Financial Literacy, Portfolio Choice, and Wealth Inequality: A General Equilibrium Approach

Min Kim

min-kim.net

University of Pennsylvania

November 14, 2023

Financial Literacy

 Households' "ability to process economic information and make informed decisions about financial planning, wealth accumulation, debt, and pensions" (Lusardi and Mitchell, 2014)

Motivation

- More literate HHs experience higher asset returns (Clark et al., 2015; Von Gaudecker, 2015; Bianchi, 2017)
- Increasing policy interest in workplace and school-based personal finance education

Research Questions

- What are equilibrium effects of policies to raise financial literacy on wealth inequality?
- How will such policies affect portfolio choices & equity premia of different wealth groups?

This Paper: Financial Literacy in General Equilibrium

<u>Framework</u>: life-cycle + incomplete market + general equilibrium model

- Portfolio choice: risk-free ("bonds") vs. risky ("stocks") assets
- Financial literacy accumulation: increases an individual household's expected stock return
- Equilibrium: aggregate capital income is distributed according to financial literacy

Quantification: matched to U.S. average financial literacy + stock market participation rate in SCF

Key Findings: policy effects of subsidizing financial literacy accumulation

- ① Avg FinLit $\blacktriangle\Rightarrow$ stock demand $\blacktriangle\Rightarrow$ stock price $\blacktriangle\Rightarrow$ smaller net increase in aggregate capital
 - PE vs. Hypothetical GE (+ market clearing) vs. GE (+ subsidy financed by capital income tax)
- ② Redistribution of capital incomes from top to middle wealth quartiles ⇒ wealth inequality ▼

Contribution to Macroeconomics & Household Finance Literature

- ◆ Financial literacy varies across households; improves investment outcomes

 ◆ More

 **Proprieta Transport

 **Transport

 **Transpo
 - Calvet et al. (2007, 2009), Von Gaudecker (2011), Van Rooij et al. (2011), McKay (2013), Clark et al. (2015), Jappelli and Padula (2016), Lusardi et al. (2017), Bianchi (2018), Gambacorta et al. (2023)
- 2 Life-cycle **portfolio choice** and equity *participation* puzzle
 - Merton (1969), Cocco (2005), Cocco et al. (2005), Gomes and Michaelides (2005), Yao and Zhang (2005), Yogo (2015), Fagereng et al. (2017), Catherine (2022), Athreya et al. (2023)
- (3) Sources of return heterogeneity: type dependence vs. scale dependence
 - Fagereng et al. (2020), Bach et al. (2020), Gaillard and Wangner (2022W)
- 4 Heterogeneity in wealth returns amplifies wealth inequality
 - Gabaix et al. (2016), Cao and Luo (2017), Benhabib et al. (2019), Hubmer et al. (2021), Xavier (2021W), Mihet (2022W)

Contribution: GE + FinLit allows counterfactual analysis of policies to achieve financial parity

Model In A Nutshell • Choice Variables • Recursive HHP • Need Math?

- Life-cycle: household born at t=25, retires at $t=t_R=65$, dies at t=T=80
 - Stochastic pre-retirement labor income + deterministic pension benefits Petalls
- Portfolio choice: a risk-free bond vs. a stock "portfolio" with idiosyncratic risks
 - Frictions: 1 borrowing & short-sale const., 2 per-period stock market participation cost
- Financial literacy: akin to human capital → increases risk-adjusted stock return
 - Why dynamic choice? ① FinLit depreciates, ② accumulating FinLit is costly
- Market clearing: (bonds = gov't debt) & (stocks = productive capital)
- ★ What's new: financial literacy in "a" general equilibrium framework
 - Assumption (1): FinLit is *not* used in production
 - Assumption ②: aggregate capital income is distributed according to HH's FinLit
 - \Rightarrow Raising FinLit has *pecuniary externality* on equity premium \rightarrow redistributive implication
- Not in this model: aggregate risk, corr(labor, capital income shocks), housing choice ser

Quantifying the **Equilibrium Effects** of Financial Literacy

* Model matched to U.S. average FinLit + stock market participation rate in SCF (2016-2019) Details

Key model fit:	Data	Model
Avg. FinLit score	2.19	2.18
Participation rate	54.1%	54.6%

Baseline Economy			
Risk-free return	2.32%	Market equity premium	5.38%
Capital income tax	9.77%	Equity premium for min. FinLit	4.41%

_	ecomposing equilibrium	effects of subsidizing FinLit acquisition:	for e.g. on $\frac{K}{Y}$
•	PE Partial equilbrium	Short-run outcomes w/ no return adjustments	$2.2\%\uparrow$
•	HE "Hypotethical" GE	+ Asset market clears w/ subsidy from heaven	$0.4\%\uparrow$
•	GE Full general equilb	rium + Gov't budget balance raising capital income ta	c 0.1% ↑

Key Finding 1: FinLit Increases *Participation Rate* in PE vs. GE

 \star Policy experiment: 75% subsidy for FinLit cost financed by capital income tax

- GE To finance subsidy, capital income tax ▲ ⇒ bond return ▲ ⇒ avg. equity premium ▼

Key Finding 1: FinLit Increases Conditional Portfolio Share in PE vs. GE

 \star Policy experiment: 75% subsidy for FinLit cost financed by capital income tax

- HE Avg. equity premium ightharpoonup \Rightarrow attenuates the net increase in aggregate capital
- GE Tax channel increases $r^b \Rightarrow$ marginal participants exit \Rightarrow conditional portfolio share \blacktriangle

