ЛЕКЦИЯ 3

Геометрия на движението

Съдържание

- 1. Криволинейни координати на точка.
- 2. Координатни системи.
- 3. Скорост и ускорение на точка в ортогонални криволинейни координати.
- 4. Скорост и ускорение на точка в сферични координати.
- 5. Движение на точка по окръжност.
- 6. Хармонично движение.

1. Криволинейни координати на точка.

• дефиниция за обобщени координати (q_1, q_2, q_3) :

Всяка тройка числа, еднозначно определящи положението на точка в тримерното пространство. Тогава за радиус-вектора на точката е в сила

$$\mathbf{r} = \mathbf{r}(M) = \mathbf{r}(q_1, q_2, q_3) \tag{1}$$

• координатна линия:

при изменение само на едно от числата, докато другите две са фиксирани

линия
$$(q_1)$$
 $\mathbf{r} = \mathbf{r}(q_1, q_{20}, q_{30})$ линия (q_2) $\mathbf{r} = \mathbf{r}(q_{10}, q_2, q_{30})$ линия (q_3) $\mathbf{r} = \mathbf{r}(q_{10}, q_{20}, q_3)$

• координатни оси:

допирателните към координатните линии в дадена точка с посока, съответстваща на нарастването на съответните координати

• координатни повърхнини:

изменение само на две координати, докато третата е фиксирана.

$$\begin{array}{ll} \text{повърхнина} \;\; (q_1q_2) & \qquad \mathbf{r} = \mathbf{r} \big(q_1,q_2,q_{30}\big) \\ \\ \text{повърхнина} \;\; (q_2q_3) & \qquad \mathbf{r} = \mathbf{r} \big(q_{10},q_2,q_3\big) \\ \\ \text{повърхнина} \;\; (q_3q_1) & \qquad \mathbf{r} = \mathbf{r} \big(q_1,q_{20},q_3\big) \\ \end{array}$$

• координатни равнини:

допирателните равнини към координатните повърхнини в дадена точка

2. Координатни системи. Примери.

• Декартова

$$(q_1,q_2,q_3) = (x_1,x_2,x_3) = (x,y,z)$$

• цилиндрична

$$\left(q_1,q_2,q_3\right) = \left(\rho,\varphi,z\right) \quad \rho \ge 0, \quad \varphi \in [0,2\pi), \quad z \in (-\infty,+\infty)$$

• сферична

$$(q_1,q_2,q_3) = (r,\theta,\varphi)$$
 $r \ge 0$, $\theta \in [0,\pi]$ $\varphi \in [0,2\pi)$

• коефициенти на Ламе

$$\left| \frac{\partial \mathbf{r}}{\partial q_i} \right| = \sqrt{\left(\frac{\partial x_1}{\partial q_i} \right)^2 + \left(\frac{\partial x_2}{\partial q_i} \right)^2 + \left(\frac{\partial x_3}{\partial q_i} \right)^2} = H_i \quad (i = 1, 2, 3)$$

Единични вектори по координатните оси

$$\mathbf{k}_{i} = \frac{1}{H_{i}} \frac{\partial \mathbf{r}}{\partial q_{i}} \quad , \quad \frac{\partial \mathbf{r}}{\partial q_{i}} \left(\frac{\partial x_{1}}{\partial q_{i}}, \frac{\partial x_{2}}{\partial q_{i}}, \frac{\partial x_{3}}{\partial q_{i}} \right) \quad (i = 1, 2, 3)$$

• направляващи (директорни) косинуси на ъглите между единичните вектори на криволинейните оси $[q_i]$ и осите на Декартова координатна система $[x_j]$

$$\cos(\mathbf{k}_{i}, \mathbf{e}_{j}) = \mathbf{k}_{i} \mathbf{e}_{j} = \frac{1}{H_{i}} \frac{\partial \mathbf{r}}{\partial q_{i}} \mathbf{e}_{j} = \frac{1}{H_{i}} \frac{\partial x_{j}}{\partial q_{i}} , \qquad (i, j = 1, 2, 3)$$

