CSE 564 VISUALIZATION & VISUAL ANALYTICS

CLUSTER ANALYSIS

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT
STONY BROOK UNIVERSITY AND SUNY KOREA

Lecture	Торіс	Projects		
1	Intro, schedule, and logistics			
2	Applications of visual analytics, basic tasks, data types			
3	Introduction to D3, basic vis techniques for non-spatial data	Project #1 out		
4	Data assimilation and preparation			
5	Bias in visualization			
6	Data reduction and dimension reduction			
7	Visual perception and cognition	Project #1 due		
8	Visual design and aesthetics	Project #2 out		
9	Python/Flask hands-on			
10	Data mining techniques: clusters, text, patterns, classifiers			
11	Computer graphics and volume rendering			
12	Techniques to visualize spatial (3D) data	Project #2 due		
13	Scientific and medical visualization	Project #3 out		
14	Scientific and medical visualization			
15	Midterm #1			
16	High-dimensional data, dimensionality reduction	Project #3 due		
17	Big data: data reduction, summarization			
18	Correlation and causal modeling			
19	Principles of interaction			
20	Visual analytics and the visual sense making process	Final project proposal due		
21	Evaluation and user studies			
22	Visualization of time-varying and time-series data			
23	Visualization of streaming data			
24	Visualization of graph data	Final Project preliminary report due		
25	Visualization of text data			
26	Midterm #2			
27	Data journalism			
	Final project presentations	Final Project slides and final report due		

When to Use Cluster Analysis

Data summarization

- data reduction
- cluster centers, shapes, and statistics

Customer segmentation

collaborative filtering

Social network analysis

find similar groups of friends (communities)

Precursor to other analyses

- use as a preprocessing step for classification and outlier detection
- use it for sampling and data reduction

ATTRIBUTE SELECTION

With 1,000s of attributes (dimensions) which ones are relevant and which one are not?

ATTRIBUTE SELECTION

How to measure attribute "worthiness"

use entropy

Entropy

- originates in thermodynamics
- measures lack of order or predictability

Entropy in statistics and information theory

- has a value of 1 for uniform distributions (not predictable)
- knowing the value has a lot of information (high surprise)
- has a value of 0 for a constant signal (fully predicable)
- knowing the value has zero information (low surprise)

ENTROPY

Assume m bins, $1 \le i \le m$: $E = -\sum_{i=1}^{m} [p_i \log(p_i) + (1 - p_i) \log(1 - p_i)].$

Algorithm:

- start with all attributes and compute distance entropy
- greedily eliminate attributes that reduce the entropy the most
- stop when entropy no longer reduces or even increases

HIERARCHICAL CLUSTERING

Two options for building the dendrogram on the left

- top down (divisive)
- bottom up (agglomerative)

BOTTOM-UP AGGLOMERATIVE METHODS

```
Algorithm AgglomerativeMerge(Data: \mathcal{D})
begin
 Initialize n \times n distance matrix M using \mathcal{D};
 repeat
   Pick closest pair of clusters i and j using M;
   Merge clusters i and j;
   Delete rows/columns i and j from M and create
    a new row and column for newly merged cluster;
   Update the entries of new row and column of M;
 until termination criterion;
 return current merged cluster set;
end
```


Cluster A

MERGE CRITERIA

Single (best-case) linkage

- distance = minimum distance between all $m_i \cdot m_j$ pairs of objects
- joins the closest pair

Complete (worst-case) linkage

- distance = maximum distance between all $m_i \cdot m_j$ pairs of objects
- joins the pair furthest apart

Group-average linkage

distance = average distance between all object pairs in the groups

Other methods:

closest centroid, variance-minimization, Ward's method

COMPARISON

Centroid-based methods tend to merge large clusters

Single linkage method can merge chains of closely related points to discover clusters of arbitrary shape

 but can also (inappropriately) merge two unrelated clusters, when the chaining is caused by noisy points between two clusters

COMPARISON

Complete (worst-case) linkage method tends to create spherical clusters with similar diameter

