

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Wizualizacja Danych Sensorycznych

Wizualizacja silosów zbożowych Raport

Prowadzący: dr inż. Bogdan Kreczmer

Wykonał: Jakub Kusz, 259267

Spis treści

1	Charakterystyka tematu projektu	2
	1.1 Główne cele aplikacji	2
	1.2 Realizacja projektu	2
2	Specyfikacja finalnego produktu	2
	2.1 Aplikacja	2
	2.1.1 Wymagania funkcjonalne	2
	2.1.2 Wymagania niefunkcjonalne	3
	2.2 System czujników	3
3	Terminarz realizacji poszczególnych podcelów	3
4	Projekt graficznego interfejsu użytkownika	6
	4.1 Widok wszystkich parametrów	6
	4.2 Widok wypełnienia	7
	4.3 Widok temperatury	8
	4.4 Wilgotność	9
		10
5	Prezentacja wyników pracy - 27.04.2023r.	10
	5.1 Protokół komunikacji	11
	5.2 Aplikacja	12
6	Prezentacja wyników pracy - 10.05.2023r	12
	6.1 Aplikacja	13
7	Prezentacja wyników pracy - 01.06.2023r.	16
	7.1 Aplikacja	16
8	Podsumowanie	20

1. Charakterystyka tematu projektu

Niniejszy projekt ma na celu stworzenie aplikacji służącej do wizualizacji silosów zbożowych. Aplikacja będzie wizualizować oraz monitorować 3 kluczowe parametry dotyczące stanu silosów:

- wypełnienie,
- temperatura panująca wewnątrz,
- wilgotność panująca wewnątrz.

Z perspektywy rolnika magazynującego zboże w silosach są to niezmiernie ważne informacje, dzięki nim będzie w stanie w łatwy sposób szacować ilość zebranego plonu, monitorować wilgotność oraz temperaturę panującą w silosie, których zbyt wysokie wartości bardzo często są wyznacznikiem tego, że w silosie rozpoczęły się procesy gnilne.

1.1. Główne cele aplikacji

Głównymi celami aplikacji będą:

- umożliwienie szybkiego i łatwego dostępu do informacji o stanie zboża w silosach,
- prezentowanie danych w przyjemniej i intuicyjnej formie graficznej,
- informowanie o zbliżaniu się do wartości krytycznych i przekroczeniu ich.

1.2. Realizacja projektu

Aplikacja zostanie napisana w języku C++, wykorzystywać będzie bibliotekę Qt pozwalającą na tworzenie graficznego interfejsu użytkownika (GUI). Dane do wizualizacji udostępnianie będą przez zaprojektowany układ czujników, znajdujący się na makiecie silosów.

2. Specyfikacja finalnego produktu

Finalnym efektem projektu będzie aplikacja pozwalająca na monitorowanie parametrów wymienionych w pkt. 1 i system czujników zastępujący prawdziwe silosy zbożowe.

2.1. Aplikacja

2.1.1. Wymagania funkcjonalne

Wymagania funkcjonalne są to wymagania które określają działanie systemu i zaspokajają potrzeby użytkownika. Poniżej znajduje się lista wymagań funkcjonalnych, które finalna wersja aplikacji powinna spełniać:

- Możliwość przegladu monitorowanych na bieżaco parametrów stanu silosów:
 - każdego z parametrów osobno,
 - wszystkich parametrów razem.
- prowadzenie rejestru pomiarów,

- wizualizacja pomiarów historycznych z określonego okresu czasu,
- ostrzeganie o zbliżaniu się do wartości niebezpiecznych,
- możliwość ustawienia wielkości wartości niebezpiecznych i parametrów związanych z alarmami,
- alarmowanie po przekroczeniu wartości niebezpiecznych.

2.1.2. Wymagania niefunkcjonalne

Wymagania niefunkcjonalne określają przede wszystkim oczekiwania co do samej jakości działania aplikacji oraz pożądanego zachowania tworzonego systemu. Poniżej znajduje się lista wymagań niefunkcjonalnych, które finalna wersja aplikacji powinna spełniać:

- Użyte technologie:
 - C++17,
 - Qt5,
- możliwość zmiany rozmiaru ekranu i responsywność elementów GUI,
- wielojęzyczność,
- komunikacja z układem sensorów za pomocą portu szeregowego,
- przechowywanie danych historycznych w pliku CSV.

