where \mathbf{x}_0 and \mathbf{z}_1 are the liquid levels on the inside and outside respectively, referred to some arbitrary point. The difference in the vacuum capacitance, and the (small) vertical offset, are contained in the factor $\Delta C(0)$, which is the capacitance difference measured while the outside and inside are in equilibrium.

The vapor inside the capacitor was assumed to be at the temperature of the liquid.

This was obviously true for the inside capacitor, and was assured for the outside capacitor by placing it inside a copper tube whose lower end was immersed in the liquid. Any residual radiation leak to the capacitor could be absorbed by the high conductivity of the superfield helium film.

The capacitance difference was measured directly by the use of the system shown in Fig. 9, which incorporates the use of a commercial capacitance bridge of the ratio-transformer type. The outside capacitor was connected to the "unknown" ports of the bridge, and the inside capacitor was connected to the "external standard" ports of the bridge. With the appropriate settings, the indicated capacitance at balance is equal to the difference of these two capacitors.

In order to maintain a fixed level difference between the inside and the outside, the desired capacitance difference was set on the bridge, then the corresponding level difference was approximated by manual adjustment of the vertical level of the vacuum can, and then the level control feedback system indicated in Fig. 9 was activated. The signal conditioner produced a signal derived from the error signal and its time integral. This was combined with a large manually controlled offset signal to form the velocity command for the motor-controller system. It digital volt-meter at this point served to monitor the vertical speed of the vacuum can. A gain-of-one amplifier (not shown) was used to float the velocity command voltage so as to meet the input requirement of the motor-controller. When running smoothly, the system was capable of maintaining a set capacitance difference within 30-50 ppm. The main trouble encountered was rough movement in the pulley used to counterbalance the weight of the moving system. It was quite obvious when the system became stuck, and so the data could be retaken.

The configuration of Fig. 9 was altered slightly for the equilibrium data points. First, as mentioned earlier, the inside heater was turned off, then the controls on the bridge changed so that the off-balance signal was determined by the difference of C_0 from a set value, and then the control system was activated. This had the effect of maintaining the outside level fixed relative to the vacuum can. When transients had died away, this allowed measurement of several parameters with the inside and outside at complete equilibrium, i.e., no mass or heat flow, no temperature or pressure difference. As mentioned earlier, the temperatures were recorded as a check on their stability. Also measured was the small downward velocity necessary to maintain a fixed outside level, because this allowed determination of the evaporation rate of the outside He bath. Then the velocity was C_0 at this value, and the bridge controls changed back so that $\Delta C(0)$ could be measured.

The dielectric constants were at first computed from the Clausius-Mossotti equation and polarizability found in NBS Technical Note 631 [26], the liquid densities taken from

Figure 9. A schematic drawing of the system used to maintain a constant difference between the inside and outside levels.

the text of Donnelly [7], and the vapor densities from the ideal gas equation of state. They could also be derived from full vs. empty measurements, which were found not to agree with the calculations. The reason was found to be inconsistent units in the Clausius-Mossotti equation as found in the above reference, which had the effect of making the polarizability too small by a factor of $4\pi/3M \approx 1.047$ (M = molecular weight). With this correction, the agreement was excellent between the calculated value of ϵ at 1.92 K of 1.95736 and the measured value of 1.05740. It was found that while the values of ϵ and ϵ' varied significantly with temperature, their difference was constant to within a part per thousand over our temperature range. Therefore, the calculated value of $\epsilon - \epsilon' = 0.05714$, appropriate for the highest temperature, where other results depend most sensitively on its value, was used for all temperatures. $C_{\rm V}/\ell$ was taken to be 0.5599 pF/cm, the average of the values measured for the two capacitors. Combining all these factors leads to the expression for z_2 - z_1 actually used in equation (21),

$$z_2 - z_1 = -31.27 \frac{cm}{pF} \left(\Delta C(z_2 - z_1) - \Delta C(0) \right)$$
 (25)

where $\Delta C(0)$ was slightly different for the different temperatures.

This single simple calibration served for the entire long run, because the capacitors proved to have excellent stability and linearity, as determined by the regular measurement of $\Delta C(0)$. By varying the point at which the outside level was fixed during an equilibrium point, the two capacitors could be compared with each other over a significant fraction of their lengths. It was desirable to keep equilibration times short, so that equilibrium points were taken only where the inside level was still in the narrow section, thus limiting the comparison to the lower 2/3 of the inside capacitor and the lower 1/3 of the outside capacitor. Within this range, $\Delta C(0)$ was found to be essentially independent of height and time. Expressed as a height difference, via equation (25), the standard deviation of $\Delta C(0)$ for all the equilibrium points was 0.01 cm. It is thought that the good stability and linearity of the capacitors is due in part to several design features arrived at by trial and error. They are: (1) a mounting for the inside tube that allows some small axial movement, which prevents compression and bowing of this long slender column, and (2) the rather wide gap, whose proportions appear to be about the optimum compromise between sensitivity to level change and insensitivity to dimensional errors, particularly lack of coaxiality.

A remark should be made about the limitations that the experimental method placed on the pressure difference measurements. They are due to the vapor pressure difference caused by the temperature difference between the inside helium vessel and outside bath [the first term in eq (21)]. If this term was large, then the liquid level difference had to be large and of opposite sign for those flow regimes in which the <u>total</u> pressure difference was small (essentially flows for which V was small). For an extreme example, at T = 1.92 K with $\Delta T = 0.047 \text{ K}$ and V = 0, the inside level z_2 was 25 cm below the outside level, z_1 .

3.5 Mass Flow Rate

The volumetric flow rate through the flow tube was determined from the geometry of the apparatus and from the vertical speed of the vacuum can that was necessary to maintain a fixed level difference between the inside and the outside helium spaces.

The functional relation between these quantities was determined by epplication of the macs conservation relation to the geometry sketched in Fig. 10. The upward velocities of the outside liquid surface, the inside liquid surface, and the vacuum cen (all with respect to some fixed point in the laboratory), are designated by $V_{\rm o}$, $V_{\rm i}$ and $V_{\rm b}$ respectively. The areas of the inside liquid surface, the outside liquid surface, and the dewar are designated as $A_{\rm i}$, $A_{\rm o}$ and $A_{\rm d}$.

The small amounts of mass entering or leaving the vapor phase can be ignored, so that mass conservation can be expressed in terms of the liquid volumes as

During the small time interval dt, the volume added inside is $(V_1-V_b)A_1$ dt. If we designate $V_e(<0)$ as the velocity of the vacuum can during an equilibrium data point, and assume that the evaporation rate is not time dependent, then the volume evaporated in time dt is - V_eA_d dt. (The correct area is A_d and not A_o because the volume displaced by the vacuum can remains constant during the equilibrium point.) The volume added outside has two contributions: the added volume on the surface area of V_oA_o dt, and the volume that has been vacated by the movement of the can = $V_b(A_d-A_o)$ dt. The result is

$$V_0 A_0 + V_b (A_d - A_0) + (V_i - V_b) A_i - V_e A_d = 0$$
 (26)

But under the conditions of the experiment, the level difference between the inside and the outside remains constant, therefore

$$V_i = V_0 \tag{27}$$

The average velocity of net fluid flow through the flow tube (V) is expressed as

$$V = (V_1 - V_b)A_1/A_x$$
 (28)

where $\mathbf{A}_{\mathbf{X}}$ is the cross-sectional area of the tube. Combining the above equations gives

$$V = -\frac{A_1}{A_x} \frac{A_d}{A_0 + A_1} (V_b - V_e)$$
 (29)

As defined, V is positive for flow toward the inside.

Figure 10. A schematic diagram of the main variables of the experiment.

In order to cover a wider range in flow rates, the inside helium space was constructed with a wide cross-section for the top one-third of the inside capacitor, and a narrow cross-section for the bottom two-thirds. In order to allow large level differences for inflow it was often necessary to have the outside level well above the top of the wide section of the inside space, hence well above the top of the vacuum can. In all then, there were four different combinations of inside and outside surface areas for which data could be taken; the parameters, and the "mode" identification numbers used on the data sheets, are listed in Table 1.

3.6 The Flow Tube

The flow tube used in this experiment was a commercial quality stainless steel tube with an o.d. = 0.160 cm, and an i.d. determined to be 0.1149 \pm 0.0006 cm. It had a length (1,) of 60 cm and was wound in two turns of 10 cm diameter. The inside end was mounted about 3.5 cm above the outside end. The ends were cut off square.

The inside diameter was determined by room temperature gas flow measurements performed after the experiment, but while the tube was undisturbed in its mounting on the apparatus. The results seemed inconsistent until it was realized that, in laminar flow, even the rather small curvature of the tube could have large effects on the gas flow. Helium gas and nitrogen gas were used to cover a range in Reynolds' number (Re) from 55 to 1930. The volumetric flow rate of gas was measured by a wet test meter whose calibration against a bell prover had a standard deviation of 0.6%. The pressure drop (ΔP) across the flow tube was measured by the commercial capacitance manometer used in the experiment. The volumetric flow rate was multiplied by the factor $(1 - P_{\rm S}/P_{\rm O})$ to correct for the water vapor added by the wet test meter (where $P_{\rm O}$ is the ambient pressure, and $P_{\rm S}$ is the vapor pressure of water at the ambient temperature). The idea gas equation of state was used, the temperature taken to be amtient, and the density of the gas taken to be the mean of the values calculated for the ends of the tube. The fractional pressure drop never exceeded 0.18. Thus we obtain the equivalent volumetric flow rate Ω of dry gas.

The data were analyzed by using the laminar flow equation for a straight tube applied to the lowest Ro data to deduce a diameter D. This was then used to calculate the (Fanning) friction factor f as a function of Re. The equations used were

$$f = \frac{\pi^2}{32} \frac{D^5}{\Omega^2} \frac{\Delta P}{L} \left(1 + \frac{\Delta P}{2P_0} \right)$$

$$Re = \frac{4P_0 \Omega}{\pi DD}$$
(30)

where P_0 is the mass density of dry gas at ambient temperature and pressure. The viscosity η was taken from [26] and [27]. We have plotted in Fig. 11 the experimental friction factor divided by the expected values for a straight tube in laminar flow; the solid line

Figure 11. The results of the room temperature gas flow measurements on the flow tube.

Table 1.

		Inside Interfece Location			
	Mode Number		Nerrow	Vide	
	Vecuum Can		1	3	
Dutside					
Interface					
Location					
	Support Tube		2	4	
	A ₁ (narrow)	=	4.96 cm ²		
	A _i (wide)	=	78.4 cm ²		
	A_o (VC) = (ST) =		A _{dewar} - 105.2 cm ²		
			A _{dewar} - 2.8 cm ²		
A _{dewar} =			219.4 cm ²		

is the formula of White [28] for curved tubes calculated for our diameter of curvature D_C. The good agreement makes us confident that the correct value of the diameter has been found. The principle uncertainty in its measurement is the uncertainty in the volumetric flow measurement and its corrections. The deviations from the calculated values over the entire range of the measurement indicate a standard deviation for D of about 0.5%.

Precautions were taken to prevent or reduce any effects on the flow due to the presence of frozen air. The first was the protected location of the outside end of the flow tube; it was in a chamber which was recessed about one inch into the bottom of the base plate (see Fig. 7.). Such a location appears inaccessible to condensing air or falling air particles. Of course, only helium gas was allowed to be present in the dewar during the cooldown. Another precaution was the addition of a filter (which used ordinary chemical filter paper) onto the transfer line used to fill the helium dewer, in en effort to reduce buildup of frozen air during the long run.

The only problem which could not be definitely eliminated was a cumulative buildup of those particles small enough to remain in suspension in the liquid helium; they might be expected to accumulate from air introduced during the insertion of the transfer tube, etc. There was no way to measure their concentration, nor are we aware of any data on the sizes of particles that might be expected to remain in suspension. However, the lack of any significant cumulative shifts in data points that were repeated during the 35-day run, we take to be good evidence that suspended solic particles were not a significant problem. See, for example, the good reproducibility ($\sim 1\%$) of the T = 1.39, Δ T = 0.019 data taken at the very beginning and end of the long run (e.g., data points 9 422 and 10 515).

That evidence is reinforced by a mishap that took place early on October 1. A technician working nearby accidentally knocked off a large rubber vacuum hose used to pump on the helium dewar. At the time, the liquic helium was probably warm enough to be at a vapor pressure above atmospheric pressure, but still, in the 30-60 seconds it took him to replace the hose, we would guess that more air should have been introduced than during all the previous activities. Again, no significant changes in the repeated data can be seen following that date.

3.7 The Energy Flow Measurement

The inside helium vessel and the flow tube were surrounded by an insulating vacuum. Thus the energy flow through the tube could be determined from an energy balance calculation. The essential elements of the situation are shown in Fig. 10. The unusual feature of this calculation turns out to be the large influence of the vapor that is present.

The energy balance is done in two parts; first we calculate the change in total energy of the helium in the inside vessel (the control volume) from thermodynamics applied to a small change in its mass. The conditions of the change are that the temperature, and hence the vapor pressure, remain fixed and that the total volume is fixed, even though the total mass is changing. Designating the specific volumes of the liquid and vapor as v and v' (not to be confused with the velocities v_n , v_s , v_s), and the specific internal energies as v_s and v', we find that the increases of total mass v_s , of total volume, and of total energy v_s are given by

$$dM = dm + dm'$$

$$d(Vol)|_{T,P} = v dm + v' dm' = 0$$

$$dU|_{T,P,Vol} = u dm + u' dm'$$
(31)

where dm and dm' are the increases in the liquid and vapor masses. Combining these equations gives

$$dU|_{T,P,Vol} = \frac{v'u - vu'}{v' - v} dM$$
(32)

We can use the definition of the chemical potential, eq. (16), and the well known fact that the chemical potentials of the liquid and vapor are equal in equilibrium, to find that

$$u' = u - P(v' - v) + T(s' - s)$$
 (33)

Substituting into the previous equation and using the Clausius-Clapeyron equation for the slope of the vapor pressure curve $\begin{pmatrix} \partial P \\ \partial T \end{pmatrix}_{SVP}$ and the definition of dM in terms of the tube cross-section and the average velocity

$$dM = \rho V A_{\nu} dt$$
 (34)

we find

$$dU|_{T,P,Vol} = [\rho Vh - VT \left(\frac{\partial P}{\partial T}\right)_{SVp}]A_{X}dt$$
 (35)

In the second part of the energy balance calculation we express dU in terms of the external sources of energy, i.e., in terms of the energy that flows through the boundaries of the control volume. They are the heating rate \hat{Q} of the internal heater and the energy flux $j_u A_X$ dt that enters through the flow tube. As discussed in section 2, this energy flux can be expressed in terms of the enthalpy flux and the heat current \hat{q} , using equations (185) and (19). Equating this to the previous equation gives

$$\dot{Q} + (\rho Vh + \dot{q})_{ent} A_{x} = [\rho Vh_{2} - VT_{2} \left(\frac{\partial P}{\partial T}\right)_{svp,T2}] A_{x}$$
 (36)

The energy flux on the left hand side is to be evaluated at the entrance of the flow tube to the inside helium vessel. The energy change on the right hand side is to be evaluated at the temperature and pressure that prevail within the inside vessel, whose values are indicated by the subscript $\hat{\mathbf{z}}$. Let us define the heat flux density $\hat{\mathbf{q}}_2$ by

$$\dot{q}_2 = -\frac{0}{A_x} - VT_2 \left(\frac{\partial P}{\partial T}\right)_{svp, T_2}$$
 (37)

If the temperature and pressure are essentially continuous at the entrance, which we expect to be true in most cases, we have $h_{ent} = h_2$, and so $\dot{q}_{ent} = \dot{q}_2$. In any case, by application of eq. (20), we can find $\dot{q}(x)$ at some location x, if we know \dot{q}_2 and the temperature and pressure at x. For our case the relation is

$$\dot{q}(x) = \dot{q}_2 + \rho V \left(h_2 - h(x) \right) \tag{38}$$

We shall quote all our results for the energy transport as values of $\dot{\mathbf{q}}_2$. As defined, the

3

sign convention of \dot{q}_2 is consistent with the one for V [eq. (29)], so that heat flow away from the (higher temperature) inside vessel has a negative sign.

