Teoria Sygnałów w zadaniach

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Podstawowe własności sygnałów

- 1.1 Podstawowe własności sygnałów
- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc sygnału

Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

2.1 Trygonometryczny szerego Fouriera

2.2 Zespolony szerego Fouriera

Zadanie 1. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.1)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.2}$$

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(A \cdot t \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T} \cdot t \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

$$= \frac{A}{2}$$

Wartość współczynnika F_0 wynosi $\frac{A}{2}$

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{2.4}$$

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \int_0^{\frac{T}{2}} A \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{A}{T} \int_0^{\frac{T}{2}} e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \begin{cases} z &= -\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz &= -\jmath \cdot k \cdot \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{-\jmath \cdot k \cdot \frac{2\pi}{T}} \end{cases} = \\ &= \frac{A}{T} \int_0^{\frac{T}{2}} e^z \cdot \frac{dz}{-\jmath \cdot k \cdot \frac{2\pi}{T}} = \\ &= -\frac{A}{T \cdot \jmath \cdot k \cdot \frac{2\pi}{T}} \int_0^{\frac{T}{2}} e^z \cdot dz = \\ &= -\frac{A}{\jmath \cdot k \cdot 2\pi} e^z \Big|_0^{\frac{T}{2}} = \\ &= -\frac{A}{\jmath \cdot k \cdot 2\pi} \left(e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) = \\ &= -\frac{A}{\jmath \cdot k \cdot 2\pi} \left(e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) = \end{split}$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - e^{0} \right) =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - 1 \right) =$$

$$= j \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-j \cdot k \cdot \pi} - 1 \right)$$

Wartość współczynnika F_k wynosi $j \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-j \cdot k \cdot \pi} - 1\right)$

Współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-\jmath \cdot k \cdot \pi} - 1\right)$$

Możemy wyznaczyć kilka wartości współczynników ${\cal F}_k$

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	$j \cdot \frac{A}{5\pi}$	0	$j \cdot \frac{A}{3\pi}$	0	$j \cdot \frac{A}{\pi}$	0	$-\jmath\cdot\frac{A}{\pi}$	0	$-\jmath \cdot \frac{A}{3\pi}$	0	$-\jmath\cdot\frac{A}{5\pi}$
$ F_k $	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{\pi}$	0	$\frac{A}{\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$
$Arg\{F_k\}$	π	0	π	0	π	0	$-\pi$	0	$-\pi$	0	$-\pi$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (2.5)

W przypadku sumowania od $k_{min} = -1$ do $k_{max} = 1$ otrzymujemy

W przypadku sumowania od $k_{\min} = -3$ do $k_{\max} = 3$ otrzymujemy

W przypadku sumowania od $k_{\min} = -5$ do $k_{\max} = 5$ otrzymujemy

W przypadku sumowania od $k_{min}=-11$ do $k_{max}=11$ otrzymujemy

W przypadku sumowania od $k_{min}=-21$ do $k_{max}=21$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 2. Wyznacz wszystkie współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) będącego przekształceniem sygnału sinusoidalnego przedstawionego na rysunku.

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.6)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.7}$$

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right) =$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt =$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{1}{2\pi} \cdot dz \end{cases} =$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot \frac{T}{2\pi} \cdot dz =$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot dz =$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \sin(z) \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{2\pi} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{2\pi} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot \frac{T}{2}\right) - \sin\left(\frac{2\pi}{T} \cdot 0\right)\right) =$$

$$= \frac{A}{2\pi} \cdot (\sin(pi) - \sin(0)) =$$

$$= \frac{A}{2\pi} \cdot (0 - 0) =$$

$$= \frac{A}{2\pi} \cdot 0 =$$

$$= 0$$

Wartość współczynnika F_0 wynosi 0

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (2.8)

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) = \\ &= \left\{ \cos \left(x \right) = \frac{e^{j \cdot x} + e^{-j \cdot x}}{2} \right\} = \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) = \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t - j \cdot k \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot t - j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \right) \cdot dt = \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} \cdot dt + \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \cdot dt \right) = \\ &= \begin{cases} z_1 = j \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t & z_2 = -j \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t \\ dt_2 = -j \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot dt & dz_2 = -j \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot dt \\ dt = \frac{1}{j \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot dt & dz_2 = -j \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot dt \\ dt = \frac{1}{j \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot dt_1 & dt_2 = -j \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot dt_2 \end{cases} = \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{z_1} \cdot \frac{1}{j \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_1 + \frac{1}{-j \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) = \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{j \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{j \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) = \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{j \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{j \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) = \\ &= \frac{A}{2 \cdot T} \cdot \frac{T}{j \cdot 2\pi} \cdot \left(\frac{1}{(1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{1}{(1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) = \\ &= \frac{A}{2 \cdot T} \cdot \frac{T}{j \cdot 2\pi} \cdot \left(\frac{1}{(1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{1}{(1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) = \\ &= \frac{A}{2 \cdot T} \cdot$$

