





# MODELAGEM DE SÓLIDOS, CURVAS E SUPERFÍCIES

Adair Santa Catarina Curso de Ciência da Computação Unioeste – Campus de Cascavel – PR

Jan/2021



## O que é Modelagem?

Modelagem é o uso de técnicas para criar representações matemáticas ou simbólicas de objetos tridimensionais que, posteriormente, serão convertidas em imagens.









## Representação de Objetos



A representação matemática ou simbólica empregada na modelagem de objetos deve ser conveniente aos algoritmos gráficos utilizados.

### A representação dos objetos deve incluir:

- Dimensões, por exemplo a localização dos vértices;
- Estrutura ou topologia: como os pontos são conectados para dar forma aos objetos.



## **Exemplos**







## **Exemplos**

#### Isto é um cubo?





#### Vértices

A = (0, 0, 0)

B = (1, 0, 0)

C = (1, 1, 0)

D = (0, 1, 0)

E = (0, 0, 1)

F = (1, 0, 1)

G = (1, 1, 1)

H = (0, 1, 1)

#### **Arestas**

AB, BC, CD, DA, EF, FG, GH, HE, AE, BF,

CG, DH

6 faces delimitam um volume fechado para o sólido. Então é um cubo!



## Aproximação de Curvas por Polylines

Resumidamente, curvas podem ser aproximadas por curvas poligonais (polylines)



**Polyline** 



Curva aproximada ou retificada



## Representação Poliédrica de Objetos

Consiste em utilizar faces planas para representar uma aproximação de sólidos tridimensionais.

Adequada para representar objetos como cubos, paralelepípedos, prismas, cunhas, pirâmides, etc.









## Representação Poliédrica de Objetos

O incremento no número de faces melhora a aproximação da representação poliédrica para superfícies curvas, porém aumenta o consumo de processamento e memória.



10 vértices = 100 faces

20 vértices = 400 faces



### **Vértices Explícitos**

Cada polígono é representado por uma lista de coordenadas de vértices.



$$P_1 = \{V_1, V_2, V_3\}$$
  
 $P_2 = \{V_2, V_4, V_3\}$ 

- Adequada para um único polígono;
- Em poliedros duplica os vértices compartilhados;
- Não explicita vértices e arestas compartilhadas.



### Ponteiros para Listas de Vértices

Os vértices são armazenados em uma lista de vértices. O polígono é representado por uma lista de ponteiros para os vértices.



$$V = \{V_1, V_2, V_3, V_4\}$$

$$P_1 = \{&V_1, &V_2, &V_3\}$$

$$P_2 = \{&V_2, &V_4, &V_3\}$$

- Utiliza menos memória;
- Permite alterar os vértices mantendo a conectividade;
- É difícil identificar quais polígonos compartilham arestas;
- Arestas compartilhadas são desenhadas duas vezes.



### **Arestas Explícitas**

Há duas listas: de vértices e de arestas. Cada aresta tem ponteiros para dois vértices e cada polígono é formado por uma lista de ponteiros para arestas.



```
V = \{V_1, V_2, V_3, V_4\}
A = \{A_1 = (&V_1, &V_2), A_2 = (&V_2, &V_3), A_3 = (&V_3, &V_1), A_4 = (&V_2, &V_4), A_5 = (&V_4, &V_3)\}
P_1 = \{&A_1, &A_2, &A_3\}
P_2 = \{&A_2, &A_4, &A_5\}
```

- As arestas são desenhadas percorrendo-se uma única lista;
- É fácil desenhar um único polígono;
- Ainda é difícil identificar quais faces compartilham um determinado vértice (algoritmos de sombreamento).



Alguns processos são facilitados adicionando-se ponteiros adicionais às listas. Na estrutura abaixo é possível identificar quais polígonos compartilham uma determinada aresta.



```
V = \{V_1, V_2, V_3, V_4\}
A = \{A_1 = (&V_1, &V_2, &P_1, &\phi), A_2 = (&V_2, &V_3, &P_1, &P_2), A_3 = (&V_3, &V_1, &P_1, &\phi), A_4 = (&V_2, &V_4, &P_2, &\phi), A_5 = (&V_4, &V_3, &P_2, &\phi)\}
P_1 = \{&A_1, &A_2, &A_3\}
P_2 = \{&A_2, &A_4, &A_5\}
```



### Winged-Edge

Apresentada por Bruce G. Baumgart no artigo "Winged-edge polyhedron representation for computer vision", em 1975.



