

PREPARED DUST SAMPLE CASSETTE LABELS:

MAS JOB NUMBER: M 1811

CLIENT JOB NUMBER: A88-120.17, A88-120.15

SAMPLE NUMBER: LABEL:

13 - 2 A88-120.15 Oaks Mall - Gainesville, Fla.

#2 - C-11 Store Front - top of sign H = 4 1/2" X 5"

T = 1min 11-8-88

14 - 3 A88-120.15 Oaks Mall, Gainesville, Fla #3 = A-16

Store Front - Window ledge H = 9" X 9" T = 2min 11-8-88

15 - #4 A88-120.15 Oaks Mall - Gainesville, Fla #4 North

Entrance Clay Floor Tile H = 6" X 12" T = 2min 11-8-88

16 - #5 A88-120.15 Oaks Mall, Gainesville, Fla #5 Center Court

Back of Directory H = 12" X 12" T = 2min 11-8-88

17 - #6 A88-120.15 Oaks Mall - Gainesville, Fla. #6 D-9 Store

Front Top of Wood trim above stores 11-8-88

18 - #7 A88-120.15 Oaks Mall, Gainesville, Fla #7 A-3

Store front Top of Canopy H = 12" X 12" T = 2min 11-8-88

19 - #8 A88-120.15 Oaks Mall - Gainesville, Fla. #8 Oak

6 Theatres Top of sign H = 2" X 12" 11-8-88

20 - #9 A88-120.15 Oaks Mall - Gainesville, Fla. #9 - Information
booth Carpet on floor H = 12" X 12" T = 1min 11-8-88

OBJECT NAME: Lau Anor, PrudentialOBJECT NUMBER: M 1811PE OF SAMPLES: DUSTSH: TA: DATE OF PREP: 6/25/89
PREP TECH: DA
DIRECT PREP TECHNIQUE: Must Method

B.I.D. #:	CLIENT I.D. #:	FILTER TYPE	VOLUME FILTERED NO. 1	VOLUME FILTERED NO. 2	VOLUME FILTRATED NO. 3	COMMENTS:	
						TOTAL SUSPENSION VOLUME	
1811 - 1	A88-120-17-1	47mm MCE	10ml.			100 ml	
1811 - 2	A88-120-17-2	"	3ml			100 ml	
1811 - 3	A88-120-17-3	"	20ml			100 ml	
1811 - 4	A88-120-17-4	"	30ml			100 ml	
1811 - 5	A88-120-17-5	47mm MCE	1ml			100 ml	1-5 done on 6/22/89
-	Lab Blank	"				100 ml	Box 26
1811 - 6	A88-120-17-6	"	20ml			100 ml	
1811 - 7	A88-120-17-7	"	20ml			100 ml	
1811 - 8	A88-120-17-8	"	0.8 ml			100 ml	
1811 - 9	A88-120-17-8	47mm MCE	30ml			100 ml	

PROJECT NAME: Tan Head, Plasterer DATE OF PREP: 6/25/89
 PROJECT NUMBER: M1811

TYPE OF SAMPLES: DUST

USH:
 RTA:

PREP TECH: DA
 DIRECT PREP TECHNIQUE: Dust Method

AB I.D. #:	CLIENT I.D. #:	FILTER TYPE	VOLUME FILTERED NO. 1	VOLUME FILTERED NO. 2	VOLUME FILTERED NO. 3	TOTAL SUSPENSION VOLUME	COMMENTS:
M1811-10	A88-120-17-18	47mm MCE	1ml			100ml 100ml	
M1811-11	A88-120-17-11	"	10ml			100ml	
M1811-12	A88-120.15-1	"	10ml			100ml	6-12 done on 6/24/89
—	Tat Blank	"				100ml	Box 26
M1811-13	A88-120.15-2	47mm MCE	1ml			100ml	
M1811-14	A88-120.15-3	"	5ml			100ml	
M1811-15	A88-120.15-4	"	10ml			100ml	
M1811-16	A88-120.15-5	"	25ml			100ml	
M1811-17	A88-120.15-6	"	10ml			100ml	
M1811-18	A88-120.15-7	47mm MCE	10ml			100ml	

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVAC

Client: LAW ATLANTA Accelerating Voltage: 100 KV
 Sample ID: A88-120-17-1 Indicated Mag: 25 KX
 MAS Job Number: M 1811-1 Screen Mag: 20 KX
 Date Sample Analyzed: 14 - APR - 96 Microscope Number: 1 2 3 4 5
 Number of Openings/Grids Counted: 15 / 2 Filter Type: MCE PC
 Grid Accepted, Low Mag: Yes No Filter Size: 25mm, 37mm, 47mm
 Percent Loading: 12 % Filter Pore Size (um): 0.45
 Grid Box #: 1041 Grid Opening: 1) 100 um x 92 um
2) 100 um x 100 um

Analyst: [Signature]
 Reviewer: [Signature]

Calculation Data: Counting Rules: AHERA LEVEL II

Effective Filter Area in mm²: (A) 1339

Number of Grid Openings Examined: (B) 10

Average Grid Opening Area in mm²: (C) 0.009600

Total Volume of Original Suspension in ml: (D) 100

Equivalent Volume of Original Suspension Filtered in ml: (E) 10 (1:10)

Area Sampled in sq. ft. / cm²: (F) 0.292 sq. ft. 271.0 cm²

Total Number of Asbestos Structures Counted: (G) 0

Number of Asbestos Structures between 0.5 and 5 microns: 0 Structures \geq 5 microns: 0

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{B}{A} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\text{Area in cm}^2 = \text{sq. ft.}$$

929.03

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures :

Structures per sq. ft.
310

Structures per cm²
3105

Results for Structures \geq 5 microns :

Structures per sq. ft.
305

Structures per cm²
305

MAS JOB NUMBER: M-1811-1

PAGE 1 / 1

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE

AMO = AMOSITE

CRO = CROCIDOLITE

ACT = ACTINOLITE

TRE = TREMOLITE

THE TREMERE ANT = ANTHOPHYLLI

N = NON ASBESTOS

STRUCTURE

STRUCTURE

F = FIBER

R = RUNDI E

**B = BUNDEE
G = GLISTER**

S = SCALAR

NSD = NO STRUCTURES

~~NO SHOOTING
DETECTED~~

OTHERS:

MORPH = MORPHOLOGY

SAED = SELECTED AREA ELECTRON DIFFRACTION

SAED = SELECTED AREA ELECTRON DIFFRACTION
EDS = ENERGY DISPERSI

EDS = ENERGY DISPERSED SPECTROSCOPY
IR = INTERROW SPACING

NP = NO PATTERN

PQ = PRINTOUT OF EDS

MAS Job Number: M 1811-1

Location of Grid Openings (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVAC

Client: <u>LAW ATLANTA</u>	Accelerating Voltage: <u>100 KV</u>
Sample ID: <u>A 88-120 - 17-2</u>	Indicated Mag: <u>25 KX</u>
MAS Job Number: <u>M 1811-2</u>	Screen Mag: <u>20 KX</u>
Date Sample Analyzed: <u>14 - APR - 96</u>	Microscope Number: <u>1 2 3 4 5</u>
Number of Openings/Grids Counted: <u>10 / 2</u>	Filter Type: <u>MCE</u> <input checked="" type="checkbox"/> <u>PC</u> <input type="checkbox"/>
Grid Accepted, Low Mag: <u>Yes</u> <input checked="" type="checkbox"/> <u>No</u> <input type="checkbox"/>	Filter Size: <u>25mm, 37mm, 47mm</u>
Percent Loading: <u>7</u> %	Filter Pore Size (um): <u>0.45</u>
Grid Box #: <u>1041</u>	Grid Opening: <u>1) 99 um x 100 um</u> <u>2) 99 um x 98 um</u>

Analyst:
 Reviewer:

Calculation Data:	Counting Rules: <u>AHERA</u>	LEVEL II
Effective Filter Area in mm ² :	(A) <u>1339</u>	
Number of Grid Openings Examined:	(B) <u>10</u>	
Average Grid Opening Area in mm ² :	(C) <u>0.009801</u>	
Total Volume of Original Suspension in ml:	(D) <u>100</u>	
Equivalent Volume of Original Suspension Filtered in ml:	(E) <u>3</u> ($1:33\frac{1}{3}$)	
Area Sampled in sq. ft./cm ² :	(F) <u>0.250</u> sq. ft. <u>232.3 cm²</u>	
Total Number of Asbestos Structures Counted:	(G) <u>50</u>	
Number of Asbestos Structures between 0.5 and 5 microns:	<u>45</u>	Structures \geq 5 microns: <u>5</u>

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures :

Structures per sq. ft.

Structures per cm²

9.1108×10^{-7}

9.1807×10^{-3}

Results for Structures \geq 5 microns :

Structures per sq.ft.

Structures per cm²

9.1108×10^{-6}

9.1807×10^{-3}

MAS JOB NUMBER: M_1811-2

PAGE 1, 2

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
1	1-1	C	C	5.3	0.30	✓	✓	PRINT
2		C	MF	0.6	0.05	✓	✓	
3		C	MF	0.8	0.07	✓	✓	
4		C	MF	0.5	0.05	✓	✓	
5	1-2	C	F	3.8	0.05	✓	✓	
6		C	MF	0.5	0.03	✓	✓	
7		C	MF	2.2	0.05	✓	✓	
8		C	F	2.1	0.05	✓	✓	
9	1-3	C	B	5.7	0.10	✓	✓	
10	1-4	C	MB	4.9	0.22	✓	✓	PRINT
11		C	B	6.7	0.08	✓	✓	
12		C	MB	1.1	0.15	✓	✓	
13		C	MF	0.5	0.05	✓	✓	
14		C	MF	1.8	0.07	✓	✓	
15		C	MF	0.8	0.05	✓	✓	
16		C	F	1.3	0.05	✓	✓	
17		C	MF	1.3	0.03	✓	✓	
18	1-5	C	F	1.0	0.05	✓	✓	
19		C	F	0.9	0.05	✓	✓	
20		C	MF	0.5	0.07	✓	✓	PRINT
21		C	B	11.3	0.125	✓	✓	
22		C	MB	7.4	0.30	✓	✓	
23		C	B	1.6	0.18	✓	✓	
24		C	MF	1.4	0.08	✓	✓	
25		C	MF	0.7	0.05	✓	✓	

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:
 C = CHRYSOTILE
 AMO = AMOSITE
 CRO = CROCIDOLITE
 ACT = ACTINOLITE
 TRE = TREMOLITE
 ANT = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE:
 F = FIBER
 B = BUNDLE
 C = CLUSTER
 M = MATRIX
 NSD = NO STRUCTURES
 DECTECTED

