Worksheet 2: The Precise Definition of a Limit

Name: 🎉 💆 🎉 ID: 612505047 Department: 工科海洋.

Deriving the Precise Definition of a Limit.

The intuitive definition of a limit, $\lim_{x\to a} f(x) = L$, says that

we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a but not equal to a.

Verifying the above statement is a back and forth, offensive and defensive process. When one claims $\lim_{x\to a} f(x) = L$, he/she is responsible to answer the following challenges:

How close to a does x have to be so that |f(x) - L| < 0.1?

How close to a does x have to be so that |f(x) - L| < 0.01? And so on... Thus he/she must once and for all answer:

How close to a does x have to be so that $|f(x) - L| < \epsilon$, where ϵ is an arbitrarily small positive number?

In general, given smaller ϵ , one may need to restrict x closer to a. Hence, the above answer (the distance between x and a) depends on ϵ . Now we conclude that

$$\lim_{x \to a} f(x) = L$$
 means that

 $\lim_{x\to a} f(x) = L \ \text{ means that}$ for any number $\epsilon>0$ there is a $\delta>0$ (depending on ϵ) such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$.

The last statement is the **precise definition** of $\lim_{x\to a} f(x) = L$. In this worksheet we will have hands-on experiences of using this definition.

Exercise 1.

Consider
$$f(x) = \begin{cases} \frac{2x^2 - x - 1}{x - 1} & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$$

- $\operatorname{Consider} f(x) = \left\{ \begin{array}{l} \frac{2x^2 x 1}{x 1} & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{array} \right.$ Simplify f(x), f(x) = for $x \neq 1$. Guess the limit, $\lim_{x \to 1} f(x) =$.
 When you wrote down $\lim_{x \to 1} f(x) = L$, you have made a very strong statement! You claimed that
- We can make f(x) arbitrarily close to L by restricting x to be sufficiently close to 1 but not equal to 1. One may ask you to show him:

How close to 1 does x have to be so that |f(x) - L| < 0.1, 0.01, 0.001...?

Starting from the goal inequality |f(x) - L|, derive an equivalent inequality regarding |x - 1|.

Fill in the blank.

If
$$0 < |x - 1| < 0.1$$
. $|f(x) - L| < 0.1$.

If
$$0 < |x - 1| < 0.00$$
, $|f(x) - L| < 0.01$.

If
$$0 < |x-1| < \underline{\hspace{1cm}}, |f(x)-L| < \epsilon$$
, where ϵ is any positive number.

• What happens at x = 1? Obviously, |f(1) - L| = |0 - L| > 0.1. Does this violate the statement $\lim_{x \to 1} f(x) = L$?

["
$$f(1) = 0$$
 Although $f(1) = 0$

2" $\lim_{x \to 1} f(x) = 3$ However, this doesn't violate the fact that $\lim_{x \to 1} f(x) = L = 3$

• For any $\epsilon > 0$, we find $\delta =$ such that if $0 < |x - 1| < \delta$, then $|f(x) - L| < \epsilon$. This proves that indeed $\lim_{x \to 1} f(x) = L$.

Exercise 2.

(a) Show that $\lim_{x\to 0} \sqrt[3]{x} = 0$.

To prove the limit is 0, for any $\epsilon > 0$, we need to find a $\delta > 0$ such that if $0 < |x - 0| < \delta$ then $|\sqrt[3]{x} - 0| < \epsilon$.

• Starting from the desired inequality $|\sqrt[3]{x} - 0| < \epsilon$, derive an inequality for |x - 0|.

• For a given ϵ , find such δ and show that if $0 < |x - 0| < \delta$ then $|\sqrt[3]{x} - 0| < \epsilon$.

(b) Imitating the precise definition of a limit, write down precise definitions of one-sided limits.

•
$$\lim_{x \to a^+} f(x) = L \Leftrightarrow \forall \xi > 0$$
, $\exists \delta > 0 (\xi \text{ and } \delta \text{ is related})$ that $\alpha < \chi < \alpha + \delta$ then $|f(\chi) - L| < \xi$

•
$$\lim_{x \to a^-} f(x) = L \Leftrightarrow \forall \xi > 0$$
, $\exists \delta > 0$ (ξ and δ is related) that $a \cdot \delta < \chi < \infty$ than $|f(\chi) - L| < \xi$

Precise Definition of an Infinite Limit.

The intuitive definition of an infinite limit, $\lim_{x\to a} f(x) = \infty$, says that

we can make the values of f(x) arbitrarily large by restricting x to be sufficiently close to a but not equal to a.

Again, when one claims $\lim_{x\to a} f(x) = \infty$, he/she is responsible to answer the following challenges:

How close to a does x have to be so that f(x) > 100 ?

How close to a does x have to be so that f(x) > 1000? And so on... Thus he/she must once and for all answer:

How close to a does x have to be so that f(x) > N, where N is an arbitrarily large positive number?

