ÜK 330 - Spick

Stand vom: 21.04.2021 bis 29.04.2021

<u>Inhaltsverzeichnis</u>

OSI-Layer	3
Ethernet Frame vs. IP Packet	3
TCP vs. UDP	3
/LAN	4
VLAN-Tagging	4
Quality of Service	5
Delay	5
Jitter	5
Packet Loss	6
Lack of Bandwidth	6
QoS-Anwendung	6
Codec	6
Audio Codecs	7
Standards	7
SIP	7
Die 7 Schritte im Detail	8
RTP	8
/oIP-Gateway	8
Call-Flow	ç
CTI / UC	ç
Nice To Know	LC
SIP-Status-Codes	LC
SIP-Diagramm	LC

OSI-Layer

Layer 1 (physical)	Kabel (physisch)
Layer 2 (datalink)	MAC-Adresse
Layer 3 (network)	IP-Adresse
Layer 4 (transport)	TCP, UDP
Layer 5 (session)	SIP, RTP (APIs)
Layer 6 (presentation)	SSH, SSL, FTP
Layer 7 (application)	http, https, DNS

(Please Do Not Throw Salami Pizza Away)

Ethernet Frame vs. IP Packet

TCP vs. UDP

TCP: Bei Paketverlust wird ein neues Paket geschickt. Es gibt also einen «Handshake». (verbindungsorientiert)

UDP: Bei Paketverlust wird <u>kein</u> neues Paket geschickt. Es gibt also <u>keinen</u> «Handshake». (verbindungslos)

VLAN

Ein Virtual Local Area Network (VLAN) ist ein logisches Teilnetz (Segment (Netzwerk)) innerhalb eines Switches bzw. eines gesamten physischen Netzwerks. Es kann sich über mehrere Switches hinweg ausdehnen.

Somit kann man die einzelnen Bereiche spezifisch priorisieren.

VLAN-Tagging

Bei tagged VLANs können mehrere VLANs über einen einzelnen Switch-Port genutzt werden. Die einzelnen Ethernet Frames bekommen dabei Tags angehängt, in dem jeweils die VLAN-ID vermerkt ist zu dessen VLAN das Frame gehört.

Quality of Service

Unternehmensnetzwerke müssen vorhersehbare und messbare Dienste bereitstellen, wenn Anwendungen wie Sprache, Video und verzögerungsempfindliche Daten das Netzwerk durchlaufen. Unternehmen verwenden **QoS**, um die Verkehrsanforderungen sensibler Anwendungen wie Echtzeit-Sprach- und -Videodaten zu erfüllen und um Qualitätseinbußen durch **Paketverluste**, **Latenzen** und **Jitter** zu verhindern. QoS kontrolliert und verwaltet Netzwerkressourcen, indem **Prioritäten** für bestimmte Datentypen im Netzwerk festgelegt werden.

Delay

Ein Delay (Verzögerung/Latenz) von 5ms ist üblich. Sobald es aber eine Verzögerung von 125 Millisekunden gibt, wird diese hörbar.

Bsp.: Bei einem Delay wird man sich dazwischenreden, da es eine längere Zeit braucht bis das Gesprochene beim Gegenüber zu hören ist.

Jitter

In der Übertragungstechnik spricht man bei einem abrupten, unerwünschten Wechsel der Signalcharakteristik von einem Jitter. (Unregelmässige Paketverzögerung)

Bsp.: Die Sprachqualität leidet stark darunter in Form von bspw. Rauschen, Roboter-Stimme...

Packet Loss

Der am häufigsten auftretende Fehler bei digitaler Kommunikation ist der Paketverlust.

Bsp.: Beim Reden hört der Gegenüber vieles bloss abgehackt. Die Videoübertragung ruckelt.

Lack of Bandwidth

Um Unterbrechungen zu verhindern, sollte stehts genügend Bandbreite vorhanden sein.

QoS-Anwendung

- VLAN-Tagging
- Layer 3 Switch

Codec

Schicht	Audio Codec	Video Codec	Steuerung	g & User-Interface	•	Data	
	G.711				11.450	H.450	T.125
	G.722 H.26X G.723 H.264 G.728 H.265 G.729	RAS Control H.225.0	Call Control H.225.0(Q.391)	п.450	T.124		
6.				H.245	T.123		
5.	RTP		RTCP				
4.	UDP			TCP			
3.	IP - Internet Protocol (Network Layer)						
2.	Ethernet (Link Layer)						
1.	Physical Layer						

Als Codecs bezeichnet man einen Encoder/Decoder, welcher Daten oder Signale digital kodieren/dekodieren kann, um sie über ein Datennetzwerk zu verschicken. In der VoIP-Telefonie spielen diese eine besonders wichtige Rolle, da sie bestimmen, wie und in welcher Qualität Audiodateien und Videodateien innerhalb eines Netzwerks transportiert werden.

