PROGRAMMIEREN 2 - FORTGESCHRITTENE PROGRAMMIERUNG

MATTHIAS BERG-NEELS

KAPITELÜBERSICHT - PROGRAMMIEREN 2

- 8. Exception Handling
- 9. Collection Framework
- 10. Swing
- 11. Optional: Input- & Output-Stream
- 12. Optional: Threads

EXKURSUNIT TESTING

Unit Testing in Java mit JUnit5.

EINORDNUNG VON UNIT TESTS

JUNIT5 - ANNOTATIONS

Annotation	Beschreibung
@Test	kennzeichnet eine Methode als Test
@Displayname(" <name>")</name>	definiert den Anzeigename für den jeweiligen Test / die Testklasse
@Nested	markiert eine innere (geschachtelte) Testklasse
@Tag(" <tag>")</tag>	definiert einen Tag zur Filterung von Tests
@BeforeEach	kennzeichnet eine Methode die vor jedem Test läuft ((!)JUnit4> @Before)
@AfterEach	kennzeichnet eine Methode die nach jedem Test läuft ((!)JUnit4> @After)
@BeforeAll	kennzeichnet eine Methode die einmal vor allen Tests läuft ((!)JUnit4> @BeforeClass)
@AfterAll	kennzeichnet eine Methode die einmal nach allen Tests läuft ((!)JUnit4> @AfterClass)

ASSERTION

- Zusicherung / Sicherstellung / Assertion (lat. Aussage / Behauptung)
 - Definition einer Erwartungshaltung zum Vergleich gegen den tatsächlichen Zustand
- JUnit Tests:
 - Klasse: Assertions (org.junit.jupiter.api.Assertions)
 - statische Methoden zur Definition eines erwartenden Ergebnisses (expected) zum Vergleich mit dem tatsächlichen Ergebnis (actual)
 - überladene Methoden mit zusätzlichem Parameter Message für eigene Meldungen
 - automatische Validierung der "Behauptung" durch das JUnit Test-Framework
 - beliebt als statischer Import zur direkten Nutzung der Methoden:

```
import static org.junit.jupiter.api.Assertions.*;
```

Beispiele:

```
Assertions.assertEquals(<expected>, <actual>[, <Message>]);
Assertions.assertNotEquals(<expected>, <actual>[, <Message>]);
Assertions.assertTrue(<actual>[, <Message>]);
Assertions.assertFalse(<actual>[, <Message>]);
Assertions.assertFimeout(<expected Duration>, <Executable>[, <Message>]);
Assertions.assertThrows(<expected Exception-Class>, <Executable>[, <Message>]);
```

BEISPIEL TEST-KLASSE

```
import excercises.exkurs.junit.Calculator;
import org.junit.jupiter.api.*;
class CalculatorTest {
    Calculator myCalculator;
    double result = 0;
    @BeforeEach
    void setUp() {
        myCalculator = new Calculator();
        result = 0;
    @Test
    @DisplayName("adding two numbers")
    void add() {
        result = myCalculator.add(5.0, 10.0);
        Assertions.assertEquals(15.0, result);
```

F.I.R.S.T. PRINCIPAL

- **Fast**: Die Testausführung soll schnell sein, damit man sie möglichst oft ausführen kann. Je öfter man die Tests ausführt, desto schneller bemerkt man Fehler und desto einfacher ist es, diese zu beheben.
- Independent: Unit-Tests sind unabhängig voneinander, damit man sie in beliebiger Reihenfolge, parallel oder einzeln ausführen kann.
- **Repeatable**: Führt man einen Unit-Test mehrfach aus, muss er immer das gleiche Ergebnis liefern.
- **Self-Validating**: Ein Unit-Test soll entweder fehlschlagen oder gut gehen. Diese Entscheidung muss der Test treffen und als Ergebnis liefern. Es dürfen keine manuellen Prüfungen nötig sein.
- **Timely**: Man soll Unit-Tests vor der Entwicklung des Produktivcodes schreiben.

KAPITEL 8 EXCEPTION HANDLING

KAPITELÜBERSICHT - PROGRAMMIEREN 2

- 8. Exception Handling
- 9. Collection Framework
- 10. Swing
- 11. Optional: Input- & Output-Stream
- 12. Optional: Threads

LERNZIELE

- Sie kennen die unterschiedlichen Ausnahmen in Java
- Sie können eigene Ausnahmeklassen definieren
- Sie können Ausnahmen auslösen und weitergeben
- Sie können Ausnahmen behandeln und das Ausnahmenkonzept in Java erläutern
- Sie können den Unterschied zwischen ckecked und unchecked Exceptions erklären

FEHLER IN JAVA

Compiler-Fehler

 syntaktische Fehler werden beim Kompilieren erkannt

Laufzeitfehler

- Fehler (Error) sollte nicht behandelt werden
- Ausnahmen (Exceptions)
 - Exception muss behandelt werden
 - RuntimeException kann behandelt werden

GRUNDPRINZIP DER AUSNAHMEBEHANDLUNG

- Laufzeitfehler oder explizite Anweisung löst Ausnahme aus
- 2 Möglichkeiten der Fehlerbehandlung
 - Direkte Fehlerbehandlung im auslösenden Programmteil
 - Weitergabe der Ausnahme an die aufrufende Methode
- bei Weitergabe liegt die Entscheidung beim Empfänger
 - Er kann die Ausnahme behandeln
 - Er kann die Ausnahme an seinen Aufrufer weitergeben
- wird die Ausnahme nicht behandelt, führt sie zur Ausgabe einer Fehlermeldung und zum Programmabbruch (Laufzeitfehler)

AUSNAHMEN BEHANDELN

- Überwachung des Codingbereichs, in dem Ausnahmen ausgelöst werden können
- spezieller Code zur Behandlung aufgetretener Ausnahmen

EIGENE AUSNAHMEKLASSEN

ERZEUGEN EIGENER AUSNAHMEKLASSEN

```
public class TankLeer extends Exception {
   public TankLeer (int km) {
      super("Der Tank ist nach " + km + " Kilometern leer.");
   }
}
```


AUSNAHMEN EXPLIZIT AUSLÖSEN UND WEITERGEBEN

- Definition der möglichen Ausnahmen in Methoden-Signatur: throws
- Erzeugen eines neuen Ausnahme-Objektes: new TankLeer (tagesKM)
- Auslösen (werfen) der Ausnahme (im Ausnahmefall) innerhalb der Methode: throw

AUSNAHME BEHANDELN

```
public class TankLeerDemo {
  public static void main(String[] args) {
    Auto bmw = new Auto(0, 35487);
    //...
    try {
      bmw.fahren();
    } catch (TankLeer el) {
      System.out.println(el.getMessage());
      System.out.println(el.toString()); el.printStackTrace();
    } catch (Exception e2) {
      e2.printStackTrace();
    }
    // ...
    finally {
      System.out.println("Der neue Kilometerstand: " + bmw.getKmCount());
    }
    //...
}
//...
}
```

