Cancers **2021**, 13, 725

Table 1. Boolean functions of the CFL1 model. Depicted are the Boolean functions of the analyzed model. Interactions are described by logical connectives AND (\land), OR (\lor), and NOT (\neg). Linear interactions have been simplified by time delays ((-2) or (-3)).

Node; t + 1	Boolean Function, t	References
TCF7L2	¬PRKD1	PRKD1 inhibits TCF7L2 expression [11].
AURKA	PAK1	PAK1 phosphorylates AURKA [47–49].
Phosphorylated-CFL1	CD44 \lor TCF7L2 \lor (CFL1 \land LIMK $\land \neg$ SSH1L)	TCF7L2 activates CFL1 expression [11]. CD44 induces CFL1 expression [50,51]. LIMK inhibits CFL1 [52–57]. I both, SSH1L and LIMK are active, CFL1 stays unphosphorylated [58–60].
CFL1	(SSH1L \land Phosphorylated-CFL1) \lor (SSH1L \land LIMK \land Phosphorylated-CFL1)	SSH1L dephosphorylates CFL1 [12,52–54,56–58,61]. LIMK phosphorylates CFL1 [12,52,53,56,58]. If SSH1L and LIMK are present, LIMK may restore phosphorylation, but the dephosphorylation of SSH1L is more pronounced [58–60].
CD44	TWIST1	TWIST1 upregulates CD44 [62,63].
TWIST1	AURKA	AURKA inhibits degradation of TWIST1 [63].
LIMK	$(RHOA \lor PAK1 \lor PAK4) \land \neg SSH1L$	LIMK is activated by dephosphorylation of PAK1, PAK4 and ROCK (downstream of RHOA) [48,53,55,59,61,64–66]. LIMK and SSH1L can build a complex that effectively dephosphorylates both [59,60].
SSH1L	$ \begin{aligned} \text{((F-actin}_{new} \lor \text{F-actin}_{old}) \land \neg PRKD1) \lor (PI3K \land AURKA) \lor \\ \text{(LIMK} \land SSH1L) \end{aligned} $	F-actin enhances SSH1L activity [52,57,59,61]. PRKD1 phosphorylates SSH1L [52,53,61]. In the presence of PI3F AURKA induces SSH1L expression [54,56,57]. LIMK and SSH1L can build a complex that effectively dephosphorylates both [59,60].
F-actin _{new}	$(CFL1 \land ARP2/3) \lor (RHOA(-3) \land \neg CFL1)$	CFL1 and ARP2/3 work in synergy to create new branched actin fibres [58,67–72]. RHOA/ROCK/DIA pathwa polymerizes F-actin (here RHOA delay) [64,73–75].
F-actin _{old}	$(F-actin_{old} \land \neg CFL1) \lor F-actin_{new}$	CFL1 severs F-actin [52,65,67] preferring old ADP-F-actin [58,68,76,77]. Newly formed actin fibres are built, prolonged and thus converted into old ones.
ARP2/3	RAC1(-2)	Downstream of RAC1, ARP2/3 is activated by WAVE or WASP (here by a RAC1 delay) [58,64,69].
KRAS	1	Activating KRAS mutations are present in more than 90% of PDAC patients [3,46,78,79]. For this reason, the protein KRAS is assumed to be always active. Therefore, we modeled it as active (1).
PI3K	KRAS ∨ CD44	The PI3K-pathway is one of the main effector pathways downstream of RAS [80]. CD44 receptor binding activates PI3K/AKT pathway [62,81,82].
PRKD1	RHOA	RHOA activates PRKD1 [11,52,53,65].
RHOA	¬PAK4	PAK4 inhibits RHOA [83].
RAC1	PI3K ∨ Phorsphorylated-CFL1(-3)	RAC1 is activated by PI3K [54,80,84]. Phosphorylated CFL1 activates RAC1 via PLD1 and DOCK (here with delay) [85].

Cancers **2021**, 13, 725

Table 1. Cont.

