproductive failure. Our parallel studies on variation in SBRM endogenous flora indicated that antagonistic microflora could limit establishment of successful septicemic conditions by *Xenorhabdus* or *Photorhabdus* spp. Although death of SBRM ensued following nematode invasion, the proper nutrient composition was lacking for IJ reproduction.

Adult SBRM (flies) were also evaluated under lab conditions for susceptibility to steinernematid IJ. Flies were incubated on moist filter paper discs containing one of six strains of *Steinernema* spp. in numbers approximating field rates (i.e., 3 X 10⁹/A). Removal of flies at time points from 2 h to 36 h after introduction of IJ provided a time-course analysis of infectivity. Flies were transferred to sterile, coarse sand for observation of infection, death and IJ egress.

With as little as 2 h co-incubation, 42% of adult SBRM were observed to be infected, with death following in 12 to 24 h. Longer incubation times of 4, 6, 18, 21 and 36 h resulted in 50, 70, 75, 77 and 100% infection. Reproduction of IJ within flies was rapid relative to larval infections (3 to 5 days vs. 10 to 21 days) and presumably resulted from the rapid diminution of host nutrients in adults. Flies contain a predominance of sclerotized and chitinized structures not amenable to degradation and use as a nutrient source.

An unexpected observation resulted from *in vitro* evaluation of larval susceptibility. Third instar SBRM that had completed the mandatory diapause period (*i.e.*, cold induction) needed for pupation were often found to pupate in response to IJ exposure. This induction of puparium formation was presumed to be a defense response to nematode invasion. However, 25% of the resultant images were aberrant in morphology. The morphology of these aberrant flies included unretracted ptilina, misshapened head capsule, reduced sclerotization of the cuticle, reduced or absent wings, and a general diminutive nature. Attempts to obtain eggs from these aberrants was unsuccessful.

Field Assessment of SBRM Susceptibility. Six strains of Steinernema spp. were applied in subsoil along the length of sugarbeet rows for two consecutive seasons. Three applications of nematodes at 3 X 10° IJ/A were used to enhance the probability of influencing SBRM larval numbers. Infected third instars were collected from all nematode treatments, however, the heavy clay soil precluded accurate assessment of % infection. Sampling of larvae was skewed towards collection of healthy (white) larvae, as infected cadavers become soft, brown and are degraded within days in the soil.

Due to the excessive, abnormal rain patterns present over much of the Red River Valley these past two seasons, timely sampling of nematode persistence was hampered. However, we did find that IJs survived from the final application (late July) until the first week of October.

Additionally, many native nematodes with evidence of insect pathogenic potential were recovered from soil samples.

Comparison of strains, controls and chemical applications in 1993 indicated that one strain of $S.\ carpocapsae\ (252)$ may have some potential against SBRM larvae. Overall, however, none of the other nematode strains indicated a statistically significant (P=0.05) decrease in root damage ratings compared to controls. Similarly, with % sucrose, tonnage and sucrose purity, no statistically verifiable difference was noted with nematode treatments. We plan to assess heterorhabditid strains in 1994, along with novel strains of Steinernema previously unavailable. With more typical weather patterns for this area, we expect the experiments to reflect an accurate potential of entomopathogenic nematodes with respect to reducing SBRM numbers below critical damage levels.

Monitor stations and milk carton traps were evaluated in 1993 as infection sites for adult SBRM. Emerging flies from a previous season's beet field were captured in nonbaited monitor boxes and within milk carton traps baited with ammonium, eugenol or water. Milk carton traps contained *S. feltiae* '27' within a sand-polyacrylamide mixture and attractants (baits) were positioned alongside the trap. Sticky tapes (Pherocon-Am) attached to trap posts indicated a large, peak emergence on June 10, with erratic emergence patterns thereafter due to wind and rain patterns. Despite the abnormal emergence pattern, we were able to demonstrate that flies were infected by *S. feltiae* and that these nematodes survived at least 7 days within traps under field conditions. Eugenol was noted as having some potential as an attractant even though a statistical comparison of treatments was precluded by abnormal adult flight timing.

During the 1994 season, we plan to modify the trap and monitor designs, the assessment of various potential attractants, and the choice of nematode strains. The ability to decrease adult numbers prior to oviposition could significantly reduce resultant larval numbers on nearby seedlings.

SUGARBEET RESEARCH

1993 Report

Section E

Sugarbeet and Bean Research Unit Agricultural Research Service, USDA East Lansing, Michigan

Dr. J. C. Theurer, Research Geneticist, Plants

Dr. J. W. Saunders, Research Geneticist, Plants

Dr. J. M. Halloin, Plant Physiologist

Cooperation:

Michigan Agricultural Experiment Station Michigan Sugar Company Monitor Sugar Company

This research is supported by funds provided through the Beet Sugar Development Foundation (Projects 700 and 710)

CONTENTS

PAGE	
Abstracts of Papers Published or Approved for Publication	E3
Somatic Cell Selection Studies: Alternate Nitrogen Sources for Callus Induction from Leaf Discs and for Subsequent Bud Regeneration J.W. Saunders and C.J. Tsai	
Somatic Cell Selection for Resistance to Methionine Sulfoximine and to Ethionine J.W. Saunders and P. Kapranov	E6
1993 Experiments of Genotype X Nitrogen Response J.C. Theurer and J.W. Saunders	211
Evaluation of Sugarbeet Smooth Root Breeding Lines and Experimental Hybrids-1993 J.C. Theurer	18
Field Evaluation of the Relative Performance and Combining Ability of an Agronomic Selection from L19 Versus L19 J.C. Theurer	
Rhizoctonia Root Rot Evaluation for Commercial and Experimental Hybrids at East Lansing, MI 1993 J.C. Theurer, Lee Hubble and J.M. Halloin	
Potential Biocontrol of Rhizoctonia Root Rot J.C. Theurer and J.M. Halloin	
Cercospora Leafspot Evaluation of Smooth Root Selection Blocks, Experimental and Commercial Varieties Made at East Lansing 1993 J.C. Theurer and R.C. Zielke	

ABSTRACT OF PAPERS PUBLISHED OR APPROVED FOR PUBLICATION

SAUNDERS, J. W. 1993. Notice of release of smooth root germplasm with mutant form of ALS enzyme - EL-49

EL-49 is being released as a germplasm source for breeders to use in the development of smooth root breeding lines and cultivars. EL-49 is S₁ seed produced by selfing clone 10-181. Clone 10-181 was developed from a cross of clones 79B15x069 (the near cytoplasmic male sterile equivalent to EL-48) and CR1-AJ, followed by two successive outcrosses to two individual smooth root selections from smooth root line SP85700. Two resulting BC₁ individuals were then sibmated to produce the population out of which clone 10-181 was selected. EL-49 is a multigerm diploid with N cytoplasm, segregating for red and green hypocotyl. The parental clone 10-181 is highly self-fertile. EL-49 is expected to be used by breeders interested in the smooth-rooted characteristic. Less dirt clinging to beets during harvesting results in lower tare dirt percentage, a sanitation benefit in the face of the spread of the rhizomania disease across the U.S. There is also the potential for peel removal prior to processing as well as the likelihood of reduced post-harvest respiratory and rot losses. EL-49 is homozygous for a mutant form of the acetohydroxyacid synthase enzyme which can be used as a marker to confirm hybridization when EL-49 is used as a parent.

HART, S. E., J. W. SAUNDERS, AND D. PENNER. 1993. Herbicide resistant crops from cell selection. Reviews of Weed Science (Accepted 5/93, in Press).

Herbicide resistant cell lines have been selected using somatic cell selection in eleven crop species (tobacco, tomato, alfalfa, corn, white clover, flax, sugarbeet, carrot, canola, birdsfoot trefoil, petunia). Resistance has been obtained to herbicides of quite different modes of action, including ALS inhibition, lipid biosynthesis inhibition, as well as triazine, thiocarbamate, and growth regulator herbicides. Depending on individual cases, the resistances vary for availability in whole plants, for stability, for mode of inheritance, for origin by way of artificial mutagens, and for single or multi-step selective procedure.

HART, S. E., J. W. SAUNDERS, AND D. PENNER. 1993. <u>Initial field evaluation of sulfonylurea herbicide resistant sugarbeet from somatic-cell selection.</u> J. Sugar Beet Res. 31:(1+2)(Accepted 2/4/94)

Field studies were conducted with a sugarbeet (<u>Beta vulgaris</u> L.) breeding line segregating for monogenic dominant sulfonylurea herbicide resistance conditioned by the <u>Sur</u> allele and obtained from somatic cell selection. Sulfonylurea herbicide resistant and susceptible sublines were compared to each other and to the commercially available susceptible cultivar MONO-HY E4 in regards to root yield, sucrose percentage, and processing purity. In addition, the response of MONO-HY E4 and the sulfonylurea resistant and susceptible counterparts to simulated carryover sulfonylurea residues in soil and to postemergence (POST) applications of selected sulfonylurea herbicides was evaluated. In the absence of herbicides, counterpart resistant and susceptible sugarbeet produced similar root yield,

sucrose percentage, and clear juice purity at both locations. Nicosulfuron applied preplant incorporated (PPI) at 9 g ai ha⁻¹ to simulate carryover in soil had no effect on the growth of sugarbeets from the resistant population or from the susceptible MONO-HY E-4 cultivar seeded immediately after application. Primisulfuron and chlorimuron applied PPI at 10 and 3 g ai ha⁻¹, respectively, caused over 95% visible injury to the susceptible MONO-HY E-4 sugarbeet 6 weeks after treatment (WAT) but had no adverse effect on the growth of resistant sugarbeet. POST application of primisulfuron at 40 and 80 g ai ha⁻¹, and thifensulfuron at 4 and 8 g ha⁻¹ (one and two times the normal field use rate for corn and soybean, respectively) caused less than 15% visible injury to the resistant sugarbeet 4 WAT, but caused severe injury to the susceptible MONO-HY E-4 sugarbeet. The sulfonylurea resistant sugarbeet was tolerant to POST applications of primisulfuron at four times and thifensulfuron at two times the field use rate. This magnitude of resistance is great enough for effective use of primisulfuron and thifensulfuron for weed control in sulfonylurea resistant sugarbeet.

THEURER, J. C. 1994. Agronomic comparison of different types of smooth root and "soil free" sugarbeets. J. Sugar Beet Res. 31:Accepted 12/3/93.

Field experiments were conducted for three years to compare growth characteristics and agronomic performance of sugarbeet genotypes differing in taproot architecture. Genotypes studied were MH E4 and either ACH 176 or ACH 185, commercial hybrids with standard grooved taproots; SR 87, a conical-shaped smooth root (SR) line developed by USDA, ARS at East Lansing, MI; A90MM, a globe-shaped SR experimental triploid hybrid from the Netherlands; and Univers, a European commercial variety with shallow root grooves and low soil tare at harvest. Taproot growth was primarily below the soil level for all genotypes except A90MM, which had only about 50% of the root underground. Averaged over years, root yield for SR 87 was 79.86 Mg ha⁻¹, significantly greater than the 70.72, 72.33, and 62.38 Mg ha⁻¹ for A90MM, Univers and MH E4, respectively. Sucrose percentage for SR87 (15.31%) and A90MM (14.50%) was 1% -2% lower than for U. S. commercial varieties. SR87 was equal to the commercial varieties in sucrose yield per hectare. There was little difference among all of the genotypes studied in clear juice purity. A90MM had about half the quantity of soil adhering to taproots as did SR87 and Univers and about one-fourth of that for standard grooved root varieties. A90MM produced 42 gm dry matter of top per plant compared to 75, 106, 108 and 121 gm for Univers, SR 87, MH E4, and ACH 185, respectively. Globe-shaped roots of A90MM were harvested with significantly less soil tare than conical-shaped SR beets. However, they had the disadvantage of often being dislodged from the row when tops were removed with a rotobeater. Using current sugarbeet harvesters the conical-shaped smooth root beets would be the more desirable architecture.

THEURER, J. C. 1993. <u>Pre-Breeding for root architecture</u>. J. Sugar Beet Res. 30:(4). (Accepted 12/30/93)

Economic improvement of sugarbeet (<u>Beta vulgaris</u>) field production and processing can be enhanced if traditional architecture of the sugarbeet is modified to a smooth root (SR) beet. Root shape of sugarbeet is a multigenic character and several generations of

breeding are needed to reach any degree of homozygosity. In recent years conical-shaped SR beets have been developed in the eastern U. S., and in the Netherlands globe-shaped beets have been developed by crossing table beet with sugarbeet followed by phenotypic recurrent selection. SR beets tend to have fewer fibrous rootlets near the soil surface than for traditional grooved-root beets but rootlets still proliferate mainly along two vertical planes. SR testcross progenies have shown less taproot tip breakage than for a commercial hybrid cultivar. Root yield of current SR genotypes and experimental hybrids has been equal or superior to that of commercial cultivars, but sucrose content has been 1-3 percentage points less. Soil tare for SR genotypes has ranged from 30% to 70% less than for current commercial cultivars with traditional architecture. Globe-shaped beets have lower soil tare than conical-shaped SR beets. However, SR beets bred with conical-shaped are more desirable than globe-shaped roots using current sugarbeet harvesting equipment, because globe-shaped beets grow more out of the soil, often are dislodged from the row when tops are flailed, and may not be picked up by the harvester.

SOMATIC CELL SELECTION STUDIES

Somatic Cell Selection for Resistance to Methionine Sulfoximine and to Ethionine

Joseph W. Saunders and Philipp Kapranov

One goal was to select for in vitro occurring variants having increased levels of glutamine synthetase. Selection for resistance to a specific inhibitor of glutamine synthetase (GS), L-methionine sulfoximine (MSO), was chosen on the basis of reported isolation of GS overproducing cell lines in a number of plant species following step-wise (chronic) selection for tolerance to MSO or another GS inhibitor, phosphinothricin. We employed direct selection, which has been successful in producing cell lines overproducing GS or other inhibitor-targeted enzymes due to gene amplification in animal systems, and in producing an uncharacterized MSO resistance in tobacco (Carlson, 1973).

Sieved suspension cultures of REL-1 were plated on media containing 2-5 times the LD_{100} concentration of MSO. A total of 1.5 X 10⁸ cell clusters (7600 dishes) were plated. No true resistant isolates have been obtained. We then tried chronic (stepwise) selection. The first round of selection resulted in adaptation of cultures (the criterion was normal growth) to the LD_{50} concentration, followed by a doubling of the concentration of MSO with each succeeding round of chronic selection. We ultimately obtained cultures capable of normal growth at as high as 12.5 times the LD_{100} (the lowest lethal) concentration. However these cultures had completely lost their ability to regenerate shoots after their 6 months in culture. Shoots could be regenerated from cultures adapted only as far as 0.8 times the LD_{100} (3rd round of chronic selection). Now we are propagating those shoots, which look normal, for further trials. We have not been able to regenerate shoots from cultures adapted to higher levels of MSO, despite extensive efforts: a total of 3000 dishes plated with cultures adapted to various levels of MSO.

Selection for resistance to ethionine, an analog of methionine, is the other part of the current selection efforts. Methionine was demonstrated by Winner (1966) to protect beets in hydroponic culture from Aphanomyces attack. As some ethionine resistant mutants in other species have elevated methionine levels, we hope to test whether variant cells selected for ethionine resistance have elevated methionine levels in the whole plant and whether this is associated with greater tolerance of the Aphanomyces pathogen.

