Natural Language Processing with Deep Learning CS224N/Ling284

Lecture 8:
Machine Translation,
Sequence-to-sequence and Attention

Abigail See

Announcements

- We are taking attendance today
 - Sign in with the TAs outside the auditorium
 - No need to get up now there will be plenty of time to sign in after the lecture ends
 - For attendance policy special cases, see Piazza post for clarification
- Assignment 4 content covered today
 - Get started early! The model takes 4 hours to train!
- Mid-quarter feedback survey:
 - Will be sent out sometime in the next few days (watch Piazza).
 - Complete it for 0.5% credit

Overview

Today we will:

Introduce a new task: Machine Translation

is a major use-case of

Introduce a <u>new neural architecture</u>: sequence-to-sequence

is improved by

Introduce a <u>new neural technique</u>: attention

Section 1: Pre-Neural Machine Translation

history

Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

- Rousseau

1950s: Early Machine Translation

Machine Translation research began in the early 1950s.

 Russian → English (motivated by the Cold War!)

> Al hype 当时的人还很乐观(过于乐观了)

1 minute video showing 1954 MT: https://youtu.be/K-HfpsHPmvw

存在大的磁带里

 Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts

1990s-2010s: Statistical Machine Translation

- Core idea: Learn a probabilistic model from data
- Suppose we're translating French \rightarrow English.
- We want to find best English sentence y, given French sentence x source target $\operatorname{argmax}_{y} P(y|x)$
- Use Bayes Rule to break this down into two components to be learnt separately: division of labor,如果做y|x要会很多

$$= \operatorname{argmax}_{y} P(x|y) P(y)$$

这些相对local

Translation Model

Models how words and phrases should be translated (*fidelity*). Learnt from parallel data.

Language Model

Models how to write good English (fluency).

Learnt from monolingual data.

1990s-2010s: Statistical Machine Translation

- Question: How to learn translation model P(x|y) ?
- First, need large amount of parallel data (e.g. pairs of human-translated French/English sentences)

Learning alignment for SMT

- Question: How to learn translation model P(x|y) from the parallel corpus?
- Break it down further: we actually want to consider

where a is the alignment, i.e. word-level correspondence between French sentence x and English sentence y

What is alignment?

Alignment is the correspondence between particular words in the translated sentence pair.

Note: Some words have no counterpart

Alignment can be many-to-one

Alignment can be one-to-many

Some words are very fertile!

word equivalent in English

Alignment can be many-to-many (phrase-level)

Learning alignment for SMT

- We learn P(x,a|y) as a combination of many factors, including:
 - Probability of particular words aligning (also depends on position in sent) 某个英语词和某个法语词align的频率
 - Probability of particular words having particular fertility (number of corresponding words)
 某个词一对多的概率
 - etc.

Decoding for SMT

- We could enumerate every possible y and calculate the probability? → Too expensive!
- Answer: Use a heuristic search algorithm to search for the best translation, discarding hypotheses that are too low-probability
- This process is called decoding

Decoding for SMT

Decoding for SMT

1990s-2010s: Statistical Machine Translation

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems had many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena 要掌握关于语言现象的很多知识
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases 维护很大的phrase表
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

Section 2: Neural Machine Translation

2014

What is Neural Machine Translation?

- Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.

The sequence-to-sequence model

注意需要两个embedding matrix Target sentence (output)

Encoding of the source sentence.

Provides initial hidden state

for Decoder RNN.

画的是单向RNN,但各种都可以 il a m' entarté

Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

conditional language model (因为有输入)

ecoder RNN

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows **test time** behavior: decoder output is fed in ····· as next step's input

注意是test的时候, training的之后讲

Encoder RNN

Sequence-to-sequence is versatile!

- Sequence-to-sequence is useful for more than just MT
- Many NLP tasks can be phrased as sequence-to-sequence:
 - Summarization (long text → short text)
 - Dialogue (previous utterances → next utterance)
 - Parsing (input text → output parse as sequence) 可能不是最好的办法。但可以试试
 - Code generation (natural language → Python code)

Neural Machine Translation (NMT)

- The sequence-to-sequence model is an example of a Conditional Language Model.
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditional because its predictions are also conditioned on the source sentence x
- NMT directly calculates P(y|x): 不再像SMT一样按贝叶斯分成两部分

$$P(y|x) = P(y_1|x) P(y_2|y_1,x) P(y_3|y_1,y_2,x) \dots P(y_T|y_1,\dots,y_{T-1},x)$$
RNN各个timestep

Probability of next target word, given target words so far and source sentence *x*

- Question: How to train a NMT system?
- Answer: Get a big parallel corpus...

