Теоремы об интуиционистском исчислении высказываний

Общие результаты об исчислениях высказываний

	К.И.В.	И.И.В. + алгебры Гейтинга
корректность	да (лекция 1)	да (ДЗ III.10)
непротиворечивость	да (очев.)	да (из непр. КИВ)
полнота	да (лекция 2)	да
разрешимость	да (лекция 2)	да

Алгебра Линденбаума

Определение

Определим предпорядок на высказываниях: $\alpha \leq \beta := \alpha \vdash \beta$ в интуиционистском исчислении высказываний. Также $\alpha \approx \beta$, если $\alpha \leq \beta$ и $\beta \leq \alpha$.

Определение

Пусть L — множество всех высказываний. Тогда алгебра Линденбаума $\mathcal{L}=\mathrm{L}/_{\approx}$.

Теорема

 \mathcal{L} — псевдобулева алгебра.

Схема доказательства.

Надо показать, что (\preceq) есть отношение порядка на \mathcal{L} , что $[\alpha \vee \beta]_{\mathcal{L}} = [\alpha]_{\mathcal{L}} + [\beta]_{\mathcal{L}}$, $[\alpha \& \beta]_{\mathcal{L}} = [\alpha]_{\mathcal{L}} \cdot [\beta]_{\mathcal{L}}$, импликация есть псевдодополнение, $[A \& \neg A]_{\mathcal{L}} = 0$, $[\alpha]_{\mathcal{L}} \to 0 = [\neg \alpha]_{\mathcal{L}}$.

Полнота псевдобулевых алгебр

Теорема

Пусть $[\![\alpha]\!] = [\![\alpha]\!]_{\mathcal{L}}$. Такая оценка интуиционистского исчисления высказываний алгеброй Линденбаума является согласованной.

Теорема

Интуиционистское исчисление высказываний полно в псевдобулевых алгебрах: если $\models \alpha$ во всех псевдобулевых алгебрах, то $\vdash \alpha$.

Доказательство.

Возьмём в качестве модели исчисления алгебру Линденбаума: $[\![\alpha]\!] = [\![\alpha]\!]_{\mathcal{L}}.$

Пусть $\models \alpha$. Тогда $[\![\alpha]\!]=1$ во всех псевдобулевых алгебрах, в том числе и $[\![\alpha]\!]=1_{\mathcal L}$. То есть $[\![\alpha]\!]_{\mathcal L}=[A o A]_{\mathcal L}$. То есть $A o Approx \alpha$. Значит, в частности, $A o A\vdash \alpha$. Значит, $\vdash \alpha$.

Модели Крипке

Определение

Модель Крипке $\langle \mathcal{W}, \preceq, (\Vdash) \rangle$:

- ▶ W множество миров, (\preceq) нестрогий частичный порядок на W;
- ▶ (\Vdash) $\subseteq W \times P$ отношение вынуждения между мирами и переменными, причём, если $W_i \preceq W_j$ и $W_i \Vdash X$, то $W_i \Vdash X$.

Доопределим вынужденность:

- ▶ $W \Vdash \alpha \& \beta$, если $W \Vdash \alpha$ и $W \Vdash \beta$;
- ▶ $W \Vdash \alpha \lor \beta$, если $W \Vdash \alpha$ или $W \Vdash \beta$;
- ▶ $W \Vdash \alpha \to \beta$, если всегда при $W \preceq W_1$ и $W_1 \Vdash \alpha$ выполнено $W_1 \Vdash \beta$
- ▶ $W \Vdash \neg \alpha$, если всегда при $W \prec W_1$ выполнено $W_1 \not\Vdash \alpha$.

Будем говорить, что $\vdash \alpha$, если $W \vdash \alpha$ при всех $W \in \mathcal{W}$. Будем говорить, что $\models_{\kappa} \alpha$, если $\vdash \alpha$ во всех моделях Крипке.

Исключённое третье

Пример

Покажем, что $\not\models_{\kappa} A \vee \neg A$.

Тогда, $W_3 \Vdash \neg A$, но $W_1 \not\Vdash A$ (по определению) и $W_1 \not\Vdash \neg A$ (так как $W_1 \preceq W_2$ и $W_2 \Vdash A$). Значит, $W_1 \not\Vdash A \lor \neg A$.

