AKADEMIA NAUK STOSOWANYCH W NOWYM SĄCZU

Wydział Nauk Inżynieryjnych Katedra Informatyki

DOKUMENTACJA PROJEKTOWA

PROGRAMOWANIE URZĄDZEŃ MOBILNYCH

Gra logiczna

Autor: Maciej Śmierciak Michał Jonak Konrad Szczurek

Prowadzący: mgr inż. Dawid Kotlarski

Spis treści

1.	Ogó	lne okr	reślenie wymagań	4
	1.1.	Gra log	giczna	4
		1.1.1.	Tryb Graficzny	6
		1.1.2.	Tryb Tekstowy	8
2.	Okre	eślenie	wymagań szczegółowych	10
	2.1.	Założe	nia główne	10
		2.1.1.	Utrzymanie modułowości projektu	10
		2.1.2.	Latwość implementacji	10
		2.1.3.	Prostota w testowaniu i ewentualnym debuggingu	10
		2.1.4.	Użycie technologii Bluetooth	10
		2.1.5.	Użycie żyroskopu i czujnika oświetlenia	11
		2.1.6.	Użycie latarki	11
	2.2.	Strukt	ura aplikacji	11
		2.2.1.	Menu główne	12
		2.2.2.	Menu ustawień	12
		2.2.3.	Dwa tryby gry	12
3.	Proj	ektowa	anie	13
	3.1.	Wykor	zystane narzędzia	13
		3.1.1.	Xamarin	13
		3.1.2.	Microsoft Visual Studio	13
		3.1.3.	Git, GitHub	14
		3.1.4.	Język C#	15
			Baza danych Firebase	
	3.2.	Działa	nie aplikacji	17
			Menu główne	
			Ustawienia	
			Tryb graficzny	
4.	Imp		acia	22

$AKADEMIA\ NAUK\ STOSOWANYCH\ W\ NOWYM\ SĄCZU$

5. Testowanie	23
6. Podręcznik użytkownika	24
Literatura	25
Spis rysunków	2 5
Spis tabel	26
Spis listingów	27

1. Ogólne określenie wymagań

1.1. Gra logiczna

Projektem jest gra logiczna możliwa do zagrania tylko w trybie kooperacji. Gra będzie opierać się na stosunkowo łatwych zagadkach, które będzie można rozwiązać tylko współpracując.

Ogólnym konceptem jest podzielenie gry na 2 główne części:

- -Tryb graficzny
- -Tryb tekstowy

Rys. 1.1. Labirynt

Ja możemy zauważyć na rysunku będziemy mieli określoną liczbę żyć na rozwiązanie określonej liczby zagadek w określonym czasie. W tym trybie zagadki będą polegały na wyjściu z labiryntu.

Rys. 1.2. Literaki

W tym trybie gracze mają za zadanie ułożyć czteroliterowy wyraz, który nakłada się z wyrazem w bazie. Dostęp do bazy wyrazów ma gracz w trybie tekstowym. Gracz obsługujący tryb graficzny za pomocą strzałek zmienia litery na danej pozycji. Ze względu na to, ze nie wszystkie litery są na wszystkich polach możliwość będzie tylko jedna. Błędna kombinacja oznacza utratę jednego z żyć. Podobnie jak w trybie labiryntu po utracie 3 żyć gracze przegrywają.

Trzeci tryb gry, który zostanie zaimplementowany do gry będzie oparty na latarce zawartej w telefonie. Telefon osoby obsługującej tryb graficzny włączy i wyłączy latarkę określoną liczbę razy tworząc przy tym "kod morsa" opisany w trybie tekstowym. Gracz obsługujący tryb graficzny będzie miał za zadanie zapamiętać stosunkowo krótki kod i podać go osobie będącej w trybie graficznym. Następnie osoba zarządzająca trybem graficznym musi dopasować go do jednego ze słów po czym podaje słowo kluczowe wspólnikowi. Wybór złego słowa pozbawia nas jednego życia i losuje nowy sygnał.

