WIMPs and Other Particles Searches for

OMITTED FROM SUMMARY TABLE

WIMPS AND OTHER PARTICLE SEARCHES

Revised August 2013 by K. Hikasa (Tohoku University).

We collect here those searches which do not appear in any of the above search categories. These are listed in the following order:

- 1. Galactic WIMP (weakly-interacting massive particle) searches
- 2. Concentration of stable particles in matter
- 3. General new physics searches
- 4. Limits on jet-jet resonance in hadron collisions
- 5. Limits on neutral particle production at accelerators
- 6. Limits on charged particles in e^+e^- collisions
- 7. Limits on charged particles in hadron reactions
- 8. Limits on charged particles in cosmic rays
- 9. Searches for quantum black hole production

Note that searches appear in separate sections elsewhere for Higgs bosons (and technipions), other heavy bosons (including W_R , W', Z', leptoquarks, axigluons), axions (including pseudo-Goldstone bosons, Majorons, familons), heavy leptons, heavy neutrinos, free quarks, monopoles, supersymmetric particles, and compositeness. We include specific WIMP searches in the appropriate sections when they yield limits on hypothetical particles such as supersymmetric particles, axions, massive neutrinos, monopoles, etc.

We omit papers on CHAMP's, millicharged particles, and other exotic particles. We no longer list for limits on tachyons and centauros. See our 1994 edition for these limits.

GALACTIC WIMP SEARCHES

These limits are for weakly-interacting stable particles that may constitute the invisible mass in the galaxy. Unless otherwise noted, a local mass density of $0.3~{\rm GeV/cm^3}$ is assumed; see each paper for velocity distribution assumptions. In the papers the limit is given as a function of the X^0 mass. Here we list limits only for typical mass values of 20 GeV, 100 GeV, and 1 TeV. Specific limits on supersymmetric dark matter particles may be found in the Supersymmetry section.

Isoscalar coupling is assumed to extract the limits from those on X^0 -nuclei cross section.

For $m_{\chi^0}=20$ GeV

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb)	CL%		DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not use the	following	d	ata for averages	, fits,	limits, e	tc. • • •
$< 7.3 \times 10^{-7}$	90		AGNES	16	DS50	Ar
$< 1 \times 10^{-5}$	90		AGNESE	16	CDMS	Ge
$<2 \times 10^{-4}$	90		AGUILAR-AR	. 16	DMIC	Si CCDs
$<4 \times 10^{-5}$	90		ANGLOHER	16	CRES	CaWO ₄
$< 2 \times 10^{-6}$	90		APRILE	16	X100	Xe
$< 9.4 \times 10^{-8}$	90		${\sf ARMENGAUD}$	16	EDE3	Ge
$<1.0 \times 10^{-7}$	90		HEHN	16	EDE3	Ge
$<4 \times 10^{-6}$	90		ZHAO	16	CDEX	Ge
$<1 \times 10^{-5}$	90		AGNES	15	DSID	Ar
$<1.5 \times 10^{-6}$	90		AGNESE	15A		
$<1.5 \times 10^{-7}$	90		AGNESE	15 B	CDM2	Ge
$<2 \times 10^{-6}$	90	10	AMOLE	15	PICO	C_3F_8
$<1.2 \times 10^{-5}$	90		CHOI	15		H, solar ν $(b\overline{b})$
$<1.19 \times 10^{-6}$	90		CHOI	15		H, solar ν $(\tau^+\tau^-)$
$<2 \times 10^{-8}$	90	11	XIAO	15	PANX	
$< 2.0 \times 10^{-7}$			AGNESE	14	SCDM	
$< 3.7 \times 10^{-5}$			AGNESE	14A	SCDM	
$<1 \times 10^{-9}$			AKERIB	14	LUX	Xe
$<2 \times 10^{-6}$	90	15	ANGLOHER	14		CaWO ₄
$< 5 \times 10^{-6}$	90		FELIZARDO	14	SMPL	C ₂ CIF ₅
$< 8 \times 10^{-6}$			LEE	14A	KIMS	Csl
$<2 \times 10^{-4}$			LIU	14A	CDEX	
$<1 \times 10^{-5}$			YUE	14	CDEX	
$<1.08 \times 10^{-4}$			AARTSEN	13	ICCB	H, solar ν $(\tau^+\tau^-)$
$<1.5 \times 10^{-5}$			ABE	13 B	XMAS	Xe
$< 3.1 \times 10^{-6}$	90	21	AGNESE	13	CDM2	
$< 3.4 \times 10^{-6}$			AGNESE	13A	CDM2	Si
$< 2.2 \times 10^{-6}$	90	23	AGNESE	13A	CDM2	
$< 5 \times 10^{-5}$	90	24	LI	13 B	TEXO	Ge

		2	²⁵ ZHAO	13	CDEX	Ge
<1.2	$\times 10^{-7}$	90	AKIMOV	12	ZEP3	Xe
		2	²⁶ ANGLOHER	12	CRES	CaWO ₄
<8	$\times 10^{-6}$		²⁷ ANGLOHER	12	CRES	CaWO ₄
<7	$\times 10^{-9}$		²⁸ APRILE	12	X100	Xe
		2	²⁹ ARCHAMBAU.	.12	PICA	$F(C_4F_{10})$
<7	$\times 10^{-7}$	90	³⁰ ARMENGAUD	12	EDE2	Ge
		3	³¹ BARRETO	12	DMIC	CCD
<2	\times 10 ⁻⁶	90	BEHNKE	12	COUP	CF ₃ I
<7	\times 10 ⁻⁶	3	³² FELIZARDO	12	SMPL	C ₂ CIF ₅
< 1.5	\times 10 ⁻⁶	90	KIM	12	KIMS	Csl
<5	$\times 10^{-5}$	90	³³ AALSETH	11	CGNT	Ge
	_	3	AALSETH	11A	CGNT	Ge
<5	$\times 10^{-7}$	90	⁸⁵ AHMED	11	CDM2	Ge, inelastic
< 2.7	\times 10 ⁻⁷	90	³⁶ AHMED	11 A	RVUE	Ge
		3	³⁷ AHMED	11 B	CDM2	Ge, low threshold
<3	\times 10 ⁻⁶		⁸⁸ ANGLE	11	XE10	Xe
<7	$\times 10^{-8}$	90	³⁹ APRILE	11	X100	Xe
		2	APRILE	11A	X100	Xe, inelastic
<2	$\times 10^{-8}$		²⁸ APRILE	11 B	X100	Xe
	_	2	¹ HORN	11	ZEP3	Xe
<2	\times 10 ⁻⁷	90	AHMED	10	CDM2	
<1	\times 10 ⁻⁵	90 2	² AKERIB	10	CDM2	Si, Ge, low threshold
<1	$\times 10^{-7}$	90	APRILE	10	X100	Xe
<2	$\times 10^{-6}$	90	ARMENGAUD	10	EDE2	Ge
<4	\times 10 ⁻⁵	90	FELIZARDO	10		C ₂ CIF ₃
<1.5	\times 10 ⁻⁷	90 4	AHMED	09	CDM2	Ge
<2	\times 10 ⁻⁴	90 4	¹⁴ LIN	09	TEXO	
		2	^{l5} AALSETH	80	CGNT	Ge

¹ AGNESE 16 CDMSlite excludes low mass WIMPs 1.6–5.5 GeV and SI scattering cross section depending on m(WIMP); see Fig. 4.

² AGUILAR-AREVALO 16 search low mass 1–10 GeV WIMP scatter on Si CCDs; set limits Fig. 11.

³ ANGLOHER 16 requires SI WIMP-nucleon cross section $< 9 \times 10^{-3}$ pb for m(WIMP) = 1 GeV on CaWO_{Δ} target.

 $^{^4}$ APRILE 16 search low mass WIMP SI scatter on Xe; exclude $\sigma > 1.4 \times 10^{-5}$ pb for m(WIMP) = 6 GeV.

⁵ ARMENGAUD 16 require SI WIMP-p cross section $< 4.3 \times 10^{-4}$ pb for m(WIMP) = 5 GeV on Ge target.

⁶ HEHN 16 search for low mass WIMPs via SI scatter on Ge target; $\sigma(SI) < 5.8 \times 10^{-4}$ pb for m(WIMP) = 5 GeV, Fig. 6.

⁷ ZHAO 16 require SI scatter $< 4 \times 10^{-6}$ pb for m(WIMP) = 20 GeV using Ge target; limits also on SD scatter, see Fig. 19.

⁸ AGNESE 15A reanalyse AHMED 11B low threshold data. See their Fig. 12 (left) for improved limits extending down to 5 GeV.

 $^{^9\,\}mathrm{AGNESE}\ 15\mathrm{B}$ reanalyse AHMED 10 data.

 $^{^{10}\,\}mathrm{See}$ their Fig. 7 for limits extending down to 4 GeV.

 $^{^{11}}$ See their Fig. 13 for limits extending down to 5 GeV.

¹² This limit value is provided by the authors. See their Fig. 4 for limits extending down to $m_{\chi 0} = 3.5$ GeV.

- 13 This limit value is provided by the authors. AGNESE 14A result is from CDMSlite mode operation with enhanced sensitivity to low mass $m_{\chi 0}$. See their Fig. 3 for limits extending down to $m_{\chi 0} = 3.5 \text{ GeV}$ (see also Fig. 4 in AGNESE 14).
- 14 See their Fig. 5 for limits extending down to $m_{\chi 0} = 5.5$ GeV.
- 15 See their Fig. 5 for limits extending down to $m_{\chi^0}=1$ GeV.
- 16 See their Fig. 5 for limits extending down to $m_{\chi 0} = 5$ GeV.
- 17 LIU 14A result is based on prototype CDEX-0 detector. See their Fig. 13 for limits extending down to $m_{\chi 0} = 2 \text{ GeV}.$
- 18 See their Fig. 4 for limits extending down to $m_{\chi 0} =$ 4.5 GeV.
- 19 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of ${\it X}^{0}$ trapped by the sun in data taken between June 2010 and May 2011.
- 20 See their Fig. 8 for limits extending down to $m_{\chi^0}=7$ GeV.
- 21 This limit value is provided by the authors. AGNESE 13 use data taken between Oct. 2006 and July 2007. See their Fig. 4 for limits extending down to $m_{\chi^0}=7$ GeV.
- 22 This limit value is provided by the authors. AGNESE 13A use data taken between July 2007 and Sep. 2008. Three candidate events are seen. Assuming these events are real, the best fit parameters are $m_{\chi 0} = 8.6$ GeV and $\sigma = 1.9 \times 10^{-5}$ pb.
- ²³ This limit value is provided by the authors. Limit from combined data of AGNESE 13 and AGNESE 13A. See their Fig. 4 for limits extending down to $m_{\chi 0} = 5.5$ GeV.
- ²⁴ See their Fig. 4 for limits extending down to $m_{\chi 0}=4$ GeV.
- $^{25}\,\mathrm{See}$ their Fig. 5 for limits for $m_{\chi0}=4\text{--}12$ GeV.
- 26 ANGLOHER 12 observe excess events above the expected background which are consistent with X^0 with mass ~ 25 GeV (or 12 GeV) and spin-independent X^0 -nucleon cross section of 2×10^{-6} pb (or 4×10^{-5} pb).
- 27 Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
- ²⁸ See also APRILE 14A.
- ²⁹ See their Fig. 7 for cross section limits for $m_{\chi 0}$ between 4 and 12 GeV.
- 30 See their Fig. 4 for limits extending down to $m_{\chi^0}=7$ GeV.
- 31 See their Fig. 13 for cross section limits for $m_{\chi 0}$ between 1.2 and 10 GeV.
- $^{32}\,\mathrm{See}$ also DAHL 12 for a criticism. $^{33}\,\mathrm{See}$ their Fig. 4 for limits extending to $m_{\chi^0}=3.5$ GeV.
- $^{
 m 34}$ AALSETH $^{
 m 11A}$ find indications of annual modulation of the data, the energy spectrum being compatible with X^0 mass around 8 GeV. See also AALSETH 13.
- 35 AHMED 11 search for X^0 inelastic scattering. See their Fig. 8–10 for limits. The inelastic cross section reduces to the elastic cross section at the limit of zero mass splitting (Fig.
- 36 AHMÉD 11A combine CDMS II and EDELWEISS data.
- ³⁷ AHMED 11B give limits on spin-independent X^0 -nucleon cross section for $m_{\chi 0} =$ 4–12 GeV in the range 10^{-3} – 10^{-5} pb. See their Fig. 3.
- ³⁸ See their Fig. 3 for limits down to $m_{\chi^0}=4$ GeV.
- ³⁹APRILE 11 reanalyze APRILE 10 data.
- 40 APRILE 11A search for χ^0 inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A.
- 41 HORN 11 perform detector calibration by neutrons. Earlier results are only marginally affected. 42 See their Fig. 10 and 12 for limits extending to X^0 mass of 1 GeV.
- 43 Superseded by AHMED 10.
- ⁴⁴ See their Fig. 6(a) for cross section limits for $m_{\chi 0}$ extending down to 2 GeV.
- 45 See their Fig. 2 for cross section limits for $m_{\chi 0}$ between 4 and 10 GeV.

For $m_{\chi^0}=100~{ m GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb)	CL%	DOCUN	IENT ID		TECN	COMMENT
• • • We do not use the	following	data for	averages,	fits,	limits, e	tc. • • •
$< 1 \times 10^{-10}$	90	1 AKER	IB	17	LUX	Xe
$< 2.0 \times 10^{-8}$	90	AGNE	S	16	DS50	Ar
$< 1 \times 10^{-9}$	90	² AKER	IB	16	LUX	Xe
$< 1 \times 10^{-9}$	90	³ APRIL	E	16 B	X100	Xe
$< 2 \times 10^{-8}$	90	⁴ TAN		16	PNDX	Xe
$< 4 \times 10^{-10}$	90	⁵ TAN		16 B	PNDX	Xe
$< 6 \times 10^{-8}$	90	AGNE		15	DSID	Ar
$<4 \times 10^{-8}$	90	6 AGNE	SE	15 B	CDM2	Ge
$< 7.13 \times 10^{-6}$	90	CHOI		15	SKAM	H, solar ν $(b\overline{b})$
$< 6.26 \times 10^{-7}$	90	CHOI		15	SKAM	H, solar ν (W^+W^-)
$< 2.76 \times 10^{-7}$	90	CHOI		15	SKAM	H, solar ν $(\tau^+\tau^-)$
$<1.5 \times 10^{-8}$	90	XIAO		15	PANX	Xe
$<1 \times 10^{-9}$	90	_ AKER		14	LUX	Xe
$<4.0 \times 10^{-6}$	90	⁷ AVRO	RIN	14	BAIK	H, solar ν (W^+W^-)
$<1.0 \times 10^{-4}$	90	⁷ AVRO		14	BAIK	H, solar ν $(b\overline{b})$
$<1.6 \times 10^{-6}$	90	⁷ AVRO	RIN	14	BAIK	H, solar ν $(\tau^+\tau^-)$
$< 5 \times 10^{-6}$	90	FELIZ		14	SMPL	C ₂ CIF ₅
$< 6.01 \times 10^{-7}$	90	⁸ AART		13	ICCB	H, solar ν (W^+W^-)
$< 3.30 \times 10^{-5}$	90	⁸ AART		13	ICCB	H, solar ν $(b\overline{b})$
$<1.9 \times 10^{-6}$	90		N-MAR.		ANTR	H, solar ν (W^+W^-)
$<1.2 \times 10^{-4}$	90		N-MAR.		ANTR	H, solar ν $(b\overline{b})$
$< 7.6 \times 10^{-7}$	90		N-MAR.	.13	ANTR	H, solar ν $(\tau^+\tau^-)$
$<2 \times 10^{-6}$		¹⁰ AGNE		13	CDM2	
$<1.6 \times 10^{-6}$	90	¹¹ BOLIE	.V	13	BAKS	H, solar ν (W^+W^-)
$<1.9 \times 10^{-5}$	90	¹¹ BOLIE	.V	13	BAKS	H, solar ν $(b\overline{b})$
$< 7.1 \times 10^{-7}$	90	¹¹ BOLIE	.V	13	BAKS	H, solar ν $(\tau^+\tau^-)$
$< 1.67 \times 10^{-6}$	90	¹² ABBA	SI	12	ICCB	H, solar ν (W^+W^-)
$<1.07 \times 10^{-4}$	90	¹² ABBA	SI	12	ICCB	H, solar ν $(b\overline{b})$
$<4 \times 10^{-8}$	90	_ AKIM(12	ZEP3	Xe
$<1.4 \times 10^{-6}$		¹³ ANGL		12	CRES	CaWO ₄
$<3 \times 10^{-9}$	90	¹⁴ APRIL		12	X100	Xe
$< 3 \times 10^{-7}$	90	BEHN		12	COUP	
$< 7 \times 10^{-6}$		FELIZ	ARDO	12		C ₂ CIF ₅
$< 2.5 \times 10^{-7}$		¹⁵ KIM		12	KIMS	Csl
<2 \times 10 ⁻⁴	90	AALSE		11	CGNT	
0		¹⁶ AHME	.D	11		Ge, inelastic
$< 3.3 \times 10^{-8}$		¹⁷ AHME		11A		Ge
2 8		¹⁸ AJELL		11	FLAT	V
$< 3 \times 10^{-8}$		¹⁹ APRIL		11	X100	Xe
-110-8		²⁰ APRIL 14 APRIL			X100	Xe, inelastic
$<1 \times 10^{-8}$		¹⁴ APRIL		11B	X100	Xe
$<$ 5 \times 10 ⁻⁸	90	²¹ ARME ²² HORN	NGAUD		EDE2	Ge
$< 4 \times 10^{-8}$				11	ZEP3	Xe
$<4 \times 10^{-8}$	90	AHME	.U	10	CDM2	Ge

<9	$\times 10^{-6}$	90	AKERIB	10	CDM2	Si, Ge, low threshold
		23	³ AKIMOV	10	ZEP3	Xe, inelastic
<5	$\times 10^{-8}$	90	APRILE	10	X100	Xe
<1	$\times 10^{-7}$	90	ARMENGAUD	10	EDE2	Ge
	$\times 10^{-5}$	90	FELIZARDO	10	SMPL	C_2CIF_3
<5	$\times 10^{-8}$				CDM2	Ge
		25	ANGLE	09	XE10	Xe, inelastic
<3	$\times 10^{-4}$	90	LIN	09	TEXO	Ge
		26	⁵ GIULIANI	05	RVUE	

¹ AKERIB 17 exclude SI cross section $> 10^{-10}$ pb for m(WIMP) = 100 GeV; complete

² AKERIB 16 re-analysis of 2013 data exclude SI cross section $> 1 \times 10^{-9}$ pb for m(WIMP)= 100 GeV on Xe target.

- ⁷ AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
- 8 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the sun in data taken between June 2010 and May 2011.
- ⁹ ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
- 10 AGNESE 13 use data taken between Oct. 2006 and July 2007.
- 11 BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
- 12 ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.
- 13 Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
- ¹⁴See also APRILE 14A.
- 15 See their Fig. 6 for a limit on inelastically scattering X^0 for $m_{\chi 0} = 70$ GeV.
- $^{16}\,\mathrm{AHMED}$ 11 search for X^0 inelastic scattering. See their Fig. 8–10 for limits.
- 17 AHMED 11A combine CDMS and EDELWEISS data.
- ¹⁸ AJELLO 11 search for e^{\pm} flux from X^0 annihilations in the Sun. Models in which X^0 annihilates into an intermediate long-lived weakly interacting particles or X^0 scatters inelastically are constrained. See their Fig. 6-8 for limits.
- ¹⁹ APRILE 11 reanalyze APRILE 10 data.
- 20 APRILE 11A search for X^0 inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A.
 21 Supersedes ARMENGAUD 10. A limit on inelastic cross section is also given.
- ²² HORN 11 perform detector calibration by neutrons. Earlier results are only marginally affected.
- ²³ AKIMOV 10 give cross section limits for inelastically scattering dark matter. See their
- ²⁴ Superseded by AHMED 10.
- 25 ANGLE 09 search for X^0 inelastic scattering. See their Fig. 4 for limits.
- 26 GIULIANI 05 analyzes the spin-independent X^0 -nucleon cross section limits with both isoscalar and isovector couplings. See their Fig. 3 and 4 for limits on the couplings.

 $^{^3}$ APRILE 16B combined 447 live days using Xe target exclude $\sigma({
m SI})>~1.1 imes10^{-9}~{
m pb}$ for m(WIMP) = 50 GeV.

⁴ TAN 16 search for WIMP scatter off Xe target; see SI exclusion plot Fig. 6.

⁵ TAN 16B search for WIMP-p scatter off Xe target; see Fig. 5 for SI exclusion.