Key Finding ②: Heterogeneous Effects across Wealth Quartiles

	Expec	Expected		1arket	Cond. Portfolio	
	Equity Pro	Equity Premium		ion Rate	Share in Stocks	
	Baseline	Δ GE	Baseline	Δ GE	Baseline	Δ GE
Q1	4.93	-O.11	0.00	0.00		
Q2	4.96	0.01	27.41	0.25	73.16	4.80
Q3	5.26	-0.01	91.17	0.62	92.44	0.81
Q4	5.40	-0.12	100.00	0.00	80.23	-0.57
Total	5.14	-0.06	54.65	0.22	84.43	0.70

- ullet Wealthiest **always** participate vs. poorest **never** o evidence for participation subsidy
- Expected equity premium falls for:
 - Q1: cannot afford FinLit accumulation even when subsidized
 - Q4: attained max FinLit prior to subsidy; exprience devaluation of stock holdings
- Capital incomes redistributed from Q4 to Q2–Q3 \Rightarrow Gini index decreases from 56.3% to 55.9%

Conclusion

<u>Framework</u>: Dynamic GE with portfolio choice and financial literacy accumulation

Key Findings

- Equilibrium price adjustment limits the FinLit effect on stock market expansion
- Improving financial literacy mitigates wealth inequality by redistributing capital income from the top to middle wealth quartiles

Discussion

- Contribution: GE framework sheds light on the interplay between financial literacy and equity premium, allowing for a full counterfactual analysis on financial education initiatives
- Policy suggestion: participation subsidies to promote the bottom quartile's stock investments

Min Kim University of Pennsylvania

 \star At the beginning of each age t < T, a household-specific stock return realizes:

$$\tilde{r}(f_t) = \underline{r}^* + r^X(f_t) + \sigma^X \eta_t, \ \eta \sim \mathcal{N}(0, 1)$$

- FinLit f linearly increases mean excess return $r^X(f) \in [r^X(f_{\min}), r^X(f_{\max})] = [0, 0.01]$
- Base expected return for f_{\min} : $\mathbb{E}_n[\tilde{r}(f_{\min})] = r^* + r^X(f_{\min}) = r^*$ (*equilibrium* object)
- * Stock market clears s.t. more literate HHs take a larger share of aggregate capital income:

$$r^{\star}K^{\star} = \int \tilde{r}(f)ad\Gamma = \int \left(\underline{r}^{\star} + r^{X}(f) + \sigma^{X}\eta\right) \cdot ad\Gamma$$

- Marginal product of capital $r^* = g_k(K, L) \delta_K$ determined by a firm's FOC
- \star Aggregate effects of **policy interventions to raise average FinLit** $F^{\star} = \int f d\Gamma$:
 - Aggregate capital $K^* \blacktriangle \Rightarrow$ average stock return $r^* \blacktriangledown$
 - (2) Average mean excess return $r^X(F^*) \blacktriangle \Rightarrow$ base stock return $r^* \blacktriangledown$

• **Pre-retirement** $(t \le t_R)$: Inelastic supply of stochastic efficiency units of labor

$$\log(l_{t+1}) = m_t + \rho \log(l_t) + \varepsilon_t$$

where $m_t = (\text{deterministic component at age t}), \rho \in (0,1), \varepsilon_t \sim \mathcal{N}(0,\sigma_t^2)$

• Post-retirement $(t > t_R)$: Deterministic pension benefit

$$\log (l_t) = \log \lambda + \log (l_{t_R}), \text{ w/ } \lambda \in (0, 1)$$

- Government levies a labor income tax to fund the pension system
- Disposable labor income net of housing cost h_t and labor income tax τ^l

$$w^* \tilde{l} = \begin{cases} (1 - h_t) \left(1 - \tau^l \right) l_t & t \le t_R \\ (1 - h_t) \lambda l_{t_R} & t > t_R \end{cases}$$

At age t < T, a household chooses:

- Gross saving: S_{t+1}
- Portfolio share in stocks: $\kappa \in [0, 1]$
 - Borrowing & short-sale constraints + per-period fixed participation cost: $\theta > 0$
- (3) Financial literacy: $f_{t+1} = (1 \delta_f) f_t + e_t$
 - Depreciation rate $\delta_f \to e_t = \text{(financial literacy accumulation at age } t)$
 - Resource cost for FinLit accumulation: $\Phi(e_t) = \phi e_t^{\iota}$ with $\iota > 1$

At the beginning of t + 1, a household-specific stock return realizes:

$$\tilde{r}(f_{t+1}) = \underline{r}^* + r^X(f_{t+1}) + \sigma^X \eta_{t+1}, \ \eta \sim \mathcal{N}(0, 1)$$

