CORRIGÉ DU DS°8

PROBLÈME II (MINES-PONTS MATHS I 1992

- Partie I -

1. a) Soit $\lambda \in]0;1[$. La fonction $t \mapsto \frac{1}{t^{1-\lambda}(1-t)^{\lambda}}$ est continue sur]0;1[.

Le problème de son intégrabilité ne se pose donc qu'aux voisinages de $\,0^+\,$ et de $\,1^-\,$.

Or, $\frac{1}{t^{1-\lambda}(1-t)^{\lambda}} \underset{t\to 0^+}{\sim} \frac{1}{t^{1-\lambda}}$, et la fonction $t\mapsto \frac{1}{t^{1-\lambda}}$ est continue, positive et intégrable au voisinage de 0 puisque $1-\lambda < 1$ (fonction de Riemann). Il en est donc de même de $t\mapsto \frac{1}{t^{1-\lambda}(1-t)^{\lambda}}$.

On procède de même au voisinage de 1⁻ puisque $\frac{1}{t^{1-\lambda}(1-t)^{\lambda}} \sim \frac{1}{(1-t)^{\lambda}}$, avec $t \mapsto \frac{1}{(1-t)^{\lambda}}$ intégrable au voisinage de 1⁻ puisque $\lambda < 1$.

b) Dans l'intégrale précédente, on pose $u=\frac{t}{1-t}$. L'application $t\mapsto \frac{t}{1-t}$ réalise un \mathscr{C}^1 -difféomorphisme de]0;1[sur $]0;+\infty[$,ce qui rend licite ce changement de variables.

On aura donc, puisque $t = \frac{u}{1+u}$, $dt = \frac{du}{(1+u)^2}$ et $1-t = \frac{1}{1+u}$:

$$I(\lambda) = \int_0^{+\infty} \frac{du}{(1+u)^2 \left(\frac{u^{1-\lambda}}{(1+u)^{1-\lambda}}\right) \left(\frac{1}{(1+u)^{\lambda}}\right)} = \int_0^{+\infty} \frac{du}{(1+u)u^{1-\lambda}}$$

c) On aura donc, les intégrales écrites étant toutes convergentes :

$$I(\lambda) = \underbrace{\int_0^1 \frac{\mathrm{d}u}{(1+u)u^{1-\lambda}}}_{J(\lambda)} + \int_1^{+\infty} \frac{\mathrm{d}u}{(1+u)u^{1-\lambda}}.$$

Dans la seconde de ces intégrales, on réalise le changement de variables $v=\frac{1}{u}$, qui réalise un \mathscr{C}^1 -difféomorphisme de $[1,+\infty[$ sur]0;1]:

$$\int_{1}^{+\infty} \frac{\mathrm{d}u}{(1+u)u^{1-\lambda}} = \int_{0}^{1} \frac{\mathrm{d}v}{v^{2} \left(1 + \frac{1}{v}\right) \left(\frac{1}{v^{1-\lambda}}\right)} = \int_{0}^{1} \frac{\mathrm{d}v}{(1+v)v^{\lambda}} = J(1-\lambda)$$

et l'on a donc :

$$I(\lambda) = J(\lambda) + J(1 - \lambda).$$

2. a) – Il s'agit de la formule donnant la somme des n premiers termes d'une suite géométrique de raison -u pour $u \neq -1$:

$$\sum_{k=0}^{n-1} (-u)^k = \frac{1 - (-u)^n}{1 + u}$$

qui se réécrit en

$$\forall u \neq -1, \ \frac{1}{1+u} = \sum_{k=0}^{n-1} (-1)^k u^k + (-1)^n \frac{u^n}{1+u}$$

- On en déduit :

$$\forall u \in [0, 1], \ \frac{1}{(1+u)u^{1-\lambda}} = \sum_{k=0}^{n-1} (-1)^k u^{k+\lambda-1} + (-1)^n \frac{u^n}{(1+u)u^{1-\lambda}}$$

et, toutes les fonctions ci-dessus étant intégrables sur [0;1]:

$$J(\lambda) = \sum_{k=0}^{n-1} (-1)^k \int_0^1 u^{k+\lambda-1} du + (-1)^n \int_0^1 \frac{u^{n+\lambda-1}}{1+u} du = \sum_{k=0}^{n-1} \frac{(-1)^k}{k+\lambda} + r_n$$

