

固体压强变化

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

学习目标

1. 固体压强变化问题

&

1. 固体压强变化的判断

重难点

2. 不同问题中公式的选择和压强变化的判断

2. 不同问题中两种公式的选择及压强变化的判断

根深蒂固

— 、	固体压强变化			
	知识点一: 柱形固体压强计算基本公式			
	1、使用 P=F/S=ρgh 计算固体压强的条件			
	①物体自然放置在水平面上,且底面积与水平面充分接触,此时物体对水平面产生的压力大小			
	(选填"大于"、"等于"或"小于")物体的重力,即: FG;			
	②物体质量,即密度均匀,物体质量可以用计算;			
	③物体上下,即物体体积可以用计算。			
	【答案】1、①等于; =			
	②分布均匀; m=ρV			
	③粗细均匀; V=Sh			
	练习:请写出 P=F/S=ρgh 的具体推到步骤并说明每一步需满足的相关条件			
二、	柱形固体切割压强判断			
	知识点一: 竖直切割			
	1、柱形固体竖直切(包括切去质量、体积、厚度等),由,压强变化量为零,所以			
	压强。			
	【答案】1、①P=F/S=ρgh;保持不变			
	知识点二:水平切割			
	1、水平切相同高度,判断出物体密度之间的大小关系,由			
系,	进而由			
	2、常见的几种水平切割:			
	①两个物体原来压强相等,水平切相同高度(或、、)之后,剩余部分的压强一定是大物			
	体的压强(选填"大于"、"等于"或"小于")小物体的压强。			
	②两个物体原来质量(或压力)相等,沿水平切相同体积(或相同高度),剩余部分压强有种情况			
	的情况。从开始切到小物体切完之前存在压强的情况。			
	③质量(或压力)相等,水平切去相同质量,压强的符号跟原来,即原来哪个物体的压强大,			
	切过之后剩余部分压强还是哪个物体的大。			
	【答案】1、ΔP=ρgΔh; P'=P±ΔP			
	2、①质量、体积; 大于			
	②三; 大于、小于、等于; 相等			
	③相同			

枝繁叶茂

-、固体压强变化

知识点一: 柱形固体压强计算基本公式

【例1】如图是小敏同学在探究甲、乙两种不同的固体物质的质量和体积的关系时得出的图象。如果用上 述两种物质做成甲、乙两个质量相同的实心正方体,把它们放在水平面上,则根据图象可知,甲、乙两物 体对水平面的压强之比为 (1 m/g

B.
$$P_{\#}:P_{\angle}=4:1$$

C.
$$P_{\#}:P_{\angle}=2:1$$

D.
$$P = P = 1:1$$

【难度】★

【答案】B

【例2】如图所示,将一块砖平放、立放、侧放时,它对地面的压强(

- A. 平放时最大
- B. 立放时最大
- C. 侧放时最大
- D. 平放、立放、侧放时,一样大

【难度】★

【答案】B

【例 3】如图所示,两个完全相同的装满豆浆的密闭杯子,以下列四种不同的方式放在水平桌面上,若杯 子上表面面积是下表面面积的 2 倍,它们对桌面的压强大小分别是 P_{π} 、 P_{τ} 、 P_{π} 、 P_{τ} ,则 ()

A.
$$P \neq P \leq P \leq P \neq P$$

B.
$$P \angle P \neq P \angle P \neq$$

C.
$$P \angle P = P \angle P \equiv$$

D.
$$P_{\bowtie} < P_{\subset} < P_{\top} = P_{\bowtie}$$

【难度】★

【答案】C

【例 4】甲、乙两个正方体放在水平地面上,它们对地面的压强相等,甲、乙密度之比是 1:2,则甲、乙的 底面积之比是 ()

- A. 1:2 B. 2:1 C. 1:4 D. 4:1

【难度】★

【答案】D

二、固体切割压强判断

知识点一: 竖直切割

- 【例1】如图所示,实心均匀正方体甲、乙对水平地面的压力相同. 现沿竖直方向切去相同厚度,并将切 去部分放置在对方剩余部分的上表面,若此时它们对地面的压强为 P_{\parallel} 、 P_{z} ,则 ()
 - **A. P** [□] 一定大于 **P** _Z
- B. P_甲可能小于 P_Z
- C. P_{\parallel} 一定等于 P_{z}
- D. P_{\parallel} 可能等于 P_{Z}

