Car Price Prediction With Machine Learning

Import important Libraries and Dataset

```
In [1]:
import warnings
In [2]:
warnings.filterwarnings('ignore')

In [3]:
import pandas as pd

In [4]:
data = pd.read_csv("C:\\Users\\91989\\Downloads\\raw.githubusercontent.com_amankharwal_Website-data_master_CarPrice.csv"

In [5]:
data
Out[5]:
```

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 engines
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front	109.1	
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front	109.1	
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front	109.1	
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	front	109.1	
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	front	109.1	
205 r	rows × 2	6 columns									

Top 5 Rows of the Dataset

```
In [6]:
```

data.head()

Out[6]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesiz
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	 130
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	 130
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	 15:
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	 10!
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	 130
5 r	ows × 2	6 columns									
4											•

Last 5 Rows of the Dataset

In [7]:

data.tail()

Out[7]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesize
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front	109.1	 141
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front	109.1	 141
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front	109.1	 173
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	front	109.1	 145
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	front	109.1	 141

5 rows × 26 columns

In [8]:

data.shape

Out[8]:

(205, 26)

In [9]:

```
print("Number of rows",data.shape[0])
print("Number of columns",data.shape[1])
```

Number of rows 205 Number of columns 26

```
In [10]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
     Column
                       Non-Null Count Dtype
     car_ID
0
                       205 non-null
                                       int64
     symboling
 1
                       205 non-null
                                       int64
 2
     CarName
                       205 non-null
                                       object
     fueltype
                       205 non-null
                                       object
 3
                       205 non-null
 4
     aspiration
                                       object
 5
                       205 non-null
     doornumber
                                       object
                       205 non-null
 6
     carbody
                                       object
     drivewheel
                       205 non-null
                                       object
 8
                       205 non-null
     enginelocation
                                       object
 9
     wheelbase
                       205 non-null
                                       float64
 10
                       205 non-null
                                       float64
    carlength
 11
    carwidth
                       205 non-null
                                       float64
                       205 non-null
                                       float64
 12
    carheight
 13
     curbweight
                       205 non-null
                                       int64
                       205 non-null
 14
    enginetype
                                       object
                       205 non-null
 15
     cylindernumber
                                       object
 16
     enginesize
                       205 non-null
                                       int64
     fuelsystem
                       205 non-null
                                       object
 17
    boreratio
                       205 non-null
                                       float64
 18
 19
    stroke
                       205 non-null
                                       float64
 20
     compressionratio 205 non-null
                                       float64
                       205 non-null
                                       int64
 21
    horsepower
 22
    peakrpm
                       205 non-null
                                       int64
 23
    citympg
                       205 non-null
                                       int64
 24 highwaympg
                       205 non-null
                                       int64
 25 price
                       205 non-null
                                       float64
dtypes: float64(8), int64(8), object(10)
memory usage: 41.8+ KB
In [11]:
```

```
data.isnull().sum()
```

Out[11]:

```
car_ID
                     0
symboling
CarName
                     0
fueltype
                     0
aspiration
                     0
doornumber
                     a
carbody
                     0
drivewheel
                     0
enginelocation
                     0
wheelbase
carlength
                     0
                     0
carwidth
carheight
                     0
                     0
curbweight
enginetype
                     0
cylindernumber
                     0
                     0
enginesize
                     0
fuelsystem
                     0
boreratio
stroke
compression ratio
                     a
horsepower
                     0
peakrpm
                     a
citympg
                     0
highwaympg
                     0
price
                     0
dtype: int64
```

Get Overall Statistics of the Dataset

```
In [12]:
```

```
data.describe()
```

Out[12]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	СО
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	3.329756	3.255415	
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	0.270844	0.313597	
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	2.540000	2.070000	
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	3.150000	3.110000	
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	3.310000	3.290000	
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	3.580000	3.410000	
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	3.940000	4.170000	
4											•

Outlier Removal

In [13]:

```
import seaborn as sns
```

In [14]:

```
sns.boxplot(data['price'])
```

Out[14]:

<AxesSubplot:xlabel='price'>

In [15]:

```
sorted(data['price'],reverse=True)
Out[15]:
```

```
[45400.0,
41315.0,
40960.0,
37028.0,
36880.0,
36000.0,
35550.0,
34184.0,
34028.0,
32528.0,
31600.0,
31400.5,
30760.0,
```

28248.0, 28176.0, 25552.0.

```
In [16]:
```

```
newdata=data[~(data['price']>40000)&(data['price']<50000)]
newdata</pre>
```

Out[16]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 engines
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front	109.1	
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front	109.1	
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front	109.1	
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	front	109.1	
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	front	109.1	

202 rows × 26 columns

In [17]:

```
newdata=newdata.drop(['car_ID','symboling','aspiration','drivewheel','wheelbase','boreratio','compressionratio','stroke'
```

In [18]:

```
newdata.head()
```

Out[18]:

	CarName	fueltype	doornumber	carbody	enginelocation	enginesize	horsepower	peakrpm	citympg	highwaympg	price
0	alfa-romero giulia	gas	two	convertible	front	130	111	5000	21	27	13495.0
1	alfa-romero stelvio	gas	two	convertible	front	130	111	5000	21	27	16500.0
2	alfa-romero Quadrifoglio	gas	two	hatchback	front	152	154	5000	19	26	16500.0
3	audi 100 ls	gas	four	sedan	front	109	102	5500	24	30	13950.0
4	audi 100ls	gas	four	sedan	front	136	115	5500	18	22	17450.0

Encoding the Categorical Values

```
In [19]:
```

```
newdata['fueltype'].unique()

Out[19]:
array(['gas', 'diesel'], dtype=object)

In [20]:
newdata['fueltype']=newdata['fueltype'].map({'gas':0,'diesel':1})
```

```
In [21]:
newdata['fueltype'].unique()
Out[21]:
array([0, 1], dtype=int64)
In [22]:
newdata['doornumber'].unique()
Out[22]:
array(['two', 'four'], dtype=object)
In [23]:
newdata['doornumber']=newdata['doornumber'].map({'two':0,'four':1})
In [24]:
newdata['doornumber'].unique()
Out[24]:
array([0, 1], dtype=int64)
In [25]:
newdata['carbody'].unique()
Out[25]:
array(['convertible', 'hatchback', 'sedan', 'wagon', 'hardtop'],
      dtype=object)
In [26]:
newdata['carbody']=newdata['carbody'].map({'convertible':0,'hatchback':1,'sedan':2,'wagon':3,'hardtop':4})
In [27]:
newdata['carbody'].unique()
Out[27]:
array([0, 1, 2, 3, 4], dtype=int64)
In [28]:
newdata['enginelocation'].unique()
Out[28]:
array(['front', 'rear'], dtype=object)
In [29]:
newdata['enginelocation']=newdata['enginelocation'].map({'front':0,'rear':1})
In [30]:
newdata['enginelocation'].unique()
Out[30]:
array([0, 1], dtype=int64)
```

```
In [31]:
```

```
newdata.head()
```

Out[31]:

	CarName	fueltype	doornumber	carbody	enginelocation	enginesize	horsepower	peakrpm	citympg	highwaympg	price
0	alfa-romero giulia	0	0	0	0	130	111	5000	21	27	13495.0
1	alfa-romero stelvio	0	0	0	0	130	111	5000	21	27	16500.0
2	alfa-romero Quadrifoglio	0	0	1	0	152	154	5000	19	26	16500.0
3	audi 100 ls	0	1	2	0	109	102	5500	24	30	13950.0
4	audi 100ls	0	1	2	0	136	115	5500	18	22	17450.0

Store feature matrix in X and reponse (target) in vector Y

```
In [32]:
```

```
x=newdata.drop(['CarName','price'],axis=1)
y=newdata['price']
```

```
In [33]:
```

```
x
```

