

离散数学

Discrete Mathematics

for Computer Science

计算机学院计科系 薛思清 xuesiqing@cug.edu.cn

第6讲 关系 Relation (1)

Good order is the foundation of all things.

—Edmund Burke (1729–1797)

An Example: Relational Database

关系

关系数据库: 关系数据结构 关系模型 关系代数 关系演算

- ■任何给定的数据库包含关系变量(英文简称为relvar)。
- ■在任何给定的时间,任何给定的关系变量的值都是一个关系值(简称为关系)。
 - ■每个关系变量都代表一个特定的谓词。
 - ■在任何给定的关系变量中,每个元组都代表一个特定的命题。
- ■按照封闭世界假设(The Closed World Assumption, CWA),关系变量R在时间T包含所有且只包含那些代表关系变量R对应的谓词在时间T计算结果为TRUE的实例元组。

A Relational Database Model

© 2014 AZSQLCertification.com All rights reserved

An Intro	oduction to Relational Database Theory	Contents
3.	Predicates and Propositions	63
3.1	Introduction	63
3.2	What Is a Predicate?	63
3.3	Substitution and Instantiation	68
3.4	How a Relation Represents an Extension	69
3.5	Deriving Predicates from Predicates	75
	EXERCISES	84
4.	Relational Algebra - The Foundation	85
4.1	Introduction	85
4.2	Relations and Predicates	88
4.3	Relational Operators and Logical Operators	89
4.4	JOIN and AND	90
4.5	RENAME	93
4.6	Projection and Existential Quantification	97
4.7	Restriction and AND	103
4.8	Extension and AND	106
4.9	UNION and OR	108
4.10	Semidifference and NOT	111

Auto Hadoop High Sharding Availability Schema Eventual Large Free Fulltext MapReduce -Consistency **Datasets** CAP Theorem Native XML SPARQL XQuery **Functional** Key Value Languages **Pairs RDF** BI/DW OQL **OLTP** MDX Document OLAP Orientation Object Graphs **Databases** Markup SQL CODASYL Hierarchical Relations Network **Tables** Navigational database **Flat Files Punch Cards**

Figure 1: A NoSQL Concept Tree

Outline

- 关系及其表示
- 关系运算
- 关系性质
- 等价关系
- 序关系
- ■函数关系

- ▶ 序偶(序对, Ordered Pair): (a,b)或者 <a,b>
 - 序偶<a, b>中两个元素不一定来自同一个集合,它们可以代表不同类型的事物。例如,a代表操作码,b代表地址码,则序偶<a, b>就代表一条单地址指令;哈密尔顿引进有序偶(a, b)来表示复数a+bi
 - $(a,b)=(c,d) \Leftrightarrow a=c \land b=d$
 - $a \neq b \Rightarrow (a,b) \neq (b,a)$
- ▶ 有序n元组: (a1,a2,...,an)=((a1,a2,...,an-1),an)
- ▶ 有序n元组<mark>相等</mark>: (a1,a2,...,an)=(b1,b2,...,bn)

笛卡尔积(Cartesian product, 卡氏积):

$$A \times B = \{\langle x, y \rangle | x \in A \land y \in B\}.$$

示例

$$A = \{1,2\}, B = \{x,y,z\}$$

$$A \times B = \{(1,x), (1,y), (1,z), (2,x), (2,y), (2,z)\}$$

$$B \times A = \{(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)\}$$

René Descartes (1596-1650)

示例

$$A = \{\emptyset, a\}, B = \{1, 2, 3\}.$$

$$A \times B = \{ < \emptyset, 1 >, < \emptyset, 2 >, < \emptyset, 3 >, < a, 1 >, < a, 2 >, < a, 3 > \}.$$

$$B \times A = \{ <1, \varnothing >, <1, a >, <2, \varnothing >, <2, a >, <3, \varnothing >, <3, a > \}.$$

$$A \times A = \{ \langle \emptyset, \emptyset \rangle, \langle \emptyset, a \rangle, \langle a, \emptyset \rangle, \langle a, a \rangle \}.$$

$$B \times B = \{ <1,1>, <1,2>, <1,3>, <2,1>, <2,2>, <2,3>, <3,1>, <3,2>, <3,3> \}.$$

n维笛卡尔积

$$A_1 \times A_2 \times ... \times A_n$$

= { $< x_1, x_2, ..., x_n > | x_1 \in A_1 \wedge x_2 \in A_2 \wedge ... \wedge x_n \in A_n }$ }
 $A^n = A \times A \times ... \times A$
 $\Leftrightarrow |A_i| = n_i, i = 1, 2, ..., n,$
显然 $|A_1 \times A_2 \times ... \times A_n| = n_1 \times n_2 \times ... \times n_n.$

