## MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2011 SOLUTION KEY

**Round 5** (Exact equivalents in terms of  $\pi$  are acceptable.)



Place a quarter tangent to circle of the innermost quarter at each vertex of a regular hexagon inscribed inside this circle. Every adjacent pair is tangent to each other as well as the innermost circle, since the lines connecting the centers (ex. *ABC*) form an equilateral triangle.

From the diagram, the radius of the covering coin is  $\frac{3}{2}$ .

Therefore, the required area is  $\frac{9\pi}{4}$ .



B) Let x denote the side of the original square. Telescoping the four corners, the area lost equals the area of the region inside a square with edge 2r and outside a circle of radius r, i.e.  $4r^2 - \pi r^2$ 

⇒ 
$$r^2(4-\pi) = 0.1x^2$$
 ⇒  $\frac{x^2}{r^2} = \frac{(4-\pi)}{0.1}$  ⇒  $\underline{10(4-\pi)}$ 



C) The measure of an angle formed by two secant lines is half the difference of its intercepted

arcs. Thus, 
$$5x+3=\frac{1}{2}(15x+8-6x+6)$$

$$\rightarrow 10x + 6 = 9x + 14 \rightarrow x = 8$$

→ 
$$BD = 128^{\circ}$$
,  $AE = 42^{\circ}$ ,

$$DE = 280 - 128 = 152^{\circ},$$

$$BCA = 38^{\circ}$$

Finally, as an inscribed angle,

$$m\angle AED = \frac{1}{2}(128 + 38) = \underline{83}^{\circ}$$

Alternate solution (Tuan Lee):

As above 
$$x = 8 \rightarrow m \angle P = 43^{\circ}$$
.

Since  $\angle BCE$  and  $\angle BAE$  are both inscribed angles intercepting the same arc BDE, each measures 140°. As an exterior angle of  $\triangle APE$ , m $\angle BAE = m\angle BPD + m\angle AEP$  = m $\angle BPD + 180 - m\angle AED$  and we have: m $\angle AED = 180 - 140 + 43 = 83$ °.

