Nearly Kähler geometry and totally geodesic submanifolds

Juan Manuel Lorenzo Naveiro

CITMAGA – Universidade de Santiago de Compostela Differential Geometry Seminar, The University of Adelaide

May 31, 2024

Joint work with Alberto Rodríguez-Vázquez (KU Leuven)

Preliminaries

- M complete Riemannian manifold.
- Metric $\langle \cdot, \cdot \rangle : T_p M \times T_p M \to \mathbb{R}$.
- Levi-Civita connection $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$.
- Curvature tensor $R: T_pM \times T_pM \times T_pM \to T_pM$.

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

Totally geodesic submanifolds

- M, Σ complete Riemannian manifolds, $f: \Sigma \to M$ isometric immersion.
- f is totally geodesic if:
 - $\gamma(t)$ geodesic in $\Sigma \Rightarrow f(\gamma(t))$ geodesic in M.
 - The second fundamental form II vanishes.

Totally geodesic submanifolds

- M, Σ complete Riemannian manifolds, $f: \Sigma \to M$ isometric immersion.
- f is totally geodesic if:
 - $\gamma(t)$ geodesic in $\Sigma \Rightarrow f(\gamma(t))$ geodesic in M.
 - The second fundamental form II vanishes.

General problem

Given M, classify all totally geodesic submanifolds of M up to congruence.

Nearly Kähler spaces

- (M, J) almost Hermitian manifold.
 - $J: T_pM \to T_pM$ such that $J^2 = -\operatorname{Id}_{T_pM}$.
- M is nearly Kähler if ∇J is skew-symmetric.
- Butruille ('06): classification of homogeneous NK 6manifolds:

$$\mathbb{S}^6 = \frac{G_2}{SU(3)} \qquad \mathbb{C}P^3 = \frac{Sp(2)}{U(1) \times Sp(1)}$$

$$F(\mathbb{C}^3) = \frac{SU(3)}{T^2} \qquad \mathbb{S}^3 \times \mathbb{S}^3 = \frac{SU(2) \times SU(2) \times SU(2)}{\Delta SU(2)}$$

Previously known results

- $F(\mathbb{C}^3)$:
 - Totally geodesic + Lagrangian (Storm '20).
 - Totally geodesic + almost complex + 2 dim (Vrancken, Cwiklinski '22).
- CP³:
 - Totally geodesic + Lagrangian (Aslan '23, Liefsoens '22).
- $\mathbb{S}^3 \times \mathbb{S}^3$:
 - Totally geodesic + Lagrangian (Zhang, Dioos, Hu, Vrancken, Wang '16).
 - Totally geodesic + almost complex + 2 dim (Bolton, Dillen, Dioos, Vrancken '22).

Reductive homogeneous spaces

- M = G/K homogeneous space, o = eK.
- G $\curvearrowright M$ gives a homomorphism G $\to I(M)$.
- Anti-homomorphism $X \in \mathfrak{g} \to \mathfrak{X}(M)$.

$$X_p^* = \frac{d}{dt} \Big|_{t=0} \operatorname{Exp}(tX) \cdot p$$

• $T_o M = g/f \text{ via } X + f \mapsto X_o^*$.

M is *reductive* if there exists $\mathfrak{p} \subseteq \mathfrak{g}$ such that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, $Ad(K)\mathfrak{p} = \mathfrak{p}$.

Reductive homogeneous spaces

M is reductive if there exists $\mathfrak{p} \subseteq \mathfrak{g}$ such that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, $Ad(K)\mathfrak{p} = \mathfrak{p}$.

- $\mathfrak{p} = \mathfrak{g}/\mathfrak{t} = T_o M$.
- Isotropy representation $K \curvearrowright T_oM \longleftrightarrow$ Adjoint representation $K \curvearrowright \mathfrak{p}$.
- G-invariant tensor fields on $M \leftrightarrow Ad(K)$ -invariant tensors on \mathfrak{p} .

