VERSUCH 103

Biegung elastischer Stäbe

Tabea Hacheney tabea.hacheney@tu-dortmund.de

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 21.12.2021 Abgabe: 11.01.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzi	ing	3		
2	Theorie		3		
3	Durchführung 3.1 Einseitige Einspannung 3.2 Beidseitige Einspannung				
4	4.1. 4.2 Bes 4.2. 4.2.	chenträgheitsmoment und Dichte 1 Dichte	5 6 6 8 10 10		
5	Diskussio	on	15		
6 Originale Messwerte			16		
Lit	iteratur 18				

1 Zielsetzung

In diesem Versuch soll der Elastizitätsmodul durch Biegen von Stäben unterschiedlicher Metalle und Legierungen bestimmt werden.

2 Theorie

Der Elastizitätsmodul E ist eine materialabhängige Konstante, die die Gestaltsänderung eines Körpers unter einer Normalpannung σ beschreibt. Durch die aus der Normalpannung entstehende Längenänderung ΔL lässt sich mit dem Hookschen Gesetz der Zusammenhang

$$\sigma = E \cdot \frac{\Delta L}{L} \tag{1}$$

aufstellen. Bei der Biegungen von Stäben wirkt ein äußeres Drehmoment, das die oberen Schichten des Stabs dehnt und die unteren Schichten staucht. In der Mitte des Stabs befindet sich die so genannte neutrale Faser, die aufgrund des Kräftegleichgewichts in ihrer Länge unverändert bleibt. Die Stab kann sich so weit biegen bis das innere und das äußere Drehmoment gleich ist. Die Drehmomente sind durch

$$M_{\rm F} = F(L-x)$$

$$M_{\sigma} = \int_{O} y \sigma(y) \mathrm{dq}$$

gegeben. Q ist dabei der Querschnitt des Stabs und y der Abstand des Flächenelements de zur neutralen Faser. Durch längere mathematische Vorüberlegungen ergibt sich für einen einseitig eingespannten Stab für die Durchbiegung

$$D(x) = \frac{F}{2EI} \cdot \left(Lx^2 - \frac{x^3}{3}\right). \tag{2}$$

Dabei ist x die Entfernung des Messpunktes zum Einspannpunkt, I das Flächenträgheitsmoment und L die Länge des Stabs. Wenn der Stab beidseitig eingespannt ist und die Kraft in der Mitte des Stabs wirkt, ergibt sich für $0 \le x \le L/2$

$$D(x) = \frac{F}{48EI} \cdot \left(3L^2x - 4x^3\right). \tag{3}$$

Für $L/2 \le x \le L$ ergibt sich

$$D(x) = \frac{F}{48EI} \cdot \left(4x^3 - 12Lx^2 + 9L^2x - L^3\right). \tag{4}$$

Das Flächenträgheitsmoment eines Stabs mit quadratischen Querschnitt und der Seitenlänge a ist durch

$$I_{\square} = \frac{a^4}{12} \tag{5}$$

gegeben [2]. Das Flächenträgheitsmoment eines Stabs mit quadratischen Querschnitt und Durchmesser d ist durch

$$I_{\bigcirc} = \frac{\pi d^4}{64} \tag{6}$$

gegeben [2].

3 Durchführung

3.1 Einseitige Einspannung

Mit Hilfe dem in Abbildung 1 gezeigten Versuchsaufbaus lässt sich der Elasitiztätsmodul bestimmen. Dabei werden zwei Stäbe mit kreisförmigen und quadratischen Querschnitt in die Apparatur einseitig bei A eingespannt und mit einem am Stabende befestigten Gewicht gebogen. Die Auslenkung des Stabs an einem Punkt wird mit einer Messuhr bestimmt. Die Messuhr lässt sich entlang der Apparatur verschieben und die Entfernung vom Einspannpunkt ist oben auf der Apparatur anhand einer Längenskala ab zu lesen.

Abbildung 1: Schematische Aufbau der Apparatur [1].

Da nicht davon ausgegangen werden kann, dass die Stäbe komplett gerade sind, wird eine Nullmessung durchgeführt, um die tatsächliche Biegung zu bestimmen.

3.2 Beidseitige Einspannung

Nun werden die Stäbe nacheinander bei A und bei B eingespannt und das Gewicht in der Mitte des Stabs befestigt. Es wird dabei wieder eine Nullmessung durchgeführt. Bei der Messung ist zu beachten, dass beide Messuhren verwendet werden, da die Befestigung der Masse die Bewegung der Messuhr über die Mitte nicht zulässt.

