Finding Optimal Number of Clusters

TOP: Data Clustering 076/091

Instructor: Sayan Bandyapadhyay
Portland State University

Outline

- 1 Introduction
- 2 Elbow method
- 3 Calinski-Harabasz index
- 4 Silhouette method
- 5 Gap statistics

Number of Clusters

Needed for common clustering models such as *k*-means/median/center

Number of Clusters

Needed for common clustering models such as *k*-means/median/center

- Elbow method
- Calinski-Harabasz index
- Silhouette method
- Gap statistics

Number of Clusters

Needed for common clustering models such as *k*-means/median/center

- Elbow method
- Calinski-Harabasz index
- Silhouette method
- Gap statistics

Psuedo-science alert!

Outline

- 1 Introduction
- 2 Elbow method
- 3 Calinski-Harabasz index
- 4 Silhouette method
- 5 Gap statistics

Finding Elbow of a Graph

Finding Elbow of a Graph

Advantages

Simplicity of computation

Finding Elbow of a Graph

Advantages

- Simplicity of computation
- Can work for any clustering model

Disadvantages

Subjectivity in interpretation

Disadvantages

- Subjectivity in interpretation
- Can have multiple elbows: ambiguity with complex datasets

Outline

- 1 Introduction
- 2 Elbow method
- 3 Calinski-Harabasz index
- 4 Silhouette method
- 5 Gap statistics

$$CH(k) = \frac{BCSS(k)}{k-1} \cdot \frac{n-k}{WCSS(k)}$$

$$CH(k) = \frac{BCSS(k)}{k-1} \cdot \frac{n-k}{WCSS(k)}$$

$$BCSS(k) = \sum_{i=1}^{k} n_i \cdot ||c_i - c||^2$$

 $C = \{c_1, c_2, \dots, c_k\}$ are centers, c is the global center, n_i is i-th cluster-size

$$CH(k) = \frac{BCSS(k)}{k-1} \cdot \frac{n-k}{WCSS(k)}$$

$$BCSS(k) = \sum_{i=1}^{k} n_i \cdot ||c_i - c||^2$$

 $C = \{c_1, c_2, \dots, c_k\}$ are centers, c is the global center, n_i is i-th cluster-size

$$WCSS(k) = k\text{-means-cost}(C, X)$$

$$CH(k) = \frac{BCSS(k)}{k-1} \cdot \frac{n-k}{WCSS(k)}$$

$$BCSS(k) = \sum_{i=1}^{k} n_i \cdot ||c_i - c||^2$$

 $C = \{c_1, c_2, \dots, c_k\}$ are centers, c is the global center, n_i is i-th cluster-size

$$WCSS(k) = k\text{-means-cost}(C, X)$$

The higher is the better

Well-separated Clusters

BCSS should be large and WCSS small

Why BCSS?

Why BCSS?

CH-index might stop unnecessary splitting of clusters

Why BCSS?

CH-index might stop unnecessary splitting of clusters—> assumes clusters are well-separated

Properties

Pros

- Objective measure
- Fast computation

Properties

Pros

- Objective measure
- Fast computation

Cons

- Sensitivity to cluster shape
- Limited interpretability

Outline

- 1 Introduction
- 2 Elbow method
- 3 Calinski-Harabasz index
- 4 Silhouette method
- 5 Gap statistics

For any point x_i ,

$$S(x_i) = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 a_i is proxy for WCSS; b_i is proxy for BCSS

For any point x_i ,

$$S(x_i) = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 a_i is proxy for WCSS; b_i is proxy for BCSS

 a_i is the average distance of x_i from all other points in its cluster

For any point x_i ,

$$S(x_i) = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 a_i is proxy for WCSS; b_i is proxy for BCSS

 a_i is the average distance of x_i from all other points in its cluster

 b_i is the smallest average distance of x_i to all points in any other cluster

 b_i is the minimum average separation from x_i

For any point x_i ,

$$S(x_i) = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 a_i is proxy for WCSS; b_i is proxy for BCSS

 a_i is the average distance of x_i from all other points in its cluster

 b_i is the smallest average distance of x_i to all points in any other cluster

For any point x_i ,

$$S(x_i) = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 a_i is proxy for WCSS; b_i is proxy for BCSS

 a_i is the average distance of x_i from all other points in its cluster

 b_i is the smallest average distance of x_i to all points in any other cluster

Silhouette Coefficient —> average of the $S(x_i)$ over all points

For any point x_i ,

$$S(x_i) = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 a_i is proxy for WCSS; b_i is proxy for BCSS

 a_i is the average distance of x_i from all other points in its cluster

 b_i is the smallest average distance of x_i to all points in any other cluster

Silhouette Coefficient —> average of the $S(x_i)$ over all points —> maximized over all k

