

Curvature spectra of simple Lie groups

Andrzej Derdzinski · Świątosław R. Gal

Abstract The Killing form β of a real (or complex) semisimple Lie group G is a left-invariant pseudo-Riemannian (or, respectively, holomorphic) Einstein metric. Let Ω denote the multiple of its curvature operator, acting on symmetric 2-tensors, with the factor chosen so that $\Omega\beta = 2\beta$. The result of Meyberg [8], describing the spectrum of Ω in complex simple Lie groups G , easily implies that 1 is not an eigenvalue of Ω in any real or complex simple Lie group G except those locally isomorphic to $SU(p, q)$, or $SL(n, \mathbb{R})$, or $SL(n, \mathbb{C})$ or, for even n only, $SL(n/2, \mathbb{H})$, where $p \geq q \geq 0$ and $p + q = n > 2$. Due to the last conclusion, on simple Lie groups G other the ones just listed, nonzero multiples of the Killing form β are isolated among left-invariant Einstein metrics. Meyberg's theorem also allows us to understand the kernel of Λ , which is another natural operator. This in turn leads to a proof of a known, yet unpublished, fact: namely, that a semisimple real or complex Lie algebra with no simple ideals of dimension 3 is essentially determined by its Cartan three-form.

Keywords Simple Lie group · indefinite Einstein metric · left-invariant Einstein metric · Cartan three-form

Mathematics Subject Classification 17B20 · 22E46 · 53C30

1 Introduction

Every real Lie group G carries a distinguished left-invariant torsionfree connection D , defined by $D_x y = [x, y]/2$ for all left-invariant vector fields x and y . In view of the Jacobi identity, the curvature tensor of D is D -parallel, and hence so is the Ricci tensor of D , equal

A. Derdzinski
Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
Tel.: +1-614-292-4012
Fax: +1-614-292-1479
E-mail: andrzej@math.ohio-state.edu

Ś. R. Gal
Mathematical Institute, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
E-mail: Swiatoslaw.Gal@math.uni.wroc.pl

to a nonzero multiple of the Killing form β . Our convention about β reads

$$\beta(x, x) = \text{tr} [\text{Ad}x]^2 \quad \text{for any } x \text{ in the Lie algebra } \mathfrak{g} \text{ of } G. \quad (1.1)$$

Thus, if G is semisimple, β constitutes a bi-invariant, locally symmetric, non-Ricci-flat pseudo-Riemannian Einstein metric on G , with the Levi-Civita connection D . We denote by $\Omega : [\mathfrak{g}^*]^{\odot 2} \rightarrow [\mathfrak{g}^*]^{\odot 2}$ a specific multiple of the curvature operator of the metric β , acting on symmetric symmetric bilinear forms $\sigma : \mathfrak{g} \rightarrow \mathfrak{g}$, so that, whenever $x, y \in \mathfrak{g}$,

- a) $[\Omega\sigma](x, y) = 2\text{tr}[(\text{Ad}x)(\text{Ad}y)\Sigma]$, for $\Sigma : \mathfrak{g} \rightarrow \mathfrak{g}$ with
- b) $\sigma(x, y) = \beta(\Sigma x, y)$.

See Remark 2.4. The same formula (1.2) defines the operator Ω in a *complex* semisimple Lie group G , acting on symmetric complex-bilinear forms σ . We then identify Ω with the analogous curvature operator for the (\mathbb{C} -bilinear) Killing form β , treating the latter as a holomorphic Einstein metric on the underlying complex manifold of G .

The structure of Ω in complex simple Lie groups is known from the work of Meyberg [8], who showed that Ω is diagonalizable and described its spectrum. For the reader's convenience, we reproduce Meyberg's theorem in an appendix. His result easily leads to a similar description of the spectrum of Ω in real simple Lie algebras \mathfrak{g} , which we state as Theorem 4.1 and derive in Section 4 from the fact that, given any such \mathfrak{g} ,

- a) either \mathfrak{g} is a real form of a complex simple Lie algebra \mathfrak{h} , or
- b) \mathfrak{g} arises by treating a complex simple Lie algebra \mathfrak{h} as real.

See [6, Lemma 4 on p. 173]. The Lie-algebra isomorphism types of real simple Lie algebras \mathfrak{g} thus form two disjoint classes, characterized by (1.3.a) and (1.3.b).

For both real and complex semisimple Lie groups G , studying Ω can be further motivated as follows. Let 'metrics' on G be, by definition, pseudo-Riemannian or, respectively, holomorphic, and \mathcal{E} denote the set of Levi-Civita connections of left-invariant Einstein metrics on G . Then, as shown in [5, Remark 12.3], whenever a semisimple Lie group G has the property that 1 is *not* an eigenvalue of Ω , the Levi-Civita connection D of its Killing form β is an isolated point of \mathcal{E} . The converse implication holds except when G is locally isomorphic to $SU(n)$, with $n \geq 3$. See [5, Theorems 22.2 and 22.3].

In a real/complex Lie algebra \mathfrak{g} , we define $\Lambda : [\mathfrak{g}^*]^{\odot 2} \rightarrow [\mathfrak{g}^*]^{\wedge 4}$ by

$$(\Lambda\sigma)(x, y, z, z') = \sigma([x, y], [z, z']) + \sigma([y, z], [x, z']) + \sigma([z, x], [y, z']). \quad (1.4)$$

Thus, Λ is a real/complex-linear operator, sending symmetric bilinear forms σ on \mathfrak{g} to exterior 4-forms on \mathfrak{g} . For the Killing form β one has $\beta([x, y], [z, z']) = \beta([x, y], [z, z'])$, as $\text{Ad}z$ is β -skew-adjoint. Furthermore, by the Jacobi identity and (1.1) – (1.2.a),

$$\text{i)} \quad \Lambda\beta = 0, \quad \text{ii)} \quad \Omega\beta = 2\beta. \quad (1.5)$$

If, in addition, \mathfrak{g} is semisimple, there is also the operator $\Pi : [\mathfrak{g}^*]^{\otimes 4} \rightarrow [\mathfrak{g}^*]^{\otimes 2}$ with

$$\Pi(\xi \otimes \xi' \otimes \eta \otimes \eta') = \beta([x, x'], \cdot) \otimes \beta([y, y'], \cdot), \quad (1.6)$$

for $\xi, \xi', \eta, \eta' \in \mathfrak{g}^*$, where $x, x', y, y' \in \mathfrak{g}$ are characterized by $\xi = \beta(x, \cdot)$, $\xi' = \beta(x', \cdot)$, $\eta = \beta(y, \cdot)$, $\eta' = \beta(y', \cdot)$. Formula (3.1) below shows that $\Pi([\mathfrak{g}^*]^{\wedge 4}) \subset [\mathfrak{g}^*]^{\odot 2}$.

