## 第七章 常用数字接口电路

### 主要内容

- 了解并行通信与串行通信的特点
- 掌握几种可编程接口芯片的应用

### 7.1 并行通信与串行通信

#### 7.1.1 并行通信

- 特点
  - 以数据字节或字为单位进行数据传送。



简单接口和可编程接口

### 7.1.2 串行通信

- 串行通信:两个功能模块只通过一条或两条数据线进行数据交换
- ▶ 1. 串行数据传送方式
  - 全双工:有两条通路,发送信息和接收信息同时进行
  - 半双工:有一条通路,发送信息和接收信息采用分时使用线路的方法
  - ▶ 单工:只允许一个方向传送信息,不允许反向传输
- 2. 调制和解调
  - 把 "1"和 "0"的数字脉冲信号调制在载波信号上;承载了数字信息的载波信号在普通电话网络系统中传送;在目的站,调制解调器把承载了数字信息的载波信号恢复成原来的 "1"和 "0"数字脉冲信号。
  - 信号的调制
    - ◆ 调频: 把数字信号的 "1"和 "0"调制成不同频率的模拟信号
    - ◆ 调幅:把数字信号的"1"和"0"调制成不同幅度的模拟信号,频率保持不变
    - ◆ 调相: 把数字信号的"1"和"0"调制成不同相位的模拟信号

## 数字信号通过实际的信道

■ 失真不严重



输出信号波形 (失真不严重)

■ 失真严重



实际的信道 (带宽受限、有噪声、干扰和失真)



输出信号波形 (失真严重)

## 基带信号、载波信号

- 基带信号就是将数字信号 1 或 0 直接用两种不同的电压来表示,然后送到线路上去传输。
- 载波信号是指被调制以传输信号的波形。其频率单一,带宽较小,适合远距离传输。

## 几种最基本的调制方法

- · 调制就是进行波形变换(频谱变换)。
- 最基本的二元制调制方法有以下几种:
  - 调幅(AM): 载波的振幅随基带数字信号而变化。
  - 调频(FM): 载波的频率随基带数字信号而变化。
  - 调相(PM): 载波的初始相位随基带数字信号而变化。

# 对基带数字信号的几种调制方法



- 3. 同步通信和异步通信
  - > 这是两种基本串行通信方式
  - 同步通信:在约定的通信速率下,发送端和接收端的时钟信号频率和相位始 终保持一致。



- ◆ 规定字符由起始位、数据位、奇偶校验位和停止位组成。
- ◆ 传送效率比较低,但硬件成本较低,简单可靠,容易实现,广泛应用于 各种微型机系统中

- 4. 串行通信的数据校验
  - 常用的校验方法有: 奇偶校验码、循环冗余码
  - > 奇偶校验码:
    - ◆ 奇校验和偶校验
    - ◆ 只能检查出所传输字符的一位错误,比较容易实现,广泛使用
  - 循环冗余校验
    - ◆ 是以数据块为对象进行校验。
    - ◆ 误码率比奇偶校验码的误码率低
- 5. 串行通信的接口标准
  - ▶ 应用最广泛的时EIA RS-232-C
  - ▶ RS-232-C的接口标准:
    - ◆ 信号线少
    - ◆ 有多种可供选择的传送速率
    - ◆ 传送距离远
    - ◆ 采用负逻辑无间隔不归零电平码传送。

### 循环冗余编码

利用CRC进行检错的过程可简单描述为:在发送端根据要传送的m位二进制码序列,以一定的规则产生一个校验用的k位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共m+k位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则在差错控制理论中称为"生成多项式"

在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为:

 $1 \cdot x^6 + 1 \cdot x^5 + 0 \cdot x^4 + 0 \cdot x^3 + 1 \cdot x^2 + 0 \cdot x + 1$ ,  $\square x^6 + x^5 + x^2 + 1$ 

