Formulario Fisica 1

Nicola Ferru

9 luglio 2024

Indice

1	Cin	ematica	7
	1.1	Moto rettilineo uniforme	7
		1.1.1 Legge oraria	7
		1.1.2 Velocità	7
		1.1.3 Tempo	7
		1.1.4 Istante iniziale nullo	7
		1.1.5 Istante e posizione iniziali nulli	7
	1.2	Moto uniformemente accelerato	7
		1.2.1 Segmento percorso s dopo il tempo t	8
		1.2.2 Velocità	8
		1.2.3 Equazione senza il tempo	8
		1.2.4 Corpo che cade	8
		1.2.5 Caduta da h_0 con velocità iniziale nulla	9
		1.2.6 Lancio verso l'alto	9
	1.3	Moto circolare uniforme	9
		1.3.1 Energia cinetica totale	10
		1.3.2 Forza centripeta e centrifuga	10
	1.4	Moto circolare accelerato	10
		1.4.1 Accelerazione tangenziale	10
		1.4.2 Leggi orarie	10
		1.4.3 Accelerazione totale	10
	1.5	Somma dei vettori	11
	1.6	Prodotto tra vettori	11
		1.6.1 Scalare	11
		1.6.2 Vettoriale	11
	1.7	Moto con accelerazione variabile	
		1.7.1 Velocità dopo un tempo t	
		1.7.2 Forza di attrito	
	1.8	Piano inclinato	
	1.9	Moto Parabolico (Moto del proiettile)	
	-	1.9.1 Traiettoria del moto parabolico	

4 INDICE

2	Din	amica		15
	2.1	Lavora		15
		2.1.1	Forza costante	15
		2.1.2	Forza variabile	15
		2.1.3	Lavoro istantaneo	15
	2.2	Potenz	a	16
	2.3	Energi	a cinetica	16
		2.3.1	Teorema Lavoro-Energia	16
		2.3.2	Forze conservative e non conservative	17
	2.4	Energi	a Potenziale	17
	2.5	Energi	a meccanica	17
		2.5.1	Legge di conservazione dell'energia meccanica	18
		2.5.2	Energia potenziale gravitazionale	18
		2.5.3	Energia potenziale elastica	18
		2.5.4	Forza non conservative	18
		2.5.5	Legge di conservazione dell'energia	18
		2.5.6	Centro di massa	19
		2.5.7	Quantità di moto	20
		2.5.8	Teorema dell'impulso – quantità di moto	21
		2.5.9	Urto elastico a 2 dimensioni	21
	2.6	Moto 1	rotatorio	21
		2.6.1	Misura angolo in radianti	21
		2.6.2	Velocità angolare media	22
		2.6.3	Velocità angolare istantanea	22
		2.6.4	Accelerazione angolare media	22
		2.6.5	Moto con accelerazione angolare costante	22
		2.6.6	Velocità lineare di particella parte di un corpo rigido	22
		2.6.7	Accelerazione lineare di particella parte di un corpo rigido	22
		2.6.8	Momento di inerzia del corpo rigido	22
		2.6.9	Energia cinetica di un corpo in rotazione	23
		2.6.10	Momento della forza	23
		2.6.11	Momento di un particella	23
		2.6.12	Momenti di inerzia da ricordare	23
	2.7	Equazi	ione del moto di un oscillazione armonico	24
		2.7.1	Oscillatore armonico	24
		2.7.2	Legge di Hook	24
		2.7.3	Energia potenziale	24
		2.7.4	Legge del moto armonico	25
		2.7.5	Velocità nel moto armonico	25
		2.7.6	Accelerazione nel moto armonico	25
		2.7.7	Velocità e Accelerazione massima	26

INDICE 5

		2.7.8	Ricavare pulsazione e tempo con formule inverse o da legge oraria, velocità o accelerazione	26
		2.7.9	Energia cinetica	26
		2.7.10	Moto armonico smorzato	26
		2.7.11	Oscilazioni forzate	27
		2.7.12	Legge del moto armonico forzato \dots	27
3	Pen	doli		29
•	3.1		lo semplice	29
	0.1	3.1.1	Componente attiva della forza peso	
	3.2		lo di torsione	
	J	3.2.1	Legge del moto	
		3.2.2	Onde	
		3.2.3	Equazione di onda sinusoidale	
		3.2.4	Potenza	
		3.2.5	Serie di Fourer	
		3.2.6	Onda stazionaria	
		3.2.7	Frequenze notivoli	
		3.2.8	Onde sommarie	
		3.2.9	Equazione di un'onda sonora	
	3.3		ezze acustiche Fondamentali	33
		3.3.1	Livello di intensità sonore	33
		3.3.2	Potenza acustica	33
		3.3.3	Dipendenza dalla velocità del erogatore	33
4	Info	mmozi	oni Utili	35
4				
	4.1		utili	
	4.2	Unità	di misura	35

6 INDICE

Capitolo 1

Cinematica

1.1 Moto rettilineo uniforme

1.1.1 Legge oraria

$$s = v(t - t_i) + s_i \tag{1.1}$$

1.1.2 Velocità

$$v = \frac{s - s_i}{t - t_i} \tag{1.2}$$

1.1.3 Tempo

$$t = \frac{s - s_i}{v} + t_i \tag{1.3}$$

1.1.4 Istante iniziale nullo

$$s = vt + s_0 \tag{1.4}$$

1.1.5 Istante e posizione iniziali nulli

$$s = vt (1.5)$$

1.2 Moto uniformemente accelerato

Formula per calcolare la Velocità finale:

$$V_f = v_0 + a \cdot t \tag{1.6}$$

di cui le singole variabili hanno il seguente significato:

- v_0 è la velocità di partenza;
- a è l'accelerazione;
- \bullet t è il periodo di tempo.

