Notação Assintót<u>ica</u>

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Análise de algoritmos usualmente significa: atribuir uma expressão O-grande para o tempo de execução. (Claro, Theta-grande seria muito melhor.)." ¹

Ian Parberry.

¹Ian Parberry, 'Problems on Algorithms", 1994, p. 59.

Indução matemática

Indução reversa

Podemos usar indução para derivar o seguinte resultado.

Teorema (Indução reversa)

Considere uma afirmação P(n) e suponha que:

- 1. P(n) vale para um subconjunto infinito de naturais.
- 2. Se P(n) vale para n > 1, então P(n-1) também vale.

Então P(n) vale para todo natural n.

Você consegue ver por que esse resultado vale?

Exemplo 5

Exemplo

Se x_1, x_2, \ldots, x_n são números reais positivos, então:

$$(x_1x_2\ldots x_n)^{\frac{1}{n}}\leq \frac{x_1+x_2+\cdots+x_n}{n}.$$

Demonstração:

- 1. Primeiro, mostramos que vale para $n = 2^k$ para todo $k \ge 0$.
- 2. Depois, mostramos que, se vale n, também vale para n-1.

Lema (1)

Considere um inteiro $k \ge 0$. Se $n = 2^k$, então o teorema vale.

Vamos mostrar por indução em k.

- Se $n = 2^0 = 1$, a inequação vale trivialmente.
- Se $n = 2^1 = 2$, a inequação vale, já que:

$$\sqrt{x_1 x_2} \le \frac{x_1 + x_2}{2} \qquad \Leftrightarrow
x_1 x_2 \le \frac{x_1^2 + 2x_1 x_2 + x_2^2}{4} \qquad \Leftrightarrow
2x_1 x_2 \le x_1^2 + x_2^2 \qquad \Leftrightarrow
0 \le x_1^2 - 2x_1 x_2 + x_2^2 \qquad \Leftrightarrow
0 \le (x_1 - x_2)^2.$$

- Agora considere um número $k \ge 0$.
- **Suponha** que a inequação vale para $n = 2^k$.
- **Vamos demonstrar** que a inequação vale para $2n = 2^{k+1}$.
- ▶ Reescrevendo o lado esquerdo da inequação para 2n,

$$(x_1x_2...x_{2n})^{\frac{1}{2n}} = \sqrt{(x_1x_2...x_n)^{\frac{1}{n}}(x_{n+1}x_{n+2}...x_{2n})^{\frac{1}{n}}}.$$

- ► Defina: $y_1 = (x_1 x_2 ... x_n)^{\frac{1}{n}}$ e $y_2 = (x_{n+1} x_{n+2} ... x_{2n})^{\frac{1}{n}}$
- Portanto, pelo caso n = 2 já demonstrado,

$$(x_1x_2...x_{2n})^{\frac{1}{2n}} = \sqrt{y_1 \ y_2} \le \frac{y_1 + y_2}{2}$$

Utilizando a h.i. duas vezes:

$$y_1 = (x_1 x_2 \dots x_n)^{\frac{1}{n}} \le \frac{x_1 + x_2 + \dots + x_n}{n},$$

$$y_2 = (x_{n+1} x_{n+2} \dots x_{2n})^{\frac{1}{n}} \le \frac{x_{n+1} + x_{n+2} + \dots + x_{2n}}{n}$$

Substituindo na inequação anterior:

$$(x_1x_2...x_{2n})^{\frac{1}{2n}} \le \frac{y_1 + y_2}{2}$$

$$= \frac{x_1 + x_2 + \dots + x_n}{2n} + \frac{x_{n+1} + x_{n+2} + \dots + x_{2n}}{2n}$$

$$= \frac{x_1 + x_2 + \dots + x_{2n}}{2n}$$

lsso mostra o lema para k+1 e completa a demonstração.

Para utilizar a indução reversa, ainda precisamos do seguinte.

Lema (2)

Se o teorema vale para $n \ge 2$, ele também vale para n - 1.

Demonstração:

Queremos demonstrar:

$$(x_1x_2...x_{n-1})^{\frac{1}{n-1}} \leq \frac{x_1+x_2+\cdots+x_{n-1}}{n-1}.$$

Defina:

$$z = \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}$$
.