4 Auswertung

4.1 Flächenträgheitsmoment und Dichte

Zur Bestimmung des Flächenträgheitsmoments und der Dichte des Stabes wurden für Masse, Durchmesser und Länge mehrere Werte von jeweils einem runden und einem eckigen Stab notiert. Diese lassen sich in Tabelle 1 und Tabelle 2 finden.

Tabelle 1: Messdaten des runden Stabes

Masse/kg	Radius/m	Länge/m
0,4120	0,005	0,592
$0,\!4119$	0,005	$0,\!593$
$0,\!4120$	0,005	$0,\!592$
$0,\!4124$	0,005	$0,\!593$
$0,\!4123$	0,005	$0,\!591$

Die folgenden Mittelwerte und Standardabweichungen der Werte wurden mittels Python bestimmt.

Masse des runden Stabs: $m_{\odot} = 0{,}41212 \pm 0{,}00019\,\mathrm{kg}$

Radius des runden Stabs: $r_{\odot}=0{,}0050\pm0\,\mathrm{m}$ Länge des runden Stabs: $l_{\odot}=0{,}5922\pm0{,}0007\,\mathrm{m}$

Tabelle 2: Messdaten des eckigen Stabes

Masse/kg	Durchmesser/m	Länge/m
0,5357	0,01	0,602
0,5359	0,01	0,601
$0,\!5360$	0,01	0,602
$0,\!5360$	0,01	0,601
$0,\!5360$	0,01	$0,\!602$

Masse des eckigen Stabs: $m_{\square}=0.53592\pm0.00012\,\mathrm{kg}$ Durchmesser des eckigen Stabs: $r_{\square}=0.0100\pm0\,\mathrm{m}$ Länge des eckigen Stabs: $l_{\square}=0.6016\pm0.0005\,\mathrm{m}$

4.1.1 Dichte

Die Dichte eines Zylinders bestimmt sich zu: $\rho_{\odot} = \frac{m}{r^2 \pi l}$. Somit ergibt sich mit den Messwerten die Dichte des Zylinders zu $\rho_{\odot} = 8860 \pm 11 \, \frac{\mathrm{kg}}{\mathrm{m}^3}$.

Die Dichte eines Quader bestimmt sich zu: $\rho_{\square} = \frac{m}{d^2 l}$. Somit ergibt sich mit den Messwerten die Dichte des Quaders zu $\rho_{\square} = 8908 \pm 8 \, \frac{\text{kg}}{\text{m}^3}$.

Der Dichte nach zu urteilen, könnte es sich bei dem Material der Stäbe um Kupfer handeln, was sich durch das visuelle Erscheinungsbild bestätigen lässt. Somit haben die Stäbe einen Literaturwert für den Elastizitätsmodul von $E_{\rm lit}=100$ bis $130\cdot 10^9 \frac{\rm N}{m^2}[3]$.

4.1.2 Flächenträgheitsmoment

Mit der Gleichung 5 ergibt sich für den eckigen Stab das Flächenträgheitsmoment $I_{\square}=8,333\cdot 10^{-10}\,\mathrm{m}^4$ und mit Gleichung 6 für den runden Stab das Flächenträgheitsmoment $I_{\bigcirc}=4,909\cdot 10^{-10}\,\mathrm{m}^4$.

4.2 Bestimmung des Elastizitätsmoduls mithilfe einseitiger Einspannung

4.2.1 Runder Stab

Der Stab wurde für diesen Versuch einseitig eingespannt und die restliche Länge des Stabes sechs Mal gemessen und gemittelt:

Tabelle 3: Restliche Länge des Stabes nach Einspannen

Länge/m
0,481
0,480
0,479
$0,\!480$
$0,\!478$
$0,\!480$

Somit ergibt sich für die Länge $L = 0.4797 \pm 0.0009 \,\mathrm{m}$.

Für die Messung wurde ein Gewicht verwendet, das mehrfach gewogen wurde. Die Messwerte befinden sich in Tabelle 4.

Tabelle 4: Verwendetes Gewicht für die einseitige Spannung des runden Stabs

Gewicht/kg
0,4511
0,4515
$0,\!4515$
0,4511
0,4513

Somit ergibt sich für das Gewicht die Masse $m = 0.4513 \pm 0.0002$ kg.

