Geometry

Dmitry Tikhomirov

November 2018

Содержание

1	Векторная алгебра	3				
2	Прямая на плоскости. 2.1 Векторное параметрическое уравнение	8 8 8 8 9 9 9				
3	Уравнение плоскости в пространстве 3.1 Векторное параметрическое 3.2 Параметрическое уравнение 3.3 Векторное уравнение 3.4 Общее уравнение плоскости 3.5 Уравнение плоскости через 3 точки 3.6 Уравнение плоскости в отрезках 3.7 Второй вид векторного уравнения 3.8 Нормальное уравнение плоскости Прямая в пространстве 4.1 Векторное параметрическое уравнение 4.2 Параметрическое уравнение	10 10 11 11 11 11 11 12 12 12				
5	4.3 Векторное уравнение 4.4 Каноническое уравнение 4.5 Уравнение через две точки 4.6 Общее уравнение Расстояние между скрещивающимися прямыми	12 13 13 13				
6	Пучки и связки	14				
7	7 Замены базиса и пересчёт координат					
8	Замена системы координат 8.1 Общий случай	16 16 16				
9	Кривые степени два. (Кривые второго порядка)	17				

10 Эллипс	
10.1 Зон	на картинки
10.2 Сим	мметричность
10.3 Вне	ешний вид
10.4 Фол	кусы
10.5 Pac	сстояние от точки эллипса до фокуса
10.6 Γeo	метрические свойства эллипса.
10.7 Спо	особ рисования эллипса
10.8 Фог	кально-директориальное свойство
10.9 Kac	сательная к эллипсу в его точке
10.10Бис	ссектриальное свойство касательной
11 Гиперб	ола 2
11.1 Зон	на расположения
11.2 Гип	пербола симметрична относительно осей и начала координат
11.3 Вне	ешний вид. $$
11.4 Pac	естояние до фокусов
11.5 Гео	метрическое свойство гиперболы
11.6 Kar	к рисовать?
11.7 Фог	кльно-директориальное свойство гиперболы
11.8 Ура	авнение касательной
11.9 Бис	ссекториальное свойство касательной к гиперболе:
12 Парабо	
12.1 Ура	авнение 2
	мметричность
12.3 Фон	кус
12.4 Pac	сстояние до фокуса
12.5 Фол	кально-директориальное свойство параболы $\ldots \ldots \ldots \ldots \ldots \ldots $
12.6 Kac	сательная к параболе $\dots \dots \dots$
12.7 Бис	ссектриальное свойство касательной к параболе
13 Общая	теория кривых второй степени 20
13.1 Элл	липс
13.2 Гиг	пербола
13.3 Пар	рабола
13.4 Om	- релеление каноническиого вила по инвариантам 2.

1 Векторная алгебра

Определение 1. Вектор — палочка со стрелочкой.

Определение 2. Вектор — направленный отрезок.

Определение 3. Векторы \overrightarrow{AB} и \overrightarrow{CD} равны если

- 1. $|\overrightarrow{AB}| = |\overrightarrow{CD}|$
- 2. |AB||CD
- $3. \ AB$ и CD сонаправлены

Определение 4. Класс эквивалентности векторов в силу введённого равенства является **свободным** вектором.

Определение 5. Свободный вектор — это параллельный перенос.

Утверждение 1.1. Свойства линейных операций над векторами

- 1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- 2. $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- 3. $\vec{a} + \vec{0} = \vec{a}$
- 4. $\vec{a} + (-1) \cdot \vec{a} = \vec{0}$
- 5. $(\alpha\beta)\vec{a} = \alpha(\beta\vec{a})$
- 6. $(\alpha + \beta)\vec{a} = \alpha\vec{a} + \beta\vec{b}$
- 7. $\alpha(\vec{a} + \vec{b}) = \alpha \vec{a} + \beta \vec{b}$
- 8. $1 \cdot \vec{a} = \vec{a}$

Определение 6. $\vec{a} - \vec{b} = \vec{a} + (-1)\vec{b}$

Определение 7. Пусть M — множество объектов в котором введены операции сложения и умножение объекта на число. Тогда для $a_1,\ a_2,\dots\ a_n\in M$ и $\alpha_1,\ \alpha_2,\dots\ \alpha_n\in \mathbb{R}$ выражение

$$\alpha_1 a_1 + \dots + \alpha_n a_n$$

называется линейной комбинацией элементов $a_1, a_2, \ldots a_n$ с коэффициентами $\alpha_1, \alpha_2, \ldots \alpha_n$

Определение 8. Система (набор) векторов $\{\vec{a}_1, \vec{a}_2, \dots \vec{a}_n\}$ называется линейно независимой, если из того, что линейная комбинация этих векторов равна $\vec{0}$ следует, что все коэффициенты этой комбинации равны 0.

$$\alpha_1 \vec{a}_1 + \dots + \alpha_n \vec{a}_n = \vec{0} \Longrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

Определение 9. (ненужное) Система $\{\vec{a}_1, \vec{a}_2, \dots \vec{a}_n\}$ называется линейно зависимой, если $\exists \alpha_1, \alpha_2, \dots \alpha_n$ не все равные 0, такие что $\alpha_1 \vec{a}_1 + \dots + \alpha_n \vec{a}_n = \vec{0}$

Теорема 1.1. (Критерий линейной зависимости системы, состоящей из одного вектора) $\{\vec{a}_1\}$ линейно зависима $\iff \vec{a}_1 = \vec{0}$

Доказательство.

→)
$$\{\vec{a}_1\}$$
 линейно зависима $\stackrel{def}{\longrightarrow} \exists \alpha_1 \neq 0 \quad | \ \alpha_1 \vec{a}_1 = \vec{0} \Longrightarrow \vec{a}_1 = \vec{0}$ ←) $\vec{a}_1 = \vec{0} \Longrightarrow 5 \cdot \vec{a}_1 = \vec{0}$, но $5 \neq 0 \Longrightarrow \{\vec{a}_1\}$ — линейно зависима.

Теорема 1.2. (Критерий линейной зависимости системы из $n \geqslant 2$ векторов) $\{\overrightarrow{a_1}, \overrightarrow{a_2}, \dots \overrightarrow{a_n}\}$ — линейно зависимы \iff хотя бы один из $\overrightarrow{a_1}, \overrightarrow{a_2}, \dots \overrightarrow{a_n}$ является линейной комбинацией остальных.

$$\sum_{i=1}^{n} \alpha_i \overrightarrow{a_i} = \overrightarrow{0}$$

Пусть $\alpha_1 \neq 0$ тогда

$$\alpha_{1}\overrightarrow{a_{1}} + \alpha_{2}\overrightarrow{a_{2}} + \dots + \alpha_{n}\overrightarrow{a_{n}} = \overrightarrow{0} \mid : \alpha_{1} \neq 0$$

$$\overrightarrow{a_{1}} + \frac{\alpha_{2}}{\alpha_{1}}\overrightarrow{a_{2}} + \dots + \frac{\alpha_{n}}{\alpha_{1}}\overrightarrow{a_{n}} = \overrightarrow{0}$$

$$\overrightarrow{a_{1}} + \frac{\alpha_{2}}{\alpha_{1}}\overrightarrow{a_{2}} + \dots + \frac{\alpha_{n}}{\alpha_{1}}\overrightarrow{a_{n}} = \overrightarrow{0}$$

$$\overrightarrow{a_{1}} = -\frac{\alpha_{2}}{\alpha_{1}}\overrightarrow{a_{2}} - \dots - \frac{\alpha_{n}}{\alpha_{1}}\overrightarrow{a_{n}}$$

$$\longleftrightarrow \overrightarrow{a_{1}} = k_{2}\overrightarrow{a_{2}} + k_{3}\overrightarrow{a_{3}} + \dots + k_{n}\overrightarrow{a_{n}} = \overrightarrow{0} \quad k_{i} \in \mathbb{R}$$

$$1 \cdot \overrightarrow{a_{1}} - k_{2}\overrightarrow{a_{2}} + \dots + k_{n}\overrightarrow{a_{n}} = \overrightarrow{0}$$

коэффициент при $\overrightarrow{a_1}$ равен $1 \Longrightarrow$ система — линейно зависима.

Теорема 1.3. Любая подсистема линейно независимой системы является линейно независимой системой.

Теорема 1.4. Любая «надсистема» линейно зависимой системы являетмя линейно зависимой системой.

Теорема 1.5. На прямой любая система из $n \ge 2$ векторов линейно зависима.

На плоскости любая система из $n \geqslant 3$ векторов линейно зависима.

В пространстве любая система из $n \geqslant 4$ векторов линейно зависима.

Определение 10. Векторы называются коллинеарными, если все они параллельны друг другу или одной прямой.

Векторы называются компланарными, если они параллельны одной плоскости.

Определение 11. Базисом в множестве векторов называется *упорядоченная*, максимальная (по числу векторов) линейно независимая система векторов в этом множестве.

На прямой любой ненулевой вектор — базис;

На плоскости любые два неколлинеарных вектора — базис;

В пространстве любые три некомпланарных вектора — базис;

Теорема 1.6. Любой вектор однозначно раскладывается по данному базису.

Доказательство. Пусть $\{\overrightarrow{e_1}, \ \overrightarrow{e_2}, \ \overrightarrow{e_3}\}$ — базис, \overrightarrow{a} — вектор. Рассмотрим $\{\overrightarrow{a}, \ \overrightarrow{e_1}, \ \overrightarrow{e_2}, \ \overrightarrow{e_3}\}$ — линейно зависима, значит $\exists \ k_1, \ k_2, \ k_3, \ k_4$ не все нули, такие что $k_1 \overrightarrow{a} + k_2 \overrightarrow{e_1} + k_3 \overrightarrow{e_2} + k_4 \overrightarrow{e_3} = \overrightarrow{0}$ Если $k_1 = 0$, то $k_2 \overrightarrow{e_1} + k_3 \overrightarrow{e_2} + k_4 \overrightarrow{e_3} = \overrightarrow{0}$, где $k_2, \ k_3, \ k_4$ — не все нули, тогда $\{\overrightarrow{e_1}, \ \overrightarrow{e_2}, \ \overrightarrow{e_3}\}$ — линейно

Если $k_1=0$, то $k_2\overrightarrow{e_1}+k_3\overrightarrow{e_2}+k_4\overrightarrow{e_3}=\overrightarrow{0}$, где k_2 , k_3 , k_4 — не все нули, тогда $\{\overrightarrow{e_1},\ \overrightarrow{e_2},\ \overrightarrow{e_3}\}$ — линейно зависима, что невозможно, так как это — базис. Следовательно, $k_1\neq 0 \longrightarrow \overrightarrow{a}=\frac{k_2}{k_1}\overrightarrow{e_1}+\frac{k_3}{k_1}\overrightarrow{e_2}+\frac{k_4}{k_1}\overrightarrow{e_3}$. \overrightarrow{a} — линейная комбинация.

Докажем единственность!

Пусть не единтсвенно.

 $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ — базис \Longrightarrow

$$\vec{a} = \alpha_1 \overrightarrow{e_1} + \alpha_2 \overrightarrow{e_2} + \alpha_3 \overrightarrow{e_3}$$

$$\vec{a} = \beta_1 \overrightarrow{e_1} + \beta_2 \overrightarrow{e_2} + \beta_3 \overrightarrow{e_3}$$

$$\vec{0} = (\alpha_1 - \beta_1) \overrightarrow{e_1} + (\alpha_2 - \beta_2) \overrightarrow{e_2} + (\alpha_3 - \beta_3) \overrightarrow{e_3}$$

$$\alpha_1 - \beta_1 = 0 \qquad \alpha_1 = \beta_1$$

$$\alpha_2 - \beta_2 = 0 \implies \alpha_2 = \beta_2$$

$$\alpha_3 - \beta_3 = 0 \qquad \alpha_3 = \beta_3$$

Противоречит единственности.

Система координат — это набор «точка + базис»

Радиус вектор, как и любой вектор, по предыдущей теореме раскладывается по базису. Набор коэффициентов называется координатами точки.

Теорема 1.7. Координаты вектора $\overrightarrow{M_1M_2}$, где $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$, находятся по правилу: координаты конца минус координаты начала.

