import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv("/content/1_fiat500_VehicleSelection_Dataset - 1_fiat500_VehicleSelection_Dataset (1).csv")

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price	Unnamed: 9	Unnamed: 10	1
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868	8900	NaN	NaN	
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.24188995	8800	NaN	NaN	
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784	4200	NaN	NaN	
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922	6000	NaN	NaN	
4	5.0	рор	73.0	3074.0	106880.0	1.0	41.903221	12.49565029	5700	NaN	NaN	
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	length	5	NaN	NaN	
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	concat	Ionprice	NaN	NaN	
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null values	NO	NaN	NaN	
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	find	1	NaN	NaN	
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	search	1	NaN	NaN	

11.

1549 rows × 11 columns

df1=df.drop(df.index[1537:],axis=0)

df1=df1.drop(["Unnamed: 9","Unnamed: 10","model"],axis=1)

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	1	th
0	1.0	51.0	882.0	25000.0	1.0	44.907242	8.611559868	8900		
1	2.0	51.0	1186.0	32500.0	1.0	45.666359	12.24188995	8800		
2	3.0	74.0	4658.0	142228.0	1.0	45.503300	11.41784	4200		
3	4.0	51.0	2739.0	160000.0	1.0	40.633171	17.63460922	6000		
4	5.0	73.0	3074.0	106880.0	1.0	41.903221	12.49565029	5700		
1532	1533.0	51.0	1917.0	52008.0	1.0	45.548000	11.54946995	9900		
1533	1534.0	51.0	3712.0	115280.0	1.0	45.069679	7.704919815	5200		
1534	1535.0	74.0	3835.0	112000.0	1.0	45.845692	8.666870117	4600		
1535	1536.0	51.0	2223.0	60457.0	1.0	45.481541	9.413479805	7500		
1536	1537.0	51.0	2557.0	80750.0	1.0	45.000702	7.68227005	5990		
1537 rd	ows × 8 co	olumns								

df1.describe()

	ID	engine_power	age_in_days	km	previous_owners	lat	1	1
count	1537.000000	1537.000000	1537.000000	1537.000000	1537.000000	1537.000000		
mean	769.000000	51.905010	1650.905660	53395.439167	1.123617	43.543455		
std	443.837996	3.989254	1289.938635	40059.858383	0.416546	2.132631		
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839		
25%	385.000000	51.000000	670.000000	20000.000000	1.000000	41.802990		
50%	769.000000	51.000000	1035.000000	39024.000000	1.000000	44.399971		
75%	1153.000000	51.000000	2616.000000	79800.000000	1.000000	45.467960		
max	1537.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612		

<ipython-input-169-3ed1a1a51dc0>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to F
sns.heatmap(df1.corr())
<Axes: >

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression,Ridge,Lasso

xis=1)

x=df1.drop(['age_in_days'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

y=df1['age_in_days']

3540.607087817586

 $coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])\\ coeff$

	Coefficient	1	th
ID	-0.110568		
engine_power	22.853431		
km	0.007339		
previous_owners	15.189556		
lat	12.962751		
lon	-11.709336		
price	-0.447022		

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff69a19090>

model.score(x_test,y_test)

0.8245985855042313

rr=Ridge(alpha=10) rr.fit(x_train,y_train) la=Lasso(alpha=10) la.fit(x_train,y_train) print(rr.score(x_test,y_test)) la.score(x_test,y_test)

0.8246038476674138

0.8245854230944103

daf=pd.read_csv("/content/2_2015.csv") daf

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	0.41978	0.29678	2.51738
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	0.14145	0.43630	2.70201
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	0.48357	0.34139	2.49204
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	0.36503	0.34699	2.46531
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	0.32957	0.45811	2.45176
153	Rwanda	Sub-Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.59201	0.55191	0.22628	0.67042
154	Benin	Sub-Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.48450	0.08010	0.18260	1.63328
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.15684	0.18906	0.47179	0.32858

daf1=daf.drop(["Country","Region"],axis=1) daf1.isna().sum()

