

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

* * *

NB: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

* * *

Le sujet est composé d'un exercice et d'un problème indépendants.

EXERCICE

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par : $f(x,y) = \frac{x+y}{(1+x^2)(1+y^2)}$.

- a. On pose $F = [0, 1] \times [0, 1]$, justifier que la fonction f est bornée sur F et y atteint sa borne supérieure. On pose alors $M = \sup_{(x, y) \in F} f(x, y)$.
- **b.** Montrer que si la borne supérieure est atteinte en un point de l'ouvert $\Omega = \left]0,1\right[\times \left]0,1\right[$ alors nécessairement $M = \frac{3\sqrt{3}}{8}$.
- c. Déterminer le maximum de la fonction f sur la frontière de F et le comparer à $\frac{3\sqrt{3}}{8}$ (on pourra utiliser la calculatrice). Déterminer M.

PROBLÈME : ÉCHANGES DE LIMITES ET D'INTÉGRALES

Toutes les fonctions de ce problème sont à valeurs réelles.

PARTIE PRÉLIMINAIRE

Les résultats de cette partie seront utilisés plusieurs fois dans le problème.

1. Fonction Gamma d'Euler

a. Soit $x \in [0, +\infty)$, montrer que la fonction $t \mapsto e^{-t} t^{x-1}$ est intégrable sur $[0, +\infty)$.

On pose, pour
$$x \in \left] 0, +\infty \right[, \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$$
.

b. Déterminer, pour $x \in]0, +\infty[$, une relation entre $\Gamma(x+1)$ et $\Gamma(x)$ et en déduire $\Gamma(n)$ pour tout entier naturel non nul n.

2. Fonction zêta de Riemann

On rappelle que la fonction zêta est définie sur $]1, +\infty[$ par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

On connaît $\zeta(2) = \frac{\pi^2}{6}$, $\zeta(4) = \frac{\pi^4}{90}$, on sait que pour p entier pair, $\zeta(p)$ est de la forme $q \pi^p$ où q est un rationnel; il a été démontré que certains $\zeta(p)$ pour p entiers impairs sont irrationnels mais on ne sait pas s'ils le sont tous.

On se propose de rechercher des valeurs approchées de ces réels $\zeta(p)$.

a. On note, pour *n* entier naturel non nul et *x* réel x > 1, $R_n(x) = \sum_{k=n+1}^{+\infty} \frac{1}{k^x} = \zeta(x) - \sum_{k=1}^{n} \frac{1}{k^x}$.

Prouver que, pour *n* entier naturel non nul et *x* réel x > 1, $R_n(x) \le \frac{1}{(x-1)n^{x-1}}$.

- **b.** On fixe l'entier $p \ge 2$ et un réel $\varepsilon > 0$. Indiquer une valeur de n pour laquelle on a $\left| \sum_{k=1}^{n} \frac{1}{k^p} \zeta(p) \right| \le \varepsilon.$
- c. Donner, en utilisant la calculatrice, une valeur approchée de $\zeta(7)$ à 10^{-6} près.

PREMIÈRE PARTIE : SUITES DE FONCTIONS

<u>Préliminaire</u>: Dans les questions 3 à 5 suivantes, on n'utilisera pas pour les démonstrations le théorème de convergence dominée, énoncé à la question 6.

3. Théorème de convergence uniforme pour les suites de fonctions

Démontrer le théorème suivant que l'on notera **TH 1**: si (f_n) est une suite de fonctions continues sur le segment [a,b] qui converge uniformément vers une fonction f sur [a,b], alors, la suite de réels $\left(\int_a^b f_n(x) \, \mathrm{d}x\right)$ converge vers le réel $\int_a^b f(x) \, \mathrm{d}x$.

On commencera par donner un sens à l'intégrale $\int_a^b f(x) dx$ juste en énonçant un théorème.

4. Exemples et contre-exemples

a. Déterminer une suite (f_n) de fonctions continues et affines par morceaux sur le segment [0,1] qui converge simplement mais non uniformément vers une fonction f sur [0,1] et telle que la suite de réels $\left(\int_0^1 f_n(x) \, \mathrm{d}x\right)$ ne converge pas vers le réel $\int_0^1 f(x) \, \mathrm{d}x$.

Remarque: on peut se contenter d'une vision graphique et, dans ce cas, il est inutile d'exprimer $f_n(x)$, mais on attend une justification des deux propriétés demandées.

b. Si (f_n) est une suite de fonctions continues sur le segment [0,1], démontrer qu'il est possible que la suite de réels $\left(\int_0^1 f_n(x) dx\right)$ converge vers le réel $\int_0^1 f(x) dx$ sans que la convergence de la suite de fonctions (f_n) ne soit uniforme sur [0,1].

