Appendix A Glossary of Notation

- У Великобританії та США розряди чисел відокремлюють один від одного комою, а ціле число від дробового у десятко-вих дробах крапкою.
- Нуль як одну із цифр числа вимовляють o [qu], можна також вимовляти як nought [nO:t] або zero ["zlqrqu]; у ролі самостій-ного числа нуль вимовляють zero ["zlqrqu].
- Усі літери латинського алфавіту читають відповідно до їхніх англійських назв.

```
plus
           minus
\pm
           plus or minus
           multiplied by
×·
           divided by
÷ : /
( )
           round brackets;
           parentheses
{ }
           curly brackets; braces
           square brackets; brackets
[ ]
           and so on to
           (is) identical with;
=
           (is) always equal to;
           (is) congruent to
           equivalent, similar;
           of the order of;
           proportional to
           (is) approximately equal to;
\cong
           approximately equals
\infty
           infinity
x \to \infty x tends to infinity;
         x approaches infinity
         varies directly as;
\infty
         (is) (directly) proportional to
         negative a
-a
!(n!)
         n factorial
         phi hat
\hat{\varphi}
a'
         a prime
a"
         a double prime
         a second, double prime;
a_2''
         a double prime, second
         a triple prime
a'''
         f prime sub (suffix) c;
f_{\rm c}'
```

f suffix (sub) c, prime

 \vec{a} a vector;

the mean value of a

à the first derivative

the second derivative ä

ä the third derivative

a first; a_1

a sub one;

a suffix one

a n-th; a_n

a sub n;

a suffix n

 $a \operatorname{sub} k \operatorname{sup} 2;$ a_k^2 $a \sup 2 \operatorname{sub} k$

ten seconds; 10"

ten inches

90° ninety degrees

87°6′10″ eighty seven degrees six minutes ten seconds

the sine of thirty point two degrees sin 30.2°

the tangent of theta equals the sine of theta over the $\tan\theta = \frac{\sin\theta}{\cos\theta}$

cosine of theta

the cosine of capital A is equal to the tangent of b $\cos A = \frac{tanb}{cotc}$

divided by the cotangent of c

tangent theta equals secant theta over cosecant theta $\tan\theta = \frac{\sec\theta}{\csc\theta}$

a = b*a* is *b*;

a equals b;

a is equal to b

a is not b; $a \neq b$

> a does not equal b; a is not equal to b

a approximately equals b $a \approx b$

a plus or minus b $a \pm b$

a > ba is greater than b

a is much greater than b $a \gg b$

a < ba is less than b

 $a \ll b$ a is much less than b

a is greater than or equals b $a \ge b$

 $a \le b$ a is less than or equals b

a second is greater than a d-th $a_2 > a_d$

a	the modulus of a; the absolute value of a
a + b = c	a plus b is c ; a plus b equals c ; a plus b is equal to c ; a plus b makes c
4 + 7 = 11	four plus seven is eleven; four plus seven equals eleven; four plus seven is equal to eleven
12 > 5 + 5	twelve is greater than five plus five
5 + 5 < 12	five plus five is less than twelve
$y = \sum_{k=0}^{4} a_k x^k$	y equals the sum from k equal to zero to k equal to four of a sub k , x to the power of k
c - b = a	c minus b is a; c minus b equals a; c minus b is equal to a; c minus b leaves a
(2x-y)	bracket two x minus y close the bracket
18 - 6 = 12	eighteen minus six is equal to twelve; eighteen minus six equals twelve; eighteen minus six is twelve; eighteen minus six leaves twelve
$1 \times 1 = 1$	once one is one
$2 \times 2 = 4$	twice two is four
5 × 5 = 25	five times five is twenty five; five multiplied by five equals twenty five; five by five is equal to twenty five; five times five makes twenty five
$\prod_{i=1}^{n} 1 = 1$	the product from i equal to one to n of one equals one
$A \times B$	the Cartesian product of A and B
$S = v \cdot t$	distance = velocity × time; S equals v by t; S is equal to v multiplied by t; S equals v times t, where S means distance, v means velocity, t means time
$A = F \cdot S$	work = force \times distance; work is equal to the product of the force times distance; A equals F multiplied by S where A means work, $Fmeans force and S means distance$
16:4=4	sixteen divided by four is four; sixteen by four equals four; sixteen by four is equal to four; the ratio of sixteen to four is four

$20:5 = 16:4$ $\frac{20}{5} = \frac{16}{4}$	the ratio of twenty to five equals (is equal to) the ratio of sixteen to four
1:2	the ratio of one to two
2:3=4:6	two to three is as four to six
1/2	a (one) half
1/3	a (one) third
1/4	a (one) quarter; a (one) fourth
1/8	one eighth
2/3	two thirds
3/4	three quarters; three fourths
5/6	five sixths
25/57	twenty-five fifty-sevenths
1/273	one two hundred and seventy third
2 ½	two and a half
3 3/4	three and three quarters
1.1	one point one
2.12	two point one two
15.505	fifteen point five o [ou] five
0.5	o [ou] point five; zero point five; nought point five; point five; one half
0.002 .002	o [ou] point o [ou] o [ou] two; zero point zero zero two; point two oes[ouz] two; point two noughts two
0.0000001 .0000001	o [ou] point six noughts one
sin 30.2°= .5030	the sine of thirty point two degrees equals zero point five, zero, three, zero
12%	twelve percent
87	eighty-seven
101	one hundred (and) one
211	two hundred (and) eleven
1,024	one thousand (and) twenty-four
3,728	three thousand seven hundred (and) twenty-eight
100,000	one hundred thousand

1,048,576 one million forty-eight thousand five hundred (and) seventy-six 1,000,000,000 one billion *a* to the *n*-th power; a^n a^n a to the power of n; the *n*-th power of *a*; *a* raised to the *n*-th power x^2 x square; *x*^2 x squared; the square of x; the second power of x; *x* to the second power; x raised to the second power $4^2 = 16$ four squared is sixteen; the square of four is sixteen; the second power of four is sixteen $(a+b)^2$ a plus b all squared v cube; v^3 y cubed; the cube of *y*; the third power of y; y raised to the third power; y to the third power $3^3 = 27$ three cube is twenty seven; the cube of three is twenty seven a^5 a to the fifth power; a raised to the fifth power v^{-10} y to the minus tenth power $\sqrt{16} = 4$ the square root of sixteen is four the square root of a \sqrt{a} $\sqrt[3]{a}$ the cube root of a $\sqrt[3]{27} = 3$ the cube root of twenty seven is three $\sqrt[4]{16} = 2$ the fourth root of sixteen is two $\sqrt[5]{a^2}$ the fifth root of a square $\alpha = \sqrt{R^2 + x^2}$ alpha equals the square root of capital R square plus x square the square root of seven first plus capital A divided by two *xa* double prime

x plus or minus the square root of x square minus y

a to the m by n-th power equals the n-th root of (out

square all over y

of) a to the m-th power

 $\frac{x \pm \sqrt{x^2 - y^2}}{y}$

 $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

$\frac{a+b}{a-b} = \frac{c+d}{c-d}$	a plus b over a minus b is equal to c plus d over c minus d
$a = \frac{e}{l}$	a is equal to the ratio of e to l
$\frac{ab^2}{b} = ab$	ab square (divided) by b equals ab
$\frac{a}{\infty} = 0$	a divided by infinity is infinitely small;a by infinity is equal to zero
$L = \sqrt{R^2 \pm x^2}$	capital L equals the square root out of capital R square plus minus x square
$E = \frac{\frac{P}{a}}{\frac{e}{l}} = \frac{Pl}{al}$	capita l l is equal to the ratio of capita l
$\gamma = \frac{c'c}{ac'}$	gamma is equal to the ratio of the segment c prime c to the segment ac prime
$\frac{dz}{dx}$	dz over dx ; the first derivative of z with respect to x
$\frac{d^2y}{dx^2}$	the second derivative of y with respect to x square; d two y over d x square
$\frac{d^n y}{dx^n}$, $D^n x^y$	the n -th derivative of y with respect to x
dx^n	
\int_{n}^{m}	the integral from n to m ; the integral between the limits n and m
uл	-
\int_{n}^{m}	the integral between the limits n and m $d ext{ over } dx ext{ of the integral from } x ext{ nought to } x ext{ of capital}$
$\int_{n}^{m} \frac{d}{dx} \int_{x_{0}}^{x} X dx$	the integral between the limits n and m $d ext{ over } dx ext{ of the integral from } x ext{ nought to } x ext{ of capital } X ext{ } dx$ the integral of dy divided by the square root out of c
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$	the integral between the limits n and m $d ext{ over } dx ext{ of the integral from } x ext{ nought to } x ext{ of capital } X ext{ } dx$ the integral of dy divided by the square root out of c square minus y square
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$ $\log_{2} x = 2$	the integral between the limits n and m $d ext{ over } dx ext{ of the integral from } x ext{ nought to } x ext{ of capital } X ext{ } dx$ $the integral ext{ of } dy ext{ divided by the square root out of } c$ $square ext{ minus } y ext{ square}$ $the logarithm ext{ of } x ext{ to the base two equals two}$
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$ $\log_{2} x = 2$ $H[D]$	the integral between the limits n and m $d ext{ over } dx ext{ of the integral from } x ext{ nought to } x ext{ of capital } X ext{ } dx$ $the integral ext{ of } dy ext{ divided by the square root out of } c$ $square ext{ minus } y ext{ square}$ $the logarithm ext{ of } x ext{ to the base two equals two}$ $set ext{ of functions holomorphic in } D ext{ (function spaces)}$
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$ $\log_{2} x = 2$ $H[D]$ $\ f\ $	the integral between the limits n and m d over dx of the integral from x nought to x of capital X dx the integral of dy divided by the square root out of c square minus y square the logarithm of x to the base two equals two set of functions holomorphic in D (function spaces) norm of f (function spaces) y is the value of the function corresponding to x ; y is a function of x ;
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$ $\log_{2} x = 2$ $H[D]$ $ f $ $y = f(x)$	the integral between the limits n and m d over dx of the integral from x nought to x of capital $X dx$ the integral of dy divided by the square root out of c square minus y square the logarithm of x to the base two equals two set of functions holomorphic in D (function spaces) norm of f (function spaces) y is the value of the function corresponding to x ; y is a function of x ; y equals f of x
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$ $\log_{2} x = 2$ $H[D]$ $ f $ $y = f(x)$ f^{-1}	the integral between the limits n and m d over dx of the integral from x nought to x of capital $X dx$ the integral of dy divided by the square root out of c square minus y square the logarithm of x to the base two equals two set of functions holomorphic in D (function spaces) norm of f (function spaces) y is the value of the function corresponding to x ; y is a function of x ; y equals f of x the inverse function of the function f
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$ $\log_{2} x = 2$ $H[D]$ $ f $ $y = f(x)$ f^{-1} $ y $	the integral between the limits n and m d over dx of the integral from x nought to x of capital $X dx$ the integral of dy divided by the square root out of c square minus y square the logarithm of x to the base two equals two set of functions holomorphic in D (function spaces) norm of f (function spaces) y is the value of the function corresponding to x ; y is a function of x ; y equals f of x the inverse function of the function f
$\int_{n}^{m} \int_{x_{0}}^{x} X dx$ $\int \frac{dy}{\sqrt{c^{2} - y^{2}}}$ $\log_{2} x = 2$ $H[D]$ $ f $ $y = f(x)$ f^{-1} $ v $ v^{2}	the integral between the limits n and m d over dx of the integral from x nought to x of capital $X dx$ the integral of dy divided by the square root out of c square minus y square the logarithm of x to the base two equals two set of functions holomorphic in D (function spaces) norm of f (function spaces) y is the value of the function corresponding to x ; y is a function of x ; y equals f of x the inverse function of the function f the norm of v (vectors)

