CK0048 - Métodos Numéricos II Trabalho 17 - Runge-Kutta de Terceira Ordem

Gabriel Freire do Vale - 418788 Pedro Ernesto de Oliveira Primo - 418465

24 de setembro de 2020

1 Modificando PVI-2

Usando os valores $t_0=0s, v_0=5m/s, y_0=200m, k=0.25kg/s, m=2kg,$ temos que a fórmula para a solução exata de PVI-2 é:

$$v(t) = -g \cdot \frac{k}{m} + \left(v_0 + g \cdot \frac{k}{m}\right) \cdot e^{-\left(\frac{k}{m}\right) \cdot \Delta t} = -10 \cdot \frac{0.25}{2} + \left(5 + 10 \cdot \frac{0.25}{2}\right) \cdot e^{-\left(\frac{0.25}{2}\right) \cdot \Delta t}$$
e
$$y(t) = y_0 - g \cdot \frac{k}{m} \cdot \Delta t - \left(v_0 + g \cdot \frac{k}{m}\right) \cdot \frac{k}{m} \cdot \left(e^{-\left(\frac{k}{m}\right) \cdot \Delta t} - 1\right)$$

$$= 200 - 10 \cdot \frac{0.25}{2} \cdot \Delta t - \left(5 + 10 \cdot \frac{0.25}{2}\right) \cdot \frac{0.25}{2} \cdot \left(e^{-\left(\frac{0.25}{2}\right) \cdot \Delta t} - 1\right)$$

Valores aproximados da solução exata y(5) = 116.022229 e v(5) = -34.502779 para t = 5s

Δt	Y_{aprox}	$Y_{erro_relativo}$	V_{aprox}	$V_{erro_relativo}$
0.1	116.022247	-1.6116E-05%	-34.502781	-6.7744E-06%
0.01	116.022229*	-1.5972E-08%	-34.502779*	-6.7136E-09%
0.001	116.022229*	-1.6633E-11%	-34.502779*	-6.7341E-12%
0.0001	116.022229*	-2.5966E-12%	-34.502779*	-2.0593E-14%

^{*} O programa arredonda para 6 dígitos decimais

3 Valores máximos e no instante do impacto

Δt	Y_{max}	T_{max}	T_{total}	$V_{impacto}$
0.1	201.134433	0.6000	7.8000	-47.938653
0.01	201.200117	0.4900	7.7900	-47.898548
0.001	201.200237	0.4860	7.7900	-47.898548
0.0001	201.200242	0.4851	7.7898	-47.897746