• таблица на директорните косинуси на ъглите между криволинейните оси $[q_i]$ и осите на Декартова координатна система $[x_i]$

$$\begin{bmatrix} q_1 \end{bmatrix} & \begin{bmatrix} q_2 \end{bmatrix} & \begin{bmatrix} q_3 \end{bmatrix} \\ \begin{bmatrix} x_1 \end{bmatrix} & \frac{1}{H_1} \frac{\partial x_1}{\partial q_1} & \frac{1}{H_2} \frac{\partial x_1}{\partial q_2} & \frac{1}{H_3} \frac{\partial x_1}{\partial q_3} \\ \begin{bmatrix} x_2 \end{bmatrix} & \frac{1}{H_1} \frac{\partial x_2}{\partial q_1} & \frac{1}{H_2} \frac{\partial x_2}{\partial q_2} & \frac{1}{H_3} \frac{\partial x_2}{\partial q_3} \\ \begin{bmatrix} x_3 \end{bmatrix} & \frac{1}{H_1} \frac{\partial x_3}{\partial q_1} & \frac{1}{H_2} \frac{\partial x_3}{\partial q_2} & \frac{1}{H_3} \frac{\partial x_3}{\partial q_3} \\ \end{bmatrix}$$

• ортогонална криволинейна координатна система – за която

$$\mathbf{k_i}\mathbf{k_j} = 0 \quad (i \neq j) \text{ , r.e. } \frac{\partial x_1}{\partial q_i} \frac{\partial x_1}{\partial q_j} + \frac{\partial x_2}{\partial q_i} \frac{\partial x_2}{\partial q_j} + \frac{\partial x_3}{\partial q_i} \frac{\partial x_3}{\partial q_j} = 0$$

 диференциал на дъга от поизволна крива в криволинейна координатна система

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial q_1} dq_1 + \frac{\partial \mathbf{r}}{\partial q_2} dq_2 + \frac{\partial \mathbf{r}}{\partial q_3} dq_3$$

тогава

$$(ds)^{2} = |dr|^{2} = \left(\frac{\partial \mathbf{r}}{\partial q_{1}}dq_{1} + \frac{\partial \mathbf{r}}{\partial q_{2}}dq_{2} + \frac{\partial \mathbf{r}}{\partial q_{3}}dq_{3}\right)^{2}$$

При фиксиране на две от координатите и изменение само на една:

$$ds_1 = H_1 dq_1$$
, $ds_2 = H_2 dq_2$, $ds_3 = H_3 dq_3$,

Или:

 $ds_i = H_i dq_i$ - диференциал на дъгите по отделните координатни линии

- Примери (извеждането на коефициентите на Ламе ще се покаже нататък)
 - цилиндрична система: $ds_1=d\rho, \quad ds_2=\rho d\phi, \quad ds_3=dz$ $H_{\rho}=1, \quad H_{\varphi}=\rho, \quad H_{z}=1$
 - сферична система: $ds_1=dr,~ds_2=rd\theta,~ds_3=r\sin\theta~d\phi$ $H_r=1,~H_\theta=r,~H_\varphi=r\sin\theta$

3. Скорост и ускорение на точка в ортогонални криволинейни координати.

Нека $\mathbf{r} = \mathbf{r}(t) = \mathbf{r}(q_1(t), q_2(t), q_3(t))$ е радиус вектор на някаква точка. Скоростта е

$$\frac{d\mathbf{r}}{dt} = \dot{\mathbf{r}} = \mathbf{v} = \frac{\partial \mathbf{r}}{\partial q_1} \dot{q}_1 + \frac{\partial \mathbf{r}}{\partial q_2} \dot{q}_2 + \frac{\partial \mathbf{r}}{\partial q_3} \dot{q}_3 \tag{2}$$

Определение: обощени скорости \dot{q}_i (i = 1,2,3)

ot (2)
$$\Rightarrow \frac{\partial \mathbf{v}}{\partial \dot{q}_i} = \frac{\partial \mathbf{r}}{\partial q_i}$$

За пълната производна по времето на $\frac{\partial \mathbf{r}}{\partial q_i}$ се получава:

$$\frac{d}{dt} \left(\frac{\partial \mathbf{r}}{\partial q_i} \right) = \frac{\partial^2 \mathbf{r}}{\partial q_1 \partial q_i} \dot{q}_1 + \frac{\partial^2 \mathbf{r}}{\partial q_2 \partial q_i} \dot{q}_2 + \frac{\partial^2 \mathbf{r}}{\partial q_3 \partial q_i} \dot{q}_3$$
(3)