笛卡尔积一些性质

$$A \times B = \emptyset \Leftrightarrow A = \emptyset \vee B = \emptyset$$

非交换

$$A \times B \neq B \times A$$
 (除非 $A = B \lor A = \emptyset \lor B = \emptyset$)

非结合

$$(A \times B) \times C \neq A \times (B \times C)$$
 (除非 $A = \emptyset \vee B = \emptyset \vee C = \emptyset$)

分配律

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

示例 试证明分配律

$$A\times (B\cup C) = (A\times B)\cup (A\times C).$$

$$\Leftrightarrow x \in A \land y \in (B \cup C) \Leftrightarrow x \in A \land (y \in B \lor y \in C)$$

$$\Leftrightarrow$$
 $(x \in A \land y \in B) \lor (x \in A \land y \in C)$

$$\Leftrightarrow$$
 (\in A×B) \vee (\in A×C)

$$\Leftrightarrow x \in (A \times B) \cup (A \times C)$$

所以,
$$A\times(B\cup C) = (A\times B)\cup(A\times C)$$
.

1.
$$A\times(B\cup C) = (A\times B)\cup(A\times C)$$

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

3.
$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$

4.
$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$

示例 设A,B,C,D是任意集合,

- (1) 若A≠∅,则 A×B⊆A×C ⇔ B⊆C.
- (2) $A \subseteq C \land B \subseteq D \Rightarrow A \times B \subseteq C \times D$,

且当
$$(A=B=\emptyset)$$
 $\vee(A\neq\emptyset\land B\neq\emptyset)$ 时,

$$A \times B \subset C \times D \Rightarrow A \subset C \land B \subset D.$$

证明 (1) 若A≠∅,则A×B⊆A×C ⇔ B⊆C.

(⇒) 若 B=∅, 则 B⊆C.

设 B≠∅, 由A≠∅, 设x∈A.

 $\forall y, y \in B \Rightarrow \langle x,y \rangle \in A \times B$

$$\Rightarrow < x,y > \in A \times C$$

$$\Leftrightarrow x \in A \land y \in C \Rightarrow y \in C.$$

所以, B⊆C

设 B≠∅.

$$\forall < x,y>, < x,y> \in A \times B \Leftrightarrow x \in A \land y \in B$$

$$\Rightarrow x \in A \land y \in C \Leftrightarrow \langle x,y \rangle \in A \times C$$

所以, A×B⊆A×C.

设n∈I+, A1,A2,...,An为任意n个集合,ρ⊆A1×A2×...×An,则

- (1)称ρ为A1,A2,...,An间的n元关系;
- (2)若n=2,则称 ρ 为从A1到A2的二元关系;
- (3)若 $\rho=\Phi$,则称 ρ 为空关系;
- (4)若 ρ =A1×A2×...×An,则称 ρ 为普遍关系;
- (5)若A1=A2=...=An=A,则称ρ为A上的n元关系;
- (6)若ρ={(x,x)|x∈A},则称ρ为A上的恒等关系。

若ρ是由A到B的一个关系,且(a,b) \in ρ,则a对b有关系ρ,记为 aρb。中缀(infix)、前缀(prefix)、后缀(suffix)记号

A relation is a particular type of set.

A function is a particular type of relation.

A predicate is a particular type of function.

对集合A上的关系R, 可以定义:

定义域(domain) : dom R = { x | ∃y(y∈A ∧ xRy) }

值域(range): ran $R = \{ y \mid \exists x(x \in A \land xRy) \}$

域(field): $fld R = dom R \cup ran R$

示例

- 1. {<1,2>,<α,β>,<a,b>}是二元关系, {<1,2>,<3,4>,<白菜,小 猫>}是二元关系, A={<a,b>,<1,2,3>,a,α,1}不是关系
- 设A={1,2,4,7,8}, B={2,3,5,7}, 定义由A到B的关系ρ={(a,b)}
 5|(a+b)}, |表示整除, 求关系ρ。
- 3. 设A={2,3,4,5,9,25},定义A上的关系ρ,对于任意的a,b∈A, 当且仅当(a-b)²∈A时,有aρb,试问ρ由哪些序偶组成?
- 4. 设A= $\{0,1,2\}$, 求A上的普遍关系 U_A 和A上的恒等关系 I_A 。
- 5. A到B不同的二元关系共有多少个? A上不同的二元关系共有 多少个?

示例

6. 设A⊆R, 则可以定义A上的:

小于等于(less than or equal to)关系:

$$LEA = \{ \langle x,y \rangle \mid x \in A \land y \in A \land x \leq y \}$$

小于(less than)关系,LA = $\{ \langle x,y \rangle \mid x \in A \land y \in A \land x < y \}$

大于等于(greater than or equal to)关系

大于(great than)关系

7. 设A为任意集合,则可以定义P(A)上的:

包含关系: ⊆A = { <x,y> | x⊆A ∧ y⊆A ∧ x⊆y }

示例

8 自然数上的二元关系

$$D = \{(m,n) \in N^2 \mid m \mid n\}$$

自然数上的同余关系

$$R_k = \{(m,n) \in N^2 \mid (k,|m-n|) \in D\}$$

 $m \equiv n \pmod{k}$

3 关系的表示

- 集合论方法 (序对之集合)
- 代数表示 (矩阵表示法)
- 几何表示(图)

关系R的集合表达式,关系矩阵,关系图三者均可以唯一互相确定

3 关系的表示——关系矩阵

设 $A = \{a_1, a_2, ..., a_m\}$, $B = \{b_1, b_2, ..., b_n\}$, $R \subseteq A \times B$, 则R的关系矩阵 M(R) (或者记为 M_R) $= (r_{ij})_{m \times n}$, 其中,

$$r_{ij} = \begin{cases} 1, & x_i R x_j \\ 0, & otherwise \end{cases}$$

如, A={2,3,4,5}, B={6,7,8,9}, 由A到B的关系 ρ={(2,7),(2,9),(3,7),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9)},

所以关系矩阵

$$M_{
ho} = egin{bmatrix} 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 \end{bmatrix}$$

3 关系的表示——关系矩阵

集合A到B的关系R的关系图G(R)或GR:

由结点(表示集合元素)与边(表示结点代表的元素之间具有关系R)构成的图。结点数为|A|+|B|,有向边数为|R|

对任意关系R,G,有:

► 逆(Inverse Operation) :

$$R^{-1} = \{ \langle x, y \rangle \mid yRx \}$$

► 复合(合成)(Composite Operation)

RoG = {
$$\langle x,y \rangle \mid \exists z(xRz \land zGy) \}$$

示例 Grandparents

To construct the "isGrandparentOf" relation, we can compose "isParentOf" with itself.

<u>isGrandparentOf</u> = isParentOf o isParentOf.

Similarly, we can construct the "isGreatGrandparentOf" relation by the following composition:

isGreatGrandparentOf = isGrandparentOf o isParentOf.

isParentOf² = isGrandparentOf, isParentOf³ = isGreatGrandparentOf.

示例

$$M(R_1) = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$M(R_1^{-1}) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad M(R_2^{-1}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$M(R_2^{-1}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$M(R_1^{-1}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$M(R_2^{-1}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

2 设F是任意集合,则

(1) $dom F^{-1} = ran F$; (2) $ran F^{-1} = dom F$; (3) $(F^{-1})^{-1} = F$.

证明: (1) $\forall x, x \in domF^{-1} \Leftrightarrow \exists y(xF^{-1} y) \Leftrightarrow \exists y(yFx) \Leftrightarrow x \in ranF$ 于是, $domF^{-1} = ranF$.

(2)可类似证明.