### 冗余码的计算

- 在发送端, 先把数据划分为组。假定每组 *k* 个比特。
- 假设待传送的一组数据 M = 101001(现在 k = 6)。我们在 M 的后面再添加供差错检测用的 n 位冗余码一起发送。
- 用二进制的模 2 运算进行 2<sup>n</sup> 乘 *M* 的运算,这相当于在 *M* 后面添加 *n* 个 0。
- 得到的 (k + n) 位的数除以事先选定好的长度为 (n + 1) 位的除数 P,得出商是 Q 而余数是 R,余数 R 比除数 P 少1位,即 R 是 n 位。

#### 冗余码的计算

- 现在 k = 6, M = 101001.
- $\Re n = 3$ ,  $\Re P = 1101$ ,
- 被除数是 2<sup>n</sup>M = 101001000。
- 把余数 R 作为冗余码添加在数据 M 的后面发送出去。发送的数据是:  $2^nM + R$ 
  - 即: 101001001, 共 (k+n) 位。

#### 冗余码的计算

```
110101 ← Q (商)
P(除数) \rightarrow 1101 101001000 \leftarrow 2^n M(被除数)
              1101
               1110
               <u>1101</u>
                0111
                0000
                  1110
                  1101
                  0110
                   0000
                    1100
                    1101
```

### 循环冗余编码

设编码前的原始信息多项式为f(x),生成多项式为G(x), G(x)的最高幂次等于k,CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。

发送方编码方法:将f(x)乘以 $x^k$ (即对应的二进制码序列左移k位),再除以G(x),所得余式即为R(x)。用公式表示为

$$T(x) = x^{k} f(x) + R(x)$$

G(x)为生成多项式; R(x)为CRC多项式。

R(x)的位数为k, k为G(x)的最高次幂。

接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。

- 4. 串行通信的数据校验
  - 常用的校验方法有: 奇偶校验码、循环冗余码
  - > 奇偶校验码:
    - ◆ 奇校验和偶校验
    - ◆ 只能检查出所传输字符的一位错误,比较容易实现,广泛使用
  - 循环冗余校验
    - ◆ 是以数据块为对象进行校验。
    - ◆ 误码率比奇偶校验码的误码率低
- 5. 串行通信的接口标准
  - ▶ 应用最广泛的时EIA RS-232-C
  - ▶ RS-232-C的接口标准:
    - ◆ 信号线少
    - ◆ 有多种可供选择的传送速率
    - ◆ 传送距离远
    - ◆ 采用负逻辑无间隔不归零电平码传送。

#### RS-232C接口标准

RS-232C是由美国电子工业协会EIA在1969年颁布的一种目前使用最广泛的串行物理接口。

RS-232标准提供了一个利用公用电话网络作为传输媒体,并通过调制解调器将远程设备连接起来的技术规定。

远程电话网相连接时,通过调制解调器将数字转换成相应的模拟信号,以使其能与电话网相容;在通信线路的另一端,另一个调制解调器将模拟信号逆转换成相应的数字数据,从而实现比特流的传输。



#### 物理层的任务

- 物理层的主要任务描述为确定与传输媒体的接口的一些特性,即:
  - 机械特性: 指明接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等
  - 电气特性: 指明在接口电缆的各条线上出现的电压的范围。即 什么样的电压表示 I 或0。传输速度、最大传输距离
  - 功能特性: 指明某条线上出现的某一电平的电压表示何种意义
  - 规程特性: 指明对于不同功能的各种可能事件的出现顺序





#### RS-232C接口标准

1. RS-232C的机械特性: 规定使用一个25芯的标准连接器,并对该连接器的尺寸及针或孔芯的排列位置等都做了详细说明。实际的用户并不一定需要用到RS-232C标准的全集,这在个人计算机(PC)高速普及的今天尤为突出,所以一些生产厂家为RS-232C标准的机械特性做了变通的简化,使用了一个9芯标准连接器将不常用的信号线舍弃。





#### RS-232C接口标准

2. RS-232C的电气特性: 规定逻辑 "1"的电平为-15至-5伏,逻辑 "0"的电平为+5至+15伏,也即RS-232C采用+15伏和-15伏的负逻辑电平,+5伏和-5伏之间为过渡区域不做定义。RS-232C电平高达+15伏和-15伏,较之0~5伏的电平来说具有更强的抗干扰能力。

