UNIVERSITY OF DUBLIN TRINITY COLLEGE

Faculty of Engineering and Systems Sciences

DEPARTMENT OF COMPUTER SCIENCE

B.A.(Mod.) Computer Science

Junior Sophister Examination

Trinity Term 2000

3BA2 Artificial Intelligence

Thursday 25th May

Luce Hall

09.30 - 12.30

T.Fernando, P. Cunningham, M. Brady

Answer five questions, at least one from each section. Each question is worth 20 marks.

Section A

- 1. (a) What are the **symbol-system hypothesis** and the **Church-Turing thesis**? What do they have to do with artificial (or computational) intelligence?
 - (b) What are Turing machines, and how do they differ from finite state machines?
 - (c) Why is non-determinism a greater problem for Turing machines than for finite state machines?
- 2. (a) What is the Herbrand interpretation of a knowledge base?
 - (b) What is the Unique Names Assumption, and do Herbrand interpretations satisfy it?
 - (c) What is the Complete Knowledge Assumption, and do Herbrand interpretations satisfy it?
- 3. (a) What is the difference between declarative and procedural semantics?
 - (b) What problem do the two rules

pose for declarative accounts such as the following (from Computational Intelligence, p.252)?

The formula $\sim p$ means that p is false under the Complete Knowledge Assumption. This is called negation as failure. That is, p is false in all models of the [Clark] completion of the program. We use a different symbol to the previous negation where $\neg p$ is true in an interpretation if p is false in the interpretation, since that symbol doesn't incorporate the Complete Knowledge Assumption. Instead, we have $T \models \neg p$ iff $T' \models \neg p$ where T' is the completion of T.

4. Suppose we were to reduce an n-ary relation $r(x_1,...,x_n)$ to the conjunction of (n-1)binary relations $r_1(x_1,x_2), r_2(x_2,x_3), \ldots, r_{n-1}(x_{n-1},x_n)$

- (a) What is wrong with this reduction? (Hint: apply the proposal to the sentence "Ana gave Bill candy, and Dan gave Bill eggs.")
- (b) How does this compare with the reduction of an n-ary relation to semantic networks?
- 5. (a) What is A* search?
 - (b) Give an example where A* does breadth-first search.
 - (c) Give an example where A* does depth-first search.
 - (d) What does it mean for A* to be admissible, and which (if any) of the two examples you have discussed are admissible?
- 6. (a) Explain the difference between supervised and unsupervised learning.
 - (b) Describe the overall algorithm for building a decision tree from supervised data.
 - (c) Describe how entropy can be used to determine the features to use in a decision tree.

Section B

- 7. Discuss Kowalski's aphorism Program = Logic + Control. Give examples and explain the operation of the cut. Why is the Control part mandatory rather than optional for a Prolog programmer.
 - From a strict logic point of view, give an account of the deficiencies of Prolog as a logic programming language.
- Give an account of how Prolog is implemented as a computer language. In your answer, explain 8. tail recursion. Also, highlight the correspondences and distinctions that can be drawn between an implementation of Prolog and an implementation of a more conventional procedural language.