Lista-4 – Algumas Consequências da Primeira Lei Termodinâmica - Prof. José Alexandre

 1^{0}) (4.2) A equação de estado de um certo gás é (P + b)v = RT, e sua energia específica é u = aT + bv + u_0 , onde a, b e u_0 são constantes.

- a) Encontre c_v .
- b) Mostre que $c_P c_v = R$.
- c) Mostre que Tv^{R/c_v} = cte em um processo adiabático.
- 2^{0}) (4.3) A energia interna específica de uma substância é dada por $u = 3T^{2} + 2v + u_{0}$, em um conjunto de unidades apropriadas. Calcule a variação na temperatura da substância, se 5 unidades de calor forem adicionadas, enquanto o volume da substância for mantido constante.

3⁰) (4.20) Para um gás ideal, mostre que em um processo adiabático reversível

a)
$$TP^{\frac{(\gamma-1)}{\gamma}} \equiv cte;$$

b)
$$Tv^{(\gamma-1)} \equiv cte$$
.

- 4^{0}) (4.27) A equação de estado para a energia radiante em equilíbrio com a temperatura das paredes de uma cavidade de volume V é $P = \frac{1}{3} \alpha T^{3}$. A equação da energia é $U = \alpha T^{4}V$.
 - a) Mostre que o calor fornecido em uma duplicação isotérmica do volume da cavidade é $\frac{4}{3}aT^4V$.
 - b) Use a equação

$$\bar{d}q = \left(\frac{\partial u}{\partial T}\right)_v dT + \left[\left(\frac{\partial u}{\partial v}\right)_T + P\right] dv,$$

para mostrar que, em um processo adiabático, VT^3 é um constante.

 5^{0}) (4.30) Uma máquina de Carnot é operada entre dois reservatórios de calor a temperaturas de 400 K e de 300 K.

- a) Se a máquina recebe 1.200 cal do reservatório a 400 K em cada ciclo, quantas calorias ela rejeita para o reservatório a 300 K? Calcule o trabalho realizado.
- b) Se a máquina for operada como um refrigerador (i. e., ao inverso) e receber 1.200 cal do reservatório a 300 K, quantas calorias ela liberará no reservatório a 400 K? Qual o trabalho realizado.

Resposta: a) 900 cal e 300 cal. b) 1.600 cal e 400 cal.

 6^{0}) (4.36) Um edifício deve ser refrigerado por uma máquina de Carnot operada ao inverso (um refrigerador de Carnot). A temperatura exterior é de 35^{0} C, e a temperatura no interior do edifício é 20^{0} C. Se a máquina é acionada por um motor elétrico de 12×10^{3} watt, quanto calor é removido do edifício por hora?

Resposta: $8,42 \times 10^8$ J/h.

07-34⁰) Francis W. Sears e Gerhard L. Salinger, *Termodinâmica, Teoria Cinética e Termodinâmica Estatística*, 3^a Edição, Guanabara Dois (1979): 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35, 4.36, 4.37, 4.38 e 4.39.