Es wurde zunächst eine Messung ohne Gewicht durchgeführt, um mögliche Verbiegungen des Stabes zu erkennen. Danach wurde eine Messung mit dem Gewicht durchgeführt. Daraus wurde dann die tatsächliche Auslenkung bestimmt. In den folgenden Versuchen wird das gleiche Schema verwendet. Die Werte zu der ersten Messreihe lassen sich in Tabelle 5 finden.

Tabelle 5: Auslenkung des runden Stabes bei einseitiger Einspannung

x/mm	$D_0(x)/mm$	$D_m(x)/mm$	D(x)/mm
30	0,040	0,050	0,010
60	0,050	$0,\!150$	0,100
90	$0,\!150$	$0,\!350$	0,200
120	$0,\!295$	0,630	0,335
150	$0,\!520$	0,990	0,470
180	0,740	1,410	0,670
210	0,960	1,830	0,870
240	1,260	$2,\!245$	0,985
270	1,530	2,750	1,220
300	1,825	3,290	1,465
330	2,190	3,850	1,660
360	$2,\!505$	4,180	1,675
390	2,880	4,760	1,880
420	3,360	5,370	2,010
450	3,710	6,160	2,450

Hierbei ist x die Entfernung zur Einspannung, $D_0(x)$ die Auslenkung des Stabes ohne Gewicht, $D_m(x)$ die Auslenkung des Stabes mit Gewicht und D(x) die tatsächliche Auslenkung. Ein negativer Wert für D_0 steht für eine Auslenkung nach oben und ein positiver Wert für eine Auslenkung nach unten.

Zur Berechnung des Elastizitätsmoduls E wird D(x) nun gegen $\left(Lx^2 - \frac{x^3}{3}\right)$ aufgetragen und eine Ausgleichsrechnung mittels Python durchgeführt. Dieser Zusammenhang lässt sich in Gleichung 2 ablesen.

Die Ausgleichsrechnung ergibt für diese Messreihe einen Wert für den Elastizitätsmodul von $E_1=(120.3\pm3.285)\cdot10^9\frac{\rm N}{m^2}$. Der passende Plot dazu ist Abbildung 2.

Messdaten für den runden Stab bei einseitiger Einspannung Theoriekurve für E = 1.203e + 110.0025 Messwerte σ -Umgebung 0.0020 0.00150.0010 0.0005 0.0000 0.0005 0.0010 0.0015 0.0020 0.0000 0.0025 $\left(L\cdot x^2 - \frac{x^3}{3}\right)$ /m

Abbildung 2: Ausgleichsrechnung für das E-Modul des runden Stabs bei einseitiger Einspannung

4.2.2 Eckiger Stab

Der Stab wurde wie auch der runde einseitig eingespannt und die restliche Länge des Stabes fünf Mal gemessen und gemittelt:

Tabelle 6: Restliche Länge des Stabes nach Einspannen

Länge/m
0,488
0,489
$0,\!488$
0,489
0,487

Somit ergibt sich für Die Länge $L = 0.4882 \pm 0.0007 \,\mathrm{m}$.

Für die Messung wurde wieder ein Gewicht verwendet, das mehrfach gewogen wurde. Die Messwerte finden sich in Tabelle 7.

Somit ergibt sich für das Gewicht die Masse $m = 0.6529 \pm 0.0000$ kg.

Es wurde wie bei dem runden Stab vorgegangen. Die Werte dazu lassen sich in Tabelle 8

Tabelle 7: Verwendetes Gewicht für die einseitige Spannung des eckigen Stabs

Gewicht/kg
0,6529
$0,\!6529$
$0,\!6529$
$0,\!6528$
0,6528

finden.

Tabelle 8: Auslenkung des eckigen Stabes bei einseitiger Einspannung

x/mm	$D_0(x)/mm$	$D_m(x)/mm$	D(x)/mm
30	0,300	0,330	0,030
60	0,340	$0,\!420$	0,080
90	0,400	$0,\!550$	$0,\!150$
120	$0,\!470$	0,750	$0,\!280$
150	0,610	1,000	$0,\!390$
180	0,780	1,340	$0,\!560$
210	0,850	1,550	0,700
240	0,970	1,840	$0,\!870$
270	1,080	2,130	1,050
300	1,190	2,470	1,280
330	1,310	2,780	$1,\!470$
360	1,420	3,120	1,700
390	1,620	3,530	1,910
420	1,840	4,000	2,160
450	$2,\!270$	4,430	2,160

Für die Messreih mit dem eckigen Stab ergibt dies einen Wert für den Elastizitätsmodul von $E_2=(110.8\pm 1.753)\cdot 10^9 \frac{\rm N}{m^2}$. Der passende Plot dazu ist Abbildung 3.