(3) $\forall \langle x,y \rangle, \langle x,y \rangle \in (F^{-1})^{-1} \Leftrightarrow x(F^{-1})^{-1}y \Leftrightarrow yF^{-1}x \Leftrightarrow xFy \Leftrightarrow \langle x,y \rangle \in F.$

所以, (F-1)-1 = F.

3 设 R_1 , R_2 , R_3 为集合A上二元关系,则 (R_1 o R_2) o R_3 = R_1 o (R_2 o R_3)

证明: ∀<x,y>, <x,y>∈(R₁oR₂) oR₃

- $\Leftrightarrow \exists z(x(R_1oR_2)z \wedge zR_3y)$
- $\Leftrightarrow \exists z (\exists t (xR_1t \wedge tR_2z) \wedge zR_3y)$
- $\Leftrightarrow \exists z \exists t ((xR_1t \wedge tR_2z) \wedge zR_3y))$
- $\Leftrightarrow \exists t \exists z (xR_1t \land tR_2z \land zR_3y)$

设A为任意集合, ρ为A上的任意二元 关系, m,n∈N, 有:

- (1) ρ^0 是A上的恒等关系,即 $\rho^0 = I_A$
- (2) $\rho^{n+1} = \rho \circ \rho^n, n \in \mathbb{N}$
- (3) $\rho^{m} \circ \rho^{n} = \rho^{m+n}$
- (4) $(\rho^{n})^{m} = \rho^{m \cdot n}$
- $\Leftrightarrow \exists t(xR_1t \land \exists z(tR_2z \land zR_3y))$
- $\Leftrightarrow \exists t(xR_1t \wedge t(R_2oR_3)y)$
- \Leftrightarrow xR₁o (R₂oR₃)y
- $\Leftrightarrow <x,y> \in R_1o(R_2oR_3)$
- \therefore (R₁oR₂) oR₃ = R₁o (R₂oR₃).

4 设R₁,R₂,R₃是集合,则

(1)
$$R_1 o(R_2 \cup R_3) = (R_1 o R_2) \cup (R_1 o R_3)$$

(2)
$$(R_1 \cup R_2) \circ R_3 = (R_1 \circ R_3) \cup (R_2 \circ R_3)$$

(3)
$$R_1o(R_2 \cap R_3) \subseteq (R_1oR_2) \cap (R_1oR_3)$$

(4)
$$(R_1 \cap R_2) \circ R_3 \subseteq (R_1 \circ R_3) \cap (R_2 \circ R_3)$$

(5)
$$(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$$

(1)
$$R_1 o(R_2 \cup R_3) = (R_1 o R_2) \cup (R_1 o R_3)$$

$$\Leftrightarrow \exists z(xR_1z \land z(R_2 \cup R_3)y)$$

$$\Leftrightarrow \exists z(xR_1z \land (zR_2y \lor zR_3y))$$

$$\Leftrightarrow \exists z((xR_1z \land zR_2y) \lor (xR_1z \land zR_3y))$$

$$\Leftrightarrow \exists z(xR_1z \land zR_2y) \lor \exists z(xR_1z \land zR_3y)$$

$$\Leftrightarrow$$
x(R₁oR₂)y \lor x(R₁oR₃)y \Leftrightarrow x((R₁oR₂) \cup (R₁oR₃))y

$$\Leftrightarrow \in (R_1 \circ R_2) \cup (R_1 \circ R_3)$$

4 关系运算

$$(3) R1o(R2 \cap R3) \subseteq (R1oR2) \cap (R1oR3)$$

证明:
$$\forall \langle x,y \rangle$$
, $\langle x,y \rangle \in R_1 o(R_2 \cap R_3)$

$$\Leftrightarrow \exists z(xR_1z \land z(R_2 \cap R_3) \ y) \Leftrightarrow \exists z(xR_1z \land (zR_2y \land zR_3y))$$

$$\Leftrightarrow \exists z((xR_1z \wedge zR_2y) \wedge (xR_1z \wedge zR_3y))$$

$$\Rightarrow \exists z(xR_1z \land zR_2y) \land \exists z(xR_1z \land zR_3y)$$

$$\Leftrightarrow$$
 $x(R_1 \circ R_2)y \land x(R_1 \circ R_3)y \Leftrightarrow$ $x((R_1 \circ R_2) \cap (R_1 \circ R_3))y$

$$\Leftrightarrow \in (R_1 \circ R_2) \cap (R_1 \circ R_3).$$

反例(说明=不成立):