- try markiert den Überwachungsbereich ausgelöste Ausnahmen beenden die Ausführung des Überwachungsbereiches umgehend
- catch fängt mögliche Ausnahmen aus dem Überwachungsbereich auf
- finally wird unabhängig vom Auftreten von Ausnahmen ausgeführt

WICHTIGE METHODEN DER KLASSE THROWABLE

public String getMessage()

• liefert den Fehlertext zurück

Der Tank ist nach 1100 Kilometern leer.

public String toString()

• liefert die Objektbeschreibung und den Fehlertext zurück

prog2.demos.exceptions.TankLeer: Der Tank ist nach 1100 Kilometern leer.

public void printStackTrace()

• liefert die Objektbeschreibung, den Fehlertext sowie die Weitergabehierarchie bis zur genauen Auslösestelle zurück

prog2.demos.exceptions.TankLeer: Der Tank ist nach 1100 Kilometern leer.
at prog2.demos.exceptions.Auto.fahren(Auto.java:21)

CHECKED VS. UNCHECKED EXCEPTIONS

Checked

- müssen verarbeitet werden
 - abfangen mit try /
 catch
 - weiterleiten mit throws
- werden explizit ausgelöst throw

Unchecked

- treten zur Laufzeit auf (RuntimeException)
- werden automatisch an den Aufrufer weitergeben
- können abgefangen werden try / catch
- oftmals logische Programmfehler
 - Division by Zero
 - NullPointerException
 - IndexOutOfBoundsException

AUSNAHMEN IN JUNIT-TESTS

- spezielle Assertion
 - Rückgabe des Ausnahme Objektes
 - schlägt fehl, wenn keine oder eine andere Ausnahme zurück geworfen wird

```
Assertions.assertThrows(<Erwartete Ausnahme Klasse>. <Executable Interface>[, <Message>
```

- Assertion für den gegenläufigen Fall
 - schlägt fehl, wenn eine Ausnahme geworfen wird

```
Assertions.assertDoesNotThrow(<Executable Interface> [, <Message>]);
```

• (!) JUnit4: spezielles Attribut in @Test Annotation

```
@Test(expected = <Erwartete Ausnahme Klasse>)
```

EXKURS INNERE KLASSEN

von inneren Klassen hin zu Lambda-Funktionen

ARTEN VON INNEREN KLASSEN

- Innere Top-Level Klasse
 - Geschachtelte statische Klasse innerhalb einer anderen Klasse mit Bezeichner (Klassenname)
 - können innerhalb und außerhalb (abhängig von der Sichtbarkeit) der Klasse verwendet werden
- Innere Element Klasse
 - Geschachtelte Klasse innerhalb einer anderen Klasse mit Bezeichner (Klassenname)
 - können innerhalb und außerhalb (abhängig von der Sichtbarkeit) der Klasse verwendet werden
 - o nur im Kontext eines Objekts der äußeren Klasse
- Innere lokale Klasse
 - Geschachtelte Klasse innerhalb einer Methode mit Bezeichner (Klassenname)
 - können nur innerhalb der Methode (Scope) genutzt werden
- Innere anonyme Klasse
 - geschachtelte Klasse innerhalb einer anderen Klasse / Methode **ohne** Bezeichner
 - werden direkt einer Referenz zugwiesen
 - basieren immer auf einer Klasse (erweitern) oder einem Interface (implementieren)

INNERE TOP-LEVEL-KLASSE

```
package main.inner.toplevelclass;
public class OuterClass {
   // Innerhalnb einer anderen Klasse definierte Top-Level Klasse
   public static class InnerTopLevelClass{
        void print(String printText){
            System.out.println(this.getClass().getName() + " " + printText);
    private static void printFromInnerTopLevelClass(String printText) {
        OuterClass.InnerTopLevelClass myInnerTopLevelClass = new OuterClass.InnerTopLevelClass()
       myInnerTopLevelClass.print(printText);
    public static void main(String[] args) {
        OuterClass myClass = new OuterClass();
        System.out.println("OuterClass: " + myClass.getClass().getName());
        OuterClass.printFromInnerTopLevelClass("Inner Top-Level Class: HelloWorld");
```

INNERE ELEMENT-KLASSE

```
package main.inner.elementclass;
public class OuterClass {
   // Innerhalb einer andere Klasse definierte Element Klasse
   public class InnerElementClass {
       void print(String printText){
           System.out.println(this.getClass().getName() + " " + printText);
   void printFromInnerElementClass(String printText){
       OuterClass.InnerElementClass myInnerElementClass = this.new InnerElementClass();
       myInnerElementClass.print(printText);
   public static void main(String[] args) {
       OuterClass myClass = new OuterClass();
       System.out.println("OuterClass: " + myClass.getClass().getName());
       myClass.printFromInnerElementClass("Inner Element Class: HelloWorld");
```

INNERE LOKALE KLASSE

```
package main.inner.local;
public class OuterClass {
   void printFromLocalInnerClass(String printText){
       class LocalInnerClass{
           void print(String printText){
               System.out.println(this.getClass().getName() + " " + printText);
       LocalInnerClass myLocalInnerClass = new LocalInnerClass();
       myLocalInnerClass.print(printText);
   public static void main(String[] args) {
       OuterClass myClass = new OuterClass();
       System.out.println("OuterClass: " + myClass.getClass().getName());
       myClass.printFromLocalInnerClass("local inner Class: HelloWorld");
```

INNERE ANONYME KLASSE

```
package main.inner.anonym;
public class OuterClass {
   private static interface Printable{
       void print(String printText);
   void printFromAnonymousInnerClass(String printText) {
       OuterClass.Printable myAnonymousInnerClass = new OuterClass.Printable() {
           public void print(String printText) {
               System.out.println(this.getClass().getName() + " " + printText);
       myAnonymousInnerClass.print(printText);
   public static void main(String[] args) {
       OuterClass myClass = new OuterClass();
       System.out.println("OuterClass: " + myClass.getClass().getName());
       myClass.printFromAnonymousInnerClass("Inner anonymous Class: HelloWorld");
```

LAMBDA FUNKTIONEN (ANONYME FUNKTIONEN)

- seit Java 8
- reine Funktionen ohne eigene Klasse
- Definition: () -> { }
- implementieren ein funktionales Interface (Interface mit einer Methode)
 - ersetzen (unter dieser Voraussetzung) anonyme Klassen
- haben Zugriff auf den umliegenden Kontext (finale / effektiv finale Variablen)
 - in diesem Zusammenhang auch als "Closure" bezeichnet
- verkürzte Schreibweise durch Herleitung der Informationen aus Interface-Definition
- werden an eine Referenz übergeben (direkt oder indirekt)

```
Interface1 lambda1 = parameter -> Anweisung;
Interface2 lambda2 = (parameter1, parameter2) -> Anweisung;
Interface3 lambda3 = () -> {
   Anweisung1;
   Anweisung2;
   Anweisung3;
}
```

