

Etherchannel and L3 Redundancy

Prof. Chien-Chao Tseng

曾建超教授

Department of Computer Science
National Yang Ming Chiao Tung University
cctseng@cs.nctu.edu.tw

References: Cisco CCNA

Link Aggregation

- Link Aggregation (aka EtherChannel): technology that
 - Bundles several links between two devices and
 - Use them simultaneously as a single (logical) link.

- ➤ Increases bandwidth and provides redundancy
- Why **EtherChanel**?
 - Fastest possible port is no longer fast enough
 (for traffic from all access links)
 Access
 - Adding faster links is expensive
 - Increase availability

Links

Up Links

Link Aggregation and Spanning Tree Protocol

Suppose two switches connect with each other via a 100 Mbps link

100 Mbps

- Can we extend capability by connecting other links between two switches?
 - No, Spanning-Tree Protocol (STP) will block redundant links to prevent a loop

STP Blocked

- Alternatives to extend the capacity of the link:
 - Deploy switches with faster interfaces (1Gbps)
 - very expensive
 - Use Link Aggregation to bundle two physical links into a bigger link
 - STP treats this link as a single link!

Characteristics of EtherChannel

- High Availability If one link fails, traffic goes through remaining links
- Restrictions (for Cisco IOS switches)
 - Interface types cannot be mixed;
 - Fast (800 Mb/s) and Gigabit Ethernets cannot be mixed in an EtherChannel
 - Ports must be compatibly-configured on both devices
 - e.g., both sides configured as trunks within the same native VLAN
 - Up to eight links bundled in an EtherChannel
 - Up to six EtherChannels for a Cisco IOS switch
 - One-to-one connection between
 - two switches, or a switch and an EtherChannel-enabled server
 - Normally, for Layer 2 ports
 - But, layer 3 EtherChannel possible for multilayer switches

EtherChannel Configuration Mechanisms

- By Negotiation Protocols
 - 1) Port Aggregation Protocol (PAgP)
 - Cisco-proprietary protocol
 - Pronounced as "Pag P"
 - 2) Link Aggregation Control Protocol (LACP)
 - IEEE Standard (IEEE 802.3ad)
 - ✓ Cisco switches support both protocols
 - ✓ PAgP and LACP are not compatible; both ends must use the same protocol.
- Static Persistence without PAgP and LACP:
 - 3) Set "on" mode in PAgP or LACP:
 - Bundles links unconditionally
 - No negotiation protocol is used.

EtherChannel Negotiation

PAgP and PAgP Mode (Default mode is Auto)

Desirable	Actively negotiates channeling status Channel formed if the other side is Auto or Desirable.	
Auto	Responds to PAgP messages but does not aggressively negotiate Channel formed only if the other end is Desirable.	

■ LACP and LACP Modes (Default mode is On)

I /\CTI\/A	Actively negotiates channeling status Channel formed if the other side is Passive or Active	
	Responds to LACP messages but does not aggressively negotiate. Channel formed only if the other end is Active	

■ EtherChannel formed?

PAgP	Desirable	Auto
Desirable	Yes	Yes
Auto	Yes	No

LACP	Active	Passive
Active	Yes	Yes
Passive	Yes	No

Reference: 9tut.com

First Hop Redundancy Protocols (FHRP)

Default Gateway Limitation

- First Hop Redundancy Protocols (FHRP):
 Redundancy technology for transparent fail-over at first-hop IP router (Default Gateway)
- Default Gateway Limitation
 - Host cannot use a secondary gateway,
 even if another gateway exists
 - Host is typically configured with a single default gateway.
 - Does not change when network topology changes
 - ➤ If a router or a router interface that serves as a default gateway fails,
 - Hosts using the default gateway are isolated from outside networks
- > Need a mechanism to provide alternate default gateways

