07_immunization

Loading Libraries

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyr)
library(stringr)
library(readr)
library(here)
## here() starts at C:/Users/morul/School/3rd
Year/BIN381/BIN381_PROJECT/BIN381_PROJECT
library(ggplot2)
```

Load Dataset

```
imm_df <- read_csv(here("data", "raw", "immunization_national_zaf.csv"))
## Rows: 117 Columns: 29
## — Column specification
## Delimiter: ","
## chr (17): ISO3, DataId, Indicator, Value, Precision, DHS_CountryCode, Countr...
## dbl (8): IndicatorOrder, CharacteristicId, CharacteristicOrder, IsTotal, Is...
## lgl (4): RegionId, CILow, CIHigh, LevelRank
##
## i Use `spec()` to retrieve the full column specification for this data.
## ## i Specify the column types or set `show_col_types = FALSE` to quiet this message.</pre>
```

Display Dataset content

```
# Make sure the file exists
```

```
head(imm_df)
## # A tibble: 6 × 29
            DataId Indicator Value Precision DHS CountryCode CountryName
     IS03
SurveyYear
     <chr> <chr> <chr>
                              <chr> <chr>
                                               <chr>>
##
                                                                <chr>>
<chr>>
## 1 #coun... #meta... #indicat... #ind... #indicat... <NA>
                                                               #country+n...
#date+year
## 2 ZAF
            330965 BCG vacc... 96.8 1
                                               ZΑ
                                                                South Afri... 1998
## 3 ZAF
            139796 BCG vacc... 94.9 1
                                               ZA
                                                                South Afri... 1998
            330966 DPT 1 va... 93.3 1
## 4 ZAF
                                               ZA
                                                                South Afri... 1998
## 5 ZAF
            139797 DPT 1 va... 93.1 1
                                                                South Afri... 1998
                                               ZA
            330967 DPT 2 va... 86.2 1
                                                                South Afri... 1998
## 6 ZAF
                                               ZΑ
## # i 21 more variables: SurveyId <chr>, IndicatorId <chr>, IndicatorOrder
<dbl>,
## #
       IndicatorType <chr>, CharacteristicId <dbl>, CharacteristicOrder
<dbl>,
## #
       CharacteristicCategory <chr>, CharacteristicLabel <chr>,
## #
       ByVariableId <chr>, ByVariableLabel <chr>, IsTotal <dbl>,
## #
       IsPreferred <dbl>, SDRID <chr>, RegionId <lgl>, SurveyYearLabel <dbl>,
## #
       SurveyType <chr>, DenominatorWeighted <dbl>, DenominatorUnweighted
<dbl>,
       CILow <lgl>, CIHigh <lgl>, LevelRank <lgl>
## #
```

Remove the first row(meta data)

```
imm_df <- imm_df[-1, ]</pre>
```

dimensions

```
dim(imm_df)
## [1] 116 29
```

Inspect Duplicated rows

```
dup_check <- imm_df %>%
    group_by(Indicator, SurveyYear, CharacteristicId, Value) %>%
    filter(n() > 1)

dup_check
## # A tibble: 0 × 29
## # Groups: Indicator, SurveyYear, CharacteristicId, Value [0]
## # i 29 variables: ISO3 <chr>, DataId <chr>, Indicator <chr>, Value <chr>, ## # Precision <chr>, DHS_CountryCode <chr>, CountryName <chr>,
```

```
## # SurveyYear <chr>, SurveyId <chr>, IndicatorId <chr>, IndicatorOrder
<dbl>,
## # IndicatorType <chr>, CharacteristicId <dbl>, CharacteristicOrder
<dbl>,
## # CharacteristicCategory <chr>, CharacteristicLabel <chr>,
## # ByVariableId <chr>, ByVariableLabel <chr>, IsTotal <dbl>,
## # IsPreferred <dbl>, SDRID <chr>, RegionId <lgl>, SurveyYearLabel <dbl>,
...
```

Missing Values

