CAPÍTULO 6

TRANSFORMAÇÃO LINEAR

1 Introdução

Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são transformados em dados de saída.

Em geral, o estudante está familiarizado com funções, tais como funções reais de uma variável real, as quais têm por domínio e contradomínio o conjunto \Re dos números reais (ou subconjuntos de \Re), como, por exemplo, a função f indicada a seguir:

$$f: \Re \rightarrow \Re$$

$$x \mapsto f(x) = x^3.$$

Essa função transforma um número real x qualquer em outro número real, no caso, seu cubo, isto é, x^3 .

Estudam-se, ainda, funções com outros domínios e contradomínios, como, por exemplo:

$$f: A \subset \Re^2 \rightarrow \Re$$

 $(x,y) \mapsto f(x,y) = \sqrt{x^2 + y^2}$.

Neste capítulo, serão estudadas funções cujos conjuntos domínio e contradomínio são espaços vetoriais. Como os elementos de um espaço vetorial são chamados, de modo geral, de vetores, essas funções associarão vetores do conjunto domínio com vetores do conjunto contradomínio.

Definição: Dados dois espaços vetoriais V e W, sendo $V \neq \phi$, uma função ou transformação T de V para W é uma lei que associa a todo vetor x de V um único vetor em W, denotado por T(x).

O vetor T(x) de W é chamado imagem de $x \in V$ pela transformação T.

Exemplo: considerando-se os espaços vetoriais reais $V=\mathfrak{R}^3$ e $W=\mathfrak{R}^2$ e a transformação definida por:

$$T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$

 $(x, y, z) \mapsto T(x, y, z) = (x + y, y - z)'$

vê-se que T leva o vetor $(0,1,-1) \in \Re^3$ no vetor:

$$T(0,1,-1) = (0+1,1-(-1)) = (1,2) \in \Re^2$$
.

2 Transformação Linear

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Definição: Sejam V e W espaços vetoriais sobre o mesmo corpo K. Uma função $T:V\to W$ é uma transformação linear se:

(a)
$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
, $\forall v_1, v_2 \in V$

(b)
$$T(\alpha v) = \alpha T(v), \forall v \in V, \forall \alpha \in K$$

Observações:

- 1) Na transformação linear $T:V\to W$, V é chamado espaço de saída e W é chamado espaço de chegada da transformação.
- 2) A transformação linear $T:V\to W$ é também chamada de aplicação linear; ela preserva a adição de vetores e a multiplicação de um vetor por um escalar.
- 3) A transformação linear $T: V \to V$ (isto é, W = V) é chamada de operador linear.

Exemplos:

1) Considere-se a aplicação definida por:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto T(x,y) = (-x,y)$

T é uma transformação linear (ou operador linear), como se mostrará a seguir.

(a) sejam $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$ dois vetores do \Re^2 ; tem-se:

$$T(v_1 + v_2) = T[(x_1, y_1) + (x_2, y_2)] = T[(x_1 + x_2, y_1 + y_2)] = (-(x_1 + x_2), y_1 + y_2) = (-x_1 - x_2, y_1 + y_2) = (-x_1, y_1) + (-x_2, y_2) = T(v_1) + T(v_2)$$

(b) considerando-se um vetor $v = (x, y) \in \Re^2$ e um número real α , tem-se:

$$T(\alpha v) = T[\alpha(x, y)] = T(\alpha x, \alpha y) = (-\alpha x, \alpha y) = \alpha(-x, y) = \alpha T(x, y) = \alpha T(y)$$

FIGURA 9

É possível visualizar geometricamente a ação da transformação linear T no plano de coordenadas cartesianas ortogonais, que representa geometricamente o espaço vetorial real \Re^2 . Considerando-se, por exemplo, o vetor v = (3,4), que é o vetor-posição do ponto (3,4),

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

tem-se:

$$T(v) = T(3,4) = (-3,4).$$

Vê-se, na Figura 9, que a transformação promove uma rotação do vetor em torno do eixo Oy.

2) Seja $T: \Re^3 \to \Re^2$, definida por T(x,y,z) = (x+z,2y-z). Mostrar que T é uma transformação linear.

Mostrar-se-á que são satisfeitas as condições da definição:

(a) Sejam
$$v_1 = (x_1, y_1, z_1)$$
 e $v_2 = (x_2, y_2, z_2)$ dois vetores do \Re^3 . Então:

$$T(v_1 + v_2) = T[((x_1, y_1, z_1) + (x_2, y_2, z_2))] = T(x_1 + x_2, y_1 + y_2, z_1 + z_2) =$$

$$= ((x_1 + x_2) + (z_1 + z_2), 2(y_1 + y_2) - (z_1 + z_2)) =$$

$$= (x_1 + x_2 + z_1 + z_2, 2y_1 + 2y_2 - z_1 - z_2) =$$

$$= (x_1 + x_2 + z_1 + z_2, 2y_1 + 2y_2 - z_1 - z_2) =$$

$$= (x_1 + z_1, 2y_1 - z_1) + (x_2 + z_2, 2y_2 - z_2) =$$

$$= T(x_1, y_1, z_1) + T(x_2, y_2, z_2) = T(v_1) + T(v_2)$$

(b) Sejam $v = (x, y, z) \in \Re^3$ e $\alpha \in \Re$. Tem-se:

$$T(\alpha v) = T[\alpha(x, y, z)] = T(\alpha x, \alpha y, \alpha z) = (\alpha x + \alpha z, 2\alpha y - \alpha z)$$
$$= \alpha(x + z, 2y - z) = \alpha T(x, y, z) = \alpha T(v).$$

- 3) Sejam $0:V\to W$ a aplicação nula, definida por 0(v)=0, $\forall v\in V$, e $Id:V\to V$ a aplicação identidade, definida por Id(v)=v, $\forall v\in V$. O leitor poderá verificar que essas transformações são lineares.
- 4) Seja $T:\mathfrak{R}^2\to\mathfrak{R}^3$, definida por T(x,y)=(x,y,2). Mostrar que T não é uma transformação linear.

