Social-ecological models with social hierarchy and spatial structure applied to small scale fisheries

Sophie Wulfing 1* and Easton R. White 1

¹Department of Biological Sciences, University of New Hampshire, 03824, NH, USA

^{*} Corresponding authors: Sophie Wulfing (Sophie
Wulfing@gmail.com) and Dr. Easton White (Easton.White@unh.edu)

1 ABSTRACT

Socio-ecological models combine ecological systems with human social dynamics in order to better understand human interactions with the environment. To model human behavior, replicator dynamics can be used to model how societal influence and financial costs can change opinions about resource extraction. Previous research on replicator dynamics has shown how evolving opinions on conservation can change how humans interact with their environment and therefore change population dynamics of the harvested species. However, social-ecological models often assume that human societies are homogeneous with no social structure. Building on previous work on social-ecological models, we develop a two-patch socio-ecological model with social hierarchy in order to study the interactions between spa-10 tial dynamics an social inequity. We found that fish movement between patches is a major 11 driver of model dynamics, especially when the two patches exhibit different social equality and fishing practices. Further, we found that the societal influence between groups of har-13 vesters was essential to ensuring stable fishery dynamics. Next, we developed a case-study of a co-managed fishery where one group fishes sustainably while another was over-harvests, 15 resulting in a fishery collapse of both patches. We also found that because social influence 16 only included number of fishers and not effective strategies, increased social pressure actually 17 decreased the sustainability of the fishery. The findings of this study indicate the importance 18 of including spatial components to socio-ecological models and highlights the importance of 19 understanding species movements when making conservation decisions. Further, we demonstrate how incorporating fishing methods from outside sources can result in higher stability 21 of the harvested population, indicating a need for diversified information when managing resources.

Keywords: two-patch model, replicator dynamics, social hierarchy, socio-ecological model,

25 species movement

1

2 INTRODUCTION

26

Social ecological models treat human behavior as a variable as opposed to a set parameter. Allowing human heavier to be dynamic allows for the study of how human decision making can change in response to environmental factors and, in turn, alter how humans interact with resources and profits (Bauch, 2005; Ostrom, 2009; Innes et al., 2013; Oraby et al., 2014; Bauch et al., 2016; Sigdel et al., 2017; Thampi et al., 2018). As human societies 31 grow increasingly intricate and interconnected, these models can help us to analyze how our social structures can influence the environment around us (Liu et al., 2007). Social ecological modeling provides important insight not only into how human decision making can influence ecological patterns but can also show hidden processes, reveal regime shifts that would 35 otherwise be hidden, and identify vulnerabilities of systems that do not exist within the purely social or ecological models (Liu et al., 2007; Young et al., 2007; Ostrom, 2009; Lade 37 et al., 2013). Socio-ecological models can also be used in systems where data are difficult to 38 collect, as parameters can be changed in order to analyze different hypothetical scenarios. 39 Conservation plans often do not reach their conservation goals, and these setbacks are often attributed to a lack of stakeholder participation (Crona & Bodin, 2006; Salas et al., 2019; Prince et al., 2021). Socio-ecological models can identify where areas of potential conflict can arise, compromises that can be made in the system, and alternative conservation practices that encourages participation from all stakeholder groups (Ban et al., 2013). Further, as social-ecological models are simulations of human and environmental interactions, they allow flexibility and can be adapted to fit the specific system of study and improve place-based management practices (Young et al., 2007; Liu et al., 2007; Felipe-Lucia et al., 2022) Due to their adaptability, socio-ecological models can use a wide range of strategies to represent human decision making. One such method is replicator dynamics, which model human decision making where an individual makes conservation choices based on weighing the perceived benefits of conservation with the costs, as well as the social pressure to conform

to the group's stance on conservation (Bauch, 2005). Individuals will therefore "replicate" the behavior of their peers by changing their harvest practices based on the opinion of the majority (Bauch & Bhattacharyya, 2012). Models that employ replicator dynamics have been used to show how this social learning is a key component to vaccination uptake in public health, and preexisting social norms can actually suppress vaccine uptake despite frequent disease outbreaks (Bauch & Bhattacharyya, 2012; Oraby et al., 2014). Replicator dynamics can also have conservation applications as pest invasion models have shown ways to simultaneously mitigate pest outbreaks and the cost to address them in the timber industry (Barlow et al., 2014). Further, land use changes have been modeled to have completely different dynamics when human decision making was added to replicator dynamic models (Innes et al., 2013). However, past work on human behavior has generally assumed that human societies are homogeneous, and all people are subject to the same social influence and ecological dynamics. Instituting effective conservation strategies can be especially difficult if the organism being protected has a migratory pattern that crosses over multiple management jurisdictions such as country borders (Ogburn et al., 2017; Garrone-Neto et al., 2018; Ramírez-Valdez et al., 2021). Borders can also create challenges when gathering population data that require extensive fieldwork (Cozzi et al., 2020; Hebblewhite & Whittington, 2020). The fragmentation of management can also result in a mismatch of conservation strategies that become ineffective when the distinct management bodies do not coordinate efforts (Siddons et al., 2017). 71 Research on the importance of coordinated research efforts has been conducted on many terrestrial species with large migratory ranges and have consistently shown that cooperation among government bodies is essential to protecting the health of highly migratory species or

poration is especially relevant in international waters or waters where different government

species whose native ranges expand across multiple countries (Plumptre et al., 2007; Gervasi

et al., 2015; Meisingset et al., 2018). Because fish are generally migratory, management coor-

75

bodies share jurisdiction (Mchich et al., 2000). Previous research on two-patch fishing mod-

els has shown that movement rates between patches can affect population stability when
there are different fishing pressures in each patch (Mchich et al., 2000; Cai et al., 2008).
Economic output can also be maximized in multi-patch fishing models as high dispersal can
result in a higher overall yield of the system than the yield of each patch combined (Auger et
al., 2022). High dispersal across patches is commonly found to be an essential component to
maximizing population health and economic gain from fishing (Freedman & Waltman, 1977;
Moeller & Neubert, 2015; Auger et al., 2022). Two-patch models help us to understand the
population dynamics of fish species better who face different pressures in each patch and
have even resolved conflicts between fishing groups (Mchich et al., 2000).