Router Redundancy

- Two or more routers give an illusion of a Virtual Router
 - Virtual Router serves as the default gat
 - Forwarding Router assumes
 IP and MAC of Virtual Router (VR)
- Need a protocol to determine
 - Which router should take the active rol in forwarding traffic
 - When a standby router takes over forwarding role
 - Standby router assumes IP and MAC of VR (when Forwarding Router fails)
 - Transition is transparent to hosts
- > First-Hop Redundancy protocols

Provides the ability of networks to dynamically recover from the default gateway failure

Steps for Router Failover

- When Active (Forwarding) Router fails,
 - Redundancy protocol transitions Standby
 Router to new Active Router role
- Steps for Router Failover:
 - 1. Standby Router stops seeing Hello messages from Forwarding Router
 - 2. Standby Router assumes the role of Forwarding Router
 - Standby Router assumesIP and MAC Virtual Router
 - ➤ Host devices see no disruption in service
 - No change in IP and MAC (of VR) addresses of default gateway

First-Hop Redundancy Protocols (FHRPs)

- Hot Standby Router Protocol (HSRP):
 - Cisco's initial, proprietary standard
 - Developed in 1998
- Virtual Router Redundancy Protocol (VRRP):
 - An open standard protocol
 - Albeit patent encumbered
- Gateway Load Balancing Protocol (GLBP):
 - A more recent proprietary standard from Cisco
 - Permits load balancing as well as redundancy
- Etc.

Hot Standby Router Protocol (HSRP)

- A CISCO proprietary protocol, which provides redundancy for a local subnet.
- HSRP Group or a Standby Group
 - A set of routers works in concert to present the illusion of a single virtual router
 - One Active router
 - One Standby router
 - One or more Listening router
 - An HSRP election process determines the roles of routers
 - HSRP Group has a single, well-known MAC addr and IP addr for Virtual Router
 - Each interface of routers has its own MAC and IP addresses
 - Different from HSRP Group MAC and IP addresses.
- Hosts assume Virtual Router as the default gateway
- Only Active Router forwards packets sent to Virtual Router.
- If *Active Router* fails, *Standby Router* assumes the role of *Active Router*

Important Terminologies of HSRP

■ Virtual IP address:

IP address from local subnet assigned as **default gateway** to all local hosts.

■ Virtual MAC address:

MAC address is generated automatically by HSRP.

- First 24 bits: **Cisco address** (i.e., 00.00.0c).
- Next 16 bits: *HSRP ID*, i.e., 07.ac
- Next 8 bits: group number in hexadecimal.
- e.g., group number is 10 (= 0a).

Virtual MAC address: 00.00.0c.07.ac.0a

■ Hello messages:

Messages exchanged periodically by **Active** and **Standby** Routers.

- exchanged every 3 seconds,
- telling the state of a router.

https://www.geeksforgeeks.org/hot-standby-router-protocol-hsrp/

Important Terminologies of HSRP (cont.)

■ Hold Down Timer:

Elapsed time **Standby Router** will wait for **Hello message** (before assuming Active Router is down)

- Default value is 10 seconds (roughly 3 times of elapsed time of Hello messages.)
- **Priority:** router having higher priority will become the active router
 - Default 100, but changeable
- **(Standby) Preempt** state:
 - A state allows a Standby Router (whose priority has become higher) to take over the role of the Active Router
 - A Standby Router not at the Standby Preempt state will not preempt the Active Router even if the Standby Router has a higher priority.
 - Often combined with Standby Track
- Standby Track: Active Router tracks an interface and decreases priority when the interface goes down (make priority lower than the Standby Router priority)

Active Router Election – HSRP Priority

- Recall: HSRP election process determines the roles of Active and Standby Routers
- HSRP Priority:

Used to determine **Active Router**

Range: 0 to 255

Default 100

- May use standby priority interface command to configure priority
- The router with the highest HSRP priority will become the Active Router
 - If equal,

the router with the numerically **highest IP address** is elected as **Active Router**

