

# Spam Message Classification

Leo Siu-Yin



#### Spam and Scam Messages

SMS/MMS 水曜日 午前9:47

Your delivery has been stopped at our depot. Trk#: R690382803147 Please resolve the issue here: f94.us/VrVwq The Government has finally approved and have started giving out free \$2,400 Relief Funds to each citizen &Below is how to claim and get yours credit Instantly as I have just did now https://ll.llll.cam

Note: You can only claim and get credited once and it's also limited so get your now Instantly.

- Spam: Messages sent to a large group of recipients without their prior consent.
- Usually advertise for goods/services.
- Scam messages form a high percentage of spam messages.
- Typically trick people into giving away money or personal details by offering an attractive/false deal.
- This year Jan-June: scammed amount increased by >S\$8 million.

#### **Motivation**



#### **Spam Message Classification**:

A step towards building a tool for scam message identification and early scam detection.

#### **Contents**



Dataset



Tools/ Methodology



Model Comparison



Model Evaluation



Conclusion

#### **Dataset**

- Spam Message Collection Dataset from Kaggle.
- 5572 rows of messages.
- All messages are classified into either spam or ham.
- 13.4% spam, 86.6% ham



#### **Tools Used**

















### Methodology

#### **Data Pre-processing**

- 1. Word tokenize
- 2. Convert to lower case
- 3. Remove punctuation except '!'
- 4. Remove stopwords
- Remove words containing digits
- Exploratory Data Analysis

# Model Training Model Comparison

- 1. Train Test Split data
- 2. CountVectorizer
- GridSearchCV across
   10 folds
- 4. Fit data to models
- Comparison of model results

#### **Model Evaluation**

- 1. Result Summary
- 2. Confusion Matrix
- 3. Precision-Recall Curve

#### **Data Pre-processing**

1. After Word Tokenize

['Hello', '!', 'How', "s", 'you', 'and', 'how', 'did', 'saturday', 'go', '?', 'l', 'was', 'just', 'texting', 'to', 'see', 'if', 'you', "'d", 'decided', 'to', 'do', 'anything', 'tomo', '.', 'Not', 'that', 'i', "m", 'trying', 'to', 'invite', 'myself', 'or', 'anything', '!']

- Conversion to lower case
- 3. Punctuation removed except '!'
- 4. Stopwords and words with digits removed

['hello', '!', 'saturday', 'go', 'texting', 'see', 'decided', 'anything', 'tomo', 'trying', 'invite', 'anything', '!']

# **Exploratory Data Analysis**



# **Exploratory Data Analysis: Topic Modeling**

Topic #0 (Ham):

nt ok like got go come good get know time love day going home sorry lor still see want da

Topic #1 (Spam):

call gt lt free txt text get mobile stop reply new claim send please number prize week message phone win

#### **Models Used**

Logistic Complement K- Nearest Random Bernoulli Regression **Neighbours Naïve Bayes Forest** Naïve Bayes **CountVectoriser** CountVectoriser CountVectoriser CountVectoriser CountVectoriser **Tfidf Vectoriser** CountVectoriser with LSA CountVectoriser with LDA

#### **GridSearchCV**



# **Modeling Results and Comparison: Precision**



| Model     | LR | LR_LSA | LR_tf | kNN  | BNB | CNB  | RF | RF-  | LR_LDA |
|-----------|----|--------|-------|------|-----|------|----|------|--------|
| Precision | 1  | 0.66   | 0.98  | 0.99 | 1   | 0.86 | 1  | 0.99 | 0.86   |

## Modeling Results and Comparison: Recall



| Model  | LR   | LR_LSA | LR_tf | kNN  | BNB  | CNB  | RF   | RF-  | LR_LDA |
|--------|------|--------|-------|------|------|------|------|------|--------|
| Recall | 0.86 | 0.49   | 0.90  | 0.63 | 0.93 | 0.93 | 0.82 | 0.83 | 0.68   |

# Modeling Results and Comparison: F1 Score



| Model    | LR   | LR_LSA | LR_tf | kNN  | BNB  | CNB  | RF   | RF-  | LR_LDA |
|----------|------|--------|-------|------|------|------|------|------|--------|
| F1 Score | 0.92 | 0.56   | 0.94  | 0.77 | 0.97 | 0.90 | 0.90 | 0.90 | 0.76   |

# Modeling Results and Comparison: Log Loss



| Model   | LR   | LR_tf | kNN  | BNB  | CNB  | RF   | RF-  |
|---------|------|-------|------|------|------|------|------|
| LogLoss | 0.07 | 0.06  | 0.69 | 0.09 | 0.13 | 0.07 | 0.07 |

# Modeling Results and Comparison: AUC ROC



| Model   | LR   | LR_tf | kNN  | BNB  | CNB  | RF   | RF_CV- |
|---------|------|-------|------|------|------|------|--------|
| AUC_ROC | 0.99 | 0.99  | 0.83 | 0.99 | 0.98 | 0.99 | 0.99   |

# **Result Summary**

| Model     | LR   | LR_LSA | LR_tf | kNN  | BNB  | CNB  | RF   | RF-  | LR_LDA |
|-----------|------|--------|-------|------|------|------|------|------|--------|
| Precision | 1    | 0.66   | 0.98  | 0.99 | 1    | 0.86 | 1    | 0.99 | 0.86   |
| Recall    | 0.86 | 0.49   | 0.90  | 0.63 | 0.93 | 0.93 | 0.82 | 0.83 | 0.68   |
| F1 Score  | 0.92 | 0.56   | 0.94  | 0.77 | 0.97 | 0.90 | 0.90 | 0.90 | 0.76   |
| LogLoss   | 0.07 | N.A.   | 0.06  | 0.69 | 0.09 | 0.13 | 0.07 | 0.07 | N.A.   |
| AUC ROC   | 0.99 | N.A.   | 0.99  | 0.83 | 0.99 | 0.98 | 0.99 | 0.99 | N.A.   |





#### Conclusion

- A more customised pre-processing step is important for precision.
- Logistic Regression and Naive Bayes models have performed better than other models.
- A model with 100% precision has been built.

#### **Future Work**

- 1. Investigate performance of models based on Tfidf vectoriser.
- 2. Use word embeddings trained with neural-network for classification.

# **THANKS!**

Do you have any questions? syleo22@gmail.com https://github.com/syleo22/SiuYin\_Projects https://www.linkedin.com/in/syleo/







CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by Stories

Please keep this slide for attribution.