Nearly 1 X 10⁶ cell clusters have been plated so far, most with an acute exposure to lethal levels of the ethionine. One resistant callus line has resulted, and we are attempting to get this to regenerate shoots now.

Alternate Nitrogen Sources for Callus Induction from Leaf Discs and for Subsequent Bud Regeneration

Joseph W. Saunders and Chia-Jung Tsai

Nitrogen is an important element for stimulating early seedling growth and rapid development of the sugarbeet canopy. However, an excess of nitrogen near the end of the growing season results in lower sucrose percentage in the taproot, and higher levels of impurities that interfere with sugar crystallization in the processing factory. Furthermore, nitrate levels in groundwater have become a matter of public concern and could probably be decreased by avoiding excessive nitrogen application relative to efficient crop needs.

Nitrogen is taken up by the beet crop primarily in the form of nitrate. Nitrate passes though the root unaltered, and is reduced in photosynthetic tissues, ending up as glutamine (Burba, 1983). Roots rely for their organic nitrogen on the downshipment of organic foliar nitrogen, primarily glutamine. From a beet root processing point of view, glutamine/glutamate is major component of clear juice impurity. It is also the key hub of active organic nitrogen distribution in the cell. Glutamine/glutamate concentration in the roots is probably regulated by multiple mechanisms.

Mutations of either regulation or enzyme function for the steps of nitrogen uptake, transport, reduction and interconversion could be of interest to the beet industry if these mutations were associated with (a) greater fertilizer use efficiency, (b) greater sugar percentage and juice purity (in the case of poorer efficiency), or (c) simply lower nitrogenous clear juice impurity levels (if glutamine/glutamate pool levels in the root are lower).

There are few plant mutations know to affect nitrogen assimilation without drastic effects on plant vigor. One example involves the two gene system differentiating burley and flue-cured tobacco that confers a four-fold difference in nitrogen use efficiency, and is expressed primarily in the shoot (Crafts-Brandner et al., 1987). This genetic variation occurred naturally.

Tissue culture provides a way to generate variants in nitrogen metabolism, either by spontaneous somaclonal variation or by use of a mutagen. For example, Heimer and Filner (1970) selected a tobacco cell line that was resistant to threonine inhibition of growth on nitrate as sole nitrogen (N) source. In sugarbeet, Sabir et al., (1992) identified a glutamate dehydrogenase overproducer in a random growout of regenerant plants. In neither case was seed available for field testing.

We have developed a system for plating out sugarbeet cells of an amenable genotype (REL-1) for selection of variants and regeneration of plants from these cells (Saunders et al., 1990). This system was effective in recovery of a sulfonylurea herbicide resistance factor (Saunders et al., 1992) and in subsequent recovery of additional herbicide resistance factors when the system was employed by weed scientists (unpublished). We have recently been developing selective regimes to efficiently select for variants of nitrogen assimilation that might enhance agronomic performance with respect to N use efficiency or processing purity.

Three types of selective regimes were identified earlier: (1) selection for growth in the presence of inhibitors of nitrogen assimilation steps when the traditional tissue culture N mix of nitrate and ammonium is provided to the cells, (2) selection for growth in the presence of a sole nitrogen source and an inhibitor of the utilization of that source (the vulnerability scheme), (3) selection for ability to utilize an otherwise unusable sole carbon or nitrogen source.

All three of these types of positive selection can be considered qualitative methods,

because they identify the rare surviving individual colony in an acute (one time) exposure to the selective environment. However, another type of positive selection relies on the fact that in a growing cell population, the arising of new genetic variation providing advantages to utilizing the ambient nutrients will lead to a disproportionate (quantitative) increase in the frequency of those variant cells. This disproportionate increase should also be reflected in the population of regenerate plants. In practice, to identify some of these variants will require a grow out of regenerate plants and some kind of progeny test. Because this type of selection targets no specific enzyme, involves changes in cell population gene frequency, and relies on the progeny test to identify variants in field performance, it's efficiency is low. It's advantage would be that the initial stage of performance identification would be very close to that of final application, i.e., the field as contrasted to the petri dish.

To this end we tested various sole nitrogen sources for their ability to support induction of callus from leaf discs and subsequent regeneration of buds or shoots from that callus without transfer. This is the first step we use in our standard system for generating callus derived plants for a grow out.

The experiment was run twice, once with leaves from REL-1 plants grown in a growth chamber and the second time from REL-1 plants grown in the greenhouse in November, without supplemental light. There were some differences in the outcome which might reflect differences in leaf physiological condition at the time of sampling, for example, due to light quantity per day.

The Murashige-Skoog N mix gave the best callusing and bud regeneration response, followed next by glutamine at 15 mM (Table 1). Buds were also produced on ammonium, urea and choline to a lesser extent. Paralleling the earlier lack of response in suspension plateout (SP) and shoot culture (SC) growth, betaine and proline supported no callus induction. Glutamate was also incapable of supporting leaf disc callus induction, similar to its response for SC but contrasting to its moderate SP growth. Most surprising was the poor support offered by nitrate, which earlier had given moderate growth of SP and SC. One explanation of this would be that the typical partially expanded leaves used as sources of discs have not developed very high nitrate reductase activity levels because they are still in a net assimilate importation stage on the plant.

It is apparent though that by using glutamine as a sole N source, callus induction and bud regeneration can occur at high enough levels to permit efficient recovery of plants. If there has been quantitative selection for cell variants better able to grow and utilize glutamine, this could lead to enhanced recovery of respective plants in a growout and progeny test.

Number of leaf discs (of ten) which callused and which regenerated buds. Table 1.

	₩S _N *	MS-N	NO ₃ 30 NO ₃	09	NO ₃ 90 NH ₄ 30		NH ⁴ 60	urea 15	urea 30	urea 60
Expt A	10,10¤	0,0	6,2	2,1	0,0	10,0	7,0	9,1	8,0	10,0
Expt B	10,8	0,0	0'0	0'0	0'0	7,5	3,1	6,1	8,1	0'9
Tota1*	20,18	0,0	6,2	2,1	0,0	17,5	10,1	15,2	16,1	16,1

	gln 15	gln 30 gln 60 glu 30	gln 60	glu 30	glu 60	pro 30	glu 60 pro 30 pro 60 bet 30 bet 60 cho 30	bet 30	bet 60	cho 30	cho 60
Expt A	10,8	8,5	7,1	0,0	0,0	9,1	4,1	0,0	0,0	0,0	0'0
Expt B	10,2	7,7	2,0	0,0	0,0	3,0	4,0	0,0	0'0	0'0	0'0
Total	20,10	15,12	9,1	0,0	0,0	12,1	8,1	0,0	0,0	0,0	0,0

 $MS_N = Murashige-Skoog N mix of nitrate and ammonium; Murashige-Skoog inorganics without N; <math>NO_3$ = nitrate; NH_4^+ = ammonium plus succinate; urea; gln= glutamine; glu= glutamate; pro= proline; bet= glycine betaine; cho= choline.

► Numbers = mM.

¤

First number of the pair is number of discs callusing (of ten), and second is number of discs producing buds from the callus.

▲ Of twenty leaf discs.

References

- Burba, M. 1983. Nitrogen assimilation of plants with special reference to the sugarbeet (Beta vulgaris L.). Proc. Symp. "Nitrogen and sugar-beet", I.I.R.B. pp 27-52.
- Carlson, P.S. 1973. Methionine sulfoximine-resistant mutants of tobacco. Science 180:1366-1368.
- Crafts-Brandner, G.J., T.G. Sutton, and J.L. Sims. 1987. Root system genotype and nitrogen fertility effects on physiological differences between burley and flue-cured tobacco. II. Whole plant. Crop Sci. 27:1219-1224.
- Heimer, Y.M and P. Filner. 1970. Regulation of the nitrate assimilation pathway of cultured tobacco cells. II. Properties of variant cell line. Bioch. Biophys. Acta 215:152-165.
- Sabir, A., H.J. Newbury, G. Todd, J. Catty and B.V. Ford-Lloyd. 1992. Determination of genetic stability using isozymes and RFLPs in beet plants regenerated in vitro. Theor. Appl. Genet. 84:113-117.
- Saunders, J.W., G. Acquaah, K.A. Renner, and W.P. Doley. 1992. Monogenic dominant sulfonylurea resistance in sugarbeet from somatic cell selection. Crop Sci. 32:1357-1360.
- Saunders, J.W., W.P. Doley, J.C. Theurer and M.H. Yu. 1990. Somaclonal variation in sugarbeet. In: Y.P.S. Bajaj (ed.), Biotechnology in agriculture and forestry 11, Somaclonal variation in crop improvement I., Springer Verlag, Berlin. pp. 465-490.
- Winner, C. 1966. Untersuchungen über parasitogene Schäden an Wurzeln der Zuckerrübe, inbesondere durch <u>Aphanomyces</u>, and über Möglichkeiten ihrer Verhütung. III. Versuche zur Hemmung eines <u>Aphanomyces</u>-Befalls durch spezifisch wirkende Chemotherapeutika. Phytopath. Z. 57:310-328.

1993 EXPERIMENTS OF GENOTYPE X NITROGEN RESPONSE

J. C. Theurer and J. W. Saunders

EVALUATION OF DIVERSE GENOTYPES FOR POTENTIAL NITROGEN USE EFFICIENCY.

Nitrogen fertilization is an important aspect for growing a good sugarbeet crop. Sufficient N is required for the beet to make rapid growth in the spring and to quickly develop a canopy of leaves for photosynthesis, further plant growth, and sucrose accumulation. Excess N at harvest results in higher impurities in the root and more difficulty in processing to sugar. Also, in recent years the public has expressed considerable concern regarding the quantity of nitrogenous and other chemical residuals in soils and water. In 1990 a research program was initiated to evaluate diverse genotypes for their potential difference in tolerance to high N or their efficiency for high sugar production with low nitrogen availability. Minor differences in N response were noted for some genotypes in past years. In 1993 we continued this research by evaluating some additional diverse genotypes for their response to differential nitrogen fertilization.

Sixteen highly diverse genotypes (Table 1) of sugarbeet including one selection with Beta macrocarpa parentage and two with B. maritima parentage were planted in a randomized block experiment of four replications at the Bean and Beet Research Farm on May 14, 1993. Individual plots were two rows 28" apart and 30' in length. Adequate phosphorus and potassium fertilizer was applied pre-plant but no N fertilizer was applied until after thinning. In mid-July the plots were fertilized with zero, 90# ammonium nitrate/acre (optimum nitrogen fertilization for Michigan), or 180# ammonium nitrate/acre in accordance with the randomized block field plan. The experiment was machine harvested on October 7, 1993. The row length of each plot was measured just prior to harvest to adjust plot size for any skips within the rows. All roots in each plot were weighed to determine root yield and RWSA. A fifteen beet random sample of roots was taken from each plot to determine sucrose percentage, CJP percentage and meq amino N per 100 g sugar. These determinations were made by Michigan Sugar Company personnel at their research lab in Carrollton, MI. Data was summarized and analyzed using the MSTAT statistical program developed at Michigan State University.

RESULTS

Summed over genotypes, when N was increased, root weight, recoverable sugar per acre (RWSA) and meq amino N/100g. sugar in the root at harvest were increased, while sugar content, recoverable sugar per ton (RWST) and clear juice purity (CJP) were decreased (Table 2). Significant differences were also noted between the genotypes (Table 3). The nitrogen level x genotype interactions were significantly different for all variables except for recoverable sugar per acre (RWSA) (Table 4). All genotypes showed an increase in RWSA with an increase in N fertilization, but yield differences were not significant for any of them. Four genotypes (90318, Ovana, A93-2, A93-5) had significantly higher RWST at the zero N level than at higher N levels. The other twelve genotypes, had significantly lower RWST at the 180# N rate than at the zero rate and six of these genotypes (ACH185, 88S3-00, 85320-0, 85576-0, A93-3, USH20) also were significantly lower in RWST at the 180# level than at the 90# N level. Ten entries produced significantly higher root yield at 180# N, than at the zero N level. For two of these genotypes

(88S3-00, A93-10), the 180# level also showed significant yield increase over the 90# N level. Root yield increased with increased fertilizer for the other six genotypes, but differences were not significant. Two genotypes (A93-2, A93-5) had significantly higher sucrose content with zero fertilization than with either 90# or 180#/ acre fertilizer level. Ovana, the genotype with the lowest sucrose content, was the only genotype that had similar sucrose percentages at all N levels. The majority of the genotypes had significantly lower sucrose content when grown in the 180# N environment. Seven of the genotypes (91270M,88S3-00,85320-0,85576-0,A93-3,A93-10,USH20) were significantly lower in sucrose percentage at the 180# rate compared to when they were grown with the standard 90#/acre N. Entries 88S3-00, 90318, 85576-0, A93-2, and A93-5 showed significantly higher purity with zero versus higher levels of fertilization. The 180# fertilization rate resulted in significant increases in the meg amino N/ gram sucrose in the beet root at harvest for the majority of the genotypes. The commercial cultivars ACH 185 and Beta 5315 showed little difference in amino N across fertilizer levels, while most genotypes showed an increase in amino N as the level of fertilizer increased. Only genotype A93-5, a progeny from L53 x B. maritima, showed significant step wise increases in amino N from zero to 90# and 90# to 180#.

Genotypes that have the best prospects for producing good yields, and high sucrose content under a low N environment appear to be 91270M, a selection from L19, and 91B21, an East Lansing selection for high RWST. None of the genotypes showed good prospect for finding germplasm that could utilize abundant nitrogen and still produce good sugar content with acceptable quantities of nitrogenous impurities in the root. Ovana and A93-2 genotypes showed the least sensitivity to loss of sucrose when N level is increased from 90#/acre to 180#/acre. Ovana, however, has very low sugar content to begin with, and partitioning to root growth versus sucrose accumulation may have an effect of keeping the sucrose content fairly stable in this fodder beet. Three genotypes (88S3-00, USH 20, and 85576-0) showed more sensitivity than others when the N level was raised from 90# to 180#/acre, resulting in reductions in sugar content of 2.6, 1.7 and 1.5 percentage points respectively. Two genotypes (L19 Select, and A93-3) had good sugar yield (RWSA) and high sugar content at the zero N level. ACH 185, Beta 5315, and 88S3-00 also had high sucrose percentage under the zero N treatment.

SELECTION FOR HIGH SUCROSE PERCENTAGE, HIGH AMINO N AND LOW AMINO N IN THE L19 HIGH SUCROSE GENOTYPE.

Past years experiments have demonstrated that the L19 genotype, which has very high sucrose percentage, also has a high accumulation of amino N in the roots at harvest. High sucrose, high amino N, and low amino N selections were made from two field block plantings of L19 in 1990. One field block had zero nitrogen applied during the growing season; and the other block was fertilized with 180# available N per acre, about twice the recommended rate for sugarbeets grown in Michigan. In 1992 five progenies selected from the high sugar line L19 grown in low and high N field plots were evaluated in the field along with the L19 parent line. The study was done to assay the effect of N fertilizer on the relationship of sucrose percentage and amino N impurities in the beet root at harvest in this high sucrose germplasm. In 1993 we repeated the experiment. Three of the selections tested were from seed increases of beets selected for high sucrose, high amino N, and low amino N when grown in a low nitrogen environment. The two other progenies were high sucrose and high amino N selections from beets grown under high N (180#/acre) fertilization. Insufficient seed was available for field planting of low amino N selection grown in a high N environment. The 1993 field trial was fertilized at the rate of 90# available N/acre, the recommended rate for sugarbeets grown in Michigan. Individual plot size for each entry was two rows 28" apart and 30' in length. Sufficient residual seed was available to plant only three replications. The experiment was machine harvested October 7, 1993. All beets in a plot were weighed for root yield and a random 15 beet sample was selected to determine sucrose percentage, purity and meg amino N/100 grams of sugar. The latter determinations were made by Michigan Sugar Company personnel in their laboratory at Carrollton, MI.

