Тема V. Линейные операторы

2. Ядро и образ линейного оператора

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Определения образа и ядра

Определение

Пусть V и W – векторные пространства над одним и тем же полем F, $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор.

 $extstyle extstyle extstyle Oбраз <math>\mathcal A$ — это множество $\mathrm{Im}\, \mathcal A$ всех векторов $\mathbf y \in W$ таких, что $\mathcal A(\mathbf x) = \mathbf y$ для некоторого $\mathbf x \in V$.

 ${\mathcal A}$ дро ${\mathcal A}$ – это множество ${
m Ker}\,{\mathcal A}$ всех векторов ${\mathbf x}\in V$ таких, что ${\mathcal A}({\mathbf x})={\mathbf 0}.$

Образ и ядро – подпространства

Замечание об образе и ядре

Пусть V и W – векторные пространства над одним и тем же полем F, $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда $\mathrm{Im}\,\mathcal{A}$ – подпространство в W, а $\mathrm{Ker}\,\mathcal{A}$ – подпространство в V.

 \mathcal{A} оказательство. Пусть $\mathbf{y}_1, \mathbf{y}_2 \in \operatorname{Im} \mathcal{A}$, а $t \in F$. Тогда существуют вектора $\mathbf{x}_1, \mathbf{x}_2 \in V$ такие, что $\mathcal{A}(\mathbf{x}_1) = \mathbf{y}_1$ и $\mathcal{A}(\mathbf{x}_2) = \mathbf{y}_2$. Следовательно,

$$\mathbf{y}_1 + \mathbf{y}_2 = \mathcal{A}(\mathbf{x}_1) + \mathcal{A}(\mathbf{x}_2) = \mathcal{A}(\mathbf{x}_1 + \mathbf{x}_2) \quad \text{if} \quad t\mathbf{y}_1 = t\mathcal{A}(\mathbf{x}_1) = \mathcal{A}(t\mathbf{x}_1).$$

Это означает, что $\mathbf{y}_1+\mathbf{y}_2,t\mathbf{y}_1\in\operatorname{Im}\mathcal{A}$, и потому $\operatorname{Im}\mathcal{A}$ – подпространство.

Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \operatorname{Ker} \mathcal{A}$, а $t \in F$. Тогда

$$\mathcal{A}(\mathbf{x}_1+\mathbf{x}_2)=\mathcal{A}(\mathbf{x}_1)+\mathcal{A}(\mathbf{x}_2)=\mathbf{0}+\mathbf{0}=\mathbf{0}\quad\text{if}\quad\mathcal{A}(t\mathbf{x}_1)=t\mathcal{A}(\mathbf{x}_1)=t\cdot\mathbf{0}=\mathbf{0}.$$

Отсюда $\mathbf{x}_1+\mathbf{x}_2,t\mathbf{x}_1\in\operatorname{Ker}\mathcal{A}$, и потому $\operatorname{Ker}\mathcal{A}$ – подпространство.

Ранг и дефект линейного оператора

Замечание об образе конечномерного пространства

Если $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор, причем V – конечномерное пространство, то и подпространство $\mathrm{Im}\,\mathcal{A}$ конечномерно.

 \mathcal{A} оказательство. Если $\dim V=0$, доказывать нечего. Пусть $\dim V=n>0$ и $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ – какой-то базис пространства V. Покажем, что подпространство $\mathrm{Im}\,\mathcal{A}$ порождается векторами $\mathcal{A}(\mathbf{p}_1),\,\mathcal{A}(\mathbf{p}_2),\,\ldots,\,\mathcal{A}(\mathbf{p}_n)$. Возьмем любой вектор $\mathbf{y}\in\mathrm{Im}\,\mathcal{A}$. По определению существует $\mathbf{x}\in V$ такой, что $\mathcal{A}(\mathbf{x})=\mathbf{y}$. Если (x_1,x_2,\ldots,x_n) – координаты \mathbf{x} в базисе P, то $\mathbf{x}=x_1\mathbf{p}_1+x_2\mathbf{p}_2+\cdots+x_n\mathbf{p}_n$, откуда

$$\mathbf{y} = \mathcal{A}(x_1\mathbf{p}_1 + x_2\mathbf{p}_2 + \dots + x_n\mathbf{p}_n) = x_1\mathcal{A}(\mathbf{p}_1) + x_2\mathcal{A}(\mathbf{p}_2) + \dots + x_n\mathcal{A}_n(\mathbf{p}_n).$$

Итак, подпространство $\operatorname{Im} \mathcal{A}$ имеет конечную систему образующих, а значит, оно конечномерно.