LAMBDA FUNKTION

```
package main.lambda;
public class OuterClass {
   private static interface Printable{
       void print(String printText);
   void printFromLambdaFunction(String printText) {
       OuterClass.Printable myLambdaPrintFunction = (lambdaPrintText) -> {
           System.out.println(this.getClass().getName() + " " + lambdaPrintText);
       };
       myLambdaPrintFunction.print(printText);
   public static void main(String[] args) {
       OuterClass myClass = new OuterClass();
       System.out.println("OuterClass: " + myClass.getClass().getName());
       myClass.printFromLambdaFunction("Lambda Function: HelloWorld");
```

KAPITEL 9 COLLECTION FRAMEWORK

KAPITELÜBERSICHT - PROGRAMMIEREN 2

- 8. Exception Handling
- 9. Collection Framework
- 10. Swing
- 11. Optional: Input- & Output-Stream
- 12. Optional: Threads

LERNZIELE

- Sie können die Unterschiede der 3 Objekt-Containerarten erklären
- Sie können Objekte in den Containern einfügen, löschen und finden
- Sie können mit Iteratoren die Container durchlaufen
- Sie können sortierbare Container mit Comparable und Comparator sortieren
- Sie können die equals () und die hashCode () Methode in eigenen Klassen überschreiben
- Sie können den Zusammenhang zwischen den Methoden equals (), hashCode () und compareTo() erklären

DATENSTRUKTUREN UND -CONTAINER

Das Collection Framework bietet generische Container

- können verschiedenste Objekte enthalten
- können beliebig viele Objekte aufnehmen
- können auf bestimmte Objekte typisiert werden

ÜBERBLICK ÜBER DAS COLLECTION FRAMEWORK

DIE DREI ARTEN VON CONTAINERN

Listen (List)

- Zugriff sequentiell oder wahlfrei
- Duplikate erlaubt
- Reihenfolge des Einfügens bleibt erhalten

Mengen (Set)

- Zugriff erfolgt über Iteratoren
- keine Duplikate
- Reihenfolge des Einfügens bleibt nicht erhalten

Schlüssel-Werte-Paare (Map)

- zusammengehörige Objektpaare
- Schlüssel sind immer eindeutig
- Zugriff über Schlüssel

LISTEN

List

DAS INTERFACE List

- befindet sich im Package java.util
- Zugriff auf die Container erfolgt sequentiell oder über
- Indexzugriff
- sequentieller Zugriff erfolgt über Iteratoren
- Index beginnt mit 0 und endet bei n Elementen bei n-1
- Größe der Liste wird dynamisch beim Einfügen oder Löschen von Elementen angepasst
- Duplikate sind erlaubt
- die Reihenfolge, in der Elemente eingefügt werden, bleibt erhalten
- meist genutzte Implementierung: ArrayList & Vector
 - intern als Arrays realisiert
 - Hauptunterschied zwischen ArrayList und Vector: Zugriffsmethoden auf Vector sind synchronisiert (wichtig bei Threads)

WESENTLICHE METHODEN IM UMGANG MIT LISTEN

- add(int i, Object o) oder add(Object o) fügt neue Objekte in die Liste ein
- set(int i, Object o) überschreibt das Objekt an der Stelle i mit dem Objekt o
- get(int i) liefert das Objekt an der Stelle i zurück
- contains (Object o) **überprüft**, ob das Objekt o in der Liste enthalten ist
- indexOf (Object o) liefert den Index zurück, an der das Objekt o in der Liste abgelegt ist (-1, wenn das Objekt nicht enthalten ist)
- remove (int i) oder remove(Object o) löscht das Objekt aus der Liste
- clear() initialisiert die Liste
- size () liefert die Länge der Liste zurück

DER UMGANG MIT ITERATOREN

Merkmale von Iteratoren

- einheitlicher Standard zum Durchlaufen von Datencontainern
- Container wird sequentiell durchlaufen
- es können keine Elemente übersprungen werden
- der Container kann sowohl vorwärts als auch rückwärts durchlaufen werden
- bei Änderung des Containerinhalts muss der Iterator neu erzeugt werden

Wichtige Iterator-Methoden

- hasNext() überprüft, ob das aktuelle Element im Container noch einen Nachfolger hat
- next () greift auf das nächste Element des Containers zu
- remove () löscht das Element aus dem Container, welches zuletzt vom Iterator gelesen wurde

BEISPIEL FÜR EINE LIST MIT ITERATOREN

```
import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;
import prog2.demos.exceptions.Auto;
public class ListDemo {
    public static void main(String[] args) {
        List myList = new ArrayList();
        myList.add("Otto");
        myList.add("Karl");
        myList.add("Ludwig");
        myList.add(new Auto(0, 0));
        myList.add(2,"Otto");
        myList.set(3, "Überschreibt den Ludwig");
        System.out.println(myList.contains("Otto"));
        System.out.println(myList.indexOf("Ludwig"));
        System.out.println(myList.get(3));
        System.out.println(myList.size());
        Iterator i = myList.iterator(); while (i.hasNext()) {
            System.out.println(i.next());
        myList.clear();
        System.out.println(myList.size());
```

MENGEN

Set

DIE KLASSE TREESET

- befindet sich im Package java.util
- Zugriff auf die Container erfolgt sequentiell über Iteratoren
- Index beginnt mit 0 und endet bei n Elementen bei n-1
- Größe der Liste wird dynamisch beim Einfügen oder Löschen von Elementen angepasst
- Duplikate sind nicht erlaubt (Vergleich über die equals-Methode) I die Reihenfolge, in der Elemente eingefügt werden, bleibt nicht erhalten
- Einfluss auf die Sortierung der Elemente
- Sortieren nach der natürlichen Ordnung durch Implementierung des Comparable-Interface
 - Das Comparable-Interface muss auf jeden Fall implementiert werden, wenn Objekte in ein TreeSet eingefügt werden
 - Beliebige Sortierung durch Implementierung des Comparator-Interface

BEISPIEL FÜR EINE MENGE MIT ITERATOREN

```
import java.util.Set;
import java.util.TreeSet;
import java.util.Iterator;
public class SetDemo {
    public static void main(String[] args) {
        Set mySet = new TreeSet();
       mySet.add("Otto");
       mySet.add("Karl");
       mySet.add("Ludwig");
       System.out.println(mySet.contains("Otto"));
        System.out.println(mySet.size());
        Iterator i = mySet.iterator();
        while (i.hasNext()) {
            System.out.println(i.next());
       mySet.clear();
        System.out.println(mySet.size());
```

ORDNUNG UND SORTIERUNG VON OBJEKTEN

DAS INTERFACE Comparable

- sortiert Elemente beim Einfügen in Sets oder Maps
- Sortierung erfolgt nach der natürlichen Ordnung
- muss für alle Klassen implementiert werden, deren Instanzen in Sets oder Maps gespeichert werden
- beinhaltet genau eine Methode: public int compareTo (Object o)
- Bedeutung der Rückgabewert
 - Wert < 0: das einzufügende Element liegt vor dem Vergleichsobjekt</p>
 - Wert = 0: das einzufügende Element und das Vergleichsobjekt sind gleich
 - Wert > 0: das einzufügende Element liegt hinter dem Vergleichsobjekt