⁶ AGNESE 15B reanalyse AHMED 10 data.

For $m_{\chi 0} = 1 \text{ TeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$< 8.6 \times 10^{-8}$	90	AGNES	16	DS50	Ar
$< 2 \times 10^{-7}$	90	AGNES	15	DSID	Ar
$< 2 \times 10^{-7}$	90	¹ AGNESE	15 B	CDM2	Ge
$< 1 \times 10^{-8}$	90	AKERIB	14	LUX	Xe
$< 2.2 \times 10^{-6}$	90	² AVRORIN	14	BAIK	H, solar ν (W^+W^-)
$< 5.5 \times 10^{-5}$	90	² AVRORIN	14	BAIK	H, solar ν $(b\overline{b})$
$< 6.8 \times 10^{-7}$	90	² AVRORIN	14	BAIK	H, solar ν $(\tau^+\tau^-)$
$< 3.46 \times 10^{-7}$	90	³ AARTSEN	13	ICCB	H, solar ν (W^+W^-)
$< 7.75 \times 10^{-6}$	90	³ AARTSEN	13	ICCB	H, solar ν $(b\overline{b})$
$< 6.9 \times 10^{-7}$	90	⁴ ADRIAN-MAR	13	ANTR	H, solar ν (W^+W^-)
$< 1.5 \times 10^{-5}$	90	⁴ ADRIAN-MAR		ANTR	H, solar ν $(b\overline{b})$
$< 1.8 \times 10^{-7}$	90	⁴ ADRIAN-MAR	13	ANTR	H, solar ν $(\tau^+\tau^-)$
$< 4.3 \times 10^{-6}$	90	⁵ BOLIEV	13	BAKS	H, solar ν (W^+W^-)
$< 3.4 \times 10^{-5}$	90	⁵ BOLIEV	13	BAKS	H, solar ν $(b\overline{b})$
$< 1.2 \times 10^{-6}$	90	⁵ BOLIEV	13	BAKS	H, solar ν $(\tau^+\tau^-)$
$< 2.12 \times 10^{-7}$	90	⁶ ABBASI	12	ICCB	H, solar ν (W^+W^-)
$< 6.56 \times 10^{-6}$	90	⁶ ABBASI	12	ICCB	H, solar ν $(b\overline{b})$
$<4 \times 10^{-7}$	90	_AKIMOV	12	ZEP3	Xe
$<1.1 \times 10^{-5}$	90	⁷ ANGLOHER	12	CRES	CaWO ₄
$<2 \times 10^{-8}$	90	⁸ APRILE	12	X100	Xe
$< 2 \times 10^{-6}$	90	BEHNKE	12	COUP	CF ₃ I
$<4 \times 10^{-6}$		FELIZARDO	12	SMPL	C ₂ CIF ₅
$< 1.5 \times 10^{-6}$	90	KIM	12	KIMS	Csl
_		⁹ AHMED	11	CDM2	Ge, inelastic
$<1.5 \times 10^{-7}$	90	¹⁰ AHMED	11A	RVUE	Ge
$<2 \times 10^{-7}$	90	¹¹ APRILE	11	X100	Xe
$< 8 \times 10^{-8}$	90	⁸ APRILE	11 B	X100	Xe
$< 2 \times 10^{-7}$		12 ARMENGAUD		EDE2	Ge
7		¹³ HORN	11	ZEP3	Xe
$<2 \times 10^{-7}$	90	AHMED	10	CDM2	
$<4 \times 10^{-7}$	90	APRILE	10	X100	Xe
$< 6 \times 10^{-7}$	90	ARMENGAUD		EDE2	Ge
$< 3.5 \times 10^{-7}$	90	¹⁴ AHMED	09	CDM2	Ge

 $^{^{1}}$ AGNESE 15B reanalyse AHMED 10 data.

 $^{^2}$ AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.

 $^{^3}$ AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of x^0 trapped by the sun in data taken between June 2010 and May 2011.

⁴ ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.

⁵ BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.

Limits for Spin-Dependent Cross Section - $\overline{}$ of Dark Matter Particle (X^0) on Proton

For $m_{\chi^0}=20~{\rm GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb) CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	data for averages, fits,	limits, e	etc. • • •
$< 5 \times 10^{-4}$ 90	¹ AMOLE 16A	PICO	C_3F_8
$< 2 \times 10^{-6}$ 90		CMS	8 TeV $pp \rightarrow Z + \cancel{E}_T$;
			$Z \rightarrow \ell \overline{\ell}$
$< 1.2 \times 10^{-3}$ 90	AMOLE 15	PICO	$C_3\overline{F_8}$
$< 1.43 \times 10^{-3}$ 90	CHOI 15		H, solar ν $(b\overline{b})$
$< 1.42 \times 10^{-4}$ 90	CHOI 15		H, solar ν $(\tau^+\tau^-)$
$< 5 \times 10^{-3}$ 90	FELIZARDO 14		C ₂ CIF ₅
$< 1.29 \times 10^{-2}$ 90	³ AARTSEN 13	ICCB	H, solar $ u$ $(au^+ au^-)$
$< 3.17 \times 10^{-2}$ 90	⁴ APRILE 13	X100	Xe
$< 3 \times 10^{-2}$ 90	ARCHAMBAU12	PICA	$F(C_4F_{10})$
$< 6 \times 10^{-2}$ 90	BEHNKE 12	COUP	
< 20 90	DAW 12		F (CF ₄)
$< 7 \times 10^{-3}$	FELIZARDO 12		C ₂ CIF ₅
< 0.15 90	KIM 12	KIMS	2 3
$< 1 \times 10^5$ 90	⁵ AHLEN 11	DMTP	F (CF₄)
< 0.1 90	⁵ BEHNKE 11	COUP	
$< 1.5 \times 10^{-2}$ 90	⁶ TANAKA 11	SKAM	H, solar ν $(b\overline{b})$
< 0.2 90	ARCHAMBAU09	PICA	F
< 4 90	LEBEDENKO 09A	ZEP3	Xe
< 0.6 90	ANGLE 08A	XE10	Xe
<100 90	ALNER 07	ZEP2	Xe
< 1 90	LEE 07A	KIMS	Csl
< 20 90	⁷ AKERIB 06	CDMS	⁷³ Ge, ²⁹ Si
< 2 90			F (CaF ₂)
< 0.5 90	ALNER 05	NAIA	Nal 2
< 1.5 90	BARNABE-HE05	PICA	$F(C_4F_{10})$
< 1.5 90	GIRARD 05	SMPL	$F(C_2CIF_5)$
< 35 90	MIUCHI 03	BOLO	
< 30 90	TAKEDA 03	BOLO	

 $^{^6}$ ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

⁷ Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.

⁸ See also APRILE 14A.

 $^{^{9}}$ AHMED 11 search for X^{0} inelastic scattering. See their Fig. 8–10 for limits.

 $^{^{10}}$ AHMED 11A combine CDMS and EDELWEISS data. 11 APRILE 11 reanalyze APRILE 10 data.

 $^{^{12}\,\}mathrm{Supersedes}$ ARMENGAUD 10. A limit on inelastic cross section is also given.

¹³ HORN 11 perform detector calibration by neutrons. Earlier results are only marginally affected. $^{\rm 14}\,{\rm Superseded}$ by AHMED 10.

For $m_{\chi^0}=100~{\rm GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb)	CL%	DOCUMENT ID		TECN	TECN COMMENT	
• • • We do not use the	e following	data for averages	s, fits,	, limits, e	etc. • • •	
< 0.553-0.019	95	¹ AABOUD	16 D	ATLS	$pp o j + \not\!\!E_T$	
$< 1 \times 10^{-5}$	90	² AABOUD	16F	ATLS	$pp ightarrow \gamma + \bar{E_T}$	
$< 1 \times 10^{-4}$	90	³ AARTSEN	16 C	ICCB	solar ν (W^+W^-)	
$< 2 \times 10^{-4}$	90 '	⁴ ADRIAN-MAR.	16	ANTR	solar ν (WW , $b\overline{b}$, $\tau\overline{\tau}$)	
$< 3 \times 10^{-3}$	90	⁵ AKERIB	16A	LUX	Xe	
$< 5 \times 10^{-4}$	90	⁶ AMOLE	16	PICO	CF ₃ I	
$< 1.5 \times 10^{-3}$	90	AMOLE	15	PICO	C_3F_8	
$< 3.19 \times 10^{-3}$	90	CHOI	15	SKAM	H, solar ν $(b\overline{b})$	
$< 2.80 \times 10^{-4}$	90	CHOI	15	SKAM	H, solar ν (W^+W^-)	
$< 1.24 \times 10^{-4}$	90	CHOI	15	SKAM	H, solar ν $(\tau^+\tau^-)$	
$< 8 \times 10^{2}$		⁷ NAKAMURA	15	NAGE	CF ₄	
$< 1.7 \times 10^{-3}$		⁸ AVRORIN	14	BAIK	H, solar ν (W^+W^-)	
$< 4.5 \times 10^{-2}$		⁸ AVRORIN	14	BAIK	H, solar ν $(b\overline{b})$	
$< 7.1 \times 10^{-4}$	90	⁸ AVRORIN	14	BAIK	H, solar ν $(\tau^+\tau^-)$	
$< 6 \times 10^{-3}$	90	FELIZARDO	14	SMPL	C ₂ CIF ₅	
$< 2.68 \times 10^{-4}$		⁹ AARTSEN	13	ICCB	H, solar ν (W^+W^-)	
$< 1.47 \times 10^{-2}$		⁹ AARTSEN	13	ICCB	H, solar ν $(b\overline{b})$	
$< 8.5 \times 10^{-4}$		⁰ ADRIAN-MAR.		ANTR	H, solar ν (W^+W^-)	
$< 5.5 \times 10^{-2}$		⁰ ADRIAN-MAR.			H, solar ν $(b\overline{b})$	
$< 3.4 \times 10^{-4}$		⁰ ADRIAN-MAR.	13	ANTR	H, solar ν $(\tau^+\tau^-)$	
$< 1.00 \times 10^{-2}$	90 1	¹ APRILE	13	X100	Xe	
$< 7.1 \times 10^{-4}$	90 13	² BOLIEV	13	BAKS	H, solar ν (W^+W^-)	
$< 8.4 \times 10^{-3}$		² BOLIEV	13	BAKS	H, solar ν $(b\overline{b})$	
$< 3.1 \times 10^{-4}$		² BOLIEV	13	BAKS	H, solar ν $(\tau^+\tau^-)$	
$< 7.07 \times 10^{-4}$		³ ABBASI	12	ICCB	H, solar ν (W^+W^-)	
$< 4.53 \times 10^{-2}$	90 13	³ ABBASI	12	ICCB	H, solar ν $(b\overline{b})$	
$< 7 \times 10^{-2}$	90	ARCHAMBAU.	12	PICA	$F(C_4F_{10})$	
$< 1 \times 10^{-2}$	90	BEHNKE	12	COUP	CF ₃ I	
< 1.8	90	DAW	12	DRFT	F (CF ₄)	
$< 9 \times 10^{-3}$		FELIZARDO	12	SMPL	C ₂ CIF ₅	
$< 2 \times 10^{-2}$	90	KIM	12	KIMS	Csl	

 $^{^1}$ AMOLE 16A require SD WIMP-p scattering $<5\times10^{-4}$ pb for m(WIMP) = 20 GeV; bubbles from C $_3$ F $_8$ target.

² KHACHATRYAN 16AJ require SD WIMP- $p < 2 \times 10^{-6}$ pb for m(WIMP) = 20 GeV from $pp \to Z + \cancel{E}_T$; $Z \to \ell \overline{\ell}$ signal.

³ AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.

⁴ The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.

⁵Use a direction-sensitive detector.

⁶ TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

⁷ See also AKERIB 05.

<	2	$\times 10^3$	90	⁷ AHLEN	11	DMTP	F (CF ₄)
<	7	$\times 10^{-2}$	90	BEHNKE	11	COUP	
<	2.7	$\times 10^{-4}$	90	¹⁴ TANAKA	11		H, solar ν (W^+W^-)
<	4.5	$\times 10^{-3}$	90	¹⁴ TANAKA	11		H, solar ν $(b\overline{b})$
				¹⁵ FELIZARDO	10	SMPL	C ₂ CIF ₃
<	6	$\times 10^3$	90	⁷ MIUCHI	10	NAGE	CF ₄
<	0.4		90	ARCHAMBAU	09	PICA	F
<	8.0		90	LEBEDENKO	09A	ZEP3	Xe
<	1.0		90	ANGLE	08A	XE10	Xe
<	15		90	ALNER	07	ZEP2	Xe
<	0.2		90	LEE	07A	KIMS	Csl
<	1	$\times 10^4$	90	⁷ MIUCHI	07		$F(CF_4)$
<	5		90	¹⁶ AKERIB	06	CDMS	73 _{Ge, 29} Si
<	2		90	SHIMIZU	06A	CNTR	F (CaF ₂)
<	0.3		90	ALNER	05	NAIA	Nal
<	2		90	BARNABE-HE	05	PICA	$F(C_4F_{10})$
<1	00		90	BENOIT	05	EDEL	73 _{Ge}
<	1.5		90	GIRARD	05	SMPL	$F(C_2CIF_5)$
<	0.7			¹⁷ GIULIANI	05A	RVUE	-
				¹⁸ GIULIANI	04	RVUE	
				¹⁹ GIULIANI	04A	RVUE	
<	35		90	MIUCHI	03	BOLO	LiF
<	40		90	TAKEDA	03	BOLO	NaF

 1 AABOUD 16D use ATLAS 13 TeV 3.2 fb $^{-1}$ of data to search for monojet plus missing $E_T;$ agree with SM rates; present limits on large extra dimensions, compressed SUSY spectra and wimp pair production.

 2 AABOUD 16F search for monophoton plus missing E_T events at ATLAS with 13 Tev and 3.2 fb $^{-1}$; signal agrees with SM background; place limits on SD WIMP-proton scattering vs. mediator mass and large extra dimension models.

³AARTSEN 16C search for high energy ν s from WIMP annihilation in solar core; limits set on SD WIMP-p scattering (Fig. 8).

⁴ ADRIAN-MARTINEZ 16 search for WIMP annihilation into ν s from solar core; exclude SD cross section < few 10⁻⁴ depending on m(WIMP).

⁵ AKERIB 16A using 2013 data exclude SD WIMP-proton scattering $> 3 \times 10^{-3}$ pb for m(WIMP) = 100 GeV.

⁶ AMOLE 16 use bubble technique on CF₃I target to exclude SD WIMP-p scattering $> 5 \times 10^{-4}$ pb for m(WIMP) = 100 GeV.

⁷Use a direction-sensitive detector.

Note a direction-sensitive detector. AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.

 9 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.

 10 ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.

¹¹ The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.

 12 BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.

¹³ ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

For $m_{\chi 0} = 1 \text{ TeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VAL	UE (pb)	CL%		DOCUMENT ID		TECN	COMMENT
• •	• We do not use the	following	g d	ata for averages	, fits,	limits, e	etc. • • •
			1	ADRIAN-MAR.	. 16 B	ANTR	solar μ from WIMP annihilation
<	1×10^{-2}	90		AMOLE	15	PICO	C_3F_8
<	1.5×10^3	90		NAKAMURA	15	NAGE	CF ₄
<	2.7×10^{-3}	90		AVRORIN	14	BAIK	H, solar ν (W^+W^-)
<	6.9×10^{-2}	90		AVRORIN	14	BAIK	H, solar ν $(b\overline{b})$
<	8.4×10^{-4}	90		AVRORIN	14	BAIK	H, solar ν $(\tau^+\tau^-)$
<	4.48×10^{-4}	90		AARTSEN	13	ICCB	H, solar ν (W^+W^-)
<	1.00×10^{-2}	90	3	AARTSEN	13	ICCB	H, solar ν $(b\overline{b})$
<	8.9×10^{-4}	90		ADRIAN-MAR.		ANTR	H, solar ν (W^+W^-)
<	2.0×10^{-2}	90		ADRIAN-MAR.		ANTR	H, solar ν $(b\overline{b})$
<	2.3×10^{-4}	90		ADRIAN-MAR.	.13	ANTR	H, solar ν $(\tau^+\tau^-)$
<	7.57×10^{-2}	90		APRILE	13	X100	Xe
<	5.4×10^{-3}	90		BOLIEV	13	BAKS	H, solar ν (W^+W^-)
<	4.2×10^{-2}	90		BOLIEV	13	BAKS	H, solar ν $(b\overline{b})$
<	1.5×10^{-3}	90		BOLIEV	13	BAKS	H, solar ν $(\tau^+\tau^-)$
<	2.50×10^{-4}	90		ABBASI	12	ICCB	H, solar ν (W^+W^-)
<	7.86×10^{-3}	90	7	ABBASI	12	ICCB	H, solar ν $(b\overline{b})$
<	8×10^{-2}	90		BEHNKE	12	COUP	CF ₃ I
<	8	90		DAW	12	DRFT	F (CF ₄)
<	6×10^{-2}			FELIZARDO	12	SMPL	C ₂ CIF ₅
<	8×10^{-2}	90	_	KIM	12	KIMS	Csl
<	8×10^3	90	8	AHLEN	11	DMTP	F (CF ₄)
<	0.4	90	_	BEHNKE	11	COUP	CF ₃ I
<	2×10^{-3}	90		TANAKA	11	SKAM	H, solar ν $(b\overline{b})$
<	2×10^{-2}	90		TANAKA	11	SKAM	H, solar ν (W^+W^-)
<	1×10^{-3}	90		ABBASI	10	ICCB	KK dark matter
<	2×10^4	90	ď	МІИСНІ	10	NAGE	CF ₄
<	8.7×10^{-4}	90		ABBASI	09 B	ICCB	H, solar $\nu (W^+W^-)$
<	2.2×10^{-2}	90		ABBASI	09 B	ICCB	H, solar ν $(b\overline{b})$
<	3	90		ARCHAMBAU.		PICA	F
<	6	90		LEBEDENKO	09A	ZEP3	Xe
<	9	90		ANGLE	A80	XE10	Xe
<1		90		ALNER	07	ZEP2	Xe
<	0.8	90		LEE	07A	KIMS	Csl

 $^{^{14}}$ TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

 $^{^{15}}$ See their Fig. 3 for limits on spin-dependent proton couplings for X^0 mass of 50 GeV.

 $^{^{16}\,\}mathrm{See}$ also AKERIB 05. $^{17}\,\mathrm{GIULIANI}$ 05A analyze available data and give combined limits.

 $^{^{18}\,\}mathrm{GIULIANI}$ 04 reanalyze COLLAR 00 data and give limits for spin-dependent X^0 -proton

¹⁹ GIULIANI 04A give limits for spin-dependent X^0 -proton couplings from existing data.

$<$ 4 \times 10 ⁴	90	⁸ MIUCHI	07	NAGE	F (CF ₄)
< 30	90	¹¹ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 1.5	90	ALNER	05	NAIA	Nal
< 15	90	BARNABE-HE	05		
<600	90	BENOIT	05	EDEL	73_{Ge}
< 10	90	GIRARD	05	SMPL	$F(C_2CIF_5)$
<260	90	MIUCHI	03	BOLO	LiF
<150	90	TAKEDA	03	BOLO	NaF

 $^{^1}$ ADRIAN-MARTINEZ 16B search for secluded DM via WIMP annihilation in solar core into light mediator which later decays to μ or ν s; limits presented in Figures 3 and 4.

Limits for Spin-Dependent Cross Section of Dark Matter Particle (X⁰) on Neutron

For $m_{\chi 0} = 20 \text{ GeV}$

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
< 0.09	90	FELIZARDO	14		C ₂ CIF ₅
< 8	90	¹ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
$< 1.13 \times 10^{-3}$	90	² APRILE	13	X100	Xe
< 0.02	90	AKIMOV	12	ZEP3	Xe
		³ AHMED	11 B	CDM2	Ge, low threshold
< 0.06	90	AHMED	09	CDM2	Ge
< 0.04	90	LEBEDENKO	09A	ZEP3	Xe
< 50		⁴ LIN	09	TEXO	Ge
$< 6 \times 10^{-3}$	90	ANGLE	08A	XE10	Xe
< 0.5	90	ALNER	07	ZEP2	Xe
< 25	90	LEE	07A	_	Csl
< 0.3	90	⁵ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si

² AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.

 $^{^3}$ AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.

⁴ ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.

⁵ The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.

 $^{^6}$ BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.

⁷ ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

⁸ Use a direction-sensitive detector.

⁹ TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

 $^{^{10}}$ ABBASI 10 search for ν_{μ} from annihilations of Kaluza-Klein photon dark matter in the Sun

¹¹ See also AKERIB 05.

