학사: 경제학사 학번: 20160563 이금: 송진아

11.1 Exercises #49

Determine whether the sequence converges or diverges. If it converges, find the limit.

$$a_n = \ln(2n^2 + 1) - \ln(n^2 + 1)$$

$$\lim_{n\to\infty} \Omega_n = \lim_{n\to\infty} \left(\ln(2n^2+1) - \ln(n^2+1) \right) = \lim_{n\to\infty} \ln\left(\frac{2n^2+1}{n^2+1}\right)$$

$$= \lim_{n\to\infty} \ln\left(\lim_{n\to\infty} \frac{2n^2+1}{n^2+1}\right) = \ln 2$$

11.1 Exercises #81

Show that the sequence defined by

$$a_1 = 1 a_{n+1} = 3 - \frac{1}{a_n}$$

is increasing and $a_n < 3$ for all n. Deduce that $\{a_n\}$ is convergent and find its limit.

Observe that
$$\alpha_1=1$$
, $\alpha_2=2$, $\alpha_3=2.5$, $\alpha_4=2.6$, ...

Claim $0 < \alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 < \alpha_5 < \alpha_6 < \alpha_$

학사: 경제학사 학번: 20160563 이글: 송진아

(ii) (inductive step)

Suppose O< Qk < ak4 < 3. Then,

$$\frac{0}{0} |A_{k+1}| = 3 - \frac{1}{0} |A_k|$$

$$- \frac{1}{0} |A_{k+1}| = 3 - \frac{1}{0} |A_{k+1}|$$

$$0 |A_{k+1}| - 0 |A_{k+2}| = \frac{1}{0} |A_{k+1}| - \frac{1}{0} |A_k|$$

Hence, aky aky.

By the hypothesis, we have 0×10^{-2} and so $0 \times 10^{-2} = 3 - \frac{1}{0 \times 10^{-2}} < 3$.

Thus, O < Okt < Okt2 < 3.

By the claim, $\{a_n\}$ is increasing and $a_n < 3 \ \forall n \in \mathbb{N}$. MST gives that $\{a_n\}$ converges to suppan $\{n \in \mathbb{N}\}$. Let $A = \sup\{a_n \mid n \in \mathbb{N}\} = \lim_{n \to \infty} a_n \ge a_1 = 1 > 0$.

Taking limit to both sides of $an+1 = 3 - \frac{1}{an}$, we get $x = 3 - \frac{1}{a}$ $x^2 - 3x + 1 = 0$

$$\Rightarrow d = \frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2} \left(\frac{1}{2}, \sqrt{2} \right)$$

Therefore, {and converges to 3+15/2

학자: 경제학사 학년: 20160563 이금: 송진아

11.2 Exercises #85

If $\sum a_n$ is convergent and $\sum b_n$ is divergent, show that the series $\sum (a_n + b_n)$ is divergent. [*Hint*: Argue by contradiction.]

Suppose to the contrary that
$$\Sigma(an+bn)$$
 is convergent.
 $\Sigma bn = \Sigma(an+bn) - \Sigma an \in \mathbb{R}$ \otimes
 $\in \mathbb{R}$ $\in \mathbb{R}$ \otimes
 $\Sigma(an+bn)$ is convergent.

11.3 Exercises #21

Determine whether the series is convergent or divergent.

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

Let
$$f(x) = \frac{1}{x \cdot \ln x}$$
. $\frac{x = \ln x}{dx = \frac{1}{2} \cdot dx}$

Note that f(x) is continuous, positive, decreasing function on $[2,\infty)$ and

$$\int_{2}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{2}^{t} f(t) dt = \lim_{t \to \infty} \int_{\ln 2}^{t} \frac{1}{u} du \text{ (where } u = \ln x\text{)}$$

$$= \lim_{t \to \infty} \left[\ln u \right]_{\ln 2}^{t} = \lim_{t \to \infty} \left(\ln t - \ln(\ln 2) \right) = \infty$$

 $\frac{1}{2} = \frac{1}{n \ln n}$ is divergent since $\int_{-\infty}^{\infty} f(x) dx$ is divergent. (: integral test)

학사: 경제학사 학년: 20160563 이글: 송진아

11.4 Exercises #5

Determine whether the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$$

$$\frac{n+1}{n \sqrt{n}} > \frac{n}{n \sqrt{n}} > 0$$
, $\forall n \in \mathbb{N}$.

$$\sum_{n=1}^{\infty} \frac{n}{n \sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$$
 is divergent by p-series test.

By comparison test, $\sum_{n=1}^{\infty} \frac{n+1}{n!n}$ is divergent.

11.4 Exercises #29

Determine whether the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

$$\frac{1}{n!} = \frac{1}{1 \cdot 2 \cdot 3 \cdot \cdot \cdot n} \leq \frac{1}{12 \cdot 2 \cdot \cdot \cdot 2} = \left(\frac{1}{2}\right)^{n-1}, \quad \forall n \in \mathbb{N}$$

Since
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1}$$
 converges to $\frac{1}{1-\frac{1}{2}} = 2$,

$$\frac{\infty}{n=1} \frac{1}{n!}$$
 converges by comparison test.

미적분학I (HW6)

Due Date (2020/5/13)

STS 2005 (09)

학자: 경제학사 학년: 20160563 이금: 송진아

11.4 Exercises #45

If $\sum a_n$ is a convergent series with positive terms, is it true that $\sum \sin(a_n)$ is also convergent?

$$\lim_{n\to\infty} \frac{\sin(\alpha_n)}{\sin(\alpha_n)} = 1$$

By the limit comparison test,

Isin (an) is also convergent since I an is convergent.

11.5 Exercises #11

Test the series for convergence or divergence.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3 + 4}$$

Note that
$$\frac{d}{dx} \frac{\chi^2}{\chi^3 + 4} = \frac{2\chi(\chi^3 + 4) - \chi^2(3\chi^2)}{(\chi^3 + 4)^2}$$

$$= \frac{2\chi^4 + 8\chi - 3\chi^4}{(\chi^3 + 4)^2}$$

$$= \frac{\chi(2 - \chi)(4 + 4\chi + \chi^2)}{(\chi^3 + 4)} \le 0 \text{ on } [2, \infty)$$

and so $\frac{\chi^2}{r^3+4}$ is monotone decreasing on [2,00).

So that $0 \le b_{n+1} \le b_n$, $\forall n \in \mathbb{N} - \{1\}$, where $b_n = \frac{n^2}{n^3 + 4}$

STS 2005 (09)

미적분학I (HW6)

Due Date (2020/5/13)

학과: 경제학과 학법: 20160563 이글: 송진아

Note also that
$$\lim_{n\to\infty} \frac{n^2}{n^3+4} = \lim_{n\to\infty} \frac{\frac{1}{n}}{1+\frac{1}{n^3}} = 0$$
.

By convergence test for alternating series,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+4} = \frac{1}{5} + \sum_{n=2}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+4}$$
 converges.