Analisi 3

Appunti di Analisi 3 del corso di Giovanni Alberti e Maria Stella Gelli

Arianna Carelli e Antonio De Lucreziis

I Semestre 2021/2021

Indice

Capitolo 1

Teoria della misura

1.1 Misure astratte

Definizione. Uno spazio misurabile è una terna (X, \mathcal{A}, μ) tale che

- \bullet X è un insieme qualunque.
- \mathcal{A} è una σ -algebra di sottoinsiemi di X (chiamata σ -algebra dei misurabili) ovvero una famiglia di sottoinsiemi di X che rispetta le seguenti proprietà:
 - $\circ \emptyset, X \in \mathcal{A}.$
 - \circ \mathcal{A} è chiusa per complementare, unione e intersezione numerabile.
- μ è una misura su X, ossia una funzione $\mu \colon \mathcal{A} \to [0, +\infty]$ σ -addittiva, cioè tale che data una famiglia numerabile $\{E_k\} \subset \mathcal{A}$ disgiunta e posto $E := \bigcup E_n$, allora

$$\mu(E) = \sum_{n} \mu(E_n).$$

Notazione. Data una successione crescente di insiemi $E_1 \subset E_2 \subset \cdots \in E_n \subset \cdots \subset U$ scriviamo $E_n \uparrow E$.

Proprietà.

- $\mu(\emptyset) = 0$
- Monotonia: Dati $E, E' \in \mathcal{A}$ e $E \subset E'$, allora $\mu(E) \leq \mu(E')$.
- Data $E_n \uparrow E$, vale $\mu(E) = \lim_{n \to \infty} \mu(E_n) = \sup_n \mu(E_n)$.
- Se $E_n \downarrow E$ e $\mu(E_{\bar{n}}) < +\infty$ per qualche \bar{n} , allora $\mu(E) = \lim_{n \to \infty} \mu(E_n) = \inf_n \mu(E_n)$.
- Subadditività: Se $E \subset \bigcup E_n$, allora $\mu(E) \leq \sum_n \mu(E_n)$.

Osservazione. Dato $X' \in \mathcal{A}$ si possono restringere \mathcal{A} e μ a X' nel modo ovvio.

Definizioni.

• μ si dice **completa** se $F \subset E, E \in \mathcal{A}$ e $\mu(E) = 0$, allora $F \in \mathcal{A}$ (e di conseguenza $\mu(F) = 0$).

- μ si dice finita se $\mu(X) < +\infty$.
- μ si dice σ -finita se esiste una successione $\{E_n\}$ con $E_n \subset E_{n+1}$ tale che $\bigcup E_n = X$ con $\mu(E_n) < +\infty$ per ogni n.

Notazione. Sia P(X) un predicato che dipende da $x \in X$ allora si dice che P(X) vale μ -quasi ogni $x \in X$ se l'insieme $\{x \mid P(x) \text{ è falso}\}$ è (contenuto in) un insieme di misura μ nulla.

D'ora in poi consideriamo solo misure complete.

1.2 Esempi di misure

• Misura che conta i punti.

$$X \text{ insieme} \qquad \mathcal{A} := \mathcal{P}(X) \qquad \mu(E) := \#E \in \mathbb{N} \cup \{+\infty\}$$

• Delta di Dirac in x_0 .

X insieme,
$$x_0 \in X$$
 fissato $\mathcal{A} := \mathcal{P}(X)$ $\mu(E) := \delta_{x_0}(E) = \mathbb{1}_E(x_0)$

• Misura di Lebesgue.

 $X = \mathbb{R}^n$ \mathcal{M}^n σ -algebra dei misurabili secondo Lebesgue \mathscr{L}^n misura di Lebesgue Dato R parallelepipedo in \mathbb{R}^n , cioè $R = \prod_{k=1}^n I_k$ con I_k intervalli in \mathbb{R} . Si pone

$$\operatorname{vol}_n(R) := \prod_{k=1}^n \operatorname{lungh}(I_k)$$

per ogni $E \subset \mathbb{R}^n$ (assumendo lungh([a, b]) = b - a). Infine poniamo

$$\mathscr{L}^n(E) := \inf \left\{ \sum_i \operatorname{vol}_n(R_i) \mid \{R_i\} \text{ tale che } E \subset \bigcup_i R_i \right\}.$$

Osservazioni.

- $\mathscr{L}^n(R) = \operatorname{vol}_n(R)$
- \mathcal{L}^n non è σ -addittiva su $\mathcal{P}(\mathbb{R}^n)$.

Il secondo punto giustifica l'introduzione della σ -algebra dei misurabili secondo Lebesgue che denotiamo con \mathcal{M}^n .

Dato $E \subset \mathbb{R}^n$ si dice che E è misurabile (secondo Lebesgue) se

$$\forall \varepsilon > 0 \; \exists A \text{ aperto e } C \text{ chiuso, tali che } C \subset E \subset A \text{ e } \mathscr{L}^n(A \setminus C) \leq \varepsilon.$$

Osservazioni.

 \bullet Per ogni E misurabile vale

$$\mathscr{L}^n(E) = \inf \left\{ \mathscr{L}^n : A \text{ aperto}, A \supset E \right\} = \sup \left\{ \mathscr{L}^n : K \text{ compatto}, K \subset E \right\}.$$

• Notiamo che se $F \subset E$ con $E \subset \mathcal{M}^n$ e $\mathcal{L}^n(E) = 0$, allora $F \in \mathcal{M}^n$. Ovvero la misura di Lebesgue è completa!

Notazione. $|E| := \mathcal{L}^n(E)$

1.3 Funzioni misurabili

Definizione. Dato (X, \mathcal{A}, μ) e $f: X \to \mathbb{R}$ (o al posto di \mathbb{R} in Y spazio topologico), diciamo che f è **misurabile** (più precisamente \mathcal{A} -misurabile), se

$$\forall A \text{ aperto } f^{-1}(A) \in \mathcal{A}$$

Osservazioni.

- Dato $E \subset X$, vale $E \in \mathcal{A}$ se solo se $\mathbb{1}_E$ è misurabile.
- La classe delle funzioni misurabili è chiusa rispetto a molte operazioni
 - o Somma, prodotto (se hanno senso nello spazio immagine della funzione).
 - o Composizione con funzione continua: Se $f: X \to Y$ continua e $g: Y \to Y'$ continua, allora $g \circ f$ è misurabile.
 - o Convergenza puntuale: data una successione di f_n misurabili e $f_n \to f$ puntualmente, allora f è misurabile.
 - \circ lim inf e lim sup (almeno nel caso $Y = \mathbb{R}$).

1.3.1 Funzioni semplici

Definizione. Definiamo la classe delle funzione semplici come

$$\mathcal{S} := \left\{ f \colon X \to \mathbb{R} \;\middle|\; f = \sum_i \alpha_i \mathbb{1}_{E_i} \text{ con } E_i \text{ misurabili e } \{\alpha_i\} \text{ finito} \right\}$$

Osservazione. La rappresentazione di una funzione semplice come combinazione lineare di indicatrici di insiemi $non \ \hat{e} \ unica$, però se necessario possiamo prendere gli E_i disgiunti.

1.4 Integrale

Definizione. Diamo la definizione di $\int_X f \, \mathrm{d}\mu$ per passi

i) Se $f \in \mathcal{S}$ e $f \geq 0$ cioè $f = \sum_i \alpha_i \mathbb{1}_{E_i}$ con $\alpha_i \geq 0$ allora poniamo

$$\int_X f \, \mathrm{d}\mu := \sum_i \alpha_i \mu(E_i),$$

convenendo che $0 \cdot +\infty = 0$ in quanto la misura di un insieme non è necessariamente finita.

ii) Se $f: X \to [0, +\infty]$ misurabile si pone

$$\int_X f \, \mathrm{d}\mu \coloneqq \sup_{\substack{g \in \mathcal{S} \\ 0 \le g \le f}} \int_X g \, \mathrm{d}\mu.$$

4

iii) $f \colon X \to \overline{\mathbb{R}}$ misurabile si dice **integrabile** se

$$\int_X f^+ \,\mathrm{d}\mu < +\infty \quad \text{oppure} \quad \int_X f^- \,\mathrm{d}\mu < +\infty.$$

e per tali f si pone

$$\int_X f \, \mathrm{d}\mu \coloneqq \int_X f^+ \, \mathrm{d}\mu - \int_X f^- \, \mathrm{d}\mu.$$

iv) $f: X \to \mathbb{R}^n$ si dice **sommabile** (o di **classe** \mathscr{L}^1) se $\int_X |f| d\mu < +\infty$. In tal caso, se $\int_X f_i^{\pm} d\mu < +\infty$ per ogni f_i componente di f, allora $\int_X f d\mu$ esiste ed è finito.

Per tali f si pone

$$\int_X f \, \mathrm{d}\mu := \left(\int_X f_1 \, \mathrm{d}\mu, \dots, \int_X f_n \, \mathrm{d}\mu \right).$$

Notazione. Scriveremo spesso $\int_E f(x) dx$ invece di $\int_E f d\mathcal{L}^n$.

Osservazioni.

- L'integrale è lineare (sulle funzioni sommabili).
- I passaggi ?? e ?? danno lo stesso risultato per f semplice ≥ 0 .
- La definizione in ?? ha senso per ogni $f: X \to [0, +\infty]$ anche non misurabile. Ma in generale vale solo che

$$\int_X f_1 + f_2 \,\mathrm{d}\mu \ge \int_X f_1 \,\mathrm{d}\mu + \int_X f_2 \,\mathrm{d}\mu.$$

• Dato $E \in \mathcal{A}$, f misurabile su E, notiamo che vale l'uguaglianza

$$\int_{E} f \, \mathrm{d}\mu \coloneqq \int_{X} f \cdot \mathbb{1}_{E} \, \mathrm{d}\mu.$$

- Si può definire l'integrale anche per $f: X \to Y$ con Y spazio vettoriale normato finito dimensionale¹ ed f sommabile.
- Se $f_1 = f_2 \mu$ -q.o. allora $\int_X f_1 d\mu = \int_X f_2 d\mu$.
- Si definisce $\int_X f \, \mathrm{d}\mu$ anche se f è misurabile e definita su $X \setminus N$ con $\mu(N) = 0$.
- Se $f:[a,b] \to \mathbb{R}$ è integrabile secondo Riemann allora è misurabile secondo Lebesgue e le due nozioni di integrale coincidono.

Nota. Lo stesso vale per integrali impropri di funzioni positive. Ma nel caso più generale non vale: se consideriamo la funzione

$$f: (0, +\infty) \to \mathbb{R}$$
 $f(x) := \frac{\sin x}{x}$

allora l'integrale di f definito su $(0, +\infty)$ esiste come integrale improprio ma non secondo Lebesgue, infatti

$$\int_0^{+\infty} f^+ \, \mathrm{d}x = \int_0^{+\infty} f^- \, \mathrm{d}x = +\infty$$

¹È necessario avere uno spazio vettoriale, perché serve la linearità e la moltiplicazione per scalare

- $\bullet \int_X f \, \mathrm{d}\delta_{x_0} = f(x_0)$
- Se $X=\mathbb{N}$ e μ è la misura che conta i punti l'integrale è

$$\int_X f \, \mathrm{d}\mu = \sum_{n=0}^\infty f(n)$$

per le f positive o tali che $\sum f^+(n) < +\infty$ oppure $\sum f^-(n) < +\infty$.

Nota. Come prima nel caso di funzioni non sempre positive ci sono casi in cui la serie solita non è definita come integrale di una misura, ad esempio

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

esiste come serie ma non come integrale.

• Dato X qualunque, μ misura che conta i punti e $f: X \to [0, +\infty]$ possiamo definire la somma di tutti i valori di f

$$\sum_{x \in X} f(x) \coloneqq \int_X f \, \mathrm{d}\mu.$$

1.5 Teoremi di convergenza

Sia (X, \mathcal{A}, μ) come in precedenza.

Teorema (di convergenza monotona o Beppo-Levi). Date $f_n: X \to [0, +\infty]$ misurabili, tali che $f_n \uparrow f$ ovunque in X, allora¹

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu$$

ed in particolare il termine a sinistra è crescente quindi è proprio un sup ovvero $\lim_{n\to+\infty} \int_X f_n d\mu = \sup_n \int_X f_n d\mu$.

Teorema (lemma di Fatou). Date $f_n \colon X \to [0, +\infty]$ misurabili, allora

$$\liminf_{n \to +\infty} \int_X f \, \mathrm{d}\mu \ge \int_X \left(\liminf_{n \to +\infty} f_n \right) \, \mathrm{d}\mu.$$

Teorema (di convergenza dominata o di Lebesgue). Date $f_n: X \to \mathbb{R}$ (o anche \mathbb{R}^n) misurabili con le seguenti proprietà

- Convergenza puntuale: $f_n(x) \to f(x)$ per ogni $x \in X$.
- Dominazione: Esiste $g: X \to [0, +\infty]$ sommabile tale che $|f_n(x)| \le g(x)$ per ogni $x \in X$ e per ogni $n \in \mathbb{N}$.

allora

$$\lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

 $¹ Mnemonica: \sup_{n} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} \sup_{n} f_n \, \mathrm{d}\mu$

Nota. La seconda proprietà è essenziale; sostituirla con $\int_X |f_n| d\mu \le C < +\infty$ non basta!

Definizione. Data una densità $\rho \colon \mathbb{R}^n \to [0, +\infty]$ misurabile, la **misura** μ con densità ρ è data da

$$\forall E \in \mathcal{A} \quad \mu(E) \coloneqq \int_{E} \rho \, \mathrm{d}x$$

Osservazioni.

- \mathbb{R}^n e \mathcal{L}^n possono essere sostituiti da X e $\widetilde{\mu}$.
- \bullet il fatto che μ è una misura segue da Beppo Levi, in particolare serve per mostrare la subadditività.

Teorema (di cambio di variabile). Siano Ω e Ω' aperti di \mathbb{R}^n , $\Phi: \Omega \to \Omega'$ un diffeomorfismo di classe C^1 e $f: \Omega' \to [0, +\infty]$ misurabile. Allora

$$\int_{\Omega'} f(x') dx' = \int_{\Omega} f(\Phi(x)) |\det(\nabla \Phi(x))| dx.$$

La stessa formula vale per f a valori in $\overline{\mathbb{R}}$ integrabile e per f a valori in \mathbb{R}^n sommabile.

Osservazioni.

- Se n=1, $|\det(\Lambda\Phi(x))|=|\Phi'(x)|$ e non $\Phi'(x)$ come nella formula vista ad Analisi 1 (l'informazione del segno viene data dall'inversione degli estremi).
- Indebolire le ipotesi su Φ è delicato. Basta Φ di classe C^1 e $\widetilde{\forall} x' \in \Omega' \# \Phi^{-1}(x') = 1$ (supponendo Φ iniettiva la proprietà precedente segue immediatamente). Se Φ non è "quasi" iniettiva bisogna correggere la formula per tenere conto della molteplicità.
- Quest'ultima osservazione serve giusto per far funzionare il cambio in coordinate polari che non è iniettivo solo nell'origine.

1.5.1 Fubini-Tonelli

Di seguito riportiamo il teorema di Fubini-Tonelli per la misura di Lebesgue.

Teorema (di Fubini-Tonelli). Sia $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \simeq \mathbb{R}^n$ con $n = n_1 + n_2$, $E := E_1 \times E_2$ dove E_1, E_2 sono misurabili e f è una funzione misurabile definita su E. Se f ha valori in $[0, +\infty]$ allora

$$\int_{E} f \, \mathrm{d}\mu = \int_{E_2} \int_{E_1} f(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{E_1} \int_{E_2} f(x_1, x_2) \, \mathrm{d}x_2 \, \mathrm{d}x_1$$

Vale lo stesso per f a valori in \mathbb{R} o in \mathbb{R}^n sommabile.

Osservazioni. Possiamo generalizzare il teorema di Fubini-Tonelli a misure generiche ed ottenere alcuni risultati utili che useremo ogni tanto.

• Se X_1, X_2 sono spazi con misure μ_1, μ_2 (con opportune ipotesi) vale:

$$\int_{E_2} \int_{E_1} f(x_1, x_2) d\mu_1(x_1) d\mu_2(x_2) = \int_{E_1} \int_{E_2} f(x_1, x_2) d\mu_2(x_2) d\mu_1(x_1).$$

¹funzione differenziabile con inversa differenziabile.

se
$$f \ge 0$$
 oppure $\int_{X_1} \int_{X_2} |f| d\mu_2(x_2) d\mu_1(x_1) < +\infty$.

• **Teorema** (di scambio serie-integrale). Se $X_1 \subset \mathbb{R}$ (oppure $X_1 \subset \mathbb{R}^n$), $\mu_1 = \mathcal{L}^n$ e $X_2 = \mathbb{N}$, μ_2 è la misura che conta i punti, allora la formula sopra diventa

$$\sum_{n=0}^{\infty} \int_{X_1} f_n(x) \, \mathrm{d}x = \int_{X_1} \sum_{n=0}^{\infty} f_n(x) \, \mathrm{d}x.$$

se
$$f_i \ge 0$$
 oppure $\sum_i \int_{X_1} |f_i(x)| dx < +\infty$.

• Teorema (di scambio di serie). Se $X_1=X_2=\mathbb{N}$ e $\mu_1=\mu_2$ è la misura che conta i punti la formula sopra diventa

$$\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{i,j} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i,j}$$

se
$$a_{i,j} \ge 0$$
 oppure $\sum_{i} \sum_{j} |a_{i,j}| < +\infty$.

Capitolo 2

Spazi L^p e convoluzione

2.1 Disuguaglianze

2.1.1 Disuguaglianza di Jensen

Ricordiamo che una funzione $f: \mathbb{R}^d \to [-\infty, +\infty]$ è **convessa** se e solo se dati $x_1, \dots, x_n \in \mathbb{R}^d$ e $\lambda_1, \dots, \lambda_n \in [0, 1]$ con $\sum_i \lambda_i = 1$ abbiamo che

$$f\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} f(x_{i})$$

Teorema (Jensen). Dato (X, \mathcal{A}, μ) con $\mu(X) = 1$ e $f: \mathbb{R}^d \to [-\infty, +\infty]$ convessa e semi-continua inferiormente (S.C.I.) e $u: X \to \mathbb{R}^d$ sommabile allora vale

$$f\left(\int_X u \, \mathrm{d}\mu\right) \le \int_X f \circ u \, \mathrm{d}\mu$$

e $f \circ u$ è integrabile.

Osservazioni.

- $(f \circ u)^-$ ha integrale finito.
- Interpretando μ come probabilità si riscrive come $\mathbb{E}[f \circ \mu] \geq f(\mathbb{E}[u])$.
- Se u è una funzione semplice, cioè $u = \sum_i y_i \cdot \mathbb{1}_{E_i}$ con E_i disgiunti e $\bigcup E_i = X$ allora posti $\lambda_i = \mu(E_i)$ abbiamo

$$\int_X f \circ u \, d\mu = \int_X \sum_i f(y_i) \cdot \mathbb{1}_{E_i} \, d\mu = \sum_i \lambda_i f(y_i) \ge f\left(\sum_i \lambda_i y_i\right) = f\left(\int_X u \, d\mu\right)$$

Questo ci darebbe una strada per dimostrare in generale per passi il teorema di Jensen ma in realtà si presentano vari problemi tecnici.

• Ogni funzione convessa e S.C.I su Ω convesso in \mathbb{R}^d si estende a $\tilde{f}: \mathbb{R} \to (-\infty, +\infty]$ convessa e S.C.I., ad esempio se $\Omega = (0, +\infty)$

$$f(y) = \frac{1}{y} \quad \leadsto \quad \widetilde{f}(y) = \begin{cases} +\infty & y \le 0 \\ \frac{1}{y} & y > 0 \end{cases}$$

• La semi-continuità inferiore serve perché le funzioni convesse sono continue solo se a valori in \mathbb{R} , ad esempio per k costante la funzione

$$f(y) := \begin{cases} k & y < 0 \\ +\infty & y \ge 0 \end{cases}$$

è convessa ma non semi-continua inferiormente (e neanche continua).

Dimostrazione. Poniamo $y_0 := \int_X u \, \mathrm{d}\mu$, allora la tesi diventa

$$f\left(\int_X u \, \mathrm{d}\mu\right) \le \int_X f \circ u \, \mathrm{d}\mu \quad \Longleftrightarrow \quad f(y_0) \le \int_X f \circ u \, \mathrm{d}\mu.$$

Prendiamo $\phi \colon \mathbb{R}^d \to \mathbb{R}$ affine (ovvero $\phi(y) = a \cdot y + b$ con $a \in \mathbb{R}^d$ e $b \in \mathbb{R}$) tale che $\phi \leq f$, allora

$$\int_X f \circ u \, \mathrm{d}\mu \ge \int_X \phi \circ u \, \mathrm{d}\mu = \int_X a \cdot u + b \, \mathrm{d}\mu = ay_0 + b = \phi(y_0)$$

Infine concludiamo usando il seguente lemma di caratterizzazione delle funzioni convesse ed S.C.I.

Lemma. Ogni $f: \mathbb{R}^d \to (-\infty, +\infty]$ convessa e S.C.I è tale che

$$\forall y_0 \in \mathbb{R}^d \quad \sup_{\substack{\phi \text{ affine} \\ \phi < f}} \phi(y_0) = f(y_0)$$

Rileggendo meglio la dimostrazione segue che $(f \circ u)^- < (\phi \circ u)^- \implies (f \circ u)^-$.

Nota. Nel caso d = 1 e $f: \mathbb{R} \to \mathbb{R}$ possiamo usare il fatto che le funzioni convesse ammettono sempre derivata destra o sinistra, il sup diventa un massimo e ci basta prendere come ϕ la retta tangente in $(y_0, f(y_0))$ o una con pendenza compresa tra $f'(y_0^-)$ e $f'(y_0^+)$.

Definizione. Dati $p_1, p_2 \in [1, +\infty]$ diciamo che sono **coniugati** se

$$\frac{1}{p_1} + \frac{1}{p_2} = 1$$

convenendo che $1/\infty = 0$.

Fissiamo $p \in [1, +\infty]$ detto esponente di sommabilità e sia (X, \mathcal{A}, μ) come sempre.

Definizione. Data $f \colon X \to \overline{\mathbb{R}}$ o \mathbb{R}^d misurabile, la **norma** p di f è

$$||f||_p := \left(\int_X |f|^p d\mu\right)^{1/p} \quad p \in [1, +\infty)$$

mentre per $p = +\infty$ poniamo

$$\|f\|_{\infty} = \operatorname{supess} f(x) \coloneqq \inf\{m \in [0,+\infty] \mid |f(x)| \le m \text{ per } \mu\text{-q.o. } x\}.$$

Nota. In realtà queste sono solo delle semi-norme.

 $[\]overline{^{1}\text{Viene considerata la parte negativa per invertire la disuguaglianza }(\star).$

- $\bullet ||f||_{\infty} \le \sup_{x \in X} |f(x)|$
- $||f||_p = 0 \iff f = 0$ quasi ovunque

Dimostrazione.

⇒ [TODO: Facile ma non ovvia]

⇐ Ovvio.

• Se $f_1 = f_2$ quasi ovunque $\Longrightarrow ||f_1||_p = ||f_2||_p$.

Dimostrazione. $f_1 = f_2$ quasi ovunque $\implies \exists D \subset X \text{ con } \mu(D) = 0$ tale che $f_1(x) = f_2(x)$ su $X \setminus D$, usiamo il fatto che l'integrale non cambia se modifichiamo la funzione su un insieme di misura nulla

$$||f_1||_p^p = \int_X |f_1|^p d\mu = \int_{X \setminus D} |f_1|^p d\mu = \int_{X \setminus D} |f_2|^p d\mu = \int_X |f_2|^p d\mu = ||f_2||_p^p$$

2.1.2 Disuguaglianza di Young

Proposizione. Per ogni $a_1, a_2 \ge 0$ e $\lambda_1, \lambda_2 > 0$ con $\lambda_1 + \lambda_2 = 1$ abbiamo che

$$a_1^{\lambda_1} a_2^{\lambda_2} \le \lambda_1 a_1 + \lambda_2 a_2$$

inoltre vale l'uguale se e solo se $a_1 = a_2$.

Dimostrazione. Se $a_1 = a_2 = 0$ allora è ovvia. Supponiamo dunque $a_1, a_2 > 0$. Per la concavità del logaritmo abbiamo

$$\lambda_1 \log a_1 + \lambda_2 \log a_2 \le \log(\lambda_1 a_2 + \lambda_2 a_2), \iff \log(a_1^{\lambda_1} a_2^{\lambda_2}) \le \log(\lambda_1 a_2 + \lambda_2 a_2)$$

e dalla monotonia

$$a_1^{\lambda_1} a_2^{\lambda_2} \le \lambda_1 a_2 + \lambda_2 a_2.$$

Infine, il se e solo se per l'uguale segue dal fatto che il logaritmo è strettamente concavo.

2.1.3 Disuguaglianza di Hölder

Proposizione. Date $f_1, f_2 \colon X \to \overline{\mathbb{R}}$ o \mathbb{R}^d e p_1, p_2 esponenti coniugati allora

$$\int_{X} |f_1| \cdot |f_2| \, \mathrm{d}\mu \le \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

vale anche per $p=+\infty$ convenendo che $+\infty\cdot 0=0$ nel membro di destra.

Dimostrazione. Se $||f_1||_{p_1} = 0$ o $+\infty$ e anche $||f_2||_{p_2} = 0$ o $+\infty$ la dimostrazione è immediata, supponiamo dunque $||f_1||_{p_1}$, $||f_2||_{p_2} > 0$ e finiti.

• Caso 1: se $p_1 = 1, p_2 = +\infty$ allora

$$\int_X |f_1| \cdot |f_2| \, \mathrm{d}\mu \le \int_X |f_1| \cdot ||f_2||_{\infty} \, \mathrm{d}\mu = ||f_2||_{\infty} \cdot \int_X |f_1| \, \mathrm{d}\mu = ||f_2||_{\infty} \cdot ||f_1||_1$$

• Caso 2: se $1 < p_1, p_2 < +\infty$, introduciamo un parametro $\gamma > 0$ allora

$$\int_X |f_1| \cdot |f_2| \, \mathrm{d}\mu = \int_X (\gamma^{p_1} \cdot |f_1|^{p_1})^{1/p_1} \cdot (\gamma^{-p_2} \cdot |f_1|^{p_2})^{1/p_2} \, \mathrm{d}\mu$$

a questo punto chiamiamo per comodità $g_1:=\gamma^{p_1}\cdot|f_1|^{p_1},\ \lambda_1:=1/p_1$ e $g_2:=\gamma^{-p_2}\cdot|f_1|^{p_2},\ \lambda_2:=1/p_2$ da cui

$$= \int_{X} g_{1}^{\lambda_{1}} \cdot g_{2}^{\lambda_{2}} \stackrel{\text{Young}}{\leq} \int_{X} \lambda_{1} g_{1} + \lambda_{2} g_{2} \, \mathrm{d}\mu = \lambda_{1} \gamma^{p_{1}} \int_{X} |f_{1}|^{p_{1}} + \lambda_{2} \gamma^{-p_{2}} \int_{X} |f_{1}|^{p_{2}} \, \mathrm{d}\mu$$
$$= \lambda_{1} \gamma^{p_{1}} \cdot ||f_{1}||_{p_{1}}^{p_{1}} + \lambda_{2} \gamma^{-p_{2}} \cdot ||f_{1}||_{p_{2}}^{p_{2}}$$

posti ora $a_1 := \gamma^{p_1} \|f_1\|_{p_1}^{p_1}$ e $a_2 := \gamma^{-p_2} \|f_1\|_{p_2}^{p_2}$, per $\gamma \to 0$ abbiamo che $a_1 \to 0, a_2 \to +\infty$ mentre per $\gamma \to +\infty$ abbiamo che $a_1 \to +\infty, a_2 \to 0$ dunque per il teorema del valor medio esisterà γ tale che $a_1 = a_2$, ma allora siamo nel caso dell'uguaglianza per la disuguaglianza di Young dunque

$$\lambda_1 \gamma^{p_1} \|f_1\|_{p_1}^{p_1} + \lambda_2 \gamma^{-p_2} \|f_1\|_{p_2}^{p_2} = \lambda_1 a_1 + \lambda_2 a_2 = a_1^{\lambda_1} \cdot a_2^{\lambda_2} = \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

Osservazione. La disuguaglianza di Hölder può essere generalizzata a n funzioni, date f_1, \ldots, f_n e p_1, \ldots, p_n con $\frac{1}{p_1} + \cdots + \frac{1}{p_2} = 1$ allora

$$\int_X \prod_i^n |f_i| \,\mathrm{d}\mu \le \prod_i^n \|f_i\|_{p_i}$$

2.1.4 Disuguaglianza di Minkowski

Proposizione. Consideriamo sempre (X, \mathcal{A}, μ) e sia $p \in [1, +\infty]$ un esponente di sommabilità ed $f_1, f_2 \colon X \to \mathbb{R}$ oppure \mathbb{R}^d . Allora vale la disuguaglianza triangolare

$$||f_1 + f_2||_p \le ||f_1||_p + ||f_2||_p$$
.

Dimostrazione.

• Caso 1: se p=1 o $p=+\infty$, allora svolgiamo il calcolo diretto

$$\circ$$
 Se $p=1$

$$||f_1 + f_2||_1 = \int_X |f_1 + f_2| \, \mathrm{d}\mu \le \int_X |f_1| + |f_2| \, \mathrm{d}\mu = \int_X |f_1| \, \mathrm{d}\mu + \int_X |f_2| \, \mathrm{d}\mu = ||f_1||_1 + ||f_2||_1$$

∘ Se $p = +\infty$ allora poniamo D l'insieme di misura nulla che realizza su $X \setminus D$ il supess ovvero supess_X $|f_1 + f_2| = \sup_{X \setminus D} |f_1 + f_2|$

$$||f_1 + f_2||_{\infty} = \operatorname{supess}_X |f_1 + f_2| = \operatorname{supess}_{X \setminus D} |f_1 + f_2| \le \operatorname{supess}_{X \setminus D} (|f_1| + |f_2|)$$

= $\operatorname{supess}_{X \setminus D} |f_1| + \operatorname{supess}_{X \setminus D} |f_2| = \operatorname{supess}_X |f_1| + \operatorname{supess}_X |f_2| = ||f_1||_{\infty} + ||f_2||_{\infty}$

• Caso 2: se $1 e <math>0 < ||f_1 + f_2||_p < +\infty$

$$||f_1 + f_2||_p^p = \int_X |f_1 + f_2|^p \le \int_X (|f_1| + |f_2|) \cdot |f_1 + f_2|^{p-1} d\mu =$$

$$= \int_X |f_1| \cdot |f_1 + f_2|^{p-1} d\mu + \int_X |f_2| \cdot |f_1 + f_2|^{p-1} d\mu =$$

ora introduciamo q esponente coniugato di p e notiamo

$$q = \frac{p-1}{p}$$
 e $||f|^{p-1}||_q = ||f||_p^{p-1}$

ora continuiamo a svolgere il conto di prima usando Hölder con esponenti p e q

$$\stackrel{\text{H\"{o}lder}}{\leq} \|f_1\|_p \cdot \||f_1 + f_2|^{p-1}\|_q + \|f_2\|_p \cdot \||f_1 + f_2|^{p-1}\|_q = \\
= (\|f_1\|_p + \|f_2\|_p) \cdot \||f_1 + f_2|^{p-1}\|_q = (\|f_1\|_p + \|f_2\|_p) \cdot \|f_1 + f_2\|_p^{p-1}$$

infine per l'ipotesi $||f_1 + f_2||_p > 0$ possiamo portare l'ultimo fattore dall'altra parte ed ottenere la tesi.

