经济学院(财政、国贸等专业)本科生 2014—2015 学年第二学期《概率论与数理统计》课程期末考试试卷(A卷)

专业:

年级:

学号:

姓名:

成绩:

得 分

一、填空题(本题共28分,每小题4分)

- 1. 已知 A , B , C 是三个事件,且 P(A) = P(B) = P(C) = 1/4 , P(AB) = P(BC) = 0 , P(AC) = 1/8 ,则三个事件 A , B , C 中 至少有一个发生的概率为_____。
- 2. 若 P(A|B)=1,则 $P(\overline{B}|\overline{A})=$ _____。
- 3. 设 $X \sim N(2, \sigma^2)$, 且P(2 < X < 4) = 0.4, 则P(X < 0) =
- 4. 已知随机变量 X 服从二项分布,且 EX = 2.4, DX = 1.44,则二项分布的参数 n, p 分别为_____、
- 5. 已知X服从正态分布,E(X)=1.7,D(X)=3,Y=1-2X,则 $Y\sim$ ______。
- 6. 设随机变量 X 与 Y 相互独立,二者的概率密度分别为: $f_X(x) = \begin{cases} \lambda_1 e^{-\lambda_1 x}, x > 0 \\ 0, \quad \text{其他} \end{cases}$, $f_Y(y) = \begin{cases} \lambda_2 e^{-\lambda_2 y}, y > 0 \\ 0, \quad \text{其他} \end{cases}$, $\lambda_1 = \lambda_2$ 均为常数且

为正,则Min(X,Y)的概率密度函数为_____。

7. 某甜品店有三种蛋糕出售,单价分别为 2 元、2.4 元与 3 元,售出某一种蛋糕是随机的,且已知售出以上三种单价蛋糕的概率分别为 0.3、0.2 与 0.5。若售出 300 只蛋糕,则售出单价为 2.4 元蛋糕多于 60 只的概率约为_____。

草稿区

			•					
1.	若事件 A 与 B 同时发生时,	事件 C 也发生,则()。					
	A. $C \subseteq AB$	B. $C \subseteq A \cup B$						
	$C. P(C) = P(A \cup B)$	D. $P(C) \ge P(A)$	+P(B)-1					
2.	已知事件 A 与 B 发生的概率	区均大于0,那么()。						
	A. 若 A 与 B 互不相容,则							
	B. 若 A 与 B 相互独立,则它们互不相容。							
	C. 若 $P(A) = P(B) = 0.7$,则它们互不相容。							
	D. 表述 A、B、C 均不正确	角。						
3.	3. 已知 $f(x)$ 、 $g(x)$ 都是概率密度函数,则下面也是概率密度函数的是()。							
	A. f(x) + g(x)	B. f(x) - g(x)	C. $0.2f(x) + 0.8g(x)$	D. $0.5g(x)$				
4.	小王在时间间隔 t (小时) 内接到电话的次数 X 服从参数为 $2t$ 的泊松分布,现他计划外出 10 分钟,其间有电话铃响一次的概率为 ()。							
	A. $e^{-1/10}/10$	B. 0	C. $e^{-1/3}/3$	D. 1				
5. ·	设(X,Y)的联合概率密度为。	$f(x,y)$, \emptyset $P(X \le 1) = ($)。					
	A. $\int_{-\infty}^{1} \int_{-\infty}^{+\infty} f(x, y) dy dx$	$B. \int_{1}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dy dx$	$C. \int_{-\infty}^{1} \int_{-\infty}^{+\infty} f(x, y) dx dy$	$D. \int_{-\infty}^{1} \int_{1}^{+\infty} f(x, y) dy dx$				
6.	将一枚硬币重复掷 n 次, じ	从X 与Y分别表示正面向上₹	和反面向上的次数,则 X 和 Y 的标	目关系数等于 ()。				
	A1	B. 0	C. 1/2	D. 1				
7.	设 X_1, X_2, \cdots, X_n 相互独立,	且均服从参数为 2 的泊松分	$\hat{\tau}$ 布,则 $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$ 依概率收敛于()。				

A. λ^2 B. λ C. $\lambda^2 + \lambda$ D. $2\lambda^2$

1. (8分)某地区一份资料报导,该地区人群患肺癌的概率约为0.1%,在人群中有20%是吸烟者,他们患肺癌的概率约为0.4%。求不吸烟者患肺癌的概率。

2. **(8分)** 设随机变量 X 的概率密度函数为 $f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其他} \end{cases}$,求 $Y = X^2$ 的概率密度函数。

3. **(10分)** 设随机变量(*X*,*Y*)的分布律为:

Y	0	1	2	3
0	0.1	0.05	0.01	0.12
1	0.04	0.06	0.07	0.08
2	0.13	0.08	0.11	0.15

- (1) 求 $M = \max\{X,Y\}$ 的分布律;
- (2) 求 $N = \min\{X,Y\}$ 的分布律;
- (3) 求U = M + N的分布律。

4. **(8分)** 已知 $(\xi,\eta) \sim \varphi(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)}, & a < x < b, c < y < d \\ 0, & 其他 \end{cases}$

5. **(10分)** 有n把看上去样子相同的钥匙,其中只有一把能打开门上的锁。设尝试开锁时,取到任一把钥匙是等可能的。若试开一次不能将门打开,则将该钥匙除去,直至将门打开为止。求尝试次数的数学期望。

草稿页 请保持装订