

SRI CHAITANYA EDUCATIONAL INSTITUTIONS,INDIA.

A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI,CHANDIGARH

SEC: JR BIPC (INCOMING)

DATE:14-07-2021

SUB: BOTANY NEET UNIT TEST - 2 Max. Marks: 720

- Which stage of interphase involves duplication of most organelles?
 - (1) G_1 phase
 - (2) S-phase
 - (3) G₂-phase
 - (4) G_0 phase
- 2. Which of the following is a proteolytic enzyme with zinc as metal ion co-factor?
 - (1) Hexokinase
 - (2) Catalase
 - (3) Peroxidase
 - (4) Carboxypeptidase
- A type of Vitamin B-complex, niacin is associated with
 - (1) NAD
 - (2) NADP
 - (3) FAD
 - (4) 1 and 2
- 4. Splitting of centromere and separation of chromatids occurs during
 - (1) Prophase
 - (2) Metaphase
 - (3) Anaphase
 - (4) Telophase
- 5. Match the following

List I	List II
(A) Ligases	i) Catalyse inter conversion of optical isomers
(B) Hydrolases	ii) Catalyse transfer of a group

	iii) Break of C-C, P-N bonds
(D) Isomerases	iv) Join C-S, C-N bonds

	A	В	C	D
(1)	i	ii	iii	iv
(2)	iv	iii	ii	i
(3)	iv	iii	i	ii
(4)	iv	i	ii	iii

- 6. The transiently bound co-factor in a conjugated enzyme is
 - (1) Fe
 - (2) NAD
 - (3) Haem part
 - (4) Zn
- 7. Malonate is structurally similar to
 - (1) Succinic acid
 - (2) Succinic dehydrogenase
 - (3) NADP
 - (4) NAD
- 8. Correct statement for exothermic reaction is
 - (1) Substrate has less potential energy than product
 - (2) Substrate gains energy while product is formed
 - (3) Substrate has more energy than product
 - (4) More than one options correct

- 9. In our skeletal muscles under anaerobic conditions glucose is converted into
 - (1) Alcohol
 - (2) Succinic acid
 - (3) Malic acid
 - (4) Lactic acid
- A molecule of carbonic anhydrase can form how many molecules of carbonic acid in a minute
 - (1) 6,00,000
 - (2) 60,000
 - (3) 60,00,000
 - (4) 3,60,00,000
- 11. Rate of a reaction in general can be measured as
 - (1) ½ Vmax
 - (2) Vmax
 - (3) rate = $\frac{\delta p}{\delta t}$
 - (4) Km
- 12. The enzymes are active even at 80-90°C in organisms of
 - (1) Hot vents
 - (2) Sulphur springs
 - (3) Temperate regions
 - (4) 1 and 2
- 13. Ribozyme is a
 - (1) Proteinaceous enzyme
 - (2) Non-proteinaceous enzyme
 - (3) Nucleic acid behaving as enzyme
 - (4) More than one options is correct
- 14. Inverse of reaction rate with reference to temperature increase is noticed in relation to enzyme activity

- (1) When reaches more than optimum temperature
- (2) When it is below optimum temperature
- (3) When it is in initial rate and low temperature
- (4) After the enzyme is inactivated at low temperature
- 15. Correct statement(s) related to enzymes is / are
 - (1) Enzyme catalysts differ from inorganic catalysts in many ways
 - (2) Major difference of enzyme catalysts and inorganic catalysts is efficiency at high temperature
 - (3) Inorganic catalysts are efficient at high temperature
 - (4) All of these
- 16. Active site of an enzyme represents
 - (1) Crevice
 - (2) Pocket
 - (3) 1 and 2
 - (4) Primary structure
- 17. Which structure of proteins enables more of enzymatic nature?
 - (1) Primary
 - (2) Secondary
 - (3) Tertiary
 - (4) Quaternary
- 18. A very significant contribution of mitosis is
 - (1) Genetic recombination
 - (2) Variation
 - (3) Cell repair
 - (4) Growth

19.	Cytokinesis in plant cells is marked by		(3) i iv iii ii
	(1) Furrowing in cell membrane	24.	(4) iv iii ii i
	(2) Cell plate formation		Cells of this stage are metabolically active
	(3) Asters		but donot proliferate any more
	(4) 1 and 3		(1) G_1
20.	Mitosis enables replacement of		$(2) G_2$
	(1) Cells of epidermis		(3) G_0
	(2) Cells of lining of gut		(4) S
	(3) Blood cells	25.	Attached spindle fibres with kinetochore is
	(4) All of these		seen during
21.	Haploid cells also divide by mitosis in these		(1) Metaphase
	animals		(2) Early Anaphase
	(1) Higher animals		(3) Late Anaphase
	(2) Reptiles		(4) All of these
	(3) Social insects	26.	Nuclear envelope and nucleoli disappear in
	(4) 1 and 3		(1) Prophase
22.	Nucleo-cytoplasmic ratio of the cell is		(2) Telophase
	maintained by		(3) Inter kinesis
	(1) Growth in plant body		(4) Cytokinesis
	(2) Mitosis	27.	G ₂ - phase is associated with
	(3) Reproduction		(1) Most organelles duplication
	(4) Meiosis –I		(2) RNA and protein synthesis
23.	Match the following		(3) Chromosomal doubling
	List I List II		(4) Chromatids doubling
	(A) Telophase i) Chromosomes move to equator	28.	Small disc shaped structures at the surface of
	ii) E.R and golgi		centromere are
	(B) Metaphase complex donot appear		(1) Chromatids
	iii) Chromatids		(2) Kinetochores
	(C) Anaphase move to opposite poles		(3) Secondary constrictions
	(D) Late prophase iv) E.R and golgi	20	(4) More than one options correct
	complex reform	29.	Which of the following represents quiescent
	A B C D		stage
	(1) i ii iii iv		(1) G ₁ (2) G ₂
	(2) iv i iii ii		(3) G ₀ (4) S
Sri	Chaitanya	 	(T) 5
	Pag	5 C 3	

