

(9) BUNDESREPUBLIK
DEUTSCHLAND

_® DE 40 06 935 A 1

61 Int. Cl.⁵: B 01 J 8/24

B 01 J 2/16 F 26 B 17/00 B 01 J 37/02

DEUTSCHES PATENTAMT

2) Aktenzeichen:2) Anmeldetag:

P 40 06 935.4 6. 3. 90

10 Offenlegungsschrift

3) Offenlegungstag:

12. 9.91

(71) Anmelder:

Wacker-Chemie GmbH, 8000 München, DE

② Erfinder:

Wiemer, Hardo, Dipl.-Ing., 5000 Köln, DE; Schaloske, Gerhard, 5014 Kerpen, DE; Rummel, Wolfgang, 5024 Pulheim, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- Schüttgut
 Fließbettapparatur zum Mischen, Trocknen und Beschichten von pulvrigem, k\u00f6rnigem und geformtem Sch\u00fcttgut
- Fließbettapparatur zum Mischen, Trocknen und Beschichten von pulvrigem, körnigem und geformtem Schüttgut bestehend aus einem kugelförmigen Behälter (1), der mit seinem Behälterunterteil (3) in eine Schüssel (4) übergeht und einem Tauchrohr (6), das sich axial im Behälter (1) nach unten erstreckt und in der Schüssel (4) endet, wobei innerhalb des Behälteroberteils (14) ein ringförmiger Abweisschirm (8) am Tauchrohr (6) befestigt ist, und innerhalb des Behälterunterteils (3) ein Stützrohr (11) mit einem größeren Durchmesser als das Tauchrohr (6) konzentrisch zum Tauchrohr (6) so angeordnet ist, daß zwischen dem Übergang von dem Behälterunterteil (3) zur Schüssel (4) und zum Stützrohr (11) ein ringförmiger Durchlaß (12) und zwischen dem Abweisschirm (8) und dem Stützrohr (11) ein ringförmiger Durchlaß (13) freigelassen wird.

Beschreibung

Die Erfindung betrifft eine Fließbettapparatur zum Mischen, Trocknen und Beschichten von pulvrigem, körnigem und geformtem Schüttgut; insbesonders eine Vorrichtung und ein Verfahren zur Beschichtung von Trägerkatalysatoren, wobei die Katalysatorträger in einer Wirbelschicht fluidisiert und durch Besprühen beschichtet werden.

tur bestehend aus einem zylindrischen Behälter mit einem sich verengenden Unterteil, welches in einen kübelförmigen Abschnitt mündet. Der Behälter ist oben mit einem Deckel verschlossen, durch den ein Tauchrohr eintritt, welches bis in den Kübelabschnitt hineinragt. Im 15 Abweisschirm (8) am Tauchrohr (6) befestigt ist, und oberen Teil des Behälters wird das Tauchrohr von einer schirmförmigen Prallplatte umschlossen. Das Tauchrohr ist mit einem Mantelrohr größeren Durchmessers aber geringerer Länge umgeben, welches ebenfalls bis in den kübelförmigen Abschnitt des Behälters hinein- 20 zur Schüssel (4) und dem Stützrohr (11) ein ringförmiger ragt, aber im Abstand zum Prallschirm endet. Im Abstand zum unteren Ende des Tauchrohres ist ebenfalls eine Prallplatte angebracht.

In dieser Vorrichtung wird die durch das Tauchrohr sen und von dem Prallschirm nach außen umgelenkt. Das Schüttgut wird durch das sich verengende Unterteil des Behälters auf die untere Prallplatte bewegt und vom Luftstrom in das Mantelrohr mitgerissen.

Nachteilig bei dieser Vorrichtung ist die nur mäßige 30 Fluidisierung des Schüttguts, da nur geringe Anteile durch das Mantelrohr nach oben gefördert werden. Aufgrund der nur geringen Fluidisierung besteht auch die Gefahr der Verstopfung der unteren Mündung des Mantelrohrs. Vor allem kann es aufgrund des geringen 35 Abstands zwischen Mantelrohr-Oberkante und Prallschirm zur Beschädigung und Zerkleinerung des Schüttguts kommen.

