Solution of Tutorial Problems set-I

Note: All these problems can be solved using the results of Chapter-I.

- [0.0.1] Exercise Check that each of the following sets are vector space with respect to usual addition and scalar multiplication.
- (i) The set of all real sequences over the field $\mathbb{F} = \mathbb{R}$.
- (ii) The set of all bounded real sequences over the filed \mathbb{R} .
- (iii) The set of all convergent real sequences over the field \mathbb{R} .
- (iv) $\{(a_n) \mid a_n \in \mathbb{R}, a_n \to 0\}$ over the field \mathbb{R} .
- (v) The set of all **eventually** 0 sequences over the field \mathbb{R} . We call (x_n) eventually 0 if $\exists k \text{ s.t. } x_n = 0$ for all $n \geq k$.
- (vi) $\mathbb{P}(x) = \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ over the field \mathbb{R} .
- (vii) $\mathbb{P}_5(x) = \{p(x) \in \mathbb{R}[x] \mid \text{degree of } p(x) \leq 5\}$ over the field \mathbb{R} .
- (viii) $\{A_{n\times n} \mid a_{ij} \in \mathbb{R}, A \text{ upper triangular}\}\$ over the field \mathbb{R} .
- [0.0.2] *Exercise* Consider $\mathbb{P}_n(x)$ and $\mathbb{P}(x)$ over \mathbb{R} . Check that each of the following sets is subspace or not.
- (i) $\{P(x) \in \mathbb{P}_3(x) \mid P(x) = ax + b, a, b \in \mathbb{R}\}.$
- (ii) $\{P(x) \in \mathbb{P} \mid P(0) = 0\}.$
- (iii) $\{P(x) \in \mathbb{P} \mid P(0) = 1\}.$
- (iv) $\{P(x) \in \mathbb{P} \mid P(-x) = P(x)\}.$
- (v) $\{P(x) \in \mathbb{P} \mid P(-x) = -P(x)\}.$
- [0.0.3] Exercise Fix $A \in \mathcal{M}_n(\mathbb{R})$. Let $\mathbb{U} = \{B \in \mathcal{M}_n(\mathbb{R}) : AB = BA\}$.
- a) Show that \mathbb{U} is a subspace of $\mathcal{M}_n(\mathbb{R})$.
- b) Let $\mathbb{W} = \{a_0I + a_1A + \cdots + a_nA^m | m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}, a_i \in \mathbb{R}\}$. Show that \mathbb{W} is a subspace of \mathbb{U} .
 - **Sol.** a) Let $B, C \in \mathbb{U}$ and $\alpha, \beta \in \mathbb{R}$. To show that $\alpha B + \beta C \in \mathbb{U}$. $A[\alpha B + \beta C] = \alpha AB + \beta AC = \alpha BA + \beta CA = [\alpha B + \beta C]A$. Therefore $\alpha B + \beta C \in \mathbb{U}$. So \mathbb{U} is a subspace.
 - b) Note that if r(A) is any polynomial, then Ar(A) = r(A)A. Hence $r(A) \in \mathbb{U}$. Thus $\mathbb{W} \subseteq \mathbb{U}$. Let p(A) and q(A) be two polynomials in A. Then $\alpha p(A) + \beta q(A)$ is also polynomial in A. So $\alpha p(A) + \beta q(A) \in \mathbb{W}$. So \mathbb{W} is a subspace.
- [0.0.4] Exercise Find basis and dimension for each of the following vector spaces.
- (i) $\mathbb{M}_n(\mathbb{C})$ over \mathbb{R} .
- (ii) $\mathbb{H}_n(\mathbb{C})$, $n \times n$ Hermitian matrices, over \mathbb{R} .
- (iii) $\mathbb{S}_n(\mathbb{C})$, $n \times n$ Skew-Hermitian matrices, over \mathbb{R} .

```
Sol. (i) 2n^2.
```

- (ii) n^2 .
- $(iii)n^2$.

[0.0.5] Exercise Check whether the following vector space is finite dimensional or infinite dimensional.

