Основы теории нечетких множеств

1.1 История теории множеств. Основные понятия

Теории множеств прошла три этапа развития:

- 1. Наивная теория множеств Георг Кантор
- 2. Аксиоматическая теория множеств Эрист Цермелло
- 3. Теория нечетких множеств Лотфи Заде

Определение 1: Множество

Простейшее математическое понятие, т.е. не имеет определения

Под множеством понимают совокупность объектов любой природы (элементов)

Способы представления четких множеств

- Перечисление всех элементов множества.
 - $A=a_1,a_2,\ldots,a_n$
- Путем определения характеристического свойства элементов множества.
 - A = a : P(a)
- Графический способ. (С помощью кругов Эйлера / диаграмм Венна)

Определение 2: Мощность (объемность) множества

Числовая характеристика, определяемая количеством элементов этого множества.

$$A = a_1, a_2, \dots, a_n \longrightarrow |A| = n$$

Виды множеств

- n=0 пустое множество, например $A=\varnothing$
- $n < \infty$ конечное множество
- $n > \infty$ бесконечное счетное или бесконечное несчетное (для непрерывных множеств), например $A = a : a \in \mathbb{N}$
- Конечные и бесконечные множества делятся на **упорядоченные** и **неупорядоченные** множества.

Определение 3: Универсальное множество

Четкое множество, которое используется для построения любых других множеств.

$$U = \{u_1, u_2, \dots, u_n\}$$

Универсальное множество можно использовать в следующих аспектах

- Всеобъемлющее универсальное множество, включающее все объекты окружающего мира.
- Универсальное множество в рамках решения некоторой практической задачи.

1.2 Введение в теорию нечетких множеств

Пусть имеется некоторое универсальное множество

$$U = \{u_1, u_2, \dots, u_n\}$$

Определение 4: Функция принадлежности

Устанавиливает соответствие между элементами универсального множества и числовыми значениями их **степеней принадлежности** некоторому новому множеству A на отрезке [0,1]

Обозначение. $\mu_A(u)$

Значение функции показывает в какой мере, в какой степени этот элемент принадлежит множеству A.

Определение 5: Нечеткое множество

Такое множество, в котором значения функции могут принимать любые значения на отрезке [0,1]

Способы вычисления функций принадлежности

• Прямые (экспертые) методы

Степени принадлежности определяет эксперт, который выражает свое мнение на основе имеющегося у него опыта.

• Косвенные методы

Степени принадлежности определяются на основе измерений свойств элементов

Способы представления нечетких множеств

• Путем перечисления всех элементов множества

$$A = \sum_{i=1}^{n} \mu_A(u_i)/u_i = \mu_A(u_1)/u_1 + \mu_A(u_2)/u_2 + \dots + \mu_A(u_n)/u_n$$

Под знаком + здесь подразумевается объединение

• Путем определения функции принадлежности

$$\mu_A(u):P(u)$$

• Графический способ

Для этого используется диграмма Заде

Значение функции 0.5 является самым нечетким и определяет линию перегиба диаграммы.

3adaча. Задано универсальное множество $U = \{1, 2, ..., 10\}$. На нем надо построить два множества A и X, которые представлены следующими функциями принадлежности: $\mu_A(u) : u < 7, \mu_X(u) : u$ намного меньше, чем 7.

u	1	2	3	4	5	6	7	8	9	10
$\mu_A(u)$	1	1	1	1	1	1	0	0	0	0
$\mu_X(u)$	0	0.1	0.3	0.5	0.7	0.9	0	0	0	0

Решение.

$$A = 1, 2, 3, 4, 5, 6$$

$$X = 0.1/2 + 0.3/3 + 0.5/4 + 0.7/5 + 0.9/6$$

1.3 Нормирование нечетких множеств

Определение 6: Нормальное множество

Таким называется нечеткое множество, если в нем есть хотя бы один элемент универсального множества со степенью принадлежности 1.

