Frekvensbeskrivning (Kapitel 4.1-2)

Funktioner kan via Fouriertransformen beskrivas med hjälp av sinus- och cosinusfunktioner genom att funktionens frekvensinnehåll summeras (eller integreras). Det är därför intressant att studera hur ett system påverkar dessa olika frekvenser.

För ett linjärt, tidsinvariant system G(s) gäller att:

$$u(t) = A\sin(\omega_0 t) \implies y(t) = A|G(i\omega)|\sin(\omega t + \phi)$$

där ϕ är arg $G(i\omega_0)$. Vi har alltså att frekvensen för utsignalen är densamma som för insignalen men att amplituden och fasförskjutningen ändras.

Bodediagram (Kapitel 4.3, 5.1-5.3)

Bodediagram är likt Nyquistkurvan ett sätt att visualisera ett systems frekvenssvar. Istället för att representera $G(i\omega)$ i det komplexa talplanet delar vi här upp frekvenssvaret i två diagram, ett för beloppet (beloppskurvan) och ett för argumentet (faskurvan). Bodediagram har fördelen att de

- Är relativt lätta att läsa av (jämför t.ex. med Nyquistdiagram)
- Logskalan gör att de enkelt kan seriekopplas

Steg för att skissa ett Bodediagram

1. Faktorisera G(s)

Skriv om överföringsfunktionen som:

$$G(s) = \frac{K(1 + \frac{s}{z_1})(1 + \frac{s}{z_2})\dots(1 + \frac{s}{z_m})}{s^p(1 + \frac{s}{p_1})(1 + \frac{s}{p_2})\dots(1 + \frac{s}{p_n})}$$

2. Hög- och lågfrekvensasymptoter

$$G_{lf}(i\omega) = \lim_{\omega \to 0} G(i\omega)$$

$$G_{lf}(i\omega) = \lim_{\omega \to 0} G(i\omega)$$
$$G_{hf}(i\omega) = \lim_{\omega \to \infty} G(i\omega)$$

3. Brytpunkter

Brytpunkterna är där $\omega = z_1, \dots, z_m, p_1, \dots, p_n$. Poler motsvarar -1dekad, nollställen motsvarar +1 dekad.

4. Förankra beloppskurvan

För att veta hur vi ska kunna skissa beloppskurvan måste vi utvärdera den vid en punkt.

5. Utvärdera argument i några punkted

För att veta hur vi ska kunna skissa argumentskurvan måste vi utvärdera den vid ett par punkter.

Intressanta storheter hos ett Bodediagram

ω_c	Skärfrekvens	Den frekvens där beloppskurvan skär 1 (=0 dB)
ω_p	Fasskärfrekvens	Den frekvens där faskurvan skär -180°
$\dot{\phi_m}$	Fasmarginal	Faskurvans avstånd till -180° vid $\omega = \omega_c$
A_m	Amplitudmarginal	Beloppkurvans avstånd till 1 vid $\omega = \omega_p$
e_0	Statiskt fel	$(1+G_o(0))^{-1}$

Tabell 1: Storheter hos öppna systemets Bodediagram

ω_B	Bandbredd	Den frekvens där beloppet blir mindre än $1/\sqrt{2}$ (=3 dB)
ω_r	Resonansfrekvens	Den frekvens där resonanstoppen förekommer
M_p	Resonanstopphöjd	Maxamplitud för resonanstopp

Tabell 2: Storheter hos slutna systemets Bodediagram

Logaritmisk skala

Beloppskurvan anges ofta (bland annat omn vi kollar på Bodediagram i Matlab) i dB:

$$1 dB = 20 \log_{10} |G(i\omega)|$$

Multiplikation:

$$\log |G_1(i\omega)G_2(i\omega)| = \log |G_1(i\omega)| + \log |G_2(i\omega)|$$

Division:

$$\log \frac{|G_1(i\omega)|}{|G_2(i\omega)|} = \log |G_1(i\omega)| - \log |G_2(i\omega)|$$

Potens:

$$\log|i\omega|^p = p\log\omega$$

$\ddot{\text{O}}$ vningsuppgifter (4.1, 4.2, 5.8a, 4.4, 5.2ab)

4.1

A mercury thermometer can be described with high accuracy as a first order linear time invariant dynamic system. The input is the real temperature and the output is the thermometer reading. In order to decide the transfer function in a thermometer it is placed in liquid where the temperature is varied as a sinusoid. The obtained result is shown in Figure 4.1a. Find the transfer function of the thermometer

Vi börjar med att avläsa data från figuren.

- Både in- och utsignal har frekvensen $2\pi/(0.314 \cdot 60) = 2\pi/18.84 \text{ rad/s}.$
- \bullet Insignalen har amplitud 2, och utsignalen har amplitud 0.9. Skalningen är 0.9/2=0.45
- Fasskillnaden är 0.056 min, vilket ger en fasförskjutning på $-2\pi \frac{0.056}{0.314}$

En första orningens system har en överföringsfunktion på formen:

$$G(s) = \frac{a}{b+s} \implies$$

Skalning: $|G(i\omega)| = \frac{a}{|b+i\omega|} = \frac{a}{\sqrt{b^2+\omega^2}}$

Fasförskjutning: $\arg G(i\omega) = \arg(a) - \arg(b + i\omega) = 0 - \arctan(\frac{\omega}{b})$