【难度】**★★★**【答案】A

【例 2】如图所示,甲、乙两个实心均匀正方体分别放在水平地面上,两个正方体的边长分别为 \mathbf{h}_{m} 和 \mathbf{h}_{o} (h m>h z), 它们对地面的压强相等。若在两个正方体的上部沿水平方向分别截去相同的质量,则截去的 高度之比 $\Delta h_{\text{\tiny H}}$: $\Delta h_{\text{\tiny Z}}$ 为。

【难度】★【答案】h z: h =

- 【例 3】如图所示,质量相同的甲、乙两个均匀实心正方体放在水平地面上。若分别沿竖直方向截去厚度 相等的部分后,则剩余部分对水平地面的压强 P_{\parallel} 和 P_{z} 的关系为 (
 - A. $P \neq P_Z$

B. $P = P_{z}$

C. $P \neq P_{Z}$

D. 不确定

【难度】★【答案】C

- 【例 4】如图所示, 甲、乙两个实心均匀正方体放在水平地面上, 它们对地面的压强相等。若沿竖直方向 分别在两个正方体右侧截去一部分,使甲、乙剩余部分对地面的压力相等。则甲、乙正方体())
 - A. 剩余部分的底面积 S'==S'z
 - B. 剩余部分的体积 V'==V'z
 - C. 对地面压力的变化量 $\Delta F_{\parallel} = \Delta F_{Z}$
 - D. 对地面压强的变化量 $\Delta P_{\parallel} < \Delta P_{Z}$

【难度】★★【答案】A

知识点二:水平切割

- 【例1】如图所示,甲、乙两个均匀的实心正方体放在水平地面上,它们各自对地面的压强相等。若分别 在甲、乙上沿水平方向截去高度相等的部分后,则剩余部分的 ()
 - A. 甲的体积可能等于乙的体积
 - B. 甲的质量可能小于乙的质量
 - C. 甲对地面压强一定等于乙对地面的压强

【难度】★【答案】D

【例 2】如图所示,甲、乙两个实心正方体物块放置在水平地面上,甲的边长小于乙的边长,以下做法中,有可能使两物体剩余部分对地面的压强相等的做法是 ()

- A. 如果它们的密度相等,将它们沿水平方向切去相等高度
- B. 如果它们的密度相等,将它们沿水平方向切去相等质量
- C. 如果它们的质量相等,将它们沿水平方向切去相等高度
- D. 如果它们的质量相等,将它们沿水平方向切去相等质量

【难度】★【答案】C

- 【例 3】如图所示,甲、乙两个均匀实心正方体放在水平地面上,它们对地面的压强关系为 $\mathbf{P}_{\text{\tiny μ}}=\mathbf{P}_{\text{\tiny Z}}$ 。若分别沿水平方向截去一部分后,使它们对地面的压强变为 $\mathbf{P}_{\text{\tiny μ}}>\mathbf{P}_{\text{\tiny Z}}$,则 ()
 - A. 可能是截去相同的质量
 - B. 一定是截去甲的质量小于乙的质量
 - C. 可能是截去相同的体积
 - D. 一定是截去相同高度

【难度】★★【答案】B

【例 4】如图所示,甲、乙两个实心均匀正方体分别放在水平地面上,它们对地面的压强相等。若在两个正方体的上部,沿水平方向分别截去相同高度的部分,则剩余部分对水平地面的压强关系是(

A. $P \neq P_Z$

B. $P = P_{Z}$

C. $P = P_Z$

D. 无法判断

【难度】★★【答案】C

【例 5】如图所示,甲、乙、丙三个实心立方体分别放在水平地面上,它们对水平地面的压强关系大小关系是 $P_{\parallel}>P_{Z}>P_{\Xi}$ 相等,现在三个正方体的水平方向截去相同的高度,则剩余部分对水平地面的压强大小关系为 (

- A. $P \neq P \geq P \geq P \neq A$
- B. $P = P_Z = P_B$
- C. $P \neq P_Z < P_{\Xi}$
- D. 无法判断。