Определение 7: Субнормальное множество

Таким называется нечеткое множество, которое не является нормальным

Определение 8: Операция нормирования

$$\forall u \in U : \mu_{A'}(u) = \frac{\mu_A(u)}{\text{MAX}},$$
где $\text{MAX} = \max_{i=1}^n (\mu_A(u_i))$

Таким образом можно всякое субнормальное множество привести к нормальному.

1.4 Носители нечеткого множества

Определение 9: Носитель (суппортом) нечеткого множества

Такое четкое множество supp(A), которое состоит только из таких элементов универсального множества, для которых выполнено условие $\mu_A(u) > 0$

Пример 1.4.1. X = 0.1/2 + 0.3/3 + 0.5/4 + 0.7/5 + 0.9/6 (из предыдущей задачи), множество построего на $U = \{1, 2, \dots, 10\}$. Тогда его носителем будем supp(X) = 2, 3, 4, 5, 6

1.5 Срезы нечеткого множества

Определение 10: α -уровень (α -срез) нечеткого множества

Такое четкое множество A_{α} , которое состоит только из таких элементов универсального множества U, для которых выполняется условие $\mu_A(u) \ge \alpha$.

Пример 1.5.1. Условие из предыдущей задачи. α -срез с $\alpha=0.3$ будет множество $X_{0.3}=3,4,5,6,$ α -срезом с $\alpha=0.7$ - множество $X_{0.7}=5,6$

1.6 Отношения между множествами

A, B - два множества, построенных на универсальном множестве, тогда B включено в A (B - подмножество A) тогда и только тогда, когда выполняется следующее условие:

$$\forall u \in U : \mu_A(u) \ge \mu_B(u)$$

Обозначение. $B \subseteq A$

Аналогично можно определить случаи B является **собственным множеством** A ($B \subset A$) и B и A равны между собой (B = A).

3 a me vanue. Любое множество, построенное на универсальном множестве U, является его подмножеством.

Замечание. $\alpha_1 > \alpha_2 \implies A_{\alpha_1} \subseteq A_{\alpha_2}$

Сравнение множеств по нечеткости

2.1 Расстояние между множествами, метрики

Пусть имеются два множества:

$$A = \sum_{i=1}^{n} \mu_A(u_i) / u_i$$

$$B = \sum_{i=1}^{n} \mu_B(u_i)/u_i$$

Формула 1 (Расстояние между множествами). В линейной метрике:

$$d^{L}(A, B) = \sum_{i=1}^{n} |\mu_{A}(u_{i}) - \mu_{B}(u_{i})|$$

В евклидовой метрике:

$$d^{\varepsilon}(A, B) = \sqrt{\sum_{i=1}^{n} (\mu_A(u_i) - \mu_B(u_i))^2}$$

Свойства (Свойства расстояния).

- Неотрицательность расстояний, $d(A, B) = 0 \iff A = B$.
- Cимметричность, d(A, B) = d(B, A).
- Правило треугольника, d(A, B) < d(A, C) + d(C, B).

Пример 2.1.1. Пусть в универсальном множестве $U = \{u_1, \dots, u_5\}$ построены множества

$$X = 0.1/u_1 + 1/u_3 + 0.9/u_4 + 1/u_5 Y = 0.2/u_2 + 0.8/u_3 + 1/u_4 + 0.5/u_5$$
$$d^L(X,Y) = |0.1 - 0| + |0 - 0.2| + |1 - 0.8| + |0.9 - 1| + |1 - 0.5| = 1.1$$
$$d^{\varepsilon}(X,Y) = \sqrt{(0.1 - 0)^2 + (0 - 0.2)^2 + (1 - 0.8)^2 + (0.9 - 1)^2 + (1 - 0.5)^2} \approx 0.59$$

2.2 Меры нечеткости

Определение 11: Мера нечеткости (D(A))

