Highly-Accurate Machine Fault Diagnosis Using Deep Transfer Learning

Siyu Shao*, Student Member, IEEE, Stephen McAleer, Ruqiang Yan**, Senior Member, IEEE, and Pierre Baldi**, Fellow, IEEE

Abstract—We develop a novel deep learning framework to achieve highly-accurate machine fault diagnosis using transfer learning to enable and accelerate the training of deep neural network. Compared with existing methods, the proposed method is faster to train and more accurate. First, original sensor data are converted to images by conducting a Wavelet transformation to obtain time-frequency distributions. Next, a pre-trained network is used to extract lower level features. The labeled time-frequency images are then used to fine-tune the higher-levels of the neural network architecture. This paper creates a machine fault diagnosis pipeline and experiments are carried out to verify the effectiveness and generalization of the pipeline on three main mechanical datasets including induction motors, gearboxes, and bearings with sizes of 6,000, 9,000, and 5,000 time series samples, respectively. We achieve state-of-the-art results on each dataset, with most datasets showing test accuracy near 100%, and in the gearbox dataset, we achieve significant improvement from 94.8% to 99.64%. We created a repository including these datasets located at mlmechanics.ics.uci.edu.

Index Terms—fault diagnosis, deep learning, transfer learning, convolutional neural network, pre-trained model, machine health monitoring

I. INTRODUCTION

ACHINE fault diagnosis is concerned with monitoring mechanical machines, identifying when a fault has occurred, and categorizing the fault. To identify and categorize faults, multiple sensors are installed to collect data, such as vibration data or thermal imaging data. These data are then processed to determine whether a fault has occurred and then categorize that fault. Traditionally, machine fault diagnosis contains three main stages: sensor signal acquisition, feature extraction and selection, and fault classification. Sensor signal acquisition involves collecting sensor data while the machine is running. Feature extraction is traditionally done through time-frequency analysis, which includes original sensor data in both the frequency and time domains. For the final fault classification stage, the extracted features are used to train machine learning models to make fault predictions. However, there are several limitations with these traditional fault diagnosis methods:

- 1) Conventional fault diagnosis methods are based on manually-selected features. As a result, fault classification
- S. McAleer, and P. Baldi are with the School of Information and Computer Science, University of California, Irvine, CA, 92697-3435, USA (email:mcaleer.stephen@gmail.com; pfbaldi@ics.uci.edu).
- S. Shao and Ruqiang Yan are with the School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China (e-mail: cathygx.sy@gmail.com; ruqiang@seu.edu.cn).
 - *Work done while at University of California, Irvine
 - **Corresponding authors

- performance can decrease significantly if these manually-selected features are inadequate for the task.
- 2) Handcrafted features are task-specific for different classification tasks which means features used to accurately make predictions under certain circumstances are unsuitable for other scenarios. It is difficult to design a set of features that are able to generate reliable predictions among all conditions.

Deep learning (DL) methods provide effective solutions to overcome the above limitations in part due to their powerful feature learning ability. Deep architectures have multiple hidden layers which have the capability to learn hierarchical representations directly from the raw data. Through model training, deep architectures are able to automatically select discriminative representations that are useful for making accurate predictions in subsequent classification stages according to the training data. Deep learning has been successfully applied to many areas of science and technology [1], such as computer vision [2], speech recognition [3], natural language processing [4], games [5], particle physics [6, 7], organic chemistry [8], and biology [9, 10], to name just a few areas and examples.

Not surprisingly, deep learning has been applied to mechanical fault diagnosis. For instance, Sun et al.[11] designed an autoencoder-based neural network for induction motor diagnosis and achieved accurate fault prediction. Ding et al. [12] developed a spindle bearing fault diagnosis system using wavelet packet energy as the input to a deep convolutional neural network and obtained reasonable diagnostic performance in diagnosing various machine failures. An enhanced gated recurrent network was used to estimate the remaining life of a machine and conduct fault diagnosis in both gearbox and rolling element bearings in [13].

Although deep learning models have achieved successful applications in machine fault diagnosis tasks, there are still problems associated with deep learning methods. First, deep models implemented by most of the aforementioned papers have less than five hidden layers. Deep models with more than ten hidden layers have not been investigated and their performance in machine fault diagnosis tasks has not been assessed. However, as the number and size of the hidden layers increases, the number of free parameters increases too, and training very large networks from scratch usually requires massive amounts of labeled data and considerable computational and time resources. In addition to parameter optimization, hyperparameter tuning (architecture, learning rates, dropout rates, etc) greatly affects performance and is also very time consuming.

A promising approach to overcome the difficulties of training a deep architecture from scratch uses transfer learning (TL) where instead of fully training a neural network with random initialization, a deep neural network that has been trained from sufficient labeled data in a different application is used and fine-tuned based on the task at hand. Transfer learning focuses on using knowledge gained in one problem to solve a different but related problem. It has been used in many applications, such as text classification and spam filtering[14].

