Lista de Ejercicios 2 Cadenas y Algoritmos

Ejercicios nivel sobrehumano

1.- Escribir un programa en java que se introduzca un nombre en una variable de tipo String e imprima la longitud de la cadena.

Entrada	salida
Pedro	5
Armando	7

2.-Escribir un programa que se introduzca el nombre completo de una persona en una variable de tipo String e imprima el primer nombre. Ejemplo:

Entrada	Salida
Juan Jose Quintal Argaez	Juan
Ricardo Ortiz Sime	Ricardo

3.-Desarrolla un programa que al introducir una cadena lo imprima al revés. Ejemplo: calculo → oluclac

4.-Desarrolla un programa que al introducir una oración imprima cuantas palabras tiene.

Ejemplo:

Eiemplo:

Entrada	Salida
Una vaca sin cola vestida de uniforme	7 palabras
Las libretas cuestan 50 pesos	5 palabras

Ejercicios Nivel Titán

1. Un numero de Armstrong cumple con la propiedad de que la suma de cada uno de sus dígitos, elevado al numero de dígitos que tiene el número es igual al número en cuestión. Ejemplo: 153 es un número de Armstrong porque tiene tres dígitos y $1^3 + 5^3 + 3^3 = 153$. Elabora un programa utilizando estructuras iterativas para que identifique si un número es de Armstrong.

Entrada	Salida
532	No es Armstrong
153	Si es Armstrong

2. Elaborar un programa utilizando la instrucción while para calcular el valor de la siguiente sumatoria:

$$S = \frac{a_1 x^n + a_2 x^{(n+m)} + a_3 x^{(n+2m)} + \dots + a_i x^{(n+(i-1)m)}}{(2i-1)!}.$$

Ejemplo:

Er	ntra	da	Proceso					
i	X	n	m					
2	2	1	1	$\begin{vmatrix} a_{1}=5 \\ a_{2}=3 \end{vmatrix} S = \frac{5*2^{1}}{(2*1-1)!} + \frac{3*2^{(1+1)}}{(2*2-1)!}$	S= 10+2= 12			
4	9	1	2	$S = \frac{2*9^1}{(2*1-1)!} + \frac{1*9^{(1+1*2)}}{(2*2-1)!} + \frac{3*9^{(1+2*2)}}{(2*3-1)!} + \frac{5*9^{(1+3*2)}}{(2*4-1)!}$	S= 6360			

La sumatoria se detendrá hasta el valor de i que el usuario introduzca.

3.La fórmula de combinación $\binom{n}{m} = \frac{n!}{n!(n-m)!}$ permite calcular los coeficientes de un polinomio $(a + b)^n$

$$(a+b)^n = \sum_{p=0}^n \binom{n}{p} a^{n-p} b^p$$

El p-ésimo coeficiente se calcula con $\binom{n}{n}$ la combinación de n con p. Cada polinomio de grado n tiene n+1 términos.

Para
$$(a + b)^4$$
 (Fila $n = 4$)

Para la fila n = 4 cuyos valores son 1, 4, 6, 4, 1 se obtienen de la siguiente forma

$$\binom{4}{0} = \frac{4!}{0!4!} = 1$$
, que representa el primer coeficiente a⁴

$$\binom{4}{1} = \frac{4!}{1!3!} = 4$$
, que representa el primer coeficiente a³b

$$\binom{4}{2} = \frac{4!}{2!2!} = 6$$
, que representa el tercer coeficiente a²b²

$$\binom{4}{3} = \frac{4!}{3!1!} = 4$$
, que representa el cuarto coeficiente de ab³

$$\binom{4}{4} = \frac{4!}{4!0!} = 1$$
, que representa el quinto coeficiente b⁴

Para
$$(a + b)^2$$
 (Fila n = 2)

$$\binom{2}{0} = \frac{2!}{0!2!} = 1$$
, que representa el primer coeficiente a²

$$\binom{2}{1} = \frac{2!}{1!1!} = 2$$
, que representa el segundo coeficiente 2ab

$$\binom{2}{2} = \frac{2!}{2!0!} = 1$$
, que representa el tercer coeficiente b²

Elaborar un programa que lea el valor de n e imprima los coeficientes correspondientes.

Ejercicios Nivel Dios

En esta sección se requieren conocimientos de arreglos(vectores) unidimensionales y bidimensionales.

1.-Declare un vector de longitud 10, que se pueda introducir datos de tipo integer (int) en todas sus posiciones, y que imprima un * dependiendo del numero introducido. Ejemplo: array[10]

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
1	3	2	4	7	6	9	8	5	10

posición[i]	asteriscos
0	*
1	***
2	**
3	***
4	*****
5	****
6	*****
7	*****
8	****
9	******

2.- La multiplicación de matrices por un escalar está definida por λA donde $A=\left(a_{ij}\right)$ es una matriz de orden $m\times n$ y $\lambda\in\mathbb{C}$ (es decir λ es un escalar), entonces la multiplicación de escalar de λ por la matriz A denotada λA es una matriz de orden $m\times n$ dada por $\lambda A=(\lambda a_{ij})$. Ejemplo:

1.-Si
$$\lambda = 1$$
 y $A \begin{pmatrix} 2 & 5 & 3 \\ -1 & 4 & 0 \end{pmatrix}$ entonces $\lambda A = \begin{pmatrix} 2 & 5 & 3 \\ -1 & 4 & 0 \end{pmatrix} = A$

2.- Si
$$\lambda = 0$$
 y $A = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ entonces $\lambda A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

3.- Si
$$\lambda = i$$
 y $A = \begin{pmatrix} i \\ -i \end{pmatrix}$ entonces $\lambda A = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

Elabora un programa que lea un escalar λ y lo multiplique por una matriz de orden $m \times n$.

3.-En álgebra lineal, una matriz triangular es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. Elabora un programa que determine si una matriz es triangular superior o triangular inferior. Ejemplo:

Entrada	Salida		
$ \begin{array}{ccc} & n = 3 \\ \begin{pmatrix} 1 & 7 & -2 \\ 0 & -3 & 4 \\ 0 & 0 & 2 \end{pmatrix} $	Es una matriz triangular inferior		
$\begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 3 & 5 & 6 \end{pmatrix}$	Es una matriz triangular superior		
$\begin{pmatrix} -8 & -1 & 3 \\ -1 & 7 & 4 \\ 3 & 4 & 9 \end{pmatrix}$	No es matriz triangular		