2.2. System czujników

W celu realizowania odczytu z czujników zostanie skonstruowana prosta, niewielkich rozmiarów makieta silosów zbożowych, na której zostaną osadzone odpowiednie czujniki:

- pomiary temperatury i wilgotności: DHT11 (4 sztuki, po na silos),
- pomiar wypełniania: HC SR04 (2 sztuki, po jednej na silos).

3. Terminarz realizacji poszczególnych podcelów

Lista podcelów z dokładnością do jednego tygodnia oraz wykres gantta (wykr. 1):

- 20.03.2023: Studia literatury dotyczące biblioteki Qt:
 - przeglad klas dostępnych w Qt,
 - zapoznanie się z Qt designer i Qt Linguist,
- 27.03.2023: Projektowanie interfejsu graficznego
- 3.04.2023 : Projektowanie architektury systemu, projektowanie makiety i układu elektronicznego czujników
- PIERWSZY KAMIEŃ MILOWY: Ukończenie etapu projektowania

- 10.04.2023: Budowa makiety i układu elektronicznego czujników
- 17.04.2023: Testowanie działania układu elektronicznego czujników
- 24.04.2023: Implementacja głównych elementów GUI:
 - menu użytkownika,
 - wybór widoku bieżącego lub historycznego,
 - prezentacja temperatury, wypełnienia i wilgotności,
- 1.05.2023: Implementacja głównych elementów GUI:
 - menu użytkownika,
 - wybór widoku bieżącego lub historycznego,
 - prezentacja wartości temperatury, wypełnienia i wilgotności na modelu silosu,
 - prezentacja historycznych wartości temperatury, wypełnienia i wilgotności na wykresach
- 8.05.2023: Testowanie głównych elementów GUI
- 15.05.2023: Implementacja komponentów logicznych aplikacji:
 - sposób komunikacji z czujnikami,
 - parsowanie danych,
 - przechowywanie danych,
- 22.05.2023: Testowanie komponentów logicznych aplikacji
- 29.05.2023: Implementacja pozostałych elementów GUI:
 - dopracowanie modelu silosa,
 - dopracowanie wykresów
- 5.06.2023: Testowanie pozostałych elementów GUI
- 12.06.2023: Integracja wszystkich komponentów, testowanie aplikacji
- 19.06.2023: Tworzenie raportu końcowego
- DRUGI KAMIEŃ MILOWY: Złożenie raportu końcowego i prezentacja rezultatów

Rysunek 1: Wykres gantta 5

4. Projekt graficznego interfejsu użytkownika

Interfejs graficzny będzie przedstawiać w czterech wybieralnych zakładkach dwa silosy, na który prezentowane będą następujące elementy:

- widok wszystkich parametrów,
- widok wypełnienia,
- widok temperatury,
- widok wilgotności,

Ponadto dostępna będzie również piąta zakładka, prezentująca na wykresach dane historyczne.

W kolejnych podpunktach zostaną przedstawione schematyczne grafiki prezentujące poszczególne widoki aplikacji na dane parametry.

4.1. Widok wszystkich parametrów

Rysunek 2: Widok na wszystkie parametry

Rysunek 2 prezentuje idee poglądu na wszystkie parametry dotyczące silosów. Aby wybrać ten widok, w górnym pasku należy zaznaczyć opcje "wszystkie parametry". Wypełnienie silosu symbolizowane jest kolorem. w sposób tekstowy zaprezentowane zostaną wartości odczytane z czujników temperatury i wilgotności. Kolor czcionki będzie symbolizował wartość parametru, np. czerwony kolor czcionki będzie występował wraz ze wskazaniem temperatury przekraczającej poziom alarmowy. Pod silosami znajdują sie pola przeznaczone do informowania o zaistniałych alarmach.

4.2. Widok wypełnienia

Rysunek 3: Widok na wypełnienie silosów

Rysunek 3 prezentuje idee poglądu na wypełnienie silosów. Aby wybrać ten widok, w górnym pasku należy zaznaczyć opcje "wypełnienie". Wypełnienie silosów symbolizowane będzie zapełnieniem obrysu silosów kolorem. Niski poziom będzie sygnalizowany na czerwono, poziomy bliskie połowy odcieniami żółtego, zbliżając się do maksymalnego poziomu kolor będzie stawał się zielony. Dodatkowo widoczna będzie informacja o zapełnieniu silosów wyrażona w procentach.

