Università degli studi di Bergamo

Anno Accademico 2023/2024

MODELLI E ALGORITMI DI OTTIMIZZAZIONE

Modelli di Programmazione Lineare

Mista Intera – Esercizi 1 e 2 (E3)

Giovanni Micheli

Insiemi

 $\checkmark T$: insieme dei mesi

$$T = \{1,2,3,4,5\}$$

✓ *S* : insieme dei server

$$S = \{SIP, EIP, SGI, SUN\}$$

Dati - Vettori

- ullet Numero massimo di impiegati supportati dal server s
- C_S Costo di acquisto [€] del server S

• U_t Utenze da coprire al mese t

Dati - Scalari

- sc_1 Sconto sui server di tipo SGI **0.10** acquistati nei primi due mesi
- sc_2 Sconto sui server di tipo SUN **0.25** acquistati nei primi due mesi
- B Budget [€] per i primi due mesi9500

- Calcolo dei costi di investimento mensili
 - $Inv_{s,t}$ Costo di investimento [€] del server s al mese t

$$- Inv_{s,t} = C_s$$

$$t \ge 3, s \in S$$

-
$$Inv_{s,t} = C_s$$

$$t \le 2, s \in \{SIP, EIP\}$$

$$- Inv_{SGI,t} = (1 - sc_1)C_{SGI}$$

$$t \leq 2$$

$$- Inv_{SUN,t} = (1 - sc_2)C_{SUN} \quad t \le 2$$

- $x_{s,t}$ Numero di server della tipologia s installati al mese $t\left[x_{s,t}\in\mathbb{N}\right]$
- $y_{s,t}$ Numero di server della tipologia s disponibili al mese $t\left[y_{s,t}\in\mathbb{N}\right]$
- Z Variabile obiettivo : costi di investimento totali [€]

- $x_{s,t}$ Numero di server della tipologia s installati al mese $t\left[x_{s,t}\in\mathbb{N}\right]$
- $y_{s,t}$ Numero di server della tipologia s disponibili al mese $t\left[y_{s,t}\in\mathbb{N}\right]$

- 1 server installato al mese 2
- 1 server installato al mese 4

- $x_{s,t}$ Numero di server della tipologia s installati al mese $t\left[x_{s,t}\in\mathbb{N}\right]$
- $y_{s,t}$ Numero di server della tipologia s disponibili al mese $t \left[y_{s,t} \in \mathbb{N} \right]$

- 1 server installato al mese 2
- 1 server installato al mese 4

- $x_{s,t}$ Numero di server della tipologia s installati al mese $t\left[x_{s,t}\in\mathbb{N}\right]$
- $y_{s,t}$ Numero di server della tipologia s disponibili al mese $t\left[y_{s,t}\in\mathbb{N}\right]$

- 1 server installato al mese 2
- 1 server installato al mese 4

Funzione obiettivo

$$\min z = \sum_{s} \sum_{t} Inv_{s,t} x_{s,t}$$

Vincoli

✓ Copertura utenze

In **ogni** mese, i server disponibili devono supportare il numero di utenze richiesto

Vincoli

✓ Copertura utenze

$$\sum_{S} N_{S} y_{S,t} \ge U_{t} \quad \forall t$$

Vincoli

✓ Copertura utenze

$$\sum_{s} N_{s} y_{s,t} \ge U_{t} \quad \forall t$$

✓ Budget

I costi di investimento sostenuti nei primi due mesi non devono eccedere il budget

Vincoli

✓ Copertura utenze

$$\sum_{S} N_{S} y_{S,t} \ge U_{t} \quad \forall t$$

✓ Budget

$$\sum_{t=1}^{2} \sum_{s} Inv_{s,t} x_{s,t} \le B$$

Vincoli

✓ Legame tra variabili

Creazione del legame logico tra le variabili intere → i server di ogni tipologia disponibili in ogni mese sono pari alla somma dei server installati dal primo mese fino al mese in corso

Vincoli

✓ Legame tra variabili

$$y_{s,t} = \sum_{\tau=1}^{t} x_{s,\tau} \quad \forall s, \forall t$$

Vincoli

✓ Legame tra variabili

$$y_{s,t} = \sum_{\tau=1}^{t} x_{s,\tau} \quad \forall s, \forall t$$

✓ Server per la Produzione

Al mese 3 è richiesto che sia disponibile almeno uno dei due software più potenti