Rys. 1.3. Kod - Tryb graficzny

Rys. 1.4. Kod - Tryb tekstowy

1.1.1. Tryb Graficzny

Będzie opierał się na rozwiązywaniu zagadek. Gracz sam nie będzie w stanie rozwiązać zagadki, ponieważ podpowiedzi czy też cała solucja danej zagadki będą zawarte w trybie tekstowym.

W tym trybie będziemy widzieć plansze rozgrywki i będziemy mogli sterować naszą postacią.

Rys. 1.5. Labirynt

W trybie graficznym, jak widać na powyższym rysunku, widzimy naszą postać, niebieską kulkę, i nasz cel, białą kulkę. Natomiast nie widzimy drogi do mety i w tym celu musimy komunikować się z partnerem.

Za każdym razem jak wykonamy zły ruch czyli wejdziemy w ścianę nasza kulka będzie wracać na początek trasy a my tracimy jedno z naszych żyć. Po utracie wszystkich żyć kończymy rozgrywkę.

Innym trybem gry będą literaki polegające na układaniu słów. Gracz w tym trybie będzie za pomocą strzałek zmieniał litery na określonych pozycjach. Błędna kombinacja prowadzi do utraty życia i jest równoznaczna z wejściem w ścianę w trybie labiryntu.

Tryb graficzny trzeciej gry będzie oparty na prostej tabeli z paroma różnymi opcjami do wyboru. W zależności od otrzymanych instrukcji od naszego wspólnika będziemy musieli wybrać jedną z nich. Telefon gracza obsługującego ten tryb będzie za pomocą latarki wyświetlał jeden z dwóch rodzajów sygnału. Bedzie to kod oparty o kod morsa ale ze zmienionymi słowami. Dla przykładu jeżeli latarka włączy się raz na długo a potem 3 razy mrugnie będzie to oznaczało jeden sygnał długi(oznaczenie w trybie tekstowym - kropka).

1.1.2. Tryb Tekstowy

Będzie opierał się na znajdowaniu podpowiedzi czy też solucji do aktualnie wykonywanej zagadki przez osobę obsługującą tryb graficzny.

Naszym zadaniem będzie współpraca z osobą, która steruje postacią w trybie graficznym w celu jak najefektywniejszego ukończenia zagadek przed końcem ustalonego czasu.

Rys. 1.6. Labirynt

Jak można zobaczyć na powyższym rysunku w trybie tekstowym będziemy widzieć dostępne mapy rozgrywki. Zadaniem gracza w trybie teksowym będzie ta-

kie poprowadzenie partnera w trybie graficznym, żeby niebieska kula dotarła do mety(białej kuli) unikając wchodzenia w ściany.

W trybie gry "Literaki" gracz w tym trybie będzie miał dostępną bazę ze słowami i będzie musiał dzięki komunikacji z graczem operującym interfejsem graficzym pomóc mu ułożyć pasujące słowo. Gracz w trybie graficznym będzie miał opcję ułożenia tylko jednego słowa z bazy.

W trzecim trybie gry będziemy musieli za pomocą komunikacji z naszym partnerem rozszyfrować o jaki kod chodzi w danym momencie. W trybie tekstowym będziemy otrzymywać informacje dotyczące "wyglądu kodu". W rzeczywistości ostrzymamy informację ile było długich sygnałów a ile krótkich i w jakiej kolejności. Po otrzymaniu takowych informacji gracz będzie stawał przed wyborem jednego ze słów, które w tym przypadku będzie oznaczone przed chwilą otrzymanym kodem. Jeżeli żadne słowo się nie będzie zgadzać to najprawdopodobniej otrzymaliśmy złe podpowiedzi od naszego partnera. Jeżeli jednak znajdujemy pasujący kod to podajemy słowo, które ten kod opisuje do operatora trybu graficznego.