Mentre il sistem base del moto uniformemente accelerato è:

$$\begin{cases} v = v_i + a\Delta t \\ s = \frac{1}{2}a(\Delta t)^2 + v_i\Delta t + s_i \end{cases}$$
 (1.7)

o, in forma splicita

$$\begin{cases} v = v_i + a(t - t_i) \\ s = \frac{1}{2}a(t - t_i)^2 + v_i(t - t_i) + s_i \end{cases}$$
 (1.8)

1.2.1 Segmento percorso s dopo il tempo t

Per il parloco del segmento percorso s, se prendiamo come riferimento la perte dopo il tepo t, dobbiamo utilizzare:

$$s = s_0 + v_0 \cdot t \pm \frac{a}{2} \cdot t^2 \tag{1.9}$$

Il segno dipende dal sistema di riferimento – Le veriabili in gioco sono le seguenti:

- s_0 il segmento nel momento iniziale;
- ullet v_0 la velocità nel momento iniziale;
- a accelerazione;
- ullet t il periodo di tempo.

1.2.2 Velocità

$$v = v_i + a(t - t_i) \tag{1.10}$$

 $v_i = \text{velocità iniziale};$

 $t_i = \text{Tempo iniziale};$

a = Accelerazione.

1.2.3 Equazione senza il tempo

$$v^2 = v_0^2 + 2a(s - s_0) (1.11)$$

1.2.4 Corpo che cade

$$h = h_0 + v_0 \cdot t \pm \frac{g}{2} \cdot t^2 \tag{1.12}$$

Il segno dipende dal sistema di riferimento – le variabili in gioco sono:

- h_0 altezza nel momento iniziale;
- v_0 la velocità nel momento iniziale;

- t il periodo di tempo;
- \bullet g forza peso.

1.2.5 Caduta da h_0 con velocità iniziale nulla

Le formule correlate ad un grave che cade da un altezza h_0 con una velocità $v_0 = 0$, sono le seguenti:

Tempo di caduta

Velocità finale

$$t_c = \sqrt{\frac{2h_0}{g}}$$
 (1.13) $V_f = \sqrt{2gh}$

Visto che la velocità conosciutà è quella iniziale che è nulla, all'interno delle formule sono presenti solamente l'altezza h_0 e la forza peso g.

1.2.6 Lancio verso l'alto

Nel caso del lancio verso l'alto sono presenti queste due formule:

Altezza finale

Tempo finale

$$h = \frac{V_0^2}{2g} \tag{1.15}$$

In questo caso le variabile che entrano in gioco sono:

- La velocità V_0 ;
- La forza peso g.

1.3 Moto circolare uniforme

Accelerazione centripeta

Velocità angolare

$$\omega = \frac{2\pi_{rad}}{T} = 2\pi \cdot v \tag{1.18}$$

$$a_c = \frac{V^2}{r} \tag{1.17}$$

$$\omega = \frac{\Delta \alpha}{\Delta t}$$

 $\Delta \alpha$ = angolo spezzato al centro

1.3.1 Energia cinetica totale

$$E = \frac{1}{2}mv^2 \tag{1.20}$$

1.3.2 Forza centripeta e centrifuga

Forza centripeta

Velocità tangenziale

$$F_{CP} = m \cdot \frac{v^2}{r} \tag{1.21}$$

Forza centrifuga

Periodo

$$F_{CF} = -m \cdot \frac{v^2}{r}$$
 (1.22) $t = \frac{1}{f}$

Dato che le due formule danno due valori uno opposto all'altro possiamo dire senza ombra di dubbio che:

$$\boxed{F_{CP} = -F_{CF}} \tag{1.25}$$

1.4 Moto circolare accelerato

1.4.1 Accelerazione tangenziale

$$a_t = \left| \frac{dv}{dt} \right| \to a_t = \alpha r$$
 (1.26)

di cui alfa è $\alpha = \frac{\omega_f - \omega_i}{t_f - t_i}$, e da questo determiniamo che essa sia l'accelerazione angolare.

1.4.2 Leggi orarie

$$\theta = \frac{1}{2}\alpha t^2 + \omega_0 t + \omega_0 \quad \omega = \omega_0 + \alpha t \tag{1.27}$$

Equazione senza il tempo

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0) \tag{1.28}$$

1.4.3 Accelerazione totale

$$\vec{a}_{tot} = \vec{a}_T + \vec{a}_C \to a_{tot} = \sqrt{a_T^2 + a_C^2}$$
 (1.29)

1.5 Somma dei vettori

La somma dei vettori segue il seguente cruterio:

$$|\vec{v}| = \sqrt{|v_1|^2 + |v_2|^2 + 2|v_1||v_2| + \log \alpha}$$
(1.30)

La posizione e direzione di un vettore sono fondamentali per capire come essi agiscano. I tre casi più comuni sono:

Ortogonali $|v| = \sqrt{|v_1|^2 + |v_2|^2}$

Stessa direzione, vorso concorde $|v| = |v_1| + |v_2|$

Stessa direzione, verso opposto $|v| = |v_1| - |v_2|$

1.6 Prodotto tra vettori

1.6.1 Scalare

$$a \cdot b = a \cdot |b_p| \tag{1.31}$$

Di cui $|b_p|$ è il componente di b//ad a

Figura 1.1: prodotto vettoriale scalare

$$a \cdot b = a \cdot b \cdot \cos \alpha \tag{1.32}$$

1.6.2 Vettoriale

$$a \cdot b = a \cdot b \cdot \sin \alpha \quad a_n \dot{b} \tag{1.33}$$

di cui, a_n è componente di $a \perp ab$.