BEISPIEL FÜR EINE COMPARABLE-IMPLEMENTIERUNG

```
public class Student implements Comparable {
  private String vorname;
  private String nachname;
  private int matrikelNo;

public Student(String vorname, String name, int matrikelNo) {
    this.vorname = vorname;
    this.nachname = name;
    this.matrikelNo = matrikelNo;
  }

// ...

public int compareTo(Object vStudent) {
    return this.matrikelNo - ((Student) vStudent).getMatrikelNo();
  }
}
```

BEISPIEL TREESET MIT EIGENER COMPARABLE-IMPLEMENTIERUNG

```
import java.util.Iterator;
import java.util.TreeSet;
public class DemoMenge1 {
  public static void main(String[] args) {
    TreeSet menge = new TreeSet();
    menge.add(new Student("Peter", "Maier", 75382));
    menge.add(new Student("Hans", "Müller", 65871));
    menge.add(new Student("Karl", "Schmidt", 19853));
menge.add(new Student("Hans", "Müller", 65872));
    menge.add(new Student("Karl", "Schmidt", 19853));
    Iterator i = menge.iterator();
    while(i.hasNext()) {
      Student studie = (Student) i.next();
      System.out.println(studie.getMatrikelNo() + " " +
        studie.getVorname() + " " + studie.getNachname());
```

DAS INTERFACE Comparator

- sortiert Elemente beim Einfügen in Sets oder Maps
- Sortierung erfolgt nach einer beliebigen Sortierreihenolge und übersteuert die natürliche Ordnung
- Comparator sollten in eigener Klasse implementiert werden
- zur Verwendung des Comparators wird die implementierende Klasse dem Konstruktor des Sets oder der Map übergeben
- beinhaltet genau eine Methode: public int compare (Object o1, Object o2)
- Beeutung der Rückgabewerte
 - Wert < 0:o1 liegt vor o2
 - Wert = 0:01 und o2 sind gleich
 - Wert > 0: o1 liegt hinter o2

BEISPIEL FÜR EINE COMPARATOR-IMPLEMENTIERUNG

```
import java.util.Comparator;

public class StudentComparator implements Comparator{

  public int compare(Object obj1, Object obj2) {
    Student studie1 = (Student) obj1;
    Student studie2 = (Student) obj2;
    if ((studie1.getNachname().compareTo(studie2.getNachname())) != 0) {
        return studie1.getNachname().compareTo(studie2.getNachname());
    } else if ((studie1.getVorname().compareTo(studie2.getVorname())) != 0) {
        return studie1.getVorname().compareTo(studie2.getVorname());
    } else if ((studie1.getMatrikelNo() - studie2.getMatrikelNo()) != 0) {
        return studie1.getMatrikelNo() - studie2.getMatrikelNo();
    }

    return 0;
}
```

BEISPIEL TREESET MIT EIGENER COMPARATOR-IMPLEMENTIERUNG

```
import java.util.*;

public class DemoMengel {
    public static void main(String[] args) {
        TreeSet menge = new TreeSet(new StudentComparator());

        menge.add(new Student("Peter", "Maier", 75382));
        //...
        menge.add(new Student("Karl", "Maier", 85383));

    Iterator i = menge.iterator();
    while(i.hasNext()) {
        Student studie = (Student) i.next();
        System.out.println(studie.getMatrikelNo() + " " +
        studie.getVorname() + " " + studie.getNachname());
    }
}
```

SORTIEREN VON LISTEN

- Listen (Vector, ArrayList, ...) sind normalerweise unsortiert
- die Klasse Collections bietet eine überladene Sortiermethode zum Sortieren von List-Objekten an
- folgende Sortiermöglichkeiten werden angeboten
 - static void sort(List liste)
 - sortiert die Liste nach der natürlichen Ordnung
 - dazu müssen die Klassen das Interface Comparable implementieren, deren Instanzen in der Liste gespeichert sind
 - static void sort(List liste, Comparator c)
 - übersteuert die natürliche Ordnung und sortiert die Objekte der Liste über den entsprechenden Comparator c

VERGLEICHEN VON OBJEKTEN

equals() und hashCode()

... und compareTo(Object o)

DER VERGLEICH VON OBJEKTEN

- Vergleich mit dem ==-Operator prüft, ob es sich um die identische Speicherreferenz handelt
- inhaltliche Vergleiche erfolgen über die equals () -Methode (equals () -Methode der Klasse Object entspricht dem ==-Operator)
- der equals-Contract aus der Dokumentation zur Klasse Object
 - reflexiv: jedes Objekt liefert beim Vergleich mit sich selbst true
 - symmetrisch: x verglichen mit y liefert das gleiche Ergebnis, wie der Vergleich von y mit x
 - transitiv: wenn x gleich y und y gleich z ist, dann ist auch x gleich z
 - konsistent: solange sich zwei Objekte nicht verändern, liefert der Vergleich der beiden Objekte immer das gleiche Ergebnis
 - Objekte müssen von null verschieden sein

DAS ÜBERSCHREIBEN DER equals () - METHODE

direkte Sub-Klasse von Object

- Alias-Check mit dem ==-Operator
- Test auf null
- Typverträglichkeit überprüft, ob es sich um Instanzen der gleichen Klasse handelt
- Feld-Vergleich überprüft die inhaltliche Gleichheit der Attribute

indirekte Sub-Klasse von Object

- Alias-Check mit dem ==-Operator
- Delegation an die Oberklasse ermöglicht die Prüfung der Gleichheit der von der Oberklasse geerbten Anteile
- Feld-Vergleich überprüft die inhaltliche Gleichheit der Attribute der Sub-Klasse

DAS ÜBERSCHREIBEN DER equals () - METHODE

DIREKTE SUBKLASSE VON Object

```
public class Haustier {
  private String art;
 private int gewicht;
  public boolean equals(Object objekt) {
   if (this == objekt) {
       return true;
   if (objekt == null){
     return false;
   if (objekt.getClass() != this.getClass()){
      return false;
    if(!this.art.equals(((Haustier) objekt).getArt())){
     return false;
    if(!(this.gewicht == ((Haustier) objekt).getGewicht())) {
      return false;
    return true;
```

DAS ÜBERSCHREIBEN DER equals () - METHODE

INDIREKTE SUBKLASSE VON Object

```
public class Hund extends Haustier {
  private String rasse;
  //...

public boolean equals(Object objekt) {
    // Alias-Check
    if (this == objekt){
        return true;
    }

    // Delegation an super
    if (!super.equals(objekt)){
        return false;
    }

    // Feldvergleich
    if (!this.rasse.equals(((Hund) objekt).getRasse())){
        return false;
    }

    return true;
}
```

ZUSAMMENHANG hashCode() UND equals()

- Verwendung für die Verwaltung der Einträge in hash-basierten Datencontainern (HashSet, HashMap, ...)
- korrekte Verwaltung der Einträge basiert auf folgender Bedingung (hashCode-Contract)
 - wenn o1.equals (o2) den Wert true liefert,
 - dann muss o1.hashCode() den gleichen Wert ergeben, wie o2.hashCode()
- sobald die equals () -Methode überschrieben wird, muss auch die hashCode () Methode überschrieben werden, so dass o.g. Bedingung erfüllt wird
- Vorschlag zur Implementierung
 - Verwendung der Attribute, die bei der Implementierung der equals () -Methode verwendet werden
 - Ermittlung der Hash-Codes der ausgewählten Attribute einer Klasse
 - Addition oder bitweise Verknüpfung mit exklusivem Oder der einzelnen Hash-Codes

