Современные методы в теоретической информатике Конечные автоматы и разрешимость монадических теорий Золотов Б.

Монадическая логика — это логика, расширяющая логику первого порядка, но являющаяся фрагментом логики второго порядка. В её формулах и предложениях разрешены кванторы по одноместным предикатам: уже не только по элементам, но ещё не по всем предикатам. Например, формула монадической логики в языке, содержащем предикат \leq —

$$\exists X \ \exists x_0 \in X \ \forall y \in X \ x_0 \leq y.$$

Теорема: Глядя на конечный автомат, можно эффективно выяснить, принимает ли он хоть одно непустое слово.

Конечные цепи

Монадический язык одного потомка — язык первого порядка с предикатами \subseteq и SUC:

$$SUC(X, Y) = \exists x, y \ X = \{x\}, \ Y = \{y\}, \ y$$
 — следующий за x элемент.

Любое конечное вполне упорядоченное множество (BУM) естественным образом является моделью этого языка.

Пусть дано конечное ВУМ $C = \{1, ..., N\}$ и n его подмножеств $X_1, ..., X_n$. Построим по ним слово $Word(C, X_1, ..., X_n)$ длины N над алфавитом $\Sigma_n = \{0, 1\}^n$:

Теорема: Есть алгоритм, который по Σ_n -автомату A строит формулу $\phi(X_1,\ldots,X_n)$ монадического языка одного потомка, такую что для любой конечной цепи C и любых n её подмножеств X_1,\ldots,X_n

$$C \models \varphi(X_1,\ldots,X_n)$$
 если и только если A принимает $\operatorname{Word}(C,X_1,\ldots,X_n)$.

Теорема: Есть алгоритм, который по формуле $\varphi(X_1,\ldots,X_n)$ строит автомат A над Σ_n , такой что

то же самое.

Теорема: Монадическая теория конечных цепей разрешима. Это потому, что по предложению (формуле без свободных переменных) строится автомат над $\Sigma_0 = \{\circ\}$, и предложение выполняется в какой-то из цепей, если автомат примет хотя бы одно слово.

Цепь №

Очевидно, является моделью монадического языка одного потомка.

Нам потребуются NDFA, работающие на бесконечных строках: $A=(S,T,s_{\rm in},F)$, где T — таблица переходов, а $F\subset 2^S$ — множество финальных наборов состояний. Запуск является принимающим, если

```
\{s \mid \text{автомат посещает } s \text{ беск. много раз}\} \in F.
```

Результаты этого раздела аналогичны результатам предыдущего, с тем лишь отличием, что вместо $Word(C, X_1, \ldots, X_n)$ по тому же принципу строится $SEQ(\mathbb{N}, X_1, \ldots, X_n)$.

Бесконечное двоичное дерево

В этом разделе я успел рассказать только определения.

Двоичное дерево — это $\{l,r\}^*$. Монадический язык двух потомков содержит предикаты \subseteq , Left и Right. Σ -оценка дерева — запихивание символов алфавита Σ в его узлы.

Древесный Σ -автомат — четвёрка $(S, T, T_{\rm in}, F)$.

$$T\subseteq S imes\{l,r\} imes\Sigma imes S$$
 — таблица переходов $T_{
m in}\subseteq\Sigma imes S$ — таблица начальных состояний $F\subset 2^S$ — все финальные наборы состояний

То, принимает ли автомат слово, выясняется по итогам *игры* между автоматом и «Сусаниным»: на нечётном ходу автомат выбирает состояние, а на чётном ходу «Сусанин» говорит, в какую сторону спускаться из текущего узла:

A chooses:	Pathfinder chooses:
s_0	d_1
s_1	d_2
S ₂	d_3
S ₃	

Here each $s_n \in S$ and each $d_n \in \{l, r\}$. The choices of A are restricted by the following conditions:

$$(V(e), s_0) \in T_{\text{in}}$$
 and $(s_n, d_{n+1}, V(d_1 \dots d_{n+1}), s_{n+1}) \in T$.

Автомат выигрывает, если $\{s \mid s$ выбиралось беск. много раз $\} \in F$, и принимает дерево с символами из Σ в узлах, если обладает выигрышной стратегией.

Наконец, last appearance record для позиции в дереве — строка из символов, находящихся в предках данной позиции, где каждый символ встречается ровно один раз — на месте своего самого нижнего появления в предках. То есть, строке abacca будет соответствовать bca.

Теорема: Монадическая теория двоичного дерева разрешима.

Теорема: По древесному автомату A можно эффективно построить автомат A', принимающий в точности деревья, отвергаемые автоматом A. («Теорема о дополнении»)