

Vorlesungsskript

Mitschrift von Falk-Jonatan Strube

Vorlesung von Herrn Michael Meinhold & Prof. Dr. Fabian Schwarzenberger

27. April 2016

Inhaltsverzeichnis

1 Elementare Grundlagen

- 1.1 Aussagen und Grundzüge der Logik
- 1.2 Mengen
- 1.3 Zahlen
- 1.4 Reellwertige Funktionen einer reellen Veränderlichen
- 1.5 Lineare Algebra

2 Folgen, Reihen, Grenzwerte

2.1 Grenzwerte und Stetigkeit von Funktionen

2.1.1 Grenzwerte von Funktionen

Def. 1: Es sei $x_0 \in \mathbb{R}$ und es existiere eine Umgebung $U(x_0)$ mit $U(x_0)\{x_0\} \subseteq Db(f)$.

 $\lim_{\substack{x\to x_0\\ n\to\infty}} f(x) = \lambda :\Leftrightarrow \text{F\"{u}r jede Folge } (x_n) \text{ mit } x_n \in Db(f), \ x_n \neq x \text{ (f\"{u}r alle } n) \text{ und } \lim_{\substack{n\to\infty\\ n\to\infty}} x_n = x_0 \text{ gilt } \lim_{\substack{n\to\infty\\ n\to\infty}} f(x_n) = a.$

Anschaulich: f(x) strebt gegen a, wenn x gegen x_0 strebt.

Bemerkung: Die Stelle x_0 muss *nicht* selbst zum Definitionsbereich gehören.

Bsp. 1:

$$\begin{array}{c|c}
\bullet & \lim_{x \to 0} \frac{SM(w)}{x} \\
\hline
1 & & \\
\hline
M & \cos x
\end{array}$$

$$F_{\triangle MAB} \leq F_{Sektor\ MAB} \leq F_{\triangle MAC}$$

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x \quad | \cdot \frac{2}{\sin x}$$

$$\Leftrightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\Leftrightarrow 1 > \frac{\sin x}{x} > \cos x$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Analog zu Grenzwertsätzen für Zahlenfolgen gilt:

Satz 1: Es gelte $\lim_{x\to x_0} f(x) = a$ und $\lim_{x\to x_0} g(x) = b$. Dann:

$$\bullet \lim_{x \to x_0} (f(x) + g(x)) = a + b$$

$$\bullet \lim_{x \to x_0} c \cdot f(x) = c \cdot a$$

•
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = a \cdot b$$

•
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$$
 (falls $b \neq 0$)

Bsp. 2:

a.)
$$\lim_{x\to 0} \frac{3x^3 - 7x + 4}{3\cos x} = \frac{4}{3}$$

b.)
$$\lim_{x\to 3} \frac{x^2-x-6}{x-3} = \frac{"0"}{0}$$
 Satz nicht anwendbar. $= \lim_{x\to 3} \frac{(x-3)(x+2)}{(x-3)} = \lim_{x\to 3} x+2=5$

(andere Möglichkeit mit " $\frac{0}{0}$ " umzugehen lernen wir später)

Def. 2:

a.) rechtseitiger Grenzwert:

 $\lim_{\substack{x \searrow x_0 \\ n \to \infty}} f(x) = a : \Leftrightarrow \text{ für jede Folge } (x_n) \text{ mit } x_n \in Db(f) \text{ und } x_n > x_0 \text{ und } \lim_{n \to \infty} x_n = x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = a.$

Andere Schreibweise: $\lim_{x\searrow x_0}=\lim_{x\to x_0+0} x_0$

b.) linkseitiger Grenzwert:

 $\lim_{x \nearrow x_0} f(x) = a :\Leftrightarrow$ analog rechtsseitiger Grenzwert

- $\text{c.)} \ \lim_{x\to\infty} f(x) = a : \Leftrightarrow \text{für jede Folge} \ (x_n) \ \text{mit} \ x_n \in Db(f) \ \text{und} \ \lim_{x\to\infty} x_n = \infty \ \text{gilt} \ \lim_{n\to\infty} f(x_n) = a.$
- d.) $\lim_{x \to \infty} f(x) = a :\Leftrightarrow$ analog s.o.

Diskussion: Uneigentliche Grenzwerte:

Wir schreiben $\lim_{\bullet} f(x) 0 \begin{cases} \infty \\ -\infty \end{cases}$ bei bestimmter Divergenz der Funktionswerte für:

$$\bullet \begin{cases}
 x \to x_0 \\
 x \nearrow x_0 \\
 x \searrow x_0 \\
 x \to \infty \\
 x \to -\infty
\end{cases}$$

Satz 2:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \nearrow x_0} f(x) = \lim_{x \searrow x_0} = a$$

$$\lim_{x \nearrow 0} f(x) = 0, \ \lim_{x \searrow 0} f(x) = 1$$

$$\Rightarrow \lim_{x \to 0} f(x) \text{ existiert nicht!}$$

$$\lim_{x \to \infty} x \cdot \sin\left(\frac{4}{x}\right) = "\infty \cdot 0"$$

$$u = \frac{4}{x} \lim_{u \searrow 0} \frac{4}{u} \sin(u) = 4$$

Bsp. 5:

$$\lim_{x\nearrow\frac{\pi}{2}}\tan x = \infty$$

$$\lim_{x\searrow\frac{\pi}{2}}\tan x = -\infty$$

2.1.2 Stetigkeit von Funktionen

Def. 3: Sei $f: Db(f) \to \mathbb{R}, \ Db(f) \subseteq \mathbb{R}$ eine Funktion und $x_0 \in Db(f)$ gegeben. Es heißt f:

a.) stetig in x_0 falls $\lim_{x \to x_0} f(x) = f(x_0)$ gilt (also $\lim_{x\to x_0} f(x) = f(\lim_{x\to x_0} x)$, d.h. Limes und Funktion kann vertauscht werden).

- b.) linksseitig stetig in x_0 , falls $\lim_{x \nearrow x_0} f(x) = f(x_0)$.
- c.) rechtsseitig stetig in x_0 , falls $\lim_{x \searrow x_0} f(x) = f(x_0)$.

Bsp. 6:

a.) $f_1(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \text{ ist in } x_0 = 0 \text{ nicht stetig, da} \lim_{x \to 0} f(x) = 1 \neq 0 = f(0).$ Aber $\tilde{f}_1(x) = \begin{cases} f(x) & x \neq 0 \\ 1 & x = 0 \end{cases}$ ist in $x_0 = 0$ stetig.

Bezeichnung: hebbare Unstetigkeit.

$$\text{b.)} \ \ f_2(x) = \begin{cases} \arctan\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases} \text{ ist unstetig in } x_0 = 0 \text{, da} \lim_{x \nearrow 0} f_2(x) \neq f_2(0) \neq \lim_{x \nearrow 0} f_2(x)$$

Bezeichnung: endlicher Sprung.

c.) $f_3(x)=\begin{cases} \dfrac{1}{x} & x\neq 0 \\ 0 & x=0 \end{cases}$ ist unstetig in $x_0=0$, da $\lim_{x\nearrow 0}f_3(x)=\infty\neq f_3(0).$

 $\text{d.) } f_3(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases} \text{ ist unstetig in } x_0 = 0 \text{, da der Grenzwert} \lim_{x \to 0} \sin\frac{1}{x} \text{ nicht existiert.} \end{cases}$

Def. 4: Die Funktion $f:DB(f)\to\mathbb{R},\ Db(f)\subseteq\mathbb{R}$ heißt

- a.) in einem Intervall $I \subset Db(f)$ stetig, falls f an jeder inneren Stelle $x_0 \in I$ stetig ist und in evtl. zu I gehörenden Randpunkten einseitig stetig ist.
- b.) stetig, falls f in allen Punkten $x_0 \in Db(f)$ stetig ist.

Bemerkung: Jede der in ?? und ?? betrachteten Funktionen ist stetig.

Bsp. 7: $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{1}{x}$ ist stetig.

Satz 3: Sind f und g stetig in x_0 , so sind auch $c_1 \cdot f + c_2 \cdot g$, $f \cdot g$ und $\frac{f}{g}$ (falls $g(x_0) \neq 0$) stetig in x_0 .

Satz 4: (Stetigkeit und Verknüpfungen)

Seien $g: Db(g) \to \mathbb{R}$ und $f: Db(f) \to \mathbb{R}$ Funktionen mit $Wb(g) \subseteq Db(f)$, dann gilt: Ist g stetig in x_0 und f stetig in $g(x_0)$, so ist $f \circ g: Db(g) \to \mathbb{R}$, $(f \circ g)(x) = f(g(x))$ stetig in x_0 .

Satz 5: (Zwischenwertsatz)

Sei $f: Db(f) \to \mathbb{R}, \ Db(f) \subseteq \mathbb{R}$ stetig auf [a,b]Db(f). Falls $f(a) \cdot f(b) < 0$ (also haben unterschiedliche Vorzeichen), so gilt $\exists x^* \in [a,b]$ mit $f(x^*) = 0$

Satz 6: Sei $f:Db(f)\to \mathbb{R},\ Db(f)\subseteq \mathbb{R}$ stetig auf [a,b]. Dann nimmt f auf [a,b] Minimum und Maximum an.

Diskussion:

- a.) $f(x) = \tan x$ nimmt auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ kein Maximum an. ABB21
- b.) $f(x) = \begin{cases} \arctan \frac{1}{x} & x \in [-1,1] \setminus \{0\} \\ 0 & x = 0 \end{cases}$ nicht stetig und nimmt kein Maximum auf [-1,1] an.

2.2 Potenzreihen

Def.: Sei (a_n) eine Zahlenfolge und $x_0 \in \mathbb{R}$ heißt $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ Potenzreihe mit dem Mittelpunkt x_0 .

Diskussion:

- Für jedes feste $x \in \mathbb{R}$ ist die Potenzreihe eine feste Reihe.
- Konvergenzbereich $K := \{x \in \mathbb{R} | \text{Potenzreihe ist konvergent} \}$
- Für jedes $x \in K$ existiert der Summenwert der Potenzreihe. Die Funktion $f: K \to \mathbb{R}$ mit $f(x) = \sum_{n=0}^\infty a_n (x-x_0)^n$ heißt Grenzfunktion der Potenzreihe.