ÜBERSCHREIBEN VON hashCode ()

```
public class Haustier {
  private String art;
  private int gewicht;
  //...

  // Getter- und Setter-Methoden
  public boolean equals(Object objekt) {
        //...
  }

  public int hashCode() {
    return this.getArt().hashCode() ^ this.getGewicht();
  }
}
```

```
public class Hund extends Haustier {
  private String rasse;
  //...

public boolean equals(Object objekt) {
    //...
}

public int hashCode() {
    return super.hashCode() ^ this.rasse.hashCode();
  }
}
```

hashCode() - ALTERNATIVE IMPLEMENTIERUNG

Тур	Zugeordneter Integer Wert
Boolean	(field ? 0 : 1)
byte, char, short, int	(int) field
long	(int)(field>>>32) ^ (int)(field & 0xFFFFFFFF)
float	((x==0.0F) ? 0 : Float.floatToIntBits(field))
double	<pre>((x==0.0) ? OL : Double.doubleToLongBits(field)) [anschliessende Behandlung wie bei long]</pre>
Referenz	((field==null) ? 0 : field.hashCode())

hashCode() - ALTERNATIVE IMPLEMENTIERUNG

WAS HAT DAS MIT Comparable ZU TUN?

- comapreTo() sortiert Objekte nach einer "natürlichen" Ordnung
 - Rückgabe Wert 0: die Objekte sind gleich
 - damit sollte der Rückgabewert 0 für zwei Objekte einem Rückgabewert von true beim vergleich mit equals () entsprechenden (Comparable-Contract)

equals () und compareTo () sollten sich konsistent verhalten

• Zusammengefasst: equals (), hashCode () und compareTo () sollten für ein Objekt immer auf den gleichen Attributen basieren

SCHLÜSSEL-WERTE-PAARE

Maps

DAS INTERFACE Map

- befindet sich im Package java.util
- ist kein Sub-Interface von Collection
- es werden immer Schlüssel-Werte-Paare eingefügt
- jeder Schlüssel ist eindeutig
- wird mit dem gleichen Schlüssel ein weiterer Wert eingefügt, so wird der erste Wert überschrieben
- Zugriff auf die Werte-Objekte erfolgt über die Schlüssel
- zwei wesentliche Vertreter
 - TreeMap: Einträge werden nach Schlüsseln sortiert -> Schlüssel- Klasse muss das Interface Comparable implementieren
 - HashMap: auf Basis der hashCode()-Methode der Schlüsselklasse wird eine interne Position (Bucket) berechnet, an der das Schlüssel- Werte-Paar in die Map aufgenommen wird

WESENTLICHE METHODEN IM UMGANG MIT MAPS

- keySet () liefert ein Set der Schlüssel einer Map ohne Duplikate zurück
- values () liefert eine Collection der Werte einer Map zurück (Duplikate erlaubt)
- put (Object k, Object v) nimmt ein Schlüssel-Werte-Paar in die Map auf
- get (Object k) liefert den Wert zum Schlüssel-Objekt k zurück l containsKey(Object k) liefert true zurück, wenn zu dem Schlüssel k ein Eintrag in der Map enthalten ist
- containsValue (Object v) liefert true zurück, wenn zu dem Wert v ein Eintrag in der Map enthalten ist
- remove (Object k) löscht den Eintrag zum Schlüssel kaus der Map
- size () liefert die Länge der Map zurück
- clear() initialisiert die Map

BEISPIEL FÜR EINE TREEMAP MIT ITERATOREN

```
import java.util.Set;
import java.util.Iterator;
import java.util.TreeMap;
public class DemoMap {
 public static void main(String[] args) {
    TreeMap paar = new TreeMap();
   paar.put(new Integer(130), new Hund(20, "Collie"));
   paar.put(new Integer(110), new Hund(50, "Bernhardiner"));
   paar.put(new Integer(100), new Hund(18, "Labrador"));
   paar.put(new Integer(120), new Hund(30, "Schäferhund"));
   paar.put(new Integer(130), new Hund(20, "Cocker"));
    Set schluessel = paar.keySet();
   Iterator i = schluessel.iterator();
   while (i.hasNext()) {
      Integer a = (Integer) i.next();
      Hund dog = (Hund) paar.get(a);
      System.out.println("Schlüssel: " + a + " Wert: " + dog.getRasse());
   System.out.println(paar.size());
```

WRAPPER-KLASSEN

UMGANG MIT WRAPPER-KLASSEN

- statt elementarer Datentypen werden Objekte erwartet (z.B. in Datencontainern)
- um elementare Datentypen in Objekten zu kapseln, gibt es die Wrapper-Klassen
 - stellen Methoden zur Ein- und Ausgabe sowie zur Manipulation zur Verfügung
 - stellen Methoden zur Umwandlung von Datentypen zur Verfügung
- Wrapper-Klassen existieren für folgende Datentypen
 - boolean, byte, char, double, float, int, long, short
- Auto-Boxing / Auto-Unboxing
 - Java erstellt automatisch ein Objekt der passenden Wrapper-Klasse wenn ein Objekt erwartet, aber ein einfacher Datentyp bereitgestellt wird (Auto-Boxing)
 - umgekehrt wird der Wert als einfacher Datentyp bereitgestellt, wenn ein Objekt der Wrapper-Klasse zurückgegeben wird (Auto-Unboxing)

KAPITEL 10 SWING

KAPITELÜBERSICHT - PROGRAMMIEREN 2

- 8. Exception Handling
- 9. Collection Framework
- 10. Swing
- 11. Optional: Input- & Output-Stream
- 12. Optional: Threads

LERNZIELE

- Sie können den wesentlichen Unterschied zwischen AWT und Swing erläutern
- Sie können mit Swing einfache Fenster erzeugen und schließen
- Sie können unterschiedliche Layouts in Verbindung mit Panels einsetzen
- Sie können einfache Benutzerdialoge mit ausgewählten Swing-Komponenten erstellen
- Sie können validierende Textfelder erstellen
- Sie können die Interfaces Action- und ItemListener einsetzen
- Sie können eigene Menüs implementieren
- Sie können die Benutzeroberfläche mit Panels, Rahmen und Tooltips ergänzen

ABGRENZUNG VON AWT UND SWING

AWT (Abstract Window Toolkit) arbeitet mit "Heavyweight components"

- Verwendung von plattformspezifischen Implementierungen der AWT-Klassen (nicht in Java implementiert!)
- AWT-Komponenten besitzen einen Partner auf Betriebssystemseite (Peer), der Darstellung und Funktionalität steuert
- Vorteil: sehr schnell, da die Peer-Klassen im Code der Ausführungsplattform geschrieben sind

