MITOCHONDRIES

Généralités

- Organites spé des cellules eucaryotes
- dans toutes les c sauf GR
- jusqu'à 2000 mito/c
- se trouvent dans des zone de haute conso NRJ
- Réseau cytoplasmique = mitochondriome
- e déplacent grâce au cytosquelette
- En Mitose, elles sont réparties au hasard dans les 2 cellules filles
- Élimination dans la cellule par autophagie

Fonctions:

- **prod NRJ** en présence d'oxygène : synthèse et stockage d'ATP → respiration cellulaire
- Impliquées dans le mécanisme de mort par apoptose
- Synthèse de métabolites (hormones stéroïdes, PL, aa)
- Régulation de la concentration en calcium

Il Structure dynamique des mitochondries

Organite clos avec double membrane: 2 bicouches lipidiques

- mb externe: outer mb
- mb interne: Inner mb, nombreuses crêtes

2 espaces fonctionnels:

- la matrice mitochondriale
- l'espace inter mb

Mitotracker ou Marquage anticorps

Forme variable

Diamètre : 0,5-1 µm

Organisées en réseau

Mitochondriome → réseau dynamique qui va s'adapter aux conditions physiologiques

Quand on a **besoin d'NRJ** → **fusion**

Quand on a - besoin d'NRJ → fission

Les cycles de fusion ↔ fission permettent l'échanges de protéines, lipides et ADN.

Utilisation de GTP!

Dynamisme grâce à :

- GTP
- Dynamines: Mitofusine (Mfn), DRP1, OPA1

DYNAMIQUE DES MITOCHONDRIES

MITOCHODRIOME = Réseau dynamique (# formes et mouvement)
Morphologie change en fonction des conditions cellulaires

Cycle de Fusion/Fission : échange de protéines/lipides/ADN

famille des dynamines

Mitofusine (Mfn), DRP1, OPA1

Fusion Fission Drp1

Mise en évidence de la fusion des mitochondries :

On a utilisé des protéines mitochondriales fluo qui nous permettent d'obtenir des cellules avec des mitochondries vertes et d'autres avec des mito rouges.

On a fusionné le cytoplasme des 2 cellules. Si on donne du GTP, on s'aperçoit que le fuseau de mitochondrie devient jaune (vert + rouge)

Mise en évidence de la fusion des mitochondries

III Composition des mitochondries

III.AComposition générale

- 2 membranes
- intermédiaires métaboliques
- Co-enzymes
- ADN mito
- ARNt mito
- Mitoribosomes
- Protéines mito: env 1500
 - → origine mito
 - → origine nucléaire/cytosolique (+++)
 - → enz du métabolisme : Oxydation du Pyruvate, Oxydation des AG, CK
 - → protéines et enz de réplication, transcription, traduction

- 2 membranes (bicouches lipipides)
- Intermédiaires métaboliques
- Coenzymes
- ADN mitochondrial
- ARNt mitochondriaux
- Mitoribosomes
- Protéines mitochondriales (environ 1500)

Enzymes du métabolisme (Oxydation du Pyruvate, Oxydation Acides Gras et Cycle de Krebs) Protéines reliés à la présence de l'ADN Mitochondrial

(réplication, transcription, traduction)

Origine mitochondriale (ADN mitochondrial) ou Origine cytosolique (ADN nucléaire)

III.B ADN mitochondrial

ADN db circulaires: brins H et L

Origine maternelle

2-10 copies d'ADN mito / mito

16 000 pdb qui vont coder pour 37 gènes:

- 2 ARNr
- 22 ARNt
- 13 ARNm sans introns qui vont coder pour 13 protéines mitochondriales

NB : les protéines mitochondriales ont des rôles spé de la mito : protéines des complexes de la chaîne respi et de l'ATP synthase.

Réplication / transcription dep du noyau (gènes nucléaires)

Distribution de l'ADN se fait au hasard dans la distribution des c

Analyse d'échantillons anciens : ADN mito très bien conservé (mieux que l'ADN nucléaire)

mtADN humain
Origine maternelle
2 à 10 copies/mitochondries
ADN circulaire, double brin (H et L)
Origne de réplication (D-loop)

16 569 pb : 37 gènes

- 2 ARNr (mitorihosomes)
- 22 ARNt (code génétique spécifiq mitochondrie)
- 13 ARNm sans intron

13 Protéines mitochondriales (protéines des complexes de la chaîne respiratoire et de l'ATP synthase)

III.C Membranes mitochondriales

III.C.1 <u>Membrane</u> <u>externe</u> <u>outter membrane</u>

- Relativement perméable : transport passif
- Compo de la membrane :
 - → Porines: transport passif peu spé, molécules de petites taille (< 5 000 Da : ATP, ADP, Pi, Pyruvate)
- → **Pores anioniques** : ions (s'ouvrent en fonction de la diff de potentiel)
- → TOM (Translocase Outter Membrane):
 Complexe d'importation → permet de faire entrer les protéines mitochondriales

→ Transporteurs du métabolisme :

Entrée du cholestérol (→ Stéroïdes)

Entrée des AG + activation (→ AcylCoa)

Navettes métaboliques : Entrée électron → régénération des Co-enzymes

- → Protéines impliquées dans la fusion/fission : **Dynamines** (ex : Mfn)
- → Protéine **BCL2** : mécanisme d'apoptose

