Tarefa Básica (Área de Quadriláteros e Triângulos)

Ruan Soares - GE1M1

01. (VUNESP) Para ladrilhar uma sala são necessárias exatamente 400 peças iguais de cerâmica na forma de um quadrado. Sabendo-se que a área da sala é $36\ m^2$, determine:

a) A área de cada peça, em metros quadrados.

Dado que a área da sala é $36m^2$, e ao mesmo tempo, sabendo que sua superfície é ladrilhada por 400 peças quadradas, temos que:

$$36m^2 = 400u^2$$

Para descobrir a área de cada peça de cerâmica, em m^2 , efetuamos a divisão:

$$\frac{36}{400}$$
 = 0,09 : Cada peça de cerâmica tem área de 0,09m²

$$R: 0,09m^2$$

b) O perímetro de cada peça, em metros.

Em metros, se cada peça é um quadrado de lado ℓ, temos que:

$$\ell^2 = 0.09 \rightarrow \ell = \sqrt{0.09} \rightarrow \ell = 0.3$$

Ao descobrir que cada lado do quadrado é igual a 0,3m, basta somar cada

um de seus lados:

$$2p = 0.3m + 0.3m + 0.3m + 0.3m$$

$$2p = 1,2m$$

R: 1, 2m

02. (FGV) Tem-se um quadrado cujo lado tem medida x. Se aumentarmos suas dimensões até que a área do novo quadrado seja o dobro da área do original, obteremos um lado de medida y. Podemos afirmar que:

a)
$$y = 2x$$
 b) $y = \frac{\sqrt{3}}{2}x$ **c**) $y = 1.5x$ **d**) $y = \sqrt{2} x$ **e**) $y = 1.33x$

Sabendo que a área do quadrado de lado y é o dobro da área do quadrado de lado x, podemos definir que a área do quadrado de lado y é igual a $2x^2$. Portanto:

$$y \cdot y = 2x^2$$
 \rightarrow $y^2 = 2x^2$ \rightarrow $y = \sqrt{2x^2}$ \rightarrow $y = \sqrt{2} \cdot x$

$$R:d)y=\sqrt{2}x$$

03. (MACK) Num triângulo retângulo de área 15 e hipotenusa 10, a altura relativa à hipotenusa mede:

a) 4 **b**) 3,5 **c**) 2 **d**) 3 **e**) 4,5

A área do triângulo \triangle ACB pode ser calculada por $A = \frac{b \cdot h}{2}$.

Sendo a área deste triângulo igual a 15, e a base b sendo a hipotenusa, podemos encontrar a medida da altura b. Se a hipotenusa mede 10, temos:

$$\frac{b \cdot h}{2} = A \quad \rightarrow \quad \frac{10h}{2} = 15 \quad \rightarrow \quad 10h = 2 \cdot 15 \quad \rightarrow \quad 10h = 30 \quad \rightarrow \quad h = \frac{30}{10} = 3$$

$$h = 3$$

R:d) 3

04. (UFU) Um jardim com formato retangular possui lados cujos comprimentos diferem em 3 metros. Suponha que tenha sido executada uma ampliação do jardim, com o aumento de 1 metro no comprimento de cada um de seus lados. Sabendo-se que essa ampliação fez com que a área do jardim aumentasse em $16\ m^2$, determine a área total do jardim ampliado.

De acordo com as informações do enunciado, o jardim menor possui lados cujos comprimentos medem x e x + 3, em metros. Além disso, o jardim maior recebe um acréscimo de 1 metro em cada lado, portanto:

$$\overline{FG} \ e \ \overline{EH} = x + 3 + 1$$
 $\overline{FG} \ e \ \overline{EH} = x + 4$ $\overline{FE} \ e \ \overline{GH} = x + 1$

