Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 3 / 2 / 2

Выполнил: студент 104 группы Дыскина М. А.

Преподаватель: Гуляев Д. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	5
Структура программы и спецификация функций	6
Сборка программы (Make-файл)	7
Отладка программы, тестирование функций	8
Программа на Си и на Ассемблере	9
Список цитируемой литературы	10

Постановка задачи

- Требуется реализовать численный метод, позволяющий с заданной точностью вычислить площадь плоской фигуры, ограниченной тремя кривыми. Для этого необходимо вычислить абсциссы пересечения заданных кривых и представить площадь заданной фигуры как алгебраическую сумму определенных интегралов.
- Площадь под графиком необходимо искать квадатурной формулой трапеций.
- Вершины фигуры необходимо искать методом хорд. Точность вычисления вершин фигуры e1=0.00001.
- Отрезок для применения метода нахождения корней должен быть вычислен аналитически. Точность вычисления площади e2=0.00001.

Математическое обоснование

Итерации метода хорд сходятся к корню f(x), если начальные величины x_0 и x_1 достаточно близки к корню. Метод секущих является быстрым. Порядок сходимости равен: $\alpha = \frac{1+\sqrt{5}}{2} \approx 1,618...$

Таким образом, порядок сходимости больше линейного, но не квадратичен. Этот результат справедлив, если f(x) дважды дифференцируема и корень не является кратным.

Если f(x) - дважды непрерывно дифференцируемая функция, и знак f''(x) сохраняется на рассматриваемом промежутке, то полученные приближения будут сходиться к корню монотонно. Если корень ξ уравнения $f(\xi)=0$ находится на отрезке [a, b], производные f'(x) и f''(x) на этом промежутке непрерывны и сохраняют постоянные знаки и f''(b)f(b)>0, то можно доказать, что погрешность приближенного решения стремится к нулю при $n\to\infty$, то есть метод сходится со скоростью геометрической прогрессии.

При оценке погрешности приближения можно пользоваться соотношением: $|x^* - x_i| < |x_i - x_{i-1}|$. Если обозначать через m наименьшее значение |f'(x)| на промежутке [a,b], которое можно определить заранее, то получим формулу для оценки точности вычисления корня: $|x_n - x^*| \le |f(x_n)|/m$ или $|f(x_n)|/m \le eps$, где eps - заданная погрешность вычислений.

Абсолютная погрешность метода трапеций оценивается как: $|\delta| \leq \max |f''(x)| \frac{(b-a)^3}{12n^2}$

Таким образом, $\varepsilon_1=\frac{10^{-4}}{4}$ и $\varepsilon_2=\frac{10^{-3}}{2}$, где ε_1 – погрешность вычисления корня методом хорд, ε_2 – погрешность вычисления площади формулой трапеций.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

В данном разделе необходимо провести результаты проведенных вычислений: координаты точек пересечения (таблица 1) и площадь полученной фигуры.

Кривые	x	y
1 и 2	2.5394	3.0789
2 и 3	1.3660	0.7320
1 и 3	0.2655	3.7664

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Функции, вычисляющие значения f1, f2, f3, реализуются на языке ассемблера с соглашением вызова cdecl. Функция опредления точек пересечения кривых и функция вычисления приближенного значения интеграла программы реализуются на языке Си.

Программа, реализующая расчетную задачу, состоит из двух моудлей.

Модуль project.asm на языке ассемблера

```
float f_1 (float x): вычисляет значение функции f_1=e^{-x}+3 float f_2 (float x): вычисляет значение функции f_1=2x-2 float f_3 (float x): вычисляет значение функции f_1=\frac{1}{x}
```

Модуль integral.c на языке С

- 1. Прототип функции root: float root(float(*f)(float), float(*g)(float), float a, float b, float eps1). Функция вычисляет корень x уравнения f(x) = g(x) с точностью ε_1 на отрезке [a, b], используя метод хорд.
- 2. Прототип функции Integral: float integral(float (*f)(float), float a, float b, float eps2). Функция вычисляет величину определенного интеграла от функции f(x) с точностью ε_2 на отрезке [a, b] по квадратурной формуле трапеций.
- 3. Прототип функции main: int main(int argc, const char * argv[]).

Сборка программы (Маке-файл)

```
all: function

function: integral.o project.o

gcc -m32 -o function integral.o project.o

integral.o: integral.c

gcc -m32 -c integral.c

project.o: project.asm

nasm -f elf32 project.asm

clean:

rm -rf *.o function
```

Отладка программы, тестирование функций

Для тестирования функций root и integral были использованы тестовые функции: $f_1 = 3x + 1, f_2 = x, f_3 = x^2 + x + 1.$

Тестирование функции root

- 1. $x_1 = \text{root}(\text{f1}, \text{ f2}, \text{-1}, 0, 0.00001); x_1 = \text{-0.500000}.$ Корень уравнения f1 = f2 равен -0.5
- 2. $x_2 = \text{root}(\text{f2, f3, 0.1, 2, 0.00001}); x_2 = 0.999991$. Корень уравнения f2 = f3 равен 1
- 3. $x_3 = \text{root}(\text{f1, f3, 1, 2, 0.00001}); x_3 = 1.879378$. Корень уравнения f1 = f3 равен 1.879

Тестирование функции integtral

- 1. $s_1 = \text{integral}(\text{f1}, 0, 3, 0.00001); s_1 = 16.499802$. Верный ответ: $\int_0^3 (3x+1) dx = \frac{33}{2}$
- 2. $x_2={
 m integral}({
 m f2},\,0,\,4,\,0.00001);\,s_2=8.000069.$ Верный ответ: $\int_0^4\!\ln({
 m x})dx=8$
- 3. $s_3=$ integral(f3, 1, 2, 0.00001); $s_3=3.749997$. Верный ответ: $\int_0^3 (3x+1)dx=\frac{15}{4}$

Программа на Си и на Ассемблере

Исходные тексты программ имеются в архиве, который приложен к этому отчету.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.