相关问题检索

赵惜墨

哈尔滨工业大学 计算机学院 智能技术与自然语言处理实验室

December 11, 2013

例子

Query:

Q1: Any cool clubs in Berlin or Hamburg?

Expected:

Q2: What are the best/most fun clubs in Berlin?

Not Expected:

Q3: Any nice hotels in Berlin or Hamburg?

Q4: How long does it take to Hamburg from Berlin?

Q5: Cheap hotels in Berlin?

Figure:问句检索相关例子

基本方法

- VSM(vector space model)
- LM(language model)
- Translation Model(the state of the art)

这周看的

- Cao et al., 2010 提出了一个识别 cQA 中通用问题的框架, 将问句匹配分为全局匹配和局部匹配两个子问题,从而提升 了结果。
- Duan et al., 2008 提出了一种基于 MDL(最小描述距离)的方法,将问句转化为对于 question topic 和 question focus 两个子问题的匹配方法。
- Cai et al., 2011 提出了将 LDA 和问句匹配相联合的方法。

VSM model

$$\begin{split} S_{\mathbf{q},\mathbf{d}} &= \frac{\sum_{t \in \mathbf{q} \cap \mathbf{d}} w_{\mathbf{q},t} w_{\mathbf{d},t}}{W_{\mathbf{q}} W_{\mathbf{d}}}, \text{ where} \\ w_{\mathbf{q},t} &= \ln(1 + \frac{N}{f_t}), \ w_{\mathbf{d},t} = 1 + \ln(t f_{t,\mathbf{d}}) \\ W_{\mathbf{q}} &= \sqrt{\sum_t w_{\mathbf{q},t}^2}, \ W_{\mathbf{d}} &= \sqrt{\sum_t w_{\mathbf{d},t}^2} \end{split}$$

Figure: VSM model

Okapi BM25 Model

$$\begin{split} S_{\mathbf{q},\mathbf{d}} &= \sum_{t \in \mathbf{q} \cap \mathbf{d}} w_{\mathbf{q},t} w_{\mathbf{d},t}, \text{ where} \\ w_{\mathbf{q},t} &= \ln(\frac{N - f_t + 0.5}{f_t + 0.5}) \frac{(k_3 + 1)t f_{t,\mathbf{q}}}{k_3 + t f_{t,\mathbf{q}}} \\ w_{\mathbf{d},t} &= \frac{(k_1 + 1)t f_{t,\mathbf{d}}}{K_{\mathbf{d}} + t f_{t,\mathbf{d}}} \\ K_{\mathbf{d}} &= k_1((1 - b) + b \frac{W_{\mathbf{d}}}{W_A}) \end{split}$$

Figure: Okapi BM25 Model

解决了 VSM 偏向于选择短问题的问题。

Language Model

$$\begin{split} S_{\mathbf{q},\mathbf{d}} &= \prod_{t \in \mathbf{q}} ((1-\lambda)P_{ml}(t|\mathbf{d}) + \lambda P_{ml}(t|\mathbf{Coll})), \text{ where} \\ P_{ml}(t|\mathbf{d}) &= \frac{tf_{t,\mathbf{d}}}{\sum_{t' \in \mathbf{d}} tf_{t',\mathbf{d}}} \\ P_{ml}(t|\mathbf{Coll}) &= \frac{tf_{t,\mathbf{Coll}}}{\sum_{t' \in \mathbf{Coll}} tf_{t',\mathbf{Coll}}} \end{split}$$

Figure: Language Model

Category Enhanced Retrieval Model

目标函数

$$RS_{q,d} = (1 - \alpha)N(S_{q,d}) + \alpha N(S_{q,cat(d)})$$

Global Relevance

- 一种非常 naive 的 idea 是直接将类别的词作为一个大的文章进行计算
- 由于类别间的词表长度差异非常大(467-69789),这样做会 直接导致归一化系数占主导地位

$$\begin{split} S_{\mathbf{q},cat(\mathbf{d})} &= \frac{\sum_{t \in \mathbf{q} \cap cat(\mathbf{d})} w_{\mathbf{q},t} w_{cat(\mathbf{d}),t}}{W_{\mathbf{q}}}, \text{ where} \\ w_{\mathbf{q},t} &= \ln(1 + \frac{M}{fc_t}), w_{cat(\mathbf{d}),t} = 1 + \frac{1}{\ln(\frac{W_{cat(\mathbf{d})}}{tf_{t,cat(\mathbf{d})}})} \end{split}$$

