

Europäisches Patentamt
European Patent Office

Office européen des brevets

(11) EP 1 602 930 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 07.12.2005 Patentblatt 2005/49
- (51) Int Cl.7: G01N 33/574, G01N 33/566

- (21) Anmeldenummer: 04090322.1
- (22) Anmeldetag: 20.08.2004
- (84) Benannte Vertragsstaaten:
 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IT LI LU MC NL PL PT RO SE SI SK TR
 Benannte Erstreckungsstaaten:
 AL HR LT LV MK
- (30) Priorität: 22.08.2003 DE 10339820
- (71) Anmelder:
 - Hinzmann, Bernd, Dr. 13127 Berlin (DE)
 - Stein, Dr., Anke
 14974 Ludwigsfelde (DE)
 - Staub, Dr., Eike 13189 Berlin (DE)
 - Heiden, Esmeralda, Dr. 10589 Berlin (DE)
 - Klaman, Dr., Irina 10318 Berlin (DE)

- Dahl, Dr., Edgar 4851 Gemmenich (BE)
- (72) Erfinder:
 - Stein, Anke
 14974 Ludwigsfelde (DE)
 - Staub, Eike
 13189 Berlin (DE)
 - Weber, Birgit, Dr.
 81927 München (DE)
 - Heiden, Esmeralda, Dr. 10589 Berlin (DE)
 - Klaman, Irina
 10318 Berlin (DE)
 - Dahl, Edgar Institut für Pathologie Uni-Klinikum 52074 Aachen (DE)
 - Hinzmann, Bernd 13127 Berlin (DE)
- (54) Verwendungen von an GPR49 bindenden Substanzen zur Diagnose und Behandlung von Krebs
- (57) Die Erfindung betrifft Verwendungen von GPR49 zur Diagnose und Behandlung von Krebs, insbesondere des Colon-, Uterus- und/oder Rectumkarzinoms, sowie zum Screenen nach Substanzen für solche Zwecke.

in situ Hybridisierung (10x) Colon

Figur 20

Beschreibung

10

15

25

30

35

40

Gebiet der Erfindung

[0001] Die Erfindung betrifft neue Verwendungen von GPR49 oder daraus abgeleiteten Sequenzen zum Screenen nach daran bindenden Substanzen, sowie die Verwendung von an GPR49 bindenden Substanzen zur Diagnose und/oder Behandlung von Krebs.

Hintergrund der Erfindung und Stand der Technik

[0002] GPR49, auch als LGR5 oder HG38 bezeichnet, wurde ursprünglich als ein "orphan" G-Protein gekoppelter 7 transmembraner Rezeptor isoliert. Obwohl der GPR49 spezifische Ligand noch nicht identifiziert werden konnte, lassen Sequenzanalysen auf eine Zugehörigkeit zur Glycoprotein Hormone Rezeptor Familie schließen. Merkmal dieser Subfamilie ist eine große N-terminale Ektodomäne. Die sich wiederholenden LRR Motive werden für die Ligandenerkennung verantwortlich gemacht. Die 17 LRR in GPR49, verglichen mit den 9 der anderen Familienmitglieder, lassen ein noch größeres Glycoprotein als TSH, FSH oder LH als Liganden vermuten.

[0003] Die C-terminale Endodomäne ist im Cytoplasma lokalisiert und weist sowohl potentielle Phosphorylierungsstellen als auch mögliche Erkennungssequenzen für Proteine mit SH2 und SH3 Domänen auf. Diese sind möglicherweise an einer Verbindung zu einer von G-Proteinen verschiedenen Signaltransduktion beteiligt (Heu et al. 1998, Molecular Endocrinology 12(12):1830-1845; McDonald et al. 1998, Biochem. & Biophys. Research Communications 247:266-270).

[0004] In der Literaturstelle WO99/15660 wird nicht nur die Klonierung der cDNA aus humaner Placenta mRNA beschrieben, sondern auch die Verteilung der mRNA in normalem Gewebe über Multiple Tissue Northern Hybridisierung. Ein deutlicher Nachweis erfolgte für Placenta, Skelettmuskelgewebe und spezielle Subtypen des Gehirns, insbesondere Corpus callosum.

[0005] Yamamoto et al. (Hepatology 37(3):528-533 (2003)) konnten eine Hochregulierung der GPR49 mRNA in Lebergeweben in Zusammenhang mit mutiertem β-Catenin stellen. β-Catenin ist sowohl an Cadherin-vermittelter Zell-Zell-Adhäsion als auch an der Wnt-Signalkaskade beteiligt. Die Authoren schliessen auf eine Genaktivierung von GRP49 durch die Wnt-Signalkaskade und sprechen von einem möglichen Potential als therapeutisches Target in der Behandlung von Leberzell-Karzinoma.

[0006] Krebs ist eine meist letal verlaufende Erkrankung mit zunehmender Inzidenz. Daher ist es wünschenwert, verbesserte Ansätze zur Diagnose und Therapie von Krebserkrankungen zur Verfügung zu stellen.

Technisches Problem der Erfindung

[0007] Der Erfindung liegt daher das technische Problem zugrunde, pharmazeutische Zusammensetzungen zur Diagnose, auch zur Verlaufs- bzw. Progressionsprognose, und/oder zur Behandlung von Krebs, insbesondere von Colon-, Uterus- und/oder Rectumtumoren, anzugeben sowie Mittel zu deren Identifizierung.

[0008] Grundzüge der Erfindung und bevorzugte Ausführungsformen.

[0009] Zur Lösung dieses technischen Problems lehrt die Verwendung einer für GPR49 codierenden Nukleinsäure und/oder eines GPR49 Peptids oder Proteins zur Detektion von Krebs, insbesondere von Colon-, Uterus- und/oder Rectumtumoren oder zur Detektion eines Risikos der Erkrankung an einem solchen Karzinom oder zur Detektion eines Risikos einer Progression eines solchen Karzinoms, wobei eine Gewebeprobe, insbesondere eine Colon-, Uterus und/oder Rectum-Gewebeprobe, auf Transkription oder Übertranskription von GPR49 RNA oder auf Expression oder Überexpression eines GPR49 Proteins untersucht wird. Eine an für GPR49 codierende Nukleinsäure oder eine an GPR49 Protein oder Peptid bindende Detektorsubstanz, vorzugsweise enthaltend eine Reportergruppe, kann verwendet werden, wobei Bindung besagter Nukleinsäure und/oder besagten Proteins oder Peptids an die Detektorsubstanz halbquantitativ oder quantitativ detektiert wird. In diesem Zusammenhang lehrt die Erfindung weiterhin ein Testsystem zur (in vitro) Detektion eines vorstehend genannten Karzinoms oder eines Risikos der Erkrankung hieran oder der Progressionsprognose, enthaltend Mittel zur quantitativen Messung der Expression von GPR49 in Gewebeproben, wobei diese Mittel beispielsweise Mittel zur Amplifikation und spezifischen Detektion von GPR49 RNA und/oder eine Detektorsubstanz, insbesondere spezifisch für GPR49 Protein, sein können.

[0010] Die Erfindung lehrt weiterhin die Verwendung einer GPR49 RNA oder eines GPR49 Proteins oder Peptids zum Screenen nach daran bindenden Substanzen, insbesondere prospektiven Wirkstoffen zur Modulierung, insbesondere Inhibierung, von besagter RNA oder besagtem Protein oder Peptid, oder prospektiven Detektorsubstanzen, wobei eine prospektive Substanz oder eine Mischung solcher prospektiver Substanzen mit besagter RNA oder besagtem Protein oder Peptid kontaktiert wird, wobei mit einem Bindungsassay Bindungsereignisse festgestellt werden, und wobei eine bindende prospektive Substanz, ggf. nach Dekonvolutierung, selektiert wird. In diesen Zusammenhängen

5

10

20

25

30

35

40

45

lehrt die Erfindung weiterhin ein Screeningsystem zur Ermittlung von für die Behandlung von vorstehenden Tumorerkrankungen geeigneten Wirksubstanzen enthaltend eine GPR49 Nukleinsäure oder ein GPR49 Protein bzw. Peptid, Mittel zur Bestimmung von (in vitro) Bindungsereignissen an die GPR49 Nukleinsäure oder an das GPR49 Protein bzw. Peptid, und/oder Mittel zur Bestimmung der (in vitro) Aktivität von GPR49 Protein. Hierbei kann GPR49 in einem zellfreien oder einem zellbasierten System, letzteres insbesondere aufweisend Zellen aus vorstehend genannten Geweben bzw. eine hieraus entwickelte Zelllinie, vorliegen. Mittel zur Bestimmung von Bindungsereignissen können beispielsweise natürlicherweise in normalen oder in Tumorzellen z.B. an GPR49 Protein bindende Substanzen bzw. Assoziationspartner umfassen, wobei über deren (freie) Konzentration bzw. Konzentrationsänderung bei Zugabe prospektiver Wirksubstanzen und/oder Detektorsubstanzen eine kompetitive Bindung einer bindenden Wirk- oder Detektorsubstanz bestimmt wird. Solche Mittel können aber auch physikalische bzw. physikalisch-chemische Methoden umfassen, wie beispielsweise Röntgenstrukturanalyse und/oder NMR, insbesondere zweidimensionale 1H/1H oder 15N/1H oder 14C/1H Korrelationsspektroskopie. Hierbei werden Spektren vor und nach der Zugabe einer prospektiven Wirk- oder Detektorsubstanz miteinander verglichen und im Falle von Änderungen ist ein Bindungsereignis festgestellt. Es kann mit Spektren oder dergleichen entweder von GPR49 oder der prospektiven Substanz oder mit einer Kombination aus beidem gearbeitet werden. Selbstverständlich sind auch alle anderen fachüblichen Methoden der Bestimmung von Bindungsereignissen und/oder Proteinaktivitäten einsetzbar. Beispielsweise kann eine prospektive Substanz (oder mehrere Substanzen, räumlich voneinander getrennt) immobilisiert sein, wobei dann markiertes GPR49 aufgetragen wird. Ein Bindungsereignis wird dann nach Auftrag und folgender Spülung durch Detektion, ggf. ortlich aufgelöst, der Markierung gebundenen FABP4s festgestellt. Bindungsereignisse können auch ohne Markierung eines der Bindungspartner mittels der dem Fachmann geläufigen Biacore Technologie (Oberflächenplasmonen Resonanz) detektiert werden. Umgekehrt kann GPR49 immobilisiert sein und es wird eine markierte prospektive Substanz oder eine Mischung hieraus aufgetragen. Bindungsereignisse werden analog der vorstehenden Variante festgestellt.

[0011] Die Erfindung lehrt schließlich die Verwendung einer GPR49 inhibierenden oder daran bindenden Substanz zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung und/oder Diagnose von Krebs, insbesondere Colon-, Uterus- und/oder Rectumtumoren.

[0012] Die Substanz kann ein Antikörper sein, welcher durch Immunisierung eines nicht-menschlichen Säugetiers mit einem GPR49 Peptid oder Protein, mit hierfür codierender cDNA transfizierte Zellen, cDNA Immunisierung (Genovac), mit endogen ein solches Peptid oder Protein exprimierenden Tumorzellen, oder mit rekombinant hergestellten GPR49 Peptiden oder Proteinen, erhältlich ist, oder ein Phage-Display-Antikörper sein. Die Substanz kann aber auch eine Mimikryverbindung eines Antikörpers gegen ein GPR49 Peptid oder Protein sein. Die Substanz kann schließlich ein Aptamer, eine antisense RNA, ein Ribozym oder eine siRNA gegen GPR49 Nukleinsäuren sein. Die Substanz kann zusätzlich eine zytotoxische und/oder immunstimulierende Komponente tragen.

[0013] Bevorzugt ist es, wenn die vorstehenden, an GPR49 Protein bindenden Substanzen in der Verwendung zu therapeutischen Zwecken spezifisch an das GPR49 Protein binden und es in seiner biologischen Aktivität modulieren. Dies ist nicht erforderlich im Falle der Fusion bzw. Verbindung der Substanz mit einer zytotoxischen Komponente. Dies ist weiterhin nicht erforderlich, wenn die Substanz der Gewinnung eines anti-idiotypischen Antikörpers dient, welcher vom Immunsystem eines Patienten aufgrund seiner nicht-humanisierten Form als körperfremd erkannt wird und dem Immunsystem ansonsten ein GPR49-Antigen präsentiert.

[0014] Die pharmazeutische Zusammensetzung kann zur beliebigen Applikation, beispielsweise i.v. oder i.p. Injektion, hergerichtet sein. Eine Herrichtung zur lokalen Applikation in Tumorzellen enthaltendem Gewebe wird sich empfehlen im Falle des Einsatzes einer zytotoxischen Komponente.

[0015] Die Erfindung läßt sich im Rahmen eines Verfahrens zur Diagnose bzw. (Progressions-) Prognose einer Tumorerkrankung verwenden, wobei eine Detektorsubstanz in einer Ausführungsform mit einer Reportergruppe in zu untersuchendes Gewebe, ggf. in vitro nach Gewebeentnahme, appliziert wird, wobei das zu untersuchende Gewebe dann einer Detektionsverfahrenstufe unterworfen wird, welche sensitiv für die Reportergruppe ist, und wobei im Fall der Detektion eines definierten Mindestwertes der Reportergruppe im Gewebe das Gewebe als Tumorzellen enthaltend qualifiziert bzw. als progressionsgefährdet oder nicht progressionsgefährdet eingestuft wird, sowie eines Verfahrens zur Behandlung einer Krebserkrankung, wobei eine erfindungsgemäße pharmazeutische Zusammensetzung in einer physiologisch wirksamen Dosis einem Patienten dargereicht wird. Im Falle der Diagnose bzw. Progressionsprognose kann zusätzlich oder alternativ eine Gewebeprobe mit einem erfindungsgemäßen Testsystem auf GPR49 Expression untersucht werden.

[0016] Die Erfindung beruht insbesondere auf der Erkenntnis, daß GPR49 in Colon-, Rectum- und/oder Uterusgeweben unterschiedlich exprimiert wird, i.e. in besagten Tumorgeweben ist die Expression im Falle solcher Karzinome höher, verglichen mit normalen Zellen gleichen Gewebes und der daraus herleitbaren technische Lehre, daß GPR49 als Zielmolekül bei der Diagnostik und Therapie bzw. Prophylaxe besagter Tumorerkrankungen eingesetzt werden kann. GPR49 kann also als spezifischer Marker zur Identifizierung von Tumorzellen in den besagten Tumorgeweben dienen. Es ist erkannt worden, dass pathologisch normale Zellen mit einer erhöhten Expression ein erhöhtes Risiko aufweisen, zu Krebszellen zu transformieren. Auf der anderen Seite bietet die Inhibierung von GPR49 die Möglichkeit,

in die Tumor-spezifischen GPR49 Assoziationen mit anderen Prozessen in den Tumorzellen einzugreifen und somit letztendlich den tumorzellenspezifisch veränderten Stoffwechsel zu stören und zu einem Absterben oder zumindest einer Wachstumshemmung der Tumorzellen, insbsondere aber einer Hemmung der Transformation zu Tumorzellen, beizutragen.

[0017] Im Rahmen der Erfindung kann es sich empfehlen, im Vorfeld einer Behandlung mit einer erfindungsgemäßen pharmazeutischen Zusammensetzung eine Probe aus einem Gewebe, welches als Tumorgewebe mit anderen Methoden identifiziert ist, zu entnehmen und die Gewebeprobe auf Expression bzw. Überexpression von GPR49 zu untersuchen. Alternativ kann mit einer erfindungsgemäßen Detektorsubstanz zur Diagnose in vivo auf GPR49 Abhängigkeit getestet werden. Wird eine Expression bzw. Überexpression von GPR49 gegenüber Normalgewebe gleichen

Typs festgestellt, so ist die Anwendung der erfindungsgemäßen pharmazeutischen Zusammensetzung indiziert.

[0018] Generell ist es im Rahmen der Erfindung möglich, patientenspezifisch auf differentielle Expression zu untersuchen, wobei Normalgewebeprobe und Tumorgewebeproben bzw. tumorverdächtige Gewebeproben dem (gleichen) Patienten entnommen und vergleichend auf Werte der GPR49 Expression untersucht werden.

[0019] Handelt es sich bei dem Tumor um einem Typus, bei welchern Tumorzellen GPR49 exprimieren, Normalzellen gleichen Gewebetyps jedoch nicht, so ist es besonders bevorzugt, wenn die an GPR49 bindende Substanz zusätzlich eine zytotoxische und/oder immunstimulierende Komponente trägt. Dies führt dann letztendlich dazu, dass praktisch ausschließlich Tumorzellen getötet werden, sei es durch die Zytotoxizität, sei es durch Angriff durch das stimulierte Immunsystem, während Normalzellen in dem Gewebe praktisch vollständig erhalten bleiben. In dieser Ausführungsform braucht die bindende Substanz selbst nicht inhibierend auf GPR49 zu wirken, da die bindende Substanz dann lediglich als Marker funktionieren muß, welcher die Komponenten zu Ziel-Tumorzellen trägt. Im Falle des Einsatzes einer zytotoxischen Komponente wird es sich besonders empfehlen, wenn die pharmazeutische Zusammensetzung zur lokalen Applikation in Tumorzellen enthaltendem Gewebe hergerichtet ist, beispielsweise zur Injektion.

[0020] Definitionen und weitere Ausführungsformen der Erfindung.

10

15

25

30

[0021] GPR49 Sequenzen, insbesondere Teilsequenzen, welche in im Rahmen der Erfindung nutzbare Nukleinsäuren oder Peptide oder Proteine enthalten sind, sind in den Seq.-ID 1 bis 82 (siehe auch die Figuren) dargestellt. Die im Rahmen der Erfindung nutzbaren Nukleinsäuren oder Peptide oder Proteine können auch aus diesen Sequenzen bestehen. Im Falle der Seq.-ID 82 bzw. Teilsequenzen hieraus sind auch Mutationen V569A und/oder V666A möglich (siehe beispielsweise Seq.-ID 84). Mit umfasst sind für besagte Mutationen codierende Nukleinsäuren (beispielsweise Seq.-ID 83).

[0022] Im Rahmen dieser Beschreibung wird die Bezeichnung GPR49 für alle humanen Isoformen, bekannt oder neu, auf Nukleinsäuren- oder Aminosäurenbasis, verwendet. Mit diesen Begriffen mit umfaßt sind auch die im Rahmen dieser Beschreibung offenbarten kurzen Sequenzen, beispielsweise Immunisierungssequenzen. Weiterhin mit umfaßt sind auch Homologe, wobei die Homologie zumindest 80%, vorzugsweise mehr als 90%, höchstvorzugsweise mehr als 95%, beträgt, berechnet mit dem Programm MEGALIGN (DNASTAR LASERGENE) in der zum Zeitpunkt der vorliegenden Anmeldung aktuellen Fassung. Im Falle der Nukleinsäuresequenzen sind auch komplementäre oder allelische Varianten mit umfaßt. Weiterhin sind Sequenzen umfaßt, welche lediglich Teilsequenzen der explizit offenbarten Sequenzen, beispielsweise ein Exon oder mehrere Exons, oder komplementärer Sequenzen hierzu darstellen, mit der Maßgabe, daß diese Teilsequenzen im Falle der Nukleinsäuren eine für eine Hybridisierung mit einer erfindungsgemäßen Nukleinsäure hinreichende Länge, zumindest 50 Basen, aufweisen und im Falle der Proteine bzw. Peptide mit zumindest gleicher Affinität an ein protein- oder peptidspezifisches Zielmolekül binden. Weiterhin sind alle mit erfindungsgemäßen Nukleinsäuren hybridisierende Nukleinsäuren umfaßt, nämlich solche, die unter stringenten Bedingungen (5°C bis 25°C unterhalb der Aufschmelztemperatur; siehe ergänzend J.M. Sambrook et al., A laboratory manual, Cold Spring Harbor Laboratory Press (1989) und E.M. Southern, J Mol Biol, 98:503ff (1975)) hybridisieren. Es versteht sich, daß die Erfindung auch Expressionskassetten umfaßt, i.e. eine oder mehrere der erfindungsgemäßen Nukleinsäuresequenzen mit mindestens einer operativ verbundenen Kontroll- oder regulatorischen Sequenz. Eine solche Expressionskassette kann auch eine Sequenz für ein bekanntes Protein umfassen, wobei im Zuge der Translation ein Fusionsprotein aus einem bekannten Protein und einem erfindungsgemäßen Protein oder Peptid entsteht. Ebenso sind auch antisense Sequenzen zu den vorstehenden Nukleinsäuresequenzen umfaßt. Schließlich sind RNA sowie damit korrelierende DNA und umgekehrt umfaßt, ebenso wie genomische DNA als auch korrelierte cDNA und umaekehrt.

[0023] Im Zusammenhang mit erfindungsgemäßen Verwendungen umfassen die Begriffe der GPR49 Nukleinsäuren oder Protein bzw. Peptide neben den Volllängen der offenbarten Seguenzen (siehe auch vorstehender Absatz) auch Teilsequenzen hieraus, und zwar mit einer Mindestlänge von 12 bis 30 Nukleotiden, vorzugsweise 30 bis 90 Nukleotiden, im Falle der Nukleinsäuren und einer Mindestlänge von 4 bis 10 Aminosäuren, vorzugsweise 10 bis 30 Aminosäuren, im Falle der Peptide oder Proteine. Diese Teilsequenzen können in ansonsten von GPR49 verschiedene Nukleinsäuren- oder Protein- bzw. Peptidsequenzen eingebaut sein.

[0024] Der Begriff der Behandlung umfaßt auch die Prophylaxe, insbesondere die Prophylaxe der Progression zu Tumoren.

[0025] Als Inhibitor ist eine Verbindung oder Substanz bezeichnet, welche entweder die Bildung von GPR49 Protein inhibiert oder gebildetes GPR49 Protein in der Aktivität reduziert, bezogen auf die GPR49 Aktivität in Abwesenheit des Inhibitors. Insofern kann ein Inhibitor einerseits eine Substanz sein, welche in der Entstehungskaskade von GPR49 inhibierend eingreift. Auf der anderen Seite kann ein Inhibitor eine Substanz sein, welche mit gebildetem GPR49 eine Bindung eingeht, und zwar dergestalt, dass weitere physiologische Wechselwirkungen mit endogenen Substanzen zumindest reduziert sind.

[0026] Mimikry-Moleküle sind Verbindungen, die den variablen Bereich, insbesondere den Bindungsbereich eines Antikörpers, nachbilden und an gleicher Stelle eines Zielmoleküls binden, wie der zu Grunde liegende Antikörper.

