

Topologia

Como é que os objectos espaciais interagem uns com os outros?

Ideia intuitiva:

Imaginem-se dois polígonos que se tocam (*meet*); os polígonos estão desenhados sobre uma folha de borracha.

Como se transforma a relação entre os polígonos ao deformar-se a folha de borracha?

- 1. os polígonos afastam-se
- 2. os polígonos intersectam-se
- 3. os polígonos mantêm a fronteira

Topologia (cont.)

Desenho Original

... os polígonos mantêm a fronteira

Neste exemplo a relação topológica é a de "tocar" (meet)

Ou seja, *meet* é uma relação (propriedade) topológica e o estudo das transformações (deformações) que preservam propriedades topológicas designa-se por *topologia*.

..Relação Topológica e não-Topológica

Considere-se o mapa da Europa com as fronteiras políticas dos países.

Países vizinhos tocam-se (meet) quer sejam desenhados na esfera ou no plano.

A área de um país pode definir uma relação topológica?

- 1. sim, porque se mantém proporcional com a dos outros países
- 2. não, porque se altera por deformação da superfície onde está inscrita
 - 3. depende, porque pode haver deformações que preservem a área

Relações Topológicas e Interrogações

... a área altera-se por deformação da superfície onde está inscrita

... a área não permite estabelecer uma relação topológica

Algumas relações topológicas são:

tocar (*meet*), estar contido (*within*), sobrepor (*overlap*)

Duas interrogações comuns envolvendo relações topológicas:

- 1. Quais os objectos que têm uma relação R com um dado objecto?
- 2. Qual é a relação topológica entre os objectos A e B?

Modelo das 4-Intersecções (I₄)

- Intersectar fronteiras (f) e interiores (i) de duas regiões espaciais
 - permite identificar 4 relações topológicas ff, ii, fi, if
 - ... e sobre elas caracterizar as relações de maior interesse prático
- e.g., sobrepor (*overlap*) corresponde à
 - intersecção não vazia das fronteiras (ff), e
 - intersecção não vazia dos interiores (ii)

- e.g., tocar (*meet*) corresponde à
 - intersecção não vazia das fronteiras (ff), e
 - intersecção vazia dos interiores (ii)

Estamos a assumir uma definição intuitiva dos conceitos de fronteira e de interior A definição formal recorre às noções de conjunto aberto e fechado

... conjunto Aberto e Fechado

- Sejam r > 0 e $x_0 \in \mathbb{R}^n$. A **bola** de centro x_0 e raio r denota-se $B(x_0, r)$
 - e é dada por $B(\mathbf{x}_0, r) = {\mathbf{x} \in \mathbb{R}^n / ||\mathbf{x} \mathbf{x}_0|| < r}$
- Em \mathbb{R}^2 tem-se $x_0 = (x_0, y_0)$ e x = (x, y)
 - pelo que $\|\mathbf{x} \mathbf{x}_0\| = \sqrt{(x x_0)^2 + (y y_0)^2}$
 - logo $B(\mathbf{x}_0, r) = \{(x, y) \in \mathbb{R}^2 / (x x_0)^2 + (y y_0)^2 < r^2 \}$
 - neste caso $B(x_0, r)$ chama-se **disco**
- Um conjunto de pontos S em R² é aberto sse
 - para cada ponto p ∈ S existir um ε ∈ \mathbb{R} , tal que
 - o **disco** de centro p e raio ε está contido em S

- Um conjunto de pontos S em R² é fechado sse
 - $-\mathbb{R}^2 S$ é aberto

Exemplo – conjunto Aberto

Porque é que o conjunto $A = (a, b) \times (c, d)$ é aberto em \mathbb{R}^2 ?

Ou seja,

para cada ponto (x, y) em A qual o ε tal que a bola de centro (x, y) e raio ε está contida em A?

Exemplo – conjunto Aberto (cont.) -

Porque é que o conjunto A = $(a, b) \times (c, d)$ é aberto em \mathbb{R}^2 ?

Considere-se ε o menor número do conjunto:

 $\{ |x-a|, |x-b|, |y-c|, |y-d| \}$, onde $| | é a distância entre números reais então, por exemplo, considerando <math>r = \epsilon/2$, tem-se $B((x, y), r) \subset A$

Conceito de Interior e de Fronteira

Admita-se a existência de um conjunto, A, não vazio de pontos; o conjunto A já foi também designado por região-espacial ou objecto-espacial

- Ao denota o interior de A e define-se como
 - a uni\(\tilde{a}\) o de todos os conjuntos abertos de A
 - i.e., o maior conjunto aberto contido em A
- [definição auxiliar] $\bar{\mathbf{A}}$ denota o fecho de A, define-se como
 - a intersecção de todos os conjuntos fechados que contêm A
- [definição auxiliar] C_A denota complemento de A (em \mathbb{R}^2) e define-se
 - $-\mathbb{R}^2 A$, i.e. o conjunto de todos pontos não pertencentes a A
- δA denota a **fronteira** de A e define-se (em \mathbb{R}^2) como
 - a intersecção do fecho de A com o fecho de \mathbb{R}^2 A, i.e., $\bar{A} \cap \overline{C}_A$

Exemplo – noção intuitiva

Considerando este conjunto A, representar graficamente os conjuntos:

- 1. Interior de A
- 2. Fecho de A
- 3. Complemento de A
- 4. Fronteira de A

Exemplo – noção intuitiva (cont.)