Zur Bestimmung des Konvergenzbereichs nutz man Satz 10 und 11 aus **??** und erhält absolute Konvergenz in einem um x_0 liegendem Konvergenzintervall $I:=(x_0-r,x_0+r)$. Wie r bestimmt wird liefert:

Diskussion:

- Verwechslungsgefahr:
 - Satz 10 und 11 betrachten (Zahlen-)Reihen $\sum_{n=0}^{\infty} a_n$
 - Satz 1 betrachtet Potenzreihen $\sum_{n=0}^{\infty}a_n(x-x_0)^n$, wobei a_n ein Faktor vor $(x-x_0)^n$ ist.
- Falls der Grenzwert r aus Satz 1 nicht existiert, so gibt es trotzdem einen Konvergenzradius. Den gilt es auf andere Weise zu betrachten/ermitteln.
- Satz 1 sagt nichts über das Verhalten an den Randpunkten aus → gesonderte Untersuchung nötig.

Bsp. 1:

a.)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}, \text{ d.h. } x_0 = 0, \ a_n = \frac{1}{n}, \ n = 1, 2, \dots$$

$$r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\left|\frac{1}{n}\right|}} = \lim_{n \to \infty} = \frac{1}{\frac{1}{\sqrt[n]{n}}} = \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\Rightarrow \text{Konvergenzintervall } I = (-1, 1)$$
 Randpunkte:
$$x = -1 : \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ bedingt konvergent (alternierenden harmonische Reihe)}$$

$$x=1:\sum_{n=1}^{\infty}\frac{1}{n}$$
 divergent \Rightarrow Konvergenzbereich: $K=[-1,1)$

b.)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \text{ d.h. } x_0 = 0, \ a_n = \frac{1}{n!}$$
$$\left| \frac{a_n}{a_{n+1}} \right| = \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \frac{(n+1)!}{n!} = n+1 \xrightarrow{n \to \infty} \infty$$
$$\Rightarrow r = \infty$$

d.h. die Reihe ist absolut konvergent für alle $x \in \mathbb{R}$.

Bezeichnung: beständige Konvergenz

$$\text{c.) } \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^2}{4!} + \dots \quad \text{d.h. } x_0 = 0 \text{, } a_n = \begin{cases} \frac{1}{n} & n \text{ gerade} \\ 0 & n \text{ungerade} \end{cases}$$

Satz 1 ist aber nicht unmittelbar anwendbar.

Substitution
$$u:=x^2$$
 liefert aber $\sum_{n=0}^{\infty}\frac{u^n}{(2n)!}$ mit $u_0=0$, $b_n=\frac{1}{(2n)!}$ ($\sum b_n(u-u_0)^n$)

$$\left| \frac{b_n}{b_{n+1}} \right| = \frac{(2n+2)!}{(2n)!} = (2n+2) \cdot (2n+1) \stackrel{n \to \infty}{\longrightarrow} \infty$$

 $\Rightarrow r_u = \infty$ (Konvergenzradius für die Substituierte Reihe) $\Rightarrow r_x = "\sqrt{\infty}" = \infty$ (Konvergenzradius für die untersuchte Funktion)

Im Konvergenzbereich K wird dadurch eine Potenzreihe eine Funktion dargestellt, die Grenzfunktion (siehe vorhergehende Diskussion).

Bsp. 2:

a.)
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 für $x \in (-1,1)$ (geometrische Reihe)

b.)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$
 für $x \in \mathbb{R}$ (Beweis später)

Satz 2: Die Grenzfunktion jeder Potenzreihe ist im Konvergenzbereich stetig.

3 Differentialrechnung für Funktionen einer reellen Variablen

3.1 Grundbegriffe

Tangentenproblem

ABB38

Gegeben: y = f(x)

Gesucht: Tangente im Punkt $(x_0, f(x_0))$

- Zunächst Sekante durch $(x_1, f(x_1))$ und $(x_0, f(x_0))$
- Dann betrachten wir $x_1 \rightarrow x_0$
- Damit geht Sekante über in die Tangente. Außerdem geht φ in α über.

$$\tan\alpha = \lim_{\varphi \to \alpha} \tan\varphi = \lim_{x_1 \to x_0} \underbrace{\frac{f(x_1) - f(x_0)}{x_1 - x_0}}_{\text{Differenzenguotient}}$$

Def. 1: Die Funktion $f: Db(f) \to \mathbb{R}$ heißt an der Stelle x_0 (mit $U(x_0) \subseteq Db(f)$) differenzierbar, falls $\operatorname{der Grenzwert}\left|f'(x_0):=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\right|\operatorname{existiert}.$

 $f'(x_0)$ heißt dann 1. Ableitung von f an der Stelle x_0 .

Diskussion:

•
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- Gleichung der Tangente in $(x_0, f(x_0))$ ist $t(x) = f(x_0) + f'(x_0)(x x_0)$ $(t : \mathbb{R} \to \mathbb{R})$ Anstieg der Tangente ist als $m = \tan \alpha = f'(x_0)$
- f in x₀ differenzierbar bedeutet es existiert eine eindeutige Tangente an die Kurve in dieser

z.B. ist $f: \mathbb{R} \to \mathbb{R}, \ f(x) = |x| \text{ in } x_0 = 0 \text{ nicht differenzierbar:}$ ABB39

Satz 1: Ist $f: \mathbb{R} \to \mathbb{R}$ in x_0 differenzierbar, so ist f in x_0 stetig.

Beweis:

Sei f in x_n differenzierbar und (x_n) eine beliebige Folge mit $x_n \to x_0$. Dann gilt:

$$\lim_{n\to\infty}\frac{f(x_n)-f(x_0)}{x_n-x_0}$$
 existiert.

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \text{ existiert.}$$

$$\Rightarrow \exists K > 0 \text{ mit } \left| \frac{f(x_n) - f(x_0)}{x_n - x_0} \right| = \frac{|f(x_n) - f(x_0)|}{|x_n - x_0|} \le K$$

$$\Rightarrow |f(x_n) - f(x_0)| \le K \cdot |x_n - x_0| \xrightarrow{n \to \infty} 0$$

$$\Rightarrow |f(x_n) - f(x_0)| \le K \cdot |x_n - x_0| \stackrel{n \to \infty}{\longrightarrow} 0$$

$$\Rightarrow \lim_{n\to\infty} f(x_n) = f(x_0) \Rightarrow f$$
 ist stetig.

Def. 2: Eine Funktion $f: Db(f) \to \mathbb{R}$ $Db(f) \subseteq \mathbb{R}$ heißt

a.) differenzierbar im Interval $I \subseteq Db(f)$, falls f an jeder inneren Stelle $x_0 \in I$ differenzierbar ist und in eventuellen Randpunkten einseitig differenzierbar ist.

d.h.
$$\lim_{x\nearrow x_r}$$
 bzw. $\lim_{x\searrow x_r}\frac{f(x)-f(x_r)}{x-x_r}$ existiert

b.) differenzierbar, wenn f in jedem Punkt $x_0 \in Db(f)$ differenzierbar ist.

Schreibweise:

Die resultierende Funktion bezeichnen wir mit

$$f': Db(f') \to \mathbb{R}, f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 $f': Db(f') \to \mathbb{R}, f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ wobei Db(f') aus allen Punkten $x \in Db(f)$ besteht für welche der genannte Grenzwert existiert.

Def. 3: Sei $f: Db(f) \to \mathbb{R}, Db(f) \subseteq \mathbb{R}$. Wir definieren rekursiv die n-te Ableitung von f an der Stelle

$$f^{(n)}(x_0) := (f^{(n-1)})'(x_0) \quad n = 1, 2, 3, \dots$$

wobei $f^{(0)}(x_0) = f(x_0)$ (unter der Voraussetzung, dass die jeweilige Ableitung existiert).

Bsp. 1: $f: \mathbb{R} \to \mathbb{R}, \ f(x): x^n, \ n \in \mathbb{N}$

$$\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \left((x+h)^n - x^n \right)$$

$$= \frac{1}{h} \left(x^n + \binom{n}{1} \cdot x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \dots + \binom{n}{n} h^n - x^n \right)$$

$$\xrightarrow{h \to 0} n \cdot x^{n-1}$$

d.h. f ist auf \mathbb{R} differenzierbar. $f'(x) = n \cdot x^{n-1}$.

Bsp. 2: $f: \mathbb{R} \to \mathbb{R}, f(x) := \sin(x)$

$$\frac{f(x+h) - f(x)}{h} = \frac{\sin(x+h) - \sin(x)}{h} \qquad | \sin x - \sin y = 2\cos\frac{x+y}{2} \cdot \frac{\sin x - \sin y}{2} = \frac{2 \cdot \cos\frac{2x+h}{2} \cdot \sin\frac{h}{2}}{h}$$

$$= \frac{\cos\left(x + \frac{h}{2}\right) \cdot \sin\frac{h}{2}}{\frac{h}{2}} \qquad | \frac{\sin\frac{h}{2}}{\frac{h}{2}} \xrightarrow{h \to 0} 1$$

$$= \cos x$$

Also $f'(x) = \cos x$.

Bemerkung: Ableitung der wichtigsten Grundfunktionen findet man in Formelsammlungen. Zur Ableitung zusammengesetzter Funktionen lernen wir im später weitere Ableitungsregeln kennen.

3.1.1 Das Differential

ABB 49

$$dy = h \cdot \tan \alpha = f \cdot f'(x_0)$$

Def. 4:

- a.) $dy := f'(x_0) \cdot h$ heißt das zur Stelle x_0 und dem Zuwachs $h = \Delta x$ gehörende *Differential* von f.
- b.) $\Delta y := f(x_0 + h) f(x_0)$ heißt die zur Stelle x_0 und dem Zuwachs $h = \Delta x$ gehörende *Differenz* von f.