Messdaten für den eckigen Stab bei einseitiger Einspannung Theoriekurve für E = 1.108e + 110.0025Messwerte σ -Umgebung 0.0020 0.00150.0010 0.0005 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0000 $\left(L\cdot x^2 - \frac{x^3}{3}\right)$ /m

Abbildung 3: Ausgleichsrechnung für das E-Modul des eckigen Stabs bei einseitiger Einspannung

4.3 Bestimmung des Elastizitätsmoduls mithilfe beidseitiger Einspannung

4.3.1 Runder Stab

Der Stab wurde für diesen Versuch beidseitig eingespannt und die Länge zwischen den Einspannungen fünf Mal gemessen und gemittelt:

Tabelle 9: Länge des runden Stabes zwischen den Einspannungen

Länge/m
0,554
$0,\!553$
$0,\!553$
$0,\!554$
$0,\!553$

Somit ergibt sich für die Länge $L=0.5534\pm0.0005\,\mathrm{m}$.

Für die Messung wurde ein Gewicht verwendet, das mehrfach gewogen wurde. Die Messwerte finden sich in Tabelle 10.

Somit ergibt sich für das Gewicht die Masse $m=1,4534\pm0,0001\,\mathrm{kg}$.

Tabelle 10: Verwendetes Gewicht für die beidseitige Einspannung des runden Stabs

Gewicht/kg
1,4535
1,4534
1,4534
1,4534
1,4533

Es wurde wie bei den anderen Versuchen vorgegangen. Die Werte dazu lassen sich in Tabelle 11 finden.

Tabelle 11: Auslenkung des runden Stabes bei beidseitiger Einspannung

x/mm	$D_0(x)/mm$	$D_m(x)/mm$	D(x)/mm
30	-0,250	-0,090	0,160
60	-0,340	-0,070	$0,\!270$
90	-0,380	0,000	$0,\!380$
120	-0,360	$0,\!120$	$0,\!480$
150	-0,290	$0,\!265$	$0,\!555$
180	-0,270	0,410	0,680
210	-0,280	$0,\!490$	0,770
240	-0,210	$0,\!510$	0,720
270	-0,140	$0,\!520$	0,660
300	-0,060	$0,\!540$	0,600
330	0,040	$0,\!550$	$0,\!510$
360	0,080	$0,\!550$	$0,\!470$
390	$0,\!170$	$0,\!560$	$0,\!390$
420	$0,\!250$	$0,\!560$	0,310
450	$0,\!320$	$0,\!520$	0,200
480	0,400	$0,\!520$	0,120
510	$0,\!420$	$0,\!470$	0,050
540	0,330	0,380	0,050

Hierbei ist x die Entfernung zu der rechten eingespannten Seite des Stabes, $D_0(x)$ die Auslenkung des Stabes ohne Gewicht, $D_m(x)$ die Auslenkung des Stabes mit Gewicht und D(x) die tatsächliche Auslenkung. Ein negativer Wert für D_0 steht für eine Auslenkung nach oben und ein positiver Wert für eine Auslenkung nach unten. Das Gewicht wurde diesmal nicht am Ende des Stabes, sondern mittig bei $x=27,5\,\mathrm{cm}$ aufgehangen.

Zur Berechnung des Elastizitätsmoduls E wird D(x) nun gegen $\left(3L^2x-4x^3\right)$ und $\left(4x^3-12Lx^2+9L^2x-L^3\right)$ aufgetragen und eine Ausgleichsrechnung mittels Python durchgeführt. Der Zusammenhang lässt sich an Gleichung 3 und Gleichung 4 ablesen.

Im Bereich von $0 \le x \le L/2$ wird Gleichung 3 verwendet und im Bereich $L/2 \le x \le L$ Gleichung 4.

Das ergibt für diese Messreihe einen Wert für der Elastizitätsmodul von $E_3=(156,6\pm8,339)\cdot 10^9\frac{\rm N}{m^2}$. Der passende Plot dazu ist Abbildung 4.

