THE PERKIN-ELMER CORPORATION

REPORT NO. 8995

ACOUSTIC SELF-TRAPPING OF LASER BEAMS

First Semiannual Technical Summary
Through 31 October 1967

Reproduced by the CLEARINGHOUSE for Federal Scientific & Tuchmost Information Secretarial Viv. 2015

THE PERKIN-ELMER CORPORATION

REPORT NO. 8995

ACOUSTIC SELF-TRAPPING OF LASER BEAMS

First Semiannual Technical Summary
Through 31 October 1967

Submitted by

Edwin L. Kerr, Project Scientist (Phone 203-762-4650)

to the

OFFICE OF NAVAL RESEARCH

ARPA Order Number 306 Project Code Number
Contract Number N00014-67-C-0468
Contract Duration 1 May 1967 through 29 February 1968 DEC 7 1967

"Reproduction in Whole or in Part of this Report is Permitted for any Purpose of the United States
Government."

This Research is part of Project DEFINDER under the joint sponsorship of the Advanced Research Projects Agency, the Office of Naval Research, and the Department of Defense.

for public rollers and sale; its distribution is unlimited.

Report No. 8995

TABLE OF CONTENTS

Section	Title	
	ABSTRACT	iv
I	PREFACE	1
II	INTRODUCTION	2
	2.1 A New Power Limit 2.2 Threshold Predictable 2.3 Reconcilable with Steady State Trapping Theory 2.4 Scaling Laws	2 2 3
	2.5 Typical Results for Glass	5
III	DERIVATION OF THE ACOUSTIC BEAM TRAPPING THRESHOLD	8
	3.1 The Driving Force 3.2 The Photoelastic Effect 3.3 The Laser Beam 3.4 The Acoustic Wave 3.5 The Numerical Integration 3.6 The Trapping Condition 3.7 The Trapping Threshold 3.8 Numerical Calculations	8 9 9 14 16 16 20
IV	AN ANALYTICAL SOLUTION OF THE LASER PEAM RADIUS EQUATION FOR KERR EFFECT TRAPPING	22
	 4.1 The Beam Radius Equation 4.2 Beam Propagation Without Self-Focusing 4.3 The Laser Beam Intensity Equation 4.4 Variation of Refractive Index with Intensity 	22 24 25 27
v	BEAM TRACING IN THE ACOUSTIC TRAP	32
	 5.1 Other Features of the Glass Damage Phenomenon 5.2 Definition of the Problem 5.3 The Coupled Equations 5.4 The Step-By-Step Computer Solution 5.5 Typical Results for Acoustic Beam Trapping 	32 34 34 35 37
VI	SUMMARY OF RESULTS AND FUTURE PLANS	41
REFERENCES		43

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	Scaling Laws for Kerr Effect Trapping, Preakdown, and Acoustic Trapping	4
2	Laser Damage Thresholds for Three Optical Glasses	7
3	Laser Pulse Temporal Intensity Distribution, and the Two-Impulse Approximation	
4	Gaussian Spatial Intensity Distribution	11
5	Initial Force Distribution	11
6	Initial Rate of Change of Compression Distribution	11
7	Hankel Transfe m of Initial Rate of Change of Compression	11
8	Acoustic Compression at $\tau=0.596$. Proportional to Refractive Index Change	11
9	Ream Center Compression as a Function of Time	15
10	Sound Wave Compression at Various Times After An Initial Impulse	17
11	Sound Wave Compression at Various Times Near the First Peak	18
12	Equivalent Beam Guides	23
13	Unit Quartic Pulse	26
14	Kerr Effect Trapping at 99 Percent Threshold	29
15	Kerr Effect Trapping at 95 Percent Threshold	30
16	Kerr Effect Trapping at 85 Percent Threshold	31
17	Geometry of the Beam Trapping Analysis	36
18	Acoustic Beam Trapping at 300 Percent Threshold	38

ABSTRACT

Internal filamentary glass damage caused by high power Q-switched pulse lasers has been reported in the literature. Also, filamentary trapping in liquids has been observed. This report presents a theory of acoustic beam trapping. In the theory, electrostriction is the sound wave driving force and sound wave compressions cause focusing of the light wave fields. The theoretical trapping thresholds are calculated from the laser wavelength and the density, refractive index, Young's modulus, and Poisson's ratio of a solid material, or the density, refractive index, and speed of sound of a liquid medium. The acoustic trapping thresholds agree with experimental glass damage thresholds to within experimental accuracy, and they vary the same way with initial beam size. Trapping movies showing the formation of strongly focused regions are presented. An explanation is given for most of the salient features observed in the damage phenomenon.

An analysis of Kerr effect trapping is also presented for purposes of comparison.

SECTION I

PREFACE

The goal of the research reported here is to continue the development of a theory of acoustic beem trapping. The theory is a possible explanation of the mechanism for internal, filamentary glass damage by lasers. It may also be an explanation for some of the beam-trapping phenomena observed in liquids when they are traversed by a high intensity laser pulse.

We began developing the theory in 1965. Sections II and III present theoretical results obtained by August 1966. These results were originally presented in the proposal for this contract. Since that time, some improvements have been incorporated in Sections II and III. The trapping threshold was reduced by a factor of $n_0^2/4$ from the formula in the proposal. Also, new information from the manufacturer of our glass samples has been acquired. The graph comparing the theoretical and experimental damage thresholds for three optical glasses is now based on the new, more accurate values of the glass bulk parameters. The agreement between theory and experiment is greatly improved.

Section IV covers an analytical solution to the beam-trapping equations for the case in which Kerr effect trapping is the dominant trapping machanism and where electrostrictively driven sound waves are weak or absent.

Section V presents some of our computer results, depicting the acoustic beam-trapping phenomenon. An explanation of the salient features of the glass damage phenomenon is given.

Section VI presents a brief summary of our work and our plans for the second half of the contract.

SECTION II

INTRODUCTION

2.1 A NEW POWER LIMIT

As higher and higher power lasers are developed, basic limitations in the power-transmitting capability of materials and propagation media are being discovered. Examples of limitations are electric breakdown and beam instability. During our study of gain saturation and other anomalies in stimulated Raman effect and in our experimental work in laser damage to glass, we have identified a new kind of beam instability, acoustic beam trapping.

