ECON61001: Econometric Methods

Solutions to Problem Set for Tutorial 4

- 1.(a) We have $T^{1/2}\bar{v}_T = T^{-1/2}\iota_T'v$. Using Lemma 2.1 with $w = T^{1/2}\bar{v}_T$, c = 0, $C = T^{-1/2}\iota_T$, $\mu = 0$ and $\Omega = I_T$, we obtain $T^{1/2}\bar{v}_T \sim N(0, T^{-1}\iota_T'\iota_T)$. Since $\iota_T'\iota_T = T$, we have $T^{1/2}\bar{v}_T \sim N(0, 1)$.
- 1.(b) The event $|\bar{v}_T| < n$ is equivalent to the event $|T^{1/2}\bar{v}_T| < T^{1/2}n$ and so $P(|\bar{v}_T| < n) = P(|z| < T^{1/2}n)$. As n > 0, we have $T^{1/2}n \to \infty$ as $T \to \infty$; so $\lim_{T\to\infty} P(|\bar{v}_T| < n) = 1$ because $\lim_{T\to\infty} P(|z| < T^{1/2}n) = 1$. Since this holds for any n, it follows from Definition 3.1 (in the lecture notes) that $\bar{v}_T \stackrel{p}{\to} 0 = E[v_t]$ which is the WLLN.
- 1.(c) The event $|T\bar{v}_T| < n$ is equivalent to the event $|T^{1/2}\bar{v}_T| < T^{-1/2}n$, and so $P(|T\bar{v}_T| < n) = P(|z| < T^{-1/2}n)$. Therefore $\lim_{T\to\infty} P(|T\bar{v}_T| < n) = 0$ for any n. As a result $T\bar{v}_T$ is said to diverge as $T\to\infty$ and does not have a well-defined limiting distribution.

Parts (a)-(c) illustrate the crucial role of the scaling in our limit theorems for the sample mean. Unscaled the sample mean converges in probability to the population mean, a constant; this is the WLLN. If we scale the difference between the sample and population means by T^{2} for T^{2}

https://powcoder.com

- 2.(i) u_i and x_i cannot be independent because of the discrete sample space for y_i . Specifically, since the sample space of y_i is $\{0,1\}$, u_i can only take one of two values given x_i : $1-x_i'\beta_0$ or $-x_i'\beta_0$. Therefore, the sample space for y_i the sample space for y_i can only take one of two values given x_i : $1-x_i'\beta_0$ or $-x_i'\beta_0$. Therefore, the sample space for y_i can only take one of two values given x_i : $1-x_i'\beta_0$ or $-x_i'\beta_0$.
- 2.(ii) Since there only two possible outcomes for u_i conditional on x_i , the conditional distribution for u_i given x_i cannot be normal.
 - 3. Recall that $\hat{\sigma}_N^2 = e'e/(N-k) = u'(I_N-P)u/(N-k)$ for $P = X(X'X)^{-1}X'$. Multiplying out and for convenience multiplying and dividing by N, we obtain

$$\hat{\sigma}_{N}^{2} = \left(\frac{N}{N-k}\right) \left\{ N^{-1}u'u - N^{-1}u'X(N^{-1}X'X)^{-1}N^{-1}X'u \right\}$$

$$= \left(\frac{N}{N-k}\right) \left\{ N^{-1}\sum_{i=1}^{N} u_{i}^{2} - N^{-1}\sum_{i=1}^{N} u_{i}x'_{i}(N^{-1}\sum_{i=1}^{N} x_{i}x'_{i})^{-1}N^{-1}\sum_{i=1}^{N} x_{i}u_{i} \right\}$$
(1)

We now analyze the large sample behaviour of the terms of the right hand side of the previous equation. First note that as k is finite, we have $\lim_{N\to\infty} N/(N-k) = 1$. For the remaining

terms, we note they all involve sums of i.i.d random variables. As in Lecture 4, we can apply the WLLN to deduce:

$$N^{-1} \sum_{i=1}^{N} x_i x_i' \stackrel{p}{\to} Q,$$

$$N^{-1} \sum_{i=1}^{N} x_i u_i \stackrel{p}{\to} 0.$$

Now consider, $N^{-1}\sum_{i=1}^N u_i^2$. Since $E[u_i]=0$, we have $E[u_i^2]=Var[u_i]=\sigma_0^2$ under our assumptions. Therefore, it follows from the WLLN that