От (2) за частната производна на скоростта по обобщената координата $\left(q_{i}\right)$

$$\frac{\partial \mathbf{v}}{\partial q_i} = \frac{\partial^2 \mathbf{r}}{\partial q_i \partial q_1} \dot{q}_1 + \frac{\partial^2 \mathbf{r}}{\partial q_i \partial q_2} \dot{q}_2 + \frac{\partial^2 \mathbf{r}}{\partial q_i \partial q_3} \dot{q}_3 \tag{4}$$

От (3) и (4)
$$\Rightarrow \frac{d}{dt} \left(\frac{\partial \mathbf{r}}{\partial q_i} \right) = \frac{\partial \mathbf{v}}{\partial q_i}$$
 (5)

Проекциите на ускорението по координатните оси (q_i) с единични вектори $\mathbf{k}_i = \frac{1}{H_i} \frac{\partial \mathbf{r}}{\partial q_i}$ (i=1,2,3) се намират чрез последователни скаларни произведения на пълното ускорение със съответните единични вектори

$$w_{q_i} = \mathbf{w} \, \mathbf{k}_i = \frac{1}{H_i} \left(\frac{d\mathbf{v}}{dt} \, \frac{\partial \mathbf{r}}{\partial q_i} \right) = \frac{1}{H_i} \left[\frac{d}{dt} \left(\mathbf{v} \, \frac{\partial \mathbf{r}}{\partial q_i} \right) - \mathbf{v} \, \frac{d}{dt} \left(\frac{\partial \mathbf{r}}{\partial q_i} \right) \right] , (i = 1, 2, 3)$$
 (6)

Но от (5) и от $\frac{\partial \mathbf{v}}{\partial \dot{q}_i} = \frac{\partial \mathbf{r}}{\partial q_i}$ следва

$$w_{q_i} = \frac{1}{H_i} \left[\frac{d}{dt} \left(\mathbf{v} \frac{\partial \mathbf{v}}{\partial \dot{q}_i} \right) - \mathbf{v} \left(\frac{\partial \mathbf{v}}{\partial q_i} \right) \right] = \frac{1}{H_i} \left[\frac{d}{dt} \frac{\partial}{\partial \dot{q}_i} \left(\frac{\mathbf{v}^2}{2} \right) - \frac{\partial}{\partial q_i} \left(\frac{\mathbf{v}^2}{2} \right) \right], (i = 1, 2, 3)$$
(7)

За проекциите на ускорението по координатните оси (q_i) е необходимо определянето на квадрата на скоростта.

4. Скорост и ускорение на точка в сферични координати.

В разглеждания случай

$$(q_1, q_2, q_3) = (r, \theta, \varphi)$$
 $r \ge 0$, $\theta \in [0, \pi]$ $\varphi \in [0, 2\pi)$

• координатни линии

линия (q_1) : (r)-лъч с начало началото на координатната система

линия (q_2) $\qquad (\theta)$ - полуокръжност с радиус r_0

линия (q_3) (φ) - окръжност с радиус $r_0 \sin \theta_0$

• координатни оси

(допирателните към координатните линии в дадена точка с посока, съответстваща на нарастването на съответните координати)

ос (q_1) : съвпада с координатната линия (r)

ос (q_2) : допирателна към окръжността (θ) в разглежданата точка M

ос (q_3) допирателна към окръжността (ϕ) в разглежданата точка М

• координатни повърхнини

(изменение само на две координати, докато третата е фиксирана)

повърхнина (q_1q_2) $\varphi = const$ -равнина през оста Oz и точка M

повърхнина (q_2q_3) r=const - сфера с център O и радиус r

повърхнина (q_3q_1) $\theta = const$ - конична повърхнина с ос Oz и ъгъл

на образуващата θ

• координатни равнини

допирателните равнини към координатните повърхнини в точка М

• връзка между Декартовите координати и сферичните

$$x = r \sin \theta \cos \varphi$$
 $y = r \sin \theta \sin \varphi$ $z = r \cos \theta$ (8)

За производните (компонентите на скоростта) се получава:

 $\dot{x} = \dot{r}\sin\theta\cos\phi + r\cos\theta\dot{\theta}\cos\phi - r\sin\theta\sin\phi\dot{\phi}$

$$\dot{y} = \dot{r}\sin\theta\sin\varphi + r\cos\theta\dot{\theta}\sin\varphi + r\sin\theta\cos\varphi\dot{\phi} \tag{9}$$