- (i) The set of all real sequences over the field $\mathbb{F} = \mathbb{R}$.
- (ii) The set of all bounded real sequences over the field \mathbb{R} .
- (iii) The set of all convergent real sequences over the field \mathbb{R} .
- (iv) $\{(a_n) \mid a_n \in \mathbb{R}, a_n \to 0\}$ over the field \mathbb{R} .
- (v) The set of all **eventually** 0 sequences over the field \mathbb{R} . We call (x_n) eventually 0 if $\exists k$ s.t. $x_n = 0$ for all $n \geq k$.
- (vii) $\mathbb{P}(x) = \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ over the field \mathbb{R} .
- (viii) $\mathbb{P}_5(x) = \{p(x) \in \mathbb{R}[x] \mid \text{degree of } p(x) \leq 5\}$ over the field \mathbb{R} .

[0.0.6] *Exercise* Write 4 proper subspaces of \mathbb{R}^4 (a subspace W is called proper if neither W is trivial and nor W equal to whole vector space).

Sol. a) Put $v_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^t$. Then $LS(v_1)$ is a proper subspace.

- b) Put $v_2 = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^t$. Then $LS(v_1, v_2)$ is a proper subspace.
- c) Put $v_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^t$. Then LS (v_1, v_2, v_3) is a proper subspace.

Therefore LS v_1 , LS v_2 , LS v_3 , LS (v_1, v_2) , LS (v_1, v_2, v_3) are proper subspace of \mathbb{R}^3 . There are many proper subspace of \mathbb{R}^3 .

The following is an extra information:

Claim Any proper subspace of \mathbb{R}^4 must be a span of either a) one nonzero vector or b) two linearly independent vectors or c) three linearly independent vectors. Why?

Let \mathbb{W} be a nontrivial subspace. So \exists a nonzero $v_1 \in \mathbb{W}$. If $\mathbb{W} = LS(v_1)$, it is of type a) and we are done. So let $v_2 \in \mathbb{W} - LS(v_1)$. By our theorem, v_1, v_2 are linearly independent. If $\mathbb{W} = LS(v_1, v_2)$, it is of type b) and we are done. So let $v_3 \in \mathbb{W} - LS(v_1, v_2)$. By our theorem, v_1, v_2, v_3 are linearly independent. If $\mathbb{W} = LS(v_1, v_2, v_3)$, it is of type c) and we are done. So let $v_4 \in \mathbb{W} - LS(v_1, v_2, v_3)$. By our theorem, v_1, v_2, v_3, v_4 are linearly independent. Then $LS(v_1, v_2, v_3, v_4) = \mathbb{R}^4$. Hence W is

[0.0.7] *Exercise* Show that $u_1, \dots, u_k \in \mathbb{R}^n$ are linearly independent iff Au_1, \dots, Au_k are linearly independent for any invertible A_n .

Sol. First we assume that Au_1, \dots, Au_k are linearly independent. To show $u_1, \dots, u_k \in \mathbb{R}^n$ are linearly independent.

Suppose u_1, \dots, u_n are linearly dependent. Then there exits $\alpha_1, \dots, \alpha_k$ in \mathbb{F} not all zero s.t. $\sum \alpha_i u_i = 0$. Multiplying both side by A. So $A \sum \alpha_i u_i = \sum \alpha_i (Au_i) = 0$. So Au_1, \dots, Au_n are linearly dependent. A contradiction because Au_1, \dots, Au_k are linearly independent. Hence $u_1, \dots, u_k \in \mathbb{R}^n$ are LI.

We now assume that $u_1, \dots, u_k \in \mathbb{R}^n$ are linearly independent. To show Au_1, \dots, Au_k are linearly independent.

Suppose Au_1, \dots, Au_n are linearly dependent. Then $\exists \alpha \neq 0$ s.t. $\sum \alpha_i(Au_i) = 0$. So $0 = \sum \alpha_i(Au_i) = A \sum \alpha_i u_i$. So $A^{-1}0 = A^{-1}A \sum \alpha_i u_i = \sum \alpha_i u_i$. So u_1, \dots, u_n are linearly dependent. A contradiction because $u_1, \dots, u_k \in \mathbb{R}^n$ are linearly independent. Hence Au_1, \dots, Au_k are LI.

