CS4248 AY 2022/23 Semester 1 Tutorial 3

- 1. Consider a language with only two symbols I and O. The probability p_I of the symbol I occurring in the language is unknown. Suppose one particular sample text consists of a sequence of N symbols drawn randomly and independently from the language, out of which the symbol I occurs N_I times and the symbol O occurs $N N_I$ times in this particular sample text.
- (a) Write an expression for the probability of the sample text in terms of p_I , N_I , and N.
- (b) Derive mathematically the value of p_I that maximizes the probability of the sample text, in terms of N_I and N. This value serves as the maximum likelihood estimate of p_I .
- 2. The following bigram counts were collected from a corpus:

	w_1	W_2	W_3
w_1	100	0	30
W_2	0	50	0

That is, the bigram w_1w_1 occurred 100 times, the bigram w_1w_2 occurred 0 times, the bigram w_1w_3 occurred 30 times, etc. The frequency of each word w_i in the corpus is tabulated as follows:

w_1	4,000	
W_2	2,500	

The number of word types following each word w_i is tabulated as follows:

w_1	150	
W_2	80	

The vocabulary size of this corpus is 15,000.

Compute the Witten-Bell smoothed bigram counts and tabulate the smoothed bigram counts in a table as follows. Show clearly the steps of your computation in deriving the smoothed bigram counts.

	w_1	W_2	W_3
w_1			
W_2			

3. Let H(X), H(X, Y), and H(Y|X) denote the entropy, joint entropy, and conditional entropy of discrete random variables X and Y, defined as follows:

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(x,y)$$

$$H(Y \mid X) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(y \mid x)$$

Consider the following statement:

$$H(X,Y) = H(X) + H(Y \mid X)$$

Is the statement true? If it is true, give a formal proof and clearly justify each step of your proof. If it is false, provide a concrete counter-example.

4. Consider the following HMM:

Suppose this HMM has the following set of parameters:

$$\begin{array}{lll} P(T1|<\!s>) = 1/5 & P(T1|T1) = 0 & P(T1|T2) = 1/8 & P(T1|T3) = 3/5 \\ P(T2|<\!s>) = 0 & P(T2|T1) = 5/6 & P(T2|T2) = 1/2 & P(T2|T3) = 1/5 \\ P(T3|<\!s>) = 4/5 & P(T3|T1) = 0 & P(T3|T2) = 1/4 & P(T3|T3) = 1/5 \\ P(<\!/s>|T1) = 1/6 & P(<\!/s>|T2) = 1/8 & P(T3|T3) = 1/5 \\ P(<\!/s>|T1) = 1/6 & P(<\!/s>|T2) = 1/8 & P(<\!/s>|T3) = 0 \\ P(w1|T1) = 1/20 & P(w2|T1) = 1/10 & P(w2|T2) = 1/10 \\ P(w1|T3) = 1/10 & P(w2|T3) = 1/10 \end{array}$$

T1, T2, T3 are part-of-speech tags.

Consider the input sentence "w1 w2", where w1 and w2 are words. Trace the Viterbi algorithm, by providing the values of the cells v(T, w) where $T \in \{T1, T2, T3\}$, and $w \in \{w1, w2\}$, and determine the optimal sequence of part-of-speech tags.