A é conjunto aberto, logo A = A^O

 C_A , i.e., **complemento** de A e neste caso $C_A = \overline{C}_A$

 $\delta\! A$, i.e., **fronteira** de A, ou seja, $\bar{A}\cap C_A$

 $((x = a ou x = b) e c \le y \le d) ou$ $((y = c ou y = d) e a \le x \le b)$

Algumas indicações úteis

- Fronteira (boundary)
 - é um conjunto de geometrias com a próxima dimensão mais baixa
 - do PONTO (dimensão zero) pelo que a sua fronteira é o conjunto vazio
 - do SEGMENTO DE RECTA são os seus dois pontos extremos
 - do POLÍGONO é a linha que separa o interior do exterior
- Interior (*interior*)
 - são os pontos que permanecem depois de se retirar a fronteira
 - do PONTO é o próprio ponto
 - do SEGMENTO DE RECTA é o conjunto de pontos entre os extremos
 - do POLÍGONO é a superfície dentro do polígono
- Exterior (exterior) ou Complemento (complement)
 - é o universo excepto o interior e a fronteira da geometria

Relações – propriedades e generalização (em R2)

 \mathbb{R}^2 pode descrever-se como a união de A^O com δ A e C_A . Ou seja, A^O \cup δ A \cup C_A = \mathbb{R}^2

O conjunto A^O é mutuamente exclusivo com δA e C_A . Ou seja,

$$A^{O} \cap \delta A = \emptyset$$

$$A^{O} \cap C_{A} = \emptyset$$

Generalizando, sejam duas regiões espaciais A e B e seus interiores, A^O, B^O, e fronteiras δA, δB então, conhecer as suas relações topológicas é saber se as possíveis intersecções são ou não vazias.

Relações Topológicas (com AO, BO, δA, δB)

Generalizando, sejam duas regiões espaciais A e B e seus interiores, A^O, B^O, e fronteiras δA, δB então, conhecer as suas relações topológicas é saber se as possíveis intersecções são ou não vazias.

Dados δA , A^o , δB , B^o e suas intersecções ($\delta A \cap \delta B$, $A^o \cap B^o$, $\delta A \cap B^o$, $A^o \cap \delta B$) quantas diferentes combinações de \varnothing e $\neg \varnothing$ existem:

- 1. Há 4; uma por cada intersecção
- 2. Há 8; quatro combinações com \varnothing e quatro com $\neg \varnothing$, i.e., 4 × 2
- 3. Há 16; duas alternativas para cada intersecção, i.e., 24
- 4. Há 256; duas alternativas por conjunto em cada intersecção, i.e., 28

Combinações Topológicas (com AO, BO, δA, δB) -

Name	$\delta A \cap \delta B$	$A^o \cap B^o$	$\delta A\cap B^o$	$A^{o} \cap \delta B$
r_0	Ø	Ø	Ø	Ø
r_1	$\neg \emptyset$	Ø	Ø	Ø
r_2	Ø	$\neg \emptyset$	Ø	Ø
r_3	$\neg \emptyset$	$\neg \emptyset$	Ø	Ø
r_4	Ø	Ø	$\neg \emptyset$	Ø
r_5	$\neg \emptyset$	Ø	$\neg \emptyset$	Ø
r_6	Ø	$\neg \emptyset$	$\neg \emptyset$	Ø
r_7	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	Ø
r_8	Ø	Ø	Ø	$\neg \emptyset$
r_9	$\neg \emptyset$	Ø	Ø	$\neg \emptyset$
r_{10}	Ø	$\neg \emptyset$	Ø	$\neg \emptyset$
r_{11}	$\neg \emptyset$	$\neg \emptyset$	Ø	$\neg \emptyset$
r_{12}	Ø	Ø	$\neg \emptyset$	$\neg \emptyset$
r_{13}	$\neg \emptyset$	Ø	$\neg \emptyset$	$\neg \emptyset$
r_{14}	Ø	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$
r_{15}	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$

Cada combinação (4-tuplo) denota uma relação topológica. As relações são mutuamente exclusivas (um conjunto não pode ser \varnothing e $\neg\varnothing$)

Paulo Trigo Silva

Uma propriedade: ($A^{O} \cap \delta B \neq \emptyset$) \rightarrow ($A^{O} \cap B^{O} \neq \emptyset$) \neg

Quando o interior de uma região, A, intersecta a fronteira de outra região, B, o que acontece à intersecção dos interiores dessas regiões?

Neste exemplo, a região B tem que ter x = k, onde k < b, pois se k = b o interior de A e B não intersectam

Mas se k < b, então existem pontos entre k e b, i.e., existem x_0 tal que k < x_0 < b e esse x0 pertence ao interior de A (pois x_0 < b) e ao interior de B (k < x_0)

Relações Topológicas Impossíveis (cont.)