The second term of eq. (37) is readily interpreted as the heat of condensation (or evaporation) that must be absorbed by the liquid in order to change the volume of vapor. Its presence is due to the particular configuration used to perform the experiment. At the higher temperatures of this experiment, it becomes nearly as large as Q/A_X for the larger values of V, and thus its presence causes a significant deterioration in the measurement accuracy of \dot{q}_2 . It is the quantity \dot{q}_2 that is most significant (not \dot{Q}/A_X) because it is the quantity to be compared to the \dot{Q}/A_X of section 2.

This heat of condensation also introduced an extra limitation in the range of velocities for which data could be taken. For fixed ΔT , it was often found that for inflow (V > 0), when this term acts like an extra heat source, that its magnitude increased more rapidly with V than the heat conducted out (\mathring{q}_2) . Therefore, it was not possible for eq (37) to be satisfied with positive values of \mathring{Q} if V was greater than some particular value. When encountered, this limiting value of V is indicated on the graphs of \mathring{q}_2 vs. V (figs. 22-25) by a vertical bar.

We have neglected the kinetic energy terms in the total energy balance because they can be shown to be quite small for all the conditions encountered in this experiment. We have also left out gravitational potential energy terms, because a careful accounting of them found that they just cancelled the work done on the fluid by the movement of the container. In Appendix 2, we rederive eq (36) with a full accounting of potential energy terms and the work done on the fluid in raising or lowering the vessel.

3.8 Extraneous Heat Flows

The energy balance equations that have been given for determining the heat flow are correct only if we have accounted for all the energy exchanges, i.e., only if there are no extraneous heat flows between the inside and the outside helium vessels. Below are explained the precautions taken and the tests made to ensure that these extraneous heat flows were small.

The poor thermal conductivity of the stainless steel walls of the vacuum can dictated that it be surrounded by a heat shield, HS of Fig. 5. This took the form of a thin (0.04 cm) copper sheet fitted to surround the sides and top of the vacuum can. Its lower end was always immersed in the liquid, and its upper end was soldered to the support tube ~ 10 cm ebove the top of the vacuum can, thus intercepting the heat conducted down the support tube. On the inside of the support tube, the lower 10 cm was stuffed with coarse brass wool to act as a radiation shield.

The inside helium space was supported by three long, thin-wall stainless steel legs that attached to the bottom (or base plate) of the vacuum can. The rather close fit suggested the precaution of mounting three sharpened nylon screws on the legs just below the wide section of the inside space; they could be extended so as to maintain a fixed spacing between the inside space and the vacuum can. All electrical leads that went to the inside

space were first thermally "tempered" to the base-plate and were of low thermal conductivity wire.

It was not practical to maintain a good vacuum at all times in the vacuum space, because this prevented the inside helium space from ever cooling down enough to fill with liquid. Therefore the inside space was filled before cool-down with hydrogen gas at a pressure of a few Torr.* This acted as a thermal exchange gas, as long as the vacuum can remained above ~ 10 K. Once the vacuum can was cooled below ~ 3 K, the hydrogen gas was frozen to the walls or adsorbed onto about 3 cm³ of "molecular sieve" that was present. After the first transfer was completed and the vacuum gauge outgassed, the seals were checked by monitoring the vacuum space for several hours with a He leak detector; it was checked again several days later. The vacuum was monitored throughout the long run by a Phillips-type vacuum gauge mounted on the top of the support tube. It registered 2-5 x 10^{-5} Torr during data taking, except for jumps of an order of magnitude (which lasted 1-2 minutes) that were caused by the sudden withdrawals of a good fraction of the vacuum can from the liquid; this was almost certainly due to slight desorption of hydrogen from the suddenly warmer walls.

The thermal isolation was checked directly at the beginning of the run by measuring the total thermal conductance between the inside and the outside at temperatures above the lambda point. This was done by maintaining a fixed outside temperature $T_2 = 2.31$ K, providing a small heat input with the inside heater, and waiting 1-2 hours for the temperature to equilibrate at a value 0.5-1.5 K higher than the outside temperature. The vacuum can was completely immersed for these measurements, but the higher temperature of the inside prevented liquid from entering. (It was found that this type of test can be very misleauring if there exist any pockets on the inside that can trap liquid; the relatively large latent heat of the liquid that is being evaporated on the inside and condensed on the outside can cause a large and long-lived false conductivity).

Assuming that the thermal conductance linking the inside and the outside is temperature independent, the three data points that were taken yielded a value for the thermal conductance of 1.5×10^{-3} W/K. This value is about 1 1/2 orders of magnitude larger than was calculated for conduction through the legs, electrical leads, etc. It was found that conduction through the low pressure hydrogen gas could account for the conductance, if the indicated pressures at the Phillips gauge were taken at face value. Still, this value for the conductance was low enough so that we could choose to ignore the unexpected persistence of unchanged indicated pressures (2 - 5 \times 10⁻⁵ Torr) at the lower temperatures, where the calculated vapor pressure of hydrogen should be considerably smaller.

These same measurements indicated that a heat input of 2×70^{-4} W remained at $\Delta T = 0$. This could represent a real heat leak (e.g., incomplete radiation shielding), or it could reflect a small temperature dependence in the thermal conductivity. This heat leak, if real, would require that all values of \dot{q}_2 be corrected by the addition of -0.019 W/cm². Since data could not be taken at low enough ΔT 's to distinguish between the two alternatives, we have not made this correction to the data, and instead view this as an upper limit to the possible systematic error in \dot{q}_2 .

^{*1.0} Torr - 133.3 Pa.

3.9 Error Estimates

The errors of this data are not always as small, nor as accurately known, as might be wished, primarily because of the exploratory nature of the experiment. The method was new, the results could be only crudely anticipated, and it seemed more desirable to emphasize a broad range for the measurements rather than concentrate on their accuracy. Given these conditions, they seem satisfactory. The errors for quantities given in Appendix 1 vary, depending on the conditions, and are summarized in Table 2.

A part of the random error in the temperature and pressure difference measurements could be evaluated quite reliably from the variation of the equilibrium point data. This variation should include the effect of electronic noise, intrinsic sensor resolution, drift in the sensor characteristics, and inaccuracies in the data reduction. Including all the equilibrium point data, we find that the temperature difference had a standard deviation of $(4, 3, 2, \text{ and } 4) \times 10^{-5}$ K at the four temperatures of 2.10, 1.92, 1.65 and 1.39 K respectively. The standard deviations for the height difference were 0.016, 0.012, 0.009 and 0.011 cm respectively. Through eq (21), these figures imply a standard deviation for the pressure difference of 0.4, 0.2, 0.1 and 0.1 Pa respectively.

For the regular data points there may exist an extra source of random error that is not included in the figures given above; it is the fluctuations that might be introduced by the control systems that are used to maintain a "constant" temperature and pressure difference. The short term fluctuations in the altitude and temperature differences (time constants of a few seconds) were judged by the error signals of the feedback systems to be rarely more than 0.02 cm and 0.0001 K. However, because it is the time-average values that count, it is the longer term fluctuations (the drift during the 3-5 minutes it took to record the data) that determine the real error. For the altitude difference, we estimate that this source of error was negligible. Unfortunately, the temperature sensors of the control system (but not the temperature measuring system) were found to drift. On bad days, these drifts caused progressive shifts in the measured ΔT of 2-3% over the course of the day. In the worst cases, the rate of drift suggests that ΔT should change by an amount somewhat less than the errors given above. Somewhat arbitrarily then, we increase the error estimates of ΔT by 50%. Our final estimate of the random error (one standard deviation) in ΔT is (6, 4, 3 and 6) x 10^{-5} K, and in ΔP is 0.6, 0.3, 0.2 and 0.1 Pa, respectively, for the four mean temperatures.

The systematic error in temperature difference is determined by the systematic error in the pressure measurement during calibration as discussed below. This leads to a systematic error in temperature difference of between 0.5% and 0.7%.

The pressure difference is subject to systematic error, due to uncertainties in the capacitance-to-altitude conversion. Estimated at 2 parts per thousand, it implies a possible systematic error of $\sim 2.8 \times 10^{-2} \times (z_2-z_1)$ Pa, where z is expressed in centimeters. This error becomes significant only for the large ΔT , small V, data at the higher temperatures.

The errors in the mean temperature are determined by the errors in the vapor pressure measurements used to calibrate the thermometers. We could evaluate the random errors in

Table 2. Estimated Errors

Random Error (1σ) Systematic Error

Measured	Temperature			
Quantity (Units)	2.100	1.919	1.650	1. 395
T (K)	0.2 mK	0.2 mK	0.3 mK	0.4 mK
	1.1 mK	1.1 mK	1.1 mK	0.8 mK
ΔT (K)	0.06 mK	0.04 mK	0.03 mK	0.06 mK
	0.005 AT	0.006 ΔΤ	0.006 ΔΤ	0.007 ΔΤ
Δz (cm)	0.01 cm	0.01 cm	0.01 cm	0.01 cm
	0.002 Δz (cm)	0.002 Δz	0.002 Az	0.002 Δz
ΔP (Pa)	0.6 Pa	0.3 Pa	0.2 Pa	0.1 Pa
	0.03 Δz (cm)	0.03 Δz	0.03 Δz	^. 03 Åz
V (cm/s)	0.02 V	0.02 V	0.02 V	0.02 V
	0.02 V	0.02 V	0.02 V	0.02 V
ġ ₂ (W/cm ²)	0.01(q ₂ +0.047 V)	0.01(q ₂ +0.030 V)	0.01(q ₂ +0.013 V)	0.01(q ₂ +0.004 V)
	0.01(q ₂ +0.047 V)	0.01(q ₂ +0.030 V)	0.01(q ₂ +0.013 V)	0.01(q ₂ +0.004 V)

the calibrations at 1.92 and 1.39 K, from the standard deviations for data taken on several different occasions; they were 0.2 and 0.4 mK respectively. A few simple tests indicated that systematic errors due to placement of the pressure probe could not be too much larger than this. The absolute calibration of the pressure gauge could not be confirmed in the region of interest; if we take the manufacturer's estimate and increase it by a factor of three, we arrive at a systematic error in pressure of about 0.3%. This implies a systematic error of about 1 mK in mean temperature on the $T_{\rm RR}$ scale.

The random error in V is determined from the standard deviation in the voltage-to-speed conversion (1.5%), the estimated accuracy to which the voltage fluctuations could be averaged by eye, (1%), and the non-uniformity in the geometry (1%). Combined in quadrature, this gives a random error of 2%. An estimate of the error in geometry suggests that each mode might have a systematic error as large as 2% of V.

The relative error in \dot{q}_2 (both random and systematic) depended rather strongly on the conditions of the measurement, because of the sometime large value for the vapor's latent heat correction (second term of eq (37)). Assuming an error in V of 2%, we find that the error in \dot{q}_2 is given by αV (V in cm/s), where α has the values of (4.8, 3.0, 1.3 and 0.4) x 10^{-4} W/cm² for the temperatures of 2.10, 1.92, 1.65 and 1.39 K respectively. At the most extreme value of V (70 cm/s), this corresponds to errors of 0.033, 0.020, 0.009 and 0.003 W/cm². When V is small, and \dot{q}_2 is large, this error is not too significant, and we must include the estimated random and systematic errors of the first term in eq (37) of 1% and 1% respectively.

41

4. RESULTS AND DISCUSSION

Data were collected at four values of the mean of the outside and the inside temperature. Using the formulas given in section 3, each data point was reduced to give values for the actual pressure and temperature differences between the ends of the flow tube and the resulting steady state values for the net fluid velocity V and the heat flux density \dot{q}_2 . These results are presented in tabular form in Appendix 1, along with some other data and derived quantities of interest.

4.1 The Net Fluid Velocity

Nearly all the results for the net fluid velocity V (the actual mass flow rate divided by the total density and the flow tube cross-sectional area) are shown in Figs. 12-15. The absolute values of V have been graphed there as a function of the absolute value of the pressure difference, so that data for both directions of flow are superimposed. The value of the nominal temperature difference is indicated by the symbols; the measured temperature differences may differ from the nominal by as much as 3%, due to the drifts discussed earlier.

More than half of the results might be summarized in a very simple statement: they are largely indistinguishable from those of an ordinary fluid in fully developed turbulent flow. This statement applies for those flows at the larger velocities or Reynolds numbers, which are the ones most likely to be of interest for applications.

These graphs of $|\Delta P|$ vs |V| reveal quite distinctly one of the important results of this experiment: V depends primarily on ΔP -- its dependence on ΔT is significant only at the lower velocities. This result is only to be expected for an ordinary (single-phase) fluid, because the temperature gradient does not appear in the equation of motion of the fluid (we are excluding indirect effects due to buoyancy forces). In contrast, the temperature gradient appears explicitly in the (simple) superfluid equation of motion, eq (6), as part of the chemical potential gradient. Even though that simple equation for v_s is not expected to remain valid for our conditions, it suggests the possibility that v_s might be a function mainly of $\Delta \mu$; this would make V also a function of $\Delta \mu$, at least if ρ_s/ρ is not too small. This possibility is completely excluded (for our conditions) by the weak dependence of V on ΔT . To make a numerical comparison, we can use the expression

$$\rho\Delta\mu = \Delta P - \rho s\Delta T$$

which we have included in the data listing in Appendix 1. We find that under most conditions, the temperature difference dominates the chemical potential difference, and that neither one has much influence on the net mass flow. As a typical example, we can examine the data for T=1.92, $\Delta T=0.019$; not until ΔP is about 50 times smaller than $\rho s \Delta T$ (~ 2150 Pa) do we see much effect of the latter on V.

Figure 12. The pressure difference vs the net fluid velocity at 2.100 K. The dashed [solid] line is eq (41) [(42)].

Figure 13. The pressure difference vs the net fluid velocity at 1.919 K. The dashed [solid] line is eq (41) [(42)].

Figure 14. The pressure difference vs the net fluid velocity at 1.650 K. The dashed [solid] line is eq (41) [(42)].

 $\mathcal{A}^{\mathbf{i}}$

Figure 15. The pressure difference vs the net fluid velocity at 1.395 K. The dashed [solid] line is eq (41) [(42)].

A related, but not equivalent, observation is that neither v_s nor v_n becomes solely a function of ΔP in this same limit. This comparison is not quite as clear-cut as for V vs ΔP , because v_s and v_n (unlike V) can vary significantly along the flow tube, as can be seen from the expressions obtained from eqs (1, 2, and 19).

$$v_n = V + \frac{\dot{q}}{\rho s T}$$
 $v_s = V - \frac{\rho_n}{\rho_s} \frac{q}{\rho s T}$ (39)

The variation of both \dot{q} and T can cause substantial changes in v_n and v_s . Nevertheless, the average of the velocities at the ends of the flow tube, plotted against the overall pressure difference, ought to give a good indication of whether or not the local value of velocity is solely a function of ΔP . Such plots of the two worst cases of correlation between v_n or v_s and P are shown in Fig. 16 and 17. The data for a particular ΔT fall on two lines, whose difference is correlated with the sign of ΔT (relative to ΔP). These worst cases are also the cases where v_n and v_s differ the most from V. In those cases where there is a good correlation of v_n or v_s with ΔP (e.g., v_n at T = 2.10, v_s at T = 1.39, or all the small ΔT data) then it is also true that these velocities do not differ significantly from V.