v/r	means the scalar vector quotent of v and r (vectors)
rv	means the scalar vector product of r and v (vectors)
d(S1, S2)	distance between the sets S1 and S2 (curves, domains, regions)
x(z1, z2)	chordal distance of $z1$ and $z2$ (curves, domains, regions)
x(z1, z2)	Euclidean distance of z1 and z2 (curves, domains, regions)
C is a "scroc"	C is a simple closed rectifiable oriented curve
b = I(a + bi)	b is the imaginary part of a plus bi (complex variables)
a = R(a + bi)	a is the real part of a plus bi (complex variables)
$F = C_{\mu} HIL \sin \theta$	capital F equals capital C sub (suffix) mu HIL sine theta
$P_{cr} = \frac{\pi^2 E l}{4l^2}$	capital P sub (suffix) cr (critical) equals pi square capital E by l all over four l square
$f: A \to B$	f is a function under which each element of set A has an image in set B
Int (s)	the interior of <i>S</i> (set theory)
C(S)	the complement of S
S'	the derived set of a given set S
S	closure of the set S
$C \cup D$	the union of sets C and D ; C unions D ; C cup D
$C \cap D$	the intersection of sets C and D ; C intersects D ; C cap D
$a \in A$	small a is an element of the set capital A ; a belongs to A
$A \subset B$	A is a proper subset of B
$A \not\subset B$	A is not a subset of B
$B\supset A$	B is a proper superset of A
$A \subseteq B$	A is a subset of B;A is included in B
$B \supseteq A$	B is a superset of A;B includes A
$M = \{2,4,6\}$	<i>M</i> is the set with the elements 2, 4, 6
$M = \varnothing$	M is an empty set;M is a null set
P(A)	probability of the event A

$$P(A \mid B)$$

$$\lim_{x \to x_1} f(x) = L$$

$$V - u\sqrt{\sin^2 i - \cos^2 i} = u$$

$$K = \max \sum_{i=1}^{n} |a_{ij}(t)| (t \in [a,b]);$$

$$j = 1,2...n)$$

$$u = \int f_1(x) dx + \int f_2(y) dy$$

$$(D-r_1)[(D-r_2)y] =$$

= $(D-r_2)[(D-r_1)y]$

$$\left[(x+a)^p - \sqrt[r]{x} \right]^{-q} - s = 0$$

$$M = R_1 x - P_1(x - a_1) - P_2(x - a_2)$$

$$a_{v} = \frac{m\omega\omega^{2}\alpha^{2}}{\left[rp^{2}m^{2} + R_{2}\left(R_{1} + \frac{\omega^{2}\alpha^{2}}{rp}\right)\right]}$$

$$D'_{n-1}(x) = \prod_{s=0}^{n} (1 - x_s^2)^{\varepsilon - 1}$$

probability of the event A conditional on the event B

f of x approaches the limit L as x tends to the value x first in any way

V equals u the square root of sine square I minus cosine square I equals u

K is equal to the maximum over j of the sum from I equals one to I equals n of the modulus of a sub ij of t, where t lies in the closed interval ab and where j runs from one to n

u is equal to the integral of f sub one of x multiplied by dx plus the integral of f sub two of y multiplied by dy

open round brackets capital D minus r first close the round brackets open square and round brackets capital D minus r second close round brackets by y close square brackets equals open round brackets capital D minus r second close round brackets open square and round brackets capital D minus r first close round brackets by y close square brackets

x plus a in round brackets to the power of p minus the r-th root of x (all in square brackets) to the minus q-th power minus s equals nothing (zero)

capital M is equal to capital R sub one multiplied by x minus capital P sub one round brackets opened x minus a sub one brackets closed minus capital P sub two round brackets opened x minus a sub two brackets closed

a sub v is equal to m omega, omega square alpha square divided by square brackets rp square m square plus capital R second round brackets opened capital R first plus omega square alpha square divided by rp round and square brackets closed

D sub n minus one prime of x is equal to the product from s equal to zero to n of, parenthesis, one minus x sub s

$$K(t,x) = \frac{1}{2\pi i} \int_{\left|\omega - \frac{1}{2}\right| = \rho} \frac{K(t,z)}{\omega - \omega(x)} d\omega$$

squared, close parenthesis, to the power of epsilon minus one

K of t and x is equal to one over two pi i, times the integral of Kof t and z, over omega minus omega of x, with respect to omega along curve of the modulus of omega minus one half, is equal to rho