<	30	90	SHIMIZU	06A	CNTR	F (CaF ₂)
<	60	90	ALNER	05	NAIA	Nal
<	20		BARNABE-HE.			
<	10		BENOIT			
<	4	90	KLAPDOR-K	.05	HDMS	⁷³ Ge (enriched)
<	600	90	TAKEDA	03	BOLO	NaF

¹ Derived limit from search for inelastic scattering $X^0 + {}^{129}\text{Xe} \rightarrow X^0 + {}^{129}\text{Xe}^*$ (39.58)

For $m_{Y0} = 100 \text{ GeV}$

	Α,							
VAL	UE (pb)	CL%	DOCUMENT ID		TECN	COMMENT		
 ◆ We do not use the following data for averages, fits, limits, etc. 								
<	0.1	90	FELIZARDO	14	SMPL	C ₂ CIF ₅		
<	0.05	90	¹ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic		
<	4.68×10^{-4}	90	² APRILE	13	X100	Xe		
<	0.01	90	AKIMOV	12	ZEP3	Xe		
			³ FELIZARDO	10	SMPL	C ₂ CIF ₃		
<	0.02	90	AHMED	09	CDM2	Ge		
<	0.01	90	LEBEDENKO	09A	ZEP3	Xe		
<1	00	90	LIN	09	TEXO	Ge		
<	0.01	90	ANGLE	A80	XE10	Xe		
<	0.05	90	⁴ BEDNYAKOV	80	RVUE	Ge		
<	0.08	90	ALNER	07	ZEP2	Xe		
<	6	90	LEE	07A	KIMS	Csl		
<	0.07	90	⁵ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si		
< 1	30	90	SHIMIZU	06A	CNTR	$F(CaF_2)$		
<	10	90	ALNER	05	NAIA	Nal		
< 1	30	90	BARNABE-HE	05	PICA	$F(C_4F_{10})$		
<	0.7	90	BENOIT	05	EDEL	73 _{Ge}		
<	0.2		⁶ GIULIANI	05A	RVUE			
<	1.5	90	KLAPDOR-K	. 05	HDMS	⁷³ Ge (enriched)		
			⁷ GIULIANI	04	RVUE			
			⁸ GIULIANI	04A	RVUE			
			⁹ MIUCHI	03	BOLO	LiF		
<8	00	90	TAKEDA	03	BOLO	NaF		
1	Dariyad limit from so	arch for in	olastia saattaring \	0 ,	129 🕶 *	v0 129 v * (20 E0		

 $^{^1}$ Derived limit from search for inelastic scattering $X^0+~^{129}{
m Xe}^*
ightarrow~X^0+~^{129}{
m Xe}^* (39.58)$

The value has been provided by the authors. See also APRILE 14A. 3 AHMED 11B give limits on spin-dependent X^0 -neutron cross section for $m_{\chi^0}=4$ –12 GeV in the range 10^{-3} –10 pb. See their Fig. 3. ⁴ See their Fig. 6(b) for cross section limits for m_{χ^0} extending down to 2 GeV.

⁵ See also AKERIB 05.

 $^{^2}$ The value has been provided by the authors. See also APRILE 14A.

 $^{^3}$ See their Fig. 3 for limits on spin-dependent neutron couplings for X^0 mass of 50 GeV. 4 BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.

⁵ See also AKERIB 05.

⁶ GIULIANI 05A analyze available data and give combined limits.

⁷ GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent X^0 -neutron

 $^{^{\}circ}$ GIULIANI 04A give limits for spin-dependent X° -neutron couplings from existing data.

 $^{^9}$ MIUCHI 03 give model-independent limit for spin-dependent χ^0 -proton and neutron cross sections. See their Fig. 5.

For $\emph{m}_{\emph{X}^0}=1~\text{TeV}$

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
< 0.07	90	FELIZARDO	14	SMPL	C ₂ CIF ₅
< 0.2	90	¹ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
$< 3.64 \times 10^{-3}$	90	² APRILE	13	X100	Xe
< 0.08	90	AKIMOV	12	ZEP3	Xe
< 0.2	90	AHMED	09	CDM2	Ge
< 0.1	90	LEBEDENKO	09A	ZEP3	Xe
< 0.1	90	ANGLE	08A	XE10	Xe
< 0.25	90	³ BEDNYAKOV	80	RVUE	Ge
< 0.6	90	ALNER	07	ZEP2	Xe
< 30	90	LEE	07A	KIMS	Csl
< 0.5	90	⁴ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 40	90	ALNER	05	NAIA	Nal
<200	90	BARNABE-HE	05	PICA	$F(C_4F_{10})$
< 4	90	BENOIT	05	EDEL	73 _{Ge}
< 10	90	KLAPDOR-K	. 05	HDMS	⁷³ Ge (enriched)
$< 4 \times 10^3$	90	TAKEDA	03	BOLO	NaF
1 Daniel I Barrie Gram			0 .	129v.*	v0 + 129v-*(20.50

 $^{^1}$ Derived limit from search for inelastic scattering $\mathit{X}^0 +~^{129}\mathrm{Xe}^* \rightarrow~\mathit{X}^0 +~^{129}\mathrm{Xe}^* (39.58$

— Cross-Section Limits for Dark Matter Particles (X^0) on Nuclei ——

For $m_{\chi^0}=20~{\rm GeV}$

VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	g data for averages	, fits,	limits, e	etc. • • •
< 0.03	90	¹ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
< 0.08	90	² ANGLOHER	02	CRES	Al
		³ BENOIT	00	EDEL	Ge
< 0.04	95	⁴ KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 0.8		ALESSAND	96	CNTR	0
< 6		ALESSAND	96	CNTR	
< 0.02	90	⁵ BELLI	96	CNTR	
		⁶ BELLI	96 C	CNTR	¹²⁹ Xe
$< 4 \times 10^{-3}$	90	⁷ BERNABEI	96	CNTR	Na
< 0.3	90	⁷ BERNABEI	96	CNTR	1
< 0.2	95	⁸ SARSA	96	CNTR	Na
< 0.015	90	⁹ SMITH	96	CNTR	Na
< 0.05	95	¹⁰ GARCIA	95	CNTR	Natural Ge
< 0.1	95	QUENBY	95	CNTR	Na
<90	90	¹¹ SNOWDEN	95	MICA	¹⁶ O
$< 4 \times 10^3$	90	¹¹ SNOWDEN	95	MICA	³⁹ K
< 0.7	90	BACCI	92	CNTR	Na
< 0.12	90	¹² REUSSER	91	CNTR	Natural Ge
< 0.06	95	CALDWELL	88	CNTR	Natural Ge

²The value has been provided by the authors. See also APRILE 14A. ³BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.

⁴ See also AKERIB 05.

 $^2\,\mathrm{ANGLOHER}$ 02 limit is for spin-dependent WIMP-Aluminum cross section.

 4 KLIMENKO 98 limit is for inelastic scattering X^0 73 Ge $\,\rightarrow\,$ X^0 73 Ge* (13.26 keV). 5 BELLI 96 limit for inelastic scattering X^0 129 Xe $\,\rightarrow\,$ X^0 129 Xe*(39.58 keV).

⁷BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.

 8 SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

 $^9\,\mathrm{SMITH}$ 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of $0.4 \, \text{GeV} \, \text{cm}^{-3}$ is assumed.

 $^{10}\,\mathsf{GARCIA}$ 95 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.

 11 SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.

 12 REUSSER 91 limit here is changed from published (0.04) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

For $m_{\mathbf{v}0} = 100 \text{ GeV}$

VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	followin	g data for averages	s, fits,	limits, e	etc. • • •
< 3 × 10 ⁻³ < 0.3	90 90	1 UCHIDA 2 ANGLOHER 3 BELLI 4 BERNABEI 5 GREEN	14 02 02 02C 02C	XMAS	¹²⁹ Xe, inelastic Al
< 4 × 10 ⁻³	90	⁶ ULLIO ⁷ BENOIT ⁸ BERNABEI ⁹ AMBROSIO ¹⁰ BRHLIK	01 00 00D 99	RVUE EDEL MCRO RVUE	Ge ¹²⁹ Xe, inel.
< 8 × 10 ⁻³ < 0.08 < 4 <25	95 95	11 KLIMENKO 12 KLIMENKO ALESSAND ALESSAND	98 98 96 96	CNTR CNTR CNTR	73 Ge, inel. 73 Ge, inel. O Te
$< 6 \times 10^{-3}$ $< 1 \times 10^{-3}$ < 0.3 < 0.7 < 0.03 < 0.8 < 0.35	90 90 90 95 90 90 95	13 BELLI 14 BELLI 15 BERNABEI 15 BERNABEI 16 SARSA 17 SMITH 17 SMITH 18 GARCIA	96 960 96 96 96 96 96	CNTR CNTR CNTR	129 Xe, inel. 129 Xe Na I Na I Natural Ge

¹ UCHIDA 14 limit is for inelastic scattering $X^0 + {}^{129}\text{Xe}^* \rightarrow X^0 + {}^{129}\text{Xe}^*$ (39.58)

³BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.

 $^{^6}$ BELLI 96C use background subtraction and obtain $\sigma < 150$ pb (< 1.5 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.

< 0.6	95	QUENBY	95	CNTR	Na
< 3	95	QUENBY	95	CNTR	1
$< 1.5 \times 10^{2}$	90	¹⁹ SNOWDEN	95	MICA	^{16}O
$< 4 \times 10^2$	90	¹⁹ SNOWDEN			
< 0.08	90	²⁰ BECK	94	CNTR	76 Ge
< 2.5	90	BACCI	92	CNTR	Na
< 3	90	BACCI	92	CNTR	I
< 0.9	90	²¹ REUSSER	91	CNTR	Natural Ge
< 0.7	95	CALDWELL	88	CNTR	Natural Ge

 $^{^{1}}$ UCHIDA 14 limit is for inelastic scattering X^{0} + 129 Xe* \rightarrow X^{0} + 129 Xe*(39.58)

- ¹¹ KLIMENKO 98 limit is for inelastic scattering $X^{0.73}$ Ge $\rightarrow X^{0.73}$ Ge* (13.26 keV).
- 12 KLIMENKO 98 limit is for inelastic scattering X^0 73 Ge $\,\rightarrow\,$ X^0 73 Ge* (66.73 keV). 13 BELLI 96 limit for inelastic scattering X^0 129 Xe $\,\rightarrow\,$ X^0 129 Xe*(39.58 keV).
- 14 BELLI 96C use background subtraction and obtain $\sigma < 0.35$ pb (< 0.15 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.
- 15 BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.
- 16 SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.
- $^{17}\,\mathrm{SMITH}$ 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of $0.4 \, \text{GeV} \, \text{cm}^{-3}$ is assumed.
- 18 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.
- ¹⁹ SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.
- ²⁰ BECK 94 uses enriched ⁷⁶Ge (86% purity).
- 21 REUSSER 91 limit here is changed from published (0.3) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

² ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.

 $^{^3}$ BELLI 02 discuss dependence of the extracted WIMP cross section on the assumptions of the galactic halo structure.

 $^{^4}$ BERNABEI 02C analyze the DAMA data in the scenario in which χ^0 scatters into a slightly heavier state as discussed by SMITH 01.

⁵ GREEN 02 discusses dependence of extracted WIMP cross section limits on the assumptions of the galactic halo structure.

 $^{^{}m 6}$ ULLIO 01 disfavor the possibility that the BERNABEI 99 signal is due to spin-dependent WIMP coupling.

⁷BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.

⁸ BERNABEI 00D limit is for inelastic scattering $X^{0.129}$ Xe $\rightarrow X^{0.129}$ Xe (39.58 keV).

⁹ AMBROSIO 99 search for upgoing muon events induced by neutrinos originating from WIMP annihilations in the Sun and Earth.

 $^{^{}m 10}$ BRHLIK 99 discuss the effect of astrophysical uncertainties on the WIMP interpretation of the BERNABEI 99 signal.

For $m_{\chi 0} = 1 \text{ TeV}$

VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	followin	g data for averages	, fits,	limits, e	etc. • • •
< 0.03	90	$^{ m 1}$ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
< 3	90	² ANGLOHER	02	CRES	Al
		³ BENOIT	00	EDEL	Ge
		⁴ BERNABEI	99 D	CNTR	SIMP
		⁵ DERBIN	99	CNTR	
< 0.06	95	⁶ KLIMENKO	98	CNTR	73 Ge, inel.
< 0.4	95	⁷ KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 40		ALESSAND	96	CNTR	0
< 700		ALESSAND	96	CNTR	
< 0.05	90	⁸ BELLI	96	CNTR	129 Xe, inel.
< 1.5	90	⁹ BELLI	96	CNTR	¹²⁹ Xe, inel.
		¹⁰ BELLI	96 C	CNTR	¹²⁹ Xe
< 0.01	90	¹¹ BERNABEI	96	CNTR	Na
< 9	90	¹¹ BERNABEI	96	CNTR	1
< 7	95	¹² SARSA	96	CNTR	Na
< 0.3	90	¹³ SMITH	96	CNTR	Na
< 6	90	¹³ SMITH	96	CNTR	1
< 6	95	¹⁴ GARCIA	95		Natural Ge
< 8	95	QUENBY	95	CNTR	Na
< 50	95	QUENBY	95	CNTR	16
<700	90	15 SNOWDEN	95	MICA	16 _O
$< 1 \times 10^3$	90	15 SNOWDEN		MICA	³⁹ K
< 0.8	90	¹⁶ BECK	94	CNTR	⁷⁶ Ge
< 30	90	BACCI	92	CNTR	Na
< 30	90	BACCI	92	CNTR	1
< 15	90	¹⁷ REUSSER	91		Natural Ge
< 6	95	CALDWELL	88		Natural Ge

 $^{^1}$ UCHIDA 14 limit is for inelastic scattering $X^0+^{129}{
m Xe}^*
ightarrow ~X^0+^{129}{
m Xe}^*$ (39.58

 $^{^2}$ ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.

 $^{^3}$ BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay

⁴BERNABEI 99D search for SIMPs (Strongly Interacting Massive Particles) in the mass range 10^3-10^{16} GeV. See their Fig. 3 for cross-section limits.

⁵ DERBIN 99 search for SIMPs (Strongly Interacting Massive Particles) in the mass range $10^2 - 10^{14}$ GeV. See their Fig. 3 for cross-section limits.

⁶ KLIMENKO 98 limit is for inelastic scattering X^0 ⁷³Ge $\rightarrow X^0$ ⁷³Ge* (13.26 keV).

 $^{^7}$ KLIMENKO 98 limit is for inelastic scattering X^0 73 Ge $\,\rightarrow\,$ X^0 73 Ge* (66.73 keV). 8 BELLI 96 limit for inelastic scattering X^0 129 Xe $\,\rightarrow\,$ X^0 129 Xe*(39.58 keV).

⁹ BELLI 96 limit for inelastic scattering $X^{0.129}$ Xe $\rightarrow X^{0.129}$ Xe*(236.14 keV).

 $^{^{10}}$ BELLI 96C use background subtraction and obtain $\sigma <$ 0.7 pb (< 0.7 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.

 $^{^{11}}$ BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.

 $^{^{12}\}mathsf{SARSA}$ 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

14 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.

Miscellaneous Results from Underground Dark Matter Searches

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT	_
• • • We do not u	se the following	g data for average	s, fits,	limits,	etc. • • •	
$<$ 4 \times 10 ⁻³	90	¹ ANGLOHER	16A	CRES	CaWO ₄	
		² APRILE	15	X100	Event rate modulation	
		³ APRILE	15A	X100	Electron scattering	

 $^{^1}$ ANGLOHER 16A require q 2 dependent scattering $<8\times10^{-3}$ pb for asymmetric DM $\it m(WIMP)=3$ GeV on CaWO $_4$ target. It uses a local dark matter density of 0.38 GeV/cm 3 .

— X⁰ Annihilation Cross Section —

Limits are on σv for X^0 pair annihilation at threshold.

VALUE	(cm^3s^{-1})	CL%	DOCUMENT ID		TECN	COMMENT
• • •	We do not	use the	following data for a	averag	ges, fits,	limits, etc. • • •
			$^{ m 1}$ AARTSEN	16 D	ICCB	u, galactic center
<6	$\times 10^{-26}$	95	² ABDALLAH	16	HESS	Central Galactic Halo
<1	$\times 10^{-27}$	95	³ ABDALLAH	16A	HESS	WIMP+WIMP $\rightarrow \gamma \gamma$; galactic
<3	× 10 ⁻²⁶	95	⁴ AHNEN	16	MGFL	center Satellite galaxy, m(WIMP)=100 GeV
< 1.9	$\times 10^{-21}$	90	⁵ AVRORIN	16	BAIK	us from galactic center
<3	$\times 10^{-26}$	95	⁶ CAPUTO	16	FLAT	small Magellanic cloud
<1	$\times 10^{-25}$	95	⁷ FORNASA	16	FLAT	Fermi-LAT γ -ray anisotropy
<5	$\times 10^{-27}$		⁸ LEITE	16		WIMP, radio
<2	$\times 10^{-26}$	95	⁹ LI	16	FLAT	dwarf galaxies
<1	$\times 10^{-25}$	95	¹⁰ LI	16A	FLAT	Fermi-LAT; M31
<1	$\times 10^{-26}$		¹¹ LIANG	16	FLAT	Fermi-LAT, gamma line
<1	$\times 10^{-25}$	95	¹² LU	16	FLAT	Fermi-LAT and AMS-02
<1	$\times 10^{-23}$	95	¹³ SHIRASAKI	16	FLAT	extra galactic
			¹⁴ AARTSEN	15 C	ICCB	u, Galactic halo
			¹⁵ AARTSEN		ICCB	u, Galactic center
			16 ABRAMOWSK	(115	HESS	Galactic center
			¹⁷ ACKERMANN	15	FLAT	monochromatic γ
			¹⁸ ACKERMANN	15A	FLAT	isotropic γ background

 $^{^{13}}$ SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm $^{-3}$ is assumed.

¹⁵ SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.

 $^{^{16}}$ BECK 94 uses enriched 76 Ge (86% purity).

¹⁷ REUSSER 91 limit here is changed from published (5) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

² APRILE 15 search for periodic variation of electronic recoil event rate in the data between Feb. 2011 and Mar. 2012. No significant modulation is found for periods up to 500 days.