For any point x_i ,

$$S(x_i) = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

 a_i is proxy for WCSS; b_i is proxy for BCSS

 a_i is the average distance of x_i from all other points in its cluster

 b_i is the smallest average distance of x_i to all points in any other cluster

Silhouette Coefficient —> average of the $S(x_i)$ over all points —> maximized over all k

Value ranges between -1 and 1: 1 -> well-separated clusters, 0 -> overlapping or ambiguous clusters, negative -> poorly separated data points

Silhouette Plot

Properties

Pros

- Objective measure
- Individual data point assessment
- Intuitive interpretation
- Works with different clustering models

Properties

Pros

- Objective measure
- Individual data point assessment
- Intuitive interpretation
- Works with different clustering models

Cons

- Difficulty with overlapping clusters
- Computational complexity

Outline

- 1 Introduction
- 2 Elbow method
- 3 Calinski-Harabasz index
- 4 Silhouette method
- 5 Gap statistics

$$Gap_n(k) = E_n^* \{WCSS(k)\} - WCSS(k)$$

$$Gap_n(k) = E_n^* \{WCSS(k)\} - WCSS(k)$$

■ The expectation is taken over *B* samples of size *n* from a reference null distribution

$$Gap_n(k) = E_n^* \{WCSS(k)\} - WCSS(k)$$

- The expectation is taken over *B* samples of size *n* from a reference null distribution
- Null − > a distribution with no obvious clustering/clusters are not well-separated

$$Gap_n(k) = E_n^* \{WCSS(k)\} - WCSS(k)$$

- The expectation is taken over *B* samples of size *n* from a reference null distribution
- Null − > a distribution with no obvious clustering/clusters are not well-separated
- Uniform distribution is an example − > for each feature, pick a value within the range of observed values

$$Gap_n(k) = E_n^* \{WCSS(k)\} - WCSS(k)$$

- The expectation is taken over *B* samples of size *n* from a reference null distribution
- Null − > a distribution with no obvious clustering/clusters are not well-separated
- Uniform distribution is an example − > for each feature, pick a value within the range of observed values
- Clustering cost of reference data is expected to be large

Uniform vs Regular Clusters

$$Gap_n(k) = E_n^* \{WCSS(k)\} - WCSS(k)$$

- The expectation/mean is taken over *B* samples of size *n* from a reference null distribution
- Null − > a distribution with no obvious clustering/clusters are not well-separated
- Uniform distribution is an example − > for each feature, pick a value within the range of observed values
- Clustering cost of reference data is expected to be large

For optimal k, the gap is expected to be maximized/falls the farthest below the reference curve

The Actual Definition

$$Gap_n(k) = E_n^* \{ \log WCSS(k) \} - \log WCSS(k) \}$$

The Actual Definition

$$Gap_n(k) = E_n^* \{ \log WCSS(k) \} - \log WCSS(k) \}$$

 W_1^*, \ldots, W_B^* are sample WCSS

The Actual Definition

$$Gap_n(k) = E_n^* \{ \log WCSS(k) \} - \log WCSS(k) \}$$

 W_1^*, \ldots, W_B^* are sample WCSS

$$E_n^* \{ \log WCSS(k) \} = \frac{1}{B} \sum_i \log W_i^* = \frac{1}{B} \log(\prod_i W_i^*)$$
$$= \log(\prod_i W_i^*)^{1/B}$$

$$Gap_n(k) = \log \frac{(\Pi_i W_i^*)^{1/B}}{WCSS(k)}$$

An Example

Properties

Pros

- Objective measure
- Statistically grounded assessment of clustering quality
- Relatively robust to noise and outliers

Properties

Pros

- Objective measure
- Statistically grounded assessment of clustering quality
- Relatively robust to noise and outliers

Cons

- Computationally intensive
- Limited applicability to certain datasets
- Lack of consensus on reference distribution

Take Home Message

■ No method is perfect

Take Home Message

- No method is perfect
- Try multiple methods; compare and contrast

Take Home Message

- No method is perfect
- Try multiple methods; compare and contrast
- Always remember clustering is an exploratory technique

Links

Implementation in R

Implementation in Python

Gap statistics paper

CH-index paper