Our first main result, established in Section 3, relates Ω to $\Pi\Lambda : [\mathfrak{g}^*]^{\odot 2} \rightarrow [\mathfrak{g}^*]^{\odot 2}$, the composite of Λ and the restriction of Π to the subspace $[\mathfrak{g}^*]^{\wedge 4} \subset [\mathfrak{g}^*]^{\otimes 4}$.

Theorem A Let Ω , Λ and Π be the operators defined by (1.2), (1.4) and (1.6) for a given semisimple real/complex Lie algebra \mathfrak{g} . Then $2\Pi\Lambda = -(\Omega + \text{Id})(\Omega - 2\text{Id})$.

Next, in Section 5, we use Meyberg's result and Theorem A to obtain the following description of $\text{Ker } \Lambda$ for semisimple Lie algebras \mathfrak{g} . It provides a crucial step in our proof of Theorem C (see below).

Theorem B Given a real/complex semisimple Lie algebra \mathfrak{g} with a direct-sum decomposition $\mathfrak{g} = \mathfrak{g}_1 \oplus \dots \oplus \mathfrak{g}_s$ into simple ideals, $s \geq 1$, let Λ and Λ_i denote the operator defined by (1.4) for \mathfrak{g} and, respectively, its analog for the i th summand \mathfrak{g}_i .

- (i) $\text{Ker } \Lambda = \text{Ker } \Lambda_1 \oplus \dots \oplus \text{Ker } \Lambda_s$, where $[\mathfrak{g}_i^*]^{\odot 2} \subset [\mathfrak{g}^*]^{\odot 2}$ via trivial extensions.
- (ii) $\Lambda = 0$ if $\dim \mathfrak{g} = 3$.
- (iii) $\dim \text{Ker } \Lambda = 12$ if \mathfrak{g} is simple and $\dim \mathfrak{g} = 6$, which happens only when \mathfrak{g} is real and isomorphic to the underlying real Lie algebra of $\mathfrak{sl}(2, \mathbb{C})$, while $\text{Ker } \Lambda$ then consists of the real parts of all symmetric \mathbb{C} -bilinear functions $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$.
- (iv) $\dim \text{Ker } \Lambda \in \{1, 2\}$ whenever \mathfrak{g} is simple and $\dim \mathfrak{g} \notin \{3, 6\}$, while $\text{Ker } \Lambda$ is then spanned either by the Killing form β , or by $\text{Re } \beta^\mathfrak{h}$ and $\text{Im } \beta^\mathfrak{h}$. The former case occurs if \mathfrak{g} is complex, or real of type (1.3.a), the latter if \mathfrak{g} is real of type (1.3.b), with $\beta^\mathfrak{h}$ denoting the Killing form of a complex simple Lie algebra \mathfrak{h} in (1.3.b).

Finally, one defines the *Cartan three-form* $C \in [\mathfrak{g}^*]^{\wedge 3}$ of a Lie algebra \mathfrak{g} by

$$C = \beta([\cdot, \cdot], \cdot), \quad \text{where } \beta \text{ denotes the Killing form.} \quad (1.7)$$

The following result has been known for decades, although no published proof of it seems to exist [3]. By an *isomorphism of the Cartan three-forms* we mean here a vector-space isomorphism of the Lie algebras in question, sending one three-form onto the other.

Theorem C Let \mathfrak{g} be a real/complex semisimple Lie algebra with a fixed direct-sum decomposition into simple ideals, which we briefly refer to as the "summands" of \mathfrak{g} .

- (i) If \mathfrak{h} is a real/complex Lie algebra, the Cartan three-forms of \mathfrak{g} and \mathfrak{h} are isomorphic and, in the real case, \mathfrak{g} has no summands of dimension 3, then \mathfrak{h} is isomorphic to \mathfrak{g} .
- (ii) If \mathfrak{g} contains no summands of dimension 3 or 6, then every automorphism of the Cartan three-form of \mathfrak{g} is a Lie-algebra automorphism of \mathfrak{g} followed by an operator that acts on each summand as the multiplication by a cubic root of 1.
- (iii) If \mathfrak{g} is the underlying real Lie algebra of a complex simple Lie algebra and $\dim \mathfrak{g} \neq 6$, then every automorphism of the Cartan three-form of \mathfrak{g} is complex-linear or antilinear.

Conversely, if \mathfrak{g} has k summands of dimension 3 and l summands of dimension 6, then the Lie-algebra automorphisms of \mathfrak{g} form a subgroup of codimension $5k + 12l$ in the automorphism group of the Cartan three-form.

We derive Theorem C from Theorem B, in Section 7.

2 Preliminaries

Suppose that \mathfrak{g} is the underlying real Lie algebra of a complex Lie algebra \mathfrak{h} . We denote by β and C the Killing form and Cartan three-form of \mathfrak{g} , cf. (1.1) and (1.7), by Λ the

operator in (1.4) associated with \mathfrak{g} , and use the symbols $\beta^{\mathfrak{h}}, C^{\mathfrak{h}}, \Lambda^{\mathfrak{h}}$ for their counterparts corresponding to \mathfrak{h} . Obviously, whenever $\sigma : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ is a symmetric \mathbb{C} -bilinear form,

$$\text{i)} \quad \beta = 2\operatorname{Re}\beta^{\mathfrak{h}}, \quad \text{ii)} \quad C = 2\operatorname{Re}C^{\mathfrak{h}}, \quad \text{iii)} \quad \Lambda(\operatorname{Re}\sigma) = \operatorname{Re}(\Lambda^{\mathfrak{h}}\sigma). \quad (2.1)$$

For (2.1.i), see also [5, formula (13.1)]. With \mathfrak{g} and \mathfrak{h} as above, it is clear from (2.1.i) that

$$\operatorname{Re}\beta^{\mathfrak{h}} \text{ and } \operatorname{Im}\beta^{\mathfrak{h}} \text{ span the real space of symmetric bilinear forms } \sigma \text{ on } \mathfrak{g} \text{ arising via (1.2.b) from linear endomorphisms } \Sigma \text{ which are complex multiples of Id.} \quad (2.2)$$

Furthermore, (2.1.i) also implies, for dimensional reasons, that

$$\text{the real parts of symmetric } \mathbb{C}\text{-bilinear functions } \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C} \text{ form the image under (1.2.b) of the space of } \mathbb{C}\text{-linear } \beta^{\mathfrak{h}}\text{-self-adjoint endomorphisms of } \mathfrak{h}, \quad (2.3)$$

as the former space obviously contains the latter.