Доказательство.

$$\overrightarrow{OM_1} + \overrightarrow{M_1M_2} = \overrightarrow{OM_2}$$

Отсюда

$$\overrightarrow{M_1M_2} = \overrightarrow{OM_2} - \overrightarrow{OM_1}$$

Из однозначного разложения по базису следует, что при действиях над векторами (сложение и умножение на число) надо делать те же действия над их координатами.

$$\overrightarrow{M_1M_2} = (x_2, y_2, z_2) - (x_1, y_1, z_1) - = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Упражнение 1. (Деление отрезка в заданном отношении)

Найти на отрезке AB точку M, такую что

$$\frac{AM}{MB} = \frac{\lambda}{\mu}, \ \lambda > 0, \ \mu > 0$$

Решение Требуется чтобы

$$\mu |\overrightarrow{AM}| = \lambda |\overrightarrow{MB}|$$

Пусть заданы точки $A (x_0, y_0, z_0), \ B(x_1, y_1, z_1), \ M(x, y, z)$ и $\mu \overrightarrow{AM} = \lambda \overrightarrow{MB}$

Первая координата \overrightarrow{AM} есть $\mu(x_1 - x_0) = \lambda(x_1 - x)$

Вторая координата \overline{AM} есть $\mu(y_1 - y_0) = \lambda(y_1 - y)$

Третья координата
$$\overrightarrow{AM}$$
 есть $\mu(z_1-z_0)=\lambda(z_1-z)$ Тогда $x=\frac{\lambda x_1+\mu x_0}{\lambda+\mu},\ y=\frac{\lambda y_1+\mu y_0}{\lambda+\mu},\ z=\frac{\lambda z_1+\mu z_0}{\lambda+\mu}$

Следствие. Координаты середины отрезка AB находятся по формулам: $x=\frac{x_0+x_1}{2},\ y=\frac{y_0+y_1}{2}$ z= $\frac{z_0 + z_1}{2}$

Замечание 1. Если λ и μ разных знаков, то то же можно говорить о делении в данном отношении, но тогда точка M здесь вне AB.

Ортоганальный = перепендикулярный.

Определение 12. Базис (и система координат) называются ортоганальными, если $\vec{e}_1 \perp \vec{e}_2, \vec{e}_1 \perp \vec{e}_3, \vec{e}_2 \perp \vec{e}_3$. Базис называется **ортонормированным**, если он ортоганальный и $|\vec{e}_1| = |\vec{e}_2| = |\vec{e}_3| = 1$ (нормированный).

Определение 13. Скалярным произведением (\vec{a}, \vec{b}) вектора \vec{a} на вектор \vec{b} называется | ЧИСЛО |определяемое формулой

$$(\vec{a}, \ \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\widehat{\vec{a}, \ \vec{b}})$$

 $(\ ,\) : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$

Теорема 1.8. (Свойства скалярного произведения)

1.
$$(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$$

2.
$$(\vec{a}, \vec{a}) = |a|^2 \Longrightarrow |a| = \sqrt{(\vec{a}, \vec{a})}$$

3.
$$(\vec{a}, \vec{a}) = 0 \iff |\vec{a}| = 0$$

4.
$$(\vec{a}, \vec{b}) = 0 \Longleftrightarrow \vec{a} = \vec{0}$$
, или $\vec{b} = \vec{0}$, или $\vec{a} \perp \vec{b}$

Теорема 1.9. Базис — ортонормированный \iff $(\vec{e_i}, \ \vec{e_j}) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$, $i, j \in \{1, 2, 3\}$

$$\delta_{ij} = egin{cases} 1, & i=j \ 0, & i
eq j \end{cases}$$
 — символ Кронекера $(ec{e}_i, \ ec{e}_j) = \delta_{ij}$

Теорема 1.10. Координаты вектора $\vec{a} = \alpha_1 \vec{e_1} + \alpha_2 \vec{e_2} + \alpha_3 \vec{e_3}$ в ортоганальном базисе находятся по формулам

$$\alpha_1 = \frac{(\vec{a}, \ \vec{e}_1)}{|\vec{e}_1|^2}, \quad i \in \{1, \ 2, \ 3\}$$

Доказательство.

$$\alpha_1 |\vec{e}_1| = |\vec{a}| \cos \varphi \quad |\cdot|\vec{e}_1|$$
$$\alpha_1 |\vec{e}_1|^2 = |\vec{a}| |\vec{e}_1| \cos \varphi$$

 $lpha_1 \cdot |ec{e}_1|^2$ — скалярное произведение

$$\alpha_1 \cdot |\vec{e}_1|^2 = (\vec{a}, \ \vec{e}_1) \Longrightarrow \alpha_1 = \frac{\vec{a}, \ \vec{e}_1}{|\vec{e}_1|^2}$$

Теорема 1.11. (Линейность скалярного произведения) $(\alpha \vec{a} + \beta \vec{b}, \vec{c}) = \alpha(\vec{a}, \vec{c}) + \beta(\vec{b}, \vec{c})$

Доказательство. 1) Пусть $\vec{c} = \vec{0}$, тогда очевидно;

 $\vec{c} \neq \vec{0}$ Пусть \vec{c} — первый базисный вектор, а остальные базисные вектора выберем, как хотим, но ортоганальными вектору \vec{c} и между собой.

По предыдущей теореме первая координата вектора $\alpha \vec{a} + \beta \vec{b}$ есть $\frac{(\alpha \vec{a} + \beta \vec{b}, \vec{e}_1)}{|\vec{c}_1|^2}$

Первая координата вектора \vec{a} есть $\frac{(\vec{a}, \vec{e}_1)}{|\vec{e}_1|^2}$

Первая координата вектора \vec{b} есть $\frac{(\vec{b}, \vec{e_1})}{|\vec{e_1}|^2}$

 $\alpha \vec{a} + \beta \vec{b}$ — это линейная комбинация векторов \vec{a} и \vec{b} , поэтому

$$\frac{\alpha \vec{a} + \beta \vec{b}}{|\vec{e}_1|^2} = \frac{\alpha(\vec{a}, \ \vec{e}_1)}{|\vec{e}_1|^2} + \frac{\beta(\vec{b}, \ \vec{e}_1)}{|\vec{e}_1|^2} \quad |\cdot|\vec{e}_1|^2$$

$$(\alpha \vec{a} + \beta \vec{b}, \ \vec{e}_1) = \alpha(\vec{a}, \ \vec{e}_1) + \beta(\vec{b}, \ \vec{e}_1) \quad |\vec{e}_1 \equiv \vec{c}$$

Теорема 1.12. (Формула для вычисления скалярного произведения в ортонормированном базисе)

Доказательство. $\vec{a}(x_1, y_1, z_1) = x_1 \vec{e}_1 + y_1 \vec{e}_2 + z_1 \vec{e}_3$ $\vec{b}(x_2, y_2, z_2) = x_2\vec{e}_1 + y_2\vec{e}_2 + z_2\vec{e}_3$

$$(\vec{a}, \vec{b}) = (x_1\vec{e}_1 + y_1\vec{e}_2 + z_1\vec{e}_3, \ x_2\vec{e}_1 + y_2\vec{e}_2 + z_2\vec{e}_3) = x_1x_2(\vec{e}_1, \ \vec{e}_1) + x_1y_1(\vec{e}_1, \ \vec{e}_2) + x_1z_2(\vec{e}_1, \ \vec{e}_3) + \dots + z_1z_2(\vec{e}_3, \ \vec{e}_3) = x_1x_2 + y_1y_2 + z_1z_3$$

Итак

$$(\vec{a}, \ \vec{b}) = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Определение 14. Векторным произведением $[\vec{a},\ \vec{b}]$ вектора \vec{a} на вектор \vec{b} называется вектор \vec{c} , такой

- 1. $|\vec{c}| = |\vec{a}||\vec{b}|\sin(\vec{a}, \vec{b})$
- 2. $\vec{c} \perp \vec{a}$ и $\vec{c} \perp \vec{b}$
- 3. Тройка $\langle \vec{a}, \vec{b}, \vec{c} \rangle$ правая

Определение 15. Упорядоченная тройка векторов называется правой, если глядя с концы вектора $ec{c}$ (третьего) мы видим поворотот первого ко второму на наименьший угол как поворот против часой стрелки.

Теорема 1.13.

$$[\vec{a}, \ \vec{b}] = -[\vec{b}, \ \vec{a}]$$

Доказательство. Правая тройка заменится на левую.

Определение 16. Смешанным произведением векторов $\vec{a}, \vec{b}, \vec{c}$ в указанном порядке называется $\boxed{\text{ЧИСЛО}}(\vec{a}, \vec{b}, \vec{c}) = (\vec{a}, [\vec{b}, \vec{c}])$

Теорема 1.14. (Геометрический смысл смешанного произведения)

$$|(\vec{a},\ \vec{b},\ \vec{c})|=V_{\rm параллилепипеда,\ построеного}$$
 на $\vec{a},\ \vec{b},\ \vec{c}$ с как на сторонах

Доказательство.
$$V = S_{\text{осн}} \cdot h = \left| [\vec{c}, \ \vec{b}] \right| \cdot h = \left| [\vec{c}, \ \vec{b}] \right| \cdot (|\vec{a}| \cos{(\alpha)}) = (\vec{a}, \ [\vec{b}, \ \vec{c}]) = (\vec{a}, \ \vec{b}, \ \vec{c})$$

Для картинки всё верно, для второго случая, когда «вектор \vec{a} вниз», то есть тройка $\langle \vec{b}, \ \vec{c}, \ \vec{a} \rangle$ — левая, получится знак « — ». Чтобы это поправить в формулировке стоит модуль. $V = (\vec{a}, \ \vec{b}, \ \vec{c})$

Теорема 1.15.

$$(\vec{a}, \vec{b}, \vec{c}) = 0 \Longleftrightarrow \vec{a}, \vec{b}, \vec{c}$$
 — компланарны

Доказательство. Геометрическое

Теорема 1.16.

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = -(\vec{a}, \vec{c}, \vec{b}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{c}, \vec{b}, \vec{a})$$

Доказательство. При циклической смене порядка сомножителей смешанное произведение не меняется, в противном случае меняет знак. □

Теорема 1.17. Смешанное произведение линейно.

Доказательство. $(\lambda \vec{a}_1 + \mu \vec{a}_2, \ \vec{b}, \ \vec{c}) = (\lambda \vec{a}_1 + \mu \vec{a}_2, \ [\vec{b}, \ \vec{c}]) = \lambda(\vec{a}_1, \ [\vec{b}, \ \vec{c}]) + \mu(\vec{a}_2, \ [\vec{b}, \ \vec{c}]) = \lambda(\vec{a}_1, \ \vec{b}, \ \vec{c}) + \mu(\vec{a}_1, \ \vec{b}, \ \vec{c})$ Таким образом линейность смешанного произведения по первому сомножителю доказано. Из предыдущей теоремы следует линейность по второму и третьему.

Теорема 1.18. (Линейность векторного произведения)

$$[\lambda \vec{a} + \mu \vec{b}, \ \vec{c}] = \lambda [\vec{a}, \ \vec{c}] + \mu [\vec{b}, \ \vec{c}]$$

Доказательство. Запишем линейность смешанного произведения по второму сомножителю:

$$(\vec{d}, \ [\lambda \vec{a}, \ \mu \vec{b}, \ \vec{c}] = \lambda (\vec{d}, \ [\vec{a}, \ \vec{c}]) + \mu (\vec{d}, \ [\vec{b}, \ \vec{c}])$$

Пусть $\{\vec{e}_1,\ \vec{e}_2,\ \vec{e}_3\}$ — ортонормированный базис.

- 1) Положим $\vec{d} = \vec{e}_1$. Получаем $(\vec{e}_1, \ [\cdot \ , \cdot \]$ первая координата вектора. Таким образом для первой координаты получилась нужная линейность.
 - 2) Забудем и положим $\vec{d} = \vec{e}_2$. Mutatis mutandis. Получим линейность для второй координаты.
- 3) Снова забудем и положим $\vec{d} = \vec{e_3}$. Mutatis mutandis. Получим линейность для третьей координаты. Так как действиям сложения и умножения на число с векторами взаимно однозначно отвечают те же действия с координатами, то получаем, что теорема верна.

Утверждение 1.2. (Формула для вычисления векторного произведения через координаты векторов в ортонормированном базисе)

Таблица 1: Векторные произведения векторов ортонормированного базиса (столбец на строку)

$$[\vec{a}, \ \vec{b}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Утверждение 1.3. (Формула для вычисления смешанного произведения через координаты векторов в ортонормированном базисе)

$$(\vec{a}, \ [\vec{b}, \ \vec{c}]) = (\vec{a}, \ \vec{b}, \ \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Утверждение 1.4. (Формула для вычисления длины вектора через координаты его концов)

$$|\overrightarrow{M_1M_2}| = \sqrt{(M_1M_2)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Геометрия

Соглашения

- 1) если ничего не сказано, то базис ортонормированный
- 2) говорят, что F(x, y) = 0 определяет линию S на плосоксти, если:
- 1. $\forall M(x_0, y_0) \in S \text{ имеем } F(x_0, y_0) = 0$
- 2. $\forall M(x_0, y_0) \in S$ имеем $F(x_0, y_0) \neq 0$

$\mathbf{2}$ Прямая на плоскости.

