Lezione 2 Secondo semestre Algebra I

Federico De Sisti2025-03-06

0.1 Ricordo

Sanello commutativo $R\subseteq S$ sottoanello $t\in S$ Abbiamo dimostrato che $R[t]=\{\sum_{i=0}^k r_it_i\mid k\in\mathbb{Z}_{>0},\ t_i\in\mathbb{R}\}$ è il più piccolo sottoanello si S contenente \mathbb{R} e t

Definizione 1

 $t \in S$ si dice trascendente su \mathbb{R} se per ogni $a \in \mathbb{R}[t]$ la scrittura

$$s = \sum_{i=0}^{k} r_i t^i.$$

 \grave{e} unica

Esercizio:

Dimostrare che $i \in S$ è trascendente su \mathbb{R} se e solo se vale la seguente condizione

(*)
$$r_0 + r_1 t + \ldots + r_k t^k = 0 \Rightarrow r_0 = r_1 = \ldots = r_k = 0.$$

Soluzione

Se t è trascendente allora $0 \in \mathbb{R}$ ammette struttura polinomiale unica \Rightarrow vale la proprietà.

Viceversa suppongo che valga (*). Se

$$a_0 + a_1 t + \ldots + a_k t^k = b_0 + b_1 t + \ldots + b_h t^h$$
.

Assumo $k \geq k$

$$(a_0 - b_0) + (a_1 - b_1)t + \ldots + (a_h - b_h)t^h + \ldots a_k t^k = 0.$$

$$(*) \Rightarrow a_0 = b_0, \dots, a_i = b_i \ \forall i \le h, \ a_j = 0 \ \forall h < j \le k$$

Ìdea

R anello commutativo

x simbolo

$$R[x] = \{ \sum_{i=0}^{k} r_i a^i \mid k \in \mathbb{Z}_{>0}, \ r_i \in \mathbb{R} \}.$$

Operazioni:

$$\left(\sum_{i=1}^{k} a_i x^i\right) + \left(\sum_{i=0}^{h} b_i x^i\right) = \sum_{i=0}^{\max(h,k)} (a_i + b_i) x^i$$
$$\left(\sum_{i=0}^{h} a_i x^i\right) \cdot \left(\sum_{i=0}^{k} b_i x^i\right) = \sum_{j=0}^{h+k} \left(\sum_{p+q=j} (a_p \cdot b_q)\right)$$

Osservazion

Su $\mathbb{R}[x]$ è definita la funzione grado

$$deg : \mathbf{R}[\mathbf{x}] \to \mathbb{Z}_{\geq 0}$$
$$p \to deg(p)$$

Se $p=\sum_{i=0}^k a_i x^i$ $a_k\neq 0$ allora deg(p)=k e p si dice **monico** se $a_k=1$ dove k=deg(p)

Teorema 1 (Divisione Euclidea)

R anello commutativo $f,g \in R[x],g$ monico Allora esistono $q,r \in \mathbb{R}[x]$ tali che

$$f = q \cdot g + r.$$

 $con \ deg(r) < def(g)$ $Tali \ q \ e \ r \ sono \ unici$

Dimostrazione

Considero

Procediamo per induzione su deg(f)Se deg(f) < deg(g)scelgo q = 0 e f = rAltrimenti $deg(f) \ge deg(g)$ scriviamo $f = \sum_{i=0}^{h} a_i x^i$ $g = \left(\sum_{i=0}^{k-1} b_i x^i\right) + x^k$

$$\hat{f} := f - a_k x^{h+k} \cdot g.$$

$$f - a_k x^{h-k} \cdot g = \hat{q} \cdot g + \hat{r} \Rightarrow g = (a_h x^{h-k} + \hat{q}) \cdot g + \hat{r}.$$

 $con \ deg(r) = deg(\hat{r}) < deg(g)$ Supponiamo

$$f = q_1 \cdot g + r_1 = q_2 \cdot g + r_2.$$

 $\Rightarrow (q_1 - q_2) \cdot g = (r_2 - r_1).$

$$deg(q_1 - q_2) \cdot g) \ge deg(g) > deg(r_2r_1)$$

$$\Rightarrow Assurdo$$

$$\Rightarrow q_1 = q_2 \Rightarrow r_2 = r_1$$

Teorema 2

R anello commutativo

 $\phi: R \to S$ omomorfismo di anelli $r \in S$

Allora esiste un unico omomorfismo di anelli $\bar{\phi}: R[x] \to S$ tale che

1.
$$\bar{\phi}(x) = t$$

2.
$$\bar{\phi}|_{R} = 0$$

Dimostrazione

Le richieste danno ϕ :

$$\bar{\phi}\left(\sum_{i=0}^{k} r_i x^i\right) = \sum_{i=0}^{k} \phi(r^i) t^i.$$

Osservazione

Stiamo dicendo che esiste l'omomorfismo $R \to R[x]$ dato dall'inclusione

$$R \xrightarrow{\phi} S$$

$$\downarrow_{i} \xrightarrow{\exists \bar{\phi}} \bar{\beta}$$

$$R[x]$$

Esercizio

R anello commutativo

R[x] anello commutativo

R[x][y] anello commutativo

$$\sum_{j=0}^{k} \left(\sum_{i=0}^{m_i} a_{ij} x^i \right) y^j.$$

E se procediamo al contrario?

R[y][x] è uguale a quello precedente?

$$\sum_{j=0}^{k} \left(\sum_{i=0}^{m_i} a_{ij} y^i \right) x^j.$$

Dimostrare che esiste un isomorfismo di anelli

$$\psi: R[x][y] \to R[y][x].$$

che soddisfa

1.
$$\psi(r) = r_1$$

$$2. \ \psi(x) = x$$

3.
$$\psi(y) = y$$

Soluzione

esiste un omomorfismo ψ con le proprietà cercate.