OTHERS:
 MORPH = MORPHOLOGY
 SAED = SELECTED AREA ELECTRON DIFFRACTION
 EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
 IR = INTERROW SPACING
 NP = NO PATTERN
 P.O. = PRINTOUT OF EDS

MAS JOB NUMBER: M 811-2

PAGE 2 / 2

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
26	1-5 (cont)	C	MF	1.4	0.05	✓	✓	
27		C	B	3.8	0.38	✓	✓	
28	2-1	C	MF	0.7	0.05	✓	✓	
29		C	C	0.6	0.05	✓	✓	
30		C	B	4.3	0.20	✓	✓	PRINT
31		C	MF	2.0	0.05	✓	✓	
32		C	F	1.4	0.05	✓	✓	
33		C	B	3.8	0.40	✓	✓	
34	2-2	C	MF	1.7	0.07	✓	✓	
35		C	MF	1.6	0.03	✓	✓	
36		C	MF	1.4	0.05	✓	✓	
37		C	MF	1.9	0.07	✓	✓	
38		C	B	1.2	0.25	✓	✓	
39	2-3	C	C	2.6	0.05	✓	✓	
40		C	MB	2.0	0.30	✓	✓	PRINT
41		C	F	1.0	0.08	✓	✓	
42		C	P	1.0	0.05	✓	✓	
43		C	B	3.2	0.18	✓	✓	
44		C	B	0.8	0.15	✓	✓	
45	2-4	C	MF	3.7	0.06	✓	✓	
46		C	MF	2.1	0.08	✓	✓	
47		C	F	2.4	0.05	✓	✓	
48		C	MF	2.6	0.03	✓	✓	
49	2-5	C	F	2.0	0.05	✓	✓	
50		C	B	4.4	0.25	✓	✓	PRINT

MAS Job Number: M 1811-2

Location of Grid Openings (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVAC

Client: <u>LAW ATLANTA</u>	Accelerating Voltage: <u>100 KV</u>
Sample ID: <u>A 88-120 - 17-3</u>	Indicated Mag: <u>25 KX</u>
MAS Job Number: <u>M 1811-3</u>	Screen Mag: <u>20 KX</u>
Date Sample Analyzed: <u>14 - APR - 96</u>	Microscope Number: <u>1 2 3 4 5</u>
Number of Openings/Grids Counted: <u>10 / 2</u>	Filter Type: <u>MCE</u> <u>PC</u>
Grid Accepted, Low Mag: <u>Yes</u> <u>No</u>	Filter Size: <u>25mm, 37mm, 47mm</u>
Percent Loading: <u>1</u> %	Filter Pore Size (um): <u>0.45</u>
Grid Box #: <u>1041</u>	Grid Opening: <u>1) 94 um x 93 um</u> <u>2) 100 um x 98 um</u>
Analyst:	
Reviewer:	

Calculation Data: Counting Rules: AHERA LEVEL II

Effective Filter Area in mm ² :	(A)	<u>1339</u>
Number of Grid Openings Examined:	(B)	<u>10</u>
Average Grid Opening Area in mm ² :	(C)	<u>0.009271</u>
Total Volume of Original Suspension in ml:	(D)	<u>100</u>
Equivalent Volume of Original Suspension Filtered in ml:	(E)	<u>20</u> (1: 5)
Area Sampled in sq. ft. / cm ² :	(F)	<u>0.208</u> sq. ft. <u>193.5</u> cm ²
Total Number of Asbestos Structures Counted:	(G)	<u>1</u>

Number of Asbestos Structures between 0.5 and 5 microns: 1 Structures \geq 5 microns: 0

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures :

$$\frac{3472}{10^5} = 3.472 \times 10^{-5}$$

Structures per cm²

Results for Structures \geq 5 microns :

$$\frac{3472}{10^6} = 3.472 \times 10^{-6}$$

Structures per sq.ft.

Structures per cm²

MAS JOB NUMBER: M 1811-3

PAGE 1

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:
C = CHRYSOTILE
AMO = AMOSITE
CRO = CROCIDOLITE
ACT = ACTINOLITE
TRE = TREMOLITE
ANT = ANTHOPHYLLITE
N = NON ASBESTOS

STRUCTURE:
F = FIBER
B = BUNDLE
C = CLUSTER
M = MATRIX
**NSD = NO STRUCTURES
DETECTED**

OTHERS:
MORPH = MORPHOLOGY
SAED = SELECTED AREA ELECTRON DIFFRACTION
EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
IR = INTERROW SPACING
NP = NO PATTERN
P.O. = PRINTOUT OF EDS

MAS Job Number: M 1811-3

Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

MAS JOB NUMBER: M 1811-4

PAGE 1 / 1

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:
C = CHRYSOTILE
AMO = AMOSITE
CRO = CROCIDOLITE
ACT = ACTINOLITE
TRE = TREMOLITE
ANT = ANTHOPHYLLITE
N = NON ASBESTOS

STRUCTURE:
F = FIBER
B = BUNDLE
C = CLUSTER
M = MATRIX
**NSD = NO STRUCTURES
DECTECTED**

OTHERS:

MORPH = MORPHOLOGY
SAED = SELECTED AREA ELECTRON DIFFRACTION
EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
IR = INTERROW SPACING
NP = NO PATTERN
P.O. = PRINTOUT OF EDS

MAS Job Number: M 1811-4

Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVAC

Client: <u>LAW ATLANTA</u>	Accelerating Voltage: <u>100 KV</u>
Sample ID: <u>A88-120 - 17-5</u>	Indicated Mag: <u>25 KX</u>
MAS Job Number: <u>M 1811-5</u>	Screen Mag: <u>20 KX</u>
Date Sample Analyzed: <u>20 - APR - 96</u>	Microscope Number: <u>1</u> (2) <input checked="" type="checkbox"/> (3) <input type="checkbox"/> 4 <input type="checkbox"/> 5
Number of Openings/Grids Counted: <u>9 / 2</u>	Filter Type: <u>MCE</u> PC
Grid Accepted, Low Mag: <u>Yes</u> No	Filter Size: <u>25mm, 37mm, 47mm</u>
Percent Loading: <u>6</u> %	Filter Pore Size (um): <u>0.45</u>
Grid Box #: <u>1041</u>	Grid Opening: <u>1) 96 um x 96 um</u> <u>2) 94 um x 93 um</u>
Analyst:	
Reviewer:	

Calculation Data : Counting Rules: AHERA LEVEL II

Effective Filter Area in mm ² :	(A)	<u>133.9</u>
Number of Grid Openings Examined:	(B)	<u>9</u>
Average Grid Opening Area in mm ² :	(C)	<u>0.008979</u>
Total Volume of Original Suspension in ml:	(D)	<u>100</u>
Equivalent Volume of Original Suspension Filtered in ml: (E)		<u>1 (1:100)</u>
Area Sampled in sq. ft./cm ² :	(F)	<u>0.25</u> sq. ft. <u>232.3 cm²</u>
Total Number of Asbestos Structures Counted:	(G)	<u>110</u>

Number of Asbestos Structures between 0.5 and 5 microns: 92 Structures \geq 5 microns: 18

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

$$\text{Structures per sq. ft.}$$

7,291 X 10²

$$\text{Structures per cm}^2$$

7,846 X 10⁵

Results for Structures \geq 5 microns:

$$\text{Structures per sq.ft.}$$

1,193 X 10²

$$\text{Structures per cm}^2$$

1,284 X 10⁵

MAS JOB NUMBER: M 1811-5PAGE 1,4

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
1	1-1	C	R	2.4	0.05	✓	✓	PRINT
2		C	MF	0.5	0.05	✓	✓	
3		C	MR	1.7	0.05	✓	✓	
4		C	R	3.4	0.05	✓	✓	
5		C	MR	0.7	0.05	✓	✓	
6	1-2	C	B	30.0	0.38	✓	✓	
7		C	F	4.1	0.07	✓	✓	
8		C	F	3.9	0.07	✓	✓	
9		C	C	5.2	0.07	✓	✓	
10		C	F	2.8	0.05	✓	✓	PRINT
11		C	B	9.2	0.18	✓	✓	
12		C	F	0.9	0.05	✓	✓	
13		C	F	1.7	0.07	✓	✓	
14		C	F	0.8	0.05	✓	✓	
15		C	MR	1.1	0.05	✓	✓	
16		C	C	9.3	0.05	✓	✓	
17		C	F	1.3	0.05	✓	✓	
18		C	MB	10.8	0.20	✓	✓	
19		C	MB	1.8	0.18	✓	✓	
20		C	MF	0.5	0.05	✓	✓	PRINT
21		C	F	1.3	0.07	✓	✓	
22		C	F	2.7	0.05	✓	✓	
23	1-3	C	MF	6.6	0.05	✓	✓	
24		C	MB	2.4	0.11	✓	✓	
25		C	F	3.3	0.07	✓	✓	

6

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE
 AMO = AMOSITE
 CRO = CROCIDOLITE
 ACT = ACTINOLITE
 TRE = TREMOLITE
 ANT = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE:

F = FIBER
 B = BUNDLE
 C = CLUSTER
 M = MATRIX
 NSD = NO STRUCTURES
 DECTECTED

OTHERS:

MORPH = MORPHOLOGY
 SAED = SELECTED AREA ELECTRON DIFFRACTION
 EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
 IR = INTERROW SPACING
 NP = NO PATTERN
 P.O. = PRINTOUT OF EDS

MAS JOB NUMBER: M 1811-5

PAGE 214

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
26	1-3 (cont)	C	MB	0.7	0.05	✓	✓	
27		C	MF	0.6	0.07	✓	✓	
28		C	L	4.0	0.05	✓	✓	
29		C	F	1.0	0.05	✓	✓	
30	1-4	C	MF	1.1	0.05	✓	✓	PRINT
31		C	F	1.0	0.05	✓	✓	
32		C	F	0.5	0.05	✓	✓	
33		C	F	2.8	0.05	✓	✓	
34		C	MF	1.8	0.07	✓	✓	
35		C	MB	2.7	0.30	✓	✓	
36		C	MB	2.4	0.19	✓	✓	
37		C	B	5.2	0.22	✓	✓	
38		C	MF	0.8	0.07	✓	✓	
39		C	F	0.7	0.05	✓	✓	
40	1-5	C	C	1.3	0.08	✓	✓	PRINT
41	1-5	C	F	1.1	0.05	✓	✓	
42		C	MF	3.0	0.05	✓	✓	
43		C	MF	1.4	0.05	✓	✓	
44		C	C	5.6	0.05	✓	✓	
45		C	C	4.4	0.05	✓	✓	
46		C	F	2.6	0.05	✓	✓	
47		C	MF	1.2	0.05	✓	✓	
48		C	MF	0.6	0.03	✓	✓	
49		C	F	1.0	0.05	✓	✓	
50		C	MF	7.8	0.08	✓	✓	PRINT
51		C	F	2.4	0.08	✓	✓	
52		C	F	0.9	0.05	✓	✓	
53	2-1	C	F	1.6	0.08	✓	✓	
54		C	B	0.6	0.11	✓	✓	
55		C	F	3.8	0.08	✓	✓	

