Class 2: Regression and classification

Andrew Parnell, School of Mathematics and Statistics, University College Dublin

Learning outcomes

- ▶ Be able to understand the structure of regression and classification models
- Know how to read and interpret the output of a statistical model
- Be familiar with some of the extensions to basic regression and classification models

Why regression and classification?

- t-tests are only really useful when you have a continuous outcome variable and one discrete variable with two groups (e.g. treatment vs control)
- For almost any real life situation you have multiple variables of all different types
- ► For these situations you need a statistical model
- A statistical model allows us to perform probabilistic prediction of the outcome variable from the remaining variables, and/or to explain how the other variables are causing the outcome variable to change

Regression vs Classification: what's the difference?

- In regression we have a single continuous outcome variable and lots of other variables which we think might be good predictors of the outcome
- ► In classification we have a single *discrete* outcome variable and lots of other variables
- ► In the machine learning literature this is often known as supervised learning
- Situations where there are multiple outcome variables are beyond the scope of this course

Response and explanatory variables

- ► The outcome variable is more commonly known as the response variable
- ► The other variables which we think might be good predictors of the response variable are called the *explanatory variables* (though be careful with causation)
- ► We will use these words from now on, but beware there are lots of other terms in the literature

A basic regression model

- Let's go back to the prostate cancer data
- ► Recall the key outcome variable is 1psa the log of the prostate specific antigen value. This is our response variable
- ► Suppose we had one explanatory variable lweight

Creating the model

- ► Looking at the plot, there may be a positive, linear relationship between log(weight) and log(psa)
- Perhaps we can create a prediction model that allows us to predict log(psa) from log(weight)
- ► Suppose, for each patient we multiplied the log(weight) value by 1.2 and then subtracted the value 2 so:

$$prediction = 1.2 \times \log(weight) - 2$$

▶ If we do this repeatedly for every value in the data set we get . . .

A first model

Refining the model

- ► Is this model any good?
- ► How might we measure how close our predictions are to the truth?
- ▶ How can we choose the values (here 1.2 and -2) better?

Getting R to do the work

Luckily the R function 1m will do the work for us

(Intercept) -1.7586 0.9103 -1.932 0.0564 . lweight 1.1676 0.2491 4.686 9.28e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

Residual standard error: 1.046 on 95 degrees of freedom Multiple R-squared: 0.1878, Adjusted R-squared: 0.1792 F-statistic: 21.96 on 1 and 95 DF, p-value: 9.276e-06

◆ロト ◆個ト ◆園ト ◆園ト ■ りへ

Background details

- ▶ The two values here are the *y*-intercept and the slope of the line. They are commonly known as the *regression coefficients*
- ▶ R chooses these coefficients by minimising the vertical distances between the black and the red points
- A key assumption in the model is that these vertical distances (known as residuals) are normally distributed
- ▶ R uses this assumption to run t-tests on the parameters, which you can see the results of in the summary output

Plotting the fit

One way is to type plot(model_1) which gives residual diagnostics. A quick plot of the fitted line via:

Expanding the model with two explanatory variables

Suppose we wanted to use two explanatory variables, lweight and age:

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

Residual standard error: 1.051 on 94 degrees of freedom Multiple R-squared: 0.1882, Adjusted R-squared: 0.1709 F-statistic: 10.89 on 2 and 94 DF, p-value: 5.558e-05

Expanding the fit even more

```
model_3 = lm(formula = lpsa ~ . - train, data = prostate)
summary(model_3)
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
            0.181561
                      1.320568
                                 0.137
                                       0.89096
           0.564341
                      0.087833 6.425 6.55e-09 ***
lcavol
lweight
            0.622020
                      0.200897 3.096 0.00263 **
                      0.011084
                                -1.917 0.05848 .
age
           -0.021248
lbph
            0.096713
                      0.057913
                                 1.670 0.09848 .
                      0.241176
svi
            0.761673
                                 3.158
                                       0.00218 **
           -0.106051
                                -1.180
                                       0.24115
lcp
                      0.089868
            0.049228
                      0.155341
                                 0.317
                                       0.75207
gleason
            0.004458
                      0.004365 1.021
                                       0.31000
pgg45
```

Multiple regression

- ► When you have lots of explanatory variables this is known as multiple regression
- You can still use the values in the Estimate column to create predictions of 1psa by multiplying and adding up
- Beware the p-values as before: they might be highly significant but still a very poor model
- R gives you two other useful statistics:
 - ► The R-squared which measures the proportion of variation in the response variable explained by the explanatory variables
 - ► The residual standard error which measures how far away the data points are from the fitted line