Messdaten für den eckigen Stab bei einseitiger Einspannung

Abbildung 4: Ausgleichsrechnung für das E-Modul des runden Stabs bei beidseitiger Einspannung

4.3.2 Eckiger Stab

Der Stab wurde für diesen Versuch beidseitig eingespannt und die Länge zwischen den Einspannungen fünf Mal gemessen und gemittelt:

Tabelle 12: Länge des eckigen Stabes zwischen den Einspannungen

Länge/m
0,557
$0,\!558$
$0,\!556$
$0,\!557$
$0,\!558$

Somit ergibt sich für die Länge $L=0.5572\pm0.0007\,\mathrm{m}$.

Für die Messung wurde ein Gewicht verwendet, das mehrfach gewogen wurde. Die Messwerte finden sich in Tabelle 13.

Tabelle 13: Verwendetes Gewicht für die beidseitige Einspannung des eckigen Stabs

Gewicht/kg 1.5522 1.5529 1.5528 1.5530 1.5530	
1.5529 1.5528 1.5530	Gewicht/kg
1.5528 1.5530	1.5522
1.5530	1.5529
	1.5528
1.5530	1.5530
	1.5530

Somit ergibt sich für das Gewicht die Masse $m=1,5528\pm0,0003\,\mathrm{kg}$.

Vorgehen und Bezeichnungen sind identisch zu dem Versuch mit dem runden Stab. Die Werte dazu lassen sich in Tabelle 14 finden.

Zur Berechnung des Elastizitätsmoduls E wird D(x) nun wieder gegen $\left(3L^2x-4x^3\right)$ und $\left(4x^3-12Lx^2+9L^2x-L^3\right)$ aufgetragen und eine Ausgleichsrechnung mittels Python durchgeführt.

Das ergibt für diese Messreihe einen Wert für des Elastizitätsmoduls von $E_4=(100,2\pm5,333)\cdot 10^9\frac{\rm N}{m^2}$. Der passende Plot dazu ist Abbildung 5.

Tabelle 14: Auslenkung des eckigen Stabes bei beidseitiger Einspannung

x/mm	$D_0(x)/mm$	$D_m(x)/mm$	D(x)/mm
30	-0.050	0.190	0.240
60	-0.140	0.200	0.340
90	-0.210	0.210	0.420
120	-0.270	0.230	0.500
150	-0.350	0.210	0.560
180	-0.400	0.220	0.620
210	-0.510	0.150	0.660
240	-0.540	0.120	0.660
270	-0.620	0.070	0.690
300	-0.740	-0.260	0.480
330	-0.860	-0.420	0.440
360	-1.000	-0.600	0.400
390	-1.110	-0.800	0.310
420	-1.250	-1.000	0.250
450	-1.350	-1.220	0.130
480	-1.420	-1.310	0.110
510	-1.660	-1.570	0.090
540	-1.770	-1.760	0.010

Abbildung 5: Ausgleichsrechnung für das E-Modul des eckigen Stabs bei beidseitiger Einspannung

5 Diskussion

Für das Elastizitätsmodul konnten insgesamt vier verschiedene Werte berechnet werden:

$$E_1 = (120.3 \pm 3.285) \cdot 10^9 \frac{\text{N}}{m^2} \tag{7}$$

$$E_2 = (110.8 \pm 1.753) \cdot 10^9 \frac{\text{N}}{m^2}$$
 (8)

$$E_3 = (156.6 \pm 8.339) \cdot 10^9 \frac{\text{N}}{m^2} \tag{9}$$

$$E_3 = (156.6 \pm 8.339) \cdot 10^9 \frac{\text{N}}{m^2}$$

$$E_4 = (100.2 \pm 5.333) \cdot 10^9 \frac{\text{N}}{m^2}$$
(9)

Alle Werte bis auf E_3 befinden sich im Bereich des Literaturwerts für Kupfer $E_{\rm lit}=100$ bis $130\cdot 10^9 {\rm N\over m^2}[3]$. E_3 hat eine Abweichung von nur 16,986% zur oberen Grenze des Literaturwerts. So ein kleiner Unterschied kann durch Messfehler oder fehlerhaftes Equipment hervorgerufen werden. Die zwei verwendeten Messuhren haben teilweise große Differenzen zueinander gehabt. Bei der beidseitigen Einspannung konnte es hier also zu Fehler kommen.

Insgesamt befinden sich alle Werte in einem guten Toleranzbereich der Messungenauigkeit. Mithilfe weiterer Messungen an anderen Versuchsaufbauten könnten diese Messungenauigkeiten noch weiter verringert werden, da dort zum Beispiel ein weiteres Paar Messuhren verwendet werden kann und somit diese Fehlerquelle verringert wird.