5. Cas d'un intervalle quelconque

a. Montrer à l'aide de la suite de fonctions $(f_n)_{n\geq 1}$ définies sur $I=[0,+\infty[$ par

$$f_n(x) = \frac{x^n e^{-x}}{n!}$$

que le **TH 1** n'est pas vrai si on remplace l'intervalle [a, b] par un intervalle I non borné. Remarque : on pourra utiliser la formule de Stirling sans la démontrer.

- **b.** Nous allons prouver que le **TH 1** est vrai sur un intervalle borné I. On considère (f_n) une suite de fonctions continues et intégrables sur I intervalle borné, qui converge uniformément vers une fonction f sur I.
 - i. Justifier l'existence d'un entier naturel p tel que, pour tout réel $x \in I$, $|f(x)| \le 1 + |f_n(x)|$ et en déduire que f est intégrable sur I.
 - ii. Montrer que la suite de réels $\left(\int_I f_n(x) dx\right)$ converge vers le réel $\int_I f(x) dx$. On notera $\ell(I)$ la longueur de l'intervalle I.

6. Théorème de convergence dominée pour les suites de fonctions

On rappelle le théorème suivant que l'on notera TH 2 :

si (f_n) est une suite de fonctions continues par morceaux sur un intervalle I qui converge simplement sur I vers une fonction f continue par morceaux sur I et s'il existe une fonction φ continue par morceaux et intégrable sur I telle que, pour tout entier naturel n et tout réel $x \in I$: $|f_n(x)| \le \varphi(x)$ alors, la fonction f est intégrable sur I et la suite de réels $\left(\int_I f_n(x) \, \mathrm{d}x\right)$ converge

vers le réel
$$\int_I f(x) dx$$
.

- **a.** Rappeler pourquoi il est inutile de vérifier, lorsqu'on utilise ce **TH 2**, que les fonctions f_n sont intégrables sur I et justifier que f est intégrable sur I.
- b. Exemples
 - Montrer à l'aide d'un exemple simple que ce théorème peut être pratique sur un segment I sur lequel la suite de fonctions (f_n) ne converge pas uniformément vers la fonction f.
 - ii. Calculer $\lim_{n\to+\infty} \int_0^{+\infty} \frac{e^{\sin(\frac{x}{n})}}{1+x^2} dx$.

DEUXIÈME PARTIE : SÉRIES DE FONCTIONS

7. Théorème de convergence uniforme pour les séries de fonctions

Justifier, simplement, à l'aide du TH 1 le théorème suivant que l'on notera TH 3 :

si $\sum f_n$ est une série de fonctions continues sur le segment [a, b] qui converge uniformément

sur [a, b], alors, la série de réels $\sum \int_a^b f_n(x) dx$ converge et :

$$\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \left(\sum_{n=0}^{+\infty} f_n(x) \right) dx.$$

8. Application : séries trigonométriques et séries de Fourier

On appellera série trigonométrique une série de fonctions du type

$$\frac{a_0}{2} + \sum_{n \ge 1} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$
 où (a_n) et (b_n) sont deux suites de réels.

La série de Fourier d'une fonction 2π -périodique et continue par morceaux sur $\mathbb R$ est donc une série trigonométrique.

a. Montrer qu'une série trigonométrique n'est pas toujours la série de Fourier d'une fonction 2π -périodique et continue par morceaux sur $\mathbb R$.

Pour cela, utiliser la série de fonctions $\sum_{n\geq 1} \frac{1}{\sqrt{n}} \sin(nx)$ avec le théorème de Parseval que

l'on commencera par énoncer.

b. Montrer qu'une série trigonométrique qui converge uniformément sur \mathbb{R} est la série de Fourier d'une fonction 2π -périodique et continue sur \mathbb{R} .

On utilisera sans démonstration les résultats classiques pour n et p entiers naturels :

$$\int_0^{2\pi} \cos(px) \cos(nx) \, dx = \int_0^{2\pi} \sin(px) \sin(nx) \, dx = \begin{cases} 0 & \text{si } n \neq p \\ \pi & \text{si } n = p \neq 0 \end{cases}$$

$$et \int_0^{2\pi} \sin(px)\cos(nx) dx = 0.$$

9. Intégration terme à terme d'une série de fonctions

On rappelle le théorème suivant que l'on notera **TH 4** :

si $\sum f_n$ est une série de fonctions continues par morceaux et intégrables sur un intervalle I qui converge simplement vers une fonction f continue par morceaux sur I telle que la série $\sum \int_I |f_n(x)| dx$ converge, alors f est intégrable sur I, la série $\sum_{n\geq 0} \int_I f_n(x) dx$ converge et

$$\sum_{n=0}^{+\infty} \int_{I} f_{n}(x) dx = \int_{I} \left(\sum_{n=0}^{+\infty} f_{n}(x) \right) dx.$$

Application: théorème de Hardy

On suppose que $\sum a_n$ est une série de réels absolument convergente.