4.3. Widok temperatury

Rysunek 4: Widok na temperature wewnątrz silosów

Rysunek 4 prezentuje idee poglądu na temperature wewnątrz silosów. Aby wybrać ten widok, w górnym pasku należy zaznaczyć opcje "temperatura". Temperatura symbolizowana będzie poprzez gradient kolorów, postały na podstawie odczytu temperatury z czujników. Odcienie niebieskiego będą symbolizować niskie temperatury, odcienie żółto-pomarańczowe średnie, a czerwone wysokie. Dodatkowo temperatura będzie prezentowana w formie tekstowej.

4.4. Wilgotność

Rysunek 5: Widok na wilgotność wewnątrz silosów

Rysunek 5 prezentuje idee poglądu na wilgotność wewnątrz silosów. Aby wybrać ten widok, w górnym pasku należy zaznaczyć opcje "wilgotność". Wilgotność symbolizowana będzie poprzez gradient kolorów, postały na podstawie odczytu wilgotności z czujników. Nie ustalono jeszcze kolorystyki symbolizującej wilgotność, na grafice 5 kolory zostały wybrane przypadkowo. Dodatkowo wilgotność będzie prezentowana w formie tekstowej.

4.5. Dane historyczne

Rysunek 6: Widok na dane historyczne

Rysunek 5 prezentuje idee poglądu na dane historyczne silosów. Aby wybrać ten widok, w górnym pasku należy zaznaczyć opcje "dane historyczne". Widok ten przedstawia nam wykresy danych zapisanych i przechowanych przez aplikacje. Wykresy można poddać następującym modyfikacją:

- wybór silosu, którego dane chcemy wyświetlić,
- wybór danych, które mają zostać wyświetlone,
- wybór okresu czasu, z którego mają zostać zaprezentowane dane.

5. Prezentacja wyników pracy - 27.04.2023r.

Do dnia 27.04.2023r. wykonano następujące zadania:

- zaprojektowano układ czujników,
- opracowano transmisje danych z mikrokontrolera do komputera,
- określono sumę kontrolną dla opracowanej transmisji danych,
- zaprojektowano grafikę aplikacji,
- zaimplementowano zakładkę "wszystkie parametry".

5.1. Protokół komunikacji

Komunikacja odbywa się poprzez UART. Ramka składa się z 13 bajtów. Dane zbierane z czujników mogą okazać się większe niż 1 bajt wiec, przed wysłaniem dzielone są na 2 części i wysyłane jako 1 bajtowe. Program odbierający skleja je ze sobą do postaci 2 bajtowej. Dane wysyłane są w postaci binarnej, w następujący sposób:

- Bajt 1: START -> 0xFF
- Bajt 2: OBJĘTOŚĆ -> 8 najstarszych bitów
- \bullet Bajt 3: OBJĘTOŚĆ -> 8 najmłodszych bitów
- Bajt 4: TEMPERATURA_1 -> 8 najstarszych bitów
- Bajt 5: TEMPERATURA 1 -> 8 najmłodszych bitów
- Bajt 6: TEMPERATURA 2 -> 8 najstarszych bitów
- Bajt 7: TEMPERATURA 2 -> 8 najmłodszych bitów
- Bajt 8: WILGOTNOŚĆ 1 -> 8 najstarszych bitów
- Bajt 9: WILGOTNOŚĆ_1 -> 8 najmłodszych bitów
- \bullet Bajt 10: WILGOTNOŚĆ_2 -> 8 najstarszych bitów
- Bajt 11: WILGOTNOŚĆ 2 -> 8 najmłodszych bitów
- Bajt 12: SUMA KONTROLNA -> CRC8
- Bajt 13: NUMER SILOSU -> 0xFE(silos 1) / 0xFD(silos 2)

5.2. Aplikacja

Rysunek 7: Wygląd zakładki wszystkie parametry

Ui zostało zaprojektowane za pomocą narzędzia Designer. Rysowanie silosów, ich wypełnienia i pozostałych informacji zostało zrealizowane za pomocą reimplementacji metody pain Event. Kod został udokumentowany za pomocą programu doxygen.