• Caso 3: se $1 ma <math>||f_1 + f_2|| = 0$ o $+\infty$ allora se $||f_1 + f_2|| = 0$ la disuguaglianza è banale mentre se $||f_1 + f_2|| = +\infty$ si usa la seguente disuguaglianza

$$||f_1 + f_2||_p^p \le 2^{p-1} (||f_1||_p^p + ||f_2||_p^p),$$

che si ottiene usando la convessità della funzione $x\mapsto x^p$ e la combinazione affine $\frac{1}{2}x_1+\frac{1}{2}x_2$ infatti

$$\left(\frac{x}{2} + \frac{y}{2}\right)^p \le \frac{1}{2}x^p + \frac{1}{2}y^p \implies \frac{1}{2^{p-1}}(x+y)^p \le x^p + y^p \implies (x+y)^p \le 2^{p-1}(x^p + y^p).$$

2.2 Costruzione spazi L^p

Fissiamo (X, \mathcal{A}, μ) come sempre.

Definizione. Sia \mathcal{L}^p l'insieme delle funzioni $f: X \to \mathbb{R}$ o \mathbb{R}^d misurabili tali che $\|f\|_p < +\infty$. Osservazioni.

• \mathscr{L}^p è un sottospazio vettoriale dello spazio vettoriale dato da $\{f\colon X\to\mathbb{R}\mid f \text{ misurabile}\}$ e $\|\cdot\|_p$ è una semi-norma.

Dimostrazione.

- o \mathscr{L}^p è chiuso per somma e moltiplicazione per scalari.
- o Dalla definizione segue subito $\|\lambda f\|_p = |\lambda| \cdot \|f\|_p$ l'omogeneità della norma.
- o Dalla disuguaglianza di Minkowski segue che $\|\cdot\|_p$ è una semi-norma.
- In particolare non è una norma se $\{0\} \subsetneq \{f \mid ||f||_p = 0\}$ ovvero se \mathcal{A} contiene insiemi non vuoti di misura nulla.

- In generale dato V spazio vettoriale e $\|\cdot\|$ semi-norma su V possiamo introdurre $N\coloneqq\{v\mid\|v\|=0\}$. N risulta essere un sottospazio di V e la norma data da $\|[v]\|\coloneqq\|v\|$ per $[v]\in V/N$ è ben definita ed è proprio una norma su V/N.
- Nel caso della della norma $\|\cdot\|_p$ abbiamo che $[f_1]=[f_2]\iff [f_1-f_2]=0\iff f_1-f_2=0$ quasi ovunque.

Definizione. Poniamo $N \coloneqq \{f \mid \|f\|_p = 0\}$ e definiamo gli spazi L^p come

$$L^p := \mathscr{L}^p/N = \mathscr{L}^p/\!\!\sim \qquad \|[f]\|_p \coloneqq \|f\|_p$$

Notazione. Ogni tanto serve precisare meglio l'insieme di partenza e di arrivo degli spazi L^p ed in tal caso useremo le seguenti notazioni

$$L^{p} = L^{p}(X) = L^{p}(X, \mu) = L^{p}(X, \mathcal{A}, \mu) = L^{p}(X, \mu; \mathbb{R}^{d}).$$

Nota. Nella pratica non si parla mai di "classi di funzioni" e si lavora direttamente parlando di "funzioni in L^p ". Le "operazioni" comuni non creano problemi però in certi casi bisogna stare attenti di star lavorando con oggetti ben definiti. Ad esempio:

- Preso $x_0 \in X$, consideriamo l'insieme $\{f \in L^p \mid f(x_0) = 0\}$. Notiamo che non è un sottoinsieme ben definito (a meno che $\mu(\{x_0\}) > 0$ ovvero che la misura sia atomica) di L^p , in quanto possiamo variare f su un insieme di misura nulla.
- Invece ad esempio il seguente insieme è ben definito

$$\left\{ f \in L^1 \, \middle| \, \int_X f \, \mathrm{d}\mu = 0 \right\}$$

2.2.1 Prodotto scalare su L^2

Date $f_1, f_2 \in L^2(X)$ si pone

$$\langle f_1, f_2 \rangle \coloneqq \int_X f_1 \cdot f_2 \, \mathrm{d}\mu.$$

Osservazioni.

• La definizione di $\langle f_1, f_2 \rangle$ è ben posta, infatti basta far vedere che $\int_X |f_1 f_2| d\mu < +\infty$ ma per Hölder abbiamo

$$\int_{X} |f_1 f_2| \, \mathrm{d}\mu \le \|f_1\|_2 \|f_2\|_2 < +\infty$$

- $||f||_2^2 = \langle f, f \rangle$ per ogni $f \in L^2(X)$.
- Inoltre, $\left| \int_X f_1 f_2 d\mu \right| \le \int_X |f_1 f_2| d\mu$ quindi

$$\left|\left\langle f_{1},f_{2}\right\rangle \right|\leq\left\|f_{1}\right\|_{2}\left\|f_{2}\right\|_{2}\quad\left(Cauchy\text{-}Schwartz\right).$$

 \bullet L'operatore $\langle\,\cdot\,,\,\cdot\,\rangle$ è un prodotto scalare definito positivo.

Osservazioni.

• Dato C spazio vettoriale reale con prodotto scalare $\langle \cdot, \cdot \rangle$, allora $\langle \cdot, \cdot \rangle$ si ricava dalla norma associata $\| \cdot \|$ tramite l'identità di polarizzazione:

$$\langle v_1, v_2 \rangle = \frac{1}{4} (\|v_1 + v_2\|^2 - \|v_1 - v_2\|^2).$$

 \bullet Dato V come sopra, vale l'identità del parallelogramma:

$$||v_1 + v_2||^2 + ||v_1 - v_2||^2 = 2||v_1||^2 + 2||v_2||^2 \quad \forall v_1, v_2 \in V.$$

Usando questa identità di dimostra che la norma di L^p deriva da un prodotto scalare solo per p=2.

Proprietà. Sia V uno spazio vettoriale con norma $\|\cdot\|$. Allora vale l'identità del parallelogramma se solo se $\|\cdot\|$ deriva da un prodotto scalare.

Esempio. La norma di $L^p([-1,1])$, deriva da un prodotto scalare solo per p=2. Prendiamo $f_1=\mathbbm{1}_{[-1,0]}$ e $f_2=\mathbbm{1}_{[0,+1]}$. Allora

$$||f_1 + f_2||_p^p = \int_{-1}^1 1 \, \mathrm{d}x = 2 \Rightarrow ||f_1 + f_2||_p = 2^{1/p}$$

$$||f_1 - f_2||_p = ||f_1 + f_2||_p = 2^{1/p}, \quad ||f_1||_p = ||f_2||_p = 1$$

Se vale l'identità del parallelogramma allora

$$||f_1 + f_2||_p^2 + ||f_1 - f_2||_p^2 = 2 ||f_1||_p^2 + 2 ||f_2||_p^2$$

cioè

$$2^{2/p} + 2^{2/p} = 2 \cdot 1 + 2 \cdot 1 \iff p = 2.$$

Domanda. Per quali X, \mathcal{A}, μ vale la stessa conclusione?

2.3 Completezza degli spazi L^p

Vediamo ora la proprietà più importante degli spazi L^p .

Teorema. Lo spazio L^p è completo per ogni $p \in [1, +\infty]$.

Lemma 1. Dato (Y, d) spazio metrico, allora

i) Ogni successione (y_n) tale che

$$\sum_{n=1}^{\infty} d(y_n, y_{n+1}) < +\infty$$

è di Cauchy.

ii) Se ogni (y_n) tale che $\sum_{n=1}^{\infty} d(y_n, y_{n+1}) < +\infty$ converge allora Y è completo.

Osservazione. Non tutte le successioni di Cauchy (y_n) soddisfano quella condizione. Ad esempio la successione $(-1)^n/n$ definita su \mathbb{R} è di Cauchy però

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n+1} - \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{2n+1}{n^2+n} \approx \sum_{n=1}^{\infty} \frac{1}{n} \to \infty.$$

Nota. Per mostrare la completezza degli spazi L^p è sufficiente verificare la convergenza per una sottoclasse propria delle successioni di Cauchy.

Dimostrazione.

i) Vorremmo vedere che $\forall \varepsilon \exists N$ tale che $\forall m, n > N$ si ha $d(y_m, y_n) \leq \varepsilon$. Presi n > m abbiamo che

$$d(y_m, y_n) \le \sum_{k=m}^{n-1} d(y_k, y_{k+1}) \le \sum_{k=m}^{\infty} d(y_k, y_{k+1}) \to 0$$

in quanto coda di una serie convergente, quindi

$$\forall \varepsilon > 0 \ \exists m_{\varepsilon} \text{ tale che } \sum_{k=m_{\varepsilon}}^{\infty} d(y_k, y_{k+1}) < \varepsilon \implies \forall n > m \ge m_{\varepsilon} \ d(y_m, y_n) \le \varepsilon$$

ii) Sia (y_n) una successione di Cauchy, mostriamo che converge. Osserviamo che esiste una sottosuccessione (y_{n_k}) tale che

$$\sum_{k=1}^{\infty} d(y_{n_k}, y_{n_{k+1}}) < +\infty.$$

Infatti, $\forall k \; \exists n_k \; \text{tale che} \; \forall n, m \geq n_k \; d(y_m, y_n) \leq 1/2^k \; \text{e dunque} \; d(y_{n_k}, y_{n_{k+1}}) \leq 1/2^k.$ Per ipotesi (y_{n_k}) converge a un qualche $y \in Y$, da cui la tesi¹.

Lemma 2. Dato Y spazio normato, i seguenti fatti sono equivalenti

- i) Y è completo.
- ii) Per ogni successione (y_n) tale che $\sum_{n=1}^{\infty} ||y_n|| < +\infty$, la serie $\sum_{n=1}^{\infty} y_n$ converge ².

Dimostrazione. ii) \Rightarrow i). Dobbiamo mostrare che $\sum_{n=1}^{\infty} y_n$ è di Cauchy. Per il Lemma 1 basta mostrare che la successione

$$z_n := \sum_{k=1}^n y_k$$
 soddisfa la proprietà $\sum_{n=1}^\infty d(z_{n+1}, z_n)$.

Espandendo la formula sopra

$$\sum_{n=1}^{\infty} d(z_{n+1}, z_n) = \sum_{n=1}^{\infty} \left\| \sum_{k=1}^{n+1} y_k - \sum_{k=1}^{n} y_k \right\| = \sum_{n=1}^{\infty} \|y_{n+1}\|$$

che è finito per ipotesi.

ii) \Rightarrow i). Utilizziamo l'enunciato ii) del Lemma 2: mostriamo ogni (y_n) che soddisfa la proprietà $\sum_n d(y_n, y_{n+1}) < +\infty$ converge. Definiamo la successione $z_n := y_{n+1} - y_n$. Per ipotesi, essendo che $\sum_n ||z_n|| < +\infty$, la serie $\sum_n z_n$ converge. Indicando con L il limite della serie, abbiamo che $\lim_n y_n = L + y_1$.

Data una successione di Cauchy x_n , se una sottosuccessione x_{n_k} converge, allora converge anche la successione

²Nel senso che esiste y tale che $\left\|y - \sum_{n=1}^{N} y_n\right\| \to 0$.

Lemma 3 (Minkowski per somme infinite). Date delle funzioni (g_n) funzioni positive su X allora

$$\left\| \sum_{n=1}^{\infty} g_n \right\|_p \le \sum_{n=1}^{\infty} \left\| g_n \right\|_p$$

Dimostrazione. Per ogni N abbiamo che

$$\left\| \sum_{n=1}^{N} g_n \right\|_{p}^{p} \le \left(\sum_{n=1}^{N} \|g_n\|_{p} \right)^{p} \le \left(\sum_{n=1}^{\infty} \|g_n\|_{p} \right)^{p}$$

e per convergenza monotona possiamo passare il termine di sinistra al limite

$$\lim_{N} \left\| \sum_{n=1}^{N} g_n \right\|_p^p = \lim_{N} \int_X \left(\sum_{n=1}^{N} g_n \right)^p d\mu = \int_X \left(\lim_{N} \sum_{n=1}^{N} g_n \right)^p d\mu = \left\| \sum_{n=1}^{\infty} g_n \right\|_p^p$$

Dimostrazione (Completezza spazi L^p).

• Se $p = +\infty$: si tratta di vedere che data (f_n) di Cauchy in $L^{\infty}(X)$ esiste E con $\mu(E) = 0$ tale che (f_n) è di Cauchy rispetto allora norma del sup in $X \setminus E$. [TODO: Finire]

• Se $p < +\infty$: per il Lemma 2, basta far vedere che data $(f_n) \subset L^p(X)$ tale che $\sum_{n=1}^{\infty} \|f_n\|_p < +\infty$ allora $\sum_n f_n$ converge a qualche $f \in L^p(X)$.

La dimostrazione è suddivisa in tre passi, prima costruiamo f, poi mostriamo che f_n converge a f ed infine mostriamo $f \in L^p(X)$.

o Passo 1: Per ipotesi abbiamo

$$\infty > \sum_{n=1}^{\infty} \|f_n\|_p = \sum_{n=1}^{\infty} \||f_n|\|_p \ge \left\| \sum_{n=1}^{\infty} |f_n| \right\|_p = \left(\int \left(\sum_{n=1}^{\infty} |f_n(x)| \right)^p d\mu(x) \right)^{1/p}$$

quindi $\sum_{n=1}^{\infty} |f_n(x)| < +\infty$ per ogni $x \in X \setminus E$ con $\mu(E) = 0$. Quindi $\sum_{n=1}^{\infty} f_n(x)$ converge a qualche f(x) per ogni $x \in X \setminus E$ ed a questo punto ci basta estendere f a zero in E^{-1} .

o Passo 2: Fissiamo N ed osserviamo che $\forall x \in X \setminus E$ abbiamo

$$\left| f(x) - \sum_{n=1}^{N} f_n(x) \right| = \left| \sum_{n=N+1}^{\infty} f_n(x) \right| \le \sum_{n=N+1}^{\infty} |f_n(x)|$$

da cui otteniamo

$$\left\| f - \sum_{n=1}^{N} f_n \right\|_p \le \left\| \sum_{n=N+1}^{\infty} |f_n| \right\|_p \le \sum_{n=N+1}^{\infty} \|f_n\|_p$$

dove l'ultimo termine è la coda di una serie convergente.

 $^{^{1}}$ Una costruzione alternativa degli spazi L^{p} potrebbe anche partire da funzioni definite quasi ovunque, questo ovvierebbe al problema di estendere a 0 la funzione f appena costruita. Però diventa più complicato mostrare di essere in uno spazio vettoriale poiché per esempio serve ridefinire + per funzioni definite quasi ovunque.

o Passo 3: In particolare rileggendo il passo precedente per N=0 otteniamo

$$||f||_p \le \sum_{n=1}^{\infty} ||f_n||_p < +\infty \implies f \in L^p$$

Esercizio.² Sia $f: X \to [0, +\infty]$ allora $\int_X f \, \mathrm{d}\mu < +\infty \implies f(x) < +\infty$ per quasi ogni x.

Dimostrazione. Sia $E := \{x \mid f(x) = +\infty\}$, allora l'idea è che

$$\infty > \int_X f d\mu \ge \int_E f d\mu = +\infty \cdot \mu(E).$$

Oppure, osserviamo che $\forall m \in [0, +\infty)$ abbiamo $f \cdot \mathbb{1}_E \ge m \cdot \mathbb{1}_E$ per ogni $x \in E$ quindi integrando ricaviamo

$$\underbrace{\int_E f \, \mathrm{d}\mu}_I \ge m \cdot \mu(E) \implies \mu(E) \le \frac{I}{m} \xrightarrow{m \to +\infty} 0$$

2.4 Nozioni di convergenza per successioni di funzioni

Fissiamo X, \mathcal{A}, μ e prendiamo $f, f_n \colon X \to \mathbb{R}$ (o \mathbb{R}^k) misurabili.

Definizione. Riportiamo le definizioni di alcune nozioni di convergenza.

- Uniforme : $\forall \varepsilon \; \exists n_{\varepsilon} \; \text{tale che} \; ||f f_n|| < \varepsilon \; \; \forall n > n_{\varepsilon}.$
- Puntuale : $f_n(x) \to f(x) \ \forall x \in X$.
- Puntuale μ -quasi ovunque : $f_n(x) \to f(x)$ per μ -q.o. $x \in X$.
- In $L^p: \|f_n f\|_p \xrightarrow{n \to \infty} 0.$
- In misura : $\forall \varepsilon > 0$ $\mu\left(\left\{x \mid |f_n(x) f(x)| \ge \varepsilon\right\}\right) \xrightarrow{n \to +\infty} 0$.

Osservazione. Abbiamo le seguenti implicazioni ovvie delle diverse nozioni di convergenza:

uniforme
$$\Rightarrow$$
 puntuale \Rightarrow puntuale μ q.o.

Proposizione. Valgono le seguenti.

- i) Data $f_n \to f$ q.o. $e \mu(X) < +\infty$, allora $f_n \to f$ in misura.
- ii) (Severini-Egorov): Data $f_n \to f$ q.o. e $\mu(X) < +\infty$, allora $\forall \delta > 0$ esiste $E \in \mathcal{A}$ tale che $\mu(E) < \delta$ e $f_n \to f$ uniformemente su $X \setminus E$.
- iii) $f_n \to f$ in L^p , $p < +\infty$, allora $f_n \to f$ in misura.

²In questo corso non è strettamente necessario ricordarsi come si facciano tutti questi esercizietti di teoria della misura ma è bene saperli applicare in automatico quando serve.

- iii') $f_n \to f \in L^{\infty}$, allora $\exists E$ tale che $\mu(E) = 0$ e $f_n \to f$ uniformemente su $X \setminus E$.
- iv) $f_n \to f$ in misura, allora $\exists n_k$ tale che $f_{n_k} \to f$ μ -q.o.
- v) $f_n \to f$ in L^p , allora $\exists n_k$ tale che $f_{n_k} \to f$ μ -q.o.

Osservazione. In i) e ii) l'ipotesi $\mu(X) < +\infty$ è necessaria. Infatti, preso $X = \mathbb{R}$ e $f_n = \mathbb{1}_{[n,+\infty)}$ si ha che $f_n \to 0$ ovunque ma f_n non converge a 0 in misura, e f_n non converge a 0 uniformemente in $\mathbb{R} \setminus E$ per ogni E di misura finita.

Lemma (disuguaglianza di Markov). Data $g\colon X\to [0,+\infty]$ misurabile e m>0si ha

$$\mu\left(\left\{x \in X \mid g(x) \ge m\right\}\right) \le \frac{1}{m} \int_X g \,\mathrm{d}\mu$$

Dimostrazione. Poniamo $E := \{x \in X \mid g(x) \geq m\}$. Osserviamo che $g \geq m \cdot \mathbb{1}_E$. Dunque vale

$$\int_X g \, \mathrm{d}\mu \ge \int_X m \cdot \mathbb{1}_E \, \mathrm{d}\mu = m \cdot \mu \left(\left\{ x \in X \mid g(x) \ge m \right\} \right).$$

Lemma (Borel-Cantelli). Dati $(E_n) \subset \mathcal{A}$ tali che $\sum \mu(E_n) \leq +\infty$, l'insieme

$$E := \{x \in X \mid x \in E_n \text{ frequentemente}\}\$$

ha misura nulla. Cioè per μ -q.o. $x, x \notin E_n$ definitivamente (in n.)

Dimostrazione. Osserviamo che

$$E = \bigcap_{m=1}^{\infty} \left(\underbrace{\bigcup_{n=m}^{\infty} E_n}_{F_m} \right).$$

Allora

$$\mu(E) = \lim_{\substack{m \to \infty \\ F_m \downarrow E \& \mu(F_1) < +\infty}} \mu(F_m) \le \lim_{\substack{m \to \infty \\ \text{coda serie convergente}}} \sum_{n=m}^{\infty} \mu(E_n) = 0.$$

Osservazione. L'ipotesi $\sum \mu(E_n) < +\infty$ non può essere sostituita con $\mu(E_n) \to 0$.

Ora dimostriamo la proposizione.

Dimostrazione. Definiamo gli insiemi

$$A_n^{\varepsilon} := \{x \mid |f_n(x) - f(x)| \ge \varepsilon\},$$

$$B_m^{\varepsilon} := \{x \mid |f_n(x) - f(x)| \ge \varepsilon \text{ per qualche } n \ge m\} = \bigcup_{n=m}^{\infty} A_n^{\varepsilon},$$

$$B^{\varepsilon} := \{x \mid |f_n(x) - f(x)| \ge \varepsilon \text{ frequentemente}\} = \{x \in A_n^{\varepsilon} \text{ frequentemente}\} = \bigcap_{m=1}^{\infty} B_m^{\varepsilon}.$$

i) Per ipotesi, $f_n \to f$ quasi ovunque, cioè $\mu(B^\varepsilon)=0$ per ogni $\varepsilon>0$, ma $B_m^\varepsilon \downarrow B^\varepsilon$ e $\mu(X)<+\infty$. Allora

$$\lim_{m \to +\infty} \mu(B_m^{\varepsilon}) = \mu(B^{\varepsilon}) = 0 \Longrightarrow \lim_{m \to \infty} \mu(A_m^{\varepsilon}) = 0.$$

ii) Dalla dimostrazione precedente, abbiamo $\lim_{m\to\infty}\mu(B_m^{\varepsilon})=0$. Allora per ogni k esiste un m_k tale che $\mu\left(B_{m_k}^{1/k}\right)\leq \delta/2^k$. Poniamo $E:=\bigcup_k B_{m_k}^{1/k}$ per ogni k; allora $\mu(E)\leq \delta$. Inoltre,

$$x \in X \setminus E \Longrightarrow x \notin B_{m_k}^{1/k} \ \forall k \iff x \notin A_n^{1/k} \ \forall k, n \ge m_k$$

$$\Longrightarrow |f(x) - f_n(x)| < \frac{1}{k} \ \forall k, n \ge m_k$$

$$\Longrightarrow \sup_{x \in X \setminus E} |f(x) - f_n(x)| \le \frac{1}{k} \ \forall k, n \ge m_k$$

$$\Longrightarrow f - f_m \text{ uniformemente su } X \setminus E.$$

iii) Dobbiamo mostrare che per ogni $\varepsilon > 0$ $\mu(A_n^{\varepsilon}) \xrightarrow{n} 0$. Usando la disuguaglianza di Markov ottengo

$$\mu\left(A_n^{\varepsilon} = \left\{x \middle| \overbrace{|f_n(x) - f(x)|^p}^g \ge \varepsilon^p\right\}\right) \le \frac{1}{m} \int_X g \, \mathrm{d}\mu = \frac{1}{\varepsilon^p} \|f_n - f\|_p^p \xrightarrow{n \to +\infty} 0.$$

iii') Definiamo $E_n := \{x \mid |f_n(x) - f(x)| > ||f_n - f||_{\infty} \}$ per ogni n, allora $\mu(E_n) = 0$. Poniamo $E = \bigcup_n E_n \in \mu(E) = 0$, dunque

$$\sup_{x \in X \setminus E} |f_n(x) - f(x)| \le ||f_n - f||_{\infty} \xrightarrow{n \to \infty} 0.$$

iv) Per ipotesi, $f_n \to f$ in misura, cioè

$$\forall \varepsilon > 0 \quad \mu\left(A_n^{\varepsilon}\right) \xrightarrow{n \to +\infty} 0$$

$$\Longrightarrow \forall k \; \exists n_k \colon \mu\left(A_{n_k}^{1/k}\right) \le \frac{1}{2^k}$$

$$\Longrightarrow \sum_k \mu\left(A_{n_k}^{1/k}\right) < +\infty.$$

Allora per Borel-Cantelli, si ha per μ -quasi ogni $x, x \notin A_{n_k}^{1/k}$ definitivamente in k, cioè $||f_{n_k}(x) - f(x)|| < 1/k$ definitivamente in k, cioè $f_{n_k}(x) \xrightarrow{k} f(x)$.

- v) Vogliamo mostrare che $f_n \to f$ in $L^p \Longrightarrow \exists n_k$ tale che $f_{n_k} \to f$ quasi ovunque. Consideriamo due casi
 - se $p < +\infty$, allora $f_n \to f$ in $L^p \Longrightarrow f_n \to f$ in misura, da cui $\exists n_k$ tale che $f_{n_k} \to f$ quasi ovunque
 - se $p = +\infty$, allora $f_n \to f$ uniformemente su $X \setminus E$ con $\mu(E) = 0 \Longrightarrow f_n \to f$ puntualmente su $X \setminus E \Longrightarrow f_n \to f$ quasi ovunque.

2.5 Controesempi sulle convergenze

Vediamo un controesempio che mostra che tutte le implicazioni sui vari tipi di convergenza sono ottimali ovvero

- i) $f_n \to f$ in misura $\implies f_n \to f$ q.o.
- ii) $f_n \to f$ in L^p con $p < +\infty \implies f_n \to f$ q.o.
- iii) $\mu(E_n) \to 0 \implies \text{per q.o } x \text{ si ha } x \notin E_n \text{ definitivamente.}$

Dimostrazione. Consideriamo gli insiemi $I_1 = \left[1, 1 + \frac{1}{2}\right], I_2 = \left[1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}\right], \dots$

$$I_n := \left[\sum_{k=1}^n \frac{1}{k}, \sum_{k=1}^{n+1} \frac{1}{k}\right]$$

e consideriamo la loro proiezione "modulo" [0,1] usando la funzione $p\colon \mathbb{R} \to [0,1)$ parte frazionaria data da

$$p(x) \coloneqq x - |x|$$

e chiamiamo $E_n := p(I_n)$. Per ogni n abbiamo che $|I_n| = |E_n| = 1/n$ e $\bigcup_n I_n = [1, +\infty)$ (in quanto $\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$) e quindi ogni $x \in [0, 1)$ appartiene ad E_n per infiniti n ed in particolare questo mostra la ??.

Per la ?? basta notare che $\mathbb{1}_{E_n} \to 0$ in misura (in quanto $|E_n| \to 0$) ma $\mathbb{1}_{E_n} \not\to 0$ q.o., anzi $\forall x \in [0,1) \, \mathbb{1}_{E_n}(x) \not\to 0$ e la ?? segue analogamente.

2.6 Approssimazioni di funzioni in L^p

Vediamo ora alcune classi di funzioni dense in L^p che risulteranno essere un utile strumento da usare nelle dimostrazioni.

Nota. Ricordiamo la nozione di insieme denso in uno spazio metrico. Sia (X, d) uno spazio metrico e $Y \subset X$. Allora Y è denso in X se solo se per ogni $x \in X$, esiste una successione $(y_n)_{n\in\mathbb{N}}$ in Y che tale che $x = \lim_n y_n$.

Per ora sia (X, \mathcal{A}, μ) in generale.

Proposizione 1. Le funzioni limitate in L^p sono dense in L^p .

Dimostrazione. Data $f \in L^p(X)$ cerchiamo una successione di funzioni $f_n \in L^p(X)$ limitate tali che $f_n \to f$ in L^p , consideriamo

$$f(x) := (f(x) \land n) \lor (-n)$$

vorremmo mostrare che $f_n \to f$ in L^p ovvero

$$||f_n - f||_p^p = \int_X |f_n - f|^p d\mu \to 0$$

intanto osserviamo che, per la convergenza puntuale, basta osservare che se $n \ge |f(x)|$ abbiamo che $\forall x \ f_n(x) = f(x) \implies f_n(x) \xrightarrow{n} f(x) \implies |f_n(x) - f(x)|^p \to 0$.

Per concludere basta applicare convergenza dominata usando come dominazione direttamente $|f(x) - f_n(x)| \le |f(x)| \implies |f(x) - f_n(x)|^p \le |f(x)|^p$ e notiamo che $|f|^p \in L^1(X)$.

Proposizione 2. Sia¹ $\widetilde{\mathscr{S}} := \operatorname{Span}(\{\mathbb{1}_E \mid E \in \mathcal{A}, \mu(E) < +\infty\})$, allora $\widetilde{\mathscr{S}}$ è denso in $L^p(X)$.

Dimostrazione. Data $f \in L^p(X)$ cerchiamo una successione che approssima f in $\widetilde{\mathscr{S}}$.

¹Lo span è inteso come combinazioni lineari

• Caso 1: Se $f \geq 0$ allora fissiamo $\varepsilon > 0$ e per ogni $k = 1, 2, \ldots$ e poniamo

$$A_{\varepsilon}^{k} := \{ x \mid k\varepsilon \le f(x) \le (k+1)\varepsilon \}$$

risulta che A_k^ε è misurabile ed ha misura finita¹. Ora consideriamo la successione di funzioni parametrizzata da ε data da

$$f_{\varepsilon}(x) := \sum_{1 \leq k \leq 1/\varepsilon^2} k \varepsilon \cdot \mathbb{1}_{A_{\varepsilon}^k}(x) \in \widetilde{\mathscr{S}}$$

Osserviamo che vale anche max $f_{\varepsilon}(x) = \max\{k\varepsilon \mid k\varepsilon \leq f(x) \text{ e } k \leq 1/\varepsilon^2\}$ e mostriamo la seguente²

$$\int_{X} |f(x) - f_{\varepsilon}(x)|^{p} d\mu(x) \xrightarrow{\varepsilon \to 0} 0$$

- o Convergenza puntuale: Per l'identità precedente abbiamo che $0 \le f(x) f_{\varepsilon}(x) \le \varepsilon$ se $f(x) \le 1/\varepsilon$.
- o Dominazione: Possiamo usare nuovamente $|f(x)-f_{\varepsilon}(x)|^p \leq |f(x)|^p < +\infty$ in quanto $f \in L^p(X)$.
- Caso 2: Sia $f: X \to \mathbb{R}$ allora si può rifare la dimostrazione precedente oppure si può semplicemente considerare $f_{\varepsilon} := (f^+)_{\varepsilon} (f^-)_{\varepsilon}$.
- Caso 3: Generalizziamo la proposizione al caso di $f\colon X\to\mathbb{R}^d$ come segue

Proposizione 2bis (Generalizzata). Sia $\widetilde{\mathscr{S}} := \left\{ \sum_{i} \alpha_{i} \mathbb{1}_{E_{i}} \mid \alpha_{i} \in \mathbb{R}^{d}, E_{i} \in \mathcal{A}, \mu(E_{i}) < +\infty \right\}$. Allora $\widetilde{\mathscr{S}}$ è denso in $L^{p}(X; \mathbb{R}^{d})$.

Dimostrazione. (Idea) Basta approssimare componente per componente.

Sia ora X uno spazio metrico e {aperti} $\subset A$.

Proposizione 3. Sia $\widetilde{\mathscr{S}_{\ell}} := \{ \sum_{i} \alpha_{i} \mathbb{1}_{E_{i}} \mid \alpha_{i} \in \mathbb{R}^{d}, E_{i} \in \mathcal{A}, \mu(E_{i}) < +\infty, E_{i} \text{ limitati} \} \text{ allora } \widetilde{\mathscr{S}_{\ell}} \text{ è denso in } L^{p}(X; \mathbb{R}^{d}) \text{ per } p < +\infty.$

Osservazione. In generale l'enunciato non vale per $p=+\infty$. Ad esempio preso $L^{\infty}(\mathbb{R})$ e f=1 non si può approssimare con funzioni a supporto limitato (come quelle in $\widetilde{\mathscr{S}_{\ell}}$. In particolare data g con supporto A limitato |f-g|=1 su $\mathbb{R} \backslash A$ e siccome $|\mathbb{R} \backslash A|>0$ abbiamo $||f-g||_{\infty}\geq 1$).

Dimostrazione. $(\widetilde{\mathscr{S}_{\ell}}$ è denso in $L^p)$ Per prima cosa vediamo un lemma che useremo assieme alla proposizione precedente.

Lemma 1. Dato $E \in \mathcal{A}, \mu(E) < +\infty$ esiste $E_n \in \mathcal{A}$ con E_n limitati tali che $E_n \subset E$ e $\mu(E \setminus E_n) \to 0$ e quindi $\|\mathbb{1}_E - \mathbb{1}_{E_n}\|_p = \mu(E \setminus E_n)^{1/p} \xrightarrow{n} 0$ (e $\mathbb{1}_{E_n} \in \widetilde{\mathscr{S}_\ell}$).

Dimostrazione. Dato E con $\mu(E) < +\infty$ prendiamo $x_0 \in X$ e poniamo $E_n := E \cap \mathcal{B}(x_0, n)$; $E_n \subset E$ e $E \setminus E_n \downarrow \varnothing \implies \mu(E \setminus E_n) \xrightarrow{n} 0$.

