MATHEMATICAL ANALYSIS II INTEGRAL CALCULUS

SEVER ANGEL POPESCU

To my family.
To those who really try to put their lives in the Light of Truth.
Dedicated to the memory of my late Professor and Mentor, Dr. Doc. Nicolae Popescu.

Contents

Preface	7
Chapter 1. Indefinite integrals (Primitives, Ar	ntiderivatives) 1
1. Definitions, some properties and basic fo	/
2. Some results on polynomials	10
3. Primitives of rational functions	21
4. Primitives of irrational and trigonometric	c functions 27
5. Problems and exercises	47
Chapter 2. Definite integrals	49
1. The mass of a linear bar	49
2. Darboux sums and their applications	52
3. Lebesgue criterion and its applications	59
4. Mean theorem. Newton-Leibniz formula	63
5. The measure of a figure in \mathbb{R}^n	68
6. Areas of plane figures bounded by graph	ics of functions 75
7. The volume of a rotational solid	85
8. The length of a curve in \mathbb{R}^3	87
9. Approximate computation of definite int	egrals. 90
10. Problems and exercises	101
Chapter 3. Improper (generalized) integrals	105
1. More on limits of functions of one variab	le 105
2. Improper integrals of the first type	112
3. Improper integrals of the second type	122
4. Problems and exercises	135
Chapter 4. Integrals with parameters	137
1. Proper integrals with parameters	137
2. Improper integrals with parameters	147
3. Euler's functions gamma and beta	167
4. Problems and exercises	179
Chapter 5. Line integrals	181
1. The mass of a wire. Line integrals of the	v -
2. Line integrals of the second type.	194

4 CONTENTS

4. 5.	Computing plane areas with line integrals Supplementary remarks on line integrals	201 211 216 221
1. 2. 3. 4.	Double integrals on rectangles. Double integrals on an arbitrary bounded domain Green formula. Applications. Change of variables in double integrals. Polar coordinates.	225 225 233 244 251 263
1. 2. 3. 4.	What is a triple integral on a parallelepiped? Triple integrals on a general domain. Iterative formulas for a general space domain Change of variables in a triple integral	265 265 271 278 286 303
1. 2. 3.	Deformation of a $2D$ -domain into a space surface Surface integral of the first type. The mass of a $3D$ -lamina. Flux of a vector field through an oriented surface.	305 305 313 319 335
1. 2. 3.	Gauss formula (divergence theorem) A mathematical model of the heat flow in a solid Stokes Theorem	339 339 348 349 357
1. 2.	Complex functions integration Applications of residues formula	359 359 377 385
1. 2. 3. 4. 5.	June, 2010 June, 2010 June, 2010 June, 2010 September, 2010	387 387 387 387 388 388 388
Appen	ndix B. Basic antiderivatives	389

		CONTENTS	5
Appendix.	Index		391
Appendix.	Bibliography		397