# Link Prediction in Complex Networks: A Survey

Ajay Kumar

Supervisor: Dr. Bhaskar Biswas

October 16, 2017



## Outline

#### Introduction

Overview
State of the Art

### Research Proposals

Proposal 1.

Proposal 2

## Social Network

- Social network is a standard approach to model a communication in a group or community of persons.
- Such networks can be represented as graphical model in which
  - a node maps to a person or social entity, and
  - an edge corresponds to an association or collaboration between them.

# Issues and Challenges

- The relationships among individuals are continuously changing so addition and/or deletion of several edges and vertices take place.
  - Results the social networks to be highly dynamic and complex.
- ▶ In case of pairwise classification problem, one of the fundamental challenges is dealing with the large outcome space; if there are n actors, there are n² possible choices to be taken care of.

## **Link Prediction**

- Here, we address a specific problem of social networks termed as Link Prediction (LP).
- Link Prediction can be defined in two scenarios:
  - In the first scenario (also known as structural link prediction), given a snapshot of a network, infer which new interactions between nodes are likely to occur in the future [1].



In second scenario (Temporal link prediction), given link data for times 1 through T, can we predict the links at time T + a, T+2a.... [2]?



# Formal Definition [1]

- Graphs/Network G = (V, E) where
  - V is the set of vertices in G, and E is the set of edges.
  - ▶ Consider a snapshot  $G_{t_0-t_1}(V,E)$  of G during time interval  $[t_0,t_1]$  and  $E_{t_0-t_1}$  be the set of edges present in that snapshot.
  - ► The task of link prediction is to find set of edges  $E_{t_0'-t_1'}$  during the time interval  $[t_0', t_1']$  where  $[t_0, t_1] \leq [t_0', t_1']$ .

# Applications |



(a) Proposing items to users



(b) Friend mendation



recom- (c) proposals

Marriage



(d) spam emails detection



## **Evaluation Metrics**

- To calculate the accuracy of algorithms, following metrics are used:
  - Area under the Receiver Operating Characteristics Curve (AUC) [3]
  - Precision [4,5]

consider a simple undirected network G(V; E) in which V is the set of nodes and E is the set of links.





Training network

- The following observation can be made in the considered network:
  - Total possible links = U
  - Existent links = E
  - Non exitent links = U − E
  - Observed links = E<sup>T</sup> = Training set
  - Non-Observed links =  $U E^{T}$
  - ► Missing links = E<sup>P</sup> = Test set

## Area under the ROC Curve

- Area under the ROC Curve (AUC): Given a ranking of Non-observed links, the term AUC is estimated as the likelyhood that a chosen missing link is given a higher score than a randomly chosen non-existent link.
- ► Each time two edges are selected randomly one from each set and compared their scores.
- Then, AUC can be calculated using the following expression:

$$AUC = \frac{n_1 + 0.5n_2}{n}$$

where, n is total independent comparisons,  $n_1$  is number of times the missing link with a higher score  $n_2$  is number of times they have same score.

## Precision

#### Precision

Given the ranking of non-observed links, precision can be defined as the proportion of relevant items to the number of items chosen. i.e.,

$$\textit{Precision} = \frac{L_r}{L}$$

where, L represents predicted links having top scores, and L<sub>r</sub>, the number of predicted links which are correct.