Out[33]:

	fueltype	doornumber	carbody	enginelocation	enginesize	horsepower	peakrpm	citympg	highwaympg
0	0	0	0	0	130	111	5000	21	27
1	0	0	0	0	130	111	5000	21	27
2	0	0	1	0	152	154	5000	19	26
3	0	1	2	0	109	102	5500	24	30
4	0	1	2	0	136	115	5500	18	22
200	0	1	2	0	141	114	5400	23	28
201	0	1	2	0	141	160	5300	19	25
202	0	1	2	0	173	134	5500	18	23
203	1	1	2	0	145	106	4800	26	27
204	0	1	2	0	141	114	5400	19	25

202 rows × 9 columns

```
In [34]:
```

```
y ....
```

```
Out[34]:
```

```
13495.0
       16500.0
1
       16500.0
3
       13950.0
4
       17450.0
       16845.0
200
201
       19045.0
       21485.0
202
203
       22470.0
204
       22625.0
Name: price, Length: 202, dtype: float64
```

Splitting Dataset into the Training set and Test set

```
In [35]:
```

```
from sklearn.model_selection import train_test_split
```

In [36]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=42)
```

In [37]:

```
newdata.head()
```

Out[37]:

	CarName	fueltype	doornumber	carbody	enginelocation	enginesize	horsepower	peakrpm	citympg	highwaympg	price
0	alfa-romero giulia	0	0	0	0	130	111	5000	21	27	13495.0
1	alfa-romero stelvio	0	0	0	0	130	111	5000	21	27	16500.0
2	alfa-romero Quadrifoglio	0	0	1	0	152	154	5000	19	26	16500.0
3	audi 100 ls	0	1	2	0	109	102	5500	24	30	13950.0
4	audi 100ls	0	1	2	0	136	115	5500	18	22	17450.0

Import the Models

In [38]:

```
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from xgboost import XGBRegressor
```

Model Training

In [39]:

```
lr = LinearRegression()
lr.fit(x_train,y_train)

rf = RandomForestRegressor()
rf.fit(x_train,y_train)

xgb = GradientBoostingRegressor()
xgb.fit(x_train,y_train)

xg = XGBRegressor()
xg.fit(x_train,y_train)
```

Out[39]:

```
XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...)
```

Prediction on Test data

```
In [40]:
```

```
y_pred1=lr.predict(x_test)
y_pred2=rf.predict(x_test)
y_pred3=xgb.predict(x_test)
y_pred4=xg.predict(x_test)
```

Evaluating the model

In [41]:

```
from sklearn import metrics
```

In [42]:

```
score1 = metrics.r2_score(y_test,y_pred1)
score2 = metrics.r2_score(y_test,y_pred2)
score3 = metrics.r2_score(y_test,y_pred3)
score4 = metrics.r2_score(y_test,y_pred4)
```

In [43]:

```
print(score1,score2,score3,score4)
```

 $0.8060703572204628 \ 0.870806567576798 \ 0.8642957337787818 \ 0.8077269219176914$

In [44]:

```
final_data=pd.DataFrame({'Models':['LR','RF','GBR','XG'],'R2_Score':[score1,score2,score3,score4]})
```

In [45]:

```
final_data
```

Out[45]:

	Models	R2_Score
0	LR	0.806070
1	RF	0.870807
2	GBR	0.864296
3	XG	0.807727

In [46]:

```
sns.barplot(final_data['Models'],final_data['R2_Score'])
```

Out[46]:

```
<AxesSubplot:xlabel='Models', ylabel='R2_Score'>
```


Save the Model

```
In [47]:

xgb = GradientBoostingRegressor()

XGB_Final=xgb.fit(x,y)

In [48]:

import joblib

In [49]:

joblib.dump(XGB_Final, 'car_price_predictor')

Out[49]:
['car_price_predictor']

In [50]:

Model = joblib.load('car_price_predictor')

Prediction on new data

In [51]:
```

```
import pandas as pd
data_new = pd.DataFrame({
    'fueltype':1,
    'doornumber':1,
    'carbody':3,
    'enginelocation':0,
    'enginesize':130,
    'horsepower':200,
    'peakrpm':5000,
    'citympg':20,
    'highwaympg':27,
},index=[0])
```

```
In [52]:
Model.predict(data_new)
Out[52]:
array([19452.31017606])
In [ ]:
```