PRINCIPLES OF ANALYSIS SOLUTIONS TO MIDTERM

PAUL L. BAILEY

1. Portion A - Take Home

Problem 1. (Computation) Let $p \in \mathbb{Z}$ be a positive prime integer and let

$$f(x) = x^3 - x^2 - 21x + p.$$

Suppose that f(x) has a positive rational root. Find p, and then find all roots of f(x).

Solution. By the rational roots theorem, the only possibly positive rational roots are 1 and p. Now f(1) = 1 - 1 - 21 + p, so if this equal zero, we get that p = 21, which is not prime, so this is not a possibility. Thus assume that f(p) = 0. This gives $p^3 - p^2 - 20p = 0$, so $p^2 - 1 - 20 = 0$, which factors as (p - 5)(p + 4) = 0. Thus p = 5

Divide f(x) by (x-5) to find that $f(x) = (x-5)(x^2+4x-1)$. Apply the quadratic formula to this quadratic to find that the entire solution set to the equation f(x) = 0 is

$$\{5, -2 + \sqrt{5}, -2 - \sqrt{5}\}.$$

Problem 2. (Computation)

Define a sequence in \mathbb{R} by $a_1 = 1$ and

$$a_{n+1} = \sqrt{a_n + 1}$$
.

- (a) Show that $0 < a_n < a_{n+1} < 2$ for all $n \in \mathbb{N}$.
- (b) Show that the sequence (a_n) converges.
- (c) Find $\lim a_n$.

Solution

(a) For n = 1, we have $0 < 1 < \sqrt{2} < 2$. Let n > 1 and assume that $0 < a_{n-1} < a_n < 2$. Adding 1 gives $0 < a_{n-1} + 1 < a_n + 1 < 3$. Taking the square root gives

$$0<1< a_n=\sqrt{a_{n-1}+1}<\sqrt{a_n+1}=a_{n+1}<\sqrt{3}<2.$$

- (b) By part (a), (a_n) is a bounded increasing sequence, and so it converges.
- (c) Let $L = \lim a_n$. Then $L \ge 0$, and $L = \sqrt{L+1}$, so $L^2 L 1 = 0$. Then only nonnegative root to this quadratic is $L = \frac{1+\sqrt{5}}{2}$.

Date: November 22, 2004.

Problem 3. (Theory)

Let (X, ρ) be a metric space and let $D \subset X$. Recall that the *closure of* D, denoted by \overline{D} , is the intersection of all closed subsets of X which contain D. Set

$$A = \{x \in X \mid x \text{ is an accumulation point of } D\};$$

$$B = \{x \in X \mid x \text{ is an isolated point of } D\};$$

Show that

- (a) A is closed;
- **(b)** $A \cap B = \emptyset$;
- (c) $A \cup B = \overline{D}$.

Lemma 1. Let $U, F \subset X$, with U open and F closed. Then $F \setminus U$ is closed.

Proof of Lemma. Since U is open, $X \setminus U$ is closed. Now $F \setminus U = F \cap (X \setminus U)$, which is the intersection of two closed sets, and is therefore closed.

Solution.

- (a) It suffices to show that $X \setminus A$ is open. Let $x \in X \setminus A$. Then x is not an accumulation point of D. Thus their exists a deleted open neighborhood U of x which does not intersect D. Suppose that $a \in U$ for some $a \in A$. Then U is an open neighborhood of a, and a is an accumulation point of D, so U intersects D, which it doesn't. Thus no such a exists, and U does not intersect A. This shows that every point in $X \setminus A$ has an open neighborhood contained in $X \setminus A$, so $X \setminus A$ is open. Thus A is closed.
- (b) Let $a \in A$. Then every deleted neighborhood of a intersects D. Thus a is not an isolated point of D. Therefore $A \cap B = \emptyset$.
- (c) We show that $A \cup B \subset \overline{D}$, and that $\overline{D} \subset A \cup B$.
- (\subset) Let $c \in A \cup B$. Then $c \in A$ or $c \in B$. If $c \in B$, then $c \in D$; clearly $D \subset \overline{D}$, so $c \in \overline{D}$. Thus suppose that $c \in A$, so that c is an accumulation point of D. Let F be a closed set containing D. Suppose that $c \in X \setminus F$. Now $X \setminus F$ is open, so there exists an open neighborhood U of c contained in $X \setminus F$. That is, $U \cap F = \emptyset$, and since $D \subset F$, we have $U \cap D = \emptyset$. This is impossible, since c is an accumulation point. Thus we must have $c \in F$. Since c is in every closed set that contains D, we have $c \in \overline{D}$.
- (⊃) Let $x \in X$ and suppose that $x \notin A \cup B$; we show that $x \notin \overline{D}$. Since $x \notin B$, we see that $x \notin D$. Moreover, since $x \notin A$, there exists an open neighborhood U of x such that $U \subset X \setminus D$, that is, $U \cap D = \emptyset$. Now let F be any closed set which contains D. By the lemma, $F \setminus U$ is a closed set which contains D, and $x \notin F$. Thus $x \notin \overline{D}$.

Problem 4. (Example)

If $v_1 = (x_1, y_1, z_1) \in \mathbb{R}^3$ and $v_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$, the vector sum of v_1 and v_2 is

$$v_1 + v_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

If $v = (x, y, z) \in \mathbb{R}^3$ and $a \in \mathbb{R}$, the scalar product of a and v is

$$av = (ax, ay, az),$$

The standard basis for \mathbb{R}^3 is

$${e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)}.$$

If $v = (x, y, z) \in \mathbb{R}^3$, then

$$v = xe_1 + ye_2 + ze_3.$$

The closed unit ball in \mathbb{R}^3 is the metric subspace of \mathbb{R}^3 defined by

$$\mathbb{D}^3 = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1 \}.$$

The unit sphere in \mathbb{R}^3 is the metric subspace of \mathbb{R}^3 defined by

$$\mathbb{S}^2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \}.$$

Find a subset $A \subset (\mathbb{R} \setminus \mathbb{D}^3)$ satisfying:

- (1) every point in A is isolated;
- (2) the accumulation points of A form the vertices of a regular octahedron in \mathbb{S}^2 .

Solution. Let

$$A = \left\{ \pm \left(1 - \frac{1}{n}\right)e_i \mid n \in \mathbb{N} \text{ and } i = 1, 2, 3 \right\}.$$

Department of Mathematics & CSci, Southern Arkansas University $E\text{-}mail\ address$: plbailey@saumag.edu