MULTIPLE CHOICE QUESTIONS (MCQ'S)

		. I have a pair of
1.	A rectangular array of nur	nbers enclosed by a pair of
	bracket is called .	· · ·
1	(a) Column (b) Row	(c) element (d) Matrix
2.	Vertical lines of numbers are	called
. 1	(a) Column	(b) Rows
- 1	(c) element	(d) None of these
3.	Horizontal lines of numbers a	re called:
J. 1	(a) elements	(b) Rows
	(c) Column	(d) None of these
4.	m × n is called:	
7.	(a) Order of matrix	(b) rows of matrix
	(c) Columns of matrix	(d) None of these
5	The matrix A is real if all of i	t's elements are
5.	(a) Rows	(b) Real
		(d) None of these
,	1: h has only one	row is called matrix.
6.	(1.)	(C) KEAL (G) ALLED
_	A matrix which has only o	ne Column is called
7:		
	matrix.	(c) Real (d) Imaginary
,	(a) Row (b) Column	rows are not equal to number
8.	of Columns is called	matrix.
	of Columns is caree	(b) Column
	(a) Row	(d) Square
,	(c) Rectangular A matrix whose each elem	ent is zero is called
9.		
	matrix. (a) Scalar (b) diagonal	(c) Null (d) Identity
	1 notriv	in which the humber of fews
10.	An m × n rectangular matter	s columns (m < n) is called a
	A . Zar .	
	matrix.	(c) Null (d) Horizontal
	lae matrix	in which the number of lows
11.	An m × n rectangular matrix	it's columns (m > n) is called
	is greater than the number of	., ., .,
,	matrix.	(c) Square (d) Null
	(a) Vertical (b) Horizontal	(-)

-	Mainematics XI
(12)	A matrix in which number of rows is equal to purely
	matrix
	(a) Square (b) Horizontal (c) Scalar (d) Note
(13)	A square matrix all of whose elements except those in a
	reading diagonal are zero is called matrix
	(a) Scalar (b) Diagonal (c) Identity (d) N. II
14)	A diagonal matrix in which all the diagonal elements
	equalisative is called is matrix.
	(a) Diagonal (b) Identity (c) Scalar (d) No. 11
15)	A Scalar matrix in which each diagonal element is Unity is
,	
	(a) Diagonal (b) Null (c) Square (d) Identity A Square matrix is called an matrix if all all
16)	I III All Plements
	below the principal diagonal are zero.
	(a) Upper Triangular (b) lower Triangular (c) Vertical Triangular (d) Horizontal Triangular
	(c) Vertical Triangular (d) Horizontal Triangular
17)	A Square matrix is said to be matrix if all
	elements above the principal diagonal are zero.
	(a) Upper Triangular (b) Lower Triangular (c) Vertical Triangular (d) Horizontal Triangular
	(c) Vertical Triangular (d) Horizontal Triangular
18)	A Square matrix is said to be a matrix if it is
	either upper Triangular (or) Lower Triangular matrix.
	(a) Vertical (b) Horizontal (c) Square (d) Triangular
19)	Matrix is a word which means a place in which
	something develops (or) originates.
	(a) German (b) latin (c) Danish (d) Arabic
(0)	Two matrices A and B are said to be matrices if
	and only if they are of the same order and their
	corresponding elements are
	(a) Square (b) Rectangular (c) Equal (d) Unequal
21)	If $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then A is called matrix.
	(a) Rectangular (b) Square
	(c) Column (d) Null
2)	(a) Rectangular (b) Square (c) Column (d) Null If $A = \begin{bmatrix} 2 & 3 \\ 5 & -7 \end{bmatrix}$ and $B = \begin{bmatrix} 4-2 & 2+1 \\ 4+1 & -7 \end{bmatrix}$ then A and B
	are called matrices.
	(a) Equal (b) Rectangular (c) Null (d) Diagonal