Diskussion

- 1.) Δy ist die Änderung der Funktion f, wenn x in x+h übergeht; $\mathrm{d} y$ ist die entsprechende Änderung wenn statt f die Tangente an der Stelle x_0 betrachtet wird (Linearisierung).
- 2.) Für kleine Zuwächse Δx gilt: $\Delta y \approx \mathrm{d} y$ d.h. $\Delta y \approx f'(x_0) \cdot \Delta x$ für kleines Δx (nutzt man in der Fehlerrechnung)
- 3.) Sei $y = f(x) = x \Rightarrow dy = dx = 1 \cdot h$ also $h = \Delta x = dx$
- 4.) Damit $f'(x) = \frac{\mathrm{d}y}{\mathrm{d}x}$ Also: 1. Ableitung = Differentialquotient andere Schreibweise: $f'(x) = \frac{d}{dx}f(x)$
- 5.) Höhere Ableitungen: $f^{(n)}(x) = \frac{d^n y}{\mathrm{d} x^n} = \frac{d^n}{\mathrm{d} x^n} f(x)$

3.2 Differentiationsregeln

Satz 1: Falls die Ableitungen auf der rechten Seite existieren:

- $(C_1u(x) + C_2v(x))' = C_1u'(x) + C_2v'(x)$ (Linearität)
- $(u(x) \cdot v(x))' = u'(x)v(x) + v'(x)u(x)$ (Produktregel)
- $\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) v'(x)u(x)}{(v(x))^2}$ (Quotientenregel)

Bsp. 1:

a.)
$$f(x) = 7x^4 + \sqrt[3]{x} + \frac{2}{\sqrt{x}} = 7x^4 + x^{\frac{1}{3}} + 2x^{-\frac{1}{2}} \quad (x > 0)$$

$$\Rightarrow f'(x) = 28x^3 + \frac{1}{3}x^{-\frac{2}{3}} - x^{\frac{3}{2}} = 28x^3 + \frac{1}{3\sqrt[3]{x^2}} - \frac{1}{\sqrt{x^3}}$$

b.)
$$f(x)=x\cdot \ln x \quad (x\geq 0)$$
 $\Rightarrow f'(x)=1\cdot \ln x+\frac{1}{x}\cdot x=\ln x+1$ (Produktregel)

c.)
$$f(x) = \frac{e^x}{x^2 + 2}$$

 $\Rightarrow f'(x) = \frac{e^x \cdot (x^2 + 2) - e^x \cdot 2x}{(x^2 + 2)^2} = \frac{e^x (x^2 - 2x + 2)}{(x^2 + 2)^2}$ (Quotientenregel)

Satz 2: Seien $f: Db(f) \to \mathbb{R}, \ g: Db(g) \to \mathbb{R}$ Funktionen mit $Db(f) \subseteq \mathbb{R}, \ Db(g) \subseteq \mathbb{R}$ und

- g bei $x_0 \in Db(g)$ differenzierbar
- f bei $g(x_0) \in Db(f)$ differenzierbar

so ailt:

$$(f \circ q)'(x_0) = f'(q(x_0)) \cdot q'(x_0)$$

Diskussion:
$$y = f(g(x)) = f(u)$$
 mit $u = g(x)$

$$\begin{array}{ll} \textbf{Diskussion:} & y = f(\underline{g(x)}) = f(u) \text{ mit } u = g(x) \\ \\ \text{Differentialschreibweise:} \\ y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{du} \cdot \frac{du}{\mathrm{d}x} \quad \text{(\"außere Ableitung} \cdot \text{innere Ableitung)} \end{array}$$

Bsp. 2:

a.)
$$y = f(x) = \sin \underbrace{3x}_{u}$$

 $y' = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos u \cdot 3 = 3\cos 3x$

b.)
$$y = f(x) = 2^{\tan(3x)}$$
 $\left(-\frac{\pi}{6} < x < \frac{\pi}{6}\right)$
Substitution: $u := \tan 3x$
 $v := 3x$

$$\Rightarrow y = 2^{u}, \ u = \tan v$$

$$\Rightarrow y' = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} = 2^{u} \cdot \ln 2 \cdot (1 + \tan^{2} v) \cdot 3 = 3 \cdot 2^{\tan 3x} \cdot \ln 2 \cdot (1 + \tan^{2} 3x)$$

Bsp. 3: (Logarithmische Differentiation)

$$f(x) = x^{\sin x} \qquad x \in (0, \infty)$$

Basis und Exponent hängen von x ab!

Die Regeln $(x^a)' = ax^{a-1}$ bzw. $(a^x)' = a^x \cdot \ln a$ sind nicht unmittelbar anwendbar.

Betrachten:

$$f(x) = x^{\sin}$$

$$\ln(f(x)) = \sin x \cdot \ln x$$

$$\stackrel{\text{Ableiten}}{\Longrightarrow} \frac{1}{f(x)} \cdot f'(x) = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}$$

$$\Rightarrow f'(x) = f(x) \cdot (\cos(x) \cdot \ln x + \sin x \frac{1}{x})$$

$$= x^{\sin x} (\cos x \ln x + \frac{\sin x}{x})$$

Satz 3: Sei $f:(x_0-r,x_0+r)\to\mathbb{R}, f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n$ Grenzfunktion einer Potenzreihe mit Kurvenradius r.

Dann gilt für alle
$$x \in (x_0-r,x_0+r)$$
: $f'(x)=\sum_{n=1}^\infty a_n \cdot n(x-x_0)^{n-1}$

Bsp. 4:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$\left(\frac{1}{1-x}\right)' = 0 + 1 + 2x + 3x^2 + \dots = \sum_{n=1}^{\infty} nx^{n-1} \quad |x| < 1$$

3.3 Anwendungen

3.3.1 Taylorsche Formel, Taylor-Reihe

Problem: "Komplizierte" Funktionen f soll in der Umgebung von x_0 durch ein Polynom p_n n-ten Grades angenähert werden.

Ansatz: $p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + ... + a_n(x - x_0)^n$ Forderung: $p_n(x_0) = f(x_0), p'_n(x_0) = f'(x_0), p''_n(x_0) = f''(x_0), ...$

liefert: $p_n(x_0) = a_0, \ p'_n(x_0) = a_1, \ p''_n(x_0) = 2a_2, \dots$

 $\text{und } a_k = \frac{f^{(k)}(x_0)}{k!}.$ Allgemein: $\boxed{p_n^{(k)} = k! a_k} \quad \text{für } k = 0, 1, ..., n$

Def. 1: Das Polynom $p_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$ heißt Taylorpolynom n-ten Grades mit Entwicklungsstelle x

Diskussion:

- 1.) p_n ist eine Näherung für f. Fehler: $f(x) - p_n(x) =: R_n(x)$ heißt Restglied
- 2.) Restglied ist im Allgemeinen umso kleiner, je kleiner $|x-x_0|$ ist und je größer n ist. **ABB 54**

Satz 1: Taylorsche Formel

Es sei f in [a,b] (n+1)-mal differenzierbar, sowie $x_0,x\in[a,b]$. Dann existiert ein ξ zwischen x_0 und x $(\mathsf{d.h.}\; \xi = x_0 + \vartheta(x - x_0) \; \mathsf{mit}\; \vartheta \in (0,1)) \; \mathsf{mit}\; R_n(x) = \frac{f^{n+1}(\xi)}{(n+1)!} (x - x_0)^{n+1} \colon \textit{Restgliedform von Lagrange}.$

Es gilt also
$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k}_{p_n(x)} + \underbrace{\frac{f^{(n+1)}(x_0 + \vartheta(x-x_0))}{(n+1)!}(x-x_0)^{n+1}}_{R_n(x)}$$

Diskussion: Spezialfall n = 0: $f(x) = f(x_0) + f'(\xi)(x - x_0)$ (Mittelwertsatz der Differentialrechnung)

ABB 55

Satz sagt: es gibt zwischen x_0 und x_1 einen Punkt auf der Funktion, sodass die Senkante die Tangente dieses Punktes ist.

 $\underbrace{f'(\xi)}_{\text{Anstieg der Tangente}} = \underbrace{\frac{f(x) - f(x_0)}{x - x - }}_{\text{Anstieg der Tangente}}$ Umstellen liefert:

Bsp. 1:
$$f(x) = e^x$$
 $x \in \mathbb{R}$ $f'(x) = e^x = f''(x) = f'''(x) = ...$ $\stackrel{x_0=0}{\Longrightarrow} f'(0) = 1 = f''(x) = f'''(x) = ...$ $\Rightarrow e^x = \sum_{k=0}^n \frac{1}{k!} \cdot x^k + \frac{e^{\vartheta x}}{(n+1)!} x^{n+1} \quad 0 < \vartheta < 1$

Wie gut ist diese Näherung?

Für
$$x = \frac{1}{10} = 0, 1$$
 und $n = 4$ gilt:

$$e^{0,1} = 1 + \frac{0,1}{1!} + \frac{0,1^2}{2!} + \frac{0,1^3}{3!} + \frac{0,1^4}{4!} + \underbrace{\frac{0,1^5}{5!}}_{B_2(0,1)} \text{ für ein } \vartheta \in (0,1).$$

$$\Rightarrow e^{0,1} = \underbrace{1 + 0, 1 + 0,005 + 0,0001\overline{6} + 0,0000041\overline{6}}_{=1,1051708\overline{3}} + R_4(0,1) \text{ Abschätzen des } \vartheta:$$

$$\begin{split} 8, \overline{3} \cdot 10^{-8} &= \frac{0, 1^5}{5!} = \frac{0, 1^5}{5!} e^0 < \frac{0, 1^5}{5!} e^{\vartheta \cdot 0, 1} < \frac{0, 1^5}{5!} e^{1 \cdot 0, 1} < \frac{0, 1^5}{5!} \cdot 3 = 25 \cdot 10^{-8} \\ &\Rightarrow 1, 1051708\overline{3} + 8, \overline{3} \le e^{0, 1} & \le 1, 1051708\overline{3} + 25 \cdot 10^{-8} \\ &1, 10517091\overline{6} \le e^{0, 1} & \le 1, 10517108\overline{3} \end{split}$$

Bsp. 2:

$$f(x) = \cos(x), \ x_0 = 0 \Rightarrow f(x_0) = 1$$

$$f'(x) = -\sin x \qquad \Rightarrow f'(x_0) = 0$$

$$f''(x) = -\cos x \qquad \Rightarrow f''(x_0) = -1$$

$$f'''(x) = \sin x \qquad \Rightarrow f'''(x_0) = 0$$

$$f^{(4)}(x) = \cos x \qquad \Rightarrow f^{(4)}(x_0) = 1$$

n = 2m + 1

$$\cos x = \underbrace{1}_{f(x_0)} + \underbrace{0}_{\frac{f'(x_0)}{1!}(x-x_0)} \underbrace{-\frac{x^2}{2!}}_{\frac{f''(x_0)}{2!}(x-x_0)^2} + 0 + \frac{x^4}{4!} + \dots + (-1)^m \frac{x^{2m}}{(2m)!} + 0 + R_{2m+1}$$

$$= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^m \frac{x^{2m}}{(2m)!} + (-1)^{m+1} \cos(\vartheta x) \frac{x^{2m+2}}{(2m+2)!}$$

ABB 56

Näherung:
$$\cos x \equiv 1 - \frac{x^2}{2} \text{ für } |x| \ll 1$$

Fehler:
$$|R_3(x)| \le \frac{x^4}{4!}$$

Bsp.:

$$\cos 5^{\circ} = \cos \left(\frac{\pi}{36}\right) = \underbrace{1 - \frac{\pi^2}{2 \cdot 36^2}}_{0.9961923} + R_3$$

$$|R_2| \le \frac{\pi^4}{36^4 \cdot 24} = 2,416 \cdot 10^{-6}$$

genau gilt: $\cos 5^{\circ} = 0,99619$ (auf 5 Stellen genau)