【难度】★★【答案】D

【例 6】如图所示,两个实心圆柱体放置在水平地面上。沿水平方向截去其上部相同高度后,剩余部分对水平地面的压强相等。则它们原来对水平地面的压强关系是 ()

- A. $P = P_{Z}$
- B. $P \neq P_{Z}$
- C. $P = P_{Z}$
- D. 无法判断

【难度】★★【答案】C

【例7】如图所示,甲、乙两个实心正方体分别放在水平地面上,它们对地面的压强相等,若沿水平方向 截去相同的体积,则剩余部分对水平地面的压强关系是(

- A. $P \neq P_{Z}$
- B. $P = P_{Z}$
- C. $P = P_Z$
- D. 无法判断

【难度】★★【答案】C

【例 8】甲、乙、丙三个实心正方体分别放在水平地面上,它们对水平地面的压强相等,它们的密度pii(<p z<ρ_两。若在两正方体上方截去质量相同的部分,则剩余部分对水平地面的压强关系为 ()

- A. $P \neq P_Z < P_{\Xi}$
- B. $P = P_Z = P_{\Xi}$
- C. $P = P_Z > P_{\Xi}$
- D. 无法判断

【难度】★★【答案】C

随堂检测

1、已知三个实心正方体对水平地面的压强相等,它们的密度分别为ρι、ρ2、ρ3,且ρι<ρ2<ρ3,现从它们的上表 面分别均匀地切去一层,切去的厚度分别为 h_1 、 h_2 、 h_3 。为了使切去之后它们对水平地面的压强仍相等,应该 使 ()

- A. $h_1 < h_2 < h_3$ B. $h_1 > h_2 > h_3$
- C. $h_1 = h_2 = h_3$
- D. 无法确定

【难度】★

【答案】B

- 2、如图所示,甲、乙两个质量相等的均匀实心正方体在水平地面上,可能是甲和乙对地面压强相等的方法是 ()
 - A. 将质量相等的铜块和铁块分别放在甲、乙的上面
 - B. 将体积相等的铜块和铁块分别放在甲、乙的上面
 - C. 沿水平方向分别截去质量相等的部分
 - D. 沿水平方向截去体积相等的部分

【难度】★

【答案】D

3、甲、乙、丙三个实心长方体放在水平地面上,若从它们的右侧沿图中虚线方向各切去底部相同长度的部分, 三个长方体剩下部分对地面的压强恰好相等,则三个长方体原来对水平地面的压强 ()

- A. $P \neq P \neq P \neq P$
- B. $P = P_Z > P_{\Xi}$
- C. $P = P_Z = P_{\Xi}$
- D. 以上均有可能

【难度】★

【答案】A

4、甲、乙两个实心正方体分别放在水平地面上,它们对水平地面的压强相等,且 $\rho_{\mathbb{H}} > \rho_{\mathbb{Z}}$ 。若在它们上部沿水平 方向分别切去相同体积,则它们对地面压强变化量 $\Delta P_{\mathbb{H}}$ 、 $\Delta P_{\mathbb{Z}}$ 的大小关系是 $\Delta P_{\mathbb{H}}$ $\Delta P_{\mathbb{Z}}$ (选填"大于"、"等 于"或"小于")。

【难度】★★【答案】大于

- 5、如图所示,甲、乙两个实心均匀正方体分别放在水平地面上,它们对地面的压力相等。若在两个正方体的 上部,沿水平方向分别截去相同高度的部分,则剩余部分对地面的压强关系是)
 - A. $P = \langle P \rangle_Z$
- B. $P = P_{Z}$
- C. $P \neq P_Z$
- D. 以上情况均有可能

【难度】★【答案】D

- 6、如图所示,放在水平地面上的均匀正方体甲、乙对地面的压力相等,若在两物体上部沿水平方向切去一定 的厚度,使剩余部分的高度相等,则剩余部分对地面的压力 $\mathbf{F}_{\mathbf{z}'}$ 和 $\mathbf{F}_{\mathbf{z}'}$ 、压强 $\mathbf{P}_{\mathbf{z}'}$ 和 $\mathbf{P}_{\mathbf{z}'}$ 的关系是(
 - A. $F_{\#} > F_{Z'}$, $P_{\#} > P_{Z'}$ B. $F_{\#} = F_{Z'}$, $P_{\#} = P_{Z'}$
 - C. $F_{\#}' < F_{Z'}, P_{\#}' > P_{Z'}$
- D. $F_{\#}'=F_{Z}', P_{\#}'>P_{Z}'$