```
# 1. Remove completely empty columns
imm_df <- imm_df %>% select(where(~!all(is.na(.))))
# 2. Impute numeric columns with median
num cols <- imm df %>% select(where(is.numeric)) %>% names()
imm df <- imm df %>%
  mutate(across(all_of(num_cols), ~ifelse(is.na(.), median(., na.rm = TRUE),
.)))
# 3. Impute categorical/character columns with mode
cat_cols <- imm_df %>% select(where(is.character)) %>% names()
get mode <- function(x) {</pre>
  ux <- na.omit(x)</pre>
  if(length(ux) == 0) return(NA character )
  names(sort(table(ux), decreasing = TRUE))[1]
}
imm_df <- imm df %>%
  mutate(across(all_of(cat_cols), ~ifelse(is.na(.), get_mode(.), .)))
# 4. Summary after handling missing values
missing summary <- data.frame(</pre>
  Column = names(imm df),
  Missing_Count = colSums(is.na(imm_df)),
 Missing Percent = round(colMeans(is.na(imm df)) * 100, 2)
)
cat("Total remaining NAs:", sum(is.na(imm_df)), "\n")
## Total remaining NAs: 0
cat("Missing value summary per column:\n")
## Missing value summary per column:
print(missing summary)
                                           Column Missing Count
Missing_Percent
## ISO3
                                             IS03
```

	DataId	DataId	0	
0 ## 0	Indicator	Indicator	0	
	Value	Value	0	
	Precision	Precision	0	
	DHS_CountryCode	DHS_CountryCode	0	
	CountryName	CountryName	0	
## 0	SurveyYear	SurveyYear	0	
## 0	SurveyId	SurveyId	0	
## 0	IndicatorId	IndicatorId	0	
## 0	IndicatorOrder	IndicatorOrder	0	
## Ø	IndicatorType	IndicatorType	0	
## Ø	CharacteristicId	CharacteristicId	0	
## Ø	CharacteristicOrder	CharacteristicOrder	0	
## Ø	CharacteristicCategory	CharacteristicCategory	0	
## 0	CharacteristicLabel	CharacteristicLabel	0	
## 0	ByVariableId	ByVariableId	0	
0	ByVariableLabel	ByVariableLabel	0	
0	IsTotal	IsTotal	0	
0	IsPreferred	IsPreferred	0	
0	SDRID	SDRID	0	
0	SurveyYearLabel	SurveyYearLabel	0	
0	SurveyType	SurveyType	0	
0	DenominatorWeighted	DenominatorWeighted	0	
## 0	DenominatorUnweighted	DenominatorUnweighted	0	

Handling Missing Values

Strategies applied:

- 1. Remove empty columns columns entirely missing were removed.
- 2. Numeric columns missing values imputed with the median of available values.
- 3. Categorical/character columns missing values imputed with the mode (most frequent value).
- 4. Denominators missing values in DenominatorWeighted and DenominatorUnweighted were forward-filled using fill().

Outcome: All columns have complete values, making calculations and analyses reliable. - Missing denominators are filled using the previous non-missing value (fill()).

• Ensures numeric calculations work correctly.

#Convert Data Types

```
# Define columns to convert, only if they exist
cols_to_numeric <- c("Value", "Precision", "DenominatorWeighted",</pre>
"DenominatorUnweighted")
cols_to_integer <- c("SurveyYear", "IndicatorOrder", "CharacteristicId")</pre>
cols to logical <- c("IsPreferred")</pre>
cols to numeric <- cols to numeric[cols to numeric %in% names(imm df)]</pre>
cols to integer <- cols to integer[cols to integer %in% names(imm df)]</pre>
cols_to_logical <- cols_to_logical[cols_to_logical %in% names(imm_df)]</pre>
# Convert
imm df <- imm df %>%
  mutate(
    across(all of(cols to numeric), as.numeric),
    across(all of(cols to integer), as.integer),
    across(all_of(cols_to_logical), ~as.logical(as.integer(.)))
  )
# Check structure
str(imm df)
## tibble [116 x 25] (S3: tbl_df/tbl/data.frame)
                             : chr [1:116] "ZAF" "ZAF" "ZAF" "ZAF" ...
## $ ISO3
## $ DataId
                             : chr [1:116] "330965" "139796" "330966" "139797"
## $ Indicator
                             : chr [1:116] "BCG vaccination received" "BCG
vaccination received" "DPT 1 vaccination received" "DPT 1 vaccination
received" ...
## $ Value
                             : num [1:116] 96.8 94.9 93.3 93.1 86.2 82.4 76.4
```

