Measure Theory Notes

Parker Knight

May 12, 2021

Contents

1	Introduction 1.1 Background	2
2	σ -Algebras and Measurable Functions 2.1 σ -Algebras	3
3	Measures	3
4	The Lebesgue Integral	3

1 Introduction

This document contains a collection of notes on measures and integrals, mostly inspired by the text *Elements of Integration* by Bartle. This is primarily a learning tool for myself; I'm currently learning this material in preparation for my PhD program which begins this fall.

In this section I provide some background definitions which may be referenced throughout the notes.

1.1 Background

2 σ -Algebras and Measurable Functions

Loosely speaking, a measure is a nonnegative, countably additive real-valued function defined on a collection of well-behaved sets. Before we can give a more rigorous definition of a measure, we need to examine what is precisely meant by well-behaved. This section explores the concept of the σ -algebra, a collection of sets which holds certain properties required for the formal definition of measure. I will also discuss measurable functions, and give examples of both.

2.1 σ -Algebras

Definition 2.1 (σ -algebra). Let X be any set, and let Σ be a collection of subsets of X. We say that Σ is a σ -algebra if:

- 1. $\emptyset, X \in \Sigma$
- 2. If $A \in \Sigma$, then $A^c \in \Sigma$
- 3. If (A_n) is a sequence of sets in Σ , then $\bigcup A_n \in \Sigma$

Defintion 2.1 states that a σ -algebra is closed under taking complements and unions. It follows by De Morgan's laws that every σ -algebra is also closed under taking intersections. Below provides some simple examples.

Example 2.2. If X is any set, then $\Sigma = \{X, \emptyset\}$ is the trivial σ -algebra.

Example 2.3. For any X, the power set of X (the set of all subsets of X) is a σ -algebra.

Example 2.4. For any X and $A \subset X$, the set $\Sigma = \{\emptyset, A, A^c, X\}$ is a σ -algebra.

A useful result is that the intersection of two σ -algebras is itself a σ -algebra.

Proposition 2.5. Let X be an arbitrary set, and let Σ_1 and Σ_2 be σ -algebras of X. Then $\Sigma_3 = \Sigma_1 \cap \Sigma_2$ is a σ -algebra.

Proof. The proof is simple. First, we know that $\emptyset, X \in \Sigma_1$ and $\emptyset, X \in \Sigma_2$, so we have $\emptyset, X \in \Sigma_1 \cap \Sigma_2$. Now let $A \in \Sigma_1 \cap \Sigma_2$ be arbitrary. Then $A \in \Sigma_1$ and $A \in \Sigma_2$, and so we have $A^c \in \Sigma_1$ and $A^c \in \Sigma_2$ by Definition 2.1. So $A^c \in \Sigma_1 \cap \Sigma_2$. Finally, if (A_n) is a sequence in $\Sigma_1 \cap \Sigma_2$, then (A_n) is a sequence in Σ_1 and Σ_2 as well. So $\cup An \in \Sigma_1$ and $\cup An \in \Sigma_2$, so $\cup An \in \Sigma_1 \cap \Sigma_2$.

3 Measures

4 The Lebesgue Integral