Acoustic beam trapping is caused by the focusing action of electrostrictively driven acoustic waves. These waves alter the index of refraction of the medium by the density changes they cause. All optical materials experience these electrostriction forces and photoelastic effects.

Acoustic beam trapping sets upper limits to beam power which can be transmitted in important materials such as glass and air. Furthermore, the scaling laws for acoustic trapping (power threshold versus beam size and pulse duration time) differ from the scaling laws for other types of beam instability, such as Kerr effect or anomalous dispersion trapping. In fact, for many transparent materials, there is a beam size and pulse duration for which the acoustic trapping threshold is lower than the thresholds for other known instabilities.

2.2 THRESHOLD PREDICTABLE

At the present time, we can predict the acoustic trapping power threshold in glassy materials from a knowledge of material properties, wavelength, pulse duration time, and beam size. There is a critical power level for each material which can be calculated from tabulated material properties and the laser wavelength.

2.3 RECONCILABLE WITH STEADY STATE TRAPPING THEORY

We have also shown that for any given beam size and type of material, there is a maximum average rate of increase of power which can be transmitted without causing acoustic beam trapping. So long as power is added to a beam at a slower rate than this, it is possible in principle to reach the steady state trapping threshold predicted by Chiao, Garmire, and Townes (Ref. 1).

2.4 SCALING LAWS

Figure 1 illustrates the scaling laws for three different effects which limit the ability of an optical material to transmit a laser beam. In the graph, total beam power is plotted versus beam radius on log-log scales. The three effects are electric field breakdown, Kerr effect trapping, and acoustic trapping.

For electric field breakdown, as in laser-induced "air sparks,"

On the log-log plot, this power threshold is a line with a slope of 2. Thus, electric field breakdown limits the material to transmission of power levels and beam sizes in the right-hand portion of the graph.

For Kerr effect trapping, as shown by Chiao, Garmire, and Townes (Ref. 1)

Since the threshold is independent of beam size, it appears as a horizontal line on the graph. For transmission without Kerr effect trapping, the beam power level must be below the Kerr effect threshold.

Together, Kerr effect trapping and electric field breakdown limit beam transmission to beam sizes and power levels in the lower right portion of the graph. Both of the effects are virtually independent of the pulse duration time.

Figure 1. Scaling Laws for Kerr Effect Trapping, Breakdown, and Acoustic Trapping.

The acoustic trapping threshold can be calculated as in Section III as long as the laser pulse duration time is less than the time required for sound to cross the beam radius. The scaling law for acoustic trapping is

Power Threshold for Acoustic Trapping = (Wavelength)? (Constant for Material) (Pulse Duration)?

for the limiting case of a very short pulse or a very large beam. If the pulse duration is held constant, the threshold power can be plotted versus beam size as shown in the graph. The acoustic trapping power threshold curve flattens out at the bottom, at the critical power level. This critical power level, P_c, is characteristic only of the material and the wavelength.

For the domain in which the pulse duration is longer than the time T required for sound to cross the beam, the acoustic trapping threshold remains at $P_{\rm c}$. This power level can be exceeded only if the power does not increase more rapidly than $P_{\rm c}/T$ in any time T.

If the pulse duration is increased by a numerical factor, and the beam radius is increased by the same factor, the power threshold remains constant. Thus, in the log-log graph, the curve is shifted to the right by the log of the numerical factor by which the beam radius is increased. Thus the graph shows three extra curves shifted by factors of 10,100, and 1000.

In some materials the Kerr effect trapping threshold is lower than the critical power level for acoustic trapping. In these materials Kerr effect trapping will occur before acoustic trapping. However, most common optical materials have a critical power level lower than the Kerr effect trapping threshold. For these materials there will always be a domain of beam size and pulse duration time in which acoustic beam trapping sets the maximum transmittable power for the material.

2.5 TYPICAL RESULTS FOR GLASS

Acoustic trapping is an important cause of laser damage to optical glass, as shown in experiments performed by Steinberg, Atwood, Lee, and Ward (Ref. 2). The theoretical trapping threshold is compared with the experimental

Report No. 8995

damage threshold in Figure 2. Generally, the trapping threshold is below the experimental damage threshold points, as expected. In particular, note the experimental damage threshold curve for dense flint. The left, lower portion has a slope of 2. In that region, the cause of damage is probably electric breakdown. The right, upper portion fits the curve for acoustic trapping to within the experimental repeatability, and it scales the same way. For fused silica and BK-7 the agreement between the accustic trapping threshold and the measured damage threshold is even better.

The experimental results are not attributable to Kerr effect trapping because of the dependence on beam size. Also, in glass, Kerr effect is so weak that the power threshold for Kerr effect trapping is / negawatts, which is above the top of the graph.

Figure 2. Laser Damage Thresholds for Three Optical Glasses

SECTION III

DERIVATION OF THE ACOUSTIC BEAM TRAPFING THRESHOLD

3.1 THE DRIVING FORCE

Electrostriction is the force exerted by an electric field on a material medium, when the force is proportional to the square of the field. The net body force is the proportional to the power intensity gradient, in a lossless medium. The relevant permittivity ratio at optical frequencies is the square of the refractive index. Thus, the net body force f per unit volume due to the light beam is (Ref. 3)

$$\bar{f} = (1/6n_0c) (n_0^2 + 2) (n_0^2 - 1) \bar{\nabla} I.$$

Thus a cylindrical beam will drive a radially propagating sound wave.

3.2 THE PHOTOELASTIC EFFECT

The refractive index change Δn due to small acoustic compressions is defined as

$$\Delta n = n - n_0 = (\rho - \rho_0) \partial n/\partial \rho$$

Assuming constant polarizability per molecule, an/ap may be calculated by differentiating the Clausius-Mosotti relation. Then we obtain

$$\Delta n = (1/6 \, n_0) (n_0^2 + 2) (n_0^2 - 1) \, \sigma$$

where σ is the normalized compression.

$$\sigma = (\rho - \rho_0)/\rho_0$$

Report No. 8995

Other effects, such as the Kerr effect, may add to An. They will not have the same distribution as acoustic compression, in general, nor will they vary the same way with beam size. However, they can be added to in later. Let us ignore them for the present.