Om detta sätts samman med informationen utläst från figuren fås:

$$-\arctan(\frac{2\pi/18.84}{b}) = -2\pi \frac{0.056}{0.314} \implies b = \frac{2\pi \cdot 0.056}{\tan(2\pi \frac{0.056}{0.314})} \approx 0.16$$

$$\frac{a}{\sqrt{b^2 + (2\pi/18.84)^2}} = 0.45 \implies a = 0.45 \cdot \sqrt{0.16^2 + (2\pi/18.84)^2} \approx 0.16$$

Detta ger att överföringsfunktionen blir:

$$G(s) = \frac{0.16}{0.16 + s}$$

4.2a) Skissa Bodediagram

Från differentialekvationen för båten får följande överföringsfunktion:

$$T_1 \dot{\omega} = -\omega + K_1 \delta \implies T_1 \ddot{\psi} = -\dot{\psi} + K_1 \delta \implies G_{bat}(s) = \frac{K_1}{s(T_1 s + 1)} = \frac{0.1}{s(1 + s/0.01)}$$

Vi är även givna de två andra överföringsfunktionerna:

$$F(s) = K \frac{1 + s/0.02}{1 + s/0.05}, \quad G_r(s) = \frac{1}{1 + s/0.1}$$

Vi kan nu skriva det fullständiga systemet som

$$G_o(s) = K \frac{0.1(1 + s/0.02)}{s(1 + s/0.01)(1 + s/0.1)(1 + s/0.05)}$$

2) Hög- och lågfrekvensasymptoter

$$G_{lf}(i\omega) = \lim_{\omega \to 0} G(i\omega) \approx \frac{0.05}{i\omega}, \qquad G_{hf}(i\omega) = \lim_{\omega \to \infty} G(i\omega) \approx \frac{0.000125}{(i\omega)^3}$$

Vi får alltså att

$$|G_{lf}(s)| = \frac{0.05}{\omega},$$
 $\arg(G_{lf}(s)) = \arg\left(\frac{1}{i}\right) = -90^{\circ}$
 $|G_{hf}(s)| = \frac{0.000125}{\omega^3},$ $\arg(G_{hf}(s)) = \arg\left(\frac{1}{i^3}\right) = -270^{\circ}$

3) Brytpunkter

Vi får ut brytpunktsschemat i Tabell 3.

$\mathbf{Brytpunkt}$	0	0.01	0.02	0.05	0.1
Tecken	-	-	+	-	-
Lutning	-1	-2	-1	-2	-3

Tabell 3: Brytpunkterna och lutningen efter dem hos systemet i uppgift 4.2)

4) Förankra beloppkurvan

För att kunna börja skissa upp grafen behöver vi hitta värdet i en punkt.

$$|G(0.005i)| = 10$$

4) Beräkna punkter i faskurvan

Frekvens	0.005	0.01	0.02	0.04	0.08
Fas	-111°	-125°	-142°	-163°	-194°

Tabell 4: Argumentet utvärderat i några punkter för uppgift 4.2)

4.2b) Vilket K-värde ger självsvängning?

Självsvängning sker på stabilitetsgränsen, d.v.s. då $A_m=1$ och $\phi_m=0$. En ändring av den proportionella delen kommer endast påverka beloppkurvan. Vi måste alltså höja kurvan så att $\omega_c=\omega_p.0$

Från bilden ser vi att $\omega_p = 0.06$ rad/s. Amplitudmarginalen är 0.24.

$$|0.5G(i\omega_p)| = 0.24 \implies |G(i\omega_p)| = 0.48 \implies K = \frac{1}{0.48} = 2.1$$

Perioden är $2\pi/\text{frekvensen}$ som vi självsvänger vid: $T = \frac{2\pi}{0.06} \approx 105 \text{ s.}$

5.8a)

Sen innan vet vi att en tidsförssföjning $e^{-i\omega T}$ har beloppet 1 och argumentet $-\omega T$. Det är alltså endast faskurvan som påverkas.

Från bilden fås att:

$$\omega_c = 1 \text{ [rad/s]}$$
 $\phi_m = 40^{\circ} = 0.698 \text{ [rad]}$

Vi kan alltså sänka fasen med totalt 0.698 wid $\omega = 1$ [rad/s].

$$0.698 - 1 \cdot T > 0$$

Svar: T < 0.698 s.

4.4)

Bilden visar fyra stegsvar som ska paras ihop med fyra beloppskurvor.

Vi börjar med att para ihop stegsvar B med bodediagram C, och motiverar med att slutvärdet i stegsvaret och den statiska förstärkningen i beloppskurvan är större än 1.

Stegsvar A och C har liknande överslängar men C har en lägre frekvens. Bodediagram B och D har ungefär samma resonanstopp, men D har en lägre resonansfrekvens. Från detta kan vi para ihop stegsvar A med bodediagram B, och C med D

5.2a) Rita Bode-diagram

Från ritad bild fås att:

$$\omega_c \approx 0.079 \text{ [rad/s]}$$

$$\phi_m \approx 180 - 92 = 88^{\circ}$$

$$A_m \approx 1/0.2 = 5$$

5.2b) Finn högsta möjliga skärfrekvens vid P-regulator om fasmarginal är minst 50

En proportionell regulator ändrar ej faskurvan, endast beloppkurvan. Från figur fås att faskurvan korsar - 130° vid frekvensen 0.15 rad/s. Detta ger:

$$K = \frac{1}{|G(0.15i)|} = \frac{1}{0.525} = 1.9$$