[0.0.8] Exercise Show that $u_1, \dots, u_k \in \mathbb{V}$ is linearly independent iff $\sum_{i=1}^k a_{i1}u_i, \dots, \sum_{i=1}^k a_{ik}u_i$ are linearly independent for any invertible $A_{k\times k}$. Show that $\{u,v\}$ is linearly independent iff $\{u+v,u-v\}$ is linearly independent.

Sol. We first assume that u_1, \ldots, u_k are LI.

Put
$$w_r = \sum_{i=1}^k a_{ir} u_i$$
.

Then
$$\begin{bmatrix} w_1 \\ \vdots \\ w_r \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{k1} \\ \vdots & & \vdots \\ a_{1k} & \cdots & a_{kk} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix} = A^t \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix}$$
. To show that w_1, \dots, w_k are LI.

Suppose w_1, \ldots, w_k are linearly dependent. Then exist $\alpha_1, \ldots, \alpha_k$ not all zero s.t.

$$\begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix} = 0.$$
 So

$$0 = \begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{k1} \\ \vdots & & \vdots \\ a_{1k} & \cdots & a_{kk} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix} = \begin{bmatrix} \beta_1 & \cdots & \beta_k \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix},$$

where $\begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} A^t = \begin{bmatrix} \beta_1 & \cdots & \beta_k \end{bmatrix} \neq 0$. Thus u_1, \dots, u_k are linearly dependent.

We now assume that w_1, \ldots, w_k are LI. To show that u_1, \ldots, u_k are LI.

Suppose u_1, \ldots, u_k are LD. There there exists $c_1, \ldots, c_k \in \mathbb{F}$ not all zero such that $c_1u_1 + c_2u_2 + \cdots + c_ku_k = 0$.

Multiplying both side by A^t . $A^t(c_1u_1 + c_2u_2 + \cdots + c_ku_k) = 0$

$$\begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{k1} \\ \vdots & & \vdots \\ a_{1k} & \cdots & a_{kk} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix} = 0.$$
$$\begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} \begin{bmatrix} \sum_{i=1}^k a_{i1} u_i \\ \vdots \\ \sum_{i=1}^k a_{ik} u_i \end{bmatrix} = 0.$$

This implies that $\sum_{i=1}^k a_{i1}u_i$, $\sum_{i=1}^k a_{i2}u_i$, ..., $\sum_{i=1}^k a_{ik}u_i$ are LI. A contradiction. Hence u_1 ..., u_k are LI.

[0.0.9] *Exercise* Let \mathbb{V} be a vector space over \mathbb{F} . Let A and B be two non-empty subsets of \mathbb{V} . Prove or disprove: $LS(A) \cap LS(B) \neq \{0\} \implies A \cap B \neq \emptyset$.

Sol. Disprove. Consider \mathbb{R}^2 and $A = \{(1,0),(0,1)\}$ and $B = \{(1,2),(2,1)\}$. Notice that $Ls(A) = \mathbb{R}^2$ and $Ls(B) = \mathbb{R}^2$. Hence $Ls(A) \cap Ls(B) \neq \{0\}$. But $A \cap B = \phi$

[0.0.10] *Exercise* Show that a vector space \mathbb{V} over \mathbb{F} has a unique basis if and only if either DIM (\mathbb{V}) = 0 or DIM (\mathbb{V}) = 1 and $|\mathbb{F}|$ = 2.

Sol. First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either V is trivial or non-trivial.

Case I. If V is trivial, then we are done.

Case II. \mathbb{V} is non-trivial. First we show that $\dim \mathbb{V} = 1$. Suppose that $\dim \mathbb{V} \geq 2$. There are two cases.

Case II(a). \mathbb{V} is finite dimensional. Let $\{x_1,\ldots,x_k\}$ be a basis of \mathbb{V} where $k\geq 2$.