Bsp. 3:
$$f(x) = (1+x)^{\alpha} \text{ mit } \alpha \in \mathbb{R} \setminus \{0\}$$

$$f'(x) = \alpha (1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha - 1)(1 + x)^{\alpha - 2}$$

$$f^{(k)}(x) = \alpha(\alpha - 1)(\alpha - 2) \cdot \dots \cdot (\alpha - k + 1)(1 + x)^{\alpha - k}$$
$$= {\alpha \choose k} \cdot k!(1 + x)^{\alpha - k}$$

wir betrachten $x_0 = 0$

$$f(0) = 1, f'(0) = \alpha, f''(0) = \alpha(\alpha - 1), \dots, f^{(k)}(0) = {\alpha \choose k} k!$$

Erinnerung:

$$\Rightarrow (1+x)^{\alpha} = \sum_{k=0}^{n} \binom{\alpha}{k} x^k + \binom{\alpha}{n+1} (1+\vartheta x)^{\alpha-n-1} x^{n+1} \text{ mit } \vartheta \in (0,1)$$

Bsp. 4: f(x)... Polynom n-ten Grades

$$\Rightarrow f^{(n+1)}(x) = 0 \text{ für } x \in \mathbb{R}$$

$$\Rightarrow R_n(x) = 0 \text{ für } x \in \mathbb{R}$$

 \Rightarrow Taylorpolynom stellt f exakt dar (Entwicklung nach Potenzen von $(x-x_0)$)

3.3.1.1 Taylor Reihen

Satz 2: Es sei f auf $U(x_0)$ beliebig oft differenzierbar und es gelte $\lim_{n\to\infty} R_n(x)=0$.

$$\text{Dann gilt } \boxed{ f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k }. \label{eq:formula}$$

Denn: Taylor-Formel sagt $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$. Mit $n \to \infty$ folgt die Behauptung.

Bsp. 5:
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + R_n(x)$$
 (vgl. Bsp. 1) Es gilt $\lim_{n\to\infty} R_n(x) = 0$ für alle $x\in\mathbb{R}$.

Beweis: Sei $x \in \mathbb{R}$ fest. Wähle n_0 so, dass $q := \frac{|x|}{n_0} < 1$.

 \Rightarrow für $n > n_0$ gilt:

$$\begin{split} |R_n(x)| &= \left| e^{\vartheta x} \cdot \frac{x^{n+1}}{(n+1)!} \right| \leq e^{|\vartheta x|} \cdot \frac{x^{n+1}}{(n+1)!} \leq e^{|x|} \cdot \frac{x^{n+1}}{(n+1)!} \\ &< e^{|x|} \cdot \frac{|x|}{1} \cdot \frac{|x|}{2} \cdot \ldots \cdot \frac{|x|}{n_0} \underbrace{\frac{|x|}{n_0} \cdot \ldots \cdot \frac{|x|}{n_0}}_{(n-n_0+1) \text{ Faktoren}} \\ &= e^{|x|} \cdot \frac{|x|^{n_0}}{n_0!} \cdot q^{n-n_0+1} \to 0 \end{split}$$

$$\Rightarrow e^x = \sum_{k=0}^\infty \frac{x^k}{k!} \text{ für alle } x \in (-\infty, \infty)$$

Bsp. 6:
$$\cos x = \sum_{k=0}^{m} (-1)^k \frac{x^{2k}}{(2k)!} + R_{2m+1}(x)$$
 (vgl. Bsp. 2)

Ähnlich wie in Bsp. 5 kann man zeigen $\lim_{n\to\infty}R_{2m+1}(x)=0$ für alle $x\in\mathbb{R}$.

$$\Rightarrow \cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \qquad x \in (-\infty, \infty)$$

Analog: $\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$ $x \in (-\infty, \infty)$

Bsp. 7: Restglieduntersuchung in Bsp. 3 führt zu:

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^{k} \qquad |x| < 1, \ \alpha \in \mathbb{R}$$

$$\mathbf{z} \, \mathbf{B} \, \text{ für } \alpha = \frac{1}{n}.$$

z.B. für
$$\alpha = \frac{1}{2}$$
:

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \dots$$

$$\approx 1 + \frac{1}{2}x \qquad \text{falls } |x| \ll 1$$

3.3.2 Grenzwertbestimmung mittels der Regel von l'Hopital

Satz 3: (Regel von l'Hopital)

Es gelte:

1.)
$$\lim_{x \to a} f(x) = 0$$
 und $\lim_{x \to a} g(x) = 0$.

2.) $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ existiert (als eigentlicher und uneigentlicher Grenzwert).

$$\text{Dann folgt:} \overline{\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}} \left(\text{Typ: } \frac{\text{"0"}}{0} \right)$$

Die gleiche Aussage gilt, wenn 1.) ersetzt wird durch

1'.)
$$\lim_{x \to a} f(x) = \pm \infty$$
, $\lim_{x \to a} g(x) = \pm \infty$ (Typ: " $\frac{\infty}{\infty}$ ")

Beweis: seien f, g, f', g' stetig in x_0 und $g'(x_0) \neq 0$

Mittelwertsatz:
$$\frac{f(x)}{g(x)} = \underbrace{\frac{f(x_0)}{g(x_0)} + f'(\xi)(x - x_0)}_{0} = \underbrace{\frac{f'(\xi_1)}{g'(\xi_2)}}_{x \to x_0} \xrightarrow{f'(x_0)}_{g'(x_0)}$$

Bsp. 8:

a.)
$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \frac{0}{0}$$
$$\lim_{x \to 1} \frac{\frac{1}{x}}{1} = \lim_{x \to 1} \frac{1}{x} = 1$$
$$\Rightarrow \lim_{x \to 1} \frac{\ln x}{x - 1} = 1$$

b.)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \frac{\infty}{\infty}$$
$$\lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2}x^{-\frac{1}{2}}} = \lim_{x \to \infty} \frac{2x^{\frac{1}{2}}}{x} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$
$$\Rightarrow \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = 0$$

c.)
$$\lim_{x \to 0} \frac{x^2}{1 - \cos x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{2x}{\sin x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{2}{\cos x} = 2$$

$$\Rightarrow \lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 0} \frac{2x}{\sin x} = 2$$
Begel also auch mehrfach hir

Regel also auch mehrfach hintereinander anwendbar.

d.)
$$\lim_{x \to \infty} \frac{\sinh(x+1)}{\cosh x} = \frac{\infty}{\infty}$$
$$\lim_{x \to \infty} \frac{\cosh(x+1)}{\sinh x} = \frac{\infty}{\infty}$$
$$\lim_{x \to \infty} \frac{\sinh(x+1)}{\cosh x} = \frac{\infty}{\infty}$$

⇒ Satz nicht anwendbar, da 2.) nie erfüllt ist.

Aber:

$$\lim_{n \to \infty} \frac{\sinh(x+1)}{\cosh x} = \lim_{x \to \infty} \frac{e^{x+1} - e^{-(x+1)}}{e^x + e^{-x}} = \lim_{x \to \infty} \frac{e^{x+1} \left(1 - e^{-2(x+1)}\right)}{e^x \left(1 + e^{-2x}\right)} = e \underbrace{\lim \frac{1 - e^{-2(x+1)}}{1 + e^{-2x}}}_{=1} = e$$

Diskussion:

- 1.) Man beachte, dass der Anwendung von Satz 3 Zähler und Nenner einzeln differenziert werden (keine Quotientenregel)!
- 2.) Falls $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ nicht existiert, *darf man nicht* schlussfolgern, dass $\lim_{x\to a} \frac{f(x)}{g(x)}$ nicht existiert (siehe Bsp. 9).

$$\begin{array}{ll} \textbf{Bsp. 9:} & \lim_{x \to \infty} \frac{5x + \sin x}{3x - \cos x} = "\frac{\infty}{\infty}" \\ \lim_{x \to \infty} \frac{5 + \cos x}{3 + \sin x} \text{ existiert nicht.} \\ \textbf{1.) erfüllt, 2.) nicht erfüllt} \Rightarrow \text{Satz nicht anwendbar} \end{array}$$

$$\frac{5x + \sin x}{3x - \cos x} = \frac{x\left(5 + \frac{\sin x}{x}\right)}{x\left(3 - \frac{\cos x}{x}\right)} = \frac{5 + \frac{\sin x}{x}}{3 - \frac{\cos x}{x}} \xrightarrow{x \to \infty} \frac{5}{3}$$

Aber. $\frac{5x+\sin x}{3x-\cos x} = \frac{x\left(5+\frac{\sin x}{x}\right)}{x\left(3-\frac{\cos x}{x}\right)} = \frac{5+\frac{\sin x}{x}}{3-\frac{\cos x}{x}} \xrightarrow{x\to\infty} \frac{5}{3}$ Weitere unbestimmte Ausdrücke: Durch Zurückführen auf $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ lässt sich auch folgendes behandeln:

" $0 \cdot \infty$ ": $f(x) \cdot g(x)$ als Doppelbruch schreiben, d.h. $\frac{f(x)}{\frac{1}{f(x)}}$ oder $\frac{g(x)}{\frac{1}{f(x)}}$ ist dann vom Typ $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ ".