The final major observation to make is that the numerical results for V vs P are largely indistinguishable from what we would expect for an ordinary fluid at these velocities. For an ordinary fluid, the flow is known to be turbulent for Reynolds numbers greater than $2-4\times10^3$. The most reasonable choice (but not the only one!) of a counterpart for He II might be the "total" Reynolds number, defined by

$$Re = \frac{\rho VD}{\eta_n} \tag{40}$$

For all our conditions, this is equal (to within 15%) to 1.15 \times 10³ V, for V expressed in cm/s. Then the range in velocities that we could cover corresponded to a range in Re of 5 - 85 \times 10³, all apparently above the threshold for classical turbulent flow. If the inside surface of the flow tube were smooth enough, we know that the pressure drop for an ordinary fluid should be given by the "Blasius Formula"

$$\Delta P_{B} = 0.079 \text{ Re}^{-(1/4)} \frac{4L}{D} [(1/2)\rho V^{2}]$$
 (41)

This formula is shown on each of the graphs (Figures 12-15) as a dashed line. We see that the main trend of the data is reproduced. In the high velocity region, the formula underestimates the pressure drop, but for an ordinary fluid, a rather modest surface roughness would be capable of making up the difference. We have no data on the surface roughness of our flow tube, so that we are not able to determine if this accounts quantitatively for the difference.

Figure 16. The pressure difference vs the average superfluid velocity at 2.100 K. Cf. Fig. 12.

Figure 17. The pressure difference vs the average normal fluid velocity at 1.395 K. Cf. Fig. 15.

This result is very appealing, because it suggests that the two-fluid dynamics reduces to ordinary fluid dynamics in some limiting cases. It suggests, even if only further experiment can prove, that the pressure drop should change with L and D in the same way as the ordinary fluid results eq. (4%). It might be suggested that the superfluid fraction has been reduced to zero by the large flow velocities but that can be ruled out on a number of grounds, including the results reported in the next section, which would display no heat transport above the "enthalpy rise" value if the heat current were only the thermal conduction of He I. Actually, it presents a difficult problem, because there is no obvious way to derive such results from the current versions of two-fluid hydrodynamics.

For the purpose of a more sensitive comparison of the data, we have made a rough fit to a constant friction factor formula, defined by

$$\Delta P_{\rm C} = f \frac{4L}{D} [(1/2)\rho V^2] \tag{42}$$

where f has the values 0.0062, 0.0062, 0.0067 and 0.0075 for the temperatures 2.10, 1.92, 1.65 and 1.39 K respectively. This formula is plotted as the solid line in figures 12-15. The fractional deviations of the data from this formula have been plotted in Figs. 18-21. This plot gives a more exact impression of the data coverage, scatter and departure from a simple behavior.

We have not yet found any simple correlation for the lower velocity data, nor have we been able to specify what condition it is that determines just where that region starts. However, in all the conditions encountered in this experiment, this ignorance is in regions where the pressure drop is small enough so that it may be mainly of academic interest.

No correction was made for end effects, because we have no experience that indicates that they should be made. If such an extra pressure drop were present, of about the same size as for ordinary fluid flow (say $1/2~\rm pV^2$), then it would represent about a 6% correction to the data

If the change due to the curvature of the flow tube were about the same for He II as for an ordinary fluid in turbulent flow, then there would be about 1% extra pressure drop at 10 cm/s, and about 1% extra pressure drop at V = 70 cm/s [29].

4.2 The Heat Current Density

We have shown in sections 2 and 3 that the quantity \dot{q}_2 represents the useful heat (per channel cross-sectional area) that can be removed from a heat source by the fluid in a cooling channel. We showed that for a heat source which is a small heated section in the middle of a cooling channel of length 2L, assuming the other conditions are matched, our experimental result for $\dot{q}_2(V)$, V>0, would represent the heat absorbed by the incoming fluid, and that the result for $\dot{q}_2(V)$, V<0 would represent an additional heat conducted away by the departing fluid.

Figure 18. The data of Fig. 12, plotted as deviations from eq (42).

Figure 19. The data of Fig. 13, plotted as deviations from eq (42).

Figure 20. The data of Fig. 14, plotted as deviations from eq (42).

Figure 21. The data of Fig. 15, plotted as deviations from eq (42).

The results for $\dot{\tau}_2$ are shown in Figs. 22-25, where they are plotted as a function of V. The symbols indicate the nominal values for ΔT , but the explicit dependence on ΔP is not indicated; it can be inferred from the value of V.

Constructing a correlation for the data is not so straightforward as for the net fluid velocity. In that case, mass conservation required that V be a constant, so that once it was found that ΔP is mainly a function of V, we can infer that the local and average pressure gradients are nearly the same. In this case, the temperature gradient and the heat current density can turn out to be strong functions of position along the tube.

We proceed in a manner similar to that found in section 2.2 The one-dimensional energy equation [eq (20)] gives us an expression that relates $\hat{q}(x)$ to T(x), and to the velocity and the local pressure; the latter two quantities can be taken directly from experiment. The model building comes in trying to devise a successful second equation that will allow solution for the unknowns \hat{q} and T.

The most natural choice we have come up with so far is to set the chemical potential gradient equal to one of the mutual friction expressions using eq. (10) with $\partial v_s/\partial t = 0$. This amounts to setting \dot{q} equal to some simple function of ∇u .

We used Vinen's expression [9],

$$\nu_{s} \frac{d\nu}{dx} = A\rho_{s}\rho_{n} \left(|v_{n}^{-}v_{s}| - v_{c} \right)^{2} (v_{n}^{-}v_{s})$$
(43)

and took the values for A from his graph. The value of ${\bf v}_0$ (not very influential in the calculation) was arbitrarily fixed at 0.5 cm/s, a value near his.

The equations were integrated numerically, the T at x_2 fixed at T_2 , and \dot{q} given various starting values, until the temperature at the other end matched. The resulting values of \dot{q}_2 are displayed as the solid lines on the graphs of \dot{q} vs V, Fig. 22-25.

The calculations do reproduce some features of the data. First, they do a reasonable job of doing what they were originally designed to do, i.e., predict the V=0 data, the poor spots being T=1.395 and T=2.100, where the calculated values are all about 10% high. Second, for the higher I's they do a reasonable job of predicting the slope of q_2 , near V=0. Finally, one curve (Fig. 25) does go through zero (albeit much more steeply) about where the data reverses sign, at the lowest T and ΔT . This last leature, and the other sharp drop at negative V, are found only for the conditions in which ΔP becomes large enough to cause $\Delta \mu$ to reverse sign; we have the interesting possibility of a heat current flowing toward higher temperatures. Unfortunately, the experimental evidence for this current reversal is not quite compelling. The data had a small statter, and were reproducible, but the possibility of a systematic error (an extraneous heat input) of about the size needed to cancel the effect, cannot be excluded.

Overall, though, this simple theory does not work very well, the most striking result being that for both V<0 and V>0 the observed \hat{q}_2 is less than expected. As originally formulated, Vinen's arguments that lead to eq. (43) clearly suggest that the equation should remain valid when $V\neq 0$. These results lead us to conclude otherwise.

Figure 22. The useful heat current density vs the net fluid velocity at 2.100 K. The solid lines are the calculations that assume mutual friction is unaltered by the net fluid flow.

Figure 23. The useful heat current density vs the net fluid velocity at 1.919 K. The solid lines are the calculations that assume mutual friction is unaltered by the net fluid flow.

Figure 24. The useful heat current density vs the net fluid velocity at 1.650 K. The solid line is the calculation that assumes mutual friction is unaltered by the net fluid flow.

ERIC Full Text Provided by ERIC

50

Figure 25. The useful heat current density vs the net fluid velocity at 1.395 K. The solid lines are the calculations that assume mutual friction is unaltered by the net fluid flow. 59

ERIC Full Text Provided by ERIC

These results seem to be suggesting that we might retain Vinen's identification of the source of mutual friction with the presence of vorticity in the superfluid fraction, if we now suppose that the net fluid flow is capable of generating superfluid vorticity, in amounts over and above that generated by the mean counterflow of the two components.

5. ENHANCEMENT OF HEAT TRANSPORT BY FORCED CONVECTION

Without understanding quantitatively how mutual friction is increased by mass flow we can still draw some qualitative conclusions which indicate that in some circumstances at least, much more heat can be transported by forced convection than by "natural" convection.

Our reasoning is based again on investigating the limit as the heat current goes to zero everywhere except near the heater. The energy equation for He II also integrates immediately to give the now familiar result that the total heat absorbed by the fluid is equal to the enthalpy difference times the flow rate. For the incoming fluid (V > 0), we get $\dot{q}_2 = \rho V C_p \Delta T$; for the departing fluid (V < 0), we get $\dot{q}_2 = 0$. The positive velocity partion of the enthalpy-rise-heat-current is given on the graphs (Figs. 26-29) of \dot{q}_2 vs V. This value should, and does, act as a lower bound for the useful heat that can be rejected by the heat source. If the extra mutual friction caused by the mass flow has not "killed off" the heat current, then we can expect an extra contribution.

Now let us consider a comparison of "natural" to forced convection. Suppose we want to use the flow tube from these experiments to cool some localized heat source. First, let us estimate the best that we can do at 1.8 K with pure counterflow, with two tubes connected to the source, but no forcing of circulation around the loop. We suppose that we have a pressurized system so that we can increase the ΔT to 0.300 K. At best, the heat current per tube will increase as the cube root of T, and since $\dot{q}_2(T=1.92,\Delta T=0.047,V=0)=-1.11 \text{ W/cm}^2$, the best we can do (ignoring the temperature dependence of the proportionality constant in equation (8)) is

$$(1.11) \times 2 \times \left(\frac{(1.300)}{(1.047)}\right)^{1/3} = 4.1 \text{ W/cm}^2$$

Second, how well can we do with forced convection? The enthalpy-difference-heat-current (the lower limit) for the same ΔT is

$$\rho V \int_{1.8}^{2.1} C_p \ dT = V \times (0.21 \text{ J/cm}^3)$$

If we have enough head $(2.5\ \mathrm{m})$ to force the flow at 200 cm/s, we get

60

which is 10 times larger. The pump work divided by the heat transported is

Figure 26. The data of Fig. 22. The lines are the enthalpy rise values for the different ΔT 's.

Salta Barrelli

Figure 27. The data of Fig. 23. The lines are the anthalpy rise values for the different ΔT 's.

ERIC*

62

Figure 28. The data of Fig. 24. The lines are the enthalpy rise values for the different $\Delta T's$.

ERIC Full text Provided by ERIC

The data of Fig. 25. different ΔT 's.

$$\frac{\Delta P \cdot V}{\rho V \int C \ dT} \simeq \frac{3.6 \times 10^3 \text{ Pa}}{0.21 \text{ J/cm}^3} \simeq \frac{3.6 \times 10^3}{2.1 \times 10^5} \simeq 1.7\%$$

If 17% pumpwork were acceptable, then another factor of 3 increase in heat absorbed is possible.

While this example may not be typical of any prospective application, it does illustrate how in some situations forced cooling might be of interest.

These experimental results for \dot{q}_2 show the transition from this purely classical and predictable heat transport to the more or less predictable values for zero mass flow -- the pure counterflow regime.

6. CONCLUSIONS

This experimental study enables the following generalizations to be made regarding combined heat and mass flow in Helium II.

- 1. Velocity of flow is primarily a function of pressure gradient. Towards the higher velocities encountered in these experiments, the relationship between velocity and pressure gradient is independent of the temperature gradient and strongly resembles a classical fluid. At lower velocities a complex relationship exists between V, ΔT and ΔP , which needs further clarification.
- 2. At zero velocity, axial heat transport typical of the "mutual friction" regime is again confirmed. Either positive or negative velocities reduce this heat transport below what would be calculated from the Vinen theory, and, as the magnitude of the velocity increases, classical forced convection heat transport is approached. For strongly negative velocities there is some evidence that a reversal in the direction of the heat current takes place as predicted from the Vinen theory. More definitive experiments would be required to confirm this.
- 3. In practical situations, axial heat transport far in excess of the usual pure counterflow values may be achieved by imposing mass flow or forced convection with the usual classical pressure drop.

7. ACKNOWLEDGEMENTS

Vincent Arp played a vital role in initiating and encouraging this project, and in defining the problems which it addresses. Jim Siegwarth generously loaned experimental equipment and expertise. One of us (W.J.) would like to acknowledge support provided through the National Bureau of Standards Postdoctoral Research Associateship Program in association with the National Research Council.

8. REFERENCES

- [1] G.v.d. Heijden, W.J.P. de Voogt, and H.C. Kramers, "Forces in the Flow of Liquid Helium II, I" Physica <u>59</u>, 473 (1972).
- [2] G.v.d. Heijden, A.G.M.v.d. Boog and H.C. Kramers, "Forces in the Flow of Liquid He II, III," Physica 77, 487 (1974)
- [3] W. de Haas, A. Hartoog, H.v. Beelen, R. de Bruyn Ouboter and K.W. Taconis, "Dissipation in the Flow of He II," Physica 75, 311 (1974).
- [4] W. de Haas and H. van Beelan, " A Synthesis of Flow Phenomena in He II," Physica 83B, 129-146 (1976).
- [5] J. Wilks, The Properties of Liquid and Solid Helium. Oxford University Press (1967).
- [6] W.E. Keller, Helium-3 and Helium-4, Plenum Press (1969).
- [7] R.J. Donnelly, W.I. Glaberson and P.E. Parks, <u>Experimental Superfluidity</u>, University of Chicago (1967).
- [8] S.J. Putterman, <u>Superfluid Hydrodynamics</u>, North-Holland (1974).
- [9] W.F. Vinen, "Mutual Friction in a Heat Current in Liquid Helium II," I Proc. Roy. Soc. <u>A240</u>, 114 (1957); II Proc. Roy. Soc. <u>A240</u>, 128 (1957); III Proc. Roy. Soc. <u>A242</u>, 493 (1957); IV Proc. Roy. Soc. <u>A243</u>, 400 (1958).
- [10] R.K. Childers and J.T. Tough, "Helium II Thermal Counterflow: Temperature and Pressure Difference Data and Analysis in Terms of the Vinen Theory," Physical Rev. <u>B13</u>, 1040 (1976).
- [11] D.R. Ladner, R.K. Childers and J.T. Tough, "He II Thermal Counterflow at Large Heat Currents," Phys. Rev. B13, 2919 (1976).
- [12] V. Arp, "Heat Transport Through Helium II," Cryogenics 10, 96 (1970).
- [13] C. Linnet and T.H.K. Frederking, "Thermal Conditions at the Gorter-Mellink Counterflow Limit Between 0.01 and 3 Bar," J. Low Temp. Phys. 21, 447, (1975).
- [14] G. Krafft, "Kuhlung Langer Rohrsysteme mit Superfluidem Helium," Kern Forschungszentrum Karlsruhe Report KFK1786, (1973).
- [15] R.K. Childers and J.T. Tough, "Superheating in He II," Low Temp. Phys. LT13, 1, 359 (1972).
- [16] R. Eaton III, W.D. Lee and F.J. Agee, "High-Heat Flux Regime of Superfluid Cooling in Vertical Channels," Phys. Rev. A5, 1342 (1972).
- [17] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press (1959).
- [18] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, John Wiley (1960).
- [19] S.R. de Groot, Thermodynamics of Irreversible Processes, North-Holland (1951).
- [20] E.F. Hammel and W.E. Keller, "Dissipation and Critical Velocities in Superfluid Helium," International Conference of Low Temperature Physics LT10, Moscow, Vol I, p. 30 (1967).
- [21] P.H. Roberts and R.J. Donnelly, "Superfluid Mechanics," Ann. Rev. of Fluid Mech. 6, 179 (1974).
- [22] R. Meservey, "Superfluid Flow in a Venturi Tube," Phys. of Fluids 8, 1209 (1965).

N.