en notant
$$r_n = (-1)^n \int_0^1 \frac{u^{n+\lambda-1}}{1+u} du$$
.
On aura alors $|r_n| \leqslant \int_0^1 u^{n+\lambda-1} = \frac{1}{n+\lambda}$ d'où $\lim_{n \to +\infty} r_n = 0$ puis :

$$J(\lambda) = \lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{(-1)^k}{k+\lambda} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+\lambda}.$$

b) On en déduit :

$$I(\lambda) = J(\lambda) + J(1 - \lambda) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k + \lambda} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{k + 1 - \lambda} = \frac{1}{\lambda} + \sum_{k=1}^{+\infty} \left(\frac{(-1)^k}{k + \lambda} + \frac{(-1)^{k-1}}{k - \lambda} \right) = \frac{1}{\lambda} + \sum_{k=1}^{+\infty} \frac{(-1)^k (-2\lambda)}{k^2 - \lambda^2}$$

soit encore:

$$I(\lambda) = \frac{1}{\lambda} + 2\lambda \sum_{k=1}^{+\infty} \frac{(-1)^k}{\lambda^2 - k^2}.$$

3. a) f est 2π -périodique, continue sur $\mathbb{R} \setminus 2\pi\mathbb{Z}$ et de classe \mathscr{C}^1 par morceaux. De plus,

$$\lim_{t\to\pi^-} f(t) = \cos(\lambda\pi) \quad \text{ et } \quad \lim_{t\to\pi^+} f(t) = \lim_{\text{car } f2\pi-\text{p\'er. } t\to -\pi^+} f(t) = \cos(-\lambda\pi) = \cos(\lambda\pi)$$

donc f est continue en π et, par suite, continue sur \mathbb{R} .

D'après le théorème de Dirichlet global :

La série de Fourier de
$$f$$
 converge normalement vers f sur \mathbb{R} .

b) f étant paire, les $b_n(f)$ sont nuls et l'on a :

$$\forall n \in \mathbb{N}, \ a_n(f) = \frac{2}{\pi} \int_0^{\pi} \cos(\lambda t) \cos(nt) \, dt = \frac{1}{\pi} \int_0^{\pi} \left[\cos(\lambda + n)t + \cos(\lambda - n)t \right] dt$$
$$= \frac{1}{\pi} \left(\frac{\sin(\lambda + n)\pi}{\lambda + n} + \frac{\sin(\lambda - n)\pi}{\lambda - n} \right) = \frac{2}{\pi} (-1)^n \frac{\lambda \sin(\lambda \pi)}{\lambda^2 - n^2} \quad (\operatorname{car} \lambda \notin \mathbb{Z})$$

donc le développement de f en série de Fourier s'écrit :

$$\forall t \in \mathbb{R}, \ f(t) = \frac{\sin(\lambda \pi)}{\lambda \pi} + 2\lambda \sum_{n=1}^{+\infty} (-1)^n \frac{\sin(\lambda \pi)}{\pi(\lambda^2 - n^2)} \cos(nt).$$

c) D'après 2.b) et le résultat ci-dessus, on a : $I(\lambda) = \frac{\pi}{\sin(\lambda \pi)} f(0)$ et finalement :

$$u_0 = \frac{\sin(\lambda \pi)}{\pi} I(\lambda) = f(0) = 1.$$

4. a) Par définition, $u_k = \frac{\sin(\lambda \pi)}{\pi} \int_0^1 \frac{t^{k+\lambda-1}}{(1-t)^{\lambda}} dt$.

Pour obtenir une relation de récurrence, on procède alors par intégration par parties. Comme il s'agit d'une intégrale impropre, on fera le calcul sur un intervalle de la forme [a,b] avec 0 < a < b < 1. On obtient, pour $k \geqslant 1$:

$$\int_{a}^{b} \underbrace{t^{k+\lambda-1}}_{u(t)} \underbrace{(1-t)^{-\lambda}}_{v'(t)} dt = \left[-t^{k+\lambda-1} \frac{(1-t)^{1-\lambda}}{1-\lambda} \right]_{a}^{b} + \frac{k+\lambda-1}{1-\lambda} \int_{a}^{b} \frac{(t^{k+\lambda-2})(1-t)}{(1-t)^{\lambda}} dt.$$

