Two-Sided Group Sequential Tests

Table 2.1 Pocock tests: constants $C_P(K,\alpha)$ for two-sided tests with K groups of observations and Type I error probability α

	$C_P(K,\alpha)$								
-	K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$					
	1	2.576	1.960	1.645					
	2	2.772	2.178	1.875					
	3	2.873	2.289	1.992					
	4	2.939	2.361	2.067					
	5	2.986	2.413	2,122					
	6	3.023	2.453	2.164					
	7	3.053	2.485	2.197					
	8	3.078	2.512	2.225					
	9	3.099	2.535	2.249					
	10	3.117	2.555	2.270					
	11	3.133	2.572	2.288					
	12	3.147	2.588	2.304					
	15	3.182	2.626	2.344					
	20	3.225	2.672	2.392					

Table 2.3 O'Brien & Fleming tests: constants $C_B(K, \alpha)$ for two-sided tests with K groups of observations and Type I error probability α

	$C_B(K,\alpha)$					
K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$			
1	2.576	1.960	1.645			
2	2.580	1.977	1.678			
3	2.595	2.004	1.710			
4	2.609	2.024	1.733			
5	2.621	2.040	1.751			
6	2.631	2.053	1.765			
7	2.640	2.063	1.776			
8	2.648	2.072	1.786			
9	2.654	2.080	1.794			
10	2.660	2.087	1.801			
11	2.665	2.092	1.807			
12	2.670	2.098	1.813			
15	2.681	2.110	1.826			
20	2.695	2.126	1.842			

Table 2.9 Wang & Tsiatis tests: constants $C_{WT}(K,\alpha,\Delta)$ for two-sided tests with K groups of observations and Type I error probability $\alpha=0.05$

	$C_{WT}(K,\alpha,\Delta)$					
	$\alpha = 0.05$					
K	$\Delta = 0.1$	$\Delta = 0.25$	$\Delta = 0.4$			
1	1.960	1.960	1.960			
2	1.994	2.038	2.111			
3	2.026	2.083	2.186			
4	2.050	2.113	2.233			
5	2.068	2.136	2.267			
6	2.083	2.154	2.292			
7	2.094	2.168	2.313			
8	2.104	2.180	2.329			
9	2.113	2.190	2.343			
10	2.120	2.199	2.355			
11	2.126	2.206	2.366			
12	2.132	2.213	2.375			
15	2.146	2.229	2.397			
20	2.162	2.248	2.423			

Table 2.2 Pocock tests: constants $R_P(K, \alpha, \beta)$ to determine group sizes for two-sided tests with K groups of observations, Type I error probability α and power $1 - \beta$

	$R_P(K, \alpha, \beta)$							
	$1 - \beta = 0.8$				$1 - \beta = 0.9$			
K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$		
<i>i</i> : 1	1.000	1.000	1.000	1.000	1.000	1.000		
2	1.092	1.110	1.121	1.084	1.100	1.110		
3	1.137	1.166	1.184	1.125	1.151	1.166		
4	1.166	1.202	1.224	1.152	1.183	1.202		
5	1.187	1.229	1.254	1.170	1.207	1.228		
6	1.203	1.249	1.277	1,185	1,225	1.249		
7	1.216	1.265	1.296	1.197	1.239	1.266		
8	1.226	1.279	1.311	1.206	1.252	1.280		
9	1.236	1.291	1.325	1.215	1.262	1.292		
10	1.243	1.301	1.337	1.222	1.271	1.302		
11	1.250	1.310	1.348	1.228	1.279	1.312		
12	1.257	1.318	1.357	1.234	1.287	1.320		
15	1.272	1.338	1.381	1.248	1.305	1.341		
20	1.291	1.363	1.411	1.264	1.327	1.367		

Table 2.4 O'Brien & Fleming tests: constants $R_B(K, \alpha, \beta)$ to determine group sizes of two-sided tests with K groups of observations, Type I error probability α and power $1-\beta$

	$R_B(K,\alpha,\beta)$						
	$1 - \beta = 0.8$			$1 - \beta = 0.9$			
K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	
1	1,000	1.000	1.000	1.000	1.000	1.000	
2	1.001	1.008	1.016	1.001	1.007	1.014	
3	1.007	1.017	1.027	1.006	1.016	1.025	
4	1.011	1.024	1.035	1.010	1.022	1.032	
5	1.015	1.028	1.040	1.014	1.026	1.037	
6	1.017	1.032	1.044	1.016	1.030	1.041	
7	1.019	1.035	1.047	1.018	1.032	1.044	
8	1.021	1.037	1.049	1.020	1.034	1.046	
9	1.022	1.038	1.051	1.021	1.036	1.048	
10	1.024	1.040	1.053	1.022	1.037	1.049	
11	1.025	1.041	1.054	1.023	1.039	1.051	
12	1.026	1.042	1.055	1.024	1.040	1.052	
15	1.028	1.045	1.058	1.026	1.042	1.054	
20	1.030	1.047	1.061	1.029	1.045	1.057	

Table 2.10 Wang & Tsiatis tests: constants $R_{WT}(K,\alpha,\beta,\Delta)$ to determine group sizes for two-sided tests with K groups of observations. Type I error probability $\alpha=0.05$ and power $1-\beta$

			$R_{WT}(K)$	(α, β, Δ)				
	$\alpha = 0.05$							
		$1 - \beta = 0.8$			$1 - \beta = 0.9$,		
K	$\Delta = 0.1$	$\Delta = 0.25$	$\Delta = 0.4$	$\Delta = 0.1$	$\Delta = 0.25$	$\Delta = 0.4$		
1	1.000	1.000	1.000	1.000	1.000	1.000		
2	1.016	1.038	1.075	1.014	1.034	1.068		
3	1.027	1.054	1.108	1.025	1.050	1.099		
4	1.035	1.065	1.128	1.032	1.059	1.117		
5	1.040	1.072	1.142	1.037	1.066	1.129		
6	1.044	1.077	1.152	1.041	1.071	1.138		
7	1.047	1.081	1.159	1.044	1.075	1.145		
8	1.050	1.084	1.165	1.046	1.078	1.151		
9	1.052	1.087	1.170	1.048	1.081	1.155		
10	1.054	1.089	1.175	1.050	1.083	1.159		
11	1.055	1.091	1.178	1.051	1.085	1.163		
12	1.056	1.093	1.181	1.053	1.086	1.166		
15	1.059	1.097	1.189	1.055	1.090	1.172		
20	1.062	1.101	1.197	1.058	1.094	1.180		

Wang-Tsiatis

O'Brien - Fleming