# 論理とブール代数

離散数学・オートマトン

2020年後期

佐賀大学理工学部 只木進一



## 命題論理 propositional logic

- ■論理変数:TまたはFしか取らない変数
- 命題論理:論理変数を論理演算で結んだもの



### 論理式の再帰的定義

- 1.  $a \in \{T, F\} \Rightarrow a$ は論理式
- 2. Aは論理変数 ⇒ Aは論理式
- 3.  $A \geq B$ が論理式 $\Rightarrow (\neg A), (A \land B), (A \lor B), (A \Rightarrow B), (A \Leftrightarrow B)$ は論理式

(¬A):否定、(A∧B):合接·論理積、

(A V B):離接·論理和



## 論理関数 Logical/Boolean function

- ■論理変数 $A_0, A_1, \cdots, A_{n-1}$ を変数とする述語:  $\mathcal{A}(A_0, A_1, \cdots, A_{n-1}) \rightarrow \{T, F\}$
- ー付値:  $A_0, A_1, \cdots, A_{n-1}$ に具体的な値を定めること
  - $\sigma(A)$ :ある付値 $\sigma$ に対するAの値
- ■恒等式 (tautology): ⊨ A
  - $\blacktriangleright \forall \sigma, \sigma(\mathcal{A}) = T$
- $\blacksquare$ ( $\mathcal{A} \leftrightarrow \mathcal{B}$ ) =  $T: \mathcal{A} \succeq \mathcal{B}$ は同値



## 命題論理の性質 A, B, Cは命題変数

- 巾等律: $A \land A \equiv A, A \lor A \equiv A$
- ■可換律: $A \land B \equiv B \land A, A \lor B \equiv B \lor A$
- ► 結合律: $A \land (B \land C) \equiv (A \land B) \land C$  $A \lor (B \lor C) \equiv (A \lor B) \lor C$
- $\rightarrow$  分配律: $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$  $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$



- de Morgan:  $\neg(A \land B) \equiv \neg A \lor \neg B$ ,  $\neg(A \lor B) \equiv \neg A \land \neg B$
- ■二重否定: $\neg(\neg A) \equiv A$
- $\blacksquare A \leftrightarrow B \equiv (A \to B) \land (B \to A)$
- $\blacksquare A \rightarrow B \equiv \neg A \lor B$
- $\blacksquare A \rightarrow B \equiv \neg B \rightarrow \neg A$

7

- ●排中律: $A \lor \neg A \equiv T$
- ■矛盾律: $A \land \neg A \equiv F$
- ■三段論法:  $\models ((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)$
- $A \lor T \equiv T, A \land T \equiv A,$   $A \lor F \equiv A, A \land F \equiv F$



#### 標準形

- $\blacksquare$  NAND:  $A \uparrow B \equiv \neg (A \land B)$
- ightharpoonup NOR:  $A \downarrow B \equiv \neg (A \lor B)$
- ■任意の論理式と同値な以下の論理式が存在
  - 1. ¬とハしか含まない
  - 2. ¬とVしか含まない
  - 3. ¬と→しか含まない
  - 4. ↑しか含まない
  - 5. ↓しか含まない



#### 標準形:証明

- 1.  $p \lor q \equiv \neg(\neg p \land \neg q)$
- 2.  $p \land q \equiv \neg(\neg p \lor \neg q)$
- 3.  $p \land q \equiv (\neg \neg p) \lor q \equiv \neg p \rightarrow q$ ,  $p \lor q \equiv \neg (\neg p \lor \neg q) \equiv \neg (p \rightarrow \neg q)$



#### 標準形:証明

$$4. \neg p \equiv \neg (p \land p) \equiv p \uparrow p,$$
 $p \lor q \equiv \neg (\neg p \land \neg q) \equiv \neg ((p \uparrow p) \land (q \uparrow q)) \equiv (p \uparrow p) \uparrow (q \uparrow q)$ 
 $p \land q$ は、2を使用



#### 標準形:証明

$$5. \neg p \equiv \neg (p \lor p) \equiv p \downarrow p,$$
 $p \land q \equiv (p \downarrow p) \downarrow (q \downarrow q)$ 
 $p \lor q$ は、1を使用



#### ブール代数

- ■1ビットに対して、 $0 \rightarrow F$ ,  $1 \rightarrow T$ という対応を付ける
  - ▶{0,1}:ブール変数
  - $ightharpoonup + \leftrightarrow \lor, \cdot \leftrightarrow \land, \qquad \leftrightarrow \lnot$
- ■基本積
  - ■同じ変数を一回のみ含む積



#### ■ブール代数に対応した回路



©Shin-ichi TADAKI









$$z = (abc + \bar{a})(a + \bar{c})$$

$$= aabc + abc\bar{c} + a\bar{a} + \bar{a}\bar{c}$$

$$= abc + 0 + 0 + \bar{a}\bar{c}$$

$$= abc + \bar{a}\bar{c}$$





- ■ブール表現を最小化する道具
- ●各区画は、基本積
- ▶隣接する区画の基本積は一文字違い
- ▶隣接する区画をまとめる



|                | y               | $\overline{y}$  |
|----------------|-----------------|-----------------|
| x              | xy              | $x\overline{y}$ |
| $\overline{x}$ | $\overline{x}y$ | $\overline{xy}$ |

$$E = xy + x\bar{y}$$

$$= x(y + \bar{y})$$

$$= x$$



$$E = xy + \bar{x}y + \bar{x}\bar{y}$$

$$= xy + \bar{x}y + \bar{x}y + \bar{x}\bar{y}$$

$$= (x + \bar{x})y + \bar{x}(y + \bar{y})$$

$$= \bar{x} + y$$





|                | yz               | ȳz                          | $\overline{y}\overline{z}$ | $\overline{y}z$             |
|----------------|------------------|-----------------------------|----------------------------|-----------------------------|
| x              | xyz              | $x\overline{y}\overline{z}$ | $x\overline{y}z$           | $x\overline{y}\overline{z}$ |
| $\overline{x}$ | $\overline{x}yz$ | $\overline{xyz}$            | $\overline{xy}z$           | $\overline{xyz}$            |

$$z = xyz + xy\overline{z}$$

$$= xy(z + \overline{z})$$

$$= xy$$

|                | yz       | ȳz | $\overline{y}\overline{z}$ | $\overline{y}z$ |
|----------------|----------|----|----------------------------|-----------------|
| x              | <b>√</b> | 1  |                            |                 |
| $\overline{x}$ |          |    |                            |                 |

$$E = xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$$

$$= x(y + \bar{y})\bar{z} + \bar{x}(y + \bar{y})\bar{z}$$

$$= x\bar{z} + \bar{x}\bar{z} = (x + \bar{x})\bar{z} = \bar{z}$$

|                | yz | ȳz | $\overline{y}\overline{z}$ | $\overline{y}z$ |
|----------------|----|----|----------------------------|-----------------|
| x              |    | 1  | 1                          |                 |
| $\overline{x}$ |    | 1  | <b>√</b>                   |                 |