Aula01: Introdução à estatística

Análise de Dados & Big Data – USJT- 2023

conteúdo baseado em BONAT, W; KRAINSKI, E; MAYER, F. Introdução à Análise Exploratória de Dados. Departamento de Estatística da UFPR. Disponível em http://cursos.leg.ufpr.br/estbas-slides/. Consultado em 23/08/2020.

O que é estatística?

- Estatística é um conjunto de técnicas para, sistematicamente:
 - Planejar a coleta de dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento;
 - Descrever, analisar e interpretar dados;
 - Extrair informações para subsidiar decisões;
 - Avaliar evidências empíricas sob hipóteses de interesse.

Exemplos de Aplicações

Opinião da população brasileira sobre o novo governo.

Avaliar a efetividade de uma nova droga para a cura do câncer.

Entender os hábitos de compra dos clientes de uma loja virtual.

Recomendação personalizada de produtos.

Comparar a produtividade da soja sob diferentes formas de cultivo, adubação, etc.

População e amostra

- Conceitos fundamentais
 - **População**: Conjunto de todos os elementos sob investigação.
 - Amostra: Subconjunto da população.
 - Variável de interesse: característica a ser observada em cada indivíduo da amostra.

Exemplos (1/2)

- Opinião da população brasileira sobre o novo governo.
 - **População**: Todos os habitantes do Brasil? outras opções?
 - Amostra: Algum subconjunto da população. Qualquer um será? Como selecionar?
 - Variável de interesse: Opinião sobre o novo governo. Como medir isso? Gosta? sim ou não.

Exemplos (2/2)

- Avaliar a efetividade de uma nova droga para a cura do câncer.
 - **População**: Todos os seres humanos? Apenas os já doentes? Como levar em conta questões de raça, culturas, etc. . . .
 - Amostra: E agora?
 - Variável de interesse: Curou ou não curou? Será que isso é possível?
- Entender os hábitos de compra dos clientes de uma loja virtual.
 - População: Todos os clientes da loja virtual.
 - Amostra: Preciso de amostra?
 - Variável de interesse: E agora? Como caracterizar hábito de compra?

Ideia final

Etapas da análise estatística (1/2)

Definir a população de interesse.

População factível.

Estabelecer os objetivos (questões) de pesquisa.

- Definir critérios objetivos sobre quais dados coletar.
- Postular a análise estatística a ser utilizada.

Etapas da análise estatística (2/2)

Definir o método para coletar as amostras.

- Fonte de dados secundários (IBGE, IPEA, etc.);
- Banco de dados da empresa;
- Pesquisas amostrais;
- Experimentos em laboratórios, etc.

Análise dos dados.

- Analise descritiva e exploratória (o que aconteceu na amostra?).
- Analise inferencial (o que acontece na população?).

Planejamento da coleta de dados (1/2)

- Definição do experimento
 - Variáveis respostas/interesse.
 - Variáveis de controle (o que afeta a resposta?).
 - Desenho do experimento e randomização.

Planejamento da coleta de dados (2/2)

- Coleta de dados por amostragem
 - Definição da população e característica de interesse.
 - Definição do plano amostral:
 - Aleatória simples (com ou sem reposição) ou sistemática;
 - Estratificada, por estratos da população (segundo uma característica);
 - Conglomerados, por grupos de indivíduos da população (subpopulações);
 - Amostragem complexa (combina anteriores).
- Coleta de dados observacionais. Exemplos:
 - Presença de seres vivos num ambiente;
 - · Fenômenos climáticos;
 - Fluxo de usuários em um website.

Resumo: Objetivos e etapas da análise estatística

Acesse o formulário eletrônico no endereço abaixo e responda aos exercícios propostos:

https://forms.office.com/r/BrRbN5 Qrkx

Classifique em verdadeiro ou falso as seguintes afirmações:

a. Estatística é um conjunto de técnicas destinadas a organizar um conjunto de valores numéricos.

.

