

KING SAUD UNIVERSITY COLLEGE OF COMPUTER & INFORMATION SCIENCES DEPT OF COMPUTER SCIENCE

CSC311 Computer Algorithms Second Semester 1444 AH

Tutorial #4

By. 3meer

Problem 1

(a) Describe an in-place algorithm that takes as input an array of n integers and rearranges it so that all even integers come first and then all odd integers come next. You are allowed to use ONLY a constant amount of extra storage.

(b) What is the time complexity of your algorithm? You need to show the step count and a Θ estimate.

$$\frac{Big-O}{\frac{7n}{2}+3} \leq Cg(n)$$

$$\frac{7n}{2}+3 \leq Cg(n)$$

$$\frac{7n}{2}+3 \leq Cg(n)$$

$$\frac{7n}{2}+3 \leq Cg(n)$$

$$\frac{7n}{2}+3 \leq Cg(n)$$

$$\frac{5n}{2}$$

$$\frac{6n}{2}$$

$$\frac{6n}{2}$$

$$\frac{6n}{2}$$

$$\frac{7n}{2}+3 \leq Cg(n)$$

$$\frac{6n}{2}$$

$$\frac{6n}{2}$$

$$\frac{7n}{2}+3 \leq Cg(n)$$

$$\frac{6n}{2}$$

$$\frac{6n}{2}$$

$$\frac{7n}{2}+3 \leq Cg(n)$$

$$\frac{6n}{2}$$

$$\frac{6n}{2$$

Problem 2

Solve the following instance of the Knapsack Problem using Dynamic programming paradigm. The maximum allowed weight is \mathbf{W} max = $\mathbf{10}$.

i	1	2	3	4
Vi	20	10	15	31
Wi	6	1	2	5

a- Give the recursive equation you used to define the data structure needed for your dynamic programming solution. Then, fill the proposed data structure.

Recursive equation:

$$c[i, w] = max(c[i-1, w], c[i-1, w - wi] + vi)$$

i i	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	20	20	20	20	20
2	0	10	10	10	10	10	20	30	30	30	30
	0	10	15	25	25	25	25	30	35	45	45
4	0	10	15	25	25	31	41	46	56	56	56

b- What is your solution to this instance of the Knapsack problem?

$$s = \{ 2, 3, 4 \}$$

c- Write a pseudo-code to find the items of the optimal solution.

```
Ks(A[1...n].v.w, Wmax){
    c <- zeros[0...n, 0...Wmax]
    for i<-1...n do
        for j<-1...Wmax do
        c[i,j] = max(c[i-1, w], c[i-1, w - A[i].w] + A[i].v)
k <- j
s <- null
for i <- n...1 do
    if c[i,k] != c[ i-1, k] do
s <- s U {i}
k <- k - A[i].w
return s
}</pre>
```

Problem 3

The Longest Decreasing Subsequence problem is defined as follows: Given a sequence of n real numbers A[1]... A[n], determine a subsequence (not necessarily contiguous) of maximum length in which the values in the subsequence form a strictly decreasing sequence.

Example:

The length of the longest decreasing Subsequence in [-1, 2, -19, -5, 4, -7, -51, -2, -22, -13, -15, 36] is 5.

a- Give the pseudo-code of a Dynamic programming algorithm that solves the Longest Decreasing Subsequence problem.

b- What is the time complexity of your algorithm? Prove it!

$$n(n^*i)+2(n^*i^*j)+2 \le c^*g(n)$$

 $n^2^*n^*i+2n^*2i^*2j+2 \le n^2+2n^2+2n^2$
 $\le 5n^2$
 $c = 5, n_0 = 1$ $\therefore O(n^2)$