Решение задач экспериментального тура

Часть 1.

1.1 Мощность потерь равна

$$P = Fv = \beta v^{n+1},$$

следовательно, потери энергии за один период можно представить в виде

$$\Delta E = \langle P \rangle T = \beta \langle v^{n+1} \rangle T = \beta T \langle (v_0 \sin \omega t)^{n+1} \rangle = \beta T v_0^{n+1} \langle (\sin \omega t)^{n+1} \rangle.$$

где v_0 - максимальная скорость шарика (в приближении малого затухания). В свою очередь энергия шарика пропорциональна квадрату максимальной скорости $E_0 = \frac{m v_0^2}{2}$. Отсюда и следует формула (3) условия

$$\Delta E = -CE_0^{\frac{n+1}{2}}.\tag{1}$$

1.2 В крайнем положении механическая энергия есть потенциальная энергия поля тяжести (т.к. кинетическая равна нулю) –

$$E = mgL(1 - \cos \varphi). \tag{2}$$

1.3 Для расчета угла отклонения следует воспользоваться формулой

$$\varphi = \arcsin \frac{x}{\sqrt{x^2 + h^2}} \tag{3}$$

Начальная энергия и ее потери рассчитываются по формуле

$$E_0 = 1 - \cos \varphi_0. \tag{4}$$

$$\Delta E = \cos \varphi_1 - \cos \varphi_0. \tag{5}$$

Результаты измерений и расчетов представлены в таблице 1.

Таблица 1.

X_0 , cm	<i>х</i> ₁ , см	<i>x</i> ₁ , cm	<i>x</i> ₁ , cm	$\langle x_1 \rangle$, см	E_0	ΔE	$\ln E_0$	$\ln \Delta E$
25	20,6	20,7	20,5	20,6	0,1092	0,0311	-2,21	-3,47
24	20,0	19,5	20,5	20,0	0,1019	0,0278	-2,28	-3,58
23	19,0	19,0	19,5	19,2	0,0948	0,0261	-2,36	-3,65
22	18,0	18,5	18,6	18,4	0,0877	0,0241	-2,43	-3,73
21	17,5	17,6	17,8	17,6	0,0809	0,0218	-2,52	-3,83
20	17,0	17,1	17,1	17,1	0,0742	0,0185	-2,60	-3,99
19	16,6	16,5	16,6	16,6	0,0676	0,0150	-2,69	-4,20
18	15,6	15,4	15,5	15,5	0,0613	0,0148	-2,79	-4,22
17	15,0	14,9	14,8	14,9	0,0552	0,0120	-2,90	-4,42
16	14,0	14,2	14,2	14,1	0,0494	0,0102	-3,01	-4,58
15	13,5	13,3	13,5	13,4	0,0438	0,0082	-3,13	-4,80
14	12,6	12,4	12,6	12,5	0,0385	0,0073	-3,26	-4,92
13	11,8	11,5	11,6	11,6	0,0334	0,0064	-3,40	-5,05
12	10,7	10,7	10,7	10,7	0,0287	0,0057	-3,55	-5,17
11	10,0	9,8	9,9	9,9	0,0243	0,0045	-3,72	-5,41
10	9,2	9,3	9,3	9,3	0,0202	0,0028	-3,90	-5,89
9	8,2	8,0	8,3	8,2	0,0165	0,0028	-4,11	-5,86
8	7,5	7,4	7,3	7,4	0,0131	0,0019	-4,34	-6,29

График зависимости потерь энергии от начальной энергии показан на рис. 1.

Puc. 1

1. 4 Полученная зависимость похожа на степенную. Для определения показателя степени в данной зависимости наиболее предпочтительно использовать двойной логарифмический масштаб

$$\ln|\Delta E| = \ln C + \frac{n+1}{2} \ln E_0, \tag{6}$$

тогда коэффициент наклона графика даст показатель степени. Логарифмы измеренных величин также приведены в таблице 1. График зависимости в двойном логарифмическом масштабе приведен на рис. 2.

Puc. 2

Коэффициент наклона данного графика примерно равен $\frac{n+1}{2} \approx 1,35$, откуда следует, что показатель степени равен $n \approx 1,7$.

1.5 Найденный показатель степени ближе к двум, поэтому следует признать, что формула (2) в данном случае точнее описывает экспериментальные данные.

Часть 2.

2.1 Результаты измерений приведены в Таблице 2.

Таблица 2.

