2IT80 Discrete Structures

2023-24 Q2

Lecture 4: Orderings

Relation

A relation between two sets X and Y is a subset $R \subseteq X \times Y$ of the Cartesian product.

Important special case: X = Y

We then speak of a relation on X.

This is an arbitrary subset $R \subseteq X \times X$.

For $(x, y) \in R$:

say: x and y are related by R

write: *xRy*

Properties of relations

A relation R on a set X is

Reflexive, if xRx for all $x \in X$

Irreflexive, if there is no $x \in X$ with xRx

Symmetric, if xRy implies yRx for all $x, y \in X$

Antisymmetric if, xRy and yRx implies x = y

Transitive, if xRy and yRz implies xRz for all $x, y, z \in X$

Quiz

Are the following relations reflexive, irreflexive, symmetric, antisymmetric and / or transitive?

On set of students sRt iff student s graduates before student t

On set of integers

$$xRy \text{ iff } x + y = 10$$

Ordering Relations

Motivation

Usual ordering \leq on \mathbb{N} is a relation.

We would like to order other sets as well ...

Example: apartments have a size s and a monthly rental cost r. Can we order apartments $A_1 = (s_1, r_1)$ and $A_2 = (s_2, r_2)$? A_1 is better or equal to A_2 if

- it has at least the same size and
- at most the same prize.

What are the crucial properties that make \leq useful?

Ordering relation

An ordering relation on a set *X* is a reflexive, antisymmetric, transitive relation on *X*.

A partially ordered set (poset) is a pair (X, R) where X is a set and R is an ordering relation on X.

We often use notation \leq and \leq .

A relation R is a linear or total ordering if for every two elements x, y we have xRy or yRx.

Reflexive, if xRx for all $x \in X$

Antisymmetric if, xRy and yRx implies x = y

Transitive, if xRy and yRz implies xRz for all $x, y, z \in X$

Orderings

Linear orderings (or total orderings):

Smaller or equal on natural numbers: (\mathbb{N}, \leq)

Lexicographic order of words

Partial orderings: (to emphasize they are not necessarily linear)

 $\Delta = \{ (x, x) \mid x \in X \}; \Delta \text{ is the usual "equal" relation}$

Divisors: $(\mathbb{N}, |)$, where $a \mid b$ if and only if a is a divisor of b.

Inclusion of subsets of X: $(2^X, \subseteq)$, where \subseteq is the usual "subset-of" relation

Domination orderings: (\mathbb{R}^3, \leq) where $(x_1, x_2, x_3) \leq (y_1, y_2, y_3)$ if and only if $x_1 \leq y_1$, $x_2 \leq y_2$, and $x_3 \leq y_3$.

The "worse in every respect" relation for multiple criteria

Exercise

Come up with a two orderings (one linear ordering and one that is not linear) on the gives set.

Example: on natural numbers we have seen "is smaller or equal too" and "divides"

- 1 Real numbers
- 2 Courses (at the university)
- 3 People (all people currently on the planet)

Orderings

Given an ordering \leq , we can derive the following relations Strict inequality: \prec as $a \prec b$ if and only if $a \leq b$ and $a \neq b$ Reverse ordering: \geq as $a \geq b$ if and only if $b \leq a$

Examples:

 (\mathbb{N}, \leq) , (\mathbb{R}, \leq) where \leq is the usual ordering. The corresponding strict ordering is the usual ordering <. The reverse ordering is \geq .

Drawing as a relation

Elements are drawn as points

Arrows indicate relation a → b iff aRb

Example \leq on $\{1,2,3,4\}$

A lot of excessive arrows if we know it is an ordering

Representing orderings

Let (X, \leq) be a poset

An element $x \in X$ is an immediate predecessor of element $y \in X$ iff

- $\blacksquare x \prec y$ and
- there is no $t \in X$ with x < t < y.

Write $x \triangleleft y$ if x is the immediate predecessor of y

Theorem: Let (X, \leq) be a finite poset and let \lhd be the corresponding "immediate predecessor" relation. Then for any $x, y \in X$, x < y holds if and only if there is a chain of elements $x_1, x_2, ..., x_k \in X$ such that $x \lhd x_1 \lhd \cdots \lhd x_k \lhd y$ (possibly k = 0, i.e., $x \lhd y$).

Proof: In book!

Hasse diagrams

Divisibility relation: ({1,2, ..., 10}, |):

Set $\{1,2,3\} \times \{1,2,3\}$ where $(a_1,b_1) \leq (a_2,b_2)$ if and only if $a_1 \leq a_2$ and $b_1 \leq b_2$:

Subsets of {1,2,3} ordered by inclusion: {1,2,3}

Orderings and Linear Orderings

Linear ordering

Every linear ordering is also a (partial) ordering.

The converse statement is false: divisibility in \mathbb{N}

Theorem: Let (X, \leq) be a finite partially ordered set. Then there exists a linear ordering \leq of X such that $x \leq y$ implies $x \leq y$.

This means: each partial ordering can be extended to a linear ordering: linear extension

Need some more concepts for the proof ...

Minimal element

Let (X, \leq) be an ordered set. An element $a \in X$ is called a minimal element of (X, \leq) if there is no $x \in X$ such that x < a.

A maximal element a is defined analogously (there is no x > a).

Theorem: Every finite partially ordered set (X, \leq) , with $|X| \geq 1$, has at least one minimal element.

Does not hold for infinite sets!

Example: (\mathbb{Z}, \leq) , the integers with the usual ordering: no minimal element.

Smallest element

Let (X, \leq) be an ordered set. An element $a \in X$ is called a smallest element of (X, \leq) if for every $x \in X$ we have $a \leq x$.

A largest element is defined analogously.

Smallest/largest elements are sometimes called minimum/maximum element.

Beware: minimal \neq smallest, maximal \neq largest!

Existence of minimal elements

Theorem: Every finite partially ordered set (X, \leq) , with $|X| \geq 1$, has at least one minimal element.

```
Intuition: Choose x_0 \in X arbitrarily.
If x_0 is minimal, we are done.
Otherwise, there exists some x_1 < x_0.
If x_1 is minimal, we are done.
Otherwise, there exists some x_2 < x_1
After finitely many steps we arrive at a minimal element.
Otherwise X would have infinitely many elements x_0, x_1, x_2, \dots
```

Alternative proof

Theorem: Every finite partially ordered set (X, \leq) , with $|X| \geq 1$, has at least one minimal element.

Proof:

Choose $x \in X$ such that $L_x = \{ y : y \le x \}$ is the smallest over all elements in X.

We prove that $|L_x| \leq 1$ by contradiction.

Assume $|L_{\chi}| > 1$.

Then $y \in L_x$ with $x \neq y$ exists and $|L_y| < |L_x|$ since $L_y \subset L_x$ This contradicts the choice of x, so $|L_x| \leq 1$

Also $|L_x| \ge 1$, since $x \in |L_x|$ So x is a minimal element.

Linear extensions

Theorem: Let (X, \leq) be a finite partially ordered set. Then there exists a linear ordering \leq of X such that $x \leq y$ implies $x \leq y$. Proof: Proof by induction on n = |X|.

Base case: n = 0: The empty ordering is linear.

Linear extensions

Theorem: Let (X, \leq) be a finite partially ordered set. Then there exists a linear ordering \leq of X such that $x \leq y$ implies $x \leq y$.

Proof: Inductive step: Let $k \ge 0$

IH: For any set (X', \leq') with $0 \leq |X'| \leq k$ there exists a linear ordering (X', \leq') such that $x \leq' y$ implies $x \leq' y$ for all $x, y \in X'$.

Consider an partially ordered set (X, \leq) with |X| = k + 1.

Let $x_0 \in X$ be a minimal element in (X, \leq)

Set $X' = X \setminus \{x_0\}$, and let \leq' be the relation \leq restricted to the set X'. (X', \leq') is an ordered set with |X'| = k

By IH linear ordering (X', \le') exists such that $x \le' y$ implies $x \le' y$ We define relation \le on X as follows:

$$x_0 \le y$$
 for each $y \in X$; $x \le y$ whenever $x \le' y$.

To prove: $x \leq y$ implies $x \leq y$.

To prove: \leq is a linear ordering.

Lets make some linear extensions

Given the ordering defined by the Hasse diagram below. Give a linear extension of the ordering.

Ordering by Inclusion

Relating orderings

Some orderings appear to be similar.

Or one is an extended version of another.

Embedding

Let (X, \leq) and (X', \leq') be ordered sets. A mapping $f: X \to X'$ is called an embedding of (X, \leq) into (X', \leq') if the following conditions hold: (i) f is injective;

(ii) $f(x) \le' f(y)$ if and only if $x \le y$.