Let \mathfrak{g} now be a Lie algebra over the scalar field $\mathbb{IF} = \mathbb{IR}$ or $\mathbb{IF} = \mathbb{C}$. A fixed basis of \mathfrak{g} allows us to represent elements x, y of \mathfrak{g} , symmetric bilinear forms σ on \mathfrak{g} , and the Lie-algebra bracket operation $[,]$ by their components x^i, y^i, σ_{ij} and C_{ij}^k (the structure constants of \mathfrak{g}), so that $\sigma(x, y) = \sigma_{ij}x^i y^j$ and $[x, y]^k = C_{ij}^k x^i y^j$. Repeated indices are summed over. The Cartan three-form C with (1.7) has the components $C_{ijk} = C_{ij}^r \beta_{kr}$, where β is the Killing form. The definition (1.1) of β , its bi-invariance, and the Jacobi identity now read

$$\begin{aligned} \text{i)} \quad & \beta_{ij} = C_{ip}^q C_{jq}^p, & \text{ii)} \quad & C_{ijk} \text{ is skew-symmetric in } i, j, k, \\ \text{iii)} \quad & C_{ij}^q C_{qk}^l + C_{jk}^q C_{qi}^l + C_{ki}^q C_{qj}^l = 0. \end{aligned} \quad (2.4)$$

In the remainder of this section \mathfrak{g} is also assumed to be semisimple. We can thus lower and raise indices using the components β_{ij} of the Killing form β and β^{ij} of its reciprocal: $C_p^k q = \beta^{kr} C_{rp}^q$, and $C_j^{sp} = \beta^{sk} C_{jk}^p$. For any $x, y, z \in \mathfrak{g}$, one has $2\operatorname{tr}[(\operatorname{Ad}x)(\operatorname{Ad}y)(\operatorname{Ad}z)] = C(x, y, z)$, where C is the Cartan three-form given by (1.7). Equivalently,

$$2C_{ir}^p C_{jq}^r C_{kp}^q = C_{ijk}. \quad (2.5)$$

In fact, by successively using the equalities $C_p^k q = C_p^q k$ and $C_i^{rp} = -C_i^{pr}$ (both due to (2.4.ii)), then again (2.4.ii), (2.4.iii), and (2.4.i–ii), we get $2C_{ir}^p C_{jq}^r C_p^k q = 2C_i^{rp} C_{jqr} C_p^q k = C_i^{rp} (C_{jqr} C_p^q k - C_{jqp} C_r^q k) = C_i^{rp} (C_{jr}^q C_{qp}^k + C_{pj}^q C_{qr}^k) = -C_i^{rp} C_{rp}^q C_{qj}^k = \delta_i^q C_{qj}^k = C_{ij}^k$. Lowering the index k , we obtain (2.5). Next, we introduce the linear operator

$$T : [\mathfrak{g}^*]^{\otimes 2} \rightarrow [\mathfrak{g}^*]^{\otimes 2} \quad \text{with} \quad (T\sigma)_{ij} = T_{ij}^{kl} \sigma_{kl}, \quad \text{where} \quad T_{ij}^{kl} = 2C_{ip}^k C_j^{lp}. \quad (2.6)$$

Lemma 2.1 *For T and the operator $\Omega : [\mathfrak{g}^*]^{\odot 2} \rightarrow [\mathfrak{g}^*]^{\odot 2}$ given by (1.2),*

- (a) *T leaves the subspaces $[\mathfrak{g}^*]^{\odot 2}$ and $[\mathfrak{g}^*]^{\wedge 2}$ invariant,*
- (b) *Ω coincides with the restriction of T to $[\mathfrak{g}^*]^{\odot 2}$.*

Proof Our claim is obvious from (2.6) and the fact that, by (2.6), $T\sigma$ is the same as $\Omega\sigma$ in (1.2), except that now $\sigma : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{IF}$ need not be symmetric. \square

Lemma 2.2 *For any complex simple Lie algebra \mathfrak{g} and $\Omega : [\mathfrak{g}^*]^{\odot 2} \rightarrow [\mathfrak{g}^*]^{\odot 2}$ with (1.2),*

(a) Ω is diagonalizable,
(b) 2 is an eigenvalue of Ω with multiplicity 1,
(c) 0 is not an eigenvalue of $\Omega^{\mathfrak{h}}$,
(d) Ω has the eigenvalue 1 if and only if \mathfrak{g} is isomorphic to $\mathfrak{sl}(n, \mathbb{C})$ for some $n \geq 3$.

Proof This is a special case of Meyberg's theorem, stated in the Appendix. \square

Remark 2.3 The isomorphism types of all complex simple Lie algebras are: \mathfrak{sl}_n , for $n \geq 2$, \mathfrak{sp}_n (even $n \geq 4$), \mathfrak{so}_n with $n \geq 7$, as well as $\mathfrak{g}_2, \mathfrak{f}_4, \mathfrak{e}_6, \mathfrak{e}_7$ and \mathfrak{e}_8 . See [9, pp. 8 and 77].

Remark 2.4 The curvature operator of a (pseudo)Riemannian metric γ on a manifold, acting on symmetric 2-tensors, has been studied by various authors [4], [2], [1, pp. 51–52]. It is given by $\sigma \mapsto \tau$, where $2\tau_{ij} = \gamma^{pq} R_{ipj}{}^k \sigma_{qk}$ in terms of components relative to a basis of the tangent space at any point, the sign convention about the curvature tensor R being that a Euclidean tangent plane with an orthonormal basis x, y has the sectional curvature $\gamma_{pq} R_{ijk}{}^p x^i y^j x^k y^q$. When γ is the Killing form β of a semisimple Lie group G , treated as a left-invariant metric (see the lines following (1.1)), this operator equals $-\Omega/16$, for Ω with (1.2). In fact, the description of the Levi-Civita connection D of β in the Introduction gives $4R(x, y)z = [[x, y], z]$ for left-invariant vector fields x, y, z , that is, $4R_{ijk}{}^l = C_{ij}{}^p C_{pk}{}^l$. Lemma 2.1(b) now implies our claim, as $T_{ij}{}^{kl} = -8\beta^{kp} R_{jpi}{}^l$ due to (2.4.ii) and (2.6).

