Package 'sinkr'

August 29, 2014

Type Package
Title sinkr
Version 1.0

Date 2014-07-21	
Author Marc Taylor <ningkiling@gmail.com></ningkiling@gmail.com>	
Maintainer Marc Taylor <ningkiling@gmail.com></ningkiling@gmail.com>	
Depends irlba, png, vegan	
Description A collection of functions featured on `http://menugget.blogspot.com"	
License MIT	
<pre>URL https://github.com/menugget/sinkr, http://menugget.blogspot.com</pre>	
R topics documented:	
addAlpha	2
bioEnv	2
bvStep	4
cov4gappy	6
dineof	7
earthBear	9
earthDist	0
eof	0
eofRecon	2
expmat	3
gmtColors	4
imageScale	5
jetPal	7
lonLatFilter	7
matrixPoly	8
nearest	9
newLonLat	9
	20
<u>.</u>	22
<u>*</u>	23
spirographR	24

2 bioEnv

Index 27

addAlpha

Add alpha channel (transparency) to colors

Description

Takes a vector of colors and adds an alpha channel at the given level of transparency.

Usage

```
addAlpha(COLORS, ALPHA)
```

Arguments

COLORS Vector of any of the three kinds of R color specifications, i.e., either a color name

(as listed by colors()), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa"

(see rgb), or a positive integer i meaning palette()[i].

ALPHA A value (between 0 and 1) indicating the alpha channel (opacity) value.

Examples

```
# Make background image
x <- seq(-180, 180,, 30)
y <- seq(-90, 90,, 30)
grd <- expand.grid(x=x,y=y)
z <- sqrt(grd$x^2+grd$y^2)
dim(z) <- c(length(x), length(y))
pal <- colorRampPalette(c(rgb(1,1,1), rgb(0,0,0)))
COLORS <- pal(20)
image(x,y,z, col=COLORS)

# Add semi-transparent layer
z2 <- grd$x^2+grd$y
dim(z2) <- c(length(x), length(y))
pal <- colorRampPalette(c(rgb(0.5,1,0), rgb(0,1,1), rgb(1,1,1)))
COLORS <- addAlpha(pal(20), 0.4) # alpha chanel equals 0.4
image(x,y,z2, col=COLORS, add=TRUE)</pre>
```

bioEnv

Clarke and Ainsworth's BIO-ENV routine

Description

The bioEnv function performs Clarke and Ainsworth's (1993) "BIO-ENV" routine which compares (via a Mantel test) a fixed matrix of similarities to a variable one that test all possible variable combinations.

Usage

```
bioEnv(fix.mat, var.mat, fix.dist.method = "bray",
  var.dist.method = "euclidean", scale.fix = FALSE, scale.var = TRUE,
  output.best = 10, var.max = ncol(var.mat))
```

Arguments

fix.mat The "fixed" matrix of community or environmental sample by variable values var.mat A "variable" matrix of community or environmental sample by variable values fix.dist.method

The method of calculating dissimilarity indices bewteen samples in the fixed matrix (Uses the vegdist function from the vegan package to calculate distance matrices. See the documentation for available methods.). Defaults to Bray-

Curtis dissimularity "bray".

var.dist.method

The method of calculating dissimilarity indices bewteen samples in the variable

 $matrix. \ Defaults \ to \ Euclidean \ dissimularity \ "euclidean".$

scale.fix Logical. Should fixed matrix be centered and scaled (Defaults to FALSE, recom-

mended for biologic data).

scale.var Logical. Should fixed matrix be centered and scaled (Defaults to TRUE, recom-

mended for environmental data to correct for differing units between variables).

output.best Number of best combinations to return in the results object (Default=10).

var.max Maximum number of variables to include. Defaults to all, var.max=ncol(var.mat).

Details

The R package "vegan" contains a version of Clarke and Ainsworth's (1993) BIOENV analysis allowing for the comparison of distance/similarity matrices between two sets of data having either samples or variables in common. The typical setup is in the exploration of environmental variables that best correlate to sample similarities of the biological community (e.g. species biomass or abundance). In this case, the similarity matrix of the community is fixed, while subsets of the environmental variables are used in the calculation of the environmental similarity matrix. A correlation coefficient (typically Spearman rank correlation coefficient) is then calculated between the two matrices and the best subset of environmental variables can then be identified and further subjected to a permutation test to determine significance. Due to the inflexibility of the bioenv() function, one has little control over how the variable similarity matrix is calculated (derived from the environmental subsets in the above example) as the method assumes the subset data to be environmental and that the resulting similarity matrix should be based on normalized "euclidean" distances. This makes sense with environmental data where one normalizes the data to remove the effect of differing units between parameters, yet in cases where the variable matrix is biological one might want more flexibility (a Bray-Curtis measure of similarity is common given its non-parametric nature). The vegan function vegdist() comes with many other possible indices that could be applied ("manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial" and "chao"). For example, beyond the typical biological to environmental comparison (BIOENV setup), one can also use the routine to explore other other types of relationships; e.g.: - ENVBIO: subset of biological variables that best correlate to the overall environmental pattern - BIOBIO: subset of biological variables that best correlate to the overall biological pattern - ENVENV: subset of environmental variables that best correlate to the overall environmental pattern

It is important to mention here that one of the reasons why a variable biological similarity matrix is often less explored with the routine is that the number of possible subset combinations becomes computationally overwhelming when the number of species/groups is large - the total number of combinations being equal to 2ⁿ - 1, where n is the total number of variables. For this reason, Clarke and Warwick (1998) presented a stepwise routine (BVSTEP) for a faster exploration of the subset combinations. They specifically looked at the BIOBIO type exploration and addressed the concept of structural redundancy in community composition through the identification of "response"

4 bvStep

units", or Taxonomic/functional groupings of species that changed in abundance in the same way over time.

