Data Mining Project Group5

Submitted by:

Sruthi C

PGP DSBA – Apr 2023

Date: 27-Aug-2023

List of Figures

Figure 1 : Clustering dataset	6
Figure 2: Head (top 5)	6
Figure 3: Tail (Last 5)	7

Figure 4: Data information	8
Figure 5: Data description	9
Figure 6: Null values	9
Figure 7: Unique values	10
Figure 8: After imputing null values	10
Figure 9: Box plots	14
Figure 10: Box plots after treating outliers	18
Figure 11: Scaled data	19
Figure 12: Dendrogram	19
Figure 13: Merged Dendrogram	20
Figure 14: Elbow plot	20
Figure 15: Silhouette plot	21
Figure 16: Bar plot for clicks, spend and revenue	23
Figure 17: Bar plot for CTR, CPC, CPM	24
Figure 18: PCA dataset	27
Figure 19: Head (top 5)	28
Figure 20: Tail (Last 5)	29
Figure 21: Dataset Information	29
Figure 22: Null values	30
Figure 23: Duplicate values	30
Figure 24: Dataset description	31
Figure 25: Correlation table	33
Figure 26: Boxplots of any 5 variables	33
Figure 27: Barplot of any 5 variables	34
Figure 28: Pairplot of any 5 variables	35
Figure 29: Scaled data	36
Figure 30: Scaled data summary	38
Figure 31: Boxplots of scaled data	39
Figure 32: Heatmap of scaled data	39
Figure 33: Covariance matrix	40
Figure 34: Eigen vectors	40
Figure 35: Eigen values	41
Figure 36: Variance	43

Figure 37: Cumulative variance	. 43
Figure 38: Scree plot	.44
Figure 39: Explained variance ratio vs PCs	. 44
Figure 40: Final Dimension of PCs	. 45
Figure 41: Heatmap of PCA vs Original columns	. 46
Figure 42: Heatmap of all PCs	. 48

Table of Contents

Problem Statement	Clustering	5

1.	Read the data and perform basic analysis
2.	Treat missing values in CPC, CTR and CPM using the formula given
3.	Check if there are any outliers9
4.	Treat Outliers
5.	Perform z-score scaling and discuss how it affects the speed of the algorithm
6.	Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance19
7.	Elbow Plot
8.	Silhouette score
9.	Profile the ads
10.	Summary:
Prol	olem Statement - PCA
1.	Basic Data Analysis
2.	Exploratory Data Analysis
3.	Data Scaling
4.	Effect of scaling on outliers
5.	Principal Component Analysis
6.	Component wise inference
7.	Influence of actual variables on PC1

Problem Statement - Clustering

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing

Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

The following three features are commonly used in digital marketing:

CPM = (Total Campaign Spend / Number of Impressions) * 1,000

CPC = Total Cost (spend) / Number of Clicks

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100

Perform the following in given order:

1. Read the data and perform basic analysis.

Read the data and perform EDA such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.

• Data frame-

	Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks
0	2020-9-2- 17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1
1	2020-9-2- 18	Format1	300	250	75000	Inter223	Web	Mobile	Display	1979	384	380	0
2	2020-9-3- 16	Format6	336	250	84000	Inter217	Web	Desktop	Video	1566	298	297	0
3	2020-9-3-2	Format1	300	250	75000	Inter224	Web	Desktop	Display	643	103	102	0
4	2020-9-3- 13	Format1	300	250	75000	Inter225	Video	Mobile	Display	1550	347	345	0
25852	2020-10-1- 5	Format5	720	300	216000	Inter222	Video	Desktop	Video	1	1	1	0
25853	2020-11- 18-2	Format4	120	600	72000	inter230	Video	Mobile	Video	7	1	1	1
25854	2020-9-14- 0	Format5	720	300	216000	Inter221	Арр	Mobile	Video	2	2	2	1
25855	2020-9-30- 4	Format7	300	600	180000	Inter228	Video	Mobile	Display	1	1	1	0
25856	2020-10- 17-3	Format5	720	300	216000	Inter225	Video	Mobile	Display	1	1	1	0
25857 r	ows × 19 co	lumns											

Spend	Fee	Revenue	CTR	СРМ	CPC
0.00	0.35	0.0000	0.0031	0.0	0.0
0.00	0.35	0.0000	0.0000	0.0	NaN
0.00	0.35	0.0000	0.0000	0.0	NaN
0.00	0.35	0.0000	0.0000	0.0	NaN
0.00	0.35	0.0000	0.0000	0.0	NaN
0.01	0.35	0.0065	NaN	NaN	NaN
0.07	0.35	0.0455	NaN	NaN	NaN
0.09	0.35	0.0585	NaN	NaN	NaN
0.01	0.35	0.0065	NaN	NaN	NaN
0.01	0.35	0.0065	NaN	NaN	NaN

Figure 1 : Clustering dataset

• Head – Top 5 rows

	Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size		Ad Type	Platform	Device Type	FOR	mat .
0	2020-9-2- 17	Format1	300	250	75000) Inte	er222	Video	Desktop	Disp	olay
1	2020-9-2- 18	Format1	300	250	75000) Inte	er223	Web	Mobile	Disp	olay
2	2020-9-3- 16	Format6	336	250	84000) Inte	er217	Web	Desktop	Vi	deo
3	2020-9-3-2	Format1	300	250	75000) Inte	er224	Web	Desktop	Dis	olay
4	2020-9-3- 13	Format1	300	250	75000) Inte	er225	Video	Mobile	Disp	olay
_lm	pressions Ma	tched_Queries	Impression	s Clic	cks Sp	pend	Fee	Revenue	CTR	СРМ	CPC
	1806	325	32	3	1	0.0	0.35	0.0	0.0031	0.0	0.0
	1979	384	38	0	0	0.0	0.35	0.0	0.0000	0.0	NaN
	1566	298	29	7	0	0.0	0.35	0.0	0.0000	0.0	NaN
	643	103	10	2	0	0.0	0.35	0.0	0.0000	0.0	NaN
	1550	347	34	5	0	0.0	0.35	0.0	0.0000	0.0	NaN

Figure 2: Head (top 5)

• Tail – Last 5 rows

	Timestamp	InventoryType	Ad - Length	Ad- Width		Ad Size	Ad Type	Diattorm	Devi Ty		Format
25852	2020-10-1- 5	Format5	720	300	210	6000	Inter222	Video	Deskt	ор	Video
25853	2020-11- 18-2	Format4	120	600	72	2000	inter230	Video	Mob	ile	Video
25854	2020-9-14- 0	Format5	720	300	21	6000	Inter221	Арр	Mob	ile	Video
25855	2020-9-30- 4	Format7	300	600	180	0000	Inter228	Video	Mob	ile	Display
25856	2020-10- 17-3	Format5	720	300	210	6000	Inter225	Video	Mob	ile	Display
_Impres	sions Matc	hed_Queries Ir	npression	s Clicl	ks	Spend	d Fee	Revenue	CTR	CPN	I CPC
	1	1		1	0	0.0	1 0.35	0.0065	NaN	NaN	l NaN
	7	1		1	1	0.07	7 0.35	0.0455	NaN	NaN	l NaN
	2	2	:	2	1	0.09	9 0.35	0.0585	NaN	NaN	l NaN
	1	1		1	0	0.0	1 0.35	0.0065	NaN	NaN	l NaN
	1	1		1	0	0.0	1 0.35	0.0065	NaN	NaN	l NaN

Figure 3: Tail (Last 5)