Consider $B = \{x_1, x_2, \dots, x_i, \dots, x_{j-1}, x_j + x_i, x_{j+1}, \dots, x_k\}$. To show that B is also a basis of \mathbb{V} . Using Problem 0.0.8 in tutorial sheet, you can easily show that B is LI. Since B is LI and $|B| = \text{DIM}(\mathbb{V})$. Hence B is basis. A contradiction that \mathbb{V} has unique basis. Hence $\text{DIM}(\mathbb{V}) = 1$.

Case II(b). \mathbb{V} is infinite dimensional. Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set. Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space. But $x_{\gamma} + x_{\beta} \notin S$ as S is LI, otherwise there is a vector $x_{\gamma} + x_{\beta}$ which is a linear combination of x_{γ} and x_{β} .

Consider
$$B = \left(\{ x_{\alpha} : \alpha \in I \} - \{ x_{\gamma} \} \right) \cup \{ x_{\gamma} + x_{\beta} \}.$$

To show that B is a basis of \mathbb{V} . Let A be a finite subset of B. There are two cases.

Case I. $A = \{x_{\alpha_1}, x_{\alpha_2}, \dots, x_{\alpha_k}\}$ that means $x_{\gamma} + x_{\beta}$ is not in A. Therefore $A \subseteq S$. Since S is LI, then A is LI.

Case II. $A = \{x_{\alpha_1}, x_{\alpha_2}, \dots, x_{\gamma} + x_{\beta}, \dots, x_{\alpha_k}\}$. Then applying the same techniques as of finite case, we have A is LI. Therefore each finite subset of B is LI. Hence B is LI.

To show $LS(B) = \mathbb{V}$. It is enough to show LS(B) = LS(S). $B - \{x_{\gamma} + x_{\beta}\} = S - \{x_{\gamma}\}$ and you know that $x_{\gamma} + x_{\beta}$ is in B. Using this you can easily show that LS(B) = LS(S).

Hence B is a basis of V. Therefore V has two basis a contradiction. Hence DIM (V) = 1.

We now show that $|\mathbb{F}| = 2$. Suppose that $|\mathbb{F}| > 2$. Then |F| has at least one element which is other than additive identity and multiplicative identity. Let $\{x\}$ be a basis of \mathbb{V} and let $\alpha \in \mathbb{F}$ such that α is neither 0 nor 1. Then $\{x\}$ and $\{\alpha x\}$ both are basis of \mathbb{V} . A contradiction that \mathbb{V} has unique basis. Hence $|\mathbb{F}| = 2$.

Assume that either $DIM(\mathbb{V}) = 0$ or $DIM(\mathbb{V}) = 1$ and $|\mathbb{F}| = 2$. If $DIM(\mathbb{V}) = 0$, then $\mathbb{V} = \{0\}$. Hence its has unique basis.

If DIM (\mathbb{V}) = 1 and $|\mathbb{F}| = 2$. Suppose that B has two bases they are $\{x\}$ and $\{y\}$. Since $y \in \mathbb{V}$ and $\{x\}$ is basis, then $y = \alpha x$ where $\alpha \in \mathbb{F}$. Since \mathbb{F} has two elements, then $\alpha = 1$ (multiplicative identity). Therefore y = 1(x) = x. Hence \mathbb{V} has unique basis.

[0.0.11] *Exercise* Let \mathbb{V} be an n dimensional vector space over \mathbb{F} and let \mathbb{F} has exactly p elements. Then show that $|\mathbb{V}| = p^n$.

Sol. Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of \mathbb{V} . Any element in \mathbb{V} can be written as a **unique** linear combination of u_1, u_2, \dots, u_n . That is $c_1u_1 + c_2u_2 + c_3u_3 + \dots + c_nu_n$ where $c_i \in \mathbb{F}$. For each c_i we have p choices and the choice of c_i does not depend on the choice of c_j for $i \neq j$. Hence $|\mathbb{V}| = p^n$.

[0.0.12] *Exercise* Check whether vector space \mathbb{R} (set of real numbers) over the field \mathbb{Q} (set rational number) is infinite dimensional or finite dimensional.