1.7 Moto con accelerazione variabile

1.7.1 Velocità dopo un tempo t

$$v = v_0 + \int_{t_0}^t a(t)dt \tag{1.34}$$

In questo caso ci le variabili in gioco sono:

- $t_0 \rightarrow \text{interno iniziale};$
- $v_0 \rightarrow \text{velocità iniziale.}$

1.7.2 Forza di attrito

Attrito statico

Attrito dinamico

$$f_s = \mu_s N \tag{1.35}$$

Forza che si origina quando due campi a contatto diretto sono fatti souegare uno con l'altro.

- N =forza normale esercitata dal piano (appena alla forza peso)
- μ_s = Coefficiente di attrito statico;
- μ_s = Coefficiente di attrito dimamico.

1.8 Piano inclinato

Accelerazione perpendicolare al piano

$$a_y = 0$$

Accelerazione parallela al piano

$$a_x = g \cdot \sin(\alpha)$$

in cui g è la forza di gravità, mentre, α è l'angolo del piano.

Angolo d'altezza e lunghezza

$$\sin(\alpha) = \frac{h}{l}$$

Angolo da base e lunghezza

$$\cos(\alpha) = \frac{d}{l}$$

Angolo d'altezza e base

$$\tan(\alpha) = \frac{h}{d}$$

1.9 Moto Parabolico (Moto del proiettile)

$$\begin{cases} v_{0x} = v_0 \cos(\alpha) \\ v_{0y} = v_0 \sin(\alpha) \end{cases}$$
 (1.37)

Per questo mtivo per ottenere la velocità può essere utilizzato il teorema di pitagora:

$$v = \sqrt{v_{0x}^2 + v_{0y}^2}$$

Tramite v_{0x}^2 e v_{0y}^2 è possibile essere anche utilizzato per ricavare la tangente:

$$\tan(\alpha) = \frac{v_{0x}}{v_{0y}}$$

L'equazione parametrica base invece è definita da due cordinete $(x \in y)$:

$$\begin{cases} x = x_0 + v_{0x}t \\ y = -\frac{1}{2}gt^2 + v_{0y}t + y_0 \end{cases}$$
 (1.38)

Per ricavare il tempo, sarà invece necessario:

$$t = \frac{v_0 \sin(\alpha) \pm \sqrt{v_0^2 \sin^2(\alpha) + 2gy_0}}{g}$$
 (1.39)

1.9.1 Traiettoria del moto parabolico

Per calcolare la traiettoria è necessario mettere il tempo t e lo spazio y è necessario:

$$\begin{cases} t = \frac{x - x_0}{v_{0x}} \\ y = -\frac{1}{2}gt^2 + v_{0y}t + y_0 \end{cases}$$
 (Oppure in forma esplicita)
$$\begin{cases} t = \frac{x - x_0}{v_{0x}} \\ y = -\frac{1}{2}g\left(\frac{x - x_0}{v_{0x}}\right)^2 + v_{0y}\left(\frac{x - x_0}{v_{0x}}\right) + y_0 \end{cases}$$
 (1.40)

Capitolo 2

Dinamica

2.1 Lavora

2.1.1 Forza costante

Definizione 2.1.1 Il lavoro è il prodotto scalare tra la forza applicata ad un corpo e l spostamento compiuto da essa.

$$L = (F \cdot \cos \alpha) \Delta s \tag{2.1}$$

- $F = modulo \ del \ vettore \ forza;$
- $\Delta s = spostamento lungo un asse;$
- $\alpha = angolo tra forza e spostamento.$

 $quello\ che\ mai\ moltiplicano\ allo\ spostamento\ \grave{e}\ la\ componente\ del\ vettore\ forza\ PARALLELA\ ALLO\ SPOSTAMENTO,\\ dunque:$

$$>$$
 se $\alpha=0,\Rightarrow L=F\cdot\Delta s$ Forza parallela a spostameto
$$>$$
 se $\alpha=90^o,\Rightarrow L=0$ Forza perpendicolare a spostamento

2.1.2 Forza variabile

$$L_{1,2} = \int_{x_1}^{x_2} F(x)dx \tag{2.2}$$

 $x_{1,2} =$ delimitano lo spazio entro cui vogliamo conoscere il lavoro compiuto da F(x).