- 30. Correct statement related to 'S' phase of interphase of cell division is
 - (1) DNA synthesis in nucleus and centrioles doubling in cytoplasm
 - (2) DNA synthesis and centrioles doubling in the nucleus
 - (3) DNA synthesis and centrioles doubling in the cytoplasm
 - (4) DNA synthesis in cytoplasm and centrioles doubling in the nucleus
- How many cell cycles can an yeast cell undergo in the duration of one cell cycle of human cell
 - (1) 12 cycles
 - (2) 14 cycles
 - (3) 16 cycles
 - (4) 24 cycles
- 32. The interval between mitosis and initiation of DNA replication is
 - (1) 'S' phase
 - (2) G_2 phase
 - (3) G_0 phase
 - (4) G_1 phase
- Diploid cells only undergo mitosis commonly in
 - (1) Plants
 - (2) Animals
 - (3) Fungi
 - (4) Algae
- 34. Centrosome duplication occurs during
 - (1) Metaphase
 - (2) Telophase
 - (3) Prophase
 - (4) Interphase
- 35. Mitotic apparatus represents
- Sri Chaitanya

- (1) Two asters and spindle fibres together
- (2) One aster and spindle fibres together
- (3) Several asters and spindle fibres together
- (4) All of these
- 36. Each chromosome with two chromatids is seen in
 - (1) Metaphase
 - (2) Anaphase of mitosis
 - (3) Late Metaphase
 - (4) 1 and 3
- 37. Incorrect statement for mitotic cell cycle is
 - (1) Disappearance of one nucleus and reappearance of two nuclei
 - (2) DNA is doubled once
 - (3) Doubling of nucleous and cell
 - (4) DNA doubled in daughter cells
- 38. Animal cells during interphase exhibit RNA and protein synthesis in
 - (1) G_1 phase
 - (2) S-phase
 - (3) G_2 phase
 - (4) More than one options correct
- 39. Daughter nuclei appear in
 - (1) Cytokinesis
 - (2) Telophase
 - (3) Interphase
 - (4) Interkinesis
- 40. A general rule of thumb for enzymes is when temperature change by 10^oC, it leads to
 - (1) Doubling the rate only
 - (2) Decrease of rate by half only
 - (3) 1 or 2
 - (4) Denaturation of enzyme

- 41. The centromere of each chromosome is at leading edge during
 - (1) Prophase
 - (2) Metaphase
 - (3) Anaphase
 - (4) Cytokinesis
- 42. Animal cells which do not appear to exhibit division are
 - (1) Skin cells
 - (2) cells of lining of gut
 - (3) Heart cells
 - (4) Blood cells
- 43. Chromosomal identity is lost during this stage of mitosis
 - (1) Prophase
 - (2) Telophase
 - (3) Metaphse
 - (4) Anaphase
- 44. Correct statement for Mitosis is
 - (1) One nuclear disappearances and one nuclear reappearances
 - (2) One nucleus disappearance and one nucleus reappearance
 - (3) One nuclear disappearance and two nuclear reapparances
 - (4) Two nuclear disapparances and one nuclear reapperance
- 45. The longest stage of cell cycle is
 - (1) Interphase
 - (2) Metaphase I
 - (3) Prophase II
 - (4) Metaphase II

ZOOLOGY

- 46. Most abundant plasma proteins are
 - (1) collagens

Sri Chaitanya

- (2) globulins
- (3) albumins
- (4) fibrinogen
- 47. Slight increase in WBC count is known as
 - (1) leucopoiesis
 - (2) leucocytosis
 - (3) leukemia
 - (4) leucopenia
- 48. Leucocytes which resist infections and involved in allergic reactions are
 - (1) eosinophils
 - (2) basophils
 - (3) neutrophils
 - (4) lymphocytes
- 49. Non phagocytic agranulocytes are
 - (1) monocytes
 - (2) basophils
 - (3) lymphocytes
 - (4) erythrocytes
- 50. Identify the incorrect statement about fluid connective tissues.
 - (1) Blood is specialised connective tissue.
 - (2) Intercellular matrix is without fibres.
 - (3) Blood and lymph together are called mucous connective tissues.
 - (4) Blood is considered vascular tissue.
- 51. In blood, most abundant formed elements are
 - (1) neutrophils
 - (2) erythrocytes
 - (3) thrombocytes
 - (4) lymphocytes
- 52. Contractile proteins in myofilamensts of muscle fibres are
 - (1) collagen and elastin
 - (2) actin and myosin