- **b.** Sempre que estivermos trabalhando com números, deveremos utilizar a Inferência Estatística.
- **c.** A Estatística Descritiva fornece uma maneira adequada de tratar um conjunto de valores, numéricos ou não, com a finalidade de conhecermos o fenômeno de interesse.

fonte: (MAGALHÃES; LIMA, 2015, p. 4, ex. 1)

Classifique em verdadeiro ou falso as seguintes afirmações:

- d. Qualquer amostra representa, de forma adequada, uma população.
- **e.** As técnicas estatísticas não são adequadas para casos que envolvam experimentos destrutivos como, por exemplo, queima de equipamentos, destruição de corpos de provas, etc.

fonte: (MAGALHÃES; LIMA, 2015, p. 4, ex. 1)

Para as situações descritas a seguir, identifique a população e a amostra correspondente. Discuta a validade do processo de inferência estatística para cada um dos casos.

- **a.** Para avaliar a eficácia de uma campanha de vacinação no Estado de São Paulo, 200 mães de recém-nascidos, durante o primeiro semestre de um dado ano e em uma dada maternidade em São Paulo, foram entrevistadas a respeito da última vez em que vacinaram seus filhos.
- **b.** Uma amostra de sangue foi retirada de um paciente com suspeita de anemia.

fonte: (MAGALHÃES; LIMA, 2015, p. 4, ex. 2)

Para as situações descritas a seguir, identifique a população e a amostra correspondente. Discuta a validade do processo de inferência estatística para cada um dos casos.

c. Para verificar a audiência de um programa de TV, 563 indivíduos foram entrevistados por telefone com relação ao canal em que estavam sintonizados.

d. A fim de avaliar a intenção de voto para presidente dos brasileiros, 122 pessoas foram entrevistadas em Brasília.

fonte: (MAGALHÃES; LIMA, 2015, p. 4, ex. 2)

Discuta, para cada um dos casos abaixo, os cuidados que precisam ser tomados para garantir uma boa conclusão a partir da amostra.

- a. Um grupo de crianças será escolhido para receber uma nova vacina contra meningite.
- b. Sorteamos um certo número de donas de casa, para testar um novo sabão em pó.

fonte: (MAGALHÃES; LIMA, 2015, p. 5, ex. 3)

Discuta, para cada um dos casos abaixo, os cuidados que precisam ser tomados para garantir uma boa conclusão a partir da amostra.

- c. Uma fábrica deseja saber se sua produção de biscoitos está com o sabor previsto.
- d. Aceitação popular de um certo projeto do governo.

fonte: (MAGALHÃES; LIMA, 2015, p. 5, ex. 3)

Análise exploratória de dados

Exemplo

- Id: identificação do aluno; Turma: A ou B;
- **Sexo**: feminino (F) ou masculino (M);
- **Idade**: em anos; **Alt**: altura em metros;
- Peso: em quilogramas; Filhos: no de filhos na família;
- Fuma: hábito de fumar: sim (S) ou não (N);
- **Toler**: tolerância ao cigarro: (I) indiferente; (P) incomoda pouco; (M) incomoda muito;
- Exerc.: horas de atividade física, por semana;
- Cine: no. de vezes que vai ao cinema por semana;
- OpCine: opinião a respeito das salas de cinema na cidade:
 (B) regular a boa; (M) muito boa;
- **TV**: horas gastas assistindo TV, por semana;
- **OpTV**: opinião a respeito da qualidade da programação na TV: (R) ruim; (M) média; (B) boa; (N) não sabe.

m may m jun m jul 95,054 97,511 154,568 99,011 56,845 99,216 110,000 101,090 150,000 101,684 35,000 101,962 83,000 102,747 45,000

Organização dos dados

- A partir de um conjunto de dados coletado, a questão é:
 - Como extrair informações a respeito de uma ou mais características de interesse?
- Basicamente temos duas opções:
 - Tabelas de frequência;
 - Gráficos.
- O importante é levar em consideração a natureza dos dados.

Ιd	Turma	Sexo	Idade	Alt	Peso	Filhos	Fuma	Toler	Exerc	\mathtt{Cine}	${\tt OpCine}$	TV	VTq0
1	Α	F	17	1.60	60.5	2	NAO	P	0	1	В	16	R
2	Α	F	18	1.69	55.0	1	OAN	M	0	1	В	7	R
3	Α	M	18	1.85	72.8	2	OAN	P	5	2	M	15	R
4	Α	M	25	1.85	80.9	2	OAN	P	5	2	В	20	R
5	Α	F	19	1.58	55.0	1	NAO	M	2	2	В	5	R
6	Α	M	19	1.76	60.0	3	NAO	M	2	1	В	2	R

Organização dos dados

- Uma típica tabela de dados brutos contém:
 - Variáveis (características, medições, etc.) nas colunas
- Tipos de variáveis:
 - Qualitativa nominal: Turma, Sexo, Fuma.
 - Qualitativa ordinal: Toler, OpCine, OpTV.
 - Quantitativa discreta: Idade, Filhos, Exerc, Cine, TV.
 - Quantitativa contínua: Alt, Peso.