3.3 THE LASER BEAM

For the purpose of this discussion, the laser pulse is represented by two impulses of equal energy. Each impulse has a Gaussian radial intensity distribution. The radius is measured to the point where the intensity drops to 1/e of the peak intensity. The beam is circularly symmetrical and gently focused. At the focus the intensity distribution is

$$I(r,t) = (W/\pi w^2) \exp(-r^2/w^2) \delta(t \pm \Delta t/2)$$

where W is the energy of one impulse. The two impulses are separated by a time, Δt , equal to 2/3 the half-height duration time of a laser pulse. Thus if the physical laser pulse has a Gaussian <u>time</u> distribution, the two impulses will occur at the centroids of the two halves of the physical pulse.

The temporal intensity distribution is shown in Figure 3, and the spatial intensity distribution is sketched in Figure 4. The resulting force distribution is given in Figure 5.

3.4 THE ACOUSTIC WAVE

The electrostrictive force drives a radially propagating acoustic wave. Usually when acoustic beam trapping occurs the boundaries of the material are so far from the beam center that the trapping event occurs sooner than sound can be reflected from the boundaries. Hence, the acoustic wave equation applies with the following conditions:

- 1) Circular symmetry
- 2) Infinite homogeneous isotropic medium
- 3) Solution at the beam center is well behaved
- 4) Solution at infinite radius is zero
- 5) Solution is not a function of z (paraxial beam case)

Figure 3. Laser Pulse Temporal Intensity Distribution, and the Two-Impulse Approximation.

Figure 4.

Gaussian Spatial Intensity
Distribution

Figure 5.
Initial Force
Distribution

Initial Rate of Change of Compression Distribution

Figure 7.

Hankel Transform of Initial Rate of Change of Compression

Figure 8.

Acoustic Compression at $\tau = 0.596$. Proportional to Refractive Index Change

Puter made

Report No. 8995

The acoustic wave equation can be solved for the case of an impulse driving force. Since the equation is linear, it is convenient to use dimensionless variables and a normalized impulse.

Let the dimensionless radial coordinate be x, the radius measured in units of the characteristic beam radius w;

$$x = r/w$$

There is a characteristic acoustic response time, T, equal to the time required for sound to traverse the beam radius;

$$T = w/v$$

where v is the speed of sound for a two-dimensional compression wave.

$$v = (Y/2\rho_0)^{1/2} (1 - \epsilon)^{-1/4}$$
 (1)

Here Y is Young's modulus and & is Poisson's ratio for solid media.

Let the dimensionless time variable be au, time measured in units of T.

$$\tau = t/T = (v/w) t$$

This choice of units makes the velocity of sound equal unity in the wave equation. Also, the acoustic velocity \bar{u} is normalized by the velocity of sound, and the acoustic displacement \bar{u} is normalized by w. The acoustic compression σ is the negative divergence of the displacement:

$$\sigma = - \overline{v} \cdot \overline{v}$$

 \vec{w} ie \vec{U} = \vec{u}/w . Differentiating with respect to τ , we have

$$\partial \sigma / \partial \tau = - \nabla \cdot \partial \overline{U} / \partial \tau$$

where $\partial U/\partial \tau = \frac{\cdot}{u}/v$

Report No. 8995

The initial rate of change of compression distribution appears in Figure 6.

When the electrostrictive force acts impulsively on a medium initially at rest, there is no immediate displacement or compression. The initial velocity and initial rate of change of compression may be deduced from conservation of momentum,

$$\int \overline{f} dt = \rho_0 \frac{\dot{u}}{u}$$

The compression σ is a function of radius and time only. To sum up, the problem is to solve the acoustic wave equation:

$$\nabla^2 \sigma = \frac{\partial^2 \sigma}{\partial \tau^2}$$

subject to

1)
$$\sigma = \sigma(x, \tau)$$

$$2) \qquad \sigma(x,0) = 0$$

3)
$$\partial \sigma(x,0)/\partial \tau = A(1 - x^2) \exp(-x^2)$$

where

$$A = (2W/3\pi n_o cv\rho_o w^3) (n_o^2 + 2) (n_o^2 - 1)$$

4)
$$\sigma(0,\tau) \neq \infty$$

5)
$$\sigma(\infty, \tau) = 0$$

The equation and all of the conditions except (3) are satisfied by σ (x, τ) = (B/A)J $_0$ (yx) sin (y τ) where B and y are arbitrary. A linear superposition of solutions will satisfy condition (3) as well. The correct combination of solutions g(y) is given by the Hankel transform (not the Fourier transform because of circular symmetry). The weight function is x

Report No. 8995

and the eigenfunctions are $J_0(yx)$ corresponding to 1 and sin (xy) or $\cos(yx)$ for a Fourier transform. Thus,

$$g(y) = \int_{0}^{\infty} \xi \left[A(1 - \xi^{2}) \exp(-\xi^{2}) \right] J_{0}(\xi y) d\xi$$
$$= A \cdot y^{2} / 8 \exp(-y^{2} / 4)$$

This distribution is plotted in Figure 7. Now superposition is applied to obtain the solution.

$$\sigma(x, \tau) = A \int_0^{\infty} (y^2/8) \exp(-y^2/4) J(yx) \sin(y\tau) dy$$

This difficult integral has been evaluated numerically as described below. For the important on-axis case, where x=0, the integration may be performed analytically, since $J_{\alpha}(0)=1$.

$$\sigma(0,\tau) = A \int_{0}^{\infty} (y^{2}/8) \exp(-y^{2}/4) \sin(y\tau) dy$$

$$= A \tau/2 + (A/2) (1 - 2\tau^{2}) \exp(-\tau^{2}) \int_{0}^{\tau} \exp(\xi^{2}) d\xi$$

$$= A (\tau - 4\tau^{3}/3 + - - -)$$

This function is plotted in Figure 9.