但是,即使用这样的电平,若两设备利用RS-232C接口直接相连(即不使用调制解调器),它们的最大距离也仅约15m,而且由于电平较高、通信速率反而能受影响。RS-232C接口的通信速率《20Kbps(标准速率有150、300、600、1200、2400、4800、9600、19200bps等几档)

### 7.2 可编程定时计数器8253

- 定时器/计数器的作用
- 实现定时的方法
  - 软件编程: 设计一个延时子程序,子程序中全部指令执行时间的 总和就是该子程序的延时时间
  - 软硬件结合:利用专用的硬件定时/计数器,在简单软件控制下产生准确的延时时间
- 定时/计数器的计数方式
  - 加法计数器:每来一个脉冲就加1,当加到预先设定的计数值时就 产生一个定时信号
  - 减法计数器:每来一个脉冲就减1,当减到0时就产生一个定时信号

### 7.2.1 8253的引脚及结构

- 1. 引线及功能
- 引脚含义
  - D₀~D<sub>7</sub>: 双向数据信号线
  - /RD、/WR: 读和写信号线
  - /CS: 片选信号, 低电平有效
  - A₀、A₁: 地址信号线
  - CLK<sub>0</sub>~CLK<sub>2</sub>: 时钟信号输入端
  - GATE<sub>0</sub>~GATE<sub>2</sub>: 门控信号
  - OUT₀~OUT₂: 计数器输出信号



图 7-4 可编程定时器 8253 外部 引线图

|  | 表 7-1 | 各地址信号组合功 | 治化 |
|--|-------|----------|----|
|--|-------|----------|----|

| $A_1$ | $A_0$ | 功能      | $A_1$ | A <sub>o</sub> | 功能      |
|-------|-------|---------|-------|----------------|---------|
| 0     | 0     | 选择计数器 0 | 1     | 0              | 选择计数器 2 |
| 0     | 1     | 选择计数器1  | 1     | 1              | 选择控制寄存器 |

#### ■ 2. 内部结构和工作原理

- ▶ 1) 计数器(0、1、2)
- > 2) 控制寄存器
- > 3) 数据总线缓冲器
- > 4) 读写控制逻辑



图 7-5 可编程定时器 8253 的内部结构框图

#### ■ 3. 计数启动方法

- 软件启动:由程序指令启动
  - ◆ 在CPU用输出指令向计数器写入初值后就启动计数
  - ◆ 误差:实际的CLK脉冲个数比编程写入的计数初值N要多一个
- 硬件启动:由外部电路信号启动
  - ◆ 在门控信号GATE由低电平变高后,再经CLK信号的上升沿采样,之后再 该CLK的下降沿才开始计数。
  - ◆ 误差:在极端情况下,从GATE变高到CLK采样之间的延时可能会经历一个CLK脉冲宽度。
- > 不自动重复的计数方式
  - ◆ 计数器每启动一次只工作一个周期,要想重复计数过程必须重新启动
- > 自动重复的计数方式
  - ◆ 主要门控信号GATE保持高电平,计数过程就会自动重复,这时OUT端可以产生连续的波形输出。

### 7.2.2 8253的工作方式

- 1. 方法0——计数结束中断
  - 软件启动、不自动重复计数
  - ▶ 计数结束时,OUT输出变成高电平,并保持到通道重新装入计数值
  - 计数过程中修改计数初值,会立即有效
  - 整个计数过程中,GATE端应始终保持高电平;如果低电平,则暂停计数,在恢复高电平时接着当前的计数值继续计数
  - 由于计数结束时CPU端输出一个从低到高的信号,该信号可作为中断请求信号使用



- 2. 方法1——复触发的单稳态触发器
  - 硬件启动、不自动重复计数
  - 写入控制字时OUT端变成高电平,计数开始时,OUT变成低电平,结束时, OUT变成高电平。
  - 在计数过程中,若写入新的计数值,则本次计数过程的输出不受影响
  - ▶ 计数过程一旦启动,GATE端即使变低也不会影响计数;门控信号GATE出现由低到高的调变(触发)后,在下一个CLK脉冲的下降沿开始计数,此时OUT端立刻变为低电平。
  - ▶ 由GATE触发后,OUT产生一个负脉冲,脉冲宽度=N\*TCLK



