Matematika 2

Rešitve 12. sklopa nalog

Skalarni produkt

(5) Naj bo

$$T_n = \left\{ \psi : \mathbb{R} \to \mathbb{C} \,\middle|\, \psi(x) = \sum_{k=-n}^n c_k e^{ikx}, c_k \in \mathbb{C} \right\}$$

prostor kompleksnih trigonometričnih polinomov stopnje največn. Na \mathcal{T}_n definiramo skalarni produkt

$$\langle \psi, \phi \rangle = \frac{1}{2\pi} \int_0^{2\pi} \psi(x) \overline{\phi(x)} \, dx.$$

Pokaži, da je množica $\mathcal{E} = [e^{-inx}, \dots, e^{inx}]$ ortonormirana baza prostora T_n .

Rešitev: Kompleksni trigonometrični polinomi se uporabljajo v fiziki, elektrotehniki in na splošno povsod, kjer se pojavlja nihanje oziroma valovanje. S funkcijo $\psi_k(x) = e^{ikx}$ modeliramo val s frekvenco k. Fourierova teorija nam pove, da lahko potem poljuben val v določenem smislu predstavimo kot diskretno ali zvezno vsoto takšnih osnovnih valov. Realna in imaginarna komponenta takšnega vala sta kosinusni oziroma sinusni val z dano frekvenco.

Denimo najprej, da je $k \neq l$. Potem je

$$\langle e^{ikx}, e^{ilx} \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{ikx} e^{-ilx} \, dx = \frac{1}{2\pi} \int_0^{2\pi} e^{i(k-l)x} \, dx = \frac{1}{2\pi i(k-l)} e^{i(k-l)x} \Big|_0^{2\pi} = 0.$$

Po drugi strani pa je

$$\langle e^{ikx}, e^{ikx} \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{ikx} e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} dx = 1,$$

kar pomeni, da je množica $\mathcal{E} = [e^{-inx}, \dots, e^{inx}]$ ortonormirana baza prostora T_n .

1

Preslikave med vektorskimi prostori s skalarnim produktom

- (1) Izračunaj adjungirana endomorfizma danih endomorfizmov:
 - (a) $W: \mathbb{R}^3 \to \mathbb{R}^3$ s predpisom $W(\vec{x}) = \vec{\omega} \times \vec{x}$ za nek $\vec{\omega} \in \mathbb{R}^3$,
 - (b) $D: T_n \to T_n$ s predpisom $D(\psi) = \psi'$.

Rešitev: Naj bo $T:V\to V$ endomorfizem vektorskega prostora s skalarnim produktom V nad obsegom $\mathbb R$ ali $\mathbb C$. Adjungirani endomorfizem endomorfizem T glede na dani skalarni produkt na V je potem endomorfizem $T^*:V\to V$, ki je enolično določen s pogojem

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

za vsaka $x, y \in V$. Adjungirani endomorfizem T^* je odvisen tako od T kot od izbire skalarnega produkta. Če je \mathcal{B} poljubna ortonormirana baza V, velja

$$[T^*]^{\mathcal{B}}_{\mathcal{B}} = \left([T]^{\mathcal{B}}_{\mathcal{B}} \right)^H,$$

glede na poljubno bazo pa to ni nujno res.

(a) Najprej si poglejmo endomorfizem evklidskega prostora $W: \mathbb{R}^3 \to \mathbb{R}^3$. V tem primeru je standardna baza \mathbb{R}^3 ortonormirana, zato velja

$$[W^*]_{\mathcal{E}}^{\mathcal{E}} = ([W]_{\mathcal{E}}^{\mathcal{E}})^T.$$

V našem primeru smo že izračunali, da W glede na standardno bazo pripada matrika

$$[W]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix},$$

kjer je $\vec{\omega} = (\omega_x, \omega_y, \omega_z)$. Od tod potem sledi, da je

$$[W^*]_{\mathcal{E}}^{\mathcal{E}} = ([W]_{\mathcal{E}}^{\mathcal{E}})^T = \begin{bmatrix} 0 & \omega_z & -\omega_y \\ -\omega_z & 0 & \omega_x \\ \omega_y & -\omega_x & 0 \end{bmatrix},$$

kar pomeni, da je

$$W^* = -W.$$

Takšnim endomorfizmom rečemo, da so antisimetrični.

Opomba: Adjungirani endomorfizem lahko izračunamo tudi direktno z uporabo lastnosti skalarnega in mešanega produkta

$$\langle \vec{x}, W^* \vec{y} \rangle = \langle W \vec{x}, \vec{y} \rangle = \langle \vec{\omega} \times \vec{x}, \vec{y} \rangle = (\vec{\omega}, \vec{x}, \vec{y}) = -(\vec{\omega}, \vec{y}, \vec{x}) = -\langle W \vec{y}, \vec{x} \rangle = \langle \vec{x}, -W \vec{y} \rangle.$$

Tako smo abstraktno pokazali, da velja $W^* = -W$ brez uporabe koordinatne matrike.