RESULTS

The data from the 1993 planting was similar to that collected in 1992 (see Table 7 p.E25 1992 Research Report). The L19 parent line again had the largest root yield and recoverable sugar per acre (RWSA) (Table 6). The high sucrose selection made under low N (92S19-01) had the lowest root weight both years, and was lowest in RWSA in 1993. The high amino N selection from the high N field plot, 92N19-04, was equal to the L19 parent in 1992 in RWSA, but it had significantly lower sugar yield than L19 in 1993. The high sucrose selection 92S19-01, as expected, had the highest sucrose percentage and recoverable sucrose per ton (RWST) for both years. There were no differences in clear juice purity percentages between all entries in 1992, However, the L19 parent and the low amino N selection 92N19-01 had significantly higher CJP percentage in 1993 than 92N19-04 and 92SN19-01, the high Amino N selections. The high Amino N selection made in the low N field (92SN19-01) was consistent over years in having the highest meq amino N/100 g. sugar. The low amino selection, 2N19-01, had the lowest amino N values both years. The data shows that selection for amino N can be very effective. It also demonstrates a close association with CJP percentage and the meg amino N/per 100 g. sugar in the root at harvest. The data also suggest independence of the genetic factors governing sucrose accumulation and amino N impurity level. They demonstrate that the characteristically high amino N found in the root of L19 at harvest can be greatly modified by selection for low amino low N retention in the mature sugarbeet root.

Table 1. Description of genotypes used in Nitrogen efficiency study.

	<u>Genotype</u>	<u>Description</u>
1	ACH 185	Commercial hybrid
2	BETA 5315	Commercial hybrid
3	91270M	L19 Sel. High sucrose
4	90729	SR line
5	88S3 - 00	H.S. Composite
6	85320-0	Coe <u>Beta</u> <u>maritima</u> line
7	91B21	88B24-01
8	90318	FC701/5
9	Ovana	Blanca
10	85576-0	Coe O-type inbred
11	A93-2	4 cyl C3747 X B. macrocarpa
12	A93-3	4 cyl L53 X <u>B. maritima</u>
13	A93-5	4 cyl L53 <u>B. maritima</u>
14	A93-10	h 537 hi soluble solids.
15	A93-8	h 535 round beet selection
16	USH20	Old Leafspot Resistant hybrid

Table 2. Means for N level summed across varieties for sugar yield, root yield, sucrose percentage, clear juice purity percentage, and meq amino N/100 g. sugar. B&B Farm. 1993.

N Level # Acre	RWSA	RWST	T/A	Suc %	CJP %	Amino N meq/100 g suc.
0 90 180	3590 3829 4006	227.7 211.9 192.2	16.08 18.43 21.08	16.55 15.92 14.78	91.94 90.66 90.00	22.47 17.46 12.09
Mean LSD(0.05	3808) 465	210.6	18.53 2.1	15.75 0.34	90.87	17.34 0.53

Table 3. Means for varieties summed across N Levels for sugar yield, root yield, sucrose percentage, clear juice purity percentage, and meq amino N/100 g sugar. B&B Farm. 1993.

Variety	RWSA	RWST	T/A	Suc %	CJP %	Amino N meq/100 g suc.
ACH185	4686	251.0	18.81	18.00	92.31	9.87
BETA 5315	4379	250.1	17.62	17.89	92.45	9.66
91270M	4453	256.0	17.48	18.64	91.61	12.82
90729	4457	197.8	22.78	14.81	91.18	14.70
88S3-00	3805	231.9	16.57	17.11	91.36	13.78
85320-0	2851	192.8	14.95	14.84	90.06	21.72
91B21	4844	224.0	21.74	16.48	91.54	12.97
90318	3061	192.3	16.20	15.11	89.20	22.03
Ovana	3559	138.7	25.84	11.64	87.68	26.29
85576-0	3280	213.7	15.75	15.77	91.50	14.74
A93-2	3032	213.9	14.25	15.87	91.26	19.91
A93-3	3579	234.6	15.32	16.94	92.20	13.23
A93-5	2665	204.1	13.40	15.43	90.60	25.48
A93-10	4383	192.1	23.11	14.76	90.15	18.69
A93-8	3329	149.6	22.43	12.30	88.34	28.47
USH20	4573	227.6	20.19	16.41	92.39	13.06
Mean	3808	210.6	18.53	15.75	90.87	17.34
LSD(0.05)	465	6.2	2.1	0.34	0.58	0.53

Table 4. Sugar yield, root yield, sucrose percentage, clear juice purity percentage, and meq amino N/100 g. sugar for diverse sugarbeet genotypes grown under three N environments. B&B Farm. 1993.

Variety	RWSA	RWST	Tons/	Suc	CJP	Amino N	Level
	#	#	acre	%	%	meq./100g	N #/A
ACH185	4492	268.6	16.72	18.93	92.94	7.43	0
	4569	253.9	17.97	18.11	92.55	8.93	90
	4997	230.4	21.73	16.96	91.43	13.25	180
BETA 5315	4066	266.9	15.27	18.75	93.12	6.44	0
	4467	251.5	17.76	18.01	92.42	9.48	90
	4603	231.9	19.83	16.92	91.80	13.08	180
91270M	4395	271.3	16.26	19.43	92.19	8.23	0
	4332	257.7	16.81	18.89	91.30	13.72	90
	4632	239.1	19.36	17.60	91.34	16.49	180
90729	4125	212.6	19.58	15.59	91.88	9.17	0
	4653	196.8	23.68	14.82	90.98	17.47	90
	4594	183.9	25.06	14.02	90.67	17.44	180

Table 4. continued

Variety	RWSA	RWST	Tons/	Suc	CJP	Amino N	Level
	#	#	acre	%	%	meq./100g	N#/A
88S3-00	3603	245.2	14.63	17.58	92.57	10.54	0
	3668	245.6	14.95	18.19	90.99	12.80	90
	4142	205.0	20.13	15.55	90.51	18.00	180
85320-0	2304	203.1	11.43	15.46	90.39	16.80	0
	3188	200.8	15.92	15.19	90.71	21.39	90
	3061	174.4	17.51	13.87	89.09	26.98	180
91B21	4661	240.3	19.41	17.29	92.33	7.62	0
	4966	225.0	22.06	16.53	91.62	12.55	90
	4905	206.6	23.75	15.61	90.67	18.74	180
90318	2918	215.9	13.59	16.07	91.17	14.32	0
	3016	190.0	16.02	15.11	88.83	20.13	90
	3248	170.9	19.01	14.16	87.60	31.62	180
Ovana	3464	149.2	23.21	12.07	88.96	21.77	0
	3316	126.9	26.19	11.35	85.88	29.48	90
	3896	139.9	28.13	11.50	88.20	27.61	180
85576-0	3268	232.9	14.35	16.60	92.87	10.09	0
	3355	218.9	15.52	16.09	91.66	12.46	90
	3219	189.3	17.37	14.63	89.97	21.68	180
A93-2	2740	239.0	11.35	17.00	92.88	14.64	0
	2986	206.6	14.46	15.54	90.86	19.26	90
	3368	196.2	16.94	15.08	90.03	25.84	180
A93-3	3489	249.3	13.96	17.77	92.66	10.58	0
	3465	239.7	14.42	17.20	92.46	11.86	90
	3785	214.6	17.59	15.86	91.49	17.26	180
A93-5	2600 2760 2635	192.6		17.02 15.20 14.05	89.08	28.72	0 90 180
A93-10	4170 4195 4783		20.21 21.55 27.57	15.59 14.95 13.74			0 90 180
A93-8	2961 3484 3541		22.93		88.76 88.45 87.82	30.63	0 90 180
USH20	4181 4844 4693	236.7 238.4 207.8	20.31	16.78 17.05 15.40	92.63	11.55	0 90 180
Mean lsd(0.05)	3808 465	210.6	18.53 2.1	15.75 0.34	90.87		

Table 5. Agronomic evaluation of high sucrose, high amino N, and low amino N selections of L19 grown in high and low nitrogen environments. B&B Farm 1993.

Selection Seed No.	Selection Basis	RWSA lbs	RWST lbs	Root Wt. Tons/ac
92S19-01 92SN19-01 92N19-01	Low Nitrogen Field Plot High Sucrose High Amino N Low Amino N	4627 b* 4943 ab 4671 ab		17.68 ab
92S19-02 92N19-04	High Nitrogen Field Plo High Sucrose High Amino N	<u>t</u> 4999 ab 4509 b		17.91ab 17.00 b
WC91270M	L19 High Sucrose Parent	Line		
Mean 1sd (0.05)		4838 595 6.75	275.8 15.2 3.02	17.56 2.02 6.33
Selection Seed No.	Selection Basis	Sucrose %	CJP %	Amino N meq/100g
92S19-01 92SN19-01 92N19-01	High Amino N Low Amino N	20.76 a 20.43 a 19.40 c	91.84 ab 91.20 b 92.13 a	
92S19-02 92N19-04	High Nitrogen Field Plo High Sucrose High Amino N	20.26 ab 19.51 bc		14.61 a 12.02 ab
WC91270M	L19 Parent Line	19.47 c	92.15 a	12.02 ab
Mean lsd (0.05)		19.97 0.75 2.07	91.65 0.84 0.50	13.09 3.60 15.14

^{*} Duncan's Multiple Range Test - Means with the same letter suffix are not significantly different at the 0.05 level.

EVALUATION OF SUGARBEET SMOOTH ROOT BREEDING LINES AND EXPERIMENTAL HYBRIDS - 1993

J. C. Theurer

Excellent smooth root architectured beets have been developed, but they do not have the level of sucrose percentage nor the disease resistance that is desired for today's commercial varieties. In 1993 we continued our efforts to enhance these characteristics in SR germplasm. Selections, experimental hybrids, and SR populations were evaluated for their agronomic performance. A SR nursery with over 3000 plants was screened, and selections having excellent smoothness of root and sucrose percentage above that of the check cultivar ACH 185 were again made for seed increase for the next selection cycle. Some excellent resistance to Cercospora leafspot was also noted this year.

EVALUATION OF A GROUP OF HIGH SUCROSE SMOOTH ROOT GENOTYPES.

This experiment was designed to evaluate the agronomic performance of a group of high sucrose smooth root (SR) progenies. Individual beets with good SR shape and sucrose percentage on a fresh weight basis ranging from 100-117% of that for ACH 185 were selected from the 1991 SR breeding nursery. Seed was produced in groups with 3-10 roots in each group, depending upon the pedigree of the breeding material. The eleven SR progenies plus ACH 185 commerial hybrid check were planted in two row plots with rows 28" apart in a 6 replicate field trial. Just prior to harvest the length of each plot row was measured and adjustments made to correct the plot area for skips that occurred within the row. Harvest by machine was done on October 7, 1993. All beets in each plot were weighed to determine the tons per acre, and recoverable sugar per acre (RWSA). A fifteen beet random sample of roots was taken from each plot for sugar and purity analyses. Sugar percentage and clear juice purity were determined by Michigan Sugar Company personnel in their research laboratory at Carrollton, MI using standard thin juice methods. A root smoothness score was estimated for each plot by observing the beets as they fell into the weighing basket. Beets were scored on a 1-5 scale as defined below:

- 1 = Very smooth taproot, no grooves, broad fibrous root zone
- 2 = Smooth, slightly grooved taproot, narrow fibrous root zone
- 3 = Partially smooth, grooved, heavy fibrous non-branching taproot
- 4 = Rough shaped taproot, deep grooves, heavy fibrous roots with some sprangling
- 5 = Very rough, very deep grooves, multiple branched taproot

Data was analyzed using the Michigan State University MSTAT statistical program.

RESULTS

With the exception of one SR progeny, the SR lines were not different from ACH 185 in recoverable sugar per acre (RWST)(Table 1). Five SR progenies slightly exceeded the check cultivar in root weight, however none of the 11 yielded significantly more or less than the check. ACH 185 had significantly the highest recoverable sugar per ton (RWST) and the highest sucrose percentage. Progenies 92HS10, 92HS33, and 92HS46 were the SR progenies with the highest sucrose content. These progenies were developed from groups of selected individual roots, which averaged 112%, 113%, and 110% of the sucrose of ACH 185 on a fresh weight basis. All but two SR progenies were equal to the check in clear juice purity (CJP). Only nine of the SR lines were significantly lower in smooth root score than ACH 185. Progeny 92HS45 had the best SR architecture. The best progenies for continued selection based upon the desirable characteristics of good sugar yield, high sucrose content and SR architecture, appear to be 92HS10, 92HS30, 92HS32 and 92HS33.

EVALUATION OF GENOTYPES DERIVED FROM INDIVIDUAL BEET SELECTIONS MADE IN THE 1992 SMOOTH ROOT BREEDING NURSERY.

This experiment was an agronomic evaluation of high sucrose SR progenies derived from individual beet selections made in the 1992 SR breeding nursery. Selections were made on the basis of good SR type and sucrose content which was equal or better than that of ACH 185. Seedlots were produced in the 1992-93 winter greenhouse and planted in field trials at the Bean and Beet Research Farm near Saginaw, MI on May 21, 1993. Seed numbers and a descriptive background of the plant material are listed in Table 2. The experiment consisted of; 20 SR progenies and two commercial cultivars, ACH 185 and MH E4. The entries were seeded in two row plots with rows 28" apart in a random block design of 6 replications. The field trial was harvested October 5, 1993 and other data collected in the same manner as cited above.

RESULTS

Fourteen of the SR entries were equal to ACH 185 in RWSA and six SR entries were inferior in sugar yield (Table 2). Four entries had root weigh significantly higher than the ACH 185 commercial cultivar and two were inferior in tonnage. One SR progeny, 93HS30, was significantly better in RWST and sucrose percentage than all other entries in the test. Four other SR progenies, 93HS27, 93HS37, 93HS35-8, and 92HS33 were equal to ACH 185 in sucrose percentage and RWST. Only two progenies were significantly lower than MH E4 for sucrose and RWST. Very little difference was noted in the CJP for the 22 entries. The smoothness scores ranged from 1.9 to 3.3 with, as expected, the commercial cultivars showing the highest scores. Unfortunately, SR progeny 93HS30 that had the highest sucrose percentage had poor root architecture, with a smoothness score no different than the commercial varieties. Three SR progenies (93HS35-8, 93HS35 and 93HS27) showed excellent performance when one considers breeding for the combined characteristics of smooth root architecture, high sucrose content and good root yield. Interesting observations were made for some SR entries of related parentage.

Progenies 93HS30, 93HS31, and 93HS37 all were derived from SR lines crossed to L19 inbred. Entry 93HS31 had high yield, and low sucrose content, while the two other progenies had the opposite, high sucrose content and low root yield. Entry 93HS32 and 93HS33 are similar except that 92HS33 also had some L53 germplasm in its background. Entry 92HS32 had high root weight and RWSA, while 92HS33 was considerably higher in sucrose content and RWST.

FIELD EVALUATION OF OPEN POLLINATED POPULATIONS OF SMOOTH ROOT BEETS WITH DISEASE RESISTANCE, OR MULTIPLE SOURCE SUCROSE ENHANCEMENT.

