Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Plotting model output with ggplot2

July 2019

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Introduction

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Tidyverse

- The tidyverse suite of R packages is designed to make working with data as easy as possible
- The relevant packages from tidyverse for us are
 - ggplot2: for plotting data
 - dplyr: for manipulating data frames
 - tidyr: for making data tidy

library(tidyverse)

Introduction

Visualisation with the grammar of graphics

factors

Plotting multiple simulations

Summary

Long and wide tidy data

- Every data set has its own quirks
- Tidy data frames consist of a number of observations (rows) of variables (columns), they can be either wide or long
- Data needs to be the right shape for the functions being used
- ggplot2 usually requires long data

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Long and wide tidy data

 An example of a wide data frame which we might encounter is the output of an SIR model

Wide data					
	time	S	I	R	
	0.0	0.999999	1e-06	0	
	0.5	0.999998	2e-06	0	
	1.0	0.999996	4e-06	0	

• key: this state at this time

• value: proportion

Long data

Luily uata					
time	state	proportion			
0.0	S	0.999999			
0.5	S	0.999998			
1.0	S	0.999996			
0.0	I	0.000001			
0.5	I	0.000002			
1.0	I	0.000004			
0.0	R	0.000000			
0.5	R	0.000000			
1.0	R	0.000000			

Introduction

Visualisation with the grammar of graphics

factors

Plotting multiple simulations

Summary

Long and wide tidy data

- Our numerical solution to the SIR model is a wide data frame, values of S(t), I(t), R(t) at given values of t
- We gather the columns in SIR as key-value pairs where
 - key column, state, contains the names of the gathered columns
 - value of each state at given time is column called proportion
 - S, I, R columns (not time) are the gathered variables

Long and wide tidy data

Introduction

with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Wide data

time	S	I	R
0.0	0.999999	1e-06	0
0.5	0.999998	2e-06	0
1.0	0.999996	4e-06	0

- key: this state at this time
- value: proportion

Long data

time	state	proportion	
0.0	S	0.999999	
0.5	S	0.999998	
1.0	S	0.999996	
0.0	1	0.000001	
0.5	1	0.000002	
1.0	1	0.000004	
0.0	R	0.000000	
0.5	R	0.000000	
1.0	R	0.000000	

Introductio

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Visualisation with the grammar of graphics

Introductio

Visualisation with the grammar of graphics

Relevellin

Plotting multiple

Summar

- R package ggplot2 uses a grammar of graphics
 - adding extra commands in a "do this, then do this" manner
 - assign variables in data frame to aesthetic options in the plot
 - choose a plotting style for how to display these variables
 - adjustments to axis scales
 - adjustments to colors, themes, etc.
 - · additional annotation
- Focus is on visual relationships between variables rather than drawing points and lines
- Options are properties of the elements of the plot rather than of plot itself

Visualisation with the grammar of graphics

Relevelling factors

- How do we tell the ggplot() function to make a plot?
 - Load the ggplot2 package, which contains the ggplot() function
 - Specify a data frame to use, containing the variables we want to plot

```
library(ggplot2)
ggplot(data = my.data.frame)
```

Introduction

Visualisation with the grammar of graphics

factors

Plotting multiple simulations

Summary

- How do we tell the ggplot() function to make a plot?
 - Then we set some **aesthetic options** to tell R which variables from my . data . frame to map to the x and y axes of the plot

Introductio

Visualisation with the grammar of graphics

factors

simulations

Summary

Visualisation with ggplot2

- How do we tell the ggplot() function to make a plot?
 - Geometries are the shapes we use to draw plots, e.g. lines, points, polygons, bars, boxplots
 - We will use the line geometry to build a time series plot

 We can set aesthetics aes(...) inside a geometry to modify the color, fill, alpha transparency, etc. according to a variable in the data frame

Visualisation with the grammar of graphics

factors

time	state	proportion
0.00	S	0.9999990
0.05	S	0.9999989
0.10	S	0.9999988
0.00	I	0.0000010
0.05	I	0.0000011
0.10	I	0.0000011
0.00	R	0.0000000
0.05	R	0.0000000
0.10	R	0.0000000