Or $\lim_{b\to 1}(1-b)^{1-\lambda}=0$ puisque $1-\lambda>0$ et $\lim_{a\to 0}a^{k+\lambda-1}=0$ puisque $k+\lambda-1>0$, l'égalité précédente donne, lorsque $a\to 0^+$ et $b\to 1^-$:

$$\int_0^1 t^{k+\lambda-1} (1-t)^{-\lambda} dt = \frac{k+\lambda-1}{1-\lambda} \int_0^1 \frac{(t^{k+\lambda-2})(1-t)}{(1-t)^{\lambda}} dt = \frac{k+\lambda-1}{1-\lambda} \left(\int_0^1 \frac{t^{k+\lambda-2}}{(1-t)^{\lambda}} dt - \int_0^1 \frac{t^{k+\lambda-1}}{(1-t)^{\lambda}} dt \right)$$

ce qui donne la relation de récurrence :

$$\forall k \in \mathbb{N}^*, \ u_k = \frac{k+\lambda-1}{1-\lambda}(u_{k-1}-u_k)$$

soit encore:

$$\forall k \in \mathbb{N}^*, \ u_k = \frac{k+\lambda-1}{k} u_{k-1}.$$

b) En faisant le produit des relations précédentes, et compte tenu de $u_0 = 1$, on obtient :

$$\forall k \in \mathbb{N}^*, \ u_k = \frac{(k+\lambda-1)(k+\lambda-2)\cdots(\lambda)}{k!}.$$

5. a) En posant $u = \frac{t}{x}$ pour $t \in]0;1[$ et x > 1, on aura 0 < u < 1 et, pour tout $n \in \mathbb{N}^*$:

$$\frac{\omega(t)}{x-t} = \frac{\omega(t)}{x} \frac{1}{1-u} = \frac{\omega(t)}{x} \left(\sum_{k=0}^{n-1} u^k + \frac{u^n}{1-u} \right) = \sum_{k=0}^{n-1} \frac{t^k \omega(t)}{x^{k+1}} + \frac{t^n}{x^n} \frac{\omega(t)}{x-t}$$

d'où en intégrant sur]0;1[(l'intégrale de $\frac{\omega(t)}{x-t}$ est de même nature que celle de $\omega(t)$ puisque x-t ne s'annule pas sur]0;1[, donc est convergente, comme il a été démontré à la question 1.a)) :

$$\int_0^1 \frac{\omega(t)}{x - t} dt = \sum_{k=0}^{n-1} \frac{1}{x^{k+1}} \underbrace{\int_0^1 t^k \omega(t) dt}_{=u_k} + r_n$$

en notant $r_n = \frac{1}{x^n} \int_0^1 \frac{t^n \omega(t)}{x - t} dt$.

Or: $0 \le r_n \le \frac{1}{x-1} \frac{u_n}{x^n}$. En notant $v_n = \frac{u_n}{x^n}$, on a $v_n \ge 0$ et $\frac{v_{n+1}}{v_n} = \frac{1}{x} \frac{u_{n+1}}{u_n} = \frac{1}{x} \frac{n+\lambda}{n}$. Ainsi,

 $\lim_{n \to +\infty} \frac{v_{n+1}}{v_n} = \frac{1}{x} < 1 \text{ donc d'après la règle de d'Alembert (pour les suites), la suite } (v_n) \text{ tend vers } 0$ et il en est donc de même de r_n .

On en déduit :

$$\int_0^1 \frac{\omega(t)}{x - t} dt = \lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{u_k}{x^{k+1}} = \sum_{k=0}^{+\infty} \frac{u_k}{x^{k+1}}.$$

b) Si l'on pose $u = \frac{1}{x}$ on a :

$$g(x) = \frac{1}{x^{1-\lambda}(1-x)^{\lambda}} = \frac{u}{(1-u)^{\lambda}} = u(1-u)^{-\lambda}.$$

Or on connaît, pour |u| < 1, le développement en série entière :

$$(1-u)^{-\lambda} = 1 + \lambda u + \frac{(-\lambda)(-\lambda - 1)}{2!}(-u)^2 + \dots + \frac{(-\lambda)(-\lambda - 1)\cdots(-\lambda - k + 1)}{k!}(-u)^k + \dots$$

qui peut aussi s'écrire, compte tenu du calcul fait en 4.b):

$$\forall u \in]-1; 1[, (1-u)^{-\lambda} = \sum_{k=0}^{+\infty} u_k u^k.$$

On aura donc, pour x > 1:

$$g(x) = u(1-u)^{-\lambda} = \sum_{k=0}^{+\infty} \frac{u_k}{u^{k+1}}$$
.

