ProbSet 3 Spectral Theory Jan Ertl Kendra Robbins

4.2

D is the matrix representation of the derivative operator:

$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Since D is upper triangular, its eigenvalues are its diagonal entries, so 0 is an eigenvalue with algebraic multiplicity 3. Geometric multiplicity of 0 is 1 because only constants, the space spanned by $\{1\}$, have a derivative of 0.

i) Suppose
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 such that $A = A^H$.

$$A = A^H \Rightarrow a = \overline{a}, d = \overline{d}, b = \overline{c}, c = \overline{b} \Rightarrow a, d \in \mathbb{R}, \text{ and } bc = \overline{c}c = ||c||^2 \in \mathbb{R}.$$

By 4.3 and using det(A) = ad - bc the characteristic polynomial has the form:

$$p(\lambda) = \lambda^2 - tr(A)\lambda + \det(A) = \lambda^2 - (a+d)\lambda + ad - \|c\|^2$$

Solutions to $p(\lambda) = 0$ are:

$$\lambda_{\pm} = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad - ||c||^2)}}{2} = \frac{(a+d) \pm \sqrt{(a-d)^2 + ||c||^2}}{2}$$
$$(a-d)^2 + ||c||^2) \ge 0 \Rightarrow \lambda_{\pm} \in \mathbb{R}.$$

ii) Suppose
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 such that $A^H = -A$.

$$A^H = -A \Rightarrow a = -\overline{a}, d = -\overline{d}, b = -\overline{c} \Rightarrow a, d \in \mathbb{C} \text{ and } bc = -\overline{c}c = -\|c\|^2 < 0 \text{ and } ad < 0.$$

Using 4.3 the characteristic polynomial has the form:

$$p(\lambda) = \lambda^2 - tr(A)\lambda + det(A) = \lambda^2 - (a+d)\lambda + ad + ||c||^2$$

Solutions to $p(\lambda) = 0$ are:

Solutions to
$$p(\lambda) = 0$$
 are:

$$\lambda_{\pm} = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad+\|c\|^2)}}{2} = \frac{(a+d) \pm \sqrt{(a-d)^2 + \|c\|^2}}{2}$$

$$(a-d)^2 < 0 \text{ and } \|c\|^2) < 0 \text{ so } (a-d)^2 + \|c\|^2) < 0$$

$$\Rightarrow \lambda_{\pm} = \frac{(a+d) \pm \sqrt{(a-d)^2 + \|c\|^2}}{2} \text{ is imaginary.}$$

4.6

Let $R \in \mathbb{M}_n(\mathbb{F})$ be an upper-triangular matrix with diagonal entries r_{ii} .

Then $\lambda I - R$ is also upper-triangular and so $det R = \prod_{i=1}^{n} (\lambda_i - r_{ii})$. Since r_{ii} are the roots of the characteristic polynomials, $\lambda_i = r_{ii}$.

i) Define $S = \{sin(x), cos(x), sin(2x), cos(2x)\}$ in the vector space $C^{\infty}(\mathbb{R}, \mathbb{R})$ Recall that we proved that S forms an orthonormal basis in math ProbSet2 under an inner product. Thus they are linearly independent and therefore are a basis of the space that they span.

ii)
$$D_S = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

iii) $span\{cosx, sinx\}$ and $span\{cos(2x), sin(2x)\}$

$$P = \begin{bmatrix} 4.13 \\ 2 & 1 \\ 1 & -1 \end{bmatrix}$$

4.15

Suppose $A \in M_n(\mathbb{F})$ is semisimple, $(\lambda_i)_{i=1}^n$ are the eigenvalues of A, and $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ is a polynomial.

By 4.3.7, A is diagonalizable, so $\exists D$ diagonal with eigenvalues of A along the diagonal and $\exists P$ invertible such that $A = PDP^{-1}$.

$$f(A) = a_0 I + a_1 A + \dots + a_n A^n$$

= $a_0 P P^{-1} + a_1 P D P^{-1} + a_2 P D^2 P^{-1} + \dots + a_n P D^n P^{-1} = P f(D) P^{-1}$

Since D is diagonal with $(\lambda_i)_{i=1}^n$ along its diagonal, f(D) is a diagonal with diagonal entries $(f(\lambda_i))_{i=1}^n$.

$$f(A) = Pf(D)P^{-1} \Rightarrow f(D)$$
 is similar to $f(A)$

- $\Rightarrow f(A)$ and f(D) have the same eigenvalues
- \Rightarrow eigenvalues of f(A) are $(f(\lambda_i))_{i=1}^n$.

