Tree Based Methods

 $\bullet \bullet \bullet$

Machine Learning II (2017)
Team 3

Agenda

- 1. Basics of Trees
- 2. Regression Trees
- 3. Pruning
- 4. R Example

Basics of Trees

- Classification and Regression Trees are the most widely used Machine Learningbased data mining model
- Trees use the supervised learning method
- Moving into a non-Parametric approach, no guess about the shape ahead of time.
- Stratifying or segmenting the predictor space into a number of simple regions
- Simple, easy to use
- Humans understand and can easily interpret results vs. other regression based models

Anatomy of a Tree

Problems with Trees

- Sacrifice accuracy for ease of interpretation
- Only one mean prediction/response for each region (terminal node)
- Sometimes utilizing trees with many terminal nodes leads to overfitting

Example Solutions

- Fraud detection
- Gender classification based only on first name
- Titanic survival

Creating a Regression Tree

- There are infinite possible trees as each variable can be used at any node and branching can involve splitting the any x variable at any point. Variables can also be used repeatedly for multiple different splits
 - Therefore the goal is to find a model that is good enough, but perhaps not the best, in a reasonable amount of time
 - The goal for each root and internal node is to find a variable that can split the dataset into 2
 Regions that are more homogeneous than the observations inputted into the node
 - The stopping point can be when all samples from a node are the same, when further splitting does not lead to a more homogeneous model or when a maximum number of nodes are reached

Creating a Tree

- Divide all the X values into distinct Regions, represented by R_i
- All observations in a region have the same prediction (the mean of the Y values for the training observations that fell in that region)
- To identify the regions, the X values are split into boxes ideally boxes with the lowest possible RSS given by:

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{\scriptscriptstyle R_j})^2$$

mean response for the training observations within the jth box

Shortcut

- As it is infeasible to consider every box configuration, Recursive Binary Splitting/Top Down Greedy approach is used
- This method starts at the top of the tree, then successively splits the tree into two new branches
- It is greedy as it makes the best split at each level rather than attempting to predict future steps
- Selects a predictor X and the cutoff s such that splitting the predictor space into the regions $\{X|X_j < s\}$ and $\{X|X_j \ge s\}$ leads to the greatest possible reduction in RSS
- Repeat selecting predictors and splits until end criterion (num of nodes)

Basic Hitters Data Example

Recursive Binary Splitting Example

• Could NOT result from recursive binary splitting

A partition of two-dimensional feature space

Recursive Binary Splitting Example

Recursive Binary Splitting Example

Problems with Recursive Binary Splitting

- Tree might be too complex (overfitting)
- High error for test set data
- Tradeoff of bias and variance

Cost Complexity/ Weakest Link Pruning

- Tradeoff between complexity and model fit (test error rate), pruning reduces variance at the cost of bias
- After creating a large tree (T_0) , prune it back into a subtree (T)
- Sequence of trees indicated by nonnegative tuning parameter α
- For each value of α there corresponds a subtree $T \subseteq T_0$ such that

Region associated with the mth terminal node

Associated predicted response

• α controls a trade-off between complexity and training fit. When α = 0, then the subtree T will simply equal T $_0$, but as α increases, the tree will be pruned in a nested, predictable way

Cost Complexity

Cost Complexity

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

$$\alpha = 3$$

How the Cross Validation Process Works

How the Cross Validation Process Works

How the Cross Validation Process Works

	α_0	α_1	$\alpha_2^{}$	α_3	$\alpha_{ m n}$
F_1	CV _{0,1}	CV _{1, 1}	CV _{2,1}	CV _{3,1}	CV _{n, 1}
F_2	CV _{0, 2}	CV _{1, 2}	CV _{2, 2}	CV _{3, 2}	CV _{n, 2}
F_3	CV _{0,3}	CV _{1, 3}	CV _{2, 3}	CV _{3, 3}	CV _{n, 3}
F_k	CV _{0, k}	$\mathrm{CV}_{\mathrm{l,k}}$	$\mathrm{CV}_{2,\mathrm{k}}$	CV _{3, k}	CV _{n, k}
	\overline{a}_0	\overline{a}_1	$\overline{\alpha}_2$	$\overline{\alpha}_3$	$ar{ar{lpha}}_{ m n}$

Choosing the Best Subtree

- Use K-fold cross-validation or a validation set to choose which α value corresponds to the best fit model (dividing training observations into k-folds)
- Then return to the full data set and select the subtree corresponding to the α with the lowest cross-validated MSE, which is approximates the test error

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Regression Trees in Review

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations or you reach a max number of nodes.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each k = 1, 2, ..., K:
 - a. Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - b. Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α . Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

R Example

https://github.com/WilliamandMary-BUAD5082-Spring2017/Class-10-Tree-Based-Methods-Regression-Trees

bit.ly/BUAD5082

Questions?