Определение

Пусть $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор, причем V конечномерно. Размерность образа линейного оператора \mathcal{A} называется рангом \mathcal{A} и обозначается через $r(\mathcal{A})$, а размерность ядра оператора \mathcal{A} называется дефектом \mathcal{A} и обозначается через $d(\mathcal{A})$.

Теорема о сумме ранга и дефекта

Теорема о сумме ранга и дефекта

Пусть $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор, причем V конечномерно. Сумма ранга и дефекта оператора \mathcal{A} равна размерности пространства V .

Доказательство. Пусть дефект оператора \mathcal{A} равен d, а его ранг равен r. Выберем базис ядра $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_d$ и базис образа $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_r$. Для каждого \mathbf{c}_i найдётся вектор $\mathbf{b}_i \in V$ такой, что $\mathcal{A}(\mathbf{b}_i) = \mathbf{c}_i$. Докажем, что $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_d, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_r$ (*) — базис пространства V. Сначала проверим, что (*) — система образующих. Для произвольного вектора $\mathbf{x} \in V$, его образ $\mathcal{A}(\mathbf{x})$ выражается через базис образа:

$$\mathcal{A}(\mathbf{x}) = t_1 \mathbf{c}_1 + t_2 \mathbf{c}_2 + \dots + t_r \mathbf{c}_r.$$

Положим $\mathbf{x}' := t_1\mathbf{b}_1 + t_2\mathbf{b}_2 + \dots + t_r\mathbf{b}_r$. Тогда $\mathcal{A}(\mathbf{x}) = \mathcal{A}(\mathbf{x}')$, и потому $\mathcal{A}(\mathbf{x} - \mathbf{x}') = \mathbf{0}$. Значит, $\mathbf{x} - \mathbf{x}' \in \operatorname{Ker} \mathcal{A}$ выражается через базис ядра:

$$\mathbf{x} - \mathbf{x}' = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_d \mathbf{a}_d.$$

Поэтому

$$\mathbf{x} = (\mathbf{x} - \mathbf{x}') + \mathbf{x}' = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_d \mathbf{a}_d + t_1 \mathbf{b}_1 + t_2 \mathbf{b}_2 + \dots + t_r \mathbf{b}_r.$$

Теорема о сумме ранга и дефекта (2)

Теперь докажем линейную независимость системы (*). Пусть

$$s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \dots + s_d\mathbf{a}_d + t_1\mathbf{b}_1 + t_2\mathbf{b}_2 + \dots + t_r\mathbf{b}_r = \mathbf{0}.$$
 (\triangle)

Применим оператор $\mathcal A$ к обеим частям равенства (\triangle) . Поскольку $\mathcal A(\mathbf a_j)=\mathbf 0$, а $\mathcal A(\mathbf b_i)=\mathbf c_i$, получаем:

$$\mathcal{A}(s_1\mathbf{a}_1+s_2\mathbf{a}_2+\cdots+s_d\mathbf{a}_d+t_1\mathbf{b}_1+t_2\mathbf{b}_2+\cdots+t_r\mathbf{b}_r)=t_1\mathbf{c}_1+t_2\mathbf{c}_2+\cdots+t_r\mathbf{c}_r=\mathbf{0}.$$

Вектора ${\bf c}_1,{\bf c}_2,\dots,{\bf c}_r$ линейно независимы, поэтому $t_1=t_2=\dots=t_r=0.$ От равенства (\triangle) остается

$$s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \dots + s_d\mathbf{a}_d = \mathbf{0},$$

но $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_d$ линейно независимы, поэтому $s_1=s_2=\cdots=s_d=0.$

Итак, система ${f a}_1,{f a}_2,\ldots,{f a}_d,{f b}_1,{f b}_2,\ldots,{f b}_r$ — базис пространства V, откуда $\dim V=r+d$.

Простейший вид матрицы оператора

Мы упоминали то, что матрица линейного оператора $\mathcal{A}\colon V\longrightarrow W$, где V и W конечномерны, зависит от выбора базисов в пространствах V и W. Доказательство теоремы о сумме ранга и дефекта показывает, что базисы в V и W можно выбрать так, чтобы матрица \mathcal{A} стала очень простой.

Действительно, пусть $\dim V=n$, $\dim W=k$, $\dim \operatorname{Ker} \mathcal{A}=d$, $\dim \operatorname{Im} \mathcal{A}=r$. Возьмем какой-нибудь базис $\mathbf{c}_1,\mathbf{c}_2,\ldots,\mathbf{c}_r$ в $\operatorname{Im} \mathcal{A}$ и дополним его какими-то векторами $\mathbf{c}_{r+1},\ldots,\mathbf{c}_k$ до базиса Q пространства W.

