Computergrafik SS 2014 Oliver Vornberger

Vorlesung vom 05.05.2014

Kapitel 6 + Anfang von Kapitel 7: 2D-Transformationen + Kurven

Translation

$$x := x + t_x$$

$$y := y + t_y$$

Skalierung

$$x := x \cdot s_x$$

$$y := y \cdot s_y$$

$$s_x = s_y$$

$$s_x \neq s_y$$

 $s_x = s_y$ uniforme Skalierung $s_x \neq s_y$ Verzerrung

Skalierung bzgl. Fixpunkt

Skalierungsformel

$$x' = (x - Z_x) \cdot s_x + Z_x$$
 $y' = (y - Z_y) \cdot s_y + Z_y$
 $x' = x \cdot s_x - Z_x \cdot s_x + Z_x$
 d_x
 $y' = y \cdot s_y - Z_y \cdot s_y + Z_y$

Drehung

$$\cos(\alpha) = x/L$$

$$\sin(\alpha) = y/L$$

$$\cos(\alpha + \beta) = x'/L$$

$$\sin(\alpha + \beta) = y'/L$$

Trigonometrische Funktionen

$$\cos(\alpha) = \frac{x}{z}$$

$$\sin(\alpha) = \frac{y}{z}$$

$$\tan(\alpha) = \frac{y}{x}$$

$$\cot(\alpha) = \frac{x}{y}$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\cot(\alpha) = \frac{1}{\tan(\alpha)}$$

Additionstheorem

$$\cos(\alpha) = c/a \qquad \sin(\beta) = d$$

$$\cos(\alpha + \beta) = c \qquad \tan(\alpha) = b/d$$

$$a = \frac{\cos(\alpha + \beta)}{\cos(\alpha)} \qquad b \qquad \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$a + b = \cos(\beta) = \frac{\cos(\alpha + \beta)}{\cos(\alpha)} + \sin(\beta) \cdot \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\cos(\alpha) \cdot \cos(\beta) = \cos(\alpha + \beta) + \sin(\alpha) \cdot \sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$

Formel für Drehung
$$\cos(\alpha) = x/L \quad \sin(\alpha) = y/L$$

$$\cos(\alpha + \beta) = x'/L \quad \sin(\alpha + \beta) = y'/L$$

$$\sin(\alpha + \beta) = \cos(\beta) \cdot \sin(\alpha) + \sin(\beta) \cdot \cos(\alpha)$$

$$\cos(\alpha + \beta) = \cos(\beta) \cdot \cos(\alpha) - \sin(\beta) \cdot \sin(\alpha)$$

$$\cos(\alpha + \beta) = x'/L = \cos(\beta) \cdot \cos(\alpha) - \sin(\beta) \cdot \sin(\alpha)$$

$$x' = L \cdot \cos(\beta) \cdot x/L - \sin(\beta) \cdot y/L \cdot L$$

$$x' = x \cdot \cos(\beta) - y \cdot \sin(\beta)$$

$$\sin(\alpha + \beta) = y'/L = \cos(\beta) \cdot \sin(\alpha) + \sin(\beta) \cdot \cos(\alpha)$$

$$y' = L \cdot \cos(\beta) \cdot y/L + L \cdot \sin(\beta)x/L$$

$$y' = x \cdot \sin(\beta) + y \cdot \cos(\beta)$$

Rotation bzgl. Rotationszentrum

Matrix für Rotation

$$x' := x \cdot \cos(\beta) - y \cdot \sin(\beta)$$

$$y' := x \cdot \sin(\beta) + y \cdot \cos(\beta)$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} := \begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$(x' \ y') := (x \ y) \cdot \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix}$$

$$A \cdot B = (B^T \cdot A^T)^T$$

Matrix für Skalierung

$$x' := x \cdot s_x$$
 $y' := y \cdot s_y$
 $\left(egin{array}{c} x' \ y' \end{array}
ight) := \left(egin{array}{c} s_x & 0 \ 0 & s_y \end{array}
ight) \cdot \left(egin{array}{c} x \ y \end{array}
ight)$

Matrix für Translation

$$x' := x + t_x$$

$$y' := y + t_y$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} := \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Homogene Koordinaten

$$P = \left(\begin{array}{c} x \\ y \end{array}\right) \text{ hat homogene Koordinaten } \left(\begin{array}{c} x \cdot w \\ y \cdot w \\ w \end{array}\right)$$