- Shape (25857,19) The dataset has 25857 rows and 19 columns.
- Info -

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25857 entries, 0 to 25856
Data columns (total 19 columns):
    Column
                          Non-Null Count Dtype
                          -----
    Timestamp
                          25857 non-null object
0
                        25857 non-null object
1
    InventoryType
    Ad - Length
2
                        25857 non-null int64
    Ad- Width
3
                        25857 non-null int64
4
    Ad Size
                        25857 non-null int64
    Ad Type
5
                        25857 non-null object
                        25857 non-null object
6
    Platform
                      25857 non-null object
    Device Type
7
8
   Format
                         25857 non-null object
    Available Impressions 25857 non-null int64
10 Matched_Queries 25857 non-null int64
11 Impressions 25857 non-null int64
12 Clicks
                        25857 non-null int64
13 Spend
                         25857 non-null float64
                         25857 non-null float64
14 Fee
15 Revenue
                          25857 non-null float64
                          19392 non-null float64
16 CTR
                          19392 non-null float64
17 CPM
                          18330 non-null float64
18 CPC
dtypes: float64(6), int64(7), object(6)
memory usage: 3.7+ MB
```

Figure 4: Data information

There are 6 floats, 7 integers and 6 objects.

Describe -

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries
count	25857.000000	25857.000000	25857.000000	2.585700e+04	2.585700e+04
mean	390.431218	332.182774	99683.276482	2.169621e+06	1.155322e+06
std	230.696051	194.260924	62640.685612	4.542680e+06	2.407244e+06
min	120.000000	70.000000	33600.000000	0.000000e+00	0.000000e+00
25%	120.000000	250.000000	72000.000000	9.133000e+03	5.451000e+03
50%	300.000000	300.000000	75000.000000	3.309680e+05	1.894490e+05
75%	720.000000	600.000000	84000.000000	2.208484e+06	1.008171e+06
max	728.000000	600.000000	216000.000000	2.759286e+07	1.470202e+07

Impressions	Clicks	Spend	Fee	Revenue	CTR
2.585700e+04	25857.000000	25857.000000	25857.000000	25857.000000	19392.000000
1.107525e+06	9525.881386	2414.473115	0.336729	1716.548955	0.069627
2.326648e+06	16721.686071	3932.835240	0.030540	2993.025498	0.074970
0.000000e+00	0.000000	0.000000	0.210000	0.000000	0.000000
2.558000e+03	305.000000	36.030000	0.350000	23.420000	0.002400
1.621620e+05	3457.000000	1173.660000	0.350000	762.880000	0.007700
9.496930e+05	10681.000000	2692.280000	0.350000	1749.982000	0.128300
1.419477e+07	143049.000000	26931.870000	0.350000	21276.180000	1.000000

СРМ	CPC
19392.000000	18330.000000
7.252900	0.351061
6.538314	0.343334
0.000000	0.000000
1.630000	0.090000
3.035000	0.160000
12.220000	0.570000
81.560000	7.260000

Figure 5: Data description

Null values -

Timestamp	0
InventoryType	0
Ad - Length	0
Ad- Width	0
Ad Size	0
Ad Type	0
Platform	0
Device Type	0
Format	0
Available_Impressions	0
Matched_Queries	0
Impressions	0
Clicks	0
Spend	0
Fee	0
Revenue	0
CTR	6465
CPM	6465
CPC	7527
dtype: int64	

Figure 6: Null values

There are 6465 missing values in CTR, 6465 in CPM and 7527 in CPC.

- Duplicate values There are no duplicate values in the dataset.
- Unique values –

Timestamp	2018
InventoryType	7
Ad - Length	6
Ad- Width	5
Ad Size	7
Ad Type	14
Platform	3
Device Type	2
Format	2
Available_Impressions	22104
Matched_Queries	20978
Impressions	20454
Clicks	12753
Spend	20467
Fee	7
Revenue	20578
CTR	2067
CPM	2086
CPC	194
dtype: int64	

Figure 7: Unique values

2. Treat missing values in CPC, CTR and CPM using the formula given.

The missing values were treated by writing a user defined function and calling it. The following formulas were used to treat then.

CPC = Total cost (Spend) / Number of clicks

CPM = (Total campaign spends / Number of impressions) *1000

CTR = (Total measured clicks /Total measured ad impressions) *100

Figure 8: After imputing null values

3. Check if there are any outliers.

There are no significant outliers in Ad Length and AD width. The other variables namely Ad size, Available impressions, Matched queries, Clicks, Speed, Free Revenue, CTR, CPM, CPC.

Figure 9: Box plots

4. Treat Outliers

Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgement may be different from another analyst).

Treating the outliers is extremely important as K-means is highly sensitive to outliers. Therefore, we treat the outliers by the following method:

For lower-level outliers we treat it to get at 25th percentile value using the formula q25-(1.5XIQR) and the higher level outliers are treated to get at 95th percentile value using the formula q75+(1.5XIQR).

We need to understand that q25 is the median of first half of the data and q75 is the median of second half of the data. IQR (Interquartile range) is the difference of q75 and q25.

Figure 10: Box plots after treating outliers

5. Perform z-score scaling and discuss how it affects the speed of the algorithm. We use standard scaler to scale the data.

	Ad - Length	Ad- Width	Available_Impressions	Matched_Queries	Impressions	Clicks
0	-0.392000	-0.423082	-0.714953	-0.744816	-0.475888	-0.569624
1	-0.392000	-0.423082	-0.714862	-0.744749	-0.475864	-0.569683
2	-0.235948	-0.423082	-0.715079	-0.744846	-0.475899	-0.569683
3	-0.392000	-0.423082	-0.715588	-0.745088	-0.475983	-0.569683
4	-0.392000	-0.423082	-0.715088	-0.744791	-0.475879	-0.569683
25852	1.428612	-0.165671	-0.715905	-0.745182	-0.476026	-0.569683
25853	-1.172263	1.378674	-0.715901	-0.745182	-0.476026	-0.569624
25854	1.428612	-0.165671	-0.715904	-0.745180	-0.476026	-0.569624
25855	-0.392000	1.378674	-0.715905	-0.745182	-0.476026	-0.569683
25856	1.428612	-0.165671	-0.715905	-0.745182	-0.476026	-0.569683
25857 ı	rows × 12 c	columns				

Figure 11: Scaled data

Since the scale of the variables become same, the speed of the algorithm increases.

6. Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.

A dendrogram was obtained using Ward's method and Euclidean as metric.

Figure 12: Dendrogram

To view only the last 10 merged clusters, we use truncate with p=10

Figure 13: Merged Dendrogram

7. Elbow Plot

Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.

To build an elbow plot we initially import Kmeans to get WSS (within sum of square) values.

Figure 14: Elbow plot

When we look at WSS values for clusters, we notice that there is a large difference between clusters till cluster 5 but from cluster 5 to 6 there is no big difference.

Thus, optimum number of clusters would be 5.

8. Silhouette score

Print silhouette scores for up to 10 clusters and identify optimum number of clusters.

silhouette scores = 0.4249 which is positive. This indicates that the clustering is done properly.

Figure 15: Silhouette plot

9. Profile the ads

Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots].

Bar Plot for 'Clicks' 'Spend' and 'Revenue'

Figure 16: Bar plot for clicks, spend and revenue

Bar Plot for 'CPC 'CTR' and 'CPM'

Figure 17: Bar plot for CTR, CPC, CPM

10. Summary:

- Cluster 2 has the highest number of clicks followed by cluster 3 & 4
- Cluster 2 has the highest spend and revenue, followed by cluster 4
- There is not much of a difference between the desktop and the mobile device types when it comes to clicks, spend and revenue and the device type does not make a difference
- Cluster4 has higher revenue relative to the number of clicks
- Cluster 2 has higher CTR & CPM with lower CPC indicating that this cluster could be targeting premium segments or niche audience
- Cluster 0 has higher CTR and lower CPC indicating the efficient spending of the Advertisement budget. The current spend is low, and if higher spending is done on cluster 0 it could possibly generate more revenue.
- Cluster 1 has lower CPM and CTR with higher CPC indicates that the spend on the advertisement is not justified and the advertisement strategy is not efficient
- Cluster 3 has higher CTR with lower CPC indicating that the advertisement is reaching the right audience and increasing the spend could help improve the revenue

Problem Statement – PCA

PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/UTs - District Level), Scheduled tribes - 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population, Scheduled Castes, Scheduled Tribes Population, Population in the age group o-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also Non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and rural-urban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 sub-districts, 7,935 Towns and 6,40,867 Villages.

The data collected has so many variables thus making it difficult to find useful details without using Data Science Techniques. You are tasked to perform detailed EDA and identify Optimum Principal Components that explains the most variance in data. Use Sklearn only.

Basic Data Analysis:

1. Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.

• Data Frame

			Datai	Turric										
	State Code	Dist.Code	e State	Area Name	No_HH	тот_м	TOT_F	M_06	F_06	M_SC		MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M N
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3		1150	749	180
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7		525	715	123
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10984	1082	1018	3		114	188	44
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0		194	247	61
4	1	ŧ	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20		874	1928	465

635	34	636	B Puducherry	Mahe	3333	8154	11781	1146	1203	21		32	47	0
636	34	637	7 Puducherry	Karaikal	10612	12346	21691	1544	1533	2234		155	337	3
637	35	638	Andaman	Nicobars	1275	1549	2630	227	225			104	134	9
638	35	639	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	684	0		138	172	24
639	35	640	Andaman & Nicobar Island	South Andaman	7975	11977	18049	1470	1358	0		173	122	6
MAR	G_AL_	0_3_M N	MARG_AL_0_	3_F MARG_	HH_0_3	_M MAI	RG_HH_	0_3_F	MAR	G_OT_0)_3_	M MARG_OT_0_	3_F NON_WORK	_M NON_WORK_F
		180		237	6	80		252			3	32	46	258 214
		123		229	1	86		148			7	76	178	140 160
		44		89		3		34				0	4	67 61
		61		128		13		50				4	10	116 59
		465	1	043	2	05		302			2	24	105	180 478
				•••										
		0		0		0		0				0	0	32 47
		3		14		38		130				4	23	110 170
		9		4		2		6			1	17	47	76 77
		24		44		11		21				1	4	100 103
		6		2		17		17				2	4	148 99

Figure 18: PCA dataset

• Head – Top 5 rows

	State Code	Dist.Code	State	Area Name	No_HH	тот_м	тот_ғ	M_06	F_06	M_SC		MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5882	6196	3		1150	749	180
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7		525	715	123
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3		114	188	44
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0		194	247	61
4	1	5	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20		874	1928	485
MA	RG_A	L_0_3_F	MARG_	HH_0_3_M	MARG	_HH_0_	3_F N	IARG_	OT_0	_3_M	MA	RG_OT_0_3_F	NON_WORK_M	NON_WORK_F
		237		680			252			32		46	258	214
		229		186			148			76		178	140	160
		89		3			34			0		4	67	61
		128		13			50			4		10	118	59
		1043		205			302			24		105	180	478

Figure 19: Head (top 5)

• Tail – Last 5 rows

	State Code	Dist.Code	State	Area Name	No_HH	тот_м	тот_ғ	M_06	F_06	M_SC	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M
635	34	636	Puducherry	Mahe	3333	8154	11781	1146	1203	21	 32	47	0
636	34	637	Puducherry	Karaikal	10612	12346	21691	1544	1533	2234	 155	337	3
637	35	638	Andaman & Nicobar Island	Nicobars	1275	1549	2630	227	225	0	 104	134	9
638	35	639	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	664	0	 136	172	24
639	35	640	Andaman & Nicobar Island	South Andaman	7975	11977	18049	1470	1358	0	 173	122	6

MARG_HH_0_3_F	MARG_OT_0_3_M	MARG_OT_0_3_F	NON_WORK_M	NON_WORK_F
0	0	0	32	47
130	4	23	110	170
6	17	47	76	77
21	1	4	100	103
17	2	4	148	99

Figure 20: Tail (Last 5)

- Shape (640,61) The dataset has 640 rows and 61 columns.
- Info -

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 640 entries, 0 to 639
Data columns (total 61 columns):
# Column Non-Null Count [
                                                                                        State Code
                                                                                                                                                                int64
int64
                                                                                                                                                                 int64
                                                                                                                                                                int64
                                                                                                                                                                 int64
int64
                                                                                                                                                                 int64
                                                                                                                                                                 int64
int64
                                                                                                                                                                int64
int64
int64
                                                                                                                                                                INTE4
                                                                                                                                                                int64
int64
int64
                                                                                                                                                                 int64
int64
                                                                                                                                                                 int64
                                                                                                                                                                 int64
                                                                                                                                                                int64
                                                                                                                                                                 int64
```

Figure 21: Dataset Information

There are 59 integers and 2 objects.

• Null values - There are no null values in the given data

Figure 22: Null values

• Duplicate values – There are no duplicate values in the dataset.

```
State Code
Dist.Code
                 0
State
                 0
                 0
Area Name
No_HH
                 0
MARG_HH_0_3_F
                 0
MARG_OT_0_3_M
                 0
MARG OT 0 3 F
NON WORK M
NON_WORK_F
Length: 61, dtype: int64
df.duplicated().sum()
```

Figure 23: Duplicate values

• Describe -

	State Code	Dist.Code	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	F_SC	M_ST
count	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000
mean	17.114062	320.500000	51222.871875	79940.576563	122372.084375	12309.098438	11942.300000	13820.946875	20778.392188	6191.807813
std	9.426486	184.896367	48135.405475	73384.511114	113600.717282	11500.906881	11326.294567	14426.373130	21727.887713	9912.668948
min	1.000000	1.000000	350.000000	391.000000	698.000000	56.000000	56.000000	0.000000	0.000000	0.000000
25%	9.000000	160.750000	19484.000000	30228.000000	46517.750000	4733.750000	4872.250000	3466.250000	5603.250000	293.750000
50%	18.000000	320.500000	35837.000000	58339.000000	87724.500000	9159.000000	8663.000000	9591.500000	13709.000000	2333.500000
75%	24.000000	480.250000	68892.000000	107918.500000	164251.750000	16520.250000	15902.250000	19429.750000	29180.000000	7658.000000
max	35.000000	640.000000	310450.000000	485417.000000	750392.000000	96223.000000	95129.000000	103307.000000	156429.000000	96785.000000

Figure 24: Dataset description

The summary of the data shows that each column have varied range of data hence scaling would be needed to treat all the column with equal weightage.

Exploratory Data Analysis

2. Perform detailed Exploratory analysis by creating certain questions like the given example. Pick 5 variables out of the given 20 variables below.

We start by Removing Categorical Variables such as state code, dist code, state, and area name. Thus, now the dataframe has 57 columns all numerical and highly correlated among each other.

MARG_CL_0_3_F I	MARG_AL_0_	3_M MAR	G_AL_0_3	F MARG	_HH_0_3_M	MARG_H	H_0_3_F	MARG_OT_0)_3_M M/	ARG_OT_0_	3_F	NON_WORK_M	NON_WORK_F
0.555543	0.067	7425	0.0461	28	0.368591		0.417447	0.4	86747	0.536	854	0.762384	0.735692
0.595696	0.167	7405	0.1155	80	0.495928		0.440360	0.6	51604	0.588	180	0.844896	0.716061
0.598951	0.138	3763	0.0994	38	0.451011		0.443132	0.5	93805	0.5718	853	0.827653	0.746583
0.646998	0.266	874	0.1983	38	0.601090		0.514055	0.6	90601	0.5650	030	0.784961	0.651143
0.649834	0.258	8670	0.1895	88	0.611568		0.523270	0.6	98636	0.574	178	0.783727	0.651439
0.589579	0.184	4332	0.1297	50	0.523450		0.461898	0.6	84918	0.591	437	0.735399	0.580020
0.585690	0.163	3427	0.1162	28	0.508006		0.488657	0.6	28470	0.5893	346	0.720099	0.600089
0.196571	0.027	7219	0.0070	77	0.126336		0.238813	-0.0	05482	0.090	123	0.122986	0.146954
0.216741	0.017	7205	0.0025	56	0.136396		0.273307	-0.0	05880	0.099	984	0.114131	0.150869
0.580085	0.144	4067	0.1013	55	0.421762		0.381727	0.6	00120	0.552	371	0.852199	0.738872
0.484288	0.086	819	0.0632	36	0.289115		0.272713	0.4	75349	0.464	936	0.825726	0.772873
0.625526	0.213	3365	0.1419	87	0.646265		0.553483	0.7	19513	0.619	406	0.724094	0.567371
0.672825	0.198	3298	0.1389	80	0.626967		0.634091	0.6	74655	0.638	311	0.680465	0.569174
0.514116	0.074	4774	0.0385	74	0.386357		0.354322	0.5	73408	0.5742	262	0.826807	0.715280
0.548626	0.114	1920	0.1029	35	0.343976		0.457268	0.4	41843	0.490	710	0.609380	0.591090
0.393265	-0.006	3430	-0.0290	46	0.245986		0.230231	0.4	83524	0.490	312	0.767959	0.672722
0.339516	-0.029	9158	-0.0303	36	0.153024		0.260022	0.2	96494	0.365	233	0.517041	0.500361
0.391683	0.239	9773	0.1801	30	0.430165		0.357735	0.4	58240	0.388	795	0.337879	0.223493
0.372705	0.372	2448	0.3544	91	0.226309		0.293515	0.2	42593	0.1836	686	0.153681	0.132902
0.394190	-0.041	1769	-0.0708	24	0.429702		0.477320	0.3	89820	0.440	337	0.355209	0.313488
0.226032	-0.107	7148	-0.1011	29	0.157280		0.333030	0.1	08155	0.171	380	0.144808	0.178329
0.405362	0.075	5198	0.0331	28	0.376269		0.283512	0.7	33832	0.667	100	0.634974	0.480480
0.230927	-0.026	913	-0.0431	32	0.171140		0.153591	0.3	43462	0.570	182	0.339777	0.299006
MARG_HH_	F 0.538261	0.579697	0.565228	0.542395	0.550840	0.570181	0.567445	0.093886	0.103309	0.545231		0.62819	4 0.582
MARG_OT_	M 0.800971	0.892429	0.871874	0.835365	0.834838	0.747179	0.728023	0.071022	0.062780	0.893902		0.71294	5 0.589
MARG_OT_	F 0.833235	0.839530	0.857518	0.744644	0.745304	0.685561	0.694150	0.121542	0.123015	0.856023		0.60348	6 0.562
MARGWORK_3_6_	M 0.846809	0.974313	0.943051	0.988824	0.985903	0.809307	0.784708	0.057429	0.050816	0.948130		0.75198	9 0.640
MARGWORK_3_6_	F 0.914147	0.983256	0.976391	0.936791	0.934017	0.798961	0.791918	0.050588	0.048396	0.983740		0.67636	7 0.574
MARG_CL_3_6_	M 0.692377	0.819869	0.778856	0.859413	0.886289	0.751967	0.730993	0.117438	0.119275	0.763697		0.91787	4 0.826
MARG_CL_3_6_	F 0.723436	0.715267	0.736418	0.716630	0.721351	0.662006	0.694128	0.280432	0.307672	0.675985		0.78979	2 0.877
MARG_AL_3_6_	M 0.210641	0.352883	0.306733	0.472981	0.475943	0.344283	0.316077	0.116489	0.108795	0.298784		0.76724	2 0.770
MARG_AL_3_6_	F 0.094437	0.165073	0.149338	0.253810	0.247161	0.161941	0.148568	0.080390	0.077766	0.143411		0.49371	8 0.594
MARG_HH_3_6_	M 0.448382	0.546598	0.507514	0.641075	0.653328	0.565129	0.556232	0.139290	0.153371	0.457879		0.80003	1 0.757
MARG_HH_3_6_	F 0.496975	0.436428	0.470992	0.466309	0.474994	0.451241	0.505768	0.322888	0.365332	0.380993		0.56358	3 0.697
MARG_OT_3_6_	M 0.501329	0.664219	0.603308	0.690955	0.697567	0.663500	0.625319	-0.016630	-0.018820	0.612484		0.77228	6 0.634
MARG_OT_3_6	F 0.532138	0.569662	0.556009	0.527947	0.536047	0.555866	0.552942	0.094028	0.103185	0.536081		0.59102	6 0.547
MARGWORK_0_3_	M 0.798661	0.890768	0.869805	0.834998	0.834619	0.740155	0.720465	0.059681	0.051667	0.891050		0.69338	2 0.570
MARGWORK_0_3	F 0.829153	0.842307	0.856203	0.742728	0.743463	0.689118	0.694251	0.110104	0.110856	0.856519		0.57573	0 0.520
MARG CL 0.2	M 0.556941	0.698310	0.655347	0.760610	0.763614	0.673633	0.650455	0.122967	0.121411	0.652507		1.00000	0.916
MIANO_CL_U_3_		0.505000	0.598951	0.646998	0.649834	0.569579	0.585690	0.196571	0.216741	0.580085		0.91676	5 1.000
MARG_CL_0_3_ MARG_CL_0_3_	F 0.555543	0.080080				0.404000	0.163427	0.027219	0.017205	0.144087		0.58528	4 0.624
			0.138763	0.266674	0.258670	0.184332							
MARG_CL_0_3_	M 0.067425	0.167405					0.116228	0.007077	0.002556	0.101355		0.49447	3 0.587
MARG_CL_0_3 MARG_AL_0_3	M 0.067425 F 0.046128	0.167405 0.115580	0.099438	0.198338	0.189568	0.129750							
MARG_CL_0_3 MARG_AL_0_3 MARG_AL_0_3	M 0.067425 F 0.046128 M 0.368591	0.167405 0.115580 0.495928	0.099438 0.451011	0.198338 0.601090	0.189568 0.611568	0.129750 0.523450	0.508006	0.126336	0.136396	0.421762		0.87514	1 0.805
MARG_CL_0_3 MARG_AL_0_3 MARG_AL_0_3 MARG_HH_0_3	M 0.067425 F 0.046128 M 0.368591 F 0.417447	0.167405 0.115580 0.495928 0.440360	0.099438 0.451011 0.443132	0.198338 0.601090 0.514055	0.189568 0.611568 0.523270	0.129750 0.523450 0.461898	0.508006	0.126336	0.136396	0.421762 0.381727		0.87514 0.76662	1 0.805 9 0.846
MARG_CL_0_3 MARG_AL_0_3 MARG_AL_0_3 MARG_HH_0_3 MARG_HH_0_3	M 0.067425 F 0.046128 M 0.368591 F 0.417447 M 0.486747	0.167405 0.115580 0.495928 0.440360 0.651604	0.099438 0.451011 0.443132 0.593805	0.198338 0.601090 0.514055 0.690601	0.189568 0.611568 0.523270 0.698636	0.129750 0.523450 0.461898 0.664918	0.508008 0.488657 0.628470	0.126336 0.238813 -0.005482	0.136396 0.273307 -0.005880	0.421762 0.381727 0.600120		0.87514 0.76662 0.82939	1 0.805 9 0.846 6 0.691
MARG_CL_0_3 MARG_AL_0_3 MARG_AL_0_3 MARG_HH_0_3 MARG_HH_0_3 MARG_OT_0_3	M 0.067425 F 0.046128 M 0.368591 F 0.417447 M 0.486747 F 0.536854	0.167405 0.115580 0.495928 0.440360 0.651604 0.588180	0.099438 0.451011 0.443132 0.593805 0.571853	0.198338 0.601090 0.514055 0.690601 0.565030	0.189568 0.611568 0.523270 0.698636 0.574178	0.129750 0.523450 0.461898 0.664918 0.591437	0.508006 0.488657 0.628470 0.589346	0.126336 0.238813 0.005482 0.090123	0.136396 0.273307 -0.005880 0.099984	0.421762 0.381727 0.600120 0.552371		0.87514 0.76662 0.82939 0.71378	1 0.805 9 0.846 6 0.691 5 0.666

0.582993	0.145239	0.086603	0.578509	0.495631	0.760351	0.973383	0.567936	0.485369
0.589422	0.145294	0.098954	0.451809	0.374776	0.676455	0.593688	0.947725	0.829610
0.562354	0.084207	0.051721	0.344556	0.331405	0.571545	0.556523	0.878514	0.892865
0.640050	0.244887	0.181250	0.571706	0.497148	0.689823	0.569824	0.816939	0.678857
0.574138	0.138476	0.090005	0.463321	0.401748	0.614960	0.562999	0.860038	0.757237
0.826908	0.341167	0.262900	0.834578	0.749911	0.839817	0.733505	0.795369	0.654953
0.877599	0.402389	0.366206	0.703379	0.808523	0.662709	0.642034	0.632577	0.612455
0.770425	0.845747	0.793623	0.643325	0.568238	0.539538	0.419828	0.345163	0.253401
0.594711	0.915799	0.936248	0.272519	0.281378	0.226589	0.145112	0.144225	0.133034
0.757824	0.258258	0.173687	0.933827	0.881058	0.716579	0.645532	0.487244	0.354341
0.697808	0.148573	0.112136	0.693170	0.880890	0.464583	0.450024	0.316894	0.312860
0.634494	0.250372	0.174700	0.698978	0.559043	0.952411	0.807399	0.657035	0.481021
0.547196	0.125913	0.070179	0.538825	0.458845	0.729399	0.952273	0.546636	0.487115
0.570918	0.134291	0.088836	0.439092	0.363350	0.669358	0.583032	0.925301	0.808869
0.520033	0.064555	0.030645	0.328150	0.309687	0.574082	0.545667	0.845428	0.830600
0.916765	0.585284	0.494473	0.875141	0.766629	0.829396	0.713785	0.765673	0.623510
1.000000	0.624517	0.587746	0.805723	0.846438	0.691143	0.666214	0.644600	0.641180
0.624517	1.000000	0.958797	0.354791	0.301234	0.291239	0.196213	0.190933	0.144694
0.587748	0.958797	1.000000	0.251897	0.233344	0.208517	0.131240	0.143090	0.121797
0.805723	0.354791	0.251897	1.000000	0.902658	0.769568	0.673186	0.486815	0.358030
0.846438	0.301234	0.233344	0.902658	1.000000	0.629415	0.584842	0.408173	0.386075
0.691143	0.291239	0.208517	0.769568	0.629415	1.000000	0.823170	0.669458	0.485128
0.666214	0.196213	0.131240	0.673186	0.584842	0.823170	1.000000	0.609569	0.521097
0.644600	0.190933	0.143090	0.486815	0.408173	0.669458	0.609569	1.000000	0.880902
0.641180	0.144694	0.121797	0.358030	0.366075	0.485128	0.521097	0.880902	1.000000

Figure 25: Correlation table

Figure 26: Boxplots of any 5 variables

- All of the chosen columns have several outliers
- As there are many outliers we decide not to treat them as it would be too much data modification and we might arrive at an inaccurate analysis.

State Wise Analysis for the chosen columns

Figure 27: Barplot of any 5 variables

Pair Plot

Figure 28: Pairplot of any 5 variables

- Pair plot also shows there is collinearity among the chosen columns.
- 3. We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

Since PCA is sensitive to outliers, we remove them instead of treating the outliers. Otherwise it may lead to manipulation of dataset.

Data Scaling

4. Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.

In our basic data analysis itself it was found the data needs scaling as data values are far from each other.

Z-Score Scaling:

Figure 29: Scaled data

Z-Score scaling makes mean close to zero and standard deviation close to 1

	count	mean	std	min	25%	50%	75%	max
No_HH	640.0	4.440892e-17	1.000782	-1.057697	-0.659882	-0.319887	0.367358	5.389586
TOT_M	640.0	-8.881784e-17	1.000782	-1.084858	-0.677956	-0.294592	0.381549	5.529690
TOT_F	640.0	-4.440892e-17	1.000782	-1.071908	-0.668250	-0.305233	0.368945	5.532633
M_06	640.0	-5.551115e-17	1.000782	-1.088238	-0.659189	-0.274114	0.388445	7.301993
F_06	640.0	6.661338e-17	1.000782	-1.050264	-0.642376	-0.289756	0.349898	7.350309
M_SC	640.0	5.551115e-18	1.000782	-0.958783	-0.718323	-0.293404	0.389092	6.207800
F_SC	640.0	-5.551115e-17	1.000782	-0.957049	-0.698964	-0.325615	0.386976	6.248040
M_ST	640.0	-4.440892e-17	1.000782	-0.625124	-0.595467	-0.389534	0.148027	9.148281
F_ST	640.0	-2.220448e-17	1.000782	-0.640197	-0.613122	-0.398476	0.146540	7.582324
M_LIT	640.0	-4.440892e-17	1.000782	-1.032495	-0.656385	-0.273410	0.358381	6.180672
F_LIT	640.0	0.000000e+00	1.000782	-0.880091	-0.605869	-0.300924	0.245937	6.732272
M_ILL	640.0	3.885781e-17	1.000782	-1.103880	-0.675544	-0.313229	0.380809	4.239674
F_ILL	640.0	-4.440892e-17	1.000782	-1.182788	-0.714648	-0.289434	0.477029	4.208752
TOT_WORK_M	640.0	-4.440892e-17	1.000782	-1.041258	-0.666067	-0.276329	0.338191	6.359515
TOT_WORK_F	640.0	-8.881784e-17	1.000782	-1.101591	-0.678035	-0.288114	0.321244	5.827047
MAINWORK_M	640.0	-2.220448e-17	1.000782	-0.958137	-0.649073	-0.284647	0.315185	6.920918
MAINWORK_F	640.0	4.440892e-17	1.000782	-0.932745	-0.623743	-0.324100	0.229006	6.604449
MAIN_CL_M	640.0	-8.881784e-17	1.000782	-1.145474	-0.718165	-0.266889	0.479501	5.002401
MAIN_CL_F	640.0	-1.110223e-17	1.000782	-1.030785	-0.669985	-0.296408	0.338245	5.769599
MAIN_AL_M	640.0	0.000000e+00	1.000782	-0.914709	-0.747338	-0.299102	0.346882	5.472493
MAIN_AL_F	640.0	4.440892e-17	1.000782	-0.694401	-0.584807	-0.388393	0.131591	6.147314
MAIN_HH_M	640.0	1.685335e-17	1.000782	-0.691816	-0.545061	-0.301644	0.168557	12.167019
MAIN_HH_F	640.0	0.000000e+00	1.000782	-0.434825	-0.356326	-0.264492	0.017305	14.038154
MAIN_OT_M	640.0	0.000000e+00	1.000782	-0.691455	-0.539371	-0.324365	0.122942	8.553708
MAIN_OT_F	640.0	-4.440892e-17	1.000782	-0.646347	-0.488651	-0.317847	0.103507	10.389042
MARGWORK_M	640.0	-1.685335e-17	1.000782	-1.046990	-0.655025	-0.291825	0.271747	5.370026

```
MARGWORK_F 640.0 2.220446e-17 1.000782 -1.181294 -0.698262 -0.265922 0.526247 4.897950
     MARG_CL_M 640.0 0.000000e+00 1.000782 -0.794140 -0.556257 -0.331347 0.183333 9.278947
     MARG_CL_F 640.0 -5.551115e-17 1.000782 -0.647891 -0.470946 -0.303687 0.098704 11.796239
     MARG_AL_M 640.0 1.110223e-17 1.000782 -0.874484 -0.643314 -0.328780 0.263702
     MARG AL F 640.0 2.220448e-17 1.000782 -0.954894 -0.747687 -0.360900 0.387964
     MARG_HH_M 640.0 -5.551115e-18 1.000782 -0.685144 -0.529942 -0.326070 0.086000
     MARG HH F 640.0 1.110223e-17 1.000782 -0.656736 -0.513346 -0.298574 0.146833 12.240442
     MARG_OT_M 640.0 1.110223e-17 1.000782 -0.864853 -0.607407 -0.302269 0.238203
     MARG OT F 640.0 -4.440892e-17 1.000782 -0.856115 -0.600094 -0.289358 0.209431
MARGWORK 3 6 M 640.0 7.216450e-17 1.000782 -1.067727 -0.659748 -0.298173 0.391405
MARGWORK_3_6_F 640.0 -2.220446e-17 1.000782 -0.973823 -0.656854 -0.292903 0.323834 7.181348
 MARG_CL_3_6_M 640.0 -2.220448e-17 1.000782 -1.058687 -0.668815 -0.293426 0.294594 5.438148
  MARG CL 3 6 F 640.0 -8.881784e-17 1.000782 -1.212036 -0.707773 -0.241685 0.562843 4.695168
 MARG_AL_3_6_M 640.0 -4.440892e-17 1.000782 -0.872827 -0.612586 -0.341847 0.216758 7.333319
  MARG_AL_3_6_F 640.0 4.440892e-17 1.000782 -0.701351 -0.502020 -0.308297 0.124035 10.190817
 MARG HH 3 6 M 640.0 -7.216450e-17 1.000782 -0.897436 -0.662335 -0.336627 0.313560 5.429606
 MARG_HH_3_6_F 640.0 -6.661338e-17 1.000782 -0.969686 -0.760784 -0.351845 0.437478 5.830127
 MARG_OT_3_6_M 640.0 -5.551115e-18 1.000782 -0.684513 -0.522705 -0.323234 0.085473 9.177442
  MARG_OT_3_6_F 640.0 3.330669e-17 1.000782 -0.651473 -0.509422 -0.295094 0.148296 12.796429
MARGWORK 0 3 M 640.0 0.000000e+00 1.000782 -0.859800 -0.613309 -0.307996 0.232028
MARGWORK 0 3 F 640.0 0.000000e+00 1.000782 -0.848224 -0.601775 -0.300744 0.233353 6.919646
 MARG_CL_0_3_M 640.0 -2.775558e-17 1.000782 -0.933110 -0.606952 -0.298260 0.215665
  MARG_CL_0_3_F 640.0 -5.551115e-17 1.000782 -0.978631 -0.645877 -0.297513 0.302412 6.765940
 MARG_AL_0_3_M 640.0 2.220448e-17 1.000782 -0.553881 -0.450104 -0.301091 0.043845 12.194982
  MARG_AL_0_3_F 640.0 -2.220446e-17 1.000782 -0.499744 -0.402141 -0.278122 0.009538 14.859741
 MARG HH 0 3 M 640.0 4.440892e-17 1.000782 -0.735831 -0.556693 -0.331622 0.106708 7.290595
  MARG_HH_0_3_M 640.0 4.440892e-17 1.000782 -0.735831 -0.556693 -0.331622 0.106708 7.290595
  MARG_HH_0_3_F 640.0 -1.110223e-17 1.000782 -0.816489 -0.628374 -0.363877 0.263436 7.840581
  MARG_OT_0_3_M 640.0 -2.775558e-17 1.000782 -0.662068 -0.532213 -0.337432 0.070681 7.639320
  MARG_OT_0_3_F 640.0 0.000000e+00 1.000782 -0.648804 -0.509670 -0.283498 0.126843 10.188272
    NON_WORK_M 640.0 -2.220448e-17 1.000782 -0.835916 -0.572036 -0.301600 0.154863 9.745505
NON_WORK_F 640.0 -6.661338e-17 1.000782 -0.769412 -0.532468 -0.264188 0.163521 10.806207
```