³ APRILE 15A search for X^0 scattering off electrons. See their Fig. 4 for limits on cross section through axial-vector coupling for m_{χ^0} between 0.6 GeV and 1 TeV. For $m_{\chi^0}=2$ GeV, $\sigma<60$ pb (90%CL) is obtained.

```
<sup>19</sup> ACKERMANN 15B FLAT Satellite galaxy
                             <sup>20</sup> ADRIAN-MAR..15
                                                       ANTR \nu, Galactic center
< 2.90 \times 10^{-26}
                     95 <sup>21,22</sup> ACKERMANN 14
                                                        FLAT
                                                                 Satellite galaxy, m = 10 \text{ GeV}
                     95 <sup>21,23</sup> ACKERMANN 14
< 1.84 \times 10^{-25}
                                                                 Satellite galaxy, m = 100 \text{ GeV}
                                                        FLAT
< 1.75 \times 10^{-24}
                     95 <sup>21,23</sup> ACKERMANN 14
                                                        FLAT
                                                                 Satellite galaxy, m=1 TeV
<4.52 \times 10^{-24}
                             <sup>24</sup> ALEKSIC
                                                  14
                                                        MGIC Segue 1, m = 1.35 TeV
                             <sup>25</sup> AARTSEN
                                                  13C ICCB
                                                                 Galaxies
                             <sup>26</sup> ABRAMOWSKI13
                                                        HESS
                                                                 Central Galactic Halo
                             <sup>27</sup> ACKERMANN 13A FLAT
                                                                 Galaxy
                             <sup>28</sup> ABRAMOWSKI12
                                                        HESS
                                                                 Fornax Cluster
                             <sup>29</sup> ACKERMANN 12
                                                        FLAT
                                                                 Galaxy
                             <sup>30</sup> ACKERMANN 12
                                                        FLAT
                                                                 Galaxy
                             <sup>31</sup> ALIU
                                                  12
                                                        VRTS
                                                                 Segue 1
       \times 10^{-22}
                             <sup>32</sup> ABBASI
<1
                                                  11c ICCB
                                                                 Galactic halo, m=1 TeV
       \times 10^{-25}
                             <sup>33</sup> ABRAMOWSKI11
                                                                 Near Galactic center, m=1 TeV
<3
                                                        HESS
<1
                             <sup>34</sup> ACKERMANN 11
                                                        FLAT
                                                                 Satellite galaxy, m=10 GeV
                             <sup>34</sup> ACKERMANN 11
       \times 10^{-25}
                                                        FLAT
                                                                 Satellite galaxy, m=100 \text{ GeV}
<1
       \times 10^{-24}
                             <sup>34</sup> ACKERMANN 11
                                                        FLAT
                                                                 Satellite galaxy, m=1 TeV
```

- 1 AARTSEN 16D search for GeV νs from WIMP annihilation in galaxy; limits set on $\left<\sigma \cdot v\right>$ in Fig. 6, 7.
- 2 ABDALLAH 16 require $\left<\sigma\cdot v\right><6\times10^{-26}~{\rm cm}^3/{\rm s}$ for $\it m(WIMP)=1.5$ TeV from 254 hours observation ($\it WW$ channel) and $<2\times10^{-26}~{\rm cm}^3/{\rm s}$ for $\it m(WIMP)=1.0$ TeV in $\tau^+\tau^-$ channel.
- ³ ABDALLAH 16A search for line spectra from WIMP + WIMP $\rightarrow \gamma \gamma$ in 18 hr HESS data; rule out previous 130 GeV WIMP hint from Fermi-LAT data.
- ⁴ AHNEN 16 require $\langle \sigma \cdot v \rangle < 3 \times 10^{-26} \text{ cm}^3/\text{s}$ for m(WIMP) = 100 GeV (WW channel).
- 5 AVRORIN 16 require $\langle \text{s.v} \rangle < 1.91 \times 10^{-21} \text{ cm}^3/\text{s}$ from WIMP annihilation to νs via WW channel for m(WIMP) = 1 TeV.
- ⁶ CAPUTO 16 place limits on WIMPs from annihilation to gamma rays in Small Magellanic Cloud using Fermi-LaT data: $\langle \sigma \cdot v \rangle < 3 \times 10^{-26} \text{cm}^3/\text{s}$ for m(WIMP) = 10 GeV.
- ⁷ FORNASA 16 use anisotropies in the γ -ray diffuse emission detected by Fermi-LAT to bound $\langle \sigma \cdot v \rangle < 10^{-25} \mathrm{cm}^3/\mathrm{s}$ for m(WIMP) = 100 GeV in $b \, \overline{b}$ channel: see Fig. 28. The limit is driven by dark-matter subhalos in the Milky Way and it refers to their Most Constraining Scenario.
- ⁸ LEITE 16 constrain WIMP annihilation via search for radio emissions from Smith cloud; $\langle \sigma \cdot v \rangle < 5 \times 10^{-27} \mathrm{cm}^3/\mathrm{s}$ in *ee* channel for m(WIMP) = 5 GeV.
- $^9\,\text{LI}$ 16 re-analyze Fermi-LAT data on 8 dwarf spheroidals; set limit $\left<\sigma\cdot v\right><2\times10^{-26}\,$ cm $^3/\text{s}$ for m(WIMP)=100 GeV in $b\,\overline{b}$ mode with substructures included.
- 10 LI 16A constrain $\left<\sigma\cdot v\right><10^{-25} {\rm cm}^3/{\rm s}$ in $b\,\overline{b}$ channel for m(WIMP) = 100 GeV using Fermi-LAT data from M31; see Fig. 6.
- 11 LIANG 16 search dwarf spheroidal galaxies, Large Magellanic Cloud, and Small Magellanic Cloud for γ -line in Fermi-LAT data.
- 12 LU 16 re-analyze Fermi-LAT and AMS-02 data; require $\langle\sigma\cdot v\rangle<10^{-25}{\rm cm}^3/{\rm s}$ for $m_m({\rm WIMP})=1$ TeV in $b\overline{b}$ channel .
- ¹³ SHIRASAKI 16 re-anayze Fermi-LAT extra-galactic data; require $\langle \sigma \cdot v \rangle < 10^{-23} \text{cm}^3/\text{s}$ for m(WIMP) = 1 TeV in $b\overline{b}$ channel; see Fig. 8.
- 14 AARTSEN 15C search for neutrinos from X^0 annihilation in the Galactic halo. See their Figs. 16 and 17, and Table 5 for limits on $\sigma \cdot \mathbf{v}$ for X^0 mass between 100 GeV and 100 TeV.

- ¹⁵ AARTSEN 15E search for neutrinos from X^0 annihilation in the Galactic center. See their Figs. 7 and 9, and Table 3 for limits on $\sigma \cdot v$ for X^0 mass between 30 GeV and 10 TeV.
- ¹⁶ ABRAMOWSKI 15 search for γ from X^0 annihilation in the Galactic center. See their Fig. 4 for limits on $\sigma \cdot v$ for X^0 mass between 250 GeV and 10 TeV.
- ¹⁷ ACKERMANN 15 search for monochromatic γ from X^0 annihlation in the Galactic halo. See their Fig. 8 and Tables 2–4 for limits on $\sigma \cdot v$ for X^0 mass between 0.2 GeV and 500 GeV.
- ¹⁸ ACKERMANN 15A search for γ from X^0 annihilation (both Galactic and extragalactic) in the isotropic γ background. See their Fig. 7 for limits on $\sigma \cdot v$ for X^0 mass between 10 GeV and 30 TeV.
- 19 ACKERMANN 15B search for γ from X^0 annihilation in 15 dwarf spheroidal satellite galaxies of the Milky Way. See their Figs. 1 and 2 for limits on $\sigma \cdot v$ for X^0 mass between 2 GeV and 10 TeV.
- ²⁰ ADRIAN-MARTINEZ 15 search for neutrinos from X^0 annihilation in the Galactic center. See their Figs. 10 and 11 and Tables 1 and 2 for limits on $\sigma \cdot v$ for X^0 mass between 25 GeV and 10 TeV.
- 21 ACKERMANN 14 search for γ from X^0 annihilation in 25 dwarf spheroidal satellite galaxies of the Milky Way. See their Tables II–VII for limits assuming annihilation into e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $u\overline{u}$, $b\overline{b}$, and W^+W^- , for X^0 mass ranging from 2 GeV to 10 TeV.
- ²² Limit assuming X^0 pair annihilation into $b\overline{b}$.
- ²³ Limit assuming X^0 pair annihilation into W^+W^- .
- ²⁴ ALEKSIC 14 search for γ from X^0 annihilation in the dwarf spheroidal galaxy Segue 1. The listed limit assumes annihilation into W^+W^- . See their Figs. 6, 7, and 16 for limits on $\sigma \cdot \mathbf{v}$ for annihilation channels $\mu^+\mu^-$, $\tau^+\tau^-$, $b\overline{b}$, $t\overline{t}$, $\gamma\gamma$, γZ , W^+W^- , ZZ for X^0 mass between 10^2 and 10^4 GeV.
- 25 AARTSEN 13C search for neutrinos from X^0 annihilation in nearby galaxies and galaxy clusters. See their Figs. 5–7 for limits on $\sigma \cdot \mathbf{v}$ for $X^0 X^0 \to \nu \overline{\nu}$, $\mu^+ \mu^-$, $\tau^+ \tau^-$, and $W^+ W^-$ for X^0 mass between 300 GeV and 100 TeV.
- $W^+\,W^-$ for X^0 mass between 300 GeV and 100 TeV. 26 ABRAMOWSKI 13 search for monochromatic γ from X^0 annihilation in the Milky Way halo in the central region. Limit on $\sigma \cdot \mathbf{v}$ between 10^{-28} and 10^{-25} cm 3 s $^{-1}$ (95% CL) is obtained for X^0 mass between 500 GeV and 20 TeV for $X^0\,X^0 \to \gamma\gamma$. X^0 density distribution in the Galaxy by Einasto is assumed. See their Fig. 4.
- ²⁷ ACKERMANN 13A search for monochromatic γ from X^0 annihilation in the Milky Way. Limit on $\sigma \cdot v$ for the process $X^0 X^0 \to \gamma \gamma$ in the range 10^{-29} – 10^{-27} cm³ s⁻¹ (95% CL) is obtained for X^0 mass between 5 and 300 GeV. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Tables VII—X and Fig.10. Supersedes ACKERMANN 12.
- ²⁸ ABRAMOWSKI 12 search for γ 's from X^0 annihilation in the Fornax galaxy cluster. See their Fig. 7 for limits on $\sigma \cdot \mathbf{v}$ for X^0 mass between 0.1 and 100 TeV for the annihilation channels $\tau^+\tau^-$, $b\overline{b}$, and W^+W^- .
- ²⁹ ACKERMANN 12 search for monochromatic γ from X^0 annihilation in the Milky Way. Limit on $\sigma \cdot v$ in the range 10^{-28} – 10^{-26} cm 3 s $^{-1}$ (95% CL) is obtained for X^0 mass between 7 and 200 GeV if X^0 annihilates into $\gamma \gamma$. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Table III and Fig. 15.
- ³⁰ ACKERMANN 12 search for γ from X^0 annihilation in the Milky Way in the diffuse γ background. Limit on $\sigma \cdot \mathbf{v}$ of 10^{-24} cm³s⁻¹ or larger is obtained for X^0 mass between 5 GeV and 10 TeV for various annihilation channels including W^+W^- , $b\overline{b}$, gg, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Figs. 17–20.
- 31 ALIU 12 search for γ 's from X^0 annihilation in the dwarf spheroidal galaxy Segue 1. Limit on $\sigma \cdot v$ in the range 10^{-24} – 10^{-20} cm 3 s $^{-1}$ (95% CL) is obtained for X^0 mass

- between 10 GeV and 2 TeV for annihilation channels e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $b\overline{b}$, and W^+W^- . See their Fig. 3.
- 32 ABBASI 11C search for ν_{μ} from X^0 annihilation in the outer halo of the Milky Way. The limit assumes annihilation into $\nu\nu$. See their Fig. 9 for limits with other annihilation channels.
- 33 ABRAMOWSKI 11 search for γ from X^0 annihilation near the Galactic center. The limit assumes Einasto DM density profile.
- 34 ACKERMANN 11 search for γ from X^0 annihilation in ten dwarf spheroidal satellite galaxies of the Milky Way. The limit for m=10 GeV assumes annihilation into $b\overline{b}$, the others W^+ W^- . See their Fig. 2 for limits with other final states. See also GERINGER-SAMETH 11 for a different analysis of the same data.

Dark Matter Particle (X^0) Production in Hadron Collisions

Searches for X^0 production in association with observable particles (γ , jets, ...) in high energy hadron collisions. If a specific form of effective interaction Lagrangian is assumed, the limits may be translated into limits on X^0 -nucleon scattering cross section.

VALUE <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
pp (H \rightarrow b\overline{b} + WIMP pair)
 <sup>1</sup> AABOUD
                           17A ATLS
 <sup>2</sup> KHACHATRY...17A CMS
                                               forward jets + E_T
 <sup>3</sup> AABOUD
                          16AD ATLS (W \text{ or } Z \rightarrow \text{jets}) + \cancel{E}_T
 <sup>4</sup> AAD
                                             VV 
ightarrow 	ext{forward jets} + \overline{\cancel{E}}_T
                           16AF ATLS
 <sup>5</sup> AAD
                           16AG ATLS \ell + jets
 <sup>6</sup> AAD
                                             pp \rightarrow H + \cancel{E}_T, H \rightarrow b\overline{b}
                           16M ATLS
 <sup>7</sup> KHACHATRY...16BZ CMS
                                               jet(s) + \cancel{E}_T
 <sup>8</sup> KHACHATRY...16CA CMS
                                              \mathsf{jets} + \not\!\!E_T
 <sup>9</sup> KHACHATRY...16N CMS
                                               pp \rightarrow \gamma + \not\!\!E_T
<sup>10</sup> AAD
                           15AS ATLS b(\overline{b}) + \cancel{E}_T, t\overline{t} + \cancel{E}_T
^{11}\,\mathrm{AAD}
                           15BH ATLS jet + \cancel{E}_T
<sup>12</sup> AAD
                                              H^0 + \bar{E_T}
                           15CF ATLS
13 AAD
                           15CS ATLS
                                              \gamma + \cancel{E}_T
<sup>14</sup> KHACHATRY...15AG CMS
                                               t\overline{t} + \cancel{E}_T
<sup>15</sup> KHACHATRY...15AL CMS
                                               jet + \cancel{E}_T
<sup>16</sup> KHACHATRY...15T CMS
                                               \ell + \not\!\!E_T
^{17} AAD
                           14AI ATLS
                                               W + \cancel{E}_T
^{18} AAD
                           14BK ATLS
                                               W, Z + \cancel{E}_T
<sup>19</sup> AAD
                        14K ATLS
                                               Z + \not\!\!E_T
<sup>20</sup> AAD
                          140 ATLS
                                              Z + E_T
^{21} AAD
                           13AD ATLS
                                              jet + \cancel{E}_T
<sup>22</sup> AAD
                          13C ATLS
                                               \gamma + \not\!\!E_T
<sup>23</sup> AALTONEN
                           12K CDF
                                               t + \not\!\!E_T
<sup>24</sup> AALTONEN
                           12M CDF
                                               jet + \cancel{E}_T
<sup>25</sup> CHATRCHYAN 12AP CMS
                                               jet + \cancel{E}_T
<sup>26</sup> CHATRCHYAN 12T CMS
                                               \gamma + \not\!\!E_T
```

 $^{^1}$ AABOUD 17A search for $H \to b\overline{b} + \not\!\!\!E_T$. See Fig. 4b for limits set on VB mediator vs WIMP mass

² KHACHATRYAN 17A search for WIMPs in forward jets $+ \mathbb{Z}_T$ channel with 18.5 fb⁻¹ at 8 TeV; limits set in effective theory model, Fig. 3.

- 3 AABOUD 16AD place limits on VVXX effective theory via search for hadronic W or Z plus WIMP pair production. See Fig. 5.
- ⁴AAD 16AF search for $VV \rightarrow (H \rightarrow \text{WIMP pair}) + \text{forward jets with } 20.3 \text{ fb}^{-1} \text{ at } 8$ TeV; set limits in Higgs portal model, Fig. 8 .
- ⁵ AAD 16AG search for lepton jets with 20.3 fb⁻¹ of data at 8 TeV; Fig. 13 excludes dark photons around 0.1–1 GeV for kinetic mixing 10^{-6} – 10^{-2} .
- ⁶ AAD 16M search with 20.3 fb⁻¹ of data at 8 TeV pp collisions; limits placed on EFT model (Fig. 7) and simplified Z' model (Fig. 6).
- 7 KHACHATRYAN 16BZ search for jet(s) $+ \not \!\! E_T$ in 19.7 fb $^{-1}$ at 8 TeV; limits set for variety of simplified models.
- ⁸ KHACHATRYAN 16CA search for WIMPs via jet(s) $+ \not\!\!E_T$ using razor variable; require mediator scale > 1 TeV for various effective theories.
- $^9\,\rm KHACHATRYAN$ 16N search for γ + WIMPs in 19.6 fb $^{-1}$ at 8 TeV; limits set on SI and SD WIMP-p scattering in Fig. 3.
- 10 AAD 15AS search for events with one or more bottom quark and missing E_T , and also events with a top quark pair and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb $^{-1}$. See their Figs. 5 and 6 for translated limits on X^0 -nucleon cross section for m=1-700 GeV.
- 11 AAD 15BH search for events with a jet and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb $^{-1}$. See their Fig. 12 for translated limits on X^0 -nucleon cross section for m=1–1200 GeV.
- 12 AAD 15CF search for events with a $H^0~(\rightarrow~\gamma\gamma)$ and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with $L=20.3~{\rm fb}^{-1}$. See paper for limits on the strength of some contact interactions containing X^0 and the Higgs fields.
- 13 AAD 15CS search for events with a photon and missing E_T in pp collisions at $E_{\rm cm}=$ 8 TeV with L=20.3 fb $^{-1}$. See their Fig. 13 (see also erratum) for translated limits on X^0 -nucleon cross section for m=1–1000 GeV.
- ¹⁴ KHACHATRYAN 15AG search for events with a top quark pair and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=19.7 fb $^{-1}$. See their Fig. 8 for translated limits on X^0 -nucleon cross section for m=1–200 GeV.
- ¹⁵ KHACHATRYAN 15AL search for events with a jet and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=19.7 fb $^{-1}$. See their Fig. 5 and Tables 4–6 for translated limits on X^0 -nucleon cross section for m=1–1000 GeV.
- 16 KHACHATRYAN 15T search for events with a lepton and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=19.7 fb $^{-1}$. See their Fig. 17 for translated limits on X^0 -proton cross section for m=1-1000 GeV.
- 17 AAD 14AI search for events with a W and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb $^{-1}$. See their Fig. 4 for translated limits on X^0 -nucleon cross section for m=1-1500 GeV.
- 18 AAD 14BK search for hadronically decaying W,~Z in association with E_T in 20.3 fb $^{-1}$ at 8 TeV pp collisions. Fig. 5 presents exclusion results for SI and SD scattering cross section. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are also set in two fiducial regions.
- ¹⁹ AAD 14K search for events with a Z and missing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb $^{-1}$. See their Fig. 5 and 6 for translated limits on X^0 -nucleon cross section for m=1-10 3 GeV.
- ²⁰ AAD 140 search for ZH^0 production with H^0 decaying to invisible final states. See their Fig. 4 for translated limits on X^0 -nucleon cross section for m=1-60 GeV in Higgs-portal X^0 scenario.
- ²¹ AAD 13AD search for events with a jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=4.7 fb $^{-1}$. See their Figs. 5 and 6 for translated limits on X^0 -nucleon cross section for m=1–1300 GeV.

- ²² AAD 13C search for events with a photon and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=4.6 fb $^{-1}$. See their Fig. 3 for translated limits on X^0 -nucleon cross section for m=1–1000 GeV.
- ²³ AALTONEN 12K search for events with a top quark and missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=7.7 fb $^{-1}$. Upper limits on $\sigma(tX^0)$ in the range 0.4–2 pb (95% CL) is given for $m_{\chi^0}=0$ –150 GeV.
- ²⁴ AALTONEN 12M search for events with a jet and missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=6.7 fb $^{-1}$. Upper limits on the cross section in the range 2–10 pb (90% CL) is given for $m_{\chi^0}=1$ –300 GeV. See their Fig. 2 for translated limits on χ^0 -nucleon cross section.
- 25 CHATRCHYAN 12AP search for events with a jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=5.0~{\rm fb}^{-1}$. See their Fig. 4 for translated limits on X^0 -nucleon cross section for $m_{X^0}=0.1$ –1000 GeV.
- ²⁶ CHATRCHYAN 12T search for events with a photon and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=5.0 fb $^{-1}$. Upper limits on the cross section in the range 13–15 fb (90% CL) is given for $m_{\chi^0}=1$ –1000 GeV. See their Fig. 2 for translated limits on χ^0 -nucleon cross section.

CONCENTRATION OF STABLE PARTICLES IN MATTER

Concentration of Heavy (Charge +1) Stable Particles in Matter

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	he followin	ig data for average	s, fits,	limits,	etc. • • •
$< 4 \times 10^{-17}$	95	¹ YAMAGATA	93	SPEC	Deep sea water, $M=5-1600m_p$
$< 6 \times 10^{-15}$	95	² VERKERK	92	SPEC	Water, $M=10^5$ to 3 \times 10^7 GeV
$< 7 \times 10^{-15}$	95	² VERKERK	92	SPEC	10^7 GeV Water, $M = 10^4$, 6 × 10^7 GeV
$< 9 \times 10^{-15}$	95	² VERKERK	92	SPEC	10^7 GeV Water, $M=10^8$ GeV
$< 3 \times 10^{-23}$	90	³ HEMMICK	90	SPEC	Water, $M=1000m_p$
$< 2 \times 10^{-21}$	90	³ HEMMICK	90	SPEC	Water, $M = 5000 m_p$
$< 3 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	Water, $M = 10000 m_p$
$< 1. \times 10^{-29}$		SMITH	82B	SPEC	Water, <i>M</i> =30–400 <i>m</i> _p
$< 2. \times 10^{-28}$		SMITH	82 B	SPEC	Water, <i>M</i> =12-1000 <i>m</i> _p
$< 1. \times 10^{-14}$		SMITH	82 B	SPEC	Water, $M > 1000 m_p$
$<$ (0.2–1.) \times 10 $^{-21}$		SMITH	79		Water, $M=6-350 m_p$

¹ YAMAGATA 93 used deep sea water at 4000 m since the concentration is enhanced in deep sea due to gravity.

² VERKERK 92 looked for heavy isotopes in sea water and put a bound on concentration of stable charged massive particle in sea water. The above bound can be translated into into a bound on charged dark matter particle (5 × 10⁶ GeV), assuming the local density, ρ =0.3 GeV/cm³, and the mean velocity $\langle v \rangle$ =300 km/s.

 $^{^3}$ See HEMMICK 90 Fig. 7 for other masses 100–10000 m_p .

Concentration of Heavy Stable Particles Bound to Nuclei

VALUE	CL%	DOCUMENT ID		TECN	COMMENT				
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
$<1.2 \times 10^{-11}$	95	¹ JAVORSEK	01	SPEC	Au, <i>M</i> = 3 GeV				
$<$ 6.9 \times 10 ⁻¹⁰	95	$^{ m 1}$ JAVORSEK	01	SPEC	Au, <i>M</i> = 144 GeV				
$<1 \times 10^{-11}$	95	² JAVORSEK	01 B	SPEC	Au, <i>M</i> = 188 GeV				
$<1 \times 10^{-8}$	95	² JAVORSEK	01 B	SPEC	Au, <i>M</i> = 1669 GeV				
$< 6 \times 10^{-9}$	95	² JAVORSEK	01 B	SPEC	Fe, <i>M</i> = 188 GeV				
$< 1 \times 10^{-8}$	95	² JAVORSEK	01 B	SPEC	Fe, <i>M</i> = 647 GeV				
$< 4 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	C, $M = 100 m_{p}$				
$< 8 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	C, $M = 1000 m_{p}$				
$< 2 \times 10^{-16}$	90	³ HEMMICK	90	SPEC	C, $M = 10000 m_p$				
$< 6 \times 10^{-13}$	90	³ HEMMICK	90	SPEC	Li, $M = 1000 m_p$				
$< 1 \times 10^{-11}$	90	³ HEMMICK	90	SPEC	Be, $M = 1000 m_p$				
$< 6 \times 10^{-14}$	90	³ HEMMICK	90	SPEC	B, $M = 1000 m_{p}$				
$<4 \times 10^{-17}$	90	³ HEMMICK	90	SPEC	O, $M = 1000 m_p$				
$<$ 4 \times 10 ⁻¹⁵	90	³ HEMMICK	90	SPEC	F, $M = 1000 m_{p}$				
$< 1.5 imes 10^{-13} / nucleon$	68	⁴ NORMAN	89	SPEC	²⁰⁶ PbX ⁻				
$< 1.2 imes 10^{-12}$ /nucleon	68	⁴ NORMAN	87	SPEC	56,58 _{Fe} X^-				

 $^{^{1}}$ JAVORSEK 01 search for (neutral) SIMPs (strongly interacting massive particles) bound to Au nuclei. Here $\it M$ is the effective SIMP mass. 2 JAVORSEK 01B search for (neutral) SIMPs (strongly interacting massive particles) bound

GENERAL NEW PHYSICS SEARCHES

This subsection lists some of the search experiments which look for general signatures characteristic of new physics, independent of the framework of a specific model.

The observed events are compatible with Standard Model expectation, unless noted otherwise.

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	g data for averages	s, fits,	limits,	etc. • • •
	¹ AAD	15AT	ATLS	$t + \not\!\!E_T$
	² KHACHATRY.			
	³ AALTONEN	1 4J	CDF	W+2 jets
		13A	ATLS	$WW \rightarrow \ell \nu \ell' \nu$
	⁵ AAD	13 C	ATLS	$\gamma + \not\!\!E_T$
	⁶ AALTONEN	131	CDF	Delayed $\gamma + \not\!\!E_T$
	⁷ CHATRCHYAN	N 13	CMS	$\ell^+\ell^-$ + jets + E_T
	⁸ AAD	12 C	ATLS	$t\overline{t}+\cancel{E}_{T}$
	⁹ AALTONEN	12M	CDF	$iet + E_T$
	¹⁰ CHATRCHYAN	1 12AF	CMS	jet + $ ot\!$

² JAVORSEK 01B search for (neutral) SIMPs (strongly interacting massive particles) bound to Au and Fe nuclei from various origins with exposures on the earth's surface, in a satellite, heavy ion collisions, etc. Here *M* is the mass of the anomalous nucleus. See also JAVORSEK 02.

also JAVORSEK 02. 3 See HEMMICK 90 Fig. 7 for other masses 100–10000 $m_{\mbox{\scriptsize p}}$.

 $^{^4\,\}mathrm{Bound}$ valid up to $m_{\,\boldsymbol{\chi}^-}~\sim~100$ TeV.