Chapter 4 # Matrices and Determina	ints	343
(23) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is known as	matrix.	
(a) Unit (b) Null (24) Transpose of a row matrix is a	(c) Scalar	(d) Transpose
(a) oquaic (b) Reciangilia	r(c) Down	1 As #1 - 1
(25) Transpose of a Column matrix	is called	matrix.
(a) Square (b) Rectangular	1/-\ D	(d) Column
26) $(A + B + C)^t = $		
(a) $A + B + C$ (b) $A' + B' + C'$	(c) ABC	(d) C'B'A'
27) $(ABC)^{t} = $	(c) ABC	(d) C'B'A'
28) $(A^{1})^{1} = $ (b) A^{1}	(c) I	(d) A ⁻¹
29) Matrix of Order m x n is a Squ	uare matrix i	f
(a) $m \neq n$ (b) $m = n$	(c) $m < n$	(d) m > n
30) [0] is matrix.		
(a) Square (b) Rectangular	r(c) Identity	(d) Unit
31) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is a	natrix.	
(a) Unit (b) Rectangula		(d) Squara
32) The principal diagonal of Squ	are matrix is	called
(a) Identity diagonal	(b) Unitary	diagonal
(a) Identity diagonal (c) leading diagonal	(d) diagon	al matrix
(33) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$ then $A^{t} = 1$	(a) diagoni	
$(a)\begin{bmatrix}1&2&3\\2&1&0\end{bmatrix}$	$(b)\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	2 1 0
(c) $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$	$(\mathbf{d})\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$
(34) $(A + B)^t = \underline{\hspace{1cm}}$ (a) $A + B$ (b) $B^t A^t$	(c) A' + B	' (d) A' – B'
(35) If $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ then $3A =$		
$ (a) \begin{bmatrix} 3 & 6 \\ 2 & 3 \end{bmatrix} \cdot (b) \begin{bmatrix} 3 & 6 \\ 6 & 3 \end{bmatrix} $	(c) $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 9 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 6 \\ 1 & 9 \end{bmatrix}$

(36) A Square matrix A is Singu	ilar if
$(\mathbf{a}) \mathbf{A} = 0$	(b) $A = I$
(c) A = Scalar matrix	$(\mathbf{d}) \mid \mathbf{A} \mid = 0$
(37) If $a = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then adj A =	• ?
$(a)\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ $(c)\begin{bmatrix} -a & c \\ b & -d \end{bmatrix}$	$(b)\begin{bmatrix} a & -b \\ -c & d \end{bmatrix}$
	$(d)\begin{bmatrix} a & c \\ b & d \end{bmatrix}$
(38) Inverse of identity matrix is	·
(a) $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ (b) 0	$\bigcirc \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (d) I
(39) For a non-Singular matrix A	A, A =
(a) $\frac{1}{ \mathbf{A} }$	(b) $\frac{1}{ A }$ adj A
(c) A adj A	(d) l A adj A
(40) Matrix form of System 3x;	$-x_2 = 1$; $x_1 + x_2 = 3$ is
$3x_1 - x_2 - 1$	(b) 3 -1 A
(c) $\begin{vmatrix} 3 & -1 & x_1 \\ 1 & 1 & x_2 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix}$	(d) None of these
$ (41) \begin{bmatrix} x+3 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} $ the	m x =
(a) 5 (b) 1	(c) -1 (d) 0
(42) The transpose of a Zero mat	rix is matrix.
(a) Idameiro (b) Zerro	(c) Column (c) No.
(42) Incomes of Libertity militax is	THEREILE.
(b) Identity	(c) Column (d) Now
(44) By Commutative property of	of addition for any two matrices
A and B.	
(a) AB = BA	(b) $A + B = B + A$
(c) A - B = B - A	(d) $A^{-1}B = B^{-1}A$
(45) By Associative property v	v.r to addition for any times
matrices A. B and C.	
(a) $(A + B) + C = A + (B + C)$	C) (b) A (BC) = (AB) C
(c) $A + B = B + C$	$(\mathbf{d}) \mathbf{A} + \mathbf{C} = \mathbf{B} + \mathbf{C}$

