Conditional Probability Models

David S. Rosenberg

New York University

February 21, 2018

Contents

- Overview and Disclaimer
- Modeling Conditional Distributions
- Bernoulli Regression
- Poisson Regression
- Conditional Gaussian Regression
- Multinomial Logistic Regression
- Maximum Likelihood as ERM

Linear Probabilistic Models vs GLMs

- Today we'll be talking about linear probabilistic models.
- Most books and software libraries related to this topic are actually about
 - generalized linear models (GLMs).
- GLMs are a special case of what we're talking about today.
- They're "special" because
 - they're a restriction of our setting, but more importantly
 - we can state theorems for GLMs, and
 - all GLMs can be implemented in essentially the same way.
- However, a full development of GLMs requires a fair bit of additional machinery.
 - In particular, exponential families.
- Exponential familes are wonderful, but I don't believe they're worth the payoff at this level.

Modeling Conditional Distributions

Conditional Distribution Estimation (Generalized Regression)

- Given x, predict probability distribution p(y)
- How do we represent the probability distribution?
- We'll consider parametric families of distributions.
 - distribution represented by parameter vector
- Examples:
 - Logistic regression (Bernoulli distribution)
 - 2 Probit regression (Bernoulli distribution)
 - 3 Poisson regression (Poisson distribution)
 - 4 Linear regression (Normal distribution, fixed variance)
 - Generalized Linear Models (GLM) (encompasses all of the above)
 - Generalized Additive Models (GAM) (popular in statistics community)
 - Gradient Boosting Machines (GBM) / AnyBoost [in a few weeks]
 - 4 Almost all neural network models used in practice (though this is not their essential feature)

Bernoulli Regression

Probabilistic Binary Classifiers

- Setting: $X = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1\}$
- For each x, need to predict a distribution on $\mathcal{Y} = \{0, 1\}$.
- How can we define a distribution supported on {0,1}?
- Sufficient to specify the Bernoulli parameter $\theta = p(y = 1)$.
- We can refer to this distribution as Bernoulli(θ).

Linear Probabilistic Classifiers

- Setting: $X = \mathbb{R}^d$, $y = \{0, 1\}$
- Want prediction function to map each $x \in \mathbb{R}^d$ to the right $\theta \in [0,1]$.
- We first extract information from $x \in \mathbb{R}^d$ and summarize in a single number.
 - That number is analogous to the **score** in classification.
- For a linear method, this extraction is done with a linear function:

$$\underbrace{x}_{\in \mathbf{R}^D} \mapsto \underbrace{w^T x}_{\in \mathbf{R}}$$

- As usual, $x \mapsto w^T x$ will include affine functions if we include a constant feature in x.
- $w^T x$ is called the **linear predictor**.
- Still need to map this to [0,1].

The Transfer Function

• Need a function to map the linear predictor in R to [0,1]:

$$\underbrace{x}_{\in \mathbf{R}^D} \mapsto \underbrace{w^T x}_{\in \mathbf{R}} \mapsto \underbrace{f(w^T x)}_{\in [0,1]} = \theta,$$

where $f : \mathbb{R} \to [0,1]$. We'll call f the transfer function.

• So prediction function is $x \mapsto f(w^T x)$, which gives value for $\theta = p(y = 1 \mid x)$.

Terminology Alert

In generalized linear models (GLMs), if θ is the distribution mean, then f is called the **response function** or **inverse link** function. We avoid that terminology since we do not require θ to be the distribution mean.

Transfer Functions for Bernoulli

• Two commonly used transfer functions to map from $w^T x$ to θ :

- Logistic function: $f(\eta) = \frac{1}{1+e^{-\eta}} \implies \text{Logistic Regression}$
- Normal CDF $f(\eta) = \int_{-\infty}^{\eta} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \implies \text{Probit Regression}$

Learning

- $\mathfrak{X} = \mathbb{R}^d$
- $y = \{0, 1\}$
- $\mathcal{A} = [0,1]$ (Representing Bernoulli(θ) distributions by $\theta \in [0,1]$)
- $\mathcal{F} = \{x \mapsto f(w^T x) \mid w \in \mathbf{R}^d\}$ (Each prediction function represented by $w \in \mathbf{R}^d$.)
- We can choose w using maximum likelihood...