Contrary to the assumption made by previous models that human groups are homogeneous,
the vast majority of real-world societies exhibit some form of hierarchy or inequality. Societies
with different social subgroups can often exhibit an "us vs. them" mentality and compete for

resources (Borgatti, 2003). People's relationship with the environment has been shown to be influenced by many factors such as social status, wealth, gender, education, and even notions of self-importance (Baker-Médard, Gantt, et al., 2021). Competition over resources has been shown to be exacerbated by social hierarchies and 'top-down' regulation whereas when social connectivity is considered in management plans, management outcomes are not only improved, but costs are reduced as well (Krackhardt & Stern, 1988; Grafton, 2005; Bodin & Crona, 2009). Further, members of social networks have been shown to have varying levels of connectivity with others in their groups based on attributes such as ethnicity, which can in turn alter an individual's relationship with the environment and their views on conservation (Barnes-Mauthe, 2013; Sari et al., 2021). Barnes-Mauthe (2013) showed that fishing 100 communities can exhibit homophily, which is the tendency for people to obtain information 101 and opinions from those who are similar to themselves before seeking views from those who 102 are perceived as different. Therefore, people in different social groups may be receiving dif-103 ferent information and opinions about conservation and acting accordingly (McPherson et 104 al., 2001). For example, in Kenya, communication among fishers has been shown to stay 105

within groups using the same gear type which has inhibited successful regulation of the whole fishery (Crona & Bodin, 2006). Further, in the southwest Madagascar octopus fishery, 107 fishing method and location typically falls along gendered lines. When fishing restrictions 108 were imposed on tidal flats, women's access to octopus harvest was restricted, while men, 109 who typically fished in deeper waters, were able to maintain their livelihood (Baker-Médard, 110 2017). In Thailand, ethnicity has been shown to be a source of fishing conflict which has 111 exacerbated resource depletion (Pomeroy et al., 2007). The existence of social structures is 112 extremely prevalent in human societies which can affect how people interact with the envi-113 ronment. However, there is little existing research that uses replicator dynamics study to 114 study how social hierarchies alter harvest practices. 115

Small-scale fisheries are a particularly relevant system to apply replicator dynamics as fishing 116 practices and policies are often made by communal decision makers. Research on small-scale 117 fisheries is a growing and essential field as they are drastically understudied yet affect many people around the globe (The World Bank, 2012). Due to tight social structures, community 119 decision making and strong reliance on the environment, small-scale fisheries are systems that are well represented by socio-ecological models and replicator dynamics (Grafton, 2005; Thampi et al., 2018; Barnes et al., 2019). Governmental bodies or third parties instituting 122 conservation efforts in small-scale fisheries have often been unsuccessful, especially when 123 the social and economic components of the industry have been ignored (Salas et al., 2019; 124 Prince et al., 2021). However, even when human interactions and decision making have been 125 considered, socio-ecological models have often treated individuals in human societies equal in 126 their social standing. As human societies are often complex and hierarchical, the simplistic 127 assumption that everyone interacts with the environment and within their community equally 128 can lead to lack of participation in conservation by some groups within a community (Barnes-129 Mauthe, 2013; Cumming et al., 2017). Mismanagement of fisheries have even been shown to 130 exacerbate these social inequalities (Cinner et al., 2012; Baker-Médard, 2017). Further, the 131 specific dynamics of the fishery in question have been shown to be important components to 132

models, as models with multiple patches can actually mitigate over-fishing if there is high movement of the harvested species between patches (Cressman et al., 2004). No previous research has combined two-patch fishing models with a hierarchical human decision making model in order to study how space and social dynamics affect fishery dynamics.

In this study, we couple a human-decision replicator dynamics model with social hierarchies 137 with a two-patch resource model in order to understand how decision making is affected 138 by spatial and hierarchical factors. The objectives of this study were: 1) to compare the 139 output of previous replicator dynamics studies with the new two-patch model to understand 140 the affect of species movement on harvesting decisions, 2) understand the effect of social 141 hierarchy and communication across groups on the dynamics of this model, 3) use a co-142 managed small-scale fishery as a case study to understand how fishery dynamics are driven when one group fishes sustainably while the other over-harvests. We hypothesized that higher cooperation between groups would benefit fish stocks overall and that increased fish 145 movement would increase the health of fish populations. 146

3 METHODS

48 3.1 Model Construction

147

We build on the work of Bauch et al. (2016) by extending their old-growth forest model to a two-patch model (Figure 1). The resource population models adapted from Bauch et al. (2016) are as follows:

$$\frac{dF_i}{dt} = r_i F_i (1 - F_i) - \frac{h_i * F_i}{F_i + s_i} - m_j F_i + m_i F_j \tag{1}$$

where the change in resource populations F_i is dependent on r_i , the net population growth of each patch i, and both populations follow logistic growth. The second term: $\frac{h_i*F_i}{F_i+s_i}$, denotes

Figure 1: A conceptual representation of our model as a two-patch extension of Bauch et al. (2016). Here, each fish population (F_i) in each patch i increase through natural growth and movement of fish into the patch. Fish populations are decreased through emigration out of the patch and fishing mortality. The number of fishers (X_i) in each patch i change in response to fish population levels, the cost of stopping fishing activity, and the opinions of those in the patch and those in the other patch.

population lost to human activity. h_i is the harvesting efficiency of the respective human population and s_i controls the supply and demand of the system. Because we extend this to a two-patch model, the m_i parameter denotes the movement of the harvested species out of patch i and into patch j. In this study, we assume a closed population between the two patches. Therefore, individuals move directly from patch to patch and do not disperse elsewhere, nor are individuals immigrating from outside areas.

For the model of human activity and opinion, we use replicator dynamics from evolution-160 ary game theory to simulate societal influence on an individual's opinion. Humans in this 161 population can either be harvesters (therefore participating in harvesting activity) or con-162 servationists (who do not partake in resource extraction), but can change from their current 163 opinion to the other based on the perceived values and costs of each stance. Social dynamics 164 are represented by the proportion of conservationists in a population (X) and the propor-165 tion of harvesters (1-X). These two groups of conservationists and harvesters interact 166 with one another using the term (X)(1-X) which simulates individuals "sampling" the 167 opinions other individuals in the population. If one opinion dominates in the population 168 (i.e. X >> (1 - X) or (1 - X) >> X), the rate of changing opinions will be slow as the 169 power of societal pressure makes it challenging for the other opinion to gain traction. How-170 ever, if X and (1-X) are close, the rate of change in opinion will be fast as society has 171 a split opinion on conservation versus harvest, so individuals will be quick to take up the 172 opinions of others. In this model, each person holds an opinion (conservation or harvest) by 173 weighing the benefits of conservation (U_A) against the benefits of harvest (U_B) , resulting in 174 the replicator equation: 175

$$\frac{dX_i}{dt} = k_i X_i (1 - X_i) [U_{A,i} - U_{B,i}]$$
 (2)