Per dimostrare che ψ è un
 <u>iso</u>morfismo basta costruire l'inverso in modo analogo.

Proposizione 1

R anello commutativo R dominio d'integrità se e solo se R[x] dominio d'integrità

Dimostrazione

Chiaramente se R[x] è dominio d'integrità allora lo è anche R

Viceversa siano $f,g \in R[x] \setminus \{0\}$ allora il coefficiente di grado massimo di fg è il prodotto dei coefficienti di grado massimo di f e di g. Quindi se R dominio $\Rightarrow f \cdot g \neq 0$

1 Domini Euclidei

Definizione 2

R anello commutativo

 $\nu: R \to \mathbb{Z}_{>0}$ funzione tale che.

- 1. $P(r) = 0 \Leftrightarrow r = 0$
- 2. dati $a, b, c \in \mathbb{R}$ tali che $b \neq 0$ e $c = a \cdot b$ allora

$$\nu(c) \ge \nu(a)$$
.

3. $\forall f,g \in R \ con \ g \neq 0 \ esistono \ q,r \in R \ tali \ che$

$$g = q \cdot g + r$$
.

dove $\nu(r) < \nu(q)$

Tale ν si chiama si valutazione e (R, ν) si chiama dominio Euclideo

Esempio

 \mathbb{K} campo $(\mathbb{K}[x], \nu)$ è un dominio euclideo dove $\nu(p) = deg(p) + 1$ e $\nu(0) = 0$ (\mathbb{Z}, ν) è un domino euclideo dove $\nu(n) = |n|$

 \mathbb{K} campo (\mathbb{K}, ν) dominio euclideo dove $\nu(0) = 0$ e $\nu(r) = 1 \ \forall r \in \mathbb{K} \setminus \{0\}$

Esercizio

Dimostrare che $(\mathbb{Z}[i], \nu)$ è domino euclideo dove $\nu[a+ib] = a^2 + b^2$

Esempio

 $f=\overset{-}{4+}3i, \ \ g=3+2i\neq 0 \ \text{Cerco} \ q,r\in \mathbb{Z}[i] \ \text{tale che} \ f=q\cdot g+r \ \text{e} \ \nu(e)<\nu(g)=13$

Idea generale

$$\frac{a+ib}{c=id}=\alpha+i\beta \quad \alpha,\beta\in\mathbb{Q}.$$

Definizione 3

R anello commutativo.

Definiamo gli insiemi U_i iterativamente

$$U_0 = \{0\} \subseteq \mathbb{R}$$

$$U_{i+1} = \{p \in \mathbb{R} | U_i \to \mathbb{R}/(p) \ \ \dot{e} \ suriettivo\} \cup \{0\}$$

Osservazione 1

L'omomorfismo $U_i \to R/(p)$ è la composizione

$$U_i \xrightarrow{inc} R \xrightarrow{\pi} R/(p).$$

Osservazione 2

La suriettività di $U_i \to R/(p)$ significa

$$\forall f \in R \ \exists q \in R, \ r \in U_i \quad \text{tali che } f - q \cdot p = r.$$

ovvero $f = q \cdot p + r$

Osservazione 3/esercizio

 $U_i \subseteq U_{i+1} \ \forall i \ge 0$

Osservazione 4

Chi è U_1 ?

 $U_1 = \{ p \in R | \{0\} \rightarrow R/(p) \text{ è suriettiva} \}$

 $\{q \in R \mid (p) = R\}$

 $\{p \in R \mid p \text{ invertibile}\}$

Teorema 3

R dominio d'integrità, Allora R è un dominio euclideo se e solo se

$$R = \bigcup_{i=0}^{+\infty} U_i.$$

Dimostrazione

Supponiamo che (R, ν) sia un dominio Euclideo.

 $Im(\nu) = \{0, a_0, a_1, \dots, a_n, \dots\} \subseteq \mathbb{Z}_{>0}$

 $con \{a_k\}$ successione strettamente crescente.

Definiamo

$$V_i = \{ p \in R \mid \nu(p) \le a \}.$$

In particolare $V_0 = \{0\}$

$$R = \bigcup_{i=0}^{+\infty} V_i.$$

La tesi segue verificando che $V_i=U_i \ \forall i\geq 0$ (esercizio) Viceversa: Se $R=\bigcup_{i=0}^{+\infty}U_i$

vogliamo definire $\nu: R \to \mathbb{Z}_{>0}$

tale che (R, ν) dominio Euclideo, Dato $r \in \mathbb{R} \exists i \geq 0$ tale che $r \in U_{i+1} \setminus U_o$

Definiamo $\nu(t) = i + 1$

Si possono verificare le 3 proprietà di ν .

Vediamo (2): dati $a, b, c \in R$ con $b \neq 0$ tali che c = a + b

 $vogliamo\ misurare\ \nu(c) \ge \nu(a)$

 $(c)\subseteq(a)$

 $\Rightarrow R/(a) \Rightarrow R/(a)/(a)/(c) \cong R/(a)$

Se $U_i \to R/(c)$ è suriettiva

allora $U_i \to R/(c) \to R/(a)$ è suriettiva

Ovvero

$$c \in U_{i+1} \Rightarrow a \in U_{i+1}$$
.

quindi

$$\nu(c) = i+1 \Rightarrow c \in U_{i+1} \Rightarrow a \in U_{i+1} \Rightarrow \nu(a) \le i+1 = \nu(c).$$