# 인공지능 기말 프로젝트

호흡기 소리 분석을 통한 질병유무 판단과 질병분류

14011890 김기홍 15010958 이가경 15011037 김동익 17013252 이상민

#### 호흡기 소리 분석을 통한 질병유무 판단과 질병분류

 배경 및

 데이터 셋

**02** 기존 연구 03 CNN을 이용한 학습 04 SVM을 이용한 학습 01

배경 및 데이터 셋

#### 01. 배경

#### 호흡기 질환과 디지털 헬스케어





이슈 미세먼지 비상

서울 초미세먼지 농도 나쁨일수 4년 새 2배 급증

고영득 기자 godo@kyunghyang.com

미세먼지 영향?...1분기 119 이용한 호흡기질환자 최근 5년간 최다





#### 01. 데이터 셋

ICBHI Challenge Respiratory Sound Database





ESSUA 연구실 D. Pedro, Aveiro 병원



126 명



7개 질환

만성 폐쇄성 폐 질환, 상부 호흡기 감염, 하부 호흡기 감염, 천식, 기관지 확장 증, 폐렴, 세기관지염



920개 .wav

02

기존 연구

#### 02. 기존연구

Detection of wheezes and crackles with CNN







- 1. None / Others Accuracy : 84%
- 2. None / Only Wheeze /

Only Crackle / Wheeze and Crackle



#### 기존연구



> COPD: wheezing + crackling + Rhonchi + Mediastinal Crunch

03

CNN을 이용한 학습

#### 03. CNN을 이용한 학습

학습 순서



\_\_\_\_

#### 03. FT(Fourier Transform)



- FT(Fourier Transform) 이란?
   입력 신호를 대응하는 스펙트럼으로 전환
   연속시간의 아날로그 파형을 infinite Fourier series
- Infinite Fourier series 특정 amp와 phase를 가지는 사인파로 변환.

#### 03. STFT(Short Time Fourier Transform)



- FT(Fourier Transform)을 실제 녹음된(유한의) 소리에 적용하기 위해 만든 것.
- 데이터에서 시간에 대해 구간을 짧게 나누어 FT (Fourier Transform) 적용.
- 음성파일의 전체길에 비례하여 구간을 나누기 때문에 사용하지 않음

#### 03. MFCC(Mel Frequency Cepstral Coefficient) – 6 steps



- Divided into small frames
- Calculate Periodogram estimate
- Mel filter bank
- Log
- DCT
- 12~13 Coefficients

#### 03. MFCC+DELTA



MFCC + delta

음성의 변화율을 스팩트럼 이미지로 생성 MFCC+delta+delta

음성 데이터 변화의 가속도를 스팩트럼 이미지로 생성

청진 데이터는 일정한 간격으로 반복되기 때문에 MFCC Delta만 적용



#### 03. 모듈화 - 경로설정, 파일

```
test_index_list = []
test_answer_list = []
train_answer_list = []
size_ = 2
random_len = 0

filename = np.array(pd.read_csv('C:/Users/DONG/Desktop/A.I.data/test_train/data/SC_filename.csv'))
answer = np.array(pd.read_csv('C:/Users/DONG/Desktop/A.I.data/test_train/data/SC_answer.csv'))

path_test='C:/Users/DONG/Desktop/A.I.data/SC_56_version_mfcc/test'
path_train='C:/Users/DONG/Desktop/A.I.data/SC_56_version_mfcc/train'
```

- 1. 음원 파일명을 담은 filename.csv, 음원 라벨링이 분류된 answer.csv 파일 로드
- 2. Path는 저장할 위치를 설정

#### 03. 모듈화 - test, train set 설정

```
def make_rand_num(total_count):
    tf.set_random_seed(777)
    test_rate = 0.2
    rand_num = random.randint(0,total_count)
    range_num = int(total_count*test_rate)
    for i in range(range_num):
        while rand_num in test_index_list:
            rand_num = random.randint(0,total_count)
        test_index_list.append(rand_num)
    test_index_list.sort()
```

