assignment1

May 10, 2025

Load the data file Wage.rds or Wage.csv:

```
[]: import pandas as pd
    Wage = pd.read_csv("dataset/Wage.csv")
```

Display the number of features and their names:

```
[20]: print(Wage.shape[1])
      print(Wage.columns.tolist())
     11
```

['Unnamed: 0', 'year', 'age', 'maritl', 'race', 'education', 'region', 'jobclass', 'health', 'health_ins', 'wage']

Delete the feature 'logwage' and display the number of features and their names again:

```
[4]: Wage = Wage.drop(columns=["logwage"])
     print(Wage.shape[1])
     print(Wage.columns.tolist())
```

11 ['Unnamed: 0', 'year', 'age', 'maritl', 'race', 'education', 'region', 'jobclass', 'health', 'health_ins', 'wage']

Display the number of data points:

```
[5]: print(Wage.shape[0])
```

3000

Display the data in a table (subset of rows is sufficient):

```
[6]: Wage.head()
```

```
[6]:
       Unnamed: 0
                                         maritl
                                                                  education \
                    year
                                                     race
                          age
     0
            231655
                    2006
                           18
                               1. Never Married
                                                1. White
                                                               1. < HS Grad
     1
             86582
                    2004
                           24
                               1. Never Married
                                                 1. White 4. College Grad
                                     2. Married
     2
            161300
                    2003
                           45
                                                 1. White
                                                           3. Some College
     3
                                                           4. College Grad
            155159
                    2003
                           43
                                     2. Married
                                                 3. Asian
     4
                                    4. Divorced 1. White
                                                                 2. HS Grad
             11443
                    2005
                           50
```

region jobclass health health_ins wage

```
2. Middle Atlantic
                                          1. <=Good
                                                                 75.043154
                     1. Industrial
                                                         2. No
2. Middle Atlantic
                    2. Information
                                    2. >=Very Good
                                                         2. No
                                                                 70.476020
2. Middle Atlantic
                                          1. <=Good
                     1. Industrial
                                                        1. Yes
                                                                130.982177
                    2. Information 2. >=Very Good
2. Middle Atlantic
                                                        1. Yes
                                                                154.685293
2. Middle Atlantic
                    2. Information
                                          1. <=Good
                                                        1. Yes
                                                                 75.043154
```

Print a statistic summary of the features (year, age, maritl, race, education, region, jobclass, health, health_ins) and the label (wage):

[7]: Wage.describe(include="all")

:	Unnamed: 0	year	age	marit	l race	\
count	3000.000000	3000.000000	3000.000000	300	3000	
unique	NaN	NaN	NaN	!	5 4	
top	NaN	NaN	NaN	2. Marrie	d 1. White	
freq	NaN	NaN	NaN	207	4 2480	
mean	218883.373000	2005.791000	42.414667	Na	N NaN	
std	145654.072587	2.026167	11.542406	Na	N NaN	
min	7373.000000	2003.000000	18.000000	Na	N NaN	
25%	85622.250000	2004.000000	33.750000	Na	N NaN	
50%	228799.500000	2006.000000	42.000000	Na	N NaN	
75%	374759.500000	2008.000000	51.000000	Na	N NaN	
max	453870.000000	2009.000000	80.000000	Nal	N NaN	
	education	reg	ion job	class	health	\
count	3000	3	000	3000	3000	
unique	5		1	2	2	
top	2. HS Grad 2.	Middle Atlan			>=Very Good	
freq	971		000	1544	2142	
mean	NaN		NaN	NaN	NaN	
std	NaN		NaN	NaN	NaN	
min	NaN		NaN	NaN	NaN	
25%	NaN		NaN	NaN	NaN	
50%	NaN		NaN	NaN	NaN	
	NaN		NaN	NaN	NaN	
75%				NaN	NaN	

	health_ins	wage
count	3000	3000.000000
unique	2	NaN
top	1. Yes	NaN
freq	2083	NaN
mean	NaN	111.703608
std	NaN	41.728595
min	NaN	20.085537
25%	NaN	85.383940
50%	NaN	104.921507
75%	NaN	128.680488

For the numerical features, check the correlation, i.e., the relation of feature to lable variations. Therefore, for each such feature perform the following steps: 1. Plot the feature against the lable values 2. Test the normality of the feature and lable values 3. Test their correlation using an appropriate test 4. Interprete the results

```
[9]: import seaborn as sns import matplotlib.pyplot as plt
```

Step 1: Plot the feature against the lable values:

```
[10]: sns.regplot(x="age", y="wage", data=Wage)
    plt.xlabel("Age")
    plt.ylabel("Wage")
    plt.show()
```


Step 2: Test the normality of the feature and lable values:

```
[15]: from scipy.stats import shapiro import statsmodels.api as sm
```

```
print("Shapiro test for age:", shapiro(Wage["age"]))
sm.qqplot(Wage["age"], line="s")
plt.title("Q-Q Plot of Age")
plt.ylabel("Age")
plt.show()
print("Shapiro test for wage:", shapiro(Wage["wage"]))
sm.qqplot(Wage["wage"], line="s")
plt.title("Q-Q Plot of Wage")
plt.ylabel("Wage")
plt.show()
```