3 Proof of Theorem A

We use the component notation of Section 2. According to (1.4) and (1.6),

$$(\Lambda\sigma)_{ijkl} = \Lambda_{ijkl}{}^{rs} \sigma_{rs} \quad \text{with} \quad \Lambda_{ijkl}{}^{rs} = C_{ij}{}^r C_{kl}{}^s + C_{jk}{}^r C_{il}{}^s + C_{ki}{}^r C_{jl}{}^s, \\ (\Pi\zeta)_{pq} = C_{ij}{}^p C_{kl}{}^q \zeta_{ijkl}, \quad \text{whenever } \sigma \in [\mathfrak{g}^*]^{\odot 2} \text{ and } \zeta \in [\mathfrak{g}^*]^{\wedge 4}. \quad (3.1)$$

In any real/complex semisimple Lie algebra \mathfrak{g} , for $C_{ij}{}^k, T_{ij}{}^{kl}$ as in Section 2,

$$2C_{ij}{}^p C_{kl}{}^q (C_{ij}{}^r C_{kl}{}^s + C_{jk}{}^r C_{il}{}^s + C_{ki}{}^r C_{jl}{}^s) = 2\delta_p^r \delta_q^s + T_{pq}^{rs} - T_{pq}^{ik} T_{ik}^{rs}. \quad (3.2)$$

In fact, the first of the three terms naturally arising on the left-hand side of (3.2) equals $2\delta_p^r \delta_q^s$ since, by (2.4.i–ii), $C_{ij}{}^p C_{ij}{}^r = -\delta_p^r$ and $C_{qk}{}^l C_{qk}{}^s = -\delta_q^s$. The other two terms coincide (as skew-symmetry of $C_{ij}{}^p$ in i, j gives $C_{ij}{}^p C_{jk}{}^r C_{il}{}^s = -C_{ij}{}^p C_{ik}{}^r C_{jl}{}^s = C_{ij}{}^p C_{ki}{}^r C_{jl}{}^s$), and so they add up to $4C_{ij}{}^p C_{kl}{}^q C_{ki}{}^r C_{jl}{}^s$, that is, $4C_{qk}{}^l C_{jl}{}^s C_{pj}{}^i C_{ik}{}^r = 4C_{qk}{}^l C_{jl}{}^s C_{pj}{}^i C_{ik}{}^r = -4C_{qk}{}^l C_{jl}{}^s (C_{jk}{}^i C_{ip}{}^r + C_{kp}{}^i C_{ij}{}^r)$; the rightmost equality is due to the Jacobi identity (2.4.iii). The last expression consists of the first term, $-4C_{qk}{}^l C_{jl}{}^s C_{jk}{}^i C_{ip}{}^r = -4C_{ip}{}^r (C_{ik}{}^j C_{ql}{}^k C_{jl}{}^s) = -4C_{ip}{}^r C_{qk}{}^s$, cf. (2.5), equal, by (2.4.ii) and (2.6), to $C_{pi}{}^r C_{qk}{}^s = T_{pq}^{rs}$, and the second term, $-(2C_{kp}{}^i C_{kl}{}^q)(2C_{ij}{}^r C_{jl}{}^s)$, the two parenthesized factors of which are, for the same reasons, nothing else than T_{pq}^{il} and T_{il}^{rs} . This proves (3.2).

Theorem A is now an obvious consequence of (3.1) – (3.2) and Lemma 2.1(b).

4 The spectrum of Ω in real simple Lie algebras

Theorem 4.1 *Let Ω denote the operator with (1.2) corresponding to a fixed real simple Lie algebra \mathfrak{g} , and $\Omega^{\mathfrak{h}}$ its analog for \mathfrak{h} , chosen so that \mathfrak{g} and \mathfrak{h} satisfy (1.3).*

- (i) Ω is always diagonalizable.
- (ii) In case (1.3.a), Ω has the same spectrum as $\Omega^{\mathfrak{h}}$, including the multiplicities.
- (iii) In case (1.3.b), the spectrum of Ω arises from that of $\Omega^{\mathfrak{h}}$ by doubling the original multiplicities and then including 0 as an additional eigenvalue with the required complementary multiplicity. Note that, by Lemma 2.2(c), 0 is not an eigenvalue of $\Omega^{\mathfrak{h}}$.
- (iv) The eigenspace $\text{Ker}(\Omega - 2 \text{Id})$ is spanned in case (1.3.a) by β , and in case (1.3.b) by $\text{Re}\beta^{\mathfrak{h}}$ and $\text{Im}\beta^{\mathfrak{h}}$, for the Killing forms β of \mathfrak{g} and $\beta^{\mathfrak{h}}$ of \mathfrak{h} .

Proof By [5, Lemma 14.3(ii) and formulae (14.5) – (14.7)], if \mathfrak{g} is of type (1.3.a), the complexification of $[\mathfrak{g}^*]^{\odot 2}$ may be naturally identified with its (complex) counterpart $[\mathfrak{h}^*]^{\odot 2}$ for \mathfrak{h} , in such a way that $\Omega^{\mathfrak{h}}$ and the Killing form $\beta^{\mathfrak{h}}$ become the unique \mathbb{C} -linear extensions of Ω and β . Now Lemma 2.2(a)–(b) and (1.5.ii) yield (i), (ii) and (iv) in case (1.3.a).

