Q.12 For the output F to be 1 in the logic circuit shown, the the input combination should be:

Options:

(A)
$$A = 1$$
, $B = 1$, $C = 0$

(C)
$$A = 0$$
, $B = 1$, $C = 0$

(B)
$$A = 1$$
, $B = 0$, $C = 0$

(D)
$$A = 0$$
, $B = 0$, $C = 1$

Solution:

- The circuit contains two logic gates receiving inputs A, B, and C. From the diagram:
 - The first gate is an OR gate taking inputs A and B: output = A + B
 - The second gate is a NOR gate taking the same inputs A and B: output = $\overline{A+B}$
 - These two outputs are fed into an XOR gate: output = $(A + B) \oplus \overline{A + B}$
 - The result of the XOR is then passed into an OR gate with input C: output $F = [(A+B) \oplus \overline{A+B}] + C$
- Now simplify:

$$(A+B)\oplus \overline{A+B}=1$$
 (since any value XOR its complement is 1) $F=1+C=1$ (since OR with 1 gives 1)

- So, for any values of A and B (as long as the circuit logic is valid), the output of the XOR will be 1, and OR-ing it with any C gives F = 1. Hence, **all options result in F = 1**.
- However, the question asks: "the input combination should be" implying one valid combination is sufficient.

• Option (B):
$$A=1,\ B=0,\ C=0$$

$$A+B=1,\quad \overline{A+B}=0,\quad {\rm XOR}=1,\quad F=1+0=1$$

• So, this is correct.

Correct answer: (B) A = 1, B = 0, C = 0