Name	$\delta A \cap \delta B$	$A^{o} \cap B^{o}$	$\delta A\cap B^o$	$A^{o} \cap \delta B$
r_0	Ø	Ø	Ø	Ø
r_1	$\neg \emptyset$	Ø	Ø	Ø
r_2	Ø	$\neg \emptyset$	Ø	Ø
r_3	$\neg \emptyset$	$\neg \emptyset$	Ø	Ø
r_4	Ø	Ø	$\neg \emptyset$	Ø
r ₅	$\neg \emptyset$	Ø	$\neg \emptyset$	Ø
r_6	Ø	$\neg \emptyset$	$\neg \emptyset$	Ø
r_7	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	Ø
r ₈	Ø	Ø	Ø	$\neg \emptyset$
<i>r</i> 9	$\neg \emptyset$	Ø	Ø	$\neg \emptyset$
r_{10}	Ø	$\neg \emptyset$	Ø	¯
r_{11}	$\neg \emptyset$	$\neg \emptyset$	Ø	$\neg \emptyset$
r_{12}	Ø	Ø	$\neg \emptyset$	$\neg \emptyset$
r ₁₃	$\neg \emptyset$	Ø	$\neg \emptyset$	$\neg \emptyset$
r_{14}	Ø	¯	$\neg \emptyset$	¯
*15	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$

Relações topológicas impossíveis.

Também é impossível. Porquê?

Paulo Trigo Silva

 $(\ \mathsf{A}^{\mathsf{O}} \cap \mathsf{B}^{\mathsf{O}} \neq \varnothing \) \rightarrow ((\ \delta \mathsf{A} \cap \delta \mathsf{B} \neq \varnothing \) \vee (\ \delta \mathsf{A} \cap \mathsf{B}^{\mathsf{O}} \neq \varnothing \) \vee (\ \mathsf{A}^{\mathsf{O}} \cap \delta \mathsf{B} \neq \varnothing \))$

Relações Topológicas Impossíveis (cont. 1) -Name $\delta A \cap \delta B$ $A^{o} \cap B^{o}$ $\delta A \cap B^o$ $A^{o} \cap \delta B$ r_0 -() 20 $\neg\emptyset$ $\neg\emptyset$ r_3 -() -Ø $\neg\emptyset$ Ø r_6 ¯ $\neg \emptyset$ $\neg \emptyset$ r_7 $\neg \emptyset$ -(I) $\neg \emptyset$ 20 ¯ $\neg\emptyset$ r_{10} r_{11} $\neg \emptyset$ $\neg \emptyset$ 一() ¬() ¬() $\neg \emptyset$ $\neg \emptyset$ $\neg\emptyset$ Relações topológicas impossíveis. Paulo Trigo Silva Também é impossível. Porquê? Relações Topológicas e Interrogações. 20

Relações Topológicas Impossíveis (cont. 2)

Para que isto possa acontecer é preciso que uma das duas regiões (a maior) contenha buracos.

Desenhar um exemplo que satisfaça a relação r₁₄.

Relações Topológicas Impossíveis (cont. 2)

Para que isto possa acontecer é preciso que uma das duas regiões (a maior) contenha buracos.

Região A: maior e tem um buraco

Região B: menor e contém buraco de A

Ou seja, r₁₄ será impossível no *pressuposto* de que: uma região espacial não contém buracos.

Relações Topológicas Impossíveis (síntese) -

Name	$\delta A \cap \delta B$	$A^{o} \cap B^{o}$	$\delta A\cap B^o$	$A^{o} \cap \delta B$
r_0	Ø	Ø	Ø	Ø
r_1	$\neg \emptyset$	Ø	Ø	Ø
r_2	Ø	$\neg \emptyset$	Ø	Ø
r_3	$\neg \emptyset$	$\neg \emptyset$	Ø	Ø
r_4	Ø	Ø	$\neg \emptyset$	Ø
1.5	¯	Ø	¯	Ø
r_6	Ø	$\neg \emptyset$	$\neg \emptyset$	Ø
r_7	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	Ø
r8	Ø	Ø	Ø	$\neg \emptyset$
19	$\neg \emptyset$	Ø	Ø	$\neg \emptyset$
r_{10}	Ø	$\neg \emptyset$	Ø	$\neg \emptyset$
r_{11}	$\neg \emptyset$	$\neg \emptyset$	Ø	$\neg \emptyset$
r_{12}	Ø	Ø	$\neg \emptyset$	$\neg \emptyset$
r_{13}	$\neg \emptyset$	Ø	$\neg \emptyset$	$\neg \emptyset$
r ₁₄	Ø	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$
r_{15}	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$

■ Relação topológica impossível.

As 8 Relações Topológicas Essenciais

Inst. name	$\delta A \cap \delta B$	$A^{o}\cap B^{o}$	$\delta A\cap B^o$	$A^o \cap \delta B$	Rel. name
r_0	Ø	Ø	Ø	Ø	A disjoint B
r_1	$\neg \emptyset$	Ø	Ø	Ø	A meets B
r_3	$\neg \emptyset$	$\neg \emptyset$	Ø	Ø	A equals B
r_6	Ø	$\neg \emptyset$	$\neg \emptyset$	Ø	A inside B
r_7	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	Ø	B covers A
r_{10}	Ø	$\neg \emptyset$	Ø	$\neg \emptyset$	B inside A
r_{11}	$\neg \emptyset$	$\neg \emptyset$	Ø	$\neg \emptyset$	A covers B
r_{15}	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	A overlaps B

Cobertura mutuamente exclusiva e completa das relações topológicas em \mathbb{R}^2 .

Apresentar uma figura que ilustre cada possível relação.