Chapter 4 # Matrices and Deter	minants 345
(46) Additive identity of every	matrix is matrix.
(a) Null (b) Scalar	(c) Column (d) KoW
A7) If Order of matrix A is m	\times n and order of matrix B is $n \times p$
then order of AB is	
(a) m x in (b) n x n	(c) $m \times p$ (d) $p \times m$
48) The transpose of a rec	tangular matrix is a
matrix.	
(a) Square	(b) Column
(c) Row	(d) Rectangular
(9) Matrices are represented by	by
(a) Natural numbers	(b) Real numbers
(a) Natural numbers (c) Small letters	(d) Capital letters
so. If order of matrix A is m	x n then the order of mau ix A is
Two matrices are said to	be conformable for the addition if
they have the same	·•
(a) Panl	(b) Order
(c) Both of above	(d) None of these
(c) Biggs of the set of (c) (AA')' =	
(a) AA (b) A'A ⁻¹	(c) AA^{t} (d) AA^{-t}
[3 0 0]	•
0 3 0	is a matrix.
3) The maurix 0 3 3	
(a) Diagonal (b) Scalar	(c) Unit (d) Null
(a) Diagonal (o)	ingular matrix then the value of λ
54) if matrix 2 4 is a s	ingular mairix then the value of A
is (a) 2/3 (b) 4/3	(c) $3/2$ (d) $-3/2$ $-\cos\theta$ $\sin\theta$ $\sin\theta$ $\cos\theta$ $\sin\theta$ is
(a) 23 (b) 43	_Cose \ Sinθ Cosθ \.
55) The product of	$Sin\theta$ $-Cos\theta$ $Sin\theta$
33) The product of L Cost	3 Sine] [Cose and]
$(a)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(b) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(a) [0 1]	2 • • • • • • • • • • • • • • • • • • •
$(c)\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	(d) None of these
(c) [1 0]	
(56) matrices and	e both upper triangular and lowe
(56) matrices are triangular.	
(a) Square	(b) Diagonal
(c) Null	(d) Non of these
(-)	

(57) A Square matrix A is said to be _

(c) Column (d) Square

(d) A'

(d) I

(d) 0

(c) A²

matrix.

(b) Non-Singular

(d) Identity

(c) A-1

(c) $(BA)^{-1}$

(c) A

(b) Row

(b) -A

(66) The additive inverse of a matrix A is

(67) If $|A| \neq 0$ then A is called _

(a) Null

(a) Singular

(c) Zero $(68) (A^{-1})^{1} =$ ___

(a) $A^{-1}B^{-1}$

(a) I (69) $(AB)^{-1} =$

 $(70) (A^{-1})^{-1} =$

(a) I

(a) A

(71)	$(A^{-1})^{-1}A^{-1} = $			
•	(a) A^{-1}	(b) (A ⁻¹) ⁻¹	(c) A	(d) I
(72)	$(AB)^{t} = $	() ()	(c) A	(u) 1
(12)	(a) $A + B$	(b) A' B'	(c) B' A'	(d) AB
(72)	$A \times A^{-1} = \underline{\hspace{1cm}}$		(c) B 11	(6) /12
(13)	(a) A		(b) A ⁻¹	
	(c) I		(d) None of	these
(71)	The inverse of	f a matrix does i	not exist if the	determinant of
(14)	the matrix is _			
	(a) 0	(b) 1	(c) -1	(d) 2
(75)	Generally in n	natrix A × B	$\mathbf{B} \times \mathbf{A}$	
	(a) =	(b) <	(c) >	(d) ≠
(76)	The	matrix is calle	d additive ide	ntity.
(70)	(a) Null	_ matrix is calle (b) Row	(c) Column	(d) Scalar
(77)	By distributive	e property of m	ultiplication o	f matrices over
(,,,	addition A (B	+ C) =		
	(a) $AB + BC$		(b) $AB - BC$	
	(c) AB + AC		(d) None of	these
(78)	If two matrice	s A and B are	such that thei	r sum A + B is
(, -,	the Null matri	x then A and B	are called	inverse of
	each other.			
	(a) Multiplica		(b) Additive	
	(c) Identity		(d) None of	these
(79)	By distributive	e property of m	ultiplication of	of matrices over
	subtraction A	$(B - C) = \underline{\hspace{1cm}}$		C(d) AB + BC
	(a) AB – BC	(b) AB – AC	(p) AB + Ac	$C(\mathbf{d}) \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{C}$
(80)	If AI =	·	1	
	(a) I		(b) A ⁻¹	.b
	(c) A		(d) None of	mese A
(81)	If $AB = I$ then	B is called the	inve	rse of A.
	(a) Additive	(b)	(b) Multipli	these
	(c) Both (a) &	: (b)	(a) None of	multiplication A
(82)	By Associativ	e property of m	atrices w.i to	multiplication A
	(BC) =	(b) (AC) B	(a) ARC	(d) CBA
	(a) (AB) C	(b) (AC) B	(c) ABC	inlication if the
(83)	Two matrices	are conforma	ible for thus	iplication if the
	number of co	dumns in the	Her manny -	to the
	number of rov	vs in the second	(b) Equal	
	(a) Not equal		(d) None of	these
	(c) less than		(u) Hone of	

