Designer Genes C - Designer Genes - BirdSO C 2021 Invitational - 03-07-2021

Instructions (shown before students start the test)

Welcome to the 2021 BirdSO Designer Genes C Exam!

The rules for this event have been adapted for our virtual tournament and follow the 2020-2021 National Rules.

The maximum number of obtainable points on this exam is 200.

This test is open internet. Partial credit for work will be awarded for all math questions.

Good luck!

Introduction (shown after students start the test)

The test is **open internet**.

Section 1 [Mainly MCQ] is worth 82 points. Section 2 [Mainly Short Answer] is 118 points.

Partial credit will be awarded if work is shown in the short answer section.

Tiebreakers are, in order: Questions 101, 115, 85, 1, 90, 66, and 24

Section 1

Part 1: Molecular Genetics, Heredity, and Biotechnology [19 points total]

1. (3.00 pts)

Oh no! Future Dr. Sehej has mislabeled his DNA sequence samples and now does not know which strand is which. Luckily you are there, armed with your epic biochemistry knowledge. In order to help, you notice that he has performed an experiment where he heated up each of the DNA strands and tested their relative absorbance at 260 nm. He knows that the DNA sequences (labeled a to c) each correspond to exactly one of the unknown strands (labeled 1 to 3) of the graph shown below. Please let Future Dr. Sehej know which sequence to unknown strand pairing is most likely. The blanks correspond to unknown strands 1, 2 and 3 from left to right. Type a single lowercase letter 'a', 'b' or 'c' in each blank corresponding to the pairing you think is accurate.

Strands:

- a. 5' GATTAGTTTA 3'
 - 3' CTAATCAAAT 5'
- b. 5' AGCTGATGCT 3'
 - 3' TCGACTACGA 5'
- c. 5' GCGATGCCGT 3'
 - 3' CGCTACGGCA 5'

5. (1.00 pts)	
	population of wild pigeons and notice that 91% of them are born with a cool hat on their heads. The remaining 9% are born without a cool hat on their heads: (. having a cool hat is dominant, to not having a cool hat, and that the population is in Hardy Weinberg equilibrium, answer the following questions.
=	
a. What percer	ntage of the gene pool consists of the cool hat allele?
b. What percer	ntage of the gene pool consists of the no cool hat allele?
6. (2.00 pts)	
	ene in a starfish with 12 exons (and 11 introns). Assuming that all splicing combinations lead to valid proteins, how many different proteins can be created from this one
gene?	
7. (2.00 pts)	
	d a population of large brained fish and are wondering about why their population is seemingly decreasing. Upon inspection of their DNA, you notice something strange
	raploid! You also notice that they have a gene X which controls brain size. Each recessive 'x' allele corresponds to a brain with a 0.5 cm smaller radius than the , while the dominant 'X' corresponds to no brain size reduction.
expected 1 cm	, mino the definition of the statifful to the statifful t
Assuming the f	fish population is in Hardy Weinberg equilibrium, use the allele frequencies below to answer the following questions.
X = 0.55	
x = 0.45	
14/1	
	ntage of the fish have brains with 4 cm radius? ntage of the fish have brains with 3 cm radius?
b. What percer	nage of the list have brains with 5 cm radius:
8. (1.00 pts)	
	List all of the following inheritance types which are possible for the pedigree shown below.
	Autosomal Recessive
	Autosomal Dominant
	X-linked Recessive

X-linked Dominant Mitochondrial

(Mark ALL correct answers)

- □ A) Autosomal Recessive
- □ B) Autosomal Dominant
- C) X-linked Recessive
- □ D) X-linked Dominant
- ☐ E) Mitochondrial

9. (1.00 pts) Identify all of the following inheritance types which are possible for the pedigree shown below.

(Mark ALL correct answers)

- □ A) Autosomal Recessive
- □ B) Autosomal Dominant
- C) X-linked Recessive
- □ D) X-linked Dominant
- ☐ E) Mitochondrial

Part 2: Mrs. Cheney and the Heartbreakers [19.5 points total]

Mrs. Cheney's husband's heart problem is complicated.

Based on concepts from Anatomy & Physiology, they deduced the heart condition to be one of the following diseases:

- 1) Familial Dilated Cardiomyopathy (DCM)
- 2) Arrhythmogenic right ventricular cardiomyopathy (ARVC)
- 3) Short QT Syndrome (SQTS)
- 4) Marfan syndrome

Now they consult a geneticist to help figure out which disease Mrs. Cheney's husband has.

DCM is caused by a mutation that can either be autosomal dominant or autosomal recessive depending on the specific gene that is mutated.

Here is Mrs. Cheney's husband's pedigree:

In addition to the Cheney pedigree, it is common knowledge that the Richard Colson and Mrs. Cheney family trees have no history of DCM. On the other hand, Philip does. DCM has 100% penetrance for both mutation types.

Assume a blackened shape indicates the presence of some type of familial DCM.

There are three possible alleles in the pedigree:

- **D** the dominant mutation that results in a distinct type of DCM.
- R- the recessive mutation that results in a distinct type of DCM (only when both alleles are present)
- wt- the normal allele that does not contribute to DCM.

10. (1.00 pts)	What is the genotype of Marshall?
○ A) R R○ B) D wt○ C) D R○ D) R wt	

11. (1.00 pts) Geneticists need to know which type of DCM Mrs. Cheney's husband has, as recessive DCM is more severe. What type of DCM does Mrs. Cheney's husband have

- O A) Dominant
- O B) Recessive
- O C) Both
- \bigcirc D) Not enough information to reasonably tell

12. (1.00 pts)

Mrs. Cheney is worried that her future offspring will have DCM. She plans to have two more children. What is the probability that at least one of those children will have some form of familial DCM?