```
<sup>11</sup> CHATRCHYAN 12Q CMS
                                              Z + \text{jets} + \cancel{E}_T
<sup>12</sup> CHATRCHYAN 12T CMS
                                              \gamma + \not\!\!E_T
<sup>13</sup> AAD
                         11S ATLS jet + \not\!\!E_T
<sup>14</sup> AALTONEN 11AF CDF
                                             \ell^{\pm}\ell^{\pm}
<sup>15</sup> CHATRCHYAN 11C CMS \ell^+\ell^- + jets + E_T
<sup>16</sup> CHATRCHYAN 11U CMS
                                             \mathsf{jet} + \not\!\!E_T
<sup>17</sup> AALTONEN
                                             \gamma \gamma + \ell, \not\!\!E_T
                        10AF CDF
<sup>18</sup> AALTONEN
                          09AF CDF
                                              \ell \gamma b 
ot\!\!\!/_T
<sup>19</sup> AALTONEN
                          09G CDF
                                              \ell\ell\ell \not\!\!E_T
```

 1 AAD 15AT search for events with a top quark and mssing ${\it E}_T$ in ${\it pp}$ collisions at ${\it E}_{
m cm}$

 $_2\!=\!8$ TeV with $L=20.3~{\rm fb}^{-1}.$ KHACHATRYAN 15F search for events with a top quark and mssing ${\it E}_T$ in $\it pp$ collisions at $E_{cm} = 8 \text{ TeV with } L = 19.7 \text{ fb}^{-1}$.

 3 AALTONEN 14J examine events with a W and two jets in $p\overline{p}$ collisions at $E_{\sf cm}=1.96$ TeV with $L=8.9~{
m fb}^{-1}$. Invariant mass distributions of the two jets are consistent with the Standard Model expectation.

⁴ AAD 13A search for resonant W W production in pp collisions at $E_{cm}=7$ TeV with L

 5 AAD 13C search for events with a photon and missing $ot\!\!E_T$ in pp collisions at $E_{\sf cm}=7$

TeV with $L=4.6~{\rm fb^{-1}}$. AALTONEN 13I search for events with a photon and missing E_T , where the photon is detected after the expected timing, in $p\overline{p}$ collisions at $E_{\rm cm}=1.96~{\rm TeV}$ with L=6.3 ${\rm fb^{-1}}$. The data are consistent with the Standard Model expectation.

7 CHATRCHYAN 13 search for events with an opposite-sign lepton pair, jets, and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=4.98~{\rm fb}^{-1}$.

⁸ AAD 12C search for events with a $t\overline{t}$ pair and missing $\not\!\!E_T$ in pp collisions at $E_{\sf cm}=7$

9 TeV with $L=1.04~{\rm fb}^{-1}$. AALTONEN 12M search for events with a jet and missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}$

 $^{=}$ 1.96 TeV with L= 6.7 fb $^{-1}$. CHATRCHYAN 12AP search for events with a jet and missing ${\it E}_{T}$ in $\it pp$ collisions at $E_{\rm cm} = 7 \text{ TeV with } L = 5.0 \text{ fb}^{-1}.$

 11 CHATRCHYAN 12 Q search for events with a Z, jets, and missing $ot\!\!E_T$ in $p\,p$ collisions at $E_{\rm cm} = 7 \text{ TeV with } L = 4.98 \text{ fb}^{-1}.$

 12 CHATRCHYAN 12 T search for events with a photon and missing E_T in pp collisions at $E_{\rm cm} = 7 \text{ TeV with } L = 5.0 \text{ fb}^{-1}.$

 13 AAD 11 S search for events with one jet and missing E_T in pp collisions at $E_{\sf cm}=7$ TeV with $L = 33 \text{ pb}^{-1}$.

¹⁴ AALTONEN 11AF search for high- p_T like-sign dileptons in $p_{\overline{p}}$ collisions at $E_{cm}=$ 1.96 TeV with $L = 6.1 \text{ fb}^{-1}$.

15 CHATRCHYAN 11C search for events with an opposite-sign lepton pair, jets, and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 34 pb⁻¹.

 16 CHATRCHYAN 11 U search for events with one jet and missing E_T in $\it pp$ collisions at $E_{\rm cm} = 7 \text{ TeV with } L = 36 \, \rm pb^{-1}.$

¹⁷ AALTONEN 10AF search for $\gamma\gamma$ events with $e,~\mu,~ au,~$ or missing ${\it E}_T$ in $p{\overline p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.1–2.0 fb $^{-1}.$ 18 AALTONEN 09AF search for $\ell\gamma\,b$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.0$

1.96 TeV with $L=1.9~{\rm fb}^{-1}$. The observed events are compatible with Standard Model expectation including $t\overline{t}\gamma$ production.

 19 AALTONEN 09G search for $\mu\mu\mu$ and $\mu\mu e$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96 \text{ TeV with } L = 976 \text{ pb}^{-1}.$

LIMITS ON JET-JET RESONANCES

Heavy Particle Production Cross Section

Limits are for a particle decaying to two hadronic jets.

Units(pb) CL% Mass(GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<sup>1</sup> AABOUD
                                                                       ATLS
                                                                                   pp \rightarrow b + jet
                                       ^2 AAD
                                                                16N ATLS
                                                                                   pp \rightarrow 3 \text{ high } E_T \text{ jets}
                                       3 AAD
                                                                16S
                                                                      ATLS
                                                                                   pp \rightarrow jj resonance
                                       <sup>4</sup> KHACHATRY...16k CMS
                                                                                   pp \rightarrow jj resonance
                                       <sup>5</sup> KHACHATRY...16L CMS
                                                                                   pp \rightarrow jj resonance
                                       <sup>6</sup> AAD
                                                                13D ATLS
                                                                                   7 TeV pp \rightarrow 2 jets
                                       <sup>7</sup> AALTONEN
                                                                13R CDF
                                                                                   1.96 TeV p\overline{p} \rightarrow 4 jets
                                       <sup>8</sup> CHATRCHYAN 13A CMS
                                                                                   7 TeV pp \rightarrow 2 jets
                                       <sup>9</sup> CHATRCHYAN 13A CMS
                                                                                   7 TeV pp \rightarrow b\overline{b}X
                                     ^{10}\,\mathrm{AAD}
                                                                12S ATLS
                                                                                   7 TeV pp \rightarrow 2 jets
                                     <sup>11</sup> CHATRCHYAN 12BL CMS
                                                                                   7 TeV pp \rightarrow t\overline{t}X
                                     ^{12} AAD
                                                                11AG ATLS
                                                                                   7 TeV pp \rightarrow 2 jets
                                     <sup>13</sup> AALTONEN
                                                                11M CDF
                                                                                   1.96 TeV p\overline{p} \rightarrow W+ 2 jets
                                     <sup>14</sup> ABAZOV
                                                                111
                                                                                   1.96 TeV p\overline{p} \rightarrow W+ 2 jets
                                                                       D0
                                     <sup>15</sup> AAD
                                                                10
                                                                       ATLS
                                                                                   7 TeV pp \rightarrow 2 jets
                                     <sup>16</sup> KHACHATRY...10
                                                                       CMS
                                                                                   7 TeV pp \rightarrow 2 jets
                                     <sup>17</sup> ABE
                                                                99F CDF
                                                                                   1.8 TeV p\overline{p} \rightarrow b\overline{b}+ anything
                                     ^{18}\,\mathrm{ABE}
                                                                97G CDF
                                                                                   1.8 TeV p\overline{p} \rightarrow 2 jets
                                     <sup>19</sup> ABE
                                                                                   1.8 TeV p\overline{p} \rightarrow 2 jets
< 2603
                    200
                                                                93G CDF
              95
                                     <sup>19</sup> ABE
                                                                93G CDF
                                                                                   1.8 TeV p\overline{p} \rightarrow 2 jets
     44
              95 400
                                     <sup>19</sup> ABE
                                                                                   1.8 TeV p\overline{p} \rightarrow 2 jets
              95 600
                                                                93G CDF
      7
```

 $^{^1}$ AABOUD 16 search for resonant dijets including one or two b-jets with 3.2 fb $^{-1}$ at 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z^\prime with SM couplings from 1.1–1.5 TeV.

 $^{^2}$ AAD 16N search for \geq 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black holes (Fig. 10) and string balls (Fig. 11).

³ AAD 16S search for high mass jet-jet resonance with 3.6 fb⁻¹ at 13 TeV; exclude portions of excited quarks, W', Z' and contact interaction parameter space.

 $^{^4}$ KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 for limits on axigluons, diquarks etc.

 $^{^5}$ KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 fb $^{-1}$ of data at 8 TeV. Limits on the coupling of a leptophobic Z^\prime to quarks are set, improving on the results by other experiments in the mass range between 500–800 GeV.

⁶ AAD 13D search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb⁻¹. The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m=1.0–4.0 TeV.

⁷ AALTONEN 13R search for production of a pair of jet-jet resonances in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=6.6 fb⁻¹. See their Fig. 5 and Tables I, II for cross section limits.

⁸CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m=1.0–4.3 TeV.

⁹ CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{cm}=7$ TeV with L=4.8 fb⁻¹. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m=1.0–4.0 TeV.

- 10 AAD 12S search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=1.0 fb $^{-1}$. See their Fig. 3 and Table 2 for limits on resonance cross section in the range m=0.9–4.0 TeV.
- ¹¹ CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.4 fb⁻¹. See their Fig. 4 for limits on resonance cross section in the range m=0.5-3.0 TeV.
- 12 AAD 11AG search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L = 36 pb⁻¹. Limits on number of events for m=0.6–4 TeV are given in their Table 3.
- ¹³ AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in W+2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L = 4.3 fb⁻¹.
- 14 ABAZOV 11I search for two-jet resonances in W+2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L = 4.3 fb $^{-1}$ and give limits $\sigma<$ (2.6–1.3) pb (95% CL) for m=110–170 GeV. The result is incompatible with AALTONEN 11M.
- 15 AAD 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L $=315\,{\rm nb}^{-1}$. Limits on the cross section in the range $10\text{--}10^3$ pb is given for m=0.3--1.7 TeV.
- ¹⁶ KHACHATRYAN 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}=7\,{\rm TeV}$ with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m=0.5–2.6 TeV separately in the final states qq, qg, and gg.
- 17 ABE 99F search for narrow $b\,\overline{b}$ resonances in $p\,\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. Limits on $\sigma(p\,\overline{p}\to~X+~{\rm anything})\times{\rm B}(X\to~b\,\overline{b})$ in the range 3–10 3 pb (95%CL) are given for $m_{\textstyle\chi}{=}200{-}750$ GeV. See their Table I.
- 18 ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with $106~{\rm pb}^{-1}$ of data at $E_{\rm cm}=1.8$ TeV. Limits on $\sigma(p\overline{p}\to X+{\rm anything})\cdot {\rm B}(X\to jj)$ in the range 10^4-10^{-1} pb (95%CL) are given for dijet mass $m{=}200{-}1150$ GeV with both jets having $|\eta|<2.0$ and the dijet system having $|{\rm cos}\theta^*|<0.67$. See their Table I for the list of limits. Supersedes ABE 93G.
- ¹⁹ ABE 93G give cross section times branching ratio into light (d, u, s, c, b) quarks for $\Gamma = 0.02 \, M$. Their Table II gives limits for M = 200–900 GeV and $\Gamma = (0.02$ –0.2) M.

LIMITS ON NEUTRAL PARTICLE PRODUCTION

Production Cross Section of Radiatively-Decaying Neutral Particle

VALUE (pb)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	e following	data for averages, fits	, limits,	etc. • • •
< 0.0008	95	AAD 16A	ATLS	$pp ightarrow \gamma + \mathrm{jet}$
<(0.043-0.17)	95	³ ABBIENDI 00D	OPAL	$pp \rightarrow \gamma \gamma$ resonance $e^+e^- \rightarrow \chi^0 \gamma^0$,
,	0.5			$x^0 \rightarrow Y^0 \gamma$ $e^+ e^- \rightarrow X^0 X^0$
<(0.05–0.8)	95	ABBIENDI 00D	OPAL	$e^+e^- ightarrow X^0X^0, \ X^0 ightarrow Y^0\gamma$
<(2.5–0.5)	95	⁵ ACKERSTAFF 97B	OPAL	
<(1.6-0.9)	95	⁶ ACKERSTAFF 97B	OPAL	$e^+e^- ightarrow X^0 \gamma \ X^0 ightarrow Y^0 \gamma \ X^0 ightarrow Y^0 \gamma$

 $^{^1}$ AAD 16AI search for excited quarks (EQ) and quantum black holes (QBH) in 3.2 fb $^{-1}$ at 13 TeV of data; exclude EQ below 4.4 TeV and QBH below 3.8 (6.2) TeV for RS1 (ADD) models. The visible cross section limit was obtained for 5 TeV resonance with $\sigma_G/M_G=2\%$.

 $^{^2}$ KHACHATRYAN 16M search for $\gamma\gamma$ resonance using 19.7 fb $^{-1}$ at 8 TeV and 3.3 fb $^{-1}$ at 13 Tev; slight excess at 750 GeV noted; limit set on RS graviton.

- ³ ABBIENDI 00D associated production limit is for $m_{\chi^0}=$ 90–188 GeV, $m_{\gamma^0}=$ 0 at $E_{\rm cm}=$ 189 GeV. See also their Fig. 9.
- ⁴ ABBIENDI 00D pair production limit is for $m_{\chi^0}=45$ –94 GeV, $m_{\gamma^0}=0$ at $E_{\rm cm}=189$ GeV. See also their Fig. 12.
- ⁵ ACKERSTAFF 97B associated production limit is for $m_{\chi 0}=$ 80–160 GeV, $m_{\gamma 0}=$ 0 from 10.0 pb⁻¹ at $E_{\rm cm}=$ 161 GeV. See their Fig. 3(a).
- ⁶ ACKERSTAFF 97B pair production limit is for $m_{\chi^0}=40$ –80 GeV, $m_{\gamma^0}=0$ from $10.0\,\mathrm{pb}^{-1}$ at $E_\mathrm{cm}=161$ GeV. See their Fig. 3(b).

Heavy Particle Production Cross Section

VALUE (cm ² /N)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	data for averages, fits, I		limits, e	etc. • • •
		¹ AAD	160	ATLS	$\ell + (\ell s \; or \; jets)$
		² AAD	16 R	ATLS	WW , WZ , ZZ reso-
		2			nance
		³ LEES	15E	BABR	e^+e^- collisions
		⁴ ADAMS	97 B	KTEV	m = 1.2 - 5 GeV
$< 10^{-36} - 10^{-33}$	90	⁵ GALLAS	95	TOF	m = 0.5 - 20 GeV
$<(4-0.3) \times 10^{-31}$ $<2 \times 10^{-36}$	95	⁶ AKESSON	91	CNTR	m = 0-5 GeV
$< 2 \times 10^{-36}$	90	⁷ BADIER			$\tau = (0.05-1.) \times 10^{-8} \text{s}$
$< 2.5 \times 10^{-35}$		⁸ GUSTAFSON	76	CNTR	$ au > 10^{-7} { m s}$

- 1 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions.
- 2 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb $^{-1}$ at 8 TeV data; limits placed on massive RS graviton (Fig. 4).
- ³ LEES 15E search for long-lived neutral particles produced in e^+e^- collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits.
- 4 ADAMS 97B search for a hadron-like neutral particle produced in $p\,N$ interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K_L production for the mass range 1.2–5 GeV and lifetime $10^{-9}-10^{-4}$ s. See also our Light Gluino Section.
- 5 GALLAS 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c p N interactions decaying with a lifetime of $10^{-4} 10^{-8}$ s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section $10^{-29} 10^{-33} \; \mathrm{cm}^2$. See Fig. 10.
- 6 AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in $p\,N$ reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $\tau > 10^{-7}\,\rm s$. For $\tau > 10^{-9}\,\rm s$, $\sigma < 10^{-30}\,\rm cm^{-2}/nucleon$ is obtained.
- 7 BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-$ X, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.
- ⁸ GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m > 2 GeV) long-lived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3 GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

Production of New Penetrating Non- ν Like States in Beam Dump

VALUE <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ LOSECCO 81 CALO 28 GeV protons

LIMITS ON CHARGED PARTICLES IN e+e-

Heavy Particle Production Cross Section in e⁺e⁻

Ratio to $\sigma(e^+e^- \to \mu^+\mu^-)$ unless noted. See also entries in Free Quark Search and Magnetic Monopole Searches.