Definições de variáveis (1/2)

- Variável qualitativa: é uma variável que assume como possíveis valores, atributos ou qualidades. Também são denominadas variáveis categóricas.
 - Variável qualitativa nominal: é uma variável que assume como possíveis valores, atributos ou qualidades e estes não apresentam uma ordem natural de ocorrência.
 - Variável qualitativa ordinal: é uma variável que assume como possíveis valores atributos ou qualidades e estes apresentam uma ordem natural de ocorrência.

Definições de variáveis (2/2)

- Variável quantitativa: é uma variável que assume como possíveis valores, números.
 - Variável quantitativa discreta: é uma variável que assume como possíveis valores números, em geral inteiros, formando um conjunto finito ou enumerável.
 - Variável quantitativa continua: é uma variável que assume como possíveis valores números, em intervalos da reta real e, em geral, resultantes de mensurações.

Tipos de variáveis

Classifique cada uma das variáveis abaixo em qualitativa (nominal / ordinal) ou quantitativa (discreta / contínua):

- **a.** Ocorrência de hipertensão pré-natal em grávidas com mais de 35 anos (sim ou não são possíveis respostas para esta variável).
- **b.** Intenção de voto para presidente (possíveis respostas são os nomes dos candidatos, além de *não sei*).
- **c.** Perda de peso de maratonistas na Corrida de São Silvestre, em quilos.
- **d.** Intensidade da perda de peso de maratonistas na Corrida de São Silvestre (leve, moderada, forte).
- **e.** Grau de satisfação da população brasileira com relação ao trabalho do presidente (valores de 0 a 5, com 0 indicando totalmente insatisfeito e 5 totalmente satisfeito).

Tabelas de frequência

- A tabela de dados brutos pode ser muito longas, portanto será difícil extrair alguma informação.
- As tabelas de frequência ajudam a resumir a informação da variável de interesse.
- Vamos usar 3 tipos de frequência:
 - Frequência **absoluta**: contagem de cada valor observado. Representado por n_i o número de indivíduos com a característica i.
 - Frequência **relativa**: número de individuo com a característica i dividido pelo total de indivíduos n, ou seja $f_i = \frac{n_i}{n}$
 - Frequência **acumulada**: frequência (absoluta ou relativa) acumulada até um certo valor, obtida pela soma das frequências de todos os valores da variável, menores ou iguais ao valor considerado.

Tabela de frequência - qualitativa nominal

Considerando a variável Sexo

 ni
 fi

 F
 37
 0.74

 M
 13
 0.26

 Sum
 50
 1.00

• Neste caso não faz sentido usar a frequência acumulada.

Tabela de frequência - qualitativa ordinal

Considerando a variável OpTv

	ni	fi	f_{ac}
R	39	0.78	0.78
M	1	0.02	0.80
В	3	0.06	0.86
N	7	0.14	1.00
Sum	50	1.00	

Tabela de frequência – quantitativa discreta

Considerando a variável Idade

	ni	fi	f_{ac}
17	9	0.18	0.18
18	22	0.44	0.62
19	7	0.14	0.76
20	4	0.08	0.84
21	3	0.06	0.90
22	0	0.00	0.90
23	2	0.04	0.94
24	1	0.02	0.96
25	2	0.04	1.00
Sum	50	1.00	

Tabela de frequência – quantitativa contínua

- No caso de quantitativas contínuas não faz sentido contar cada valor pois podem existir muitos (potencialmente infinito).
- A solução é criar classes ou faixas de valores, e contar o número de ocorrências dentro destas classes.
- Para definir as classes:
 - Defina a amplitude da classe, de maneira que se obtenham de 5 a 8 classes (de mesma amplitude).
 - Identifique os valores máximo e mínimo da variável e construa as classes de maneira que inclua todos os valores.
- As classes de valores podem seguir um dos formatos:

Classe	Notação	Denominação	Resultado
[a, b) (a, b]	a	Fechado em a, aberto em b Aberto em a, fechado em b	•

Tabela de frequência – quantitativa contínua

- Considerando a variável Peso
 - Foram construídas 6 classes de amplitude 10.
 - As classes são do tipo [a,b) ou a ⊢ b.

	ni	fi	f_{ac}
[40, 50)	8	0.16	0.16
[50, 60)	22	0.44	0.60
[60, 70)	8	0.16	0.76
[70, 80)	6	0.12	0.88
[80, 90)	5	0.10	0.98
[90, 100)	1	0.02	1.00
Sum	50	1.00	

Tabela de frequência – quantitativa discreta (muitos valores)

- Considerando a variável TV.
- Apesar de ser discreta, o número de valores únicos é muito grande e não seria útil contar as frequências de cada valor.
- Neste caso, utiliza-se o mesmo procedimento usado para quantitativas contínuas
 - Foram construídas 6 classes de amplitude 6.

	ni	fi	f_{ac}
[0, 6)	14	0.28	0.28
[6, 12)	17	0.34	0.62
[12, 18)	11	0.22	0.84
[18, 24)	4	80.0	0.92
[24, 30)	3	0.06	0.98
[30, 36)	1	0.02	1.00
Sum	50	1.00	

Representação gráfica

- Podemos visualizar as tabelas através de gráficos.
- Existe um tipo de gráfico adequado para cada tipo de variável.
- Cuidado deve ser tomado com representações visuais pois um gráfico desproporcional pode gerar interpretações distorcidas.
- As principais representações gráficas são:
 - Diagrama circular (setores ou "pizza");
 - Gráfico de barras;
 - Histogramas;
 - Boxplots.

Diagrama circular

• Adequado para variáveis qualitativas nominal e ordinal.

Sexo Toler

• O uso deste tipo de gráfico deve ser evitado, pois pode ser de difícil interpretação.

Gráfico de barras

- Adequado para variáveis qualitativas nominal/ordinal e quantitativa discreta (poucos valores distintos).
- Podem ser usadas as frequências absolutas ou relativas.

Histograma

Adequado para quantitativa contínua.

Tipos de Assimetria

Mediana e quartis

- Mediana: valor da variável que divide o conjunto de dados ordenado em dois subgrupos de mesmo tamanho.
- Quartis: valores da variável que divide o conjunto de dados ordenados em quatro subgrupos de mesmo tamanho.
- Posição dos quartis:
 - $Q1 = 0.25 \times (N + 1)$ e arredonde.
 - $Q2 = \text{m\'edia dos valores nas posiç\~oes} (N/2) e$ (N/2) + 1 se N par e Q2 = (N+1)/2 se Nímpar.
 - $Q3 = 0.75 \times (N + 1)$ e arredonde.

Mediana e quartis: exemplo

- Considere o conjunto de dados:
- $Q1 = 0.25 \times 7 = 1.75 \approx 2$, ou seja 8.65
- Q2 = média dos valores nas posições 3 e 4, ou seja,
- $Q2 = \frac{9,96 + 10,46}{2} = 10,21$
- $Q3 = 0.75 \times 7 = 5.25 \approx 5$, ou seja, 10.83

ordem	valor
1	8,43
2	8,65
3	9,96
4	10,46
5	10,83
6	10,91

Boxplot

- Adequado para quantitativa contínua.
- Pode ser usado também para quantitativa discreta com muitos valores.

Boxplots

Excelente para explorar relações entre qualitativas e contínuas.

Diagrama de Dispersão

Adequado para explorar a relação entre variáveis quantitativas.

Diagrama de Dispersão

• Exemplos de comportamentos do diagrama de dispersão.

• Visualizando correlações entre variáveis.

Sexo

Gráfico de mosaico

Adequado para explorar a relação entre variáveis qualitativas (nominais ou ordinais).

Resumo

- Qualitativa nominal ou ordinal
 - Gráfico de setores.
 - Gráfico de barras.
- Quantitativa discreta
 - Gráfico de barras (poucos valores).
 - Histograma ou boxplot (muitos valores).
- Quantitativas contínuas
 - Histograma ou boxplot.
- Explorando relações:
 - Quantitativa vs Quantitativa: Diagrama de dispersão.
 - Qualitativa vs Quantitativa: Boxplots.
 - Qualitativa vs Qualitativa: Gráfico de mosaico.

