ADRINDIZAJE AUTOMATICO

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

Machine Learning

what society thinks I

what my friends think I do

what my parents think I do

$$\begin{split} L_{r} &= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{r} \alpha_{i} y_{i}(\mathbf{x}_{i} \cdot \mathbf{w} + b) + \sum_{i=1}^{r} \alpha_{i} \\ &\alpha_{i} \geq 0, \nabla t \\ &\mathbf{w} - \sum_{i=1}^{r} c_{i} y_{i} \mathbf{x}_{i} \sum_{i=1}^{r} \alpha_{i} y_{i} = 0 \\ &\nabla \dot{y}(\theta_{t}) = \frac{1}{\pi} \sum_{i=1}^{n} \nabla \ell(\mathbf{x}_{i}, y_{t}; \theta_{t}) + \nabla r(\theta_{t}) \\ &\ell_{t-1} = \theta_{t} - \eta_{t} \nabla \ell(\mathbf{x}_{t(t)}, y_{t(t)}; \theta_{t}) = \eta_{t} \cdot \nabla r(\theta_{t}) \\ &\mathbb{E}_{1(t)} \left[\ell(\mathbf{x}_{1(t)}, y_{t(t)}; \theta_{t}) \right] = \frac{1}{\pi} \sum_{i} \ell(\mathbf{x}_{i}, y_{t}; \theta_{t}). \end{split}$$

what other programmers think I do

what I think I do

>>> from scipy import SVM

what I really do

- •¿Por qué es necesario?
 - Tareas complejas extremamente difíciles de programar
 - Poder computacional disponible para tratar grandes volúmenes de datos

Las máquinas tienen que aprender por sí solas

Definición:

El aprendizaje automático es la ciencia que permite a los computadores aprender, sin ser explícitamente programados¹

Modelo tradicional

Ciencia de datos

1. Andrew Ng, Stanford University, 2014

Aprendizaje supervisado

- Aprender a partir de un "experto"
- Datos de entrenamiento etiquetados con una clase o valor:

• Meta: predecir una clase o valor

Aprendizaje no supervisado

- Sin conocimiento de una clase o valor objetivo
- Datos no están etiquetados

 Meta: descubrir factores no observados, estructura, o una representación mas simple de los datos

Aprendizaje supervisado

Aprendizaje no supervisado

Edad	Ingresos	Tiene carro?
24	1'200.000	NO Datos etiquetados:
23	4'500.000	SI "Respuestas correctas"
45	1'250.000	SI
32	1'100.000	NO

Edad	Ingresos
24	1'200.000
23	4'500.000
45	1'250.000
32	1'100.000

Factores/atributos/variables

Factores/atributos/variables independientes, Dependiente, objetivo, predictores, explicativos respuesta, salida

3'500.000

34

?

¿Cuál es el valor predicho para una instancia dada?

¿Se puede encontrar alguna estructura en los datos?

Aprendizaje supervisado

Aprendizaje no supervisado

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

CIASIFICACIÓN Trans

K-NKAREST NEIGHBORS)

Neighbors

can be a pain in the ass

CLASIFICACIÓN

CLASIFICACIÓN

- Encontrar modelos que describan clases para futuras predicciones:
 - KNN
 - Árboles de decisión
 - Regresión logística
 - Redes neuronales
 - •
- Valores discretos de la variable objetivo
- Incluye la estimación de probabilidades de clase
- Baseline: medida de evaluación dada por un clasificador que escoge siempre la clase mayoritaria

KNN

KNN (K Nearest Neighbors): K Vecinos más Cercanos

- Algoritmo de aprendizaje supervisado para clasificación y regresión
- Sencillo: asignar la clase o valor agregado de las instancias conocidas que se encuentran mas cerca de la instancia a predecir
- Basado en las instancias de aprendizaje, no en un modelo subyacente probabilístico/estadístico
- Aprendizaje perezoso: en realidad el algoritmo solo se ejecuta en el momento que se requiere predecir una nueva instancia a partir de una predicción local

KNN - DISTANCIAS

- Basado en una medida de similitud o distancia que hay que definir para encontrar los vecinos mas cercanos:
 - Euclidiana: tamaño del segmento linear que une las dos instancias comparadas.

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

- Manhattan: basada en una organización
 - en bloques rectilíneos

 Coseno: coseno del ángulo entre las dos instancias comparadas → Alta dimensionalidad y big data

$$sim(x, y) = cos(\theta_{x,y}) = \frac{x. y}{\|x\| \|y\|} = \frac{\sum_{i} x_{i} * y_{i}}{\sqrt{(\sum_{i} x_{i} * x_{i}) * \sum_{i} y_{i} * y_{i}}}$$

• Parámetro K: número de vecinos mas cercanos a considerar para establecer la clase o valor de una nueva instancia $_{
m KNN:~K=10}$

Parámetro K

- El resultado puede ser drásticamente diferente para diferentes valores de K
- Un valor de K grande suavizará los límites entre clases/valores (alto sesgo, baja varianza)
- Un valor de K pequeño resultará en límites muy flexibles (bajo sesgo, alta varianza)
- El valor de K óptimo se encuentra empíricamente

KNN: K=100

James et al, ISLR, 2013

- Overfitting: (sobre aprendizaje) a considerar en el momento de escoger el K.
- Modelos mas sencillos previenen el overfitting
 → K mas grandes
- Igualmente, cuidado con el underfitting (sub aprendizaje)

En el caso de la utilización de KNN para la regresión las mismas consideraciones aplican

- En el panel izquierdo: se aplica KNN con un valor de K=1 (azul) y K=9 (rojo)
- En el panel derecho, se puede ver el valor de RMSE para diferentes valores de K (en verde).
 También se puede ver, por comparación el nivel de error de la regresión lineal simple (punteada en negro)

KNN

Consideraciones:

- Perezoso (Lazy learning)
- No paramétrica y no lineal
- Método local, no generalizable (no hay un modelo construido como tal):
 - Puede encontrar particularidades muy específicas a ciertas regiones
 - Su uso (sobre todo en regresión) sólo permite estimaciones en los rangos de las variables del set de aprendizaje (extrapolación no tiene mucho sentido)
- Maldición de la dimensionalidad
- Muy sensible a la unidad de medida de los atributos, y a atributos que no aportan poder predictivo (e.g. el color de los ojos no debería considerarse para predecir la edad de una persona)
- No sabe que hacer con los missing values, ni con variables categóricas
- Variaciones: K-nn ponderado por la distancia, basado en un radio dado.

CNN (CONDENSED NEAREST NEIGHBORS)

- Dificultad de aplicación de KNN cuando se tienen muchos registros
- No todos los registros son necesarios para la correcta clasificación
- Aproximación de KNN utilizando un conjunto de datos reducido
- Escogencia de **prototipos** que permitan una clasificación con K=1 lo más parecida al resultado utilizando el dataset completo
- Algoritmo: Siendo X el conjunto de datos inicial y U el conjunto reducido:
 - Identificar todos los elementos x de X cuyo vecino más cercano sea de clase diferente
 - Retirar los x identificados (son prototipos) de X y agregarlos a U
 - Repetir hasta que no se agreguen más prototipos a U

TALLER DE CLASIFICACIÓN CON KNN

- DATASET: 150 ejemplos pertenecientes a 3 especies diferentes de la flor Iris
- 4 Atributos: largo y ancho del sépalo, largo y ancho del pétalo
- Reproducir el taller hasta antes de la sección de métricas y matriz de confusión

Iris setosa Iris versicolor Iris virgínica

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

MÉTRICAS DE EVALUACIÓN

- Necesidad de evaluar la calidad de los modelos de aprendizaje automático
- Diferentes criterios a tener en cuenta:
 - Correctitud de la predicción
 - Simplicidad (parsimonia)
 - Interpretabilidad
 - Tiempo de aprendizaje o de predicción
 - Escalabilidad (importante para Big Data)

METRICAS DE CLASIFICACIÓN

- Se usa una matriz de confusión para evaluar diferentes métricas de correctitud/error
- Se utilizan dos calificadores para describir cada una de sus casillas:
 - Un calificador de la correctitud de la predicción con respecto a la realidad: Verdadero o Falso
 - Un calificador del tipo de la predicción: Positivo o Falso, con respecto a cada clase de interés (i.e churn)
- Dependiendo del contexto los tipos de error pueden ser mas graves que otros (costos diferentes) ¿Qué pasa cuando hay mas de dos clases?

		Predicción			
		Churn P	No churn		
Realidad	Churn ⁺	VP	FN - Tipo II		
Realiuau	No churn	FP - Tipo I	VN		

- La diagonal (en verde) muestra las instancias correctamente clasificadas. Las demás casillas resume diferentes tipos de error:
 - Tipo I: Falsos positivos
 - Tipo II: Falsos negativos

MÉTRICAS DE CLASIFICACIÓN

 Interpretarían el caso de la detección de un email spam

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

• Interpretar el caso del diagnóstico de una enfermedad grave?

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

			Predicción			
			Churn P	No churr		
	Realidad	Churn ⁺	VP	FN - Tipo II		
		No churn	FP - Tipo I	VN		

 Interpretar el caso de la prospección de clientes de un crédito de consumo (baja aceptación)

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

MÉTRICAS DE CLASIFICACIÓN

- Tasa de correctitud (accuracy) = (VP+VN)/(VP+VN+FP+FN)
- Error de mala clasificación (contrario de accuracy) = (FP+FN)/(VP+VN+FP+FN): probabilidad de error
- Precisión= VP / (VP+FP): valor de predicción positiva, P(Real+ | Predicho+)
- Recall (o TPR o sensibilidad)= VP / (VP+FN): qué proporción de todos los positivos reales pude identificar como tal, P(Predicho+|Real+)
- Especificidad (o TNR): = VN / (VN+FP): qué proporción de todos los negativos reales pude identificar como tal, P(Predicho-|Real-)
- Valor de predicción negativa (FPR) = VN / (VN+FN)

Imaginemos el problema de detección de spam mail e interpretemos cada métrica

Imaginemos el problema de diagnóstico de cáncer e interpretemos cada métrica

MÉTRICAS DE CLASIFICACIÓN

- Coeficiente de concordancia Kappa
 - Para datos nominales u ordinales
 - Concordancia entre las predicciones y las clases reales
 - Sustrae el efecto de concordancia por suerte (AC) del valor del accuracy (concordancia observada - OA)
 - Valores van de 0 a 1
 - Muy útil sobretodo cuando las clases no están balanceadas
 - Diagnóstico de enfermedades raras
 - Clientes que acepten productos de crédito)

VII		+	-	TOTAL	OA	=	0,63
reales	+	10	4	14	AC	=	0,59
reales	-	3	2	5	Карр	a =	0,11
	TOTAL	13	6	19			

Accuracy (OA) = (10+2)/19=0,63 (AC) = (13/19 * 14/19) + (6/19 * 5/19) = 0,59 Kappa = (OA-AC)/(1-AC) = 0,11

		Predicciones						
			+	-	TOTAL	OA	=	0,97
	raalaa	+	0	3	3	AC	=	0,97
	reales	-	0	97	97	Карр	a =	0,00
		TOTAL	0	100	100			

Accuracy (OA) = (0+97)/100=0.97(AC) = (0/100 * 3/100) + (100/100 * 97/100) = 0.97Kappa = (OA-AC)/(1-AC) = 0

_	•				_			
		Predicciones			•			
			+	-	TOTAL	OA	=	0,69
		+	1475	988	2463	AC	=	0,50
	reales	-	556	1981	2537	Карр	a =	0,38
		TOTAL	2031	2969	5000			

TALLER DE CLASIFICACIÓN CON KNN

- DATASET: 150 ejemplos pertenecientes a 3 especies diferentes de la flor Iris
- 4 Atributos: largo y ancho del sépalo, largo y ancho del pétalo
- Ejecutar las tareas de métricas y matriz de confusión para encontrar el K ideal.

Iris setosa Iris versicolor Iris virgínica

TALLER DE CLASIFICACIÓN CON KNN

1. DATASET: MNIST

- Crear un clasificador K-NN siguiendo las mismas etapas que con el dataset de Iris.
 - Un modelo para cada uno de los 2 dígitos asignados
 - Un modelo para todos los dígitos

2. DATASET: Churn

Crear un clasificador K-NN siguiendo las mismas etapas que con el dataset de Iris.

