The diagram below shows triangle PQR. The length of [PQ] is 7 cm, the length of [PR] is 10 cm, and $P\hat{Q}R$ is 75° .

(a)	Find $P\hat{R}Q$.	[3 marks]
(b)	Find the area of triangle PQR.	[3 marks]

The diagram below shows a circle centre O, with radius r. The length of arc ABC is 3π cm and $\triangle AOC = \frac{2\pi}{9}$.

(a)	Find the value of r .	[2 marks]
(b)	Find the perimeter of sector OABC.	[2 marks]
(c)	Find the area of sector OABC.	[2 marks]

Let
$$f(x) = 4 \tan^2 x - 4 \sin x$$
, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$.

(a) On the grid below, sketch the graph of y = f(x).

[3 marks]

(b) Solve the equation f(x) = 1. [3 marks]

.....

.....

2208-7304

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 11]

The following graph shows the depth of water, *y* metres, at a point P, during one day. The time *t* is given in hours, from midnight to noon.

- (a) Use the graph to write down an estimate of the value of t when
 - (i) the depth of water is minimum;
 - (ii) the depth of water is maximum;
 - (iii) the depth of the water is increasing most rapidly.

[3 marks]

- (b) The depth of water can be modelled by the function $y = A\cos(B(t-1)) + C$.
 - (i) Show that A = 8.
 - (ii) Write down the value of C.
 - (iii) Find the value of B.

[6 marks]

(c) A sailor knows that he cannot sail past P when the depth of the water is less than 12 m. Calculate the values of t between which he cannot sail past P.

[2 marks]

A ship leaves port A on a bearing of 030° . It sails a distance of 25 km to point B. At B, the ship changes direction to a bearing of 100° . It sails a distance of 40 km to reach point C. This information is shown in the diagram below.

A second ship leaves port A and sails directly to C.

(a)	Find the distance the second ship will travel.	[4 marks]
(b)	Find the bearing of the course taken by the second ship.	[3 marks]

8808-7302

The circle shown has centre O and radius 3.9 cm.

Points A and B lie on the circle and angle AOB is 1.8 radians.

(a)	Find AB.	[3 marks]
(b)	Find the area of the shaded region.	[4 marks]

The diagram below shows a triangle ABD with AB = 13 cm and AD = 6.5 cm. Let C be a point on the line BD such that BC = AC = 7 cm.

(a)	Find the size of angle ACB.	[3 marks]
(b)	Find the size of angle CAD.	[5 marks]

[4 marks]

Do **NOT** write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 13]

The following diagram shows a circle with centre O and radius 4 cm.

The points A, B and C lie on the circle. The point D is outside the circle, on (OC). Angle ADC = 0.3 radians and angle AOC = 0.8 radians.

(a)	Find AD.	[3 marks]
(b)	Find OD.	[4 marks]
(c)	Find the area of sector OABC.	[2 marks]

(d)

Find the area of region ABCD.

Do **NOT** write on this page.

9. [Maximum mark: 15]

Let
$$f(x) = 5\cos\frac{\pi}{4}x$$
 and $g(x) = -0.5x^2 + 5x - 8$, for $0 \le x \le 9$.

(a) On the same diagram, sketch the graphs of f and g.

[3 marks]

- (b) Consider the graph of f. Write down
 - (i) the x-intercept that lies between x = 0 and x = 3;
 - (ii) the period;
 - (iii) the amplitude.

[4 marks]

- (c) Consider the graph of g. Write down
 - (i) the two x-intercepts;
 - (ii) the equation of the axis of symmetry.

[3 marks]

(d) Let R be the region enclosed by the graphs of f and g. Find the area of R.

[5 marks]

The graph of $y = p \cos qx + r$, for $-5 \le x \le 14$, is shown below.

There is a minimum point at (0, -3) and a maximum point at (4, 7).

- (a) Find the value of
 - (i) *p*;
 - (ii) q

(111) <i>I</i> '.	[6 mar	'ks]

(b)	The equation $y = k$ has exactly two solutions. Write down the value of k .	l mark

.....

.....

Do **NOT** write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 14]

The diagram below shows a quadrilateral ABCD with obtuse angles ABC and ADC.

 $AB = 5 \text{ cm}, BC = 4 \text{ cm}, CD = 4 \text{ cm}, AD = 4 \text{ cm}, BAC = 30^{\circ}, ABC = x^{\circ}, ADC = y^{\circ}.$

- (a) Use the cosine rule to show that $AC = \sqrt{41 40\cos x}$. [1 mark]
- (b) Use the sine rule in triangle ABC to find another expression for AC. [2 marks]
- (c) (i) Hence, find x, giving your answer to two decimal places.
 - (ii) Find AC. [6 marks]
- (d) (i) Find *y*.
 - (ii) Hence, or otherwise, find the area of triangle ACD. [5 marks]

The following diagram shows the triangle ABC.

The angle at C is obtuse, AC = 5 cm, BC = 13.6 cm and the area is 20 cm^2 .

(a)	Find AĈB.	[4 marks]
(b)	Find AB.	[3 marks]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all questions in the boxes provided.

1. [Maximum mark: 6]

The following diagram shows triangle ABC.

AB = 7 cm, BC = 9 cm and $A\hat{B}C = 120^{\circ}$.

(a)	Find AC.	[3 marks]
(b)	Find BÂC.	[3 marks]
• •		
• •		
• •		
• •		

Do NOT write solutions on this page. Any working on this page will NOT be marked.

SECTION B

Answer all questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 14]

The following diagram shows a waterwheel with a bucket. The wheel rotates at a constant rate in an anticlockwise (counterclockwise) direction.

The diameter of the wheel is 8 metres. The centre of the wheel, A, is 2 metres above the water level. After t seconds, the height of the bucket above the water level is given by $h = a \sin bt + 2$.

(a) Show that a = 4. [2 marks]

The wheel turns at a rate of one rotation every 30 seconds.

(b) Show that
$$b = \frac{\pi}{15}$$
. [2 marks]

In the first rotation, there are two values of t when the bucket is **descending** at a rate of 0.5 ms^{-1} .

- (c) Find these values of t. [6 marks]
- (d) Determine whether the bucket is underwater at the second value of t. [4 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

10. [Maximum mark: 16]

The diagram below shows a plan for a window in the shape of a trapezium.

Three sides of the window are 2 m long. The angle between the sloping sides of the window and the base is θ , where $0 < \theta < \frac{\pi}{2}$.

- (a) Show that the area of the window is given by $y = 4\sin\theta + 2\sin 2\theta$. [5 marks]
- (b) Zoe wants a window to have an area of 5 m². Find the two possible values of θ . [4 marks]
- (c) John wants two windows which have the same area A but different values of θ .

 Find all possible values for A.

 [7 marks]

Consider the following circle with centre O and radius 6.8 cm.

diagram not to scale

The length of the arc PQR is 8.5 cm.

[2 marks]

(b) Find the area of the shaded region.

[4 marks]

4.	[Maximum	mark:	61
	1 1110000 0111 00111	much iv.	\sim $_{I}$

Consider the triangle ABC, where AB = 10, BC = 7 and $\hat{CAB} = 30^{\circ}$.

(a) Find the two possible values of AĈB.

[4 marks]

(b) Hence, find \hat{ABC} , given that it is acute.

[2 marks]

9. [Maximum mark: 15]

The following diagram shows a triangle ABC.

BC = 6, $\hat{CAB} = 0.7$ radians, AB = 4p, AC = 5p, where p > 0.

(a) (i) Show that $p^2(41-40\cos 0.7)=36$.

(ii) Find p. [4 marks]

Consider the circle with centre B that passes through the point C. The circle cuts the line CA at D, and $A\hat{D}B$ is obtuse. Part of the circle is shown in the following diagram.

(b) Write down the length of BD.