Il lavoro compiuto da una forza è uguale all'asse sotto al grafico F(x)-x

Unità di misura

$$1N \cdot 1m = 1J \text{ (Joule)} \tag{2.3}$$

2.1.3 Lavoro istantaneo

$$dL = (F \cdot \cos \alpha)ds \tag{2.4}$$

ds = spostamento infinitesimo

2.2 Potenza

Potenza media

Potenza istantanea

$$\langle P \rangle = \frac{\Delta L}{\Delta t}$$
 (2.5)
$$P = \frac{dL}{dt}$$

• Se la pontenza è costante:

$$L = P\Delta t \tag{2.7}$$

• Unità di misura:

$$\frac{1Joule}{1s} = 1W \tag{2.8}$$

2.3 Energia cinetica

$$k = \frac{1}{2}mv^2 \tag{2.9}$$

- m = massa;
- v = velocità.

2.3.1 Teorema Lavoro-Energia

$$L = k - k_0 \tag{2.10}$$

 $L=\,$ lavoro totale della forza RISULTANTE

k = Energia cinetica finale

 $k_0 =$ Energia cinetica iniziale

Il lavoro svolto da una forza in una particella è uguale alla sua variazione di energia cinetica.

 Questo teorema permette di traciare il lavoro anche quando la forza non varia solo in modulo, SENZA NESSUN INTEGRALE.

2.3.2 Forze conservative e non conservative

- Conservative
 - Durante il moto si conserva l'energia meccanica
 - Il lavoro dipende solo dalla spostamento totale
 - Il lavoro nello spostare un corpo lungo oercirsi kuberi è 0
- Non conservative
 - Durante il moto Non si conserva l'energia meccanica;

- Il lavoro dipende dal percorso;
- Il lavoro dipende anche dal percorso effettuato.

I sostanza, una forza è conservativa se:

- Il lavoro da essa eseguito nello spostare un corpo dipede solo dallo spostamento totale, Non dal percorso.
- Il lavoro da esso compiuto nello spostare un corpo lungo una linea chiusa è nullo (l'energia cinetica tarna la stessa di prima)

$$L = \Delta k = 0$$

Ricora

Lavoro Positivo

⇔ Aumenta energia cinetica

Lavoro Negativa

⇔ Diminuisce energia cinetica

2.4 Energia Potenziale

$$\Delta k = -\Delta U \tag{2.11}$$

 Δk = variazione energia cinetica

a una variazione di k, ne corrisponderà una in senso apposto di U

$$k_x - k_{x_0} = -(U_x - U_{x_0}) (2.12)$$

2.5 Energia meccanica

$$E = k + U (2.13)$$

- k = energia cinetica
- U = energia potenziale

2.5.1 Legge di conservazione dell'energia meccanica

$$k_0 + U_0 = k_F + U_F (2.14)$$

$$\Delta U = -\int_{x_0}^x F(x)dx \qquad F(x) = -\frac{dU(x)}{dx}$$

l'energia potenziale è una funzione di posizione la cui la forza (CAMBIATA DI SEGNO) rappresenta la rapidità derivata (CONBIATA DI SEGNO) da la forza. con cui l'energia potenziale varie lungo x.

2.5.2 Energia potenziale gravitazionale

$$U_y - U_0 = mgyU(y) = mgy (2.15)$$

y = posizione sull'asse verticale;

 $g = 9.8m/s^2$ oppure $9.81m/s^2$ dipende da diversi fattori

m = massa

$$U_y - U_0 = \int_y^0 F(y)dy = \int_y^0 (-mg \cdot y) = mgy$$

2.5.3 Energia potenziale elastica

$$U(x) = \int_{x}^{0} (-kx)dx = \frac{1}{2}kx^{2}$$

2.5.4 Forza non conservative

$$L_{non-cons.} = \Delta(k+U) = \Delta E$$

la presenza di forza non conservative comporta una variazione dell'energia meccanica totale del sistema

• Il teorema lavoro energia può essere scirtto come:

$$L_{non-cons.} = \Delta k + \sum \Delta U$$

 $\sum \Delta U$ contributo di tutte le forze conservative presenti

2.5.5 Legge di conservazione dell'energia

2.5.6 Centro di massa

Coordinata su un solo asse (del centro di massa di un sistem di n particelle)

$$x_{cm} = \frac{\sum m_i x_i}{\sum m_i} \tag{2.16}$$

- $\sum m_i x_i$ = sommatoria delle masse di ogni particella moltiplicate per la loro porzione in un asse;
- $\sum m_i = \text{massa totale del sistema}$.

Il centro di massa è del tutto indipendnete dal sistema di coordinate usato, ma dipende solo dalle distanze relative tra le particelle e dalle toro mane.

- È adattabile solo quando si ha α che fare con il moto TRASLATORIO;
- È una sorta di media pounderata.

Nel caso di 2 o 3 dimensioni, si calcolano separatamente le coordinate del centro di massa in ogni asse con la stessa formula.

coordinate centro di massa (carpo esteso e di materia uniforme)

$$x_{cm} = \lim_{\Delta m_i \to 0} = \frac{\sum m_i x_i}{\sum m_i} \tag{2.17}$$

m =massa totale del corpo

$$x_{cm} = \frac{\int x dm}{\int dm} = \frac{1}{M} \cdot \int x dm$$

Fai lo stesso calcolo su tutti gli assi presenti

Centro di massa = Baricentro

Equazione vettoriale del centro di massa

$$\vec{s}_{cm} = \frac{\int \vec{s} dm}{\int dm} \tag{2.18}$$

 \vec{s} = vettore posizione

Tieni a mente che molti dei carpi che potresti deve trattare sono dettati di assi, punti o piani di simmetria, uniti per individuare il centro di massa (in quel punto, lungo quella linea, ...).