- Concentra as informações na lista de arestas, em uma estrutura de tamanho fixo;
- Permite verificar, em tempo constante, as relações de adjacência entre vértices, arestas e faces:
  - Quais vértices, arestas ou faces são adjacentes a cada face, aresta ou vértice.
- Respeito à fórmula de Euler para poliedros convexos: F A + V = 2.



## Estrutura de Dados Winged-Edge

A estrutura de dados *Winged-Edge* é composta por 3 listas:

- Lista de vértices: cada vértice v mantém suas coordenadas (x, y, z) e um ponteiro para uma aresta qualquer que incide em v;
- Lista de faces: cada face **f** mantém um ponteiro para uma aresta qualquer da fronteira de **f**;
- Arestas: Cada aresta possui 8 ponteiros:
  - Dois ponteiros para os vértices da aresta, cuja ordem indica a orientação da aresta;
  - Dois ponteiros para as faces que compartilham a aresta (face da esquerda e da direita);
  - Quatro ponteiros para as outras arestas conectadas.



## Estrutura de Dados Winged-Edge



#### Lista de Arestas

| Aresta | Vértices |     | Faces Face      |                 | Esq. | Face Dir. |     |     |
|--------|----------|-----|-----------------|-----------------|------|-----------|-----|-----|
| Nome   | lni      | Fim | Esq             | Dir             | Pre  | Suc       | Pre | Suc |
| а      | &X       | &Y  | &F <sub>1</sub> | &F <sub>2</sub> | &e   | &d        | &b  | &c  |

#### Lista de Vértices

| Vértice | Coo            | rdena          | Aresta         |           |  |  |
|---------|----------------|----------------|----------------|-----------|--|--|
| Nome    | Х              | у              | Z              | Incidente |  |  |
| Х       | X <sub>x</sub> | X <sub>y</sub> | X <sub>z</sub> | &e        |  |  |
| Y       | Y <sub>x</sub> | Yy             | Yz             | &b        |  |  |

### Lista de Faces

| Face           | Aresta da Face |  |  |  |  |
|----------------|----------------|--|--|--|--|
| F <sub>1</sub> | &d             |  |  |  |  |
| F <sub>2</sub> | &b             |  |  |  |  |



# Winged-Edge – Exemplo



#### Lista de Vértices

| Vértice | Coo            | rdena          | Aresta    |    |
|---------|----------------|----------------|-----------|----|
| Nome    | x y z          |                | Incidente |    |
| Α       | A <sub>x</sub> | $A_{y}$        | $A_z$     | &a |
| В       | $B_{x}$        | B <sub>y</sub> | $B_z$     | &c |
| С       | C <sub>x</sub> | $C_{y}$        | $C_z$     | &e |
| D       | $D_{x}$        | $D_y$          | $D_z$     | &a |

#### Lista de Faces

| Face           | Aresta da Face |
|----------------|----------------|
| F <sub>1</sub> | &a             |
| $F_2$          | &c             |
| $F_3$          | &e             |
| F <sub>4</sub> | &f             |



# Winged-Edge – Exemplo



#### Lista de Arestas

| Aresta | Vértices |     | Fa              | Faces Fac       |     | Esq. | Face Dir. |     |
|--------|----------|-----|-----------------|-----------------|-----|------|-----------|-----|
| Nome   | Ini      | Fim | Esq             | Dir             | Pre | Suc  | Pre       | Suc |
| а      | &A       | &D  | &F <sub>3</sub> | &F <sub>1</sub> | &f  | &e   | &c        | &b  |
| b      | &A       | &B  | &F <sub>1</sub> | &F <sub>4</sub> | &a  | &c   | &d        | &f  |
| С      | &B       | &D  | &F <sub>1</sub> | &F <sub>2</sub> | &b  | &a   | &e        | &d  |
| d      | &B       | &C  | &F <sub>2</sub> | &F <sub>4</sub> | &c  | &e   | &f        | &b  |
| е      | &C       | &D  | &F <sub>2</sub> | &F <sub>3</sub> | &d  | &c   | &a        | &f  |
| f      | &C       | &A  | &F <sub>3</sub> | &F <sub>4</sub> | &e  | &a   | &b        | &d  |



## Winged-Edge – Polígonos com Buracos

E se um polígono possuir buracos internos ou chanfros? Como representá-los?





## Winged-Edge – Polígonos com Buracos

Para uma face com buracos internos, a borda externa é percorrida em sentido horário enquanto os buracos internos são percorridos em sentido anti-horário.



Ou... Inserir arestas auxiliares ligando o buraco à borda externa. A face à direita e à esquerda das arestas auxiliares é a mesma, permitindo sua rápida identificação.