- 1. Test와 train 데이터 셋을 랜덤으로 생성하기 위해서 test에 포함됨 될 파일 index test\_index\_list에 담기
- 2. 중복 제거

#### 03. 모듈화 - 특징 값 추출 함수

```
def mfcc(total_count):
    pointer = 0
    step = 0
    print(len(filename))
    for step in range(total_count):
        #mfoo
        audio_path='C:/Users/DONG/Desktop/A.I.data/test_train/data'+filename[step]
        print(audio_path)
        y, sr = librosa.load(audio_path[0])
        mfccs=librosa.feature.mfcc(y=y,sr=sr)
        # /abe/ing
        pointer = labling(step,pointer)
        #save image
        save_image(mfccs, answer[step],step)
```

```
def mfcc_delta(total_count):
    pointer = 0
    for step in range(total_count):
        #mfcc
        audio_path='./data/'+filename[step]
        y, sr = librosa.load(audio_path[0])
        mfcc=librosa.feature.mfcc(y=y,sr=sr)
        mfccs = librosa.feature.delta(mfcc, order=2)
        # labeling
        pointer = labling(step,pointer)
        #save_image
        save_image(mfccs, answer[step],step)
```

- 1. Mfcc, mfcc\_delta를 각각 함수로 구현, 원하는 함수를 호출해서 사용
- 2. Librosa 라이브러리 이용

```
def save_image(mfccs, answer_, step):
    temp_name = filename[step][0].split(".")
    plt.figure(figsize=(0.78+2+size_,0.78+2+size_))
    librosa.display.specshow(mfccs)
    if step in test_index_list:
        if answer[step] == 0:
            plt.savefig(path_test+'/test_0/'+ ''.join(temp_name[0])+'.png')
    ###/s##
    else:
        if answer[step] == 0:
            plt.savefig(path_train+'/train_0/'+ ''.join(temp_name[0])+'.png')
    else:
        plt.savefig(path_train+'/train_0/'+ ''.join(temp_name[0])+'.png')
    else:
        plt.savefig(path_train+'/train_1/'+ ''.join(temp_name[0])+'.png')
```

1. 이미지를 test와 train 따라 지정한 경로에 저장

#### 03. 모듈화 - 라벨링, csv 파일 생성

```
def labling(step,pointer):
    if pointer < random_len:
        if step == test_index_list[pointer]:
            test_answer_list.append(answer[step][0])
            pointer = pointer +1;
        else:
            train_answer_list.append(answer[step][0])
    return pointer</pre>
```

```
def save_test_lable_csv(name_file):
    path='.C:/Users/DONG/Desktop/A.l.data/test_train/data/csv_file/'+name_file
    csvfile = open(path, "w", newline="")
    csvwriter = csv.writer(csvfile)
    csvwriter.writerows(map(lambda x: [x], test_answer_list))
    csvfile.close()

def save_train_lable_csv(name_file):
    path='C:/Users/DONG/Desktop/A.l.data/test_train/data/csv_file/'+name_file
    csvfile = open(path, "w", newline="")
    csvwriter = csv.writer(csvfile)
    csvwriter.writerows(map(lambda x: [x], train_answer_list))
    csvfile.close()
```

- 1. Index 배열에 랜덤으로 지정된 값을 저장한다.
- 2. 값이 들어간 index배열은 csv파일 형태로 저장한다.

