Linear Programming Formulation of Portfolio Management

created by: pgeorge@mesoncapital.com

Edited by: Janu314@gmail.com

last edited: 2017-10-18

Overview

This document presents portfolio management, as used by the Gravity simulation engine, as a linear programming problem in standard form. It also discusses implementation details using the scipy.optimize.linprog Python module.

Data

• Ideal portfolio.2010-01-01.csv

CSV headers:

name	type	description
tradingitemid	integer	Internal equity ID.
ind_long	boolean	Indicates long position (proba_long > 0.5).
ind_short	boolean	Indicates short position (proba_short > 0.5).
proba_long	float	Probability long equity (i.e. value will increase).
proba_short	float	Probability short equity (i.e. value will decrease).
marketcap	float	Marketcap (MM).
volume	integer	Weekly trade volume.
beta	float	12 month average volatility relative to S&P 500.
borrowcost	float	Actual annualized cost to borrow.
borrowavailability	integer	Outstanding volume available for borrow.

Mathematical Formulation

Ideal Portfolio

Consider probability vectors $\mathbf{P}^{\mathbf{L}}$ and $\mathbf{P}^{\mathbf{S}}$ generated by a binary classification model, defined such that the elements

$$p_i^L \equiv \text{probability long}$$

 $p_i^S \equiv \text{probability short}$
 $i \in [0..N-1]$

For both longs and shorts, we neglect any position with a probability < 0.5.

We apply an exponential weighting function to p^L and p^S to generate a set of position weight vectors \hat{w}^L and \hat{w}^S , respectively. These vectors should be normalized such that

$$\begin{split} \sum_i \hat{w}_i^L &= M_L \quad (\hat{w}_i^L > 0) \\ \sum_i \hat{w}_i^S &= M_S \quad (\hat{w}_i^S < 0) \\ M_L &\equiv \text{normalized long exposure} \\ M_S &\equiv \text{normalized short exposure} \end{split}$$

For example, an unlevered dollar-neutral portfolio would have $M_L=1.0, M_S=-1.0$.

Objective Function

Given an ideal portfolio, \hat{P}

$$\hat{P} = [\hat{\mathbf{w}}^{\mathbf{L}}, \hat{\mathbf{w}}^{\mathbf{S}}]$$

we seek to minimize the error between it and our optimal portfolio, ${\cal P}\,$

$$P = [\mathbf{w}^{\mathbf{L}}, \mathbf{w}^{\mathbf{S}}]$$

objective function:

$$\min \sum_{\substack{i \in [0..N-1]\\ j \in (L,S)}} |w_i^j - \hat{w}_i^j|$$

Optimization Constraint Bounds (Optimization Hyperparameters)

This table contains constraints definitions and default values for portfolio optimization. The goal is make these constraint bounds parameterizable inputs to our portfolio management algorithm.

$$w_{max}^L \equiv \text{maximum long position weight} \quad (\text{default} = 0.05)$$
 $w_{min}^S \equiv \text{maximum long position weight} \quad (\text{default} = -0.03)$
 $M_L \equiv \text{normalized long exposure} \quad (\text{default} = 1.00)$
 $M_S \equiv \text{normalized short exposure} \quad (\text{default} = -1.00)$
 $\delta_L^M \equiv \text{long exposure buffer} \quad (\text{default} = 0.1)$
 $\delta_S^M \equiv \text{short exposure buffer} \quad (\text{default} = 0.1)$
 $\delta_L^S \equiv \text{long portfolio beta buffer} \quad (\text{default} = 0.1)$
 $\delta_S^S \equiv \text{short portfolio beta buffer} \quad (\text{default} = 0.1)$

Constraints

Here, we itemize the list of constraints.

1. Bounds on individual weightings

$$0 < w_i^L \le w_{max}^L$$
$$w_{min}^S \ge w_i^S < 0$$

2. Bounds on exposure

$$1 - \delta_L^M \le \frac{1}{M_L} \sum_i w_i^L \le 1 + \delta_L^M$$
$$1 - \delta_S^M \le \frac{1}{M_S} \sum_i w_i^S \le 1 + \delta_S^M$$

3. Bounds on relative volatility ("beta"). We will eventually revisit this constraint to enforce near-beta-neutrality.

$$\begin{split} 1 - \delta_L^\beta &\leq \sum_i \beta_i^L w_i^L \leq 1 + \delta_L^\beta \\ - (1 - \delta_S^\beta) &\leq \sum_i \beta_i^S w_i^S \leq - (1 + \delta_S^\beta) \end{split}$$

4. Constraints on liquidity (to be completed)

We should have something here to that say 50% of entire portfolio can be liquidated completely in 2 weeks at 20% of volume cap. Potential hyperparams:

- 1. percent of portfolio required to be liquid (default = 50%)
- 2. time period of liquidity (default = 2 weeks)
- 3. max volume percent (default = 20%)

5. Constraints on short availability (to be completed)

This is a tricky one because you need to define this constraint as the new position (e.g. PositionSizeIdeal - PositionSizeToday = order size <= short avail quantity). I think this is ok to use though since position size today is known.

Linearizing the Above Problem (Long Only)

 $\Theta_i^{\,j} \,\,$ - new variables to linearize the problems

New Objective function: $Min \ \Sigma_{i,j} \ \Theta_i^j$

New Constraints added:

$$w_i^j - \hat{w}_i^j \le \Theta_i^j, i = 1, \dots, N$$

$$w_i^j - \hat{w}_i^j \ge -\Theta_i^j, i = 1, \dots, N$$

Scipy Implementation

To be completed.