Deve-se mostrar que pelo menos uma das condições da definição não é satisfeita. Tem-se:

(a) Sejam $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$ dois vetores do \Re^2 . Tem-se:

$$T(v_1 + v_2) = T[(x_1, y_1) + (x_2, y_2)] = T(x_1 + x_2, y_1 + y_2) =$$

= $(x_1 + x_2, y_1 + y_2, 2) = (x_1, y_1, 2) + (x_2, y_2, 0) \neq T(v_1) + T(v_2)$

Conclui-se, assim, que T não é transformação linear.

- 5) As seguintes transformações apresentam uma visão geométrica:
- (a) Expansão:

$$T: \Re^2 \to \Re^2$$

 $(x,y) \mapsto T(x,y) = \alpha(x,y)'$, sendo $\alpha \in \Re$.

Na Figura 10, mostram-se, para exemplificar, o vetor v = (1,2) e o vetor T(v) = 2v, ou seja, T(v) = T(1,2) = 2(1,2) = (2,4), onde se considerou $\alpha = 2$.

(b) Reflexão em torno do eixo Ox:

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

$$T: \Re^2 \to \Re^2$$
$$(x,y) \mapsto T(x,y) = (x,-y).$$

Considerando-se, por exemplo, o vetor v = (2,-3), tem-se que T(v) = T(2,-3) = (2,3). Esses vetores são mostrados na Figura 11.

FIGURA 10

FIGURA 11

(c) Reflexão na origem:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto T(x,y) = (-x,-y).$

A imagem do vetor v = (2,3) por essa transformação T é T(v) = T(2,3) = (-2,-3), conforme se vê na Figura 12.

d) Rotação de um ângulo θ no sentido anti-horário:

$$T: \Re^2 \to \Re^2$$

 $(x,y) \mapsto T(x,y) = (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta).$

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Tomando-se, novamente, o vetor v=(2,3) e considerando-se um ângulo de rotação $\theta=60^{\circ}$, tem-se: $T(x,y)=\left(2\cos\left(60^{\circ}\right)-3\sin\left(60^{\circ}\right),3\cos\left(60^{\circ}\right)+2\sin\left(60^{\circ}\right)\right)$, ou seja, tem-se o vetor $T(2,3)=\left(1-\frac{3\sqrt{3}}{2},\frac{3}{2}+\sqrt{3}\right)$, mostrado na Figura 13.

FIGURA 12

(e) Reflexão em torno da reta y = x:

$$T: \Re^2 \to \Re^2 (x,y) \mapsto T(x,y) = (y,x).$$

Considerando-se, agora, o vetor v = (3,1), obter-se-á, pela transformação T, o vetor T(v) = (1,3), os quais são simétricos em relação à reta y = x, como mostra a Figura 14.

6) Sejam: $M_n(\mathfrak{R})$ o espaço vetorial das matrizes quadradas de ordem n sobre o corpo \mathfrak{R} e $B \in M_n(\mathfrak{R})$ uma matriz fixa. Verificar se é linear a transformação

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

$$T: M_n(\mathfrak{R}) \to M_n(\mathfrak{R})$$

$$A \mapsto T(A) = AB - BA.$$

Verificar-se-á se são satisfeitas as condições da definição.

(a) Sejam $A \in C$ duas matrizes de $M_n(\mathfrak{R})$. Tem-se:

$$T(A) = AB - BA \in T(C) = CB - BC$$
;

então:

$$T(A + C) = (A + C)B - B(A + C) = AB + CB - BA - BC = (AB - BA) + (CB - BC) = T(A) + T(C)$$

(b) Sejam $A \in M_n(\Re)$ e $\alpha \in \Re$. Tem-se:

$$T(\alpha A) = (\alpha A)B - B(\alpha A) = \alpha(AB) - \alpha(BA) = \alpha(AB - BA) = \alpha T(A)$$

Conclui-se, de (a) e (b), que T é uma transformação linear.

Figura 14

7) Considere-se a aplicação $T: P_2(\mathfrak{R}) \to M_2(\mathfrak{R})$, definida por:

$$T(a_0 + a_1t + a_2t^2) = \begin{pmatrix} a_0 + a_1 & a_2 \\ a_1 & a_1 - a_2 \end{pmatrix}.$$

Mostrar que *T* é uma transformação linear.

Deve-se mostrar que são satisfeitas as condições da definição.