$$N^{-1} \sum_{i=1}^{N} u_i^2 \stackrel{p}{\to} \sigma_0^2.$$

From (1), it can be seen that $\hat{\sigma}_N^2$ is a continuous function of $N^{-1} \sum_{i=1}^N u_i^2$, $N^{-1} \sum_{i=1}^N x_i x_i'$, $N^{-1} \sum_{i=1}^N x_i u_i$ and N/(N-k). From Slutsky's Theorem, it follows that $\hat{\sigma}_N^2$ converges in probability to the corresponding function of the limits of these terms, and so we have:

$$\hat{\sigma}_N^2 \stackrel{p}{\to} (1) \left\{ \sigma_0^2 - 0 \times Q^{-1} \times 0 \right\} = \sigma_0^2.$$

4. From the solutions to Tutorial 2, Project Exam Help $\hat{\gamma}_N = \beta_{0,1} + (X_1'X_1)^{-1}X_1'X_2\beta_{0,2} + (X_1'X_1)^{-1}X_1'u,$

where the
$$i^{th}$$
 row of X_{ℓ} is $x'_{\ell,i}$ for $\ell = 1, 2$, from which it follows that
$$\hat{\gamma}_{N} = \beta_{0,1} + (N^{-1}X_{1}^{i}X_{1}) N^{-1}X_{1}^{i}X_{2}\beta_{0,2} + (N^{-1}X_{1}^{i}X_{1})^{-1}N^{-1}X_{1}^{i}u. \tag{2}$$

From (2), it can be seen that $\hat{\gamma}_N$ is a continuous function of $N^{-1}X_1'X_1$, $N^{-1}X_1'X_2$ and $N^{-1}X_1'u$. By smild algorithm Letter 4, where $N^{-1}X_1'u \stackrel{p}{\to} 0$, and (decomposing X)

$$N^{-1}X'X \ = \left[\begin{array}{cc} N^{-1}X_1'X_1 & N^{-1}X_1'X_2 \\ N^{-1}X_2'X_1 & N^{-1}X_2'X_2 \end{array} \right] \ \stackrel{p}{\to} \left[\begin{array}{cc} Q_{1,1} & Q_{1,2} \\ Q_{2,1} & Q_{2,2} \end{array} \right] \ = \ Q.$$

Thus, using Slutsky's Theorem, it follows from (2) and these applications of the WLLN that: $\hat{\gamma}_N \stackrel{p}{\to} \beta_{0,1} + Q_{1,1}^{-1} Q_{1,2} \beta_{0,2}.$

5. Recall from Lecture 4 that we can test $H_0: g(\beta_0) = 0$ vs. $H_1: g(\beta_0) \neq 0$ using the statistic:

$$W_N^{(g)} = Ng(\hat{\beta}_N)' \left[G(\hat{\beta}_N) (N^{-1}X'X)^{-1} G(\hat{\beta}_N)' \right]^{-1} g(\hat{\beta}_N) / \hat{\sigma}_N^2$$

where $G(\bar{\beta}) = \partial g(\beta)/\partial \beta'|_{\beta=\bar{\beta}}$, and that under H_0 : $W_N^{(g)} \xrightarrow{d} \chi_{n_g}^2$ where n_g is the number of restrictions. For this question, $g(\beta_0) = \beta_{0,2}\beta_{0,3} - 1$. Therefore, we have $G(\beta) = [0, \beta_3, \beta_2, 0, 0]$.

Note that since we are given that $\beta_{0,i} \neq 0$ for i = 2, 3, it follows that $rank\{G(\beta_0)\} = 1 = n_g$. Using these results to specialize $W_N^{(g)}$ to this case, we obtain:

$$W_N^{(g)} = \frac{\left(\hat{\beta}_{N,2}\hat{\beta}_{N,3} - 1\right)^2}{\hat{\sigma}_N^2 \left(\hat{\beta}_{N,3}^2 m_{2,2} + \hat{\beta}_{N,2}^2 m_{3,3} + 2\hat{\beta}_{N,2}\hat{\beta}_{N,3} m_{2,3}\right)}$$

where $m_{i,j}$ is the $(i,j)^{th}$ element of $(X'X)^{-1}$. The decision rule is to: reject H_0 at the approximate $100\alpha\%$ significance level if $W_N^{(g)} > c_1(1-\alpha)$ where $c_1(1-\alpha)$ is the $100(1-\alpha)^{th}$ percentile of the χ_1^2 distribution.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder