Biometría

Estimación por Máxima verosimilitud

Métodos de estimación de parámetros

Mínimos cuadrados ordinarios (MCO u OLS por sus siglas en inglés ordinary least squares)

Consiste en estimar los parámetros de manera tal de minimizar

$$\sum (y_i - \hat{y}_i)^2 = \sum e_i^2$$

- Método "clásico" para estimar parámetros de modelos
- Cálculos sencillos
- Para la estimación no requiere supuestos sobre la distribución de probabilidades de la variable, pero sí para la inferencia
- Sensible al desbalanceo

Supuestos del modelo

$$\varepsilon_{ijk} \sim NID(0,\sigma^2)$$

- independientes
 correlación temporal, espacial,
 anidamiento
- distribución normal otras distribuciones
- varianza constante heterocedasticidad

Y además tenemos el karma del desbalanceo

- Las estimaciones por cuadrados mínimos en el análisis de varianza de 2 o más factores se complican en diseños desbalanceados
- Pérdida de ortogonalidad en las SC
- Parches:
 - Forzar el balanceo
 - Reemplazar dato faltante
 - Ajustar la SC: SC tipo II, III, IV...

Y ni hablar de celdas vacías!

Métodos de estimación de parámetros

Máxima verosimilitud (MV o ML por sus siglas en inglés maximum likelihood)

 Consiste hallar los valores de los parámetros (asumiendo una distribución de probabilidades) que maximicen la función de verosimilitud

 $L(\theta / datos, modelo)$

- Cálculos complejos
- Para la estimación es fundamental asumir una distribución de probabilidades de la variable
- Apropiado cuando fallan los supuestos o hay desbalanceo
- Si se cumplen los supuestos de independencia, normalidad y homocedasticidad y el diseño es balanceado, las estimaciones coinciden

Entendiendo la máxima verosimilitud...

Se arrojan 5 monedas equilibradas y se cuenta la cantidad de caras

Nro de caras	Probabilidad
0	0,03125
1	0,15625
2	0,31250
3	0,31250
4	0,15625
5	0,03125
Total	1

Distribución binomial

$$P(x) = {}_{n}C_{x}\pi^{x}(1-\pi)^{n-x}$$

Siendo

x = número de caras

$$\pi$$
 probabilidad de cara =0,5
 n cantidad de repeticiones = 5

Función de distribución conjunta

- Se arrojan 5 monedas equilibradas 10 veces y se cuenta la
 - cantidad de caras: 5 3 2 2 4 1 1 3 3 4
- Para cada tirada se puede calcular, utilizando la distribución binomial, la probabilidad de obtener ese resultado:

0.03125, 0.31250, 0.31250, 0.31250, 0.15625, 0.15625, 0.15625, 0.31250, 0.31250, 0.15625

Nro de caras	Probabilidad
0	0,03125
1	0,15625
2	0,31250
3	0,31250
4	0,15625
5	0,03125
Total	1

□ La función de distribución conjunta de los valores observados, asumiendo independencia, se calcula como el producto de las probabilidades individuales:

$$f(x/n, \pi, modelo binomial) = P_{(5)} x P_{(3)} x x P_{(4)} =$$

= 0.03125 x 0.31250 x = 5.55 x 10⁻⁸

Máxima verosimilitud

□ La función de verosimilitud L de los valores observados se calcula de la misma manera que la distribución conjunta:

$$L = 0.03125 \times 0.31250 \times ... = 5.55 \times 10^{-8}$$

 Pero mientras que en la función de distribución conjunta, x es variable y los parámetros fijos, en la función de verosimilitud x es fijo y el/los parámetro/s son variables:

$$L(\pi)x$$
, modelo binomial)

■ En general: Parámetro/s del modelo

 $L(\theta / datos, modelo)$

Otro ejemplo

- Una planta leguminosa de la selva amazónica produce frutos que contienen siempre 5 semillas
- Interesa estimar la probabilidad de que una semilla germine
- Una muestra aleatoria de 10 frutos arrojó la siguiente cantidad de semillas germinadas por fruto:

3524454334

- □ ¿Cuál es la probabilidad de los valores observados?