设
$$R_1 = \{ \langle d,b \rangle, \langle d,c \rangle \}, R_2 = \{ \langle b,a \rangle \}, R_3 = \{ \langle c,a \rangle \}.$$
则 $R_1 \circ (R_2 \cap R_3) = R_1 \circ \emptyset = \emptyset,$ $R_1 \circ R_2 = \{ \langle d,a \rangle \}, R_1 \circ R_3 = \{ \langle d,a \rangle \}, (R_1 \circ R_2) \cap (R_1 \circ R_3) = \{ \langle d,a \rangle \}.$

- ▶ 自反性(Reflexivity)
- ▶ 反自反性(Anti-reflexivity)
- ► 对称性(Symmetry)
- ► 反对称性(Anti-symmetry)
- ► 传递性(Transitivity)

5 关系性质-自反性

设R⊆A×A, 说R是自反的(Reflexive),如果 $\forall x (x \in A \rightarrow xRx)$.

R是非自反的 $\Leftrightarrow \exists x (x \in A \land \neg x R x)$

性质: R是自反的

$$\Leftrightarrow I_A \!\! \subseteq \!\! R$$

⇔ R-1是自反的

- ⇔ M(R)主对角线上的元素全为1
- ⇔ G(R)的每个顶点处均有环.

设R⊆A×A, 说R是反自反的(irreflexive), 如果

$$\forall x (x \in A \rightarrow \neg x Rx).$$

R是非反自反的 $\Leftrightarrow \exists x (x \in A \land xRx)$

性质: R是反自反的

$$\Leftrightarrow I_A \cap R = \emptyset$$

⇔ R-1是反自反的

- ⇔ M(R)主对角线上的元素全为0
- ⇔ G(R)的每个顶点处均无环.

5 关系性质-自反性

自反, 反自反?

Ø上的空关系

设RCA×A, 说R是对称的(Symmetric),如果

 $\forall x \forall y (x \in A \land y \in A \land x Ry \rightarrow y Rx).$

R非对称 $\Leftrightarrow \exists x \exists y (x \in A \land y \in A \land x R y \land \neg y R x)$

性质: R是对称的

$$\Leftrightarrow R^{-1}=R$$

⇔ R-1是对称的

⇔ M(R)是对称的

⇔ G(R)的任何两个顶点之间若有边,则必有两条方向相反的有向边.

设R⊆A×A,说R是反对称的(Anti-symmetric),若

 $\forall x \forall y (x \in A \land y \in A \land x R y \land y R x \rightarrow x = y).$

R非反对称⇔∃x∃y(x∈A∧y∈A∧xRy∧yRx∧x≠y)

性质: R是反对称的

- $\Leftrightarrow R^{-1} \cap R \subseteq I_A$
- ⇔ R-1是反对称的

⇔ 在G(R)中, ∀x_i∀x_i(i≠j), 若有有向边<x_i,x_i>, 则必没有<x_i,x_i>.

5 关系性质-对称性

设R⊆A×A,说R是传递的(Transitive),如果

 $\forall x \forall y \forall z (x \in A \land y \in A \land z \in A \land x R y \land y R z \rightarrow x R z).$

R非传递 $\Leftrightarrow \exists x \exists y \exists z (x \in A \land y \in A \land z \in A \land x R y \land y R z \land \neg x R z)$

性质: R是传递的

- $\Leftrightarrow RoR \subseteq R$
- ⇔ R-1是传递的
- ⇔ 在M(RoR)中, ∀i∀j, 若r_{ij}′ =1,则M(R)中相应元素 r_{ij}=1.
- \Leftrightarrow 在G(R)中, $\forall x_i \forall x_j \forall x_k$, 若有有向边 $\langle x_i, x_j \rangle$, $\langle x_j, x_k \rangle$, 则必有有向边 $\langle x_i, x_k \rangle$.

