Abstract

The strain *Streptomyces* sp. Tü2401 is capable of producing antimicrobial compounds which are active against diverse types of bacteria. Preliminary screening showed potent activity against several multiresistant *Escherichia coli* strains as well as the Grampositive strains *Bacillus subtilis* and *Staphylococcus aureus*. Additionally, a mode-of-action *Bacillus* reporter strain indicated the presence of substances, which inhibit DNA synthesis. The broad activity spectrum and the unusual mode of action make this strain a valuable target of bioactivity-guided isolation of its natural products.

The

Contents

Appendix

0.1 HPLC Methods

Vielleicht wenn hier text steht

Table 0.1: Standard Screening Method

Parameter	Value
Column	Nucleosil-100 C18 5 μm 150×3 mm
Solvents	A: Water $+$ 0.1 % Formic acid
	B: Acetonitrile + 0.1% Formic acid
Method	Gradient 5 - 100 % B for $15 \mathrm{min}$
	Plateau 100% B for $3 \min$
Flow	$1.25\mathrm{mLmin^{-1}}$
Temperature	$25^{\circ}\mathrm{C}$
Injection Volume	50 μL

Table 0.2: Standard aminocolumn method

Parameter	Value
Column	Luna NH2 5 μm 250×4.6 mm
Solvents	A: Water $+$ 0.1 % Formic acid
	B: Acetonitrile + 0.1 % Formic acid
Method	Isocratic 80 $\%$ B for 20 min
	+ 100 $%$ A for 10 min
Flow	$2\mathrm{mLmin^{-1}}$
Temperature	$25^{\circ}\mathrm{C}$
Injection Volume	50 μL

Table 0.3: The standard HILIC method

Component	Parameter
Column	ZIC-HILIC 3.5 μm 150×4.6 mm
Solvents	A: 10 mM Ammonium acetate
	B: Acetonitrile
Method	Isocratic 80 $\%$ B for 45 min.
Flow	$0.8\mathrm{mLmin^{-1}}$
Temperature	$25^{\circ}\mathrm{C}$
Injection Volume	$50\mathrm{\mu L}$

Table 0.4: HILIC method adapted for MS coupling

Component	Parameter
Column	ZIC-HILIC 3.5 μm 150×4.6 mm
Solvents	A: 10 mM Ammonium acetate
	B: Acetonitrile
Method	Isocratic 80 % B for 60 min.
Flow	$0.5\mathrm{mLmin^{-1}}$
Temperature	$25^{\circ}\mathrm{C}$
Injection Volume	50 μL

Table 0.5: Screening method for HPLC-MS $\,$

Parameter	Value
Column	Nucleosil-100 5 μm 150×3 mm
Solvents	A: Water $+$ 0.1 % Formic acid
	B: Acetonitrile + 0.06 % Formic acid
Method	Gradient 0 - 100 % B for $15 \mathrm{min}$
	Plateau 100 $\%$ B for $2 \min$
Flow	$0.4\mathrm{mLmin^{-1}}$
Temperature	$40^{\circ}\mathrm{C}$
Injection Volume	$2.5\mu\mathrm{L}$
Capillary Voltage	3500 V
Injector Temperature	$350^{\circ}\mathrm{C}$
Target mass	400 m/z

Table 0.6: Screening Method Polar-C18

Parameter	Value
Column	Kinetex Polar-C18 2.6 μm 150×4.6 mm
Solvents	A: Water $+$ 0.1 % Formic acid
	B: Acetonitrile + 0.1 % Formic acid
Method	Gradient 5 - 100 % B for $20 \min$
	Plateau 100 % B for $6 \min$
Flow	$1.2\mathrm{mLmin^{-1}}$
Temperature	50 °C
Injection Volume	$50\mathrm{\mu L}$

Table 0.7: Reverse Screening Method Polar-C18

Parameter	Value
Column	Kinetex Polar-C18 2.6 μm 150×4.6 mm
Solvents	A: Water $+$ 0.1 % Formic acid
	B: Acetonitrile $+$ 0.1 % Formic acid
Method	Gradient 100 - 5 % B for $20 \mathrm{min}$
	Plateau 100 % B for $6 \mathrm{min}$
Flow	$1.2\mathrm{mLmin^{-1}}$
Temperature	$50^{\circ}\mathrm{C}$
Injection Volume	50 μL