For \mathfrak{g} of type (1.3.a), Lemma 13.1 of [5] states the following. First, $[\mathfrak{g}^*]^{\odot 2}$ is the direct sum of two Ω -invariant subspaces: one formed by the real parts of \mathbb{C} -bilinear symmetric functions $\sigma : \mathfrak{h} \times \mathfrak{h} \rightarrow \mathbb{C}$, the other by the real parts of functions $\sigma : \mathfrak{h} \times \mathfrak{h} \rightarrow \mathbb{C}$ which are antilinear and Hermitian. Secondly, Ω vanishes on the “Hermitian” summand, and its action on the “symmetric” summand is equivalent, via the isomorphism $\sigma \mapsto \text{Re}\sigma$, to the action of $\Omega^{\mathfrak{h}}$ on \mathbb{C} -bilinear symmetric functions σ . With diagonalizability of $\Omega^{\mathfrak{h}}$ again provided by Lemma 2.2(a), this proves our remaining claims. (The multiplicities are doubled since the original complex eigenspaces are viewed as real, while the eigenspace $\Omega^{\mathfrak{h}}$ for the eigenvalue 2 consists, by (v) and (1.5.ii), of complex multiples of $\beta^{\mathfrak{h}}$, the real parts of which are precisely the real linear combinations of $\text{Re}\beta^{\mathfrak{h}}$ and $\text{Im}\beta^{\mathfrak{h}}$.) \square

Remark 4.2 It is well known [9, p. 30] that, up to isomorphisms, $\mathfrak{sl}(n, \mathbb{R})$ as well as $\mathfrak{su}(p, q)$ with $p + q = n$ and, if n is even, $\mathfrak{sl}(n/2, \mathbb{H})$, are the only real forms of $\mathfrak{sl}(n, \mathbb{C})$.

Lemma 4.3 *The only complex, or real, simple Lie algebras of dimensions less than 7 are, up to isomorphisms, $\mathfrak{sl}(2, \mathbb{C})$ or, respectively, $\mathfrak{sl}(2, \mathbb{R})$, $\mathfrak{su}(2)$, $\mathfrak{su}(1, 1)$ and $\mathfrak{sl}(2, \mathbb{C})$, the last one being both complex three-dimensional and real six-dimensional. Consequently,*

- (i) *a complex simple Lie algebra cannot be six-dimensional,*
- (ii) *there is just one isomorphism type of a complex or, respectively, real simple Lie algebra of dimension 3 or, respectively, 6, both represented by $\mathfrak{sl}(2, \mathbb{C})$,*
- (iii) *$\dim \mathfrak{g} \notin \{1, 2, 4, 5\}$ for every real or complex simple Lie algebra \mathfrak{g} .*

Proof According to Remark 2.3, in the complex case, only $\mathfrak{sl}(2, \mathbb{C})$ is possible. For real Lie algebras, one can use Remark 4.2 and (1.3). \square

Remark 4.4 We can now justify the claim, made in [5, Remark 12.3], that 1 is not an eigenvalue of Ω in any real or complex simple Lie algebra except the ones isomorphic to $\mathfrak{sl}(n, \mathbb{R})$, $\mathfrak{sl}(n, \mathbb{C})$, $\mathfrak{su}(p, q)$ or, for even n only, $\mathfrak{sl}(n/2, \mathbb{H})$, where $n = p + q \geq 3$.

In fact, by Theorem 2.2 and parts (ii) – (iii) of Theorem 4.1, the only real or complex simple Lie algebras in which Ω has the eigenvalue 1 are, up to isomorphisms, $\mathfrak{sl}(n, \mathbb{C})$ for $n \geq 3$ and their real forms. According to Remark 4.2, these are all listed in the last paragraph.

5 Proof of Theorem B

Let $\sigma \in [\mathfrak{g}^*]^{\odot 2}$ and $\Lambda\sigma = 0$. Consequently, by (1.4), $\sigma([x,y],[z,z']) + \sigma([y,z],[x,z']) + \sigma([z,x],[y,z']) = 0$ for all x,y,z,z' in \mathfrak{g} . Thus, $\sigma([x,y],[z,z']) = 0$ whenever $x,y \in \mathfrak{h}_i$ and $z,z' \in \mathfrak{h}_j$ with $j \neq i$. The summands \mathfrak{h}_i and \mathfrak{h}_j , being simple, are spanned by such brackets $[x,y]$ and $[z,z']$, and so \mathfrak{h}_i is σ -orthogonal to \mathfrak{h}_j . As this is the case for any two summands, we obtain (i), the right-to-left inclusion being obvious. Next,

$$\text{Ker}(\Omega - 2\text{Id}) \subset \text{Ker } \Lambda \subset \text{Ker}(\Omega - 2\text{Id}) \oplus \text{Ker}(\Omega + \text{Id}). \quad (5.1)$$

In fact, the second inclusion is obvious from Theorem A; the first, from Theorem 4.1(iv), (1.5.i) and (2.1.iii) applied to complex multiples σ of $\beta^\mathfrak{h}$.

Part (ii) of Theorem B is immediate, as $[\mathfrak{g}^*]^{\wedge 4} = \{0\}$ when $\dim \mathfrak{g} = 3$. Also, if \mathfrak{g} is simple and $\dim \mathfrak{g} = 6$, Lemma 4.3(i)-(ii) implies that \mathfrak{g} is real and isomorphic to $\mathfrak{sl}(2, \mathbb{C})$. From (2.1.iii), with $\Lambda^\mathfrak{h}\sigma = 0$ by (ii), we now get $\mathcal{F} \subset \text{Ker } \Lambda$ for $\mathcal{F} = \{\text{Re } \sigma : \sigma \in [\mathfrak{g}^*]^{\odot 2}\}$, where $[\mathfrak{g}^*]^{\odot 2}$ denotes the space of all symmetric \mathbb{C} -bilinear forms $\sigma : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$. As $\text{Re } \sigma$ uniquely determines such σ , that is, the operator $\sigma \mapsto \text{Re } \sigma$ is injective, we thus have $\dim_{\mathbb{R}} \mathcal{F} = 12$. The second inclusion in (5.1) is therefore an equality, and $\mathcal{F} = \text{Ker } \Lambda$, for dimensional reasons: $\text{Ker } \Lambda$ contains the subspace \mathcal{F} of real dimension 12, equal, in view of part (a) of Theorem 2.2 and Theorem 4.1(iii), to $\dim_{\mathbb{R}} [\text{Ker}(\Omega - 2\text{Id}) \oplus \text{Ker}(\Omega + \text{Id})]$. This yields assertion (iii) in Theorem B.

Let \mathfrak{g} now be simple, with $\dim \mathfrak{g} \notin \{3, 6\}$. Due to Theorems 2.2 and 4.1(ii)-(iii), -1 is not an eigenvalue of Ω . Thus, $\text{Ker}(\Omega + \text{Id}) = \{0\}$, and the inclusions in (5.1) are equalities. In view of Theorem 4.1(iv), this completes the proof.

6 Some needed facts from linear algebra

In this section \mathfrak{g} is the underlying real space of a finite-dimensional complex vector space \mathfrak{h} and $J : \mathfrak{g} \rightarrow \mathfrak{g}$ is the operator of multiplication by i , also referred to as the *complex structure*. We denote by $\beta^\mathfrak{h}$ a fixed nondegenerate \mathbb{C} -bilinear symmetric form on \mathfrak{h} , so that the \mathbb{R} -bilinear symmetric form $\beta = 2\text{Re } \beta^\mathfrak{h}$ on \mathfrak{g} is nondegenerate as well. The same applies to any nonzero complex multiple of $\beta^\mathfrak{h}$. Thus, β and $\gamma = 2\text{Im } \beta^\mathfrak{h}$ constitute a basis of a real vector space \mathcal{P} of \mathbb{R} -bilinear symmetric forms on \mathfrak{g} . All nonzero elements of \mathcal{P} are nondegenerate. As $\beta^\mathfrak{h}$ is \mathbb{C} -bilinear, $\gamma(x,y) = -\beta(x,Jy)$ for all $x,y \in \mathfrak{g}$. We use components relative to a basis of \mathfrak{g} , as in Section 2.

Lemma 6.1 *The real spaces \mathfrak{g} and \mathcal{P} uniquely determine the pair $(J, \beta^\mathfrak{h})$ up to its replacement by $(J, a\beta^\mathfrak{h})$ or $(-J, a\bar{\beta}^\mathfrak{h})$, with any $a \in \mathbb{C} \setminus \{0\}$.*

Proof For any basis κ, λ of \mathcal{P} , replacing $\beta^\mathfrak{h}$ by a complex multiple, which leaves \mathcal{P} unchanged, we assume that $\kappa = \beta$. Thus, $\lambda = u\beta + v\gamma$, where $u, v \in \mathbb{R}$ and $v \neq 0$. Writing the equality $\gamma = -\beta(\cdot, J\cdot)$ as $\gamma_{rq} = -\beta_{rs} J_q^s$, and then using the reciprocal components $\kappa^{pr} = \beta^{pr}$, we obtain $\kappa^{pr} \lambda_{rq} = \beta^{pr} (u\beta_{rq} - v\beta_{rs} J_q^s) = u\delta_q^p - vJ_q^p$. Now $\pm J$ may be defined by declaring the matrix J_q^p to be the traceless part of $\kappa^{pr} \lambda_{rq}$, normalized so that $J^2 = -\text{Id}$.

At the same time, fixing any $\kappa \in \mathcal{P} \setminus \{0\}$ we may assume, as before, that $\kappa = \beta$. Then κ and $\gamma = -\kappa(\cdot, J\cdot)$, determine $2\beta^\mathfrak{h}$, being its real and imaginary parts. Combined with the last sentence of the preceding paragraph, this completes the proof. \square

The next fact concerns two mappings, $\text{rec} : \mathcal{P} \setminus \{0\} \rightarrow \mathfrak{g}^{\odot 2}$ and $\mathfrak{g}^{\odot 2} \ni \mu \mapsto \mu_{\flat} \in \text{End } \mathfrak{g}$. The former sends every nonzero element of \mathcal{P} (which, as we know, is nondegenerate) to its reciprocal. The latter is the operator of index-lowering via β , and takes values in the space of \mathbb{R} -linear endomorphisms of \mathfrak{g} , which include complex multiples of Id . We then have

$$\{[\text{rec}(\sigma)]_{\flat} : \sigma \in \mathcal{P} \setminus \{0\}\} = \{a\text{Id} : a \in \mathbb{C} \setminus \{0\}\}. \quad (6.1)$$

Namely, under index raising with the aid of β , the operators $A = a\text{Id}$, for $a \in \mathbb{C} \setminus \{0\}$, correspond to elements μ of $\mathfrak{g}^{\odot 2}$ characterized by $\mu^{pq} = \beta^{pr} A_r^q$. Every such μ is in turn the reciprocal of $\sigma \in [\mathfrak{g}^*]^{\odot 2}$ defined by $\sigma_{pq} = H_p^k \beta_{kq}$, where $H = A^{-1}$ (as $\sigma_{pq} \mu^{sq} = H_p^k \beta_{ks} \beta^{sr} A_r^q = H_p^r A_r^q = \delta_p^q$). Symmetry of μ , and hence σ , is obvious from β -self-adjointness of A . The inverses H of our operators $A = a\text{Id}$ range over nonzero complex multiples of Id as well, and so the resulting symmetric forms σ act on $x, y \in \mathfrak{g}$ by $\sigma(x, y) = \beta(ux + vJx, y)$, where (u, v) range over $\mathbb{R} \setminus \{0\}$. Therefore $\sigma = u\beta - v\gamma$, as required.

Remark 6.2 The relation $\gamma = -\beta(\cdot, J \cdot)$ for $\beta = 2\text{Re } \beta^{\mathfrak{h}}$ and $\gamma = 2\text{Im } \beta^{\mathfrak{h}}$ shows that, once J is fixed, $\text{Re } \beta^{\mathfrak{h}}$ uniquely determines $\beta^{\mathfrak{h}}$. Similarly, $\text{Re } C^{\mathfrak{h}}$ and J determine the Cartan three-form $C^{\mathfrak{h}}$ of a complex Lie algebra \mathfrak{h} , cf. (1.7). In fact, $\text{Im } C^{\mathfrak{h}} = -\text{Re } C^{\mathfrak{h}}(\cdot, \cdot, J \cdot)$.

Remark 6.3 The bracket $[\cdot, \cdot]$ of a real/complex semisimple Lie algebra is uniquely determined by C and β via (1.7). Knowing C and the set of nonzero scalar multiples of β , rather than β itself, makes $[\cdot, \cdot]$ unique up to multiplications by cubic roots of 1. Such factors must be allowed as multiplying $[\cdot, \cdot]$ by a scalar r replaces β and C with $r^2\beta$ and r^3C .

Remark 6.4 In the first sentence of Remark 6.3, treating C and β formally, we see that in the complex case \bar{C} and $\bar{\beta}$ determine, via (1.7), the same bracket $[\cdot, \cdot]$ as C and β .

7 Proof of Theorem C

For a real/complex Lie algebra \mathfrak{g} , let the mapping $\Phi : [\mathfrak{g}^*]^{\wedge 3} \times \mathfrak{g}^{\odot 2} \rightarrow [\mathfrak{g}^*]^{\wedge 4}$ be defined by $[\Phi(C, \mu)](x, y, z, z') = \mu(C(x, y), C(z, z')) + \mu(C(y, z), C(x, z')) + \mu(C(z, x), C(y, z'))$, where $\mu \in \mathfrak{g}^{\odot 2}$ is treated as a symmetric real/complex-bilinear form on \mathfrak{g}^* , and $C(x, y)$ stands for the element $C(x, y, \cdot)$ of \mathfrak{g}^* . If \mathfrak{g} is also semisimple, the isomorphic identification $\mathfrak{g} \approx \mathfrak{g}^*$ provided by the Killing form β induces an isomorphism $[\mathfrak{g}^*]^{\odot 2} \rightarrow \mathfrak{g}^{\odot 2}$, which we write as $\sigma \mapsto \sigma^{\sharp}$. Then, in view of (1.4) and (1.7),

$$\Phi(C, \sigma^{\sharp}) = \Lambda\sigma \quad \text{for any } \sigma \in \mathfrak{g}^{\odot 2} \text{ and the Cartan three-form } C. \quad (7.1)$$

Theorem C is a trivial consequence of the following result combined with Lemma 4.3(ii) and the fact that, by multiplying a Lie-algebra bracket operation $[\cdot, \cdot]$ by a nonzero scalar, one obtains a Lie-algebra structure isomorphic to the original one.

Lemma 7.1 *In a real or complex semisimple Lie algebra \mathfrak{g} , the Cartan three-form and the vector-space structure of \mathfrak{g} uniquely determine each of the following objects.*

- (a) *The vector subspaces constituting the simple direct summand ideals of \mathfrak{g} .*
- (b) *Up to a sign, in the real case, the complex structure, defined as in Section 6, of every summand ideal \mathfrak{g}' with $\dim_{\mathbb{R}} \mathfrak{g}' \neq 6$ which is a complex Lie algebra, treated as real.*
- (c) *Up to multiplications by cubic roots of 1, the restrictions of the Lie-algebra bracket of \mathfrak{g} to all such summands of dimensions other than 3 or 6.*

(d) *The Lie-algebra isomorphism types of all summand ideals \mathfrak{g}' with $\dim_{\mathbb{R}} \mathfrak{g}' \neq 3$.*

Proof Let C be the Cartan three-form of \mathfrak{g} . By (7.1), $\text{Ker } \Delta = \{\sigma^\sharp : \sigma \in \text{Ker } \Lambda\}$ for the real/complex-linear operator $\Delta : \mathfrak{g}^{\odot 2} \rightarrow [\mathfrak{g}^*]^{\wedge 4}$ given by $\Delta\mu = \Phi(C, \mu)$. Then, if one views all $\mu \in \text{Ker } \Delta \subset \mathfrak{g}^{\odot 2}$ as linear operators $\mu : \mathfrak{g}^* \rightarrow \mathfrak{g}$,

(e) *the simple direct summands of \mathfrak{g} are precisely the minimal elements, in the sense of inclusion, of the set $\mathbf{S} = \{\mu(\mathfrak{g}^*) : \mu \in \text{Ker } \Delta, \text{ and } \dim \mu(\mathfrak{g}^*) = 3 \text{ or } \dim \mu(\mathfrak{g}^*) \geq 6\}$.*

In fact, \mathbf{S} consists of the images of those linear endomorphisms $\Sigma : \mathfrak{g} \rightarrow \mathfrak{g}$ which correspond via (1.2.b) to elements σ of $\text{Ker } \Lambda$, and have $\text{rank } \Sigma \notin \{0, 1, 2, 4, 5\}$. To describe all such Σ , we use the four parts of Theorem B, referring to them as (i) – (iv). Specifically, by (i), our Σ are direct sums of linear endomorphisms Σ_i of the simple direct summands \mathfrak{g}_i of \mathfrak{g} , while Σ_i are themselves subject to just two restrictions: one due to the exclusion of ranks 0, 1, 2, 4 and 5, the other depending, in view of (ii) – (iv), on $d_i = \dim \mathfrak{g}_i$, as follows. If $d_i = 3$, (ii) states that Σ_i is only required to be β -self-adjoint (to reflect symmetry of σ_i related to Σ_i as in (1.2.b)). Similarly, it is clear from (iv) and (2.2) that, with a specific scalar field \mathbb{F} ,

$$\Sigma_i \text{ is a nonzero } \mathbb{F}\text{-multiple of Id when } d_i \notin \{3, 6\}, \text{ where } \mathbb{F} = \mathbb{C} \text{ if } \mathfrak{g}_i \text{ is either complex or real of type (1.3.b), and } \mathbb{F} = \mathbb{R} \text{ for real } \mathfrak{g}_i \text{ of type (1.3.a).} \quad (7.2)$$

In the remaining case, $d_i = 6$. Then, by (iii) and Theorem B(iii), Σ_i is complex-linear and β -self-adjoint, cf. (2.3) and (2.1.i), but otherwise arbitrary.

The image $\Sigma(\mathfrak{g})$ of any Σ as above is the direct sum of the images of its summands Σ_i , and so it can be minimal only if there exists just one i with $\Sigma_i \neq 0$. For this i , minimality of $\Sigma(\mathfrak{g}) = \Sigma_i(\mathfrak{g}_i)$ implies that $\Sigma(\mathfrak{g}) = \mathfrak{g}_i$. In fact, in view of the last paragraph, the cases $d_i = 3$ and $d_i \notin \{3, 6\}$ are obvious (the former since $\text{rank } \Sigma_i \geq 3$) while, if $d_i = 6$, complex-linearity of Σ_i precludes not just 0, 1, 2, 4 and 5, but also 3 from being its real rank.

We thus obtain one of the inclusions claimed in (e): every minimal element of \mathbf{S} equals some summand \mathfrak{g}_i . Conversely, any fixed summand \mathfrak{g}_i is an element of \mathbf{S} , realized by Σ with $\Sigma_i = \text{Id}$ and $\Sigma_j = 0$ for all $j \neq i$, cf. Lemma 4.3(iii). Minimality of \mathfrak{g}_i is in turn obvious from (7.2) if $d_i \notin \{3, 6\}$, while for $d_i = 3$ or $d_i = 6$ it follows from the restriction on rank Σ combined, in the latter case, with complex-linearity of Σ_i . This yields (e).