$$\frac{dX_i}{dt} = k_i X_i (1 - X_i) [\Delta U_i] \tag{3}$$

where k_i refers to the rate of interaction within a group. As individuals "sample" the opinions of others in their group, they can switch from A to B if $U_B > U_A$ and vice versa. In our model, we adapted U_A , the perceived benefit of conservation, from Bauch et al. (2016) with the added influence of the other population's opinion. U_A is therefore given by:

$$U_{A,i} = \frac{1}{(F_i + c_i)} + d_i X_i + \rho_i X_j \tag{4}$$

where $\frac{1}{(F_i+c_i)}$ represents the perceived rarity of the harvested population within a patch. As F_i and c_i (the rarity valuation parameter) decrease, perceived rarity will increase, therefore 181 adding to the perceived benefit of protecting resources. d_i refers to the social influence that 182 each population has on itself, and as an individual encounters a conservationist in their own 183 population (X_i) , the social benefit of also being a conservationist is shown in d_i . ρ_i has this 184 similar effect of social influence, but denotes the social effect of the opposite population on 185 decision making (X_i) . Individuals in each population i are receiving information about the 186 conservation practices of the other population j, and the influence that this has on each 187 population is encapsulated by ρ_i . 188

 U_B (the perceived benefits of harvest) is:

$$U_{B,i} = \omega_i + d_i(1 - X_i) + \rho_i(1 - X_j)$$
(5)

where ω_i is the cost of conservation (i.e. revenue lost by not harvesting) where now, d_i is the within-population social benefit of switching to harvesting $(1 - X_i)$ and ρ_i is the other population's $(1 - X_j)$ ability to change the opinion of an individual to be a harvester.

Plugging equations (4) and (5) into equation (2) gives:

$$\frac{dX_1}{dt} = k_1 X_1 (1 - X_1) \left[\frac{1}{F_1 + c_1} - \omega_1 + d_1 (2X_1 - 1) + \rho_1 (2X_2 - 1) \right]$$
 (6)

$$\frac{dX_2}{dt} = k_2 X_2 (1 - X_2) \left[\frac{1}{F_2 + c_2} - \omega_2 + d_2 (2X_2 - 1) + \rho_2 (2X_1 - 1) \right]$$
 (7)

where specifics of the derivation are outlined in the supplementary material. Coupling the resource population and human opinion models gives:

$$\frac{dF_1}{dt} = r_1 F_1 (1 - F_1) - \frac{h_1 * F_1 (1 - X_1)}{F_1 + s_1} - m_2 F_1 + m_1 F_2 \tag{8}$$

$$\frac{dF_2}{dt} = r_2 F_2 (1 - F_2) - \frac{h_2 * F_2 (1 - X_2)}{F_2 + S_2} - m_1 F_2 + m_2 F_1 \tag{9}$$

$$\frac{dX_1}{dt} = k_1 X_1 (1 - X_1) \left[\frac{1}{F_1 + c_1} - \omega_1 + d_1 (2X_1 - 1) + \rho_1 (2X_2 - 1) \right]$$
(10)

$$\frac{dX_2}{dt} = k_2 X_2 (1 - X_2) \left[\frac{1}{F_2 + c_2} - \omega_2 + d_2 (2X_2 - 1) + \rho_2 (2X_1 - 1) \right]$$
(11)

where the harvesting pressure is now a function of the number of harvesters in a population $(\frac{h_i F_i(1-X_i)}{F_i+s_i})$. Further, the opinion of each population will shift based on the perceived population health of their respective patch weighed against the costs and benefits of conservation. As resources decrease, individuals will sway more toward conservation, thereby relieving harvest pressure. However, we now have an external influence in this model: the opinions of people in population j. The strength of this external influence is ρ , and in this study, we plan to simulate inequalities in human societies with this parameter.

Table 1: Default parameter values used in this analysis taken from Bauch et al. (2016) where oscillations are observed.

Parameter	Population 1	Population 2	Definition
r	0.16	0.16	Fish net growth
S	0.8	0.8	Supply and demand
h	0.25	0.25	Harvesting efficiency
k	0.17	0.17	Rate of sampling opinions or social interaction
ω	1.44	1.44	Conservation cost
c	0.5	0.5	Rarity valuation
d	0.3	0.3	Strength of social influence (within population)
m	0	0	Fish movement (from opposite patch)
ho	0	0	Strength of social influence (opposite population)

The default parameters used to analyze the resources movement and human hierarchy parameters were taken from an analyses done in Bauch et al. (2016) and given in Table 1.

Here, Bauch et al. (2016) found an oscillatory behavior where decreased forest cover resulted in decreased harvest due to the replicator dynamics of the human system which allowed for forest recovery and humans to begin high harvest once again.

3.2 Parameter Analyses

In order to understand how resource movement $(m_1 \text{ and } m_2)$ affects dynamics, we first compare how the system will change when both patches are equal (i.e. all of the parameters in each patch is the same) by increasing both m_1 and m_2 incrementally and running the model for 1000 years. We then compare this to the asymmetrical case, where we just increase the

 m_1 parameter and see the effect on the model for the next 1000 years. We also construct bifurcation curves of the m_1 parameter when compared to resource populations in order to understand their effect on dynamics. Further, to analyze the human hierarchy parameters ρ_1 and ρ_2 , we constructed this same analyses of increasing ρ_2 , or the amount of influence of human population 2 (X_2) has on the dynamics of human population 1 (X_1) . We also compared this to the effect on incrementally increasing d_1 .

3.3 Co-Managed Small Scale Fishery Case Study

For a small scale fishery, we choose to model a two-patch fishery where patch 1 is fishing 220 sustainably while patch 2 is over-harvesting. The harvested fish species has a mid-range 221 growth rate and regularly diffuses across the two patches, such as the parrot fish modeled in 222 Thampi et al. (2018), which uses a fish growth rate of is 0.35 fish per year, but alter patch 223 1's growth rate to be 0.4 fish per year. For the harvesting efficiency, we choose a maximal 224 fishing rate of 0.5. These parameters were adapted from a coral reef fishing model Thampi 225 et al. (2018) where r = 0.35 and h = 0.5 are the mid-level growth rate and max fishing rates 226 analyzed by this paper. For the movement parameters m, we chose 0.2 for each as these are 227 the values used in the two-patch fishing model described in Cai et al. (2008). We used the 228 s parameter described in the Bauch et al. (2016) model of s = 0.8. For the purposes of our study, we are assuming a constant net growth rate of fish populations and that reproduction 230 happens locally within each patch. The rate at which humans interact with one another is 231 described by the parameter k. In our default model, we use k = 1.014 as adapted from the 232 Thampi et al. (2018) default model. Thampi et al. (2018) calculated this parameter by 233 fitting conservation opinion data in the United States from 1965 to 1990 to coral health data 234 at that time (Thampi et al., 2018). We used the default rarity valuation parameter c from 235 Thampi et al. (2018) where c = 1.68. The cost of conservation default parameter is $\omega = 0.35$ 236 from Bauch et al. (2016). Further, as our default model has no human social hierarchy, we 237

set $d = \rho = 0.5$ for our social norm strengths as adapted from Bauch et al. (2016) which models social decision making regarding deforestation.