【难度】★【答案】A

- 7、如图所示,甲、乙两个均匀的实心正方体放在水平地面上,它们质量相等。若分别在甲、乙上沿水平方向 截去高度相等的部分后,则剩余部分的 (
 - A. 甲的体积可能等于乙的体积
 - B. 甲的质量可能小于乙的质量
 - C. 甲对地面压强一定等于乙对地面的压强
 - D. 甲对地面压力一定大于乙对地面的压力

【难度】★【答案】D

8、甲、乙两个圆柱体(ρ_{\parallel} < ρ_{Z})分别置于水平地面上,它们的底面积分别为 S_{\parallel} 和 S_{Z} ,高度分别为 h_{\parallel} 和 h_{Z} 。 若均沿水平方向,将两圆柱体截去相等的质量,使剩余部分对地面的压强 P =>Pz,则甲、乙两个圆柱体被截 去前的情况可能是图中的 ()

【难度】★★【答案】B

9、如图所示的圆柱体甲和乙分别放在水平地面上,已知 $\mathbf{m}_{\parallel}=\mathbf{m}_{\text{Z}}$, $\rho_{\parallel}>\rho_{\text{Z}}$ 。现准备分别在它们上部沿水平方向截去部分物体后,再叠放在对方剩余部分上表面。以下截法中,有可能使它们对水平地面的压强相等的方法是

()

- A. 水平截去相同的高度
- B. 水平截去相同的体积
- C. 水平截去相同的质量
- D. 按原来高度的比例, 水平截去相等比例的部分高度

【难度】★★【答案】B

10、如图所示,甲、乙两个实心均匀正方体分别放在水平地面上,它们对水平地面的压强相等。则甲、乙密度 $\rho_{\mathbb{P}} < \rho_{\mathbb{Z}}$,若在两个正方体的上部,沿水平方向分别截去相同高度的部分,则剩余部分对水平地面的压强 $P_{\mathbb{P}}$

P z (选填: ">"、"<"、或 "=")。

【答案】>

11、一实心正方体放在水平地面上,地面受到的压强为 P, 若把此物块切一半拿走,则剩余部分对地面的压强

()

A. 一定为 1/2P

B. 一定为 P

C. 可能为 1/3P

D. 可能为 2P

【难度】★【答案】D

12、如图所示,边长分别为 0.2 米和 0.1 米的实心正方体 A、B 放置在水平地面上,物体 A 的质量是 2 千克,物体 B 的密度为 1×10^3 千克/米 3 。

求: ①物体 A 的密度ρ_A。

②物体 B 所受重力的大小 GB。

③若在两正方体上部沿水平方向切去体积均为 ΔV 的部分后,两正方体对地面压强的变化量之比 $\Delta P_A:\Delta P_B$ 。

【难度】★★【答案】①物体 A 的密度为 $0.25 \times 10^3 \text{kg/m}^3$ ②物体 B 所受重力的大小为 9.8N③若在两正方体上部沿水平方向切去体积均为 ΔV 的部分后,两正方体对地面压强的变化量之比为 1:16

13、如图所示,边长分别为 0.2 米和 0.3 米的实心正方体 A、B 放置在水平地面上,物体 A 的密度为 2×10^3 千克/米 3 ,物体 B 的质量为 13.5 千克。求:

- (1) 物体 B 的密度。
- (2) 物体 A 对水平地面的压强。
- (3) 若在正方体 $A \times B$ 上沿水平方向分别截去相同的体积 $V \subseteq A \times B$ 剩余部分对水平地面的压强为 P_A 和 P_B ,请通过计算比较它们的大小关系及其对应的 V 的取值范围

【难度】★★【答案】(1)物体 B 的密度为 0.5×10³kg/m³ (2)物体 A 对水平地面的压强为 3920Pa (3) 若 P_A'>P_B', V<5.625×10⁻³m³;若 P_A'<P_B', V>5.625×10⁻³m³

