Tutorial Problems set-I

Note: All these problems can be solved using the results of Chapter-I.

- [0.0.1] Exercise Check that each of the following sets are vector space with respect to usual addition and scalar multiplication.
- (i) The set of all real sequences over the field $\mathbb{F} = \mathbb{R}$.
- (ii) The set of all bounded real sequences over the filed \mathbb{R} .
- (iii) The set of all convergent real sequences over the field \mathbb{R} .
- (iv) $\{(a_n) \mid a_n \in \mathbb{R}, a_n \to 0\}$ over the field \mathbb{R} .
- (v) The set of all **eventually** 0 sequences over the field \mathbb{R} . We call (x_n) eventually 0 if $\exists k$ s.t. $x_n = 0$ for all $n \geq k$.
- (vi) $\mathbb{P}(x) = \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ over the field \mathbb{R} .
- (vii) $\mathbb{P}_5(x) = \{p(x) \in \mathbb{R}[x] \mid \text{degree of } p(x) \leq 5\}$ over the field \mathbb{R} .
- (viii) $\{A_{n\times n} \mid a_{ij} \in \mathbb{R}, A \text{ upper triangular}\}\$ over the field \mathbb{R} .
- [0.0.2] *Exercise* Consider $\mathbb{P}_n(x)$ and $\mathbb{P}(x)$ over \mathbb{R} . Check that each of the following sets is subspace or not.
- (i) $\{P(x) \in \mathbb{P}_3(x) \mid P(x) = ax + b, a, b \in \mathbb{R}\}.$
- (ii) $\{P(x) \in \mathbb{P} \mid P(0) = 0\}.$
- (iii) $\{P(x) \in \mathbb{P} \mid P(0) = 1\}.$
- (iv) $\{P(x) \in \mathbb{P} \mid P(-x) = P(x)\}.$
- (v) $\{P(x) \in \mathbb{P} \mid P(-x) = -P(x)\}.$
- [0.0.3] Exercise Fix $A \in \mathcal{M}_n(\mathbb{R})$. Let $\mathbb{U} = \{B \in \mathcal{M}_n(\mathbb{R}) : AB = BA\}$.
- a) Show that \mathbb{U} is a subspace of $\mathcal{M}_n(\mathbb{R})$.
- b) Let $\mathbb{W} = \{a_0I + a_1A + \cdots + a_nA^m | m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}, a_i \in \mathbb{R}\}$. Show that \mathbb{W} is a subspace of \mathbb{U} .
- [0.0.4] Exercise Find basis and dimension for each of the following vector spaces.
- (i) $\mathbb{M}_n(\mathbb{C})$ over \mathbb{R} .
- (ii) $\mathbb{H}_n(\mathbb{C})$, $n \times n$ Hermitian matrices, over \mathbb{R} .
- (iii) $\mathbb{S}_n(\mathbb{C})$, $n \times n$ Skew-Hermitian matrices, over \mathbb{R} .
- [0.0.5] Exercise Check whether the following vector space is finite dimensional or infinite dimensional.
- (i) The set of all real sequences over the field $\mathbb{F} = \mathbb{R}$.
- (ii) The set of all bounded real sequences over the field \mathbb{R} .
- (iii) The set of all convergent real sequences over the field \mathbb{R} .
- (iv) $\{(a_n) \mid a_n \in \mathbb{R}, a_n \to 0\}$ over the field \mathbb{R} .
- (v) The set of all **eventually** 0 sequences over the field \mathbb{R} .
- (vi) We call (x_n) eventually 0 if $\exists k$ s.t. $x_n = 0$ for all $n \geq k$.
- (vii) $\mathbb{P}(x) = \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ over the field \mathbb{R} .
- (viii) $\mathbb{P}_5(x) = \{p(x) \in \mathbb{R}[x] \mid \text{degree of } p(x) \leq 5\}$ over the field \mathbb{R} .
- [0.0.6] Exercise Write 4 nontrivial subspaces of \mathbb{R}^4 .

[0.0.7] *Exercise* Show that $u_1, \dots, u_k \in \mathbb{R}^n$ are linearly independent iff Au_1, \dots, Au_k are linearly independent for any invertible A_n .

[0.0.8] Exercise Show that $u_1, \dots, u_k \in \mathbb{V}$ is linearly independent iff $\sum_{i=1}^k a_{i1}u_i, \dots, \sum_{i=1}^k a_{ik}u_i$ are linearly independent for any invertible $A_{k\times k}$. Show that $\{u,v\}$ is linearly independent iff $\{u+v,u-v\}$ is linearly independent.

[0.0.9] *Exercise* Let \mathbb{V} be a vector space over \mathbb{F} . Let A and B be two non-empty subsets of \mathbb{V} . Prove or disprove: $LS(A) \cap LS(B) \neq \{0\} \implies A \cap B \neq \emptyset$.

[0.0.10] *Exercise* Show that a vector space \mathbb{V} over \mathbb{F} has a unique basis if and only if either DIM (\mathbb{V}) = 0 or DIM (\mathbb{V}) = 1 and $|\mathbb{F}| = 2$.

[0.0.11] *Exercise* Let \mathbb{V} be an n dimensional vector space over \mathbb{F} and let \mathbb{F} has exactly p elements. Then show that $|\mathbb{V}| = p^n$.

[0.0.12] *Exercise* Check whether vector space \mathbb{R} (set of real numbers) over the field \mathbb{Q} (set rational number) is infinite dimensional or finite dimensional.

[0.0.13] Exercise Let $S = \{ \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} a \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \}$. Find the values of a for which $LS(S) \neq \mathbb{R}^3$.

[0.0.14] *Exercise* Give 2 bases for the trace 0 real symmetric matrices of size 3×3 . Extend these bases to bases of the real symmetric matrices of size 3×3 . Extend these bases to bases of the real matrices of size 3×3 .

[0.0.15] *Exercise* Consider $\mathbb{W} = \{v \in \mathbb{R}^6 | v_1 + v_2 + v_3 = 0, v_2 + v_3 + v_4 = 0, v_4 + v_5 + v_6 = 0\}$. Supply a basis for \mathbb{W} and extend it to a basis of \mathbb{R}^6 .

[0.0.16] *Exercise* For what values α are the vectors $(0,1,\alpha),(\alpha,1,0)$ and $(1,\alpha,1)$ in \mathbb{R}^3 linearly independent?

[0.0.17] Exercise If S and T are two subspaces of a vector spaces having a common complement set W, does it follow that S = T?

[0.0.18] Exercise In the vector space \mathbb{R}^4 , find two different complements of the subspace $S = \{(x_1, x_2, x_3, x_4) : x_3 - x_4 = 0\}$

[0.0.19] *Exercise* Show that a non-trivial subspace S of a finite dimensional vector space \mathbb{V} has two virtually disjoint complements iff $\text{DIM}(S) \geq \frac{\text{DIM}(\mathbb{V})}{2}$.

[0.0.20] Exercise Find a complement of the subspace $\{(x_1, x_2, \dots, x_n) : \sum_{i=1}^n x_i = 0\}$ in \mathbb{R}^n .