1. (a)

$$|g_1'(x)| = |\frac{2x}{3}| \Rightarrow |g_1'(2)| = \frac{4}{3} > 1$$

$$|g_2'(x)| = |\frac{3}{2\sqrt{3x-2}}| \Rightarrow |g_2'(2)| = \frac{3}{4} < 1$$

$$|g_3'(x)| = |\frac{2}{x^2}| \Rightarrow |g_3'(2)| = \frac{1}{2} < 1$$

$$|g_4'(x)| = \left| \frac{2x(2x-3) - 2(x^2 - 2)}{(2x-3)^2} \right| \Rightarrow |g_4'(2)| = \frac{4-4}{1} = 0$$

Then we know that $|g_1'(2)|$ is bigger than 1, which means divergence. $|g_2'(2)| = \frac{3}{4}|$ means it is linear convergence with constant $|\frac{3}{4}|$. $|g_3'(2)| = \frac{1}{2}|$ means it is linear convergence with constant $|\frac{1}{2}|$. And $|g_4'(2)| = 0|$ means it is quadratic convergence.

(b)

Clearly, the converging rate is approximately like what we calculated.

2. (a) Starting with the secant method update formula is given as

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

$$= \frac{x_k(f(x_k) - f(x_{k-1})) - f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

$$= \frac{x_k f(x_k) - x_k f(x_{k-1}) - x_k f(x_k) + x_{k-1} f(x_k)}{f(x_k) - f(x_{k-1})}$$

$$= \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

(b) When we close to solution then x_{k-1} and x_k are close to each other which mean there difference is close to 0, and also can cause catastrophic cancellation. For formula in part(a) it is hard for us to get rid of cancellation. For formula in part(b), catastrophic cancellation is the only thing affecting x_{k+1}

3.

```
function newton
% xs: intial guess
% iteration: ieration times
% fs: input functions
% gs: g(x) = f'(x)
diary result.out
fs = {\cdot \cdot x \cdot x \cdot \cdot x \cdot x \cdot \cdot \cdot x \cdot \c
```

For termination criteria,

```
using b - a > tol for bisection;
using f(x) > tol for Newton's method;
using f(x) > tol for secant.
```

(a)

$$f(x): x^3 - 2x - 5 = 0$$
$$f'(x): 3x^2 - 2$$

bisection:

iteration	interval	tolerance	root	convergence rate
12	[1,3]	0.001	2.0947	linear around(0.5)

Newton's method:

iteration	initial guess	tolerance	root	convergence rate
8	1	0.001	2.0946	linear around 10^{-1}

secant:

iteration	initial guess	tolerance	root	convergence rate
8	1,3	0.001	2.0946	linear(10 ⁻¹)

fzero:

Using matlab fzero with initial guess 1, we get a root 2.0946.

(b)

$$e^{-x} = x$$

$$-e^{-x}=1$$

bisection:

iteration	interval	tolerance	root	convergence rate
11	[0,1]	0.001	0.5674	linear around(0.5)

Newton'smethod:

iteration	initial guess	tolerance	root	convergence rate
4	0	0.001	0.5671	$linear(10^{-1})$

secant:

iteration	initial guess	tolerance	root	convergence rate
5	0,1	0.001	0.5672	linear(10 ⁻¹)

fzero:

Using matlab *f zero* with initial guess 1, we get a root 0.5671.

(c)

$$x\sin(x) = 1$$

$$\sin(x) + x\cos(x) = 0$$

bisection:

iteration	interval	tolerance	root	convergence rate
11	[1,2]	0.001	1.1143	linear around(0.5)

Newton'smethod:

iteration	initial guess	tolerance	root	convergence rate
2	0.5	0.001	1.1147	linear(10 ⁻¹)

secant:

iteration	initial guess	tolerance	root	convergence rate
5	1,2	0.001	1.1142	super linear (1.5)

fzero:

Using matlab fzero with initial guess 1, we get a root 1.1142.

(d)

$$x^3 - 3x^2 + 3x - 1 = 0$$

$$3x^2 - 6x + 3 = 0$$

bisection:

iteration	interval	tolerance	root	convergence rate
12	[0,3]	0.001	0.9998	linear(0.5)

Newton'smethod:

iteration	initial guess	tolerance	root	convergence rate
7	0	0.001	0.9122	linear(0.66)

secant:

iteration	initial guess	tolerance	root	convergence rate
11	0,3	0.001	0.9232	linear(0.75)

fzero:

Using matlab *f zero* with initial guess 0, we get a root 1.0000.

4. (a)

$$f(x) = \sqrt[3]{1 - \frac{3}{4x}} = 0 \Rightarrow 1 - \frac{3}{4x} = 0$$

$$4x = 3 \Rightarrow x = \frac{3}{4}$$

Hence, clearly function $f(x) = \sqrt[3]{1 - \frac{3}{4x}}$ only has one root which is $\frac{3}{4}$.

(b)

```
function root = pNewton(iteration)
% iteration: ieration times
% f: input function

X = rand();

figure
hold on;

title(['Newton's Method intinal gauss:',num2str(x)]);

root = x;
right = x;
left = 0;

for i = 0:iteration
% calculate root
% eliminate division by x
root = x - f(x)/x;
% update color
color = floor(i/iteration);
% plot root
rangeX = [x, x];
rangeY = [0 f(x)];
plot(rangeX,rangeY,'Color',[color 0 1-color]);
% plot tanget line
rangeX = [x root];
rangeY = [f(x) 0];
plot(rangeX,rangeY,'Color',[color 0 1-color])
% update right and left(total x-axis range)
right = max(right, root);
left = min(left, root);
% update x
x = root;
end
% plot f(x)
a = linspace(left,right,1001);
b = f(a);
plot(a,b,'black');
line([left right], [0 0]);

function r = f(x)
% f(x)
r = nthroot((1 - 3*power(4*x,-1)), 3);
```

5 plots of *Newton's method* with random starting points show below, and the red line indicates

the last iteration of the total 50 iterations.

- (c) From the plots, we could observe,
 - Base on different initial guess with fixed iteration the *Newton's method* might converge or diverge.
 - For a *Newton's method* with some initial guess, the function may converge for some certain iterations (i.e it may first converge then diverge).