Connection and curvature

• M has a canonical connection ∇^c .

$$(\nabla^c_{X^*}Y^*)_o = -[X,Y]_{\mathfrak{p}}, X,Y \in \mathfrak{p}.$$

• $D = \nabla - \nabla^c$ difference tensor.

$$D_X Y = \frac{1}{2} [X, Y]_{\mathfrak{p}} + U(X, Y),$$

$$2\langle U(X, Y), Z \rangle = \langle [Z, X]_{\mathfrak{p}}, Y \rangle + \langle X, [Z, Y]_{\mathfrak{p}} \rangle,$$

$$(\nabla_{X^*} Y^*)_o = -[X, Y]_{\mathfrak{p}} + D_X Y,$$

$$R(X, Y) = [D_X, D_Y] - D_{[X, Y]_{\mathfrak{p}}} - \operatorname{ad}([X, Y]_{\mathfrak{f}}).$$

Natural reductivity

- M = G/K is naturally reductive if U = 0.
 - $\Leftrightarrow \exp_{o}(tX) = \operatorname{Exp}(tX) \cdot o \text{ for all } X \in \mathfrak{p}.$
- *M* is normal homogeneous if:
 - 1. G has a bi-invariant metric.
 - 2. The complement $p = g \ominus f$.
 - 3. The metric on M is induced from the metric on G.

Totally geodesic submanifolds of G/K

• $\Sigma \subseteq M$ totally geodesic, $p \in \Sigma$. Then

$$\Sigma = \exp_p(T_p\Sigma).$$

• If $V \subseteq T_pM$, when is $\exp_p(V)$ totally geodesic?

Theorem (Cartan '51, Hermann '59)

M analytic Riemannian manifold, $V \subseteq T_pM$. The following are equivalent:

- V generates a (complete) totally geodesic submanifold.
- V is $\nabla^k R$ -invariant for all k=0,1,2,...

Totally geodesic submanifolds of G/K

• $\Sigma \subseteq M$ totally geodesic, $p \in \Sigma$. Then

$$\Sigma = \exp_p(T_p\Sigma).$$

• If $V \subseteq T_pM$, when is $\exp_p(V)$ totally geodesic?

Theorem (Cartan) for naturally reductive spaces

M naturally reductive, $\mathfrak{p} \subseteq \mathfrak{p}$. The following are equivalent:

- v generates a (complete) totally geodesic submanifold.
- \mathfrak{v} is $\nabla^k R$ -invariant for all $k=0,1,2,\ldots,d$.

Tojo's criterion ('96)

M naturally reductive, $\mathfrak{p} \subseteq \mathfrak{p}$. The following are equivalent:

- v generates a (complete) totally geodesic submanifold.
- $e^{-D_X}\mathfrak{v}$ is R-invariant for all $X \in \mathfrak{v}$.

Sufficient criterion (Sagle '68, LN—Rodríguez-Vázquez)

M naturally reductive, $\mathfrak{v} \subseteq \mathfrak{p}$ invariant under R and D.

• The subalgebra $\mathfrak{s} = [\mathfrak{v}, \mathfrak{v}]_{\mathfrak{f}} \oplus \mathfrak{v}$ satisfies

$$\mathfrak{s} = (\mathfrak{s} \cap \mathfrak{k}) \oplus (\mathfrak{s} \cap \mathfrak{p}) = \mathfrak{s}_{\mathfrak{k}} \oplus \mathfrak{s}_{\mathfrak{p}}.$$

• The orbit $S \cdot o$ is totally geodesic with $T_o(S \cdot o) = \mathfrak{v}$.

Sufficient criterion (Sagle '68, LN—Rodríguez-Vázquez)

M naturally reductive, $\mathfrak{v} \subseteq \mathfrak{p}$ invariant under R and D.

• The subalgebra $\mathfrak{s} = [\mathfrak{v},\mathfrak{v}]_{\mathfrak{k}} \oplus \mathfrak{v}$ satisfies

$$\mathfrak{s} = (\mathfrak{s} \cap \mathfrak{k}) \oplus (\mathfrak{s} \cap \mathfrak{p}) = \mathfrak{s}_{\mathfrak{k}} \oplus \mathfrak{s}_{\mathfrak{p}}.$$

• The orbit $S \cdot o$ is totally geodesic.

Canonically embedded $\mathfrak{g} \subseteq \mathfrak{g}$

R and D-invariant $\mathfrak{p} \subseteq \mathfrak{p}$

Totally geodesic $\Sigma \subseteq M, o \in \Sigma$

The flag manifold $F(\mathbb{C}^3)$

•
$$F(\mathbb{C}^3) = \frac{SU(3)}{T^2}$$
; $I(F(\mathbb{C}^3)) = PSU(3) \rtimes (\mathfrak{S}_3 \times \mathbb{Z}_2)$.

