

Sri Adichunchanagiri Shikshana Trust ®

SJB INSTITUTE OF TECHNOLOGY

(Affiliated to VTU, Belagavi, Accredited by NAAC with "A" Grade and Approved by AICTE –New Delhi)
No. 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru - 560 060

Seminar

on

"Pose Estimation and a study of Iterative Closest Point Algorithm"

By

Aishwarya Padmanabha [1JB14CS010]

Under the Guidance of **Dr Srikantaiah K C** Professor, Dept of CSE, SJBIT

Agenda

- Introduction
 - Autonomous Vehicles
 - Pose Estimation
 - Point Cloud data
 - LiDAR and other devices for Pose Estimation
 - ICP
- Problem Statement
- Literature Survey
- Design and Implementation
 - Working of ICP
- Conclusion and Future Enhancement
- References

Autonomous Vehicles

Sense environment and navigate without human input

Pose Estimation

- Orientation of the subject
- Perspective the subject has
- Pose is the orientation of the autonomous vehicle

Two primary transformations:

- Rotations (when the vehicle turns)
- Translation (when there is linear motion which can be mapped to x, y, and z ordinates)

We compare current pose and previous pose and identify the transformations that have occured between the two states

Point Cloud

- Depth pixel
- A point cloud is the output of a LiDAR. It maps out everything in its environment within a range in the form of three dimensional coordinates.
- PCL open source library

Point Cloud

Point Cloud

Methods to obtain point cloud data

- Light Detection and Ranging.
- Uses light in the form of a pulsed laser to measure ranges and distances

Contains:

- Laser
- Scanner
- GPS

Other devices that can be used:

- Camera
- 3D scanner

Methods to Estimate Pose

- Analytical approach point set registration algorithms
- Genetic approach
 - Genetic representation
 - Fitness function
- Learning-based approach Al models
 - Learning phase
 - Estimation

An introduction to Iterative Closest Point (ICP)

Iterative Closest Point

The Problem:

Two point clouds are chosen:

- Reference point cloud
- Source point cloud

These are mapped onto each other to determine the relative transformation.

Constraints using this approach:

- Time efficiency about 70-100ms for about 3000 points
- Accuracy single mistake can skew entire result

Problem Statement

A Method for Registration of 3-D Shapes

Objective: Registration of 3-D shapes using six degrees of freedom

Advantage: Can handle pose estimation of complex models in less time

Applications:

- Registering unfixtured shapes
- Deciding congruence of geometric shapes

Literarute Survey

Name	Objective	Methodology	Advantage	Disadvantage
A Method for registering 3-D shapes - Paul J Besl	Registering 3D shapes accurately and computationally	ICP Algorithm	Handles 6 degrees of freedom	Not time efficient
Pose Estimation of Autonomous Vehicles using Visual Information: A Minimum - Energy Estimator Approach - Antonio Pedro Aguiar	Estimate pose of a vehicle using a monocular charged-coupled-devic e (CCD)	Minimum-energy estimator with Kalman filter	Inertial sensors used	There may be delayed calculation of pose

PoseCNN: A	Pose Estimation	CNN for 6D object	Quick estimation of	Training of model takes
Convolutional Neural		pose estimation	pose because of the	a long time
Network for 6D		performing 3 tasks:	presence of a CNN	
Object Pose Estimation		1) Labelling	model	
in Cluttered Scenes -		2) 3D translation		
Yu Xiang		3) 3D rotation		
		regression		
Pose Estimation from	Pose Estimation for 2D	Least squares fitting in	Quicker to estimate	Cannot eliminate least
Corresponding Point	and 3D point data	combination with	pose vs Iterative	squares estimation
Data - Robert A		Robust algorithm	algorithms	
Haralick				
Uncertainty-Driven 6D	Pose estimation in	Neural Network model	Quick computation of	The data fed in was not
Pose Estimation of	uncertain conditions in	and RANSAC	pose because of use of	robust
Objects and Scenes	6 degrees of freedom	hypothesis	neural networks,	
from a Single RGB			system is broadly	
Image			applicable	

