Método de Newton-Raphson

Método de Newton-Raphson

Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, é possível determinar uma aproximação de tal raiz a partir da interseção da tangente à curva em um ponto x_0 com o eixo das abscissas.

x₀ - atribuído em função da geometria do método e do comportamento da curva da equação nas proximidades da raiz.

 $f(\mathbf{x}_{\mathbf{k}})$

Newton-Raphson

Analisemos

 $\overline{x} = \mathbf{x}_{k} - \frac{f(\mathbf{x}_{k})}{f'(\mathbf{x}_{k})}$

 $\mathbf{X}_{\mathbf{k}}$

L(x)

- Considerações Iniciais
 - Deste modo, escolhido x₀, a sequência {x_k} será determinada por

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{f(\mathbf{x}_k)}{f'(\mathbf{x}_k)} \quad ,$$

onde k = 0, 1, 2, ...

- Motivação Geométrica
 - - Traça-se a reta $L_k(x)$ tangente à curva neste ponto:

$$L_k(x) = f(x_k) + f'(x_k)(x - x_k)$$

• Determina-se o zero de $L_k(x)$, um modelo linear que aproxima f(x) em uma vizinhança x_k

$$L_k(x) = 0 \Leftrightarrow x = x_k - f(x_k)/f'(x_k)$$

• Faz-se $x_{k+1} = x$

Análise Gráfica

Estudo da Convergência

TEOREMA 3:

Sendo f(x), f'(x) e f''(x) continuas em um intervalo I que contém uma raiz $x = \xi$ de f(x) = 0 e supondo $f'(\xi) \neq 0$, existirá um intervalo $\bar{I} \subseteq I$ contendo a raiz ξ , tal que se $x_0 \in \bar{I}$, a seqüência $\{x_k\}$ gerada pela fórmula recursiva

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

convergirá para a raiz.

Testes de Parada

- A cada iteração, testa-se se a aproximação encontrada poderá ser considerada como a solução do problema.
 - | f(x_k)| ≤ tolerância
 - $|((x_{k+1}-x_k)/x_{k+1})| \leq tolerância$

Exemplo 17: No Exemplo 13, no qual $x^2 + x - 6 = 0$:

- Seja a raiz $\xi_2 = 2$ e $x_0 = 1,5$
- Assim:

$$g(x) = x - f(x)/f'(x) = x - (x^2 + x - 6)/(2x + 1)$$

$$x_1 = g(x_0) = 1.5 - (1.5^2 + 1.5 - 6)/(2.1.5 + 1)$$

$$x_1 = 2.062500000$$

$$x_2 = g(x_1) = 2,000762195$$

$$x_3 = g(x_2) = 2,000000116$$

8

Exemplo 17: Comentários:

A parada poderá ocorrer na 3ª iteração (x = 2,000000116), caso a precisão do cálculo com 6 casas decimais for satisfatória para o contexto do trabalho

Exemplo 18: Considere-se a função $f(x) = x^3 - x - 1$, e tol = 0,002 cujos zeros encontram-se nos intervalos:

$$\xi_1 \in I_1 = (-1, 0), \ \xi_2 \in I_2 = (1, 2)$$

- Seja $x_0 = 1$
- $e g(x) = x (x^3 x 1)/(3x^2 1)$

Exemplo 18:

Cálculo da 1^a aproximação

$$g(x_0) = 1 - [(1)^3 - 1 - 1] = 1,5$$
 $[3*(1)^2 - 1]$

Teste de Parada

•
$$|f(x_0)| = |0.875| = 0.875 > \varepsilon$$

Exemplo 18:

Cálculo da 2^a aproximação

$$g(x_1) = 1.5 - [(1.5)^3 - 1.5 - 1] = 1,3478261$$

 $[3*(1.5)^2 - 1]$

- Teste de Parada
 - $|f(x_1)| = |0,100682| = 0,100682 > \varepsilon$

Exemplo 18:

Cálculo da 3^a aproximação

$$g(x_2) = 1,3478261 - [(1,3478261)^3 - 1,3478261 - 1]$$

$$[3*(1,3478261)^2 - 1]$$

$$g(x_2) = 1,3252004$$

- Teste de Parada
 - $|f(x_2)| = |0,0020584| = 0,0020584 > \varepsilon$

Exemplo 18:

A sequência $\{x_k\}$ gerada pelo método de Newton será:

Iteração	x	F(x)
1	1,5	0,875
2	1,3478261	0,1006822
3	1,3252004	0,0020584
4	1,3247182	9,24378.10 ⁻⁷
5	1,3247178	1,86517.10 ⁻¹³

$$\varepsilon = 0.002 \dots$$

Vantagens:

- Rapidez processo de convergência;
- Desempenho elevado.

Desvantagens:

- Necessidade da obtenção de f'(x), o que pode ser impossível em determinados casos;
- O cálculo do valor numérico de f(x) a cada iteração;
- Difícil implementação.

Método da Secante

Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, é possível determinar uma aproximação de tal raiz a partir da interseção da secante à curva em dois pontos x_0 e x_1 com o eixo das abscissas.

x₀ e x₁ - atribuídos em função da geometria do método e do comportamento da curva da equação nas proximidades da raiz.

