Class 9

Change Detection

Tracking

Parametric Pixel Modeling

Background Pixel

mean-[174,202,228], std-[21,21,2 [167,198,229]

Background Distribution

- Let $P_B(x) = P(x|x \in B)$ be the probability distribution function (*pdf*) of the background for a pixel q
- Given a threshold α , and $x_t = I(q, t)$:

$$F(x_t) = \begin{cases} 1 & P_b(x_t) < \alpha \\ 0 & P_b(x_t) \ge \alpha \end{cases}$$
th
$$0 \quad I_b \qquad 255$$

Background Distribution

- Let q be a pixel, and $x_t = I(q, t)$ be the intensity of q at time t
- Define the probability distribution function (*pdf*) of the background, using $\{I(q,t)\}$:

$$P_B(x) = P(x|x \in B)$$

Model the pdf

- Let $x_t = I(q, t)$
- Regard the histogram of $\{x_t\}_{t=0}^n$ as a *pdf* of *q* background
- Parametric models:
 - 1D/3D Gaussian
 - Multi modal Gaussians
 - Others...
- Non-parametric models

Under which assumption is it true?

Model: 1D Gaussian

 Assume: independent Gaussian noise in the sampling process:

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- Parameters:
 - $\mu = E(x)$ mean (expectation)
 - σ STD
 - $\sigma^2(x) = E[(x \mu)^2]$ Variance

How to set the threshold α ?

•
$$x_t = I(q, t)$$

$$F(x_t) = \begin{cases} 1 & P_b(x_t) < \alpha \\ 0 & P_b(x_t) \ge \alpha \end{cases}$$

A common choice:

$$\alpha = 2.5\sigma_{i,t}$$

Where are the failures?

Background probability for a single pixel

Gaussian Mixture Model

(based on Stauffer et. al. 1999)

- Motivation:
 - Moving background e.g., trees
 - Single Gaussian is insufficient
- Use mixture of Gaussian:

$$P(x_t | B) = \sum_{i=1}^{N} w_{i,t} G(x_t, \mu_{i,t}, \sigma_{i,t})$$
 memory and computational power

K Depends on memory power

- *K*: number of Gaussians
- w_{i,t}: weight of the ith Gaussian at time t
- $\mu_{i,t}$ and $\sigma_{i,t}$: the *i* Gaussian parameters

Issues

- How to use the set of K Gaussians
- How to initialize the Gaussian parameters:
 For a single Gaussian, i:
 - Average: $\mu_{i,t} = average(\{x_t\})$
 - Variance: $\sigma^2 = E[(x_t \mu)^2]$
- How to update the Gaussian parameters
- Note: we first assume grey-level images

Match x_t with G_i

• Define, x_t match G_i by:

$$M(x_t, Gi) = \begin{cases} 1 & |x_t - \mu_{i,t}| < 2.5\sigma_{i,t} \\ 0 & |x_t - \mu_{i,t}| \ge 2.5\sigma_{i,t} \end{cases}$$

• Assume G_i is a background model of q, and $x_t = I(q,t)$ then we consider x_t to be a background pixel if $M(x_t, G_i) = 1$

Using the set of *K*Gaussians

- Given the set B of dominant Gaussians:
 - x_t is foreground: $M(x_t, G_i) = 0$, $\forall G_i \in B$
 - x_t is background: otherwise

Weight of G_i

- Let w_{it} be the weight of G_i with σ_{it}
- Order the set of K Gaussians by : w_{it}/σ_{it}
 - high: more evidence & low variance
- Use it to define the set of dominant Gaussians

(details in the paper)