MAS JOB NUMBER: M 1811-5

PAGE 3 1 4

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
56	2-1 (out)	c	B.	2.0	0.20	✓	✓	
57		c	MF	1.5	0.05	✓	✓	
58		c	MF	5.1	0.05	✓	✓	
59		c	F	1.2	0.05	✓	✓	
60		c	e	1.9	0.08	✓	✓	PRINT
61		c	c	20.0	0.08	✓	✓	
62		c	F	1.7	0.08	✓	✓	
63		c	F	7.2	0.05	✓	✓	
64	2-2	c	F	1.0	0.07	✓	✓	
65		c	MF	0.7	0.05	✓	✓	
66		c	F	0.8	0.03	✓	✓	
67		c	F	0.6	0.05	✓	✓	
68		c	MF	1.1	0.05	✓	✓	
69		c	MF	1.2	0.05	✓	✓	
70		c	c	7.3	0.07	✓	✓	PRINT
71		c	MR	0.9	0.03	✓	✓	
72		c	MF	0.7	0.05	✓	✓	
73		c	F	1.4	0.07	✓	✓	
74		c	F	0.9	0.03	✓	✓	
75		c	F	0.8	0.05	✓	✓	
76		c	F	0.8	0.03	✓	✓	
77	2-3	c	MB	5.7	0.20	✓	✓	
78		c	MB	5.8	0.125	✓	✓	
79		c	c	2.2	0.05	✓	✓	
80		c	MF	1.1	0.08	✓	✓	PRINT
81		c	F	1.2	0.05	✓		
82		c	F	0.9	0.05	✓	✓	
83		c	MB	2.4	0.18	✓	✓	
84		c	MF	1.3	0.08	✓	✓	
85		c	MF	0.6	0.05	✓	✓	

MAS JOB NUMBER: M 1811-5

PAGE 4 / 4

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
86	2-3 (cont)	C	MF	3.2	0.05	✓	✓	
87		C	F	0.9	0.05	✓	✓	
88		C	C	16.7	0.42	✓	✓	
89		C	B	1.4	0.25	✓	✓	
90		C	F	0.8	0.08	✓	✓	PRINT
91		C	F	0.8	0.03	✓	✓	
92		C	B	9.8	0.20	✓	✓	
93		C	E	3.3	0.05	✓	✓	
94		C	F	2.0	0.05	✓	✓	
95		C	MF	2.4	0.05	✓	✓	
96		C	MF	0.5	0.03	✓	✓	
97	2-4	C	MR	0.9	0.03	✓	✓	
98		C	MR	0.6	0.05	✓	✓	
99		C	MF	0.7	0.05	✓	✓	
100		C	MF	0.7	0.08	✓	✓	PRINT
101		C	MF	1.7	0.07	✓	✓	
102		C	MB	0.7	0.18	✓	✓	
103		C	MF	1.4	0.06	✓	✓	
104		C	F	4.3	0.03	✓	✓	
105		C	MB	3.0	0.08	✓	✓	
106		C	B	6.7	0.80	✓	✓	
107		C	F	0.9	0.10	✓	✓	
108		C	F	2.0	0.03	✓	✓	
109		C	F	1.9	0.07	✓	✓	
110		C	MF	0.6	0.05	✓	✓	PRINT

MAS Job Number: M 1811-5

Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVAC

Client: LAW ATLANTA Accelerating Voltage: 100 KV
 Sample ID: A 88-120 - 17-6 Indicated Mag: 25 KX
 MAS Job Number: M 1811-6 Screen Mag: 20 KX
 Date Sample Analyzed: 4-23-96 Microscope Number: 1 2 3 4 5
 Number of Openings/Grids Counted: 1012 Filter Type: (MCE) PC
 Grid Accepted, Low Mag: Yes No Filter Size: 25mm, 37mm, 47mm
 Percent Loading: 2 % Filter Pore Size (um): 0.45
 Grid Box #: 1041 Grid Opening: 1) 93 um x 92 um
2) 93 um x 92 um

Analyst:

Reviewer:

Calculation Data: Counting Rules: AHERA LEVEL II

Effective Filter Area in mm²: (A) 1339

Number of Grid Openings Examined: (B) 10

Image Grid Opening Area in mm²: (C) 0.008556

Total Volume of Original Suspension in ml: (D) 100

Equivalent Volume of Original Suspension Filtered in ml: (E) 20 (1:5)

Area Sampled in sq. ft. / cm²: (F) 0.166 sq. ft. 154.8 cm²

Total Number of Asbestos Structures Counted: (G) 1

Number of Asbestos Structures between 0.5 and 5 microns: 1 Structures ≥ 5 microns: 0

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures :

Structures per sq. ft.	Structures per cm ²
<u>4.714 x 10⁷</u>	<u>51.055 x 10⁷</u>

Results for Structures ≥ 5 microns :

Structures per sq. ft.	Structures per cm ²
<u>PB</u>	<u>PB</u>

MAS JOB NUMBER: M 189-6

PAGE 1

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE
AMO = AMOSITE
CRO = CROCIDOLITE
ACT = ACTINOLITE
TRE = TREMOLITE
ANT = ANTHOPHYLLITE
N = NON ASBESTOS

STRUCTURE-

F = FIBER
B = BUNDLE
C = CLUSTER
M = MATRIX
NSD = NO STRUCTURES
DECTECTED

OTHERS:

MORPH = MORPHOLOGY
SAED = SELECTED AREA ELECTRON DIFFRACTION
EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
IR = INTERROW SPACING
NP = NO PATTERN
P.O. = PRINTOUT OF EDS

MAS Job Number: M 1811-4

Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVFC

Client: LAW ATLANTA Accelerating Voltage: 100 KV
 Sample ID: A88-120-17-7 Indicated Mag: 25 KX
 MAS Job Number: M 1811-7 Screen Mag: 20 KX
 Date Sample Analyzed: 4-23-96 Microscope Number: 1 02 3 4 5
 Number of Openings/Grids Counted: 1012 Filter Type: 1 MCE PC
 Grid Accepted, Low Mag: Yes No Filter Size: 25mm, 37mm, 47mm
 Percent Loading: 5% Filter Pore Size (um): 0.145
 Grid Box #: 104) Grid Opening: 1) 93 um x 95 um
2) 92 um x 84 um
 Analyst: J. A. L.
 Reviewer: J. A. L.

<u>Calculation Data:</u>	<u>Counting Rules:</u>	<u>AHERA</u>	<u>LEVEL II</u>
Effective Filter Area in mm ² :	(A)	1339	
Number of Grid Openings Examined:	(B)	10	
Average Grid Opening Area in mm ² :	(C)	0.1008742	
Total Volume of Original Suspension in ml:	(D)	100	
Equivalent Volume of Original Suspension Filtered in ml:	(E)	20 (1:5)	
Area Sampled in sq. ft./cm ² :	(F)	1 sq. ft. 929 cm ²	
Total Number of Asbestos Structures Counted:	(G)	20	
Number of Asbestos Structures between 0.5 and 5 microns:	13	Structures > 5 microns:	?

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = \text{ (asbestos structures per sq.ft. or cm}^2\text{)}$$

CONVERSIONS :

$$\frac{\text{Area in cm}^2}{929.03} = \text{ sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{ cm}^2$$

Results for Total Asbestos Structures :

$$1.1532 \times 10^6$$

$$1.1699 \times 10^{-3}$$

Results for Structures \geq 5 microns :

$$5.1361 \times 10^5$$

$$5.1711 \times 10^{-2}$$

MAS JOB NUMBER: M 1811-7PAGE 11

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
1	1-1	C	f	2.5	0.05	/	/	PD
2		C	f	3.0	0.05	/	/	
	1-2		MD					
3	1-3	C	f	5.0	0.05	/	/	
4	1-4	C	C-f	4.5	0.05	/	/	
5	1-5	C	M-B	4.0	0.12	/	/	
6		C	f	2.5	0.05	/	/	
7		C	C-f	2.0	0.05	/	/	
	2-1		NSD					
8	2-2	C	B	3.0	0.12	/	/	
9		C	B	9.0	0.14	/	/	
10	2-3	C	M-f	5.0	0.05	/	/	PD
11		C	B-	2.5	0.12	/	/	
12		C	M-f	2.0	0.05	/	/	
13	2-4	C	M-B	6.0	0.13	/	/	
14		C	B	10.0	0.12	/	/	
15		C	f	1.5	0.05	/	/	
16		C	f	1.0	0.05	/	/	
17		C	f	12.0	0.05	/	/	
18	2-5	C	M-f	2.5	0.05	/	/	
19		C	C-f	3.0	0.05	/	/	
20		C	f	12.0	0.05	/	/	PD

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:
 C = CHRYSOTILE
 AMO = AMOSITE
 CRO = CROCIDOLITE
 ACT = ACTINOLITE
 TRE = TREMOLITE
 ANT = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE:
 F = FIBER
 B = BUNDLE
 C = CLUSTER
 M = MATRIX
 NSD = NO STRUCTURES
 DECTECTED

OTHERS:
 MORPH = MORPHOLOGY
 SAED = SELECTED AREA ELECTRON DIFFRACTION
 EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
 IR = INTERROW SPACING
 NP = NO PATTERN
 P.O. = PRINTOUT OF EDS

MAS Job Number: M 1811-7

Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVAC

Client: LAW ATLANTA Accelerating Voltage: 100 KV
 Sample ID: A 88-120 - 17-8 Indicated Mag: 25 KX
 MAS Job Number: M 1811 - 8 Screen Mag: 20 KX
 Date Sample Analyzed: 4-23-96 Microscope Number: 1 2 3 4 5
 Number of Openings/Grids Counted: 512 Filter Type: MCE PC
 Grid Accepted, Low Mag: Yes No Filter Size: 25mm, 37mm, 47mm
 Percent Loading: 20 % Filter Pore Size (um): 0.45
 Grid Box #: 1041 Grid Opening: 1) 99 um x 96 um
2) 90 um x 71 um
 Analyst:
 Reviewer:

Calculation Data: Counting Rules: AHERA LEVEL II

Effective Filter Area in mm²: (A) 1339

Number of Grid Openings Examined: (B) 5

Average Grid Opening Area in mm²: (C) 0.008847

Total Volume of Original Suspension in ml: (D) 100

Equivalent Volume of Original Suspension Filtered in ml: (E) 1.0 (1:100)

Area Sampled in sq. ft. / cm²: (F) 1.222 sq. ft. 1135.5 cm²

Total Number of Asbestos Structures Counted: (G) 98

Number of Asbestos Structures between 0.5 and 5 microns: 75 Structures ≥ 5 microns: 23

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

Structures per sq. ft.

