Materials 38 - Bias in the neighborhood of zero forecast errors

Laura Gáti

July 22, 2020

Overview

1	Simulated "true" data	2
A	Model summary	8
В	Target criterion	8
\mathbf{C}	Impulse responses to iid monpol shocks across a wide range of learning models	9

1 Simulated "true" data

3 potential causes to lack of identification in the zero neighborhood

- 1. The distribution of estimates is skewed \rightarrow take $median(\hat{\alpha})$ instead of the mean.
- 2. The truth is based on a simulation that doesn't favor the zero neighborhood \rightarrow do 100 simulations from the "true" parameters and take the mean moments of those.
- 3. The gain doesn't matter if the forecast error is 0, or very close to it → introduce a distinction between the forecast error that's used to choose the gain and the one used to update the coefficients of the learning rule.
- +1 Taking mean moments across N histories is more natural than performing the estimation N times.
- +2 Introduce expectation series (SPF)

Reference for comparison: Fig 1. of Materials 37

Figure 1: Reference figure: Mean estimates for N=100, imposing convexity with weight 100K, truth with $nfe=5, fe \in (-2,2)$

Point #1: skewness \rightarrow take median instead of mean

Figure 2: Mean estimates for N = 100, imposing convexity with weight 10K, truth with $nfe = 5, fe \in (-2, 2)$

(a) α^{true} , α_0 , $mean(\hat{\alpha})$, $median(\hat{\alpha})$, unsorted median

I understand what's happening! Half the estimates are L's, the other half are "inverted L's", which is why taking a mean or a classical, sorted median has the tendency to produce these nonmonotonic zigzags.

Point #2: do 100 truths

Figure 3: Estimates for N = 100, truth is a mean of 100 simulations, imposing convexity with weight 100K, truth with $nfe = 5, fe \in (-2, 2)$

That didn't help, did it now?

Point #3: change timing of forecast errors

$$k_t^{-1} = \mathbf{g}(f e_{t|t-1}) \tag{1}$$

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t^{-1} f e_{t|t-1} \tag{2}$$

The issue seems to be: if $fe_{t|t-1} \approx 0$, then the gain is irrelevant for learning because $fe_{t|t-1}$ figures into both equations. So the idea is to decouple the two equations by changing the timing of one of the forecast errors. Note:

$$fe_{t|t-1} = \pi_t - (\bar{\pi}_{t-1} + bs_{t-1}) \tag{3}$$

$$=\pi_t - \bar{\pi}_{t-1}$$
 since shocks iid and b is the RE transition matrix (4)

So what I can try is to use an older forecast error in equation (2). Try $fe_{t|t-1} \equiv \pi_t - \bar{\pi}_{t-2}$.

Figure 4: Estimates for N=100, changing the forecast error timing in the updating equation, imposing convexity with weight 100K, truth with $nfe=5, fe\in (-2,2)$

A little more symmetric, but no dramatic improvement.

Point #+1: do N simulations instead of N estimations

Figure 5: Estimates for N=100, targeting mean moments in a single estimation instead of N estimations of individual moments, imposing convexity with weight 100K, truth with $nfe=5, fe\in(-2,2)$

The difference is striking!

Point #+2: introduce expectations series

Figure 6: Estimates for N=100, incl. 1-step ahead forecasts of inflation, imposing convexity with weight 100K, truth with $nfe=5, fe\in(-2,2)$

I've added measurement error to π, x, i and the expectation to avoid stochastic singularity from having 4 observables and only 3 shocks.

This clearly has added useful info. Otherwise, behavior is like before:

• Without the convexity restriction, I still get nonconvex estimate.

- With the 0 at 0 restriction, I can match the 0 region, otherwise I can't.
- Both restrictions lead to basically identical moments.

Figure 7: Estimates for N = 1000, incl. 1-step ahead forecasts of inflation, imposing convexity with weight 100K, truth with $nfe = 5, fe \in (-2, 2)$

A Model summary

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
(A.1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha)\beta \pi_{T+1} + u_T \right)$$
(A.2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \bar{i}_t$$
 (if imposed) (A.3)

PLM:
$$\hat{\mathbb{E}}_t z_{t+h} = a_{t-1} + b h_x^{h-1} s_t \quad \forall h \ge 1 \qquad b = g_x h_x$$
 (A.4)

Updating:
$$a_t = a_{t-1} + k_t^{-1} (z_t - (a_{t-1} + bs_{t-1}))$$
 (A.5)

Anchoring function:
$$k_t^{-1} = \rho_k k_{t-1}^{-1} + \gamma_k f e_{t-1}^2$$
 (A.6)

Forecast error:
$$fe_{t-1} = z_t - (a_{t-1} + bs_{t-1})$$
 (A.7)

LH expectations:
$$f_a(t) = \frac{1}{1 - \alpha \beta} a_{t-1} + b(\mathbb{I}_{nx} - \alpha \beta h)^{-1} s_t$$
 $f_b(t) = \frac{1}{1 - \beta} a_{t-1} + b(\mathbb{I}_{nx} - \beta h)^{-1} s_t$

This notation captures vector learning (z learned) for intercept only. For scalar learning, $a_t = \begin{pmatrix} \bar{a}_t & 0 & 0 \end{pmatrix}'$ and b_1 designates the first row of b. The observables (π, x) are determined as:

$$x_t = -\sigma i_t + \begin{bmatrix} \sigma & 1 - \beta & -\sigma \beta \end{bmatrix} f_b + \sigma \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (\mathbb{I}_{nx} - \beta h_x)^{-1} s_t$$
 (A.9)

$$\pi_t = \kappa x_t + \begin{bmatrix} (1 - \alpha)\beta & \kappa \alpha \beta & 0 \end{bmatrix} f_a + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (\mathbb{I}_{nx} - \alpha \beta h_x)^{-1} s_t$$
 (A.10)

B Target criterion

The target criterion in the simplified model (scalar learning of inflation intercept only, $k_t^{-1} = \mathbf{g}(fe_{t-1})$):

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} \left\{ x_{t} - \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + ((\pi_{t} - \bar{\pi}_{t-1} - b_{1}s_{t-1})) \mathbf{g}_{\pi}(t) \right) \right\}$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j}^{-1} - (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j}) \mathbf{g}_{\bar{\pi}}(t+j)) \right)$$
(B.1)

where I'm using the notation that $\prod_{j=0}^{0} \equiv 1$. For interpretation purposes, let me rewrite this as follows:

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} x_{t} + \frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i}$$

$$-\frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (k_{t+1+j}^{-1} + f e_{t+1+j|t+j}^{eve}) \mathbf{g}_{\pi}(t+j) \right)$$
(B.2)

Interpretation: tradeoffs from discretion in RE + effect of current level and change of the gain on future tradeoffs + effect of future expected levels and changes of the gain on future tradeoffs

(A.8)

C Impulse responses to iid monpol shocks across a wide range of learning models

 $T = 400, N = 100, n_{drop} = 5$, shock imposed at t = 25, calibration as above, Taylor rule assumed to be known, PLM = learn constant only, of inflation only.

Figure 8: IRFs and gain history (sample means)

Figure 9: IRFs and gain history (sample means), continued

