Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Leis de Kirchhoff

Relatório da disciplina Laboratório de Eletrônica 1 com o Prof^o. Gilberto Cuarelli e o Prof^o. Haroldo Guibu.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

SUMÁRIO

1	INTRODUÇÃO TEÓRICA5
1.1	Objetivos
1.2	Materiais
2	PROCEDIMENTOS EXPERIMENTAIS 6
2.1	Circuito 1
2.2	Circuito 2
3	QUESTÕES
3.1	Questões
4	CONCLUSÃO 15
	REFERÊNCIAS

LISTA DE FIGURAS

Figura 1 –	Circuito 1	6
Figura 2 –	Gráfico das Tensões	7
Figura 3 –	Gráfico das Correntes	7
Figura 4 –	Circuito 2	9
Figura 5 –	Gráfico das Tensões 2	10
Figura 6 –	Gráfico das Correntes 2	10
Figura 7 –	Leis de Kirchhoff Circuito 1	11
Figura 8 –	Leis de Kirchhoff Circuito 2	12
Figura 9 –	Correntes do Circuito 1	13
Figura 10 –	Correntes do Circuito 2	14

LISTA DE TABELAS

Tabela 1 –	Tabela	${\rm de\ Tens\tilde{o}es}$	e Co	orren	ites								 		6
Tabela 2 –	Dados o	do Circuito	2 .							 		_		_	9

1 INTRODUÇÃO TEÓRICA

Leis de Kirchhoff, que também são denominadas como lei das malhas e lei dos nós, são leis de conversação. Para as aplicarmos precisamos primeiramente entender os conceitos básicos de nó, ramo e malha (ELETRôNICA, 2021).

- Nó: Nós são basicamente, pontos onde três ou mais condutores são interligados. Ou seja, onde a corrente será dividida.
- Ramo: É um trecho de qualquer circuito elétrico compreendido entre dois nós.
- Malha: Todo percurso fechado que compõem uma rede elétrica.

A primeira lei de Kirchhoff dita o seguinte: "A soma das correntes que entram em um determinado nó, é igual a soma das correntes que saem deste mesmo nó". Já a segunda afirma "A soma algébrica das tensões de uma determinada malha é sempre igual a zero".

1.1 Objetivos

Verificar experimentalmente a validade das "Leis de Kirchhoff".

1.2 Materiais

- Fonte variável;
- Resistores de 330 Ω , 680 Ω e 1 $k\Omega$
- Múltimetro;
- Cabos para conexões;
- Software simulador LTspice

2 PROCEDIMENTOS EXPERIMENTAIS

2.1 Circuito 1

O circuito 1 é composto por três fontes, uma de 1,5V a segunda de 6 V e a terceira de 3V, e um resistor conectado à cada uma dessas fontes de tensão, o primeiro com 330Ω , o segundo com $1k\Omega$ e o terceiro com 680Ω .

Após montar o cicuito demonstrado na figura 1, foram efetuado as medições solicitadas.

De acordo com a tabela 1 e as figuras 2 e 3, pudemos construír o gráfico das tensões, correntes, e seus valores anotados em suas respectivas tabelas.

Figura 1 – Circuito 1

Fonte: Elaborada pelos autores

Tabela 1 – Tabela de Tensões e Correntes

E1(V)	1,5
E2(V)	6
E3(V)	3
VR1(V)	1,22
VR2(V)	-3,28
VR3(V)	-0,28
IramoAB(mA)	3,69
IramoCD(mA)	-3,28
IramoEF(mA)	-0,41

1.5V V(N001.N002) V(N001.N003)

1.0V
0.5V
1.0V
1.5V
2.0V
3.5V
0.0s 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s

Figura 2 – Gráfico das Tensões

Fonte: Elaborada pelos autores

Figura 3 – Gráfico das Correntes

2.2 Circuito 2

O circuito 2 foi montado conforme a figura 4 .

Figura 4 – Circuito 2

Fonte: Elaborada pelos autores

As medições solicitadas forneceram dados que foram dispostos em uma tabela, que contém tensão e corrente em cada ponto solicitado.

De acordo com a tabela 2 e as figuras 5 e 6 é observável os valores de tensão e corrente, e também o gráfico deles.

Tabela 2 – Dados do Circuito 2

E1(V)	1,5
E2(V)	6
E3(V)	3
VR1(V)	-0,96
VR2(V)	6,53
VR3(V)	-2,46
IramoAB(mA)	-2,91
IramoCD(mA)	6,53
IramoEF(mA)	-3,62

Figura 5 – Gráfico das Tensões 2

Fonte: Elaborada pelos autores

Figura 6 – Gráfico das Correntes 2

3 QUESTÕES

3.1 Questões

De acordo com o roteiro do experimento é requisitado a comprovação das leis de Kirchhoff e o cálculo das correntes nos pontos solicitados.

10.1 - Leis de Kirchhoff

Os cálculos das leis de kirchhoff dos dois circuitos pode ser vista nas figuras 7 e 8.

Figura 7 – Leis de Kirchhoff Circuito 1

Capítulo 3. Questões

Figura 8 – Leis de Kirchhoff Circuito 2

Fonte: Elaborada pelos autores

10.2 - Calculo das Correntes

Como mostrado nas figuras 9 e 10 podemos observar os valores das corentes do primeiro e segundo circuito.

Capítulo 3. Questões

Figura 9 – Correntes do Circuito 1

Figura 10 – Correntes do Circuito 2

```
Grailo 2

-1,5 +330is + 1000is + 5000iz - 6=0

1330is + 1000iz = 7,5

-3+680 iz + 1000iz = 7,5

-300is + 1680iz = 9

(3330is + 1000iz = 7,5

1330 (0,909 - 1,68iz) + 1000iz = 7,5

11,97 - 2234,4iz + 1000iz = 7,5

12 = \frac{2}{1}5 - 11,97 = 3,62 mA,

13 = \frac{2}{1}5 - 11,97 = 3,62 mA,

13 = \frac{2}{1}5 + \frac{2}{1}7 = \frac{2}{1}7 = 2,93 mA,
```

4 CONCLUSÃO

Como de acordo com a teoria, os valores medidos e calculados são os mesmos; qualquer variação pequena pode ser ignorada por conta do arredondamento de valores.

Com isso, o grupo determinou que o experimento foi concluído com sucesso, e percebeu que as leis de Kirchhoff são necessárias em muitos circuitos diferentes.

REFERÊNCIAS

ELETRôNICA, M. da. **Primeira Lei de Kirchhoff**. 2021. Disponível em: https://www.mundodaeletrica.com.br/primeira-lei-de-kirchhoff-o-que-e/. Acesso em: 20 de março de 2021. Citado na página 5.