

MMSP 2nd Module – Lab3

Davide Salvi davide.salvi@polimi.it

Predictive coding

- 1. Generate 10000 samples of the random process $x(n) = \rho x(n-1) + z(n)$, where ρ =0.95 and $z(n) \sim N(0,0.1)$.
- 2. Build a PCM codec. Quantize the signal with a uniform quantizer and R bits. Compute the R-D curve for R=1,2,...,8 bits.
- 3. Build a predictive codec in open loop. Use the optimal MMSE predictor. Use PCM to initialize the codec.
- 4. Buid a DPCM codec. Use the optimal MMSE predictor. Use PCM to initialize the codec.
- 5. Compare the R-D curves for PCM, open-loop DPCM and closed-loop DPCM

1. Uniform quantization: $x_q = delta * floor(x/delta) + delta/2$.

1. Optimal MMSE predictor for AR(1): $x_hat(n) = rho * x(n-1)$

2. Pay attention to the difference between closed-loop and open-loop.

Predictive coding

- Load the stereo file 'mso.wav' and define xl and xr as the left and right channels, respectively.
- 2. Build a DPCM codec. Quantize the signal with a uniform quantizer and R=1,2,...,8 bits.

Use the left channel xl as the signal and:

- 1. xl(n-1)
- 2. xr(n)
- dummy 5*xl(n)
 as the predictor. Use PCM to initialize the codec.
- 3. Compute the R-D curve for R=1,2,...,8 bits.

1. Load the stereo file 'ns.wav'.

2. Build a PCM codec. Quantize the signal with a uniform quantizer and R=1,2,...,8 bits, using *floor*, *ceil*, and *round* in the quantizer rule.

3. Compute the R-D curve for R=1,2,...,8 bits. What's wrong?

Predictive coding

- 1. Load the image 'lena512color.tiff'.
- 2. Let x be the red channel and y the green channel of the image. Quantize y with PCM and DPCM (R=1,2,...,8 bits) using:
 - 1. $Y_hat(n) = a*x(n)+b$
 - 2. $Y_hat(n) = randn*x(n) + randn*100$

where 'a' and 'b' are obtained by linear regression (least squares on y=ax+b). Use PCM to initialize the codec.

3. Compute the R-D curve for R=1,2,...,8 bits.