MAI

Deep Learning

Guided lab

FNN & CNN

Dario Garcia Gasulla dario.garcia@bsc.es

MNIST example

- MNIST is a black and white hand-written digit recognition dataset
- See how far you can get using a fully connected network

```
3185511895
8415956231
6739850710
8011444275
4977804100
```


MNIST example

Code:

https://raw.githubusercontent.com/UPC-MAI-

DL/UPC-MAI-DL.github.io/master/_codes/1.FNN-

CNN/mnist_fnn_example.py

Launcher:

https://raw.githubusercontent.com/UPC-MAI-

DL/UPC-MAI-DL.github.io/master/_codes/1.FNN-

CNN/launcher.sh

MNIST example

Going convolutional

Let's try defining a CNN instead. Try on your own, or use the following example:

https://raw.githubusercontent.com/UPC-MAI-

DL/UPC-MAI-DL.github.io/master/_codes/1.FNN-

CNN/mnist cnn example.py

CIFAR10 example

https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR10 example

To get the data, run the command locally:

- Upload your local .keras/dataset files to MT
- Due to version disparity, you may need to rename the file in MT to:

```
cifar-10-batches-py.tar.gz
```


CIFAR10 example

- Try first with a FNN
- You will need to adapt the input
 - Now you have 3 channels

 Once you are happy with your performance, try a CNN

Moving forward

 Preparing and loading the data is an essential part of the process. Get used to it

- Loading the whole dataset is rarely feasible
 - Look into "flow_from_directory" from keras to avoid memory issues

