First recall the dual formulation of allo with elastic net penalty, for which the optimization problem is: $\arg\min_{\beta} \frac{1}{2}||y - X\beta||_2^2 + \lambda_1||\beta||_1 + \lambda_2||\beta||_2^2$, also let E be the active sets.

$$y^{/i} = y_i - \frac{u_i}{J_{ii}}$$

where:

$$u = y - X\hat{\beta}$$
$$J = \left(I + \frac{1}{2\lambda_2} X_E X_E^{\tau}\right)^{-1}$$

1 Nesterov Accelerated Gradient

Initialize learning rate γ , momentum ϵ , Initial Guess Inverse B_0 Initialize $Y_0 = X_0$

While Stopping criterion not satisfied

1.
$$Y_{t+1} = B_t - \gamma((I+A)B_t - I)$$

2.
$$B_{t+1} = Y_{t+1} + \epsilon (Y_{t+1} - Y_t)$$

Algorithm 1: Nesterov Accelerated Gradient Descent

1.1 Some intuitions for the algorithm

First recall the simple gradient step for computing the inverse of a positivedefinite symmetric matrix A, whose spectrum decomposition is $A = U\Lambda U^{\tau}$:

$$X_{t+1} = X_t - \epsilon (AX_t - I)$$

Therefore we could compute the frobenius norm with regard to $AX_t - I$:

$$||AX_{t+1} - I||_F^2 = ||(I - \epsilon \Lambda)(AX_t - I)||_F^2$$

= $||U(I - \epsilon \Lambda)U^{\tau}(AX_t - I)||_F^2$
 $\leq \max_i (1 - \epsilon \lambda_i)^2 ||AX_t - I||_F^2$

If ϵ is set such that for each eigenvalue λ_i , $(1-\epsilon\lambda_i)^2 < 1-\delta$ for some $0 < \delta < 1$, then we could reduce the error $||AX_t - I||_F^2$ exponentially according to iteration times t.

While in practice of cross-validation, our λ_2 will change within each regression, therefore we can set the initial guess of the inverse directly from the inverse obtained for the previous λ_2 . Given the intuition of Nesterov Accelerated Gradient, here I proposed two different NAG algorithms:

1.2 Nesterov Accelerated Gradient for one-sample a time

Denote p be the number of the columns of X_E

Initialize learning rate $\gamma,$ momentum $\epsilon,$ Initial Guess Inverse B_0 Initialize $Y_0=B_0$

While Stopping criterion not satisfied

- 1. sample X_j randomly from the columns of X_E
- 2. $Y_{t+1} = B_t \gamma((I + \frac{p}{2\lambda_2}X_jX_j^{\tau})B_t I)$
- 3. $B_{t+1} = Y_{t+1} + \epsilon (Y_{t+1} Y_t)$

Algorithm 2: NAG for one-sample per time

1.3 Nesterov Accelerated Gradient for a mini-batch a time

Initialize learning rate γ , momentum ϵ , batch size m, Initial Guess Inverse B_0

Initialize $Y_0 = B_0$

While Stopping criterion not satisfied

- 1. sample m columns \tilde{X}_E randomly from the columns of X_E
- 2. $Y_{t+1} = B_t \gamma ((I + \frac{p}{2m\lambda_2} \tilde{X}_E \tilde{X}_E^{\tau}) B_t I)$
- 3. $B_{t+1} = Y_{t+1} + \epsilon (Y_{t+1} Y_t)$

Algorithm 3: NAG for mini-batch per time

1.4 Implementation results for NAG inverse

Here I show the plot of the risk curve against different λ with $\alpha=0.5$ as the elastic net penalty and record the computation time for the NAG and the direct inverse:

Figure 1: Risk against λ

This method works well when λ is big and the active sets is relatively small. Meanwhile controlling the γ and ϵ , it also computes faster. However, when λ approached 0, it gradually loses its power, it deviates from the leave-one-it risk curve at around the λ which gives the smallest risk.

time of NAG	time of direct inverse (no parallel)	n	p
1.07	1.30	300	600
12.72	42.73	1000	600
13.12	43.46	1000	1500