Корректность моделей Крипке

Лемма

Если $W_1 \Vdash \alpha$ и $W_1 \preceq W_2$, то $W_2 \Vdash \alpha$

Теорема

Пусть $\langle \mathcal{W}, (\preceq), (\Vdash) \rangle$ — некоторая модель Крипке. Тогда она есть корректная модель интуиционистского исчисления высказываний.

Доказательство.

Доказательство для древовидного (\preceq), обобщение на произвольный порядок легко построить. Заметим, что $V(\alpha):=\{w\in\mathcal{W}\mid w\Vdash\alpha\}$ открыто в топологии для деревьев. Значит, положив $V=\{\ S\mid S\subseteq\mathcal{W}\ \&\ S-$ открыто $\}$ и $[\![\alpha]\!]=V(\alpha)$, получим алгебру Гейтинга.

Табличные модели

Определение

Пусть задано V, значение $T \in V$ («истина»), функция $f_P: P \to V$, функции $f_\&$, f_\lor , $f_\to: V \times V \to V$, функции $f_\lnot: V \to V$.

Тогда оценка $[\![X]\!] = f_P(X)$, $[\![\alpha \star \beta]\!] = f_\star([\![\alpha]\!], [\![\beta]\!])$, $[\![\neg \alpha]\!] = f_\lnot([\![\alpha]\!]) -$ табличная.

Если $\vdash \alpha$ влечёт $[\![\alpha]\!] = T$ при всех оценках пропозициональных переменных f_P , то $\mathcal{M} := \langle V, T, f_\&, f_\lor, f_\to, f_\lnot \rangle$ — табличная модель.

Определение

Табличная модель конечна, если V конечно.

Теорема

Не существует полной конечной табличной модели для интуиционистского исчисления высказываний

Доказательство нетабличности: α_n

Рассмотрим

Пусть существует полная конечная табличная модель \mathcal{M} , $V=\{v_1,v_2,\ldots,v_n\}$. То есть, если $\models_{\mathcal{M}} \alpha$, то $\vdash \alpha$.

$$\alpha_n = \bigvee_{1 \le p < q \le n+1} A_p \to A_q$$

Рассмотрим оценку $f_P:\{A_1\dots A_{n+1}\} \to \{v_1\dots v_n\}$. По принципу Дирихле существуют $p\neq q$, что $[\![A_p]\!]=[\![A_q]\!]$. Значит,

$$\llbracket A_p \to A_q \rrbracket = f_{\to}(\llbracket A_p \rrbracket, \llbracket A_q \rrbracket) = f_{\to}(v, v)$$

С другой стороны, $\vdash X \to X$ — поэтому $f_{\to}(\llbracket X \rrbracket, \llbracket X \rrbracket) = T$, значит,

$$\llbracket A_p \to A_q \rrbracket = f_{\to}(v,v) = f_{\to}(\llbracket X \rrbracket, \llbracket X \rrbracket) = T$$

Аналогично, $\vdash \sigma \lor (X \to X) \lor \tau$, отсюда $\llbracket \alpha_n \rrbracket = \llbracket \sigma \lor (X \to X) \lor \tau \rrbracket = T$.

Доказательство нетабличности: противоречие

Однако, в такой модели varphi α_n :

Если q>1, то $W_1 \not\Vdash A_q$ и $W_1 \not\Vdash$

Если q>2, то $W_2\not\Vdash A_q$ и $W_2\not\Vdash$

 $W_n \not\models A_{n+1}; W_n$

Если p < q, то $W_p \not\Vdash A_q$ и W_p

Если p < q, то $W_p \not\models A_p \to A_q$, то есть $W_R \not\models A_p \to A_q$. Отсюда: $W_R \not\models \bigvee_{p < q} A_p \to A_q$, $W_R \not\models \alpha_n$, потому $\not\models \alpha_n$ и $\not\models \alpha_n$.

Дизъюнктивность ИИВ

Определение

Исчисление дизъюнктивно, если при любых α и β из $\vdash \alpha \lor \beta$ следует $\vdash \alpha$ или $\vdash \beta$.

