Hercules Benchmarks

In progress

Leonardo Ramirez-Guzman April 2007

Introduction

In the present document summarize some examples tailored to test the Hercules (see, Tu et al., 2006).

Benchmarks

B1.-A dipole in a homogeneous full space.

The properties are summarized in Table 1. No damping is included. The reference solution is computed evaluating numerically the convolution of the analytical solution of a planar dislocation with strike= 0, dip= 90 and rake =0. The slip rate function is triangle with raise time $T_r = 1$ s and $M_W = 4.242716$. The value of the moment is arbitrary in this case.

The domain is a $30 \times 30 \times 30$ km. The stations are recorded in the plane x-y with a 250 m space grid.

ρ(kg/m3)	V_{p}	$V_{_{S}}$	Q
1500	3474	2000	Infinity

Table B1

Figure 1 Coarse mesh. All elements have the same size.
Figure 2 Displacements and Fourier spectrum.

Note.- You need to recompile Hercules changing in common.mk such that $SOLVE_CFLAGS = -DBOUNDARY$.

Source Input example

```
# source.in: Source quantities input file to CMU FEM toolchain.
       Lines start with # are comments. Empty lines are ignored.
# Revised version that facilitate parameter conversions.
# Leonardo Ramirez 2006
# FILTER RELATED (ONLY BUTTERWORTH )
source is filtered
threshold frequency
            = 22
number of poles
# SOURCE DESCRIPTION
type of source = point
source function type = quadratic
average risetime sec = 4.0
moment amplitude = 7.2E+12
\#moment magnitude = 3.0
# 0-lon lat 1- cartesian
lonlat or cartesian = 1
hypocenter x = 15000
hypocenter y = 15000
hypocenter depth m = 15000
source strike deg = 90
source dip deg = 0
```

B2.-A dipole: layer on a half space. No damping

This problem is named LOH.1 in the SCEC benchmarks. I changed the frequency content via T.

Material Properties.- Table B2 summarizes the properties. Both Q's are infinite everywhere.

Thicknes	ρ(kg/m3)	V_p	$V_{_{S}}$
1000	2600	4,000	2,000
Inf	2700	6,000	3,464

Table B2

Fig	ure 3 Coarse mesh.

```
Figure 4.- Displacements and Fourier spectrum.
```

Source.-Point dislocation. The only non-zero moment tensor component is Mxy (equal to Myx), which has value $M_0=10^{18}$ Nm. Moment-rate time history is $M_0*(t/T_2)*exp(-t/T)$, where T=2 sec. (Equivalently, the moment time history is $M_0*(1-(1+t/T)*exp(-t/T))$, where T=2sec).

Source Depth = 2000 m. That is, taking the epicenter as the origin, the source is at (0,0,2000).

```
# source.in: Source quantities input file to CMU FEM toolchain.
       Lines start with # are comments. Empty lines are ignored.
# Revised version that facilitate parameter conversions.
# Leonardo Ramirez 2006
# FILTER RELATED (ONLY BUTTERWORTH )
source is filtered
threshold frequency
number of poles
            = 22
# SOURCE DESCRIPTION
type of source = point
source function type = exponential
average risetime sec = 2
moment amplitude = 1E18
\#moment magnitude = 3.0
# 0-lon lat 1- cartesian
lonlat or cartesian = 1
hypocenter x = 15000
hypocenter y = 15000
hypocenter depth m = 2000
source strike deg = 0
source dip deg = 90
source rake deg = 0
```

The terashake domain is defined by the coordinates

-121	34.5
-118.951292	36.621696
-113.943965	33.122341
-116.032285	31.082920

Material Properties.-The Data base was constructed using the SCEC CVM model 4 and quake etree tools (Taborda et al,)

Figure 5	

```
Lines start with # are comments. Empty lines are ignored.
# Revised version that facilitate parameter conversions.
                                                 #
# Leonardo Ramirez 2006
# FILTER RELATED (ONLY BUTTERWORTH )
source is filtered
threshold frequency = .3
number of poles
             = 22
# SOURCE DESCRIPTION
        Event ID: 14179736 (Ml5.1, 1 Sep 2005)
type of source = point
source_function_type = quadratic
average risetime sec = 1.474
#moment amplitude = 5.82E+16
moment_magnitude = 5.11
# 0-lonlat 1-cartesian
lonlat or cartesian = 0
hypocenter lat deg = 33.16
hypocenter long deg =-115.62
hypocenter depth m = 5000
source strike deg = 241
source dip deg
           = 77
source rake deg
            = -15
# Given the corners we make a mapping to localize the source in the "box
# domain". The interpolation is linear. If lonlat or cartesian = 1 it is not
domain surface corners =
-121.0 34.5
-118.951292 36.621696
-113.943965 33.122341
-116.032285 31.082920
```

B4.-A small earthquake in the Terashake domain. Comparison SDSC and Data

```
# source.in: Source quantities input file to CMU FEM toolchain.
       Lines start with # are comments. Empty lines are ignored.
# Revised version that facilitate parameter conversions.
# Leonardo Ramirez 2006
# FILTER RELATED (ONLY BUTTERWORTH )
source is filtered = 1
threshold frequency = .5
number of poles
         = 22
# SOURCE DESCRIPTION
source function type = discrete
type\_of\_source = srfh
number of point sources = 1
domain surface corners =
-121.0
       34.5
-118.951292 36.621696
-113.943965 33.122341
-116.032285 31.082920
```


Type of source and filter parameters.-Four types of formats are allowed and a Butterworth filter is implemented in Hercules. The options are as follow

Parameter	Description
source is filtered	0 if no filtering
	1 if the source is filtered
	the frequency threshold
threshold_frequency	
	the number of poles in the Butterworth filter
number_of_poles	
	point
type_of_source	plane
	planewithkinks
	srfh

type_of_source = Point

This type of source is a good representation for small earthquakes.

Parameter	Description
source_function_type	Is the function that describes the slip time
	history. Hercules has implemented the following:
	ramp
	sine
	quadratic
	ricker
	exponential
	discrete (only if srhf)
average_risetime_sec	The meaning differs depending on the source
	function type, but in most of them is the time the dislocation takes to reach its maximum value of
	slip.
Moment amplitude	1
- ·	M0 you can give either this quantity or Mw
Moment magnitude	2.20
Lonlat_or_cartesian	GMT system Cartesian system
	Cartesian system
hypocenter_x or hypocenter_lat_deg	Location of the source
hypocenter_y or hypocenter_long_deg	
hypocenter depth m	
Source strike deg	Strike
Source dip deg	Dip
Source rake deg	Rake
If Lonlat or cartesian = 0	

domain_surface_corners	The list of the corners of the surface Lon1 Lat1 Lon2 Lat2 Lon3 Lat3 Lon4 Lat4

type_of_source = SRFH

Is the Standard Rupture Fault format in Hercules

Parameter	Description
source_function_type	Is the function that describes the slip time history. Hercules has implemented the following:
	ramp sine quadratic ricker exponential discrete (only if srhf)
number of point sources	
domain_surface_corners	The list of the corners of the surface Lon1 Lat1 Lon2 Lat2 Lon3 Lat3 Lon4 Lat4
Files	
coords.in	A list (size = number_of_point_sources) of coordinates with Lon[0] Lat[0] Depth[0] Lon[1] Lat[1] Depth[1]
area.in	
strike.in	
dip.in	
rake.in	
slip.in	
Slipfunction.in	Slip function for every point source, the format: np delay dt s[0] s[np] A linear interpolation is assumed and if necessary the last value will be repeated.