ΤΟ ΑΞΙΩΜΑΤΙΚΟ ΣΥΣΤΗΜΑ ΤΟΥ Π.Λ.

ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr

 $\{ \varphi \rightarrow (\psi \rightarrow \chi), \varphi \rightarrow \psi \} \vdash \varphi \rightarrow \chi$

Ο ΠΛ (προτασιακός λογισμός) είναι το αξιωματικό

- Έχει ως αξιώματα (αξιωματικά σχήματα) τα: ΑΣ1, ΑΣ2, ΑΣ3.
- Και ως αποδεικτικό κανόνα τον **Modus Ponens**

Σε αυτό το αξιωματικό σύστημα μελετάμε αν ισχύουν:

Τυπική Συνεπαγωγή T ⊢ φ

όταν ισχύουν οι υποθέσεις του Τ αν εξάγεται με διαδοχικές εφαρμογές του ΜΡ ο τύπος φ

Τυπικό Θεώρημα $\vdash \varphi$

δηλαδή αν εξάγεται ο τύπος φ με διαδοχικές εφαρμογές ΜΡ

Στις τυπικές αποδείξεις επιτρέπεται να χρησιμοποιήσουμε:

1) ΥΠΟΘΕΣΕΙΣ του συνόλου τύπων

2)ΑΞΙΩΜΑΤΙΚΑ ΣΧΗΜΑΤΑ και Συντακτικές αντικ/σεις σε αυτα:

ΑΣ1: $\phi \rightarrow (\psi \rightarrow \phi)$ ΑΣ2: $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))$

AΣ3:
$$(\neg \phi \rightarrow \neg \psi) \rightarrow ((\neg \phi \rightarrow \psi) \rightarrow \phi)$$

3) MODUS PONENS

Αν ισχύει Φ Και ισχύει Φ→Ψ

Τότε ισχύει Ψ (από Modus Ponens) 4) ΤΥΠΙΚΑ ΘΕΩΡΗΜΑΤΑ

Εφόσον δίνονται από την εκφώνηση

Έχουμε αποδείξεις για:

 $\vdash \varphi \rightarrow \varphi$

 $\vdash \varphi \rightarrow \neg \neg \varphi$ $\vdash \neg \neg \phi \rightarrow \phi$

5) ΤΥΠΙΚΕΣ ΣΥΝΕΠΑΓΩΓΕΣ

4. $\phi \rightarrow \psi$ Υπόθεση 5. $\phi \rightarrow \chi$ MP4,3

ΠΡΟΣ ΤΑ ΠΙΣΩ ΣΥΛΛΟΓΙΣΤΙΚΗ:

Η τυπική απόδειξη είναι:

1. $\phi \rightarrow (\psi \rightarrow \chi)$ Υπόθεση

3. $(\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)$ MP1,2

ΠΡΟΣ ΤΑ ΕΜΠΡΟΣ ΣΥΛΛΟΓΙΣΤΙΚΗ:

Να αποδειχθεί ότι

Να αποδειχθεί ότι

$$\neg \phi \vdash (\neg \psi \rightarrow \phi) \rightarrow \psi$$

ΛΥΣΗ:

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. ¬ φ Υπόθεση
- 2. $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$ ΣA $\sigma \tau o$ $A \Sigma 1$ $\acute{o} \pi o \upsilon \varphi : \neg \varphi$, $\psi : \neg \psi$

2. $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) A\Sigma 2$

- 3. $\neg \psi \rightarrow \neg \phi$ MP1,2
- 4. $(\neg \psi \rightarrow \neg \varphi) \rightarrow ((\neg \psi \rightarrow \varphi) \rightarrow \psi) \Sigma A \text{ sto AS3 \'o} from \varphi: \psi, \psi: \varphi$
- 5. $(\neg \psi \rightarrow \phi) \rightarrow \psi$ MP3,4

ΤΥΠΙΚΟ ΘΕΩΡΗΜΑ:

Να αποδειχθεί ότι

$$\vdash (\varphi \to \chi) \to (\varphi \to \varphi)$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. $\phi \rightarrow (\chi \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου ψ: χ
- 2. $(\phi \rightarrow (\chi \rightarrow \phi)) \rightarrow ((\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi))$ ΣA $\sigma \tau o$ $A\Sigma 2$ $\acute{o}\pi o u$ $\psi : \chi$
- $(\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi) MP1,2$