3.5 THE NUMERICAL INTEGRATION

The integral for $\sigma(x, \tau)$ was computed in our Scientific Computer Facility. We programmed the Scientific Para Systems 9300 Computer with 65 Fortran IV statements. Simpson's method was used. The Bessel function was generated by a polynomial approximation accurate to 5×10^{-8} absolute error from the Handbook of Mathematical Functions (Ref. 4). One hundred and one values of y were used each time the integral was evaluated. The integral was computed at 101 values of x for each of 124 values of τ . Time was saved by storing parts of the kernel which do not change, and by buffering the printer. Running time was about 40 minutes, or about 1 millisecond for each evaluation of the Bessel function.

Figure 9. Beam Center Compression as a Function of Time

Report No. 8995

The computed points were saved on magnetic tape. We displayed the points with the on-line oscilloscope associated with our SDS 930 Computer. The Fortran II display program allowed us to show stationary frames continuously, or to show frames sequentially at any comfortable viewing rate. The display was useful in studying the wave motion and in checking the computation.

Refer to Figures 10 and 11 for plots of wave amplitude σ/A versus x at various values of τ . The compression at maximum on-axis amplitude is plotted in Figure 8, for comparison with the other functions in the solution.

3.6 THE TRAPPING CONDITION

An unexpected result of the computed solution of the acoustic wave is the fact that the compression is greatest on axis, for $0 \le \tau \le 0.85$. Thus, it is, from the start, a focusing distribution. There is no latency period of zero or ne ative focusing before some positive focusing begins. The on-axis solution shown in Figure 9 shows that the convergence (reciprocal focal length) varies linearly with τ , for $\tau \ll 1$.

The two-impulse model is valid for $\tau < 0.85$. The first impulse starts an acoustic wave, and the acoustic wave builds up a distributed lens of increasing convergence. Diffraction of the second impulse will be defeated if, at the time the second impulse occurs,

$$\Delta n/n > (1/2) (\lambda/2\pi n_o w)^2$$

This on-axis $\triangle n$ will be the sum of $\triangle n$ caused by the acoustic wave and Kerr effect. The acoustic $\triangle n$ is a function of beam energy and time duration, while Kerr effect depends on intensity. Thus the two effects do not vary the same way with beam size.

3.7 THE TRAPPING THRESHOLD

For optical glass and other materials in which Kerr effect is weak, we may calculate the approximate energy threshold for trapping by equating the

Figure 10. Sound Wave Compression at Various Times After An Initial Impulse

Report No. 8995

$$\tau = 0.7T/2^{1/2}$$

 $\tau = 0.8T/2^{1/2}$

$$\tau = 0.85 \text{ T/2}^{1/2}$$

 $\tau = 0.9T/2^{1/2}$

Figure 11. Sound Wave Compression at Various Times Near the First Peak

T

Report No. 8995

required axial in with the in due to the acoustic wave. The total beam energy $\textbf{W}_{\widetilde{T}}=2\textbf{W}_{\star}$. Hence

$$W_{TRAP} = \frac{9c^{2}}{4\pi} \left[\frac{n_{o} p_{o}}{(n_{o}^{2} + 2)^{2}(n_{o}^{2} - 1)^{2}} \right] \frac{vw}{\sigma/A}$$

For $\tau \ll 1$, $\sigma/A \approx \tau = it v/w$

Thus, for pulses that are short compared with the beam radius transit time,

$$W_{TRAP} = \frac{9c^{2}}{4\pi} \qquad \left[\frac{\frac{n_{o} n_{o}}{(n_{o}^{2} + 2)^{2} (n_{o}^{2} - 1)^{2}}} \right] \frac{w^{2}}{\Delta t}$$

we may define the power for the impulse pair as

$$P = W_{TOTAL} / \triangle t$$
.

Then for short duration pulses (A7<1) we have

$$P_{\text{TRAP}} = \frac{9c\lambda^2}{4\pi} \left[\frac{n_0 \rho_0}{(n_0^2 + 2)^2 (n_0^2 - 1)^2} \right] \frac{w^2}{\Delta t^2}$$

For
$$\tau = 2^{-1/2}$$
, $w^2/\Delta t^2 = v^2/2$

Thus, when the pulse duration is matched to the beam transit time, $P_{TRAP} = P_{CRITICAL}$, a power level characteristic only of the material (and the wavelength). The quantity,

PCRITICAL/T

is the maximum average rate at which power may be increased in a material over a time, T, without acoustic trap formation.

Report No. 8995

3.8 NUMERICAL CALCULATIONS

The acoustic trapping threshold curve for a material can be obtained with simple calculations. It is only necessary to obtain the sound velocity, the beam size that matches the pulse duration time, and the critical power level. Then simple graphical methods yield the threshold curve.

Sound Velocity: The relevant sound velocity is that for a radially propagating compressional wave. For solids, use equation (1) in Section 3.4 The Young's mo ulus, density, and Poisson's ratio for glasses are found in the newer Schott glass catalogs.

Example: For BK-7, Y = 8310 kp/mm², ρ = 2.51 g/cm³, ϵ = 0.208. Multiply ρ by 10³ to obtain the density in kilograms per cubic meter, and Y by 9.81 x 10⁶ to obtain newtons per square meter from kiloponds per square millimeter. Hence v = 4.27 x 10³ meters per second.

Matched Beam Size: Let the pulse duration time ρ be measured at the half-peak points. Then $w_{\text{matched}} = pv$.

<u>Critical Power Level:</u> The critical power level for the material is

$$P_{critical} = (81 c\lambda^2/8\pi) \rho v_0^2 r_0 / \left[(n_0^2 + 2)^2 (n_0^2 - 1)^2 \right]$$

Example: For BK-7, at λ = 694.3 nm, n $_{_{\hbox{\scriptsize O}}}$ = 1.45. The critical power level is 440 kilowatts.

Plotting the Threshold: Use log-log graph paper having equal size divisions for the rorizontal and vertical scales. Draw a horizontal line corresponding to the critical power level. Mark the matched point on the critical power line, corresponding to the matched beam size.

For a quick, conservative overestimate of the trapping threshold curve, simply draw a line with a slope of 2 upward from the matched point. (The angle is 63.5° to the horizontal.)