					1	
k	x_k , cm	x_k , cm	x_k , cm	$\langle x_k \rangle$, cm	$\overline{\langle x_k \rangle}$	$\ln\langle x_k \rangle$
0	25,0	25,0	25,0	25,0	0,040	3,219
1	22,0	21,0	21,0	21,3	0,047	3,060
2	18,0	17,5	17,7	17,7	0,056	2,875
3	15,5	16,0	15,5	15,7	0,064	2,752
4	13,5	13,6	13,3	13,5	0,074	2,600
5	11,5	12,0	12,0	11,8	0,085	2,471
6	10,5	11,0	10,7	10,7	0,093	2,373
7	10,0	9,6	9,8	9,8	0,102	2,282
8	9,5	9,0	8,8	9,1	0,110	2,208
9	8,5	8,3	7,5	8,1	0,123	2,092
10	7,5	7,5	7,0	7,3	0,136	1,992
11	7,0	7,0	6,5	6,8	0,146	1,922

2.2 Для проверки применимости формул (5)-(6) необходимо построить графики зависимостей $\ln\langle x_k\rangle$ (рис. 3) и $\frac{1}{\langle x_k\rangle}$ (рис. 4) от числа колебаний k .

Зависимость $\frac{1}{\langle x_k \rangle}$ от k ближе к линейной, следовательно, формула (6) точнее описывает полученные экспериментальные данные.

2.3 Так как формула (6) следует из квадратичной зависимости силы сопротивления от скорости, то и в данном случае следует отдать предпочтение формуле (2).

Часть 3.

3.1 Результаты измерений представлены в таблице 3. Обработка этих результатов проводится аналогично Части 2.

	1	1			T .	
				/ * \	$\frac{1}{\sqrt{}}$	• / \
x_k , cm	k	k	k	$\langle k \rangle$	$\langle x_k \rangle$	$\ln\langle x_k \rangle$
20	0	0	0	0,0	0,050	2,996
19	4	4	3	3,7	0,053	2,944
18	7	7	6	6,7	0,056	2,890
17	10	10	8	9,3	0,059	2,833
16	13	13	12	12,7	0,063	2,773
15	16	17	16	16,3	0,067	2,708
14	21	21	19	20,3	0,071	2,639
13	25	25	25	25,0	0,077	2,565
12	30	30	30	30,0	0,083	2,485
11	37	36	37	36,7	0,091	2,398
10	43	43	43	43,0	0,100	2,303
9	52	51	52	51,7	0,111	2,197
8	62	61	61	61,3	0,125	2,079
7	74	72	73	73,0	0,143	1,946

3.2 Графики зависимостей $\ln \langle x_k \rangle$ (рис. 5) и $\frac{1}{\langle x_k \rangle}$ (рис. 6) от числа колебаний k показывают, что и в данном случае формула (6) точнее описывает экспериментальные данные.

3.3 В данном случае также выполняется квадратичный закон зависимости силы сопротивления от скорости.

Схема оценивания.

Пункт	Содержание	Баллы
1.1	- мощность потерь	0,5
	- связь энергии со скоростью	0,5
1.2	- выражение для потенциальной энергии	1,0
1.3	Проведение измерений:	
	- диапазон изменения x_0 (от 25 до 10 см);	0,5
	- не менее 10 точек;	0,5
	Проведение расчетов E_0 и ΔE для всех точек;	1
	Построение графика (оси подписаны и оцифрованы, точки	1
	нанесены, проведена сглаживающая линия)	1
1.4	Использование двойного логарифмического масштаба (или	
	другой линеаризации);	1
	Проведение расчетов логарифмов;	0,5
	Построение графика (оси подписаны и оцифрованы, точки	
	нанесены, проведена сглаживающая линия);	0,5
	Определение показателя степени (по всем экспериментальным	
	данным)	1
1.5	Обоснованный вывод о применимости формулы (2)	1
	квадратичной зависимости	
2.1	Проведение измерений	
	- не менее 10 точек;	1,5
	- усреднение значений;	0,5
2.2	Методика проверки:	
	- линеаризация;	0,5+0,5
	- построение графиков линеаризованных зависимостей;	0,5+0,5
	- вывод о применимости формулы (6)	1
2.3	Обоснованный вывод о применимости формулы (2)	
	квадратичной зависимости	1
3.1	Проведение измерений:	
	 диапазон от 20 до 10 см; 	0,5
	- не менее 10 точек;	0,5
	Построение графика (оси подписаны и оцифрованы, точки	
	нанесены, проведена сглаживающая линия)	1
3.2	- построение графиков линеаризованных зависимостей;	1
	- вывод о применимости формулы (6)	1
3.3	Обоснованный вывод о применимости формулы (2)	1
	квадратичной зависимости	