c) En comparant les résultats des deux questions précédentes, on a immédiatement :

$$\forall x > 1, \ g(x) = \int_0^1 \frac{\omega(t)}{x - t} \, \mathrm{d}t.$$

- Partie II -

1. a) Dire que $A_n(X)$ est le projeté orthogonal de X^n sur $\mathbb{R}_{n-1}[X]$ équivaut à :

$$\forall p \in [0; n-1], (A_n(X) - X^n | X^p) = 0 \text{ soit } (A_n(X) | X^p) = (X^n | X^p)$$

ce qui s'écrit aussi

$$\sum_{k=0}^{n-1} a_k(n) \left(X^k \big| X^p \right) = \left(X^n \big| X^p \right) \quad \text{ou encore} \quad \sum_{k=0}^{n-1} a_k(n) u_{k+p} = u_{n+p} \,.$$

En divisant par u_{n+p} , et compte tenu de l'expression des u_k trouvée en **4.a**), on obtient bien, pour tout $p \in [0; n-1]$:

$$\sum_{k=0}^{n-1} a_k(n) \frac{u_{k+p}}{u_{n+p}} = \sum_{k=0}^{n-1} a_k(n) \frac{(k+p+\lambda-1)\cdots(\lambda)}{(k+p)!} \frac{(n+p)!}{(n+\lambda-1)(n+\lambda-2)\cdots(\lambda)} = \sum_{k=0}^{n-1} a_k(n) \prod_{i=k+1}^{n} \frac{i+p}{i+\lambda-1+p} = \sum_{i=k+1}^{n-1} a_k(n) \prod_{i=k+1}^{n} \frac{i+p}{i+\lambda-1+p} = \sum_{i=k+1}^{n} a_k(n) \prod_{i=k+1}^{n} \frac{i+p}{i+\lambda-1+p} = \sum_{i=k+1}^{n-1} a_k(n) \prod_{i=k+1}^{n} \frac{i+p}{i+\lambda-1+p} = \sum_{i=k+1}^{n-1} a_k(n) \prod_{i=k+1}^{n} \frac{i+p}{i+\lambda-1+p} = \sum_{i=k+1}^{n} a_k(n) \prod_{i=k+1}^{n} \frac{i+p}{i+\lambda-1+p} = \sum_{i=k+1}^{n} a_k(n) \prod_{i=k+1}^{n} \frac{i+p}{i+\lambda-1+p} = \sum_{i=k+1}^{n} a_k(n) \prod_{i=k+1}^{n} a_k(n) \prod_{i$$

b) – Si on réduit l'expression donnée de F(X) au même dénominateur, on obtient $F(X) = \frac{N(X)}{D(X)}$ où

N est un polynôme de degré $\leqslant n$ et où $D(X)=\prod_{i=1}^n (i+\lambda-1+X)$. Les pôles de F sont donc $\{-\lambda-n+1,-\lambda-n+2,\ldots,-\lambda\}$.

D'après la question précédente, les entiers $p \in [0; n-1]$ sont des zéros de F. Puisque le degré de N est $\leq n$, on a ainsi exactement tous les zéros de F.

- Puisque $\prod_{i=k+1}^{n} \frac{i-n}{i+\lambda-1-n} = 0$ pour tout $k \in [0; n-1]$, on aura F(-n) = 1.
- Connaissant les zéros et les pôles de F on peut écrire

$$F(X) = \alpha \prod_{p=0}^{n-1} \frac{X-p}{X+\lambda+p}$$
 avec $\alpha \in \mathbb{R}$

et puisque F(-n) = 1 on arrive à :

$$F(X) = \prod_{p=0}^{n-1} \frac{n-\lambda-p}{n+p} \frac{X-p}{X+\lambda+p}.$$

c) Pour X = 1 - n on a $F(1 - n) = 1 - a_{n-1}(n) \frac{1}{\lambda}$ puisque tous les produits $\prod_{i=k+1}^{n} \frac{i+1-n}{i+\lambda-n}$ sont nuls

sauf celui pour k = n - 1, qui est égal à $\frac{1}{\lambda}$.

