第二章 线性规划

2.4 单纯形法计算步骤

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■单纯形表

□ 考虑约束条件

■ 单纯形表

□ 考虑约束条件

□ 为了便于理解计算关系,设计单纯形表

$$A = \begin{bmatrix} 1 & 0 & \dots & 0 & a_{1,m+1} & \dots & a_{1,n} \\ 0 & 1 & \dots & 0 & a_{2,m+1} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & a_{m,m+1} & \dots & a_{m,n} \end{bmatrix}$$

■单纯形表

$$\bigcirc$$
 检验数 $\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$

	$c_j \rightarrow$		c_1	 $ c_m $		c_j	 c_n
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	 $ x_m $		x_j	 x_n
c_1	x_1	b_1	1	 0		a_{1j}	 a_{1n}
c_2	x_2	b_2	0	 0	• • •	a_{2j}	 a_{2n}
:	:	:	:	:		:	:
c_m	x_m	b_m	0	 1		$egin{aligned} a_{1j} & & \ a_{2j} & & \ dots & \ a_{mj} & & \end{aligned}$	 a_{mn}
	$c_j - z_j$					σ_j	

- 基本步骤
 - □ 第1步: 求初始基可行解, 列出初始单纯形表

■基本步骤

- 第1步: 求初始基可行解,列出初始单纯形表
- \square 第 2 步: 最优性检验, 计算各非基变量 x_i 的检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

- 如果所有检验数 $\sigma_j \leq 0$,且基变量中不含有人工变量时,则停止迭代,得到最优解
- 如果存在 $\sigma_i > 0$,且有 $P_i \leq 0$,则停止迭代,问题为无界解
- 否则转 3 步

■基本步骤

- 第3步:基可行解转化。从一个基可行解转换到相邻的目标函数值 更大的基可行解,列出新的单纯形表
 - 确定换入变量 x_k (最大增加原则)

$$\sigma_k = \max_j \ \{ \sigma_j \mid \sigma_j > 0 \}$$

• 确定换出变量 x_l (最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid a_{ik} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定 x_l 为换出变量, a_{lk} 为主元

• 用换入变量 x_k 替换基变量中的换出变量 x_l , 得到一个新的基 $(P_1, \ldots, P_{l-1}, P_k, P_{l+1}, \ldots, P_m)$, 进行初等变换

■基本步骤

- 第3步:基可行解转化。从一个基可行解转换到相邻的目标函数值 更大的基可行解,列出新的单纯形表
 - 确定换入变量 x_k (最大增加原则)

$$\sigma_k = \max_j \ \{ \sigma_j \mid \sigma_j > 0 \}$$

• 确定换出变量 x_l (最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid a_{ik} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定 x_l 为换出变量, a_{lk} 为主元

- 用换入变量 x_k 替换基变量中的换出变量 x_l , 得到一个新的基 $(P_1, \ldots, P_{l-1}, P_k, P_{l+1}, \ldots, P_m)$, 进行初等变换
- □ 第 4 步: 重复 2、3 两步,一直到计算结束为止

- 例 1
 - □ 用单纯形法求解线性规划问题

$$\max \ z = 2x_1 + x_2$$
 s.t.
$$\begin{cases} & 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1 & x_2 \ge 0 \end{cases}$$

■ 例 1

□ 用单纯形法求解线性规划问题

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1 & x_2 \ge 0 \end{cases}$$

□ 标准化

- 例 1
 - □ 第1步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
($c_j - z_j$		2	1	0	0	0

- 例 1
 - □ 第 1 步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
($c_j - z_j$		2	1	0	0	0

第2步: 检验数大于零,因此初始基可行解不是最优解

- 例 1
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_1 > \sigma_2$, 确定 x_1 为换入变量
 - $\theta = \min\left\{\infty, \frac{24}{6}, \frac{5}{1}\right\} = 4$, 因此确定 6 为主元素
 - x4 为换出变量

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$\underline{x_1}$	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	$\begin{array}{ c c } x_3 \\ \underline{x_4} \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	[6]	2	0	1	0
0	$\overline{x_5}$	5	1	1	0	0	1
($z_j - z_j$		2	1	0	0	0

■ 例 1

		$c_j \rightarrow$	•	2	1	0	0	0
	\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	x_5
0	0	$ x_3 $	15	0	5	1	0	0
	0	x_4	24	[6]	2	0	1	0
	0	$\overline{x_5}$	5	1	1	0	0	1
		$c_j - z$	z_j	2	1	0	0	0
					Ų.			
	$c_{:}$	$_{j} \rightarrow$		2	1	0	0	0
_	\mathbf{C}_B	\mathbf{X}_{B}	b	$x_1 \mid$	x_2	$ x_3 $	$ x_4$	x_5
	0	x_3	15	0	5	1	0	0
	2	x_1	4	1	2/6	0	1/6	0
	0	x_5	1	0	4/6	0	-1/6	5 1
	c_{j}	$-z_j$		0	1/3	0	-1/3	8 0
								·