A field evaluation was made this year to assess the agronomic performance of 11 SR populations which had been derived from SR material crossed in previous years to other sugarbeet lines having good disease resistance or high sucrose content. There were 12 entries in the test; four (91HS1-00, 92HS11, 92HS13, 92HS14) were crosses of a selected SR genotype with lines having high sucrose content; three (92HS6, 92HS7, and 92HS8) were crosses of SR germplasm with Rhizoctonia and Cercospora leafspot resistant lines, and three (92HS10, 92HS12, 92HS15) were from SR lines crossed with multiple sources of high sucrose content. ACH 185 was included in the field trial as a check. The twelve entries were planted at the B&B Bean and Beet Research Farm on May 14, 1993. Plots were two rows 28" apart and 30" in length and there were six replicates of a random block design. The experiment was harvested and samples taken for sucrose and CJP using the same methods as cited previously.

RESULTS

RWSA, root weight, and CJP for the 12 entries were quite similar and they varied little from the performance of the check cultivar ACH 185. There were marked differences, however, for RWST, sucrose percentage and smoothness of root score (Table 3). Entry 92HS15, a population derived from the 8562 SR source crossed with high sucrose sources of L19, L53, and C51 showed the best performance. This SR composite had the highest RWSA and root weight of all of the entries and was among the highest in RWST, sucrose content and CJP percentage. It scored a 2.5 in smoothness in comparison to 3.5 for ACH 185 and 2.0 for entry 6, which had the lowest smoothness score and the most desirable root shape of all entries in the experiment. Entry 92HS10, with C40, L19, and L53 sugar sources in its parentage was excellent for sucrose content and RWST, but it was low in root yield, and RWSA and had a smoothness score no different than that of ACH 185. Entry 92HS13 and 92HS14 were other populations that showed excellent smoothness of root. Entry 92HS13 also had high CJP percentage and sucrose content 1% lower than the check.

EVALUATION OF EXPERIMENTAL HYBRIDS FROM CMS X SMOOTH ROOT GENOTYPES

In this experiment we evaluated the relative performance of four SR lines for combining ability when they were crossed to some of the same CMS inbred lines. Planting was made at the Bean and Beet Research Farm on May 14, 1993. The individual plots were two rows 28" apart and 30' in length in 4 replications of a random block design. ACH 185 was included as a check. Harvest was made on October 6, 1993 and data was collected in accord with standard procedure listed previously.

RESULTS

There was very little variation between the experimental SR hybrids with the exception for smoothness of root score (Table 4). ACH 185 was significantly better than all other entries for RWSA, RWST, and sucrose percentage. Only four SR hybrids, three of them being crosses with SR87, were significantly better than ACH 185 for smoothness of root score.

FIELD EVALUATION OF EIGHT ADVANCED SMOOTH ROOT GENOTYPES.

The agronomic performance of eight advanced SR breeding lines were compared with that of two commercial hybrid cultivars, MH E4 and ACH 185, and with two released sources of SR germplasm, SR87 and SR80, in a randomized block experiment of four replications. The entries were planted in two row plots 28" apart and 30' in length on May 14, 1993 at the B&B Research Farm. They were harvested on October 7, 1993 using the same procedures as outlined previously.

RESULTS

With the exception of 90HS2 and SR80, there was little difference between the RWSA of the commercial cultivars and the SR lines in this field trial (Table 5). These two lines were not only significantly lower in RWSA than both checks, but they were also lower than SR lines 91H1-00, and 89H700. Five of the SR lines had better root yield than ACH 185, but only one, 89H700, exceeded the root yield of MH E4. ACH 185 had higher sucrose percentage and RWST than all entries. Three of the SR lines, however, were equal to the MH E4 hybrid in their sucrose content and RWST. No differences were observed between the SR lines for CJP percentage, but SR87 and 89H700 were significantly lower in CJP percentage than ACH 185. Two of the SR lines, 89H700 and 91H5, had significantly lower root smoothness scores than SR87. The genotype 91H5 has promise for further breeding and selection, but 89H700 is too low in sucrose content (2.6% lower than ACH 185). Three additional SR lines, 90HS2, 90H3-00 and 90H11, also had significantly better root smoothness score than ACH 185. Unfortunately 90HS2 is extremely low in root yield and 90HS3-00 and 90H11 are low in sucrose content. In 1992 field trials, SR line 91H4 had equal RWSA, root weight and CJP percentage and only one percentage point less sucrose than ACH 185 and it was looked upon at that time as a potential SR release. (See 85131 select in table 3 of 1992 Research Report p. E14). However, this line did not maintain as favorable relationship to ACH 185 this year. A general observation is that lines with the highest sucrose content tended to have the lowest root smoothness score and those with excellent root shape were most often among the genotypes with the lowest sucrose.

Table 1. Sucrose yield, root yield, sucrose percentage, CJP percentage, and smoothness of root score for a group of high sucrose SR genotypes. B&B Farm 1993.

RWSA

Variety Description

lsd (0.05)

CV

RWST

0.73

0.68

0.6

19.47

T/A

V C	arrecy be	scripcion	KWDA	KWDI	+ / 11
	92HS19	105 ⁺	4960 ab*	216.6 g	22.87 a
	92HS10	112	4891 ab	246.5 b	19.89 ab
	92HS25	105	4682 ab	237.1 bcde	19.74 ab
	92HS29	104	4792 ab	238.1 bcd	20.22 ab
5	92HS30	102	5202 ab	240.1 bc	21.66 ab
6	92HS32	106	5364 a	236.4 cde	22.75 a
7	92HS33	113	5342 a	245.2 bc	21.83 ab
8	92HS34	106	4668 ab	228.2 ef	20.49 ab
	92HS36	103	4844 ab	230.3 def	21.05 ab
	92HS45	110	4498 b	226.6 f	19.86 ab
	92HS46	110	4628 ab	239.8 bc	19.30 b
12	ACH 185	100	5326 a	258.2 a	20.61 ab
	Mean		4933	236.9	20.86
	lsd (0.0	5)	622	8.5	2.75
	CV		10.90	3.10	11.40
					Root
	Variety	Description	SUCR%	CJP%	SmSc
1	92HS19	105	16.03 f	91.42 c	2.2 cd
2	92HS10	112	17.60 b	92.61 a	2.8 ab
3	92HS25	105	16.97 cde	92.64 a	2.6 bcd
4	92HS29	104	16.94 de	92.89 a	2.1 d
5	92HS30	102	17.14 bcde	92.71 a	2.4 bcd
6	92HS32	106	16.99 cde	92.44 ab	2.0 d
7	92HS33	113	17.45 bc	92.77 a	2.8 bc
	92HS34	106	16.72 e	91.68 bc	2.5 bcd
9	92HS36	103	16.67 e	92.21 ab	2.3 bcd
10	92HS45	110	16.20 f	92.82 a	1.4 e
11	92HS45 92HS46	110 110	16.20 f 17.29 bcd	92.82 a 92.26 ab	1.4 e 3.4 a
11	92HS45				

0.44

2.25

^{*}Mean sucrose percentage relative to ACH 185 for seed parents individual beet selections.

^{*} Duncan's Multiple Range Test - Means with the same letter suffix are not significantly different at the 0.05 level.

Table 2. Sugar yield, root yield, sucrose percentage, CJP percentage, and smoothness of root scores for SR selections made in the 1992 SR selection nursery. B&B 1993.

	Variety	Description	RWSA		RWST		T/A	
1	93HS22	C40 X 8549-3	5269	abcde*	234.2	efg	22.50	abcde
	93HS23	SR X AH27	5233	bcdef	236.8	defg	22.13	bcdef
	93HS24-1	C40 X 85131-14	5734	ab	241.6	cdef	23.75	ab
4	93HS24-2	C40 X 85131-14	5258	bcde	246.1	bcde	21.37	cdefg
5	93HS25	92 HS SR COMP.	4762	fgh	242.6	bcde	19.70	ghi
6	93HS27	8580 X 28M3		ab	251.5	bc	22.67	abcde
7	93HS28	85700 - 17X-28	5023	def	239.8	cdef	20.94	defgh
8	93HS29	C40,C51,L19X85700		abcde		cdef	22.06	
9	93HS2	8549-38LINE	4201	i	229.9	fq	18.30	i
10	93HS30	SR X L19 F,	4349	hi	266.0	a	16.43	
11	93HS31	SR X L19 F	5453	abcd	234.0		23.33	_
12	93HS32	SR X C40,C51,L19	5532	abc	226.6	q	24.42	a
13	92HS33	SRXC40,C51,L19,L53	4792	efgh			19.40	ghi
14	93HS34	COMP. SRXC40	5766	a	234.6	defg	24.58	ā
15	93HS35	COMP. SRXL19,C51	5617	abc	238.3	defg	23.59	ab
16	93HS37	SR X L19	4964	defg				fghi
17	93HR38	C51 X 85700		cdef			22.95	abcd
18	93HS35-8	COMP. SRX28M3+	5651	abc	244.1	bcde	23.20	abc
19	93HS41	SR COMP.	4801	efgh	233.7	efg	20.59	efgh
20	93HS42	SR COMP.	4525	ghi	235.7	defg	19.19	hi
21	ACH 185			abcd	254.2	b	21.27	cdefgh
22	MHI E4		4850	efg	241.9	cdef	20.06	fghi
	Mean		5152		240.5		21.48	
	lsd (0.05)		421		10.4		1.84	
	CV		7.14		3.79)	7.47	

Table 2. Sugar yield, root yield, sucrose percentage, CJP percentage, and smoothness of root scores for SR selections made in the 1992 SR selection nursery. B&B 1993.

	Select	Ton harsery. Bus 25			
	Variety	Description	SUCR%	CJP%	Root
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	93HS22 93HS23 93HS24-1 93HS24-2 93HS25 93HS27 93HS28 93HS29 93HS21 93HS30 93HS31 93HS32 92HS33 93HS34 93HS35 93HS35 93HS35 93HS37 93HS35 93HS37 93HS35 93HS41 93HS42 ACH 185 MHI E4	C40 X 8549-3 SR X AH27 C40 X 85131-14 C40 X 85131-14 92 HS SR COMP. 8580 X 28M3 85700-17X-28 C40,C51,L19X85700 8549-38LINE SR X L19 SR X L19 SR X C40,C51,L19,L53 COMP. SRXC40 COMP. SRXC40 COMP. SRXL19,C51 SR X L19 C51 X 85700 COMP. SRX28M3+ SR COMP. SR COMP. SR COMP.		92.35 abc 92.81 abc 93.02 ab 93.08 a 92.83 abc 92.86 abc 92.22 abc 93.09 a 92.46 abc 92.19 abc 92.88 abc 92.64 abc 92.22 abc 92.22 abc 92.24 abc 92.24 abc 92.24 abc 92.28 abc 92.28 abc	2.5 cdef 3.1 ab 2.8 abcd 2.1 f 2.3 def 1.9 f 2.3 def 2.1 f 3.2 ab 2.4 def 2.4 def 2.7 bcde 2.0 f 2.2 ef 3.0 abc 2.4 def 2.1 f 2.1 f 2.1 f 2.1 f 2.1 ef 3.3 a
	Mean 1sd (0.05) CV		17.20 0.52 2.66	92.59 0.74 0.70	2.5 0.5 17.51

Duncan's Multiple Range Test - Means with the same letter suffix are not significantly different at the 0.05 level.

Table 3. Sugar yield, root yield, sucrose percentage, CJP percentage and smoothness of root score for open pollinated populations of SR type with disease resistance and sucrose enhancement. B&B Farm 1993.

		Description	RWSA	RWST	T/A
	ACH 185		5710 ab*	262.4 a	21.78 ab
2	91HS1-00	C40 x 85131-14 F2	5118 abc	222.4 f	23.02 a
3	92HS6-2	B18LSRxC40, 49-31,700	5228 abc	244.9 bc	21.37 ab
4	92HS7-2	B19RZ x L19,8549-38	5630 ab	236.7 de	23.78 a
5	92HS8-2	B18LSR x C40,85700	5306 abc	235.4 de	22.55 ab
6	92HS9-2	C564aa x 85700-17,-28	5213 abc	240.9 cd	21.64 ab
7	92HS10	C40 x 28M3, COE 8562	5036 bc	257.5 a	19.57 b
	92HS11	L19 x 85131-22	4877 c	244.0 bc	20.01 b
9	92HS12	L19,C40,C51,46I,700	5639 ab	233.9 e	24.13 a
10	92HS13	C40 x 85700	5370 abc	249.3 b	21.56 ab
11	92HS14	8580 x 28M3	5371 abc	241.1 cd	22.28 ab
12	92HS15	C51x28M3, COE8562	5785 a	249.9 b	23.16 a
	Mean		5357	243.2	22.07
	lsd (0.05	51	605	5.9	2.60
	CV (0.00	·)	7.85	1.69	8.20
				1.09	0.20
	Variety	Description	SUCR%	CJP%	Root SmSc
1	ACH 185		18.57 a	92.83 abc	3.5 a
	91HS1-00	C40 x 85131-14 F2	16.22 f	91.96 d	2.6 bcd
	92HS6-2	B18LSRxC40, 49-31,700	17.44 bc	92.74 abc	
	92HS7-2	B19RZ x L19,8549-38	17.00 de		
	92HS8-2	B18LSR x C40,85700	16.78 e		
	92HS9-2	C564aa x 85700-17,-28	17.01 de		
	92HS10	C40 x 28M3, COE 8562	18.27 a	92.76 abc	
	92HS11	L19 x 85131-22	17.31 cd	92.95 abc	2.6 bcd
	92HS12	L19,C40,C51,46I,700	16.85 e		
	92HS13	C40 x 85700	17.48 bc		
	92HS14	8580 x 28M3		92.68 abc	
	92HS15	C51x28M3, COE8562	17.68 b		
	Mean		17.32	92.77	2.6
		- 1			
	lsd (0.05		0.31	0.66	0.7
	lsd (0.05	o)	1.26	0.66	17.31

^{*} Duncan's Multiple Range Test - Means with the same letter suffix are not significantly different at the 0.05 level.

Table 4. Sugar yield, root yield, sucrose percentage, CJP percentage, and smoothness of root score for experimental SR hybrids. B&B Farm 1993.

