GENG-8030 Computational Methods and Modeling for Engineering Applications

Summer 2023

Tutorial 1

All questions were taken from the course textbook:

Title MATLAB for engineering applications

Author William J. Palm

Publisher McGraw-Hill Education; 5th Edition

Chapter 1: An Overview of MATLAB

27. Use MATLAB to plot the function $T=7\ln t-8e^{0.3t}$ over the interval $1\leq t\leq 3$. Put a title on the plot and properly label the axes. The variable T represents temperature in degrees Celsius; the variable t represents time in minutes.

30. A *cycloid* is the curve described by a point *P* on the circumference of a circular wheel of radius *r* rolling along the *x* axis. The curve is described in parametric form by the equations

$$x = r\left(\phi - \sin\phi\right)$$

$$y = r(1 - \cos \phi)$$

Use these equations to plot the cycloid for r=10 in. and $0 \le \phi \le 4\pi$.

35. Write a script file to compute the three roots of the cubic equation

$$x^3 + ax^2 + bx + c = 0$$

Use the input function to let the user enter values for a, b, and c.

Chapter 2: Numeric, Cell and Structure Arrays

10. Consider the following arrays.

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 4 & 100 \\ 7 & 9 & 7 \\ 3 & \pi & 42 \end{bmatrix} \qquad \mathbf{B} = \text{In}(\mathbf{A})$$

Write MATLAB expressions to do the following.

- a. Select just the second row of B.
- b. Evaluate the sum of the second row of B.
- c. Multiply the second column of B and the first column of A element by element.
- d. Evaluate the maximum value in the vector resulting from element-by-element multiplication of the second column of B with the first column of A.
- e. Use element-by-element division to divide the first row of **A** by the first three elements of the third column of **B**. Evaluate the sum of the elements of the resulting vector.

11.* a. Create a three-dimensional array **D** whose three "layers" are these matrices:

$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 1 \\ 6 & 8 & -5 \\ 7 & 9 & 10 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 6 & 9 & -4 \\ 7 & 5 & 3 \\ -8 & 2 & 1 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} -7 & -5 & 2 \\ 10 & 6 & 1 \\ 3 & -9 & 8 \end{bmatrix}$$

- b. Use MATLAB to find the largest element in each layer of D and the largest element in D.
- 23.* The mechanical work W done in using a force F to push a block through a distance D is W = FD. The following table gives data on the amount of force used to push a block through the given distance over five segments of a certain path. The force varies because of the differing friction properties of the surface.

	Path segment							
	1	2	3	4	5			
Force (N)	400	550	700	500	600			
Distance (m)	3	0.5	0.75	1.5	5			

Use MATLAB to find (a) the work done on each segment of the path and (b) the total work done over the entire path.

27. The potential energy stored in a spring is kx2/2, where k is the spring constant and xis the compression in the spring. The force required to compress the spring is kx. The following table gives the data for five springs:

		Spring						
	1	2	3	4	5			
Force (N)	II	7	8	10	9			
Spring constant k (N/111)	1000	600	900	1300	700			

Use MATLAB to find (a) the compression x in each spring and (b) the potential energy stored in each spring.