D'autre part, $F(1-n) = \prod_{p=0}^{n-1} \frac{n-\lambda-p}{n+p} \frac{n+p-1}{n-1-\lambda-p} = \frac{n-1}{2n-1} \frac{\lambda-n}{\lambda}$, donc :

$$a_{n-1}(n) = \frac{n(n+\lambda-1)}{2n-1} \cdot$$

- 2. a) Il suffit d'orthogonaliser la base canonique $(1, X, ..., X^n, ...)$ de $\mathbb{R}[X]$ par le procédé de Schmidt. Cela permet d'obtenir une base orthogonale $(Q_0, Q_1, ..., Q_n, ...)$ de $\mathbb{R}[X]$. Il suffit alors de diviser chaque Q_i par son coefficient dominant pour obtenir la famille voulue.
 - $P_0=1$ évidemment, et P_1 est de la forme $P_1=X+a$. En écrivant $(1|P_1)=0$ on trouve $u_1+au_0=0$. Or $u_0=1$ et $u_1=\lambda$ donc $P_1=X-\lambda$.
 - Dans la construction successive des Q_i par le procédé de Schmidt, on considère à l'étape n+1 le polynôme $X^n p_{\mathbb{R}_{n-1}[X]}(X^n)$ où $p_{\mathbb{R}_{n-1}[X]}$ désigne la projection orthogonale sur $\mathbb{R}_{n-1}[X]$; cela donne, à un coefficient près, le (n+1)-ième vecteur de la famille orthogonale cherchée. Mais puisque ici on impose à ces vecteurs d'être normalisés, on a directement $P_n = X^n p_{\mathbb{R}_{n-1}[X]}(X^n)$ soirt encore, avec les notations de l'énoncé :

$$P_n = X^n - A_n(X).$$

b) On a:

$$||P_n||^2 = (X^n - A_n(X)|X^n - A_n(X)) = (X^n|X^n - A_n(X))$$

puisque $X^n - A_n(X)$ est orthogonal à $R_{n-1}[X]$ donc à $A_n(X)$. D'où :

$$||P_n||^2 = ||X^n||^2 - (X^n | A_n(X)) = \int_0^1 t^{2n} \omega(t) dt - \int_0^1 \left(\sum_{k=0}^{n-1} a_k(n) t^k\right) t^n \omega(t) dt$$

$$= u_{2n} - \sum_{k=0}^{n-1} a_k(n) u_{k+n} = u_{2n} \left(1 - \sum_{k=0}^{n-1} a_k(n) \frac{u_{k+n}}{u_{2n}}\right)$$

$$= u_{2n} \left(1 - \sum_{k=0}^{n-1} a_k(n) \prod_{i=k+1}^n \frac{n+i}{n+\lambda-1+i}\right)$$

soit:

$$\left\|P_n\right\|^2 = u_{2n}F(n).$$

c) – Si l'on suppose p < n alors $S \in \mathbb{R}_{n-1}[X]$ et S et P_n sont donc orthogonaux, c'est-à-dire

$$(P_n|S) = \int_0^1 P_n(x)S(x)\omega(x) dx = 0.$$

- Mais le polynôme P_nS ne possède que des racines d'ordre pair dans]0;1[donc garde un signe constant. La fonction $x\mapsto P_n(x)S(x)\omega(x)$ est donc continue, non identiquement nulle, de signe constant : son intégrale ne peut être nulle, d'où la contradiction.
- Il en résulte que p = n, c'est-à-dire que :

$$P_n$$
 admet n racines réelles distinctes dans $]0;1[$.

d) – Le polynôme $XP_n - P_{n+1}$ est de degré $\leq n$ donc s'écrit sous la forme

$$XP_n - P_{n+1} = \sum_{k=0}^{n} \lambda_k P_k.$$

Les P_k étant orthogonaux deux à deux, on a $(XP_n - P_{n+1}|P_k) = \lambda_k ||P_k||^2$ pour tout $k \in [0; n]$. Mais si $k \leq n-2$, $(XP_n - P_{n+1}|P_k) = (XP_n|P_k) = (P_n|XP_k) = 0$ puisque $\deg XP_k \leq n-1$. Donc $\lambda_k = 0$ si $k \leq n-2$ et on peut donc écrire :

$$XP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}.$$

– Avec cette écriture on aura $(XP_n|P_{n-1}) = \beta_n ||P_{n-1}||^2$.