Intuitivamente $\widetilde{\mathscr{S}}_{\ell}$ è denso in $\widetilde{\mathscr{S}}$ che a sua volta è denso in L^p (usando la definizione di densità topologica la tesi è quasi ovvia mentre usando la definizione per successioni bisogna passare per un procedimento diagonale).

¹È misurabile in quanto preimmagine di un misurabile, ed ha misura finita in quanto $f \in L^p(X)$.

²Notiamo che qui stiamo applicando il teorema di convergenza dominata su una famiglia parametrizzata da ε e non su una successione ma si può verificare facilmente che il teorema (ed anche gli altri risultati di convergenza di successioni di funzioni) si può estendere semplicemente prendendo $\varepsilon = 1/n$ per $n \to \infty$.

Ora siano $X \subset \mathbb{R}^n$, $\mu = \mathcal{L}^n$ e $C_C(\mathbb{R}^n) := \{\text{funzioni a supporto compatto}\}$, dove il **supporto** $\underline{\hat{e}}$ definito come la chiusura dell'insieme dei punti in cui la funzione \hat{e} non zero $\sup(f) := \{x \mid f(x) \neq 0\}$, in quanto per le funzioni continue l'insieme $\{x \mid f(x) \neq 0\}$ è sempre aperto e dunque mai veramente compatto, a parte quando \hat{e} vuoto.

Proposizione 4. Le funzioni in $C_C(\mathbb{R}^n)$ ristrette a X sono dense¹ in $L^p(X)$ per $p < +\infty$.

Vediamo prima alcuni lemmi.

Lemma 2. (di Urysohn) Dati C_0, C_1 chiusi disgiunti in X spazio metrico esiste una funzione $f: X \to [0, 1]$ continua tale che f = 0 su C_0 e f = 1 su C_1 .

Dimostrazione. Posta $d(x,C) = \inf\{d(x,y) \mid y \in C\}$ basta considerare

$$f(x) = \frac{d(x, C_0)}{d(x, C_0) + d(x, C_1)}.$$

Lemma 3. Dato $E \subset \mathbb{R}^n$ limitato (e quindi di misura finita) esiste $f_{\varepsilon} \in C_C(\mathbb{R}^n)$ tale che $f_{\varepsilon} \xrightarrow{\varepsilon \to 0} \mathbb{1}_E$ in $L^p(\mathbb{R}^n)$ e quindi in $L^p(X)$.

Dimostrazione. Per regolarità della misura di Lebesgue abbiamo che per ogni ε esistono $C_{\varepsilon} \subset E \subset A_{\varepsilon}$ tali che $|A_{\varepsilon} \setminus C_{\varepsilon}| \leq \varepsilon$. Per il Lemma 2 possiamo definire la classe di funzioni $f_{\varepsilon} \colon \mathbb{R}^n \to [0,1]$ continue tali che

$$f_{\varepsilon} = 1 \text{ su } C_{\varepsilon}$$
 $f_{\varepsilon} = 0 \text{ su } \mathbb{R}^n \setminus A_{\varepsilon}.$

In particolare, sappiamo che su $A_{\varepsilon} \setminus C_{\varepsilon}$ vale $|f_{\varepsilon} - \mathbb{1}_{E}| \leq 1$. Allora,

$$||f_{\varepsilon} - \mathbb{1}_{E}||_{p}^{p} = \int_{A_{\varepsilon} \setminus C_{\varepsilon}} |f_{\varepsilon} - \mathbb{1}_{E}|^{p} dx \le \int_{A_{\varepsilon} \setminus C_{\varepsilon}} \mathbb{1}_{A_{\varepsilon} \setminus C_{\varepsilon}} dx = |A_{\varepsilon} \setminus C_{\varepsilon}|^{1/p} \le \varepsilon^{1/p}$$

$$\implies ||f_{\varepsilon} - \mathbb{1}_{E}||_{p}^{p} \xrightarrow{\varepsilon \to 0} 0.$$

Dimostrazione Proposizione 4. Per la Proposizione 3 basta approssimare la classe delle funzioni a supporto limitato (e finito). Dunque, per il Lemma 3 si ha la tesi.

2.7 Complementi su approssimazioni di funzioni in L^p

Sia X misurabile in \mathbb{R}^n con $\mu = \mathcal{L}^n$ su X. In precedenza abbiamo visto che

Proposizione 3. Le funzioni in $C_C(\mathbb{R}^n)$ ristrette a X sono dense in L^p se $p < +\infty$.

Osservazione. Si vede facilmente che $C_C(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$.

Domanda. Vale un risultato analogo per le funzioni $C_C(X)$?

Notiamo che dato $X \subset \mathbb{R}^n$ le funzioni continue su X hanno supporto compatto solo se X è aperto in quanto il supporto ha veramente distanza non nulla dal bordo e possiamo estendere la funzione a 0 fuori da X. [TODO: Esempio con un chiuso in cui le cose non fungono?]

Proposizione 4. Sia X aperto di \mathbb{R}^n , $\mu = \mathcal{L}^n$ allora $C_C(X)$ è denso in L^p per ogni $p < +\infty$ Dimostrazione.

¹È denso anche l'insieme delle funzioni continue a supporto compatto ristretto a X e si indica con $\mathcal{C}^0_C(\mathbb{R}^n)$.

- $\mathscr{S}_C := \{ \text{funzioni semplici con supporto compatto in } X \}$ è denso in $L^p(X)$ per ogni $p < +\infty$.
- Dato E relativamente compatto¹ in X esiste $f_n \in C_C(X)$ tale che $f_n \to \mathbb{1}_E$ in L^p per ogni $p < +\infty$.

La Proposizione 3 non vale per $p = +\infty$, intuitivamente in quanto data $f \in L^{\infty}(X)$ discontinua, se trovassimo $f_n \to f$ in $L^{\infty}(X)$ con f_n continue avremmo $f_n \to f$ uniformemente e dunque f continua.

Fatto. In generale vale che data $f: X \to \mathbb{R}$ misurabile, $||f||_{\infty} \le \sup_{x \in X} |f(x)|$ (detta anche norma del \sup)

Esercizio. Se X è aperto in \mathbb{R}^n e $\mu = \mathscr{L}^n$ e $f: X \to \mathbb{R}$ continua, allora $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

Soluzione. Se per assurdo $\exists x \in X$ tale che $\|f\|_{\infty} < |f(x)|$ allora la continuità di f implica che esiste un intorno di x in cui $\|f\|_{\infty} < |f(x)|$; ma un intorno contiene una palla aperta di misura positiva. \not

In particolare possiamo anche estenderci a $X\subseteq\mathbb{R}^n$ tali che ogni A aperto relativamente a X abbia misura positiva.

Per spiegare meglio il perché la Proposizione 3 non si estende al caso $p=+\infty$ consideriamo

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

X

e vediamo che $\nexists f_n \colon \mathbb{R} \to \mathbb{R}$ tale che $f_n \to f$ in L^{∞} .

Se esistesse $(f_n)_n$, allora sarebbe di Cauchy rispetto alla norma $\|\cdot\|_{\infty}$ allora per continuità $(f_n)_n$ è di Cauchy anche rispetto alla norma del sup $\implies f_n \to \tilde{f}$ uniformemente con \tilde{f} continua, quindi $\tilde{f} = f$ quasi ovunque ma questo non è possibile per la f definita sopra.

(In particolare dato $E = \{x \mid f(x) = \widetilde{f}(x)\}$, prendiamo $x_n, y_n \in E$ tali che $x_n \uparrow 0$ e $y_n \downarrow 0$ ma i limiti di f sono 0 e $1 \not \downarrow$)

Teorema (di Lusin). Dato $X \subset \mathbb{R}^d$, $\mu = \mathscr{L}^d$ e data $f \colon X \to \mathbb{R}$ o \mathbb{R}^m misurabile e $\varepsilon > 0$, esiste E aperto in X con $|E| \le \varepsilon$ tale che f è continua su $X \setminus E$ (la restrizione di f a $X \setminus E$ è continua)

Osservazione. In generale f può essere non continua in tutti i punti di X, infatti E può essere denso e $X \setminus E$ avere parte interna vuota.

Lemma (di estensione di Tietze). Dato X spazio metrico e $C \subset X$ chiuso, $f: C \to \mathbb{R}$ continua allora f si estende a una funzione continua su X.

Usando questo lemma possiamo enunciare nuovamente il teorema precedente come segue

Teorema (di Lusin'). Data $f: X \to \mathbb{R}$ misurabile e $\varepsilon > 0$, $\exists E$ aperto con $|E| \le \varepsilon$ e $g: X \to \mathbb{R}$ continua tale che f = g su $X \setminus E$, inoltre se $f \in L^p(X)$ e $p < +\infty$ si può anche chiedere che $||f - g||_p \le \varepsilon$.

Dimostrazione. Basta trovare E misurabile (per ottenere E aperto si usa la regolarità della misura)

• Caso 1: $f \in L^1(X)$ e $|X| < +\infty$

¹Un sottospazio relativamente compatto di uno spazio topologico è un sottoinsieme dello spazio topologico la cui chiusura è compatta.

Abbiamo che $f \in L^1 \implies \exists f_n$ continue tali che $f_n \to f$ in $L^1 \implies f_n \to f$ in misura e per Severini-Egorov esiste E tale che $|E| \le \varepsilon$ e $f_n \to f$ uniformemente su $X \setminus E \implies f$ è continua su $X \setminus E$.

• Caso 2: f qualunque misurabile e $|X| < +\infty$

Lemma. Dati X, \mathcal{A}, μ con $\mu(X) < +\infty$ e data $f: X \to \mathbb{R}$ misurabile e $\varepsilon > 0$ esiste F misurabile con $\mu(F) \le \varepsilon$ tale che f è limitata su $X \setminus F$.

Dimostrazione. $\forall m > 0$ sia $F_m := \{x \mid |f(x)| > m\}$ allora $F_m \downarrow \emptyset \implies \mu(F_m) \downarrow 0$ e quindi esiste m tale che $\mu(F_m) \leq \varepsilon$.

Quindi data f qualunque misurabile e $|X| < +\infty$ esiste F misurabile tale che $|F| \le \varepsilon/2$ e con f limitata su $X \land F \implies f \in L^{\infty}(X \land F) \subset L^{1}(X \land F)$, dunque per il $Caso\ 1$ esiste E misurabile tale che $|E| \le \varepsilon/2$ e f è continua su $X \land (E \cup F)$ e $\mu(E \cup F) \le \varepsilon$

• Caso 3: f qualunque misurabile

Per ogni n poniamo $X_n := X \cap B(0, n)$ per il $Caso\ 2$ esistono E_n misurabili con $|E_n| \le \varepsilon/2^n$ tali che f è continua su $X_n \setminus E_n$, infine prendo $E := \bigcup_{n=1}^{\infty} E_n$ con $\mu(E) \le \varepsilon \implies f$ è continua su $X_n \setminus E$ per ogni $n \implies f$ è continua su $X \setminus E$.

2.8 Appendice

Proposizione. Siano V,W spazi normati, $T\colon V\to W$ lineare. Sono fatti equivalenti

- i) T è continua in 0.
- ii) T è continua.
- iii) T è lipschitziana, cioè esiste una costante $c < +\infty$ tale che $||Tv Tv'||_W \le c ||v v'||_V$.
- iv) Esiste una costante ctale che $\|Tv\|_W \leq c\, \|v\|_V$ per ogni $v \in V.$
- v) Esiste una costante c tale che $||Tv||_W \leq c$ per ogni $v \in V, ||v||_V = 1.$

Dimostrazione. v) \Rightarrow iv). Vale la seguente

$$\|Tv\|_W \underbrace{=}_{v=\lambda \widetilde{v}, \left\|\widetilde{v}\right\|_V = 1} |\lambda| \, \|T\widetilde{v}\|_W \le c\lambda = c \, \|v\|_V \le 1.$$

 $iv) \Rightarrow iii$). Vale la seguente

$$||Tv - Tv'||_W = ||T(v - v')||_W \le c ||v - v'||_W.$$

- $iii) \Rightarrow ii) e ii) \Rightarrow i)$ sono ovvie.
- i) \Rightarrow v). T continua in 0, dunque esiste $\delta > 0$ tale che

$$||Tv - T0||_W \le 1 \quad \text{se} \quad ||v - 0||_V \le \delta,$$

cioè

$$||Tv|| \le 1$$
 se $||v|| \le \delta$,

da cui segue che $||Tv|| \le 1/\delta$ se $||v|| \le 1$.

Osservazione. Le costanti ottimali iii), iv), v) sono uguali e valgono

$$c = \sup_{\|v\|_{V} \le 1} \|Tv\|_{W}$$
.

Esempi.

i) Sia X, \mathcal{A}, μ coma al solito, con $\mu(X) < +\infty$. Allora, dati $1 \le p_1 < p_2 \le +\infty$, vale

$$L^{p_2}(X) \subset L^{p_1}(X). \tag{*}$$

Inoltre, l'inclusione $i: L^{p_2}(X) \to L^{p_1}(X)$ è continua.

Dimostrazione. La dimostrazione di (??) segue dalla stima

$$\|u\|_{p_1} \underbrace{\leq} \|\mathbb{1}_X\|_q \|u\|_{p_2} \quad \text{dove} \quad q = \frac{p_1 p_2}{p_2 - p_1}.$$
 Hölder generalizzato

Dove

$$\|\mathbb{1}_X\|_{\frac{p_1p_2}{p_2-p_1}} \|u\|_{p_2} = (\mu(X))^{\frac{1}{p_1}-\frac{1}{p_2}} \|u\|_{p_2}$$
.

Quanto sopra soddisfa la condizione al punto iv).

ii) L'applicazione $L^1(X) \ni u \mapsto \int u \, \mathrm{d}\mu \in \mathbb{R}$ è continua.

Dimostrazione. Infatti, vale

$$\left| \int_X u \, \mathrm{d}\mu \right| \le \int_X |u| \, \mathrm{d}\mu = \|u\|_1.$$

Quanto sopra soddisfa la condizione al punto iv).

iii) Cosa possiamo dire invece dell'applicazione $L^p(X) \ni u \mapsto \int u \, \mathrm{d}\mu \in \mathbb{R}$? Se $\mu(X) < +\infty$ la continuità segue dagli esempi i) e ii) sopra. Se invece $\mu(X) = +\infty$? Per esempio $L^2(\mathbb{R})$? [TO DO].

2.9 Convoluzione

Definizione. Date $f_1, f_2 : \mathbb{R}^d \to \mathbb{R}$ misurabili, il **prodotto di convoluzione** $f_1 * f_2$ è la funzione (da \mathbb{R}^d a \mathbb{R}) data da

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) dy$$

Osservazioni.

i) La definizione sopra è ben posta se $f_1, f_2 \geq 0$ $(f_1 * f_2(x))$ può essere anche $+\infty$). In generale non è ben posta per funzioni a valori reali (non è detto che l'integrale esista). Ad esempio, se prendiamo $f_1 = 1$ e $f_2 = \sin x$ con d = 1, allora $f_1 * f_2(x)$ non è definito per alcun x.

ii) Se $f_1 * f_2(x)$ esiste, allora $f_1 * f_2(x) = f_2 * f_1(x)$, infatti

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy = \begin{pmatrix} t := x - y \\ dt = dy \end{pmatrix} = \int_{\mathbb{R}^d} f_1(t) f_2(x - t) \, dt = f_2 * f_1(x).$$

iii) È importante che f_1, f_2 siano definite su \mathbb{R}^d e che la misura sia quella di Lebesgue. In realtà, si può generalizzare quanto sopra rimpiazzando $(\mathbb{R}^d, \mathcal{L}^d)$ con (G, μ) , dove G è un gruppo commutativo e μ una misura su G invariante per traslazione. Per esempio, \mathbb{Z} con la misura che conta i punti. Cioè $f_1, f_2 \colon \mathbb{Z} \to \mathbb{R}$, vale

$$f_1 * f_2(n) := \sum_{n \in \mathbb{Z}} f_1(n-m) f_2(m).$$

iv) Data f distribuzione di massa (continua) su \mathbb{R}^3 , il potenziale gravitazionale generato è

$$v(x) = \int_{y \in \mathbb{R}^d} \frac{1}{|x - y|} \rho(y) \, \mathrm{d}y$$

cioè $v = g * \rho$, dove g(x) = 1/|x| è il potenziale di una massa puntuale in 0.

v) Se X_1, X_2 sono variabili aleatorie (reali) con distribuzione di probabilità continua p_1, p_2 e X_1, X_2 sono indipendenti, allora $X_1 + X_2$ ha distribuzione di probabilità $p_1 * p_2$. (Facile per X_1, X_2 in \mathbb{Z}).

Proposizione 1. Se $|f_1| * |f_2|(x) < +\infty$ allora $f_1 * f_2(x)$ è ben definito, in quanto $|f_1 * f_2(x)| \le |f_1| * |f_2|(x)$.

Dimostrazione. Basta osservare che,

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) \cdot f_2(y) \, dy \le \left| \int_{\mathbb{R}^d} f_1(x - y) \cdot f_2(y) \, dy \right|$$

$$\le \int_{\mathbb{R}^d} |f_1(x - y) \cdot f_2(y)| \, dy = |f_1| * |f_2|(x) < +\infty.$$

Corollario 2. Se $|f_1| * |f_2| \in L^p(\mathbb{R}^d)$ con $1 \le p \le +\infty$ allora $f_1 * f_2(x)$ è ben definito per quasi ogni $x \in \mathbb{R}^d$ e $||f_1 * f_2||_p \le |||f_1| * |f_2||_p$.

Dimostrazione. Segue subito dalla proposizione precedente.

Teorema 3 (disuguaglianza di Young per convoluzione.) Se $f_1 \in L^{p_1}(\mathbb{R}^d)$ e $f_2 \in L^{p_2}(\mathbb{R}^d)$ e preso $r \geq 1$ tale che

$$\frac{1}{r} = \frac{1}{p_1} + \frac{1}{p_2} - 1,\tag{*}$$

allora $f_1 * f_2$ è ben definito quasi ovunque e

$$||f_1 * f_2||_r \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \tag{**}$$

Osservazioni.

• Nel caso di prima 1 e sin x sono solo in L^{∞} infatti viene r=-1 e la disuguaglianza non ha senso.

• Supponiamo di avere $||f_1 * f_2|| \le C \cdot ||f_1||_{p_1}^{\alpha_1} \cdot ||f_2||_{p_2}^{\alpha_2}$ allora vediamo che per ogni f_1, f_2 positiva deve valere necessariamente $\alpha_1 = \alpha_2 = 1$ e la condizione (??).

Dimostrazione. Per ogni $\lambda > 0$ consideriamo λf_1 e f_2 , allora

$$\|(\lambda f_1) * f_2\|_r = \|\lambda (f_1 * f_2)\|_r = \lambda \|f_1 * f_2\|_r$$

ma abbiamo anche

$$\|(\lambda f_1) * f_2\|_r \le C \cdot \|\lambda f_1\|_{p_1}^{\alpha_1} \cdot \|f_2\|_{p_2}^{\alpha_2} = C \cdot \lambda^{\alpha_1} \|f_1\|_{p_1}^{\alpha_1} \cdot \|f_2\|_{p_2}^{\alpha_2}$$

da cui necessariamente $\alpha_1 = 1$ e di conseguenza $\alpha_2 = 1$.

A questo punto richiediamo anche che f_1 e f_2 siano tali che $||f_1||_{p_1}, ||f_2||_{p_2} < +\infty$ e $||f_1 * f_2|| > 0$ (questo possiamo farlo in quanto basta prendere $f_1 = f_2 = \mathbb{1}_B$ con B una palla, nel caso segue proprio che $f_1 * f_2(x) > 0$ se |x| < 1).

Data $f: \mathbb{R}^d \to \mathbb{R}$ e $\lambda > 0$ poniamo $R_{\lambda} f(x) := f(x/\lambda)$ allora abbiamo

$$\|(R_{\lambda}f_{1}) * (R_{\lambda}f_{2})\|_{r} = \left\| \int_{\mathbb{R}^{d}} f_{1}\left(\frac{x-y}{\lambda}\right) \cdot f_{2}\left(\frac{y}{\lambda}\right) dy \right\| = \begin{pmatrix} t = \frac{y}{\lambda} \\ \lambda dt = dy \end{pmatrix}$$
$$= \lambda^{d} \cdot \left\| \int_{\mathbb{R}^{d}} f_{1}\left(\frac{x}{\lambda} - t\right) \cdot f_{2}(t) dt \right\|$$
$$= \lambda^{d} \cdot \left\| R_{\lambda}(f_{1} * f_{2}) \right\|_{r}.$$

Per il punto successivo abbiamo $\|R_{\lambda}(g)\|_{r}=\lambda^{d/r}\,\|g\|_{r},$ da cui otteniamo

$$\|(R_{\lambda}f_1)*(R_{\lambda}f_2)\|_r = \lambda^{d(1+\frac{1}{r})} \|f_1*f_2\|_r$$
.

Ma anche

$$\|(R_{\lambda}f_1)*(R_{\lambda}f_2)\|_r \le C \cdot \|R_{\lambda}f_1\|_{p_1} \cdot \|R_{\lambda}f_2\|_{p_2} = \lambda^{d\left(\frac{1}{p_1} + \frac{1}{p_2}\right)} \cdot \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}.$$

Dunque sicuramente abbiamo $\lambda^{d(1+1/r)} \leq C \cdot \lambda^{d(1/p_1+1/p_2)}$ per ogni $\lambda > 0$ e quindi $1+1/r = 1/p_1 + 1/p_2$.

• $||R_{\lambda}f||_p = \lambda^{d/p} ||f||_p$ ed in realtà possiamo ricavare l'esponente d/p per analisi dimensionale¹. Consideriamo l'espressione

$$||f||_p^p = \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x.$$

Se f(x) è una quantità adimensionale allora $\int_{\mathbb{R}^d} f \, dx$ ha dimensione di un volume L^d , da cui $\|f\|_p$ ha dimensione di $\mathsf{L}^{d/p}$.

Similmente, per ottenere $\|R_{\lambda}(f_1 * f_2)\|_r = \lambda^{d(1+1/r)} \|f_1 * f_2\|_r$, basta osservare che

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$

ha dimensione L^d , da cui

$$||f_1 * f_2||_r = \left(\int_{\mathbb{R}^d} \underbrace{|f_1 * f_2|^r}_{\mathsf{L}^{dr}} \underbrace{\mathrm{d}x}_{\mathsf{L}^d} \right)^{1/r}$$

ha dimensione di $\mathsf{L}^{d(1+1/r)}$.

¹Ovvero studiando le potenze delle unità di misura delle varie quantità.

Dimostrazione Teorema 3. Per via del Corollario 2. ci basta dimostrare (??) se $f_1, f_2 \ge 0$.

• Caso facile. Se $p_1 = p_2 = 1$ e r = 1

$$||f_1 * f_2||_1 = \int f_1 * f_2(x) dx = \iint f_1(x - y) f_2(y) dy dx = \int f_2(y) \int f_1(x - y) dx dy =$$

$$= \int ||f_1||_1 \cdot f_2(y) dy = ||f_1||_1 \cdot ||f_2||_1$$

• Caso leggermente meno facile. Se $p_1 = p, p_2 = 1$ e r = p. Vogliamo vedere che

$$||f_1 * f_2||_p \le ||f_1||_p \cdot ||f_2||_1$$

allora

$$||f_1 * f_2||_p = \int_{\mathbb{R}^d} (\underbrace{f_1 * f_2}_h)^p \, dx = \int h \cdot h^{p-1} \, dx = \iint f_1(x - y) f_2(y) h^{p-1}(x) \, dy \, dx =$$

$$= \iint f_1(y - x) h^{p-1}(x) \, dx f_2(y) \, dy \overset{\text{H\"older}}{\leq} \int ||f_1(y - \cdot)||_p \, ||h^{p-1}||_{p'} f_2(y) \, dy$$

con p' esponente coniugato a p. Inoltre notiamo che $||f_1(y - \cdot)||_p = ||f_1||$ per invarianza di \mathcal{L}^d per riflessioni e traslazioni. Infine otteniamo

$$||f_1||_p ||h^{p-1}||_{p'} ||f_2||_1 = ||f_1||_p ||h||_p^{p-1} ||f_2||_1.$$

Dunque, $\|f_1*f_2\|_p^p \leq \|f_1*f_2\|_p^{p-1} \|f_1\|_p \|f_2\|_1 \implies \|f_1*f_2\|_p \leq \|f_1\|_p \|f_2\|_1$. Quest'ultima implicazione però è valida solo nel caso in cui $0 < \|f_1*f_2\|_p < +\infty$. Resterebbero da controllare i due casi in cui la norma è 0 oppure $+\infty$. Il primo è ovvio; il secondo invece si fa per approssimazione e passando al limite.

Consideriamo f_1, f_2 e approssimiamole con $f_{1,n}, f_{2,n}$ limitate a supporto compatto, allora vale $||f_{1,n} * f_{1,n}||_p \le ||f_{1,n}||_p \cdot ||f_{2,n}||_1$ e passando al limite si ottiene la tesi. In particolare possiamo costruire le f_n come

$$f_n(x) := (f(x) \cdot \mathbb{1}_{\mathcal{B}(0,n)}(x)) \wedge n$$

Osservazione. Se $f_2 \ge 0$ e $\int f_2 dx = 1$ allora $||f_1 * f_2||_p \le ||f_1||_p$ è una versione semplificata della proposizione precedente, in particolare la dimostrazione si semplifica in quanto possiamo pensare a f_2 come distribuzione di probabilità e quindi $f_1 * f_2$ è una "media pesata" delle traslazioni di f_1 o più precisamente una combinazione convessa "integrale".

• Caso generale. Non lo facciamo perché servono mille mila parametri e non è troppo interessante.

Nel caso $r=+\infty$ gli esponenti p_1 e p_2 sono proprio coniugati e possiamo rafforzare la tesi del teorema precedente.

Teorema 4 (caso $r = +\infty$ del Teorema 3). Dati p_1 e p_2 esponenti coniugati e $f_1 \in L^{p_1}(\mathbb{R}^d), f_2 \in L^{p_2}(\mathbb{R}^d)$, allora

i) $f_1 * f_2(x)$ è ben definito per ogni $x \in \mathbb{R}^d$

- ii) $|f_1 * f_2(x)| \le ||f_1||_{p_1} ||f_2||_{p_2}$
- iii) $f_1 * f_2$ è uniformemente continua
- iv) Se $1 < p_1, p_2 < +\infty$ allora $f_1 * f_2 \to 0$ per $|x| \to +\infty$

Premettiamo i seguenti risultati.

Proposizione 5. Data $f \in L^p(\mathbb{R}^d)$ con $p < +\infty$ la mappa

$$\tau_h f: \mathbb{R}^d \to L^p(\mathbb{R}^d)$$
 $h \mapsto f(\cdot - h)$

è continua.

Lemma 6. Lo spazio $C_0(\mathbb{R}^d) = \{f : \mathbb{R}^d \to \mathbb{R} \text{ continue con } f(x) \to 0 \text{ per } |x| \to \infty\}$ è chiuso rispetto alla convergenza uniforme.

Dimostrazione Teorema 4.

i) Osserviamo che

$$|f_1| * |f_2|(x) = \int_{\mathbb{R}^d} |f_1(x-y)| \cdot |f_2(y)| \, \mathrm{d}y \stackrel{\text{H\"older}}{\leq} ||f_1(x-\cdot)||_{p_1} ||f_2||_{p_2} = ||f_1||_{p_1} ||f_2||_{p_2}$$

e concludiamo per la Proposizione 1.

- ii) Dal punto precedente abbiamo che $|f_1| * |f_2|(x) \le ||f_1||_{p_1} ||f_2||_{p_2}$, da cui si conclude banalmente.
- iii) Uno tra p_1 e p_2 è finito; supponiamo lo sia p_1 . Fissiamo $x, h \in \mathbb{R}^d$

$$f_1 * f_2(x+h) - f_1 * f_2(x) = \int_{\mathbb{R}^d} (f_1(x+h-y) - f_1(x-y)) f_2(y) dy,$$

quindi

$$|f_{1} * f_{2}(x+h) - f_{1} * f_{2}(x)| \leq \int |f_{1}(x+h-y) - f_{1}(x-y)| |f_{2}| dy$$

$$\leq \|f_{1}(x+h-y) - f_{1}(x-y)\|_{p_{1}} \|f_{2}\|_{p_{2}}$$

$$= \|f_{1}(y-h) - f_{1}(y)\|_{p_{1}} \|f_{2}\|_{p_{2}}$$

da cui segue la tesi¹.

iv) Approssimiamo f_1 e f_2 con $f_{1,n}$ e $f_{2,n} \in \mathcal{C}_C(\mathbb{R}^d)$ in L^{p_1} e L^{p_2} rispettivamente. Osserviamo che $f_{1,n} * f_{2,n} \in \mathcal{C}_C(\mathbb{R}^d) \subset \mathcal{C}_0(\mathbb{R}^d)$. Per il Lemma 6 basta dimostrare che $f_{1,n} * f_{2,n} \longrightarrow f_1 * f_2$ uniformemente

$$\begin{aligned} \|f_{1,n} * f_{2,n} - f_1 * f_2\|_{\infty} &= \|(f_{1,n} * f_{2,n} - f_{1,n} * f_2) + (f_{1,n} * f_2 - f_1 * f_2)\|_{\infty} \\ &\leq \|f_{1,n} * (f_{2,n} - f_2)\|_{\infty} + \|(f_{1,n} - f_1) * f_2\|_{\infty} \\ &\leq \|f_{1,n}\|_{p_1} \|f_{2,n} - f_2\|_{p_2} + \|f_{1,n} - f_1\|_{p_1} \|f_2\|_{p_2} . \end{aligned}$$

 $^{^{1}}Nota$. In generale, quanto appena mostrato ci direbbe che la funzione è continua, ma essendo che stiamo maggiorando con una quantità indipendente da x segue l'uniforme continuità.

2.10 Rimanenze dalla lezione precedente

Proposizione. Data $f \in L^p(\mathbb{R}^d)$ con $1 \leq p < +\infty$ allora la funzione $\tau_h f \colon \mathbb{R}^d \to L^p(\mathbb{R}^d)$ data da $h \mapsto f(\cdot - h)$ è continua.

Dimostrazione. Per prima cosa notiamo che basta vedere solo la continuità in 0 in quanto

$$\tau_{h'}f - \tau_h f = \tau_h(\tau_{h'-h}f - f) \implies \|\tau_{h'}f - \tau_h f\|_p = \|\tau_{h'-h}f - f\|_p.$$

Dimostriamo ora la proposizione in due passi.

• Caso 1: $f \in C_C(\mathbb{R}^d)$

$$\|\tau_h f - f\|_p^p = \int_{\mathbb{R}^d} |f(x - h) - f(x)|^p dx \xrightarrow{|h| \to 0} 0$$

per convergenza dominata, verifichiamo però che siano rispettate le ipotesi

- i) La convergenza puntuale, ovvero $|f(x-h)-f(x)|^p \xrightarrow{|h|\to 0} 0$ segue direttamente dalla continuità di f.
- ii) Come dominazione invece usiamo $|f(x-h)-f(x)|^p \leq (2 ||f||_{\infty})^p \cdot \mathbb{1}_{\mathcal{B}(0,R+1)}$ usando che $f \in C_C \implies \sup(f) \subset \overline{B(0,R)}$ e poi che

$$\operatorname{supp}(f(\cdot - h) - f(\cdot)) \subset \overline{\mathcal{B}(0, R + |h|)}$$

infine se |h| < 1 come raggio ci basta prendere R + 1.