5 关系性质-传递性

在 N = {0,1,2,...} 上:

- ≤={<x,y>|x∈N∧y∈N∧x≤y}自反,反对称,传递
- ≥={<x,y>|x∈N∧y∈N∧x≥y}自反,反对称,传递
- <={<x,y>|x∈N∧y∈N∧x<y}反自反,反对称,传递</p>
- >={<x,y>|x∈N∧y∈N∧x>y}反自反,反对称,传递
- |={<x,y>|x∈N∧y∈N∧x|y}反对称,传递(¬0|0)
- a) $I_N = \{\langle x,y \rangle | x \in N \land y \in N \land x = y\}$ 自反,对称,反对称,传递
- b) $U_N = \{\langle x,y \rangle | x \in N \land y \in N \} = N \times N$ 自反,对称,传递.

$$A = \{a,b,c\}$$

$$R_1 = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,c \rangle, \langle a,c \rangle\},$$

$$R_2 = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,c \rangle, \langle c,a \rangle\},$$

$$R_3 = \{\langle a,a \rangle, \langle b,b \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle c,c \rangle\},$$

$$R_4 = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle c,c \rangle\},$$

$$R_5 = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,b \rangle, \langle c,c \rangle\},$$

$$R_6 = \{\langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle, \langle a,a \rangle\},$$

设R₁,R₂⊆A×A都具有某种性质

	自反	反自反	对称	反对称	传递
R ₁ ⁻¹ , R ₂ ⁻¹					
$R_1 \cup R_2$					
$R_1 \cap R_2$					
$R_1 \circ R_2$, $R_2 \circ R_1$					
R_1-R_2 , R_2-R_1					
R ₁ ', R ₂ '					

设R₁,R₂⊆A×A都具有某种性质

	自反	反自反	对称	反对称	传递
R ₁ ⁻¹ , R ₂ ⁻¹	√	V	1	√	√
$R_1 \cup R_2$	V	√	V		
$R_1 \cap R_2$	V	√	V	√	V
$R_1 \circ R_2$, $R_2 \circ R_1$	V				
R_1-R_2 , R_2-R_1		√	V	√	
R ₁ ', R ₂ '			1		

(1) R_1, R_2 自反 \Rightarrow $R_1 \circ R_2$ 自反.

证明:∀x,

 $x \in A$

 $\Rightarrow xR_1x \wedge xR_2x$

 $\Rightarrow xR_1oR_2x$

 $\therefore R_1, R_2$ 自反 $\Rightarrow R_1 \circ R_2$ 自反.

(2) R_1, R_2 反自反 $\Rightarrow R_1 \cap R_2$ 反自反.

证明: (反证) 若R₁○R₂非反自反, 则

$$\exists x \in A$$
,

$$x(R_1 \cap R_2)x$$

$$\Leftrightarrow xR_1x \wedge xR_2x$$

与R₁,R₂反自反矛盾!

∴ R_1, R_2 反自反 \Rightarrow $R_1 \cap R_2$ 反自反.

(3) R_1, R_2 对称 $\Rightarrow R_1 - R_2$ 对称.

证明:∀x,y∈A,

$$x(R_1-R_2)y$$

$$\Leftrightarrow xR_1y \wedge \neg xR_2y$$

$$\Leftrightarrow yR_1x \wedge \neg yR_2x$$

$$\Leftrightarrow$$
 y(R₁-R₂)x

∴ R_1, R_2 对称 \Rightarrow $R_1 - R_2$ 对称.

(4) R₁对称 ⇒ R₁ 对称. 证明: ∀x,y∈A, $x(R_1')y \Leftrightarrow x(U_A-R_1)y$ $\Leftrightarrow xU_Ay \wedge \neg xR_1y$ $\Leftrightarrow yU_{A}x \wedge \neg yR_{1}x$ $\Leftrightarrow y(U_A-R_1)x \Leftrightarrow y(R_1')x$ ∴ R₁対称 ⇒ R₁ 対称.

(5) R_1 反对称 \Rightarrow R_1^{-1} 反对称.

证明: (反证) 若R₁-1非反对称,则

$$\exists x,y \in A$$
,

$$xR_1^{-1}y \wedge yR_1^{-1}x \wedge x \neq y$$

$$\Leftrightarrow yR_1x \wedge xR_1y \wedge x\neq y$$

与R₁反对称矛盾!

∴ R_1 反对称 \Rightarrow R_1^{-1} 反对称.