Transfer learning has been applied to the research on fault diagnosis. For example, Wen proposed a deep transfer learning method for fault diagnosis based on sparse autoencoder that can learn common features across different working conditions[15]. Shen proposed a transfer learning-based approach for bearing fault diagnosis where auxiliary data are transferred to improve diagnostic performance among various operating conditions[16].

These applications of transfer learning require the training of large architectures from scratch. In contrast, this paper focuses on using transfer learning to accelerate the training process of deep architecture and learn hierarchical representations. This is achieved by using a pre-trained deep convolutional neural networks, which have been pre-trained using large data sets of natural images. As we shall see, the network architectures, model parameters, and model hyper-parameters can be transferred to the target model for machine fault diagnosis. The lower level weights of the target neural network are obtained from the pre-trained model and the higher level weights are fine-tuned for the specific fault diagnosis task. In this way, transfer learning gives the target model a reasonable initialization and reduces the number of parameters that need to be updated. Thus, transfer learning geatly improves the training process for deep neural network.

The main contributions of this paper can be summarized as followed:

- 1) We present a machine fault diagnosis framework based on a deep convolutional neural network which uses transfer strategy to improve model training efficiency. Lowerlevel network parameters are transferred from a previously trained deep architecture, trained using natural images, followed by fine tuning of the high-level parameters and the entire architecture using task-specific mechanical data. The proposed framework uses a deep architecture with more than ten hidden layers to learn hierarchical representations from sensor data and is able to achieve quick and accurate working condition recognition. This paper is the first attempt to use pre-trained models for efficient applications in the machine fault diagnosis domain.
- 2) The performance of the proposed framework using a pretrained deep model is compared with the performance of a convolutional neural network trained from scratch using the same data. The proposed approach leads to faster training and better accuracy. In addition, the proposed approach is also compared to other machine learning methods in terms of fault state classification accuracy.
- We report consistent results across three main mechanical datasets including induction motors, bearings, and gearboxes, demonstrating that the proposed framework leads

to a state-of-the-art pipeline for fault diagnosis.

The rest of the paper is organized as follows. Section 2 introduces the theoretical background of the proposed approach, including time-frequency imaging, deep convolutional neural networks, and transfer learning. In Section 3, the overall mechanical fault diagnosis system is illustrated in detail. In Section 4, experimental studies on three datasets are carried out to verify the effectiveness of the proposed model, together with performance comparisons to other methods. Conclusions and future work are presented in Section 5.

II. METHODS

A. Time-frequency Imaging

We use time-frequency imaging to convert original sensor data to images. Time-frequency imaging is a technique that transforms signal frequency time-series data to the time-frequency domain. This is a useful tool in analyzing mechanical sensor signals for fault diagnosis since it provides an insight into the original data in the context of time[17] and since different time-frequency patterns are specific to different machine working conditions. Time-frequency imaging can be obtained from various methods, including Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT), Wigner-Ville distribution, etc. Among them, CWT is an effective technique to represent signals in multiple resolutions.

The wavelet transform is widely used in feature extraction in fault diagnosis tasks, and can be regarded as a mathematical tool to transform time-series to another feature space. We use a continuous wavelet transform to obtain time-frequency distributions, generating representations of the original signal in the time and frequency domains simultaneously[18].

Wavelet transform conducts an inner product operation of the signal and a set of the wavelets. This set of wavelets is a wavelet family realized by scaling and translating the mother wavelet $\psi(t)$, shown as:

$$\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right) \tag{1}$$

where s is a scale parameter inversely related to frequency, and τ is a translation parameter.

A continuous wavelet transform of a signal x(t) can be obtained by a convolution operation of a complex conjugate, mathematically defined as follows,

$$W(s,\tau) = \langle x(t), \psi_{s,\tau} \rangle = \frac{1}{\sqrt{s}} \int x(t) \psi^* \left(\frac{t-\tau}{s} \right) dt \qquad (2)$$

where $\psi^*(\cdot)$ denotes the complex conjugate of the above function $\psi(\cdot)$. This equation demonstrates that the continuous wavelet transform is similar to the Fourier transform where a signal can be decomposed into the frequencies that it is composed of. Through this operation, the signal x(t) is decomposed into a series of wavelet coefficients where the wavelet family is the basis function. Based on above equations there are two kinds of parameters in family wavelets: s and τ . After the convolution operation, the signal x(t) is transformed by the family wavelets and projected to the 2D time and scale dimensions[18]. In this way, one-dimensional time series are converted to time-frequency images.

B. Convolutional Neural Network

Convolutional neural networks (CNNs) are widely used when dealing with image tasks. A deep convolutional neural network is able to learn hierarchical features automatically from input images where features from higher level layers are more abstract than those from lower layers. These abstract features are beneficial for accurate classification, and are learned automatically. In general, convolutional neural networks contain three kinds of layers: convolution layers, pooling layers, and fully-connected layers. Convolution and pooling layers are combined to form convolution blocks, and several such blocks are stacked to build a deep architecture. Usually a fully connected layer is used as the last layer to perform classification or regression. Figure 1 illustrates a typical CNN architecture.

