EXERCICE N°1 Suite géométrique ou pas

- 1) Soit t la suite définie par $\forall n \in \mathbb{N}$, $t_n = 3^n$
- **1.a)** Calculer les trois premiers termes de la suite t.

 $t_0 = 3^0$, ainsi $t_0 = 1$ $t_1 = 3^1$, ainsi $t_1 = 3$ $t_2 = 3^2$, ainsi $t_2 = 9$

1.b) Représenter graphiquement les trois premiers termes de la suite t.

- 1.c) D'après la représentation graphique, la suite t semble-t-elle géométrique ? Justifier. Les points du nuage semblent suivre une courbe exponentielle. La suite t semble géométrique .
- **1.d)** Démontrer que t est géométrique. Préciser sa raison

Première rédaction possible :

On ne peut pas se contenter d'exemples...

Il est évident qu'aucun terme de la suite n'est nul.

En effet: $3^0 = 1$ et pour n > 1 3^n est un produit de facteurs tous égaux à 3...

Cette remarque nous autorise à considérer les quotients qui vont suivre.

Soit *n* un entier naturel.

$$\frac{t_{n+1}}{t_n} = \frac{3^{n+1}}{3^n} = 3$$

Les quotients successifs sont tous égaux à 3 donc la suite t est géométrique de raison q = 3

Deuxième rédaction possible :

Soit *n* un entier naturel.

$$t_{n+1} = 3^{n+1} = 3 \times 3^n = 3 \times t^n$$

On reconnaît une suite géométrique de raison q = 3

- 2) Soit v la suite définie par : $\forall n \in \mathbb{N}$, $z_n = (n+3)^2$.
- **2.a)** Calculer les trois premiers termes de la suite z.

$$z_0 = (0+3)^2$$
 , ainsi $z_0 = 9$
 $z_1 = (1+3)^2$, ainsi $z_1 = 16$
 $z_2 = (2+3)^2$, ainsi $z_2 = 25$

2.b) Représenter graphiquement les trois premiers termes de la suite z.

2.c) D'après la représentation graphique, la suite z semble-t-elle géométrique ? Justifier.

Les points du nuage semblent suivre une courbe exponentielle. La suite z semble géométrique .

Alors, oui je sais, c'est très subjectif....

2.d) Démontrer que z n'est pas géométrique.

D'une part
$$\frac{z_2}{z_1} = \frac{25}{16} = 1,5625$$
 et d'autre part : $\frac{z_1}{z_0} = \frac{16}{9} \approx 1,7778$

Les quotients successifs ne sont pas tous égaux donc la suite | z n'est pas géométrique

Si z était géométrique alors elle aurait une raison q et tous les quotients successifs seraient égaux à q ce qui n'est évidemment pas le cas ici.

EXERCICE N°2 Suite géométrique et formule explicite : départ à 0

- (u_n) est la suite géométrique de premier terme $u_0 = 4$ et de raison q = 2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}$, $u_{n+1} = u_n \times q$, d'où $u_{n+1} = 2u_n$

- 2) Calculer les termes u_1 , u_2 et u_3 .
- $u_1 = u_0 \times q = 4 \times 2$, ainsi $u_1 = 8$
- $u_2 = u_1 \times q = 8 \times 2$, ainsi $u_2 = 16$
- $u_3 = u_2 \times q = 16 \times 2$, ainsi $u_3 = 32$
- 3) Pour tout entier n, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}$, $u_n = u_0 \times q^n$, d'où $u_n = 4 \times 2^n$

- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .
- $u_{10} = 4 \times 2^{10}$, ainsi $u_{10} = 4096$
- $u_{17} = 4 \times 2^{17}$, ainsi $u_{17} = 524288$
- $u_{23} = 4 \times 2^{23}$, ainsi $u_{23} = 33554432$

EXERCICE N°3 Suite arithmétique et formule explicite : départ à 1

- (u_n) est la suite arithmétique de premier terme $u_1 = -8000$ et de raison q = 0,1.
- 1) Pour tout entier nature $n \neq 0$, exprime u_{n+1} en fonction de u_n .
- 2) Calculer les termes u_2 , u_3 et u_4 .
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- 5) Quel est le rang du terme égal à 80 ? Justifier.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}^*$, $u_{n+1} = 0,1 u_n$

* » pour enlever 0.

- 2) Calculer les termes u_2 , u_3 et u_4 .
- $u_2 = u_1 \times q = -8000 \times 0.1$ ainsi $u_2 = -800$
- $u_3 = u_2 \times q = -800 \times 0.1$, ainsi $u_3 = -80$
- $u_4 = u_3 \times q = -80 \times 0.1$, ainsi $u_4 = -8$
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}^*$, $u_n = u_1 \times q^{n-1}$

On commence à 1 donc on enlève 1

$$u_n = -8000 \times 0,1^{n-1}$$

- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- $u_7 = -8000 \times 0.1^{7-1}$, ainsi $u_7 = -0.008$
- $u_{10} = -8000 \times 0.1^{10-1}$, ainsi $u_{10} = -0.000008$
- 5) Quel est le rang du terme égal à -0.08? Justifier.

À l'aide de la calculatrice, on trouve que $u_6 = -0.08$,

donc le rang cherché est 6.

Nous n'avons pas encore de méthode « experte » pour résoudre une équation du type $-8000 \times 0.1^n = -0.08$ (même si celle-ci se fait de tête...)

Suite géométrique : Somme de termes **EXERCICE** N°4

 $(v_n)_{n\in\mathbb{N}}$ définie par $v_n = 1.5 \times 2^n$. Soit la suite

1) Calculer v_0 , v_1 et v_2 .

•
$$v_0 = 1.5 \times 2^0$$
, ainsi $v_0 = 1.5$

•
$$v_1 = 1.5 \times 2^1$$
, ainsi $v_1 = 3$

•
$$v_1 = 1,5 \times 2^1$$
, ainsi $v_1 = 3$
• $v_2 = 1,5 \times 2^2$, ainsi $v_2 = 6$

2) Démontrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique et déterminer la raison de la suite.

Soit $n \in \mathbb{N}$,

$$v_{n+1} = 1.5 \times 2^{n+1} = 1.5 \times 2 \times 2^{n} = 2(1.5 \times 2^{n}) = 2v_{n}$$

Ainsi,
$$\forall n \in \mathbb{N}$$
, $v_{n+1} = 2v_n$

On reconnaît une suite géométrique de raison q = 2 et de 1^{er} terme $v_0 = 1,5$

3) Ouelle est la valeur du 11^e terme?

On commence à zéro donc le 11^e terme est v_{10} .

$$v_{10} = 1.5 \times 2^{10}$$
 , ainsi $v_{10} = 1536$.

4) Calculer la somme des 11 premiers termes.

Notons S la somme demandée.

$$S = \sum_{k=0}^{10} v_k = v_0 \frac{1 - q^{11}}{1 - q} = 1,5 \times \frac{1 - 2^{11}}{1 - 2}$$
, ainsi $S = 3070,5$

EXERCICE N°5 Suite géométrique : Somme de termes

Soit (u_n) la suite géométrique de premier terme $u_0 = \frac{1}{9}$ et de raison q = 3.

Déterminer
$$S_8 = \sum_{k=0}^8 u_k$$

$$S_8 = \sum_{k=0}^8 u_k = u_0 \frac{1 - q^9}{1 - q} = \frac{1}{9} \times \frac{1 - 3^9}{1 - 3}$$
, ainsi $S_8 = \frac{9841}{9}$