- O A) 0%
- O B) 25%
- O C) 50%
- O D) 75%
- O E) 100%

13. (1.50 pts) All five of Liz and Philip's children have DCM. What was the probability that all five would have the disease? (as a reduced fraction)
Geneticists look at the pedigree and question whether the heart condition is familial DCM altogether. The geneticists use the same pedigree but hypothesize the condition is ARVC,
an autosomal dominant condition with a 50% penetrance. Assume only Marshall and his pedigree have a history of ARVC.
14. (1.00 pts) If the pedigree is of ARVC, then which member of the pedigree must have a genotype that may result in ARVC?
(
O A) Liz
O B) Richard Colson
C) The children of Richard Colson
O) Marjorie
15. (1.00 pts) If the daughter of Liz and Philip mated with one of her brothers, what is the probability their child will have AVTC?
10. (1.00 pts) If the dadgitter of Elz and 1 mily mated with one of the broaders, what is the probability their order with rate 7.0 To:
\bigcirc A) 0
\bigcirc B) $\frac{3}{8}$
\bigcirc C) $\frac{1}{2}$
\bigcirc D) $\frac{3}{4}$
16. (1.00 pts) How many individuals in the pedigree have an uncertain genotype based on just the information provided?
0.01
O A) 1
О в) 2
O C) 4
O D) 7
[
17. (1.00 pts) Name one of the individuals that have an uncertain genotype (from the question above)
Marshall
Ividi Si idii
To determine whether the disease is DCM or ARVC, the doctors do the following crosses:
. Dishard Colon v Liz
Richard Colson x Liz Liz's con x Liz's doughter.
Liz's son x Liz's daughter

18. (0.00 pts) Which of the following conclusions is most accurate?
 A) If zero children are produced in total, DCM is the most likely condition B) If one child is produced, ARVC is the most likely condition C) If zero or two children are produced in total, it is unclear if the condition is DCM or ARVC D) If one or two children are produced in total, it is unclear if the condition is DCM or ARVC
19. (1.00 pts) Which of the following crosses would definitively indicate which disease is responsible for Mrs. Cheney's husband's heart problem, regardless of the result?
 A) Marshall x Liz's daughter B) Richard Colson x Liz C) Richard Colson's daughter x Philip D) None of the above
20. (2.00 pts) Under the principle of parsimony, is DCM or ARVC more likely?
 A) DCM B) ARVC C) Both are equally likely D) Both are equally unlikely
The confusion of all these pedigrees and crosses makes you leave genetic counseling to become a molecular geneticist.
You move onto Short QS syndrome, and learn that 60% of all patients with Short QS syndrome have "mutations in the genes KCNQ1 (11p15.5), KCNH2 (7q36.1), and KCNJ2 (17q24.3), encoding cardiac ionic potassium channels, and the gene encoding the calcium channel, CACNA2D1 (7q21.11)" (Orpha.net) You observe KCNJ2. From your knowledge of this specific gene, you know that if either allele deviates from KCNJ2 wild type, then Short QS syndrome will happen.
Marshall Marjorie R. Colson Hailie Mrs. Mrs.
Marshall Marjorie R. Colson Hailie Mrs. Mrs. Cheney's Cheney Husband
21. (1.00 pts) Based on the electrophoresis above, does Mrs. Cheney's husband has Short QS syndrome?
A) YesB) NoC) All of the above

22	'n	nη	nte

What information does this electrophoresis reveal about the pedigree that one cannot deduce only from the pedigree, assuming that the pedigree depicts Short QS syndrome?

- O A) Hailie is heterozygous dominant for the heart disorder in question
- O B) Marshall is homozygous dominant for the heart disorder in question
- O C) The children of Liz and Philip must be homozygous dominant
- O D) All of the above

23. (0.00 pts)

Assuming the pedigree is of Short QS syndrome and given the electrophoresis, what is the approximate probability that Richard Colson and Hailie's next child will have four bands in their electrophoresis of KCNJ2?

- \bigcirc A) 0

- \bigcirc D) $\frac{3}{4}$

Finally, time to test for Marfan's Syndrome. You get sick of genes, and now you want to test the presence of the actual protein products. Marfan's syndrome is the result of a high extracellular concentration of TGF-B.

A wild type individual (without Marfan's syndrome) would have:

- O A) Less transcription of TGF-B target genes
- O B) More binding between SMAD genes
- O C) There will be more GTPase activity
- O D) All of the above

25. (2.00 pts) Based on the diagram above, if the individual with Marfan's syndrome also had a missing co-activator, what would most likely be the result?

- O A) Transcription of TGF-B target genes would increase
- O B) SMAD genes would not be transcribed

 C) TGF-B induced responses would decrease D) Some TGF-B-induced responses might continue 			
Part 3: let your partner do this one [3 points total]			
· · · · · · · · · · · · · · · · · · ·			
There is a population of 200 humans isolated from the rest of the world. They have alleles A and B that express codominance. 43 have A, 44 have B, and 113 have AB.			
26. (1.00 pts) What is the allele frequency of B?			
27. (2.00 pts) In Hardy-Weinberg equilibrium, what would the expected frequency of AB be? (rounded to the nearest hundredth)			
Part 4: use brain thx! [4 points total]			
28. (1.00 pts) Order the following molecules in chronological order in which they are involved with microRNA biogenesis:			
I: Drosha and DGCR8			
II: Exportin 5			
III: RNA Polymerase II			
IV: Dicer			
○ A) III, IV, I, II			
○ B) II, III, I, IV			
○ C) III, I, II, IV			
○ D) II, I, IV, III			
When dicer is removed from mice, normal remyelination does not occur in mice.			