Bernoulli Regression: Likelihood Scoring

- Suppose we have data $\mathfrak{D} = ((x_1, y_1), \dots, (x_n, y_n)).$
- Compute the model likelihood for \mathfrak{D} :

$$p_{w}(\mathcal{D}) = \prod_{i=1}^{n} p_{w}(y_{i} \mid x_{i}) \text{ [by independence]}$$

$$= \prod_{i=1}^{n} \left[f(w^{T}x_{i}) \right]^{y_{i}} \left[1 - f(w^{T}x_{i}) \right]^{1-y_{i}}.$$

- Huh? Remember $y_i \in \{0, 1\}$.
- Easier to work with the log-likelihood:

$$\log p_w(\mathcal{D}) = \sum_{i=1}^{n} y_i \log f(w^T x_i) + (1 - y_i) \log \left[1 - f(w^T x_i) \right]$$

Bernoulli Regression: MLE

- Maximum Likelihood Estimation (MLE) finds w maximizing $\log p_w(\mathcal{D})$.
- Equivalently, minimize the objective function

$$J(w) = -\left[\sum_{i=1}^{n} y_{i} \log f(w^{T} x_{i}) + (1 - y_{i}) \log \left[1 - f(w^{T} x_{i})\right]\right]$$

- For differentiable f.
 - J(w) is differentiable, and we can use our standard tools.
- Possible Homework: Derive the SGD step directions for logistic regression and [harder] probit regression.

Poisson Regression

Poisson Regression: Setup

- Input space $\mathfrak{X} = \mathbb{R}^d$, Output space $\mathfrak{Y} = \{0, 1, 2, 3, 4, \dots\}$
- In Poisson regression, prediction functions produce a Poisson distribution.
 - Represent Poisson(λ) distribution by the mean parameter $\lambda \in (0, \infty)$.
- Action space $A = (0, \infty)$
- In Poisson regression, x enters **linearly**: $x \mapsto \underbrace{w^T x}_{R} \mapsto \lambda = \underbrace{f(w^T x)}_{(0,\infty)}$.
- What can we use as the transfer function $f: \mathbb{R} \to (0, \infty)$?

Poisson Regression: Transfer Function

• In Poisson regression, x enters linearly:

$$x \mapsto \underbrace{w^T x}_{\mathbf{R}} \mapsto \lambda = \underbrace{f(w^T x)}_{(0,\infty)}.$$

Standard approach is to take

$$f(w^T x) = \exp(w^T x)$$
.

• Note that range of $f(w^Tx) \in (0, \infty)$, (appropriate for the Poisson parameter).

Poisson Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Recall the log-likelihood for Poisson is:

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [y_i \log \lambda - \lambda - \log (y_i!)]$$

• Plugging in $f(w^Tx) = \exp(w^Tx)$ for λ , we get

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [y_i \log [\exp (w^T x)] - \exp (w^T x) - \log (y_i!)]$$
$$= \sum_{i=1}^{n} [y_i w^T x - \exp (w^T x) - \log (y_i!)]$$

- Maximize this w.r.t. w to get our Poisson regression fit.
- No closed form for optimum, but it's concave, so easy to optimize.

Poisson Regression Example

e.g. Phone call counts per day for a startup company, over 300 days.

Plot courtesy of Brett Bernstein.

David S. Rosenberg (New York University)

Conditional Gaussian Regression

Gaussian Linear Regression

- Input space $\mathfrak{X} = \mathsf{R}^d$, Output space $\mathfrak{Y} = \mathsf{R}$
- In Gaussian regression, prediction functions produce a distribution $\mathcal{N}(\mu, \sigma^2)$.
 - Assume σ^2 is known.
- Represent $\mathcal{N}(\mu, \sigma^2)$ by the mean parameter $\mu \in \mathbf{R}$.
- Action space A = R
- In Gaussian linear regression, x enters linearly: $x \mapsto \underbrace{w^T x}_{\mathbf{R}} \mapsto \mu = \underbrace{f(w^T x)}_{\mathbf{R}}$.
- Since $\mu \in \mathbb{R}$, we can take the identity transfer function: $f(w^Tx) = w^Tx$.

Gaussian Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Compute the model likelihood for \mathfrak{D} :

$$p_w(\mathcal{D}) = \prod_{i=1}^n p_w(y_i \mid x_i)$$
 [by independence]

- Maximum Likelihood Estimation (MLE) finds w maximizing $p_w(\mathcal{D})$.
- Equivalently, maximize the data log-likelihood:

$$w^* = \arg\max_{w \in \mathbf{R}^d} \sum_{i=1}^n \log p_w(y_i \mid x_i)$$

Let's start solving this!