Examples

bvStep

Clarke and Ainsworth's BVSTEP routine

Description

The bvStep function performs Clarke and Ainsworth's (1993) "BVSTEP" routine which is a algorithm that searches variable subsets of a matrix before calculating a dissimilarity matrix which is compared to a dissimilarity matrix derived from a fixed matrix (via a Mantel test). The test is the same as that performed by the bioEnv function but is more appropriate when the number of variable combinations to test is large

Usage

```
bvStep(fix.mat, var.mat, fix.dist.method = "bray",
  var.dist.method = "euclidean", scale.fix = FALSE, scale.var = TRUE,
  max.rho = 0.95, min.delta.rho = 0.001, random.selection = TRUE,
  prop.selected.var = 0.2, num.restarts = 10, var.always.include = NULL,
  var.exclude = NULL, output.best = 10)
```

Arguments

fix.mat The "fixed" matrix of community or environmental sample by variable values var.mat A "variable" matrix of community or environmental sample by variable values fix.dist.method

The method of calculating dissimilarity indices bewteen samples in the fixed matrix (Uses the vegdist function from the vegan package to calculate distance matrices. See the documentation for available methods.). Defaults to Bray-Curtis dissimularity "bray".

var.dist.method

The method of calculating dissimilarity indices bewteen samples in the variable matrix. Defaults to Euclidean dissimularity "euclidean".

scale.fix Logical. Should fixed matrix be centered and scaled (Defaults to FALSE, recommended for biologic data).

bvStep 5

Logical. Should fixed matrix be centered and scaled (Defaults to TRUE, recommended for environmental data to correct for differing units between variables).

Output.best

Number of best combinations to return in the results object (Default=10).

Var.max

Maximum number of variables to include. Defaults to all, var.max=ncol(var.mat).

Details

The R package "vegan" contains a version of Clarke and Ainsworth's (1993) BIOENV analysis allowing for the comparison of distance/similarity matrices between two sets of data having either samples or variables in common. The typical setup is in the exploration of environmental variables that best correlate to sample similarities of the biological community (e.g. species biomass or abundance). In this case, the similarity matrix of the community is fixed, while subsets of the environmental variables are used in the calculation of the environmental similarity matrix. A correlation coefficient (typically Spearman rank correlation coefficient) is then calculated between the two matrices and the best subset of environmental variables can then be identified and further subjected to a permutation test to determine significance. Due to the inflexibility of the bioEnv() function, one has little control over how the variable similarity matrix is calculated (derived from the environmental subsets in the above example) as the method assumes the subset data to be environmental and that the resulting similarity matrix should be based on normalized "euclidean" distances. This makes sense with environmental data where one normalizes the data to remove the effect of differing units between parameters, yet in cases where the variable matrix is biological one might want more flexibility (a Bray-Curtis measure of similarity is common given its non-parametric nature). The vegan function vegdist() comes with many other possible indices that could be applied ("manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial" and "chao"). For example, beyond the typical biological to environmental comparison (BIOENV setup), one can also use the routine to explore other other types of relationships; e.g.: - ENVBIO: subset of biological variables that best correlate to the overall environmental pattern - BIOBIO: subset of biological variables that best correlate to the overall biological pattern - ENVENV: subset of environmental variables that best correlate to the overall environmental pattern

```
library(vegan)
data(varespec)
data(varechem)
# Example of a 2-round BIO-BIO search. Uses the most frequently included variables
# in the first round at the beginning of each restart in the second round
# first round
set.seed(1)
res.biobio1 <- bvStep(wisconsin(varespec), wisconsin(varespec),</pre>
fix.dist.method="bray", var.dist.method="bray",
 scale.fix=FALSE, scale.var=FALSE,
max.rho=0.95, min.delta.rho=0.001,
 random.selection=TRUE,
prop.selected.var=0.3,
num.restarts=50,
 output.best=10,
 var.always.include=NULL
res.biobio1 # Best rho equals 0.833 (10 of 44 variables)
```

6 cov4gappy

```
#second round - always includes variables 23, 26, and 29 ("Cla.ran" "Cla.coc" "Cla.fim")
res.biobio2 <- bvStep(wisconsin(varespec), wisconsin(varespec),</pre>
 fix.dist.method="bray", var.dist.method="bray",
 scale.fix=FALSE, scale.var=FALSE,
 max.rho=0.95, min.delta.rho=0.001,
 random.selection=TRUE,
 prop.selected.var=0.3,
 num.restarts=50,
 output.best=10,
 var.always.include=c(23,26,29)
)
res.biobio2 # Best rho equals 0.895 (15 of 44 variables)
# A plot of best variables
MDS_res=metaMDS(wisconsin(varespec), distance = "bray", k = 2, trymax = 50)
bio.keep <- as.numeric(unlist(strsplit(res.biobio2$order.by.best$var.incl[1], ",")))</pre>
bio.fit <- envfit(MDS_res, varespec[,bio.keep], perm=999)</pre>
bio.fit
plot(MDS_res$points, t="n",xlab="NMDS1", ylab="NMDS2")
plot(bio.fit, col="gray50", cex=0.8, font=4) # display only those with p>0.1
text(MDS_res$points, as.character(1:length(MDS_res$points[,1])), cex=0.7)
mtext(paste("Stress =",round(MDS_res$stress, 2)), side=3, adj=1, line=0.5)
# Display only those with envfit p \ge 0.1
plot(MDS_res$points, t="n",xlab="NMDS1", ylab="NMDS2")
plot(bio.fit, col="gray50", p.max=0.1, cex=0.8, font=4) # p.max=0.1
text(MDS_res$points, as.character(1:length(MDS_res$points[,1])), cex=0.7)
mtext(paste("Stress =",round(MDS_res$stress, 2)), side=3, adj=1, line=0.5)
```

cov4gappy

Covariance matrix calculation for gappy data

Description

This function calculates a covoriance matrix for data that contain missing values ('gappy data').

Usage

```
cov4gappy(F1, F2 = NULL)
```

Arguments

F1 A data field.

F2 An optional 2nd data field.

dineof 7

Details

This function gives comparable results to cov(F1, y=F2, use="pairwise.complete.obs") whereby each covariance value is divided by n number of shared values (as opposed to n-1 in the case of cov(). Futhermore, the function will return a 0 (zero) in cases where no shared values exist between columns; the advantage being that a covariance matrix will still be calculated in cases of very gappy data, or when spatial locations have accidentally been included without observations (i.e. land in fields of aquatic-related parameters).

Value

A matrix with covariances between columns of F1. If both F1 and F2 are provided, then the covariances between columns of F1 and the columns of F2 are returned.