Based off of the default model described above, we then change parameters such that patch 1 is fished sustainably, meaning the fish population in patch 1 is able to persist regardless of the fishing pressure from human population 1. We then set patch 2 to be over-fished, meaning human patch 2 is fishing at too high a rate for the fish population to survive over time (Table 2). Further, we add a social hierarchical component where patch 2 has a higher social influence on patch 1. To analyze the overfishing scenario, we incrementally increase the parameters m and ρ and simulated this system for 100 years in order to assess how increasing each new parameter would affect the overall dynamics of the system.

Table 2: Parameter values used to simulate sustainable fishing practices in patch 1 and over-fishing in patch 2.

Parameter	Population 1	Population 2	Definition
r	0.4	0.35	Fish net growth
S	0.8	0.8	Supply and demand
h	0.25	0.5	Harvesting efficiency
k	1.014	1.014	Rate of sampling opinions or social interaction
ω	0.2	0.35	Conservation cost
c	1.5	1.5	Rarity valuation
d	0.5	0.5	Strength of social influence (within population)
m	0.2	0.2	Fish movement (from opposite patch)
ho	0.5	0.1	Strength of social influence (opposite population)

4 RESULTS

4.1 Movement Parameter

248

To analyze the result of space on socio-ecological models, we observed the effects of increasing 250 both m_1 and m_2 simultaneously (the symmetrical case) and compared this to the effects of 251 only increasing m_1 , or the movement of resources from patch 2 to patch 1 (Figure 2). Here, 252 we find that movement does not change dynamics in the symmetrical case (Figure 2 a), b), 253 and c)), showing that if all parameters are the same in each patch, the movement of resources 254 between them does not change dynamics. However, if there are differences between patches 255 (Figure 2 d), e), and f)), resource movement will greatly alter dynamics and if the model 256 is undergoing oscillations, the linear aspects of the movement parameters will eventually 257 overcome the non-linear dynamics of oscillations if the movement parameter is sufficiently 258 high. 259

²⁶⁰ 4.2 Social Hierarchy Parameter

In figure 3, we can see that increases in d_1 result in higher amplitude oscillations, where F_1 will dip to almost 0 for many years then recover back to 1. Increases in d_1 affect the model differently than increases in ρ_2 , the influence of the other human population. Here, the population dynamics of F_1 stay relatively constant around 0.2, and only have very small 264 oscillations around this number, therefore increases in d_1 can result extreme booms and 265 busts of resource populations while increases in ρ_2 results in limited populations, but these 266 but the resulting dynamics oscillate less, which indicates more stable dynamics. Increases 267 in either d_1 or ρ_2 result in less frequent oscillations, meaning humans are slower to change 268 population levels and that plot 1's resource populations spend more time at the peaks of 260 their oscillations before either recovering from 0 or decreasing from 1. 270

Figure 2: In graphs a), b), and c), both m_1 and m_2 were set to 0.01, 0.05, and 0.1, respectively. The corresponding graphs show the dynamics of these models with the new parameterizations. d), e), and f) show the changes in model dynamics when m_2 is held at 0 and only m_1 (the movement of resources from patch 2 to patch 1) is increased by 0.01, 0.05, and 0.1, respectively. All other parameters were held at the values given in table 2

Figure 3: The difference in increasing social pressure within population 1 (the d_1 parameter is increased down the columns of graphs) versus increasing social pressure from population 1 onto population 1 (the ρ_2 parameter is increased across rows of graphs).

4.3 Scenario Analysis

We then modeled a hypothetical scenario where patch 1 is fished sustainably whereas patch 272 2 is experiencing over-fishing and has a higher social sway than patch 1. We modeled over-273 fishing by altering fish new growth rates (r), harvesting efficiencies (h), costs of conservation 274 (ω) , and external social norm strengths (ρ) (Table 2). Here, the unsustainable practices of 275 human population 2 are so exploitative, that both fish populations eventually collapse. We 276 used this overfishing parameterization for the rest of the analysis of a co-managed small-scale 277 fishery. 278 Next, we ran our model with the parameterization outlined in table 2 with incrementally 279 higher external social influence values (ρ) in both populations and observed how this affected the final population of each fish patch (Figure 4). We found that under different parameterizations, there were often instances where ρ acted as a tipping point for population dynamics 282 where instead of continuously changing the final fish populations, the ρ parameter either 283 resulted in stable fish populations or both stocks collapsed once ρ increased past this tipping 284 point. 285 We then ran the same analysis with the fish dispersal parameter, m, by changing m_1 and m_2 286 individually. Contrary to the effect external social influence (ρ) had on the model, dispersal 287 had a more direct and continuous effect on the final population of fish in each patch. For 288 example, as fish movement from patch 2 to patch 1 increased (i.e. from the unsustainable 289 patch to the sustainable patch), this actually maintained low fish populations the sustainable 290 patch, but resulted in crashed populations in the unsustainable (Figure 5 a). However, if 291 the fish movement was increased from patch 1 to patch 2 (from the sustainable fishing to 292

unsustainable), both patches eventually collapsed to zero (Figure 5 b).

Figure 4: Final fish populations after 100 years in the two-patch fishing model where the F_1 population in patch 1 is fished sustainably but human population 1 has a lower social influence than humans in patch 2, where F_2 is being fished unsustainably. Both ρ_1 and ρ_2 were increased simultaneously.

Figure 5: Final fish populations after 100 years in the two-patch fishing model where patch 1 (F_1) is fished sustainably but human population 1 has a lower social influence than patch 2, where F_2 is being fished unsustainably. a) shows how increases in fish movement into patch 1 (m_1) affect final populations and b) shows how increases in fish movement into patch 2 (m_2) affect final populations.

