•

Un **arbore binar de căutare** este un arbore **binar** care satisface următoarea proprietate:

Pentru un nod x:

- Dacă y este un nod din subarborele $\underline{stâng}$ al lui x, atunci cheie [y] \leq cheie [x]
- Dacă y este un nod din subarborele <u>drept</u> al lui x, atunci cheie[x] ≤ cheie[y]

Un **arbore binar de căutare** este un arbore **binar** care satisface următoarea proprietate:

Pentru un nod x:

- Dacă y este un nod din subarborele $\underline{stâng}$ al lui x, atunci cheie [y] \leq cheie [x]
- Dacă y este un nod din subarborele <u>drept</u> al lui x, atunci cheie [x] ≤ cheie [y]

Arbori Binari

Un arbore binar strict este un arbore binar în care fiecare nod fie nu are nici un fiu, fie are exact doi fii.

Nodurile cu doi copii se vor numi *noduri interne*, iar cele fără copii se vor numi *noduri externe* sau *frunze*.

Fig.4.1.1. (a) Un arbore binar nestrict. (b) Arbore binar strict.

Arbori Binari - Parcurgeri

Parcurgeri în arbori binari:

- Inordine (SRD, stânga rădăcină dreapta)
- Preordine (RSD, rădăcină stânga dreapta)
- Postordine (SDR, stânga dreapta rădăcină)

Arbori Binari - Parcurgeri

Parcurgeri în arbori binari:

- Inordine (SRD, stânga rădăcină dreapta)
- Preordine (RSD, rădăcină stânga dreapta)
- Postordine (SDR, stânga dreapta rădăcină)

Inorder Traversal: 4251637 Preorder Traversal: 1245367 Postorder Traversal: 7635421

4526731

Arbori Binari - Parcurgeri

```
void par_rsd (BTREE t) {
    if (t != NULL) {
        visit(t);
        par_rsd(t->left);
        par_rsd(t->right);
    }
}
void par_srd (BTREE t) {
    if (t != NULL) {
        par_srd(t->left);
        visit(t);
        par_rsd(t->right);
    }
}
```

```
void par_sdr (BTREE t) {
    if (t != NULL) {
        par_sdr(t->left);
        par_sdr(t->right);
        visit(t);
}
```

Link pt vizualizare

TEMĂ: Se dau SRD și RSD. Afișati arborele

- Înălțimea arborelui?
 - □ Minim?

□ Maxim?

- Înălțimea arborelui ?
 - Minim
 - Arbore Binar Complet \rightarrow Înălțime $\log n$
 - Maxim
 - Dacă avem lanț (elementele sunt inserate în ordine crescătoare sau descrescătoare) → Înălțime **n**

- Ce parcurgere ne oferă vectorul sortat?
 - Preordine
 - Inordine
 - Postordine

Parcurgerea **inordine** ne oferă vectorul sortat

Preordine 5 3 2 5 7 8 | 2 3 7 5 5 8

□ Inordine 2 3 5 5 7 8 | 2 3 5 5 7 8

Postordine 2 5 3 8 7 5 | 5 5 8 7 3 2

Restul parcurgerilor sunt diferite pentru cei 2 arbori.

Exercițiu

Desenați arbori binari de înălțime 2, 3, 4, 5 pentru valorile {1, 2, 3, 4, 5}.

Exercițiu

Desenați arbori binari de înălțime 2, 3, 4, 5 pentru valorile {0, 1, 2, 3, 4, 5}.

Exercițiu

Desenați arbori binari de înălțime 2, 3, 4, 5 pentru valorile {0, 1, 2, 3, 4, 5}.

• Unde se află minimul?

- Unde se află minimul?
 - În cel mai din stânga nod

TREE-MINIMUM (x)

1 while $left[x] \neq NIL$

2 do $x \leftarrow left[x]$

3 return x

• Unde se află maximul?

- Unde se află maximul?
 - În cel mai din dreapta nod

TREE-MAXIMUM (x)

1 while $right[x] \neq NIL$

2 $\operatorname{do} x \leftarrow \operatorname{right}[x]$

3 return x

Complexitate?

- Unde se află maximul?
 - În cel mai din dreapta nod

TREE-MAXIMUM (x)

- 1 while $right[x] \neq NIL$
- 2 do $x \leftarrow right[x]$
- 3 return x

Complexitate? O(h)

Minimul și maximul se găsesc mai greu decât într-un heap. Avantajul major al arborilor binari de căutare este că permit o căutare "relativ" eficientă.

Cum găsim un element?

Minimul și maximul se găsesc mai greu decât într-un heap. Avantajul major al arborilor binari de căutare este că permit o căutare "relativ" eficientă.

Cum găsim un element?

Începem din rădăcină și dacă valoarea din nodul curent este mai mică decât ceea ce căutăm, mergem în stânga, dacă valoarea e mai mare, mergem în dreapta.

Evident, ne oprim dacă am găsit valoarea.


```
ITERATIVE-TREE-SEARCH (x,k)
```

- 1 while $x \neq NIL$ and $k \neq key[x]$
- 2 do if k < key[x]
- 3 then $x \leftarrow left[x]$
- 4 **else** $x \leftarrow right[x]$
- 5 return x

Complexitate: O(h)

TREE-SEARCH (x, k)

1 if x = NIL or k = key[x]

 $\frac{1}{2}$ then return x

3 if k < key[x]

4 then return TREE-SEARCH (left[x], k)

5 else return TREE-SEARCH (right[x], k)

Până acum, puteam să ținem un dicționar și un heap și să facem aceleași operații.

Succesor: Se dă un nod din arbore.

Care este cea mai **mică** valoare din arbore > val[x] (valorea nodului)?

Predecesor: Se dă un nod din arbore.

Care este cea mai **mare** valoare din arbore ≤ val[x] (valorea nodului)?

Cum facem?

Succesor de 3?

Succesor de 6?

Succesor de 15?

Succesor de 13?

Succesor de 4?

Succesor de 3? $\rightarrow 4$

Succesor de 6? \rightarrow 7

Succesor de 15? \rightarrow 17

Succesor de 13? \rightarrow 15

Succesor de 4? \rightarrow 6

Caz 1) Dacă am fiu drept, atunci cel mai mic element va fi cel mai mic element din subarborele drept. Adică dreapta→stânga→stânga→... →stânga (vezi 7 sau 15)

Caz 2) Dacă **nu** am fiu drept, atunci va fi primul strămoș al meu în care eu sunt în subarborele stâng al său (vezi 13, 4, 17)


```
TREE SUCCESSOR(x)

1 if right[x] \neq NIL

2 then return TREE-MINIMUM(right[x])

3 y \lefta p[x]

4 while y \neq NIL and x = right[y]

5 do x \lefta y

6 y \lefta p[y]

7 return y
```


Complexitate: **O(h)**

Inserare

Similar cu căutarea.

Inserare 13:

Inserare

Complexitate: O(h)

```
TREE-INSERT(T,z)
1 y \leftarrow NIL
2 x \leftarrow root[T]
3 while x \neq NIL
          do y \leftarrow x
4
              if key[z] < key[x]
                  then x \leftarrow left[x]
6
                  else x \leftarrow right[x]
8 p[z] \leftarrow y
9 if y = NIL
          then root[T] \leftarrow z
10
          else if key[z] < key[y]
11
                     then left[y] \leftarrow z
12
13
                     else right[y] \leftarrow z
```

- o Cum?
- Cum îl ștergem pe 13?
- O Dar pe 7? Pe 16?
- o Pe 5?
- O Dar pe 15?

- o Cum?
- Cum îl ștergem pe 13?
- O Dar pe 7? Pe 16?
- Pe 5?
- O Dar pe 15?

Exercițiu:

Demonstrați că succesorul unui nod cu 2 fii are maxim un fiu.

- o Cum?
- Cum îl ștergem pe 13?
- O Dar pe 7?
- Pe 5?
- O Dar pe 15?

Avem 3 cazuri:

- 1) Dacă nodul **nu are** fii, îl ștergem.
- 2) Dacă are **un** fiu, îl ștergem și creăm o tată și noul fiu.


```
TREE-DELETE(T, z)
1 if left[z] = NIL or right[z] = NIL
        then y \leftarrow z
        else y \leftarrow TREE-SUCCESSOR(z)
4 if left[y] \neq NIL
        then x \leftarrow left[y]
        else x \leftarrow right[y]
7 if x \neq NIL
        then p[x] \leftarrow p[y]
8
9 if p[y] = NIL
         then root[T] \leftarrow x
10
11
         else if y = left[p[y]]
                   then left[p[y]] \leftarrow x
12
13
                   else right[p[y]] \leftarrow x
14 if y \neq z
15
         then key[z] \leftarrow key[y]

□ If y has other fields, copy them, too.
16
     return y
```

Avem 3 cazuri:

Dacă are **ambii** fii, găsim succesorul său, punem în locul său și înlocuim legătura acestui nod cu singurul fiu (dacă există)


```
TREE-DELETE(T, z)
1 if left[z] = NIL or right[z] = NIL
        then y \leftarrow z
        else y \leftarrow TREE-SUCCESSOR(z)
4 if left[y] \neq NIL
        then x \leftarrow left[y]
        else x \leftarrow right[y]
7 if x \neq NIL
        then p[x] \leftarrow p[y]
8
9 if p[y] = NIL
         then root[T] \leftarrow x
10
11
         else if y = left[p[y]]
                   then left[p[y]] \leftarrow x
12
13
                   else right[p[y]] \leftarrow x
14 if y \neq z
15
         then key[z] \leftarrow key[y]

□ If y has other fields, copy them, too.
16
     return y
```

Complexitate

Operație	Complexitate
Căutare	O(?)
Găsire Minim	O(?)
Inserare	O(?)
Succesor / Predecesor	O(?)
Ştergere	O(?)

Complexitate

Operație	Complexitate
Căutare	O(h)
Găsire Minim	O(h)
Inserare	O(h)
Succesor / Predecesor	O(h)
Ştergere	O(h)

Arbori Binari de Căutare cu Chei Egale

Ce facem dacă avem mai multe chei egale?

Arbori Binari de Căutare cu Chei Egale

Ce facem dacă avem mai multe chei egale?

- În caz de egalitate, alegem tot timpul stânga sau dreapta și inserăm în aceeași direcție
- Tinem o listă cu toate elementele egale într-un singur nod (sau un contor care să numere aparițiile, dacă nu avem alte informații)

Arbori Binari Echilibrați

- AVL
- Arbori Roşu-Negri
- Treap-uri
- Splay Trees
- B-arbori

Skip Lists (nu sunt arbori binari de căutare, dar...)

Bibliografie

<u>Introducere în Algoritmi Cormen Leiserson Rivest</u>