Swing arbeitet mit "Lightweight components"

- es werden nur sehr wenige plattformspezifische GUI-Ressourcen verwendet
- lightweight components besitzen keinen Peer auf Betriebssystemseite
- Swing besitzt zahlreiche zusätzliche GUI-Komponenten
- Vorteil: "bessere" Plattformunabhängigkeit
- Nachteil: im Vergleich zu AWT eher langsam

ABGRENZUNG VON AWT UND SWING

JFrame

AUFBAU EINES SWING-FENSTERS MIT JFrame

- Hauptkomponente eines JFrames ist die RootPane
- darunter folgt eine Hierarchie sogenannter Panels
- neue Komponenten werden der ContentPane zugeordnet und nicht dem JFrame

WICHTIGE METHODEN FÜR JFRAMES

- überladener Konstruktor, u.a. zum Setzen des Titels
- setDefaultCloseOperation(int i) legt fest, was beim Schließen des Fensters passiert
- Konstanten, die o.g. Methode übergeben werden können
 - WindowConstants.DO_NOTHING_ON_CLOSE löst lediglich das Close-Event aus
 - WindowConstants.HIDE ON CLOSE versteckt das Fenster
 - WindowConstants.DISPOSE_ON_CLOSE zerstört den Frame
 - WindowConstants.EXIT_ON_CLOSE beendet die Applikation
- Getter- und Setter-Methoden für die Panels eines JFrames, z.B. getContentPane()
- Methoden aus der Klasse java.awt.Window
 - setBounds(int x, int y, int width, int heigth)
 - pack () passt die Fenstergröße an den Content an
- setVisible (boolean b) aus der Klasse java.awt.Component

Layoutmanager

LAYOUTS IM RAHMEN VON SWING

- Anordnung der Elemente eines Containers nach bestimmten Verfahren über Layout-Manager
- wesentliche Layout-Manager
 - FlowLayout ordnet seine Elemente von links nach rechts
 - BorderLayout ermöglicht eine Anordnung in 5 verschiedenen Bereichen (NORTH, EAST, SOUTH, WEST und CENTER)
 - GridLayout ermöglicht die Anordnung der Komponenten in Zeilen und Spalten von links nach rechts und von oben nach unten
- mit der Methode setLayout (LayoutManager 1) wird für ein JFrame der Layout-Manager gesetzt

JPanel

DER CONTAINER JPANEL

- JPanel ist eine weitere Container-Form
- ordnet mehrere Elemente unter der Kontrolle eines Layoutmanagers an
- Layoutmanager und Komponenten werden direkt dem Panel zugewiesen
- bereits dem Konstruktor wird der Layoutmanager mitgegeben lüber die add()-Methode werden die Komponenten dem Panel zugeordnet

JPANEL BEISPIEL

```
import java.awt.FlowLayout;
import javax.swing.*;

public class DemoFlow {
   public static void main(String[] args) {
      JFrame fenster = new JFrame("Flow");
      fenster.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

   JPanel p = new JPanel(new FlowLayout(0));
   p.add(new JLabel("Beschreibung"));
   p.add(new JTextField(20));

   fenster.getContentPane().add(p);
   fenster.pack();
   fenster.setVisible(true);
   }
}
```

BEISPIEL: EINSATZ VON JPANEL UND LAYOUTS

- Hauptfenster = BorderLayout
- rot und grün umrahmtes Panel =FlowLayout
- blau umrahmte Panels = GridLayout, wobei jedes einzelne Feld auf einem eigenen Panel mit FlowLayout liegt

RAHMEN MIT DEM Border INTERFACE

PANELS MIT RAHMEN HERVORHEBEN

- Rahmen sind über Klassen relisiert, die das Interface Border implementieren
- Rahmen sollten nicht direkt über die Konstruktoren der Rahmen-Klassen sondern über die Klassenmethoden der BorderFactory erzeugt werden
- jeder Swing-Komponente kann mit der Methode setBorder (Border b) ein Rahmen zugewiesen werden
- einige Standardrahmen sind in Swing bereits implementiert

VERSCHIEDENE RAHMEN

Klasse	Rahmenart
AbstractBorder	eine abstrakte Klasse, die die Schnittstelle minimal implementiert
BevelBorder	ein 3D-Rahmen, der eingelassen sein kann
CompoundBorder	ein Rahmen, der andere Rahmen aufnehmen kann
EmptyBorder	Rahmen, dem freier Platz zugewiesen werden kann
EtchedBorder	noch deutlicher markierter Rahmen
LineBorder	Rahmen in einer einfachen Farbe in gewünschter Dicke
MatteBorder	Rahmen, bestehend aus Kacheln von Icons
SoftBevelBorder	ein 3D-Rahmen mit besonderen Ecken
TitledBorder	Rahmen mit String in einer gewünschten Ecke

BEISPIEL: PANELS MIT VERSCHIEDENEN RAHMEN

```
import javax.swing.BorderFactory;
import javax.swing.border.BevelBorder;
import javax.swing.border.Border;
public class DemoLogonScreen {
 public DemoLogonScreen() { ...
   Border rahmen1 = BorderFactory.createEtchedBorder();
   Border rahmen2 = BorderFactory.createTitledBorder(rahmen1, "Verbindung");
   Border rahmen3 = BorderFactory.createTitledBorder(rahmen1, "Dateien");
   Border rahmen4 = BorderFactory.createTitledBorder(rahmen1, "Berechtigungen");
   Border rahmen5 = BorderFactory.createBevelBorder(BevelBorder.LOWERED);
   linkeEingabe.setBorder(rahmen2);
   rechteEingabe1.setBorder(rahmen3);
   rechteEingabe2.setBorder(rahmen4);
   mainPanel.setBorder(rahmen5);
 public static void main(String[] args) {
   DemoLogonScreen fenster = new DemoLogonScreen();
```

BEISPIEL: DEMOLOGONSCREEN

SWING UI KOMPONENTEN

BESCHRIFTUNGEN UND GRAFIKANZEIGE MIT

JLabel

- ermöglicht einfache Anzeige von Texten oder Grafiken
- zu einem Text kann zusätzlich ein Icon angezeigt werden
- bietet die Möglichkeit, HTML-Tags darzustellen
- häufiger Einsatz zur Beschriftung andere Dialogkomponenten

```
import java.awt.GridLayout;
import javax.swing.*;

public class DemoLabelGrafik {
   public static void main(String[] args) {
     JFrame fenster = new JFrame("Bild und Label"); fenster.setDefaultCloseOperation(WindowConstants.EXIT_ON_C
     JLabel text = new JLabel("Hier kommt eine Grafik:");
     ImageIcon img = new ImageIcon("G:/BA/Vorlesungen/Programmierung/Demos Vorlesung/Eclipse.jpg"); JLabel bil
     fenster.getContentPane().add(text);
     fenster.getContentPane().add(bild);
     fenster.pack();
     fenster.setVisible(true);
   }
}
```