[1 mark]

- (c) Find ADB. [4 marks]
- (d) (i) Show that $\hat{CBD} = 1.29$ radians, correct to 2 decimal places.
 - (ii) Hence, find the area of the shaded region. [6 marks]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 6]

The following diagram shows $\triangle PQR$, where RQ = 9 cm, $P\hat{R}Q = 70^{\circ}$ and $P\hat{Q}R = 45^{\circ}$.

(a)	Find RPQ.	[1 mark]
(b)	Find PR.	[3 marks]
(c)	Find the area of ΔPQR .	[2 marks]

10. [Maximum mark: 16]

Consider the following circle with centre O and radius r.

The points P, R and Q are on the circumference, $\hat{POQ} = 2\theta$, for $0 < \theta < \frac{\pi}{2}$.

(a) Use the cosine rule to show that $PQ = 2r \sin \theta$.

[4 marks]

Let *l* be the length of the arc PRQ.

(b) Given that 1.3 PQ - l = 0, find the value of θ .

[5 marks]

Consider the function $f(\theta) = 2.6 \sin \theta - 2\theta$, for $0 < \theta < \frac{\pi}{2}$.

- (c) (i) Sketch the graph of f.
 - (ii) Write down the root of $f(\theta) = 0$.

[4 marks]

(d) Use the graph of f to find the values of θ for which l < 1.3 PQ.

[3 marks]

Let $f(x) = a\cos(b(x-c))$. The diagram below shows part of the graph of f, for $0 \le x \le 10$.

The graph has a local maximum at P(3, 5), a local minimum at Q(7, -5), and crosses the x-axis at R.

- (a) Write down the value of
 - (i) a;

(ii) c. [2 marks]

(b) Find the value of b. [2 marks]

(c) Find the x-coordinate of R. [2 marks]

A particle's displacement, in metres, is given by $s(t) = 2t \cos t$, for $0 \le t \le 6$, where t is the time in seconds.

(a) On the grid below, sketch the graph of s.

[4 marks]

(This question continues on the following page)

(Q	uestion	7	continued	,

Find the maximum velocity of the particle.	[3 m

SECTION B

Answer all questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 15]

The following diagram shows a circular play area for children.

The circle has centre O and a radius of 20 m, and the points A, B, C and D lie on the circle. Angle AOB is 1.5 radians.

(a) Find the length of the chord [AB]. [3 marks]

(b) Find the area of triangle AOB. [2 marks]

Angle BOC is 2.4 radians.

(c) Find the length of arc ADC. [3 marks]

(d) Find the area of the shaded region. [3 marks]

(e) The shaded region is to be painted red. Red paint is sold in cans which cost \$32 each. One can covers 140 m². How much does it cost to buy the paint? [4 marks]

SECTION B

Answer all questions in the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 14]

The diagram shows a circle of radius 8 metres. The points ABCD lie on the circumference of the circle.

BC = 14 m, CD = 11.5 m, AD = 8 m, $\triangle ADC = 104^{\circ}$, and $\triangle BCD = 73^{\circ}$

(a) Find AC. [3 marks]

- (b) (i) Find $A\hat{C}D$.
 - (ii) Hence, find $A\hat{C}B$. [5 marks]
- (c) Find the area of triangle ADC. [2 marks]
- (d) Hence or otherwise, find the total area of the shaded regions. [4 marks]

10. [Maximum mark: 16]

A Ferris wheel with diameter 122 metres rotates clockwise at a constant speed. The wheel completes 2.4 rotations every hour. The bottom of the wheel is 13 metres above the ground.

A seat starts at the bottom of the wheel.

(a) Find the maximum height above the ground of the seat.

[2 marks]

After t minutes, the height h metres above the ground of the seat is given by

$$h = 74 + a \cos bt$$
.

- (b) (i) Show that the period of h is 25 minutes.
 - (ii) Write down the **exact** value of b.

[2 marks]

(c) Find the value of a.

[3 marks]

(d) Sketch the graph of h, for $0 \le t \le 50$.