> Happiness Rank 0 Happiness Score 0 Standard Error Economy (GDP per Capita) 0 0 Family 0 0 Health (Life Expectancy) Freedom Trust (Government Corruption)
> Generosity
> Dystopia Residual 0 0 dtype: int64

daf1.describe()

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	0.143422	0.237296	2.098977
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	0.120034	0.126685	0.553550
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.328580
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	0.061675	0.150553	1.759410
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	0.107220	0.216130	2.095415
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	0.180255	0.309883	2.462415
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	0.551910	0.795880	3.602140

y=daf1['Standard Error']
x=daf1.drop(['Standard Error'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

model=LinearRegression()

model.fit(x_train,y_train)

model.intercept_

0.23535376084260795

 $coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])\\ coeff$

	Coefficient	1	ıl.
Happiness Rank	-0.000610		
Happiness Score	-2.950489		
Economy (GDP per Capita)	2.936649		
Family	2.922085		
Health (Life Expectancy)	2.895794		
Freedom	2.934559		
Trust (Government Corruption)	2.905042		
Generosity	2.929666		
Dystopia Residual	2.928397		

 ${\tt prediction=model.predict(x_test)}$

plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff655ad870>

model.score(x_test,y_test)

0.08208352621456139

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.08191027311878352 -0.0030562607358459726

df=pd.read_csv("/content/3_Fitness-1.csv")
df

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

df=df.drop(['Row Labels'],axis=1)

df["Sum of Jan"]=df["Sum of Jan"].replace("%","",regex=True).astype(float)
df["Sum of Feb"]=df["Sum of Feb"].replace("%","",regex=True).astype(float)
df["Sum of Mar"]=df["Sum of Mar"].replace("%","",regex=True).astype(float)
df

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales	1	th
0	5.62	7.73	6.16	75		
1	4.21	17.27	19.21	160		
2	9.83	11.60	5.17	101		
3	2.81	21.91	7.88	127		
4	25.28	10.57	11.82	179		
5	8.15	16.24	18.47	167		
6	18.54	8.76	17.49	171		
7	25.56	5.93	13.79	170		
8	100.00	100.00	100.00	1150		

df.describe()

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales	1	ılı
count	9.000000	9.000000	9.000000	9.000000		
mean	22.22222	22.223333	22.221111	255.555556		
std	30.438329	29.612265	29.640999	337.332963		
min	2.810000	5.930000	5.170000	75.000000		

sns.pairplot(df)

sns.heatmap(df.corr())

```
<Axes: >
```


0.0014324800799876414

 $coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])$

coeff

	Coefficient	1	th
Sum of Jan	-0.917752		
Sum of Mar	-1.046221		
Sum of Total Sales	0.257736		

prediction=model.predict(x_test)

plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff633d5780>

model.score(x_test,y_test)

0.9999983656425949

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.9173143100864749 0.02592453617404189

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease	Sales units	Turnover	Customer	Area (m2)	Opening hours
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0	398560.0	1226244.0	NaN	953.04	Type A
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0	82725.0	387810.0	NaN	720.48	Type A
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0	438400.0	654657.0	NaN	966.72	Type A
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0	309425.0	499434.0	NaN	1053.36	Type A
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0	165515.0	329397.0	NaN	1053.36	Type A
765	3 06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	0.0	3886530.0	14538825.0	NaN	#NV	Type A
765	4 06.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	0.0	245.0	0.0	NaN	#NV	Type A
765	06.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	0.0	0.0	0.0	NaN	#NV	Type A
765	06.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	0.0	245.0	0.0	NaN	#NV	Type A

```
df.isna().sum()
     MonthYear
     Time index
     Country
StoreID
                         8 8
     City
     Dept_ID
                         8
     Dept. Name
     Hours0wn
     HoursLease
     Sales units
                        8
     Turnover
                         8
                      7658
     Customer
     Area (m2)
                         8
     Opening hours dtype: int64
df1=df.drop(["Customer","Country","Dept. Name","Opening hours","City"],axis=1)
df1=df1.dropna()
val=df["HoursOwn"]=="?"
print(df.index[val])
     Int64Index([2966, 5889], dtype='int64')
val=["#NV"]
df1["Area (m2)"].isin(val).sum()
df1=df1.drop([2966,5889],axis=0)
df1=df1.drop(["Area (m2)"],axis=1)
```