• Caso 2: f qualunque Dato $\varepsilon > 0$ prendiamo $g \in C_C(\mathbb{R}^d)$ tale che $||g - f|| \le \varepsilon$ allora aggiungiamo a sottraiamo $g + \tau_h g$ e raggruppiamo in modo da ottenere

$$\tau_h f - f = \tau_h (f - g) + (\tau_h g - g) + (g - f)$$

$$\implies \|\tau_h f - f\|_p \le \underbrace{\|\tau_h (f - g)\|_p}_{\le \varepsilon} + \|\tau_h g - g\|_p + \underbrace{\|g - f\|_p}_{\le \varepsilon} \le 2\varepsilon + \underbrace{\|\tau_h g - g\|_p}_{\to 0 \text{ per } Caso \ 1}$$

dunque $\limsup_{|h|\to 0} \|\tau_h f - f\|_p \le 2\varepsilon$ ma per arbitrarietà di ε otteniamo anche che $\|\tau_h f - f\|_p \to 0$ per $|h| \to 0$.

[TO DO: il teorema sotto non è già stato dimostrato?] **Teorema.** Siano $f_1 \in L^{p_1}(\mathbb{R}^d)$ e $f_2 \in L^{p_2}(\mathbb{R}^d)$ con p_1 e p_2 esponenti coniugati, allora $f_1 * f_2$ è definita per ogni x e uniformemente continua

$$|f_1 * f_2(x)| \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \quad \forall x.$$

Dimostrazione. Prendiamo $f_{1,n}, f_{2,n} \in C_C(\mathbb{R}^d)$ tali che $f_{1,n} \to f_1$ in L^{p_1} e $f_{2,n} \to f_2$ in L^{p_2} .

• Per prima cosa verifichiamo che f * g è ben definita. Notiamo che $f_{1,n} * f_{2,n}$ ha supporto limitato, infatti se supp $(f_{i,n}) \subset \overline{\mathcal{B}(0,r_{i,n})}$ per i=1,2 allora

$$\operatorname{supp}(f_{1,n} * f_{2,n}) \subset \overline{\mathcal{B}(0, r_{1,n} + r_{2,n})}$$

e basta notare che l'espressione

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$

ha integranda nulla per ogni y se $|x| \ge r_{1,n} + r_{2,n}$.

• Vediamo che $f_{1,n} * f_{2,n} \to f_1 * f_2$ uniformemente

$$f_{1,n} * f_{2,n} - f_1 * f_2 = (f_{1,n} - f_1) * f_{2,n} - f_1 * (f_{2,n} - f_2)$$

$$||f_{1,n} * f_{2,n} - f_1 * f_2||_p \le ||(f_{1,n} - f_1) * f_{2,n}||_p + ||f_1 * (f_{2,n} - f_2)||_p$$

$$\le \underbrace{||f_{1,n} - f_1||_{p_1}}_{\to 0} \cdot \underbrace{||f_{2,n}||_{p_2}}_{\to ||f_2||_{p_2}} + \underbrace{||f_1||_{p_1}}_{\text{cost.}} \cdot \underbrace{||f_{2,n} - f_2||_{p_2}}_{\to 0} \to 0$$

• $C_0(\mathbb{R}^d)$ è chiuso per convergenza uniforme [TODO: da fare per esercizio]

2.11 Derivata e Convoluzione

Osservazione. Osserviamo che la convoluzione si comporta bene con l'operatore di traslazione definito precedentemente, infatti $\tau_h(f_1 * f_2) = (\tau_h f_1) * f_2$ in quanto

$$f_1 * f_2(x - h) = \int f_1(x - h - y) \cdot f_2(y) \, dy = \int \tau_h f(x - y) \cdot f_2(y) \, dy = (\tau_h f_1) * f_2(y) \, dy$$

quindi "formalmente" possiamo calcolare il seguente rapporto incrementale

$$\frac{\tau_h(f_1 * f_2) - f_1 * f_2}{h} = \frac{\tau_h f_1 - f_1}{h} * f_2 \implies (f_1 * f_2)' = (f_1)' * f_2$$

Vediamo ora di formalizzare questo risultato.

Teorema. Dati p_1 e p_2 esponenti coniugati, se

- $f_1 \in C^1(\mathbb{R}^d)$, $f_1 \in \nabla f_1 \in L^{p_1}(\mathbb{R}^d)$
- $f_2 \in L^{p_2}(\mathbb{R}^d)$

allora $f_1 * f_2 \in C^1$ con $\nabla (f_1 * f_2) = (\nabla f_1) * f_2^1$.

Dimostrazione.

• d = 1: Sappiamo che $f_1 * f_2$ ed $f'_1 * f_2$ sono continue. Vediamo che coincidono usando il teorema fondamentale del calcolo integrale. L'uguaglianza $(f_1 * f_2)' = f'_1 * f_2$ segue da

$$\int_{a}^{b} f_{1}' * f_{2} dx = f_{1} * f_{2}(b) - f_{1} * f_{2}(a) \quad \forall a < b$$

¹Ha senso anche se ∇f_1 è a valori vettoriali. In tal caso $\frac{\partial}{\partial x_i}(f_1 * f_2) = \left(\frac{\partial f_1}{\partial x_i}\right) * f_2$ per $i = 1, \dots, d$.

ed in effetti

$$\int_{a}^{b} f_{1}' * f_{2}(x) dx = \int_{a}^{b} \int_{-\infty}^{\infty} f_{1}'(x - y) f_{2}(y) dy dx$$

$$\stackrel{(*)}{=} \int_{-\infty}^{\infty} \int_{a}^{b} f_{1}'(x - y) dx \cdot f_{2}(y) dy$$

$$= \int_{-\infty}^{\infty} (f_{1}(b - y) - f_{1}(a - y)) \cdot f_{2}(y) dy$$

$$= \int_{-\infty}^{\infty} f_{1}(b - y) f_{2}(y) dy - \int_{-\infty}^{\infty} f_{1}(a - y) f_{2}(y) dy$$

$$= f_{1} * f_{2}(b) - f_{1} * f_{2}(a).$$

In particolare in (*) stiamo usando Fubini-Tonelli in quanto

$$\int_{a}^{b} \int_{-\infty}^{\infty} |f_{1}'(x-y)| \cdot |f_{2}(y)| \, \mathrm{d}y \, \mathrm{d}x \le \int_{a}^{b} \|f_{1}'(x-\cdot)\|_{p_{1}} \cdot \|f_{2}\|_{p_{2}} \, \mathrm{d}x = \|f_{1}'\|_{p_{1}} \cdot \|f_{2}\|_{p_{2}} \cdot (b-a).$$

• per d > 1 dato $i = 1, \ldots, d$ basta semplicemente considerare le proiezioni infatti

$$\int_{a}^{b} \frac{\partial f_{1}}{\partial x_{i}} * f_{2}(x_{1}, \dots, \overset{(i)}{t}, \dots, x_{d}) dt = f_{1} * f_{2}(x_{1}, \dots, \overset{(i)}{b}, \dots, x_{d}) - f_{1} * f_{2}(x_{1}, \dots, \overset{(i)}{a}, \dots, x_{d})$$

Corollario. Data $f_1 \in C_C^{\infty}(\mathbb{R}^d)$ (da cui segue $\nabla^k \in L^q(\mathbb{R}^d)$ per ogni $k = 0, 1, \ldots$ e $1 \leq q < +\infty$) e $f_2 \in L^p(\mathbb{R}^d)$ allora $f_1 * f_2 \in C^{\infty}(\mathbb{R}^d)$ (anzi $\nabla^k (f_1 * f_2) \in C_0(\mathbb{R}^d)$ per ogni k) e vale la formula nota¹

$$\nabla^k (f_1 * f_2) = (\nabla^k f_1) * f_2 \quad \forall k = 1, \dots$$

Dimostrazione. Si dimostra per induzione su k. [TO DO: da fare]

2.12 Approssimazione per convoluzione

Definizione. Per prima cosa data una funzione $g\colon \mathbb{R}^d \to \mathbb{R}$ e $\delta \neq 0$ poniamo

$$\sigma_{\delta}g(x) := \frac{1}{\delta^d}g\left(\frac{x}{\delta}\right)$$

e notiamo che questa trasformazione preserva la norma L^1 . Infatti, il valore $1/\delta^d$ è proprio il modulo del determinante dello Jacobiano del cambio di variabile.

Teorema. Data $f \in L^p(\mathbb{R}^d)$ e $g \in L^1(\mathbb{R}^d)$ con $1 \le p < +\infty$ e posto $m \coloneqq \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x$, allora

$$f * \sigma_{\delta} g \xrightarrow{\delta \to 0} mf$$
 in $L^p(\mathbb{R}^d)$.

Interpretazione. Se $g_2 \ge 0$ con $\int g \, dx = 1$ (dunque g distribuzione di probabilità) allora f * g possiamo

¹dato che $\nabla^k f_1$ ha valori in \mathbb{R}^k e f_2 in \mathbb{R} , dobbiamo definire $\nabla^k f_1 * f_2$ [TO DO: da fare].

pensarla come media pesata di traslate di f, dunque facendo $f * \sigma_{\delta} g$ stiamo pesando sempre di più i valori delle traslate vicino a 0.

Nota. Per $p = +\infty$ il teorema non vale. Infatti, la funzione $f = \mathbb{1}_{[0,+\infty]} \in L^{\infty}$; le funzioni $f * \sigma_{\delta} g$ sono continue ma non convergono in L^{∞} a mf = f. Infatti, le successioni continue convergono in L^{∞} a funzioni che coincidono, a meno di insiemi di misura nulla, con funzioni continue, ed f non è possibile modificarla in un insieme di misura nulla in modo che coincida con una funzione continua.

Dimostrazione. Per ora consideriamo g generica e ripercorriamo una dimostrazione simile a quella fatta per la disuguaglianza di Young

$$\begin{aligned} \|f * g - mf\|_p^p &= \int_{\mathbb{R}^d} \underbrace{\left| f * g - mf \right|^p}_h \, \mathrm{d}x \\ &= \int |f * g - mf| \cdot h^{p-1} \, \mathrm{d}x \\ &= \int \left| \int f(x - y)g(y) \, \mathrm{d}y - f(x) \int g(y) \, \mathrm{d}y \right| \cdot h^{p-1}(x) \, \mathrm{d}x \\ &\leq \int \int |f(x - y) - f(x)| \cdot |g(y)| \, \mathrm{d}y \cdot h^{p-1}(x) \, \mathrm{d}x \\ &\stackrel{(*)}{=} \int \left(\int |f(x - y) - f(x)| h^{p-1}(x) \, \mathrm{d}x \right) |g(y)| \, \mathrm{d}y, \end{aligned}$$

dove in (*) abbiamo usato Fubini-Tonelli. Ora prendiamo q tale che 1/p+1/q=1 allora per Hölder abbiamo

$$\leq \int \|f(\cdot - y) - f(\cdot)\|_p \|h^{p-1}\|_q \cdot |g(y)| \, dy$$
$$= \|h\|_p^{p-1} \int_{\mathbb{R}^d} \|\tau_y f - f\|_p \cdot |g(y)| \, dy$$

dunque abbiamo ricavato che

$$||f * g - mf||_p^p \le ||f * g - mf||_p^{p-1} \int_{\mathbb{R}^d} ||\tau_y f - f||_p \cdot |g(y)| \, dy$$

ed ora applicando questa stima a $\sigma_{\delta}g$ invece che a g otteniamo

$$||f * \sigma_{\delta}g - mf||_{p} \le \int_{\mathbb{R}^{d}} ||\tau_{y}f - f||_{p} \cdot |\sigma_{\delta}g(y)| \, \mathrm{d}y,$$

infine ponendo $z = y/\delta$ e d $z = 1/\delta^d$ dy e sostituendo nell'integrale

$$= \int_{\mathbb{P}^d} \|\tau_{\delta z} f - f\|_p \cdot |g(z)| \, \mathrm{d}z \xrightarrow{\delta \to 0} 0$$

per convergenza dominata, verifichiamone le ipotesi

- i) La convergenza puntuale segue in quanto $\|\tau_{\delta z}f-f\|_p \xrightarrow{\delta \to 0} 0$ per ogni z.
- ii) Come dominazione prendiamo $2 \, \|f\|_p \cdot |g| \in L^1.$

Corollario. Sia $g \in C_C^{\infty}(\mathbb{R}^d)$ con $\int g \, dx = 1$ e $f \in L^p(\mathbb{R}^d)$ e $1 \leq p < +\infty$ allora $\sigma_{\delta}g * f \xrightarrow{\delta \to 0} f$ in $L^p(\mathbb{R}^d)$ e $\sigma_{\delta}g * f \in C^{\infty}(\mathbb{R}^d)$.

Capitolo 3

Spazi di Hilbert

Sia H spazio vettoriale reale con prodotto scalare $\langle \cdot, \cdot \rangle$ definito positivo e norma indotta $\| \cdot \|$ definita come $\|x\| = \sqrt{\langle x, x \rangle}$.

Si ricorda l'identità di polarizzazione

$$\langle x_1, x_2 \rangle = \frac{1}{4} (\|x_1 + x_2\|^2 - \|x_1 - x_2\|^2).$$

Nota. Siccome $\|\cdot\|$ è continua, dalla formula di polarizzazione segue che il prodotto scalare è continuo.

Definizione. H si dice spazio di Hilbert se è completo.

Esempi.

- Dato (X, \mathcal{A}, μ) , gli spazi $L^2(X), L^2(X, \mathbb{R}^m)$ sono spazi di Hilbert.
- Lo spazio $\ell^2 = \left\{ (x_n) \mid \sum_{n=0}^{\infty} x_n^2 < +\infty \right\}$ è uno spazio di Hilbert.

Definizione. $\mathcal{F} \subset H$ è un sistema ortonormale se

$$||e|| = 1 \ \forall e \in \mathcal{F}, \qquad \langle e, e' \rangle = 0 \ \forall e \neq e' \in \mathcal{F}.$$

Definizione. \mathcal{F} si dice **completo** se $\overline{\mathrm{Span}(\mathcal{F})} = H^1$. In tal caso \mathcal{F} si dice **base di Hilbert**.

Osservazione. In generale una base di Hilbert $\mathcal{F} \subset H$ non è anche una base algebrica di H. L'esempio che segue spiega quanto appena detto.

Esempio. In ℓ^2 una base ortonormale è $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$ con $e_n = (0, \dots, 0, 1, 0, \dots)$. Infatti, il fatto che siano ortonormali è banale; verifichiamo che sia una base.

Studiamo Span $(\mathcal{F}) = \{x = (x_0, x_1, \ldots) \mid x_n \text{ è definitivamente nullo}\}: dato <math>x \in \ell^2$ e $m = \mathbb{N}$, definiamo

$$P_m x := (x_0, x_1, \dots, x_m, 0, \dots).$$

Allora Span $(\mathcal{F}) \supset P_m x \xrightarrow{m \to +\infty} x$ in ℓ^2 . Infatti,

$$x - P_m x = (0, \dots, 0, x_{m+1}, x_{m+2}, \dots).$$

¹Lo span sono combinazioni lineari finite.

Dunque

$$||x - P_m x|| = \sum_{n=m+1}^{\infty} x_n^2 \xrightarrow{m \to +\infty} 0.$$

Teorema 1. (della base di Hilbert.) Dato H spazio di Hilbert, \mathcal{F} sistema ortonormale al più numerabile, ovvero $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$. Definiamo per ogni $x \in H$, $n \in \mathbb{N}$ l'elemento $x_n = \langle x, e_n \rangle$. Allora

- i) Vale $\sum_{n} x_n^2 \le ||x||^2$ (Disuguaglianza di Bessel).
- ii) La somma $\sum_{n} x_n e_n$ converge a qualche $\overline{x} \in H$ e $\overline{x}_n = x_n$ per ogni n.
- iii) Vale $\|\overline{x}\|^2 = \sum_n x_n^2 \le \|x\|^2$.
- iv) Se $x \overline{x} \perp \mathcal{F}$, allora $x \overline{x} \perp \overline{\operatorname{Span}(\mathcal{F})}$, ovvero \overline{x} è la proiezione di x su $\overline{\operatorname{Span}(\mathcal{F})}$.
- v) Se \mathcal{F} è completo, allora $x = \overline{x}$ e in particolare

$$x = \sum_{n=0}^{\infty} x_n e_n, \qquad ||x||^2 = \sum_{n=0}^{\infty} x_n^2 \qquad \text{(Identità di Parseval)}.$$

Alla dimostrazione del teorema premettiamo il seguente lemma.

Lemma 2. Siano H e \mathcal{F} come nel teorema. Data $(a_n) \in \ell^2$, allora

- i) La serie $\sum_{n} a_n e_n$ converge a qualche $\overline{x} \in H$.
- ii) $\overline{x}_n = a_n$ per ogni n.
- iii) $\|\overline{x}\|^2 = \sum_n a_n^2$.

Dimostrazione.

i) Dimostriamo che $y_n = \sum_{n=1}^m a_n e_n$ è di Cauchy in H. Se m' > m, vale

$$y_{m'} - y_m = \sum_{n=m+1}^{m'} a_n e_n \Longrightarrow \|y_{m'} - y_m\|^2 = \left\| \sum_{n=m+1}^{m'} a_n e_n \right\|^2 = \sum_{n=m+1}^{m'} a_n^2 \le \sum_{n=m+1}^{\infty} a_n^2 < +\infty.$$

Dunque, per ogni ε esiste m_{ε} tale che $\sum_{m_{\varepsilon}+1}^{\infty} a_n^2 \leq \varepsilon^2$, per cui

$$||y_{m'} - y_m||^2 \le \sum_{m+1}^{m'} a_n^2 \le \sum_{m_{\varepsilon}+1}^{\infty} a_n^2 \le \varepsilon^2 \quad \forall m, m' \ge m_{\varepsilon}.$$

ii) Se $m \geq n, \langle y_m, e_n \rangle = a_n,$ dunque, per continuità del prodotto scalare

$$a_n = \langle y_m, e_n \rangle \xrightarrow{m \to \infty} \langle \overline{x}, e_n \rangle = \overline{x}_n.$$

iii) Si ha l'uguaglianza
$$\|y_m\|^2 = \sum_{n=1}^m a_n^2$$
, per cui passando al limite per $m \to +\infty$ otteniamo

$$||y_m||^2 \xrightarrow{m \to \infty} ||\overline{x}||^2$$

$$\sum_{n=0}^m a_n^2 \xrightarrow{m \to \infty} \sum_{n=0}^\infty a_n^2$$

Dimostrazione Teorema 1.

i) Studiamo la somma $x = \sum_{n=0}^{m} x_n e_n + y$.

Notiamo che x è somma di vettori ortogonali, infatti y è ortogonale a $\sum_{n=0}^{m} x_n e_n$:

$$\langle y, e_i \rangle = \left\langle x - \sum_{n=0}^m x_n e_n, e_i \right\rangle = \left\langle x, e_i \right\rangle - \sum_{n=0}^m x_n \underbrace{\left\langle e_n, e_i \right\rangle}_{\delta_{i,n}} = x_i - x_i = 0.$$

Essendo che x è somma di vettori ortogonali abbiamo

$$||x||^2 = \sum_{n=1}^m x_n^2 + ||y||^2 \ge \sum_{n=1}^m x_n^2.$$

Passando al limite per $m \to +\infty$ otteniamo

$$\left\|x\right\|^2 \ge \sum_{n=1}^{\infty} x_n^2.$$

- ii) Segue dal lemma notando che il punto precedente ci dice che la successione (x_n) è a quadrato sommabile.
- iii) Analogamente al caso precedente.

iv) Notiamo che
$$\langle x - \overline{x}, e_n \rangle = x_n - \overline{x}_n \stackrel{\text{ii}}{=} 0$$
 per ogni n . Cioè
$$x - \overline{x} \perp e_n \Longrightarrow x - \overline{x} \perp \operatorname{Span}(\mathcal{F}) \Longrightarrow x - \overline{x} \perp \underset{\text{pr. scalare}}{\text{continuità}} \overline{\operatorname{Span}(\mathcal{F})}$$

v)
$$x - \overline{x} \perp \overline{\operatorname{Span}(\mathcal{F})} = H \Longrightarrow x - \overline{x} = 0$$
, cioè $x = \overline{x}$.

Corollario 3. Siano H spazio di Hilbert, $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$ base di Hilbert, $x, x' \in H$. Valgono le seguenti.

i) $x_n = x'_n \ \forall n \in \mathbb{N} \Longleftrightarrow x = x' \ (\Leftarrow \ \text{è ovvia}).$

ii) $\langle x, x' \rangle = \sum_{n=0}^{\infty} x_n x'_n$ (Identità di Parseval).

iii) L'applicazione $H \ni x \mapsto (x_n) \in \ell^2$ è un'isometria surgettiva¹.

Dimostrazione.

- i) Per l'enunciato ?? se due vettori hanno la stessa rappresentazione rispetto a una base di Hilbert coincidono.
- ii) La tesi segue usando l'identità di polarizzazione congiuntamente all'enunciato ?? del teorema:

$$\langle x, x' \rangle = \frac{1}{4} \left(\|x + x'\|^2 - \|x - x'\|^2 \right) = \frac{1}{4} \left(\sum_{n} \underbrace{(x_n + x'_n)^2 + 2x_n x'_n}_{(x_n + x'_n)^2} - \sum_{n} \underbrace{(x_n - x'_n)^2}_{x_n^2 + x'_n^2 - 2x_n x'_n} \right)$$

$$= \frac{1}{4} \left(\sum_{n} \underbrace{x'_n^2 + \sum_{n} x'_n^2}_{n} + 2\sum_{n} x_n x'_n - \sum_{n} \underbrace{x'_n^2 + x'_n^2 + 2x_n x'_n}_{n} + 2\sum_{n} x_n x'_n \right).$$

iii) Il fatto che l'applicazione sia un'isometria segue da Parseval; che sia iniettiva dal fatto che \mathcal{F} è una base di Hilbert e che sia surgettiva dai punti i) e ii) del Lemma 2.

Osservazioni.

- Gli enunciati ?? e ?? non richiedono H completo, mentre ?? non è vero se H non è completo.
- Se H è uno spazio di Hilbert e \mathcal{F} sistema ortonormale infinito, allora \mathcal{F} non è mai una base algebrica¹. Dunque, combinazioni lineari finite di \mathcal{F} non sono mai uguali ad H, ovvero $\operatorname{Span}(\mathcal{F}) \subseteq H$.

Dimostrazione. Presi $(e_n) \subset \mathcal{F}$, consideriamo $\overline{x} = \sum_{n=0}^{\infty} 2^{-n} e_n$. Allora $\overline{x} \in H \setminus \text{Span}(\mathcal{F})$.

• Siano H uno spazio di Hilbert di dimensione infinita e \mathcal{F} una base di Hilbert. Allora \mathcal{F} è numerabile se solo se H è separabile.

Dimostrazione.

- Se \mathcal{F} non fosse numerabile, siccome $||e-e'|| = \sqrt{2} \quad \forall e, e' \in \mathcal{F}$, potremmo definire per ogni elemento di \mathcal{F} una palla di raggio $\sqrt{2}/2$, dunque potremmo definire un insieme di palle disgiunte. Dato un sottoinsieme denso di H, per definizione, deve intersecare ogni palla e dunque deve essere più che numerabile, dunque H non sarebbe separabile.

Esempio. Lo spazio $H = L^2(X)$, con $X = \mathbb{R}^n$, μ misura di Lebesgue ha base di Hilbert numerabile.

¹In particolare è bigettiva ma l'iniettività è ovvia.

¹Per base algebrica s'intende un insieme di vettori di uno spazio vettoriale le cui combinazioni lineari generano tutto lo spazio.

• Dato \mathcal{F} sistema ortonormale in H, allora \mathcal{F} è completo se solo se \mathcal{F} è massimale (nella classe dei sistemi ortonormali rispetto all'inclusione).

Dimostrazione.

 \implies Dato che \mathcal{F} è completo segue che $\overline{\mathrm{Span}(\mathcal{F})}=X$, quindi

$$\mathcal{F}^{\perp} = (\operatorname{Span}(\mathcal{F}))^{\perp} \underbrace{=}_{\substack{\text{continuità del prodotto scalare}}} \overline{\operatorname{Span}(\mathcal{F})}^{\perp} = H^{\perp} = \{0\}.$$

dunque \mathcal{F} è massimale.

Se \mathcal{F} non è completo, esiste $x \in H \setminus \operatorname{Span}(\mathcal{F})$. Definiamo \overline{x} come nel Teorema 1. Notiamo che $x - \overline{x} \perp \operatorname{Span}(\mathcal{F})$, dunque $x - \overline{x} \perp \mathcal{F}$ e $x - \overline{x} \neq \{0\}$, da cui $\mathcal{F} \cup \left\{\frac{x - \overline{x}}{\|x - \overline{x}\|}\right\}$ è un sistema ortonormale che include strettamente \mathcal{F} . \not

Osservazione. Nell'implicazione \implies non abbiamo usato la completezza di H.

• Ogni sistema ortonormale \mathcal{F} si completa a $\widetilde{\mathcal{F}}$ base di Hilbert di H. **Dimostrazione.** Sia $X = \left\{ \mathcal{F} \text{ sistema ortonormale } H \text{ tale che } \widetilde{\mathcal{F}} \subset \mathcal{F} \right\}$. Per Zorn, X contiene un elemento massimale. Denotiamolo con $\widetilde{\mathcal{F}}$. Allora $\widetilde{\mathcal{F}}$ è una base di Hilbert.

Teorema 4. Dato V sottospazio vettoriale chiuso di H. Allora

- i) $H = V + V^{\perp}$, cioè per ogni $x \in H$ esiste $\overline{x} \in V$ e $\widetilde{x} \in V^{\perp}$ tale che $x = \overline{x} + \widetilde{x}$.
- ii) Gli elementi \overline{x} e \widetilde{x} sono univocamente determinati (e indicati con x_V e x_V^{\perp}).
- iii) \overline{x} è caratterizzato come l'elemento di V più vicino a X.

Dimostrazione.

- i) Dato che V è chiuso, V è completo, cioè V è un sottospazio di H, dunque V ammette base ortonormale $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$. Definiamo $\overline{x} \in \overline{\mathrm{Span}(\mathcal{F})}$ come nel Teorema 1 e $\widetilde{x} := x \overline{x} \in \overline{\mathrm{Span}(\mathcal{F})} = V^{\perp}$ (per $\ref{eq:posterior}$).
- ii) Se $x = \overline{x} + \widetilde{x} = \overline{x}' + \widetilde{x}'$, dove $\overline{x}, \overline{x}' \in V$ e $\widetilde{x}, \widetilde{x}' \in V^{\perp}$, allora

$$\overline{x} - \overline{x}' = \widetilde{x}' - \widetilde{x} \Longrightarrow_{V \cap V^{\perp} = \{0\}} \overline{x} - \overline{x}' = \widetilde{x}' - \widetilde{x} = 0.$$

iii) Per ogni $y \in V$ sia $f(y) = ||x - y||^2$. Mostriamo che \overline{x} è l'unico minimo di f.

$$f(y) = \|x - y\|^2 = \|\widehat{x - \overline{x}} + \widehat{\overline{x} - y}\|^2 = \|x - \overline{x}\|^2 + \|\overline{x} - y\|^2 = f(\overline{x}) + \|\overline{x} - y\|^2 \ge f(\overline{x}).$$

Osservazione. Serve V chiuso. Se per esempio V è denso in H ma $V \neq H$, allora

$$\overline{V^{\perp}} = \overline{V}^{\perp} = H^{\perp} = \{0\} \Longrightarrow V \subseteq V + V^{\perp} \subseteq V + \overline{V^{\perp}} = V \subsetneq H.$$

Un esempio di tale V è $\mathrm{Span}(\mathcal{F})$ con \mathcal{F} base di H (H di dimensione infinita).

Teorema 5 (di rappresentazione di Riesz.) Dato $\Lambda: H \to \mathbb{R}$ lineare e continuo, esiste $x_0 \in H$ tale che

$$\Lambda(x) = \langle x, x_0 \rangle$$
 per ogni $x \in H$. (*)

Lemma 6. Dato $\Lambda: X \to \mathbb{R}$ lineare, $(\ker \Lambda)^{\perp}$ ha dimensione 0 o 1.

Dimostrazione Se per assurdo $\dim(\ker \Lambda)^{\perp} \geq 2$, allora $(\ker \Lambda)^{\perp}$ conterrebbe un sottospazio W di dimensione 2. Dunque, $\dim(\ker \Lambda|_W) = \{1,2\}$, essendo che $\dim \mathbb{R} = 1$. Ma questo non è possibile, in quanto abbiamo definito $W = \ker^{\perp}$.

Dimostrazione Teorema 5. Sia $V := \ker \Lambda$. Dato che Λ è continuo segue che V è chiuso. Se $V = H \Longrightarrow \Lambda \cong 0$ e prendiamo $x_0 = 0$.

Se $V \neq H$, allora $V^{\perp} \neq \{0\}$ e definiamo $x_1 \in V^{\perp}$ con $||x_1|| = 1$. Poniamo $x_0 \coloneqq cx_1$ con $c \coloneqq \Lambda x_1$ e $\widetilde{\Lambda}(x) \coloneqq \langle x, x_0 \rangle$. Abbiamo che

- $x \in V \Longrightarrow x \perp x_1 \Longrightarrow x \perp x_0 \Longrightarrow \widetilde{\Lambda} = 0 = \Lambda(x)$. Quindi $\widetilde{\Lambda} = \Lambda$ su V.
- $\widetilde{\Lambda}(x_1) = \langle x_1, x_0 \rangle = \langle x_1, cx_1 \rangle = c \|x_1\|^2 = c = \Lambda(x_1)$. Quindi $\widetilde{\Lambda} = \Lambda$ su $\mathrm{Span}(x_1) = V^{\perp}$.
- $\widetilde{\Lambda} = \Lambda$ su $V + V^{\perp} = H$.

Osservazione. Esistono funzioni $\Lambda: H \to \mathbb{R}$ lineari ma non continue se H ha dimensione infinita.

Dimostrazione. Prendo $\Lambda \colon H \to \mathbb{R}$ lineare definito come

$$\begin{cases} \Lambda(e_n) = n & \forall n \\ \Lambda(e) = \text{qualsiasi } e \in \mathcal{G} \setminus \{e_n\} . \end{cases}$$

Allora

$$+\infty = \sup_{n} |\Lambda(e_n)| \le \sup_{\|x\| \le 1} |\Lambda(x)|$$

da cui segue che Λ non è continuo.

3.1 Spazi di Hilbert complessi

Definizione. Sia H una spazio vettoriale su \mathbb{C} con prodotto hermitiano $\langle \cdot; \cdot \rangle$, ovvero tale che

- $\langle \cdot; \cdot \rangle$ è lineare nella prima variabile
- $\langle x; x' \rangle = \overline{\langle x', x \rangle}$ ovvero è antilineare nella seconda variabile.
- $\langle x; x \rangle \ge 0$ per ogni x e vale 0 se e solo se x = 0.

Analogamente si pone $||x|| := \sqrt{\langle x; x \rangle}$. C'è un'identità di polarizzazione ma è leggermente diversa dalla versione reale.

Definizione. H si dice di Hilbert se è completo.

Esempio. Su $L^2(X;\mathbb{C})$ si mette il prodotto scalare dato da

$$\langle u; v \rangle \coloneqq \int_X u \cdot \overline{v} \, \mathrm{d}\mu.$$

Teorema. (della base di Hilbert per spazi complessi) Dato $\mathcal{F}=\{e_n\}$ sistema ortonormale in H e $x\in H$ allora per ogni n si pone¹

$$x_n = \langle x; e_n \rangle$$

Vale anche l'identità di Parseval $||x^2|| = \sum |x_n|^2$ dove $|\cdot|$ è il modulo di un numero complesso, in particolare nella versione con prodotto scalare diventa

$$\langle x, x' \rangle = \sum_{n} x_n \overline{x'_n}.$$

¹E non $\langle e_n; x \rangle$!

Capitolo 4

Serie di Fourier

Lo scopo della serie di Fourier (complessa) è di rappresentare una funzione $f: [-\pi, \pi] \to \mathbb{C}$ (o più in generale una funzione $f: \mathbb{R} \to \mathbb{C}$ 2 π -periodica) come

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

In particolare, chiamiamo i coefficienti c_n coefficienti di Fourier di f(x) e tutta l'espressione a destra serie di Fourier di f(x).

Motivazione. La rappresentazione in serie di Fourier serve ad esempio a risolvere certe equazioni alle derivate parziali ed è anche utilizzata per la "compressione dati".

Problemi.