Examples

```
# Create synthetic data
set.seed(1)
mat <- matrix(rnorm(500, sd=10), nrow=50, ncol=10)
matg <- mat
matg[sample(length(mat), 0.5*length(mat))] <- NaN # Makes 50% missing values
matg # gappy matrix

# Calculate covariance matrix and compare to 'cov' function output
c1 <- cov4gappy(matg)
c2 <- cov(matg, use="pairwise.complete.obs")
plot(c1,c2, main="covariance comparison", xlab="cov4gappy", ylab="cov")
abline(0,1,col=8)</pre>
```

dineof

DINEOF (Data Interpolating Empirical Orthogonal Functions)

Description

This function is based on the DINEOF (Data Interpolating Empirical Orthogonal Functions) procedure described by Beckers and Rixon (2003). The procedure has been shown to accurately determine Empirical Orthogonal Functions (EOFs) from gappy data sets (Taylor et al. 2013). Rather than directly return the EOFs, the results of the dineof function is a fully interpolated matrix which can then be subjected to a final EOF decomposition with eof, prcomp, or other function of preference.

Usage

```
dineof(Xo, n.max = NULL, ref.pos = NULL, delta.rms = 1e-05)
```

Arguments

Хо	A gappy data field.
n.max	A maximum number of EOFs to iterate (leave equalling "NULL" if algorithm shold proceed until convergence)
ref.pos	- a vector of non-gap reference positions by which errors will be assessed via root mean squared error ("RMS"). If ref.pos = NULL, then either 30 or 1 (which ever is larger) will be sampled at random.
delta.rms	The threshold for RMS convergence.

8 dineof

Value

Results of dineof are returned as a list containing the following components:

Xa The data field with interpolated values (via EOF reconstruction) included.
 n.eof The number of EOFs used in the final solution.
 RMS A vector of the RMS values from the iteration.
 NEOF A vector of the number of EOFs used at each iteration.

References

Beckers, Jean-Marie, and M. Rixen. "EOF Calculations and Data Filling from Incomplete Oceanographic Datasets." Journal of Atmospheric and Oceanic Technology 20.12 (2003): 1839-1856.

Taylor, Marc H., Martin Losch, Manfred Wenzel, Jens Schroeter (2013). On the Sensitivity of Field Reconstruction and Prediction Using Empirical Orthogonal Functions Derived from Gappy Data. J. Climate, 26, 9194-9205.

```
# Make synthetic data field
m=50
n=100
frac.gaps <- 0.5 # the fraction of data with NaNs</pre>
N.S.ratio <- 0.1 # the Noise to Signal ratio for adding noise to data
x \leftarrow (seq(m)*2*pi)/m
t \leftarrow (seq(n)*2*pi)/n
Xt <-
 outer(sin(x), sin(t)) +
 outer(sin(2.1*x), sin(2.1*t)) +
outer(\sin(3.1*x), \sin(3.1*t)) +
 outer(tanh(x), cos(t)) +
 outer(tanh(2*x), cos(2.1*t)) +
 outer(tanh(4*x), cos(0.1*t)) +
 outer(tanh(2.4*x), cos(1.1*t)) +
 tanh(outer(x, t, FUN="+")) +
 tanh(outer(x, 2*t, FUN="+")
)
# Color palette
pal <- colorRampPalette(c("blue", "cyan", "yellow", "red"))</pre>
# The "true" fieldd
Xt \leftarrow t(Xt)
image(Xt, col=pal(100))
# The "noisy" field
set.seed(1)
RAND <- matrix(runif(length(Xt), min=-1, max=1), nrow=nrow(Xt), ncol=ncol(Xt))</pre>
R <- RAND * N.S.ratio * Xt
Xp \leftarrow Xt + R
image(Xp, col=pal(100))
# The "observed" gappy field field
set.seed(1)
gaps <- sample(seq(length(Xp)), frac.gaps*length(Xp))</pre>
```

earthBear 9

```
Xo <- replace(Xp, gaps, NaN)</pre>
image(Xo, col=pal(100))
# The dineof "interpolated" field
set.seed(1)
RES <- dineof(Xo)
Xa <- RES$Xa
image(Xa, col=pal(100))
# Final comparison of all fields
ZLIM <- range(Xt, Xp, Xo, Xa, na.rm=TRUE)</pre>
op <- par(mfrow=c(2,2), mar=c(3,3,3,1))
image(z=Xt, zlim=ZLIM, main="A) True", col=pal(100), xaxt="n", yaxt="n", xlab="", ylab="")
box()
mtext("t", side=1, line=0.5)
mtext("x", side=2, line=0.5)
image(z=Xp, zlim=ZLIM, main=paste("B) True + Noise (N/S = ", N.S.ratio, ")", sep=""),
col=pal(100), xaxt="n", yaxt="n", xlab="", ylab="")
box()
mtext("t", side=1, line=0.5)
mtext("x", side=2, line=0.5)
box()
image(z=Xo, zlim=ZLIM, main=paste("C) Observed (", frac.gaps*100, " % gaps)", sep=""),
col=pal(100), xaxt="n", yaxt="n", xlab="", ylab="")
mtext("t", side=1, line=0.5)
mtext("x", side=2, line=0.5)
image(z=Xa, zlim=ZLIM, main="D) Reconstruction", col=pal(100), xaxt="n", yaxt="n",
xlab="", ylab="")
box()
mtext("t", side=1, line=0.5)
mtext("x", side=2, line=0.5)
par(op)
```

earthBear

Directional bearing between two geographic locations

Description

earthBear calculates bearing (in degrees) between two lon/lat positions. One of the lon/lat positions (i.e. lon1 and lat1) can be a vector of positions to compare against the other lon/lat position (i.e. lon2 and lat2)

Usage

```
earthBear(lon1, lat1, lon2, lat2)
```

Arguments

lon1	longitude 1 (in decimal degrees)
lat1	Latitude 1 (in decimal degrees)
lon2	longitude 2 (in decimal degrees)
lat2	Latitude 2 (in decimal degrees)

10 eof

Value

Vector of directional bearings (degrees)

Examples

```
earthBear(0,0,20,20)
```

earthDist

Earth distance between two geographic locations

Description

earthDist calculates distance (in kilometers) between two lon/lat positions. The function assumes a mean equatorial Earth radius of 6378.145 km. One of the lon/lat positions (i.e. lon1 and lat1) can be a vector of positions to compare against the other lon/lat position (i.e. lon2 and lat2)

Usage

```
earthDist(lon1, lat1, lon2, lat2)
```

Arguments

lon1	longitude 1 (in decimal degrees)
lat1	Latitude 1 (in decimal degrees)
lon2	longitude 2 (in decimal degrees)
lat2	Latitude 2 (in decimal degrees)

Value

Vector of distances (km)

Examples

```
earthDist(0,0,20,20)
```

eof

EOF (Empirical Orthogonal Functions analysis)

Description

This function conducts an Empirical Orthogonal Function analysis (EOF) via a covariance matrix (cov4gappy()) and is especially designed to handle gappy data (i.e. containing missing values - NaN)

Usage

```
eof(F1, centered = TRUE, scaled = FALSE, nu = NULL, method = NULL,
  recursive = FALSE)
```

eof 11

Arguments

F1 A data field. The data should be arraunged as samples in the column dimension

(typically each column is a time series for a spatial location).

centered Logical (TRUE/FALSE) to define if F1 should be centered prior to the analysis.

Defaults to 'TRUE'

scaled Logical (TRUE/FALSE) to define if F1 should be scaled prior to the analysis.

Defaults to 'TRUE'

nu Numeric value. Defines the number of EOFs to return. Defaults to return the

full set of EOFs.

method Method for matrix decomposition ('svd', 'eigen', 'irlba'). Defaults to 'svd'

when method = NULL. Use of 'irlba' can dramatically speed up cumputation time when recursive = TRUE but may produce errors in computing trailing EOFs. Therefore, this option is only advisable when the field F1 is large and when only a partial decomposition is desired (i.e. nu << dim(F1)[2]). svd and eigen give similar results for non-gappy fields, but will differ slightly with gappy fields due to decomposition of a nonpositive definite covariance matrix. Specifically, eigen will produce negative eigenvalues for trailing EOFs, while

singular values derived from svd will be strictly positive.

recursive Logical. When TRUE, the function follows the method of "Recursively Sub-

tracted Empirical Orthogonal Functions" (RSEOF), which is a modification of "Least Squares Empirical Orthogonal Functions" (LSEOF) (Taylor et al., 2013).

Value

Results of eof are returned as a list containing the following components:

u EOFs.

Lambda Singular values.

A EOF coefficients (i.e. 'Principal Components').

F1_dim Dimensions of field F1.

F1_center Vector of center values from each column in field F1. F1_scale Vector of scale values from each column in field F1.

References

Bjoernsson, H. and Venegas, S.A. (1997). "A manual for EOF and SVD analyses of climate data", McGill University, CCGCR Report No. 97-1, Montreal, Quebec, 52pp.

von Storch, H, Zwiers, F.W. (1999). Statistical analysis in climate research. Cambridge University Press.

Taylor, Marc H., Martin Losch, Manfred Wenzel, Jens Schroeter (2013). On the Sensitivity of Field Reconstruction and Prediction Using Empirical Orthogonal Functions Derived from Gappy Data. J. Climate, 26, 9194-9205.

```
# EOF of 'iris' dataset
Et <- eof(iris[,1:4])
plot(Et$A, col=iris$Species)
# Compare to results of 'prcomp'</pre>
```

12 eofRecon

```
Pt <- prcomp(iris[,1:4])
plot(Et$A, Pt$x) # Sign may be different
# Compare to a gappy dataset (sign of loadings may differ between methods)
iris.gappy <- as.matrix(iris[,1:4])</pre>
set.seed(1)
iris.gappy[sample(length(iris.gappy), 0.25*length(iris.gappy))] <- NaN</pre>
Eg <- eof(iris.gappy, method="svd", recursive=TRUE) # recursive ("RSEOF")</pre>
op <- par(mfrow=c(1,2))
plot(Et$A, col=iris$Species)
plot(Eg$A, col=iris$Species)
par(op)
# Compare Non-gappy vs. Gappy EOF loadings
op <- par(no.readonly = TRUE)</pre>
layout(matrix(c(1,2,1,3),2,2), widths=c(3,3), heights=c(1,4))
par(mar=c(0,0,0,0))
plot(1, t="n", axes=FALSE, ann=FALSE)
legend("center", ncol=4, legend=colnames(iris.gappy), border=1, bty="n",
fill=rainbow(4))
par(mar=c(6,3,2,1))
barplot(Et$u, beside=TRUE, col=rainbow(4), ylim=range(Et$u)*c(1.15,1.15))
mtext("Non-gappy", side=3, line=0)
axis(1, labels=paste("EOF", 1:4), at=c(3, 8, 13, 18), las=2, tick=FALSE)
barplot(Eg$u, beside=TRUE, col=rainbow(4), ylim=range(Et$u)*c(1.15,1.15))
mtext("Gappy", side=3, line=0)
axis(1, labels=paste("EOF", 1:4), at=c(3, 8, 13, 18), las=2, tick=FALSE)
par(op)
```

eofRecon

EOF reconstruction (Empirical Orthogonal Functions analysis)

Description

This function reconstructs the original field from an EOF object of the function eof.

Usage

```
eofRecon(EOF, n_pc = NULL)
```

Arguments

EOF An object resulting from the function eof.

n_pc The number of principal components (PCs) to use in the reconstruction (defaults

to the fullset of PCs)

```
set.seed(1)
iris.gappy <- as.matrix(iris[,1:4])
iris.gappy[sample(length(iris.gappy), 0.25*length(iris.gappy))] <- NaN
Er <- eof(iris.gappy, method="svd", recursive=TRUE) # recursive (RSEOF)
Enr <- eof(iris.gappy, method="svd", recursive=FALSE) # non-recursive (LSEOF)
iris.gappy.recon.r <- eofRecon(Er)</pre>
```

