1. 사무실 PC가 1,000대라면 203.240.100 네트워크로 모든 PC를 네트워크상에 넣을 수 있는가? (강의자료 7p)

203.이므로 클래스 C에 해당한다. 그러므로 호스트 주소는 $2^8-2=254$ 개만큼 할당할 수 있다. 여기서 2개를 빼는 이유는 네트워크 주소와 브로드캐스트 주소도 필요하기 때문이다. 따라서 사무실의 PC가 1000대라면 1000 > 254이므로 203.240.100 네트워크로 사무실의 모든 PC를 넣을 수 없다.

2. 클래스 B 주소라면 가능한가? (예. 150.150.100.1) (강의자료 7p)

클래스 B이면 호스트의 수를 $2^{16}-2=65,534$ 개 만큼 할당할 수 있으므로 사무실의 PC가 1,000대여도 모든 PC를 한 네트워크상에 넣을 수 있다.

3. 교재 147쪽 문제1 (강의자료 7p)

IP주소	클래스	네트워크 부분	호스트 부분
10.3.4.3	A	10.0.0.0	3.4.3
132.12.11.4	В	132.12.0.0	11.4
203.10.1.1	С	203.10.1.0	1
192.12.100.2	С	192.12.100.0	2
130.11.4.1	В	130.12.0.0	4.1
261.12.4.1	이런 주소 없음		

10.3.4.3: 네트워크 번호가 1~126으로 시작하는 클래스 A에 해당한다. 클래스 A는 네트워크 부분이 1바이트이므로 10.0.0.0이고, 나머지 3.4.3이 호스트 부분이 된다.

132.12.11.4: 네트워크 번호가 128.0~191.255까지인 클래스 B에 해당한다. 클래스 B는 네트워크 부분이 2바이트이므로 132.12.0.0이고, 나머지 11.4가 호스트 부분이 된다.

203.10.1.1: 네트워크 번호가 192.0.0~223.255.255까지인 클래스 C에 해당한다. 클래스 C는 네트워크 부분이 3바이트이므로 203.10.1.0이고, 나머지 1이 호스트 부분이 된다.

192.12.100.2: 네트워크 번호가 192.0.0~223.255.255까지인 클래스 C에 해당한다. 클래스 C는 네트워크 부분이 3바이트이므로 192.12.100.0이고, 나머지 2가 호스트 부분이된다.

130.11.4.1: 네트워크 번호가 128.0~191.255까지인 클래스 B에 해당한다. 클래스 B는 네트워크 부분이 2바이트이므로 130.11.0.0이고, 나머지 4.1이 호스트 부분이 된다.

4. 공인 IP주소를 210.100.1.1 네트워크를 받았습니다. 그런데 네트워크 관리자인 여러분은 이 공인 주소를 이용해서 PC 30대에 네트워크를 최소 4개 이상 만든 다음 이들 네트워크를 라우터를 이용해서 서로 통신하게 하려고 합니다. 이 경우 여러분이 서브넷마스크를 만든다면 어떻게 해야 할까요? (강의자료 18p)

네트워크 주소 부분이 210.이므로 클래스 C에 해당한다. 그렇게 되면 호스트 주소의 할 당은 뒤의 8bit만큼 할당할 수 있다. 8bit 내에서 서브넷 주소를 할당해야 하는데 최소 4

개 이상 만들어야 하므로 두 개의 비트를 쓰게 되면 2^2 =4개를 만들 수 있게 된다. 그리고 PC 30대와 네트워크 주소, 브로드캐스트 주소, 라우터 주소까지 필요하므로 33개의 주소가 필요하므로 6개의 비트를 써야지 2^6 =64(2^5 =32이므로 부족하다)이므로 30대의 PC를 주소를 할당할 수 있다. 즉 서브넷 마스크는 255.255.255.(11000000 $_{(2)}$)이므로 255.255.255.192가 되고 서브넷 주소는 210.100.1.0이 된다.

5. C 클래스 네트워크를 24개의 서브넷으로 나누려고 한다. 각 서브넷에는 4~5개의 호스 트가 연결되어야 한다. 어떤 서브넷마스크가 적절한가? (강의자료 22p)

클래스 C의 경우 기본 서브넷 마스크가 255.255.255.0이다. 그리고 호스트 주소 부분이 1바이트=8bit이므로 24개의 서브넷으로 나누려면 $2^5=16$ 즉, 5bit가 필요하다. 나머지 3bit로 호스트 주소를 할당하게 되면 8개의 호스트를 연결할 수 있다. 즉 서브넷 마스크는 255.255.255.(11111000₍₂₎)이므로 255.255.255.248이 된다.

6. IP주소가 120.110.121.32[255.255.255.0]이라면 네트워크 주소는 어떻게 되는가? (강의자료 22p)

기본 서브넷마스크가 255.255.255.0이므로 네트워크 주소는 앞의 3바이트=24bit까지이다. 즉 네트워크 주소는 120.110.121.0이 된다.

7. IP주소 203.10.24.27인 호스트의 서브넷마스크는 255.255.255.240이다. 이때 이 네트 워크의 호스트 범위와 브로드캐스트 주소는 어떻게 되는가? (강의자료 22p)

IP주소가 203.10.24.00011011₍₂₎이고, 서브넷 마스크가 255.255.255.11110000₍₂₎이므로 Logical AND 연산을 하면 네트워크 주소는 203.10.24.00010000₍₂₎ 즉, 203.10.24.16이 된다. 호스트의 가용 범위는 나머지 4bit로 2⁴-2(2개는 처음 네트워크 주소와 브로드캐스트 주소)개만큼 호스트 수를 가질 수 있으므로 203.10.24.17~203.10.24.30이고 마지막 203.10.24.31이 된다.

8. 클래스 B 주소를 가지고 서브넷마스크 255.255.255.240으로 서브넷을 만들었을 때 나 오는 서브넷의 수와 호스트의 수는? (강의자료 22p)

서브넷마스크 255.255.255.240은 $255.255.255.11110000_{(2)}$ 이고 호스트 수는 2^4-2 (네 트워크 주소, 브로드캐스트 주소를 뺀다) 14개가 된다. 클래스 B는 호스트 부분이 2바이 트=16bit이므로 총 가능한 호스트 영역 주소 수 256×256 에서 호스트 영역에서 서브 넷 부분을 제외한 4bit의 $2 \times 2 \times 2 \times 2 = 16$ 으로 나누면 256×256 / 16 = 4096이 된다.