Model Summary

Driving Sustainability in the Gulf of California: Fishery Management and Offshore Cultivation for *Totoaba macdonaldi* Miguel Castellanos, Garrett Goto, Adam Sachs, Andrew Steinkruger, Matthew Warham Master's Candidates, Bren School of Environmental Science & Management, University of California, Santa Barbara June 5, 2018

Introduction

Words!

Poaching

Growth: von Bertalanffy Function

$$\hat{L}_t^{poach} = L_{\infty}^{poach} (1 - e^{-k(t-t_0)})$$

Variable	Definition
\hat{L}_t^{poach}	Estimated length for totoaba
L_{∞}^{farm}	Upper limit for totoaba growth
t	Time t.
t_0	Time for $L_t = 0$
k	Growth coefficient

Data from INAPESCA.

Effort: Gorden-Schaefer Model

$$\begin{aligned} y_{a,t}^{poach} &= q*E_t*S_a*N_{t-1} \\ E\left(y_{A,t}^{poach}\right) &= max \sum \{p_{a,t-1}^{poach}*y_{a,t}^{poach} - c_{a,t-1}^{poach}*y_{a,t}^{poach}\} \end{aligned}$$

Variable	Definition
$y_{a,t}^{poach}$	Poaching of cohort <i>a</i> at time <i>t</i>
E_t	Effort at time <i>t</i>
S_a	Poaching selectivity by cohort
N_{t-1}	Stock at time <i>t</i> - 1
q	Catchability
p_{t-1}^{poach}	Revenue per Unit Effort
c_t^{poach}	Cost per Unit Effort

Past output data from INAPESCA.

Catch / Unit Effort data from INAPESCA, C4ADS.

Catchability parameter from INAPESCA.

Price data from model feedbacks, regulatory agencies.

Cost data from C4ADS, EDF, correspondence.

Net Stock: Age-Structured INAPESCA Model

$$N_{A,t} = \sum (N_{0,t} - y_{0,t}^{poach}) + (N_{a,t-1} * e^{-M_a} - y_{a,t}^{poach})$$

Variable	Definition
$N_{0,t}$	Recruitment, estimated by methods from Shepard (1982)
$y_{0,t}^{poach}$	Poaching mortality of recruits
$N_{A,t}$	Biomass for all cohorts after recruitment and mortality
$N_{a,t-1}$	Biomass by cohort before recruitment and mortality
$-M_a$	Natural mortality by cohort
$y_{a,t}^{poach}$	Poaching mortality by cohort

Data from INAPESCA, literature, model feedthroughs.

Aquaculture

Growth: von Bertalanffy Function

$$\hat{L}_t^{farm} = L_{\infty}^{farm} (1 - e^{-K(t - t_0)})$$

Variable	Definition
\hat{L}_t^{poach}	Estimated length for totoaba
L_{∞}^{farm}	Upper limit for totoaba growth
t	Time t.
t_0	Time for $L_t = 0$

Aquaculture data from COF, UABC.

Projected data from INAPESCA modeling.

Harvest: Modified Faustmann Model

$$TR_{A,t}(y_{A,t}^{farm}) = max \sum \left\{ p_{a,t-1} * y_{a,t}^{farm} * h_{a,t} - c(y_{a,t}^{farm}) + \beta * p_{a+1,t-1} * y_{a+1,t+1}^{farm} \right\}$$

Variable	Definition
$TR_{A,t}$	Total revenue for all cohorts at time t by harvest decision
$p_{a,t-1}$	Price for cohort a in the previous period $t-1$
$y_{a,t}^{farm}$	Harvested biomass for cohort a at time t
$h_{a,t}$	Harvest decision for cohort <i>a</i> at time <i>t</i> , scaled 0 – 1
$c(y_{a,t}^{farm})$	Cost of keeping cohort a through period t
β	Discount rate, scaled 0 – 1
$p_{a+1,t-1}$	Price for cohort a in next period
$y_{a+1,t+1}^{farm}$	Harvested biomass for cohort <i>a</i> in the next period

Aquaculture data from COF, UABC, CREMES.

Projected data from INAPESCA modeling.

Net Stock: Age-Structured INAPESCA Model, Modified for Aquaculture

$$N_{A,t} = \sum N_{0,t} + (N_{a,t-1} * e^{-M_a} - y_{a,t}^{farm})$$

Variable	Definition
$N_{0,t}$	Recruitment from hatcheries
$N_{A,t}$	Biomass for all cohorts after recruitment and mortality
$N_{a,t-1}$	Biomass by cohort before recruitment and mortality
$-M_a$	Natural mortality by cohort
$y_{a,t}^{farm}$	Harvest mortality by cohort

Data from COF, UABC, INAPESCA, literature, model feedthroughs.

Markets

Demand: Linear Regression

Three Frameworks for Competition: Static Competition (Jensen 2014) Cournot Competition (Bulte and Damania 2007) Bertrand Competition (Bulte and Damania 2007)

price and size data from investigation and seizures (NGOs, USFWS, PROFEPA, AFCD) All return p subt, driving effort and harvest decisions in period t+1