Figure: Global Relevance for VSM

其他模型也做了类似的调整。

Local Relevance

Local Relevance

对于局部匹配,只根据类别内部计算 IDF。

-Category Enhanced Retrieval Model

Result Analysis

Result Analysis

	VSM	OptC	QC	VSM+VSM	%chg	Okapi+VSM	%chg	LM+VSM	%chg	TR+VSM	%chg	TRLM+VSM	%chg
MAP	0.2407	0.2414	0.2779	0.3711	54.2*	0.3299	37.1*	0.3632	50.9*	0.3629	50.8*	0.3628	50.78
MRR	0.4453	0.4534	0.4752	0.5637	26.6*	0.5314	19.3*	0.5596	25.7*	0.5569	25.1*	0.5585	25.48
R-Prec	0.2311	0.2298	0.2568	0.3419	48.0*	0.3094	33.9*	0.3366	45.7*	0.3346	44.8*	0.3357	45.3*
P@5	0.2222	0.2289	0.2436	0.2789	25.5*	0.2559	15.2*	0.2746	23.6*	0.2746	23.6*	0.2753	23.98

Table 1: VSM vs. CE with VSM for computing local relevance (%chg denotes the performance improvement in percent of each model in CE; * indicates a statistically significant improvement over the baseline using the t-test, p-value < 0.05)

			OptC				Okapi+Okapi	%chg	LM+Okapi	%chg	TR+Okapi		TRLM+Okapi	
M	AP	0.3401	0.2862	0.3622	0.4007	17.8°	0.3977	16.9*	0.4138	21.78	0.4082	20.0*	0.4132	21.5*
M	RR	0.5406	0.4887	0.5713	0.6131	13.4*	0.5884	8.8	0.6214	15.0*	0.6172	14.2*	0.6215	15.0*
R-I	Prec	0.3178	0.2625	0.3345	0.3648	14.8°	0.3613	13.7*	0.3758	18.3°	0.3677	15.7*	0.3762	18.4*
P	@5	0.2857	0.2824	0.2998	0.3140	9.9*	0.3176	11.2*	0.3161	10.6°	0.3111	8.8	0.3147	10.2*

Table 2: Okapi vs. CE with Okapi for computing local relevance (%chg denotes the performance improvement in percent of each model in CE; * indicates a statistically significant improvement over the baseline using the t-test, p-value < 0.05)

	LM	OptC	QC	LM+L	VSM+LM	%chg	Okapi+LM	%chg	LM+LM	%chg	TR+LM	%chg	TRLM+LM	%chg	
			[5]	[5]											
MAP	0.3821	0.3402	0.4083	0.4586	0.4620	20.9*	0.4599	20.4*	0.4609	20.6*	0.4603	20.5*	0.4616	20.8*	
MRR	0.5945	0.5219	0.6083	0.6620	0.6630	11.5*	0.6651	11.9*	0.6622	11.4*	0.6633	11.6°	0.6667	12.1*	
R-Prec	0.3404	0.3129	0.3624	0.4072	0.4101	20.5*	0.4079	19.8*	0.4087	20.1*	0.4087	20.1*	0.4100	20.4*	
P@5	0.3040	0.2810	0.3230	0.3460	0.3512	15.5*	0.3498	15.1*	0.3519	15.8*	0.3512	15.5*	0.3513	15.6*	

Table 3: LM vs. CE with LM for computing local relevance (%chg denotes the performance improvement in percent of each model in CE; $^{\circ}$ indicates a statistically significant improvement over the baseline using the t-test, p-value < 0.05)

		TR	OptC		VSM+TR		Okapi+TR		LM+TR		TR+TR		TRLM+TR	%chg
ſ	MAP	0.4010	0.3417	0.4125	0.4592	14.5°	0.4528	12.9*	0.4507	12.4°	0.4526	12.9*	0.4522	12.8*
	MRR	0.6084	0.5392	0.6178	0.6607	8.6	0.6532	7.4	0.6527	7.3	0.6552	7.7	0.6540	7.5
	R-Prec	0.3717	0.3175	0.3853	0.4153	11.7°	0.4079	9.7*	0.4054	9.1	0.4071	9.5°	0.4058	9.2
l	P@5	0.3168	0.2670	0.3280	0.3505	10.6°	0.3519	11.1*	0.3505	10.6°	0.3497	10.4*	0.3490	10.2°