 $\dot{z} = \dot{r}\cos\theta - r\sin\theta\dot{\theta}$

За квадрата на скоростта от (9) се получава:

$$v^{2} = \dot{x}^{2} + \dot{y}^{2} + \dot{z}^{2} =$$

$$= (\dot{r}\sin\theta\cos\varphi + r\cos\theta\dot{\theta}\cos\varphi - r\sin\theta\sin\varphi\dot{\phi})^{2} +$$

$$+ (\dot{r}\sin\theta\sin\varphi + r\cos\theta\dot{\theta}\sin\varphi + r\sin\theta\cos\varphi\dot{\phi})^{2} +$$

$$+ (\dot{r}\cos\theta - r\sin\theta\dot{\theta})^{2} =$$

$$= \dot{r}^{2}\sin^{2}\theta\cos^{2}\varphi + r^{2}\cos^{2}\theta\dot{\theta}^{2}\cos^{2}\varphi + r^{2}\sin^{2}\theta\sin^{2}\varphi\dot{\phi}^{2} +$$

$$+ 2\dot{r}\sin\theta\cos\varphi r\cos\theta\dot{\theta}\cos\varphi - 2\dot{r}\sin\theta\cos\varphi r\sin\theta\sin\varphi\dot{\phi} - 2r\cos\theta\dot{\theta}\cos\varphi r\sin\theta\sin\varphi\dot{\phi} +$$

$$+ \dot{r}^{2}\sin^{2}\theta\sin^{2}\varphi + r^{2}\cos^{2}\theta\dot{\theta}^{2}\sin^{2}\varphi + r^{2}\sin^{2}\theta\cos^{2}\varphi\dot{\phi}^{2} +$$

$$+ 2\dot{r}\sin\theta\sin\varphi r\cos\theta\dot{\theta}\sin\varphi + 2\dot{r}\sin\theta\sin\varphi r\sin\theta\cos\varphi\dot{\phi} + 2r\cos\theta\dot{\theta}\sin\varphi r\sin\theta\cos\varphi\dot{\phi} +$$

$$+ \dot{r}^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta\dot{\theta}^{2} - 2\dot{r}\cos\theta r\sin\theta\dot{\theta}$$

В последния израз петото и единадесетото събираеми се съкращават, а също шестото и дванадесетото. Остава

$$\begin{split} \dot{r}^2 \sin^2 \theta \cos^2 \varphi + r^2 \cos^2 \theta \dot{\theta}^2 \cos^2 \varphi + r^2 \sin^2 \theta \sin^2 \varphi \dot{\varphi}^2 + \\ + 2\dot{r} \sin \theta \cos \varphi r \cos \theta \dot{\theta} \cos \varphi + \\ + \dot{r}^2 \sin^2 \theta \sin^2 \varphi + r^2 \cos^2 \theta \dot{\theta}^2 \sin^2 \varphi + r^2 \sin^2 \theta \cos^2 \varphi \dot{\varphi}^2 + \\ + 2\dot{r} \sin \theta \sin \varphi r \cos \theta \dot{\theta} \sin \varphi + \\ + \dot{r}^2 \cos^2 \theta + r^2 \sin^2 \theta \dot{\theta}^2 - 2\dot{r} \cos \theta r \sin \theta \dot{\theta} \end{split}$$

Сега от първото и петото събираеми като общ можител се изнася пред скоби $\dot{r}^2 \sin^2 \theta$, като в скобите остава $\cos^2 \varphi + \sin^2 \varphi$.

От второто и шестото събираеми като общ можител се изнася пред скоби $r^2\cos^2\theta\dot{\theta}^2$, като в скобите отново остава $\cos^2\varphi+\sin^2\varphi$.

От третото и седмото събираеми като общ можител се изнася пред скоби $r^2 \sin^2 \theta \dot{\varphi}^2$, като в скобите отново остава $\cos^2 \varphi + \sin^2 \varphi$.

