

Introduction to TensorFlow

https://www.tensorflow.org/get_started/get_started https://www.tensorflow.org/tutorials/

Why TensorFlow?

- Has the largest user community
- Well documented
- Most popular Deep Learning framework

What is TensorFlow?

A Deep Learning library open-sourced by Google Brain

 Provides primitives for defining functions on tensors and automatically computing forward outcomes and backward derivatives

Designed for neural computation using data flow graphs

What is a Tensor?

Tensor = n-dimensional matrix

A tensor can be:

- a *scalar*
- a *vector*
- a *matrix*

What is a Data Flow Graph?

- Computations are represented as graphs:
 - Nodes are the operations (ops)
 - Edges are the Tensors

$$h = ReLU(Wx + b)$$

- Typical program consists of 2 phases:
 - Construction phase:

Assembling a graph (a model)

• Execution phase:

Pushing data through the graph

An Example of Data Flow Graph

A two layers Neural Network

- Input: X
- First layer:

$$H = ReLU(W1*X + b1)$$

Second layer:

$$O = Softmax(W2*H + b2)$$

An Example of Data Flow Graph

Tensorflow playground: http://playground.tensorflow.org/

Why use TensorFlow?

- Flexibility of designing & testing complex network structures:
 - CNNs (Inceptions, ResNets,)

• RNNs (LSTMs, GRU,)

Why use TensorFlow?

Seamless transition from model training to deployment:

Why use TensorFlow?

Other benefits:

✓ More stable API,

✓ Better documentation and more advanced tools,

✓ Runs on clouds, mobiles, desktops, ...

Week 3 Tutorial: An Exercise about Using TensorFlow with a Model

➤ Use the TensorFlow environment to construct and train a deep learning neural network (train), and then use this model for deployment (test).

Dataset: MNIST (Modified National Institute of Standards and Technology database)

- ➤ What is MNIST?
 - A dataset for handwritten digits.
 - It has a training set of 60,000 examples, and a test set of 10,000 examples
 - Modified from the NIST original blackwhite binary images to normalised greylevel images for domain transfer learning

References [LeCun et al., 1998a]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

http://yann.lecun.com/exdb/mnist/

Why MNIST?

- MNIST is a good database for learning techniques and introducing to pattern recognition methods on real-world data with minimal efforts on preprocessing and data formatting.
- Small pixels and fast computing (quick results in getting feedback)
 - **❖** 28*28 pixels
- Large size dataset for images and labels:
 - ♦ 60,000 for training
 - **❖** 10,000 for testing
- Less noise & highly differentiated classes
 - **❖** 10 classes (0-9)