5 DISCUSSION

294

Instead of just social norms controlling the dynamics of our model, we found that the movement of the resource species between patches (m) was a major driver of population sustain-296 ability or collapse (Figure 5). As we increased the movement of fish into the sustainable 297 patch in the fishery scenario (Figure 5 a), populations in that respective patch also increased 298 because humans in population 1 continued to fish sustainably. Further, as those in popu-299 lation 2 decreased fishing rates, this influenced population 1 to also decrease their number 300 of fishers. As a result, population 1 maintained high fish stocks while population 2 had low 301 stocks. On the contrary, as fish moved from the sustainable patch 1 to the unsustainable 302 patch 2 (Figure 5 b), both fish populations collapsed as m_2 increased because fish movement 303 away from patch 1 eventually grew to be too great for human population 1 to fish sustainably 304 and human population 2 continued to over-fish in their own patch. When both patches are 305 subject to the same conditions (Figure 2 a), b), and c)), resource movement does not affect 306 the dynamics at all. It is only when each patch is subject to different conditions, in the case 307 of figure 2 d), e), and f), where only the movement between patches is asymmetrical, does movement become extremely important in dynamics. This finding is especially relevant to co-managed fisheries, where different areas may be subject to different regulation, environmental conditions, or opinions about conservation. High migration has been shown to be an essential part of maximizing economic benefit from fishing in multi-patch models (Moeller & Neubert, 2015). Because fish are generally migratory and therefore can be difficult to track, constraining fishing to one group of people is more challenging (Grafton, 2005), especially for fish species that exhibit different movement patterns based on life stage, and requires more management coordination (Siddons et al., 2017).

The social hierarchy parameter ρ can also dictate whether or not patches will be harvested 317 sustainably. Figure 3 exemplifies how, when increasing social susceptibility to one's respec-318 tive patch (increasing the d parameter), can result in booms and busts of resource availability. 319 On the other hand, increasing social susceptibility to outside social influence (increasing the 320 ρ parameter) can actually result in more stable dynamics because human population 1 is 321 exhibiting a "portfolio effect" of harvest opinion. In other words, population 1 is taking in 322 opinions regarding harvest from different sources, which can dampen extreme reactions to harvest decisions and therefore reduce extreme changes in fishing pressure. Portfolio effects have been shown to be beneficial when fishers diversify the species they catch, which al-325 lows them to compensate for lost catch when one species experiences decline (Finkbeiner, 326 2015; Cline et al., 2017; Robinson et al., 2020). The finding from our study demonstrates 327 that using multiple sources of information regarding adequate fishing pressure from multiple 328 connected fisheries can also mitigate the effects of resource population fluctuations on har-329 vesting levels. However, our scenarios show that the portfolio effect is only effective when 330 both patches are exhibiting sustainable harvest practices. In the case study, patch 1 was 331 being fished sustainably and patch 2 was experiencing over-fishing, and also included social 332 hierarchy by increasing ρ_1 , or the social influence that human population 2 has on the human 333 population in the first patch (table 1). Despite human population 1's efforts to maintain 334 fish stocks, the unsustainable practices of human population 2 drives the whole fishery to 335

336 collapse.

We then tested the effect of external social influence (ρ) on the case study model and how 337 increasing social influence between human groups would influence the model's dynamics. 338 Contrary to our previous findings, increasing ρ did not result in higher fish populations 339 (Figure 4). Fish populations crashed when ρ passed a tipping point, showing that high 340 levels of cooperation between groups resulted in the over-harvest of both populations of fish. 341 At high levels of external social influence, sustainable fishing practices were not achieved 342 because the only information being passed on to the other human population is the number 343 of fishers as opposed to what sustainable fishing practices were used in order to achieve 344 sustainable fishing yields. As a result, when one patch i is over-fished and the other patch j345 is fished sustainably, the group i will continue to over-fish their own resources because the opposite patch i is influencing this group to continue fishing through the high external social influence (ρ) . Instead of modeling a cohesive system where communication fostered effective conservation, we created a scenario where each community raced to fish each patch as opposed 349 to coming to common understanding of sustainable fishing practices, further highlighting that the content of the information being disseminated matters in successful conservation 351 (Gray et al., 2012). Previous social-ecological research shows that social structures should 352 be taken into consideration when the community manages a resource or else that community 353 management is prone to fail (Grafton, 2005; Newman & Dale, 2007; Cinner et al., 2012; Bodin 354 et al., 2014). Unsuccessful co-management can occur because people who interact differently 355 with the environment or within a society have to consider different trade-offs in conservation, 356 and these trade-offs must be understood in order to institute sustainable practices (Cumming 357 et al., 2017; Baker-Médard, Concannon, et al., 2021). The portfolio effect benefits harvested 358 resources only if each group is participating in sustainable practices. 359

Further, because of the outside human influence term, ρ_i , people are not responding directly to their respective fishing patch, but also to the conservation opinion of the other group.

The inclusion of the movement term from each patch overcame the non-linear components

of the model because movement is a linear term in this model. Adding a spatial component to socio-ecological models can greatly change their dynamics and therefore how people are 364 expected to act under certain environmental conditions. The dispersion of fish populations 365 must be well understood in order to institute effective conservation practices because any 366 decision made by one group of people to conserve resources may be rendered ineffective if 367 this species is highly migratory and the other group of harvesters is using unsustainable 368 conservation practices. Further, because of the outside influences from the other human 369 patch, fishers are no longer responding directly to fish levels in their respective patch, i, but 370 are also influenced by the proportion of fishers in the other patch, j. In a scenario where fish 371 is abundant in one patch, this will also encourage fishing in the other patch because incentive 372 to fish will increase from the outside influence parameter. Past research has exemplified how 373 multi-patch models and the addition of spatial components change the dynamics of systems, 374 especially in fisheries (Mchich et al., 2000; Cai et al., 2008; Moeller & Neubert, 2015; Auger 375 et al., 2022). 376

The decision to include the external social influence term in our model within the injunctive social norms X(1-X) implies that external influence can still change an opinion for or 378 against conservation. However, an individual's willingness to take up a new opinion is still 379 dictated by the overall opinion of their own population exemplifies homophily. Homophily is 380 a concept from sociology where humans tend to take information and the opinions from sub-381 groups similar to them before listening to subgroups of different social standing (Brechwald 382 & Prinstein, 2011). Social network based conservation, like in our model, can replace 'top-383 down' regulation which can exclude stakeholders but has been shown to be susceptible to 384 homophily (Newman & Dale, 2007). Conservation has been shown to be more effective when 385 human populations are more cohesive and that those with subgroups experience more bar-386 riers to effective conservation (Bodin & Crona, 2009). Solutions to a lack of cohesion could 387 be to institute some form of liaison that serves as cross-group communicators (Guerrero et al., 2015). 389