- * FinLit increases the mean excess return $r_f^X(\cdot) > 0$ with bounds $r^X \in [0, r^X(f_{\text{max}})]$
- Base expected return for participants with minimum FinLit: $\mathbb{E}_n[\tilde{r}(f_{\min})] = \underline{r} + r^X(f_{\min}) = r$

$$V_{t}(\mathcal{X}_{t}, f_{t}; l_{t}, \eta_{t}) = \max_{c_{t}, \kappa_{t}, e_{t}} \left\{ (1 - \beta) c_{t}^{1-1/\psi} + \beta \mathbb{E}_{l, \eta} \left[V_{t+1}^{1-\gamma}(\mathcal{X}_{t+1}, f_{t+1}; l_{t+1}, \eta_{t+1}) \right]^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$
s.t.
$$\mathcal{X}_{t+1} = \underbrace{\left[\kappa_{t} \tilde{R}(f_{t+1}) + (1 - \kappa_{t}) R^{b} \right] \left(\mathcal{X}_{t} - c_{t} - (1 - \varphi_{t}) \Phi(e_{t}) - (1 - \vartheta_{t}) \theta \cdot \mathbb{1}(\kappa_{t} > 0) \right)}_{\text{gross returns to wealth}} + \underbrace{w\tilde{l}_{t+1}}_{\text{labor inc}}$$

$$f_{t+1} = (1 - \delta_{f}) f_{t} + e_{t}$$

$$\tilde{R}(f_{t+1}) = 1 + (1 - \tau^{r}) \left(\underline{r} + r^{X}(f_{t+1}) + \sigma^{X} \eta_{t+1} \right), \ \eta \sim \mathcal{N}(0, 1)$$

$$R^{b} = 1 + (1 - \tau^{r}) r^{b}$$

$$\mathcal{X}_{t+1} \geq 0, \kappa_{t} \in [0, 1]$$

- **Preferences**: Epstein-Zin with EIS ψ ; risk aversion γ
- States: cash on hand \mathcal{X}_t , FinLit f_t (+ stochastic labor $l_{t \leq t_R}$; stock return risks η_t)
- Choices: consumption c_t ; wealth share invested in stocks κ_t ; FinLit investment e_t
- <u>Frictions</u>: liquidity constraints; FinLit investment cost $\Phi(e_t)$; stock market participation cost θ \Rightarrow *Intertemporal optimization*: paying to accumulate f today raises $\tilde{r}(f)$ tomorrow
- Policy interventions: ① FinLit investment subsidy φ_t ; ② stock market participation subsidy ϑ_t

- Aggregate saving in stocks supplies capital to production
- Perfectly competitive firm w/ CRS production $Y = g(K, L) = AK^{\alpha}L^{1-\alpha}$

$$r^* = g_k(K, L) - \delta_K, w^* = g_l(K, L)$$

• Stock market clearing returns (r^*, r^*) with endogenous return heterogeneity:

$$K^{\star} = \int (\kappa \cdot \mathcal{S}) d\Gamma(\mathcal{X}, f; l, \eta, t)$$
$$r^{\star} K^{\star} = \int \left(\underline{r}^{\star} + r^{X}(f) + \sigma^{X} \eta\right) \cdot (\kappa \cdot \mathcal{S}) d\Gamma(\mathcal{X}, f; l, \eta, t)$$

- **HE** As average financial literacy $F^* = \int f d\Gamma$ increases:
 - Average HHs expect higher $\tilde{r}(\cdot) \Rightarrow K^* \blacktriangle \Rightarrow$ rental rate of capital $r^* \blacktriangledown$
 - (2) Average mean excess return $r^X(F^*) \triangleq \Rightarrow base \text{ return } r^* \nabla$ (FinLit is a zero-sum game!)

• Gov't levies a labor income tax τ^l to finance the pension system:

$$\tau^l w^* \int l_t d\Gamma_{t \le t_R} = \lambda w^* \int l_t d\Gamma_{t > t_R}$$

• Gov't supplies a risk-free bond with return $r^{b\star}$ s.t.

$$B^{\star} = \int (1 - \kappa) \mathcal{S} d\Gamma(\mathcal{X}, f; l, \eta, t)$$

• Gov't levies a capital income tax τ^r on both assets to finance debt payments and subsidies

$$G^{\star} + r^{b\star}B^{\star} = \tau^{r\star} \int \left(r^{b\star}(1 - \kappa) + \tilde{r}(f)\kappa \right) \mathcal{S}d\Gamma(\mathcal{X}, f; l, \eta, t)$$
$$G^{\star} = \int \left(\varphi_{t}\Phi(e) + \vartheta_{t}\theta \cdot \mathbb{1}(\kappa_{t} > 0) \right) d\Gamma(\mathcal{X}, f; l, \eta, t)$$

 \star GE Increase in gov't expenditure $G^{\star} \Rightarrow \tau^{r\star} \blacktriangle \Rightarrow B^{\star} \blacktriangledown \Rightarrow r^{b\star} \blacktriangle \Rightarrow$ equity premium \blacktriangledown

SCF: Age, Wealth, and Measured Financial Literacy • Back

- Financial literacy score in Survey of Consumer Finance (SCF, 2016-2019)

 = HH's understanding of ① risk diversification, ② inflation, ③ interest rate
- FinLit increases toward retirement age and varies across wealth groups

Quantification and Model Fit Detail Validation: reg on FinLit

Internally calibrated:

- Average financial literacy o financial literacy investment cost coefficient ϕ
- Average participation rate \rightarrow per-period fixed stock market participation cost θ

Externally calibrated:

- FinLit premium on stock returns $r^X(f_{\mathrm{max}}) = 0.01$ from Clark et al. (2015)
- Discount factor, EIS, risk aversion from Gomes and Michaelides (2005)

Table: Baseline Model Fit

	Data	Model	
Distribution of financial literacy			
Avg. FinLit age 18-25	1.98	1.98	*
Avg. FinLit age 26-80	2.19	2.18	*
S.D. FinLit age 26-80	0.86	0.93	
(Avg. FinLit 76-80)/(Avg. FinLit 71-75)	0.91	0.93	
Stock market participation			
Avg. saving rate (%)	95.5	97.5	
Avg. participation rate (%)	54.1	54.1	*
Conditional portfolio share in stocks (%)	46.4	84.4	

[★] Internally calibrated. Data source: SCF 2016-2019.