... disjoint, meets -

Inst. name	$\delta A \cap \delta B$	$A^o \cap B^o$	$\delta A\cap B^o$	$A^o\cap \delta B$	Rel. name
r_0	Ø	Ø	Ø	Ø	A disjoint B

Inst. name	$\delta A \cap \delta B$	$A^o\cap B^o$	$\delta A\cap B^o$	$A^o\cap \delta B$	Rel. name
r_1	$\neg \emptyset$	Ø	Ø	Ø	A meets B

... equals, inside –

Inst. name	$\delta A \cap \delta B$	$A^o\cap B^o$	$\delta A\cap B^o$	$A^o\cap \delta B$	Rel. name
r_3	$\neg \emptyset$	$\neg \emptyset$	Ø	Ø	A equals B

Inst. name	$\delta A \cap \delta B$	$A^o\cap B^o$	$\delta A\cap B^o$	$A^o\cap \delta B$	Rel. name
r_6	Ø	$\neg \emptyset$	$\neg \emptyset$	Ø	A inside B
r_{10}	Ø	$\neg \emptyset$	Ø	$\neg \emptyset$	B inside A

... covers, overlaps

Inst. name	$\delta A \cap \delta B$	$A^o \cap B^o$	$\delta A\cap B^o$	$A^{o} \cap \delta B$	Rel. name
r_7	$\neg \emptyset$	$\neg \emptyset$	$\neg \emptyset$	Ø	B covers A
r_{11}	$\neg \emptyset$	$\neg \emptyset$	Ø	$\neg \emptyset$	A covers B

Inst. name	$\delta A \cap \delta B$	$A^o\cap B^o$	$\delta A\cap B^o$	$A^o\cap \delta B$	Rel. name
r_{15}	$\neg \emptyset$	¯	$\neg \emptyset$	$\neg \emptyset$	A overlaps B

Modelo das 9-Intersecções (I₉)

- O modelo (anterior) das 4-Intersecções pode estender-se
 - para lidar com espaços de maior dimensão
 - surgindo a noção de co-dimensão
- Co-Dimensão representa a diferença entre
 - a dimensão do espaço e a dimensão do objecto nele embebido
 - e.g., a co-dimensão de uma linha (1D), num espaço 2D, é 1 (2D 1D)
- O modelo das 9-Intersecções (I₉) utiliza as noções de
 - fronteira, e.g., δA
 - interior, e.g., A^O
 - complemento, ou exterior, e.g., C_A

Representação do Modelo I₉

O modelo I_9 pode representar-se numa matriz 3×3

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

O princípio é o mesmo que o do modelo das 4-Intersecções.

Distinguir vazio (\varnothing) e não vazio ($\neg \varnothing$) em 3 conceitos dá 29 (512) combinações.

Representação, em matriz, do modelo I₉

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

Distinguir vazio (\varnothing) e não vazio ($\neg \varnothing$) em 3 conceitos dá 2^9 (512) combinações. As 512 reduzem com as restrições impostas no espaço topológico de base. e.g., com a restrição de não haver buracos no espaço \mathbb{R}^2 há só 8 combinações.

Na matriz I_9 cada componente terá o valor zero (0) ou um (1) o zero (0) corresponde à intersecção vazia (\varnothing) e o um (1) à não vazia ($\neg \varnothing$)

Represente, na matriz I₉, a relação *disjoint*.

Representação I₉ de *disjoint*

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

disjoint

... represente, na matriz l₉, a relação *meets*.

Representação I₉ de *meets*

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

meets

... represente, na matriz l₉, a relação *contains*.

Representação I₉ de *contains*

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

contains

... represente, na matriz l₉, a relação *covers*.

Representação I₉ de *covers*

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

covers

B coveredBy A A covers B

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

B covers A A coveredBy B

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

... represente, na matriz l₉, a relação *equals*.

Representação I₉ de *equals*

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

equals

... represente, na matriz l₉, a relação *overlaps*.

Representação I₉ de *overlaps*

$$I_{9}(A, B) = \begin{pmatrix} A^{o} \cap B^{o} & A^{o} \cap \delta B & A^{o} \cap C_{B} \\ \delta A \cap B^{o} & \delta A \cap \delta B & \delta A \cap C_{B} \\ C_{A} \cap B^{o} & C_{A} \cap \delta B & C_{A} \cap C_{B} \end{pmatrix}$$

overlaps

Paulo Trigo Silva

Modelo I_9 em \mathbb{R}^2 – as 8 relações topológicas primitivas

Paulo Trigo Silva

Modelos I₄ e I₉

- Se a co-dimensão zero,
 - i.e., o espaço topológico e o objecto nele imerso têm mesma dimensão
 - então, o modelo l₄ e o modelo l₂ dão o mesmo resultado
- Se a co-dimensão é superior a zero,
 - i.e., o espaço topológico tem dimensão superior à do objecto nele imerso
 - então, o modelo l₉ oferece detalhe adicional para relacionar os objectos

Análise comparativa detalhada em:

"A critical comparison of the 4-Intersection and 9-Intersection models for spatial relations: formal analysis

Max J. Egenhofer and Jayant Sharma

co-dimension 0	region	Line
region	\mathfrak{I}_4 : 8 relations \mathfrak{I}_9 : 8 relations	N/A
line	N/A	\mathfrak{I}_4 : 8 relations \mathfrak{I}_9 : 8 relations

co-dimension 1	line
	straight line
region	\mathfrak{I}_4 : 11 relations
	\mathfrak{F}_4 : 11 relations \mathfrak{F}_9 : 19 relations
convex region	\mathfrak{I}_4 : 10 relations
0	$\mathfrak{Z}_{\mathfrak{0}}^{\vec{\cdot}}:11\ relations$
line	\Im_4 : 16 relations
	್ರ್ : 33 relations
straight line	\mathfrak{I}_4 : 11 relations
0	$\mathfrak{F}_{\circ}^{}:11\ relations$

Aplicação do modelo l₉ com diferentes co-dimensões

Construir matriz indicando para cada intersecção a dimensão resultante.