- (3) elastin and myosin
- (4) actin and collagen
- 53. Blood is derivative of the germ layer
 - (1) ectoderm
 - (2) endoderm
 - (3) mesoderm
 - (4) both endoderm and mesoderm
- 54. Involuntary striated muscles are found in the organ
 - (1) tongue
 - (2) stomach
 - (3) heart
 - (4) urinary bladder
- 55. Skeletal muscle fibres are
 - (1) uninucleated and unbranched
 - (2) syncytial and branched
 - (3) uninucleated and branched
 - (4) multi nucleated and unbranched
- 56. Which of the following are absent in lymph?
 - (1) Lymphocytes
 - (2) Thrombocytes
 - (3) small proteins
 - (4) Leucocytes
- 57. Decrease in platelet count is called
 - (1) anaemia
 - (2) leucocytopenia
 - (3) thrombocytopenia
 - (4) erythrocytopenia
- 58. Intercalated discs are characteristic feature of
 - (1) voluntary muscles
 - (2) non-striated muscles
 - (3) cardiac muscles
 - (4) involuntary smooth muscles
- 59. Statement I: All striated muscles are voluntary muscles.

- Statement II: Voluntary muscles undergo quick contractions.
- (1) Both SI and SII are correct
- (2) Both SI and SII are incorrect
- (3) SI is correct, SII is incorrect
- (4) SI is incorrect, SII is correct
- 60. Leucocytes with kidney shaped nucleus are
 - (1) neutrophils
 - (2) lymphocytes
 - (3) monocytes
 - (4) eosinophils
- 61. Maximum number of mitochondria are found in muscle fibres of
 - (1) skeletal muscles
 - (2) cardiac muscles
 - (3) smooth muscles
 - (4) voluntary muscles
- 62. Smallest formed elements are
 - (1) erythrocytes
 - (2) neutrophils
 - (3) lymphocytes
 - (4) platelets
- 63. Identify the CORRECT statement from the following.
 - (1) Blood plasma without any plasma proteins is serum.
 - (2) Blood without formed elements but with all plasma proteins is serum.
 - (3) Blood without erythrocytes, leucocytes and plasma proteins is lymph.
 - (4) Blood plasma without clotting factors is serum.
- 64. Smooth muscles are absent in
 - (1) pharynx
 - (2) urinary bladder

- (3) stomach
- (4) intestine
- 65. Formed elements involved in inflammatory reactions are
 - (1) eosinophils
 - (2) basophils
 - (3) neutrophils
 - (4) platelets
- 66. Match the following

Epithelial tissue	Example
(A) Compound epithelium	i) Germinal epithelium
(B) Simple cuboidal	ii) Mucosa of gut
(C) Simple squamous	iii) Endothelium
(D) Simple columnar	iv) Pancreatic duct

	A	В	C	D
(1)	iii	ii	i	iv
(2)	iv	iii	ii	i
(3)	iv	i	iii	ii
(4)	ii	i	iv	iii

- 67. Cell junctions that prevent leakage of substances into surrounding tissues are
 - (1) desmosomes
 - (2) tight junctions
 - (3) anchoring junctions
 - (4) gap junctions
- 68. Select the INCORRECT match from the following.
 - (1) Epidermis of vertebrates
 - Keratinized stratified squamous epithelium
 - (2) Dermis of skin
 - non keratinized stratified squamous epithelium

- (3) Subcutaneous layer
- areolar and adipose tissue
- (4) Stratum corneum apical layers
- dehydrated and keratinized cells
- 69. The tissue that is absent in trachea and bronchi is
 - (1) smooth muscles
 - (2) hyaline cartilage
 - (3) elastic cartilage
 - (4) ciliated epithelium
- 70. Haversian systems are found in
 - (1) skull and ribs
 - (2) vertebrae
 - (3) diaphysis of long bones
 - (4) metaphysis of long bones
- 71. Which of the following is not made of elastic cartilage?
 - (1) Epiglottis
 - (2) Eustachian tube
 - (3) Ear pinna
 - (4) Epiphyseal plate
- 72. Toughest cartilage is seen in
 - (1) intervertebral ligaments
 - (2) intervertebral discs
 - (3) intercalated discs
 - (4) epiphyseal plates
- 73. Which of the following is not made of connective tissue?
 - (1) Perichondrium
 - (2) Periosteum
 - (3) Pericardium
 - (4) Peritoneum
- 74. Major organic substance of bones is
 - (1) chondroitin
 - (2) collagen

- (3) elastin
- (4) hydroxyapatite
- 75. Most common cells in connective tissue are
 - (1) macrophages
 - (2) mast cells
 - (3) fibroblasts
 - (4) leucocytes
- 76. Unipolar neurons are found in
 - (1) retina of eye
 - (2) olfactory epithelium
 - (3) inner ear
 - (4) embryonic stages
- 77. Select the incorrect statement from the following.
 - (1) Multipolar neurons are found only in the cerebral cortex.
 - (2) Most of the motor neurons are multipolar neurons.
 - (3) Bipolar neurons are sensory neurons.
 - (4) Pseudo unipolar neurons are sensory neurons.
- 78. Match the following

List I	List II
(A) Nissl bodies	i) Neurotransmitters
(B) Synaptic vesicles	ii) Immunoglobulins
(C) Gap junctions	iii) Intercalated discs
(D) Antibodies	iv) Protein synthesis

	A	В	C	D
(1)	II	I	III	IV
(2)	IV	I	III	II
(3)	IV	III	II	I
(4)	III	I	IV	II

- 79. Which of the following is not true about astrocytes?
 - (1) Star shaped cells
 - (2) Blood-brain barrier
 - (3) Phagocytes
 - (4) Present between neurons and blood capillaries
- 80. Unmyelinated axons in PNS have
 - (1) oligodendrocytes
 - (2) Nissl bodies
 - (3) myelin sheath
 - (4) Schwann cells
- 81. Oligodendrocytes are present in
 - (1) grey matter of brain
 - (2) white matter of brain
 - (3) cranial nerves
 - (4) spinal nerves
- 82. Statement I: The complexity in organ and organ systems displays certain discernable trend(evolutionary trend).