Validation: Life-cycle Profile of Financial Literacy

Validation: Stock Market Participation by Wealth Groups

Validation: FinLit & Stock Investments, Data vs. Model Pack

 $(Investment Outcome)_i = c + \beta \cdot FinLit_i + \Gamma X_i + \varepsilon_i$ for household i

		Positive holdings of public equities?		Conditional wealth share in stocks	
	Data	Model	Data	Model	
	(1)	(2)	(3)	(4)	
Financial literacy score (0-3)	0.061***	0.089***	0.012*	0.101***	
	(0.006)	(0.000)	(0.006)	(0.000)	
ihs(net worth)	0.012***	0.310***	0.004***	-0.090***	
	(0.001)	(0.000)	(0.001)	(0.000)	
ihs(income)	0.096***	0.050***	0.007	0.141***	
	(0.008)	(0.000)	(0.005)	(0.000)	
Mean value	0.541	0.546	0.441	0.844	
R-sq.	0.321	0.731	0.025	0.304	
No. Obs	10997	2.75M	6858	1.5M	

⁻ Source: SCF 2016-2019. +p<0.10, *p<0.05, **p<0.01, ***<0.001. Col (1), (3): Author's replication of Cupák et al. (2022).

1 unit increase in financial literacy is associated with:

- Probability of holding public equities: 6.1%p \blacktriangle in data, vs. 8.9%p \blacktriangle in model
- Conditional wealth allocated into equity: $1.2\% p \blacktriangle$ data, vs. $10.1\% p \blacktriangle$ in model

⁻ Controls: age, age sq., [Data: + business ownership, inheritance, HH size, kids, female, employed, education, race, marital status, year FE]

III. Quantitative & Policy Analyses

Baseline vs. Counterfactual After FinLit Subsidy Pack Prul Table

Consider a subsidy on FinLit investment cost: $\varphi = 0.75$, where (net cost) = $(1 - \varphi)\Phi(e_t)$

Table: Comparative Statics

		Baseline (1)	△PE (2)	△HE (3)	∆GE (4)
Avg. FinLit (out of 3)	$\mathbb{E}[f]$	2.18	0.25	0.23	0.22
Risk-free return (%)	r^b	2.32		-0.01	0.08
Avg. equity premium (%)	$r-r^b$	5.38		-0.06	-0.10
Base. equity premium (%)	$\underline{\underline{r}} - r^b$	4.41		-0.09	-0.13
Capital income tax rate (%)	$ au^{r\star}$	9.77		-0.01	1.00
Stock / capital (level)	$\mathbb{E}[\kappa \cdot \mathcal{S}]$	4.40	0.15	0.03	0.01
Capital-output ratio	K/Y	2.29	0.05	0.01	0.00

Note: The baseline returns and tax rate are in %. Corresponding changes (compared to the baseline) are in %p.

- Growth rate of average financial literacy between: 10.16 11.26%
- PE Increase in average financial literacy raises aggregate stock investment
- HE As markets clear, both average and base equity premia fall
- **GE** Capital income tax τ^r rises to finance subsidies; decreased saving motives \to raise r^b

FinLit Subsidy Effects in PE vs. GE Pequity Premium

- * Consider a policy experiment:
 - To subsidize 75% of each HH's financial literacy cost
 - Financed by a constant capital income tax on both assets
- * The proposed subsidy increases:

		[PE]
•	Average financial literacy by	11.26%
•	Stock market participation rate by	1.92% p
•	Cond. wealth share in stocks by	$1.05\%\mathrm{p}$

FinLit Subsidy Effects in PE vs. GE PEquity Premium

- * Consider a policy experiment:
 - To subsidize 75% of each HH's financial literacy cost
 - Financed by a constant capital income tax on both assets
- * The proposed subsidy increases:

		[PE]		+ market clearing [Hypothetical EQM]
•	Average financial literacy by	11.26%	vs.	10.68%
•	Stock market participation rate by	$1.92\%\mathrm{p}$	vs.	0.77% p
•	Cond. wealth share in stocks by	1.05% p	vs.	$0.60\% \mathrm{p}$

- * Financial literacy effect on stock market expansion is attenuated because:
 - HE Stock investment ▲ ⇒ stock price ▲ ⇒ stock return ▼ ⇒ avg. equity premium ▼

FinLit Subsidy Effects in PE vs. GE PEquity Premium

- * Consider a policy experiment:
 - To subsidize 75% of each HH's financial literacy cost
 - Financed by a constant capital income tax on both assets
- * The proposed subsidy increases:

	[PE]		+ market clearing [Hypothetical EQM]		+ finance w/ tax [Full GE]
 Average financial literacy by 	11.26%	VS.	10.68%	vs.	10.16%
• Stock market participation rate by	$1.92\%\mathrm{p}$	VS.	0.77% p	VS.	0.22% p
 Cond. wealth share in stocks by 	$1.05\%\mathrm{p}$	VS.	0.60%p	vs.	0.70% p