MonthYear Time index StoreID Dept_ID HoursOwn HoursLease Sales units Turnover 🥻 🔝

df1.describe()

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	7	ılı
count	7648.000000	7648.000000	7648.000000	7648.000000	7.648000e+03	7.648000e+03		
mean	4.999869	61999.574268	9.472019	22.041841	1.076492e+06	3.721465e+06		
std	2.582369	29923.753974	5.337296	133.316467	1.728290e+06	6.004067e+06		
min	1.000000	12227.000000	1.000000	0.000000	0.000000e+00	0.000000e+00		
25%	3.000000	29650.000000	5.000000	0.000000	5.455375e+04	2.724480e+05		
50%	5.000000	76852.000000	9.000000	0.000000	2.932300e+05	9.315390e+05		
75%	7.000000	87703.000000	14.000000	0.000000	9.164325e+05	3.259014e+06		
max	9.000000	98422.000000	18.000000	3984.000000	1.124296e+07	4.271739e+07		

sns.pairplot(df1)

coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff

	Coefficient	1	ılı
MonthYear	5317.605518		
Time index	-3298.987826		
StoreID	0.128203		
Dept_ID	-9522.316339		
HoursOwn	17.086125		
HoursLease	472.492932		
Turnover	0.246672		

prediction=model.predict(x_test)

plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff62171bd0>

model.score(x_test,y_test)

0.9052719859905412

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.9052719888316975 0.9052719872820221

df=pd.read_csv("/content/7_uber.csv")
df

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5
199995	42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	-73.986525	40.740297	1
199996	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	-74.006672	40.739620	1
199997	27804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	-73.858957	40.692588	2

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	7.5	-73.999817	40.738354	-73.999512	40.723217	1
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1
2	12.9	-74.005043	40.740770	-73.962565	40.772647	1
3	5.3	-73.976124	40.790844	-73.965316	40.803349	3
4	16.0	-73.925023	40.744085	-73.973082	40.761247	5
199995	3.0	-73.987042	40.739367	-73.986525	40.740297	1
199996	7.5	-73.984722	40.736837	-74.006672	40.739620	1
f1=df1.dropna f1.isna().sum	**					

th

df1 df1

fare_amount
pickup_longitude
pickup_latitude
dropoff_longitude
dropoff_latitude
passenger_count
dtype: int64 0 0 0 0

df1.describe()

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	199999.000000	199999.000000	199999.000000	199999.000000	199999.000000	199999.000000
mean	11.359892	-72.527631	39.935881	-72.525292	39.923890	1.684543
std	9.901760	11.437815	7.720558	13.117408	6.794829	1.385995
min	-52.000000	-1340.648410	-74.015515	-3356.666300	-881.985513	0.000000
25%	6.000000	-73.992065	40.734796	-73.991407	40.733823	1.000000
50%	8.500000	-73.981823	40.752592	-73.980093	40.753042	1.000000
75%	12.500000	-73.967154	40.767158	-73.963658	40.768001	2.000000
max	499.000000	57.418457	1644.421482	1153.572603	872.697628	208.000000

sns.pairplot(df1.iloc[0:300,:])


```
y=df1['passenger_count']
x=df1.drop(['passenger_count'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

1.6616864300378735

 $coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"]) \\ coeff$

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff506cbe20>

print(model.score(x_test,y_test))
print(model.score(x_train,y_train))

6.113243523797607e-05 0.0001366165686994547

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

6.113223065817852e-05 -1.613536212707878e-05

df=pd.read_csv("/content/8_BreastCancerPrediction (1).csv")

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	•••	texture_wor
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710		17
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017		23
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790		25
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520		26
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430		16
564	926424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890		26
565	926682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791		38
566	926954	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302		34
567	927241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200		39
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000		30

569 rows × 33 columns