Red indicates the miRNA inhibits remyelination. Green indicates miRNA that promotes remyelination. There are two important parts of remyelination: creation of the myelin and phagocytosis of the old tissue. OPCs are precursors to mature oligodendrocytes.

// / \	
29. (1.00 bts)	Removing dicer from which cell will most significantly hinder myelination?

- O A) Neuron
- O B) Astrocyte
- O) Oligodendrocyte
- O D) Treg

30. (0.00 pts) Order I-IV that matches the appropriate microRNA to the correct function in the respective order: miR-23, miR-124, mir-34a, and miR-223.

- I: Expressed in a cell that is not microglia to prevent microglia from inhibiting phagocytosis
- II: Internally inhibits neuron from remyelination
- III: Phagocytosis of old myelin tissue
- IV: Maintains new myelin tissue through inhibiting lamin B
- A) IV, II, I, III
- O B) IV, I, III, II
- O C) III, I, IV, II
- \bigcirc D) II, III, I, IV

31. (1.00 pts)

OPCs are The exact mechanism of miRNAs on promoting remyelination is uncertain. When a patient with multiple sclerosis was given mature oligodendrocytes that lacked related green-colored miRNAs (indicated by the diagram), remyelination improved. From this scenario, we can conclude that miRNAs in OPCs have a similar function as:

- O A) Tregs
- O B) Oligodendrocytes

O C) Astrocyte	s
O D) Neuron	
Part 5: 6th gra	ade-level Designer Genes [9 points total]
POV: You walk int	to an invitational with a low quality designer genes test.
32. (1.00 pts)	What year was Dolly cloned from an adult somatic cell?
O A) 1823	
О в) 1904	
О с) 1994	
O D) 1996	
Lagging strand	eading Strands
33. (1.00 pts)	Being as specific as possible, which type of cell is this a diagram of?
O A) Prokaryot	ic
O B) Eukaryoti	c
O C) Plant cell	
O D) Animal ce	

34. (1.00 pts) A cell is stripped away from all RNA polymerases. Will the cell have any immediate negative impacts on DNA replication and why?

O A) Yes, because a type of RNA polymerase is a necessary enzyme for DNA replication as depicted in the diagram above

O B) Yes, because a type of RNA polymerase is a necessary enzyme for DNA replication, although not depicted in the diagram above

C) No, because RNA polymerase is only relevant after pre-mRNA is transcribed
 D) No, because RNA polymerase is only relevant after mRNA is transcribed

35. (1.00 pts) In situ hybridization is pictured above. What is one reason in situ hybridization is effective on viruses?
O A) Some viruses are single-stranded, allowing probing to occur easily
O B) Some viruses are double-stranded, allowing complementation to happen naturally
O C) Some viruses are transcribed by RNA-dependent RNA polymerase, allowing it to be error prone, increasing diversity for probing
O D) Some viruses are transcribed by DNA-dependent RNA polymerase that prevent errors to shift results
36. (1.00 pts) Which of the following is a "con" of using FISH demonstrated in the image above?
36. (1.00 pts) Which of the following is a "con" of using FISH demonstrated in the image above?
A) Low detection rates lead to inefficiencies
O B) Can only detect presence of cells in cells that are cultured synthetically
O Does not provide localized information of a specific molecule, but rather simply the general "presence" of a molecule
Op) A researcher must know the specific DNA sequence of the target sequence
37. (1.00 pts) Which of the following is a synthetic inducer of the lac operon?
O A) Jaconson J bate of this respectively associated
A) Isopropyl beta d thiogalactopyranoside
O B) Lactose
O C) Allolactose
O) All of the above
38. (1.00 pts) Which of the following most accurately describes the function of aminoacyl tRNA synthetase?
O A) Enzyme that catalyzes translation through forming peptide bonds between adjacent amino acids
O B) Enzyme that ensures amino acids are in the right chiral conformation when attached to the polypeptide

O D) All of the above

 \bigcirc C) Enzyme that charges an appropriate tRNA through matching an appropriate amino acid with tRNA

(1.00 pts) Which type of DNA sequencing is dep	picted in the image above?
--	----------------------------

- O A) Sanger sequencing
- O B) Next gen sequencing
- O C) NexEdge sequencing
- O D) Illumina sequencing

40. (1.00 pts) Which researchers discovered the semi-conservative nature of DNA?

- O A) Hershey-Chase
- O B) Watson-Crick
- O C) Messelson-Stahl
- O D) Franklin-Hawkins

Part 6: Questions to do with a significant other [15.5 points total]

41. (2.00 pts)

After taking an ancestry test and binging "The Album", little B found that he was "½ korean". little B looked at his family tree, and found that he only has four levels of ancestors: parents, grandparents, great grandparents, and great grandparents (little B was born around the beginning of humanity). What combination of his ancestors can be korean to get him closest to being ½ korean?

- $\bigcirc\ \ \mbox{A)}\ \ \mbox{The paternal parent is half korean and the maternal parent is quarter korean}$
- O B) The maternal parent is half korean and one great grandparent from the paternal side is korean
- $\bigcirc\ \ C)$ The great grandparent and parent from the same lineage is korean
- O D) A great great grandparent and parent from different lineages are korean

- 42. (2.00 pts) Which of the following reasons accurately describe why rRNA is used in phylogenetic analysis?
- O A) rRNA is highly conserved yet contains slight polymorphic sequences, and thus can allow for analysis between species that may have diverged many years prior
- O B) rRNA contains virtually no polymorphisms, allowing it to be a reliable reference to construct cladograms that lack synapomorphies
- C) There is high diversity of rRNA among different kingdoms, allowing for one to differentiate between species of the same genera
- Opportant is scarce in human cells, preventing overflow of differing genetic data given a specific sample

43. (0.00 pts)

Assuming that heterozygotes have a 25% chance of getting kidney stones in a kidney and homozygous recessive individuals have a 75% chance of getting it in one kidney but a 50% chance of getting it in both kidneys, what is the probability that 5 people will have kidney stones in at least one of their kidneys in generation II (Assume each kidney has an equal, bu independent chance of getting a kidney stone)?