Sol. If we are able to show that for each $n \in \mathbb{N}$ there exists a LI subset of $\mathbb{R}(\mathbb{Q})$ containing n+1 elements. Then we are done. Let α be a transcendental number. To show that $\{1, \alpha, \alpha^2, \alpha^3, \dots, \alpha^n\}$ is LI.Take $a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n = 0$. We never have non-trivial solution of this equation

as α is transcendental. Hence $\{1, \alpha, \alpha^2, \alpha^3, \dots, \alpha^n\}$ is LI. For each n we have a LI set of n+1 vectors. Therefore $\mathbb{R}(\mathbb{Q})$ is infinite dimensional.

[0.0.13] Exercise Let
$$S = \{ \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} a \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \}$$
. Find the values of a for which $LS(S) \neq \mathbb{R}^3$.

Sol. We find the values of a for which $LS(S) = \mathbb{R}^3$. Since S contains exactly three and $DIM(S) = \mathbb{R}^3$, then S is a basis of \mathbb{R}^3 . This implies S is LI.

Consider $A = \begin{bmatrix} 4 & a & 4 \\ 5 & 2 & 3 \\ 6 & 4 & 2 \end{bmatrix}$. Since S is LI, then A is invertible. Hence $\text{DET}(A) \neq 0$ and

DET (A) = 8a. Therefore we have $8a \neq 0$. This implies $a \neq 0$.

We have seen that if $a \in \mathbb{R} - \{0\}$, then $LS(S) = \mathbb{R}^3$.

Then So LS(S) $\neq \mathbb{R}^3$ iff a = 0.

[0.0.14] Exercise Give 2 bases for the trace 0 real symmetric matrices of size 3×3 . Extend these bases to bases of the real symmetric matrices of size 3×3 . Extend these bases to bases of the real matrices of size 3×3 .

[0.0.15] *Exercise* Consider $\mathbb{W} = \{v \in \mathbb{R}^6 | v_1 + v_2 + v_3 = 0, v_2 + v_3 + v_4 = 0, v_4 + v_5 + v_6 = 0\}$. Supply a basis for \mathbb{W} and extend it to a basis of \mathbb{R}^6 .

Sol. For the system:
$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
. Get the RREF:
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
.

Free variables: v_3, v_5, v_6 . Obtain linearly independent solutions by putting a free variable 1 and other free variables 0:

$$\left\{ \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

This is a basis for \mathbb{W} . Note that e_1 cannot be a linear combination of these three vectors.!!

To extend add e_1, e_2, e_4 . These three with the first basis vector will give e_3 . Similarly..... So these 6 will span \mathbb{R}^6 . They are linearly independent.

[0.0.16] *Exercise* For what values α are the vectors $(0,1,\alpha),(\alpha,1,0)$ and $(1,\alpha,1)$ in \mathbb{R}^3 linearly independent?

[0.0.17] Exercise If S and T are two subspaces of a vector spaces having a common complement set W, does it follow that S = T?

Sol. Not necessarily. Consider $\mathbb{R}^2(\mathbb{R})$. Take $S = \{(x,0) : x \in R\}$ and $T = \{(0,y) : y \in R\}$. Consider $W = \text{LS}(\{(1,1)\})$. It is easy to check W is complement of S and T. But $S \neq T$.

[0.0.18] Exercise In the vector space \mathbb{R}^4 , find two different complements of the subspace $S = \{(x_1, x_2, x_3, x_4) : x_3 - x_4 = 0\}$

Sol. We first find a basis of W. Let $(x_1, x_2, x_3, x_4) \in \mathbb{W}$. Then $x_3 - x_4 = 0$. Therefore $(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3) = x_1(1, 0, 0, 0) + x_2(0, 1, 0, 0) + x_3(0, 0, 1, 1)$ This implies that LS($\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1)\}$). One can easily prove that $\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1)\}$ is LI. Hence $\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1)\}$ is basis of W.

We now extend $\{(1,0,0,0), (0,1,0,0), (0,0,1,1)\}$ to a basis of \mathbb{R}^4 . Take $(0,0,0,1) \in \mathbb{R}^3 - \mathbb{W}$. Using basis extension theorem $\{(1,0,0,0), (0,1,0,0), (0,0,1,1), (0,0,0,1)\}$ is LI. It has exactly four elements. Then $\{(1,0,0,0), (0,1,0,0), (0,0,1,1), (0,0,0,1)\}$ is a basis of \mathbb{R}^3 . Therefore $S_1 = LS(\{(0,0,0,1)\})$ is a complement of \mathbb{V} .