	Interior	Boundary	Exterior
Interior	$dim(I(a) \cap I(b))$	$dim(I(a) \cap B(b))$	$dim(I(a) \cap E(b))$
Boundary	$dim(B(a) \cap I(b))$	$dim(B(a) \cap B(b))$	$dim(B(a) \cap E(b))$
Exterior	$dim(E(a) \cap I(b))$	$dim(E(a) \cap B(b))$	$dim(E(a) \cap E(b))$

I(a), B(a), and E(a) are the Interior, Boundary, and Exterior of a

```
dim(X) é a dimensão de X e tem domínio: { 0, 1, 2, T, F, * }, onde:
```

```
0 = ponto,
```

 $1 \equiv linha$

2 = superfície,

 $T \equiv \{0, 1, 2\}, i.e., X \neq \emptyset$

F = -1, i.e., $X = \emptyset$,

* \equiv {-1, 0, 1, 2}, i.e., $X \neq \emptyset \lor X = \emptyset$, ou seja, "ignorar"

A dimensão que resulta de cada intersecção

numa leitura esquerda-direita e cima-baixo a matriz representa-se por:

212101212

Exemplo – intersecção de linhas que é linha

Considere-se que numa rede de estradas se pretende: identificar todos os segmentos de estrada que se encontram; não se pretende um ponto de intersecção mas uma linha.

	Interior	Boundary	Exterior
Interior	$dim(I(a) \cap I(b))$	$dim(I(a) \cap B(b))$	$dim(I(a) \cap E(b))$
Boundary	$dim(B(a) \cap I(b))$	$dim(B(a) \cap B(b))$	$dim(B(a) \cap E(b))$
Exterior	$dim(E(a) \cap I(b))$	$dim(E(a) \cap B(b))$	$dim(E(a) \cap E(b))$

Duas linhas que se intersectam numa linha representa-se como a matriz:

Porquê o valor \(\frac{1}{\nesta posição?} \)

Exemplo – intersecção de linhas que é linha (cont.)

Duas linhas que se intersectam numa linha representa-se como a matriz:

1*1***1**

Porquê o valor \1 nesta posição?

O valor 1 garante que a intersecção as rectas é uma recta (i.e., tem dimensão 1)

Desenhe uma figura que satisfaça a matriz topológica:

0*1***1**

Exemplo – intersecção de linhas que é linha (cont.1)

Uma figura que satisfaça o formato matricial:

O valor 0 garante que a intersecção as rectas é um ponto (i.e., tem dimensão 0)

Que matriz topológica descreve a(s) linha(s) contida(s) numa outra?

Exemplo – linhas contidas uma na outra

Que matriz topológica descreve a(s) linha(s) contida(s) numa outra?

A matriz topológica:

101FF0FF2

Exemplo – intersecção de linhas que é linha em SQL

```
-- Segmentos que se cruzam numa linha

SELECT a.id

FROM estrada a, estrada b

WHERE a.id != b.id

AND ST_Relate( a.geo, b.geo, '1*1***1**');
```

ST_Relate(gA, gB, intersectionMatrixPattern):
True se a geometria de gA se relaciona com a de gB testando as
intersecções entre Interior, Exterior e Fronteira das duas geometrias na
intersectionMatrixPattern.

Paulo Trigo Silva

Exemplo – linhas contidas em lado de polígono

Que matriz topológica descreve a(s) linha(s) contidas em lado(s) de um polígono?

Paulo Trigo Silva

Exemplo – linhas contidas em lado de polígono (cont.) –

Que matriz topológica descreve a(s) linha(s) contidas em lado(s) de um polígono?

A matriz topológica:

FF2101FF2

Exemplo – pontos na fronteira de um polígono

Que matriz topológica descreve o(s) ponto (s) na fronteira de um polígono?

Paulo Trigo Silva

Exemplo – pontos na fronteira de um polígono (cont.) –

Que matriz topológica descreve o(s) ponto (s) na fronteira de um polígono?

A matriz topológica:

FF20F1FF2

Exemplo – várias intersecções de polígono e linhas

Considerem-se docas de descarga num rio: identificar todas as docas que estejam completamento dentro do rio ou que tenham uma extremidade em terra.

Nota: neste exemplo a intersecção da fronteira do polígono com as linhas pode ser:

- um ponto
- uma linha
- ou vazio

	Interior	Boundary	Exterior
Interior	$dim(I(a) \cap I(b))$	$dim(I(a) \cap B(b))$	$dim(I(a) \cap E(b))$
Boundary	$dim(B(a) \cap I(b))$	$dim(B(a) \cap B(b))$	$dim(B(a) \cap E(b))$
Exterior	$dim(E(a) \cap I(b))$	$dim(E(a) \cap B(b))$	$dim(E(a) \cap E(b))$

Que matriz topológica exprime o requisito acima descrito?

doca

333

222

333

rio

Exemplo – várias intersecções de polígono e linhas (cont.)