<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • •

¹ ACKERSTAFF 98P OPAL Q=1,2/3, m=45-89.5 GeV ² ABREU 97D DLPH Q=1,2/3, m=45-84 GeV ³ BARATE 97K ALEP Q=1, m=45-85 GeV⁴ AKERS $< 2 \times 10^{-5}$ 95 95R OPAL Q=1, m=5-45 GeV $< 1 \times 10^{-5}$ 95 ⁴ AKERS 95R OPAL Q=2, m=5-45 GeV $< 2 \times 10^{-3}$ ⁵ BUSKULIC 90 93C ALEP Q=1, m=32-72 GeV $<(10^{-2}-1)$ ⁶ ADACHI 95 90C TOPZ Q=1, m=1-16, 18-27 GeV $<7 \times 10^{-2}$ ⁷ ADACHI 90 90E TOPZ Q = 1, m = 5-25 GeV $<1.6 \times 10^{-2}$ ⁸ KINOSHITA 95 PLAS Q=3-180, m < 14.5 GeV $< 5.0 \times 10^{-2}$ ⁹ BARTEL 90 JADE Q=(3,4,5)/3 2–12 GeV

 $^{^1}$ No excess neutral-current events leads to $\sigma(\text{production}) \times \sigma(\text{interaction}) \times \text{acceptance}$ $< 2.26 \times 10^{-71} \text{ cm}^4/\text{nucleon}^2 \text{ (CL} = 90\%)$ for light neutrals. Acceptance depends on models (0.1 to 4. \times 10 $^{-4}$).

 $^{^1}$ ACKERSTAFF 98P search for pair production of long-lived charged particles at $E_{\rm cm}$ between 130 and 183 GeV and give limits $\sigma < (0.05-0.2)\,{\rm pb}$ (95%CL) for spin-0 and spin-1/2 particles with $m{=}45{-}89.5$ GeV, charge 1 and 2/3. The limit is translated to the cross section at $E_{\rm cm}{=}183$ GeV with the s dependence described in the paper. See their Figs. 2–4.

²ABREU 97D search for pair production of long-lived particles and give limits $\sigma < (0.4-2.3)$ pb (95%CL) for various center-of-mass energies $E_{\rm cm} = 130-136$, 161, and 172 GeV, assuming an almost flat production distribution in $\cos\theta$.

 $^{^3}$ BARATE 97K search for pair production of long-lived charged particles at $E_{\rm cm}=130,\,136,\,161,\,$ and 172 GeV and give limits $\sigma<(0.2-0.4)$ pb (95%CL) for spin-0 and spin-1/2 particles with m=45-85 GeV. The limit is translated to the cross section at $E_{\rm cm}=172$ GeV with the $E_{\rm cm}$ dependence described in the paper. See their Figs. 2 and 3 for limits on J=1/2 and J=0 cases.

⁴ AKERS 95R is a CERN-LEP experiment with W_{cm} $\sim m_Z$. The limit is for the production of a stable particle in multihadron events normalized to $\sigma(e^+e^- \to \text{hadrons})$. Constant phase space distribution is assumed. See their Fig. 3 for bounds for $Q=\pm 2/3$, $\pm 4/3$.

⁵ BUSKULIC 93C is a CERN-LEP experiment with $W_{\rm cm}=m_Z$. The limit is for a pair or single production of heavy particles with unusual ionization loss in TPC. See their Fig. 5 and Table 1.

 $^{^6}$ ADACHI 90C is a KEK-TRISTAN experiment with W_{cm} = 52–60 GeV. The limit is for pair production of a scalar or spin-1/2 particle. See Figs. 3 and 4.

⁷ ADACHI 90E is KEK-TRISTAN experiment with $W_{cm}=52$ –61.4 GeV. The above limit is for inclusive production cross section normalized to $\sigma(e^+e^-\to \mu^+\mu^-)\cdot\beta(3-\beta^2)/2$, where $\beta=(1-4m^2/W_{cm}^2)^{1/2}$. See the paper for the assumption about the production mechanism.

Branching Fraction of Z^0 to a Pair of Stable Charged Heavy Fermions

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	data for averages	s, fits,	limits, e	etc. • • •
$< 5 \times 10^{-6}$	95	¹ AKERS	95 R	OPAL	m= 40.4-45.6 GeV
$< 1 \times 10^{-3}$	95	AKRAWY	900	OPAL	m = 29-40 GeV

 $^{^1}$ AKERS 95R give the 95% CL limit $\sigma(X\overline{X})/\sigma(\mu\mu)<1.8\times10^{-4}$ for the pair production of singly- or doubly-charged stable particles. The limit applies for the mass range 40.4–45.6 GeV for X^\pm and < 45.6 GeV for $X^{\pm\pm}$. See the paper for bounds for $Q=\pm2/3,\,\pm4/3.$

LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONS

MASS LIMITS for Long-Lived Charged Heavy Fermions

Limits are for spin 1/2 particles with no color and $SU(2)_L$ charge. The electric charge Q of the particle (in the unit of e) is therefore equal to its weak hypercharge. Pair production by Drell-Yan like γ and Z exchange is assumed to derive the limits.

VALUE (GeV)	CL%	DOCUMENT ID		TECN (COMMENT
ullet $ullet$ We do not use the	following	data for averages,	fits,	limits, et	C. • • •
>660				ATLS	Q =2
>200		² CHATRCHYAN		I	Q = 1/3
>480	95	² CHATRCHYAN	13 AB	CMS	Q = 2/3
>574		² CHATRCHYAN			Q = 1
>685	95	² CHATRCHYAN	13 AB	CMS	Q =2
>140	95	³ CHATRCHYAN	13 AR	CMS	Q = 1/3
>310	95	³ CHATRCHYAN	13 AR	CMS	Q = 2/3

 $^{^{1}}$ AAD 15BJ use 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See paper for limits for $|Q|=3,\,4,\,5,\,6.$

Heavy Particle Production Cross Section

VALUE (nb)	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
ullet $ullet$ We do not use	the fol	lowing data for aver	ages,	fits, limi	ts, etc. • • •
$<1.2 \times 10^{-3}$ $<1.0 \times 10^{-5}$ $<4.8 \times 10^{-5}$ $<0.31-0.04 \times 10^{-3}$ <0.19 <0.05 $<30-130$ <100	95 95 95 95 95 95	1 AAIJ 2 AAD 3 AAD 4,5 AALTONEN 4,6 AALTONEN 7 ABAZOV 8 AKTAS 9 ABE 10 CARROLL 11 LEIPUNER	13AH 11I 09Z 09Z 09M	LHCB ATLS ATLS CDF CDF D0 H1 CDF SPEC CNTR	m=124–309 GeV q =(2–6) e , m =50–600 GeV q =10 e , m =0.2–1 TeV m>100 GeV, noncolored m>100 GeV, colored pair production m=3–10 GeV m=50–200 GeV m=2–2.5 GeV m=3–11 GeV

 $^{^8}$ KINOSHITA 82 is SLAC PEP experiment at W $_{\rm cm}=$ 29 GeV using lexan and $^{39}{\rm Cr}$ plastic sheets sensitive to highly ionizing particles.

⁹ BARTEL 80 is DESY-PETRA experiment with $W_{cm}=27$ –35 GeV. Above limit is for inclusive pair production and ranges between $1.\times10^{-1}$ and $1.\times10^{-2}$ depending on mass and production momentum distributions. (See their figures 9, 10, 11).

 $^{^2}$ CHATRCHYAN 13AB use 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV and 18.8 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV. See paper for limits for |Q|= 3, 4,..., 8.

 $^{^3}$ CHATRCHYAN 13AR use 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV.

Heavy Particle Production Differential Cross Section

reavy rander roduction binerential cross section									
$VALUE \ (cm^2sr^{-1}GeV^{-1})$	CL%	DOCUMENT ID		TECN (CHG	COMMENT			
• • • We do not	use the fo	ollowing data for a	verage	es, fits, lin	nits, e	etc. • • •			
$< 2.6 \times 10^{-36}$	90	¹ BALDIN	76	CNTR -	_	Q= 1, m=2.1-9.4 GeV			
$< 2.2 \times 10^{-33}$	90	² ALBROW	75	SPEC :	±	$Q=\pm 1$, $m=4-15$ GeV			
$< 1.1 \times 10^{-33}$	90	² ALBROW	75	SPEC :	±	$Q=\pm 2$, $m=6-27$ GeV			
$< 8. \times 10^{-35}$	90	³ JOVANOV	75	CNTR =	±	m=15-26 GeV			
$< 1.5 \times 10^{-34}$	90	³ JOVANOV	75	CNTR =	±	$Q=\pm 2$, $m=3-10$ GeV			
$< 6. \times 10^{-35}$	90	³ JOVANOV	75	CNTR =	±	$Q=\pm 2$, $m=10-26$ GeV			
$< 1. \times 10^{-31}$	90	⁴ APPEL	74	CNTR =	±	m=3.2-7.2 GeV			
$<$ 5.8 \times 10 ⁻³⁴	90	⁵ ALPER	73	SPEC :	±	m=1.5-24 GeV			
$< 1.2 \times 10^{-35}$	90	⁶ ANTIPOV	71 B	CNTR -	_	Q=-, m=2.2-2.8			
$< 2.4 \times 10^{-35}$	90	⁷ ANTIPOV	71 C	CNTR -	_	Q=-, m=1.2-1.7,			
$< 2.4 \times 10^{-35}$	90	BINON	69	CNTR -	_	2.1–4 <i>Q</i> =–, <i>m</i> =1–1.8 GeV			
$< 1.5 \times 10^{-36}$		⁸ DORFAN	65	CNTR		Be target <i>m</i> =3–7 GeV			
$< 3.0 \times 10^{-36}$		⁸ DORFAN	65	CNTR		Fe target $m=3-7$ GeV			

 $^{^1}$ BALDIN 76 is a 70 GeV Serpukhov experiment. Value is per Al nucleus at $\theta=0$. For other charges in range -0.5 to -3.0, CL =90% limit is $(2.6\times10^{-36})/|(\text{charge})|$ for mass range (2.1–9.4 GeV) \times |(charge)|. Assumes stable particle interacting with matter as do antiprotons.

 $^{^1}$ AAIJ 15BD search for production of long-lived particles in $p\,p$ collisions at $E_{\rm cm}=7$ and 2 8 TeV. See their Table 6 for cross section limits.

² AAD 13AH search for production of long-lived particles with |q|=(2-6)e in pp collisions at $E_{cm}=7$ TeV with 4.4 fb⁻¹. See their Fig. 8 for cross section limits.

³ AAD 11I search for production of highly ionizing massive particles in pp collisions at $E_{\rm cm}=7$ TeV with L = 3.1 pb $^{-1}$. See their Table 5 for similar limits for $|{\bf q}|=6e$ and 17e, Table 6 for limits on pair production cross section.

⁴ AALTONEN 09Z search for long-lived charged particles in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.0 fb $^{-1}$. The limits are on production cross section for a particle of mass above 100 GeV in the region $|\eta|\lesssim 0.7$, $p_T>40$ GeV, and $0.4<\beta<1.0$.

⁵ Limit for weakly interacting charge-1 particle.

⁶ Limit for up-quark like particle.

⁷ ABAZOV 09M search for pair production of long-lived charged particles in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.1 fb $^{-1}$. Limit on the cross section of (0.31–0.04) pb (95% CL) is given for the mass range of 60–300 GeV, assuming the kinematics of stau pair production.

⁸ AKTAS 04C look for charged particle photoproduction at HERA with mean c.m. energy of 200 GeV.

 $^{^{9}}$ ABE 92J look for pair production of unit-charged particles which leave detector before decaying. Limit shown here is for m=50 GeV. See their Fig. 5 for different charges and stronger limits for higher mass.

¹⁰ CARROLL 78 look for neutral, S=-2 dihyperon resonance in $pp \to 2K^+X$. Cross section varies within above limits over mass range and $p_{lab}=5.1$ –5.9 GeV/c.

 $^{^{11}}$ LEIPUNER 73 is an NAL 300 GeV p experiment. Would have detected particles with lifetime greater than 200 ns.

 $^{^2}$ ALBROW 75 is a CERN ISR experiment with $E_{\rm cm}=53$ GeV. $\theta=40$ mr. See figure 5 for mass ranges up to 35 GeV.

³ JOVANOVICH 75 is a CERN ISR 26+26 and 15+15 GeV pp experiment. Figure 4 covers ranges Q=1/3 to 2 and m=3 to 26 GeV. Value is per GeV momentum.

Long-Lived Heavy Particle Invariant Cross Section

<i>VALUE</i> (cm ² /GeV ² /N)	CL%	DOCUMENT ID	TECN	CHG	COMMENT	
• • • We do not us	se the foll	owing data for ave	erages	, fits, lim	nits, et	C. ● ● ●
$< 5-700 \times 10^{-35}$	90	$^{ m 1}$ BERNSTEIN	88	CNTR		
$< 5-700 \times 10^{-37}$	90	$^{ m 1}$ BERNSTEIN	88	CNTR		
$< 2.5 \times 10^{-36}$	90	² THRON	85	CNTR	_	Q=1, $m=4-12$ GeV
$<1. \times 10^{-35}$	90	² THRON	85	CNTR	+	Q=1, $m=4-12$ GeV
$< 6. \times 10^{-33}$	90	³ ARMITAGE	79	SPEC		m=1.87 GeV
$< 1.5 \times 10^{-33}$	90	³ ARMITAGE	79	SPEC		m=1.5-3.0 GeV
		⁴ BOZZOLI	79	CNTR	\pm	Q=(2/3, 1, 4/3, 2)
$< 1.1 \times 10^{-37}$	90	⁵ CUTTS	78	CNTR		m=4-10 GeV
$< 3.0 \times 10^{-37}$	90	⁶ VIDAL	78	CNTR		<i>m</i> =4.5–6 GeV

¹ BERNSTEIN 88 limits apply at x=0.2 and $p_T=0$. Mass and lifetime dependence of limits are shown in the regions: m=1.5–7.5 GeV and $\tau=10^{-8}$ –2 \times 10⁻⁶ s. First number is for hadrons; second is for weakly interacting particles.

Long-Lived Heavy Particle Production ($\sigma(\text{Heavy Particle}) / \sigma(\pi)$)

<u>VALUE</u>	<u> </u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
• • • We do not u	se the following	data for averages	s, fits,	limits, o	etc. •	• •
$< 10^{-8}$						$Q = (-5/3, \pm 2)$
	0	² BUSSIERE	80	CNTR	\pm	Q=(2/3,1,4/3,2)

 $^{^1}$ NAKAMURA 89 is KEK experiment with 12 GeV protons on Pt target. The limit applies for mass $\lesssim 1.6$ GeV and lifetime $\gtrsim 10^{-7}$ s.

⁴ APPEL 74 is NAL 300 GeV *p*W experiment. Studies forward production of heavy (up to 24 GeV) charged particles with momenta 24–200 GeV (–charge) and 40–150 GeV (+charge). Above typical value is for 75 GeV and is per GeV momentum per nucleon.

⁵ ALPER 73 is CERN ISR 26+26 GeV pp experiment. p > 0.9 GeV, $0.2 < \beta < 0.65$.

 $^{^6}$ ANTIPOV 71B is from same 70 GeV p experiment as ANTIPOV 71C and BINON 69.

⁷ ANTIPOV 71c limit inferred from flux ratio. 70 GeV p experiment.

⁸ DORFAN 65 is a 30 GeV/c p experiment at BNL. Units are per GeV momentum per nucleus.

 $^{^2}$ THRON 85 is FNAL 400 GeV proton experiment. Mass determined from measured velocity and momentum. Limits are for $\tau > 3 \times 10^{-9}$ s.

³ARMITAGE 79 is CERN-ISR experiment at $E_{\rm cm}=53$ GeV. Value is for x=0.1 and $p_T=0.15$. Observed particles at m=1.87 GeV are found all consistent with being antideuterons.

⁴ BOZZOLI 79 is CERN-SPS 200 GeV pN experiment. Looks for particle with τ larger than 10^{-8} s. See their figure 11–18 for production cross-section upper limits vs mass.

 $^{^5}$ CUTTS 78 is p Be experiment at FNAL sensitive to particles of $\tau > 5 \times 10^{-8}$ s. Value is for -0.3 < x < 0 and $p_T = 0.175$.

⁶ VIDAL 78 is FNAL 400 GeV proton experiment. Value is for x=0 and $p_T=0$. Puts lifetime limit of $< 5 \times 10^{-8}$ s on particle in this mass range.

² BUSSIERE 80 is CERN-SPS experiment with 200–240 GeV protons on Be and Al target. See their figures 6 and 7 for cross-section ratio vs mass.

Production and Capture of Long-Lived Massive Particles

<i>VALUE</i> (10 ⁻³⁶ cm ²)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	ng data for average	s, fits,	limits, e	etc. • • •
<20 to 800				$ au{=}5$ ms to 1 day
<200 to 2000	¹ ALEKSEEV	76 B	ELEC	$ au{=}100$ ms to 1 day
<1.4 to 9	² FRANKEL	75	CNTR	$ au{=}50$ ms to 10 hours
<0.1 to 9	³ FRANKEL	74	CNTR	$ au{=}1$ to 1000 hours

 $^{^1}$ ALEKSEEV 76 and ALEKSEEV 76B are 61–70 GeV p Serpukhov experiment. Cross section is per Pb nucleus.

Long-Lived Particle Search at Hadron Collisions

Limits are for cross section times branching ratio.

2 KHACHATRY...16BWCMS direct production: HSCPs
3
 BADIER 86 BDMP $\tau = (0.05-1.) \times 10^{-8}$ s

Long-Lived Heavy Particle Cross Section

<i>VALUE</i> (pb/sr)	<u>CL%</u>	DOCUMENT	T ID	TECN	COMMENT
• • • We do no	ot use the follow	wing data for	averages, 1	fits, limit	cs, etc. • • •
<34	95	$^{ m 1}$ RAM	94	SPEC	1015< $m_{\chi^{++}}$ <1085 MeV
<75	95	$^{ m 1}$ RAM	94	SPEC	$920 < m_{X++} < 1025 \text{ MeV}$

 $^{^1}$ RAM 94 search for a long-lived doubly-charged fermion X^{++} with mass between m_N and m_N+m_π and baryon number +1 in the reaction $p\,p\to\,X^{++}\,n$. No candidate is found. The limit is for the cross section at 15° scattering angle at 460 MeV incident energy and applies for $\tau(X^{++})\,\gg 0.1\,\mu\mathrm{s}.$

LIMITS ON CHARGED PARTICLES IN COSMIC RAYS

Heavy Particle Flux in Cosmic Rays

(cm ⁻² sr ⁻	$^{1}s^{-1}$)	CL%	EVTS	DOCUMENT II	D	TECN	CHG	COMMENT
• • • W	e do not use	the fo	llowing d	ata for averages,	fits, lim	its, etc.	• • •	
< 1	$\times 10^{-8}$	90	0	¹ AGNESE	15	CDM2		Q = 1/6
\sim 6	$\times 10^{-9}$		2	² SAITO	90			$Q\simeq~14,~m$
								\simeq 370 m_p

² FRANKEL 75 is extension of FRANKEL 74.

³ FRANKEL 74 looks for particles produced in thick Al targets by 300–400 GeV/c protons.

¹ AAIJ 16AR search for long lived particles from $H \to XX$ with displaced X decay vertex using 0.62 fb⁻¹ at 7 TeV; limits set in Fig. 7.

 $^{^2\,\}rm KHACHATRYAN~16BW$ search for heavy stable charged particles via ToF with 2.5 fb $^{-1}$ at 13 TeV; require stable m(gluinoball) > 1610 GeV.

³ BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-$ X, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.

× 10 ⁻¹²	90	0	³ MINCER ⁴ SAKUYAMA	85 83B	CALO PLAS	$m~\geq~1~{ m TeV} \ m\sim~1~{ m TeV}$
$\times 10^{-11}$	99	0	⁵ BHAT	82	CC	1
× 10 ⁻⁹	90	0	⁶ MARINI	82	CNTR \pm	$Q=1, m \sim 4.5 m_p$
× 10 ⁻⁹		3	⁷ YOCK	81	SPRK \pm	$Q=1, m \sim 4.5 m_p$
		3	⁷ YOCK	81	SPRK	Fractionally charged
$\times 10^{-9}$		3	⁸ YOCK	80	SPRK	$m \sim 4.5 m_p$
$) \times 10^{-11}$		3	GOODMAN	79	ELEC	$m \geq 5 \text{ GeV}$
$\times 10^{-9}$	90		⁹ BHAT	78	CNTR \pm	$m>$ 1 ${\sf GeV}$
		0	BRIATORE	76	ELEC	
$\times 10^{-10}$	90	0	YOCK	75	ELEC \pm	Q > 7e or
$\times 10^{-9}$		5	¹⁰ YOCK	74	CNTR	< -7e m > 6 GeV
		0	DARDO	72	CNTR	
$\times 10^{-9}$		0	TONWAR	72	CNTR	m>10 GeV
$\times 10^{-10}$		0	BJORNBOE	68	CNTR	m>5 GeV
\times 10 ⁻¹¹	90	0	JONES	67	ELEC	<i>m</i> =5−15 GeV
	$ \begin{array}{c} \times 10^{-11} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-11} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-10} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-10} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

¹ See AGNESE 15 Fig. 6 for limits extending down to Q = 1/200.