- [23] P.M. McConnell, "Liquid Helium Pumps," (U.S.) National Bureau of Standards Internal Report NBSIR-73-316 (1973).
- [24] F.G. Brickwedde, H.v. Dijk, M. Durieux, J.R. Clement and J.K. Logan, "The 1958 He⁴ Scale of Temperatures," J. of Res. NES <u>64A</u>, 1 (1960).
- [25] S.G. Sydoriak and R.H. Sherman, "The 1962 He Scale of Temperatures I," J. of Res. 68A, 547 (1974).
- [26] R.D. McCarty, "Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres," (U.S.) National Bureau of Standards Tech. Note 631 (1972).
- [27] H.J.M. Hanley and J. Ely, "The Viscosity and Thermal Conductivity Coefficients of Dilute Nitrogen and Oxygen," J. Phys. Chem. Ref. Data 2, 735 (1973).
- [28] C.M. White, "Streamline Flow Through Curved Pipes," Proc. Roy. Soc. A123, 645 (1929).
- [29] H. Ito, "Friction Factors for Turbulent Flow in Curved Pipes," Trans. ASME, J. of Basic. Eng., June 1959, p 123.

9. NOMENCLATURE

Gorter-Mellink constant horizontal cross-sectional area cross-sectional area of the flow tube isobaric heat capacity per unit mass capacitance diameter of the flow tube total energy of the helium gravitational constant h, h₁, h₂, h_{ent} enthalpy per unit mass the energy (total energy) current density active capacitor length flow tube length length of quantized vortex line per unit volume $M(m, m^1)$ the total (liquid, vapor) mass of helium within the inner vessel pressure (for gas flow measurements) the ambient pressure, the partial pressure of water vapor heat current or rate of heat addition heat current density Reynolds' number s, s', s₁, s₂ entropy per unit mass T, T_1 , T_2 , T_{ent} temperature total internal energy of the helium within the inner vessel $\mathbf{u},\ \mathbf{u}^{*},\ \mathbf{u}_{1},\ \mathbf{u}_{2},\ \mathbf{u}_{\mathrm{ent}}$ internal energy density per unit mass volume per unit mass v_n, v_s normal and super component velocities (cross-sectional average) net fluid velocity (cross-sectional average) vertical velocities axial coordinate z₁, z₂, z_b, z_{ent} altitudes

English

Greek

Subscripts

```
or for the outside helium bath (inner vessel)

e, (b, d) for evaporation measurements (the vacuum can, the dewar)

ent at the entrance of the flow tube to the inner vessel

SV, svp along the liquid-vapor coexistence line

u (e) associated with the internal (total) energy density
```

Superscripts

primed and unprimed quantities distinguish between the vapor and the liquid, respectively

APPENDIX 1

The following tables give the important results for almost every data point taken during the long run. Listed are the average and the difference of the temperatures of the inside and the outside helium vessels (TMEAN,DT), the altitude difference calculated from the preceding two quantities (DP), the velocity of net fluid flow through the flow tube (V), and the nominal heat current density at the inside end of the flow tube (Q2).

The sign convention is determined by taking the positive direction to run from the outside toward the inside. Therefore positive temperature differences indicate that the inside was hotter than the out-de; a positive pressure difference, that the inside end of the flow tube is at a higher plessure than the outside end. The negative values of Q2 indicate that heat is flowing towards the (cooler) outside, etc.

All temperatures are given in kelvins (measured on the T_{58} He⁴ vapor pressure scale), the pressure difference is given in pascals (= 1 newton/meter² = 10 dyne/centimeter²), the altitude difference in centimeter₃, and the velocities are given in centimeters/second. The reader should be alert to a practice that is commonly found in the He II literature and this paper, and that is the mixing of MKS and cgs whits. Therefore, when various quantities are multiplied together, further multiplication by powers of ten may be necessary to maintain consistent units.

Each data point is identified by numbers found in the ninth column of the table; the month and day on which a data-taking session was started in indicated by the numbers under DATE, the sequence number for that data-point is indicated while MN, and the mode number that indicates the location of the liquid interfaces as given under MO (see Table 1). The data points have been sorted: first by TMEAN, then by whether they are regular data points or equilibrium points (Q2 = 0) and finally by chronological order.

In columns 7 and 8 are given the results for the two auxiliary thermometers TIB and TOB. They were intended to measure the temperatures near, but not at, the inside and outside ends respectively. (See the text for an account of the relatively large uncertainties in this particular measurement). The temperature of the outside helium bath was subtracted from the indicated temperature at each location to give the listed values of DTIB and DTOB.

Several other quantities of possible interest can be calculated from the experimental results by using known values for some thermodynamic properties and some formulas from section 2 and 3. We have listed RDMU, the density times the difference in the chemical potential, which is given by $\Delta P = \rho \bar{s} \Delta T$. Also tabulated is Q1, (Q1 = \dot{q}_1), the nominal heat flux density at the outside end of the flow tube, defined by Q1 = Q2 + $(z_2-z_1)\rho V$. Finally, we have tabulated the nominal values for the normal- and super-fluid velocities at the two ends from the formulas

$$VN1 = V + \frac{Q1}{\rho s_1 T_1},$$

$$VS1 = -\frac{\rho_n}{\rho_s} \frac{Q1}{s_1 I_1} , \text{ etc.}$$

The thermodynamic properties were taken from a power-law interpolation of tables A and E of Putterman [8].

Appendix 1. Experimental Data.

THEAN	01	٤z	JΡ	J	Q2	SOIC	0118	GATENNHO	ROMU	Q1	VN2	14814	453	VC4
in)	(K)	lGMi	(PA)		(H/CH2)	(K)	(K)	PAISHAIN	(PA)	(H/CHS)		(CH\2)	V52 (CM/S)	VS1 (CH/S)
2,10035	.11913	-14.96	1	u. û j	497	. 10195	.018??	417 7 1	-1649 4	- 109	. 4 . 04	-		
Z. 10034		-24.34	-134.3	37.55	933	11131	11212	917 5 4	-3542.4 -3673.7	-,497	+1,24	-1.32	4.87	3.68
2.16032	.31 197		132.1	-37.81	113	.50402	.01731	917 9 3	-3380.3	164	35.22 -36.10	37.11	46.69	38.76
2.10929	.01897	-14.85	•.3	6.30	- 448	.3335	.01/04	91710 1	-3513.3	- 1498	-1.24	-40.18 -1.32	-36.65 4.87	-31.16 3.69
\$.10034 \$.16034	.31407	14.5.	441.5	-7u.72	. 038	.01053	01952	91713 3	-3015.8		-70.62	-74.47	-71.09	-60.19
源:16034	•01876	6.42	303.4	-55.47		402504	.31677	91714 3	-3164.6		-58.48	-61.66	-58.47	-49.56
(Z636 636	•31874		71804	-48.50	-154	. 03623	01832	91715 3	-3250.7		-48.70	-51.34	-48.03	-40.80
2.10027	• 31 193	-14.76	14	G. úü	499	. 11176	·ú1795	91716 1	-3503.8	499	-1.24	-1.32	4.87	3.70
2.10052		-1-,4-	• 2	ŭ ŭ	- , 4, 94	. 33151	.02621	920 3 1	-3542.5	494	-1.23	-1.71	l. 44	7 .
2.16654		-21.cl	-30.0	31,67		03043	J1262	920 4 4	•3629.2	-•505	29.55	-1.31 31.13	4.8£ 40.03	3.55 33.17
2.16653		-4.05	17.2	-32.42		. 10343	.01762	920 5 3	•3424.2		-33.21	-35.02	-31.31	-26.66
2.1065		-17.63	-47.0	26.15		11138	. 11346	920 6 4	-3594.5	253	24.18	25.48	33.91	28.03
2.10051		-16.65	56.2	-27.20	199	.93306	.01885	920 7 3	-3460.0		27.78	-29.30	-25.32	-21.63
2.1664		-10.65	-45.6	21.58		00013	.01472	920 8 4	-35/9.9	293	19.75	20.81	28.84	23.75
2.10011	.01903		36.0	-25, 34		.10306	.01685	920 9 4	-34E0.0		26.57	-28.02	-23.73	-20.31
2.16:61		-1;	05.2	-26.93		.ú)306	.01885	92010 3	-3460.0		27.45	-28.95	-24.89	-21.27
2.10005	11899		43.5	-21.24	272	.00221	.01825	92011 4	-3476.2		21.91	-23.11	-18.56	-15.98
2.10063		-11.31	43.5	•23.61	248	. 10 221	•j1825	25915 3	-34/6.2		22.83	-24.08	-19.77	-16.97
2.1606>		-11.61	43.5	-21.36	o. 259	15 200	.01825	92013 1	-3476.2		22.01	-23.21	-18.81	-16.18
2.10672	. 113.6	-14.94	*.4	ÿ. i3	497	. 13106	. 11908	92014 1	-3534.1	497	-1.24	-1.31	4.91	3.69
2.13036			.7	v. 03	496	. 10 115	. 41644	92110 1	-3538.4	496	-1.23	-1.31	4.86	3.67
2.10244	.31497	-	-23.3	10.73	687	01028	. 01470	92111 1	-3536.4	345	15.02	15.62	23.48	19.29
2.14644	11 197		21.4	-15.50	319	. 33384	.01686	92112 1	-3491.5		16.38	-17.27	-12.45	-10.85
2.10045	135097		-35-5	19.27		******	.01436	92113 1	-3545.6		17.45	15.41	26.30	21.66
2.10046	.31897		Su. w	-10.12	297	.03136	.01698	92114 1	-3433.0		18.85	-19.89	-15.20	-13,16
2.10044	.01095		••7	0.00	-•496	.00004	.01629	92115 1	-3511.4	496	-1.24	-1,31	4.86	3.68
2.1664	. 11595		-14.1	12.93	649	11151	·J1510	92116 1	-3524.8	384	11.32	11.91	19.29	15.78
2.10645	J1895		12.7	-11.76	360	. 30071	.01685	92117 1	-3497.8		12.68	-13.37	-8.25	-7.32
2.10045	11895		-1 i . 5	14.67	627	00023	101527	92118 1	-3521.0	409	9.10	9.58	16.82	13.70
2.16045	.ú1490 .j1890		d.i -1.1	-9.46 5.33	388 497	.30052 .33061	•91674 •91624	92119 1	-3492.9			-11.00	-5.65	-5.14
				4144	- + 7 7 1	*****	141064	92120 1	-3502.6	497	-1.24	+1.32	4.87	3.69
2.10037	.01 /13		• • 8		497	.00065	.11648	16 2 3 1	-3542.6	-: 17	-1.24	-1.32	4.87	3.68
2.1663)	. 11966		-135.6	37.32	926	10052	.01170	16 2 6 4	-3665.2	_	35.01	36.88	46.39	38.53
1.10036	.11893		131.1	-30.43	14)	.00394	.01714	10 2 5 3	-3374.8		`	-39.38	-35.62	-30.31
2.10073	.10332			4.0 0	- • 288	10036	.06224	10 210 1	-616.1	288	74	74	2.41	2,28
2.10069	10336		13.5	-11.65	- 525	03045	.00193	10 211 1	-619.0	265 -	12.25		-9.83	-9.59
2.19674	.00329		-11.2	16.38	203	00047	.00185	10 415 1	-620.0	245	9.66	9.74	12.73	12.32
2.16065	.00334	-1.91	16.1	-9.95	232	00047	.03173	10 caJ 1	-609.9			-10.65	-8.02	-7.83
2.10071 2.10C75	+J0326	-2.56	• 1	Ü. JJ	289	0)]&4	10205	16 214 1	-604.5	289	74	75	2.41	2.29
2.1007.	.10327	•2 • £7	***5	5.71	-, 298	17754	.0172	10 215 1	-611.1	278	4.95	4.99	8.19	7.91
2.16271	. 10364	•2•25 3•69	4 0 Å	-5.54		03057	00164	10 216 1	-596.8		-6.27	-6.32	-3.38	-3,34
2.10067	. 10307	19.32	67.2 510.4	-30.61	i94	33053	.00143	10 217 3	-484.0					-29.12
2.10600	.36352	13.67	223.0	*>5.40	.021	13022	•0ú285	10 218 3	-258.5					-56.93
2.16855	.3031-	2.13	31.5	-+3.12 -26.14	• • • • • • • • • • • • • • • • • • •		.JC170	16 219 3	-339.4					-47.72
2.13272	16300	-2.43	9149	_	••12+ ••205	01044 31058	.00156	10 220 3	-515.8					-24.48
2.16073		- ,2•	30.4		184	30005	.00149	10 221 1	-568.4 -677.4	286	73	-•74	2.38	2.27
		***	7417	-4114	- 4 4 7 4	-110005	.00264	10 222 1	-537.4	242 -:	71.05	-17.77	-15.61	-15.24

