Neural Networks and Biological Modeling

Professor Wulfram Gerstner Laboratory of Computational Neuroscience

Question set 1

Exercise 1: Passive Membrane

The voltage across a passive membrane can be described by the equation

$$\tau \frac{du}{dt} = -(u - u_{\text{rest}}) + R I(t). \tag{1}$$

1.1 Step current

Consider a current I(t) = 0 for $t < t_0$ and $I(t) = I_0$ for $t > t_0$. Calculate the voltage u(t), given that the neuron is at rest at time t_0 . (Hint: Instead of solving the differential equation explicitly, try to construct the response to the step current along the lines: What is the value of u(t) for $t \le t_0$? What is the asymptotic value of u(t) for $t \gg t_0$? What is the functional form and time scale of the transition?)

1.2 Pulse current

Consider a current pulse

$$I(t) = \begin{cases} 0 & \text{for } t < t_0 \text{ and } t > t_0 + \Delta \\ q/\Delta & \text{for } t \ge t_0 \text{ and } t < t_0 + \Delta \end{cases},$$
 (2)

where Δ is a short time and q is the total electrical charge.

Consider first $\Delta=0.1\tau$, and then $\Delta=0.05\tau$, $\Delta=0.025\tau$. Sketch the input current pulse and the voltage response. What happens in the limit $\Delta\to 0$? (Hint: Use $e^{-x}\approx 1-x$ for $x\ll 1$.)

1.3 Delta function

The Dirac delta function can be defined by the limit of a short pulse:

$$\delta(t - t_0) = \lim_{\Delta \to 0} f_{\Delta}(t) \quad \text{where} \quad f_{\Delta}(t) = \begin{cases} 1/\Delta & \text{for } t_0 \le t < t_0 + \Delta \\ 0 & \text{otherwise} . \end{cases}$$
 (3)

Convince yourself that the integral $\int_{t_1}^{t_2} \delta(t-t_0) dt$ is equal to one if $t_1 \leq t_0 < t_2$ and vanishes otherwise.

Express I(t) in Eq. 1 using the δ -function for the case that an extremely short current pulse arrives at time t^f . Pay attention to the units!

1.4 General solution

Assuming that before a given time t_0 the current is null and the membrane potential is at rest, derive the general solution to Eq. (1) for arbitrary I(t).

Exercise 2: Integrate-and-fire model

Consider the model of Eq. (1) with a threshold at $u = \vartheta > u_{\text{rest}}$. If the membrane potential reaches the threshold, the neuron is said to fire and the membrane potential is reset to u_{rest} . The injected current is a step of magnitude I_0 :

$$I(t) = \begin{cases} 0 & t \le t_0 \\ I_0 & t > t_0 \end{cases}$$

- **2.1** What is the minimal current to reach the threshold, assuming $u(t=0) = u_{rest}$?
- 2.2 At what time will the voltage first reach the threshold?
- **2.3** Calculate the firing frequency f as a function of I_0 .

The function $g(I_0)$ which gives the firing frequency as a function of the constant applied current is called gain function.

Exercise 3: Integrate-and-fire models

The general form of an integrate-and-fire model is

$$\frac{du}{dt} = F(u) + \frac{RI(t)}{\tau} \tag{4}$$

where F(u) is an appropriate function and I(t) is the injected current. Three popular choices for the function F are the following (see Fig.1);

Leaky integrate-and-fire $F(u) = -\frac{u - u_{\text{rest}}}{\tau}$

Quadratic integrate-and-fire $F(u) = k \frac{(u - u_{rest})(u - u_{th})}{\tau}$

Exponential integrate-and-fire $F(u) = \frac{-(u-u_{rest}) + \Delta e^{\frac{u-u_{th}}{\Delta}}}{\tau}$

- 3.1 Identify the resting potential u_{rest} and the spike threshold u_{th} in Fig. 1.
- **3.2** Consider three different values u_1 , u_2 and u_3 for the voltage such that (i) u_1 is below u_{rest} (the resting potential), (ii) u_2 is between u_{rest} and u_{th} (the spike threshold), and (iii) u_3 is above u_{th} (see Fig. 1). For the three models described above, determine qualitatively the evolution of u(t) when started at u_1 , u_2 , and u_3 , assuming that the external input $I(t) \equiv 0$.
 - For $u(t=0) = u_1$, the voltage increases/decreases slowly/rapidly.
 - For $u(t=0) = u_2, \ldots$
 - For $u(t=0) = u_3, \ldots$
- **3.3** Why is u_{rest} called the resting potential? What is the role of u_{th} ?
- **3.4** Consider the two voltage traces shown in Fig. 2(b) (top) in response to a step current (bottom). Using the graphs in Fig. 2(a), determine which of the two models was used to generate each trace.

Figure 1: Sketch of the function F(u) for three popular integrate-and-fire models.

Figure 2: Left: Right-hand side of Eq. 4 for the quadratic and exponential integrate-and-fire models if a constant input current I(t)>0 is applied. Lower right: Trace of the injected current. Upper right: Voltage trace of the two models (EIF and QIF).