	Variety	Description	RWSA	RWST	T/A
1	ACH 185		6381 a	* 258.3 a	24.80 a
2	90H12X01	FC607CMS X 8549-38	5256 b	222.2 b	23.62 a
3	90H12X02	576 CMS X 8549-38	5305 b	228.2 b	23.22 a
4	WC90013	576CMS X SR80	5121 b	229.2 b	22.46 a
5	WC90726	576CMS X SR87	5263 b	222.9 b	23.58 a
6	WC90728	FC607CMS X SR87	5170 b	222.6 b	23.28 a
7	WC90012	657CMS X SR80	4606 b	218.0 b	21.15 a
8	WC90727	657CMS X SR87	5487 b	220.1 b	24.94 a
9	WC92094	US H23 X 91HS10,+11	4861 b	226.3 b	21.55 a
10	WC92093	657CMS X 91HS10,+11	5108 b	221.3 b	23.09 a
11	WC92095	576CMS X 91HS10,+11	5370 b	227.7 b	23.61 a
12	WC92092	FC607CMS X 91HS10,11	5127 b	225.3 b	22.81 a
7.5					
Mea			5255	226.8	23.18
	lsd (0.05))	869	11.3	3.70
	CV		11.49	3.46	11.11

	Variety	Description	SUCR%	CJP%	Root SmSc
1	ACH 185		18.27 a	92.89 a	3.5 a
2	90H12X01	FC607CMS X 8549-38	15.81 bc	93.14 a	3.0 abc
3	90H12X02	576 CMS X 8549-38	16.17 bc	93.23 a	3.1 ab
4	WC90013	576CMS X SR80	16.38 b	92.80 a	3.4 a
5	WC90726	576CMS X SR87	15.99 bc	92.72 a	2.6 bc
6	WC90728	FC607CMS X SR87	15.98 bc	92.69 a	2.4 c
7	WC90012	657CMS X SR80	15.72 c	92.56 a	3.1 ab
8	WC90727	657CMS X SR87	15.92 bc	92.40 a	2.4 c
9	WC92094	US H23 X 91HS10,+11	16.18 bc	92.81 a	2.6 bc
10	WC92093	657CMS X 91HS10,+11	15.97 bc	92.45 a	3.0 abc
11	WC92095	576CMS X 91HS10,+11	16.33 bc	92.66 a	3.1 ab
12	WC92092	FC607CMS X 91HS10,11	16.17 bc	92.66 a	3.3 ab
Me	an		16.24	92.75	2.9
	lsd (0.05)	0.53	0.90	0.60
	CV		2.28	0.68	14.20

^{*} Duncan's Multiple Range Test - Means with the same letter suffix are not significantly different at the 0.05 level.

Table 5. Sugar yield, root yield, sucrose percentage, CJP percentage, and smoothness of root score for elite SR genotypes. B&B Farm 1993.

7	Variety	Description	RWSA		RWST		T/A	
1	ACH 185		5318	a*	256.4	a	20.77	de
2	MHI E4		5355		235.0		22.77	
3	SR87	SR87	4983	abc	202.3	d	24.63	ab
4	SR80	SR800	4584	bc	222.5	bc	20.62	de
5	89H700	700 Line	5396	a	208.9	cd	25.89	a
6	92HS7-1	SRHSRZ	4977	abc	222.5	bc	22.37	bcde
7	92HS35		4384	C	223.2	bc	19.70	е
8	91H5	85700-18X-28	5389	a	226.1	b	23.82	abc
9	91H4	85131-16	4891	abc	227.4	b	21.48	cde
10	91H1-00	C40 x 700-38,27,-17	5427	a	226.3	b	23.98	abc
11	90H3-00	8549-38 X L19	5152	ab	221.6	bc	23.24	abcd
12	90H11	SR x L53/US35	5138	ab	209.1	cd	24.59	ab
	Mean		5083		223.4		22.82	
	lsd (0.0	5)	600		13.7		2.49	
	CV		8.20		4.2	6	7.57	
	CV		8.20		4.20	0	7.57	

	Variety	Description	SUCR%		CJP%		Root	
2 3 4 5 6 7 8 9 10		SR87 SR800 700 Line SRHSRZ 85700-18X-28 85131-16 C40 x 700-38,27,-17 8549-38 X L19 SR x L53/US35	17.93 16.79 14.92 16.04 15.34 16.00 16.19 16.04 16.52 16.22 15.99 15.28	b e bcd bcd bc bcd bcd bcd b	91.89 92.73 92.20 93.20 92.07 92.69	ab b ab ab ab ab ab ab	1.4 3.2 2.2 1.5 2.8 2.6 2.2	a d bcd e ab cd e bc bcd cd
	Mean lsd (0.05))	16.10 0.76 3.30		92.48 1.31 0.99		2.5 0.6 15.93	3

^{*} Duncan's Multiple Range Test - Means with the same letter suffix are not significantly different at the 0.05 level.

FIELD EVALUATION OF THE RELATIVE PERFORMANCE AND COMBINING ABILITY OF AN AGRONOMIC SELECTION FROM L19 VERSUS L19.

J.C. Theurer

L19 inbred has outstanding sucrose content, but it also harbors some undesirable characteristics. Many of the plants have multiple crowns and taproots are frequently deep grooved and/or too small in size. A selection of approximately 100 roots with single crowns, good root shape and root size equal to the mean of the parent line was made from a field planting in 1991 in an attempt to improve the agronomic characteristics of L19. Seed increase was made of the selected roots and at the same time CMS lines were also planted within the isolation block to obtain F1 hybrids to evaluate the combining ability of the new L19 selection. Five experimental hybrids, L19, L19 Select, and two commercial hybrid cultivars, MH E4 and ACH 185 were planted May 14th in a field experiment at the Bean and Beet Research Farm near Saginaw, MI in 1993. The nine entries were planted in two row plots with rows 28" apart and 30' in length and there were six replications. The experiment was harvested on October 7, 1993 using methods as outlined in Experiment 931 above.

RESULTS

The nine entries formed two groupings for RWSA (Table 8). MH E4, and the two L19 inbreds were significantly lower in RWSA than the other six entries. The L19 lines and ACH 185 had the highest sucrose percentage and RWST. WC91269, a BMC CMS x L19 Select hybrid, was highest in root yield and also the entry with the lowest sucrose content. WC91268 (576CMS crossed to L19 Select), showed the best combining ability of the experimental hybrids for sucrose content and CJP percentage. MH E4 was lowest in amino N in the root at harvest and the two L19 lines and WC91269 were highest in amino N. Although there were no significant differences between the L19 lines for any of the variables measured, there were indications showing a trend for change due to the selection pressure. L19 Select tended to show higher RWSA and yield, lower sucrose percentage, amino N, and higher CJP percentage than the L19 parent line. There was no apparent relationship between sucrose content and the meg amino N per 100g sucrose in the beet root. L19 and L19 Select exhibited high sucrose content and high amino N. ACH 185 showed high sucrose and relatively low amino N. WC91269 had low sucrose and high amino N. These results suggest that L19 and BMC plant material might be useful to study more fully the genetic and physiological relationship of sucrose accumulation and the retention of nitrogen impurities in the beet root.

Table 1. Sucrose yield, root yield, sucrose percentage, CJP percentage and meq amino N/ 100 grams sucrose for L19, L19 Select, and experimental CMS hybrids with L19 Sel. as a parent. B&B Farm 1993.

1993 Combining Ability of High RWST Selection of L19 Germplasm Variety Description RWSA RWST T/A 1 MHI E4 MHI E4 4760 b* 256.9 cde 18.56 b 2 ACH 185 ACH 185 5421 a 264.6 bc 20.51 ab 3 WC91266 H23CMSxL19 Sel. 5514 a 252.2 de 21.92 a 4 WC91267 657CMSxL19 Sel. 5271 a 252.1 de 20.90 ab 5 WC91268 576CMSxL19 Sel. 5345 a 260.6 cd 20.54 ab 6 WC91269 BMC CMSxL19 Sel. 5469 a 246.3 e 22.27 a 7 WC91270 FC607CMSxL19 Sel. 5541 a 255.2 cde 21.74 a 8 WC91270M L19 Sel. 4462 b 272.8 ab 16.38 c 9 90L19 L19 4340 b 278.0 a 15.62 c Mean 5125 259.9 19.83 lsd(0.05)473 10.8 2.17 CV 7.92 3.56 9.39

	Varie	ety Description	SUCR%	CJP%	Amino N meq/100g
1	MHI E4	MHI E4	17.99 bc	93.39 a	8.51 c
2	ACH 185	ACH 185	18.63 b	93.06 ab	9.61 bc
3	WC91266	H23CMSxL19 Sel.	18.02 bc	92.51 bc	10.05 bc
4	WC91267	657CMSxL19 Sel.	18.23 bc	91.95 c	8.77 bc
5	WC91268	576CMSxL19 Sel.	18.46 bc	92.80 ab	9.71 bc
6	WC91269	BMC CMSxL19 Sel.	17.91 c	91.78 c	13.54 a
7	WC91270	FC607CMSxL19 Sel.	18.16 bc	92.67 ab	9.43 bc
8	WC91270M	L19 Sel.	19.44 a	92.40 bc	11.55 ab
9	90L19	L19	20.02 a	91.89 c	13.61 a
	Mean		18.54	92.49	10.53
	lsd (0.05	5)	0.59	0.66	2.61
	CV		2.71	0.61	21.20

^{*} Duncan's Multiple Range Test - Means with the same letter suffix are not significantly different at the 0.05 level.

RHIZOCTONIA ROOT ROT EVALUATION FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS AT EAST LANSING, MI. 1993

J. C. Theurer, Lee Hubble and J. M. Halloin

Eighteen hybrid varieties plus two resistant checks, FC 710/5 and FC 712, and two susceptible checks, USH 23, and Universe were evaluated for their resistance to Rhizoctonia root rot in the disease nursery maintained at E. Lansing, MI. The natural source of inoculum in the soil was supplemented with an application of ground millet infected with R. solani, which was applied to the crowns of the beets just prior to layby. The roots were dug by hand in early November and scored for disease on a scale of 0 = no infection lesions to 4 = dead plant. There was only moderate infection in the nursery this year. In previous years, Univers was the most susceptible variety and FC 712, was the most resistant entry in the test.

Table 1. 1993 Commercial and experimental Variety Rhizoctonia Evaluation, USDA Disease Nursery. East Lansing, MI.

Code No.	<u>Variety</u>	RZ Score	<pre>% Diseased Plants</pre>
3	Beta 5282	3.08 a*	77.05 a
17	Beta 5603	3.02 ab	75.57 ab
10	ACH 89-370	2.99 abc	74.62 abc
16	MH E9	2.94 abcd	73.53 abcd
20	Univers - Susc.	2.85 abcde	71.28 abcde
1	ACH 89-417 (ACH-319)	2.72 abcdef	68.07 abcdef
4	ACH 185	2.72 abcdefg	
14	Beta BG6914	2.70 abcdefg	
12	SX 1101	2.69 abcdefg	
13	HM 2717	2.67 abcdefgh	
7	SX 1103	2.65 abcdefghi	
9	MH E10	2.62 bcdefghi	
8	ACH 308	2.56 cdefghi	
5	MH E4	2.56 cdefghi	
2	HM 2718	2.54 cdefghi	
19	USH23 - Susc.	2.51 defghi	
6	Beta 5315	2.43 efghi	
11	Beta 5931	2.29 fghi	
15	ACH 197	2.27 fgh:	
18	ACH 89-390	2.26 gh	
21	WC90318 - Res.	2.23 h	
22	FC 712 - Res.		i 54.93 i
MEAN		2.61	65.34
1sd 0.05		0.38	9.49
C.V.		10.28	10.28

^{*} Duncans Multiple Range Test - Means with same letter are not significant at the 0.05 level.

POTENTIAL BIOCONTROL OF RHIZOCTONIA ROOT ROT

J. C. Theurer and J. M. Halloin

In 1992 a comparison of 12 genotypes varying in Rhizoctonia resistance from highly susceptible to highly resistant gave evidence that there was some biocontrol for Rhizoctonia root rot(See 1992 Research Report p.E28). In 1993 we repeated the experiment. Twelve genotypes were planted on land (L1) that had been used for Rhizoctonia evaluation for several years, and on land (L2) outside the disease nursery but of similar soil type and only 300 meters from L1 at the Botany Research Farm at East Lansing. Six replications of the 12 entries were planted in single rows 28" apart and 25' in length. Special effort was taken again this year to provide as identical management practices as possible for the L1 and L2 units. The roots were dug by hand in early November and scored for disease on a scale of 0 = no infection lesions to 4 = dead plant. There was only moderate infection in the nursery this year. No differences were visually observed on the tops and crowns of the beets between L1 and L2. Significant differences were observed for genotypes, but the genotype x location interaction was non-significant (Table 2). This years results fail to confirm the 1992 conclusion that biocontrol of Rhizoctonia resistance has occurred in L1.

Table 2. Rhizoctonia root rot mean scores and percent diseased plants for 12 genotypes grown on land used many years as a Rhizoctonia disease nursery (L1) versus on land not previously used for Rhizoctonia evaluation (L2). East Lansing, MI. 1993.

Genotype	Root Ro	t Score	Percent dise	ased plants
	L1	L2	L1	L2
	0.00	4 00		45.5
1. FC 712	2.38	1.82	59.5	45.5
2. FC 701/5	1.96	1.94	48.9	48.4
3. 91H2-00	2.76	3.08	68.9	77.1
4. 87B3-33	1.92	2.26	48.0	56.6
5. 85320-0	3.45	3.36	86.3	84.0
6. 85259-80	2.62	2.33	65.5	58.3
7. 88B22-00	3.32	3.20	83.1	80.1
8. 86B18-124	2.52	2.44	62.9	61.0
9. 88B12	2.49	2.21	62.2	55.2
10. Universe	2.55	3.11	63.7	77.8
11. USH 23	2.90	3.01	72.6	75.3
-				
Location:	0.00	0.60	65.6	C 5 A
MEAN	2.62	2.62	65.6	65.4
lsd (0.05)	0.60	0.44	14.9	11.1
Experiment:				
MEAN	2.	62	65	.48
lsd (0.05)	0.	52	13	.01
•				

Cercospora Leafspot Evaluation of Smooth Root Selection Blocks, Experimental And Commercial Varieties Made at East Lansing 1993.

J. C. Theurer and R. C. Zielke

A disease nursery has been used at East Lansing, MI for many years to evaluate and select breeding material which has resistance to <u>Cercospora</u> leafspot. The results of evaluations for a group of commercial hybrids, seed furnished by R. C. Zielke, and eight selection blocks of SR progenies, are given in this report. The commercial varieties were each planted in a randomized block experiment of 4 replications. Individual plots were single rows, 28" apart and 25' in length. The SR selection blocks consisted of 6 rows 28" apart and 25' in length. ACH 185 and the high leafspot resistant East Lansing line 86403 were planted adjacent to the selection blocks to serve as check varieties. When the full leaf canopy was developed on the beet plants, the nursery was inoculated by hand dusting with finely ground <u>Cercospora</u> infected leaves collected from the 1992 leafspot disease nursery. High humidity was maintained for 10 days after inoculation to enhance leafspot development by frequent misting of leaves using a sprinkler irrigation system with five nozzles.

Each plot in the disease nursery was scored for leafspot infection, five times during August and September. Only the final reading made on September 23, is shown in the tables in this report. Scores are on a 0 = 100 no infection to 0 = 100 dead plant basis.

Excellent infection occurred and significant difference in disease severity between genotypes was noted. Results for the SR selection blocks are shown in table 1 and for the commercial and experimental varieties in table 2. We plan to release WC 86403 as EL 50.

<u>Table 1</u>. <u>Cercospora</u> leafspot reading for a group of SR progenies. Leafspot nursery selection.

Blocks	- 1993	
Progeny No.	<u>Description</u>	<u>Leafspot Score</u> +
93H1-1	SR80-20	1.63
93H1-2	SR80-14	1.91
93H3-1	SR87-6	2.58
93H3-2	SR87-2	2.33
93H5-1	SR-EL Line Composite	2.31
93H5-2	SR-EL Line Composite	2.29
93H5-3	SR-EL Line Composite	1.63
93H21-5	91H6 SR	1.50
WC 86403	LSR Res. Check	1.00
ACH 185	Commercial Check	3.33

⁺ Based on 1-9 scale where 0 = no symptoms and 9 = dead plant

Table 2. Leafspot scores for commercial and experimental hybrid varieties. September 23, 1993 Reading.

