Universidad Centroamericana "José Simeón Cañas"

Facultad de Ingeniería y Arquitectura

Departamento de Matemática

Cálculo III

Ciclo 01/2020

Ing. Daniel Sosa, Ing, Daniel Juarez, Lic. Yoceman Sifontes

Parametrización e Integrales de Línea

Determine una parametrización para las siguientes curvas

a)

Circunferencias de radio π

c)

d)

f)

- 2. Evalué las siguientes integrales de línea:
 - a) $\int_C (x^2 + y^2)^5 ds$ donde C es la circunferencia $x(t) = 2\cos(t)$, $y(t) = 2\sin(t)$, $t \in [0, 2\pi]$
 - **b)** $\int_C \left(\frac{z^2}{x^2+y^2}\right) ds$ donde C es la espiral de la hélice $x(t)=2\cos(t), \ y(t)=2\sin(t), \ z=2t$, $t\in[0,2\pi]$
 - c) $\int_C y^2 dx + x^2 dy$ donde C es la elipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ recorrida en sentido anti horario
- **3.** Considere las curvas C_1 : $x=y^2$ y C_2 : $y=x^3$. Calcular la integral de línea $\int_C x dy y dx$ donde $C=C_1 \cup C_2$

4. Evalué $\int_C x^2 z \, dx - x^2 y \, dy + 3xz \, dz$ con $C = C_1 \cup C_2 \cup C_3$ donde C_1 , C_2 , C_3 se muestran en la siguiente figura.

5. Calcule $\int_C y^2 dx + x^2 dy$ con $C = C_1 \cup C_2 \cup C_3$ donde C_1 , C_2 , C_3 son las curvas que se muestran en la figura.

- **6.** Evalué la integral de línea $\int_C \boldsymbol{F} \cdot d\boldsymbol{r}$, si se sabe que: $\boldsymbol{F}(x,y,z) = \sin(x)\,\hat{\boldsymbol{i}} + \cos(y)\,\hat{\boldsymbol{j}} + xz\,\hat{\boldsymbol{k}}$ donde C está definida por la función vectorial $\boldsymbol{r}(t) = t^3\,\hat{\boldsymbol{i}} + t^2\,\hat{\boldsymbol{j}} + t\,\hat{\boldsymbol{k}}$, $t \in [0,1]$
- 7. Sea $F(x, y, z) = (x + y)\hat{i} + (y z)\hat{j} + (x + z)\hat{k}$ y sea C la curva de la figura, calcule $\int_C F \cdot d\mathbf{r}$

8. Determine el trabajo que realiza el campo de fuerzas $F(x,y) = x \hat{i} + (y+2)\hat{j}$ al mover un objeto a lo largo del arco de la cicloide: $r(t) = (t - \sin(t))\hat{i} + (1 - \cos(t))\hat{j}$, $t \in [0, 2\pi]$

- **9.** Evalué la integral de línea $\int_{\mathcal{C}} {m F} \cdot d{m r}$, siendo:
 - a) $F(x,y) = \frac{x}{\sqrt{x^2 + y^2}}\hat{i} + \frac{y}{\sqrt{x^2 + y^2}}\hat{j}$, donde C es la parábola $y = 1 + x^2$ entre los puntos (-1,2) y (1,2)
 - **b)** $F(x,y,z) = (2x\ln(yz) 5ye^x)\hat{i} + (\frac{x^2}{y} 5e^x)\hat{j} + (\frac{x^2}{z} + 2z)\hat{k}$, donde C es el segmento de recta entre los puntos A = (2,2,1) y B = (3,1,e)
- **10.** Para los siguientes campos vectoriales, determine si son o no conservativos, los que lo sean, determine su respectiva función potencial.
 - **a)** $F(x, y) = xy^2 \hat{i} + x^2 y \hat{j}$
 - **b)** $F(x, y, z) = (y+z)\hat{i} + (x+z)\hat{j} + (x+y)\hat{k}$
 - c) $F(x, y, z) = e^{y+2z} \hat{i} + x e^{y+2z} \hat{j} + 2x e^{y+2z} \hat{k}$
 - d) $F(x, y, z) = y \sin(z) \hat{i} + x \sin(z) \hat{j} + x y \cos(z) \hat{k}$
- **11.** Considere la siguiente integral de línea $\int_C (4x+2y-z)dx + (2x-2y+z)dy + (y-x+2z)dz$, demuestre que la integral no depende de la trayectoria seleccionada.
- **12.** Sea $F(x, y, z) = \sin(yz)\hat{i} + xz\cos(yz)\hat{j} + (xy\cos(yz) + e^z)\hat{k}$
 - a) Probar que el campo vectorial es conservativo
 - **b)** Encuentre una función potencial para $oldsymbol{F}$
 - **c)** Calcule la integral $\int_C {\pmb F} \cdot d{\pmb r}$ donde C es la curva que une los puntos (0,0,0) y $(2,1/2,\pi)$
- **13.** Determine la circulación del campo $F(x, y) = 2xy^3 \hat{i} + x^2 \hat{j}$ donde C es la elipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ recorrida en sentido anti horario.
- **14.** Encuentre la circulación y el flujo del campo $F(x,y) = \tan^{-1}\left(\frac{y}{x}\right)\hat{i} + \ln\left(x^2 + y^2\right)\hat{j}$ donde C es el cuadrado delimitado en el primer octante por las rectas x = 1 e y = 1
- 15. Utilice el Teorema de Green para calcular la circulación bajo las condiciones indicadas:
 - a) $F(x,y) = \frac{x}{1+y^2}\hat{i} + \tan^{-1}(y)\hat{j}$ siendo C la circunferencia $x^2 + y^2 = 1$ recorrida de forma horaria
 - **b)** $F(x,y) = (x + e^x \sin(y))\hat{i} + (x + e^x \cos(y))\hat{j}$ siendo C el lazo derecho de la lemniscata $r^2 = \cos(2\theta)$