(a) Sejam
$$p_1(t) = a_0 + a_1 t + a_2 t^2$$
 e $p_2(t) = b_0 + b_1 t + b_2 t^2$ dois elementos de $P_2(\Re)$. Então:
$$T(p_1(t) + p_2(t)) = T(a_0 + a_1 t + a_2 t^2 + b_0 + b_1 t + b_2 t^2) = T(a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 =$$

$$= \begin{pmatrix} a_0 + a_1 + b_0 + b_1 & a_2 + b_2 \\ a_1 + b_1 & a_1 + b_1 - a_2 - b_2 \end{pmatrix} = \begin{pmatrix} a_0 + a_1 & a_2 \\ a_1 & a_1 - a_2 \end{pmatrix} + \begin{pmatrix} b_0 + b_1 & b_2 \\ b_1 & b_1 - b_2 \end{pmatrix} =$$

$$= T(p_1(t)) + T(p_2(t))$$

Assim,
$$T(p_1(t) + p_2(t)) = T(p_1(t)) + T(p_2(t))$$

(b) Sejam $p(t)=a_0+a_1t+a_2t^2$ um elemento de $P_2(\mathfrak{R})$ e $\alpha\in\mathfrak{R}$. Tem-se:

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

$$T \big(\alpha p \big(t \big) \big) = T \Big(\alpha a_0 + \alpha a_1 t + \alpha a_2 t^2 \Big) = \begin{pmatrix} \alpha a_0 + \alpha a_1 & \alpha a_2 \\ \alpha a_1 & \alpha a_1 - \alpha a_2 \end{pmatrix} =$$

$$=\alpha\begin{pmatrix}a_0+a_1&a_2\\a_1&a_1-a_2\end{pmatrix}=\alpha T(p(t)).$$

De (a) e (b), conclui-se que T é uma transformação linear.

Teorema: Sejam V e W dois espaços vetoriais reais e $B = \{v_1, v_2, \cdots, v_n\}$ uma base ordenada de V. Dados w_1, w_2, \cdots, w_n elementos arbitrários de W, existe uma única transformação linear $T: V \to W$ tal que $T(v_1) = w_1$, $T(v_2) = w_2$, ..., $T(v_n) = w_n$.

Demonstração:

<u>Hipóteses</u>: $B = \{v_1, v_2, \cdots, v_n\}$ é base de V; w_1, w_2, \cdots, w_n são elementos arbitrários de W<u>Tese</u>: existe uma única transformação linear $T: V \to W$ tal que $T(v_1) = w_1$, $T(v_2) = w_2$, ..., $T(v_n) = w_n$

(i) Existência

Seja $v \in V$. Então, existem números reais $\alpha_1,\alpha_2,\cdots,\alpha_n$ tais que:

$$V = \alpha_1 V_1 + \alpha_2 V_2 + \cdots + \alpha_n V_n.$$

Define-se a seguinte transformação:

$$T: V \to W$$

 $V \mapsto T(V) = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n$

Observe-se que T está bem definida, pois $\alpha_1, \alpha_2, \cdots, \alpha_n$ são únicos. Além disso, tem-se:

$$T(v) = T(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n) = \alpha_1 T(v_1) + \alpha_2 T(v_2) + \dots + \alpha_n T(v_n);$$

conclui-se, assim, que, para $i = 1, 2, \dots, n$, tem-se $T(v_i) = w_i$.

(ii) Unicidade

Suponha-se que existe uma transformação linear $T':V\to W$ tal que $T'(v_i)=w_i$, para $i=1,2,\cdots,n$. Então, vem:

$$T'(v) = T'(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n) = \alpha_1 T'(v_1) + \alpha_2 T'(v_2) + \dots + \alpha_n T'(v_n) = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n = T(v),$$

de onde se segue que T' = T.

Observação: com este teorema, pode-se afirmar que as transformações lineares são determinadas conhecendo-se apenas seu valor nos elementos de uma base de seu espaço de saída.

3 Propriedades das Transformações Lineares

Para toda transformação linear $T:V\to W$, são válidas as seguintes propriedades:

$$(P_1) T(0) = 0$$

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

De fato, tem-se:

$$T(0) = T(0 \cdot v) = 0 \cdot T(v) = 0$$
, $\forall v \in V$.

$$(P_2)$$
 $T(-v) = -T(v)$, $\forall v \in V$

De fato, tem-se:

$$T(-v) = T(-1 \cdot v) = -1 \cdot T(v) = -T(v)$$

$$(P_3)$$
 $T(v_1 - v_2) = T(v_1) - T(v_2)$, $\forall v_1, v_2 \in V$

Com efeito, tem-se:

$$T(v_1 - v_2) = T(v_1 + (-v_2)) = T(v_1) + T(-v_2) = T(v_1) - T(v_2)$$

$$(P_4) T \left[\sum_{i=1}^n \alpha_i v_i \right] = \sum_{i=1}^n \alpha_i T(v_i), \ \forall v_i \in V, \ \forall \alpha_i \in K; \ i = 1, 2, \dots, n.$$

De fato, tem-se:

$$T\left[\sum_{i=1}^{n} \alpha_{i} v_{i}\right] = T(\alpha_{1} v_{1} + \alpha_{2} v_{2} + \dots + \alpha_{n} v_{n}) = T(\alpha_{1} v_{1}) + T(\alpha_{2} v_{2}) + \dots + T(\alpha_{2} v_{2}) = T(\alpha_{1} v_{1}) + T(\alpha_{2} v_{2}) + \dots + T(\alpha_{n} v_{n}) = T(\alpha_{n} v_{n}) = T(\alpha_{n} v_{n}) + T(\alpha_{n} v_{n}) = T$$

$$=\alpha_1 T(v_1) + \alpha_2 T(v_2) + \dots + \alpha_n T(v_n) = \sum_{i=1}^n \alpha_i T(v_i)$$

 (P_5) Se $U \subset V$ como subespaço vetorial, então $T(U) \subset W$ como subespaço vetorial. Sugere-se demonstrar a afirmação.