44. (1.00 pts) When performing immunofluorescence, why does a secondary antibody typically originate from a different host species?

- O A) Lack of diversity in the same host prevents new motifs from being probed
- O B) An organism is unable to produce antibodies against its own antibodies
- O C) Humans are unable to produce antibodies by "demand" and thus must use a different species
- O D) All of the above

There are two genetic disorders in the U.S. population (the inheritance and prevalence are made up):

Scoliosis: an autosomal dominant condition.

Kyphosis: an autosomal recessive condition.

The prevalence of scoliosis in the U.S. is 4%.

The prevalence of kyphosis is 4% as well. Assume hardy weinberg conditions.

Mr. Red and Mi scoliosis.	rs. Blue are two "loving" siblings that regularly have children through incest. Mr. Red has scoliosis while Mrs. Blue does not. Only one parent of the couple has
Mr. Anhinga an kyphosis.	d Mrs. Mallard are also two "loving" siblings that have children through incest. Mrs. Mallard has kyphosis and Mr. Anhinga does not. Neither of their parents had
45. (1.00 pts)	What is the genotype of Mr. Anhinga and Mrs. Mallard's mother? (K = dominant, k = recessive)
O A) Kk	
O B) kk	
○ C) KK	be determined with given information
46. (2.00 pts)	What is the probability of Mr. Anhinga and Mrs. Mallard's child having kyphosis?
	like to mate, but he is afraid his child will have scoliosis. He finds a suitable mate, Mrs. Stork to impregnate. What is the difference in probability between the offspring and Mr. Red child having scoliosis and Mrs. Blue and Mr. Red's child? Mrs. Stork's phenotype is unknown as of now!
48. (2.00 pts) Mr. Anhinga is should we tell h	also interested in Mrs. Stork and wonders how much more likely his child with Mrs. Mallard will have kyphosis is compared to his potential child with Mrs. Stork. What im?
49. (1.00 pts)	From your answers to the two questions above, which type of inheritance pattern of a disease is most susceptible to becoming worsened through incest?
O A) Autoso	mal dominant
O B) Autoso	
Part 7: Gold	Dust NayNay [12 points total]
50. (1.00 pts)	Which properties are shared by RNA and DNA Polymerases?

O A) 5' triphosph	ate terminus				
 O B) 5' → 3' reparent 					
'	rvative replication				
$\bigcirc D) 5' \rightarrow 3' \text{ poly}$					
() () () () () () () ()	monzadon				
51. (1.00 pts) Wh	nich of the following	RNA molecules is no	t made by polymera	ase I, II, or III?	
O A) tRNA					
O B) RNA primer	-				
O C) snRNA					
O D) rRNA					
,					
		mutation in CAP. Tom w can Drew identify w			vould like to pinpoint which one is Tom! Drew plates glycerol, X-gal, and a lony is a wild type?
O A) Blue, for wit	hout CAP, lac oper	on is constantly expre	essed		
O B) White, for w	rithout CAP, there is	no transcription of th	e lac operon		
O C) Blue, becau	ise cAMP is abunda	ant in the presence of	glycerol		
O D) The bacteria	a will not grow in thi	s minimal medium			
53. (1.00 pts) mid	croRNA-mediated b	inding of the RISC re	gulates which of the	following:	
O A) Ribosomal a	activity				
O B) Accessibility	y to gene promoter				
O C) mRNA degr	adation				
O D) Protein deg	radation				
54. (2.00 pts) Mr. American Bitterr	n is examining three	gene sequences tha	it influence transcrip	tion rates of a downs	stream gene. Which gene is the enhancer and silencer, respectively?
	WT	Gene 1 Knocked Out	Gene 2 Knocked Out	Gene 3 Knocked Out	
Relative level of mRNA	1	.5	2.1	1	
55. (1.00 pts) Mr.	. Hawk has a mutati	ion in a transcription f	actor that binds to a	n enhancer upstrear	n of TNFR1. Which of the following best describes the resulting effect?
O A) Immune cel	ls are unable to rec	ognize infected cells			
,		_			
O B) Tumor Necrosis Factor will not be produced					

C) Apoptosis cannot occur in normal cellular tissuesD) All of the above
56. (1.00 pts) Mr. Kinglet is infected by only the genome of a specific type of virus (without any viral proteins). Which of the following types of viruses would successfully infect Kinglet?
O A) Negative-sense, ssRNA viruses
O B) Positive-sense, ssRNA viruses
O C) Negative-sense, dsRNA viruses
O D) None of the above
57. (1.00 pts)
A protein called MATH54 in a strain of SARS-CoV-2 is discovered to block the synthesis of pre mRNA in human cells, preventing the formation of proteins involved in immune responses. Which of the following molecules does MATH54 most likely suppress?
O A) RNA Polymerase II
O B) Reverse Transcriptase
C) RNA-dependent RNA polymerase
O D) Cas9
58. (1.00 pts) Why are centromeres not separated during anaphase I of meiosis but arms are?
O A) Prevent crossing over in Meiosis I
O B) Disassembly of synaptonemal complex during Meiosis I
C) Allow homologous chromosomes to separate after crossing over
Opposition of non-sister chromatids
59. (1.00 pts) Mrs. Cardinal is triploid. Why is she infertile?
O A) Crossing over between three homologs prevents separation
O B) Homologous chromosomes cannot pair properly, so most gametes are aneuploid
O C) Nondisjunction of sister chromatids results in an extra copy of every chromosome
O D) Nondisjunction of homologous chromosomes results in genetic variation that is mutated, such as trisomy 21
60. (1.00 pts) mRNA viruses are all the craze these days with the kids!
Why might an mRNA vaccine be better than a protein-based vaccine?
O A) mRNA directly provides the actual genetic information necessary to trigger the immune response
O B) Proteins do not provide enough diversity to recognize and discriminate from native proteins
O mRNA is easier to produce and inject to the body as opposed to manufacturing viral proteins or weakened viruses
O D) mRNA is delivered unencapsulated, while proteins have different polarities that need to be controlled for