Further research on the model used in this study could consider an open system, where fish diffusion does not necessarily have to pass between patches and could diffuse into non-fished 391 areas. Further, extensions of this work could observe model dynamics with fish species with a 392 long lifespan or fast reproduction rates. Also, stronger social ties have been shown to be more 393 adaptable to environmental change (Grafton, 2005), therefore further studies could evaluate 394 the effect of climate change or extreme events on this social system (White & Wulfing, 395 2023). The specific way we chose to incorporate social hierarchy into the model could be 396 changed. There are many ways to model social systems so another application of this study 397 would be to compare its results to models that incorporate social hierarchy differently. Next, 398 further work on parameterizing our model to a real-world system could help understand if 390 our model is properly capturing the underlying dynamics of two-patch fishing systems with 400 social hierarchy. Our model only incorporates public opinion, fishing rates, and financial 401 gains from fisheries as aspects that could cause fishery failure. In practice, other issues such 402 as non-compliance to fishing regulations, hyper-stability, and regulation lag time could all 403 be additional factors that result in fishery collapse but are not incorporated in this model 404 (Erisman et al., 2011; Pinsky & Fogarty, 2012; Belhabib et al., 2014). Further, this study 405 does not consider Allee effects in the fish populations, which may alter how spatial dynamics interacts with management practices (White et al., 2021). Finally, our model assumed that the uptake of opinions happens solely through social networks and weighing costs of conservation against the benefits. In reality, there may be more factors that influence one's 409 harvesting decisions such as governing bodies or media consumption. 410

Acknowledgements - This research was supported in part by NSF grant #1923707.

412 References

- Auger, P., Kooi, B., & Moussaoui, A. (2022). Increase of maximum sustainable yield for
- fishery in two patches with fast migration. Ecological Modelling, 467, 109898. https:
- //doi.org/10.1016/j.ecolmodel.2022.109898
- Baker-Médard, M. (2017). Gendering Marine Conservation: The Politics of Marine Pro-
- tected Areas and Fisheries Access. Society & Natural Resources, 30(6), 723–737. https://doi.org/10.1001/journal.2007.0001.
- //doi.org/10.1080/08941920.2016.1257078
- Baker-Médard, M., Concannon, K., Gantt, C., Moen, S., & White, E. R. (2021). Socialscape
- Ecology: Integrating social factors into spatially-explicit marine conservation planning
- [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/m2kqa
- Baker-Médard, M., Gantt, C., & White, E. R. (2021). Classed conservation: Socio-economic
- drivers of participation in marine resource management. Environmental Science & Policy,
- 124, 156–162. https://doi.org/10.1016/j.envsci.2021.06.007
- Ban, N. C., Mills, M., Tam, J., Hicks, C. C., Klain, S., Stoeckl, N., Bottrill, M. C., Levine,
- J., Pressey, R. L., Satterfield, T., & Chan, K. M. (2013). A social-ecological approach
- to conservation planning: Embedding social considerations. Frontiers in Ecology and the
- Environment, 11(4), 194–202. https://doi.org/10.1890/110205
- Barlow, L.-A., Cecile, J., Bauch, C. T., & Anand, M. (2014). Modelling Interactions between
- Forest Pest Invasions and Human Decisions Regarding Firewood Transport Restrictions.
- PLoS ONE, 9(4), e90511. https://doi.org/10.1371/journal.pone.0090511
- Barnes, M. L., Bodin, Ö., McClanahan, T. R., Kittinger, J. N., Hoey, A. S., Gaoue, O. G., &
- Graham, N. A. J. (2019). Social-ecological alignment and ecological conditions in coral
- reefs. Nature Communications, 10(1), 2039. https://doi.org/10.1038/s41467-019-09994-
- 435 1

- Barnes-Mauthe, M. (2013). The total economic value of small-scale fisheries with a charac-
- terization of post-landing trends: An application in Madagascar with global relevance.
- Fisheries Research, 11.
- Bauch, C. T. (2005). Imitation dynamics predict vaccinating behaviour. *Proceedings of the*
- Royal Society B: Biological Sciences, 272(1573), 1669–1675. https://doi.org/10.1098/
- rspb.2005.3153
- Bauch, C. T., & Bhattacharyya, S. (2012). Evolutionary Game Theory and Social Learn-
- ing Can Determine How Vaccine Scares Unfold. PLoS Computational Biology, 8(4),
- e1002452. https://doi.org/10.1371/journal.pcbi.1002452
- Bauch, C. T., Sigdel, R., Pharaon, J., & Anand, M. (2016). Early warning signals of regime
- shifts in coupled human-environment systems. Proceedings of the National Academy of
- Sciences, 113(51), 14560–14567. https://doi.org/10.1073/pnas.1604978113
- Belhabib, D., Koutob, V., Sall, A., Lam, V. W. Y., & Pauly, D. (2014). Fisheries catch
- misreporting and its implications: The case of Senegal. Fisheries Research, 151, 1–11.
- https://doi.org/10.1016/j.fishres.2013.12.006
- 451 Bodin, O., & Crona, B. I. (2009). The role of social networks in natural resource governance:
- What relational patterns make a difference? Global Environmental Change, 19(3), 366–
- 453 374. https://doi.org/10.1016/j.gloenvcha.2009.05.002
- Bodin, Ö., Crona, B., Thyresson, M., Golz, A.-L., & Tengö, M. (2014). Conservation Success
- as a Function of Good Alignment of Social and Ecological Structures and Processes:
- Social-Ecological Fit and Conservation. Conservation Biology, 28(5), 1371–1379. https:
- //doi.org/10.1111/cobi.12306
- 458 Borgatti, S. (2003). The Network Paradigm in Organizational Research: A Review and
- Typology. Journal of Management, 29(6), 991–1013. https://doi.org/10.1016/S0149-

