אינפי 2 ־ סמסטר א' תשע"ט תרגיל בית 11

להגשה עד יום חמישי, 10 בינואר, בשעה 23:45, דרך תיבת ההגשה במודל

- 1. לכל אחת מסדרות הפונקציות $(f_n)_{n=1}^\infty$ הבאות, מצאו את תחום ההתכנסות הנקודתית, וקבעו האם היא מתכנסת במ"ש בכל אחד מהתחומים המצוינים.
 - $.[0,\infty)$; b>0 עבור [0,b] עבור במ"ש: $f_n(x)=\frac{x}{n}$ (א).
 - (a>0) עבור (a,∞) ; $(-\infty,\infty)$: עבור במ"ש: (a,∞) עבור (a,∞) עבור (a,∞)
- 2. יהי D קטע (סגור/פתוח/חצי־סגור). תהי $f:D \to \mathbb{R}$ סדרת פונקציות $f:D \to \mathbb{R}$ אשר מתכנסת נקודתית לפונקציה $f:D \to \mathbb{R}$. משפט דיני אומר שאם מתקיימים התנאים הבאים, אז $f:D \to \mathbb{R}$ במ"ש: f:D במ"ש: f:D היא רציפה. (ב) כל f:D היא רציפה. (ב) רציפה. (ד) הסדרה f:D מונוטונית. (ב) כל שלושה מתוך ארבעת התנאים, מצאו דוגמה לf:D:D המקיימות את שלושת התנאים, אבל f:D:D נקודתית בלבד ולא במ"ש.
 - $[-\infty,a]$ במ"ש בקרן במ"ש בהכרח $f_n o f$ במ"ש בקרן . $f(x)=e^x$ האם בקרן $f_n(x)=\left(1+rac{1}{n}
 ight)^{nx}$.3
 - . \mathbb{R} ב מ"ש ב $f:\mathbb{R} o \mathbb{R}$ הוכיחו כי $f:\mathbb{R} o \mathbb{R}$ הוכיחו במ"ש ומתכנסת במ"ש לפונקציה $f:\mathbb{R} o \mathbb{R}$ הוכיחו כי $f:\mathbb{R} o \mathbb{R}$ רציפות במ"ש ב
 - Iב במ"ש ב־ $f=\lim_{n o\infty}f_n$ הגבול שקיים הגבול פיים $g:\mathbb{R} o\mathbb{R}$ ההתכנסות במ"ש ב־ $g:\mathbb{R} o\mathbb{R}$ ההתכנסות במ"ש ב-5.
 - (א) מצאו דוגמה שבה $(g \circ f_n)_{n=1}^\infty$ אינה מתכנסת במ"ש הסימן אינה (א) מצאו דוגמה שבה אינה (מ
 - (ב) מתכנסת במ"ש אז $(g\circ f_n)_{n=1}^\infty$ מתכנסת במ"ש.
- g ו f לפונקציות I ב "מתכנסות במ"ש ב I לפונקציות המוגדרות של פונקציות המוגדרות ניהיו $(f_n)_{n=1}^\infty$ ויהיו ויהיו $(f_n)_{n=1}^\infty$ ויהיו לא חסום) ויהיו $(f_n)_{n=1}^\infty$ ויהיו לא חסום) ויהיו ב $(f_n)_{n=1}^\infty$ סדרות של פונקציות המוגדרות בקטע ב התאמה.
 - r=f+g מתכנסת במ"ש לפונקציות על ידי אונדרת על ידי המוגדרת (r_n) $_{n=1}^\infty$ הפונקציות האם בהכרח האם (א)
 - h=fg מתכנסת במ"ש לפונקציה ($h_n)_{n=1}^\infty$ המוגדרת על ידי האם בהכרח סדרת הפונקציות (ב)
 - (ג) האם התשובה לסעיף ב' משתנה אם נניח שהפונקציות f ו f חסומות?
 - . הוכיחו: $\left(f_{n}\right)_{n=1}^{\infty}$ סדרת פונקציות המוגדרת על קטע.
 - . אם טור הפונקציות נקודתית לפונקציית אז סדרת הפונקציות האפס. מתכנס נקדותית אז סדרת מתכנס נקדותית אז מתכנס נקדותית אז סדרת הפונקציות האפס. $\sum_{n=1}^{\infty} f_n$
 - בס"ש לפונקציית האפס. מתכנסת במ"ש אז סדרת הפונקציות במ"ש לפונקציית האפס. מתכנס במ"ש לפונקציית האפס. (ב) אם טור הפונקציות הפונקציות המכנס במ"ש אז סדרת הפונקציות אז סדרת הפונקציית האפס.
 - . מתכנס במ"ש אז טור הפונקציות $\sum_{n=1}^{\infty} |f_n|$ מתכנס במ"ש אז טור הפונקציות ג $\sum_{n=1}^{\infty} |f_n|$
 - .8 פונקציה. $f_n:[a,b) o \mathbb{R}$ תהי $n \in \mathbb{N}$ ממשיים. תהי $f:[a,b) o \mathbb{R}$ פונקציה. לכל
- ר ב f ב f מתכנסת נקודתית ל f ב f מתכנסת נקודתית ל f ב f לכל $[a,b_0)$ לכל $[a,b_0]$ מתכנסת נקודתית ל f מתכנסת נקודתית ל f ב f ב f מתכנסת נקודתית ל f ב f ב f מתכנסת נקודתית ל f ב f
- $N_{\epsilon}\left(b_{0}
 ight)$ ב ' $a \leq b_{0} < b$ ו ' $a \leq b_{0} < b$ עבור ' $a \leq b_{0} < b$ המקיים ' $b_{0} \in \mathbb{R}$ לכל ' $a \leq b_{0} < b$ ו ' $a \leq b_{0}$
- . הסבירו בקצרה מדוע ($N_{\epsilon}\left(b_{0}
 ight)$ קיים (רמז: אם קבוצה של מספרים טבעיים A היא לא הקבוצה הריקה, אז יש בה איבר מינימלי).
- . הרחב. $\lim_{b_0\to b^-}N_\epsilon\left(b_0\right)$ קבוע, הפונקציה אונוטונית עולה, והסיקו שהגבול $N_\epsilon:[a,b)\to\mathbb{R}$ קיים במובן הרחב. ii
 - $\lim_{b_0 \to b^-} N_{\epsilon}\left(b_0
 ight)
 eq \infty$ מתקיים $\epsilon > 0$ מתקיים (f_n) מתכנסת במ"ש ל f ב ' f ב ' f מתכנסת מ"ש ל f מתכנסת במ"ש ל f ב ' f
 - . [a,b) ב "מתכנסת במ"ש ב ה לא מתכנסת (f_n) מתכנסת במ"ש ב ה (a,b_0) לכל (a,b_0) מתכנסת מתכנסת מתכנסת (a,b_0) מתכנסת מ"ש ב ה (a,b_0) מ"ש ב (a,