$$\begin{split} &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{z_1} |_0^{\frac{\tau}{2}} - \frac{1}{(1+k)} \cdot e^{z_2} |_0^{\frac{\tau}{2}}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{\jmath \cdot \frac{2\pi}{T} \cdot (1-k) \cdot t} |_0^{\frac{\tau}{2}} - \frac{1}{(1+k)} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1+k) \cdot t} |_0^{\frac{\tau}{2}}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot (1-k) \cdot \frac{\tau}{2}} - e^{\jmath \cdot \frac{2\pi}{T} \cdot (1-k) \cdot 0}\right) - \frac{1}{(1+k)} \cdot \left(e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1+k) \cdot \frac{\tau}{2}} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1+k) \cdot 0}\right)\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{\jmath \cdot \pi \cdot (1-k)} - e^0\right) - \frac{1}{(1+k)} \cdot \left(e^{-\jmath \cdot \pi \cdot (1+k)} - 1\right)\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{\jmath \cdot \pi} \cdot e^{-\jmath \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(e^{-\jmath \cdot \pi} \cdot e^{-\jmath \cdot k \cdot \pi} - 1\right)\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{-\jmath \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{-\jmath \cdot k \cdot \pi} - 1\right)\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{-\jmath \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{-\jmath \cdot k \cdot \pi} - 1\right)\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1\right) \cdot \left(1+k\right)}{(1-k) \cdot \left(1+k\right)} - \frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1\right) \cdot \left(1-k\right)}{(1-k) \cdot \left(1+k\right)}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1 - k \cdot e^{-\jmath \cdot k \cdot \pi} - k - e^{-\jmath \cdot k \cdot \pi} - 1 + k \cdot e^{-\jmath \cdot k \cdot \pi} + k}{(1-k) \cdot \left(1+k\right)}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1 - k \cdot e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - 1 + k \cdot e^{-\jmath \cdot k \cdot \pi} + k}{(1-k) \cdot \left(1+k\right)}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1 - k \cdot e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - 1 + k \cdot e^{-\jmath \cdot k \cdot \pi} + k}{(1-k) \cdot \left(1+k\right)}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1 - k \cdot e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - 1 + k \cdot e^{-\jmath \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1+k\right)}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1 - k \cdot e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - 1 + k \cdot e^{-\jmath \cdot k \cdot \pi} - k}{1-k^2}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1 - k \cdot e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - 1 + k \cdot e^{-\jmath \cdot k \cdot \pi} - k}{1-k^2}\right) = \\ &= \frac{A}{\jmath \cdot 4\pi} \cdot \left(\frac{\left(-e^{-\jmath \cdot k \cdot \pi} - 1 - k \cdot e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - k} - e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - k + e^{-\jmath \cdot k \cdot \pi} - k}\right) \right)$$

Wartość współczynnika F_k wynosi $-\frac{A\cdot k}{\jmath\cdot 2\pi}\cdot\left(\frac{e^{-\jmath\cdot k\cdot \pi}+1}{1-k^2}\right)$

Dla k=1 i k=-1 trzeba wyzanczyć wartość współczynnika raz jeszcze wprost ze wzoru

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) = \\ &= \left\{ \cos \left(x \right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} = \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) = \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t - \jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t - \jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot (1 - 1) \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + 1) \cdot t} \right) \cdot dt = \end{split}$$

Wartość współczynnika F_1 wynosi $\frac{A}{4}$.

$$\begin{split} F_{-1} &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) = \\ &= \left\{ \cos \left(x \right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} = \end{split}$$