•
$$\mathfrak{p} = \left\{ \begin{pmatrix} 0 & x & z \\ -\bar{x} & 0 & y \\ -\bar{z} & -\bar{y} & 0 \end{pmatrix} : x, y, z \in \mathbb{C} \right\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2 \oplus \mathfrak{p}_3.$$

$$\operatorname{diag}(e^{i\theta_1}, e^{i\theta_2}, e^{-i(\theta_1+\theta_2)}) \bullet e^{i(\theta_1-\theta_2)}$$

$$e^{i(\theta_1-\theta_2)}$$

$$e^{i(\theta_1+2\theta_2)}$$

$$e^{i(2\theta_1+\theta_2)}$$

The flag manifold $F(\mathbb{C}^3)$

•
$$F(\mathbb{C}^3) = \frac{SU(3)}{T^2}$$
; $I(F(\mathbb{C}^3)) = PSU(3) \rtimes (\mathfrak{S}_3 \times \mathbb{Z}_2)$.

•
$$\mathfrak{p} = \left\{ \begin{pmatrix} 0 & x & z \\ -\bar{x} & 0 & y \\ -\bar{z} & -\bar{y} & 0 \end{pmatrix} : x, y, z \in \mathbb{C} \right\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2 \oplus \mathfrak{p}_3.$$

• $\langle X, Y \rangle = -\text{Tr}(XY)$.

The flag manifold $F(\mathbb{C}^3)$

•
$$F(\mathbb{C}^3) = \frac{SU(3)}{T^2}$$
; $I(F(\mathbb{C}^3)) = PSU(3) \rtimes (\mathfrak{S}_3 \times \mathbb{Z}_2)$.

•
$$\mathfrak{p} = \left\{ \begin{pmatrix} 0 & x & z \\ -\bar{x} & 0 & y \\ -\bar{z} & -\bar{y} & 0 \end{pmatrix} : x, y, z \in \mathbb{C} \right\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2 \oplus \mathfrak{p}_3.$$

- $T^2 \subseteq U(2) \subseteq SU(3)$ gives the fibration $\mathbb{C}P^1 \to F(\mathbb{C}^3) \to \mathbb{C}P^2$.
- $\mathcal{V}_o = \mathfrak{p}_1$, $\mathcal{H}_o = \mathfrak{p}_2 \oplus \mathfrak{p}_3$.

General fact:

 $K \subseteq H \subseteq G$ gives a fibration $H/K \rightarrow G/K \rightarrow G/H$.

The complex projective space CP³

•
$$\mathbb{C}P^3 = \frac{\operatorname{Sp}(2)}{\operatorname{U}(1) \times \operatorname{Sp}(1)}; I(\mathbb{C}P^3) = \frac{\operatorname{Sp}(2)}{\mathbb{Z}^2} \rtimes \mathbb{Z}_2.$$

•
$$\mathfrak{p} = \left\{ \begin{pmatrix} \mathbf{z}j & -\overline{q} \\ q & 0 \end{pmatrix} : z \in \mathbb{C}, q \in \mathbb{H} \right\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2.$$

$$(\lambda, \mu) \cdot z = \lambda^2 z$$
$$(\lambda, \mu) \cdot q = \mu q \bar{\lambda}$$

The complex projective space CP³

•
$$\mathbb{C}P^3 = \frac{\operatorname{Sp}(2)}{\operatorname{U}(1) \times \operatorname{Sp}(1)}; I(\mathbb{C}P^3) = \frac{\operatorname{Sp}(2)}{\mathbb{Z}^2} \rtimes \mathbb{Z}_2.$$

•
$$\mathfrak{p} = \left\{ \begin{pmatrix} \mathbf{z}j & -\overline{q} \\ q & 0 \end{pmatrix} : z \in \mathbb{C}, q \in \mathbb{H} \right\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2.$$

•
$$\langle X, Y \rangle = -2 \operatorname{Re} \operatorname{tr}_{\mathbb{H}}(XY)$$
.

The complex projective space CP³

•
$$\mathbb{C}P^3 = \frac{\operatorname{Sp}(2)}{\operatorname{U}(1) \times \operatorname{Sp}(1)}; I(\mathbb{C}P^3) = \frac{\operatorname{Sp}(2)}{\mathbb{Z}^2} \rtimes \mathbb{Z}_2.$$

•
$$\mathfrak{p} = \left\{ \begin{pmatrix} \mathbf{z}j & -\overline{q} \\ q & 0 \end{pmatrix} : z \in \mathbb{C}, q \in \mathbb{H} \right\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2.$$

- U(1) \times Sp(1) \subseteq Sp(1) \times Sp(1) \subseteq Sp(2) gives the fibration $\mathbb{C}P^1 \to \mathbb{C}P^3 \to \mathbb{H}P^1 = \mathbb{S}^4$.
- $\mathcal{V}_o = \mathfrak{p}_1$, $\mathcal{H}_o = \mathfrak{p}_2$.