Vincoli

✓ Legame tra variabili

$$y_{s,t} = \sum_{\tau=1}^{t} x_{s,\tau} \quad \forall s, \forall t$$

✓ Server per la Produzione

$$y_{SGI,3} + y_{SUN,3} \ge 1$$

Insiemi

 $\checkmark I$: insieme delle miniere

$$I = \{1,2,3,4\}$$

 $\checkmark T$: insieme degli anni

$$T = \{1,2,3,4,5\}$$

Dati - Vettori

- R_i Royalties [M\$] associate all'utilizzo della miniera i
- cu_i Costo unitario estrattivo [M\$/Mton] della miniera i
- C_i Capacità annuale [Mton] della miniera i
- q_i Indice di qualità dei minerali estratti dalla miniera i
- qf_t Indice di qualità richiesto all'anno t

Dati - Scalari

- N Numero massimo di miniere 3 utilizzabili in ogni anno
- p Prezzo di vendita del prodotto 10 finito [M\$/Mton]

- $x_{i,t}$ Quantità di minerali [Mton] estratta dalla miniera i nell'anno t ($x_{i,t} \ge 0$)
- y_t Quantità di prodotto finito [Mton] venduta all'anno t ($y_t \ge 0$)
- $\delta_{i,t}$ Binaria: 1 se la miniera i è utilizzata all'anno t 0 altrimenti
- Z Variabile obiettivo : profitti totali [\$]

Funzione obiettivo

Vincoli

✓ Quantità prodotto finito

In **ogni** anno, la quantità di prodotto finito ottenuta è pari alla somma delle quantità estratte dalle miniere

Vincoli

✓ Quantità prodotto finito

$$y_t = \sum_i x_{i,t} \quad \forall t$$

Vincoli

✓ Quantità prodotto finito

$$y_t = \sum_i x_{i,t} \quad \forall t$$

✓ Capacità della miniera

In ogni anno, l'estrazione da ciascuna miniera è

- Nulla se la miniera non è utilizzata
- Limitata dalla capacità se la miniera è utilizzata

Vincoli

✓ Quantità prodotto finito

$$y_t = \sum_{i} x_{i,t} \quad \forall t$$

✓ Capacità della miniera

$$x_{i,t} \leq C_i \delta_{i,t} \quad \forall i, \forall t$$

Vincoli

✓ Limiti di utilizzo

Ogni anno, non possono essere utilizzate più di N miniere

Vincoli

✓ Limiti di utilizzo

$$\sum_{i} \delta_{i,t} \leq N \quad \forall t$$

Vincoli

✓ Limiti di utilizzo

$$\sum_{i} \delta_{i,t} \le N \quad \forall t$$

✓ Qualità

Ogni anno l'indice di qualità del prodotto finito deve essere rispettato

Vincoli

✓ Limiti di utilizzo

$$\sum_{i} \delta_{i,t} \leq N \quad \forall t$$

✓ Qualità

$$\sum_{i} q_i x_{i,t} = q f_t y_t \quad \forall t$$

Vincoli

✓ 3 deve essere utilizzata in caso di utilizzo di 1 o 2

$\delta_{1,t}$	$\delta_{2,t}$	$\delta_{3,t}$
0	0	0
1	0	0
0	1	0
1	1	0
0	0	1
1	0	1
0	1	1
1	1	1

Vincoli

✓ 3 deve essere utilizzata in caso di utilizzo di 1 o 2

	$\delta_{3,t}$	$\delta_{2,t}$	$\delta_{1,t}$
A	0	0	0
NA	0	0	1
NA	0	1	0
NA	0	1	1
A	1	0	0
A	1	0	1
Α	1	1	0
A	1	1	1

Vincoli

✓ 3 deve essere utilizzata in caso di utilizzo di 1 o 2

$\delta_{1,t}$	$\delta_{2,t}$	$\delta_{3,t}$		
0	0	0	A	
-1	0	0	NA	
0	1	0	NA	+W 2 ~ 2
-1	1	0	NA	$\delta_{3,t} \ge \delta_{1,t} \ \forall t$
0	0	1	A	
1	0	1	A	
0	1	1	A	
1	1	1	A	

