VORLESUNGSINHALTE

- 1 Einleitung
- **2** Sensorprinzipien der Mechanik
- 3 Sensorprinzipien der Wärmelehre
- 4 Sensorprinzipien der Elektrostatik und -dynamik
- 4.1 Resistive Sensorprinzipien
- 4.2 Kapazitive Sensorprinzipien
- 4.3 Induktive Sensorprinzipien
- 4.4 Weitere magnetische Sensorprinzipien
- 4.5 Piezoelektrische und weitere elektrische Sensorprinzipien
- 5 Sensorprinzipien der Ausbreitung elektromagnetischer Wellen und der Optik

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (1)

Ohmscher Widerstand eines fadenförmigen Leiters

$$R = \frac{\rho \cdot I}{A}$$

⇒ Wegmessung, Winkelmessung

$$\Delta I \approx I_0 \cdot \frac{U_M}{U_0}$$
 $\Delta \alpha \approx \frac{I_0}{r} \cdot \frac{U_M}{U_0}$

Spezifische elektrische Widerstände verschiedener Stoffe

[F. Heywang et al: Physik für Techniker]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (2)

[Frohne et al: Moeller / Grundlagen der Elektrotechnik]

- 1: Schleifer
- 2: Widerstandsbahn
- 3: Kontaktbahn

Schleifpotentiometer

[Bosch: Autoelektrik/Autoelektronik]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (3)

Drehpotentiometer

[EISYSTEMS]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (4)

Material	k
Konstantan (57 % Cu, 43 % Ni)	2,05
Karma (73 % Ni, 20 % Cr, Rest Fe, Al)	2,1
Nichrome V (80 % Ni, 20 % Cr)	2,2
Platin-Wolfram (92 % Pt, 8 % W)	4,0
Si (P-Typ)	120-150
Ge	102

Ohmscher Widerstand eines Leiters:

$$R = \rho \cdot \frac{I}{A}$$

⇒ Dehnungsmessung

$$\varepsilon = \frac{1}{k} \cdot \frac{\Delta R}{R}$$

K-Faktoren verschiedener Stoffe

[K. Hoffmann: Eine Einführung in die Technik des Messens mit Dehnungsmessstreifen, Infomaterial der VTS Zlin]

- 1: Trägerschicht
- 2: Messwiderstand
- 3: Deckschicht
- 4: Anschlussleitung

1 2 Meßgitterlänge

DMS-Aufbau

[H.-J. Gevatter: Automatisierungstechnik 1]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (5)

Technischer Aufbau von DMS-Drucksensoren

[HBM, P. Hauptmann: Sensoren, OMEGA: Transactions Vol. III

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (6)

DMS-Applikation Druckmessung

[H.-J. Gevatter: Automatisierungstechnik 1]

DMS-Applikation Torsionsmessung (oben) und Wägung (unten) [J. Niehbuhr, G. Lindner: Physikalische Messtechnik mit Sensoren 1]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (7)

Verkleinerung der Elektronenbeweglichkeit durch Stöße mit Ionengitter

$$\kappa = \mathbf{e} \cdot \mathbf{n} \cdot \mu = \frac{1}{\rho}$$

Bändermodell der Festkörperphysik
[ETH Zürich]

$$\Rightarrow$$
 Temperaturbestimmung $\vartheta \approx \frac{1}{A} \cdot \left(\frac{R(\vartheta)}{R_0} - 1 \right)$

Тур	R_0/Ω	9₀/°C	A/(1/°C)	B/(1/°C) ²	<i>C</i> /(1/°C) ⁴	$D/(1/^{\circ}C)^{6}$
Pt 100	100	0	3,9083·10 ⁻³	-0,5775 · 10 ⁻⁶	-4,183·10 ⁻¹²	-
Ni 100	100	0	5,485·10 ⁻³	6,65·10 ⁻⁶	28,05·10 ⁻¹²	2,111 · 10 ⁻¹⁷

Pt 100 (-200 °C ... 0 °C):
$$R(g) = R_0 \cdot (1 + A \cdot g + B \cdot g^2 + C \cdot (g - 100 °C) \cdot g^3)$$

Pt 100 (0 ... 850 °C):
$$R(g) = R_0 \cdot (1 + A \cdot g + B \cdot g^2)$$

Ni 100 (-60 °C ... 250 °C):
$$R(g) = R_0 \cdot (1 + A \cdot g + B \cdot g^2 + C \cdot g^4 + D \cdot g^6)$$

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (8)

Temperaturabhängige Ladungsträgerdichte

$$n \cdot p \sim T^3 \cdot e^{-E_g/(kT)}$$

⇒ Temperaturbestimmung

$$T = \frac{B}{\ln\left(\frac{R_{T}}{R_{N}}\right) + \frac{B}{T_{N}}}$$

Kennlinie eines <u>Negative Temperature Coefficient-Widerstands</u> (Heißleiters) [W. Heywang: Sensorik]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (9)

Si-Temperatursensor: Kennlinie und Aufbau

[W. Heywang: Sensorik; TU München, LTE]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (10)

Spontanpolarisierter Keramikwerkstoff

[H. Fischer: Werkstoffe in der Elektrotechnik]

Spontane Polarisation des BaTiO₃

[K. Dransfeld, P. Kienle: Physik II]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (11)

Kennlinien von
Positive Temperature Coefficient-Widerständen
(Kaltleitern) [W. Heywang: Sensorik]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (12)

- 1: Elektrische Anschlüsse
- 2: Gehäuse
- 3: Dichtring
- 4: Einschraubgewinde
- 5: Messwiderstand
- 6: Kühlmittel

PKW-Kühlmitteltemperatursensor:
Aufbau und Kennlinie [Bosch]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (13)

Bauformen von Pt 100-Sensoren:
Drahtgewickelte Keramik-, Glas- und
Foliensensoren (oben, v. r. n. l.)
sowie Dünnschichtsensoren (rechts) [JUMO]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (14)

Elektronische Schaltungstechnik	Wärmetechnik
Eingangsspannung U_0	Temperatur des Mediums $artheta_0$
Ohmscher Widerstand R	Wärmeübergangswiderstand $(\alpha A)^{-1}$ [A : Sensorfläche, α : Wärmeübergangskoeffizient]
Elektrische Kapazität C	Wärmekapazität $c_{\rm S}$
Spannung an Kapazität $U_{\mathbb{C}}$	Gemessene Temperatur g_m
Elektrischer Strom I	Wärmestrom Q

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (15)

Temperatursensor:
Aufbaubeispiel (oben) und
Übertragungsfunktion (unten)

[ABB: Praxis der industriellen Temperaturmessung]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (16)

Toleranz- klasse	Temperatur- Bereich / °C	Toleranz / K	festgelegt durch:
Klasse A	-200 +650	±(0,15+0,002· %/°C)	EN 60751, DIN 43760
½ Klasse B	-200 +650	±(0,15+0,0025· %/°C)	ABB
1/3 Klasse B	-50 +300	±(0,1+0,0017· %/°C)	ABB
1/3 Klasse B	-70 +250	±(0,1+0,0017· %/°C)	OMUL
Klasse B	-200 +850	±(0,3+0,005· %/°C)	EN 60751, DIN 43760
Klasse 0,5	-200 +850	±(0,5+0,006· <i>9</i> /°C)	OMUL
±0,6 K bei 0°C	-200 +850	±(0,6+0,005· %/°C)	ABB
±1,5 K bei 0°C	-200 +850	±(1,5+0,005· %/°C)	ABB

Toleranzklassen von Pt-Widerstandsthermometern

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.1 RESISTIVE SENSORPRINZIPIEN (17)

LiCI-Feuchtesensor

[H. Herold: Sensortechnik]

Kennlinie eines resistiven Feuchtesensors
[Bosch]