Name: Gore Aniket Machhindra

Email: aniket.m.gore.1901@gmail.com

Role: Machine Learning Intern

Task 4: Housing Prices Prediction Project

Content -

- Importing Libraries
- Importing the Dataset
- · Initializing the DataFrame
- Adding Feature Names to the dataframe
- Adding target variable to dataframe
- Checking Missing Values
- Describe the Data
- Correlation
- Heatmap
- · Splitting the Data
- Importing random Forest regressor
- Model Prediction on Training Data
- Model Evaluation
- Visualizing the differences between actual prices and predicted values
- Conclusion

Importing Libraries

- 1 import pandas as pd
- 2 import numpy as np
- 3 from sklearn import metrics
- 4 import matplotlib.pyplot as plt
- 5 import seaborn as sns
- 6 %matplotlib inline

Importing the Dataset

```
1 from sklearn.datasets import load_boston
2 boston = load_boston()
```

Initializing the Dataframe

```
1 data = pd.DataFrame(boston.data)
```

1 data.head()

	0	1	2	3	4	5	6	7	8	9	10	11	12	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	

Adding Feature Names to the dataframe

```
1 data.columns = boston.feature_names
```

2 data.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST/
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.9
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.1
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.9
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.3

Adding target variable to dataframe

```
1 data['PRICE'] = boston.target
   1 data.shape
       (506, 14)
   1 data.columns
       Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
              'PTRATIO', 'B', 'LSTAT', 'PRICE'],
             dtype='object')
   1 data.dtypes
                  float64
       CRIM
                  float64
       ZN
                float64
       INDUS
                 float64
       CHAS
       NOX
                 float64
                 float64
       RM
                 float64
       AGE
       DIS
                 float64
       RAD
                 float64
                 float64
       TAX
       PTRATIO
                float64
                 float64
                 float64
       LSTAT
       PRICE
                 float64
       dtype: object
Checking Missing Values
   1 data.isnull().sum()
       CRIM
       ΖN
                  0
       INDUS
                  0
       CHAS
                  0
       NOX
                  0
       RM
                  0
                  0
       AGE
                 0
       DIS
                 0
       RAD
                 0
       TAX
```

PTRATIO

LSTAT

0 0

0

PRICE 0 dtype: int64

Describe the Data

1 data.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000

Correlation

```
1 corr = data.corr()
```

2 corr.shape

(14, 14)

Heatmap

```
1 plt.figure(figsize=(20,20))
2 sns.heatmap(corr, cbar=True, square= True, fmt='.1f', annot=True, annot_kws={'size':15}, c
```

- 0.8
- 0.6
- 0.4
- 0.2
- 0.0
0.2
0.4
0.6

CRIM	1.0	-0.2	0.4	-0.1	0.4	-0.2	0.4	-0.4	0.6	0.6	0.3	-0.4	0.5	-0.4
NZ -	-0.2	1.0	-0.5	-0.0	-0.5	0.3	-0.6	0.7	-0.3	-0.3	-0.4	0.2	-0.4	0.4
SUDNI	0.4	-0.5	1.0	0.1	0.8	-0.4	0.6	-0.7	0.6	0.7	0.4	-0.4	0.6	-0.5
CHAS	-0.1	-0.0	0.1	1.0	0.1	0.1	0.1	-0.1	-0.0	-0.0	-0.1	0.0	-0.1	0.2
XON -	0.4	-0.5	0.8	0.1	1.0	-0.3	0.7	-0.8	0.6	0.7	0.2	-0.4	0.6	-0.4
RM -	-0.2	0.3	-0.4	0.1	-0.3	1.0	-0.2	0.2	-0.2	-0.3	-0.4	0.1	-0.6	0.7
AGE	0.4	-0.6	0.6	0.1	0.7	-0.2	1.0	-0.7	0.5	0.5	0.3	-0.3	0.6	-0.4
SIO	-0.4	0.7	-0.7	-0.1	-0.8	0.2	-0.7	1.0	-0.5	-0.5	-0.2	0.3	-0.5	0.2
RAD .	0.6	-0.3	0.6	-0.0	0.6	-0.2	0.5	-0.5	1.0	0.9	0.5	-0.4	0.5	-0.4
TAX -	0.6	-0.3	0.7	-0.0	0.7	-0.3	0.5	-0.5	0.9	1.0	0.5	-0.4	0.5	-0.5
PTRATIO	0.3	-0.4	0.4	-0.1	0.2	-0.4	0.3	-0.2	0.5	0.5	1.0	-0.2	0.4	-0.5
m -	-0.4	0.2	-0.4	0.0	-0.4	0.1	-0.3	0.3	-0.4	-0.4	-0.2	1.0	-0.4	0.3
LSTAT	0.5	-0.4	0.6	-0.1	0.6	-0.6	0.6	-0.5	0.5	0.5	0.4	-0.4	1.0	-0.7
PRICE	-0.4	0.4	-0.5	0.2	-0.4	0.7	-0.4	0.2	-0.4	-0.5	-0.5	0.3	-0.7	1.0
	CRIM	ΖŃ	INDUS	CHAS	NÓX	RM	AĞE	DİS	RÅD	TAX	PTRATIO	В	LSTAT	PRICE

Splitting the Data

```
1 X = data.drop(['PRICE'], axis = 1)
2 y = data['PRICE']

1 from sklearn.model_selection import train_test_split
2 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 4
```

Importing random Forest regressor

```
1 from sklearn.ensemble import RandomForestRegressor
2 reg = RandomForestRegressor()
3 reg.fit(X_train, y_train)
```

RandomForestRegressor()

Model Prediction on Training Data

```
1 y_pred = reg.predict(X_train)
```

Model Evaluation

```
1 print('R^2:',metrics.r2_score(y_train, y_pred))
    R^2: 0.9786402541948575

1 print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_train)-1)/(len(y_tr
```

MAE: 0.8485790960451979 MSE: 1.6077657881355942 RMSE: 1.2679770455870225

Visualizing the differences between actual prices and predicted values

```
1 plt.scatter(y_train, y_pred)
2 plt.xlabel("Prices")
3 plt.ylabel("Predicted prices")
4 plt.title("Prices vs Predicted prices")
5 plt.show()
```



```
1 plt.scatter(y_pred,y_train-y_pred)
2 plt.title("Predicted vs residuals")
3 plt.xlabel("Predicted")
4 plt.ylabel("Residuals")
5 plt.show()
6
```


Conclusion

- Random Forest regressor is works best for this dataset
- R2 Score is 97% Accurate on this Dataset
- Adjusted R2 Score is 97% Accurate on this Dataset