Расстояние множества A до ближайшего четкого к нему множества A_0

$$D(A) = d(A, A_0)$$

При этом множество A_0 строится следующим образом:

$$\forall u \in U : \mu_{A_0}(u) = \begin{cases} 1 : & \mu_A(u) > 0.5 \\ 0 : & \mu_A(u) \le 0.5 \end{cases}$$

Формула 2 (Мера нечеткости). В линейной метрике:

$$D^{L}(A) = \sum_{i=1}^{n} |\mu_{A}(u_{i}) - \mu_{A_{0}}(u_{i})|$$

В евклидовой метрике:

$$D^{\varepsilon}(A) = \sqrt{\sum_{i=1}^{n} (\mu_{A}(u_{i}) - \mu_{A_{0}}(u_{i}))^{2}}$$

Пример 2.2.1. Пусть в универсальном множестве $U = \{u_1, \dots, u_5\}$ построены множества

$$X = 0.1/u_1 + 1/u_3 + 0.9/u_4 + 1/u_5$$
 $Y = 0.2/u_2 + 0.8/u_3 + 1/u_4 + 0.5/u_5$

Надо сравнить эти множества по нечеткости в линейной метрике

Доказательство. Ближайшими четкими будут:

$$X_0 = u_3, u_4, u_5 Y_0 = u_3, u_4$$

$$D^L(X) = |0.1 - 0| + |0 - 0| + |1 - 1| + |0.9 - 1| + |1 - 1| = 0.2$$

$$D^L(Y) = |0 - 0| + |0.2 - 0| + |0.8 - 1| + |1 - 1| + |0.5 - 0| = 0.9$$

$$supp(X) = u_1, u_3, u_4, u_5 supp(Y) = u_2, u_3, u_4, u_5$$

|supp(X)| = |supp(Y)|, поэтому это сравнение корректо, множество Y более нечетко

Свойства (Свойства мер нечеткости).

- $D(A) \ge 0$
- $D(A) = 0 \iff$ множество A четкое.
- $D(A) \ge D(B) \implies A$ более нечеткое, чем B. Это корректно только в том случае, если носители этих множеств равны по мощности и использовалась одна и та же метрика.
- При сравнении нечеткости двух множеств от выбранной метрики результат не зависит.

2.3 Индексы нечеткости

Формула 3 (Индекс множества). В линейной метрике:

$$I^L(A) = \frac{D^L(A)}{|supp(A)|}$$

В евклидовой метрике:

$$I^{\varepsilon}(A) = \frac{D^{\varepsilon}(A)}{\sqrt{supp(A)}}$$

Свойства (Свойства индексов нечеткости).

- $I(A) \ge 0$
- $I(A) = 0 \iff A$ четкое
- $I(A) \ge I(B) \implies A$ более нечеткое, чем B. Это корректно, если использовалась **одна и та жее метрика**.

Пример 2.3.1. Пусть в универсальном множестве $U = \{u_1, \dots, u_5\}$ построены множества:

$$X = 0.5/u_1 + 0.2/u_3 + 0.9u_4$$
 $Y = 0.2/u_2 + 0.8/u_3 + 1/u_4 + 0.5/u_5$

Надо сравнить эти множества в линейной метрике.

Доказательство.

$$supp(A) = u_1, u_3, u_4 \qquad supp(B) = u_2, u_3, u_4, u_5$$

Так как мощности не равны, их нельзя сравнивать с помощью мер нечеткости, а можно только с помощью индексов нечеткости.

$$X_0 = u_4 Y_0 = u_3, u_4$$

$$I^L(X) = \frac{D^L(X)}{|supp(X)|} = \frac{0.8}{3} \approx 0.27$$

$$I^L(Y) = \frac{D^L(Y)}{|supp(Y)|} = \frac{0.9}{4} \approx 0.23$$

Множество X более нечеткое.

$$X = 0.5/u_1 + 0.2/u_3 + 0.9u_4$$
 $Y = 0.2/u_2 + 0.8/u_3 + 1/u_4 + 0.5/u_5$

Надо сравнить эти множества в евклидовой метрике.

