# CLINICAL APPLLICATIONS OF NEXT GENERATION SEQUENCING

Bharat Thyagarajan

Department of Laboratory Medicine and Pathology

University of Minnesota

# MOLECULAR DIAGNOTSTICS LABORATORY

- The Molecular Diagnostics Laboratory (MDL) processes around 20,000 specimens annually
- Major testing categories
  - Infectious disease testing: HPV
  - Bone marrow engraftment analyses
  - Hematological malignancies
    - Translocations, quantitative BCR-ABL, JAK2/FLT3/NPM1/CEBPA. T and B cell gene rearrangements etc.
  - Solid tumor malignancies
    - Microsatellite instability, KRAS, BRAF etc.
  - Inherited disorders
    - Factor II, V mutations, sequencing, Southern blot etc.

# CURRENT MOLECULAR TESTING SCHEME FOR ONCOLOGY

**CLINICIANS ORDER INDIVIDUAL GENETIC TESTS** MOLECULAR DIAGNOSTICS **CYTOGENETICS** DNA/RNA EXTRACTED FROM **FISH KARYOTYPF ARRAY CGH** SUBMITTED TISSUE ONF MUTATION = ONE TEST SEPARATE MOLECULAR PATHOLOGY REPORT SEPARATE CYTOGENETICS REPORTS

### **LUNG CANCER**

- As recently as a decade ago stage IV lung cancer had an universally poor prognosis of < 12 months irrespective of chemotherapeutic regimen
- At present, lung cancer with EGFR mutations have a mean survival of > 2 years
- Initial results of targeted therapy for other genetic alterations (e.g. ALK, ROS translocations) have shown promise
- Thus lung cancer is now considered a prototype for genetically tailored cancer therapy

# CURRENT GENETIC TESTING FOR LUNG CANCER

- Molecular Diagnostics
  - EGFR mutation analysis
    - Wide range of genetic alterations including point mutations in various exons (18-21) and deletions in exon 19

- Cytogenetics
  - ALK-EML4 translocations
    - Commonly detected using an ALK break-apart probe

# MUTATIONAL PROFILE IN LUNG CANCER



# CURRENT MOLECULAR TESTING SCHEME FOR INHERITED DISEASE

CLINICIANS ORDER INDIVIDUAL GENETIC TESTS MOLECULAR DIAGNOSTICS **CYTOGENETICS** DNA FXTRACTED FROM BLOOD **FISH KARYOTYPF ARRAY CGH** ONF GFNF = ONF TFST EACH TEST IS A SEPARATE MOLECULAR SEPARATE CYTOGENETICS REPORTS

PATHOLOGY REPORT

# DISTRIBUTION OF MSI vs. MSS COLON CANCERS



Features of Colorectal Tumors Exhibiting Chromosomal Instability or Microsatellite Instability.

## **TESTING FOR LYNCH SYNDROME**





### **CURRENT TESTING ALGORITHM**



# LIMITATIONS OF CURRENT TESTING PARADIGM

### INHERITED DISORDERS

- Comprehensive genetic testing for several syndromes frequently involve simultaneous testing for several genes
- Increasing demand for detection of point mutations and structural genetic alterations within tested genes

### CANCER DIAGNOSTICS

- Comprehensive prognostic and predictive testing in near future will involve testing at least a few dozen genes
- Various types of genetic alterations (point mutations, translocations etc.) will need to be evaluated simultaneously
- Limited amount of sample available will be available for testing

### PROPOSED SOLUTION

 NEXT GENERATION SEQUENCING technology was specifically designed to simultaneously evaluate variation in several genes

 This technology can also be used to detect different types of genetic alterations

- TYPES OF SEQUENCERS
  - HiSeq 2000/2500
  - Desktop sequencers: MiSeq/IonTorrent



# TECHNOLOGY: NEXT GENERATION SEQUENCING



Bottom: CCCCCC

### WHOLE GENOME VS. TARGETED CAPTURE



## **MAJOR STEPS OF NGS**

- DNA library preparation
- Target enrichment
- Cluster generation & sequencing (Illumina HiSeq 2000)
- Bioinformatics analysis of sequence data
- Data interpretation

## LIBRARY PREPARATION

Library = fragments of DNA that have been prepared for amplification and sequencing