III.C.2 <u>Membrane interne = Inner membrane</u>

– Perméabilité réduite car :

- → Systèmes de transports spé (transport actif ++)
- → Présence de lipides particuliers = cardiolipides

Permettent la **souplesse** : replis de la mb interne = crêtes qui sont en fait des tubes fermés par des **protéines d'accolement** et qui délimitent des **compartiments fonctionnels** + **7** la surface

Apporte imperméabilités pour les Protons : nécessaire pour la synthèse d'ATP

- Membrane riche en protéines : 80 % ! (env 60 protéines différentes) :
 - → Systèmes de **transport spé** (transport actif ++) : ATP, ADP, Pi, H+, Pyruvates, AcylCoA, ...
 - → TIM (Translocase Inner Membrane) : Importation des protéines mitochondriales
 - → Protéines du métabolisme NRJ : phosphorylation oxydative (Protéines de la chaîne respi
 - + protéines qui forment l'ATP synthase)

IV Activité métabolique mitochondriale

Vert = tube

Au niveau des crêtes mitochondriales on retrouve :

- Protéines d'accolement : formation de tubes permettant des compartiments fonctionnels
- Cytochromes C
- Protéines Pro-apoptotiques

A l'intérieur du tube : forte concentration en protons avec pH=7 (matrice pH=7,5) \rightarrow H+ proviennent du fonctionnement de la chaîne respi et vont permettre de faire fonctionner l'ATPsynthase.

La grande concentration en H+ va créer un **gradient électro-chimique de protons** = la **force protons-motrice** (dû au fonctionnement de la chaîne respiratoire). Ces protons vont faire fonctionner l'ATP synthase.

La chaîne respi permet de **régénérer** les coenzymes (**ré-oxydés**):

- NADH → NAD+
- FADH2 → FAD

V Échanges mitochondries / autres compartiments

Lipides:

- importation de PL (RE), Stéroïdes
 5cytosol/RE), AG (cytosol/peroxysomes)
- véhiculés via transporteurs cytosoliques, navettes, contacts mb/mb

Protéines :

- importées grâce à des signaux
 d'adressage pour la matrice, les mb ou
 l'espace inter-mb
- Adressage post-trad avec protéines chaperonnes + ATP
- Importées via TOM et TIM : pores de translocation mb
- 2 types de protéines à adresser :
 - → Protéines cytosoliques (vers la matrice ou les mb)
 - → Protéines de la matrice mito (vers les mb)

 4 localisations possibles: dans la matrice mito, mb interne, mb externe, espace inter mb

 4 types de transporteurs : TOM, TIM, SAM, OXA

Adressage des protéines dans les mitochondries

V.A Adressage à la matrice

- Protéines codées par l'ADN nucléaire avec seg signal
- Chaperonne + facteur Msf qui amènent la protéine à TOM (ATP)
- TOM reconnaît TIM : translocation de la protéine vers la mb interne
- Hsp70 (chaperonne) mitochondriale va aider à la sortie de la protéine au nv de la matrice
 - + clivage par une signalPeptidase de la seq signal

V.B Adressage à la mb interne

Protéines codées par l'ADN nucléaire avec seq signal + Hsp70 + Msf :

- adressage au complexe TOM
- Puis adressage à TIM
- Puis :

SOIT : Au niveau de TIM : signal (seq stop transfert) qui indique que la protéine peut s'insérer directement au nv de la mb interne

SOIT : Passe par TIM, se retrouve dans la matrice, où elle est clivée par la Signal Peptidase \rightarrow mise en évidence d'une seq reconnue par le transporteur OXA \rightarrow interagit avec OXA \rightarrow rentre dans la mb interne.

Pour les protéines codées par l'ADN mito : elles sont déjà dans la matrice donc passent directement par OXA.

V.C Adressage à la membrane externe et à l'espace inter mb

Protéines codées par l'ADN nucléaire + Hsp70 + MSF :

- adressage à TOM qui reconnaît le seq StopTransfert
- La protéine se retrouve dans l'espace inter mb :

Si seq AA hydrophobes sur la protéine → reconnues par chaperonnes de l'espace inter mb Soit la protéine va se replier → reste dans l'espace inter mb

Soit elle va être reconnue par SAM → intégrée dans la mb externe

VI Pathologies associées aux mitochondries

Maladies mitochondriales = **Mitochondriopathies** → déficit de la production d'ATP : touchent des organes qui ont besoin d'NRJ (muscles, cœur)

Pathologies hétérogènes ++

Vieillissement: accumulation de mutations de l'ADN mito car **pas de fonction proof-reading** (pas de système de réparation de l'ADN)

Maladies mitochondriales génétiques :

- mutations au nv de l'ADN mito : retrouvées sur toutes les mito(= homoplasmie) ou pas (= hétéroplasmie)
- mutations au nv de l'ADN nucléaire : toutes les mitochondries

ex : Maladie de Charcot - Marie - Tooth de type axonale : mutation MFN2 au nv de la Mitofusine \rightarrow anomalie de la fusion

Mitochondriopathies médicamenteuses:

Inhibiteurs des fonctions des mitochondries = poisons des mito :

- Cyanure → cytochrome Oxydase (enz de la chaîne respi)
- Arsenic → CK
- OligoMycine → ATPsynthase