6. Prezentacja wyników pracy - 10.05.2023r

Do dnia 10.05.2023r. dokonano następujących postępów:

- zaimplementowano odczyt danych z portu szeregowego, poprzez uruchomienie go w osobnym wątku. Obiekt będący kontenerem na dane przekazywany jest przez wskaźnik do obiektu main_window, dzięki czemu dane są dostępne dla pozostałych komponentów aplikacji.
- zaprojektowano interfejs widoku "Temperatura" (Rysunek 10),
- zaprojektowano interfejs okienka służącego ustawianiu wartości alarmów (Rysunek 11),
- połączono sloty odpowiedzialne za aktualizacje właściwych im danych dotyczących elementów interfejsu, takich jak:
 - graficzna i tekstowa prezentacja wypełnienia silosu (widok "Wszystkie parametry"),

- graficzna i tekstowa prezentacja temperatury (widoki "Wszystkie parametry" i "Temperatura"),
- Prezentacja informacji o alarmach (widoki "Wszystkie parametry" i "Temperatura") (Rysunek 8,9),
- przebudowano strukturę aplikacji, odciążono obiekt $main_window$, w którym znajdowały się wszystkie sloty wykorzystywane przez aplikację. Utworzono klasy "backendowe" w których usystematyzowano kod dotyczący slotów.

6.1. Aplikacja

Poniżej znajdują się zrzuty ekranu prezentujące wypracowany interface.

Rysunek 8: Wygląd zakładki wszystkie parametry

Rysunek 9: Wygląd zakładki wszystkie parametry

Rysunek 10: Wygląd zakładki Temperatura

Rysunek 11: Wygląd okienka pozwalającego na ustawienie wartości alarmów

7. Prezentacja wyników pracy - 01.06.2023r.

Dnia 01.06.2023r. dokonano następujących postępów:

- zaprojektowano interfejs widoku "Wilgotność" (Rysunek 12),
- zaprojektowano interfejs widoku "Wypełnienie" (Rysunek 13),
- połączono sloty odpowiedzialne za aktualizacje właściwych im danych dotyczących elementów interfejsu, takich jak:
 - graficzna i tekstowa prezentacja wilgotność i wypełnienia silosu (widoki "Wilgotność" i "Wypełnienie"),
 - Prezentacja informacji o alarmach (widoki "Wilgotność" i "Wypełnienie"),
- zaimplementowano obsługę małej bazy danych pracującej w systemie SQLite stworzono klasę reprezentującą bazę danych, oferującą prosty interface pozwalający na zapis i odczyt danych.
- zaprojektowano interfejs widoku "Dane Historyczne" (Rysunek 14):
 - na interfejsie umieszczono elementy pozwalające wybrać dane do wizualizacji i obiekt reprezentujący wykres,
 - dokonano odpowiednich połączeń sygnałów z elementów Ui ze slotami odpowiedzialnymi za prace backendową, w tym obsługę pracy z bazą danych,
- napisano tłumaczenie aplikacji na język angielski, użytkownik ma możliwość wyboru języka (Rysunek 15).

7.1. Aplikacja

Poniżej znajdują się zrzuty ekranu prezentujące wypracowany interface.

Rysunek 12: Wygląd zakładki Wilgotność

Rysunek 13: Wygląd zakładki Wypełnienie

Rysunek 14: Wygląd zakładki Dane Historyczne

Rysunek 15: Zaprezentowanie tłumaczenia na ang

8. Podsumowanie

Udało się zrealizować wszystkie założone funkcjonalności aplikacji wymienione w pkt. 2 i zaprojektować nowoczesne i estetyczne Ui. Aplikacja jest w pełni funkcjonalna, obsługa intuicyjna. W czasie testów nie zauważono niepożądanych zachowań apliacji. Tłumaczenie na język angielski odbywa się prawidłowo. Kod aplikacji w wielu miejscach nie został napisany w myśli dobrych praktyk programowania obiektowego, w dalszej perspektywie rozwoju aplikacji powinien zostać dokonany refactoring kodu. Dokumentacja była prowadzona na bieżąco.