Update $\mu_i \& \sigma_i$

- Matched: $M(x_t, G_i) = 1$
 - $\mu_{i,t} = (1 \rho)\mu_{i,t-1} + \rho x_t$
 - $\sigma_{i,t}^2 = (1-\rho)\sigma_{i,t-1}^2 + \rho(x_t \mu_{i,t})^2$
 - ρ is the learning rate defined by a parameter α : $\rho = \alpha G(x_t \mid \mu_i, \sigma_i)$
- Unmatched: remains the same

$$M(x_t, G_i) = \begin{cases} 1 & |x_t - \mu_{i,t}| < 2.5\sigma_{i,t} \\ 0 & |x_t - \mu_{i,t}| \ge 2.5\sigma_{i,t} \end{cases}$$

Update Weights

Update weights of all Gaussians:

•
$$w_{i,t} = (1 - \alpha)w_{j,t-1} + \alpha \left(M(x_t, G_{j,t-1})\right)$$

• α is a learning rate parameter

• Renormalize the weights $\sum_{j} w_{j,t} = 1$

$$M(x_t, Gi) = \begin{cases} 1 & |x_t - \mu_{i,t}| < 2.5\sigma_{i,t} \\ 0 & |x_t - \mu_{i,t}| \ge 2.5\sigma_{i,t} \end{cases}$$

When does w_{j,t} increase?

Update the Set G_i

- Given x_t such that $\forall i$, $M(x_t, G_i) = 0$
- Replaced G_i with smallest w_{it}/σ_{it} with a new Gaussian:

 - Set σ_i high

Summary

- Optical Flow:
 - Assumptions
 - Pairs of images
 - Multi scale
- Change Detection
 - Learn and model the background
 - Compare a frame to the BG
 - Mixture of Gaussians

Next

video

nuous Optimization for Multi-Target Tracking (CVPR 2012)

Real-time Multi-Person 2D Pose Estimation Using Part Affinity Fields

Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh Carnegie Mellon University

Discrete-Continuous Optimization for Multi-Target Tracking

Anton Andriyenko Stefan Roth Konrad Schindler

CVPR 2012

tracking multiple targets as minimization

Scroll for details

0:03 / 2:37

Scroll for details

.

Tracking

- Find location of a target in a sequence of images
- The egg and the chicken:
 - Perfect recognition implies tracking
 - Recognition often considered a more difficult problem

The target

- What to track?
- How to detect it?
- How to represent it ?

Association

- Match detected target in different frames
- Build up a track history

- Improve detection
- Improve efficiency

Target: what?

- Feature points
- A region
- An object

Association

- Match detected target in different frames
- Build up a track history

- Improve detection
- Improve efficiency

Target: How to detect?

- Feature detection
- Object detection
- Using motion: e.g., optical flow or change detection
- Manually

Association

- Match detected target in different frames
- Build up a track history

- Improve detection
- Improve efficiency

Representation

- Feature points
- Patches
- A region
- Motion
- Learned e.g., discriminative from BG

Example of Target representation

Fig. 1. Object representations. (a) Centroid, (b) multiple points, (d) rectangular patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) complete object contour, (h) control points on object contour, (i) object silhouette.

Skeleton

Outline: splines

Object parts

Representation

- Feature points
- Patches
- A region
- Motion
- Learned e.g., discriminative from BG

Representation

- Feature points
- Patches
- A region
- Motion
- Learned e.g., discriminative from

BG

Illumination

Representation Properties

- Unique
- Reliable location
- Easy to compute
- Insensitive to changes

Non rigid

View point

Articulated

The target

- What to track?
- How to detect it?
- How to represent it?

Association

- Low level: intensity, color, edges, patch descriptors (SIFTs, histograms, ..)
- High level: objects
- Learning methods
- Using motion (e.g., OF)
- By elimination

Association: Challenges

Occlusions

Many moving objects

Cluttered background

Illumination

View point

Articulated

The target

- What to track?
- How to detect it?
- How to represent it?

Association

- Match detected target in different frames
- Build up a track history

- Improve detection
- Improve efficiency

Feature Based

- Use Lucas-Kanade OF to track corners (track with pure translation)
- Use affine registration with first feature patch
- Terminate tracks whose dissimilarity gets too large
- Start new tracks when needed

Tracking results

Figure 1: Three frame details from Woody Allen's Manhattan. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

Figure 2: The traffic sign windows from frames 1,6,11,16,21 as tracked (top), and warped by the computed deformation matrices (bottom).

