Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	<u>ИУК</u>	«Информатика	и управление)	<i>)</i>	
КАФЕДРА _	_ИУК4	«Программное	обеспечение	ЭВМ,	информационные
технологии»					

ДОМАШНЯЯ РАБОТА №1

«Задача линейного целочисленного программирования с булевыми переменными»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б (Карельский М.К.)

Проверил: (Никитенко У.В.)

Дата сдачи (защиты):

Результаты сдачи (защиты):

- Балльная оценка:

- Оценка:

Цель: овладеть навыками выделения наиболее важных свойств объектов моделей для моделирования; навыками решения задач целочисленного программирования с булевыми переменными.

Задачи: решения задачи целочисленного линейного программирования с булевыми переменными указанными методами.

Задание:

Решить задачу линейного целочисленного программирования с булевыми переменными. Использовать алгоритмы плотного заполнения, Фора-Мальгранжа, Балаша. Привести для каждого алгоритма иллюстрацию решения

Вариант 8

$$F = 8x_1 + 5x_2 + 4x_3 + 10x_4 + 6x_5$$

$$6x_1 + 4x_2 + 3x_3 + 8x_4 + 2x_5 \le 12$$

$$x_1 + x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$x_i \in \{0,1\}, j = 1,2,3,4,5$$

Решение:

Алгоритм плотного заполнения:

$$x_1 = 1$$

$$4x_2 + 3x_3 + 8x_4 + 2x_5 \le 6$$

$$x_2 + x_3 \le 0$$

$$x_4 + x_5 \le 1$$

Все $b_i^{(1)} \ge 0$. Тогда:

$$x_{2} = 1$$

$$3x_{3} + 8x_{4} + 2x_{5} \le 2$$

$$x_{3} \le -1$$

$$x_{4} + x_{5} \le 1$$

Одно из $b_i^{(2)} < 0$. Тогда:

$$x_{2} = 0$$

$$3x_{3} + 8x_{4} + 2x_{5} \le 6$$

$$x_{3} \le 0$$

$$x_{4} + x_{5} \le 1$$

Все $b_i^{(2)} \ge 0$. Тогда:

$$x_3 = 1$$

$$8x_4 + 2x_5 \le 3$$

$$0 \le -1$$

$$x_4 + x_5 \le 1$$

Одно из $b_i^{(3)} < 0$. Тогда:

$$x_{3} = 0
8x_{4} + 2x_{5} \le 6
0 \le 0
x_{4} + x_{5} \le 1$$

Все $b_i^{(3)} \ge 0$. Тогда:

$$x_4 = 1$$

$$2x_5 \le -2$$

$$x_5 \le 0$$

Одно из $b_i^{(4)} < 0$. Тогда:

$$x_4 = 0$$

$$2x_5 \le 6$$

$$x_5 \le 1$$

Все $b_i^{(4)} \ge 0$. Тогда:

$$x_5 = 1$$

$$0 \le 4$$

$$0 \le 0$$

Все $b_i^{(5)} \ge 0$. Имеем решение:

$$X = (1,0,0,0,1)$$

 $F(X) = 8 + 6 = 14$

Рис. 1. Алгоритм плотного заполнения

Алгоритм Фора-Мальгранжа:

Воспользуемся решением из первого алгоритма:

$$8x_1 + 5x_2 + 4x_3 + 10x_4 + 6x_5 \ge 15$$

$$8x_1' + 5x_2' + 4x_3' + 10x_4' + 6x_5' \le 18$$

Итерация 1:

Рис. 2.1. Алгоритм Фора-Мальгранжа

Решение:

$$X = (0,1,0,1,0)$$

 $F(X) = 5 + 10 = 15$

Новые условия:

$$8x_1 + 5x_2 + 4x_3 + 10x_4 + 6x_5 \ge 16$$

$$8x_1' + 5x_2' + 4x_3' + 10x_4' + 6x_5' \le 17$$

Итерация 2:

Рис. 2.2. Алгоритм Фора-Мальгранжа

Система оказалась противоречивой. Предыдущее решение - оптимальное:

$$X = (0,1,0,1,0)$$

 $F(X) = 15$

Алгоритм Балаша:

Воспользуемся решением из первого алгоритма:

$$8x_1 + 5x_2 + 4x_3 + 10x_4 + 6x_5 \ge 15$$

$$8x_1' + 5x_2' + 4x_3' + 10x_4' + 6x_5' \le 18$$

Задача 0:

$$6x_1 + 4x_2 + 3x_3 + 8x_4 + 2x_5 \le 12$$
$$x_1 + x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$8x_1' + 5x_2' + 4x_3' + 10x_4' + 6x_5' \le 18$$

Исключить x_1 невозможно. Заносим в список задачи 1 ($x_1 = 1$) и 2 ($x_1 = 0$).

Задача 1:

$$X = (1, x_2, x_3, x_4, x_5)$$

$$4x_2 + 3x_3 + 8x_4 + 2x_5 \le 6$$

$$x_2 + x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$5x_2' + 4x_3' + 10x_4' + 6x_5' \le 18$$

Частичное решение можно расширить:

$$X = (1,0,0,x_4,x_5)$$

$$8x_4 + 2x_5 \le 6$$

$$0 \le 0$$

$$x_4 + x_5 \le 1$$

$$10x_4' + 6x_5' \le 9$$

Задача оказалась противоречивой, любое значение x_4 ведет к неверным неравенствам.

Задача 2:

$$X = (0, x_2, x_3, x_4, x_5)$$

$$4x_2 + 3x_3 + 8x_4 + 2x_5 \le 12$$

$$x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$5x_2' + 4x_3' + 10x_4' + 6x_5' \le 10$$

Исключить x_2 невозможно. Заносим в список задачи 3 ($x_2 = 1$) и 4 ($x_2 = 0$).

Задача 3:

$$X = (0,1, x_3, x_4, x_5)$$

$$3x_3 + 8x_4 + 2x_5 \le 8$$

$$x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$4x_3' + 10x_4' + 6x_5' \le 10$$

Частичное решение можно расширить:

$$X = (0,1,0,1,0)$$

$$0 \le 0$$

$$0 \le 0$$

$$0 \le 0$$

$$0 \le 0$$

Решение (новый максимум):

$$F(X) = 5 + 10 = 15$$

Задача 4:

$$X = (0,0, x_3, x_4, x_5)$$

$$3x_3 + 8x_4 + 2x_5 \le 12$$

$$x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$4x_3' + 10x_4' + 6x_5' \le 5$$

Частичное решение можно расширить:

$$X = (0,0,x_3,1,x_5)$$
$$3x_3 + 2x_5 \le 4$$
$$x_3 \le 1$$
$$x_5 \le 0$$
$$4x_3' + 6x_5' \le 5$$

Задача оказалась противоречивой, любое значение x_5 ведет к неверным неравенствам.

Больше задач в списке нет. Итоговое максимальное решение:

$$X = (0,1,0,1,0)$$

 $F(X) = 15$

Рис. 3. Алгоритм Балаша

Вывод: в ходе выполнения домашней работы были получены практические навыки выделения наиболее важных свойств объектов моделей для моделирования; решения задач целочисленного программирования с булевыми переменными.