2.428 X 10⁸

Structures per cm²

2.612 X 10⁵

Results for Structures ≥ 5 microns:

Structures per sq. ft.

5.697 X 10⁷

Structures per cm²

6.131 X 10⁴

MAS JOB NUMBER: M 1811-8PAGE 114

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
1	1-1	C F	C F	1.0	0.1	—	—	P-
2		C F	C F	0.9	0.1	—	—	
3		C M-B	C M-B	8.0	0.2	—	—	
4		C M-F	C M-F	5.4	0.1	—	—	
5		C F	C F	1.3	0.1	—	—	
6		C M-F	C M-F	6.0	0.1	—	—	
7		C M-F	C M-F	1.4	0.1	—	—	
8		C F	C F	1.0	0.1	—	—	
9		C F	C F	0.9	0.1	—	—	
10		C M-F	C M-F	5.8	0.1	—	—	P-
11		C M-B	C M-B	4.4	0.2	—	—	
12		C M-F	C M-F	2.0	0.05	—	—	
13		C M-F	C M-F	1.7	0.1	—	—	
14		C M-F	C M-F	1.2	0.1	—	—	
15		C M-B	C M-B	3.7	0.2	—	—	
16		C B	C B	3.5	0.2	—	—	
17		C B	C B	2.1	0.2	—	—	
18		C B	C B	1.7	0.1	—	—	
19		C F	C F	0.6	0.1	—	—	
20		C B	C B	2.4	0.2	—	—	P-
21		C B	C B	5.0	0.2	—	—	
22		C F	C F	2.0	0.15	—	—	
23		C F	C F	2.3	0.1	—	—	
24		C B	C B	1.3	0.2	—	—	
25	1-2	C B	C B	5.7	0.2	—	—	

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE
 AMO = AMOSITE
 CRO = CROCIDOLITE
 ACT = ACTINOLITE
 TRE = TREMOLITE
 ANT = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE:

F = FIBER
 B = BUNDLE
 C = CLUSTER
 M = MATRIX
 NSD = NO STRUCTURES
 DECTECTED

OTHERS:

MORPH = MORPHOLOGY
 SAED = SELECTED AREA ELECTRON DIFFRACTION
 EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
 IR = INTERROW SPACING
 NP = NO PATTERN
 P.O. = PRINTOUT OF EDS

MAS JOB NUMBER: M 1811-8

PAGE 2124

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
26	1-2 center	C	M- β	2.0	0.2	-	-	
27		C	F	1.0	0.1	-	-	
28		C	F	3.0	0.1	-	-	
29		C	F	1.7	0.1	-	-	
30		C	F	0.9	0.05	-	-	8-6
31		C	β	2.9	0.2	-	-	
32		C	M-F	1.8	0.1	-	-	
33		C	M-F	1.7	0.1	-	-	
34		C	M- β	1.0	0.2	-	-	
35		C	F	1.0	0.1	-	-	
36		C	β	1.8	0.1	-	-	
37		C	M- β	6.0	0.2	-	-	
38	1-3	C	β	2.0	0.2	-	-	
39		C	M- β	1.4	0.2	-	-	
40		C	M- β	2.9	0.2	-	-	8-6
41		C	β	2.4	0.2	-	-	
42		C	M-F	2.0	0.2	-	-	
43		C	β	4.4	0.2	-	-	
44		C	F	4.4	0.1	-	-	
45		C	F	1.0	0.1	-	-	
46		C	β	15.0	0.16	-	-	
47		C	F	2.0	0.1	-	-	
48		C	F	1.1	0.1	-	-	
49		C	F	1.2	0.1	-	-	
50		C	β	20.0	0.15	-	-	8-6
51		C	M- β	6.6	0.15	-	-	
52		C	M-F	2.0	0.1	-	-	
53		C	A-B	24.3	0.6	-	-	
54		C	F	3.3	0.1	-	-	
55		C	F	1.2	0.1	-	-	

MAS JOB NUMBER: M 1811-8

PAGE

31/10

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EELS
56	5-3	C F		1.0	0.1	—	—	
57	1-Y	C B		13.4	0.9	—	—	
58		C B		2.7	0.2	—	—	
59		C F		0.9	0.1	—	—	
60		C P		6.0	0.1	—	—	P ₀₀
61		C F		3.0	0.1	—	—	
62		C F		9.2	0.1	—	—	
63		C μ -F		0.9	0.1	—	—	
64		C F		1.9	0.1	—	—	
65		C B		3.0	0.2	—	—	
66		C F		2.5	0.1	—	—	
67		C μ -P		1.8	0.1	—	—	
68		C B		19.0	0.3	—	—	
69		C F		1.9	0.1	—	—	
70		C B		4.2	0.2	—	—	P ₀₀
71		C μ -F		3.7	0.2	—	—	
72		C F		1.9	0.1	—	—	
73		C F		15.0	0.1	—	—	
74	2-1	C μ -F		1.0	0.1	—	—	
75		C F		9.7	0.2	—	—	
76		C F		8.0	0.1	—	—	
77		C F		4.4	0.1	—	—	
78		C F		1.8	0.1	—	—	
79		C μ -F		1.3	0.1	—	—	
80		C μ -F		3.7	0.1	—	—	P ₀₀
81		C μ -B		6.0	0.1	—	—	
82		C P		4.3	0.05	—	—	
83		C μ -F		1.0	0.1	—	—	
84		C F		6.7	0.1	—	—	
85		C B		3.6	0.2	—	—	

MAS JOB NUMBER: M 1871-8

PAGE

MAS Job Number: M 1811-8

Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: MICROVFC

Client: <u>W.W. ATLANTA</u>	Accelerating Voltage: <u>100 KV</u>
Sample ID: <u>A68-120-17-9</u>	Indicated Mag: <u>25 KX</u>
MAS Job Number: <u>M 1811-9</u>	Screen Mag: <u>20 KX</u>
Date Sample Analyzed: <u>4-23-96</u>	Microscope Number: <u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u>
Number of Openings/Grids Counted: <u>10</u> <u>1</u> <u>2</u>	Filter Type: <u>LMCE</u> <u>PC</u>
Grid Accepted, Low Mag: <u>Yes</u> No	Filter Size: <u>25mm</u> , <u>37mm</u> , <u>47mm</u>
Percent Loading: <u>2</u> %	Filter Pore Size (um): <u>0.45</u>
Grid Box #: <u>1041</u>	Grid Opening: <u>1) 93 um</u> x <u>94 um</u> <u>2) 92 um</u> x <u>95 um</u>
Analyst: <u>J. L. Palmer</u>	
Reviewer: <u>M. J. Miller</u>	

<u>Calculation Data:</u>	Counting Rules: AHERA	LEVEL II
Effective Filter Area in mm ² : (A)	<u>1339</u>	
Number of Grid Openings Examined: (B)	<u>10</u>	
Average Grid Opening Area in mm ² : (C)	<u>0.1008741</u>	
Total Volume of Original Suspension in ml: (D)	<u>100</u>	
Equivalent Volume of Original Suspension Filtered in ml: (E)	<u>30 (1: 3.3)</u>	
Area Sampled in sq. ft. / cm ² : (F)	<u>1</u> sq. ft.	<u>929</u> cm ²
Total Number of Asbestos Structures Counted: (G)	<u>2</u>	
Number of Asbestos Structures between 0.5 and 5 microns:	<u>1</u>	Structures \geq 5 microns: <u>1</u>

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{E} * \frac{D}{F} * \frac{1}{G} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

$$\boxed{1008741 \times 10^{-5}}$$

$$\boxed{112.97 \times 10^{-5}}$$

Results for Structures \geq 5 microns:

$$\boxed{5106 \times 10^{-5}}$$

$$\boxed{57986.910 \times 10^{-5}}$$

MAS JOB NUMBER: M 1811-9

PAGE 11

KEY TO ABBREVIATIONS USED ABOVE:

TYPE.

C = CHRYSOTILE
AMO = AMOSITE
CRO = CROCIDOLITE
ACT = ACTINOLITE
TRE = TREMOLITE
ANT = ANTHOPHYLLITE
N = NON ASBESTOS

STRUCTURE

F = FIBER
B = BUNDLE
C = CLUSTER
M = MATRIX
**NSD = NO STRUCTURES
DECTECTED**

OTHERS:

MORPH = MORPHOLOGY
SAED = SELECTED AREA ELECTRON DIFFRACTION
EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
IR = INTERROW SPACING
NP = NO PATTERN
P.O. = PRINTOUT OF EDS

MAS Job Number: M 181159
Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: ULTRAVAC

Client: LAW ATLANTA

Accelerating Voltage: 100 KV

Sample ID: A88-120-17-10

Indicated Mag: 25 KX

MAS Job Number: M 1811-10

Screen Mag: 20 KX

Date Sample Analyzed: 4-24-96

Microscope Number: 1 2 3 4 5

Number of Openings/Grids Counted: 1012

Filter Type: MCE PC

Grid Accepted, Low Mag: Yes No

Filter Size: 25mm, 37mm, 47mm

Percent Loading: 8 %

Filter Pore Size (um): 0.45

Grid Box #: 1042

Grid Opening: 1) 92 um x 94 um

2) 55 um x 98 um

Analyst: W. J. Williams

Counting Rules: AHERA LEVEL II

Reviewer: P. J. Miller

Calculation Data:

Effective Filter Area in mm²:

(A) 1339

Number of Grid Openings Examined:

(B) 10

Average Grid Opening Area in mm²:

(C) 0.1008499

Total Volume of Original Suspension in ml:

(D) 100

Equivalent Volume of Original Suspension Filtered in ml: (E) 100 (1:100)

Area Sampled in sq. ft./cm²:

(F) 0.14 sq. ft. 4121.9 cm²

Total Number of Asbestos Structures Counted: (G) 59

Number of Asbestos Structures between 0.5 and 5 microns: 35 Structures \geq 5 microns: 24

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

Structures per sq. ft.	Structures per cm ²
<u>2.12 X 10⁶</u>	<u>2.131 X 10⁵</u>

Results for Structures \geq 5 microns:

Structures per sq.ft.	Structures per cm ²
<u>8.948 X 10⁴</u>	<u>8.966 X 10³</u>

MAS JOB NUMBER: M 1811-10PAGE 113

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION:		
						MORPH.	SAED	EDS
1	17	C	f	2.15	0.105	/	/	10
2		C M-f		1.10	0.105	/	/	
3		C M-f		6.10	0.105	/	/	
4		C f		4.10	0.105	/	/	
5		C M-f		5.10	0.105	/	/	
6		C f		1.15	0.105	/	/	
7		C f		2.10	0.105	/	/	
8		C f		2.10	0.105	/	/	
9	-2	C M-f		3.10	0.05	/	/	
10		C f		2.15	0.105	/	/	10
11		C B		4.10	0.12	/	/	
12		C f		5.10	0.105	/	/	
13		C M-f		1.10	0.105	/	/	
14		C f		1.15	0.105	/	/	
15	-3	C M-f		15.10	0.105	/	/	
16		C M-f		1.10	0.05	/	/	
17		C f		4.15	0.105	/	/	
18		C C-f		1.10	0.105	/	/	
19		C B		6.10	0.12	/	/	
20	-4	C M-f		4.10	0.105	/	/	10
21		C M-f		6.10	0.105	/	/	
22		C f		4.10	0.105	/	/	
23		C f		2.15	0.105	/	/	
24		C M-f		2.15	0.105	/	/	
25	-5	C f		5.10	0.105	/	/	

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE
 AMO = AMOSITE
 CRO = CROCIDOLITE
 ACT = ACTINOLITE
 TRE = TREMOLITE
 ANT = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE:

F = FIBER
 B = BUNDLE
 C = CLUSTER
 M = MATRIX
 NSD = NO STRUCTURES
 DECTECTED

OTHERS:

MORPH = MORPHOLOGY
 SAED = SELECTED AREA ELECTRON DIFFRACTION
 EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
 IR = INTERROW SPACING
 NP = NO PATTERN
 P.O. = PRINTOUT OF EDS

MAS JOB NUMBER: M 1811-10PAGE 21

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH (μm)	WIDTH (μm)	CONFIRMATION		
						MORPH.	SAED	EDS
26	cont	C	M-F	110	0.05	-	-	
27		C	B	6.0	0.15	-	-	
28		C	M-B	2.5	0.12	-	-	
29		C	F	8.0	0.05	-	-	
30		C	F	7.0	0.05	-	-	PD
31	2-1	C	M-F	8.0	0.05	-	-	
32		C	C-F	5.0	0.05	-	-	
33		C	F	6.0	0.05	-	-	
34		C	B	6.5	0.12	-	-	
35		C	M-F	15.0	0.05	-	-	
36		C	F	26.0	0.05	-	-	
37		C	F	2.5	0.05	-	-	
38		C	B	8.0	0.12	-	-	
39		C	F	4.0	0.05	-	-	
40		C	F	2.5	0.05	-	-	PD
41	-2	C	M-F	12.0	0.05	-	-	
42		C	C-F	2.5	0.05	-	-	
43		C	C-F	2.0	0.05	-	-	
44		C	F	2.5	0.05	-	-	
45		C	M-F	3.0	0.05	-	-	
46		C	F	2.0	0.05	-	-	
47		C	M-F	4.0	0.05	-	-	
48	-3	C	M-F	8.0	0.05	-	-	
49		C	M-B	8.5	0.12	-	-	
50		C	F	6.0	0.05	-	-	PD
51		C	M-F	2.5	0.05	-	-	
52	-4	C	F	5.0	0.05	-	-	
53		C	M-F	8.0	0.05	-	-	
54		C	M-F	4.5	0.05	-	-	
55	-5	C	F	7.0	0.05	-	-	

MAS JOB NUMBER: M 1811-7D

PAGE 5 / 3

MAS Job Number: M

Location of Grid Openings, (GO) Counted in the Analysis

Grid 5:

Grid 6:

MATERIALS ANALYTICAL SERVICES, INC.
DUST SAMPLE ANALYSIS

Dust Sampling Method: Microsoc

Client: Low Atlanta

Sample ID: A88-120.17-11

MAS Job Number: M 1811-11

Date Sample Analyzed: 4-24-96

Number of Openings/Grids Counted: 1012

Grid Accepted, Low Mag: Yes No

Percent Loading: 3 %

Grid Box #: 1042

Analyst: John H. Johnson

Reviewer: H. Johnson

Accelerating Voltage: 100 KV

Indicated Mag: 25 KX

Screen Mag: 20 KX

Microscope Number: 1 2 3 4 5

Filter Type: MCE PC

Filter Size: 25mm, 37mm, 47mm

Filter Pore Size (um): 0.45

Grid Opening: 1) 92 um x 92 um

2) 94 um x 93 um

Calculation Data:

Counting Rules: AHERA LEVEL II

Effective Filter Area in mm²: (A) 1339

Number of Grid Openings Examined: (B) 10

Average Grid Opening Area in mm²: (C) 0.008603

Total Volume of Original Suspension in ml: (D) 100

Equivalent Volume of Original Suspension Filtered in ml: (E) 10 (1:10)

Area Sampled in sq. ft./cm²: (F) 0.416 sq. ft. 387.1 cm²

Total Number of Asbestos Structures Counted: (G) 2

Number of Asbestos Structures between 0.5 and 5 microns: 2 Structures \geq 5 microns: 0

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

Structures per sq. ft.

2.183 x 10⁻²

Structures per cm²

8.092 x 10⁻²

Results for Structures \geq 5 microns:

Structures per sq. ft.

0.18

Structures per cm²

0.18

MAS JOB NUMBER: M\81\41

PAGE

KEY TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE

AMO = AMOSITE

MO = AMOSITE
RO = CROCIDOLITE

**ERG = CRUCIDOLITE
ACT = ACTINOLITE**

ACT = ACTINOLITE
TRE = TREMOLITE

TRE = TREMOLITE
ANT = ANTHORHYLITE

**ANT = ANTHOPHYLL
N = NON ASBESTOS**

STRUCTURE.

STRUCTURE
S - SIBERIA

F = FIBER
B = BUNDLE

B = BUNDLE
C = CLUSTER

C = CLUSTE
M = MATRIX

M = MATRIX
NOD = NO. OF ELEMENTS

NO STRUCT RESTRUCT

OTHERS-

OTHERS:
MORPH = MORPHOLOGY

MORPH = MORPHOLOGY
SAED = SELECTED AREA ELECTRON DIFFRACTION

SAED = SELECTED AREA EDS = ENERGY DISPERSI

EDS = ENERGY DISPERSI
ID = INTERBROW SPACING

**IR = INTERROW
NO = NO PATTERN**

NP = NO PATTERN

MAS Job Number: M 1811-11

Location of Grid Openings, (GO) Counted in the Analysis

Grid 1:

Grid 2:

PROJECT NAME: New Floor / Prudential DATE OF PREP: 6/25/89
 PROJECT NUMBER: M1811
 TYPE OF SAMPLES: DUST

RUSH:
 RTA:

PREP TECH: JF
 DIRECT PREP TECHNIQUE: Centrif Method

LAB I.D. #:	CLIENT I.D. #:	FILTER TYPE	VOLUME FILTERED NO. 1	VOLUME FILTERED NO. 2	VOLUME FILTERED NO. 3	TOTAL SUSPENSION VOLUME	COMMENTS:
M1811 - 19	A88-120.15-8	47mm MCE	10ml			100ml	
M1811 - 20	A88-120.15-9	47mm MCE	15ml			100ml	13-20 done on 6/25/89
	Lab Blank	47mm MCE				10ml	Box 26

PROJECT NAME: Two River Prudential DATE OF PREP: 6/25/89
 PROJECT NUMBER: M1811

TYPE OF SAMPLES: DUST

RUSH:

RTA:

PREP TECH: DA
 DIRECT PREP TECHNIQUE: Direct Method

LAB I.D. #:	CLIENT I.D. #:	FILTER TYPE	VOLUME FILTERED NO. 1	VOLUME FILTERED NO. 2	VOLUME FILTERED NO. 3	TOTAL SUSPENSION VOLUME	COMMENTS:
M1811 - 10	A88 - 120 - 17 - 18	47mm MC-E	1ml			100ml	
M1811 - 11	A88 - 120 - 17 - 11	"	10ml			100ml	
M1811 - 12	A88 - 120.15 - 1	"	10ml			100ml	6-12 done on 6/24/89
—	Lat Blank	"				100ml	Box 26
M1811 - 13	A88 - 120.15 - 2	47mm MC-E	1ml			100ml	
M1811 - 14	A88 - 120.15 - 3	"	5ml			100ml	
M1811 - 15	A88 - 120.15 - 4	"	10ml			100ml	
M1811 - 16	A88 - 120.15 - 5	"	2.5ml			100ml	
M1811 - 17	A88 - 120.15 - 6	"	1ml			100ml	
M1811 - 18	A88 - 120.15 - 7	47mm MC-E	10ml			100ml	

PROJECT NAME: Zinc Chlor./Pb dentical
 PROJECT NUMBER: M1811
 TYPE OF SAMPLES: DUST

DATE OF PREP: 6/25/05

RUSH:
 RTA:

PREP TECH: JH
 DIRECT PREP TECHNIQUE: Blunt Method

LAB I.D. #:	CLIENT I.D. #:	FILTER TYPE	VOLUME FILTERED NO. 1	VOLUME FILTERED NO. 2	VOLUME FILTERED NO. 3	TOTAL SUSPENSION VOLUME	COMMENTS:
M1811 - 1	A88-120-17-1	47 mm MCE	10 ml			100 ml	
M1811 - 2	A88-120-17-2	"	3 ml			100 ml	
M1811 - 3	A88-120-17-3	"	20 ml			100 ml	
M1811 - 4	A88-120-17-4	"	30 ml			100 ml	
M1811 - 5	A88-120-17-5	47 mm MCE	1 ml			100 ml	1-5 done on 6/22/05
—	Lab Blank	"				100 ml	Batch 26
M1811 - 6	A88-120-17-6	"	20 ml			100 ml	
M1811 - 7	A88-120-17-7	"	20 ml			100 ml	
M1811 - 8	A88-120-17-8	"	0.8 ml			100 ml	
M1811 - 9	A88-120-17-8	47 mm MCE	30 ml			100 ml	