Gaussian Regression: MLE

• The conditional log-likelihood is:

$$\begin{split} &\sum_{i=1}^{n} \log p_w(y_i \mid x_i) \\ &= \sum_{i=1}^{n} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right] \\ &= \underbrace{\sum_{i=1}^{n} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \right]}_{\text{independent of } w} + \underbrace{\sum_{i=1}^{n} \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right)}_{\text{independent of } w} \end{split}$$

- MLE is the w where this is maximized.
- Note that σ^2 is irrelevant to finding the maximizing w.
- Can drop the negative sign and make it a minimization problem.

Gaussian Regression: MLE

• The MLE is

$$w^* = \arg\min_{w \in \mathbf{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2$$

- This is exactly the objective function for least squares.
- From here, can use usual approaches to solve for $w^*(SGD, linear algebra, calculus, etc.)$

- Setting: $X = \mathbb{R}^d$, $y = \{1, ..., k\}$
- \bullet For each x, we want to produce a distribution on k classes.
- Such a distribution is called a "multinoulli" or "categorical" distribution.
- Represent categorical distribution by probability vector $\theta = (\theta_1, \dots, \theta_k) \in \mathbb{R}^k$:
 - $\sum_{i=1}^k \theta_i = 1$ and $\theta_i \geqslant 0$ for i = 1, ..., k (i.e. θ represents a **distribution**) and
- So $\forall y \in \{1, \ldots, k\}, \ p(y) = \theta_y$.

• From each x, we compute a linear score function for each class:

$$x \mapsto (\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \in \mathbb{R}^k$$

- We need to map this \mathbf{R}^k vector into a probability vector.
- Use the softmax function:

$$(\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \mapsto \theta = \left(\frac{\exp\left(w_1^T x\right)}{\sum_{i=1}^k \exp\left(w_i^T x\right)}, \dots, \frac{\exp\left(w_k^T x\right)}{\sum_{i=1}^k \exp\left(w_i^T x\right)}\right)$$

• Note that $\theta \in \mathbb{R}^k$ and

$$\theta_i > 0 \quad i = 1, \dots, k$$

$$\sum_{i=1}^k \theta_i = 1$$

Putting this together, we write multinomial logistic regression as

$$p(y \mid x) = \frac{\exp\left(w_y^T x\right)}{\sum_{i=1}^k \exp\left(w_i^T x\right)},$$

where we've introduced parameter vectors $w_1, \ldots, w_k \in \mathbb{R}^d$.

- Do we still see score functions in here?
- Can view $x \mapsto w_v^T x$ as the score for class y, for $y \in \{1, ..., k\}$.
- How do we do learning here? What parameters are we estimatimg?
- Our model is specified once we have $w_1, \ldots, w_k \in \mathbb{R}^d$.
- ullet Find parameter settings maximizing the log-likelihood of data \mathcal{D} .
- This objective function is concave in w's and straightforward to optimize.

Maximum Likelihood as ERM

Generalized Regression as Statistical Learning

- ullet Input space ${\mathfrak X}$
- Outcome space y
- All pairs (x, y) are independent with distribution $P_{X \times Y}$.
- Action space $\mathcal{A} = \{p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y}\}.$
- Hypothesis space $\mathcal H$ contains decision functions $f: \mathcal X \to \mathcal A$.
 - Given an $x \in \mathcal{X}$, predict a probability distribution p(y) on \mathcal{Y} .
- Maximum likelihood estimation for dataset $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n))$ is

$$\hat{f}_{\mathsf{MLE}} = \arg\max_{f \in \mathcal{H}} \sum_{i=1}^{n} \log [f(x_i)(y_i)]$$

Exercise

Write the MLE optimization as empirical risk minimization. What's the loss?

Generalized Regression as Statistical Learning

• Take loss $\ell: \mathcal{A} \times \mathcal{Y} \to \mathbf{R}$ for a predicted PDF or PMF p(y) and outcome y to be

$$\ell(p, y) = -\log p(y)$$

• The risk of decision function $f: \mathcal{X} \to \mathcal{A}$ is

$$R(f) = -\mathbb{E}_{x,y} \log [f(x)(y)],$$

where f(x) is a PDF or PMF on \mathcal{Y} , and we're evaluating it on y.

Generalized Regression as Statistical Learning

• The empirical risk of f for a sample $\mathfrak{D} = \{y_1, \dots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(f) = -\frac{1}{n} \sum_{i=1}^{n} \log [f(x_i)](y_i).$$

This is called the negative conditional log-likelihood.

• Thus for the negative log-likelihood loss, ERM and MLE are equivalent