For an accurate graph, plot the curve in Table I on a second piece of log-log paper. Lay the first piece over the second so the axes are parallel and the matched point is just over the bottom point on the second graph. Trace the curve.

TABLE I

NUMERICAL VALUES USEFUL FOR
PLOTTING ACOUSTIC TRAPPING THRESHOLD CURVES

Horizontal Axis	Vertical Axis
0.91	0.965
1.00	1.00
1.10	1.05
1.25	1.20
1.43	1.43
1.68	1.78
2.00	2.36
2,50	3.48
3.33	5.90
5.00	12.8
10.0	55.0

Report No. 8995

SECTION IV

AN ANALYTICAL SOLUTION OF THE LASER BEAM RADIUS EQUATION FOR KERR EFFECT TRAPPING

A high intensity laser beam passing through a material medium can focus itself into a long, thin filament and propagate without normal diffraction spreading. This self-trapping phenomenon arises when the medium's refractive index n is higher along the beam axis than along the beam edges. Such refractive index distribution acts like a series of thin positive lenses, as shown in Figure 12.

The high intensity beam can set up a focusing refractive index distribution by everal physical mechanisms, such as electrostriction, anomalous dispersion, and reorientation of molecular dipole moments. The last effect is Kerr effect, after its discoverer, John Kerr (1824-1907). In liquids the molecular reorientation can occur in times on the order of 10 picoseconds. The effect is thus virtually instantaneous compared with the duration of nanosecond laser pulses, but it is much too slow to follow 500 t rahertz light wave fields. The local change in index of refraction is proportional to the local beam intensity. When the beam power is above a certain threshold power level, the laser beam focuses itself to a smaller beam size and higher intensity. The smaller, higher intensity beam causes still stronger self-focusing until the beam has trapped itself at a small radius, limited by diffraction.

4.1 THE BEAM RADIUS EQUATION

This note sets forth an analysis of Kerr effect trapping. The analysis is based on a ray tracing equation published by Tien, Gordon, and Whinnery (Ref. 6). Equation (9) in that article reduces to

$$\frac{\partial^{2} a}{\partial z^{2}} = a^{-3} (\lambda/2\pi n_{o})^{2} + (a/n_{o}) \frac{\partial^{2} n(0,z,t)}{\partial r^{2}}$$
 (2)

Confocal Mode Propagation in a Sequence of Thin Lenses

Beam Propagation in a Medium Having a Paraboloidal Refractive Index Distribution

Equivalent Beam Guides. The Equivalence may be seen by integrating the optical in both path length (n dz) along the axes and along the edges of both figures. there is more retardation on axis than off. Figure 12.

Report No. 8995

where

a(z,t) = beam radius to the point where the intensity is 1/e of the peak intensity,

n(r,z,t) = local index of refraction

n = undisturbed or nominal index of the medium

 λ = vacuum wavelength of the laser beam,

r, z = cylindrical coordinates for the beam.

For this equation to be valid Tien, Gordon, and Whinnery require that

- 1) "the light beam is...launched with a Laguerre-Gaussian or Hermite-Gaussian field distribution"
- 2) "the refractive index of the medium varies slowly in space (negligibly in an optical wavelength)"
- 3) the variations in n are small compared with n_0

The last two restrictions are violated when the beam is trapped to a filament with approximately one wavelength radius, and the scattered light is spread over a wide wavelength range. However, the equation can be used to study the collapse of the beam toward the trapped condition, and to study the phenomenon when the beam power is below threshold.

4.2 BEAM PROPAGATION WITHOUT SELF-FOCUSING

When the beam intensity is weak, the last term in equation (2) is negligible. The ray paths are then hyperbolas. The beam radius solution is

$$a(z) = \left[\left(a_0 + a_1 z \right)^2 + \left(\frac{\lambda z}{2\pi n_0} a_0 \right)^2 \right]^{1/2}$$
(3)

where a_0 and a_1 are, respectively, the initial radius and initial slope of the rays just after entering the medium at z=0. For example, let $\lambda=l_{\mu m}$, $n_0=1.5$, $a_0=0.1$ nm, $a_1=-0.001839$. Then the beam is focused to a radius of 0.05mm at z=4.1cm. This is the case of a very gently focused beam. The

1

Report No. 8995

first frame of Figure 14 shows a plot of a(z) for this case. Note that the vertical, radius scale is greatly exaggerated.

4.3 THE LASER BEAM INTENSITY EQUATION

The lowest order mode for the laser beam has a nearly Gaussian intensity profile characterized by the radius, a. to the point where the intensity drops to 1/e of the peak intensity. If the propagation medium is not too violently inhomogeneous and if the inhomogeneity is radially symmetrical, the Gaussian profile is maintained along the beam, although the beam radius varies because of diffraction and focusing by the inhomogeneities.

The laser power may also vary as a function of time. For Q-switched pulse lasers generally the pulse energy can be measured and some rough idea of the time distribution of the pulse can be obtained. For purposes of analysis we can use a simple pulse shape such as the unit quartic pulse shown in Figure 13. This shape has a continuous derivative and finite extent.

Thus the laser beam intensity is

$$I(r,z,t) = (W/\pi a^2) \exp(-r^2/a^2) q(t;p)$$

where W is the pulse energy and q(t;p) is the unit quartic rulse of time constant p:

$$q(t;p) = \begin{cases} (15/16p) & (t/p)^{2}(2-t/p)^{2}, & 0 \le t \le 2p \\ 0 & \text{otherwise.} \end{cases}$$

Of course, a is a(z,t) given by the solution of equation (2). The intensity distribution is so normalized that

$$\int_{0}^{2\pi} d\theta \int_{0}^{\infty} r dr \int_{-\infty}^{\infty} dt I (r,z,t) = W$$

independent of the value of z.

$$q(t;p) = \begin{cases} (15/16p) & (t/p)^{2} (2-t/p)^{2} \text{ for } 0 \le t \le 2p \\ 0 & \text{otherwise} \end{cases}$$

$$\int_{-\infty}^{\infty} q(t;p) dt = 1$$

Figure 13. Unit Quartic Pulse

Report No. 8995

4.4 VARIATION OF REFRACTIVE INDEX WITH INTENSITY

The change in refractive index can be expressed in cgs units as

$$n = n + \frac{2}{3} \lambda JE^2 + \dots$$

where J is the high frequency Kerr constant due to molecular rotation. Thus the change in index is proportional to the local intensity for either a plane polarized or circularly polarized beam (although the constants of proportionality differ for the two cases). Let the constant of proportionality be K, depending on the wavelength, the material, and the beam polarization.

$$n(r,z,t) = n_0 + KI(r,z,t)$$

In equation (2) the last term becomes

$$-a^{-3}(2 \text{ KW/mn}_0) \text{ q (t;p)}$$

Since both terms on the right of equation (2) are proportional to a^{-3} , the solution at any time will be a hyperbola whose value and slope at $\tau = 0$ are a and a, respectively. However, the focal point and semiaxes of the hyperbola may vary with time. The equation becomes

$$\frac{2}{\partial a/\partial z^2} = f(t)a^{-3}$$

where

$$f(t) = (\lambda/2\pi n_0)^2 - 2KWq(t;p)/\pi n_0$$

The solution is

$$a(z,t) = \left[(a_0 + a_1 z)^2 + f(t) a_0^{-2} z^2 \right]^{1/2}$$

A negative, zero or complex value of a would be a non-physical solution. This places a restriction on the minimum value of f(t) which occurs when t=p. We have $a^2(z,p)$ equal to a quadratic expression in z. In order that $a^2(z,p)$ be greater than zero for all real values of z, the discriminant of the quadratic expression must be negative. Then the only zeros of a^2 will

Report No. 8995

be complex. This condition implies that f(t) must always be positive. The minimum value of f(t) occurs when t=p, i.e., at the peak of the laser pulse. For a valid solution we must have

$$\Delta n/n_c < \frac{1}{2} (\lambda/2\pi n_o a)^2$$

where An, the on-axis increase in refractive index, is

$$\Delta n = KWq(p;p)/\pi a^2$$

This condition is equivalent to the Pierce stability criterion L/f < 4. where L and f are the spacing and focal length of lenses in a sequence (Ref. 5).

The threshold value of KW/p becomes (KW/p) = $2\lambda^2/\pi n_0$ threshold Let k be the fraction

$$k = (KW/p)/(KW/p)_{threshold}$$

Then f(t) becomes

$$f(t) = (\lambda/2\pi n_0)^2 [1-kq(t;p)/q(p;p)]$$

Refer to Figures 14 through 16 for plots of the beam radius when k = 0.999, 0.95, and 0.85.

Figure 14. Kerr Effect Trapping at 99 Percent Threshold

Figure 15. Kerr Effect Trapping at 95 Percent Threshold

Figure 16. Kerr Effect Trapping at 85 Percent Threshold

Report No. 8995

SECTION V

BEAM TRACING IN THE ACOUSTIC TRAP

and III, yields a threshold for acoustic beam trapping which is below the experimental damage thresholds for the glassy materials tested. It was solved by completely analytical means, using tabulated properties of special functions. The computer was only used to obtain values for the radial sound wave off the axis of the beam. That computation was not essential to the solution, although it did give the following important insight: The refractive index discribution set up by the acoustic wave is <u>initially</u> a focusing distribution, although its strength varies with time. However, the theory did not allow for the continuous interaction of light and sound, nor did it show how the focusing action develops with time.

5.1 OTHER FEATURES OF THE GLASS DAMACE PHENOMENON

A complete theory should also explain the other observed features of internal, filamentary glass damage, such as the following:

dynamic refractive index change.

- The Spectrum of the Side-Scattered Light
 A white light flash is seen when the damage event occurs.
 Ruby laser light may be shifted from 6943Å down to 4000Å.
 Such large shifts can only be explained by a very strong
- 2) Starting Location of the Damage Track Even if the laser is focused at the entrance face of the glass sample, the damage track never begins at the entrance face. There is always a short interval between the entrance face of the sample and the start of the track.

3) Exit Face Pitting

Usually the track ends in a pit on the exit face of the glass sample. As a matter of fact, the threshold for the exit face pitting appears to be a little lower than the threshold for track formation. Nevertheless, the phenomena is different from the type of surface damage reported by others.

4) Location of Damage Stars

The damage track is not always continuous; it may start and stop several times in the sample. Often there is a damage star on the upstream end of the track. These damage stars are localized regions of gross fracture. Occasionally they show discoloration, indicating possible chemical decomposition. If the damage track extends upstream of the damage star it usually only does so for a very short distance compared to the extension downstream from the damage star. The location of the damage star is intriguing. If the damage starts in the damage star and then propagates downstream to form the track, why doesn't the damage star cast a downstream shadow and prevent the beam from concentrating in the thin filament?

5) Track Propagation Speed

Since the damage event occurs in nanoseconds, its dynamics are difficult to follow. There is experimental evidence that the event which forms the track propagates at about 10 times the speed of sound in the glass. The experimental evidence does not show unequivocally that the propagation is either upstream or downstream.

Most of these features are explained qualitatively in the theory of electrostrictively driven acoustic beam trapping.

eport No. 8995

5.2 DEFINITION OF THE PROBLEM

Our purpose is to understand how the acoustic beam trap forms, not how the damage occurs. Therefore we only need consider small acoustic pressure changes in the material. We will see how these lead to a beam instability when the power exceeds a certain threshold. The nature of the instability is such that the beam rapidly focuses itself into a thin filament. The damage occurs when the beam is in this trapped condition. The instability itself can be studied by means of a geometric ray tracing equation which includes first order diffraction effects. This beam tracing equation is equation (2) of Section IV.

The sound wave satisfies essentially the same conditions as those given in Section III, except that it is driven continuously by the light wave. rather than running inertially after an impulse. For a gently focused beam, axial components of the sound wave field are negligible in comparison with the radial components.

The desired solution will show a graph of the beam radius plotted versus axial length for each of many small time intervals during the laser pulse. The time distribution of the laser pulse can be assumed to be the quartic pulse distribution described in Section IV, since the actual details of the shape of the laser pulse do not have too much bearing on the threshold for damage and on the time development of the trap.

