TTIC 31110 Speech Technologies

April 14, 2020

Announcements

- Survey responses available (see Canvas announcement), please respond if you haven't already
- Tutorial 1 slides are posted
- HW1 due Friday 4/17 7pm

Questions?

Outline

Phonetics wrap-up

Signal processing and acoustic features

Recap: Speech production

(fig. from [Flanagan 1972])

- Source-filter model: Vocal tract acts as a filter, modulating the spectrum of the source signal
- Source is air pressure waveform either from glottis (e.g. vowels) or from another constriction (most consonants)

Demo!

Recap: Spectrograms of the cardinal vowels

(figs. from MIT 6.345 Spring '03, OpenCourseWare http://ocw.mit.edu)

Recap: Spectrograms of English voiceless fricatives

What is this word? (Hint: It contains only vowels and voiceless fricatives)

What is this word? (Hint: It contains only vowels and voiceless fricatives)

iy I ey E ae d o A ow O u 3° o I Iv ih ev eh ae aa ao ah ow uh uw er ax ix

What is this word? (Hint: It contains only vowels and voiceless fricatives)

thief

she

What do speech production/perception tell us about acoustic features?

Production:

- Separate the source from the filter information
- Only use the filter information for speech recognition (for non-tonal languages, like English; we'll get back to other languages later)

Perception:

- Work in the frequency domain
- Warp the frequency scale as humans do

Aside: Acoustic features in the neural networks era

In recent neural network-based approaches, 3 types of acoustic features are common:

- No signal processing, just use the raw signal: Works best with very large amounts of data
- (Lightly post-processed) spectrogram: Works in many typical settings
- Traditional signal processing-based features: Work best in low-data settings

Example acoustic features: MFCCs

- MFCCs = mel-frequency cepstral coefficients [Davis & Mermelstein 1980]
- Most popular type of signal processing-based features
- Many of the signal processing steps are also used in computing spectrograms or other features

Sampling

All digital signal processing starts with sampling

- \bullet Sampling = measuring a continuous-time signal at some fixed sampling rate f=1/T
- ullet Rate f measured in Hz, sampling period T in seconds
- Sampled signal is x[n] = x(nT)

Sampling

What sampling rate f should we use?

- Ideally, should be higher than the Nyquist rate = twice the highest frequency in the signal
- (Roughly, this is so that we sample each period of each frequency component at least twice)
- Most useful speech information is in [0,8000 Hz] \rightarrow sample at > 16 kHz
- Don't always have a choice, e.g. land-line phone lines transmit only up to \sim 4 kHz ($f=8~{\rm kHz}$)
- If the signal has any higher frequencies than 1/2 the sampling rate, then they are filtered out before sampling

Pre-emphasis

- For most speech sounds, the higher frequencies have much lower amplitudes than the low frequencies
- ullet Pre-emphasis equalizes, to some extent, the amplitudes at the low and high ends: $x_{pre}[n]=x[n]-ax[n-1]$ for positive a

Windowing

 Speech is non-stationary, so we extract spectrum over short windows (frames) rather than entire signal

- What length window?
 - Short enough to assume stationarity within the window
 - Long enough for good frequency resolution ("Uncertainty Principle")

MFCCs

Discrete Fourier transform

 For each frame of length N samples starting at sample t, the spectrum is computed using the discrete Fourier transform (DFT):

$$X[k] = \sum_{n=t}^{t+N-1} x[n]e^{-j2\pi kn/N}, \quad k = 0, \dots, N-1$$

- ullet X[k] is the value of the spectrum at the $k^{
 m th}$ frequency
- Reminder (?): $e^{ja} = \cos(a) + j\sin(a)$
- ullet Equivalently, we can consider $k=-N/2,\ldots,0,\ldots,N/2$
- $\bullet \ X[k]$ is in general complex-valued, but we will only use its magnitude

Discrete Fourier transform

 For each frame of length N samples starting at sample t, the spectrum is computed using the discrete Fourier transform (DFT):

$$X[k] = \sum_{n=t}^{t+N-1} x[n]e^{-j2\pi kn/N}, \quad k = 0, \dots, N-1$$

- ullet X[k] is the value of the spectrum at the $k^{
 m th}$ frequency
- In practice the fast Fourier transform (FFT) algorithm is used with a window length $M=2^m$ for some m
- After doing this for all frames, the result is a spectrogram
- Typically, the frequency axis is then warped to the mel scale, giving a "mel spectrogram"

Discrete Fourier transform

- Note on units:
 - ullet Each time sample n corresponds to a time in seconds
 - Each frequency sample k corresponds to a frequency $f(k)=\frac{k}{N}R$ in Hz, where R is the sampling rate
- Important properties:
 - Spectra of real signals have magnitude that is symmetric about k=0
 - Spectra of periodic signals with period λ seconds consist of delta functions at multiples of the fundamental frequency $\frac{1}{\lambda}$ Hz

Periodic signals and their spectra

Vowels and many other **voiced** phones are examples of periodic signals

- Spectra of periodic signals with period λ seconds consist of delta functions at multiples of the fundamental frequency $\frac{1}{\lambda}$ Hz
- ullet The fundamental frequency is often denoted $F0, F_0,$ or f_0
- Some phones, like voiced fricatives ([z, v, dh]), include a periodic component (with some fundamental frequency) and an aperiodic component
- Pitch is the perceptual correlate of the fundamental frequency
- We will use the terms pitch and fundamental frequency interchangeably

A wideband (short-window) spectrogram

Two plus seven is less than ten

A narrowband (long-window) spectrogram

Two plus seven is less than ten

Log spectra

- The source-filter theory says that X[k] = S[k]F[k], where S[k] = source spectrum and F[k] = vocal tract filter
- We are mostly interested in the filter (vocal tract shape)
- We take the log magnitude: compresses the dynamic range, will allow us to separate the source from the filter
- We typically convert to a decibel (dB) scale, $X_{dB}[k] = 20 \log_{10} |X[k]|$

More on windowing

- Windowing is equivalent to multiplying the signal by a function w[n], i.e. $x_w[n] = x[n]w[n]$
- E.g. rectangular window with length N and starting at time t: $w_r[n] = \left\{ \begin{array}{ll} 1 & t \leq n \leq t+N-1 \\ 0 & \text{otherwise} \end{array} \right.$
- The spectrum of two multiplied signals is the *convolution* of their spectra: $X_w[k] = X[k] * W[k] = \frac{1}{N} \sum_l X[l] W[k-l]$
- Properties of convolution (can use to derive any spectrum of a windowed signal):
 - If x[n] contains a single frequency F, $X[k] = \delta[k-F]$, then $X_w[k] = W[k-F]$
 - Convolution is a *linear* operation:

$$X[k] = A[k] + B[k] \Longrightarrow$$

$$X[k] * W[k] = A[k] * W[k] + B[k] * W[k]$$

• How does spectrum of a windowed periodic signal look?

Windowing (cont'd)

The spectrum of the rectangular window $W_r[k]$:

A better window?

bins

samples

Hamming vs. rectangular windows

Note: Periodic signal with period $\lambda \Longrightarrow$ spectrum with peaks at multiples of the pitch (fundamental frequency) $f=1/\lambda$.

Spectrograms: Additional notes

Overlapping windows: Typically used to smooth out edge effects

Some typical settings:

- Frame size (window length) = 25ms
- Frame shift (time between successive windows) = 10ms

Depending on details of the window, frame size, and frame shift, it may be possible to invert a spectrogram to reproduce the waveform

MFCCs

Inverse DFT

• Finally, we take the inverse DFT to obtain the cepstrum:

$$c[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{dB}[k] e^{j2\pi kn/N}, \quad n = 0, \dots, N-1$$

- n is called "quefrency"
- The log spectrum was symmetric, so this is equivalent to taking another DFT
- The cepstrum is the "spectrum of the (log magnitude) spectrum"!