Векторное параметрическое уравнение

 $\overrightarrow{M_0M} \parallel \vec{a}$ по построению. $(\vec{a} \mid\mid \vec{L})$ $(\vec{a} \neq \vec{0})$ — направляющий вектор $\overrightarrow{M_0M} = \vec{r} - \vec{r_0} = t\vec{a}$

$$\vec{r} = \vec{r}_0 + t\vec{a} \tag{1}$$

2.2Параметрическое уравнение

$$\vec{r}(x, y)$$
 $\vec{r}_0(x_0, y_0)$ $\vec{a}(a_1, a_2)$ $(x, y) = (x_0, y_0) + t(a_1, a_2)$ $\text{ 9TO} - (1)$

$$\begin{cases} x = x_0 + ta_1 \\ y = y_0 + ta_2 \end{cases} \qquad t \in \mathbb{R}$$
 (2)

Школьное, с угловым коэффициентом

Исключаем из (2) параметр $t=\frac{x-x_0}{a_1}, \quad$ если $a_1 \neq 0$

$$y = y_0 + \frac{x - x_0}{a_1} a_2$$

$$y = \underbrace{\frac{a_2}{a_1}}_{k} x + \underbrace{y_0 - \frac{a_2 x_0}{a_1}}_{b}$$

$$y = kx + b \tag{3}$$

 $x = \operatorname{tg} \alpha$ — тангенс угла наклона

При x = 0 имеем y = b, где b — начальная ордината

Замечание 2. Так задаются все прямые, кроме вертикальных.

Каноническое уравнение

Уничтожим t в (2) по-другому:

Из первого
$$t = \frac{x - x_0}{a}$$

Из первого $t=\dfrac{\overset{.}{x}-x_0}{a_1}$ Из второго $t=\dfrac{\overset{.}{y}-y_0}{a_2}$

$$\boxed{\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2}} \tag{4}$$

Замечание 3. *Соглашение:* разрешается писать: $\frac{x-x_0}{a_1}=\frac{y-y_0}{0},$ что означает, что и $y-y_0=0,$ то есть $y = y_0$

2.5 Уравнение прямой через две точки

Считая начальной точкой M, напишем каноническое уравнение

$$\left| \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \right| \tag{5}$$

2.6 Уравнение прямой «в отрезках»

Пусть прямая L не проходит через O(0, 0). Следовательно, она пересекает обе оси, пусть в точках (a, 0) и (0, b). Запишем прямую L как прямую через две точки

$$\frac{x-a}{0-a} = \frac{y-0}{b-0}$$

$$\frac{x-a}{-a} = \frac{y}{b}$$

$$-\frac{x}{a} + 1 = \frac{y}{b}$$

$$\left[\frac{x}{a} + \frac{y}{b} = 1\right]$$
(6)

2.7 Векторное уравнение

 $\vec{n} \neq \vec{0}$

Вектор $(\vec{r} - \vec{r_0}) \perp \vec{n} \quad \forall \vec{r}(x, y), (x, y) \in L$

$$\boxed{(\vec{r} - \vec{r_0}, \ \vec{n}) = 0} \tag{7}$$

2.8 Общее уравнение прямой

Положим в (7) $\vec{n} = (A, B)$. Распишем (7) считая систему координат ортонормированной.

$$(((x - x_0), (y - y_0)), (A, B)) = (x - x_0)A + (y - y_0)B = Ax + By + \underbrace{(-1) \cdot (x_0A + y_0B)}_{C} = 0$$

$$\begin{cases} Ax + By + C = 0 \\ A^2 + B^2 \neq 0 \end{cases}$$
(8)

Теорема 2.1. (Геометрический смысл коэффициентов в общем уравнении прямой)

В уравнении прямой Ax + By + C = 0 вектор (A, B) — перпендикуляр к прямой, то есть $(A, B) = \vec{n}$.

Доказательство. Пусть (x_1, y_1) и (x_2, y_2) — точки на нашей прямой.

$$\begin{vmatrix} Ax_1 + By_1 + C = 0 - \text{верно} \\ Ax_2 + By_2 + C = 0 - \text{верно} \end{vmatrix}$$

 $A(x_2-x_1)+B(y_2-y_1)=0$ Если базис «хороший», то это расписано скалярное произведение

$$((A, B), (x_2 - x_1, y_2 - y_1))$$
 по критерию ортогональности $(A, B) \perp (x_2 - x_1, y_2 - y_1)$ $(A, B) \perp L$

Несколько стандартных задач про прямые на плоскости

Упражнение 2. Найти угол между двумя прямыми.

Решение а) Для школьных уравнений

1)
$$y = k_1 x + b_1$$

2)
$$y = k_2 x + b_2$$

$$\operatorname{tg} \alpha = \operatorname{tg} (\alpha_2 - \alpha_1) = \frac{k_2 - k_1}{1 + k_1 k_2}$$

Если $1+k_1k_2=0\Longrightarrow k_1=-\frac{1}{k_2}$ тогда tg α не существует $\Longrightarrow \alpha=\frac{\pi}{2}$. Другими словами $k_1=-\frac{1}{k_2}\Longleftrightarrow$ прямые перпендикулярны.

б) Для общих уравнений

I)
$$A_1x + B_1y + C_1 = 0$$

II)
$$A_2x + B_2y + C_2 = 0$$

$$\angle(\mathbf{I}, \ \mathbf{II}) = \angle(\vec{n}_1, \ \vec{n}_2)$$

$$\cos \angle (\vec{n}_1, \ \vec{n}_2)) = \frac{(\vec{n}_1, \ \vec{n}_2)}{|\vec{n}_1||\vec{n}_2|}$$

В «хорошей» системе получается
$$\cos \angle (\vec{n}_1, \ \vec{n}_2)) = \frac{((A_1, \ B_1), \ (A_2, \ B_2))}{|(A_1, \ B_1)||(A_2, \ B_2)|} = \frac{A_1A_2 + B_1B_2}{\sqrt{A_1^2 + B_1^2} \cdot \sqrt{A_2^2 + B_2^2}}$$
в) Лля канонических уравнений

в) Для канонических уравнени
$$\frac{x-x_0}{a_1}=\frac{y-y_0}{b_1}$$

II)
$$\frac{a_1}{x - x_0'} = \frac{b_1}{b_2}$$

$$\cos(\angle((a_1,\ b_1),\ (a_2,\ b_2)) = \frac{((a_1,\ b_1),\ (a_2,\ b_2))}{|(a_1,\ b_1)||(a_2,\ b_2)|} = \frac{a_1a_2 + b_1b_2}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}$$

Упражнение 3. Найти расстояние от точки до прямой.

Решение Пусть прямая задана векторным уравнением. $[\vec{r} - \vec{r}_0, \ \vec{a}] = \vec{0}$. Найдём площадь двумя способами.

$$S = d \cdot |\vec{a}| = \left| \left[\overrightarrow{R} - \overrightarrow{r_0}, \ \vec{a} \right] \right| = \left| \overrightarrow{R} - \vec{r_0} \right| \cdot |\vec{a}| \cdot \sin \alpha$$

 $S=d\cdot |\vec{a}|=\left|\left[\overrightarrow{R}-\overrightarrow{r_0},\ \vec{a}
ight]\right|=\left|\overrightarrow{R}-\overrightarrow{r_0}\right|\cdot |\vec{a}|\cdot \sin \alpha$ Пусть система координат «хорошая» и прямая задана общим уравнением Ax+By+C=0 $(A, B) = \vec{n} \implies \vec{a} = (B, -A)$, так как $A \cdot B + B \cdot (-A) = 0$ то есть $(B, -A) \perp (A, B)$

$$d = \frac{\left| \left[\overrightarrow{R} - \overrightarrow{r_0}, \ \overrightarrow{a} \right] \right|}{\left| \overrightarrow{a} \right|} = \frac{|AX + BY + C|}{\sqrt{A^2 + B^2}} \tag{*}$$

$$\overrightarrow{R} - \overrightarrow{r_0} = (X - x_0, Y - y_0)$$

Числитель в (*) равен
$$|[(X-x_0,\ Y-y_0)\ ,\ (-B,\ A)]| = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ X-x_0 & Y-y_0 & 0 \\ -B & A & 0 \end{vmatrix} = \begin{vmatrix} \vec{k}\left((X-x_0)\ A+(Y-y_0)\ B\right)\end{vmatrix} = |A\left(X-x_0\right)+B\left(Y-y_0\right)| = |AX+BY-(Ax_0+By_0)| \stackrel{(x_0,\ y_0)\in L}{=} \stackrel{Ax_0+By_0+C=0}{=} |AX+BY+C|$$

Таким образом, чтобы найти расстояние от точки до прямой, достаточно подставить координаты этой точки в общее уравнение прямой, взять полученное число по модулю и поделить на корень квадратный из суммы коэффициентов при x и y.

2.9Нормальное уравнение прямой

$$\boxed{\frac{Ax + By + C}{\sqrt{A^2 + B^2}} = 0} \tag{9}$$

Замечание 4. Проверить, что $d = \frac{|[\vec{R} - \vec{r_0}, \ \vec{n}]|}{|\vec{n}|}$

3 Уравнение плоскости в пространстве

3.1Векторное параметрическое

Даны: $\vec{p} \parallel P$, $\vec{q} \parallel P$, $\vec{p} \not\parallel \vec{q}$, $M_0 \in P$

Векторы $\vec{r}-\vec{r}_0, \quad \vec{p}, \quad \vec{q}$ — линейно зависимы, а \vec{p} и \vec{q} — линейно независимы. Поэтому $\vec{r}-\vec{r}_0$ есть линейная комбинация второго и третьего. $\vec{r} - \vec{r}_0 = u\vec{p} + v\vec{q}$

$$\vec{r} = u\vec{p} + v\vec{q} + \vec{r}_0 \quad u, v \in \mathbb{R}$$
(1)

3.2 Параметрическое уравнение

$$\begin{cases} x = x_0 + up_1 + vq_1 & \vec{r}_0 = (x_0, y_0, z_0) \\ y = y_0 + up_2 + vq_2 & \vec{p} = (p_1, p_2, p_3) \\ z = z_0 + up_3 + vq_3 & \vec{q} = (q_1, q_2, q_3) \end{cases}$$
(2)

3.3 Векторное уравнение

Зададим плоскость нормальным вектором \vec{n} и точкой M_0 (x_0, y_0, z_0) . Значит $\vec{n} \perp \overrightarrow{MM_0} \ \forall M \in P$. $\vec{n} \perp (\vec{r} - \vec{r_0}) \ \forall \vec{r}$ — радиус-вектор точки плоскости

$$(\vec{r} - \vec{r_0}, \ \vec{n}) = 0$$
 (3)

3.4 Общее уравнение плоскости

Пусть система координат «хорошая». Распишем последнее скалярное произведение. $((x-x_0,\ y-y_0,\ z-z_0),\ (A,\ B,\ C)) = Ax+By+Cz+\underbrace{(-1)\cdot(Ax_0+By_0+Cz_0)}_D = 0$ $\overbrace{Ax+By+Cz+D=0\atop A^2+B^2+C^2>0}$ (4)

3.5 Уравнение плоскости через 3 точки

 $(\overrightarrow{MM_1}, \ \overrightarrow{M_2M_1}, \ \overrightarrow{M_3M_1}) = 0$ Векторы $\overrightarrow{MM_1}, \ \overrightarrow{M_2M_1}, \ \overrightarrow{M_3M_1}$ — компланарны по построению \Longleftrightarrow

$$(\overrightarrow{MM_1}, \overrightarrow{M_2M_1}, \overrightarrow{M_3M_1}) = \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$
(5)

3.6 Уравнение плоскости в отрезках

$$\begin{vmatrix} x - a & y - 0 & z - 0 \\ 0 - a & b - 0 & 0 - 0 \\ 0 - a & 0 - 0 & c - 0 \end{vmatrix} = 0$$
$$\begin{vmatrix} x - a & y & z \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = (x - a)bc + abz + acy = 0$$

$$x\underline{bc} + y\underline{ac} + z\underline{ab} - \underline{abc} = 0 \quad |: abc \neq 0$$

$$\boxed{\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1} \tag{6}$$

3.7 Второй вид векторного уравнения

Пусть $\vec{p} \not \parallel \vec{q}$ — направляющие векторы плоскости $\vec{n} = [\vec{p}, \ \vec{q}]$, из первого вида имеем: $(\vec{r} - \vec{r}_0, \ [\vec{p}, \ \vec{q}]) = 0$

$$(\vec{r} - \vec{r_0}, \ \vec{p}, \vec{q}) = 0$$
 (7)

Упражнение 4. Найти расстояние от точки до плоскости.