Fig. 1: Typical convolutional neural network architecture

The main ideas behind convolutional neural network are local receptive fields, shared weights, and the pooling operation. Compared with fully connected neural networks, CNNs adopt the concept of a local receptive field where only a small localized area of the input image is connected to each node in a convolutional layer. This way of connection dramatically reduces the number of parameters in the deep architecture and reduces the training difficulty of the network. In order to detect the same local feature throughout the whole image, weights and biases within one convolutional layer are shared between hidden neurons and each set of shared weights and biases is called one convolution kernel.

Each kernel is convolved across the width and height of the input, computing the dot product between the kernel and the input. The k-th feature map before non linear transformation has the feature value Z_k , given by:

$$Z_k = W_k \otimes x + b_k \tag{3}$$

where W_k denotes k-th convolution kernel and b_k represents bias term; x is the input image of this convolution layer; \otimes is a 2D convolution operation, performing a dot product of the kernel and the input. Adding activation functions $a(\cdot)$ gives nonlinearities to convolutional layers, which can be denoted as:

$$A_k = a(Z_k) \tag{4}$$

where A_k represents a nonlinear feature value of the k-th feature map and activation function $a(\cdot)$ is a rectified linear unit (ReLU) which is widely used in deep learning architectures.

To generate feature maps through various kernels, convolution operation between kernels and input images are performed as:

$$a_{i,j} = a \left(\sum_{d=0}^{D-1} \sum_{m=0}^{F-1} \sum_{n=0}^{F-1} w_{m,n,d} x_{i+m,j+n,d} + b \right)$$
 (5)

where $a_{i,j}$ represents the node in the output feature map with the location of (i,j); x is the input image which has depth of D. $x_{i+m,j+n,d}$ denotes the value at the location of (i,j) in the d-th depth; the weight of convolution kernel at the location of (m,n) in the d-th depth is denoted as $w_{m,n,d}$. b represents kernel bias and $F \times F$ is the size of convolution kernel.

Convolution layers are followed by a pooling layer which performs down sampling operation to previous feature maps. Mathematically, a pooling operation is defined as

$$y_{i,j,k} = pool_{(m,n) \in R_{ij}}(x_{m,n,k})$$
 (6)

where $pool(\cdot)$ represents the pooling rule and $y_{i,j,k}$ represents the new value at the location of (i,j) in k-th feature map after the pooling operation. R_{ij} is the pooling receptive region around the location (i,j) and $x_{m,n,k}$ denotes the node at location (m,n) within the receptive field. In practice, a max pooling operation is the most commonly used pooling rule applied to image classification task. In max pooling, the maximum value within a pooling region is selected and propagated to the next layer.

After a number of stacked convolution blocks, fully connected layers are used to perform classification or regression[19, 20]. For classification tasks, after a set of fully connected layers, the output layer is a *softmax* function to predict categories. Mathematically, it can be obtained by

$$y = f(Wa + b_c) \tag{7}$$

where y represents the predicted labels; W represents the weight matrix between a, neurons in fully connected layer, and connected nodes in output layer; b_c denotes the bias and f is the softmax activation function.

Convolutional neural networks used for classification are trained by minimizing the cross entropy loss, which is defined as:

$$H(r,p) = -\sum_{i} r_{i} log(p_{i})$$
(8)

where r is 0 or 1 corresponding to the true label, and p denotes the output probability from the CNN model. Cross entropy loss serves to evaluate errors between true labels and predicted probabilities. The gradients of the weights with respect to this loss function are found by backpropogation and the weights are updated by stochastic gradient descent.

C. Transfer Learning and Fine-tuning Strategy

Transfer learning is an established area of machine learning research. In simple terms, given a source domain D_s and a target domain D_t , transfer learning tries to apply knowledge

learned previously from D_s , to D_t . Here, transfer learning is able to help training a target model by initializing the target model with parameters that are transferred from a pre-trained model.

Training a deep architecture from scratch is difficult in practice. Large deep neural networks contain a large number of weights which are randomly initialized before the training procedure and iteratively updated based on labeled data and the loss function. Updating all the weights iteratively is extremely time-consuming, and with limited training data, deep architectures have the possibility to overfit to the training data.

Transfer learning provides a promising alternative that makes use of a pre-trained deep convolutional neural network which is already trained by another dataset. As shown before, CNNs are able to learn hierarchical representations from images, and the knowledge embedded in the pre-trained model's weights can be transferred to the new task. Lower-level convolutional layers extract low level features like edges and curves, which are applicable to common image classification tasks, while operations in later layers can learn more abstract representations that are specific to different application fields. Therefore, lower-level representations can be transferred, and only the higher-level representations need to be learned from the new dataset. The procedure for updating the weights of higher hidden layers is called fine-tuning, and its success partly depends on the "distance" between the source dataset and the target dataset. For similar datasets, one can fine-tune only the fully-connected layers, while for datasets that have considerable differences, several convolution blocks need to be updated. Compared with training from scratch, this approach is faster as it essentially reduces the number of parameters that need to be trained.