Variety	Leafspot Score
SX 1104	6.38 a*
VDH OVATIO	6.00 ab
VDH SUPRAFOR	5.75 abc
US H20	5.50 bcd
BETA 5282	5.50 bcd
HMI 2717	5.25 bcde
SX 1208	5.25 bcde
BETA BG6914	5.13 cdef
HMI 2718	5.13 cdef
AC-92-185	5.13 cdef
93HX131	4.75 defg
HMI 2716	4.75 defg
SX 1209	4.75 defg
BETA 5603	4.63 defgh
ACH 308	4.63 defgh
BETA BG6912	4.63 defgh
HMI E10	4.63 defgh
93HX129	4.63 defgh
BETA BG5312	4.63 defgh
HMI 2720	4.63 defgh
ACH 185	4.50 efghi
SX 1207	4.50 efghi
AC-92-179	4.35 efghi
HMI E9	4.25 fghij
BETA 5931	4.13 ghijk
ACH 319	4.00 ghijkl
BETA 5315	4.00 ghijkl
ACH-89-390	3.83 hijklm
ACH-89-370	3.75 hijklmn
HMI 2719	3.75 hijklmn
HMI E4	3.63 ijklmno
BETA BG5303	3.63 ijklmno
AC-92-173	3.63 ijklmno
BETA 5639	3.38 jklmnop
HMI E7	3.38 jklmnop
BETA 5823	3.25 klmnop
AC-92-165	3.25 klmnop
AC-92-154	3.13 lmnop
BETA BG5359	3.00 mnop
AC-92-159	3.00 mnop
ADH 197	2.88 nop
93HX130	2.83 op
BETA BG4501	2.63 p
	*
WC86403	1.63 q

^{* =} Means with same suffix letter are not significantly different at the 0.05% level using Duncan's multiple range test.

SUGARBEET RESEARCH

1993 Report

Section F

University of Idaho Idaho

Dr. S. L. Hafez

The research was supported in part by funds provided through the University of Idaho and the Beet Sugar Development Foundation.

CONTENTS

	PAGE
The Use of Green Manure Crops in Sugarbeet Rotation	
for Nematode Managemen	
by S. L. Hafez	F3

THE USE OF GREEN MANURE CROPS IN SUGARBEET ROTATION FOR NEMATODE MANAGEMENT

Saad L. Hafez

At least 29 species of plant parasitic nematodes within 16 genera can affect sugarbeet production. The overall sugarbeet yield losses attributed to nematodes is estimated to be in the range of 10-70%. The sugarbeet cyst nematode Heterodera schachtii account for most of the loss. Nematologists and plant pathologists agree that nematode are the major pest affecting sugarbeet production everywhere beets are grown commercially. The most common practices for sugarbeet nematode management is the use of nematicides (chemical control) at a cost of \$100 to \$300 per acre. The future availability of the most commonly used nematicides is uncertain because of health and environmental concern. These have come under attack by several environmental groups. Also there is a great public concern over the toxic hazards of these materials. Therefore, research emphasis needs to be directed towards developing environmentally safe alternative methods for sugarbeet nematode management.

A promising approach is the use of trap crops; plants that allow penetration yet are poor hosts for the nematode. Various plants with potential as trap crops have been shown to stimulate hatch, including sugarbeet (Beta vulgaris), oilseed radish (Raphanus sativus var. oleifera), white mustard (Sinapis alba), and buckwheat (Fagopyrum esculentum). Nematode-resistant cruciferous crops, particularly oilseed radish, may be useful as crop rotations that reduce H. schachtii populations. Cultivars of oilseed radish, white mustard, and buckwheat that stimulate hatch and depress H. schachtii reproduction have been developed in Europe. The research presented here was conducted to assess the usefulness of these cultivars for H. schachtii management in sugarbeet production.

I. THE EFFECT OF OIL RADISH AND MUSTARD VARIETIES FALL PLANTED IN INFESTED FIELD ON SUGARBEET CYST NEMATODE Heterodera schachtii POPULATION.

Seven varieties of oil radish (Raphanus sativus var. oleifera) and white mustard (Sinapis alba) were planted following wheat in sugarbeet cyst nematode infested field in the fall of 1992 in Parma, Idaho. Each variety was replicated four times in a complete randomized block design and a fallow treatment was included as a control check for comparison. All varieties were mechanically chopped three months after planting. Roots and forages were incorporated in the soil by double disking. Soil samples before planting in the fall and in the following spring were collected for nematode assay. Results of nematode assay indicated that all varieties reduced the total number of eggs and larvae significantly (Table 1). Oil radish (Adagio var.) causes the highest % of reduction in comparison to fallow (51%). White mustard (Martigena var.) causes the lowest % of reduction (21%). The same test was repeated in the fall of 1993 at the same location to confirm results obtained in 1992-1993.

II. THE EFFECT OF DIFFERENT OIL RADISH AND MUSTARD VARIETIES FALL PLANTED ON SUGARBEET ROOT YIELDS PLANTED IN THE FOLLOWING SEASON IN HEAVILY INFESTED FIELD.

Sugarbeet variety HM-WS-90 was planted following the oil radish and white mustard to evaluate their effect on sugarbeet yield. No nematicides were added to this field and standard insecticides for maggot control were applied at planting. Results showed that most oil radish and mustard varieties increased the sugarbeet yield significantly in comparison with the fallow treatment (Table 2).

III. THE EFFECT OF DIFFERENT OIL RADISH AND MUSTARD VARIETIES ON SOIL NUTRIENT LEVELS.

Incorporating root and forage of the green manure crops will add substantial amount of humus which will enhance soil biological activity. Also, added humus substances to soil will enhance the activity of beneficial organisms and these will enhance soil fertility. Soil analysis before planting the green manure crops and after its incorporation showed significant improvement in soil fertility levels as shown in Tables 3 and 4.

The other secondary benefit observed in the green manure plots was that the weed population was reduced significantly where oil radish and white mustard were growing.

Table 1. The effect of different oil radish and mustard varieties planted in the fall on sugarbeet cyst nematode <u>Heterodera schachtii</u> population. Parma, 1992-93.

Oil Radish or	Viab	le Cyst	Total Egg	s & Larvae	%
Mustard Var.	8/6/92	4/20/93	8/6/92	4/20/93**	Reduction
Adagio Radish	16.8	3.0	2,167	171	92
Ultimo Radish	15.3	4.5	2,010	225	89
Remonta Radish	9.0	2.5	936	110	88
Pegletta Radish	11.5	2.5	1,484	193	87
Metex Mustard	12.5	3.0	1,288	201	84
Maxi Mustard	8.5	2.8	1,139	235	79
Martigena Mustard	11.5	8.0	1,806	688	62
Fallow control	6.8	5.5	1,149	679	41
Metex Mustard Maxi Mustard Martigena Mustard	12.5 8.5 11.5	3.0 2.8 8.0	1,288 1,139 1,806	201 235 688	84 79 62

*Average of 4 replications

4/20/93 = Before planting sugarbeets.

^{**}8/6/92 = Before planting the green manure crops.

Table 2. The effect of different oil radish and mustard varieties planted in the fall on sugarbeet yield planted in the following season. Parma, 1993.

Oil Radish or mustard var.	Sugarbeet Root yield T/A	Sugarbeet yield increase T/A	% of sugar
Radish Adagio	31.4 a*	9.3	17.01
Mustard Metex	29.1 a	7.0	17.20
Radish Pegletta	28.6 a	6.5	16.91
Radish Ultimo	28.2 a	6.1	16.45
Mustard Maxi	28.1 a	6.0	16.80
Radish Remonta	27.6 a	5.5	17.35
Mustard Martigena	25.9 b	3.8	17.13
Fallow control	22.1 b		17.37

^{*}Average of 4 replications.

Table 3. The effect of different oil radish and mustard varieties on soil nutrient levels (ppm - N, P, K, Ca).

	N. N. L.	Nitrate NO3 - N	Phosp	horus	Potassiun K	sium	Calciun	ium
Variety (crop)	Before	After	Before	After	Before	After	Before	After
R. Adagio	21	19	19	11	197	272	3590	5160
R. Pegletta	23	23	18	22	249	290	4506	2522
M. Metex	17	23	19	21	231	268	3978	5260
M. Maxi	22	22	18	13	176	295	3590	5541
R. Remonta	19	21	15	21	199	241	3872	5475
M. Martigena	31	21	14	13	220	274	3626	5240
R. Ultim	22	28	23	19	248	275	3661	2860
No Plant	23	19	23	19	195	288	3238	5430

Table 4. The effect of different oil radish and mustard varieties on soil nutrient levels (ppm - Na, Zn, Fe, and pH, % lime).

	Sodium Na	um 1	Zinc	2	Ir F	on e	b	hH	Li	% me
Variety	Before	After	Before	After	Before	After	Before	After	Before	After
ngio	294	118	9.0	1.0	75.0	9.8	8.2	7.9	7.5	8.0
letta	355	66	0.7	6.0	0.09	9.4	8.4	8.0	9.5	7.0
tex	364	114	8.0	6.0	15.0	9.8	8.4	8.2	7.5	5.0
xi	274	127	6.0	1.0	15.0	10.8	8.3	8.1	10.0	5.0
nonta	289	101	9.0	6.0	30.0	9.4	8.4	8.2	8.5	0.9
rtigena	348	116	9.0	1.0	45.0	9.4	8.3	8.1	12.0	0.9
R. Ultim	369	108	9.0	1.0	15.0	10.1	8.4	8.0	8.5	7.0
No Plant	299	96	0.7	6.0	15.0	10.1	8.5	7.9	12.0	0.9

SUGARBEET RESEARCH

1993 Report

Section G

Texas Agricultural Experiment Station Bushland, Texas

Dr. C. M. Rush Dr. G. J. Michels

Cooperation:

Imperial Holly - Hereford, Texas

The research was supported in part by funds provided through the Texas A&M University and the Beet Sugar Development Foundation (Project 503 and 520).

CONTENTS

	PAGE
PUBLICATIONS	
Abstracts of Papers Published or Approved for Publication	G3 G8
ETIOLOGY AND EPIDEMIOLOGY OF THE RHIZOMANIA DISEASE COMP (BSDF Project 503)	LEX
Texas 7 A Possible Stratin of Beet Necrotic Yellow Vein Virus	G9
DEVELOPING LABORATORY TECHNIQUES FOR REARING THE SUGARB ROOT APHID <i>PEMPHIGUS BETA</i> DOANE (BSDF Project 520)	

HARVESON, R. M. and C. M. RUSH. 1993. The effect of Aphanomyces root rot and Rhizomania on sugar beet in a controlled environment. 27th Bien. Mtg. Amer. Soc. Sugar Beet Technol., Anaheim, CA, March 3-6, 1993.

An experiment was conducted to determine the effect of Aphanomyces cochlioides and beet necrotic yellow vein virus (BNYVV), the causal agents of Aphanomyces root rot and rhizomania, respectively, on sugar beets. The test was performed in a controlled temperature box that was maintained at 27 ± 2 C. Four treatments were employed, and consisted of soil containing Aphanomyces, BNYVV, both pathogens combined, and an uninfested control. Leaf weights and areas were taken twice during the test, at two and three months after planting. At harvest, tops were removed and the root profile was divided into equal 15-cm segments and washed. Roots collected from each segment were dried and weighed. At the time of the first reading for leaf weight and area, the control treatment was significantly different from the pathogen treatments. By the end of the test, significant differences were seen only between control and the treatment involving both pathogens. More damage was observed in dry top weight and taproot weight with the combined pathogen than with either one alone. Although the root rot rating for A. cochlioides was more severe than that of BNYVV, there was less weight reduction in the taproot. Root distribution was affected by pathogen treatments. In all segments, a greater amount of roots were recovered from uninfested controls than in all other In the middle segment, BNYVV produced more roots than A. cochlioides, but no differences were seen between the pathogen treatments in the bottom segment.

HARVESON, R. M. and C. M. RUSH. 1993. Movement of viruliferous *Polymyxa betae* from a point source inoculation. 27th Bien. Mtg. Amer. Soc. Sugar Beet Technol., Anaheim, CA, March 3-6, 1993.

Research was initiated in 1992 to study the spread of viruliferous *Polymyxa betae* from a known point source inoculation by irrigation and soil tillage. Untreated HH39 sugar beet seeds were planted 14 May 1992 in four 30 x 100 ft. borders, each containing twelve 30-inch beds. Inoculated seeds, used to establish the point source of infested soil, were obtained by coating seeds with a mixture of 2% methyl cellulose and powdered sugar beet roots containing BNYVV-infested *P. betae* cystosori. They were placed in the first ten feet of the two outside rows of each border. Half the plots were irrigated twice a month, and the other half once a month. Plant samples were collected twice and assayed by ELISA for BNYVV incidence. Soil samples were also collected and assayed. At the end of the first year, very little movement of BNYVV was detected outside of the inoculated areas. Establishing infection in the plots was successful because BNYVV was detected from the point source areas

in every assay. Future research will include collecting and assaying soil samples after land preparation for 1993, and repeating 1992 irrigation effect.

HEIDEL, G. B. and C. M. RUSH. 1993. Distribution of beet necrotic yellow vein virus, beet distortion mosaic virus, and an unnamed soilborne sugar beet virus in Texas and New Mexico. Plant Dis. (Accepted for publication).

The Texas sugar beet-growing area was surveyed to determine the incidence of beet necrotic yellow vein virus (BNYVV), beet distortion mosaic virus (BDMV) and an unnamed soilborne sugar beet virus designated as Texas 7 (Tx7). In late 1990, 302 soil samples were collected from seven Texas counties and one New Mexico county from fields scheduled for 1991 production. Sugar beet seed was planted in the soil samples, and root tissue was later harvested and tested by ELISA. Of 174 soil samples screened for BNYVV, 19 were positive. Of 128 samples tested for BNYVV and Tx7, 12 were positive for Tx7, 3 were positive for BNYVV and 23 were positive for both BNYVV and Tx7. One hundred fifty-nine soil samples were collected around symptomatic beets in 1991. Root tissue from sugar beets grown in the soil samples were tested for BNYVV, Tx7 and BDMV. Twenty samples were positive for Tx7, 27 were positive for BNYVV and 37 were positive for both Tx7 and BNYVV. Twelve of 72 sugar beets pulled at the time soil samples were collected were positive for BDMV. Sugar beets grown in soil samples collected from 8 of the 10 Texas sugar beet-growing counties were positive for BNYVV. Tx7 and BDMV were identified in the three major Texas sugar beet-growing counties. BDMV was identified in one New Mexico county. This is the first report of BDMV in New Mexico. No soil samples, including those collected directly around beets positive for BDMV, were positive for BDMV.

HEIDEL, G. B. and C. M. RUSH. 1993. Incidence of beet necrotic yellow vein virus, beet distortion mosaic virus, and an unnamed soilborne sugar beet virus in Texas. 27th Bien. Mtg. Amer. Soc. Sugar Beet Technol., Anaheim, CA, March 3-6, 1993.