```
df.isna().sum()
```

0 0 0 id diagnosis radius_mean texture_mean 0 perimeter_mean area_mean smoothness_mean compactness_mean 0 0 concavity_mean concave points_mean 0 symmetry_mean fractal_dimension_mean 0 0 radius_se texture_se 0 perimeter_se 0 area_se smoothness_se 0 0 compactness_se concavity_se concave points_se symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst 0 0 0 smoothness_worst 0 compactness_worst concavity_worst concave points_worst 0 symmetry_worst fractal_dimension_worst Unnamed: 32 0 569 dtype: int64

df1=df.drop(["Unnamed: 32"],axis=1)

df1["diagnosis"]= df1["diagnosis"].replace("M",1,regex=True)

df1["diagnosis"]= df1["diagnosis"].replace("B",0,regex=True)

df1

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	 radius_wors
0	842302	1	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	 25.38
1	842517	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	 24.99
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	 23.57
3	84348301	1	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	 14.91
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	 22.54
			•••	•••						•••	
564	926424	1	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	 25.45
565	926682	1	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	 23.69
566	926954	1	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	 18.98
567	927241	1	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	 25.74
568	92751	0	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	 9.45

569 rows × 32 columns

df1.describe()

concave

```
sns.heatmap(df1.corr())
```



```
y=df1['area_mean']
x=df1.drop(['area_mean'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

-303.20237369576057

coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff

```
Coefficient
         id
                        1.534436e-08
     diagnosis
                        5.474975e+00
                        7.119492e+01
    radius_mean
   texture_mean
                        -2.149570e-01
   perimeter_mean
                        6.664949e+00
                       -4.479525e+02
 smoothness_mean
                       -4.893977e+02
 compactness_mean
                        2.458095e+01
  concavity_mean
                        1.864207e+02
concave points_mean
```

 $prediction = model.predict(x_test)$ plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff4e608eb0>

print(model.score(x_train,y_train))

0.9973315510664574 concave points_worst

4.0000000000

3 552571△+02

model.score(x_test,y_test)

0.9955370544009499

rr=Ridge(alpha=10) rr.fit(x_train,y_train) la=Lasso(alpha=10) la.fit(x_train,y_train) print(rr.score(x_test,y_test)) la.score(x_test,y_test)

0.9927343626688578

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.65851e-18): result may not be accura return linalg.solve(A, Xy, assume_a="pos", overwrite_a=True).T

0.9899364925652687

df=pd.read_csv("/content/11_winequality-red.csv")

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
df.inf	o()												

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns):

Data	COTUMNIS (COCAT 12 COT	ulli13).	
#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	pH	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1) memory usage: 150.0 KB

sns.pairplot(df.iloc[:200,:])

sns.heatmap(df.corr())

y=df['density']
x=df.drop(['density'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

0.9787608689936755

 $coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])\\ coeff$

fixed acidity 0.000929

volatile acidity 0.000881

citric acid 0.000249

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff46275540>

 $model.score(x_test,y_test)$

0.8669526751569081

df=pd.read_csv("/content/13_placement.csv")
df

		cgpa	placement_exam_marks	placed	1	ılı					
	0	7.19	26.0	1							
	1	7.46	38.0	1							
	2	7.54	40.0	1							
	3	6.42	8.0	1							
	4	7.23	17.0	0							
9	95	8.87	44.0	1							
9	96	9.12	65.0	1							
9	97	4.89	34.0	0							
9	98	8.62	46.0	1							
9	99	4.90	10.0	1							
10	1000 rows × 3 columns										

df.isna().sum()

cgpa 0
placement_exam_marks 0
placed 0
dtype: int64

sns.pairplot(df)

placement_exam_marks

placed

-0.001376

0.043491