The almost product $\mathbb{S}^3 \times \mathbb{S}^3$

•
$$\mathbb{S}^3 \times \mathbb{S}^3 = \frac{\mathrm{SU}(2)^3}{\Delta \mathrm{SU}(2)}; I(\mathbb{S}^3 \times \mathbb{S}^3) = \frac{\mathrm{SU}(2)^3}{\Delta \mathbb{Z}_2} \rtimes \mathfrak{S}_3.$$

- $\mathfrak{p} = \{(X, Y, Z): X + Y + Z = 0\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2.$
 - $\mathfrak{p}_1 = \{(X, -2X, X) : X \in \mathfrak{su}(2)\} \cong Ad.$
 - $\mathfrak{p}_2 = \{(X, 0, -X) : X \in \mathfrak{su}(2)\} \cong Ad.$
- $\langle (X,Y,Z), (X',Y',Z') \rangle = -\operatorname{tr}(XX') \operatorname{tr}(YY') \operatorname{tr}(ZZ').$

The almost product $\mathbb{S}^3 \times \mathbb{S}^3$

•
$$\mathbb{S}^3 \times \mathbb{S}^3 = \frac{\mathrm{SU}(2)^3}{\Delta \mathrm{SU}(2)}; I(\mathbb{S}^3 \times \mathbb{S}^3) = \frac{\mathrm{SU}(2)^3}{\Delta \mathbb{Z}_2} \rtimes \mathfrak{S}_3.$$

- $\mathfrak{p} = \{(X, Y, Z): X + Y + Z = 0\} = \mathfrak{p}_1 \oplus \mathfrak{p}_2.$
- $\Delta SU(2) \subseteq \Delta_{13}SU(2) \times SU(2)_2 \subseteq SU(2)^3$ gives the fibration $\mathbb{S}^3 \to \mathbb{S}^3 \times \mathbb{S}^3 \to \mathbb{S}^3$.
- $\mathcal{V}_o = \mathfrak{p}_1$, $\mathcal{H}_o = \mathfrak{p}_2$.

Low codimension

Theorem (Nikolayevsky '15)

M simply connected, irreducible, compact and homogeneous.

If there exists a totally geodesic hypersurface $\Sigma \subseteq M$, then $M = \mathbb{S}^n$.

Corollary

 $F(\mathbb{C}^3)$, $\mathbb{C}P^3$ and $\mathbb{S}^3 \times \mathbb{S}^3$ have no totally geodesic hypersurfaces.

Low codimension

Theorem (Nikolayevsky '15)

M simply connected, irreducible, compact and homogeneous.

If there exists a totally geodesic hypersurface $\Sigma \subseteq M$, then $M = \mathbb{S}^n$.

Theorem

 $F(\mathbb{C}^3)$, $\mathbb{C}P^3$ and $\mathbb{S}^3 \times \mathbb{S}^3$ have no totally geodesic submanifolds of codimension ≤ 2 .

Dimension three

Ambient	Submanifold	Orbit of
$F(\mathbb{C}^3)$	$F(\mathbb{R}^3) = \mathbb{S}^3(2\sqrt{2})/Q_8$	SO(3)
	$\mathbb{S}^3_{\mathbb{C},1/4}\left(2\right)$	SU(2)
$\mathbb{C}\mathrm{P}^3$	$\mathbb{R}P^3_{\mathbb{C},1/2}(\sqrt{2})$	SU(2) ^j
$\mathbb{S}^3 \times \mathbb{S}^3$	$\mathbb{S}^3(2/\sqrt{3})$	$SU(2)_2$
	$\mathbb{S}^3_{\mathbb{C},1/3}\left(2\right)$	$\Delta_{13}SU(2) \times SU(2)_2$

All of them are Lagrangian.

