Geometric Flows

Orton Babb, Aneesh Malhotra, Ryan Vaughan

Fall 2017

1 Constructing the Normalized Graph Laplacian on a Manifold

2 Heat Flow

Suppose $\frac{\partial}{\partial t}\tilde{f}=-\Delta \tilde{f}$ with $\tilde{f}(0,\theta)=f_0(\theta)$. Note that if \tilde{f} is an eigenfunction of Δ , then $\Delta \tilde{f}=\lambda \tilde{f}$. Since $\frac{\partial}{\partial t}\tilde{f}=-\lambda \tilde{f}$, this has the solution $\tilde{f}(t,\theta)=e^{-\lambda t}f_0(\theta)$. More generally, we want to expand \tilde{f} to its generalized fourier series:

$$\tilde{f}(t,\theta) = \sum_{n=0}^{\infty} c_n(t)\phi_n(\theta)$$

Let ϕ , so that $\Delta\phi_n=\lambda_n\phi_n$, be the eigenfunctions of Δ . Then,

$$\frac{\partial}{\partial t}\tilde{f} = \sum_{n=0}^{\infty} \dot{c}_n(t)\phi_n(\theta) \qquad \qquad = \Delta \tilde{f} = \sum_{n=0}^{\infty} c_n(t)\Delta \phi_n(\theta)$$