- · Line geometry takes each (x_i, y_i) pair from the aes() specification and joins them with a line segment
 - For each state, we want to plot a different line
 - group aesthetic tells R that the data in SIR_long is grouped a particular way
- Line has proportion on y axis, time on x axis

```
sir_ggplot <-
  ggplot(data = SIR_long,
         aes(x = time,
             y = proportion)) +
  geom_line(aes(group = state))
```

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Introductio

Visualisation with the grammar of graphics

factors

Plotting multipl simulations

Summary

Visualisation with ggplot2

- Using for our grammar of graphics' + operator let's add axis labels to the plot
 - xlab() and ylab() print their argument as axis labels

```
sir_ggplot <- sir_ggplot +
  xlab("Time (days)") +
  ylab("Proportion of population")</pre>
```

 We are sequentially adding functions that modify the plot rather than passing arguments to a plot() to replace default options

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Visualisation with the grammar of graphics

factors

- The plot on the previous slide didn't give us much info on which line is which
- Consider a basic plot that we'll recycle

```
sir_ggplot_basic <-
 ggplot(data = SIR_long,
                                    # where data lives
         aes(x = time,
                                    # set plot aesthetics...
             y = proportion)) +
                                      ...specifying x&y vars
                                    # grey grid on white bg
 theme bw()
                                      replace time as x label
 xlab("Time (days)") +
  vlab("Population proportion") +
                                    # replace proportion as y
 theme(legend.position = "bottom")
                                    # change legend placement
```

- NB no geometry specified
- theme bw() is a collection of options for theme() that specify a white background with a light grey grid and black text
- we change the legend placement after we set the default theme, otherwise it will get overwritten

Visualisation with the grammar of graphics

factors

```
sir_ggplot_color <-
  sir_ggplot_basic +
  geom_line(
    aes(color = state))
```

- Mapping a variable, e.g. state, to part of our plot requires it is inside aes(...)
- Here we have colored each line by state
- Static options go outside aes(...)

theme(legend.position="bottom")

Visualisation with the grammar of graphics

factors

Visualisation with ggplot2

Draw small multiples with facet grid(), repeating the geometry for each level of the grouping variable on the rows of the grid

```
sir ggplot facet <-
 sir_ggplot_basic +
 geom_line() +
  facet_grid(
    rows = vars(state)
```

where vars() indicates that we are selecting a list of variables

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Relevelling factors

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Relevelling factors

- Default behaviours are:
 - gather() respects column order when reshaping
 - key column is character variable
 - character variables coerced to alphabetic factors
- We can set order of state variable by specifying levels

```
factor(state, levels = c("S","I","R"))
```

```
Plotting model output with gaplot2
```

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple

simulations

```
Summary
```

Relevelling factors

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Plotting multiple simulations

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Grouping in a factorial design

Consider a factorial design for SIR simulations with each combination of $\beta=1.42470, 1.56756$ and $\gamma=0.14286, 0.36508$

_						
	sim	beta	gamma	time	proportion	state
	1	1.4247	0.14286	1	0.999996	Susceptible
	1	1.4247	0.14286	1	0.000004	Infectious
	1	1.4247	0.14286	1	0.000000	Recovered
	2	1.4247	0.36508	1	0.999996	Susceptible
	2	1.4247	0.36508	1	0.000003	Infectious
	2	1.4247	0.36508	1	0.000001	Recovered

Introduction

Visualisation with the grammar of graphics

factors

Plotting multiple simulations

Summary

Grouping in a factorial design

- Ultimately want a line for each value of β , γ and state
- Build the line plots with color = state as before
- Use small multiples to show a plot for each combination of β and γ
- With facet_grid() we specify grouping variables for rows and/or columns of plot
 - Can specify the grouping structure explicitly with facet_grid(rows = vars(beta), cols = vars(gamma))
 - or with row variables ~ column variables,
 e.g. facet_grid(beta ~ gamma)

```
Plotting mode output with applot2
```

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Grouping in a factorial design