Sabendo que a área A_2 do jardim ampliado é igual a área A_1 do jardim menor, com um acréscimo de $16m^2$, podemos concluir que:

$$A_2 = A_1 + 16m^2$$

Com a propriedade de cálculo de área de um retângulo, e utilizando as medidas da base e altura de cada jardim, é possível encontrar o valor de x, em metros:

$$A_{2} = A_{1} + 16$$

$$(x + 1) \cdot (x + 4) = x \cdot (x + 3) + 16$$

$$x^{2} + 4x + x + 4 = x^{2} + 3x + 16$$

$$Isolando o x:$$

$$x^{2} - x^{2} + 5x - 3x = 16 - 4$$

$$2x = 12$$

$$x = \frac{12}{2}$$

Com o valor de x, podemos cálcular a área do jardim ampliado:

x = 6

$$A_{2} = (x + 1) \cdot (x + 4)$$

$$A_{2} = (6 + 1) \cdot (6 + 4)$$

$$A_{2} = 7 \cdot 10$$

$$A_{2} = 70m^{2}$$

$R: A \text{ área total do jardim ampliado } é 70m^2$

05. (MACK) Na figura, ABCD é um quadrado de lado 2 e as curvas são arcos de circunferências com centros em D e em C. A área do triângulo DCE é:

Considerando que ${\bf D}$ e ${\bf C}$ são centros das circunferências, todos os segmentos traçados desses pontos, até a extremidade dos arcos, são iguais ao raio ${\bf r}$ dessas circunferências. Sabendo que os raios são congruentes e valem 2, por serem também congruentes com os lados do quadrado, podemos destacar o triângulo ΔDCE e suas medidas:

A partir de então, para calcular a área do triângulo ΔDCE , que é equilátero, precisamos encontrar o valor de sua altura:

Ao dividir o triângulo ΔDCE em dois triângulos retângulos, podemos encontrar a altura ${m h}$, com o teroma de pitágoras:

$$h^{2} + 1^{2} = 2^{2}$$
$$h^{2} + 1 = 4$$
$$h^{2} = 4 - 1$$
$$h = \sqrt{3}$$

Após encontrar a altura \boldsymbol{h} , podemos calcular a área do triãngulo ΔDCE ,

com a propriedade de cálculo de área do triângulo:

$$A = \frac{b \cdot h}{2}$$

$$A = \frac{2 \cdot \sqrt{3}}{2}$$

$$A = \sqrt{3}$$

$$A = \sqrt{3}$$

$$R: b) \sqrt{3}$$

06. (VUNESP) A figura mostra a planta baixa da sala de estar de um apartamento. Sabe-se que duas paredes contíguas quaisquer incidem uma na outra perpendicularmente e que $\overline{AB} = 2,5$ m, $\overline{BC} = 1,2$ m, $\overline{EF} = 4,0$ m, $\overline{FG} = 0,8$ m, $\overline{HG} = 3,5$ m e $\overline{AH} = 6,0$ m.

Qual a área dessa sala em metros quadrados?

- **a**) 37,2
- **b**) 38,2
- *c*)40,2
- **d**) 41,2
- **e**)42,2

Conforme o enunciado, temos a planta representada acima. Para calcular a área desta sala, podemos dividir a figura em três quadriláteros, com medidas atribuídas da seguinte forma:

Ao encontrar as medidas de cada segmento, calculadas com base na figura original, podemos calcular a área de cada um dos três retângulos formados, com a propriedade de cálculo de área de um retângulo. Somando os valores, encontramos a área da sala:

Área total da sala = $15m^2 + 4.8m^2 + 22.4m^2 = 42.2m^2$

 $R: e) 42, 2m^2$

07. (UEL) - Na figura abaixo, tem-se o trapézio ABCD, de área $36cm^2$, tal que AB = $2 \cdot \text{CD}$.

A área do retângulo CDEF, em centímetros quadrados, é:

Para obter a resposta, basta usarmos a fórmula de cálculo de área do retângulo:

$$A_r = b \cdot h$$
 no nosso caso: $A_r = CD \cdot h$

Como não temos as medidas necessárias, vamos usar, como ferramenta, a fórmula de cálculo da área do trapézio:

$$A_t = \frac{(B+b) \cdot h}{2}$$

$$A_t = \frac{(\overline{AB} + \overline{CD}) \cdot h}{2}$$

Dada a área do trapézio igual a $36cm^2$, e que a base maior \overline{AB} mede o dobro de \overline{CD} , podemos achar a medida da área do retângulo CDEF, em centímetros quadrados:

$$A_t = \frac{(\overline{AB} + \overline{CD}) \cdot h}{2}$$

$$36 = \frac{(2\overline{CD} + \overline{CD}) \cdot h}{2}$$

$$3\overline{CD} \cdot h = 2 \cdot 36$$

$$3\overline{CD} \cdot h = 72$$

$$\overline{CD} \cdot h = \frac{72}{3}$$

$$\overline{CD} \cdot h = 24cm^2$$

R: e) 24

08. (FATEC) Na figura abaixo, os lados do quadrado ABCD medem 6cm e os lados AD e BC estão divididos em 6 partes iguais.

