Apellido y Nombre:

Profesor:

Recuerde:

- Repetir el nombre y apellido en cada hoja que utilice.
- La letra debe ser entendible por el docente. Lo que no se pueda visualizar no será tenido en cuenta.
- 1) Dado el siguiente grafo

	Α	В	С	D	Е	F	G
Α	0	3	8	8	8	8	11
В	3	0	5	2	15	8	1
С	8	5	0	8	3	8	8
D	8	2	8	0	8	4	8
Е	8	15	8	8	0	8	8
F	8	8	8	4	8	0	8
G	11	1	8	8	8	8	0

- a) Genere la representación gráfica. (10)
- b) Calcule con el algoritmo apropiado el camino de peso mínimo desde B a los demás nodos. (15)
- c) Determine si existe un circuito de Euler, camino de Euler, o ninguno. (10)
- 2) Determine el recorrido en preorden y posorden del siguiente árbol: (15)

3) Tome como referencia la siguiente representación de un AEF:

- a) Defina el autómata M, indicando los conjuntos I, O, S y confeccione la tabla de función de transición de estados y la tabla de función de salida. (15)
- b) Clasifique al autómata. (5)
- c) Caracterice el conjunto de cadenas aceptadas por el autómata usando la notación de conjuntos. (20)
- d) Escriba tres cadenas que sean aceptadas por el autómata y 3 cadenas que no sean aceptadas, todas de longitud 12. (10)