Anneau noethérien de dimension infinie

2 novembre 2014

L'exemple suivant est dû à Nagata.

Proposition 1. Soit k un corps et $A = k[T_0, T_1, ...]$ l'anneau des polynômes à une infinité de variables sur k. Soit $(m_n)_{n\geq 0}$ une suite strictement croissante d'entiers naturels tel que $m_{n+1}-m_n$ diverge, on note P_n l'idéal premier engendré par les variables $(T_j)_{m_n\leq j< m_{n+1}}$ et S la partie multiplicative $A-\cup_{n\geq 0}P_n$. Alors $S^{-1}A$ est un anneau noethérien de dimension infinie.

La première étape est de comprendre les idéaux maximaux de $S^{-1}A$. On sait que les idéaux propres de $S^{-1}A$ sont de la forme $S^{-1}I$ où I est un idéal de A contenu dans $\bigcup_{n>0} P_n$.

Lemme 1. Soit I un idéal de A contenu dans la réunion des P_n . Alors il existe un entier $n \geq 0$ tel que I soit contenu dans P_n .

En effet, supposons que $I \neq (0)$ et soit $f \in I$ non nul. On note $P^{(1)}, ..., P^{(k)}$ les idéaux premiers de la forme P_n qui sont engendrés par des variables qui apparaissent dans l'expression de f; ce sont exactement les idéaux P_n tel que f appartient à P_n . D'autre part, soit $g \in I$ non nul; on a $f + g \in I \subset \cup_{n \geq 0} P_n$. Si on suppose que $g \notin \cup_{1 \leq i \leq k} P^{(i)}$ alors il existe un terme de g qui n'est dans aucun des idéaux P^i ; on a deux monômes de f + g contenant des variables indépendantes qui sont contenus dans des idéaux P_n distincts. On en déduit que $f+g \notin \cup_{n \geq 0} P_n$; ce qui est une contradiction. Ce qui montre que $g \in \cup_{1 \leq i \leq k} P^{(i)}$; donc $I \subset \cup_{1 \leq i \leq k} P^{(i)}$. Le lemme d'évitement montre alors que I est contenu dans l'un des idéaux $P^{(i)}$ qui est de la forme P_n .

D'après le lemme, on en déduit que les idéaux maximaux de $S^{-1}A$ sont exactement les idéaux de la forme $S^{-1}P_n$.

Lemme 2. Pour $n \ge 0$, l'anneau local $(S^{-1}A)_{S^{-1}P_n}$ est noethérien.

Les polynômes ne faisant intervenir que des variables T_j indépendantes de $T_{m_n}, ..., T_{m_{n+1}-1}$ n'appartiennent pas à P_n qui correspond à l'idéal maximal de l'anneau local $(S^{-1}A)_{S^{-1}P_n}$; donc sont inversibles dans ce localisé. D'autre part, l'anneau $(S^{-1}A)_{S^{-1}P_n}$ est isomorphe à A_{P_n} qui est un anneau de polynômes en $T_{m_n}, ..., T_{m_{n+1}-1}$ à coefficients dans le corps des fractions $k(T_j)$ où j décrit les entiers positifs privé de $m_n, ..., m_{n+1} - 1$. D'après le théorème de la base de Hilbert, l'anneau $(S^{-1}A)_{S^{-1}P_n}$ est noethérien.

On peut maintenant passer à la preuve du fait que l'anneau $S^{-1}A$ est noethérien. Soit $(S^{-1}I_j)_{j\geq 0}$ une suite d'idéaux propres de $S^{-1}A$. On suppose sans perte de généralité que $S^{-1}I_0\neq (0)$, soit $f\in S^{-1}I_0$ non nul. On a déjà vu que f n'appartient qu'à un nombre fini d'idéaux $S^{-1}P^{(1)},...,S^{-1}P^{(k)}$ de la forme $S^{-1}P_n$. Pour tout $j\geq 1$, l'idéal $S^{-1}I_j$ est contenu dans un idéal maximal de la forme $S^{-1}P_n$. On a $f\in S^{-1}I_0\subset S^{-1}I_j\subset S^{-1}P_n$; on en déduit que f appartient à $S^{-1}P_n$, ce dernier est donc l'un des idéaux $S^{-1}P^{(i)}$. On a alors

$$f \in S^{-1}I_0 \subset \ldots \subset S^{-1}I_j \subset \ldots \subset \cup_{1 \le i \le k}S^{-1}P^{(i)}$$

On localise maintenant cette chaine d'idéaux par rapport à la partie multiplicative $S^{-1}A - \cup_{1 \leq i \leq k} S^{-1}P^{(i)}$. Comme précédemment les polynômes ne faisant intervenir que des variables T_j qui n'appartiennent pas aux idéaux $P^{(i)}$ sont inversibles car sont contenus dans $S^{-1}A - \cup_{1 \leq i \leq k} S^{-1}P^{(i)}$. On en déduit que ce localisé est un quotient d'un anneau de polynômes à un nombre fini de variables sur un corps ; donc est noethérien. La chaine d'idéaux dans le localisé est alors de longueur finie. On en déduit que la suite d'idéaux $(S^{-1}I_j)$ est stationnaire ; donc $S^{-1}A$ est noethérien.

Pour finir, il ne reste plus qu'à prouver que $S^{-1}A$ est de dimension infinie. Or la chaine

$$S^{-1}(T_{m_n}) \subset S^{-1}(T_{m_n}, T_{m_n+1}) \subset ... \subset S^{-1}(T_{m_n}, ..., T_{m_{n+1}-1})$$

est de longueur $m_{n+1}-m_n$ qui tend vers l'infini. Comme la dimension est le supremum des longueurs des chaines d'idéaux premiers; on en déduit le résultat.