expmat 13

```
iris.gappy.recon.nr <- eofRecon(Enr)</pre>
# Reconstructed values vs. observed values
op \leftarrow par(mfrow=c(1,2))
lim <- range(iris.gappy, na.rm=TRUE)</pre>
plot(iris.gappy, iris.gappy.recon.r,
col=c(2:4)[iris$Species], main="recursive=TRUE", xlim=lim, ylim=lim)
abline(0, 1, col=1, lwd=2)
plot(iris.gappy, iris.gappy.recon.nr,
col=c(2:4)[iris$Species], main="recursive=FALSE", xlim=lim, ylim=lim)
abline(0, 1, col=1, lwd=2)
par(op)
# Reconstructed values from gappy data vs. all original values
op \leftarrow par(mfrow=c(1,2))
plot(as.matrix(iris[,1:4]), iris.gappy.recon.r,
\verb|col=c(2:4)[iris$Species], main="recursive=TRUE"||
abline(0, 1, col=1, lwd=2)
plot(as.matrix(iris[,1:4]), iris.gappy.recon.nr,
col=c(2:4)[iris$Species], main="recursive=FALSE")
abline(0, 1, col=1, lwd=2)
```

expmat

Exponentiation of a matrix

Description

The expmat function performs can calculate the pseudoinverse (i.e. "Moore-Penrose pseudoinverse") of a matrix (EXP=-1) and other exponents of matrices, such as square roots (EXP=0.5) or square root of its inverse (EXP=-0.5). The function arguments are a matrix (MAT), an exponent (EXP), and a tolerance level for non-zero singular values. The function follows three steps: 1) Singular Value Decomposition (SVD) of the matrix; 2) Exponentiation of the singular values; 3) Re-calculation of the matrix with the new singular values

Usage

```
expmat(MAT, EXP, tol = NULL)
```

Arguments

MAT A matrix.

EXP An exponent to apply to the matrix MAT.

tol Tolerance level for non-zero singular values.

Value

A matrix

14 gmtColors

```
# Example matrix from Wilks (2006)
A \leftarrow matrix(c(185.47,110.84,110.84,77.58),2,2)
solve(A) #inverse
expmat(A, -1) # pseudoinverse
expmat(expmat(A, -1), -1) #inverse of the inverse -return to original A matrix
expmat(A, 0.5) # square root of a matrix
expmat(A, -0.5) # square root of its inverse
expmat(expmat(A, -1), 0.5) # square root of its inverse (same as above)
# Pseudoinversion of a non-square matrix
D <- matrix(round(runif(24, min=1, max=100)), 4, 6)</pre>
expmat(D, -1)
expmat(t(D), -1)
# Pseudoinversion of a square matrix
set.seed(1)
D <- matrix(round(runif(25, min=1, max=100)), 5, 5)
solve(D)
expmat(D, -1)
solve(t(D))
expmat(t(D), -1)
### Examples from "corpcor" package manual
# a singular matrix
m = rbind(
 c(1,2),
 c(1,2)
# not possible to invert exactly
# solve(m) # produces an error
p <- expmat(m, -1)</pre>
# characteristics of the pseudoinverse
zapsmall( m \%*\% p \%*\% m ) == zapsmall( m )
zapsmall(p \%*\% m \%*\% p) == zapsmall(p)
zapsmall(p \%*\% m) == zapsmall(t(p \%*\% m))
zapsmall( m \% * \% p ) == zapsmall( t(m \% * \% p ) )
# example with an invertable matrix
m2 = rbind(
 c(1,1),
 c(1,0)
zapsmall( solve(m2) ) == zapsmall( expmat(m2,-1) )
```

imageScale 15

Description

gmtColors provides colors used in various palettes used by Generic Mapping Tools (GMT)

Usage

```
gmtColors(pal.name = "relief")
```

Arguments

```
pal.name
```

A palette name - One of the following 19 palette names: "cool", "copper", "gebco", "globe", "g

Value

a vector of hexadecimal color levels of the desired palette

Examples

```
# Visualization of palettes derived from GMT colors
pnames <- c(
  "cool", "copper", "gebco", "globe", "gray", "haxby",
  "hot", "jet", "no_green", "ocean", "polar", "rainbow",
  "red2green", "relief", "sealand", "seis", "split", "topo", "wysiwyg"
)
txtCol <- c(rep(1,16), "white", rep(1,3))</pre>
op <- par(mar=c(0.1,0.1,0.1,0.1), mfrow=c(length(pnames), 1))
for(i in seq(pnames)){
  pal <- colorRampPalette(gmtColors(pal.name=pnames[i]))</pre>
image(matrix(seq(20), nrow=20, ncol=1), col=pal(20), axes=FALSE)
 usr <- par()$usr
  text(mean(usr[1:2]), mean(usr[3:4]), labels=pnames[i],
       font=2, cex=1, col=txtCol[i])
}
par(op)
# Application to \code{image} plot
relief.pal <- colorRampPalette(gmtColors("relief"))</pre>
op <- par(mar=c(1,1,1,1))
image(volcano, col=relief.pal(100), axes=FALSE)
par(op)
```

image Scale

Make a color scale to accompany an image or other plot

Description

The imageScale function is wrapper for imageScale and accepts the same arguments. It converts a vector of values (z) to a vector of color levels. One must define the number of colors. The limits of the color scale ("zlim") or the break points for the color changes("breaks") can also be defined. When breaks and zlim are defined, breaks overrides zlim. All arguments are similar to those in the image function. Appearance is best when incorporated with layout.

16 imageScale

Usage

```
imageScale(z, zlim, col = heat.colors(12), breaks, axis.pos = 1,
  add.axis = TRUE, xlim = NULL, ylim = NULL, ...)
```

