Sammanfattning av EL1000 Reglerteknik, allmän kurs

Yashar Honarmandi yasharh@kth.se

27 augusti 2019

Sammanfattning

Detta är en sammanfattning av EL1000 Reglerteknik, allmän kurs.

Innehåll

1	Grundläggande koncept	1
2	Blockschema	1
3	Negativ återkoppling	1

1 Grundläggande koncept

Grundläggande begrepp och ideer Reglerteknik handlar om att kontrollera olika storheter, ofta betecknad y, mot något värde r. Dessa påverkas typiskt av en yttre störning v, och vi kan kontrollera dem vid att tillföra en påverkan u.

Strategi för att förstå För att förstå systemet, hittar vi först på en modell som beskriver det. Ur denna modellen fås typiskt en differentialekvation. Denna löser vi med Laplacetransform över tid.

Överförningsfungktionen Typiskt (isär om modellen ger en linjär differentialekvation) fås en lösning i Laplacerummet på formen Y(s) = G(s)U(s), där U är Laplacertransformen av u. Funktionen G är överförningsfunktionen. Notera att denna lösningsformen beror på att alla initialvärden är 0!

Poler Ett systems poler är rötterna till nämnarpolynomet (som typiskt finns) i överförningsfunktionen.

Stabilitet Ett system är stabilt om det tenderar mot ett visst läge. Systemets stabilitet är typiskt kopplad med dets noder.

Nollställen Ett systems nollställen är rötterna till täljarpolynomet (som typiskt finns) hos överförningsfunktioner. Eftersom vi är intresserade av att styra y, är det viktigt hur vi ska välja u för att få det. Därmed är $\frac{1}{G}$ en viktig storhet, och nollställen kan därmed orsaka reglerproblem som är svårlösta.

Impulssvar Om lösningen för Y är på formen Y = GU, är lösningen för y på formen

$$y(t) = \int_{0}^{t} d\tau g(\tau)u(t - \tau).$$

g kallas för impulssvaret.

2 Blockschema

Syftet med blockschema Blockschema är ett systematisk sätt att rita reglerade system på.

Hur funkar det? Betrakta blocket i figur 1.

Figur 1: Illustration av ett enkelt block i ett blockschema.

Med denna figuren menar vi exakt att Y(s) = F(s)U(s).

3 Negativ återkoppling

Vad är negativ återkoppling? I denna kursen kommer vi att studera hur man kontrollerar ett system vid att låta avvikelsen mot det önskade värdet kontrollera regleringen av storheten.

Illustration i blockdiagram Ett enkelt negativt kontrollsystem illustrearas i figur 2.

Figur 2: Schematisk illustration av ett enkelt negativt återkopplad system.

Beskrivning av systemet Vi börjar beskrivningen av systemet med att inte betrakta störningar. I ena ändpunkten har vi

$$Y = GU = GFE$$
.

Summationskomponenten till vänster ger oss

$$E = R - Y$$
.

och därmed

$$Y = GFR - GFY$$
.

Därmed kan vi skriva

$$Y = \frac{GF}{1 + GF}R.$$

Återkopplad överföringsfunktion För ett återkopplad system som kan skrivas som $Y = G_{\rm C}R$ definieras $G_{\rm C}$ som den återkopplade överföringsfunktionen. För systemet ovan har vi alltså

$$G_{\rm C} = \frac{GF}{1 + GF}R.$$

Samband mellan reglerfel och referens Alternativt kan vi lösa systemet ovan för att få

$$R - E = GFE, \ E = \frac{1}{1 + GF}R.$$

Samband mellan referens och insignal Systemet ovan kan även lösas för att ge

$$U = FR - FY = FR - GFU, \ U = \frac{F}{1 + GF}R.$$

Slutna systems poler Vi ser att slutna system har poler där 1 + GF = 0. Därmed bestäms systemets stabilitet av systemet och regulatorn.

P-reglering Principet i P-reglering är att välja en styrsignal som är proportionell mot storleken av felet, alltså

$$u = K(r - y) = Ke.$$

Det är här klart att för att få negativ återkoppling väljer viK>0.

Denna regleringsmetoden

- minskar inverkan av störning och modellfel för ett bra val av K.
- ökar snabbheten vid insvängning.
- stabiliserar instabila system.

Däremot kan regleringen gå fel om t.ex.

- systemet inte uppför sig som man tror.
- man har begränsningar i styrförmåga.
- man får instabilitet på grund av återkopplingen.

Det är även ett problem att om felet är stationärt, är även styrsignalen det, så även om du har ett nollskild fel klarar inte systemet nödvändigtvis anpassa sig.

PID-reglering PID står för proportionell integrerande deriverande. Denna sortens reglering löser många reglerproblem. Med PID-reglering väljer vi styrsignlaen

$$u = K_{\mathrm{P}}e + K_{\mathrm{I}} \int_{t_0}^t \mathrm{d}\tau \, e + K_{\mathrm{D}} \frac{\mathrm{d}e}{\mathrm{d}t}.$$

Alternativt kan vi skriva det som

$$u = K \left(e + \frac{1}{T_{\rm I}} \int_{t_0}^t \mathrm{d}\tau \, e + T_{\rm D} \frac{\mathrm{d}e}{\mathrm{d}t} \right).$$

De tre ingående termerna i styrsignalen är

- proportionell återkoppling, som betraktar det nuvarande felet.
- integrerande återkoppling, som betraktar hur felet har uppfört sig.
- deriverande återkoppling, som betraktar hur felet kommer att uppföra sig.

PI-reglering PI-reglering använder ej den deriverande återkopplingstermen. Vi ser härifrån att vid ett stationärt tillstånd är antingen e = 0, annars ökar eller minskar u på grund av integraltermen.

Vi vill nu betrakta systemets insvängning. Om det stationära \bar{u} krävs för att e=0, har vi

$$\bar{u} = K \left(e + \frac{1}{T_{\rm I}} \int_{t_0}^t \mathrm{d}\tau \, e \right).$$

Vid att derivera detta fås

$$K\left(\frac{\mathrm{d}e}{\mathrm{d}t} + \frac{1}{T_{\mathrm{I}}}e\right) = 0,$$

med lösning proportionell mot $e^{-\frac{t}{T_1}}$.

Notera att om man har stort fel kan PI-reglering ge problem. Därför använder man det typiskt när felen är små.

PI-reglering i Laplacevärlden Vid att Laplacetransformera uttrycket för styrsignalen i en PI-regulator, nämligen

$$u = K \left(e + \frac{1}{T_{\rm I}} \int_{t_0}^t \mathrm{d}\tau \, e \right),\,$$

 ${\rm f\mathring{a}s}$

$$U = K \left(E + \frac{1}{T_{\rm I} s} E \right),\,$$

och enligt figur 2 ser vi att

$$F(s) = K\left(1 + \frac{1}{T_{\mathrm{I}}s}\right).$$