Take $(1, 1, 1, 0) \in \mathbb{R}^3 - \mathbb{W}$.

Using basis extension theorem $\{(1,0,0,0),(0,1,0,0),(0,0,1,1),(1,1,1,0)\}$ is LI. It has exactly four elements. Then $\{(1,0,0,0),(0,1,0,0),(0,0,1,1),(1,1,1,0)\}$ is a basis of \mathbb{R}^3 . Therefore $S_2 = LS(\{(1,1,1,0)\})$ is a complement of \mathbb{V} .

[0.0.19] Exercise Show that a non-trivial subspace S of a finite dimensional vector space \mathbb{V} has two virtually disjoint complements iff $\text{DIM}(S) \geq \frac{\text{DIM}(\mathbb{V})}{2}$.

Sol. We first assume that $\operatorname{DIM}(S) \geq \frac{\operatorname{DIM}(\mathbb{V})}{2}$. To show S has two virtually disjoint complements. Let $\operatorname{DIM}(\mathbb{V}) = n$ and $\operatorname{DIM}(S) = k$. Then $k \geq \frac{n}{2}$. Let $\{x_1, \ldots, x_k\}$ be a basis of S. We extend it to basis of \mathbb{V} that is $\{x_1, \ldots, x_k, x_{k+1}, \ldots, x_n\}$. Take $S_1 = \operatorname{LS}(x_{k+1}, \ldots, x_n\}$. Then S_1 is a complement of S.

Consider $\{x_1, \ldots, x_k, x_{k+1} + x_1, x_{k+2} + x_2, \ldots, x_n + x_{n-k}\}$. This is possible as $k \geq \frac{n}{2}$. To show this set is basis of \mathbb{V} . Take $S_2 = LS(\{x_{k+1} + x_1, x_{k+2} + x_2, \ldots, x_n + x_{n-k}\})$. This is also a complement of S. To show $S_1 \cap S_2 = \{0\}$.

Let $x \in S_1 \cap S_2 = \{0\}$. Then $x \in S_1$ and $x \in S_2$.

 $x = c_1 x_{k+1} + c_2 x_{k+2} + \dots + c_{n-k} x_n$ and

$$x = b_1(x_{k+1} + x_1) + b_2(x_{k+2} + x_2) + \dots + b_{n-k}(x_n + x_{n-k})$$

$$b_1x_1 + \cdots + b_{n-k}x_{n-k} + (b_1 - c_1)x_{k+1} + \cdots + (b_{n-k} - c_{n-k})x_n = 0$$

$$\{x_1, \dots, x_{n-k}, x_{k+1}, \dots, x_n\}$$
 is LI

Then
$$b_i = c_i = 0$$
 for $i = 1, \dots, n - k$. Hence $x = 0$.

We now assume that S has two virtually disjoint complements.

To show $\text{DIM}(S) \geq \frac{\text{DIM}(\mathbb{V})}{2}$. Suppose that $\text{DIM}(S) < \frac{\text{DIM}(\mathbb{V})}{2}$. Let $\text{DIM}(\mathbb{V}) = n$ and DIM(S) = k. Let S_1 and S_2 be two virtually disjoint complements. Then $\text{DIM}(S_1) = n - k = \text{DIM}(S_2)$.

$$\operatorname{DIM}(S_1 + S_2) = \operatorname{DIM}(S_1) + \operatorname{DIM}(S_2) = 2(n-k) > 2(n-\frac{n}{2}) = n$$
, a contradiction. Hence $\operatorname{DIM}(S) \geq \frac{\operatorname{DIM}(\mathbb{V})}{2}$.

[0.0.20] *Exercise* Find a complement of the subspace $\{(x_1, x_2, \dots, x_n) : \sum_{i=1}^n x_i = 0\}$ in \mathbb{R}^n .

Sol. Same as Exercise 0.0.18