Observações:

- 1) Da 1ª propriedade, decorre que, se uma transformação T é tal que $T(0) \neq 0$, então T não é linear. Ressalte-se, no entanto, que a condição de que T(0) = 0 não é suficiente para que T seja linear.
- 2) A 4ª propriedade mostra que a transformação linear preserva combinações lineares. Diz-se, então, que a transformação linear satisfaz o princípio de superposição.

Exemplo: considere-se uma transformação linear $T:\mathfrak{R}^3\to P_2(\mathfrak{R})$ satisfazendo as seguintes condições: T(1,1,1)=2-3t, $T(1,1,0)=1+t-t^2$ e $T(1,0,0)=t+2t^2$. Determinar a expressão de T.

De acordo com os espaços de saída e de chegada de T, esta transforma vetores do \mathfrak{R}^3 em polinômios de grau menor ou igual a 2, com coeficientes reais. Para que seja possível construir a expressão de T aplicada em um vetor $(x,y,z) \in \mathfrak{R}^3$, é preciso conhecê-la aplicada nos

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

vetores de uma base do seu espaço de saída, no caso, o $\,\mathfrak{R}^3\,.$

É possível mostrar que o conjunto $B = \{(1,1,1), (1,1,0), (1,0,0)\}$ é uma base deste espaço e, portanto, são conhecidas as imagens desses vetores, pela transformação T.

Tomando um vetor genérico $(x,y,z) \in \Re^3$, este é uma combinação linear dos vetores da base B e, portanto, pode-se escrever:

$$(x, y, z) = a(1,1,1) + b(1,1,0) + c(1,0,0),$$

ou seja,

$$(x, y, z) = (a + b + c, a + b, a),$$

de onde se segue que

$$\begin{cases} x = a + b + c \\ y = a + b \end{cases},$$

$$z = a$$

e, portanto,

$$\begin{cases} a = z \\ b = y - z \\ c = x - y \end{cases}$$

Logo, pode-se escrever:

$$(x,y,z) = z(1,1,1) + (y-z)(1,1,0) + (x-y)(1,0,0).$$

Aplicando-se a transformação em ambos os lados desta igualdade, vem:

$$T(x, y, z) = T(z(1,1,1) + (y - z)(1,1,0) + (x - y)(1,0,0)).$$

Pela propriedade (P_3) , tem-se:

$$T(x, y, z) = zT(1,1,1) + (y - z)T(1,1,0) + (x - y)T(1,0,0) =$$

$$= z(2 - 3t) + (y - z)(1 + t - t^{2}) + (x - y)(t + 2t^{2})$$

$$= (y + z) + (x - 4z)(t + (2x - 3y + z))t^{2}.$$

Assim, para qualquer vetor $(x, y, z) \in \Re^3$, tem-se que

$$T(x, y, z) = (y + z) + (x - 4z)t + (2x - 3y + z)t^{2}$$

que é a expressão procurada da transformação T.

4 Núcleo e Imagem

Definição: O conjunto imagem de uma transformação linear $T: V \to W$ é o conjunto:

$$Im(T) = \{ w \in W ; \exists v \in V / T(v) = w \}.$$

Assim, a imagem de T é constituída dos vetores de W que são imagem de pelo menos um vetor de V, através da aplicação T. É claro que, de maneira geral, tem-se que $Im(T) \subset W$; pode ocorrer, entretanto, que Im(T) = W.

Definição: O núcleo de uma transformação linear $T:V\to W$ é o conjunto:

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru $Ker(T) = \{v \in V \ / \ T(v) = 0\}.$

Observações:

- 1) A notação Ker(T) para núcleo de T deve-se à palavra inglesa kernel, que significa núcleo.
- 2) O núcleo de T é um subconjunto de V, isto é, $Ker(T) \subset V$.
- 3) Também se pode fazer referência ao núcleo de T como nulidade de T, com a notação Nul(T).
- 4) Quando se consideram funções da forma:

$$f: A \subseteq \Re \rightarrow B \subseteq \Re$$

 $x \mapsto y = f(x)'$

ou seja, funções reais de uma variável real, o conjunto dos elementos de A tais que f(x) = 0 é o conjunto dos zeros da função f, ou seja, das raízes reais da equação f(x) = 0. Esses são os valores da variável x que anulam a função f, de onde se origina a expressão nulidade da função. No caso de transformações lineares, não se utiliza a expressão zero da transformação para um vetor v tal que T(v) = 0. Diz-se, apenas, que v pertence ao núcleo de T e, portanto, é levado por ela ao vetor nulo do espaço de chegada.

A Figura 15 mostra a representação gráfica de uma transformação linear $T:V\to W$, com os conjuntos $Ker(T)\subset V$, no qual se mostra um vetor u tal que T(u)=0, e $Im(T)\subset W$, no qual se mostram os vetores w, imagem de um vetor $v\in V$, e o vetor nulo 0, imagem do vetor $u\in V$.

FIGURA 15

Exemplos:

1) Considere-se a transformação linear *T*, definida por:

$$\begin{array}{ccc} T: \ \Re^2 & \rightarrow & \Re^3 \\ (x,y) & \mapsto & T(x,y) = (2x-y,2x-y,0) \end{array}.$$

Determinar os conjuntos $\mathit{Ker}(T) \subset \mathfrak{R}^2$ e $\mathit{Im}(T) \subset \mathfrak{R}^3$.

