

1	Lee	e Abstract Algebra															5	•						
	1.1	A Sim	ple Example .																				5	5
		1.1.1	Solved Proble	ems													 						5	<u>,</u>

4 CONTENTS

1. Lee Abstract Algebra

1.1 A Simple Example

1.1.1 Solved Problems

■ Problem 1.1 In S_4 let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$. Calculate the followings.

(a) $\sigma \tau$

(b) $\tau \sigma$

(c) the inverse of σ

Solution (a)

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}.$$

(b)

$$\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}.$$

(c)

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}.$$

■ Problem 1.2 In S_5 , let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$. Calculate the following.

(a) $\sigma \tau \sigma$

(b) $\sigma\sigma\tau$

(c) the inverse of σ

Solution (a)
$$\sigma \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}.$$

(b)
$$\sigma \sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}.$$

(c)
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}.$$

■ Problem 1.3 How many permutations are there in S_n ? How many of those permutation satisfy $\alpha(2) = 2$?

Solution There are n choices for $\alpha(1)$, n-1 choices for $\alpha(2)$, and so on. So there are in total n! elements in S_n . Fixing the value of $\alpha(2) = 2$ will leave 4 possible values for $\alpha(1)$, 3 possible values for $\alpha(3)$, and so on. Thus there will be 4! = 24 permutations satisfying $\alpha(2) = 2$.

■ Problem 1.4 Let H be the set of all permutations $\alpha \in S_5$ satisfying $\alpha(2) = 2$. Which of the properties, closure, associativity, identity, and inverse does H enjoy under composition of functions?

Solution Closure is satisfied: Let $\alpha, \beta \in H$. Then $\alpha(\beta(2)) = \alpha(2) = 2$ and also $\beta(\alpha(2)) = \beta(2) = 2$. Associativity is satisfied which follows from the axioms of the group. The identity of the group is in H, which is given by

$$e = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}.$$

Every element in H also has an inverse. Let $\alpha \in H$. Let $\tau \in S_5$ be its inverse. We have

$$\tau(2) = \tau(\alpha(2)) = e(2) = 2.$$

Thus $\tau \in H$.