APPLE DOCTOR

인공지능 MASK R-CNN 기반

사과 병해 진단 서비스

Detection Master팀 (박효빈, 조아름, 최현민, 홍성인)

index

- 1. 개발 배경
- 2. 비즈니스 모델
- 3. 개발 환경
- 4. 학습 모델
- 5. 워크플로우
- 6. 기대효과

개발 배경

스마트팜 관련 특허출원 경향

년도 분류	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	합계	비중
통합제어기술	0	0	4	4	5	16	12	20	32	33	126	27%
재배시설기술	0	1	11	20	12	15	19	14	17	13	122	26%
광원관련기술	0	4	6	16	17	15	11	15	13	1	98	21%
관수 및 양액 공급기술	1	0	4	3	4	13	5	4	8	5	47	10%
작물생장 모니터링 기술	0	0	1	2	1	6	7	7	14	6	44	9%
기타	0	0	4	1	4	4	6	6	1	3	29	6%
합계	1	5	30	46	43	69	60	66	85	61	466	100%

국내 병해감지 APP 현황

- 스마트팜 시설 제어를 위한 app이 다수
- 농촌 진흥청 자료 기반
- '스마트 고추 병해충'

객체감지 & 영역표시 기능 갖춘 서비스 경쟁력 확보

농작물 병해충 예보 시스템

병해충 자가진단

왜 사과인가?

기후 변화에 따른 재배지 북상

100년간 한반도

감귤·사과 재배지 변화

출처: 국립기상과학원

출처 : 통계청

기후 변화에 따른 병해 변화

서비스 개발 배경

기<mark>후변화,</mark> 그동안 드물게 일어났던 병해를 진단

스마트 농업 시대, 인공지능을 활용한 병해 대응에 유연하게 대처할 수 있는 서비스 개발

2

비즈니스 모델

BUSINESS MODEL CANVAS

Key Partners	Key Activities	Value Propositions	Customer Relationships	Customer Segments 사과 농가 예비 귀농인 초보 농가 스마트 농업 관계부처 소비자	
[Software] - Google - Naver - Kakao API [Contents] - 농촌진흥청 - 농약정보 365	인공지능 모델 최적화 향후 진단 능력 확대	실시간 사과 병해 진단 및 결과 확인	원활한 농사를 돕는 어시스턴트		
		병해 정보, 방제법 및 농약판매처 정보 제공	실시간 서비스 제공 커뮤니티		
	Key Resources		Channels		
	APP 이용자 수 사과 병해 데이터 개발 인력		스마트폰 전용 APP 웹사이트		

Cost Structure

고정비용: 인건비, 서버 관리 비용, 광고비(Social Media)

변동비용: 광고비 (Performance), CS 비용

마케팅 비용(디지털 소외계층 대상 교육 포함)

Revenue Streams

서비스 유료이용료 APP 노출 광고비 신규 이용자 유료 교육 (지자체, 정부부처 파트너십) 누적 데이터 수익화 3

개발 환경

개발 환경

개발 환경

[Mask R-CNN]

• **OS:** Ubuntu 18.04.5 LTS

• **GPU**: GeForce GTX 1660

• **CPU**: Intel(R) Core(TM) i5-8500 CPU @

3.00GHz

• Nvidia driver: 450.51.06

• **GPU memory**: 6GB

• CUDA 11.1

• Tensorflow-gpu 1.15.0

• Keras 2.3.1

Vgg Image Annotator

• Python 3.6.8

Mask R-CNN

4

학습 모델

학습 정보

Mask R-CNN

●이미지 개수

Train: 150, Validation: 50

●학습 class

- Sooty blotch: 그을음병

- Marssonia blotch: 갈반병

- Bitter rot: 탄저병

- White rot: 겹무늬썩음병

- Brown rot: 잿빛무늬병

●학습 하이퍼 파라미터

Epoch:420

Batch_size: 1

Backbone: ResNet 50(layers = heads)

Detection_min_confidence: 0.8

Learning_rate = 0.001

Optimizer = SGD

현재 모델 결과

Loss curve

Test

Data Annotation

Mask R-CNN 알고리즘 구조

Object Detection의 Faster RCNN + Image Segmentation의 Fully Convolutional Network(FCN)

영역 내 픽셀이 예측한 객체인지 아닌지 분류

Mask R-CNN 기능

What?
Where is the specific area of diseases?
What is the specific shape of the disease?

병해 <mark>위치와 종류, 모양</mark>까지 동시에 진단 5

워크플로우

워크 플로우

클라이언트

이미지 출력

이미지 업로드

서버

원본 이미지에 결과반영 (Mask, Bounding box, Class)

Mask R-CNN

객체탐지 알고리즘

Mask R-CNN Structure

메인 페이지

결과 페이지

APPLE DOCTOR

--- LEARN ABOUT DISEASE

진단 결과

갈반병 95.22%

Learn More

병해충 리스트 페이지

APPLE DOCTOR

Home 진단결과 <mark>질병정보</mark> 농약사지도 농약검색

--- DISEASE PORTFOLIO

진단 사과 병해충 리스트

가까운 농약사 찾기

APPLE DOCTOR

Home 진단결과 질병정보 농약사지도 농약검색

--- PESTICIDE STORE MAP

가까운 농약사 찾기

6

기대 효과

기대 효과

01

- 병해 감지 시 빠른 진단으로 적기에 대응 가능
- 시간/장소에 구애받지 않고 활용 가능

병해 진단 효율성 제고

02

- 사과진단 능력을 바탕, 과수 및 채소 등 작물 전반으로 진단 역량 확대
- 전문성 확보한 플랫폼 구축

농작물 특화 진단 플랫폼

03

- 사용자로부터
 확보한데이터를
 스마트농업SW
 개발에활용
- 농작물 데이터댐 역할

스마트 농업 데이터 확보

감사합니다