

Example 1 93 : As shown in Figure 1 , *point* M in \triangle ABC, extend AM to AA_1 , make $AM = A_1M$, extend BM to BB_1 , make $BM = B_1M$, extend CM to CC_1 , make $CM = C_1M$, to prove: the circumscribed circles of \triangle ABC_1 , \triangle A_1BC , \triangle AB_1C intersect at point D.

Proof: Assume that the circumscribed circles of \triangle ABC_{\perp} and \triangle $A_{\perp}BC$ intersect at point D, and then prove that D is on the circumscribed circle of \triangle $AB_{\perp}C$.

Proof:
$$\frac{\frac{D-A}{D-C}}{\frac{B_{1}-A}{B_{1}-C}} = \frac{A_{1}-B}{B_{1}-A} \frac{C_{1}-A}{A_{1}-C} \frac{B_{1}-C}{C_{1}-B} \frac{\frac{B-D}{D-C}}{\frac{A_{1}-B}{A_{1}-C}} \frac{\frac{D-A}{B-D}}{\frac{C_{1}-A}{C_{1}-B}}$$