Robot Perception: Compute Projective Transformations

Kostas Daniilidis

A perspective projection of a plane (like a camera image) is always a projective transformation

Using the projective transformation the pose of a robot with respect to a planar pattern:

Projective Transformation

Definition

A projective transformation is any invertible matrix transformation $\mathbb{P}^2 \to \mathbb{P}^2$.

A projective transformation A maps p to $p' \sim Ap$.

Invertibility means that $\det(A) \neq 0$ and that there exists $\lambda \neq 0$ such that $\lambda p' = Ap$.

Observe that we will write either $p' \sim Ap$ or $\lambda p' = Ap$.

A projective transformation is also known as collineation or homography.

A projective transformation preserves incidence:

- Three collinear points are mapped to three collinear points.
- and three concurrent lines are mapped to three concurrent lines.

Projective transformation of lines

If A maps a point to Ap, then where does a line l map to?

Line equation in original plane

$$l^T p = 0$$

Line equation in image plane $p' \sim Ap$

$$l^T A^{-1} p' = 0$$

implies that $l' = A^{-T}l$.

Projective transformation of lines

If A maps a point to Ap, then where does a line l map to?

Line equation in original plane

$$l^T p = 0$$

Line equation in image plane $p' \sim Ap$

$$l^T A^{-1} p' = 0$$

implies that $l' = A^{-T}l$.

Projective transformation of lines

If A maps a point to Ap, then where does a line l map to?

Line equation in original plane

$$l^T p = 0$$

Line equation in image plane $p' \sim Ap$

$$l^T A^{-1} p' = 0$$

implies that $l' = A^{-T}l$.

Floor tiles measured in [m]

The result of such a transformation would map any point in one plane to the corresponding point in the other

Floor tiles measured in [m]

Points in pixel coordinates

Assume that a mapping A maps the three points (1,0,0), (0,1,0), and (0,0,1) to the non-collinear points A,B,C

with coordinate vectors a, b and $c \in \mathbb{P}^2$. Then the following is a possible projective transformation:

$$\begin{pmatrix} a & b & c \end{pmatrix} = \begin{pmatrix} \alpha a & \beta b & \gamma c \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with 3 degrees of freedoms α, β and γ . This means 3 points do not suffice to compute a projective transformation.

Let us introduce a 4th point D

Let us assume that the same A maps (1,1,1) to the point d. Then, the following should hold:

$$\lambda d = \left(egin{array}{ccc} lpha a & eta b & \gamma c \end{array}
ight) \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight),$$

hence

$$\lambda d = \alpha a + \beta b + \gamma c.$$

There always exist such $\lambda, \alpha, \beta, \gamma$ because four elements of $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$ are always linearly dependent.

Because a,b,c are not collinear, there exist unique $\alpha/\lambda,\beta/\lambda,\gamma/\lambda$ for writing this linear combination.

Since A is the same as A/λ we solve for α, β, γ such that $d = \alpha a + \beta b + \gamma c$, which can be written as a linear system

$$\left(\begin{array}{ccc} a & b & c\end{array}\right)\left(\begin{array}{c} \alpha \\ \beta \\ \gamma\end{array}\right)=d.$$

Since a,b,c are not collinear we can always find a unique triple α,β,γ . The resulting projective transformation is $A=\left(\begin{array}{cc} \alpha a & \beta b & \gamma c \end{array}\right)$.

There always exist such $\lambda, \alpha, \beta, \gamma$ because four elements of $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$ are always linearly dependent.

Because a,b,c are not collinear, there exist unique $\alpha/\lambda,\beta/\lambda,\gamma/\lambda$ for writing this linear combination.

Since A is the same as A/λ we solve for α, β, γ such that $d = \alpha a + \beta b + \gamma c$, which can be written as a linear system

$$\left(\begin{array}{ccc} a & b & c\end{array}\right)\left(\begin{array}{c} \alpha \\ \beta \\ \gamma\end{array}\right)=d.$$

Since a,b,c are not collinear we can always find a unique triple α,β,γ . The resulting projective transformation is $A=\left(\begin{array}{cc} \alpha a & \beta b & \gamma c \end{array}\right)$.

There always exist such $\lambda, \alpha, \beta, \gamma$ because four elements of $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$ are always linearly dependent.

Because a,b,c are not collinear, there exist unique $\alpha/\lambda,\beta/\lambda,\gamma/\lambda$ for writing this linear combination.

Since A is the same as A/λ we solve for α, β, γ such that $d = \alpha a + \beta b + \gamma c$, which can be written as a linear system

$$\left(\begin{array}{ccc} a & b & c\end{array}\right)\left(\begin{array}{c} \alpha \\ \beta \\ \gamma\end{array}\right)=d.$$

Since a,b,c are not collinear we can always find a unique triple α,β,γ . The resulting projective transformation is $A=\left(\begin{array}{cc} \alpha a & \beta b & \gamma c \end{array}\right)$.

Knowledge of this projective transformation makes Virtual Billboards possible!

Microsoft Office Lens App

Office Lens

What happens when the original set of points is not a square?

Find projective transformation mapping $(a, b, c, d) \rightarrow (a', b', c', d')$:

To determine this mapping we go through the four canonical points.

We find the mapping from (1,0,0), etc to (a,b,c,d) and we call it T:

$$a \sim T(1,0,0)^T, etc$$

We find the mapping from (1,0,0), etc to (a',b',c',d') and we call it T':

$$a' \sim T'(1,0,0)^T, etc$$

Then, back-substituing $(1,0,0)^T \sim T^{-1}a, etc$ we obtain that

$$a' = T'T^{-1}a$$
, etc

To determine this mapping we go through the four canonical points.

We find the mapping from (1,0,0), etc to (a,b,c,d) and we call it T:

$$a \sim T(1,0,0)^T, etc$$

We find the mapping from (1,0,0), etc to (a',b',c',d') and we call it T':

$$a' \sim T'(1,0,0)^T, etc$$

Then, back-substituing $(1,0,0)^T \sim T^{-1}a, etc$ we obtain that

$$a' = T'T^{-1}a, etc$$

To determine this mapping we go through the four canonical points.

We find the mapping from (1,0,0), etc to (a,b,c,d) and we call it T:

$$a \sim T(1,0,0)^T, etc$$

We find the mapping from (1,0,0), etc to (a',b',c',d') and we call it T':

$$a' \sim T'(1,0,0)^T, etc$$

Then, back-substituing $(1,0,0)^T \sim T^{-1}a, etc$ we obtain that

$$a' = T'T^{-1}a, etc$$