10

15

20

25

30

35

[0027] Der Begriff der Antikörper umfaßt polyklonale Antikörper, monoklonale Antikörper, nicht-humane, humane und humanisierte Antikörper, sowie Phage-Display-Antikörper, aber auch chimäre Antikörper sowie spezifische Fragmente der leichten und/oder der schweren Kette des variablen Bereiches zu Grunde liegender Antikörper vorstehender Art sowie anti-idiotypische Antikörper. Die Herstellung bzw. Gewinnung solcher Antikörper mit vorgegebenen Immunogenen ist dem Durchschnittsfachmann wohl vertraut und braucht nicht näher erläutert zu werden. Weiterhin umfaßt der Begriff der Antikörper bispezifische Antikörper. Bispezifische Antikörper kombinieren eine definierte Immunzellaktivität mit einer spezifischen Tumorzellerkennung, wodurch Tumorzellen getötet werden. Ein bispezifischer Antikörper bindet einerseits an ein Auslösemolekül der Immun-Effektorzelle (z.B. CD3, CD16, CD64) und andererseits an Antigene der Tumorzielzelle.

[0028] Die galenische Herrichtung einer erfindungsgemäßen pharmazeutischen Zusammensetzung kann in fachüblicher Weise erfolgen. Als Gegenionen für ionische Verbindungen kommen beispielsweise Na*, K*, Li* oder Cyclohexylammonium infrage. Geeigente feste oder flüssige galenische Zubereitungsformen sind beispielsweise Granulate,
Pulver, Dragees, Tabletten, (Mikro-) Kapseln, Suppositorien, Sirupe, Säfte, Suspensionen, Emulsionen, Tropfen oder
injizierbare Lösungen (i.v., i.p., i.m.) sowie Präparate mit protrahierter Wirkstoff-Freigabe, bei deren Herstellung übliche
Hilfsmittel wie Trägerstoffe, Spreng-, Binde-, Überzugs-, Quellungs-, Gleit- oder Schmiermittel, Geschmacksstoffe,
Süßungsmittel und Lösungsvermittler, Verwendung finden. Als Hilfsstoffe sei Magnesiumcarbonat, Titandioxyd, Lactose, Mannit und andere Zucker, Talcum, Milcheiweiß, Gelatine, Stärke, Zellulose und ihre Derivate, tierische und
pflanzliche Öle wie Lebertran, Sonnenblumen-, Erdnuss- oder Sesamöl, Polyethylenglycole und Lösungsmittel, wie
etwa steriles Wasser und ein- oder mehrwertige Alkohole, beispielsweise Glycerin, genannt. Eine erfindungsgemäße
pharmazeutische Zusammensetzung ist dadurch herstellbar, dass mindestens ein erfindungsgemäß verwendeter Inhibitor in definierter Dosis mit einem pharmazeutisch geeigneten und physiologisch verträglichen Träger und ggf. weiteren geeigneten Wirk-, Zusatz- oder Hilfsstoffen mit definierter Inhibitordosis gemischt und zu der gewünschten Darreichungsform hergerichtet ist.

[0029] Tumorzellen exprimieren GPR49 differenziell, wenn Normalzellen des gleichen Gewebetyps (des gleichen oder verschiedener Probanden) dieses nicht exprimieren. Tumorzellen überexprimieren GPR49 spezifisch bzw. differenziell, wenn GPR49 im Vergleich zu Normalzellen des gleichen Gewebetyps zumindest in doppelter Menge exprimiert wird.

[0030] Zytotoxische Komponenten bzw. Gruppen sind Verbindungen, welche direkt oder indirekt Apoptose einleiten bzw. zu Nekrose führen oder zumindest wachstumshemmend wirken. Solche Gruppen bzw. Verbindungen können neben Radioisotopen (z.B. 188Re, 213Bi, 99mTc, 90Y, 131J, 177Lu) insbesondere Zytostatika sein, welche in der Tumortherapie eingesetzt werden. Beispiele hierfür sind: Alkylantien (z.B. Mechlorethamin, Ifosfamid, Chlorambucil, Cyclophosphamid, Melphalan, Alkylsulfonate, Busulphan, Nitrosoharnstoffe, Carmustin, Lomustin, Semustin, Triazene, Dacarbazin), Antimetaboliten (z.B. Folsäure-Antagonisten, Methotrexat, Pyrimidin-Analoga, Fluoruracil, Fluordesoxyuridin, Cytarabin, Gemcitabin, Purin-Analoga, Mercaptopurin), Mitosehemmer (z.B. Vincaalkaloide, Voncristin, Vinblastin, Paclitaxal, Docetaxel, Protaxel), Epipodophyllotoxine (z.B. Etoposid, Teniposid), Antibiotika (z.B. Dactinomycin, Daunorubicin, Idarubicin, Anthracycline, Bleomycin, L-Asparaginase), Platinkomplexverbindungen (z.B. Cisplatin), Hormone und verwandte Verbindungen (z.B. Nebennierenrindensteroide, Aminogluthetimid, Gestagene, Östrogene, Androgene, Antiöstrogene, Tamoxifen, Steriodanaloga, Flutamid). Bei Bindung einer solchen Verbindung mit einer an GPR49 bindenden Substanz erfolgt die Kopplung dergestalt, daß die Affinität zu GPR49 um nicht mehr als 90%, vorzugsweise 50%, bezogen auf die Substanz ohne zytostatische Gruppe, reduziert ist und die zytostatische Wirkung der Gruppe um nicht mehr als 90%, vorzugsweise 50%, bezogen auf die Verbindung ohne Substanz, reduziert ist.

[0031] Eine immunstimulierende Komponente ist meist ein Protein oder ein wirksamer Bestandteil hiervon, welches Zellen des Immunsystems stimuliert. Beispiele hierfür sind: Zytokine, wie M-CSF, GM-CSF, G-CSF, Interferone, wie IFN-alpha, -beta, -gamma, Interleukine wie IL-1 bis -16 (außer -8), human LIF, Chemokine wie Rantes, MCAF, MIP-1-alpha, -beta, NAP-1 und IL-8.

[0032] Eine Reportergruppe ist ein Atom, Molekül oder eine Verbindung, welche in Verbindung mit einem hierauf abgestellten Assay den Nachweis der Reportergruppe und der somit mit der Reportergruppe verbundenen Verbindung oder Substanz ermöglicht. Beispiele für Reportergruppen und hiermit assoziierte Detektionsmethoden sind: 32P-Labeling und Intensitätsmessung mittels Phosphoimager. Viele weitere Beispiele sind dem Durchschnittsfachmann bekannt und bedürfen nicht der detaillierten Aufzählung.

[0033] Eine an GPR49 bindende Substanz kann eine Substanz sein, welche an ein GPR49 Protein oder eine GPR49 RNA bindet.

[0034] Im Rahmen der vorstehenden Definition gegenüber dem engen Wortsinn erweiterte Begriffsbestimmungen umfassen auch die bestimmten Begriffe im engen Wortsinn.

Beispiele.

5

10

15

20

25

35

55

[0035] Im Folgenden wird die Erfindung anhand von lediglich bevorzugte Ausführungsformen darstellenden Beispielen und Figuren näher erläutert. Es zeigen:

rig. 1. Uniparialyse zur direrentiellen Expression von Grittes in Colontumorgewebe aus zo ratiente	Fig. 1:	Chipanalyse zur differentiellen Expression von GPR49 in Colontumorgewebe aus 28 Patienter
--	---------	---

Fig. 2: Northern-Blot-Verfahren des Cancer-Profiling-Arrays zur diffenrtiellen Expression von GPR49 in Colon-, Uterus- und Rectumtumorgewebe,

Fig. 3: Taqman-Analyse zur differentiellen Expression von GPR49 in Colontumorgewebe (nach erfolgter Laser-gestützter Microdissektion der Normalepithelien und Tumorzellen),

Fig. 4: Taqman-Analyse zur spezifischen Expression von GPR49 im Gewebe des Dünndarms (Small Intestine), der Plazenta, Rückenmark (Spinal Cord), Nebenniere (Adrenal Gland), Gehirn (Brain), Magen (Stomach) und Skelettmuskulatur (Skeleton Muscle) aus 26 Normalgeweben eines Patienten.

Fig. 5: Verwendete Peptidsequenzen zur Immunisierung von Kanninchen und zur Gewinnung von Antikörpern gegen GPR49,

Fig. 6: Verwendete cDNA Sequenz zur Immunisierung in Ratten mit der Ektodomäne des N-Terminus von GPR49,

30 Figuren 7 bis 16: Teilsequenzen aus GPR49, welche zum Einsatz in Screening Verfahren geeignet sind,

Fig. 17: Nukleinsäuresequenz von GPR49,

Fig. 18: Aminosäurensequenz von GPR49,

Fig. 19: alternative verwendete cDNA Sequenzen (Volllängen) zur Immunisierung in Ratten, und

Fig. 20: in situ Hybridisierungen in Colon Tumorgewebe.

40 Beispiel 1: Untersuchte Gewebeproben

[0036] Es wurde Colontumorgewebe von 28 Patienten mit zum Zeitpunkt der Erhebung invasiven Tumoren entnommen, und zwar einerseits aus dem Zentraltumor und andererseits aus der Invasionsfront. Zu Vergleichszwecken wurde zugleich Normalgewebe den Patienten entnommen. Die drei Gewebeprobentypen (Kerntumor, Invasionsfront, Normalgewebe) aus jeweils einem Patienten wurden einander zugeordnet. Im Einzelnen wurde wie folgt verfahren. Die Tumorund -normalgewebeproben wurden gefroren und in 10μm Proben geschnitten. Aus jedem Patienten wurden zumindest 30 Proben gewonnen. Normale und maligne Bereiche wurden durch einen Pathologen mit Hilfe eines Mikroskopes identifiziert und markiert. Hierbei wird ggf. auch die Verlaufsform identifiziert und der Probe zugeordnet. Die jeweiligen Bereiche wurden unter dem Mikroskop resektiert unter Verwendung einer Nadel und jeweils separat auf -80°C eingefroren in 150μl GTC Puffer enthaltend 2% β-Mercaptoethanol.

[0037] Für das Cancer-Profiling-Array wurden Tumor- und Normalgewebeproben aus Brust, Uterus, Darm, Magen, Ovar, Lunge, Niere Rektum und Schilddrüse verwendet.

Beispiel 2: Expressionsprofile der untersuchten Gewebe

[0038] Die Proben aus Beispiel 1 wurden einer Expressionsanalyse auf GPR49 mittels der GeneChip-Technologie (Affimetrix) unterworfen. Dabei wird aus Proben aus Beispiel 1 RNA isoliert, amplifiziert und markiert. Die so erhaltene RNA wird einem Genchip aufgegeben, welcher eine Vielzahl von verschiedenen Oligonukleotiden enthält, wobei jeweils

eines (oder auch mehrere, zu Kontrollzwecken) für ein definiertes Gen repräsentativ ist, i.e. eine charakteristische Teilsequenz hieraus aufweist. Man erhält sowohl qualitative, wie auch quantitative Information, ob eine betreffende Normal- und/oder Tumorprobe ein betreffendes Gen exprimiert, und zwar auch im Verhältnis Tumor/Normal. Die Ergebnisse sind in der Figur 1 dargestellt. Man erkennt eine deutliche Überexpression von GPR49 sowohl in der Invasionsfront des Tumors als auch im Zentraltumor selbst.

[0039] Diese Ergebnisse werden auch durch GPR49 Taqman Ergebnisse gestützt, welche in der Figur 3 dargestellt sind. Bei diesen Experimenten wird im Einzelnen wie folgt verfahren. Eine Poly-A+-RNA Präparation erfolgt unter Verwendung eines modifizierten Protokolls gemäß dem Poly-A-Tract 1000 Kit (Amersham, Freiburg, Deutschland). Gewebeproben, erhalten gemäß Beispiel 1, werden langsam auf Eis aufgetaut, zerkleinert und mit 300 μl vorgewärmten Verdünnungspuffer, enthaltend 1% β-Mercaptoethanol, sowie 10 pmol biotinyliertem Oligo-dT Primer versetzt, und für 5 min. auf 70°C erhitzt. Die Proben werden dann für 5 min. bei 20°C gehalten und anschließend bei 20000g für 10 min. zentrifugiert. Dem Überstand werden 120
µl gewaschener Streptavidin-gekoppelter paramagnetischer Partikel (SA-PMP) zugebenen und es wurde bei 20°C für 5 min. inkubiert. Die mRNA wurde dann durch magnetische Trennung isoliert. Nach drei Waschschritten mit 0,5x SSC Lösung wird die mRNA in Nuklease-freiem Wasser eluiert, in der Speed-Vac einrotiert, um dann in 11µl DEPC Wasser eluiert zu werden. Es folgt eine RNA-Konzentrationsbestimmung durch RiboGreen Messung. Anschließend erfolgt die cDNA Synthese. 1μl T7-dT24-(GGCCAG) Primer (100 pmol/μl) wird zu den 10µl mRNA gegeben und auf 70°C für 5 min. erhitzt. Dann wurde die Probe auf Eis gelegt und es werden 4μl 5x first strand buffer (Invitrogen), 2μl DTT (0,1M), 1μl dNTP's (10mM), und 14U anti-RNAse (Ambion) zugegeben, gefolgt von einer Inkubation für 2 min. bei 37°C. Dann werden 200nl Superscript II Reverse Transkriptase (Invitrogen) zugegeben, gefolgt von einer Inkubation für 1 h bei 37°C. Anschließend erfolgt die Zweitstrangsynthese und DNA Reinigung. Sofort nach der Synthese des ersten Stranges, wie vorstehend, werden 91µl Wasser, 30µl 5x second strand buffer, 3µl dNTP's (10mM), 10U E. coli DNA-ligase, 40U DNA Polymerase I und 2U RNAse H (alle von Invitrogen) zugegeben und die Mischung wird für 2 h bei 16°C inkubiert. Dann werden 10U T4 DNA Polymerase (Invitrogen) zugegeben und weitere 5 min. inkubiert. Die Reaktion wird durch Zugabe von 10 µl 0,5mM EDTA abgebrochen. Die Reinigung der DNA erfolgt gemäß den Vorschriften des GFX PCR DNA and Gel Band Purification Kits (Amersham). Die gereinigte DNA wird unter Vakuum eingedampft, in 9 µl DEPC Wasser aufgenommen und bei -20°C gelagert. Dann erfolgt die in vitro Transkription und cRNA Reinigung. Die in vitro Transkription wird gemäß dem Herstellerprotokoll von Ambion (Huntigdon, UK) durchgeführt. Zu 8 μg der cDNA werden 7,5μl dNTP's (75mM), 2μl 10x reaction buffer (Ambion), 2µl 10 T7 Enzymmix (Ambion) und 14U anti-RNAse (Ambion) zugegeben, gefolgt von einer Inkubation von 6 h bei 37°C. Die Reinigung der erhaltenen cRNA erfolgt gemäß dem Herstellerprotokoll zum Rneasy Mini Kit (Qiagen, Hilden, Deutschland). Nach Elution von der Säule wird die CRNA (unter Vakuum) eingedampft, in Wasser aufgenommen und bei -80°C eingelagert. Anschließend wird die zweite cDNA Synthese durchgeführt. Die Synthese des ersten Stranges erfolgt mit random hexamer primer (250ng/µl). Nach Inkubation über 60 min. wird das cRNA-cDNA Hybrid für 20 min. mit 2U RNase H inkubiert, gefolgt von einem 2-minütigen Inaktivierungsschritt bei 37°C. Schließlich erfolgt die quantitative PCR und Auswertung. 1ng cDNA werden für die Amplifikation eingesetzt mit 2,5µl 10x SYBR®Green PCR Puffer, 3µl Magnesiumchlorid (25mM), 2µl dNTP's (mit dUTP; 12,5 mM) und 0,625U Ampli Tag Gold in einem Reaktionsvolumen von 25µl. Die Reaktion wird in einem GeneAmp 5700 Sequence Detection System (Applied Biosystems, Weiterstadt, Deutschland) durchgeführt. Die Bedingungen sind: 2 min. 50°C, 10 min. 95°C, 15 s 95°C, 1 min. 60°C, die letzten beiden Phasen in 40 Zyklen. Für die jeweiligen Gene werden die geeigneten Vorwärts- bzw. Rückwärtsprimer verwendet. Die Auswertung erfolgt nach der ΔΔCt Methode nach Herstellervorschrift. Der Ct Wert von beta actin wurde bei einer Grenze von 0,1 gemessen. Zur Normalisierung wird der Ct Wert des beta actin vom Ct Wert des untersuchten Gens abgezogen. Dieser normalisierte Ct Wert wird im Falle der Tumorgewebe auf die Normalgewebe bezogen bzw. normalisiert, wodurch der ΔΔCt erhalten wird. Wird dieser Wert als Potenz zur Basis 2 eingesetzt, so wird eine relative Größe der Überexpression in Tumorgewebe gegenüber dem Normalgewebe des gleichen Patienten erhalten. Auch in diesen Experimenten erkennt man eine vielfache Überpression des GPR49 in der Invasionsfront sowie dem Zentraltumor, verglichen mit den korrespondierenden Normalgewebe. Der Figur 4 ist zu entnehmen, dass in der überwiegenden Anzahl untersuchter Normalgewebe die endogene Expression von GPR49 gerade messbar bis allenfalls sehr gering ist.

[0040] Der Figur 2, welche einen Northern Blot anhand des Cancer-Profiling-Arrays darstellt, entnimmt man, dass eine differenzielle Expression nicht nur in Colon festzustellen ist, sondern auch in Uterus und Rectum.

Beispiel 3: Nachweis eines überexprimierten Gens mittels Antikörpern.

15

20

25

35

40

50

[0041] In diesem Beispiel wird die Markierung von Tumorzellen durch einen gegen ein erfindungsgemäß verwendetes Protein gerichteten Antikörper in vivo (Mausmodell) beschrieben. Ein solcher erfindungsgemäßer Antikörper wird mit einem Markermolekül (z.B. Radioisotop) markiert. In NMRI-Nacktmäuse werden mit einem erfindungsgemäßen Gen transfizierte humane Zellen transplantiert. Nach einem definierten Zeitraum, beispielsweise 30 Tage, wird den Mäusen der markierte Antikörper injiziert. Die Kontrolltiere werden mit einem nicht relevanten Antikörper behandelt.

Wenige Stunden nach der Antikörperapplikation werden die Tiere getötet und aus allen Organen Gewebeschnitte angefertigt. Diese Schnitte werden auf die Gegenwart von markiertem Antikörper untersucht.

[0042] Bei den Antikörpern kann es sich im einfachsten Fall um polyklonale Antikörper gegen humanes Protein, konjugiert mit einem Trägerprotein, in Kaninchen gezogen und mit den spezifischen immobilisierten Peptiden affinitätsgereinigt, handeln. Geeignete Immunisierungspeptide sind beispielsweise aus Teilsequenzen eines erfindungsgemäßen Proteins gebildet, wozu auch auf die Fig. 5 verwiesen wird. Bei der Sequenz AA 852-862 dieser Figur kann das endständige Cystein auch entfallen, da es sich dabei um ein Aminosäure zur Koppelung an ein Trägerprotein handelt. Als Immunogene können ebenso mit cDNA des Gens, oder Teilsequenzen hiervon transfizierte Zellen, wie beispielsweise COS-Zellen oder NIH3T3-Zellen, eingesetzt werden, wozu beispielhaft auf die Fig. 6 oder 17 verwiesen wird. Ebenso sind Tumorzellen, die endogen das Protein exprimieren, geeignet. Weiterhin kann auch rekombinant hergestelltes Protein bzw. Teilsequenzen hieraus, die in Producerzellen, wie E. coli oder Insektenzellen oder Säugerzellen exprimiert werden, zur Immunisierung eingesetzt werden. Selbstverständlich können stattdessen auch entsprechende monoklonale Antikörper oder Fragmente hiervon eingesetzt werden. Die Herstellung von monoklonalen Antikörperm ausgehend von vorstehenden Immunisierungssequenzen und beispielsweise über die Genereirung und Selektion von Hybridomzellen ist dem Durchschnittsfachmann wohl vertraut und bedarf keiner detaillierten Darstellung.

Beispiel 4: Immunhistochemischer Nachweis von Tumorzellen oder Nachweis mittels in situ Hybridisierung.

[0043] Gewebe wird aus einem Patienten mit Krebs oder dem Verdacht auf Krebs isoliert und als Paraffin- bzw. Gefrierschnitte präpariert. Diese Schnitte werden für den immunhistochemischen Nachweis mit einem gegen ein erfindungsgemäßes Protein gerichteten Antikörper auf die Überexpression des Proteins in Zellen untersucht. Die immunhistologische Untersuchung mit dem Antikörper zeigt bei heraufregulierten Genen höhere Expression des Proteins in den Tumorzellen im Vergleich zu umliegenden Normalgewebe. Die Untersuchung erfolgt im Einzelnen beispielsweise durch Inkubation mit dem Antikörper als primärem Antikörper, einem biotinyliertem sekundären anti-Kaninchen Antikörper und einer Streptavidingekoppelten Meerrettich- peroxidase. Die Färbung erfolgt mit mit DAB als chromogenen Substrat (braune Färbung). Die Gegenfärbung erfolgt mit Hemalaun-Lösung (blaue Färbung). Es sind maligne und nichtmaligne Zellen unterscheidbar, wobei die malignen Zellen eine starke Färbung, i.e. hohen Gehalt an erfindungsgemäßem Protein, aufweisen, während die nichtmalignen Zellen nur moderat gefärbt sind.

[0044] Ergebnisse eine in situ Hybridisierung sind in der Figur 20 dargestellt. Gewebeproben aus Colongewebe wurden mit einer GPR49 spezifischen antisense Sonde inkubiert und mit BM-Purple gefärbt. Die Gegenfärbung erfolgte mit Kernecht-Rot. Es sind maligne und nichtmaligne Epithelzellen voneinander zu unterscheiden, von denen die malignen Zellen eine starke Anfärbung der RNA in der in situ Hybridisierung zeigen. Man erkennt, dass GRP49 im Colontumorgewebe (links) auf RNA Ebene deutlich überexprimiert ist, verglichen zur Kontrolle (Mitte) und zum Colonnormalgewebe (rechts).

