# Creating an Al for a Car Simulation

Using a Neural Network

> Pedro Albarran 2151023 Alexandre Araújo 2151347

# Neural Network

There are currently three activation functions available:

- Logistic
- Hyperbolic Tangent
- ReLU

# Neural Network

Our tests were done with the hyperbolic tangent since its image maps nicely to the vehicle's input range of [-1, 1].

Abstracted input and fitness function to CarAl class

# Genetic Algorithm

Multiple car support

Number of cars on track at once, which CarAl to use, the activation function and hidden layer size



# User Interface

Current leader's outputs and other info

Pause and stop buttons

Generation information

Quick save button



# Genotype visualisation





The genes are represented by the colored squares, each color represents a value.

As the neural network evolves, the genotypes of different individuals start to converge into a recognizable pattern.

### Kill conditions

- Box trace downward to kill the car when it exits the track
- Kill wall behind the starting point
- Maximum life time allowed on track before the car is killed
- Cars with negative fitness
- Cars that are too slow
- Kill the car after 90 seconds

# Car Als

Several different Als were made, each with different inputs.

#### For SplineSimple: the inputs are

- Rotation of the car in relation to the spline of the track
- Rotation of the car in relation to a point some meters ahead
- Distance to track center (normalized to [-1,1])



#### 3rays:

- two forward raycasts at an angle
- one raycast aimed forward, with its length depending on the car's speed.



#### 4rays:

- two short raycasts
- two longer ones to detect upcoming turns. The forward rays are long enough to ensure at least one of them always hits a wall.



RaycastFest: just a bunch of raycasts in every direction.

Increasing the number of inputs isn't always better, they seem to have a "blinding effect" and make the Al take an extremely long time to learn.



# Results





Generation number





Generation number

## What to do better next time

- → Tweak the AI manually
- → Be more consistent with inputs and fitness
- → Get more computers to parallelize tests