Hence we conclude that

$$\lim_{x\to a} f(x) = \infty$$
 means that

for any number N>0 there is a $\delta>0$ (depending on N) such that if $0<|x-a|<\delta$ then f(x)>N.

The last statement is the **precise definition** of $\lim_{x\to a} f(x) = \infty$.

Exercise 3.

(a) Imitating the above definition, write down precise definitions of other limits regarding infinity.

•
$$\lim_{x \to a^+} f(x) = -\infty \Leftrightarrow \forall N \circ , \exists \delta > 0$$
 (ξ and N is related) that or $(\chi - \vec{a}) < \delta$ then $f(\chi) < N$

•
$$\lim_{x \to \infty} f(x) = L \Leftrightarrow \forall \xi > 0$$
, $\exists N > 0$ (ξ and N is related) that $\chi > N$ then $|f(\chi) - L| < \xi$

•
$$\lim_{x \to -\infty} f(x) = \infty \Leftrightarrow \forall N70$$
, $\exists M \in \mathcal{O}(N \text{ and } M \text{ is related}) \text{ that } \chi \in M \text{ then } f(x) > N$

(b) Show that $\lim_{x\to 0^+} \ln x = -\infty$.

To prove that the limit is negative infinity, for any negative N < 0, we need to find a $\delta > 0$ such that if $0 < x - 0 < \delta$ then $\ln x < N$.

• Starting from the desired inequality $\ln x < N$, derive an inequality for x - 0.

• For a given N < 0, find such δ and show that if $0 < x - 0 < \delta$ then $\ln x < N$.

3

Exercise 4 (Optional).

We can use the precise definition of a limit to prove limit laws and corollaries about limits. Try to prove the following statements.

(a) Prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} (f(x)+g(x)) = L+M$. (Hint: For any $\epsilon>0$ we need to find a $\delta>0$ such that if $0<|x-a|<\delta$ then $|(f(x)+g(x))-(L+M)|<\epsilon$. However, we have $|(f(x)+g(x))-(L+M)|\leq |f(x)-L|+|g(x)-M|$. Moreover, since $\lim_{x\to a} f(x)=L$ and $\lim_{x\to a} g(x)=M$, we can let $|f(x)-L|<\epsilon/2$ and $|g(x)-M|<\epsilon/2$ if x is sufficiently close to a.)

(b) Prove that if $\lim_{x\to a} f(x) = 0$ and |g(x)| < M for all x where M > 0 is a constant then $\lim_{x\to a} f(x)g(x) = 0$.

(c) Prove that if $\lim_{x\to a} f(x) = L > 0$ and $\lim_{x\to a} g(x) = \infty$ then $\lim_{x\to a} f(x)g(x) = \infty$.

$$\int_{0}^{\infty} \lim_{x \to a} f(x) = L \Rightarrow \forall \xi > 0, \exists \delta_{1} > 0 \text{ that } 0 < |x - a| < \delta_{1} \text{ then } |f(x) - L| < \xi$$

3° let
$$S=\min\{S_1,S_2\}$$

3° let $S=\min\{S_1,S_2\}$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|a|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ that } 0<|x|< E \text{ than } g(x)>M$

3° $\{MN0, \exists S>0 \text{ than } 0<|x|< E \text{ than } g(x)>M$

3° $\{$

(d) Prove that if f(x) < g(x) for all $x \neq a$ and the limits $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ exist, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$. (Hint: If $\lim_{x \to a} f(x) > \lim_{x \to a} g(x)$ can you derive a contradiction?)

prove
$$\lim_{k \to a} f(x) \le \lim_{k \to a} g(x)$$
 is equivalent to prove $\lim_{k \to a} (f(x) - f(x)) \ge 0$

1° assume lim h(x) = L < 0 ⇒ Y ≥>0, ∃ €>0 that oc|x-a|c € than | h(x)-L|< €

What	we want	to prove	is equivale	nt to li	m g(x) - f(x)	> 0	
Hence,	consider	h(x) = g(x) - f(x)				
Given	that,	p fxx < gx) = h(x);	> 0 ∀ X≠0	2		
	Q	Dylim fix) e Itim gix) a	3 IIM	hw exist	S		
Assume	that 17	m h(x) = 1	timit exists				
Mrich	means t	7 E 70 3 S		x-a (< §	h(x)-L/ <e< td=""><td></td><td></td></e<>		
Then	we take	2 = L 2	> hc	×)-L <e< td=""><td>= </td><td></td><td></td></e<>	=		
t e	, [1		⇒ L-	<u> </u>	< 11 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14		condition
Howeve	2 1 2	20 (since				J	CONSTITUTE
Hence	lim h(x)	>> 0 ⇒ \(\tau_{\text{M}}\)	f(x) < lim ge	* proved	by contradic	tion.	