Statement II: The basic tissues organized to form organs which inturn associate to form organ systems in multicellular organisms

- (1) Both SI and SII are correct
- (2) Both SI and SII are incorrect
- (3) SI is correct, SII is incorrect
- (4) SI is incorrect, SII is correct
- 83. Articular cartilage is made of
 - (1) calcified cartilage
 - (2) elastic cartilage
 - (3) fibrocartilage
 - (4) hyaline cartilage
- 84. "Nuclei" of nervous tissue are aggregations of neuronal cell bodies in

- (1) sympathetic nervous system
- (2) parasympathetic nervous system
- (3) peripheral nervous system
- (4) central nervous system
- 85. Ventricles of brain are lined by
 - (1) simple squamous epithelium
 - (2) simple cuboidal epithelium
 - (3) ciliated epithelium
 - (4) compound epithelium
- 86. Select the incorrect statement from the following.
 - (1) Blood plasma filtered through blood capillaries into tissues is called interstitial fluid or tissue fluid.
 - (2) Tissue fluid flowing in the lymphatic system is called lymph.
 - (3) Lymphatic ducts open into subclavian veins.
 - (4) Right lymphatic duct is also called thoracic duct.
- 87. Which one of the following act as internal scavengers?
 - (1) Basophil
 - (2) B.Lymphocyte
 - (3) Macrophages
 - (4) Erythrocyte
- 88. Unicellular glands from the following are
 - (1) salivary glands
 - (2) sweat glands
 - (3) sebaceous glands
 - (4) Goblet cells
- 89. Neurons that carry impulses to muscles and glands are called
 - (1) interneurons
 - (2) afferent neurons

- (3) motor neurons
- (4) sensory neurons
- 90. Which of the following organs is lined internally by simple squamous epithelium?
 - (1) Bowman's capsule of nephrons
 - (2) Proximal convoluted tubules of nephrons
 - (3) Distal convoluted tubules of nephrons
 - (4) Urinary bladder

PHYSICS

- 91. Let the angle between two non zero vectors \vec{A} and \vec{B} be 120° and resultant be \vec{C} then
 - (1) $|\vec{C}|$ must be equal to $|\vec{A} \vec{B}|$
 - (2) $|\vec{C}|$ must be less than $|\vec{A} \vec{B}|$
 - (3) $|\vec{C}|$ must be greater than $|\vec{A} \vec{B}|$
 - (4) $|\vec{C}|$ may be equal to $|\vec{A} \vec{B}|$
- 92. The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B} ,
 - $(1)\alpha < \beta$
 - (2) $\alpha < \beta$ if A < B
 - (3) $\alpha < \beta$ if A > B
 - (4) $\alpha < \beta$ if A = B
- 93. A particle is moving with speed 6 m/s along the direction of $\vec{A} = 2\hat{i} + 2\hat{j} \hat{k}$, then its velocity is
 - (1) $\left(4\hat{i} + 2\hat{j} + 4\hat{k}\right)$ m/s
 - $(2)\left(4\hat{i}+4\hat{j}-2\hat{k}\right)$ m/s
 - (3) $(4\hat{i} + 4\hat{j} + 2\hat{k})$ m/s

- (4) $(4\hat{i} + 4\hat{j} 6\hat{k})$ m/s
- 94. The magnitudes of vectors \vec{A} , \vec{B} and \vec{C} are respectively 12, 5 and 13 units, if $\vec{A} + \vec{B} + \vec{C} = 0$, then the angle between \vec{A} and \vec{B} is:
 - (1) 0
 - $(2) \ \frac{\pi}{3}$
 - $(3) \frac{\pi}{2}$
 - $(4) \ \frac{\pi}{4}$
- 95. The initial velocity of a projectile is $\vec{u} = (4\hat{i} + 3\hat{j})m/s$ it is moving with uniform acceleration $\vec{u} = (4\hat{i} + 3\hat{j})m/s$ The magnitude of its velocity after 10s is
 - (1) 3 m/s
 - (2) $7\sqrt{2} \text{ m/s}$
 - (3) 5 m/s
 - (4) 10 m/s
- 96. The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
 - (1) are equal to each other.
 - (2) are having equal magnitude.
 - (3) are not equal to each other in magnitude.
 - (4) Cannot be predicted.
- 97. A truck travelling due north at 20m/s turns westwards and travels at the same speed. The change in velocity will be
 - (1) $40 \ m/s \ N-W$
 - (2) $20\sqrt{2} \ m/s \ N-W$
 - (3) $40 \ m/s \ S-W$

- (4) $20\sqrt{2} \ m/s \ S-W$
- 98. Statement A: A null vector is a vector whose magnitude is zero and its direction is arbitrary.

Statement B: A null vector does not exist.

- (1) A true, B false
- (2) A and B false
- (3) A and B are true
- (4) A false b true
- 99. When n vectors of different magnitudes are added, we get a null vector. Then the value of n cannot be
 - (1) 11
 - (2) 4
 - (3) 3
 - (4) 2
- 100. Given that $\vec{A} + \vec{B} + \vec{C} = \vec{0}$. Out of these three vectors two are equal in magnitude and the magnitude of the third vector is $\sqrt{2}$ times as that of either of the two having equal magnitude. Then the angles between vectors are given by:
 - $(1) 30^{\circ}, 60^{\circ}, 90^{\circ}$
 - $(2) 45^{\circ}, 45^{\circ}, 90^{\circ}$
 - $(3) 90^{\circ}, 45^{\circ}, 45^{\circ}$
 - $(4) 90^{\circ}, 135^{\circ}, 135^{\circ}$
- 101. The angle between $\hat{i} + \hat{j} + \hat{k}$ and Z-axis is
 - $(1) \tan^{-1} \left[\frac{1}{\sqrt{3}} \right]$
 - $(2) \sin^{-1} \left[\frac{1}{\sqrt{3}} \right]$
 - (3) $\operatorname{cosec}^{-1} \left[\frac{1}{\sqrt{3}} \right]$

$$(4) \cos^{-1} \left[\frac{1}{\sqrt{3}} \right]$$

102. A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously,

$$\vec{F}_1 = 5\hat{i} - 5\hat{j} + 5\hat{k}, \ \vec{F}_2 = 2\hat{i} + 8\hat{j} + 6\hat{k},$$

$$\vec{F}_3 = -6\hat{i} + 4\hat{j} - 7\hat{k}, \ \vec{F}_4 = -\hat{i} - 3\hat{j} - 2\hat{k}.$$

Then the particle will move:

- (1) in X-Y plane
- (2) in Y-Z plane
- (3) in Z–X plane
- (4) along X-axis
- 103. If $\vec{a} = 3\hat{i} + 4\hat{j}$ and $\vec{b} = 7\hat{i} + 24\hat{j}$ then the vector having the same magnitude as \vec{b} and same direction as \vec{a} is _____.
 - (1) $15\hat{i} + 25\hat{j}$
 - (2) $14\hat{i} + 20\hat{j}$
 - (3) $10\hat{i} + 20\hat{j}$
 - (4) $15\hat{i} + 20\hat{j}$
- 104. Two forces, each of magnitude F have a resultant of the same magnitude F. The angle between the two forces is
 - $(1) 45^{\circ}$
 - (2) 120°
 - (3) 150°
 - (4) 60°
- 105. For a particle in motion in a plane, if the angle between the velocity vector and acceleration vector is a right angle always, then the particle
 - 1) is speeding up along its path
 - 2) is slowing down along its path
 - 3) may be speeding up or slowing down

- 4) is neither speeding up nor slowing down
- 106. The magnitude of sum of two vectors compared to sum of their individual magnitudes
 - (1) is always less
 - (2) is always more
 - (3) is less or equal
 - (4) is more or equal
- 107. Which vector sum is equal to the vector \overline{A} in the diagram?

- 1) $\overline{C} + \overline{D}$
- 2) $\overline{C} + \overline{D} + \overline{E}$
- 3) $\overline{C} + \overline{F}$
- 4) $\overline{B} + \overline{C}$
- 108. From a point on the ground a particle of mass m is projected with initial velocity $\overline{u} = a\hat{i} + b\hat{j} + c\hat{k}$, its speed in the X-Y plane
 - $(1) \quad \sqrt{a^2 + b^2}$
 - $(2) \quad \sqrt{c^2 + b^2}$
 - (3) $\sqrt{c^2 + a^2}$
 - (4) $\sqrt{a^2+b^2+c^2}$
- 109. If $\overline{A} = \overline{a} + \overline{b}$ and $\overline{B} = \overline{a} \overline{b}$, given that the angle between the vectors \overline{a} and \overline{b} is 60°, then the angle between the vectors $\overline{A} + \overline{B}$ and $\overline{A} \overline{B}$ is
 - 1) 30^{0}
 - $2) 60^{0}$
 - $3) 90^0$

- 4) 120^{0}
- 110. The x and y coordinates of the particle at any time are x=5t-2t² and y=10t respectively, where x and y are in meters and t in seconds. The acceleration of the particle at t=2s is
 - 1) 5 m/s^2
 - $2) -4 \text{ m/s}^2$
 - 3) -8 m/s^2
 - 4) 0
- 111. Which of the following group of concurrent forces may be in equilibrium (R=0)?

	A	В	C
1)	10	20	40
2)	3	5	1
3)	20	20	20
4)	40	30	5

- 112. Is it possible to add three equal-magnitude vectors and obtain a vector sum of zero? If yes, what are the angles between them, pair by pair?
 - 1) No, Not possible
 - $2) 60^{0}, 60^{0}, 60^{0}$
 - 3) 120^{0} , 120^{0} , 120^{0}
 - 4) 60^{0} , 120^{0} , 180^{0}
- 113. If \overline{a} and \overline{b} are two vectors, then $\left| \overline{a} \overline{b} \right| = \sqrt{a^2 + b^2 2ab\cos\theta}$. In this formula θ is the angle between
 - 1) \bar{a} and \bar{b}
 - 2) \overline{a} and $-\overline{b}$
 - 3) $-\overline{a}$ and \overline{b}
 - 4) $(\overline{a} + \overline{b})$ and $(\overline{a} \overline{b})$

- 114. Two forces of equal magnitude are acting at a point with an angle of 60^0 between them. If the resultant force is equal to $40\sqrt{3}N$, the magnitude of each force is
 - 1) 40N
 - 2)20N
 - 3)80N
 - 4)30N
- 115. In the shown figure what amount of force and in which direction we should apply so that net force acts along x-axis only

- 1) 3N along –ve of y-axis
- 2)3N along +ve of y-axis
- 3)2N along -ve of x-axis
- 4)2N along +ve of x-axis
- 116. Given $\vec{a} + \vec{b} = 2\hat{i}$, if $\vec{b} = 3\hat{j} \hat{k}$ then find out vector \vec{a}
 - 1) $2\hat{i} + 3\hat{j} + \hat{k}$
 - 2) $2\hat{i} 3\hat{j} + \hat{k}$
 - 3) $\hat{j} + \hat{k}$
 - 4) $2\hat{i} \hat{j} \hat{k}$
- 117. The magnitude of pairs of displacement vectors are given. Which pairs of displacement vectors cannot be added to give a resultant vector of magnitude 13 cm
 - i) 4cm, 12 cm
- ii) 4cm, 8cm
- iii) 6cm, 8cm
- iv) 1 cm, 15 cm
- 1) ii,iv

- 2)i,ii
- 3)i,iii
- 4)ii,iii
- 118. For the given vectors, which of the following option is correct

- 1) $\vec{A} + \vec{B} = \vec{C}$
- $2) \vec{A} + \vec{C} = \vec{B}$
- 3) $\vec{B} + \vec{C} = \vec{A}$
- 4) None of these
- 119. True statements in the following is/are
 - a) for a vector \vec{P} , $\left| \vec{P} \right|$ can be -5 unit
 - b) $\left| \hat{N} \right| = 1$
 - c) Magnitude of any vector is a scalar
 - d) Unit vectors of parallel vectors are equal
 - 1) a only
 - 2) a,b,c only
 - 3) b,c,d only
 - 4) a,c,d only
- 120. The magnitude of a vector cannot be
 - 1) Positive
 - 2) Unity
 - 3) negative
 - 4) zero
- 121. The resultant of the three vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} shown in figure

- 1)r
- 2) 2r
- 3) $r(1+\sqrt{2})$
- 4) $r(\sqrt{2}-1)$
- 122. The angle between the vectors $(\hat{i} + \hat{j})$ and

$$(\hat{j} + \hat{k})$$
 is

- 1) 90°
- $2) 180^{\circ}$
- 3) 0^{0}
- 4) 60°
- 123. Two vectors $\vec{A} = 4i + \alpha j + 2k$ and $\vec{B} = 2i + j + k$ are parallel if

1)
$$\alpha = 0$$

- 2) $\alpha = 1$
- 3) $\alpha = 2$
- 4) $\alpha = 4$
- 124. A lift is moving up. The distance between the floor and top of lift is H. A coin is projected up from the floor. The coin hits back the floor. What is the displacement of coin with respect to lift?
 - 1) H down
 - 2) H up
 - 3) zero
 - 4) none

- 125. Velocity of A is 4 m/s east. Velocity of B is $4\sqrt{2}m/s$ north east. What is the actual velocity of A wrt B?
 - 1) 4 m/s north
 - 2) 4m/s south
 - 3) 8m/s south
 - 4) 8m/s north
- 126. Eleven forces each equal to 5N act on a particle simultaneously. If each force makes an angle 30° with the next one, the resultant of all forces is
 - 1)15N
 - 2) 55N
 - 3) 5N
 - 4) zero
- 127. A vector $3\hat{i} + 4\hat{j}$ rotates about its tail through an angle 37^0 in anticlockwise direction then the new vector is
 - 1) $-3\hat{i} + 4\hat{j}$
 - 2) $3\hat{i} 4\hat{j}$
 - 3) $5\hat{i}$
 - 4) $5\hat{j}$
- 128. A boy is hanging from a horizontal branch of a tree. The tension in the arms will be maximum when the angle between the arms is
 - 1) 0^0
 - $2)30^{0}$
 - $3) 60^0$
 - 4) 120⁰
- 129. IF $\vec{P} + \vec{Q} = \vec{R}$ and $\vec{P} \vec{Q} = \vec{S}$, then $R^2 + S^2$ is equal to
 - 1) $P^2 + Q^2$

- 2) $2(P^2-Q^2)$
- 3) $2(P^2+Q^2)$
- 4) 4*PQ*
- 130. A particle is moving eastwards with a velocity of 5ms⁻¹. In 10S, the velocity changes to 5ms⁻¹ north wards. The average acceleration in this time is
 - 1) $\frac{1}{\sqrt{2}} ms^{-2}$ towards north east
 - 2) $\frac{1}{2}ms^{-2}$ towards north
 - 3) zero
 - 4) $\frac{1}{\sqrt{2}} ms^{-2}$ towards northwest
- 131. Wind is blowing from the south at 5ms⁻¹. To a cyclist it appears to be blowing from the east at 5ms⁻¹. The velocity of the cyclist is
 - 1) $5\sqrt{2}ms^{-1}$ towards north-west
 - 2) $5\sqrt{2}ms^{-1}$ towards north-east
 - 3) $5\sqrt{2}ms^{-1}$ towards south west
 - 4) $5\sqrt{2}ms^{-1}$ towards south east
- 132. Maximum and minimum magnitudes of the resultant of two vectors of magnitudes P and Q are found to be in the ratio 3:1. Which of the following relations is true?
 - 1)P=Q
 - 2) P=2Q
 - 3)P=4Q
 - 4)P=Q/3
- 133. A mass M kg is suspended by a weightless string. The horizontal force required to hold the mass at 60^{0} with the vertical is
 - 1) Mg