Figure 30: Scaled data summary

Effect of Scaling on the outliers

• The below figure shows that scaling doesn't impact any of the outliers.

Figure 31: Boxplots of scaled data

Heat Map for All Given Columns (Scaled Data)

Figure 32: Heatmap of scaled data

• Heat map shows high correlation among many columns with the other.

Principal Component Analysis

5. Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.

Covariance Matrix:

Figure 33: Covariance matrix

Eigen Vector and Eigen Value:

```
Eigen Vectors
[[-1.56020579e-01+0.00000000e+00j] 1.26346525e-01+0.00000000e+00j]
-2.69025037e-03+0.000000000e+00j] ... -2.18416172e-14+0.00000000e+00j
9.82414958e-15-1.22816598e-14j] 9.82414958e-15+1.22816598e-14j]
[-1.67117635e-01+0.00000000e+00j] 8.96765481e-02+0.00000000e+00j
5.66976191e-02+0.00000000e+00j ... 7.26493909e-02+0.00000000e+00j
6.19403635e-02-1.49494655e-02j 6.19403635e-02+1.49494655e-02j]
[-1.65553179e-01+0.00000000e+00j 1.04912371e-01+0.00000000e+00j
3.87494746e-02+0.00000000e+00j ... 3.91091522e-01+0.00000000e+00j
1.92123097e-01-1.04060242e-01j 1.92123097e-01+1.04060242e-01j]
...
[-1.32192245e-01+0.00000000e+00j -5.08133220e-02+0.00000000e+00j
-7.87198691e-02+0.00000000e+00j ... -5.74108207e-03+0.00000000e+00j
-2.57200586e-02-1.20192830e-02j -2.57200586e-02+1.20192830e-02j]
[-1.50375578e-01+0.00000000e+00j ... -5.35261432e-03+0.00000000e+00j
-6.65894129e-02-1.22250480e-02j -6.65894129e-02+1.22250480e-02j]
[-1.31066203e-01+0.00000000e+00j ... -5.35261432e-03+0.00000000e+00j
-1.02552501e-01+0.00000000e+00j ... -1.95662634e-02+0.00000000e+00j
-1.19467868e-01-1.05430357e-02j -1.19467868e-01+1.05430357e-02j]]
```

Figure 34: Eigen vectors

```
Eigen Values
[ 3.17638560e+01+0.000000000e+00j
                                  7.85712818e+00+0.000000000e+00i
 4.14691842e+00+0.000000000e+00j
                                  3.66305809e+00+0.000000000e+00j
 2.20307818e+00+0.000000000e+00i
                                  1.93524646e+00+0.000000000e+00i
 1.17433597e+00+0.000000000e+00i
                                  7.49985400e-01+0.00000000e+00i
 6.16089597e-01+0.00000000e+00i
                                  5.27475417e-01+0.00000000e+00i
 4.29159578e-01+0.00000000e+00j
                                  3.52887950e-01+0.00000000e+00i
 2.95700259e-01+0.00000000e+00j
                                  2.80836067e-01+0.00000000e+00j
 1.91858078e-01+0.00000000e+00j
                                  1.36055001e-01+0.00000000e+00j
 1.13212028e-01+0.00000000e+00i
                                  1.06137846e-01+0.00000000e+00j
 9.71365243e-02+0.00000000e+00i
                                  7.99810535e-02+0.00000000e+001
 5.75189814e-02+0.00000000e+00j
                                  4.43262285e-02+0.00000000e+00j
 3.78318798e-02+0.00000000e+00j
                                  2.95897131e-02+0.00000000e+00j
 2.70374497e-02+0.00000000e+00i
                                  2.34091798e-02+0.00000000e+00j
 1.44884774e-02+0.000000000e+00i
                                  7.12444187e-04+0.000000000e+00i
 1.06622961e-03+0.000000000e+00i
                                  2.59365290e-03+0.00000000e+001
 5.01816199e-03+0.00000000e+00i
                                  1.09680624e-02+0.00000000e+00i
 9.30052372e-03+0.00000000e+00i
                                  8.12269047e-03+0.00000000e+00i
7.88017049e-03+0.00000000e+00i
                                 1.11825550e-15+0.00000000e+00i
-1.07120849e-15+3.32448656e-16j
                                 -1.07120849e-15-3.32448656e-16j
-1.16230609e-15+0.00000000e+00j
                                 -1.06546917e-15+0.00000000e+00j
 7.93165234e-16+0.00000000e+00i
                                  7.21408988e-16+7.57361847e-17j
 7.21408988e-16-7.57361847e-17i
                                  8.02459721e-16+0.00000000e+00i
-7.34145147e-16+0.00000000e+00j
                                  4.24731429e-16+4.58780256e-17j
 4.24731429e-16-4.58780256e-17j
                                 -5.74053941e-16+0.00000000e+00j
-4.99577381e-16+0.00000000e+00j
                                 3.08320515e-16+0.00000000e+00j
-3.46407818e-16+0.00000000e+00i
                                 -2.78792906e-16+0.00000000e+00i
-1.17833161e-16+6.71989630e-17j -1.17833161e-16-6.71989630e-17j
 1.20032068e-18+0.00000000e+00i
                                 9.53536475e-17+1.96465885e-17j
 9.53536475e-17-1.96465885e-17il
```