Arguments

z A vector or matrix of values. Limits of the color scale values. zlim col Vector of color values (default is 12 colors from the heat.colors palette). Break points for color changes. If breaks is specified then zlim is unused and breaks the algorithm used follows cut, so intervals are closed on the right and open on the left except for the lowest interval which is closed at both ends. Position of the axis (1=bottom, 2=left, 3=top, 4=right) (default = 1). axis.pos Logical (TRUE/FALSE). Defines whether the axis is added (default: TRUE). add.axis xlim Limits for the x-axis. ylim Limits for the y-axis. Additional graphical parameters to pass to the image() function. . . .

```
# Make color palettes
pal.1=colorRampPalette(c("green4", "orange", "red", "white"), space="rgb", bias=0.5)
pal.2=colorRampPalette(c("blue", "cyan", "yellow", "red", "pink"), space="rgb")
# Make images with corrsponding scales
op <- par(no.readonly = TRUE)</pre>
layout(matrix(c(1,2,3,0,4,0), nrow=2, ncol=3), widths=c(4,4,1), heights=c(4,1))
#layout.show(4)
#1st image
breaks <- seq(min(volcano), max(volcano),length.out=100)</pre>
par(mar=c(1,1,1,1))
image(seq(dim(volcano)[1]), seq(dim(volcano)[2]), volcano,
col=pal.1(length(breaks)-1), breaks=breaks-1e-8, xaxt="n", yaxt="n", ylab="", xlab="")
#Add additional graphics
levs <- pretty(range(volcano), 5)</pre>
contour(seq(dim(volcano)[1]), seq(dim(volcano)[2]), volcano, levels=levs, add=TRUE)
#Add scale
par(mar=c(3,1,1,1))
imageScale(volcano, col=pal.1(length(breaks)-1), breaks=breaks-1e-8,axis.pos=1)
abline(v=levs)
box()
#2nd image
breaks <- c(0,100, 150, 170, 190, 200)
par(mar=c(1,1,1,1))
image(seq(dim(volcano)[1]), seq(dim(volcano)[2]), volcano,
col=pal.2(length(breaks)-1), breaks=breaks-1e-8, xaxt="n", yaxt="n", ylab="", xlab="")
#Add additional graphics
levs=breaks
contour(seq(dim(volcano)[1]), seq(dim(volcano)[2]), volcano, levels=levs, add=TRUE)
#Add scale
par(mar=c(1,1,1,3))
imageScale(volcano, col=pal.2(length(breaks)-1), breaks=breaks-1e-8,
```

jetPal 17

```
axis.pos=4, add.axis=FALSE)
axis(4,at=breaks, las=2)
box()
abline(h=levs)
par(op)
```

jetPal

jet palette

Description

jetPal is a palette of colors similar that found in Matlab. This is a nice general palette for data exploration - similar to a rainbow palette but does not cycle back to the lower color level (dark blue -> cyan -> yellow -> dark red).

Usage

```
jetPal(n)
```

Examples

```
image(volcano, col=jetPal(50))
```

lonLatFilter

Directional bearing between two geographic locations

Description

lonLatFilter Tests whether lon/lat positions fall within a defined box of lon/lat borders (location on border returns TRUE

Usage

```
lonLatFilter(lon_vector, lat_vector, west, east, south, north)
```

Longitude 1 (in decimal degrees)

Arguments

lon_vector

lat_vector	Latitude 1 (in decimal degrees)
west	West longitude border (decimal degrees)
east	East longitude border (decimal degrees)
south	South latitude border (decimal degrees)
north	North latitude border (decimal degrees)

Value

Vector of position inclusion in the defined lon/lat borders

18 matrixPoly

Examples

```
set.seed(1)
n <- 1000
Pos <- list(lon=runif(n, min=-180, max=180), lat=runif(n, min=-180, max=180))
# Check to see if positions are withing boundaries
res <- lonLatFilter(Pos$lon, Pos$lat, -20, 20, -40, 40)
# Plot
op <- par(mar=c(4,4,1,1))
plot(Pos$lon, Pos$lat, pch=21, col=1, bg=2*res)
rect(-20, -40, 20, 40, border=3)
par(op)
```

 ${\tt matrixPoly}$

Matrix polygons

Description

matrixPoly creates a list of polygon coordinates given a matrix z and corresponding x and y coordinates for the dimensions of z.

Usage

```
matrixPoly(x, y, z = mat, n = NULL)
```

Arguments

Optional vectors of values for matrix z rows (x) and columns (y). If excluded, х,у the function assumes the values to be a evenly-spaced sequence from 0 to 1. z A matrix An optional vector of element positions of z for polygon creation

Value

n

List of polygon coordinates for each element of z

```
# Make sythetic data
set.seed(1)
m=8
n=10
x < - seq(m)
z <- matrix(runif(m*n), nrow=m, ncol=n)</pre>
# Ex 1 - add another image layer
image(x, y, z, col=grey.colors(20))
N \leftarrow sample(1:(m*n),20)
z2 <- NaN*z
z2[N] < -1
image(x, y, z2, col=rgb(0,0,1,0.4), add=TRUE)
box()
```

nearest 19

```
# Ex 2 - add polygons
image(x, y, z, col=grey.colors(20))
poly <- matrixPoly(x, y, z=z, n=N)
sapply(poly, function(X){polygon(X, col=rgb(1,1,0,0.4), border=1)})
box()

# Ex 3 - add polygons to unequal grid
x2 <- cumsum(round(runif(m, min=1, max=10)))
y2 <- cumsum(round(runif(n, min=1, max=10)))
image(x2, y2, z, col=grey.colors(20))
poly <- matrixPoly(x2, y2, z=z, n=N)
sapply(poly, function(X){polygon(X, col=rgb(1,0,0,0.4), border=1)})
box()</pre>
```

nearest

Calculate the nearest element in a vector as compared to a reference value

Description

the nearest function returns the position of a vector that is closest to a defined value by determining the element with the smallest squared distance.

Usage

```
nearest(value, lookup_vector)
```

Arguments

value A numeric reference value

lookup_vector The vector to compare to the reference value

Examples

```
set.seed(1)
x <- runif(10, min=0, max=100)
res <- nearest(50, x)
plot(x)
abline(h=50, col=8, lty=2)
points(res, x[res], pch=20, col=2)</pre>
```

newLonLat

Directional bearing between two geographic locations

Description

newLonLat calculates a new lon/lat position given an sarting lon/lat position, a bearing and a distance to the new lon/lat position. Either the lon and lat arguments or the bearing and distance arguments can be a vector, whereby a vector of new locations will be calculated.

20 plotStacked

Usage

```
newLonLat(lon, lat, bearing, distance)
```

Arguments

lon Longitude 1 (in decimal degrees)

Latitude 1 (in decimal degrees)

bearing Longitude 2 (in decimal degrees)

distance Distance to new lon/lat position (km)

Value

List of new lon/lat locations

Examples

```
# Single new lon/lat position calculation
newLonLat(0,0,45,1000)

# Vector of new lon/lat positions and plot
startPos <- list(lon=0,lat=0)
endPos <- newLonLat(startPos$lon, startPos$lat, seq(0,360,20), 1000)
plot(1, t="n", xlim=range(endPos$lon), ylim=range(endPos$lat), xlab="lon", ylab="lat")
segments(startPos$lon, startPos$lat, endPos$lon, endPos$lat, col=rainbow(length(endPos$lon)))
points(startPos$lon, startPos$lat)
points(endPos$lon, endPos$lat)</pre>
```

plotStacked

Stacked plot

Description

plotStacked makes a stacked plot where each y series is plotted on top of each other using filled polygons.