【注意】数学上是按这张图计算的,但是实现时会padding,要确保不计算pad后的进入 Training a Neural Machine Translation system hidden states = negative log = negative log = negative log 交叉熵 prob of "with" prob of "he" prob of <END> 【注意】 training的时候 $J = \frac{1}{T} \sum_{t} J_{t}$ J_3 输入下一timestep的是 t=1真正的labeled word! 每个output 而test的时候才会把 都计算loss 产生的比如<END> 输入下个state **Encoder RNN** ecoder RNN

Source sentence (from corpus)

m'

entarté

end-to-end是整体train

但现在也有pre-train

Seq2seq is optimized as a <u>single system</u>. Backpropagation operates "<u>end-to-end</u>".

he

hit

<START>

一端是loss ,

一端是encoder

(信息流过整个

pie

system)

with

me

Target sentence (from corpus)

Greedy decoding

 We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder

- This is greedy decoding (take most probable word on each step)
- Problems with this method? 现在看是argmax,但整体上不一定

Problems with greedy decoding

- Greedy decoding has no way to undo decisions!
 - Input: il a m'entarté (he hit me with a pie)
 - → he ____
 - → he hit _____
 - \rightarrow he hit a ____ (whoops! no going back now...)
- How to fix this? 先搜索一些空间, beam search

Exhaustive search decoding

代价太高了

Ideally we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - This means that on each step t of the decoder, we're tracking V^t possible partial translations, where V is vocab size
 - This O(V^T) complexity is far too expensive!

Beam search decoding

- <u>Core idea:</u> On each step of decoder, keep track of the <u>k most</u>
 <u>probable</u> partial translations (which we call <u>hypotheses</u>)
 - k is the beam size (in practice around 5 to 10)
- A hypothesis y_1, \dots, y_t has a score which is its log probability:

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^{\tau} log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- Scores are all negative, and higher score is better prob更大
- We search for high-scoring hypotheses, tracking top k on each step.
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam size =
$$k$$
 = 2. Blue numbers = $score(y_1, ..., y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$

<START>

Calculate prob dist of next word

Beam size = k = 2. Blue numbers =
$$score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$$

hypotheses

Take top *k* words and compute scores

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$$

避免指数增长!每步都只保留k个

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Beam search decoding: stopping criterion

停止的时机

- In greedy decoding, usually we decode until the model produces a <END> token
 - For example: <START> he hit me with a pie <END>
- In beam search decoding, different hypotheses may produce
 <END> tokens on different timesteps 但其他的可能还在继续
 - When a hypothesis produces <END>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach timestep T (where T is some pre-defined cutoff), or
 - We have at least n completed hypotheses (where n is pre-defined cutoff)

Beam search decoding: finishing up

- We have our list of completed hypotheses.
- How to select top one with highest score?
- Each hypothesis y_1, \dots, y_t on our list has a score

score
$$(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- <u>Problem with this:</u> longer hypotheses have lower scores 加上了更多的negative value (prob)
- Fix: Normalize by length. Use this to select top one instead:

只在最后一步选top-seore的时候做,中间每次都是相同步长中的选择
$$rac{1}{t}\sum_{i=1}^{t}\log P_{\mathrm{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent 得益于RNN
 - Better use of context condition on the source sentence
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering 不需要定义一种语言现象
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

You'll see BLEU in detail in Assignment 4!

- BLEU compares the <u>machine-written translation</u> to one or several <u>human-written translation</u>(s), and computes a similarity score based on:
 - n-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation ☺

MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research activity in **2014** to the leading standard method in **2016**

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT
- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

- Nope!
- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

- Nope!
- Using common sense is still hard

- Nope!
- NMT picks up biases in training data

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

- Nope!
- Uninterpretable systems do strange things

Open in Google Translate Feedback

NMT research continues

NMT is the **flagship task** for NLP Deep Learning

- NMT research has pioneered many of the recent innovations of NLP Deep Learning
- In 2019: NMT research continues to thrive
 - Researchers have found many, many improvements to the "vanilla" seq2seq NMT system we've presented today
 - But one improvement is so integral that it is the new vanilla...