	Interior	Boundary	Exterior
Interior	$dim(I(a) \cap I(b))$	$dim(I(a) \cap B(b))$	$dim(I(a) \cap E(b))$
Boundary	$dim(B(a) \cap I(b))$	$dim(B(a) \cap B(b))$	$dim(B(a) \cap E(b))$
Exterior	$dim(E(a) \cap I(b))$	$dim(E(a) \cap B(b))$	$dim(E(a) \cap E(b))$

dim(X) é a dimensão de X e tem domínio: { 0, 1, 2, T, F, * }, onde:

0 = ponto,

1 ≡ linha,

2 ≡ superfície,

 $T \equiv \{ 0, 1, 2 \},\$

 $F \equiv \emptyset$,

* **=** ignorar

Exemplo – intersecção de polígonos e linhas em SQL

- -- Segmentos totalmente contidos em polígono ou
- -- com fronteira comum ou com
- -- segmento coincidente com fronteira do polígono

SELECT a.rio id, b.doca id

FROM rio a, doca b

WHERE ST_Relate(a.geo, (b.geo, (102**1**2'));

doca

102

**2

Paulo Trigo Silva

Exemplo – obter a matriz topológica de uma relação

Vamos admitir o modelo:

```
CREATE TABLE geo_1d

(id int PRIMARY KEY);

SELECT AddGeometryColumn

('', 'geo_1d', 'geo', -1, 'LINESTRING', 2);

CREATE TABLE geo_2d

(id int PRIMARY KEY);

SELECT AddGeometryColumn

('', 'geo_2d', 'geo', -1, 'POLYGON', 2);
```

```
\begin{tabular}{ll} {\bf ST\_Relate} ( & gA, & gB & ) : \\ devolve a matriz topológica (gA em linha; gB em coluna. \\ \end{tabular}
```

Exemplo – uma (ou mais) matrizes topológicas?

Qual a relação topológica entre o rio ("id=1") e as docas ("id=3", "id=4", "id=5", "id=6")?

```
SELECT a.id, b.id, ST_Relate(a.geo, b.geo) as matrix FROM geo_2d a, geo_1d b
WHERE a.id=1 and b.id IN (3, 4, 5, 6);
```

Quantas linhas devolve esta interrogação:

- 1. uma (1) linha; com a matriz topológica
- 2. duas (2) linhas; uma com a matriz topológica outra com os ids
- 3. quatro (4) linhas; duas matrizes topológicas e dois ids
- 4. quatro (4) linhas; quatro matrizes topológicas

Exemplo – obter matrizes topológicas

Qual a relação topológica entre o rio ("id=1") e as docas ("id=3", "id=4", "id=5", "id=6")?

```
SELECT a.id, b.id, ST_Relate(a.geo, b.geo) as matrix FROM geo_2d a, geo_1d b
WHERE a.id=1 and b.id IN (3, 4, 5, 6);
```


Paulo Trigo Silva

Síntese – regiões topológicas dos tipos OGC

Geometric Subtypes	Interior (I)	Boundary (B)	Exterior (E)
Point, MultiPoint	Point, Points	Empty set	Points not in the
			interior or boundary
LineString, Line	Points that are	Two end Points	Points not in the
	left when the		interior or boundary
	boundary points		
	are removed.		
LinearRing	All Points along	Empty set	Points not in the
	the LinearRing		interior or boundary
MultiLineString	Points that are	Those Points that	Points not in the
	left when the	are in the	interior or boundary
	boundary points	boundaries of an	
	are removed	odd number of its	
		element Curves	
Polygon	Points within the	Set of Rings	Points not in the
	Rings		interior or boundary
MultiPolygon	Points within the	Set of Rings of its	Points not in the
	Rings	Polygons	interior or boundary

Interior, Fronteira e Exterior dos tipos geométricos essenciais descritos pelo "Open Geospatial Consortion" (OGC)

Exemplo – regiões topológicas (Point, MultiPoint) -

Geometric Subtypes	Interior (I)	Boundary (B)	Exterior (E)
Point, MultiPoint	Point, Points	1 1	Points not in the interior or boundary

Point

MultiPoint

Exemplo – regiões topológicas (LineString, Line) –

Geometric Subtypes	Interior (I)	Boundary (B)	Exterior (E)
LineString, Line	Points that are left when the boundary points are removed.	Two end Points	Points not in the interior or boundary

LineString

Line o restante espaço

Exemplo – regiões topológicas (LinearRing) -

Geometric Subtypes	Interior (I)	Boundary (B)	Exterior (E)
LinearRing	All Points along	Empty set	Points not in the
	the LinearRing		interior or boundary

LinearRing

vazio

o restante espaço

Exemplo – regiões topológicas (Polygon, MultiPoligon)

Geometric Subtypes	Interior (I)	Boundary (B)	Exterior (E)
Polygon	Points within the	Set of Rings	Points not in the
	Rings		interior or boundary

Polygon

Geometric Subtypes	Interior (I)	Boundary (B)	Exterior (E)
MultiPolygon	Points within the	Set of Rings of its	Points not in the
	Rings	Polygons	interior or boundary

MultiPolygon

Exemplo – regiões topológicas (MultiLineString)

Geometric Subtypes	Interior (I)	Boundary (B)	Exterior (E)
MultiLineString	Points that are	Those Points that	Points not in the
	left when the	are in the	interior or boundary
	boundary points	boundaries of an	
	are removed	odd number of its	
		element Curves	

MultiLineString

o restante espaço

está na fronteira de 3 (impar) linhas está na fronteira de 1 (impar) linha

o restante espaço

agora aquele ponto deixa de pertencer pois está na fronteira de 2 (par) linhas

Adicional: sobre "odd-even rule" ou "mod 2 union"

""For complex geometries, we take the 'mod 2' union of the components.

