

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு இரண்டாம் தவணைப் பரீட்சை - 2023 National Field Work Centre, Thondaimanaru.

2nd Term Examination - 2023

இணைந்த	கணிகம்	_	(B)
	200001 2011		(1)

Combined mathematics - (B)

Gr -12 (2024)

10

T

В

பகுதி - B

11) (a) p>q>0 எனவும் $f(x)=x^2-2px+q^2$ எனவும் $g(x)=x^2-2qx+p^2$ எனவும் கொள்வோம். சமன்பாடு f(x)=0 இன் மூலங்கள் மெய்யானவையும் வேறுவேறானவையும் எனவும் சமன்பாடு g(x)=0 இன் மூலங்கள் கற்பனையானவை எனவும் காட்டுக.

f(x)=0 இன் மூலங்கள் lpha,eta எனவும் g(x)=0 இன் மூலங்கள் γ,δ எனவும் கொள்வோம்.

 $lpha\gamma+eta\delta$, $lpha\delta+eta\gamma$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $x^2-4pqx+4(p^4-p^2q^2+q^4)=0$ எனக் காட்டுக.

மேலும் இச்சமன்பாட்டின் மூலங்கள் இரண்டும் கற்பனையானவை எனவும் காட்டுக.

 $x \in \mathbf{R}$ இந்கு $f(x) + g(x) \ge \frac{1}{2}(p-q)^2$ எனக் காட்டுக.

(b) $p(x) = x^4 + ax^3 + bx^2 - 4x + c$ எனக் கொள்வோம்; இங்கு a,b,c என்பன மெய்ம் மாறிலிகள் ஆகும். x, x-1 என்பன p(x) இன் காரணிகள் எனவும் p(x) ஐ x+1 இனால் வகுக்க வரும் மீதி 10 எனவும் தரப்பட்டுள்ளன. a,b,c இன் பெறுமானங்களைக் காண்க.

p(x) ஐ இரு ஏகபரிமாணக் காரணிகளினதும் ஒரு இருபடிக் காரணியினதும் பெருக்கமாக எடுத்துரைக்க.

இதிலிருந்து p(x) ஐ x(x-1)(x-2) இனால் வகுக்க வரும் ஈவையும் மீதியையும் காண்க.

- 12) (a) பின்வருவனவற்றைக் காண்க.
 - (i) $\lim_{x \to 2} \frac{\sqrt{2x+5} \sqrt{x+7}}{x-2}$
 - (ii) $\lim_{x\to\infty} \frac{x^3-4x^2-3}{(x-1)(2x-1)}$
 - (b) முதற் தத்துவங்களில் இருந்து x குறித்து $\sin x$ இன் பெறுதியைக் காண்க.

இதிலிருந்து, x குறித்து $\sin^{-1} x$ இன் பெறுதியைப் பெறுக.

 $y=\sin(m\sin^{-1}x)$ எனின், $(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}+m^2y=0$ எனக் காட்டுக; இங்கு m ஒரு மெய்ம் மாறிலி.

(c)
$$0<\theta<\frac{\pi}{2}$$
 இந்கு $x=2\sin\theta-\sin2\theta$ எனவும் $y=2\cos\theta-\cos2\theta$ எனவும் கொள்வோம்.

$$\frac{d^2y}{dx^2} = -\frac{3}{8} \csc^3 \frac{3\theta}{2} \csc \frac{\theta}{2}$$
 எனக் காட்டுக. $\theta = \frac{\pi}{3}$ இல் $\frac{d^2y}{dx^2}$ ஐயும் காண்க.

13) (a) பின்வரும் சர்வசமன்பாடுகளை நிறுவுக.

(i)
$$\frac{\cos \theta}{1-\sin \theta} + \frac{1-\sin \theta}{\cos \theta} = 2 \sec \theta,$$

(ii)
$$\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta.$$

(b)
$$\sin x = \frac{2t}{1+t^2}$$
 எனவும் $\cos x = \frac{1-t^2}{1+t^2}$ எனவும் நிறுவுக; இங்கு $t = \tan \frac{x}{2}$. $a,b \in \mathbf{R}^+$ இற்கு $(a^2-b^2)\sin \alpha + 2ab\cos \alpha = a^2+b^2$ எனின் $\sin \alpha$ ஐயும் $\cos \alpha$ ஐயும் a,b சார்பில் காண்க.

- (c) சமன்பாடு $2\sin x 2\sqrt{3}\cos x \sqrt{3}\tan x + 3 = 0$ இன் பொதுத் தீர்வைக் காண்க.
- 14) (a) $\cos(A+B)$ ஐ $\sin A$, $\cos A$, $\sin B$, $\cos B$ ஆகியவற்றின் சார்பில் எழுதுக. $\textbf{இதிலிருந்து,}\ \cos(A-B)\ \textbf{ இந்கான ஓர் ஒத்த விரிவைப் பெறுக.}$ $\cos\frac{\pi}{12}=\frac{\sqrt{3}+1}{2\sqrt{2}}$ எனக் காட்டுக.
 - (b) வழமையான குறியீடுகளுடன் யாதாயினும் ஒரு முக்கோணி *ABC* யிற்கு **சைன் நெறியைக்** கூறி நிறுவுக.

முக்கோணிகள் ABD, ADC ஆகியவற்றிற்கு சைன் நெறியைப் பிரயோகிப்பதன் மூலம் $2\sin\alpha\cos\frac{\pi}{12}=\sin\left(\alpha+\frac{\pi}{4}\right)$ எனக் காட்டுக.