Shapiro test for age: ShapiroResult(statistic=0.9910561787924322, pvalue=9.416337654404108e-13)

Shapiro test for wage: ShapiroResult(statistic=0.8795743517164918, pvalue=2.463070103676827e-43)

Step 3: Perform the Pearson correlation test:

```
[21]: from scipy.stats import pearsonr

corr, p_value = pearsonr(Wage["age"], Wage["wage"])
    print("Correlation coefficient:", corr)
    print("P-value:", p_value)
```

Correlation coefficient: 0.1956372015635886

P-value: 2.900777675211075e-27

step 4 1/2: Wage vs. Age Step 1: From the slope of the regression line, we see that on average wages tend to increase as age increases. However, the cloud of scattered points shows that age alone is a poor predictor of wage—many other factors clearly play a role. You'll also notice that middle-aged workers cluster at higher wages more than the very youngest or oldest workers, suggesting the upward trend holds mainly within a certain age range.

Step 2: Because the Pearson correlation test assumes normality, we performed Shapiro–Wilk tests. Both age and wage returned p 0.05, so we reject normality for each.

Age Q–Q plot: the central points lie close to the line but the lower tail deviates (few very young earners, as expected).

Wage Q-Q plot: both the upper and lower tails stray from the line, indicating heavy-tailed departures from normality.

Step 3: The Pearson correlation coefficient is r 0.196, confirming a weak positive relationship between age and wage. The very small p-value ($<10^{2}$) means this correlation is statistically significant, though it explains only about 4% of the variance in wages.

now the exact same code but for the other numerical feature year :

```
[22]: # Step 1: plot
    sns.regplot(x="year", y="wage", data=Wage)
    plt.xlabel("Year")
    plt.ylabel("Wage")
    plt.show()

# Step 2: normality
    print("Shapiro test for year:", shapiro(Wage["year"]))
    sm.qqplot(Wage["year"], line="s")
    plt.title("Q-Q Plot of Year")
    plt.show()

# Step 3: correlation
    corr, p_value = pearsonr(Wage["year"], Wage["wage"])
    print("Year-Wage correlation:", corr, "p-value:", p_value)
```


Shapiro test for year: ShapiroResult(statistic=0.9111278152133864, pvalue=9.247291644463872e-39)

Year-Wage correlation: 0.06554427797296272 p-value: 0.00032767779260474455 step $4\ 2/2$: wage vs year:

step 1: from the slope of the regression line we see that wages have crept up slightly between 2003 and 2009, but the cloud of points is very wide at each year. that tells us year alone is a poor predictor of wage and most of the variation comes from other factors.

step 2 : Shapiro–Wilk for year: W = 0.911, p = 9.2×10^3 \rightarrow year is not normally distributed (it only takes seven discrete values). the Q–Q plot shows clear "steps" at each calendar year. wage again fails normality (heavy tails on both ends) as before.

step 3 : Pearson's r 0.0655, p $3.3 \times 10 \rightarrow$ a very weak but statistically significant positive correlation. year explains under 1% of wage variance, so although wages have inched upward over time, the effect is negligible in practice.

For the non-numerical features, analyse the variance (ANOVA), to study differences between the

means of the label values for groups of data points with the same feature value. Therefore, for each such feature perform the following steps: 1. List the possible feature values 2. Plot (box plot) the label values for each group of of data points with the same feature value. 3. Perform the one way ANOVA test 4. Interprete the results

Step 1: List the possible feature values:

```
[17]: print(Wage["education"].unique())
```

['1. < HS Grad' '4. College Grad' '3. Some College' '2. HS Grad' '5. Advanced Degree']

Step 2: Plot (box plot) the label values for each group of of data points with the same feature value:

Step 3. Perform the one-way ANOVA test:

```
[19]: import statsmodels.api as sm
from statsmodels.formula.api import ols

model = ols("wage ~ C(education)", data=Wage).fit()
anova_table = sm.stats.anova_lm(model, typ=2)
print(anova_table)
```

```
    sum_sq
    df
    F
    PR(>F)

    C(education)
    1.226364e+06
    4.0
    229.805921
    2.915932e-172

    Residual
    3.995721e+06
    2995.0
    NaN
    NaN
```

Wage vs. Education (Skipping Step 1 since it's just listing the categories.)

Step 2: From the boxplots (with overlaid points), we see that the medians, IQRs, and whiskers clearly shift upward as education level increases. This indicates that wages tend to rise with more education. Although there are outliers in each group, the overall trend is strongly upward.

Step 3: The one-way ANOVA yields a very large F-statistic (~229.8), meaning that between-group variance (differences among education-level means) is far greater than within-group variance (individual scatter). The p-value is essentially zero, so we reject the null that all five group means are equal.