Para que um vetor v = (x, y) pertença ao núcleo de T, é preciso que T(v) = 0, ou seja, deve-se

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

ter: T(x, y) = (0,0,0). Assim, vem:

$$(2x - y, 2x - y, 0) = (0,0,0),$$

de onde se segue que y = 2x. Portanto, o núcleo de T é o conjunto:

$$Ker(T) = \{(x,y) \in \mathbb{R}^2 / y = 2x\},$$

isto é, são os pares ordenados $(x,y) \in \Re^2$ que pertencem à reta de equação y = 2x.

O conjunto imagem de T é:

$$Im(T) = \{ w \in \mathfrak{R}^3 ; \exists v \in \mathfrak{R}^2 / T(v) = w \},$$

ou seja, são as ternas $(x, y, z) \in \Re^3$ do tipo (2x - y, 2x - y, 0).

Um sistema de geradores para o conjunto imagem é [(2,2,0),(-1,-1,0)]. Como esses dois vetores são LD, pois são múltiplos um do outro, pode-se retirar um deles, por exemplo, (-1,-1,0).

Então, conclui-se que Im(T) = [(2,2,0)], ou seja, $Im(T) = \{(x,y,z) \in \Re^3 / y = x e z = 0\}$. A imagem geométrica desse conjunto é a reta do \Re^3 de equação:

$$\begin{cases} y = x \\ z = 0 \end{cases}.$$

Da análise efetuada, têm-se as seguintes conclusões:

- (1) os pares ordenados do \mathfrak{R}^2 que pertencem à reta y=2x pertencem ao núcleo de T, isto é, são levados, por esta transformação, a elemento $(0,0,0) \in \mathfrak{R}^3$;
- (2) os demais elementos do \Re^2 são levados, por T, à reta do \Re^3 de equação $\begin{cases} y = x \\ z = 0 \end{cases}$.

Essas conclusões são mostradas na Figura 16.

FIGURA 16

2) Considere-se a transformação linear

$$T: \mathfrak{R}^3 \to \mathfrak{R}^3 (x,y,z) \mapsto T(x,y,z) = (x,y,0).$$

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Para que um vetor v = (x, y, z) pertença ao núcleo de T, é preciso que T(v) = 0, ou seja, deve-

se ter:
$$T(x, y, z) = (0,0,0)$$
. Assim, vem:

$$(x,y,0) = (0,0,0),$$

de onde se conclui que x = y = 0 e z pode ser qualquer número real. Portanto, o núcleo de T é o conjunto:

$$Ker(T) = \{(0,0,z)/z \in \Re\}.$$

O conjunto imagem de T é:

$$Im(T) = \{ w \in \mathbb{R}^3 ; \exists v \in \mathbb{R}^3 / T(v) = w \},$$

ou seja, são as ternas $(x, y, z) \in \Re^3$ do tipo (x, y, 0).

Portanto, $Im(T) = \{(x, y, 0) / x, y \in \Re\}.$

Teorema: Sejam V e W espaços vetoriais sobre um corpo K e $T:V\to W$ uma transformação linear. Então:

- (a) Ker(T) é um subespaço vetorial de V.
- (b) Im(T) é um subespaço vetorial de W.

Demonstração:

<u>Hipótese</u>: $T: V \rightarrow W$ uma transformação linear

<u>Teses</u>: (a) Ker(T) é um subespaço vetorial de V

- (b) Im(T) é um subespaço vetorial de W
- (a) Para provar que Ker(T) é um subespaço vetorial de V, devem-se mostrar que são verdadeiros os três axiomas da definição de espaço vetorial. De fato, tem-se:
- (1) como T(0) = 0, segue-se que $0 \in Ker(T)$.
- (2) sejam u e u' dois elementos de Ker(T). Então, T(u) = 0 e T(u') = 0. Assim, sendo T uma transformação linear, vem:

$$T(u + u') = T(u) + T(u') = 0 + 0 = 0$$

e, portanto, $u + u' \in Ker(T)$.

(3) sejam $u \in Ker(T)$ e $\alpha \in K$. Sendo u um elemento de Ker(T), segue-se que T(u) = 0 . Então, como T é uma transformação linear, vem:

$$T(\alpha u) = \alpha T(u) = \alpha 0 = 0,$$

de onde se conclui que $\alpha u \in Ker(T)$.

De (1), (2) e (3), conclui-se que Ker(T) é um subespaço vetorial de V. Escreve-se: $Ker(T) \subset V$.

- (b) Mostrar-se-á, agora, que Im(T) é um subespaço vetorial de W.
- (1) Como T(0) = 0, segue-se que $0 \in Im(T)$.
- (2) Sejam w e w' dois elementos de Im(T). Então, existem elementos u e u' em V tais que T(u) = w e T(u') = w'. Assim, sendo T uma transformação linear, vem:

$$T(u+u')=T(u)+T(u')=w+w'$$

Luiz Francisco da Cruz - Departamento de Matemática - Unesp/Bauru

e, portanto, $w + w' \in Im(T)$.

(3) Sejam $w \in Im(T)$ e $\alpha \in K$. Se $w \in Im(T)$, segue-se existe um elemento $u \in V$ tal que T(u) = w. Por hipótese, T é transformação linear; então:

$$T(\alpha u) = \alpha T(u) = \alpha w$$
,

de onde se conclui que $\alpha w \in Im(T)$.

De (1), (2) e (3), conclui-se que Im(T) é um subespaço vetorial de W. Escreve-se: $Im(T) \subset W$.

