#### Redes Neurais e Deep Learning

# APRENDIZADO DE MÁQUINA (I)

Zenilton K. G. Patrocínio Jr zenilton@pucminas.br

#### Recapitulando: Classificador Vizinho Mais Próximo

Como avaliar a similaridade entre imagens?



Uso de distância

**Distância L1:** 
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

**Distância L2:** 
$$d_2(I_1, I_2) = \sqrt{\sum_{p} (I_1^p - I_2^p)^2}$$

#### **Exemplo com Distância L1**

Imagem de teste

| 56 | 56 32 |     | 18  |
|----|-------|-----|-----|
| 90 | 23    | 128 | 133 |
| 24 | 26    | 178 | 200 |
| 2  | 0     | 255 | 220 |

Imagem de treino

| 10 | 20 | 24  | 17  |  |
|----|----|-----|-----|--|
| 8  | 10 | 89  | 100 |  |
| 12 | 16 | 178 | 170 |  |
| 4  | 32 | 233 | 112 |  |

Valor abs. diferenças por pixel

$$= \begin{array}{|c|c|c|c|c|c|c|c|}\hline 46 & 12 & 14 & 1 \\ \hline 82 & 13 & 39 & 33 \\ \hline 12 & 10 & 0 & 30 \\ \hline 2 & 32 & 22 & 108 \\ \hline \end{array}$$

#### Recapitulando: Vizinho Mais Próximo – Dataset CIFAR-10

10 classes50.000 imagens para treino10.000 imagens para teste



Exemplos dos vizinhos mais próximos para cada imagem teste (primeira coluna)



Encontram-se as k amostras (imagens) mais próximas de uma nova observação e se realiza uma votação para se determinar seu rótulo

#### **Dados**















P1: qual a acurácia do classificador sobre os dados de treinamento, quando se utilizar uma outra distância como, por exemplo, a Euclidiana?

Encontram-se as k amostras (imagens) mais próximas de uma nova observação e se realiza uma votação para se determinar seu rótulo



P2: qual a acurácia do classificador sobre os dados de treinamento, quando se utilizar um número *k* de vizinhos diferente, por exemplo, 2 ou 5 ou 10?

Perguntas importantes ao se utilizar o classificador de vizinho(s) mais próximo(s)

- Qual é a melhor medida de distância para ser utilizada?
- Qual o número ideal de vizinhos k a ser usado?

Perguntas importantes ao se utilizar o classificador de vizinho(s) mais próximo(s)

- Qual é a melhor medida de distância para ser utilizada?
- Qual o número ideal de vizinhos k a ser usado?

Em outras palavras: como determinar estes hiperparâmetros?

Perguntas importantes ao se utilizar o classificador de vizinho(s) mais próximo(s)

- Qual é a melhor medida de distância para ser utilizada?
- Qual o número ideal de vizinhos k a ser usado?

Em outras palavras: como determinar estes hiperparâmetros?

- Geralmente, eles são muito dependentes do problema
- Muitas vezes deve-se tentar "todas as combinações possíveis" e verificar qual produz o melhor resultado

**Opção 1:** Experimentar quais hiperparâmetros funcionam melhor sobre o conjunto de teste



**Opção 1:** Experimentar quais hiperparâmetros funcionam melhor sobre o conjunto de teste



- Péssima ideia! O conjuno de teste deve ser utilizado para se avaliar a performance de generalização!
- Usa-se o conjunto de teste de forma BEM ESPARSA, no final de todo o processo

**Opção 2:** Dividir os dados de treinamento → criar um conjunto de validação



**Opção 2:** Dividir os dados de treinamento → criar um conjunto de validação



**Opção 3:** Dividir várias vezes os dados de treinamento → validação cruzada



**Opção 3:** Dividir várias vezes os dados de treinamento → validação cruzada



**Opção 3:** Dividir várias vezes os dados de treinamento → validação cruzada

| train data |        |        |        |        | test data |  |  |  |
|------------|--------|--------|--------|--------|-----------|--|--|--|
|            |        |        |        |        |           |  |  |  |
| fold 1     | fold 2 | fold 3 | fold 4 | fold 5 | test data |  |  |  |
| fold 1     | fold 2 | fold 3 | fold 4 | fold 5 | test data |  |  |  |
| fold 1     | fold 2 | fold 3 | fold 4 | fold 5 | test data |  |  |  |
| fold 1     | fold 2 | fold 3 | fold 4 | fold 5 | test data |  |  |  |
| fold 1     | fold 2 | fold 3 | fold 4 | fold 5 | test data |  |  |  |



Exemplo de validação cruzada de 5 dobras (subconjuntos ou "folds") para se determinar o valor de **k** 



Exemplo de validação cruzada de 5 dobras (subconjuntos ou "folds") para se determinar o valor de **k** 

Cada ponto no gráfica representa um único resultado de acurácia



Exemplo de validação cruzada de 5 dobras (subconjuntos ou "folds") para se determinar o valor de **k** 

Cada ponto no gráfica representa um único resultado de acurácia

A linha azul liga as médias para diferentes valores de **k**, enquanto as barras indicam o desvio padrão



Exemplo de validação cruzada de 5 dobras (subconjuntos ou "folds") para se determinar o valor de **k** 

Cada ponto no gráfica representa um único resultado de acurácia

A linha azul liga as médias para diferentes valores de **k**, enquanto as barras indicam o desvio padrão

Parece que *k* ≈ 7 apresenta a melhor média de resultados para esse conjunto de dados