Practice for bifurcation diagrams

Why?

Exercise 1 Start with the logistic equation $\frac{dx}{dt} = kx(M-x)$. Suppose we modify our harvesting. That is we will only harvest an amount proportional to current population. In other words, we harvest hx per unit of time for some h > 0 (Similar to earlier example with h replaced with hx).

- a) Construct the differential equation.
- b) Show that if kM > h, then the equation is still logistic.
- c) What happens when kM < h?

Exercise 2 Assume that a population of fish in a lake satisfies $\frac{dx}{dt} = kx(M-x)$. Now suppose that fish are continually added at A fish per unit of time.

a) Find the differential equation for x.

b) What is the new limiting population?

Exercise 3 Consider the differential equation with parameter α given by $y' = y(y - \alpha + 1)$.

- a) Sketch a phase diagram for this differential equation with $\alpha = -3$, $\alpha = 1$, and $\alpha = 3$.
- b) Draw a bifurcation diagram for this differential equation with parameter.
- c) What is the bifurcation point for this equation? What changes when α passes over the bifurcation point?

Exercise 4 Consider the differential equation with parameter α given by $y' = y^2(y^2 - \alpha)$.

- a) Sketch a phase diagram for this differential equation with $\alpha = -3$, $\alpha = 0$, and $\alpha = 3$.
- b) Draw a bifurcation diagram for this differential equation with parameter.
- c) What is the bifurcation point for this equation? What changes when α passes over the bifurcation point?

Exercise 5 Consider the differential equation with parameter α given by $y' = y(\alpha - y)$.

- a) Sketch a phase diagram for this differential equation with $\alpha = -3$, $\alpha = 0$, and $\alpha = 3$.
- b) Draw a bifurcation diagram for this differential equation with parameter.
- c) What is the bifurcation point for this equation? What changes when α passes over the bifurcation point?

Learning outcomes: