(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 May 2003 (01.05.2003)

PCT

(10) International Publication Number WO 03/035057 A1

- (51) International Patent Classification⁷: A61K 31/40, C07D 207/16, 277/04, 295/18, 207/10, 417/12, 401/12, 409/12, 403/12, 405/12, A61K 31/426, 31/427, 31/53, 31/54, A61P 3/10
- (21) International Application Number: PCT/GB02/04764
- (22) International Filing Date: 23 October 2002 (23.10.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0125445.7

23 October 2001 (23.10.2001) GI

- (71) Applicant (for all designated States except US): FER-RING B.V. [NL/NL]; Polaris Avenue 144, NL-2132 JX Hoofddorp (NL).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): EVANS, David, Michael [GB/GB]; 114 Adelaide Road, St. Denys,

Southampton SO17 2HX (GB). ASHWORTH, Doreen, Mary [GB/GB]; 10 The Glades, Locks Heath, Southampton SO31 6UY (GB).

- (74) Agent: BATES, Philip, Ian; Reddie & Grose, 16 Theobalds Road, London WC1X 8PL (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: INHIBITORS OF DIPEPTIDYL PEPTIDASE IV

$$G^{2}\underset{N}{\overset{G^{1}}{\longrightarrow}}\underset{N}{\overset{R^{1}}{\longrightarrow}}\underset{(CH_{2})_{b}}{\overset{(1)}{\longrightarrow}}$$

(3)

(57) Abstract: Novel compounds that are inhibitors of one or most post-proline cleaving proteases, e.g. dipeptidyl peptidase IV, according to general formula (1). R^1 is H or CN, X^1 is O, S, CH_2 , CHF, CF_2 , $CH(CH_3)$, $C(CH_3)_2$ or CH(CN), and b is 1 or 2. G^1 is H or a group according to the formula $-CH_2-(CH_2)_0-G^3$ and G^2 is H or a group according to the formula $-CH_2-(CH_2)_0-G^3$, provided that one of G^1 and G^2 is H and the other is not H. X^2 is O, S, or CH_2 , and a is 0, 1 or 2, provided that when a is 1 then X_2 is CH_2 . G^3 is a group according to one of general formulae 2-4., where the variables have meaning given in the description. The compounds are useful in the treatment of i.a. type 2 diabetes and impaired glucose tolerance.

WO 03/035057 A1

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INHIBITORS OF DIPEPTIDYL PEPTIDASE IV

The present invention relates to novel compounds that are inhibitors of post-proline aminopeptidases. The compounds are useful as antiproliferative agents and in the treatment of, *inter alia*, type 2 diabetes and impaired glucose tolerance.

BACKGROUND

The enzyme dipeptidyl peptidase IV, herein abbreviated DP-IV (and elsewhere as DAP-IV or DPP-IV) and also known by the classification EC.3.4.14.5, is a serine protease that cleaves the N-terminal dipeptide from peptides that begin with the sequence H-Xaa-Pro (where Xaa is any amino acid, although preferably a lipophilic one, and Pro is proline). It will also accept as substrates peptides that begin with the sequence H-Xaa-Ala (where Ala is alanine). DP-IV was first identified as a membrane-bound protein. More recently a soluble form has been identified.

Initial interest in DP-IV focussed on its role in the activation of T lymphocytes. DP-IV is identical to the T cell protein CD26. It was proposed that inhibitors of DP-IV would be capable of modulating T cell responsiveness, and so could be developed as novel immunomodulators. It was further suggested that CD26 was a necessary co-receptor for HIV, and thus that DP-IV inhibitors could be useful in the treatment of AIDS.

Attention was given to the role of DP-IV outside the immune system. It was recognised that DP-IV has a key role in the degradation of several peptide hormones, including growth hormone releasing hormone (GHRH) and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2). Since GLP-1 is known to have a potentiating effect on the action of insulin in the control of post-prandial blood glucose levels it is clear that DP-IV inhibitors might also be usefully employed in the treatment of type II diabetes and impaired glucose tolerance. At least two DP-IV inhibitors are currently undergoing clinical trials to explore this possibility.

Several groups have disclosed inhibitors of DP-IV. While some leads have been found from random screening programs, the majority of the work in this field has been directed towards the investigation of substrate analogues. Inhibitors of DP-IV that are substrate analogues are disclosed in, for example, US 5,462,928, US 5,543,396,

WO95/15309 (equivalent to US 5,939,560 and EP 0731789), WO98/19998 (equivalent to US 6,011,155), WO99/46272 and WO99/61431.

More recently a number of proteins have been found that share some of the enzymatic properties of DP-IV. Some, such as FAP and DPP-8, have sequence homology with DP-IV, while others, such as QPP, have no such homology but nevertheless mimic the aminodipeptidase activity of DP-IV. The physiological function of these newer proteases is still being investigated. FAP has been implicated in invasive processes such as cancer metastasis and endometriosis, and QPP appears to be involved in immune-cell apoptosis. It is also possible that some of these proteases share a common function. This redundancy would allow continuing normal physiological function in the event of a failure in the expression or function of one of the proteases.

In order to further define the roles of these newer proteases it is important to have the tools to manipulate selectively each one or the whole class. Therefore there exists a need for specific and potent inhibitors of each of these proteases, and also for potent non-specific inhibitors of the class of post-proline cleaving aminodipeptidases.

SUMMARY OF THE INVENTION

We disclose herein a series of novel compounds that are inhibitors of one or more post-proline cleaving proteases, and specifically compounds according to general formula 1.

$$G^2$$
 N
 N
 CH_2

In general formula 1, R^1 is H or CN, X^1 is O, S, CH_2 , CHF, CF_2 , $CH(CH_3)$, $C(CH_3)_2$ or CH(CN), and b is 1 or 2. G^1 is H or a group according to the formula $-CH_2-X^2-(CH_2)_a-G^3$ and G^2 is H or a group according to the formula $-CH_2-(CH_2)_a-G^3$, provided that one of G^1 and G^2 is H and the other is not H. X^2 is O, S or CH_2 , and a is **0**, 1 or 2, provided

that when a is 1 then X^2 is CH_2 . G^3 is a group according to one of general formulae 2-4.

 X^3 , X^4 and X^5 are either nitrogen N or CH, provided that at least two of X^3 , X^4 and X^5 are N. X^6 is either O or NH. R^2 is either H or alkyl. R^3 is selected from H, Cl, OH, Oalkyl, NH₂, NH-alkyl and N(alkyl)₂. R^4 , R^5 , R^6 , R^7 and R^8 are selected from H, Br, Cl, F, CF₃, alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN. X^7 is CH₂, O, S or NH. R^9 is either H or alkyl. R^{10} , R^{11} , R^{12} , R^{13} and R^{14} are selected from H, Br, Cl, F, CF₃, alkyl, acyl, OH, Oalkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN. R^{15} and R^{16} are each independently H, alkyl, alkenyl, polyfluoroalkyl, aralkyl, aryl or CH₂-L- R^{17} , where L is a covalent bond, CH=CH, C=C or C₆H₄-, and R^{17} is H, alkyl or aryl, or R^{15} and R^{16} together are a group according to one of general formulae 5-7.

$$(CH_2)_e$$
 $(CH_2)_d$ $(CH_2)_d$ $(CH_2)_d$ $(CH_2)_d$ $(CH_2)_d$ $(CH_2)_d$ $(CH_2)_d$ $(CH_2)_d$

 R^{18} is H, alkyl, aryl, OH, O-alkyl, NH₂, NH-alkyl or N(alkyl)₂, and R^{19} is H, alkyl, aryl, F, Cl, Br, CF₃, OH, O-alkyl, NH₂, NH-alkyl or N(alkyl)₂. The integers d and e are 0, 1, 2 or 3 such that d+e is 3, 4 or 5, and f is 1, 2 or 3. When R^{15} and R^{16} are both H then X^1 may not be S or CH₂ if b is 1.

Preferred compositions are inhibitors of non-membrane associated post-proline cleaving proteases. The most preferred compositions are selective for non-membrane associated proteases (e.g. for example inhibitors of one or more of QPP, DPP-8 and/or DPP-9).

DETAILED DESCRIPTION OF THE INVENTION

In a first aspect, the present invention relates to a series of novel α -amino acyl derivatives of saturated nitrogen-containing heterocycles according to general formula 1.

In general formula 1, the group R^1 is either a hydrogen atom H or a nitrile group CN. The group X^1 is selected from an oxygen atom O, a sulphur atom S, a methylene group CH_2 , a monofluoromethylene group CH_3 a difluoromethylene group CF_2 , an ethylidene group $CH(CH_3)$, a 2-propylidene group $C(CH_3)_2$ and a cyanomethylene group CH(CN). The integer b is either 1 or 2, such that the nitrogen-containing ring has 5 or 6 members.

The group G^1 is either H or a group according to the formula $-CH_2-X^2-(CH_2)_a-G^3$ and the group G^2 is either H or a group according to the formula $-CH_2-(CH_2)_a-G^3$, provided that one of G^1 and G^2 is H and the other is not H. The group X^2 is selected from O, S and CH_2 . The integer a is **0**, 1 or 2, provided that when a is 1 then X^2 is CH_2 .

The group G³ is selected from a group according to general formula 2, a group according to general formula 3 and a group according to general formula 4.

4

In general formula 2, the groups X^3 , X^4 and X^5 are selected from nitrogen N and methine CH, provided that at least two of X^3 , X^4 and X^5 are nitrogen. Preferably X^3 , X^4 and X^5 are all nitrogen. The group X^6 is selected from O and NH. R^2 is selected from H and alkyl. R^3 is selected from H, Cl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂. R^4 , R^5 , R^6 , R^7 and R^8 are independently selected from H, Br, Cl, F, CF₃, alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN.

In general formula 3, the group X^7 is selected from CH_2 , O, S and NH. R^9 is selected from H and alkyl. R^{10} , R^{11} , R^{12} , R^{13} and R^{14} are independently selected from H, Br, Cl, F, CF_3 , alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO_2 H, CO_2 -alkyl, $CONH_2$, $CONH_3$, $CONH_4$, $CON(alkyl)_2$ and CN.

In general formula 4, R^{15} and R^{16} are each independently selected from H, alkyl, alkenyl, polyfluoroalkyl, aralkyl, aryl and CH_2 -L- R^{17} , where L is selected from a covalent bond, CH=CH, C=C and $-C_6H_4$ - and R^{17} is selected from H, alkyl and aryl, or R^{15} and R^{16} together are a group selected from general formula 5, general formula 6 and general formula 7.

In these general formulae, the group R¹⁸ is selected from H, alkyl, aryl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂, and the group R¹⁹ is selected from H, alkyl, aryl, F, Cl, Br, CF₃, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂. The integers d and e are selected from 0, 1, 2 and 3 such that d+e is 3, 4 or 5, and the integer f is selected from 1, 2 and 3.

When R^{15} and R^{16} are both H then X^1 may not be S or CH_2 if b is 1.

The term alkyl, as used herein, denotes saturated hydrocarbon groups with between 1 and 10 carbon atoms, including straight-chain, branched and mono- and polycycloalkyl groups, such as methyl, ethyl, propyl, isopropyl, *n*-butyl, *tert*-butyl, cyclopentyl, cyclohexylmethyl, 2-cyclohexyl-2-propyl, bicyclo[2.2.2]octyl and the like.

The term alkenyl, as used herein, denotes monounsaturated hydrocarbon groups with between 2 and 10 carbon atoms, including straight-chain, branched and mono- and polycycloalkenyl groups, such as vinyl, allyl, methallyl, cyclohex-3-enyl and the like.

The term aryl, as used herein, denotes monocyclic and fused bicyclic aromatic groups, including carbocyclic groups, such as phenyl and naphthyl, and heteroaryl groups with up to three heteroatoms selected from nitrogen, oxygen and sulphur, such as pyrrolyl, furyl, thienyl, pyrazolyl, imidazolyl, oxazolyl, isothiazolyl, pyridyl, pyrimidinyl, indolyl, quinolinyl and the like. Unless otherwise specified, aryl groups may optionally be substituted with up to three groups independently selected from alkyl, OH, O-alkyl, Cl, F, Br, NH₂, NH-alkyl, N(alkyl)₂, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂, NO₂ and CN.

The term aralkyl, as used herein, denotes alkyl groups that are substituted by, or fused to, one or more aryl groups, including benzyl, phenethyl, indanyl, fluorenyl and the like.

The term acyl, as used herein, denotes a group selected from H-CO, alkyl-CO, aryl-CO and aralkyl-CO, including formyl, acetyl, benzoyl, phenylacetyl and the like.

The term polyfluoroalkyl, as used herein, denotes an alkyl group wherein all the hydrogen atoms on one or more of the carbon atoms are replaced by fluorine atoms, including trifluoromethyl, 2,2,2-trifluoroethyl and the like.

In one preferred embodiment of the invention R¹ is H.

In another preferred embodiment of the invention R¹ is CN.

In another preferred embodiment of the invention X¹ is CH₂.

In another preferred embodiment of the invention X^1 is S.

In another preferred embodiment of the invention b is 1.

In another preferred embodiment of the invention b is 2.

In another preferred embodiment of the invention a is 0.

In another preferred embodiment of the invention a is 0 and X2 is CH2.

In another preferred embodiment of the invention a is 1.

In another preferred embodiment of the invention a is 1 and X² is CH₂.

In another preferred embodiment of the invention a is 2 and X^2 is CH_2 .

In another preferred embodiment of the invention the compound is a compound according to general formula 8.

In another preferred embodiment of the invention the compound is a compound according to general formula 9.

$$R^{5}$$
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{5}
 R^{7}
 R^{2}
 R^{1}
 R^{1

9

In another preferred embodiment of the invention the compound is a compound according to general formula 10.

$$R^{12}$$
 R^{13}
 R^{14}
 R^{10}
 R^{14}
 R^{10}
 R^{14}
 R^{10}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{15}
 R^{14}
 R^{15}
 R

In another preferred embodiment of the invention the compound is a compound according to general formula 11.

$$R^{12}$$
 R^{13}
 R^{14}
 R^{10}
 R^{14}
 R^{10}
 R^{14}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R

In another preferred embodiment of the invention the compound is a compound according to general formula 12.

In another preferred embodiment of the invention the compound is a compound according to general formula 13.

It will be recognised that certain of the compounds within the scope of the present invention are capable of forming salts with suitable acids or bases. To the extent that such salts are pharmaceutically acceptable they are included within the scope of this invention

It will further be recognised that certain of the compounds within the scope of the present invention are capable of existing as optical isomers, such as enantiomers and diastereomers. All such optical isomers and mixtures thereof, including but not limited to racemates, are included within the scope of the invention.

The compounds of the present invention are inhibitors of post-proline cleaving proteases such as DPP-IV, QPP, FAP, DPP-8 (DPRP-1) and DPP-9 (DPRP-2). As such they may be useful in the treatment of diseases in which dysregulation of these enzymes or their endogenous substrates plays a role or the disease is ameliorated by inhibition of such enzymes. Accordingly, in further aspects, the present invention provides for the use of compounds according to the present invention in the preparation of pharmaceutical compositions, and for the use of such compositions a therapeutic agents.

Preferred compositions which are inhibitors for QPP may have $G^2=H$, b=1 or 2 and/or a=0 or 1. Further preferred compositions having b=2 include G1 groups having a=0 or 1 and X^2 is CH_2 . Further preferred compositions having b=2 have $X^1=CH_2$ or S, for example Example 38 of Table 2. Further preferred compositions having b=1 include G1 groups having a=0 or 1 and X^2 is CH_2 . Further preferred compositions having b=1 have $X^1=S$ or CH_2 or CF_2 , for example, Example 42 of Table 2.

The compounds of the present invention can be prepared by methods generally known in the art and illustrated in the following non-limiting examples.

EXAMPLES

EXAMPLE 1

(2S)-1- $[N^{\omega},N^{\omega}$ -(Dicinnamyl)-L-lysinyl]pyrrolidine-2-carbonitrile dihydrochloride

A. $(N^{\circ}-(tert-Butyloxycarbonyl)-N^{\circ}-(9-fluorenylmethyloxycarbonyl)-L-lysinyl)-L-prolinamide$

 N^{α} -(tert-Butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysine (5g, 10.7mmol) was dissolved in CH₂Cl₂ (100mL). The solution was cooled to 0°C, L-prolinamide (1.78g, 11.7mmol) and PyBOP® (6.7g, 12.8mmol) were added, and the pH adjusted to pH9 with triethylamine. After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (200mL). The solution was washed with 0.3M KHSO₄ (2 x 50mL), sat. NaHCO₃ (2 x 50mL), water (2 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 2% methanol, 98% chloroform) to give a colourless oil identified as (N^{α} -(tert-butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl)-L-prolinamide (4.05g, 7.2mmol, 67%).

B. $(2S)-1-(N^{\circ}-(tert-Butyloxycarbonyl)-N^{\circ}-(9-fluorenylmethyloxycarbonyl)-L-lysinyl)pyrrolidine-2-carbonitrile$

 $(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\alpha}-(9-fluorenylmethyloxycarbonyl)-L-lysinyl)-L-prolinamide (3.95g, 7.02mmol) was dissolved in dry THF (100mL). The solution was cooled to <math>0^{\alpha}$ C, triethylamine (1.4g, 14mmol) was added followed by the slow addition of trifluoroacetic anhydride (2.97g, 14.1mmol). The pH was adjusted to pH9 with triethylamine. After 30min the reaction mixture was diluted with ethyl acetate (100mL), washed with water (1 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo* to give an orange oil. The residue was purified by flash chromatography on silica gel (eluant: 60% pet ether, 40% ethyl acetate) to give a colourless oil identified as (2*S*)-1-(N^{α} -(tert-butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl)pyrrolidine-2-carbonitrile (3.3g, 6.11mmol, 87%).

C. (2S)-1- $(N^{\alpha}-(tert-Butyloxycarbonyl)-L-lysinyl)$ pyrrolidine-2-carbonitrile

(2S)-1- $(N^{\alpha}$ -(tert-Butyloxycarbonyl)- N^{∞} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl)-pyrrolidine-2-carbonitrile (3.1g, 5.7mmol) was dissolved in THF (80mL). Diethylamine (20mL) was added. After 2h at room temperature the solvent was removed *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a colourless oil identified as (2S)-1- $(N^{\alpha}$ -(tert-butyloxycarbonyl)-L-lysinyl)pyrrolidine-2-carbonitrile (1.63g, 5.03mmol, 89%).

D. (2S)-1-(N° -(tert-Butyloxycarbonyl)- N° , N° -(dicinnamyl)-L-lysinyl)pyrrolidine-2-carbonitrile

(2S)-1-(N^{α} -(tert-Butyloxycarbonyl)-L-lysinyl)pyrrolidine-2-carbonitrile (100mg, 0.31mmol) was dissolved in methanol (25mL). To this solution was added transcinnamaldehyde (170mg, 1.18mmol). After 30mins sodium triacetoxyborohydride After 18h at room temperature the solvent was (330mg, 1.56mmol) was added. removed in vacuo and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and The residue was purified by flash evaporated in vacuo to give a yellow oil. chromatography on silica gel (eluant: 2% methanol, 98% chloroform) to give a colourless oil identified as (2S)-1-(N^{α} -(tert-butyloxycarbonyl)- N^{α} , N^{α} -(dicinnamyl)-Llysinyl)pyrrolidine-2-carbonitrile (38mg, 0.068mmol, 11%). Further elution with 9% methanol, 90% chloroform and 1% acetic acid gave a colourless oil identified as (2S)-1- $(N^{\alpha}-(tert-butyloxycarbonyl)-N^{\alpha}-(cinnamyl)-L-lysinyl)$ pyrrolidine-2-carbonitrile 0.073mmol, 12%)

E. (2S)-1-[N^{ω} , N^{ω} -(Dicinnamy!)-L-lysinyl]pyrrolidine-2-carbonitrile dihydrochloride (2S)-1-(N^{α} -(tert-Butyloxycarbonyl)- N^{ω} , N^{ω} -(dicinnamyl)-L-lysinyl)pyrrolidine-2-carbonitrile (32mg, 0.057mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as (2S)-1-[N^{ω} , N^{ω} -(dicinnamyl)-L-lysinyl]pyrrolidine-2-carbonitrile dihydrochloride (37mg, 0.053mmol, 93%).

 $[M+H]^{+} = 457.3$

 1 H NMR (CD₃OD): δ 1.35-1.55 (2H, m), 1.75-2.00 (2H, m), 2.05-2.23 (6H, m), 3.10-3.29 (4H, m), 3.61-3.68 (2H, m), 4.00-4.03 (4H, m), 4.20-4.30 (1H, m), 4.82-4.93 (1H, m), 6.34-6.39 (2H, m), 6.94 (2H, d, J = 5.8Hz), 7.31-7.37 (6H, m), 7.39-7.53 (4H, m) ppm.

EXAMPLE 2

(2S)-1- $[N^{\circ}$ -(Cinnamyl)-L-lysinyl]pyrrolidine-2-carbonitrile dihydrochloride

A. (2S)-1-[N° -(Cinnamyl)-L-lysinyl]pyrrolidine-2-carbonitrile dihydrochloride

(2S)-1-(N^{α} -(tert-Butyloxycarbonyl)- N^{ω} -(cinnamyl)-L-lysinyl)pyrrolidine-2-carbonitrile (32mg, 0.057mmol). was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed in vacuo. The residue was lyophilised from water to give a white solid identified as (2S)-1-[N^{ω} -(cinnamyl)-L-lysinyl]pyrrolidine-2-carbonitrile dihydrochloride (37mg, 0.053mmol, 93%).

$[M+H]^{+} = 341.5$

 1 H NMR (CD₃OD): δ 1.29-1.55 (2H, m), 1.72-1.80 (2H, m), 1.90-2.11 (2H, m), 2.16-2.29 (6H, m), 3.02-3.09 (2H, m), 3.65-3.69 (2H, m), 3.78-3.82 (2H, m), 4.23-4.27 (1H, m), 4.81-4.82 (1H, m), 4.91-4.99 (1H, m), 6.21-6.32 (1H, m), 6.86 (1H, d, J=6.1Hz), 7.26-7.35 (3H, m), 7.37-7.40 (2H, m) ppm.

EXAMPLE 3

(2S)-1-[N°,N°-(Dicinnamyl)-L-ornithinyl]pyrrolidine-2-carbonitrile dihydrochloride

A. (2S)-1-(N^{α} -(tert-Butyloxycarbonyl)-L-ornithyl)pyrrolidine-2-carbonitrile

 $(2S)-1-(N^{\alpha}-(tert-Butyloxycarbonyl)-L-ornithyl)$ pyrrolidine-2-carbonitrile was prepared by the method described for the lysine derivative in Example 1.

B. (2S)-1- $(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\omega},N^{\omega}-(dicinnamyl)-L-ornithinyl)$ pyrrolidine-2-carbonitrile

(2S)-1-(N^{α} -(tert-Butyloxycarbonyl)-L-ornithinyl)pyrrolidine-2-carbonitrile (200mg, 0.65mmol) was dissolved in methanol (25mL). To this solution was added transcinnamaldehyde (180mg, 1.25mmol). After 30mins sodium triacetoxyborohydride (343mg, 1.63mmol) was added. After 18h at room temperature the solvent was removed in vacuo and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and The residue was purified by flash evaporated in vacuo to give a yellow oil. chromatography (eluant: 2% methanol, 98% chloroform) to give a colourless oil (2S)-1- $(N^{\alpha}-(tert-butyloxycarbonyl)-N^{\omega},N^{\omega}-(dicinnamyl)-L-ornithinyl)$ pyrrolidine-2-carbonitrile (77mg, 0.14mmol, 22%). Further elution with 9% methanol, 90% chloroform and 1% acetic acid gave a colourless oil identified as (2S)-1-(N^{α} -(tertbutyloxycarbonyl)- \mathcal{N}^{ω} -(cinnamyl)-L-ornithinyl)pyrrolidine-2-carbonitrile (78mg, 0.18mmol, 28%).

C. (2S)-1-[N° , N° -(Dicinnamyl)-L-ornithinyl]pyrrolidine-2-carbonitrile dihydrochloride

(2S)-1-(N^{α} -(tert-Butyloxycarbonyl)- N^{ω} , N^{ω} -(dicinnamyl)-L-ornithinyl)pyrrolidine-2-carbonitrile (67mg, 0.12mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed in vacuo. The residue was lyophilised from water to give a white solid identified as (2S)-1-[N^{ω} , N^{ω} -(dicinnamyl)-L-ornithinyl]pyrrolidine-2-carbonitrile dihydrochloride (82mg, 0.12mmol, 100%).

$[M+H]^{+} = 443.3$

 1 H NMR (CD₃OD): δ 1.98-2.12 (4H, m), 2.22-2.29 (4H, m), 3.27-3.31 (4H, m), 3.62-3.67 (2H, m), 3.96 (4H, d, J=7.5Hz), 4.30-4.40 (1H, m), 4.80-4.83 (1H, m), 6.34-6.41 (2H, m), 6.96 (2H, d, J=15.6Hz), 7.31-7.39 (6H, m), 7.49-7.53 (4H, m) ppm.

EXAMPLE 4

(2S)-1-[N°-(Cinnamyl)-L-ornithinyl]pyrrolidine-2-carbonitrile dihydrochloride

A. (2S)-1-[N^{∞} -(Cinnamyl)-L-ornithinyl]pyrrolidine-2-carbonitrile dihydrochloride (2S)-1-(N^{∞} -(tert-Butyloxycarbonyl)- N^{∞} -(cinnamyl)-L-ornithinyl)pyrrolidine-2-carbonitrile (71mg, 0.17mmol). was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as (2S)-1-[N^{∞} -(cinnamyl)-L-ornithinyl]pyrrolidine-2-carbonitrile dihydrochloride (91mg, 0.16mmol, 100%).

$[M+H]^+ = 327.5$

 1 H NMR (CD₃OD): δ 1.70-1.88 (2H, m), 1.97-2.01 (2H, m), 2.14-2.32 (4H, m), 3.08-3.13 (2H, m), 3.29-3.31 (3H, m), 3.68-3.71 (2H, m), 3.79-3.82 (2H, m), 4.29-4.31 (1H, m), 4.87-4.91 (1H, m), 6.29-6.31 (1H, m), 6.86 (1H, d, J=15.8Hz), 7.29-7.30 (3H, m), 7.44-7.48 (2H, m) ppm.

EXAMPLE 5

3-[N°-N°-(Dicinnamyl)-L-lysinyl]thiazolidine dihydrochloride

A. 3-[N^{α} -(tert-Butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl]-thiazolidine

 N^{α} -(tert-Butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysine (2.73g, 6mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 100mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (1.53g, 10mmol), water-soluble carbodiimide (1.34g, 7mmol), thiazolidine (1.28g, 18mmol) and N-methylmorpholine (1.0g, 10mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a white solid identified as 3-[N^{α} -(tert-butyloxycarbonyl)- N^{∞} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl]thiazolidine (2.55g, 4.85mmol, 81%).

B. 3-[N^α-(tert-Butyloxycarbonyl)-L-lysinyl]thiazolidine

 $3-[N^c-(tert-Butyloxycarbonyl)-N^c-(9-fluorenylmethyloxycarbonyl)-L-lysinyl]thiazolidine (1.15g, 2.13mmol) was dissolved in acetonitrile (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed$ *in vacuo* $and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as <math>3-[N^c-(tert-butyloxycarbonyl)-L-lysinyl]thiazolidine (530mg, 1.67mmol, 78%).$

C. 3- $(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\alpha},N^{\alpha}-(dicinnamyl)-L-lysinyl)thiazolidine$

 $3-(N^{\alpha}-(tert-Butyloxycarbonyl)-L-lysinyl)$ thiazolidine (200mg, 0.6mmol) was dissolved in methanol (25mL). To this solution was added trans-cinnamaldehyde (400mg, 3.0mmol). After 30mins sodium triacetoxyborohydride (534mg, 2.54mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 2% methanol, 98% chloroform) to give a colourless oil identified as $3-(N^{\alpha}-(tert-butyloxycarbonyl)-N^{\alpha},N^{\alpha}-(dicinnamyl)-L-lysinyl)$ thiazolidine (139mg, 0.25mmol, 40%).

D. 3-[N°,N°-(Dicinnamyl)-L-lysinyl]thiazolidine dihydrochloride

 $3-(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\infty},N^{\infty}-(di-cinnamyl)-L-lysinyl)$ thiazolidine (139mg, 0.25mmol). was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a pale brown solid identified as $3-[N^{\infty},N^{\infty}-(dicinnamyl)-L-lysinyl]$ thiazolidine dihydrochloride (127mg, 0.24mmol, 96%).

$[M+H]^{+} = 450.2$

 1 H NMR (CD₃OD): δ 1.49-1.55 (2H,m), 1.89-1.98 (4H, m), 3.01-3.30 (4H, m), 3.4-3.5 (4H, m), 3.7-3.9 (3H, m), 4.0-4.2 (3H, m), 4.2-4.8 (2H, br m), 6.38-6.44 (2H, m), 6.99-6.93 (2H, m), 7.34-7.37 (5H, m), 7.51-7.60 (4H, m) ppm.

EXAMPLE 6

3-[N°,N°-(Cinnamyl)-L-lysinyl]thiazolidine dihydrochloride

A. 3- $(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\omega},N^{\omega}-(cinnamyl)-L-lysinyl)$ thiazolidine

 $3-(N^{\alpha}-(tert-Butyloxycarbonyl)-L-lysinyl)$ thiazolidine (200mg, 0.6mmol) was dissolved in methanol (25mL). To this solution was added trans-cinnamaldehyde (400mg, 3.0mmol). After 30mins sodium triacetoxyborohydride (534mg, 2.54mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% triethylamine, 5% methanol, 94% chloroform) to give a colourless oil identified as $3-(N^{\alpha}-(tert-butyloxycarbonyl)-N^{\alpha},N^{\alpha}-(cinnamyl)-L-lysinyl)$ thiazolidine (215mg, 0.50mmol, 83%).

B. 3-[Nº, Nº-(Cinnamyl)-L-lysinyl]thiazolidine dihydrochloride

 $3-(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\infty},N^{\omega}-(cinnamyl)-L-lysinyl)thiazolidine (215mg, 0.5mmol). was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed$ *in vacuo* $. The residue was lyophilised from water to give a pale brown solid identified as <math>3-[N^{\omega},N^{\omega}-(cinnamyl)-L-lysinyl]thiazolidine dihydrochloride (160mg, 0.40mmol, 79%).$

$[M+H]^+ = 334.4$

¹H NMR (CD₃OD): δ 1.28-1.30 (1H, m), 1.51-1.53 (1H, m), 1.79-1.78 (1H, m), 1.93-1.98 (2H, m), 2.9-3.3 (5H, m), 3.6-3.8 (5H, m), 4.30-4.70 (5H, m), 6.2-6.3 (1H, m), 6.85-6.91(1H, m), 7.1-7.7 (5H, m) ppm.

EXAMPLE 7

1-[N°-(Cyclohexylmethyl)-L-ornithinyl]pyrolidine dihydrochloride

A. 1- $[N^{\circ}$ -(Benzyloxycarbonyl)- N° -(tert-butyloxycarbonyl)-L-ornithinyl]pyrrolidine

 N^{∞} -(Benzyloxycarbonyl)- N^{∞} -(tert-butyloxycarbonyl)-L-ornithine (5.49g, 15mmol) was dissolved in CH_2Cl_2 /DMF (9:1, 100mL). To this solution at 0°C was added 1-hydroxybenzotriazole hydrate (3.37g, 22mmol), water-soluble carbodiimide (3.46g, 18mmol), pyrrolidine (1.28g, 18mmol) and N-methylmorpholine (2.0g, 20mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (200mL). The solution was washed with 0.3M KHSO₄ (2 x 50mL), sat. NaHCO₃ (2 x 50mL), water (2 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 90% ethyl acetate, 10% pet. ether) to give a colourless oil identified as $1-[N^{\infty}$ -(benzyloxycarbonyl)- N^{∞} -(tert-butyloxycarbonyl)-L-ornithinyl]pyrrolidine (5.15g, 12.3mmol, 82%).

B. 1-[N°-(tert-Butyloxycarbonyl)-L-ornithinyl]pyrrolidine

1-[N^{∞} -(Benzyloxycarbonyl)- N^{α} -(tert-butyloxycarbonyl)-L-ornithinyl]pyrrolidine (2.15g, 5.13mmol) was dissolved in methanol (80mL). This solution was hydrogenated over 10% Pd/C (400mg). After 2h the catalyst was filtered off and washed with methanol (50mL). The combined filtrates were evaporated *in vacuo* to give an off white solid identified as 1-[N^{α} -(tert-butyloxycarbonyl)-L-ornithinyl]pyrrolidine (1.35g, 4.74mmol, 94%).

C. 1- $(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\alpha}-(cyclohexylmethyl)-L-ornithinyl)$ pyrrolidine

1-[N^{α} -(tert-Butyloxycarbonyl)-L-ornithinyl]pyrrolidine (100mg, 0.35mmol) was dissolved in methanol (25mL). To this solution was added cyclohexanecarboxaldehyde (44mg, 0.39mmol). After 30mins sodium triacetoxyborohydride (148mg, 0.70mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na_2SO_4) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% triethylamine, 5% methanol, 94% chloroform) to give a colourless oil identified as 1-(N^{α} -(tert-Butyloxycarbonyl)- N^{α} -(cyclohexylmethyl)-L-ornithinyl)pyrrolidine (51mg, 0.18mmol, 52%).

D. 1-[N°-(Cyclohexylmethyl)-L-ornithinyl]pyrrolidine dihydrochloride

1-(N^{α} -(tert-Butyloxycarbonyl)- N^{ω} -(cyclohexylmethyl)-L-ornithinyl)pyrrolidine (215mg, 0.5mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[N^{ω} -(cyclohexylmethyl)-L-ornithinyl]pyrrolidine dihydrochloride (160mg, 0.40mmol, 79%).

 $[M+H]^{+} = 282.3$

¹H NMR (CD₃OD): δ 0.93-1.24 (3H, m), 1.66-1.81 (15H, m), 2.50-2.70 (2H, m), 2.71-2.88 (2H, m), 3.2-3.48 (6H, m), 4.08 (1H, m), 8.35-8.38 (1H, m), 8.80-8.85 (1H, m) ppm.

EXAMPLE 8

3-[N° -Me- N° -(2-napthylmethyl)-L-lysinyl]thiazolidine dihydrochloride

A. N°-(tert-Butyloxycarbonyl-N°-benzyl-L-lysine methyl ester

 N^{α} -(tert-Butyloxycarbonyl-L-lysine methyl ester (6.1g, 22.2mmol) was dissolved in methanol (100mL). To this solution was added benzaldehyde (1.9g, 17.5mmol). After 2 hours sodium triacetoxyborohydride (5.8g, 27.3mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (200mL). This solution was washed with sat Na HCO₃ (1 x 50mL), water (12 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid, 5% methanol, 94% chloroform) to give a colourless oil identified as N^{α} -(tert-butyloxycarbonyl- N^{ω} - benzyl-L-lysine methyl ester (5.2g, 14.2mmol, 82%).

B. Nº-tert-Butyloxycarbonyl-Nº-benzyl-Nº-methyl-L-lysine methyl ester

 N^{α} -tert-Butyloxycarbonyl- N^{∞} -benzyl-L-lysine methyl ester (5.0g, 14.2mmol) was dissolved in methanol (100mL). To this solution was added formaldehyde (37% solution in water, 10mL). After 2 hours sodium triacetoxyborohydride (3.9g, 18.4mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (200mL). This solution was washed with sat. Na HCO₃ (1 x 50mL), water (12 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a . colourless oil identified as N^{α} -tert-butyloxycarbonyl- N^{∞} -benzyl- N^{∞} -methyl-L-lysine methyl ester (5.2g, 14.2mmol, 100%).

C. №-tert-Butyloxycarbonyl-Nº-methyl-L-lysine methyl ester

 N^{α} -tert-Butyloxycarbonyl- N^{ω} -benzyl- N^{ω} -methyl-L-lysine methyl ester (5.0g, 14.2mmol) was dissolved in methanol/water (9:1, 100mL). To this solution was added ammonium formate (1.6, 19.3mmol) and 10% palladium on charcoal (2g). After 3 hours at 60 °C the catalyst was filtered off through celite and the residue washed with methanol (50mL). The combined filtrates were evaporated *in vacuo* and the residue was taken up in chloroform (200mL). This solution was washed with sat Na HCO₃ (1 x 50mL),

water (12 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a colourless oil identified as N^{α} -(tert-butyloxycarbonyl-N $^{\infty}$ -methyl-L-lysine methyl ester (3.48g, 12.5mmol, 93%).

D. N° -tert-Butyloxycarbonyl- N° -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)- N° -methyl-L-lysine methyl ester

 N^{α} -tert-Butyloxycarbonyl- N^{ω} -methyl-L-lysine methyl ester (3.1g, 11.1mmol) was dissolved in dichloromethane (100mL). To this solution was added 1,1-dimethyl-2,2,2-trichloroethyl chloroformate (3.0g, 12.5mmol) and triethylamine (2.3g, 23mmol). After 18 hours at room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (200mL). This solution was washed with 0.3M KHSO₄ (1x 50mL),sat NaHCO₃ (1 x 50mL), water (1 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil purified by flash chromatography on silica gel (eluant: 30% ethyl acetate, 70% pet. ether) to give colourless oil identified as N^{α} -(tert-butyloxycarbonyl- N^{α} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)- N^{α} -methyl-L-lysine methyl ester (3.28g, 6.98mmol, 63%).

E. N°-tert-Butyloxycarbonyl-N°-(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)-N°-methyl-L-lysine

 N^{α} -(tert-Butyloxycarbonyl- N^{ω} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)- N^{ω} -methyl-L-lysine methyl ester (3.1g, 6.6mmol) was dissolved in tetrahydrofuran (100mL). 1M Lithium hydroxide (7mL, 7.0mmol) was added. After 3 hours at room temperature the reaction mixture was diluted with ethyl acetate (150mL), washed with 1M HCl (1 x 50mL), water (1 x 50mL) and brine (1 x 50mL), dried (Na_2SO_4) and evaporated in vacuo to give colourless oil identified as N^{α} -(tert-butyloxycarbonyl- N^{ω} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)- N^{ω} -methyl-L-lysine (2.94g, 6.45mmol, 98%).

F. 3- $(N^{\alpha}$ -tert-Butyloxycarbonyl- N^{ω} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)- N^{ω} -methyl-L-lysinyl)thiazolidine

 N^{α} -(*tert*-Butyloxycarbonyl- N^{ω} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)- N^{ω} -methyl-L-lysine (700mg, 1.51mmol) was dissolved in CH_2Cl_2 /DMF (9:1, 20mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (410mg, 3.0mmol), water-soluble carbodiimide (250mg, 1.3mmol), thiazolidine (170mg, 1.9mmol) and N-methylmorpholine (1.0g, 10mmol). After 18h at 0°C to room temperature the solvent

was removed *in vacuo* and the residue was taken up in ethyl acetate (70mL). The solution was washed with 0.3M KHSO₄ (1 x 25mL), sat. NaHCO₃ (1 x 25mL), water (1 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 50% ethyl acetate, 50% pet. ether) to give a white solid identified as 3-(N $^{\alpha}$ -tert-butyloxycarbonyl-N $^{\omega}$ -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)-N $^{\omega}$ -methyl-L-lysinyl)thiazolidine (758mg, 1.42mmol, 94%).

G. 3-(N°-tert-Butyloxycarbonyl-N°-methyl-L-lysinyl)thiazolidine

 $3-(N^{\alpha}-tert$ -Butyloxycarbonyl- N^{∞} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)- N^{∞} -methyl-L-lysinyl)thiazolidine (730mg, 1.36mmol) was dissolved in acetic acid (30mL). Zinc powder (200mg) was added. After stirring at room temperature for 18 hours the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). The solution was washed with sat. NaHCO₃ (1 x 25mL), water (1 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a colourless oil identified as 3-(N^{α} -tert-butyloxycarbonyl- N^{∞} -methyl-L-lysinyl)thiazolidine (438mg, 1.32mmol, 97%).

H. 3- $[N^{\alpha}$ -tert-Butyloxycarbonyl- N^{α} -methyl- N^{α} -(2-napthylmethyl)-L-lysinyl]thiazolidine

 $3-(N^{\alpha}-tert$ -Butyloxycarbonyl-N $^{\infty}$ -methyl-L-lysinyl)thiazolidine (50mg, 0.15mmol) was dissolved in 1,2-dichloroethane (20mL). To this solution was added 2-naphthaldehyde (26mg, 0.17mmol). After 2 hours sodium triacetoxyborohydride (36mg, 0.17mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 4% methanol, 96% chloroform) to give a colourless oil identified as $3-[N^{\alpha}-tert-butyloxycarbonyl-N^{\infty}-methyl-N^{\infty}-(2-napthylmethyl)-L-lysinyl]thiazolidine (51mg, 0.11mmol, 72%).$

I. 3-[N°-Methyl-N°-(2-napthylmethyl)-L-lysinyl]thiazolidine dihydrochloride

 $3-[N^{\alpha}-tert-Butyloxycarbonyl-N^{\infty}-methyl-N^{\infty}-(2-napthylmethyl)-L-lysinyl]thiazolidine (44mg, 0.093mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed$ *in vacuo*. The residue was lyophilised from

water to give a pale brown solid identified as $3-[N^{\infty}-methyl-N^{\infty}-(2-napthylmethyl)-L-lysinyl]thiazolidine dihydrochloride (37mg, 0.083mmol, 89%).$

 $[M+H]^+ = 372.2$

¹H NMR (CD₃OD): δ 1.50-1.53 (2H,m), 1.91-1.98 (4H,m), 2.82 (3H,s), 3.08-3.19 (4H,m), 3.36-3.75 (5H,m), 4.32-4.47 (2H,m), 4.60-4.71 (2H,m), 7.55-7.59 (2H,m), 7.65-7.68 (1H,m), 7.90-8.00 (3H,m), 8.10-8.12 (1H,m) ppm.

EXAMPLE 9

3-[N°-Methyl-N°-(1-Napthylmethyl)-L-ornithyl]thiazolidine dihydrochloride

A. 3-[N-(tert-Butyloxycarbonyl)-0°-methyl-L-glutamyl]thiazolidine

N-(*tert*-Butyloxycarbonyl)-*O*[®]-methyl-L-glutamic acid (6.28g, 24mmol) was dissolved in CH₂Cl₂/DMF (9:1, 100ml). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (5.5g, 36mmol), water-soluble carbodiimide (5.38g, 28mmol), thiazolidine (2.48g, 28mmol) and N-methylmorpholine (3.0g, 30mmol). The mixture was stirred for 18h at 0°C to room temperature then the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (150ml). The solution was washed with 0.3M KHSO₄ (2 x 30ml), sat. NaHCO₃ (2 x 30ml), water (2 x 30ml) and brine (1 x 30ml), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 70% ethyl acetate, 30% pet. ether 60-80) to give a brown oil identified as 3-[*N*-(*tert*-butyloxycarbonyl)-O®-methyl-L-glutamyl]thiazolidine (4.0g, 12mmol, 50%).

B. 3-[N,N-Di-(tert-butyloxycarbonyl)-0°-methyl-L-glutamyl]thiazolidine

 $3-[N-(tert-Butyloxycarbonyl)-O^{\infty}-methyl-L-glutamyl]$ thiazolidine (3.2g, 9.6mmol) was dissolved in acetonitrile (20mL). Di-tert-butyl dicarbonate (3.14g, 14.4mmol) and 4-dimethylaminopyridine (235mg, 1.93mmol) were added. After 18 hours at room temperature further di-tert-butyl dicarbonate (3.14g, 14.4mmol) was added. After a further 3 days at room temperature the solvent was evaporated *in vacuo* the residue was purified by flash chromatography on silica gel (eluant: 70% ethyl acetate, 30% pet.

ether 60-80) to give a colourless oil identified as 3-[N,N-di-(tert-butyloxycarbonyl)-O°-methyl-L-glutamyl]thiazolidine (2.0g, 4.63mmol, 48%).

C. 3-[N,N-Di-(tert-butyloxycarbonyl)-L-glutamyl]thiazolidine

 $3-[N,N-di-(tert-butyloxycarbonyl)-O^{\infty}-methyl-L-glutamyl]thiazolidine (950mg, 2.22mmol) was dissolved in THF (50ml). 1M Lithium hydroxide (5.5ml, 5.5mmol) was added. The mixture was stirred for 1 hour at room temperature then the solvent was removed in vacuo and the residue was taken up in ethyl acetate (70ml). The solution was washed with 0.3M KHSO₄ (2 x 20ml), water (2 x 20ml) and brine (1 x 20ml), dried (Na₂SO₄) and evaporated in vacuo to give a colourless oil identified as <math>3-[N,N-di-(tert-butyloxycarbonyl)-L-glutamyl]thiazolidine (912mg, 2.2mmol, 98%).$

D. 3-[2-(N,N-Di-(tert-butyloxycarbonyl)amino)-5-hydroxypentanoyl]thiazolidine

3-[*N*,*N*-Di-(*tert*-butyloxycarbonyl)-L-glutamyl]thiazolidine (912mg, 2.2mmol) was dissolved in tetrahydrofuran (30 mL). This solution was cooled to -20 °C, N-methylmorpholine (300mg, 2.96mmol) and isobutyl chloroformate (387mg, 2.83mmol) were added. After 20 mins at -20 °C the reaction mixture was added to a solution of sodium borohydride (182mg, 4.8mmol) in water (5mL) at 0°C. After 1 hour the reaction mixture was diluted with ethyl acetate (150 mL). This solution was washed with water (1 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a colourless oil identified as 3-[2-(*N*,*N*-di-(*tert*-butyloxycarbonyl)amino)-5-hydroxypentanoyl]thiazolidine (800mg, 2.0mmol, 92%).

E. 3-[2-(N,N-Di-(tert-butyloxycarbonyl)amino-5-oxopentanoyl]thiazolidine

3-[2-*N*,*N*-((Di-*tert*-butyloxycarbonyl)amino)-5-hydroxypentanoyl]thiazolidine (800mg, 2.0mmol) was dissolved in dichloromethane (50 mL). Dess-Martin periodinane (933mg,2.2mmol) was added. After 1 hour at room temperature the reaction mixture was diluted with ethyl acetate (150 mL). This solution was washed with water (1 x 20ml) and brine (1 x 20ml), dried (Na₂SO₄) and evaporated *in vacuo* to give a colourless oil. Purified by flash chromatography on silica gel (eluant: 50% ethyl acetate, 50% pet. ether 60-80) to give a colourless oil identified as 3-[2-(*N*,*N*-di-(*tert*-butyloxycarbonyl)amino-5-oxopentanoyl]thiazolidine (210mg, 0.52mmol, 26%).

F. 3-[N,N-Di-(tert-butyloxycarbonyl- N° -methyl- N° -(1-napthylmethyl)-L-ornithyl]-thiazolidine

3-[N,N-Di-(tert-butyloxycarbonyl)amino-5-oxopentanoyl]thiazolidine was dissolved in 1,2-dichloroethane (20mL). To this solution was added N-methyl-1-napthylmethylamine. After 2 hours sodium triacetoxyborohydride was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel to give a colourless oil identified as 3-[N,N-di-(tert-butyloxycarbonyl-N°-methyl-N°-(1-napthylmethyl)-L-ornithyl]thiazolidine.

G. 3-[Nº-Methyl-Nº-(1-Napthylmethyl)-L-ornithyl]thiazolidine dihydrochloride

 $3-[N,N-Di-(tert-butyloxycarbonyl-N^{o}-methyl-N^{o}-(1-napthylmethyl)-L-ornithyl]thiazolidine was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed$ *in vacuo* $. The residue was lyophilised from water to give a pale brown solid identified as <math>3-[N^{o}-Me,N^{o}-(1-napthylmethyl)-L-ornithyl]thiazolidine dihydrochloride.$

EXAMPLE 10

3,3-Difluoro-1-[N°-(2-methylbutyl)-L-lysinyl]pyrrolidine dihydrochloride

A. 1-(tert-Butyloxycarbonyl)-3-pyrrolidone

(3R)-1-(tert-Butyloxycarbonyl)-3-hydroxypyrrolidine (980mg, 5.3mmol) was dissolved in CH₂Cl₂ (40ml). Dess-Martin periodinane (2.5g, 5.8mmol) was added. The mixture was stirred for 3 hours at room temperature then the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (300ml). The solution was washed with sat. NaHCO₃, water and brine, dried (Na₂SO₄) and evaporated *in vacuo* to give a

colourless oil. The residue was purified by flash chromatography on silica gel (eluant: 20% ethyl acetate, 80% pet. ether 60-80) to give a colourless oil identified as 1-(*tert*-butyloxycarbonyl)-3-pyrrolidone (842mg, 4.6mmol, 87%).

B. 1-(tert-Butyloxycarbonyl)-3,3-difluoropyrrolidine

1-(tert-Butyloxycarbonyl)-3-pyrrolidone (810mg, 4.4mmol) was dissolved in CH₂Cl₂ (30ml). (Diethylamino)sulphur trifluoride (2.2g, 13.7mmol) was added to this solution at 0°C. The mixture was stirred for 18 hours at 0°C to room temperature then carefully poured into sat. NaHCO₃ (100ml). The mixture was stirred for 15min then extracted with CH₂Cl₂. The organic extract was washed with water and brine, dried (Na₂SO₄) and evaporated *in vacuo* to give an orange oil. The residue was purified by flash chromatography (eluant: 10% ethyl acetate, 90% pet. ether 60-80) to give a colourless oil identified as 1-(tert-butyloxycarbonyl)-3,3-difluoropyrrolidine (580mg, 2.8mmol, 64%).

C. 3,3-Difluoropyrrolidine hydrochloride

1-(*tert*-Butyloxycarbonyl)-3,3-difluoropyrrolidine (540mg, 2.6mmol) was dissolved in 4M HCl/dioxan (30ml). The solution was stirred for 1 hour at room temperature then the solvent was removed *in vacuo* to give an off white solid identified as 3,3-difluoropyrrolidine hydrochloride (370mg, 2.6mmol, 100%).

D. 1-[N^{α} -(tert-Butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl]-3,3-difluoropyrrolidine

 N^{α} -(tert-Butyloxycarbonyl)- N^{∞} -(9-fluorenylmethyloxycarbonyl)-L-lysine (1.14g, 2.4mmol) To this solution at 0°C were added was dissolved in CH₂Cl₂ /DMF (9:1, 100ml). 1-hydroxybenzotriazole hydrate (394mg, 2.9mmol), water-soluble carbodiimide (680mg, 3.4mmol), 3,3-difluoropyrrolidine hydrochloride (380mg, 2.43mmol) and Nmethylmorpholine (400mg, 4mmol). The mixture was stirred for 18h at 0°C to room temperature then the solvent was removed in vacuo and the residue was taken up in The solution was washed with 0.3M KHSO₄, sat. NaHCO₃, ethyl acetate (200ml). water and brine, dried (Na₂SO₄) and evaporated in vacuo. The residue was purified by flash chromatography on silica gel (eluant: 65% ethyl acetate, 35% pet. ether 60-80) to $1-[N^{\alpha}-(tert-butyloxycarbonyl)-N^{\infty}-(9$ white solid identified as give fluorenylmethyloxycarbonyl)-L-lysinyl]-3,3-difluoropyrrolidine (1.0g, 1.8mmol, 75%).

E. 1-[N²-(tert-Butyloxycarbonyl)-L-lysinyl]-3,3-difluoropyrrolidine

1-[N^{α} -(tert-Butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl]-3,3-difluoro-pyrrolidine (1.01g, 1.8mmol) was dissolved in THF (20ml). Diethylamine (5ml) was added. The mixture was stirred for 3 hours at room temperature then the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as 1-[N^{α} -(tert-butyloxycarbonyl)-L-lysinyl]-3,3-difluoropyrrolidine (598mg, 1.78mmol, 99%).

F. 1-[N° -(tert-Butyloxycarbonyl)- N° -(2-methylbutyl)-L-lysinyl]-3,3-difluoro-pyrrolidine

1-[N^{α} -(tert-Butyloxycarbonyl)-L-lysinyl]-3,3-difluoropyrrolidine was dissolved in 1,2-dichloroethane (20mL). To this solution was added 2-methylbutanal. After 2 hours sodium triacetoxyborohydride was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel to give a colourless oil identified as 1-[N^{α} -(tert-butyloxycarbonyl)- N^{∞} -(2-methylbutyl)-L-lysinyl]-3,3-difluoropyrrolidine.

G. 3,3-Diffuoro -1- $[N^{\infty}$ -(2-methylbutyl)-L-lysinyl) pyrrolidine dihydrochloride

1-[N^{α} -(tert-Butyloxycarbonyl)- N^{ω} -(2-methylbutyl)-L-lysinyl]-3,3-difluoropyrrolidine was dissolved in 4M HCl/dioxan (20ml). The mixture was stirred for 1 hour at room temperature then the solvent was removed *in vacuo* to give a colourless oil identified as 3,3-difluoro-1-[N^{ω} -(2-methylbutyl)-L-lysinyl]pyrrolidine dihydrochloride.

EXAMPLE 11

1-[N°-(3-Cyclohexenylmethyl)-L-lysinyl]thiomorpholine dihydrochloride

A. 3-[N^{α} -(tert-Butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl]thiomorpholine

 N^{α} -(tert-Butyloxycarbonyl)- N^{ω} -(9-fluorenylmethyloxycarbonyl)-L-lysine (2.5g, 5.34mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 100mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (1.44g, 10.6mmol), water-soluble carbodiimide (1.35g, 6.5mmol), thiomorpholine (710mg, 6.9mmol) and N-methylmorpholine (800mg, 8mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a white solid identified as 3-[N^{α} -(tert-butyloxycarbonyl)- N^{α} -(9-fluorenylmethyloxycarbonyl)-L-lysinyl]thiomorpholine (2.70g, 4.88mmol, 91%).

B. 3-[N^c-(tert-Butyloxycarbonyl)-L-lysinyl]thiomorpholine

 $3-[N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\infty}-(9-fluorenylmethyloxycarbonyl)-L-$

lysinyl]thiomorpholine (2.6g, 4.7mmol) was dissolved in tetrahydrofuran (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as $3-[N^{\alpha}-(tert-butyloxycarbonyl)-L-lysinyl]thiomorpholine (1.2g, 3.637mmol, 77%).$

C. 3-[N° -(tert-Butyloxycarbonyl)- N° -(3-cyclohexenylmethyl)-L-lysinyl]-thiomorpholine

(150mg, 0.45mmol) was 3-(N°-(tert-Butyloxycarbonyl)-L-lysinyl)thiomorpholine solution added 3-То this was dissolved in methanol (25mL). cyclohexenecarboxaldehyde (400mg, 0.45mmol). After 30mins sodium triacetoxyborohydride (150mg, 0.71mmol) was added. After 18h at room temperature the solvent was removed in vacuo and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated in vacuo to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to 3-(N°-(tert-butyloxycarbonyl)-N°-(3colourless oil identified as give cyclohexenylmethyl)-L-lysinyl)thiomorpholine (66mg, 0.12mmol, 26%).

D. 1- $[N^{o}$ -(3-Cyclohexenylmethyl)-L-lysinyl]thiomorpholine dihydrochloride

 $3-(N^{\alpha}-(tert-Butyloxycarbonyl)-N^{\omega}-(3-cyclohexenylmethyl)-L-lysinyl)thiomorpholine (66mg, 0.12mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed$ *in vacuo* $. The residue was lyophilised from water to give a white solid identified as <math>1-[N^{\omega}-(3-cyclohexenylmethyl)-L-lysinyl]thiomorpholine dihydrochloride (62mg, 0.12mmol, 100%).$

 $[M+H]^+ = 326.2$

EXAMPLE 12

(2S)-1-[N^{∞} -(2-(3'-trifluoromethylanilino)pyridyl-3-carbonyl)-L-ornithyl]thiazolidine dihydrochloride

A. 3- $[N^{\alpha}$ -tert-Butyloxycarbonyl- N^{∞} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)-L-ornithyl]thiazolidine

 N^{α} -(*tert*-Butyloxycarbonyl- N^{ω} -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)-L-ornithine (2.5g, 5.9mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 30mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (1.6g, 11.9mmol), water-soluble carbodiimide (1.4g, 7.6mmol), thiazolidine (650mg, 7.3mmol) and N-methylmorpholine (2.0g, 20mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (70mL). The solution was washed with 0.3M KHSO₄ (1 x 25mL), sat. NaHCO₃ (1 x 25mL), water (1 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 70% ethyl acetate, 30% pet. ether) to

give a colourless oil identified as $3-[N^{\alpha}-tert$ -butyloxycarbonyl- $N^{\alpha}-(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)-L-ornithyl]thiazolidine (758mg, 1.42mmol, 94%).$

B. 3-(N^α-tert-Butyloxycarbonyl- L-ornithinyl)thiazolidine

3-[N $^{\alpha}$ -tert-Butyloxycarbonyl-N $^{\omega}$ -(1,1-dimethyl-2,2,2-trichloroethoxycarbonyl)-L-ornithyl]thiazolidine (130mg, 0.26mmol) was dissolved in acetic acid (30mL). Zinc powder (100mg) was added. After stirring at room temperature for 18 hours the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). The solution was washed with sat. NaHCO₃ (1 x 25mL), water (1 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a colourless oil identified as 3-(N $^{\alpha}$ -tert-butyloxycarbonyl-L-ornithinyl)thiazolidine (80mg, 0.26mmol, 100%).

C. $3-[N^{\alpha}-tert$ -Butyloxycarbonyl- N^{α} -(2-(3'-trifluoromethylanilino)pyridyl-3-carbonyl)-L-ornithinyl]thiazolidine

 $3-(N^{\alpha}$ -tert-Butyloxycarbonyl-L-ornithinyl)thiazolidine (80mg, 0.26mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 20mL). To this solution at 0°C was added 1-hydroxybenzotriazole hydrate (80mg, 0.6mmol), water-soluble carbodiimide (65mg, 0.32mmol), niflumic acid (82mg, 0.29mmol) and N-methylmorpholine (100mg, 1.0mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (70mL). The solution was washed with 0.3M KHSO₄ (1 x 20mL), sat. NaHCO₃ (1 x 20mL), water (1 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a yellow oil identified as 3-[N $^{\alpha}$ -tert-butyloxycarbonyl- N^{α} -(2-(3'-trifluoromethylanilino)pyridyl-3-carbonyl)-L-ornithinyl]-thiazolidine (60mg, 0.12mmol, 45%).

D. (2S)-1-[N° -(2-(3'-Trifluoromethylanilino)pyridyl-3-carbonyl)-L-ornithyl]-thiazolidine dihydrochloride

3-[N $^{\alpha}$ -tert-Butyloxycarbonyl- N^{∞} -(2-(3'-trifluoromethylanilino)pyridyl-3-carbonyl)-L-ornithinyl]thiazolidine (54mg, 0.10mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a pale brown solid identified as (2S)-1-[N^{∞} -(2-(3'-trifluoromethylanilino)pyridyl-3-carbonyl)-L-ornithyl]thiazolidine dihydrochloride (47mg, 0.10mmol, 100%).

$[M+H]^{+} = 468.0$

¹H NMR (CD₃OD): δ1.77-1.82 (2H, m), 1.84-2.00 (2H, m), 3.03-3.15 (4H, m), 3.41-3.51 (2H, m), 3.65-3.71 (2H, m), 3.80-3.87 (1H, m), 4.46-4.49 (2H, m), 4.65-4.72 (2H, m), 7.06-7.11 (1H, m), 7.61-7.11 (3H, m), 7.95 (1H, s), 8.09 (1H, d, J=4.7Hz), 8.49 (1H, d, J=4.2Hz) ppm.

EXAMPLE 13

3,3-Difluoro-1-[N°-(2-(3'-chloroanilino)pyridyl-3-carbonyl)-L-ornithyl]pyrrolidine dihydrochloride

A. 1-[N°-(tert-Butyloxycarbonyl)-L-ornithyl]-3,3-difluoropyrrolidine

 $1-[N^{\alpha}-(tert-Butyloxycarbonyl)-L-ornithyl]-3,3-difluoropyrrolidine was prepared as described for the lysine derivative in Example 9.$

B. 3-Chloroanilinonicotinic acid

3-Chloroaniline was dissolved in xylene. 2-Aminonicotinic acid was added. The reaction mixture was heated at 150 0 C for 18 hours after which time the reaction mixture was diluted with ethyl acetate giving an off-white solid identified as 3-chloroanilinonicotinic acid.

C. 3,3-Difluoro-[N°-tert-butyloxycarbonyl-N°-(2-(3'-chloroanilino)pyridyl-3-carbonyl)-L-ornithinyl]pyrrolidine

 $1-[N^{\alpha}-(tert-Butyloxycarbonyl)-L-ornithyl]-3,3-difluoropyrrolidine was dissolved in CH₂Cl₂ /DMF (9:1, 20mL). To this solution at 0°C was added 1-hydroxybenzotriazole hydrate, water-soluble carbodiimide, 3-chloroanilinonicotinic acid and N-methylmorpholine.$

After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (70mL). The solution was washed with 0.3M KHSO₄ (1 x 20mL), sat. NaHCO₃ (1 x 20mL), water (1 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a yellow oil identified as 3,3-difluoro-[N°-tert-butyloxycarbonyl-N°-(2-(3'-chloroanilino)pyridyl-3-carbonyl)]-L-ornithinyl)pyrrolidine.

D. 3,3-Difluoro-1-[N° -(2-(3'-chloroanilino)pyridyl-3-carbonyl)-L-ornithyl]pyrrolidine dihydrochloride

3,3-Difluoro-[N^{α} -tert-butyloxycarbonyl- N^{∞} -(2-(3'-chloroanilino)pyridyl-3-carbonyl)]-L-ornithinyl)pyrrolidine was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a pale brown solid identified as 3,3-difluoro-1-[N^{∞} -(2-(3'-chloroanilino)pyridyl-3-carbonyl)-L-ornithyl]pyrrolidine dihydrochloride.

EXAMPLE 14

$3-[N^{\circ}-6-Chloro-4-(2',5'-dichloroanilino)-1,3,5-triazinyl)-L-lysinyl]thiazolidine dihydrochloride$

A. 4,6-Dichloro-2-(2',5'-dichloroanilino)-1,3,5-triazine

Cyanuric chloride (1.844g, 10mmol) was dissolved in acetonitrile (20mL). The solution was cooled to -20 °C. A solution of 2,5-dichloroaniline (1.62g, 10mmol) and triethylamine (1.0g, 10mmol) was slowly added. After 1 hour at -20 °C the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (150mL). The

solution was washed with water (1 x 50mL) and brine (1 x 50mL), dried (Na_2SO_4) and evaporated *in vacuo*. The residue was recrystallised from ethyl acetate/ hexane to give an off white solid identified as 4,6-dichloro-2-(2',5'-dichloroanilino)-1,3,5-triazine (1.86mg, 6.0mmol, 60%).

B. $3-[N^{\alpha}-tert-Butyloxycarbonyl-N^{\alpha}-6-chloro-4-(2',5'-dichloroanilino)-1,3,5-triazinyl)-L-lysinyl]thiazolidine$

 $3-(N^{\alpha}-(tert-Butyloxycarbonyl)-L-lysinyl)$ thiazolidine (800mg, 2.58mmol) was dissolved in dichloromethane (30mL). To this solution was added 4,6-dichloro-2-(2',5'-dichloroanilino)-1,3,5-triazine (810mg, 2.6mmol) and triethylamine (300mg, 3.0mmol). After 2 hours at room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (150mL). This solution was washed with water (2 x 30mL) and brine (1 x 30mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography (eluant: 60% ethyl acetate, 40% pet. ether) to give a white solid identified as $3-[N^{\alpha}-tert$ -butyloxycarbonyl- N^{α} -6-chloro-4-(2',5'-dichloroanilino)-1,3,5-triazinyl)-L-lysinyl]thiazolidine (1.33g, 2.23mmol, 86%).

C. $3-[N^{\infty}-6-Chloro-4-(2',5'-dichloroanilino)-1,3,5-triazinyl)-L-lysinyl]thiazolidine dihydrochloride$

 $3-[N^{\alpha}-tert$ -Butyloxycarbonyl- N^{∞} -6-chloro-4-(2',5'-dichloroanilino)-1,3,5-triazinyl)-L-lysinyl]thiazolidine (59mg, 0.10mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as $3-[N^{\infty}$ -6-chloro-4-(2',5'-dichloroanilino)-1,3,5-triazinyl)-L-lysinyl]thiazolidine dihydrochloride (55mg, 0.098mmol, 98%).

 $[M+H]^+ = 492.2, 494.4$

¹H NMR (CD₃OD): δ1.46-1.51 (2H,m), 1.65-1.67 (2H,m), 1.80-1.96 (2H,m), 3.05-3.14 (2H,m), 3.38-3.42 (2H,m), 3.55-3.75 (4H,m), 4.31-4.36 (2H,m0, 4.40-4.52 (1H,m), 4.63-4.95 (2H,m), 7.15-7.18 (1H,m), 7.40-7.45 (1H,m), 8.15-8.25 (1H,m) ppm.

EXAMPLE 15

$3-[N^{\circ}-4-(2',5'-Dichloroanilino)-6-hydroxy-1,3,5-triazinyl)-L-lysinyl]thiazolidine bis(trifluoroacetate)$

A. $3-[N^{\circ}-4-(2',5'-Dichloroanilino)-6-hydroxy-1,3,5-triazinyl)-L-lysinyl]thiazolidine bis(trifluoroacetate)$

 $3-[N^{\alpha}-tert$ -Butyloxycarbonyl- N^{∞} -6-chloro-4-(2',5'-dichloroanilino)-1,3,5-triazinyl)]-L-ornithinyl)thiazolidine (54mg, 0.09mmol) was dissolved in trifluoroacetic acid (20mL) and water (2mL). After 2 hours at 70 °C the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as $3-[N^{\infty}-4-(2',5'-dichloroanilino)-6-hydroxy-1,3,5-triazinyl)-L-lysinyl]thiazolidine bis(trifluoroacetate) (63mg, 0.089mmol, 97%).$

$[M+H]^{+} = 472.1, 474.2$

¹H NMR (CD₃OD): δ1.42-1.47 (2H,m), 1.62-1.67 (2H,m), 1.82-1.89 (2H,m), 3.04-3.16 (4H,m), 3.70-3.75 (2H,m), 3.84-3.91 (1H,m), 4.25-4.32 (2H,m), 4.45-4.54 (2H,m), 4.64-4.70 (2H,m), 7.05-7.15 (1H,m), 7.34-7.38 (1H,m), 7.49-7.55 (1H,m), 7.80-7.92 (1H,m) ppm.

EXAMPLE 16

$3-[\textit{N}^\circ\text{-}4-(2',5'-\text{Dichloroanilino})-6-methylamino-1,3,5-triazinyl)-L-lysinyl] thiazolidine dihydrochloride$

A. 3- $[N^{\circ}$ -tert-Butyloxycarbonyl- N° -4-(2',5'-dichloroanilino)-6-dimethylamino-1,3,5-triazinyl)-L-lysinyl]thiazolidine

 $3-[N^{\alpha}-tert$ -Butyloxycarbonyl- N^{ω} -3-chloro-5-(2',5'-dichloroanilino)-2,4,6-triazinyl)]-L-ornithinyl)thiazolidine (120mg, 0.20mmol) was dissolved in 1M dimethylamine in tetrahydrofuran (25mL). After 18 hours at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 70% ethyl acetate, 30% pet. ether) to give a white solid identified as $3-[N^{\alpha}-tert-butyloxycarbonyl-N^{\omega}-4-(2',5'-dichloroanilino)-6-dimethylamino-1,3,5-triazinyl)-L-lysinyl]thiazolidine (110mg, 0.18mmol, 90%).$

B. 3-[N° -4-(2',5'-Dichloroanilino)-6-dimethylamino-1,3,5-triazinyl)-L-lysinyl]-thiazolidine dihydrochloride

 $3-[N^{\alpha}-tert$ -Butyloxycarbonyl- N^{∞} -4-(2',5'-dichloroanilino)-6-dimethylamino-1,3,5-triazinyl)-L-lysinyl]thiazolidine (110mg, 0.18mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as $3-[N^{\infty}-4-(2',5'-dichloroanilino)-6-dimethylamino-1,3,5-triazinyl)-L-lysinyl]thiazolidine dihydrochloride (105mg, 0.18mmol, 100%).$

 $[M+H]^{+} = 499.1, 501.1$

 1 H NMR (CD₃OD): $\delta 1.52$ -1.55 (2H,m), 1.69-1.71 (2H,m), 1.90-1.98 (2H,m), 3.13-3.22 (8H,m), 3.48-3.62 (2H,m), 3.65-3.69 (4H,m), 4.37-4.39 (2H,m), 4.46-4.49 (1H,m), 4.57-4.77 (2H,m), 7.20-7.22 (1H,m), 7.45-7.50 (1H,m), 8.09-8.12 (1H,m) ppm.

The following compounds were prepared by analogous methods.

TABLE 1

Example No	n	X	Example No	n	X
17	3	S	22	3	
	_		23	4	\n_\
18	3	∕ F	24	3	∧F =
19	4	\	25	4	N_J
20	3	S	26	3	
21	4	\(\frac{1}{2}\)	27	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

TABLE 2

$$(CH_2)$$
n X

Example No	n	X	Example No		X
		, s.		n	^
28	2		41	2	
					_,i
29	2	F	42	2	. , F _
30	3	\ \\	43	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
31	4	Χ,	45	4	_,v/
32	2		46	2	CI
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
33	3	\ N/	47	3	__
34	4	<u> </u>	48	4	
35	2	CN		2	
36	3	\/	49		
37	4	\\\			_n
38	2	_s	50	2	7-0
39	3		51	3	
40	4	_N	52	4	N/
				·	×

TABLE 3

$$R^3$$
 $(CH_2)_b$
 N
 $(CH_2)_a$

Ex No	а	b	х	R³	R ⁴
53	1	3	S	Н	11.0
54	1	4		Н	H ₃ C´ CH ₂
55	1	3	CH	Н	
56	1	4	CH₂	Н	
57	1	3	C.F.	Н	
58	1	4	CF ₂	Н	
59	1	4	S	CH₃	
60	1	4	3	CH(CH ₃) ₂	
61	1	4	СП	CH₃	
62	1	4	CH₂	CH(CH ₃) ₂	

Ex No	а	b	х	R³	R ⁴
63	1	3	S	CH(CH ₃) ₂	
64	1	3	CH ₂	CH(CH ₃) ₂	
65	2	3	S	Н	
66	2	4	<u> </u>	Н	
67	2	3	CH₂	Н	
68	2	4	O1 12	Н	
69	1	3	S	Н	
70	1	4	3	Н	
71	1	3	CH₂	Н	*
72	1	4	O1 12	Н	
73	1	3	CF ₂	Н	
74	1	4	Cl 2	Н	
75	1	4	S	CH₃	
76	1	4	3	CH(CH ₃) ₂	H ₃ C CH ₂
77	1	4	CH₂	CH₃	H₃C CH₂
78	1	4	Ol 12	CH(CH ₃) ₂	
79	1	3	S	CH(CH ₃) ₂	
80	1_	3	CH ₂	CH(CH ₃) ₂	
81	2	3	- s	Н	
82	2	4		Н	
83	2	3	CH₂	Н	
84	2	4	0112	Н	
85	1	3	s	Н	H ₃ C CH ₂
86	1	4		Н	CH ₃
87	1	3	CH₂	Н	
88	1	4	0,12	Н	
89	1	3	CF ₂	Н	
90	1	4	J. 2	Н	
91	1	4	- s	CH₃	
92	1	4		CH(CH ₃) ₂]
93	1	4	CH₂	CH₃	
94	1	4	Of 12	CH(CH ₃) ₂	_
95	1	3	S	CH(CH ₃) ₂	

Ex No	а	b	х	R ³	R ⁴
96	1	3	CH₂	CH(CH ₃) ₂	
97	2	3		Н	
98	2	4	S	Н	
99	2	3	CU	Н	
100	2	4	CH₂	Н	
101	1	3	_	Н	
102	1	4	S	Н	
103	1	3	СП	Н	
104	1	4	CH₂	Н	
105	1	3	CF ₂	Н	
106	1	4		CH₃	
107	1	4	S	CH(CH ₃) ₂	CH _a
108	1	4	CH	CH₃	CH ₃
109	1	4	CH₂	CH(CH ₃) ₂	CH ₂
110	1	3	S	CH(CH ₃) ₂	
111	1	3	CH₂	CH(CH ₃) ₂	
112	2	3	S	Н	
113	. 2	4	3	Н	
114	2	3	CH ₂	Н	
115	2	4	OH ₂	Н	
116	1	3	S	Н	H ₃ C CH ₂
117	1	4		Н	H ₃ C CH ₂
118	1	3	CH₂	Н	1130 0112
119	1	4	0112	Н	
120	1	3	CF ₂	Н	
121	1	4	01 2	Н	
122	1	4	S	CH₃	
123	1	4	<u> </u>	CH(CH ₃) ₂	
124	1	4	CH₂	CH₃	
125	1	4	O1 12	CH(CH ₃) ₂	
126	1	3	S	CH(CH ₃) ₂	
127	1	3	CH₂	CH(CH ₃) ₂	
128	2	3	S	Н	

Ex	а	b	х	R ³	R⁴
No				Н	
129	2	4		Н	
130	2	3	CH₂	H	
131	2	4			
132	1	3	s	Н	
133	1	4		H	
134	1	3	CH₂	Н	
135	1	4		Н	
136	1	3	CF₂	Н	
137	1	4		Н	
138	1	4	s	CH₃	CH.
139	1	4		CH(CH ₃) ₂	CH₃ H₃C CH
140	1	4	CH ₂	CH₃	H ₃ C
141	1	4	02	CH(CH ₃) ₂	
142	1	3	S	CH(CH ₃) ₂	
143	1	3	CH ₂	CH(CH ₃) ₂	
144	2	3	s	Н	
145	2	4		Н	
146	2	3	CH₂	Н	
147	2	4	0172	Н	
148	1	3	s		
149	1	4			
150	1	4	CH ₂		CH ₂
151	1	3	- CF ₂		
152	1	4	012		
153	1	4	s	CH ₃	
154	1	4		CH(CH ₃) ₂	_
155	1	4	CH ₂	CH₃	
156	1	4	OF12	CH(CH ₃) ₂	
157	1	3	S	CH(CH ₃) ₂	
158	1	3	CH ₂	CH(CH ₃) ₂	
159	2	3		Н	
160	2	4	- S	Н	
161	2	3	CH ₂	Н	

Ex No	а	b	х	R³	R ⁴
162	2	4		Н	
163	1	3		Н	
164	1	4	S	Н	
165	1	3	011	Н	
166	1	4	CH ₂	Н	
167	1	3	05	Н	
168	1	4	CF ₂	Н	
169	1	4		CH₃	
170	1	4	S	CH(CH ₃) ₂	
171	1	4	CLI	CH₃	\ \
172	1	4	CH₂	CH(CH ₃) ₂	CH ₂
173	1	3	S	CH(CH ₃) ₂	
174	1	3	CH ₂	CH(CH ₃) ₂	
175	2	3	S	Н	
176	2	4	3	Н	
177	2	3	CII	Н	
178	2	4	CH₂	Н	
179	1	3		Н	
180	1	4	S	Н	
181	1	3	2	Н	
182	1	4	CH₂	Н	
183	1	3	CE	Н	
184	1	4	CF ₂	Н	
185	1	4	S	CH₃	
186	1	4	3	CH(CH ₃) ₂	
187	1	4	CH₂	CH₃	H ₂ CCCH ₂
188	1	4	CH ₂	CH(CH ₃) ₂	
189	1	3	S	CH(CH ₃) ₂	
190	1	3	CH₂	CH(CH ₃) ₂	
191	2	3	S	Н	
192	2	4		Н	
193	2	3	Cn	Н	
194	2	4	CH₂	Н	

Ex No	а	b	х	R³	R⁴
195	1	3	-	Н	
196	1	4	S	Н	
197	1	3	011	Н	•
198	1	4	CH ₂	Н	
199	1	3	CE	Н	
200	1	4	CF ₂	Н	
201	1	4		CH₃	
202	1	4	S	CH(CH ₃) ₂	H ₃ C CH ₂
203	1	4	CH	CH₃	CH ₂
204	1	4	CH₂	CH(CH ₃) ₂	
205	1	3	S	CH(CH ₃) ₂	
206	1	3	CH ₂	CH(CH ₃) ₂	
207	2	3	0	Н	
208	2	4	S	Н	
209	2	3	CH₂	Н	
210	2	4	CF12	Н	
211	1	3	S	Н	
212	1	4		Н	
213	1	3	CH₂	Н	
214	1	4	0112	Н	
215	1	3	CF ₂	Н	
216	1	4	01 2	Н	
217	1	4	s	CH₃	
218	1	4		CH(CH ₃) ₂	
219	1	4	CH₂	CH₃	CH ₂
220	1	4	0112	CH(CH ₃) ₂	- i
221	1	3	S	CH(CH ₃) ₂	
222	1	3	CH ₂	CH(CH ₃) ₂	
223	2	3	S	Н	
224	2	3	CH₂	Н	
225	2	4	J. 12	Н	
226	1	3	s	Н	
227	1	4	<u> </u>	Н	

Ex No	а	b	X	R ³	R⁴
228	1	3	CH	Н	
229	1	4	CH₂	Н	
230	1	3	CE	Н	CH ₂
231	1	4	CF ₂	Н	
232	1	4	S	CH₃	
233	1	4	3	CH(CH ₃) ₂	
234	1	4	СĦ	CH₃	
235	1	4	CH₂	CH(CH ₃) ₂	
236	1	3	S	CH(CH ₃) ₂	
237	1	3	CH₂	CH(CH ₃) ₂	
238	2	3	S	Н	
239	2	4	3	Н	
240	2	3	CI	Н	
241	2	4	CH₂	. Н	
242	1	3	S	Н	
243	1	4	3	Н	
244	1	3	CH₂	Н	
245	1	4	0112	Н	
246	1	3	CF ₂	Н	
247	1	4	01 2	Н	
248	1	4	S	CH₃	
249	1	4	5	CH(CH ₃) ₂	
250	1	4	CH₂	CH₃	F CH ₂
251	1	4	O1 12	CH(CH ₃) ₂	
252	1	3	S	CH(CH ₃) ₂	
253	1	3	CH₂	CH(CH ₃) ₂	
254	2	3	S	Н	
255	2	4	3	Н	
256	2	3	CH₂	Н	
257	2	4	OF12	Н	
258	1	3	S	Н	
259	1	4	<u> </u>	Н	
260	1	3	CH₂	н	

Ex No	а	b	x	R³	R ⁴
261	1	4		Н	
262	1	3	CE	Н	
263	1	4	CF ₂	Н	CH ₂
264	1	4	s	CH₃	ČI
265	1	4		CH(CH ₃) ₂	
266	1	4	CH₂	CH₃	
267	1	4	CI 12	CH(CH ₃) ₂	
268	1	3	S	CH(CH ₃) ₂	
269	1	3	CH ₂	CH(CH ₃) ₂	
270	2	3	S	Н	
271	2	4	0	Н	
272	2	3	CH₂	Н	
273	2	4	0112	Н	
274	1_	3	s	Н	
275	1	4		Н	
276	1	3	CH₂	Н	
277	1	4	0112	Н	
278	1	3	CF ₂	Н	
279	1	4	01 2	Н	
280	1	4	S	CH ₃	
281	1	4		CH(CH ₃) ₂	
282	1	4	CH₂	CH ₃	CI CH ₂
283	1	4	0112	CH(CH ₃) ₂	
284	1	3	S	CH(CH ₃) ₂	
285	1	3	CH₂	CH(CH ₃) ₂	
286	2	3	s	Н	
287	2	4		Н	
288	2	3	CH ₂	Н	
289	2	4	O1 12	Н	
290	1	3	s	Н	CI
291	1	4		Н	
292	1_	3	CH₂	Н	CH ₂
293	1	4	01 12	Н	

Ex No	а	b	х	R ³	R⁴
294	1	3	CE.	Н	
295	1	4	CF₂	Н	
296	1	4		CH₃	
297	1	4	S	CH(CH ₃) ₂	,
298	1	4	CH	CH₃	
299	1	4	CH₂	CH(CH ₃) ₂	
300	1	3	S	CH(CH ₃) ₂	
301	1	3	CH₂	CH(CH ₃) ₂	
302	2	3	-	Н	
303	2	4	S	Н	
304	2	3	CLI	Н	See .
305	2	4	CH₂	Н	
306	. 1	3	C	Н	
307	1	4	S	Н	
308	1	3	CUI	Н	
309	1	4	CH₂	Н	
310	1	3	CE	Н	
311	1	4	CF ₂	Н	
312	1	4	S	CH₃	
313	1	4	5	CH(CH ₃) ₂	
314	1	4	CH₂	CH₃	H ₃ C CH ₂
315	1	4	0112	CH(CH ₃) ₂	J2
316	1	3	S	CH(CH ₃) ₂	,
317	1	3	CH₂	CH(CH ₃) ₂	
318	2	3	S	Н	
319	2	4		Н	
320	2	3	CH₂	Н	
321	2	4	O1 12	Н	
322	1	3	s	Н	HC_0
323	1	4		Н	H ₃ C
324	1	3.	CH₂	Н	CH ₂
325	1	4	O1 12	Н	
326	1	3	CF ₂	Н	

Ex No	а	b	х	R ³	R ⁴
327	1	4		Н	
328	1	4	C	CH₃	
329	1	4	S	CH(CH ₃) ₂	
330	1	4	CH	CH₃	
331	1	4	CH₂	CH(CH ₃) ₂	
332	1	3	S	CH(CH ₃) ₂	
333	1	3	CH₂	CH(CH ₃) ₂	
334	2	3	S	Н	
335	2	4	3	Н	
336	2	3	CH₂	Н	
337	2	4	CH ₂	Н	
338	1	3	S	Н	
339	1	4	5	Н	
340	1	3	CH ₂	Н	
341	1	4	C/12	Н	
342	1	3	CF ₂	Н	
343	1	4	Ol 2	Н	
344	1	4	S	CH₃	
345	1	4	J	CH(CH ₃) ₂	
346	1	4	CH₂	CH₃	H ₃ C CH ₂
347	1	4	0112	CH(CH ₃) ₂	3- 02
348	1	3	S	CH(CH ₃) ₂	
349	1	3	CH ₂	CH(CH ₃) ₂	
350	2	3	s	Н	
351	2	4		Н	
352	2	3	CH₂	Н	
353	2	4	Ol 12	Н	
354	1	3	S	Н	H ₃ C O
355	1	4	<u> </u>	Н	H ₃ C O
356	1	3	СП	Н	O CH ₂
357	1	4	CH₂	Н	
358	1	3	CF ₂	Н	
359	1	4	OI-2	Н	

Ex No	а	b	Х	R³	R ⁴
360	1	4	S	CH₃	
361	1	4	3	CH(CH ₃) ₂	
362	1	4	СП	CH ₃	
363	1	4	CH₂	CH(CH ₃) ₂	
364	1	3	S	CH(CH ₃) ₂	
365	1	3	CH₂	CH(CH ₃) ₂	
366	2	3	S	Н	
367	2	4	3	Н	
368	2	3	СП	Н	,
369	2	4	CH₂	Н	
370	1	3	S	Н	
371	1	4	3	Н	·
372	1	3	CH	Н	
373	1	4	CH₂	Н	
374	1	3	CE	Н	
375	1	4	CF ₂	Н	
376	1	4	S	CH ₃	CH₃ N
377	1	4	3	CH(CH ₃) ₂	H ₃ C N
378	1	4	CH₂	CH₃	l l /l
379	1	4	O1 12	CH(CH ₃) ₂	CH ₂
380	1	3	S	CH(CH ₃) ₂	
381	1	3	CH ₂	CH(CH ₃) ₂	
382	2	3	S	Н	
383	2	4	3	Н	
384	2	3	CH₂	Н	
385	2	4	O, 12	Н	
386	1	3	S	Н	1 C H
387	1 .	4	3	Н	H ₃ C H
388	1	3	CH₂	Н	CH ₂
389	1	4	01 12	Н	
390	1	3	CE	Н	
391	1	4	CF ₂	Н	
392	1	4	S	CH₃	

Ex No	а	b	х	R³	R⁴
393	1	4		CH(CH ₃) ₂	
394	1	4	СП	CH₃	
395	1	4	CH₂	CH(CH ₃) ₂	
396	1	3	S	CH(CH ₃) ₂	
397	1	3	CH₂	CH(CH ₃) ₂	
398	2	3	S	Н	
399	2	4	3	Н	o.
400	2	3	CH	Н	
401	2	4	CH₂	Н	
402	1	3	c	Н	
403	1	4	S	Н	
404	1	3	CIL	Н	
405	1	4	CH₂	Н	
406	1	3	CE.	Н	
407	1	4	CF ₂	Н	
408	1	4	S	CH₃	
409	1	4	3	CH(CH ₃) ₂	
410	1	4	CH₂	CH ₃	H ₃ C CH ₂
411	1	4	Un ₂	CH(CH ₃) ₂	0
412	1	3	S	CH(CH ₃) ₂	
413	1	3	CH ₂	CH(CH ₃) ₂	
414	2	3	s	Н	
415	2	4	3	Н	
416	2	3	CH₂	Н	
417	2	4	GFI ₂	Н	
418	1	3	S	Н	
419	1	4	3	Н	
420	1	3	CH₂	Н	CH ₂
421	1	4	0112	Н	ĊN
422	1	3	CF ₂	Н	
423	1	4	UF2	Н	
424	1	4	S	CH₃	
425	1	4		CH(CH ₃) ₂	

Ex No	а	b	X	R³	R⁴
426	1	4	CU	CH₃	
427	1	4	CH₂	CH(CH ₃) ₂	
428	1	3	S	CH(CH ₃) ₂	Ì
429	1	3	CH₂	CH(CH ₃) ₂	
450	2	3	S	Н	
451	2	4	9	н .	
452	2	3	CH₂	Н	
453	2	4	ОП2	Н	
454	1	3	c	Н	
455	1	4	S	Н	
456	1	3	CH	Н	
457	1	4	CH₂	Н	
458	1	3	CE.	Н	
459	1	4	CF ₂	Н	
460	1	4		CH₃	
461	1	4	S	CH(CH ₃) ₂	
462	1	4	СП	CH ₃	NC CH ₂
463	1	4	CH₂	CH(CH ₃) ₂	J2
464	1	3	S	CH(CH ₃) ₂	
465	1	3	CH₂	CH(CH ₃) ₂	,
466	2	3	S	Н	
467	2	4		Н	
468	2	3	CH₂	Н	,
469	2	4	O1 12	Н	
470	1	3	S	Н	NC
471	1	4		H	
472	1	3	CH₂	Η,	CH ₂
473	1	4	0112	Н	
474	1	3	CF ₂	Н	
475	1	4	O1 2	Н	
476	1	4	S	CH₃	
477	1	4	3	CH(CH ₃) ₂	
478	1	4	CH ₂	CH₃	

Ex No	а	b	х	R³	R ⁴
479	1	4		CH(CH ₃) ₂	
480	1	3	S	CH(CH ₃) ₂	
481	1	3	CH ₂	CH(CH ₃) ₂	
482	2	3	٠	Н	
483	2	4	S	Н	
484	2	3	CH	Н	
485	2	4	CH₂	Н	
486	1	3	c	Н	
487	1	4	S	Н	
488	1	3	CU	Н	
489	1	4	CH₂	Н	
490	1	3	05	Н	
491	1	4	CF ₂	Н	
492	1	4		CH₃	
493	1	4	S	CH(CH ₃) ₂	
494	1	4	CU	CH₃	CH ₂
495	1	4	CH₂	CH(CH ₃) ₂	
496	1	3	S	CH(CH ₃) ₂	
497	1	3	CH ₂	CH(CH ₃) ₂	
498	2	3	s	Н	
499	2	4	3	Н	
500	2	3	CH	Н	
501	2	4	CH₂	. Н	
502	1	3	S	Н	
503	1	4	3	Н	
504	1	3	СП	Н	CH ₂
505	1	4	CH₂	Н	
506	1	3	CE	Н	
507	1	4	CF ₂	Н	
508	1	4	c	CH₃	
509	1	4	S	CH(CH ₃) ₂	
510	1	4	011	CH₃	
511	1	4	CH₂	CH(CH ₃) ₂	

Ex No	а	b	x	R³	R⁴
512	1	3	S	CH(CH ₃) ₂	
513	1	З	CH₂	CH(CH ₃) ₂	
514	2	3	S	Н	
515	2	4	5	Н	
516	2	3	СП	Н	
517	2	4	CH₂	Н	
518	1	3	S	Н	
519	1	4	3	Н	
520	1	3	СП	Н	
521	1	4	CH₂	Н	
522	1	3	CF ₂	Н	* * -
523	1	4	OF ₂	Н	
524	1	4	S	CH₃	_
525	1	4		CH(CH ₃) ₂	
526	1	4	СП	CH ₃	N CH ₂
527	1	4	CH₂	CH(CH ₃) ₂	2
528	1	3	S	CH(CH ₃) ₂	
529	1	3	CH ₂	CH(CH ₃) ₂	
530	2	3	S	Н	
531	2	4	3	Н	
532	2	3	CH₂	Н	
533	.2	4	C1 12	Н	
534	1	3	s	Н	
535	1	4		Н	CH ₂
536	1	3	CH₂	H	CH ₂
537	1	4	0112	Н	
538	1	3	CF ₂	Н	
539	1	4	Cl 2	Н	
540	1	4	S	CH₃	
541	1	4	3	CH(CH ₃) ₂	
542	1	4	СП	CH₃	
543	1	4	CH₂	CH(CH ₃) ₂	
544	1	3	S	CH(CH ₃) ₂	

Ex No	a	b	х	R ³	R⁴
545	1	3	CH₂	CH(CH ₃) ₂	
546	2	3	S	Н	
547	2	4	0	Н	
548	2	3	CH ₂	Н	
549	2	4	O1 12	Н	
550	1	3	S	Н	
551	1	4	<u> </u>	Н	
552	1	3	CH₂	Н	
553	1	4	O1 12	Н	
554	1	3	CF ₂	Н	
555	1	4	CI*2	Н	
556	1	4	S	CH₃	
557	1	4	3	CH(CH ₃) ₂	Ŋ
558	1	4	CH₂	CH ₃	CH ₂
559	1	4	OI 12	CH(CH ₃) ₂	2
560	1	3	S	CH(CH ₃) ₂	
561	1	3	CH₂	CH(CH ₃) ₂	
562	2	3	S	Н	
563	2	4	J	Н	
564	2	3	CH₂	Н	
565	2	4	O1 12	Н	
566	1	3	s	Н	
567	1	4	<u> </u>	Н	CH ₂
568	1	3	CH₂	Н	N ²
569	1	4	0112	Н	
570	1	3	CF₂	Н	
571	1	4	012	Н	
572	1	4	s	CH ₃	
573	1	4		CH(CH ₃) ₂	
574	1	4	CH₂	CH₃	
575	1	4	O1 12	CH(CH ₃) ₂	
576	1	3	S	CH(CH ₃) ₂	
577	1	3	CH ₂	CH(CH ₃) ₂	

Ex No	а	b	х	R³	R⁴
578	2	3	S	Н	
579	2	4	3	Н	
580	2	3	C _	Н	
581	2	4	CH₂	Н	
582	1	3	S	Н	
583	1	4	3	Н	
584	1	3	C 1	Н	
585	1	4	CH₂	Н	
586	1	3	CE	Н	
587	1	4	CF₂	Н	
588	1	4	S	CH₃	/\
589	1	4	8	CH(CH ₃) ₂	CH ₂
590	1	4	CU	CH₃	
591	1	4	CH₂	CH(CH ₃) ₂	CH₃
592	1	3	S	CH(CH ₃) ₂	
593	1	3	CH₂	CH(CH ₃) ₂	
594	2	3	S	Н	
595	2	4	3	Н	
596	2	3	CH₂	Н	
597	2	4	GH ₂	Н	
598	1	3	S	Н,	// \
599	1	4		Н	CH ₂
600	1	3	CH ₂	Н	
601	1	4	0112	Н	
602	1	3	CF₂	Н	
603	1	4	Cl 2	Н	
604	1	4	S	CH₃	
605	1	4		CH(CH ₃) ₂	
606	1	4	CH₂	CH₃	
607	1	4	O1 12	CH(CH ₃) ₂	
608	1	3	S	CH(CH ₃) ₂	
609	1	3	CH₂	CH(CH ₃) ₂	
610	2	3	S	Н	,

Ex No	а	b	х	R ³	R⁴
611	2	4		Н	
612	2	3	CH	Н	
613	2	4	CH₂	Н	
614	1	3	S	Н	
615	1	4		Н	
616	1	3	CH	Н	
617	1	4	CH₂	Н	
618	1	3	C.E.	Н	
619	1	4	CF ₂	Н	
620	1	4		CH₃	
621	1	4	S	CH(CH ₃) ₂	/
622	1	4	CU	CH₃	S CH ₂
623	1	4	CH₂	CH(CH ₃) ₂	
624	1	3	S	CH(CH ₃) ₂	
625	1	3	CH ₂	CH(CH ₃) ₂	
626	2	3	S	Н	
627	2	4	3	Н	
628	2	3	CH ₂	Н	
629	2	4	0112	Н	
630	1	3	s	Н	
631	1	4	3	Н	
632	1	3	CH₂	Н	CH ₂
633	1	4	O1 12	Н	
634	1	3	CF₂	Н	
635	1	4	01 2	Н	
636	1	4	S	CH₃	
637	1	4		CH(CH ₃) ₂	
638	1	4	CH₂	CH₃	
639	1	4	O1 12	CH(CH ₃) ₂	
640	1	3	S	CH(CH ₃) ₂	
641	1	3	CH₂	CH(CH ₃) ₂	
642	2	3	S	Н	
643	2	4	9	Н	

Ex No	а	b	х	R³	R⁴
644	2	3	CH ₂	Н	
645	2	4	CI12	Н	
646	1	3	\$	Н	
647	1	4	3	Н	
648	1	3	CH₂	Н	
649	1	4	O1 12	Н	
650	1	3	CF ₂	Н	
651	1	4	OI-2	Н	
652	1	4	S	CH(CH ₃) ₂	
653	1	4	. CH₂	CH₃	
654	1	4	O1 12	CH(CH ₃) ₂	CH ₂
655	1	3	S	CH(CH ₃) ₂	
656	1	3	CH₂	CH(CH ₃) ₂	
657	2	3	S	Н	
658	2	4	3	Н	
659	2	3	CH₂	Н	
660	2	4	01.12	Н	
661	1	3	s	Н	
662	1	4		Н	
663	1	3	CH₂	Н	
664	1	4	0, 12	Н	
665	1	3	CF ₂	Н	
666	. 1	4	Ci 2	Н	
667	1	4	s	CH₃	
668	1	4		CH(CH ₃) ₂	
669	1	4	CH₂	CH₃	N CH ₂
670	1	4	O1 12	CH(CH ₃) ₂	. 2
671	1	3	S	CH(CH ₃) ₂	
672	1	3	CH ₂	CH(CH ₃) ₂	
673	2	3	s	Н	
674	2	4		Н	
675	2	3	CH₂	Н	
676	2	4		Н	

Ex No	а	b	х	R ³	R ⁴
677	1	3	S	Н	
678	1	4	CH ₂	Н	
679	1	3	CF	Н	
680	1	4	CF₂	Н	
681	1	4	S	CH₃	. N
682	1	4	3	CH(CH ₃) ₂	
683	1	4	CH₂	CH₃	CH ₂
684	1	4	CH ₂	CH(CH ₃) ₂	0112
685	1	3	S	CH(CH ₃) ₂	
686	1	3	CH ₂	CH(CH ₃) ₂	
687	2	3	S	Н	
688	2	4	CH ₂	H	
689	1	3	s	Η	
690	1	4	3	Н	
691	1	3	CH₂	Н	
692	1	4	Ol 12	Н	
693	1	3	CF ₂	H	
694	1	4	Oi 2	H	
695	1	4	S	CH₃	N N
696	1	4		CH(CH ₃) ₂	
697	1	4	CH ₂	CH₃	CH ₂
698	1	4	0112	CH(CH ₃) ₂	
699	1	3	S	CH(CH ₃) ₂	
700	1	3	CH₂	CH(CH ₃) ₂	
701	2	3	s	Н	
702	2	4	0	Н	
703	2	3	CH₂	Н	
704	2	4	OI 12	Н	
705	1	3	S	Н	Н
706	1	4	3	Н	
707	1	3	CH	Н	<u></u>
708	1	4	CH₂	Н	CH ₂
709	1	3	CF ₂	Н	_

Ex No	а	b	х	R³	R⁴
710	1	4		Н	
711	1	4	c	CH₃	
712	1	4	S	CH(CH ₃) ₂	
713	1	4	011	CH ₃	
714	1	4	CH₂	CH(CH ₃) ₂	
715	1	3	S	CH(CH ₃) ₂	
716	1	3	CH₂	CH(CH ₃) ₂	
717	2	3	٠	Н	
718	2	4	S	Н	
719	2	3	CIL	Н	•
720	2	4	CH₂	Н	
721	1	3	C	Н	
722	1	4	S	Н	
723	1	3	CU	Н	
724	1	4	CH₂	Н	
725	1	3	C.E.	Н	
726	1	4	CF ₂	Н	
727	1	4	S	CH₃	
728	1	4]	CH(CH ₃) ₂	
729	1	4	CH₂	CH₃	CH ₂
730	1	4	GH ₂	CH(CH ₃) ₂	
731	1	3	S	CH(CH ₃) ₂	
732	1	3	CH₂	CH(CH ₃) ₂	
733	2	3	S	Н	
734	2	4		Н	
735	2	3	 CH₂	Н	
736	2	4	J1 12	н	
737	1	3	S	Н	
738	1	3	CH₂	Н	
739	1	4	J1 12	Н	CH₂
740	1	3	CF ₂	Н	
741	1	4	01 2	Н	
742	1	4	S	CH₃	

Ex No	а	b	х	R³	R⁴
743	1	4		CH(CH ₃) ₂	
744	1	4	CH	CH₃	
745	1	4	CH₂	CH(CH ₃) ₂	
746	1	3	S	CH(CH ₃) ₂	
747	1	3	CH₂	CH(CH ₃) ₂	
748	2	3	S	Н	
749	2	4	5	Н	
750	2	3	2	Н	
751	2	4	CH₂	Н	
752	1	3	S	Н	
753	1	4	S	н	
754	1	3	CII	Н	
755	1	4	CH₂	Н	
756	1	3	CE	Н	
757	1	4	CF ₂	Н	
758	1	4	S	CH ₃	⇒ NO
759	1	4	0	CH(CH ₃) ₂	NO ₂
760	1	4	CH₂	CH₃	CH.
761	1	4	OH ₂	CH(CH ₃) ₂	22
762	1	3	S	CH(CH ₃) ₂	
763	1	3	CH₂	CH(CH ₃) ₂	
764	2	3	S	H	
765	2	4	3	Н	
766	2	3	CH₂	Н	
767	2	4	OI 12	Н	
768	1	3	S	Н	
769	1	4	<u> </u>	Н	
770	1	3	СП	Н	· ·
771	1	4	CH₂	Н	
772	1	3	CF	Н	
773	1	4	CF ₂	Н	
774	1	4	C	CH₃	
775	1	4	S	CH(CH ₃) ₂	

Ex No	а	b	х	R ³	R⁴
776	1	4	СП	CH₃	
777	1	4	CH₂	CH(CH ₃) ₂	
778	1	3	S	CH(CH ₃) ₂	
779	1	3	CH₂	CH(CH ₃) ₂	
780	2	3	s	Н	
781	2	4		Н	
782	2	3	CH₂	Н	
783	2	4	CH ₂	Н	
784	1	3	S	Н	
785	1	4	3	Н	
786	1	3	CH	Н	
787	1	4	CH₂	Н	
788	1	3	C.F.	Н	
789	1	4	CF ₂	Н	
790	1 .	4	S	CH₃	
791	1	4	3	CH(CH ₃) ₂	
792	1	4	СП	CH₃	CH ₂
793	1	4	CH₂	CH(CH ₃) ₂	
794	1	3	S	CH(CH ₃) ₂	
795	1	3	CH ₂	CH(CH ₃) ₂	
796	2	3	6	Н	
797	2	4	S	Н	
798	2	3	CH	Н	
799	2	4	CH₂	Н	

TABLE 4

Example No	Х	R	Example No	Х	R
800	S	۲۸	841	S	
801	CH ₂		842	CH₂	
802	S	\wedge	843	S	
803	CH ₂		844	CH₂	
804	S	\wedge	845	S	
805	CH₂	i N	846	CH₂	, N
806	S	Į.	847	S	
807	CH ₂	~~~		CH ₂	~~~~~
808	S	Y	848	S	
809	CH ₂	◯ 'n¬	849	CH₂	√'n,
810	s	\sim	850	S	
811	CH ₂	~~~~	851	CH ₂	~~~i~
812	S		852	S	
813	CH ₂	L, N,	853	CH ₂	
814	S		854	S	~~
815	CH ₂		855	CH ₂	
816	S	HO~\N	856	S	0
817	CH₂	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	857	CH ₂	
818	S		858	S	^ ₉
819	CH₂		859	CH₂	
820	S	$\overline{\Delta}$	860	S	
821	CH₂		861	CH ₂	
822	S	4	862	S	
823	CH ₂	` ` <u>`</u> `	863	CH ₂	
824	S		864	S	(Sa)
825	CH ₂		865	CH ₂	
826	S		866	S	N N
827	CH₂		867	CH ₂	
828	CH₂		868	S	
829			869	CH ₂	~~ <u>~</u>
830	S	\triangle	870	S	. 1
831	CH₂	Liv	871	CH₂	
<u> </u>			60		

832	S	872	S	9
833	CH₂	873	CH₂	
834	S	874	S	~
835	CH₂	875	CH₂	
836	S	876	S	
837	CH₂	877	CH₂	
838	S			
839	CH₂			

TABLE 5

Example No	n	Х	R	Example No	n	Х	R
878	3	S	\o\\	933	3	S	Cl
879	4			934	4		
880	3	CH₂	N_	935	3	CH ₂	✓N
881	4		п	936	4		н
882	3	S		937	3	S	
883	4			938	4		
884	3	CH₂	CI N	939	3	CH ₂	
885	4		H	940	4	_	CI H
886	3	S		941	3	S	
887	4		N	942	4		I I I
888	3	CH ₂	н	943	3	CH₂	н
889	4			944	4		
L					L:		

900	3	S	$\overline{}$	945	3	S	F. A
890		3		343	١	0	
891	4				ŀ	CH ₂	
892	3	CH ₂	H	046	_	CITIZ	Ĥ
893	4			946	4		
894	3	S	O ₂ N	947	3	s	
895	4		ادلا	948	4		
896	3	CH ₂	~ , N ,	949	3_	CH₂	0 ₂ N
897	4		"	950	4		
898	3	S	1	951	3	S	
899	4		>	952	4		ادلالا
900	3	CH ₂		953	3	CH₂	/ N/
901	4	-	M	954	4		
902	3	S	1	955	3	S	
903	4			956	4		
904	3	CH ₂		957	3	CH₂	~0~~N
905	4	0.12	$\wedge \wedge \wedge \wedge \wedge \wedge$	958	4		н
906	3	S	CI.	959	3	S	ÇI
	4	3		960	4	•	
907				961	3	CH ₂	
908	3	CH ₂	CI , H,	962	4	O1 12	
909	4			902			CI V N
910	3	S	C	963	3	S	
911	4			964	4		
912	3	CH₂	CI \\	965	3	CH ₂	
913	4]	• • • • • • • • • • • • • • • • • • • •	966	4		CI
914	3	S	7-9	967	3	S	
915	4	1		968	4		د لما ا
916	3	CH ₂		969	3	CH₂	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
917	4	1	l My	970	4		
918	3	S	05.0	971	3	S	
919	4	1	CF ₃	972	4		
920	3	CH ₂	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	973	3	CH ₂	1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0	4	~ '' ²	ļ H	974	4	1	H
921	3	S		975	4	s	
922	4	┧		976	1 🐪		
923	3	CH ₂		977	3	CH ₂	CF ₃
	4	\(\begin{array}{c} \	H	978_	3	1	ј " н
924		S		979	3	S	MeS
925	3	- J		980	3 4	1 ~	,,,,,
926		CH ₂	1 \	981		CH ₂	4
927	3	_		982	3	1 31.12	
928	4		NA.	983	3	s	MeO
929	3		Me		1	٦ ١	IVIGO
930	4		4	984	3	CH ₂	1
931	3	_		985			1
932	4		<u></u>	986	4		1

Example	n	Χ	R	Example	n	Х	R
No				No		, ,	
987	3	S	\o\\\	1044	3	S	CI
988	4			1045	4		
989	3	CH₂	~ N√	1046	3	CH ₂	
990	4		п	1047	4	-	H
991	4	S		1048	3	S	
992				1049	4		
993	3	CH₂	CI N	1050	3	CH ₂	
994	4		П	1051	4		CI H
995	3	S		1052	3	S	
996	4			1053	4		
			N_				
997	3	CH₂	ri .	1054	3	CH ₂	н
998	4			1055	4	_	
999	3	S		1056	3	S	F_
1000	4				d		
1001	3	CH₂	N			CH ₂	N/
1002	4		П	1057	4		н
1003	3	S	O ₂ N	1058	3	S	
1004	4			1059	4		
1005	3	CH₂	~_N√	1060	3	CH ₂	O ₂ N N
1006	4			1061	4		- н
1007	3	S		1062	3	S	
1008	4		>	1063	4		
1009	3	CH ₂		1064	3	CH ₂	
1010	4		✓ H✓	1065	4	<u></u>	н
1011	3	S		1066	3	S	
1012	4			1067	4	5	
1013	3	CH ₂		1068	3	CH₂	
1014	4			1069	4	O. 12	H
			Н		7		
}							
							·

1015	3	S	CI	1070	3	S	ÇI
1016	4			1071	4	1	
1017	3	CH ₂	CI	1072	3	CH₂	
1018	4		П	1073	4		
1019	3	S	, CI	4074			Cr V N
1020	4	3		1074	3	S	
1020	3	CI		1075	4		
1021		CH₂	CI , H,	1076	3	CH ₂	
	4	 		1077	4		ČI
1023	3	S	7-9	1078	3	S	
1024	4			1079	4		
1025	3	CH ₂		1080	3	CH₂	Ν̈́ν
1026	4		H,	1081	4		
1027	3	S	05/0	1082	3	S	
1028	4		CF ₃	1083	4		
1029	3	CH ₂	NA NA	1084	3	CH₂	
1030	4	_	Н	1085	4	01.12	l , H,
1031	3	S		1086	3	S	
1032	4			1087	4		
1033	3	CH₂	V N N N N N N N N N N N N N N N N N N N	1088	3	CH₂	CF ₃
1034	4		н	1089	4		° H
1035	3	S		1090	3	S	MeS
1036	4			1091	4	-	
1037	3	CH₂	√ 0√	1092	3	CH ₂	
1038	4			1093	4		
1039	3	S	Me	1094	3	S	MeO
1040	4			1095	4		
1041	3	CH ₂		1096	3	CH ₂	
1042	4			1097	4	2	
-							

TABLE 7

Example	n	X	R	Francis	T NI		
No	"	^	, N	Example	N	X	R
1098	3	s		No	<u> </u>		
1098	4	۱ ٥	1 / 4	1145	3	S	CI
		-		1146	4		
1100	3	CH₂		1147	3	CH₂	CI
1101	4		l My	. 1148	4		н
1102	3	S	ÇI	1149	3	S	CL A
1103	4	1		1150	4		
1104	3	CH ₂	1 [] .	1151	3	CH ₂	
1105	4	1 -	CI	1152	4	O1 12	H
1106	3	S	H				
1107	4) S.	'\	1153	3	S	O ₂ N
'''	*	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1154	4		
1108	3	CH ₂	H	1155	3	CH	, H,
1109	4	1		1156	4	CH ₂	
1110	3	S		1157	3	S	
1111	4			1137	٦	3	
1112	3	CH ₂				CH₂	
1113	4	2	Ĵ.	1158	4	OI 12	H
1114	3	S		1159	3	S	
1115	4			1160	4	ં	
1116	3	CH ₂	O ₂ N / N	1161	3	CH₂	
1117	4	02	H H	1162	4	CH ₂	I A I
1118	3	S		1163			CI
1119	4				3	S	
1120	3	CH ₂		1164 1165	4		
1121	4	01.12	CI H		3	CH ₂	Y N'
1122	3	S	~0	1166	4		F
1123	4	U	ó I	1167	3	S	Ci
1124	3	CH₂		1168	4		
1125	4	O1 12		1169 1170	3 4	CH₂	~ N, 1
20	•		, N	1170	4		
1125a	2	S		44-4			
11258	3	3	CI	1171	3	S	CI
		<u></u>		1172	4		ادلما
1127 1128	3	CH₂		1173	_3	CH ₂	N/
1120	4		l H l	1174	4	1	1.
	-	1			Ì		
					ļ	l	.
1129	3	S		1175	3	s	.0. ^
1130	4		1	1176	4	٦	
1131	3	CH ₂	O ₂ N N	1177	3	CH ₂	
1132	4		* H	1178	4	O1 12	, H , I
1133	3	S		1179	3	S	
1134	4			1180	4	3	$\gamma \gamma - 1$
1135	3	CH ₂	~~~\\	1181	3		
	4		J H -	1182	4	CH ₂	, H
1136		_]		1102	7	1	
		 -					

1137	3	S		1183	3	S	
1138	4			1184	4		
1139	3	CH ₂		1185	3	CH ₂	M → H
1140	4		'	1186	4		
1141	3	S	CI				
1142	7						
1143	3	CH ₂	CI N				
1144	4		H				

TABLE 8

Example	n	Х	·R	Example	n	Х	R
No				No			
1187	3	S	79	1235	3	S	CI
1188	4			1236	4		
1189	3	CH₂		1237	3	CH ₂	CI N
1190	4		→ H →	1238	4	_	н
1191	3	S	ÇI	1239	3	S	CI
1192	4			1240	4		
1193	3	CH ₂		1241	3	CH ₂	N N
1194	4		CI H	1242	4	_	н
1405	_		H	4040			0.11
1195	3	S		1243	3	S	O ₂ N
1196	4		L N	1244	4		L N
1197	3	CH ₂	н	1245	3	CH ₂	H
1198	4			1246	4	_	
1199	3	S		1247	3	S	
1200	4						
1201	3	CH₂	Ņ			CH ₂	F N
1202	4			1248	4		н
1203	3	S		1249	3	S	
1204	4			1250	4		
1205	3	CH₂	O ₂ N N	1251	3	CH ₂	
1206	4	-	* .11	1252	4	-) CI
l .							
L							

1207	3	S		1253	3	S	
1208	4			1254	4	1	
1209	3	CH₂	CI	1255	3	CH ₂	
1210	4		CI H	1256	4		l I A
1211	3	S	/-Q	1257	3	s	, Cl
1212	4		人人	1258	4		
1213	3	CH₂		1259	3	CH ₂	
1214	4	1		1260	4	0,12	H
			آ ا	1200	-		
1215	3	s	1	1261	3	S	Cl
1216	4		CL	1262	4		
1217	3	CH ₂		1263	3	CH ₂	$\langle \mathcal{A}_{N} \lambda \rangle$
1218	4	_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1264	4	O1 12	"
		İ	J H	,,	'		
1219	3	s		1265	3	S	0 0
1220	4			1266	4	0	
1221	3	CH ₂	O ₂ N N	1267	3	CH ₂	
1222	4		T H	1268	4	O/ 12	H
1223	3	S		1269	3	S	
1224	4			1270	4	J	
1225	3	CH ₂	T H	1271	3	CH₂	
1226	4		, h	1272	4	0112	Ĥ
1227	3	S					
1228	4	0		1273	3	S	
1229	3	CH		1274	4		اللاا
1230	4	CH₂	Y Y '	1275	3	CH ₂	
1231	3	S	, CI	1276	4		''
1232	ادا	3					
1232	3	CI					
1235	4	CH₂	CI A H,				
1200			·				

EXAMPLE 1277

${\it 1-[2-(S)-Amino-4-(cyclohexylmethylamino)} but an oyl] thiomorpholine dihydrochloride$

A. 1-[2-(S)-N-(tert-Butyloxycarbonyl)amino-4-(9-

fluorenylmethyloxycarbonylamino)-butanoyl]thiomorpholine

1-[2-(S)-N-(tert-Butyloxycarbonyl)amino-4-(9-fluorenylmethyloxycarbonylamino)-butanoic acid (1.0g, 2.27mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 20mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (461mg, 3.41mmol), water-soluble carbodiimide (521mg, 2.72mmol), thiomorpholine (281mg, 2.72mmol) and triethylamine (340mg, 3.4mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a white solid identified as 1-[2-(S)-N-(tert-butyloxycarbonyl)amino- 4-(9-fluorenylmethyloxycarbonylamino)-butanoyl]thiomorpholine (516mg, 0.98mmol, 43%).

B. 1-[2-(S)-N-(tert-Butyloxycarbonyl)-4-amino)-butanoyl]thiomorpholine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)amino- 4-(9-fluorenylmethyloxycarbonylamino)-butanoyl thiomorpholine (500mg, 0.95mmol) was dissolved in tetrahydrofuran (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as 1-[2-(S)-N-(*tert*-butyloxycarbonyl)-4-amino)-butanoyl]thiomorpholine (162mg, 0.54mmol, 56%).

C. 1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-amino-4-(cyclohexylmethylamino)butanoyl] thiomorpholine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-4-amino)-butanoyl]thiomorpholine (41mg, 0.135mmol) was dissolved in dichloroethane (10mL). To this solution was added cyclohexanecarboxaldehyde (15mg, 0.135mmol). After 30mins sodium triacetoxyborohydride (32mg, 0.15mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to give a colourless oil identified as 1-[2-(S)-N-(*tert*-butyloxycarbonyl)-amino-4-(cyclohexylmethylamino)butanoyl] thiomorpholine (25mg, 0.063mmol, 47%).

D. 1-[2-(S)-Amino-4-(cyclohexylmethylamino)butanoyl]thiomorpholine dihydrochloride

1-[2-(S)-N-(tert-Butyloxycarbonyl)-amino-4-

(cyclohexylmethylamino)butanoyl]thiomorpholine (25mg, 0.063mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[2-(S)-amino-4-(cyclohexylmethylamino)butanoyl]thiomorpholine dihydrochloride (23mg, 0.063mmol, 100%).

 $[M+H]^{+} = 300.3$

EXAMPLE 1278

1-[2-(\$)-Amino-4-((quinolin-2-ylmethyl)amino)butanoyl]thiomorpholine dihydrochloride

A. 1-[2-(\$)-N-(*tert*-Butyloxycarbonyl)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl thiomorpholine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-4-amino)-butanoyl]thiomorpholine (41mg, 0.135mmol) was dissolved in 1,2-dichloroethane (10mL). To this solution was added 2-quinolinecarboxaldehyde (32mg, 0.15mmol). After 30mins sodium triacetoxyborohydride (36mg, 0.17mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to give a colourless oil identified as 1-[2-(S)-N-(*tert*-butyloxycarbonyl)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl thiomorpholine (32mg, 0.072mmol, 53%).

$\textbf{B. 1-[2-(S)-Amino-4-((quino lin-2-ylmethyl)amino)butanoyl]} thiomorpholine \ dihydrochloride$

1-[2-(S)-N-(tert-Butyloxycarbonyl)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl] thiomorpholine (12mg, 0.027mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[2-(S)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl]thiomorpholine dihydrochloride (11.3mg, 0.027mmol, 100%).

 $[M+H]^{+} = 345.3$

EXAMPLE 1279

1-[2-(S)-Amino-4-(cyclohexylmethylamino)butanoyl]piperidine dihydrochloride

A. 1-[2-(S)-N-(*tert*-Butyloxycarbonyl)amino-4-(9-fluorenylmethyloxycarbonylamino)-butanoyl] piperidine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)amino-4-(9-fluorenylmethyloxycarbonylamino)-butanoic acid (947mg, 2.154mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 20mL). To this

solution at 0°C were added 1-hydroxybenzotriazole hydrate (436mg, 3.2mmol), water-soluble carbodiimide (495g, 2.58mmol), piperidine (220g, 2.58mmol) and triethylamine (320mg, 3.2mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a white solid identified as 1-[2-(S)-N-(*tert*-butyloxycarbonyl)amino- 4-(9-fluorenylmethyloxycarbonylamino)-butanoyl]piperidine (556mg, 1.1mmol, 51%).

B. 1-[2-(S)-N-(tert-Butyloxycarbonyl)-4-amino)-butanoyl]piperidine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)amino- 4-(9-fluorenylmethyloxycarbonylamino)-butanoyl] piperidine (540g, 1.1mmol) was dissolved in tetrahydrofuran (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as 1-[2-(S)-N-(*tert*-butyloxycarbonyl)-4-amino)-butanoyl] piperidine (171mg, 0.6mmol, 57%).

C. 1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-amino-4-(cyclohexylmethylamino)butanoyl] piperidine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-4-amino)-butanoyl] piperidine (43mg, 0.15mmol) was dissolved in 1,2-dichloroethane (20mL). To this solution was added cyclohexanecarboxaldehyde (17mg, 0.15mmol). After 30mins sodium triacetoxyborohydride (36mg, 0.17mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to give a colourless oil identified as 1-[2-(S)-N-(*tert*-butyloxycarbonyl)-amino-4-(cyclohexylmethylamino)butanoyl]piperidine (38mg, 0.1mmol, 66%).

D. 1-[2-(S)-Amino-4-(cyclohexylmethylamino)butanoyl] piperidine dihydrochloride

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-amino-4-(cyclohexylmethylamino)butanoyl]piperidine (38mg, 0.1mmol) was dissolved in 4M HCl/dioxan (2mL). After 1h at room

temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[2-(S)-amino-4-(cyclohexylmethylamino)butanoyl] piperidine dihydrochloride (33mg, 0.093mmol, 93%).

 $[M+H]^{+} = 282.3$

EXAMPLE 1280

1-[2-(S)-Amino-4-((quinolin-2-ylmethyl)amino)butanoyl]piperidine dihydrochloride

A. 1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl] piperidine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-4-amino)-butanoyl] piperidine (24mg, 0.15mmol) was dissolved in 1,2-dichloroethane (25mL). To this solution was added 2-quinolinecarboxaldehyde (24mg, 0.15mmol). After 30mins sodium triacetoxyborohydride (36mg, 0.17mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to give a colourless oil identified as 1-[2-(S)-N-(*tert*-butyloxycarbonyl)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl] piperidine (35mg, 0.082mmol, 55%).

B. 1-[2-(S)-Amino-4-((quinolin-2-ylmethyl)amino)butanoyl] piperidine dihydrochloride

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl] piperidine (35mg, 0.082mmol) was dissolved in 4M HCl/dioxan (2mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised

from water to give a white solid identified as 1-[2-(S)-amino-4-((quinolin-2-ylmethyl)amino)butanoyl] piperidine dihydrochloride (26mg, 0.065mmol, 79%).

 $[M+H]^{+} = 327.3$

EXAMPLE 1281

3-Fluoro-1-[2-(S)-amino-4-(cyclohexenylmethylamino)butanoyl]pyrrolldine dihydrochloride

A. 1-(tert-Butyloxycarbonyl)-3-fluoropyrrolidine

N-(*tert*-Butyloxycarbonyl)-3-hydroxypyrrolidine (21.0g, 10.7mmol) was dissolved in CH₂Cl₂ (30ml). (Diethylamino)sulphur trifluoride (1.72g, 10.7mmol) was added to this solution at -78 °C. The mixture was stirred for 18 hours at -78 °C to room temperature then the reaction mixture was carefully poured into sat. NaHCO₃ (100ml) and stirred for 15min and extracted with CH₂Cl₂. The organic extract was washed with water and brine, dried (Na₂SO₄) and evaporated *in vacuo* to give an orange oil. The residue was purified by flash chromatography (eluant: 28% ethyl acetate, 72% pet. ether 60-80) to give a colourless oil identified as 1-(*tert*-butyloxycarbonyl)-3-fluoropyrrolidine (1.14g, 5.34mmol, 50%).

B 3-Fluoropyrrolidine hydrochloride

1-(*tert*-Butyloxycarbonyl)-3-fluoropyrrolidine (1.14g, 5.34mmol) was dissolved in 4M HCl/dioxan (30ml). The mixture was stirred for 1 hour at room temperature then the solvent was removed *in vacuo* to give an off-white solid identified as 3-fluoropyrrolidine hydrochloride (640mg, 5.2mmol, 95%).

C. 3-Fluoro-1-[2-(S)-N-(*tert*-butyloxycarbonyl)amino-4-(9-fluorenylmethyloxycarbonylamino)-butanoyl] pyrrolidine

1-[2-(S)-N-(*tert*-Butyloxycarbonyl)amino-4-(9-fluorenylmethyloxycarbonylamino)-butanoic acid (950mg, 2.15mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 20mL). To this

solution at 0°C were added 1-hydroxybenzotriazole hydrate (395mg, 2.6mmol), water-soluble carbodiimide (572mg, 3.0mmol), 3-fluoropyrrolidine hydrochloride (270g, 2.15mmol) and triethylamine (320mg, 3.2mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a white solid identified as 3-fluoro1-[2-(S)-N-(*tert*-butyloxycarbonyl)amino- 4-(9-fluorenylmethyloxycarbonylamino)-butanoyl]pyrrolidine (808mg, 1.58mmol, 73%).

D. 3-Fluoro-1-[2-(S)-N-(tert-butyloxycarbonyl)-4-amino)-butanoyl]pyrrolidine

3-Fluoro-1-[2-(S)-N-(*tert*-butyloxycarbonyl)aminofluorenylmethyloxycarbonylamino)-butanoyl] pyrrolidine (800mg; 1.58mmol) was dissolved in tetrahydrofuran (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as 3-fluoro-1-[2-(S)-N-(*tert*-butyloxycarbonyl)-4-amino)-butanoyl] pyrrolidine (316mg, 1.04mmol, 66%).

E. 3-Fluoro-1-[2-(S)-N-(tert-butyloxycarbonyl)-amino-4-(cyclohexenylmethylamino)butanoyl] pyrrolidine

3-Fluoro-1-[2-(S)-N-(*tert*-butyloxycarbonyl)-4-amino)-butanoyl] pyrrolidine (150mg, 0.52mmol) was dissolved in methanol (20mL). To this solution was added 3-cyclohexenecarboxaldehyde (63mg, 0.57mmol). After 30mins sodium triacetoxyborohydride (220mg, 1.04mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to give a colourless oil identified as 3-fluoro-1-[2-(S)-N-(*tert*-butyloxycarbonyl)-amino-4-(cyclohexenylmethylamino)butanoyl]pyrrolidine (176mg, 0.46mmol, 77%).

F. 3-Fluoro-1-[2-(S)-amino-4-(cyclohexenylmethylamino)butanoyl] pyrrolidine dihydrochloride

3-Fluoro-1-[2-(S)-N-(tert-butyloxycarbonyl)-amino-4-

(cyclohexenylmethylamino)butanoyl]pyrrolidine (176mg, 0.46mmol) was dissolved in 4M HCl/dioxan (2mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 3-fluoro-1-[2-(S)-amino-4-(cyclohexenylmethylamino)butanoyl] pyrrolidine dihydrochloride (140mg, 0.39mmol, 963%).

 $[M+H]^{+} = 284.3$

EXAMPLE 1282

1-[2-(S)-Amino-4-(N-methyl-N-(2-methylbenzyl)amino)butanoyl]piperidine dihydrochloride

A. N-(tert-Butyloxycarbonyl)-L-homoserine lactone

L-Homoserine lactone 1.76g, 12.8mmol) was dissolved in DMF (30 mL). This solution was cooled to 0 °C, triethylamine (1.41, 14.1 mmol) di-tert-butyl dicarbonate(3.35g, 15.35 mmol) was added. After 18 hours at room temperature the solvent was evaporated *in vacuo*, the residue was taken up in dichloromethane (200 mL). This solution was washed with 1M KHSO₄ (2 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a white solid, recrystallised from EtOAc/pet.ether to give a white solid identified as *N*-(*tert*-butyloxycarbonyl)–L-homoserine lactone (2.25mg, 11.2mmol, 87%).

B. 1-[2-(\$)-(N-(tert-Butyloxycarbonyl)amino)-4-hydroxybutanoyl]piperidine

N-(*tert*-Butyloxycarbonyl)–L-homoserine lactone (100mg, 0.5mmol) was dissolved in tetrahydrofuran (30 mL). Piperidine (42mg, 0.5mmol) was added. After 72 hours at

room temperature the reaction mixture was diluted with ethyl acetate (150 mL). This solution was washed with water (1 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil identified as 1-[2-(S)-(*N*-(tert-butyloxycarbonyl)amino)-4-hydroxybutanoyl]piperidine (142mg, 0.5mmol, 100%).

C. 1-[2-(S)-(N-(tert-Butyloxycarbonyl)amino)-4-oxobutanoyl] piperidine

1-[2-(S)-(*N*-(*tert*-Butyloxycarbonyl)amino)-4-hydroxybutanoyl] piperidine (142mg, 0.5mmol) was dissolved in dichloromethane (50 mL). Dess-Martin periodinane (232mg, 0.5mmol) was added. After 1 hour at room temperature the reaction mixture was diluted with ethyl acetate (150 mL). This solution was washed with water (1 x 20ml) and brine (1 x 20ml), dried (Na₂SO₄) and evaporated *in vacuo* to give a colourless oil. Purified by flash chromatography on silica gel (eluant: 50% ethyl acetate, 50% pet. ether 60-80) to give a colourless oil identified as 1-[2-(S)-(*N*-(*tert*-butyloxycarbonyl)amino)-4-oxobutanoyl] piperidine (40mg, 0.14mmol, 27%).

D. 1-[2-(S)-(*N* -(*tert*-butyloxycarbonyl)amino-4-(N-methyl-N-(2-methylbenzyl)amino) butanoyl]piperidine

1-[2-(S)-(*N*-(*tert*-Butyloxycarbonyl)amino)-4-oxobutanoyl] piperidine (40mg, 14mmol) was dissolved in methanol (20mL). To this solution was added N-methyl-2-methylbenzylamine (19mg, 0.14mmol). After 2 hours sodium triacetoxyborohydride (64mg, 0.3mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel to give a colourless oil identified as 1-[2-(S)-(*N* -(*tert*-butyloxycarbonyl)amino-4-(N-methyl-N-(2-methylbenzyl)amino) butanoyl] piperidine (36mg, 0.09mmol, 64%).

E. 1-[2-(S)-Amino-4-(N-methyl-N-(2-methylbenzyl)amino)butanoyl] piperidine dihydrochloride

1-[2-(S)-(N-(tert-Butyloxycarbonyl)amino-4-(N-methyl-N-(2-methylbenzyl)amino) butanoyl] piperidine (36mg, 0.09mmol)was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a pale brown solid identified as 1-[2-(S)-amino-4-(N-methyl-N-(S)-methylbenzyl)amino)

methyl-N-(2-methylbenzyl)amino)butanoyl] piperidine dihydrochloride (43mg, 0.09mmol, 100%)

EXAMPLE 1283

 $1-[N-(2``-(Cyclohexylmethylaminoethyl)glycinyl)] thiomorpholine\ dihydrochloride$

A. 1-[N-2`-(tert-Butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl]thiomorpholine

N-2`-(tert-Butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycine (2.5g, 5.7mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 100mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (833mg, 6.3mmol), water-soluble carbodiimide (974mg, 6.3mmol), thiomorpholine (617mg, 6.0mmol) and N-methylmorpholine (800mg, 8mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a white solid identified as 1-[N-2`-(tert-butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl]thiomorpholine (2.7g, 5.1mmol, 90%).

B. 1-[N-2'-(tert-Butyloxycarbonyl)-(2''-aminoethyl)-glycinyl] thiomorpholine

1-[N-2`-(tert-Butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl]thiomorpholine (2.7g, 5.1mmol) was dissolved in tetrahydrofuran (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as 1-[N-2`-(tert-butyloxycarbonyl)-(2``-aminoethyl)-glycinyl] thiomorpholine (1.44g, 4.7mmol, 92%).

C. 1-[2`-N-(tert-Butyloxycarbonyl N-(2``-(cyclohexylmethylaminoethyl)-glycinyl] thiomorpholine

1-[N-2`-(tert-Butyloxycarbonyl)-(2``-aminoethyl)-glycinyl] thiomorpholine (100mg, 0.3mmol) was dissolved in methanol (25mL). To this solution was added cyclohexanecarboxaldehyde (34mg, 0.3mmol). After 30mins sodium triacetoxyborohydride (126mg, 0.6mmol) was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to give a colourless oil identified as 1-[2`-N-(tert-Butyloxycarbonyl *N*-(2``- (cyclohexylmethylaminoethyl)-glycinyl] thiomorpholine (33mg, 0.08mmol, 27%).

$\label{eq:continuous} D.\ 1-[N-(2``-(Cyclohexylmethylaminoethyl)glycinyl)] thiomorpholine dihydrochloride$

1-[2`-N-(tert-Butyloxycarbonyl-N-(2``-(cyclohexylmethylaminoethyl)-glycinyl] thiomorpholine (33mg, 0.081mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed in vacuo. The residue was lyophilised from water to give а white solid identified 1-[N-(2"-(cyclohexylmethylaminoethyl)glycinyl)]thiomorpholine dihydrochloride (31mg, 0.08mmol, 100%).

 $[M+H]^{+} = 300.3$

EXAMPLE 1284

1-[N-(2``-((Quinolin-2-ylmethyl)aminoethyl)glycinyl)]pyrrolidine dihydrochloride

A. 1-[N-2`-(tert-Butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl]piperidine

N-2'-(tert-Butyloxycarbonyl)-N-(2''-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycine (2.5g, 5.7mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 100mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (1.5g, 11.1mmol), water-soluble carbodiimide (1.3g, 6.8mmol), piperidine (484mg, 5.69mmol) and N-methylmorpholine (800mg, 8mmol). After 18h at 0°C to room temperature the solvent was removed in vacuo and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated in vacuo. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give white solid identified as 1-[N-2'-(tert-butyloxycarbonyl)-N-(2''-(9fluorenylmethyloxycarbonyl aminoethyl)-glycinyl]piperidine (2.8g, 5.5mmol, 96%).

B. 1-[N-2'-(tert-Butyloxycarbonyl)-(2"-aminoethyl)-glycinyl] piperidine

1-[N-2'-(tert-Butyloxycarbonyl)-N-(2''-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl]piperidine (2.8g, 5.5mmol) was dissolved in tetrahydrofuran (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as 1-[N-2'-(tert-butyloxycarbonyl)-(2''-aminoethyl)-glycinyl] piperidine (1.4g, 4.9mmol, 89%).

C. 1-[2`-N-(*tert*-Butyloxycarbonyl *N*-(2``-((quinolin-2-ylmethyl)aminoethyl)-qlycinyll piperidine

1-[N-2`-(tert-Butyloxycarbonyl)-(2``-aminoethyl)-glycinyl] piperidine was dissolved in methanol (25mL). To this solution was added 2-quinolinecarboxaldehyde. After 30mins sodium triacetoxyborohydride was added. After 18h at room temperature the solvent was removed *in vacuo* and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 1% acetic acid,9% methanol, 90% chloroform) to give a colourless oil identified as 1-[2`-N-(tert-butyloxycarbonyl *N*-(2``-((quinolin-2-ylmethyl)-glycinyl] piperidine.

D. 1-[N-(2``-((Quinolin-2-ylmethyl)aminoethyl)glycinyl)]piperidine dihydrochloride

1-[2'-N-(tert-Butyloxycarbonyl-N-(2''-((quinolin-2-ylmethyl)aminoethyl)-glycinyl] piperidine was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[N-(2''-((quinolin-2-ylmethyl)aminoethyl)glycinyl)]piperidine dihydrochloride.

EXAMPLE 1285

1-[N,N-(2``,2``-((Dicinnamyl)aminoethyl)glycinyl)]thiomorpholine dihydrochloride

A. 1-[2`-N-(*tert*-Butyloxycarbonyl N,N-(2``,2``-((dicinnamyl)aminoethyl)-glycinyl] thiomorpholine

(2S)-1-(N^α-(tert-Butyloxycarbonyl)-L-lysinyl)-pyrrolidine-2-carbonitrile (250mg, 0.83mmol) was dissolved in dichloroethane (25mL). To this solution was added transcinnamaldehyde (108mg, 0.83mmol). After 30mins sodium triacetoxyborohydride (350mg, 1. 6mmol) was added. After 18h at room temperature the solvent was removed in vacuo and the residue was taken up in chloroform (70mL). This solution was washed with water (2 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated in vacuo to give a yellow oil. The residue was purified by flash chromatography on silica gel (eluant: 2% methanol, 98% chloroform) to give a colourless oil identified as 1-[2`-N-(tert-butyloxycarbonyl N,N-(2``,2``-((dicinnamyl)aminoethyl)-glycinyl] thiomorpholine. Further elution with 9% methanol. 90% chloroform and 1% acetic acid gave a colourless oil identified as 1-[2'-N-(tertbutyloxycarbonyl N,-(2``-((cinnamyl)aminoethyl)-glycinyl] thiomorpholine (180mg. 0.43mmol, 52%)

B. 1-[N,N-(2``,2``-((Dicinnamyl)aminoethyl)glycinyl)]thiomorpholine dihydrochloride

1-[2`-N-(*tert*-Butyloxycarbonyl N,N-(2``,2``-((dicinnamyl)aminoethyl)-glycinyl] thiomorpholine was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[N,N-(2``,2``-((dicinnamyl)aminoethyl)glycinyl)]thiomorpholine dihydrochloride.

EXAMPLE 1286

1-[N-(2``-((Cinnamyl)aminoethyl)glycinyl)]thiomorpholine dihydrochloride

A. 1-[N-(2``-((Cinnamyl)aminoethyl)glycinyl)]thiomorpholine dihydrochloride

1-[2`-N-(tert-Butyloxycarbonyl N-(2``-((cinnamyl)aminoethyl)-glycinyl] thiomorpholine (180mg, 0.43mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[N-(2``-((cinnamyl)aminoethyl)glycinyl)]thiomorpholine dihydrochloride (168mg, 0.43mmol, 100%).

 $[M+H]^{+} = 320.3$

EXAMPLE 1287

3,3-Difluoro-1-[*N-2*``-(3'-trifluoromethylanilino)pyridyl-3-carbonyl aminoethyl)glycinyl)]pyrrolidine dihydrochloride

A. 3,3-Difluoro-1-[N-2`-(*tert*-butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl] pyrrolidine

N-2`-(*tert*-Butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycine (1.0g, 2.27mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 100mL). To this solution at 0°C were added 1-hydroxybenzotriazole hydrate (620mg, 4.6mmol), water-soluble carbodiimide (560mg, 2.8mmol), 3,3-difluoropyrrolidine hydrochloride (360mg, 2.5mmol) and N-methylmorpholine (800mg, 8mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (100mL). The solution was washed with 0.3M KHSO₄ (2 x 25mL), sat. NaHCO₃ (2 x 25mL), water (2 x 25mL) and brine (1 x 25mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 60% ethyl acetate, 40% pet. ether) to give a white solid identified as 3,3-difluoro-1-[N-2`-(*tert*-butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl] pyrrolidine (934g, 1.7mmol, 77%).

B.3,3-Difluoro-1-[N-2`-(tert-butyloxycarbonyl)aminoethyl)-glycinyl] pyrrolidine

3,3-Difluoro-1-[N-2`-(*tert*-butyloxycarbonyl)-N-(2``-(9-fluorenylmethyloxycarbonyl aminoethyl)-glycinyl] pyrrolidine (890g, 1.68mmol) was dissolved in tetrahydrofuran (20mL). Diethylamine (5mL) was added. After 90min at room temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluant: 90% chloroform, 7% methanol, 3% triethylamine) to give a pale yellow oil identified as 3,3-difluoro-1-[N-2`-(*tert*-butyloxycarbonyl)aminoethyl)-glycinyl] pyrrolidine (470mg, 1.5mmol, 91%).

C. 3,3-Difluoro-1-[N-2`-(*tert*-butyloxycarbonyl)-*N-2*``-(3'-trifluoromethylanilino)pyridyl-3-carbonyl aminoethyl)glycinyl)]pyrrolidine

3,3-Difluoro-1-[N-2`-(*tert*-butyloxycarbonyl)aminoethyl)-glycinyl] pyrrolidine (50mg, 0.16mmol) was dissolved in CH₂Cl₂ /DMF (9:1, 20mL). To this solution at 0°C was 82

added 1-hydroxybenzotriazole hydrate (46mg, 0.34mmol), water-soluble carbodiimide (40mg, 0.2mmol), niflumic acid (49mg, 0.17mmol) and N-methylmorpholine (40mg, 0.4mmol). After 18h at 0°C to room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (70mL). The solution was washed with 0.3M KHSO₄ (1 x 20mL), sat. NaHCO₃ (1 x 20mL), water (1 x 20mL) and brine (1 x 20mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (eluant: 75% ethyl acetate, 25% pet. ether) to give a yellow oil identified as 3,3-difluoro-1-[N-2`-(tert-butyloxycarbonyl)-*N*-2`'-(3'-trifluoromethylanilino)pyridyl-3-carbonyl aminoethyl)glycinyl)]pyrrolidine (63mg, 0.11mmol, 67%).

D. 3,3-Difluoro-1-[*N*-2``-(3'-trifluoromethylanilino)pyridyl-3-carbonyl aminoethyl) glycinyl)]pyrrolidine dihydrochloride

3,3-Difluoro-1-[N-2`-(*tert*-butyloxycarbonyl)-*N-2*``-(3'-trifluoromethylanilino)pyridyl-3-carbonyl aminoethyl)glycinyl)]pyrrolidine (55mg, 0.10mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a pale brown solid identified as 3,3-difluoro-1-[*N-2*``-(3'-trifluoromethylanilino)pyridyl-3-carbonyl aminoethyl)glycinyl)]pyrrolidine dihydrochloride (52mg, 0.10mmol, 100%).

 $[M+H]^{+} = 472.3$

EXAMPLE 1288

3,3-Difluoro-[*N*-2``-(6-Chloro-4-(4'-fluoroanilino)-1,3,5-triazinyl)aminoethyl) glycinyl)]thiomorpholine dihydrochloride

A. 4,6-Dichloro-2-(4'-fluoroanilino)-1,3,5-triazine

Cyanuric chloride (1.844g, 10mmol) was dissolved in acetonitrile (20mL). The solution was cooled to -20 $^{\circ}$ C. A solution of 4-fluoroaniline (1.1g, 10mmol) and triethylamine (1.0g, 10mmol) was slowly added. After 1 hour at -20 $^{\circ}$ C the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (150mL). The solution was washed with water (1 x 50mL) and brine (1 x 50mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was recrystallised from ethyl acetate/ hexane to give an off white solid identified as 4,6-dichloro-2-(4'-fluoroanilino)-1,3,5-triazine 1.7g, 6.0mmol, 60%).

B. 1-[N-2`-(*tert*-butyloxycarbonyl)-*N*-2``- (6-Chloro-4-(4'-fluoroanilino)-1,3,5-triazinyl aminoethyl)glycinyl)] thiomorpholine

1-[N-2`-(*tert*-butyloxycarbonyl)aminoethyl)-glycinyl] thiomorpholine (100mg, 0.3mmol) was dissolved in dichloromethane (30mL). To this solution was added 4,6-dichloro-2-(4'-fluoroanilino)-1,3,5-triazine (90mg, 0.3mmol) and triethylamine (50mg, 0.5mmol). After 2 hours at room temperature the solvent was removed *in vacuo* and the residue was taken up in ethyl acetate (150mL). This solution was washed with water (2 x 30mL) and brine (1 x 30mL), dried (Na₂SO₄) and evaporated *in vacuo* to give a yellow oil. The residue was purified by flash chromatography (eluant: 60% ethyl acetate, 40% pet. ether) to give a white solid identified as 1-[N-2`-(*tert*-butyloxycarbonyl)-*N-2*``- (6-chloro-4-(4'-fluoroanilino)-1,3,5-triazinyl aminoethyl)glycinyl)] thiomorpholine (20mg, 0.032mmol, 11%).

C. 1-[N-2``-(6-Chloro-4-(4'-fluoroanilino)-1,3,5-triazinyl)aminoethyl) glycinyl)] thiomorpholine dihydrochloride

1-[N-2`-(*tert*-butyloxycarbonyl)-*N*-2``- (6-chloro-4-(4'-fluoroanilino)-1,3,5-triazinyl aminoethyl)glycinyl)] thiomorpholine (18.8mg, 0.03mmol) was dissolved in 4M HCl/dioxan (20mL). After 1h at room temperature the solvent was removed *in vacuo*. The residue was lyophilised from water to give a white solid identified as 1-[*N*-2``-(6-Chloro-4-(4'-fluoroanilino)-1,3,5-triazinyl)aminoethyl) glycinyl)] thiomorpholine dihydrochloride (18mg, 0.03mmol, 100%).

 $[M+H]^{+} = 526.4$

TABLE 9

Ex No	X	a	R
1289	S	1	<u> </u>
1290	CF ₂	_	,
1291	CHF	1	
1292	S	2	
1293	CH ₂		
1294	0		
1295	S	1	
1296	CF ₂		' '
1297	CHF	1	
1298	S	2	
1299	CH ₂	1	
1300	0		
1311	S	1	
1312	CF ₂	Ì	
1313	CHF	1	
1314	S	2	
1315	CH ₂		
1316	0		
1317	S	1	△ ✓✓
1318	CF ₂		
1319	CHF		
1320	0	2	·
1321	S	1	
1322	CF ₂		
1323	CHF		
1324	S	2	
1325	CH ₂		
1326	0		
1327	S	1	
1328	CF ₂		
1329	CHF		
1330	S	2	
1331	CH ₂	-	
1332	0		
1333	S	1	

1334 CF2				
1336	1334	CF ₂		
1337	1335	CHF		
1338	1336	S	2	
1338	1337	CH ₂	7	
1339 S	1338		7	
1340 CF2 1341 CHF 1342 S 2 2 1343 CH2 1344 O 1345 S 1 1346 CF2 1347 CHF 1348 S 2 1350 O 1351 S 1 1352 CF2 1353 CHF 1354 S 2 1355 CHF 1356 O 1357 S 1 1358 CF2 1359 CHF 1360 S 2 1361 CH2 1360 S 2 1361 CH2 1362 O 1364 CF2 1365 CHF 1366 S 2 1366 S 2 1366 CHF 1366 S 2 1367 CHF 1368 O 1370 CF2 1371 CHF 1372 S 2 1373 CH2 1374 O 1375 S 1 CHF 1376 CF2 1377 CHF 1378 S 2			1	
1341	1340	CF ₂	7 -	
1342	1341		1	
1343	1342		2	4
1344	1343		1 -	
1345			1	4
1346 CF2 1347 CHF 1348 S 2 2 1350 O 1351 S 1 1352 CF2 1353 CHF 1354 S 2 1355 CH2 1356 O 1357 S 1 1358 CF2 1360 S 2 1361 CH2 1360 S 2 1361 CH2 1362 O 1363 S 1 1364 CF2 1366 S 2 1366 S 2 1367 CHF 1368 O 1369 S 1 1370 CF2 1371 CHF 1372 S 2 1374 O 1375 CH2 1376 CF2 1376 CF2 1377 CHF 1378 S 2			1	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
1347			1 1	1 7 7
1348			1	1
1349			7	1
1350			† <i>*</i>	
1351 S			4	
1352 CF2 1353 CHF			1	
1353 CHF 1354 S			┪	
1354			-	
1355			7	, '
1356			⊣ ~	
1357 S			1	
1358 CF2 1359 CHF 1360 S 1361 CH2 1362 O 1363 S 1364 CF2 1365 CHF 1366 S 1367 CH2 1368 O 1370 CF2 1371 CHF 1372 S 1373 CH2 1374 O 1375 S 1376 CF2 1377 CHF 1378 S			1	
1359 CHF 1360 S 1361 CH2 1362 O 1363 S 1364 CF2 1365 CHF 1366 S 1367 CH2 1368 O 1369 S 1370 CF2 1371 CHF 1372 S 2 2 1373 CH2 1374 O 1375 S 1376 CF2 1377 CHF 1378 S			- 1	1 (Y Y
1360			1	∟s
1361 CH2 1362 O 1363 S 1 1364 CF2 1365 CHF 1366 S 2 1367 CH2 1368 O 1369 S 1 1370 CF2 1371 CHF 1372 S 2 1373 CH2 1374 O 1375 S 1 1376 CF2 1377 CHF 1378 S 2			-	1
1362 O 1363 S 1 1364 CF2 1 1365 CHF 2 1366 S 2 1367 CH2 1 1368 O 1 1370 CF2 1 1371 CHF 2 1372 S 2 1373 CH2 2 1374 O 1 1375 S 1 1376 CF2 1 1377 CHF 1 1378 S 2			┤ 	
1363 S 1 1364 CF2 1365 CHF 1366 S 2 1367 CH2 1368 O 1369 S 1 1370 CF2 1371 CHF 1372 S 2 1373 CH2 1374 O 1375 S 1 1376 CF2 1377 CHF 1378 S 2			┥	
1364 CF2 1365 CHF 1366 S 1367 CH2 1368 O 1369 S 1370 CF2 1371 CHF 1372 S 1373 CH2 1374 O 1375 S 1376 CF2 1377 CHF 1378 S			1	A A /
1365 CHF 1366 S 1367 CH2 1368 O 1369 S 1370 CF2 1371 CHF 1372 S 1373 CH2 1374 O 1375 S 1376 CF2 1377 CHF 1378 S			↑	
1366 S 2 1367 CH2 1368 O 1369 S 1 1370 CF2 1371 CHF 1372 S 2 1373 CH2 1374 O 1375 S 1 1376 CF2 1377 CHF 1378 S 2			-	
1367 CH2 1368 O 1369 S 1370 CF2 1371 CHF 1372 S 1373 CH2 1374 O 1375 S 1376 CF2 1377 CHF 1378 S			1 2	
1368 O 1369 S 1370 CF2 1371 CHF 1372 S 1373 CH2 1374 O 1375 S 1376 CF2 1377 CHF 1378 S			-	
1369 S 1 1370 CF2 1371 CHF 1372 S 2 1373 CH2 1374 O 1375 S 1 1376 CF2 1377 CHF 1378 S 2			1	
1370 CF2 1371 CHF 1372 S 1373 CH2 1374 O 1375 S 1376 CF2 1377 CHF 1378 S			1	Cl. A A /
1371 CHF 1372 S 2 1373 CH ₂ 1374 O 5 1375 S 1 1376 CF ₂ 1377 CHF 1378 S 2			₁ ¹	
1372 S 2 1373 CH ₂ 1374 O 1 1375 S 1 1376 CF ₂ 1377 CHF 1378 S 2		CHE	4	
1373 CH ₂ 1374 O 1375 S 1 1376 CF ₂ 1377 CHF 1378 S 2			1 2	
1374 O 1375 S 1 1376 CF ₂ 1377 CHF 1378 S 2				
1375 S 1 1376 CF ₂ 1377 CHF 1378 S 2			-	
1376 CF ₂ 1377 CHF 1378 S 2			 	CI
1377 CHF 1378 S 2			- I	[] j
1378 S 2			4	
			ļ <u>.</u>	
15/9 CH ₂			$\frac{1}{2}$	_
	1379	CH ₂		

	T		
1380	0		
1381	S	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1382	CF ₂		1
1383	CHF	7	
1384	S	2	
1385	CH ₂	7	
1386	0	1	
1387	S	1	\$\frac{1}{2}
1388	CF ₂	1 -	
1389	CHF	†	
1390	S	2	
1391	CH ₂	4 ~	
1392	0	-{	
1393	S	<u> </u>	
1394		1	
1395	CF ₂	4	V
1395	CHF		,
	S	2	
1397	CH ₂		
1398	0		
1399	S	1	
1400	CF ₂		
1401	CHF		•
1402	S	2	
1403	CH ₂	_	
1404	0		
1405	S	1	
1406	CF ₂	_	$\rightarrow \sim \rightarrow$
1407	CHF		,
1408	S	2	
1409	CH ₂		
1410	0		
1411	S	1	→
1412	CF ₂]	'
1413	CHF		
1414	S	2	
1415	CH ₂		
1416	0		_
1417	S	1	\
1418	CF ₂]	/
1419	CHF		
1420	S	2	
1421	CH ₂] !	
1422	0	1 !	
1423	S	1	
1424	CF ₂	1 -	
1425	CHF	†	
	OTT.		

1426	S	2	
1427	CH ₂]	
1428	0		
1429	S	1	
1430	CF ₂]	
1431	CHF	7	/ 0/ /
1432	S	2	1
1433	CH ₂		
1434	0		

TABLE 10

RHN
$$N$$
 $(CH_2)_a$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ex No	X	a	R
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1614	S	1	\\\
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CF ₂		'
1618 S 1 1619 CF2 1620 S 2 1621 CH2 1622 S 1 1623 CF2 1 1624 S 2 1625 CH2 1 1626 S 1 1627 CF2 1 1628 S 2 1629 CH2 1 1630 S 1			2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CH ₂		
$\begin{array}{ c c c c c c }\hline 1620 & S & 2 \\ \hline 1621 & CH_2 & \\ \hline 1622 & S & 1 \\ \hline 1623 & CF_2 & \\ \hline 1624 & S & 2 \\ \hline 1625 & CH_2 & \\ \hline 1626 & S & 1 \\ \hline 1627 & CF_2 & \\ \hline 1628 & S & 2 \\ \hline 1629 & CH_2 & \\ \hline 1630 & S & 1 \\ \hline \end{array}$			1	~~~
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CF ₂		J '
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	
1623 CF2 1624 S 1625 CH2 1626 S 1627 CF2 1628 S 2 CH2 1630 S		CH ₂		
1624 S 2 1625 CH2 1626 S 1 1627 CF2 1628 S 2 1629 CH2 1630 S 1			1	
1625 CH2 1626 S 1 1627 CF2 1628 S 2 1629 CH2 1630 S 1		CF ₂		
1626 S 1 1627 CF2 1628 S 2 1629 CH2 1630 S 1			2	~
1627 CF2 1628 S 1629 CH2 1630 S		CH ₂		
1628 S 2 1629 CH ₂ 1630 S 1			1	\sim
1629 CH ₂ 1630 S 1	the state of the s	CF ₂	,	
1630 S 1			2	~
1631 CF ₂			1	
	1631			
1632 S 2	1632	S	2	
1633 CH ₂	1633	CH ₂		
1634 S 1	1634	S	1	
1635 CF ₂	1635	CF ₂		
1636 S 2	1636	S	2	
1637 CH ₂	1637	CH ₂		
1638 S 1	1638		1	

1640	1639			
1641		CF ₂		
1642			2	
1643		CH ₂		
1644			1	
1645		CF ₂		
1646			2	7 🗸
1647		CH ₂		a.·
1648			1 .	
1649				
1650			2	
1651				
1652			1	
1653		CF ₂		
1654			2	
1654		$\mathrm{CH_2}$		
1655		S	1	20/
1656 S 2 1657 CH2 1 1658 S 1 1659 CF2 1 1660 S 2 1661 CH2 1 1662 S 1 1663 CF2 1 1664 S 2 1665 CH2 1 1666 S 1 1667 CF2 1 1668 S 2 1670 S 1 1671 CF2 1 1672 S 2 1673 CH2 1 1674 S 1 1675 CF2 1 1676 S 2 1678 S 1 1679 CF2 1 1680 S 2 1681 CH2 1 1682 S 1 1683 CF2 1		CF ₂		
1657 CH2 1658 S 1 1659 CF2 1 1660 S 2 1661 CH2 1 1662 S 1 1663 CF2 1 1664 S 2 1665 CH2 1 1666 S 1 1667 CF2 1 1668 S 2 1669 CH2 1 1670 S 1 1671 CF2 1 1672 S 2 1674 S 1 1675 CF2 1 1676 S 2 1677 CH2 1 1680 S 2 1681 CH2 1 1682 S 1 1683 CF2 1		S	2	—S
1658		CH ₂	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	\$ 0/
1660 S 2 1661 CH2 1 1662 S 1 1663 CF2 1 1664 S 2 1665 CH2 1 1666 S 1 1667 CF2 1 1668 S 2 1669 CH2 1 1670 S 1 1671 CF2 1 1672 S 2 1673 CH2 1 1674 S 1 1675 CF2 1 1676 S 2 1677 CH2 1 1678 S 1 1680 S 2 1681 CH2 1 1682 S 1 1683 CF2		CF ₂	7	
1661 CH2 1662 S 1663 CF2 1664 S 1665 CH2 1666 S 1667 CF2 1668 S 1669 CH2 1670 S 1671 CF2 1672 S 1673 CH2 1674 S 1675 CF2 1676 S 1677 CH2 1680 S 1681 CH2 1682 S 1683 CF2		S	2	cı
1662 S 1 1663 CF2 1 1664 S 2 1665 CH2 1 1666 S 1 1667 CF2 1 1668 S 2 1669 CH2 1 1670 S 1 1671 CF2 2 1672 S 2 1673 CH2 1 1674 S 1 1675 CF2 2 1676 S 2 1677 CH2 1 1679 CF2 1 1680 S 2 1681 CH2 1 1682 S 1 1683 CF2 1		CH ₂	- -	
1663 CF2 1664 S 1665 CH2 1666 S 1667 CF2 1668 S 1669 CH2 1670 S 1671 CF2 1672 S 1673 CH2 1674 S 1675 CF2 1676 S 1677 CH2 1678 S 1680 S 1681 CH2 1683 CF2	1662	S	1	Cl. O O /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			† *	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		S	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CH ₂	1 -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1666		1	CI
1668 S 1669 CH2 1670 S 1671 CF2 1672 S 1673 CH2 1674 S 1675 CF2 1676 S 1677 CH2 1678 S 1679 CF2 1680 S 1681 CH2 1682 S 1683 CF2	1667		1 .	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1669			
1671 CF2 1672 S 1673 CH2 1674 S 1675 CF2 1676 S 1677 CH2 1678 S 1679 CF2 1680 S 1681 CH2 1682 S 1683 CF2	1670		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1671		1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1672		7	
1674 S 1675 CF2 1676 S 1677 CH2 1678 S 1679 CF2 1680 S 2 CH2 1681 CH2 1682 S 1683 CF2			1 ~	
1675 CF2 1676 S 1677 CH2 1678 S 1679 CF2 1680 S 1681 CH2 1682 S 1683 CF2	1674	S	1	0 0/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1675		1 -	
1677 CH2 1678 S 1679 CF2 1680 S 2 2 1681 CH2 1682 S 1683 CF2	1676		2	
1678 S 1679 CF2 1680 S 1681 CH2 1682 S 1683 CF2	1677		-	
1679 CF2 1680 S 2 2 1681 CH2 1682 S 1683 CF2			1	
1680 S 2 1681 CH ₂ 1682 S 1 1683 CF ₂			1	
1681 CH ₂ 1682 S 1 1683 CF ₂		S	2	Y
1682 S 1 1683 CF ₂			4	
1683 CF ₂			1	
1004		CF ₂	1 1	
5 2				
		<u>. </u>	. 2	

1685	CH ₂		
1686	S	1	
1687	CF ₂		
1688	S	2	,
1689	CH ₂		
1690	S	1	>\\
1691	CF ₂		/
1692	S	2	
1693	CH ₂		
1694	S	1	
1695	CF ₂		′
1696	S	2	
1697	CH ₂		
1698	S	1	
1699	CF ₂		
1700	S	2	N V
1701	CH ₂		1
. 1702	S	1	0
1703	CF ₂		
1704	S	2	7 00
1705	CH_2		

CLAIMS

A compound according to general formula 1, or a pharmaceutically acceptable salt thereof,

$$G^2$$
 H
 O
 CH_2

wherein:

either G^1 is $-CH_2-X^2-(CH_2)_a-G^3$ and G^2 is H, or G^2 is $-CH_2-(CH_2)_a-G^3$ and G^1 is H;

G³ is selected from a group according to general formula 2, a group according to general formula 3, and a group according to general formula 4;

a is 0, 1 or 2;

b is 1 or 2;

X¹ is selected from CH₂, S, CF₂, CHF, CH(CH₃), C(CH₃)₂, CH(CN) and O;

X² is selected from CH₂, O and S, provided that if a is 1 then X² is CH₂;

 X^3 , X^4 and X^5 are selected from N and CH, provided that at least two of X^3 , X^4 and X^5 are N;

X⁶ is selected from O and NH;

X⁷ is selected from CH₂, O, S and NH;

R¹ is selected from H and CN;

R² is selected from H and alkyl;

 R^3 is selected from H, CI, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂; R^4 , R^5 , R^6 , R^7 and R^8 are independently selected from H, Br, CI, F, CF₃, alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN;

R9 is selected from H and alkyl;

R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are independently selected from H, Br, CI, F, CF₃, alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN;

R¹⁵ and R¹⁶ are independently selected from H, alkyl, alkenyl, polyfluoroalkyl, aralkyl, aryl and –CH₂-L-R¹⁷, or R¹⁵ and R¹⁶ together form a group according to general formula **5**, general formula **6** or general formula **7**;

R¹⁷ is selected from H, alkyl and aryl;

 R^{18} is selected from H, alkyl, aryl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂; R^{19} is selected from H, alkyl, aryl, F, Cl, Br, CF₃, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂;

L is selected from a covalent bond, CH=CH, C \equiv C and -C₆H₄-; d and e are selected from 0, 1, 2 and 3 such that d+e is 3, 4 or 5; and f is selected from 1, 2 and 3; provided that when R¹⁵ and R¹⁶ are both H and b is 1 then X¹ is not S or CH₂.

A compound according to general formula 8, or a pharmaceutically acceptable salt thereof,

wherein:

a is 0, 1 or 2;

b is 1 or 2;

 X^1 is selected from CH₂, S, CF₂, CHF, CH(CH₃), C(CH₃)₂, CH(CN) and O; X^2 is selected from CH₂, O and S, provided that if a is 1 then X^2 is CH₂; X^3 , X^4 and X^5 are selected from N and CH, provided that at least two of X^3 , X^4 and X^5 are N;

X⁶ is selected from O and NH;

R¹ is selected from H and CN:

R² is selected from H and alkyl;

 R^3 is selected from H, Cl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂; R^4 , R^5 , R^6 , R^7 and R^8 are independently selected from H, Br, Cl, F, CF₃, alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN.

- 3 A compound according to Claim 2 wherein R¹ is H.
- 4 A compound according to Claim 2 wherein R¹ is CN.
- A compound according to any of Claims 2 to 4 wherein X^1 is CH_2 .
- 6 A compound according to any of Claims 2 to 4 wherein X¹ is S.
- A compound according to any of Claims 2 to 6 wherein b is 1.

- 8 A compound according to any of Claims 2 to 6 wherein b is 2.
- 9 A compound according to any of Claims 2 to 8 wherein a is 1.
- 10 A compound according to any of Claims 2 to 8 wherein a is 2 and X² is CH₂.
- 11 A compound according to any of Claims 2 to 10 wherein X³, X⁴ and X⁵ are all N.
- A compound according to general formula 9, or a pharmaceutically acceptable salt thereof,

9

wherein:

a is 1 or 2;

b is 1 or 2;

X¹ is selected from CH₂, S, CF₂, CHF, CH(CH₃), C(CH₃)₂, CH(CN) and O;

 X^3 , X^4 and X^5 are selected from N and CH, provided that at least two of X^3 , X^4 and X^5 are N;

X⁶ is selected from O and NH;

R¹ is selected from H and CN;

R² is selected from H and alkyl:

R³ is selected from H, Cl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂;

R⁴, R⁵, R⁶, R⁷ and R⁸ are independently selected from H, Br, Cl, F, CF₃, alkyl,

acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN.

- 13 A compound according to Claim 12 wherein R¹ is H.
- 14 A compound according to Claim 12 wherein R¹ is CN.
- 15 A compound according to any of Claims 12 to 14 wherein X¹ is CH₂.
- 16 A compound according to any of Claims 12 to 14 wherein X¹ is S.
- 17 A compound according to any of Claims 12 to 16 wherein b is 1.
- 18 A compound according to any of Claims 12 to 16 wherein b is 2.
- 19 A compound according to any of Claims 12 to 18 wherein a is 1.
- A compound according to any of Claims 12 to 19 wherein X³, X⁴ and X⁵ are all N.
- A compound according to general formula **10**, or a pharmaceutically acceptable salt thereof,

$$R^{12}$$
 R^{13}
 R^{14}
 R^{10}
 R^{14}
 R^{10}
 R^{14}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{15}
 R^{14}
 R^{15}
 R

wherein:

a is 0, 1 or 2;

b is 1 or 2;

X¹ is selected from CH₂, S, CF₂, CHF, CH(CH₃), C(CH₃)₂, CH(CN) and O;

X² is selected from CH₂, O and S, provided that if a is 1 then X² is CH₂;

X⁷ is selected from O, S, CH₂ and NH;

R¹ is selected from H and CN;

R⁹ is selected from H and alkyl;

R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are independently selected from H, Br, Cl, F, CF₃, alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN is selected from H, Cl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂.

- 22 A compound according to Claim 21 wherein R¹ is H.
- 23 A compound according to Claim 21 wherein R¹ is CN.
- 24 A compound according to any of Claims 21 to 23 wherein X¹ is CH₂.
- 25 A compound according to any of Claims 21 to 23 wherein X¹ is S.
- A compound according to any of Claims 21 to 25 wherein b is 1.
- A compound according to any of Claims 21 to 25 wherein b is 2.
- A compound according to any of Claims 21 to 27 wherein a is 1.
- A compound according to any of Claims 21 to 27 wherein a is 2 and X² is CH₂.
- A compound according to general formula 11, or a pharmaceutically acceptable salt thereof,

$$R^{12}$$
 R^{13}
 R^{14}
 R^{10}
 R

wherein:

a is 1 or 2;

b is 1 or 2;

X¹ is selected from CH₂, S, CF₂, CHF, CH(CH₃), C(CH₃)₂, CH(CN) and O;

X⁷ is selected from O, S, CH₂ and NH;

R¹ is selected from H and CN;

R⁹ is selected from H and alkyl;

 R^{10} , R^{11} , R^{12} , R^{13} and R^{14} are independently selected from H, Br, CI, F, CF₃, alkyl, acyl, OH, O-alkyl, NH₂, NH-alkyl, N(alkyl)₂, NO₂, NH-acyl, CO₂H, CO₂-alkyl, CONH₂, CONH-alkyl, CON(alkyl)₂ and CN is selected from H, CI, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂.

- 31 A compound according to Claim 30 wherein R¹ is H.
- 32 A compound according to Claim 30 wherein R¹ is CN.
- A compound according to any of Claims 30 to 32 wherein X¹ is CH₂.
- A compound according to any of Claims 30 to 32 wherein X¹ is S.
- A compound according to any of Claims 30 to 34 wherein b is 1.
- A compound according to any of Claims 30 to 34 wherein b is 2.

- 37 A compound according to any of Claims 30 to 36 wherein a is 1.
- A compound according to general formula 12, or a pharmaceutically acceptable salt thereof,

wherein:

a is 0, 1 or 2;

b is 1 or 2;

 X^1 is selected from CH_2 , S, CF_2 , CHF, $CH(CH_3)$, $C(CH_3)_2$, CH(CN) and O; X^2 is selected from CH_2 , O and S, provided that if a is 1 then X^2 is CH_2 ; R^1 is selected from H and CN;

R¹⁵ and R¹⁶ are each independently selected from H, alkyl, alkenyl, polyfluoroalkyl, aralkyl, aryl and CH₂-L-R¹⁷;

or R¹⁵ and R¹⁶ together are a group according to general formula 5, a group according to general formula 6 or a group according to general formula 7;

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$7$$

R¹⁷ is selected from H, alkyl and aryl;

 R^{18} is selected from H, alkyl, aryl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂; R^{19} is selected from H, alkyl, aryl, F, Cl, Br, CF₃, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂;

L is selected from a covalent bond, CH=CH, C≡C and -C₆H₄-;

d and e are selected from 0, 1, 2 and 3 such that d+e is 3, 4 or 5; and f is selected from 1, 2 and 3; provided that when R^{15} and R^{16} are both H and b is 1 then X^1 is not S or CH_2 .

- 39 A compound according to Claim 38 wherein R¹ is H.
- 40 A compound according to Claim 38 wherein R¹ is CN.
- 41 A compound according to any of Claims 38 to 40 wherein X¹ is CH₂.
- 42 A compound according to any of Claims 38 to 40 wherein X1 is S.
- 43 A compound according to any of Claims 38 to 42 wherein b is 1.
- 44 A compound according to any of Claims 38 to 42 wherein b is 2.
- 45 A compound according to any of Claims 38 to 44 wherein a is 1.
- A compound according to any of Claims 38 to 44 wherein a is 2 and X^2 is CH_2 .
- 47 A compound according to general formula 13, or a pharmaceutically acceptable salt thereof,

13

wherein:

a is 1 or 2;

b is 1 or 2;

 X^1 is selected from CH_2 , S, CF_2 , CHF, $CH(CH_3)$, $C(CH_3)_2$, CH(CN) and O; R^1 is selected from H and CN; R^{15} and R^{16} are each independently selected from H, alkyl, alkenyl, polyfluoroalkyl, aralkyl, aryl and CH_2 -L- R^{17} ;

or R¹⁵ and R¹⁶ together are a group according to general formula 5, a group according to general formula 6 or a group according to general formula 7;

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

$$(CH_{2})_{e} (CH_{2})_{d}$$

R¹⁷ is selected from H, alkyl and aryl;

 R^{18} is selected from H, alkyl, aryl, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂; R^{19} is selected from H, alkyl, aryl, F, Cl, Br, CF₃, OH, O-alkyl, NH₂, NH-alkyl and N(alkyl)₂;

L is selected from a covalent bond, CH=CH, C \equiv C and -C₆H₄-; d and e are selected from 0, 1, 2 and 3 such that d+e is 3, 4 or 5; and f is selected from 1, 2 and 3.

- 48 A compound according to Claim 47 wherein R¹ is H.
- 49 A compound according to Claim 47 wherein R¹ is CN.
- 50 A compound according to any of Claims 47 to 49 wherein X¹ is CH₂.
- 51 A compound according to any of Claims 47 to 49 wherein X1 is S.
- 52 A compound according to any of Claims 47 to 51 wherein b is 1.
- 53 A compound according to any of Claims 47 to 51 wherein b is 2.
- 54 A compound according to any of Claims 47 to 53 wherein a is 1.
- 55 A pharmaceutical composition comprising a compound according to any of

Claims 1 to 54.

A use for a compound according to any of Claims 1 to 54, which is as a component in the preparation of a pharmaceutical composition.

- A method of treatment of disease in a human or animal subject, comprising a step of administering to the subject a therapeutically active amount of a compound according to any of Claims 1 to 54
- A method of treatment according to claim 57 where the disease is caused by dysregulation of a post-proline cleaving proteases or their endogenous substrates.
- A method of treatment according to claim 57 where the disease is ameliorated by inhibition of a post-proline cleaving proteases.
- A method of treatment according to claim 57 where the disease is caused by dysregulation of a post-proline cleaving proteases or its endogenous substrates which is an intracellular protease.
- A composition according to claim 1 or 38 with the proviso that when $X^1 = S$; b = 1; $R^1 = H$; $G^2 = H$; G^1 is $-CH_{2^*}X^2 (CH_2)_a G^3$; a = 1, $X^2 = CH_2$; $G^3 = NR^{15}R^{16}$; and one of R^{15} , $R^{16} = H$, the other of R^{15} , R^{16} is not pyridyl, substituted pyridyl, pyrazinyl or substituted pyrazinyl.
- A composition according to claim 1, 38, 47 or 61 with the proviso that when b=1, R¹ is H and X¹ is S; G¹ = H; G² is -CH₂-(CH₂)_a-G³; a = 1; G³ is NR¹⁵R¹⁶ and one of R¹⁵ and R¹⁶ is H the other of R¹⁵, R¹⁶ is not pyridyl, substituted pyridyl, pyrazinyl or substituted pyrazinyl.
- A composition according to claim 1, 38, 47, 61 or 62 with the proviso that when b=1, R¹ is CN and X¹ is CH₂; G¹ = H; G² is -CH₂-(CH₂)_a-G³; a = 1; G³ is NR¹⁵R¹⁶ and one of R¹⁵ and R¹⁶ is H, the other of R¹⁵, R¹⁶ is not pyridyl, substituted pyridyl, pyrazinyl or substituted pyrazinyl.

A composition according to claim 1, 38, 47, 61, 62 or 63 with the proviso that when $G^2 = H$; $G^1 = -CH2-X^2-(CH_2)_a-G^3$; X^2 is CH_2 ; a = 1; $G^3 = NR^{15}R^{16}$ and $R^{15} = R^{16} = H$; b is not 2 when X^1 is O or CH_2 , and b is not 1 when X^1 is CH_2 .

- A method of treatment according to claim 57 in which the disease is caused by dysregulation of a non-membrane associated post-proline cleaving proteases such as QPP, DPP-8 and DPP-9 enzymes or their endogenous substrates.
- A method of treatment according to claim 57 in which the disease is ameliorated by inhibition of a non-membrane associated post-proline cleaving proteases such as QPP, DPP-8 and DPP-9 enzymes or their endogenous substrates.
- A method according to claim 65 or 66 in which the compound is a selective inhibitor of non-membrane associated post-proline cleaving proteases.

INTERNATIONAL SEARCH REPORT

International Application No
PCT 02/04764

A 01.			101, 02/0	7/U 7	
Î PC 7	IFICATION OF SUBJECT MATTER A61K31/40 C07D207/16 C07D27 C07D417/12 C07D401/12 C07D40 A61K31/426 A61K31/427 A61K31	9/12 CO7D403/	12 C07D40	5/12	
According t	o international Patent Classification (IPC) or to both national classification	cation and IPC	4 A61P3/	10	
B. FIELDS	SEARCHED				
Minimum di IPC 7	ocumentation searched (classification system followed by classification CO7D A61K A61P	ttion symbols)			
	tion searched other than minimum documentation to the extent that			ed	
	ata base consulted during the international search (name of data be ternal, WPI Data, PAJ, CHEM ABS Da		arch terms used)		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			·	
Category °	Citation of document, with indication, where appropriate, of the n	elevant passages		Relevant to claim No.	i
Α	US 6 011 155 A (VILLHAUER EDWIN 4 January 2000 (2000-01-04) cited in the application column 1 -column 2 examples 35,63	BERNARD)		1-37, 55-67	
	er documents are listed in the continuation of box C.	X Patent family men	ibers are listed in ann	ex.	
"A" documer conside "E" earlier dr filling da "L" documer which is citation "O" documer other m"P" documer later the	It which may throw doubts on priority claim(s) or scited to establish the publication date of another or other special reason (as specified) at referring to an oral disclosure, use, exhibition or eans at published prior to the international filing date but in the priority date claimed	"T" later document published or priority date and no cited to understand the invention "X" document of particular a cannot be considered involve an inventive st "Y" document of particular a cannot be considered document is combined ments, such combinati in the art. "&" document member of the	elevance; the claimed and a principle or theory to the claimed and the country with one or more other on being obvious to a	aplication but inderlying the diversition insidered to at the taken alone to the time the estimate of the taken alone to the taken alone to the estimate of the taken alone th	·
	otual completion of the International search December 2002	Date of mailing of the in	itemational search re	port	7
	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Kollmanns	berger M		-
		1	weigels il		1

INTERNATIONAL SEARCH REPORT

Inte

ral application No. T/GB 02/04764

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Although claims 57-60, 65-67 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
 -	
3	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Int	emational Searching Authority found multiple inventions in this international application, as follows:
•	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1 (partly); 2-37; 55-67 (partly)
Remai	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1 (partly); 2-37; 55-67 (partly)

Glycine substituted saturated N-containing heterocycles as defined in claim 1, substituted via a methylene containing chain by nitrogen bound biaryl moieties (defined as structures 2 or 3), corresponding compositions and uses

2. Claims: 1 (partly); 38-46; 55-60 (partly); 61; 62-67 (partly)

Glycine substituted saturated N-containing heterocycles as defined in claim 1, substituted via a methylene containing chain by nitrogen bound substituents (defined as structure 4) in position G1 with G2=H, corresponding compositions and uses

3. Claims: 1 (partly); 47-54; 55-60 (partly); 62-67 (partly)

Glycine substituted saturated N-containing heterocycles as defined in claim 1, substituted via a methylene containing chain by nitrogen bound substituents (defined as structure 4) in position G2 with G1=H, corresponding compositions and uses

INTERN. ONAL SEARCH REPORT

ation on patent family members

International Application No
PCT/ 02/04764

Patent document cited in search report	•	Publication date		Patent family member(s)	Publication date	
US 6011155	Α	04-01-2000	US	6124305 A	26-09-2000	