Um grupo de estudantes do ensino médio foi submetido a um teste de matemática resultando em:

Nota	freqüência
$0 \vdash\!$	14
$2 \vdash 4$	28
$4 \vdash 6$	27
6 ⊢ 8	11
$8 \vdash 10$	4

- a. Construa o histograma.
- **b.** Se a nota mínima para aprovação é 5, qual será a porcentagem de aprovação?
- c. Obtenha o boxplot.

fonte: (MAGALHÃES; LIMA, 2015, p. 20, ex. 4)

Responda certo ou errado, justificando:

- **a.** Suponha duas amostras colhidas de uma mesma população, sendo uma de tamanho 100 e outra de tamanho 200. Então, a amostra de tamanho maior é mais representativa da população.
- b. Duas variáveis diferentes podem apresentar histogramas idênticos.
- c. Duas variáveis com boxplot iguais não podem ter valores diferentes.

fonte: (MAGALHÃES; LIMA, 2015, p. 23, ex. 1)

Uma pesquisa com usuários de transporte coletivo na cidade de São Paulo indagou sobre os diferentes tipos usados nas suas locomoções diárias. Dentre ônibus, metro e trem, o número de diferentes meios de transporte utilizados foi o seguinte: 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 1, 2, 2, 1, 2, 1, 2 e 3.

- a. Organize uma tabela de frequência.
- **b.** Faça uma representação gráfica.
- **c.** Admitindo que essa amostra represente bem o comportamento do usuário paulistano, você acha que a porcentagem dos usuários que utilizam mais de um tipo de transporte é grande?

fonte: (MAGALHÃES; LIMA, 2015, p. 23, ex. 3)

Um questionário foi aplicado aos dez funcionários do setor de contabilidade de uma empresa fornecendo os dados apresentados na tabela.

Funcionário	Curso (completo)	Idade	Salário (R\$)	Anos de Empresa
1	superior	34	1100,00	5
2	superior	43	1450,00	8
3	médio -	31	960,00	6
4	médio	37	960,00	8
5	médio	. 24	600,00	3
6	médio	25	600,00	2
7	médio	27	600,00	5
8	médio	22	450,00	2
9	fundamental	- 21	450,00	3
10	fundamental	26	450,00	3

- a. Classifique cada uma das variáveis.
- b. Faça uma representação gráfica para a variável Curso.
- c. Discuta a melhor forma de construir a tabela de frequências para a variável idade. Construa a representação gráfica.
- d. Repita o item c para a variável salário.
- e. Considerando que apenas os funcionários com mais de três anos de casa, descreva o comportamento da variável Salário.

fonte: (MAGALHÃES; LIMA, 2015, p. 24, ex. 7)

Um novo medicamento para cicatrização está sendo testado e um experimento é feito para estudar o tempo (em dias) de completo fechamento em cortes provenientes de cirurgia. Uma amostra em trinta cobaias forneceu os valores: 15, 17, 16, 15, 17, 14, 17, 16, 16, 17, 15, 18, 14, 17, 15, 14, 15, 16, 17, 18, 18, 17, 15, 16, 14, 18, 18, 16, 15 e 14.

- a. Organize uma tabela de frequência.
- **b.** Que porcentagem das observações estão abaixo de 16 dias?
- **c.** Classifique como rápida as cicatrizações iguais ou inferiores a 15 dias e como lenta as demais. Faça um gráfico de barras indicando as porcentagens para cada classificação.

fonte: (MAGALHÃES; LIMA, 2015, p. 24, ex. 5)

Um grupo de pedagogos estuda a influência da troca de escolas no desempenho de alunos do ensino fundamental. Como parte do levantamento realizado, foi anotado o número de escolas cursadas pelos alunos participantes do estudo.