ATTENTION

Section 3: Attention

Sequence-to-sequence: the bottleneck problem

Encoding of the source sentence. Target sentence (output) hit <END> he with pie me а **Encoder RNN** <START> he hit m' entarté with me а pie

Problems with this architecture?

Decoder RNN

Source sentence (input)

Sequence-to-sequence: the bottleneck problem

Attention

Attention provides a solution to the bottleneck problem.

• <u>Core idea</u>: on each step of the decoder, use <u>direct connection to</u> the encoder to focus on a particular part of the source sequence

 First we will show via diagram (no equations), then we will show with equations

Sequence-to-sequence with attention

68

Attention: in equations

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores $oldsymbol{e}^t$ for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^T oldsymbol{h}_1, \dots, oldsymbol{s}_t^T oldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use $lpha^t$ to take a weighted sum of the encoder hidden states to get the attention output $m{a}_t$

$$m{a}_t = \sum_{i=1}^N lpha_i^t m{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get (soft) alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

深色是high attention

Attention is a general Deep Learning technique

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- However: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)
- More general definition of attention:
 - Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query.
- We sometimes say that the query attends to the values.
- For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states
 (values).

Attention is a general Deep Learning technique

More general definition of attention:

Given a set of vector *values*, and a vector *query*, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

Intuition:

- The weighted sum is a *selective summary* of the information contained in the values, where the query determines which values to focus on.

 类似LSTM:基于context决定gate
- Attention is a way to obtain a *fixed-size representation of an arbitrary set of representations* (the values), dependent on some other representation (the query).

There are *several* attention variants

- We have some *values* $m{h}_1,\dots,m{h}_N\in\mathbb{R}^{d_1}$ and a *query* $m{s}\in\mathbb{R}^{d_2}$
- Attention always involves:
 - 1. Computing the *attention scores* $e \in \mathbb{R}^N$ multiple ways to do this
 - 2. Taking softmax to get attention distribution α :

$$\alpha = \operatorname{softmax}(\boldsymbol{e}) \in \mathbb{R}^N$$

3. Using attention distribution to take weighted sum of values:

There are

$$oldsymbol{a} = \sum_{i=1}^N lpha_i oldsymbol{h}_i \in \mathbb{R}^{d_1}$$

thus obtaining the *attention output* **a** (sometimes called the *context vector*)

Attention variants

You'll think about the relative advantages/disadvantages of these in Assignment 4!

There are several ways you can compute $e \in \mathbb{R}^N$ from $h_1, \dots, h_N \in \mathbb{R}^{d_1}$ and $s \in \mathbb{R}^{d_2}$:

- Basic dot-product attention: $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{h}_i \in \mathbb{R}$
 - Note: this assumes $d_1 = d_2$
 - This is the version we saw earlier
- Multiplicative attention: $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{W} oldsymbol{h}_i \in \mathbb{R}$
 - Where $\mathbf{W} \in \mathbb{R}^{d_2 \times d_1}$ is a weight matrix
- Additive attention: $oldsymbol{e}_i = oldsymbol{v}^T anh(oldsymbol{W}_1 oldsymbol{h}_i + oldsymbol{W}_2 oldsymbol{s}) \in \mathbb{R}$
 - Where $W_1 \in \mathbb{R}^{d_3 \times d_1}$, $W_2 \in \mathbb{R}^{d_3 \times d_2}$ are weight matrices and $v \in \mathbb{R}^{d_3}$ is a weight vector.
 - d_3 (the attention dimensionality) is a hyperparameter

Summary of today's lecture

- We learned some history of Machine Translation (MT)
- Since 2014, Neural MT rapidly replaced intricate Statistical MT

 Sequence-to-sequence is the architecture for NMT (uses 2 RNNs)

- Attention is a way to focus on particular parts of the input
 - Improves sequence-to-sequence a lot!