Доказательство.

$$supp(A) = u_1, u_3, u_4$$
 $supp(B) = u_2, u_3, u_4, u_5$

Так как мощности не равны, их нельзя сравнивать с помощью мер нечеткости, а можно только с помощью индексов нечеткости.

$$X_0 = u_4 Y_0 = u_3, u_4$$

$$I^L(X) = \frac{D^{\varepsilon}(X)}{\sqrt{|supp(X)|}} = \frac{\sqrt{0.3}}{\sqrt{3}} \approx 0.32$$

$$I^L(Y) = \frac{D^{\varepsilon}(Y)}{\sqrt{|supp(Y)|}} = \frac{\sqrt{0.33}}{\sqrt{4}} \approx 0.29$$

Множество X более нечеткое.

2.4 Методики построения множеств по условиям нечеткости

2.4.1 Методика построения более нечеткого множества

В цикле по всем элементам универсального множества $u \in U$ надо выполнить следующие действия:

- 1. Оценить интервал для выбора $\mu_B(U)$ по правилу $0.5 \delta < \mu_B(u) < 0.5 + \delta$ $\delta = |0.5 \mu_A(u)|$
- 2. Если $\delta = 0$, то $\mu_B(u) = 0.5$, в противном случае выбрать $\mu_B(u)$ из интервала. Так как самое нечеткое множество состоит из всех 0.5, то данная методика не даст этому множеству более нечеткое.

2.4.2 Методика построения более нечеткого подмножества

В цикле по всем элементам универсального множества $u \in U$ выполнить следующие действия:

1. Оценить интервал для выбора $\mu_B(u)$ по правилу:

$$0.5 - \delta < \mu_B(u) < 0.5 + \delta \wedge \mu_B(u) \le \mu_A(u)$$
$$\delta = |0.5 - \mu_A(u)|$$

2. Если интервал пустой, то выбрать $\mu_B(u) = \mu_A(u)$, в противном случае выбрать $\mu_B(u)$ из интервала. Так как самое нечеткое множество состоит из всех 0.5, то данная методика не даст этому множеству более нечеткое.

2.4.3 Методика построения более четкого множества

В цикле по всем элементам универсального множества $u \in U$ надо выполнить следующие действия:

- 1. Если $\mu_A(u)>0.5$, то оценить интервалы для выбора $\mu_B(u)$ по правилу $\mu_B(u)>\mu_A(u)$ и $\mu_B(u)<1-\mu_A(u)$.
- 2. Если $\mu_A(u) \leq 0.5$, то оценить интервалы для выбора $\mu_B(u)$ по правилу $\mu_B(u) < \mu_A(u)$ и $\mu_B(u) > 1 \mu_A(u)$.
- 3. Выбрать $\mu_B(u)$ из данных интервалов. Методика дает ответ только в том случае, если множество A не является четким.

2.4.4 Методика построения более четкого подмножества

В цикле по всем элементам универсального множества $u \in U$ надо выполнить следующие действия:

- 1. Если $\mu_A(u) > 0.5$, то оценить интервалы для выбора $\mu_B(u)$ по правилу $\mu_B(u) < 1 \mu_A(u)$.
- 2. Если $\mu_A(u) \leq 0.5$, то оценить интервалы для выбора $\mu_B(u)$ по правилу $\mu_B(u) < \mu_A(u)$.
- 3. Выбрать $\mu_B(u)$ из интервала. Методика дает ответ только в том случае, если множество A не является четким.