$$\begin{split} &=\frac{1}{T}\left(A\cdot\int_{0}^{\frac{T}{2}}\frac{e^{J\frac{2\pi}{T}\cdot t}+e^{-J\frac{2\pi}{T}\cdot t}}{2}\cdot e^{J\frac{2\pi}{T}\cdot t}\cdot dt+0\right)=\\ &=\frac{A}{2\cdot T}\cdot\int_{0}^{\frac{T}{2}}\left(e^{J\frac{2\pi}{T}\cdot t}+e^{-J\frac{2\pi}{T}\cdot t}\right)\cdot e^{J\frac{2\pi}{T}\cdot t}\cdot dt=\\ &=\frac{A}{2\cdot T}\cdot\int_{0}^{\frac{T}{2}}\left(e^{J\frac{2\pi}{T}\cdot t+J\frac{2\pi}{T}\cdot t}+e^{-J\frac{2\pi}{T}\cdot t+J\frac{2\pi}{T}\cdot t}\right)\cdot dt=\\ &=\frac{A}{2\cdot T}\cdot\int_{0}^{\frac{T}{2}}\left(e^{J\frac{2\pi}{T}\cdot (1+1)\cdot t}+e^{-J\frac{2\pi}{T}\cdot (-1+1)\cdot t}\right)\cdot dt=\\ &=\frac{A}{2\cdot T}\cdot\left(\int_{0}^{\frac{T}{2}}e^{J\frac{2\pi}{T}\cdot 2\cdot t}\cdot dt+\int_{0}^{\frac{T}{2}}e^{-J\frac{2\pi}{T}\cdot 0\cdot t}\cdot dt\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\int_{0}^{\frac{T}{2}}e^{J\frac{4\pi}{T}\cdot t}\cdot dt+\int_{0}^{\frac{T}{2}}e^{J\cdot dt}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\int_{0}^{\frac{T}{2}}e^{J\frac{4\pi}{T}\cdot t}\cdot dt+\int_{0}^{\frac{T}{2}}dt\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\frac{1}{J\cdot \frac{4\pi}{T}}\cdot e^{J\frac{T}{2}}+I_{0}^{\frac{T}{2}}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\frac{1}{J\cdot \frac{4\pi}{T}}\cdot e^{J\frac{4\pi}{T}\cdot t}\cdot e^{J\frac{4\pi}{T}\cdot t}\cdot e^{J\frac{4\pi}{T}\cdot t}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\frac{1}{J\cdot \frac{4\pi}{T}}\cdot \left(e^{J\frac{4\pi}{T}\cdot T}\cdot e^{J\frac{4\pi}{T}\cdot T}\right)+\frac{T}{2}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\frac{1}{J\cdot \frac{4\pi}{T}}\cdot \left(e^{J\frac{4\pi}{T}\cdot T}-e^{J\frac{4\pi}{T}\cdot T}\right)+\frac{T}{2}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\frac{1}{J\cdot \frac{4\pi}{T}}\cdot \left(e^{J\frac{4\pi}{T}\cdot T}-e^{J\frac{4\pi}{T}\cdot T}\right)+\frac{T}{2}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\frac{1}{J\cdot \frac{4\pi}{T}}\cdot \left(e^{J\frac{4\pi}{T}\cdot T}-e^{J\frac{4\pi}{T}\cdot T}\right)+\frac{T}{2}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(\frac{1}{J\cdot \frac{4\pi}{T}}\cdot \left(1-1\right)+\frac{T}{2}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(0+\frac{T}{2}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(0+\frac{T}{2}\right)=\\ &=\frac{A}{2\cdot T}\cdot\left(0+\frac{T}{2}\right)=\\ &=\frac{A}{4}$$

Wartość współczynnika F_{-1} wynosi $\frac{A}{4}$.

Tak wiec ostatecznie współczynniki zespolonego szeregu fouriera

$$F_0 = 0$$

$$F_1 = \frac{A}{4}$$

$$F_{-1} = \frac{A}{4}$$

$$F_k = -\frac{A \cdot k}{j \cdot 2\pi} \cdot \left(\frac{e^{-j \cdot k \cdot \pi} + 1}{1 - k^2}\right)$$

Możemy wyznaczyć kilka wartości współczynników ${\cal F}_k$

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	0	$j \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0	$j \cdot \frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$-j \cdot \frac{2 \cdot A}{3 \cdot \pi}$	0	$-\jmath \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0
$ F_k $	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0	$\frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0
$Arg\{F_k\}$	0	π	0	π	0	0	0	$-\pi$	0	$-\pi$	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (2.9)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{min} = -2$ do $k_{max} = 2$ otrzymujemy

W przypadku sumowania od $k_{\min} = -4$ do $k_{\max} = 4$ otrzymujemy

W przypadku sumowania od $k_{\min} = -10$ do $k_{\max} = 10$ otrzymujemy

W przypadku sumowania od $k_{\min} = -20$ do $k_{\max} = 20$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

2.3 Obliczenia mocy sygnałów - twierdzenie Parsevala

Analiza sygnałów nieokresowych. Transformata Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

Przetwarzanie sygnałów za pomocą układów LTI

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