Mais on a aussi $(XP_n|P_{n-1}) = (P_n|XP_{n-1}) = (P_n|X^n) = ||P_n||^2$ (en utilisant le fait que $P_n = X^n - A_n(X)$ avec $P_n \perp A_n$). On en déduit :

$$\beta_n = \frac{\left\|P_n\right\|^2}{\left\|P_{n-1}\right\|^2}.$$

- Le coefficient de X^n dans XP_n est égal à celui dans $-XA_n(X)$, donc à $-a_{n-1}(n)$.

Le coefficient de X^n dans $P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$ est égal à $-a_n(n+1) + \alpha_n$.

On aura donc $\alpha_n = a_n(n+1) - a_{n-1}(n) = \frac{(n+1)(n+\lambda)}{2n+1} - \frac{n(n+\lambda-1)}{2n-1}$ et après simplifications on obtient :

$$\alpha_n = \frac{2n^2 - \lambda}{(2n-1)(2n+1)}.$$

3. a) - Puisque $P_0 = 1$ et $P_1 = X - \lambda$ on obtient :

$$Q_0 = 0 \text{ et } Q_1 = u_0 = 1.$$

– Compte tenu de la relation $XP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$ pour $n \ge 1$, on obtient, pour tout $x \ge 1$:

$$xQ_n(x) = \int_0^1 \omega(t) \frac{xP_n(x) - xP_n(t)}{x - t} dt = \int_0^1 \omega(t) \left(\frac{xP_n(x) - tP_n(t)}{x - t} - P_n(t) \right) dt$$
$$= Q_{n+1} + \alpha_n Q_n + \beta_n Q_{n-1} - \int_0^1 \omega(t) P_n(t) dt.$$

Or la dernière intégrale est égale au produit scalaire $(P_n|1)$ donc est nulle (puisque $n \ge 1$). Donc :

$$XQ_n = Q_{n+1} + \alpha_n Q_n + \beta_n Q_{n-1}.$$

b) Les deux relations de récurrence pour les suites (P_n) et (Q_n) conduisent à :

$$XP_n(Q_{n+1} + \alpha_n Q_n + \beta_n Q_{n-1}) = XQ_n(P_{n+1} + \alpha_n P_n + \beta_n P_{n-1})$$

d'où:

$$\frac{P_n Q_{n+1} - P_{n+1} Q_n}{\|P_n\|^2} = \frac{\beta_n}{\|P_n\|^2} (P_{n-1} Q_n - P_n Q_{n-1}) = \frac{P_{n-1} Q_n - P_n Q_{n-1}}{\|P_{n-1}\|^2}$$

(compte tenu de la valeur de β_n trouvée en $\mathbf{2.d}$).

La suite $n \mapsto \frac{P_n Q_{n+1} - P_{n+1} Q_n}{\|P_n\|^2}$ est donc constante; sa valeur est donc celle obtenue pour n = 1, c'est-à-dire

$$\forall n \in \mathbb{N}, \frac{P_n Q_{n+1} - P_{n+1} Q_n}{\|P_n\|^2} = 1.$$

– Partie III –

1. Puisque $Q_0 = 0$ on a $v_0 = 0$ et pour $n \in \mathbb{N}$, la relation précédente s'écrit $\frac{Q_{n+1}}{P_{n+1}} = \frac{\|P_n\|^2}{P_n P_{n+1}} + \frac{Q_n}{P_n}$ d'où :

$$\forall x \ge 1, v_{n+1}(x) = v_n(x) + \frac{\|P_n\|^2}{P_n(x)P_{n+1}(x)}.$$

(toutes ces écritures ont bien un sens puisque l'on a vu que les racines de P_n appartiennent toutes à [0;1[).

2. a) D'après la formule de Taylor pour les polynômes (par exemple), pour tout réel t, $\frac{P_n(t) - P_n(X)}{t - X}$ est un polynôme de degré $\leq n - 1$, donc son produit scalaire avec P_n est nul c'est-à-dire

$$\int_0^1 \omega(t) \frac{P_n(t) - P_n(x)}{t - x} P_n(t) dt = 0.$$

b) Du calcul, où il suffit de tout remplacer : pour tout $x \ge 1$:

$$g(x) - v_n(x) = \int_0^1 \frac{\omega(t)}{x - t} dt - \frac{1}{P_n(x)} \int_0^1 \omega(t) \frac{P_n(x) - P_n(t)}{x - t} dt = \frac{1}{P_n(x)} \int_0^1 \omega(t) \frac{P_n(t)}{x - t} dt$$
$$= \frac{1}{(P_n(x))^2} \int_0^1 \omega(t) \frac{(P_n(t))^2}{x - t} dt$$

la dernière égalité résultant du calcul fait à la question précédente.