Como o teorema vale para n, pela premissa, sabemos que:

$$(x_1x_2...x_{n-1}z)^{\frac{1}{n}} \leq \frac{x_1+x_2+\cdots+x_{n-1}+z}{n} = z.$$

Elevando ambos os lados à potência $\frac{n}{n-1}$,

$$(x_1x_2...x_{n-1}z)^{\frac{1}{n-1}} \leq z^{\frac{n}{n-1}}.$$

Finalmente, multiplicando ambos os lados por $z^{-\frac{1}{n-1}}$,

$$(x_1x_2...x_{n-1})^{\frac{1}{n-1}} \le z = \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}$$

Assim, o teorema para n-1, completando a prova.

Reduzir ou aumentar

- No passo da indução, supomos que a afirmação é válida para o caso n-1 e mostramos que é válida para n.
- Portanto, devemos **SEMPRE** partir de um caso genérico para n e reduzi-lo a algum caso particular para n-1.
- ▶ Um **ERRO COMUM** é sair de um caso genérico para n-1 e construir um exemplo do caso n.
 - Não basta dar um exemplo para n.
 - Esse procedimento não é geral.

Todas as retas se interceptam?

O que há de errado com a demonstração seguinte ?

Exemplo

Considere n retas distintas no plano, concorrentes duas a duas. Então existe um ponto comum a todas as n retas.

Demonstração:

- Se n = 1 ou n = 2, então a afirmação é clara.
- Fixe n > 2 e suponha que a afirmação vale para n 1.
- Considere *n* retas no plano concorrentes duas a duas.

Todas as retas se interceptam?

- ▶ Sejam S_1 , S_2 dois subconjuntos distintos com n-1 retas.
- Pela h.i., as retas de S_1 interceptam-se em um ponto p_1 .
- Analogamente, as retas de S_2 interceptam-se em p_2 .
- ▶ Daí, cada reta de $S_1 \cap S_2$ intercepta tanto p_1 quanto p_2 .
- Como duas retas da interseção só se tocam em um ponto, sabemos que $p_1 = p_2$.
- Portanto, todas as retas interceptam-se em um ponto.

Certo? NÃO!

- Supomos que há duas retas na interseção.
- lsso é verdade quando $n \ge 4$, mas falha quando n = 3.

NOTAÇÃO ASSINTÓTICA E CRESCIMENTO DE FUNÇÕES

Notação assintótica

- ▶ Vamos expressar complexidade como uma função em n.
- A função mede o número de instruções de um algoritmo.
- Então, as funções consideradas são sempre positivas.
- Dependendo do caso, *n* representa diferentes valores:
 - Problemas de precisão arbitrária: número de bits.
 - ▶ Problemas em grafos: número de vértices e/ou arestas.
 - Problemas com vetores: tamanho do vetor.
 - Problemas de busca em textos: tamanho das strings.

Comparação de funções

- Vamos comparar funções assintoticamente.
- Queremos desprezar as constantes multiplicativas.
- Vamos falar em termos de ordem de crescimento.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
n log n	200	3000	4 · 10 ⁴	$6 \cdot 10^{6}$	$9 \cdot 10^9$
n^2	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Notação O

Definição

A classe O(g(n)) é o conjunto de funções f(n) tais que:

- \triangleright Existem constantes positivas c e n_0 que satisfazem:
- $ightharpoonup 0 \le f(n) \le cg(n)$ para todo $n \ge n_0$.

Dizemos que f(n) cresce **NO MÁXIMO** tão rápido quanto g(n).

Notação O: exemplo

Exemplo

$$\frac{1}{2}n^2 - 3n \in O(n^2)$$

- ► Temos $f(n) = \frac{1}{2}n^2 3n$ e $g(n) = n^2$.
- Escolha valores

$$c = \frac{1}{2}$$
 e $n_0 = 1$.

▶ Então, supondo $n \ge n_0$,

$$f(n) = \frac{1}{2}n^2 - 3n$$

$$= \frac{1}{2} \cdot (n^2 - 6n)$$

$$\leq \frac{1}{2} \cdot n^2 \qquad (pois $n \ge 0$)
$$= c \cdot g(n).$$$$

Notação Ω

Definição

A classe $\Omega(g(n))$ é o conjunto de funções f(n) tais que:

- \triangleright Existem constantes positivas c e n_0 que satisfazem:
- $ightharpoonup 0 \le cg(n) \le f(n)$ para todo $n \ge n_0$.