2. Określenie wymagań szczegółowych

2.1. Założenia główne

- Utrzymanie modułowości projektu
- Łatwość implementacji
- Prostota w testowaniu i ewentualnym debuggingu
- Użycie technologii Bluetooth
- Użycie żyroskopu i czujnika oświetlenia
- Użycie latarki

2.1.1. Utrzymanie modułowości projektu

Pozwoli to na pracę nad wieloma "poziomami" jednocześnie co przełoży się na lepsze rozłożenie pracy pomiędzy członków grupy.

2.1.2. Latwość implementacji

Pozwoli to na testowanie każdego modułu osobno. Dzięki temu rozwiązaniu będziemy mogli lepiej wyeliminować błędy. A co za tym idzie lepiej dopracować nasz projekt.

2.1.3. Prostota w testowaniu i ewentualnym debuggingu

Chcemy dążyć do jak najłatwiejszego i jednocześnie najbardziej efektywnego sposobu testowania aplikacji. Pozwoli nam to zaoszczędzić cenny czas, który będziemy mogli poświęcić na lepsze dopracowanie szczegółów.

2.1.4. Użycie technologii Bluetooth

Jedna z zagadek w naszej grze będzie oparta o technologię bluetooth. Zadaniem gracza będzie wyłączenie i włączenie bluetooth odpowiednią ilość razy.

Bluetooth to standard bezprzewodowej komunikacji krótkiego zasięgu pomiędzy różnymi urządzeniami elektronicznymi. Jest opisany w specyfikacji IEEE 802.15.1. Jego specyfikacja techniczna obejmuje trzy klasy mocy nadawczej ERP 1-3 o zasięgu 100,

10 oraz 1 metra w otwartej przestrzeni. Najczęściej spotykaną klasą jest klasa druga. Standard korzysta z fal radiowych w paśmie częstotliwości ISM 2,4 GHz.

Urządzenie umożliwiające wykorzystanie tego standardu to adapter Bluetooth.

2.1.5. Użycie żyroskopu i czujnika oświetlenia

Żyroskop jak i czujnik oświetlenia docelowo mają posłużyć do rozwiązywania zagadek. Dla przykładu niektóre zagadki mogą być wykonane tylko w nocy czy też po prostu przy słabym oświetleniu.

Żyroskop to urządzenie służące do pomiaru lub utrzymywania położenia kątowego. Żyroskop w smartfonie to bowiem mikroskopijne płytki, które w odpowiednim momencie wibrują przekazując informacje do czujników. Dzięki temu możliwe jest ustalenie położenia smartfona oraz to czy i wokół której osi został obrócony.

Czujnik oświetlenia mierzy intensywność barwy białej, czerwonej, zielonej i niebieskiej w otoczeniu. Używany jest do zarządzania kolorystyką ekranu oraz zmiany intensywności jego podświetlenia. Dzięki temu wyświetlany obraz jest lepiej dostosowany do warunków w jakich przebywamy. Pozwala też zaoszczędzić nieco energii i dzięki temu wydłużyć czas pracy na baterii.

2.1.6. Użycie latarki

Jedna z zagadek będzie oparta na wysyłaniu sygnałów w formnie kodu morsa za pomocą latarki. Latarka będzie uruchamiana na określony odstęp czasu po czym zostanie wyłączona i włączona ponownie jeżeli ostatni sygnał nie został pokazany. Kod będzie oparty na 2 sygnałach: krótkim i długim.

2.2. Struktura aplikacji

W aplikacji będzie dostępne:

- Menu główne
- Menu ustawień
- Dwa tryby gry
 - Tryb graficzny

- Tryb tekstowy

2.2.1. Menu główne

W tym panelu będziemy mieli dostęp zarówno do wyboru trybu gry jak i do ustawień Ten panel będzie przejrzysty i łatwy w obsłudze, wszyskie opcje będą podpisane lub będą zawierały adekwatną do nazwy ikonę. Dla przykładu ustawienia zostaną oznaczone zębatką z podpisem ustawienia.