- 例 1
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_2 > 0$, 确定 x_2 为换入变量
 - $\theta=\min\left\{\frac{15}{5},\frac{1}{2/3},\frac{5}{4/6}\right\}=\frac{30}{4}$, 因此确定 4/6 为主元素
 - x_5 为换出变量

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$\underline{x_2}$	x_3	x_4	$ x_5 $
0	$ x_3 $	15	0	5	1	$\begin{vmatrix} 0\\1/6\\-1/6\end{vmatrix}$	0
2	x_1	4	1	2/6	0	1/6	0
0	$\underline{x_5}$	1	0	[4/6]	0	-1/6	1
C	$c_j - z_j$		0	1/3	0	-1/3	0

■ 例 1

 \Box 第 4 步: 所有检验数 $\sigma_j \leq 0$, 得到最优解

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	x_3	15/2	0	0	1	$\begin{vmatrix} 5/4 \\ 1/4 \\ -1/4 \end{vmatrix}$	-15/2
2	x_1	7/2	1	0	0	1/4	-1/2
1	x_2	3/2	0	1	0	-1/4	3/2
	$c_j - z_j$	j	0	0	0	-1/4	-1.2

- 例 1
 - \Box 第 4 步: 所有检验数 $\sigma_j \leq 0$, 得到最优解

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	x_3	15/2	0	0	1	$\begin{vmatrix} 5/4 \\ 1/4 \\ -1/4 \end{vmatrix}$	-15/2
2	x_1	7/2	1	0	0	1/4	-1/2
1	x_2	3/2	0	1	0	-1/4	3/2
	$c_j - z$	j	0	0	0	-1/4	-1.2

 \Box 代入目标函数得最优值 $z=2x_1+x_2=17/2$

- 例 2
 - □ 用单纯形法求解线性规划问题

$$\max \ z = 2x_1 + 3x_2$$
 s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1 = x_2 \ge 0 \end{cases}$$

- 例 2
 - □ 用单纯形法求解线性规划问题

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1 = x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + 2x_2 + x_3 & = 8 \\ 4x_1 + x_4 & = 16 \\ 4x_2 + x_5 & = 12 \\ x_1 + x_2 + x_3 & x_4 + x_5 & \ge 0 \end{cases}$$

- 例 2
 - □ 第 1 步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	x_5	12	0	4	0	0	1
($z_j - z_j$		2	3	0	0	0

□ 第2步: 检验数大于零,因此初始基可行解不是最优解

- 例 2
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_2 > \sigma_1$, 确定 x_2 为换入变量
 - $\theta = \min\left\{\frac{8}{2}, \infty, \frac{12}{4}\right\} = 3$, 因此确定 4 为主元素
 - x_5 为换出变量

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ \underline{x_2} $	$ x_3 $	$ x_4 $	$ x_5 $
0	$ x_3 $	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	$\begin{array}{c c} x_3 \\ x_4 \\ \underline{x_5} \end{array}$	12	0	[4]	0	0	1
($z_j - z_j$		2	3	0	0	0

■ 例 2

		$c_j \rightarrow$		2	3	0	0	0
	\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ \underline{x_2} $	$ x_3 $	$ x_4 $	$ x_5 $
0	0	$ x_3 $	8	1	2	1	0	0
_	0	$ x_4 $	16	4	0	0	1	0
	0	$\underline{x_5}$	12	0	[4]	0	0	1
		$c_j - z_j$	i	2	3	0	0	0
_				\Downarrow	,			
	($c_j o$		2	3	0	0	0
_	\mathbf{C}_{B}	\mathbf{X}_{B}	b	$x_1 \mid$	$x_2 \mid$	x_3	$x_4 \mid$	x_5
	0	x_3	2	1	0	1	0	-1/2
	0	x_4	16	4	0	0	1	0
	3	x_2	3	0	1	0	0	1/4
	$c_{\scriptscriptstyle m J}$	$z_j - z_j$		2	0	0	0	-3/4

- 例 2
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_1 > 0$, 确定 x_1 为换入变量
 - $\theta = \min\left\{\frac{2}{1}, \frac{16}{4}, \infty\right\} = 2$, 因此确定 1 为主元素
 - x3 为换出变量

