F. Cities Excursions

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

There are n cities in Berland. Some pairs of them are connected with m directed roads. One can use only these roads to move from one city to another. There are no roads that connect a city to itself. For each pair of cities (x, y) there is at most one road from x to y.

A path from city s to city t is a sequence of cities p_1, p_2, \ldots, p_k , where $p_1 = s, p_k = t$, and there is a road from city p_i to city p_{i+1} for each i from 1 to k - 1. The path can pass multiple times through each city except t. It can't pass through t more than once.

A path p from s to t is *ideal* if it is the lexicographically minimal such path. In other words, p is *ideal* path from s to t if for any other path q from s to t $p_i < q_i$, where i is the minimum integer such that $p_i \neq q_i$.

There is a tourist agency in the country that offers q unusual excursions: the j-th excursion starts at city s_j and ends in city t_j .

For each pair s_j , t_j help the agency to study the ideal path from s_j to t_j . Note that it is possible that there is no ideal path from s_j to t_j . This is possible due to two reasons:

- there is no path from S_i to t_i ;
- there are paths from s_j to t_j , but for every such path p there is another path q from s_j to t_j , such that $p_i > q_i$, where i is the minimum integer for which $p_i \neq q_i$.

The agency would like to know for the ideal path from s_i to t_j the k_j -th city in that path (on the way from s_i to t_j).

For each triple s_j , t_j , k_j ($1 \le j \le q$) find if there is an ideal path from s_j to t_j and print the k_j -th city in that path, if there is any.

Input

The first line contains three integers n, m and q ($2 \le n \le 3000, 0 \le m \le 3000, 1 \le q \le 4 \cdot 10^5$) — the number of cities, the number of roads and the number of excursions.

Each of the next m lines contains two integers x_i and y_i ($1 \le x_i, y_i \le n, x_i \ne y_i$), denoting that the i-th road goes from city x_i to city y_i . All roads are one-directional. There can't be more than one road in each direction between two cities.

Each of the next q lines contains three integers s_i , t_j and k_j ($1 \le s_i$, $t_j \le n$, $s_i \ne t_j$, $1 \le k_j \le 3000$).

Output

In the j-th line print the city that is the k_j -th in the ideal path from s_j to t_j . If there is no ideal path from s_j to t_j , or the integer k_j is greater than the length of this path, print the string '-1' (without quotes) in the j-th line.

Example

```
input

7    7    5
1    2
2    3
1    3
3    4
4    5
5    3
4    6
1    4    2
2    6    1
```

1 7 2	
1 7 3	
1 3 2	
1 3 5	
output	
2	
-1	
_1	
<u> </u>	
2	