Решение 1
$$V_{\Pi} = \left| \left(\overrightarrow{R} - \overrightarrow{r_0}, \ \overrightarrow{p}, \ \overrightarrow{q} \right) \right| = h \cdot S_{\text{осн}}$$

$$\left| \left(\overrightarrow{R} - \overrightarrow{r_0}, \ \overrightarrow{p}, \ \overrightarrow{q} \right) \right| = h \cdot |[\overrightarrow{p}, \ \overrightarrow{q}]|$$

$$h = \frac{\left| \left(\overrightarrow{R} - \overrightarrow{r_0}, \ \overrightarrow{p}, \ \overrightarrow{q} \right) \right|}{|[\overrightarrow{p}, \ \overrightarrow{q}]|}.$$
 Пусть теперь P задана общим уравнением $Ax + By + Cz + D = 0$ $\overrightarrow{n} = 0$

$$(A,\ B,\ C),\quad \vec{r_0}=(x_0,\ y_0,\ z_0),$$
 оказывается: $h=\dfrac{\left|\left(\overrightarrow{R}-\vec{r_0},\ \overrightarrow{n}\right)\right|}{|\overrightarrow{n}|}.$ Пусть система координат «хорошая».

$$h = \frac{|((X - x_0, Y - y_0, Z - z_0), (A, B, C))|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|(X - x_0)A + (Y - y_0)B + (Z - z_0)C|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|AX + BY + CZ(Ax_0 + By_0 + Cz_0)|}{\sqrt{A^2 + B^2 + C^2}}$$
(1)

Замечание 5. $(x_0, y_0, z_0) \in P \Longrightarrow D = -(Ax_0 + By_0 + Cz_0)$

$$h = \frac{|AX + BY + CZ + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Расстояние найдено!

3.8 Нормальное уравнение плоскости

$$\frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}} = 0$$
(8)

$$\cos\alpha = \frac{A}{\sqrt{A^2 + B^2 + C^2}}$$
$$\cos\beta = \frac{B}{\sqrt{A^2 + B^2 + C^2}}$$
$$\cos\gamma = \frac{C}{\sqrt{A^2 + B^2 + C^2}}$$

$$x\cos\alpha + y\cos\beta + z\cos\gamma + d = 0$$

Направляющие косинусы нормального вектора.

4 Прямая в пространстве

4.1 Векторное параметрическое уравниние

$$(\vec{r} - \vec{r}_0) \parallel \vec{a} \iff \vec{r} - \vec{r}_0 = t\vec{a}$$

$$\vec{r} = \vec{r}_0 + t\vec{a} \quad t \in \mathbb{R}$$
 (1)

4.2 Параметрическое уравнение

$$\begin{cases} x = x_0 + ta_1 \\ y = y_0 + ta_2 \\ z = z_0 + ta_3 \end{cases} \qquad t \in \mathbb{R}$$

$$(2)$$

4.3 Векторное уравнение

$$\vec{r} - \vec{r}_0 \parallel \vec{a} \iff \boxed{[\vec{r} - \vec{r}_0, \ \vec{a}] = \vec{0}}$$
 (3)

4.4 Каноническое уравнение

Из (2) получаем t:

$$\left| \frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3} \right| \tag{4}$$

 (x_0, y_0, z_0) — начальная точка (a_1, a_2, a_3) — направляющий вектор

Замечание 6. Сколько здесть уравнений? Здесь два (независимых) уравнения.

4.5 Уравнение через две точки

Здесь можно считать, что направляющий вектор $\vec{a} = \vec{r}_1 - \vec{r}_0$:

4.6 Общее уравнение

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \\ (A_1, B_1, C_1) \not \mid (A_2, B_2, C_2) \end{cases}$$
(6)

То есть $[(A_1, B_1, C_1), (A_2, B_2, C_2)] \neq \vec{0}$

Если система координат ортонормированна, это условие имеет вид:

$$\vec{0} \neq \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_1 & B_2 & C_2 \end{vmatrix} \Longrightarrow 0 \neq \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}^2 + \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}^2 + \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}^2$$

Упражнение 5. Переход от общего уравнения и обратно.

Решение 1 Каноническое -> Общее. Тривиально.

Если дано:
$$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} = \frac{z-z_0}{a_3}$$
, то пишем

$$\begin{cases} \frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} \\ \frac{x-x_0}{a_1} = \frac{z-z_0}{a_3} \end{cases}$$

Решение 2 В качестве направляющего вектора $\vec{a}=(a_1,\ a_2,\ a_3)$ можно взять $[\vec{n}_1,\ \vec{n}_2]=[(A_1,\ B_1,\ C_1)\ ,\ (A_2,\ B_2,\ C_2)]$ Точка $(x_0,\ y_0,\ z_0)$ подбирается. Например: пусть $z_0=const$, подставим в (6) и решим систему относительно x и y.

5 Расстояние между скрещивающимися прямыми

Упражнение 6. Найдём расстояние.

Решение осчитаем объём параллилепипеда разными способами. Рассмотрим параллилепипед на векторах $\vec{a}_1, \ \vec{a}_2, \ \vec{r}_2 - \vec{r}_1$:

$$V_{\Pi(\vec{a}_1, \ \vec{a}_2, \ \vec{r}_2 - \vec{r}_1)} = hS_{\text{och}} = |(\vec{a}_1, \ \vec{a}_2, \ \vec{r}_2 - \vec{r}_1)|$$

$$h = \frac{|(\vec{a}_1, \ \vec{a}_2, \ \vec{r}_2 - \vec{r}_1)|}{|[\vec{a}_1, \ \vec{a}_2]|}$$

Замечание 7. Равенство нулю числителя в последней формуле (при условии неравенства нулю знаменателя) — критерий пересечения прямых в пространстве. $(|(\vec{a}_1,\ \vec{a}_2,\ \vec{r}_2-\vec{r}_1)|)=0$

Замечание 8. Даны две скрещивающиеся прямые:

$$(1) \quad \vec{r} = \vec{r}_1 + t\vec{a}_1$$

(1)
$$\vec{r} = \vec{r}_1 + t\vec{a}_1$$

(2) $\vec{r} = \vec{r}_2 + t\vec{a}_2$

Требуется написать уравнение плоскости, содержащей прямую (1) и паралельную прямой (2). Otbet: $((\vec{a}_1, \vec{a}_2, \vec{r}_2 - \vec{r}_1)) = 0$

Упражнение 7. Найти угол между прямой и плоскостью.

Решение $\alpha=90^{\circ}-\beta$, где α — угол между прямой и плоскостью $\alpha=\angle(l,\ \omega)$. β — угол между двумя прямыми. Найдём через скалярное произведение.

Упражнение 8. Написать уравнение общего перепендикуляра к двум скрещивающимся прямым.

$$(1) \quad \vec{r} = \vec{r}_1 + t\vec{a}_1$$

(1)
$$\vec{r} = \vec{r}_1 + t\vec{a}_1$$

(2) $\vec{r} = \vec{r}_2 + t\vec{a}_2$

Решение аправляющий вектор общего перпендикуляра $\vec{p} = [\vec{a}_1, \ \vec{a}_2]$. Плоскость $(\vec{r} - \vec{r}_1, \ \vec{a}_1, \ [\vec{a}_1, \ \vec{a}_2]) = 0$. Значит эти векторы компланарны.

 $\vec{a}_1 \parallel$ плоскости;

 $[\vec{a}_1, \ \vec{a}_2] \ \| \$ общий перепендикуляр;

Это плоскость Π_1 ;

Аналогично $(\vec{r} - \vec{r_2}, \ \vec{a_2}, \ [\vec{a_1}, \ \vec{a_2}]) = 0$ — уравнение плоскости Π_2 **Ответ:** $\begin{cases} (\vec{r} - \vec{r_1}, \ \vec{a_1}, \ [\vec{a_1}, \ \vec{a_2}]) = 0 \\ (\vec{r} - \vec{r_2}, \ \vec{a_2}, \ [\vec{a_1}, \ \vec{a_2}]) = 0 \end{cases}$ для всех систем координат.

6 Пучки и связки

Определение 17. Пучком прямых на плоскости называется множество всех прямых этой плоскости, проходящих через заданную точку, которая называется центром пучка.

 $y-y_0=k(x-x_0)\ \forall k$ такая прямая проходит через точку $(x_0,\ y_0)$. Таким образом, первый вид задания пучка прямых такой:

пучок = множество прямых

Пучок =
$$\{y - y_0 = k(x - x_0) \mid k \in \mathbb{R}\} \cup \{x = x_0\}$$

Рассмотрим вторую форму уравнения пучка прямых на плоскости:

Центр пучка (то есть сам пучок) задаётся парой прямых, которые не параллельны.

$$A_1x + B_1y + C_1 = 0$$
 (1)
 $A_2x + B_2y + C_2 = 0$ (2)

$$(A_1, B_1) \not | (A_2, B_2)$$

$$\frac{A_1}{A_2} \neq \frac{B_1}{B_2} \Longleftrightarrow A_1 B_2 - A_2 B_1 \neq 0 \Longleftrightarrow [(A_1, B_1), (A_2, B_2)] \neq \vec{0}$$

Теорема 6.1. Уравнение пучка, определяемого парой пересекающихся прямых — это

(*)
$$\lambda (A_1x + B_1y + C_1) + \mu (A_2x + B_2y + C_2) = 0$$
, $\lambda^2 + \mu^2 > 0$

Доказательство. 1) (*) — уравнение степени 1, то есть при любых λ и μ определяет прямую.

2) При любых λ и μ прямая (*) проходит через центр пучка (x_0, y_0) , так как (x_0, y_0) каждую круглую скобку в (*) обращает в нуль.

Если $\stackrel{\cdot}{(*)}$ при каких-то λ и μ вдруг получилось степени 0, то это означает, что $\lambda A_1 + \mu A_2 = 0$ и $\lambda B_1 + \mu B_2 = 0$, это — однородная система. $\Delta = \begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix} = A_1 B_2 - A_2 B_1 \neq 0 \Longrightarrow$ единственное решение $-\lambda = \mu = 0$, но это невозможно в (*)

3) Надо доказать, что <u>любая</u> прямая из нашего пучка задаётся уравнением (*) при подходящих λ и μ . Пусть $M_1(x_1, y_1)$ — любая точка плоскости отличная от $M_0(x_0, y_0)$. Прямая M_0M_1 принадлежит пучку. Покажем, как выбрать нужные λ и μ в (*). Подставим координаты точки M_1 в (*):

$$\lambda (A_1x_1 + B_1y_1 + C_1) + \mu (A_2x_1 + B_2y_1 + C_2) = 0$$

Так как $M_1 \neq M_0$, то $(A_1x_1 + B_1y_1 + C_1)^2 + (A_2x_1 + B_2y_1 + C_2)^2 > 0$. Положим

$$\lambda = -(A_2x_1 + B_2y_1 + C_2)^2$$

$$\mu = (A_1x_1 + B_1y_1 + C_1)^2$$

(*) примет вид
$$-(A_2x_1+B_2y_1+C_2)(A_1x+B_1y+C_1)+(A_1x_1+B_1y_1+C_1)(A_2x+B_2y+C_2)=0$$
 Точка M_1 удовлетворяет этому уравнению. Точка M_0 тоже удовлетворяет.

Замечание 9. Если прямые (1) и (2) выбраны параллельно осям координат, то уравнение пучка будет проще:

$$\lambda(y - y_0) = \mu(x - x_0)$$

Определение 18. Пучком плоскостей называется множество всех плоскостей, проходящих через данную прямую.

Теорема 6.2. Уравнение пучка:

$$\begin{cases} \lambda \left(A_1 x + B_1 y + C_1 z + D_1 \right) + \mu \left(A_2 x + B_2 y + C_2 z + D_2 \right) = 0 \\ \lambda^2 + \mu^2 > 0 \\ \left[\vec{n}_1, \ \vec{n}_2 \right] \neq \vec{0} \end{cases}$$

Доказательство. Аналогично.

Определение 19. Связка плоскостей в пространстве — это множество всех плоскостей, проходящих через данную точку.

