Trabalho II

Bruno Iochins Grisci

Universidade Federal do Rio Grande do Sul bigrisci@inf.ufrgs.br

22 de junho de 2017

Sumário

Questão 1

Questão 2

Implementação

- Python;
- Numpy;
- Orientado a Objetos;
- Leitura do PDB: reaproveitada do Trabalho I

Formação de ligação peptídica

- Leitura dos arquivos pdb dos aminoácidos;
- Tratar nomenclatura dos átomos;
- Átomos N dos aminoácidos são transladados para a origem;
- Para cada aminoácido:
 - Remove átomo H;
 - Move N para posição do átomo OC do aminoácido anterior*;
 - Salva posição do átomo OC atual;
 - Remove átomos OC e HOC atuais.
- Primeiro e último aminoácidos são casos especiais;
- Correção de índices.

^{*}Posição ajustada para que o comprimento da ligação peptídica seja de 1.32Å e correção do ângulo da ligação.

Estrutura resultante

Sequência: VSCEDCPEHCSTQKAQAKCDNDKCVCEPI

Cálculo dos ângulos

Átomos:

- ϕ (phi): $C_{n-1} N_n C_{\alpha n} C_n$
- ψ (psi): $N_n C_{\alpha n} C_n N_{n+1}$
- ω (omega): $C_{\alpha n} C_n N_{n+1} C_{\alpha n+1}$

Cálculo de ângulo diedro

$$\bullet$$
 P_1, P_2, P_3, P_4

•
$$\vec{b_1} = P_2 - P_1$$
, $\vec{b_2} = P_3 - P_2$, $\vec{b_3} = P_4 - P_3$

•
$$\vec{n_1} = \frac{\vec{b_1} \times \vec{b_2}}{\|\vec{b_1} \times \vec{b_2}\|}$$

•
$$\vec{n_2} = \frac{\vec{b_2} \times \vec{b_3}}{\|\vec{b_2} \times \vec{b_3}\|}$$

$$ullet$$
 $ec{m_1} = ec{n_1} imes rac{ec{b_2}}{\|ec{b_2}\|}$

$$\bullet \ x = \vec{n_1} \cdot \vec{n_2}$$

•
$$y = \vec{m_1} \cdot \vec{n_2}$$

•
$$\alpha = -\operatorname{atan2}(y, x)$$

Ângulos PHI - PSI (1ENY)

AMINO ACIDO	PHI	PSI
ALA	360.00	-112.08
GLY	121.15	89.96
LEU	-52.87	-30.57
LEU	-116.76	28.04
ASP	-50.50	122.54
GLY	62.56	31.90

Ramachandran Map

1PLX-P

Sequência: YGGFM

 $RMSD_{C_{\alpha}}: 2.931457373$

 $RMSD_{backbone}: 2.91612536719$

RMSD_{all}: 4.75262535547

Cálculo do ângulo entre 3 átomos

- \bullet P_1, P_C, P_2
- $\vec{bond}_{1C} = \frac{P_1 P_C}{\|P_1 P_C\|}$
- $\vec{bond}_{2C} = \frac{P_2 P_C}{\|P_2 P_C\|}$
- $\theta = \arccos(\vec{bond}_{1C} \cdot \vec{bond}_{2C})$

Rotação da ligação de 3 átomos

- \bullet θ , Q_0 , P_1 , P_C , P_2
- $c = cos(\theta), s = sin(\theta), t = 1 cos(\theta)$
- $Q = Q_0 P_C$
- $\vec{bond}_{1C} = \frac{P_1 P_C}{\|P_1 P_C\|}$
- $\vec{bond}_{2C} = \frac{P_2 P_C}{\|P_2 P_C\|}$
- $\bullet \ \vec{k} = \frac{\textit{bond}_{1\textit{C}} \times \textit{bond}_{2\textit{C}}}{\|\textit{bond}_{1\textit{C}} \times \textit{bond}_{2\textit{C}}\|}$
- $R_{3,3} =$

$$\begin{pmatrix} c + \vec{k}_x \cdot \vec{k}_x \cdot t & \vec{k}_x \cdot \vec{k}_y \cdot t - \vec{k}_z \cdot s & \vec{k}_x \cdot \vec{k}_z \cdot t + \vec{k}_y \cdot s \\ \vec{k}_x \cdot \vec{k}_y \cdot t + \vec{k}_z \cdot s & c + \vec{k}_y \cdot \vec{k}_y \cdot t & \vec{k}_y \cdot \vec{k}_z \cdot t - \vec{k}_x \cdot s \\ \vec{k}_z \cdot \vec{k}_x \cdot t - \vec{k}_y \cdot s & \vec{k}_z \cdot \vec{k}_y \cdot t + \vec{k}_x \cdot s & c + \vec{k}_z \cdot \vec{k}_z \cdot t \end{pmatrix}$$

 $Q_1 = Q \times R^T + P_C$

Rotação de ângulo diedro

Rodrigues' rotation formula:

- \bullet θ , P_0 , $bond_0$, $bond_1$
- $\vec{v} = P_0 bond_0$
- $ightharpoonup ec{k} = rac{bond_1 bond_0}{\|bond_1 bond_0\|}$
- $r = \vec{v} \cdot cos(\theta) + \vec{k} \times \vec{v} \cdot sin(\theta) + \vec{k} \cdot \vec{v} \cdot (1 cos(\theta))$
- $P_1 = r + bond_0$

Otimização

Particle Swarm Optimization

- Minimização
- Função de avaliação: RMSD_{all}
- Dimensões: $2 \times \parallel AA \parallel -2$
- Limites: $[-\pi, \pi]$
- População: 200
- Iterações: 1000

Minimização do RMSD

Tempo de execução: 65 minutos

Resultados

 $RMSD_{C_{\alpha}}: 0.38657032646$

 $RMSD_{backbone}: 0.827079038808$

 $RMSD_{all}: 2.37386628213$

Ângulos (1PLX × 1PLX-F)

AA	PHI	PSI	OMEGA
TYR	360.00 x 360.00	176.63 x -110.52	179.86 x -179.98
GLY	148.48 x 124.15	-21.96 x 2.58	179.81 x -179.97
GLY	114.02 × 84.56	29.89 x 27.43	179.75 x 179.97
PHE	-88.00 x -71.94	-38.16 x -94.85	-179.95 x 179.99
MET	-74 24 × -14 96	360 00 × 360 00	360 00 x 360 00

Fim