(b) Pokazali smo že, da je množica $\mathcal{E} = [e^{-inx}, \dots, e^{inx}]$ ortonormirana baza T_n .

Odvajanje deluje na baznih trigonometričnih polinomih s predpisom

$$D(e^{ikx}) = ike^{ikx}.$$

Torej je koordinatna matrika endomorfizma D glede na bazo $\mathcal E$ diagonalna

$$[D]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} -in & 0 & \cdots & 0 \\ 0 & -i(n-1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & in \end{bmatrix}.$$

Matrika, ki pripada endomorfizmu D^* glede na bazo \mathcal{E} , je potem hermitska transponiranka te matrike, oziroma

$$[D^*]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} in & 0 & \cdots & 0 \\ 0 & i(n-1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -in \end{bmatrix}.$$

Vidimo, da je $D^* = -D$, kar pomeni, da je endomorfizem D antihermitski.

(2) Skalarni produkt na \mathbb{R}^2 je dan s predpisom

$$\langle x, y \rangle_g = 2x_1y_1 + 2x_2y_2 + x_1y_2 + x_2y_1,$$

endomorfizem $A: \mathbb{R}^2 \to \mathbb{R}^2$ pa s predpisom A(x,y) = (x,2y). Izračunaj endomorfizem A^* glede na dani skalarni produkt.

 $Re\check{s}itev$: Pri tej nalogi bomo spoznali, kako lahko izračunamo adjungirani endomorfizem glede na nestandardni skalarni produkt na \mathbb{R}^n , ki je dan z metričnim tenzorjem g glede na standardno bazo. Če označimo z A matriko, ki pripada endomorfizmu A glede na standardno bazo in z A_g^* matriko, ki pripada endomorfizmu A^* glede na skalarni produkt g v standardni bazi, velja formula

$$A_g^* = g^{-1} A^T g.$$

V primeru standardnega skalarnega produkta je $g=\mathrm{I},$ zato je $A_{std}^*=A^T.$

V našem primeru pripada skalarnemu produktu

$$\langle x, y \rangle_g = 2x_1y_1 + 2x_2y_2 + x_1y_2 + x_2y_1$$

metrični tenzor

$$g = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Za matriko

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

tako dobimo

$$A_g^* = g^{-1}A^Tg = \frac{1}{3}\begin{bmatrix}2 & -1\\ -1 & 2\end{bmatrix}\begin{bmatrix}1 & 0\\ 0 & 2\end{bmatrix}\begin{bmatrix}2 & 1\\ 1 & 2\end{bmatrix} = \frac{1}{3}\begin{bmatrix}2 & -2\\ 2 & 7\end{bmatrix}.$$

kar pomeni, da endomorfizem A ni simetričen glede na skalarni produkt $\langle -, - \rangle_g$. Je pa seveda simetričen glede na standardni skalarni produkt.

(3) Zapiši matriko

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

v obliki $A = PDP^T$, kjer je P ortogonalna, D pa diagonalna matrika.

Rešitev: Naj bo $A \in \mathbb{R}^{n \times n}$ simetrična matrika. Potem velja:

- (1) lastne vrednosti matrike A so vse realne,
- (2) obstaja ortonormirana baza \mathbb{R}^n , ki jo sestavljajo lastni vektorji matrike A.

Od tod sledi, da lahko matriko A razcepimo v obliki

$$A = PDP^T$$
,

kjer je D diagonalna, P pa ortogonalna matrika.

Karakteristični polinom matrike A je

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = -(\lambda - 1)^2(\lambda - 3),$$

kar pomeni, da ima matrika A lastne vrednosti $\lambda_{1,2} = 1$ in $\lambda_3 = 3$.

Pri lastni vrednosti $\lambda_{1,2} = 1$ je

$$A - \mathbf{I} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \overset{V_3 \leftarrow V_3 - V_1}{\sim} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

V jedru te matrike so vektorji oblike

$$v = y(0, 1, 0) + z(-1, 0, 1).$$

Tako dobimo ortonormirano bazo $[(0,1,0),\frac{1}{\sqrt{2}}(-1,0,1)]$ lastnega podprostora $E_A(1)$.

Bazo lastnega podprostora $E_A(3)$ lahko izračunamo analogno, še hitreje pa jo dobimo z upoštevanjem, da so lastni podprostori normalnih matrik pri različnih lastnih vrednostih paroma ortogonalni. Torej lahko za bazni vektor $E_A(3)$ vzamemo vektorski produkt baznih vektorjev $E_A(1)$, ki je $\frac{1}{\sqrt{2}}(1,0,1)$.

Iskana prehodna matrika je torej

$$P = \begin{bmatrix} 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix},$$

matriko A pa lahko faktoriziramo v obliki

$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$$