Beispiel 5: Erzeugung von anti-idiotypischen monoklonalen Antikörpern zu therapeutischen Zwecken

[0045] Ausgehend von einem erfindungsgemäß verwendeten Protein wird in fachüblicher Weise ein monoklonaler Antikörper Ab1 erzeugt, welcher in der Lage ist, das Protein spezifisch zu erkennen und daran zu binden. Dabei ist es unwesentlich, ob eine funktionale Domäne oder ein anderer zugänglicher Bereich erkannt wird. Mit Hilfe des erzeugten Antikörpers Ab1 wird in ebenso fachüblicher Weise ein zweiter anti-idiotypischer nicht humanisierter, beispielsweise Maus, monoklonaler Antikörper aAB1 erzeugt, welcher zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krebs, insbesondere Colon-, Uterus- oder Rectumtumoren, geeignet ist. Die Funktion des Antikörpers aAB1 beruht dabei darauf, dass dieser dem humanen Immunsystem ein Image des (humanen) Protein-Antigens gleichsam vortäuscht, wobei das Immunsystem den Antikörper aAB1 aufgrund seiner mangelnden Humanisierung als körperfremd erkennt. Der humane Körper bildet folglich eigene Antikörper, die gegen aAB1 und somit auch gegen das humane Protein bzw. dieses exprimierende Tumorzellen gerichtet sind.

55

50

45

10

15

20

30

35

SEQUENCE LISTING

		•	
5	<110>	metagen Pharmaceuticals GmbH Staub, Eike Stein, Anke Weber, Birgit	
	<120>	Verwendung von an GRP49 bindenden Substanzen zur Diagnose un behandlung von Krebs	d
10	<130>	MET/DE/329	
	<140> <141>	DE 103 39 820.1 2003-08-22	
15	<160>	84	
	<170>	PatentIn version 3.2	
	<210> <211>	1 15	
20	<212> <213>	PRT Artificial	
	<220>	·	
	<223>	Partial sequences of GRP49	
25	<400>	1 .	
25	Cys Gl	u Asn Ala Tyr Lys Ile Ser Asn Gln Trp Asn Lys Gly Asp 5 10 15	
30	<210> <211> <212> <213>	2 11 PRT Artificial	
	<220> <223>	Partial sequences of GRP49	
35	<400>	2	
	Ile Asi 1	n Ser Asp Asp Val Glu Lys Gln Ser Cys 5 10	
40	<210> <211> <212> <213>	3 1605 DNA Artificial	
45	<220> <223>	Partial sequences of GRP49	
	<400> ggcagct	3 tctc ccaggtctgg tgtgttgctg aggggctgcc ccacacactg tcattgcgag	60
	cccgac	ggca ggatgttgct cagggtggac tgctccgacc tgggggctctc ggagctgcct	120
50	tccaaco	ctca gcgtcttcac ctcctaccta gacctcagta tgaacaacat cagtcagctg	180
	ctcccga	aatc ccctgcccag tctccgcttc ctggaggagt tacgtcttgc gggaaacgct	240
	ctgacat	aca ttcccaaggg agcattcact ggcctttaca gtcttaaagt tcttatgctg	300
55	cagaata	atc agctaagaca cgtacccaca gaagctctgc agaatttgcg aagccttcaa	360

```
. 420
         tccctgcgtc tggatgctaa ccacatcagc tatgtgcccc caagctgttt cagtggcctg
                                                                                480
         cattccctga ggcacctgtg gctggatgac aatgcgttaa cagaaatccc cgtccaggct
5
         tttagaagtt tatcggcatt gcaagccatg accttggccc tgaacaaaat acaccacata
                                                                                540
                                                                                600
         ccagactatg cctttggaaa cctctccagc ttggtagttc tacatctcca taacaataga
         atccactccc tgggaaagaa atgctttgat gggctccaca gcctagagac tttagattta
                                                                                660
10
                                                                                720
         aattacaata accttgatga attccccact gcaattagga cactctccaa ccttaaagaa
                                                                                780
         ctaggatttc atagcaacaa tatcaggtcg atacctgaga aagcatttgt aggcaaccct
         tctcttatta caatacattt ctatgacaat cccatccaat ttgttgggag atctgctttt
                                                                                840
15
                                                                                900
         caacatttac ctgaactaag aacactgact ctgaatggtg cctcacaaat aactgaattt
                                                                                960
         cctgatttaa ctggaactgc aaacctggag agtctgactt taactggagc acagatctca
         tctcttcctc aaaccgtctg caatcagtta cctaatctcc aagtgctaga tctgtcttac
                                                                               1020
20
         aacctattag aagatttacc cagtttttca gtctgccaaa agcttcagaa aattgaccta
                                                                               1080
         agacataatg aaatctacga aattaaagtt gacactttcc agcagttgct tagcctccga
                                                                               1140
         tcgctgaatt tggcttggaa caaaattgct attattcacc ccaatgcatt ttccactttg
                                                                               1200
25
         ccatccctaa taaagctgga cctatcgtcc aacctcctgt cgtcttttcc tataactggg
                                                                               1260
         ttacatggtt taactcactt aaaattaaca ggaaatcatg ccttacagag cttgatatca
                                                                               1320
                                                                               1380
         tctgaaaact ttccagaact caaggttata gaaatgcctt atgcttacca gtgctgtgca
         tttggagtgt gtgagaatgc ctataagatt tctaatcaat ggaataaagg tgacaacagc
                                                                               1440
30
         agtatggacg accttcataa gaaagatgct ggaatgtttc aggctcaaga tgaacgtgac
                                                                               1500
         cttgaagatt tcctgcttga ctttgaggaa gacctgaaag cccttcattc agtgcagtgt
                                                                               1560
         tcaccttccc caggcccctt caaaccctgt gaacacctgc ttgat
                                                                               1605
35
         <210>
                535
                PRT
                Artificial
                Partial sequences of GRP49
         <400>
        Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg Gly Cys Pro Thr His
1 15
45
        Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu Arg Val Asp Cys Ser
50
        ASP Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu Ser Val Phe Thr Ser 40 45
        Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln Leu Leu Pro Asn Pro 50 60
```

	65	Pro	Ser	Leu	Arg	70	Leu	GIU	Giu	Leu	75	Leu	Ald	GIY	ASII	80 80
5	Leu	Thr	туr	Ile	Pro 85	Lys	Gly	Ala	Phe	Thr 90	Gly	Leu	Tyr	Ser	Leu 95	Lys
10	val	Leu	Met	Leu 100	Gln	Asn	Asn	Gln	Leu 105	Arg	His	val	Pro	Thr 110	Glu	Ala
	Leu	Gln	Asn 115	Leu	Arg	Ser	Leu	Gln 120	Ser	Leu	Arg	Leu	Asp 125	Ala	Asn	His
15	Ile	Ser 130	Туг	val	Pro	Pro	Ser 135	Cys	. Phe	Ser	Gly	Leu 140	His	Ser	Leu	Arg
20	His 145	Leu	Trp	Leu	Asp	Asp 150	Asn	Ala	Leu	Thr	G1u 155	Ile	Pro	val	Gln	Ala 160
•	Phe	Arg	Ser	Leu	Ser 165	Ala	Leu	G]n	Ala	Met 170	Thr	Leu	Ala	Leu	Asn 175	Lys
25	Ile	His	His	11e 180	Pro	Asp	туг	Ala	Phe 185	Gly	Asn	Leu	Ser	Ser 190	Leu	val
80	٧a٦	Leu	Нis 195	Leu	His	Asn	Asn	Arg 200	Ile	His	Ser	Leu	Gly 205	Lys	Lys	Cys
٠	Phe	Asp 210	Gly	Leu	His	Ser	Leu 215	Glu	Thr	Leu	Asp	Leu 220	Asn	Туг	Asn	ASN
35	Leu 225	Asp	Glu	Phe.	Pro	Thr 230	Ala	Ile	Arg	Thr	Leu 235	Ser	Asn	Leu	Lys	G1u - 240
10 ș	Leu	Gly	Phe	His	Ser 245	Asn	Asn	Ile	Arg	Ser 250	Ile	Pro	Glu	Lys	Ala 255	Phe
	Val	Gly	Asn	Pro 260	Ser	Leu	Ile	Thr	11e 265	His	Phe	Tyr	Asp	Asn 270	Pro	Ile
15	Gln	Phe	Va1 275	G1y	Arg	Ser	Ala	Phe 280	Gln	His	Leu	Pro	G1u 285	Leu	Arg	Thr
50	Leu	Thr 290	Leu	Asn	Gly	Ala	Ser 295	G1n	Ile	Thr	Glu	Phe 300	Pro	Asp	Leu	Thr
	Gly 305	Thr	Ala	Asn	Leu	Glu 310	Ser	Leu	Thr	Leu	Thr 315	G1y	Ala	Gln	Ile	Ser 320
55	Ser	Leu	Pro	Gln	Thr 325	∨a1	Cys	Asn	Gln	Leu 330	Pro	Asn	Leu	G1n	Va1 335	Leu

	Asp	Leu	Ser	Tyr 340	Asn	Leu	Leu	Glu	Asp 345	Leu	Pro	Ser	Phe	Ser 350	val	Cys
5	Gln	Lys	Leu 355	GÌn	Lys	Ile	Asp	Leu 360	Arg	His	Asn	Glu	11e 365		`G] u	Ile
0	Lys	va7 370	Asp	Thr	Phe	Gln	Gln 375	Leu	Leu	Ser	Leu	Arg 380	Ser	Leu	Asn	Leu
	Ala 385	Тгр	Asn	Lys	Ile	Ala 390	Ile	Ile	ніѕ	Pro	Asn 395	Ala	Phe	Ser	Thr	Leu 400
25	Pro	Ser	Leu	Ile	Lys 405	Leu	Asp	Leu	Ser	Ser 410	Asn	Leu	Leu	Ser	Ser 415	Phe
20	Pro	Ile	Thr	Gly 420	Leu	His	Gly	Leu	Thr 425	His	Leu	Lys	Leu	Thr 430	G1y	Asn
	His	Ala	Leu 435	Gln	Ser	Leu	Ile	Ser 440	Ser	Glu	Asn	Phe	Pro 445	Glu	Leu	Lys
25	Val	11e 450	Glu	Met	Pro	Tyr	Ala 455	туг	Gln	Cys	Cys	A1a 460	Phe	Gly	val	Cys
30	Glu 465	Asn	Ala	Tyr	Lys	Ile 470	Ser	Asn	Gln	Trp	Asn 475	Lys	Gly	Asp	Asn	Ser 480
·	Ser	Met	Asp	Asp	Leu 485	His	Lys	Lys	Asp	Ala 490	Gly	Met	Phe	Gln	Á1a 495	Gln
35	Asp	G1u	Arg	Asp 500	Leu	G]u	Asp	Phe	Leu 505	Leu	Asp	Phe	Glu	G]u 510	Asp	Leu
10	Lys	Ala	Leu 515	His	Ser	val	Gln	Cys 520	Ser	Pro	Ser	Pro	Gly 525	Pro	Phe	Lys
	Pro	Cys 530	Glu	Hi s	Leu	Leu	Asp 535									
15	<210 <211 <212	> 9 > F		icia	ı)	-										
50	<220 <223 <400	> P		al s	eque	nces	of	GRP4	9							
56	Gly 1	Ser	Ser	Pro	Arg 5	Ser	Gly	val	Leu							
55	<210	> 6	i											•		

```
<211> 4
                                   PRT
                                   Artificial
                             <213>
                            <220>
                            <223> Partial sequences of GRP49
                            <400> 6
                            Ser Ser Pro Arg
10
                            <210> 7
<211> 5
<212> PRT
                             <213> Artificial
15
                            <220>
                            <223> Partial sequences of GRP49
                            <400> 7
20
                            Gly Cys Pro Thr His 5
                            <210> 8
                            <211> 8
25
                            <212> PRT
<213> Artificial
                            <220>
                            <223> Partial sequences of GRP49
30
                            <400> 8
                            His Cys Glu Pro Asp Gly Arg Met
35
                            <210> 9
                            <211> 6
<212> PRT
<213> Artificial
                            <220>
40
                            <223> Partial sequences of GRP49
                            <400> 9
                            Glu Pro Asp Gly Arg Met
45
                            <210> 10
<211> 4
<212> PRT
<213> Artificial
50
                            <220>
                            <223> Partial sequences of GRP49
                            <400> 10
                            Glu Pro Asp Gly
55
```

```
<210> 11
              <211>
                     16 .
              <212> PRT
              <213> Artificial
٠ 5
              <220>
              <223> Partial sequences of GRP49
              <400> 11
             Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu Ser
10
             <210> 12
<211> 9
<212> PRT
<213> Artificial
15
              <220>
              <223> Partial sequences of GRP49
              <400> 12
20
             Asp Leu Gly Leu Ser Glu Leu Pro Ser
1 5
             <210> 13
<211> 7
<212> PRT
<213> Artificial
25
              <220>
<223> Partial sequences of GRP49
30
              <400> 13
             Asp Leu Gly Leu Ser Glu Leu
35
             <210> 14
<211> 10
<212> PRT
             <213> Artificial
          ₩ <220>
             <223> Partial sequences of GRP49
             <400> 14
             Gln Asn Asn Gln Leu Arg His Val Pro Thr
1 5 10
45
             <210> 15
<211> 5
             <212> PRT
<213> Artificial
50
             <220>
<223> Partial sequences of GRP49
             <400> 15
55
             Gln Asn Asn Gln Leu
```

	1	5
5	<210> <211> <212> <213>	4
10	<220> <223>	Partial sequences of GRP49
	<400>	16
	Asn Gl 1	n Leu Arg
	<210> <211> <212> <213>	5
20	<220> <223>	Partial sequences of GRP49
:	<400>	17
· 25	Arg Hi 1	s Val Pro Thr 5
30	<210> <211> <212> <213>	6
	<220> <223>	Partial sequences of GRP49
	<400>	18
35	Arg Le 1	u Asp Ala Asn His 5
40	<210> <211> <212> <213>	8
	<220> <223>	Partial sequences of GRP49
45	<400>	19
	ASP AS	p Asn Ala Leu Thr Glu Ile 5
50	<210> <211> <212> <213>	20 4 PRT Artificial
55	<220> <223>	Partial sequences of GRP49
	<400>	20

```
Asp Asn Ala Leu
                <210> 21 ·
                <211> 15
<212> PRT
                <213> Artificial
                <220> <223> Partial sequences of GRP49
10
                <400> 21
               His Asn Asn Arg Ile His Ser Leu Gly Lys Lys Cys Phe Asp Gly 1 10 15
15
               <210> 22
<211> 9
<212> PRT
                <213> Artificial
20
               <223> Partial sequences of GRP49
               <400> 22
               His Asn Asn Arg Ile His Ser Leu Gly
1 5
25
               <210> 23
<211> 6
<212> PRT
30
                <213> Artificial
               <220>
               <223> Partial sequences of GRP49
               <400> 23
               Leu Gly Lys Lys Cys Phe 5
               <210> 24
<211> 10
<212> PRT
               <213> Artificial
               <220>
               <223> Partial sequences of GRP49
45
               <400> 24
               Tyr Asn Asn Leu Asp Glu Phe Pro Thr Ala 10
50
               <210> 25
<211> 7
<212> PRT
               <213> Artificial
               <220>
               <223> Partial sequences of GRP49
```

```
<400> 25
                             Tyr Asn Asn Leu Asp Glu Phe
                             <210> 26
<211> 5
                             <211> 5
<212> PRT
<213> Artificial
10
                             <220>
<223> Partial sequences of GRP49
                             <400> 26
                             Asn Leu Asp Glu Phe
15
                             <210> 27
<211> 10
<212> PRT
20
                             <213> Artificial
                             <220>
                             <223> Partial sequences of GRP49
                             <400> 27
25
                             Thr Leu Ser Asn Leu Lys Glu Leu Gly Phe
                             <210> 28
<211> 4
<212> PRT
30
                             <213> Artificial
                             <220>
                             <223> Partial sequences of GRP49
35
                             <400> 28
                             Ser Asn Leu Lys
40
                             <210> 29
                             <211> 9
<212> PRT
<213> Artificial
45
                             <220>
                             <223> Partial sequences of GRP49
                             <400> 29
                             Ser Asn Asn Ile Arg Ser Ile Pro Glu \mathbf{1}
50
                             <210> 30
<211> 7
<212> PRT
55
                             <213> Artificial
```

```
<220>
                             <223> Partial sequences of GRP49
                             <400> 30
                            Ser Asn Asn Ile Arg Ser Ile
                            <210> 31
<211> 4
<212> PRT
<213> Artificial
10
                            <220>
<223> Partial sequences of GRP49
15
                             <400> 31
                            Asn Asn Ile Arg
20
                            <210> 32
<211> 5
<212> PRT
                            <213> Artificial
                            <220>
25
                            <223> Partial sequences of GRP49
                            <400> 32
                            Asn Ile Arg Ser Ile
30
                            <210> 33
<211> 5
<212> PRT
                            <213> Artificial
35
                            <220>
                            <223> Partial sequences of GRP49
                            <400> 33
                            Tyr Asp Asn Pro Ile
40
                            <210> 34
<211> 4
                            <212> PRT
45
                            <213> Artificial
                            <220>
                            <223> Partial sequences of GRP49
                            <400> 34
50
                            Pro Glu Arg Leu
1
                           <210> 35
<211> 5
<212> PRT
```

	<213> Artificial
5 ·	<220> <223> Partial sequences of GRP49
	<400> 35
	Gly Ala Ser Gln Ile 1 5
10	<210> 36
	<211> 6 <212> PRT
	<213> Artificial
15	<220> <223> Partial sequences of GRP49
	<400> 36
20	Phe Pro Asp Leu Thr Gly 1 5
;	<210> 37
•	<211> 4 <212> PRT
25	<213> Artificial
	<220> <223> Partial sequences of GRP49
	<400> 37
	Phe Pro Asp Leu 1
	<210> 38
35	<211> 4 <212> PRT
	<213> Artificial
	<220> <223> Partial sequences of GRP49
, ·	<400> 38
	Asp Leu Thr Gly
15	<210> 39 <211> 5
	<212> PRT
	<213> Artificial
· 60	<220> <223> Partial sequences of GRP49
~	<400> 39
	Glu Asp Leu Pro Ser
55	
	<210s 40

```
<211> 9
                              <212> PRT-
<213> Artificial
                              <220>
                              <223> Partial sequences of GRP49
                              <400> 40
                              Lys Leu Gln Lys Ile Asp Leu Arg His
10
                              <210> 41
<211> 7
<212> PRT
<213> Artificial
15
                              <220>
                              <223> Partial sequences of GRP49
                              <400> 41
20
                              Tyr Glu Ile Lys Val Asp Thr
                              <210> 42
<211> 4
<212> PRT
<213> Artificial
25
                              <220>
<223> Partial sequences of GRP49
30
                              <400> 42 .
                              Asp Leu Ser Ser
1
                             <210> 43
<211> 7
<212> PRT
<213> Artificial
35
                              <220>
                              <223> Partial sequences of GRP49
40
                              <400> 43
                             Ser Ser Glu Asn Phe Pro Glu 5
45
                              <210> 44
                             <211> 4
<212> PRT
                              <213> Artificial
50
                             <220>
                             <223> Partial sequences of GRP49
                             <400> 44
                             Glu Asn Phe Pro
55
```

```
<210> 45
<211> 5
<212> PRT
<213> Artificial
                               <220>
<223> Partial sequences of GRP49
                               <400> 45
10
                               Asn Ala Tyr Lys Ile
                               <210> 46
<211> 9
<212> PRT
<213> Artificial
15
                               <220>
<223> Partial sequences of GRP49
20
                               <400> 46
                               Trp Asn Lys Gly Asp Asn Ser Ser Met
25
                               <210> 47
<211> 5
<212> PRT
<213> Artificial
                               <220>
30
                               <223> Partial sequences of GRP49
                               <400> 47
                               Trp Asn Lys Gly Asp 5
35
                               <210> 48
<211> 7
<212> PRT
<213> Artificial
40
                              <220>
<223> Partial sequences of GRP49
                               <400> 48
                              Asp Leu His Lys Lys Asp Ala
45
                               <210> 49
                              <211> 8
<212> PRT
<213> Artificial
50
                               <220>
                               <223> Partial sequences of GRP49
                               <400> 49
55
                              Gln Asp Glu Arq Asp Leu Glu Asp
```

```
1
                                50
7
                         <210>
                         <211>
                         <212> PRT
                         <213> Artificial
                         <220>
                         <223> Partial sequences of GRP49
10
                         <400> 50
                        Phe Glu Glu Asp Leu Lys Ala
15
                                51
12
                         <210>
                         <211>
                        <212> PRT
<213> Artificial
                         <220>
20
                         <223> Partial sequences of GRP49
                         <400> 51
                        Pro Ser Pro Gly Pro Phe Lys Pro Cys Glu His Leu
1 5 10
25
                        <210>
                                52
                        <211>
<212>
                                PRT
                        <213> Artificial
30
                         <220>
                        <223> Partial sequences of GRP49
                         <400> 52
                        Phe Lys Pro Cys Glu His Leu
35
                        <210> 53
<211> 4
<212> PRT
<213> Artificial
40
                        <220>
                        <223> Partial sequences of GRP49
                        <400> 53
45
                        Gly Pro Phe Lys
                        <210> 54
<211> 10
<212> PRT
<213> Art
50
                                Artificial
                        <220>
<223> Partial sequences of GRP49
55
                        <400> 54
```

```
<210> 55
<211> 20
<212> PRT
              <213> Artificial
              <220>
10
              <223> Partial sequences of GRP49
              <400> 55
              Thr Phe Gly Ser Phe Ala Arg His Gly Ala Trp Trp Glu Asn Gly Val
1 5 10 15
15
              Gly Cys His Val
20
              <210> 56
<211> 4
              <212> PRT
              <213> Artificial
25
              <223> Partial sequences of GRP49
              <400> 56
              Glu Asn Gly Val
30
              <210> 57
<211> 4
              <212> PRT
              <213> Artificial
              <220>
              <223> Partial sequences of GRP49
              <400> 57
              Ser Glu Ser Ser
1
             <210> 58
<211> 7
<212> PRT
45
              <213> Artificial
              <220>
              <223> Partial sequences of GRP49
              <400> 58
             Ala Leu Glu Arg Gly Phe Ser
             <210> 59
<211> 17
<212> PRT
```

```
<213> Artificial
                 <220>
<223> Partial sequences of GRP49
                 <400> 59
                Phe Ser Val Lys Tyr Ser Ala Lys Phe Glu Thr Lys Ala Pro Phe Ser 10 	ext{ 15}
10
                Ser
                 <210> 60
15
                 <211> 9
                 <212> PRT
                 <213> Artificial
                 <220>
                <223> Partial sequences of GRP49
                <400> 60
                Ala Lys Phe Glu Thr Lys Ala Pro Phe 1 \hspace{1cm} \mathsf{S}
25
                <210> 61
<211> 9
<212> PRT
<213> Artificial
                <220>
30
                <223> Partial sequences of GRP49
                <400> 61
                Gly Gly Ser Lys Tyr Gly Ala Ser Pro 1
35
                <210> 62
<211> 4
<212> PRT
<213> Artificial
40
                <220>
                <223> Partial sequences of GRP49
                <400> 62
                Ser Lys Tyr Gly
45
                <210> 63
<211> 4
<212> PRT
<213> Artificial
50
                <220>
                <223> Partial sequences of GRP49
                <400> 63
               Lys Tyr Gly Ala
```

```
1
                  <210> 64 · 
<211> 18 
<212> PRT 
<213> Artificial
                 <220>
<223> Partial sequences of GRP49
10
                  <400> 64
                 Tyr Gly Ala Ser Pro Leu Cys Leu Pro Leu Pro Phe Gly Glu Pro Ser 10 15
15
                 Thr Met
                 <210> 65
<211> 5
<212> PRT
<213> Artificial
                 <220>
                  <223> Partial sequences of GRP49
25
                  <400> 65
                 Tyr Gly Ala Ser Pro
30
                 <210> 66
<211> 6
<212> PRT
<213> Artificial
35
                 <223> Partial sequences of GRP49
                 <400> 66
                 Phe Gly Glu Pro Ser Thr
40
                 <210> 67
<211> 4
<212> PRT
<213> Artificial
45
                 <223> Partial sequences of GRP49
                 <400> 67
50
                 Glu Pro Ser Thr
                 <210> 68
                <211> 19
<212> PRT
<213> Artificial
```

```
Partial sequences of GRP49
          Cys Asn Leu Asp Lys Gly Asp Leu Glu Asn Ile Trp Asp Leu Ser Met 1 10 15
          Val Lys His
10
          <210> 69
                 PRT
           <212>
15
          <213>
                 Artificial
          <220>
          <223>
                  Partial sequences of GRP49
           <400> 69
          Leu Asp Lys Gly Asp Leu Glu Asn 5
          <210>
                 70
           <211>
25
           <212>
                 PRT
                 Artificial
          <220>
                Partial sequences of GRP49
          <400> 70
          Asp Lys Gly Asp Leu
          <210>
                 71
82
          <211>
<212>
                PRT
                 Artificial
          <223>
                 Partial sequences of GRP49
         · <400>
          His Phe Lys Glu Asp Leu Val Ser Leu Arg Lys Gln Thr Tyr Val Trp 1 5 10 15
45
          Thr Arg Ser Lys His Pro Ser Leu Met Ser Ile Asn Ser Asp Asp Val
20 30
          Glu Lys Gln Ser Cys Asp Ser Thr Gln Ala Leu Val Thr Phe Thr Ser 40 45
50
          Ser Ser Ile Thr Tyr Asp Leu Pro Pro Ser Ser Val Pro Ser Pro Ala 50 55
          Tyr Pro Val Thr Glu Ser Cys His Leu Ser Ser Val Ala Phe Val Pro
```