" $\infty - \infty$ ": Ausklammern $f(x) - g(x) = f(x) \left(1 - \frac{g(x)}{f(x)}\right)$ oder falls Brüche vorliegen Hauptnenner

" 0^0 "/" 1^∞ "/" ∞^0 ": Umformung

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} \exp\left(\ln\left(f(x)^{g(x)}\right)\right)$$

$$= \lim_{x \to a} \exp\left(g(x)\ln f(x)\right)$$

$$= \exp\left(\lim_{x \to a} g(x) \cdot \ln f(x)\right)$$
Typ "0·∞"

Bsp. 10:

a.)
$$\lim_{x \to 0} \tan x \cdot \cot 3x \stackrel{\text{"0.}\infty}{=} \lim_{x \to 0} \frac{\tan x}{\frac{1}{\cot 3x}}$$

$$= \lim_{x \to 0} \frac{\tan x}{\tan 3x} \stackrel{\text{"0.}\infty}{=} \lim_{x \to 0} \frac{1 + \tan^2 x}{3(1 + \tan^2 3x)} = \underline{\frac{1}{\underline{3}}}$$

$$\begin{array}{ll} \text{b.)} & \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{e^x - 1} \right) \text{"}^{\infty} = \text{"}^{\infty} \lim_{x \to 0} \frac{e^x - 1 - \sin x}{\sin x \cdot (e^x - 1)} \text{"}^{\frac{0}{\underline{0}}} \dots \right. \\ & = \lim_{x \to 0} \frac{e^x - \cos x}{\cos x (e^x + 1) + \sin(x) \cdot e^x} \\ & \stackrel{\text{"}^{0}}{\underline{0}} \lim_{x \to 0} \frac{e^x + \sin x}{-\sin x \cdot (e^x - 1) + \cos(x) \cdot e^x + \cos(x) \cdot e^x + \sin(x) \cdot e^x} = \frac{1}{\underline{2}} \end{array}$$

$$\text{c.) } \lim_{x \to 0} (1-x)^{\frac{1}{x}} \overset{\text{"}_{1} = \text{"}}{=} \lim_{x \to 0} \left(\ln \left((1-x)^{\frac{1}{x}} \right) \right) = \lim_{x \to 0} \exp \left(\frac{\ln (1-x)}{x} \right)$$

$$= \exp \left(\lim_{x \to 0} \frac{\ln (1-x)}{x} \right)$$

$$= \exp \left(\lim_{x \to 0} \frac{\ln (1-x)}{x} \right)$$

Denn:
$$\lim_{x \to 0} \frac{\ln(1-x)}{x} = \lim_{x \to 0} \frac{-\frac{1}{1-x}}{1} = \lim_{x \to 0} -\frac{1}{1-x} = -1$$

3.3.3 Kurvendisskusion

Problemstellung: Gegeben ist eine Funktion $f:Db(f)\to \mathbb{R}$ $Db(f)\subseteq \mathbb{R}$. Dann ist der Graph der Funktion definiert durch: $\{(x,f(x))\in \mathbb{R}^2|x\in Db(f)\}$. Dieser Graph ist zu untersuchen auf

- a.) Nullstellen
- b.) Stellen lokaler bzw. globaler Extrema
- c.) Wendestellen
- d.) Verhalten im Unendlichen, bzw. an den Randstellen des Definitionsbereichs Db(f) und (falls vorhanden) bei Annäherung an Unstetigkeitsstellen.

Diskussion:

- 1.) $x_0 \in Db(f)$ heißt Nullstelle n-ter Ordnung, falls $f(x_0) = f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0 \land f^n(x_0) \neq 0$. Zur Nullstellenbestimmung lernen wir bald das (iterative) Newton-Verfahren kennen.
- 2.) Lokale Extrema sind extremal bzgl. einer Umgebung der Extremstelle. Globale Extrema sind extremal bzgl. des gesamten Definitionbereichs, sie sind lokale Extram oder Funktionswerte in den Randpunkten.
- 3.) Wendepunkte sind Punkte, an denen die Kurve von konkav in konvex oder von konvex in konkav übergeht.

ABB 64

ABB 65

4.) Einige einfache Zusammenhänge zwischen Eigenschaften der Kurve und der Ableitungen an der Stelle x_0 (f sei auf $U(x_0)$ hinreichend oft differenzierbar).

$$\begin{array}{lll} f'(x_0) < 0 & \Rightarrow & f \text{ in Umgebung von } x_0 \text{ streng monoton fallend.} \\ f'(x_0) > 0 & \Rightarrow & f \text{ in Umgebung von } x_0 \text{ streng monoton wachsend.} \\ f'(x_0) = 0 & \Leftarrow & f \text{ in } x_0 \text{ lokal extremal.} \\ \hline f''(x_0) < 0 & \Rightarrow & f \text{ in Umgebung von } x_0 \text{ konkav.} \\ f''(x_0) > 0 & \Rightarrow & f \text{ in Umgebung von } x_0 \text{ konvex.} \\ \hline f''(x_0) = 0 & \Leftarrow & x_0 \text{ Wendestelle.} \\ \hline f'(x_0) = 0 \wedge f''(x_0) < 0 & \Rightarrow & f \text{ in } x_0 \text{ lokal minimal} \\ f'(x_0) = 0 \wedge f''(x_0) > 0 & \Rightarrow & f \text{ in } x_0 \text{ lokal maximal} \\ \hline \end{array}$$

5.) Problem: $f'(x_0) = 0 \land f''(x_0) = 0$? Extremstelle oder Wendestelle oder was?

Hinreichende Bedingungen für das Vorliegen von Extremstellen

Satz 4: Sei $f:Db(f)\to\mathbb{R},\ Db(f)\subseteq\mathbb{R}$ eine in $x_0\in Db(f)$ n-mal differenzierbare Funktion und sei $f^{(n)}$ stetig in x_0 . Dann gilt falls $f'(x_0)=f''(x_0)=...=f^{(n-1)}(x_0)=0 \land f^{(n)}(x_0)\neq 0$:

a.) n = 2, 4, 6, ... (also gerade), so ist x_0 lokale Extremstelle (Maximum falls $f^{(n)}(x_0) < 0$, Minimum falls $f^{(n)}(x_0) > 0$).

b.) n=3,5,7,... (also ungerade), so ist x_0 eine Horizontal-Wendestelle (konvex \to konkav, falls $f^{(n)}(x_0)<0$; konkav \to konvex, falls $f^{(n)}(x_0)>0$). ABB 66

Beweis mittels Taylor-Formal.

Oft ist auch folgendes Kriterium nützlich:

Satz 4': Sei $f: Db(f) \to \mathbb{R}, Db(f) \subseteq \mathbb{R}$ differenzierbar und $x_0 \in Db(f)$, sowie $f'(x_0) = 0$. Dann:

a.)
$$f'$$
 wechselt bei x_0 das Vorzeichen $\begin{cases} \mathsf{von} + \mathsf{auf} - \Rightarrow x_0 \mathsf{ lokale Maximumstelle} \\ \mathsf{von} - \mathsf{auf} + \Rightarrow x_0 \mathsf{ lokale Minimumstelle} \end{cases}$

b.) kein Vorzeichenwechsel $\Rightarrow x_0$ ist Horizontal-Wendestelle

Hinreichende Bedingung für das Vorliegen einer Wendestelle

Satz 5: Sei $f: Db(f) \to \mathbb{R}, Db(f) \subseteq \mathbb{R}$ n-mal differenzierbar an x_0 und $f^{(n)}$ stetig in x_0 . Dann gilt falls $f''(x_0) = f'''(x_0) = \dots = f^{(n-1)}(x_0) = 0 \land f^{(n)}(x_0) \neq 0$ und

$$\text{a.)} \ \ n=3,5,7,... \Rightarrow x_0 \ \text{ist Wendestelle} \ \begin{cases} f^{(n)}(x_0)<0 & konvex \Rightarrow konkav \\ f^{(n)}(x_0)>0 & kankav \Rightarrow konvex \end{cases}$$

b.) $n=4,6,8,...\Rightarrow x_0$ keine Wendestelle, sondern sogenannte Flachstelle und Extremstelle, falls zusätzlich $f'(x_0)=0$. ABB 67

Analog zu Satz 4 und 4' gibt es auch für Wendestellen ein alternatives hinreichendes Kriterium:

Satz 5': Es sei f eine 2 mal differenzierbare Funktion (in Umgebung von x_0), und es gelte $f''(x_0) = 0$. Dann:

a.)
$$f''$$
 wechselt bei x_0 das Vorzeichen $\begin{cases} \mathsf{von} + \mathsf{auf} - : (\mathsf{konvex} \to \mathsf{konkav}) \ \mathsf{Wendestelle} \\ \mathsf{von} - \mathsf{auf} + : (\mathsf{konkav} \to \mathsf{konvex}) \ \mathsf{Wendestelle} \end{cases}$

b.) kein Vorzeichenwechsel ⇒ keine Wendestelle (sondern Flachstelle)

Bemerkung (zu Satz 4' und 5'):

Vorzeichenwechsel von f' bzw. f'' bei $x=x_0\Leftrightarrow f'$ bzw. f'' hat bei x_0 Nullstelle ungerader Ordnung.

3.3.4 Kurvendarstellungen, Tangenten- und Normalengleichungen, Krümmung

3.3.4.1 Darstellung ebener Kurven

- 1.) Explizite karthesische Darstellungen y = f(x) Wobei $f : \mathbb{R} \to \mathbb{R}$ (vgl. Abschnitt ??).
- 2.) Implizite karthesische Darstellungen F(x,y)=0 Für graphische Darstellung ungünstig. Unter bestimmten Voraussetzungen lässt sich F(x,y)=0 auflösen nach y (oder x). Mehr dazu im Kapitel **??** (Differentialrechnung für Funktionen mehrer Veränderlicher).
- 3.) Parameter Darstellung $x=x(t),y=y(t),t\in I$ (kurz PD) vektorielle Form: $\underline{r}=\left(x//y\right)=\begin{pmatrix}x(t)\\y(t)\end{pmatrix},t\in I$

Bsp. 13:

$$x = a \cos t$$

$$y = b \sin t$$

$$t \in [0, 2\pi) \quad a, b > 0$$

$$t = 0 \Rightarrow x(0) = a, \ y(0) = 0$$

$$t = \frac{\pi}{2} \Rightarrow x\left(\frac{\pi}{2}\right) = 0, \ y\left(\frac{\pi}{2}\right) = b$$

$$t = \pi \Rightarrow x(\pi) = -a, \ y(\pi) = 0$$

Dies ergibt eine Ellipse.

ABB R1

Übergang zur Parameterfreien Darstellung: t eleminieren.

$$\frac{x}{a} = \cos t, \ \frac{y}{b} = \sin t \qquad | \ \text{Quadrieren und Addieren}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \cos^2 t + \sin^2 t = 1$$

Bsp. 14: Kreis mit Mittelpunkt
$$M = (x_0, y_0)$$
 und Radius R .

PD bspw.: $x=x_0+r\cos t$ $y=y_0+R\sin t$ $t\in[0,2\pi)$ Parameterfreie Darstellung: $(x-x_0)^2+(y-y_0)^2=R^2$ ABB R2

- 4.) Explizite Darstellung in Polar-Koordinaten
 - Darstellung eines Punktes in der Ebene ABB 72

 $x,y\dots$ karthesische Koordinaten $r,\varphi\dots$ Polarkoordinaten von P (analog Betrag und Argument einer komplexen Zahl) $r\geq 0,\ \varphi\in\mathbb{R}$

Umrechnung:

$$x = r \cdot \cos \varphi$$
$$y = r \cdot \sin \varphi$$

• Kurvendarstellung $r=r(\varphi)$, $\varphi\in [\alpha,\beta]$ Bsp.: $r(\varphi)=2,\; \varphi\in [0,2\pi)$ ABB 73

Für jeden Winkel $\varphi \in [\alpha, \beta]$ die Strecke $r(\varphi)$ auf den φ entsprechenden Strahl von 0 abtragen.