#### 03. 모듈화 - 특징 값 추출 완성



1. 총 920개의 데이터가 설정한 비율에 따라 Train, Test폴더로 나뉘어 라벨링된 값에 따라 적용한 필터의 이미지가 나뉘어 생성

#### 03. 모듈화 - CNN

#### Processing modulization

```
# hyper parameters
learning_rate = 0.001
# input place holders
X = tf.placeholder(tf.float32, [None, 3136+4])
X_img = tf.reshape(X, [-1, 112, 112, 1]) # img 28x28x1 (black/white) #img 356x238x1
Y = tf.placeholder(tf.float32, [None, 8])
\forall 1 = tf. \forall ariable(tf.random_normal([3,3,1,32], stddev = 0.01))
L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME')
L1 = tf.nn.relu(L1)
tf.layers.batch_normalization(L1)
L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01))
L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME')
L2 = tf.nn.relu(L2)
tf.layers.batch_normalization(L2)
L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W3 = tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.01))
L3 = tf.nn.conv2d(L2, W3, strides=[1, 1, 1, 1], padding='SAME')
L3 = tf.nn.relu(L3)
tf.layers.batch_normalization(L3)
L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
L3_{flat} = tf.reshape(L3, [-1, 7 * 7 * 512])
W4 = tf.get_variable("W4", shape=[7 * 7 * 512, 8], initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.random_normal([8]))
logits = tf.matmul(L3_flat, W4) + b
# define cost/loss &amb;amb;amb; optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
```



\_\_\_\_

#### 03. 질병 유무 판단, 분류 결과

|         | MFCC | MFCC + Delta | Average |
|---------|------|--------------|---------|
| 112X112 | 97.8 | 95.9         | 96.85   |
| 56X56   | 96.7 | 93.9         | 95.3    |
| 28X28   | 95.1 | 98.3         | 96.7    |
| 14X14   | 97.2 | 96.1         | 96.65   |

|         | MFCC | MFCC + Delta | Average |
|---------|------|--------------|---------|
| 112X112 | 82.2 | 86.8         | 84.5    |
| 56X56   | 84.1 | 88           | 86.05   |
| 28X28   | 84.7 | 86.4         | 85.55   |
| 14X14   | 82.6 | 86.4         | 84.5    |

CNN을 이용한 질병 유무 판단

Average : 96.38%

CNN을 이용한 질병 분류

Average: 85.15%

#### 03. 질병분류 정확도 향상을 위한 조건 변경

|         | 0.7   | 0.8   | 0.9     | Average |
|---------|-------|-------|---------|---------|
| 112X112 | 84.9  | 84.5  | 84.2    | 84.53   |
| 56X56   | 85.45 | 86.05 | 89.1    | 86.87   |
| 28X28   | 85.95 | 85.55 | 82      | 84.5    |
| 14X14   | 86.3  | 84.5  | 83.75   | 84.85   |
| avg     | 85.65 | 85.15 | 84.7625 |         |

CNN을 이용한 질병분류 Training rate 변경

|       | 0.01 | 0.001 | 0.0001 | Avg  |
|-------|------|-------|--------|------|
| 56X56 | 85.5 | 85.5  | 85.5   | 85.5 |

CNN을 이용한 질병분류 Learning rate 변경

|       | 100  | 200  | 300  | 400  | avg  |
|-------|------|------|------|------|------|
| 56X56 | 84.6 | 84.6 | 84.6 | 84.6 | 84.6 |

CNN을 이용한 질병분류 Batch size 변경

|       | Case1 | Case2 | Case3 | avg   |
|-------|-------|-------|-------|-------|
| 56X56 | 88    | 85.8  | 86.35 | 86.72 |

CNN을 이용한 질병분류 training, test set 변경

Average: 85.15%



86.72

04

SVM을 이용한 학습

### 04. SVM을 이용한 학습



#### 04. SVM 학습 진행

Support Vector Machine



- 1. 지도 학습 방식의 대표 분류 기법인
  SVM(Support Vector Machine) 학습법 적용
- 2. SVM은 선형분류와 더불어 비선형 분류에도 사용
- 3. 차원 수 > 데이터 수인 경우 효과적

#### 04. SVM 학습 진행

Support Vector Machine



- SVM은 데이터를 벡터공간으로 표현한 후 서포터 벡터간 거리를 최대화 하는 방식으 로 데이터를 분류
- 비선형 분류의 경우 데이터를 고차원 특징
   공간으로 만들어 분류 진행