Die EP-A 1 03 894 beschreibt eine Fließbettapparatur bestehend aus einem rotationssymmetrischen Behälter 40 mit nach unten abnehmendem Durchmesser, dessen Unterteil in eine Schüssel einmündet. Von oben her ragt axial ein Tauchrohr bis in die Schüssel hinab, so daß zwischen Tauchrohr und Schüsselwand ein enger Ringraum gebildet wird. Am oberen Drittel des Tauchrohrs 45 gemäßen Vorrichtung auch mit reduzierter Fördergasist ein Abweisschirm angeordnet.

In dieser Fließbettapparatur reißt der aus dem Ringraum nach oben in den Behälter austretende Gasstrom das Gut rings um das Tauchrohr nach oben mit; das Gut wird vom Abweisschirm nach außen umgelenkt und ge- 50 ordnung enthalten. Allein durch die reduzierte Förderlangt langs der nach unten konvergierenden Innenwand des Behalterunterteils wieder in die Nähe der Schüssel, von wo aus das Gut erneut rings um das Tauchrohr nach oben mitgerissen wird. Daraus ergibt sich eine gleichmäßige Umwälzung des im Behälter enthaltenen Gutes. 55 Diese Umwälzung nimmt bei ausreichender Strömungsgeschwindigkeit des Gases sogar die Form einer vollständigen Fluidisierung des Gutes an.

Von Nachteil ist bei dieser Art der Fluidisierung, daß ein erheblicher Teil der Bewegungsenergie des Gasstro- 60 mes für die Überwindung von Reibungskräften zwischen am Tauchrohr aufwärts steigendem Gutsstrom und seitlich einfließendem Schüttgut verwendet werden muß. Bei größeren Apparaten und Schütthöhen und bei stoßempfindlichem Gut, wie zum Beispiel Keramikrin- 65 gen, führt dies zu einem unerwünschtem Bruchanteil. Des weiteren wird bei der gegenseitigen Reibung der Teilchen der Abrieb erhöht; dieser kann bei der Be-

schichtung im Gemisch mit einem flüssigen Sprühmittel zu unerwünschten Anbackungen an den Teilchen beziehungsweise an der Vorrichtung führen.

Aufgabe der Erfindung war es eine Fließbettappara-5 tur zur Verfügung zu stellen, mit der die obengenannten Nachteile vermieden werden.

Gegenstand der Erfindung ist eine Fließbettapparatur zum Mischen, Trocknen und Beschichten von pulvrigem, körnigem und geformtem Schüttgut bestehend aus Die DE-PS 8 72 928 beschreibt eine Fließbettappara- 10 einem kugelförmigen Behälter (1), der mit seinem Behälterunterteil (3) in eine Schüssel (4) übergeht und einem Tauchrohr (6), das sich axial im Behälter (1) nach unten erstreckt und in der Schüssel (4) endet, wobei innerhalb des Behälteroberteils (14) ein ringförmiger innerhalb des Behälterunterteils (3) ein Stützrohr (11) mit einem größeren Durchmesser als das Tauchrohr (6) konzentrisch zum Tauchrohr (6) so angeordnet ist, daß zwischen dem Übergang von dem Behälterunterteil (3) Durchlaß (12) und zwischen dem Abweisschirm (8) und dem Stützrohr (11) ein ringförmiger Durchlaß (13) freigelassen wird.

Mit der erfindungsgemäßen Vorrichtung wird ereingeblasene Luft im Mantelrohr nach oben ausgebla- 25 reicht, daß das fluidisierte Gut mit dem durch das Tauchrohr (6) eingeführten Gasstrahl zwischen dem Stützrohr (11) und dem Tauchrohr (6) aufwärts gefördert wird, bis es vom Abweisschirm (8) umgelenkt wird. während das Schüttgut, das sich im Raum zwischen Stützrohr (11) und Behälterwand befindet, durch die Schwerkraft in den ringförmigen Durchlaß (12) zwischen dem unteren Rand des Stützrohres (11) und dem Behälterunterteil (3) wandert, um dort erneut durch den Gasstrom fluidisiert und aufwärts gefördert zu werden.