Escolas Cursadas	frequência
1	46
2	57
3 .	21
4	15
5	4

- a. Qual a porcentagem dos alunos que cursaram mais de uma escola?
- **b.** Construa o gráfico de barras.
- c. Classifique os alunos em dois grupos segundo a rotatividade: alta para alunos com mais de 2 escolas e baixa para os demais. Obtenha a tabela de frequência dessa variável.

fonte: (MAGALHÃES; LIMA, 2015, p. 25, ex. 8)

Alunos da Escola de Educação Física foram submetidos a um teste de resistência quanto ao número de quilômetros que conseguiram correr sem parar. Os dados estão apresentados a seguir:

Faixas	freqüência
$0 \vdash\!$	438
4 ⊢ 8	206
$8 \vdash\!$	125
$12 \vdash 16$	22
$16 \vdash\!$	9 -

- a. Qual a variável em estudo?
- **b.** Construa o histograma.
- **c.** Obtenha o boxplot.

fonte: (MAGALHÃES; LIMA, 2015, p. 25, ex. 9)

Foram feitas medidas em operários da construção civil a respeito da taxa de hemoglobina no sangue (em gramas/cm³):

11,1	12,2	11,7	12,5	13,9	12,3	14,4	13,6	12,7	12,6
11,3	11,7	12,6	13,4	15,2	13,2	13,0	16,9	15,8	14,7
13,5	12,7	12,3	13,5	15,4	16,3	15,2	12,3	13,7	14,1

- a. Organize os dados em faixas de tamanho 1 a partir do 1 1.
- **b.** Construa o histograma.
- c. Determine o terceiro quartil e a mediana.
- **d.** Taxas abaixo de 12 ou acima de 16 são consideradas alteradas e requerem acompanhamento médico. Obtenha a tabela de frequência da variável *Acompanhamento Médico* com duas opções sim ou não.

fonte: (MAGALHÃES; LIMA, 2015, p. 26, ex. 12)

Num estudo sobre rotatividade de mão de obra na indústria, anotou-se o número de empregos nos últimos 3 anos para operários especializados e não especializados.

- **a.** Construa o diagrama de barra correspondente a cada tabela usando a porcentagem no eixo das ordenadas (eixo y).
- **b.** Junte as informações das duas tabelas em uma só e obtenha um diagrama de barras da rotatividade de mão de obra na indústria (sem diferenciar a especialização).
- c. Você acha que os trabalhadores especializados trocam menos de emprego? Justifique.

Não Especia	alizados
Empregos	n_i
1	106
2	222
3	338
4	292
5	164
total	1122

Especializa	dos
Empregos	n_i
1	210
2	342
3	109
4	91
5	35
total	787

fonte: (MAGALHÃES; LIMA, 2015, p. 29, ex. 18)

Um exame vestibular para uma faculdade tem 80 questões, sendo 40 de português e 40 de matemática. Para os 20 melhores classificados, apresentamos o número de acertos em cada disciplina, em ordem decrescente do total de pontos.

- a. Organize uma tabela de frequência para cada variável.
- b. Faça uma representação gráfica das tabelas obtidas em (a).
- c. Construa a tabela de frequência da variável total de pontos.
- d. Comente sobre a afirmação: os aprovados são melhores em português do que em

matemática.

aluno	1	2	3	4	5	6-	7	8	9	10
Português	35	35	34	32	31	30	26	26	24	23
Matemática	31	29	27	28	28	26	30	28	25	23
aluno	11	12	13	14	15	16	17	18	19	20
aluno Português	11 23	12 12	13 11	14 20	15 17	16 12	17 14	18 20	19	20

fonte: (MAGALHÃES; LIMA, 2015, p. 30, ex. 20)

Deseja-se comparar três técnicas cirúrgicas para a extração de dente de siso. Cada uma das técnicas foi aplicada em 20 pacientes e os resultados são apresentados a seguir.

- **a.** Encontre valores aproximados para a mediana de cada técnica.
- **b.** O intervalo interquartil é definido com a diferença entre o terceiro e o primeiro quartis. Calcule seu valor para cada uma das técnicas e comente.
- **c.** Discuta a variabilidade do tempo de recuperação em cada técnica.
- **d**. Se você é otimista, qual técnica escolheria?

fonte: (MAGALHÃES; LIMA, 2015, p. 31, ex. 22)

Bibliografia

- (MAGALHÃES; LIMA, 2015) Magalhães, MN; Lima, ACP. *Noções de Probabilidade e Estatística*. São Paulo: EDUSP, 2015 (7º edição).
- (BUSSAB; MORETTIN, 2017) Bussab, WO; Morettin, PA. *Estatística básica*. Editora Saraiva, 2017. [Disponível online na Minha Biblioteca https://integrada.minhabiblioteca.com.br/#/books/9788547220228]

Obrigado por assistir a esta aula!!