Така послезният израз се опростява до

$$\dot{r}^2 \sin^2 \theta + r^2 \cos^3 \theta \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\varphi}^2 + 2\dot{r} \sin \theta \cos \varphi r \cos \theta \dot{\theta} \cos \varphi +$$

$$+ 2\dot{r} \sin \theta \cos \varphi r \cos \theta \dot{\theta} \cos \varphi + \dot{r}^2 \cos^2 \theta + r^2 \sin^2 \theta \dot{\theta}^2 - 2\dot{r} \cos \theta r \sin \theta \dot{\theta}$$

Сега от първото и щестото събираеми като общ можител се изнася пред скоби

 \dot{r}^2 , като в скобите остава $\cos^2 \theta + \sin^2 \theta$.

От второто и седмото събираеми като общ можител се изнася пред скоби $r^2\dot{\theta}^2$, като в скобите отново остава $\cos^2\theta + \sin^2\theta$.

След като в удвоените произвесения се извърши умножението, последният израз долива вида

$$\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\varphi}^2 + 2\dot{r}\sin\theta\cos^2\varphi r\cos\theta\dot{\theta} + 2\dot{r}\sin\theta\cos^2\varphi r\cos\theta\dot{\theta} - 2\dot{r}\cos\theta r\sin\theta\dot{\theta}$$

Сега от четвъртото и петото събираеми като общ можител се изнася пред скоби $2\dot{r}\sin\theta r\cos\theta\dot{\theta}$, като в скобите отново остава $\cos^2\varphi+\sin^2\varphi$, след което той се съкращава с последното събираемо.

Окончателно се получава $v^2 = \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2$

Нататък, в разглеждания случай коефициентите на Ламе се получават в явен вид като

$$\begin{split} H_r &= \sqrt{\left(\frac{\partial x}{\partial r}\right)^2 + \left(\frac{\partial y}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2} = \left(\sin^2\theta\cos^2\varphi + \sin^2\theta\sin^2\varphi + \cos^2\theta\right)^{1/2} = 1 \\ H_\theta &= \sqrt{\left(\frac{\partial x}{\partial \theta}\right)^2 + \left(\frac{\partial y}{\partial \theta}\right)^2 + \left(\frac{\partial z}{\partial \theta}\right)^2} = \left(r^2\cos^2\theta\cos^2\varphi + r^2\cos^2\theta\sin^2\varphi + r^2\sin^2\theta\right)^{1/2} = r \\ H_\varphi &= \sqrt{\left(\frac{\partial x}{\partial \theta}\right)^2 + \left(\frac{\partial y}{\partial \varphi}\right)^2 + \left(\frac{\partial z}{\partial \varphi}\right)^2} = \left(r^2\sin^2\theta\sin^2\varphi + r^2\sin^2\theta\cos^2\varphi\right)^{1/2} = r\sin\theta \end{split}$$

Или компоненти на скоростта са: $v_{q_i} = H_i \dot{q}_i \implies v_r = \dot{r}, \ v_\theta = r \dot{\theta}, \ v_\varphi = r \sin \theta \dot{\phi}$ За квадрата на скоростта след несложно преобразуване се получава

$$v^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2 = \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\varphi}^2$$

Аналогично за компонентите на ускорението се намира:

$$w_r = \left[\frac{d}{dt} \frac{\partial}{\partial \dot{r}} \left(\frac{\mathbf{v}^2}{2} \right) - \frac{\partial}{\partial r} \left(\frac{\mathbf{v}^2}{2} \right) \right] = \ddot{r} - r \dot{\theta}^2 - r \sin^2 \theta \dot{\varphi}^2$$

$$w_{\theta} = \frac{1}{r} \left[\frac{d}{dt} \frac{\partial}{\partial \dot{\theta}} \left(\frac{\mathbf{v}^2}{2} \right) - \frac{\partial}{\partial \theta} \left(\frac{\mathbf{v}^2}{2} \right) \right] = \frac{1}{r} \left(\frac{d}{dt} \left(r^2 \dot{\theta} \right) - r^2 \dot{\phi}^2 \sin \theta \cos \theta \right) = r \ddot{\theta} + 2 \dot{r} \dot{\theta} - \frac{1}{2} r \dot{\phi}^2 \sin 2\theta$$

$$w_{\varphi} = \frac{1}{r\sin\theta} \left[\frac{d}{dt} \frac{\partial}{\partial \dot{\varphi}} \left(\frac{\mathbf{v}^{2}}{2} \right) - \frac{\partial}{\partial \varphi} \left(\frac{\mathbf{v}^{2}}{2} \right) \right] = \frac{1}{r\sin\theta} \left(\frac{d}{dt} \left(\dot{\varphi}r^{2}\sin^{2}\theta \right) \right) = \ddot{\varphi}r\sin\theta + 2\dot{\varphi}\dot{r}\sin\theta + 2\dot{\varphi}\dot{\theta}r\cos\theta$$

За полярна и цилиндрична координатна система разглежданията са аналогични.