Chapter 4 # Matrices and Determinants

(0.4)	76	with the marks have
(84)	If A, B, C are three matri	ces such that AB = C, then
	(a) $B = \frac{C}{A}$ (b) $B = C$	A^{-1} (c) $B = A^{-1}C(d) B = C^{-1}A$
(85)	If $AB = BA = I$ then	
	(a) A and B are equal to	each other
	(b) A and B are multiplic	ative inverse of each other
	(c) A and B are both sing	gular
	(d) A and B are additive	inverse of each other
(86)	Determinant of identity n	natrix is
	(a) 0	(b) I
	(c) -1	(d) None of these
(87)	The Cofactor of an eleme	ent aij denoted by Aij is
	(a) (-1) ^{ij} M _{ij}	(b) $(-1)^{i+j} M_{ij}$
	(c) $(-1)^{i-j} M_{ij}$	(d) $(1)^{i+j} M_{ii}$
	Γ2 -3	0 7
(00)	Order of matrix $\begin{bmatrix} 2 & -3 \\ 1 & 2 \\ 3 & -1 \\ 0 & 1 \end{bmatrix}$	4 .
(88)	Order of matrix 3 -1	5 15
	Loi	2 📗
	(a) 3×3 (b) 3×4	(c) 4×3 (d) 4×4
(89)	Additive identity of matri	$x\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$ is
	[-2 -3]	
	(a) -1 1	$(b)\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
	(a) $\begin{bmatrix} -2 & -3 \\ -1 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	
	(c) 0 0	$ (\mathbf{d}) \begin{bmatrix} -1 & -3 \\ -1 & 2 \end{bmatrix} $
(90)	Multiplicative identity in	matriana ia
()	(a) I (b) O	$\begin{array}{ccc} \text{(c) -I} & \text{(d) } A^{-1} \end{array}$
(91).	by Associative property w	
()	(a) $A + (B + C) = (A + B)$	
	(b) A (BC) = (AB) C	•
	(c) AB = BA	*
	(d) $A(B+C) = AB + AC$	
		calar multiplication is
	(a) (cd) A = c (dA)	(b) dA = Ad
	(c) A + B = B + A	$(\mathbf{d}) \mathbf{A} + \mathbf{O} = \mathbf{O} + \mathbf{A}$
		o Scalar multiplication
	(a) c (A + B) = cA + cB	(b) $A + B = B + A$
	(c) $d(AB) = (AB) d$	(d) $A(B+C) = AB + AC$
		\-, · · \- · · · /- · · · · /- · · · · · · · · ·

(94) Distributive property w.r to Scalar multiplication _____

```
(a) (c + d) A = cA + dA
                                                        (b) C(AB) = (AB) C
        (c) A(B + C) = (A + B)C
                                                        (d) A = B
(95) Element formed by deleting ith, row jth column of matrix
         A is called _____.
         (a) Cofactor
                                                         (b) Minor
         (c) determinant
                                                         (d) None of these
(96) If A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix} then M_{11} = 0
                                                         (c) 1
                                                                              (d) -5
(97) If A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 2 \end{bmatrix} then M_{21} = \underline{\qquad}
         (a) -1
         (a) \begin{vmatrix} d & e \\ g & f \end{vmatrix} (b) \begin{vmatrix} a & b \\ d & e \end{vmatrix} (c) \begin{vmatrix} b & c \\ e & f \end{vmatrix} (d) \begin{vmatrix} e & f \\ h & i \end{vmatrix}
(99) (KA)<sup>t</sup> = _____ where K is Scalar
(a) KA<sup>t</sup> (b) K<sup>t</sup> A<sup>t</sup> (c) (AK)<sup>t</sup> (d) A<sup>t</sup> K<sup>t</sup>
 (101) If A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} then A^2 = \underline{\hspace{1cm}} where i = \sqrt{-1}
          (a) - 1
                                                             (d) None of these
 (102) For matrices A and B in general (A + B)<sup>2</sup>
           2AB + B^2.
                                (b) > (c) <
                                                                                   (d) ≠
           (a) =
```

