In the fake two-headed quarter example, P(F) is called the prior probability and P(F|H) is called the posterior probability.

Naive Bayes Classification

Despite its simplicity, Naive Bayes—sometimes called *Idiot's Bayes*¹—often beats more sophisticated algorithms. It works well on large data sets, e.g. spam filtering and topic modeling.

Naive Bayes assumes conditional independence.

16 Definition (Conditional Independence)
Events *A* and *B* given *C* are conditionally independent if

$$P(A \cap B|C) = P(A|C)P(B|C)$$

17 Example (Naive Bayes Classification)

Use the training data below and Naive Bayes classification to predict the probabilities of the target labels for the attribute values A=1 and B=0, i.e. compute the probabilities:

$$P(-|A=1, B=0)$$
 $P(+|A=1, B=0)$

training data

	Ā	В	Т		Α	B	Т
1.	1	0	+	1.	1	0	?
2.	0	1	+				
3.	0	1	_				
4.	0	0	_				
5.	1 0 0 0 1	1	–				

Solution:

¹Many people apply Naive Bayes thinking they are using Bayes Theorem when in fact they are using an approximation of Bayes Theorem.

The Naive Bayes classifier computes the probabilities $P({\rm class}_k|{\rm attributes}),\ k=1,2,\ldots,N$ using Bayes Theorem and selects the largest one. Bayes Theorem implies:

$$P(\mathsf{class}_k|\mathsf{attributes}) = \frac{P(\mathsf{attributes}|\mathsf{class}_k)\,P(\mathsf{class}_k)}{P(\mathsf{attributes})}.$$

Applying the conditional independence assumption, we have that

$$P(\mathsf{attributes}|\mathsf{class}_k) = P(\mathsf{attrib}_1|\mathsf{class}_k)P(\mathsf{attrib}_2|\mathsf{class}_k)\cdots P(\mathsf{attrib}_n|\mathsf{class}_k)$$

where n equals the number of attributes. The probability $P(\mathsf{attrib}_j|\mathsf{class}_k)$ equals the fraction of class_k records that have $\mathsf{attribute}$ attribute attrib_j . One of the problems that can occur in practice with this conditional independence assumption is that if any attribute attrib_j is missing for class class $_k$, then $P(\mathsf{attributes}|\mathsf{class}_k) = 0$. A common fix is to add a fixed number of "pseudo-counts" (fake counts) to all the attributes so none are missing. The number of pseudo counts (which can be a fraction of a count) is a key hyper-parameter of the Naive Bayes classifier. The optimal pseudo counts to add is determined using cross-validation.