## Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge & lasso? what will be the most important predictor variables after the change is implemented?

### Answer-

The optimal value of alpha for ridge is 2 and for lasso it is 0.001. with these alphas the R2 of the model is 0.82.

After doubling the alpha values in the ridge & lasso, the prediction accuracy remains around 0.82 but there is a small change in the coefficient values. The new model is created & demonstrated in the python notebook. Below are the changes in coefficients.

# Ridge Regression model-

|                      | Ridge Co-Efficient |                      | Ridge Doubled Alpha Co-Efficient |
|----------------------|--------------------|----------------------|----------------------------------|
| Total_sqr_footage    | 0.169122           | Total_sqr_footage    | 0.149028                         |
| GarageArea           | 0.101585           | GarageArea           | 0.091803                         |
| TotRmsAbvGrd         | 0.067348           | TotRmsAbvGrd         | 0.068283                         |
| OverallCond          | 0.047652           | OverallCond          | 0.043303                         |
| LotArea              | 0.043941           | LotArea              | 0.038824                         |
| CentralAir_Y         | 0.032034           | Total_porch_sf       | 0.033870                         |
| LotFrontage          | 0.031772           | CentralAir_Y         | 0.031832                         |
| Total_porch_sf       | 0.031639           | LotFrontage          | 0.027526                         |
| Neighborhood_StoneBr | 0.029093           | Neighborhood_StoneBr | 0.026581                         |
| Alley_Pave           | 0.024270           | OpenPorchSF          | 0.022713                         |
| OpenPorchSF          | 0.023148           | MSSubClass_70        | 0.022189                         |
| MSSubClass_70        | 0.022995           | Alley_Pave           | 0.021672                         |
| RoofMatl_WdShngl     | 0.022586           | Neighborhood_Veenker | 0.020098                         |
| Neighborhood_Veenker | 0.022410           | BsmtQual_Ex          | 0.019949                         |
| Sale Type_Con        | 0.022293           | KitchenQual_Ex       | 0.019787                         |
| HouseStyle_2.5Unf    | 0.021873           | HouseStyle_2.5Unf    | 0.018952                         |
| PavedDrive_P         | 0.020160           | MasVnrType_Stone     | 0.018388                         |
| KitchenQual_Ex       | 0.019378           | PavedDrive_P         | 0.017973                         |
| LandContour_HLS      | 0.018595           | RoofMatl_WdShngl     | 0.017856                         |
| SaleType_Oth         | 0.018123           | PavedDrive_Y         | 0.016840                         |

# Lasso regression model-

|                      | Lasso Co-Efficient |                       | Lasso Doubled Alpha Co-Efficient |
|----------------------|--------------------|-----------------------|----------------------------------|
| Total_sqr_footage    | 0.202244           | Total_sqr_footage     | 0.204642                         |
| GarageArea           | 0.110863           | GarageArea            | 0.103822                         |
| TotRmsAbvGrd         | 0.063161           | TotRmsAbvGrd          | 0.064902                         |
| OverallCond          | 0.046686           | OverallCond           | 0.042168                         |
| LotArea              | 0.044597           | CentralAir_Y          | 0.033113                         |
| CentralAir_Y         | 0.033294           | Total_porch_sf        | 0.030659                         |
| Total_porch_sf       | 0.028923           | LotArea               | 0.025909                         |
| Neighborhood_StoneBr | 0.023370           | BsmtQual_Ex           | 0.018128                         |
| Alley_Pave           | 0.020848           | Neighborhood_StoneBr  | 0.017152                         |
| OpenPorchSF          | 0.020776           | Alley_Pave            | 0.016628                         |
| MSSubClass_70        | 0.018898           | OpenPorchSF           | 0.016490                         |
| LandContour_HLS      | 0.017279           | KitchenQual_Ex        | 0.016359                         |
| KitchenQual_Ex       | 0.016795           | LandContour_HLS       | 0.014793                         |
| BsmtQual_Ex          | 0.016710           | MSSubClass_70         | 0.014495                         |
| Condition1_Norm      | 0.015551           | MasVnrType_Stone      | 0.013292                         |
| Neighborhood_Veenker | 0.014707           | Condition1_Norm       | 0.012674                         |
| MasVnrType_Stone     | 0.014389           | BsmtCond_TA           | 0.011677                         |
| PavedDrive_P         | 0.013578           | SaleCondition_Partial | 0.011236                         |
| LotFrontage          | 0.013377           | LotConfig_CulDSac     | 0.008776                         |
| PavedDrive_Y         | 0.012363           | PavedDrive_Y          | 0.008685                         |

Alpha values are small, we did not see the huge change in the model after doubling the alpha value

------

## Question 2

You have determined the optimal value of lambda for ridge & lasso regression during the assignment, now which one will you choose to apply & why?

# Answer-

•The optimum lambda value in case of Ridge and lasso is as follows:

Ridge-2

Lasso-0.001

•The mean squared error in case of ridge and lasso are,

Ridge-0.0018396090787924256

### Lasso-0.0018634152629407748

- •The mean square error of the models is almost same.
- •Since lasso helps in feature reduction (as coefficient value of some of the feature becomes zero). Lasso has a better edge over ridge & should be used as the final model.

\_\_\_\_\_\_

#### **Question 3**

After building the model, you realized that the five most important predictor variables in the lasso model are not available in the incoming data. you will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variable now?

### Answer-

The five most important predictor variables in the current lasso model is-

- 1.The\_square\_footage
- 2.Garage area
- 3.TotRmsAbvGrd
- 4.Overallcond
- 5.LotArea

We build a Lasso model in the Jupiter notebook after removing these attributes from the dataset.

The R2 of the new model without the top 5 predictors drop to 0.73 The mean squared error increases to 0.0028575670906482538

The new top five predictors are-

## Lasso Co-Efficient

| LotFrontage          | 0.146535 |
|----------------------|----------|
| Total_porch_sf       | 0.072445 |
| HouseStyle_2.5Unf    | 0.062900 |
| HouseStyle_2.5Fin    | 0.050487 |
| Neighborhood_Veenker | 0.042532 |

------

#### **Question 4**

How can you make sure that the model is robust & generalizable? What are the implications of the same for the accuracy of the model & why?

#### Answer-

As per Occam's razor- given two models that show similar 'performance' in the finite training or test data, we should pick the one that makes fewer on the test data due to following reason—

- •Simple models are usually more generic & are more widely applicable
- •Simple models require fewer training samples for effective training than the more complex one & are easier to train.
- •Simple model is more robust.
- Complex model tends to change widely with changes in the training data set.
- Simple models have low variance, high bias & complex models have low bias, high variance.
- -Simpler models make more errors in the training set. Complex models lead to overfitting they work very well for training samples, fail measurably when applied to other test samples.

Therefore, to make the model more robust & generalizable, make the model simple but not simpler which will not be of any use.

Regularization can be used to make the model simpler. Regularization helps to strike the delicate balance between keeping the model simple & not making it too naïve to be of any use. For regression, regularization involves adding a regularization term to the cost that adds up the absolute values or the squares of the parameters of the model.

Also, making a model simple lead to Bias- Variance trade off,

- A complete model will need to change for every little change in the dataset & hence is very unstable & extremely sensitive to any changes in the training data.
- •A simpler model that abstracts out some pattern followed by the data points given is unlikely to change widely even if more points are added or removed.

Bias quantifies how accurate is the model likely to be on test data. A complex model can do an accurate job prediction provided there is enough training data. Models that are too naïve for e.g. One that gives same answer to all test inputs & makes no discriminations whatsoever has a very large bias as its expected errors across all test inputs are very high.

Variance refer to the degree of changes in the model itself with respect to changes in the training data.

Thus, accuracy of model can be maintained by keeping the balance between bias & variance as it minimizes the total error as shown in the below graph.