UNTERSCHIEDLICHE ARTEN VON TEXTFELDERN

- einfache Textfelder der Klasse JTextField
 - überladener Konstruktor, um das Feld mit einem String vorzubelegen und/oder die Breite anzugeben
 - Angabe der Schriftart über die Methode setFont()
 - Auslesen des Inhalts über die Methode getText()
- spezielle Felder für Passwörter der Klasse JPasswordfield
 - Konstruktoren analog der Klasse JTextField
 - Auslesen des Inhalts über die Methode getPassword()
 - zwei boolsche Methoden cut() und copy(), die überprüfen, ob Werte mit cut (STRG+X) oder copy (STRG+C) aus dem Feld ausgelesen werden dürfen
- mehrzeilige Textfelder der Klasse JTextArea
 - Konstruktoren analog der Klasse JTextField Unterschied: es muss neben der Breite auch die Höhe des Feldes angegeben werden
 - Auslesen und ändern der Schriftart analog der Klasse JTextField
 - Zeilenumbrüche werden bei getText() berücksichtigt

VALIDIERENDE TEXTFELDER ALS SPEZIELLE FORM

- realisiert durch die Klasse JFormattedTextField
- dem Konstruktor der Klasse wird das Format mitgegeben
- mehrere Klassen stehen für die Maskierung zur Verfügung
 - alle Objekte der Sub-Klassen der Klasse Format (z.B. SimpleDateFormat, DecimalFormat, etc.)
 - z.B. bei Drücken der Enter-Taste wird die Eingabe überprüft und ein mögliches ActionEvent ausgelöst
- Objekte der Klasse MaskFormatter erlauben nur bestimmte Zeichen bei der Eingabe

Platzhalter	Beschreibung
#	nur Ziffern sind erlaubt
,	Escape-Zeichen als Prefix vor einem Platzhalter
U	erlaubt nur Buchstaben, Kleinbuchstaben werden zu Großbuchstaben konvertiert
L	erlaubt nur Buchstaben, Großbuchstaben werden zu Kleinbuchstaben konvertiert
А	nur Ziffern oder Buchstaben sind erlaubt
?	nur Buchstaben sind erlaubt
*	alle Zeichen sind erlaubt
Н	nur Zeichen zur Hexadezimaldarstellung sind erlaubt (0-9 und A-F)

DROP-DOWN-LISTEN ÜBER JComboBox

- eine bestimmte Wertemenge wird zur Auswahl bereit gestellt
- dem Konstruktor der Klasse JComboBox wird die Wertemenge als ein Array von Objekten der Klasse Object übergeben
- wesentliche Methoden der Klasse JComboBox
 - getSelectedItem() liefert den Wert des ausgewählten Elements zurück (entspricht der Methode getText() bei JTextField)
 - setSelectedItem (Object o) belegt das Feld mit dem Wert o vor, sofern dieser in dem Array der Wertemenge vorhanden ist
 - setEditable(boolean b) bestimmt, ob auch Werte außerhalb
 der Wertemenge erlaubt sind
 - b = true -> freie Eingabe erlaubt
 - b = false -> freie Eingabe nicht erlaubt

WEITERE KLASSEN AUS DEM PACKAGE SWING

- JTable
 - dient der Erstellung zweidimensionaler Tabellen
- JTree
 - ermöglicht die Darstellung von Bäumen ähnlich dem Windows Explorer bestehend aus Knoten und Blättern
- JToolBar
 - dient der Erstellung von Symbolleisten analog den Microsoft Office-Produkten
- JColorChooser
 - dient der Erstellung eines Auswahldialogs zur Farbeinstellung
- JFileChooser
 - dient der Erstellung eines Dialogs zur Auswahl einer Datei im FileSystem
- ...

EventListener

DAS EVENT KONZEPT

- UI Komponenten erzeugen Events z.B. klick auf einen Button (ActionEvent), ändern einer Auswahl (ItemEvent), wechseln eines Fensters (FocusEvent) ...
- Jeder Event-Typ hat ein Listener Interface um auf das Event reagieren zu können
 - ActionEvent --> ActionListener
 - ItemEvent --> ItemListener
 - FocusEvent --> FocusListener
 - **...**
- Komponenten, welche Events erzeugen, können (mehrere) Implementierungen des jeweiligen Interfaces registrieren (z.b. addActionListener (ActionListener a))
- Tritt ein Event auf, wird die jeweilige Methode der registrierten Interface-Implementierung aufgerufen

DIE AUFGABEN DES ItemListener

- der ItemListener ist als Interface implementiert
- das Interface gibt die abstrakte Methode itemStateChanged (ItemEvent e) vor
- das Interface wird von Objekten implementiert, die an einem Auswahlereignis interessiert sind
- Auswahlereignisse können von Objekten folgender Klassen ausgelöst werden: JComboBox, JCkeckBox, JList oder JCheckBoxMenuItem
- die Zuordnung zu einem ItemListener erfolgt über die jeweiligen Objekt-Methoden addItemListener() oder removeItemListener()
- wird ein Eintrag bei o.g. Objekten ausgewählt, wird implizit die Methode itemStateChanged (ItemEvent e) bei allen bei dem Objekt registrierten ItemListenern ausgeführt
- Beispiel: beim Setzen des Hakens wird ein zusätzliches Feld eingeblendet

BEISPIEL: JComboBox MIT ItemListener

```
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
public class DemoJComboBox {
 public DemoJComboBox() {
   ItemListener zuhoerer = new ItemListener() {
     public void itemStateChanged(ItemEvent e) {
       JComboBox auswahl = (JComboBox)e.getSource();
       if(auswahl.getSelectedItem().equals("sonstiges")) {
          sonstLabel.setVisible(true);
          sonst.setVisible(true);
        } else {
          sonstLabel.setVisible(false);
          sonst.setVisible(false);
   Object[] werte = {"DVD", "VCD", "VHS", "SVCD", "sonstiges"};
   JComboBox medium = new JComboBox(werte);
   medium.addItemListener(zuhoerer);
  public static void main(String[] args) {
   DemoJComboBox fenster = new DemoJComboBox();
```

INTERAKTION ÜBER DRUCKTASTEN MIT

JButton

- überladener Konstruktor, der es ermöglicht Text und oder Grafik in Form eines Icon auf dem Button zu positionieren
- mit der Methode setText (String s) kann der Text nachträglich verändert werden
- wichtigste Methoden addActionListener() und removeActionListener()
- der ActionListener ist der Beobachter des Knopfes
- ohne ActionListener kann dem Button keine Funktionalität zugewiesen werden
- sobald der Button gedrückt wird, wird ein ActionEvent ausgelöst, welches vom Beobachter abgefangen und ausgewertet wird

DIE AUFGABEN DES ActionListener

- der ActionListener ist als Interface implementiert
- das Interface gibt die abstrakte Methode actionPerformed (ActionEvent e) vor
- diese Methode wird implizit ausgeführt, sobald ein "abgehörtes" Objekt ein ActionEvent auslöst
- die Klasse ActionEvent besteht aus drei Methoden
 - getActionCommand() liefert den String, der mit der Aktion
 verbunden ist (bei JButton die Beschriftung des Buttons)
 - getModifiers() liefert einen Integer-Wert zurück, welche Funktionstaste bei dem Ereignis gedrückt wurde (Shift, Alt, etc.)
 - paramString() liefert einen Erkennungs-String, der mit "ACTION_PERFORMED" oder "unknown type" beginnt

