Experiment No. 1

Analyze the Boston Housing dataset and apply appropriate

Regression Technique

Date of Performance: 17-07-2023

Date of Submission: 11-08-2023

Aim: Analyze the Boston Housing dataset and apply appropriate Regression Technique.

**Objective:** Ablility to perform various feature engineering tasks, apply linear regression on the given dataset and minimise the error.

# Theory:

Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on — the kind of relationship between dependent and independent variables they are considering, and the number of independent variables getting used.



Linear regression performs the task to predict a dependent variable value (y) based on a given independent variable (x). So, this regression technique finds out a linear relationship between x (input) and y(output). Hence, the name is Linear Regression.

In the figure above, X (input) is the work experience and Y (output) is the salary of a person. The regression line is the best fit line for our model.

## **Dataset:**

The Boston Housing Dataset

The Boston Housing Dataset is a derived from information collected by the U.S. Census Service concerning housing in the area of Boston MA. The following describes the dataset columns:

CRIM - per capita crime rate by town

ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS - proportion of non-retail business acres per town.

CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX - nitric oxides concentration (parts per 10 million)

RM - average number of rooms per dwelling

AGE - proportion of owner-occupied units built prior to 1940

DIS - weighted distances to five Boston employment centres

RAD - index of accessibility to radial highways

TAX - full-value property-tax rate per \$10,000

PTRATIO - pupil-teacher ratio by town

B - 1000(Bk - 0.63)<sup>2</sup> where Bk is the proportion of blacks by town

LSTAT - % lower status of the population

MEDV - Median value of owner-occupied homes in \$1000's

## Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

dataset = pd.read_csv("boston_train.csv")
dataset
dataset.head()
```

|   | ID | crim    | zn   | indus | chas | nox   | rm    | age  | dis    | rad | tax | ptratio | black  | lstat |
|---|----|---------|------|-------|------|-------|-------|------|--------|-----|-----|---------|--------|-------|
| 0 | 1  | 0.00632 | 18.0 | 2.31  | 0    | 0.538 | 6.575 | 65.2 | 4.0900 | 1   | 296 | 15.3    | 396.90 | 4.98  |
| 1 | 2  | 0.02731 | 0.0  | 7.07  | 0    | 0.469 | 6.421 | 78.9 | 4.9671 | 2   | 242 | 17.8    | 396.90 | 9.14  |
| 2 | 4  | 0.03237 | 0.0  | 2.18  | 0    | 0.458 | 6.998 | 45.8 | 6.0622 | 3   | 222 | 18.7    | 394.63 | 2.94  |
| 3 | 5  | 0.06905 | 0.0  | 2.18  | 0    | 0.458 | 7.147 | 54.2 | 6.0622 | 3   | 222 | 18.7    | 396.90 | 5.33  |
| 4 | 7  | 0.08829 | 12.5 | 7.87  | 0    | 0.524 | 6.012 | 66.6 | 5.5605 | 5   | 311 | 15.2    | 395.60 | 12.43 |

dataset.info()
# dataset.describe()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 333 entries, 0 to 332
Data columns (total 15 columns):
# Column Non-Null Count Dtype
             -----
0 ID
            333 non-null
                           int64
1
    crim
             333 non-null
                            float64
2
            333 non-null
                            float64
    zn
            333 non-null
    indus
                            float64
3
4
    chas
             333 non-null
                            int64
            333 non-null
                           float64
    nox
            333 non-null
                            float64
6
    rm
                            float64
    age
            333 non-null
            333 non-null
                            float64
    rad
             333 non-null
                            int64
            333 non-null
                            int64
10 tax
11 ptratio 333 non-null
                            float64
            333 non-null
                            float64
12 black
13 lstat
             333 non-null
                            float64
14 medv
             333 non-null
                            float64
dtypes: float64(11), int64(4)
memory usage: 39.1 KB
```

dataset = dataset.drop('ID',axis=1)
dataset.plot.scatter('rm', 'medv')
# dataset.plot.scatter('dis', 'medv')



#### X\_train.head()

|   |    | crim     | zn   | indus | chas | nox   | rm    | age  | dis    | rad | tax | ptratio | black  | lstat |
|---|----|----------|------|-------|------|-------|-------|------|--------|-----|-----|---------|--------|-------|
| 3 | 39 | 0.14932  | 25.0 | 5.13  | 0    | 0.453 | 5.741 | 66.2 | 7.2254 | 8   | 284 | 19.7    | 395.11 | 13.15 |
| 1 | 47 | 0.14052  | 0.0  | 10.59 | 0    | 0.489 | 6.375 | 32.3 | 3.9454 | 4   | 277 | 18.6    | 385.81 | 9.38  |
| 2 | 75 | 37.66190 | 0.0  | 18.10 | 0    | 0.679 | 6.202 | 78.7 | 1.8629 | 24  | 666 | 20.2    | 18.82  | 14.52 |
| 2 | 77 | 9.33889  | 0.0  | 18.10 | 0    | 0.679 | 6.380 | 95.6 | 1.9682 | 24  | 666 | 20.2    | 60.72  | 24.08 |
| 2 | 59 | 13.35980 | 0.0  | 18.10 | 0    | 0.693 | 5.887 | 94.7 | 1.7821 | 24  | 666 | 20.2    | 396.90 | 16.35 |

```
lr = LinearRegression()
lr.fit(X_train,y_train)
# print(lr)
```

+ LinearRegression
LinearRegression()

predictions = lr.predict(X\_test)

plt.scatter(y\_test,predictions)
plt.xlabel('Y Test')
plt.ylabel('Predicted Y')

```
Text(0, 0.5, 'Predicted Y')
         40
         30
      Predicted Y
         20
         10
          0
from sklearn import metrics
\verb|print('MAE:', metrics.mean_absolute\_error(y\_test, predictions))| \\
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
     MAE: 3.9970055491851104
     MSE: 29.761537920840542
     RMSE: 5.455413634257309
x=dataset[['crim', 'indus', 'rm', 'age', 'tax','ptratio', 'lstat']]
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
lr = LinearRegression()
lr.fit(X_train,y_train)
predictions = lr.predict(X_test)
plt.scatter(y_test,predictions)
plt.xlabel('Y Test')
plt.ylabel('Predicted Y')
     Text(0, 0.5, 'Predicted Y')
         35
         30
         25
     Predicted Y
         20
        15
         10
          5
          0
                                           20
                                                     25
                                                               30
                                                                        35
                                            Y Test
print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
```

```
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 2.8576136730269948 MSE: 19.133725606075703 RMSE: 4.37421142676891

### **Conclusion:**

## 1. Features used:

## Housing Price Dataset:

We initially trained a model using the features ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax', 'ptratio', 'black', 'lstat'] and obtained the following results:

Mean Absolute Error (MAE): 3.997

Mean Squared Error (MSE): 29.762

Root Mean Squared Error (RMSE): 5.455

Feature Reduction and Improvement:

You then performed feature reduction using a heatmap analysis, selecting the features ['crim', 'indus', 'rm', 'age', 'tax', 'ptratio', 'lstat'], which helped in reducing the errors. The results after feature reduction were as follows:

MAE: 2.858

MSE: 19.134

RMSE: 4.374

2:MSA: Mean Squared Error represents the average of the squared difference between the original and predicted values in the data set. It measures the variance of the residuals.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$