[4 marks]

(e) In one rotation of the wheel, find the probability that a randomly selected seat is at least 105 metres above the ground.

[5 marks]

The following diagram shows a triangle ABC.

The area of triangle ABC is 80 cm^2 , AB = 18 cm, AC = x cm and $B\hat{A}C = 50^\circ$.

(a)	Find x .	[3 ma	arke 1
(a)	Γ III $\alpha \lambda$.	13 ma	urks i

(b) Find BC. [3 marks]

The following diagram shows a circle with centre O and radius r cm.

Points A and B are on the circumference of the circle and $A\hat{O}B = 1.4$ radians. The point C is on [OA] such that $B\hat{C}O = \frac{\pi}{2}$ radians.

(a)	Show that $OC = r \cos 1.4$.	[1 mark]

(b) The area of the shaded region is 25 cm^2 . Find the value of r. [7 marks]

SECTION B

Answer all questions in the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 14]

Consider a circle with centre O and radius 7 cm. Triangle ABC is drawn such that its vertices are on the circumference of the circle.

 $AB = 12.2\,cm$, $BC = 10.4\,cm$ and $A\hat{C}B = 1.058\,radians$.

- (a) Find BÂC. [3]
- (b) Find AC. [5]
- (c) Hence or otherwise, find the length of arc ABC. [6]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 6]

The following diagram shows triangle ABC.

 $AB = 6 \, cm$, $BC = 10 \, cm$, and $A\hat{B}C = 100^{\circ}$.

(a)	Find AC.	[3]
(b)	Find BĈA.	[3]
	33 13 13 143 13 21 143 13 14 143 13 14 143 13 14 143 13 14 143 14 14 14 14 14 14 14 14 14 14 14 14	
	$x_1x_2x_3x_4x_4x_4x_5x_5x_5x_5x_5x_5x_5x_5x_5x_5x_5x_5x_5x$	

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 13]

The following diagram shows a straight shoreline, with a supply store at S, a town at T, and an island L.

A boat delivers supplies to the island. The boat leaves S, and sails to the island. Its path makes an angle of 20° with the shoreline.

(a) The boat sails at $6 \, \mathrm{km}$ per hour, and arrives at L after 1.5 hours. Find the distance from S to L.

[2]

It is decided to change the position of the supply store, so that its distance from L is $5\,\mathrm{km}.$ The following diagram shows the two possible locations P and Q for the supply store.

(b) Find the size of \hat{SPL} and of \hat{SQL} .

[5]

[6]

- (c) The town wants the new supply store to be as near as possible to the town.
 - (i) State which of the points P or Q is chosen for the new supply store.
 - (ii) Hence find the distance between the old supply store and the new one.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 6]

The following diagram shows triangle ABC.

 $BC = 10 \, cm$, $A\hat{B}C = 80^{\circ}$ and $B\hat{A}C = 35^{\circ}$.

(b) Find the area of triangle ABC. [3]

(This question continues on the following page)

10. [Maximum mark: 16]

The following diagram shows a square ABCD, and a sector OAB of a circle centre O, radius r. Part of the square is shaded and labelled R.

 $\hat{AOB} = \theta$, where $0.5 \le \theta < \pi$.

- (a) Show that the area of the square ABCD is $2r^2(1-\cos\theta)$. [4]
- (b) When $\theta = \alpha$, the area of the square ABCD is equal to the area of the sector OAB.
 - (i) Write down the area of the sector when $\theta = \alpha$.
 - (ii) Hence find α . [4]
- (c) When $\theta=\beta$, the area of R is more than twice the area of the sector. Find all possible values of β . [8]

The following diagram shows three towns A,B and C. Town B is $5\,km$ from Town A, on a bearing of 070° . Town C is $8\,km$ from Town B, on a bearing of 115° .