Пусть точка (центр связки) задаётся пересечением трёх плоскостей:

$$\begin{vmatrix} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ A_3x + B_3y + C_3z + D_3 = 0 \end{vmatrix} \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} \neq 0$$

Определитель системы не равен 0. \iff Векторы (нормальные) некомпланарны.

Теорема 6.3. Уравнение связки:

$$\alpha (A_1x + B_1y + C_1z + D_1) + \beta (A_2x + B_2y + C_2z + D_2) + \gamma (A_3x + B_3y + C_3z + D_3) = 0$$

$$\alpha^2 + \beta^2 + \gamma^2 > 0$$

Доказательство. Аналогично.

7 Замены базиса и пересчёт координат

Пусть $\{\vec{e_1},\ \vec{e_2},\ \vec{e_3}\}$ — «старый» базис $\{\vec{e_1}',\ \vec{e_2}',\ \vec{e_3}'\}$ — «новый» базис

$$\begin{cases}
\overrightarrow{e_1}' = a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + a_{31}\vec{e}_3 \\
\overrightarrow{e_2}' = a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + a_{32}\vec{e}_3 \\
\overrightarrow{e_3}' = a_{13}\vec{e}_1 + a_{23}\vec{e}_2 + a_{33}\vec{e}_3
\end{cases}$$
(1)

Пусть $\vec{a} \in \mathbb{R}^3$ — произвольный вектор.

$$\overrightarrow{a} = \alpha_1 \overrightarrow{e_1} + \alpha_2 \overrightarrow{e_2} + \alpha_3 \overrightarrow{e_3} \text{ в старом}$$
 (2)

$$\overrightarrow{a} = \alpha_1' \overrightarrow{e_1}' + \alpha_2' \overrightarrow{e_2}' + \alpha_3' \overrightarrow{e_3}' \text{ в новом}$$
(3)

Подставим в (3) выражение (1)

$$\overrightarrow{a} = \alpha_1'(a_{11}\overrightarrow{e_1} + a_{21}\overrightarrow{e_2} + a_{31}\overrightarrow{e_3}) + \alpha_2'(a_{12}\overrightarrow{e_1} + a_{22}\overrightarrow{e_2} + a_{32}\overrightarrow{e_3}) +$$

$$+ \alpha_3'(a_{13}\overrightarrow{e_1} + a_{23}\overrightarrow{e_2} + a_{33}\overrightarrow{e_3}) = (\alpha_1'a_{11} + \alpha_2'a_{12} + \alpha_3'a_{13})\overrightarrow{e_1} +$$

$$+ (\alpha_1'a_{21} + \alpha_2'a_{22} + \alpha_3'a_{23})\overrightarrow{e_2} + (\alpha_1'a_{31} + \alpha_2'a_{32} + \alpha_3'a_{33})\overrightarrow{e_3}$$
(2)

В силу единственности разложения по данному базису (здесь по «старому») имеем:

$$\begin{cases}
\alpha_1 = a_{11}\alpha'_1 + a_{12}\alpha'_2 + a_{13}\alpha'_3 \\
\alpha_2 = a_{21}\alpha'_1 + a_{22}\alpha'_2 + a_{23}\alpha'_3 \\
\alpha_3 = a_{31}\alpha'_1 + a_{32}\alpha'_2 + a_{33}\alpha'_3
\end{cases}$$
(4)

Определение 20. Матрица

$$T = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

 ${
m CTO}\Pi {
m Oell}$ которой составлен из координат k-ого нового базисного вектора в старом базисе, называется матрицей перехода от старого базиса к новому.

Определение без слов:

$$(\overrightarrow{e_1}', \ \overrightarrow{e_2}', \ \overrightarrow{e_3}') = (\overrightarrow{e_1}, \ \overrightarrow{e_2}, \ \overrightarrow{e_3}) \cdot T \tag{1}$$

Пересчёт координат векторов:

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = T \cdot \begin{pmatrix} \alpha_1' \\ \alpha_2' \\ \alpha_3' \end{pmatrix} \tag{4}$$

8 Замена системы координат

8.1 Общий случай

 $\{O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ — «старая» система координат $\{O', \overrightarrow{e_1}', \overrightarrow{e_2}', \overrightarrow{e_2}', \overrightarrow{e_3}'\}$ — «новая» система координат Пусть M — произвольная точка. Её координаты — координаты её радиус-вектора. Пусть в «старой» радиус-вектор \overrightarrow{OM} , обозначим (x, y, z), а в «новой» радиус-вектор \overrightarrow{OM} обозначим (x', y', z')

 $\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M}$. Пусть O' имеет координаты $(a_1^0,\ a_2^0,\ a_3^0)$ в старой системе координат.

$$\overrightarrow{OM} = \overrightarrow{OO'} + x'\overrightarrow{e_1} + y'\overrightarrow{e_2} + z'\overrightarrow{e_3}'$$
 (5)

В (5) разложим все векторы по исходному базису $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$

$$\begin{cases} x = a_1^0 + a_{11}x' + a_{12}y' + a_{13}z' \\ y = a_2^0 + a_{21}x' + a_{22}y' + a_{23}z' \\ z = a_3^0 + a_{31}x' + a_{32}y' + a_{33}z' \end{cases}$$

$$(7)$$

$$\underbrace{\begin{pmatrix} x \\ y \\ z \end{pmatrix}}_{\text{старые}} = T \underbrace{\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}}_{\text{новые}} + \begin{pmatrix} a_1^0 \\ a_2^0 \\ a_3^0 \end{pmatrix}$$

Поворот прямоугольной системы на плоскости.

(Важный частный случай)

$$T = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
 — матрица поворота

$$\overrightarrow{e_1}' = \cos\alpha \cdot \overrightarrow{e_1} + \sin\alpha \cdot \overrightarrow{e_2}$$

$$\overrightarrow{e_2}' = -\sin\alpha \cdot \overrightarrow{e_1} + \cos\alpha \cdot \overrightarrow{e_2}$$

Пересчёт координат при повороте:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \end{pmatrix}$$
$$\begin{cases} x = x'\cos \alpha - y'\sin \alpha \end{cases}$$

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

9 Кривые степени два. (Кривые второго порядка)

Определение 21. Кривой степени два называется множество точек с координатами (x, y), удовлетворяющих уравнению

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0, \quad A^{2} + B^{2} + C^{2} > 0$$
(1)

Теорема 9.1. С помощью поворота системы координат коэффициент при произведении переменных в (1) можно сделать равным нулю.

Доказательство. Будем подбирать в формулах поворота угол φ так, чтобы коэффициент при x'y' был равен нулю.

$$\begin{cases} x = x' \cos \varphi - y' \sin \varphi \\ y = x' \sin \varphi + y' \cos \varphi \end{cases}$$

 $A(x'\cos\varphi - y'\sin\varphi)^2 + 2B(x'\cos\varphi - y'\sin\varphi)(x'\sin\varphi + y'\cos\varphi) + C(x'\sin\varphi + y'\cos\varphi)^2 + \cdots + F = 0$

Выпишем коэффициенты при x'y' (x'y' = 0)

$$-2A\cos\varphi\sin\varphi + 2B(\cos^2\varphi)\sin^2\varphi + 2C\sin\varphi\cos\varphi = 0$$
$$2B' = 2B\cos2\varphi - (A - C)\sin2\varphi = 0$$
$$2B\cos2\varphi = (A - C)\sin2\varphi$$

- ullet Если B=0, то можно взять arphi=0
- Если A=C, то можно взять $\varphi=\frac{\pi}{4}$
- Если $A \neq C$, то $\cos 2\varphi \neq 0$, можно делить $\operatorname{tg} 2\varphi = \frac{2B}{A-C}$, то есть $\varphi = \frac{1}{2} \operatorname{arctg} \frac{2B}{A-C}$

Теорема 9.2. Если в уравнении

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$$

коэффициент при квадрате переменной не нуль, то коэффициент при первой степени этой переменной можно сделать нулём с помощью сдвига начала координат.

Доказательство. Пусть $A \neq 0$ и $D \neq 0$. Выделим из $Ax^2 + Dx$ полный квадрат:

$$Ax^2 + 2Dx = A\left(x^2 + 2\frac{D}{A}x\right) = A\left(x^2 + 2x\frac{D}{A} + \left(\frac{D}{A}\right)^2\right) - \left(\frac{D}{A}\right) = A\left(\underbrace{x + \frac{D}{A}}_{x'}\right)^2 - \left(\frac{D}{A}\right)^2 = A(x')^2 - \left(\frac{D}{A}\right)^2$$

1. В силу теоремы 9.1 будем считать, что B=0. Имеем:

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0 (2)$$

2. Пусть $AC \neq 0$ в (2). Тогда в силу теоремы 9.2 можно считать, что D=0 и E=0. Уравнение примет вид:

$$Ax^2 + Cy^2 + F = 0$$

 $2.1 \ A > 0$, ACF < 0. Для определённости пусть A > 0, C > 0, F < 0. Тогда поделим:

$$Ax^{2} + C^{y}2 = -F \mid : (-F)$$

$$\frac{x^{2}}{-F} + \frac{y^{2}}{-F} = 1$$

$$\dfrac{-F}{A}>0$$
 можем обозначить $\dfrac{-F}{A}=a^2$ $\dfrac{-F}{C}>0$ можем обозначить $\dfrac{-F}{C}=b^2$

$$\left| \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right| \tag{3}$$

Определение 22. Линия, которая в некоторой системе координат задаётся уравнением (3) называется эллипсом, а уравнение (3) — каноническим уравнением эллипса.

 $2.2 \; AC > 0$, ACF > 0 все одного знака. Для определённости A > 0, C > 0, F > 0.

$$Ax^{2} + Cy^{2} = -F \quad | : (-F)$$
$$\frac{x^{2}}{\frac{F}{A}} + \frac{y^{2}}{\frac{F}{C}} = -1$$

$$\frac{F}{A} = a^2 > 0$$

$$\frac{F}{C} = b^2 > 0$$

$$\boxed{\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1} \tag{4}$$

Определение 23. Линия, которая в некоторой системе координат задаётся уравнением (4) называется **мнимым эллипсом**, а уравнение (4) — **каноническим уравнением мнимого эллипса**.

 $2.3 \ AC > 0, \quad F = 0$

$$Ax^2 + Cy^2 = 0$$

Всегда можно считать, что A и C положительными, иначе умножим уравнение на -1. Переобозначим $A=a^2, \quad C=b^2$, имеем:

$$a^2x^2 + b^2y^2 = 0$$
 (5)

Определение 24. Линия, которая в некоторой системе координат задаётся уравнением (5) называется парой мнимых пересекающихся прямых, а уравнение (5) — каноническим уравнением парымнимых пересекающихся прямых.

2.4~AC < 0~(A и C имеют разные) и $F \neq 0$. Для определённости пусть $AF < 0, \quad CF > 0$, имеем

$$Ax^2 + Cy^2 = -F \quad |: (-F)$$
$$\frac{x^2}{-\frac{F}{A}} + \frac{y^2}{-\frac{F}{C}} = 1$$

$$-\frac{F}{A} = a^2$$
$$-\frac{F}{C} = -b^2$$

$$\left| \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right| \tag{6}$$

Определение 25. Линия, которая в некоторой системе координат задаётся уравнением (6) называется **гиперболой**, а уравнение (6) — **каноническим уравнением гиперболы**.

 $2.5 \; AC < 0, \quad F = 0. \; \text{Пусть} \; A > 0, \quad C < 0, \; \text{тогда обозначим} \; A = a^2 > 0, \quad C = -b^2 < 0, \; \text{имеем:}$

$$a^2x^2 - b^2y^2 = 0$$

$$ax - by = 0$$
(7)

$$(ax - by)(ax + by) = 0 \Longrightarrow \begin{bmatrix} ax - by = 0 \\ ax + by = 0 \end{bmatrix}$$

Определение 26. Линия, которая в некоторой системе координат задаётся уравнением (7) называется парой пересекающихся прямых, а уравнение (7) — каноническим уравнением пары пересекающихся прямых.