That means that a point is in the boundary of a complex object (represented as disjoint representational geometries) if it is in an **odd number** (odd-even rule) of the boundaries of its component simple geometries."

in [Open GIS Consortium; "Simple Features Specification for SQL"]

Case	Boundary
1	a, b, c, d
2	a, b, c, d
3	a, d
4	a, b, e, d
5	b, c, polygon((d, e, f, g))
6	b, (polygon((d, e, f, g)) - c)

- Adicional: sobre *Polygon* e *Multipolygon* (OCG e PostGIS) \neg

"The interiors of 2 Polygons that are in a MultiPolygon may not intersect. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may not 'cross' and may touch at only a finite number of points. A MultiPolygon may not have cut lines, spikes or punctures" in [Open GIS Consortium; "Simple Features Specification for SQL"]

Relações Topológicas e Interrogações. 64

Síntese – significado dos operadores topológicos

Topological	Meaning
Predicate	
Equals	The Geometries are topologically equal
Disjoint	The Geometries have no point in common
Intersects	The Geometries have at least one point in common (the inverse of
	Disjoint)
Touches	The Geometries have at least one boundary point in common, but no
	interior points
Crosses	The Geometries share some but not all interior points, and the
	dimension of the intersection is less than that of at least one of the
	Geometries.
Overlaps	The Geometries share some but not all points in common, and the
	intersection has the same dimension as the Geometries themselves
Within	Geometry A lies in the interior of Geometry B
Contains	Geometry B lies in the interior of Geometry A (the inverse of Within)

Operadores topológicos e seu significado

Síntese – operadores e matrizes topológicas (modelo I₉) –

A.Equals(B) $ \begin{bmatrix} T & * & F \\ * & * & F \\ F & F & * \end{bmatrix} $ A.Disjoint(B) $ \begin{bmatrix} F & F & * \\ F & F & * \\ * & * & * \end{bmatrix} $ A.Intersects(B) $ \begin{bmatrix} T & * \\ * & * & * \\ $	Topological Predicate	Pattern Matrix
A.Disjoint(B) $\begin{bmatrix} F & F & * \\ F & F & * \\ * & * & * \end{bmatrix}$ A.Intersects(B) $\begin{bmatrix} T & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & T & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * \\ T & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$ A.Touches(B) $\begin{bmatrix} F & T & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ T & * & * \end{bmatrix}$ A.Crosses(B) $\begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 0 & * & * \\ * & * & * \end{bmatrix}$ A.Overlaps(B) $\begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 1 & * & T \\ * & * & * \end{bmatrix}$	A.Equals(B)	T * F
A.Disjoint(B) $ \begin{bmatrix} F & F & * \\ F & F & * \\ * & * & * \end{bmatrix} $ A.Intersects(B) $ \begin{bmatrix} T & * & * & * \\ * & * & * & * \\ $		* * F
A.Intersects(B) $\begin{bmatrix} T & * & * & * & * \\ * & * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & T & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * & * \\ T & * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * & * \\ * & * & * \end{bmatrix} $ A.Touches(B) $\begin{bmatrix} F & T & * & * \\ * & * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ * & T & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ T & * & * \end{bmatrix} $ A.Crosses(B) $\begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 0 & * & * \\ * & * & * \end{bmatrix} $ A.Overlaps(B) $\begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 1 & * & T \\ * & * & * \end{bmatrix}$		F F *
A.Intersects(B) $\begin{bmatrix} T & * & * & * & * \\ * & * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & T & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * & * \\ T & * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * & * \\ * & * & * \end{bmatrix} $ A.Touches(B) $\begin{bmatrix} F & T & * & * \\ * & * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ * & T & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ T & * & * \end{bmatrix} $ A.Crosses(B) $\begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 0 & * & * \\ * & * & * \end{bmatrix} $ A.Overlaps(B) $\begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 1 & * & T \\ * & * & * \end{bmatrix}$	A.Disjoint(B)	[F F *]
A.Intersects(B) $\begin{bmatrix} T & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & T & * \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * \\ T & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * \\ T & * & * \\ * & * & * \end{bmatrix}$ A.Touches(B) $\begin{bmatrix} F & T & * \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ T & * & * \\ * & * & * \end{bmatrix}$ A.Crosses(B) $\begin{bmatrix} T & * & T \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$ A.Overlaps(B) $\begin{bmatrix} T & * & T \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 1 & * & T \\ * & * & * \\ * & * & * \end{bmatrix}$, ,	
A.Intersects(B) $\begin{bmatrix} T & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & T & * \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * \\ T & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$ A.Touches(B) $\begin{bmatrix} F & T & * \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ T & * & * \\ * & * & * \end{bmatrix}$ A.Crosses(B) $\begin{bmatrix} T & * & T \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$ A.Overlaps(B) $\begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 1 & * & T \\ * & * & * \end{bmatrix}$		
A.Touches(B) $\begin{bmatrix} * & * & * & * & * & * & * & * & * & * $	A Intersects(R)	L J
A.Touches(B) $ \begin{bmatrix} F & T & * \\ * & * & * \\ * & * & * \end{bmatrix} $	Amiciscus(b)	
A.Touches(B) $ \begin{bmatrix} F & T & * \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ * & T & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} F & * & * \\ T & * & * \\ * & * & * \end{bmatrix} $ A.Crosses(B) $ \begin{bmatrix} T & * & T \\ * & * & * \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{bmatrix} $ A.Overlaps(B) $ \begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} \text{ or } \begin{bmatrix} 1 & * & T \\ * & * & * \end{bmatrix} $		
A.Crosses(B) $ \begin{bmatrix} x & * & * & * & * & * & * & * & * & * &$		
A.Crosses(B) $ \begin{bmatrix} T & * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} $	A.Touches(B)	$\begin{bmatrix} F & T & * \end{bmatrix} \begin{bmatrix} F & * & * \end{bmatrix} \begin{bmatrix} F & * & * \end{bmatrix}$
A.Crosses(B) $ \begin{bmatrix} T & * & T \\ * & * & * \\ * & * & * \end{bmatrix} $ or $ \begin{bmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{bmatrix} $ A.Overlaps(B) $ \begin{bmatrix} T & * & T \\ * & * & * \end{bmatrix} $ or $ \begin{bmatrix} 1 & * & T \\ * & * & * \end{bmatrix} $		* * * or * T * or T * *
A.Overlaps(B)		
A.Overlaps(B)	A.Crosses(B)	T * T 0 * T
A.Overlaps(B)		* * * or * * *
* * * or * * *		* * * * * *
* * * or * * *	A.Overlaps(B)	$\lceil T * T \rceil \lceil 1 * T \rceil$
	A Within(R)	
	A. Within(D)	
* * *		
A.Contains(B)	A.Contains(B)	T * *
* * *		* * *
$\begin{bmatrix} F & F & * \end{bmatrix}$		$\begin{bmatrix} F & F & * \end{bmatrix}$

