SecuML: Machine Learning for Computer Security Experts

Anaël Bonneton

anael.bonneton@ssi.gouv.fr

ANSSI, ENS Paris, INRIA

PyParis 2017

Intrusion Detection System

Traditional Detection Methods

Signatures: Precise detection rules built by security experts

- ✓ Low false alert rate
- ✓ Alerts easy to interprete
- X Not robust to attack variations, to new attacks

Traditional Detection Methods

Signatures: Precise detection rules built by security experts

- ✓ Low false alert rate
- ✓ Alerts easy to interprete
- Not robust to attack variations, to new attacks

Machine Learning!

Supervised Detection Model

Computer Security Specificities

Non Machine Learning Experts

- ► Machine Learning pipeline
- Machine Learning jargon

Computer Security Specificities

Non Machine Learning Experts

- ► Machine Learning pipeline
- Machine Learning jargon

Lack of training data

- Few public labelled datasets
- No crowdsourcing

Computer Security Specificities

Non Machine Learning Experts

- Machine Learning pipeline
- Machine Learning jargon

Lack of training data

- Few public labelled datasets
- No crowdsourcing

Need for interpretation

- ▶ How does the detection model work?
- ▶ Why an alert has been raised ?

Applying Machine Learning

- X Deep Learning Frameworks
 - X TensorFlow
 - Microsoft Cognitive Toolkit
 - X Paddle

Applying Machine Learning

X Deep Learning Frameworks

- X TensorFlow
- Microsoft Cognitive Toolkit
- X Paddle

Cloud Solutions

- Google Cloud ML
- Microsoft Azure
- X Amazon Machine Learning

Applying Machine Learning

X Deep Learning Frameworks

- X TensorFlow
- Microsoft Cognitive Toolkit
- X Paddle

Cloud Solutions

- X Google Cloud ML
- X Microsoft Azure
- X Amazon Machine Learning

Machine Learning Libraries

- ✓ scikit-learn
- X Mahout, Weka, Vowpal Wabbit

SecuML: Beyound scikit-learn

Scikit-learn

- ► Classification, clustering, dimension reduction, etc.
- Scaling, grid search, cross validation, etc.

SecuML: Beyound scikit-learn

Scikit-learn

- Classification, clustering, dimension reduction, etc.
- Scaling, grid search, cross validation, etc.

SecuML

- Automation of the Machine Learning pipeline
- Interactive labelling to acquire training data at low cost
- Graphical User Interface

Machine Learning for Computer Security Experts

- Algorithms (scikit-learn, metric-learn, active learning)
- Web user interface (flask server)

SecuML - Input Data

features.csv

```
id,f0,f1,f2,f3,f4,...
0,1,3,0,0,0,...
1,1,4,5,4,1,...
2,1,4,32,13,0,...
3,1,3,0,0,0,...
4,1,3,0,0,0,...
5,1,3,0,0,0,...
6,1,6,7,6,0,...
7.1.3.0.0.0....
8.1.3.0.0.0...
```

true_labels.csv

```
id, label, family
0,M,CVE-2017-30-10
1,M,CVE-2017-30-10
2,B,slides
3,M,CVE-2016-0945
4,M,CVE-2016-0945
5,B,user manual
6,B,user manual
7,B,technical report
8,B,technical report
```


- Set up a Detection Model
- 2 Acquire a Representative Training Dataset at Low Cost

Set up a Detection Model

Set up a Detection Model

Anaël Bonneton PyParis 2017 - SecuML 12/30

Automation of the Machine Learning Pipeline

Training Pipeline

- Scaling
- Cross validation to select the hyperparameters

Automation of the Machine Learning Pipeline

Training Pipeline

- Scaling
- Cross validation to select the hyperparameters

Validation of a Detection Model

Training

Validation

90% *Data*

10% *Data*

Trust in the Detection Model

Understanding the Classifier

- ► How does the detection model work?
- ▶ Why an alert has been raised ?

Trust in the Detection Model

How does the detection model work?

Trust in the Detection Model

Why an alert has been raised?

Demo

./SecuML_classification LogisticRegression PDF contagio

Acquire a Representative Training Dataset at Low Cost

Security experts = expensive resources

Active Learning Strategy

Which instances should be annotated? Which instances are the most informative?

Reducing the number of annotations is not enough!

- ► Low expert waiting time
- ► Feedback: "Your annotations are useful!"
- User interface for annotating

A whole annotation system

- Active learning strategy
- Feedback to the expert
- User interface for annotating

Annotations Queries

Annotations Queries

Annotations Queries

Annotations Queries

Close to the decision boundary

Annotations Queries

► Close to the decision boundary

Clusters = User-defined Families

Annotations Queries

- Close to the decision boundary
- Center of the clusters

Clusters = User-defined Families

Annotations Queries

- Close to the decision boundary
- Center of the clusters
- Edge of the clusters

Clusters = User-defined Families

Will be published at RAID 2017.

Demo

 $./{\tt SecuML_activeLearning\ ILAB\ PDF\ contagio}$

Experiment

startire (_count	
keywords_unique_count	
OpenAction_count	
producer_lower_case	
obj_length_min	
size	
XFA_count	
in_obj_rato	
1fe_dot	
creator_unique_count	
producer_dot	
tfe_digit	
Image_large	_
out_of_obj_mto	
createDate_correct	•

Performance		Predictions
Indicators	ROC	Confusion Matrix
etection threshold: 50%		
Detection		100.0%
False alarms		0.0%
F-score		100.0%
AUC		100.0%

Performance		Predictions
Indicators	ROC	Confusion Matrix
etection threshold: 50%		
Indicator	Mean	Std
Detection	98.36%	0.0208
False alarms	1.78%	0.0068
F-score	97.56%	0.0163
AUC	99.43%	0.0045

Performance		Predictions
Indicators	ROC	Confusion Matrix
etection threshold: 50%		
Detection		97.27%
False alarms		1.26%
F-score		92.36%
AUC		98.93%

SecuML

- Acquire a Representative Training Dataset at Low Cost
- 2 Set up a Detection Model

► GUI to launch the experiments

- GUI to launch the experiments
- Interpretation of more complex models

- GUI to launch the experiments
- Interpretation of more complex models

► Automatic feature extraction

Algorithms and Corresponding Interfaces!

Detection Models

- Logistic regression, SVM, Naive Bayes, ...
- Performance, interpretation

Interactive Machine Learning

- Active learning, Rare category detection
- Annotations, feedback

Algorithms and Corresponding Interfaces!

Clustering

- K-means, Gaussian Mixtures, ...
- Instances in each cluster

Projection

- ► PCA, RCA, LDA, LMNN, ..
- Projection on two components

https://github.com/ANSSI-FR/SecuML

Only for Computer Security experts?

- Model interpretation
- Interactive labelling
- Data visualization with projections
- Clustering display

SecuML is available online!

https://github.com/ANSSI-FR/SecuML

Only for Computer Security experts?

- Model interpretation
- Interactive labelling
- Data visualization with projections
- Clustering display