Node; t + 1	Boolean Function, t	References
PAK1	RAC1	PAK1 is activated by RAC1 [47,48,55,86,87].
PAK4	RAC1	PAK4 is activated by RAC1 [47,48,55].
CDH1	¬TWIST1	TWIST1 inhibits CDH1 expression [63,88–91].
CTNNB1	PAK1 ∧ ¬PRKD1 ∧ ¬CDH1	PAK1 stabilizes CTNNB1 [48,55,86,87]. CDH1 blocks CTNNB1 entering the nucleus [91–94]. PRKD1 inhibits CTNNB1 expression [11].
GSK3B	$\neg AKT$	AKT inactivates GSK3B [56,80,95–97].
MYC	$(\neg GSK3B \land STAT3) \lor (CTNNB1 \land \neg GSK3B)$	STAT3 induces MYC expression [56,98–102]. GSK3B ubiquitinates MYC [103]. GSK3B blocks expression of MYC by CTNNB1 [55,94,104,105].
CCND1	$(\neg GSK3B \land MYC \land AKT)$	GSK3B destabilizes CCND1 [96,97]. AKT supports the assembly of CCND1 with CDK4/6 [97,106–110]. MYC induces CCND1 expression [95,110–112].
RB	¬CCND1	CCND1 inhibits RB [95,96,113].
E2F	¬RB	RB inhibits E2F [95,96,113].
CCNE1	E2F	E2F induces the expression of CCNE1 [95,96].
S-phase	E2F \land CCNE1	The synergy of CCNE1 and E2F is responsible for S-phase transition [95,96,103].
AKT	PI3K ∧ STAT3	PI3K activates AKT [54,96,106,110,114]. STAT3 induces expression and activation of AKT [98,115–117].
STAT3	(Phosphorylated-CFL1 \vee CFL1) \wedge CD44	CFL1 regulates amount of STAT3 [45]. CD44 activates STAT3 [56,118].
Anti-apoptotic proteins	STAT3	STAT3 induces expression of BCL2L1 or MCL1 [99–102,119].
Pro-apoptotic proteins	¬AKT	AKT phosphorylates BAD [119–121].
CYCS	Pro-apoptotic proteins $\land \neg$ Anti-apoptotic proteins \land CFL1	Imbalance between pro- and anti-apoptotic proteins induce release of CYCS by activating BAX. Unphosphorylated CFL1 translocates to the mitochondrion after induction of apoptosis [122–125] and acts as a carrier for BAX [126].
Caspases	CYCS ∧ ¬AKT	Released CYCS forms an apoptosome further activating caspases signalling [119,120,122,124,127–129]. AKT phosphorylates caspase-9 [119–121].

Abbreviations: \land = and; \lor = or; \neg = not; (-2) = time delay of two time steps; (-3) = time delay of three time steps; ADP = Adenosine diphosphate; AKT = protein kinase B; ARP2/3 = actin-related protein-2/3 complex; AURKA = aurora kinase A; Anti-apoptotic proteins = [pooled BAD (=Bcl2-antagonist of cell death), BAX (=Bcl2-associated X protein), BAK (=Bcl2-antagonist/killer)]; APAF-1 = apoptotic peptidase activating factor 1; Caspases = pooled caspase-3 and caspase-9 with their corresponding pro-caspases; CCND1 = Cyclin D1; CCNE1 = Cyclin E1; CDH1 = E-cadherin; CD44 = CD44 antigen; CDK4/6 = cyclin dependent kinase 4/6; CFL1 = cofilin-1; CTNNB1 = β -catenin; CYCS = Cytochrome C; DIA = diaphanous related formin; DOCK = dedictor of cytokinesis; E2F = E2F transcription factor; GSK3B = glycogen synthase kinase 3 β ; KRAS = Kirsten rat sarcoma oncogene; LIMK = LIM domain kinase; MYC = MYC proto-oncogene; PAK1 = p21 activated kinase 1; PAK4 = p21 activated kinase 4; RAC1 = ras-related botulinum toxin substrate 1; RB = retinoblastoma protein; RHOA = ras homolog family member A; PI3K = phosphoinositide-3-kinase; PLD1 = phospholipase D1; PRDK1 = protein kinase D1; Pro-apoptotic proteins = [BCL2L1 (=Bcl2-like 1), MCL1 (=myeloid leukemia cell differentiation protein)]; RAS = rat sarcoma; ROCK = Rho-associated protein kinase; SSH1L = slingshot protein phosphatase 1; STAT3 = signal transducer and activator of transcription 3; TCF7L2 = transcription factor 7-like 2; TWIST1 = twist family BHLH transcription factor 1, WASP = Wiskott-Adrich syndrome protein; WAVE = Verpolin-homologous protein.