Exemplo - "equals" entre dois "polygon"

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	2	-1	-1
Boundary (A)	-1	1	-1
Exterior (A)	-1	-1	2

Porquê:

$$B(A) \cap B(B) = 1$$

Exemplo - "disjoint" entre "line" A e "multipoint" B

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	-1	-1	1
Boundary (A)	-1	-1	0
Exterior (A)	0	-1	2

Nota: recordar que a fronteira de um ponto é, por definição, vazia (i.e. tem dimensão zero)

Porquê:

 $E(A) \cap I(B) = 0$

Exemplo – "crosses" entre "lineString" A e "line" B

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	0	-1	1
Boundary (A)	-1	-1	0
Exterior (A)	1	0	2

Porquê:

$$I(A) \cap I(B) = 0$$

Exemplo - "touches" entre "polygon" A e "polygon" B

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	-1	-1	2
Boundary (A)	-1	1/0	1
Exterior (A)	2	1	2

Porquê:

$$\mathsf{B}(\mathsf{A})\cap\mathsf{B}(\mathsf{B})=0$$

ou

$$B(A) \cap B(B) = 1$$

Exemplo - "crosses" entre "polygon" A e "line" B

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	1	0	2
Boundary (A)	0	-1	1
Exterior (A)	1	0	2

Porquê:

 $E(A) \cap I(B) = 1$

Exemplo – "overlaps" entre "lineString" A e "lineString" B

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	1	-1/0	1
Boundary (A)	0/-1	-1	0
Exterior (A)	1	0	2

Porquê:

$$B(A) \cap I(B) = 0$$

ou

$$B(A) \cap I(B) = -1$$

Exemplo - "within" entre "line" A e "polygon" B

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	1	-1	-1
Boundary (A)	0	-1	-1
Exterior (A)	2	1	2

Porquê:

$$I(A) \cap B(B) = -1$$

Exemplo – "contains" entre "multipoint" A e "multipoint" B

	Interior (B)	Boundary (B)	Exterior (B)
Interior(A)	0	-1	0
Boundary (A)	-1	-1	-1
Exterior (A)	-1	-1	2

Nota: os pontos de A estão representados por quadrados e os de B por círculos.

Porquê:

 $I(A) \cap E(B) = 0$

Adicional: bibliotecas que suportam especificações OCG

Os tipos e operações definidos pela OCG são suportados por extensões do modelo relacional, e.g., PostGIS (extensão do PostgreSQL).

No entanto também há bibliotecas a implementar as especificações OCG:

JTS Topology Suite is an API (open source) of spatial predicates and functions for processing geometry.

http://tsusiatsoftware.net/jts/

GEOS (Geometry Engine, Open Source) is a C++ port of the Java Topology Suite (JTS); GEOS is used as the engine of **PostGIS**.

http://trac.osgeo.org/geos/

Shapely is based on the widely deployed GEOS and lets you do PostGIS-ish outside the context of a database using idiomatic Python.

http://gispython.org/
http://pypi.python.org/pypi/Shapely/

Java

C+-

Python