Seminar aus maschinellem Lernen

Efficient Substructure Discovery from Large Semi-structured Data

FREQT

Content

- Motivation
- Basic Definitionts
- Tree Matching
- Tree Enumeration
- Occurrence Lists
- Pruning and Experimental Results

Motivation

- Größe Menge von semi-structured Data:
 Web Pages, XML Datei
- Gesucht ist: rules, patterns
- Modell: labeled ordered trees
- Frequency von subtrees in ein Wald

• => Freqt

Definitionen

Labeled Ordered Tree T=(V,E,L,L,v₀, [≤])

- L ist Alphabet f
 ür labels
- L ist Belegung von Labels zu Knoten
- ist die Kinderordnungsrelation
- V,E, v₀ sind die übrige Notationen für Knotenund Kantenmenge und für Root

NF und Tree Matching

- Normalform: die pre-order Travesierungv₀ ist 1 und der rechteste Knot v_{k-1} ist k
- - 1. die Elternrelation ist erhalten
 - 2. die Geschwisterrelation ist erhalten
 - 3. v und v' haben gleiches Label

Frequency

Pattern Tree T can be matched to subtrees in D: (2,3,4), (5,6,7) and (5,6,8)

Occerence of the root of T: 2 (2,5)

Frequency of T in D: 2/8

FREQT

Algorithm FREQT

Input: A set \mathcal{L} of labels, a data tree D on \mathcal{L} , and a minimum support $0 < \sigma \le 1$.

Output: The set F of all σ -frequent patterns in D.

- 1. Compute the set $C_1 := \mathcal{F}_1$ of σ -frequent 1-patterns and the set RMO_1 of their rightmost occurrences by scanning D; Set k := 2;
- While F_{k-1} ≠ ∅, do:
 - 2 (a) $\langle C_k, RMO_k \rangle := \text{Expand-Trees}(\mathcal{F}_{k-1}, RMO_{k-1}); \text{ Set } \mathcal{F}_k := \emptyset.$
 - 2 (b) For each pattern $T \in \mathcal{C}_k$, do the followings: Compute $freq_D(T)$ from $RMO_k(T)$, and then, if $freq_D(T) \geq \sigma$, then $\mathcal{F}_k := \mathcal{F}_k \cup \{T\}$.
- 3. Return $\mathcal{F} = \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_{k-1}$.

FREQT: Beispiel

$$D = ((1,A)(2,A)(3,A)(3,B)(2,A)(3,A)(3,B)(3,B))$$

$$T = ((1,A)(2,A)(2,B)(2,B))$$

Enumeration

- Fang mit Menge von Bäume, die haben nur ein Knot an
- Mit jede Iteration ist ein Baum expandiert mit zufügen von ein neues Knot
 - Rightmost Expansion

Enumeration

Algorithm Expand-Trees (\mathcal{F}, RMO)

- C := ∅; RMO_{new} := ∅;
- 2. For each tree $S \in \mathcal{F}$, do:
 - For each $(p, \ell) \in \{1, \dots, d\} \times \mathcal{L}$, do the followings, where d is the depth of the rightmost leaf of S:
 - Compute the (p, ℓ)-expansion T of S;
 - $-RMO_{new}(T) := Update-RMO(RMO(S), p, \ell);$
 - $\mathcal{C} = \mathcal{C} \cup \{T\};$
- 3. Return $\langle C, RMO_{new} \rangle$;

Updating Occurence Lists

Algorithm Update-RMO (RMO, p, ℓ)

- 1. Set RMO_{new} to be the empty list ε and check := null.
- 2. For each element $x \in RMO$, do:
 - (a) If p = 0, let y be the leftmost child of x.
 - (b) Otherwise, $p \ge 1$. Then, do:
 - If $check = \pi_D^p(x)$ then skip x and go to the beginning of Step 2 (Duplicate-Detection).
 - Else, let y be the next sibling of $\pi_D^{p-1}(x)$ (the (p-1)st parent of x in D) and set $check := \pi_D^p(x)$.
 - (c) While $y \neq null$, do the following:
 - If $L_D(y) = \ell$, then $RMO_{new} := RMO_{new} \cdot (y)$; /* Append */
 y := next(y); /* the next sibling */
- 3. Return RMO_{new}.

Update RMO: Beispiel

- Nicht alle Matchfunktionen sind gespeichert
 - wir brauchen nur der Rightmost Position
 - alles anders kann man leicht wieder erstellen

Update RMO: Beispiel

 Für Extension (0,A) ist der neue RMO gezeigt

Update RMO: Beispiel

 Für Extension (0,A) ist der neue RMO gezeigt

 Für Extension (1,A) ist der neue RMO gezeigt

Duplicate-Detection

- Pattern Tree T hat 3 Matches
 - (1,2)
 - (1,3)
 - (1,4)
- Aber σ =1/4, nicht 3/4

Pruning

 Node Skip: Für Datenbaumknoten mit unfrequent Labels würden RMO-Update nicht angerufen

 Edge Skip: Kanten zwischen Knotenpaare, die in der 2. Iteration von Expand-Tree als nicht frequent bemerkt sind, kann man auch ignorieren

Pruning: Beispiel

Node-Skip :

- $\sigma = 0.3$
- $\sigma(B) = 0.2$
- B ist ignoriert
- Edge-Skip :
 - Kante (A,B) ist auch nicht frequent
 - Eine solche Extension ist ignoriert

Experimental Results

 Freqt, Freqt ohne Duplicate-Detection and Freqt mit Node-Edge-Pruning

2 Dataset von HTML Pages

- 2 threshold für Frequency
 - $\sigma = 10\%$, $\sigma = 2\%$

Experimental Results

- Bei σ=10% : 1 Pattern gefunden, gleiche Zeit für alle
- Bei σ=2%: Freqt ist 10 mal schneller als Freqt ohne Duplicate-Detection und 3 mal langsamer als Freqt mit Node-Edge-Skip

Komplexität von Freqt: O (k²bLN)

Danke für Ihre Aufmerksamkeit!