Highlights/Overview

- intro to AI/ML/DL/NNs
- Hidden layers/Initialization/Neurons per layer
- cost function/gradient descent/learning rate
- Dropout rate
- Activation function
- Linear Regression
- What are CNNs
- Filters/ReLU/MaxPooling
- Keras and CNNs
- TensorFlow 1.x

The Data/Al Landscape

Use Cases for Deep Learning

- computer vision
- speech recognition
- image processing
- bioinformatics
- social network filtering
- drug design
- Recommendation systems
- Bioinformatics
- Mobile Advertising
- Many others

NN 3 Hidden Layers: Classifier

Neural Networks

hidden layer 1 hidden layer 2 hidden layer 3

NN: 2 Hidden Layers (Regression)

Titanic Dataset (portion)

Δ	A	В	C	D	Ε	F	G	+	+	1	1	K	L
1	Passengerl	Survived	class	Name	Sex	Age	SibSp	Parch	1	Ticket	Fare	Cabin	Embarked
2	1	0		3 Braund,	Mrmale	2.	2	1	0	A/5 21171	7.25		5
3	2	1		1 Cumings	, N female	38	В	1	0	PC 17599	71.2833	C85	C
4	3	1		3 Heikkine	n, female	20	5	0	0	STON/O2.	7.925		S
5	4	1		1 Futrelle,	M female	3	5	1	0	113803	53.1	C123	S
6	5	0		3 Allen, M	r. \male	35	5	0	0	373450	8.05		S
7	6	0		3 Moran, I	Mr. male			0	0	330877	8.4583		Q
8	7	0		1 McCarth	y, male	5	4	0	0	17463	51.8625	E46	S
9	8	0		3 Palsson,	Mimale		2	3	1	349909	21.075		S
10	9	1		3 Johnson	Mfemale	2	7	0	2	347742	11.1333		5
11	10	1		2 Nasser, I	Mr:female	14	4	1	0	237736	30.0708		С
12	11	1		3 Sandstro	m, female		4	1	1	PP 9549	16.7	G6	5
13	12	1		1 Bonnell,	M female	58	3	0	0	113783	26.55	C103	S
14	13	0		3 Saunder	cocmale	20)	0	0	A/5. 2151	8.05		S
15	14	0		3 Anderss	on, male	35	9	1	5	347082	31.275		S

target variable

Classification and Deep Learning

Euler's Function (e: 2.71828...)

The sigmoid Activation Function

The tanh Activation Function

The ReLU Activation Function

The softmax Activation Function

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j=1,...,K$.

Activation Functions in Python

```
import numpy as np
# Python sigmoid example:
 z = 1/(1 + np.exp(-np.dot(W, x)))
# Python tanh example:
z = np.tanh(np.dot(W,x));
# Python ReLU example:
\mathbf{z} = \text{np.maximum}(0, \text{np.dot}(W, x))
```

What's the "Best" Activation Function?

Initially: sigmoid was popular

Then: tanh became popular

Now: RELU is preferred (better results)

Softmax: for FC (fully connected) layers

NB: sigmoid and tanh are used in LSTMs

Linear Regression

One of the simplest models in ML

Fits a line $(y = m^*x + b)$ to data in 2D

Finds best line by minimizing MSE:

m = slope of the best-fitting line

b = y-intercept of the best-fitting line

Which is Good for Linear Regression?

Linear Regression in 2D: example

Example #1: MSE = ?

Example #2: MSE = ?

Example #3 (Random Points)

Sample Cost Function #1 (MSE)

Linear Regression: example #1

- One feature (independent variable):
- X = number of square feet

- Predicted value (dependent variable):
- Y = cost of a house

- A very "coarse grained" model
- We can devise a much better model

Linear Regression: example #2

- Multiple features:
- ►X1 = # of square feet
- \rightarrow X2 = # of bedrooms
- X3 = # of bathrooms (dependency?)
- ► X4 = age of house
- X5 = cost of nearby houses
- X6 = corner lot (or not): Boolean

a much better model (6 features)

Linear Multivariate Analysis

General form of multivariate equation:

- Y = w1*x1 + w2*x2 + ... + wn*xn + b
- w1, w2, ..., wn are numeric values
- x1, x2, ..., xn are variables (features)
- Properties of variables:
- Can be independent (Naïve Bayes)
- weak/strong dependencies can exist

Sample Cost Function #1 (MSE)

Sample Cost Function #2

Sample Cost Function #3

Types of Optimizers

- -SGD
- rmsprop
- Adagrad
- Adam
- Others

http://cs229.stanford.edu/notes/cs229-notes1.pdf

Deep Neural Network: summary

- input layer, multiple hidden layers, and output layer
- nonlinear processing via activation functions
- perform transformation and feature extraction
- gradient descent algorithm with back propagation
- each layer receives the output from previous layer
- results are comparable/superior to human experts

