Sammendrag kapittel9 - Geometri

Absolutt vinkelmål (radianer)

– Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r.

$$v = \frac{b}{r}$$

Buelengde

$$b = r \cdot v$$

 $\operatorname{Med} v$ i radianer!

Omregning

 n° Gradtall

v radiantall

$$v = \frac{n^{\circ}}{180} \cdot \pi$$

$$n^{\circ} = \frac{v}{\pi} \cdot 180$$

Areal av sirkelsektor

$$T = \frac{1}{2} \cdot v \cdot r^2 = \frac{1}{2} \cdot b \cdot r$$

Sammendrag kapittel 10 - Trigonometri i radianer Trigonometriske likninger

- Løs som før

$$2\sin(x) - \sqrt{3} = 0$$
$$2\sin(x) = \sqrt{3}$$
$$\sin(x) = \frac{\sqrt{3}}{2}$$

Tegner så en enhetssirkel.

$$x = \frac{\pi}{3} + n \cdot 2\pi \text{ eller}$$
 (tilsvarer x_1)
$$x = \pi - \frac{\pi}{3} + n \cdot 2\pi$$
 (tilsvarer x_2)
$$= \frac{2\pi}{3} + n \cdot 2\pi$$

Så må vi forandre på n til vi finner svar som er innenfor intervallet gitt i oppgava.

Trigonometriske ulikheter

$$2\cos(x) - \sqrt{3} > 0$$
$$\cos(x) > \frac{\sqrt{3}}{2}$$

Tegner enhetssirkel

Det grønne området på figuren er det området der likningen er gyldig. Altså der $\cos(x)>\frac{\sqrt{3}}{2}.$

Finner først vinklene der

$$\cos(x) = \frac{\sqrt{3}}{2}$$

$$x = \frac{\pi}{6} + n \cdot 2\pi \text{ eller}$$

$$x = -\frac{\pi}{6} + n \cdot 2\pi$$

Tilpasser nå n til vi får løsninger som ligger innenfor intervallet gitt i oppgava.

- * Intervall $x \in [-\pi, \pi] \Rightarrow -\frac{\pi}{6} < x < \frac{\pi}{6}$.
- * Intervall $x \in [0, 2\pi)$ Her må vi fikse på den andre løsningen vår siden den er utenfor dette ntervallet. Setter da n = 1.

$$x = \frac{\pi}{6} + 2\pi = \frac{11\pi}{6}$$

Begynner da ved nedre grense (0) og går i positiv omløpsregning til vi kommer innenfor det grønne området på figuren. Her begynner vi i det grønne området og skriver derfor:

$$0 \le x \le ...$$

Vi skal altså ha med 0. Dette ser vi fra klammen i intervallet [. Dette betyr at 0 skal være med. Vi dreier positivt til vi kommer ut av området. Da er vinkelen $\pi/6$.

$$0 \le x < \frac{\pi}{6}$$

Vi fortsetter å dreie til vi kommer inn i området igjen. Dette skjer når vinkelen er $11\pi/6$. Vi skal ikke ha med vinkelen $11\pi/6$ siden uttrykket ikke skal være 0, bare *større* enn 0.

$$\frac{11\pi}{6} < x < \dots$$

Vi dreier videre til vi kommer ut av det grønne området eller intervallet gitt i oppgava.

$$\frac{11\pi}{6} < x < 2\pi$$

Vi skal ikke ha med 2π siden dette ikke er med i intervallet $(x \in [0, 2\pi))$.

Amplitude, periode og fase

Vi ser på funksjonen

$$a\sin(k(x-\phi))+c$$

Symbol Beskrivelse

 $\overline{A} = |a|$ amplitude, bestemmer svingemengde.

$$k p = \frac{2\pi}{k}$$
 er perioden.

k sier noe om hvor "fort" grafen svinger.

 ϕ Fasefaktor. Flytter grafen mot høyre eller venstre. $\phi > 0$ mot høyre, $\phi < 0$ mot venstre,

c Konstantledd eller likevektslinje. Flytter grafen opp og ned.