	65 ·		70		75		80
5	Cys Le	u					
10	<210> <211> <212> <213>	72 12 PRT Artificial					
	<220> <223>	Partial seque	ences of	f GRP49			
15	<400>	72					
	His Ph 1	e Lys Glu Asp S	Leu Va	l Ser Leu Arg 10	Lys Gln		
20		73 4 PRT Artificial					
25	<220> <223>	Partial seque	ences of	f GRP49			
	<400>	73					
	Arg Ly 1	s Gln Thr					
30	<210> <211> <212> <213>	74 7 PRT Artificial					
35	<220> <223>	Partial seque	ences of	f GRP49			
	<400>	74					
40	Thr Ar	g Ser Lys His 5	Pro Ser	• ·		•	
	<210>	75					
	<211> <212> <213>	4 PRT Artificial				•.	
45	<220>	Partial seque	ences of	GRP49			
	<400>	75					
50	Arg Se 1	r Lys His					
55	<210> <211> <212> <213>	76 12 PRT Artificial					

```
<220>
                        <223> Partial sequences of GRP49
                        <400> 76
                        Asn Ser Asp Asp Val Glu Lys Gln Ser Cys Asp Ser
1 5 10
                        <210> 77
<211> 4
<212> PRT
<213> Artificial
10
                        <220>
                        <223> Partial sequences of GRP49
15
                        <400> 77
                        Asn Ser Asp Asp
20
                        <210> 78
                        <211> 5
<212> PRT
<213> Artificial
                        <220>
25
                        <223> Partial sequences of GRP49
                        <400> 78
                        Gln Ser Cys Asp Ser
30
                        <210> 79
<211> 9
<212> PRT
<213> Artificial
35
                        <220>
<223> Partial sequences of GRP49
                        <400> 79
                        Leu Pro Pro Ser Ser Val Pro Ser Pro
1 5
40
                        <210> 80
                       <211> 4
<212> PRT
<213> Artificial
45
                        <220>
                        <223> Partial sequences of GRP49
                        <400> 80
                       Pro Pro Ser Ser
                       <210> 81.
<211> 1750
                       <212> DNA
```

	<213>	ALLI	riciai	•				
5	<220> <223>	Part	ial sequenc	tes of GRP49)		•	
	<400> atggaca	81 acct	cccggctcgg	tgtgctcctg	tccttgcctg	tgctgctgca	gctggcgacc	60
	gggggc	agct	ctcccaggtc	tggtgtgttg	ctgaggggct	gccccacaca	ctgtcattgc	120
10	gagccc	gacg	gcaggatgtt	gctcagggtg	gactgctccg	acctggggct	ctcggagctg	180
	ccttcc	aacc	tcagcgtctt	cacctcctac	ctagacctca	gtatgaacaa	catcagtcag	240
	ctgctc	ccga	atcccctgcc	cagtctccgc	ttcctggagg	agttacgtct	tgcgggaaac	300
15	gctctg	acat	acattcccaa	gggagcattc	actggccttt	acagtcttaa	agttcttatg	360
	ctgcag	aata	atcagctaag	acacgtaccc	acagaagctc	tgcagaattt	gcgaagcctt	420
	caatcc	ctgc	gtctggatgc	taaccacatc	agctatgtgc	ccccaagctg	tttcagtggc	480
20	ctgcat	tccc	tgaggcacct	gtggctggat	gacaatgcgt	taacagaaat	ccccgtccag	540
	gctttt	agaa	gtttatcggc	attgcaagcc	atgaccttgg	ccctgaacaa	aatacaccac	600
	atacca	gact	atgcctttgg	aaacctctcc	agcttggtag	ttctacatct	ccataacaat	660
25	agaatc	cact	ccctgggaaa	gaaatgcttt	gatgggctcc	acagcctaga	gactttagat	720
	ttaaat	taca	ataaccttga	tgaattcccc	actgcaatta	ggacactctc	caaccttaaa	780
	gaacta	ggat	ttcatagcaa	caatatcagg	tcgatacctg	agaaagcatt	tgtaggcaac	840
30	ccttct	ctta	ttacaataca	tttctatgac	aatcccatcc	aatttgttgg	gagatctgct	900
	tttcaa	catt	tacctgaact	aagaacactg	actctgaatg	gtgcctcaca	aataactgaa	960
	tttcct	gatt	taactggaac	tgcaaacctg	gagagtctga	ctttaactgg	agcacagatc	1020
35	tcatct	cttc	ctcaaaccgt	ctgcaatcag	ttacctaatc	tccaagtgct	agatctgtct	1080
	tacaac	ctat	tagaagattt	acccagtttt	tcagtctgcc	aaaagcttca	gaaaattgac	1140
	ctaaga	cata	atgaaatcta	cgaaattaaa	gttgacactt	tccagcagtt	gcttagcctc	1200
40	cgatcg	ctga	atttggcttg	gaacaaaatt	gctattattc	accccaatgc	attttccact	126
40 :	ttgcca	tccc	taataaagct	ggacctatcg	tccaacctcc	tgtcgtcttt	tcctataact	1320
	gggtta	catg	gtttaactca	cttaaaatta	acaggaaatc	atgccttaca	gagcttgata	1380
	tcatct	gaaa	actttccaga	actcaaggtt	atagaaatgc	cttatgctta	ccagtgctgt	1440
45				tgcctataag				1500
	agcagt	atgg	acgaccttca	taagaaagat	gctggaatgt	ttcaggctca	agatgaacgt	1560
	gacctt	gaag	atttcctgct	tgactttgag	gaagacctga	aagcccttca	ttcagtgcag	1620
50	tgttca	cctt	ccccaggccc	cttcaaaccc	tgtgaacacc	tgcttgatgg	ctggctgatc	1680
				agcagttctg				1740
55	acagtt							1750
	<210>	82						

29

	<21: <21: <21:	2> · I	907 PRT Artii	ficia	al											
5	<220 <22		Part	ial:	seque	ence	s of	GRP	49			•				•
	<400	0> {	B2													•
10	меt 1	Asp	Thr	Ser	Arg S	Leu	Gly	val	Leu	Leu 10	Ser	Leu	Pro	val	Leu 15	ren
	Gln	Leu	Ala	Thr 20	Gly	Gly	Ser	Ser	Pro 25	Arg	Ser	Gly	val	Leu 30	Leu	Arg
15	Gly	Cys	Pro 35	Thr	His	Cys	His	Cys 40	Glu	Pro	Asp	Gly	Arg 45	Met	Leu	Leu
20	Arg	va1 50	Asp	Cys	Ser	Asp	Leu 55	Gly	Leu	Ser	Glu	Leu 60	Pro	Ser	Asn	Leu
	Ser 65	val	Phe	Thr	Ser	Туг 70	Leu	Asp	Leu	Ser	Met 75	Asn	Asn	Ile	Ser	G]n 80
25	Leu	Leu	Pro	Asn	Pro 85	Leu	Pro	Ser	Leu	Arg 90	Phe	Leu	Glu	Glu	Leu 95	Arg
30	Leu	Ala	Gly	Asn 100	Ala	Leu	Thr	Tyr	11e 105	Pro	Lys	GТу	Ala	Phe 110	Thr	Gly
	Leu	Туг	Ser 115	Leu	Lys	val	Leu	Met 120	Leu	Gln	Asn	Asn	G]n 125	Leu	Arg	His
35	۷a٦	Pro 130	Thr	Glu	Alä	Leu	G]n 135	Asn	Leu	Arg	Ser	Leu 140	G1n	Ser	Leu	Arg
40	Leu 145	Asp	Ala	Asn	His	17e 150	Ser	Туг	va1	Pro	Pro 155	Ser	Cys	Phe	Ser	Gly 160
	Leu	His	Ser	Leu	Arg 165	His	Leu	Trp	Leu	Asp 170	Asp	Asn	Ala	Leu	Thr 175	Glu
45	Ile	Pro	۷al	G]n 180	Ala	Phe	Arg	Ser	Leu 185	Ser	Аlа	Leu	Gln	Ala 190	Met	Thr
50	Leu	Ala	Leu 195	Asn	Lys.	Ile	ніѕ	нis 200	Ile	Pro	Asp	Tyr	Ala 205	Phe	Gly	Asn
	Leu	Ser 210	Ser	Leu	Va1	Va1	Leu 215	His	Leu	Hïs	Asn	Asn 220	Arg	Ile	His	Ser
55	Leu 225	Gly	Lys	Lys	Cys	Phe 230	Asp	Gly	Leu	нis	Ser 235	Leu	G٦u	Thr	Leu	Asp 240

	Lev	Asn	Tyr	Asn	Asn 245	Leu	ASP	Glu	Phe	250	Thr	Ala	Ile	Arg	Thr 255	Leu
5 ·	Ser	Asn	Leu	Lys 260	G1u	Leu	Gly	Phe	ніs 265	Ser	Asn	Asn	Ile	Arg 270	Ser	Ile
10	Pro	Glu	Lys 275	Ala	Phe	val	Gly	Asn 280	Pro	Ser	Leu	Ile	Thr 285	Ile	His	Phe
	Tyr	Asp 290	Asn	Pro	Ile	Gln	Phe 295	val	GΊy	Arg	Ser	Ala 300	Phe	Gln	His	Leu
15	Pro 305	Glu	Leu	Arg	Thr	Leu 310	Thr	Leu	Asn	Gly	Ala 315	Ser	G1n	Ile	Thr	Glu 320
20	Phe	Prọ	Asp	Leu	Thr 325	Gly	Thr	Аlа	Asn	Leu 330	G1u	Ser	Leu	Thr	Leu 335	Thr
	Gly	Ala	G1n	Ile 340	Ser	Ser	Leu	Pro	G]n 345	Thr	val	Cys	Asn	G]n 350	Leu	Pro
25 .	Asn	Leu	G1n 355	val	Leu	Asp	Leu	ser 360	Туг	Asn	Leu	Leu	G]u 365	Asp	Leu	Pro
30	Ser	Phe 370	Ser	val	Cys	Gln	Lys 375	Leu	G1n	Lys	Ile	Asp 380	Leu	Arg	His	Asn
	G]u 385	Ile	Туг	Glu	Ile	Lys 390	val	Asp	Thr	Phe	G]n 395	GÌn	Leu	Leu	Ser	Leu 400
35	Arg	Ser	Leu	Asn	Leu 405	Ala	Тгр	ASN	Lys	11e 410	Ala	Ile	Ile	His	Pro 415	Asn
40	Ala	Phe	Ser	Thr 420	Leu	Pro	Ser	Leu	11e 425	Lys	Leu	Asp	Leu	Ser 430	Ser	Asn
	Leu	Leu	Ser 435	Ser	Phe	Pro	Ile	Thr 440	Gly	Leu	His	Gly	Leu 445	Thr	His	Leu
45	Lys	Leu 450	Thr	Gly	Asn	His	Ala 455	Leu	Gln	Ser	Leu	11e 460	Ser	Ser	Glu	Asn
50	Phe 465	Pro	Glu	Leu	Lys	val 470	Ile	Glu	Met	Pro	Tyr 475	Ala	Tyr	Gln	Cys	Cys 480
·	Ala	Phe	Gly	va1	Cys 485	Glu	Asn	Ala	Туг	Lys 490	Ile	Ser	Asn	Gln	Trp 495	Asn
55	Lys	Gly	Asp	Asn 500	Ser	Ser	Met	Asp	Asp 505	Leu	หาร	Lys	Lys	Asp 510	Ala	Gly

	Met	Phe	61n 515	Ala	G I n	ASP	Glu	520	Asp	Leu	Glu	ASP	9he 525	Leu	Leu	ASP
5	Phe	Glu 530	Glu	Asp	Leu	Lys	A7a 535	Leu	His	Ser	val	G1n 540	Cys	Ser	Pro	Ser
10	Pro 545	Gly	Pro	Phe	Lys	Pro 550	Cys	Glu	His	Leu	Leu 555	ASP	Gly	Trp	Leu	11e 560
	Arg	Ile	Gly	Val	Trp 565	Thr	Ile	Ala	val	Leu 570	Ala	Leu	Thr	Cys	Asn 575	Ala
15	Leu	۷a٦	Thr	Ser 580	Thr	val	Phe	Arg	Ser 585	Pro	Leu	Туг	Ile	Ser 590	Pro	Ile
20	Lys	Leu	Leu 595	Ile	Gly	val	Ile	Ala 600	Ala	Val	Asn	Met	Leu 605	Thr	Gly	val
•	Ser	Ser 610	ΑΊа	va1	Leu	Ala	Gly 615	val	Asp	Ala	Phe	Thr 620	Phe	Glу	Ser	Phe
25	Ala 625	Arg	His	GТу	Ala	Trp 630	Trp	Glu	Asn	Gly	va1 635	Gly	Cys	His	val	Ile 640
30	Gly	Phe	Leu	Ser	11e 645	Phe	Ala	Ser	Glu	Ser 650	Ser	val	Phe	Leu	Leu 655	Thr
	Leu	Ala	Ala	Leu 660	Glu	Arg	G1y	Phe	Ser 665	val	Lys	туг	Ser	Ala 670	Lys	Phe
35	Glu	Thr	Lys 675	Ala	Pro	Phe	Ser	ser 680	Leu	Lys	val	Ile	11e 685	Leu	Leu	Cys
40	Ala	Leu 690	Leu	Аlа	Leu	Thr	меt 695	Ala	Ala	val	Pro	Leu 700	Leu	Gly	Gly	Ser
	Lys 705	Tyr	Gly	Ala	Ser	Pro 710	Leu	Cys	Leu	Pro	Leu 715	Pro	Phe	Gly	Glu	Pro 720
45	Ser	Thr	Met	Gly	Tyr 725	Met	Val	Ala	Leu	11e 730	Leu	Leu	Asn	Ser	Leu 735	Cys
50	Phe	Leu	Met	Met 740	Thr	Ile	Ala	Tyr	Thr 745	Lys	Leu	Tyr	Cys	Asn 750	Leu	Asp
	Lys	Gly	Asp 755	Leu	Glu	Asn	Ile	Trp 760	Asp	Cys	Ser	Met	Va1 765	Lys	His	Ile
55	Ala	Leu 770	Leu	Leu	Phe	Thr	Asn 775	Cys	Ile	Leu	Asn	Cys 780	Pro	Val	Ala	Phe

	Leu Ser Phe Ser Ser Leu Ile Asn Leu Thr Phe Ile Ser Pro Glu Val 785 790 795 800	
5	Ile Lys Phe Ile Leu Leu Val Val Pro Leu Pro Ala Cys Leu Asn 805 810 815	•
10	Pro Leu Leu Tyr Ile Leu Phe Asn Pro His Phe Lys Glu Asp Leu Val 820 825 830	
	Ser Leu Arg Lys Gln Thr Tyr Val Trp Thr Arg Ser Lys His Pro Ser 835 840 845	
15	Leu Met Ser Ile Asn Ser Asp Asp Val Glu Lys Gln Ser Cys Asp Ser 850 855 860	
20	Thr Gln Ala Leu Val Thr Phe Thr Ser Ser Ser Ile Thr Tyr Asp Leu 865 870 875 880	
	Pro Pro Ser Ser Val Pro Ser Pro Ala Tyr Pro Val Thr Glu Ser Cys 885 890 895	
25	His Leu Ser Ser Val Ala Phe Val Pro Cys Leu 900 905	
30	<210> 83 <211> 1750 <212> DNA <213> Artificial	
35	<220> <223> Partial sequences of GRP49 <400> 83	
	atggacacct cccggctcgg tgtgctcctg tccttgcctg tgctgctgca gctggcgacc	60
	gggggcagct ctcccaggtc tggtgtgttg ctgaggggct gccccacaca ctgtcattgc gagcccgacg gcaggatgtt gctcagggtg gactgctccg acctggggct ctcggagctg	120 180
40	CCttccaacc tcagcgtctt cacctcctac ctagacctca gtatgaacaa catcagtcag	240
	Ctgctcccga atcccctgcc cagtctccgc ttcctggagg agttacgtct tgcgggaaac	300
	gctctgacat acattcccaa gggagcattc actggccttt acagtcttaa agttcttatg	360
45	ctgcagaata atcagctaag acacgtaccc acagaagctc tgcagaattt gcgaagcctt	420
	caatccctgc gtctggatgc taaccacatc agctatgtgc ccccaagctg tttcagtggc	480
50	ctgcattccc tgaggcacct gtggctggat gacaatgcgt taacagaaat ccccgtccag	540
	gcttttagaa gtttatcggc attgcaagcc atgaccttgg ccctgaacaa aatacaccac	600
	ataccagact atgcctttgg aaacctctcc agcttggtag ttctacatct ccataacaat	660
55	agaatccact ccctgggaaa gaaatgcttt gatgggctcc acagcctaga gactttagat ttaaattaca ataaccttga tgaattcccc actgcaatta ggacactctc caaccttaaa	720 780
		. 50

	gaactaggat ttcatagcaa caatatcagg tcgatacctg agaaagcatt tgtaggcaac	840
	ccttctctta ttacaataca tttctatgac aatcccatcc aatttgttgg gagatctgct	900
·5	tttcaacatt tacctgaact aagaacactg actctgaatg gtgcctcaca aataactgaa	960
	tttcctgatt taactggaac tgcaaacctg gagagtctga ctttaactgg agcacagatc	1020
	tcatctcttc ctcaaaccgt ctgcaatcag ttacctaatc tccaagtgct agatctgtct	1080
10	tacaacctat tagaagattt acccagtttt tcagtctgcc aaaagcttca gaaaattgac	1140
	ctaagacata atgaaatcta cgaaattaaa gttgacactt tccagcagtt gcttagcctc	1200
	cgatcgctga atttggcttg gaacaaaatt gctattattc accccaatgc attttccact	1260
15	ttgccatccc taataaagct ggacctatcg tccaacctcc tgtcgtcttt tcctataact	1320
	gggttacatg gtttaactca cttaaaatta acaggaaatc atgccttaca gagcttgata	1380
	tcatctgaaa actttccaga actcaaggtt atagaaatgc cttatgctta ccagtgctgt	1440
20	gcatttggag tgtgtgagaa tgcctataag atttctaatc aatggaataa aggtgacaac	1500
	agcagtatgg acgaccttca taagaaagat gctggaatgt ttcaggctca agatgaacgt	1560
	gaccttgaag atttcctgct tgactttgag gaagacctga aagcccttca ttcagtgcag	1620
25	tgttcacctt ccccaggccc cttcaaaccc tgtgaacacc tgcttgatgg ctggctgatc	1680
	agaattggag tgtggaccat agcagttctg gcacttactt gtaatgcttt ggtgacttca	1740
	acagttttca	1750
30	<210> 84 <211> 907 <212> PRT <213> Artificial	
35	<220> <223> Partial sequences of GRP49	
	<400> 84	
40	Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu 1 10 15	
	Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg 20 25 30	
45	Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu 35 40 45	
50	Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu 50 60	
	Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln 65 70 75 80	٠
55	Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg 85 90 95	