Chapter 4 # Matrices and Determinants

```
350
                                                      Mathematics XI
    (103) For matrices A and B in general (A - B)<sup>2</sup>
          2AB + B^2
          (a) =
                                                          (d) <
                          (b) ≠
                                           (c) >
   (104) For matrices and Bin General (A + B) (A - B)
         A^2 - B^2.
         (a) ≠
                          (b) =
                                           (c) >
   (105) Y = [y_{ij}]_{(4,2)} then matrix "Y" in tabular form.
               y11
                     y<sub>12</sub>
                                           (b)  \begin{bmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{bmatrix} 
                       y22
               y<sub>21</sub>
               y31
                       Y32
               . Y41
                       Y42
                                           (d) None of these
   (106) If Order of matrix "A" is m x n then order of (A') is
                         (b) m \times n
                                           (c) m \times m (d) n \times n
         (a) n \times m
  (107) L is the
                             matrix.
                                           (b) Identity
         (a) Rectangular
                                           (d) None of these
         (c) Diagonal
  (108) If order of A is m \times n and order of B is \ell \times K then for BA
        matrix_
                                           (c) n = \ell
                         (b) m = K
 (109) Two matrices A and B can be added if order of A is
               to order of B.
                                           (b) Equal
        (a) Unequal
                                           (d) None of these
       (c) less than
 (110) An equation ax + by = K where a \neq 0, b \neq 0, K \neq 0 is called
                                           (b) Homogeneous
       (a) Non homogeneous
                                           (d) Trivial
       (c) Non Trivial
(111) The matrix AA' is called
                                           (b) Symmetric
      (a) Hermitian
                                           (d) None of these
      (c) Skew Symmetric
(112) We solved the system of non-homogenous linear equations
      by using
                                          (b) Cramer's Rule
      (a) matrix method
      (c) Echelon form and Reduced echelon form
      (d) (a), (b) and (c)
```

```
Chapter 4 # Matrices and Determinants
(113) Trivial Solution of homogenous linear equation is
     (a) (1,0,0)
                   (b) (0,1,0)
                                    (c) (0,0,1) (d) (0,0,0)
(114) An equation of the form ax + by = K is homogenous linear
      equation if _
      (a) a = 0, b = 0, K = 1
                                     (b) a = 0, b = 1, K = 2
      (c) a \neq 0, b \neq 0, K = 1
                                     (d) a \neq 0, b \neq 0, K = 0
(115) Minimum number of equations for any system of equations.
      (a) 2
                     (b) 3
                                                   (d) 10
(116)(A^2)^{-1} =
      (a) (A^{-1})^2
                                      (b) A<sup>-1</sup>
      (c) A'
                                      (d) None of these
 (117) If in any matrix the elements of rows and columns are
                                             __ matrix.
       equal then such matrix is called _
       (a) Equal (b) Symmetrix (c) Square (d) Diagonal
 (118) If |A| = 5 then A |A| A^{-1} = ____
                      (b) 5I
 (119) If |A| = 2 then |A| \cdot \overline{|A'|} I = -
                                                      (d) A<sup>-1</sup>
                                        (c) A
  (120) A constant number is associated with a square matrix is
                        ____ of the matrix.
        called the _
                                         (b) Matrix
        (a) Determinant
                                         (d) Column
        (c) Row
                      = 0 the value of x is
                                          (c) 12
   (122) The value of the determinant \begin{vmatrix} -7 & 6 \\ -4 & 3 \end{vmatrix} is
                                          (c) 1
   (123) The value of a determinant is unaltered by changing it's
         rows and columns i - e for any matrix A i - e | A | =
                                            (b) (|A|)
          (a) A
                                            (d) None of these
          (c) | A' |
    (124) The interchange of any two rows or of any two Columns of
                                               ___ of it's determinant
           a matrix A changes the ___
           without altering it's numerical value.
                                             (b) Sign
           (a) Value
                                             (d) None of these
           (c) Simplify
```

```
(125) If two rows of a matrix A are identical then | A | =
      (a) 1
                                       (b) -1
      (c) 0
                                       (d) None of these
(126) If all the elements of a row of a square matrix A are zero
      then | A | =_
      (a) - 1
                                       (b) 1
      (c) 0
                                       (d) None of these
(127) If two columns of a matrix A are identical then | A | =
       (a) 0
       (c) -1
                                       (d) None of these
(128) If the entries of a row (or a column) in a square matrix A
       are multiplied by a number KER then the determinant of
       the resulting matrix is _
       (a) | KA |
                                       (b) K | A |
       (c) K A
                                       (d) None of these
(129) If each entry of a row (or a column) of a square matrix
       consists of two terms, then it's determinant can be written
       as the sum of ______ determinants.
       (a) Three
                                       (b) Two
                                       (d) None of these
       (c) One
(130) The inverse of a matrix does not exist if the determinant of
      the matrix is_
                                                      (d) 10000
       (a) ()
                      (b) 1
                                       (c) -1
(131) If to each entry of a row (or a column) of a square matrix A
      is added a non-zero multiple of the corresponding entry of
      another row (or column) then the determinant of the
      resulting matrix is
                                       (b) | A' |
      (a) A
                                       (d) None of these
      (c) | A |
                                      2 then the value of | A | =
(132)Evaluate | A | =
                                                      (d) 100
                      (b) - 59
                                       (c) 0
                  a11 a12 a13
(133) If |A| = |a_{21} a_{22} a_{23}| then the value of determinant by
                | a<sub>31</sub> a<sub>32</sub> a<sub>33</sub> |
      arrow method can be find by | A | = _
      (a) a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{31} a_{22} a_{13} - a_{32} a_{23}
          a11 - a33 a21 a12
```

```
Chapter 4 # Matrices and Determinants
      (b) a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{31} a_{22} a_{13} - a_{32} a_{23}
      (c) a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{31} a_{22} a_{13} - a_{33} a_{21}
           a12
      (d) None of these
(134) Determinant of identity matrix is
                       (b) 0
                                         (c) 1
                                                        (d) 50
(135) Determinant of Null matrix is _
      (a) 1 ·
                        (b) -1
                                         (c) 3
                                                        (d)0
                        \begin{vmatrix} 2 \\ 4 \end{vmatrix} then 5 |A| =
       (c)
(137) Solution of non-homogeneous system of linear equation
       can be find through matrices _
       (a) AB = X
                                          (b) X = A^{-1} B
       (c) A = B^{-1} X
                                           (d) None of these
 (138) The Solution Set of the equations by 3x + 5y = 24; 4x - 7y
       = -50 using help of matrices is
        (a) x = 0, y = 0
                                           (b) x = 0, y = 1
        (c) x = -2, y = 6
                                           (d) x = 1, y = 1
 (139) The given system of equations.
        x_1 + 3x_2 + 2x_3 = 0
        2x_1 - 4x_2 + x_3 = 0
        3x_1 + 2x_2 - x_3 = 0
        is called _____ system.
                                            (b) Homogeneous
        (a) Non-Homogenous
                                             (d) None of these
        (c) quadratic
  (140) Solve for x =
            ll a b
                        b
                 c
                                              (b) x = c, d
         (a) x = 0, 1
                                              (d) None of these
         (c) x = a, b
```