Dizemos que f(n) cresce **NO MÍNIMO** tão rápido quanto g(n).

Notação Ω: exemplo

Exemplo

$$\frac{1}{2}n^2 - 3n \in \Omega(n^2)$$

- ► Temos $f(n) = \frac{1}{4}n^2 3n$ e $g(n) = n^2$.
- ► Escolha valores

$$c = \frac{1}{4}$$
 e $n_0 = 12$.

▶ Então, supondo $n \ge n_0$,

$$f(n) = \frac{1}{2}n^2 - 3n$$

$$= \frac{n}{2} \cdot (n - 6)$$

$$\geq \frac{n}{2} \cdot \frac{n}{2}$$

$$= c \cdot g(n).$$
 (pois $n \geq 12$)

Notação Θ

Definição

A classe $\Theta(g(n))$ é o conjunto de funções f(n) tais que:

- \triangleright Existem constantes positivas c_1, c_2 e n_0 que satisfazem:
- $ightharpoonup 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ para todo $n \ge n_0$.

Dizemos que f(n) cresce **TÃO RÁPIDO** quanto g(n).

Notação Θ: exemplo

Exemplo

$$\tfrac{1}{2}n^2 - 3n \in \Theta(n^2)$$

- ► Temos $f(n) = \frac{1}{2}n^2 3n$ e $g(n) = n^2$.
- Escolha valores

$$c_1 = \frac{1}{4}, \quad c_2 = \frac{1}{2} \quad \text{e} \quad n_0 = 12.$$

▶ Então, supondo $n \ge n_0$, já verificamos que

$$c_1 g(n) \leq f(n) \leq c_2 g(n).$$

Notação o

Definição

A classe o(g(n)) é o conjunto de funções f(n) tais que:

- Para **toda** constante c > 0, existe um número n_0 que satisfaz:
- $ightharpoonup 0 \le f(n) < cg(n)$ para todo $n \ge n_0$.

Dizemos que f(n) cresce **MAIS LENTAMENTE** que g(n).

Notação o: exemplo

Exemplo

 $1000n^2 \in o(n^3)$

- ► Temos $f(n) = 1000n^2$ e $g(n) = n^3$.
- ▶ Seja c > 0 uma constante **ARBITRÁRIA**.
- ▶ Defina $n_0 = \left[\frac{1000}{6}\right] + 1$.
- Então, supondo $n \ge n_0$,

$$f(n) = 1000n^{2}$$

$$= \frac{1000}{n} \cdot n^{3}$$

$$< c \cdot n^{3} \qquad \text{(pois } n \ge n_{0}\text{)}$$

$$= c \cdot g(n).$$

Notação ω

Definição

A classe $\omega(g(n))$ é o conjunto de funções f(n) tais que:

- Para **toda** constante c > 0, existe um número n_0 que satisfaz:
- $ightharpoonup 0 \le cg(n) < f(n)$ para todo $n \ge n_0$.

Dizemos que f(n) cresce **MAIS RAPIDAMENTE** que g(n).

Notação ω : exemplo

Exemplo

$$\frac{1}{1000}n^2 \in \omega(n)$$

- ► Temos $f(n) = \frac{1}{1000}n^2$ e g(n) = n.
- Seja c > 0 uma constante **ARBITRÁRIA**.
- ▶ Defina $n_0 = \lceil 1000c \rceil + 1$.
- ► Então, supondo $n \ge n_0$,

$$f(n) = \frac{1}{1000}n^{2}$$

$$= \frac{n}{1000} \cdot n$$

$$> c \cdot n \qquad \text{(pois } n \ge n_{0}\text{)}$$

$$= c \cdot g(n).$$

Relação com limites

Regra de l'Hôpital

Teorema (Regra de l'Hôpital)

Sejam f e g funções diferenciáveis tais que

$$\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty.$$

Se o limite de $\frac{f'(n)}{g'(n)}$ existir, então

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}.$$

Regra de l'Hôpital

Exemplo

Relacione $f(n) = \ln n$ e $g(n) = \sqrt{n}$ usando classes de funções adequadas.

