Question 1. For each of the following functions, find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ (or $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$, etc.).

i.
$$f(x,y) = e^{xy} + \ln(x^2 + y^2)$$

2.
$$g(x,y) = \int_x^y e^{t^2} dt - x^2 y$$

3.
$$h(x,y) = \frac{x^2y}{x^2+y^2} + \sin(xy)$$

Question 2. Assume that the coefficients a_k are such that $\sum_{k=0}^{\infty} a_k x^k$ converges when x=-2 and diverges when x=4.

For each of the following series, determine whether it converges or diverges:

i.
$$\sum_{k=0}^{\infty} a_k 3^k$$

2.
$$\sum_{k=0}^{\infty} a_k$$

3.
$$\sum_{k=0}^{\infty} a_k (-2)^k$$

4.
$$\sum_{k=0}^{\infty} a_k (-5)^k$$

5.
$$\sum_{k=0}^{\infty} a_k \left(\frac{1}{2}\right)^k$$

In each case, determine if the series (A) Converges; (B) Diverges; (C) Cannot be determined from the given information. Explain your reasoning.

Question 3. Find the extrema of f(x, y, z) = x + 2y + 3z constrained to the intersection of the two cylinders $y^2 + z^2 = 1$ and $x^2 + z^2 = 2$.

Question 4. Evaluate the double integral

$$\iint_{R} \frac{x-y}{x+y} \, dA$$

where R is the region bounded by the lines y=x,y=3x,x+y=2, and x+y=6. Use the change of coordinates $u=\frac{y}{x}$ and v=x+y in order to simplify the problem:

- 1. Sketch the region R
- 2. Determine the bounds of integration in the uv-plane
- 3. Find the inverse transformation to express x and y in terms of u and v
- 4. Compute the Jacobian
- 5. Transform the integrand $\frac{x-y}{x+y}$ using the new variables
- 6. Set up and evaluate the transformed integral

Question 5. Consider the vector field

$$\mathbf{F}(x,y) = (x^2 + 2y)\mathbf{i} + (2x^3 + y^2)\mathbf{j}.$$

Let C be the closed curve formed by the line segments connecting the points (0,0), (1,0), and (0,1) in that order.

- 1. Verify whether \mathbf{F} is conservative.
- 2. Calculate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ using Green's theorem.

Question 6. Calculate the flux of the vector field

$$\mathbf{F}(x, y, z) = (x^2 + y)\mathbf{i} + (z - x)\mathbf{j} + (2y + z)\mathbf{k}$$

through the surface S defined by the paraboloid $z=4-x^2-y^2$ for $z\geq 0$, oriented such that the normal vectors have positive z-component. Use the following steps:

- 1. Parametrize the surface S
- 2. Find the fundamental vector product associated to this parametric surface and verify its orientation
- 3. Set up the flux integral as a double integral over the parameter domain
- 4. Evaluate the integral