Accelerazione del centro di massa (di un sistema di particelle)

$$M_{cm_x} = \sum F_i = \sum m_i \frac{dV_{i_x}}{dt} \tag{2.19}$$

Il prodotto della massa complessivo del gruppo di particelle per l'accelerazione del centro di massa è uguale alla somma vettariale di tutte le forze che agiscono sul sistema di sistema di porticella (INCLUSE QUELLE INTERNE).

Legge del moto traslatorio del centro di massa

$$F_{est} = Ma_{cm} (2.20)$$

 $f_{est} = \text{risultante forza esterne};$

M = massa totale sistema;

a = accelerazione centro di massa.

Nota 2.5.1 Qualsiasi sia il sistema di particelle e qualsiasi configurazione esso abbia, esso si muoverà sempre secondo questa legge.

2.5.7 Quantità di moto

$$\vec{P} = mv \tag{2.21}$$

Parte a una nuova difinizione per la forza:

$$\vec{F} = \frac{d\vec{P}}{dt}$$

F = ma infatti, è utilizzabile solo se la massa è costante.

• La quantità di moto totale di un sistema equivale alla somma VETTORIALE di tutte le quantità di moto;

 $\bullet\,$ Quantità di moto totale di un sistemaç massa totale \cdot velocità centro di massa:

$$P_{Tot} = M \cdot V_{cm}$$

La quantità di moto di un sistem isolato SI CONSEVA, in quanto non subisce forze esterne. (viceversa, la quantità di moto può essere variata solo da forze esterne al sistema).

• le quantità di massa della singole particelle possono variare, ma non in totale

$$\frac{d\vec{P}}{dt} = F_{ext}$$

Il tempo di variazione della quantità di moto totale di un sistema di particelle è dato dalla rosiltante di tutte le forze esterne applicate al sistema.

$$\vec{F} = \frac{d\vec{P}}{dt}$$
 Forza (istantanea) = $\frac{\text{variazione di quantità di moto (infinitesimo)}}{\text{Variare del tempo (infinitesimo)}}$

Enuncia questo se chiede la seconda legge di Newton Condizioni per il moto di un sistema:

Conservazione energetica $\rightarrow 1$ (scalabile)

Conservazione quantità di moto $\rightarrow 3$ (vettoriale, un equazione per ogni coordinata)

Forza impulsiva: Agisce in tempo brevissimi con un intensità molto elevata, di solito riscontrata negli urti (Internità varia nel tempo)

2.5.8 Teorema dell'impulso – quantità di moto

$$\vec{J} = \int_{t_1}^{t_2} F(t)dt = \Delta P \tag{2.22}$$

J = "impulso";

 $\Delta P = \text{Variazione quantità di moto.}$

La variazionem di quantità di moto cui è sottoposto un corpo in cui agisce una forza impulsiva è uguale all'inpulso.

- L'impulso è un vettore il cui modulo equivale all'asse sotto al grafico F(t)-t
- La direzione dov'essere costante.

Urti

Elastici L'energia cinetica (totale) si conserva e la quantità di moto si conserva;

Anaelastici L'energia cinetica non si conserva e la quantità di moto si conserva;

Completamente anelastici corpi rimangorno attaccati

2.6. MOTO ROTATORIO 21

2.5.9 Urto elastico a 2 dimensioni

$$V_1 + V_1 = V_2 + V_2 \tag{2.23}$$

Nota 2.5.2 la velocità della massa1 resta uguale prima e dopo l'urto esattamente come succede nel caso della massa2.

$$V_1 - V_2 = V_2 - V_1 \tag{2.24}$$

Le differenze di velocità di ognuno delle masse prima e dopo l'urto sono uguali e contrarie

$$\frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2 = \frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2$$

Per ottenere le velocità, metti a sistema questa equazione con quella in cima.

Velocità urto completamente anelastico

$$m_1 V_1 + m_2 V_2 = (m_1 + m_2)V (2.25)$$

2.6 Moto rotatorio

2.6.1 Misura angolo in radianti

$$\theta = \frac{s}{R} \tag{2.26}$$

 $s=\,$ arco su cui insiste l'angolo θ

R = raggio della circonferenza

2.6.2 Velocità angolare media

$$<\omega> = \frac{\Delta\theta}{\Delta t}$$
 (2.27)

 $\Delta\theta$ variazione angolare

 $\Delta t = \text{intervallo di tempo}$

2.6.3 Velocità angolare istantanea

$$\omega(t) = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$
 (2.28)

2.6.4 Accelerazione angolare media

$$\alpha = \frac{\Delta\omega}{\Delta t} \tag{2.29}$$

Di cui istantaneo: $\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$

2.6.5 Moto con accelerazione angolare costante

$$\begin{cases}
\omega = \omega_0 + \alpha t \\
\theta = \frac{1}{2}(\omega_0 + \omega)t \\
\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2 \quad \text{equazioni orarie}
\end{cases}$$
(2.30)

2.6.6 Velocità lineare di particella parte di un corpo rigido

$$V = r\omega \tag{2.31}$$

r =distanza da asse di rotazione

2.6.7 Accelerazione lineare di particella parte di un corpo rigido

$$a_T = r\alpha \tag{2.32}$$

 a_T = Accelerazione tangente alla traslatoria

 $\alpha = \text{accelerazione angolare}$

2.6.8 Momento di inerzia del corpo rigido

$$I = \sum (m_i r_i^2)$$

$$I = \int r^2 dm$$
(2.33)

- È la sommatoria del prodotto della massa e della porzione rispetto all'asse al quadrato di tutto le particelle del corpo preso in condensazione. Equazione alla massa nel moto rotatorio
- La formula diventa un'integrale per i corpi di materiale informe¹

2.6.9 Energia cinetica di un corpo in rotazione

$$K_{tot} = \frac{1}{2}I\omega^2 \tag{2.34}$$

Somma di tutte le energie cinetiche di tutte le parti di cui è composto il corpo.