- ► Temos $f'(n) = \frac{1}{n} e g'(n) = \frac{1}{2\sqrt{n}}$
- Assim,

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}=\lim_{n\to\infty}\frac{2\sqrt{n}}{n}=\lim_{n\to\infty}\frac{2}{\sqrt{n}}=0.$$

Portanto, f(n) = o(g(n)).

Propriedades das notações assintóticas

Equivalências

Teorema (Condições equivalentes)

Sejam f(n) e g(n) funções não negativas, então:

▶
$$f(n) \in o(g(n))$$
 se, e somente se, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

▶
$$f(n) \in O(g(n))$$
 se, e somente se, $\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$.

▶
$$f(n) \in \Theta(g(n))$$
 se, e somente se, $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.

•
$$f(n) \in \Omega(g(n))$$
 se, e somente se, $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$.

•
$$f(n) \in \omega(g(n))$$
 se, e somente se, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Propriedades das classes

Teorema (Transitividade)

- ▶ Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$.
- Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$.
- Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.
- Se $f(n) \in o(g(n))$ e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.
- Se $f(n) \in \omega(g(n))$ e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$.

Propriedades das classes

Teorema (Reflexividade)

- $ightharpoonup f(n) \in O(f(n)).$
- $ightharpoonup f(n) \in \Omega(f(n)).$
- ▶ $f(n) \in \Theta(f(n))$.

Teorema (Simetria)

▶ $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Teorema (Simetria Transposta)

- ▶ $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$.
- $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Prove que:

- a) O, Ω , Θ , o, ω são transitivas.
- b) O, Ω , Θ são reflexivas.
- c) Θ é simétrica.

Indique a relação correta e demonstre:

- 1. $10^{1000} \in O(1)$, $\Omega(1)$ ou $\Theta(1)$?
- 2. $10^{1000} \in O(n)$, $\Omega(n)$ ou $\Theta(n)$?
- 3. $3n^2 2n + 100 \in O(n)$, $\Omega(n)$ ou $\Theta(n)$?
- 4. $3n^2 2n + 100 \in O(n^2)$, $\Omega(n^2)$ ou $\Theta(n^2)$?
- 5. $3n^2 2n + 100 \in O(n^3)$, $\Omega(n^3)$ ou $\Theta(n^3)$?
 - 6. $\log_{100} n \in O(\log_{10} n)$, $\Omega(\log_{10} n)$ ou $\Theta(\log_{10} n)$?
 - 7. $\log_{100} n \in O(\log_{100} n)$, $\Omega(\log_{100} n)$ ou $\Theta(\log_{100} n)$?
 - 8. $\log_{100} n \in O(\log_{1000} n)$, $\Omega(\log_{1000} n)$ ou $\Theta(\log_{1000} n)$?

Ordene as seguintes funções por seu crescimento. De forma tal que f(n) esteja na frente de g(n) na ordem se f(n) = O(g(n)). Para cada par de funções consecutivas na sua ordem prove que a ordem é válida.

► log log <i>n</i>	$ (\log n)^{\log n} $	$ ightharpoonup n \log n$
▶ 2 ⁿ	$(\sqrt{2})^{\log n}$	\triangleright 2 ^{2ⁿ}
$\sim n^3$	\triangleright $n \log n$	$ ightharpoonup n^n$
$\geq 2^{\log n}$	$\triangleright (\log n)!$	↓ log n
$\left(\frac{3}{2}\right)^{\pi}$	▶ n!	▶ <i>n</i> 2 ^{<i>n</i>}

Prove que:

- a) $\forall c \in \mathbb{R}^+ : c = \Theta(1)$.
- b) $f(n)g(n) = \Theta(f(n))\Theta(g(n))$.
- c) $\max \{f(n), g(n)\} = \Theta(f(n) + g(n)).$
- d) $\forall a, b > 0$: $\log_a n = \Theta(\log_b n)$.
- e) $\forall k > 0$: $\sum_{i=0}^{k} a_i n^i = \Theta(n^k)$, se $a_k > 0$.
 - f) $\log(n^n) = \Theta(\log(n!)).$
 - g) $\forall k > 0, \ c > 1: \quad n^k = O(c^n).$
- h) $\forall k, \epsilon > 0$: $\log^k n = O(n^{\epsilon})$.

Notação Assintót<u>ica</u>

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