Audio Codecs

G.711	 älteste Codec (1965) gleiche Verfahren wie bei ISDN keine Umkodierung der Sprachdaten notwendig für schmalbandige Netzwerkverbindungen ungeeignet
G.722	weit verbreitetSprachqualität wie UKW-Radios (HD)
G.729	 besser als Mobilfunknetz-Sprachqualität wird bei VoIP-Anwendungen verwendet kleinste Bandbreite (10kBit/s)
G.723	geringere Sprachqualität als G.711

Standards

genormter Telefonie-Frequenzbereich	300Hz - 3'400Hz = 3.1kHz
Generelle Bandbreite für VoIP-Anwender	100kBit in beide Richtungen
Frequenzbereich der menschlichen Sprache	190Hz bis 5'000Hz

SIP

Das **Session Initiation Protocol** ist ein Netzprotokoll zum Aufbau, zur Steuerung und zum Abbau einer Kommunikationssitzung zwischen zwei und mehr Teilnehmern. Das Gespräch wird dabei in einzelnen Datenpaketen über das Internet versendet.

(Port 5060 | Protokoll: TCP/UDP)

Die 7 Schritte im Detail

1. P1 = **INVITE** (Anruf wird getätigt)

2. P2 = **100 TRYING** (versucht Verbindung aufzubauen)

3. P2 = **180 RINGING** (Verbindung hergestellt, wartet auf Antwort)

4. P2 = 200 OK (Anruf wird angenommen)
5. P1 = ACK (Verbindung wird bestätigt)
6. P1 = BYE (Verbindung wird beendet)

7. P2 = **200 OK** (Bestätigung der beendeten Verbindung)

RTP

Das **Real-Time Transport Protocol** ist ein Protokoll zur kontinuierlichen Übertragung von audiovisuellen Daten über IP-basierte Netzwerke. RTP garantiert keine Dienstqualität per QoS-Übertragung. Paketverluste sind jedoch bei RTP, bis zu einem bestimmten Grad, akzeptabel. (Port: <1024 | Protokoll: UDP)

Im Vergleich: UDP kann Paketverluste nicht feststellen und TCP muss die verlorenen Pakete erneut senden.

VoIP-Gateway

Bei einem VoIP-Gateway handelt es sich um ein elektronisches Gerät bzw. System, welches Schnittstellen der klassischen Telekommunikation in Schnittstellen der IP-Telefonie konvertiert.

Call-Flow

(Beispiel)

CTI / UC

CTI (Computer Telephony Integration) ermöglicht die Nutzung des Telefons vom Computer aus. Zudem können mit CTI verschiedene Kommunikationsformen wie E-Mail, Chat und Telefonie auf dem Rechner integriert werden. CTI-Anwendungen laufen in der Regel entweder auf dem Desktop des Nutzers oder auf einem unbeaufsichtigten Server.

Eine Vereinheitlichung der Kommunikation nennt man dann **UC** (Unified Communication). UC ist ein Marketing-Begriff und beschreibt die Integration von Kommunikationsmedien in einer einheitlichen Anwendungsumgebung.

Nice To Know

SIP-Status-Codes

1xx – Provisional	Vorläufige Informationen, dass der Server noch weitere Aktionen durchführt und deshalb noch keine endgültige Antwort senden kann.
2xx – Successful	Die Anfrage war erfolgreich.
3xx – Redirection	Diese Nachrichten informieren über eine neue Kontaktadresse des Angerufenen oder über andere Dienste, die es ermöglichen die Verbindung erfolgreich aufzubauen.
4хх – Request Failures	Request Failures sind negative Rückmeldungen. Die vorangegangene Nachricht konnte nicht bearbeitet werden.
5xx – Server Failures	Ein an der Übermittlung beteiligter Server konnte eine Nachricht nicht bearbeiten.
6xx – Global Failures	Generelle Fehler: Der Server wurde zwar erfolgreich kontaktiert, jedoch kommt die Transaktion nicht zustande.
7xx – Fehlercodes des SIP-Stacks	-

SIP-Diagramm

