# Twitter Network Analysis with NetworkX

Celia La, Sarah Guido PyCon 2015

@celiala, @sarah\_guido

## About us: Sarah Guido

- Data scientist at Bitly
- NYC Python and PyGotham organizer
- O'Reilly Media author
- @sarah\_guido



## About us: Celia La

- Software engineer at Knewton
- PyGotham and Write/Speak/Code
- @celiala



### About this talk

- Installation
- Intro to network theory/NetworkX
- Intro to the Twitter API
- Lesson!

## Installation

- Github repo!
- Let's try opening IPython notebook

# The basics of network theory

- Collection of points joined by lines
- Mathematically: graph
- Representation of relationships between discrete objects



- Can be thought of as
  - a complicated data structure
  - a complex system
  - a way of exploring data







## **Basics**

- Vertex/node
- Edge
- Directed
- Connectivity
- Path
- Weight
- Degree



# Basics – directed/weighted



Connected

Unconnected



Degree distribution



1 node with 4 edges1 node with 2 edges4 nodes with 1 edge

Distribution:

[(1:4), (1:2), (4:1)]

Average shortest path



A to E

$$A - B - D - E = 3 \text{ hops}$$

$$A - B - C - D - E = 4 \text{ hops}$$

#### Centrality

- Degree: number of connections
- Betweenness: number of shortest paths from all nodes to all others that pass through a particular node
- Closeness: average length of the shortest paths between a specific node and all other nodes in the graph



- Degree centrality
  - Most edges == most important
  - D: 4 edges
  - Normalized degree:
    - divide by maximum possible degree
       (n − 1)
    - 6 nodes means 5 possible connections
    - 4/5 = 0.8



- Betweenness centrality
  - Between many pairs of nodes
- D: between 9 pairs
  - AC, AE, AF, BC, BE, BF, CE,CF,EF
- Normalized
  - number of shortest paths divided by:
  - [(n-1)(n-2)/2]
  - -[(6-1)(6-2)/2]=10
  - D: 9/10 = 0.9



- Closeness centrality
  - Average length of shortest paths
- n − 1 / (sum of all shortest paths)
- D: 6-1/(1+1+1+1+2)= 0.83
- A: 6 1 / (1 + 3 + 2 + 3 + 3) =
  0.43

# Modeling networks

- Random (Erdos-Renyi) network
- Nodes connected at random
- Binomial distribution of edges connected to each node





# Modeling networks

- Small world network
- Six degrees of separation
- Dense subgraph



# Modeling networks

- Scale-free networks
- Power law distribution when scaled up – looks the same no matter the scale