 Podríamos calcularlas asumiendo una distribución de probabilidades y dado cierto valor para la probabilidad de que una semilla germine. Pero... ¿cuánto vale?
- No lo sabemos. Estimemos por ensayo y error

- Asumiendo que la probabilidad de que una semilla germine es independiente de que lo haga otra, podemos suponer que la distribución de probabilidades es binomial
- Supongamos que la probabilidad de que una semilla germine es

$$\pi = 0.5$$

■ La probabilidad estimada de cada uno de los resultados observados (3 5 2 4 4 5 4 3 3 4) es:

0.31250, 0.03125, 0.31250, 0.15625, 0.15625, 0.03125, 0.15625, 0.31250, 0.31250, 0.15625

Nro de germinadas	Probabilidad
0	0,03125
1	0,15625
2	0,31250
3	0,31250
4	0,15625
5	0,03125
Total	1

Para π = 0,5 la función de verosimilitud de los valores observados que se estima como el producto de las probabilidades individuales es:

$$L = 5.55 \times 10^{-9}$$

- □ Probemos otro valor para la probabilidad de que una semilla germine. Por ejemplo $\pi = 0.7$
- □ Aplicando la distribución binomial, la probabilidad estimada de los mismos resultados observados es (3 5 2 4 4 5 4 3 3 4) es distinta:
 - 0.30870, 0.16807, 0.13230, 0.36015, 0.36015, 0.16807, 0.36015, 0.30870, 0.30870, 0.36015
- Dado π = 0,7 la función de verosimilitud de los valores observados que se estima como el producto de las probabilidades individuales es:

 $L = 1.85 \times 10^{-6}$

¿Máxima verosimilitud?

□ Para π = 0.8 la verosimilitud de los valores observados es:

$$L = 1.33 \times 10^{-6}$$

□ Para $\pi = 0.75$ la verosimilitud de los valores observados es:

$$L = 2.22 \times 10^{-6}$$

□ Para $\pi = 0.73$ la verosimilitud de los valores observados es:

$$L = 2.22 \times 10^{-6}$$

□ Para π = 0.74 la verosimilitud de los valores observados es:

$$L = 2.25 \times 10^{-6}$$

- El valor donde la función de verosimilitud $L(\theta/x)$ alcanza un máximo determina el valor del estimador por MV
- Al ser un producto de probabilidades, $L(\theta/x)$ toma valores entre 0 y 1

□ Para facilitar los cálculos se aplica logaritmo natural (el *In* del producto se convierte en suma de *In*; mejor trabajar con sumas que con productos):

$$logL(\theta/x) = \Sigma ln (f(x_i; \theta))$$

 $lue{}$ Se halla el máximo derivando con respecto a hetae igualando a 0

$$\frac{\partial \log L(\theta/x)}{\partial (\theta_i)} = 0$$

 \square logL(θ/x) toma siempre valores negativos dado que 0<L<1

Estimación de parámetros por MV

- Se busca el valor del parámetro θ que haga más verosímil (más probable) el resultado que hemos obtenido. Es decir, que maximice la probabilidad de obtener la muestra observada
- Para ello usaremos la función de verosimilitud $L(\theta)$ definida como la función de distribución conjunta, función del parámetro desconocido dada una muestra y una distribución de probabilidades:

$L(\theta / datos, modelo)$

- \blacksquare Elegiremos el valor de θ para el cual L(θ) (o su log) nos de el máximo
- Si el tamaño de la muestra es grande, las estimaciones por MV proveen estimadores insesgados (la esperanza del estimador coincide con el parámetro) y consistentes (su varianza tiende a cero cuando n tiende a infinito)
- □ Sin embargo, las estimaciones de las varianzas están sesgadas, por lo que en la práctica se aplica una corrección a los GL: MV restringida o REML

Modelos lineales generales, generalizados y mixtos

- Estimaciones de los parámetros por máxima verosimilitud
- Exigen cierta distribución de probabilidades
- No afectados por desbalanceo
- □ Permiten modelar la estructura de la matriz de varianzas-covarianzas ⇒
 - heterocedasticidad
 - anidamiento, correlación espacial y temporal