The Texas sugar beet growing area was surveyed to determine the incidence of beet necrotic yellow vein virus (BNYVV), beet distortion mosaic virus (BDMV), and an unnamed soilborne sugar beet virus designated as Texas 7. In late 1990, Holly agronomists collected 302 soil samples from seven Texas counties and one New Mexico county from fields scheduled for 1991 production. Sugar beet seed was planted in the soil samples. Nine to ten weeks later, root tissue was harvested and tested by ELISA. Of 174 soil samples screened for BNYVV, 11% were positive. Of 128 samples tested for BNYVV and Texas 7, 8% were positive for Texas 7, 2% were positive for BNYVV and 17% were positive for BNYVV and Texas 7. One hundred fifty-nine soil samples were collected around symptomatic beets in 1991 and screened for BNYVV, Texas 7, and BDMV. Thirteen percent were positive for Texas 7, 16% were positive for BNYVV, and 23% were positive for Texas 7 and BNYVV. Seventeen percent of beets pulled at the time soil samples were collected were

positive for BDMV. Soil samples collected from 9 of the 10 Texas sugar beet-growing counties were positive for BNYVV. Texas 7 was identified in the three major Texas sugar beet-growing counties. BDMV was identified in four Texas counties and one New Mexico county. This is the first report of BDMV in New Mexico. No soil samples, including those collected directly around beets positive for BDMV, were positive for BDMV. BDMV is probably not a soilborne virus.

HEIDEL, G. B., C. M. RUSH, T. L. KENDALL, and S. A. LOMMEL. 1993. Partial characterization of a soilborne sugar beet virus in Texas. 27th Bien. Mtg. Amer. Soc. Sugar Beet Technol., Anaheim, CA, March 3-6, 1993.

Texas 7 is an unnamed soilborne sugar beet virus that was reported in Texas in 1988. It is morphologically similar to beet necrotic yellow vein virus (BNYVV) and is transmitted by Polymyxa betae. BNYVV and Texas 7 differ serologically. Foliar symptoms in sugar beets can include broad chlorotic areas along the veins. Leaves are not always symptomatic. Characterization studies were initiated to gather preliminary information on morphological, physiochemical and biological properties. Particle lengths fall between 50 and 300 nm, with more frequent values occurring at 50, 100, 210 and 290 nm. Coat protein molecular weight was estimated at 24 kDa by SDS-polyacrylamide gel electrophoresis. RNA was separated by formaldehyde gel electrophoresis. Four RNA species of approximately 6.6, 4.4, 1.2 and 1.0 kb were observed. Texas 7 RNA 1 and RNA 2 are close in size to BNYVV RNA 1 and RNA 2 (6.8 and 4.7 kb, respectively). Texas 7 RNA was applied to an oligo (dT)-cellulose column. Bound fractions were eluted from the column and electrophoresed on a non-denaturing agorose gel. Three polyadenylated RNA species were observed. No serological relationship was observed between BNYVV and Texas 7 in Western blots. Some BNYVV and Texas 7 virus particles were bound by heterologous antiserum in immunospecific electron microscopy. Texas 7 hosts include spinach, Chenopodium quinoa, Beta macrocarpa, and Beta maritima.

LINDSTEN, K. and C. M. RUSH. 1993. First report of beet soilborne virus in the United States. Plant Dis. Note (In press).

The furovirus beet soilborne virus (BSBV), first reported in England in 1982, is vectored by *Polymyxa betae* Keskin and has been identified from sugar beet-growing areas throughout western Europe. BSBV is similar in size and shape to beet necrotic yellow vein virus (BNYVV), the cause of rhizomania of sugar beet, but BSBV is less virulent. Sugar beet, the only identified natural host of BSBV, is frequently a symptomless host, and the actual effects of BSBV on sugar beet are unknown. To determine whether BSBV was present in the United States, three to five sugar beet plants were individually transplanted into each of 19 soil samples taken from sugar beet fields in Texas; five from Colorado; four each from Minnesota, Idaho, Nebraska, and Wyoming; and 10 from California. After 1 or 2 wk, bait plants were harvested and tested by DAS-ELISA for BSBV. Root sap was also mechanically inoculated to

Chenopodium quinoa Willd., a local lesion host of BSBV. More than 50% of soil samples tested from each state were positive for BSBV. Characteristic symptoms of BSBV also developed on inoculated leaves of *C. quinoa*. This is the first report of BSBV in the United States and confirms that the virus is widespread in sugar beetgrowing areas in this country.

RUSH, C. M., D. E. CARLING, R. M. HARVESON, and J. T. MATHIESON. 1993. Prevalence and pathogenicity of anastomosis groups of *Rhizoctonia solani* from wheat and sugar beet in Texas. Plant Dis. (In press).

Ninety-eight isolates of Rhizoctonia spp., primarily R. solani, were isolated from wheat and sugar beets grown in the Texas Panhandle and typed for anastomosis group (AG). Eighty-nine percent of the 46 isolates from mature beet were AG2-2, 95% of the 45 isolates from wheat were AG4, and most of the isolates (7) obtained from beet seedlings were either AG4 or AG5. Two isolates of binucleate Rhizoctonia sp. also were recovered, one from mature sugar beet and one from beet seedlings. Randomly selected isolates from each AG were capable of colonizing wheat, corn, cotton, and sorghum residue saprophytically, and optimum temperature for growth of most isolates was between 20-30 C. In pathogenicity studies, isolates of AG2-2 and AG4 reduced emergence and final stand of sugar beet seedlings, and isolates of AG2-2 caused severe root rot on mature sugar beet. On wheat, none of the isolates reduced emergence, but isolates of AG4 and AG5 caused significant postemergence root rot. Although some isolates of AG2-2, AG4, and AG5 reduced emergence and caused root discoloration on seedlings of corn, cotton, and sorghum, none was highly virulent on these crops. Both isolates of binucleate Rhizoctonia sp. were either avirulent or caused only slight root discoloration. Since AG4, the predominant AG of R. solani on wheat, was highly virulent to sugar beet seedlings, wheat preceding sugar beets in rotation is not advised.

RUSH, C. M., R. C. FRENCH, and G. B. HEIDEL. 1993. Texas 7 a possible strain of beet necrotic yellow vein virus. Pages 59-62 *In:* Proc. 2nd Symp. Intl. Wrkg. Grp. Plant Virus Fungal Vectors, Montreal, Canada, July 25-27, 1993.

Restriction enzyme analysis, sequencing of PCR products, and Northern hybridization studies were used to evaluate the relationship between beet necrotic yellow vein virus (BNYVV) and an unnamed furovirus from sugar beet designated Texas 7 (Tx7). Using published sequence data from a European isolate of BNYVV, two pairs of primers specific for each RNA species were synthesized. All primer pairs produced PCR products of the expected size with BNYVV samples. With Tx7 samples, a primer pair specific for the 3' end of BNYVV RNA1 also produced a PCR product slightly smaller than that expected for a BNYVV sample. Restriction analysis indicated the Tx7 PCR product was similar to the BNYVV product but contained a deletion of approximately 30 bases near the 3' end. Sequence analysis indicated the Tx7 PCR product had approximately 75% nucleotide and 96% amino acid homology

with the BNYVV PCR product. Northern blots, using labeled BNYVV PCR products specific for each RNA as probes, also indicated similarities between Tx7 and BNYVV. Probes from the 3' end of BNYVV RNA1, 2 and 4 all hybridized with individual Tx7 RNAs but not probes for BNYVV 5' ends or probes for RNA3. However, when labeled BNYVV cDNA was used as a probe, it hybridized with Tx7 RNA3. Likewise, labeled Tx7 cDNA hybridized with BNYVV RNAs. From these results, we conclude Tx7 is very closely related to BNYVV and is possibly a mild strain with a major deletion in RNA3.

RUSH, C. M., G. B. HEIDEL, R. C. FRENCH, and M. D. LAZAR. 1993. Relationship between BNYVV and an unnamed soilborne sugar beet virus from Texas. 27th Bien. Mtg. of ASSBT, Anaheim, CA, March 3-6, 1993.

A study was conducted using PCR technology to determine similarities between BNYVV and an uncharacterized furovirus of sugar beet designated TX7. Published sequence data of an European BNYVV isolate were used to design synthetic primers for each of the four BNYVV genomic RNAs. Specific primers and reverse transcriptase were used to synthesize cDNA from extracts from BNYVV- or TX7infected Chenopodium quinoa which was then amplified by PCR. Most primer sets generated specific PCR products from BNYVV-infected samples but not from healthy plants or those infected with TX7. However, one set of primers specific for BNYVV RNA1 amplified cDNA from both BNYVV and TX7. The PCR products were ca. 950 base pairs (bp) for TX7 vs. 1056 bp for BNYVV. The apparent deletion in TX7 is located near the 3' end (near base 6200 of BNYVV RNA1). Restriction analysis of the TX7 product using Dra I, Tha I, Nhe I, and Spe I gave RFLP patterns similar to those predicted for BNYVV. In fact, Tha I and Nhe I digestion patterns of TX7 PCR products were more consistent with the published BNYVV sequence than those of our BNYVV isolate. This suggests a high degree of sequence homology between these two viruses in the region of RNA1 defined by these PCR primers. The results of this and other work in our laboratory, including RNA and coat protein analysis, indicate that TX7 and BNYVV are closely related. We speculate that TX7 may be a mild strain of BNYVV.

VAUGHN, K. M. and C. M. RUSH. Integration of biocontrol agents with solid matrix priming of sugar beet seed to reduce seedling damping-off. 27th Biennial Meeting of ASSBT, Anaheim, CA, March 3-6, 1993.

Seed treatment is an attractive delivery system for biocontrol agents. Biocontrol agents *Pseudomonas cepacia*, strain AMMD, and *Gliocladium virens*, strain Cr-4, were used to inoculate sugar beet seed before, during, and after solid matrix priming. Nonprimed seed was also inoculated with both biocontrol agents, and nonprimed and SMP seeds, not inoculated, were used as controls. These ten seed treatments were planted in soils infested with *Pythium aphanidermatum*, *Rhizoctonia solani*, or noninfested soil. The experiment was conducted in growth chambers. Nonprimed

seed treated with Cr-4 caused some phytotoxicity in noninfested soil, but the problem was overcome when Cr-4 was combined with SMP. In *Pythium* infested soil, the addition of AMMD and Cr-4 with SMP reduced postemergence damping-off significantly better than SMP alone and all nonprimed seed treatments, with the exception of nonprimed seed treated with Cr-4. An interaction occurred between AMMD and time of adding the microorganism with SMP. Final stand was significantly increased when AMMD was added during SMP, but not when AMMD was added before of after SMP. In *Rhizoctonia* infested soil, the addition of AMMD and Cr-4 with SMP significantly reduced preemergence damping-off.

VAUGHN, K. M. and C. M. RUSH. 1993. Preliminary studies on the presence of three sugar beet seedling pathogens from major production areas in the USA. 27th Biennial Meeting of ASSBT, Anaheim, CA, March 3-6, 1993.

Three major soil-borne pathogens which cause sugar beet seedling diseases are Aphanomyces, Rhizoctonia, and Pythium. Presently in the United States, there are no label fungicides for Aphanomyces, but fungicides for control of Rhizoctonia and Pythium are available. Tachigaren is a systemic fungicide that is effective against Aphanomyces spp., Pythium spp., and some strains of Rhizoctonia spp. This fungicide is developed by Sankyo of Tokyo, Japan, and is labeled for use in most countries in Europe, but not in the USA. We are interested in getting EPA clearance for Tachigaren in the USA. As part of this effort, we are trying to determine the geographical distribution of Aphanomyces and other major sugar beet seedling pathogens throughout the major growing areas in the USA. This information will be used in trying to secure a label for Tachigaren. So far, soil samples from Idaho (Nyssa and Nampa factory districts), the Red River Valley (Moorehead & Minn-Dak factory district), and Colorado (Ft. Morgan & Greeley factory district) have been screened. Rhizoctonia was predominantly isolated from Idaho and Colorado. Low levels of Aphanomyces were also found in Colorado. Soil samples from the Red River Valley showed high levels of Aphanomyces, with some Rhizoctonia isolated.

Papers Published Since Abstracted in Previous Report

HARVESON, R. M. and C. M. RUSH. 1993. An environmentally controlled experiment to monitor the effect of aphanomyces root rot and rhizomania on sugar beet. Phytopathology 83:1220-1223.

HARVESON, R. M. and C. M. RUSH. 1993. A simple method for field and greenhouse inoculation of *Polymyxa betae* and beet necrotic yellow vein virus. Phytopathology 83:1216-1219.

RUSH, C. M. and K. M. VAUGHN. 1993. Effect of irrigation, soil matric potential, and seed priming on sugar beet seed germination and damping-off caused by *Aphanomyces cochlioides*. Phytopathology 83:202-206.

ETIOLOGY AND EPIDEMIOLOGY OF THE RHIZOMANIA DISEASE COMPLEX BSDF Project 503

TEXAS 7 A POSSIBLE STRAIN OF BEET NECROTIC YELLOW VEIN VIRUS

C. M. Rush, R. C. French, and G. B. Heidel

In 1988, a virus similar in particle morphology to BNYVV was isolated from Texas sugar beets and designated Tx7 (Liu and Duffus, 1988). Subsequent investigation revealed Tx7 has four distinct polyadenylated RNA molecules of approximately 6.5, 4.2, 1.2 and 1.0 kb (Heidel et al., 1993). Tx7 has a host range similar to that of BNYVV, is vectored by Polymyxa betae and frequently is found in the same fields as BNYVV (Heidel and Rush, 1993). Although Tx7 has much in common with BNYVV, it produces symptoms different from those caused by BNYVV on several hosts. Foliar symptoms of Tx7 on sugar beet include a pale yellow discoloration which primarily follows the major leaf veins, mottling, and a slight puckering or distortion. Foliar symptoms can fade or completely disappear from field beets transplanted into the greenhouse, only to reappear later. In such plants, Tx7 can often be detected by ELISA in nonsymptomatic foliage. Tx7 has no obvious adverse effects on root development. On Chenopodium quinoa, Tx7 causes diffuse, pale yellow local lesions which may eventually spread along leaf veins. On Beta macrocarpa and B. maritima, Tx7 causes necrotic local lesions which ultimately develop into systemic infections on B. maritima but not B. macrocarpa. Because the symptoms produced by Tx7 are similar to those described for RNA3 deletion mutants of BNYVV (Bouzoubaa et al., 1988), studies were conducted to further evaluate differences and similarities between Tx7 and BNYVV. Studies were also initiated to evaluate how certain host plants reacted to dual inoculations with these two viruses.

Materials and Methods

Virus maintenance and purification: Tx7 and BNYVV isolates were maintained in the greenhouse on *C. quinoa* by mechanical inoculation. Procedures for viral purification were similar to those described for purifying sorghum chlorotic spot virus (Kendall et al., 1988). Tx7 isolates used in PCR and hybridization studies were passed through *C. quinoa* four times, while isolates of BNYVV were mechanically transmitted 5-9 times before use.

PCR studies: Two primer pairs were made for each specific BNYVV RNA using published sequence data from European isolates (Bouzoubaa et al., 1985; Bouzoubaa et al., 1986; Bouzoubaa et al., 1987). For each RNA, one primer pair matched the 3' end and one the 5' end. Purified BNYVV and Tx7 RNA were used as templates for first strand cDNA synthesis in reverse transcriptase reactions. cDNA amplification was carried out in a 50 μ l reaction using 5 μ l cDNA, 10 pmol of each primer, 0.2 mM of each dNTP and 5 U Taq DNA polymerase in reaction buffer provided with the enzyme (Robertson et al., 1991).

PCR products were visualized after electrophoresis in a 1% agarose gel by staining with ethidium bromide. Products were cut with various restriction enzymes, and observed fragment sizes were compared with predicted values. One product from RNA1, near the 3' end, was sequenced after gel purification and cloning into pGEM3z (Promega).

Northern blots: After PCR product identity was verified, radioactive probes were made. PCR products were gel purified and used as templates in second round PCR reactions which included ³²P labeled dCTP. Radioactive cDNA probes were also produced from unfractionated BNYVV and Tx7 RNA. Northern blots were hybridized with probes as previously described (Church and Gilbert, 1984).

Dual inoculation studies: Local lesions of Tx7 and BNYVV on C. quinoa were macerated in 0.1 M KPB pH 7.5 plus 0.02 M Na₂SO₃ and used to inoculate C. quinoa, B. macrocarpa, and B. maritima. Plants were inoculated with each virus independently or with mixed inoculum. Symptom expression was recorded after approximately two weeks, and ELISA tests were conducted to verify the presence of pathogens.

Results

PCR studies: All primer pairs produced expected products in PCR reactions using BNYVV cDNA except the pair specific for the 5' end of RNA3. When Tx7 cDNA was used, only the primer pair specific for the 3' end of RNA1 gave a product close to that expected for BNYVV. Restriction analysis of the Tx7 product, which was slightly smaller than that expected for BNYVV (approximately 1000 vs. 1056 kb, respectively), indicated a high degree of sequence homology. Failure of ThaI to cut the BNYVV product indicated the Texas isolate of BNYVV differed slightly from the European isolate from which the sequence data was derived. ThaI did cut Tx7 and gave products of the size expected for BNYVV as did SpeI, NheI, and DraI.

Sequence analysis of the Tx7 product indicated 75% nucleotide and 96% amino acid sequence homology with the BNYVV product. The deletion in the Tx7 product first observed after electrophoresis of PCR products was determined to be 30 bases in the noncoding region of the 3' terminus.

Hybridization studies: Radioactive probes specific for sequences near the 3' end of BNYVV RNA1, 2 and 4 hybridized strongly with BNYVV RNA and, to a lesser degree, with Tx7 RNA. Neither the specific probe for BNYVV RNA3 nor any probes specific for sequence near the 5' termini hybridized with Tx7, although all hybridized strongly with BNYVV RNA. However, cDNA probes made with an oligo dT primer and nonfractionated BNYVV and Tx7 RNA hybridized with homologous and heterologous RNA, indicating some sequence homology between the four Tx7 and BNYVV RNAs.

Dual infection studies: All hosts inoculated with BNYVV developed bright yellow local lesions which eventually went systemic in *B. macrocarpa* and *B. maritima*. Chenopodium quinoa inoculated with Tx7 developed diffuse, pale yellow local lesions. Beta macrocarpa

and B. maritima inoculated with Tx7 developed necrotic spots surrounded by purple halos. The virus eventually went systemic in B. maritima but not B. macrocarpa. Chenopodium quinoa inoculated simultaneously with BNYVV and Tx7 developed a mottled appearance very different from symptoms on plants inoculated with BNYVV or Tx7 alone. When B. macrocarpa and B. maritima were inoculated with both viruses, the Tx7 symptom phenotype was dominant. Mixed infections did not change systemic reactions of either virus.

Discussion

Numerous similarities between BNYVV and Tx7 indicate that Tx7 is very closely related to, if not a strain of, BNYVV. They have similar host ranges, exhibit some serological cross reactivity and have coat proteins of similar size. Both are vectored by *P. betae*, and both possess 3' polyadenylated quadripartite genomes (Heidel et al., 1993). To our knowledge, Tx7 is the only recognized furovirus, other than BNYVV, with a quadripartite genome.

Tx7 and BNYVV also have nucleotide sequence homology as shown by PCR and hybridization experiments in this study. Homology exists between all four RNAs, and the degree of homology is greatest near the 3' termini. The greatest molecular variation between Tx7 and BNYVV appears to occur in RNA3. RNA3 of Tx7 is approximately 1.2 kb compared with 1.7 kb with BNYVV. BNYVV PCR probes hybridized with Tx7 RNA1, 2, and 4, but not with Tx7 RNA3. Since BNYVV RNA3 is primarily responsible for symptom phenotype, it is interesting that Tx7, which differs from BNYVV in symptom expression, also differs from BNYVV on a molecular level at RNA3.

There have been numerous reports that wild type isolates of BNYVV possess four full-length RNA species, and that isolates propagated on leaves often possess deleted forms of RNA3 and 4 (Hamilton et al., 1981; Tamada et al., 1990). BNYVV isolates, with deleted forms of RNA3, produce symptoms similar to those produced by Tx7, including diffuse chlorotic spots, necrotic lesions, and an absence of root symptoms (Hamilton et al., 1981; Tamada et al., 1990). Additionally, when "wild type" isolates and RNA3 deletion mutants of BNYVV are inoculated together to *C. quinoa*, the mutant symptom phenotype is dominant (Jupin et al., 1992). In our study, Tx7 symptoms were dominant when Tx7 and BNYVV were both inoculated to *B. maritima* and *B. macrocarpa*.

There is no question Tx7 is very closely related to BNYVV and exhibits numerous characteristics of BNYVV RNA3 deletion mutants. Furthermore, if one uses the criteria suggested by Hamilton et al. (1981) to differentiate viral strains from new viruses, Tx7 should be classified as a strain of BNYVV. If Tx7 is a strain of BNYVV, it is, to our knowledge, the first reported "wild type" isolate with a deleted form of RNA3. However, because of the potential confusion a "mild strain" of BNYVV might create among regulatory agencies, we are withholding our opinion concerning strain designation until further data is gathered.

References

- Bouzoubaa, S., Guilley, H., Jonard, G., Jupin, I., Quillet, L., Richards, K., Scheidecker, D., and Ziegler-Graff, V. (1988). Genome organization and function of beet necrotic yellow vein virus. Develop. Appl. Biol. 2:99-110.
- Bouzoubaa, S., Guilley, H., Jonard, G., Richards, K., and Putz, C. (1985). Nucleotide sequence analysis of RNA-3 and RNA-4 of beet necrotic yellow vein virus isolates F2 and G1. J. Gen. Virol. 66:1553-1564.
- Bouzoubaa, S., Quillet, L., Guilley, H., Jonard, G., and Richards, K. (1987). Nucleotide sequence of beet necrotic yellow vein virus RNA-1. J. Gen. Virol. 68:615-626.
- Bouzoubaa, S., Ziegler, V., Beck, D., Guilley, H., Richards, K., and Jonard, G. (1986). Nucleotide sequence of beet necrotic yellow vein virus RNA-2. J. Gen. Virol. 67:1689-1700.
- Church, G. M., and Gilbert, W. (1984). Hybridization protocols for DNA probes. in: Genomic Sequencing. Proc. Nat. Acad. Sci. 81:1991-1995.
- Hamilton, R. I., Edwardson, J. R., Francki, R. I. B., Hsu, H. T., Hull, R., Koenig, R., and Milne, R. G. (1981). Guidelines for the identification and characterization of plant viruses. J. Gen. Virol. 54:223-241.
- Heidel, G. B., and Rush, C. M. (1993). Distribution of beet necrotic yellow vein virus, beet distortion mosaic virus and an unnamed soilborne sugar beet virus in Texas and New Mexico. Plant Dis. (accepted)
- Heidel, G. B., Rush, C. M., Kendall, T. L., and Lommel, S. A. (1993). Partial characterization of a soilborne sugar beet virus in Texas. Page. 159 in: Proc. 27th Biennial Meeting American Soc. Sugar Beet Technologists., Anaheim, CA.
- Jupin, I., Guilley, H., Richards, K. E., and Jonard, G. (1992). Two proteins encoded by beet necrotic yellow vein virus RNA 3 influence symptom phenotype on leaves. The EMBO J. 11:479-488.
- Kendall, T. L., Langenberg, W. G., and Lommel, S. A. (1988). Molecular characterization of sorghum chlorotic spot virus, a proposed furovirus. J. Gen. Virol. 69:2335-2345.
- Liu, H. Y., and Duffus, J. E. (1988). The occurrence of a complex of viruses associated with rhizomania of sugarbeet. (Abstr.) Phytopathology 78:1583.
- Robertson, N. L., French, R., and Gray, S. M. (1991). Use of group-specific primers and the polymerase chain reaction for the detection and identification of luteoviruses. J. Gen. Virol. 72:1473-1477.
- Tamada, T., Saito, M., Kiguchi, T., and Kusume, T. (1990). Effect of isolates of beet necrotic yellow vein virus with different RNA components on the development of rhizomania symptoms. Pages 41-44 in: Proc. Symp. Int. Work. Group on Plant Viruses with Fungal Vectors, 1st, Braunschweig, Germany.

Developing Laboratory Techniques for Rearing the Sugarbeet Root Aphid *Pemphigus beta* Doane

A Report of Research Sponsored by the Beet Sugar Development Foundation, 1993

Project Number 520

by

G. J. Michels, Jr., R. L. Deerberg, and B. J. Thompson

Texas Agricultural Experiment Station 6500 Amarillo Blvd. West Amarillo, Texas 79106

The sugarbeet root aphid, *Pemphigus betae* Doane, is a heteroecious aphid exhibiting two life cycles involving cottonwood trees, *Populus* sp., as its primary host and herbaceous plants such as sugarbeets, *Beta vulgaris* L., as its secondary host. Most damage is done to the sugarbeet when its water and nutrient uptake are interfered with as a result of the aphids feeding on the secondary roots. Both yield and sugar content can be reduced.

Following from our previous research in 1991 and 1992, where a method was developed to rear sugarbeet root aphids in the laboratory, we determined the impact of temperature on the mass increase of sugarbeet root aphids.

The primary objective in this research was to determine at what temperature sugarbeet root aphids exhibited the maximum density increase over a fixed period of time. The results of the experiments were expected to provide optimal growth parameters to scientists who may wish to rear this aphid and also give insights into the temperature regimes in nature where the aphid may rapidly increase in the field.

MATERIALS AND METHODS

A moist, sterile soil mixture contained in petri dishes was used to maintain young sugarbeets about 2 to 4 months old. Four hundred grams of sieved field soil was mixed with 70 ml sterile deionized water, covered, and autoclaved 15 minutes. Beet leaves were removed at the crown and the entire sugarbeet root was used. Beet roots were not subjected to any treatments other than washing 15 minutes with tap water. Working under a laminar flow hood, the sugarbeets were patted dry using sterile paper towels and individually placed in sterile petri dishes containing soil. The plates were wrapped with Parafilm.

Aphids were retrieved from an infested sugarbeet field and transferred directly from infested beets to sugarbeet plates. There were 10 replications of each temperature regime. One newly-born nymph was placed on each sugarbeet, the plates were sealed with Parafilm, and stored in dark incubators set at 5, 10, 15, 20, 25 or 30°C (41, 50, 59, 68, 77, 86°F), depending on the experiment being carried out. The plates remained in the incubators for two weeks. After this time, the plates were opened and all aphids were counted by gently searching through the soil and on the beets themselves. The aphids were separated into nymphs, adults, and alates (winged forms).

Statistical differences between temperature regimes were discerned through Student's *t*-tests for unpaired observations.

RESULTS

The results of the experiment are found in Table 1 and Fig. 1. Generally, the number of aphids increased as temperature increased, but fell sharply at 30°C.

The results indicate that the picture revealed by this experiment is a distribution of aphid densities for the generation following the founder nymph, with some new nymphs representing a second generation produced by first generation adults.

In regard to separate life stages, there were few to no alate aphids produced, except at 25°C, where one was recovered. This result is to be expected since the timespan of the study was short and the environmental conditions for the development of a dispersal phase were probably not present.

Adults were also usually found in low numbers; however, this again may be due to the time span of the experiment. The adult numbers increased with increasing temperature. In the cooler experiments, the few adults may be attributable to a slowing of the developmental period by the cool temperature. The adults that were found are assumed to represent a new generation of aphids, not the original founder nymph. Therefore, these would have been some of the first individuals from the founder nymph. Significantly more adults were found as the temperature increased from 5 to 10°C and from 15 to 20°C. All other pairs of ascending temperatures were not significantly different. Although there were no significant differences among the 20-25-30°C regimes, there was a dramatic drop off (approx. 5-fold) in adult numbers from 25 to 30°C, indicating that at this high temperature regime, some deleterious effects may begin to manifest themselves.

In all temperature regimes, the nymphs were found in the largest numbers. The patterns of significant differences paralleled the adult densities, with the 20 and 25°C being very similar (less than an average of two nymphs difference), and a substantially less rapid fall between 25 and 30°C. However, as with the adult densities, this fall may indicate a point where the temperature begins to cause aphid mortality.

Table 1. Sugarbeet root aphid density increase research

Temp.	Avg. aphids		Student's t-test, unpaired observations				
°C	per plate	Std Dev.	t	df	Table <i>t</i> at P=0.05		
Adults							
5	0.0	0.0	7.61	17	2.11 *		
10	2.2	0.8	0.84	17	2.11 ns		
15	2.0	2.5	2.90	18	2.10 *		
20	5.2	3.9	0.32	18	2.10 ns		
25	11.3	11.7	1.37	16	2.12 ns		
30	2.9	1.0					
		Nyı	mphs				
5	0.1	0.3					
10	4.0	1.3	7.19	17	2.11 *		
15	1.2	2.5	1.97	17	2.11 ns		
20	21.1	17.4	3.65	18	2.10 *		
25	22.5	9.3	0.12	18	2.10 ns		
30	13.8	5.2	0.31	16	2.12 ns		
Alates							
5	0.0	0.0					
10	0.0	0.0	na				
15	0.0	0.0	na				
20	0.0	0.0	na				
25	0.1	0.3	na				
30	0.0	0.0	na				

Beet variety was HH39

DISCUSSION

The experiments conducted to this date in regard to sugarbeet root aphid development in the laboratory have yielded both a workable technique for rearing this pest in a laboratory situation, and also give an indication of the developmental parameters. From our results, we conclude that if our technique is used, laboratory colonies of sugarbeet root aphids can be stored in a temperature range from 10 to 25°C. As the temperature increases, the production of nymphs and adults also increases. Alate forms are not a problem during short time spans, however, after longer storage times, they may develop more rapidly. Additional research should be carried out to determine the effects of temperatures on both the maximum time a colony can survive at higher temperatures, and how long the beet can remain a suitable host. Although our results indicated that the aphids do not do well at 5°C, it would be interesting to see if a colony can be maintained at low densities at these temperatures.

This could be very important to a researcher who would like to maintain a colony in between experiments, when sugarbeet root aphids from the field or fresh sugarbeets are not available.

The results of our experiments may indicate, additionally, where sugarbeet root aphids may be found in the field. As soil temperatures warm in the spring, aphids which have overwintered in the soil may move up in the profile to take advantage of the more favorable temperatures. Conversely, as summer temperatures rise above 30°C (96°F), aphids may again move down in the soil profile. If this movement does occur, it would be very important for non-systemic insecticides to be applied in such a manner that they penetrate far enough into the soil profile to reach levels where the soil temperature is conducive to rapid aphid growth. If insecticides (especially granules) were applied to the surface and not watered into the profile, there is a good chance that they may never reach the depth where most of the aphids congregate.

The results of this laboratory research open a number of other avenues that need to be explored. Longer time periods at constant temperatures would yield definite upper and lower temperature limits. Field studies that correlate aphid location in the soil with soil temperature may be very useful in applying these laboratory results to a practical situation involving chemical control of the sugarbeet root aphid.

Fig. 1. Effects of temperature on sugarbeet root aphid increase.

THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PARTY OF COLUMN 2015.

The region of the laboratory management of the second of t