```
73.8 91.2 87.7 ...
## $ Precision
                           : num [1:116] 1 1 1 1 1 1 1 1 1 1 ...
## $ DHS_CountryCode
                           : chr [1:116] "ZA" "ZA" "ZA" "ZA" ...
## $ CountryName
                           : chr [1:116] "South Africa" "South Africa"
"South Africa" "South Africa" ...
## $ SurveyYear
                           : int [1:116] 1998 1998 1998 1998 1998 1998 1998
1998 1998 1998 ...
## $ SurveyId
                           : chr [1:116] "ZA1998DHS" "ZA1998DHS" "ZA1998DHS"
"ZA1998DHS" ...
                           : chr [1:116] "CH_VACS_C_BCG" "CH_VACS_C_BCG"
## $ IndicatorId
"CH VACS C DP1" "CH VACS C DP1" ...
## $ IndicatorOrder
                         : int [1:116] 93886010 93886010 93886020 93886020
93886030 93886030 93886040 93886040 93886050 93886050 ...
                         : chr [1:116] "I" "I" "I" "I" ...
## $ IndicatorType
## $ CharacteristicId
                        : int [1:116] 268002 268002 268002 268002 268002
268002 268002 268002 268002 268002 ...
## $ CharacteristicOrder : num [1:116] 268002 268002 268002 268002 268002
## $ CharacteristicCategory: chr [1:116] "Source of vaccination information"
"Source of vaccination information" "Source of vaccination information"
"Source of vaccination information" ...
## $ CharacteristicLabel
                           : chr [1:116] "Either source" "Either source"
"Either source" "Either source" ...
## $ ByVariableId
                           : chr [1:116] "258001" "258002" "258001" "258002"
## $ ByVariableLabel
                           : chr [1:116] "12-23" "24-35" "12-23" "24-35" ...
## $ IsTotal
                           : num [1:116] 1 1 1 1 1 1 1 1 1 1 ...
## $ IsPreferred
                           : logi [1:116] TRUE FALSE TRUE FALSE TRUE FALSE
## $ SDRID
                           : chr [1:116] "CHVACSCBCG" "CHVACSCBCG"
"CHVACSCDP1" "CHVACSCDP1" ...
## $ SurveyYearLabel
                          : num [1:116] 1998 1998 1998 1998 ...
                           : chr [1:116] "DHS" "DHS" "DHS" "DHS" ...
## $ SurveyType
## $ DenominatorWeighted : num [1:116] 973 933 973 933 973 933 973 933 973
933 ...
## $ DenominatorUnweighted : num [1:116] 971 951 971 951 971 951 971 951 971
951 ...
```

- Numeric: Value, Precision, DenominatorWeighted, DenominatorUnweighted
- Integer: SurveyYear, IndicatorOrder, CharacteristicId
- Logical: IsPreferred

#Drop the countries only onw unquue value: reason, there is no useful information - county is also always za

```
# Columns to remove and rationale
cols_to_remove <- c(
   "ISO3",  # Only one value "ZAF" → provides no useful variation</pre>
```

```
"DHS_CountryCode", # Only one value "ZA" \rightarrow redundant
  "CountryName", # Always "South Africa" → redundant
"SurveyId", # Encodes survey metadata, not needed for analysis
"ByVariableId", # IDs for subgroup variables; not used in analysis
"ByVariableLabel", # Labels for subgroup variables; not needed
  "IsTotal", # Logicul Jung that is often

"RegionId", # Missing or NA → no information

"SurveyYearLabel", # Duplicate of SurveyYear → redundant

"SurveyType", # Always "DHS" → no variation
   "IsTotal",
                               # Logical flag that is either 0/1 for all → redundant
  "CharacteristicOrder" # IDs for order only; not analytically useful
)
# Remove only columns that exist to avoid errors
imm_df <- imm_df %>% select(-any_of(cols_to_remove))
# Documenting action
cat("Removed columns that were either redundant, constant, or not
analytically useful:\n")
## Removed columns that were either redundant, constant, or not analytically
useful:
cat(paste(cols to remove, collapse = ", "), "\n")
## ISO3, DHS_CountryCode, CountryName, SurveyId, ByVariableId,
ByVariableLabel, IsTotal, RegionId, SurveyYearLabel, SurveyType,
CharacteristicOrder
```

Columns removed because they were constant, redundant, or not analytically useful:

ISO3, DHS_CountryCode, CountryName, SurveyId, ByVariableId, ByVariableLabel, IsTotal, RegionId, SurveyYearLabel, SurveyType, CharacteristicOrder

These columns either contained a single value or metadata that does not impact analysis.

#the missing values can be filled with the previous non missing value in the opposite attribute