Derivasjonsregler

$$(\sin(x))' = \cos(x)$$

$$\left(\cos(x)\right)' = -\sin(x)$$

$$(\tan(x))' = \frac{1}{\cos^2(x)} = 1 + \tan^2 x$$

Sammendrag kapittel 15 - Integrasjon

Trigonometriske funksjoner

$$-\int \cos(x) dx = \sin(x) + C$$

$$-\int \sin(x) dx = -\cos(x) + C$$

$$-\int (1 + \tan^2(x)) dx = \tan(x) + C$$

$$-\int \left(\frac{1}{\cos^2(x)}\right) dx = \tan(x) + C$$

Lineær kjerne

$$- \int f(ax+b) \ dx = \frac{1}{a}F(ax+b) + C$$

Eks.
$$\int \frac{1}{-x+3} \ dx = \frac{1}{-1}\ln|-x+3| + C = -\ln|3-x| + C$$

Variabelskift

$$\int f(u(x)) \cdot u'(x) \ dx = \int f(u) \ du$$

Altså med $u' = \frac{du}{dx} \Rightarrow u'dx = du$

Es.

$$\int 2xe^{x^2} dx \text{ med kjerne: } u = x^2 \Rightarrow u' = \frac{du}{dx} = 2x$$

$$\int e^{x^2} \underbrace{2x dx}_{du} = \int e^u du = e^u + C = e^{x^2} + C$$

- evt.

$$\frac{du}{dx} = 2x \Rightarrow du = 2xdx \Rightarrow dx = \frac{du}{2x}$$
$$\int 2x \cdot e^{x^2} \frac{du}{2x} = \int e^u du = e^u + C = e^{x^2} + C$$

Delvis integrasjon

$$- \int u'(x) \cdot v(x) \ dx = u(x) \cdot v(x) - \int u(x) \cdot v'(x) \ dx$$

– Hva som kalles u'(x) og v(x) er det som gjør at integralet på høyre side blir lettest å løse.

Eks.
$$\int x \cdot \ln(x) \ dx$$

Kan ikke derivere $\ln x$ alene. Velger derfor $v(x) = \ln x$

$$v = \ln(x) \quad v'(x) = \frac{1}{x}$$
$$u'(x) = x \quad u = \frac{1}{2}x^2$$

$$\int \int x dx = \frac{1}{2}x^{2} \cdot \ln x - \int \frac{1}{2}x^{2} \cdot \frac{1}{x} dx$$

$$= \frac{1}{2}x^{2} \cdot \ln x - \frac{1}{2} \int x dx$$

$$= \frac{1}{2}x^{2} \cdot \ln x - \frac{1}{2} \cdot \frac{1}{2}x^{2} + C$$

$$= \frac{1}{2}x^{2} \left(\ln x - \frac{1}{2}\right) + C$$

Delbrøksoppspaltning

Skriv integranden som en sum av brøker der nevneren er av første grad.
 Integrer deretter brøkene leddvis.

$$\int \frac{2x+1}{(x+2)(x-1)} dx = \int \frac{A}{(x+2)} + \frac{B}{(x-1)} dx$$
 Altså:
$$\frac{A(x-1)}{(x+2)(x-1)} + \frac{B(x+2)}{(x+2)(x-1)} = \frac{2x+1}{(x+2)(x-1)}$$

Vi ser bare på tellerne siden nevnerene er like: A(x+1)+B(x+2)=2x+1

$$\underline{x=1} \ 0+B\cdot 3=3 \Rightarrow B=1$$

$$\underline{x=-2} \ A(-3)+0=2\cdot (-2)+1 \Rightarrow A=1$$
Dette betyr at:
$$\frac{2x+1}{(x+2)(x-1)}=\frac{1}{(x+2)}+\frac{1}{(x-1)}$$

Og vi kan skrive integralet som:

$$\int \frac{1}{(x+2)} + \frac{1}{(x-1)} dx = \underline{\ln|x+2| + \ln|x-1| + C}$$

Differensiallikninger

Sammendrag kapittel 12 - Vektorer

Vektorer og skalarer

- En vektor er en størrelse som har retning.
- En skalar er en størrelse uten retning.

Spesielle vektorer

- Nullvektor: lengde 0, parallell med alle andre vektorer. Symbol: $\vec{0}$.
- Enhetsvektor: lengde 1, symbol : \vec{e} .

Sum av vektorer

– Når vi skal finne summen av to vektorer \vec{u} og \vec{v} , tenger vi først \vec{u} . Deretter tegner vi \vec{v} med utgangspunkt i endepunktet for \vec{u} . Summen av $\vec{u} + \vec{v}$ går nå fra utgangspunktet for \vec{u} til endepunktet for \vec{v} .

- For tre punkter A, B og C er

$$\vec{AB} + \vec{BC} = \vec{AC}$$

Differense av vektor

Metode 1 Vi finner differansen $\vec{u} - \vec{v}$ ved å summere \vec{u} og $-\vec{v}$.

Metode 2 Vi kan også tegne vektorene \vec{u} og \vec{v} med felles utgangspunk. Vektoren $\vec{u} - \vec{v}$ går da fra endepunktet for \vec{u} til endepunktet for \vec{v} .