### Representação de Sólidos por Aproximação

A representação de sólidos pode ser feita através da aproximação dos objetos utilizando diversas técnicas, tais como:

- Wireframe;
- Malhas de polígonos;
- B-Rep (boundary representation);
- CSG (Constructive Solid Geometry);
- Sweep (varredura);
- Enumeração da ocupação espacial;
- Octrees;
- BSP-Trees.



### Wireframe

A estrutura do objeto é representada por suas arestas, em uma estrutura aramada (wireframe).

São necessários dois conjuntos de dados: Vértices (geometria) e Arestas (topologia).



#### Vértices

```
A = (0, 0, 0); B = (1, 0, 0); C = (1, 1, 0); D = (0, 1, 0); E = (0, 0, 1); F = (1, 0, 1); G = (1, 1, 1); H = (0, 1, 1)
```

**Arestas** 

AB, BC, CD, DA, EF, FG, GH, HE, AE, BF, CG, DH

### Apresenta as seguintes limitações:

- Não é adequada para objetos vazados;
- Não armazena informações de superfície ou interior.



### Malhas Poligonais (Polygon Meshes)

Representa uma superfície discretizada utilizando faces planas.

São necessários três conjuntos de dados: Vértices (geometria), Arestas e Faces (topologia).







### Malhas Poligonais (Polygon Meshes)

Estrutura de dados utilizada na representação:

- Lista de faces c/ Arestas Explícitas [vetores normais];
- Winged-Edge.

Apresenta problemas ao representar objetos curvos.



Uso de sombreamento para suavizar contornos.



## Malhas Poligonais - Level of Details (LOD)

Processo de simplificação da malha poligonal em função da profundidade do objeto na cena.









### Características das Malhas Poligonais

São flexíveis. Podem ser utilizados para representar uma ampla gama de objetos.

Quanto mais detalhada a malha, melhor a representação dos objetos e maior o consumo de memória.

## Apresentam limitações:

- Superfície não é suave;
- Não armazena informações sobre o interior do objeto, nem assegura que o objeto modelado é um sólido.

Uso de malha triangular uniformiza os algoritmos utilizados no processo de síntese de imagens.



Técnica de representação adequada para poliedros convexos regulares.



Os poliedros são descritos por suas faces, arestas e vértices.

As faces separam o interior do exterior do objeto e são representadas por polígonos planos, geralmente triângulos.



Utilizar uma estrutura de dados baseada em faces não garante que o objeto representado atenda aos requisitos da B-Rep.



Fórmula de Euler F - A + V = 2.

$$F = 5$$
;  $A = 8$ ;  $V = 5$   
 $5 - 8 + 5 = 2$ 

Atende a Fórmula de Euler, mas não é um poliedro convexo fechado.



Para que um objeto atenda aos requisitos da B-Rep são necessárias restrições adicionais.



- Cada aresta deve ser compartilhada por duas faces;
- Cada aresta deve conectar dois vértices;
- Cada vértice deve ser compartilhado por 3 arestas, no mínimo.



### E se o objeto possui furos ou reentrâncias?



## Fórmula de Euler generalizada

$$F - A + V = 2 + H - 2G$$

$$F = 11$$
;  $A = 24$ ;  $V = 16$   
 $H = 1$ ;  $G = 0$   
 $11-24+16 = 2+1-2.0$   
 $3 = 3$ 



### **CSG (Constructive Solid Geometry)**

Utiliza um conjunto de primitivas geométricas simples: prismas, cones, cilindros, esferas, etc.



Objetos mais complexos são criados através da combinação e do posicionamento das primitivas usando operações booleanas.



### **CSG (Constructive Solid Geometry)**

A CSG tem por base a teoria dos conjuntos.

As primitivas são transformados por movimentos rígidos (translação, rotação e escala) e combinadas pelos operadores de União (+), Diferença (-) e Interseção (\*).





## **CSG (Constructive Solid Geometry)**

Os objetos criados com CSG são representados através de árvores booleanas.





## Conversão CSG → B-Rep



Percorrer a borda interna do polígono no sentido anti-horário



Percorrer a borda externa do polígono no sentido horário



## Conversão CSG → B-Rep



Calcular os pontos de interseção entre as arestas



Costurar adequadamente as regiões usando as interseções calculadas.



# Conversão CSG → B-Rep





#### Sweep

Geração de objetos 3D a partir do deslizamento de uma superfície poligonal ao longo de uma trajetória.

A superfície poligonal (uma seção plana) é chamada de geratriz enquanto a trajetória é chamada de diretriz.