Vincoli

√ 3 deve essere utilizzata in caso di utilizzo di 1 o 2

$\delta_{1,t}$	$\delta_{2,t}$	$\delta_{3,t}$	
0	0	0	A
-1	0	0	NA
0	1	0	NA
_1	1	0	NA
0	0	1	Α
1	0	1	Α
0	1	1	A
1	1	1	A

$$\delta_{3,t} \ge \delta_{1,t} \ \forall t$$
$$\delta_{3,t} \ge \delta_{2,t} \ \forall t$$

B. Funzione di costo lineare a tratti convessa

- Esistenza di una soglia oltre la quale i costi unitari variano
- I costi unitari <u>crescono</u> al crescere delle quantità prodotte

B. Funzione di costo lineare a tratti convessa

• Scomposizione di x_{it} in due variabili non negative:

$$x_{it} = x1_{it} + x2_{it}$$

Imposizione della soglia

$$x1_{it} \leq S$$

Nuova funzione di costo

$$z_{it} = R_i \delta_{it} + c u_i^{(1)} x 1_{it} + c u_i^{(2)} x 2_{it}$$

B. Funzione di costo lineare a tratti convessa

La convessità della funzione di costo non richiede l'introduzione di vincoli di precedenza.

 $x2_{it}$ assumerà valore positivo solo quando $x1_{it}$ sarà satura.

C. Funzione di costo lineare a tratti concava

- Esistenza di una soglia oltre la quale i costi unitari variano
- I costi unitari decrescono al crescere delle quantità prodotte

C. Funzione di costo lineare a tratti concava

 Scomposizione di x_i in due variabili non negative:

$$x_{it} = x1_{it} + x2_{it}$$

La concavità della funzione di costo porterebbe ad assegnare valori positivi a $x2_{it}$ prima di $x1_{it}$.

C. Funzione di costo lineare a tratti concava

• Duplicazione delle variabili binarie $\delta 1_{it}$ e $\delta 2_{it}$ per controllare i due intervalli

$$\delta 1_{it} = \begin{cases} 1 & \text{se } x 1_{it} > 0 \\ 0 & \text{altrimenti} \end{cases}$$

$$\delta 2_{it} = \begin{cases} 1 & \text{se } x 2_{it} > 0 \\ 0 & \text{altrimenti} \end{cases}$$

Nuova funzione di costo

$$z_{it} = R_i \delta 1_{it} + c u_i^{(1)} x 1_{it} + c u_i^{(2)} x 2_{it}$$

C. Funzione di costo lineare a tratti concava

 Vincolo di coerenza per ciascuna coppia di variabili

$$x1_{it} \leq S \delta 1_{it}$$

$$x2_{it} \le C \delta 2_{it}$$

Vincolo di precedenza

$$\delta 2_{it} \le \frac{x 1_{it}}{S}$$

C. Funzione di costo lineare a tratti concava

 Vincolo di coerenza per ciascuna coppia di variabili

$$x1_{it} \leq S \delta 1_{it}$$

$$x2_{it} \leq C \; \delta 2_{it}$$

Vincolo di precedenza

$$\delta 2_{it} \le \frac{x 1_{it}}{S}$$

 $x2_{it}$ è forzata ad essere nulla fino alla saturazione di $x1_{it}$

Takeaway

1. Investimenti multiperiodali

2. Regole di modellazione

Takeaway

1. Investimenti multiperiodali

 Richiedono l'introduzione di un duplice set di variabili decisionali, da collegare tramite la scrittura di vincoli intertemporali.

somma cumulativa

Takeaway

2. Regole di modellazione

- Modellare funzioni di costo lineari a tratti
 - Se <u>convesse</u>, richiedono la sola <u>scomposizione delle variabili</u> <u>continue nei sottointervalli</u> <u>scomposizione + upper bound</u>
 - ➤ Se <u>concave</u>, richiedono <u>l'introduzione di variabili binarie in</u> <u>ciascun sottointervallo e la scrittura di vincoli di precedenza</u>.

scomposizione + upper bound vincoli di coerenza + vincoli di precedenza