Definição: Seja $T: V \to W$ uma transformação linear. Define-se:

- dim Im(T) = posto de T;
- dim Ker(T) = nulidade de T.

Exemplos:

1) Considere-se a transformação linear $T:M_2(\mathfrak{R}) \to \mathfrak{R}^3$, definida por:

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (2a - 5b - 3c, a + c, b + d).$$

Determinar Ker(T) e Im(T), assim como as dimensões desses espaços.

Seja $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Ker(T)$. Por definição do núcleo de T, tem-se:

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (0,0,0),$$

ou seja,

$$(2a-5b-3c, a+c, b+d)=(0,0,0),$$

de onde vem que:

$$\begin{cases} 2a - 5b - 3c = 0 \\ a + c = 0 \\ b + d = 0 \end{cases}$$

Resolvendo-se esse sistema linear, obtêm-se:

$$\begin{cases} a = -d \\ b = -d \\ c = d \end{cases}$$

Assim:

$$Ker(T) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\Re) / a = b = -d \ e \ c = d, \forall d \in \Re \right\},$$

ou, equivalentemente,

$$Ker(T) = \left\{ \begin{pmatrix} -d & -d \\ d & d \end{pmatrix} \in M_2(\mathfrak{R}) / d \in \mathfrak{R} \right\}.$$

Encontrar-se-á uma base para esse espaço.

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Tomando-se um elemento $\begin{pmatrix} -d & -d \\ d & d \end{pmatrix} \in Ker(T)$, pode-se escrever:

$$\begin{pmatrix} -d & -d \\ d & d \end{pmatrix} = d \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Então, $B = \left\{ \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \right\}$ é base de Ker(T) e, portanto, dim Ker(T) = 1.

Os elementos $(x,y,z) \in \Re^3$ que pertencem ao conjunto $\mathit{Im}(T)$, pela própria definição de T, são do tipo (2a-5b-3c,a+c,b+d), onde a,b,c e d são os elementos da matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Para encontrar uma base para Im(T), escreve-se:

$$(2a-5b-3c, a+c, b+d) = a(2,1,0)+b(-5,0,1)+c(-3,1,0)+d(0,0,1).$$

Assim, $S = \{(2,1,0), (-5,0,1), (-3,1,0), (0,0,1)\}$ é um sistema de geradores para Im(T). Para encontrar uma base desse espaço, a partir desse sistema de geradores, conforme se viu anteriormente, constrói-se uma matriz com os vetores do conjunto de geradores e escalona-se a matriz. As linhas não nulas da matriz resultante do escalonamento serão vetores LI, os quais formarão a base procurada. Então:

Então $B' = \{(2,1,0), (0,5,2), (0,0,2)\}$ é base de Im(T) e, portanto, dim Im(T) = 3.

2) Determinar um operador linear $T:\mathfrak{R}^3\to\mathfrak{R}^3$ tal que Im(T)=[(2,1,1),(1,-1,2)]. Observe-se que os vetores (2,1,1) e (1,-1,2) são LI. Considere-se a base canônica $\{e_1,e_2,e_3\}$ do \mathfrak{R}^3 e seja $T:\mathfrak{R}^3\to\mathfrak{R}^3$ tal que $T(e_1)=(2,1,1),\ T(e_2)=(1,-1,2)$ e $T(e_3)=(0,0,0)$. Logo, tomando $(x,y,z)\in\mathfrak{R}^3$, tem-se:

$$(x, y, z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = xe_1 + ye_2 + ze_3.$$

Então:

$$T(x, y, z) = T(xe_1 + ye_2 + ze_3) = T(xe_1) + T(ye_2) + T(ze_3) = xT(e_1) + yT(e_2) + zT(e_3) = x(2,1,1) + y(1,-1,2) + z(0,0,0) = (2x + y, x - y, x + 2y).$$

Assim,

$$T(x, y, z) = (2x + y, x - y, x + 2y).$$

- 3) Seja $T: \Re^3 \to \Re^2$ a transformação linear definida por T(x,y,z) = (x+y,2x-y+z).
- (a) Determinar uma base e a dimensão de Ker(T).

Por definição, tem-se:

$$Ker(T) = \{(x, y, z) \in \Re^3 / T(x, y, z) = (0,0)\}.$$

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Assim, Ker(T) é constituído dos vetores do \Re^3 da seguinte forma:

$$T(x, y, z) = (x + y, 2x - y + z) = (0,0),$$

ou seja,

$$\begin{cases} x + y = 0 \\ 2x - y + z = 0 \end{cases}$$

de onde se conclui que y=-x e z=-3x. Portanto, os vetores do \Re^3 que pertencem ao núcleo de T são da forma (x,-x,-3x), $\forall x \in \Re$, isto é,

$$Ker(T) = \{(x, -x, -3x) / x \in \Re\} = \{x(1, -1, -3) / x \in \Re\} = [(1, -1, -3)].$$

Logo, $\{(1,-1,-3)\}$ é uma base de Ker(T) e dim Ker(T) = 1.

(b) Determinar uma base e a dimensão de Im(T).

