Predictions using Decision Tree

R-Programming

Classification Trees C5.0

```
install.packages("C50")
require(C50)
data(iris)
```

head(iris)

```
str(iris)
```

```
Species
1 setosa
2 setosa
3 setosa
4 setosa
5 setosa
6 setosa
```

Classification Trees

Data is sorted we should reshuffle it table(iris\$Species)

> table(iris\$Species)

```
setosa versicolor virginica
50 50 50
```

Preparing data for model

Reshuffling commands

set.seed(9850)

g<- runif(nrow(iris))</pre>

irisr <- iris[order(g),]</pre>

After shuffling

```
> set.seed(9850)
> g <- runif(nrow(iris))
> irisr <- iris[order(g),]
> str(irisr)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 7.1 5.1 6 5.4 5.8 6.9 7.7 5.5 5.7 4.4 ...
$ Sepal.Width: num 3 3.8 2.2 3.9 2.7 3.1 3.8 2.6 2.6 3.2 ...
$ Petal.Length: num 5.9 1 5 4 1.3 3.9 4.9 6.7 4.4 3.5 1.3 ...
$ Petal.Width: num 2.1 0.3 1 0.4 1.2 1.5 2.2 1.2 1 0.2 ...
$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 3$
```

Classification Tree

#now check the order of species that is either random or not

str(irisr)
head(irisr)

Classification Trees

first 100 rows for of shuffled data is used as training set

To eliminate target feature species from training data we use -5 which

Format of C5.0

```
# C5.0(training_set,
target_column_training_data)
m1 <- C5.0(irisr[1:100,-5],irisr[1:100,5])
# to see the detailed output of model
m1 use summary command
```

summary(m1)

Output of C5.0

```
> ml <- C5.0(irisr[1:100,-5], irisr[1:100,5])
> ml

Call:
C5.0.default(x = irisr[1:100, -5], y = irisr[1:100, 5])

Classification Tree
Number of samples: 100
Number of predictors: 4
Tree size: 4
```

Summary(m1)

Confusion Matrix

```
Evaluation on training data (100 cases):
           Decision Tree
         Size Errors
            4 0 ( 0.0%) <<
                      (c) <-classified as
           (a)
                (b)
                             (a): class setosa
                 35
                             (b): class versicolor
                             (c): class virginica
                       31
```

misclassification rate is 0 is over fitting Dr Akhter Raza

Predictions from C5.0

p1 <- predict(m1, df)

P1

table(irisr[101:150,5],p1)

Confusion matrix of predicted

```
> p1
                          versicolor virginica
                                               versicolor setosa
 [1] virginica
               setosa
                                                                     setosa
 [8] versicolor versicolor versicolor virginica virginica
                                                                     setosa
[15] versicolor virginica virginica virginica
                                               versicolor virginica
                                                                     setosa
    virginica virginica
                          setosa
                                     virginica
                                               setosa
                                                          setosa
                                                                     versicolor
[29] setosa versicolor setosa
                                     virginica
                                               virginica virginica
                                                                     setosa
[36] virginica versicolor virginica
                                     setosa
                                                          virginica
                                                setosa
                                                                     setosa
[43] virginica virginica
                          virginica
                                               virginica
                                                          virginica
                                                                     versicolor
                                     setosa
[50] setosa
Levels: setosa versicolor virginica
> table(irisr[101:150,5], Predicted= p1)
           Predicted &
            setosa versicolor virginica
  setosa
                16
  versicolor
                           12
 virginica
                                     19
```

Output of plot(m1)

Function rpart()

Syntax of rpart(DV~ IV)

. dot indicate all predictors

```
rpart (Species ~ Sepal.Length +
   Sepal.Width + Petal.Length +
Petal.Width, data = data_name,
   method="class")
```

rpart command

use method = class for classification

```
m3 <- rpart (Species ~ ., data = irisr[1:100,], method="class")
```

Output of rpart

```
> m3 <- rpart(Species ~ ., data=irisr[1:100,], method="class")
> m3
n= 100

node), split, n, loss, yval, (yprob)
    * denotes terminal node

1) root 100 65 versicolor (0.34000000 0.35000000 0.31000000)
2) Petal.Length< 2.6 34 0 setosa (1.00000000 0.00000000 0.00000000)
3) Petal.Length>=2.6 66 31 versicolor (0.00000000 0.53030303 0.46969697)
6) Petal.Width< 1.65 37 2 versicolor (0.00000000 0.94594595 0.05405405)
7) Petal.Width>=1.65 29 0 virginica (0.00000000 0.00000000 1.00000000) *
```

Output of rpart

```
1) root 100 65 versicolor (0.34000000 0.35000000 0.31000000)
-2) Petal.Length< 2.6 34 0 setosa (1.00000000 0.00000000 0.00000000)
•3) Petal.Length>=2.6 66 31 versicolor (0.00000000 0.53030303 0.46969697)
   *6) Petal.Width< 1.65 37 2 versicolor (0.00000000 0.94594595 0.05405405) *
   7) Petal.Width>=1.65 29
                            0 virginica (0.00000000 0.00000000 1.00000000) *
                                                    Petal. W
                                             <1.65
```

Output of rpart.plot

```
rpart.plot(m3)
rpart.plot(m3, type=3, extra=101, fallen.leaves=T)
```


Confusion matrix of p1 and p3

p3 <- predict(m3, irisr[101:150,], type="class")

table(irisr[101:150,5],predicted=p3)

we compare the predicted results of two algorithms c5.0 and classifiction tree

table(irisr[101:150,5],p1)

Output of rpart.plot

Comparison of p1 and p3

```
> table(irisr[101:150,5], predicted= p3)
            predicted
             setosa versicolor virginica
                                       60
  setosa
                  16
  versicolor
                             13
  virginica
> table(irisr[101:150,5], predicted= p1)
            predicted
             setosa versicolor virginica
  setosa
                  16
  versicolor
                             12
  virginica
```

Dr Akhter Raza

Questions?