Определение

Решётка гёделева, если a+b=1 влечёт a=1 или b=1.

Теорема

Интуиционистское исчисление высказываний дизъюнктивно

«Гёделевизация» (операция $\Gamma(\mathcal{A})$)

Определение

Для алгебры Гейтинга $\mathcal{A} = \langle A, (\preceq) \rangle$ определим операцию «гёделевизации»: $\Gamma(\mathcal{A}) = \langle A \cup \{\omega\}, (\preceq_{\Gamma(\mathcal{A})}) \rangle$, где отношение $(\preceq_{\Gamma(\mathcal{A})})$ — минимальное отношение порядка, удовлетворяющее условиям:

- ► а $\leq_{\Gamma(\mathcal{A})}$ b, если а $\leq_{\mathcal{A}}$ b и а, b \notin { ω , 1};
- ► $a \leq_{\Gamma(A)} \omega$, если $a \neq 1$;
- $\triangleright \omega \leq_{\Gamma(A)} 1$

Теорема

 $\Gamma(A)$ — гёделева алгебра.

Доказательство.

Проверка определения алгебры Гейтинга и наблюдение: если $a \prec \omega$ и $b \prec \omega$, то $a + b \prec \omega$.

Оценка $\Gamma(\mathcal{L})$

Теорема

Рассмотрим оценку $[\![\alpha]\!]_{\Gamma(\mathcal{L})} = [\![\alpha]\!]_{\mathcal{L}}$. Тогда она является согласованной с ИИВ.

Индукция по структуре формулы и перебор операций. Рассмотрим (&). Неформально: почти везде

$$\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \cdot \llbracket \beta \rrbracket_{\Gamma(\mathcal{L})} = \llbracket \alpha \rrbracket_{\mathcal{L}} \cdot \llbracket \beta \rrbracket_{\mathcal{L}},$$
 поскольку $\llbracket \sigma \rrbracket_{\Gamma(\mathcal{L})} \neq \omega,$

... но нет ли случаев, когда
$$\omega = \text{наиб}\{x \mid x \leq [\![\alpha]\!]_{\Gamma(\mathcal{L})} \& x \leq [\![\beta]\!]_{\Gamma(\mathcal{L})}\}?$$

Чтобы убедиться, что всегда $[\![\alpha \& \beta]\!]_{\Gamma(\mathcal{L})} = [\![\alpha]\!]_{\Gamma(\mathcal{L})} \cdot [\![\beta]\!]_{\Gamma(\mathcal{L})}$, надо показать:

- $[\alpha \& \beta]$ из множества нижних граней: $\alpha \& \beta \vdash \alpha$ и $\alpha \& \beta \vdash \beta$:
- ▶ $[\alpha \& \beta]$ наибольшая нижняя грань: $x \preceq [\alpha]$ и $x \preceq [\beta]$ влечёт $x \preceq [\alpha \& \beta]$

Гомоморфизм алгебр

Определение

Пусть \mathcal{A},\mathcal{B} — алгебры Гейтинга. Тогда $g:\mathcal{A}\to\mathcal{B}$ — гомоморфизм, если $g(a\star b)=g(a)\star g(b),\,g(0_{\mathcal{A}})=0_{\mathcal{B}}$ и $g(1_{\mathcal{A}})=1_{\mathcal{B}}.$

Определение

Будем говорить, что оценка $[\![\cdot]\!]_{\mathcal{A}}$ согласована с $[\![\cdot]\!]_{\mathcal{B}}$ и гомоморфизмом g, если $g(\mathcal{A})=\mathcal{B}$ и $g([\![\alpha]\!]_{\mathcal{A}})=[\![\alpha]\!]_{\mathcal{B}}.$

Доказательство дизъюнктивности ИИВ

Определение
$$(\mathcal{G}:\Gamma(\mathcal{L}) o\mathcal{L})$$
 $\mathcal{G}(a)=\left\{egin{array}{ll} a,&a
eq\omega\ 1,&a=\omega\end{array}
ight.$

Лемма

 \mathcal{G} — гомоморфизм $\Gamma(\mathcal{L})$ и \mathcal{L} , причём оценка $[\![\cdot]\!]_{\Gamma(\mathcal{L})}$ согласована с \mathcal{G} и $[\![\cdot]\!]_{\mathcal{L}}$.