- 2) Mg $\sqrt{3}$
- 3) $Mg(\sqrt{3}+1)$
- 4) $\frac{Mg}{\sqrt{3}}$
- 134. From the figure, if the mass is at equilibrium then find T_1 and T_2

- 1) 100N, $100\sqrt{3}N$
- 2) 200N, $100\sqrt{3}N$
- 3) $100\sqrt{3}N$ N, 200N
- 4) $100\sqrt{3}N$, 100N
- 135. Two stones are projected from the top of a tower in opposite directions, with the same velocity V but at 30° and 60° with horizontal respectively. The relative velocity of first stone relative to second stone is
 - 1) 2V
 - $2) \sqrt{2}V$
 - 3) $\frac{2V}{\sqrt{3}}$
 - $4) \frac{V}{\sqrt{2}}$

CHEMISTRY

- 136. The atomic number of the element unnilennium is
 - (1) 109
 - (2) 102
 - (3) 108

- (4) 119
- 137. For which of the following orbitals m=0
 - (1) 2s
 - (2) $3p_x$
 - (3) $3d_{z^2}$
 - (4) Both 1 and 3
- 138. The IUPAC symbol for the element with atomic number 119 would be
 - (1) une
 - (2) unh
 - (3) uun
 - (4) uue
- 139. The element with Z= 120 (not yet discovered) will be an / a
 - (1) inner transition metal
 - (2) alkaline earth metal
 - (3) Alkali metal
 - (4) Transition metal
- 140. In the long form of the periodic table, the valence shell electronic configuration of $5s^25p^4$ corresponds to the element present in
 - (1) Group 16 and period 6
 - (2) Group 17 and period 5
 - (3) Group 16 and period 5
 - (4) Group 17 and period 6
- 141. Arrange in decreasing order, the energy of 2s orbital in the following atoms H,Li,Na and K
 - (1) $E_{2s}(H) > E_{2s}(Li) > E_{2s}(Na) > E_{2s}(K)$
 - (2) $E_{2s}(H) > E_{2s}(Na) > E_{2s}(Li) > E_{2s}(K)$
 - (3) $E_{2s}(H) > E_{2s}(Na) = E_{2s}(K) > E_{2s}(Li)$
 - (4) $E_{2s}(K) > E_{2s}(Na) > E_{2s}(Li) > E_{2s}(H)$
- 142. The longest and shortest periods in modern periodic table are

	(1)	1 and 6		
	(2)	2 and 6		
	(3)	6 and 1		
	(4)	1 and 7		
143.	The	element which car	n be placed in two	
	different groups of the periodic table., i.e 1(I			
	A) and 17(VII A), also called as Rouge			
	elem	nent is		
	(1)	Oxygen		
	(2)	Flourine		
	(3)	Lithium		
	(4)	Hydrogen		
144.	List-	-I (At No)	List II (block)	
	A) 5	6	P) p	
	B) 5	3	Q) f	
	C) 8	0	R) s	

S) d

147.	The element with the electronic configuration
	$[Rn]7s^26d^2$ belongs to block (At.
	No. of $Rn = 86$)
	(1) f
	(2) d
	(3) s
	(4) p
148.	Non metals are mostly present in
	block
	(1) s
	(2) f
	(3) p
	(4) d
149.	In ψ_{321} , the sum of orbital angular
	momentum, spherical nodes and Angular
	node is
	$(1) \frac{\sqrt{6}h + 4\pi}{2\pi}$
	$(2) \frac{\sqrt{6}h}{2\pi} + 3$
	$(2) \frac{\sqrt{6}h}{2\pi} + 3$ $(3) \frac{\sqrt{6}h + 2\pi}{2\pi}$
	$(4) \frac{\sqrt{6}h + 8\pi}{2\pi}$
150.	Element with atomic number 30 belongs to
	(1) s- block
	(2) d-block
	(3) p-block
	(4) f-block
151.	The group in which all the elements do not
	have same number of electrons in there
	valence shell is
	(1) 10th

