TP - OuvrePortegarage - MATLAB

intro

le but du TP est l'etude d'un système Symulink MatLAB, afin de se familiariser avec le logiciel, et apprendre à tirer des conclusions

etude du sysml

- possibilitée de desolidariser la porte manuellement
- eclairage lors de l'ouverture et fermeture + 2min après
- ouverture fermeture et arret automatique
 - acquérir les ordres de commande
 - d'une télécommande
 - serrure extérieur et bouton intérieur
 - mise en mvmnt de la porte dans les 2 sens et arreter
 - detecter la fin de course
 - inverser mvmnt lors de detection d'obstacle // se libérer de l'obstacle | sécuritée
 - détecter un obstacle
- ordre
 - moteur>lumière
- microcontroleur
 - PB4->lampe
 - PB5->moteur

étude MatLAB

depuis le fichier SIN/SIN/S4 - Composants/4-TP_OuvrePorteDeGarageVersionMATLAB/Annexes/OuvrePorteGarage_elv.slx

tableau etats

état logique PB5	état logique PB4	exemple
0	0	seul la lampe active, durant les 2min suivant la coupure moteur
0	1	système entièrement à l'arret
1	0	moteur et lampe actifs, durant l'utilisation ouverture/fermeture
1	1	seul moteur actif, durna t les premiers instant car moteur actif en premier dans le code

les combinaisons disponibles sont liés au fait que les ports sont distinct, et dans différents états, afin de permetre un contrôle complet des éléments

exo

Placer des instruments de mesure afin de pouvoir mesurer lors de la simulation :

- la tension VCE du transistor T3
- la tension VCE du transistor T4
- la tension UL1 aux bornes de la lampe L1

état logique PB5	état logique PB4	Upb5 (v)	Upb4 (v)	Vce t3 (v)	Vce t4 (v)	Um1 (v)	vitesse rotat° moteur m1 (rad*sec^-1)	UI1 (v)
0	0	0v	0v	24V	24V	0v	0	0v
0	1	0v	5v	24v	25mv	0v	0	22.7v
1	0	5v	0v	25mV	24V	23.72v	~730	22.8v
1	1	5v	5v	25mv	24mv	23.96v	~740	22.7v

cf le tableau <u>^etats</u> pour des examples de contexte

État logique PB5	État logique PB4	État de T3	État de T4	État du relais X1	État du relais X2	État du moteur M1	État de la lampe L1
0	0	0	1	non enclenché	enclenché	off	off
0	1	0	0	non enclenché	non enclenché	off	on

État logique PB5	État logique PB4	État de T3	État de T4	État du relais X1	État du relais X2	État du moteur M1	État de la lampe L1
1	0	1	1	enclenché	enclenché	on	on
1	1	1	0	enclenché	non enclenché	on	on

nous pouvons en conclure que:

- la lampe est active
 - si le moteur est actif
 - si le pin (PB4) de la lampe est actif
 - les 2
 - donc modelisable par une porte logique OR
- le moteur est actif
 - seulement quand le pin moteur (TB5) est actif
- les 2 sont inactifs seulement quand les 2 pins sont à l'etat bas
- le pin NC du relai lampe (X2) est connécté 'en parallele' avec le moteur, et le pin NO est connéctè au 24v, permettant d'alimenter la lampe avec le moteur, quel que soitr l'etat du relai, mais aussi un contrôle de la lampe indépendant du moteur.

version: DRAFT-1