	Leu	Ala	Gly	Asn 100	Ala	Leu	Thr	Tyr	17e 105	Pro	Lys	Gly	Ala	Phe 110	Thr	Gly
5 .	Leu	туг	Ser 115	Leu	Ĺys	Val	Leu	Met 120	Leu	GÌn	Asn	Asn	G]n 125	Leu	Arġ	His
10	val	Pro 130		Glu	Ala	Leu	Gln 135	Asn	Leu	Arg	Ser	Leu 140	Gln	Ser	Leu	Arg
	Leu 145		Ala	Asn	His	11e 150	Ser	Tyr	Val	Pro	Pro 155	Ser	Cys	Phe	Ser	Gly 160
15	Leu	His	Ser	Leu	Arg 165	ніѕ	Leu	Тгр	Leu	Asp 170	Asp	Asn	Ala	Leu	Thr 175	Glu
20	Ile	Pro	Val	G]n 180	Ala	Phe	Arg	Ser	Leu 185	Ser	Ala	Leu	Gln	Ala 190	Met	Thr
	Leu	Ala	Leu 195	Asn	Lys	Ile	His	His 200	Ile	Pro	Asp	Туг	Ala 205	Phe	Gly	Asn
25	Leu	Ser 210	Ser	Leu	va1	Val	Leu 215	His	Leu	His	Asn	Asn 220	Arg	Ile	His	Ser
30	. Leu 225		Lys	Lys	Cys	Phe 230	Asp	Gly	Leu	His	Ser 235	Leu	Glu	Thr	Leu	Asp 240
	Leu	Asn	Туг	Asn	Asn 245	Leu	Asp	GÌu	Phe	Pro 250	Thr	Ala	Ile	Arg	Thr 255	Leu
35	Ser	Asn	Leu	Lys 260	Glu	Leu	Gly	Phe	His 265	Ser	Asn	Asn	Ile	Arg 270	Ser	Ile
40	Pro	Glu	Lys 275	Ala	Phe	Val	Gly	Asn 280	Pro	Ser	Leu	Ile	Thr 285	Ile	His	Phe
	Туг	Asp 290	Asn	Pro	Ile	Gln	Phe 295	val	Gly	Arg	Ser	A1a 300	Phe	Gln	His	Leu
45	Pro 305	Glu	Leu	Arg	Thr	Leu 310	Thr	Leu	Asn	Gly	Ala 315	Ser	Gln	Ile	Thr	G1u 320
50	Phe	Pro	ASP	Leu	Thr 325	Gly	Thr	Ala	Asn	Leu 330	Glu	Ser	Leu	Thr	Leu 335	Thr
	Gly	Ala	Gln	11e 340	Ser	Ser	Leu	Pro	G1n 345	Thr	val	Cys	Asn	G]n 350	Leu	Pro
55	Asn	Leu	G] n 355	val	Leu	Asp	Leu	ser 360	Tyr	Asn	Leu	Leu	Glu 365	Asp	Leu	Pro

	Ser	370		Vai	Cys	GIN	145 375		GIN	Lys	Ile	ASP 380	Leu	Arg	His	ASN
5	Glu 385		Туг	Glu	Ile	Lys 390		Asp	Thr	Phe	Gln 3 9 5	Gln	Leu	Leu	Ser	Leu 400
10	Arg	Ser	Leu	Asn	Leu 405	Ala	Trp	Asn	Lys	11e 410		Ile	Ile	His	Pro 415	Asn
	Ala	Phe	Ser	Thr 420		Pro	Ser	Leu	11e 425	Lys	Leu	Asp	Leu	Ser 430	Ser	Asn
15	Leu	Leu	Ser 435		Phe	Pro	Ile	Thr 440	Gly	Leu	His	Gly	Leu 445	Thr	His	Leu
20	Lys	Leu 450		Gly	Asn	His	Ala 455	Leu	Gln	Ser	Leu	11e 460	Ser	Ser	Glu	Asn
	Phe 465	Pro	Glu	Leu	Lys	Val 470	Ile	Glu	Met	Pro	Tyr 475	Ala	Tyr	Gln	Cys	Cys 480
25	Ala	Phe	Gly	Val	Cys 485	Glu	Asn	Ala	Tyr	Lys 490	Ile	Ser	Asn	Gln	Trp 495	Asn
30	. Lys	Gly	Asp	Asn -500	Ser	Ser	Met	Asp	Asp 505	Leu	His	Lys	Lys	Asp 510	Ala	Gly
	Met	Phe	G]n 515	Ala	Gln	Asp	Glu	Arg 520	Asp	Leu	Glu	Asp	Phe 525	Leu	Leu	Asp
35	Phe	G1u 530	Glu	Asp	Leu	Lys	Ala 535	Leu	His	Ser	Val	G1n 540	Cys	Ser	Pro	Ser
40	Pro 545	Gly	Pro	Phe	Lys	Pro 550	Cys	Glu	His	Leu	Leu 555	Asp	Gly	Trp	Leu	11e 560
	Arg	Ile	Gly	va1	Trp 565	Thr	Ile	Ala	Ala	Leu 570	Ala	Leu	Thr	Cys	Asn 575	Ala
45	Leu	Val	Thr	Ser 580	Thr	٧a٦	Phe	Arg	Ser 585	Pro	Leu	Tyr	Ile	Ser 590	Pro	Ile
50	Lys	Leu	Leu 595	Ile	Gly	Val	Ile	Ala 600	Ala	٧a٦	Asn	Met	Leu 605	Thr	Gly	val
	Ser	Ser 610	Ala	val	Leu	Ala	G]y 615	val	Asp	Ala	Phe	Thr 620	Phe	Gly	Ser	Phe
55	Ala 625	Arg	His	Gly	Ala	Trp 630	Trp	Glu	Asn	Gly	va1 635	Gly	Cys	His	٧al	Ile 640

	Gly	Phe	Leu	Ser	11e 645	Phe	Ala	Ser	Glu	Ser 650		Val	Phe	Leu	Leu 655	Thr
5'	Leu	Аlа	Ala	Leu 660	Glu	Arg	G1y	Phe	Ser 665	Ala	Lys	Туг	Ser	А̀]а 670		Phe
10	Glu	Thr	Lys 675	Ala	Pro	Phe	Ser	Ser 680		Lys	۷a۱	Ile	11e 685	Leu	Leu	Cys
	Αla	Leu 690	Leu	Ala	Leu	Thr	Met 695	Ala	Ala	Val	Pro	Leu 700	Leu	Gly	Gly	Ser
15	Lys 705	Tyr	Gly	Ala	Ser	Pro 710	Leu	Cys	Leu	Pro	Leu 715	Pro	Phe	Gly	Glu	Pro 720
20	Ser	Thr	Met	Gly	Tyr 725	Met	Val	Ala	Leu	11e 730	Leu	Leu	Asn	Ser	Leu 735	Cys
	Phe	Leu	Met	Met 740	Thr	Ile	Ala	Tyr	Thr 745	Lys	Leu	Туг	Cys	Asn 750	Leu	Asp
25	Lys	Gly	Asp 755	Leu	Glu	Asn	Ile	Trp 760	Asp	Cys	Ser	Met	va1 765	Lys	His	Ile
30	Ala	Leu 7.70	Leu	Leu	Phe	Thr	Asn 775	Cys	Ile	Leu	Asn	Cys 780	Pro	Val	Ala	Phe
•	Leu 785	Ser	Phe	Ser	Ser	Leu 790	Ile	Asn	Leu	Thr	Phe 795	Ile	Ser	Pro	Glu	Val 800
35	Ile	Lys	Phe	Ile	Leu 805	Leu	val	Val	Val	Pro 810	Leu	Pro	Ala	Cys	Leu 815	Asn
40	Pro	Leu	Leu	Tyr 820	Ile	Leu	Phe	Asn	Pro 825	His	Phe	Lys	Glu	Asp 830	Leu	val
	Seŗ	Leu	Arg 835	Lys	G]n	Thr	Tyr	Va1 840	Trp	Thr	Arg	Ser	Lys 845	His	Pro	Ser
45	Leu	Met 850	Ser	Ile	Asn	Ser	Asp 855	Asp	val	Glu	Lys	G]n 860	Ser	Cys	Asp	Ser
50	Thr 865	Gln	Ala	Leu	Val	Thr 870	Phe	Thr	Ser	Ser	Ser 875	Ile	Thr	Tyr	Asp	Leu 880
	Pro	Pro	Ser	Ser	va1 885	Pro	Ser	Pro	Ala	Tyr 890	Pro	Val	Thr	Glu	Ser 895	Cys
55	His	Leu		Ser 900	val	Ala	Phe	Val	Pro 905	Cys	Leu					

SEQUENCE LISTING

```
<110> Hinzmann, Bernd
             Stein, Anke
             Staub, Eike
             Heiden, Esmeralda
             Klaman, Irina
             Dahl, Edgar
10
          <120> Verwendung von an GRP49 bindenden Substanzen zur Diagnose und
             behandlung von Krebs
          <130> MET/DE/0329
          <140> 04090322.1
15
          <141> 2004-08-20
          <150> DE 103 39 820.1
          <151> 2003-08-22
20
          <160> 84
          <170> PatentIn version 3.3
          <210> 1
25
          <211> 15
          <212> PRT
          <213> Artificial
          <220>
          <223> Partial sequences of GRP49
30
          <400> 1
          Cys Glu Asn Ala Tyr Lys lle Ser Asn Gln Trp Asn Lys Gly Asp
                               10
                                            15
35
          <210> 2
          <211> 11
          <212> PRT
          <213> Artificial
40
          <223> Partial sequences of GRP49
          <400> 2
45
          lle Asn Ser Asp Asp Val Glu Lys Gln Ser Cys
                   5
                               10
          <210> 3
50
          <211> 1605
<212> DNA
          <213> Artificial
          <220>
55
          <223> Partial sequences of GRP49
```

ggcagctctc ccaggtctgg tgtgttgctg aggggctgcc ccacacactg tcattgcgag 60
cccgacggca ggatgttgct cagggtggac tgctccgacc tggggctctc ggagctgcct 120
tccaacctca gegtetteac etectaceta gaceteagta tgaacaacat cagteagetg 180
ctcccgaatc ccctgcccag tctccgcttc ctggaggagt tacgtcttgc gggaaacgct 240
ctgacataca ttcccaaggg agcattcact ggcctttaca gtcttaaagt tcttatgctg 300
cagaataatc agctaagaca cgtacccaca gaagctctgc agaatttgcg aagccttcaa 36
tecetgegte tggatgetaa ecacateage tatgtgeece caagetgttt cagtggeetg 420
cattecetga ggcacetgtg getggatgae aatgegttaa cagaaateee egtecagget 480
tttagaagtt tateggeatt geaageeatg acettggeee tgaacaaaat acaceacata 540
ccagactatg cetttggaaa cetetecage ttggtagtte tacateteca taacaataga 600
atecactece tgggaaagaa atgetttgat gggeteeaca geetagagae tttagattta 660
aattacaata accttgatga attccccact gcaattagga cactctccaa ccttaaagaa 720
ctaggatttc atagcaacaa tatcaggtcg atacctgaga aagcatttgt aggcaaccct 780
tetettatta caatacattt etatgacaat eecatecaat ttgttgggag atetgetttt 840
caacatttac ctgaactaag aacactgact ctgaatggtg cctcacaaat aactgaattt 900
cctgatttaa ctggaactgc aaacctggag agtctgactt taactggagc acagatctca 960
tetetteete aaacegtetg caatcagtta cetaatetee aagtgetaga tetgtettae 1020
aacctattag aagatttacc cagtttttca gtctgccaaa agcttcagaa aattgaccta 1080
agacataatg aaatctacga aattaaagtt gacactttcc agcagttgct tagcctccga 1140
tegetgaatt tggettggaa caaaattget attatteace ceaatgeatt tteeactttg 1200
ccatccctaa taaagctgga cctatcgtcc aacctcctgt cgtcttttcc tataactggg 1260
ttacatggtt taactcactt aaaattaaca ggaaatcatg eettacagag ettgatatca 1320
tetgaaaact ttecagaact caaggttata gaaatgeett atgettacca gtgetgtgea 1380
tttggagtgt gtgagaatgc ctataagatt tctaatcaat ggaataaagg tgacaacagc 1440
agtatggacg accttcataa gaaagatgct ggaatgtttc aggctcaaga tgaacgtgac 1500
cttgaagatt teetgettga etttgaggaa gaeetgaaag eeetteatte agtgeagtgt 1560
teacetteee caggeceett caaaceetgt gaacacetge ttgat 1605

<210> 4 <211> 535 <212> PRT <213> Artificial

•	<220> <223> Partial sequences of GRP49
5 '	<400> 4
	Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg Gly Cys Pro Thr His 1 5 10 15
10	Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu Arg Val Asp Cys Ser 20 25 30
15	Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu Ser Val Phe Thr Ser 35 40 45
20	Tyr Leu Asp Leu Ser Met Asn Asn IIe Ser Gln Leu Leu Pro Asn Pro 50 55 60
20	Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg Leu Ala Gly Asn Ala 65 70 75 80
25	Leu Thr Tyr Ile Pro Lys Gly Ala Phe Thr Gly Leu Tyr Ser Leu Lys 85 90 95
30	Val Leu Met Leu Gln Asn Asn Gln Leu Arg His Val Pro Thr Glu Ala 100 105 110
	Leu Gin Asn Leu Arg Ser Leu Gin Ser Leu Arg Leu Asp Ala Asn His 115 120 125
35	lle Ser Tyr Val Pro Pro Ser Cys Phe Ser Gly Leu His Ser Leu Arg 130 135 140
40	His Leu Trp Leu Asp Asp Asn Ala Leu Thr Glu lle Pro Val Gln Ala 145 150 155 160
45	Phe Arg Ser Leu Ser Ala Leu Gln Ala Met Thr Leu Ala Leu Asn Lys 165 170 175
	lle His His Ile Pro Asp Tyr Ala Phe Gly Asn Leu Ser Ser Leu Val 180 185 190
50	Val Leu His Leu His Asn Asn Arg Ile His Ser Leu Gly Lys Lys Cys 195 200 205
55	Phe Asp Gly Leu His Ser Leu Glu Thr Leu Asp Leu Asn Tyr Asn Asn 210 215 220

	Leu Asp Gli 225	Phe Pro Thi 230	r Ala lle Arg T 235	fhr Leu Ser Asn L 240	.eu Lys Glu
5			Asn lle Arg \$ 250	Ser lle Pro Glu Ly 255	rs Ala Phe
10	Val Gly Asn 260	Pro Ser Leu 26		s Phe Tyr Asp As 70	n Pro lle
15	Gin Phe Va 275	l Gly Arg Ser 280	Ala Phe Gin 285	His Leu Pro Glu I	Leu Arg Thr
	Leu Thr Leu 290	ı Asn Gly Ala 295	Ser Gln lle T 300	hr Glu Phe Pro A	sp Leu Thr
	Gly Thr Ala 305	Asn Leu Glu 310	Ser Leu Thr 315	Leu Thr Gly Ala (320	3In lle Ser
25			Cys Asn Gln 330	Leu Pro Asn Leu 335	ı Gin Val Leu
	Asp Leu Se 340			o Leu Pro Ser Ph 50	e Ser Val Cys
30	Gln Lys Let 355	ı Gin Lys ile / 360	Asp Leu Arg I 365	His Asn Glu lle Ty	yr Glu lle
35	Lys Val Asp ·370	Thr Phe Gin 375	Gin Leu Leu 380	Ser Leu Arg Ser	· Leu Asn Leu
40	Ala Trp Asr 385	ı Lys lie Ala il 390	e IIe His Pro 395	Asn Ala Phe Ser 400	Thr Leu
			Asp Leu Ser 410	Ser Asn Leu Leu 415	Ser Ser Phe
45	Pro Ile Thr 420			is Leu Lys Leu T 30	hr Gly Asn
50	His Ala Leu 435	Gin Ser Leu 440	lle Ser Ser G 445	ilu Asn Phe Pro (3lu Leu Lys
	Val IIe Glu I 450	Met Pro Tyr A 455	Na Tyr Gln Cy 460	ys Cys Ala Phe G	ily Val Cys
55	Glu Asn Ala	a Tyr Lys lle S	Ser Asn Gln T	rp Asn Lys Gly A	sp Asn Ser

	465	470	475	480
5	Ser Met Asp 485			a Gly Met Phe Gln Ala Gln 5
10	Asp Glu Arg 6 500	Asp Leu Glu A 505	sp Phe Leu Le 510	eu Asp Phe Glu Glu Asp Lei
15	Lys Ala Leu I 515	His Ser Val Glr 520	Cys Ser Pro 525	Ser Pro Gly Pro Phe Lys
	Pro Cys Glu 530	His Leu Leu A 535	sp	
20	<210> 5 <211> 9 <212> PRT <213> Artific	cial		
25	<220> <223> Partia	al sequences o	f GRP49	
	<400> 5	Pro Arg Ser Gl	y Val I au	
30	1 5	TO AIG GET GI	y vai Leu	
35	<210> 6 <211> 4 <212> PRT <213> Artific	cial		
	<220> <223> Partia	al sequences o	of GRP49	
40	<400> 6			
	Ser Ser Pro	Arg		
45	<210> 7 <211> 5 <212> PRT <213> Artific	cial		
50	<220> <223> Partia	al sequences o	of GRP49	
	<400> 7			
55	Gly Cys Pro 1 5	inr His		

```
<210> 8
                 <211> 8
                 <212> PRT
                 <213> Artificial -
                 <220>
                 <223> Partial sequences of GRP49
                 <400> 8
10
                 His Cys Glu Pro Asp Gly Arg Met
                          5
                 <210> 9
15
                 <211> 6
                 <212> PRT
                 <213> Artificial
                 <220>
20
                 <223> Partial sequences of GRP49
                 <400> 9
                 Glu Pro Asp Gly Arg Met
25
                 <210> 10
                 <211> 4
                 <212> PRT
30
                 <213> Artificial
                 <223> Partial sequences of GRP49
                 <400> 10
35
                 Glu Pro Asp Gly
40
                 <210> 11
                 <211> 16
                 <212> PRT
                 <213> Artificial
                 <220>
45
                 <223> Partial sequences of GRP49
                 <400> 11
                 Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu Ser
50
                                      10
                 <210> 12
                 <211> 9
                 <212> PRT
                 <213> Artificial
```

```
<220>
                  <223> Partial sequences of GRP49
                  <400> 12
                  Asp Leu Gly Leu Ser Glu Leu Pro Ser 1 5
10
                  <210> 13
                  <211> 7
                  <212> PRT
                  <213> Artificial
                  <220>
15
                  <223> Partial sequences of GRP49
                  <400> 13
                  Asp Leu Gly Leu Ser Glu Leu 1 5
20
                  <210> 14
                  <211> 10
                  <212> PRT
25
                  <213> Artificial
                  <220>
                  <223> Partial sequences of GRP49
30
                  <400> 14
                  Gln Asn Asn Gln Leu Arg His Val Pro Thr
                  1
                           5
                                       10
35
                  <210> 15
                  <211> 5
                  <212> PRT
                  <213> Artificial
40
                  <220>
                  <223> Partial sequences of GRP49
                  <400> 15
                  Gin Asn Asn Gin Leu
45
                           5
                  <210> 16
                  <211> 4
50
                  <212> PRT
                  <213> Artificial
                  <220>
                  <223> Partial sequences of GRP49
                  <400> 16
```

