Partiel 2

Durée : quatre heures

Documents et calculatrices non autorisés

Aucune réponse au crayon de papier ne sera corrigée.

Nom:

Prénom:

Groupe:

Exercice 1 (2 points)

Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{pmatrix}$. Déterminer la matrice A^{-1} en prenant soin de vérifier (au brouillon) le résultat final.

Exercice 2 (4,5 points)

Décomposer en éléments simples dans $\mathbb{R}(X)$ les fractions rationnelles suivantes :

1.
$$F(X) = \frac{8X^2 - 20}{(X-1)(X+2)(X-2)}$$

[suite du cadre page suivante]

3.
$$H(X) = \frac{2X^2 - 1}{(X+1)(X^2 + X + 1)}$$

Exercice 3 (2,5 points)

1. On se place dans le plan \mathbb{R}^2 muni d'un repère orthonormé. Déterminer la matrice de la symétrie orthogonale par rapport à l'axe des abscisses relativement à la base canonique de \mathbb{R}^2 .

2. Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathscr{M}_2(\mathbb{R}) \\ \\ P(X) & \longmapsto & \left(\begin{array}{ccc} P(0) & P(1) \\ P'(1) & P''(1) \end{array} \right) \end{array} \right.$$

Déterminer la matrice de f relativement aux bases canoniques.

N.B.: on prendra comme base canonique de $\mathcal{M}_2(\mathbb{R})$ la base suivante:

$$\left(E_{11} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), E_{12} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), E_{21} = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), E_{22} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)\right)$$

Exercice 4 (6 points)

Soit
$$f: \left\{ egin{array}{ll} \mathbb{R}^3 & \longrightarrow \ \mathbb{R}^2 \\ (a,b,c) & \longmapsto \ (a+b,b+c) \end{array} \right.$$

1. Montrer que f est linéaire.

2. Déterminer $Ker(f)$ et donner sa dimension.		
	·	
		,
3. En déduire $Im(f)$.		_/
		_/
4. f est-elle injective, surjective?		
		_/
5. Déterminer la matrice de f relativement aux bases canoniques.		
		.\
\		

6. Soit $\mathscr{B}'=\left\{(1,1,0),(1,0,1),(1,1,1)\right\}$. \mathscr{B}' engendre-t-elle \mathbb{R}^3 ? \mathscr{B}' est-elle une base de \mathbb{R}^3 ?

7. Déterminer les coordonnées du vecteur (2,3,1) de \mathbb{R}^3 dans \mathscr{B}' .

8. En notant \mathcal{B} la base canonique de \mathbb{R}^2 , déterminer la matrice de f relativement à \mathcal{B}',\mathcal{B} .

Exercice 5 (2 points)

On se place dans $\mathbb{R}_2[X]$. Dans les trois questions suivantes, vos réponses doivent être justifiées.

1. $\mathscr{B}_1 = \{X^2 + X, X + 3\}$ engendre-t-elle $\mathbb{R}_2[X]$?

(
$\mathscr{B}_3 = \{1, X+1$	$X^2 + 2X$ est-elle v	ine base de $\mathbb{R}_2[X]$?		
	·			
	points)			
ercice o (Z		atrer que $E = Ker(p)$	$\oplus \operatorname{Im}(p)$	
	· · · · · · · · · · · · · · · · · · ·			
	·			

Exercice 7 (3 points)

Soient E un \mathbb{K} -ev, p et q deux projecteurs. Montrer que $(p \circ q = p$ et $q \circ p = q) \iff \operatorname{Ker}(p) = \operatorname{Ker}(q)$