Figure 35: Eigen values

First Eigen Vector equation:

```
The first eigen vector is:
(-0.1560205785856788+0j) * No HH +
(0.12634652545112177+0j) * TOT M +
(-0.002690250367895609+0j) * TOT F+
(-0.12529337156421827+0j) * M 06 +
(0.007022081300930482+0j) * F 06 +
(-0.004082812708624174+0j) * M SC +
(0.11811039900370703+0j) * F SC +
(-0.05723830782871984+0j) * M ST +
(0.004264737531171913+0j) * F ST +
(0.01998510330402382+0j) * M LIT +
(-0.01059187665377821+0j) * F LIT +
(-0.08619327075293665+0j) * M ILL +
(-0.1041749256470337+0j) * F ILL +
(0.028891545615620327+0j) * TOT WORK M+
(0.05731964114311972+0j) * TOT WORK F+
(0.0222629541766674+0j) * MAINWORK M+
(0.07927843396646114+0j) * MAINWORK F+
(0.13279831420623323+0j) * MAIN CL M+
(0.09950616875207853+0j) * MAIN CL F+
(-0.06153349699574671+0j) * MAIN AL M +
```

```
(0.09141067674655443+0j) * MAIN AL F+
(-0.3912638142970992+0j) * MAIN HH M+
(0.32033486100615255+0j) * MAIN HH F+
(-0.0020116374778708715+0j) * MAIN OT M+
(0.09665622840546396+0j) * MAIN OT F+
(-0.135743225605903+0j) * MARGWORK M+
(0.20645117771828925+0j) * MARGWORK_F +
(0.16309535079634924+0j) * MARG CL M+
(-0.2126981254754507+0j) * MARG CL F+
(-0.6418772071297786+0j) * MARG AL M +
(0.08346450006334961+0j) * MARG AL F+
(0.03877758203462681+0j) * MARG HH M+
(0.11460174850970233+0j) * MARG HH F+
(0.16049099951976822+0j) * MARG OT M+
(-0.00037100948914314276+0j) * MARG OT F+
(-1.1264965458035132e-13+0j) * MARGWORK 3 6 M +
(-3.622715671187225e-14-2.5865991357172073e-14j) * MARGWORK_3_6_F +
(-3.622715671187225e-14+2.5865991357172073e-14j) * MARG CL 3 6 M +
(-6.144849989290794e-14+0j) * MARG CL 3 6 F+
(-4.9032897077474184e-14+0j) * MARG AL 3 6 M+
(3.374370787315205e-14+0j) * MARG AL 3 6 F+
(-4.241566837391235e-14+3.2008674758378366e-14j) * MARG HH 3 6 M +
(-4.241566837391235e-14-3.2008674758378366e-14j) * MARG HH 3 6 F+
(9.593069045378147e-14+0j) * MARG_OT_3_6_M +
(4.8549123100476903e-14+0j) * MARG OT 3 6 F+
(5.863311252902347e-14+2.7132010787965834e-15j) * MARGWORK_0_3_M +
(5.863311252902347e-14-2.7132010787965834e-15j) * MARGWORK 0 3 F +
(-4.517917855236678e-14+0j) * MARG_CL_0_3_M +
(3.7311611273099406e-14+0j) * MARG CL 0 3 F+
(5.887485159490267e-14+0j) * MARG_AL_0_3_M +
(4.4603628032996474e-15+0j) * MARG_AL_0_3_F +
(-1.1026364526829432e-14+0j) * MARG HH 0 3 M+
(1.444642432624533e-15-1.404106268381001e-14j) * MARG HH 0 3 F+
(1.444642432624533e-15+1.404106268381001e-14j) * MARG OT 0 3 M +
(-2.1841617181179887e-14+0j) * MARG_OT_0_3_F +
(9.824149575382851e-15-1.2281659828338364e-14j) * NON WORK M+
(9.824149575382851e-15+1.2281659828338364e-14j) * NON_WORK_F
```

6. Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.

Variance Experienced by Each of the Eigen Value:

```
The variance explained by each of eigen values in order is [(55.726063245483395+0j), (13.784435398867204+0j), (7.275295475037663+0j), (6.426417707902724+0j), (3.8650494385437404+0j), (3.395169233122141+0j), (2.060238546173363+0j), (1.3157638603636073+0j), (1.0808589417423942+0j), (0.9253954683322126+0j), (0.752915396464453+0j), (0.6191016673019892+0j), (0.5187723837113795+0j), (0.49269485485278275+0j), (0.33659311945698533+0j), (0.28602938429982935+0j), (0.19861759344696095+0j), (0.18620674680204716+0j), (0.1704149548886652+0j), (0.1403176376500245+0j), (0.1091049360553642+0j), (0.07776531307693414+0j), (0.0663717189868593+0j), (0.05191177735689486+0j), (0.04743412222616297+0j), (0.4106873644998113+0j), (0.0254183814352128+0j), (0.01924221472767971+0j), (0.016316708282405244+0j), (0.014250334150863289+0j), (0.013824860517365593+0j), (0.008803792969803456+0j), (0.004550268241441011+0j), (0.0018707582641093816+0j), (0.0012490920832031325+0j), (1.961851747531199e-15+0j), (1.3915179550653592e-15+0j), (1.2656298040215477e-15+1.328704994755039e-16j), (7.451428578863546e-16-8.0487764166468543e-17j), (7.451428578863546e-16-8.0487764166468543e-17j), (5.409131850335533e-16+0j), (1.6728710079455306e-16+3.4467699085397086e-17j), (1.6728710079455306e-16+0j), (1.6728710079455306e-16+1.178929176272042e-16j), (-2.0672484355892472e-16-1.178929176272042e-16j), (-2.0672484355892472e-16-1.178929176272042e-16j), (-1.8793131324786155e-15+5.832432562225718e-16j), (-1.8893131324786155e-15+5.832432562225718e-16j), (-2.03913319484856777e-15+0j)]
```

Figure 36: Variance

Cumulative Variance:

```
Cumulative Variance Explained
  [ 55.72606325+0.00000000e+00j 69.51049864+0.00000000e+00j
  76.78579412+0.00000000e+00j
                               83.21221183+0.00000000e+00j
 87.07726127+0.000000000e+00j
                               90.4724305 +0.00000000e+00j
 92.53266905+0.000000000e+00j
                               93.84843291+0.00000000e+00j
 94.92929185+0.00000000e+00j
                               95.85468732+0.00000000e+00j
 96.60759886+0.00000000e+00j
                               97.22670052+0.000000000e+00j
 97.74547291+0.00000000e+00j
                               98.23816776+0.00000000e+00j
 98.57476088+0.00000000e+00j
                               98.81345386+0.00000000e+00j
 99.01207146+0.00000000e+00j
                               99.19827821+0.00000000e+00j
 99.36869316+0.00000000e+00j
                               99.5090108 +0.00000000e+00j
  99.60992129+0.00000000e+00i
                               99.6876866 +0.00000000e+00j
 99.75405832+0.00000000e+00j
                               99.8059701 +0.00000000e+00j
 99.85340422+0.00000000e+00j
                               99.89447296+0.00000000e+00j
 99.91989134+0.00000000e+00j
                               99.93913356+0.00000000e+00j
 99.95545026+0.00000000e+00i
                               99.9697006 +0.00000000e+00i
                               99.99232925+0.00000000e+00j
 99.98352546+0.00000000e+00j
 99.99687952+0.00000000e+00j
                               99.9987501 +0.00000000e+00j
100.
             +0.00000000e+00j 100.
                                          +0.00000000e+00j
100.
             +0.00000000e+00j 100.
                                          +1.32870499e-16j
100.
            +0.00000000e+00j 100.
                                          +8.04877642e-17j
100.
            +0.00000000e+00j 100.
                                          +0.00000000e+00j
100.
             +3.44676991e-17j 100.
                                          +0.00000000e+00i
             +0.00000000e+00j 100.
100.
                                          +1.17892918e-16j
             +0.00000000e+00j 100.
100.
                                          +0.00000000e+00j
100.
             +0.00000000e+00j 100.
                                          +0.00000000e+00j
100.
             +0.00000000e+00j 100.
                                          +0.00000000e+00j
100.
             +0.00000000e+00j 100.
                                          +0.00000000e+00j
100.
             +5.83243256e-16j 100.
                                          +0.00000000e+00j
100.
             +0.00000000e+00j]
```

Figure 37: Cumulative variance

The above figures shows that the optimum number of components needed would be 6 to cover 90% of the explained variance.