BEISPIEL FÜR EINEN JButton MIT ActionListener

```
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
public class DemoButton { public DemoButton() {
 public DemoButton() {
   ActionListener zuhoerer = new ActionListener() {
     public void actionPerformed(ActionEvent e) {
       String ereignis = e.getActionCommand();
       if (ereignis.equals("OK")) {
          System.out.println("Es wurde OK gedrückt.");
          System.exit(0);
   JButton ok = new JButton("OK");
   ok.addActionListener(zuhoerer);
   JButton exit = new JButton("Exit");
    exit.addActionListener(zuhoerer);
  public static void main(String[] args) {
    DemoButton fenster = new DemoButton(); }
```

KONTROLLFELDER MIT JCheckBox

- Kontrollfelder kennen zwei Zustände: selektiert (true) und nicht selektiert (false)
- überladener Konstruktor, der es ermöglicht Text, Initialwert (true oder false) und Icon mitzugeben
- Kontrollfelder werden normalerweise als Kästchen mit einem Häkchen für den selektierten Zustand dargestellt
- der Zustand kann über die Methode setSelected (boolean b) geändert werden
- der Zustand kann allerdings nicht direkt über eine Getter-Methode ausgelesen werden
- bei der Änderung des Zustands durch den Anwender wird ein ItemEvent ausgelöst und an alle registrierten ItemListener weitergeleitet
- im ItemListener kann der Zustand des Kontrollfeldes ausgewertet und weiter verarbeitet werden

BEISPIEL: JCkeckBox MIT ItemListener

```
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener; ...

public class DemoJCheckBox {
    // ...

private ItemListener hoererl = new ItemListener() {
    public void itemStateChanged(ItemEvent e) {
        if (e.getStateChange() == ItemEvent.SSLECTED) {
            ueber.setText("Datei wird überschrieben");
        } else {
            ueber.setText("Datei wird nicht überschrieben");
        }
    }
    // ...

public DemoJCheckBox() {
        // ...
        JCheckBox ueber = new JCheckBox("Datei wird nicht überschrieben", false);
        ueber.addItemListener(hoererl);
        // ...
}

public static void main(String[] args) {
        DemoJCheckBox fenster = new DemoJCheckBox();
    }
}
```

OPTIONSFELDER MIT JRadioButton & ButtonGroup

- Optionsfelder bieten mehrere Auswahlmöglichkeiten an, wobei nur eine Option ausgewählt werden kann
- dazu werden Optionsfelder in einem Objekt der Klasse ButtonGroup zu einer Optionsfeldgruppe zusammengefasst
 - mit der Objektmethode add (AbstractButton b) der Klasse ButtonGroup wird ein Optionsfeld der Gruppe hinzugefügt
 - mit der Objektmethode remove (AbstractButton b) der Klasse ButtonGroup wird ein Optionsfeld aus der Gruppe entfernt
- überladener Konstruktor der Klasse JRadioButton analog der Klasse JCheckBox
- Optionsfelder werden normalerweise als Kreis mit einem schwarzen Punkt für den selektierten Zustand dargestellt
- bei der Änderung des Zustands eines Optionsfeldes wird ein ActionEvent ausgelöst und an alle registrierten ActionListener weitergeleitet
- im ActionListener kann die Auswertung der Optionsfelder erfolgen

BEISPIEL: JRadioButton MIT ActionListener

```
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
public class DemoRadioButton {
 private ActionListener hoerer2 = new ActionListener() {
   public void actionPerformed(ActionEvent e) {
     if (opt1 == e.getSource()) {
       System.out.println("Datei kann nur gelesen werden");
     } else if (opt2 == e.getSource()) {
       System.out.println("Datei kann nur geschrieben werden");
     } else if (opt3 == e.getSource()) {
       System.out.println("Datei kann gelesen und geschrieben werden");
 public DemoRadioButton() {
   opt1 = new JRadioButton("Nur Lesen", true);
   opt1.addActionListener(hoerer2);
   opt2 = new JRadioButton("Nur Schreiben",false);
   opt2.addActionListener(hoerer2);
   optGroup = new ButtonGroup();
   optGroup.add(opt1);
   optGroup.add(opt2);
   optGroup.add(opt3);
 public static void main(String[] args) {
   DemoRadioButton fenster = new DemoRadioButton();
```

WEITERE KOMPONENTEN

ERSTELLEN VON MENÜS MIT SWING-KOMPONENTEN

- JMenuBar ist der Container für die einzelnen Menüs
 - mit der add (JMenu m) Methode wird dem Container ein Menü hinzugefügt
- Objekte der Klasse JMenu stellen die einzelnen Menüs dar und sind Container für konkrete Menüeinträge
 - mit der add (JMenuItem i) Methode wird einem Menü ein konkreter Menüeintrag zugeordnet
- Objekte der Klasse JMenuItem repräsentieren Menüeinträge
- mit der Methode setJMenuBar (JMenubar m) wird einem Fenster eine Menüleiste zugeordnet
- um auf die Auswahl eines Menüeintrags zu reagieren, müssen die Menüeinträge einem ActionListener zugeordnet werden

BEISPIEL: EINFACHES MENÜ MIT ACTIONLISTENER

```
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.*;
public class DemoJMenuBar {
  private ActionListener hoerer = new ActionListener() {
   public void actionPerformed(ActionEvent e) {
      String ereignis = e.getActionCommand();
     if (ereignis.equals("Beenden")){
        System.exit(0);
      } else {
        System.out.println(ereignis);
  public DemoJMenuBar() { ...
    JMenuBar menue = new JMenuBar();
    JMenu bea = new JMenu("Bearbeiten");
    JMenuItem aus = new JMenuItem("Ausschneiden"); ...
    aus.addActionListener(hoerer); bea.add(aus);
    menue.add(bea);
    fenster.setJMenuBar(menue);
```

TOOLTIPS

- Tooltips sind kleinere Hilfetexte, die beim längeren Verweilen auf einem GUI-Objekt in einem kleinen PopUp-Fenster angezeigt werden
- ToolTips werden nicht direkt über den Konstruktor der Klasse JToolTip erzeugt, sondern über die Methode setToolTipText (String s) des GUI-Objektes
 - der String s kann als einfacher Text übergeben werden
 - der String s kann im HTML-Format übergeben werden

```
import javax.swing.JButton;

public class DemoToolTip {
    public DemoToolTip() {
        //...
        JButton ok = new JButton("OK");
        ok.addActionListener(zuhoerer);
        ok.setToolTipText("Führt die Funktion aus");
        // ...
    }

public static void main(String[] args) {
        DemoToolTip fenster = new DemoToolTip();
    }
}
```

KAPITELÜBERSICHT - DATENSTRUKTUREN ALGORITHMEN

- 1. Datenstrukturen
- 2. Algorithmen

PRINCIPAL COLLECTION

- KISS
- DRY
- FIRST