# Sweep

As diretrizes podem ser lineares, polylines, curvas ou de revolução.











## Sweep

# Os processos para gerar os objetos são: Extrusão, Revolução, Deslizamento e Loft







# Geração de Malhas por Deslizamento



C(t) = (cos(t), sen(t), b.t),onde **b** é uma constante.



$$C(t) = ((a+b.cos(qt))cos(pt),$$

$$(a+b.cos(qt))sen(pt),$$

$$c.sen(qt)))$$

a, b, p e q são constantes escolhidas

a) 
$$p = 2$$
,  $q = 5$   
b)  $p = 1$ ,  $q = 7$ 



## Sweep

A modelagem Sweep pode combinar aspectos da CSG e da B-Rep.

Objetos são modelados pela adição ou subtração de características a um objeto base. As características são operações de manufatura como furos, nervuras, filetes, chanfros, ranhuras, etc.







# Enumeração da Ocupação Espacial

O objeto é decomposto em células idênticas (voxels) arranjadas num grid regular.

Em uma lista de células indicamos quais estão ocupadas (presença) ou não (ausência).





#### **Octrees**

Octrees são uma variante hierárquica da Enumeração da Ocupação Espacial.

Derivam das *Quadtrees*, uma técnica empregada em armazenamento de imagens.



(a) Imagem Original (b) Enumeração Espacial (c) Quadtree.



# Representação em Memória - Quadtrees





# Representação em Memória - Octrees

A representação é similar às *Quadtrees*. As três dimensões são recursivamente divididas em octantes numerados de 1 a 8.







## **BSP-Trees**

Realiza a divisão recursiva do espaço em regiões convexas utilizando hiperplanos. O processo de divisão é representado em uma árvore binária chamada *BSP-Tree*.





Requicha (1980) propôs uma lista de propriedades desejáveis num esquema para representação de sólidos.

Domínio

Unicidade

Precisão

Validade

Eficiência



## **DOMÍNIO**

O domínio da representação deve ser grande o suficiente para permitir a representação de um conjunto útil de objetos.

- Sweep é limitada;
- Enumeração Espacial, *Octrees* e *BSP-Trees* permitem representar qualquer sólido, mas apenas aproximações;
- Incluir arestas e superfícies curvas aumenta o domínio de representação da B-Rep.



#### UNICIDADE

Uma representação é única quando codifica o sólido de apenas uma maneira.

• Somente a Enumeração Espacial e *Octrees* são capazes de representar sólidos de modo único.

## **PRECISÃO**

Permite representar um objeto sem aproximações.

- Enumeração Espacial e B-Rep permitem representar aproximações dos objetos;
- As outras técnicas são mais precisas, principalmente quando aumentamos a resolução.



#### **VALIDADE**

As representações devem gerar objetos válidos.

- B-Rep é crítica: pode acontecer casos de faces, arestas e vértices inconsistentes, bem como a interseção entre faces e arestas;
- Octrees e CSG permitem facilmente verificar a validade do objeto representado;
- Enumeração Espacial não necessita verificação de validade.



# **EFICIÊNCIA**

Está diretamente relacionada com o processamento realizado na interpretação dos objetos modelados.

- Técnicas que precisam processar a representação do sólido perdem em eficiência;
- CSG, Octrees e BSP-Trees não são eficientes;
- B-Rep e Enumeração Espacial não necessitam processar informações, portanto são consideradas mais eficientes;
- É relativo! Saber se um ponto é interno a um sólido é mais fácil em CSG do que em B-Rep.



# **Modelagem de Curvas\***

Uma curva  $Q(t) = [x(t) \ y(t) \ z(t)]$ , com  $0 \le t \le 1$  pode ser escrita como:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$



Qualquer ponto (x, y, z) ao longo da curva Q é descrito pelo conjunto de polinômios de 3º grau e do parâmetro t.

<sup>\*</sup>Com informações de Esperança, C. & Cavalcanti, P. R. Introdução à Computação Gráfica –Curvas. Disponível em: http://www.lcg.ufrj.br/ Cursos/COS-751/curvas-ppt. Acesso em: 31/03/2014.



# Modelagem de Curvas

$$Q(t) = \begin{cases} x(t) = a_x t^3 + b_x t^2 + c_x t + d_x \\ y(t) = a_y t^3 + b_y t^2 + c_y t + d_y \\ z(t) = a_z t^3 + b_z t^2 + c_z t + d_z \end{cases}$$

Podemos reescrever Q(t), como:  $Q(t) = T \cdot C$ 

$$Q(t) = T \cdot C$$

$$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} e C = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix}$$



## Modelagem de Curvas

Podemos reescrever C, como:  $C = M \cdot G$ 

$$C = M \cdot G$$

$$C = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \cdot \begin{bmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \end{bmatrix}$$

M = Matriz baseDefine a mistura dos elementos da Geometria.