Se os pontos G e J são, respectivamente, os pontos médios dos segmentos CD e EI, então a razão entre as áreas do losango FGHJ e do triângulo ABJ, nessa ordem, é:

a)
$$\frac{1}{6}$$
 b) $\frac{1}{5}$ **c**) $\frac{1}{4}$ **d**) $\frac{1}{2}$ **e**) $\frac{2}{5}$

Com base nas informações do enunciado, vamos traçar a seguinte figura:

Se os lados do quadrado mdem 6cm cada, e estão dividos em 6 partes iguais, cada parte será igual a 1cm, conforme ilustrado acima.

Além disso, sendo os pontos G e G os pontos médios dos segmentos G e G0 e G0, concluímos que a reta traçada por esses pontos, a partir do ponto G0, até o lado oposto, irá dividir os segmentos G0, G0, G0, G0 e G0 e G0 e G0 e G0 e G0.

A partir de então, vamos destacar duas figuras, o Losango FGHJ e o triângulo ΔABJ :

Usando as propriedades, para calcular a área A_1 do Losango e A_2 do triângulo, temos:

Losango:
$$D = \overline{FH}$$
 $d = \overline{GJ}$ **Tri**ângulo: $b = \overline{AB}$ $h = 4$

$$A_1 = \frac{D \cdot d}{2} \rightarrow A_1 = \frac{(3+3) \cdot (1+1)}{2} \rightarrow A_1 = \frac{6 \cdot \cancel{1}}{\cancel{2}} \rightarrow A_1 = 6$$

$$A_2 = \frac{b \cdot h}{2} \rightarrow A_2 = \frac{6 \cdot 4}{2} \rightarrow A_2 = \frac{24}{2} \rightarrow A_2 = 12$$

A razão entre as áreas será dada por:

$$\frac{A_1}{A_2} = \frac{6}{12} = \frac{1}{2}$$

$$R: d) \frac{1}{2}$$

09. (MACK) Os lados do retângulo da figura, de área 48, foram divididos em partes iguais pelos pontos assinalados.

A área do quadrilátero destacado é:

- **a**) 32 **b**) 24 **c**) 20
- **d**)16
- **e**) 22

A figura acima é dada pelo enunciado. De acordo com os pontos, ela é dividida em em uma área quadriculada com cada unidade quadrada de lado x.

Primeiramente, devemos calcular quanto vale cada lado x. Dado que a área total é 48:

$$A_r = b \cdot h$$

$$48 = 4x \cdot 3x$$

$$48 = 12x^2$$

$$x^2 = \frac{48}{12}$$

$$x^2 = 4$$

$$x = \sqrt{4}$$

$$x = 2$$

Temos que cada lado da unidade quadrada vale 2, sendo assim, vamos separar o quadrilátero destacado, da área restante:

Para descobrir a área A_Q do quadrilátero AICG destacado, devemos encontrar a área dos triângulos ΔADI e ΔAGB :

$$A_{T1} = \frac{b \cdot h}{2}$$

$$A_{T1} = \frac{(2+2+2) \cdot (2+2+2)}{2}$$

$$A_{T1} = \frac{6 \cdot 6}{2}$$

$$A_{T1} = 18$$

$$A_{T2} = \frac{b \cdot h}{2}$$

$$A_{T2} = \frac{(2+2+2+2) \cdot 2}{2}$$

$$A_{T2} = 8$$

Ao descobrir a área dos dois triângulos, basta subtrair sua soma em relação a área total do retângulo, para encontrar a área do quadrilátero AICG destacado:

$$A_r = A_{T1} + A_{T2} + A_Q$$
 $48 = 18 + 8 + A_Q$
 $48 = 26 + A_Q$
 $A_Q = 48 - 26$
 $A_Q = 22$
 $R: e) 22$

10. (FUVEST) No papel quadriculado da figura abaixo, adota-se como unidade de comprimento o lado do quadrado hachurado. \overline{DE} é paralelo à \overline{BC} .