- 2063(03)00087-4
- Brechwald, W. A., & Prinstein, M. J. (2011). Beyond Homophily: A Decade of Advances
- in Understanding Peer Influence Processes: Beyond Homophily. Journal of Research on
- 463 Adolescence, 21(1), 166–179. https://doi.org/10.1111/j.1532-7795.2010.00721.x
- 464 Cai, L., Li, X., & Song, X. (2008). Modeling and analysis of a harvesting fishery model
- in a two-patch environment. International Journal of Biomathematics, 01(03), 287–298.
- https://doi.org/10.1142/S1793524508000242
- Cinner, J. E., McClanahan, T. R., MacNeil, M. A., Graham, N. A. J., Daw, T. M., Mukminin,
- A., Feary, D. A., Rabearisoa, A. L., Wamukota, A., Jiddawi, N., Campbell, S. J., Baird,
- A. H., Januchowski-Hartley, F. A., Hamed, S., Lahari, R., Morove, T., & Kuange, J.
- (2012). Comanagement of coral reef social-ecological systems. Proceedings of the National
- Academy of Sciences, 109(14), 5219–5222. https://doi.org/10.1073/pnas.1121215109
- ⁴⁷² Cline, T. J., Schindler, D. E., & Hilborn, R. (2017). Fisheries portfolio diversification and
- turnover buffer Alaskan fishing communities from abrupt resource and market changes.
- Nature Communications, 8(1), 14042. https://doi.org/10.1038/ncomms14042
- 475 Cozzi, G., Behr, D. M., Webster, H. S., Claase, M., Bryce, C. M., Modise, B., Mcnutt, J. W.,
- & Ozgul, A. (2020). African Wild Dog Dispersal and Implications for Management. The
- Journal of Wildlife Management, 84(4), 614–621. https://doi.org/10.1002/jwmg.21841
- ⁴⁷⁸ Cressman, R., Křivan, V., & Garay, J. (2004). *Ideal Free Distributions, Evolutionary Games*,
- and Population Dynamics in Multiple-Species Environments.
- 480 Crona, B., & Bodin, Ö. (2006). What You Know is Who You Know? Communication
- Patterns Among Resource Users as a Prerequisite for Co-management. *Ecology and*
- Society, 11(2), art7. https://doi.org/10.5751/ES-01793-110207

- Cumming, G. S., Morrison, T. H., & Hughes, T. P. (2017). New Directions for Understanding
- the Spatial Resilience of Social–Ecological Systems. *Ecosystems*, 20(4), 649–664. https://doi.org/10.1003/
- //doi.org/10.1007/s10021-016-0089-5
- Erisman, B. E., Allen, L. G., Claisse, J. T., Pondella, D. J., Miller, E. F., & Murray, J.
- 487 H. (2011). The illusion of plenty: Hyperstability masks collapses in two recreational
- fisheries that target fish spawning aggregations. Canadian Journal of Fisheries and
- Aquatic Sciences, 68(10), 1705–1716. https://doi.org/10.1139/f2011-090
- Felipe-Lucia, M. R., Guerrero, A. M., Alexander, S. M., Ashander, J., Baggio, J. A., Barnes,
- M. L., Bodin, Ö., Bonn, A., Fortin, M.-J., Friedman, R. S., Gephart, J. A., Helmstedt,
- 492 K. J., Keyes, A. A., Kroetz, K., Massol, F., Pocock, M. J. O., Sayles, J., Thompson,
- R. M., Wood, S. A., & Dee, L. E. (2022). Conceptualizing ecosystem services using
- social-ecological networks. Trends in Ecology & Evolution, 37(3), 211–222. https://doi.
- org/10.1016/j.tree.2021.11.012
- Finkbeiner, E. M. (2015). The role of diversification in dynamic small-scale fisheries: Lessons
- from Baja California Sur, Mexico. Global Environmental Change, 32, 139–152. https:
- //doi.org/10.1016/j.gloenvcha.2015.03.009
- Freedman, H. I., & Waltman, P. (1977). Mathematical Models of Population Interactions
- with Dispersal. I: Stability of Two Habitats with and without a Predator. SIAM Journal
- on Applied Mathematics, 32(3), 631–648. https://doi.org/10.1137/0132052
- Garrone-Neto, D., Sanches, E. A., Daros, F. A. L. de M., Imanobu, C. M. R., & Moro,
- P. S. (2018). Using the same fish with different rules: A science-based approach for
- improving management of recreational fisheries in a biodiversity hotspot of the Western
- South Atlantic. Fisheries Management and Ecology, 25(4), 253–260. https://doi.org/10.
- 506 1111/fme.12288

- Gervasi, V., Brøseth, H., Nilsen, E. B., Ellegren, H., Flagstad, Ø., & Linnell, J. D. C.
- 508 (2015). Compensatory immigration counteracts contrasting conservation strategies of
- wolverines (Gulo gulo) within Scandinavia. Biological Conservation, 191, 632–639.
- https://doi.org/10.1016/j.biocon.2015.07.024
- Grafton, R. Q. (2005). Social capital and fisheries governance. *Ocean & Coastal Manage-*ment, 48(9-10), 753-766. https://doi.org/10.1016/j.ocecoaman.2005.08.003
- Gray, S., Chan, A., Clark, D., & Jordan, R. (2012). Modeling the integration of stakeholder
- knowledge in social-ecological decision-making: Benefits and limitations to knowledge
- diversity. Ecological Modelling, 229, 88–96. https://doi.org/10.1016/j.ecolmodel.2011.
- 09.011
- Guerrero, A. M., Mcallister, R. R. J., & Wilson, K. A. (2015). Achieving Cross-Scale Collabo-
- ration for Large Scale Conservation Initiatives: Cross-scale collaboration in conservation.
- Conservation Letters, 8(2), 107–117. https://doi.org/10.1111/conl.12112
- Hebblewhite, M., & Whittington, J. (2020). Wolves without borders: Transboundary sur-
- vival of wolves in Banff National Park over three decades. Global Ecology and Conserva-
- tion, 24, e01293. https://doi.org/10.1016/j.gecco.2020.e01293
- Innes, C., Anand, M., & Bauch, C. T. (2013). The impact of human-environment interactions
- on the stability of forest-grassland mosaic ecosystems. Scientific Reports, 3(1), 2689.
- https://doi.org/10.1038/srep02689
- 526 Krackhardt, D., & Stern, R. N. (1988). Informal Networks and Organizational Crises: An
- Experimental Simulation. Social Psychology Quarterly, 51(2), 123. https://doi.org/10.
- 2307/2786835
- Lade, S. J., Tavoni, A., Levin, S. A., & Schlüter, M. (2013). Regime shifts in a social-
- ecological system. Theoretical Ecology, 6(3), 359-372. https://doi.org/10.1007/s12080-

- 013-0187-3
- Liu, J., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor,
- W. W., Ouyang, Z., Deadman, P., Kratz, T., & Provencher, W. (2007). Coupled Human
- and Natural Systems.
- Mchich, R., Auger, P., & Raïssi, N. (2000). The dynamics of a fish stock exploited in two
- fishing zones. Acta Biotheoretica, 48, 201–218.
- McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in
- Social Networks. Annual Review of Sociology, 27(1), 415–444. https://doi.org/10.1146/
- annurev.soc.27.1.415
- Meisingset, E. L., Loe, L. E., Brekkum, Ø., Bischof, R., Rivrud, I. M., Lande, U. S., Zimmer-
- mann, B., Veiberg, V., & Mysterud, A. (2018). Spatial mismatch between management
- units and movement ecology of a partially migratory ungulate. Journal of Applied Ecol-
- ogy, 55(2), 745-753. https://doi.org/10.1111/1365-2664.13003
- Moeller, H. V., & Neubert, M. G. (2015). Economically optimal marine reserves without
- spatial heterogeneity in a simple two-patch model: Economically optimal marine reserves.
- Natural Resource Modeling, 28(3), 244–255. https://doi.org/10.1111/nrm.12066
- Newman, L., & Dale, A. (2007). Homophily and Agency: Creating Effective Sustainable
- Development Networks. Environment, Development and Sustainability, 9(1), 79-90.
- https://doi.org/10.1007/s10668-005-9004-5
- Ogburn, M. B., Harrison, A.-L., Whoriskey, F. G., Cooke, S. J., Mills Flemming, J. E., &
- Torres, L. G. (2017). Addressing Challenges in the Application of Animal Movement
- Ecology to Aquatic Conservation and Management. Frontiers in Marine Science, 4.
- https://doi.org/10.3389/fmars.2017.00070

