Inner Product Spaces

For a vector space V, an inner product $\langle \cdot, \cdot \rangle$ satisfies the following four postulates (applicable to real vector spaces):

1.
$$\langle x, y \rangle = \langle y, x \rangle$$
 (Symmetry)

2. $\langle cx, y \rangle = c \langle x, y \rangle$ (Linearity in the first argument)

3.
$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$
 (Additivity)

4.
$$\langle x, x \rangle > 0$$
, and $\langle x, x \rangle = 0$ if and only if $x = 0$ (Positivity)

An inner product space is not unique. A vector space may have any amount of inner product spaces as long as the four postulates are met.

Complex Vector Spaces

For complex vector spaces, the first postulate changes to:

$$\langle x, y \rangle = \overline{\langle y, x \rangle},$$

ensuring that the inner product remains real-valued when evaluated. The other postulates remain similar, with linearity applying only in the first argument to maintain consistency.

Examples

• For \mathbb{R}^2 or \mathbb{R}^3 , an example of an inner product is:

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta),$$

where θ is the angle between vectors x and y. Another example is:

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

The dot product is an inner product in \mathbb{R}^n .

• For integrable functions f(x) and g(x) over an interval [a, b], the inner product is defined as:

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx.$$

Integral Example

Consider $f(x) = e^{3x}(\cos(3x) + i\sin(3x))$ and $g(x) = e^{-x}(2\cos(5x) - i\sin(5x))$. The inner product over a suitable interval is:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx.$$

The norm squared:

$$\langle f, f \rangle = \int_a^b f(x)^2 dx,$$

is always positive, and zero only when f(x) = 0, satisfying the fourth postulate.