Let \boldsymbol{d}_n be the determinant of the n-by-n matrix

$$\begin{bmatrix} a+b & ab & 0 & \cdot & \cdot & 0 \\ 1 & a+b & ab & & & \\ & 1 & a+b & ab & & \\ & & \cdot & \cdot & \cdot & ab \\ & & & 1 & a+b \end{bmatrix}, \text{ where } a \neq b.$$

- (a) Find \mathbf{d}_1 , \mathbf{d}_2 and a recurrence relation of \mathbf{d}_n . (10%)
- (b) Use the diagonalization of a 2-by-2 matrix to find a general expression of d_n . (10%)

(14%) Let V be a complex vector space of finite dimension with a fixed positive definite hermitian inner product <, >. Let $f:V\to V$ be a linear transformation over $\mathbb C$ such that < f(v), v>=0. Show that f is a zero map.

(20%) Let V denote a vector space over the complex number field \mathbb{C} endowed with an inner product \langle , \rangle . Recall that the norm of a vector $v \in V$ is defined as

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Let W denote a finite-dimensional subspace of V. Prove that there exists a unique linear operator $P:V\to W$ such that

$$||v - P(v)|| \le ||v - w||$$
 for all $v \in V$ and $w \in W$.

Let the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -9 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) (15 %) Find a Jordan canonical form J of A and an invertible matrix P such that P⁻¹AP = J.
- (b) (10 %) Consider A = {Aⁿ | n = 0, 1, 2, ...} and let Span(A) be the subspace of M_{n×n}(ℝ) spanned by A over the field of real numbers ℝ. Determine the dimension of Span(A).

 \mathcal{S}_n is the space of $n \times n$ square matrices.

[20%] $A \in \mathcal{S}_n(\mathbb{C})$. Over \mathbb{C} , show the following two statements are equivalent.

- a. The characteristic polynomial of A is equal to minimal polynomial of A.
- b. For any $X \in \mathcal{S}_n(\mathbb{C})$ satisfies XA = AX, X is a polynomial of A.

Let A be a complex square matrix with

```
nullity (A - 2I) = 3,

nullity (A - 2I)^2 = 5,

nullity (A - 2I)^3 = 7,

nullity (A - 2I)^k = 8 for k \ge 4,

nullity (A + 3iI) = 3, and

nullity (A + 3iI)^k = 5 for k \ge 2.
```

- (a) Find the algebraic and geometric multiplicities for each eigenvalue of A. (10%)
- (b) Find the Jordan canonical form of A. (5%)
- (c) Find the determinant and trace of A. (5%)