2 LiSSA for dual approach

First we rewrite the formula for alo:

$$y^{/i} = y_i - \frac{u_i}{J_{ii}}$$
$$= y_i - \frac{1}{\frac{J_{ii}}{u_i}}$$

where $\frac{J_{ii}}{u_i}$ could be written as the diagonal elements of Jdiag(1/u), also denote x_j as the j-th column of X_E and p as the dimensions of the column of X_E :

$$Jdiag(1/u) = (I + \frac{1}{2\lambda_2} X_E X_E^{\tau})^{-1} diag(1/u)$$

$$= (I + \sum_{j=1}^{p} \frac{1}{2\lambda_2} x_j x_j^{\tau})^{-1} diag(1/u)$$

$$= (\sum_{j=1}^{p} (\frac{1}{2\lambda_2} x_j x_j^{\tau} + \frac{1}{p} I))^{-1} diag(1/u)$$

$$= (\frac{1}{p} \sum_{j=1}^{p} (\frac{1}{2\lambda_2} x_j x_j^{\tau} + \frac{1}{p} I))^{-1} diag(\frac{1}{pu})$$

Given the representation of Jdiag(1/u), we could derive the **LiSSA** for it: **Initialize** S_1 and S_2

- 1. for i = 1 to S_1
- 2. initialize $A_{[i,0]} = diag(\frac{1}{pu})$
- 3. for j = 1 to S_2
- 4. sample $x_{[i,j]}$ uniformly from all columns of X_E

5.
$$A_{[i,j]} = diag(\frac{1}{pu}) + (I - \frac{1}{2\lambda_2}x_{[i,j]}x_{[i,j]}^{\tau} - \frac{1}{p}I)A_{[i,j-1]} = diag(\frac{1}{pu}) + (1 - \frac{1}{p})A_{[i,j-1]} - \frac{1}{2\lambda_2}x_{[i,j]}x_{[i,j]}^{\tau}A_{[i,j-1]}$$

- 6. end for
- 7. end for

Return
$$S = \frac{1}{S_1} \sum\limits_{i=1}^{S_1} A_{[i,S_2]}$$

Algorithm 4: LiSSA for dual formulation

Finally, we could obtain alo as $y_{alo} = y - 1/diag(A)$

3 LiSSA for Newton Step

In the following of the **LiSSA** algorithm, we denote β_E be the vector that contains the elements of β from the set E, $x_{i,E}$ be the i-th row and columns from the set E of A, A.col(i) be the i-th column of A, and A.row(i) be the i-th row of A. First let's recall the one-step Newton method for obtaining the alo and denoting E as the active set:

$$\beta^{/i} = \hat{\beta} - [\sum\limits_{j \neq i} x_j x_j^{\tau} + \nabla^2 R(\beta)]^{-1} (y_i - x_i^{\tau} \hat{\beta}) x_i$$

Heuristically, I replace the Newton step by only updating the coefficients of the active set, thus:

$$\beta_E^{/i} = \hat{\beta}_E - \left[\sum_{j \neq i} x_{j,E} x_{j,E}^{\tau} + 2\lambda_2 I \right]^{-1} (y_i - x_{i,E}^{\tau} \hat{\beta}_E) x_{i,E}$$

Given the Hessian and gradient of the Newton Step, we derive the LiSSA algorithm as:

Initialize S_1 and S_2 Initialize $g = [-\frac{1}{n-1}X_E^{\tau}(X_E\beta_E - y)] \bigotimes \mathbf{1}^{\tau}$

- 1. for i = 1 to S_1
- 2. $A_{[i,0]} = g$
- 3. for j = 1 to S_2
- 4. sample x_k uniformly from all rows of X_E
- 5. v = A.col(k)
- 6. $A_{[i,j]} = g + (1-2\lambda_2)A_{[i,j-1]} x_k x_k^{\tau} A_{[i,j-1]}$
- 7. A.col(k) = v

Return $S=\frac{1}{S_1}\sum\limits_{i=1}^{S_1}A_{[i,S_2]}$ Algorithm 5: LiSSA for Newton Step

Furthermore, to finally obtain the alo, let $B = \beta_E \bigotimes \mathbf{1}^{\tau} - S$, we could obtain the alo prediction for the i-th sample as $y^{i} = x_{i,E}B.col(i)$