Section 2

Written by Fishy, Greygrey, and Kaela

Part 1: Caterpie Crossing [13 points total]

The table below shows the results of Fishy's Caterpie breeding attempt involving two Caterpies. The traits follow a dominant/recessive pattern of inheritance.

Phenotype	Number of Offspring
Green body, pink bow, yellow rings	423
Gold body, red bow, light yellow rings	430
Gold body, pink bow, light yellow rings	3
Green body, red bow, yellow rings	6
Gold body, pink bow, yellow rings	38
Green body, red bow, light yellow rings	36
Gold body, red bow, yellow rings	31
Green body, pink bow, light yellow rings	33

61. (2.00 pts)	What are the parental phenotypes?
62. (3.00 pts)	Determine the distances between the locus for the genes coding each phenotype.
63. (2.00 pts)	What is the expected number of DCOs in this cross? Round your answer to the nearest three decimal places.
64. (3.00 pts)	What is the coefficient of coincidence? Round your answer to the nearest three decimal places.

65. (3.00 pts) What is the coefficient of interference? Round your answer to the nearest three decimal places.

	2: Fishy's Wishiwashis [12 points total] able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abod, resulting in 1002 offspring. bype Number of Offspring C D 69 cd 258 cd 139 C D 42 cd 169 C d 38 C D 47 C C d 49 cD 47 C C d 49 cD 41 cd 80 cD 21 C D 16			
	2: Fishy's Wishiwashis [12 points total] able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. abype Number of Offspring C D 69 ad 258 ad 139 C D 42 ad 169 C D 42 ad 169 C D 47 C D 47 C D 47 C D 49 ad 49 ad 49 ad 49 ad 49 ad 40 ad			
	2: Fishy's Wishiwashis [12 points total] able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. abype Number of Offspring C D 69 ad 258 ad 139 C D 42 ad 169 C D 42 ad 169 C D 47 C D 47 C D 47 C D 49 ad 49 ad 49 ad 49 ad 49 ad 40 ad			
	2: Fishy's Wishiwashis [12 points total] able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. abype Number of Offspring C D 69 ad 258 ad 139 C D 42 ad 169 C D 42 ad 169 C D 47 C D 47 C D 47 C D 49 ad 49 ad 49 ad 49 ad 49 ad 40 ad			
	2: Fishy's Wishiwashis [12 points total] able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. abype Number of Offspring C D 69 ad 258 ad 139 C D 42 ad 169 C D 42 ad 169 C D 47 C D 47 C D 47 C D 49 ad 49 ad 49 ad 49 ad 49 ad 40 ad			
	2: Fishy's Wishiwashis [12 points total] able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. abype Number of Offspring C D 69 ad 258 ad 139 C D 42 ad 169 C D 42 ad 169 C D 47 C D 47 C D 47 C D 49 ad 49 ad 49 ad 49 ad 49 ad 40 ad			
enotype ABCD and the other abcd, resulting in 1002 offspring.	able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. Other	66. (3.00 pts) What does you	ır value for the coefficient of interference mean ir	n the context of this problem?
enotype ABCD and the other abcd, resulting in 1002 offspring.	able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. Other			
enotype ABCD and the other abcd, resulting in 1002 offspring.	able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. Other			
enotype ABCD and the other abcd, resulting in 1002 offspring.	able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. Other			
enotype ABCD and the other abcd, resulting in 1002 offspring.	able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. Other			
enotype ABCD and the other abcd, resulting in 1002 offspring.	able below shows the results of Fishy crossing two wishiwashis, one with genotype ABCD and the other abcd, resulting in 1002 offspring. Other			
enotype ABCD and the other abcd, resulting in 1002 offspring.	otype Number of Offspring C D 69 c d 258 c d 139 C D 42 c d 169 C d 38 C D 47 C d 49 c D 41 c d 80 c D 21 C D 16 C D 14	Part 2: Fishy's Wishiwas	his [12 points total]	
enotype ABCD and the other abcd, resulting in 1002 offspring.	otype Number of Offspring C D 69 c d 258 c d 139 C D 42 c d 169 C d 38 C D 47 C d 49 c D 41 c d 80 c D 21 C D 16 C D 14			
shotype Abob and the other abod, resulting in 1002 offspring.	otype Number of Offspring C D 69 c d 258 c d 139 C D 42 c d 169 C d 38 C D 47 C d 49 c D 41 c d 80 c D 21 C D 16 C D 14	The table below shows the resu	ulte of Fishy crossing two wishiwashis, one with a	genetype ARCD and the other shed, reculting in 1002 offenzing
	C D 69 c d 258 c d 139 C D 42 c d 169 C d 38 C D 47 C d 49 c D 41 c d 80 c D 21 C D 16 c D 14			genotype Abob and the other about resulting in 1002 onspring.
	258 c d 139 C D 42 c d 169 C d 38 C D 47 C d 49 c D 41 c d 80 c D 21 C D 16 C D 16 C D 16	Genotype		
	c d 139 C D 42 c d 169 C d 38 C D 47 C d 49 D 41 c d 80 c D 21 C D 16 c D 14	ABCD		
	C D 42 c d 169 C d 38 C D 47 C d 49 C D 41 c d 80 c D 21 C D 16 c D 14	a b c d		
	c d 169 C d 38 C D 47 C d 49 D 41 c d 80 c D 21 C D 16 c D 14	Abcd		
	C d 38 C D 47 C d 49 C D 41 c d 80 c D 21 C D 16 c D 16	a B C D A B c d		
	C D 47 C d 49 D 41 c d 80 c D 21 C D 16 c D 14	a B C d		
	C d 49 :D 41 c d 80 c D 21 C D 16 c D 16	a b C D		
	ED 41 cd 80 cD 21 CD 16 cD 14	A B C d		
I	c d 80 c D 21 C D 16 c D 14	a b c D		
	C D 16 c D 14	a B c d		
	c D 14	A b c D		
		A b C D	16	
	Z d 9	ABcD	14	
		a b C d	9	
	C d 7	A b C d	7	
		a B c D	3	
		a B c d A b c D A b C D a b C d A b C d	80 21 16 14 9 7	
		B c D	3	
	r D 3		w .	
	c D 3			
		7. (2.00 pts) Determine the	map distance between genes A and B.	
	.00 pts) Determine the map distance between genes A and B.	8. (2.00 pts) Determine the	map distance between genes A and C.	
	.00 pts) Determine the map distance between genes A and B.			
	.00 pts) Determine the map distance between genes A and B.			
	.00 pts) Determine the map distance between genes A and B.			