#### 3. 方法2——频率发生器

- 软件/硬件启动、可自动重复计数
- 若写入控制字和计数初值器件GATE一直为高电平,则软件启动;若送计数初值时GATE为低电平,则硬件启动。
- 写入控制字时OUT端变成高电平,当计数到1时,OUT变成低电平,经过一个 CLK周期,OUT恢复为高电平。
- 在计数过程中,若写入新的计数值,将不影响计数,但从下一个周期开始按新 计数值计数。
- GATE为低电平时,禁止计数,是OUT高电平。变高电平时,计数器将重新装入,开始计数

► OUT端连续输出宽度为一个CLK脉冲宽度的负脉冲,输出的脉冲频率为CLK 的1/N
CW N=3



#### 4. 方法3——方波发生器

- 软件/硬件启动、可自动重复计数
- ➤ 写入控制字时OUT端变成高电平,计数到N/2时,OUT端输出变成低电平,再接着计数到0时,OUT又变为高,并开始新一轮计数。此时OUT端输出的波形不是负脉冲,而是方波。
- 在计数过程中,若装入新的计数值,会在当前半周期结束时启动新的计数初值
- ▶ 计数过程中,GATE变低,会立即终止计数,且OUT端变高。恢复高电平时, 计数值重新装入,从头开始计数
- ▶ OUT输出是周期为N\*TCLK的对称方波



#### ■ 5. 方法4——软件触发选通

- 软件启动、不自动重复计数
- ▶ 写入控制字时OUT端变成高电平,当计数为0时,OUT变成低电平,经过一个 CLK周期,OUT恢复为高电平。
- 在计数过程中装入新的计数值,则计数器从下一时钟周期开始按新的计数值重新开始技数。
- GATE为低电平时禁止计数,变为高电平时计数器重新装入计数初值,开始计数数
- > 计数结束时,由OUT输出一个CLK周期宽的负脉冲。



#### ■ 6. 方法5——硬件触发选通

- 硬件启动、不自动重复计数
- ▶ 当GATE端出现一个上升沿跳变,启动计数。
- ▶ 写入控制字时OUT端变成高电平,当计数为0时,OUT变成低电平,经过一个 CLK周期,OUT恢复为高电平。
- 计数过程中重新装入初值,将不影响当前计数。
- ▶ GATE又有触发信号时,计数器重新装入初值,从头开始计数。
- ▶ 由OUT输出一个CLK周期宽的负脉冲。



#### ■ 计数器工作方式一览表

表 7-2 8253 计数器工作方式一览表

| 工作方式 | 启动计数 | 中止计数   | 自动重复 | 更新初值  | 输 出 波 形                                       |
|------|------|--------|------|-------|-----------------------------------------------|
| 0    | 软件   | GATE=0 | 否    | 立即有效  | 延时时间可变的上升沿                                    |
| 1    | 硬件   | /      | 否    | 下一轮有效 | 宽度为 N×T <sub>CLK</sub> 的单一负脉冲                 |
| 2    | 软/硬件 | GATE=0 | 是    | 下一轮有效 | 周期为 $N \times T_{CLK}$ , 宽度为 $T_{CLK}$ 的连续负脉冲 |
| 3    | 软/硬件 | GATE=0 | 是    | 下半轮有效 | 周期为 N×T <sub>CLK</sub> 的连续方波                  |
| 4    | 软件   | GATE=0 | 否    | 立即有效  | 宽度为 T <sub>CLK</sub> 的单一负脉冲                   |
| 5    | 硬件   | /      | 否    | 下一轮有效 | 宽度为 T <sub>CLK</sub> 的单一负脉冲                   |

### 7.2.3 8253的控制字

- 8253必须先初始化才能正常工作,每个计数通道可分别初始化
- CPU通过指令将控制字写入可编程定时器8253的控制寄存器,从而确定3 个计数器分别工作于何种工作方式下。
- 8253的控制字具有固定的格式



