Probability density function:

Probability density function is a function of a continuous random variable.

The probability that the random variable lies between two values a and b is obtained by integrating the probability density function between these two values. A valid probability density function f(x) must integrate to one over the whole sample space, so that the total probability is equal to 1.

Question:

Suppose that the diameter of a metal cylinder has a probability density function $f(x) = 1.5 - 6(x - 50.0)^2$ for $49.5 \le x \le 50.5$

- i) Show that total area under the probability density function = 1 or Prove that this is a valid PDF.
- ii) Calculate The probability that a metal cylinder has a diameter between 49.8 and 50.1 mm.
- iii) Find cumulative distribution function.

Solution: i)
$$\int_{49.5}^{50.5} 1.5 - 6(x - 50.0)^2 dx$$

= $\left[1.5x - \frac{6(x-50)^3}{3}\right]_{49.5}^{50.5}$ [As, $\int c dx = cx$, $\int (x-a)^n dx = \frac{(x-a)^{n+1}}{n+1}$]

$$= [1.5*50.5 - 2(50.5 - 50)^{3}] - [1.5*49.5 - 2(49.5 - 50)^{3}]$$

$$= 75.5 - 74.5$$

$$= 1$$

That is 100% of the cylinders will have diameters within these limits.

Since over the whole sample space, the integration of f(x) = 1, so this is a valid PDF.

ii)
$$\int_{49.8}^{50.1} 1.5 - 6(x - 50.0)^2 dx$$

= $\left[1.5x - \frac{6(x - 50)^3}{3} \right]_{49.8}^{50.1}$ [As, $\int c dx = cx$, $\int (x - a)^n dx = \frac{(x - a)^{n+1}}{n+1}$]

$$= [1.5*50.1 - 2(50.1 - 50)^{3}] - [1.5*49.8 - 2(49.8 - 50)^{3}]$$

$$= 75.148 - 74.716$$

$$= 0.43$$

That is, 43% of the cylinders will have diameters within these limits.

iii)
$$F(x) = \int_{49.5}^{x} 1.5 - 6(x - 50.0)^2 dx$$

= $\left[1.5x - \frac{6(x - 50)^3}{3} \right]_{49.5}^{x} [As, \int c dx = cx, \int (x - a)^n dx = \frac{(x - a)^{n+1}}{n+1}]$

=
$$[1.5*x - 2(x - 50)^3] - [1.5*49.5 - 2(49.5 - 50)^3]$$

= $1.5*x - 2(x - 50)^3 - 74.5$

Question: $f(x) = A(0.5 - (x - 0.25)^2)$ for $0.125 \le x \le 0.5$

- (a) Find the value of A
- **(b)** Construct the cumulative distribution function.
- (c) What is the probability that the paint thickness at a particular point is less than 0.2 mm?

Solution: a)
$$\int_{0.125}^{0.5} A(0.5 - (x - 0.25)^2) dx = 1$$

$$\Rightarrow A \left[0.5X - \frac{(x - 0.25)^3}{3} \right]_{0.125}^{0.5} = 1$$

$$\Rightarrow A[[0.5*0.5 - \frac{(0.5 - 0.25)^3}{3}] - [0.5*0.125 - \frac{(0.125 - 0.25)^3}{3}]] = 1$$

$$\Rightarrow A \left[\frac{47}{192} - \frac{97}{1536} \right] = 1$$

$$\Rightarrow A \frac{93}{512} = 1$$

i.e A =
$$\frac{512}{93}$$

b)
$$F(x) = \int_{0.125}^{x} \frac{512}{93} (0.5 - (x - 0.25)^2) dx$$

$$=\frac{512}{93}\left[0.5x-\frac{(x-0.25)^3}{3}\right]_{0.125}^x$$

$$= \frac{512}{93} \left[\left[0.5x - \frac{(x - 0.25)^3}{3} \right] - \left[0.5 * 0.125 - \frac{(0.125 - 0.25)^3}{3} \right] \right]$$

$$=\frac{512}{93}\left[\left[0.5x-\frac{(x-0.25)^3}{3}\right]-\frac{97}{1536}\right]$$

c)
$$\int_{0.125}^{0.2} \frac{512}{93} (0.5 - (x - 0.25)^2) dx$$

$$=\frac{512}{93}\left[\left[0.5*0.2-\frac{(0.2-0.25)^3}{3}\right]-\frac{97}{1536}\right]$$

$$=0.203$$