Training a deep convolutional neural network from pretrained weights has already been successfully applied to several different tasks[21], and most of the existing pre-trained models are well trained from sufficient natural image data. For instance, in biomedical imaging, although there is often considerable difference between natural images and images from the biomedical domain of interest, several studies have demonstrated the effectiveness of applying pre-trained models to medical imaging tasks. Inspired by these achievements in the biomedical and other domains, here we investigate knowledge transfer from natural image to time-frequency imaging of mechanical dataset.

III. MACHINE FAULT DIAGNOSIS USING DEEP TRANSFER LEARNING

The proposed frame for detecting the working conditions of a mechanical system with high precision is based on deep convolutional neural network and time-frequency images are used as the input. Transfer learning based on pre-trained model helps improve deep model performance.

We propose a machine fault diagnosis pipeline that is able to automatically learn fault signatures and recognize machinery working states directly from the original vibration signals.

The overall procedure of the proposed mechanical fault diagnosis system is illustrated in Figure 2, including timefrequency imaging, data preparation, pre-trained model building with fine-tuning, and model application. The pre-trained model used in this paper is VGG-16[22] which is a 16-layer network. This model has achieved accurate classification performance on ImageNet dataset and detailed information about VGG-16 is illustrated in Table I and Figure 3.

Fig. 2: General pipeline of mechanical fault diagnosis based on fine-tuning pre-trained model

TABLE I: Detailed configuration of VGG-16 architecture

Layer	Туре	Receptive field size - number of channels	Output	Number of parameters
Input	Data	-	224 * 224 * 3	0
Block1 - conv1	Convolution	3*3-64	224 * 224 * 64	1792
Block1 - conv2	Convolution	3*3-64	224 * 224 * 64	36928
Block1 - pool	MaxPooling	2 * 2	112 * 112 * 64	0
Block2 - conv1	Convolution	3*3-128	112 * 112 * 128	73856
Block2 - conv2	Convolution	3*3-128	112 * 112 * 128	147584
Block2 - pool	MaxPooling	2 * 2	56 * 56 * 128	0
Block3 - conv1	Convolution	3*3-256	56 * 56 * 256	295168
Block3 - conv2	Convolution	3*3-256	56 * 56 * 256	590080
Block3 - conv3	Convolution	3*3-256	56 * 56 * 256	590080
Block3 - pool	MaxPooling	2 * 2	28 * 28 * 256	0
Block4 – conv1	Convolution	3*3-512	28 * 28 * 512	1180160
Block4 - conv2	Convolution	3*3-512	28 * 28 * 512	2359808
Block4 - conv3	Convolution	3*3-512	28 * 28 * 512	2359808
Block4 - pool	MaxPooling	2 * 2	14 * 14 * 512	0
Block5 - conv1	Convolution	3*3-512	14 * 14 * 512	2359808
Block5 - conv2	Convolution	3*3-512	14 * 14 * 512	2359808
Block5 - conv3	Convolution	3*3-512	14 * 14 * 512	2359808
Block5 - pool	MaxPooling	2 * 2	7*7*512	0
Fc1	Fully-connected	1*1*4096	4096	102764544
Fc2	Fully - connected	1*1*4096	4096	16791312
Out put	Fully – connected	1 * 1 * <i>C</i>	С	4096 * C + C

The pre-trained model used in this paper was trained on ImageNet, and the target dataset is the time-frequency imaging of the mechanical dataset. Since the natural images and the time-

Fig. 3: The transfer learning procedure trains the three highest-level blocks of the pre-trained VGG-16 network while leaving the weights of the bottom three blocks frozen.

frequency images are not similar, more convolutional blocks need to be fine-tuned for the mechanical dataset compared to images that are more similar to natural images. We transfer the general features from first three convolution blocks. We then fine-tune the last two convolution blocks and the fully-connected layers on the time-frequency dataset.

Time-frequency imaging: Vibration signals are acquired by sensors installed on mechanical machines during operation. These collected sensor signals are then transformed from the time domain to the time-frequency domain through a continuous wavelet transform, forming a set of time-frequency images which are utilized as the input of the following pretrained model.

Data preparation: In order to train and fine-tune the pretrained deep architecture, RGB images of a specific size are needed, so we must conduct data preparation on the time-frequency images. Since the converted distributions are gray-scale images which only have one-channel, a channel augmentation scheme is performed to achieve 2D images with 3 channels by duplicating the gray-scale images into 3 channels and adding a basis to each channel. After that, the processed images are divided into two parts: the training dataset and the testing dataset. The training dataset is used to train the pre-trained model and fine-tune its weights while the testing dataset is only used to verify the performance of deep model and is not used during training process.