	Asn Gln Leu Arg
5	<210> 17 <211> 5 <212> PRT <213> Artificial
10	<220> <223> Partial sequences of GRP49
	<400> 17
15	Arg His Val Pro Thr 1 5
20	<210> 18 <211> 6 <212> PRT <213> Artificial
25	<220> <223> Partial sequences of GRP49 <400> 18
	Arg Leu Asp Ala Asn His 1 5
	<210> 19 <211> 8 <212> PRT <213> Artificial
35	<220> <223> Partial sequences of GRP49
40	<400> 19 Asp Asp Asn Ala Leu Thr Glu lle 1 5
45	<210> 20 <211> 4 <212> PRT <213> Artificial
50	<220> <223> Partial sequences of GRP49 <400> 20
	Asp Asn Ala Leu 1
55	<210> 21

```
<211> 15
           <212> PRT
           <213> Artificial
5
           <220>
           <223> Partial sequences of GRP49
10
           His Asn Asn Arg lle His Ser Leu Gly Lys Lys Cys Phe Asp Gly
                                10
           <210> 22
           <211> 9
15
           <212> PRT
           <213> Artificial
           <220>
           <223> Partial sequences of GRP49
20
           <400> 22
           His Asn Asn Arg Ile His Ser Leu Gly
                5
25
           <210> 23
           <211> 6
           <212> PRT
           <213> Artificial
30
           <223> Partial sequences of GRP49
           <400> 23
35
           Leu Gly Lys Lys Cys Phe
                   5
           <210> 24
           <211> 10
40
           <212> PRT
           <213> Artificial
           <220>
           <223> Partial sequences of GRP49
45
           <400> 24
           Tyr Asn Asn Leu Asp Glu Phe Pro Thr Ala
           1 5
                                10
50
           <210> 25
<211> 7
           <212> PRT
           <213> Artificial
55
           <220>
```

```
<223> Partial sequences of GRP49
           <400> 25
           Tyr Asn Asn Leu Asp Glu Phe
           <210> 26
10
           <211> 5
           <212> PRT
           <213> Artificial
           <220>
           <223> Partial sequences of GRP49
15
           <400> 26
           Asn Leu Asp Glu Phe
20
           <210> 27
<211> 10
<212> PRT
           <213> Artificial
25
           <220>
           <223> Partial sequences of GRP49
           <400> 27
30
           Thr Leu Ser Asn Leu Lys Glu Leu Gly Phe
                    5
                                 10
           <210> 28
35
           <211> 4
           <212> PRT
           <213> Artificial
           <220>
           <223> Partial sequences of GRP49
40
           <400> 28
           Ser Asn Leu Lys
45
           <210> 29
           <211> 9
<212> PRT
           <213> Artificial
50
           <220>
           <223> Partial sequences of GRP49
           <400> 29
55
           Ser Asn Asn lie Arg Ser lie Pro Glu
```

```
1
                      5
             <210> 30
5 ·
             <211> 7
             <212> PRT
             <213> Artificial
10
             <223> Partial sequences of GRP49
             <400> 30
             Ser Asn Asn Ile Arg Ser Ile
                  5
15
             <210> 31
             <211> 4
             <212> PRT
             <213> Artificial
20
             <220>
             <223> Partial sequences of GRP49
             <400> 31
25
             Asn Asn Ile Arg
             <210> 32
30
             <211> 5
             <212> PRT
             <213> Artificial
35
             <223> Partial sequences of GRP49
             <400> 32
             Asn lie Arg Ser lie
                      5
40
             <210> 33
             <211> 5
             <212> PRT
45
             <213> Artificial
             <220>
             <223> Partial sequences of GRP49
             <400> 33
50
             Tyr Asp Asn Pro Ile
                    5
55
             <210> 34
             <211> 4
```

```
<212> PRT
                <213> Artificial
                <220>
                <223> Partial sequences of GRP49
                <400> 34
                Pro Glu Arg Leu
10
                <210> 35
                <211> 5
                <212> PRT
15
                <213> Artificial
                <220>
                <223> Partial sequences of GRP49
20
                <400> 35
                Gly Ala Ser Gln Ile
                   5
25
                <210> 36
                <211> 6
                <212> PRT
                <213> Artificial
30
                <220>
                <223> Partial sequences of GRP49
                <400> 36
                Phe Pro Asp Leu Thr Gly
35
                   5
                <210> 37
                <211> 4
                <212> PRT
40
                <213> Artificial
                <223> Partial sequences of GRP49
45
                <400> 37
                Phe Pro Asp Leu
50
                <210> 38
                <211> 4
                <212> PRT
                <213> Artificial
55
                <223> Partial sequences of GRP49
```

```
<400> 38
             Asp Leu Thr Gly
             <210> 39
             <211> 5
             <212> PRT
10
             <213> Artificial
             <220>
             <223> Partial sequences of GRP49
             <400> 39
15
             Glu Asp Leu Pro Ser
                      5
20
             <210> 40
             <211> 9
<212> PRT
             <213> Artificial
             <220>
25
             <223> Partial sequences of GRP49
             <400> 40
             Lys Leu Gln Lys Ile Asp Leu Arg His
30
                      5
             <210> 41
             <211> 7
             <212> PRT
35
             <213> Artificial
             <220>
             <223> Partial sequences of GRP49
40
             <400> 41
             Tyr Glu lie Lys Val Asp Thr
45
             <210> 42
             <211> 4
             <212> PRT
             <213> Artificial
50
             <220>
             <223> Partial sequences of GRP49
             <400> 42
55
             Asp Leu Ser Ser
```

```
<210> 43
           <211> 7
           <212> PRT
5
           <213> Artificial
           <220>
           <223> Partial sequences of GRP49
           <400> 43
10
           Ser Ser Glu Asn Phe Pro Glu
               5
15
           <210> 44
           <211> 4
            <212> PRT
            <213> Artificial
            <220>
20
            <223> Partial sequences of GRP49
            <400> 44
           Glu Asn Phe Pro
25
            <210> 45
            <211> 5
            <212> PRT
30
            <213> Artificial
            <220>
            <223> Partial sequences of GRP49
35
            <400> 45
            Asn Ala Tyr Lys lle
40
            <210> 46
            <211> 9
            <212> PRT
            <213> Artificial
45
            <223> Partial sequences of GRP49
            <400> 46
            Trp Asn Lys Gly Asp Asn Ser Ser Met
            <210> 47
55
            <211> 5
            <212> PRT
```

```
<213> Artificial
           <220>
          . <223> Partial sequences of GRP49
           <400> 47
           Trp Asn Lys Gly Asp
                    5
10
           <210> 48
           <211> 7
<212> PRT
           <213> Artificial
15
           <220>
           <223> Partial sequences of GRP49
           <400> 48
20
           Asp Leu His Lys Lys Asp Ala
           <210> 49
25
           <211> 8
           <212> PRT
           <213> Artificial
           <220>
30
           <223> Partial sequences of GRP49
           <400> 49
           Gin Asp Glu Arg Asp Leu Glu Asp
           1 5
35
           <210> 50
           <211> 7
           <212> PRT
40
           <213> Artificial
           <220>
           <223> Partial sequences of GRP49
           <400> 50
45
           Phe Glu Glu Asp Leu Lys Ala
                    5
50
           <210> 51
           <211> 12
           <212> PRT
           <213> Artificial
           <220>
55
           <223> Partial sequences of GRP49
```

```
<400> 51
            Pro Ser Pro Gly Pro Phe Lys Pro Cys Glu His Leu
            <210> 52
            <211> 7
            <212> PRT
10
            <213> Artificial
            <220>
            <223> Partial sequences of GRP49
            <400> 52
15
            Phe Lys Pro Cys Glu His Leu
            1 5
20
            <210> 53
            <211> 4
            <212> PRT
            <213> Artificial
            <220>
25
            <223> Partial sequences of GRP49
            <400> 53
            Gly Pro Phe Lys
30
            <210> 54
            <211> 10
            <212> PRT
35
            <213> Artificial
            <220>
            <223> Partial sequences of GRP49
40
            <400> 54
            Arg Ser Pro Leu Tyr lle Ser Pro lle Lys
                5
                                 10
45
            <210> 55
            <211> 20
             <212> PRT
             <213> Artificial
50
            <220>
            <223> Partial sequences of GRP49
            <400> 55
             Thr Phe Gly Ser Phe Ala Arg His Gly Ala Trp Trp Glu Asn Gly Val
55
                     Ś
                                 10
                                             15
```

```
Gly Cys His Val
                      20
5·
               <210> 56
               <211> 4
               <212> PRT
               <213> Artificial
10
               <220>
               <223> Partial sequences of GRP49
               <400> 56
15
               Glu Asn Gly Val
               <210> 57
               <211> 4
20
               <212> PRT
               <213> Artificial
               <220>
               <223> Partial sequences of GRP49
25
               <400> 57
               Ser Glu Ser Ser
30
               <210> 58
               <211> 7
                <212> PRT
               <213> Artificial
35
               <220>
               <223> Partial sequences of GRP49
               <400> 58
40
               Ala Leu Glu Arg Gly Phe Ser
                       5
45
                <210> 59
               <211> 17
                <212> PRT
                <213> Artificial
               <220>
50
               <223> Partial sequences of GRP49
               <400> 59
               Phe Ser Val Lys Tyr Ser Ala Lys Phe Glu Thr Lys Ala Pro Phe Ser
                        5
                                    10
                                                 15
```

Ser

```
<210> 60
             <211> 9
             <212> PRT
             <213> Artificial
10
             <220>
             <223> Partial sequences of GRP49
             <400> 60
             Ala Lys Phe Glu Thr Lys Ala Pro Phe
15
             <210> 61
             <211> 9
             <212> PRT
20
             <213> Artificial
             <223> Partial sequences of GRP49
25
             <400> 61
             Gly Gly Ser Lys Tyr Gly Ala Ser Pro
                      5
30
             <210> 62
             <211> 4
             <212> PRT
             <213> Artificial
35
             <220>
             <223> Partial sequences of GRP49
             <400> 62
             Ser Lys Tyr Gly
40
             1
             <210> 63
             <211> 4
<212> PRT
45
             <213> Artificial
              <223> Partial sequences of GRP49
50
             <400> 63
             Lys Tyr Gly Ala
55
             <210> 64
```

```
<211> 18
<212> PRT
               <213> Artificial
               <220>
               <223> Partial sequences of GRP49
              Tyr Gly Ala Ser Pro Leu Cys Leu Pro Leu Pro Phe Gly Glu Pro Ser 1 5 10 15
10
               Thr Met
15
               <210> 65
               <211> 5
<212> PRT
20
               <213> Artificial
               <220>
               <223> Partial sequences of GRP49
               <400> 65
25
               Tyr Gly Ala Ser Pro
               <210> 66
30
               <211> 6
               <212> PRT
               <213> Artificial
               <220>
35
               <223> Partial sequences of GRP49
               <400> 66
               Phe Gly Glu Pro Ser Thr
                       5
40
               <210> 67
               <211> 4
               <212> PRT
45
               <213> Artificial
               <220>
               <223> Partial sequences of GRP49
               <400> 67
50
               Glu Pro Ser Thr
               <210> 68
               <211> 19
```

```
<212> PRT
            <213> Artificial
            <220>
            <223> Partial sequences of GRP49
            <400> 68
            Cys Asn Leu Asp Lys Gly Asp Leu Glu Asn Ile Trp Asp Leu Ser Met
10
                                  10
                                              15
            Val Lys His
15
            <210> 69
            <211> 8
            <212> PRT
             <213> Artificial
20
            <220>
            <223> Partial sequences of GRP49
            <400> 69
25
            Leu Asp Lys Gly Asp Leu Glu Asn
            <210> 70
30
             <211> 5
             <212> PRT
             <213> Artificial
             <220>
             <223> Partial sequences of GRP49
35
             <400> 70
             Asp Lys Gly Asp Leu
40
             <210> 71
             <211> 82
             <212> PRT
             <213> Artificial
45
             <220>
             <223> Partial sequences of GRP49
             <400> 71
50
             His Phe Lys Glu Asp Leu Val Ser Leu Arg Lys Gln Thr Tyr Val Trp
                                              15
            Thr Arg Ser Lys His Pro Ser Leu Met Ser Ile Asn Ser Asp Asp Val
55
                                25
                                            30
```

•	Glu Lys Gln Ser Cys Asp Ser Thr Gln Ala Leu Val Thr Phe Thr Ser 35 40 45
5	•
	Ser Ser Ile Thr Tyr Asp Leu Pro Pro Ser Ser Val Pro Ser Pro Ala 50 55 60
10	Tyr Pro Val Thr Glu Ser Cys His Leu Ser Ser Val Ala Phe Val Pro 65 70 75 80
	Cys Leu
15	
20	<210> 72 <211> 12 <212> PRT <213> Artificial
	<220> <223> Partial sequences of GRP49
25	<400> 72
	His Phe Lys Glu Asp Leu Val Ser Leu Arg Lys Gln 1 5 10
30	<210> 73 <211> 4 <212> PRT <213> Artificial
35	<220> <223> Partial sequences of GRP49
	<400> 73
40	Arg Lys Gin Thr 1
45	<210> 74 <211> 7 <212> PRT <213> Artificial
	<220> <223> Partial sequences of GRP49
50	<400> 74
	Thr Arg Ser Lys His Pro Ser 1 5
55	<210> 75 <211> 4

```
<212> PRT
             <213> Artificial
             <220>
             <223> Partial sequences of GRP49
             <400> 75
             Arg Ser Lys His
10
             <210> 76
            <211> 12
<212> PRT
15
             <213> Artificial
             <220>
             <223> Partial sequences of GRP49
20
             <400> 76
             Asn Ser Asp Asp Val Glu Lys Gln Ser Cys Asp Ser
25
             <210> 77
             <211> 4
             <212> PRT
             <213> Artificial
30
             <220>
             <223> Partial sequences of GRP49
             <400> 77
             Asn Ser Asp Asp
35
             <210> 78
             <211> 5
             <212> PRT
40
             <213> Artificial
             <220>
             <223> Partial sequences of GRP49
45
             <400> 78
             Gln Ser Cys Asp Ser
50
             <210> 79
             <211> 9
             <212> PRT
             <213> Artificial
             <220>
55
             <223> Partial sequences of GRP49
```

<400> 79 Leu Pro Pro Ser Ser Val Pro Ser Pro 5 <210> 80 <211> 4 <212> PRT 10 <213> Artificial <223> Partial sequences of GRP49 15 <400> 80 Pro Pro Ser Ser 20 <210> 81 <211> 1750 <212> DNA <213> Artificial <220> 25 <223> Partial sequences of GRP49 <400> 81 60 atggacacct eccggetegg tgtgeteetg teettgeetg tgetgetgea getggegaee 30 gggggcagct ctcccaggtc tggtgtgttg ctgaggggct gccccacaca ctgtcattgc gagcccgacg gcaggatgtt gctcagggtg gactgctccg acctggggct ctcggagctg 180 cetteceace teagegtett cacetectae etagacetea gtatgaacaa cateagteag 35 ctgctcccga atcccctgcc cagtctccgc ttcctggagg agttacgtct tgcgggaaac getetgacat acatteceaa gggageatte aetggeettt acagtettaa agttettatg ctgcagaata atcagctaag acacgtaccc acagaagctc tgcagaattt gcgaagcctt 420 40 caatccctgc gtctggatgc taaccacatc agctatgtgc ccccaagctg tttcagtggc ctgcattccc tgaggcacct gtggctggat gacaatgcgt taacagaaat ccccgtccag 540 45 gcttttagaa gtttatcggc attgcaagcc atgaccttgg ccctgaacaa aatacaccac ataccagact atgcctttgg aaacctctcc agcttggtag ttctacatct ccataacaat 660 agaatccact ccctgggaaa gaaatgcttt gatgggctcc acagcctaga gactttagat 720 50 ttaaattaca ataaccttga tgaattcccc actgcaatta ggacactctc caaccttaaa 780 gaactaggat ttcatagcaa caatatcagg tcgatacctg agaaagcatt tgtaggcaac 840 cettetetta ttacaataca tttetatgac aateceatee aatttgttgg gagatetget 900

55

tttcaacatt tacctgaact aagaacactg actclgaatg gtgcctcaca aataactgaa 960

	tttcctgatt taactggaac tgcaaacctg gagagtctga ctttaactgg agcacagatc 1020
5	tcatctcttc ctcaaaccgt ctgcaatcag ttacctaatc tccaagtgct agatctgtct 1080
J	tacaacctat tagaagattt acccagtttt tcagtctgcc aaaagcttca gaaaattgac 1140
	ctaagacata atgaaatcta cgaaattaaa gttgacactt tccagcagtt gcttagcctc 1200
10	cgatcgctga atttggcttg gaacaaaatt gctattattc accccaatgc attttccact 1260
	ttgccatccc taataaagct ggacctateg tccaacctcc tgtcgtcttt tcctataact 1320
	gggttacatg gtttaactca cttaaaatta acaggaaatc atgccttaca gagcttgata 1380
15	tcatctgaaa actttccaga actcaaggtt atagaaatgc cttatgctta ccagtgctgt 1440
	gcatttggag tgtgtgagaa tgcctataag atttctaatc aatggaataa aggtgacaac 1500
	agcagtatgg acgaccttca taagaaagat gctggaatgt ttcaggctca agatgaacgt 1560
20	gaccttgaag atttectget tgactttgag gaagacetga aageeettea tteagtgeag 1620
	tgttcacctt ccccaggccc cttcaaaccc tgtgaacacc tgcttgatgg ctggctgatc 1680
25	agaattggag tgtggaccat agcagttctg gcacttactt gtaatgcttt ggtgacttca 1740
25	acagttttca 1750
	<210> 82
30	<211> 907 <212> PRT
	<213> Artificial
	<220> <223> Partial sequences of GRP49
35	<400> 82
	Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu 1 5 10 15
40	Cla Lau Ala Tha Cha Cha Caa Saa Baa Aan Caa Cha Val Lau Lau Lau Aan
	Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg 20 25 30
45	Chy Chip Bre The Min Chip Min Chip Bro Ann Chy Are Mat Lau Lau
	Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu 35 40 45
	Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu
50	50 55 60
	Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln
	65 70 75 80
55	

Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg

	. 85	90	. 95	
5	Leu Ala Gly A 100	sn Ala Leu Th 105	r Tyr·lle Pro L 110	ys Gly Ala Phe Thr Gly
10	Leu Tyr Ser L 115	eu Lys Val Lei 120	u Met Leu Gln 125	Asn Asn Gln Leu Arg His
	Val Pro Thr G 130	ilu Ala Leu Gln 135	Asn Leu Arg 140	Ser Leu Gin Ser Leu Arg
15	Leu Asp Ala A 145	Asn His Ile Ser 150	Tyr Val Pro F 155	ro Ser Cys Phe Ser Gly 160
20	Leu His Ser L 165			Asp Asn Ala Leu Thr Glu 5
25	lle Pro Val Gl 180	n Ala Phe Arg 185	Ser Leu Ser A 190	Na Leu Gin Ala Met Thr
	Leu Ala Leu A 195	Asn Lys Ile His 200	His lle Pro As 205	sp Tyr Ala Phe Gly Asn
30	Leu Ser Ser L 210	eu Val Val Le 215	u His Leu His 220	Asn Asn Arg lle His Ser
35	Leu Gly Lys L 225	ys Cys Phe A 230	sp Gly Leu His 235	s Ser Leu Glu Thr Leu Asp 240
	Leu Asn Tyr / 245			ro Thr Ala lle Arg Thr Leu 5
40	Ser Asn Leu 1 260	Lys Glu Leu G 265	ly Phe His Se 270	r Asn Asn lle Arg Ser lle
45	Pro Glu Lys A 275	Na Phe Val Gly 280	y Asn Pro Ser 285	Leu lle Thr lle His Phe
50	Tyr Asp Asn I 290	Pro lle Gln Phe 295	e Val Gly Arg 300	Ser Ala Phe Gin His Leu
	Pro Glu Leu A 305	Arg Thr Leu Th 310	nr Leu Asn Gly 315	Ala Ser Gin lie Thr Giu 320
55	Phe Pro Asp 325			u Glu Ser Leu Thr Leu Thr 5

5	Gly Ala Gln lle 340	Ser Ser Leu P	ro Gln Thr Val C 350	ys Asn Gin Leu Pro	
•	Asn Leu Gln V 355	al Leu Asp Leu 360	ı Ser Tyr Asn Le 365	u Leu Glu Asp Leu Pro	
10	Ser Phe Ser V 370	al Cys Gln Lys 375	Leu Gln Lys lle 380	Asp Leu Arg His Asn	
15			o Thr Phe Gin G 395 40	In Leu Leu Ser Leu 10	
·	Arg Ser Leu A	sn Leu Ala Trp 410	Asn Lys Ile Ala 415	lle lle His Pro Asn	
20	Ala Phe Ser Ti 420	nr Leu Pro Ser 425	Leu lle Lys Leu 430	Asp Leu Ser Ser Asn	
25	Leu Leu Ser S 435	er Phe Pro lle ` 440	Thr Gly Leu His 445	Gly Leu Thr His Leu	
30	Lys Leu Thr G 450	ly Asn His Ala 455	Leu Gln Ser Leu 460	lle Ser Ser Glu Asn	
			Glu Met Pro Tyr 175 48	Ala Tyr Gln Cys Cys 30	
35	Ala Phe Gly Va 485	al Cys Glu Asn 490	Ala Tyr Lys lle 9 495	Ser Asn Gin Trp Asn	
40	Lys Gly Asp A 500	sn Ser Ser Met 505	Asp Asp Leu H 510	is Lys Lys Asp Ala Gly	
1 5	Met Phe Gln A 515	la Gin Asp Glu 520	Arg Asp Leu Gl 525	u Asp Phe Leu Leu Asp)
	Phe Glu Glu A 530	sp Leu Lys Ala 535	Leu His Ser Va 540	l Gin Cys Ser Pro Ser	
50		" .	Glu His Leu Le 555 56	u Asp Gly Trp Leu lle 60	
55	Arg ile Gly Val 565	Trp Thr lie Ala 570	Val Leu Ala Lei 575	u Thr Cys Asn Ala	

	Leu Val Thr 580		Phe Arg S 15	er Pro Leu Tyr 590	lle Ser Pro lle
5 .	Lys Leu Leu 595	lle Gly Val 600		Val Asn Met Lo	eu Thr Gly Val
10	Ser Ser Ala \ 610	Val Leu Ala 615	Gly Val As 620		Phe Gly Ser Phe
15	Ala Arg His 0 625	Gly Ala Trp 630	Trp Glu As 635	in Gly Val Gly 6 640	Cys His Val Ile
	Gly Phe Leu 64		Ala Ser G 650	ilu Ser Ser Val 655	Phe Leu Leu Thr
20	Leu Ala Ala (660	Leu Glu Arg 66		Ser Val Lys Tyr 670	Ser Ala Lys Phe
25	Glu Thr Lys 675	Ala Pro Phe 680		eu Lys Val lie 385	lle Leu Leu Cys
30	Ala Leu Leu 690	Ala Leu Th 695	r Met Ala A 700		Leu Gly Gly Ser
	Lys Tyr Gly 705	Ala Ser Pro 710	Leu Cys L 715	eu Pro Leu Pro 720	o Phe Gly Glu Pro
35	Ser Thr Met		t Val Ala Lo 730	eu lle Leu Leu 735	Asn Ser Leu Cys
40	Phe Leu Me 740		e Ala Tyr T 45	hr Lys Leu Tyr 750	Cys Asn Leu Asp
1 5	Lys Gly Asp 755	Leu Glu As 760		sp Cys Ser Me 765	et Val Lys His lie
	Ala Leu Leu 770	Leu Phe Ti 775	nr Asn Cys 780		ys Pro Val Ala Phe
50	Leu Ser Phe 785	Ser Ser Le 790	eu lle Asn L 795	eu Thr Phe lle 800	Ser Pro Glu Val
55	lle Lys Phe I 80		Val Val Va 810	l Pro Leu Pro / 815	Ala Cys Leu Asn