Bemerkung

• Übergang "explizite Darstellung \rightarrow Parameterdarstellung" $y = f(x), \ x \in [a, b]$ $\Rightarrow x = t, \ y = f(t), \ t \in [a, b]$ (t als Parameter)

• Übergang "explizite Polardarstellung \rightarrow Parameterdarstellung" $r=r(\varphi), \ \varphi \in [a,b]$ $\Rightarrow x=r(\varphi)\cos\varphi, \ y=r(\varphi)\sin\varphi, \ \varphi \in [a,b]$ (φ als Parameter)

Im Bsp. 15:

$$x = 8\cos^{2}\varphi$$

$$y = 8\cos\varphi\sin\varphi \qquad \varphi \in \left[0, \frac{\pi}{2}\right]$$

Parameterfreie Darstellung:

$$y^{2} = 64 \underbrace{\cos^{2} \varphi \underbrace{\sin^{2} \varphi}_{1 - \frac{x}{8}}}_{\frac{x}{8}}$$

$$= x(8 - x)$$

$$\Rightarrow x^{2} - 8x + y^{2} = 0$$

$$\Rightarrow (x - 4)^{2} + y^{2} = 4^{2}$$

(Halb-)Kreis mit Radius 4 und Mittelpunkt (4,0).

3.3.4.2 Tangenten und Normalen ebener Kurven

• Anstieg y' einer in PD gegebener Kurve $x=x(t),\ y=y(t),\ t\in I.$ Dazu sei y=f(x) die explizite karthesiche Form (ohne die Elimination von t durchzuführen). $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} \text{ (Kettenregel)}$

In Anwendungen in t oft die Zeit, üblicher Weise schreibt man dann:

$$\frac{\mathrm{d}x}{dt} =: \dot{x} \quad \frac{\mathrm{d}y}{dt} =: \dot{y} \quad \Rightarrow y' = \frac{\dot{y}}{\dot{x}}$$
$$\frac{d^2x}{dt^2} =: \ddot{x} \dots$$

• Tangente im Punkt $P_0=(x_0,y_0),\;x_0=x(t_0),\;y_0=y(t_0)$ ABB 74

(Ein) Richtungsvektor der Tangente in x_0, y_0 ist gegeben durch $\underline{t} = \begin{pmatrix} \dot{x}(t_0) \\ \dot{y}(t_0) \end{pmatrix}$.

 $\text{F\"{u}r } \underline{n} = \underline{n}(t_0) = \begin{pmatrix} -\dot{y}(t_0) \\ \dot{x}(t_0) \end{pmatrix} \text{ gilt } (\underline{t},\underline{n}) = 0. \text{ Also ist } \underline{n} \perp \underline{t} \text{ und } \underline{n} \text{ ist daher ein Richtungsvektor.}$

Kurve	$y = f(x), x \in I$	$\begin{vmatrix} x = x(t) \\ y = y(t), \ t \in I \end{vmatrix}$	$r(\varphi), \ \varphi \in I$
Punkt $P_0 = (x_0, y_0)$	$P_0 = (x_0, f(x_0))$	$P_0 = (x(t_0), y(t_0))$	$P_0 = (r(\varphi_0) \cdot \cos \varphi_0, \ r(\varphi_0) \cdot \sin \varphi_0)$
Anstieg $m = an lpha$ in P_0	$f'(x_0)$	$\frac{\dot{y}(t_0)}{\dot{x}(t_0)}$	$\frac{r'(\varphi_0)\sin\varphi_0 + r(\varphi_0)\cos\varphi_0}{r'(\varphi_0)\cos\varphi_0 - r(\varphi_0)\sin\varphi_0}$
Tangenten- vektor \underline{t}	$\begin{pmatrix} 1 \\ f'(x_0) \end{pmatrix}$	$\begin{pmatrix} \dot{x}(t_0) \\ \dot{y}(t_0) \end{pmatrix}$	$\begin{pmatrix} r'(\varphi_0)\cos\varphi_0 - r(\varphi_0)\sin\varphi_0 \\ r'(\varphi_0)\sin\varphi_0 + r(\varphi_0)\cos\varphi_0 \end{pmatrix}$
Normalenvektor \underline{n}	$\begin{pmatrix} -f'(x_0) \\ 1 \end{pmatrix}$	$\begin{pmatrix} -\dot{y}(t_0) \\ \dot{x}(t_0) \end{pmatrix}$	$\begin{pmatrix} -r'(\varphi_0)\sin\varphi_0 - r(\varphi_0)\cos\varphi_0 \\ r'(\varphi_0)\cos\varphi_0 - r(\varphi_0)\sin\varphi_0 \end{pmatrix}$

Tangentengleichungen:

$$y = y_0 + m(x - x_0)$$

$$\underline{r} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + s \cdot t\underline{t} \quad s \in \mathbb{R}$$

$$y = y_0 - \frac{1}{m}(x - x_0)$$

$$\underline{r} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + s \cdot \underline{n} \quad s \in \mathbb{R}$$

Bsp. 16: Für welche Werte des Parameters φ ist die Tangente an die Kurve $r=r(\varphi)=a(1+\varphi)$ $\cos \varphi$), $\varphi \in [0, 2\pi)$ parallel zur y-Achse?

Lösung: $r'(\varphi) = -a \sin \varphi$ mit der Bedingung $r'(\varphi) \cdot \cos \varphi - r(\varphi) \cdot \sin \varphi = 0$

$$\Rightarrow -a\sin\varphi\cos\varphi - a(1+\cos\varphi)\cdot\sin\varphi = 0$$

$$\Rightarrow -a\sin\varphi(\cos\varphi + 1 + \cos\varphi) = 0$$

$$\Rightarrow \sin \varphi = 0 \lor \cos \varphi = -\frac{1}{2}$$

$$\Rightarrow \sin \varphi = 0 \lor \cos \varphi = -\frac{1}{2}$$

$$\Rightarrow \varphi_1 = 0^\circ, \ \varphi_2 = 180^\circ, \ \varphi_3 = 120^\circ, \ \varphi_4 = 240^\circ$$

Allerdings entfällt φ_2 , da $r'(\varphi_2)\sin\varphi_2 + r(\varphi_2)\cos\varphi_2 = 0$

3.3.4.3 Krümmung ebener Kurven

ABB 75

Gegeben sei die Kurve C und der feste Punkt $P_0 = (x_0, y_0)$. Außerdem sind zwei Punkte R und S auf der Kurve gegeben. Durch 3 Punkte P_0 , R und S im Allgemeinen eindeutig ein Kreis festgelegt. Es sei K die Grenzlage dieses Kreises, wenn R und S in P_0 übergeben.

Es heißt dann:

K... Krümmungskreis (Schmiegkreis)

∠ (Kappa)... Krümmung

$$\varrho$$
... Krümmungsradius mit $\varrho = \frac{1}{|\varkappa|}$

$$M...$$
 Mittelpunkt des Krümmungskreises $\overrightarrow{OM} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \frac{1}{\varkappa} \cdot \frac{\underline{n}}{|\underline{n}|}$

Tabelle (Krümmungen)

Bsp. 17: In welchem Punkt ist $f(x) = e^x$ am stärksten gekrümmt (d.h. maximiere $|\varkappa|$)

Lösung:
$$y' = e^x + y''$$

$$\begin{array}{l} \text{L\"osung: } y' = e^x + y'' \\ \varkappa = \frac{e^x}{(1+e^{2x})\frac{3}{2}} = |\varkappa| \end{array}$$

$$\frac{d|\varkappa|}{dx} = \frac{e^x(1+e^{2x})^{\frac{3}{2}} - e^x \cdot \frac{3}{2}(1+e^{2x})^{\frac{1}{2}} \cdot 2e^{2x}}{(1+e^{2x})^3} \stackrel{!}{=} 0$$

$$\Rightarrow \underbrace{e^{x}(1+e^{2x})^{\frac{1}{2}}}_{\neq 0}(1+e^{2x}-3e^{2x})=0$$

$$\Rightarrow 1 - 2e^{2x} = 0$$

$$\Rightarrow x_1 = \frac{1}{2} \ln \frac{1}{2} = -\frac{1}{2} \ln 2 \qquad y_1 = \sqrt{\frac{1}{2}}$$

$$\text{mit }\varkappa=\frac{\sqrt{\frac{1}{2}}}{\left(\sqrt{\frac{3}{3}}\right)^3}=\frac{2}{3\sqrt{3}},\;\varrho=\frac{3\sqrt{3}}{2}$$
 ABB 76

3.3.4.4 Raumkurven

- $\begin{array}{l} \bullet \ \ \textit{Parameter darstellung} \ x = x(t), \ y = y(t), \ z = z(t), \ t \in I \\ \text{vektorielle Form:} \ \underline{r} = \underline{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}, \ t \in I, \ \underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ \end{array}$
- Tangente im Punkt $P_0=(x(t_0),y(t_0),z(t_0))^T$ $\min \underline{r}(t_0) = \begin{pmatrix} x(t_0) \\ y(t_0) \\ z(t_0) \end{pmatrix}, \ \underline{\dot{r}}(t) = \begin{pmatrix} \dot{x}(t_0) \\ \dot{y}(t_0) \\ \dot{z}(t_0) \end{pmatrix} \text{ gilt } \underline{g}(s) = \underline{r}(t_0) + s \cdot \underline{\dot{r}}(t_0), \ s \in \mathbb{R} \text{ ist die Tangente im Punkt } P_0.$
- Physikalische Darstellung $\underline{r}=\underline{r}(t),\ t\in I\dots$ Bewegung eines Massepunktes im Raum $\underline{\dot{r}}(t_0)\dots$ Geschwindigkeit zur Zeit t_0 $\underline{\ddot{r}}(t_0)\dots$ Beschleunigung zur Zeit t_0
- Krümmung $\varkappa=rac{|\dot{r} imes\ddot{r}|}{|\dot{r}|^3},$ Krümmungsradius $\varrho=rac{1}{arkappa}$

Bsp. 18: (Schraubenlinie)

$$\underline{r} = \underline{r}(t) = \begin{pmatrix} a\cos(t) \\ a\sin(t) \\ \frac{h}{2\pi}t \end{pmatrix} \qquad t \geq 0, \ a>0, \ h>0 \ (h \ \text{ist Abstand zwischen zwei Schraubenlinien})$$

Gesucht ist die Tangente in Punkt $P_0=(x(t_0),y(t_0),z(t_0))^T$ für $t_0=\frac{\pi}{2}$.