Алгебра нечетких множеств

3.1 Дополнение множества

Пусть на универсальном множестве U построено нечеткое множество

$$A = \sum_{i=1}^{n} \mu_A(u_i) / u_i$$

Определение 12: Дополнение множества А

Такое новое нечеткое множество A, в котором

$$\forall u \in U : \mu_{\bar{A}}(u) = 1 - \mu_A(u)$$

3.2 Объединение множеств

Пусть на универсальном множестве U построены несколько нечетких множеств

$$A_1 = \sum_{i=1}^n \mu_{A_1}(u_i)/u_i$$
 ... $A_m = \sum_{i=1}^n \mu_{A_m}(u_i)/u_i$

Определение 13: Объединение множеств A_1,\ldots,A_m

Такое новое множество $\bigcup_{j=1}^{m} A_{j}$, в котором:

$$\forall u \in U : \mu_{\bigcup_{j=1}^{m} A_j} = \max_{j=1}^{m} \mu_{A_j}(u)$$

3.3 Пересечение множеств

Пусть на универсальном множестве U построены несколько нечетких множеств

$$A_1 = \sum_{i=1}^n \mu_{A_1}(u_i)/u_i$$
 ... $A_m = \sum_{i=1}^n \mu_{A_m}(u_i)/u_i$

Определение 14: Пересечение множеств A_1, \ldots, A_m

Такое новое множество $\bigcap_{j=1}^{m} A_{j}$, в котором:

$$\forall u \in U : \mu_{\bigcap_{j=1}^m A_j} = \min_{j=1}^m \mu_{A_j}(u)$$

3.4 Разность множеств

Пусть на универсальном множестве U построены несколько нечетких множеств

$$A = \sum_{i=1}^{n} \mu_A(u_i)/u_i$$
 $B = \sum_{i=1}^{n} \mu_B(u_i)/u_i$

Определение 15: Разность множеств A, B

Такое новое множество $A \setminus B$, в котором:

$$\forall u \in U : \mu_{A \setminus B} = \min \left[\mu_A(u), \mu_{\bar{B}}(u) \right]$$

Свойства.

- $A \setminus B = A \cap \bar{B}$
- $A \setminus B \neq B \setminus A$

Определение 16: Симметрическая разность множеств A, B

Такое новое множество A + B, в котором:

$$\forall u \in U : \mu_{A+B} = \max(\min[\mu_A(u), \mu_{\bar{B}}(u)], \min[\mu_{\bar{A}}(u), \mu_B(u)])$$

Свойства.

- $A + B = (A \setminus B) \cup (B \setminus A)$
- $\bullet \ A + B = B + A$

3.5 Декартово произведение множеств

Пусть заданы два непустых множества A, B.

Определение 17: Прямое декартовое произведение А, В

Такое новое множество $A \cdot B$, элементами которого являются все возможные упорядоченные пары, составленные из элементов этих множеств, т.е:

$$\forall (a,b) \in A \cdot B : a \in A, b \in B$$

Свойства.

- $|A| = n, |B| = m \implies |A \cdot B| = n \cdot m$
- $A \cdot B \neq B \cdot A$

Пример 3.5.1. Пусть даны $X = \{1, 2, 3\}, Y = \{a, b\}$, тогда:

$$X \cdot Y = \{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)\}$$

$$Y \cdot X = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

3.6 Тождества и законы алгебры нечетких множеств

Таблица 3.1: Основные свойства и тождества алгебры множеств

	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
$N_{ar{0}}$	Свойство	Тождества		
1	Коммутативность	$A \cup B = B \cup A$ $A \cap B = B \cap A$		
2	Ассоциативность	$A \cup (B \cup C) = (A \cup B) \cup C$		
3	Дистрибутивность	$A \cup (B \cap C) = (A \cup C) \cap (A \cup B)$		
		$A \cap (B \cup C) = (A \cap C) \cup (A \cap B)$		
4	Идемпотентность	$A \cup A = A$		
		$A \cap A = A$		
5	Свойство нуля	$A \cup \emptyset = A$		
)		$A \cap \emptyset = \emptyset$		
6	Свойство единицы	$A \cup U = U$		
		$A \cap U = A$		