Pre-trained model building and fine-tuning: In this stage

we tune a pre-trained deep convolutional neural network. After removing the top layer of the pre-trained CNN and adding an output layer whose size is determined by the number of possible machine working conditions, the newly added output layer's weights are initialized randomly. We set the last two convolution blocks and the fully-connected layers to be trainable. During the training procedure, earlier layers are frozen while the weights of trainable layers are updated to minimize errors between predicted labels and the true ones, shown in Figure 3. After enough epochs, the designed model is fine-tuned and the deep architecture together with all the parameters are saved.

Model application: The testing dataset is used to validate the precision of the designed model on the mechanical fault diagnosis task and the fine-tuned pre-trained deep model can be applied to diagnose machine working states.

IV. EXPERIMENTAL VERIFICATION

To test the performances of this proposed fault diagnosis system and verify its effectiveness, we conduct experiments on three datasets including induction motors, gearboxes, and bearings. Comparative experiments are also carried out to compare the classification accuracy with existing methods including both conventional feature-based methods and deep learning based methods. In addition, in order to compare the performances between fine-tuning a pre-trained model and a CNN trained from scratch, we build a CNN model with three convolution blocks and train it from scratch with the same data. Due to page limit, detailed performances about each dataset are provided in the supplementary material, including classification accuracy, loss, and confusion matrix.

A. Induction Motor Dataset

The dataset used in these experiments is acquired by a machine fault simulator, illustrated in Figure 4. Vibration signals are acquired by an acceleration sensor when the induction motor operates under six different conditions. Six different working conditions during motor operation can be simulated. Descriptions on each working condition simulation are listed in Table II[23].

Fig. 4: Experimental facility: (1) Opera meter, (2) Induction Motor, (3) Bearing, (4) Shaft, (5) Loading Disc, (6) Driving Belt, (7) Data Acquisition Board, (8) Bevel gearbox, (9) Magnetic Load, (10) Reciprocating Mechanism, (11) Variable Speed Controller, (12) Current Probe[23]

TABLE II: Motor condition description[23]

	Condition	Description
HEA SSTM	Normal motor Stator winding defect	Healthy motor without defect 3 turns shorted in stator winding
UBM	Unbalanced rotor	Unbalance caused by 3 added washers on the rotor
RMAM	Defective bearing	Inner race defect bearing in the shaft end
BRB BRM	Broken bar Bowed rotor	Broken rotor bars Rotor bent in center 0.01

For time-frequency imaging and data preparation, a time window containing 1,024 data points is chosen to be one sample and every sample is converted to a time-frequency image with size of 224 * 224 which is suitable for the pre-trained VGG-16 network. The gray-scale time-frequency images are extended to have 3 image channels by duplicating the original images, and the format of the these processed images before sending them to the deep neural network is 224 * 224 * 3. As described above, there are six different working conditions during induction motor operation where each working state is considered to be a separate category. The whole dataset is divided into training and testing subsets where each working condition contains 1,000 samples for training and 100 samples for testing. Therefore, the size of the training set is 6,000 and size of the testing set is 600.

Fault diagnosis for induction motors can be regarded as a 6-class classification task. The output layer of the pretrained VGG-16 model is replaced with a new layer with 6 neurons corresponding to 6 different working states with random weight initialization. To fine tune the network, we freeze the first three convolution blocks and train the weights in the last two convolution blocks and the fully-connected layers. During the training procedure we use Adam optimizer with learning rate 0.0001 and the batch size is set to be 32. After finishing fine-tuning the deep model, we evaluate model classification performance on induction motor data with the test dataset.

We used the Keras library [25] for model training and finetuning. Classification accuracy is calculated to evaluate model performance and experimental results are listed in Table III with comparisons to an induction motor fault classification framework based on a sparse auto-encoder architecture introduced in [11], a DBN-based fault diagnosis system proposed in [24], and conventional feature-based method [23].

As shown in these results, the proposed method is able to achieve accurate predictions of working states, outperforming all other methods on this induction motor dataset. Compared with traditional feature-based method [23], the proposed model is able to achieve higher accuracy with much less human intervention, especially in recognizing SSTM working state. 10-fold cross validation is carried out and the results are shown in Figure 5. Training error curves for the proposed method as well as a CNN trained from scratch are shown in Supplementary Materials. For ease of comparison, we calculated the time spent that the models were trained to achieve 99% accuracy, shown in Table III. Results show that the proposed fine-tuned model is able to achieve stable and accurate classification after

Fig. 5: Classification accuracy of average 10-fold cross validation on the induction motor dataset

two epochs, while the CNN trained from scratch needs more than ten epochs to achieve 99% accuracy. Although CNN model only has three hidden layers and has less parameters than pre-trained model, it takes a lot of time to fully train a CNN with random initialization. Compared with training from scratch, the proposed pre-trained model has better convergence speed and classification accuracy. Furthermore, the hyperparameters of the CNN trained from scratch need to be determined through trial and error to obtain best performance which is very time-consuming, while the proposed pre-trained model has already obtained optimal hyper-parameters that can be transferred to fault classification tasks.