5.3 THE COUPLED EQUATIONS

The sound wave equation is

$$\frac{\partial^{2} \sigma / \partial r^{2} + r^{-1} \partial \sigma / \partial r + \partial^{2} \sigma / \partial z^{2} = v^{-2} \partial^{2} \sigma / \partial t^{2}}{- (1/6 v n_{o} p_{o}) (n_{o}^{2} + 2) (n_{o}^{2} - 1) (W/\pi) q(t;p)}$$

$$\cdot 4 a^{-4} (1-r^{2}/a^{2}) \exp(-r^{2}/a^{2})$$

The beam tracing equation is

$$\partial_{a}^{2}/\partial_{z}^{2} = a^{-3}(\lambda/2\pi n_{o}^{2})^{2} + (a/6n_{o}^{2})(n_{o}^{2} + 2)(n_{o}^{2} - 1)\partial_{\sigma}^{2}(o,z,t)/\partial_{z}^{2}$$

The general solution of these coupled, nonlinear, partial differential equations has been left as an exercise for the computer. One simplification can be made immediately. The beam tracing equation involves only the second derivative with respect to r of the on-axis sound wave solution. Since the sound wave equation is linear we may take its Hankel transform analytically. When z is held fixed, the Hankel transform of σ satisfies an ordinary differential equation in t. This ordinary equation may be solved using initial values of the Hankel transform, and of its derivative with respect to time, and assuming a step-plus-ramp driving function. The solution is then found by taking the inverse Hankel transform. Since the beam tracing equation involves only the second derivative of the sound wave amplitude at r = 0, and the inverse Hankel transform involves r only as part of the argument of the zeroth-order Bessel function, we may perform the differentiation analytically under the integral sign. Thus for each time step and each value of z, the sound wave equation can be solved with only one numerical integration. The use of a step-plus-ramp driving function allows us to take a much coarser time step than we would require if we used an impulsively driven equation.

5.4 THE STEP-BY-STEP COMPUTER SOLUTION

The problem is divided up into sections and slices as shown in Figure 17. In its present state of development the computer program can handle 101 sections. The zeroth section is the entrance face of the solid or liquid medium. The initial beam radius and entrance angle are fixed on the zeroth section. Since the solution is radially symmetrical, it will be the same in each radial slice.

The computer program must store values of a for each of the 101 sections. Also for each section, it must store 40 values of the Hankel transform of the sound wave, and 40 values of the derivative of the Hankel transform of the sound wave with respect to time. An array of 101 points is also set aside for the second derivative of the sound wave with respect to r. No Bessel function storage or Bessel function subprogram is required. Initially the Hankel transform of the sound wave and its derivative with respect to time

Hattitus

Section of

Figure 17 . Geometry of the Beam Trapping Analysis

are set to zero along with the second derivative of the sound wave with respect to r. The solution then proceeds in steps:

- 1) Solve the beam tracing equation using the Runge-Kutta method.

 The axial step size in the solution is 1/5 of the interval between sections. Values of the second derivative of the sound wave with respect to r are interpolated by Lagrange cubic fitting.
- 2) Store 101 values of the beam radius a. Also save these values on tape for later plotting.
- 3) If the time has not yet reached 2.0p, the end of the laser pulse, advance the time by a small time step and obtain the new value of the beam power at that time.
- 4) For each section of the beam compute the second derivative of the sound wave with respect to r by using Simpson intergration. At the same time revise the value of the Hankel transform of the sound wave and its time derivative for the next time step.
- 5) Go to 1.

The program parameters are the wavelength, the nominal refractive index, the initial beam radius and the initial slore of the beam radius at the entrance face, and the fraction of pulse power divided by theoretical threshold.

5.5 TYPICAL RESULTS FOR ACOUSTIC BEAM TRAPFING

Figure 18 depicts acoustic beam trapping when the pulse power is 300% of the threshold. There are 11 frames showing the beam radius plotted versus axial length for 11 different times during the pulse. The first frame shows the path of the beam when the illumination has just begun. The sixth frame gives the trace when the pulse power is highest. The 11th frame shows the path taken by the light in the trailing end of the pulse.

HERRETT

Figure 18. Acoustic Beam Trapping at 300 Percent Threshold

The action may be interpreted by considering that each section of the beam forms an acoustic lens. Initially the lenses have zero power, but some of them build up focusing power faster than others. The strongest lens is formed at the focus of the beam. As its focusing power builds up in time it causes the beam to be refocused at some distance downstream. As the strength of the acoustic lens continues to build up, its focal length is shortened so the second focus moves upstream. The second focus likewise forms a third focus and so on. A little after the laser pulse is half over, three definite foci have appeared in the 12-1/2cm region plotted. At the same time that these acoustic lenses are becoming stronger because of the inertial properties of the material, the laser pulse power is decreasing. The net result is regions of sharper and sharper focus interspersed by regions in which the beam radius is increasing. Eventually the beam will be able to escape again to large radii.

Note in the last frame that the sharpest focus occurs the farthest downstream. This is to be expected since the focus there is the result of two strong lenses upstream. Another important feature is the motion of the first focus. Notice how it moves upstream in the beam. This is because the acoustic lenses in the first few sections of the sample are also developing in strength with time.

Several features of the damage phenomenon are immediately explained. The fact that white light is scattered largely from the region of the damage stars is easily seen to follow from the fact that the highest focusing and therefore the highest index of refraction occur at places which become damage stars. Also the track propagates backward, becoming more and more sharply defined until it ends in a damaged star. If there are more than one, the damage stars occur in backward sequence. The farthest downstream occur first, then the next one upstream, then finally the damage star closest to the upstream end of the beam. Thus, the damage event does not cast a shadow that gets in its own way.

Report No. 8995

The reason why it is difficult to measure the speed of propagation of the damage event is now apparent. The intensity varies widely and more than one focus region may move past the velocity-sensing optics.

The pit on the exit face of the glass sample is formed by axial sound wave components which do become large when the beam is sharply focused. There can never be a damage pit on the entrance face. The entrance conditions of the beam are fixed; therefore, the beam cannot focus itself sharply at the entrance face of the glass.