Теперь, следуя доказательству теоремы о сумме ранга и дефекта, для каждого из векторов $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_r$ возьмём вектор $\mathbf{b}_i \in V$ такой, что $\mathcal{A}(\mathbf{b}_i) = \mathbf{c}_i$, и добавим к системе $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_r$ какие-то d векторов, составляющих базис $\operatorname{Ker} \mathcal{A}$. Получим базис P пространства V.

Простейший вид матрицы оператора

Как устроена матрица $A_{P,Q}$? Напомним: столбцы матрицы $A_{P,Q}$ – это координаты образов векторов из P в базисе Q. По построению, $\mathcal{A}(\mathbf{b}_i)=\mathbf{c}_i$ для $i=1,2,\ldots,r$, т.е. образ вектора \mathbf{b}_i имеет координаты $(0,\ldots,0,1,0,\ldots,0)$, где 1 стоит на i-м месте. Остальные вектора из базиса P лежат в $\operatorname{Ker} \mathcal{A}$ и их образы имеют нулевые координаты. Поэтому матрица $A_{P,Q}$ имеет вид

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots \\ 0 & 1 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \end{pmatrix}_{k \times n}$$

где на местах 1,1; 2,2;...; r,r стоят 1, а на всех остальных местах стоят 0. Заметим еще, что число единичек зависит только от самого оператора $\mathcal A$ (оно равно рангу оператора) и не зависит от выбора базиса в $\operatorname{Im} \mathcal A$ и способа его достроения до базиса W. Аналогично, не важно, каким именно базисом $\operatorname{Ker} \mathcal A$ прообраз базиса $\operatorname{Im} \mathcal A$ достраивается до базиса V.

Элементарные преобразования

Наша следующая цель — алгоритм, который позволяет одновременно найти базисы образа и ядра линейного оператора. Этот алгоритм важен и сам по себе, и как «подпрограмма» более сложных алгоритмов. Как и большинство алгоритмов линейной алгебры, он основан на элементарных преобразованиях над строками и столбцами матрицы.

Вот список преобразований, которые мы будем называть элементарными:

- І: Перестановка двух столбцов (строк).
- II: Прибавление к столбцу (строке) другого столбца (другой строки).
- III: Умножение столбца (строки) на ненулевой скаляр.

На практике элементарные преобразования II-го и III-го родов обычно комбинируют, чтобы прибавить к столбцу (строке) произведение другого столбца (другой строки) на ненулевой скаляр:

$$(\dots \mathbf{a}_i \dots \mathbf{a}_j \dots) \xrightarrow{\mathrm{III}:\lambda \times j} (\dots \mathbf{a}_i \dots \lambda \mathbf{a}_j \dots) \xrightarrow{\mathrm{III}:i+j}$$
$$(\dots \mathbf{a}_i + \lambda \mathbf{a}_j \dots \lambda \mathbf{a}_j \dots) \xrightarrow{\mathrm{III}:\lambda^{-1} \times j} (\dots \mathbf{a}_i + \lambda \mathbf{a}_j \dots \mathbf{a}_j \dots)$$

Обратимость элементарных преобразований

Замечание

Элементарные преобразования обратимы. Это значит, что если над столбцами (строками) некоторой матрицы A выполнить произвольную последовательность элементарных преобразований, то над столбцами (строками) получившейся матрицы можно выполнить последовательность элементарных преобразований, которая приведет к исходной матрице A.

Доказательство. Понятно, что достаточно доказать, что каждое отдельное элементарное преобразование обратимо. Каждое преобразование І-го рода обратно само себе: если поменять местами i-й и j-й столбцы (i-ю и j-ю строки) матрицы A, а в получившейся матрице снова поменять местами i-й и j-й столбцы (i-ю и j-ю строки), то вернемся к исходной матрице A.

Обратным к преобразованию II-го рода, которое прибавляет к i-му столбцу j-й столбец (к i-й строке j-ю строку), будет преобразование, которое вычитает из i-го столбца j-й столбец (из i-й строки j-ю строку). Выше показано, как скомбинировать такое вычитание из преобразований II-го и III-го родов.

Наконец, обратным к преобразованию III-го рода, которое умножает i-й столбец (i-ю строку) на скаляр $\lambda \neq 0$, будет преобразование, которое умножает i-й столбец (i-ю строку) на скаляр λ^{-1} .

Элементарные преобразования линейно независимых строк

Замечание

Если строки матрицы A линейно независимы, то и строки матрицы A', полученной из матрицы A произвольной последовательностью элементарных преобразований над строками, линейно независимы.