2.6.10 Momento della forza

$$\vec{r} = \vec{r} \times \vec{F}$$

$$r = rF \sin \theta \tag{2.35}$$

Prodotto vettoriale tra le forze applicata a un corpo per farlo muovere (F) e la distanza dal riferimento O, ovvero dall'asse di rotazione del corpo (r).

$$r = I\alpha$$

Questa forma è data dalla onaloga con F = ma.

 $^{^1\}dot{\rm E}$ come dividere il corpo in unità di massa minuscole, duncque è un'integrale di volume

Momento di un particella

$$\vec{L} = \vec{r} \times \vec{P}$$

$$L = rP \sin \theta \tag{2.36}$$

$$\tau = \frac{dL}{dt} = \frac{d(I\omega)}{dt}$$

$$dL = \tau dt \Rightarrow \Delta L = \int \tau(t) dt$$

Principio di conservazione del momento ongolare

Se la risultante dei momenti applicati al sistema di particelle è nulla, ad esempio, in un sistema isolato...

 $I\omega = costante$

2.6.12 Momenti di inerzia da ricordare

Cilindro pieno

l = lunghezza

R = raggio variazione

m = massa

Sbarra sottile

l = lunghezza

m =massa

Rispetto ad un asse perpendicolare al centro della lunghezza

$$I = \frac{nl^2}{12} \tag{2.39}$$

Rotazione rispetto a un asse perpendicolare a un esterno

$$I = \frac{ml}{2} \tag{2.40}$$

Sfera piena (rispetto a diametro qualunque)

$$I = \frac{2nR^2}{5} {(2.41)}$$

dove:

R = raggio

Rotazione rispetto all'asse del cilindro

$$I = \frac{mR^2}{2}$$

m = massa(2.37)

Superficie sferica (rispetto a diametro qualun-Rotazione rispetto ad un diametro centrale que)

$$I = \frac{mR^2}{4} + \frac{ml^2}{12} \tag{2.38}$$

Equazione del moto di un oscillazione armonico 2.7

$$m\frac{d''x}{dt^2} + kx = 0 (2.43)$$

Oscillazione armonica sistema isolato con una massa e una molla in movimento.

- Trattandosi di una equazione differenziale, è risalto da una funzione.
- Per ogni fenomeno governato da questa equazione, il eriodo di oscillazione dipejnde solo dalla massa m e dalla costante elastica k

$$T = 2\pi \sqrt{\frac{m}{k}}$$

2.7.1 Oscillatore armonico

2.7.2 Legge di Hook

$$F = -kx (2.44)$$

x = ollungamento (in moti) o deformazione;

k =costante elastica, dipende dalle caratteristiche della molla.

La forza elastica è sempre opposta alla deformazione

2.7.3 Energia potenziale

$$U = \frac{1}{2}kx^2\tag{2.45}$$

- L'oscillatore ormonico è un sistema consecutivo, dunque l'energia meccanica si consecutivo
- L'energia potenziale è minima nella posizione di equilibrio stabile

$$x = 0 \tag{2.46}$$

2.7.4 Legge del moto armonico

$$x(t) = A \cdot \cos(\omega t + \delta) \tag{2.47}$$

A = ampiezza massima, dipende dall'oscillazione impieno all'inizio del moto;

 $\delta = \text{costante}$ di forza, dipende dalla velocità iniziale della massa;

 $\omega=\,$ pulsazione/frequenza angolare, ha le dimensioni di una velocità angolare.

Questa è la funzione che riserve l'equazione differenziale di prima

$$(\omega t + \delta) = \text{fase del moto} \tag{2.48}$$

Siccome la funzione coseno è limitata tra -1 e 1 (compressi), la posizione x(t) sarà limitata tra -A e A

$$-1 < \cos x \le 1 \Longrightarrow -A \le x(t) \le A$$

Periodo

Frequenza

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$
 Oppure $T = \frac{1}{f}$

$$f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Dipende solo da $k \in m$

È misurato in Hz

Queste definizioni vengono dall'equazione differenziale.

