UNIDAD TEMATICA NRO 7 - RESPUESTAS

1.

Ptx - Ptotal en dB (α vinculo + α conectores + α empalmes + FD) + Gen dB = S Rx

Ptx - Ptotal en dB (α vinculo) = S Rx

$$\alpha$$
vinculo= 30 m* $\underline{15,5 \text{ d}}$ B = 4,65 dB $\underline{100 \text{ m}}$

Ptx = 10*Log 35000 = 45,44 dBm

SRx = 45,44dBm - 4,65dB = 40,7 dBm

SRx = 40.7dBm=10*Log Pi = 10.40.7/10 = 11748 mW= 12 W

RTA: 40,7 dBm= 12 W

2.


```
Datos:
```

SRx = XX dBm

PTx = 45,44 dBm

avinculo en 30m= 4,65 dB

Gantena = 30 dB

PTx – P Tx dB (α vinculo + α conectores)+ G Tx dB – Lp dB + G Rx dB – PRx dB (α vinculo + α conectores) – FD dB = S Rx

Lp= 32,4+20 Log (D en Km)+20 Log (f en Mhz)

Lp= 32,4+ 20 Log 1 + 20 Log 400

Lp=32,4+0+52,04; Lp=84,44 dB

45,44dBm-4,65dB+30dB-84,44dB+30dB-4,65dB-0dB=**Srx**

Srx= 11,7 dBm

RTA: 11,7 dBm

3.

Datos

$$AB=300 \text{ Mhz} = 300 \times 10^6 \text{ Hz o (1/s)}$$

$$c=3 \times 10^8 \text{ m/s}$$

$$c=\lambda * f$$

$$\lambda = \frac{c}{f}$$

$$\lambda = \text{Longitud de onda}$$

$$c= \text{Velocidad de la luz}$$

$$f = \text{Frecuencia de la señal}$$

$$\lambda = \frac{c}{f(Hz)}$$
 ; $\lambda = \frac{3.10^8 \, m/seg}{3.10^8 Hz}$; $\lambda = 1 \, m$,

 $\lambda / 2 = 0.5 \text{ m}$

RTA: 0,5m

(Podría ser un equipo de comunicaciones en la banda de HF/VHF, va de 30 a 300 MHz, Equipo que el frente de onda se propaga a traves de la lonósfera/ Onda terreste)

4.

Datos

$$AB=1 \text{ Ghz} = 1 \times 10^9 \text{ Hz o (1/s)}$$

$$c=3 \times 10^8 \text{ m/s}$$

$$c=\lambda^* f$$

$$\lambda = \frac{c}{f}$$

$$\lambda = \text{Longitud de onda}$$

$$c= \text{Velocidad de la luz}$$

$$f = \text{Frecuencia de la señal}$$

$$\lambda = \frac{c}{f(Hz)}$$
 ; $\lambda = \frac{3.10^8 \, m/seg}{1.10^9 Hz}$; $\lambda = 0.3 \, m$, $\lambda / 2 = 0.15 \, m$

RTA: 0,15m

(Podría ser un telefono celular en la banda de UHF, va de 300 a 3000 MHz)

5. Emisoras de FM banda VHF (de 88 a 108 Mhz).

$$\lambda = \frac{C}{f(Hz)}$$

Antena de 75cm del receptor (o sea la correspondiente al equipo del oyente).

Se toma el promedio del rango de frecuencias, a fin de obtener una recepción razonablemente buena para las estaciones que estan por encima y por debajo del punto medio.

$$\lambda = \frac{3.10^8 \, m/seg}{98.10^6 \, Hz}$$
; ; $\lambda = 3 \, m$ (redondeando, onda completa)

$$\frac{\lambda}{2} = \frac{3 m}{2}$$
 ; $\frac{\lambda}{2} = 1.5 \text{ m}$ (media onda)

$$\frac{\lambda}{4} = \frac{3 \, m}{4}$$
 ; $\frac{\lambda}{4} = 0.75$ m (cuarta de onda , antena tipo varilla, irradiación del frente de onda omnidireccional).

RTA: $\frac{\lambda}{4} = 0.75$ m

Patos

Analógico:
AB = 300 Hz a 4300 Hz

AB=4000 Hz =
$$4 \times 10^3$$
 Hz o (1/s)
 $c=3 \times 10^8$ m/s

 $c = \lambda * f$
 $\lambda = \frac{c}{f}$
 $\lambda = \text{Longitud de onda}$
 $c = \text{Velocidad de la luz}$
 $f = \text{Frecuencia de la señal}$

$$\lambda = \frac{3.10^8 \, m/seg}{4.10^3 \, Hz}$$
;; $\lambda = 75.000 \, \text{m}$ (onda completa)

Pero como me piden que sea una antena de media onda:

$$\frac{\lambda}{2} = \frac{75.000 \, m}{2}$$
 ; $\frac{\lambda}{2} = 37.500 \, \text{m}$ (media onda)

RTA:
$$\frac{\lambda}{2}$$
 = 37.500 m (media onda)

CONCLUSIONES:

- a. El sonido de la voz humana produce vibraciones en su transmisión por el aire en forma de señales sinusoidales cuyo espectro se encuentra entre 100 y 10.000 Hz.
- b. Los sonidos de muy baja frecuencia, son casi imperceptibles al sentido humano, concretamente por debajo de los 50 Hz y por encima de los 17Hz.
- c. El sistema de telefonía trabaja con un sistema de ancho de banda de 4000Hz.
- d. Por todo lo expresado, vemos que cuando la frencuencia disminuye la longitud de onda aumenta o viceversa.

7.

Figura 2-15. Satélites de comunicaciones y algunas de sus propiedades, entre ellas: altitud sobre la Tierra, tiempo de duración de un viaje de ida y vuelta y la cantidad de satélites necesarios para

a. ORBITA BAJA:

$$Vp = H/T$$
 ; $T = H/Vp$; $R = 2T$

$$T = \frac{5000.10^3 m}{3.10^8 \text{m/seg}} = 1,66.10^{-2} \text{ seg (camino de ida)}$$

$$R = 2 T$$
 ; $R = 3.33.10^{-2} seg = 33 mseg$

RTA: Retardo Total 33 mseg

b. ORBITA MEDIA:

$$Vp = H/T$$
 ; $T = H/Vp$; $R = 2T$

$$T = \frac{15000.10^3 m}{3.10^8 \text{m/seg}} = 0.05 \text{ seg (camino de ida)}$$

$$R = 2 T$$
 ; $R = 0.1 seg = 100 mseg$

RTA: Retardo Total 100 mseg

c. ORBITA GEOESTACIONARIA:

$$Vp = H/T$$
; $T = H/Vp$; $R = 2T$

$$T = \frac{35000.10^3 m}{3.10^8 \text{m/seg}} = 0,1166 \text{ seg (camino de ida)}$$

$$R = 2 T$$
 ; $R = 0.233 seg = 233 mseg$

RTA: Retardo Total 233 mseg

8.

$$. Z = R + j (X_L - X_C)$$

.
$$R = \rho L/S$$
 . $X_L = \omega L$, $X_c = 1/\omega C$

.
$$Z = R \implies X_{L=} X_{c}$$

$$\omega L = 1/\omega C$$
; $\omega^2 = 1/L * C$

2.
$$\pi f = \frac{1}{\sqrt{LC}}$$
 ; $f = \frac{1}{2\pi\sqrt{LC}}$; $f = 467,295 \, Hz$;

RTA: 467,295 Hz;