	^	
/ - \	Find ABC	[2]
(a)	FING ABL.	1/1

- (b) Find the distance from Town A to Town C. [3]
- (c) Use the sine rule to find \hat{ACB} . [2]

• • • • • • • • • • • • • • • • • • • •	

Turn over

The following diagram shows a quadrilateral ABCD.

 $AD=7\,cm\,,\,BC=8\,cm\,,\,CD=12\,cm\,,\,\,D\hat{A}B=1.75\,\,\text{radians}\,,\,\,A\hat{B}D=0.82\,\,\text{radians}\,.$

(a)	Find BD.	[3
-----	----------	----

	^	
(b)	Find DBC.	[3

Turn over

The height, h metres, of a seat on a Ferris wheel after t minutes is given by

$$h(t) = -15\cos 1.2t + 17$$
, for $t \ge 0$.

(a) Find the height of the seat when t = 0.

[2]

(b) The seat first reaches a height of $20 \,\mathrm{m}$ after k minutes. Find k.

[3]

(c) Calculate the time needed for the seat to complete a full rotation, giving your answer correct to one decimal place.

[3]

The following diagram shows a circle, centre ${\rm O}$ and radius $r\,{\rm mm}$. The circle is divided into five equal sectors.

diagram not to scale

One sector is OAB, and $\hat{AOB} = \theta$.

(a) Write down the **exact** value of θ in radians.

[1]

The area of sector AOB is $20\pi \, mm^2$.

(b) Find the value of r.

[3]

(c) Find AB. [3]

Turn over

10. [Maximum mark: 15]

The following diagram shows the graph of $f(x) = a \sin bx + c$, for $0 \le x \le 12$.

The graph of f has a minimum point at (3, 5) and a maximum point at (9, 17).

- (a) (i) Find the value of c.
 - (ii) Show that $b = \frac{\pi}{6}$.
 - (iii) Find the value of a. [6]

The graph of g is obtained from the graph of f by a translation of $\begin{pmatrix} k \\ 0 \end{pmatrix}$. The maximum point on the graph of g has coordinates (11.5, 17).

(b) (i) Write down the value of k.

(ii) Find
$$g(x)$$
. [3]

The graph of g changes from concave-up to concave-down when x = w.

- (c) (i) Find w.
 - (ii) Hence or otherwise, find the maximum positive rate of change of g. [6]

The following diagram shows the chord [AB] in a circle of radius $8\,cm,$ where $AB=12\,cm\,.$

diagram not to scale

Find the area of the shaded segment.

[4]

Do not write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 14]

At Grande Anse Beach the height of the water in metres is modelled by the function $h(t) = p\cos(q \times t) + r$, where t is the number of hours after 21:00 hours on 10 December 2017. The following diagram shows the graph of h, for $0 \le t \le 72$.

The point $A(6.25\,,\,0.6)$ represents the first low tide and $B(12.5\,,\,1.5)$ represents the next high tide.

- (a) (i) How much time is there between the first low tide and the next high tide?
 - (ii) Find the difference in height between low tide and high tide.
- (b) Find the value of
 - (i) p;
 - (ii) q;

(iii) r. [7]

(c) There are two high tides on 12 December 2017. At what time does the second high tide occur? [3]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 6]

The following diagram shows a circle with centre ${\rm O}$ and radius $40\,{\rm cm}$.

diagram not to scale

The points $A,\,B$ and C are on the circumference of the circle and $\,A\hat{O}C$ = 1.9 radians .

- (a) Find the length of arc ABC. [2]
- (b) Find the perimeter of sector OABC. [2]
- (c) Find the area of sector OABC. [2]

(This question continues on the following page)

4.	[Maximum mai	rk:	61

The depth of water in a port is modelled by the function $d(t) = p \cos qt + 7.5$, for $0 \le t \le 12$, where t is the number of hours after high tide.

At high tide, the depth is 9.7 metres.

At low tide, which is 7 hours later, the depth is 5.3 metres.

- (a) Find the value of p. [2]
- (b) Find the value of q. [2]
- (c) Use the model to find the depth of the water 10 hours after high tide. [2]