- Oraby, T., Thampi, V., & Bauch, C. T. (2014). The influence of social norms on the
 dynamics of vaccinating behaviour for paediatric infectious diseases. *Proceedings of the*Royal Society B: Biological Sciences, 281(1780), 20133172. https://doi.org/10.1098/
 rspb.2013.3172
- Ostrom, E. (2009). A General Framework for Analyzing Sustainability of Social-Ecological

 Systems. Science, 325 (5939), 419–422. https://doi.org/10.1126/science.1172133
- Pinsky, M. L., & Fogarty, M. (2012). Lagged social-ecological responses to climate and range
 shifts in fisheries. Climatic Change, 115(3-4), 883–891. https://doi.org/10.1007/s10584 012-0599-x
- Plumptre, A. J., Kujirakwinja, D., Treves, A., Owiunji, I., & Rainer, H. (2007). Transboundary conservation in the greater Virunga landscape: Its importance for landscape species. *Biological Conservation*, 134(2), 279–287. https://doi.org/10.1016/j.biocon.2006.08.012
- Pomeroy, R., Parks, J., Pollnac, R., Campson, T., Genio, E., Marlessy, C., Holle, E., Pido,
 M., Nissapa, A., Boromthanarat, S., & Thu Hue, N. (2007). Fish wars: Conflict and
 collaboration in fisheries management in Southeast Asia. Marine Policy, 31(6), 645–656.
 https://doi.org/10.1016/j.marpol.2007.03.012
- Prince, J., Lalavanua, W., Tamanitoakula, J., Tamata, L., Green, S., Radway, S., Loganimoce, E., Vodivodi, T., Marama, K., Waqainabete, P., Jeremiah, F., Nalasi, D., Naleba, M., Naisilisili, W., Kaloudrau, U., Lagi, L., Logatabua, K., Dautei, R., Tikaram, R., ... Mangubhai, S. (2021). Spawning potential surveys in Fiji: A new song of change for SMALL-SCALE fisheries in the Pacific. *Conservation Science and Practice*, 3(2). https://doi.org/10.1111/csp2.273
- Ramírez-Valdez, A., Rowell, T. J., Dale, K. E., Craig, M. T., Allen, L. G., Villaseñor-Derbez,
 J. C., Cisneros-Montemayor, A. M., Hernández-Velasco, A., Torre, J., Hofmeister, J., &

- Erisman, B. E. (2021). Asymmetry across international borders: Research, fishery and management trends and economic value of the giant sea bass (*Stereolepis Gigas*). *Fish*
- and Fisheries, 22(6), 1392–1411. https://doi.org/10.1111/faf.12594
- Robinson, J. P. W., Robinson, J., Gerry, C., Govinden, R., Freshwater, C., & Graham, N. A.
- J. (2020). Diversification insulates fisher catch and revenue in heavily exploited tropical
- fisheries. $Science\ Advances,\ 6(8),\ eaaz0587.\ https://doi.org/10.1126/sciadv.aaz0587$
- Salas, S., Barragán-Paladines, M. J., & Chuenpagdee, R. (Eds.). (2019). Viability and
- Sustainability of Small-Scale Fisheries in Latin America and The Caribbean (Vol. 19).
- Springer International Publishing. https://doi.org/10.1007/978-3-319-76078-0
- Sari, I., Ichsan, M., White, A., Raup, S. A., & Wisudo, S. H. (2021). Monitoring small-
- scale fisheries catches in Indonesia through a fishing logbook system: Challenges and
- strategies. Marine Policy, 134, 104770. https://doi.org/10.1016/j.marpol.2021.104770
- 590 Siddons, S. F., Pegg, M. A., & Klein, G. M. (2017). Borders and Barriers: Challenges of
- Fisheries Management and Conservation in Open Systems: Challenges of Fisheries Man-
- agement and Conservation in Open Systems. River Research and Applications, 33(4),
- 593 578–585. https://doi.org/10.1002/rra.3118
- Sigdel, R. P., Anand, M., & Bauch, C. T. (2017). Competition between injunctive social
- norms and conservation priorities gives rise to complex dynamics in a model of forest
- growth and opinion dynamics. Journal of Theoretical Biology, 432, 132–140. https:
- //doi.org/10.1016/j.jtbi.2017.07.029
- Thampi, V. A., Anand, M., & Bauch, C. T. (2018). Socio-ecological dynamics of Caribbean
- coral reef ecosystems and conservation opinion propagation. Scientific Reports, 8(1),
- 600 2597. https://doi.org/10.1038/s41598-018-20341-0
- The World Bank. (2012). HIDDEN HARVEST-The Global Contribution of Capture Fish-

- eries (66469-GLB). The World Bank. https://documents1.worldbank.org/curated/en/
- 515701468152718292/pdf/664690ESW0P1210120HiddenHarvest0web.pdf
- White, E. R., Baskett, M. L., & Hastings, A. (2021). Catastrophes, connectivity and Allee
- effects in the design of marine reserve networks. Oikos, 130(3), 366–376. https://doi.
- org/10.1111/oik.07770
- White, E. R., & Wulfing, S. (2023). Extreme events and coupled socio-ecological systems
- [Preprint]. Agricultural and Resource Economics. https://doi.org/10.32942/X29G7W
- Young, O. R., Osherenko, G., Ekstrom, J., Crowder, L. B., Ogden, J., Wilson, J. A., Day,
- J. C., Douvere, F., Ehler, C. N., McLeod, K. L., Halpren, B. S., & Peach, R. (2007).
- Solving the Crisis in Ocean Governance: Place-Based Management of Marine Ecosystems.
- Environment: Science and Policy for Sustainable Development, 49(4), 20–32. https:
- //doi.org/10.3200/ENVT.49.4.20-33