ERIC Fruit fax Frovided by ERIC

									•					-
THEAN	UT	92	ÜP	,	02	9108	0118	DATENNHU	RDMU	Q1	ANS	VN1	V25	
(K)	(K)	(CH)	(PA)		(A\CHS)	(4)	(K)	Se I PHILLS	(PA)	(M/CHS)			(CH/S)	(CH/8)
2.16985	38005	61	-,7	6.30	0.000	. JJ971	54057	917 1 1	3.6	0.300	4.90	0.10	6.00	1.11
2.16495	.00504	*. ú1	. 2	0.01	0.000	.03067	.00255	917 2 1	-6.8	0.150	0.00	9.00	9.00	1.11
2.10635			• 2	0.00	0.010	.01043		917 3 1	•1.€	9.000	0.69	8.00	. 0.09	0.00. 0.00
2.69573			- 0 ()	0.00	0.930	. 10004		517 6 1	-,8	0.000	9.05	6.00	0.06	P. 65%
2.09074		0!	- 9	0.00	1.310	. 33065		917 5 1	-9.3	0.000	0.00	0.00	0.00	1.14
	00064		• 1	0.00	(.000	92016		917 6 1	516	0.003	t.00	0.03	8.96	0.00
2.09002		,,,,,,,	7603.2	0.90	0.00	.;;011	10066	91711 1	7657.8	0.000	9.00	0.00	0.00	0.00
2.09063	.00003		7 o Ċ 0 - 0	0.00 u.Qú	3.030 6.640			91712 1	•5.1	0.000	0.00	4.60	0.00	8, 60g
10000	-130447	***	·• • · •	4.64	01030	111064	101167	91717 1	1.6	0 c 9 0 0	0.00	0.00	0.00	2007
	.00066	• • ù Ū	• 6	ū. 00		. 11114	.69678	918 1 1	-9.8	0.800	0.00	0.30	0.60	0.00
2.39071	*•06691)	1	ů.OJ	j.ij0	-, 11115	.00008	918 2 1	1.5	0.000	0.00	0.05	0.00	1.16
2.6899.			. t	V. 11	C.003	.00122		920 1 1	-3.1	0.000	0.00	0.00	0.00	1.19
5-09098		• 43	• 6	0.23	0.000	• 01090		920 2 1	-1.7	0.000	0.00	0.00	0.00	9.00
2.09113	. 3000 5	• • • •	.5	0	6.130	• 6105 •	.uJ126	92015 1	-4.1	0.000	0.06	0.00	0.00	1.11
	30001		7652.7	0.00	r.010		.00237	921 1 1	7665.1	9.300	0.00	0.00	0.00	0.00
	• 0000	•••1	•• i	6.13	0.333		Gi158	921 2 1	6.9	0.000	0.00	0.00	0.00	0.00
	00001	61	3	0.00	(.610		06156	921 3 1	2.0	0.300	0.30	0.08	0.00	3.11
	ú30ul	***	•, 3	5.65	1.300		00156	921 4 1	1.4	0.000	0.00	0.00	0.00	8.00 k
2.10111	00001 	01 1	•• 3 •• 1	0.01 5.33	0.000 0.iJC		00158 00157	921 5 1 921 6 1	1.1 -1.8	C.000 C.000	0.00 0.00	0.00 0.00	0.00 0.08	0.00
2.09145		- • • • 5	-	6.06	0.000		06151	921 7 1	-5.C	0.900	0.00	0.00	0.00	0.00 <i>£</i>
2.09124		****		0.30	ŭ. COC		06153	921 8 1	6	0.000	0.00	0.00	0.00	1:33
2.09692		01	•1	C. 0J	u. 60J		30151	921 9 1	-3.4	0.100	0.10	0.00	0.00	6.00
2.16033	33004	• 41	•, 4	i.00	3.000	-,;),/-	18155	10 2 1 1	7.5	0.006	3.00	0.00	0.00	0.00
2.09075		.31	•,2	6. ,,	C. 630		;157	10 2 2 1	5.2	0.300	3.CG	6.00	0.06	0.00
2.10167	J30ú2	1	1	u.01	0.000		uú155	10 2 6 1	2.9	0.300	0.30	8.00	0.00	0.00
2.0999-		. 11	1	6.00	€ندون		156	10 2 7 1	2.4	0.000	0.00	0.00	9.00	0.00
5.16246		. : 3	•••	0.00	6.000		úG129	16 2 8 1	20.2	0.630	0.00	0.00	0,00	0.00
2.09962		5	*16	i. 10	0.003			15 2 9 1	9,9	8.000	8.00	0.00	9.00	0.00
2.09913	10112	536.11	7602.5	0.00	ü. (J)	. 73066	. 40454	16 223 1	7668.7	0.000	0.00	0.00	6.00	0.00
			6.2		961		.02685		-3276.8	961	-4.18	-4.60	3.76	3,564
1.92413			6.1		961	.03137		9 2 3 1	-3296.5	961	-4.15	-4.60	3.74	3,56
1.92415			-39.2		-1.161	.03117		9241	-3344.7	720	19.65	21.25	29.26	27,36
1.92407	.02867	716177	48,2	-24.14	-1103	. 33257	. 42725	9 2 5 1	-3216.9	-1.138	-27.26	-29.63	-21.40	-19,98
1.91935	. 64728	-25.53	0.7	b. Dû	-1.108	. 11231		910 1 1	-5309.7		-4.75	-5,56	4.40	4.88
1.91942	.04721		-11.n		-1.361	. 11136	.04242	910 2 4	-5321.8	922	9.45	10,66	61.69	16.61
1.91941	.04719		•25.1		-1.448	.00120	.04142	910 3 4	-5332.5	818	15.73	17,84	27.69	24,98
1.31941	.04711		144.1	-45,23		. 61011	.04565	910 4 4	-5110.4		47.57		-43.07	-30,55
1.91948	.84710		-83.7		-1.635	. jj099	.03940	910 5 4	-5382.3 -5358.9	667 718	26.86 23.02	39.53 26.15	46.37 35.98	36.26
1.91944	. 34709		-61.5 -34.4		-1.569 -1.508	.30166	.04002 .04074	910 6 4 910 7 4	-5334.1	-1774	19.19	21.77	31.64	28,45
1.91952	. 14702		132.3	-15.21		. 30767	.04550	910 8 4	-5187.5		38.03			-29.17
1.91969	134684		-2.5		-1.249	.00136	.04264	910 9 2	-5278.6	959	6.36	7,13	17.09	15,48
1.91954	14691		t.1		-1.109	.11556	.64412	91010 1	-5279.0	-1.109	-4.75	-5,55	4.46	4,81 -
1.919+6	, 3+698	-25.37	t.7	(.00	-1,105	.00226	.04410	911 1 2	-5277.4	-1.100	-4.75	-5.55	4.40	4,88%
1.91943	14687		15.0		•1.014	.19298	04455	911 2 2				-13,22	-3.10	-2.73
1.91943	.14687		15.6		-1.013	.00298	.04455	911 3 1	-5256.3	-1.218	11.55	-13.30	-3.10	-2.46
1,010.	14686	-26.46	-4.1	11.07	-1.286	.00161	.34276	911 4 1		970	5.56	6.55	16.18	14.58
1. ERI	C 34880	-26.35	-4-1	10.39	-1.262	.00161	.04276	911 5 2	-5274.8	968	5.49	6.14	16.08	14.49
	\sim							MA						j:

The An	OT	LZ	ЭP	٧	Q2	BOTO	0118	DATENNHO	RCHU	Q1	VN2	VN1	VSZ	VS1
S(K)	(K)	(CH)	(PA)		(H/CH2)	(K)	(K)		(PA)	(H/CH2)		(CH/S)	(CH/S)	
1,91941	. 14684	•25.23	b•7	3.56	-1.108	.00224	.04395	911 6 7	-6214 6	_4 4 500	-4 9E	-8 88		
1.51939		-24.98	11.6		-1.463	.00259	.04395	911 7 2	-5261.0 ~5255.0	-1.557 -2.157	-4.75 -7.86	-5.55 -9.09	4.40	4.60
1.91941		-25.61	1.)		-1.265	.03175	04324	911 8 2	-5260.6	-1.01.9	1.36	1.43	.93	10-16
1.91939		-25.25	6.4		-1.108	15500.	.04385	911 9 2	-5230.5	-1.346	-4.75	-5.55	11.31	10.21
8.91934	14664	6.4.	451.1		273	01554	.04538	91110 3	-4793.3		-72.56	-43.07	-70.64	-63.27
4.91933	.94658		317.6		366	.01200	.04522	91111 3	-6920.7		-61.34	-70.18	-58.30	-52.24
E1691934	. 14641		0.2		-1.105	. 10222	.04353	91112 2	-5215.2	-1.105	-4.74	-5.53	4.31	3.99
1.91925		-21.48	44.7		763	.00543	.04463	91113 1	-5156.9		-28.37	-32.46	-22.07	-19.78
1.41855	. 14622	-24.97	ó • 3		-1.104	.00220	. 44336	91114 2	-5189.5	-1.104	-4.74	-5.53	4.36	3.99
1.41424		-22.75	37.0	-20.77	524	.00463	. 06447	91115 1	-5159.4		-24.31	-27.63	-17.50	-15.64
1.71967		-25.41	· • • • 6	13.06	-1.309	.00149	.04199	91116 1	-5208.1	942	7.44	8.35	16.26	16.46
1.91965	• 14627		-6.0	13.00	-1.305	.00144	, 04194	91117 2	-5208.1	942	7.38	8.29	18,19	16.41
8.91928		-23.4G	29. i		886	.00405	.14437	91118 2	-5172.6	-1.334	-19.70	-22.58	-12.39	-11.00
1.91920	.3+624		53.1		381	. 33445	.04437	91119 1	-5172.6		-20.09	-22.91	-12.72	-11.34
1-91923		-24.94	6.5		-1.104	.17554	.04335	91120 1	-5185.6	-1.104	-4.74	-5.53	4.34	J. 99
1.91925	134621		•• •		-1.227	. 11169	. 34253	91121 1	-5193.8	997	2.92	3.20	13.06	11.79
1.41985	. 34654	-24.47	13.1	-5.26	-1.036	.10273	.04373	91122 1	-5177.6	-1.154	-9.73	-11.21	-1.18	-1.00
1.42384	.12466	-15.47	0.5	u • 00	958	. 10144	.02670	914 4 1	-3259.2	958	-4.17	-4.56	3.76	3.55
1.92367	.02457	-12.35	26.5	-25.05	703	•10563	.02718	914 5 1	-3203.4	-1.146	-29.12	-30.54	-22.29	-20.01
1.919.2	.30315	-1.65	. 5	0.03	496	.03023	.00273	928 9 1	-353.3	496	-2.29	-2.31	1.88	1.87
1.91945	• 10315	-4.50	-4,3.5	20.99	•• 395	.03014	.00247	92610 1	-397.8	356	19.17	19.34	22.49	22.33
1.91942	.00315	1.45	+5.4	-51.55	364	.30022	.06248	92811 1	-303.7		-22.90	-23.11	-19.84	-19.69
1.91943	.00315	-4 . 63	-43.8	21.23	-• 196	. 00 3 31	.00276	92815 1	-338.0	357	19.40	19.57	22.73	22.97
1.91943	•39315	1.45	45.4	-21.26	359	. 33024	.00243	92813 1	-308.9		-55.93	-23.14	-19.92	-19.77
1.91936	.00317	-4.53	-43.0	21.35	395	.03030	.03253	92814 1	-339.6	354	19.53	19.70	22.84	88.68
1.91939	.00313	.51	31.8	-16.15	-, 385	.30034	,00265	92615 1	-320.0		-19.92	-20.10	-16.69	-16.57
1.91938	.20313	-3.55	-\$4.6 -\$4.6	17.86 -15.73	416	.33041	.00310 .00276	92816 1 92817 1	-382.3	363	15.94	16.38	19.44	19.30
1.91962	.00339	11 -3.2.	-21.9	15.21	437	.JJ038	. 40304	92818 1	-329.0 -369.5	435	-17.60 13.20	-17.76 13.31	-14.20	-16.10
1.91937	.96314	-1.6.	1.5	0.00	496	.01026	.00266	92819 1	-352.0	496	-2.29	-2,31	16.46 1.88	16.75
1.91915	.3312	73	14.5	-11.43	430	.03049	.06307	92820 1	-336.4		-13.42	-13.54	-9.74	-9.67
1.91939	.30307	-2.08	-12.7	11.05	453	10036	.00310	92421 1	-357.9	433	8.96	9.03	12.76	12.66
1.91933	0 3 1 3	•• • • •	11.0		457	. 33030	,00267	1 52026	-340.8			-11.18	-7.17	-7.11
1.91945	.00303	-i.33	* 1, 4	9.56		.00043	.06325	92823 1	-350.2	446	7.42	7.48	11.31	11.24
1.91937	. 63311	-1.17	7.7	-t 'd	406	. 12134	38560.	92824 1	-341.7	479	-8.93	-9.01	-5.01	-4.98
1.91943	. 33367	-2.11	-6.0	7.47	473	.00043	.00333	92825 1	-350.9	459	5.29	5.33	9.26	9.20
1.91943	.53313	-1.33	5. t	-5.09	474	. 0 0 0 4 5	.00303	92826 1	-346.0	484	-7.28	-7.34	-3.30	-3.27
1.91935	.00312	-1.95	-3,4	5.97	466	.03040	. 00 30 2	92827 1	-354.1	477	3.72	3.75	7.82	7.76
1.91936	. 16313	-1.t3	1.3	G.00	••495	. 31033	. 30284	92828 1	-350.7	495	-2.28	-2.30	1.87	1.86
1.91946	. 30322		1.2	0.30		.00019	.00250	929 4 1	-361.6	498	-2.30	-2.32	1.89	1.88
1.91953	. 10316		+57.3	c4 • 17		. 30016	.06243	929 5 3	-412.9	325	22.46	22.65	25.57	25.39
1.91950	.00316	3.G3	67.5	-56.85		. 13116	.00242	929 6 3	-288.3			-28.50	-25.65	-25.46
1.91947	.77458		3.4	ů, Qu	850	.10194	.01780	929 9 1	-2164.6		-3.82	-4.07	3.28	3.15
1.91947			-216.8		• , 456	.01059	.01664	92910 4	-2391.0		43.97	46.35	51.94	49.74
1.91951	.01924	5.21	226.3	-49.36	~.426	. J0219	.01808	92911 3	-1938.2				-47.76	-45.64
1.91953	.01923		-260	\$1.55	-,944	. 30 155	.01641	92912 4	-2427.2		47.64	50.20	55.51	53.17
1.91951	.31925 .31926	45	137.3	*38.89		.00190	.01807	92913 3					-36.86	-35.22
1.91955 1.91955	.01322		-130.3 315.3	-58.13	929 333	. JR 062 . 03 2 47	.01093	92914 4 92915 3	-2297.2 -1846.8		32.49	34.24	40.23	38.52
1.91955	101931		31313	0.00	552	.00096	.01792	92916 1	-2168.5		59.62 -3.82	-63.05 -4.07	-56.84 3.28	-54.30 3.16
1.91966	.11929	-10.38	3.4	0.00	851	. 13092	.01778	930 3 1	-2167.9	351	-3.62	-4.07	3.28	3.15

ERIC

Full Text Provided by ERIC

THEAN	01	υŽ	0P	٧	Q2	0708	0118	DATENNMO	RDHU	Q1	ANS	VN1	V\$2	V\$1
(K)	(K)	(CM)	(PA)		(H/CH2)	(K)	(K)		(PA)	(M/CH2)	(CH/S)	(CH/S)	(CH/S)	(CH/S)
_	_		_		4.5.0			A7A L L	-2265.9	556	28.27	29.81	36.47	34.53
1.91963		-17.25	-34.7	32.47		. 33064	.01707	930 4 4			-37.04	-19.16	-32,34	-30.91
1-91962		-3.50	151.1	-34.51		.00176	.01603	930 5 3	-2065.0 -2226.2	605	23.46	24.72	31.10	29.06
1.91959		-15.07	-64.1	27,51		. 10166	.01713	930 6 4	-		-32.01	-33.44	-26.91	-25,78
1.91961		-5.69	69.+	• 28 · 47		c J0159	.01795	930 7 3	-2190.1	651	20.01	21.11	27,78	24.41
1.91965		-13.55	-42.1	2-,15		.00067	.01715	938 8 4	-2200.3	-	-27.80	-29.39	-22.48	-21.41
1.91950		•7 , 25	47.0	-24.69		.00152	.01794	930 9 3	-2111-1	851	-3,82	-4.07	3,28	3.15
1.41462	.01919	-1v.31	3.5	0.00	851	. 13092	.01768	93010 1	-2156.0	-1037	-9 ii 0 C	-4007		- 190 - 190 - 101
1.98945	.00314	-1.68	1.0	0.00	498	.00015	.00246	10 1 4 1	-356.7	498	-2,29	-5,35	1.49	1.87
1. 91 94 4	-		-21.5	14.94		.03017	. 10241	16 1 5 1	-376.7	410	12,92	13.03	16.61	16.49
1.91948			23.2		405	.00019	.00243	16 1 6 1	-333.5	437	-18.10	-18.27	-14.70	-14.59
00 00 1~*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***	• •	•										3,15
1.6.91	, 31 927	-16.35	3.0	6.60	851	. 11093	.01775	10 3 4 1		051	-3.82	-4.07	3.28	3,15
1.91742		.12.56	+27.5	21.14	433	. 11067	.01733	10 3 5 1		686	16.95	17.86	24,73	23.68
1.91953		-1.16	34.4	-24.67	684	. 11142	.01803	10 3 6 1	-2135.0		-23.94	-25.31	-15.23	-17.42
1.91965		-11.41	-14.5	14.27	-, 930	. 10076	.01745	10 3 7 1	-2169.7	- 6715	14.11	14.86	21.85	20.92
1,91963		-5.79	26.;	-17.35	-,715	.03134	.01801	16 3 8 1	-2143.9		-20.29	-21.46	-14.33	-13.69
1,91965		-10.35	3.5	6.00	653	. 03894	.01778	10 3 9 1	-2165.1	• . 853	-3.82	-4.07	3.28	3.16
1.91971		-11.29	-9.0	12.77	-, 916	.03076	.01757	10 310 1	-5195.5	o.766	8.66	9.11	16.30	15.68
1.91970		-9.42	17.1	-11.50	767		.01795	10 311 1	-2154.3		014.93	-15.81	-8,54	-1.26
1.91974		-11.04	-t.6	16.41	912	. 40073	. 31756	10 312 1	-2171.5	790	6.32	6.64	13.93	13.34
1.91973	_		13.4	-6.46		64072	. 01792	10 313 1	-2156.6		-12.92	-12.73	-5.40	-5.14
1.91974		-16.83	-3.4	6.03		.03078	.01761	10 314 1	-2168.3	106	3,99	4.15	11,49	11.01
1.91973		-3.03	10.3	-6.14		.01805	.01789	10 515 1	-2159.8	887	-9,70	-10.28	-2.90	-2.76
1.91973		-10.37	3.7	0.00		. 13097	.01781	10 316 1	-2170.3	653	-3, 32	-4.07	3.29	3.16
1.91971		-13.03	-1.2	6.05	806	.uJ081	.01758	16 317 1	-2168.7	814	2.11	2.19	9,49	9.18
1.91976		-16.35	6.2	-4.3ü		.0010+	.01788	10 318 1	·2165.6	879	-0.01	-9.49	-1.10	-1.00
1,91951			. 6	0.00	-, 496	. iJ017	. 18244	10 321 1	-356.3	496	-2.29	-2.31	1.88	1.47
1.9195+			445.8	-69.64	031	.00026	.60243	10 322 3	96.9		-69.76	-70.54	-64.58	-61.91
1.91953		_	312.6	-51.56	059	.01026	.00244	10 323 3	-43.0		-54.63	-59.45	-58.34	-57.85
1.91955		13.94	225.5	-49,23	114	.00024	.00242		-131.9	•	-49.76			-48.41
1.91958		7.69	134.0	-36.01	201	.00016	.00237	10 325 3	-2111.9	• • •	-38.94	-39.31	-37.29	-36.96
1.91959			95.6	-32.33	-, 254	.30018	.00238	10 326 3	-255.1		-33.50	-33.81	-31.36	-31.13
1.91969			. 8	Q. Qu	499	.03016	.00241	iD 327 1	-355.4	499	-5.30	-5.32	1.89	1.00
			- 1	6. A6	0.600		00052	9211	3.1	0.000	0.00	9.00	0.00	0.00
1.90935	30003	•93	••2	4144	41044	100007	-100075	, ,	•••	•				,
1 06064	. 64884	••1	.1	0.33	0.330	. 33065	00051	9311	1.2	0.068	0.00	1.00	0.00	0.10
1170707	01001	•••	••	****	***************************************	*****	,							A AA :
1.8644	.00003	.ûi	.3	0.00	0.600	.03008	00044	91123 1	-2.5	0.000	0.00	0.00	0.00	0.00
1.89614			.2	0.00			000,50	91124 1	-2.6	0.000	0.00	0.00	0.00	0.00
1.90503		63	. J	3.00	0.600		00053	91125 1	-1.5	0.000	0.00	0.00	Û.00	1.11
1.92223	_	01	.0	0.00	0.000		00058	91126 1	•5.0	0.090	0.00	0.00	0.05	1.00
1.95152			. 2	0.00	0.000		-,00060	91127 1	-5.1	0.080	0.00	0.48	9.00	1.00
1.939/1		_	•.1	6.00		33001		91128 1	-1.9	0.000	0.00	0.00	0.00	0.00
1.94237			i	. 0.00	0.000	00003		91129 1	-3.5	0.000	0.00	0.40	0.00	0.90
1034691		- 1 74	• •	****										_

