# Linear Regression

(Course: Introduction to Data Science)

#### Tirtharaj Dash

BITS Pilani, K.K. Birla Goa Campus tirtharaj@goa.bits-pilani.ac.in

October 22, 2020

# Simple Linear Regression I

- Simple linear regression is the most commonly used technique for determining how one variable of interest (the response variable) is affected by changes in another variable (the explanatory variable).
- The term "response" can mean a "dependent" and the term "explanatory" can mean "independent". However, it may be the case that the variable is not truly independent (due to variable interdependency with other variables).

# Simple Linear Regression II

- Simple linear regression is used for three main purposes:
  - 1 To describe the linear dependence of one variable on another
  - To predict values of one variable from values of another, for which more data are available
  - 3 To correct for the linear dependence of one variable on another, in order to clarify other features of its variability
- Any line fitted through a set of data points will deviate from each data point to greater or lesser degree.
- The vertical distance between a data point and the fitted line is termed as residual.
- This distance is a measure of the prediction error, in the sense that it
  is the discrepancy between the actual value of the response variable
  and the value predicted by the line.

# Simple Linear Regression III

- Linear regression determines the best-fit line through a scatter-plot of the data points, such that the sum of squared residuals is minimised (sometimes, the average of the residual is minimised); it is equivalent to minimising the error variance.
- The fit is best refers to a setting where the sum of squared errors is as small as possible. This is the very reason why this method is also called as ordinary least squares (OLS) regression.

## Linear regression equations I

Problem definition Given a set of *n*-points  $(x_i, y_i)$ , find a fitting line  $\beta_0 + \beta_1 x_i = 0$  that can compute the (predicted) response  $\hat{y}_i = \beta_0 + \beta_1 x_i$ , such that the sum of squared error  $\mathcal{L} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$  is minimised.

An example of data sample:

| X    | У  |
|------|----|
| 3.4  | 20 |
| 6.5  | 19 |
| 10.1 | 50 |
| 5.6  | 30 |
| 7.2  | 20 |
| :    | :  |
|      |    |

# Linear regression equations II

The goal is to solve for the unknowns  $\beta$ s. For this:

- We need to set the partial derivatives of  $\mathcal L$  with respect to the parameters  $\beta_0$  and  $\beta_1$
- 2 Set these to 0. i.e.

$$\frac{\partial \mathcal{L}}{\partial \beta_0} = 0$$
$$\frac{\partial \mathcal{L}}{\partial \beta_1} = 0$$

**3** Solve the two equations together to obtain the values for  $\beta_0$  and  $\beta_1$ 

## Linear regression equations III

So, here are the **OLS estimators**:

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} \tag{1}$$

and

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
 (2)

where,  $\overline{x}$  is the mean of  $x_i$ s and  $\overline{y}$  is the mean of  $y_i$ s. That is:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

# Linear regression equations IV

From Equation , we get:

$$\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}$$

This tells that: The regression line  $\hat{\beta}_0 + \hat{\beta}_1 \overline{x} = 0$  goes through the center of the data points  $(\overline{x}, \overline{y})$ .

The parameter  $\beta_1$  is called the slope of the fitting line and  $\beta_0$  is the intercept.



(An example of a fitting line)

# Linear regression equations V

We can re-write Equation as:

$$\hat{\beta}_1 = \frac{\text{Sample covariance between } x \text{ and } y}{\text{Sample variance of } x}$$

This tells that: The higher the covariance between x and y, the higher the slope will be.

# Linear regression equations VI

In addition, we may want to compute a parameter called coefficient of determination. One way of computing this value is:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

In the best case, the numerator (sum of squares of residuals) is 0 and therefore,  $R^2=1$ .

# Multivariate Linear Regression I

 The problem of determining a response given multiple explanatory variables.

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> |   | Xd | У |
|-----------------------|-----------------------|---|----|---|
| :                     |                       | : | :  | : |

• Here the predicted response for a data point  $\mathbf{x}_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})$  is given as

$$\hat{y}_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \ldots + \beta_d x_{i,d}$$

where,  $x_{i,j}$  is the value of the *j*th explanatory variable of the data point  $x_i$ .

# Multivariate Linear Regression II

- The goal is to obtain the parameters  $\beta_0, \ldots, \beta_1$  such that the sum squared error is minimised.
- This will require solving a system of d + 1 equations:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \beta_0} &= 0\\ \frac{\partial \mathcal{L}}{\partial \beta_1} &= 0\\ \vdots\\ \frac{\partial \mathcal{L}}{\partial \beta_d} &= 0 \end{aligned}$$

 However, we limit this in this course and instead rely on readily available tools for the same (e.e. Scikit-learn library in Python)

#### Issues

- The primary issue is with the assumption that there is linear relationships among variables. Linear regression model can only represent linear relationships.
- If there is non-linear relationships, it has to be known (or found out) beforehand. Then, each non-linearity or interaction has to be hand-crafted and explicitly given to the model as an input feature.

## In practice I

Build a regression model for the following data points:

| -X <sub>1</sub> | <i>x</i> <sub>2</sub> | У  |
|-----------------|-----------------------|----|
| 1               | 1                     | 6  |
| 1               | 2                     | 8  |
| 2               | 2                     | 9  |
| 2               | 3                     | 11 |

Now, predict the response for the data points

- (1,2) the model has seen this data point
- (3,5) the model has not seen this data point

### In practice II

```
>>> import numpy as np
>>> from sklearn.linear model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> y = np.array([6, 8, 9, 11])
>>> reg = LinearRegression().fit(X, y)
>>> print('R^2:',req.score(X, y))
R^2: 1.0
>>> print('Coefficients:',req.coef )
Coefficients: [1, 2.]
>>> print('Intercept:',req.intercept )
Intercept: 3.0000000000000018
>>> print('Prediction for [1,2]',req.predict(np.array([[1, 2]])))
Prediction for [1,2] [8.]
>>> print('Prediction for [3,5]',req.predict(np.array([[3, 5]])))
Prediction for [3,5] [16.]
```

### In practice III

Practice the laboratory assignment available in the notebooks shared in the GitHub lab directory of this course. There are two problems:

- dummy dataset
- Boston house price prediction dataset

Lab link: L06 (Linear Regression)