(141) The value of the determinant
1 1 1
$\begin{bmatrix} 1 & 1 & 1 \\ \omega & \omega^2 & 1 \\ \omega^2 & \omega & 1 \end{bmatrix} = - \frac{1}{2}$
$ \omega^2 - \omega = 1$
$(a) 3 (a)^2 - (b) 3 (a)^2 + (b) (c) 3(a)^2 (d) 3$
(142) The Solution Set of given System of linear equations.
x + 2y + Z = 8
2x - y + Z = 3
v + v = 7 = 0
busine with the beln of matrices is
$(a) = 1 \forall = 2 Z = 3$ (b) $X = 0, y = 0, z = 0$
(a) $y = 1$ $y = -2$ $Z = 0$ (d) None of these
(143) The Solution Set of given System of linear equations.
Y + Z - t = 0
2y + t = 5
2y - 7 - 3t + 2 = 0
by using with the help of matrices is
(a) $y = 0$, $Z = 0$, $t = 0$ (b) Impossible
(c) $y = 1, Z = 1, t = 1$ (d) None of these
5 0 9
(144) Find the value of λ such that $\begin{vmatrix} 8 & \lambda & -8 \end{vmatrix}$ is Singular
(c) $y = 1, Z = 1, t = 1$ (d) Note that $\begin{bmatrix} 5 & 0 & 9 \\ 8 & \lambda & -8 \\ 2 & 2 & 4 \end{bmatrix}$ is Singular
matrix.
(a) 112 (b) 800 (c) 100 (d) -112
145) The evaluation of determinants with the help of minors and
cofactors is known as expansion.
(a) Cramer's (b) Lagrange (c) Newton (d) Laplacian
146) In the matrix $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ what is the Cofactor of f?
146) In the matrix $A = d e f $ what is the Cofactor of f?
[g h i]
(a) $ah - bg$ (b) $ah + bg$ (c) ah (d) $bg - ah$
(a) $ah - bg$ (b) $ah + bg$ (c) ah (d) $bg - ah$ 147) In the matrix $A = \begin{bmatrix} 2 & 4 & 5 \\ 6 & 7 & 0 \\ 9 & 2 & 3 \end{bmatrix}$ What is the Cofactor of $7 = \frac{1}{2}$
147) In the matrix $A = \begin{bmatrix} 6 & 7 & 0 \end{bmatrix}$ What is the Cofactor of $7 = \begin{bmatrix} 6 & 7 & 0 \end{bmatrix}$
L9 2 3 J