Tangente:
$$\underline{g}(s) = \begin{pmatrix} 0 \\ a \\ \frac{h}{4} \end{pmatrix} + s \cdot \begin{pmatrix} -a \\ 0 \\ \frac{h}{2\pi} \end{pmatrix} \qquad s \in R$$

(da die y-Koordinate in $s\cdot \begin{pmatrix} -a\\0\\\frac{h}{2\pi} \end{pmatrix}$ 0 ist: \underline{g} ist parallel zur x-z-Ebene)

3.3.5 Newton-Verfahren zur Nullstellenbestimmung

Dann konvergiert für jeden Startwert $x_0 \in I$ die mittels $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $n = 0, 1, 2, \cdots$ festgelegte Folge gegen x^* , d.h. $\lim_{n \to \infty} x_n = x^*$.

Außerdem gilt $|x^* - x_n| \le \frac{k}{1-k} |x_{n+1} - x_n| \le \frac{k^n}{1-k} |x_1 - x_0|$.

Diskussion:

• Geometrische Veranschaulichung:

ABB 78

Tangente in P_0 :

$$y = f(x_0) + f'(x_0)(x - x_0)$$

 $x_1 \dots$ Nullstelle der Tangente

$$0 = f(x_0) + f'(x_0)(x_1 - x_0)$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

ABB R Newton 1.

Zur Wahl des Startwertes x₀:

Falls in I gilt f''(x) > 0, dann ist ein x_0 mit $f(x_0) > 0$ günstig (bzw. bei f''(x) <= ein $f(x_0) < 0$).

• Praktisches Vorgehen:

Abbruch falls $|x_{n+1} - x_n| < \varepsilon$.

Bsp. 19: Gesucht sind Lösungen von $f(x) = \cos(x) = x \Leftrightarrow x - \cos(x) = 0$. Gesucht ist nun eine Nullstelle von f.

Start $x_0 = 0.8$ (nur ein Beispiel)

ABB 79

$$f'(x) = 1 + \sin(x)$$

$$x_{n+1} = \frac{x_n - x_n - \cos(x_n)}{1 + \sin(x_n)}$$
 $n = 0, 1, 2, \dots$

$$\begin{array}{c|c}
n & x_n \\
\hline
0 & 0,8
\end{array}$$

$$1 \mid 0,73985$$

$$2 \mid 0,73908526$$

$$\Rightarrow x^* = 0,739085$$

ABB R Newton 2.

4 Integralrechnung für Funktionen einer reellen Veränderlichen

4.1 Der Integralbegriff

4.1.1 Das bestimmte Integral

Problem:

Gegeben: Kurve $y = f(x), x \in [a, b]$ und $f(x) \ge 0$.

Gesucht: Flächeninhalt I unter der Kurve

ABB 80 Vorgehen:

- Zerlegung Z des Intervalls [a,b]: $a = x_0 < x_1 < x_2 < x_3 < \cdots < x_{n-1} < n_n = b$
- In jedem Teilintervall Zwischenstelle $\xi_i \in [x_{in}, x_i]$ wählen. Dies ergibt die Zerlegung Z^* (Z mit Zwischenstellen).
- $\Delta(Z^*):=\max_{i=1,\dots,n}(x_i-x_{i-1}=\dots$ Länge des größten Teilintervalls
- Approximation von *I* durch die Summe von Rechteckflächen:

$$S(Z^*, f) := \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

 $S(Z^*, f)$ heißt Riemann-Summe. Sie ist abhängig von der Zerlegung Z^* .

 $\begin{array}{l} \textbf{Def. 1} & \text{Die Funtkion } f \text{ heißt (Riemann-)integrierbar ""uber"} [a,b] \text{ falls für jede Zerlegungsfolge } Z_{\mu}^* \text{ von } [a,b] \text{ mit } \lim_{\mu \to \infty} \Delta(Z_{\mu}^*) = 0 \text{ gilt: } \lim_{\mu \to \infty} S(Z_{\mu}^*,f) = I. \text{ Die Zahl } I \text{ heißt dann bestimmtes Integral von } f \text{ "uber } [a,b]. \text{ Bezeichnung: } i = \int_a^b f(x) \, \mathrm{d}x. \end{aligned}$

Diskussion:

• Def. 1 basiert auf der Forderung $f(x) \geq 0$. Falls f(x) < 0 für alle $x \in [a,b]$, so gilt im Falle der Integrierbarkeit $\int_a^b f(x) \, \mathrm{d}x < 0$:

ABB 82 \Rightarrow Flächeninhalt $F = \int_a^b |f(x)| dx = -\int_a^b f(x) dx$.

• Man definiert:

$$\int_{a}^{a} f(x) dx := 0$$

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx \quad (b > a)$$

• Eigenschaften des bestimmten Integrals:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$
 für beliebige $a, b, c \in \mathbb{R}$.

•
$$\int_a^b c_1 u(x) + c_2 v(x) dx = c_1 \int_a^b u(x) dx + c_2 \int_a^b v(x) dx$$
 für $c_1, c_2 \in \mathbb{R}$

Satz 1: Es sei $f:[a,b] \to \mathbb{R}$ stetig. Dann ist f auf [a,b] integrierbar.

Diskussion:

- Falls f stückweise stetig ist, mit endlich vielen Sprungstellen, so ist f ebenfalls integrierbar (Integration von Sprungstelle zu Sprungstelle).
 ABB 93
- Nicht integrierbar ist bspw. $f:[0,1] \to \mathbb{R}, \ f(x) = \begin{cases} 1 & x \text{ irrational} \\ 0 & x \text{ rational} \end{cases}$

4.1.2 Sammfunktion und unbestimmtes Integral

Satz 2: (Mittelwertsatz der Integralrechnung)

Sei $f:[a,b]\to\mathbb{R}$ stetig. Dann existiert (mindestens) ein $\xi\in(a,b)$ mit:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(\xi)(b-a)$$

Anschaulich:

ABB 94

Wir nennen $m=\frac{1}{b-a}\int_a^b f(x)\,\mathrm{d}x$ den Integralmittelwert von f auf [a,b].

Integral mit variabler oberer Grenze:

Wir betrachten
$$\int_{a}^{x} f(t) dt =: F(x)$$

ABB 95

Satz 3: Sei $f:[a,b]\to\mathbb{R}$ stetig. Dann ist $F(x)=\int_a^x f(t)\,\mathrm{d}t$ auf [a,b] differenzierbar und es gilt: F'(x)=f(x)

Beweis:

$$\frac{F(x+h)-F(x)}{h} = \frac{\int_x^{x+h} f(t) \, \mathrm{d}t}{h} \xrightarrow{(\min \xi \in (\underline{x},x+h))} \frac{f(\xi) \cdot (x+h-x)}{h} = f(\xi) \xrightarrow{h \to 0} f(x) \text{ da } f \text{ stetig.}$$

$$\Rightarrow F'(x) = f(x)$$

Def. 2: Die Funktion F heißt Stammfunktion von f (auf [a,b]), wenn gilt F'(x)=f(x).

Diskussion: Ist F eine Stammfunktion, so ist auch \tilde{F} mit $\tilde{F}(x) = F(x) + C$ eine Stammfunktion.

Def. 3: Die Menge $\{F(x)+C|C\in\mathbb{R} \text{ aller Stammfunktionen von } f$, wobei F beliebige Stammfunktion von f ist, heißt unbestimmtes Integral von f.

Bezeichunung:
$$\int f(x) dx = F(x) + C$$

4.1.3 Hauptsatz der Differential- und Integralrechnung (HDI)

Satz 4: Sei $f:[a,b] \to \mathbb{R}$ stetig und F beliebige Stammfunktion von f.

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \left[F(x) \right]_{a}^{b} = F(b) - F(a)$$

Beweis: Satz 3 liefert $F_1(x) := \int_a^x f(t) dt$ ist Stammfunktion von f. Also gilt $F(x) = F_1(x) + k$

$$\Rightarrow F(b) - F(a) = F_1(b) + k - \underbrace{F_1(a)}_{=0} - k = \int_a^b f(t) dt$$

Diskussion:

1.)
$$\underbrace{\int_a^b f(x) \, \mathrm{d}x}_{\text{Flächeninhaltsproblem,}} = \underbrace{F(b) - F(a)}_{\text{Stammfunktion,}}$$
 Umkehrung der Differentialr

Dieser Term ist also der Zusammenhang zwischen der Differential- und der Integralrechnung.

2.) Symbolik:
$$\frac{\mathrm{d}F(x)}{\mathrm{d}x} = f(x) \Leftrightarrow \underbrace{\int \mathrm{d}F(x)}_{F(x)+C} = \int f(x)\,\mathrm{d}x$$

3.) Aus Tabellen zur Differentiation lassen sich Integrationsregeln ableiten.

Beispiele:

a.)
$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$$

$$\Leftrightarrow \int -\sin x \, \mathrm{d}x = \cos x + C^* \quad |\cdot (-1)|$$

$$\int \sin x \, \mathrm{d}x = -\cos x + \underbrace{C}_{C^*}$$

b.)
$$\frac{\mathrm{d}}{\mathrm{d}x}x^{\alpha+1} = (\alpha+1)x^{\alpha}$$
$$\Leftrightarrow \int x^{\alpha} \, \mathrm{d}x = \frac{1}{\alpha+1}x^{\alpha+1} + C \text{ (falls } \alpha \neq -1\text{)}$$

4.2 Integrationsmethoden

4.2.1 Substitution

Zu berechnen ist $\int f(g(x)) \cdot g'(x) dx$. Bekannt sei dabei die Stammfunktion F von f. Dann gilt:

$$\int f\big(g(x)\big)g'(x)\,\mathrm{d}x \overset{\mathsf{Subst.}}{=} \int f(u)\,\mathrm{d}u = F(u) + C = \overset{u=g(x)}{=} F\big(g(x)\big) + C$$

Substitution u = g(x) impliziert $\frac{du}{dx} = g'(x) \Rightarrow du = g'(x) dx$.

Merke: Anwendung dieser Methode ist zweckmäßig, wenn der Integrand das Produkt eine Verknüpfung zweier Funktionen mit der Ableitung der inneren Funktion ist und eine Stammfunktion für die äußere Funktion bekannt ist.