G = Vetor de Geometria Elementos da curva considerados na sua modelagem.



# **Modelagem de Curvas**

Finalmente, escrevemos Q(t) como:  $||Q(t)| = T \cdot M \cdot G$ 

$$Q(t) = T \cdot M \cdot G$$

$$Q(t) = \begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix} = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \cdot \begin{bmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \end{bmatrix}$$

$$x(t) = (t^{3}m_{11} + t^{2}m_{21} + tm_{31} + m_{41})G_{1}x + (t^{3}m_{12} + t^{2}m_{22} + tm_{32} + m_{42})G_{2}x +$$

$$+ (t^{3}m_{13} + t^{2}m_{23} + tm_{33} + m_{43})G_{3}x + (t^{3}m_{14} + t^{2}m_{24} + tm_{34} + m_{44})G_{4}x$$

Expressões similares podem ser construídas para y(t) e z(t).



## **Continuidade das Curvas**

Ao desenhar curvas contínuas desejamos que as transições entre elas sejam suaves. A suavidade está associada com a continuidade algébrica das curvas.



C<sup>0</sup>: As duas curvas apresentam um ponto de junção.



C¹: A direção dos vetores tangentes no ponto de junção é igual.



C<sup>2</sup>: A direção e a magnitude dos vetores tangentes no ponto de junção são iguais.



Charles Hermite descreveu extensamente o uso de polinômios de 3ª ordem para o ajuste de curvas. Seu trabalho é a base para os demais modelos de curvas.



A geometria proposta por Hermite propõe um interpolador local controlado por 4 fatores a cada 2 pontos: Os pontos inicial e final da curva ( $p_0$  e  $p_1$ ) e os vetores tangentes à curva nestes pontos ( $T_0$  e  $T_1$ ).





A Geometria de Hermite, considerando a componente x, é representada por:

$$GH_{x} = \begin{bmatrix} P_{0} \\ P_{1} \\ T_{0} \\ T_{1} \end{bmatrix}$$

# Sabemos que componente x(t) da curva Q(t) é definida por:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$x(t) = T \cdot C_x = T \cdot M_H \cdot GH_x = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot M_H \cdot GH_x$$



As restrições impostas pela geometria de Hermite  $(p_0, p_1, T_0 e T_1)$  são obtidas pela substituição direta em x(t) e em x'(t).

x'(t) é a primeira derivada de x(t) e fornece a tangente à curva Q(t) no ponto t.

Para  $p_0$  (t = 0) e  $p_1$  (t = 1) temos:

$$x(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$
  
 $x(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \cdot M_H \cdot GH_X$   
 $x(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot M_H \cdot GH_X$ 



Para  $T_0$  (t = 0) e  $T_1$  (t = 1), aplicados em x'(t), temos:

$$x'(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}$$
  
 $x'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \cdot M_H \cdot GH_x$   
 $x'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} \cdot M_H \cdot GH_x$ 

As 4 restrições podem ser reescritas matricialmente.

$$\begin{bmatrix} P_0 \\ P_1 \\ T_0 \\ T_1 \end{bmatrix}_x = G_{Hx} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \cdot M_H \cdot G_{Hx}$$



Para que a igualdade anterior seja satisfeita (também para as expressões em y e z),  $M_H$  deve ser a inversa da matriz 4x4.

$$M_{H} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Matriz de Hermite



/xè

$$Q(t) = \begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix} = T \cdot M_H \cdot G_H$$

$$Q(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} p_0 \\ p_1 \\ T_0 \\ T_1 \end{bmatrix}$$

$$com \begin{bmatrix} p_0 \\ p_1 \\ T_0 \\ T_1 \end{bmatrix} = \begin{bmatrix} x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \\ T_0 x & T_0 y & T_0 z \\ T_1 x & T_1 y & T_1 z \end{bmatrix}$$



### Matriz de Hermite

A matriz de Hermite define a contribuição de cada elemento da geometria ( $p_0$ ,  $p_1$ ,  $T_0$  e  $T_1$ ) em função do parâmetro  $0 \le t \le 1$ .

$$Q(t) = (2t^3 - 3t^2 + 1) \cdot p_0 + (-2t^3 + 3t^2) \cdot p_1 + (t^3 - 2t^2 + t) \cdot T_0 + (t^3 - t^2) \cdot T_1$$

A matriz de Hermite define os quatro polinômios acima, que ponderam os elementos da Geometria de Hermite. Estes polinômios são representados graficamente no slide seguinte.