Now (a) is obvious from (e), as Δ and \mathbf{S} depend only on C and the vector-space structure of \mathfrak{g} . To prove (b) – (c), we fix i with $d_i \notin \{3, 6\}$. Elements μ of $\text{Ker } \Delta$ having $\mu(\mathfrak{g}^*) = \mathfrak{g}_i$ correspond, via (1.2.b) followed by the assignment $\sigma \mapsto \mu = \sigma^\sharp$, to endomorphisms Σ of \mathfrak{g} which satisfy (7.2) and vanish on \mathfrak{g}_j for $j \neq i$. Any such μ , now viewed as a bilinear form on \mathfrak{g}^* , is therefore obtained from a bilinear form μ_i on \mathfrak{g}_i^* by the trivial extension to \mathfrak{g}^* , that is, pullback under the obvious restriction operator $\mathfrak{g}^* \rightarrow \mathfrak{g}_i^*$.

If $\mathbb{F} = \mathbb{R}$, it is immediate from (7.2) that the resulting forms μ_i are nonzero multiples of the reciprocal of the Killing form of \mathfrak{g}_i , and Remark 6.3 implies (c). Next, let $\mathbb{F} = \mathbb{C}$. We denote \mathfrak{g}_i treated as a complex Lie algebra by \mathfrak{h} and Cartan three-form of \mathfrak{h} by $C^\mathfrak{h}$. Formula (6.1) states that, in view of (7.2), the reciprocals of our μ_i are precisely the nonzero elements of the space \mathcal{P} defined in Section 6. Thus, Lemma 6.1, (2.1.ii) and Remark 6.2 imply that C determines the triple $(J, \beta^\mathfrak{h}, C^\mathfrak{h})$ uniquely up to replacements by $(J, a\beta^\mathfrak{h}, aC^\mathfrak{h})$ or $(-J, a\beta^\mathfrak{h}, aC^\mathfrak{h})$, with $a \in \mathbb{C} \setminus \{0\}$. This proves (b), while using Remarks 6.3 – 6.4 we obtain (c) for $\mathbb{F} = \mathbb{C}$ as well. Finally, (c) and Lemma 4.3(i)–(iii) easily yield (d). \square

Acknowledgements We thank Robert Bryant and Nigel Hitchin for helpful comments about Theorem C.

Appendix: Meyberg's theorem

For any complex simple Lie algebra \mathfrak{g} , the operator Ω with (1.2) is diagonalizable. Its systems $\text{Spec}[\mathfrak{g}]$ of eigenvalues and $\text{Mult}[\mathfrak{g}]$ of the corresponding multiplicities are

$$\begin{aligned}\text{Spec}[\mathfrak{sl}_n] &= (2, 1, 2/n, -2/n) \text{ and} \\ \text{Mult}[\mathfrak{sl}_n] &= (1, n^2 - 1, n^2(n-3)(n+1)/4, n^2(n+3)(n-1)/4), \text{ if } n \geq 4. \\ \text{Spec}[\mathfrak{sp}_n] &= (2, (n+4)/(n+2), -4/(n+2), 2/(n+2)) \text{ for even } n \geq 4, \text{ and} \\ \text{Mult}[\mathfrak{sp}_n] &= (1, (n-2)(n+1)/2, n(n+1)(n+2)(n+3)/24, n(n-1)(n-2)(n+3)/12). \\ \text{Spec}[\mathfrak{so}_n] &= (2, (n-4)/(n-2), 4/(n-2), -2/(n-2)) \text{ if } n = 7 \text{ or } n \geq 9, \text{ while} \\ \text{Mult}[\mathfrak{so}_n] &= (1, (n+2)(n-1)/2, n(n-1)(n-2)(n-3)/24, n(n+1)(n+2)(n-3)/12)\end{aligned}$$

and, if \mathfrak{g} is one of the exceptional complex Lie algebras $\mathfrak{sl}_2, \mathfrak{sl}_3, \mathfrak{g}_2, \mathfrak{so}_8, \mathfrak{f}_4, \mathfrak{e}_6, \mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_8$,

$$\begin{aligned}\text{Spec}[\mathfrak{g}] &= (2, (1+w)/6, (1-w)/6), \text{ with } \text{Mult}[\mathfrak{g}] \text{ equal to} \\ (1, 3d[(d+2)w - (d+32)]/[w(11-w)], 3d[(d+2)w + (d+32)]/[w(11+w)]),\end{aligned}\quad (7.3)$$

where $d = \dim \mathfrak{g}$ and $w = [(d+242)/(d+2)]^{1/2}$. This is a result of Meyberg [8] who, instead of our Ω , studied the operator $T = \Omega/2$. (The exponent $1/2$ is missing in [8]). For \mathfrak{sl}_2 , the resulting “eigenvalue” $4/3$ of multiplicity 0 should be disregarded. All isomorphism types of complex simple Lie algebras are listed above, cf. Remark 2.3.

The dimensions d of $\mathfrak{sl}_2, \mathfrak{sl}_3, \mathfrak{g}_2, \mathfrak{so}_8, \mathfrak{f}_4, \mathfrak{e}_6, \mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_8$ are 3, 8, 14, 28, 52, 78, 133, 248 [7, p. 21]. The eigenvalues 0 and 1 in (7.3) would correspond to $w = 1$ or $w = 5$, of which only the latter occurs, for $d = 8$ and $\mathfrak{g} = \mathfrak{sl}_3$, in agreement with Lemma 2.2.

References

1. Besse, A.L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. (3), vol. 10. Springer, Berlin (1987)
2. Bourguignon, J.P., Karcher, H.: Curvature operators: pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. (4) **11**, 71–92 (1978)
3. R. Bryant, private communication (2009)
4. Calabi, E., Vesentini, E.: On compact, locally symmetric Kähler manifolds. Ann. of Math. (2) **71**, 472–507 (1960)
5. Derdzinski, A., Gal, Š.R.: Indefinite Einstein metrics on simple Lie groups. Indiana Univ. Math. J. (to appear). arXiv:1209.6084v2
6. Hausner, M., Schwartz, J.T.: Lie Groups, Lie Algebras. Gordon and Breach, New York (1968)
7. Iachello, F.: Lie Algebras and Applications. Lecture Notes in Physics, vol. 708. Springer, Berlin (2006)
8. Meyberg, K.: Spurformeln in einfachen Lie-Algebren. Abh. Math. Sem. Univ. Hamburg **54**, 177–189 (1984)
9. Onishchik, A.L.: Lectures on Real Semisimple Lie Algebras and their Representations. ESI Lectures in Mathematics and Physics, EMS, Zürich (2004)