Bsp. 1:
$$\int \frac{1}{x} \sqrt[3]{\ln x} \, dx \stackrel{u = \ln x}{=} ^{\frac{u = \ln x}{du}} \int \underbrace{\sqrt[3]{u}}_{u = \frac{1}{3}} du = \frac{3}{4} u^{\frac{4}{3}} + C = \frac{3}{4} (\ln x)^{\frac{4}{3}} + C$$

Bsp. 2:
$$\int xe^{-x^2} dx \stackrel{du=-\frac{du}{2x}}{=} \int xe^u \frac{du}{-2x} = -\frac{1}{2} \int e^u du = -\frac{1}{2}e^u + C = -\frac{1}{2}e^{-x^2} + C$$

Bsp. 3: (Substitution bei bestimmten Integral)

• 1. Variante: Grenzen ersetzen

$$I = \int_0^{\sqrt{8}} x \sqrt{1 + x^2} \, \mathrm{d}x \stackrel{u=1+x^2}{=} \int_1^9 x \sqrt{u} \frac{\mathrm{d}u}{2x} = \frac{1}{2} \int u^{\frac{1}{2}} \, \mathrm{d}u = \left[\frac{1}{3}u^{\frac{3}{2}}\right]_1^9 = \frac{1}{3}(27 - 1) = \frac{26}{3}$$
 Grenzen in Substitution einsetzen $u = 1 + x^2 \Rightarrow u_{unt} = 1 + 0^2 = 1$ $u_{ob} = 1 + \sqrt{8}^2 = 9$

• 2. Variante: Erst unbestimmtes Integral lösen

$$I=\int_0^{\sqrt{8}}x\sqrt{1+x^2}\,\mathrm{d}x=\frac{1}{3}(1+x^2)^{\frac{3}{2}}+C$$
 Dann Grenzen einsetzen:

$$I = \left[\frac{1}{3}(1+x^2)^{\frac{3}{2}}\right]_0^{\sqrt{8}} = \frac{1}{3}(27-1) = \frac{26}{3}$$

Bsp. 4:
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

(Zähler = Ableitung des Nenners)

Nutze dazu die Substitution u = f(x), $dx = \frac{du}{f'(x)}$

$$\Rightarrow \int \dots = \int \frac{1}{u} du = \ln|u| + C = \ln|f(x)| + C$$

Bsp. 5: (lineare Substitution

Allgemein:
$$\int f(ax+b) \, \mathrm{d}x \stackrel{u=ax+b}{=} \int f(u) \frac{\mathrm{d}u}{a} \stackrel{F: \text{Stammfkt.}}{=} \frac{1}{a} \cdot F(u) + C$$

a.)
$$\int \cos(3x) = \frac{1}{3}\sin(3x) + C$$

b.)
$$\int e^{-2x} dx = \frac{1}{-2}e^{-2x} + C$$

c.)
$$\int (3x+4)^6 dx = \frac{1}{3} \cdot \frac{1}{7} (3x+4)^7 + C$$

d.)
$$\int \sin\left(\frac{x}{2} + \pi\right) dx = 2 \cdot -\cos\left(\frac{x}{2} + \pi\right) + C$$

Diskussion: Neben diesen "natürlichen" und leicht erkennbaren Substitutionen sind weiter Substitutionen durch die Einführung von "künstlichen" Variablen möglich:

$$\int f(x) dx \stackrel{dx}{\overset{dx}{dt} = \dot{\varphi}(t)}{=} \int f(\varphi(t)) \cdot \dot{\varphi}(t) dt$$

Dies entsprecht der Substitutionsregel, von rechts nach links gelesen. Falls die rechte Seite davon integrierbar ist (mit Stammfunktion H), dann:

$$\int f(x) dx = H(t) + C = H(\varphi^{-1}(t)) + C \qquad \text{(falls } \varphi^{-1} \text{ existient)}$$

Bsp. 6:

$$\int \frac{\frac{dx}{dt} = \cosh(t)}{\sqrt{1+x^2}} \, \mathrm{d}x \stackrel{\cosh^2(t) = \sinh(t) = 1}{=} \int \frac{1}{\cosh(t)} \cosh(t) \, \mathrm{d}t = \int \, \mathrm{d}t = t + C = \mathrm{arcsinh}(x) + C$$
 Für weitere geeignete Substitutionen siehe Integrationstabelle.

4.2.2 Partielle Integration

Produktregel der Differentiation:

$$\frac{\mathrm{d}}{\mathrm{d}x} (u(x) \cdot v(x)) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

$$\Rightarrow u(x)v(x) \int u'(x)v(x) \, \mathrm{d}x + \int u(x)v'(x) \, \mathrm{d}x$$

$$\Rightarrow \int u(x)v'(x) \, \mathrm{d}x = u(x)v(x) - \int u'(x)v(x) \, \mathrm{d}x$$

Bsp. 7:

a.)
$$\int \underbrace{x}_{u(x)} \underbrace{\sin(2x)}_{v'(x)} dx = \underbrace{x}_{u} \cdot \underbrace{-\frac{1}{2}\cos(2x)}_{v} - \int \underbrace{1}_{u'} \cdot \underbrace{-\frac{1}{2}\cos(2x)}_{v} dx = -\frac{x}{2}\cos(2x) + \frac{1}{4}\sin(2x) + C$$
$$u'(x) = 1 \qquad v(x) = -\frac{1}{2}\cos(2x)$$

$$\text{b.) } \int \underbrace{x^3}_{1} \underbrace{\ln x}_{2} = \frac{1}{4} x^4 \ln x - \int \frac{1}{x} \cdot \frac{1}{4} x^4 \, \mathrm{d}x = \frac{1}{4} x^4 \ln x - \frac{1}{16} x^4 + C = \frac{1}{4} x^4 \left(\ln x - \frac{1}{4} \right) + + C$$

Merke: Typische Anwendungsfälle für partielle Integration (mit p(x) jeweils als u):

$$\bullet \int p(x)e^{ax} \, \mathrm{d}x$$

•
$$\int p(x)\cos(ax)\,\mathrm{d}x$$

•
$$\int p(x)\sin(ax)\,\mathrm{d}x$$

aber (mit ln(x) jeweils als u):

•
$$\int p(x) \cdot \ln(x) dx$$

•
$$\int x^{\alpha} \cdot \ln(x) \, \mathrm{d}x$$

Bsp. 8:

$$\int \arctan(x) dx \stackrel{u = \arctan(x)}{\stackrel{v' \equiv 1}{=}} x \cdot \arctan(x) - \int x \cdot \frac{1}{1 + x^2} dx = x \cdot \arctan(x) - \frac{1}{2} \ln(|x^2 + 1|) + C$$

$$u' = \frac{1}{1 + x^2} \qquad v = x$$

4.2.3 Integration gebrochen rationaler Funktionen

Gegeben: Gebrochen rationale Funktion $f(x) = \frac{p(x)}{q(x)}$ Integration erfolgt in 5 Schritten:

- 1.) Falls f unecht gebrochen: Polynomdivision erhalten dann $f(x) = \underbrace{a(x)}_{\text{Polynom}} + \underbrace{\frac{r(x)}{q(x)}}_{\text{echt gebrocher}}$
- 2.) Nullstellen von q ermitteln. Dann Zerlegung q: $q(x) = (x \alpha_1)^{k_1} \cdot (x \alpha_2)^{k_2} \cdot \dots \cdot (x^2 + p_1 + q_1)^{m_1} \cdot (x^2 + p_2 + q_2)^{m_2} \cdot \dots \\ k_i$: reelle Nullstellen m_i : nicht reell zerlegbar Dabei kürzt man eventuelle gemeinsame Faktoren in r und q heraus.
- 3.) Ansatz für die Partialbruchzerlegung $\frac{r(x)}{q(x)} = \text{Summe von Partialbrüchen}$ Jeden Faktor der Form $\begin{cases} (x-\alpha)^k \\ \end{pmatrix}$ der Gleich

Jeden Faktor der Form
$$\begin{cases} (x-\alpha)^k \\ (x^2+px+q)^m \end{cases} \quad \text{der Gleichung entspricht der Anteil} \\ \begin{cases} \frac{A_1}{x-\alpha} + \frac{A_2}{(x-\alpha)^2} + \dots + \frac{A_2}{(x-\alpha)^k} \\ \frac{B_1x+C_1}{x^2+px+q} + \frac{B_2x+C_2}{(x^2+px+q)^2} + \dots + \frac{B_mx+C_m}{(x^2+px+q)^m} \end{cases} \quad \text{in dieser Summe}.$$

Bsp. 9:

$$f(x) = \frac{x^2 + 4}{(x-1)^3(x+5)(x^2 + 2x + 2)^2}$$

$$= \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3} + \frac{D}{x+5} + \frac{Ex+F}{x^2 + 2x + 2} + \frac{Gx+H}{(x^2 + 2x + 2)^2}$$

Beachte: $x^2 + 2x + 2$ ist reell nicht weiter zerlegbar, Nullstelle: $1 \pm i$.

- 4.) Ermittlung der Koeffizienten durch
 - Multiplikation des Ansatzes der Partialbruchzerlegung mit q(x)
 - Kombination der folgenden beiden Methoden
 - a.) Einsetzen der reellen Nullstellen
 - b.) Koeffizientenvergleich

(falls q nur reelle Nullstellen hat, recht Methode a.)

5.) Integration der Partialbrüche

a.)
$$\int \frac{1}{(x-\alpha)^j} dx = \begin{cases} \ln(|x-\alpha|) + C & j=1\\ \frac{1}{1-j} (x-\alpha)^{1-j} + C & j=2,3,4,\dots \end{cases}$$

b.)
$$\int \frac{3x+C}{(x^2+px+q)^j} dx = \int \frac{\frac{B}{2}(2x+q)}{(x^2+px+q)^j} + \frac{C-\frac{Bp}{2}}{(x^2+px+q)^j} dx$$

$$\bullet \int \frac{2x+p}{(x^2+px+q)^2} dx$$
: Nutze Substitution.

Bsp. 10:
$$I = \int \frac{3x+4}{x^2+2x-3} \, dx$$

- echt gebrochen
- Nullstellen des Nenners: $x_1 = -3$, $x_2 = 1$ $\Rightarrow x^2 + 2x - 3 = (x+3)(x-1)$

Ansatz für PBZ:

$$\frac{3x+4}{(x+3)(x-1)} = \frac{A}{x+3} + \frac{B}{x-1} \quad | \cdot (x+3)(x-1)$$
$$3x+4 = A(x-1) + B(x+3)$$

Einsetzen der NS:

$$x_1:$$
 $-5 = A \cdot (-4) \Rightarrow A = \frac{5}{4}$
 $x_2:$ $7 = B \cdot 4 \Rightarrow B = \frac{7}{4}$

$$\Rightarrow I = \int \frac{\frac{5}{4}}{x+3} dx + \int \frac{\frac{7}{4}}{x-1} dx$$
$$= \frac{5}{4} \ln(|x+3|) + \frac{7}{4} \ln(|x-1|) + C$$