- **3. a)** Notons d'abord que $F_n(a)$ est bien un hyperplan de $\mathbb{R}_n[X]$, comme noyau de la forme linéaire non nulle $P \mapsto P(a)$.
 - Si $P \in F_n(a)$, il existe $Q \in \mathbb{R}_{n-1}[X]$ tel que P = (a X)Q d'où :

$$\langle P|P_n\rangle = \int_0^1 \frac{\omega(t)}{a-t} P(t) P_n(t) dt = \int_0^1 \omega(t) Q(t) P_n(t) = (Q|P_n) = 0$$

donc $F_n(a)$ est inclus dans l'orthogonal à P_n pour le produit scalaire $\langle . | . \rangle$.

- Cet orthogonal étant aussi un hyperplan, ces deux sous-espaces vectoriels sont égaux :

 $F_n(a)$ est l'hyperplan orthogonal à P_n pour le produit scalaire $\langle . | . \rangle$.

- **b)** Soit R un élément de $G_n(a)$. Alors, pour $P \in \mathbb{R}_n[X]$, $P \in G_n(a) \iff P(a) = R(a) = 1 \iff P R \in F_n(a)$. Donc $G_n(a) = R + F_n(a)$.
 - Si on veut R orthogonal à $F_n(a)$ il faut prendre R colinéaire à P_n , donc $R = \frac{P_n}{P_n(a)}$ (ce qui a bien un sens puisque $P_n(a) \neq 0$ puisque a > 1).
 - Tout polynôme P de $G_n(a)$ s'écrit donc P=R+Q avec $Q\in F_n(a)$ donc d'après le théorème de Pythagore, $\|\|P\|\|^2=\|\|R\|\|^2+\|\|Q\|\|^2\geqslant \|\|R\|\|^2$, avec égalité lorsque P=R donc :

$$\min_{P \in G_n(a)} ||P||^2 = \frac{||P_n||^2}{P_n(a)^2}.$$

4. D'après **2.b** et la question précédente, on a : $g(a) - v_n(a) = \frac{\|P_n\|^2}{P_n(a)^2} = \min_{P \in G_n(a)} \|P\|^2$ donc $g(a) - v_n(a) \leq \|P\|^2$ pour tout $P \in G_n(a)$.

Puisque le polynôme $P = \frac{XP_{n-1}}{aP_{n-1}(a)}$ appartient à $G_n(a)$, on aura donc en particulier :

$$g(a) - v_n(a) \leqslant ||P||^2 = \frac{1}{a^2 P_{n-1}(a)^2} \int_0^1 \frac{\omega(t)}{a - t} t^2 P_{n-1}(t)^2 dt.$$

- **5.** Pour tout x > 1, $g(x) v_n(x) \ge 0$ d'après **2.b**.
 - D'après les questions 2.b et 4 :

$$g(a) - v_n(a) = \int_0^1 \frac{\omega(t)}{a - t} \left(\frac{P_n(t)}{P_n(a)} \right)^2 dt \leqslant \frac{1}{a^2} \int_0^1 \frac{\omega(t)}{a - t} \left(\frac{P_{n-1}(t)}{P_{n-1}(a)} \right)^2 dt$$

d'où par récurrence, compte tenu de $P_0 = 1$

$$0 \leqslant g(a) - v_n(a) \leqslant \frac{1}{a^{2n}} \int_0^1 \frac{\omega(t)}{a - t} dt = \frac{1}{a^{2n}} g(a).$$

– On en déduit : $\lim_{n\to+\infty} v_n(a) = g(a)$ pour tout a>1, c'est-à-dire que la suite de fonctions (v_n) converge simplement vers g sur $]1;+\infty[$.

Enfin, si $[\alpha, \beta]$ est un segment inclus dans $[1, +\infty[$, on aura, toujours d'après l'inégalité précédente :

$$\forall x \in [\alpha, \beta;], |g(x) - v_n(x)| \leqslant \frac{\|g\|_{\infty}^{[\alpha, \beta]}}{\beta^n}$$

d'où la convergence uniforme de (v_n) vers g sur $[\alpha; \beta]$.