2.2.2. Menu ustawień

Ten panel umożliwi użytkownikom, jak sama nazwa wskazuje, ustawienia rozgrywki takie jak głośność muzyki.

2.2.3. Dwa tryby gry

Użytkownicy będą mieli do wyboru tryb gry. Jeżeli użytkownik zdecyduje się na wybór trybu graficznego jedyne co będzie musiał zrobić to kliknąć w odpowieni przycisk oznaczony jako tryb graficzny.

3. Projektowanie

3.1. Wykorzystane narzędzia

Podczas tworzenia aplikacji, której docelowym środowiskiem będzie Android wykorzystaliśmy platformę open source Xamarin. Projekt jest tworzony w języku C# co umożliwia nam wykorzystanie Microsoft Visual Studio Community Edition 2022. IDE (z ang. Integrated Development Environment), czyli zintegrowane środowisko programistyczne posłuży nam do łatwiejszego modułowania aplikacji. Wszystkie wersje kodów aplikacji znajdują się na platformie GitHub dzięki czemu łatwiej będzie wrócić do poprzednich wersji aplikacji w przypadku wystąpienia błędów w działaniu aktualnej. Wszystko początkowo miało zostać połączone za pomocą bazdy danych Firebase. Baza ta umożliwiałaby przesyłanie danych między graczami i ułatwiała przejście do następnych poziomów.

3.1.1. Xamarin

Xamarin¹ (logo - rys. 3.1) to platforma typu open source do tworzenia nowo-czesnych i wydajnych aplikacji dla systemów iOS, Android i Windows za pomocą platformy .NET. Xamarin to warstwa abstrakcji, która zarządza komunikacją udo-stępnionego kodu z bazowym kodem platformy. Środowisko Xamarin działa w środowisku zarządzanym, które zapewnia wygody, takie jak alokacja pamięci i odzyskiwanie pamięci.

Rys. 3.1. Xamarin

3.1.2. Microsoft Visual Studio

Microsoft Visual Studio² (logo - rys 3.2) to zintegrowane środowisko programistyczne, służące do tworzenia, edytowania i debugowania kodu. IDE (z ang. Inte-

¹http://xamarinlab.pl/

²https://visualstudio.microsoft.com/pl

grated Development Environment), czyli zintegrowane środowisko programistyczne to software oferujący szereg funkcji przydatnych podczas tworzenia oprogramowania dla systemów Windows, Android, iOS, rozwiązań internetowych oraz opartych o chmurę. Poza standardowym edytorem oraz debugerem, które zapewnia większość aplikacji IDE, program Microsoft Visual Studio zawiera jeszcze kompilatory, narzędzia do uzupełniania kodu i wiele innych funkcji usprawniających pracę.

Rys. 3.2. Visual

3.1.3. Git, GitHub

Git jak i GitHub³ (logo - rys 3.3) to najczęściej używany nowoczesny system kontroli wersji. Za pomocą usługi Git możesz śledzić zmiany kodu wprowadzane w czasie i przywrócić określone wersje. Ponadto pozwala kontrolować dostęp do danych, wspiera zarządzanie wieloma repozytoriami. Jest to rozwiązanie, które pozwala zaoszczędzić sporo czasu i nerwów. Kolejnym plusem jest to, że jest on w miare łatwy w użyciu i jest przejrzysty.

³https://github.com/

Rys. 3.3. GitHub

3.1.4. Język C#

Język $C\#^4$ (logo - rys 3.4) to zorientowany obiektowo język programowania, który umożliwia programostom tworzenie różnych bezpiecznych i niezawodnych aplikacji w środowisku .NET. Język ten udostępnia konstrukcje językowe, które bezpośrednio obsługują te koncepcje, dzięki czemu język C# jest językiem naturalnym, w którym można tworzyć składniki oprogramowania i ich używać.