Таблица 3.2: Основные законы алгебры нечетких множеств

	1	1
$N_{\overline{0}}$	Закон	Тождества
1	Закон поглощения	$A \cup (A \cap B) = A$
		$A \cap (A \cup B) = A$
2	Закон двойного дополнения	$\bar{\bar{A}} = A$
3	Закон де Моргана	$A \bar{\cup} B = \bar{A} \cap \bar{B}$
		$A \bar{\cap} B = \bar{A} \cup \bar{B}$

Теорема 3.6.1

Тождества $A \cup \bar{A} = U$ и $A \cap \bar{A} = \emptyset$ не выполня.тся для нечетких множеств.

Доказательство. Пусть есть некоторое нечеткое множество $A = \sum_{i=1}^n \mu_A(u_i)/u_i$. По определению у него есть какой-то элемент $u_j: 0 < \mu_A(u_j) < 1$. Тогда $0 < \mu_{\bar{A}}(u_j) < 1$. Из этого следует, что $0 < \mu_{A \cup \bar{A}}(u_j) < 1$ и $0 < \mu_{A \cap \bar{A}}(u_j) < 1$. Очевидно, что это нечеткое множество, а значит не \emptyset или не U.

Бинарные отношения на множествах

4.1 Понятие бинарного отношения

Пусть заданы $A \neq \emptyset$, $B \neq \emptyset$.

Определение 18: Бинарное отношение R

Такое новое множество $R \subseteq A \cdot B$, где $A \cdot B$ - прямое декартовое произведение.

Если некоторая упорядоченная пара $(a, b) \in R$, то говорят, что элемент $a \in A$ находится в отношении R с элементом $b \in B$. Используется запись aRb.

Определение 19: Область определения б. о. R

Такое новое множество $DomR = \{a : (a, b) \in R\}$, элементы этого множества определяют первую координату отношения R.

Определение 20: Множество значения б. о. R

Такое новое множество $ImR = \{b : (a, b) \in R\}$, элементы этого множежства определяют вторую координату отношения R.

$$DomR \subseteq A$$

$$ImR \subseteq B$$

Для построения бинарного отношения необходимо определить функцию принадлежности $\mu_R(a,b)$, которая устанаваливает степени принадлежности данной пары $(a,b) \in A \cdot B$ к множеству R на отрезке [0,1]. При этом множество R может получиться как четким, так и нечетким.

Бинарное отношение R часто представляют в виде матрицы отношения $||M_R||$, в которой число строк |A|, число столбцов |B|, а элементы матрицы - степени принадлежности пары (a,b) к множеству R.

4.2 Обратное отношение

Пусть есть некоторое бинарное отношение R на множествах A, B.

Определение 21: Обратное отношение для отношения R

Такое новое множество $R^{-1} = \{(b, a) : (a, b) \in R\}$, т.е. множество тех же упорядоченных пар, в котрых координаты поменяли местами.

Замечание.

$$Dom R^{-1} = Im R$$

$$ImR^{-1} = DomR$$

Матрица $||M_{R^{-1}}||$ получается из $||M_R||$ путем транспонирования.

4.3 Композиция отношений

Пусть есть два бинарных отношения $R_1 \subseteq A \cdot B, R_2 \subseteq B \cdot C$.

Определение 22: Композиция бинарных отношений R_1, R_2

Такое новое множество $R_1 \circ R_2$, включающее в себя только упорядоченные пары, удовлетворяющие следующему условию:

$$(a,b) \in R_1, (b,c) \in R_2 \implies (a,c) \in R_1 \circ R_2$$

Степень принадлежности же вычисляется следующим образом:

$$\mu_{R_1 \circ R_2}(a, c) = \max_{b \in B} (\min(\mu_{R_1}(a, b), \mu_{R_2}(b, c)))$$

Композиция устанавливает бинарное отношение между элементами множеств A, C опосредованно через элементы множества B.