3. AC=0, только один из них равен 0 $(A^2+C^2>0)$. Будем считать, что A=0, а $C\neq 0$. Так как $C\neq 0$, то по теореме 9.2 слагаемого y в первой степени нет. Имеем:

$$Cy^2 + 2Dx + F = 0$$

 $3.1~D \neq 0$

$$Cy^2 + 2D\underbrace{\left(x + \frac{F}{2D}\right)}_{\text{сдвиг }\widetilde{w}} = 0$$

$$C\widetilde{y}^2 + 2D\widetilde{x} = 0 \mid : C$$

 $y=\widetilde{y}.$ Обозначим $\frac{D}{C}=-p.$ И перестанем писать волну:

$$y^2 = 2px$$
 (8)

Определение 27. Линия, которая в некоторой системе координат задаётся уравнением (8) называется **параболой**, а уравнение (8) — **каноническим уравнением параболы**.

$$3.2 D = 0, F \neq 0$$

$$Cy^2 + F = 0$$

 $3.2.1 \ CF < 0$

$$Cy^{2} + F = 0 \quad |: C$$
$$y^{2} = -\frac{F}{C}$$

Обозначим $-\frac{F}{C} = a^2$

$$y^2 = a^2 \tag{9}$$

$$(y-a)(y+a) = 0$$

Определение 28. Линия, которая в некоторой системе координат задаётся уравнением (9) называется парой параллельных прямых, а уравнение (9) — каноническим уравнением пары параллельных прямых.

3.2.2
$$\frac{F}{C} > 0$$
. Пусть $\frac{F}{C} = a^2$.

$$y^2 = -a^2 \tag{10}$$

$$y^2 + a^2 = 0 \iff (y + ia)(y - ia) = 0$$

Определение 29. Линия, которая в некоторой системе координат задаётся уравнением (10) называется парой мнимых параллельных прямых, а уравнение (10) — каноническим уравнением пары мнимых параллельных прямых.

$$3.2.3 F = 0, A = 0, C \neq 0, D = 0.$$

$$Cy^2 = 0 \quad | : C$$

$$y^2 = 0$$
(11)

Определение 30. Линия, которая в некоторой системе координат задаётся уравнением (9) называется двойной прямой, а уравнение (9) — каноническим уравнением двойной прямой.

Теорема 9.3. Кривая, заданная в «хорошей» системе координат уравнением (1) с помощью подходящей замены «хороших» координат приводится к одному из девяти попарно-различных канонических видов, перечисленных в таблице.

Условие	Каноническое	Название	Картинка
	уравнение		
AC > 0, F < 0	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ $a^2x^2 + b^2y^2 = 0$	Эллипс	
AC > 0, F > 0	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	Мнимый эллипс	
AC > 0, F = 0	$a^2x^2 + b^2y^2 = 0$	Пара мнимых пересекающихся прямых	
$AC < 0, \ F \neq 0$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $a^2x^2 - b^2y^2 = 0$	Гипербола	
AC < 0, F = 0		Пара пересекающихся прямых	
$AC = 0, D \neq$	$y^2 = 2px$	Парабола	
$0, (A \neq 0)$			
A = D =	$y^2 = a^2$	Пара параллельных прямых	
0, FC < 0			
A = D =	$y^2 = -a^2$	Пара мнимых параллельных прямых	
0, FC > 0			
$C \neq 0, A =$	$y^2 = 0$	Двойная прямая	
D = F = 0			

10 Эллипс.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a \geqslant b > 0$$

10.1 Зона картинки

Если M(x,y) принадлежит эллипсу,то $|x| < a, |y| \le b$, т.е. вся прямая лежит в прямоугольнике -a < x < a, -b < y < b Вершинами эллипса называются точки (a,0), (-a,0), (0,b), (0,-b При этом a - называется большей полуосью, b называется меньшей полуосью.

10.2 Симметричность

Эллипс симметричен относительно осей координат и начала координат, то есть если точка (x_0, y_0) принадлежит эллипсу, то точки $(-x_0, y_0), (-x_0, -y_0), (x_0, -y_0)$ тоже принадлежат эллипсу.

10.3 Внешний вид

При фиксировании x, |x| < a получаем, что

$$y^2 = b^2 \left(1 - \frac{x^2}{a^2} \right), \quad y_{\text{элл}} = \pm b \sqrt{1 - \frac{x^2}{a^2}}$$

При a = b, т.е. при случае с окружностью

$$y_{\text{окр}} = \pm a\sqrt{1 - \frac{x^2}{a^2}}$$

$$\forall x \quad \frac{y_1}{y_2} = \frac{\pm b\sqrt{1 - \frac{x^2}{a^2}}}{\pm a\sqrt{1 - \frac{x^2}{a^2}}} = \frac{b}{a}$$

Таким образом эллипс результат равномерного сжатия окружности с центом (0,0)

10.4 Фокусы

Определение 31. Факусами эллипса называются точки $F_1(c,0)$ и $F_2(-c,0)$, где $c^2=a^2-b^2,c\geqslant 0$

Отношения $\epsilon = c/a$ называется эксцентриситетом. Так как c < a, то для $\epsilon < 1$ Если эллипс выродился в окружность (т.е. a = b), то c = 0 и $\epsilon = 0$ для окружности.

10.5 Расстояние от точки эллипса до фокуса.

Теорема 10.1. Расстояние от точки M(x,y), лежащей в элллипсе, до каждого из фокусов вляется линейной функции от абсциссы x точки M и выражается формулами:

$$r_1 = |F_1 M| = a - \epsilon x$$

$$r_1 = |F_2M| = a + \epsilon x$$

Доказательство.

$$r_1 = |F_1 M| = \sqrt{(x-c)^2 + (y-0)^2} = \sqrt{(x^2 - 2cx + c^2 + y^2)} = \sqrt{x^2 - 2cx + c^2 + b^2 - \frac{b^2 x^2}{a^2}} = \sqrt{x^2 - 2cx + a^2 - b^2 + b^2 - \frac{a^2 b^2 x^2 - b^2 c^2 x^2}{a^2}} = \sqrt{a^2 - 2cx + \frac{c^2 x^2}{a^2}} = \sqrt{(a - \frac{c}{a}x)^2} = |a - \epsilon x|$$

Т.к. $\epsilon < 1, a > x$ получаем, что

$$r_1 = a - \epsilon x$$

Для r_2 аналогично.

10.6 Геометрические свойства эллипса.

Теорема 10.2. $M(x,y) \in \text{элл} \Leftrightarrow \text{сумма расстояний от } M$ до фокусов величина постоянная и равная 2a Доказательство.

- ightarrow Дано $M \in$ эллипс. Из п.5 $|F_2M| + |F_1M| = a + \epsilon x + a \epsilon x = 2a$
- \leftarrow Дано: $|F_1M| + |F_2M| = 2a$. Надо доказать, что эта точка $M \in$ эллипс, т.е. удовлетворяет уравнению

$$\sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a$$

$$\sqrt{(x-c)^2 + y^2} = 2a - \sqrt{(x+c)^2 + y^2}$$

$$(x-c)^2 + y^2 = 4a^2 - 4a\sqrt{(x+c)^2 + y^2} + (x+c)^2 + y^2$$

$$cx + a^2 = a\sqrt{(x+c)^2 + y^2}$$

$$a^2(x^2 + 2cx + c^2) + a^2y^2 = a^4 + 2a^2c^2x^2$$

$$x^2(a^2 - c^2) + a^2y^2 = a^2(a^2 - c^2)$$

$$x^2b^2 + a^2y^2 = a^2b^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

 \Diamond

10.7 Способ рисования эллипса

(Надо просто послушать)

10.8 Фокально-директориальное свойство.

Определение 32. Прямые $x=\frac{a}{\epsilon}$ и $x=-\frac{a}{\epsilon}$ называются директрисами эллипса $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

Теорема 10.3. $M(x,y) \in$ эллипс \Leftrightarrow отношение расстояние от M до фокуса к расстоянию от M до директрисы величина постоянноя и равна ϵ .

Доказательство.

 \rightarrow Дано: $M \in$ эллипс.

$$|MK_2| = d_2 = x - \left(-\frac{a}{\epsilon}\right) = x + \frac{a}{\epsilon} = \frac{1}{\epsilon} (x\epsilon + a) = \frac{r_2}{\epsilon}$$
$$\frac{|MF_2|}{|MK_2|} = \frac{r_2}{\frac{r_2}{\epsilon}} = \epsilon$$

 \leftarrow Дано: для точки M(x,y)выполнено соотношение $\frac{|MF_2|}{|MK_2|} = \epsilon$. Вывести отсюда каноническое уравнение эллипса.

$$\frac{\sqrt{(x+c)^2+y^2}}{x+\frac{a}{\epsilon}} = \epsilon \Rightarrow \sqrt{(x+c)^2+y^2} = x\epsilon + a \Rightarrow a\sqrt{(x+c)^2+y^2} = a^2 + cx$$

Последнее соотношение уже решалось в этой книжке и предлагается найти читателю это решение.

○

10.9 Касательная к эллипсу в его точке.

 $y - y_0 = f'(x_0)(x - x_0)$ - это уравнение касательной к графику y = f(x) Разобьем эллипс на два графика:

$$f_1(x) = b^2 \sqrt{1 - \frac{x^2}{a^2}}; \ f_2(x) = -b^2 \sqrt{1 - \frac{x^2}{a^2}}$$

Пусть y = f(x) - это либо f(x), либо f(x) (вычисления одинаковые)

$$\frac{x^2}{a^2} + \frac{[f(x)]^2}{b^2} = 1 \mid \cdot \frac{d}{dx}$$

$$\frac{2x}{a^2} + \frac{2f(x) * f'(x)}{b^2} = 0$$

$$f'(x) = -\frac{b^2}{a^2} \cdot \frac{2x}{2f(x)}, \ f(x) \neq 0$$

$$f'(x_0) = -\frac{b^2}{a^2} \cdot \frac{x_0}{y_0} (x - x_0)$$

$$y - y_0 = -\frac{b^2}{a^2} \frac{x_0}{y_0} (x - x_0), \ \mid \cdot a^2 y_0$$

$$a^2 y y_0 + b^2 x x_0 = a^2 y_0^2 + b^2 x_0^2, \ \mid : a^2 b^2$$

$$\frac{y y_0}{b^2} + \frac{x x_0}{a^2} = \frac{y_0^2}{b^2} + \frac{x_0^2}{a^2}$$

$$\frac{x x_0}{a^2} + \frac{y y_0}{b^2} = 1$$

Что и требовалось доказать.

10.10 Биссектриальное свойство касательной.

Теорема 10.4. Касательная - биссектриса внешнего угла факального треугольника. Доказательство.

 \Diamond

Двадцатью разными способами. Например, через уравнения прямых.

11 Гипербола

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \ a \geqslant b > 0$$

11.1 Зона расположения.

Очевидно, что при |x| < a точек гиперболы нет. Точки (-a,0) и (a,0) принадлежат гиперболе и называются вершинами гиперболы. При чём a называется дейстивительной полуосью, а b мнимой.

11.2 Гипербола симметрична относительно осей и начала координат.

Определение 33. Точка (0,0) - центр гиперболы.

11.3 Внешний вид.

Изучим точки пересечения гиперболы с прямыми, проходящими через начало координат

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$y = kx, \ k \ge 0$$

$$\frac{x^2}{a^2} - \frac{k^2 x^2}{b^2} = 1$$

$$b^2 x^2 - k^2 a^2 x^2 = a^2 b^2$$

$$x^2 = \frac{a^2 b^2}{b^2 - k^2 a^2}$$

$$x=\pm rac{ab}{\sqrt{b^2-k^2a^2}},$$
 если $b^2-k^2a^2>0,$ т.е. $k<rac{b}{a}.$

x не существует, если $k \geqslant \frac{b}{a}$

Обозначим $\sqrt{b^2-k^2a^2}=v$ (при $k<\frac{b}{a}$). Точки перечечения $(\frac{ab}{v},\frac{abk}{v}$ и $(-\frac{ab}{v},-\frac{abk}{v})$. Если k=0, то v=b и точка (a,0),(-a,0). $k\to\frac{b}{a}$, тогда $v\to0$ и абсциса точки на гиперболе $\to\infty$.

Определение 34. Прямые $y = \frac{b}{a}x$ и $y = -\frac{b}{a}x$ называются асимпотами гиперболы. ("Крайние"из прямых пучка y = kx, которые не пересекают гиперболу.

Определение 35. Точки $F_1(c,0)$ и $f_2(-c,0)$, где $c^2=a^2+b^2$, c>0, называются фокусами гиперболы.

Замечание 10. c > a

Определение 36. Число $\epsilon = \frac{c}{a}$ называется эксценстриситетом гиперболы. У гиперболы $\epsilon > 1$

11.4 Расстояние до фокусов.