Usage

```
plotStacked(x, y, order.method = "as.is", ylab = "", xlab = "",
border = NULL, lwd = 1, col = rainbow(length(y[1, ])), ylim = NULL,
...)
```

Arguments

x A vector of values

y A matrix of data series (columns) corresponding to x

order.method Method of ordering y plotting order. One of the following: c("as.is", "max", "first").
 "as.is" - plot in order of y column. "max" - plot in order of when each y series
 reaches maximum value. "first" - plot in order of when each y series first
 value > 0.

ylab y-axis labels

plotStacked 21

x-axis labels

border

Border colors for polygons corresponding to y columns (will recycle) (see ?polygon for details)

lwd

Border line width for polygons corresponding to y columns (will recycle)

col

Fill colors for polygons corresponding to y columns (will recycle).

ylim

y-axis limits. If ylim=NULL, defaults to c(0, 1.2*max(apply(y,1,sum)).

Other plot arguments

```
#Create data
set.seed(1)
m < -500
n <- 30
x < - seq(m)
y \leftarrow matrix(0, nrow=m, ncol=n)
colnames(y) \leftarrow seq(n)
for(i in seq(ncol(y))){
mu <- runif(1, min=0.25*m, max=0.75*m)</pre>
 SD <- runif(1, min=5, max=20)</pre>
TMP <- rnorm(1000, mean=mu, sd=SD)
HIST <- hist(TMP, breaks=c(0,x), plot=FALSE)</pre>
 fit <- smooth.spline(HIST$counts ~ HIST$mids)</pre>
y[,i] \leftarrow fit$y
}
y <- replace(y, y<0.01, 0)
#Ex.1 : Color by max value)
pal <- colorRampPalette(c(rgb(0.85,0.85,1), rgb(0.2,0.2,0.7)))
BREAKS <- pretty(apply(y,2,max),8)</pre>
LEVS <- levels(cut(1, breaks=BREAKS))</pre>
COLS <- pal(length(BREAKS )-1)</pre>
z <- val2col(apply(y,2,max), col=COLS)</pre>
#Create stacked plot (plot order = "as.is")
plotStacked(x,y, xlim=c(100, 400), ylim=c(0, 1.2*max(apply(y,1,sum), na.rm=TRUE)),
yaxs="i", col=z, border="white", lwd=0.5)
#Create stacked plot (plot order = "max")
plotStacked(x,y, xlim=c(100, 400), ylim=c(0, 1.2*max(apply(y,1,sum), na.rm=TRUE)),
order.method="max", yaxs="i", col=z, border="white", lwd=0.5)
#Ex. 2 : Color by first value
ord <- order(apply(y, 2, function(r) min(which(r>0))))
y2 \leftarrow y[, ord]
pal <- colorRampPalette(c("blue", "cyan", "yellow", "red"))</pre>
z \leftarrow pal(ncol(y2))
#Create stacked plot (plot order = "as.is")
plotStacked(x,y2, xlim=c(100, 400), ylim=c(0, 1.2*max(apply(y2,1,sum), na.rm=TRUE)),
yaxs="i", col=z, border=1, lwd=0.25)
#Create stacked plot (plot order = "max")
plotStacked(x,y2, xlim=c(100, 400), ylim=c(0, 1.2*max(apply(y2,1,sum), na.rm=TRUE)),
order.method="max", yaxs="i", col=z, border=1, lwd=0.25)
```

22 plotStream

Description

plotStream makes a "stream plot" where each y series is plotted as stacked filled polygons on alternating sides of a baseline. A random wiggle is applied through the arguments frac.rand and spar such that each plot will be different unless preceded by a random seed (e.g. set.seed(1)).

Usage

```
plotStream(x, y, order.method = "as.is", frac.rand = 0.1, spar = 0.2,
  center = TRUE, ylab = "", xlab = "", border = NULL, lwd = 1,
  col = rainbow(length(y[1, ])), ylim = NULL, ...)
```

Arguments

x	A vector of values
У	A matrix of data series (columns) corresponding to x
order.method	Method of ordering y plotting order. One of the following: c("as.is", "max", "first"). "as.is" - plot in order of y column. "max" - plot in order of when each y series reaches maximum value. "first" - plot in order of when each y series first value > 0.
frac.rand	Fraction of the overall data "stream" range used to define the range of random wiggle (uniform distrubution) to be added to the baseline g0
spar	Setting for smooth.spline function to make a smoothed version of baseline "g0"
center	Logical. If TRUE, the stacked polygons will be centered so that the middle, i.e. baseline (g0), of the stream is approximately equal to zero. Centering is done before the addition of random wiggle to the baseline.
ylab	y-axis labels
xlab	x-axis labels
border	Border colors for polygons corresponding to y columns (will recycle) (see ?polygon for details)
lwd	Border line width for polygons corresponding to y columns (will recycle)
col	Fill colors for polygons corresponding to y columns (will recycle).
ylim	y-axis limits. If ylim=NULL, defaults to $c(-0.7, 0.7)*max(apply(y,1,sum))$
	Other plot arguments