Huskeregel

- Vektor vi **trekker fra** flytter **startpunktet**.
- Vektor vi legger til flytter endepunktet.

Produkt av tall og vektor

- Vektoren $t \cdot \vec{v}$ er parallell med \vec{v} og |t| ganger så lang som \vec{v} .
 - * t > 0, \vec{v} og $t \cdot \vec{v}$ samme retning.
 - * t < 0, \vec{v} og $t \cdot \vec{v}$ motsatt retning.

Parallelle vektorer

– To vektorer er parallelle hvis de har samme eller motsatt retning. Vektorene $\vec{v} \neq 0$ og $\vec{u} \neq 0$ er parallelle hvis og bare hvis der finnes et tall t slik at $\vec{u} = t \cdot \vec{v}$.

Noen regneregler

- $\bullet \ \vec{a} + \vec{b} = \vec{b} + \vec{a}$
- $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- $t \cdot (\vec{a} + \vec{b}) = t \cdot \vec{a} + t \cdot \vec{b}$
- $t \cdot \vec{a} + s \cdot \vec{a} = (t+s)\vec{a}$
- $s \cdot (t\vec{a}) = (s \cdot t)\vec{a}$

Dekomponering

– La \vec{a} og \vec{b} være vektorer som ikke er parallelle, og som ikke er lik nullvektoren. For en fritt valgt vektor \vec{v} fins det da ett tall x og ett tall y slik at at

$$\vec{v} = x \cdot \vec{a} + y \cdot \vec{b}$$

 Det er vanlig å dekomponere en vektor i planet vha enhetsvektorer som peker i horisontal og vertikal retning.

$$\vec{v} = x \cdot \vec{e_1} + y \cdot \vec{e_2}$$

Skalarproduktet

- Lauvære vinkelen mellom \vec{a} og $\vec{b}.$ Da er skalarproduktet av \vec{a} og \vec{b}

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos u$$

Sammendrag kapittel 13 - Vektorer i planet

Regneregler for vektorkoordinater

- $[x_1, y_1] + [x_2, y_2] = [x_1 + x_2, y_1 + y_2]$
- $[x_1, y_1] [x_2, y_2] = [x_1 x_2, y_1 y_2]$
- $-\ t[x,y] = [tx,ty]$

Vektoren mellom to punkter

- Vektoren fra origo O(0,0) til A(x,y) har koordinatene $\vec{OA} = [x,y]$.
- Vektoren fra $A(x_1, y_1)$ til $B(x_2, y_2)$ har koordinatene $\overrightarrow{AB} = [x_2 x_1, y_2 y_1]$.

Lengden av en vektor

- $|\vec{v}| = \sqrt{x^2 + y^2}$ for $\vec{v} = [x, y]$
- HER SKAL En fiGUR SOM VISEr LENGNGgEn

Avstanden mellom to vektorer

- Avstanden mellom (x_1, y_1) og (x_2, y_2) er

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Determinant

- $\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad bc$
- Nyttig for å se om vektorer er parallelle, siden vektorene $[x_1, y_1]$ og $[x_2, y_2]$ er parallelle bare dersom

$$\left|\begin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array}\right| = 0$$

Arealet av et parallellogram

 Arealet av et parallellogram er absoluttverdien av determinanten til to vektorer som bestemmer parallellogrammet. Det vil si to sidevektorer som ikke er parallelle.

Koordinatformelen for skalarproduktet

$$- [x_1, y_1] \cdot [x_2, y_2] = x_1 x_2 + y_1 y_2$$

Vinkelrette vektorer

$$-\vec{a}\perp\vec{b} \Leftrightarrow \vec{a}\cdot\vec{b} = 0 \text{ for } \vec{a} \neq \vec{0} \text{ og } \vec{b} \neq \vec{0}$$

Sammendrag kapittel 14 - Vektorer i rommet

Regneregler for tredimensjonale vektorer

 Regnereglene er de samme for tredimensjonale som for todimensjonale vektorer.

Dekomponering og vektorkoordinater

– Nå dekomponerer vi en vektor \vec{v} i tre komponenter, langs x-, y- og z- aksen.

$$\vec{v} = x\vec{e_1} + y\vec{e_2} + z\vec{e_3}$$

Rekneregler for vektorkoordinater

$$- [x_1, y_1, z_1] + [x_2, y_2, z_2] = [x_1 + x_2, y_1 + y_2, z_1 + z_2]$$

$$-[x_1, y_1, z_1] - [x_2, y_2, z_2] = [x_1 - x_2, y_1 - y_2, z_1 - z_2]$$

$$-t[x,y,z] = [tx,ty,tz]$$