ERIC*

														. *
THEAN (K)	DT (K)	GZ (CH)	9P (PA)	(CH/S)	(N/CHS) ds	0108 (K)	0718 (K)	DATENNHO	RONU (PA)	Q1 (H/CH2)	ANS (CH\2)	VN1 (CH/S)	(CM/3)	(CH\2)
1, 91272	.0404	11	• 1	6.06	6.000	. 03009	03046	914 1 1	-2.7	0.000	6.00	0.00	0.00	0.88
1.50418 2.56949	.00001		.0	0.00	0.000		00044	914 2 1	-1.5	0.000	0.00	0.00		1.11
77.4			•1	. 0.04	1.030	.03609	30046	914 3 1	-3.5	0.000	0.00	0.00	0,40	1.41
1,91367	00003	1 .02	• 0	0.00	0.000		. 0G151	928 1 1	3.4	0.009	0.00	4.00	9.40	1.11
1.91506	30001		.5	0.00	G.000	.00056		928 2 1	1.1	0.000	0.00	0.00	1.11	1.11
\$1.91702	.00001			0.00	0.000	.00041		928 3 1	7	0.000	0.00	0.40	0.00	1011
1.91910			• 1 • 0	0.0i	0.000 0.000		00002	928 4 1 928 5 1	6 1.7	0.000	. 0.00	0.00	9.99	10114
1.92114	00362		1	0.00	0.000		00042	928 6 1	2.5	0.000 0.00	0.00 0.00	0.00	Ù. [] 	
1.92234			• 1	0.30	0.300		00041	928 7 1	8	0.100	6.00	6.00	1.66	iiii a
1.91781			.6	0.00	0.000		00038	928 8 1	.3	0.000	0.00	0.00	įij	1.11
1.91702	00403	. 66	•1	0.00	0.430		00014	92829 1	3.3	0.000	0.00	1.11	i , 13 ·	0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.91776			•1	0.06	0.000	.03003	00056	929 1 1	0	0.200	0.00	0.03	1.11	1.61
1.91913	-		-• 0	0.13	4.000		00057	929 2 1	.7	0.000	1.04	0.00	1,11	0.00
1.92119			• 0	0.00	0.000		00058	929 3 1	•5	0.000	0.00	0.00	1.11	0.00 0.00
1.92402			• j	0.60	0.000		00362	929 7 1	.2		0.00	0.00	0.00	0.11
1.90461	**30097	•01	•.3	û. 0ù	0.300	00000	+a QQ 055	929 8 1	7.2	0.000	0.00	1.01	0.00	9.44
1.92914		42	••0	0.03	0.300		00064	930 1 1	3.6	0.000	0.00	4.00	0.00	1.11
1.96991	00001	1	1	Ü. Cu	3.00	. 30005	00053	930 2 1	• 2	0.000	0.00	0.00	0.00	1.11
1.91702	.00701	0	•1	0.00	0.000	33069	00057	10 1 3 1	7	0.000	0.40	0.00	0.60	4.0
1.09663			7642.3	5.06	0.00		00187	10 3 1 4	7643.8	0.006	0.00	0.00	0.00	0.00
1.92910		02	••5	0.00	0.000		•.00070	10 3 2 1	4.1	0.000	0.00	9.00	0.00	0.00
1.96983		11	••3	9.00	ú • 000		01053	10 3 3 1	2.1	0.000	0.00	0.00	0 a 00	0.00
1.91748			• • •	0.40	0.000		00062	16 319 1	5.5	0.000	0.00	0.00	0.00	0.00
4076407	-144046	-••2	*•4	0.35	0.006	-101001	-100005	10 320 1	1.6	0.300	0.00	0.00	0.00	0.90
1.66766	.12941		2.4	0.01	660	. 11161	.02840	1271	-1326.5	660	-7.19	-8.07	1.98	1.96
1.66789	.12930		40.0	-22.62	517	. 10237	.02869	9 2 8 1	-1479.3		-20.25	-31.30	-21.07	-20.52
1.66791	. 32940	-11.35	-+6.1	21.65	708	.33125	.02782	9 2 9 1	-1370.4	525	13.93	15.23	23.77	23.20
1.64977			3.2		-,544	.00096		925 6 1	-927.1	544	-6.49	-7.00	1.62	1.61
1.64976	.31197 .31892	4.45	-13i.4 136.3	35.70 -36.76	-:501 -:319	.00376	,01785 .01838	925 7 4 925 8 3	-1058.1 -789.1	320 515 ·	29.80 40.57	31.86 -43.38	37.27 -35.81	36.78 -35.24
1.64975	.11591		-35.0	30.64	514	.3076	. 31786	925 9 4	-1019.8	357	24.51	26.04	32.16	31.69
1.64977	.31587	1.45	1);.5	-32.12	- 354	.02140	.01533	92510 3	-822.5		36.35	-38.86	-31.07	-30.58
1.64977	.01685	-4 - 58	3.6	0.01	546	. 10694	.01819	92511 1	-918.9	546	-6.52	-7.02	1.62	1.61
1.64970	. 11195	-4.41	3.1	0.00	545	.00094	.01530	92515 1	-923.7	545	-6.51	-7.02	1.62	1.61
1.64978	.11893	-7.10	-24.1	18.27	-,548	.63075	.01805	92517 1	-954.7	454	11.73	12.43	19.90	19.61
1.64975	. 31 194	-2.73	34.2	-18.70	-,448	13155	.01839	92518 1	-892.0		24.04	,		-17.08
1.64975	11894	-7.16	-28.1	18.45	-,549	. 10078	.01804	92519 1	-954.3	453	11.97	12.58	20.05	19.76
1.64973	.11964	-2.73	34.6	-18.58	-,449	.30123	.01835	92520 1	-889.3		23.94			-16.96
1.64973	.218/6	•7•13	-28.3	16.57	551	.00078	.01801	92521 1	-951.6		11.99	12.71	20.20	19.91
1.64974	,11429 66610.	-4 , ÿĵ - ċ , "5	J., -19.2	0.00 15.82	-,545 -,554	.10093	.01822 .01805	92522 1 92524 1	-919.9 -941.9	545 473	-6.51 9.21	-7.02 9.74	1.62 17.47	1,61 17,22
1.64973	.31866	-1.34	25.2	-15.36	467	. 10000	.01831	92525 1	-941.9		20.94			-13.74
1.64977	.01681	-5.84	-10.6	12.51	558	.00085	.01805	92526 1	-930.6	494	5.85	6.16	14.17	13.97
1.64977	.01881	.3.95	16.1	-9.6)	503	.03107	.01822	92527 1	-903.9		15.61	-16.72	-8.11	-7.97
1.64979	.01876	-5.84	-10:7	12.54	559	.00079	.01799	92528 1	-928.4	494	5.88	6.19	14.20	14.00
1.64977	.31876	***21	12.4	-7.40	514	.00099	.01818	92529 1	-905.3		13.54	-14.50	-5.87	-5.77
1.64979	-01874		-7.3	10.64	-,562	.00080	.01803	92530 1	-923.7	507	3.93	4.11	12.31	12.14
ERI	C. 11474	-4+87	3.0	G.00	- ,545	.00091	.01816	92534 1	-914.1	545	-6.50	-7.01	1.62	1.61

THEAN	01	02	0P	4	02	8010	BITO	DATENNHO	RDMU	Qi	VN2	VN1	VS2	VS1
(14)	(K)	(CH)	(64)		(M/CHS)	(K)	(K)	# 15 F W 1 W 1 W	(PA)	-	(CH/S)	(CH/S)	(CH/S)	
		14111	** **	10111 91	THE WILL	177	****		· ·	144 41161	10-11-01	10.00 31	100701	140707
4.64976	.01474	-4,43	4.0	-5.53	524	.00100	.01818	92532 1	-906.9	552	-11.78	-12.63	-3.98	-3.90
1.64970			+3.7	8.24		JJ 0 86		92533 1	-920.2	518	1.55	1.50	9.90	8.77
1.64977	.01072	-4,55	7.4	-3.88		00095		92534 1	-908.5	552	-10.23	-10.98	-2.30	-2.25
1.64977	.01870		-1.0	6.48		. 10063		92535 1	-916.3	- +523	16	25	8.13	0.03
1.64977	.01469		3.0	0.03	544	.00092		92536 1	-911.4	544	-6.50	-7.00	1.62	1.61
Ž.						******								
1.64983	.11904	-4.45	3.1	0.00	546	.0311+	.01892	927 4 1	-931.1	546	-6.51	-7.02	1.62	1.61
1.44963	.01911	-23,71	-261.7	51.55	471	.00075		927 5 4	-1198.4	214	45.93	48.80	52.95	52.19
1.44983	.01911	16,43	314.5	->6.61		.00219		927 6 3	-620.3	481	-58.59	-62.80	-56.12	-55.19
1,64973	.01911	16,01	225,5	-40.55	244	. 30196		927 7 3	-709.2	499	-49.46	-52.97	-45.83	-45.04
1,64 991		-24,55	-219.3	46.44	479	.00079		927 8 4	-1152.9	246	40.78	43,33	47.91	47.22
1.64991	. 31 40 4		59.4	-26.97		. 10139		927 9 3	-864.1		-31.69	-33.91	-25.82	-25.40
11.64993	.01415	-9.04	-61.0	25.74		.00083		92710 3	-998.3	398	19.40	20.62	27.32	26.92
1,64993	.3191u	-9.44	-61.6	25.10		-33380		92711 4	-998.3	398	18.87	20.05	26.75	26.35
1.64497	. 01906		447.7	-67.54		.J0272		92712 3	-435.2		-68.67	-73.70	-67.26	-66.13
1,65561	.:1913	*3.41	-+1+2	21.86	547	. 11110		92713 1	-977.7	433	15.34	16.28	23.49	23.16
1,65001	.01413	* 1 . 17	2.1	0.00		.0010+		92714 1	-933.5	547	-6.53	-7.04	1.63	1.62
1.65 101	11411		4/.8	-21.33			37111	92715 1	-888.7		-27.03	-28.92	-20.62	-20.29
1.63836	. 100ci	. (2	16	0.10	ū.u00	.03001	. 10014	9261	• 1	0.000	0.00	0.00	0.00	0.00
1.68352		1 1 1		0.00			-,41417	9 210 1	-1.3	0.300	0.00	0.00	0.00	0.00
1,65924	00060	0 . 0	e J	0.01	G.000	03001	-00017	925 1 1	.2	0.300	0.00	0.00	0.00	0.00
1.65465	.00154		غ و		0.300	33000	.00316	925 2 1	-1.6	0.000	0.00	0.00	0.00	0.00
1.64993	. 340.1	141	• 1	U . U u	0.330	0000-	. J0015	925 3 1	3	0.000	0.00	0.00	0.08	0.00
1,64524	. 10001	• 11	• 1	6.30	0.000		.0001E	925 4 1	4	0.300	0.00	0.00	0.00	0.00
1.64026	. 10001	.01	• 1	0.00	0.600	00005	.00016	925 5 1	2	0.000	0.36	0.60	0.00	0.00
1.0.054	.]]]] [3.40	. \$	6.00	0.000	10062	.62023	92512 1	-,4	0.000	0.00	0.00	0.00	0.00
1.64990	00011	70	••1	0.30	0.030	-, 33002	.06020	92513 1	.2	6.000	0.00	0.00	0.00	0.04
1.65941	. 36004	61	• 1	6.33	6.630	. 33064	.60021	92514 1	-1.8	0.000	0.0ù	0.00	0.00	0.60
1.64020	.00002	00	. U	0.00	.0.000	00004	.00018	92515 1	9	0.000	0.00	0.00	0.00	0.00
1.65921		. 30	C	û . 0 .	0.600	. 33061	.00176	927 1 1	.7	0.000	0.00	0.60	0.00	0.00
1.64971		٠ÜG	••1	G.00	0.000	.00020	.00069	927 2 1	1.0	0.300	0.03	0.00	0.00	0.01
1.54624	00003	. 61	-, i	0.03	0.00	.03009	.00050	927 3 1	1.2	0.000	0.00	0.00	0.00	0.00
									_					
1.63995		51	••5	ű. v6		01009		20 1 1 1	•7	0.300	0.00	0.00	0.00	0.00
1.63997	30001	ú1	•• 2	0.00	0.000	00011	.00009	10 1 2 1	,4	0.000	0.00	0.00	0.00	0.00
	8.45.									0-4			4.4	4.
3.39517			3.9		231	. 10102	.01785	9381	-357.6	231	-8.42	-9.25	•69	.69
1.39523			•40.5	18.71	- , 208	.00101	.01768	9391	-402.0	169	11.12	11.93	19.33	19.22
1+395.19	.31925	1.33	45.3	-18.25	158	.03130	.01786	9 310 1	-312.9	198	-440UZ	-26.19	-17.78	-17.66
1 1057	14044		2 .3	, AA	- 274	11407	A + 4 A +	0 4 2 4	-76A E	. 21:		-0.25	40	.69
	.31943		3.9		231	.33102	.01804	9 4 2 1	-360.5	231	-8.41	-9.25	.69	
1.39539			-34.9		182	.30102	.01776	9431	-451.1	•.127	19.62	21.16	26+78 27-25	26.62 27.09
1.39533	01943	-8.47	māyo ji matical		186	.00102	.01776	9443	-451.1	130	19.95 19.37	21.49 20.87	27.25	26.35
1.39539	.01949	-6.07	-54.9 35.3		181	10102	.01776	9453	•451.1 •274.0	127 178		-38.01	26.51 -30.55	-30.34
1.39538	.)1354	4 • • 3	32∙3 42.4	-30.87	108	.33144	.01818 .01818	9473	-274.0		-31.50	-34.40	-26.85	-26.66
1.39538	.01954	4,43	12.4	• 27 • 2J • 25 • 57	118	.00144 .00144	.01818	9481	-274.0			-32.78	-25.21	-25.03
	.31354	4.43 -14.15	12.9 -1/3.7	•25.57	122		.01794	9494	-546.4	078	31.56	34.01	37.60	37.38
1.39561	.31983			37.15	154	.00091	101794	9 410 3	-190.9			-45.14	-38.67	-38.39
1.39557	11303		101.9	-38.86	664 038	•0J167		9 411 3		152			-55.60	-55.16
1.39567	.92063	63.10	354.3	-55.62	005	. 442	.01906	2 411 G	- 16.7	-1156	- 22107	-01107	-22100	-33.10

