STOR 455 STATISTICAL METHODS I

Jan Hannig

Model building

- Often a large number of predictors are available.
- Question which ones to use
 - If important predictors are omitted, we clearly do not have a good prediction
 - Why not use all of the predictors?
 - If predictors that are not important are included, variance is increased and overfitting can occur (overfitting = model fits really well for our data but does not generalize to other data sets.)

Examples

- Predict bone density using age, weight and height; does diet add any useful information?
- Predict faculty salaries using highest degree, rank, time in rank, and department; does race (gender) make any difference?

Examples (2)

- Predict GPA using 3 HS grade variables; do SAT scores add any useful information?
- Predict yield of an industrial process using temperature and pH; does the supplier of the raw material (categorical) add any useful information?

Extra Sums of Squares

- Reduction in SSE when one or more variables added to the model
- Equivalent to increase in SSR as SSR+SSE=SSTO
- Useful for model comparison

Extra SS (2)

- Models we compare are nested. i.e., one includes all of the explanatory variables of the other
- We can compare models with different explanatory variables
 - $-X_1, X_2 \text{ vs } X_1$ $-X_1, X_2, X_3, X_4, X_5 \text{ vs } X_1, X_2, X_3$
- First includes all Xs of second

Extra SS (3)

- There is an F test to compare the two models
 - Test the null hypothesis that the regression coefficients for the extra variables are all zero
 - Ex: X_1 , X_2 , X_3 , X_4 , X_5 vs X_1 , X_2 , X_3
 - H_0 : $\beta_4 = \beta_5 = 0$
 - H_1 : β_4 and β_5 are not both 0

Notation for Extra SS

- SSE(X₁, X₂, X₃, X₄, X₅) is the SSE for the full model
- SSE(X₁, X₂, X₃) is the SSE for the reduced model
- SSR(X₄, X₅ | X₁, X₂, X₃) is the difference

```
SSR(X_4, X_5 | X_1, X_2, X_3) =
= SSE(X_1, X_2, X_3) - SSE(X_1, X_2, X_3, X_4, X_5)
= SSR(X_1, X_2, X_3, X_4, X_5) - SSR(X_1, X_2, X_3)
```

Extra SS (4)

- Df for the F statistic: the number of extra variables and the df for the model with larger number of explanatory variables
- Ex: Suppose n=100 and we compare models with X_1 , X_2 , X_3 , X_4 , X_5 vs X_1 , X_2 , X_3
- Numerator df is (n-4)-(n-6)=2
- Denominator df is n-6 = 94

F test

- Numerator is MSR(X₄, X₅ | X₁, X₂, X₃)
- Denominator is MSE(X₁, X₂, X₃, X₄, X₅)
- F ~ F(2, n-6)
- Reject if the P value is small and conclude that either X₄ or X₅ or both contain additional information useful for predicting Y in a linear model that also includes X₁, X₂, and X₃

Body Fat Example

- 20 healthy female subjects
- Y is body fat
- X₁ is triceps skin fold thickness
- X₂ is thigh circumference
- X₃ is midarm circumference
- Underwater weighing is the alternative

fat

18.7

```
data fat;
 infile 'T:\...\Ch07ta01.txt';
 input skinfold thigh midarm fat;
proc print data=fat;
run;
            Obs skinfold thigh midarm
                  19.5 43.1 29.1
                                      11.9
              2 24.7 49.8 28.2 22.8
```

...

18	30.2	58.6	24.6	25.4
19	22.7	48.2	27.1	14.8
20	25.2	51.0	27.5	21.1

30.7 51.9 37.0

SAS Type I SS

- Compare models that differ by one explanatory variable
- Add one variable at a time
 - $-SSR(X_1)$
 - $-SSR(X_2 \mid X_1)$
 - $-SSR(X_3|X_1,X_2)$
 - $-SSR(X_4 | X_1, X_2, X_3)$
- Order matters!

Type I SS

- SSR (X₁), SSR (X₂ | X₁), SSR (X₃ | X₁, X₂),
 SSR (X₄ | X₁, X₂, X₃)
- Df = 1 for each of these
- F = (SS/1) / MSE(full) ~ F(1, n-p)
- $F(1,n-p)=t^2(n-p)$
- Test results depend on the order the variable is added to the model, but

SSR=
$$SSR$$
 (X_1)+ SSR ($X_2 \mid X_1$)+ SSR ($X_3 \mid X_1, X_2$)+...