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ \underline{x_1} $	x_2	x_3	x_4	x_5
0	x_3	2	[1]	0	1	0	-1/2
0	$\overline{x_4}$	16	4	0	0	1	0
3	x_2	3	0	1	0	0	$ \begin{vmatrix} -1/2 \\ 0 \\ 1/4 \end{vmatrix} $
($c_j - z_j$		2	0	0	0	-3/4

■ 例 2

0
x_5
-1/2
0
1/4
-3/4
0
$ x_5 $
-1/2
2
1/4
1/4

- 例 2
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_5 > 0$, 确定 x_5 为换入变量
 - $\theta = \min\left\{-, \frac{8}{2}, \frac{3}{1/4}\right\} = 4$, 因此确定 2 为主元素
 - x4 为换出变量

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$\underline{x_5}$
2	x_1	2	1	0	1	0	-1/2
0	x_4	8	0	0	-4	1	[2]
3	$\overline{x_2}$	3	0	1	0	0	$ \begin{vmatrix} -1/2 \\ [2] \\ 1/4 \end{vmatrix} $
c	$j-z_j$		0	0	-2	0	1/4

■ 例 2

		$c_j \rightarrow$		2	3	0	0	0			
	\mathbf{C}_{B}	$ \mathbf{X}_B$	b	$ x_1 $	$ x_2 $	$ x_3 $	x_4	$\underline{x_5}$			
O	2	$ x_1 $	2	1	0	1	0	-1/2			
	0	x_4	8	0	0	-4	1	[2]			
	3	$\overline{x_2}$	3	0	1	0	0	1/4			
	-	$z_j - z_j$		0	0	-2	0	1/4			
	\										
_	C	$c_j o$		2	3	0	0	0 0			
	\mathbf{C}_{B}	\mathbf{X}_{B}	b	$x_1 \mid$	$x_2 \mid$	x_3		$4 \mid \underline{x_5}$			
	2	x_1	4	1	0	0	1/				
	0	x_5	4	0	0	-2	1/	$^{\prime}2$ 1			
	3	x_2	2	0	1	1/2	-1	/8 0			
	c_j	$-z_j$		0	0	-3/2	-1	/8 0			

- 例 2
 - \Box 第 4 步: 所有检验数 $\sigma_j \leq 0$, 得到最优解

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ \underline{x_5} $
2	$ x_1 $	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	$ \begin{array}{ c c c } 1/4 \\ 1/2 \\ -1/8 \end{array} $	0
c_{\cdot}	$j-z_j$		0	0	-3/2	-1/8	0

■ 例 2

 \square 第 4 步: 所有检验数 $\sigma_i \leq 0$,得到最优解

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ \underline{x_5} $
2	$ x_1 $	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	$ \begin{array}{ c c c } 1/4 \\ 1/2 \\ -1/8 \end{array} $	0
c	$j-z_j$		0	0	-3/2	-1/8	0

- □ 基可行解 $X = (4, 2, 0, 0, 4)^{\top}$ 是最优解
- \Box 代入目标函数得最优值 $z = 2x_1 + 3x_2 = 14$

- 课堂练习 1
 - □ 用单纯形法求解线性规划问题

$$\max \ z = 50x_1 + 100x_2$$
 s.t.
$$\begin{cases} x_1 + x_2 \leq 300 \\ 2x_1 + x_2 \leq 400 \\ x_2 \leq 250 \\ x_1 & x_2 \geq 0 \end{cases}$$

■ 课堂练习 1

□ 经过分析得到

	$c_j \rightarrow$		50	100	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	$ x_3 $	x_4	$\underline{x_5}$
50	$\begin{array}{c c} x_1 \\ x_4 \\ x_2 \end{array}$	50	1	0	1	0	-1
0	x_4	50	0	0	-2	1	1
100	x_2	250	0	1	0	0	1
	$c_j - z_j$		0	0	-50	0	-50

- \square 所有检验数 $\sigma_i \leq 0$, 得到最优解
- □ 基可行解 $X = (50, 250, 0, 50, 0)^{\top}$ 是最优解
- \bigcirc 代入目标函数得最优值 $z=50x_1+100x_2=27500$

- 单纯形法进一步讨论
 - □ 考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \leq 4 \\ -2x_1 + x_2 - x_3 \geq 1 \\ 3x_2 + x_3 = 9 \\ x_1 & x_2 & x_3 \geq 0 \end{cases}$$

- 单纯形法进一步讨论
 - □ 考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \leq 4 \\ -2x_1 + x_2 - x_3 \geq 1 \\ 3x_2 + x_3 = 9 \\ x_1 & x_2 & x_3 \geq 0 \end{cases}$$