Tem-se, por definição:

$$Im(T) = \{(x + y, 2x - y + z) / x, y, z \in \Re\} = \{x(1,2) + y(1,-1) + z(0,1) / x, y, z \in \Re\}.$$

Assim, S = [(1,2), (1,-1), (0,1)] é um sistema de geradores para Im(T). Para encontrar uma base desse espaço, a partir desse sistema de geradores, constrói-se uma matriz com os vetores do conjunto de geradores e escalona-se a matriz. As linhas não nulas da matriz resultante do escalonamento serão vetores LI, os quais formarão a base procurada. Então:

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 0 & 1 \end{pmatrix} \xrightarrow{L_1 - L_2} \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 1 \end{pmatrix} \xrightarrow{L_2 \leftrightarrow L_3} \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 3 \end{pmatrix} \xrightarrow{3L_2 - L_3} \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Então $B' = \{(1,2), (0,1)\}$ é base de Im(T) e, portanto, dim Im(T) = 2.

5 Operações com Transformações Lineares

1) Adição

Sejam V e W espaços vetoriais sobre um corpo K e $F:V\to W$ e $G:V\to W$ transformações lineares. Chama-se adição de F com G a aplicação $F+G:V\to W$ tal que $(F+G)(V)=F(V)+G(V), \forall V\in V$.

<u>Propriedades</u>: dadas as transformações lineares $F:V\to W$, $G:V\to W$ e $H:V\to W$, a operação de adição satisfaz as propriedades:

- a) Comutativa: F + G = G + F
- b) Associativa: F + (G + H) = (F + G) + H
- c) Elemento Neutro: é a transformação linear nula $N:V\to W$, definida por $N(v)=0, \ \forall v\in V$, satisfazendo: F+N=N+F=F.
- d) Elemento Oposto: considerada a transformação linear $F:V\to W$, o elemento oposto da operação de adição é a transformação $(-F):V\to W$, definida por (-F)(v)=-v, $\forall v\in V$, que

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

satisfaz: F + (-F) = (-F) + F = N.

Proposição: Sejam: V e W espaços vetoriais sobre um corpo K e $F:V\to W$ e $G:V\to W$ duas transformações lineares. Então F+G é uma transformação linear.

Demonstração:

Hipótese: F e G são transformações lineares

<u>Tese</u>: F + G é transformação linear

(a) Sejam u e v dois elementos de V. Tem-se, por definição, que:

$$(F+G)(u+v) = F(u+v) + G(u+v)$$

Como, por hipótese, F e G são transformações lineares, pode-se escrever:

$$(F+G)(u+v) = F(u+v) + G(u+v) = [F(u)+F(v)] + [G(u)+G(v)] =$$

$$= [F(u) + G(u)] + [F(v) + G(v)] = (F + G)(u) + (F + G)(v)$$

Assim,
$$(F + G)(u + v) = (F + G)(u) + (F + G)(v)$$
.

(b) Sejam $u \in V$ e $\alpha \in K$; tem-se:

$$(F+G)(\alpha u)=F(\alpha u)+G(\alpha u)=\alpha F(u)+\alpha G(u)=\alpha [F(u)+G(u)]=\alpha [(F+G)(u)].$$

De (a) e (b), conclui-se que F + G é uma transformação linear.

2) Subtração

Sejam V e W espaços vetoriais sobre um corpo K e $F:V\to W$ e $G:V\to W$ transformações lineares. Chama-se subtração das transformações F e G a aplicação $F-G:V\to W$ tal que $(F-G)(v)=F(v)-G(v), \forall v\in V$.

A subtração de F e G é a adição de F com a transformação oposta de G, ou seja, com -G; assim, a subtração de F e G é obtida fazendo-se:

$$F-G=F+(-G)$$

É claro que esta operação satisfaz as mesmas propriedades da adição de transformações. Também é possível demonstrar que é verdadeira a proposição enunciada a seguir.

Proposição: Sejam: V e W espaços vetoriais sobre um corpo K e $F:V\to W$ e $G:V\to W$ duas transformações lineares. Então F-G é uma transformação linear.

3) <u>Multiplicação de uma transformação linear por um escalar</u>

Sejam V e W espaços vetoriais sobre um corpo K, $F:V\to W$ uma transformação linear e $\alpha\in K$. Chama-se multiplicação da transformação F pelo número α a aplicação $(\alpha F):V\to W$ tal que $(\alpha F)(v)=\alpha F(v)$, $\forall v\in V$.

<u>Propriedades</u>: dadas as transformações lineares $F:V\to W$ e $G:V\to W$ e os escalares α e β , a operação de multiplicação por escalar satisfaz as propriedades:

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

a)
$$\alpha(\beta F) = \beta(\alpha F) = (\alpha \beta)F$$

b)
$$\alpha(F+G) = \alpha F + \alpha G$$

c)
$$(\alpha + \beta)F = \alpha F + \beta F$$

d)
$$1 \cdot F = F$$

É possível demonstrar que é verdadeiro o resultado seguinte.

Proposição: Sejam: V e W espaços vetoriais sobre um corpo K, $F:V\to W$ e $\alpha\in K$. Então αF é uma transformação linear.

4) Composição de Transformações Lineares

Sejam: V, U e W espaços vetoriais sobre um corpo K e $F:V \to U$ e $G:U \to W$ transformações lineares. Chama-se transformação composta de G com F, denotada por $G \circ F$, a aplicação $G \circ F:V \to W$, definida por: $(G \circ F)(v) = G(F(v))$, $\forall v \in V$.

A representação gráfica é mostrada na Figura 17.

FIGURA 17

Assim, tem-se:

FIGURA 18

Observação: a composição de G com F, denotada por $G \circ F$, é lida G composta com F ou, então, G bola F. Não se trata, evidentemente, do produto de G por F, denotado por $G \cdot F$. Além disso, tem-se, em geral, que $(G \circ F)(v) \neq (F \circ G)(v)$, ou seja, G composta com F é diferente, em geral, de F composta com G. Portanto, a composição de transformações lineares não é comutativa.