Dimension two in $F(\mathbb{C}^3)$

Submanifold	Orbit of	Relationship with <i>J</i>
$T_A = \mathbb{R}^2/A$	T^2	Almost complex
$\mathbb{C}\mathrm{P}^1 = \mathbb{S}^2 \big(1/\sqrt{2} \big)$	U(2)	Almost complex
$\mathbb{S}^2(\sqrt{2})$	SO(3)	Almost complex
$\mathbb{R}P^2\big(2\sqrt{2}\big)\toF(\mathbb{R}^3)$	Inhomogeneous	Totally real

Dimension two in $F(\mathbb{C}^3)$

Submanifold	Orbit of	Relationship with <i>J</i>
$T_A = \mathbb{R}^2/A$	T^2	Almost complex

$$A = \mathbb{Z} - \operatorname{span}\left\{ \left(0, \frac{2\sqrt{2}\pi}{\sqrt{3}}\right), \left(\sqrt{2}\pi, \frac{\sqrt{2}}{\sqrt{3}}\pi\right) \right\}$$

Dimension two in $F(\mathbb{C}^3)$

Submanifold	Orbit of	Relationship with <i>J</i>
$T_A = \mathbb{R}^2/A$	T^2	Almost complex

Dimension two in CP³

Submanifold	Orbit of	Relationship with <i>J</i>
$\mathbb{S}^2(1/\sqrt{2})$	$Sp(1)_f$	Almost complex
$\mathbb{S}^2(1)$	SU(2)	Almost complex
$\mathbb{S}^2\left(\sqrt{5}\right)$	$SU(2)_{\Lambda_3}$	Almost complex

 $\Lambda_3 = \operatorname{Sym}^3(\mathbb{C}^2)$: four-dimensional irrep. of SU(2).

Dimension two in $\mathbb{S}^3 \times \mathbb{S}^3$

Submanifold	Orbit of	Relationship with <i>J</i>	
$T_{\rm B} = \mathbb{R}^2/{\rm B}$	$T \subseteq U(1)^3$	Almost complex	
$\mathbb{S}^2(\sqrt{3}/\sqrt{2})$	ΔSU(2)	Almost complex	
$\mathbb{S}^2 \subseteq \mathbb{S}^3(2/\sqrt{3})$	$H \subseteq \Delta_{13}SU(2) \times SU(2)_2$	Totally real	

Dimension two in $\mathbb{S}^3 \times \mathbb{S}^3$

Submanifold	Orbit of	Relationship with <i>J</i>
$T_{\rm B} = \mathbb{R}^2/B$	$T \subseteq U(1)^3$	Almost complex

$$B = \mathbb{Z} - \operatorname{span}\left\{ \left(\frac{4\pi}{\sqrt{3}}, 0\right), \left(\frac{2\pi}{\sqrt{3}}, 2\pi\right) \right\}$$

Dimension two in $\mathbb{S}^3 \times \mathbb{S}^3$

Submanifold	Orbit of	Relationship with <i>J</i>
$T_{\rm B} = \mathbb{R}^2/B$	$T \subseteq U(1)^3$	Almost complex

Ambient	Submanifold	Orbit of	Relationship with <i>J</i>
$F(\mathbb{C}^3)$	$F(\mathbb{R}^3) = \mathbb{S}^3(2\sqrt{2})/Q_8$	SO(3)	Lagrangian
	$\mathbb{S}^3_{\mathbb{C},1/4}\left(2\right)$	SU(2)	Lagrangian
	T_{A}	T^2	Almost complex
	$\mathbb{C}\mathrm{P}^1 = \mathbb{S}^2 \big(1/\sqrt{2} \big)$	U(2)	Almost complex
	$\mathbb{S}^2(\sqrt{2})$	SO(3)	Almost complex
	$\mathbb{R}P^2(2\sqrt{2}) \to F(\mathbb{R}^3)$	Inhomogeneous	Totally real
€P ³	\mathbb{R} P $^3_{\mathbb{C},1/2}$ $(\sqrt{2})$	SU(2) ^j	Lagrangian
	$\mathbb{S}^2(1/\sqrt{2})$	$Sp(1)_f$	Almost complex
	$\mathbb{S}^2(1)$	SU(2)	Almost complex
	$\mathbb{S}^2\left(\sqrt{5}\right)$	$SU(2)_{\Lambda_3}$	Almost complex
$\mathbb{S}^3 \times \mathbb{S}^3$	$\mathbb{S}^3(2/\sqrt{3})$	SU(2) ₂	Lagrangian
	$\mathbb{S}^3_{\mathbb{C},1/3}\left(2\right)$	$\Delta_{13}SU(2) \times SU(2)_2$	Lagrangian
	$T_{ m B}$	$T \subseteq U(1)^3$	Almost complex
	$\mathbb{S}^2(\sqrt{3}/\sqrt{2})$	ΔSU(2)	Almost complex
	$\mathbb{S}^2 \subseteq \mathbb{S}^3(2/\sqrt{3})$	$H \subseteq \Delta_{13}SU(2) \times SU(2)_2$	Totally real