- Considerações Iniciais
 - Método de Newton-Raphson
 - Um grande inconveniente é a necessidade da obtenção de f(x) e o cálculo de seu valor numérico a cada iteração
 - Forma de desvio do inconveniente
 - Substituição da derivada f'(x_k) pelo quociente das diferenças

$$f'(x_k) \approx [f(x_k) - f(x_{k-1})]/(x_k - x_{k-1})$$

onde x_{k-1} e x_k são duas aproximações para a raiz

- Considerações Iniciais
 - A função de iteração será

$$g(x) = x_k - f(x_k) / [(f(x_k) - f(x_{k-1})) / (x_k - x_{k-1})]$$

$$= (x_k - x_{k-1}) \cdot f(x_k) / [f(x_k) - f(x_{k-1})]$$

$$= [x_{k-1} \cdot f(x_k) - x_k \cdot f(x_{k-1})] / [f(x_k) - f(x_{k-1})]$$

$$g(x) = \frac{[x_{k-1}.f(x_k)-x_k.f(x_{k-1})]}{[f(x_k)-f(x_{k-1})]}$$

- Interpretação Geométrica
 - A partir de duas aproximações x_{k-1} e x_k
 - Obtém-se o ponto x_{k+1} como sendo a abscissa do ponto de intersecção do eixo \overrightarrow{ox} e da reta que passa pelos pontos $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$ (secante à curva da função)

Análise Gráfica

- Testes de Parada
 - A cada iteração, testa-se se a aproximação encontrada poderá ser considerada como a solução do problema.

$$\bullet | f(x_k)| \leq \varepsilon$$

$$| ((x_{k+1} - x_k)/x_{k+1}) | \leq \varepsilon$$

Exemplo 19: Considere-se a função $f(x) = x^3 - x - 1$, e $\varepsilon = 0,002$ cujos zeros encontram-se nos intervalos:

• Seja
$$x_{k-1} = 1,5 e x_k = 1,7$$

$$g(x) = \underbrace{[x_{k-1} . f(x_k) - x_k . f(x_{k-1})]}_{[f(x_k) - f(x_{k-1})]}$$

•

Método da Secante

Exemplo 19:

■ Cálculo da 1^a aproximação $x_0 = 1,5$ $x_1 = 1,7$

$$f(x_0) = 0.875 > 0$$

 $f(x_1) = 2.213 > 0$
 $x_2 = [1.5.(2.213) - 1.7.(0.875)] = 1.36921$
 $[2.213 - (0.875)]$

Teste de Parada

$$|f(x_2)| = |0,19769| = 0,19769 > \varepsilon$$

- Escolha do Novo Intervalo
 - $x_1 = 1,36921 e x_2 = 1,5$

Exemplo 19:

■ Cálculo da 2^a aproximação: $x_1 = 1,36921$ e $x_2 = 1,5$ $f(x_1) = 0,19769 > 0$ $f(x_2) = 0,875 > 0$ $x_3 = [1,36921.(0,875) - 1,5.(0,19769)] ⇒ [0,875-(0,19769)]$ $x_3 = 1,33104$

Exemplo 19:

- Cálculo da 2^a aproximação: $x_1 = 1,36921$ e $x_2 = 1,5$
 - Teste de Parada
 - $|f(x_3)| = |0,02712| = 0,02712 > \varepsilon$
 - Escolha do Novo Intervalo
 - $x_2 = 1,33104 e x_3 = 1,36921$

Exemplo 19:

 $x_4 = 1,324971$

• Cálculo da 3^a aproximação: $x_2 = 1,33104$ e $x_3 = 1,36921$ $f(x_2) = 0,02712 > 0$ $f(x_3) = 0,19769 > 0$ $x_4 = [1,33104.(0,19769) - 1,36921.(0,02712)]$ [0,19769 - (0,02712)]

Exemplo 19:

- Cálculo da 3^a aproximação: $x_2 = 1,33104$ e $x_3 = 1,36921$
 - Teste de Parada
 - $|f(x_4)| = |0,00108| = 0,00108 < \varepsilon$

(valor aceitável para a raiz)

Exemplo 20: Resgatando o Exemplo 13, no qual $x^2 + x - 6 = 0$:

- Sejam $x_0 = 1.5 e x_1 = 1.7$
- Assim:
 - $x_2 = [x_0.f(x_1) x_1.f(x_0)]/[f(x_1) f(x_0)]$ = [1,5.(-1,41) 1,7.(2,25)]/(-1,41 + 2,25) = 2,03571
 - $x_3 = [x_1.f(x_2) x_2.f(x_1)]/[f(x_2) f(x_1)]$ = 1,99774

Exemplo 20: Resgatando o Exemplo 13, no qual $x^2 + x - 6 = 0$:

Assim:

$$x_4 = [x_2 .f(x_3) - x_3 .f(x_2)]/[f(x_3) - f(x_2)]$$

$$= 1,99999$$

$$\vdots$$

Comentários:

A parada poderá ocorrer na 3ª iteração (x = 1,99999), caso a precisão do cálculo com 5 casas decimais for satisfatória para o contexto do trabalho

Vantagens:

- Rapidez processo de convergência;
- Cálculos mais convenientes que do método de Newton;
- Desempenho elevado.

Desvantagens:

- Se o cálculo f(x) não for difícil, então o método logo será substituído pelo de Newton-Raphson;
- Se o gráfico da função for paralela a um dos eixos e/ou tangencia o eixo das abscissas em um ou mais pontos, logo não se deve usar o método da Secante;
- Difícil implementação.