B. Bearings Dataset

Experimental data for the bearings dataset are provided by the Case Western Reserve University Bearing Data Center[31]. Vibration data were collected using attached accelerometers from the drive end of the motor housing. Vibration signals were collected under four different operational conditions with respect to different bearing loads(load 0, 1, 2, and 3 hp). Within each operational condition, single point faults were introduced with fault diameters of 0.007 inches, 0.014 inches, and 0.021 inches on the rolling element, the inner raceway, and the outer bearings raceway, respectively. Each operational condition has 9 different fault categories with one health state, 10 kinds of bearing states in total.

In order to test the performance of the proposed framework under various working environments, several sub-datasets are created as follows:

- **A** Training data and testing data are both from vibration signals under working load of 0 hp.
- **B** Training data and testing data are both from vibration signals under working load of 1 hp.
- C Training data and testing data are both from vibration signals under working load of 2 hp.
- **D** Training data and testing data are both from vibration signals under working load of 3 hp.
- E Training data and testing data are both from vibration signals under working loads of 0-3 hp with balanced samples. F Training data come from vibration signals under working loads 0-2 horse hp while testing data are from working load of 3 hp.

TABLE III: Classification results for the induction motor dataset

Fault diagnosis method	HEA	SSTM	UBM	BRB	RMAM	BRM	Average	Training time
[11]	92.68%	93.50%	99.55%	99.91%	100%	100%	97.61%	-
[23]	100%	98%	100%	100%	100%	100%	99.67%	-
[24]	-	-	-	-	-	-	99.98%	-
CNN trained from scratch Pre-trained model	100% 100 %	99.00% 100%	90.00% 100 %	99.00% 100%	100% 100%	100% 100 %	98.00% 100 %	1317s 397s

TABLE IV: Classification results for the bearings dataset

Fault diagnosis method	Dataset under different working loads						
	A	В	С	D	Е	F	
[26]	88.9%	-	-	-	-	-	
[27]	-	-	-	92.5%	-	-	
[28]	-	-	-	-	95.8%	-	
[29]	-	-	-	-	97.91%	-	
[30]	-	-	-	-	99.66%	-	
[13]	-	-	-	-	99.6%	-	
[12]	98.8%	98.8%	99.4%	99.4%	99.8%	96.8%	
CNN trained from scratch Pre-trained model	98.30% 100 %	99.30% 100%	90.66% 100 %	99.72% 99.96%	98.85% 99.95 %	96.47% 98.80 %	

Fig. 6: Classification accuracy of average 10-fold cross validation on the bearings dataset

Fig. 7: Training time of CNN trained from scratch and pretrained model on the bearing dataset

Therefore, fault diagnosis for the bearings dataset is considered as a 10-class classification task. For time-frequency imaging, the same transformation as performed on the in-

duction motor dataset is done to these operational bearing vibration signals. For subsets A-D, the training data of each sub-dataset contain 500 samples for each machine state and the total number of training data is 5000 samples for 10 classes. The testing dataset is set to be the same number as the training dataset. For subset E, each machine state within a certain bearing load contains 100 samples and 10 classes under 4 different bearing loads. The whole set consists of 4000 samples for training and 4000 samples for testing. For subset F, each machine state within a certain bearing load also contains 100 samples, and for the training dataset, it contains 10 classes and 3 different working loads where the total number of training samples are 3000. Testing data are only from working load 3 where the testing set has 3000 samples.

Corresponding to the 10 different working states, the output layer of the pre-trained VGG-16 model is replaced with a new layer with 10 neurons with random weight initialization.

Classification accuracy is recorded to compare model performance with other methods, and experimental results are listed in Table IV. We compare our results to the following: bearing fault diagnosis system based on energy-fluctuated multi-scale feature learning strategy using designed Deep ConvNet [12], local feature-based gated recurrent unit networks for machine health monitoring [13], unsupervised feature learning using sparse filtering [30], conventional feature based methods [26] based on wavelet features and SVM. [27] is based on nine time-domain statistical features combined with wavelet coefficients energy, [28] uses a self-organizing map based on time-domain and frequency-domain features and [29] uses ensemble empirical mode decomposition and optimized SVM.

From the classification results shown in the TableIV, the proposed fine-tuned pre-trained deep model is able to accurately classify bearing operating states under various working environments, outperforming all other methods in terms of classification accuracy. Compared with conventional approaches based on wavelet features and SVM, our framework