MATERIALS ANALYTICAL SERVICES

SUN 14-APR-96 09:50

Cursor: 1.230KeV = 34

ROI (SiK α) 1.660: 1.810=536

ROI (MgK α) 1.180: 1.330=412

0.000

VFS = 64

10.240

49 M1811-2 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SUN 14-APR-96 10:00

Cursor: 1.230KeV = 15

ROI (SIK α) 1.660: 1.810=289

ROI (MGK α) 1.180: 1.330=209

0.000

VFS = 32

10.240

30 M1811-2 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SUN 14-APR-96 10:07

Cursor: 1.260keV = 7

ROI (SIK α) 1.660: 1.810=195

ROI (MGK α) 1.180: 1.330=108

0.000

VFS = 32

10.240

53 M1811-2 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SUN 14-APR-96 10:17

Cursor: 1.260keV = 43

ROI (SIK α) 1.660: 1.810=482

ROI (MGK α) 1.180: 1.330=372

0.000

VFS = 64

10.240

50 M1811-2 CHRYSTILE

MATERIALS ANALYTICAL SERVICES

SUN 14-APR-96 10:25

Cursor: 1.260KeV = 67

ROI (SIK α) 1.660: 1.810=1008

ROI (MKG α) 1.180: 1.330=766

0.000

VFS = 128 10.240

38 M1811-2 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SUN 14-APR-96 10:33

Cursor: 1.260KeV = 19

ROI (SiK α) 1.660: 1.810=248

ROI (MgK α) 1.180: 1.330=218

0.000

VFS = 32'

10.240

47 M1811-2 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SUN 14-APR-96 11:57

Cursor: 1.260KeV = 10

ROI (SIK α) 1.660: 1.810=119

ROI (MGK α) 1.180: 1.330=112

0.000

VFS = 32

10.240

48 M1811~3 CHRYSOTILE

28

START? DY1

28

START? DL

28 START? DY1

2?

328 MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 10:46

START? DY1

Cursor: 1.260keV = 66 ROI (SiK α) 1.660: 1.810

ROI (MgK α) 1.160: 1.330

28

0.000

VFS = 128

10.240

521 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 11:20

Cursor: 1.260keV = 10 ROI (SIKd) 1.660: 1.810=103

ROI (MGK α) 1.180: 1.330 = 1.10

2.000

$$VFS = 10$$

10.240

27 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 11:45

Cursor: 1.260KeV = 61

ROI (SIKa) 1.660: 1.810=583

ROI (MGK α) 1.180 : 1.330 = 568

0.000

VFS = 64

10.240

30 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 12:05

Cursor: 1.260keV = 62 ROI (SiK α) 1.660: 1.810=602

BOT (MBK63 1 180) 1 330=634

8.000

VFS = 64

10.240

100 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 12:13

Cursor: 1.260KeV = 11

ROI (SIK α) 1.660: 1.810=203

ROI (MGK α) 1.180: 1.330=142

0.000

VFS = 32 10.240

66 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 14:08

Cursor: 1.260KeV = 20

ROI (SIK α) 1.660 : 1.810 = 246

ROI (MGK2) 1.180: 1.330=257

0, 000

WF5 = 32

10.240

13 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 14:21

Cursor: 1.260KeV = 17

ROI (SIKd) 1.660: 1.810=222

ROI (MSG(a)) 1.160: 1.330=241

MATERIALS ANALYTICAL SERVICES.

SAT 20-APR-96 14:29

Cursor: 1.260KeV = 24 ROI (SIK α) 1.660: 1.810=207

ROI (MGK α) 1.180: 1.330=217

0.000

VFS = 32

10.240

63 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 14:37

Cursor: 4.260KeV = 14

ROI (SIK α) 1.660: 1.810=142

ROT (MGKd2 1.180: 1.330=147

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 14:41

Cursor: 1.260keV = 28 ROI (SIK α) 1.660: 1.810=255

ROI (MGK α) 1.180: 1.330=299

9 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

SAT 20-APR-96 14:52

Cursar: 1.260KeV = 29

ROI (SIK α) 1.660: 1.810=352

ROI (MGK α) 1.180: 1.230=353

0.000

VFS = 64

10.240

73 M1811-5 CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 13:54

Cursor: 1.310keV = 16

ROI (SIK α) 1.660: 1.810=407

ROI (MGK α) 1.180: 1.133=306

0.000

VFS = 64

10.240

27 M1811-6 : CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 13:45

Cursor: 6.380KeV = 0

ROI (SIK α) 1.660: 1.810=32

ROI (FEK α) 6.330: 6.470=10

0.000 FE-26 K α = 6.40KeV

VFS = 64 10.240

22 M1811-7; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 14:13

Cursor: 6.380KeV = 2

ROI (SIK α) 1.660: 1.810=90

ROI (FEK α) E.320: 6.470=7

0.000

FE-26 K α = 6.40KeV

VFS = 16

10.240

7

M1811-7; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 14:20

Cursor: 6.380KeV = 1

ROI (SIK α) 1.660: 1.810=73

ROI (FEK α) 6.320: 6.470=2

0.000 FE-26 K α = 6.40KeV

VFS = 32

10.240

6 M1811-7; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 15:21

Cursor: 1.310KeV = 3

ROI (SIK α) 1.660: 1.810=97

ROI (CMGK α) 1.180: 1.330=65

0.000

VFS = 32

10.242

22 M1811-18; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 15:33

Cursor: 1.310KeV = 0

ROI (SIK α) 1.660: 1.810=86

ROI (CMGK α) 1.180: 1.330=65

0.000

VFS = 16

10.240

9 M1811-18; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 15:35

Cursor: 1.310KeV = 4

ROI (SIK α) 1.660: 1.810=116

ROI (MGK α) 1.180: 1.330=82

0.000

VFS = 16

10.240

9 M1811-~~68~~; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 15:53

Cursor: 1.310KeV = 4

ROI (SIK α) 1.660: 1.810=76

ROI (MGK α) 1.180: 1.330=49

0.000

VFS = 16

10.240

10 M1811-~~68~~; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 16:03

Cursor: 1.310KeV = 2

ROI (SIK α) 1.660: 1.810=115

ROI (MGK α) 1.180: 1.330=87

0.000

VFS = 16

10.240

S M1811-28; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 16:08

Cursor: 1.310KeV = 7

ROI (SIK α) 1.660: 1.810=189

ROI (MGK α) 1.180: 1.330=132

0.000

VFS = 32

10.240

S M1811-28; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 16:14

Cursor: 1.310KeV = 5

ROI (SIK α) 1.660: 1.810=92

ROI (MGK α) 1.180: 1.330=70

0.000

VFS = 32

10.240

13 M1811-~~18~~: CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 16:19

Cursor: 1.310KeV = 2

ROI (SIK α) 1.660: 1.810=100

ROI (MGK α) 1.180: 1.330=57

0.000

VFS = 32

10.240

14 M1811-~~18~~: CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 16:45

Cursor: 1.310keV = 1

ROI (SIK α) 1.660: 1.810=64ROI (MGK α) 1.180: 1.330=47

0.000

VFS = 16

10.240

18 M1811-#8: CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 16:52

Cursor: 1.310keV = 7

ROI (SIK α) 1.660: 1.810=263ROI (MGK α) 1.180: 1.330=191

0.000

VFS = 32

10.240

9 M1811-#8: CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

TUE 23-APR-96 15:02

Cursor: 6.380KeV = 0

ROI (SiK α) 1.660: 1.810=57

ROI (FEK α) 6.330: 6.470=8

0.000 FE-26 K α = 6.40KeV

VFS = 15

10.240

9 M1811-9; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

WED 24-APR-96 10:18

Cursor: 8.040keV = 17

ROI (SIKg) 1.6E0: 1.810=36

0.000

FE-26

VFS = 32

10.240

1920

M1811-10; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

WED 24-APR-96 10:23

Cursus: S.040keV = 12

ROI (SIKd) 1.660: 1.810=99

MATERIALS ANALYTICAL SERVICES

WED 24-APR-96 10:37

Curson: 8.040KeV. = 16

ROI (SIR α) 1.660: 1.810=134

0.000 FE-26

VFS = 32

10.240

11 M1811-10: CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

WED 24-APR-96 10:47

Cursor: 8.040keV = 14

ROI (SIK α) 1.660: 1.810=105

0.000

FE-26

VFS = 16

10.240

10

M1811-10; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

WED 24-APR-96 10:55

Cursor: 8.040keV = 17 . ROI (SIKe) 1.660: 1.810=84

0.000 FE-26

VFS = 32

10.240

10 M1811-10; CHRYSOTILE

MATERIALS ANALYTICAL SERVICES

WED 24-APR-96 11:15

Cursor: 8.040KeV = 4

ROI (SIK₀) 1.660: 1.810=97

5 M1811-10: CHRYSTOTILE

MATERIALS ANALYTICAL SERVICES

NET 24-APP-86 10:56

Cubson: 4.290keV > S

ROI (SIK@) 1.662: 1.813-129

ROT (MGKd) 1.180: 4.832 = 124

2 000

YES n = 54 12.24%

31 M1011-11 1 CHRYSOTILE

MATERIALS
ANALYTICAL
SERVICES

September 26, 1995

Mr. Richard Hatfield
Law Engineering
396 Plasters Avenue
Atlanta, Georgia 30324

Re: 1st Florida Tower (Tampa) - Microvac Dust Samples.

Dear Mr. Hatfield:

Enclosed are the analyses of the dust samples we received at our facility on September 14, 1995. The samples were sent under your job/purchase order number: 558-048-6101, 1st Florida Tower (Tampa), and were labelled:

1
2
3
4
5

Please call our office at your convenience should you have any questions concerning the analyses of your samples.