Introductio

Visualisatio with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

Grouping in Monte Carlo simulation

Consider instead of a factorial design for an SIR we have 100 simulations of an SIR model from a Monte Carlo simulation. 12 of the 10100 rows are shown below:

sim	time	S	I	R
1	0.0	99.000	1.000	0.000
1	0.1	98.867	1.102	0.031
1	0.2	98.721	1.213	0.066
2	0.0	99.000	1.000	0.000
2	0.1	98.875	1.093	0.031
2	0.2	98.740	1.195	0.065
3	0.0	99.000	1.000	0.000
3	0.1	98.856	1.113	0.032
3	0.2	98.696	1.237	0.067
4	0.0	99.000	1.000	0.000
4	0.1	98.862	1.106	0.031
4	0.2	98.710	1.224	0.066

Grouping in Monte Carlo simulation

with the grammar of

factors

simulations

Plotting multiple

Gather the data, as before, and relevel the state variable

```
sol_sim_long <-
 gather(data = sol_sim,
         key = state,
         value = proportion,
         S, I, R)
sol_sim_long$state <-
 factor(sol_sim_long$state,
         levels = c("S", "I", "R"))
```

Introductio

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Simulations

Grouping in Monte Carlo simulation

- We can group by simulation index, sim, to show each as a line
- Use alpha transparency so we don't have a giant blob of black

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

with the grammar of

factors

Plotting multiple simulations

Grouping in Monte Carlo simulation

- To simplify this plot, we could calculate a 95% interval at each time for S, I, R and show these
- Use dplyr's
 - group_by() to define a grouping structure, and
 - summarise() to calculate summary statistics for each group (median, upper and lower bounds of a 95% interval)

```
sol_sim_grouped <- group_by(sol_sim_long,</pre>
                             time, state)
sol_sim_summarised <-
  summarise(sol_sim_grouped,
            q0.025 = quantile(proportion, probs = 0.025),
            q0.500 = quantile(proportion, probs = 0.5),
            q0.975 = quantile(proportion, probs = 0.975))
```

with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Grouping in Monte Carlo simulation

- Can use multiple geometries with different aesthetics
- Plot the ribbon and then plot the median line

```
plot_sim_summarised_ribbon <-</pre>
  ggplot(data = sol sim summarised,
        aes(x = time)) +
  geom_ribbon(aes(ymin = q0.025, # lower edge of ribbon
                 ymax = q0.975), # upper edge of ribbon
             alpha = 0.5, # make semi-transparent
             fill = "skyblue", # fill blue
             color = NA) + # no border color
  geom_line(aes(y = q0.500)) + # line for median
  theme bw() +
                            # nicer theme
  facet grid(
   cols = vars(state)) + # repeat for each state
  xlab("Time (days)") +
                            # human friendly axis label
 ylab("Population")
                            # human friendly axis label
```

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple

Summary

Introduction

Visualisation with the grammar of graphics

Relevelling factors

Plotting multiple simulations

Summary

- ggplot2 uses aesthetics to map variables in data frame to elements of plot
- Plot is sequentially built up by adding elements
 - geometries (e.g. lines, ribbons)
 - annotations (e.g. axis labels)
 - theme options
- Data needs to be in key-value pairs for plotting
- Data in key-value pairs is easily summarised by key group

Introduction

Visualisation with the grammar of graphics

factors

simulations

Summary

Additional Resources

- More help on ggplot2 and the tidyverse is available
- The #r4ds community have TidyTuesday
- Chang (2017) is very useful if a little out of date
- Wickham (2010) on philosophy behind ggplot2
- Wickham (2014) on what tidy data is

Chang, Winston. 2017. R Graphics Cookbook: Practical Recipes for Visualizing Data. 2nd ed. O'Reilly Media.

Wickham, Hadley. 2010. "A Layered Grammar of Graphics." *Journal of Computational and Graphical Statistics* 19 (1):3–28. https://doi.org/10.1198/jcgs.2009.07098.

---. 2014. "Tidy Data." *Journal of Statistical Software* 59 (1):1–23. https://doi.org/10.18637/jss.v059.i10.