This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

2

3

4

5

6

7

8

9

10

11

12

1

1

2

3

4

5

WHAT IS CLAIMED IS:

1.	A shie	elding	device,	compri	ising:
----	--------	--------	---------	--------	--------

a first plate member, which constitutes a part of a main frame of a liquid ejection apparatus;

a second plate member, extended from the first plate member such that a first part thereof opposes to a traveling path of a carriage which carries a plurality of liquid containers each provided with an IC chip and a receiving antenna; and

an antenna board, on which a transmission antenna is provided, the antenna board being mounted on the first part of the second plate member,

wherein the second plate member is formed with a first region which allows the transmission antenna to establish radio communication with the receiving antenna, and a second region which shields radio waves.

- 2. The shielding device as set forth in claim 1, wherein:
- 2 the second plate member is comprised of iron; and
- the first region is provided as a cutout portion piercing through the second plate member.
 - 3. The shielding device as set forth in claim 2, wherein:
 - the transmission antenna comprises a load fluctuation detector, operable to detect load fluctuation generated when the receiving antenna receives a radio signal transmitted from the transmission antenna, in order to read information stored in the IC chip; and

О	the first region is formed so as to oppose to the load fluctuation
7	detector.
1	4. The shielding device as set forth in claim 1, wherein the antenna
2	board is provided as a flexible board member.
1	5. À liquid ejection apparatus, comprising the shielding member as set
2	forth in claim 1 and a liquid ejection head operable to eject liquid supplied from
3	the liquid containers.
1	6. A liquid ejection apparatus, comprising:
2	a liquid ejection head, operable to eject liquid therefrom;
3	a first communicator;
4	a carriage, which carries the liquid ejection head and the first
5	communicator along a traveling path thereof;
6	at least one liquid supplier, which comprises:
7	a pack member which contains therein liquid to be supplied to the
8	liquid ejection head;
9	a casing member which houses the pack member therein; and
10	a second communicator, operable to communicate information
11	regarding liquid contained in the pack member with the first communicator via
12	radio communication; and
13	a holder, in which the liquid supplier is mounted, the holder formed
14	with at least one window which opposes to the second communicator in a case

where the liquid supplier is mounted in the holder, and opposes to the traveling

17

18

19

20

1

2

3

4

5

6

1

path	of	the	carriage	so	that	the	first	communicator	and	the	second
communicator establish the radio communication through the window in a case											
where the first communicator opposes to the window,											

wherein a first region around the window is so configured as to shield radio waves.

- 7. The liquid ejection apparatus as set forth in claim 6, wherein the first region is comprised of iron.
- 1 8. The liquid ejection apparatus as set forth in claim 6, wherein a
 2 plurality of liquid suppliers and a plurality of windows are arranged in the holder
 3 along the traveling path of the carriage, such that each of the windows is
 4 associated with one of the liquid suppliers.
 - 9. The liquid ejection apparatus as set forth in claim 6, wherein:

the holder is provided with a shutter member operable to close the window in a case where the liquid supplier is not mounted in the holder; and

the shutter member is provided with a third communicator operable to communicate information that no liquid supplier is mounted in the holder with the first communicator, in a case where the shutter closes the window.

- 10. The liquid ejection apparatus as set forth in claim 6, wherein:
- a first positioning member is provided on a lower face of the casing
 member;
- a second positioning member is provided on a mount face of the

6

7

8

Э

10

holder on which the lower face of the casing member is placed, such that the first positioning member is engaged with the second positioning member in a case where the liquid supplier is correctly mounted in the holder, and

the holder is provided with a retainer which presses an upper face of the casing member toward the mount face of the holder, so that the liquids supplier is retained in the holder.