\mathcal{T} ecnológico de \mathcal{C} osta \mathcal{R} ica \mathcal{E} scuela de \mathcal{M} atemática \mathcal{C} álculo \mathcal{D} iferencial e \mathcal{I} ntegral

 \mathcal{T} iempo: 2 horas, 40 min \mathcal{P} untaje \mathcal{T} otal: 40 puntos \mathcal{I} \mathcal{S} emestre 2012

\mathcal{E} xamen de \mathcal{R} eposicón

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes las apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de hojas sueltas, calculadora programable y teléfono celular.

1. Calcule, sin usar la regla de L'Hôpital, el límite siguiente: (4 pts)

$$\lim_{x \to 2^+} \frac{|2x - x^2|}{x - \sqrt{3x - 2}}$$

2. Determine los valores de a tales que la función f sea continua en x = 0 (3 pts)

$$f(x) = \begin{cases} \frac{\sin(2x)}{ax} & \text{si } x < 0\\ a + x - 1 & \text{si } x \ge 0 \end{cases}$$

- 3. Determine la ecuación de la recta tangente a la curva de ecuación $4xy^2=2y-x^3+1$, en el punto $(1,\frac{1}{2})$ (4 pts)
- 4. Realice el análisis completo (dominio de la función, intersecciones con los ejes, valores críticos, monotonía, concavidad, asíntotas, puntos de inflexión, extremos relativos y cuadro de variación) y la representación gráfica de la función f si se sabe que $f(x) = \frac{x^2}{x+2}$, $f'(x) = \frac{x^2+4x}{(x+2)^2}$ y $f''(x) = \frac{8}{(x+2)^3}$ (8 pts)
- 5. Un depósito de agua tiene forma de cono con vértice abajo y con una altura que es el doble del radio de su parte superior. Cuando el depósito se descarga, su volumen disminuye a razón de $16\pi \ m^3/\text{min}$, ¿con qué rapidez varía el nivel de agua cuando está a 4m del fondo? (4 pts)

6. Calcule cada una de las integrales siguientes:

(a)
$$\int \frac{3u-5}{(u+2)(2u+1)} du$$
 (4 pts)

(b)
$$\int r(e^{-r^2} + \cos(3r)) dr$$
 (5 pts)

- 7. Determine si $\int_{1}^{\infty} \frac{1}{(2t+1)\ln^{3}(2t+1)} dt$ es convergente o divergente. (4 pts)
- 8. Demuestre A a partir de las premisas siguientes: (4 pts)
 - (1) $E \Rightarrow (B \land \neg C)$
 - (2) $E \vee D$
 - $(3) (B \lor D) \Rightarrow A$
 - $(4) \neg D$

Reglas de inferencia

- ullet Modus Ponens: MP
 - (a) $P \Rightarrow Q$
 - (b) *P*
 - $\therefore Q$
- ullet Modus Tollens: \mathbf{MT}
 - (a) $P \Rightarrow Q$
 - (b) $\neg Q$
 - $\therefore \neg P$
- Silogismo Hipotético: SH
 - (a) $P \Rightarrow Q$
 - (b) $Q \Rightarrow R$
 - $\therefore P \Rightarrow R$

- Silogismo Disyuntivo: SD
 - (a) $P \vee Q$
 - (b) $\neg P$
 - $\therefore Q$
- Simplificación: Simp.
 - (a) $P \wedge Q$
 - ∴ P
- Adjunción: Adj.
 - (a) *P*
 - (b) Q
 - $\therefore P \wedge Q$
- Adición: Adi.
 - (a) *P*
 - $\therefore P \lor Q$