# Polinômios de Hermite





# **Os Vetores Tangentes**

O controle dos vetores tangentes de entrada e saída das curvas influencia na "suavização" da curva total.

Uma curva é contínua se o vetor tangente na saída do primeiro segmento tem a mesma direção do vetor tangente na entrada do segundo segmento.





# Efeito da Variação na Direção da Tangente (Hermite)





# O Efeito da Magnitude do Vetor Tangente

A magnitude do vetor tangente afeta a "agressividade" da curva de Hermite.





# **Controle Automático dos Vetores Tangentes**

Ao desenhar curvas de Hermite o controle manual das tangentes pode ser tedioso. Nestes casos um mecanismo de controle automático é desejável.

Dados 4 pontos definidos por  $p_0 = (x_0, y_0)$ ,  $p_1 = (x_1, y_1)$ ,  $p_2 = (x_2, y_2)$  e  $p_3 = (x_3, y_3)$  são geradas 4 tangentes necessárias à geração de 3 segmentos de curva contínuos, assim calculadas.

$$Tp_0 = (T_0x, T_0y) = (x_1 - x_0, y_1 - y_0)$$

$$Tp_1 = (T_1x, T_1y) = (x_2 - x_0, y_2 - y_0)$$

$$Tp_2 = (T_2x, T_2y) = (x_3 - x_1, y_3 - y_1)$$

$$Tp_3 = (T_3x, T_3y) = (x_3 - x_2, y_3 - y_2)$$



# **Controle Automático dos Vetores Tangentes**

Um fator de correção para o "peso" das tangentes para ajustar a "agressividade" da curva.

A curva a seguir foi gerada com peso igual a 50% para as tangentes.





## **Curvas de Hermite – Algoritmo**

```
i = 0;
while(i+1 < TotMarks) { //TotMarks = número total de pontos na curva
   RangeX = fabs (X[i+1] - X[i]);
   RangeY = fabs (Y[i+1] - Y[i]);
   if (RangeX > RangeY) Step = 1.0/RangeX;
   else Step = 1.0/RangeY;
   //Determinação automática das tangentes
   if(i == 0) {
      T1X = X[i+1] - X[i];
      T2X = X[i+2] - X[i];
      T1Y = Y[i+1] - Y[i];
      T2Y = Y[i+2] - Y[i];
   else if (i != 0 && i != TotMarks-2) {
      T1X = X[i+1] - X[i-1];
      T2X = X[i+2] - X[i];
      T1Y = Y[i+1] - Y[i-1];
      T2Y = Y[i+2] - Y[i];
```



## **Curvas de Hermite – Algoritmo**

```
else {
   T1X = X[i+1] - X[i-1];
   T2X = X[i+1] - X[i];
   T1Y = Y[i+1] - Y[i-1];
   T2Y = Y[i+1] - Y[i];
}
WG = 0.5;
for (t = 0; t \le 1; t += Step) {
   x = 0.5 + ((2*pow(t,3) - 3*pow(t,2) + 0*t + 1) * X[i] +
              (-2*pow(t,3) + 3*pow(t,2) + 0*t + 0) * X[i+1] +
              (1*pow(t,3) -2*pow(t,2) +1*t +0) * WG*T1X +
              (1*pow(t,3) -1*pow(t,2) +0*t +0) * WG*T2X);
   y = 0.5 + ((2*pow(t,3) - 3*pow(t,2) + 0*t + 1) * Y[i] +
              (-2*pow(t,3) + 3*pow(t,2) + 0*t + 0) * Y[i+1] +
              (1*pow(t,3) -2*pow(t,2) +1*t +0) * WG*T1Y +
              (1*pow(t,3) -1*pow(t,2) +0*t +0) * WG*T2Y);
   if (t == 0) MoveTo (hdc, x, y);
   else LineTo (hdc, x, y);
LineTo (hdc, X[i+1], Y[i+1]);
i++;
```



# Algoritmo de De Casteljau

Suponha que queiramos aproximar uma curva polinomial entre os pontos  $p_0$  e  $p_1$ .





A solução natural é um segmento de reta entre  $p_0$  e  $p_1$ , parametrizado por:  $p(t) = (1 - t).p_0 + t.p_1$ 

Podemos interpretar p(t) como uma média ponderada entre  $p_0$  e  $p_1$ .

Os polinômios (1 – t) e t somam 1 para qualquer valor de t. Estes polinômios são chamados de funções de mistura (blending functions).



# Algoritmo de De Casteljau

Generalizamos a ideia para 3 pontos  $p_0$ ,  $p_1$  e  $p_2$ , considerando os segmentos de reta  $p_0p_1$  e  $p_1p_2$ .

$$p_{01}(t) = (1 - t).p_0 + t.p_1$$
  
 $P_{12}(t) = (1 - t).p_1 + t.p_2$ 

Podemos agora realizar uma interpolação entre  $p_{01}(t)$  e  $p_{12}(t)$ 

$$p_{02}(t) = (1 - t).p_{01}(t) + t.p_{12}(t)$$

$$p_{02}(t) = (1 - t)^{2}.p_{0} + 2t.(1 - t).p_{01}(t) + t^{2}.p_{02}(t)$$





















Podemos dizer que a curva é obtida pela "mistura" dos pontos p<sub>0</sub>, p<sub>1</sub> e p<sub>2</sub> ponderadas por 3 funções quadráticas.





Aplicando novamente a ideia podemos definir uma cúbica por 4 pontos ( $p_0$ ,  $p_1$ ,  $p_2$  e  $p_3$ ).



$$p_{02}(t) = (1 - t)^{2}.p_{0} + 2t.(1 - t).p_{1} + t^{2}.p_{2}$$

$$p_{13}(t) = (1 - t)^{2}.p_{1} + 2t.(1 - t).p_{2} + t^{2}.p_{3}$$

$$p_{03}(t) = (1 - t).p_{02}(t) + t.p_{13}(t)$$

$$p_{03}(t) = (1 - t)^{3}.p_{0} + 3t.(1 - t)^{2}.p_{1} + 3t^{2}.(1 - t).p_{2} + t^{3}.p_{3}$$





$$t = 0.25$$





$$t = 0.5$$





$$t = 0.75$$









A curva é obtida por 4 funções de mistura (agora cúbicas) operadas sobre os pontos  $p_0$ ,  $p_1$ ,  $p_2$  e  $p_3$ .

$$b_{03}(t) = (1 - t)^3$$
 $b_{13}(t) = 3t \cdot (1 - t)^2$ 
 $b_{23} = 3t^2 \cdot (1 - t)$ 
 $b_{33}(t) = t^3$ 

Funções
de mistura



## Curvas de Bézier e Polinômios de Bernstein

As curvas construídas pelo Algoritmo de De Casteljau são conhecidas como *curvas de Bézier* e as funções de mistura são chamadas de *base de Bézier* ou *Polinômios de Bernstein*.

Os Polinômios de Bernstein de grau n têm como forma geral  $b_{in}(t) = c^{i} \cdot t^{i} \cdot (1 - t)^{n-i}$ 

Escrevendo as constantes  $c_i$  para os diversos polinômios teremos:

$$b_{in}(t) = \binom{n}{i} t^{i} (1-t)^{n-i}$$



### Polinômios de Bernstein de Grau 3





#### Matriz de Bézier

Sabendo que o polinômio de Bézier para uma curva Q(t) definida pelos pontos  $p_0$ ,  $p_1$ ,  $p_2$  e  $p_3$  é:

$$Q(t) = (1-t)^3.p_0 + 3t.(1-t)^2.p_1 + 3t^2.(1-t).p_2 + t^3.p_3$$

## Expandido Q(t) temos:

$$Q(t) = (-t^3 + 3t^2 - 3t + 1).p_0 + (3t^3 - 6t^2 + 3t).p_1 + (-3t^3 + 3t^2).p_2 + t^3.p_3$$

#### Matricialmente escrevemos Q(t) como:

Matriz de Bézier 
$$Q(t) = T \cdot M_B \cdot G = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$



#### **Curvas de Bézier**

Foram desenvolvidas pelo engenheiro Pierre Bézier para desenhar carros para a Renault. Devido a sua versatilidade tornaram-se padrão nos programas de desenho.





A curva é definida por 2 pontos extremos ( $p_0$  e  $p_3$ ) e outros dois pontos ( $p_1$  e  $p_2$ ) que controlam os extremos dos vetores tangentes ( $T_0$  e  $T_1$ ).

$$T_0x = 3(p_1x - p_0x) e T_0y = 3(p_1y - p_0y)$$

$$T_1x = 3(p_2x - p_3x) e T_1y = 3(p_2y - p_3y)$$



### Curvas de Bézier – Algoritmo

```
i = 0;
while(i+3 < TotMarks) { //TotMarks = número total de pontos na curva
   RangeX = fabs (X[i+3] - X[i]);
   RangeY = fabs (Y[i+3] - Y[i]);
   if(RangeX > RangeY)
      Step = 1.0/RangeX;
   else
      Step = 1.0/RangeY;
   for (t = 0; t \le 1; t += Step) {
      x = ((-1*pow(t,3) + 3*pow(t,2) - 3*t + 1)*X[i] +
           (3*pow(t,3) -6*pow(t,2) +3*t +0)*X[i+1] +
           (-3*pow(t,3) +3*pow(t,2) +0*t +0)*X[i+2] +
           (1*pow(t,3) +0*pow(t,2) +0*t +0)*X[i+3]);
      y = ((-1*pow(t,3) + 3*pow(t,2) - 3*t + 1)*Y[i] +
           (3*pow(t,3) -6*pow(t,2) +3*t +0)*Y[i+1] +
           (-3*pow(t,3) + 3*pow(t,2) + 0*t + 0)*Y[i+2] +
           (1*pow(t,3) + 0*pow(t,2) + 0*t + 0)*Y[i+3]);
      if (t == 0) MoveTo (hdc, x, y);
      else LineTo (hdc, x, y);
   i += 3;
```



## **Splines**

Uma *spline* é uma linha flexível usada para produzir uma curva suavizada ao longo de uma série de pontos de controle.

Existem vários tipos de *splines*, cuja amostragem varia de acordo com a fórmula matemática utilizada na sua construção. Elas podem ser interpoladas ou aproximadas.





### **Splines**

A forma de uma curva *spline* depende da distribuição e dos pesos dos pontos de controle. Manipulando os pontos e os pesos ajustam-se a curvatura do *spline*.

### Matricialmente escrevemos um *B-spline* Q(t) como:

$$Q(t) = T \cdot M_B \cdot G = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

Matriz *B-Spline* 



## Funções de Mistura para B-Spline





### Curvas B-Spline – Algoritmo

```
i = 0;
while(i+3 < TotMarks) { //TotMarks = número total de pontos na curva
   RangeX = fabs (X[i+2] - X[i+1]);
   RangeY = fabs (Y[i+2] - Y[i+1]);
   if (RangeX > RangeY) Step = 1.0/RangeX;
   else Step = 1.0/RangeY;
   for(t = 0; t \leq 1; t += Step) {
      x = (((-1*pow(t,3) + 3*pow(t,2) - 3*t + 1)*X[i] +
            (3*pow(t,3) -6*pow(t,2) +0*t +4)*X[i+1] +
            (-3*pow(t,3) + 3*pow(t,2) + 3*t + 1)*X[i+2] +
            (1*pow(t,3) +0*pow(t,2) +0*t +0)*X[i+3])/6);
      y = (((-1*pow(t,3) + 3*pow(t,2) - 3*t + 1)*Y[i] +
            (3*pow(t,3) -6*pow(t,2) +0*t +4)*Y[i+1] +
            (-3*pow(t,3) + 3*pow(t,2) + 3*t + 1)*Y[i+2] +
            (1*pow(t,3) +0*pow(t,2) +0*t +0)*Y[i+3])/6);
      if (t == 0) MoveTo (hdc, x, y);
      else LineTo (hdc, x, y);
   i++;
```



Duas curvas de Bézier podem ser utilizadas para formar uma superfície de Bézier.













A superfície de Bézier é formada pelo produto cartesiano da funções das duas curvas geratrizes.

$$P(u,v) = \sum_{j=0}^{m} \sum_{k=0}^{n} p_{j,k} BEZ_{j,m}(v) BEZ_{k,n}(u)$$

$$BEZ_{j,m}(v) = C(m,j)v^{j}(1-v)^{m-j}$$
  $BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$ 

$$BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$$

$$C(m,j) = \frac{m!}{j!(m-j)!}$$
  $C(n,k) = \frac{n!}{k!(n-k)!}$ 

$$C(n,k) = \frac{n!}{k!(n-k)!}$$

 $p_{i,k}$  são os (m + 1) por (n + 1) pontos de controle.



A seguir dois exemplos de superfícies geradas com m = 3, n = 3 e m = 4, n = 4 pontos de controle.





## Curvas e Superfícies de Bézier

Wittens, Steven. **Making things with Maths**. Disponível em: <a href="http://acko.net/files/fullfrontal/fullfrontal/wdcode/online.html">http://acko.net/files/fullfrontal/fullfrontal/wdcode/online.html</a>. Acesso em 04/04/2014.