- Come si trovano (se esistono) i coefficienti di Fourier?
- Ed in che senso la serie converge?

Osservazione. La serie appena vista è indicizzata da $-\infty$ a $+\infty$, più avanti vedremo che la definizione esatta non sarà importante ma per ora usiamo la definizione

$$\sum_{n=-\infty}^{\infty} a_n := \lim_{N \to +\infty} \sum_{n=-N}^{N} a_n$$

ed ogni tanto scriveremo anche $\sum_{n\in\mathbb{Z}}a_n$ per brevità.

Teorema 1. L'insieme $\mathcal{F} = \left\{ e_n(x) := \frac{e^{inx}}{\sqrt{2\pi}} \right\}$ è una base ortonormale di $L^2([-\pi, \pi]; \mathbb{C})$.

Da cui formalmente segue che

$$f(x) = \sum_{n \in \mathbb{Z}} \langle f; e_n \rangle \cdot e_n = \sum_{n \in \mathbb{Z}} \left(\int_{-\pi}^{\pi} f(t) \frac{e^{int}}{\sqrt{2\pi}} dt \right) \frac{e^{inx}}{\sqrt{2\pi}}$$
$$= \sum_{n \in \mathbb{Z}} \underbrace{\frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(t) e^{-int} dt \right)}_{c_n} e^{inx}$$

Definizione. Data $f \in L^2([-\pi, \pi]; \mathbb{C})$ i coefficienti di Fourier di f sono

$$c_n = c_n(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

Notiamo in particolare che è anche ben definito anche per $f \in L^1$ (anche se per ora non ci dice molto in quanto L^1 non è uno spazio di Hilbert).

Corollario. Per ogni $f \in L^2([-\pi, \pi]; \mathbb{C})$ abbiamo

- i) La serie $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converge a f in L^2 .
- ii) Vale l'identità di Parseval

$$||f||_2^2 = 2\pi \sum_{n \in \mathbb{Z}} |c_n|^2$$
 $\langle f, g \rangle = 2\pi \sum_{n \in \mathbb{Z}} c_n(f) \overline{c_n(g)}$

Osservazione. Usando la ?? ed il fatto che la convergenza in L^2 implica la convergenza quasi ovunque a meno di sottosuccessioni otteniamo che $\forall f \exists N_n \uparrow \infty$ tale che

$$\sum_{n=-N_k}^{N_k} c_n e^{inx} \xrightarrow{k} f(x) \qquad \widetilde{\forall} x \in [-\pi, \pi].$$

In particolare nel 1966 Carleson ha dimostrato che in realtà vale proprio

$$\sum_{n=-N}^{N} c_n e^{inx} \xrightarrow{N} f(x) \qquad \widetilde{\forall} x.$$

Prima di dimostrare il Teorema 1 riportiamo il teorema di Stone-Weierstrass.

Teorema (di Stone-Weierstrass.) Sia K uno spazio compatto e T_2 (essenzialmente è uno spazio metrico compatto) e sia C(K) l'insieme delle funzioni continue reali su K, mentre $C(K; \mathbb{C})$ le funzioni continue complesse su K dotate della norma del sup.

Dato $\mathcal{A} \subset C(K)$ diciamo che è una **sottoalgebra** se è uno spazio vettoriale e chiuso rispetto al prodotto e diciamo che **separa i punti** se $\forall x_1, x_2 \in K$ con $x_1 \neq x_2$ allora $\exists f \in \mathcal{A}$ tale che $f(x_1) \neq f(x_2)$.

- Caso reale: se \mathcal{A} è una sottoalgebra di C(K) che separa i punti e contiene le costanti allora $\overline{\mathcal{A}} = C(K)$.
- Caso complesso: se \mathcal{A} è una sottoalgebra di $C(K;\mathbb{C})$ che separa i punti, contiene le costanti e chiusa per coniugio allora $\overline{\mathcal{A}} = C(K;\mathbb{C})$.

Osservazioni.

- Se K = [0, 1], A = "polinomi reali" $\Longrightarrow \overline{A} = C(K; \mathbb{C}).$
- L'ipotesi di separare i punti è necessaria, se ad esempio $\exists x_1, x_2$ tali che $x_1 \neq x_2$ e per ogni f abbiamo $f(x_1) = f(x_2)$ allora varrà analogamente anche per ogni funzione nella chiusura ma le funzioni continue separano i punti.
- È anche necessario che $\mathcal{A} \supset$ "costanti", ad esempio dato $x_0 \in K$ ed $\mathcal{A} \coloneqq \{f \in C(K) \mid f(x_0) = 0\}$ abbiamo che $\overline{\mathcal{A}} = \mathcal{A} \subsetneq C(K)$.
- Anche la chiusura per coniugio è necessaria, infatti ad esempio preso $K = \{z \in \mathbb{C} \mid |z| \le 1\}$, A = "polinomi complessi", A separa i punti e contiene le costanti però \overline{A} sono solo le funzioni olomorfe su K.

In particolare, vorremmo applicare questo teorema alle funzioni 2π -periodiche ristrette a $[-\pi,\pi]$ che però non verificano la separazione dei punti in quanto per la periodicità $f(-\pi) = f(\pi)$. Nel seguente corollario vediamo come possiamo estendere leggermente il teorema passando ai quozienti topologici.

Corollario. Sia \mathcal{A} una sottoalgebra di C(K) (o analogamente per $C(K;\mathbb{C})$) che contiene le costanti (e nel caso complesso anche chiusa per coniugio). Definiamo la relazione di equivalenza $x_1 \sim x_2$ se $f(x_1) = f(x_2)$ per ogni $f \in \mathcal{A}$. Allora,

$$\overline{\mathcal{A}} = \{ f \in C(K) \mid f(x_1) = f(x_2) \text{ se } x_1 \sim x_2 \}.$$

Dimostrazione Corollario. È chiaro che $\mathcal{A} \subset X \coloneqq \{f \in C(K) \mid K \xrightarrow{g} \mathbb{C} \}$ in modo che $g = \widetilde{g} \circ \pi$. Osserviamo che K/\sim è compatto e T_2 in \widetilde{f} in $\widetilde{f$ e che $\tilde{\mathcal{A}}=\{\tilde{f}\colon f\in\mathcal{A}\}$ soddisfa le ipotesi del teorema di Stone-

Weierstrass, quindi $\overline{\tilde{A}} = C(K/\sim; \mathbb{C})$, quindi per ogni $g \in X$ esiste una successione $\widetilde{g}_n \in \widetilde{\mathcal{A}}$ tale che $\widetilde{g}_n \to \widetilde{g}$ uniformemente e quindi $g_n \to g$ uniformemente.

Dimostrazione Teorema 1. Vogliamo vedere che

i) \mathcal{F} è un sistema ortonormale.

Dimostrazione. Basta calcolare $\langle e_n; e_m \rangle$ per ogni $n, m \in \mathbb{Z}$

$$\langle e_n; e_m \rangle = \int_{-\pi}^{\pi} \frac{e^{inx}}{\sqrt{2\pi}} \cdot \frac{\overline{e^{inx}}}{\sqrt{2\pi}} dx = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 dx = 1 & \text{se } n = m \\ \frac{1}{2\pi} \left[\frac{e^{i(n-m)x}}{i(n-m)} \right]_{-\pi}^{\pi} = 0 & \text{se } n \neq m \end{cases}$$

ii) \mathcal{F} è completo.

Dimostrazione. Questo punto richiede il teorema di Stone-Weierstrass.

Consideriamo

$$\mathcal{A} = \operatorname{Span}_{\mathbb{C}}(\mathcal{F}) = \left\{ \sum_{n} a_n e^{inx} \right\} = \{ p(e^{inx}) \mid p \text{ polinomio a esponenti interi} \}.$$

Segue che \mathcal{A} è una sottoalgebra che separa i punti di K tranne $-\pi$ e π ed è chiusa per coniugio.

Per il corollario $\overline{\mathcal{A}}^C = \{ f \in C([-\pi, \pi]; \mathbb{C}) \mid f(-\pi) = f(\pi) \}$. Dato che la convergenza uniforme implica la convergenza in L^2 per spazi di misura finita, abbiamo:

$$\overline{\mathcal{A}}^{L^2} \supseteq \{ f \in C([-\pi, \pi]; \mathbb{C}) \mid f(-\pi) = f(\pi) \}.$$

Inoltre, $\overline{\mathcal{A}}^{L^2} \supseteq \{f \in C([-\pi, \pi]; \mathbb{C})\}$ in quanto, una $f \in C([-\pi, \pi]; \mathbb{C})$ può essere approssimata in L^2 tramite funzioni f_n che coincidono in $\{-\pi, \pi\}$. Definiamo $f_n = f \cdot \varphi_n$, dove le

 $^{^1}$ Notiamo che la topologia su $\mathcal A$ è quella data dalla norma del sup delle funzioni continue quindi la chiusura è rispetto a tale norma e la indichiamo con $\overline{\mathcal{A}}^{C}$.

 φ_n sono tali che $\varphi_n(-\pi) = \varphi_n(\pi) = 0$, $\varphi_n = 1$ su $[1/n - \pi, \pi - 1/n]$; notiamo che $f_n \to f$ in L^2 .

[TODO: Disegnino delle φ_n]

Infine poiché le funzioni continue sono dense in L^2 segue che $\overline{\mathcal{A}}^{L^2} = L^2$.

Esempio (calcolo coefficienti di Fourier).

•
$$\cos x = \frac{e^{ix} - e^{-ix}}{2} = \frac{1}{2}e^{ix} + \frac{1}{2}e^{-ix}$$
, allora $c_n = \begin{cases} \frac{1}{2} & n = \pm 1\\ 0 & \text{altrimenti} \end{cases}$

•
$$(\sin x)^2 = (\frac{e^{ix} - e^{-ix}}{2i})^2 = \frac{1}{4}e^{2ix} + \frac{1}{2} - \frac{1}{4}e^{-2ix}$$
, allora $c_n = \begin{cases} -\frac{1}{4} & n = \pm 2\\ \frac{1}{2} & n = 0\\ 0 & \text{altrimenti} \end{cases}$.

•
$$f(x) = x, c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0$$
. Per $n \neq 0$:

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} dx = \frac{1}{2\pi} \left| \frac{x e^{-inx}}{-in} \right|_{\pi}^{\pi} - \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} dx = \frac{(-1)^n i}{n}.$$

Calcoliamo ora $\sum_{n\in\mathbb{Z}}|c_n|^2$. Valgono le uguaglianze

$$\sum_{n \in \mathbb{Z}} |c_n|^2 i = 2 \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

$$\sum_{n \in \mathbb{Z}} |c_n|^2 i = \frac{1}{2\pi} \|x\|_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{2\pi} \cdot \frac{\pi^3}{3} = \frac{\pi^2}{3}.$$

Dunque
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^3}{6}$$
.

4.1 Regolarità di f e dei coefficienti

Proposizione 1. Data $f \in [-\pi, \pi] \to \mathbb{C}$ tale che

(R) $f \in C^1$ (basta f continua e C^1 a tratti).

(CB)
$$f(-\pi) = f(\pi)$$
.

Allora $c_n(f') \stackrel{(\star)}{=} in \ c_n(f)$.

Derivazione formale della formula

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{inx} \xrightarrow{\text{derivata}} f'(x) = \sum_{n \in \mathbb{Z}} in \ c_n e^{inx}$$

Dimostrazione. Vale quanto segue

$$c_{n}(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)' e^{-inx} dx$$

$$= \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)' e^{-inx} dx}_{\text{int. per parti}} \underbrace{\frac{1}{2\pi} \underbrace{\int_{-\pi}^{\pi} f(x) e^{-inx} dx}_{-\pi}}_{f(x)} - \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) (-in) e^{-inx} dx}_{-\pi} dx$$

$$= (in) \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = in \ c_{n}(f).$$

Esercizio. Trovare l'analogo della formula della derivata nel caso di cui non valga la condizione al bordo (CB). [TO DO]

Osservazione. In verità, basta ancora meno. Possiamo riformulare la Proposizione 1 come segue.

Proposizione 1'. Data $f: [-\pi, \pi] \to \mathbb{C}$ tale che

(R') f è continua.

(CB) esiste
$$g \in L^1([-\pi, \pi], \mathbb{C})$$
 tale che $f(x) = f(-\pi) + \int_{-\pi}^x g(t) dt$.

Allora la formula (\star) diventa $c_n(g) = in \ c_n(f)$.

Proposizione 2. Data f come nella Proposizione 1, valgono le seguenti

i)
$$\sum_{n \in \mathbb{Z}} n^2 |c_n(f)|^2 = \frac{\|f'\|_2^2}{2\pi} < +\infty.$$

ii)
$$\sum_{n\in\mathbb{Z}} |n|^{\alpha} |c_n(f)| < +\infty$$
 per ogni $\alpha < 1/2$.

iii) La serie di Fourier converge ¹totalmente.

Dimostrazione.

i)
$$\sum_{n \in \mathbb{Z}} n^2 |c_n(f)|^2 = \sum_{n \in \mathbb{Z}} |c_n(f')|^2 = \|f' \in L^1([-\pi,\pi],\mathbb{C}) \subset L^2([-\pi,\pi],\mathbb{C})$$

ii)
$$\sum_{n\in\mathbb{Z}}|n|^{\alpha}\left|c_{n}(f)\right|\underset{(n\neq0)}{\leq}\sum_{n\in\mathbb{Z}}|n|\left|c_{n}(f)\right|\cdot\frac{1}{\left|n\right|^{1-\alpha}}\underset{\text{C-S per }\ell^{2}}{\underbrace{\left(\sum_{n\in\mathbb{Z}}|n|^{2}\left|c_{n}(f)\right|^{2}\right)^{1/2}}}\cdot\underbrace{\left(\sum_{n\in\mathbb{Z}}\frac{1}{\left|n\right|^{2-2\alpha}}\right)^{1/2}}_{<\infty}<+\infty.$$

iii) Dal punto precedente con
$$\alpha = 0$$
 otteniamo $\sum \|c_n(f)e^{inx}\|_{\infty} = \sum_{n \in \mathbb{Z}} |c_n(f)| < +\infty.$

 $^{1 \}sum a_n(x)$ converge totalmente se converge la serie $\sum ||a_n(x)||_{\infty}$.

Proposizione 3. Data $f \in [-\pi, \pi] \to \mathbb{C}$ tale che

 (R_k) $f \in C^k$ (oppure $f \in C^{k-1}$ e $D^{k-1}f$ è C^1 a tratti).

$$(CB_{k-1})$$
 $D^h f(-\pi) = D^h f(\pi)$ per $h = 0, 1, \dots, k-1$.

Allora

i) $c_n(D^h f) = (in)^h c_n(f)$ per ogni $n \in \mathbb{Z}$ per ogni $h = 1, \dots, k$.

ii)
$$\sum |n|^{2k} |c_n(f)|^2 \le \frac{\|D^k f\|_2^2}{2\pi} < +\infty.$$

- iii) $\sum_{n \in \mathbb{Z}} |n|^{\alpha} |c_n(f)| < +\infty$ per ogni $\alpha < k 1/2$.
- iv) La serie di Fourier di f converge totalmente con tutte le derivate fino all'ordine k-1.

Proposizione 4. Se f è continua e $\sum_{n\in\mathbb{Z}} |n|^{k-1} |c_n(f)| < +\infty$ allora $f \in C^{k-1}$ e soddisfa (CB_{k-1}) .

Dimostrazione. Preso $h = 0, 1, \dots, k-1$ vale

$$D^{h}(c_{n}(f)e^{inx}) = c_{n}(f)(in)^{h}e^{inx}$$
$$||D^{h}(c_{n}(f)e^{inx})|| = |c_{n}(f)| |n|^{h} \le |c_{n}(f)| |n|^{k-1}.$$

Dunque $\sum D^h \left(c_n(f) e^{inx} \right)$ converge totalmente e quindi uniformemente per ogni $h \leq k-1$ ad $\tilde{f} : [-\pi, \pi] \to \mathbb{C}$ di classe C^{k-1} . Ma

$$\frac{1}{\sqrt{2\pi}} \left\| \sum_{-N}^{N} c_n e^{inx} - \tilde{f}(x) \right\|_2 \le \left\| \sum_{-N}^{N} c_n e^{inx} - \tilde{f}(x) \right\|_{\infty} \xrightarrow{N \to +\infty} 0.$$

Ma $\sum c_n e^{inx} \to \tilde{f}$ uniformemente, allora $\sum_{-N}^{N} c_n e^{inx} \to \tilde{f}$ in L^2 . Allora $f = \tilde{f}$ nel senso L^2 .

Siccome f, \tilde{f} sono continue e coincidono quasi ovunque, vale $f = \tilde{f}$. Abbiamo usato il lemma

Lemma. Date f, \tilde{f} continue e $f(x) = \tilde{f}(x)$ per quasi ognix, allora $f(x) = \tilde{f}(x)$ per ognix. \square

Osservazione. $f \in C^{k-1}([-\pi, \pi]) + (CB_{k-1})$ se solo se f è la restrizione a $[-\pi, \pi]$ di una funzione 2π -periodica e C^{k-1} .

4.2 Convergenza puntuale della serie di Fourier

Teorema. Data $f \in L^1([-\pi, \pi], \mathbb{C})$ (estesa in modo 2π -periodico a tutto \mathbb{R}) tale che esiste $\overline{x} \in \mathbb{R}$ ed esiste $\alpha > 0$ tale che $f \in \alpha$ -Holderiana in \overline{x} , cioè esiste $\delta > 0$, $M < +\infty$ per cui

$$|f(\overline{x}+t)-f(\overline{x})| \le M |t|^{\alpha} \qquad \forall t \colon |t| < \delta \Longleftrightarrow \limsup_{t \to 0} \frac{|f(\overline{x}+t)-f(\overline{x})|}{|t|^{\alpha}} < +\infty.$$

Allora
$$\sum_{-\infty}^{\infty} c_n(f)e^{in\overline{x}}$$
 converge a $f(\overline{x})$. Cioè $\sum_{-N}^{N} c_n(f)e^{in\overline{x}} \xrightarrow{N \to \infty} f(\overline{x})$

Lavoro preparatorio: rappresentare somme parziali di serie di Fourier con "convoluzione": Data $f \in L^1([-\pi, \pi], \mathbb{C}), N = 1, 2, \dots$ (estesa a funzioni 2π -periodiche su \mathbb{R}).

$$S_N f(x) := \sum_{-N}^{N} c_n e^{inx}$$

Riscriviamo

$$S_N f(x) := \sum_{-N}^{N} c_n e^{inx} = \sum_{-N}^{N} \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(y) e^{-iny} \, dy \right) e^{inx}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{n=-N}^{N} e^{in(x-y)} \right) \, dy.$$

Poniamo $D_N(z) := \sum_{n=-N}^N e^{inz}$ che si definisce **nucleo di Dirichlet**. Allora

$$S_N f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x - y) \, dy = \frac{1}{2\pi} \int_{x - \pi}^{x + \pi} f(x - t) D_N(t) \, dt$$

$$\stackrel{(\star)}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_N(t) \, dt$$

Dove (\star) è il seguente lemma.

Lemma. Se g è T-periodica e $g \in L^1([-\pi, \pi], \mathbb{C})$, allora

$$\int_0^T g(\tau) d\tau = \int_c^{c+T} g(\tau - s) d\tau \quad \forall s \, \forall c.$$

Ne segue che

$$S_N f(x) := \sum_{-N}^{N} c_n(f) e^{inx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_N(t) dt$$

dove

$$D_N(t) = \sum_{-N}^{N} e^{int} = \frac{\sin((N+1/2)t)}{\sin(t/2)}.$$

Infatti,

$$D_N(t) = \sum_{-N}^{N} e^{int} = \sum_{-N}^{N} (e^{it})^n = e^{-iNt} \cdot \sum_{n=0}^{2N} (e^{it})^n$$

$$= \frac{e^{-i(N+1/2)t}}{e^{-it/2}} \cdot \frac{e^{(2N+1)it} - 1}{e^{it} - 1} = \frac{e^{(N+1/2)it} - e^{-(N+1/2)it}}{e^{it/2} - e^{-it/2}}$$

$$= \frac{\sin((N+1/2)t)}{\sin(t/2)}.$$

Il seguente lemma riassume quanto detto finora.

Lemma. (di rappresentazione di $S_n f$ come convoluzione) Data $f \in L^1([-\pi, \pi; \mathbb{C}])$ (estesa a funzioni 2π -periodiche su \mathbb{R}) vale Ricapitolando data f come sopra abbiamo visto che

$$S_N f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_N(t) dt$$
 $\operatorname{con} D_N(t) := \sum_{n = -N}^{N} e^{int} = \frac{\sin\left(\left(N + \frac{1}{2}\right)t\right)}{\sin\left(\frac{t}{2}\right)}$

Osservazione. In particolare: $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) dt = 1.$

Lemma. (di Riemann-Lebesgue (generalizzato)). Data $g \in L^1(\mathbb{R})$ e $h \in L^{\infty}(\mathbb{R})$ con h T-periodica, allora

$$\int_{\mathbb{R}} g(x)h(yx) dx \xrightarrow{y \to \pm \infty} \underbrace{\left(\int_{\mathbb{R}} g(x) dx\right)}_{a} \underbrace{\left(\int_{0}^{T} h(x) dx\right)}_{m}$$

Dimostrazione. Per ogni s,y poniamo $\Phi(y,s) \coloneqq \int_{\mathbb{R}} g(x)h(yx+s)\,\mathrm{d}x$ con $s,y\in\mathbb{R}$. Dunque, vogliamo dimostrare che $\Phi(y,0) \xrightarrow{y\to\pm\infty} am$. Vedremo che valgono le seguenti

i)
$$\forall y \ \int_0^T \Phi(y, s) \, \mathrm{d}s = am.$$

ii)
$$\forall s \ \Phi(y,s) - \Phi(y,0) \xrightarrow{y \to \pm \infty} 0$$
.

da cui segue subito che

$$\Phi(y,0) - ma = \int_0^T \Phi(y,0) - \Phi(y,s) \, \mathrm{d}s \xrightarrow{y \to \pm \infty} 0$$

per convergenza dominata; dove dalla ii) segue la convergenza puntuale e come dominazione usiamo

$$\Phi(y,0) - \Phi(y,s) \le 2 \|g\|_1 \|h\|_{\infty}$$

Mostriamo ora i due punti.

i) Esplicitiamo e applichiamo Fubini-Tonelli

$$\int_{0}^{T} \Phi(y,s) \, ds = \int_{0}^{T} \int_{\mathbb{R}} g(x)h(yx+s) \, dx \, ds = \int_{\mathbb{R}} \underbrace{\int_{0}^{T} h(yx+s) \, ds}_{m} \cdot g(x) \, dx$$

$$= m \int_{\mathbb{R}} g(x) \, dx = ma$$

e possiamo usare Fubini-Tonelli in quanto

$$\int_{\mathbb{R}} \int_{0}^{T} |h(yx - s)| \, ds \cdot |g(x)| \, dx \le \int_{\mathbb{R}} ||h||_{\infty} |g(x)| \, dx = ||h||_{\infty} \cdot ||g||_{1}.$$

ii) Notiamo che

$$\Phi(y,s) = \int_{\mathbb{R}} g(x)h\left(y\left(x+s/y\right)\right) dx = \begin{pmatrix} t = x+s/y \\ dt = dx \end{pmatrix} = \int_{\mathbb{R}} g\left(t-s/y\right)h(yt) dt$$

$$\Longrightarrow \Phi(y,s) - \Phi(y,0) = \int_{\mathbb{R}} \left(g\left(t-\frac{s}{y}\right) - g(t)\right)h(yt) dt$$

$$\Longrightarrow |\Phi(y,s) - \Phi(y,0)| = \int_{\mathbb{R}} |\tau_{s/y}g - g| \cdot |h(yt)| dt \le \left\|\tau_{s/y}g - g\right\|_{1} \cdot \|h\|_{\infty} \xrightarrow{y \to \pm \infty} 0.$$

Dimostrazione del Teorema.

$$S_N f(\bar{x}) - f(\bar{x}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\bar{x} - t) D_N(t) dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\bar{x}) D_N(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(\bar{x} - t) - f(\bar{x})) D_N(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(\bar{x} - t) - f(\bar{x})}{\sin \frac{t}{2}} \sin \left(\left(N + \frac{1}{2} \right) t \right) dt$$

$$= \int_{-\pi}^{\pi} g(t) \cdot \sin \left(\left(N + \frac{1}{2} \right) t \right)$$

Applicando il Lemma di Riemann-Lebesgue otteniamo:

$$S_N f(\bar{x}) - f(\bar{x}) \xrightarrow{N \to +\infty} \left(\int g(x) dx \right) \cdot \int_0^{\pi} \sin x dx = 0.$$

In particolare, per applicare il lemma serve $g \in L^1([-\pi, \pi])$; ma infatti per $|t| \leq \delta$

$$|g(t)| \le \frac{|f(\bar{x}-t)-f(\bar{x})|}{|\sin\frac{t}{2}|} \le \frac{M|t|^{\alpha}}{|t|/\pi} = \frac{M\pi}{|t|^{1-\alpha}} \in L^1([-\delta,\delta]).$$

Invece per $\delta \leq |t| \leq \pi$ basta

$$|g(t)| \le \frac{|f(\bar{x} - t)| + |f(\bar{x})|}{\sin \frac{\delta}{2}} \in L^1([-\pi, \pi]).$$

Proposizione. Data $f \in L^1([-\pi, \pi])$ estesa per periodicità e dato \bar{x} tale che esistano i limiti a destra e sinistra di f in \bar{x} detti L^+ e L^- ed f α -Hölderiana a sinistra e destra si può vedere che vale

$$S_N f(\bar{x}) \xrightarrow{N} \frac{L^+ + L^-}{2}.$$

Capitolo 5

Applicazioni della serie di Fourier

5.1 Equazione del calore

Sia Ω un aperto di \mathbb{R}^d e $u(t,x)\colon [0,T)\times\Omega\to\mathbb{R}$ e chiamiamo x la variabile spaziale e t la variabile temporale. In dimensione 3 l'insieme Ω rappresenta un solido di materiale conduttore omogeneo e u(t,x) rappresenta la temperatura in x all'istante t. Dunque u risolve l'equazione del calore

$$u_t = c \cdot \Delta u$$

dove con u_t indichiamo la derivata parziale di u rispetto al tempo, c è una costante fisica che porremo uguale ad 1 e Δu è il laplaciano rispetto alle dimensioni spaziali ovvero

$$\Delta u = \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} = \operatorname{div}(\nabla_x u).$$

Vedremo che la soluzione di $u_t = \Delta u$ esiste ed è unica specificando $u(0, \cdot) = u_0$ condizione iniziale con $u_0: \Omega \to \mathbb{R}$ data e delle condizioni al bordo come ad esempio

- Condizioni di Dirichlet: $u = v_0$ su $[0,T) \times \partial \Omega$ con v_0 funzione fissata. Possiamo pensare come fissare delle sorgenti di calore costanti sul bordo.
- Condizioni di Neumann: $\frac{\partial u}{\partial \nu}$ con ν direzione normale al bordo. Essenzialmente ci sta dicendo che non c'è scambio di calore con l'esterno.

In particolare scriveremo

$$\begin{cases} u_t = \Delta u & \text{su } \Omega \\ u(0,\,\cdot\,) = u_0 \\ \text{Una delle condizioni al bordo su } \partial\Omega \dots \end{cases}$$

5.2 Risoluzione dell'equazione del calore (su \mathbb{S}^1)

Come conduttore consideriamo un anello di materiale omogeneo e sottile che parametrizziamo con $[-\pi, \pi]$. Dunque consideriamo $u: [0, T) \times [-\pi, \pi] \to \mathbb{R}$ con le condizioni

$$\begin{cases} u_t = u_{xx} \\ u(\cdot, \pi) = u(\cdot, -\pi) \\ u_x(\cdot, \pi) = u_x(\cdot, -\pi) \\ u(0, \cdot) = u_0 \end{cases}$$
(P)

in particolare la (ii) e la (iii) condizione non sono né quelle di Dirichlet né di Neumann, sono delle condizioni che effettivamente ci dicono che siamo "su \mathbb{S}^1 "; invece l'ultima è la condizione iniziale ed u_0 è data.

5.2.1 Risoluzione formale

Scriviamo u in serie di Fourier rispetto a x cioè

$$u(t,x) = \sum_{n \in \mathbb{Z}} c_n e^{inx}$$

con $c_n := c_n(u(t, \cdot))$ da cui derivando formalmente dentro le sommatorie otteniamo che u_t e u_{xx} sono

$$\sum_{n \in \mathbb{Z}} \dot{c}_n(t)e^{inx} = u_t = u_{xx} = \sum_{n \in \mathbb{Z}} -n^2c_n(t)e^{inx}$$
$$u_t = u_{xx} \iff \dot{c}_n(t) = -n^2c_n(t) \ \forall n \ \forall t \quad e \quad u(0, \cdot) = u_0 \iff c_n(0) = c_n(u_0) \eqqcolon c_n^0$$

Dunque risolvere (??) equivale per ogni n che c_n che risolva il problema di Cauchy dato da

$$\begin{cases} \dot{y} = -n^2 y \\ y(0) = c_n^0 \end{cases} \tag{P'}$$

con soluzione $y(t) = \alpha e^{-n^2 t}$ cioè $c_n(t) = c_n^0 e^{-n^2 t}$ e quindi abbiamo

$$u(t,x) = \sum_{n \in \mathbb{Z}} c_n^0 e^{-n^2 t} e^{inx} \tag{*}$$

Studiando questa soluzione formale possiamo fare le seguenti osservazioni che poi diventeranno dei teoremi

- La soluzione esiste per $t \in [0, +\infty)$ ed è molto regolare per t > 0Vedremo che la soluzione formale è proprio una soluzione al problema per $t \geq 0$, in particolare il termine $e^{-n^2t} \to 0$ in modo più che polinomiale ed infatti vedremo che la soluzione sarà proprio C^{∞} per t > 0.
- La soluzione è unica

Tutti i problemi di Cauchy per i coefficienti $c_n(t)$ hanno un'unica soluzione dunque anche la soluzione u è unica.

¹Bastano solo queste condizioni sulla funzione e sulla sua derivata perché intuitivamente le altre seguono applicando la (i).

• In generale non esiste soluzione nel passato. Se il numero di coefficienti $c_n^0 \neq 0$ è infinito allora il termine $e^{-n^2t} \to +\infty$ molto velocemente per t < 0 e la serie diverge.

Teorema 1 (Esistenza e Regolarità).

Se $u_0: [-\pi, \pi] \to \mathbb{C}$ (presa in L^2) è tale che $\sum_{n \in \mathbb{Z}} |c_n^0| < +\infty$ (ad esempio se $u_0 \in C^1$ ed è 2π -periodica) allora

$$u(t,x) = \sum_{n \in \mathbb{Z}} \underbrace{c_n^0 e^{-n^2 t} e^{inx}}_{u_n(t,x)}$$

definisce una funzione $u: [0, +\infty) \times \mathbb{R} \to \mathbb{C}$ tale che

- i) $u \approx 2\pi$ -periodica in x ed \approx reale se $u_0 \approx$ reale.
- ii) u è continua.
- iii) $u \in C^{\infty}$ su $(0, +\infty) \times \mathbb{R}$.
- iv) Risolve (??). In particolare vale $u_{tt} = u_{xx}$ e valgono le condizioni di periodicità per t > 0; e infine vale $u(0, \cdot) = u_0$ su $[-\pi, \pi]$.

Vediamo alcuni lemmi tecnici preparatori e sia R un rettangolo di \mathbb{R}^d ovvero prodotto di intervalli con estremi aperti o chiusi.

Lemma 4. Date $v_n: R \to \mathbb{C}$ di classe C^k con $k = 1, 2, \ldots, +\infty$ tali che

- $v_n \to v$ uniformemente.
- $\forall \underline{h} = (h_1, \dots, h_d) \in \mathbb{N}^d$ con $|\underline{h}| := h_1 + \dots + h_d \le k$ (se $k = +\infty$ allora basta $|\underline{h}| < +\infty$) posto

$$D^{\underline{h}} v_n := \frac{\partial^k}{\partial x_1^{h_1} \cdots \partial x_d^{h_d}} v_n$$

 $D^{\underline{h}} v_n \to D^{\underline{h}} v$ converge uniformemente.

allora $v \in C^k$ e $D^{\underline{h}}v = \lim_n D^{\underline{h}}v_n$.