□ 没有可作为初始基的单位矩阵

■ 大 M 法

□ 第1步:标准化

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ x_1 + x_2 + x_3 & - x_5 = 1 \\ -2x_1 + x_2 - x_3 & = 9 \\ x_1 & x_2 & x_3 & x_4 & x_5 \ge 0 \end{cases}$$

■ 大 *M* 法

□ 第1步:标准化

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ x_1 + x_2 + x_3 & - x_5 = 1 \\ -2x_1 + x_2 - x_3 & = 9 \\ x_1 & x_2 & x_3 & x_4 & x_5 \ge 0 \end{cases}$$

□ 第 2 步:增加人工变量 x₆, x₇

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ x_1 + x_2 + x_3 & -x_5 + x_6 & = 1 \\ -2x_1 + x_2 - x_3 & +x_7 = 9 \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \ge 0 \end{cases}$$

■ 大 *M* 法

□ 第 3 步:用单纯形法求解

$c_j \rightarrow$	-3	0 1	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$x_1 \mid :$	$x_2 \mid x_3$	$ x_4 $	x_5	x_6	x_7
$ \begin{array}{c c c c} 0 & x_4 & 4 \\ -M & x_6 & 1 \\ -M & x_7 & 9 \end{array} $		1 1 1 -1 3 1 1	$\left \begin{array}{c}1\\0\\0\end{array}\right $	$\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$	0 1 0	0 0 1
$c_j - z_j$	-3-2M 4	$M \mid 1$	0	-M	0	0
$ \begin{array}{c cccc} 0 & x_4 & 3 \\ 0 & x_2 & 1 \\ -M & \underline{x_7} & 6 \end{array} $	-2	$\begin{bmatrix} 0 & 2 \\ -1 \\ 0 & 4 \end{bmatrix}$	$\left \begin{array}{cc}1\\0\\0\end{array}\right $	$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$	$ \begin{array}{c c} -1 \\ 1 \\ -3 \end{array} $	0 0 1
$c_j - z_j$	-3+6M	0 1+4M	0	3M	-4M	0

■ 大 *M* 法

□ 第 3 步:用单纯形法求解

$c_j \rightarrow$	-3	0	1	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$ x_1 $	$ x_2 $	x_3	$ x_4 $	$ x_5 $	x_6	x_7
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ -3 & x_1 & 1 \end{array} $	0 0 1	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 1/3 [2/3]	1 0 0	$\left \begin{array}{c} -1/2 \\ 0 \\ 1/2 \end{array}\right $	$-1/2 \\ 0 \\ -1/2$	1/2 1/3 1/6
$c_j - z_j$	0	0	3	0	3/2	-3/2-M	1/2 - M
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 5/2 \\ 1 & x_3 & 3/2 \end{array} $	0 -1/2 3/2	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 0 1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\left \begin{array}{c} -1/2 \\ -1/4 \\ 3/4 \end{array} \right $	$1/2 \\ 1/4 \\ -3/4$	$ \begin{array}{c c} -1/2 \\ 1/4 \\ 1/4 \end{array} $
$c_j - z_j$	-9/2	0	0	0	-3/4	3/4 - M	-1/4 - M

- 例 3
 - □ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \leq 100 \\ 4x_1 + 2x_2 \leq 120 \\ x_1 = 14 \\ x_2 \geq 22 \\ x_1 = x_2 \geq 0 \end{cases}$$

- 例 3
 - □ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \leq 100 \\ 4x_1 + 2x_2 \leq 120 \\ x_1 = 14 \\ & x_2 \geq 22 \\ x_1 & x_2 \geq 0 \end{cases}$$

□ 标准化,增加人工变量

$$\max z = 6x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$

$$\text{s.t.} \begin{cases} 2x_1 + 3x_2 + x_3 & = 100 \\ 4x_1 + 2x_2 + x_4 & = 120 \\ x_1 & + x_6 & = 14 \\ & x_2 & - x_5 & + x_7 = 22 \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \ge 0 \end{cases}$$

■ 大 *M* 法

□ 用单纯形法求解

	$c_j \rightarrow$		6	4	0	0	0	-M	-M
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	x_3	x_4	x_5	x_6	$ x_7 $
0	x_3	100	2	3	1	0	0	0	0
0	x_4	120	4	2	0	1	0	0	0
-M	x_6	14	[1]	0	0	0	0	1	0
-M	x_7	22	0	1	0	0	-1	0	1
($c_j - z_j$		M+6	M+4	0	0	-M	0	0
0	x_3	72	0	3	1	0	0	-2	0
0	x_4	64	0	2	0	1	0	-4	0
6	x_1	14	1	0	0	0	0	1	0
-M	x_7	22	0	[1]	0	0	-1	0	1
	$z_j - z_j$		0	M+4	0	0	-M	-6-M	0