Zu den homogenen
$$\left(\begin{array}{c} x \\ y \\ w \end{array} \right)$$
 gehört $P = \left(\begin{array}{c} x/w \\ y/w \end{array} \right)$

Richtungsvektor
$$\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 hat homogene Koordinaten $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ Zum $\begin{pmatrix} 3 \\ 4 \end{pmatrix} \epsilon \ \mathbb{R}^2$ gehört die Ursprungsgerade $\begin{pmatrix} 3 \cdot w \\ 4 \cdot w \\ w \end{pmatrix} \epsilon \ \mathbb{R}^3$

Zum
$$\left(\begin{array}{c} 3 \\ 4 \end{array}\right) \epsilon \; \mathbb{R}^2 \; \; ext{gehört die} \; \left(\begin{array}{c} 3 \cdot w \\ 4 \cdot w \\ w \end{array}\right) \epsilon \; \mathbb{R}^3$$
 Punkt $\left(\begin{array}{c} 4 \end{array}\right) e \; \mathbb{R}^3$

Matrix für Translation

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} := \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$:= \left(\begin{array}{c} x + t_x \\ y + t_y \\ 1 \end{array}\right)$$

Beispiel für Translation

$$\begin{pmatrix} 7 \\ 8 \\ 1 \end{pmatrix} := \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 21 \\ 24 \\ 3 \end{pmatrix} := \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 18 \\ 3 \end{pmatrix}$$

Matrix für Skalierung

$$\left(egin{array}{c} x' \ y' \ w' \end{array}
ight) := \left(egin{array}{ccc} s_x & 0 & 0 \ 0 & s_y & 0 \ 0 & 0 & 1 \end{array}
ight) \cdot \left(egin{array}{c} x \ y \ 1 \end{array}
ight)$$

Matrix für Rotation

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} := \begin{pmatrix} \cos(\beta) & -\sin(\beta) & 0 \\ \sin(\beta) & \cos(\beta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Verknüpfung von Transformationen

- assoziativ: A•B•C = (A•B)•C = A•(B •C)
- nicht kommunativ: A B ≠ B A
- Drehung um 90° + Verschieben um (4,3) ≠
 Verschieben um (4,3) + Drehung um 90°

Rotation bzgl (3,5) um 60°

$$A = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\int 0.5000000 -0.8660254 \quad 0.0000000$$

$$B = \begin{pmatrix} 0.5000000 & -0.8660254 & 0.000000 \\ 0.8660254 & 0.5000000 & 0.000000 \\ 0.0000000 & 0.0000000 & 1.000000 \end{pmatrix}$$

$$D = C \cdot B \cdot A =$$
 $(0.5000000 - 0.8660254 - 2.8660254)$

$$\begin{pmatrix} 0.5000000 & -0.8660254 & 2.8301270 \\ 0.8660254 & 0.5000000 & -0.0980762 \\ 0.0000000 & 0.0000000 & 1.0000000 \end{pmatrix}$$

Matrix für Scherung in x-Richtung

$$x' := x + m \cdot y$$

$$y' := y$$

$$\left(\begin{array}{c} x'\\y'\\w'\end{array}\right):=\left(\begin{array}{ccc} 1&m&0\\0&1&0\\0&0&1\end{array}\right)\cdot\left(\begin{array}{c} x\\y\\1\end{array}\right)$$

Matrix für Spiegelung an Hauptdiagonale

Computergrafik SS 2014 Oliver Vornberger

Kapitel 7: 2D-Kurven

Spezifikation einer Kurve

Stützpunkte P₀, P₁, ..., P_n

Algebraischer Ansatz

Bestimme n+1 Koeffizienten für Polynom n-ten Grades

$$y = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

Oszillation! Rechenaufwand! Rundungsfehler!

lineare Splines

verbinde zwei aufeinanderfolgende Punkte durch eine Gerade

quadratische Splines

verbinde zwei aufeinanderfolgende Punkte durch eine Kurve 2. Grades

quadratische Splines

kubische Splines

Verbinde zwei aufeinanderfolgende Punkte durch eine Kurve 3. Grades

Parametrisierte Kurvengleichung