CNNs versus RNNs

CNNs (Convolutional NNs):

Good for image processing

2000: CNNs processed 10-20% of all checks

=> Approximately 60% of all NNs

RNNs (Recurrent NNs):

Good for NLP and audio

Used in hybrid networks

CNNs: Convolution, ReLU, and Max Pooling

CNNs: Convolution Calculations

https://docs.gimp.org/en/plug-in-convmatrix.html

CNNs: Convolution Matrices (examples)

■ Sharpen:

0	0	0	0	0
0	0	1	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

Blur:

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

CNNs: Convolution Matrices (examples)

Edge detect:

	0	1	0	
200-02	1	-4	1	.00
	0	1	0	

Emboss:

-2	1	0	
-1	1	1	
0	1	2	

CNNs: Max Pooling Example

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

GANs: Generative Adversarial Networks

99.3% confidence

57.7% confidence

GANs: Generative Adversarial Networks

- Make imperceptible changes to images
- Can consistently defeat all NNs
- Can have extremely high error rate
- Some images create optical illusions
- https://www.quora.com/What-are-the-pros-and-consof-using-generative-adversarial-networks-a-type-ofneural-network

GANs: Generative Adversarial Networks

Create your own GANs:

https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners

https://github.com/jonbruner/generative-adversarial-networks

GANs from MNIST:

http://edwardlib.org/tutorials/gan

GANs and Capsule networks?

CNN in Python/Keras (fragment)

- from keras.models import Sequential
- from keras.layers.core import Dense, Dropout, Activation
- from keras.layers.convolutional import Conv2D, MaxPooling2D
- from keras.optimizers import Adadelta

```
input_shape = (3, 32, 32)
```

- nb_classes = 10
- model = Sequential()
- model.add(Conv2D(32,(3, 3),padding='same',

```
input_shape=input_shape))
```

- model.add(Activation('relu'))
- model.add(Conv2D(32, (3, 3)))
- model.add(Activation('relu'))
- model.add(MaxPooling2D(pool_size=(2, 2)))
 - model.add(Dropout(0.25))

What is TensorFlow?

- An open source framework for ML and DL
- A "computation" graph
- Created by Google (released 11/2015)
- Evolved from Google Brain
- Linux and Mac OS X support (VM for Windows)

TF home page: https://www.tensorflow.org/

What is TensorFlow?

- Support for Python, Java, C++
- Desktop, server, mobile device (TensorFlow Lite)
- CPU/GPU/TPU support
- Visualization via TensorBoard
- Can be embedded in Python scripts
- ➡ Installation: pip install tensorflow

TensorFlow cluster:

https://www.tensorflow.org/deploy/distributed

TensorFlow Use Cases (Generic)

- Image recognition
- Computer vision
- Voice/sound recognition
- Time series analysis
- Language detection
- Language translation
- Text-based processing
- Handwriting Recognition

Aspects of TensorFlow

- Graph: graph of operations (DAG)
- Sessions: contains Graph(s)
- lazy execution (default)
- operations in parallel (default)
- Nodes: operators/variables/constants
- Edges: tensors

=> graphs are split into subgraphs and executed in parallel (or multiple CPUs)

TensorFlow Graph Execution

Execute statements in a tf.Session() object

Invoke the "run" method of that object

eager" execution is available (>= v1.4)

included in the mainline (v1.7)

Installation: pip install tensorflow

What is a Tensor?

- TF tensors are n-dimensional arrays
- TF tensors are very similar to numpy ndarrays
- scalar number: a zeroth-order tensor
- vector: a first-order tensor
- matrix: a second-order tensor
- ► 3-dimensional array: a 3rd order tensor
- https://dzone.com/articles/tensorflow-simplifiedexamples

TensorFlow "primitive types"

- tf.constant:
- + initialized immediately
- + immutable

- tf.placeholder (a function):
- + initial value is not required
- + can have variable shape
- + assigned value via feed_dict at run time
- + receive data from "external" sources

TensorFlow "primitive types"

- tf. Variable (a class):
- + initial value is required
- + updated during training
- + maintain state across calls to "run()"
- # in-memory buffer (saved/restored from disk)
- + can be shared in a distributed environment
- + they hold learned parameters of a model

TensorFlow: constants (immutable)

- import tensorflow as tf
- \rightarrow aconst = tf.constant(3.0)
- print(aconst)
- # output: Tensor("Const:0", shape=(), dtype=float32)
- sess = tf.Session()
- print(sess.run(aconst))
- # output: 3.0
- sess.close()
- ► # => there's a better way©

