Cross metathesis / Tandem N-Acyliminium Ion Cyclization Approach toward the Synthesis of Grandisine A

Nantachai Inprung Pijitra Bunrod and Punlop Kuntiyong*

Organic Synthesis Research Laboratory, Department of Chemistry, Faculty of Science, Silpakorn University, Sanamchandra Palace Campus, NakhonPathom Thailand 73000. *Email address: kuntiyong p@su.ac.th Tel. 0-3425-5797

Abstract

Model studies for the synthesis of grandisine A were carried out featuring cross metathesis and tandem *N*-acyliminium ion cyclization. Cross metathesis of TBS ether of 4-penten-1-ol and an imide derived from 3-butenylamine and L-aspartic acid, and subsequent carbonyl reduction and desilylationresulted in the corresponding tethered hydroxyalkene-hydroxyl-β-lactam, which is the substrate for tandem *N*-acyliminium ion cyclization. Treatment of this lactam with TMSOTf resulted in a diastereoselective cyclization to afford the tricyclic product (1) with a pyranoindolizidine ring system of grandisine A. The stereogenic center bearing the protected amino group derived from L-aspartic acid served as the stereocontrol element and gave the diastereomeric products in non-racemic form.

Retrosynthetic Analysis

The most important key step of this work is the model study of tricyclic **1** would be derived from Tandem *N*-acyliminium ion cyclization of intermediate **2**. Another step is cross metathesis of imide **6** and TBS ether **12**.

Synthesis of TBS ether 12

Dimethyl malonate **7** was converted to allyl dimethyl malonate **8**. Hydrolysis of allyl dimethyl malonate **8** gave diacid **9** which was decarboxylated to 4-pentenoic acid **10**. 4-Pentenoic acid **10** was converted to 4-pentenol **11** upon treatment with LiAlH4. 4-pentenol **11** was protected with TBS to give 4-penten-1-ol **12**.

References

- 1. Caroll A. R.; Arumugan, G.; Quinn, R. J.; Redburn, J.; Guymer, G.; Grimshaw, G. *J. Org. Chem.* **2005**, *70*, 1889-1892.
- 2. Kuntiyong, P.; Piboonsrinakara, N.; Bunrod, P.; Namborisut, D.; Akkarasamiyo, S.; Songthammawat, P.; Hemmara, C.; Buaphan, A.; Kongkathip, B. *Heterocycles* **2014**, *89*, 437-452.

Synthesis of imide 6

A commercially available L-aspartic acid was converted to benzyl L-aspartate **4**. Amide formation of 3-butylamine and benzyl L-aspartate **4** gave amide **5** which was converted to imide **6** upon treatment with LiAlH_d.

Synthesis of tricyclic 1

Cross metathesis of imide 6 with TBS-protected 4-penten-1-ol 12 gave tethered 4-hepten-1-ol imide 3 which was selectively reduced with DIBALH to give hydroxylactam 2a. Upon treatment of 2a with BF₃OEt₂ gave the desired product 1 along with the bicyclic indolizidine 13.

Acknowledgement

Financial supports are provided by the Development and Promotion of Science and Technology Talents Project (DPST), the Thailand Research Fund (TRF) and the Faculty of Science, Silpakorn University.