TABLE V: Classification results for the gearbox dataset

Fault diagnosis method		Bearing		Gear		Mixture	
		20-2	30-2	20-0	30-2	20-0	30-2
	SAE-DNN	87.5%	92.1%	92.7%	91.9%	-	-
[13]	GRU	91.2%	92.4%	93.8%	90.5%	-	-
	BiGRU	93.0%	93.6%	93.8%	90.7%	-	-
	LFGRU	93.2%	94.0%	94.8%	95.8%	-	-
CNN trained from scratch Pre-trained model		98.90% 99.94 %	98.84% 99.42 %	98.70% 99.64 %	94.14% 99.02 %	98.07% 99.82 %	96.40% 99.31 %

is 11.1% more accurate, and compared to [27] and [28], the proposed model achieves a performance gain of 7.4% and 4.1% respectively. Furthermore, the pre-trained model is able to learn representative features from input without manually feature selection. In addition, when compared with machine learning based methods [12, 13], our proposed approach performs better in classification accuracy. The proposed model is able to learn representative features automatically based on different aims. For example, in sub-dataset F, the architecture is trained using signals from loads 0-2 and is tested using load 3 which is a new working condition to the trained model. Although the trained model is not familiar with signals from load 3, it can still differentiate bearing faults with relatively accurate rates regardless of the working environment. This demonstrates its effectiveness and robustness in the task of bearing fault diagnosis.

In order to compare the performances of proposed method with CNN model trained from scratch, 10-fold cross validation is carried out and results are shown in Figure 6. Besides, time spent that models were trained to achieve 99% accuracy is calculated and shown in Figure 7. As shown above, together with results in Supplementary Materials, pre-trained model is able to achieve accurate prediction after 2nd epoch, while CNN model trained from scratch needs more than 10 training epochs. Compared with training a CNN model from scratch, the proposed method has more accurate classification results and a better rate of convergence, especially in sub-dataset F where the proposed method shows better generalization ability.

C. Gearbox dataset

Fig. 8: Experimental setup for gearbox dataset

The gearbox dataset was collected from the Drivetrain Dynamic Simulator(DDS) shown in Figure 8. Two different working conditions are investigated with the rotating speed-system load set to be either 20HZ-0V or 30HZ-2V. The

TABLE VI: Bearing and gearbox fault types description

Location	Туре	Description
Gearbox	Chipped Miss Root Surface	Crack occurs in the gear feet Missing one of feet in the gear Crack occurs in the root of gear feet Wear occurs in the surface of gear
Bearing	Ball Inner Outer Combination	Crack occurs in the ball Crack occurs in the inner ring Crack occurs in the outer ring Crack occurs in the both inner and outer ring

Fig. 9: Classification accuracy of average 10-fold cross validation on the gearbox dataset

Fig. 10: Training time of CNN trained from scratch and pretrained model on the gearbox dataset

different types of faults for bearings and gearboxes are detailed in Table VI.

The dataset contains 5 different working conditions for

the bearing data and the gearbox data: four failure types and one health state. Therefore, fault diagnosis for Drivetrain Dynamic Simulator is a 5-class classification task. Each fault type consist of 1,000 samples for training and the entire gear and bearing training datasets are both 5,000 images. Testing datasets are the same size as training datasets. In order to test the proposed method when dealing with mixed faults, gear faults and bearing faults are combined to form a mixture dataset including 4 kinds of gear failure, 4 kinds of bearing failure, and 1 health state. Each working state contains 1,000 samples for training and 1,000 samples for testing and both the training and testing dataset contain 9,000 samples.

Corresponding to 5 and 9 different machine failure types, the output layer of the pre-trained VGG-16 model is replaced with a 5-neuron output layer and a 9-neuron output layer separately to predict corresponding labels.

Experimental results are listed in Table V. A comparison is given with the method proposed in [13], where an enhanced gated recurrent unit is adopted in diagnosing gearbox fault. From the results, the pre-trained model outperforms other machine learning based methods in classification accuracy and achieves approximated 6% performance improvement.

10-fold cross validation is carried out to compare the performances of pre-trained model and CNN trained from scratch and results are shown in Figure 9. Time spent is calculated and shown in Figure 10. Among all the sub datasets, pre-trained model takes less training time and achieves more accurate predictions.

Detailed results are shown in supplementary material, and the proposed method is more stable during training compared to training from scratch. These results show the proposed pretrained model is able to achieve accurate predictions for the gearbox dataset.

V. CONCLUSION

In conclusion, we have developed a deep transfer learning framework for mechanical fault diagnosis and classification, and we have created a repository of several benchmark datasets. Our comparative analysis has shown that the proposed approach achieves state-of-the-art results across each of these datasets. In the future, deep learning can be expected to continue to play a useful role in fault detection and classification across different mechanical systems, as well as in other areas of control engineering.

VI. ACKNOWLEDGEMENTS

The work of Siyu Shao, Stephen McAleer, and Pierre Baldi was in part supported by DARPA grant *D17AP*00002 to Pierre Baldi. Siyu Shao was also supported by National Natural Science Foundation of China grant 51575102 and Fundamental Research Funds for the Central Universities and Research Innovation Program for College Graduates of Jiangsu Province grant *KYLX*16_0191.