69. (2.00 pts) Determine the map distance between genes A and D.	
70. (2.00 pts) Determine the map distance between genes B and C.	
71. (2.00 pts) Determine the map distance between genes B and D.	
72. (2.00 pts) Determine the map distance between the genes C and D.	
	_
Part 3: Fishy's Valentine's Day [9 points total]	
Budding plant geneticist Fishy Krishy seeks to understand the inheritance pattern for a certain flower that he wants to give to his girlfriend on their anniversary. On his expeditions only finds white-colored flowers and red-colored flowers. However, when he crossed a white flower and a red flower, the F1 offspring exhibited flower colors on a spectrum of inte from white to red in varying shades of pink. He finds that in the F1 generation, only 2 of his 527 flowers are either red or white.	
73. (1.00 pts) What form of inheritance is this?	
74. (2.00 pts) How many genes control the expression of the trait?	

75 (2.00 mts) How many different phonetynic variations are there?
75. (2.00 pts) How many different phenotypic variations are there?
76. (3.00 pts) What fraction of Fishy's F1 flowers should exhibit the most common phenotypic variation?
77. (2.00 pts) These mathematical calculations are based on a single, simple. but a very important assumption. What is it?
Part 1: h E D a D i + V [25 paints total]
Part 4: h E R e D i t Y [25 points total]
Oftentimes, when confronted with multifactorial traits, geneticists such as Fishy Krishy wish to determine the heritability of a trait.
78. (3.00 pts) Define heritability. What does a low or high heritability mean?
To the profession of the manufacture of the state of the
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.
79. (3.00 pts) In a mathematical calculation of heritability, there are normally three primary components. Name them.

In order to better understand heritability, geneticists often decompose heritability into different subcategories. One of these is Broad-Sense Heritability, which measures the contribution of genotypic variation on phenotypic variation. Given that Broad-Sense Heritability values for a trait range from 0 to 1, derive an expression to estimate a value for Broad-Sense Heritability.
81. (3.00 pts) However, for geneticists working in breeding programs, Broad-Sense Heritability is limited in its usefulness. Why is this so?
82. (4.00 pts) In response to this problem, Narrow-Sense heritability, which measures the proportion of phenotypic variance due to additive genotypic variance (quantitative traits), is often the measurement of choice for breeders. However, in order to compute this, it is necessary to partition genotypic variance into three separate categories. If additive genotypic variance is one of these three, what are the other two?
83. (2.00 pts) Clearly, heritability is an important factor for breeders to consider. How might the heritability of a trait influence the ability of breeders to properly do their job? In other words, what is the significance of heritability on the effectiveness of artificial selection?
84. (6.00 pts) Although this estimate of Narrow-Sense heritability is ideal in theory, in practice it is much harder to measure. As a result, a separate measure is often used. In this method, Narrow-Sense heritability is defined as R/S, where R represents the selection response and S the selection differential. Classically, the computation of R and S requires only three measurements: Mean population score (M), Parent score (M1), and Offspring score (M2). Given that R = M2 - M and S = M1 - M, define the measurement of R and S.
85. (4.00 pts) Now, consider the following situation regarding the fruit size of a berry bush where the mean population berry size is approximately 5 cm. As a breeder, you want to increase the bern size of the smallest berry word using bushes. You called a group of borry bushes that produce a mean borry size of only 2 cm. After interpretation these small borry word using bushes.

size of the smallest berry-producing bushes. You select a group of berry bushes that produce a mean berry size of only 2 cm. After interbreeding these small-berry-producing bushes with other bushes, the new bushes produce berries with an average size of 3 cm. Compute a value of Narrow-Sense heritability for this berry bush. What does this mean in terms of artificial selection?