² SAITO 90 candidates carry about 450 MeV/nucleon. Cannot be accounted for by conventional backgrounds. Consistent with strange quark matter hypothesis.

effect. 4 SAKUYAMA 83B analyzed 6000 extended air shower events. Increase of delayed particles and change of lateral distribution above 10^{17} eV may indicate production of very heavy parent at top of atmosphere.

 5 BHAT 82 observed 12 events with delay $> 2. \times 10^{-8}$ s and with more than 40 particles. 1 eV has good hadron shower. However all events are delayed in only one of two detectors in cloud chamber, and could not be due to strongly interacting massive particle.

⁶ MARINI 82 applied PEP-counter for TOF. Above limit is for velocity = 0.54 of light. Limit is inconsistent with YOCK 80 YOCK 81 events if isotropic dependence on zenith angle is assumed.

 7 YOCK 81 saw another 3 events with $Q=\pm 1$ and m about $4.5m_p$ as well as 2 events with $m>5.3m_p$, $Q=\pm 0.75\pm 0.05$ and $m>2.8m_p$, $Q=\pm 0.70\pm 0.05$ and 1 event with $m=(9.3\pm3.)m_p$, $Q=\pm 0.89\pm 0.06$ as possible heavy candidates.

VALUE

Superheavy Particle (Quark Matter) Flux in Cosmic Rays

$(cm^{-2}sr^{-1}s^{-1})$	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the	imits, etc. • • •			
		¹ ADRIANI	15	PMLA	$4 < m < 1.2 \times 10^5 \ m_p$
$< 5 \times 10^{-16}$	90				$m > 5 \times 10^{14} \text{ GeV}$
$< 1.8 \times 10^{-12}$	90		93	CNTR	$m \geq 1.5 imes 10^{-13}$ gram
$< 1.1 \times 10^{-14}$	90	⁴ AHLEN			$10^{-10} < m < 0.1 \text{ gram}$
$< 2.2 \times 10^{-14}$	90	⁵ NAKAMURA	91	PLAS	$m > 10^{11} \text{ GeV}$
HTTP://PDG	.LBL.G(OV Pag	e 34		Created: 5/30/2017 17:22

³ MINCER 85 is high statistics study of calorimeter signals delayed by 20–200 ns. Calibration with AGS beam shows they can be accounted for by rare fluctuations in signals from low-energy hadrons in the shower. Claim that previous delayed signals including BJORNBOE 68, DARDO 72, BHAT 82, SAKUYAMA 83B below may be due to this fake effect.

⁸ YOCK 80 events are with charge exactly or approximately equal to unity.

 $^{^9}$ BHAT 78 is at Kolar gold fields. Limit is for $au > 10^{-6}$ s.

¹⁰ YOCK 74 events could be tritons.

$<$ 6.4 \times 10 ⁻¹⁶	90	⁶ ORITO	91	PLAS	$m > 10^{12} \text{ GeV}$
\ _ .0 /\ <u>_</u> _0	90	⁷ LIU			$m>1.5 imes10^{-13}$ gram
$< 4.7 \times 10^{-12}$	90	⁸ BARISH	87	CNTR	$1.4 \times 10^8 < m < 10^{12} \text{ GeV}$
$< 3.2 \times 10^{-11}$	90				$m>1.5 imes10^{-13}$ gram
$< 3.5 \times 10^{-11}$	90				Planck-mass 10 ¹⁹ GeV
$< 7. \times 10^{-11}$	90	¹⁰ ULLMAN	81	CNTR	$m < 10^{16} \; GeV$

¹ ADRIANI 15 search for relatively light quark matter with charge Z = 1–8. See their Figs. 2 and 3 for flux upper limits.

Highly Ionizing Particle Flux

VALUE (m ⁻² yr ⁻¹)	CL% E	VTS	DOCUMENT ID	TECN	COMMENT
• • • We do not use	the follo	wing data	for averages, fits,	limits, etc.	• • •
< 0.4	95	0	KINOSHITA 8	B1B PLAS	Z/β 30–100

SEARCHES FOR BLACK HOLE PRODUCTION

VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT
• • • We do not use the fo	ollowing data for averag	ges, fits, li	mits, etc. • • •
not seen	² AAD 15 ³ AAD 14	AN ATLS	13 TeV $pp ightarrow e\mu$, $e au$, μau 8 TeV $pp ightarrow$ multijets 8 TeV $pp ightarrow \gamma + { m jet}$
	⁵ AAD 14	c ATLS	8 TeV $pp \rightarrow \ell + \text{jet}$ 8 TeV $pp \rightarrow \ell + (\ell \text{ or jets})$
	⁷ CHATRCHYAN 13	A CMS	7 TeV $pp \rightarrow 2$ jets 7 TeV $pp \rightarrow 2$ jets 8 TeV $pp \rightarrow$ multijets
	⁹ AAD 12 ¹⁰ CHATRCHYAN 12	AK ATLS W CMS	7 TeV $pp \rightarrow \ell + (\ell \text{ or jets})$ 7 TeV $pp \rightarrow \text{multijets}$ 7 TeV $pp \rightarrow 2 \text{ jets}$

² AMBROSIO 00B searched for quark matter ("nuclearites") in the velocity range $(10^{-5}-1)$ c. The listed limit is for 2×10^{-3} c.

 $^{^3}$ ASTONE 93 searched for quark matter ("nuclearites") in the velocity range (10^{-3} –1) c. Their Table 1 gives a compilation of searches for nuclearites.

⁴ AHLEN 92 searched for quark matter ("nuclearites"). The bound applies to velocity $< 2.5 \times 10^{-3}$ c. See their Fig. 3 for other velocity/c and heavier mass range.

⁵ NAKAMURA 91 searched for quark matter in the velocity range $(4 \times 10^{-5} - 1) c$.

⁶ ORITO 91 searched for guark matter. The limit is for the velocity range $(10^{-4}-10^{-3})$ c.

 $^{^7}$ LIU 88 searched for quark matter ("nuclearites") in the velocity range (2.5 \times 10 $^{-3}$ –1)c. A less stringent limit of 5.8 \times 10 $^{-11}$ applies for (1–2.5) \times 10 ^{-3}c .

⁸ BARISH 87 searched for quark matter ("nuclearites") in the velocity range $(2.7 \times 10^{-4} - 5 \times 10^{-3})c$.

⁹ NAKAMURA 85 at KEK searched for quark-matter. These might be lumps of strange quark matter with roughly equal numbers of u, d, s quarks. These lumps or nuclearites were assumed to have velocity of $(10^{-4}-10^{-3}) c$.

 $^{^{10}}$ ULLMAN 81 is sensitive for heavy slow singly charge particle reaching earth with vertical velocity 100–350 km/s.

- 1 AABOUD 16P set limits on quantum BH production in 1 = 6 ADD or 1 = 1 RS models.
- ² AAD 15AN search for black hole or string ball formation followed by its decay to multijet final states, in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb $^{-1}$. See their Figs. 6–8 for limits.
- ³AAD 14A search for quantum black hole formation followed by its decay to a γ and a jet, in pp collisions at $E_{cm}=8$ TeV with L=20 fb⁻¹. See their Fig. 3 for limits.
- ⁴ AAD 14AL search for quantum black hole formation followed by its decay to a lepton and a jet, in pp collisions at $E_{cm}=8$ TeV with L=20.3 fb⁻¹. See their Fig. 2 for limits.
- ⁵ AAD 14C search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb⁻¹. See their Figures 8–11, Tables 7, 8 for limits.
- ⁶AAD 13D search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb $^{-1}$. See their Fig. 8 and Table 3 for limits.
- ⁷ CHATRCHYAN 13A search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L=5 fb $^{-1}$. See their Figs. 5 and 6 for limits.
- ⁸ CHATRCHYAN 13AD search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including γ , ℓ) events in pp collisions at $E_{\rm cm}=8$ TeV with L=12 fb $^{-1}$. See their Figs. 5–7 for limits.
- ⁹ AAD 12AK search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in pp collisions at $E_{\rm cm} = 7$ TeV with L = 1.04 fb⁻¹. See their Fig. 4 and 5 for limits.
- 10 CHATRCHYAN 12W search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including γ , ℓ) events in pp collisions at $E_{\rm cm}=7$ TeV with L=4.7 fb $^{-1}$. See their Figs. 5–8 for limits.
- 11 AAD 11AG search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L = 36 pb $^{-1}$. See their Fig. 11 and Table 4 for limits.

REFERENCES FOR Searches for WIMPs and Other Particles

AABOUD	17A	PL B765 11	M. Aaboud et al.	(ATLAS	Collab.)
AKERIB	17	PRL 118 021303	D.S. Akerib et al.	(LUX	Collab.)
KHACHATRY	17A	PRL 118 021802	V. Khachatryan et al.	(CMS	Collab.)
AABOUD	16	PL B759 229	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	16AD	PL B763 251	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	16D	PR D94 032005	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	16F	JHEP 1606 059	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	16P	EPJ C76 541	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AAD	16AF	JHEP 1601 172	G. Aad et al.	(ATLAS	Collab.)
AAD	16AG	JHEP 1602 062	G. Aad et al.	(ATLAS	Collab.)
AAD	16AI	JHEP 1603 041	G. Aad et al.	(ATLAS	Collab.)
AAD	16M	PR D93 072007	G. Aad et al.	(ATLAS	Collab.)
AAD	16N	JHEP 1603 026	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAD	160	PL B760 520	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAD	16R	PL B755 285	G. Aad et al.	(ATLAS	Collab.)
AAD	16S	PL B754 302	G. Aad et al.	(ATLAS	Collab.)
AAIJ	16AR	EPJ C76 664	R. Aaij <i>et al.</i>	(LHCb	Collab.)
AARTSEN	16C	JCAP 1604 022	M.G. Aartsen <i>et al.</i>	(IceCube	Collab.)
AARTSEN	16D	EPJ C76 531	M.G. Aartsen <i>et al.</i>	(IceCube	
ABDALLAH	16	PRL 117 111301	H. Abdallah <i>et al.</i>	(H.E.S.S.	Collab.)
ABDALLAH	16A	PRL 117 151302	H. Abdallah <i>et al.</i>	(H.E.S.S.	Collab.)
ADRIAN-MAR	. 16	PL B759 69	S. Adrian-Martinez et al.	(ANTARES	Collab.)
ADRIAN-MAR	.16B	JCAP 1605 016	S. Adrian-Martinez et al.	(ANTARES	
AGNES	16	PR D93 081101	P. Agnes et al.	(DarkSide-50	Collab.)
AGNESE	16	PRL 116 071301	R. Agnese et al.	(SuperCDMS	Collab.)
AGUILAR-AR	16	PR D94 082006	A.A. Aguilar-Arevalo et al.	(DAMIC	Collab.)
AHNEN	16	JCAP 1602 039	M.L. Ahnen et al. (MAGIC a	and Fermi-LAT	Collab.)
AKERIB	16	PRL 116 161301	D.S. Akerib <i>et al.</i>	(LUX	Collab.)

AKERIB AMOLE AMOLE ANGLOHER ANGLOHER APRILE APRILE ARMENGAUD AVRORIN CAPUTO	16A 16 16A 16 16A 16 16B 16 16	PRL 116 161302 PR D93 052014 PR D93 061101 EPJ C76 25 PRL 117 021303 PR D94 092001 PR D94 122001 JCAP 1605 019 ASP 81 12 PR D93 062004	D.S. Akerib et al. C. Amole et al. C. Amole et al. G. Angloher et al. G. Aprile et al. E. Aprile et al. E. Armengaud et al. A.D. Avrorin et al. R. Caputo et al.	(LUX Collab.) (PICO Collab.) (PICO Collab.) (PICO Collab.) (CRESST-II Collab.) (CRESST-II Collab.) (XENON100 Collab.) (XENON100 Collab.) (EDELWEISS-III Collab.) (BAIKAL Collab.)
KHACHATRY KHACHATRY	16BW 16BZ 16CA 16K 16L 16M	PR D94 123005 EPJ C76 548 PR D93 052011 PR D94 112004 JHEP 1612 083 JHEP 1612 088 PRL 116 071801 PRL 117 031802 PRL 117 051802 PL B755 102 JCAP 1611 021 PR D93 043518 JCAP 1612 028 PR D94 103502 PR D93 103517	M. Fornasa et al. L. Hehn et al. V. Khachatryan et al. V. Leite et al. S. Li et al. YF. Liang et al. B-Q. Lu, H-S. Zong	(Fermi-LAT Collab.) (EDELWEISS-III Collab.) (CMS Collab.)
SHIRASAKI TAN TAN ZHAO AAD AAD AAD AAD	16 16 16B 16 15AN 15AS 15AT	PR D94 063522 PR D93 122009 PRL 117 121303 PR D93 092003 JHEP 1507 032 EPJ C75 92 EPJ C75 79 EPJ C75 299	M. Shirasaki et al. T.H. Tan et al. A. Tan et al. W. Zhao et al. G. Aad et al.	(PandaX Collab.) (PandaX Collab.) (CDEX Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
Also AAD AAD AAD AIso AAIJ AARTSEN	15BJ 15CF 15CS 15BD 15C	EPJ C75 408 (errat.) EPJ C75 362 PRL 115 131801 PR D91 012008 PR D92 059903 (errat.) EPJ C75 595 EPJ C75 20	G. Aad et al. R. Aaij et al. M.G. Aartsen et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (lceCube Collab.)
AARTSEN ABRAMOWSKI ACKERMANN ACKERMANN ACKERMANN ADRIANI ADRIANI AGNES	15 15A 15B 15	EPJ C75 492 PRL 114 081301 PR D91 122002 JCAP 1509 008 PRL 115 231301 PRL 115 111101 JCAP 1510 068 PL B743 456	M.G. Aartsen et al. A. Abramowski et al. M. Ackermann et al. M. Ackermann et al. O. Adriani et al. S. Adrian-Martinez et al. P. Agnes et al.	(IceCube Collab.) (H.E.S.S. Collab.) (Fermi-LAT Collab.) (Fermi-LAT Collab.) (Fermi-LAT Collab.) (PAMELA Collab.) (ANTARES Collab.) (DarkSide-50 Collab.)
AGNESE AGNESE AMOLE APRILE APRILE CHOI KHACHATRY	15 15A 15B 15 15 15 15A 15 15AG	PRL 114 111302 PR D91 052021 PR D92 072003 PRL 114 231302 PRL 115 091302 SCI 349 851 PRL 114 141301 JHEP 1506 121	R. Agnese et al. R. Agnese et al. R. Agnese et al. C. Amole et al. E. Aprile et al. E. Aprile et al. K. Choi et al. V. Khachatryan et al.	(CDMS Collab.) (SuperCDMS Collab.) (SuperCDMS Collab.) (PICO Collab.) (XENON Collab.) (XENON Collab.) (Super-Kamiokande Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY LEES NAKAMURA XIAO AAD AAD	15AL 15F		V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. J.P. Lees et al. K. Nakamura et al. X. Xiao et al. G. Aad et al. G. Aad et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.) (BABAR Collab.) (NEWAGE Collab.) (PandaX Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD AAD AAD AAD AAD AALTONEN ACKERMANN	14AL	PRL 112 091804 PRL 112 041802 JHEP 1408 103 PR D90 012004 PRL 112 201802 PR D89 092001 PR D89 042001	G. Aad et al. T. Aaltonen et al. M. Ackermann et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CDF Collab.) (Fermi-LAT Collab.)

AGNESE	14	PRL 112 241302	R. Agnese et al.	(SuperCDMS Collab.)
AGNESE	14A	PRL 112 041302	R. Agnese et al.	(SuperCDMS Collab.)
AKERIB	14	PRL 112 091303	D.S. Akerib <i>et al.</i>	(LUX Collab.)
ALEKSIC ANGLOHER	14 14	JCAP 1402 008 EPJ C74 3184	J. Aleksic <i>et al.</i> G. Angloher <i>et al.</i>	(MAGIC Collab.) (CRESST-II Collab.)
APRILE	14A	ASP 54 11	E. Aprile <i>et al.</i>	(XENON100 Collab.)
AVRORIN	14	ASP 62 12	A.D. Avrorin et al.	(BAIKAL Collab.)
FELIZARDO	14	PR D89 072013	M. Felizardo <i>et al.</i>	(SIMPLE Collab.)
LEE	14A	PR D90 052006	H.S. Lee et al.	(KIMS Collab.)
LIU UCHIDA	14A 14	PR D90 032003 PTEP 2014 063C01	S.K. Liu <i>et al.</i> H. Uchida <i>et al.</i>	(CDEX Collab.) (XMASS Collab.)
YUE	14	PR D90 091701	Q. Yue et al.	(CDEX Collab.)
AAD	13A	PL B718 860	G. Aad <i>et al.</i>	(ÀTLAS Collab.)
AAD		JHEP 1304 075	G. Aad et al.	(ATLAS Collab.)
AAD AAD	13AH 13C	PL B722 305 PRL 110 011802	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD	13D	JHEP 1301 029	G. Aad et al.	(ATLAS Collab.)
AALSETH	13	PR D88 012002	C.E. Aalseth et al.	(CoGeNT Collab.)
AALTONEN	13I	PR D88 031103	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	13R 13	PRL 111 031802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AARTSEN AARTSEN	13C	PRL 110 131302 PR D88 122001	M.G. Aartsen <i>et al.</i> M.G. Aartsen <i>et al.</i>	(IceCube Collab.) (IceCube Collab.)
ABE	13B	PL B719 78	K. Abe <i>et al.</i>	(XMASS Collab.)
ABRAMOWSKI	13	PRL 110 041301	A. Abramowski et al.	(H.E.S.S. Collab.)
ACKERMANN		PR D88 082002	M. Ackermann et al.	(Fermi-LAT Collab.)
ADRIAN-MAR AGNESE	.13	JCAP 1311 032 PR D88 031104	S. Adrian-Martinez <i>et al.</i> R. Agnese <i>et al.</i>	(ANTARES Collab.) (CDMS Collab.)
AGNESE	13A	PRL 111 251301	R. Agnese et al.	(CDMS Collab.)
APRILE	13	PRL 111 021301	E. Aprile et al.	(XENON100 Collab.)
BOLIEV	13	JCAP 1309 019	M. Boliev et al.	(5) (5) (5) (1)
CHATRCHYAN CHATRCHYAN		PL B718 815	S. Chatrohyan et al.	(CMS Collab.)
-	-	JHEP 1301 013 JHEP 1307 122	S. Chatrchyan <i>et al.</i> S. Chatrchyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
		JHEP 1307 178	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
		PR D87 092008	S. Chatrchyan et al.	(CMS Collab.)
LI	13B	PRL 110 261301	H.B. Li et al.	(TEXONO Collab.)
SUVOROVA	13	PAN 76 1367 Translated from YAF 76	O.V. Suvorova <i>et al.</i> 1433.	(INRM)
ZHAO	13	PR D88 052004	W. Zhao <i>et al.</i>	(CDEX Collab.)
AAD		PL B716 122	G. Aad et al.	(ATLAS Collab.)
AAD AAD	12C 12S	PRL 108 041805 PL B708 37	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	12S 12K	PRL 108 201802	T. Aaltonen <i>et al.</i>	(ATLAS Collab.) (CDF Collab.)
AALTONEN	12M	PRL 108 211804	T. Aaltonen et al.	(CDF Collab.)
ABBASI	12	PR D85 042002	R. Abbasi <i>et al.</i>	(IceCube Collab.)
ABRAMOWSKI		APJ 750 123	A. Abramowski <i>et al.</i> M. Ackermann <i>et al.</i>	(H.E.S.S. Collab.)
ACKERMANN AKIMOV	12	PR D86 022002 PL B709 14	D.Yu. Akimov <i>et al.</i>	(Fermi-LAT Collab.) (ZEPLIN-III Collab.)
ALIU	12	PR D85 062001	E. Aliu <i>et al.</i>	(VERITAS Collab.)
ANGLOHER	12	EPJ C72 1971	G. Angloher et al.	(CRESST-II Collab.)
APRILE	12	PRL 109 181301	E. Aprile <i>et al.</i>	(XENON100 Collab.) (PICASSO Collab.)
ARCHAMBAU ARMENGAUD	12	PL B711 153 PR D86 051701	S. Archambault <i>et al.</i> E. Armengaud <i>et al.</i>	(EDELWEISS Collab.)
BARRETO	12	PL B711 264	J. Barreto <i>et al.</i>	(DAMIC Collab.)
BEHNKE	12	PR D86 052001	E. Behnke et al.	(COUPP Collab.)
Also	10	PR D90 079902 (errat.)	E. Behnke <i>et al.</i>	(COUPP Collab.)
BROWN CHATRCHYAN	12 12ΔΡ	PR D85 021301 JHEP 1209 094	A. Brown <i>et al.</i> S. Chatrchyan <i>et al.</i>	(OXF) (CMS Collab.)
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12Q	PL B716 260	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PRL 108 261803	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN DAHL	12VV 12	JHEP 1204 061 PRL 108 259001	S. Chatrchyan <i>et al.</i> C.E. Dahl, J. Hall, W.H. Lipp	(CMS Collab.) pincott (CHIC, FNAL)
DAW	12	ASP 35 397	E. Daw et al.	(DRIFT-IId Collab.)
FELIZARDO	12	PRL 108 201302	M. Felizardo et al.	(SIMPLE Collab.)
KIM	12	PRL 108 181301	S.C. Kim et al.	(KIMS Collab.)
AAD AAD	11AG 11I	NJP 13 053044 PL B698 353	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD	11S	PL B705 294	G. Aad et al.	(ATLAS Collab.)
AALSETH	11	PRL 106 131301	C.E. Aalseth et al.	(CoGeNT Collab.)
AALSETH	11A	PRL 107 141301	C.E. Aalseth et al.	(CoGeNT Collab.)

