Problema 813

Construïu el triangle coneguts r_b , r_c , b+c.

 $\rm r_b$, $\rm r_c$ radis de les circumferències exinscrites als angles B i C.

Santamaría, J. (2017): Comunicación personal.

Solució:

Suposarem que $b \ge c$, aleshores, $r_b \ge r_c$

Siga T_1 punt de tangència de la circumferència exinscrita a l'angle C i el costat \overline{BC} .

Siga T_2 punt de tangència de la circumferència exinscrita a l'angle B i el costat \overline{BC} .

$$\overline{T_1T_2} = b + c$$
.

Procés de construcció:

- 1.- Dibuixar la semirecta $\overline{T_1T_1} = b + c$
- 2.- Dibuixar la circumferència tangent en T_1 a la semirecta, de radi r_c .
- 3.- Dibuixar la circumferència tangent en $\,{\rm T_2}\,$ a la semirecta, de radi $\,{\rm r_b}\,$.
- 4.- Dibuixar la recta I_bI_c.
- 5.- Dibuixar la recta $\overline{T_1'T_2}$.
- 6.- La intersecció de les rectes $\overline{I_bI_c}$, $\overline{T_1'T_2}$ és el vèrtex A.
- 7.- Dibuixem les rectes tangents interiors a les dues circumferències que ens donen els costats del triangle.
- 8.- Dibuixar el triangle ABC .

Resolució analítica, per al cas $r_b = \frac{7}{2}$, $r_c = 2$, $b + c = \frac{13}{2}$.

$$\frac{r_b}{r_c} = \frac{a+b-c}{a-b+c} \; .$$

Siga
$$d = b - c$$
.

$$\frac{7}{4} = \frac{a+d}{a-d}.$$

Aplicant l'àrea del triangle:

$$(p-c)r_c = \sqrt{p(p-a)(p-b)(p-c)}$$
.

$$\frac{a+d}{2}2 = \sqrt{\frac{a+\frac{13}{2}}{2} - a + \frac{13}{2}} \frac{a+d}{2} \frac{a-d}{2} \ .$$

Considerem el sistema:

$$\begin{cases} \frac{7}{4} = \frac{a+d}{a-d} \\ a+d = \frac{1}{4}\sqrt{-\left(a+\frac{13}{2}\right)\left(a-\frac{13}{2}\right)(a+d)(a-d)} \end{cases}$$
. Resolent el sistema:

$$\begin{cases} a = \frac{\sqrt{57}}{2} \\ d = \frac{3\sqrt{57}}{22} \end{cases}$$

Considerem el sistema:

$$\begin{cases} b+c=\frac{13}{2}\\ b-c=\frac{3\sqrt{57}}{22} \end{cases}. \text{ Resolent el sistema:}$$

$$\begin{cases} b=\frac{143+3\sqrt{57}}{44}\\ c=\frac{143-3\sqrt{57}}{44} \end{cases}.$$