Table 4: TR vs. CE with TR for computing local relevance (%chg denotes the performance improvement in percent of each model in CE; * indicates a statistically significant improvement over the baseline using the t-test, p-value < 0.05)

- [%chg	Okapi+TRLM	% chg	LM+TRLM	%chg	TR+TRLM	%chg	TRLM+TRLM	
- 1	MAP	0.4369	0.3645	0.4570	0.4937	13.0*	0.4823	10.4*	0.4836	10.7*	0.4876	11.6°	0.4886	11.8*
- 1	MRR	0.6316	0.5506	0.6551	0.6704	6.1	0.6652	5.3	0.6675	5.6	0.6685	5.8	0.6678	5.7
- 1	R-Prec	0.4008	0.3474	0.4196	0.4407	10.0	0.4349	8.5	0.4319	7.8	0.4331	8.1	0.4343	8.4
	P@5	0.3398	0.2910	0.3487	0.3570	5.1	0.3556	46	0.3541	42	0.3548	44	0.3527	3.8

Table 5: TRLM vs. CE with TRLM for computing local relevance (%chg denotes the performance improvement in percent of each model in CE; * indicates a statistically significant improvement over the baseline using the t-test, p-value < 0.05)

Figure: Result Analysis

Result Analysis

Result Analysis - Global Relevance

TR and TRLM 在计算全局相关度时,不如 LM 好,在 baseline 的情况,基于翻译的模型能够找到语义相同的不同词,但是在类内计算全局相关度时,在相关类别上,一般词表都差不多,减弱了语义不同词的影响。

intuition

Query:

Q1: Any cool clubs in Berlin or Hamburg?

Expected:

Q2: What are the best/most fun clubs in Berlin?

Not Expected:

Q3: Any nice hotels in Berlin or Hamburg?

Q4: How long does it take to Hamburg from Berlin?

Q5: Cheap hotels in Berlin?

Figure: intuition

intuition 续

- 对于问句 Any clubs in Berlin or Hamburg?
- 将问句分成两部分:
 question topic Berlin Hamburg
 question focus clubs
- 在选词的时候,选定一些基本的词 (BaseNP Base Noun Phrase),和一些疑问词开头的句式 (WH-ngram)。

Topic Chain

$$p(c|t) = \frac{count(c, t)}{\sum_{c \in C} count(c, t)}$$

对于词 t 和类别 c。

specificity

$$s(t) = \frac{1}{-\sum_{c \in C} p(c|t) \log(p(c|t)) + \epsilon}$$

specificity 越大表明词的区分度越大。

构建 topic chain

Figure: question tree

tree cut

- 通过 tree cut 的方式将问句 q 分成两部分: *H*(*q*), *T*(*q*)。
- H(q) 为 question topic
- T(q) 为 question focus

检索

$$p(q|\tilde{q}) = \lambda \cdot p(H(q)|H(\tilde{q})) + (1 - \lambda) \cdot p(T(q)|T(\tilde{q}))$$

Figure: 检索

$$p(q|\widetilde{q}) = \lambda \cdot \prod_{t \in H(q)} p(t|H(\widetilde{q}))^{count(q,t)} + (1 - \lambda) \cdot \prod_{t \in T(q)} p(t|T(\widetilde{q}))^{count(q,t)}$$

Figure: 检索

上结果

Result

Methods	Results
VSM	How cold does it usually get in Charlotte, NC during winters? How long and cold are the winters in Rochester, NY? How cold is it in Alaska?
LMIR	How cold is it in Alaska? How cold does it get really in Toronto in the winter? How cold does the Mojave Desert get in the winter?
LMIR- CUT	How cold is it in Alaska? How cold is Alaska in March and outdoor activities? How cold does it get in Nova Scotia in the winter?

Table 4. Search Results for "How cold does it get in winters in Alaska?"

Figure: 检索结果

L 结果

Result2

Methods	MAP	R-Precision	MRR
VSM	0.198	0.138	0.228
LMIR	0.203	0.154	0.248
LMIR-CUT	0.236	0.192	0.279

Table 3. Searching Questions about 'Travel'

Figure: 检索结果

Methods	MAP	R-Precision	MRR
VSM	0.236	0.175	0.289
LMIR	0.248	0.191	0.304
LMIR-CUT	0.279	0.230	0.341

Table 5. Searching Questions about 'Computers & Internet'

Figure: 检索结果

Topic Model based Method

Figure: Topic Model

MDL based model

L 结果

The end

Thanks!