Теорема

Если $\vdash \alpha \lor \beta$, то либо $\vdash \alpha$, либо $\vdash \beta$.

Доказательство.

Пусть $\vdash \alpha \lor \beta$. Тогда $[\![\alpha \lor \beta]\!]_{\Gamma(\mathcal{L})} = 1$ (так как данная оценка согласована с ИИВ). Тогда $[\![\alpha]\!]_{\Gamma(\mathcal{L})} = 1$ или $[\![\beta]\!]_{\Gamma(\mathcal{L})} = 1$ (так как $\Gamma(\mathcal{L})$ гёделева).

Пусть $[\![\alpha]\!]_{\Gamma(\mathcal{L})} = 1$, тогда $\mathcal{G}([\![\alpha]\!]_{\Gamma(\mathcal{L})}) = [\![\alpha]\!]_{\mathcal{L}} = 1$, тогда $\vdash \alpha$ (по полноте \mathcal{L}).

Построение дистрибутивных подрешёток

Определение

Решётка $\mathcal{L}'=\langle L', \preceq \rangle$ — подрешётка решётки $\mathcal{L}=\langle L, \preceq \rangle$, если $L'\subseteq L$, $(\preceq')\subseteq (\preceq)$ и при $a,b\in L'$ выполнено $a+_{\mathcal{L}'}b=a+_{\mathcal{L}}b$ и $a\cdot_{\mathcal{L}'}b=a\cdot_{\mathcal{L}}b$.

Лемма

Существует дистрибутивная подрешётка \mathcal{L}' , содержащая a_1, \ldots, a_n , что $|L'| \leq 2^{2^n}$.

Доказательство.

Пусть $\mathcal{L}'=\langle\{\varphi(a_1,\ldots,a_n)\mid \varphi \text{ составлено из }(+)\text{ и }(\cdot)\},(\preceq)\rangle.$ Заметим, что если $p,q\in L'$, то $p\star_{\mathcal{L}} q\in L'$ (так как $\varphi_p(\overrightarrow{a})\star\varphi_q(\overrightarrow{a})=\psi(\overrightarrow{a})$). Также ясно, что если $\sup_L\{p,q\}\in L'$ (или $\inf_L\{p,q\}\in L'$), то $p\star_{\mathcal{L}} q=p\star_{\mathcal{L}'} q$. Значит, \mathcal{L}' также дистрибутивна. Построим «ДНФ»:

$$\varphi(a_1,\ldots,a_n) = \sum_{\mathsf{K}_\mathsf{H} \in \mathsf{Д}\mathsf{H}\Phi(\varphi)} \prod_{i \in \mathsf{K}_\mathsf{H}} a_i$$

Разрешимость ИИВ

Теорема

Если $ot \neq \alpha$ в ИИВ, то существует \mathcal{G} , что $\mathcal{G} \not\models \alpha$, причём $|\mathcal{G}| \leq 2^{2^{|\alpha|+2}}$.

Доказательство.

Если $ot \vdash \alpha$, то по полноте найдётся алгебра Гейтинга \mathcal{H} , что $\mathcal{H} \not\models \alpha$.

Пусть $\varphi_1,\ldots,\varphi_n$ — подформулы α . Пусть $\mathcal G$ — дистрибутивная подрешётка $\mathcal H$, построенная по $[\![\varphi_1]\!],\ldots,[\![\varphi_n]\!]$, 0 и 1.

Очевидно, что \mathcal{G} — алгебра Гейтинга, и можно показать, что $\mathcal{G}\not\models\alpha$ (псевдодополнения не обязаны сохраниться). Тогда по лемме, $|\mathcal{G}|\leq 2^{2^{n+2}}$.

Теорема

ИИВ разрешимо.

Доказательство.

По формуле α построим все возможные алгебры Гейтинга \mathcal{G} размера не больше $2^{2^{|\alpha|+2}}$, если $\mathcal{G} \models \alpha$, то $\vdash \alpha$.