Pulsazione

Definizione 2.7.1 La pulsazione in Fisica è una grandezza che misura la velocità con cui viene effettuata l'oscillazione completa.

$$\omega = \frac{2\pi}{T}; \omega = 2\pi f \tag{2.49}$$

Velocità nel moto armonico 2.7.5

$$V(t) = \frac{dx}{dt} = -\omega A \sin(\omega t + \delta)$$
 (2.50)

2.7.6 Accelerazione nel moto armonico

$$a(t) = \frac{d''x}{dt} = -\omega^2 A \cos(\omega t + \delta)$$
 (2.51)

2.7.7Velocità e Accelerazione massima

$$v_{max} = \omega A \quad a_{max} = A\omega^2 \tag{2.52}$$

2.7.8Ricavare pulsazione e tempo con formule inverse o da legge oraria, velocità o accelerazione

$$A\cos(\omega t) = \frac{x}{A} \rightarrow \omega t = \arccos(\cos(\omega t))$$
 (2.53)

$$A\cos(\omega t) = \frac{x}{A} \to \omega t = \arccos(\cos(\omega t))$$

$$t = \frac{\arccos(\cos(\omega t))}{\omega} \qquad \omega = \frac{\arccos(\cos(\omega t))}{t}$$
(2.53)

2.7.9 Energia cinetica

$$k = \frac{1}{2}mv^2 = \underbrace{\frac{1}{2}k}_{\omega^2 \cdot m} A^2 \sin^2(\omega t * \delta) \quad \omega = \frac{k}{m}$$
(2.55)

Valore massimo k: $\frac{1}{2}kA^2$ – ma $\omega=2\pi f$ può dipendere anche dalla frequenza quindi è calcolabile anche con la formula ripotata ad inizio riga.

Energia potenziale

Valore massimo $U: \frac{1}{2}kA^2$

$$U = \frac{1}{2}kA^2\cos^2(\omega t + \delta)$$

energia meccanica

$$E = U + k = \frac{1}{2}kA^2$$

2.7.10 Moto armonico smorzato

Modulo forza d'attrito $m\frac{d''x}{dt^2} + b\frac{dx}{dt} + kx = 0$ (2.56) $F_a = -b\frac{dx}{dt}$ (2.57)

legge del moto armonico smorzato

$$x(t) = Ae^{-\frac{bt}{2m}}\cos(\omega't + \omega)$$
 (2.58)

dove

$$\omega' = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}$$

2.7.11 Oscilazioni forzate

$$m\frac{d''x}{dt^2} + b\frac{dx}{dt} + kx = \underbrace{F_m \cos(\omega''t)}_{\text{Forza ESTERNA AL SISTEMA}}$$
(2.59)

2.7.12 Legge del moto armonico forzato

$$x(t) = \left(\frac{F_m}{G}\right) \cdot \sin(\omega'' - \alpha) \tag{2.60}$$

dove:

$$G = \sqrt{m^2(\omega'' - \omega^2)^2 + b^2 \omega''^2} \quad e \quad \alpha = \arccos\left(\frac{b\omega''}{G}\right)$$
 (2.61)

 ω'' = frequenza imposta dalla forza;

 $\omega=$ frequenza propria del sistema, dipende da kem

b= coefficiente d'attrito del sistema

 $\alpha = \text{ forza iniziale}$

Capitolo 3

Pendoli

3.1 Pendolo semplice

Periodo

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{3.1}$$

l = Lunghezza fune;

g = gravità.

3.1.1 Componente attiva della forza peso

$$F_{P,x} = -\left(\frac{mg}{L}\right)x\tag{3.2}$$

x = spostamente del moto armonico

3.2 Pendolo di torsione

$$\tau = -x\theta \tag{3.3}$$

3.2.1 Legge del moto

$$\theta = \theta_m \cos(\omega t + \delta) \tag{3.4}$$

È la soluzione all'equazione differenziale:

Soluzione integrale

$$\frac{d''\theta}{dt^2} = -\frac{x}{I}\theta \tag{3.5}$$

- Analoga al caso lineare!
- \bullet I = momento di inerzia
- x = costante di torsione (dipende dalle proprietà del filo)

3.2.2 Onde

Ne propriamente una ne l'altra

particelle d'acqua (trasportano elettricità)

Figura 3.1: tipologie di onde

Propagazione: Le onde si dividono anche in piane (si propagano in una direzione) e sferiche (si propagano in tutte le dimensioni) – lontano della sorgente passano essere considerate piene.

Dimensioni

- Unidimensionali;
- Bidimensionali;
- Tridimensionali.

Dipende dalla dimensione del mezzo.

3.2.3 Equazione di onda sinusoidale

$$y(x,t) = y_m \sin(kx - \omega t - \psi)$$
 $y_m = \text{ampiezza massima oscilazione}$ (3.7)

Dove:

Numero d'onda

Frequenza ongolare

$$k = \frac{2\pi}{\lambda} \tag{3.8}$$

T= periodo, tempo necessario a una fase qualsiasi per percorrere 1λ

 $\lambda = \text{distanza tra due punti con una stessa } \underline{\text{fase}};$

 ψ = "angolo di fase", dipende dalla posizione in y per x=0 e t=0.