#### 04. 특징 추출



- 1. librosa.feature를 통해 음원의 특징 추출
- 2. 각 음원파일마다 6가지 특징을 뽑아내어 특징을 정규화 시킨 후 특징을 묶음

#### 04. 특징 추출



- 1. librosa.feature를 통해 음원의 특징 추출
- 2. Mfcc
- 3. Zero\_crossing\_rate : 음성 신호의 smoothness를 측정하여 소리 구분
- 4. Spectral\_rolloff: 낮은 주파수 영역에 신호의 에너지가 얼마나 집중되어 있는지 측정
- 5. Spectral\_centroid : STFT의 magnitude 스펙트럼의 중심을 측정
- . Spectral\_Contrast : 매 프레임별 6개의 구역으로 나누어 스펙트럼의 peak, valley 차이점 계산
- 7. Spectral\_bandwidth : 주파수의 대역폭을 측정

#### 04. 차원축소

Dimensional Reduction



- 특징이 많으면 기계학습 모델이 잘 훈련되지 않거나 과적합을 일으키고, 훈련된 모델을 해석하여 용이한 정보를 얻기 어려움
- 2. 주어진 특징들을 조합하여 새로운 특징 값을 계산하는 주성분분석(PCA)방법 이용

#### 04. RBF 커널 사용

Using RBF(Radial Basis Function) kernel to



- 1. 선형으로 구분하지 못하는 구조를 RBF 커널을 통해 데이터 변환.
- 2. RBF 커널은 Cost, Gamma 값들을 parameter로 받으며 Overfitting을 막기 위해 적절한 C,G값이 필요

#### 04. Cost, Gamma 값 설정

Using RBF(Radial Basis Function) kernel to



- 1. Cost 값이 작을때 제약이 큰 모델을 만들고 각 벡터포인트의 영향력을 적게 받음
- 2. Gamma 값은 커질수록 하나의 벡터포인트에 더 민감하게 반응
- 3. Grid 통해 가장 적절한 C, G값을 찾아주는 선택해서 사용

#### 04. 질병 유무 판단, 질병분류 결과

| Train Data 수 | 정확도 |
|--------------|-----|
| 100개         | 95% |
| 200개         | 95% |
| 300개         | 98% |
| 400개         | 97% |

SVM을 이용한 질병 유무 판단

| 정확도 |
|-----|
| 85% |
| 95% |
| 95% |
| 93% |
| 89% |
| 93% |
| 87% |
| 87% |
|     |

SVM을 이용한 질병 분류

# Thank you

## 02. 기존연구

Detection of wheezes and crackles with CNN



FFT2MelSpectrogram



**CNN** 

#### 02. 기존연구

Detection of wheezes and crackles with CNN





Patient 109 COPD



| 1.284  | 2.905  |
|--------|--------|
| 3.853  | 4.164  |
| 5.783  | 6.129  |
| 7.649  | 7.920  |
| 9.442  | 9.768  |
| 11.324 | 11.660 |
| 14.445 | 14.682 |
| 17.197 | 17.456 |
|        |        |

crackle crackle crackle crackle crackle crackle crackle crackle

#### > COPD: wheezing + crackling + Rhonchi + Mediastinal Crunch

- > URTI: wheezing + crackling + Rhonchi + pleural Friction Rub + Mediastinal Crunch
- > LRTI: wheezing + crackling + Rhonchi + pleural Friction Rub + Mediastinal Crunch
- > Asthma: wheezing
- Bronchinectasis : rhonchi + wheezing
- > Pneumonia: wheezing + crackling + pleural Friction Rub + Mediastinal Crunch
- > Bronchiolitis: wheezing + crackling + Rhonchi

**Problem** 

#### 04. MFCC(Mel Frequency Cepstral Coefficient) – 6 steps



- Divided into small frames
- Calculate Periodogram estimate
- Mel filter bank
- Log
- DCT
- 12~13 Coefficients