(a) -39 (b) 39 (c) 50 (d) 40

```
(148) What is the minor and Cofactor of 4 in matrix
                                            (a) \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & -1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} and \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix}
                                                                                                                                                                                                                            (d) None of these
    (149) The inverse of \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} is _____.
                                                (a) \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} (b) \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} (c) \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} (d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} 
    (150) If I_3 is identity matrix of order 3 then (I_3)^{-1} = ____
                                               (a) 2I_3
                                                                                                                                                                                                                                                                                     (b) 3I<sub>3</sub>
                                                 (c) I<sub>3</sub>
                                                                                                                                                                                                                                                                                     (d) None of these
    (151) If w is an imaginary Cube root of Unit, then the value of
                                                                                                                                               ω is
                                                                                                                                          ω
                                              (a) 1
                                                                                                                                                               (b) ω
                                                                                                                                                                                                                                                                                     (c) \omega^2
                                                                                                                                                                                                                                                                                                                                                                                             (d) 0
 (152) The value of the determinant
                                                                                                                                                                                                                                                                                                              1 \omega^2 is _
                                              (a) 2
                                                                                                                                                               (b) 3
                                                                                                                                                                                                                                                                                      (c) 0
                                                                                                                                                                                                                                                                                                                                                                                              (d) 1
 (153) The value of the determinant
                                            (a) 2a^2(a + x)
                                                                                                                                                                                                                                                                                        (b) 2a^2(a-x)
                                            (c) 0
(154) The value of the determinant
                                            (a) 2
                                                                                                                                                                (b) 1
                                                                                                                                                                                                                                                                                        (c) 0
                                                                                                                                                                                                                                                                                                                                                                                              (d)3
```

		1 1 0	7
(155) The value	of the determin	ant 1 0 1	is
		ant 1 1 0 1 0 1 0 1 1	
(a) 3	(b) 1	(c) -1	(d) -2
		$\begin{vmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$ (c) -1	
(156)The value	of determinant	-1 -1 0	ic
() - till Tilliag	or accommand	-1 0 1	
(a) 3	(EV.)	(a) 1 '	(4) 0
(4) 3	(0) 1	(c) -1	(a) -2
(153)7	1 0 0.		
(157) Evaluate	ω ω 1	=	
4 5 4	ω^2 1 ω		
(a) 3	(b) 0	$\begin{vmatrix} -1 & 0 & 1 \\ (c) & -1 & \\ $	(d) 5
	1 1	1 .	1, 15 × 1
(158)Evaluate	a b	c =	
	b+c c+a	a + b	 ·
()	(0) -1	101.7	(4))
(159) If all the e	lements of a col	umn of Square	matrix A are zero
then A =	=	dian of Square	matrix A are zero
(a) 1	(b) -1	(a) 0	
(160) If to each	element of	(c) 2	(d) 0
Constant n	nultiple of the	row of a matri	(d)0 ix A is added a
			IX A is added a ement of another
(a) Pemai	he value of A	=	
(a) Remai	ns unaitered	(b) Increas	es
(c) Decrea	ises	(d) Negativ	/e
(161) If $A = \begin{bmatrix} a \\ \end{bmatrix}$	b];	· SanaBatt	We $A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} $ is
Lc	d] is a Squar	e matrix then	$A = \begin{vmatrix} a & b \end{vmatrix}$
		ir A	, c q p
(W/ AUIUIII	I		_
(c) Multip	licative Inverse	(b) Determ	inant
(162) 4 [2]	37	(b) Determ (d) Additiv	e inverse
$(162)A = \begin{bmatrix} 2\\4 \end{bmatrix}$ (a) Rectandary	is an exampl	e of	
(a) Rectan	onje-	m m	atrix.
	E WIAI	4	
	ngular	(d) Singula	\ _
(163)	s a C:	(-) Stilling	e value of P is
ra bl	a singular 1	matrix then the	e value of D
-		· ·	value of P is
(a) -6	(b) 5		
	(0) 3	(c) 23	(d) 6
		,	(4) 0