Доказательство. Пусть S — линейная оболочка строк $\mathbf{s}_1,\dots,\mathbf{s}_k$ матрицы A, а S' — линейная оболочка строк $\mathbf{s}_1',\dots,\mathbf{s}_k'$ матрицы A'. Сложение и перестановка строк, а также умножение строки на скаляр не выводят за пределы линейной оболочки, поэтому $S'\subseteq S$. Поскольку элементарные преобразования обратимы, верно и включение $S\subseteq S'$, откуда S=S'. Строки $\mathbf{s}_1,\dots,\mathbf{s}_k$ линейно независимы, поэтому $\mathbf{s}_1,\dots,\mathbf{s}_k$ — базис в S, откуда $\dim S=k$. Строки $\mathbf{s}_1',\dots,\mathbf{s}_k'$ — система образующих в S'=S, а в k-мерном пространстве любая система из k образующих — базис. Поэтому строки $\mathbf{s}_1',\dots,\mathbf{s}_k'$ линейно независимы.

Алгоритм нахождения базисов образа и ядра

Если поменять ролями строки и столбцы матрицы $A=(a_{ij})_{k\times n}$, получится $\mathit{транспонированная}$ матрица $A^T=(a_{ji})_{n\times k}$. Например,

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}.$$

Алгоритм Ядро-Образ

Пусть V и W — векторные пространства над полем F, причем $\dim V=n>0$, $\dim W=k>0$, и $\mathcal{A}\colon V\to W$ — линейный оператор, заданный матрицей A в некоторых базисах P и Q пространств V и W. Припишем к $n\times k$ -матрице A^T слева единичную $n\times n$ -матрицу E и проделаем над **строками** $n\times (n+k)$ -матрицы $E|A^T$ последовательность элементарных преобразований, которая приведет A^T к ступенчатой матрице C. Пусть B — матрица, получившаяся на месте матрицы E. Тогда:

- (i) ненулевые строки матрицы C координаты базисных векторов пространства ${\rm Im}\, \mathcal{A}$ в базисе Q;
- (ii) строки матрицы B с нулевыми продолжениями в матрице C координаты базисных векторов пространства $\mathop{\rm Ker} {\cal A}$ в базисе P.

Алгоритм нахождения базисов образа и ядра – пример

Пример. Найдем базисы образа и ядра оператора \mathcal{A} , имеющего в некоторых базисах матрицу $A=\begin{pmatrix}1&2&3&4\\2&3&4&5\\3&4&5&6\end{pmatrix}$.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 & | & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 & | & 3 & 4 & 5 \\ 0 & 0 & 0 & 1 & | & 4 & 5 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 2 & 3 \\ -2 & 1 & 0 & 0 & | & 0 & -1 & -2 \\ -3 & 0 & 1 & 0 & | & 0 & -2 & -4 \\ -4 & 0 & 0 & 1 & | & 0 & -3 & -6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 2 & 3 \\ 2 & -1 & 0 & 0 & | & 0 & 1 & 2 \\ 1 & -2 & 1 & 0 & | & 0 & 0 & 0 \\ 2 & -3 & 0 & 1 & | & 0 & 0 & 0 \end{pmatrix}.$$

Итак, строки (1,2,3) и (0,1,2) – координаты базисных векторов образа оператора $\mathcal A$, а строки (1,-2,1,0) и (2,-3,0,1) – координаты базисных векторов ядра этого оператора.

Обоснование алгоритма

Строки матрицы A^{T} – это столбцы матрицы A, т.е. координаты (в базисе Q пространства W) образов векторов \mathbf{p}_i из базиса P пространства V. Строки единичной матрицы – координаты самих векторов p_i в базисе P. Итак, в $n \times (n+k)$ -матрице $E|A^T$ часть каждой строки после черты – это результат применения оператора ${\cal A}$ к части той же строки до черты. Линейный оператор сохраняет сложение и умножение на скаляры. Поэтому элементарные преобразования сохраняют указанное свойство, и в матрице B|C, к которой приводит алгоритм, часть каждой строки после черты остается образом части той же строки до черты: (координаты вектора $\mathbf x$ в базисе $P \mid$ координаты вектора $\mathcal A(\mathbf x)$ в базисе Q) В частности, ненулевые строки ступенчатой матрицы C – это линейно независимые вектора из ${\rm Im}\, {\cal A}$. Если r' – число таких строк, то $r' \leq r({\cal A})$. Строки матрицы B линейно независимы, так как получены элементарными преобразованиями из строк единичной матрицы E. Строки B с нулевыми продолжениями в матрице C – это линейно независимые вектора из $\operatorname{Ker} A$. Если d' – число таких строк, то $d' \leq d(A)$. Имеем

$$n=r'+d'\leq r(\mathcal{A})+d(\mathcal{A})=n$$
 (по теореме о сумме ранга и дефекта). Поэтому $r'=r(\mathcal{A})$ и $d'=d(\mathcal{A})$.