SAS Type II SS

- Different from Type I SS unless Xi independent
- Order of the variables does not matter

```
SSR (X_1 | X_2, X_3, X_4)

SSR (X_2 | X_1, X_3, X_4)

SSR (X_3 | X_1, X_2, X_4)

SSR (X_4 | X_1, X_2, X_3)
```

 The type II sum of squares do not add to anything interesting

Type II SS

- Df = 1 for each of these
- F = (SS/1) / MSE(full) ~ F(1, n-p)
- $F(1,n-p)=t^2(n-p)$
- This test is equivalent to the t-test for each explanatory variable

```
*Type I and Type II sums of squares;

proc reg data=fat;

model fat=skinfold thigh midarm /ss1 ss2;

run;
```

Analysis of Variance

Mean Sum of DF Squares Square F Value Pr > F Source Model 396.98461 132.32820 21.52 < .0001 Error 98.40489 6.15031 19 495.38950 **Corrected Total**

Root MSE 2.47998 R-Square 0.8014
Dependent Mean 20.19500 Adj R-Sq 0.7641
Coeff Var 12.28017

Parameter Estimates

Parameter Standard Error t Value Pr > |t| Type I SS Type II SS Variable DF **Estimate** Intercept 1 117.08469 99.78240 1.17 0.2578 8156.76050 8.46816 skinfold 1 4.33409 3.01551 1.44 0.1699 352.26980 12.70489 thigh -2.85685 2.58202 -1.11 0.2849 7.52928 33.16891 midarm -2.18606 1.59550 -1.37 0.1896 11.54590 11.54590

F-test in SAS

```
*F-test;
proc reg data=fat;
  model fat=skinfold thigh midarm;
  test1: test thigh, midarm;
  test2: test thigh=1;
run;
```

Test test1 Results for Dependent Variable fat

Mean

Source DF Square F Value Pr > F

Numerator 2 22.35741 3.64 0.0500

Denominator 16 6.15031

Test test2 Results for Dependent Variable fat

Mean

Source DF Square F Value Pr > F

Numerator 1 13.72284 2.23 0.1547

Denominator 16 6.15031

F-test in SAS

```
*F-test;
proc reg data=fat;
  model fat=skinfold midarm;
  test skinfold=1;
run;
```

Analysis of Variance

	Sum of		Mean		
Source	DF	Squares	Square	F Value	Pr > F
		·	·		
Model	2	389.45533	194.72767	31.25	<.0001
Error	17	105.93417	6.23142		
Corrected Total	19	495.389	50		

Root MSE 2.49628 R-Square 0.7862 Dependent Mean 20.19500 Adj R-Sq 0.7610 Coeff Var 12.36089

Parameter Estimates

	Parameter		Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
					• •
Intercept	1	6.79163	4.48829	1.51	0.1486
skinfold	1	1.00058	0.12823	7.80	<.0001
midarm	1	-0.43144	0.17662	-2.44	0.0258

Model: MODEL1

Test 1 Results for Dependent Variable fat

Mean

Source DF Square F Value Pr > F

Numerator 1 0.00012965 0.00 0.9964

Denominator 17 6.23142

Partial correlations

- Measure the strength of a linear relation between two variables taking into account (or conditioning on) other variables
- Coefficient of partial determination: squared partial correlation
- partial correlation • $r_{Y1,234}^2$ =SSR (X₁ | X₂, X₃, X₄)/SSE(X₂, X₃, X₄)

10/25/10

Partial correlations (2)

- Equivalent to
 - Predict Y with conditioning X's
 - Predict X_i with conditioning X's
 - Find (squared) correlation between the two sets of residuals
- SAS option /PCORR1 /PCORR2

```
*Partial correlations;
proc reg data=fat;
  model fat=skinfold thigh midarm / pcorr1 pcorr2;
run;
```

Parameter Estimates

				Sq	uared	Squared	
	Parameter Standard			Partial Partial			
Variable	DF	Estimate	Error	t Value	Pr > t	Corr Type I	Corr Type II
Intercept	1	117.08469	99.7824	0 1.17	0.257	78 .	
skinfold	1	4.33409	3.01551	1.44	0.1699	0.71110	0.11435
thigh	1	-2.85685	2.58202	-1.11	0.2849	0.23176	0.07108
midarm	1	-2.18606	1.59550	-1.37	0.189	6 0.1050 ²	0.10501