Zadania na lekcje

1. Wykaż, że:

a) jeśli
$$x + y = 2$$
, to $x^3 + y^3 \ge 2$

b) jesli
$$x - y = 5$$
, to $x^3 - y^3 \ge 31,25$

- 2. Wyznacz wzór funkcji kwadratowej f w postaci ogólnej, jeśli wiadomo, że przyjmuje ona wartości dodatnie $\Leftrightarrow x \in (-8; 2)$, zaś największą wartością tej funkcji jest $2\frac{1}{4}$.
- 3. Dana jest fukcja kwadratowa, dla której f(-3) = 0 oraz f(-1) = f(5) = 3. Czy funkcja ma najmniejszą czy największą wartość? Wyznacz tę wartość.
- 4. Oblicz najmniejszą i najwięszką wartość funkcji:

a)
$$x^2 - 4x + 5$$
, gdzie $x \in \langle 0; 3 \rangle$

b)
$$-\frac{1}{2}x^2 + 2x$$
, gdzie $x \in \langle 0; 6 \rangle$

c)
$$\frac{1}{4}x^2 + 2x + 3$$
, gdzie $x \in \langle -2; 6 \rangle$

5. Dla jakich wartości parametru "k" pierwiastki funkcji

$$x^2 - (k-1)x + 1 = 0$$

spełniają warunek $\frac{1}{x_1^2}+\frac{1}{x_2^2}\geq 2k^2-k-21$?

6. Wyznacz wszystkie wartości paramatru "k", dla których rozwiązania x_1, x_2 równania

$$2x^2 + kx + 2k = 0$$

spełniają warunek: $x_1^2x_2 + x_1x_2^2 + 3x_1x_2 \ge x_1 + x_2 - 4$.

Zadania domowe

- 1. Przekształć poniższe wyrażenia tak, aby skorzystać ze wzorów Viete'a, a następnie je zastosuj dla funkcji: $f(x) = \sqrt{3}x^2 (2\sqrt{3}+1)x + \sqrt{2}$:
 - a) $\frac{1}{x_1} + \frac{1}{x_2}$
 - b) $x_1^2 + x_2^2$
 - c) $\frac{1}{x_1^2} + \frac{1}{x_2^2}$
 - d) $\frac{x_1}{x_2} + \frac{x_2}{x_1}$
- 2. Wykaż, że:
 - a) $(x_1 x_2)^2 = (x_1 + x_2)^2 4x_1x_2$
 - b) $|x_1 x_2| = \sqrt{(x_1 + x_2)^2 4x_1x_2}$
 - c) $x_1^3 + x_2^3 = (x_1 + x_2)^3 3(x_1 + x_2) \cdot x_1 x_2$
 - d) $x_1^4 + x_2^4 = ((x_1 + x_2)^2 2x_1x_2)^2 2(x_1x_2)^2$

(spoiler text for the hint goes here)