4.4 Отображение множеств, функции на множествах

Всякое бинарное отношение $R \subseteq A \cdot B$ можно рассматривать как отображение $f: A \to B$.

Определение 23: Отобрание f

Соответствие, установленное между элементами **множества оригиналов (прообразов)** A и элементами **множества образов** B в отношении R.

Если есть упорядоченная пара $(a,b) \in R$, то ее можно рассмтаривать как отображение f(a) = b. Графически соответсвие элементов при отображении изображается с помощью дуг, у которых истоком является оригинал, а стоком - его прообраз.

Если отношение R нечеткое, то дугам присваиваются веса, равные $(a, b) \in R$.

Определение 24: Функция

Такое отображение f, которое является инъективным.

Определение 25: Область определения функции

Такое множество $Dom f = \{a : a \in A, \exists b \in B(b = f(a))\}$

Определение 26: Область значений функции

Такое множество $Imf = \{b : b \in B, \exists a \in A(b = f(a))\}$

$$Dom f \subseteq A$$

$$Imf \subseteq B$$

Определение 27: Тотальная и частичная функция

Тотальная: Такая функция f, у которой Dom f = A.

Частичная: Не тотальная функция.

Определение 28: Сужение функции f на множество $M \subset A$

Такая функция $f|_{M}$, определяемая бинарным отношение $R|_{M} = \{(a,b) : (a,b) \in R, a \in M\}$. При этом функция f является **продолжением** функции $f|_{M}$.

1. Функциональность отображения и тотальность функции устанавливются по множестве оригиналов A.

Виды функций

- Инъективная: $f(a) = c \land f(b) = c \iff a = b$.
- Сюръективная: $\forall b \in B \exists a \in A : f(a) = b$.
- Биективная: одновременно инъективная и сюръективная.
- **2.** Вид функции устанавливается по множеству образов B.

Свойства обратных отображений

- $\bullet\,$ Если функция f является тотальной биекцией для R, то обратное отношение R^{-1} тоже является тотальной биекцией
- Если функция f является инъекцией для R, то обратное отношение R^{-1} тоже является функцией.

Свойства специальных бинарных отношений

5.1 Понятие специального бинарного отношения

Пусть задано непустое множество $X = \{x_1, ..., x_n\}$.

Определение 29: Специальное бинарное отношение R на X

Такое новое множество $R \subseteq X \cdot X$.

$$DomR \subseteq X$$

$$ImR \subseteq X$$

Графическое изображение специального бинарного отношения - граф.

Если отношение нечеткое, то и граф будет нечетким, т.е. каждая дуга будет иметь вес, равные степени принадлежности данной пары.

При этом каждому отношению можно сопоставить несколько разных графов, отличающихся только кратностью дуг.

5.2 Рефлексивность

Основное свойство с.б.о. зависящее от наличия (отсутствия) в нем упорядоченных пар с одинаковыми координатами.

Определение 30: Рефлексивность

с.б.о. $R \subseteq X \cdot X$ называется **рефлексивным**, если:

$$\forall x \in X : \mu_R(x, x) = 1$$

Это граф, в котором на каждой вершине есть петля, на главной диагонали $||M_R||$ стоят только 1.

Определение 31: Антирефлексивность

с.б.о. $R \subseteq X \cdot X$ называется **антирефлексивным**, если:

$$\forall x \in X : \mu_R(x, x) = 0$$

Это граф без петель, на главной диагонали $||M_R||$ стоят только 1.

Если для R эти условия не выполняются, то R не обладает свойством рефлексивности.

5.3 Симметричность

Основное свойство специальных бинарных отношений, зависящее от наличия (отсутствия) в нем упорядоченных пар вида $(x,y) \in R$ и $(y,x) \in R$.

