

Міністерство освіти і науки України

Національний технічний університет України

"Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра автоматики та управління в технічних системах

Лабораторна робота №3

З дисципліни "Технології розроблення програмного забезпечення" Тема: "Діаграма розгортання. Діаграма компонентів. Діаграма взаємодій та послідовностей"

 Виконав
 Перевірив

 студент групи IA–22:
 Мягкий М. Ю.

 Прохоров О.Д.

Зміст

Короткі теоретичні відомості:	3
Крок 1. Спроєктувати діаграму розгортання для розроблюваної системи	4
Крок 2. Спроєктувати діаграму компонентів для розроблюваної системи	5
Крок 3. Спроєктувати діаграму послідовностей для одного із процесів розроблюваної сист	
Висновки	

Тема: Діаграма розгортання. Діаграма компонентів. Діаграма взаємодій та послідовностей.

Мета: Навчитися створення діаграми розгортання, компонентів, взаємодій та послідовностей.

Хід роботи:

Короткі теоретичні відомості:

Діаграми розгортання (Deployment Diagram):

Діаграми розгортання є фізичним розташуванням системи, показуючи, на якому фізичному обладнанні запускається та чи інша складова програмного забезпечення.

Основними елементами діаграми ϵ вузли, пов'язані інформаційними шляхами. Вузол (node) — це те, що може містити програмне забезпечення. Вузли бувають двох типів. Пристрій (device) — це фізичне обладнання: комп'ютер або пристрій, пов'язаний із системою. Середовище виконання (execution environment) — це програмне забезпечення, яке може включати інше програмне забезпечення, наприклад операційну систему або процес-контейнер (наприклад, вебсервер).

Діаграма компонентів:

Діаграма компонентів UML ϵ представленням проектованої системи, розбитої на окремі модулі. Залежно від способу поділу на модулі розрізняють три види діаграм компонентів:

- 1. Логічні
- 2. Фізичні
- 3. Виконувані

Найчастіше використовується логічне розбиття на компоненти — у разі проектована система віртуально представляється як набір самостійних, автономних модулів (компонентів), взаємодіючих між собою.

На діаграмі послідовності зображуються ті об'єкти, які безпосередньо беруть участь у взаємодії. Ключовим моментом для діаграм послідовності є динаміка взаємодії об'єктів у часі. У UML діаграма послідовності має два виміри. Перше зліва направо як вертикальних ліній, кожна з яких зображує лінію життя окремого об'єкта, що у взаємодії. Крайнім ліворуч на діаграмі зображується

об'єкт, який є ініціатором взаємодії. Правіше зображується інший об'єкт, який безпосередньо взаємодіє з першим. Таким чином, всі об'єкти на діаграмі послідовності утворюють певний порядок, який визначається черговістю або ступенем активності об'єктів при взаємодії один з одним. Графічно кожен об'єкт зображується прямокутником і знаходиться у верхній частині своєї лінії життя. Усередині прямокутника записуються ім'я об'єкта та ім'я класу розділені двокрапкою. У цьому запис підкреслюється, що ознакою об'єкта.

Крок 1. Спроєктувати діаграму розгортання для розроблюваної системи

Рисунок 1. Діаграма розгортання

Крок 2. Спроєктувати діаграму компонентів для розроблюваної системи.

Рисунок 2. Діаграма компонентів.

Крок 3. Спроєктувати діаграму послідовностей для одного із процесів розроблюваної системи

Рисунок 3. Діаграма послідовностей.

Висновки.

В результаті цієї лабораторної роботи було виконано дії з створення Діаграми розгортання, Діаграми компонентів та Діаграми послідовностей.