Dimostrazione. Si parte dal caso d=1 e k=1 e si procede per induzione. [TODO: Esercizio]

Corollario. 5 Date $u_n: R \to \mathbb{C}$ di classe C^k con $k = 1, \ldots, +\infty$ tali che

allora $u := \sum_n u_n$ è una funzione ben definita su R e C^k e $D^{\underline{h}}u = \sum_n D^{\underline{h}}u_n$ per ogni \underline{h} con $|\underline{h}| \le k$.

Lemma. 6 Data $u: R \to \mathbb{C}$ e rettangoli $R_i \subset R$ relativamente aperti in R tali che $u \in C^k$ sugli R_i per ogni i allora $u \in G^k$ su $\widetilde{R} := \bigcup_i R_i$.

Dimostrazione. Intuitivamente essere C^k è una proprietà locale ma preso $x \in R \implies \exists i \ x \in R_i$ e dunque segue per l'ipotesi sugli R_i .

Lemma. 7 Data $f \in L^2((-\pi, \pi); \mathbb{C})$

$$f$$
 è reale q.o. $\iff c_{-n}(f) = \overline{c_n(f)}$

Osservazione. Notiamo che se $f \in L^1$ la freccia \leftarrow è molto più difficile.

Dimostrazione Teorema 1.

- i) u_0 reale $\implies c_{-n}^0 = \overline{c_n^0} \implies c_{-n}^0 e^{-(-n)^2 t} = \overline{c_n^0 e^{-n^2 t}} \iff c_{-n}(u(t,\cdot)) = \overline{c_n(u(t,\cdot))}$.
- ii) Sia $R:=[0,+\infty)\times\mathbb{R},\ \|u_n\|_{L^\infty(R)}=\left\|c_n^0e^{-n^2t}\right\|_{L^\infty(R)}=|c_n^0|$ dunque $\sum_{n\in\mathbb{Z}}u_n$ converge totalmente su R e quindi u è ben definita e continua su R.
- iii) Presi h, k = 0, 1, 2, ... se proviamo a calcolare $D_t^h D_x^k u_n = c_n^0 (-n)^{2h} (in)^k e^{-n^2 t} e^{inx}$ vediamo non si riesce a stimare per $t \to 0$ infatti

$$\left\| D_t^h D_x^k u_n \right\|_{L^{\infty}(R)} = |c_n^0| \cdot |n|^{2h+k} \xrightarrow{n} \infty.$$

Serve prendere $\delta>0$ e sia $R_\delta\coloneqq(\delta,+\infty)\times\mathbb{R}$

$$\left\|D_t^h D_x^k u_n\right\|_{L^{\infty}(R_{\delta})} = |c_n^0| \cdot |n|^{2h+k} e^{-n^2 \delta}$$

in particolare per ogni h, k abbiamo che $|n|^{2h+k}e^{-n^2\delta} \xrightarrow{n} 0 \implies |n|^{2h+k}e^{-n^2\delta} \le m_{h,k} \implies \|D_t^h D_x^k u_n\|_{L^{\infty}(R_{\delta})} \le m_{h,k} \cdot |c_n^0|$ e quindi $\sum_n D_t^h D_x^k u_n$ converge totalmente su R_{δ} .

Quindi $u \in C^{\infty}$ su R_{δ} per ogni $\delta > 0$ e siccome R_{δ} è aperto in R per il Lemma. 6 $u \in C^{\infty}$ su $\bigcup_{\delta > 0} R_{\delta} = (0, +\infty) \times \mathbb{R}$.

iv) Essendo che u è 2π -periodica in x, valgono le condizioni al bordo; inoltre u_0 e $u(0,\cdot)$ hanno gli stessi coefficienti di Fourier, dunque $u_0 = u(0,\cdot)$ quasi ovunque, ma essendo continue vale $u_0 = u(0,\cdot)$ su $[-\pi,\pi]$; infine, $(u_n)_t = (u_n)_{xx} \implies \sum (u_n)_t = \sum (u_n)_{xx} \implies u_t = u_{xx}$ per t > 0.

Ora enunciamo il teorema di unicità, vogliamo un teorema con il minor numero di ipotesi possibile e che ci dà più informazioni; quindi in questo caso cerchiamo la più grande famiglia di funzioni (quindi la meno regolare possibile) sulla quale vale l'unicità della soluzione.

Teorema. 2 (Unicità) Sia $u: [0,T) \times [-\pi,\pi] \to \mathbb{C}$ continua, C^1 nel tempo e C^2 nello spazio per t>0. Se u risolve $(\ref{eq:continuous})$ su t>0 allora u è unica.

Definizione. Dato R un rettangolo e $u: R \to \mathbb{C}$ diciamo che $u \in C^k$ nella variabile x_i se $\left(\frac{\partial}{\partial x_i}\right)^h u$ esiste per $h = 1, \dots, k$ ed è continua su R.

Lemma. 8 Data $u: I \times [-\pi, \pi] \to \mathbb{C}$ di classe C^k in $t \implies c_n(D_t^h u(t, \cdot)) = D_t^h c_n(u(t, \cdot))$ per $h \le k$.

Dimostrazione.

$$c_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(t, x) e^{-inx} dx \implies \dot{c}_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u_t(t, x) e^{-inx} dx = c_n(u_t(t, \cdot))$$

per il teorema di derivazione sotto il segno di integrale (Analisi 2?)

Dimostrazione Teorema 2. Poniamo $c_n(t) := c_n(u(t, \cdot))$. Sappiamo che per t > 0 vale $\dot{c}_n(t) \stackrel{(*)}{=} c_n(u_t(t, \cdot)) \stackrel{(**)}{=} c_n(u_{xx}(t, \cdot)) = -n^2 c_n(t)$, dove (*) segue dal Lemma 8 e (**) segue dalla regolarità dei coefficienti. Dunque i coefficienti c_n risolvono il problema di Cauchy

$$\begin{cases} \dot{y} = -n^2 y \\ y(0) = c_n^0 \end{cases}$$

che ha un'unica soluzione.

Nota. Sia $y: [0,T) \to \mathbb{R}^k$ funzione continua su [0,T) e derivabile su (0,T) che risolve l'equazione differenziale ordinaria $\dot{y} = f(t,y)$ su (0,T) con $f: [0,T) \times \mathbb{R}^k \to \mathbb{R}^k$ continua. Allora y è \mathcal{C}^1 su [0,T) e risolve $\dot{y} = f(t,y)$ su [0,T).

Dalla nota sopra otteniamo che c_n è unico.

Notazione. $C_{per}^k = \{f : \mathbb{R} \to \mathbb{C} \text{ π-periodiche e } C^k \}.$

Teorema 3 (di non esistenza nel passato). Esiste $u_0 \in \mathcal{C}_{per}^{\infty}$ tale che per ogni $\delta > 0$ non esiste $u: (-\delta, 0] \times [-\pi, \pi] \to \mathbb{C}$ soluzione di (??) (u continua, \mathcal{C}^1 in t e \mathcal{C}^2 in x per t < 0)

Dimostrazione. Sia u su $(-\delta, 0) \times [-\pi, \pi]$ un'eventuale soluzione. Sia $c_n(t)$ al solito. Dalla dimostrazione del Teorema 2 abbiamo che c_n risolve (??).

Quindi $c_n(t) = c_n^0 e^{-n^2 t}$. Scelgliamo c_n^0 (cioè u_0) in modo che

- $c_n^0 = O(|n|^{-a})$ per $n \to \pm \infty$ per ogni a > 0. $(\Rightarrow \sum |n|^k |c_n^0| < +\infty \ \forall k \Rightarrow u_0 \in \mathcal{C}_{per}^{\infty})$.
- $c_n^0 e^{-n^2 t} \to 0$ per ogni t < 0.

Con un tale c_n^0 la soluzione non esiste al tempo t. Infatti, se per assurdo esistesse, i coefficienti di Fourier $c_n(t)$ sarebbero quadrato sommabili, ovvero dovrebbero tendere a zero f.

Prendiamo
$$c_n^0 = e^{-|n|}$$
.

Esercizio. Dato u_0 sia T_* il massimo T per cui (??) ammette soluzione su $(-T,0] \times [-\pi,\pi]$. Caratterizzare T_* in termini del comportamento asintotico di c_n^0 per $n \to \pm \infty$.

Suggerimento. Guardare $\log(|c_n^0|)/n^2$.

5.3 Equazione delle onde

Sia $\Omega \subset \mathbb{R}^d$ aperto, I intervallo temporale, $u: I \times \overline{\Omega} \to \mathbb{R}$, l'equazione delle onde è

$$u_{tt} = v^2 \nabla u = \nabla_x u = \sum_{i=1}^d \frac{\partial^2 u}{\partial x_i^2}$$

dove v si chiama velocità di propagazione.

La soluzione è univocamente determinata specificando

- Le condizioni al bordo (come per il calore), ad esempio quelle di Dirichlet: $u = v_0$ su $I \times \partial \Omega$ oppure di Neumann: $\partial u/\partial \nu = 0$ su $I \times \partial \Omega$.
- Condizioni iniziali: $u(0,\cdot) = u_0, u_t(0,\cdot) = u_1.$

Esempio 1. Per d=1, $\Omega=[0,1]$ rappresenta una sbarra sottile di materiale elastico. La sbarra è soggetta a vibrazioni longitudinali (onde sonore). La funzione u(t,x) rappresenta lo spostamento dalla posizione di riposo x al tempo t. In tal caso, l'equazione delle onde è

$$u_{tt} = v^2 u_{xx}$$
.

Esempio 2. Per d=2, Ω rappresenta una sbarra sottile di materiale elastico che vibra trasversalmente. La funzione u(t,x) rappresenta lo spostamento verticale del punto di coordinata

$$u_{tt} = v^2 \nabla v$$
.

5.4 Risoluzione dell'equazione delle onde

Consideriamo il caso uno dimensionale. In tal caso l'equazione delle onde è la seguente.

$$\begin{cases} u_{tt} = v^2 u_{xx} \\ u(\cdot, \pi) = u(\cdot, -\pi) \\ u_x(\cdot, \pi) = u_x(\cdot, -\pi) \\ u(0, \cdot) = u_0 \\ u_t(0, \cdot) = u_1 \end{cases}$$
 (P)

5.4.1 Risoluzione formale

Scriviamo $u(t,x) = \sum_{n \in \mathbb{Z}} c_n(t)e^{inx}$. Deriviamo in t e due volte in x.

$$u_{tt} = \sum_{n \in \mathbb{Z}} \ddot{c}_n e^{inx}$$
$$u_{xx} = \sum_{n \in \mathbb{Z}} -v^2 n^2 c_n e^{inx}$$

Abbiamo che

$$u_{tt} = v^2 u_{xx} \iff \ddot{c}_n = -v^2 n^2 c_n$$

$$u(0,\cdot) = u_0 \iff c_n(0) = c_n^0 \coloneqq c_n(u_0) \qquad u_t(0,\cdot) = u_1 \iff \dot{c}_n(0) = c_n^1 \coloneqq c_n(u_1)$$

Quindiurisolve $(\ref{eq:constraint})$ se solo se per ogni $n,\,c_n$ risolve

$$\begin{cases} \ddot{y} = -n^2 v^2 y \\ y(0) = c_n^0 \\ \dot{y}(0) = c_n^1 \end{cases}$$
 (P')

Dunque,

- Per $n=0, \ddot{y}=0$ se solo se y è un polinomio di primo grado, ovvero $c_0(t)=c_0^0+c_0^1t$.
- Per $n \neq 0$, $y = \alpha_n^+ e^{invt} + \alpha_n^- e^{-invt}$ con

$$\alpha_n^{\pm} = \frac{1}{2} \left(c_n^0 \pm \frac{c_n^1}{inv} \right)$$

Quindi, la soluzione è

$$u(t,x) = c_0^0 + c_0^1 t + \sum_{n \neq 0} \left[\alpha_n^+ e^{in(x+vt)} + \alpha_n^- e^{in(x-vt)} \right] \tag{*}$$

Inoltre,

$$u(t,x) = c_0^0 + c_0^1 t + \varphi^+(x+vt) + \varphi^-(x-vt)$$
 (**)

con φ^{\pm} funzioni con coefficienti di Fourier α_n^{\pm} che si dicono **onde viaggianti**.

Nota. La (??) è specifica delle equazioni delle onde.

¹Per oscillazioni piccole.

5.5 Risoluzione dell'equazione delle onde

Consideriamo il problema

$$\begin{cases} u_{tt} = v^2 u_{xx} \\ u(\cdot, \pi) = u(\cdot, -\pi) \\ u_x(\cdot, \pi) = u_x(\cdot, -\pi) \\ u(0, \cdot) = u_0 \\ u_t(0, \cdot) = u_1 \end{cases}$$
(P)

ed abbiamo visto che ha soluzione

$$u(t,x) = c_0^0 + c_0^1 t + \sum_{n \neq 0} (\alpha_n^+ e^{in(x+vt)} + \alpha_n^- e^{in(x-vt)})$$

$$\alpha_n^{\pm} = \frac{1}{2} \left(c_n^0 \pm \frac{c_n^1}{inv} \right).$$
(*)

Inoltre, possiamo scrivere l'equazione (*) come

$$u(t,x) = c_0^0 + c_0^1 t + \varphi^+(x+vt) + \varphi^-(x-vt) \tag{**}$$

dove φ^+, φ^- sono funzioni 2π -periodiche.

Vedremo i seguenti risultati

- Esistenza usando la forma (**), specifico per equazione delle onde.
- Esistenza usando la forma (*), che però richiede maggiore regolarità su u_0 e u_1 .
- Unicità.

Teorema 1. Dati $u_0 \in C^1_{per}$ allora esistono $c_0^0, c_0^1 \in \varphi^+, \varphi^- \in C^2_{per}$ tali che la u in (**) è di classe C^2 su $\mathbb{R} \times \mathbb{R}$, 2π -periodica in x e risolve (P).

Lemma 4. Date $h,g\in C^1(\mathbb{R})$ con g primitiva di h e T>0 allora g è T-periodica $\iff h$ è T-periodica e $\int_0^T h(x)\,\mathrm{d}x=0$.

Dimostrazione. Notiamo che h è T-periodica se e solo se $\forall x \int_x^{T+x} h(x) dx = \cos t$.

$$\int_{x}^{T+x} h(x) \, \mathrm{d}x = g \Big|_{x}^{T+x} = g(T+x) - g(x) = 0 \iff g \ \text{è T-periodica}$$

Dimostrazione Teorema 1.

Parte 1. Se $c_0^0, c_0^1 \in \mathbb{R}$ e $\varphi^+, \varphi^- \in C_{\text{per}}^2$ allora la u data da (**) è C^2 su $\mathbb{R} \times \mathbb{R}$ e 2π -periodica in x e risolve $u_{tt} = v^2 u_{xx}$.

$$u_{tt} = [\ddot{\varphi}^{+}(x+vt) + \ddot{\varphi}^{-}(x-vt)]v^{2}$$

$$u_{xx} = \ddot{\varphi}^{+}(x+vt) + \ddot{\varphi}^{-}(x-vt) \implies u_{tt} = v^{2}u_{xx}$$

Parte 2. $\exists c_0^0, c_0^1 \in \mathbb{R} \text{ e } \varphi^+, \varphi^- \in C_{\text{per}}^2$ tali che la u data da (**) soddisfa la condizione iniziale in (P), per t = 0, poste $\varphi^{\pm} = \varphi^{\pm}(x \pm v0)$

$$\begin{cases} c_0^0 + \varphi^+ + \varphi^- = u_0 \\ c_0^1 + v(\dot{\varphi}^+ - \dot{\varphi}^-) = u_1 \end{cases} \implies \begin{cases} \varphi^+ + \varphi^- = u_0 - c_0^0 \\ (\varphi^+ - \varphi^-)' = (u_1 - c_0^1)/v \end{cases}$$

ed ora fissiamo $c_0^0 = \int_{-\pi}^{\pi} u_0 \, dx$ e $c_0^1 = \int_{-\pi}^{\pi} u_1 \, dx$. In questo modo possiamo applicare il lemma precedente ed ottenere

$$\begin{cases} \varphi^{+} + \varphi^{-} = g_{0} \\ (\varphi^{+} - \varphi^{-})' = g'_{1} \end{cases} \implies \varphi^{+} = \frac{1}{2}(g_{0} + g_{1}) \qquad \varphi^{-} = \frac{1}{2}(g_{0} - g_{1})$$

Teorema 2. Siano $u_0, u_1 \in C^0_{\text{per}}$ tali che $\sum n^2 |c_n^0| < +\infty$ e $\sum |n| \cdot |c_n^1| < +\infty$. Allora (*) definisce una funzione $u: \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ di classe C^2 , 2π -periodica in x che risolve (P).

Dimostrazione.

$$u(t,x) = c_0^0 + c_0^1 t + \sum_{n \neq 0} (\underbrace{\alpha^+ e^{in(x+vt)}}_{v_n^+} + \underbrace{\alpha^- e^{in(x-vt)}}_{v_n^-})$$

Passo 1. Dimostriamo che $u \in C^0(\mathbb{R} \times \mathbb{R})$ e 2π -periodica in x.

La funzione u soddisfa le condizioni di periodicità. Per mostrare la continuità è sufficiente mostrare che la serie converga totalmente su $\mathbb{R} \times \mathbb{R}$.

$$\left\|v_n^{\pm}\right\|_{L^{\infty}(\mathbb{R}\times\mathbb{R})} = |\alpha^{\pm}| = O\left(|c_n^0| + \frac{|c_n^1|}{n}\right)$$

che sono sommabili in n.

Passo 2. Mostriamo che $u \in C^2(\mathbb{R} \times \mathbb{R})$.

Abbiamo

$$\begin{split} D_t^h D_x^k v_n^\pm &= \alpha_n^\pm e^{in(x\pm vt)} (in)^k (ivn)^h \\ \Longrightarrow & \left\| D_t^h D_x^k v_n^\pm \right\|_{L^\infty(\mathbb{R}\times\mathbb{R})} = |\alpha_n^\pm| \cdot |v|^h \cdot |n|^{k+h} = O(|c_n^0| \cdot |n|^{k+h} + |c_n^1| \cdot |n|^{k+h-1}) \end{split}$$

che è sommabile se $k + h \le 2$ in n. La serie in (*) converge totalmente su $\mathbb{R} \times \mathbb{R}$ con tutte le derivate di ordine $< 2 \implies u$ è C^2 .

Passo 3. Dimostriamo che u risolve l'equazione $u_{tt} = v^2 u_{xx}$.

u risolve l'equazione perché derivata e serie commutano e per come abbiamo impostato (P') $c_n(u(0,\cdot)) = c_n(u_0) \implies u(0,\cdot) = u_0$. $c_n(u_t(0,\cdot)) = c_n(u_1) \implies u_t(0,\cdot) = u_1$.

Teorema 3. (Unicità) Se $u \colon I \times [-\pi, \pi] \to \mathbb{C}$ è C^2 in x e t e risolve (P) allora è unica.

Dimostrazione. Si ripercorre la stessa dell'equazione del calore. Dimostriamo che i coefficienti $c_n(t) = c_n(u(t, \cdot))$ definiti per $t \in I$ risolvono (P')...

5.6 Altre applicazioni della serie di Fourier

5.6.1 Disuguaglianza isoperimetrica

Sia D un aperto limitato con frontiera C^1 parametrizzata da un unico cammino γ (quindi niente buchi o più di una componente connessa). Allora $L^2 \geq 4\pi A$ dove L è la lunghezza di ∂D e A è l'area di D. Inoltre vale l'uguale se e solo se D è un disco.

Dimostrazione.

Possiamo scegliere $\gamma\colon [-\pi,\pi]\to\mathbb{R}^2\simeq\mathbb{C}$ e γ parametrizzazione di ∂D in senso antiorario ed a velocità costante (da cui $|\dot{\gamma}(t)|=L/2\pi$)

Passo 1.

$$L^{2} = 2\pi \int_{-\pi}^{\pi} |\dot{\gamma}|^{2} dt = 2\pi ||\dot{\gamma}||_{2} = 4\pi^{2} \sum |c_{n}(\dot{\gamma})|^{2} = 4\pi^{2} \sum n^{2} |c_{n}|^{2}$$

Passo 2.

$$A \stackrel{(*)}{=} \frac{1}{2} \langle -i\dot{\gamma}, \gamma \rangle = \frac{1}{2} 2\pi \sum (-i(inc_n))c_n = \pi \sum n|c_n|^2$$

Vediamo che vale questa formula per l'area usata in (*), poniamo $\gamma = \gamma_x + i\gamma_y$ allora

$$\langle \dot{\gamma}, \gamma \rangle = \int_{-\pi}^{\pi} \dot{\gamma} \, \overline{\gamma} \, dt$$

$$= \int_{-\pi}^{\pi} (\gamma_x - i\gamma_y) (\dot{\gamma}_x + i\dot{\gamma}_y) \, dt =$$

$$= \int_{\gamma} (x - iy) (\, dx + i \, dy) =$$

$$= \int_{D} 2i \, dx dy = 2iA$$

Passo 3. Infine $L^2 = 4\pi \sum n^2 |c_n|^2$ e $4\pi A = 4\pi \sum n |c_n|^2$, dunque segue subito che $L^2 \ge 4\pi A$ e vale l'uguale se e solo se $n^2 = n$ o se $c_n = 0$ per ogni $n \implies \gamma(t) = c_0 + c_1 e^{it}$ che è una circonferenza di centro c_0 e raggio $|c_1|$.

5.7 Appendice

Studiamo alcune variazioni dell'equazione del calore.

Nota. Un problema del tipo $u_t = a(t) \cdot u_{xx}$ si può risolvere ripercorrendo i passaggi della risoluzione dell'equazione del calore. Viceversa, il problema $u_t = a(x) \cdot u_{xx}$ non si può risolvere allo stesso modo, in quanto, non è vero che il prodotto di serie di Fourier ha come coefficienti il prodotto dei coefficienti.

Studiamo ora variazioni alle condizioni di bordo.

Osservazione. Quando proviamo a risolvere $u_t = u_{xx}$, passiamo alla serie di Fourier e deriviamo; per fare questo passaggio servono le condizioni al bordo¹; dunque, togliendo le condizioni di periodicità il sistema non funziona più molto bene.

Introduciamo delle varianti della serie di Fourier.

• Serie di Fourier su $[-\pi,\pi]^d$. Data $u\in L^2([-\pi,\pi]^2,\mathbb{C})$, definiamo

$$u(x) = \sum_{n \in \mathbb{Z}^d} c_{\underline{n}} e^{i\underline{n}x} \qquad c_{\underline{n}} = c_{\underline{n}}(u) := \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} u(x) e^{-i\underline{n}x} dx$$

con base di Hilbert

$$\mathcal{F} = \left\{ \frac{e^{i\underline{n}x}}{(2\pi)^{d/2}} \colon n \in \mathbb{Z}^d \right\}$$

¹Anche se avevamo derivato le formule formalmente anche a posteriori l'ipotesi delle condizioni al bordo era necessaria.

C'è da dimostrare che \mathcal{F} è una base di Hilbert.

Dimostrazione (idea).

- o Ortonormalità. È un conto [TO DO].
- o Completezza. Si può dimostrare come per d=1, oppure si usa il seguente lemma. **Lemma.** Sia $\mathcal{F}_1 := \{e_n^1\}$ base di Hilbert di $L^2(X_1, \mathbb{C})$ e $\mathcal{F}_2 := \{e_n^2\}$ base di Hilbert di $L^2(X_2, \mathbb{C})$. Allora, una base di Hilbert di $L^2(X_1 \times X_2, \mathbb{C})$ è

$$\mathcal{F} = \left\{ e_{n_1, n_2}(x_1, x_2) \mid e_{n_1}^1(x_1) e_{n_2}^2(x_2) \right\}$$

Formula chiave. Se $u \in C^1_{per}(\mathbb{R}^d) = \{\text{funzioni } 2\pi\text{-periodiche in tutte le variabili}\}$. Abbiamo che

$$c_{\underline{n}}(\nabla u) = i\underline{n}c_n(u), \qquad c_{\underline{n}}(\Delta u) = -|\underline{n}|^2 c_{\underline{n}}(u) \text{ se } u \in \mathcal{C}^2_{per}$$

• Serie in seni. Data $u \in L^2([0,\pi])$, allora

$$u(x) = \sum_{n=1}^{\infty} b_n \sin(nx)$$
 $b_n = b_n(u) := \frac{2}{\pi} \int_0^{\pi} u(x) \sin(nx) dx$

con base di Hilbert

$$\mathcal{F} = \left\{ \sqrt{\frac{2}{\pi}} \sin(nx) \mid n \ge 1 \right\}$$

Dimostrazione. Mostriamo l'ortonormalità e la completezza.

Ortonormalità. Sono conti. [TO DO]

Completezza. Data $u \in L^2([0,\pi])$. Sia \tilde{u} l'estensione dispari a $[-\pi,\pi]$. Allora

$$\widetilde{u} = a_0 + \sum_{n=1}^{\infty} \widetilde{a}_n \cos(nx) + \widetilde{b}_n \sin(nx) = \sum_{\widetilde{u} \text{ dispari } n=1}^{\infty} \widetilde{b}_n \sin(nx).$$

Osservazione. I coefficienti $\tilde{b}_n = b_n$. Si può vedere in diversi modi, un modo possibile è questo.

$$\widetilde{b}_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{u}(x) \sin(nx) \, \mathrm{d}x = \frac{2}{\pi} \int_{0}^{\pi} \widetilde{u} \sin(nx) \, \mathrm{d}x = \frac{2}{\pi} \int_{0}^{\pi} u(x) \sin(nx) \, \mathrm{d}x = b_n.$$

Formula chiave. Data $u \in \mathcal{C}^2([0,\pi])$ con condizioni al bordo $u(\,\cdot\,,0) = u(\,\cdot\,,\pi)$. Allora

$$b_n(\ddot{u}) = -n^2 b_n(u)$$

dove

$$b_n(\ddot{u}) := \frac{2}{\pi} \int_0^{\pi} \ddot{u}(x) \sin(nx) dx$$

$$= \frac{2}{\pi} |\dot{u}(x) \sin(nx)|_0^{\pi} - \frac{2}{\pi} \int_0^{\pi} \dot{u}(x) \cos(nx) dx$$

$$= -n\frac{2}{\pi} |u(x) \cos(nx)|_0^{\pi} - n^2 \underbrace{\left(\frac{2}{\pi} \int_0^{\pi} u(x) \sin(nx) dx\right)}_{b_{n(x)}}$$

Applicazione (della serie in seni). Risoluzione di EDP su $[0, \pi]$ con condizioni di Dirichlet (omogenee) al bordo.

Esempio. Risolvere

$$\begin{cases} u_t = u_{xx} & \text{su } [0, \pi] \\ u(\cdot, 0) = u(\cdot, \pi) = 0 \\ u(0, \cdot) = u_0 \end{cases}$$
 (P)

Soluzione. Poniamo $b_n^0 := b_n(u_0)$. Scriviamo $u(t,x) = \sum_{n=1}^{\infty} b_n(t) \sin(nx)$ serie di seni in x.

Formalmente,

$$u_t = \sum_{n=1}^{\infty} \dot{b}_n(t) \sin(nx)$$
 $u_{xx} = \sum_{n=1}^{\infty} -n^2 b_n(t) \sin(nx)$

Dunque,

$$u_t = u_{xx} \iff \dot{b}_n(t) = -n^2 b_n(t) \ \forall t \forall n$$

Cioè $b_n(t)$ risolve il problema di Cauchy.

$$\begin{cases} \dot{y} = -n^2 y \\ y(0) = \dot{b}_n \end{cases}$$
 (P')

Ovvero $b_n(t) = b_n^0 e^{-n^2 t}$, da cui

$$u(t,x) = \sum_{n=1}^{\infty} b_n^0 e^{-n^2 t} \sin(nx).$$
 (*)

Teorema 1 (di esistenza nel futuro). Se $u_0: [0,\pi] \to \mathbb{R}$ è continua è $\sum_n |b_n^0| < +\infty$ (basta $u_0 \in \mathcal{C}^1$ e $u(0) = u(\pi) = 0$). Allora la u in $(\ref{eq:continuous})$ è ben definita e continua su $[0,+\infty) \times \mathbb{R}$ e risolve $(\ref{eq:continuous})$.

Dimostrazione. Dimostriamo il teorema per passi.

Passo 1. Mostriamo che u è ben definita e continua su $(0, +\infty) \times \mathbb{R}$: studiamo la norma del sup. Sia $R = [0, +\infty) \times \mathbb{R}$.

$$||u_n||_{L^{\infty}(R)} \leq |b_n^0| \Longrightarrow u_n$$
 converge totalmente su \mathbb{R} .

Passo 2. Mostriamo che \mathcal{C}^{∞} su $(0, +\infty) \times \mathbb{R}$. Sia $R_{\delta} = (\delta, +\infty) \times \mathbb{R}$. Stimiamo le derivate.

$$D_t^k D_x^h u_n = b_n^0 (-n^2)^k e^{-n^2 t} \cdot n^h \cdot \underbrace{\dots}_{\star}$$

$$\Longrightarrow \left\| D_t^k D_x^h u_n \right\|_{L^{\infty}(R_{\delta})} = |b_n^0| \underbrace{e^{-n^2 \delta} \cdot |n|^{2k+h}}_{\text{perché è infinitesimo in } n}$$

Allora le norme delle derivate sono sommabili per ogni n, dunque $u \in \mathcal{C}^{\infty}(R_{\delta})$ per ogni δ , da cui $u \in \mathcal{C}^{\infty}((0, +\infty), \mathbb{R})$.

Passo 3. Mostriamo che la u(t,x) definita in (??) risolve (??).

• u risolve $u_t = u_{xx}$ per t > 0. Infatti, l'equazione è lineare per quanto mostrato al punto sopra e dunque posso scambiare serie e derivata.

- u soddisfa la condizione iniziale $u(0, \cdot) = u_0$, perché hanno gli stessi coefficienti di Fourier.
- Sono soddisfatte anche le condizioni al bordo, infatti

$$u(\,\cdot\,,0)=u(\,\cdot\,,\pi)=0$$

Domanda. Quale ipotesi su u_0 garantisce $\sum_n |b_n^0| < +\infty$? Basta $u_0 \in \mathcal{C}^1$ e $u(0) = u(\pi) = 0$.

Teorema 2 (non esistenza nel passato). Esiste $u_0: [0, \pi] \to \mathbb{R}$ \mathcal{C}^{∞} (+ condizioni al bordo) tale che per ogni $\delta > 0$ (??) non ha alcuna soluzione $u: (-\delta, 0] \times [0, \pi] \to \mathbb{R}$ continua e \mathcal{C}^1 in $t \in \mathcal{C}^2$ in x.

Teorema 3 (di unicità). [TO DO: aggiungere (è sempre lo stesso).]

5.7.1 Considerazioni finali su SdF e serie in seni

Notiamo che l'efficacia per la soluzione di certe EDP dipende dal fatto che

$$c_n(u) = inc_n(u)$$
 $b_n(\ddot{u}) = -n^2b_n(u)$

che segue (almeno formalmente) da $(e^{inx})' = ine^{inx}$ e $(\sin(nx))'' = -n^2\sin(nx)$.

Cioè che $\left\{e^{inx}/\sqrt{2\pi}\right\}$ è una base ortonormale di $L^2([-\pi,\pi],\mathbb{C})$ di autovettori di D e $\left\{\sqrt{2/\pi}\sin(x)\right\}$ è una base ortonormale di autovettori di D^2 .

Analogamente per risolvere $u_t = \Delta u$ su Ω , basterebbe avere $\{e_n\}$ base ortonormale di $L^2(\Omega)$ fatta di autovettori del laplaciano.

Per avere una base ortonormale di autovettori di un operatore T serve che T sia autoaggiunto (almeno in dimensione finita).

