Theoretische Mechanik Hausaufgabenblatt Nr. 1

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 19, 2023)

Problem 1. Betrachten Sie den harmonischen Oszillator in einer Dimension, d. h. das Anfangswertproblem

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F(x(t)) = -kx(t)$$
$$x(t_0) = x_0 \in \mathbb{R}$$
$$\frac{\mathrm{d}x}{\mathrm{d}t} = v_0 \in \mathbb{R}$$

- 1. Zeigen Sie, daß wenn eine komplexwertige Funktion $z:I\to\mathbb{C}$ mit $t_0\in I\subseteq\mathbb{R}$ die Differentialgleichung (1a) löst, ihr Realteil $x(t)=\operatorname{Re} z(t)$ zur Lösung des reellen Anfangswertproblems (1) benutzt werden kann.
- 2. Was ist die allgemeinste Form der rechten Seite der Differentialgleichung (1a), für die der Realteil einer komplexen Lösung selbst eine Lösung ist? Geben Sie Gegenbeispiele an.
- 3. Machen Sie den üblichen Exponentialansatz für lineare Differentialgleichungen mit konstanten Koeffizienten...

Proof. 1. Sei $x(t) = x_r(t) + ix_i(t), x_r, x_i : I \to \mathbb{R}$.

Dann gilt

$$m\left(\frac{\mathrm{d}^2 x_r}{\mathrm{d}t^2} + i\frac{\mathrm{d}^2 x_i}{\mathrm{d}t^2}\right) = -k(x_r + ix_i).$$

Weil das eine Gleichung von zwei komplexe Zahlen ist, gilt auch

$$m\frac{\mathrm{d}^2 x_r}{\mathrm{d}t^2} = -kx_r.$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

2. Das passt für alle reelle lineare Kombinationen der Ableitungen von x(t).

$$\sum_{i=0}^{n} a_i \frac{\mathrm{d}^i x}{\mathrm{d}t^i} = 0, \qquad a_i \in \mathbb{R}.$$

- a. Gegenbeispiele
- (i) Irgendeine $a_i \notin \mathbb{R}$

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -ikx(t), \qquad k \in \mathbb{R}.$$

Hier ist es klar, dass keine Abbildung $x : \mathbb{R} \to \mathbb{R}$ eine Lösung sein kann, weil die linke Seite reelle wird, aber die rechte Seite nicht reelle wird.

Daraus folgt: Das Realteil der Lösung ist kein Lösung.

(ii) Nichtlineare Gleichung, z.B.

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -k\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2.$$

3.

$$x(t) = \alpha e^{\lambda t}$$
$$\ddot{x}(t) = \lambda^2 \alpha e^{\lambda t}$$

Dann

$$m \alpha \lambda^2 e^{\lambda \ell} = -k \alpha e^{\lambda \ell}$$

$$\lambda^2 = -\frac{k}{m}$$

$$\lambda = \pm i \sqrt{\frac{k}{m}} = \pm i \omega \qquad \omega := \sqrt{\frac{k}{m}}$$

Daraus folgt, für $z_1(t)$:

$$z_{1}(0) = \alpha_{1,+} + \alpha_{1,-} = x_{0}$$

$$z'_{1}(0) = -i\omega\alpha_{1,+} + i\omega\alpha_{1,-} = v_{0}$$

$$-\alpha_{1,+} + \alpha_{1,-} = -\frac{iv_{0}}{\omega}$$

$$2\alpha_{1,-} = x_{0} - \frac{iv_{0}}{\omega}$$

$$2\alpha_{1,+} = x_{0} + \frac{iv_{0}}{\omega}$$

$$z_{1}(t) = \frac{1}{2} \left[\left(x_{0} + \frac{iv_{0}}{\omega} \right) e^{-i\omega t} + \left(x_{0} - \frac{iv_{0}}{\omega} \right) e^{i\omega t} \right]$$

Daraus folgt die andere Formen der Lösungen:

(i)
$$x_2(t)$$

$$\frac{1}{2} \left[\left(x_0 + \frac{iv_0}{\omega} \right) e^{-i\omega t} + \left(x_0 - \frac{iv_0}{\omega} \right) e^{i\omega t} \right]$$

$$= \operatorname{Re} \left[\left(x_0 + \frac{iv_0}{\omega} \right) e^{-i\omega t} \right]$$

$$= \operatorname{Re} \left[\left(x_0 + \frac{iv_0}{\omega} \right) (\cos(\omega t) - i\sin(\omega t)) \right]$$

$$= \operatorname{Re} \left[x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t + i(\dots) \right]$$

$$= x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t$$

(ii) $x_3(t)$ (R-Formula)

$$x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t = \alpha_3 \sin(\omega t + \delta_3)$$
$$\alpha_3 = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2}$$
$$\delta_3 = \arctan \frac{v_0}{x_0 \omega}$$

(iii)
$$x_4(t)$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x.$$

Daraus folgt:

$$\alpha_4 = \alpha_3 \qquad \delta_4 = \delta_3 + \frac{\pi}{2}.$$

Problem 2. ...

Proof. 1.

$$x(t) = \alpha e^{\lambda t}$$
$$\dot{x}(t) = \alpha \lambda e^{\lambda t}$$
$$\ddot{x}(t) = \alpha \lambda^2 e^{\lambda t}$$

Daraus folgt

$$m\lambda^{2}\alpha e^{\lambda t} = -k\alpha e^{\lambda t} - 2m\gamma\lambda\alpha e^{\lambda t}$$
$$0 = m\lambda^{2} + 2m\gamma\lambda + k$$
$$\lambda = -\gamma \pm \sqrt{\gamma^{2} - \frac{k}{m}}$$

Falls $\gamma^2 \neq \frac{k}{m}$:

$$x(t) = e^{-\gamma t} \left[A e^{\sqrt{\gamma^2 - \frac{k}{m}}t} + B e^{-\sqrt{\gamma^2 - \frac{k}{m}}t} \right],$$

$$x'(t) = -\gamma e^{-\gamma t} \left[A e^{\sqrt{\gamma^2 - \frac{k}{m}}t} + B e^{-\sqrt{\gamma^2 - \frac{k}{m}}t} \right]$$
$$+ e^{-\gamma t} \left[A \sqrt{\gamma^2 - \frac{k}{m}} e^{\sqrt{\gamma^2 - \frac{k}{m}}t} - B \sqrt{\gamma^2 - \frac{k}{m}} e^{-\sqrt{\gamma^2 - \frac{k}{m}}t} \right]$$

und

$$x(0) = A + B = x_0$$

$$x'(0) = \sqrt{\gamma^2 - \frac{k}{m}} (A - B) = v_0$$

$$2A = x_0 + \frac{v_0}{\sqrt{\gamma^2 - \frac{k}{m}}}$$

$$2B = x_0 - \frac{v_0}{\sqrt{\gamma^2 - \frac{k}{m}}}$$

Es ist zu beachten, dass es möglich ist, dass $\gamma^2 < \frac{k}{m}$. In diesem Fall ist $\sqrt{\gamma^2 - \frac{k}{m}} = i\sqrt{\frac{k}{m} - \gamma^2}$, aber der Form der Lösung bleibt.

Für $\gamma^2 = \frac{k}{m}$ ist die Lösung

$$x(t) = Ae^{-\gamma t} + Bte^{-\gamma t}.$$

Es gilt

$$x'(t) = -\gamma A e^{-\gamma t} + B e^{-\gamma t} - B t \gamma e^{-\gamma t}.$$

Dann

$$x(0) = A = x_0$$

$$x'(0) = -\gamma A + B = v_0$$

$$B = v_0 + \gamma x_0$$

$$x(t) = x_0 e^{-\gamma t} + (v_0 + \gamma x_0) t e^{-\gamma t}$$

2. Wir suchen eine Partikularlösung für die Gleichung

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + 2m\gamma\frac{\mathrm{d}x}{\mathrm{d}t} + kx = F_0e^{-i\omega_0t}$$

mit dem Form

$$x(t) = Ae^{-i\omega_0 t}.$$

Es gilt

$$x'(t) = -i\omega_0 A e^{-i\omega_0 t}$$
$$x''(t) = -\omega_0^2 A e^{-i\omega_0 t}$$

Dann ist

$$-\omega_0^2 A m e^{-i\omega_0 t} - 2m\gamma i\omega_0 A e^{-i\omega_0 t} + Ak e^{-i\omega_0 t} = F_0 e^{-i\omega_0 t},$$

$$A = \frac{F_0}{-m\omega_0^2 - 2m\gamma i\omega_0 + k}.$$

3.