Real-time 3-D Pose	Pose Estimation	ICP and triangular	High speed acquisition	Feature extraction not
Estimation Using a		mesh	of 3D data	prominent
High-speed Range			High speed pose	
Sensor - David A			estimation	
Simon				
Autonomous vehicles:	Autonomous vehicle	Modular classification	Clarity in the operation	Issues not dealt with:
from paradigms to	management	of tasks and classes of	and management of	• Sensors
Technology - Silviu		ADAS	autonomous vehicles	Optimal model
Ionita			using deep learning	to use
Sparse Iterative Closest	Face construction and	ICP	Superior registration	Sensitivity to outliers
Point - Sofien Bouaziz	shape matching		results	and missing data

Artificial Neural	Give a clear overview	Evaluation of artificial	Concepts are explained	Applications not
Networks - John J	about artificial neural	neural networks based	distinctly	explained explicitly.
Hopfield	networks	on available knowledge		
An ICP variant using a	Implementation of ICP	PIICP	Less robust, requires	Quicker than general
point-to-line metric -	using point to point		less iterations, more	ICP but slower than
Andrea Censi	metric		precise, open source	when Neural Network
				models are used
	I			

Design and Implementation

How the algorithm works:

- 1. For each point in the source point cloud, match the closest point in the reference point cloud.
- 2. Estimate transformation using an RMS point to point distance metric minimization technique.
- 3. Transform the source points using the obtained transformation.
- 4. Iterate (re-associate the points, and so on).

Mathematical overview of ICP

Source Point Cloud: S0(...)

Destination Point Cloud: S1(...)

$$d = |p_{position} - q_{position}| = \sqrt{(p_x - q_x)^2 - (p_y - q_y)^2 - (p_z - q_z)^2}$$

Conclusion and Future Enhancement

- Pose Estimation Important aspect in Robotics
- ICP:
 - Too many iterations and computations
 - More vulnerable to errors precision
- In depth analysis of ICP

References

- [1]https://en.wikipedia.org/wiki/3D_pose_estimationhttp://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_pose/py_pose.html
- [2] https://arxiv.org/abs/1711.00199
- [3] https://docs.opencv.org/3.3.0/d7/d53/tutorial_py_pose.html
- [4] https://docs.opencv.org/3.0-beta/doc/tutorials/calib3d/real_time_pose/real_time_pose.html
- [5] http://blog.cebit.com.au/autonomous-vehicles-and-their-implications
- [6] https://en.wikipedia.org/wiki/Autonomous_car
- [7] http://www.ti.com/applications/industrial/factory-automation/overview.html
- [8] https://www.omicsonline.org/open-access/overview of techniques and applications for autonomo us vehicles.pdf
- [9]https://blogs.mentor.com/puneetsinha/blog/2017/07/05/5-big-under-the-hood-engineering-challenges-in-building-autonomous-vehicles-today/
- [10] http://iopscience.iop.org/article/10.1088/1757-899X/252/1/012098/pdf

References

- [11] https://www.vtpi.org/avip.pdf
- [12] https://en.wikipedia.org/wiki/Pose (computer vision)
- [13] https://en.wikipedia.org/wiki/Point_cloud
- [14] https://en.wikipedia.org/wiki/Fitness_function
- [15] https://en.wikipedia.org/wiki/Loss function
- [16] https://en.wikipedia.org/wiki/Computer_vision
- [17] https://pdfs.semanticscholar.org/4479/6ee24a6205d88876a5b8057760b607c7e952.pdf
- [18] http://sci-hub.tw/http://ieeexplore.ieee.org/document/7846512/
- [19] http://sci-hub.tw/http://ieeexplore.ieee.org/abstract/document/1638022/
- [20] http://sci-hub.tw/http://ieeexplore.ieee.org/abstract/document/1678144/
- [21] https://oceanservice.noaa.gov/facts/lidar.html
- [22]https://tampub.uta.fi/bitstream/handle/10024/100897/GRADU-1491480804.pdf?sequence=1&isAllowed=y

Thank You