- * Financial literacy effect on stock market expansion is attenuated because:
 - HE Stock investment $\blacktriangle\Rightarrow$ stock price $\blacktriangle\Rightarrow$ stock return $\blacktriangledown\Rightarrow$ avg. equity premium \blacktriangledown
 - GE To finance subsidy, capital income tax ▲ ⇒ bond return ▲ ⇒ avg. equity premium ▼

Heterogeneous Effects Across Wealth Quartiles: Equity Premium

$\mathbb{E}[f]$			$\mathbb{E}[ilde{r}(f)] - r^b$					
Wealth	Average F	inancial	Literacy		Expected equity premium			
Quartile	Baseline	Δ PE	Δ GE		Baseline	Δ PE	Δ GE	
	(1)	(2)	(3)		(4)	(5)	(6)	
Q1	1.56	0.07	0.07		4.93	0.02	-0.11	
Q2	1.64	0.49	0.42		4.96	0.16	0.01	
Q3	2.56	0.40	0.38		5.26	0.13	-0.01	
Q4	2.98	0.02	0.02		5.40	0.01	-0.12	
Total	2.18	0.25	0.22		5.14	0.08	-0.06	

- Expected equity premium $\mathbb{E}[\tilde{r}(f)] r^b = \underline{r} + r^X(f)$ falls for:
 - Q1: cannot afford FinLit accumulation even when subsidized; $r^X(f_{\min})=0$
 - Q4: attained max FinLit prior to subsidy; exprience devaluation of stock holdings

Heterogeneous Effects Across Wealth Quartiles: Stock Investments

	$\mathbb{E}[\mathbb{1}(\kappa > 0)]$				$\mathbb{E}[\kappa \kappa>0]$			
Wealth	Participation rate			Conditional portfolio shar				
Quartile	Baseline	Δ PE	Δ GE		Baseline	Δ PE	Δ GE	
	(1)	(2)	(3)		(4)	(5)	(6)	
Q1	0.00	0.00	0.00					
Q2	27.41	4.89	0.25		73.16	6.57	4.80	
Q3	91.17	2.79	0.62		92.44	0.83	0.81	
Q4	100.00	0.00	0.00		80.23	-0.21	-0.57	
Total	54.65	1.92	0.22		84.43	1.05	0.70	

- Middle quartiles increase stock investments, while the increase is attenuated in GE
- Top quartile's equity premium decreases in net → portfolio share in stocks
- ullet Wealthiest **always** participate vs. poorest **never** o evidence for participation subsidy

FinLit Subsidy Mitigates Wealth Inequality More policies

Table: Share of financial assets (%) held by each wealth groups:

	Wealth		Bon	Bond		Stocks	
Wealth	Baseline	Δ GE	Baseline	Δ GE	Baseline	Δ GE	
Quartile	(1)	(2)	(3)	(4)	(5)	(6)	
Q1	1.52	0.01	5.77	0.05	0.00	0.00	
Q2	8.85	0.04	25.49	-0.99	2.87	0.44	
Q3	23.82	0.35	13.25	-0.99	27.62	0.81	
Q4	65.80	-0.40	55.49	1.93	69.51	-1.25	
Total	100.00	0.00	100.00	0.00	100.00	0.00	

- Redistribution of top quartile's stock investment income to middle quartiles
 - \Rightarrow Q1-Q3 now holds +0.4%p more of the economy's wealth
 - \Rightarrow Gini index decreases from 56.3% to 55.9%

Alternative Policies: Age-Specific Subsidies Pack

- 75% FinLit subsidy only ① for age 25-80; ② for age 61-25; ③ for 25-40
- $\bullet~+$ Participation subsidy 50%: ④ for age 25-40

	Baseline	Counterfactual	FinLit Age 25-80	FinLit Age 61-65	FinLit Only Age 25-40	+ Participation Age 25-40
	(1)	(II)	1	2	3	4
Risk-free return (%)	2.32	2.31	2.40	2.39	2.31	2.31
Avg. equity premium (%)	5.38	5.33	5.28	5.34	5.35	5.35
Base equity premium (%)	4.41	4.32	4.28	4.36	4.36	4.36
Capital income tax rate (%)	9.77	9.76	10.76	10.27	10.06	10.06
Wage	1.02	1.02	1.02	1.02	1.02	1.02
Avg. FinLit	2.18	2.42	2.41	2.26	2.32	2.42
S.D. Finlit	0.93	0.84	0.84	0.89	0.89	0.84
Participation rate (%)	54.65	55.42	54.87	54.57	54.88	62.52
Cond. portfolio share in stocks	84.43	85.03	85.13	84.68	84.79	86.04
Gini Index (%)	56.34	56.03	55.97	56.18	56.24	55.38

Xavier (2020): Wealth Returns from SCF Paper

$$R_{\omega} = \sum_{c} \omega_{c} R_{c}$$

- R_c return on asset c, ω_c total wealth share
- Wealth = yield component + capital gain

Wealth component	\mathbf{Y} ield	Capital gain	Return
Interest-earning assets	2.1%	_	2.1%
Public equity	1.8%	4.9%	6.7%
Private businesses	9.0%	4.4%	13.4%
Real estate	4.2%	1.1%	5.3%
Debt	2.7%	_	2.7%
Other financial assets	_	0.4%	0.4%
Other nonfinancial assets	-	1.9%	1.9%

Aggregate yearly return, average over 1990-2019

• From SCF (Left: 2019, Right: 1989-2019):

