Taller 2

- 1. Demuestre que diferenciablidad implica continuidad pero no el reciproco
- 2. Demuestre la regla de L'hopital en variable compleja
- 3. Encuentre por definición las derivadas de:
 - La exponencial
 - El logaritmo
 - Fucnión potencia
 - Funciones Trigonométicas
 - Funciones Hiperbolicas
- 4. Calcule los siguientes límites
 - $\lim_{z \to i} \frac{1}{z^2 + 1}$
 - $\lim_{z\to 0} \frac{1}{x^2-y^2+z}$

 - $\lim_{z\to 4} \frac{z(z^2-16)}{z^2-4z}$
- 5. Demuestre que si f es analítica en un dominio D y $Re(f)=\alpha$, $Im(f)=\alpha$ o $Arg(z)=\alpha$, entonces f es contante en D
- 6. Estudie la analicidad de
 - $f(z) = \frac{x}{x^2 + y^2} i \frac{y}{x^2 + y^2}$
 - $f(z) = \frac{1}{2}\log(x^2 + y^2) + i\arctan\left(\frac{y}{x}\right)$
- 7. Sea $f(z) = z^3$, $z_1 = 1$ y $z_2 = i$. Pruebe que no existe z_0 sobre el segmento de recta que une a z_1 , con z_2 tal que:

$$f(z_2) - f(z_1) = f'(z_0)(z_2 - z_1)$$

- 8. Sea $T(z) = \frac{az+b}{cz+d}$ (ad $-bc \neq 0$). Encuentre

 - $\lim_{z\to\infty} T(z)$ si $c\neq 0$
 - $\lim_{z \to \frac{-b}{c}} T(z)$ si $c \neq 0$