Scree Plot:

Figure 38: Scree plot

Cumulative Explained Variance:

Figure 39: Explained variance ratio vs PCs

Final Dimension:

	PC1	PC2	PC3	PC4	PC5	PC6			
0	-4.617263	0.138116	0.328545	1.543697	0.353736	-0.420948			
1	-4.771662	-0.105865	0.244449	1.963215	-0.153884	0.417308			
2	-5.964836	-0.294347	0.367394	0.619543	0.478199	0.276581			
3	-6.280796	-0.500384	0.212701	1.074515	0.300799	0.051157			
4	-4.478566	0.894154	1.078277	0.535557	0.804065	0.341678			
635	-6.262088	-0.854414	0.242575	1.174113	0.063816	-0.159470			
636	-5.767714	-0.900436	0.168051	1.102774	0.055179	-0.156458			
637	-6.294625	-0.638127	0.107483	1.368187	0.153745	0.141145			
638	-6.223192	-0.672320	0.271325	1.143493	0.060440	-0.115682			
639	-5.896236	-0.937170	0.349218	1.114861	0.149104	-0.154544			
640 rows × 6 columns									

Figure 40: Final Dimension of PCs

• The given data is now reduced to 6 columns, PCA doesn't do any modification to the number of rows, it remains the same 640.

Heat Map of the PCA VS Original Columns:

• The below heat map shows how each component of PCA is influenced by the original data columns.

Figure 41: Heatmap of PCA vs Original columns

The above figure shows that the first PCA components is most influenced by almost all columns given, and the influenced keeps reducing in the subsequent components, such that in the 5th and 6th components some of the columns are having close to zero correlation. So PCA1 explains most variance which is 55%.

Component wise inference

7. Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.

- PC1 explains the most variance which is 55% of the given data. This Principal component
 covers mostly about Marginal Literate Agricultural Laborers. It has strong correlation with the
 actual columns like Marginal Worker Population 3-6 Female, Marginal Worker Population 3-6
 Male, Marginal Worker Population Male, Literates population Female, Literates population
 Male. Hence, we have labelled this component as Marginal Literate Agricultural Labourers.
- PC2 is about 13% of the given data. This principal component covers Marginal Cultivators and agriculture labourer, with most of its influence from the actual variable Marginal Agriculture Labourers Population 0-3 Female, Marginal Cultivator Population Female, Marginal Agriculture Labourers Population 0-3 Male, Marginal Agriculture Labourers Population 3-6 Female, Marginal Cultivator Population Male, Marginal Agriculture Labourers Population 3-6 Male who own the land and involve themselves in farming. Hence labelling them as Marginal Cultivators.
- PC3 is about 7% of the given data. We have labelled them as Marginal Agricultural Labourers Female as most influencing variables are Marginal Agriculture Labourers Population 0-3 Female, Marginal Cultivator Population Female, Marginal Agriculture Labourers Population 3-6 Female.
- PC4 is about 6.4% of the given data, this component covers Marginal Household industry
 and Other workers hence the same label has been given to it. The variable influencing the
 component mostly is Marginal Other Workers Population Person 3-6 Male, Marginal
 Household Industries Population Male, Marginal Other Workers Population 0-3 Male,
 Marginal Other Workers population 0-3 Female, Marginal Household Industries Population
 Female
- PC5 is about 3.8% of the given data. The most influencing actual variable for this component
 is Non-Working Population Male, Non-Working Population Female, Marginal Other Workers
 Population Female, Marginal Worker Population 0-3 Female, Scheduled Tribes population
 Male and Scheduled Tribes population Female. Hence labelling this component as Scheduled
 Tribe Population.
- PC6 is about 3.3% of the given data which is mostly influenced by actual column like Main Working Population Female, Main Household Industries Population Female, Marginal Other Workers Population 0-3 Female, Marginal Household Industries Population Female, Marginal Other Workers Population Person 3-6 Female, Scheduled Tribes population Female. This component is mainly about the female population hence labelling it as Main & Marginal Female population.

Heat Map PCA components:

Figure 42: Heatmap of all PCs

The above figure shows that none of the PCA component is corelated to the other components as the covariance value is very close to zero which shows our PCA is successful.

Influence of actual variables on PC1

8. Write linear equation for first PC

The influence of actual variable and the PC can be explained by a linear equation.

The Equation of the First PC (PC1) is:

```
0.15602057858558915 * No HH +
0.1671176348853478 * TOT M +
0.16555317909057707 * TOT F +
0.16219294820457575 * M 06 +
0.16256639565726402 * F 06 +
0.15135784909062253 * M SC +
0.1515665001920242 * F SC +
0.027234194570986126 \times M ST +
0.02818331501586022 * F ST +
0.16199283733627975 * MLIT +
0.1468726803012997 * F LIT +
0.16174944463479718 * M ILL +
0.16524818736832483 * F ILL +
0.15987198816211723 * TOT WORK M +
0.14593580377247212 * TOT WORK F +
0.14620072976315196 * MAINWORK M +
0.12397028357273014 * MAINWORK F +
0.10312715882997171 * MAIN CL M +
0.07453978555514146 * MAIN_CL_F +
0.11335571218162897 * MAIN AL M +
0.07388215903143862 * MAIN AL F +
0.13157258402261926 * MAIN HH M +
0.0833826396742786 * MAIN HH F +
0.1235262419226749 * MAIN OT M +
0.11102126391320055 * MAIN OT F +
0.16461547856023126 * MARGWORK M +
0.15539561810834482 * MARGWORK F +
0.08238854140677228 * MARG CL M +
0.049195395678877776 * MARG CL F +
0.1285985629468215 * MARG AL M +
0.11430507278921848 * MARG AL F +
0.14085322696180522 * MARG HH M +
0.12766959801481645 * MARG HH F +
0.15526287162332747 * MARG OT M +
0.14728658356507177 * MARG OT F +
0.16497194993707148 * MARGWORK_3_6_M +
0.161253432575217 * MARGWORK 3 6 F +
0.1655016110259308 * MARG CL 3 6 M +
0.15564704914486402 * MARG CL 3 6 F +
0.09301420640152648 * MARG AL 3 6 M +
0.051535863970250805 * MARG AL 3 6 F +
0.12857611642886113 * MARG HH 3 6 M +
0.11064584323703604 * MARG HH 3 6
0.13959276252154193 * MARG_OT_3_6_M +
0.12454590917265383 * MARG OT 3 6 F +
0.15429378578934816 * MARGWORK 0 3 M +
0.14628565406202168 * MARGWORK 0 3 F +
0.15012570610272008 * MARG CL 0 3 M +
0.1401570468900264 * MARG CL 0 3 F +
0.052541782853976135 * MARG AL 0
0.04178595301223521 * MARG \overline{A}L \overline{0} \overline{3} \overline{F} +
0.12184035387919034 * MARG HH 0
0.11601141016809986 * MARG HH 0 3 F +
0.1398687741103844 * MARG OT 0 3 M +
0.13219224458201573 * MARG OT 0 3 F +
0.15037557804442866 * NON WORK M +
0.13106620313178857 * NON WORK F
```