D) 64

(1) Sc

(2) Zn (3) Mn (4) Ni

block is

(1) $ns^{1 to 2}$

 $(2) \quad ns^2 np^{1to6}$

 $(3) \quad (n-1)d^{0 \text{ to } 1}ns^2$

 $(n-1)d^{1 to 10}ns^2$

The correct match is

(1) A-P, B-R, C-S, D-Q (2) A-R, B-P, C-S, D-Q (3) A-Q, B-P, C-R, D-S (4) A-Q, B-R, C-P, D-S

but not a transition element

145. Which of the following is a d-Block element

146. The general electronic configuration of p-

Sri (Chait	tanya Pag	ge 17		
	elen	nents is		(1)	Z=82
157.	The	period that includes all blocks of	162.	All	the following elements are f-block except
	(4)	VI-A group, 4 th period		(4)	f-block
	(3)	IV-A group, 6 th period		(3)	d-block
	(2)	IV-A group, 5 th period		(2)	p- block
	(1)	IV-A group, 4 th period		(1)	s-block
	to		161.		thanum (Z=57) belongs to
156.	The	elements with atomic number 34 belongs		(4)	6 th
	(4)	$3s^23p^4$		(3)	5 th
	(3)	$3s^23p^2$		(2)	4 th
	(2)	$4s^24p^4$		(1)	3 rd
	(1)	$4s^24p^2$	160.	perio	t element in f-block is present in
		ent in the IVA group and 3 rd period is	160		l=0
155.		outer shell configuration of elements		(4)	$\sum^{l=n-1} 2(2l+1)$
	(4)	Uncertainty			
	(3)	Aufbau's		(3)	$\sum_{l=0}^{l=n+1} 2(2l+1)$
	(2)	Hund's		(2)	$\sum_{l=n+1}^{2} 2 \binom{2l+1}{l}$
	(1)	Pauli's		(2)	$\sum_{l=n-1}^{l=n-1} 2(2l+1)$
	repr	esentation of principle		(1)	$\sum_{l=0}^{l=n} 2\left(2l+1\right)$
154.	` '	long form of periodic table is graphical			,
	(4)	4		-	ber of electrons in any energy level is
	(3)	3			ression for the calculation of the total
	(2)	2			muthal quantum numbers, then the
	(1)	1	159.	` /	and l are respectively the principal and
100.		eous element is		(4)	p-block
153	(4) The	period that contains solids, liquid and		(2) (3)	f-block
	(3)	57 to 80 89 to 112		(1)	d-block s-block
	(2)	39 to 48		_	periodic table is
	(1)	21 to 30	158.		position of the element with Z=106 in
		ing atomic numbers from		(4)	6
152.		4d-transition series contains elements		(3)	3
	(4)	7 th		(2)	2
	(3)	1 st		(1)	1

(0)	7 00
1 11	Z=90
121	7-71

- (3) Z=64
- (4) Z=71

163. Number of elements in III-B (3rd group) is

- (1) 4
- (2) 32
- (3) 28
- (4) 18

164. Electronic configuration of an element is $[Ne]3s^23p^63d^54s^1$. It belongs to

block

- (1) s-block
- (2) p-block
- (3) d-block
- (4) f-block

165. Rare earths are generally

- (1) d-block
- (2) Pnicogens
- (3) Halogens
- (4) Lanthanides

166. In the sixth period, the orbitals being filled with electrons are

- (1) 5s, 5p, 5d
- (2) 6s, 6p, 6d, 6f
- (3) 6s, 5f, 6d, 6p
- (4) 6s, 4f, 5d, 6p

167. Which of the following is not Dobereiner's triad?

- (1) Li, Na, K
- (2) C,N,F
- (3) Ca,Sr, Ba
- (4) Cl,Br, I

168. Eka aluminium is

(1) Ge

- (2) B
- (3) Ga
- (4) Si

169. The pair of elements with the following atomic numbers have the similar chemical properties

- (1) 13, 22
- (2) 3,11
- (3) 4,24
- (4) 2,1

170. Total number of orbitals that are possible with (n+l) value equal to 6 are

- (1) 4
- (2) 9
- (3) 16
- (4) 7

171. The impossible set of Quantum number is

- (1) n = 2, l = 0, m = 0, s = +1/2
- (2) n = 2, l = 1, m = 0, s = +1/2
- (3) n = 2, l = 0, m = 1, s = -1/2
- (4) n = 3, l = 1, m = -1, s = -1/2

172. According to Newland's law of octaves, carbon resembles in its properties with

- (1) Mg
- (2) Si
- (3) P
- (4) S

173. According to Schrodinger model, nature of electron in an atom is as

- (1) Particles only
- (2) Wave only
- (3) Both 1 and 2 simultaneously
- (4) Some times waves and some times particles

174. Nitrogen atom has 3 un-paired electrons in its ground state. It can be explained by
(1) Aufbau's principle
(2) Pauli's principle
(3) Hund's rule

(4) Heisenberg uncertainty principle

- 175. The starting element of fifth period is
 - (1) K
 - (2) Rb
 - (3) Kr
 - (4) Na
- 176. Which among the following is an anomalous pair in Mendeleev's periodic table
 - (1) Te, I
 - (2) Na, Mg
 - (3) P,S
 - (4) C,N
- 177. In which of the following only Aufbau's principle is violated?
 - (1) 11/1 1
 - (2) 1 111
 - (3) 11 111
 - (4) 11 1111
- 178. The incorrect statement regarding d-block elements is
 - (1) The elements are electropositive and are metals
 - (2) Most of the elements possess catalytic activity
 - (3) They forms alloy and interstitial compounds
 - (4) All are solids at room temperature

- 179. Which element in long form of periodic table has pseudo-inert configuration, i.e 18 electrons in outer most shell
 - (1) Ag
 - (2) Cu
 - (3) Ne
 - (4) Pd
- 180. Second period consists of Eight elements, as four orbitals, i.e 2s(one) and 2p(three) are filled .How many elements will be present in 2^{nd} period, if let us assume spin quantum number takes three values, $+\frac{1}{2}$, 0, $-\frac{1}{2}$.
 - (1) 8
 - (2) 12
 - (3) 18
 - (4) 9