If an embedding is surjective, then it is an isomorphism.

Embeddings

Ordering by Inclusion

Theorem: For every ordered set (X, \leq) there exists an embedding into the ordered set $(2^X, \subseteq)$.

Proof (sketch): Define $f: X \to 2^X$ by $f(x) = \{a \in X : a \le x\}$. Remains to check: f is an embedding.

1. f is injective: Assume f(x) = f(y).

$$x \in f(x) = f(y) \Rightarrow x \le y$$

 $y \in f(y) = f(x) \Rightarrow y \le x$ $\Rightarrow x = y \text{ (anti-symmetry)}$

2. Show: if $x \le y$, then $f(x) \subseteq f(y)$.

Let
$$x \leq y$$
.

If $z \in f(x)$, then $z \le x$. By transitivity $z \le y$.

But then $z \in f(y)$.

3. Show: if $f(x) \subseteq f(y)$, then $x \le y$. If $f(x) \subseteq f(y)$, then $x \in f(y)$. Hence $x \le y$.

Remarks

"Order by inclusion" holds for infinite sets as well.

The ordered sets $(2^X, \subseteq)$ are universal: they contain a copy of every ordered set

For $X = \{1, 2, ..., n\}$ the set $(2^X, \subseteq)$ is often denoted by \mathcal{B}_n .

Boolean lattice, n-dimensional cube ...

Large Implies Tall or Wide

Theorem: An arbitrary sequence $(x_1, ..., x_{n^2+1})$ of real numbers contains a monotone subsequence of length n+1.

Subsequence is determined by indices $i_1, i_2, ..., i_m, i_1 < i_2 < \cdots < i_m$. It has the form $(x_{i_1}, x_{i_2}, ..., x_{i_m})$.

A subsequence is monotone if either

$$\begin{aligned} &x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_m}, \text{ or } \\ &x_{i_1} \geq x_{i_2} \geq \cdots \geq x_{i_m}. \end{aligned}$$

$$(3,5,6,2,8,1,4,7)$$

(with $i_1 = 1$, $i_2 = 2$, $i_3 = 3$, $i_4 = 5$)

Comparability and chains

Let $P = (X, \leq)$ be a poset.

Elements x, y are called comparable if either $x \le y$ or $y \le x$ Incomparable if neither $x \le y$ nor $y \le x$

A set $A \subseteq X$ is called a chain in P if every two of its elements are comparable (in P).

Maximum chains

We use

$$\omega(P) = \max\{|A| : A \text{ chain in } P\}$$

to denote the maximum size of a chain in P.

Independence

A set $A \subseteq X$ is called independent in P if any two of its elements are incomparable.

Independent sets are also called antichains

Observation: The set of all minimal elements in *P* is independent.

Maximum independent sets

We use

$$\alpha(P) = \max\{|A| : A \text{ independent in } P\}$$

to denote the maximum size of an independent set in P

Maximum chains and antichains

Intuition: $\omega(P)$ measures "height" $\alpha(P)$ measures "width"

Claim: A large poset cannot have low height and low width, i.e., $\alpha(P) \cdot \omega(P) \ge |X|$.

Either tall or wide ...

Theorem: For every finite ordered set $P = (X, \leq)$ we have $\alpha(P) \cdot \omega(P) \geq |X|$.

Proof: Define sets $X_1, X_2, ..., X_t$ inductively:

 X_1 : all minimal elements of P

Inductive step: $X_1, ..., X_\ell$ already defined:

$$\blacksquare X'_{\ell} = X \setminus \bigcup_{i=1}^{\ell} X_i$$

■ if $X'_{\ell} = \emptyset$, then put $t = \ell$, construction finished

■ $X_{\ell+1}$: all minimal elements of (X'_{ℓ}, \leq')

(2) Each X_i is an independent set in P

(3)
$$\omega(P) \geq t$$

 $X_{\ell+1} \neq \emptyset$ since X_{ℓ} , is finite

Either tall or wide ...

Claims: (1) $X_1, ..., X_t$ form a partition of X

- (2) Each X_i is an independent set in P
- (3) $\omega(P) \geq t$

Together these claims finish the proof:

(1)
$$\Rightarrow$$
 $|X| = \sum_{i=1}^{t} |X_i| \le \sum_{i=1}^{t} \alpha(P) = t \cdot \alpha(P) \le \omega(P) \cdot \alpha(P)$

(1), (2) follow by construction of $X_1, X_2, ..., X_t$ and the observation that minimal elements are independent

Remains to prove claim (3).