Part 5: Fishy's Discord pfp [19 points total]
Fishy discovers a population of Espeons. Espeons have an incompletely dominant gene coding for fur length, where FF produces a not floofy, Ff produces a semi-floofy, and ff produces an extremely floofy phenotype.
86. (3.00 pts) For every 10 not floofy individuals that survive, 6 semi-floofy and 2 extremely floofy individuals survive. What are the relative fitness values for each phenotype?
87. (3.00 pts) Assuming that the first generation (P) of 1,000 Espeons followed Hardy-Weinberg equilibrium with allele frequencies of 0.5 for both the F and f alleles, how many individuals expressed each phenotype in the first generation?
88. (3.00 pts) In the following generation, the Hardy-Weinberg equilibrium is modified by taking into account relative fitness values. Using the fitness values in the first part of this section, what are the genotype frequencies for the F1 generation?
89. (2.00 pts) The mean fitness of the population is the sum of the modified genotype frequencies. What is this value for the F1 generation?
90. (3.00 pts) Is the value for the mean fitness of the population expected to change in the F2 generation assuming the same relative fitness values apply? If it does change, does this value increase or decrease? Explain using words. Do not calculate the mean fitness value for the F2 generation.

91. (0.00 pts) Is the value for the mean fitness of the population expected to change in the F2 generation assuming the same relative fitness values apply? If it does change, does this value increase or decrease? Explain using words. Do not calculate the mean fitness for the F2 population.
92. (1.00 pts) What type of natural selection does this scenario fall under?
93. (1.00 pts) If given the relative fitness values of 0.3 for the FF phenotype, 0.2 for the ff phenotype, and 1.0 for the Ff phenotype, what type of natural selection would this be?
Part 6: Filo-jihn-ehtyks [8 points total]
Trait diversity is a result of variation in gene expression within and between species. Gene regulatory networks combine the elements of TFs, enhances, promoters, etc. Mutational
events altering these elements can be regarded as either cis- or trans-acting.
94. (1.00 pts) Explain the difference between cis- and trans-acting.
95. (1.00 pts) Which of the following are possible reasons to explain why one gene shows more variation in expression than another?
 A) Under less selective pressure B) A greater fraction of new mutations alter the expression
O C) Both A and B

96	12	nn	nte

When studying different expression systems, it's important to first determine if it is based on cis-regulatory or trans-regulatory systems. There are two methods to understand the effects of each. One method is allele-specific expression. The other is by using statistical associations between gene expression and variation to identify possible eQTLs. With these methods, it is determined that trans-regulatory contributes more to gene expression than cis-regulatory. Why is this so?

97. (1.00 pts)

The following is a phylogenetic tree (figure a) of 4 yeast species with different branch lengths showing relative divergence. Figure b shows the contribution of cis-regulatory difference between pairs of species shown in Figure a.

Describe the relative trend in cis-regulatory variation and divergence.

98. (2.00 pts)

eQTLs contribute to genetic variance greatly as well. Variation is typically polygenic with multiple variants contributing to variability in many genes. eQTL mapping experiments with more than one generation of recombination for breakage of linked sites will be followed by something called bulk segregant analysis of those individuals with extreme phenotypes. What is bulk segregant analysis?

99. (1.00 pts) Mechanisms behind cis-regulatory variation can become incredibly complex. Mutations in cis-regulatory regions with the largest impact are in which region?

- O A) Core promoter
- O B) Enhancer
- O C) Silencer
- O D) A and B only
- E) B and C only
- O F) A and C only

Part 7: Fishy is poggers [8 points total]

Fishy is studying chromosome-inactivation in the mammal *Fake* species ((consisting of both males and females)). In F species, the 26th chromosome is inactivated in a process similar to X-inactivation. All F species individuals will inactivate either of their 26th chromosomes. All cells in an F species individual share the same inactivated 26th chromosome. They find that the probability of the inactivation of an allele in the gene pog is determined by that allele's frequency in the population. The probabilities of inactivation for any two alleles A and B are a/(a+b) and b/(a+b), respectively, where a and b are the frequencies of A and B. A population of 100 F species in Hardy-Weinberg equilibrium has only the dominant allele i and the recessive allele d for pog.

100. (4.00 pts) If 16 individuals are <i>dd</i> , how many individuals in the population are expected to have an inactivated chromosome with the <i>i</i> allele?
101. (4.00 pts) In a population of 200 individuals at Hardy-Weinberg Equilibrium, <i>pog</i> has alleles <i>i</i> , <i>d</i> , and <i>k</i> . 32 individuals are <i>ii</i> , 64 individuals are <i>id</i> , and 32 individuals are <i>ik</i> . How many individual are expected to have an inactivated chromosome with the <i>k</i> allele?
Part 8: Bob the Builder [7 points total]
BER utilizes DNA glycosylases. It is the primary repair mechanism for base lesions that are of small size.
102. (1.00 pts) Which of the following are primarily repaired through BER? Select ALL that apply.
(Mark ALL correct answers) A) Deamination
□ A) Deamination□ B) Methylation
A) DeaminationB) MethylationC) Misincorporation
 A) Deamination B) Methylation C) Misincorporation D) Long bp deletion
A) DeaminationB) MethylationC) Misincorporation
 A) Deamination B) Methylation C) Misincorporation D) Long bp deletion
 A) Deamination B) Methylation C) Misincorporation D) Long bp deletion
A) Deamination B) Methylation C) Misincorporation D) Long bp deletion E) Oxidation
A) Deamination B) Methylation C) Misincorporation D) Long bp deletion E) Oxidation
A) Deamination B) Methylation C) Misincorporation D) Long bp deletion E) Oxidation There are 11 glycosylases in humans which are segregated into 4 groups: UDGs, HhH, MPG, and one other.
□ A) Deamination □ B) Methylation □ C) Misincorporation □ D) Long bp deletion □ E) Oxidation There are 11 glycosylases in humans which are segregated into 4 groups: UDGs, HhH, MPG, and one other. 103. (1.00 pts) UNG2 is a specific type of uracil DNA glycosylase and is located in the nucleus. Which of the following is true of UNG2? Select ALL that apply. (Mark ALL correct answers)
A) Deamination B) Methylation C) Misincorporation D) Long bp deletion E) Oxidation D) Long bp deletion D) Long bp dele
A) Deamination B) Methylation C) Misincorporation D) Long bp deletion E) Oxidation There are 11 glycosylases in humans which are segregated into 4 groups: UDGs, HhH, MPG, and one other. 103. (1.00 pts) UNG2 is a specific type of uracil DNA glycosylase and is located in the nucleus. Which of the following is true of UNG2? Select ALL that apply. (Mark ALL correct answers) A) Mainly responsible for U:G base pair mismatch B) Turnover is regulated by Cdks