TensorFlow: constants

import tensorflow as tf

- \rightarrow aconst = tf.constant(3.0)
- print(aconst)

- Automatically close "sess"
- with tf.Session() as sess:
- print(sess.run(aconst))

TensorFlow Arithmetic

import tensorflow as tf

```
a \neq tf.add(4, 2)
b = tf.subtract(8, 6)
c = tf.multiply(a, 3)
d \neq tf.div(a, 6)
with tf.Session() as sess:
  print(sess.run(a)) # 6
  print(sess.run(b)) # 2
  print(sess.run(c)) # 18
  print(sess.run(d)) # 1
```

TF placeholders and feed_dict

import tensorflow as tf a = tf.placeholder("float") b = tf.placeholder("float") c = tf.multiply(a,b) # initialize a and b: feed dict = {a:2, b:3} # multiply a and b: with tf.Session() as sess: print(sess.run(c, feed dict))

TensorFlow: Simple Equation

- import tensorflow as tf # W and x are 1d arrays \longrightarrow W = tf.constant([10,20], name='W') x = tf.placeholder(tf.int32, name='x') b/= tf.placeholder(tf.int32, name='b') Wx = tf.multiply(W, x, name='Wx')= tf.add(Wx, b, name='y') OR
 - y2 = tf.add(tf.multiply(W,x),b)

TensorFlow fetch/feed_dict

```
with tf.Session() as sess:
 print("Result 1: Wx = ",
        sess.run(Wx, feed dict={x:[5,10]}))
 print("Result 2: y = ",
        sess.run(y, feed dict={x:[5,10],b:[15,25]}))
  Result 1: Wx = [50 \ 200]
  Result 2: y = [65 \ 225]
```

Saving Graphs for TensorBoard

```
import tensorflow as tf
x = tf.constant(5, name="x")
y = tf.constant(8, name="y")
z = tf.Variable(2*x+3*y, name="z")
init = tf.global variables initializer()
with tf.Session() as session:
 writer = tf.summary.FileWriter("./tf logs", session.graph)
  session.run(init)
  print 'z = ', session.run(z) \# = > z = 34
  launch: tensorboard -logdir=./tf logs
```

TensorFlow Eager Execution

An imperative interface to TF

- Fast debugging & immediate run-time errors
- Eager execution is "mainline" in v1.7 of TF
- => requires Python 3.x (not Python 2.x)

TensorFlow Eager Execution

- integration with Python tools
- Supports dynamic models + Python control flow
- support for custom and higher-order gradients
- Supports most TensorFlow operations
- => Default mode in TensorFlow 2.0 (2019)
- https://research.googleblog.com/2017/10/eagerexecution-imperative-define-by.html

TensorFlow Eager Execution

- import tensorflow as tf
- import tensorflow.contrib.eager as tfe

- tfe.enable_eager_execution()
- x = [[2.]]
- \rightarrow m = tf.matmul(x, x)
- print(m)
- # tf.Tensor([[4.]], shape=(1, 1), dtype=float32)

What is tensorflow.js?

- an ecosystem of JS tools for machine learning
- TensorFlow.js also includes a Layers API
- a library for building machine learning models
- tools to port TF SavedModels & Keras HDF5 models
- => https://js.tensorflow.org/

What is tensorflow.js?

- tensorflow.js evolved from deeplearn.js
- deeplearn.js is now called TensorFlow.js Core

- TensorFlow.js Core: a flexible low-level API
- ▶ TensorFlow.js Layers:
- a high-level API similar to Keras

TensorFlow.js Converter:

tools to import a TF SavedModel to TensorFlow.js

async keyword

keyword placed before JS functions

For functions that return a Promise

```
Trivial example:

async function f() {

return 1;
}
```

await keyword

Works only inside async JS functions

- Trivial example:
- let value = await mypromise;

async/await example

```
async function f() {
  let promise = new Promise((resolve, reject) => {
      setTimeout(() => resolve("done!"), 1000)
    wait till the promise resolves
  let result = await promise
  alert (result)
```

Tensorflow.js Samples

1) tfjs-example.html (linear regression)

- 2) js.tensorflow.org (home page)
- 3) https://github.com/tensorflow/tfjs-examples-master
- a)cø mnist-core
- b)/yarn
- c) yarn watch

Deep Learning and Art/"Stuff"

- "Convolutional Blending" images:
- => 19-layer Convolutional Neural Network

www.deepart.io

https://www.fastcodesign.com/90124942/this-googleengineer-taught-an-algorithm-to-make-train-footageand-its-hypnotic