Buck Converter

Conversor abaixador

O conversor de buck tem uma estrutura simples e de operação direta, uma ótima opção de conversor CC-CC PWM. A tensão de saída de um conversor buck é sempre menor que a tensão de entrada, por isso ele é conhecido também como conversor abaixador.

O conversor buck é composto por uma fonte de tensão contínua, um transistor que funciona como uma chave, um diodo, um indutor, um capacitor e a carga. A chave irá controlar em qual estado estará o circuito, on-time ou off-time. Durante o período on-time, a chave é fechada e o diodo está no estado desligado. Neste intervalo a fonte de tensão transfere energia para o indutor e a corrente sobre ele aumenta. Já no período off-time, a chave estará aberta e o diodo ligado. Assim, a energia armazenada no indutor é liberada para a carga e a corrente no indutor diminui.

O estado estacionário no conversor é atingido quando a transferência de energia dentro do tempo tornase a mesma que a liberação de energia fora do tempo. Nesse estado a corrente no indutor estabele uma forma de onda triangular periódica e a tensão de saída torna-se quase constante com um pequeno componente de ondulação.

Esquemático de um conversor buck

Etapas do projeto:

- 1. Definir parâmetros de projeto (Vin, Vout, Po, fs, variação de IL e de Vc)
- 2. Calcular a razão cíclica (D=Vout/Vin)
- 3. Calcular indutância (L=(Vin Vout).D/fs.(variação de IL)
- 4. Calcular a capacitância (C=variação de IL/8.fs.variação de Vc)
- 5. Calcular os esforços nos semicondutores (Ismd, Isef, Ismax, Idmds, Idef, Idmax, Vsmax e Vdmax)

Tensão de Entrada:

A tensão de entrada é 75 V

Tensão de Saída:

A tensão de saída é 30 V

Potência máxima de saída:

A potência máxima de saída é 20 W

Frequência de comutação:

A frequência de comutação é 20000 Hz

Razão ciclíca:

$$D = \frac{Vout}{Vin}$$

A razão ciclíca é 0.4

Corrente de saída:

$$Io = \frac{Po}{Vout}$$

A corrente de saída é 0.667 A

Ondulação de corrente no indutor:

Ondulação de 10%:

$$\Delta_{Il} = 0.1 Io$$

A ondulação de corrente no indutor é 0.067 A

Ondulação de tensão no capacitor:

Ondulação de 1%:

$$\Delta_{Vc} = 0.01 Vout$$

A ondulação de tensão no capacitor é 0.3 V

Resistência de carga:

$$Ro = \frac{Vout^2}{Po}$$

A resistência de carga é 45.0 ohms

Indutor de Saída:

$$Lo = \frac{(Vin - Vout)D}{fs\Delta_{Il}}$$

O indutor de saída é 0.0135 H

Capacitor de Saída:

$$Co = \frac{\Delta_{Il}}{8fs\Delta_{Vc}}$$

O capacitor de saída é 1.3888888888889e-06 F

Esforços na chave:

Valor médio da corrente na chave:

$$Is_{md} = DIo$$

O valor médio da corrente na chave é 0.267 A

Valor eficaz da corrente na chave:

$$Is_{ef} = \sqrt{D}Io$$

O valor eficaz da corrente na chave é 0.422 A

Valor máximo da corrente na chave:

$$Is_{max} = Io + \frac{\Delta_{Il}}{2}$$

O valor máximo da corrente na chave é 0.7 A

Valor máximo da tensão na chave:

$$Vs_{max} = Vin$$

O valor máximo da tensão na chave é 75 V

Esforços no diodo:

Valor médio da corrente no diodo:

$$Id_{md} = (1 - D)Io$$

O valor médio da corrente no diodo é 0.400 A

Valor eficaz da corrente no diodo:

$$Id_{ef} = \sqrt{(1-D)}Io$$

O valor eficaz da corrente no diodo é 0.516 A

Valor máximo da corrente no diodo:

$$Id_{max} = Io + \frac{\Delta_{Il}}{s}$$

O valor máximo da corrente no diodo é 0.7 A

Valor máximo da tensão no diodo:

$$Vd_{max} = Vin$$

O valor máximo da tensão no diodo é 75 V

Resistência crítica:

$$Rcrit = \frac{2Lofs}{(1-D)}$$

A resistência crítica é 900 ohms

Segunda opção de projeto:

- Alteração da tensão de saída para 45V.
- Alteração da potência para 30W.

A tensão de entrada é 75 V A tensão de saída é 45 V

A potência máxima de saída é 30 W

A frequência de comutação é 20000 Hz

A razão ciclíca é 0.6

A corrente de saída é 0.667 A

A ondulação de corrente no indutor é 0.067 A

A ondulação de tensão no capacitor é 0.450 V

A resistência de carga é 67.5 ohms

O indutor de saída é 0.0135 H

O capacitor de saída é 9.259259259259e-07 F

O valor médio da corrente na chave é 0.400 A

O valor eficaz da corrente na chave é 0.516 A

O valor máximo da corrente na chave é 0.700 A

O valor máximo da tensão na chave é 75 V

O valor médio da corrente no diodo é 0.267 A

O valor eficaz da corrente no diodo é 0.422 A

O valor máximo da corrente no diodo é 0.700 A

O valor máximo da tensão no diodo é 75 V

A resistência crítica é 1350 ohms

Terceira opção de projeto:

- Alteração da tensão de saída para 15V.
- A tensão de entrada é 75 V
- A tensão de saída é 15 V
- A potência máxima de saída é 20 W
- A frequência de comutação é 20000 Hz
- A razão ciclíca é 0.2
- A corrente de saída é 1.333 A
- A ondulação de corrente no indutor é 0.133 A
- A ondulação de tensão no capacitor é 0.150 V
- A resistência de carga é 11.250 ohms
- O indutor de saída é 0.0045 H
- O capacitor de saída é 5.5555555555556e-06 F
- O valor médio da corrente na chave é 0.267 A
- O valor eficaz da corrente na chave é 0.596 A
- O valor máximo da corrente na chave é 1.400 A
- O valor máximo da tensão na chave é 75 V
- O valor médio da corrente no diodo é 1.067 A
- O valor eficaz da corrente no diodo é 1.193 A
- O valor máximo da corrente no diodo é 1.400 A
- O valor máximo da tensão no diodo é 75 V
- A resistência crítica é 225 ohms

Quarta opção de projeto:

• Modo descontínuo - R > Rcrit.

A tensão de entrada é 75 V A potência máxima de saída é 20 W A frequência de comutação é 20000 Hz A resistência de carga é 1000.000 ohms O indutor de saída é 0.0135 H O capacitor de saída é 1.3888888888889e-06 F A razão ciclíca é 0.5615773105863908 A tensão de saída é 31.198739477021707 V A corrente de saída é 0.641 A A corrente máxima no indutor é 0.065 A A ondulação de corrente no indutor é 0.064 A A ondulação de tensão no capacitor é 0.312 V O valor médio da corrente na chave é 0.360 A O valor eficaz da corrente na chave é 0.480 A O valor máximo da corrente na chave é 0.673 A O valor máximo da tensão na chave é 75 V O valor médio da corrente no diodo é 0.281 A O valor eficaz da corrente no diodo é 0.424 A O valor máximo da corrente no diodo é 0.673 A O valor máximo da tensão no diodo é 75 V

Quinta opção de projeto:

• Variação da frequência - fs = 5 KHz e fs= 50 KHz

fs = 5 KHz:

```
A tensão de entrada é 75 V
A tensão de saída é 30 V
A potência máxima de saída é 20 W
A frequência de comutação é 5000 Hz
A razão ciclíca é 0.4
A corrente de saída é 0.667 A
A ondulação de corrente no indutor é 0.067 A
A ondulação de tensão no capacitor é 0.300 V
A resistência de carga é 45.000 ohms
O indutor de saída é 0.0540 H
O capacitor de saída é 5.5555555555556e-06 F
O valor médio da corrente na chave é 0.267 A
O valor eficaz da corrente na chave é 0.422 A
O valor máximo da corrente na chave é 0.700 A
O valor máximo da tensão na chave é 75 V
O valor médio da corrente no diodo é 0.400 A
O valor eficaz da corrente no diodo é 0.516 A
O valor máximo da corrente no diodo é 0.700 A
O valor máximo da tensão no diodo é 75 V
A resistência crítica é 900 ohms
```

fs = 50 KHz:

A tensão de entrada é 75 V A tensão de saída é 30 V A potência máxima de saída é 20 W A frequência de comutação é 50000 Hz A razão ciclíca é 0.4 A corrente de saída é 0.667 A A ondulação de corrente no indutor é 0.067 A A ondulação de tensão no capacitor é 0.300 V A resistência de carga é 45.000 ohms O indutor de saída é 0.0054 H O capacitor de saída é 5.55555555555556-07 F O valor médio da corrente na chave é 0.267 A O valor eficaz da corrente na chave é 0.422 A O valor máximo da corrente na chave é 0.700 A O valor máximo da tensão na chave é 75 V O valor médio da corrente no diodo é 0.400 A O valor eficaz da corrente no diodo é 0.516 A O valor máximo da corrente no diodo é 0.700 A O valor máximo da tensão no diodo é 75 V A resistência crítica é 900 ohms

Ao se alterar a frequência do conversor buck, há mudanças nos valores de indutor e capacitor apenas, visto que os valores desses dois componentes dependem inversamente da frequência. (Considerando os outros valores difinidos inicialmente - Vout, Vin, D, P)

Projeto do Indutor:

- · Selecionar o núcleo magnético mais adequado;
- · Calcular o número de espiras;
- · Calcular tamanho do entreferro;
- · Escolher o condutor;
- Verificar a possibilidade da execução do projeto.

Ferrita:

- O valor da densidade de fluxo magnético máximo é 0.3 T
- O valor do fator de utilização da área de enrolamento é 0.6
- O valor da densidade de corrente no condutor é 450 A/cm^2
- O valor máximo da corrente no indutor é 0.699 A
- O valor mínimo da corrente no indutor é 0.632 A
- O valor RMS da corrente no indutor é 0.666 A

$$AeAw = \frac{LoI_{lmax}I_{lrms}10^4}{B_{max}K_wJ}$$

A multiplicação entre a área efetiva e a área da janela do núcleo é 0.77589 cm^4

Tabela: Núcleos Magnéticos de ferrite com geométrica EE

Núcleo	$A_{\rm e}A_{\rm w}({\rm cm}^4)$	$A_{\rm e}({\rm cm}^2)$	$A_{\mathbf{w}}(\mathbf{cm}^2)$	l _e (cm)	lt(cm)
EE-20/15	0,08	0,312	0,26	4,28	3,80
EE-30/07	0,48	0,600	0,80	6,70	5,60
EE-30/14	1,02	1,200	0,85	6,70	6,70
EE-42/15	2,84	1,810	1,57	9,70	8,70
EE-42/20	3,77	2,400	1,57	9,70	10,50
EE-55/21	8,85	3,540	2,50	12,00	11,60
EE-65/13	9,84	2,660	3,70	14,70	14,80
EE-65/26	19,68	5,320	3,70	14,70	14,80
EE-65/39	29,53	7,980	3,70	14,70	14,80

A multiplicação entre a área efetiva e a área da janela do núcleo será $1.02~\text{cm}^4$ - v alor mais próximo do valor calculado

- A área efetiva será 1.2 cm^2 valor escolhido pela tabela
- A área da janela do núcleo será 0.85 cm^2 valor escolhido pela tabela
- O comprimento do caminho magnético será 6.7 cm valor escolhido pela tabela
- O comprimento médio de uma espira será 6.7 cm valor escolhido pela tabela

Número de espiras

$$N = \frac{LoI_{lmax}10^4}{B_{max}A_e}$$

O número de espiras é 262

Tamanho do entreferro

$$l_g = \frac{N2u_o A_e}{Lo10^4}$$

O tamanho do entreferro é 0.767 mm

$$I_{tot} = 1.1Nl_t$$

$$S_{fio} = rac{I_{lrms}}{J}$$

- O comprimento total do condutor é 1930.940 m
- O valor mínimo da bitola é 0.148 mm^2

Tabela: Condutores de cobre:

(Medir o fio sem esmalte)										
AWG	Diâmetro m/m	Secção m/m ²	Peso Cobre Nú P/ Km.	AWG	Diâmetro m/m	Secção m/m ²	Peso Cobre No P/ Km.			
0	8,252	53,480		22	0,643	0,3247	2,90			
1	7,348	42,410		23	0,574	0,2588	2,30			
2	6,544	33,630	1	24	0,511	0,2051	1,82			
3	5,827	26,670		25	0,455	0,1626	1,44			
4	5,189	21,147	188,00	26	0,404	0,1282	1,15			
5	4,620	16,764	149,10	27	0,361	0,1024	0,90			
6	4,115	13,299	118,30	28	0,320	0,0804	0,71			
7	3,665	10,550	93,78	29	0,287	0,0647	0,57			
8	3,264	8,367	74,37	30	0,254	0,0507	0,45			
9	2,906	6,633	58,98	31	0,226	0,0401	0,35			
10	2,588	5,260	46,77	32	0,203	0,0324	0,28			
11	2,304	4,169	37,09	33	0,180	0,0254	0,22			
12	2,052	3,307	29,42	34	0,160	0,0201	0,18			
13	1,829	2,627	23,33	35	0,142	0,0158	1000			
14	1,628	2,082	18,50	36	0,127	0,0127	1			
15	1,450	1,651	14,67	37	0,114	0,0102				
16	1,290	1,307	11,63	38	0,102	0,0082	1			
17	1,151	1,040	9,30	39	0,089	0,0062				
18	1,024	0,8235	7,30	40	0,079	0,0049				
19	0,912	0,6533	5,80	41	0,071	0,0040				
20	0,813	0,5191	4,60	42	0,064	0,0032				
21	0.724	0,4117	3,65	43	0,056	0,0025				

O valor da bitola escolhido pela tabela acima foi 0.1626 mm^2 - AWG=25

$$A_{wmin} = \frac{n_{cond} S_{fio} 10^{-2} N}{K_{w}}$$

A valor mínimo da área da janela do núcleo será 0.71002 cm^2

Como Aw_min é menor que Aw a execução do projeto é possível!!!

Projeto do Dissipador de Calor:

Para o caso sem dissipador, o calor circula da junção para o ambiente através do encapsulamento. Assim, o circuito térmico se resume apenas à resistência Rjc (junção-case) em série com Rca (case-ambiente), sendo estes parâmetros encontrados no datasheet do componenete.

Para saber se o componente irá precisar de do dissipador de calor é estimado a temperatura de junção para a aplicação em específico.

$$T_i = R_{ia}P_T + T_a$$

MOSFET (BSC100N10NSF):

A temperatura de junção estimada é 52.634 °C

Como 52.63438°C é menor que 150°C (máxima temperatura de operação do transistor), o componente não precisa de um dissipador!!!

DIODO (MBR20100CT):

A temperatura de junção estimada é 61.133 °C

Como 61.133°C é menor que 175°C (máxima temperatura de operação do diodo), o componente não precisa de um dissipador!!!