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Proposição: Sejam: V, U e W espaços vetoriais sobre um corpo K e $F:V \to U$ e $G:U \to W$ transformações lineares. Então, $G \circ F:V \to W$ é uma transformação linear.

Demonstração:

Hipótese: F e G são transformações lineares

<u>Tese</u>: $G \circ F$ é transformação linear

(a) Sejam u e v dois elementos de V. Tem-se, por definição, que:

$$(G \circ F)(u+v) = G(F(u+v)).$$

Como, por hipótese, F é uma transformação linear, pode-se escrever:

$$(G \circ F)(u + v) = G(F(u + v)) = G(F(u) + F(v)).$$

Por sua vez, G é uma transformação linear; então:

$$G(F(u) + F(v)) = G(F(u)) + G(F(v)) = (G \circ F)(u) + (G \circ F)(v)$$

Assim,
$$(G \circ F)(u + v) = (G \circ F)(u) + (G \circ F)(v)$$
.

(b) Sejam $u \in V$ e $\alpha \in K$; tem-se:

$$(G \circ F)(\alpha u) = G(F(\alpha u)) = G(\alpha F(u)) = \alpha G(F(u)) = \alpha (G \circ F)(u)$$

De (a) e (b), conclui-se que $G \circ F$ é uma transformação linear.

Para o caso dos operadores lineares, são válidas as propriedades que se seguem.

Propriedades:

Sejam: V, um espaço vetorial sobre um corpo K; $F:V\to V$, $G:V\to V$ e $H:V\to V$ operadores lineares. Então, são válidas as propriedades:

- a) Associativa: $F \circ (G \circ H) = (F \circ G) \circ H$
- b) Elemento Neutro: é o operador linear identidade $Id: V \to V$, definido por Id(v) = v, $\forall v \in V$, satisfazendo: $F \circ Id = Id \circ F = F$.
- c) Distributiva:
- à esquerda: $F \circ (G + H) = F \circ G + F \circ H$
- à direita: $(G + H) \circ F = G \circ F + H \circ F$
- d) Elemento Inverso: considerado o operador linear inversível $F:V\to V$, o elemento inverso da composição de transformações é o operador $F^{-1}:V\to V$ tal que $F\circ F^{-1}=F^{-1}\circ F=Id$.

Observação: as transformações lineares inversíveis serão estudadas no Capítulo 7.

Exemplo: dadas as transformações lineares: $F: \mathbb{R}^2 \to \mathbb{R}^3$, $G: \mathbb{R}^3 \to \mathbb{R}^2$ e $H: \mathbb{R}^2 \to \mathbb{R}^3$, definidas por:

$$F(x,y) = (x + y, x - y, x), G(x,y,z) = (x - y, x + z) \in H(x,y) = (2x - y, y, x + 2y),$$
 determinar:

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

(a)
$$R = 3F + 2H$$

Tem-se:

$$R(x, y) = 3F(x, y) + 2h(x, y) = 3(x + y, x - y, x) + 2(2x - y, y, x + 2y)$$
$$= (7x + y, 3x - y, 5x + 4y)$$

(b)
$$G \circ F$$

$$(G \circ F)(x,y) = G(F(x,y)) = G(x+y,x-y,x) = (x+y-x+y,x+y+x) = (2y,2x+y)$$

(c)
$$F^2 = F \circ F$$

$$F^{2}(x,y) = (F \circ F)(x,y) = F(F(x,y)) = F(x+y,x-y,x) =$$

$$= (x+y+x-y,x+y-x+y,x+y) = (2x,2y,x+y)$$

Exercícios Propostos

- 1) Seja $M_n(\Re)$ o espaço vetorial das matrizes quadradas de ordem n e B uma matriz fixa deste espaço. Mostrar que a aplicação $F: M_n(\Re) \to M_n(\Re)$, definida por: F(X) = BX, $\forall X \in M_n(\Re)$ é um operador linear.
- 2) Sabendo que T é um operador linear do \Re^2 tal que T(1,2)=(3,-1) e T(0,1)=(1,2), determinar a expressão de T(x,y).
- 3) Considere-se a transformação linear definida por:

$$T(x, y, z, t) = (x + y - z, 2x - y + 2z - t, 3x + z - t).$$

Determinar uma base e a dimensão para Im(T) e Ker(T).

R: Base de
$$Im(T)$$
: $\{(1,2,3), (0,1,1)\}$; $dim\ Im(T) = 2$
Base de $Ker(T)$: $\{(-1,1,0,-3), (1,0,1,4)\}$; $dim\ Ker(T) = 2$

4) Determinar um operador do \mathfrak{R}^3 cujo núcleo é constituído pelos pontos da reta de equação $\begin{cases} y=2x \\ z=0 \end{cases}$

e cuja imagem é constituída pelos pontos do plano de equação x + 2y + z = 0.

R:
$$T(x, y, z) = (4x - 2y - z, -2x + y, z)$$

5) Sendo T(x,y) = (3x-2y, x+y, x-y) e G(x,y,z) = (x-y+z,2x-z) duas transformações lineares, determine a dimensão de $Ker(G \circ T)$ e de $Im(G \circ T)$.

R:
$$dim Ker(G \circ T) = 0$$
 e $dim Im(G \circ T) = 2$