Sincerely,

William E. Longo, Ph.D.
President

WEL:dab

Enc.
Ref: M13824

Raleigh Office:
616 Hutton Street • Suite 101
Raleigh, North Carolina 27606
(919) 829-7041 • FAX (919) 829-5518

Atlanta Office:
3597 Parkway Lane • Suite 250
Norcross, Georgia 30092
(404) 448-3200 • FAX (404) 368-8256

MATERIALS ANALYTICAL SERVICES, INC.
3597 PARKWAY LANE, SUITE 250
NORCROSS, GA 30092
(404) 448-3200

***Summary of Results of Analyses by
Transmission Electron Microscopy (TEM)***

Client Name: Law Engineering - Atlanta
 Client Job Number/Name: 558-048-6101, 1st Florida Tower (Tampa)
 MAS Project Number: M13824
 Reviewer: Zeyf

Client Sample Number	MAS Sample Number	Sample Location	Number of Asbestos Structures	Asbestos Concentration Str/sq ft	Asbestos Concentration Str/cm ²
1	M13824-1	1st floor bank lobby, top of metal box above ceiling	30	12.0 Billion	12.9 Million
2	M13824-2	Basement, lobby area outside of old vault area, top of light fixture above ceiling	12	1.1 Billion	1.2 Million
3	M13824-3	35th floor, dining room area, top of 1' x 1' ceiling tile	20	36.8 Billion	39.7 Million
4	M13824-4	9th floor, top of metal air duct	18	32.8 Billion	35.5 Million
5	M13824-5	Field Blank	0	N/A	N/A

DUST SAMPLE ANALYSISDust Sampling Method: MICROVAC

Sample ID: LAW ATLANTA
 IAS Job Number: M 13824 - 1
 Date Sample Analyzed: 9-22-95
 Number of Openings/Grids Counted: 1012
 Grid Accepted, Low Mag: Yes No
 Percent Loading: 2 %
 Grid Box #: 3496 3557

Accelerating Voltage: 100 KV
 Indicated Mag: 25 KX
 Screen Mag: 20 KX
 Microscope Number: 1 2 3 4 5
 Filter Type: LMCE PC
 Filter Size: 25mm, 37mm, 47mm
 Filter Pore Size (um): 0.145
 Grid Opening: 1) 115 um x 115 um
2) 116 um x 114 um

Analyst: John Mather
 Reviewer: JW

Calculation Data:

Counting Rules: AHERA

LEVEL II

Effective Filter Area in mm²: (A) 1297Number of Grid Openings Examined: (B) 10Average Grid Opening Area in mm²: (C) 0.013225Total Volume of Original Suspension in ml: (D) 100Equivalent Volume of Original Suspension Filtered in ml: (E) 0.02 (1:5000)Area Sampled in sq. ft / cm²: (F) 0.123 sq. ft. 114 cm²Total Number of Asbestos Structures Counted: (G) 30Number of Asbestos Structures between 0.5 and 5 microns: 14 Structures ≥ 5 microns: 16FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = \text{(asbestos structures per sq.ft or cm}^2\text{)}$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

Structures per sq. ft.

$$1196 \times 10^{-6}$$

Structures per cm²

$$1290 \times 10^{-6}$$

Results for Structures ≥ 5 microns:

Structures per sq. ft.

$$6379 \times 10^{-9}$$

Structures per cm²

$$6.882 \times 10^{-6}$$

MAS JOB NUMBER: M13824-1

PAGE # 112

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH MICRONS	WIDTH MICRONS	CONFIRMATION		
						MORPH.	SAED	EDS
1	D7-J2	C	B	12.0	0.7	-	-	g.o
2	J8	C	F	4.9	0.05	/	-	
3		C	F	6.3	0.05	/	-	
4		C	F	10.3	0.03	/	-	
5		C	F	3.7	0.1	-	-	
6		C	F	1.0	0.2	/	/	
7		C	B	5.0	0.3	-	-	
8	F8	C	F	9.0	0.1	-	-	
9		C	F	8.0	0.1	-	-	
10		C	C-F	6.4	0.1	/	-	g.o
11		C	F	7.0	0.1	-	/	
12		C	B	8.6	0.1	-	-	
13	D7	C	C-F	1.7	0.2	/	-	
14		C	F	1.3	0.05	-	-	
15		C	-F	3.3	0.1	-	-	
16		C	F	2.2	0.05	-	/	
17		C	F	0.9	0.05	-	/	
18	BY	C	F	1.2	0.05	-	-	
19		C	F	2.2	0.1	-	-	
20		C	F	8.0	0.1	/	/	g.o
21	E7-D2	C	M-B	1.3	0.2	-	-	
22	G3	C	B	12.0	0.2	-	-	
23		C	F	4.0	0.05	-	-	
24		C	F	5.9	0.05	-	-	
25		C	B	9.0	0.15	-	-	

KEYS TO ABBREVIATIONS USED ABOVE:

TYPE :

C = CHRYSOTILE
 AM = AMOSITE
 CR = CROCIDOLITE
 AC = ACTINOLITE
 TR = TREMOLITE
 AN = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE :

F = FIBER
 B = BUNDLE
 C = CLUSTER
 M = MATRIX

OTHERS:

NSD = NO STRUCTURES DETECTED
 MORPH = MORPHOLOGY
 SAED = SELECTED AREA ELECTRON DIFFRACTION
 EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
 IR = INTERROW SPACING
 NP = NO PATTERN

MAS JOB NUMBER:

M 13824-1

PAGE #

272

DUST SAMPLE ANALYSISDust Sampling Method: MICROVAC

Sample ID: LAW ATLAUT 6 Accelerating Voltage: 100 KV
 Sample ID: 2 Indicated Mag: 20 KX
 AS Job Number: M 13824 - 2 Screen Mag: 15.3 KX
 Date Sample Analyzed: 9-18-95 Microscope Number: 1 2 3 4 15
 Number of Openings/Grids Counted: 101 Grid Accepted, Low Mag: Yes Filter Type: LMCE PC
 Grid Accepted, Low Mag: Yes No Filter Size: 25mm, 37mm, 47mm
 Percent Loading: 3 % Filter Pore Size (um): 0.145
 Grid Box #: 3496 Grid Opening: 1) 113 um x 114 um
2) 113 um x 112 um

Analytical Data:
 Analyst: J. A. L.
 Reviewer: J. A. L.

Calculation Data: Counting Rules: AHERA LEVEL II

Effective Filter Area in mm²: (A) 1297

Number of Grid Openings Examined: (B) 10

Average Grid Opening Area in mm²: (C) 0.1012769

Total Volume of Original Suspension in ml: (D) 100

Equivalent Volume of Original Suspension Filtered in ml: (E) 0.1 (1:1000)

Area Sampled in sq. ft./cm²: (F) 0.108 sq. ft. 100 cm²

Total Number of Asbestos Structures Counted: (G) 12

Number of Asbestos Structures between 0.5 and 5 microns: 11 Structures ≥ 5 microns: 1

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

Structures per sq. ft.

$$11.129 \times 10^6$$

Structures per cm²

$$1.249 \times 10^{10}$$

Results for Structures ≥ 5 microns:

Structures per sq. ft.

$$1.1405 \times 10^7$$

Structures per cm²

$$1.240 \times 10^5$$

MAS JOB NUMBER:

M 13824-2

PAGE #

1000

KEYS TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE

AM = AMOSITE

C = CROCIDOLITE

AC = ACTINOLITE

TR = TREMOLITE

AN = ANTHOPHYLLITE

N = NON ASBESTOS

STRUCTURE:

F = FIRER

B = BUNDLE

C = CLUSTER

M = MATRIX

OTHERS:

NSD = NO STRUCTURES DETECTED

MORPH = MORPHOLOGY

SAED = SELECTED AREA ELECTRON DIFFRACTION

EDS = ENERGY DISPERST

IR = INTERROW SPACING

NP = NO PATTERN

DUST SAMPLE ANALYSISDust Sampling Method: MICROVAC

Site: LAW ATLANTA
 Sample ID: 3
 IAS Job Number: M 13824-3
 Date Sample Analyzed: 9-22-95
 Number of Openings/Grids Counted: 1012
 Grid Accepted, Low Mag: Yes No
 Percent Loading: 1 %
 Grid Box #: AT-3496 3557

Accelerating Voltage: 100 KV
 Indicated Mag: 20 KX
 Screen Mag: 1513 KX
 Microscope Number: 1 2 3 4 5
 Filter Type: LMCE PC
 Filter Size: 25mm, 37mm, 47mm
 Filter Pore Size (um): 0.145
 Grid Opening: 1) 113 um x 114 um
2) 115 um x 115 um

Catalyst: Hammer
 Reviewer: BB

Calculation Data:

	Counting Rules:	AHERA	LEVEL II
Effective Filter Area in mm ² :	(A)	<u>1297</u>	
Number of Grid Openings Examined:	(B)	<u>10</u>	
Large Grid Opening Area in mm ² :	(C)	<u>0.013054</u>	
Total Volume of Original Suspension in ml:	(D)	<u>100</u>	
Equivalent Volume of Original Suspension Filtered in ml: (E)	(E)	<u>0.005</u> (1: <u>20,000</u>)	
Area Sampled in sq. ft. / cm ² :	(F)	<u>0.1108</u> sq. ft. <u>100</u> cm ²	
Total Number of Asbestos Structures Counted:	(G)	<u>20</u>	

Number of Asbestos Structures between 0.5 and 5 microns: 13 Structures ≥ 5 microns: 7

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

<u>Structures per sq. ft.</u>	<u>Structures per cm²</u>
<u>$3,163.9 \times 10^{10}$</u>	<u>$3,163.9 \times 10^7$</u>

Results for Structures ≥ 5 microns:

<u>Structures per sq. ft.</u>	<u>Structures per cm²</u>
<u>$1,283 \times 10^{10}$</u>	<u>$1,283 \times 10^7$</u>

MAS JOB NUMBER:

M 13824-3

PAGE #

1

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH MICRONS	WIDTH MICRONS	CONFIRMATION		
						MORPH.	SAED	EDS
1	A3 f8	C	u-f	710	0105	-	-	PD
2		C	M-f	110	0105	-	-	
3		C	M-f	515	0105	-	-	
4		C	f	215	0105	-	-	
	H7		NSD					
5	G5	C	f	115	0105	-	-	
6	F1	C	f	715	0105	-	-	
7	D3	C	M-f	115	0105	-	-	
8	A4-D8	C	M-B	515	013	-	-	
9		C	f	310	0105	-	-	
10		C	f	410	0105	-	-	PD
11		C	f	215	0105	-	-	
12	C5	C	f	210	0105	-	-	
13		C	f	1010	0105	-	-	
14		C	f	810	0105	-	-	
15	E2	C	M-f	1510	0105	-	-	
16		C	f	215	0105	-	-	
17	H4	C	C-f	210	0105	-	-	
18		C	f	410	0105	-	-	
19	I7	C	M-f	215	0105	-	-	
20		C	f	310	0105	-	-	PD

KEYS TO ABBREVIATIONS USED ABOVE:

TYPE:

C = CHRYSOTILE
 AM = AMOSITE
 CR = CROCIDOLITE
 AC = ACTINOLITE
 TR = TREMOLITE
 AN = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE :

F = FIBER
B = BUNDLE
C = CLUSTER
M = MATRIX

OTHERS-

NSD = NO STRUCTURES DETECTED
MORPH = MORPHOLOGY
SAED = SELECTED AREA ELECTRON DIFFRACTION
EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
IR = INTERROW SPACING
NP = NO PATTERN

DUST SAMPLE ANALYSISDust Sampling Method: MICROVAC

Lab: LAW ATLANTA Accelerating Voltage: 100 KV
 Sample ID: 4 Indicated Mag: 25 KX
 MAS Job Number: M 13824-4 Screen Mag: 20 KX
 Date Sample Analyzed: 9-22-95 Microscope Number: 1 2 3 4 5
 Number of Openings/Grids Counted: 1012 Filter Type: (MCE) PC
 Grid Accepted, Low Mag: Yes No Filter Size: 25mm, 37mm, 47mm
 Percent Loading: 2 % Filter Pore Size (um): 0.145
 Grid Box #: 3496 3557 Grid Opening: 1) 114 um x 114 um
2) 116 um x 115 um
 Analyst: J. M. Miller
 Reviewer: J. A. Williams

Calculation Data: Counting Rules: AHERA LEVEL II
 Effective Filter Area in mm²: (A) 1297
 Number of Grid Openings Examined: (B) 10
 Average Grid Opening Area in mm²: (C) 0.013168
 Total Volume of Original Suspension in ml: (D) 100
 Equivalent Volume of Original Suspension Filtered in ml: (E) 0.005 (1:20000)
 Area Sampled in sq. ft. / cm²: (F) 0.108 sq. ft. 100 cm²
 Total Number of Asbestos Structures Counted: (G) 18
 Number of Asbestos Structures between 0.5 and 5 microns: 8 Structures ≥ 5 microns: 10

FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures:

Structures per sq. ft.	Structures per cm ²
<u>3.283 X 10¹⁰</u>	<u>3.546 X 10⁹</u>

Results for Structures ≥ 5 microns:

Structures per sq. ft.	Structures per cm ²
<u>1.824 X 10⁹</u>	<u>1.970 X 10⁸</u>

MAS JOB NUMBER:

M/3824-4

PAGE #

11

STR. #	GRID # SQUARE #	TYPE	STRUCTURE	LENGTH MICRONS	WIDTH MICRONS	CONFIRMATION
						MORPH. SAED EDS
	C4-E7		NSD			
1	C6	C	F	1.6	0.05	- - P.D.
2		C	M-F	4.0	0.1	- -
3	D2	C	F	0.7	0.04	- -
4		C	F	0.9	0.1	- -
5		C	B	13.0	0.1	- -
6		C	F	6.0	0.1	- -
7	62	C	M-B	6.0	0.4	- -
8		C	F	1.0	0.15	- -
9		C	F	6.0	0.1	- -
10		C	M-F	8.0	0.05	- - P.O.
11	F7	C	M-B	42.0	0.2	- -
12	D4-D2	C	F	5.7	0.05	- -
13		C	F	5.3	0.05	- -
	F4		NSD			
14	H7	C	B	6.2	0.15	- -
15		C	B	14.0	0.05	- -
16		C	F	2.6	0.1	- -
	G9		NSD			
17	B6	C	B	2.0	0.12	- -
18		C	F	1.7	0.05	- -

KEYS TO ABBREVIATIONS USED ABOVE:

TYPE :

C = CHRYSOTILE
 AM = AMOSITE
 CR = CROCIDOLITE
 AC = ACTINOLITE
 TR = TREMOLITE
 AN = ANTHOPHYLLITE
 N = NON ASBESTOS

STRUCTURE:

F = FIBER
B = BUNDLE
C = CLUSTER
M = MATRIX

OTHERS:

NSD = NO STRUCTURES DETECTED
MORPH = MORPHOLOGY
SAED = SELECTED AREA ELECTRON DIFFRACTION
EDS = ENERGY DISPERITIVE X-RAY SPECTROSCOPY
IR = INTERROW SPACING
NP = NO PATTERN

DUST SAMPLE ANALYSISDust Sampling Method: MICROVAC

Site: LAW ATLANTA Accelerating Voltage: 100 KV
 Sample ID: 5 BLANK Indicated Mag: 70 KX
 TAS Job Number: M 13824 - 5 Screen Mag: 1513 KX
 Date Sample Analyzed: 9 - 18 - 85 Microscope Number: 1 2 3 4 15
 Number of Openings/Grids Counted: 1012 Filter Type: LMCE PC
 Irid Accepted, Low Mag: Yes No
 Percent Loading: 61 % Filter Size: 25mm, 37mm, 47mm
 Irid Box #: 3496 Filter Pore Size (um): 0.145
 Analyst: J. J. Danner Grid Opening: 1) 113 um x 115 um
 Reviewer: J. J. Danner 2) 114 um x 114 um

Calculation Data : Counting Rules: AHERA LEVEL II

Effective Filter Area in mm²: (A) 1297Number of Grid Openings Examined: (B) 10Average Grid Opening Area in mm²: (C) 0.1012996Total Volume of Original Suspension in ml: (D) 100Equivalent Volume of Original Suspension Filtered in ml: (E) 30 (1:3.33)Area Sampled in sq. ft. / cm²: (F) -0- sq. ft. -0- cm²Total Number of Asbestos Structures Counted: (G) 0Number of Asbestos Structures between 0.5 and 5 microns: 0 Structures ≥ 5 microns: 0**FORMULA FOR CALCULATION OF ASBESTOS STRUCTURES PER SQ. FT. AND PER CM²:**

$$\frac{A}{B} * \frac{C}{D} * \frac{1}{E} * \frac{G}{F} = (\text{asbestos structures per sq.ft. or cm}^2)$$

CONVERSIONS:

$$\frac{\text{Area in cm}^2}{929.03} = \text{sq. ft.}$$

$$\text{Area in sq. ft.} \times 929.03 = \text{cm}^2$$

Results for Total Asbestos Structures :

Structures per sq. ft.

Structures per cm²

Structures per sq.ft.

Structures per cm²

Results for Structures ≥ 5 microns :

MATERIALS ANALYTICAL SERVICES, INC.
3597 PARKWAY LANE, SUITE 250
NORCROSS, GEORGIA 30092
(404) 448-3200

CHAIN-OF-CUSTODY

Page 1 of 1

Client: LAW ENG/ATL

MAS Job #: M13824

Contact: Richard L. Hatfield

Date Recd: 09/14/95

Phone No: (404)-873-4761

Client P.O.: 558-048-6101

TYPE OF ANALYSIS

Type : MicroVac

Requested T.A.T.: N/A

Method: Dust

Due Date: 09/12/15

Sample Number(s):

1)	1	114	cm ²
2)	2	100	cm ²
3)	3	100	cm ²
4)	4	100	cm ²
5)	5 FIELD BLANK	0	cm ²

Samples Relinquished By: classic carrier

Samples Received By: denise mazzaferro fm. Time: 09:19

Condition of Samples: good

Client Docs: COC

Init File Rev: mazzaferro

Sample Prep By: mazzaferro Date: 9-14-95

Sample Analysis: Millicent Vassar Date: 9-18-95 4-22-95

Report(s) Sent By: _____ Date: _____

Sample(s) Ret. By: _____ Date: _____

MATERIALS ANALYTICAL SERVICES, INC.
3597 PARKWAY LANE, SUITE 250
NORCROSS, GEORGIA 30092
(404) 448-3200

CHAIN-OF-CUSTODY

Page 1 of 1

Client: LAW ENG/ATL

MAS Job #: M13824

Contact: Richard L. Hatfield

Date Recd: 09/14/95

Phone No: (404)-873-4761

Client P.O.: 558-048-6101

TYPE OF ANALYSIS

Type : MicroVac

Requested T.A.T.: N/A

Method: Dust

Due Date: 09/12/15

Sample Number(s):

1)	1	114	cm ²
2)	2	100	cm ²
3)	3	100	cm ²
4)	4	100	cm ²
5)	FIELD BLANK	0	cm ²

Samples Relinquished By: classic courier

Samples Received By: denise mazzaferro fm. Time: 09:19

Condition of Samples: good

Client Docs: COC

Init File Rev: mazzaferro

Sample Prep By: mazzaferro Date: 9-14-95

Sample Analysis: M. Hatfield & Asst. Date: 9-18-95 4-22-95

Report(s) Sent By: _____ Date: _____

Sample(s) Ret. By: _____ Date: _____

SURFACE DUST SAMPLE LOG

1ST FLORIDA TOWER (TAMPA) LAW ENGINEERING PROJECT NO. 558-048-6101

Samples Taken By: Richard L. Hatfield

Date of Visit: 09/11/95

<u>Sample No.</u>	<u>Location</u>	<u>Area</u>
1	1st floor bank lobby, top of metal box above ceiling	12cm x 9.5cm
2	Basement, lobby area outside of old vault area, top of light fixture above ceiling	10cm x 10cm
3	35th floor, dining room area, top of 1' x 1' ceiling tile	10cm x 10cm
4	9th floor, top of metal air duct	10cm x 10cm
5	Field Blank	

Date of Transfer: 09/14/95

Transfer to: Materials Analytical Services

Transfer by: Gabrielle R. Johnson per Richard L. Hatfield

Delivered by: A Classic Courier

6101dust.doc

Receive d
9-14-95
Dina Bajwa
m13824

LAW ENGINEERING, INC.

396 PLASTERS AVENUE, N.E. • ATLANTA, GA 30324
(404) 873-4761 • FAX (404) 881-0508

MATERIALS
ANALYTICAL
SERVICES •

SAMPLE CASSETTE LABEL DATA

MAS PROJECT NUMBER: M13824

PREPARED BY: G. Mazzatorta

MAS SAMPLE NO.

DATA

M13824-1 #1 1st Florida Towers 1st Floor
Brick, hobby
Top of metal box above ceiling
BLH 12cmx 9.5cm

M13824-2 #2 1st Florida Tower Basement
Top of light fixture
10cmx 10cm

M13824-3 #3 1st Florida Tower 35th Floor
Top of 1x1 Ceiling Tile
BLH 9/11/95 10cmx 10cm

M13824-4 #4 1st Florida Tower 9th Fl.
Top of Duct
BLH 9/11/95 10x 10cm

M13824-5 #5 1st Florida Towers
Field Blank