(1CA) If the and	
(164) If the value of the determ	inant of a matrix A is not zero
then the matrix A is calle	ed matrix.
(a) 14011-Singular	(b) Singular
(c) Diagonal	(d) Column
(165) If $A \times A^{-1} = I$ then A^{-1} called	ed of matrix A
(a) Additive inverse	(b) Multiplicative inverse
(c) Adjoint	(d) Transpose
(166) The value of a determinar and columns.	nt is unaltered by rows
(a) Adding (b) Subtract	ing (c) Changing(d) Dividing
(167) If two rows of a matrix A a	re similar then $ A = $
(a) 3 (b) 4	(c) 1 (d) 0
(168) If all the elements of a row	
then A =	
(a) 1 (b) 0	(c) -1 (d) 2
(169) The value of a determinant	by changing it's rows
and columns for any matrix	A.
(a) Increases	(b) Decreases
(c) Remains Same	
(170) The interchange of any two	▲
a matrix A of the de	
(a) Increases the value	(b) Decreases the value
(c) Changes the Sign	(d) Becomes Negative
(171) If A is a square matrix, Fine	$d Adj (Adj A) = \underline{}$
(a) $ A ^2$ (b) A^2	(c) O (d) A A
(172) If A is a square matrix find	$A. (Adj A) = \underline{\hspace{1cm}}$
(a) $ A ^2$ (b) A^2	(c) A I ₃ (d) A A.
(173) If A is a square matrix find	Adj A =
(a) A^2 (b) $ A ^2$	(c) A I ₃ (d) A A.
(174) If A and B are square matri	ces then Adj (AB) =
(a) (Adj B) . (Adj A)	(d) None of these
(6) (A)].	

	2.9.			Laup	ACI				40.00
	d	2.	а	3.	b	4.	a	5.	b
6	Ta	17.	b	3.	- c	9,	C	10.	d
11	1	十三		+13.	b	14.	C	15.	d

16.	а	17.	b	18.	d	19.	b	20.	C
21.	$\frac{a}{d}$	22.	a	23.	a	24.	d	25.	C
26.	b	27.	d	28.	a	29.	b	30.	a
31.	a	32.	C	33.	b	34.	С	35.	d
36.	$\frac{a}{d}$	37.	a	38.	d	39.	b	40.	C
41.	$\frac{a}{c}$	42.	\overline{b}	43.	b	44.	b	45.	a
46.	a	47.	c	48.	d	49.	d	50.	d
51.	$\frac{a}{b}$	52.	С	53.	b	54.	C.	55.	а
56.	$\frac{b}{b}$	57.	a	58.	b	59.	c	60.	d
61.	$\frac{b}{a}$	62.	b	63.	С	64.	b	65.	d
66.	$\frac{a}{b}$	67.	b	68.	b	69.	b	70.	С
71.	d	72.	c	73.	c	74.	а	75.	d
76.	a	77.	<i>c</i> .	78.	b	79.	b	80.	С
81.	b	82.	а	83.	b	84.	c	85.	b
86.	b	87.	b	88.	С	89.	a	90.	a
91.	b	92.	а	93.	а	94.	а	95.	b
96.	а	97.	b	98.	b	99.	a	100.	b
101.	C	102.	d	103.	b	104.	а	105.	а
106.	b	107.	b	108.	b	109.	b	110.	а
111.	b	112.	d	113.	d	114.	d	115.	а
116.	а	117.	b	118.	b	119.	а	120.	а
121.	a	122.	d	123.	c	124.	b	125.	С
126.	С	127.	а	128.	b	129.	b	130.	а
131.	С	132.	b	133.	а	134.	c	135.	d
136.	d	137.	·b	138.	C	139.	b .	140.	C
141.	a	142.	a	143.	b	144.	d	145.	d
146.	d	147.	d	148.	а	149,	d	150.	C
151.	d	152.	b	153.	а	154.	a	155.	d
156.	C	157.	b	158.	а	159.	d	160.	a
161.	b	162.	d	163.	d	164.	a	165.	b
166.	C	167.	d	168.	b	169.	С	170.	c
171.	d	172.	C	173.	<u>b</u>	174.	a]	