Теорема 11.1. Расстояния от точки до на гиперболе до её фокусов считаются по формулам

Для правой ветви

$$r_1 = |a - \epsilon x| = \epsilon x - a$$
, t.k. $\epsilon > 1, x \geqslant a$

$$r_2 = |a + \epsilon x| = a + \epsilon x$$

Для левой ветви: $e>1, x\leqslant -a$

$$r_1 = a - \epsilon x$$

$$r_2 = -a - \epsilon x$$

11.5 Геометрическое свойство гиперболы

Теорема 11.2. Точка M принадлежит гиперболе тогда и только тогда , когда модуль разности расстояний от этой точки до фокусов величина постоянная и равная 2a

Определение 37. Прямые $x = \frac{a}{\epsilon}$ и $x = -\frac{a}{\epsilon}$ называется директрисами гиперболы.

11.6 Как рисовать?

11.7 Фокльно-директориальное свойство гиперболы

Теорема 11.3. M(x,y) принадлежит эллипсу тогда и только тогда, когда отношение расстояния от этой точки до фокуса к расстоянию от точки до директрисы величина постоянная и равна ϵ

11.8 Уравнение касательной

Уравнение касательной к гиперболе в её точке (x_0, y_0) :

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$$

11.9 Биссекториальное свойство касательной к гиперболе:

Касательной к гиперболе является биссектрисой угла, образованного фокальными радиусами этой точки.

12 Парабола

12.1 Уравнение

Общее уравнение параболы:

$$y^2 = 2px, p > 0$$

12.2 Симметричность

Парабола симметрична относительно оси OX

12.3 Фокус

Точка $\left(\frac{p}{2},0\right)$ называется фокусами параболы, а пряммая $x=-\frac{p}{2}$ называется директрисой параболы.

12.4 Расстояние до фокуса

Расстояние от точки M(x,y) на параболе до фокуса равна $x+rac{p}{2}$

$$r = \sqrt{(x - \frac{p}{2})^2 + (y - 0)^2} = \sqrt{x^2 - px + \frac{p^2}{4} + 2px} = \left| x + \frac{p}{2} \right| = x + \frac{p}{2}$$

12.5 Фокально-директориальное свойство параболы

Теорема 12.1. Парабола - геометрическое место точек, равноудалённых от фокуса и от директрисы.

12.6 Касательная к параболе

Уравнение параболы $y^2=2px$. Если y=f(x) - график, то касательная в точке $(x_0,y_0=f(x_0))$ к графику задаётся уравнением

$$(y - y_0) = f'(x_0)(x - x_0)$$

Пусть $f_1(x) = \sqrt{2px}, f_2(x) = -\sqrt{2px}$ и f(x) это либо $f_1(x)$, либо $f_2(x)$.

$$y^{2} = 2px \mid \frac{d}{dx}$$

$$2yf'(x) = 2p$$

$$f'(x) = \frac{2p}{2y} = \frac{p}{f(x)}, \ f(x) \neq 0$$

$$f'(x_{0}) = \frac{p}{x_{0}} = \frac{p}{y_{0}}$$

$$y - y_{0} = \frac{p}{y_{0}}(x - x_{0}), \ *y_{0}$$

$$yy_{0} - y_{0}^{2} = px - px_{0}$$

$$yy_{0} - 2px_{0} = px - px_{0}$$

$$yy_{0} = p(x + x_{0})$$

Если $x_0 = 0$, то $y_0 = 0$, то $0 = px \Rightarrow x = 0$

12.7 Биссектриальное свойство касательной к параболе

Теорема 12.2. Касательная к параболе в её точке (x_0, y_0) является биссектрисой между факальным радиусом этой точки, отложенный от этой точки, и направления параллельном оси OX Доказательство.

Выберем единичные векторы по данным направлениям и сложим их. Если сумма - направляющий вектор касательной, мы всё доказали. Если $\overline{e}=(1,0),$ то $\overline{r}=(x-\frac{p}{2},y-0)=(x_0-\frac{p}{2},y_0).$

$$\frac{\overline{r}}{|\overline{r}|} = \frac{(x_0 - \frac{p}{2}, y_0)}{\sqrt{(x_0 - \frac{p}{2})^2 + y_0^2}} = \frac{(x_0 - \frac{p}{2}, y_0)}{\sqrt{x_0^2 - x_0 p + \frac{p^2}{4} + 2px_0}} = \frac{(x_0 - \frac{p}{2}, y_0)}{\sqrt{x_0^2 + px_0 + \frac{p^2}{4}}} = \frac{(x_0 - \frac{p}{2}, y_0)}{x_0 + \frac{p}{2}}$$

Сложим единичный вектор с $\overline{e_1}$

$$\frac{\overline{r}}{|\overline{r}|} + \overline{e_1} = \left(\frac{x_0 - \frac{p}{2}}{x_0 + \frac{p}{2}}, \frac{y_0}{x_0 + \frac{p}{2}}\right) + (1, 0) = \left(\frac{2x_0}{x_0 + \frac{p}{2}}, \frac{y_0}{x_0 + \frac{p}{2}}\right)$$

$$\operatorname{tg} \alpha = \frac{y_0}{2x_0} = \frac{y_0}{\frac{y_0^2}{p}} = \frac{p}{y_0}$$

 \Diamond

13 Общая теория кривых второй степени

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0 (1)$$

$$a_{11}^2 + a_{12}^2 + a_{22}^2 > 0 (1')$$

Будем искать общие точки кривой (1) с прямой

$$\begin{cases} x = x_0 + \alpha t \\ y = y_0 + \beta t \end{cases} \qquad \alpha^2 + \beta^2 > 0$$
 (2)

Подставим (2) в (1)

$$a_{11}(x_0 + \alpha t)^2 + a_{12}(x_0 + \alpha t)(y_0 + \beta t) + a_{22}(y_0 + \beta t)^2 + 2a_1(x_0 + \alpha t) + 2a_2(y_0 + \beta t) + a_0 = 0$$
(3)

$$Pt^2 + 2Qt + R = 0 (4)$$

$$P = a_{11}\alpha^2 + 2a_{12}\alpha\beta + a_{22}\beta^2 \tag{5}$$

$$Q = (a_{11}x_0 + a_{12}y_0 + a_1)\alpha + (a_{12}x_0 + a_{22}y_0 + a_2)\beta$$
(6)

$$Q = (a_{11}\alpha + a_{12}\beta)x_0 + (a_{12}\alpha + a_{22}\beta)y_0 + a_1\alpha + a_2\beta$$
(7)

$$R = a_{11}x_0^2 + 2a_{12}x_0y_0 + a_{22}y_0^2 + 2a_1x_0 + 2a_2y_0 + a_0$$
(8)

Уравненеи (4) имеет в \mathbb{R} не более двух корней:

- 2 корня 2 точки пересечения с прямой
- 1 корень, то есть 2 равных корня прямая касается кривой.
- 0 корней нет точек пересечение

Исключительный случай: $P = 0 \Leftrightarrow a_{11}\alpha^2 + 2a_{12}\alpha\beta + a_{22}\beta^2 = 0$ (9) Условие (9) не зависит от (x_0, y_0) , а зависит только от направления (α, β)

Из (4) при условии (9) мы можем получить один из трех случаев.

- $Q \neq 0$ один корень (для t) одна точка пересечения, но не касания
- Q=0, R=0 0=0 бесконечно много точек пересечения, и вся прямая (2) принадлежит кривой (1)
- $Q=0, R \neq 0$ нет решений нет точек пересечения

Определение 38. Направление (α, β) , определеяется условием (9) (т.е. P = 0), называется асимптотическим направлением для кривой (1).

Определение 39. $\delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}$

Теорема 13.1. Кривая степени 2 имеет:

- а) 2 ассимптоты направления, если $\delta < 0$
- б) 1 ассимптоту направления, если $\delta=0$
- в) 0 ассимптот направлений, если $\delta > 0$ Доказательство.

Случай 1) $a_{11}=a_{22}=0\Rightarrow a_{12}\neq 0$, $\delta=||=-a_{12}^2<0$ Уравнение (9) имеет вид $2a_{12}\alpha\beta=0$. Решения: $(\alpha,\beta)=(1,0);\ (\alpha,\beta)=(0,1)$

Случай 2) $a_{22} \neq 0. \Rightarrow \alpha \neq 0.$ Поделим (9) на α^2

$$a_{11} + 2a_{12} \left(\frac{\beta}{\alpha}\right) + a_{22} \left(\frac{\beta}{\alpha}\right)^2$$

$$a_{21} \left(\frac{\beta}{\alpha}\right)^2 + 2a_{12} \left(\frac{\beta}{\alpha}\right) + a_{11} = 0$$

$$D = a_{12}^2 - a_{11}a_{22} = -\delta$$

• Если $-\delta > 0$, то два решения

- Если $-\delta = 0$, то одно решение
- Если $-\delta < 0$, то нет решений

Случай 3)
$$a_{11} \neq 0$$
 - полный аналог случая 2).

 \Diamond

Определение 40. Кривые

- ullet С $\delta>0$ называются эллиптического типа
- С $\delta=0$ называются прямыми параболического типа
- С $\delta < 0$ гиперболического типа.

13.1 Эллипс

$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$

$$\delta=\begin{vmatrix}\frac{1}{a^2}&0\\0&\frac{1}{b^2}\end{vmatrix}=\frac{1}{a^2b^2}>0\quad -$$
 эллептического типа

13.2 Гипербола

$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$

$$\delta=\begin{vmatrix}\frac{1}{a^2}&0\\0&-\frac{1}{b^2}\end{vmatrix}=-\frac{1}{a^2b^2}<0\quad -$$
 гиперболического типа

13.3 Парабола

$$y^2 = 2px$$

$$\delta = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0 \quad - \text{параболического типа}$$

Определение 41. Хордой кривой называется отрезок прямой, концы которого лежат на кривой, а остальные точки не лежат на кривой.

Следствие. Хорда не может содержать асимптотического направления

Пусть (α, β) - не асимпптотическое направления. Рассмотрим множество середин всех хорд этого направления. Путь $M_0(x_0, y_0)$ - начальные точки прямой (2) - середина хорды. \Rightarrow общие точки кривой (1) и кривой (2) симметричны относительно точки M_0 . \Rightarrow корни $t_{1,2}$ обладают свойством $t_1 = -t_2 \neq 0 \Rightarrow Q = 0$ по теореме Виета. То есть середины хорд направления (α, β) удовлетворяют уравнению (7) = 0

$$(a_{11}\alpha + a_{12}\beta)x_0 + (a_{12}\alpha + a_{22}\beta)y_0 + a_1\alpha + a_2\beta = 0$$

Следовательно на прямой

$$(a_{11}\alpha + a_{12}\beta)x + (a_{12}\alpha + a_{22}\beta)y + a_{1}\alpha + a_{2}\beta = 0$$
(10)

лежат середины всех хорд направления (α, β)

Определение 42. Прямая, определеяемая уравнением (10), называется диаметром кривой (1), сопряженным направлению (α, β)

Теорема 13.2. Определение диаметра корректно. (То есть уравнение (10) действительно определяет прямую)

Доказательство. (10) не прямая, если
$$\begin{cases} a_{11}\alpha + a_{12}\beta = 0 \mid \cdot \alpha \\ a_{12}\alpha + a_{22}\beta = 0 \mid \cdot \beta \end{cases}$$

$$a_{11}\alpha^2 + 2_{12}\alpha\beta + a_{22}\beta^2 = 0$$

Следовательно, (α, β) это асимптотическое направление (см. (9)) - не может быть по условию.

Перепишем (10) «в виде (6)»:

$$(a_{11}x + a_{12}y + a_1)\alpha + (a_{12}x + a_{22}y + a_2)\beta = 0$$
(11)

(11) определеяет пучок прямых, если

$$\frac{a_{11}}{a_{12}} \neq \frac{a_{12}}{a_{22}}$$
, то есть прямые $a_{11}x + a_{12}y + a_1 = 0$ и $a_{12}x + a_{22}y + a_2 = 0$

перескаются, то это пучок с центром в точке, определяемой системой

$$\begin{cases} a_{11}x + a_{12}y + a_1 = 0\\ a_{12}x + a_{22}y + a_2 = 0 \end{cases}$$
 (12)

. А если $\frac{a_{11}}{a12}=\frac{a_{12}}{a_{22}}$, то (11) печок параллельных прямых. Если обычный пучок, то $\delta\neq 0$, если пучок параллельных прямых, то $\delta=0$

Пусть (α, β) не асимптотические направления. Таким образом, при $\delta = 0$ все диаметры параллельны друг другу, а при $\delta \neq 0$ все диаметры пересекаются в точке решения системы (12). В этом пучке могут быть прямые асимптотических направлений.

Теорема 13.3. (Теорема А.) Решение системы (12) является центром симметрии кривой.