All of the qualitative features of the phenomenon are a sharp contrast to the phenomenon of Kerr effect trapping, in which there is one focus region which moves downstream.

SECTION VI

SUMMARY OF RESULTS AND FUTURE PLANS

During the first half of the contract, we have accomplished the following:

- Kerr Effect Trapping Analyzed: An analytical solution was obtained for Kerr effect trapping. Computer plots were made showing the time development of this trapping phenomenon. A threshold for the effect was obtained.
- 2) <u>Two-Impulse Model Improved</u>: Some corrections and improvements were made in the earlier two-impulse model for the acoustic beam trapping phenomenon.
- 3) Acoustic Trapping Equations Derived: Equations were derived for acoustic beam trapping when the light pulse is treated as having a finite time distribution.
- 4) <u>Driven Sound Wave Programmed:</u> Programs were written and tested to show the development of the sound wave with a time distributed forcing function.
- 5) Beam-Tracing Program Completed: Programs were written to compute and display the acoustic beam trapping phenomenon in which the sound-light interaction is carried out.
- 6) Combination Program Started: A computer program to study trapping phenomena when both Kerr effect and acoustic trapping are operative has been written and partly tested.

Report No. 8995

During the second half of the contract, we expect to complete the development of the combination Kerr effect and acoustic trapping program. We will prepare an article for publication to set forth the theory and display several cases of interest. If time permits, we will also prepare a companion article which sets forth the experimental results from our old glass damage study contract in more detail. Another possibility will be to study the reduced trapping thresholds expected if the material already has a focusing index distribution in it due to thermal strains.

A second quarterly letter report and a final report will be submitted.

REFERENCES

- R.Y. Chiao, E. Garmire, and C.E. Townes, "Self Trapping of Optical Beams," Phys. Rev. Letters 13, 15, (October 12, 1964), pp 479-482.
- ²G.N. Steinberg, J.G. Atwood, P.H. Le and S.A. Ward, <u>Research into the Causes of Laser Damage to Optical Components: Final Report</u>, the P rkin-Elmer Corporation TR-7945, February 28, 1965. Prepared for US Army Electronics Command AMSEL-HL-L, Fort Monmouth. Contract #LA28043 AMC 00009.
- ³Julius Adams Stratton, <u>Electromagnetic</u> <u>Theory</u>, McGraw-Hill, 1941, p.140.
- Milton Abramowitz and Irene A. Stegun, <u>Handbook of Mathematical Functions</u> with Formulas, <u>Graphs</u>, and <u>Mathematical Tables</u>, National Bureau of Standards, Appl. Mathematics Series No. 55, U.S. Government Printing Office, Washington, D.C., June 1964, Section 9.4, pp 369f.
- J.R. Pierce, Theory and Design of Electron Beams, D. Van Nostrand, 2nd ed., (1954., p. 195.
- ⁶P.K. Tien, J.P. Gordon, and J.R. Whinnery, "Focusing of a Light Beam of Gaussian Field Distribution in Continuous and Periodic Lens-Like Media," Proceedings of the IEEE, 53, No. 2, Feb. ary 1965, pp 129-136.

Security Classification

DOCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)								
1. ORIGINATING ACTIVITY (Corporate author)	2g. REPORT SECURITY CLASSIFICATION							
•								
The Perkin-Elmer Corporation	Unclassified							
Norwalk, Connecticut	SHOUP							
1 REPORT TITLE								
Acoustic Self-Trapping of Laser Beam	s							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)								
First Semiannual Technical Summary R	eport							
S. AUTHOR(S) (Last name, first name, ini. al)								
Kerr, Edwin L.								
6. REPORT DATE	74 TOTAL NO. OF PAGES 74 NO. OF REFS							
31 October 1967	45 6							
SG. CONTRACT OR GRANT NO.	94 ORIGINATOR'S REPORT NUMBER(S)							
N00014-67-C-0468	8995							
b. PROJECT NO.	0773							
C. TASK	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)							
ARPA Order 306	assigned and reporty							
d.								
ID. AVAILABILITY'LIMITATION NOTICES								
"Qualified requestors may obtain cop	ies of this report from DDC"							
11. SUPFLEMENTARY NOTES	12 SPONSORING MILITARY ACTIVITY							
	Advanced Research Projects Agency,							
	The Office of Naval Research, Department of Defense							
13. ABSTRACT	•							
Internal filamentary glass dam	age caused by high power Q-switched							
mulse lasers has been reported in the	e literature. Also, tilamentary trap-							
ning in liquids has been observed.	This report presents a theory of							
acquetic heam transing. In the theo	ry, electrostriction is the sound wave							
detering force and sound wave compres	sions cause focusing of the light wave							
stalds. The theoretical transing th	resholds are calculated from the laser							
langth and the density, refracti	ve index. Young's modulus, and rolsson s							
wavelength and the denotely, retrode	nsity, refractive index, and speed of							
ratio of a solid material, or the density, refractive index, and speed of sound of a liquid medium. The acoustic trapping thresholds agree with ex-								
perimental slass damage thresholds to within experimental accuracy, and the								
perimental ; lass damage thresholds t	O WIGHTH EXPERIMENTAL DECEMBER, and the							

An analysis of Kerr effect trapping is also presented for purposes of comparison.

vary the same way with initial beam size. Trapping movies showing the formation of strongly focused regions are presented. An explanation is given for most of the salient features observed in the damage phenomenon.

DD FORM 1473

Unclassified
Security Classification

Security Classification

14. KEY WORDS		LINK A		LINK B		LINK C	
	ROL	. Е	WT	ROLE	wT	ROLE	WT
Acoustic Trapping Electrostriction Kerr Effect Trapping Glass Damage Beam Trapping Sound-Light Interaction							
	INCTRUCTIONS						

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grante Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION. Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 26. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified, if a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interin, progress, summery, annual, or finsl. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pagea containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of referencea cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, 48d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, taak number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- ff. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponaoring (pa)ing for) he research and development. Include address.
- 13. AB TRACI. Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional apace is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract abail and with an indication of the maintery security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for catologing the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weigh a is optional.

Unclassified
Security Classification