Durch die Trennung des abwärts bewegten Schüttguts vom fluidisierten, aufwärts geförderten Partikelanteil mittels des Stützrohres (11) innerhalb des Behälterunterteils (3) wird eine wesentliche Verminderung der Reib- und Stoßkräfte der Partikel erreicht; mit dem Ergebnis, daß die Umwälzung des Gutes bei ansonsten identischer Vorgehensweise, mit dem erfindungsgemäßen Stützrohr wesentlich schneller, gründlicher und schonender erfolgt als ohne das Stützrohr.

In völlig unerwarteter Weise kann mit der erfindungsmenge, unter wesentlich schonenderen Bedingungen, eine ausreichende Fluidisierung mit geringeren Bruchanteilen erreicht werden, im Vergleich mit Vorrichtungen. die kein Stützrohr (11) mit der erfindungsgemäßen Angasmenge können erhebliche Energiekosten eingespart werden.

Eine spezielle Ausführungsform der erfindungsgemä-Ben Vorrichtung ist in der Abbildung Fig. 1 dargestellt:

Die Fließbettapparatur besteht aus einem kugelförmigen Behälter (1) und ist in Bezug auf eine senkrechte Behälterachse (2) rotationssymmetrisch. Der Behälter (1) ist aus einem Behälteroberteil (14) und einem Behälterunterteil (3) aufgebaut, welche jeweils die Form einer Kugelschalenzone haben, und vorzugsweise aus Glas oder Stahl hergestellt sind und dichtend aneinanderliegende Flansche (15) und (16) aufweisen.

An das Behälteroberteil (14) schließt sich nach oben hin ein Behälteraufsatz (17) an, während das Behälterunterteil (3) nach unten hin in eine Schüssel (4) übergeht. Am Behälteraufsatz (17) und an der Schüssel (4) sind je zwei Bügel (18) und (19) befestigt, die miteinander verspannt sind, beispielsweise durch übliche Übertotpunkt-

verschlüsse oder ähnliche Schnellverschlüsse, die es ermöglichen, die Behälterteile (3) und (14) zum Reinigen rasch auseinanderzunehmen. Dabei bleibt entweder das Behälteroberteil (14) über den Behälteraufsatz (17), oder das Behälterunterteil (3) über die Schüssel (4), an einer nicht dargestellten Tragkonstruktion beliebiger Art abgestützt.

Die Schüssel (4) hat einen erweiterten oberen Bereich (20), in dem mehrere nach oben gerichtete und leicht disierten Gutes (10) angeordnet sind. An den oberen Randbereich (20) der Schüssel (4) schließt sich nach unten hin eine zylindrische Wand (5) an; auf diese folgt weiter unten ein Umlenkbereich, der teilweise von einem höhenverstellbaren Verschlußkörper (22) gebildet 15 wird. Der Verschlußkörper (22) ist wie die Schüssel (4) insgesamt rotationssymmetrisch und hat eine axial nach oben gerichtete Spitze. In der Abbildung ist der Verschlußkörper (22) mit vollen Linien in seiner Betriebsstellung gezeichnet, in der er die Schüssel (4) nach unten 20 hin dicht abschließt. Aus dieser Stellung läßt sich der Verschlußkörper (22) in eine mit gestrichelten Linien angedeutete Öffnungstellung anheben, in der das nicht fluidisierte Gut (9) durch die Schüssel (4) hindurch nach unten abfließen kann.

Durch den Behälteraufsatz (17) hindurch ist ein Tauchrohr (6) bogenförmig nach innen geführt, das sich dann axial im Behälter (1) nach unten erstreckt, kurz vor dem Boden der Schüssel (4) endet, vorzugsweise ist der maximale Bodenabstand gleich dem Radius des Tauch- 30 rohres (6), und zusammen mit deren zylindrischer Wand (22) einen zylindrischen Ringraum (7) begrenzt. Das äu-Bere Ende des Tauchrohres (6) läßt sich an die Druckseite eines Gebläses anschließen, das Luft oder ein anderes Gas durch die Apparatur hindurchfördert. Das Gebläse 35 gehört nicht zu der Wirbelschichtapparatur selbst, kann von üblicher Bauart sein und ist deshalb in der Abbildung nicht dargestellt.