Доказательство. Путь решение системы 12 - точка O. Примем эту точку за начальную точку прямой

Случай а). Пусть (2) имеет не асимптотическое направление, значит $P \neq 0$. Q = 0, в силу (6). Уравнение

(4) принимает вид
$$Pt^2+R=0 \Rightarrow t_{1,2}=\pm \sqrt{-\frac{R}{P}}$$
, т.е. либо $t_1=-t_2$, т.е. 2 точки пересечения, симметричные относит

 $t_1 = -t_2$, т.е. 2 точки пересечения, симметричные относительно точки O, либо

 $t_1 = t_2$ т.е. точка O симметрична самой себе относительно себя, либо

корни мнимые - Ø симметрично Ø

Случай б) Пусть (2) имеет асимптотическое направление. В этом случае P=0, Q=0 в силу (6). Значит (4) принимает вид R = 0(*).

Если R = 0 - True, то (*) верно при любых t.

Если R=0-False, то (*) всегда неверно, но \varnothing симметрично \varnothing

13.4 Определение каноническиого вида по инвариантам.

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0, \ a_{11}^2 + a_{12}^2 + a_{22}^2 > 0$$

Ортогональный инвариант: $\mathbf{S}=\mathbf{t} \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} = a_{11}+a_{22}$

- 1) $\delta > 0$ эллипс или пара мнимых прямых или мнимый эллипс
- 2) $\delta<0\Rightarrow\lambda_1\lambda_2<0\Rightarrow\lambda_1$ и λ_2 разных знаков. 2.1) Если при этом $\Delta=0$, то $\tau=0\Rightarrow\alpha^2x^2-\beta^2y^2=0$ пара пересекающих прямых 2.2) Если при этом $\Delta\neq0$, то $\tau\neq0\Rightarrow\alpha^2x^2-\beta^2y^2+\tau=0$ гипербола

Вывод для Вида $I: \delta > 0, \ \Delta = 0 \Rightarrow$ пара мнимых пересекающихся прямых

- $\delta > 0$ $S_{\Delta} < 0 \Rightarrow$ эллипс
- $\delta > 0 \ S_{\Delta} > 0 \Rightarrow$ мнимый эллипс
- $\delta < 0$ $\Delta = 0 \Rightarrow$ пара пересекающихся прямых
- $\delta < 0$ $\Delta \neq 0 \Rightarrow$ гипербола

Вид (II). $F = \lambda_2 y^2 + 2b_1 x = 0, \ \lambda_2 b_1 \neq 0$

$$\delta = 0$$
 $S = \lambda_2 \neq 0$ $\Delta = -b_!^2 \lambda_2 \neq 0$

$$b1 = \pm \sqrt{-\frac{\Delta}{\lambda^2}} = \pm \sqrt{-\frac{\Delta}{S}} \ (\Delta S = -b_1^2 \lambda_2 * \lambda_2 = -b_1^2 \lambda_2^2)$$

Ясно, что F = 0 определяет параболу $y^2 = -\frac{2b_1}{\lambda_2}x$;

$$p = \frac{b_1}{\lambda_2} = \frac{\pm \sqrt{\frac{-\Delta}{3}}}{\lambda_2} = \pm \sqrt{-\frac{\Delta}{S^3}}$$

Всегда можно брать $p=\pm\sqrt{-\frac{\Delta}{S^3}}$ - направление оси ОХ можно сменить на противоположное Вывод II. $\delta=0, \Delta\neq 0$ - парабола Вид III. $F=\lambda_2 y^2+\tau,\ \lambda_2\neq 0$

$$\delta=0, \Delta=0, S=\lambda_2 \neq 0 au$$
 через Δ и δ выразить нельзя!

Определение 43. $K = \begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix} + \begin{vmatrix} a_2 2 & a_2 \\ a_2 & a_0 \end{vmatrix}$

Лемма 13.1. Корни характеристического многочлена $_A(\lambda)$ матрица $A=\begin{pmatrix} a_{11} & a_{12} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{pmatrix}$ не меняются при замене прямоугольной системы координат без переноса начала. Доказательство.

$$A(\lambda) = |A - \lambda E|, \ A'(\lambda) = |A' - \lambda E| = |D^T A D - \lambda E| = |D' A D - \lambda D^T E D| =$$
$$= |D^T (A - \lambda E) D| = |D^T ||D|| |A - \lambda E| = |E||A - \lambda E| = |A - \lambda E|$$

Теорема 13.4. Если $\delta = \Delta = 0$, то K - ортогональный инвариант. Он называется полуинвариантом (семиинвариантом) Доказательство.

$$A(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_1 \\ a_{12} & a_{22} - \lambda & a_2 \\ a_1 & a_2 & a_0 - \lambda \end{vmatrix} = -\lambda^3 + (a_{11} + a_{22} + a_0)\lambda^2 - (\begin{vmatrix} a_{22} & a_2 \\ a_2 & a_0 \end{vmatrix} + \begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} *\lambda + \Delta = -\lambda^3 + (a_0 + S)\lambda^2 - (K + \delta)\lambda + \Delta$$

- а) В силу лемммы, К сразу инвариант, если нет сдвига начала координат.
- б) Пусть $\delta = \Delta = 0$ (условие теоремы). a_{12} можно считать равным нулю, посколько он уничтожается с помощью поворота независимо от того, где выбрано начало.

Пусть
$$a_{12}=0\Rightarrow \delta=\begin{vmatrix} a_{11} & 0 \\ 0 & a_{22} \end{vmatrix}=a_{11}*a_{22}=0.$$
 Пусть $A_{11}=0,$ но $a_{22}\neq 0$
$$\Delta=\begin{vmatrix} 0 & 0 & a_1 \\ 0 & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{vmatrix}=-a_1^2a_{22}=0\Rightarrow a_1=0.$$
 Тогда F имеет вид:

$$F = a_{22}y^2 + 2a_2y + a_0$$

Сделаем замену координат: $\begin{cases} x = x' + x_0 \\ y = y' + y_0 \end{cases}$

$$F' = F(x(x', y'), y(x', y')) = a_{22}(y' + y_0)^2 + 2a_2(y' + y_0) + a_0 = a_{22}y'^2 + 2(a_{22}y_0 + a_2)y' + (a_{22}y_0^2 + 2a_2y_0 + a_0)y' + a_0 = a_{22}y'^2 + 2(a_{22}y_0 + a_0)y' + a_0 = a_{22}y'^2 + 2(a_{22}y_0 + a_0)y' + a_0 = a_{22}y'^2 + 2(a_{22}y_0 + a_0)y' + a_0 = a_{22}y'^2 + a_0 = a_0$$

$$a'_{22} = a_{22}$$

$$a_2' = a_{22} + a_2$$

$$a_0' = a_{22}y_0^2 + 2a_2y_0 + a_0$$

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a_{22} & a_2 \\ 0 & a_2 & a_0 \end{pmatrix} , A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a'_{22} & a'_2 \\ 0 & a'_2 & 2'_0 \end{pmatrix}$$

$$K = 0 + a_{22}a_0 - a_2^2$$

$$K' = 0 + a'_{22}a'_0 - a'^2_2 = a_{22}(a_{22}y_0^2 + 2a_2y_0 + a_0) - (a_{22}y_0 + a_2)^2 = a_{22}a_0 - a_2^2$$

 \Diamond

 \Diamond

Вернёмся к квадрика вида III: $F = \lambda_2 y^2 + \tau = 0$

Depicted it is realized in
$$T = \lambda_2 g + \tau = 0$$

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \tau \end{pmatrix}, S = \lambda_2 \neq 0, \delta = \Delta = 0, K = \lambda_2 \tau \Rightarrow \tau = \frac{K}{\lambda_2} = \frac{K}{S}$$
Hence, each $\delta = \Delta = 0$, we

При $K>0\Rightarrow \lambda_2$ и au одного знака \Rightarrow мнимые параллельные прямые

При $K < 0 \Rightarrow \lambda_2$ и τ разных знаков \Rightarrow параллельные прямые

При $K=0 \Rightarrow \tau=0 \Rightarrow$ двойная прямая

Название	Инварианты	и Инвариант	Картинка
1) Эллипс	$\delta > 0$	$S\Delta < 0$	Эллиптический тип, централь-
			ные
2) Мнимый эллипс	$\delta > 0$	$S\Delta < 0$	Эллиптический тип, централь-
			ные
3) Пара мнимых переекающихся прямых.	$\delta > 0$	$\Delta = 0$	Эллиптический тип, централь-
			ные
4) Гипербола	$\delta < 0$	$\Delta \neq 0$	Гиперболический тип, цен-
			тральные
5) Пара пересекающихся прямых	$\delta < 0$	$\Delta = 0$	Гиперболический тип, цен-
			тральные
6) Парабола	$\delta = \Delta 0$	$\Delta \neq 0$	Параболический тип, нецен-
			тральные
7) Пара параллельных прямых	$\delta = \Delta = 0$	K < 0	Параболический тип, нецен-
			тральные
8) Пара мнимых параллельных прямых	$\delta = \Delta = 0$	K > 0	Параболический тип, нецен-
			тральные
9) Двойная прямая	$\delta = \Delta = 0$	K = 0	Параболический тип, нецен-
			тральные

Теорема 13.5. Эта таблица даёт необходимое и достаточное условие принадлежности кривой степени 2 тому или иному типу.

Доказательство.

- ← Доказательство это наш вывод типов по инвариантам
- → Проверка, достаточно её сделать для каноническигого уравнения

Пример: Пусть кривая - эллипс:
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\ A=\begin{pmatrix} \frac{1}{a^2} & 0 & 0\\ 0 & \frac{1}{b^2} & 0\\ 0 & 0 & -1 \end{pmatrix},\ \delta>0,\ \Delta S<0$$

Теорема 13.6. Существует и единственная кривая степени два, проходящая через 5 точек, если никакие 4 из них не лежат на одной прямой. Доказательство.

Пусть $P_i(x_i, y_i), i = 1, 2, ..., 5$ - такие 5 данных точек. Подставим каждой из них в общее уравнение кривой степени 2, мы получим линейное уравнение для коэффициентов.

$$a_{11}x^{2} + 2a_{12}xy + a_{22}y^{2} + 2a_{1}x + 2a_{2}y + a_{0} = 0$$
$$F(x,y) = F(P_{1}) = a_{11}x^{2} + 2a_{12}xy + a_{22}y^{2} + 2a_{1}x + 2a_{2}y + a_{0} = 0$$

Пишем это 5 раз для $P_1, P_2, ..., P_5$. Уравнение однородное, решений бесконечно много. Нам нужно решение только с точностью до постоянно ненулевого множителя, поэтому не страшно, что неизвестных 6, а уравнений 5. докажем, что уравнение этой системы линейно независимо. Доказывать будем от противного. Пусть, для определенности, 5-ое есть линейная комбинация остальных 4-ёх уравнений. Тогда любая кривая степени 2, проходящие через первые 4 точки P_1, P_2, P_3, P_4 , проходят и через P_5

Случай 1). Три точки из P_1, P_2, P_3, P_4 лежат на одной прямой "l". Через P_4 порведем прямую $m \neq l$ и не проходящую через P_5 Рассмотрим прямую $m \cup l$ - кривая степени 2. Не проходит через P_5 - противорече-

Случай 2) Никакие три точки из множества P_4 не лежат на одной прямой.

$$q_1 = (P_1 P_2) \cup (P_3 P_4)$$
 - кривая степени 2

$$q_2 = (P_1 P_4) \cup (P_2 P_3)$$
 - кривая степени 2

По предложению от противного $P_5 \in q_1, P_5 \in q_2 \Rightarrow P_5 \in q_1 \cup q_2 \Rightarrow P_5 \in \{P_1, P_2, P_3, P_4\}$ - противоречие. \heartsuit

Определение 44. Шестивершнинником называется упорядоченный набор шести точек на плоскости, при условии, что никакие три из них не лежат на одной прямой.

Определение 45. Если $\{A_1,A_2,A_3,A_4,A_5,A_6\}$ шестивершинник, то стороны (A_1A_2) и (A_4A_5) , (A_2A_3) и (A_5A_6) , (A_3A_4) и (A_6,A_1) называется парами противоположных сторон.

Определение 46. Коникой называется либо эллипс, либо гипербола, либо парабола, либо маленький конь.

Теорема 13.7. Теорема Паскаля. Точки пересечений продолжений противоположных сторон шестивершинника, вписанного в конику, лежат на одной на одной прямой.

Теорема 13.8. Теорема о мистическом шестивершиннике.