Definizione. Dato H spazio di Hilbert complesso o reale, D sottospazio denso di $H, T: D \to H$ lineare (non necessariamente continuo), dico che T è **autoaggiunto** se $\langle Tx, y \rangle = \langle x, Ty \rangle$ per ogni $x, y \in D$.

Proposizione. Dato T come sopra

- i) Se λ è autovalore di T (ovvero tale che $\exists x \neq 0$ tale che $Tx = \lambda x$) allora λ è reale.
- ii) Dati $\lambda_1 \neq \lambda_2$ autovalori allora $V_{\lambda_1} \perp V_{\lambda_2}$ dove $V_{\lambda} \coloneqq \{x \mid Tx = \lambda x\}.$

Nota. In dimensione infinita manca un teorema spettrale, ovvero tale che $\overline{\bigoplus_{\lambda} V_{\lambda}} = H$.

Esempio 1. Sia $H = L^2([-\pi, \pi], \mathbb{C}), D = \{u \in \mathcal{C}^2(-\pi, \pi) \mid u(-\pi) = u(\pi)\} \text{ e } T \colon D \to H \text{ tale che } u \mapsto iu. \text{ Mostrare che}$

- i) T è autoaggiunto
- ii) Gli autovalori di T sono $\lambda_n = n$ con $n \in \mathbb{Z}$ $V_{\lambda_n} = V_n = \operatorname{Span} \{e^{inx}\}.$
- iii) T non è continuo

In questo caso esiste una base ortonormale di L^2 di autovettori di T. [TO DO: aggiustare].

Dimostrazione.

i) Dati $u, c \in D(=\mathcal{C}^1_{per})$, allora

$$\langle Tu, v \rangle = \int_{-\pi}^{\pi} i \dot{u} \overline{v} \, dx = |i u \overline{v}|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} i u \overline{v} \, dx$$
$$= \int_{-\pi}^{\pi} u \overline{i v} \, dx = \langle u, Tv \rangle$$

ii) Questo è un esercizio di equazioni differenziali ordinarie. Risolviamo il problema

$$\begin{cases}
-iu = \lambda u & \text{su } [-\pi, \pi] \\
u(\pi) = u(-\pi)
\end{cases}$$

da cui $\dot{u} - i\lambda u = 0$, che ha polinomio associato $t - i\lambda = 0$ con radice $i\lambda$. In conclusione la soluzione del problema sopra è $\alpha e^{i\lambda x}$.

Dalla condizione al bordo abbiamo che $\alpha e^{i\lambda\pi}=e^{-i\lambda\pi}$ dunque $e^{i\lambda\pi}=e^{-i\lambda\pi}\Longleftrightarrow e^{2i\lambda\pi}=1\Longleftrightarrow\lambda\in\mathbb{Z}.$

iii) Siccome gli autovalori sono illimitati, T non è continuo.

Esempio 3. Sia $H = L^2([-\pi, \pi], \mathbb{C})$ $D = \{u \in \mathcal{C}^1(-\pi, \pi)\}$ e $T: D \to H$ tale che $u \mapsto i\dot{u}$. Dimostrazione. Dati $u, v \in D$ abbiamo

$$\langle Tu, v \rangle = \int_{-\pi}^{\pi} i \dot{u} \overline{v} \, dx = |i u \overline{v}|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} i u \overline{\dot{v}} \, dx$$
$$= i(u(\pi)\overline{v}(\pi) - u(-\pi)\overline{v}(-\pi)) + \langle u, Tv \rangle \neq \langle u, Tv \rangle.$$

In quanto, in generale, il termine $u(\pi)\overline{v}(\pi) - u(-\pi)\overline{v}(-\pi)$ è diverso da zero.

Esercizio. Cercare $T\colon L^2([0,1])\to L^2([0,1])$ continuo autoaggiunto senza autovalori.

Suggerimento. Cercare T del tipo $T: u \mapsto gu \text{ con } g \in L^{\infty}$.

Capitolo 6

Trasformata di Fourier

Data $f: \mathbb{R} \to \mathbb{C}$ poniamo

$$f(x) \stackrel{\text{(*)}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(y)e^{iyx} dy \qquad \widehat{f}(y) \coloneqq \int_{-\infty}^{\infty} f(x)e^{-iyx} dx.$$

Dove \hat{u} si chiama trasformata di Fourier¹ di u e la formula (*) si dice formula di inversione.

Derivazione formale (della formula di inversione). Prendiamo $f \in \mathcal{C}^1_C(\mathbb{R}, \mathbb{C})$ e $\delta > 0$ tale che supp $(f) \subset [-\pi/\delta, \pi/\delta]$.

Scriviamo f in serie di Fourier su $[-\pi/\delta, \pi/\delta]$ (serve un cambio di variabile per ricondursi alla serie di Fourier su $[-\pi, \pi]$).

$$f(x) = \sum_{n \in \mathbb{Z}} c_n^{\delta}(f) e^{in\delta x}$$
$$c_n^{\delta}(f) \coloneqq \frac{\delta}{2\pi} \int_{-\pi/\delta}^{\pi/\delta} f(x) e^{-in\delta x} \, \mathrm{d}x = \frac{\delta}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-in\delta x} \, \mathrm{d}x = \frac{\delta}{2\pi} \widehat{f}(n\delta).$$

Dunque,

$$f(x) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \frac{\delta}{2\pi} \underbrace{\widehat{f}(n\delta) e^{i(n\delta)x}}_{\widehat{f}(y)e^{iyx} \text{ calcolata in } y = n\delta}$$

dove $\sum_{n\in\mathbb{Z}}\frac{\delta}{2\pi}\widehat{f}(n\delta)e^{i(n\delta)x}$ è la somma di Rienmann di $\int_{-\infty}^{\infty}\widehat{f}e^{iyx}\,\mathrm{d}y$. Dunque

$$f(x) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \frac{\delta}{2\pi} \widehat{f}(n\delta) e^{i(n\delta)x} \xrightarrow{\delta \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(y) e^{iyx} \, \mathrm{d}y.$$

Quest'ultimo passaggio non è giustificato rigorosamente ma si può rendere rigoroso per $f \in \mathcal{C}^1_C(\mathbb{R})$.

Definizione. Data $f \in L^1(\mathbb{R};\mathbb{C})$ la trasformata di Fourier \widehat{f} è definita da

$$\widehat{f}(y) = \int_{-\infty}^{\infty} f(x)e^{-ixy} dx \quad \forall y \in \mathbb{R}.$$

¹Sostituisce la serie di Fourier quando si passa da funzioni su \mathbb{R} 2π -periodiche a funzioni su \mathbb{R} .

Teorema. Data $f \in L^1(\mathbb{R}; \mathbb{C})$, allora

i) \hat{f} è ben definita in ogni punto di \mathbb{R} .

ii) Vale
$$\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$$
.

- iii) \widehat{f} è continua
- iv) \hat{f} è infinitesima.

Dimostrazione.

i) $\widehat{f}(y)$ è ben definita per ogni $y \in \mathbb{R}$. Infatti, $f(x)e^{-iyx} \in L^1$ dato che

$$\int_{-\infty}^{\infty} |f(x)e^{-iyx}| \, dx = \int_{-\infty}^{\infty} |f(x)| \, dx = ||f||_{1}.$$

ii) $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$. Infatti,

$$|\widehat{f}|_{\infty} \le \int |f(x)e^{-iyx}| dx = ||f||_1$$

iii) \hat{f} è continua. Se $y_n \to y$, allora

$$\widehat{f}(y_n) = \int_{-\infty}^{\infty} f(x)e^{-ixy_n} dx \xrightarrow{n \to \infty} \int_{-\infty}^{\infty} f(x)e^{-iny} dx = \widehat{f}(y)$$

per convergenza dominata. Infatti, la convergenza puntuale segue dalla continuità dell'esponenziale; mentre la dominazione è data da $|f(x)e^{-iyx}| = |f(x)|$.

iv) $\widehat{f}(y) \xrightarrow{y \to \pm \infty} 0$ per il lemma di Rienmann-Lebesgue.

6.1 Proprietà della trasformata di Fourier

Data $f \in L^1(\mathbb{R}; \mathbb{C})$ abbiamo posto

$$\forall y \in \mathbb{R}$$
 $\mathcal{F}(f)(y) = \hat{f}(y) := \int_{-\infty}^{+\infty} f(x)e^{-iyx} dx$

ed abbiamo visto che

Teorema 1. $\hat{f} \in C_0(\mathbb{R}; \mathbb{C}) \in \|\hat{f}\|_{\infty} \leq \|f\|_1$.

Proposizione 2. Data $f \in L^1(\mathbb{R}; \mathbb{C})$ allora

i)
$$\forall h \in \mathbb{R} \text{ vale } \widehat{\tau_h f} = e^{-ihy} \widehat{f}$$

ii)
$$\forall h \in \mathbb{R} \text{ vale } \widehat{e^{ihx}f} = \tau_h \widehat{f}$$

iii)
$$\forall \delta \neq 0$$
 vale $\widehat{\sigma_{\delta}f} = \widehat{f}(\delta y)$

Derivazione. Partendo dalla formula di inversione

$$f(x) = \frac{1}{2\pi} \int \widehat{f}(y)e^{iyx} \, dy$$
$$f(x - h) = \frac{1}{2\pi} \int \underbrace{\widehat{f}(y)e^{-ihy}}_{=\widehat{f(x - h)}} e^{iyx} \, dy$$

Dimostrazione. Facciamo il calcolo diretto

$$\widehat{\tau_h f} = \int_{-\infty}^{+\infty} f(x - h)e^{-ixy} dx =$$

$$= \begin{pmatrix} t = x - h \\ dt = dx \end{pmatrix} = \int_{-\infty}^{+\infty} f(t)e^{-i(t+h)y} dt =$$

$$= e^{-ihy} \int_{-\infty}^{+\infty} f(t)e^{-ity} dt = e^{-ihy} \widehat{f}(t).$$

Analogamente seguono anche le altre

Proposizione 3. Sia $f \in C^1(\mathbb{R}; \mathbb{C})$ con $f, f' \in L^1$ allora $\hat{f}' = iy\hat{f}$ (da confrontare con $c_n(f') = inc_n(f)$ nel caso della serie di Fourier).

Derivazione. Si deriva la formula di inversione

$$f'(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(y) iy e^{ixy} \, dy$$

Dimostrazione. Vediamo prima una dimostrazione che non funziona e cerchiamo di aggiustarla. Abbiamo che

$$\widehat{f}'(y) = \int_{-\infty}^{+\infty} f'(x)e^{-iyx} dx = \underbrace{\left[f(x)e^{-iyx}\right]_{-\infty}^{+\infty}}_{=0} + iy \int_{-\infty}^{+\infty} f(x)e^{-iyx} dx = iy\widehat{f}(y)$$

serve che $f(x) \to 0$ per $|x| \to +\infty$ (ad esempio $f \in C \cap L^1$ lo implica), in realtà $f \in C^1$ e $f, f' \in L^1$ basta, ma la dimostrazione è più complicata.

Argomentiamo come segue, $f \in L^1 \implies \liminf_{|x| \to \infty} |f(x)| = 0$ (in quanto se $\liminf_{|x| \to \infty} |f(x)| = \delta > 0$ allora la funzione sarebbe $> \delta$ per $|x| \to +\infty$ ed avrebbe integrale $+\infty$) dunque esistono due successioni $a_n \to -\infty, b_n \to +\infty$ tali che $f(a_n) \to 0$ e $f(b_n) \to 0$ quindi come prima abbiamo

$$\widehat{f}'(y) = \lim_{n} \int_{a_{n}}^{b_{n}} f'(x)e^{iyx} dx =$$

$$= \lim_{n} \int \mathbb{1}_{[a_{n},b_{n}]} f'(x)e^{iyx} dx =$$

$$= \lim_{n} \left(\underbrace{\left[f(x)e^{-iyx} \right]_{a_{n}}^{b_{n}} + iy \int_{a_{n}}^{b_{n}} f(x)e^{-iyx} dx \right)}_{\rightarrow 0} =$$

$$= \lim_{n} iy \int_{a_{n}}^{b_{n}} f(x)e^{-iyx} dx =$$

$$= iy \widehat{f}(y)$$

Proposizione 4. Sia $f \in L^1$ con $xf \in L^1$, allora $\widehat{f} \in C^1(\mathbb{R}; \mathbb{C})$ e $(\widehat{f})' = -\widehat{ixf}$.

Dimostrazione.

$$\widehat{f}(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx \implies (\widehat{f})'(y) = \int_{-\infty}^{+\infty} f(x)(-ix)e^{-ixy} dx = \widehat{-ixf}$$

Proposizione 5. (Derivazione sotto segno di integrale) Sia I un intervallo di \mathbb{R} , E misurabile in \mathbb{R}^d e $g \colon I \times E \to \mathbb{C}$ tale che

- i) $g(\cdot, x) \in C^1(I)$ per q.o. $x \in E$.
- ii) $\exists h_0, h_1 \in L^1(E)$ tali che

$$|g(t,x)| \le h_0(x)$$
 e $\left| \frac{\partial g}{\partial t}(t,x) \right| \le h_1(x)$

allora $G(t) := \int_E g(t,x) dx$ è ben definita per ogni $t \in I$ e $G \in C^1(I)$ e

$$G'(t) = \int_{E} \frac{\partial}{\partial t} g(t, x) \, \mathrm{d}x$$

Traccia dimostrazione.

- Passo 1: G(t) e $\widetilde{G}(t)$ sono ben definite $\forall t \in I$ (grazie alla dominazione) e continue in t (usando convergenza dominata e le dominazioni)
- Passo 2: Dobbiamo far vedere che G è C^1 con derivata \widetilde{G} , si usa la seguente forma del teorema fondamentale del calcolo integrale

$$\forall t_0, t_1 \in I \text{ con } t_0 < t_1 \qquad G(t_1) - G(t_0) \stackrel{(*)}{=} \int_{t_0}^{t_1} \tilde{G}(t) dt$$

ed usando Fubini-Tonelli in (*).

Proposizione 6. (Prodotto di convoluzione e trasformata di Fourier). Siano $f_1, f_2 \in L^1(\mathbb{R}; \mathbb{C})$, allora $f_1 * f_2 \in L^1$ (già visto) e vale

$$\mathcal{F}(f_1 * f_2) = (\mathcal{F}f_1) \cdot (\mathcal{F}f_2)$$

Dimostrazione.

$$\widehat{f_1 * f_2}(y) = \int f_1 * f_2(x)e^{-ixy} dx =$$

$$= \iint f_1(x - t)f_2(t) dt e^{-ixy} dx =$$

$$= \int \left(\int f_1(x - t)e^{-i(x - t)y} dx \right) f_2(t)e^{-ity} dt =$$

$$= \int \widehat{f_1}(y)f_2(t)e^{-ity} dt = \widehat{f_1}(y) \cdot \widehat{f_2}(y)$$

Definizione. Data $g \in L^1(\mathbb{R}; \mathbb{C})$ definiamo l'antitrasformata di Fourier di g la funzione

$$\check{g}(x) := \int_{-\infty}^{+\infty} g(y)e^{ixy} \, \mathrm{d}y.$$

Cioè $\check{g}(x) = \widehat{g}(-x)$ e scriviamo anche $\check{g} = \mathcal{F}^*g$. Effettivamente \mathcal{F}^* è l'aggiunto di \mathcal{F} , almeno formalmente infatti abbiamo

$$\langle \mathcal{F}f, g \rangle = \iint f \overline{e^{ixy}g(y)} \, \mathrm{d}x \, \mathrm{d}y = \int f(x) \overline{\check{g}(x)} \, \mathrm{d}x = \langle f, \mathcal{F}^*g \rangle.$$

Teorema 7. Data $f \in L^1(\mathbb{R}; \mathbb{C})$ tale che $\widehat{f} \in L^1(\mathbb{R}; \mathbb{C})$ allora

$$\widetilde{\forall} x \in \mathbb{R}$$
 $\mathcal{F}^* \mathcal{F} f = 2\pi f$ cioè $\int \widehat{f}(x) e^{ixy} \, \mathrm{d}y = 2\pi f(x)$

Nota. Una funzione continua e infinitesima non è, in generale, una funzione L^1 ; in particolare, l'ipotesi $\hat{f} \in L^1$ è necessaria e non deriva dalle proprietà già note.

Dimostrazione. Dimostrazione diretta (passando dalla Delta di Dirac dei fisici):

$$\mathcal{F}^* \mathcal{F} f = \int_{-\infty}^{+\infty} \widehat{f}(y) e^{iyx} \, dy =$$

$$= \iint f(t) e^{-iyt} \, dt e^{ixy} \, dy =$$

$$= \int f(t) \underbrace{\int e^{i(x-t)y} \, dy}_{\text{``}\delta(x-t)\text{''}} \, dt = f(x)$$

Dimostrazione vera: scegliamo una funzione ausiliaria $\varphi \colon \mathbb{R} \to \mathbb{R}$ tale che

- i) $\varphi(0) = 1$ continua in 0 e φ limitata
- ii) $\varphi \in L^1$
- iii) $\check{\varphi} \in L^1$

e poniamo
$$g_{\delta}(x) := \int_{-\infty}^{+\infty} \widehat{f}(y) \varphi(\delta y) e^{ixy} dy.$$

• Passo 1: $g_{\delta}(x) \to \mathcal{F}^*\mathcal{F}f(x)$ per ogni $x \in \mathbb{R}$ per convergenza dominata

$$\int \widehat{f}(y)e^{iyx}\varphi(\delta y)\,\mathrm{d}y \xrightarrow{\delta \to 0} \int \widehat{f}(y)e^{iyx}\,\mathrm{d}y$$

e come dominazione usiamo $|\hat{f}(y)e^{iyx}\varphi(\delta y)| \leq |\hat{f}(y)| \cdot \|\varphi\|_{\infty}$

• Passo 2:
$$g_{\delta}(x) = \int \left(\int f(t)e^{-ity} dt \right) e^{ixy} \varphi(\delta y) dy$$
, per Fubini-Tonelli otteniamo
$$= \iint \varphi(\delta y) e^{i(x-t)y} dy f(t) dt =$$
$$= \int \sigma_{\delta} \check{\varphi}(x-t) f(t) dt = \sigma_{\delta} \check{\varphi} * f(x).$$

• Passo 3: $g_{\delta} \to mf$ in L^1 con $m = \int_{\mathbb{R}} \check{\varphi}(x) dx$ (per il teorema di approssimazione e per ipotesi).

 $^{^{1}}$ In L^{1} non è definito il prodotto scalare.

- Passo 4: Usando il primo ed il terzo passo otteniamo $\mathcal{F}^*\mathcal{F}f = mf$ per quasi ogni x, in quanto la convergenza puntuale e quella in L^1 devono essere compatibili; in particolare, la convergenza in L^1 a meno di sottosuccessioni equivale alla convergenza puntuale e dunque coincidono.
- Passo 5: $m=2\pi$ ad esempio prendendo $\varphi(y)=e^{-|y|}$, segue che

$$\check{\varphi}(y) = \frac{2}{1+x^2}$$

e dunque $m=2\pi$. In realtà vale per ogni φ che verifica le condizioni dell'ipotesi.

In conclusione, riportiamo la verifica di Fubini-Tonelli:

$$\iint |f(t)e^{-ity}e^{ixy}\varphi(\delta y)| dt dy = \iint |f(t)| \cdot |\varphi(\delta y)| dt dy = ||f||_1 \cdot ||\varphi(\delta y)||_1 < +\infty$$

Corollario 8. Date $f_1, f_2 \in L^1$ tali che $\hat{f}_1 = \hat{f}_2 \implies f_1 = f_2$ quasi ovunque cioè \mathcal{F} è iniettiva, cioè f è univocamente determinata da \hat{f} .

Dimostrazione. Per ipotesi, $\widehat{f_1} - \widehat{f_2} = \widehat{f_1 - f_2} = 0$. Applicando il Teorema 7 a $\widehat{f_1 - f_2}$ (possiamo farlo perché $0 \in L^1$) otteniamo

$$0 = \widehat{f_1 - f_2}(x)e^{ixy} dy = 2\pi(f_1(x) - f_2(x)) \Rightarrow f_1(x) = f_2(x) \quad \widetilde{\forall} x \in \mathbb{R}.$$

Esercizio. Date $f_1, f_2 \in L^1([-\pi, \pi]; \mathbb{C})$ e tali che per ogni $n \in \mathbb{Z}$ vale $c_n(f_1) = c_n(f_2)$ allora $f_1 = f_2$ quasi ovunque (e $c_n(f) = 0$ per ogni $n \implies f = 0$ q.o.).

6.2 Trasformata di Fourier su L^2

Abbiamo visto che la serie di Fourier si definisce naturalmente su L^2 (uno spazio di Hilbert) mentre la trasformata di Fourier ha bisogno di L^1 che non è uno spazio di Hilbert. Vedremo ora come estendere la trasformata di Fourier ad L^2 e come poter fare i conti.

Proposizione 1. Data $f \in L^1(\mathbb{R}; \mathbb{C}) \cap L^2(\mathbb{R}; \mathbb{C})$ vale $\|\widehat{f}\|_2 = \sqrt{2\pi} \|f\|_2$.

Teorema 2. \mathcal{F} si estende per continuità da $L^1 \cap L^2$ a tutto L^2 e $\mathcal{F}/\sqrt{2\pi}$ risulta essere un'isometria (come operatore a valori in L^2).

Corollario 3. (Identità di Plancherel). $\forall f_1, f_2 \in L^2(\mathbb{R}; \mathbb{C})$ vale $\langle \widehat{f_1}, \widehat{f_2} \rangle = 2\pi \langle f_1, f_2 \rangle$.

Osservazione. Come si può calcolare \hat{f} per $f \in L^2 \setminus L^1$? Se per quasi ogni $y \in \mathbb{R}$ esiste il limite

$$\lim_{n} \underbrace{\int_{-n}^{n} f(x)e^{-ixy} \, \mathrm{d}x}_{\widehat{f_n}(y)}$$

allora coincide con $\hat{f}(y)$.

Infatti, per ogni n posto $f_n := f \cdot \mathbb{1}_{[-n,n]}$ abbiamo che $\lim_n \int_{-n}^n f(x) e^{-ixy} dx = \widehat{f_n}(x)$. A questo punto, osserviamo che $f_n \to f$ in L^2 (da controllare per esercizio) e quindi $\widehat{f_n} \to \widehat{f}$ in L^2

(segue dalla continuità della trasformata). Siccome per ipotesi \hat{f}_n converge puntualmente quasi ovunque allora $\hat{f}_n \to \hat{f}$ puntualmente quasi ovunque.

Intuitivamente, il Teorema 2 e l'identità di polarizzazione danno il Corollario 3. mentre il Teorema 2 segue dalla Proposizione 1. più un fatto noto usando che $L^1 \cap L^2$ è denso in L^2 .

Fatto Noto. Dati X e Y spazi metrici, Y completo e D denso in X, $g: D \to Y$ uniformemente continua allora g ammette un'unica estensione $G: X \to Y$ continua. (Inoltre se X e Y sono spazi normati e g è lineare allora anche G è lineare)

Dimostrazione Proposizione 1.

Dimostrazione che non funziona: Proviamo a svolgere il calcolo diretto

$$\|\widehat{f}\|_{2}^{2} = \int_{-\infty}^{+\infty} \widehat{f}(y) \overline{\widehat{f}(y)} \, dy$$

$$= \iiint f(x) e^{-ixy} \overline{f(t)} e^{-ity} \, dt \, dx \, dy =$$

$$= \iint f(x) \overline{f(t)} \left(\underbrace{\int_{-\infty}^{+\infty} e^{-iy(t-x)} \, dy}_{\delta(x-t)} \right) dt \, dx =$$

$$= \int \left(\int f(x) \delta(x-t) \, dx \right) \overline{f(t)} \, dt =$$

$$= 2\pi \int f(t) \overline{f(t)} \, dt = 2\pi \|f\|_{2}^{2}$$

vediamo però che compare l'integrale $\int_{-\infty}^{+\infty} e^{-iy(t-x)} \, \mathrm{d}y$ e serve assumere che corrisponda a $\delta(x-t)$ dove δ è la "funzione Delta di Dirac", vediamo ora la dimostrazione formale usando una funzione ausiliaria.

Dimostrazione formale: Prendiamo $\varphi \colon \mathbb{R} \to [0, +\infty]$ tale che

- i) φ continua in 0, crescente per y < 0 e decrescente per y > 0 e $\varphi(0) = 1$.
- ii) $\varphi \in L^1$ e $\check{\varphi} \in L^1$.

Poniamo per ogni δ

$$I_{\delta} = \int_{-\infty}^{+\infty} |\widehat{f}(y)|^2 \varphi(\delta y) \, \mathrm{d}y \xrightarrow{?} \int_{-\infty}^{+\infty} |f(y)|^2$$

• Passo 1: $I_{\delta} \xrightarrow{\delta \to 0} \|\hat{f}\|_{2}^{2}$ per convergenza monotona usando l'ipotesi di crescenza/descrescenza prima/dopo lo 0.

• Passo 2:

$$I_{\delta} = \int \widehat{f}(y)\overline{\widehat{f}(y)}\varphi(\delta y) \,dy =$$

$$= \int \left(\int f(x)e^{-ixy} \,dx\right) \left(\int \overline{f(t)}e^{ity} \,dt\right) \varphi(\delta y) \,dy =$$

$$\stackrel{\text{FT}}{=} \iint f(x)\overline{f(t)} \left(\underbrace{\int \varphi(\delta y)e^{i(t-x)y} \,dy}\right) \,dx \,dy =$$

$$= \int (f(x)\sigma_{\delta}\check{\varphi}(t-x) \,dx) \,\overline{f(t)} \,dt =$$

$$= \int f * \sigma_{\delta}\check{\varphi}(t) \cdot \overline{f(t)} \,dt =$$

$$= \langle f * \sigma_{\delta}\check{\varphi}; f \rangle$$

e possiamo applicare il teorema di Fubini-Tonelli in quanto le ipotesi sono verificate infatti

$$\iiint |f(x)\overline{f(t)}|e^{i(t-x)y}\varphi(\delta y) \,dx \,dt \,dy =$$

$$= \iiint |f(x)| \cdot |f(t)| \cdot |\varphi(\delta y)| \,dx \,dt \,dy =$$

$$= ||f||_1^2 ||\varphi(\delta y)||_1 < +\infty$$

e $\|\varphi(\delta y)\|_1 < +\infty$ poiché $\varphi \in L^1$.

• Passo 3: $I_{\delta} \xrightarrow{\delta \to 0} 2\pi \|f\|_{2}^{2}$. Infatti $I_{\delta} = \langle f * \sigma_{\delta} \check{\varphi}; f \rangle$ e

$$\sigma_{\delta} \check{\varphi} \xrightarrow{\text{in } L^2} mf \qquad \text{con } m = \int \check{\varphi}(x) \, \mathrm{d}x$$

• Passo 4: Infine $m=2\pi$ ad esempio prendendo $\varphi(y)=e^{-|y|}$

$$\check{\varphi}(x) = \frac{2}{1+x^2} \in L^1$$

ed in questo caso m si calcola.

6.2.1 Proprietà della trasformata di Fourier in L^2

Proposizione 4.

- $\bullet \ \widehat{\tau_h f} = e^{-ihy} \widehat{f}$
- $\widehat{e^{ihx}f} = \tau_h \widehat{f}$
- $\widehat{\sigma_h f} = \widehat{f}(\delta y)$

Dimostrazione. Le identità valgono in $L^1 \cap L^2$ che è denso in L^2 e dunque si estendono per continuità ad L^2 .

Proposizione 5. Se $f \in C^1(\mathbb{R}; \mathbb{C})$ e $f \in L^1 \cup L^2$ e $f' \in L^1 \cup L^2 \implies \widehat{f'} = iy\widehat{f}$.

Dimostrazione. La stessa fatta per $f, f' \in L^1$. Si parte da a_n, b_n tali che $a_n \to -\infty$ e $b_n \to +\infty$ con $f(a_n) \to 0$ e $f(b_n) \to 0$ e si integra per parti

$$\mathcal{F}(f' \cdot \mathbb{1}_{[a_n,b_n]}) = \int_{a_n}^{b_n} f'(x)e^{-ixy} dx$$

$$= \underbrace{\left[f(x)e^{-ixy}\right]_{a_n}^{b_n}}_{\to 0} + iy \int_{a_n}^{b_n} f(x)e^{-iyx} dx = iy\mathcal{F}(f \cdot \mathbb{1}_{[a_n,b_n]}).$$

Per concludere si dimostra che

$$\mathcal{F}(f' \cdot \mathbb{1}_{[a_n,b_n]}) \xrightarrow{n \to \infty} \mathcal{F}(f') \text{ in } L^2$$

$$\mathcal{F}(f \cdot \mathbb{1}_{[a_n,b_n]}) \xrightarrow{n \to \infty} \mathcal{F}(f) \text{ in } L^2$$

Ovvero si dimostra che

$$\int_{b_n}^{+\infty} |f(x)e^{-ixy}|^2 dx + \int_{-\infty}^{a_n} |f(x)e^{-ixy}|^2 dx \xrightarrow{n \to \infty} 0$$
$$\int_{b_n}^{+\infty} |f'(x)e^{-ixy}|^2 dx + \int_{-\infty}^{a_n} |f'(x)e^{-ixy}|^2 dx \xrightarrow{n \to \infty} 0$$

Ma questo è vero in quanto $f, f' \in L^2$.

Proposizione 6. Se $f \in C^1$, $f \in L^1$, $f' \in L^2 \implies \hat{f} \in L^1$ e soddisfa le ipotesi del teorema di inversione.

Dimostrazione. Sappiamo che $iy\hat{f} = \hat{f}' \in L^2 \implies y\hat{f} \in L^2$.

$$\int_{\mathbb{R}} |\widehat{f}(y)| \, \mathrm{d}y = \int_{|y| \le 1} |\widehat{f}(y)| \, \mathrm{d}y + \int_{|y| \ge 1} |\widehat{f}(y)| \, \mathrm{d}y \\
\le 2 \|\widehat{f}\|_{\infty} + \int_{|y| \ge 1} |\widehat{f}(y)y| \frac{1}{|y|} \, \mathrm{d}y \\
\le 2 \|f\|_{1} + \|\widehat{f}y\|_{2} \left(\int_{|y| \ge 1} \frac{1}{|y|^{2}} \, \mathrm{d}y \right)^{1/2} \\
\le 2 \|f\|_{1} + 2 \|f'\|_{2}$$

Corollario. $f \in C_C^1 \implies f, \hat{f} \in L^1$

Proposizione 7. Se $f_1, f_2 \in L^2(\mathbb{R}; \mathbb{C})$ (e dunque $f_1 f_2 \in L^1(\mathbb{R}; \mathbb{C})$ per Hölder) allora

$$2\pi \widehat{f_1 f_2} = \widehat{f_1} * \widehat{f_2}$$

Dimostrazione. $f_1, f_2 \in L^2 \implies f_1 f_2 \in L^1$ segue da Hölder. Dimostriamo la proposizione per $f_1, f_2 \in C_C^1 \implies f_1, f_2, f_1 f_2 \in C_C^1 \implies$ tutte in L^1 e con trasformate in L^1 .

$$\mathcal{F}^* \left(\frac{1}{2\pi} \widehat{f_1} * \widehat{f_2} \right) = \frac{1}{2\pi} \mathcal{F}^* (\widehat{f_1}) \mathcal{F}^* (\widehat{f_2}) = \frac{1}{2\pi} (2\pi f_1) \cdot (2\pi f_2) = 2\pi f_1 \cdot f_2 = \mathcal{F}^* (\widehat{f_1 f_2})$$

ed usando che \mathcal{F}^* è iniettiva otteniamo che $2\pi \widehat{f_1f_2} = \widehat{f_1} * \widehat{f_2}$.

Per $f_1, f_2 \in L^2$ si procede per continuità e si approssimano f_1 ed f_2 con $f_{1,n}$ e $f_{2,n}$ in C_C^1 .

6.3 Conclusione sulla TdF

Proposizione 4. (di 2 lezioni fa) Se $f, xf \in L^1(\mathbb{R}; \mathbb{C})$, allora $\widehat{f} \in C^1(\mathbb{R}; \mathbb{C})$ e $(\widehat{f})' = \widehat{-ixf}$.

