IEEE's Hands on Practical Electronics (HOPE)

Week 9: CMOS, Digital Logic

Definitions:

CMOS: Complementary MOS. Uses both PMOS and NMOS in the same circuit.

Boolean Algebra: Developed by George Boole (1815-1864) Logic: The study of the principles and criteria of valid inference

Gates: Examples: AND, OR, NOT, NAND, NOR NAND: equivalent to an AND followed by a NOT NOR: equivalent to an OR followed by a NOT

Conventions:

Yes or true are defined to be 1 or HIGH No or false are defined to be 0 or LOW

Actual implementation of a NAND with transistors:

	,		
Name	Graphic Symbol	Algebraic Function	Truth Table
AND	A F	F = A + B or F = AB	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	A F	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	AF	F = \(\overline{A} \) or F = A'	A F 0 1 1 0
NAND	л — Б	F = (AB)	ABF 0011 011 101 110
NOR	AOF	$F = (\overline{A + B})$	A B F 0 0 i 0 1 0 1 0 0 1 1 0

The top two transistors in parallel are PMOS, and the bottom two are NMOS.