⁴https://learn.microsoft.com/pl-pl/dotnet/csharp/

Rys. 3.4. C#

3.1.5. Baza danych Firebase

Firebase to platforma do tworzenia aplikacji, która pomaga tworzyć i rozwijać aplikacje i gry, które użytkownicy uwielbiają. Wspierany przez Google. W zamyśle nasza gra miała obsługiwać bazę danych lecz podczas implementacji i łączenia bazy z grą wystąpiły liczne komplikacje. Jednym z głównych błędów była niekompatybilność aktualnej wersji Firebase z naszą wersją Xamarina (rys 3.5). Po wielu próbach postanowiliśy zrezygnować z implementacji bazy danych i zdecydowaliśmy się na inne rozwiązanie.

Rys. 3.5. Komunikat błędu

Treść komunikatu: Pakiet.Xamarin.Firebase.Common.120.1.2 nie jest zgodny z elementem netstandard2.0 (.NETStandard, Version=v2.0). Pakiet Xamarin.Firebase.Common 120.1.2 obsługuje:

- -monoandroid 12.0 (MonoAndroid, Version=v 12.0)
- -net6.0-android31.0(.NETCoreApp, Version=v6.0)

3.2. Działanie aplikacji

Gra zawiera kilka paneli:

- Menu główne
- Menu ustawień
- Dwa tryby gry
 - Tryb graficzny
 - Tryb tekstowy

3.2.1. Menu główne

Po uruchomieniu aplikacji powita nas już pierwsza zagadka(rys 3.6), która polega na znalezienu przycisku pozwalającego przejść dalej. Tym przyciskiem jest przycisk oznaczony żarówką. Jeśli jednak zostanie wciśnięty duży czerwony przycisk na środku ekranu to gra zostanie wyłączona.

Jak widać mamy dostępny jeszcze przycisk oznaczony zębatką. Prowadzi on do ustawień rozgrywki.

Rys. 3.6. Menu Główne

Po wciśnięciu dobrego przycisku przechodzimy do właściwego menu głównego(rys 3.7), w którym możemy przejść dalej

Rys. 3.7. Menu Główne v2

3.2.2. Ustawienia

Ten panel oferuje nam zmianę ustawień gry. Dla przykładu głośności muzyki. Po zmienieniu głośności w panelu ustawień wartość ustawiona zostaje zapisana i przenoszona na inne panele aplikacji. Przejście do menu ustawień będzie możliwe zarówno z menu głównego jak i z poziomu gry.

Rys. 3.8. Ustawienia

3.2.3. Tryb graficzny

Pierwsza zagadka w trybie graficznym będzie wyglądała tak jak na rys 3.9. Pomarańczowy kwdrat jest naszą postacią, którą poruszamy za pomocą strzałek umieszczonych na ekranie. Każda strzałka odpowiada za ruch w inną stronę.

Rys. 3.9. Labirynt

Kolejna zagadka będzie polegała na wyborze odpowiedniego słowa, będziemy zamieniać litery za pomocą strzałek jak na rys 3.10. Jeżeli ułożymy odpowiednie słowo zatwierdzamy przyciskem oznaczonym "ptaszkiem". Za pomocą przycisku odtwórz możemy wylosować nowe przypadkowe ułożenie słów.

Rys. 3.10. Labirynt

4. Implementacja

		•
5	Testowa	n_{10}
Э.	Testowa	\mathbf{m}

3	Podręcznik użytkownika	
ι.	i odięcznik użytkownika	

Spis rysunków

1.1.	Labirynt	4
1.2.	Literaki	5
1.3.	Kod - Tryb graficzny	6
1.4.	Kod - Tryb tekstowy	6
1.5.	Labirynt	7
1.6.	Labirynt	8
3.1.	Xamarin	3
3.2.	Visual	4
3.3.	GitHub	5
3.4.	C#	6
3.5.	Komunikat błędu	6
3.6.	Menu Główne	8
3.7.	Menu Główne v2	9
3.8.	Ustawienia	0
3.9.	Labirynt	1
3.10	Labirynt	2

		 1111 011020	
Spis tabel			

\sim		,
Spis	listin	gow