Определение 32: Симметричность

с.б.о. $R \subseteq X \cdot X$ называется **симметричным**, если:

$$\forall (x,y) \in R \exists (y,x) \in R : \mu_R(x,y) = \mu_R(y,x)$$

Определение 33: Антисимметричность

с.б.о. $R \subseteq X \cdot X$ называется **антисимметричным**, если:

$$\forall (x,y) \in R \exists (y,x) \in R : \mu_R(x,y) \neq \mu_R(y,x) \lor \mu_R(x,y) = \mu_R(y,x) = 0$$

Если для R эти условия не выполняются, то R не обладает свойством симметричности.

5.4 Транзитивность

Определение 34: Отношение второй степени для $R \subseteq X \cdot X$

Новое множество $R^2 = R \circ R$, которое строится по правилам из лекции 4. Это множество включает в себя упорядоченные пары, для которых выполняется условие:

$$\forall (x,z) \in R^2 : (x,y) \in R, (y,z) \in R$$

Определение 35: Транзитивность

с.б.о. $R \subseteq X \cdot X$ называется **транзитивным**, если:

$$\forall (x,y) \in R \land (y,z) \in R \implies (x,z) \in R$$

Если каждый элемент в матрице M_{R^2} не больше соответстующего элемента в матрице M_R , то это отношении транзитивно, в противном случае это отношение не обладает свойством транзитивности.

Определение 36: Транзитивное замыкание с.б.о. R

Множество R_T , являющееся обхединением отношений всех его степеней, т.е.

$$R_T = \cup_{i=1}^{\infty} R^i$$

Построение ряда множеств R^1, R^2, \dots завершается, если на каком-то шаге i выполняется условие $M_{R^i} = M_{R^{i-1}}$.

Для транзитивного с.б.о. очевидно, что $R=R_T$.

5.5 Эквивалентность

Определение 37: Эквивалентное отношение R

Такое с.б.о. R, которое является рефлексивным, симметричным и транзитивным.

Пусть $R \subseteq X \cdot X$ - отношение эквивалентности.

Определение 38: Класс эквивалентности [x], порожденный $x \in X$

Такое подмножество $y \in X$, для которых $(x, y) \in R$.

Свойства.

- $x \in X \implies x \in [x]$
- $(x,y) \in R \implies [x] = [y]$
- ullet Отношение R разбивает X на непересекающиеся между собой классы эквивалентности.

5.6. ПОРЯДОК Страница 18

Определение 39: Фактор-множество X/R

Такое множество, содержащее в качестве элементов все классы эквивалентности [x] в отношении R.

5.6 Порядок

Определение 40: Отношение порядка

Всякое рефлексивное, антисимметричное и транзитивное с.б.о. $R \subseteq X \cdot X$ называется отношением (частичного) порядка на X и обозночается символом \prec .

Определение 41: Непосредственное окрывание элемента

Говорят, что $y \in X$ непосредственно покрывает $x \in X$ в отношении R, если не другого $z \in X$, что $x \prec z \prec y$, где $x \neq y \neq z$.

Определение 42: Линейный порядок

Отношение порядка R на X, где два любых элемента сравнимы.

Определение 43: Упорядоченное множество

Такое $X_R = \{x_1, \ldots, x_n\}$, что $x_1 \prec \ldots \prec x_n$ в отношении R.

Любое упорядоченное множество X_R можно представить в виде **диаграммы Хосе**, в которой каждый элемент изображается точкой на плоскости. Если $x \prec y$, то эти точки соединяют на схеме отрезком, причем точка x изображается **ниже**, чем y.

Таблица 5.1: Свойства нечетких специальных бинарных отношений

1			1		
Свойство	Рефл	Антирефл	Транз	Симметр	Антисимметр
Сходство	+			+	
Несходство		+		+	
Подобие	+		+	+	
Препорядок	+		+		
Нестрогий порядок	+		+		+
Строгия порядок		+	+		+