

Agenda

- Meet the Team
- The Problem + Our Ideas
- Objective & Hypothesis
- Data Approach
- Dataset Overview + Process
- Variables
- Demo/Code Walkthrough
- Symptom Frequency + Importance
- Correlation Between Importance
- Log Loss
- Conclusions
- Recommendations
- Solutions
- App Demo

Meet the Team

- I. Andrea Capella-Castro Presentation Leader
- 2. Angie Menjivar Project Leader
- 3. Francesco Coccaro Project Leader
- 4. Patrick Kelly Technical Leader
- 5. Nicole Gutierrez Technical Leader

The Problem

According to a study by PinnacleCare, diagnostic errors and other inefficiencies cost the U.S. economy \$750 billion each year. This includes:

\$200 billion in unnecessary healthcare costs
\$250 billion in lost productivity
\$300 billion in pain and suffering

The study found that diagnostic errors are most common in the following areas:

How this idea came to be...

The development of LLMs has allowed super-symbolic representation of information into symbolic and subsymbolic meaning representing knowledge domains

This empowers patients to become more aware of Healthcare discrepancies/inequalities through the early diagnosis process

Make something accessible / affordable for people

Objective

The objective is to build a model that could predict a disease from symptoms provided by patients.

Hypothesis

HO: Diseases cannot be predicted based on symptom input.

HA: Diseases can be predicted based on symptom input.

Data approach

- Data Source: Kaggle
- Data Cleaning: Excel
- Analytics + Insights: H20 Flow Platform, Excel
- Machine Learning and Predictive
 Analytics: Python

Dataset Overview

- Our Dataset consists diseases and symptoms
- 131 symptoms
- 41 diseases
- 120 cases per disease
 - original: 18 columns x 4921 rows
 - final: 133 columns x 4921 rows

Dataset Process

Data processing problems-

- 1. Reformatting matrix
- 2. <u>Data size/Finding Data</u>
 - 3. Narrow variable set

		Original CSV	18 columns x 4921 rows	
<u>Disease</u>	Symptom_1	Symptom_2	Symptom_3	
Fungal infection	itching	skin rash	nodal skin eruptions	
Fungal infection	skin rash	nodal skin eruptions	dischromic patches	
Fungal infection	itching	nodal skin eruptions	dischromic patches	
Fungal infection	itching	skin rash	dischromic patches	

		Confusion Matrix	133 colur	nns x 4921 rows
<u>Patient</u>	<u>abdominal pain</u>	abnormal menstruation	<u>acidity</u>	<u>Disease</u>
1	0	0	0	Fungal infection
2	0	0	0	Fungal infection
3	0	0	0	Fungal infection
4	0	0	0	Fungal Infection

Variables

Machine Learning

Random Forest Classification

Symptoms(y)

Process

Disease(X)

Input

Output

Demo/Code walkthrough

```
# Step 1: Data Preparation
X = df.drop(columns=['Disease']) * # Features (symptoms)
y = df['Disease'] * # Target variable (disease)

# Split the data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Step 2: Model Selection and Training
model = RandomForestClassifier(random_state=42)
```

```
Enter a comma-separated list of symptoms (e.g., itching, sweating, vomiting): itching, sweating, vomiting Predicted Disease: Heart attack P-values and Significant Diseases: Significant Disease: Heart attack P-value: 0.041833091688969676 Correlating Symptoms to Predicted Disease: ['breathlessness', 'chest pain', 'sweating', 'vomiting']
```

Frequency of symptoms

Symptom	Frequency
fatigue	1932
vomiting	1914
high fever	1362
loss of appetite	1152
nausea	1146

Symptom Importance

Top 5 Highest Symptom Means Relating to Diseases

Symptom	Mean	
High fever	0.2768	
Loss of appetite	0.2341	
Nausea	0.2329	
Abdominal pain	0.2098	
Yellowish skin	0.1854	
		14

Variable Importance

Greatest Importance

variable	relative_importance	scaled_importance	percentage
high fever	2566.7666	1.0	0.0166
nausea	2236.1882	0.8712	0.0145
muscle pain	2162.7761	0.8426	0.0140
chest pain	2123.5366	0.8273	0.0137
mild fever	1989.4247	0.7751	0.0129

Least Importance

457.7419	0.1783	0.0030
437.2794	0.1704	0.0028
423.2812	0.1649	0.0027
411.5307	0.1603	0.0027
368.7041	0.1436	0.0024
	437.2794 423.2812 411.5307	437.2794 0.1704 423.2812 0.1649 411.5307 0.1603

The higher the importance, the stronger influence on model predictions

Correlation between most important variables

variable	relative_importance s	scaled_importance	percentage	
high fever	2566.7666	1.0	0.0166	
nausea	2236.1882	0.8712	0.0145	We chose to analyze the mo
muscle pain	2162.7761	0.8426	0.0140	important variables in the date
chest pain	2123.5366	0.8273	0.0137	
mild fever	1989.4247	0.7751	0.0129	

Top 3 Correlations

nausea muscle_pain 0.377418 muscle_pain high_fever 0.315278 mild_fever muscle_pain 0.228976

Log Loss

Scoring history typically shows how the performance metrics (such as log loss) of your model change over iterations or epochs during the training process. Log loss is a common evaluation metric for classification problems, especially when dealing with probability predictions. Lower log loss values indicate better model performance.

Conclusions

- Insights, Variable importance and limitations
- We are able to make a disease predictive model based on symptoms, but not with this dataset
 Reject our null hypothesis (HA: Diseases can be predicted based on symptom input)
- How can this dataset helped for future recommendations, connect with early diagnostic platform

Recommendations

Prescriptions for a similar projects

Solutions

How to find the disease?

App demo

Thank you!