

Trabalho de Microcontrolador

Professor: Renato Data: 27/08/2019

Grupo: Matheus Gomes e Arthur Azeredo

I2C

O que é?

desenvolvido pela Philips que é usado para conectar periféricos de baixa velocidade a uma placa mãe, a um sistema embarcado ou a um telefone celular, acaba sendo um dispositivo de comunicação.

Para que serve?

Para comunicar entre os arduinos, tendo um como mestre e outros como escravos.

Na prática, como o I2C funciona?

Segundo a literatura, podemos ter a presença de até 127 dispositivos escravos anexados no barramento citado, no entanto, algumas fontes ressaltam que este valor, embora fornecido pela literatura oficial, é apenas teórico, alegando que, na prática, é possível utilizar apenas 112 dispositivos em um barramento I2C. Isso se deve o fato de que dos 128 endereços possíveis, 16 estão reservados, os quais vão de 0x00 a 0x07 e 0x78 a 0x7F, em outras palavras, os endereços possíveis estão localizados no intervalo de 0x08 a 0x77.

Exemplo prático de barramento I2C

A vantagem da utilização deste tipo de estrutura é nítida quando levamos em conta o número de pinos utilizados pelos elementos e por consequência, a quantidade de fios, além de promover uma organização maior do conjunto quando temos muitos dispositivos interagindo entre si.

Exemplos

Uma outra aplicação muito atraente está na utilização do PC como alternativa para aporta RS-232 na conexão de periféricos.

As ideias básicas das aplicações e da versatilidade de uso do barramento I2C foram mantidas, mas com a sua adoção como um padrão mundial com o licenciamento para seu emprego em mais de 50 empresas, alguns melhoramentos apareceram na versão 2.0, tais como:

Foi acrescentado o High-speed mode (Hs-mode) que permite uma transferência de dados a uma velocidade de até 3,4 Mbits/s. O interessante é que tanto os dispositivos rápidos como standard podem operar ao mesmo tempo pela mesma linha.

O nível baixo e a histerese dos dispositivos com tensão de alimentação de 2 V ou menos foram adaptados para atender as exigências dos níveis de ruído de modo a permanecerem compatíveis com os dispositivos de maior tensão de alimentação.

A exigência de 0,6 V sob 6 mA para as etapas de saída dos dispositivos de operação no Fast-mode foram omitidas.

Os níveis fixos de entrada para os novos dispositivos foram substituídos pelos níveis de tensão relacionados com o barramento.