Reihen

a.
$$\sum_{k=0}^{\infty} \left(\frac{1}{10}\right)^k$$

b.
$$\sum_{k=1}^{\infty} \frac{2^k + (-3)^k}{5^k}$$

$$c. \sum_{k=2}^{\infty} \frac{2^{k+1}}{7 \cdot 5^k}$$

A1: Bestimme den Grenzwert der Reihen a.
$$\sum_{k=0}^{\infty} (\frac{1}{10})^k$$
 b. $\sum_{k=1}^{\infty} \frac{2^k + (-3)^k}{5^k}$ c. $\sum_{k=2}^{\infty} \frac{2^{k+1}}{7 \cdot 5^k}$ d. $-\frac{1}{2} + \frac{1}{6} - \frac{1}{18} + \frac{1}{54} - \frac{1}{162}...$

A2: Wandle in einen Bruch um:

a.
$$0.\overline{48}$$

a.
$$0.\overline{48}$$
 b. $3.1\overline{48}$ c. $0.\overline{1234}$

A3: Bestimme den Grenzwert der Reihen (Hinweis: Teleskopreihen)

a.
$$\sum_{k=1}^{\infty} \frac{1 - \frac{1}{\pi}}{\pi^k}$$

a.
$$\sum_{k=1}^{\infty} \frac{1 - \frac{1}{\pi}}{\pi^k}$$
 b. $\sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{k+3})$

A4: Zeige durch Vergleich mit der harmonischen Reihe: $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} = \infty$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} = \infty$$

A5: Sind die Reihen konvergent?

a.
$$\sum_{n=0}^{\infty} \left(\frac{\cos n}{3}\right)^n$$
 b.
$$\sum_{n=0}^{\infty} \frac{n^2}{3^n}$$
 c.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

b.
$$\sum_{n=0}^{\infty} \frac{n^2}{3^n}$$

c.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

A6: Bestimme den Konvergenzradius der Potenzreihen

a.
$$\sum_{n=0}^{\infty} \frac{k+2}{2^k} x$$

a.
$$\sum_{n=0}^{\infty} \frac{k+2}{2^k} x^k$$
 b. $\sum_{n=0}^{\infty} \frac{(2+x)^{2k}}{(2+\frac{1}{k})^k}$ c. $\sum_{n=0}^{\infty} \frac{3^{k+2}}{2^k} x^k$

c.
$$\sum_{n=0}^{\infty} \frac{3^{k+2}}{2^k} x^k$$

A7: Bestimme Taylorreihe und Konvergenzradius um $x_0=0$ a. $f(x)=e^{-x}$ b. $f(x)=e^{x^2}$ c. $f(x)=\ln(1-\frac{x}{2})$ d. $f(x)=\frac{1}{1+x}$

a.
$$f(x) = e^{-x}$$

b.
$$f(x) = e^{x^2}$$

c.
$$f(x) = \ln(1 - \frac{x}{2})$$

$$\dot{\mathbf{d}}.f(x) = \frac{1}{1+x}$$

A8: Bestimme das Taylorpolynom p_5

a.
$$f(x) = \sqrt{1 - x}$$

b.
$$f(x) = \arcsin(x)$$
 Hinweis: $f'(x) = \frac{1}{\sqrt{1-x^2}}$

c.
$$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$$

A9: Bestimme die Taylorreihe für folgende Funktionen um x_0 .

a.
$$f(x) = xe^x, x_0 = 1$$

a.
$$f(x) = xe^x, x_0 = 1$$
 b. $f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}, x_0 = 0$