Genomic DNA fragment 150-600bp in length The size of the fragment is called the "**insert size**"



## SEQUENCE ENRICHMENT OPTIONS



## PCR VS. SEQUENCE CAPTURE



## **SEQUENCE CAPTURE**



- Up to 80% enrichment for the targeted DNA
- 120 bp "baits" bind to DNA and magnetic beads
- Unbound DNA is discarded
- Baits are digested

# METHODOLOGIES FOR PERFORMING PCR BASED ENRICHMENT

- Uniplex PCR: 1 reaction = 1 amplicon
- Multiplex PCR: 1 reaction = 10-50 amplicons
- Droplet PCR: 1 reaction = 4,000 amplicons
- Microfluidics PCR
  - Multiplex 10 PCR/well
  - Can simultaneously amplify 480 amplicons



## **CLUSTER GENERATION AND SEQUENCING**

- Oligonucleotides attached to flow cell hybridize to the adaptors
- Individual DNA library fragments are immobilized





## **CLUSTER GENERATION AND SEQUENCING**

- Starting DNA template concentration is crucial to avoid overcrowding of clusters
- Each unique DNA molecule undergoes "bridge amplification"



## **CLUSTER GENERATION AND SEQUENCING**

- Simultaneous generation of millions of clusters ("polonies")
- One cluster:
  - Derives from a single parent DNA molecule
  - Made up of ~1000 identical copies
  - Unique
  - Physically isolated from other clusters



## **SEQUENCING BY SYNTHESIS**

- All clusters are sequenced in parallel, one base at a time
- Fluorescently tagged nucleotides compete for next space
- Fluorescent tag blocks addition of more than 1 nucleotide per round
- Each round
  - Addition of one base
  - Laser excitation -> fluorescence
  - One "base" read from each cluster
  - Removal of fluorescent tag





## **SEQUENCING BY SYNTHESIS**

















Top: CATCGT Bottom: CCCCCC

## **BIOINFORMATICS ANALYSIS**



| DISEASES VS.       |           |
|--------------------|-----------|
| INVESTIGE DISEASES | 011001001 |

Range: 1-50

/translocations

 $^{250X} - 1000X$ 

percentage

cytology

 $5 \text{ ng} - 1 \mu g$ 

5-7 days

Hotspot mutations/deletions

Sensitivity depends on tumor

Blood, Fresh frozen, FFPE,

Range: \$400 - \$1000

| DIJLAJLJ VJ.       | ONCOLOGI |
|--------------------|----------|
| INHERITED DISEASES | ONCOLOGY |

Existing methods work well

Range: \$1000 - \$10,000

Range: 1-150

20X

Blood

 $3 \mu g$ 

4-6 weeks

Across entire gene

NUMBER OF GENES

**MUTATION DISTRIBUTION** 

MINIMUM COVERAGE

**TURNAROUND TIMES** 

**TISSUE TYPES** 

INPUT DNA

COST

STRUCTURAL VARIATION

| INHEKII | ED DIS | EASES V | <b>VS. O</b> | NCOL | JGY |
|---------|--------|---------|--------------|------|-----|
|         |        |         |              |      |     |

| INHEKI | I FD DI | SEASES | <b>VS.</b> | ONCO | LUGY |
|--------|---------|--------|------------|------|------|
|        |         |        |            |      |      |

# TESTING SCHEME FOR INHERITED DISEASES

SAMPLE PREPARATION

**TARGET CAPTURE** 



**SEQUENCING** 



**SMALL PANELS**RAPID TURNAROUND TIMES
(5-7 DAYS)

EXOME SEQUENCING
SLOW TURNAROUND TIMES
(8-10 WEEKS)

## INHERITED DISEASES:NGS TESTING



## **NGS EXPERIENCE AT MDL**

- Have offered NGS testing for over 130 Mendelian disorders since August 2012
  - We have tested 300 samples
  - We have detected mutations in approximately 30% of all samples tested
  - Mutation detection rate is dependent on clinical diagnosis
    - Mutation identified in 80% of inherited thrombophilias
    - Mutation identified in 25% of ataxias
    - No mutations identified in disorders of sexual development



