Branch: master • BK-pvalues / Praesentation / Index.Rmd	Find t	ile Copy path
Tobias Roth Lerneffeld.	alli	718d 7 days ago
0 contributors		
174 lines (149 sloc) 6.64 KB		

title author date output df.print smaller P-value project Efockiurs 2018 28.03.2018 losides_presentation paged true $rm(list=ls(all=TRUE)) \\ knitr::opts_chunk$set(echo = FALSE, cache = TRUE, fig.asp = 0.6, fig.height=5) \\$

Gestaltung der plots in ggplot theme_set(theme_classic())

Daten einlesen dat <- read_xlsx("Data/Masterfile R.xlsx") %=% filter(!is.ma(date)) datsReihenfolge <- rep(1:10, 172)

Data

- Number of persons interviewed: r: length(unique/daits)D_person))
 Proportion of females: r fernat(sean(tapply(daitspender, daits)D_person, function(x) x[1]) == 0), 2, format = "f")
 Average proportion of correct answers: r fernat(sean(daits)y_cerrect), 2, fernat = "f")

Statistical experience

 $plot(table(tapply(datsexperience, datsID_person, function(x) \times [1])), \\ xlab = "fears with statistical experience", \\ ylab = "Number of persons")$

Statistical methods

Logistic regression (outcome 0 or 1)
 Prancial Tola random effect is account for repeated manaurements (each person gave 10 answers)
 Experimental Treatment: Express with or without p-value
 Covariates statistical experience of person (in high/east+1)
 Tolarcation variations' experience
 Tolarcation variations' experience

mod ~ glær(sy_correct - log(sperience + 1) + g_value_bban + (1|D_perienc),
res ~ sammyrked(sperience), (cl_2,d)) % data/rese()
res ~ sammyrked(sperience), (cl_2,d)) % data/rese()
ressection (sperience), "firstlated operience (log(year-1))", "Treatment", "Treatment x
sammyrked(sperience), "Std. Error", "P-value")
sammyrked(sperience), "Std. Error", "P-value")

Experienced persons excluded

res cs.smmary[glmer(sy_correct < bg|coperince + 1) * g_value_thom * (1|ID_person), family + binsall, data = dat %* (Titer(sperince < 40))|bceff(cient), ((1), 1/4)| * %* data.frami)
bperince(*)

Bperince(*)
smas(res) = (("Etisate", "Sid. Error", "P-Walle")</pre>
smas(res) = (("Etisate", "Sid. Error", "P-Walle")

Deceived by p-values

) sinvers, 4 = nondritepartners = nondritepartners = nondritepartners) nondritesam = noply(repres, 1, near) nondritesam = noply(repres, 1, near) nondritesam = noply(repres, 1, near) nondritesam = nondritepartners = nondrit

Correct answers increased with statistical experience, but less so when p-values were presented. Given are morpredictions (lines) and 95% credible intervals (shaded areas).

What affects the answers?

- Only data from figures that shows confidence intervals AND p-values
 Logolist regression
 Oxforms washfable. If person say left figure is correct, or charvelse.
 First practices of fitterinese in confidence interval langth
 Second predictor ofference in p-values
 First practices of the confidence in provider
 First practices of the confidence in provider
 First practices of the confidence in provider

What affects the answers?

If figures with confidence intervals and p-values are presented, the answers are more strongly guided by the difference in p-value than the differences in confidence interval length.

d = oft bb
filter(Cl = 1 & g_wlat_s)bon = 1) bb
filter(Cl = 1 & g_wlat_s)bon = 1) bb
filter(Cl = 1 & g_wlat_s)bon = 1) bb
filter(cl = 1 & g_wlat_s) g_wlat_s
gattle = g_wlat_s = g_wlat_s
gattle = g_wlat_s = g_wlat_s
gattle = g_wlat_s = g_wlat_s
gattle = g_wlat

Boxplots vs. confidence intervals?

- Corly data from figures that do NOT show p-values
 Logistic regression
 Colocione validable: lanseer is correct, 0 answer is not correct
 Predictor: Figure shows a bee, pict, 0 otherwise.
 Predictor: Figure shows a bee, pict, 0 otherwise.
 Predictor: Figure shows a bee, pict, 0 otherwise.
 Preson to as receive effect to account for prepaded measurements (sach person gave 5 answers)

Boxplots vs. confidence intervals?

d < dat bb filter(gaulum_comen = 0) bb filter(gaulum_corect = say_corect, transaction_gaulum_corect = say_corect, B_perca = B_percal mad < place(say_corect = bmgint = (1)B_percal), family = binomin(_data = d) set distance(say_corect) family = b

Effect of observer and gender

nod - gher(sy_correct - hop(experience + 1) = g_xhluc_thom = decorer = pointer + (1)10_perion, [railly = homolal, data = dat) res = nomer/pendictficients, (1,0,12) = when the third period = (1,0)

Learning effect