

Computer Organization

605.204

Module Two
Part Three
Floating Point Numbers

Module Two

- Part Three
- In this presentation, we are going to talk about:
- Floating Point Numbers

Previously

- Previously we talked about:
- Integer Addition and Subtraction
- Overflow
- Integer Multiplication and Division

Now: Floating Point Numbers

Floating Point

- We need a way to represent:
 - numbers with fractions, 3.1415926
 - very small numbers, .00000001
 - very large numbers, 3,155,760,000,000 or 3.15576 * 10^{12}
- Representation:
 - sign, exponent, fraction: (-1)^{sign} * fraction * 2^{exponent}

Biased Exponent

Fraction

- more bits for fraction gives more accuracy
- more bits for exponent increases range

Floating Point

(a) Twos Complement Integers

(b) Floating-Point Numbers

Floating Point Formats

- IEEE 754
 - single precision: 8 bit exponent, 23 bit fraction
 - double precision: 11 bit exponent, 52 bit fraction
 - value: sign(-1) x 1+fraction x 2(exponent-127)
- VAX 11780
 - single precision: 8 bit exponent, 23 bit fraction
 - value: sign(-1) x fraction x 2(exponent-127)

IEEE 754 floating-point Standard

- Leading "1+" bit is implied
- Exponent is "biased" to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
- Value: (-1)^{sign} * (1+fraction) * 2^{exponent bias}
- Example:
 - decimal: $-.75 = -3/4 = -3/2^2$
 - binary: $-.11 = -1.1 \times 2^{-1}$
 - floating point: exponent = 126 = 011111110
 - IEEE single precision:
 - $1 \quad 01111110 \quad 10000000000000000000000$

Normalization

- Floating Point numbers are usually normalized
- Exponent is adjusted so that leading bit (MSB) is 1
- Since it is always 1 there is no need to store it
- Scientific notation numbers are normalized to give a single digit before the decimal point. e.g. 3.123 x 10³
- WHY Normalize ?
 - Standard representation of numerical value.
 - Simpler exchange of data.
 - Simpler algorithms and hardware.
 - Increases the accuracy of the information.

- Operations are more complicated,
 - Fields must be separated,
 - Exponents adjusted,
 - Fractions processed, the actual calculations
 - Fields reassembled,
 - Value normalized.

Floating Point Calculations

Addition

- Extract Fields
- Exponents
- Shift fraction
- Add fractions
- Normalize
- Round
- Iterate

- In addition to "overflow" we can have "underflow"
 - Exponent value too large > 255 overflow
 - Exponent value too small < 0 underflow

- There are as many numbers between zero and one as between one and infinity. Most values are just close approximations.
- Floating point addition is not Associative.

$$- A + (B + C) = ! (A + B) + C$$

- Implementing the IEEE 754 standard can be tricky
- Not using the standard can be even worse
 - See section 3.9, Fallacies and Pitfalls page 231, in the textbook for a description of Intel and Pentium bug! of July 1994 to December 1994.

- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, Guard and Round
 - Four rounding modes
 - Up
 - Down
 - Truncate
 - Toward nearest even number (rightmost bit is zero)
 - Positive divided by zero yields "infinity"
 - Zero divide by zero yields "not a number"
 - Other accuracy issues (See page 218 in the textbook)

- Denormalized numbers
 - Exponent is all zeros
 Fraction non zero
 - Allows for gradual underflow
- Infinity
 - Exponent all ones
 Fraction all zeros
- Not a Number
 - Exponent all ones
 Fraction non zero
 - Positive divided by zero yields "infinity"
 - Zero divide by zero yields "not a number"

Floating Point Summary

- IEEE 754 format for real numbers.
- Calculations Complex
- Overflow Exponent value too large for number of digits
- Underflow Exponent less than zero
- Accuracy Normalize values
- Arithmetic Not Associative

Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - Two's Complement
 - IEEE 754 floating point
- Computer instructions determine "meaning" of the bit patterns
- Performance and accuracy are important, there are many complexities in real machines (algorithms and implementation).