AALTONEN AALTONEN	11AF 11M	PRL 107 181801 PRL 106 171801	T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>	(CDF Collab.) (CDF Collab.)
ABAZOV	111	PRL 107 011804	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBASI	11C	PR D84 022004	R. Abbasi et al.	(IceCube Collab.)
ABRAMOWSKI		PRL 106 161301	A. Abramowski et al.	(H.E.S.S. Collab.)
ACKERMANN	11	PRL 107 241302	M. Ackermann et al.	(Fermi-LAT Collab.)
AHLEN	11	PL B695 124	S. Ahlen <i>et al.</i>	(DMTPC Collab.)
AHMED	11	PR D83 112002	Z. Ahmed <i>et al.</i>	(CDMS Collab.)
AHMED	11A	PR D84 011102	Z. Ahmed <i>et al.</i>	(CDMS and EDELWEISS Collabs.)
AHMED AJELLO	11B 11	PRL 106 131302 PR D84 032007	Z. Ahmed <i>et al.</i> M. Ajello <i>et al.</i>	(CDMS Collab.) (Fermi-LAT Collab.)
ANGLE	11	PRL 107 051301	J. Angle <i>et al.</i>	(XENON10 Collab.)
Also	11	PRL 110 249901 (errat.)	_	(XENON10 Collab.)
APRILE	11	PR D84 052003	E. Aprile <i>et al.</i>	(XENON100 Collab.)
APRILE	11A	PR D84 061101	E. Aprile et al.	(XENON100 Collab.)
APRILE	11B	PRL 107 131302	E. Aprile <i>et al.</i>	(XENON100 Collab.)
ARMENGAUD	11	PL B702 329	E. Armengaud et al.	(EDELWEISS II Collab.)
BEHNKE	11	PRL 106 021303	E. Behnke et al.	(COUPP Collab.)
CHATRCHYAN		JHEP 1106 026	S. Chatychyan et al.	(CMS Collab.)
CHATRCHYAN		PRL 107 201804	S. Chatychyan et al.	(CMS Collab.)
GERINGER-SA		PRL 107 241303	A. Geringer-Sameth, S.	
HORN	11 11	PL B705 471 APJ 742 78	M. Horn <i>et al.</i> T. Tanaka <i>et al.</i>	(ZEPLIN-III Collab.)
TANAKA AAD	10	PRL 105 161801	G. Aad <i>et al.</i>	(Super-Kamiokande Collab.) (ATLAS Collab.)
AALTONEN		PR D82 052005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABBASI	10	PR D81 057101	R. Abbasi <i>et al.</i>	(IceCube Collab.)
AHMED	10	SCI 327 1619	Z. Ahmed <i>et al.</i>	(CDMS II Collab.)
AKERIB	10	PR D82 122004	D.S. Akerib et al.	(CDMS-II Collab.)
AKIMOV	10	PL B692 180	D.Yu. Akimov et al.	(ZÈPLIN-III Collab.)
APRILE	10	PRL 105 131302	E. Aprile et al.	(XENON100 Collab.)
ARMENGAUD	10	PL B687 294	E. Armengaud et al.	(EDELWEISS II Collab.)
FELIZARDO	10	PRL 105 211301	M. Felizardo <i>et al.</i>	(The SIMPLE Collab.)
KHACHATRY	10	PRL 105 211801	V. Khachatryan et al.	(CMS Collab.)
Also	10	PRL 106 029902	V. Khachatryan <i>et al.</i>	(CMS Collab.)
MIUCHI AALTONEN	10 00 A F	PL B686 11 PR D80 011102	K. Miuchi <i>et al.</i> T. Aaltonen <i>et al.</i>	(NEWAGE Collab.) (CDF Collab.)
AALTONEN	09G	PR D79 052004	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09Z	PRL 103 021802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09M	PRL 102 161802	V.M. Abazov et al.	(D0 Collab.)
ABBASI	09B	PRL 102 201302	R. Abbasi et al.	(IceCube Collab.)
AHMED	09	PRL 102 011301	Z. Ahmed et al.	(CDMS Collab.)
ANGLE	09	PR D80 115005	J. Angle <i>et al.</i>	(XENON10 Collab.)
ANGLOHER	09	ASP 31 270	G. Angloher et al.	(CRESST Collab.)
ARCHAMBAU		PL B682 185	S. Archambault et al.	(PICASSO Collab.)
LEBEDENKO LIN	09A 09	PRL 103 151302	V.N. Lebedenko <i>et al.</i> S.T. Lin <i>et al.</i>	(ZEPLIN-III Collab.)
AALSETH	08	PR D79 061101 PRL 101 251301	C.E. Aalseth <i>et al.</i>	(TEXONO Collab.) (CoGeNT Collab.)
Also	00	PRL 102 109903 (errat.)		(CoGeNT Collab.)
ANGLE	08A	PRL 101 091301	J. Angle et al.	(XENON10 Collab.)
BEDNYAKOV	80			apdor-Kleingrothaus, I.V. Krivosheina
		Translated from YAF 71	112.	
ALNER	07	PL B653 161	G.J. Alner <i>et al.</i>	(ZEPLIN-II Collab.)
LEE	07A	PRL 99 091301	H.S. Lee <i>et al.</i>	(KIMS Collab.)
MIUCHI AKERIB	07	PL B654 58	K. Miuchi <i>et al.</i>	(CDMS Callah)
SHIMIZU	06 06A	PR D73 011102 PL B633 195	D.S. Akerib <i>et al.</i> Y. Shimizu <i>et al.</i>	(CDMS Collab.)
AKERIB	05	PR D72 052009	D.S. Akerib <i>et al.</i>	(CDMS Collab.)
ALNER	05	PL B616 17	G.J. Alner et al.	(UK Dark Matter Collab.)
BARNABE-HE		PL B624 186	M. Barnabe-Heider et	
BENOIT	05	PL B616 25	A. Benoit et al.	(EDELWEISS Collab.)
GIRARD	05	PL B621 233	T.A. Girard et al.	(SIMPLE Collab.)
GIULIANI	05	PRL 95 101301	F. Giuliani	
GIULIANI	05A	PR D71 123503	F. Giuliani, T.A. Girard	
KLAPDOR-K	05	PL B609 226		haus, I.V. Krivosheina, C. Tomei
AKTAS	04C 04	EPJ C36 413 PL R588 151	A. Atkas <i>et al.</i>	(H1 Collab.)
GIULIANI GIULIANI	04A	PL B588 151 PRL 93 161301	F. Giuliani, T.A. Giraro F. Giuliani	
MIUCHI	03	ASP 19 135	K. Miuchi <i>et al.</i>	
TAKEDA	03	PL B572 145	A. Takeda <i>et al.</i>	
ANGLOHER	02	ASP 18 43	G. Angloher et al.	(CRESST Collab.)
BELLI	02	PR D66 043503	P. Belli <i>et al.</i>	,

BERNABEI	02C	EPJ C23 61	R. Bernabei <i>et al.</i>	(DAMA Collab.)
GREEN JAVORSEK	02 02	PR D66 083003 PR D65 072003	A.M. Green D. Javorsek II <i>et al.</i>	
BAUDIS	01	PR D63 022001	L. Baudis et al.	(Heidelberg-Moscow Collab.)
JAVORSEK	01	PR D64 012005	D. Javorsek II et al.	,
JAVORSEK	01B	PRL 87 231804	D. Javorsek II et al.	
SMITH	01	PR D64 043502	D. Smith, N. Weiner	oki D. Vorol
ULLIO ABBIENDI	01 00D	JHEP 0107 044 EPJ C13 197	P. Ullio, M. Kamionkows G. Abbiendi <i>et al.</i>	(OPAL Collab.)
AMBROSIO	00B	EPJ C13 453	M. Ambrosio <i>et al.</i>	(MACRO Collab.)
BENOIT	00	PL B479 8	A. Benoit et al.	(EDÈLWEISS Collab.)
BERNABEI	00D	NJP 2 15	R. Bernabei <i>et al.</i>	(DAMA Collab.)
COLLAR	00 00F	PRL 85 3083	J.I. Collar <i>et al.</i>	(SIMPLE Collab.)
ABE AMBROSIO	99F 99	PRL 82 2038 PR D60 082002	F. Abe <i>et al.</i> M. Ambrosio <i>et al.</i>	(CDF Collab.) (Macro Collab.)
BERNABEI	99	PL B450 448	R. Bernabei <i>et al.</i>	(DAMA Collab.)
BERNABEI	99D	PRL 83 4918	R. Bernabei et al.	(DAMA Collab.)
BRHLIK	99	PL B464 303	M. Brhlik, L. Roszkowsk	i
DERBIN	99	PAN 62 1886	A.V. Derbin <i>et al.</i>	
ACKERSTAFF	98P	Translated from YAF 62 PL B433 195	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
KLIMENKO	98	JETPL 67 875	A.A. Klimenko <i>et al.</i>	(0.7.2 00.102.)
		Translated from ZETFP		
ABE	97G	PR D55 R5263	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU ACKERSTAFF	97D 97B	PL B396 315 PL B391 210	P. Abreu <i>et al.</i> K. Ackerstaff <i>et al.</i>	(DELPHI Collab.) (OPAL Collab.)
ADAMS	97B 97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
BARATE	97K	PL B405 379	R. Barate <i>et al.</i>	(ALEPH Collab.)
SARSA	97	PR D56 1856	M.L. Sarsa et al.	` (ZARA)
ALESSAND	96	PL B384 316	A. Alessandrello et al.	(MILA, MILAI, SASSO)
BELLI	96	PL B387 222	P. Belli <i>et al.</i>	(DAMA Collab.)
Also BELLI	060	PL B389 783 (erratum)	P. Belli <i>et al.</i> P. Belli <i>et al.</i>	(DAMA Collab.)
BERNABEI	96C 96	NC 19C 537 PL B389 757	R. Bernabei <i>et al.</i>	(DAMA Collab.) (DAMA Collab.)
COLLAR	96	PRL 76 331	J.I. Collar	(SCUC)
SARSA	96	PL B386 458	M.L. Sarsa et al.	(ZARA)
Also		PR D56 1856	M.L. Sarsa et al.	(ZARA)
SMITH	96	PL B379 299	P.F. Smith et al.	(RAL, SHEF, LOIC+)
SNOWDEN	96 05 D	PRL 76 332	D.P. Snowden-Ifft, E.S.	
AKERS GALLAS	95R 95	ZPHY C67 203 PR D52 6	R. Akers <i>et al.</i> E. Gallas <i>et al.</i>	(OPAL Collab.) (MSU, FNAL, MIT, FLOR)
GARCIA	95	PR D51 1458	E. Garcia <i>et al.</i>	(ZARA, SCUC, PNL)
QUENBY	95	PL B351 70	J.J. Quenby et al.	(LOIC, RAL, SHEF+)
SNOWDEN	95	PRL 74 4133	D.P. Snowden-Ifft, E.S.	
Also		PRL 76 331	J.I. Collar	(SCUC)
Also BECK	94	PRL 76 332 PL B336 141	D.P. Snowden-Ifft, E.S. M. Beck <i>et al.</i>	Freeman, P.B. Price (UCB) (MPIH, KIAE, SASSO)
RAM	94	PR D49 3120	S. Ram <i>et al.</i>	(WI III, KIAL, SASSO) (TELA, TRIU)
ABE	93G	PRL 71 2542	F. Abe <i>et al.</i>	(CDF Collab.)
ASTONE	93	PR D47 4770	P. Astone et al.	(ROMA, ROMAI, CATA, FRAS)
BUSKULIC	93C	PL B303 198	D. Buskulic et al.	(ALEPH Collab.)
YAMAGATA	93	PR D46 P1990	T. Yamagata, Y. Takam	
ABE AHLEN	92J 92	PR D46 R1889 PRL 69 1860	F. Abe <i>et al.</i> S.P. Ahlen <i>et al.</i>	(CDF Collab.) (MACRO Collab.)
BACCI	92	PL B293 460	C. Bacci et al.	(Beijing-Roma-Saclay Collab.)
VERKERK	92	PRL 68 1116	P. Verkerk <i>et al.</i>	(ENSP, SACL, PAST)
AKESSON	91	ZPHY C52 219	T. Akesson et al.	` (HELIOS Collab.)
NAKAMURA	91	PL B263 529	S. Nakamura <i>et al.</i>	(16555 144665 14410 1655)
ORITO REUSSER	91	PRL 66 1951	S. Orito <i>et al.</i> D. Reusser <i>et al.</i>	(ICEPP, WASCR, NIHO, ICRR)
ADACHI	91 90C	PL B255 143 PL B244 352	I. Adachi <i>et al.</i>	(NEUC, CIT, PSI) (TOPAZ Collab.)
ADACHI	90E	PL B249 336	I. Adachi et al.	(TOPAZ Collab.)
AKRAWY	900	PL B252 290	M.Z. Akrawy et al.	`(OPAL Collab.)
HEMMICK	90	PR D41 2074	T.K. Hemmick et al.	(ROCH, MICH, OHIO+)
SAITO	90	PRL 65 2094	T. Saito et al.	(ICRR, KOBE)
NAKAMURA NORMAN	89 89	PR D39 1261 PR D39 2499	T.T. Nakamura <i>et al.</i> E.B. Norman <i>et al.</i>	(KYOT, TMTC)
BERNSTEIN	88	PR D39 2499 PR D37 3103	R.M. Bernstein <i>et al.</i>	(LBL) (STAN, WISC)
CALDWELL	88	PRL 61 510	D.O. Caldwell <i>et al.</i>	(UCSB, UCB, LBL)
LIU	88	PRL 61 271	G. Liu, B. Barish	,
BARISH	87	PR D36 2641	B.C. Barish, G. Liu, C.	Lane (CIT)

NORMAN BADIER MINCER NAKAMURA	87 86 85 85	PRL 58 1403 ZPHY C31 21 PR D32 541 PL 161B 417	E.B. Norman, S.B. Gazes, J. Badier <i>et al.</i> A. Mincer <i>et al.</i> K. Nakamura <i>et al.</i>	D.A. Bennett (LBL) (NA3 Collab.) (UMD, GMAS, NSF) (KEK, INUS)
THRON	85	PR D31 451	J.L. Thron <i>et al.</i>	(YALE, FNAL, IOWA)
SAKUYAMA	83B	LNC 37 17	H. Sakuyama, N. Suzuki	(MEIS)
Also		LNC 36 389	H. Sakuyama, K. Watana	,
Also		NC 78A 147	H. Sakuyama, K. Watana	
Also	00	NC 6C 371	H. Sakuyama, K. Watana	· · · · · · · · · · · · · · · · · · ·
BHAT	82	PR D25 2820	P.N. Bhat <i>et al.</i>	(TATA)
KINOSHITA	82 82	PRL 48 77	K. Kinoshita, P.B. Price,	, ,
MARINI SMITH	o2 82B	PR D26 1777 NP B206 333	A. Marini <i>et al.</i> P.F. Smith <i>et al.</i>	(FRAS, LBL, NWES, STAN+) (RAL)
KINOSHITA	81B	PR D24 1707	K. Kinoshita, P.B. Price	(UCB)
LOSECCO	81	PL 102B 209	J.M. LoSecco <i>et al.</i>	(MICH, PENN, BNL)
ULLMAN	81	PRL 47 289	J.D. Ullman	(LEHM, BNL)
YOCK	81	PR D23 1207	P.C.M. Yock	(AUCK)
BARTEL	80	ZPHY C6 295	W. Bartel et al.	(JADE Collab.)
BUSSIERE	80	NP B174 1	A. Bussiere et al.	(BGNA, SACL, LAPP)
YOCK	80	PR D22 61	P.C.M. Yock	(AUCK)
ARMITAGE	79	NP B150 87	J.C.M. Armitage <i>et al.</i>	(CERN, DARE, FOM+)
BOZZOLI	79	NP B159 363	W. Bozzoli <i>et al.</i>	$(BGNA,\ LAPP,\ SACL+)$
GOODMAN	79	PR D19 2572	J.A. Goodman <i>et al.</i>	(UMD)
SMITH	79	NP B149 525	P.F. Smith, J.R.J. Bennet	
BHAT	78 70	PRAM 10 115	P.N. Bhat, P.V. Ramana	,
CARROLL	78 70	PRL 41 777	A.S. Carroll <i>et al.</i>	(BNL, PRIN)
CUTTS VIDAL	78 78	PRL 41 363 PL 77B 344	D. Cutts <i>et al.</i> R.A. Vidal <i>et al.</i>	(BROW, FNAL, ILL, BARI+) (COLU, FNAL, STON+)
ALEKSEEV	76	SJNP 22 531	G.D. Alekseev <i>et al.</i>	(COLO, FINAL, STON+) (JINR)
/ LENSLE V	70	Translated from		(311111)
ALEKSEEV	76B	SJNP 23 633	G.D. Alekseev et al.	(JINR)
		Translated from	YAF 23 1190.	,
BALDIN	76	SJNP 22 264	B.Y. Baldin et al.	(JINR)
DDIATORE	76	Translated from	YAF 22 512. L. Briatore <i>et al.</i>	(LCCT FDAC FDEID)
BRIATORE GUSTAFSON	76 76	NC 31A 553 PRL 37 474	H.R. Gustafson <i>et al.</i>	(LCGT, FRAS, FREIB) (MICH)
ALBROW	75	NP B97 189	M.G. Albrow <i>et al.</i>	(CERN, DARE, FOM+)
FRANKEL	75	PR D12 2561	S. Frankel <i>et al.</i>	(PENN, FNAL)
JOVANOV	75	PL 56B 105	J.V. Jovanovich <i>et al.</i>	(MANI, AACH, CERN+)
YOCK	75	NP B86 216	P.C.M. Yock	(AUCK, SLAC)
APPEL	74	PRL 32 428	J.A. Appel <i>et al.</i>	(COLU, FNAL)
FRANKEL	74	PR D9 1932	S. Frankel <i>et al.</i>	(PENN, FNAL)
YOCK	74	NP B76 175	P.C.M. Yock	(AUCK)
ALPER	73	PL 46B 265		(CERN, LIVP, LUND, BOHR+)
LEIPUNER	73	PRL 31 1226	L.B. Leipuner <i>et al.</i>	(BNL, YALE)
DARDO TONWAR	72 72	NC 9A 319 JP A5 569	M. Dardo <i>et al.</i>	B.V. Sreekantan (TORI)
ANTIPOV	72 71B	NP B31 235	S.C. Tonwar, S. Naranan, Y.M. Antipov <i>et al.</i>	(SERP)
ANTIPOV	71C	PL 34B 164	Y.M. Antipov et al.	(SERP)
BINON	69	PL 30B 510	F.G. Binon et al.	(SERP)
BJORNBOE	68	NC B53 241	J. Bjornboe <i>et al.</i>	(BOHR, TATA, BERN+)
JONES	67	PR 164 1584	,	I, WISC, LBL, UCLA, MINN+)
DORFAN	65	PRL 14 999	D.E. Dorfan et al.	(COLU)