Assignment 2

Due June 5, 11:59 pm

1 Assignment

1.1 考虑以下贝叶斯网络,判断(a)-(c)的对错。(判断题)

- (a) 给定D的前提下,B和C是条件独立的。()
- (b) 给定E的前提下, D和F是条件独立的。()
- (c) 给定D的前提下, B和F是条件独立的。()

1.2 假设给定如下训练数据集,其中 A_1 、 A_2 、 A_3 为二值输入特征,y为二值类标签。(计算题)

训练样例	A_1	A_2	A_3	у
x_1	Т	F	F	F
x_2	T	F	T	F
<i>x</i> ₃	F	T	F	F
<i>X</i> 4	T	T	Т	T
<i>x</i> ₅	T	T	F	T
x_6	F	F	F	T

- (a) 对一个新的测试数据,其输入特征 $A_1 = T$, $A_2 = F$, $A_3 = F$, 朴素贝叶斯分类 器将会预测 $y = ____?$
- (b) 假设 A_1 、 A_2 、 A_3 和 y 符合如下贝叶斯网络结构,根据题目中给出的 6 个样例计算相应的条件概率表中的取值,并求解 $P(y = F \mid A_1 = T, A_3 = F) = _____?$

$P(A_1 = T) = $	_?
$P(A_2 = T) = $?

A_1	A_2	$P(A_3 = T)$
T	T	
T	F	
F	T	
F	F	

A_3	P(y = T)
T	
F	

1.3 考虑以下神经网络,其中 node1 和 node2 为输入节点,node3 为输出节点,且输入节点均没有应用激活函数。输出节点 node3 的输入 $I_3 = w_{13} * x_1 + w_{23} * x_2 + \theta$,输出节点采用 sigmoid 激活函数,即 $O_3 = \frac{1}{1+e^{-l_3}}$,假定一个训练样本, $x_1 = 1, x_2 = 0.5$,其真实的类标签y = 1,设损失函数采用均方误差,即 $L = 0.5 * (y - O_3)^2$,用以更新网络参数。当前网络的参数初始值为: $\theta = 0, w_{13} = 0.5, w_{23} = -1$ 。请基于上述训练样本的 x_1, x_2, y 的取值,以及网络中 θ, w_{13}, w_{23} 的初始值,计算损失函数L对 w_{13} 的偏导,即 $\frac{\partial L}{\partial w_{13}}$ 的值($\sqrt{e} = 1.65$)。(计算题)

1.4 假设有如下八个点: (3,1)(3,2)(4,1)(4,2)(1,3)(1,4)(2,3)(2,4), 使用 k-Means 算法对其进行聚类。假设初始聚类中心点分别为 (0,4)(2,0), 算法使用欧氏距离作为距离度量。请计算一次迭代后的聚类中心坐标。(计算题)

2 Submission

提交一份 PDF 文件, 命名格式: 学号 _ 姓名, 如 20331234_ 张三。

提交方式: 连接 ftp 服务器上传文件夹 "理论课作业 2"

截止日期: 5/6/2023, 11:59 pm