(b) Returns by Asset Class

Xavier (2020): Return Heterogeneity in the U.S. (Cont'd)

• For each wealth (percentile) group i and asset class c, average wealth return $R_i = \sum_c \omega_{ic} R_{ic}$ where ω_{ic} : total wealth share

• Persistent return heterogeneity: ssset returns increases with financial wealth

Potential Channels for FinLit Premium Lit Review

Financial literacy is *positively* related to:

- Stock market participation
 - van Rooij et al. (2011), Yoong (2011), Jappelli and Padula (2015), Cupak et al. (2022)
- More effective investment decisions
 - Calvet et al. (2007, 2009): avoiding underdiversification, inertia, disposition effect
 - Guiso and Jappelli (2008), von Gaudecker (2011): portfolio diverstification
 - Bilias et al. (2010): limited resources → portfolio intertia
 - Bucher-Koenen and Ziegelmeyer (2014): selling off losing assets
 - Bhutta, Blair and Dettling (2021): higher propensity of having 3 months of liquid savings

Advanced retirement planning

- Bucher-Koenen and Lusardi (2011), van Rooij et al. (2011), Clark et al. (2015)

Financial Literacy Questionnaires Pack

Survey of Consumer Finance (SCF): "Big Three" Questions

- ① Risk Diversification Buying a single company's stock usually provides a safer return than a stock mutual fund. True, False, Do not know, Prefer not to say
- ② Inflation Imagine that the interest rate on your savings account was 1% per year and inflation was 2% per year. After 1 year, how much would you be able to buy with the money in this account? More than today, Exactly the same, Less than today, Do not know, Prefer not to say
- (3) Interest Rate Suppose you had \$100 in a savings account and the interest rate was 2% per year. After 5 years, how much do you think you would have in the account if you left the money to grow? More than \$102, Exactly \$102, Less than \$102, Do not know, Prefer not to say

U.S. National Financial Capability Study (NFCS): "Big Five" Questions

- (4) Mortgage A 15-year mortgage typically requires higher monthly payments than a 30-year mortgage, but the total interest paid over the life of the loan will be less. True, False, Do not know, Prefer not to say
- (5) **Bond Price** If interest rates rise, what will typically happen to bond prices? They will rise, They will fall, They will stay the same, There is no relationship, Do not know, Prefer not to say

SCF: Stock Market Exposure Increases with FinLit Peg: category

(Investment Outcome)_i = $c + \beta \cdot \text{FinLit}_i + \Gamma X_i + \varepsilon_i$ for household i

	Positive holdings of public equities?		Cond. fin. wealth share in stocks		Cond. net worth share in stocks	
	(1)	(2)	(3)	(4)	(5)	(6)
Financial literacy score (0-3)	0.061***	0.056***	0.012*	0.007	0.013**	0.010*
	(0.006)	(0.006)	(0.006)	(0.006)	(0.004)	(0.004)
ihs(net worth)	0.012***	0.011***	0.004***	0.004***	0.002***	0.002***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.000)	(0.000)
ihs(income)	0.096***	0.094***	0.007	0.005	0.019 * * *	0.018***
	(0.008)	(0.008)	(0.005)	(0.005)	(0.003)	(0.003)
Above-average risk tolerance		0.072***		0.064***		0.039***
		(0.008)		(0.007)		(0.005)
Mean value	0.541	0.541	0.441	0.441	0.191	0.191
R-sq.	0.321	0.326	0.025	0.036	0.074	0.082
No. Obs	10997	10997	6858	6858	6858	6858

⁻ Source: SCF 2016-2019. +p < 0.10, *p < 0.05, **p < 0.01, *** < 0.001. Col (1)-(4): Author's replication of Cupák et al. (2022).

Even after controlling for risk aversion, 1 unit increase in FinLit is associated with:

- Probability of equity holding: 5.6%p ▲
- Conditional share of financial wealth (any assets) allocated into equity: $0.7\% p (1.0\% p) \blacktriangle$

⁻ Controls: bus. ownership, inheritance, HH size, kids, age, age sq., female, employed, education, race, marital status, year FE

SCF: Stock Market Exposure Increases with FinLit (Categorical) Pack

(Investment Outcome)_i =
$$c + \sum_{j} \beta_{j} \cdot \mathbb{1}(\text{FinLit} = j) + \Gamma X_{i} + \varepsilon_{i}$$
 for household i

	Positive holdings of public equities?		Cond. fin. wealth share in stocks		Cond. net worth share in stocks	
Ref. group: FinLit = $\{0,1\}$	(1)	(2)	(3)	(4)	(5)	(6)
FinLit=2	0.059***	0.058***	0.002	0.000	-0.015+	-0.015+
	(0.012)	(0.012)	(0.010)	(0.011)	(0.008)	(0.008)
FinLit=3	0.138***	0.129***	0.022+	0.014	0.016+	0.012
	(0.013)	(0.013)	(0.012)	(0.012)	(0.009)	(0.009)
ihs(net worth)	0.011***	0.011***	0.004***	0.004***	0.002***	0.002***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.000)	(0.000)
ihs(income)	0.096***	0.093***	0.007	0.005	0.019 * * *	0.018 * * *
	(0.008)	(0.008)	(0.005)	(0.005)	(0.003)	(0.003)
Above-average risk tolerance		0.072***		0.063***		0.039***
		(0.008)		(0.007)		(0.005)
Mean value	0.541	0.541	0.441	0.441	0.191	0.191
R-sq.	0.322	0.327	0.026	0.036	0.077	0.085
No. Obs	10997	10997	6858	6858	6858	6858

