## Pisno ocenjevanje znanja – G 2. b Pregledni test junij 2022

Piŝi z nalivnim peresom ali kemičnim svinčnikom in ne piši-briši. Korekturna sredstva so strogo prepovedana. Če se zmotiš, napisano prečrtaj. Nepodpisani testi se ovrednotijo kot kršenje pravil ocenjevanja.

Pri reševanju nalog mora biti jasno in korektno predstavljena pot do rezultata z vmesnimi računi in sklepi, uporabljeni postopki dogovorjeni pri pouku. Grafe riši z navadnim svinčnikom, nepopolno označeni koordinatni sistemi se ovrednotijo z 0 točkami.

Naloge, pisane z navadnim svinčnikom, nejasni in nečitljivi zapisi se ovrednotijo z 0 točkami. Če si nalogo reševal na već načinov, jasno označi, katera rešitev naj se točkuje.

Vsako nalogo skrbno preberi. Zaupaj vase in v svoje sposobnosti.

| Kritorii: 1 | 6801  | \$(0%) mad(1)   | 150%   | 6396) add | 16396           | 76%) db(3),   | 176%   | 88%)  | ndh(4)  | [88%   | 100%1 | odl(5) |
|-------------|-------|-----------------|--------|-----------|-----------------|---------------|--------|-------|---------|--------|-------|--------|
| eximent.    | 15.10 | Street treat th | 154170 | 02301201  | $P_{1}$ 1655.46 | , rayer untak | 170270 | aozaj | publay, | [00/0, | 10070 | oui(2) |

lme in priimek: \_\_\_\_\_/ Točke: \_\_\_\_/ T Ocena: \_\_\_\_\_

 (ST) V kvadratu ABCD s stranico a je točka M razpolovišče stranice CD. Izračunajte spodnje skalarne produkte. Rezultate vpišite v preglednico.





$$\overrightarrow{AB} \circ \overrightarrow{AD} = |\overrightarrow{AB}| \cdot |\overrightarrow{AD}| \cdot |\cos \varphi = |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cdot |$$



3) (8T=2+1+3+2) Dano je kompleksno število  $z = \sqrt{5} - 2t$ . Izrnčunajte:

2 d) z-1= 
$$\frac{1}{\sqrt{5}-2i} = \frac{1(\sqrt{5}+2i)}{(\sqrt{5}-2i)(\sqrt{5}+2i)} = \frac{\sqrt{5}+2i}{5+2i\sqrt{5}-2i\sqrt{5}+4} = \frac{\sqrt{5}+2i}{9}$$

4) (6T) Resite enacho:  $2x + 3 = \sqrt{x+3}$ .

12x+3) = x+3 4x2+72x+9= x+3

$$\frac{1}{4x^{2} + 72x + 9} = x + 3$$

$$4x^{2} + 72x + 9 = x + 3$$

$$4x^{2} + 71x + 6 = 0$$

$$\sqrt{2a} = \sqrt{2a} = \sqrt$$

$$x_{11} = \frac{-12 \pm \sqrt{32}}{8}$$

$$y_{12} = \frac{-712 \pm 3\sqrt{2}}{8}$$

$$x_{1} = \frac{-72 + 3\sqrt{2}}{8}$$

$$x_{1} = \frac{-72 - 3\sqrt{2}}{8}$$

5) (7T) Naj bo  $\log_b a = 2$ , Izračunajte vrednost izraza  $\frac{1}{3}\log_b a^6 - 2\log_b \sqrt{a} + \log_b 1 - 4\log_b \frac{b}{a^3}$ 

$$\frac{2\log a^{2}}{\log a^{2}} = \log a^{2} + \log a^{2} - \log \left(\frac{b}{a^{2}}\right)^{4} = \log a^{2} - \log a^{2} - \log b^{2} - \log b^{2} = \log b \left(\frac{a^{2}}{a}\right) + \log b^{2} - \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{a^{2}}{a}\right) + \log b^{2} - \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{a^{2}}{a}\right) + \log b^{2} - \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{a^{2}}{a^{2}}\right) + \log b^{2} - \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b^{2} - \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b^{2} - \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b \left(\frac{b^{2}}{a^{2}}\right) = \log b \left(\frac{b^{2}}{a^{2}}\right) + \log b \left(\frac{b^{2}}{a^$$

6) (8T) Imamo vektorja  $\pi = (t, 2, 6)$  in  $\overline{b} = (-3, t, -10)$ . Za katero realno število t sta vektorja  $\overline{a}$ in δ pravokotna? Za kateri realni števili / je dolžina vektorja σ enaka 7?

$$\cos 30^{\circ} = \frac{a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3}}{\sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}}} \sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}}$$

$$= \frac{-3 + 24 - 60}{\sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}}}$$

$$= \frac{-7 + 24 - 60}{\sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}}}$$

7) (ST) Naj bo  $z = x \cdot (4 - 3i) + 5i + i^2$ . Izračunajte realno število x tako, da bo veljalo Re(z) = lm(z).

1144 -Mi 451 4=3

7=41-341 Fi

460 = -3 x i+5;

 (71) Izračunajte diskriminante in poiščite vse rešitve kvadratnih enačb. Rezultate zapišite v preglednico.

| Enačba        | Diskriminanta  | Resitve enaèbe   |          |
|---------------|----------------|------------------|----------|
| 4+ 6x + 8 + 0 | 31176 = 6 = D  | メリル もこう トラー もっろく | The Lake |
| x2- 3x- 10- Q | 9-10=-1        | R= 502           |          |
| 4ª- 6x+10=0   | 36-40=-4=00000 | R=10+            |          |

9) (71) V koordinatnem sistemu sta narisana vektorja ā in δ. Zapišite ta dva vektorja s komponentama (koordinatama). Izračunajte vektor ē = - 2ā + h in ga narišite v koordinatni sistem. Izračunajte še vektor (ā ° h) · ā.



13)(6T) Rešite enačbo: log20 + logz = 2

11) (RT = 2 + 2 + 2 + 2) Dani so vektorji 
$$\sigma$$
 = (4, 3, 1),  $\delta$  = (-2, 5, 3) in  $\sigma$  = (c, 2, 4).

c) Izračunajte dolžino vektorja F

d) Določite s tako, da bosta vektorja s in r pravokotna.

(as 
$$90^6 = \frac{4 \times s - 6.44}{\sqrt{116 + 9.41}}$$

$$0 = \frac{4 \times -2}{\sqrt{126} \sqrt{13 + 70}}$$

14) (5T) Na vsaki od spodnjih slik so paralelogrami ABCD ter vektorji σ, δ in τ. Točke E, F in G so razpolovišča stranic, točka ε pa presečišče diagonal. Pod vsakim paralelogramom zapišite vektor σ kot linearno kombinacijo vektorjev σ in ξ. Glejte rešeni primer.

Reteni





$$\nabla = \overline{a} + \frac{1}{2}\overline{b}$$

xx.2





xx.5.



xx.4





8

15) (5T) V spodnjih koordinatnih sistemih je narisan graf funkcije f. Narišite še grafe funkcij  $g_1(x) = -f(x)$ ,  $g_2(x) = f(x) + 1$ ,  $g_3(x) = f(x-2)$ ,  $g_4(x) = 2f(x)$  in  $g_5(x) = f(-x)$ .













16) (71) Zunanji rob okvira slike je pravokotnik dimenzij 11dm x 8dm. Okvir slike je ob vseh stirih robovih enako širok. Znotraj notranjega roba okvira je slika s plošćino 61,75 dm². Izračunajte širino okvira.







\$600: 7675= 33 3250 18+50 5675



17)(5T) Naj bosta α in b poljubni realni števili, α > 0 in b ≠ 0. Vsak izraz v levem stolpcu preglednice je enak enemu izrazu v desnem stolpcu. Izrazi v desnem stolpcu so označeni s erkami od A do L.

V preglednico v za to namenjen prostor vpišite črko izraza, ki je enak izrazu v levem stolpcu preglednice (prva vrstica je že pravilno izpolnjena).

|                | and the same of th |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a <sup>0</sup> | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ab1)1         | Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(a + b^2)^2$  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ab2): (ab)3   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| √a · Vab       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\sqrt{b^2}$   | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

L (A) 
$$ab^4$$
D (B)  $b$ 
(C)  $|b|$ 
E (C)  $|b|$ 
(C)  $|a^2b^4$ 
(D)  $a^2b^4$ 

(J) a<sup>-3</sup>b<sup>-1</sup> (K) -1 (L/1



18) (77) V preglednici so podane funkcije. K vsaki funkciji zapišite črko grafa, ki ji ustreza (glejte rešeni primer).

| Funkcija                                                | Graf (zapišite črko, ki označuje<br>graf funkcije) |
|---------------------------------------------------------|----------------------------------------------------|
| $f: \mathbb{R_0}^+ \to \mathbb{R}, \ f(x) = \sqrt{x}$   | Н                                                  |
| $f\colon \mathbb{R}-\{0\}\to\mathbb{R},\ f(x)=x^{-1}$   | D V                                                |
| $f: \mathbb{R} \to \mathbb{R}, \ f(x) = -x^2$           | B ~                                                |
| $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 2^x$            | 46 0                                               |
| $f: \mathbb{R} - \{0\} \to \mathbb{R}, \ f(x) = x^{-2}$ | E                                                  |
| $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = log_2 x$      | F ,                                                |
| $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3$            | L                                                  |