	Pro Leu Leu Tyr lle Leu Phe Asn Pro His Phe Lys Glu Asp Leu Val 820 825 830
5	Ser Leu Arg Lys Gin Thr Tyr Val Trp Thr Arg Ser Lys His Pro Ser 835 840 845
10	Leu Met Ser Ile Asn Ser Asp Asp Val Glu Lys Gln Ser Cys Asp Ser 850 855 860
15	Thr Gin Ala Leu Vai Thr Phe Thr Ser Ser Ser Ile Thr Tyr Asp Leu 865 870 875 880
	Pro Pro Ser Ser Val Pro Ser Pro Ala Tyr Pro Val Thr Glu Ser Cys 885 890 895
20	His Leu Ser Ser Val Ala Phe Val Pro Cys Leu 900 905
25	<210> 83 <211> 1750 <212> DNA <213> Artificial
30	<220> <223> Partial sequences of GRP49
	<400> 83 atggacacct cccggctcgg tgtgctcctg tccttgcctg tgctgctgca gctggcgacc 60
35	gggggcagct ctcccaggtc tggtgtgttg ctgaggggct gccccacaca ctgtcattgc 120
33	gagecegaeg geaggatgtt geteagggtg gaetgeteeg acetgggget eteggagetg 180
	ecttecaace teagegtett cacetectae etagacetea gtatgaacaa cateagteag 240
40	ctgctcccga atcccctgcc cagtctccgc ttcctggagg agttacgtct tgcgggaaac 300
	getetgacat acatteceaa gggageatte aetggeettt acagtettaa agttettatg 360
	ctgcagaata atcagctaag acacgtaccc acagaagctc tgcagaattt gcgaagcctt 420
45	caatecetge gtetggatge taaceacate agetatgtge eeceaagetg ttteagtgge 480
	ctgcattccc tgaggcacct gtggctggat gacaatgcgt taacagaaat ccccgtccag 540
	gcttttagaa gtttatcggc attgcaagcc atgaccttgg ccctgaacaa aatacaccac 600
50	ataccagact atgcctttgg aaacctctcc agcttggtag ttctacatct ccataacaat 660
	agaatccact ccctgggaaa gaaatgcttt gatgggctcc acagcctaga gactttagat 720
	ttaaattaca ataacettga tgaatteeee aetgeaatta ggacaetete caacettaaa 780
55	gaactaggat ttcatagcaa caatatcagg tcgatacctg agaaagcatt tgtaggcaac 840

ccttctctta ttacaataca tttctatgac aatcccatcc aatttgttgg gagatctgct 900 tttcaacatt tacctgaact aagaacactg actctgaatg gtgcctcaca aataactgaa 960 tttcctgatt taactggaac tgcaaacctg gagagtctga ctttaactgg agcacagatc 1020 tcatctcttc ctcaaaccgt ctgcaatcag ttacctaatc tccaagtgct agatctgtct 1080 tacaacctat tagaagattt acccagtttt tcagtctgcc aaaagcttca gaaaattgac 1140 10 ctaagacata atgaaatcta cgaaattaaa gttgacactt tccagcagtt gcttagcctc 1200 cgatcgctga atttggcttg gaacaaaatt gctattattc accccaatgc attttccact 1260 ttgccatccc taataaagct ggacctatcg tccaacctcc tgtcgtcttt tcctataact 1320 15 gggttacatg gtttaactca cttaaaatta acaggaaatc atgccttaca gagcttgata 1380 tcatctgaaa actttccaga actcaaggtt atagaaatgc cttatgctta ccagtgctgt 1440 20 gcatttggag tgtgtgagaa tgcctataag atttctaatc aatggaataa aggtgacaac 1500 agcagtatgg acgaccttca taagaaagat gctggaatgt ttcaggctca agatgaacgt 1560 gaccttgaag atttcctgct tgactttgag gaagacctga aagcccttca ttcagtgcag 1620 25 tgitcacctt ccccaggccc cttcaaaccc tgtgaacacc tgcttgatgg ctggctgatc 1680 agaattggag tgtggaccat agcagttctg gcacttactt gtaatgcttt ggtgacttca 1740 1750 acagttttca 30 <210> 84 <211> 907 <212> PRT <213> Artificial 35 <220> <223> Partial sequences of GRP49 <400> 84 40 Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu Gin Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg 20 25 30 45 Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu 35 40 45 50 Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu 50 55 60 55 Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gin

70

75

5'	Leu Leu Pro		Su Pro S	ier Leu Arg 95	Phe Leu Glu	Glu Leu Arg
	Leu Ala Gly 100	Asn Ala l	Leu Thr Ty 105	r lle Pro Ly: 110	s Gly Ala Phe	Thr Gly
10	Leu Tyr Se 115		Val Leu M 20	et Leu Gin / 125	Asn Asn Gin L	eu Arg His.
15	Val Pro Thr 130	Glu Ala L 135		n Leu Arg S 140	Ser Leu Gin S	er Leu Arg
20	Leu Asp Ala 145	a Asn His 150	lle Ser Ty 15		o Ser Cys Pho 160	e Ser Gly
		r Leu Arg 65	His Leu Tı 170	p Leu Asp / 175	Asp Asn Ala L	eu Thr Glu
25	lle Pro Val 180		ne Arg Ser 185	Leu Ser Al 190	a Leu Gin Ala	Met Thr
30	Leu Ala Lei 195		lle His His 00	s lle Pro Asp 205	Tyr Ala Phe	Gly Asn
35	Leu Ser Se 210	r Leu Val 215		is Leu His A 220	sn Asn Arg II	e His Ser
	Leu Gly Lys 225	s Lys Cys 230	Phe Asp (23		Ser Leu Glu 1 240	Thr Leu Asp
10		r Asn Asn 45	Leu Asp 250	Glu Phe Pro 255	Thr Ala lle A	rg Thr Leu
45			Leu Gly P 265		Asn Asn Ile A	rg Ser lie
	Pro Glu Lys 275		Val Gly As 80	sn Pro Ser L 285	eu lle Thr lle	His Phe
50	Tyr Asp As 290	n Pro lle 0 295		al Gly Arg S 300	er Ala Phe Gl	n His Leu
55	Pro Glu Lei 305	Arg Thr 310	Leu Thr Le 31		Ala Ser Gln III 320	e Thr Glu

	Phe Pro Asp Leu Thr Gly Thr Ala Asn Leu Glu Ser Leu Thr Leu Thr 325 330 335
5	Gly Ala Gin lie Ser Ser Leu Pro Gin Thr Val Cys Asn Gin Leu Pro 340 345 350
10	Asn Leu Gln Val Leu Asp Leu Ser Tyr Asn Leu Leu Glu Asp Leu Pro 355 360 365
15	Ser Phe Ser Val Cys Gln Lys Leu Gln Lys Ile Asp Leu Arg His Asn 370 375 380
	Glu lle Tyr Glu lle Lys Val Asp Thr Phe Gln Gln Leu Leu Ser Leu 385 390 395 400
20	Arg Ser Leu Asn Leu Ala Trp Asn Lys lle Ala lle lle His Pro Asn 405 410 415
25	Ala Phe Ser Thr Leu Pro Ser Leu IIe Lys Leu Asp Leu Ser Ser Asn 420 425 430
30	Leu Leu Ser Ser Phe Pro lle Thr Gly Leu His Gly Leu Thr His Leu 435 440 445
	Lys Leu Thr Gly Asn His Ala Leu Gln Ser Leu Ile Ser Ser Glu Asn 450 455 460
35	Phe Pro Glu Leu Lys Val Ile Glu Met Pro Tyr Ala Tyr Gln Cys Cys 465 470 475 480
40	Ala Phe Gly Val Cys Glu Asn Ala Tyr Lys lle Ser Asn Gln Trp Asn 485 490 495
45	Lys Gly Asp Asn Ser Ser Met Asp Asp Leu His Lys Lys Asp Ala Gly 500 505 510
	Met Phe Gin Ala Gin Asp Glu Arg Asp Leu Glu Asp Phe Leu Leu Asp 515 520 525
50	Phe Glu Glu Asp Leu Lys Ala Leu His Ser Val Gln Cys Ser Pro Ser 530 535 540
55	Pro Gly Pro Phe Lys Pro Cys Glu His Leu Leu Asp Gly Trp Leu Ile 545 550 555 560

	Arg lle Gly Val Trp Thr lle Ala Ala Leu Ala Leu Thr Cys Asn Ala 565 570 575	
5	Leu Val Thr Ser Thr Val Phe Arg Ser Pro Leu Tyr lle Ser Pro lle 580 585 590	
o	Lys Leu Leu Ile Gly Val Ile Ala Ala Val Asn Met Leu Thr Gly Val 595 600 605	
5	Ser Ser Ala Val Leu Ala Gly Val Asp Ala Phe Thr Phe Gly Ser Phe 610 615 620	
	Ala Arg His Gly Ala Trp Trp Glu Asn Gly Val Gly Cys His Val Ile 625 630 635 640	
20	Gly Phe Leu Ser Ile Phe Ala Ser Glu Ser Ser Val Phe Leu Leu Thr 645 650 655	
25	Leu Ala Ala Leu Glu Arg Gly Phe Ser Ala Lys Tyr Ser Ala Lys Phe 660 665 670	
00	Glu Thr Lys Ala Pro Phe Ser Ser Leu Lys Val IIe IIe Leu Leu Cys 675 680 685	
	Ala Leu Leu Ala Leu Thr Met Ala Ala Val Pro Leu Leu Gly Gly Ser 690 695 700	
95	Lys Tyr Gly Ala Ser Pro Leu Cys Leu Pro Leu Pro Phe Gly Glu Pro 705 710 715 720	
10	Ser Thr Met Gly Tyr Met Val Ala Leu lle Leu Leu Asn Ser Leu Cys 725 730 735	
	Phe Leu Met Met Thr ile Ala Tyr Thr Lys Leu Tyr Cys Asn Leu Asp 740 745 750	
<i>15</i>	Lys Gly Asp Leu Glu Asn lie Trp Asp Cys Ser Met Val Lys His lie 755 760 765	
50	Ala Leu Leu Leu Phe Thr Asn Cys Ile Leu Asn Cys Pro Val Ala Phe 770 775 780)
55	Leu Ser Phe Ser Ser Leu IIe Asn Leu Thr Phe IIe Ser Pro Glu Val 785 790 795 800	
	lle Lys Phe lle Leu Leu Val Val Val Pro Leu Pro Ala Cys Leu Asn	

	Arg lle Gly Va 565		le Ala Ala Le 570	eu Ala Leu Thr Cy 575	s Asn Ala
5 ·	Leu Val Thr S 580		Phe Arg Se 85	r Pro Leu Tyr lle \$ 590	Ser Pro lle
10	Lys Leu Leu II 595	e Gly Val 600	lle Ala Ala V 60	/al Asn Met Leu T 05	hr Gly Val
15	Ser Ser Ala V 610	al Leu Ala 615	Gly Val Asp 620	Ala Phe Thr Phe	Gly Ser Phe
	Ala Arg His G 625	ly Ala Trp 630	Trp Glu Asn 635	Gly Val Gly Cys l 640	His Val Ile
20	Gly Phe Leu \$ 645		e Ala Ser Glu 650	Ser Ser Val Phe 655	Leu Leu Thr
25	Leu Ala Ala Lo 660		g Gly Phe Se 65	er Ala Lys Tyr Ser 670	Ala Lys Phe
	Glu Thr Lys A 675	la Pro Pho 680		u Lys Val lle lle Lo 35	eu Leu Cys
30	Ala Leu Leu A 690	la Leu Th 695	r Met Ala Ala 700	a Val Pro Leu Leu	Gly Gly Ser
35	Lys Tyr Gly Al 705	la Ser Pro 710	Leu Cys Le 715	u Pro Leu Pro Ph 720	e Gly Glu Pro
40	Ser Thr Met 0 725		t Val Ala Leu 730	u lle Leu Leu Asn 735	Ser Leu Cys
	Phe Leu Met 740		e Ala Tyr Thi 45	r Lys Leu Tyr Cys 750	Asn Leu Asp
45	Lys Gly Asp L 755	eu Glu As 760		p Cys Ser Met Va 35	l Lys His Ile
50	Ala Leu Leu L 770	eu Phe Ti 775	hr Asn Cys II 780	le Leu Asn Cys Pr	o Val Ala Phe
.	Leu Ser Phe 5 785	Ser Ser Le 790	eu lle Asn Le 795	u Thr Phe IIe Ser 800	Pro Glu Val
55	ile Lys Phe lie	Leu Leu	Val Val Val I	Pro Leu Pro Ala C	ys Leu Asn

805 810 815 Pro Leu Leu Tyr lle Leu Phe Asn Pro His Phe Lys Glu Asp Leu Val 820 825 830 Ser Leu Arg Lys Gln Thr Tyr Val Trp Thr Arg Ser Lys His Pro Ser 10 840 845 Leu Met Ser Ile Asn Ser Asp Asp Val Glu Lys Gln Ser Cys Asp Ser 855 15 Thr Gln Ala Leu Val Thr Phe Thr Ser Ser Ser lle Thr Tyr Asp Leu 870 875 20 Pro Pro Ser Ser Val Pro Ser Pro Ala Tyr Pro Val Thr Glu Ser Cys 885 890 895 His Leu Ser Ser Val Ala Phe Val Pro Cys Leu 900 905 25

Patentansprüche

30

35

40

45

- Verwendung einer für ein GPR49 Peptid oder Protein codierenden Nukleinsäure und/oder eines GPR49 Peptids oder Proteins zur Detektion von Krebs, insbesondere Colon-, Uterus- und/oder Rectumtumoren, oder zur Detektion eines Risikos der Erkrankung an einem solchen Tumor, wobei eine Gewebeprobe, insbesondere eine Colon-, Uterus- und/oder Rectum-Gewebeprobe, auf Transkription oder Übertranskription von GPR49 RNA oder auf Expression oder Überexpression eines GPR49 Proteins untersucht wird.
- Verwendung nach Anspruch 1, wobei eine an für GPR49 codierende Nukleinsäure oder eine an GPR49 Protein
 oder Peptid bindende Detektorsubstanz, vorzugsweise enthaltend eine Reportergruppe, verwendet wird, wobei
 Bindung besagter Nukleinsäure und/oder besagten Proteins oder Peptids an die Detektorsubstanz halbquantitativ
 oder quantitativ detektiert wird.
- 3. Verwendung einer GPR49 RNA oder eines GPR49 Proteins oder Peptids zum Screenen nach daran bindenden Substanzen, insbesondere nach prospektiven Wirkstoffen zur Inhibierung von besagter RNA oder besagtem Protein oder Peptid oder nach prospektiven Detektorsubstanzen, wobei eine prospektive Substanz oder eine Mischung solcher prospektiver Substanzen mit besagter RNA oder besagtem Protein oder Peptid kontaktiert wird, wobei mit einem Bindungsassay Bindungsereignisse festgestellt werden, und wobei eine bindende prospektive Substanz, ggf. nach Dekonvolutierung, selektiert wird.
- 4. Verwendung einer GPR49 inhibierenden oder daran bindenden Substanz zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krebs, insbesondere von Colon-, Uterus- und/oder Rectumtumoren, oder zur Herstellung einer pharmazeutischen Zusammensetzung zur Diagnose eines solchen Tumors oder zur Diagnose eines Progressionsrisikos eines solchen Tumors.
- Verwendung nach Anspruch 4, wobei die Substanz ein Antikörper ist, welcher beispielsweise durch Immunisierung
 eines nicht-menschlichen Säugetiers mit einem GPR49 Peptid oder Protein, mit GPR49 transfizierten Zellen, oder einer hierfür für codierenden cDNA, erhältlich ist, oder ein Phage-Display Antikörper ist.
 - 6. Verwendung nach Anspruch 4, wobei die Substanz eine Mimikriverbindung eines Antikörpers gegen ein GPR49

Peptid oder Protein ist.

5

10

15

20

25

30

35

40

45

50

55

- Verwendung nach Anspruch 4, wobei die Substanz, ein Aptamer, eine antisense RNA, eine siRNA, oder ein Ribozym ist.
- Verwendung nach einem der Ansprüche 4 bis 7, wobei die Substanz zusätzlich eine zytotoxische und/oder immunstimulierende Komponente trägt.
- Verwendung nach einem der Ansprüche 4 bis 8, wobei die pharmazeutische Zusammensetzung zur lokalen Applikation in Tumorzellen enthaltendem Gewebe hergerichtet ist.
- 10. Verfahren zur Diagnose einer Krebserkrankung, insbesondere eines Colon-, Uterus- und/oder Rectumkarzinoms, oder des Risikos der Erkrankung an einem solchen Rumor, wobei eine an GPR49 bindende Detektorsubstanz in einer Ausführungsform mit einer Reportergruppe in zu untersuchendes Gewebe appliziert wird, wobei das zu untersuchende Gewebe dann einer Detektionsverfahrenstufe unterworfen wird, welche sensitiv für die Reportergruppe ist, und wobei im Fall der Detektion eines definierten Mindestwertes der Reportergruppe im Gewebe das Gewebe als Tumorzellen enthaltend oder als erkrankungsgefährdet qualifiziert wird.
- 11. Verfahren zur Behandlung von Krebs, insbesondere eines Colon-, Uterus- und/oder Rectumkarzinoms, wobei eine pharmazeutische Zusammensetzung nach einem der Ansprüche 4 bis 9 in einer physiologisch wirksamen Dosis und galenisch für die anzuwendende Darreichungsform hergerichtet einem Patienten dargereicht wird.
- 12. Protein oder Peptid enthaltend oder bestehend aus einer Sequenz Seq.-ID 1, 2, 4 bis 80, oder 83, oder einer Teilsequenz der Mindestlänge von 4, 5, 6, 7, 8, 9, oder 10 AS aus besagten Sequenzen, nicht jedoch enthaltend oder bestehend aus Seq.-ID 82, oder Nukleinsäure codierend für ein vorstehend definiertes Protein oder Peptid.

72

Figur 3

Invasionsfront des Tumors (IT)
Zentral- (Rest-) Tumor (RT)

Normalgewebe

GPR49 Taqman (jeweils Normal und Tumorgewebe eines Patienten)

Relative Expressionshöhen (Normalisiert auf GAPDH und Median 1)

igur 4

Immunisierungspeptide zur Erzeugung von Antikörpern

AA 485-499:

CENAYKISNQWNKGD

AA 852-862:

INSDDVEKQSC

igur 5

Signalsequenz) Sequenz für die cDNA-Immunisierung mit der Ectodomäne des N- terminalen, extrazellulären Bereiches (ohne

GPR49.aa22-556.nt

AGAAAATTGACCTAAGACATAATGAAATCTACGAAATTAAAGTTGACACTTTCCAGCAGTTGCTTAGCCTCCGATCGCTGAA TTGTTGGGAGATCTGCTTTTCAACATTTACCTGAACTAAGAACACTGACTCTGAATGGTGCCTCACAAATAACTGAATTTCC **AATATCAGGTCGATACCTGAGAAAGCATTTGTAGGCAACCCTTCTCTTATTACAATACATTTCTATGACAATCCCATCCAAT** CAGTGGCCTGCATTCCCTGAGGCACCTGTGGCTGGATGACAATGCGTTAACAGAAATCCCCGTCCAGGCTTTTAGAAGTTTA GGGTGGACTGCCGACCTGGGGGCTCTCGGAGCTGCCTTCCAACCTCAGCGTCTTCACCTCACCTAGCCTCAGTATGAA GTTCACCTTCCCCAGGCCCCTTCAAACCCTGTGAACACCTGCTTGAT AACCTCCTGTCGTCTTTTCCTATAACTGGGTTACATGGTTTAACTCACTTAAAATTAACAGGAAATCATGCCTTACAGAGCT CAGTTACCTAATCTCCAAGTGCTAGATCTGTCTTACAACCTATTAGAAGATTTACCCAGTTTTTCAGTCTGCCAAAAGCTTC TGATTTAACTGGAACTGCAAACCTGGAGAGTCTGACTTTAACTGGAGCACAGATCTCATCTCTTCCTCAAACCGTCTGCAAT TTTAAATTACAATAACCTTGATGAATTCCCCACTGCAATTAGGACACTCTCCAACCTTAAAGAACTAGGATTTCATAGCAAC TCGGCATTGCAAGCCATGACCTTGGCCCTGAACAAAATACACCACATACCAGACTATGCCTTTGGAAACCTCTCCAGCTTGG CAGAAGCTCTGCAGAATTTGCGAAGCCTTCAATCCCTGCGTCTGGATGCTAACCACATCAGCTATGTGCCCCCAAGCTGTTT TACATTCCCAAGGGAGCATTCACTGGCCTTTACAGTCTTAAAGTTCTTATGCTGCAGAATAATCAGCTAAGACACGTACCCA CAACATCAGTCAGCTGCTCCCGAATCCCCTGCCCAGTCTCCGCTTCCTGGAGGAGTTACGTCTTGCGGGAAACGCTCTGACA GGCAGCTCTCCCAGGTCTGGTGTTGCTGAGGGGCTGCCCCACACACTGTCATTGCGAGCCCGACGGCAGGATGTTGCTCA ${ t TTTGGCTTGGAACAAATTGCTATTATTCACCCCAATGCATTTTCCACTTTGCCATCCCTAATAAAGCTGGACCTATCGTCC$

-igur 6

GPCR 49-N-Terminale Domäne AA 22 – 561

SFPITGLHGLTHLKLTGNHALQSLISSENFPELKVIEMPYAYQCCAFGVCENAYKISNQWNKGDNSSMD RSAFQHLPELRTLTLNGASQITEFPDLTGTANLESLTLTGAQISSLPQTVCNQLPNLQVLDLSYNLLED DLHKKDAGMFQAQDERDLEDFLLDFEEDLKALHSVQCSPSPGPFKPCEHLLD LPSFSVCQKLQKIDLRHNEIYEIKVDTFQQLLSLRSLNLAWNKIAIIHPNAFSTLPSLIKLDLSSNLLS CFDGLHSLETLDLNYNNLDEFPTAIRTLSNLKELGFHSNNIRSIPEKAFVGNPSLITIHFYDNPIQFVG GLHSLRHLWLDDNALTEIPVQAFRSLSALQAMTLALNKIHHIPDYAFGNLSSLVVLHLHNNRIHSLGKK ${ t GSSPRSGVLLRGCPTHCHCEPDGRMLLRVDCSDLGLSELPSNLSVFTSYLDLSMNNISQLLPNPLPSLR}$ ${ t FLEELRLAGNALTYIPKGAFTGLYSLKVLMLQNNQLRHVPTEALQNLRSLQSLRLDANHISYVPPSCFS}$

-igur 7

266 SNNIRSIPE 274	257 SNLK 260	TLSNI	NLDEF 249	43 YNNLDE	YNNLDEFPTA	25 LGKKCF 230	8 HNNRIHS	- 77			RLDANH 14	RHVPT 1	NQLR 1	122 QNNQL 126	QNNQLR	DLGLSEL 60	54 DIGLSELPS 62	50 VDCSDLGLSELPSNLS 65	41 EPDG	41 EPDGRM 46	39 HCEPDGRM 46		23 SSPR 26	22 GSSPRSGVL 29
	2)	549 FKPCEHL 554	543 PSPGPFKPCEHL 554	529 FEEDLKA 535	517 QDERDLED 524	505 DLHKKDA 511	495 WNKGD 499	WNKGDNSS	487 NAYKI 491	463 ENFP 466	461 SSENFPE 467	428 DLSS 431	387 YEIKVDT 393	375 KLQKIDLRH 383	EDLPS		1 FPDL 32	FPDLTG		305 PERL 308	289 YDNPI 293	268 NIRSI 272	7	266 SNNIRSI 272

-igur 8

GPCR 49-IL1:

584 RSPLYISPIK 593

⁻igur 9

GPCR 49-OL1 :

620 TFGSFARHGAWWENGVGCHV 639

632 ENGV 635

GPCR 49-TM3 / IL2:

648 SESS 651

659 ALERGES 665

GPCR 49-IL2:

665 FSVKYSAKFETKAPFSS 681

670 AKFETKAPF 678

GPCR 49-TM4/ OL2:

702 GGSKYGASP 710

704 SKYG 708

705 KYGA 708

GPCR 49-OL2: 706 YGASPLCLPLPFGEPSTM 723

706 YGASP 710

717 FGEPST 722

719 EPST 722

GPCR 49-IL3:

749 CNLDKGDLENIWDLSMVKH 767

751 LDKGDLEN 758

752 DKGDL 756

GPCR 49 C-TERMINAL TAIL:

HFKEDLVSLRKQTYVWTRSKHPSLMSINSDDVEKQSCDSTQALVTFTSSSITYDLPPSSVPSPAYP VTESCHLSSVAFVPCL 907

835 RKQT 838 HFKEDLVSLRKQ 837

QSCDS 864

860

PPSS 884 LPPSSVPSP 888

Nukleinsäuresequenz GPR49 (NM 003667.2)

Seq-ID 81: 2724 bp

 ${\tt tcccaggtctggtgttgctgaggggctgcccacacactgtcattgcgagcccgacggcaggatgttgc}$ gacctcagtatgaacaacatcagtcagctgctcccgaatcccctqcccagtctccqcttcctqqaqqagtt ${\tt acgtcttgcgggaaacgctctgacatacattcccaagggagcattcactggcctttacagtcttaaagttc}$ ${\tt ttatgctgcagaataatcagctaagacacgtacccacagaagctctgcagaatttgcgaagccttcaatcc}$ ctgcgtctggatgctaaccacatcagctatgtgcccccaagctgtttcagtggcctgcattccctgaggca $\verb|cctgtggctggatgaca| at \verb|gcgttaaca| gaaatccccgtcca| gcttttagaagtttatcggcattgca| ag | cctgtggctggatgaca| at gcgttaaca| gaaatccccgtcca| gctttaaca| gcgttaaca| gcgtta$ $\verb|ccatgaccttggccctgaacaaaatacaccacataccagactatgcctttggaaacctctccagcttggta|\\$ gactttagatttaaattacaataaccttgatgaattccccactgcaattaggacactctccaaccttaaag a actaggattt catagca accaatat caggtcgatacctgagaaagcatttg taggcaacccttctcttattacaatacatttctatgacaatcccatccaatttgttgggagatctgcttttcaacatttacctgaactaag aacactgactctgaatggtgcctcacaaataactgaatttcctgatttaactggaactgcaaacctggaga qtctgactttaactggagcacagatctcatctcttcctcaaaccgtctgcaatcagttacctaatctccaa gtgctagatctgtcttacaacctattagaagatttacccagtttttcagtctgccaaaaagcttcagaaaa ttgacctaagacataatgaaatctacgaaattaaagttgacactttccagcagttgcttagcctccgatcg ctgaatttggcttggaacaaaattgctattattcaccccaatgcattttccactttgccatccctaataaa gctggacctatcgtccaacctcctgtcgtcttttcctataactgggttacatggtttaactcacttaaaat taacaggaaatcatgccttacagagcttgatatcatctgaaaactttccaggaactcaaggttatagaaatg ccttatgcttaccagtgctgtgcatttggagtgtgtgagaatgcctataagatttctaatcaatggaataa aggtgacaacagcagtatggacgaccttcataagaaagatgctggaatgtttcaqqctcaaqatgaacqtq agttctggcacttacttgtaatgctttggtgacttcaacagttttcagatcccctctgtacatttccccca ttaaactgttaattggggtcatcgcagcagtgaacatgctcacgggagtctccagtgccgtgctggt gtggatgcgttcacttttggcagctttgcacgacatqqtqcctqqtqqqaqaatqqqqttqqttqccatqt cattggttttttgtccatttttgcttcagaatcatctgttttcctgcttactctggcaqccctqqaqcgtg ggttctctgtgaaatattctgcaaaatttgaaacgaaagctccattttctagcctgaaagtaatcattttg ctctgtgccctgctggccttgaccatggccgcagttcccctgctgggtggcagcaagtatggcgcctcccc tctctgcctgccttttgccttttggggagcccagcaccatgggctacatggtcgctctcatcttgctcaatt ccctttgcttcctcatgatgaccattgcctacaccaagctctactgcaatttggacaagggagacctggag aatatttgggactgctctatggtaaaacacattgccctgttgctcttcaccaactqcatcctaaactqccc tgtggctttcttgtccttctcctctttaataaaccttacatttatcagtcctgaagtaattaagtttatccttctggtggtagtcccacttcctgcatgtctcaatccccttctctacatcttgttcaatcctcactttaag gaggatctggtgagcctgagaaagcaaacctacqtctqqacaaqatcaaaacacccaaqcttqatqtcaat taactctgatgatgtcgaaaaacagtcctgtgactcaactcaagccttggtaacctttaccagctccagca tcacttatgacctgcctcccagttccgtgccatcaccagcttatccagtgactgagagctgccatctttcc tctgtggcatttgtcccatgtctctaa

Proteinsequenz GPR49 Seq-ID 82: GPR49_907 AS

MDTSRLGVLLSLPVLLQLATGGSSPRSGVLLRGCPTHCHCEPDGRMLLRVDCSDLGLSELPSNLS
VFTSYLDLSMNNISQLLPNPLPSLRFLEELRLAGNALTYIPKGAFTGLYSLKVLMLQNNQLRHVP
TEALQNLRSLQSLRLDANHISYVPPSCFSGLHSLRHLWLDDNALTEIPVQAFRSLSALQAMTLAL
NKIHHIPDYAFGNLSSLVVLHLHNNRIHSLGKKCFDGLHSLETLDLNYNNLDEFPTAIRTLSNLK
ELGFHSNNIRSIPEKAFVGNPSLITIHFYDNPIQFVGRSAFQHLPELRTLTLNGASQITEFPDLT
GTANLESLTLTGAQISSLPQTVCNQLPNLQVLDLSYNLLEDLPSFSVCQKLQKIDLRHNEIYEIK
VDTFQQLLSLRSLNLAWNKIAIIHPNAFSTLPSLIKLDLSSNLLSSFPITGLHGLTHLKLTGNHA
LQSLISSENFPELKVIEMPYAYQCCAFGVCENAYKISNQWNKGDNSSMDDLHKKDAGMFQAQDER
DLEDFLLDFEEDLKALHSVQCSPSPGPFKPCEHLLDGWLIRIGVWTIAVLALTCNALVTSTVFRS
PLYISPIKLLIGVIAAVNMLTGVSSAVLAGVDAFTFGSFARHGAWWENGVGCHVIGFLSIFASES
SVFLLTLAALERGFSVKYSAKFETKAPFSSLKVIILLCALLALTMAAVPLLGGSKYGASPLCLPL
PFGEPSTMGYMVALILLNSLCFLMMTIAYTKLYCNLDKGDLENIWDCSMVKHIALLLFTNCILNC
PVAFLSFSSLINLTFISPEVIKFILLVVVPLPACLNPLLYILFNPHFKEDLVSLRKQTYVWTRSK
HPSLMSINSDDVEKOSCDSTOALVTFTSSSITYDLPPSSVPSPAYPVTESCHLSSVAFVPCL

Klonierung von gpr49 in pcDNA3.1V5HisTopoTA (Invitrogen)

Seq.-ID 84 >gpr49_clone16 Peptidsequenz

MDTSRLGVLLSLPVLLQLATGGSSPRSGVLLRGCPTHCHCEPDGRMLLRVDCSDLGLSELPSNLSVFTSYLDLSMNNISQLLPNPLPSLRFLEELRL agnaltyipkgaftglyslkvlmlqnnqlrhvptealqnlrslqslrldanhisyvppscfsglhslrhlwlddnalteipvqafrslsalqamtla lnkihhi pdyafgnlsslvvlhlhnnrihslgkkcfdglhsletldlnynnldepptairtlsnlkelgfhsnnirsi pekafvgnpslitihfydn PIQFVGRSAFQHLPELRTLTLNGASQITEFPDLTGTANLESLTLTGAQISSLPQTVCNQLPNLQVLDLSYNLLEDLPSFSVCQKLQKIDLRHNEIYE ikudtfqqllslrslnlawnkiaiihpnafstlpslikldlssnllssfpitglhglthlkltgnhalqslissenfpelkviempyayqccafgvc enaykisnownkgdnssmddlhkkdagmfqaqderdledflldfeedlkalhsvqcspspgpfkpcehlldgwlirigvwtiaalaltcnalvtstv FRSPLYISPIKLLIGVIAAVNMLTGVSSAVLAGVDAFTFGSFARHGAWWENGVGCHVIGFLSIFASESSVFLLTLAALERGFSAKYSAKFETKAPFS SLKVIILLCALLALTMAAVPLLGGSKYGASPLCLPLPFGEPSTMGYMVALILLNSLCFLMMTIAYTKLYCNLDKGDLENIWDCSMVKHIALLLFTNC ILNCPVAFLSFSSLINLTFISPEVIKFILLVVVPLPACLNPLLYILFNPHFKEDLVSLRKQTYVWTRSKHPSLMSINSDDVEKQSCDSTQALVTFTS SSITYDLPPSSVPSPAYPVTESCHLSSVAFVPCLKGNSADIQHSGGRSSLEGPRFE RTG S S SSS

>gpr49_clone16 Nukleinsäuresequenz

aaeatcaacgggactutccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggag gtctatataaggaggtctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcactatag ggagacccaagctggctagttaagcttggtaccgagctcggatccactagtccagtgtggfggaattgcccttatggaca qpr49 ttgctgaggggctgccccacacactgtcattgcgagcccgacggcaggatgttgctcagggtggactgctccgacctggg ttcactggcctttacagtcttaaagttcttatgctgcagaataatcagctaagacacgtacccacagaagctctgcagaa tttgcgaagccttcaatccctgcgtctggatgctaaccacatcagctatgtgcccccaagctgtttcagtggcctgcatt ccctgaggcacctgtggctggatgacaatgcgttaacagaaatccccgtccaggcttttagaagtttatcggcattgcaa gccatgacettggccctgaacaaaatacaccacataccagactatgcctttggaaacctctccagettggtagttctaca tctccataacaatagaatccactccctgggaaagaaatgctttgatgggctccacagcctagagactttagatttaaatt aggtcgatacctgagaaagcatttgtaggcaacccttctcttattacaatacatttctatgacaatcccatccaatttgt tgggagatctgcttttcaacatttacctgaactaagaacactgactctgaatggtgcctcacaaataactgaatttcctg atttaactggaactgcaaacctggagagtctgactttaactggagcacagatctcatcttcttcctcaaaccgtctgcaat cagttacctaatctccaagtgctagatctgtcttacaacctattagaagatttacccagtttttcagtctgccaaaagct tcaqaaaattqacctaaqacataatqaaatctacqaaattaaaqttqacactttccaqcaqttqcttaqcctccqatcqc tgaatttggcttggaacaaaattgctattattcacccaatgcattttccactttgccatccctaataaagctggaccta tcgtccaacctcctgtcgtcttttcctataactgggttacatggtttaactcacttaaaattaacaggaaatcatgcctt acagagettgatateatetgaaaactttccagaactcaaggttatagaaatgccttatgcttaccagtgctgtgcatttg gagtgtgtgagaatgcctataagatttctaatcaatggaataaaggtgacaacagcagtatggacgtcttcataagaaa gatgctggaatgtttcaggctcaagatgaacgtgaccttgaagatttcctgcttgactttgaggaagacctgaaagccct qaqtqtqqaccataqcaqctctqqcacttacttqtaatqctttqqtqacttcaacaqttttcaqatcccctctqtacatt tgtccatttttgcttcagaalcatcigttttcctgcttactctggcagccctggagcgtgggttctctgcgaaatattct gcaaaatttgaaacgaaagctccattttctagcctgaaagtaatcattttgctctgtgccctgctggccttgaccatggc tgggctacatggtcgctctcatcttgctcaattccctttgcttcctcatgatgaccattgcctacaccaagctctactgc aatttggacaagggagacctggagaatatttgggactgctctatggtaaaacacattgccctgttgctcttcaccaactg catcctaaactgccctgtggctttcttgtccttctctctttaataaaccttacatttatcagtcctgaagtaattaagt ttatccttctggtggtagtcccacttcctgcatgtctcaatccccttctctacatcttgttcaatcctcactttaaggag gatotggtgagoctgagaaagcaaacctaogtotggacaagatcaaaacacccaagcttgatgtcaattaactotgatga tgtcgaaaaacagtcctgtgactcaactcaagccttggtaacctttaccagctccagcatcacttatgacctgcctccca gttccgtgccatcaccagcttatccagtgactgagagctgccatctttcctctgtggcatttgtcccatgtctcaagggc

cagcaagggggaggafffgggaagacaatagcaggcafgcfggggafgcggfgggctctafggcfffcfgaggcggaaaga

92

(11) EP 1 602 930 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

- (88) Veröffentlichungstag A3: 04.10.2006 Patentblatt 2006/40
- (43) Veröffentlichungstag A2: 07.12.2005 Patentblatt 2005/49
- (21) Anmeldenummer: 04090322.1
- (22) Anmeldetag: 20.08.2004

(51) Int Cl.: G01N 33/574 (2006.01) A61K 49/16 (2006.01)

G01N 33/566 (2006.01) C07K 14/705 (2006.01)

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Benannte Erstreckungsstaaten: AL HR LT LV MK

- (30) Priorität: 22.08.2003 DE 10339820
- (71) Anmelder:
 - Hinzmann, Bernd, Dr. 13127 Berlin (DE)
 - Stein, Dr., Anke
 14974 Ludwigsfelde (DE)
 - Staub, Dr., Eike 13189 Berlin (DE)
 - Heiden, Esmeralda, Dr. 10589 Berlin (DE)
 - Klaman, Dr., Irina 10318 Berlin (DE)

- Dahl, Dr., Edgar
 4851 Gemmenich (BE)
- (72) Erfinder:
 - Stein, Anke
 14974 Ludwigsfelde (DE)
 - Staub, Eike 13189 Berlin (DE)
 - Weber, Birgit, Dr. 81927 München (DE)
 - Heiden, Esmeralda, Dr. 10589 Berlin (DE)
 - Klaman, Irina
 10318 Berlin (DE)
 - Dahl, Edgar Institut für Pathologie Uni-Klinikum 52074 Aachen (DE)
 - Hinzmann, Bernd 13127 Berlin (DE)
- (54) Verwendungen von an GPR49 bindenden Substanzen zur Diagnose und Behandlung von Krebs
- (57) Die Erfindung betrifft Verwendungen von GPR49 zur Diagnose und Behandlung von Krebs, ins-

besondere des Colon-, Uterus- und/oder Rectumkarzinoms, sowie zum Screenen nach Substanzen für solche Zwecke.

in situ Hybridisierung (10x) Colon

Figur 20

EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung

der nach Regel 45 des Europäischen Patent-übereinkommens für das weitere Verfahren als europäischer Recherchenbericht gilt

EP 04 09 0322

	EINSCHLÄGIGE I	DOKUMENTE		
Kategorie	Kennzeichnung des Dokumer der maßgeblichen	nts mit Angabe, soweit erforderlich Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
X	WO 03/000928 A (ODIN HANS, SKOVGAARD; PED MORTENSEN,) 3. Janua * Ansprüche 100,101, * Sequenzen 157,158	r 2003 (2003-01-03) 131,162 *	3-9,11, 12	INV. G01N33/574 G01N33/566 A61K49/16 C07K14/705
X,D	WO 99/15660 A (MERCK QINGYUN; BAILEY, WEN TERRENCE,) 1. April * das ganze Dokument	DY, J; MCDONALD, 1999 (1999-04-01)	3,12	
γ	das gunze bokument		1,2,10	
х	WO 99/48921 A (THE B THE LELAND STANFORD N.V. 0) 30. Septembe * das ganze Dokument	JUNIOR UNIVERSITY; r 1999 (1999-09-30)	3,12	
Υ	* Seiten 12-14 *		1,2,10	
		-/		RECHERCHIERTE SACHGEBIETE (IPC)
				G01N A61K C07K
Die Reche in einem s der Techn	LLSTÄNDIGE RECHER rchenabteilung ist der Auffassung, daß olchen Umfang nicht entspricht bzw. en ik für diese Ansprüche nicht, bzw. nur te g recherchierte Patentansprüche:	ein oder mehrere Ansprüche, den Vorschrift tsprechen, daß sinnvalle Ermittlungen über	en des EPÜ den Stand	
	ndig recherchierte Patentansprüche:			
Nicht rech	erchierte Patentansprüche:			i
Grund für	die Beschränkung der Recherche:			
Sieh	ne Ergänzungsblatt C			
	Recherchenort	Abschlußdatum der Rocherche		Prüler
	München	22. August 2006	Str	ricker, J-E
X : von Y : von ande	TEGORIE DER GENANNTEN DOKUM besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung m ren Veröffentlichung derselben Kategor nologischer Hintergrund	E : ålteres Patentdok nach dem Anmete uit einer D : in der Anmeldung ie L : aus anderen Grür	runde liegende 1 ument, das jedoc ledatum veröffen j angeführtes Do iden angeführtes	Theorien oder Grundsätze ch erst am oder tlicht worden ist kument

EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung

EP 04 09 0322

	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (IPC)			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich der maßgeblichen Teile				
Y,D	YAMAMOTO Y ET AL: "OVEREXPRESSION OF ORPHAN G-PROTEIN-COUPLED RECEPTOR, GPR49, IN HUMAN HEPATOCELLULAR CARCINOMAS WITH BETA-CATENIN MUTATIONS" HEPATOLOGY, WILLIAMS AND WILKINS, BALTIMORE, MD, US, Bd. 37, Nr. 3, März 2003 (2003-03), Seiten 528-533, XP008041122 ISSN: 0270-9139 * das ganze Dokument *	1,2,10			
P,X	WO 2004/005457 A (KYLIX B.V; COLLAND, FREDERIC; BARKER, NICHOLAS; CLEVERS, JOHANNES, CAR) 15. Januar 2004 (2004-01-15) * das ganze Dokument * * Beispiel 4 * * Ansprüche 13-17,29-34,36,38,49-55 * * Sequenz 3 *	1-12	RECHERCHIERTE SACHGEBIETE (IPC)		
P,X	WO 2004/061423 A (WYETH; MARTINEZ, ROBERT, VINCENT; BROWN, EUGENE; LIU, WEI) 22. Juli 2004 (2004-07-22) * das ganze Dokument * * Tabelle 3; Sequenzen 21,84 * * Ansprüche *	1-12			
E	WO 2004/074436 A (INCYTE CORPORATION; LASEK, AMY, W) 2. September 2004 (2004-09-02) * Zusammenfassung * * das ganze Dokument * * Ansprüche *	1-12			

3

EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung EP 04 09 0322

	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (IPC)	
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich der maßgeblichen Teile	Betrifft Anspruch	
E	WO 2004/098521 A (TAIGEN BIOTECHNOLOGY; CHEN, HUA-CHIEN; SUN, YING; HUANG, YING-HUEY; HS) 18. November 2004 (2004-11-18) * das ganze Dokument *	1-12	
E	WO 2005/040828 A (BAYER HEALTHCARE AG; GOLZ, STEFAN; BRUEGGEMEIER, ULF; GEERTS, ANDREAS;) 6. Mai 2005 (2005-05-06) * das ganze Dokument * * Seite 54, Zeilen 10-18 * * Seite 54, Zeile 30 - Seite 55, Zeile 2 * * Ansprüche *	1-12	
Т	MCCLANAHAN T ET AL: "Identification of overexpression of orphan G Protein-Coupled Receptor GPR49 in human colon and ovarian primary tumors" CANCER BIOLOGY AND THERAPY 2006 UNITED STATES, Bd. 5, Nr. 4, 2006, Seiten 419-426, XP009071194 ISSN: 1538-4047 1555-8576		RECHERCHIERTE SACHGEBIETE (IPC)

UNVOLLSTÄNDIGE RECHERCHE ERGÄNZUNGSBLATT C

Nummer der Anmeldung EP 04 09 0322

Obwohl der Anspruch 11 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen (Artikel 52(4) EPÜ), wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.

Unvollständig recherchierte Ansprüche:

Grund für die Beschränkung der Recherche (nicht patentfähige Erfindung(en)):

Artikel 52 (4) EPÜ - Verfahren zur therapeutischen Behandlung des menschlichen oder tierischen Körpers

Weitere Beschränkung der Recherche

Unvollständig recherchierte Ansprüche: 4-9.11

Grund für die Beschränkung der Recherche:

Der vorliegende Anspruch 4 bezieht sich auf eine Verbindung, welche lediglich durch eine gewünschte Funktion definiert ist und daher das Erfordernis der Klarheit nach Artikel 84 EPÜ nicht erfüllt. Die Definition des beanspruchten Gegenstandes durch ein zu erreichendes Ergebnis erlaubt es nicht, den Schutzumfang des Anspruchs zu bestimmen. Die Tatsache, daß jede Substanz einem Screeningverfahren unterzogen werden könnte, kann diesen Einwand nicht ausräumen, da der Fachmann im Voraus keine Kenntnis hat ob die Substanz unter den beanspruchten Schutzbereich fallen würde, mit Ausnahme der in der Beschreibung erwähnten Substanzen (siehe Seite 5). Die Verletzung der einschlägigen Erfordernisse ist so schwerwiegend, daß eine sinnvolle Recherche des ganzen beanspruchten Gegenstandes nicht durchgeführt werden konnte (Regel 45 EPÜ und Richtlinien B-VIII, 3).

Die Recherche von Anspruch 4 wurde deshalb auf die erwähnten Begriffe "Antikörper, Aptamer, Antisense, siRNA und Ribozym" beschränkt.

Derselbe Einwand gilt für die abhängige Ansprüche 5-9 und den unabhängigen Anspruch 11.

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 09 0322

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

22-08-2006

Im Recherchenbericht angeführtes Patentdokume	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 03000928	A	03-01-2003	CA CN EP JP	2489420 1547617 1446501 2005500833	A A2	03-01-200 17-11-200 18-08-200 13-01-200
WO 9915660	Α	01-04-1999	CA EP JP	2304828 1017811 2001517441	A1	01-04-199 12-07-200 09-10-200
WO 9948921	Α	30-09-1999	EP JP	1066324 2002507406	Τ	10-01-200 12-03-200
WO 2004005457	Α	15-01-2004	AU CA US	2003253046 2491947 2006165699	A1 A1 A1	23-01-200 15-01-200 27-07-200
WO 2004061423	Α	22-07-2004	AU CA EP	2004203749 2511907 1581812	A1 A1 A2	22-07-200 22-07-200 05-10-200
WO 2004074436	Α	02-09-2004	KEII	NE		
WO 2004098521	Α	18-11-2004	KEII			
WO 2005040828	Α	06-05-2005				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.