Московский Государственный Университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по второму заданию в рамках курса «Суперкомпьютерное моделирование и технологии»

Вариант 8

Выполнил: Немцов Дмитрий Викторович, 608 группа

Математическая постановка задачи

Дана непрерывная в ограниченной замкнутой области $G \subset \mathbb{R}^3$ функция:

$$f(x, y, z) = x^2 y^2 z^2$$

Требуется вычислить определённый интеграл:

$$I = \iiint_G f(x, y, z) \, dx \, dy \, dz$$

Область G ограничена:

$$|x| + |y| \le 1$$
, $-2 \le z \le 2$

Численный метод решения задачи

Для численного решения данной задачи был применён метод Монте-Карло.

Очевидно, что область G можно ограничить единичным прямоугольным параллелепипедом. Таким образом, область G ограничена параллелепипедом Π :

$$\Pi = \begin{cases} -1 \le x \le 1\\ -1 \le y \le 1\\ -2 \le z \le 2 \end{cases}$$

Рассмотрим функцию F(x, y, z):

$$F(x, y, z) = \begin{cases} f(x, y, z), & (x, y, z) \in G \\ 0, & (x, y, z) \notin G \end{cases}$$

Преобразуем с помощью F(x, y, z) и Π интеграл I:

$$I = \iiint_G f(x, y, z) dxdydz = \iiint_\Pi F(x, y, z) dxdydz$$

Пусть $p_1(x_1, y_1, z_1)$, $p_2(x_2, y_2, z_2)$, ... — случайные точки, равномерно распределённые в П. Возьмём п таких случайных точек. В качестве приближённого значения интеграла было использовано выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} f(p_i),$$

Где $|\Pi|$ — объём параллелепипеда Π .

$$|\Pi| = 16.$$

Аналитическое решение задачи

$$I = \iiint_G x^2 y^2 z^2 dx dy dz = 8 \int_0^1 dx \int_0^{1-x} dy \int_0^2 x^2 y^2 z^2 dz = 8 \int_0^1 dx \int_0^{1-x} \frac{8}{3} x^2 y^2 dy =$$

$$= 8 \int_{0}^{1} \frac{8}{9} x^{2} (1-x)^{3} dx = \frac{64}{9} \int_{0}^{1} x^{2} (1-3x+3x^{2}-x^{3}) dx = \frac{64}{9} \int_{0}^{1} (x^{2}-3x^{3}+3x^{4}-x^{5}) dx =$$

$$= \frac{64}{9} \left(\frac{x^{3}}{3} - \frac{3x^{4}}{4} + \frac{3x^{5}}{5} - \frac{x^{6}}{6} \right) \Big|_{0}^{1} = \frac{16}{135}$$

Краткое описание программной реализации

Программа принимает требуемую точность через командную строку (численный аргумент после -- в командной строке при запуске скрипта mpisubmit.pl) и в выходном файле выводит полученное значение, ошибку, количество сгенерированных точек и время выполнения кода (вся эта информация находится внутри обрамления из символов дефиса). В соответствии с вариантом параллельные процессы генерируют случайные точки независимо друг от друга. Сначала генерируется определенное количество случайных точек каждым процессом — 9000/(є * number_of_processes), затем вычисляется итоговый результат при помощи операции редукции. Если требуемая точность не была достигнута, то все процессы еще раз генерируют порцию случайных точек и так пока она не будет достигнута. Далее нулевой процесс выводит необходимый результат.

Исследование масштабируемости программы на системе Polus.

Были произведены запуски программы с различными параметрами (число процессов и точность) на системе Polus, в ходе этих запусков было зафиксировано время работы программы и полученная ошибка (модуль разности приближённого значения и истинного значения). Результаты исследования приведены в таблице и графике ниже:

Точность Е	Число MPI-процессов	Время	Ускорение	Ошибка
3.0*10 ⁻⁵	1	34,53	1	2.27783e-05
	4	9,00052	3,83644500539969	2.32696e-05
	16	2,4752	13,9503878474467	1.71061e-05
5.0*10 ⁻⁶	1	208,907	1	2.75335e-06
	4	55,0307	3,79619012660206	4.95253e-06
	16	14,1209	14,7941703432501	1.3571e-06
1.5*10-6	1	691,841	1	4.9276e-08
	4	180,628	3,83019797595057	4.46917e-08
	16	45,0991	15,3404613395833	6.03254e-07

Как можно видеть, ускорение наблюдается, и при повышении числа процессов ускорение в среднем равно 4.

Так же были проведены аналогичные запуски программы при другом seed генератора псевдослучайных чисел для проверки стабильности ускорения для точности 3.0*10-5. В результате были получены следующие значения:

Seed	Число MPI-процессов	Время	Ускорение	Ошибка
rank + 1	1	34,7126	1	2.27783e-05
	4	8,59178	4,04021052680585	2.36332e-05
	16	2,43983	14,2274666677596	4.8785e-06
2*rank + 1	1	34,53	1	2.27783e-05
	4	9,00052	3,83644500539969	2.32696e-05
	16	2,4752	13,9503878474467	1.71061e-05
3*rank + 1	1	34,6215	1	2.27783e-05
	4	8,75759	3,95331363993976	2.01767e-05
	16	2,4663	14,0378299476949	2.29681e-06
4*rank + 1	1	34,2005	1	2.27783e-05
	4	8,86908	3,8561496795609	6.36463e-06
	16	2,55199	13,4015023569842	1.08217e-05
5*rank + 1	1	34,6883	1	2.27783e-05
	4	8,69739	3,98835742676826	1.03583e-05
	16	2,38354	14,5532695067001	1.14356e-05

Так же были построены следующие графики ускорений:

Рис 1. График ускорений

Рис 2. График ускорений для разных seed