 $⁻ Source: SCF \ 2016 - 2019. \ +p < 0.10, \ ^*p < 0.05, \ ^*p < 0.01, \ ^{***} < 0.001. \ \textbf{Col (1)-(4)}: \ \textbf{Author's replication of Cupák et al. (2022)} \\$

⇒ Financial literacy is positively correlated with equity holdings, both extensive and intensive

⁻ Controls: bus. ownership, inheritance, HH size, kids, age, age sq., female, employed, education, race, marital status, year FE

SCF: Gross Portfolio Composition by FinLit + Networth

SCF: Gross Portfolio Composition by FinLit + Education Pack

SCF: Gross Portfolio Composition by FinLit + Age • Back

SCF: Life-cyle Net Worth by FinLit & Education • Back

A steady-state equilibrium consists of $(K^{\star}, F^{\star}, r^{b\star}, r^{\star}, r^{\star}, r^{r\star})$ s.t.

- (1) Given $(r^{b\star}, r^{\star}, \underline{r}^{\star}, \tau^{r\star})$, household problem gives rise to $\Gamma(\mathcal{X}, f; l, \eta, t)$
- (2) Firm's problem characterizes:

$$r^* = g_k(F^*, K^*, L^*) - \delta_K, w^* = g_l(F^*, K^*, L^*)$$

(3) Inelastic labor supply

$$L = \int ld\Gamma(\mathcal{X}, f; l, \eta, t < t_R)$$

(4) Aggregate financial literacy

$$F^{\star} = \int f d\Gamma(\mathcal{X}, f; l, \eta, t)$$

Definition: General Equilibrium (cont'd)

A steady-state equilibrium consists of $(K^{\star}, F^{\star}, r^{b\star}, r^{\star}, r^{\star}, r^{\star}, \tau^{r\star})$ s.t.

(5) Gov't budget constraints

$$\tau^{l}w \int ld\Gamma(\mathcal{X}, f; l, \eta, t < t_{R}) = \lambda w \int ld\Gamma(\mathcal{X}, f; l, \eta, t \ge t_{R}) \tag{1}$$

$$G^{\star} + r^{b\star}B^{\star} = \tau^{r\star} \int \left(r^{b\star}(1-\kappa) + \tilde{r}(f)\kappa\right) \mathcal{S}d\Gamma(\mathcal{X}, f; l, \eta, t)$$

(6) Market clearing conditions

$$B^{\star} = \int (1 - \kappa) \cdot \mathcal{S} d\Gamma(\mathcal{X}, f, ; l, \eta, t)$$
(3)

(2)

(5)

$$K^{\star} = \int \kappa \cdot \mathcal{S} d\Gamma(\mathcal{X}, f, ; l, \eta, t) \tag{4}$$

$$r^*K^* = \int \left(\underline{r}^* + r^X(f) + \sigma^X \eta\right) (\kappa \cdot S) d\Gamma(\mathcal{X}, f, ; l, \eta, t)$$

Parameterization Pack

Parameter		Value
Household Preference		
Discount factor	β	0.96
Elasticity of substitution	ψ	0.5
Risk aversion	γ	5.0
Labor process		
Persistency	$ ho^l$	0.91
Variance	σ^l	0.21
Pension replacement rate	λ	0.36
Financial literacy		
Deprecation rate in literacy	δ_f	0.02
Investment cost: coefficient	$\check{\phi}$	0.22
Investment cost: convexity	ι	1.75
Stock market		
Mean excess return	$r^X(f_{\sf max})$	0.01
Standard deviation	σ^X	0.157
Per-period fixed participation cost	heta	0.09
Production		
Depreciation rate in capital	δ_K	0.08
Capital Intensity	α	0.36
Govt debt to GDP ratio	B/Y	0.82

(Investment Outcome)_i =
$$c + \alpha \text{FinLit} + \beta X_i + \varepsilon_i$$

FinLit & Portfolio Performance (for Fed employees)

Compared to the least sophisticated (FinLit 0-1), the most sophisticated (FitLit 4-5):

- Held 11.52% points more stock
- Anticipate earning 3.5 b.p. per month more in excess returns
- Had 40% higher portfolio volatility
- Held portfolios with about 1.71%p less idiosyncratic risk
- Controls: age, sex, whether married, salary, plan balance, years at Fed

Clark, Lusardi, Mitchell (2015): Cont'd

Portfolio outcomes and financial knowledge:

	Equity allocation	Monthly excess return	Monthly SD	%NSR
	1	2	3	4
Med. FinLit Index (2-3)	2.506 (2.781)	0.012 (0.011)	0.118 (0.159)	-1.164 (0.818)
High FinLit Index (4-5)	11.522*** (2.729)	0.035*** (0.011)	0.696*** (0.157)	-1.708** (0.801)
Age	-0.627*** (0.059)	-0.001*** (0.000)	-0.036*** (0.003)	0.084*** (0.016)
Male	4.027*** (1.103)	0.019*** (0.004)	0.294*** (0.065)	0.277 (0.298)
Married	2.089* (1.204)	0.007 (0.005)	0.103 (0.070)	-0.457 (0.339)
Salary (\$10k)	0.292* (0.162)	0.000 (0.001)	0.014 (0.010)	-0.045 (0.043)
Total balance (\$100k)	1.881*** (0.312)	0.006*** (0.001)	0.096*** (0.019)	-0.427*** (0.082)
Tenure	-0.558*** (0.070)	-0.001** (0.000)	-0.028*** (0.004)	0.124*** (0.018)
V	2,763	2,763	2,763	2,763
R^2	0.157	0.058	0.148	0.058
Mean of dep var (%)	61.347	0.618	4.069	6.680
SD of dep var (%)	29.656	0.117	1.737	7.789