ERIC Full Text Provided by ERIC

THEAN	OT	0 Z	je Je	٧	Q2	0108	0118	DATENNHO	RDMU	G1	VN2	VN1	vs2	VS1
(K)	(K)	(CM)	(PA)		(M\CHS)	(K)	(K)		(PA)	(M/CHS)		(CH/S)		
1.39572	. 02447	-16.75	-235.5	45.71	- 166	11076		0 449 4	-447 0	- 487	TA . A			
1,39569		16.91	271.0	-48.12		.33076 .03199	.01806	9 412 4	-613.0 -105.4	057.	38.48	41.43	44.14	43.68
1.39551		-11.15	-129.0	31.16	164	.30096	.01782	9 415 4	-496.7	150 099	-49.25 25.79	-54.18 27.78	-48.18 32.25	-47.74 32.06
1.39553		16.95	271.1	-46.67	>.031	.03197	.01852	9 416 3	-98.0		-47.78	-52.48	-46.58	-46.23
1.39555		-15.57	-135.4	39.56	152	.01086	.01782	9 417 4	-565.6	073	34.03	36.63	40.02	39.78
1.39546	.01361		137.7	-32.97	091	.03156	.01428	9 410 J	-230.6		-36.28	-39.67	-32.70	-32.47
1,39534	111945		4. 0	Ú.00		133145	.01804	9 419 1	-361.4	- , 2 3 3	-8.47	-9.32	.69	.71
1.39551	. : 1954		-02+4	22.73		11112	01791	9 420 1	-430.5	•.146	15,69	16.98	23.30	23.16
1.39553	. 11972	- , 25	26.7	-12.84	188	.00122	.01835	9 421 1	-344.0		-19.66	-21.52	*12.24	-12.19
1,39867	.01977	• 3 . 34	-17.7	13.28	226	. 33104	.01824	9 422 1	-349.4	-1197	5.00	5.40	13.95	13.07
1,39554	. 11980		71.2	-22.41	140	.00141	.01842	9 423 1	-301.0		-27.50	-30,47	-21.99	-21.43
1.39963	131984		-4.2	8.63		. 63115	.01835	9 424 1	-377.3	217	. 86	16	9.33	9.21
1.39965	101992		13.7	-6.55		.00115	.01856	9 425 1	-311.9		14,39	-15.79	-5.90	-5.45
1.1956+	.02061		.5	4.57		. 11108	.01856	9 426 1	-376.4	. 1556	-3.98	•4.46	5.27	5.25
1,39574	.02004		9, 4	-4.13		.00111	,01868	9 427 1	-367.6		12,84	-13,45	-3.47	-3,43
1.1950)	.j2007	-1.95	3,6	6.44	235	. 33106	.01864	9 428 1	-373.8	-1535	-8,51	•1.19	.70	.70
1,39623	.02115		3.6	6.00	238	.00115	.01971	9 8 5 1	-395.0	-,236	-4.68	-1,55	.71	.71
1.39517	11 30 5		3.6	ú.QJ	-•229	. 00098	.01764	9861	-353,4	229	-1,35	-9,81	.61	.69
1.39524	.01915		-85.2	27.08	181	.00090	.01742	9873	-444.8	126	20,48	88.04	27.63	27.46
1,1953+	11910		92.4	-27.72	117	.00136	61791	9 8 8 3	-269.7		31,98	-34.49	-27.37	-87.10
1.34574	.35517	-5,61	5,1	0.00	326	.00385	.05295	9 8 9 1	-1032.9		10.06	-14.24	.96	.99
1.3957/		-24.35	-2n1.5	47.46	361	.03158	.04926	9 810 4	-1300.6	102	34.74	43.00	48,59	67.77
1.34541	.09523	16.62 -27.43	227.4 •305.9	-44.54 49.92	104 387	. 11963	.05371	9 811 3 9 812 4	-411.8 -1345.1		48.00	-61.50	-44,23	-43,37
1.10441	105528	16.27	316.3	-53.55	459	• 0J154 • 01128	.04890 .05397	9 513 3	-724.0		36.99 13.13	45.78 -71.38	51.06 -53.37	50.21 -52.32
1.39563	. 15533	3.17	138.7	-34.00	- 159	. 13804	.05368	9 814 3	-903,0		39.96	-51.16	-34.19	-33,52
1.19563	.05516	-5.61	5.0	6.00	326	.23386	.05288	9 816 1	-1032.4		10.49	-14.27	. 96	19
1.19545		-14.99	-126.3	13.45	371	.03212	.05063	9 817 4	-1166.2		21.08	26.02	34,55	33.97
1,29544	. 05521	1.27	112.9	-24.65	166	.00726	.05349	. 9 518 3	-936.2		36.01	-46.17	-29.33	-24.75
1.19981	. 15525	-12,43	-92.5	28.33	368	.03224	.05109	9 819 4	-1132.5	196	16.04	19.72	59.38	28.89
1.39543	.03525	17.11	324.1	v. 3u	327	. 10385	.05298	9911	-711.6	-,327 -	10.91	-14.32	.97	.59
1,19578	. 1551 3		5.2		327	.00383	.0528E	9921	-1032.0		10.92	-14.31	.97	. 11
1.39577	. 15511	-5.53	5.3	J. Ji	327	.03377	.05284	9931	-1031.7	327 -	10.92	-14.31	.97	.99
1.39574	. 15 + 97	-10.24	-61.6	24.32	367	.00253	.05122	9941	-1095.6		12.05	14.69	25.40	24.98
1.39573	.15443	- • 93	71.7	-23.44	218	. 10654	.05318	9951	-961.7			-39.29	-55.90	-22.34
1.39496	.05422	-5.45	5.4		323	.30374	.05198	9 ^11 1	-1011.3			-14.15	. 95	. 98
1,39494	. 15424	-4.59	+39. J	20.32	• . 362	.00253	.05080	1 51,	-1055.9	240	8.19	9.80	21.39	21.05
1,39495	.05431	-2.34	50,0	-19.08	- 239	. 10593	.05253	9 913 1	-968.3			-34.62	-18.38	-18.01
1,39499 1,39499	.05431 .05432	-5.46 -7.65	5.6	0.03 17.64	- • 32 • - • 363	.00379	.05207	9 914 1 9 915 1	-1012.8 -1044.2		10.88 5.47	•14.21 6.38	.96 18.72	.98 18.42
1.39499	.05434	-3.27	-25.5 36.7	-15.98	255	.00250 .03557	,05102 .05251	9 916 1	-982.2	257 352 -		-31.41	-15.23	-14.92
3.39501	.05435	-7.02	-16.6	15.59	362	.00260	.05118	9 917 1	-1035.9	268	3.45	3.84	16.66	16.40
1.39504	. 35435	-3.93	27.0	-12.91	27 0	.30517	.05251	9 918 1	-991.5		21.96	-28.16	-12,11	-11.86
1.39905	.05437	-5.45	5.6	0.00	325	.00379	.05211	9 919 1	-1014.3			-14.24	.96	.98
1.39504	.05433	-6.4u	-7.5	12.07	357	.00271	.05141	9 920 1	-1026.9	284	. 10	37	13.12	12.93
1.39507	.05437	-4.53	19.0	-8.56	290	.00471	.05245	9 921 1	-1000.9	342 -		-23.56	-7.70	-7.53
1.39565	.05437	-6.15	-4.2	9.92	351	.03298	.05159	9 922 1	-1024.0		-1.87	-2.86	10.96	10.80
1.39568	.05439	-4.75	15.4	-6.65	300	.00445	.05241	9 923 1	-1004.8			-21.55	-5.77	-5.62
1.39546	.05439	-5.48 -5.05	5.5	3.00	-, 325	.03378	.05213	9 924 1	-1014.7			-14.22	.96	.98
1.39509	15440	-5.95 -5.01	-1.2	7.21	343	.00309	.05176	9 925 1	-1021.7		-4.29	-5.91 -19.62	8.23	8.12
1.39513 1.39511	.05439		12.2	-4.86 4.98	306 337	.00426 .10323	.05237 -05188	9 926 1 9 927 1	-1008.4 -1019.8		15.17 -6.32	-19.62 -8.46	-3.95 5.97	-3.84 . 5.90
	.05441		1.1 19.6		314	.00415	• 05232	9 928 1				-18.30	-2.68	-2.58
(3777		7414	*34 A	-4101	1914	100747	149636	, ,.,		-1040 -	+4698		F100	4177

ERIC

Full Text Provided by ERIC

HO

THE AN	QT	DZ	90	•	Q2	0108	0118	OATEHNHO	ROMU	Q1	VN2	VN1	SSV	VS1
(K)	(K)	(CH)	(PA)	(CH/S)	(M/CH2)	(K)	(K)		(PA)	(W/CM2)	(CH/S)	(CM/5)	(CH/S)	(CH/3)
1.39512	. 05443	-5.43	5.3	n. ac	325	.00375	.05217	9 929 1	-1015.8	325	-16.44	-14.22	. 96	.98
	103774	-3143	703	4100	-1365	100373	107681	, 7 767 4	-141710	-1067	~54600	-14126	170	1,70
1.39531	.01924	-1.73	4.0	0.04	231	.00154	.01903	915 8 1	-357.2	231	-8.41	-9.25	. 69	169
1,39531	. 31917	-4.91	••G.5	18.95	206	.00128	.01841	915 9 1	-400.4	167	11.43	12,26	19.56	19.45
1.39529	.01918	1.34	40.4	-18.46	•. 158	.00199	.01954	91510 1	-311.8	198	-24.22	-26.41	-17.99	-17.07
1.393.	.00128	-,(4	1.5	0.36	093	.03046	.00214	91512 1	-22.5	093	-3.58	-3.61	21	181
1.39343	.00125	3. GA	45.7	-18.04	003	.01050	.00215	91513 1	22.4	006	-18.21	-18.34	-18.88	-14.07
1.39346	· Julia	• 5	1.1	0.60	o. 693	. 10005	.00105	91516 1	-22.7	093	-3.57	-3.60	120	188
1.39347	.00128	18.70	267.7	-+8.88	. 119	.00014	.00102	91517 3	244.0	001	-48.17	-48.93	-41.94	-48.88
1.39343	. 10130	12.44	178.9	-39.35	.014	. 00003	.00091	91518 3	154.7	.001	-38.83	-39.31	-39.39	-39,36
. 1137347	.00127	•• 65	1.2	0.00	-,695	00003	.00088	91519 1	-22.4	095	-3.65	-3.67	.21	.24
1.39349	. 36123	~ · 65	1.1	0.00	093	.00034	.001A1	916 5 1	-21.8	093	-3.58	-3.61	.28	.21
1.39350	.00124	-1.62	-21.1	12.10	333	. 03031	.00160	916 6 1	-44.9	038	18.83	18.88	12.20	12.19
1-19352	. 10124	1.51	23.3	-12.52	017	. 00045	.00203	916 7 1	. 2	019	-13.19	-13.27	-12.47	-12:47
1.39351	.00123	• , ú5	1.1	0.01	093	.01034	.00178	916 8 1	-21.8		-3,58	-3.61	.21	15.
1.39347	12166.	43	-12.2	4.79	057	. 63037	.00167	916 9 1	-35.1	456	6.59	6.62	1.96	1.16
1.39351	. 10151	. 11	14,4	-9.01	047	. 10037	.00175	91610 1	-1.4		-10.00	-10.87	-8.87	-1.16
1.19144	.00110	•,1,	-4.7	7.24	065	. 01036	.00170	91611 1	-30.8	•.064	4.76	4.77	7.43	7.43
1.19545	.Jul15	.63	10.8	-7.34	054	.01041	.00177	91612 1	-10.6	055	-9.43	-9.48	-7.18	-7.17
3.39345	.00109	- 04	1. 4	0.30	690	. 11035	.00163	91613 1	-19.3	898	-3.44	-3.46	.27	127
8.39349	. 40125	- 05	1.1	0.00	093	. 41034	.01175	91616 1	-22.2	193	-3.57	-3.59	.28	128
1.39343	.30121	*•74	- A. 7	7.40	065	.00036	.00175	91617 1	-31.3	064	4.98	5.00	7.65 -7.10	7.65 -7.89
1.39348	.0012,	. 63 37	10 -3.4	-7.26 4.84	•.077 •.077	.00035 .00039	.00171	91618 1 91619 1	•11.5 •25.4	050 076	-9.44 1.90	-9.49 1.91	5.07	5.07
1.39343	.33114	- 25	5.5	-3.36	076	.00734	00171	91620 1	-16.6	077	-6.89	-6.92	-3.73	-3.73
1.39351	.00114	04	1.1	0.90	091	.00032	.00148	91621 1	-20.1	091	+3.49	-3.51	.27	.27
1.39352		35	-3,3	4.54	176	. 11036	.00167	91622 1	·25.5	076	1.91	1.92	5.06	5.06
1, 19349	.00114	. 27	5.6	-4.05	-,075	.00033	.00165	91623 1	-15.7	075	-6.92	-6.96	-3.52	-3.42
1,39353	60115	51	5,5	5.84	071	. 100 36	.03166	91624 1	-27.0	071	3.14	3.15	6.09	6.09
1.39356	.00119	• 43	. 9	-5,54	067	. 40037	.00171	91625 1	-14.4	968	-8.13	-8.17	-5.34	-5.33
1.39355	. Juli6	64	1	0.00	••092	. 0 3 0 3 0	.00166	91626 1	-20.5	092	-3.54	-3.56	.28	.28
					400									
1.39347		3û	1.0	0.01		30010	.00072	10 330 1	-20.9	098	-3.53	-3.55	.27	.27
1.39375	.00141	24.75	356.9	-56.61	.013	. 30016		10 331 3	330.6		-55.89	-57.00	-56.67	-56.58
1.39352	00141	0.32	39.1	-28.92	. 306	01005	. Jú 094	10 332 3	72.7 107.0		-28.69 -33.79	-28.97 -34.18	-26.93 -34.19	-28.91 -34.16
1.39387	.00149	9•32 -•65	134.8	-34.16 	.010 099	01010	.00103	10 333 3	-25.9	099	-3.81	-3.84	-34	.30
1.39354	- 44470	- 4 6 9	1.4	****	- 1177		100078		-717	****	****	- 4487	• • •	***
1.3934)	.0013-		1.5	4.43	096	00009	.00087	10 5 J 1	-23.5	096	-3.67	-3.70	.29	.29
1.39357	.30127		1.4	i.Qu	694	30010	.66079	10 5 4 1	-22.3	094	-3,61	-3,63	.20	. 28
1.39360	. Jü125	24.97	356.4	-50.67	.019	. 10013	.00089	10 5 5 3	333.7		-55.92	-57.00	-56.73	-56.64
1.39357	.00121	15.51	2:3.5	-44.13	.015	23003	. 66679	10 5 6 3	200.9		-43.57	-4h,17	-44,18	-44.13
1.39357	.30124	9.54	134.7	-33.06	.009	03006	.00079	16 5 7 3	111.5		-32.72	-33.06	-33.00	-33.06
1.39362		9.34	134.7	-33.33	.010	30000	. 36677	10 5 8 3	110.9		-33.54	-33.90	-33.96	-33.93
1.39360	.00128	6.80	19.2	-28.83	.007	00010	.60079	10 5 9 3	75.3		-24.55	-28.81	-20.65	-28.83
1.39361	.00125	2.15	32.5	-15.04	011	-,33009	.00077	10 510 1	9.1		-15.45	-15.55	-15.00	-15.00
1.3936.	.30126	- 04	1.3	\0.00	094	°•00009	.00077	10 511 1	-22.2	094	43.61	-3.63	.21	128
1.39515	.31915	-178	3.9	70.00		.01095	01771	10 514 1	-354.5	231	-8,42	-9.25	16.66	169
1.39519	.01924	• 3 • 35 •	•16.1 26.3	13.50		.30089	.01765	10 515 1	-379.3 -334.9	193	5.70 -19:75	6.06 -21.55	14.46	14.38
1.39515	.01925 .01920	•:22 •2•72	26.3 29.3	-12 88 10 99	188 229	.30118	.01786 .01765	10 516 1 10 517 1	-369.7	205	-14073 6 .65	2.76	11,67	11.61
1.39519	.01923	45	17.4	-8.80	207	. 30112	.01783	16 516 1	-347.6			-17.86	-8.18	-8.12
1.39518	•01917	-1.83	3.8			.03098	.01776	10 519 1	-356.0	232	-8.44	45.6.	.69	.69
1.39515	. 01920 ·	_	-2.8		234	. 30892	,01770	10 520 1	-353.2	217	60	56	1.62	6.77

