Context-Free Grammars

Notation for recursive description of languages. Example:

```
Roll \rightarrow < ROLL > Class \ Studs \ < /ROLL > Class \rightarrow < CLASS > Text \ < /CLASS > Text \rightarrow Char \ Text
Text \rightarrow Char \ Text
Char \rightarrow a \cdots \text{ (other chars)}
Studs \rightarrow Stud \ Studs
Studs \rightarrow \epsilon
Stud \rightarrow < STUD > Text \ < /STUD >
```

• Generates "documents" such as:

- Variables (e.g., Studs) represent sets of strings (i.e., languages).
 - ♦ In sensible grammars, these strings share some common characteristic or roll.
- Terminals (e.g., a or < ROLL >) = symbols of which strings are composed.
 - ♦ "Tags" like < ROLL > could be considered either a single terminal or the concatenation of 6 terminals.
- $Productions = \text{rules of the form } Head \rightarrow Body.$
 - ♦ Head is a variable.
 - ♦ Body is a string of zero or more variables and/or terminals.
- Start Symbol = variable that represents "the language."
- Notation: $G = (V, \Sigma, P, S) = (\text{variables}, \text{terminals}, \text{productions}, \text{start symbol}).$

Example

A simpler example generates strings of 0's and 1's such that each block of 0's is followed by at least as many 1's.

$$\begin{array}{c} S \rightarrow AS \mid \epsilon \\ A \rightarrow 0A1 \mid A1 \mid 01 \end{array}$$

 Note vertical bar separates different bodies for the same head.

Derivations

- $\alpha A\beta \Rightarrow \alpha \gamma \beta$ whenever there is a production $A \rightarrow \gamma$.
 - ◆ Subscript with name of grammar, e.g., ⇒ , if necessary.
 - Example: $011AS \Rightarrow 0110A1S$.
- α ⇒ β means string α can become β in zero or more derivation steps.
 - ♦ Examples: $011AS \stackrel{*}{\Rightarrow} 011AS$ (zero steps); $011AS \stackrel{*}{\Rightarrow} 0110A1S$ (one step); $011AS \stackrel{*}{\Rightarrow} 0110011$ (three steps).

Language of a CFG

 $L(G) = \text{set of terminal strings } w \text{ such that } S \underset{G}{\Rightarrow} w, \text{ where } S \text{ is the start symbol.}$

Aside: Notation

- a, b, \ldots are terminals; \ldots, y, z are strings of terminals.
- Greek letters are strings of variables and/or terminals, often called *sentential forms*.
- A, B, \ldots are variables.
- ..., Y, Z are variables or terminals.
- S is typically the start symbol.

${\bf Leftmost/Rightmost\ Derivations}$

- We have a choice of variable to replace at each step.
 - Derivations may appear different only because we make the *same* replacements in a different order.
 - To avoid such differences, we may restrict the choice.
- A *leftmost* derivation always replaces the leftmost variable in a sentential form.
 - ♦ Yields left-sentential forms.
- Rightmost defined analogously.
- \Rightarrow , \Rightarrow , etc., used to indicate derivations are leftmost or rightmost.

${\bf Example}$

- $\begin{array}{cccc} \bullet & S \underset{lm}{\Rightarrow} & AS \underset{lm}{\Rightarrow} & A1S \underset{lm}{\Rightarrow} & 011S \underset{lm}{\Rightarrow} & 011AS \underset{lm}{\Rightarrow} \\ 0110A1S \underset{lm}{\Rightarrow} & 0110011S \underset{lm}{\Rightarrow} & 0110011 \end{array}$
- $S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow A0A1 \Rightarrow A0011 \Rightarrow A10011 \Rightarrow 0110011$

Derivation Trees

- Nodes = variables, terminals, or ϵ .
 - Variables at interior nodes; terminals and ϵ at leaves.
 - A leaf can be ϵ only if it is the only child of its parent.
- A node and its children from the left must form the head and body of a production.

Example

Equivalence of Parse Trees, Leftmost, and Rightmost Derivations

The following about a grammar $G = (V, \Sigma, P, S)$ and a terminal string w are all equivalent:

- 1. $S \stackrel{*}{\Rightarrow} w$ (i.e., w is in L(G)).
- $2. \quad S \underset{lm}{\overset{*}{\Rightarrow}} \ w$
- $3. \quad S \underset{rm}{\overset{*}{\Rightarrow}} w$
- 4. There is a parse tree for G with root S and yield (labels of leaves, from the left) w.
- Obviously (2) and (3) each imply (1).

Parse Tree Implies LM/RM Derivations

- Generalize all statements to talk about an arbitrary variable A in place of S.
 - Except now (1) no longer means w is in L(G).
- Induction on the height of the parse tree.

Basis: Height 1: Tree is root A and leaves $w = a_1, a_2, \ldots, a_k$.

• $A \to w$ must be a production, so $A \Rightarrow w$ and $A \Rightarrow w$.

Induction: Height > 1. Tree is root A with children X_1, X_2, \ldots, X_k .

- Those X_i 's that are variables are roots of shorter trees.
 - ♦ Thus, the IH says that they have LM derivations of their yields.
- Construct a LM derivation of w from A by starting with $A \Rightarrow X_1 X_2 \cdots X_k$, then using LM derivations from each X_i that is a variable, in order from the left.
- RM derivation analogous.

Derivations to Parse Trees

Induction on length of the derivation.

Basis: One step. There is an obvious parse tree.

Induction: More than one step.

- Let the first step be $A \Rightarrow X_1 X_2 \cdots X_k$.
- Subsequent changes can be reordered so that all changes to X_1 and the sentential forms that replace it are done first, then those for X_2 , and so on (i.e., we can rewrite the deriviation as a LM derivation).
- The derivations from those X_i's that are variables are all shorter than the given deriviation, so the IH applies.
- By the IH, there are parse trees for each of these derivations.
- Make the roots of these trees be children of a new root labeled A.

Example

Consider derivation $S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow A1A \Rightarrow A10A1 \Rightarrow 0110A1 \Rightarrow 0110011$

- Subderivation from A is: $A \Rightarrow A1 \Rightarrow 011$
- Subderivation from S is: $S \Rightarrow AS \Rightarrow A \Rightarrow 0A1 \Rightarrow 0011$
- Each has a parse tree; put them together with new root S.