## GENOMIC REGIONS THAT ARE PROBLEMATIC FOR NGS

TRI-ALLELIC SNPS: 1 DISCREPANCY (2%) PSEUDOGENES/ HOMOLOGOUS REGIONS: 16 DISCREPANCIES (31%)



**52 UNIQUE DISCREPANCIES IN CODING REGION OF DNA** 



**18 DISCREPANCIES** 

(35%)

POLYMORPHIC REPEAT REGIONS: 7 DISCREPANCIES (13%)



### **TESTING SCHEME FOR ONCOLOGY**

### **DNA/RNA EXTRACTED FROM SUBMITTED TISSUE**



## **ONCOLOGY:NGS TESTING**

### Lung Cancer Panel

### Somatic mutation testing

- KRAS (NRAS/HRAS)
- EGFR
- BRAF
- PIK3CA
- ERBB2
- MET
- TP53
- AKT1
- MAP2K1
- EGFRvIII (RT-PCR assay)

### Translocation

- ALK (EML4-ALK, but other partners up to 20)
- ROS (up to 7 partners)
- KIF5B/RET
- CCDC6/RET (aka RET/PTC1)

### Amplification

- EGFR
  - MET
  - MAPK1 (p42/ERK2)
  - FGFR1
  - FGFR2

### Gastrointestinal Cancer Panel

### Somatic mutation testing

- EGFR
- KRAS (HRAS/NRAS)
- BRAF
- PIK3CA
- TP53
- ERBB2
- MET
- KIT
- PDGFRA
- AKT1
- PTEN
- APC

### Amplification/Deletion

- ERBB2
- IGF2 (11p15.5)
- PTEN
- MDM2
- EGFR (rare)

### **DETECTION OF EGFR MUTATIONS**

- Targeted sequencing of exons 18-21 (visualizing 18-19)
- Input DNA: 50 ng of DNA for two lung cancer specimens
- Specimen 1 (exon 19 deletion)
  - 80% tumor
- Specimen 2 (L747P mutation due to sequential T>C mutations)
  - 70% tumor

## **EGFR EXON 19 DELETION**



## **EGFR L747P MUTATION**



## BRAF V600E MUTATION: MINIMUM DNA INPUT



## TECHNICAL ISSUES WITH NGS IMPLEMENTATION

- Bioinformatics methods for sequence alignment keep undergoing rapid improvements
  - Need to update bioinformatics pipeline at frequent intervals
- Structural genetic variation:
  - Optimal algorithms for detection of copy number variation remain unclear
- Several regions with inadequate coverage
  - Backup Sanger sequencing/alternative methodology necessary for several exons in the context of inherited disorders
  - Sensitivity to detect somatic mutations will not be the same in all the analyzed regions

## CLINICAL ISSUES WITH NGS IMPLEMENTATION

- Interpretation of clinical significance of many variants is unclear
  - Communication of these results to the clinician is problematic
  - Often results in additional testing of family members to determine clinical significance of a particular variant
- Incidental genetic findings need to reported and appropriate clinical follow up procedures need to be in place

## OTHER ISSUES WITH NGS IMPLEMENTATION

- High upfront costs for test validation
  - Substantial reagent costs
- High sequencing run costs
  - Need to batch samples to reduce assay costs
    - Need to offer a large test menu to increase sample volume
  - Limited ability to repeat samples
    - Robustness of assays need to be adequately validated

## FUTURE APPLICATIONS OF NGS



## **ACKNOWLEDGEMENTS**

- FUNDING SOURCES
  - Institute for Translational Neuroscience
  - Biomedical Genomics Center
- BIOMEDICAL GENOMICS CENTER
  - Kenneth Beckman, Karina Bunjer, Adam Hauge, Archana Deshpande
- BIOINFORMATICS CORE FACILITIY
  - Kevin Silverstein, Getiria Onsongo, Jesse Erdmann
- MOLECULAR DIAGNOSTICS LABORATORY
  - Matt Bower, Teresa Kemmer, Matt Schomaker, Sophia Yohe,
     Jon Wilson, Michael Spears, Andrew Nelson
- FAIRVIEW
  - Klint Kjeldahl, Karin Libby





YOU REALIZE THAT NOTHING IS AS CLEAR AND SIMPLE AS IT FIRST APPEARS. ULTIMATELY, KNOWLEDGE IS PARALYZING.



