

MTM 1020 - Cálculo B

II Avaliação

Aluno: Dêner Jarger Teireira

	10

Questão	1	2	3	4	5	Total
Valor	3,2	1,8	1,5	1,5	2,0	10,0
Nota	0.3	1.8	0	1,3	0,8	4,7

- 1. Seja $f(x,y) = \frac{x^2y}{x^3 + y^3}$, para $(x,y) \neq (0,0)$.
 - a. Verifique se existe o limite da f(x,y) quando (x,y) tende a (0,0). Caso exista, qual o seu valor?
 - b. Calcule o gradiente da função f(x, y) no ponto (2, 1).
 - c. Calcule a derivada direcional de f no ponto (2,1) na direção (e sentido) do vetor $\overrightarrow{u}=(1,2)$
 - d. Encontre o piano tangente ao gráfico de f no ponto do gráfico correspondente a $x_0=2$ e $y_0=1$. (Lembre-se que a equação do plano tangente é dada por $z=f\left(x_0,y_0\right)+\frac{\partial f}{\partial x}\left(x_0,y_0\right)\left(x-x_0\right)$

 $\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)$

- 2. Seja S a superfície que é o gráfico de $f(x,y) = 2x^4 + y^2 x^2 2y$. Encontre seus pontos críticos em \mathbb{R}^2 e classifique-os em máximo local, mínimo local e ou sela.
- 3. Determine a área do parabolóide $z=x^2+y^2$ abaixo do plano z=4. Lembre-se que

•
$$A(S) = \iint_{R} \sqrt{(f_x(x,y))^2 + (f_y(x,y))^2 + 1} dA$$

- É interessante simplificar o cálculo de algumas integrias utilizando coordenadas polares.
- 4. Calcule a integral dupla $\iint_R y dA$ onde R é a região do primeiro quadrante compreendida pelo círculo $x^2 + y^2 = 25$ e a reta x + y = 5.
- 5. Calcule a integral tripla $\iiint_S xy \operatorname{sen} yz dV$ se S for o paralelepípedo retangular, limitado pelos planos $x=\pi,\ y=\frac{1}{2}\pi,\ z=\frac{1}{2}\pi$ e pelos planos coordenados.

Aluno: Dênes Varga Terxerra

Questão	1	2	3	4	5	6	Total
Valor	1,6	1,0	1,4	1.4	1,4	1,2	8.0
Nota	0,2	O	0	1.0	10	1.2	3.4

- 1. Seja $z = x^2 + y^2 + \frac{2}{xy}$, determine
 - (a) a inclinação da superfície z = f(x, y) na direção x no ponto (2, 1).
 - (b) $\frac{\partial z}{\partial u \partial u}$
 - (c) um vetor unitário na direção do qual z cresce mais rapidamente em P(1,-1).
 - (d) os máximos e mínimos relativos e os pontos de sela (se houverem).
- 2. Calcule o limite, $\lim_{(x,y)\to(0,0)}(x^2+y^2)ln(x^2+y^2)$, se existir. (Sugestão: converta para coordenadas polares.
- Encontre os extremos absolutos da função $f(x,y) = xy^2$ considerando R a região que satisfaz as desigualdades $x \le 0$, $y \le 0$ e $x^2 + y^2 \le 1$.
- 4 Determine o volume do prisma cuja base é o triângulo do plano xy delimitado pelo eixe x e pelas retas y=x, x=1 e cujo topo está no plano z=f(x,y)=3-x-y
- 5. Calcule a integral $\iint \sqrt{9-x^2-y^2}dA$ onde R é a região do primeiro quadrante contida no círculo $x^2 + y^2 = 9$. (Sugestão: use coordenadas polares.)
- 6. Use uma integral tripla para determinar o volume do sólido limitado pela superficie z = \sqrt{y} e os planos x + y = 1, x = 0 e z = 0.

Bom trabalho!