- **a.** Montrer que la série de fonctions $\sum_{n\geq 0} \frac{a_n x^n}{n!}$ converge simplement vers une fonction f continue sur \mathbb{R} .
- **b.** Montrer que la fonction $x \mapsto f(x) e^{-x}$ est intégrable sur $[0, +\infty[$ et exprimer $\int_0^{+\infty} f(x) e^{-x} dx$ comme la somme d'une série numérique.

10. Cas où les théorèmes TH 3 et TH 4 ne s'appliquent pas

- a. Montrer que, la série de fonctions $\sum_{n\geq 0} (-1)^n x^n$ ne converge pas uniformément sur l'intervalle borné I = [0, 1[(donc les hypothèses du théorème **TH 3** ne sont pas toutes vérifiées).
- **b.** Montrer que, pour la série de fonctions $\sum_{n\geq 0} (-1)^n x^n$ sur I = [0, 1[, les hypothèses du théorème **TH 4** ne sont pas toutes vérifiées.
- c. Montrer que, néanmoins, $\sum_{n\geq 0} \int_0^1 (-1)^n x^n dx$ converge et :

$$\sum_{n=0}^{+\infty} \int_0^1 (-1)^n x^n dx = \int_0^1 \left(\sum_{n=0}^{+\infty} (-1)^n x^n \right) dx.$$

11. Théorème de convergence monotone

Soit $\sum f_n$ une série de fonctions continues par morceaux et intégrables sur un intervalle I qui converge simplement vers une fonction f continue par morceaux sur I. On suppose que toutes les fonctions f_n sont positives sur I et que la fonction f est intégrable sur I.

On pose, pour tout entier naturel n non nul et tout $x \in I$, $S_n(x) = \sum_{k=0}^n f_k(x)$.

Montrer que la suite de fonctions (S_n) vérifie les hypothèses du théorème de convergence dominée **TH 2**, et en déduire que :

la série
$$\sum_{n\geq 0} \int_I f_n(x) dx$$
 converge et $\sum_{n=0}^{+\infty} \int_I f_n(x) dx = \int_I \left(\sum_{n=0}^{+\infty} f_n(x)\right) dx$.

12. Application à la physique

a. Calculer, après avoir justifié son existence, l'intégrale $\int_0^{+\infty} \frac{t^3}{e^t - 1} dt$.

On détaillera toutes les étapes et on pourra remarquer que, pour $t \in]0, +\infty[$, on a $\frac{1}{e^t - 1} = \frac{e^{-t}}{1 - e^{-t}}.$

Cette intégrale intervient notamment dans la théorie du rayonnement du corps noir.

La loi de Planck donne l'expression de la densité spectrale d'énergie électromagnétique u_{λ} rayonnée par le corps noir, en fonction de la longueur d'onde par la formule :

$$u_{\lambda} = \frac{8 \pi h c}{\lambda^5} \frac{1}{\exp\left(\frac{h c}{k_B \lambda T}\right) - 1}$$

où h et k_B sont les constantes de Planck et de Boltzmann, c la célérité de la lumière dans le vide, λ la longueur d'onde et T la température.

Ainsi, la densité volumique totale d'énergie électromagnétique u (rayonnée sur tout le spectre des longueurs d'onde) s'écrit : $u = \int_{0}^{+\infty} u_{\lambda} d\lambda$.

Si on note M l'exitance totale d'un corps noir on sait que M et u sont liés par la relation $M = \frac{c}{4}u$.

b. Démontrer la loi de Stefan : $M = \sigma T^4$ où $\sigma = \frac{2 \pi^5 (k_B)^4}{15 h^3 c^2}$.

13. Généralisation

- **a.** Exprimer de même pour x réel x > 1, l'intégrale $\int_0^{+\infty} \frac{t^{x-1}}{e^t 1} dt$ en fonction de $\Gamma(x)$ et $\zeta(x)$.
- **b.** En déduire la valeur de $\int_0^{+\infty} \frac{t}{e^t 1} dt$ et une valeur approchée de $\int_0^{+\infty} \frac{t^6}{e^t 1} dt$.

Fin de l'énoncé.