- will break up the larger odd-shaped clusters into smaller spheres
- also gives too much importance to data points at the noisy fringes of a cluster

COMPARISON

The group average, variance, and Ward's methods are more robust to noise due to the use of multiple linkages in the distance computation

Hierarchical methods are sensitive to a small number of mistakes made during the merging process

- can be due to noise
- no way to undo these mistakes

DBSCAN

Highly-cited density-based hierarchical clustering algorithm (Ester et al. 1996)

- clusters are defined as density-connected sets
- epsilon-distance neighbor criterion (Eps)

$$N_{Eps}(p) = \{q \in D \mid dist(p,q) \le Eps\}$$

minimum point cluster membership and core point (MinPts)

$$|N_{Eps}(q)| \ge MinPts$$

- notions of density-connected & density-reachable (direct, indirect)
- a point p is directly density-reachable from a point q wrt. Eps,
 MinPts if

$$p \in N_{Eps}(q)$$
 and $|N_{Eps}(q)| \ge MinPts$ (core point condition)

DBSCAN

PROBABILISTIC EXTENSION TO K-MEANS

First a comparison:

MAHALANOBIS DISTANCE

The distance between a point X and a distribution D

- measures how many standard deviations X is away from the mean μ of D
- S is the covariance matrix of the distribution D
- the Mahanalobis distance D_M of a point x to a cluster center μ is

$$D_M(x) = \sqrt{(x-\mu)^T S^{-1}(x-\mu)}.$$

- x and μ are N-dimensional vectors
- S is the N×N covariance matrix
- the outcome $D_M(x)$ is a single-dimensional number

PROBABILISTIC CLUSTERING

Is a better match for point distributions

- overlapping clusters are now possible
- better match with real world?
- Gaussian mixtures

Need a probabilistic algorithm

Expectation-Maximization

EM Algorithm (Mixture Model)

probability that data point d_i is in class c_j (= Mahanalobis distance of d_i to c_i)

- Initialize K cluster centers
- Iterate between two steps
 - Expectation step: assign points to m clusters/classes,

$$P(d_i \in c_k) = w_k \Pr(d_i \mid c_k) / \sum_j w_j \Pr(d_i \mid c_j)$$

$$\sum_j \Pr(d_i \in c_k)$$

$$w_k = \frac{i}{N} = \text{probability of class } c_k$$

Maximation step: estimate model parameters

do similar also for covariance matrix S

$$\mu_k = \frac{1}{m} \sum_{i=1}^m \frac{d_i P(d_i \in c_k)}{\sum_{k} P(d_i \in c_j)} /$$

Mean Likelihogd = -13.116240084091007 3225806451612903 0.3225806451612903 0.322580645161290 RingPts RandomPts ClearPts InitKernels 3 EM 1 Step GaussMix 🔽

Iteration 1

The cluster means are randomly assigned

Iteration 2

Iteration 5

Iteration 25

T-SNE

t-distributed stochastic neighbor embedding

T-SNE DISTANCE METRIC

Uses the following density-based (probabilistic) distance metric

$$p_{j|i} = \frac{\exp(-|x_i - x_j|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-|x_i - x_k|^2 / 2\sigma_i^2)}$$

Measures how (relatively) close x_j is from x_i , considering a Gaussian distribution around x_i with a given variance σ^2_i .

- this variance is different for every point
- t is chosen such that points in dense areas are given a smaller variance than points in sparse areas

T-SNE IMPLEMENTATION

Use a symmetrized version of the conditional similarity:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

Similarity (distance) metric for mapped points:

$$q_{ij} = \frac{f(|x_i - x_j|)}{\sum_{k \neq i} f(|x_i - x_k|)}$$
 with $f(z) = \frac{1}{1 + z^2}$

This uses the t-student distribution with one degree of freedom, or Cauchy distribution, instead of a Gaussian distribution

LAYOUT

Can use mass-spring system enforcing minimum of $|p_{ij}-q_{ij}|$

The classic *handwritten* digits datasets. It contains 1,797 images with 8*8=64 pixels each.

ANIMATED LAYOUT

MORE INFORMATION

See this webpage

TIME SERIES DATA

Rectangular data set with a temporal component

	A	K	L	M	N
1	State	Burglary	Larceny-theft	Motor Vehicle Theft	Arson2
2	CALIFORNIA	2,616	6,298	3,344	71
3	MICHIGAN	1,049	979	154	72
4	MICHIGAN	5,638	8,451	5,828	296
5	TENNESSEE	5,604	12,141	1,373	177
6	MISSOURI	1,960	6,432	1,542	79
7	MARYLAND	3,372	8,761	1,936	137
8	ALABAMA	1,942	3,964	451	
9	ОНЮ	3,759	5,118	2,008	148
10	ILLINOIS	875	2,242	196	18
11	ARKANSAS	1,852	5,012	589	51
12	CALIFORNIA	2,212	4,450	1,100	43
13	WISCONSIN	2,819	7,622	1,719	120
14	GEORGIA	3.007	8 209	2 228	27

- assume you have these data for each year
- how to handle that, you might ask?

TIME CUBE

Assume for now we have

- two attributes (burglary, theft)
- both observed over time

Can visualize

burglary

but each point is a time series!

SIMILARITY MEASURES

Needed it for clustering

recall Euclidean, correlation, cosine distances

CLUSTERING

What can be clustered with these measures?

- crimes (averaged over time)
- states (averaged over time)
- crimes in a given state (taking time series into account)
- states for a given crime (taking time series into account)

Can we get more inclusive?

- cluster crimes but including the time series characteristics
- cluster states but including the time series characteristics

Capture more information about their time series when you compare two data points

- compute the similarity of two crimes by summing the times-series similarities for each state
- compute the similarity of two states by summing the times-series similarities for each crime

IN PRACTICE

```
Time-series aware similarity (distance) S_{tsa} for a pair of states
for a given pair of states i, j
         for each crime c
                  compute the time series similarity \rightarrow sim_t(c)
         sum all sim_t(c) \rightarrow S_{tsa}(i,j)
                                           similarity could be some measure of
S_{tsa} for a pair of crimes
                                           correlation of the two time series vectors
for each pair of crimes i, j
         for each state s
```

If the time series are aligned for all states then the S_{tsa} will be high and the two crimes have very similar time behaviors nationwide.

sum all sim_t(s) $\rightarrow S_{tsa}(i,j)$

compute the time series *similarity* \rightarrow sim_t(s)

SOME THOUGHTS

The time series might not be aligned

- one crime might cause another
- can apply dynamic time warping (see next)

You may (also) have a geospatial component in your data

- can use them as a regular attribute (encoded by an ID)
- can you make them more continuous and linearly ordered?
- use a space filling curve (see next)

You may want to just keep time instances as separate entities

- that will work too
- then you might discover clusters that are sensitive to time
- or you can see how the years relate to another along a trajectory
- as a general rule, when you visualize multivariate data first decide what you will put into the rectangular data matrix (samples, attributes)

L_P NORM AND ITS SHORTCOMINGS

Standard pairwise distance

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

Shortcomings:

- designed for time series of equal length
- cannot address distortions on the temporal (contextual) attributes

DYNAMIC TIME WARPING DISTANCE

Can better accommodate local mismatches

Three constraints

no skipping of beginning or ends of either sequence

continuity – no jumps

monotonicity – can't go back in time

DTW - FIND THE MINIMUM COST PATH

DTW - FIND THE MINIMUM COST PATH

Compute using dynamic programming

Available in python

LINEARIZING MAP LOCATIONS

Convert a geographical map into a grid map

Linearize using a space-filling curve (Hilbert curve)

SCATTERPLOTS

Plot two variables

But what if you have more than two variables?