i) Define
$$A = \begin{bmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{bmatrix}$$
 and $P = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 0.4 \end{bmatrix}$ For $n \in \mathbb{N}$, $A^n = PD^nP^{-1}\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0.4^k \end{bmatrix}\frac{1}{3}\begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 2+0.4^n & 2-2*0.4^n \\ 1-0.4^n & 1+2*0.4^n \end{bmatrix}$ So $\lim_{n\to\infty}A^n = \frac{1}{3}\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$

- ii) With proofs similar to the one above, B is also the limit of A^n for the ∞ -norm and Frobenius norm.
- iii) Eigenvalues of A are 1 and .4. Using 4.3.12, the eigenvalues of f(A) where $f(x) = 3 + 5x + x^3$ are f(1) = 9 and f(.4) = 5.064.

4.18

Suppose λ is an eigenvalue of $A \in M_n(\mathbb{F})$.

Then for some eigenvector x, $Ax = \lambda x$.

By taking the transpose of both sides, $(Ax)^T = x^T A^T = (\lambda x)^T = \lambda x^T$.

4.20

Suppose $A = A^H$ and A is orthonormally similar to B.

Then $B = U^H A U$ for some orthonormal matrix U.

By taking the transpose of both sides, $B^H = (U^H A U)^H = U^H A^H U = U^H A U = B$. $\Rightarrow B = B^H$.

4.24

Suppose $A = A^H$.

Then
$$\langle x, Ax \rangle = x^H Ax = (A^H x)^H x = \langle A^H x, x \rangle = \langle Ax, x \rangle = \overline{\langle x, Ax \rangle}$$

 $\Rightarrow \langle x, Ax \rangle \in \mathbb{R}.$

Since necessarily $||x||^2 \in \mathbb{R}$, $\rho(x) \in \mathbb{R}$ for a Hermitian matrix A.

Suppose $B^H = -B$.

$$\langle x, Bx \rangle = x^H Bx = (B^H x)^H x = (-Bx)^H x = \langle -Bx, x \rangle = (-1) \langle Bx, x \rangle = (-1) \langle x, Bx \rangle.$$

 $\Rightarrow < x, Bx >$ is imaginary.

Since necessarily $||x||^2 \in \mathbb{R}$, $\rho(x)$ is imaginary for a skew Hermitian matrix B.

4.25

- i) Let $x \in \mathbb{C}^n$. Then there exist $\{a_i\}_{i=1}^n$ such that $x = \sum_i a_i x_i$, since $\{x_i\}_{i=1}^n$ is a basis. Then: $\left(\sum_j x_j x_j^H\right) \sum_i a_i x_i = \sum_j x_j x_j^H a_j x_j + \sum_j \sum_{i \neq j} x_j x_j^H a_i x_i = \sum_j a_j x_j$ because $x_j^H x_j = 1$ for any j and $x_j^H x_i = 0$ for any $i \neq j$. So $\left(\sum_j x_j x_j^H\right) x = x$ for any x in \mathbb{C}^n . $\Rightarrow \sum_j x_j x_j^H = I$.
- ii) We have: $Ax = \sum_{j} Aa_{j}x_{j} = \sum_{j} a_{j}\lambda_{j}x_{j}$ and $\left(\sum_{j} \lambda_{j}x_{j}x_{j}^{H}\right)\left(\sum_{i} a_{i}x_{i}\right) = \sum_{j} \lambda_{j}x_{j}x_{j}^{H}a_{j}x_{j} + \sum_{j} \sum_{i\neq j} \lambda_{j}x_{j}x_{j}^{H}a_{i}x_{i} = \sum_{j} a_{j}\lambda_{j}x_{j}$, $\Rightarrow A = \sum_{j} \lambda_{j}x_{j}x_{j}^{H}$.

4.27

Suppose $A \in M_n(\mathbb{F})$ is positive definite.

Since $A = A^H, \langle x, Ax \rangle \in \mathbb{R} \ \forall x \text{ by my proof for } 4.24.$

Let $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{F}^n . Then $\langle e_i, Ae_i \rangle$ is the diagonal entry in the i^{th} column of A. Since A is positive definite, $\langle e_i, Ae_i \rangle > 0$.

So each diagonal entry of A is positive and real.

$$\begin{bmatrix} 4.36 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$$