Das Material kann mit zufriedenstellender Genauigkeit als Kupfer identifiziert werden, da sowohl die Dichte, als auch das Elastizitätsmodul deutlich darauf hinweist. Zudem konnten die in der Theorie hergeleiteten Gleichungen mit Messdaten verifiziert werden.

6 Originale Messwerte

		Memo No Date		Memo No. Date / /				
Austenhu	ng mit a	ewicht	(usos)	beidseit	ge Aust	Einspannu	ing runder	
Gewicht	- 451,19	- 421,5	9	Stabes				
	-451,59	- 451,	35	cange L: -55,4cm -55,4cm -55,5cm				
	-451,15							
					-55,3	scu -55	Ser	
D injum	X incm	,	* incm			cm		
50 µm	\$	4180	38	Nullaus		1 0 .		
150 jum	6	4760	39	Do in um	* incm		* hcr	
SSOMM	9	5370	42	- 250 mm	3	+ 40	33	
630 µm	12	6160	45	-349um	6	+ 80	36	
990	15		9	-38gum	3	+170	39	
1410	18		BAD POT	50-38 um	12	+250	42	
1830	21		MAN TO STATE OF THE PARTY OF TH	770 35 um	18	+ 320	35	
22495	24	3-20	The same	280 zajum	21	+400	48	
2750	27		Day Car	210 28 um	24	+420	51	
3290	30	100	- Things	nu to our	27	+ 330	54	
3850	33			· 60- 45 Lim	30			

beidsei	tig, rund	mit Gen	sicht	eins	eitige A	ufspannung	echies	
							Stab	
Bewich	t: -1433,3	55 -1953	3,49	Lange L: - 48,8 cm -48,7 cm				
	-1433	49 - 1453	3,39	-48,9 cm				
	- 1453,			-48,8 cm				
aufgehong	50 loei 29,5	cm	-	State ,	- 48,9			
Dinjum	× mm	Dinun	* inon	Do in um	× in cm	Doinum	× in ch	
- 98	3	550+75	33	306	3	1310	33	
- 70	6	55072	36	340	6	1420	36	
0	9	540	39	400	9	1620	39	
+ 120	12	560	42	470	12	1840	42	
+295	15	520	45	810	15	2060	45	
+340	18	520	48	780	18	1270	48	
+6490	21	470	\$1	850	21	48		
+510	24	380	54	970	24	55		
+ 47520	27	1 55		1080	27			
+ 67 540	3.0			1190	30			

				(3) Men			
Auslen	hung mit G	ewicht ((650s)	be	idseitis	, edis, oh	M Gewich
- Gew	cht: -6520	is - 6	54.85				
	4.85	Large - 55,70m - 55,7 cm					
	îs		-55,8cm -55,8cm				
		A December				cm	
_ D nun	Xinon	Dinu	~incm	Nullar	sequer		
_330	3	3120	36.	Do inp		m Oo in um	
420	6	3530	39	50	3	- 860	33
55-0	9	4000	42	-140	6	-1000	36
750	12	4430	45	-210	19	-1110	39
1000	15		4-8	-270	12	-1250	42
7340	18		EARL	-350	15	7350	45
1550	21		300	- 400	18	-1420	48
1840	24		15050	-510	21	- 1660	51
2130	27		I OFF	- 540	24	-1770	54
2470	30		1000	-620	27		57
2780	33		1000	-740	30	1100	

	(4 Memo No	0					
	seitig, ech	ig, Gew	ichte 150s)					
Gewic		195 -	155308					
authang	aufhangt bei 27,8							
0 in un 2 190		-420	* inom					
200	6	-600	36					
210	12	-800	42					
210	15	-1220	45					
150	21	-1570	51					
when 70 will 260	27	1,00	57					
	50		1.tu					

Literatur

- [1] TU Dortmund. Anleitung: Biegung elastischer Stäbe. 2014.
- [2] ingenieurkurse.de. Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte. URL: https://www.ingenieurkurse.de/technische-mechanik-elastostatik/balkenbiegung/flaechentraegheitsmomente/flaechentraegheitsmomente-in-abhaengigkeit-vom-koordinatensystem.html (besucht am 28.12.2021).
- [3] web.archive.de. Elastizitätsmodul von Kupfer. URL: https://web.archive.org/web/20091115152133/http://www4.architektur.tu-darmstadt.de/buildingmaterials/db/251,id_17,s_GeneView.fb15 (besucht am 31.12.2021).