Innerhalb des Behälteroberteils (14) ist am Tauchrohr (6) ein ringförmiger Abweisschirm (8) befestigt, dessen 40 Rand in einer zur Behälterachse (2) normalen, im dargestellten Beispiel also waagrechten Ebene liegt und zwischen sich und der Innenwand des Behälters (1) einen ringförmigen Durchlaß (23) frei läßt, so daß das Gas am Abweisschirm (8) vorbei nach oben in den Behälterauf- 45 satz (17) strömen kann, der an der Saugseite eines Gebläses anschließbar ist.

Innerhalb des Behälterunterteils (3) ist konzentrisch zum Tauchrohr (6) ein Stützrohr (11) mittels mehrerer Rippen (24) am Tauchrohr (6) befestigt. Wahlweise kann 50 das Stützrohr (11) auch an der Behälterwand (1) befestigt sein. Das Stützrohr (11) besitzt einen größeren Durchmesser als das Tauchrohr (6), vorzugsweise ist der Durchmesser des Stützrohres (11) gleich oder größer als der Durchmesser der Schüssel im zylindrischen Teil (5), 55 und läßt zwischen seinem unteren Rand und dem Behälterunterteil (3) einen ringförmigen Durchlaß (12) frei, so daß das Schüttgut durch Schwerkraft in den Bereich der Düsen (21) und in den Bereich zwischen Stützrohr (11) und Tauchrohr (6) gelangen kann, wo es durch Fluidisie- 60 nendurchmesser und 7 mm Länge. Die Umwälzleistung rung aufwärts gefördert wird.

Das Stützrohr (11) läßt außerdem zwischen seinem oberen Rand und dem Abweisschirm (8) einen ringförmigen Durchlaß (13) frei, in dem der Förderstrom umgelenkt wird. Das Stützrohr (11) ist konisch oder zylin- 65 drisch ausgebildet, wobei ein konisches Stützrohr den größeren Durchmesser am oberen Rand aufweist, vorzugsweise ist es zylindrisch ausgebildet. Es kann zu Reinigungszwecken ausgehängt werden.

Das Stützrohr (11) ist in der Höhe verstellbar aufgehängt, wobei es so angeordnet ist, daß der obere Rand des Stützrohres (11) nicht über die Behältermittelachse (25) hinausragt und der ringförmige Durchlaß (12) mindestens die Höhe hat, die dem Abstand zwischen der Wand des Tauchrohres (6) und der Wand des Stützrohres (11) entspricht. Die Länge des Stützrohres (11) beträgt vorzugsweise zwischen einem Drittel bis zu zwei nach innen geneigte Düsen (21) zum Besprühen des flui- 10 Drittel des Abstands zwischen Schüsseloberrand (20) und der Behältermittelachse (25).

Der Behälter (1) enthält pulvriges, körniges oder geformtes Gut, das gemischt, getrocknet oder beschichtet oder einer Kombination zweier oder mehrerer dieser Vorgänge unterworfen wird. Das Gut (9) ist in der Abbildung im Zustand der nicht fluidisierten Schüttung dargestellt, während Gut (10) den fluidisierten Anteil des Guts darstellt.

Im Betrieb saugt das erwähnte Gebläse Luft oder ein inertes Gas in erwärmtem, trockenem Zustand im Sinne der Pfeile in Fig. 1 durch die dargestellte Apparatur hindurch, wobei im Innenraum des Behälters ein Druck unter Umgebungsdruck herrschen kann. Durch die Düsen (21) werden gleichzeitig oder abwechselnd feste, pulverförmige oder flüssige Stoffe eingesprüht. Diese Stoffe lagern sich an dem fluidisierten Gutanteil (10) an, ehe sie irgendeine Wand der Vorrichtung erreichen. Sie lagern sich deshalb weder an der Innenwand des Behälters (1) noch an das Tauchrohr (6) oder den Abweisschirm (8) oder das Stützrohr (11) an. Die dargestellte Apparatur eignet sich deshalb besonders gut zum Einsprühen von Stoffen, die sonst schwierig zu verarbeiten sind.

