Event Driven Molecular Dynamics

Grupo 5

ITBA

INTEGRANTES: MARTINA SCHVARTZ TALLONE, PATRICK LUCA TORLASCHI y SERGIO SMIRNOFF

Introducción

Trayectoria recta, colisiones elásticas y sin gravedad

- N partículas rígidas en movimiento.
- Cada partícula con su movimiento, posición, radio y masa.
- Viajan sin fuerzas externas.
- Colisiones elásticas entre partículas.
- Simulación de un sistema de eventos.

Modelo Matemático

- Vuelo libre de las N partículas en un espacio 2D:
 - $x_i(t) = x_i(0) + v_{x_i}t$
 - $y_i(t) = y_i(0) + v_{v_i}t$
- Cálculo de tiempo de colisión contra paredes:
 - $t_c = \infty$ si $dv \cdot dr \ge 0$.
 - $t_c = \infty$ si d < 0, siendo: $d = (dv \cdot dr)^2 - (dv \cdot dv) \cdot (dr \cdot dr - \sigma^2)$
 - $\sigma = r_i + r_i$
 - Colisión con paredes espejan la velocidad en la normal de colisión.

Resultados

Modelo Matemático

Cálculo de impulso y velocidades post-colisión de partículas:

•
$$J_x = J * dx/\sigma$$

•
$$J_v = J * dy/\sigma$$

•
$$J = \frac{2m_i m_j}{m_i + m_j} \cdot \frac{dv \cdot dr}{\sigma}$$

•
$$vx_i^d = vx_i^a + J_x/m_i$$

•
$$vy_i^d = vy_i^a + J_y/m_i$$

$$vx_j^d = vx_j^a - J_x/m_j$$

$$vy_j^d = vy_j^a - J_y/m_j$$

Implementación

photoMaterial/uml.png

Estructura del código y elementos importantes:

- Main(maxIter, nombreArchivo, L)
- runSimulation → realiza las iteraciones. separadas en:
 - initialization() → Se inicializan las partículas.
 - inicialCollisions() → Se calculan las colisiones iniciales.
 - findNextEvent() → Encuentra el próximo evento.
 - advanceTime() → Avanza el tiempo y actualiza las posiciones de las partículas.
 - resolveCollision() → Procesa el evento
- Clase Particle
- Clase Colisions

Implementación de vértices

- Tiempo a colisión con pared horizontal = tiempo a colisión con pared vertical ← vértice.
- Se tienen 1 partícula en cada vértice.
- Características:
 - Radio = 0.
 - Masa $= \infty$.
- Espejan las velocidades en los distintos choques.
- No se mueven.

Geometría del sistema y parámetros de simulación

Geometría:

- Dos cajas A y B, conectadas por una abertura de tamaño I
- Las partículas se distribuven uniformemente en la caja A al inicio de la simulación sin superponerse.

Constantes:

- Número de partículas: 250.
- Dimensiones caia A: $0.09 \text{ m} \times 0.09$ m
- Dimensiones caja B: 0.09 m ancho.
- Radio de partículas: 0.0015 m.
- Masa de partículas: 1 kg.
- Velocidad inicial: 0.01 m/s.

Variables:

 \bullet $L \in \{0.09, 0.07, 0.05, 0.03\}$

Definición matemática de observables

Observables

- Presión en las cajas A y B.
- Calculándolas como la suma de los impulsos por colisiones contra la pared por unidad de tiempo.
- Se obtiene con la fórmula: $P = \frac{1}{A} \sum J_i$ siendo A el área de la pared y J_i el impulso de cada colisión.
- $J_i = 2 * v_n$ siendo v_n la velocidad de la partícula.
- Coeficiente cuadrático medio: $\langle z^2 \rangle = 2Dt$

Animaciones

Animaciones

ejemplo.png

Evolución temporal del observable

Presión en función del tiempo para L = 0.09 m.

Presión en función del tiempo para L = 0.07 m.

Resultados

Podemos tomar estacionario a partir de los 20 segundos. Con: N = 250, r = 0.0015 m, m = 1 kg.

Evolución temporal del observable

Presión en función del tiempo para L = 0.05 m.

Presión en función del tiempo para

Podemos tomar estacionario a partir de los 20 segundos. Con: N=250, $r=0.0015\,$ m, $m=1\,$ kg.

Input vs Observable

Primer estudio: Presión vs A^{-1}

Input

- \bullet $L \in \{0.09, 0.007, 0.05, 0.03\}$ m.
- $v_o = 0.01 \text{ m/s}.$
- r = 0.0015 m.
- m = 1 kg.
- N = 250.

Primer estudio: Presión vs A^{-1}

Input

- $L \in \{0.09, 0.007, 0.05, 0.03\}$ m.
- $v_o = 0.01 \text{ m/s}.$
- r = 0.0015 m.
- m = 1 kg.
- N = 250.

Coeficiente de difusión

Input: $L = 0.09 \text{ m} - v_0 = 0.01 \text{ m/s} - r = 0.0015 \text{ m} - m = 1 \text{ kg} - N = 250.$

Resultados 880

Primer estudio: Presión vs A^{-1}

- Cuanta mayor área, menor es la presión.
- Luego de 20 segundos, todas las presiones entran en un régimen estacionario.
- NO se cumple la ley de los gases ideales ya que P no es cte.

Resultados

Segundo estudio: Coeficiente de difusión

Falta este análisis.

¡Gracias por su atención!