இதிலிருந்து,
$$\alpha = \frac{\pi}{6}$$
 எனக் காட்டுக. $[\cos \frac{\pi}{12} = \frac{\sqrt{3}+1}{2\sqrt{2}}$ எனக் கொள்க.]

- (c) x > 0 இற்கு $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1} x$ ஐத் தீர்க்க.
- 15) (a) நிலையம் A இல் ஓய்வில் இருந்து புறப்படும் ஒரு புகையிரதம் ஒரு நேரான கிடையான புகையிரதப் பாதை வழியே இயங்கிச் செல்கிறது. அது தன் பயணத்தின் முதல் 5T செக்கனுக்கு சீரான ஆர்முடுகல் $8f\ ms^{-2}$ உடன் இயங்கி அடுத்த $12\ T$ செக்கன்களுக்கு சீரான ஆர்முடுகல் $5f\ ms^{-2}$ உடன் இயங்கி பெற்ற வேகத்துடன் T_0 செக்கன்களுக்கு சீராக இயங்கி பின் $20f\ ms^{-2}$ அமர்முடுகலுடன் இயங்கி நிலையம் B இல் ஓய்வுக்கு வருகின்றது.

- (i) புகையிரதத்தின் இயக்கத்திற்கான வேக நேர வரைபை வரைக.
- (ii) புகையிரதம் இயங்கத் தொடங்கி 17 T செக்கனில் புகையிரதத்தின் கதி யாது?
- (iii) புகையிரதத்தின் இயக்கத்தின் முதல் 17 T செக்கனில் புகையிரதம் சென்ற தூரம் யாது?
- (iv) நிலையம் A இல் இருந்து நிலையம் B இற்கான தூரம் முதல் $17\ T$ செக்கனில் இயங்கிய தூரத்தின் 6 மடங்கு எனின் T_0 ஐ T சார்பில் கண்டு இயக்கத்திற்கு எடுத்த மொத்த நேரத்தைக் காண்க.

(b)

கிடைத்தரையில் உள்ள புள்ளி O இல் இருந்து கிடையுடன் θ கோணத்தில் u கதியுடன் நிலைக்குத்துத் தளத்தில் எறியப்படும் துணிக்கை அதே நிலைக்குத்து தளத்தில் கிடைத்தரையில் உள்ள புள்ளி A இன் ஊடாக OA உடன் 60° சாய்வில் அமைந்துள்ள நிலைத்த தளத்தை $\sqrt{3ag}$ கதியுடன் $\sqrt{\frac{12a}{g}}$ நேரத்தில் செங்குத்தாக புள்ளி B இல் அடிக்கின்றது.

- (i) $u=3\sqrt{ag}$ எனக் காட்டுக.
- (ii) θ இன் பெறுமானத்தைக் காண்க.
- (iii) \overrightarrow{OA} மட்டத்தில் இருந்து B இன் உயரத்தைக் காண்க.
- (iv) துணிக்கை B ஐ அடித்து அடிக்கும் திசைக்கு நேர் எதிர்திசையில் v வேகத்துடன் பின்னதைத்து A இல் விழுகின்றது எனில் v ஐக் காண்க.
- O என்ற உற்பத்தி குறித்து A, C என்ற புள்ளிகளில் தானக்காவிகள் முறையே \underline{a} , $\underline{a} + \underline{b}$ ஆகும். D இன் தானக்காவி $2\underline{a}$. AC க்கு சமாந்தரமாக O ஊடாக வரையும் கோட்டில் AC = OB ஆகுமாறு B ஐக் குறிக்க. DB, OC ஐ M இல் சந்திக்கும். $OM = \lambda \ OC$, $MB = \mu \ DB$ ஆகக் கொள்க.
 - (i) B இன் தானக்காவியைக் காண்க.
 - (ii) \overrightarrow{DB} ஐ \underline{a} , \underline{b} சார்பாக தருக.
 - (iii) \overrightarrow{OM} , \overrightarrow{MB} என்பவற்றை λ , μ , \underline{a} , \underline{b} சார்பாக தருக.
 - (iv) DM:MB , OM:MC என்பவற்றைக் காண்க.

- (b) முக்கோணி ABC இன் நிமிர் மையம் H. \overrightarrow{HA} , \overrightarrow{HB} , \overrightarrow{HC} திசைகளில் முறையே P, Q, R என்ற விசைகள் தாக்குகின்றன. விசைத்தொகுதி சமனிலையிலிருப்பின் $\frac{P}{a} = \frac{Q}{b} = \frac{R}{c}$ எனக் காட்டுக.
- 17) (a) ABCDEF ஓர் ஒழுங்கான அறுகோணி. 3, $4\sqrt{3}$, 8, $\sqrt{3}$, 2 N விசைகள் முறையே \overrightarrow{AB} , \overrightarrow{CA} , \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{FA} திசைகளில் தாக்குகின்றன.
 - (i) தொகுதியின் விளையுளின் பருமன், திசையைக் காண்க.
 - (ii) இத்தொகுதியை சமனிலையடையச் செய்ய சேர்க்க வேண்டிய விசையின் பருமன் திசையைக் காண்க.
 - (b) 4m நீளமும் $40 \ kg$ நிறையுமுள்ள சீரான கோல் அதன் நுனிகளில் இணைக்கப்பட்ட இழைகளால் தாங்கப்படுகிறது. இழைகள் அறாது தாங்கக்கூடிய இழுவை $35 \ kg$ எனின் $20 \ kg$ நிறையை மையத்திலிருந்து எவ்வளவு தூரத்தில் தொங்கவிட முடியும் எக் காண்க.

A CLASSICAL EDUCATION FOR THE FUTURE