瓜熟蒂落

- 1、甲、乙两个实心正方体分别放在水平地面上,它们对水平地面的压强相等,且ρ_Ψ>ρ_Z。若在它们右侧沿竖直 方向分别切去一部分,且切去部分的体积相同,则它们对地面压力变化量 ΔF_{in} 、 ΔF_{in} 的大小关系和它们对地面 压强变化量 ΔP_{\parallel} 、 ΔP_{z} 的大小关系分别是()
 - A. $\Delta F \neq \Delta F_{Z}$, $\Delta P \neq \Delta P_{Z}$
 - B. $\Delta F \neq \Delta F_{Z}$, $\Delta P \neq \Delta P_{Z}$
 - C. $\Delta F = \Delta F_{Z}$, $\Delta P = \langle \Delta P_{Z} \rangle$
 - D. $\Delta F = \Delta F_Z$, $\Delta P = \Delta P_Z$

【难度】★【答案】D

- 2、如图所示,甲、乙两个均匀的实心正方体放在水平地面上,它们质量相等。若分别在甲、乙上沿水平方向 截去高度相等的部分后,则剩余部分的 ()
 - A. 甲的体积可能等于乙的体积
 - B. 甲的质量可能小于乙的质量
 - C. 甲对地面压强可能等于乙对地面的压强
 - D. 甲对地面压力可能大于乙对地面的压力

【难度】★【答案】C

- 3、如图所示,质量相同的甲、乙两个均匀实心正方体放在水平地面上。若分别沿竖直方向截去厚度相等的部 分后,则剩余部分对水平地面的压强 P_{\parallel} 和 P_{z} 的关系为 ()
 - A. $P \neq P_Z$

B. $P = P_{Z}$

C. $P = P_{Z}$

D. 以上都有可能

【难度】★【答案】C

- 4、甲、乙两个实心正方体分别放在水平地面上,它们对地面的压强相等,已知ρ_Ψ<ρ_Z。若在两个正方体的右侧, 沿竖直方向截去相同质量的部分,则剩余部分对水平地面的压强关系中正确的是 ()

 - A. $P = P_z$ B. $P = P_z$ C. $P = P_z$
- D. 无法判断

【难度】★【答案】B

- 5、如图,甲、乙两个正方体分别放置在水平地面上,且各自对地面的压强相等。若分别在两个正方体的上部, 沿水平方向截去相同高度,则甲、乙的剩余部分对地面压强 P 以及剩余部分质量 m 的大小关系为(
 - A. $P \neq P_Z$; $m \neq m_Z$
- B. $P \neq P_{Z}$; $m \neq m_{Z}$
- C. $P = P_{Z}$; $m = m_{Z}$
- D. $P = P_{Z}$; $m = m_{Z}$

【难度】★★【答案】C

6、如图两个实心圆柱体放置在水平地面上,沿水平方向分别截去其上部相同高度后,剩余部分对水平地面的 压强相等,则他们原来对水平地面的压强关系 ()

A. $P = P_{Z}$

B. $P \neq P_{Z}$

C. $P \neq P_Z$

D. 不能确定

【难度】★【答案】B

- 7、甲、乙两个实心正方体物块放置在水平地面上,甲的边长小于乙的边长。以下做法中,有可能使两物体剩 余部分对地面的压强相等的做法是 ()
 - A. 如果它们的密度相等,将它们沿水平方向切去相等高度
 - B. 如果它们的密度相等,将它们沿水平方向切去相等质量
 - C. 如果它们的质量相等,将它们沿水平方向切去相等高度
 - D. 如果它们的质量相等,将它们沿水平方向切去相等质量

【难度】★【答案】C

- 8、甲、乙、丙三个实心正方体分别放在水平地面上,它们对水平地面的压力相等。已知 $\rho_{\mathbb{H}} < \rho_{\mathbb{Z}} < \rho_{\mathbb{H}}$ 。若沿水平 方向分别在甲、乙、丙三个正方体上部切去一块,使三个正方体的剩余部分对水平地面的压强相等,则切去部 分的质量关系为 ()
 - A. $\Delta m = \Delta m = \Delta m_{\Xi}$