REFERENCES

- J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Networks, vol. 61, pp. 85–117, 2015.
- [2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural

- Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- [3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," *IEEE Signal Processing Magazine*, vol. 29, no. 6, pp. 82–97, Nov 2012.
- [4] R. Socher, Y. Bengio, and C. D. Manning, "Deep learning for nlp (without magic)," in *Tutorial Abstracts of ACL 2012*. Association for Computational Linguistics, 2012, pp. 5–5
- [5] L. Wu and P. Baldi, "Learning to play GO using recursive neural networks," *Neural Networks*, vol. 21, no. 9, pp. 1392–1400, 2008.
- [6] P. Baldi, P. Sadowski, and D. Whiteson, "Searching for exotic particles in highenergy physics with deep learning," *Nature Communications*, vol. 5, 2014.
- [7] C. Shimmin, P. Sadowski, and e. a. Pierre Baldi, "Decorrelated jet substructure tagging using adversarial neural networks," *Physical Review D*, vol. 96, p. 074034, 2017
- [8] D. Fooshee, A. Mood, E. Gutman, A. Tavakoli, G. Urban, F. Liu, N. Huynh, D. Van Vranken, and P. Baldi, "Deep learning for chemical reaction prediction," *Molecular Systems Design & Engineering*, 2017, dOI: 10.1039/c7me00107j.
- [9] C. N. Magnan and P. Baldi, "SSpro/ACCpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning, and structural similarity." *Bioinformatics*, vol. 30, no. 18, pp. 2592–2597, 2014.
- [10] P. Baldi, "Deep learning in biomedical data science." Annual Review of Biomedical Data Science, vol. 1, 2018, in press.
- [11] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, "A sparse auto-encoder-based deep neural network approach for induction motor faults classification," *Measurement*, vol. 89, pp. 171–178, 2016.
- [12] X. Ding and Q. He, "Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis," *IEEE Transactions on Instrumentation and Measurement*, 2017.
- [13] R. Zhao, D. Wang, R. Yan, K. Mao, F. Shen, and J. Wang, "Machine health monitoring using local feature-based gated recurrent unit networks," *IEEE Transactions on Industrial Electronics*, 2017.
- [14] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.
- [15] L. Wen, L. Gao, and X. Li, "A new deep transfer learning based on sparse autoencoder for fault diagnosis," *IEEE Transactions on Systems, Man, and Cybernetics:* Systems, 2017.
- [16] F. Shen, C. Chen, R. Yan, and R. X. Gao, "Bearing fault diagnosis based on svd feature extraction and transfer learning classification," in *Prognostics and System Health Management Conference (PHM)*, 2015. IEEE, 2015, pp. 1–6.
- [17] B. Boashash, Time-frequency signal analysis and processing: a comprehensive reference. Academic Press, 2015.
- [18] R. Yan, R. X. Gao, and X. Chen, "Wavelets for fault diagnosis of rotary machines: A review with applications," Signal processing, vol. 96, pp. 1–15, 2014.
- [19] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, and G. Wang, "Recent advances in convolutional neural networks," arXiv preprint arXiv:1512.07108, 2015.
- [20] G. E. Hinton, N. Śrivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv preprint arXiv:1207.0580, 2012.
- [21] H. Azizpour, A. Sharif Razavian, J. Sullivan, A. Maki, and S. Carlsson, "From generic to specific deep representations for visual recognition," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 2015, pp. 36–45.
- [22] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
- [23] X. Yang, R. Yan, and R. X. Gao, "Induction motor fault diagnosis using multiple class feature selection," in *Instrumentation and Measurement Technology Confer*ence (I2MTC), 2015 IEEE International. IEEE, 2015, pp. 256–260.
- [24] S.-Y. Shao, W.-J. Sun, R.-Q. Yan, P. Wang, and R. X. Gao, "A deep learning approach for fault diagnosis of induction motors in manufacturing," *Chinese Journal of Mechanical Engineering*, pp. 1–10.
- [25] F. Chollet *et al.*, "Keras," https://keras.io, 2015.
- [26] W. Du, J. Tao, Y. Li, and C. Liu, "Wavelet leaders multifractal features based fault diagnosis of rotating mechanism," *Mechanical Systems and Signal Processing*, vol. 43, no. 1, pp. 57–75, 2014.
- [27] X. Jin, M. Zhao, T. W. Chow, and M. Pecht, "Motor bearing fault diagnosis using trace ratio linear discriminant analysis," *IEEE Transactions on Industrial Electronics*, vol. 61, no. 5, pp. 2441–2451, 2014.
 [28] W. Li, S. Zhang, and G. He, "Semisupervised distance-preserving self-organizing
- [28] W. Li, S. Zhang, and G. He, "Semisupervised distance-preserving self-organizing map for machine-defect detection and classification," *IEEE Transactions on Instru*mentation and Measurement, vol. 62, no. 5, pp. 869–879, 2013.
- [29] X. Zhang, Y. Liang, J. Zhou et al., "A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized svm," *Measurement*, vol. 69, pp. 164–179, 2015.
- [30] Y. Lei, F. Jia, J. Lin, S. Xing, and S. X. Ding, "An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data," *IEEE Transactions on Industrial Electronics*, vol. 63, no. 5, pp. 3137–3147, 2016.
- [31] "Case western reserve university bearing data center," http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website.