图 7-12 8253 的控制字格式

■ 例如,已知某个8253的计数器0、1、2和控制端口依次为40H~43H。要求 设置其中的计数器0为方式0,采用二进制计数,先低字节后高字节写入计 数值。初始化程序段如下:

MOV AL, 30H

OUT 43H, AL

■ 计数器0写入计数初值1024(=400H),初始化程序为:

**MOV AX, 1024** 

OUT 40H, AL

MOV AL, AH

OUT 40H, AL

### 7.2.4 8253的应用

- 1.8253与系统的连接
  - > 8253共占用4个端口地址
  - ▶ 信号CS、A0、A1与读信号/RD、写信号/WR配合,可以实现对8253的 各种读写操作。

|                        |       |       | 100                      |                 |        |    |                |       |                          |                 |        |
|------------------------|-------|-------|--------------------------|-----------------|--------|----|----------------|-------|--------------------------|-----------------|--------|
| $\overline{\text{CS}}$ | $A_1$ | $A_0$ | $\overline{\mathrm{RD}}$ | $\overline{WR}$ | 功 能    | CS | $\mathbf{A}_1$ | $A_0$ | $\overline{\mathrm{RD}}$ | $\overline{WR}$ | 功能     |
| 0                      | 0     | 0     | 1                        | 0               | 写计数器 0 | 0  | 0              | 0     | 0                        | 1               | 读计数器 0 |
| 0                      | 0     | 1     | 1                        | 0               | 写计数器1  | 0  | 0              | 1     | 0                        | 1               | 读计数器 1 |
| 0                      | 1     | 0     | 1                        | 0               | 写计数器 2 | 0  | 1              | 0     | 0                        | 1               | 读计数器 2 |
| 0                      | 1     | 1     | 1                        | 0               | 写控制寄存器 | 0  | 1              | 1     | 0                        | 1               | 无效     |

表 7-3 各寻址信号组合功能

#### ■ 8253连接到系统总线的连接图:



图 7-13 8253 与 8088 系统总线的连接

- 2.8253的编程
- 也称为对8253进行初始化。包括两个部分:
  - > 写各计数器的方式控制字
  - > 设置计数初值。
- 初始化的方法有两种:
  - > (1)以计数器为单位逐个进行初始化
  - > (2) 先写所有计数器的方式字,再装入各计数器的计数值



■ 例7-1, 在IBM PC系统板上使用了一块8253定时/计数器,其计数器0(CNT0)用于为系统的电子钟提供时间基准,它的输出端作为系统的中断源接到8259的IR0端;计数器1(CNT1)用于DRAM的定时刷新;计数器2(CNT2)主要用作机内扬声器的音频信号源,可输出不同视频的方波信号。图7-16是简化了的IBM PC内8253的连接图,其接口地址采用部分译码方式,占用的设备端口地址为40H~5FH。以下编程中,使用了地址中的40H~43H。

#### 1. 定时中断

通过阅读系统ROM-BIOS的初始化编程. 结合硬件连接图分析计数器0的作用。



图 7-16 PC 中 8253 的连接简图

MOV AL, 36H
OUT 43H, AL
MOV AL, 0
OUT 40H, AL
OUT 40H, AL

#### ■ 2. 定时刷新:



图 7-16 PC 中 8253 的连接简图

MOV AL, 54H OUT 43H, AL MOV AL, 18 OUT 41H, AL

#### ■ 3. 扬声器控制:



图 7-16 PC 中 8253 的连接简图

MOV AL, 0B6H

OUT 43H, AL

**MOV AX, 1190** 

OUT 42H, AL

MOV AL, AH

OUT 42H, AL

**IN AL, 61H** 

MOV AH, AL

**OR AL, 03** 

OUT 61H, AL

• • •

MOV AL, AH

OUT 61H, AL

■ 例7-2,写出图7-13中8253的初始化程序,其中,3个CLK频率均为2MHZ,计数器0在定时100微秒后产生中断请求,计数器1用于产生周期为10微秒的对称方波;计数器2每1毫秒产生1个负脉冲。