Either tall or wide ...

Claim: $\omega(P) \ge t$

Idea: Inductively construct a chain of length t to prove the claim

Choose $x_t \in X_t$ arbitrarily

 $x_t \notin X_{t-1} \Rightarrow \text{there exists } x_{t-1} \in X_{t-1} \text{ so that } x_{t-1} < x_t.$

Repeat this argument:

- Have constructed $x_t \in X_t, x_{t-1} \in X_{t-1}, ..., x_{k+1} \in X_{k+1}$
- Then $x_{k+1} \notin X_k \Rightarrow$ there exists $x_k \in X_k$ with $x_k < x_{k+1}$

The set $\{x_1, ..., x_t\}$ constructed this way is a chain.

Therefore $\omega(P) \geq t$.

Theorem: An arbitrary sequence $(x_1, ..., x_{n^2+1})$ of real numbers contains a monotone subsequence of length n+1.

Subsequence is determined by indices $i_1, i_2, ..., i_m, i_1 < i_2 < \cdots < i_m$. It has the form $(x_{i_1}, x_{i_2}, ..., x_{i_m})$.

A subsequence is monotone if either

$$x_{i_1} \le x_{i_2} \le \cdots \le x_{i_m}$$
, or $x_{i_1} \ge x_{i_2} \ge \cdots \ge x_{i_m}$.

(3,5,6,2,8,1,4,7)

Theorem: An arbitrary sequence $(x_1, ..., x_{n^2+1})$ of real numbers contains a monotone subsequence of length n+1.

Subsequence is determined by indices $i_1, i_2, ..., i_m, i_1 < i_2 < \cdots < i_m$. It has the form $(x_{i_1}, x_{i_2}, ..., x_{i_m})$.

A subsequence is monotone if either

$$\begin{aligned} &x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_m}, \text{ or } \\ &x_{i_1} \geq x_{i_2} \geq \cdots \geq x_{i_m}. \end{aligned}$$

$$(3,5,6,2,8,1,4,7)$$

(with $i_1 = 1$, $i_2 = 2$, $i_3 = 3$, $i_4 = 5$)

Theorem: An arbitrary sequence $(x_1, ..., x_{n^2+1})$ of real numbers contains a monotone subsequence of length n+1.

Subsequence is determined by indices $i_1, i_2, ..., i_m, i_1 < i_2 < \cdots < i_m$. It has the form $(x_{i_1}, x_{i_2}, ..., x_{i_m})$.

A subsequence is monotone if either

$$\begin{aligned} x_{i_1} &\leq x_{i_2} \leq \cdots \leq x_{i_m}, \text{ or } \\ x_{i_1} &\geq x_{i_2} \geq \cdots \geq x_{i_m}. \end{aligned}$$

$$(3,5,6,2,8,1,4,7)$$
 (with $i_1 = 3, i_2 = 4, i_3 = 6$)

Theorem: An arbitrary sequence $(x_1, ..., x_{n^2+1})$ of real numbers contains a monotone subsequence of length n+1.

```
Proof: Let a sequence (x_1, ..., x_{n^2+1}) be given.
Let X = \{1, 2, ..., n^2 + 1\}. Define a relation \leq on X by
i \leq j if and only if both i \leq j and x_i \leq x_j.
\leq is a partial ordering of X
It is \alpha(X, \leq) \cdot \omega(X, \leq) \geq n^2 + 1; therefore \alpha(X, \leq) > n or \omega(X, \leq) > n.
Chain i_1 < i_2 < \cdots < i_m in \leq corresponds to non-decreasing
subsequence x_{i_1} \le x_{i_2} \le \cdots \le x_{i_m} (note i_1 < i_2 < \cdots < i_m)
Independent set \{i_1, i_2, ..., i_m\} corresponds to decreasing
subsequence: Choose numbering so that i_1 < i_2 < \cdots < i_m,
then x_{i_1} > x_{i_2} > \cdots > x_{i_m}.
by contradiction: x_{i_1} \le x_{i_2} and i_1 < i_2 would mean i_1 < i_2.
```

Organizational

- □ Practice set:
 - Exercises 2,3 for Discussion group (you can decide differently with your group)
- In-class test A1
 - Do the SEB test
 - Be on time
 - Any questions can go in slack