Dealing with interactions

- ► Our explanatory variables will often interact with each other to affect the response variable
- ► The usual way to deal with interactions is to create *new* explanatory variables by multiplying them together. 1m does this for you:

```
model_4 = lm(formula = lpsa ~ lweight + age + lweight:age,
summary(model_4)
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.97325 8.45553 -1.179 0.241
lweight 3.45163 2.40620 1.434 0.155
age 0.12575 0.12800 0.982 0.328
lweight:age -0.03481 0.03613 -0.964 0.338
```

Residual standard error: 1.051 on 93 degrees of freedom Multiple R-squared: 0.1962, Adjusted R-squared: 0.1703 F-statistic: 7.566 on 3 and 93 DF, p-value: 0.0001391

Final remarks on regression models

- ► There is lots of research on regression models of all different types
- ► The vast majority of them involve creating a set of coefficients to multiply the explanatory variables by and then adding everything up
- It becomes very hard to plot the predictions in large and complex models
- It's very important to check the model diagnostics using plot and to look at the R-squared and residual standard error values

Classification models

Intro to classification models

- Returning to the South African heart rate data, recall that here we are interested in predicting whether someone has CHD or not
- We have explanatory variables including adiposity, alcohol use, age, etc
- ► CHD is a discrete binary variable (1 or 0). It thus makes more sense to try and predict a probability of CHD i.e. a value between 0 and 1, rather than CHD itself
- ▶ If we use our previous approach to guess coefficients for the different explanatory variables we will run into problems with values going outside 1 or 0

The logit transformation

- Suppose we wanted to predict CHD from age
- We might come up with the model:

$$Prob(CHD) = 0.06 \times age - 2$$

- ▶ Thus if someone has an age of 40 they have probability 0.4
- ▶ But if someone has an age of 20 they have probability -0.8. Oh dear!
- Instead use a transformation, such as the logit

$$Prob(CHD) = \frac{\exp(0.06 \times age - 2)}{1 + \exp(0.06 \times age - 2)}$$

► This transformation guarantee the values will be between 0 and 1 - try it!

About classification models

- Rather than try to predict a continuous response variable, classification models aim to find the probability that an observation is in a particular class
- Underneath the hood though, they are exactly like regression models with coefficients applied to each of the explanatory variables before adding everything up
- ▶ We then use a clever transformation (such as the logit, but there are others) to turn it into a probability
- Rather than the normal distribution, we use the binomial distribution to judge how close the observations are to the predictions and hence estimate the missing coefficients
- ▶ The R function glm will fit a classification model for us

Example: SA Heart rate

```
model_1 = glm(chd ~ age, data = SA, family = 'binomial')
summary(model_1)
```

```
Coefficients:
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom Residual deviance: 525.56 on 460 degrees of freedom AIC: 529.56

Understanding the output

- ▶ The output here is much less helpful
- ► We have the coefficient values, but this is before the logit transformation so not particularly useful
- We have the p-values of the coefficients but we should be wary of these
- ► The other values (deviance etc) aren't particularly helpful
- AIC we'll talk about in the next class
- In fact, to judge the performance of the model we need to do a lot more work!

Extending the model

We can extend to multiple explanatory variables in exactly the same way as before:

```
model_2 = glm(chd ~ age + adiposity + age:adiposity, data =
summary(model_2)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.6909894 1.3851412 -3.387 0.000708 ***

age 0.0811012 0.0300150 2.702 0.006892 **

adiposity 0.0583492 0.0596028 0.979 0.327596

age:adiposity -0.0009184 0.0012051 -0.762 0.446000
```

Plotting the fitted model

```
plot(jitter(SA$age), SA$chd, ylab = 'chd', xlab = 'Age')
points(SA$age, model_1$fitted.values, col='red')
```


Regularisation and shrinkage

- ► When you have lots and lots of explanatory variables, the model can become very slow or might not fit at all
- ► Worse, we might have lots of spurious small p-values without any predictive power
- It makes sense to remove or reduce some of the coefficients on the explanatory variables if we think their effect is over-stated
- One way of doing this is via regularisation, where we set some of the values to zero, another is via shrinkage where we reduce the values (shrink them towards zero)

Lasso and Ridge

- The R package glmnet will perform shrinkage and regularisation for both regression and classification
- The Lasso model imposes a restricted sum on the absolute value of all of the coefficient values
- The Ridge model imposes an assumption that all of the coefficient values come from a normal distribution with some small standard deviation
- ▶ Fitting these types of model is beyond the scope of this course

More advanced classification approaches

- ▶ Much like regression, classification models have a long literature
- However, classification models tend to be more complicated as there are transformations involved (e.g. logit) and often multiple response variables (i.e. more than two categories for the response)
- Sometimes you have the choice between using a discrete response variable or a continuous one. I would always pick the continuous one: in general regression models perform better than classification models

Summary

- We now know how to implement regression and classification models in R
- We know how to interpret the output of some regression models
- ► We're familiar with some of the more advanced concepts in regression and classification