Value

A plot with stream visualization added

round2reso 23

```
#Create data
set.seed(1)
m < -500
n <- 30
x < - seq(m)
y <- matrix(0, nrow=m, ncol=n)</pre>
colnames(y) <- seq(n)
for(i in seq(ncol(y))){
mu <- runif(1, min=0.25*m, max=0.75*m)</pre>
SD <- runif(1, min=5, max=20)</pre>
TMP <- rnorm(1000, mean=mu, sd=SD)</pre>
HIST <- hist(TMP, breaks=c(0,x), plot=FALSE)</pre>
fit <- smooth.spline(HIST$counts ~ HIST$mids)</pre>
y[,i] <- fit$y
}
y <- replace(y, y<0.01, 0)
#Ex.1 : Color by max value)
pal <- colorRampPalette(c(rgb(0.85,0.85,1), rgb(0.2,0.2,0.7)))
BREAKS <- pretty(apply(y,2,max),8)</pre>
LEVS <- levels(cut(1, breaks=BREAKS))</pre>
COLS <- pal(length(BREAKS )-1)</pre>
z <- val2col(apply(y,2,max), col=COLS)</pre>
#Plot order = "as.is"
plotStream(x,y, xlim=c(100, 400), center=TRUE, spar=0.3, frac.rand=0.2,
col=z, border="white", lwd=0.5)
#Plot order = "max"
plotStream(x,y, xlim=c(100, 400), center=TRUE, order.method="max", spar=0.3,
frac.rand=0.2, col=z, border="white", lwd=0.5)
#Ex. 2 : Color by first value
ord <- order(apply(y, 2, function(r) min(which(r>0))))
y2 \leftarrow y[, ord]
pal <- colorRampPalette(c("blue", "cyan", "yellow", "red"))</pre>
z <- pal(ncol(y2))</pre>
#Plot order = "as.is"
plotStream(x,y2, xlim=c(100, 400), center=FALSE, spar=0.1, frac.rand=0.05,
col=z, border=1, lwd=0.25)
#Plot order = "max"
plotStream(x,y2, xlim=c(100, 400), center=FALSE, order.method="max", spar=0.1,
frac.rand=0.05, col=z, border=1, lwd=0.25)
#Extremely wiggly, no borders, no box, no axes, black background
op <- par(bg=1, mar=c(0,0,0,0))
plotStream(x,y2, xlim=c(100, 400), center=FALSE, spar=0.3, frac.rand=1, col=z,
border=NA, axes=FALSE)
par(op)
```

24 spirographR

Description

round2res rounds a value to a given resolution (e.g. increments of 0.5) rather than the typical decimal place

Usage

```
round2reso(val, reso)
```

Arguments

val Vector. The values to be rounded

reso Numeric. The resolution or increment to use for rounding

Examples

```
\begin{array}{l} \text{set.seed(1)} \\ \text{n <- 10} \\ \text{x <- runif(n, min=0, max=20)} \\ \text{xr <- round2reso(x, 5) \# rounded values to increments of 5} \\ \text{plot(x, t="n", ylim=c(0,20), pch=20)} \\ \text{abline(h=seq(0,20,5), col=8, lty=3)} \\ \text{points(x, col=1, pch=1)} \\ \text{points(xr, col=2, pch=20)} \\ \text{arrows(x0=seq(n), x1=seq(n), y0=x, y1=xr, length=0.1)} \end{array}
```

spirographR

Make a sprirograph-like design

Description

spirographR will produce sprirograph-like design as either a hypotrochoid or an epitrochoid (depending on whether radius A or B is larger).

Usage

```
spirographR(x = 0, y = 0, a.rad = 1, b.rad = -4, bc = -2, rev = 4, n.per.rev = 360)
```

Arguments

x,y	Center coordinates of stationary circle 'a'
a.rad	Radius of stationary circle 'a'
b.rad	Radius of circle 'b' travelling around stationary circle 'a'
bc	Distance from the center of 'b' to a point 'c' which will turn with b as if attached to a stick.
rev	Number of revolutions that 'b' should travel around 'a'
n.per.rev	Number of radial increments to be calculated per revolution

val2col 25

Details

A positive value for 'b' will result in a epitrochoid, while a negative value will result in a hypotrochoid.

Examples

```
op <- par(mar=c(0,0,0,0), bg=1)
plot(spirographR(), t="1", col=6, lwd=3)
plot(spirographR(a.rad=1, b.rad=3.5, rev=7), t="1", col=7, lwd=3)
plot(spirographR(a.rad=4.1, b.rad=-6, rev=100, bc=2.3), t="1", col=5, lwd=1)
par(op)</pre>
```

val2col

Convert values to color levels

Description

The val2col function converts a vector of values("z") to a vector of color levels. One must define the number of colors. The limits of the color scale ("zlim") or the break points for the color changes("breaks") can also be defined. When breaks and zlim are defined, breaks overrides zlim. All arguments are similar to those in the image function.

Usage

```
val2col(z, zlim, col = heat.colors(12), breaks)
```

Arguments

z A vector of values (default is 12 colors from the heat.colors palette).

zlim Limits of the color scale values.

col Vector of color values

breaks Break points for color changes. If breaks is specified then zlim is unused and

the algorithm used follows cut, so intervals are closed on the right and open on

the left except for the lowest interval which is closed at both ends.

```
set.seed(1)
n <- 250
x <- seq(n)
y <- rnorm(n)

# Use all levels, evenly distributed breaks
Col <- val2col(y, col=rainbow(20))
plot(x,y, pch=21, bg=Col)

# Use limits, evenly distributed breaks
pal <- colorRampPalette(c("blue", "cyan", "yellow", "red"))
Col <- val2col(y, zlim=c(-1,1), col=pal(20))
plot(x,y, pch=21, bg=Col)
abline(h=c(-1,1), col=8, lty=2)</pre>
```

26 val2col

```
# Use custom breaks (break vector must have one more break than color) Col <- val2col(y, col=topo.colors(6), breaks=c(-Inf, -2, -1, 0, 1, 2, Inf)) plot(x,y, pch=21, bg=Col) abline(h=c(-Inf, -2, -1, 0, 1, 2, Inf), col=8, lty=2)
```

Index

```
*Topic EOF
    dineof, 7
    eof, 10
*Topic PCA
    cov4gappy, 6
    dineof, 7
    eof, 10
*Topic covariance
    cov4gappy, 6
*Topic gappy
    dineof, 7
addAlpha, 2
bioEnv, 2, 4
bvStep, 4
cov4gappy, 6
dineof, 7
earthBear, 9
{\tt earthDist}, {\color{red} 10}
eof, 10
eofRecon, 12
expmat, 13
gmtColors, 14
imageScale, 15
jetPal, 17
lonLatFilter, 17
{\tt matrixPoly}, {\color{red}18}
nearest, 19
newLonLat, 19
plotStacked, 20
plotStream, 22
round2reso, 23
spirographR, 24
val2col, 25
vegdist, 3, 4
```