Interpretation: There are highly significant differences in mean wage across education levels—higher education is associated with higher average wages. However, there is also substantial within-group scatter, so education alone is not a precise predictor of an individual's wage.

```
[24]: # List of all non-numerical features except 'education'
      categorical_feats = [
          "maritl".
                        # marital status
          "race",
          "jobclass",
          "health",
          "health ins" # health insurance
      ]
      for feat in categorical_feats:
          print(f"\n=== Feature: {feat} ===")
          # Step 1: List possible values
          print("Values:", Wage[feat].unique())
          # Step 2: Box + strip plot
          plt.figure(figsize=(8, 4))
          sns.boxplot(x=feat, y="wage", data=Wage)
          sns.stripplot(x=feat, y="wage", data=Wage,
```

```
color="steelblue", alpha=0.3, jitter=0.2)
plt.title(f"Wage by {feat}")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

# Step 3: One-way ANOVA
model = ols(f"wage ~ C({feat})", data=Wage).fit()
anova_table = sm.stats.anova_lm(model, typ=2)
print(anova_table)
```

=== Feature: maritl ===
Values: ['1. Never Married' '2. Married' '4. Divorced' '3. Widowed' '5.
Separated']

 sum_sq
 df
 F
 PR(>F)

 C(maritl)
 3.631444e+05
 4.0
 55.959585
 1.401201e-45

 Residual
 4.858941e+06
 2995.0
 NaN
 NaN

=== Feature: race ===

Values: ['1. White' '3. Asian' '4. Other' '2. Black']

sum_sq df F PR(>F)
C(race) 6.321174e+04 3.0 12.236674 5.890230e-08
Residual 5.158874e+06 2996.0 NaN NaN

=== Feature: jobclass ===

Values: ['1. Industrial' '2. Information']

sum_sq df F PR(>F)
C(jobclass) 2.235384e+05 1.0 134.072585 2.308186e-30
Residual 4.998547e+06 2998.0 NaN NaN

=== Feature: health ===

Values: ['1. <=Good' '2. >=Very Good']

 sum_sq
 df
 F
 PR(>F)

 C(health)
 1.211874e+05
 1.0
 71.226641
 4.886404e-17

 Residual
 5.100898e+06
 2998.0
 NaN
 NaN

=== Feature: health_ins === Values: ['2. No' '1. Yes']

 ${\tt sum_sq} \qquad {\tt df} \qquad {\tt F} \qquad {\tt PR}({\tt >F})$

C(health_ins) 4.963846e+05 1.0 314.907964 4.465783e-67 Residual 4.725701e+06 2998.0 NaN NaN

[]:

0.0.1 Wage vs. Marital Status

Step 2:

The boxplots (with overlaid points) show that median wages are highest for Married individuals, followed by Divorced, Widowed, Separated, and lowest for Never Married. There's substantial overlap and outliers in each group, but the overall pattern is clear: marital status is associated with differences in average wage.

Step 3:

One-way ANOVA gives \mathbf{F} 55.96, \mathbf{p} 1.4 \times 10 . The between-group variance in wages (across the five marital categories) is far larger than the within-group scatter, and we reject the null that all five means are equal.

Interpretation:

Marital status has a statistically significant effect on wage. Married workers earn more on average than those never married or in other categories—but the within-group variability is still large, so marital status alone is an imperfect predictor.

0.0.2 Wage vs. Race

Step 2:

The boxplots reveal that Asian workers have the highest median wage, followed by White, Black, and Other. There's considerable overlap, especially between White and Black, and a few high-wage outliers in every group.

Step 3:

ANOVA yields F 12.24, p 5.9 \times 10 . The differences in mean wage across the four race categories are highly significant.

Interpretation:

Race explains a significant but modest portion of wage variation—Asians tend to earn more on average, but overlap between groups means race is not a strong standalone predictor for individual wages.

0.0.3 Wage vs. Job Class

Step 2:

The two boxplots show that Information workers have a noticeably higher median wage and wider IQR than Industrial workers, though both groups contain high-wage outliers.

Step 3:

ANOVA gives F ~134.07, p $~2.3\times10^{~3}$. The between-group variance (Information vs. Industrial) overwhelmingly exceeds within-group scatter.

Interpretation:

Job class is a very strong predictor of wage: Information-sector employees earn substantially more on average than Industrial-sector employees, with highly significant differences.

0.0.4 Wage vs. Health

Step 2:

Comparing Good (Good) vs. Very Good (Very Good) health, the boxplot for Very Good health is shifted upward in median and IQR, with some extreme high-wage outliers, whereas Good health shows lower medians and a tighter spread.

Step 3:

ANOVA yields F 71.23, p 4.9×10^{-1} . The wage differences between the two health-status groups are highly significant.

Interpretation:

Self-reported health status relates to wage: those reporting Very Good health earn more on average. Still, there's enough overlap that health alone doesn't fully explain individual wage variation.

0.0.5 Wage vs. Health Insurance

Step 2:

The boxplots indicate that workers with health insurance have a higher median wage and a broader IQR than those without insurance, with both groups showing high-wage outliers.

Step 3:

ANOVA gives F 314.91, p 4.5 \times 10 . This is the largest F among the categorical features, showing extremely significant mean differences.

Interpretation:

Having health insurance is strongly associated with higher wages—more so than any other categorical feature here. Nonetheless, within-group scatter means insurance status isn't a perfect predictor by itself.