2015-2016 学年第一学期《高等数学AI》期末试卷(A)

题型	填空题	计算题	综合题	总分	审 核
得分		Andrews of Management of States and States a			

- 一、填空题(每小题 4 分, 共 32 分)
- 1. $\exists x \to 0$ 时, $(1+ax^2)^{\frac{1}{3}} 1$ 与 $\cos x 1$ 是等价无穷小,则 $a = -\frac{3}{2}$.

得分	阅卷人

- 3. 设 $F(x) = xf\left(\frac{1}{x}\right)$, 其中 f 为可微函数,则 $\frac{dF}{dx} = \frac{f(\frac{1}{x})}{f(\frac{1}{x})}$
- 4. 设函数 y=y(x) 由方程 e^{x+y} $-\cos(xy)=0$ 确定,则

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0} = -1$$

- 5. 曲线 $y = \frac{x^2}{2x+1}$ 的斜渐近线为 $y = \frac{x}{2} \frac{1}{4}$.
- 6. $\int \frac{2x+3}{x^2+2x+2} dx = \frac{\ln(x+2x+2) + \arctan(x+1) + C}{(3x^2+2x+2) + \arctan(x+1) + C}$
- 7. 设 f(x) 在 $[0,+\infty)$ 上连续,且 $\int_0^x f(t) dt = x(1+\cos x)$,则 $f(\frac{\pi}{2})$ $= 1 \frac{\pi}{2}$
- 8. 曲线 $y=e^{-x}(x\geq 0)$ 与 x 轴, y 轴所围成的开口图形绕 x 轴旋转所成旋转体的体积为 _____.
 - 二、计算题(每小题6分,共36分)

2. 设 $f(x) = x^3 + ax^2 + bx$ 在 x = 1 处有极值 -2, 试确定系数 a, b, 并求出y = f(x)的所有极值点及拐点.

△无判定极征点 3 f'(x) = 6x, $f''(x) = 6 \Rightarrow f''(0) = 0$, $f''(0) \neq 0$ 和拐点理由不经分

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\alpha \left(cost - cost + t sitt \right)}{\alpha \left(- sint + sint + t cost \right)} = tant$$
(37)

$$\frac{d^2y}{dx} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\sec^2t}{\cot \cot t} = \frac{\sec^3t}{\cot t}$$
 (3')

=
$$\int_{-1}^{0} \frac{1}{6} (1+3x^{2})^{\frac{1}{6}} d(1+3x^{2}) + \int_{0}^{1} \left[\ln (1+x) d(1+x) \right] d(1+x) d(1+x)$$
= $\left[\frac{1}{6} x + \frac{1}{3} (1+3x^{2})^{\frac{3}{2}} \right]_{-1}^{0} + \left[(1+x) \ln (1+x) \right]_{0}^{1} - \int_{0}^{1} dx$
= $-\frac{7}{9} + 2 \ln 2 - 1$
= $-\frac{16}{9} + 2 \ln 2$ (4-7)

6. 求星形线
$$\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases}$$
 围成图形的面积.

(カ对称性, A=4
$$\int_{0}^{\alpha}$$
ydx
$$= \psi \int_{\frac{\pi}{2}}^{\alpha} \alpha \sin^{3}t \, d\left(\alpha \cos^{3}t\right) \qquad \Delta$$
 刊刊を知る程序な
$$= 4\int_{\frac{\pi}{2}}^{\infty} \alpha \sin^{3}t \cdot \alpha \cdot 3 \cos^{3}t \left(-\sin t\right) \, dt \qquad (37)$$

$$= 12\alpha^{3} \int_{0}^{\frac{\pi}{2}} \sin^{3}t \, dt - \int_{0}^{\frac{\pi}{2}} \sin^{3}t \, dt \right)$$

$$= 12\alpha^{3} \left(\int_{0}^{\frac{\pi}{2}} \sin^{3}t \, dt - \int_{0}^{\frac{\pi}{2}} \sin^{3}t \, dt \right)$$

$$= 12\alpha^{3} \left(\frac{3!!}{4!!} \cdot \frac{\pi}{2} - \frac{5!!}{6!!} \cdot \frac{\pi}{2}\right) = \frac{3\pi\alpha^{3}}{8} \quad (37)$$

$$= 5 \cdot \text{ (36)} \quad \text{(37)}$$

1. 设
$$f(x) = \begin{cases} 0, & x \le 0 \\ x^2 \ln x, & x > 0 \end{cases}$$
,试讨论 $f(x)$ 在 $x = 0$ 处是否可导, 其导函数在 $x = 0$ 处是否连续?

② $f'(x) = \begin{cases} \lim_{x \to 0^{-1}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-1}} \frac{f(x) -$

L-x

4. 设 f(x) 在 [0,1] 上连续且递减,证明:当 $0 < \lambda < 1$ 时, $\int_{0}^{\lambda} f(x) dx \ge \lambda \int_{0}^{1} f(x) dx. \qquad < 3 \} \phi : 2 \cdot 1 \lambda >$ $\exists \lambda - \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx - \lambda \left(\int_{0}^{\lambda} f(x) dx + \int_{0}^{\lambda} f(x) dx \right)$ $= (1-\lambda) \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx$ $= (1-\lambda) \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx$ $= (1-\lambda) \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx$ $= (1-\lambda) \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx$ $= (1-\lambda) \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx$ $= (1-\lambda) \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{\lambda} f(x) dx$ $= (1-\lambda) \int_{0}^{\lambda} f(x) dx - \lambda \int_{0}^{$