5. Движение на точка по окръжност.

Свеждане към движение по координатна линия на сферична система:

при
$$r = R = const$$
, $\theta = \frac{\pi}{2} = const$

Компоненти на скоростта:

$$v_r = \dot{r} = \dot{R} = 0$$
, $v_\theta = R\dot{\theta} = 0$, $v_\varphi = r\sin\theta\dot{\varphi} = R\dot{\varphi} = R\omega = v$

Компоненти на ускорението:

$$w_r = r\sin^2\frac{\pi}{2}\dot{\varphi}^2 = R\omega^2$$

(при противоположна посока на координатната ос: $w_r = -R\omega^2$)

$$w_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} - \frac{1}{2}r\dot{\phi}^2\sin 2\theta = 0$$

$$w_{\varphi} == \ddot{\varphi}r\sin\theta + 2\dot{\varphi}\dot{r}\sin\theta + 2\dot{\varphi}\dot{\theta}r\cos\theta = \ddot{\varphi}R = \dot{\omega}R = \varepsilon R$$

Големина на ускорението:
$$w = \sqrt{w_r^2 + w_{\varphi}^2} = R\sqrt{\varepsilon^2 + \omega^4}$$

Сравнение с разлагането по осите на естествения триедър $\mathbf{w} = \varepsilon R \mathbf{\tau} + R \omega^2 \mathbf{n}$

6. Хармонично движение.

Точка М се движи по окръжност с постоянна ъглова скорост ω . Движението на нейната проекция върху един от диаметрите на окръжността се нарича *хармонично движение* .

Закон за движението (ос х – избрана по диаметъра, движението - праволинейно)

$$x = A\sin(\omega t + \alpha)$$

Означения:

t - време, A - амплитуда (радиусът на окръжността),

$$\omega$$
 - кръгова честота, α - начална фаза, T - период на движението: $T=\frac{2\pi}{\omega}$

Съгласно дефиницията за период на фухкция (ако съществува), трябва да е в сила:

$$x(t+T) = x(t) \Rightarrow A\sin(\omega(t+T) + \alpha) = A\sin(\omega t + \alpha),$$
 $\omega(t+T) + \alpha = \omega t + \alpha + 2\pi$

Или
$$T=\frac{2\pi}{\omega}$$
, а по дефиниция: $\nu=\frac{1}{T}$ - честота

Точката описва отсечка с дължина 2А (размах на движението), в средата на която е координатното начало О.

Скорост:
$$\dot{x} = v = A\omega\cos(\omega t + \alpha) = A\omega\sin(\omega t + \alpha + \frac{\pi}{2})$$

Ускорение:
$$\ddot{x} = w = -A\omega^2 \sin(\omega t + \alpha) = -\omega^2 x$$

Пример 1.

Разглежда се механизъм с радиус OA = r на окръжността, около която се върти точка A с ъгъл, изменящ се по закона kt; AB = l, N – неподвижна точка.

Да се определи уравнението на движение на точка В, тангенциалното, нормалното и пълното ускорение, радиусът на кривината. Да се определят тези величини при ъгли 0 и 180 градуса.

Координати на точка В: $x = r\cos kt + l\sin\frac{kt}{2}$; $y = r\sin kt - l\cos\frac{kt}{2}$

Проекции на скоростта: $v_x = \dot{x} = -rk\sin kt + l\frac{k}{2}\cos\frac{kt}{2}$; $v_y = \dot{y} = rk\cos kt + l\frac{k}{2}\sin\frac{kt}{2}$

Големина на скоростта: $v = \sqrt{v_x^2 + v_y^2} = k\sqrt{r^2 + \frac{l^2}{4} - rl\sin\frac{kt}{2}}$

Тангенциално ускорение: $w_{\tau} = \frac{dv_{\tau}}{dt} = \frac{-k^2 r l \cos \frac{kt}{2}}{4\sqrt{r^2 + \frac{l^2}{4} - r l \sin \frac{kt}{2}}}$

Проекции на ускорението по неподвижните оси на координатната система:

$$w_x = \ddot{x} = -rk^2 \cos kt - l\frac{k^2}{4} \sin \frac{kt}{2};$$
 $w_y = \ddot{y} = -rk^2 \sin kt + l\frac{k^2}{4} \cos \frac{kt}{2}$

Големина на пълното ускорение на точка В: $w = \sqrt{w_x^2 + w_y^2} = k^2 \sqrt{r^2 + \frac{l^2}{16} - \frac{rl}{2} \sin \frac{kt}{2}}$

Нормално ускорение:
$$w_n = \sqrt{w^2 - w_\tau^2} = k^2 \sqrt{r^2 + \frac{l^2}{16} - \frac{rl}{2}\sin\frac{kt}{2} - \frac{r^2l^2\cos^2\frac{kt}{2}}{16(r^2 + \frac{l^2}{4} - rl\sin\frac{kt}{2})}}$$

но от $w_n = \frac{v^2}{\rho}$ за радиуса на кривината следва:

$$\rho = \frac{v^2}{w_n} = \frac{(4r^2 + l^2 - 4rl\sin\frac{kt}{2})^{3/2}}{\sqrt{64r^4 + 16r^2l^2 + l^4 - 96r^3l\sin\frac{kt}{2} - 12rl^3\sin\frac{kt}{2} + 36r^2l^2\sin^2\frac{kt}{2}}}$$

В начално положение — при t=0, т.е. при начален ъгъл нула: $x_0 = r$; $y_0 = -l$

Големина на скоростта: $v_0 = k \sqrt{r^2 + \frac{l^2}{4}}$

Големина на тангециалното ускорение: $w_{\tau 0} = \frac{-\,k^2 r l}{4 \sqrt{r^2 + \frac{l^2}{4}}}$

Големина на нормалното ускорение: $w_{n0} = k^2 \frac{16r^2 + l^2}{4\sqrt{4r^2 + l^2}}$

Големина на пълното ускорение: $w_0 = k^2 \sqrt{r^2 + \frac{l^2}{16}}$

Радиус на кривината: при $\, \varphi_0 = 0 \, \Rightarrow \rho_0 = \frac{(4r^2 + l^2)^{3/2}}{16r^2 + l^2} \,$

При $\varphi_1 = \pi$ съответните величини са: $x_1 = -r + l$; $y_1 = 0$; $v_1 = k(r - l/2)$;

$$w_{\tau 1} = 0;$$
 $w_1 = w_{n1} = k^2 (r - l/4);$ $\rho_1 = \frac{(2r - l)^2}{4r - l}$

Пример 2.

Точка се движи съгласно уравненията $x = -a\cos 2\omega t$; $y = -a\cos \omega t$

Да се определят траекторията, скоростта и ускорението на точката, както и съответните им стойности в точките с координати: A(-a,a), B(-a,-a) и C(a,0).

Записване чрез единичен ъгъл: $x = a(\sin^2 \omega t - \cos^2 \omega t) = a(1 - 2\cos^2 \omega t)$. След

изразяване на $\cos \omega t = -\frac{y}{a}$ и изключване на времето: $x = a(1 - 2\frac{y^2}{a^2})$, т.е. $y^2 = \frac{a^2}{2}(1 - \frac{x}{a})$

проекции на скоростта: $v_x = \dot{x} = 2a\omega \sin 2\omega t$; $v_y = \dot{y} = a\omega \sin \omega t$

проекции на ускорението: $w_x = \ddot{x} = 4a\omega^2\cos 2\omega t = -4\omega^2 x$; $w_y = \ddot{y} = a\omega^2\cos \omega t = -\omega^2 y$

За точките с координати: $A(-a,a) - \cos 2\omega t = 1$, $\cos \omega t = -1$

$$B(-a,-a) - \cos 2\omega t = 1$$
, $\cos \omega t = 1$

$$C(a,0) - \cos 2\omega t = -1, \cos \omega t = 0$$

След заместване на косинусите в изразите за проекциите на скоростта и ускорението се стига до определяне на стойностите им за всяка точка A, B и C.