B. $\Delta m \neq \Delta m \leq \Delta m \neq \Delta m$

C. $\Delta m \neq \Delta M \neq \Delta$

D. $\Delta m = \Delta m = \Delta m_{Z}$

【难度】★★【答案】B

9、如图所示,甲、乙两个用同种材料制成的均匀实心正方体放在水平地面上,可能使甲和乙对地面的压强相 等的方法是 ()

- C. 将质量相同的物体分别放在甲、乙的上面
- D. 分别以甲、乙物体上表面的面积大小加上相同高度的该种物质

【难度】★★【答案】C

- 10、甲、乙、丙三个实心正方体分别放在水平地面上,它们对水平地面的压强相等,已知三块物体的密度关系 为 $\rho_{\mathbb{H}} > \rho_{\mathbb{Z}} > \rho_{\mathbb{H}}$,若把它们都沿竖直方向切去质量相等的部分,则三个正方体剩下部分对水平地面的压强大小关系
 - ()

- A. $P_{\parallel}=P_{Z}=P_{\pi}$ B. $P_{\parallel}< P_{Z}< P_{\pi}$ C. $P_{\parallel}> P_{Z}> P_{\pi}$ D. 以上都有可能

【难度】★★【答案】A

11、如图所示它们对地面的压强相等。若将两个正方体沿竖直方向分别截去相同的体积,则剩余部分对水平地 面的压强关系正确的是 ()

A. $P = P_Z$

B. $P \neq P_{Z}$

C. $P = P_{Z}$

D. 无法判断

【难度】★

【答案】C

12、如图所示平放在水平地面上的砖,沿竖直方向(见图中虚线)截去一半,则剩下的半块砖与原来整块砖相 比 ()

- A. 对地面的压强不变
- B. 对地面的压力不变
- C. 砖的密度减小一半
- D. 砖受到地面的支持力不变

【难度】★★

【答案】A

13、甲、乙、丙三个实心正方体分别放在水平地面上,它们对水平地面的压强相等,它们的密度 $\rho_{\mathbb{H}} < \rho_{\mathbb{Z}} < \rho_{\mathbb{R}}$ 。若 在正方体上方截去质量相同的部分,则剩余部分对水平地面的压强关系为

- A. $P \neq P \leq P \leq P \equiv$
- B. $P = P_Z = P_{\overline{B}}$
- C. P_♥>P_Z>P_丙 D. 无法判断

【难度】★★

【答案】C

15、放置在水平地面上的两个物体 A 和 B 均为质量分布均匀的实心正方体,正方体 A 的边长为 0.1 米,密度 为 0.8×10³ 千克/米 ³, 正方体 B 的边长为 0.2 米, 密度为 0.5×10³ 千克/米 ³。求:

①正方体 A 对水平地面的压强;

②在保持正方体 A、B 原有放置方式的情况下,若沿竖直方向或者水平方向截取物体,使它们对水平地面的压 强相等。下面有两种方案,请判断这两种方案是否可行,若认为可行,计算所截取的长度(或厚度)。

方案一: 从正方体 A 的侧壁竖直截取一部分_____(选填"行"或"不行");

方案二: 从正方体 B 的上方水平截取一部分 (选填"行"或"不行")。

【难度】★★

【答案】①正方体 A 对水平地面的压强为 784Pa

- ②不行: 行
- ③截取的长度为 0.04m

16、如图所示,边长分别为 0.2 米和 0.3 米的实心正方体 A、B 放置在水平地面上,物体 A 的密度为 2×10^3 千克/米 3 ,物体 B 的质量为 13.5 千克。求:

- (1) 物体 A 对水平地面的压强。
- (2)物体B的密度。
- (3) 在保持物体 $A \times B$ 原有放置方式的情况下,为了使 $A \times B$ 对地面的压强相等,甲同学的方案是:在两个正方体上方均放置一个重力为 G 的物体,乙同学的方案是:在两个正方体上方沿水平方向截取相同高度 Δh 。
- ①你认为 同学的方案是可行的。
- ②确定方案后,请计算该方案下所放置的物体重力 G 或截取的相同高度 Δh 。

【难度】★★

【答案】(1)物体 A 对水平地面的压强为 3920Pa

- (2) 物体 B 的密度为 0.5×103kg/m3
- (3) 乙; 截取的相同高度Δh 约为 0.17m