Besonders geeignet ist die erfindungsgemäße Vorrichtung für den Einsatz in Verfahren zur Beschichtung von Trägerkatalysatoren; beispielsweise für die Herstellung von Phthalsäureanhydrid. Herkömmliche Katalysatorträger sind als Kugeln, Zylinder, Ringe oder Säulen geformt; mit einer Korngröße (Durchmesser bzw. Länge) von 5 bis 15 mm. Gebräuchliche Materialien zur Herstellung der Träger sind Korund, Tonerde, Kieselgel oder auch Porzellan.

Zur Beschichtung wird die Schüttung der geformten Katalysatorträger mittels eines über das Tauchrohr (6) zugeführten Luftstroms, vorzugsweise mit einer Temperatur von 70 bis 130°C, fluidisiert. Die aktiven Katalysatorkomponenten werden vorzugsweise in Lösung oder Suspension, insbesonders in wäßriger Suspension, mittels der Düsen (21) auf die in Wirbelbewegung gehaltenen Katalysatorträger gesprüht, wobei beim Aufsprühen von wäßrigen Suspensionen das Wasser beim Auftreffen sofort verdampft.

Beispiel

Eine Fließbettapparatur gemäß Fig. 1 mit einem Stützrohr, das einen Innendurchmesser von 500 mm und eine Höhe von 210 mm besaß, wurde befüllt mit 150 kg Keramikringen mit 7 mm Außendurchmesser, 4 mm Inbetrug beim Durchblasen einer Gasmenge von ca. 6000 Nm³/h ca. 180 kg/Minute.

Vergleichsbeispiel

Eine Fließbettapparatur analog dem Beispiel, jedoch ohne Stützrohr, wurde analog dem Beispiel befüllt. Die Umwälzleistung betrug beim Durchblasen einer Gas-

6

5

menge von ca. 9000 Nm³/h ca. 80 kg/Minute.

Patentansprüche

1. Fließbettapparatur zum Mischen, Trocknen und 5 Beschichten von pulvrigem, körnigem und geformtem Schüttgut bestehend aus einem kugelförmigen Behälter (1), der mit seinem Behälterunterteil (3) in eine Schüssel (4) übergeht und einem Tauchrohr (6), das sich axial im Behälter (1) nach unten erstreckt 10 und in der Schüssel (4) endet, wobei innerhalb des Behälteroberteils (14) ein ringförmiger Abweisschirm (8) am Tauchrohr (6) befestigt ist, und innerhalb des Behälterunterteils (3) ein Stützrohr (11) mit einem größeren Durchmesser als das 15 Tauchrohr (6) konzentrisch zum Tauchrohr (6) so angeordnet ist, daß zwischen dem Übergang von dem Behälterunterteil (3) zur Schüssel (4) und dem Stützrohr (11) ein ringförmiger Durchlaß (12) und zwischen dem Ab- 20 weisschirm (8) und dem Stützrohr (11) ein ringförmiger Durchlaß (13) freigelassen wird. 2. Fließbettapparatur nach Anspruch 1, dadurch gekennzeichnet, daß der Durchmesser des Stützrohres (11) gleich oder größer ist, als der Durchmesser 25 der Schüssel im zylindrischen Teil (5). 3. Fließbettapparatur nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der obere Rand des Stützrohres (11) nicht über die Behältermittelachse (25) hinausragt und der ringförmige Durchlaß (12) 30 mindestens die Höhe hat, die dem Abstand zwischen der Wand des Tauchrohres (6) und der Wand des Stützrohres (11) entspricht. 4. Fließbettapparatur nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Länge des Stütz- 35 rohres (11) zwischen einem Drittel bis zu zwei Drittel des Abstands zwischen Schüsseloberrand (20) und der Behältermittelachse (25) beträgt. 5. Verfahren zur Beschichtung von Trägerkatalysatoren unter Verwendung einer Fließbettapparatur 40 gemäß den obengenannten Ansprüchen, wobei die

siert und durch Besprühen beschichtet werden.

Hierzu 1 Seite(n) Zeichnungen

Katalysatorträger in der Fließbettapparatur fluidi-

50

45

55

60

Nummer: Int. Cl.⁵:

DE 40 06 935 A1 B 01 J 8/24

Offenlegungstag: 12. September 1991

Fig.1