NYCU CS

15

Active Router Election – HSRP Preemption

- By default, after a router becomes the Active Router, it will remain Active even if another router comes online with a higher HSRP priority
- To force a new HSRP election process,
 - Use standby preempt command to enable preemption of Active Router
 - If not configured:
 local router assumes the role of Active Router only if it receives information indicating no Active Router exists.
 - If configured:
 Standby Router preempts an Active Router only if it has a higher priority
 - with equal priority, but a higher IP address will not preempt the Active Router

Note:

With **preemption disabled**, the **router** that **boots up first** will become the **Active Router** if no other routers are online **during the election process**

HSRP Message Exchange

- Once the election process protocol completes,
 only Active and Standby routers send periodic HSRP messages
- If the Active Router fails, the Standby router takes over as the Active router.
- If the **Standby Router** fails or becomes **Active**, another router is elected as **Standby**.
- Hot Standby Router Protocol (HSRP) has 2-versions:
 - Version 1:
 - Messages are multicast at 224.0.0.2
 - Uses UDP port 1985.
 - Allows group numbers to range from 0 to 255.
 - Version 2:
 - Messages are multicast at 224.0.0.102
 - Uses UDP port 1985.
 - Allow group numbers to range from 0 to 4095.

HSRP Interface Tracking

Interface Tracking

- Allowing us to specify an interface on a router for HSRP to monitor
- If the **specified interface** goes down, HSRP **reduces** the router's HSRP priority (for the given group)
 - > Allowing another HSRP router with higher priority to become the **Active** router

NYCU CS

18

Example – Without Interface Tracking

HSRP Interface Tracking

HSRP – **Example Configuration**

- Consider a given topology with 2 routers, R1 and R2.
 - IP addresses: R1 (f 0/0) is 192.0.2.1/24, R2 (f 0/0) is 192.0.2.2/24.
- **Example: Virtual IP**: 192.0.2.100, **Group Name**: HSRP_GROUP, Group Number: 1
 - **R1** Configuration: **Priority 110**. Preempt enabled

```
R1#(config-if) standby 1 ip 192.0.2.100
R1#(config-if) standby 1 name HSRP_GROUP
R1#(config-if) standby 1 priority 110
R1#(config-if) standby 1 preempt
```

• R2 Configuration: Priority 100. Preempt enabled

```
R2#(config-if) standby 1 ip 192.0.2.100
R2#(config-if) standby 1 name HSRP_GROUP
R2#(config-if) standby 1 priority 100
R2#(config-if) standby 1 preempt
```


HSRP Enhanced Object Tracking

- HSRP has a mechanism for tracking the Interface Line-protocol state.
- **■** Enhanced Object Tracking
 - Separates tracking mechanism from HSRP.
 - Creates a separate, standalone tracking process (other than HSRP).
 - Allows tracking of other objects in addition to the Interface Line-protocol state.
 - Client process, such as HSRP, can register an interest in tracking objects
 - To request notification when the tracked object changes state.
 - Several clients can track the same object but take different actions when the object changes state.
- Advantages:
 - Increases availability and speed of recovery of a router system and
 - Decreases outages and outage duration.

Ref: http://www.cisco.com/en/US/products/sw/iosswrel/ps1839/products feature guide09186a00801541be.html

Example of HSRP Object Tracking

Virtual Router Redundancy Protocol (VRRP)

- An open (albeit patent encumbered) standard protocol (RFC 5798)
- Difference between **HSRP** and **VRRP**

Features	HSRP	VRRP
Standard	Cisco Proprietary	IETF open standard
Components	1 Active, 1 Standby,	1 Master,
	1 or more Listening	1 or more Backup
IP of virtual router	Virtual IP	Highest IP of Interfaces
Packet Period /	3 Sec	1 Sec
Hold-down Timer	Hold-down Timer 10 sec	Hold-down Timer 3 sec
Preempt Default	not enabled	enabled
Multicast Address	224.0.0.2 (V1), 224.0.0.102 (V2)	224.0.0.18
Transport	UDP Port 1985	UDP Port 112

NYCU CS

24