PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 06

MAT1106 — Introducción al Cálculo Fecha: 2020-09-03

Problema 1:

Encuentre el conjunto de solución de la inecuación

$$\frac{3}{1-x} < \frac{x+6}{2-x}$$

Solución problema 1: Se nota que $x \neq 2$ y $x \neq 1$, y se ve lo siguiente:

$$\frac{3}{1-x} < \frac{x+6}{2-x} \iff 0 < \frac{x+6}{2-x} - \frac{3}{1-x}$$

$$\iff 0 < \frac{(x+6)(1-x) - 3(2-x)}{(2-x)(1-x)}$$

$$\iff 0 < \frac{x+6-x^2 - 6x - 6 + 3x}{(2-x)(1-x)}$$

$$\iff 0 < -\frac{x(x+2)}{(2-x)(1-x)}$$

$$\iff 0 < -\frac{x(x+2)}{(x-2)(x-1)}$$

Por lo que viendo la siguiente tabla:

	$(-\infty, -2)$	(-2,0)	(0,1)	(1, 2)	$(2,\infty)$
x+2	-	+	+	+	+
x	-	-	+	+	+
x-1	-	-	-	+	+
x-2	-	-	-	-	+
$-\frac{x(x+2)}{(x-2)(x-1)}$	-	+	-	+	-

Por lo que se tiene que $x \in (-2,0) \cup (1,2)$.

Problema 2:

Sea $\alpha > 0$. Encuentre todos los valores de x tales que

$$\left| x^2 - \alpha^2 \right| > \left| x - \alpha \right|$$

Solución problema 2: Se nota que $x \neq \alpha$, ya que si $x = \alpha$ se tiene $0 |x^2 - \alpha^2| > |x - \alpha| = 0$. Y si $x \neq \alpha$ se tiene que $|x - \alpha| > 0$, por lo que $|x + \alpha| > 1$. Por lo que $x > 1 - \alpha$ o $x < -1 - \alpha$ por lo que $x \in ((-\infty, -1 - \alpha) \cup (1 - \alpha, \infty)) \setminus \{\alpha\}$.

Problema 3:

(13 2017) Sea z > 0 fijo, y sea A_z el conjunto de solución de la inecuación

$$|x^2 + xz + z^2| \le zx + 2z^2$$
.

Demuestre que si $0 < z_1 < z_2$, entonces $A_{z_1} \subseteq A_{z_2}$

Solución problema 3: Sabemos que $x^2+zx+z^2\geq 0$ por ayudantía pasada. Por lo que la inecuación es equivalente a

$$x^2 < z^2$$

Se sabe que el conjunto solución de esa inecuación es [-z, z].

Si $0 < z_1 < z_2$, entonces $-z_1 > -z_2$. Sea $x \in A_{z_1}$, esto nos dice que $-z_1 \le x \le z_1$. Por lo que $-z_2 < -z_1 \le x \le z_1 < z_2$ nos dice que $x \in A_{z_2}$.

Problema 4:

Demuestre la desigualdad de Nesbitt: Si a, b, c > 0 se tiene que

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}$$

Solución problema 4: S.p.d.g. $a \ge b \ge c$, por lo que

$$\frac{1}{b+c} \ge \frac{1}{a+c} \ge \frac{1}{a+b}$$

Usando la desigualdad demostrada la ayudantía pasada se tiene que

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{b}{b+c} + \frac{c}{a+c} + \frac{a}{a+b}$$
$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{c}{b+c} + \frac{a}{a+c} + \frac{b}{a+b}$$

Sumando ambas desigualdades se tiene

$$2\left(\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}\right) \ge 3$$

Lo que es equivalente lo pedido.s