Para que a área do triângulo ΔADE seja a metade da área do triângulo ΔABC , a medida de \overline{AD} , na unidade adotada, é:

a)
$$4\sqrt{2}$$

$$d) \frac{8\sqrt{3}}{3}$$

a)
$$4\sqrt{2}$$
 b) 4 **c**) 3 **d**) $\frac{8\sqrt{3}}{3}$ **e**) $\frac{7\sqrt{3}}{2}$

Ao destacar os triângulos ΔABC e ΔADE, podemos notar que ambos dividem o ângulo \widehat{A} , e também que os segmentos \overline{ED} e \overline{BC} são paralelos. Com isso, vamos ter uma congruência entre os seus ângulos, e consequentemente, notar que são triângulos semelhantes pelo critério ~AA, conforme mostrado abaixo:

Com a semelhança de triângulos, e dado que a área do triângulo ∆ABC é o dobro da área A_1 do triângulo ΔADE , estabelecemos as seguintes proporções entre eles:

$$\frac{AD}{AB} = k \qquad e \quad \frac{A_1}{2A_1} = k^2 \quad \therefore \quad \frac{A_1}{2A_1} = (\frac{AD}{AB})^2$$

Com essa proporção dada pela semelhança de triângulos, podemos encontrar a medida x do segmento \overline{AD} de acordo com as relações estabelecidas:

$$\frac{A_1}{2A_1} = \left(\frac{AD}{AB}\right)^2$$

$$\frac{A_1}{2A_1} = \left(\frac{x}{8}\right)^2$$

$$\frac{A_1}{2A_1} = \frac{x^2}{64}$$

$$\frac{A_1}{2A_1} = \frac{x^2}{64}$$

$$\frac{1}{2} = \frac{x^2}{64}$$

$$64 \cdot \frac{1}{2} = x^2$$

$$32 = x^2$$

$$\sqrt{32} = x$$

$$x = 4\sqrt{2} \quad \log o, \quad \overline{AD} = 4\sqrt{2}$$

$$R: a) 4\sqrt{2}$$

11. (UNICAMP) Um triângulo escaleno ΔABC tem área igual a $96m^2$. Sejam M e N os pontos médios dos lados \overline{AB} e \overline{AC} , respectivamente, faça uma figura e calcule a área do quadrilátero BMNC.

Conforme as informações do enunciado, temos a figura acima. Com ela, podemos visualizar os triângulos ΔABC e ΔAMN , além do quadrilátero BMNC.

Nota — se que os triângulos $\triangle ABC$ e $\triangle AMN$ possuem o mesmo ângulo \hat{A} , e segmentos \overline{MN} e \overline{CB} paralelos, que irão determinar que seus ângulos são congruentes conforme ilustrado abaixo. Logo, teremos que $\triangle ABC \sim \triangle AMN$.

Com isso, podemos estabelecer uma relação de proprção entre seus segmentos onde:

$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{2}{1}$$
 Pois os pontos médios M e N dividem AB e AC pela metade.

Logo, nossa constante
$$k = \frac{2}{1} = 2$$
.

Se a constante k é igual a 2, podemos estabelecer uma relação entre as áreas dos dois triângulos, encontrando por fim a àrea do quadrilátero BMNC:

$$\frac{\text{Área do } \Delta ABC}{\text{Área do } \Delta AMN} = k^2 \qquad \rightarrow \qquad \frac{96m^2}{x} = 2^2$$

$$\frac{96m^2}{x} = 4$$

$$96m^2 = 4x$$

$$x = \frac{96m^2}{4}$$

 $x = 24m^2$ ou Área do $\triangle AMN = 24m^2$

Com a área do triângulo \(\Delta AMN, podemos encontrar a área do quadrilátero BMNC:\)

Área do ΔABC = Área do quadrilátero BMNC + Área do ΔAMN

$$96m^{2} = A_{Q} + 24m^{2}$$
 $A_{Q} = 96m^{2} - 24m^{2}$
 $A_{Q} = 72m^{2}$ ou Área de BMNC = $72m^{2}$
 $R: 72m^{2}$