SCATTERPLOT MATRIX

Problem:

Multivariate relationships are scattered across the tiles

BIPLOTS

Plots data points and dimension axes into a single visualization

- uses first two PCA vectors as the basis to project into
- find plot coordinates [x] [y] for data points: [PCA₁ · data vector] [PCA₂ · data vector] for dimension axes: [PCA₁[dimension]] [PCA₂[dimension]]

BIPLOTS IN PRACTICE

See data distributions into the context of their attributes

BIPLOTS IN PRACTICE

See data points into the context of their attributes

BIPLOTS - A WORD OF CAUTION

Do be aware that the projections may not be fully accurate

- you are projecting N-D into 2D by a linear transformation
- if there are more than 2 significant PCA vectors then some variability will be lost and won't be visualized
- remote data points might project into nearby plot locations suggesting false relationships
- leads to projection ambiguity

MULTIDIMENSIONAL SCALING (MDS)

MDS preserves similarity relationships, prevents ambiguity

- scattered points in high-dimensions (N-D)
- adjacency matrices

Maps the distances between observations from N-D into low-D (say 2D)

 attempts to ensure that differences between pairs of points in this reduced space match as closely as possible

The input to MDS is a distance (similarity) matrix

- actually, you use the dissimilarity matrix because you want similar points mapped closely
- dissimilar point pairs will have greater values and map father apart

THE DISSIMILARITY MATRIX

Data Matrix

point	attribute1	attribute2		
x1	1	2		
x2	3	5		
х3	2	0		
x4	4	5		

Dissimilarity Matrix

(with Euclidean Distance)

	x1	x2	x3	x4	
x1	0				
x2	3.61	0			
x3	2.24	5.1	0		
x4	4.24	1	5.39	0	

DISTANCE MATRIX

MDS turns a distance matrix into a network or point cloud

correlation, cosine, Euclidian, and so on

Suppose you know a matrix of distances among cities

	Chicago	Raleigh	Boston	Seattle	S.F.	Austin	Orlando
Chicago	0						
Raleigh	641	0					
Boston	851	608	0				
Seattle	1733	2363	2488	0			
S.F.	1855	2406	2696	684	0		
Austin	972	1167	1691	1764	1495	0	
Orlando	994	520	1105	2565	2458	1015	0

RESULT OF MDS

COMPARE WITH REAL MAP

MDS ALGORITHM

- Task:
 - Find that configuration of image points whose pairwise distances are most similar to the original inter-point distances !!!
- Formally:
 - Define: $D_{ij} = \|x_i x_j\|_D$ $d_{ij} = \|y_i y_j\|_d$
 - Claim: $D_{ij} \equiv d_{ij} \quad \forall i, j \in [1, n]$
- In general: an exact solution is not possible !!!
- Inter Point distances → invariance features

MDS ALGORITHM

Strategy (of metric MDS):

- iterative procedure to find a good configuration of image points
 - 1) Initialization
 - → Begin with some (arbitrary) initial configuration
 - 2) Alter the image points and try to find a configuration of points that minimizes the following sum-of-squares error function:

MDS ALGORITHM

Strategy (of metric MDS):

- iterative procedure to find a good configuration of image points
 - 1) Initialization
 - → Begin with some (arbitrary) initial configuration
 - 2) Alter the image points and try to find a configuration of points that minimizes the following sum-of-squares error function:

$$E = \sum_{i < j}^{N} \left(D_{ij} - d_{ij} \right)^2$$

FORCE-DIRECTED ALGORITHM

Spring-like system

- insert springs within each node
- the length of the spring encodes the desired node distance
- start at an initial configuration
- iteratively move nodes until an energy minimum is reached

FORCE-DIRECTED ALGORITHM

Spring-like system

- insert springs within each node
- the length of the spring encodes the desired node distance
- start at an initial configuration
- iteratively move nodes until an energy minimum is reached

USES OF MDS

Distance (similarity) metric

- Euclidian distance (best for data)
- Cosine distance (best for data)
- |1-correlation| distance (best for attributes)
- use 1-correlation to move correlated attribute points closer
- use | | if you do not care about positive or negative correlations

MDS EXAMPLES