Region Based

- A template the region to track
- Search for a match in the next image:
 - Use region descriptor
 - Use a distance (or similarity) measure
 - Limit the search area
- Choose the maximum (or minimum) as the match
- example

Window size

Small windows:

- More false positive matches
- Flow resolution higher
- Cheap to compute

Large windows

- More reliable
- Flow resolution lower

Expensive to compute

Improve Robustness

- Use "Good" patch descriptors
 - E.g., Histograms, Gradients, Histograms of gradients,
- Update the patch:
 - e.g., size: $s = \alpha s + (1 \alpha) s_t$
- Update the descriptor:
 - e.g., $d = \alpha d + (1 \alpha) d_t$
- Use motion

Dealing with Occlusion

(based on Adam et al)

- Divide the region to several patches
- Calculate similarity measure for each patch
- Decide on the best object location by considering all the fragments response

Combining the Vote Maps

- Goal: deal with occlusion
- Consider the best Q patches
 - the maximal number of patches we always expect to be inliers
- Choose the location which maximizes the score of the best Q patches
- Vote for the location
 - How?

Results

initial template

frame 222

frame 539

frame 849

initial template

frame 66

frame 134

frame 456

initial template

frame 29

frame 141

frame 209

Results (cont)

Track Outlines

- Track contours using edge information:
 - Silhouettes
 - Road lines
- Outline representation:
 - E.g., by spline
- Find the outline:
 - E.g., Snakes

Shape Space

It is desirable to restrict the configuration of a spline

Constraint the Problem

- Knowledge about:
 - The object shape
 A ball, a person, a car
 - The object appearance · Color, texture, ...
 - The motion: direction, velocity, ... Used for prediction
- Helps:
 - Reduce ambiguity
 - Reduce the search space
- Obtain by:
 - Tailoring (hacking)
 - Learning

A Challenging Example

- The points are indistinguishable
- What assumptions can be used?
 - Smooth motion
 - Limited speeds
 - Short occlusions

Taken from http://visual.ipan.sztaki.hu/psmweb/

Simplify World

Assumptions:

- Linear 2D motion
- Constant velocity

Noise

Assumptions:

- Linear 2D motion
- Constant velocity

Ambiguity

Use Prediction

- Based on motion:
 - Direction
 - Velocity
 - Acceleration
- Shape

Upadate predictions by measuments

Prediction

- Used for:
 - Improve accuracy
 - Reduce search space in tracking
- Based on what we saw and the transition model (e.g., motion)

Kalman & Particle Filters

- Basic idea:
 - Use noisy measurements from the image
 - Use prediction
 - Improve robustnedd by combining prediction and measurements

Time t

Kalman Filter

Time t-1

Time t

Kalman Filter

- Weighted sum: $\hat{x}_t = \hat{x}_t^- + K_t(\mathbf{z}_t H\hat{x}_t^-)$
- Questions:
 - How to set the weight between prediction and observations? E_{EST}
 - How to set the variance?
 - How to predict ?

 $E_{EST}(t) = (1 - \overline{k_G})E_{EST}(t-1)$

Time t

Tracking as Inference

- $X \in \mathbb{R}^n$: the *hidden state* consists of the true parameters (e.g., location, velocity, shape ..)
- $Z \in \mathbb{R}^m$: a noisy *measurement of X*
- Bayes rule: $p(x|z) = \frac{p(z|x)p(X)}{p(z)}$
- At time t, z_t can be measured
- Our goal: recover most likely state x_t given all noisy observations seen so far

Simple Example

• Known system's linear dynamic model:

• E.g.,
$$x_t = \begin{pmatrix} p_t \\ \dot{p}_t \end{pmatrix}$$
, \dot{p} is velocity $\dot{p}_{t+1} = \dot{p}_t$ and $p_{t+1} = p_t + \Delta T \dot{p}_t + w_t$

• Known linear mapping between the state x_t and the observation, z_t :

• E.g.,
$$z_t = p_t + v_t$$

- Measurement and estimation errors:
 - v_t and w_t are Gaussian noise

Assumptions

• Known system's linear dynamic model, with white noise $\sim G(0, Q)$

$$X_t = AX_{t-1} + Bu_t + W_{t-1}$$

- A is $n \times n$, B is $n \times \ell$
- Known linear transformation of the states to the measurements with white noise $\sim G(0, R)$: $z_t = Hx_t + v_t$
 - H is an $m \times n$ matrix

A, B, H, Q, R are assumed to be known

Goal

- Compute x_t
- Given:
 - Initial state
 - Previous measurements
 - Known (or learned) linear models: A, B, H
- Minimize the error (its covariance) between the correct and the computed x_t

Notation

- A priori:
 - state estimation: \hat{x}_t^-
 - error: $e_t^- = x_t \widehat{x}_t^-$
 - covariance: $\Sigma_t^- = E(e_t^- e_t^{-T})$
- A posteriori, given z_t :
 - state estimation: \hat{x}_t
 - error: $e_t = (x_t \hat{x}_t)$
 - covariance: $\Sigma_t = E(e_t \ e_t^T)$

We would like to minimize it

1D

1D

1D

$$K_n = rac{Variance \ in \ Estimate}{Variance \ in \ Estimate \ + \ Variance \ in \ Measurement} = rac{p_{n,n-1}}{p_{n,n-1} + r_n}$$

Where:

 $p_{n,n-1}\;$ is the extrapolated estimate variance

 r_n is the measurement variance

$$p_{n,n}=\left(1-K_n\right)p_{n,n-1}$$

The Discrete Kalman Filter

Predict

(a priori estimate)

1. Predict the state ahead:

$$\hat{x}_t^- = A\hat{x}_{t-1}^- + Bu$$

2. Predict the error covariance ahead:

$$\Sigma_t^- = A \; \Sigma_{t-1} A^T + Q$$

Update

(a posteriori estimate)

1. Kalman gain K_t is:

$$k_t = \frac{E_{est}}{E_{est} + E_{mea}}$$

$$K_t = \Sigma_t^- H^T (H \Sigma_t^- H^T + R)^{-1}$$

2. Update the state estimate:

$$\hat{x}_t = \hat{x}_t^- + K_t(\mathbf{z}_t - H\hat{x}_t^-)$$

3. Update the error covariance:

$$\Sigma_t = (I - K_t H) \Sigma_t^-$$

Up to Here

- Up to here: only brief outline of Kalman filter
- Many extensions exists
- Detailed: https://www.kalmanfilter.net/default.aspx
- See more references at the of the presentation

Non-Parametric Prediction

- Motivation: limitations of Kalman filter
- What are they?

Particle Filters

- Can represent distribution with set of weighted samples ("particles")
- Allows us to maintain multiple hypotheses

Particle Filters

Contour Prediction

- Object model
- Object shape
- Video

Next

- Object recognition / detection
- Course summary

References

- Recent advances and trends in visual tracking: A review, Yang, Ling, Zheng, Wang, Liang & Song, Neurocomputing, 74(18)
- A. Yilmaz, O. Javed, M. Shah. Object tracking: A survey, in: IPCV, 2006.
- CONDENSATION -- conditional density propagation for visual tracking, by Michael Isard and Andrew Blake, Int. J. Computer Vision, 29, 1, 5--28, (1998)
- The original Kalman filter paper: Kalman, R.E. (1960). "A new approach to linear filtering and prediction problems" (PDF). Journal of Basic Engineering There are many tutorials on the WEB.
- Video on kalman filter
- https://www.kalmanfilter.net/default.aspx