## Link Prediction Approaches: A Taxonomy



## State-of-the-Art

| Framework           | Model      | Method Name              | Expression                                                                                                     | Reference                |
|---------------------|------------|--------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|
|                     | Local      | CN                       | $S_{xy} =  \Gamma(x) \cap \Gamma(y) $                                                                          | Newman M.E.J 2001        |
| Similarity<br>Based |            | Jaccard                  | $S_{xy} = \frac{ \Gamma(x) \cap \Gamma(y) }{ \Gamma(x) \cup \Gamma(y) }$                                       | Jaccard P. 1901          |
|                     |            | AA                       | $S_{xy} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log  \Gamma(z) }$                                    | Adamic and Adar 2003     |
|                     |            | RA                       | $S_{xy} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{ \Gamma(z) }$                                         | Zhou et al. 2009         |
|                     |            | PA                       | $S_{xy} = K_x * K_y$                                                                                           | Barabasi and Albert 1999 |
|                     |            | CAR                      | $S_{xy} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{ \Gamma(x) \cap \Gamma(y) \cap \Gamma(z) }{ \Gamma(z) }$ | Cannistraci et al. 2013  |
|                     | Global     | NSP                      | $S_{xy} = - shortestpath_{xy} $                                                                                | Liben-Nowell 2005        |
|                     |            | Katz Index               | $S_{xy} = \sum_{l=1}^{\infty} \beta^l  paths_{xy}^{< l>}  = \sum_{l=1}^{\infty} \beta^l (A^l)_{xy}$            | Leo Katz 1953            |
|                     |            | Random Walk              | $S_{xy} = P_y^x(t) = P^T P_y^x(t-1)$                                                                           | Karl Pearson 1905        |
|                     |            | Random Walk with Restart | $S_{xy} = q_{xy} + q_{yx}$<br>$q_x = cP^T\vec{q}_x + (1-c)\vec{e}_x$                                           | Tong et al. 2006         |
|                     |            | SimRank                  | $S_{xy} = \beta \frac{\sum_{l \in \Gamma_x} \sum_{j \in \Gamma_y} S(ij)}{ \Gamma_x  \Gamma_y }$                | Jeh and Widom 2002       |
|                     | Quasilocal | Local Path Index         | $S_{xy} = A^2 + \epsilon A^3$                                                                                  | Lu et al. 2009           |
|                     |            | LRW                      | $S_{xy}(t) = q_x \pi_{xy}(t) + q_y \pi_{yx}(t)$<br>$q_x = \frac{k_x}{M}$                                       | Liu and Lu 2010          |
|                     |            | SRW                      | $S_{xy}(t) = \sum_{\tau=1}^{t} [q_x \pi_{xy}(\tau) + q_y \pi_{yx}(\tau)]$                                      | Liu and Lu 2010          |

| Framework            | Method         | Features and Characteristics                                        | Model and Approach                                    | Reference              |
|----------------------|----------------|---------------------------------------------------------------------|-------------------------------------------------------|------------------------|
| Algorithmic<br>Based | Classification | Topological, Aggregated<br>and Proximity(shortest path)             | DT, SVM, KNN, MLP                                     | Al. Hasan et al. 2006  |
|                      |                | Subgraph feature edge rank                                          | Random Forest                                         | Cuckierski et al. 2011 |
|                      |                | Sum of patient, Ethinicity<br>Sum of neighbors, Jaccard             | SVM                                                   | Almansoori et al. 2012 |
|                      | Metaheuristic  | Heuristic function: CN,<br>Fitness: deg-sum(path(i,j))              |                                                       | B. Chen et al. 2014    |
|                      |                | Special subgraphs namely<br>Bi-fan structure (4 nodes & 4 links)    | ACO                                                   | E. Sherkat et al. 2014 |
|                      |                | Linear combination of similarity indices and coefficient            | Evolutionary strategy to<br>optimize the coefficients | Bliss et al. 2014      |
|                      | Factorization  | shortest path (k=0,1,2)                                             | Matrix factorization with bagging                     | Zhifeng Wu et al. 2016 |
|                      |                | latent features with optional explicit features for nodes and edges | Matrix factorization                                  | Menon and Elkan 2011   |
|                      |                | communicability matrix $C_t = e^{\beta W_t}$                        | Symmetric NMF with<br>Feature Collapsing algorithm    | Xiaoke Ma et al. 2017  |

# Proposal 1. Motivation

- Motivation: Wang and Go [6] proved that BA achieved results better than many other bio-inspired optimization techniques such as Ant Colony Optimization (ACO), Genetic Algorithm (GA), Harmony Search (HS), Particle Swarm Optimization (PSO), to solve numerical optimization problem.
- However, due to their stochastic nature of BA, swarm intelligence algorithms are never guaranteed to find an optimal solution for any problem, but they will often find a good solution if one exists.
- ➤ To mitigate this problem we can use chaos theory, in which generated sequences are well distributed.
- chaotic sequences perform well in escaping from local optimum.

## BAT Framework: An Inroduction

- ► A nature inspired metaheuristic framework introduced by Xin-She Yang [7] in 2010.
- BAT framework works on echolocation behaviour of bats.
- Microbats use echolocation to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
- ► These bats emit a very loud sound pulse and listen for the echo that bounces back from the surrounding objects.
- ► With the help of variance in these pulse properties, bats decide their hunting strategy.
- Frequency of bats ranges from 25kHz to 150kHz

Ling Chen et al.[8] performed link prediction based on direct optimization of area under the ROC curve (AUCD) as

$$AUC = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} I(w^{T} x_{i} > w^{T} x_{j})$$

where, m and n are total number of positive class and negative class examples. I(.) is an indicator function defined as

$$I(q) = \begin{cases} 1 & \text{if q is true} \\ 0 & \text{otherwise} \end{cases}$$

We have used the above concept in our bat framework as objective function.



# BAT algorithm steps

- Step 1: Set objective function
  - Our objective is to minimize L(w) using BAT algorithm

$$L(w) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} max[0, 1 - w^{T}(x_{i} - x_{j})] + \frac{\lambda}{2} ||w||_{2}^{2}$$

Proposal 1.