```
imm df <- imm df %>%
  fill(DenominatorWeighted, DenominatorUnweighted, .direction = "down")
imm df[
       c("DenominatorWeighted", "DenominatorUnweighted")]
## # A tibble: 116 × 2
      DenominatorWeighted DenominatorUnweighted
##
##
                    <dbl>
                                          <dbl>
## 1
                      973
                                            971
## 2
                      933
                                            951
                      973
                                            971
## 3
## 4
                      933
                                            951
```

```
## 5
                      973
                                             971
                                             951
##
   6
                      933
   7
                      973
                                             971
##
##
  8
                      933
                                             951
## 9
                      973
                                             971
## 10
                      933
                                             951
## # i 106 more rows
ggplot(imm_df, aes(x = DenominatorWeighted, y = DenominatorUnweighted)) +
  geom_point(alpha = 0.6, color = "steelblue") +
  labs(title = "Scatterplot for Outlier Detection",
       x = "Denominator Weighted",
       y = "Denominator Unweighted") +
  theme minimal()
```

Scatterplot for Outlier Detection


```
ggplot(imm_df, aes(y = DenominatorWeighted)) +
   geom_boxplot(fill = "lightblue", outlier.color = "red", outlier.shape = 16)
+
   labs(title = "Boxplot of Denominator Weighted",
        y = "Denominator Weighted") +
   theme_minimal()
```

Boxplot of Denominator Weighted


```
dim(imm_df)
## [1] 116 15
```

#Outlier Handling

```
# Winsorize at 1st and 99th percentiles
lower_w <- quantile(imm_df$DenominatorWeighted, 0.01, na.rm = TRUE)
upper_w <- quantile(imm_df$DenominatorWeighted, 0.99, na.rm = TRUE)
lower_uw <- quantile(imm_df$DenominatorUnweighted, 0.01, na.rm = TRUE)
upper_uw <- quantile(imm_df$DenominatorUnweighted, 0.99, na.rm = TRUE)
imm_df <- imm_df %>%
    mutate(
        DenominatorWeighted = pmax(pmin(DenominatorWeighted, upper_w), lower_w),
        DenominatorUnweighted = pmax(pmin(DenominatorUnweighted, upper_uw),
lower_uw)
)

ggplot(imm_df, aes(y = DenominatorWeighted)) +
        geom_boxplot(fill = "lightblue", outlier.color = "red") +
        labs(title = "Boxplot of Denominator Weighted After Robust Handling")
```

Boxplot of Denominator Weighted After Robust Hand


```
summary(imm_df$DenominatorWeighted)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                 Max.
       660
                        933
##
               677
                                1185
                                         973
                                                 3734
summary(imm_df$DenominatorUnweighted)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
               670
                        951
                                1192
                                         971
                                                 3761
```

Robust Outlier Handling via Winsorization

Purpose:

The dataset contains extreme values in DenominatorWeighted and DenominatorUnweighted that skew the distribution. Instead of removing rows, we Winsorize the data to limit extreme values while keeping all observations intact.

Steps:

1. Calculate bounds:

- o 1st percentile (0.01) → lower bound
- 99th percentile (0.99) → upper bound
 This ensures the extreme 1% of values on either side are capped.

2. Apply Winsorization:

- Values below the lower bound are set to the lower bound.
- Values above the upper bound are set to the upper bound.

3. Visual Check:

 A boxplot is created to verify the effect of Winsorization on DenominatorWeighted.

4. Summary Statistics:

o summary() is used to compare min, max, mean, and quartiles after capping, confirming that extreme outliers have been mitigated.

Code Explanation:

- quantile(..., 0.01, na.rm = TRUE) → computes the 1st percentile ignoring missing values.
- pmin() and pmax() → ensure values stay within the specified bounds.
- geom_boxplot(outlier.color = "red") → visualizes remaining extreme points (if any).

Outcome:

The extreme skew in denominator columns is reduced, improving stability for subsequent analyses, while retaining all rows in the dataset.

Final check and Save Dataset

#save cleaned data

```
write_csv(imm_df, here("data","processed", "immunization_cleaned.csv"))
```