Corollario. Se $f, x^k f \in L^1$ con k = 1, 2, ..., allora $x^h f \in L^1$ per ogni h = 0, ..., k e $\widehat{f} \in C_0^k$ e $D^h \widehat{f} = \widehat{(-ix)^h} f$.

Dimostrazione. Vale $|x^h| \leq 1 + |x|^k$ per ogni x e per ogni h = 1, ..., k. Allora $|x^h f| \leq (1 + |x|^k)|f| \in L^1$. Il resto dell'enunciato è per induzione su k.

Corollario. Se $x^k f \in L^1$ per ogni $k = 0, 1, ..., {}^1$ allora $\hat{f} \in C^{\infty}$ (anzi C_0^{∞} siccome le derivate sono trasformate).

Teorema (Paley-Weiner). Se $e^{\alpha|x|} \cdot f(x) \in L^1$ per qualche $\alpha > 0$, allora \hat{f} è analitica².

Dimostrazione. In $\mathbb{R} \times \mathbb{R} \simeq \mathbb{C}_{z=x+it}$ definisco g(z).

Ricordiamo che $\hat{f}(y) = \int_{-\infty}^{\infty} f(x)e^{-iyx} dx$. Poniamo

$$g(z) := \int_{-\infty}^{\infty} f(x)e^{-izx} dx$$

Passo 1. g(z) è definita per ogni $z \in \mathbb{R} \times [-\alpha, \alpha]$. Infatti,

$$\int_{-\infty}^{\infty} f(x)e^{-izx} dx = \int_{-\infty}^{\infty} |f(x)|e^{tx} dt \le \int_{-\infty}^{\infty} |f(x)|e^{\alpha|x|} dx < +\infty$$

Passo 2. Mostriamo che g(z) è olomorfa su $\mathbb{R} \times (-\alpha, \alpha)$. Sviluppo g in serie di potenze in 0.

Nota. Questo mi serve per dire che è olomorfa in una palla di raggio α centrata in 0. Per concludere bisogna traslare il centro la palla per tutta la retta reale e mostrare la stessa cosa [TO DO: spiegare meglio + disegno palla].

$$g(z) = \int_{\mathbb{R}} f(x)e^{-izx} dx = \int_{\mathbb{R}} f(x) \sum_{n=0}^{\infty} \frac{(-izx)^n}{n!} dx \stackrel{(\star)}{=} \sum_{n=0}^{\infty} \left(\int_{\mathbb{R}} \frac{(-ix)^n}{n!} f(x) dx \right) z^n = \sum_{n=0}^{\infty} a_n z^n$$

La serie $\sum_n a_n z^n$ è convergente per $|z| \leq \alpha$, quindi g è olomorfa su $B(0,\alpha)$. Notiamo che in (\star) abbiamo usato Fubini-Tonelli; controlliamo che potevamo applicarlo, dunque verifichiamo quanto segue.

$$\int_{\mathbb{R}} |f(x)| \sum_{n=0}^{\infty} \left| \frac{(-izx)^n}{n!} \right| dx < +\infty$$

Abbiamo

$$\int_{\mathbb{R}} |f(x)| \sum_{n=0}^{\infty} \frac{|zx|^n}{n!} dx = \int_{\mathbb{R}} |f(x)| e^{|z||x|} dx \le \sup_{|z| \le \alpha} \int_{R} |f(x)| e^{\alpha|x|} dx$$

Per concludere si dimostra (allo stesso modo) che g si sviluppa in serie in ogni punto $y_0 \in \mathbb{R}$ con raggio di convergenza α .

¹Questa condizione è implicata, ad esempio, dall'ipotesi $f \in C_C$

²Restrizione di $g: \underbrace{\mathbb{R} \times (-\alpha, \alpha)} \to \mathbb{C}$ olomorfa

Corollario. Se $f \in L^1$ è olomorfa e a supporto compatto allora \hat{f} è la restrizione di $g \colon \mathbb{C} \to \mathbb{C}$ olomorfa [TO DO: controllare].

Nota. Se $f \in L^1$ e a supporto compatto, si ha $f(x)e^{\alpha|x|} \in L^1$ per ogni α .

6.4 Applicazioni TdF

Risoluzione equazioni del calore su \mathbb{R} .

$$\begin{cases} u_t = u_{xx}(x \in \mathbb{R}) \\ u(0, \cdot) = u_0 \end{cases}$$

Risoluzione formale. Denotiamo con $\widehat{u} := \widehat{u}(t,y)$ la trasformata di Fourier rispetto alla variabile x

$$\widehat{u_t}(t,y) = \int \frac{\partial}{\partial t} u(t,x) e^{-ixy} \, \mathrm{d}x = \frac{\partial}{\partial t} \left(\int u(t,x) e^{-ixy} \, \mathrm{d}x \right) = \widehat{u}_t$$

Inoltre, $\widehat{u_t}=\widehat{u_{xx}}=(iy)^2\widehat{u}=-y^2\widehat{u}$. Quindi, per ogni $y,\ \widehat{u}(\cdot,y)$ risolve

$$\begin{cases} \dot{z} = -y^2 z \\ z(0) = \widehat{u_0}(y) \end{cases}$$
 (P)

Soluzione generale $z = \alpha e^{-y^2 t}$, da cui la soluzione per (??) è $\widehat{u}(t,y) = \widehat{u_0}(y)e^{-y^2 t}$.

Siano

$$\rho(x) := \frac{e^{-x^2/2}}{\sqrt{2\pi}}, \quad \widehat{\sigma_{\sqrt{2t}}}\rho = \widehat{\rho}(\sqrt{2t}y).$$

Però è noto che $\widehat{\rho}(y)=e^{-y^2/2}\implies \widehat{\rho}(\sqrt{2t}y)=e^{-(\sqrt{2t}y)^2/2}=e^{-y^2t}$. Da cui

$$\widehat{u}(t,y) = \widehat{u_0}(y)e^{-y^2t} = \widehat{u_0}(y) \cdot \widehat{\sigma_{\sqrt{2t}}\rho}(y) = \mathcal{F}(u_0 * \sigma_{\sqrt{2t}}\rho) \Longrightarrow u(t,y) = u_0 * \left(\sigma_{\sqrt{2t}}\rho\right)$$

Dunque

$$u(t,x) := \begin{cases} u_0(x) & \text{per } t = 0\\ u_0 * \sigma_{\sqrt{2t}} \rho(x) & \text{per } t > 0 \end{cases}$$
 (*)

Teorema. Se $u_0: \mathbb{R} \to \mathbb{R}$ è continua e limitata, allora u data in (??) è ben definita su $[0, +\infty) \times \mathbb{R}$, continua, C^{∞} per t > 0 e risolve (??).

Data $u: [0,T) \times \mathbb{R} \to \mathbb{R}$ soluzione di (??) tale che esiste $h_0, h_1 \in L^1(\mathbb{R})$ tali che

$$|u(t,x)| \le h_0(x), \quad |u_t(t,x)| \le h_1(x)$$

allora $\widehat{u}(\cdot,y)$ è univocamente determinata su [0,T), dunque u è univocamente determinata per l'iniettività di TdF.

¹Si vede all'esercitazione che segue?

Capitolo 7

Integrazione di superfici

7.1 Superfici

Definizione. Data $f: \Omega \subset \mathbb{R}^k \to \mathbb{R}^d$ di classe C^1 e dato $x \in \Omega$, la mappa lineare da \mathbb{R}^k a \mathbb{R}^d associata alla matrice $\nabla f(x)$ si dice **differenziale di** f **in** x e si indica con $d_x f$.

Nota. La mappa $d_x f$ è univocamente determinata da

$$f(x+h) = f(x) + d_x f(h) + o(|h|)$$

dove $d_x f$ è il termine di primo grado dello sviluppo di Taylor di f.

Definizione. Siano $1 \le k \le d$ e $m = 1, 2, \ldots$ L'insieme $\Sigma \subset \mathbb{R}^d$ si definisce **superficie** (senza bordo) di dimensione k e classe C^m se per ogni $x \in \Sigma$ esiste U intorno aperto¹ di $x \in \Sigma$ ed esiste una mappa $\phi \colon D \to \mathbb{R}^d \in C^m$ con D aperto di \mathbb{R}^k tale che

- $\phi(D) = \Sigma \cap U$
- $\phi \colon D \to \Sigma \cap U$ è un omeomorfismo
- $\nabla \phi(s)$ ha rango massimo (=k) per ogni $s \in D$

Ovvero ϕ è una parametrizzazione locale della superficie

Osservazione. Se k=d abbiamo che Σ è una superficie se e solo se Σ è aperto.

Proposizione. Dati k, d, m come sopra, $\Sigma \subset \mathbb{R}^d$ e $x \in \Sigma$ sono fatti equivalenti

- Esistono U e $\phi \colon D \to \Sigma \cap U$ tale che ϕ è una parametrizzazione regolare
- Esistono U intorno di $x \in g: U \to \mathbb{R}^{d-k} \in C^m$ tale che
 - $\circ \Sigma \cap U = q^{-1}(0)$
 - $\circ \nabla g$ ha rango massimo, ovvero d-k
- Esistono U intorno di x e $h: \mathbb{R}^k \to \mathbb{R}^{d-k}$ di classe C^m tale che $\Sigma \cap U = \Gamma_h \cap U$ (dove Γ_h è il grafico di h) avendo identificato $\mathbb{R}^k \times \mathbb{R}^{d-k}$ con \mathbb{R}^d tramite una scelta di k coordinate tra le d di \mathbb{R}^d

¹D'ora in avanti gli intorni saranno sempre aperti.

Esempi.

- $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d \mid |x| = 1\}$ è una superficie senza bordo di dimensione d-1 e classe C^{∞} in \mathbb{R}^d
- $\mathbb{D} = \{x \in \mathbb{R}^3 \mid x_3 = 0 \text{ e } |x| < 1\}$ è una superficie 2-dimensionale in \mathbb{R}^3
- \overline{D} non lo è! (È una superficie con bordo)

[TO DO]: disegni in blu sul quaderno

Definizione. Data Σ superficie e fissato $x \in \Sigma$, lo **spazio tangente** a Σ in x è $T_x\Sigma := \text{Im}(d_s\phi)$ dove $\phi \colon D \to \Sigma \cap U$ è una parametrizzazione regolare e $x = \phi(s)$ con $s \in D$.

Nota. Lo spazio tangente è uno spazio vettoriale di stessa dimensione della superficie.

Proposizione.

- $T_x \Sigma = {\dot{\gamma}(0) \mid \gamma \colon [0, \delta) \to \Sigma \text{ cammino } C^1 \text{ con } \gamma(0) = x}$
- Data $g: U \to \mathbb{R}^{d-k}$ tale che $\Sigma \cap U = g^{-1}(0)$, $\operatorname{rk}(\nabla g) = d k$ su U, allora

$$T_x \Sigma = \ker(d_x g) = {\nabla g_1(x), \dots, \nabla g_{n-k}(x)}^{\perp}$$

Definizione. Data Σ superficie in \mathbb{R}^d di classe C^m , $f: \Sigma \to \mathbb{R}^{d'}$, diciamo che f è di classe $C^{m'}$, con $m' \leq m$ se per ogni $x \in \Sigma$ se esistono U e $\phi: D \to \Sigma \cap U$ parametrizzazione regolare, tale che $f \circ \phi: D \to \mathbb{R}^d$ è di classe $C^{m'}$ con D aperto di \mathbb{R}^k .

Proposizione. $f \in C^{m'} \iff \exists A$ aperto di \mathbb{R}^d che contiene Σ e $F: A \to \mathbb{R}^d$ estensione di f di classe $C^{m'}$.

Osservazione. Se $\phi: D \to \Sigma \cap U$ è una parametrizzazione regolare, allora $\phi^{-1}: \Sigma \cap U \to D \subset \mathbb{R}^k$ è C^m . La mappa ϕ^{-1} viene definita **carta**.

Definizione. Data $f \colon \Sigma \to \mathbb{R}^d$ di classe (almeno) C^1 e $x \in \Sigma$,

$$d_x f : T_z \Sigma \longrightarrow \mathbb{R}^d$$

$$\dot{\gamma}(0) \longmapsto (f \circ \gamma)'(0) \quad \gamma : [0, \delta) \to \Sigma, \ \gamma \in C^1, \ \gamma(0) = x$$

Proposizione. Data $F: A \to \mathbb{R}^{d'}$ estensione C^1 di f, con $A \subset \mathbb{R}^d$, allora

$$d_x f = |d_x F|_{T_x \Sigma}$$

Osservazione. Se $f: \Sigma \to \Sigma'$, dove $\Sigma \subset \mathbb{R}^d$ e $\Sigma' \subset \mathbb{R}^{d'}$ allora $\operatorname{Im}(d_x f) \subset T_{f(x)}\Sigma'$. Quindi, $d_x f: T_x \Sigma \to T_{f(x)}\Sigma'$.

7.2 Misure su superfici

In questa sezione studiamo la misura di Lebesgue su superfici definite tramite parametrizzazione¹.

Definizione. Dati V spazio vettoriale k-dimensionale dotato di prodotto scalare (per esempio V sottospazi di \mathbb{R}^d), la **misura di Lebesgue** σ_k su V è data dall'identificazione di V con \mathbb{R}^k tramite la scelta di una base ortonormale.

¹Coincide con la definizione di Hausdorff

Nota. σ_k non dipende dalla scelta della base.

Definizione. Siano V, V' spazi vettoriali di dimensione k dotati di prodotto scalare e $\Lambda \colon V \to V'$ lineare. Poniamo

$$|\det \Lambda| := |\det M|,$$

dove M è una matrice $k \times k$ associata a Λ dalla scelta di basi ortonormali su V e V'.

Nota. Si verifica che la definizione è ben posta, ovvero non dipende dalla scelta delle basi. Inoltre, si verifica che per ogni $E \subset V$ misurabile si ha $\sigma_k(\Lambda(E)) = |\det \Lambda| \cdot \sigma_k(E)$ (formula di cambio di variabile negli integrali).

Definizione. Sia $\Lambda\colon V\to W,$ con V,W spazi vettoriali, non necessariamente di stessa dimensione. Poniamo $V'\coloneqq \mathrm{Im}(\Lambda)$ e

$$|\det \Lambda| := \begin{cases} 0 & \text{se } \operatorname{rk}(\Lambda) < k \\ \operatorname{come prima} & \text{se } \operatorname{rk}(\Lambda) = k \text{ e } \dim V' = \dim V \end{cases}$$

Proposizione 1. Se $\Lambda : \mathbb{R}^k \to \mathbb{R}^d$ allora

$$|\det \Lambda|^2 = \det(N^t N) \tag{1}$$

dove N è una matrice $d \times k$ associata a Λ . E inoltre

$$|\det \Lambda|^2 = \sum_{\substack{Q \text{ minore} \\ k \times k \text{ di } N}} \det(Q)^2 \tag{2}$$

Osservazione. Questa proposizione implica che non è necessario trovare una base ortormale dell'immagine di Λ per calcolarne il determinante.

Dimostrazione.

(1) Supponiamo Λ iniettiva (il caso Λ non iniettivo per esercizio), scegliamo una base ortonormale e_1, \ldots, e_k di $\operatorname{Im}(\Lambda)$ e una matrice M $k \times k$ associata a Λ . Sia $B \in \mathbb{R}^{d \times k}$ una matrice avente colonne uguali a e_1, \ldots, e_k . Allora N = BM. Dunque,

$$\det(N^t N) = \det(M^t \underbrace{B^t B}_{=I} M) = \det(M^t M) = (\det M)^2 =: |\det \Lambda|^2.$$

(2) La seconda formula richiede la formula di Binet generalizzata.

7.3 Superfici k-dimensionali in \mathbb{R}^d di classe C^1

Definizione. Un insieme $E \subset \Sigma$ è **misurabile** (secondo Lebesgue) se $\forall \phi \colon D \to \Sigma \cap U$ parametrizzazione regolare e $D \subset \mathbb{R}^k$, l'insieme $\phi^{-1}(E \cap U) \subset \mathbb{R}^k$ è misurabile secondo Lebesgue.

Notazione. $\mathcal{M}(\Sigma) := \{ E \subset \Sigma \text{ misurabili} \}.$

Proposizione 1. Esiste un'unica misura σ_k su $\mathcal{M}(\Sigma)$ tale che per ogni E misurabile e per ogni $\phi: D \to \Sigma \cap U$ parametrizzazione regolare

$$\sigma_k(E \cap U) = \int \underbrace{\det(d_s \phi)}_{\phi^{-1}(E \cap U)} ds$$
(1)

Commenti.

- σ_k misura di volume k-dimensionale su Σ .
- σ_k coincide con la misura di Hausdorff \mathcal{H}^k ristretta a Σ .
- $J\phi(s) = \sqrt{\det(\nabla^t \phi(s) \nabla \phi(s))} = \sqrt{\sum_Q (\det Q)^2}$ dove Q sono i minori $k \times k$ si $\nabla \phi(s)$.
- Se k = 1, vale $J\phi(s) = \sqrt{\det(\phi'(s))^t \phi'(s)} = |\phi'(s)|$.

Dimostrazione.

Passo 1: costruzione di σ_k .

Prendiamo $\sigma_i : D_i \to \Sigma \cap U_i$ parametrizzazioni regolari, dove $\{D_i\}$ è una famiglia numerabile, tale che $\Sigma \subset \bigcup U_i$. Prendiamo Σ_i misurabili e disgiunti tali che $\bigcup \Sigma_i = \Sigma$ e $\Sigma_i \subset U_i$.

Per ogni $E \in \mathcal{M}(\Sigma)$ poniamo

$$\sigma_k(E) = \sum_{i} \int_{\phi^{-1}(E \cap \Sigma_i)} J\phi_i(s) \, \mathrm{d}s$$

Evitiamo di verificare che sia una misura σ -addittiva.

Per dimostrare la proposizione si usa il seguente lemma.

Lemma. Date $\phi \colon D \to \Sigma \cap U$ e $\widetilde{\phi} \colon \widetilde{D} \to \Sigma \cap \widetilde{U}$ e E misurabili contenuto in $U \cap \widetilde{U}$, allora

$$\int_{\phi^{-1}(E)} J\phi(s) \, \mathrm{d}s = \int_{\widetilde{\phi}(E)} J\widetilde{\phi}(\widetilde{s}) \, \mathrm{d}\widetilde{s} \tag{2}$$

Dimostrazione lemma. Usiamo il cambio di variabile $s = \phi^{-1}(\widetilde{\phi}(\widetilde{s})) =: g(\widetilde{s}).$

$$\int_{F} J\phi(s) \, \mathrm{d}s = \int_{g^{-1}(F) = \widetilde{F}} J\phi(s) Jg(\widetilde{s}) \, \mathrm{d}\widetilde{s} = \int_{\widetilde{F}} |\det(\,\mathrm{d}_{s}\phi)| \cdot |\det(\,\mathrm{d}_{\widetilde{s}}g)| \, \mathrm{d}\widetilde{s}$$
$$= \int_{\widetilde{F}} |\det(d_{\widetilde{s}}(\phi \circ g))| \, \, \mathrm{d}\widetilde{s} = \int_{\widetilde{F}} J\widetilde{\phi}(\widetilde{s}) \, \mathrm{d}\widetilde{(s)}$$

Da cui la tesi. \Box

Corollario 2. Data $\phi: D \to \Sigma \cap U$ C^1 parametrizzazione bigettiva (non necessariamente regolare), $f: \Sigma \cap U \to \overline{\mathbb{R}}$ misurabile e integrabile rispetto a σ_k .

$$\int_{\Sigma \cap U} f(x) \, d\sigma_k(x) = \int_D f(\phi(s)) J\phi(s) \, ds \tag{3}$$

Se $\phi \colon D \to \Sigma \cap U$ è solo C^1 , come vanno corrette (??) e (??)?

$$\int_{E \cap U} \#\phi^{-1}(x) \, d\sigma_k(x) = \int_{\phi^{-1}(E \cap U)} J\phi(s) \, ds$$
 (1')

е

$$\int_{E \cap U} f(x) \# \phi^{-1}(x) \, \mathrm{d}\sigma_k(x) = \int_D f(\phi(s)) J\phi(s) \, \mathrm{d}s \tag{3'}$$

Nota. Le formule sopra giustificano il fatto che parametrizzazione non esattamente bigettive possono essere usate lo stesso per il calcolo dei volumi.

Esempio. Parametrizzazione di $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ con coordinate sferiche.

Consideriamo $\phi_d \colon \mathbb{R}^d \to \mathbb{S}^d$ definita come

$$\phi_d(\alpha_1, \dots, \alpha_d) = (\cos \alpha_1, \sin \alpha_1 \cos \alpha_2, \sin \alpha_1 \sin \alpha_2 \cos \alpha_3, \dots, \sin \alpha_1 \cdots \sin \alpha_{d-1} \cos \alpha_d, \sin \alpha_1 \cdots \sin \alpha_d)$$

Definizione ricorsiva

$$\phi_1(\alpha_1) = (\cos \alpha_1, \sin \alpha_1), \quad \phi_d(\alpha) = (\cos \alpha_1, \sin \alpha_1 \cdot \phi_{d-1}(\alpha_2, \dots, \alpha_d))$$

Dunque

- $\phi_d\left([0,\pi]^{d-1}\times[0,2\pi]\right)=\mathbb{S}^d$ è una parametrizzazione in coordinate sferiche ed è iniettiva.
- $J\phi_d(\alpha) = \sin(\alpha_1)^{d-1}\sin(\alpha_2)^{d-2}\cdots\sin(\alpha_{d-1})^1$

Proposizione 3. Sia Σ superficie come al solito. Allora esiste un'unica misura μ sui $\mathcal{M}(\Sigma)$ tale che per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che data $f : \Sigma \cap U \to \mathbb{R}^k \in C^1$ che è δ -isometria, cioè

$$\frac{1}{1+\delta}|x-x'| \le |f(x)-f(x')| \le (1+\delta)|x-x'| \quad \forall x, x' \in \Sigma \cap U$$
 (P)

Allora

$$\frac{1}{1+\varepsilon}\sigma_k(E) \le |f(E)| \le (1+\varepsilon)\sigma_k(E) \quad \forall E \text{ mis } \subset \Sigma \cap U$$

Corollario 4. Poichè σ_k e la restrizione di \mathcal{H}^k a Σ hanno la proprietà $(\ref{eq:condition})$, coincidono.

Dimostrazione (Unicità). Prendiamo μ, μ' che soddisfano (??). Fissiamo $E, \varepsilon > 0$ e δ di conseguenza usando (??). Allora

- Per ogni $x \in \Sigma$ esiste $\phi_x \colon U_x \cap \Sigma \to \mathbb{R}^k$ tale che $d_x \phi_x \colon T_x \Sigma \to \mathbb{R}^k$ è un'isometria.
- per ogni x esiste $V_x \subset U_x$ tale che $\phi_x \colon \Sigma \cap V_x \to \mathbb{R}^k$ è δ -isometria.
- Ricopriamo Σ con una successione $V_i := V_{x_i}$.
- Scriviamo $E = \bigsqcup_{i} E_i \text{ con } E_i \subset V_i.$

Per (??) abbiamo che

$$\frac{1}{1+\varepsilon}\mu(E_i) \le |f(E_i)| \le (1+\varepsilon)\mu(E_i)$$
$$\frac{1}{1+\varepsilon}\widetilde{\mu}(E_i) \le |f(E_i)| \le (1+\varepsilon)\widetilde{\mu}(E_i)$$

da cui incrociando le disuguaglianze otteniamo

$$\implies \frac{1}{(1+\varepsilon)^2}\mu(E_i) \le \widetilde{\mu}(E_i) \le (1+\varepsilon)^2\mu(E_i)$$

$$\frac{1}{(1+\varepsilon)^2}\widetilde{\mu}(E_i) \le \mu(E_i) \le (1+\varepsilon)^2\widetilde{\mu}(E_i)$$

e per arbitrarietà di ε ricaviamo $\mu(E) = \widetilde{\mu}(E)$. Per arbitrarietà di E otteniamo $\mu = \widetilde{\mu}$.

7.4 k-covettori

Dato V spazio vettoriale su \mathbb{R} e $k=1,2,\ldots$, l'applicazione $\alpha\colon V^k\to\mathbb{R}$ si dice k-covettore o k-lineare e alternante se

- è lineare in ogni variabile
- per ogni σ permutazione in S_k , $\alpha(v_{\sigma(1)}, \ldots, v_{\sigma(k)}) = \operatorname{sgn}(\sigma)\alpha(v_1, \ldots, v_k)$ (equivalentemente, α cambia segno scambiando due variabili).

Notazione. $\Lambda^k(V) := \{ \alpha \text{ } k\text{-covettori su } V \}.$ Formalmente $\Lambda^0(V) := \{ 0 \}.$

Osservazione.

- $\Lambda^k(V)$ è uno spazio vettoriale.
- $\Lambda^1(V) = V^*$ duale di V.
- det è *n*-lineare alternante nelle colonne (o righe).
- Se v_1, \ldots, v_k sono linearmente dipendenti, allora $\alpha(v_1, \ldots, v_k) = 0$.
- Se $k > \dim V$, allora $\Lambda^k(V) = \{0\}$.

Definizione. Dati V,V' spazi vettoriali, $T\colon V\to V'$ lineare, $\alpha\in\Lambda^k(V')$, il **pull-back** di α secondo T è

$$T^{\#}\alpha \in \Lambda^k(V)$$
 dato da $T^{\#}\alpha(v_1,\ldots,v_k) = \alpha(Tv_1,\ldots,Tv_n)$

Inoltre, dati $\alpha \in \Lambda^k(V), \beta \in \Lambda^h(V)$ si definisce **prodotto esterno** e si indica con $\alpha \wedge \beta \in \Lambda^{k+h}(V)$ quanto segue

$$\alpha \wedge \beta(v_1, \dots, v_{k+h}) = \frac{1}{k!h!} \sum_{\sigma \in S_{k+h}} \operatorname{sgn}(\sigma) \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+h)})$$

7.5 Integrazione di k-forme su superfici

Proposizione 0. Il prodotto esterno \wedge è distributivo (rispetto a +), associativo e anticommutativo, ovvero $\alpha \wedge \beta = (-1)^{hk} \beta \wedge \alpha$.

Data e_1, \ldots, e_d base di V, e_1^*, \ldots, e_d^* è una base di V^* . Denotiamo con $I(d, k) := \{\underline{i} = (i_1, \ldots, i_k) \text{ con } 1 \leq i_1 \leq \ldots \leq i_k \leq i_d\}$ l'insieme di multiindici. Per ogni $i \in I(d, k)$ indichiamo con $e_{\underline{i}}^* = e_{i_1}^* \wedge \ldots \wedge e_{i_k}^* \in \Lambda^k(V)$. Data una matrice $d \times k$ A, $A_{\underline{i}}$ è il minore di A dato dalle righe i_1, \ldots, i_k .

Proposizione 1. $e_{\underline{i}}^*(v_1, \dots, v_k) = \det(A_{\underline{i}})$, dove $A \in \mathbb{R}^{d \times k}$ matrice delle coordinate di v_1, \dots, v_k , cioè $A_{ij} = (v_j)_i$.

Dimostrazione. Per induzione su k.

- k = 1. OK
- Passo induttivo $k-1 \to k$. Scriviamo $e_{\underline{i}}^* = e_{i_1} \wedge e_{\underline{i'}}$ con $\underline{i'} = (i_2, \dots, i_k)$. Usando la definizione di prodotto esterno e l'ipotesi induttiva notiamo che questo è uguale allo sviluppo per la prima riga di $\det(A_i)$

Proposizione 2. Posta $\{e_{\underline{i}} : \underline{i} \in I(d,k)\}$ è una base di $\Lambda^k(V)$ e in particolare per ogni $\alpha \in \Lambda^k(V)$

$$\alpha = \sum_{\underline{i} \in I(d,k)} \alpha(e_{\underline{i}}) e_{\underline{i}}^*$$

Dimostrazione. Definiamo $\tilde{\alpha}$ come sopra. Prendiamo $\underline{i} \in I(d,k)$, allora

$$\widetilde{\alpha}(e_{j_1},\ldots,e_{j_k}) = \sum_{\underline{i}} \alpha(e_{i_1},\ldots,e_{i_k}) \cdot \underbrace{e_{\underline{i}}^*(e_{j_1},\ldots,e_{j_k})}_{=\delta_{ij}} = \alpha(e_{j_1},\ldots,e_{j_k})$$

Si conclude per linearità e alternanza.

Corollario. Vale la seguente identità

$$\dim \Lambda^k(V) = \#I(d,k) = \begin{cases} \binom{d}{k} & \text{se } k < d \\ 0 & \text{altrimenti} \end{cases}$$

Proposizione 3 (Formula di Binet generalizzata). Dati A, B matrici di $d \times k$ con k < d, allora

$$\det(B^t A) = \sum_{\underline{i} \in I(d,k)} \det(B_{\underline{i}}) \det(A_{\underline{i}})$$

Dimostrazione. Basta definire $\alpha(v_1, \ldots, v_k) = \det(B^t A)$ dove A è la matrice avente colonne pari a v_1, \ldots, v_k . Bisogna verificare che α è k-lineare alternante ([TO DO]), da cui segue che

$$\det(B^t A) = \alpha(v_1, \dots, v_k) \underset{\text{Prop 2}}{=} \sum_{\underline{i}} \underbrace{\alpha(e_{i_1}^*, \dots, e_{i_k}^*)}_{\det(B_i^t)} \cdot \underbrace{e_{\underline{i}}^*(v_1, \dots, v_k)}_{\det A_i}$$

Osservazione. Nel caso in cui B = A, otteniamo la formula

$$\det(A^t A) = \sum_{\substack{Q \text{ minore} \\ k \times k \text{ di } A}} \det(Q)^2.$$

Caso particolare $V = \mathbb{R}^d$. Indichiamo con e_1, \ldots, e_d i vettori della base canonica, dx_1, \ldots, dx_d base duale di \mathbb{R}^d , $dx_{\underline{i}} := e_{\underline{i}}^*$ base canonica di $\Lambda^k(\mathbb{R}^d)$.

Esempio.

$$(dx_1 + 2 dx_2) \wedge (2 dx_1 \wedge dx_3 - dx_2 \wedge dx_4)$$

$$= 2 dx_1 \wedge dx_1 \wedge dx_3 - dx_1 \wedge dx_2 dx_4 + 4 dx_2 \wedge dx_1 \wedge dx_3 - 2 dx_2 \wedge dx_2 \wedge dx_4$$

$$= - dx_1 \wedge dx_2 \wedge dx_4 - 4 dx_1 \wedge dx_2 \wedge dx_3.$$

Nota. Nel prodotto esterno si cancellano tutti i termini con indici ripetuti.

Definizione. Dato $\Omega \subset \mathbb{R}^d$ aperto, una k-forma ω su Ω è una "funzione" da Ω in $\Lambda^k(\mathbb{R}^d)$. In coordinate, $\omega(x) = \sum_{\underline{i} \in I(d,k)} w_{\underline{i}}(x) \cdot dx_{\underline{i}}$.

Il differenziale esterno di una k-forma ω su Ω di classe C^1 è la k+1-forma su Ω di classe almeno C^0 data da

• k=0. In tal caso f è una funzione (0-forma) e $\mathrm{d}f(x)=\mathrm{d}_x f=\sum \frac{\partial w_i(x)}{\partial x_i}\,\mathrm{d}x_j\wedge\,\mathrm{d}x_{\underline{i}}$

$$\bullet \ k>0 \ \mathrm{d}\omega \coloneqq \sum_{\underline{i} \in I(d,k)} \mathrm{d}\omega_{\underline{i}}(x) \wedge \ \mathrm{d}x_{\underline{i}} = \sum_{\underline{i} \in I(d,k)} \sum_{j=1}^d \frac{\partial \omega_{\underline{i}}(x)}{\partial x_j} \, \mathrm{d}x_j \wedge \ \mathrm{d}x_{\underline{i}}.$$

Proposizione (Leibniz). Valgono le seguenti.

- $d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^{k_1} \omega_1 \wedge \omega_2$
- $d^2\omega = 0$