- Reference category: low FinLit (= O-1 correct)
- Controls: age, sex, whether married, salary, plan balance, years at Fed

- Suppose financial literacy leads to productivity growth
- Perfectly competitive firms w/ CRS production

$$Y = g(F, K, L) = A(F)K^{\alpha}L^{1-\alpha} \text{ with } A'(\cdot) > 0$$

$$\Rightarrow r^* = g_k(F, K, L), w^* = g_l(F, K, L)$$

As average financial literacy F increases:

- Literacy-return premium increases stock demands
 ⇒ Larger capital supply ⇒ market returns to stocks r*▼ ("total demand effect")
- Higher average financial literacy translates into more efficient capital allocation
 ⇒ Positive externality on TFP ⇒ market returns to stocks r* ▲ ("productivity effect")

Cross-Country FinLit & Log(TFP) ▶ Back

FinLit Enhances TFP Pack

S&P global survey of population share of FinLit adults in 150 countries

$$\log (\overline{\text{TFP}}_{2014-2019}) = \beta_0 + \beta_1 (\text{Share FinLit}_{2014}) + \gamma X + \varepsilon$$

	All Countries			Advanced Market		
	(1)	(2)	(3)	(4)	(5)	(6)
Share of FinLit Adults	1.286***	-0.049	-0.060	0.857***	0.409**	0.428**
	(0.201)	(0.280)	(0.267)	(0.145)	(0.144)	(0.153)
Log(GDP per capita; avg 94-13)		0.254***	0.249***		0.308***	0.275**
		(0.037)	(0.054)		(0.063)	(0.096)
Financial Development (94-13)			0.034			0.071
			(0.185)			(0.166)
R-sq.	0.237	0.513	0.513	0.317	0.618	0.620
No. Obs	100	100	100	34	34	34

 $- Source: S\&P \ Global \ FinLit \ Survey \ (2014), Penn \ World \ Table \ 10.0, IMF \ Financial \ Development \ Index \ (Scale \ 0-1). \ *p < 0.05, **p < 0.01, ***p < 0.001, **p < 0.001$

 \star Discipline A'(F) s.t. 1%p \blacktriangle in pop. share of FinLit adults \to 0.5% TFP growth

Lit Review: Financial Development & Growth Pack

Cole, Chien and Lustig (ReStud, 2011) Paper

- Impact of heterogeneous trading technologies on asset prices & inequality
 - Active vs. passive traders, portfolio choice (bonds vs. stocks)
- Fraction of total wealth held by active traders determines asset prices
 - Actively respond to price variation & absorb aggregate risk created by non-participants

Cole, Greenwood, Sanchez (Econometrica, 2016) Paper

- Financial system in determining technology adoption
 - Intermediary's ability to monitor and control a firm's cash flow
- Contract between financial intermediaries and firms

Klapper & Lusardi (2020): Cross-country FinLit Paper Pack

- Data: 2014 S&P Global Survey including financial literacy questions on:
 - 1 risk diversification, 2 inflation, 3 basic numeracy 4 interest compounding
- **DEF**: Agents are *financially literate* if they know at least 3 out of 4 concepts
- Sample: 150K nationally representative, randomly selected adults in 140 countries
- Women, the poor, and younger respondents are less literate
- Worldwide, just one in three adults are financially literate

Klapper & Lusardi (2020): Country characteristics

- Country-level literacy is (+) correlated w/ regulation, (-) w/ uncertainty avoidance
- ullet EU countries w/ lower diversification knowledge \leftrightarrow smaller financial stability

Counterfactual: Full Table Pack

		Baseline	Δ PE	Δ HE	Δ GE
		(1)	(2)	(3)	(4)
Risk-free return (%)	r^b	2.32		-0.01	0.08
Avg. equity premium (%)	$r-r^b$	5.38		-0.06	-0.10
Base. equity premium (%)	$\underline{\underline{r}} - r^b$	4.41		-0.09	-0.13
Capital income tax rate (%)	$ au^{r\star}$	9.77	0.00	-0.01	1.00
Stocks (level)	$\mathbb{E}[\kappa S]$	4.40	0.15	0.03	0.01
Capital-output ratio	K/Y	2.29	0.05	0.01	0.00
Avg. FinLit	$\mathbb{E}[f]$	2.18	0.25	0.23	0.22
S.D. Finlit	$\mathrm{S.D}[f]$	0.93	-0.10	-0.09	-0.09
Saving rate (%)	$\mathbb{E}[\mathbb{1}(\mathcal{S}>0)]$	97.518	0.00	0.03	0.02
Participation rate (%)	$\mathbb{E}[\mathbb{1}(\kappa > 0)]$	54.65	1.92	0.77	0.22
Cond. portfolio share in stocks (%)	$\mathbb{E}[\kappa \kappa>0]$	84.43	1.05	0.60	0.70
Gini index (%)		56.34	-0.26	-0.31	-0.37