2) a) Titile elastion
$$f(x) = -2y^3 + 3x^2$$
 $p = de \left[-\frac{1}{2}, 2\right]$

" $f'(x) : -6x^2 + 6x$

* Eith elastion

 $-6x^2 + 6x = 0$
 $X = | \sqrt{x} = 0$
 $f(0) = 0$
 $f(0) = 0$
 $f(1) = | \int_{f(1)}^{f(1)} f(2) = -4$

maximum

b) T. Elastion $f(x) = x^{2/3}$ rad a $[-1,2]$
 $f'(x) = \frac{2}{2} \times \frac{1}{3}$

"T. Elastion

 $f'(x) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$

"T. Elastion

 $f'(x) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$
 $f'(x) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$
 $f'(x) = \frac{1}{2} \times \frac{$

Scanned by CamScanner

b.)
$$\int 3t^{2}\sqrt{2t^{2}-1} \, dx$$

* Tidak ada Solusi Karna dx

* Ji Hu dt

$$\int 3t^{2}\sqrt{2t^{2}-1} \, dt$$

= $3\int \sqrt[3]{u} \, dy$

= $\frac{3}{4}\int u^{\frac{1}{3}} = \frac{3}{4}\cdot \frac{3}{4}u^{\frac{4}{3}}$

= $\frac{9}{16}\sqrt[3]{(2t^{2}-1)^{4}} + C$

(5) 0.)
$$y = x+6$$
, $y = x^3$, $2y + x$

$$\begin{bmatrix} (2/8) & (0/0) & (-4/2) \\ -7 & + 4 & + \frac{x}{2} \\ -4 & -4 \end{bmatrix} = 87$$

b.)
$$y = \sqrt{x}$$
, sumbuy, $y = 0$, $y = 1$

$$\int_{0}^{1} \sqrt{x} dx$$

$$= \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{1}$$

$$= \frac{2}{3}/\sqrt{\frac{3}{2}}$$