THE AN	01	02	JP	٧	02	0108	8110	DATENNHO	RDMU	41	ANS	VN1	V52	VS1
a (K)	(K)	(CM)	(P4)	(CH/S)	(M/CH2)	(K)	(K)		(PA)	(H/CH2)	(CH/S)	(CH/S)	(CH/S)	(CH/\$)
1.3951	.01920	-1.33	10.5	-4.87	219	. 33104	.01783	10 521 1	-349.9	230	-12.87	-14.08	-4.22	-4.14
1.39517		-3.35	-10.4	13.86		11624	.01755	10 522 1	-378.3	192	5.79	6.16	14.54	14.45
1.39516	.01909	-1.79	3.8	0.00	231	.00095	.01766	10 523 1	-354.6	231	-8.42	-9.25	.69	.69
<i>[</i>								-						
1.40459	00002	01	-,1	0.00	0.000	00051	60067	9321	.3	0.000	9.00	1.11	0.00	0.00
1.39974			•1	0.00	C.300	30031		9331	-1.9	0.000	0.00	0.06	0.00	0.00
	33066		1	0.00	0.000	30012		9341	•.1	0.000	3.00	0.00	0.00	0.00
	. 13:01		•••	C.00	6.000	01003		9351	2	0.300	0.00	3.46	0.00	0.08
1.30553			• 1	U. J.J	000	03007		9361	.5	0.000	0.00	0.00	0.00	0.00
	,00i63		1	4.04	0.000	00051		9371	.5	0.000	0.00	0.00	U.00	0.00
	1. 104					3.00.	4:3:4				. '			
1.38561			•1	d.00	636	•.,,,,,,,,,,		9 4 1 1	1	0.000	0.00	0.00	0.00	0.00
)û0) -		• 1	0.35	6.030	03053		9 414 1	1.1	0.300	\$.0 0	0.00	0.00	0.68
11 10 207	1 1 1 1 1 1	1	1	6.00	6.336	11963	-,46,46	9 429 1	2	6.000	0.00	0.00	0.00	0.00
1.46464	.00004	63	-,3	ن ، ن	0.000	03054	36676	9811	-1.0	G.300	0.00	0.00	0.00	0.00
1.34556		•,;2	-•2	13.0	0.006	33063	00045	9821	-,9	0.000	0.00	0.00	0.00	0.00
1.36776		- , 62	1	6.65	0.600		00665	9 8 3 1	-1.1	0.000	9.66	0.00	0.00	0.00
1.42165	111113	•••2	3	6.30	C.030	00054	00045	9 8 4 1	-,3	C.000	0.00	0.00	0.00	0.00
1.36831	00;62	1 64	. C	6.00	ú.C00		00062	9 9 6 1	.3	0.000	0.00	0.00	0.00	0.00
1.42143		•, uJ	•••	0.00	0.000	00053		9971	1	0.300	0.00	0.00	0.00	0.00
1.46405		0		0.00	0.033	13051		9981	• . 2	0.300	0.00	0.00	0.00	0.00
1.38561		• • •	• 1	6.00	C.000	00003	00040	9991	6	0.300	0.00	0.00	0.00	0.00
1.36765	2	1.44	•1	6.30	0.030	.03364	JG 361	9 910 .	2	0.000	0.00	0.00	0.00	0,00
1.40487	30041	, 33	• 6	6.00	0.000	33032	00021	915 1 1	.3	0.000	0.00	0.00	0.00	0.40
1.46069		,,,	• 3	v.30	G.000	10002	.00018	915 2 1	-2.3	0.300	0.00	0,00	0.00	0.00
1.39519		••1	• 1	D. ÚÚ	0.000	.00027	. 00062	915 3 1	Ğ	0.000	0.00	0.00	0.06	0.00
1.39528		.01	•1	0.03	3.000		.00120	915 4 1	.4	0.000	0.00	0.00	0.00	4.40
1.39057			•1	0.JC	1.010	.33062	.00130	915 5 1	• . G	0.300	0.01	0.00	0.00	0.00
1.38585		. v1	. 2	0.00	0.000	. 03058	.00112	915 6 1	7	0.000	0.0	0.00	3.00	0.00
1.39564	33006	. 41	.1	0.00	3.000	. 60049	. 10693	915 7 1	.2	0.380	0.00	0.00	0.00	0.00
1.39276	.00003	. 01	. 2	υ. Q υ	0.030	. 30047	. 00093	91511 1	- , 4	0.000	0.60	0.00	0.00	0.00
	.30006	536.Ú2	7620.2	J. 36	0.010	. 33008	.00016	91514 1	7619.6	0.300	0.00	0.00	C.90	0.00
1.39282	33663	16 o ú j	0	0.00	0.000	. 33003	00009	91515 1	.0	C.000	0.00	0.00	0.00	0.00
1.39286	30062	01	••1	1.04	0.006	. 03034	. 30071	916 1 1	.3	0.300	0.00	0.00	0.00	0.00
1.3937-			*11	ú.30	0.000	.00031	.00072	916 2 1	.0	0.036	0.00	0.00	0.00	0.90
1.39467		1	1	ŭ.0j	0.000	.04030	.03071	916 3 1	-,2	0.000	0.00	0.00	0.00	0.00
1.39291			0	0.00	0.000	00028	.00065	916 4 1	1	0.300	0.00	0.00	0.00	0.00
1.39293			•• 3	G. 5 G	6.300	. 33027	.00657	91614 1	3	0.300	0.00	0.00	0.03	0.00
1.39287		00	••1	U.00	0.000	, 10029	.00059	91615 1	.1	0.000	0.00	0.00	0.00	0.00
1.39291		1.41		u.GJ	C.0J0	13329	. 00 057	91627 1	• 1	0.000	0.00	0.00	0.00	0.00
1.39412		3.58	٠. ن	0.00	0.000	.00025	.00057	91629 1	•0	0.300	0.00	0.00	0.00	0.00
									_					

(80

e_{λ} ψ	177.6	100									• •	
	1011	11.11	1: 02 15) [W/GM2)	OTOB (K)	0118 (K)	OHNNSTAD	RDHU (PA)	(M/CHS)	VN2 (CH/S)	(CH\2)	(CH/S)	VS1 (CH/S)
jus 1		9	60 0.029)) 014	00043	10 329 1	.6	0.000	4.00	1.01	0.00	0.00
	4.6	C. G.	30. 0.000	60019	00040) E	J.000 9.300	0.00	0.00	0.00	0.00
	7 1)		01 6.500	30057 30012	4	10 512 1 16 513 1	•7	0.30 <u>0</u> 3.600	0.0 0 5.00	0.00 2.20	0.00	0.00

APPENDIX 2

The purpose of this appendix is to prove the assertion that the formulas already given for the overall energy balance and energy flux -- in particular eq (36) -- are still correct when the gravitational and work terms are taken into account. Our procedure is as before, i.e., equating the change in energy calculated by two different methods.

In the first method, we calculate the change in the <u>total</u> energy E of the helium contained within the control volume (the inside vessel), due to the increment in its mass, when the temperature is held constant. It is

$$dE = dU + dE_{grav}$$
 (A2.1)

where $dE_{\mbox{grav}}$ is the change in the gravitational potential energy, and dU is again the change in internal energy of the helium.

We can prove that the variation of u within the liquid is negligible, by considering its variation with depth,

$$\frac{du}{dz} = \left(\frac{\partial u}{\partial T}\right)_{P} \frac{dT}{dz} + \left(\frac{\partial u}{\partial P}\right)_{T} \frac{dP}{dz}$$
 (A2.2)

For equilibrium within the control volume, with a gravitational field present, we still have dT = 0, but now dP/dz = -pg, i.e., the pressure varies with depth within the liquid. However, using the measured values of expansivity and compressibility for the liquid to evaluate the size of the pressure derivative, we find that

$$\frac{du}{dz} = - \rho \left(\frac{\partial u}{\partial P}\right)_T g$$

is much smaller (< 1%) than the corresponding variation of the gravitational potential energy density with depth (= d(gz)/dz = g), so that it can be safely neglected.

Since u everywhere within the liquid has nearly the same value that it has at the surface, we can repeat the entire argument used to eliminate from dU any explicit dependence on the vapor; we obtain the same equations [eqs (31) - (35)], as long as we realize that the pressure in eq. (33) is the pressure of the vapor. Therefore, eq. (35) is still valid if we evaluate the enthalpy of the liquid at the pressure of the surface, which we designate as P^{+}_{2} .

We may evaluate the change in the gravitational potential, without loss of generality, by assuming the inside space to have a constant horizontal cross-section A_1 , and by evaluating the gain or loss of liquid at the surface (altitude z_2) and at the bottom of the inside space (altitude z_b). It is

$$dE_{grav} = g(z_2 \rho A_1 dz_2 - z_b \rho A_1 dz_b) \qquad (A2.3) \quad \text{(A2.3)}$$

We can express this differently by using eq. (28) and the identities $dz_2/dt = V_1$ and $dz_b/dt = V_b$, and then combine it with the result for dU, to obtain

$$dE = \left(\rho u_2 + \rho_2 - T_2 \left(\frac{\partial \rho}{\partial T}\right)_{\text{syp}, T_2}\right) V A_X dt$$

$$+ \rho g(z_2 - z_b) V_b A_1 dt + \rho g z_2 V A_X dt \qquad (A2.4)$$

where, as before, T_2 is the inside temperature, and \mathbf{u}_2 is the liquid energy density at this temperature.

The second method is to calculate the energy that passes through the boundary of the control volume. It is the sum of the electrical heat, the work done on the fluid by the walls of its container, and the energy that enters through the flow tube.

$$dE = dQ - dW + j_3 A_2 dt \qquad (A2.5)$$

The work term is evaluated simply by the procesure-volume work done on the fluid by the top and bottom of the inside space, taking into account the hydrostatic pressure difference.

$$-dW = -P_{2}V_{b}A_{1}dt + \left(P_{2} + g(z_{2} - z_{b})\right)V_{b}A_{1}dt$$

$$S(z_{2} - z_{b})V_{b}A_{1}dt \qquad (A2.8)$$

The total energy current j_e contains, as before, the enthalpy current and the heat current, but we must also add a gravitational potential energy current, $gz_{ent}\rho V$, where z_{ent} is the altitude at which the fluid enters the inside space. The enthalpy is to be evaluated at the pressure at which the liquid enters, which is, by continuity in the pressure, the local fluid pressure at the altitude of entry, $P_2 + \rho g(z_2 - z_{ent})$. Collecting terms, we find that the z_{ent} terms cancel to give

$$j_e = \left(\rho u_{ent} + \rho'_2 + \dot{q}_{ent} + \rho g z_2\right) V \qquad (A2.7)$$

Then substituting into eq (A2.5), and equating it to eq (A2.4), we find that all the remaining terms containing g cancel, and we recover eq (36).

NBS-114A (REV. 7-78)

		•			
	U.S. BEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBS TN-1002	2. Gov't Accession No.	3. Recipie	nt's Accession No,
4	L TITLE AND SUBTITLE	MPYAIRD AVIAL MAGG AMD MAG		5. Publica	tion Date ary 1978
	He II	MBINED AXIAL MASS AND HEAT	TRANSPORT IN		ing Organization Code
7	. AUTHOR(S) WARREN W. JOHNSON /	AND MICHAEL C. JONES		8. Performi	ing Organ, Report No.
	PERFORMING ORGANIZAT	ION NAME AND ADDRESS		10. Project 275055	/Task/Work Unit No.
	DEPARTMEN	JUREAU OF STANDARDS IT OF COMMERCE N, D.C. 20234			t/Grant No.
12	l. Sponsoring Organization Nat	me and Complete Address (Street, City, S	State, ZIP)	13. Type of Covered	Report & Period
	•			14. Sponsor	ing Agency Code
15	SUPPLEMENTARY NOTES			L	<u> </u>
	that of an ordinary be suppressed from was unchanged by th "enthalpy rise" val a mild extrapolatio forced convection w	erence and net fluid veloci fluid in turbulent flow. the values that were calcule net fluid flow, but it waue. Taking this second valn of these results suggests ould allow much greater heabe transported by "natural	The axial heat tated by assuming salways found to ue as a lower lithat (in appropt to be transpor	ransporte that "me o be lare mit, it i riate cin ted in la	ed was found to utual friction" ger than the is shown that roumstances)
	name: sopurated by semicolor	ntries; alphabetical order; capitalize only as) t; forced convection; helium			
8.	AVAILABILITY	X Unlimited	19. SECURITY		21. N.). PAGES
	For Official Distribution.	Do Not Release to NTIS	UNICL ASS		84
	Order From Sup. of Doc., Washington, D.C. 20402,	U.S. Government Printing Office SD Cat. No. C13. 45: 1002	26. SECURITY	CLASS	22. Price
	Order From Nations Tecl Springfield, Virginic 2215	hnical Information Service (NTIS)	UNCLASSI	•	\$2.40

NBS TECHNICAL PUBLICATIONS

PERIODICALS

FOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical amendmental sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology, and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent NBS publications in NBS and non-NRS media. Issued six times a year. Annual subscription: domestic \$17.00; foreign \$21.25. Single copy, \$3.00 domestic; \$3.75 foreign.

Note: The Journal was formerly published in two sections: Section A "Physics and Cnemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS

This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advancer in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as ene gy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$12.50; Foreign \$15.65.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (IPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash. D.C. 20056.

Culiding Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the tructural and environmental functions and the durability and safety characteristics of building elements and systems. Technical Notes -- Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies. Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 1171? (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscription: Domestic, \$25.00; Foreign, \$30.00.

Liquided Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$30.00. Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302.