Somatic hypermutation and class switch recombination also utilize UNG2. Given the fact that cytidine deaminase (AID) is involved in these two processes, what is the functional role of UNG2 in these processes?
105. (1.00 pts) TDG is another enzyme but has a function in removing the thymine in G:T bp mismatches. G:T mismatches are derived spontaneously from 5-mC deamination.
○ True ○ False
10% of the global population have the TDG Gly199Ser variation. The function of Gly199 is to block retrograde flipping of the abasic site that would bring the site back into the DNA helix.
106. (1.00 pts) Why is the mutation into a serine more harmful?
Part 9: Arginylasparaginylalanine < Aspartylasparaginylalanine [8 points total]
RNAs are much less stable than DNAs.
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell?
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? O A) mRNA
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? O A) mRNA
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? A) mRNA B) tRNA
 107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? A) mRNA B) tRNA 108. (1.00 pts) RNAs with short half-lives are hard to analyze through Northern Blots. Which of the following can be used instead? A) RT-PCR B) Normal PCR
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? A) mRNA B) tRNA 108. (1.00 pts) RNAs with short half-lives are hard to analyze through Northern Blots. Which of the following can be used instead? A) RT-PCR
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? A) mRNA B) tRNA 108. (1.00 pts) RNAs with short half-lives are hard to analyze through Northern Blots. Which of the following can be used instead? A) RT-PCR B) Normal PCR C) Southern Blot
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? A) mRNA B) tRNA 108. (1.00 pts) RNAs with short half-lives are hard to analyze through Northern Blots. Which of the following can be used instead? A) RT-PCR B) Normal PCR C) Southern Blot
107. (1.00 pts) The half-lives of RNAs differ based on what kind of RNA it is. Which of the following is likely to have a longer half-live in a prokaryotic cell? A) mRNA B) tRNA 108. (1.00 pts) RNAs with short half-lives are hard to analyze through Northern Blots. Which of the following can be used instead? A) RT-PCR B) Normal PCR C) Southern Blot D) Eastern Blot 109. (2.00 pts) Post-transcriptional processing occurs at the 3' and 5' ends of RNA. Primer extension can be used to map the 5' end. The first step in doing this is to create a suitable primer. Which

□ C) No more than 50% GC content□ D) First nucleotide as G				
110. (2.00 pts) Even though making a primer longer would technically increase its specificity, why do we typically limit the size of the primer?				
111. (2.00 pts) After primer extension occurs, reverse transcriptase is added to elongate. The cDNAs are then purified using a phenol/chloroform solution. The concentration of the cDNAs is increased by sodium acetate/ethanol precipitation. What is the function of the phenol/chloroform solution? What is the logic behind sodium acetate/ethanol precipitation?				
Part 10: H3K27me3 [9 points total]				
In the developing study of disease inheritance, something that has been noted is the differing inheritance of disease without any changes in the genetic material. Geneticists called this the epigenome, which consists of all the epigenetic modifications of an individual. One of the most classical examples of epigenetic modifications is DNA methylation.				
112. (2.00 pts) What is the role of DNA methylation and where does it most likely occur?				
113. (2.00 pts) What is the difference between de novo methylation and maintenance methylation?				
114. (1.00 pts) The inheritance of methylation patterns can result in diseases. For example, different methylation patterns in sperm and egg cells result in different concentrations of protein products upon fertilization. In this pattern of inheritance, disease-alleles are passed on by a parent basis. What is this called?				

1	15.	(6.00)	nts

Epigenetic modifications can also occur by paramutations, where one allele induces a heritable change in the expression of the other without changing the DNA sequence. For maize the gene *b1* codes for a transcription factor that regulates the expression of anthocyanin. The dominant allele, *B-I*, is typically expressed at high levels, conferring a purple color to corn husks and stalks. A separate allele, *B'*, is expressed at a much lower level, leading to green-colored husks and stalks. However, the *B'* allele is paramutagenic: it can convert a *B-I* allele into a *B'* allele. Fishy performs a genetics experiment on maize plants. In his P generation, he crossed *B-I B-I* maize with a *B' B'* maize to produce a *B-I B'* F1 generation. The paramutation conversion rate of this gene is 14% and the reversion rate is 23%. What percent of the F1 generation is purple? Assume that conversion and reversion events occu at fertilization and reversion occurs after conversion.

Congratulations, you've completed the 2021 BirdSO Designer Genes C test! Best of luck in your other events! We hope you enjoyed taking this test today!

~ Section 2 Authors: Greycen (Stevenson '22) & Kayla (Clark '22) & Krish (Carmel '22)

© 2021 - powered by Scilympiad (https://scilympiad.com) | Tournaments (/Tours.html)

Terms of Use (/ToS.html) | Privacy (/Privacy.html) | Cookie Policy (/CookiePolicy.html) | Support (/birdso/Support) | Contact (/birdso/Home/Contact)