Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-229. Вариант 5

- 1. Пусть $z=2\sqrt{3}-2i$. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\sqrt{3}-i}$ имеет аргумент $\frac{20\pi}{21}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(12-i) + y(-10-9i) = -185 - 38i \\ x(-10+12i) + y(-3+7i) = -122 - 244i \end{cases}$$

- 3. Найти корни многочлена $-5x^6 5x^5 30x^4 770x^3 4605x^2 14525x 10660$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=4-5i, x_2=-2+3i, x_3=-4$.
- 4. Даны 3 комплексных числа: -5+18i, -8, -9+5i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -2\sqrt{3} + 2i$, $z_2 = -4i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+1-2i| < 2\\ |arg(z+3-6i)| < \frac{\pi}{2} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (8, 5, 0), b = (-5, -2, -3), c = (7, 6, -5). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(1,12,-8) и плоскость P:6x-2y-10z+8=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-15,-1,-1), $M_1(-2,12,1)$, $M_2(48,2,1)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -4x + 4y - z - 2 = 0\\ 3x + 9y + 5z - 102 = 0 \end{cases} \qquad L_2: \begin{cases} -7x - 5y - 6z + 870 = 0\\ 19x + 13z - 1604 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.