Assignment 1

This assignment is about the exploration of non-parametric methods for density estimation, including histogram method, kernel density estimation and k nearest neighbor method.

0. Overview

0.1 Structure

- source python file
 - source.pv
- solution files
 - histogram.py: implementation of histogram method
 - kernel.py: implementation of kernel density estimation
 - knn.py: implementation of k nearest neighbor
- other file
 - plot.py: my wrapper of the gm1d plot function for showing gm1d in each subplot

0.2 Packages

- Packages including numpy, matplotlib, scipy are used for implementing algorithms.
- In addition, argparse is used for organizing the program, which can be installed via:

```
pip install argparse
```

0.3 Usage

- There are example usages in the following context
- Show the help message via:

```
python source.py -h
```

0.4 Parameters

- n: the amount of sample data
- b: the amount of bins in histogram method
- h: the parameter h in Gaussian kernel
- k: the amount of nearest neighbors

1. histogram method

1.1 Implementation

- This can be easily implemented with hist function in matplotlib.pyplot.
- Example usage (replace 200 and 25 with desired values of n and b):

python source.py --algorithm histogram method --n 200 --b 25

1.2 Vary num_data

- By increasing n in the usage above, the result histogram gets less spiky, captures more underlying features and gets closer to the original distribution.
- As n grows, b can be increased for a certain amount which makes the histogram better without making the histogram spiky.

1.3 Vary the number of bins

• This is the result of N = 200 and b = 10 or 25 or 75, which can be obtained with the following command:

python source.py --algorithm histogram result

- The effect of b:
 - If b is too small as shown on the left, the histogram is **too smooth** and **captures little details** of the original distribution (orange curve).
 - If b is too large as shown on the right, the histogram gets **too spiky** with **a lot of structures that are not presented** in the original distribution.
 - The best b is some intermediate value as shown in the middle, which captures the details without being spiky.

1.4 Find the optimal number of bins

This is achieved with Shimazaki and Shinomoto's choice.

Implementaion

generate an array of bin widths

• calculate the cost of each bin width with this formula:

$$C(\Delta) = \frac{2k - v}{\Lambda^2}$$
, where k is mean, v is variance and Δ is bin width

• The bin width that achieves the lowest cost is the best bin width

Usage

• The following usage finds the best b with a given n:

Result

If n = 200, b = 25 is the best result, which is shown above: + [4, 5, 6, ..., 50] number of bins are tested + on the left, the cost of each bin width is shown in the scatter plot. The histogram with the optimal bin width is shown on the right

1.5 Other methods for finding the optimal amount

Square-root choice

$$b = \left\lceil \sqrt{n} \right\rceil$$

Sturges' formula

$$b = \left[\sqrt{\log_2 n}\right] + 1$$

• Rice Rule

$$b = \left[2n^{\frac{1}{3}}\right]$$

2. kernel density estimate

2.1 Implementation

- Implemented with numpy operation based on Gaussian kernel
- Example usage (replace 200 and 0.35 with desired values of n and h):

python source.py --algorithm kernel_density_estimate --n 200 --h 0.
35

2.2 Vary num_data

By increasing n in the usage above, the result curve **captures more underlying features and gets closer to the original distribution**.

2.3 Vary h

• This is the result of N = 100 and h = 0.15 or 0.35 or 1, which can be obtained with the following command:

python source.py --algorithm kde_result

- The effect of h:
 - If h is too small as shown on the left, the curve gets too spiky with a lot
 of structures that are not presented in the original distribution.
 - If h is too large as shown on the right, the curve is too smooth and captures little details of the original distribution.
 - The best h is some intermediate value as shown in the middle, which captures the details without being spiky or too smooth.

2.4 Find the optimal h

This is achieved with the idea of maximum likelihood.

Implementation

• Test different value of h to achieve the highest probability:

$$L(h) = \prod_{i=1}^{m} \frac{1}{N} \sum_{n=1,n}^{N} \frac{1}{(2\pi h^2)^{\frac{1}{2}}} e^{-\frac{(x_i - x_n)^2}{2h^2}}$$

• This can be achieved easily with minimize in scipy.optimize

Usage

The following usage finds the best h with a given n:
 python source.py --algorithm optimal_h --n 200

Result

If n = 100, h = 0.35 is the best result, which is shown above.

3. k nearest neighbor method (kNN)

3.1 Implementation

kNN is implemented with the following 3 methods: * Naive approach: + sort sample data and test data + set a window with fixed width k on sample data + for each test data, slide the window to include the k nearest neighbors + get V with the following formula

Matrix operation approach:

- implemented with numpy
- KD tree:
 - implemented with KDTree in scipy.spatial

3.2 Usage

Example usage (replace 200 and 14 with desired values of n and k):

python source.py --algorithm kNN_kdtree --n 200 --k 14

3.3 Vary num_data

By increasing k in the usage above, the result curve **captures more underlying features and gets closer to the original distribution**.

3.4 Vary k

• This is the result of N = 100 and k = 5 or 14 or 50, which can be obtained with the following command:

python source.py --algorithm kNN_result

- The effect of k:
 - If k is too small as shown on the left, the curve gets noisy decision boundaries with a lot of structures that are not presented in the original distribution.
 - If k is too large as shown on the right, the curve gets over-smoothed boundaries and captures little details of the original distribution.
 - The best k is some intermediate value as shown in the middle, which is large enough to minimize error rate and _small enough to only include nearby samples.

3.5 Find the optimal k

This is achieved with the rule of thumb.

Implementation

• Get the best k simply with:

$$k = \sqrt{n}$$

Usage

• The following usage finds the best k with a given n:

python source.py --algorithm optimal_K --n 200

Result

If n = 100, k = 14 is the best result, which is shown above.

3.6

Assume $\{x1, x2, ... xn\}$ is the sample data, if the test data x > xn, the sum of probability mass over all the space won't converge to 1 as this is $O(\ln x)$.