Proposal 2

- Step 2: Parameter initialization
  - Position (or solution) X: binary string of length N (features  $\in$  [0, 1]).
  - Velocity V: change in features.
  - Frequency (f) and Loudness (A) are initialized by Gause map.
  - Pulse rate emission (r) is initialized by tent map.
  - Set number of iterations (t) and current best solution (x<sub>\*</sub>).



Step 3: Evaluate fitness of all bats and compare with x<sub>\*</sub>.

$$x_{new} = x_{old} + \epsilon A^t$$

Step 4: Update the V, f, x, A and r.

$$f_{i} = f_{min} + (f_{max} - f_{min})\beta$$

$$v_{i}^{t} = v_{i}^{t-1} + (x_{*} - x_{i}^{t})f_{i}$$

$$x_{i}^{t} = x_{i}^{t-1} + v_{i}^{t}$$

$$A_{i}^{t+1} = \alpha.A_{i}^{t}$$

$$r_{i}^{t+1} = r_{i}^{0}[1 - \exp(-\gamma.t)]$$

Here,  $\alpha(\alpha \in [0,1])$  and  $\gamma(\gamma > 0)$  are positive constants,  $\beta(\beta \in [0,1])$  is a random number in a uniform distribution.

Step 5: Iterate the procedure until the maximum number of iteration or convergence.

# Proposal 2. Motivation

- Motivation: Most link prediction algorithms are based on topological properties of a network varies from local to global.
- Very less work have been done on structural identity of nodes in the network [9].
- structural identity is a concept of symmetry in which nodes are identified by network structure.
- ► LFR Ribeiro [9] considers structural identity to represent nodes of a network and prove it to be scalable for large networks, which might be very useful in link prediction problem.

# Link prediction through learning node representation from structural identity

- Structural similarity: Two nodes that have same degree are structurally similar, but if their neighbors also have the same degree, then they are even more structurally similar.
- ▶ **Step 1.** Determine **structural similarity** between each vertex pair in the graph for different neighborhood sizes.
- The structural distance between vertices a and b having k-hop distant (i.e. k-neighbohood) is

$$f_k(a,b) = f_{k-1}(a,b) + g[ODS(N_k(a)), ODS(N_k(b))]$$
  
 $k \ge 0, |N_k(a)|, |N_k(b)| \ge 0, f_{-1} = 0$ 



- ▶ Here,  $|N_k(a)|$  and  $|N_k(b)|$  are sets of nodes at k-hop distant respectively.  $g(D_1, D_2) \ge 0$  measures the distance between ordered degree sequences(ODSs)  $D_1$  and  $D_2$ .
- Then Dynamic Time Warpping (DTW) [10] is used to compare two ordered degree sequences of same or different sizes.
- Given a local distance measure d, DTW computes the optimal alignment between two sequences having minimal cost.
- ► The local distance function depends on the dimension of the feature representation.

For example, in case of 1-dimensional feature

$$d(a,b) = \frac{max(a,b)}{min(a,b)} - 1$$

► For a 2-dimensional feature, the Manhattan distance can be applied for this purpose.

$$d(a,b) = |a-b|$$

▶ **Step 2.** Now, our objective is to optimize the alignment using some optimization algorithm.

## References

- Liben-Nowell, D., Kleinberg, J. The link prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 2007, pp. 1019-1031.
- Daniel M. Dunlavy, Tamara G. Kolda, Evrim Acar. "Temporal Link Prediction using Matrix and Tensor Factorizations", ACM Transactions on Knowledge Discovery from Data 5(2):10 (27 pages), February 2011.
- J. A. Hanely, B.J.M: The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 143(1), 1982, pp. 29-36.
- 4. Geisser, S: Predictive inference: An introduction. Chapman and Hall, New York (1993).
- J. L. Herlocker J. A. Konstann, K.T.J.T.R.: Evaluating collaborative filtering recommender systems,. ACM Trans. Inf. Syst. (22 (2004) 5).
- Gaige Wang and Lihong Guo, A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization. Journal of Applied Mathematics, 2013.
- X.-S. Yang, A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (Eds. J. R. Gonzalez et al.), SCI 284, 65-74 (2010).
- Caiyan Dai, Ling Chen, Bin Li. Network link prediction based on direct optimization of area under curve. Applied Intelligence, pp 427437, 2017.
- L.F.R. Ribeiro, P.H.P Saverese, D.R. Figueiredo. struc2vec: Learning Node Representations from Structural Identity, KDD2017.
- S Salvador and P Chan. FastDTW: Toward accurate dynamic time warping in linear time and space. In Workshop on Min. Temp. and Seq. Data, ACM SIGKDD 2004.