Equazione per la teoria

$$y(x,t) = y_m \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right) \tag{3.10}$$

• finito t, $y(x) = y(x + k\lambda) \quad \forall k \in \mathbb{Z}$ (numeri interi)

 $V = \frac{\lambda}{T}$

• finito x, $y(t) = y(t + kT) \quad \forall k \in \mathbb{Z}$

Velocità di fase

Nota 3.2.1 La velocità di fase è la velocità di una qualsiasi fase dell'onda (ovvero la sua velocità di propagazione)

di cui:

$$\lambda = VT = \frac{V}{f}$$

(3.11)

In ogni punto x_0 , l'equazione y(t) diventa l'equazione di un moto armonico di periodo $T=\frac{2\pi}{\omega}$

$$F = \textit{forza con cui la tendono} \left[n < T^{-2} \right]$$

$$V = \sqrt{\frac{F}{\mu}}$$

Nota 3.2.2 Nell'esempio di una corda:

 $\mu = massa \ dell'unità \ di \ lunquezza \ della \ corda \ [LT^{-1}]$

La velocità di propagazione di un'onda dipende dalle proprietà fisiche del mezo

3.2.4 Potenza

In questo caso non è costante, dato che varia la potenza della sorgente del moto ondulatorio.

$$\langle P \rangle = 2\pi^2 y_m^2 f^2 \mu V$$
 (3.12)

La potenza trasmessa attraversa una superficie unitaria ortogonale alla direzione di proporzione dell'onda è detta intensità dell'onde (I)

3.2.5 Serie di Fourer

Qualsiasi onda periodico, per il principio disovrapposizione, può esserescomposta come una somma di "componenti ormoniche", ovvero componenti sinusoidali

$$y(t) = A_0 + A_1 \sin(\omega t) + A_2 \sin(\omega t) + \dots + A_N \sin(\omega t) + B_1 \cos(\omega t) + B_2 \cos(\omega t) + \dots + B_N \cos(\omega t)$$
(3.13)

dove $\omega = \frac{2\pi}{T}$

3.2.6 Onda stazionaria

$$y = 2y_m \sin kx \cos \omega t \tag{3.14}$$

data dalla massa di onda incidente e onda rilessa.

3.2.7 Frequenze notivoli

$$f = \underbrace{\frac{n}{2l}}_{\lambda} \underbrace{\sqrt{\frac{F}{\mu}}}_{v} \tag{3.15}$$

Questa formula proviene da $f = \frac{v}{\lambda}$.

 $n \in \mathbb{N}\,$ numero intero di $\frac{\lambda}{2}$ presenti in una conda di lunghezza l

$$\lambda = \frac{2l}{n} \Leftrightarrow l/\frac{\lambda}{2} = n$$

$$V = \sqrt{\frac{F}{\mu}}$$
(3.16)

3.2.8 Onde sommarie

Frequenza udibile dall'uomo: $20Hz \rightarrow 20.000Hz$

Velocità di propagazione

$$V = \sqrt{\frac{B}{\sigma_0}} \tag{3.17}$$

 $\omega = \text{sigma}$

$$B = -\frac{V\Delta P}{\Delta V}$$

 $\sigma_0 =$ è la densità del fluido indisturbato;

B = Modulo di compressione del corpo;

 ΔP = variazione di pressione sul corpo.

3.2.9 Equazione di un'onda sonora

$$y = y_m \cos(kx - \omega t) \tag{3.18}$$

y è uno spostamento Longitudinale! – dove:

$$k = \frac{2\pi}{\lambda} \quad \omega = \frac{2\pi}{T} \tag{3.19}$$

Nota 3.2.3 l'onda di spostamento è sfasato di 90° rispetto all'onda di pressione dati un t e una x:

 $Spostamento\ massimo \Leftrightarrow Pressione\ nulla$

Variazione di pressione del mezzo (rispetto a un punto P_0)

$$p = P\sin(kx - \omega t) \tag{3.20}$$

dove P è l'ampiezza di pressione:

$$P = k\sigma_0 V^2 y_m \tag{3.21}$$

3.3 Grandezze acustiche Fondamentali

3.3.1 Livello di intensità sonore

$$L = 10 \cdot \log \left(\frac{I}{I_0}\right) \tag{3.22}$$

Ricavare intensità dal livello di intensità

$$I = I_0 \cdot 10^{\frac{L}{10}} \tag{3.23}$$

3.3.2 Potenza acustica

$$P = I \cdot S \tag{3.24}$$

3.3.3 Dipendenza dalla velocità del erogatore

$$v_s = 343 \frac{m}{s} \tag{3.25}$$

Per v_s si intende la velocità effettiva del suono, una costante definita.

Avvicinamento punto di riferimento

$$f_1 = \frac{v_s}{v_s - v_e} \cdot f \tag{3.26}$$

Allontanamento punto di riferimento

$$f_2 = \frac{v_2}{v_s + v_e} \cdot f \tag{3.27}$$

 v_e = Velocità del erogatore;

f = Frequenza effettiva del suono in uscita dal erogatore.

Capitolo 4

Informazioni Utili

4.1 Valori utili

Nome costante	Descrizione	Valore	
С	Velocità della luce	$3 \cdot 10^2 m/s$	
h	Costante di plank	$6.6 \cdot 10^{-34} J \cdot s$	
e^-	Carica di elettrone	$1.6 \cdot 10^{-19}C$	
$\overline{\varepsilon_0}$	Costante dielettrica nel vuoto	$8.8 \cdot 10^{-7} F/m$	
μ_0	Perm. Magnetica nel vuoto	$4\pi \cdot 10^{-7} N/A^2$	

Tabella 4.1: Valori utili

4.2 Unità di misura

$$\begin{split} Volt &= \frac{J}{C} \quad V = \frac{kg \cdot m^2}{s^3 \cdot A} \\ Farad &= \frac{C}{V} \quad F = \frac{s^4 \cdot A^2}{m^2 \cdot kg} \\ Ohm &= \frac{Volt}{ampere} \quad \Omega = \frac{\Delta V}{i} \end{split}$$