

UNIVERSIDADE DE ÉVORA

1º Trabalho

Inteligência Artificial

Professora: Irene Rodrigues

Realizado por: Miguel Menúria (43566) e Gonçalo Correia (43735)

21 de março de 2022

- 1 a) O espaço de estados e os operadores de transição de estados encontra-se no ficheiro agente.pl.
 - b) Utilizar os seguintes comandos [pni]. e em seguida pesquisa(agente, profundidade).

 \mathbf{c}

- i. O número de estados visitados pelo algoritmo das linhas anteriores é 13.
- ii. O número de estados visitados que estão simultaneamente em memória é 13.
- d) As duas heurísticas admissíveis para estimar o custo de um estado até à solução são a **Distância de Manhattan** e a **Distância Euclidiana**.
- e) Utilizar os seguintes comandos [pi]. e em seguida pesquisa(agente,g).

f)

Distância de Manhattan:

- i. O número de estados visitados pelo algoritmo é 11.
- ii. O número de estados visitados que estão simultaneamente em memória é 14. Distância Euclidiana:
- i. O número de estados visitados pelo algoritmo é 11.
- ii. O número de estados visitados que estão simultaneamente em memória é 15.

${f Algoritmo}$	$N^{\underline{o}}$ nós visitados	$N^{\underline{o}}$ nós em memória	Custo	Profundidade
largura	116	57	9	9
profundidade	13	13	9	9
iterativo	22449	13	9	9
greedy (H1)	11	14	9	9
greedy (H2)	11	15	9	9
a* (H1)	60	43	9	9
a* (H2)	66	39	9	9

Tabela 1: Resumo do problema do Agente, em que H1 = Distância de Manhattan e H2 = Distância Euclidiana.

- 2 a) O espaço de estados e os operadores de transição de estados encontra-se no ficheiro caixa.pl.
 - b) Utilizar os seguintes comandos [pni]. e em seguida pesquisa(caixa, profundidade).

c)

- i. O número de estados visitados pelo algoritmo das linhas anteriores é 187.
- ii. O número de estados visitados que estão simultaneamente em memória é 50.
- d) As duas heurísticas admissíveis para estimar o custo de um estado até à solução são a **Distância de Manhattan** e a **Distância Euclidiana**.
- e) Utilizar os seguintes comandos [pi]. e em seguida pesquisa(caixa,g).

f)

Distância de Manhattan:

- i. O número de estados visitados pelo algoritmo é 331.
- ii. O número de estados visitados que estão simultaneamente em memória é **51**. Distância Euclidiana:
- i. O número de estados visitados pelo algoritmo é 987.
- ii. O número de estados visitados que estão simultaneamente em memória é 179.

${f Algoritmo}$	Nº nós visitados	$N^{\underline{o}}$ nós em memória	Custo	Profundidade
largura	3775	582	16	16
profundidade	187	50	58	58
iterativo	-	-	-	-
greedy (H1)	331	51	16	16
greedy (H2)	987	179	20	20
a* (H1)	1166	436	16	16
a* (H2)	-	-	-	-

Tabela 2: Resumo do problema da Caixa, em que H1 = Distância de Manhattan e <math>H2 = Distância Euclidiana.