■ 大 *M* 法

□ 用单纯形法求解

	$c_j \rightarrow$		6	4	0	0	0	-M	- <i>M</i>
\mathbf{C}_{B}	$\mid \mathbf{X}_B$	b	x_1	$ x_2 $	x_3	x_4	x_5	x_6	$ x_7$
0	$ x_3 $	6	0	0	1	0	[3]	-2	-3
0	x_4	20	0	0	0	1	2	-4	-2
6	x_1	14	1	0	0	0	0	1	0
4	x_2	22	0	1	0	0	-1	0	1
($c_j - z_j$		0	0	0	0	4	-6-M	-4-M
0	$ x_5 $	2	0	0	1/3	0	1	-2/3	-1
0	x_4	16	0	0	-2/3	1	0	-8/3	0
6	x_1	14	1	0	0	0	0	1	0
4	x_2	24	0	1	1/3	0	0	-2/3	0
	$z_j - z_j$		0	0	-4/3	0	0	-10/3 - M	-M

- 两阶段法: 克服计算机处理 M 的困难(精度—误差)
 - □ 求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \leq 4 \\ -2x_1 + x_2 - x_3 \geq 1 \\ 3x_2 + x_3 = 9 \\ x_1 & x_2 & x_3 \geq 0 \end{cases}$$

□ 第一阶段 寻找原问题的一个基本可行解

$$\min \ w = x_6 + x_7$$

□ 第二阶段 得到原问题的最优解

$$\min \ z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5$$

■ 两阶段法

□ 第一阶段

$c_j \rightarrow$	-3	0	1	0	0	-1	-1
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	x_5	x_6	x ₇
$ \begin{array}{c c c c c} 0 & x_4 & 4 \\ -1 & x_6 & 1 \\ -1 & x_7 & 9 \end{array} $	-2	1 [1] 3	1 -1 1	$\left \begin{array}{c}1\\0\\0\end{array}\right $	$\begin{array}{c c} 0 \\ -1 \\ 0 \end{array}$	0 1 0	0 0 1
$c_j - z_j$	-2	4	0	0	-1	0	0
$ \begin{array}{c ccccc} 0 & x_4 & 3 \\ 0 & x_2 & 1 \\ -1 & x_7 & 6 \end{array} $	-2	$\begin{array}{ c c }\hline 0\\1\\0\\\end{array}$	2 -1 4	$\begin{array}{ c c }\hline 1\\0\\0\\\end{array}$	$\begin{array}{c c} 1 \\ -1 \\ 3 \end{array}$	$\begin{array}{c c} -1 \\ 1 \\ -3 \end{array}$	0 0 1
$c_j - z_j$	6	0	4	0	3	-4	0
$ \begin{array}{c ccccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ 0 & x_7 & 1 \end{array} $	0	$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$	0 1/3 2/3	1 0 0	$\begin{array}{c c} -1/2 \\ 0 \\ 1/2 \end{array}$	$\begin{array}{ c c } 1/2 \\ 0 \\ -1/2 \end{array}$	$ \begin{array}{c c} -1/2 \\ 1/3 \\ 1/6 \end{array} $
$c_j - z_j$	0	0	0	0	0	-1	1

■ 两阶段法

□ 第二阶段

$c_j o$	-3	0	1	0	0
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	x_1	$ x_2 $	x_3	x_4	$ x_5 $
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ 0 & x_7 & 1 \end{array} $	0 0 1	0 1 0	0 1/3 [2/3]	1 0 0	$ \begin{vmatrix} -1/2 \\ 0 \\ 1/2 \end{vmatrix} $
$c_j - z_j$	0	0	3	0	3/2
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 5/2 \\ 1 & x_3 & 3/2 \end{array} $	0 -1/2 3/2	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 0 1	1 0 0	$\begin{vmatrix} -1/2 \\ -1/4 \\ 3/4 \end{vmatrix}$
$c_j - z_j$	-9/2	0	4	0	-3/4

- 小结
 - □ 单纯形法
 - 第1步: 求初始基可行解, 列出初始单纯形表
 - 第 2 步: 最优性检验, 计算 $\sigma_j = c_j \sum_{i=1}^m c_i a_{ij}$
 - 第 3 步: 基可行解转化
 - 第 4 步: 重复 2、3 两步, 一直到计算结束为止
 - □ 大 M 法
 - □ 两阶段法
- 课后作业: P44, 习题 1.3, 1.6

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