Machine Learning

Probability

Reading: Bishop: Chap 1,2

Probability in Machine Learning

Machine Learning tasks involve reasoning under uncertainty

Sources of uncertainty/randomness:

- Noise variability in sensor measurements, partial observability, incorrect labels
- Finite sample size Training and test data are randomly drawn instances

2

こ

2

2

2

Hand-written digit recognition

Probability quantifies uncertainty!

Basic Probability Concepts

Conceptual or physical, repeatable experiment with random outcome at any trial

Roll of dice

Nucleotide present at a DNA site

Time-space position of an aircraft on a radar screen

Sample space S - set of all possible outcomes. (can be finite or infinite.)

$$S \equiv \{1,2,3,4,5,6\}$$

$$\mathbf{S} \equiv \{A, T, C, G\}$$

$$\mathcal{S} \equiv \{0, R_{\text{max}}\} \times \{0,360^{\circ}\} \times \{0,+\infty\}$$

Event A - any subset of S:

• *Classical*: Probability of an event A is the relative frequency (limiting ratio of number of occurrences of event A to the total number of trials)

$$P(A) = \lim_{N \to \infty} \frac{N_A}{N}$$

E.g.
$$P(\{1\}) = 1/6$$
 $P(\{2,4,6\}) = 1/2$

P(A) - area of the oval

- Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that
- $0 \le P(A) \le 1$ all probabilities are between 0 and 1

Area of A can't be smaller than 0

Area of A can't be larger than 1

- Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that
- $0 \le P(A) \le 1$
- $P(\phi)=0$

all probabilities are between 0 and 1

probability of no outcome is 0

Area of A can't be smaller than 0

Area of A can't be larger than 1

- Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that
- $0 \le P(A) \le 1$
- $P(\phi) = 0$
- P(S)=1

all probabilities are between 0 and 1 probability of no outcome is 0

probability of some outcome is 1

Area of A can't be smaller than 0

Area of A can't be larger than 1

- Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that
- $0 \le P(A) \le 1$
- $P(\phi) = 0$
- P(S) = 1

- all probabilities are between 0 and 1
- probability of no outcome is 0
- probability of some outcome is 1
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

probability of union of two events

Area of A U B = Area of A + Area of B - Area of A \cap B

• Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that

$$0 \le P(A) \le 1$$

$$P(\phi) = 0$$

$$P(S) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

probability of union of two events

 Probability space is a sample space equipped with an assignment P(A) to every event A⊂S such that P satisfies the Kolmogorov axioms.

Theorems from the Axioms

- $0 \le P(A) \le 1$
- $P(\phi) = 0$
- P(S) = 1
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

$$P(\neg A) = 1 - P(A)$$

Proof: P(A U
$$\neg$$
A) = P(S) =1
P(A \cap \neg A) = P(ϕ) = 0
1 = P(A) + P(\neg A) - 0 => P(\neg A) = 1- P(A)

Theorems from the Axioms

- $0 \le P(A) \le 1$
- $P(\phi) = 0$
- P(S) = 1
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

$$P(A) = P(A \cap B) + P(A \cap \neg B)$$

Proof:
$$P(A) = P(A \cap S) = P(A \cap (B \cup \neg B)) = P((A \cap B) \cup (A \cap \neg B))$$

- $= P(A \cap B) + P(A \cap \neg B) P((A \cap B) \cap (A \cap \neg B))$
- $= P(A \cap B) + P(A \cap \neg B) P(\phi)$
- $= P(A \cap B) + P(A \cap \neg B)$

Why use probability?

- There have been many other approaches to handle uncertainty:
 - Fuzzy logic
 - Qualitative reasoning (Qualitative physics)
- "Probability theory is nothing but common sense reduced to calculation"
 - — Pierre Laplace, 1812.

Any scheme for combining uncertain information really should obey these axioms

Di Finetti 1931 - If you gamble based on "uncertain be for that satisfy these axioms, then you can't be exploited by a opponent

Random Variable

(The value of the r.v. will vary from trial to trial as the experiment is repeated)

- Discrete r.v.:
 - The outcome of a coin-toss H = 1, T = 0 (Binary)
 - The outcome of a dice-roll 1-6
- Continuous r.v.:
 - The location of an aircraft

$$P(X < 2) = P(\{\omega: X(\omega) < 2\})$$

- Univariate r.v.:
 - The outcome of a dice-roll 1-6
- Multi-variate r.v.:
 - The time-space position of an aircraft on radar screen

$$X = \begin{pmatrix} \mathsf{R} \\ \Theta \\ \mathsf{t} \end{pmatrix}$$

Discrete Probability Distribution

■ In the discrete case, a probability distribution P on S (and hence on the domain of X) is an assignment of a non-negative real number P(s) to each $s \in S$ (or each valid value of x) such that

$$0 \le P(X=x) \le 1$$
 X - random variable
 $\Sigma_x P(X=x) = 1$ x - value it takes

• E.g. Bernoulli distribution with parameter θ

$$P(x) = \begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases} \Rightarrow P(x) = \theta^{x} (1 - \theta)^{1 - x}$$

Discrete Probability Distribution

■ In the discrete case, a probability distribution P on S (and hence on the domain of X) is an assignment of a non-negative real number P(s) to each $s \in S$ (or each valid value of x) such that

$$0 \le P(X=x) \le 1$$
 X - random variable
 $\Sigma_x P(X=x) = 1$ x - value it takes

E.g. Multinomial distribution with parameters $\theta_1, ..., \theta_k$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_K \end{bmatrix}, \quad \text{where } \sum_{j} \mathbf{x}_{j} = \mathbf{n}$$

$$P(x) = \frac{n!}{x_1! x_2! \cdots x_K!} \theta_1^{x_1} \theta_2^{x_2} \cdots \theta_K^{x_K}$$

Children	" "AFIAMcaribBhdgets"	"Children	" Artikil can illi Kindpets"	ice
HLDREN	NECTICAL MILLION	CHILITREN	NECHOOL MILLION	CI
OMEN	KIRMUHEN-PREAX	WOMEN	FEMIDENTSTAX	331
CHIE	SHOWOOLS PROCKAM	PEOPLE	SIRCHCOLS PROGRAM	II
IILD	MESOCCATIONUD GET	CHILLI	MIRRIGHT CHUITCH	CI
HARS	MOVACHERSHILLION	VICARS	MOVACHERSHARON	Y1
(MILIES	PINCH KEITERAL	PAMILIES	PERGH FEDERAL	T24
OHK	MUSICIAL YEAR	WORK	MINSKSHIC YEAR	44
LEINTS	BESTACHER SPENDING	DAREN'IS	HM9NACHER SPENIIING	14
IYS	AGERORESTERNESS	SAYS	ACCEMENTATIVEM	5.4
MILY	FIMINIGAT STATE	TS MILLY	KINGUNIGATE STATE	173
TLEARE	YOURSIPHY PLAN	WELFARE	AUPRITHA SITA	W
F-N	DBHACKE MONEY	MEN	OPERAL MONEY	35
RCENT	THE WASHINGTON BEROOM A MIS	PERCENT	THEATERINFROGRAMS	TI
ARE	AGREEMNTARWERNMENT	CARF.	A PERCENTAGE FRANCE OF	C
PPC	LOBARTI CONCRESS	LATE	LOWITH CONGRESS	LI

History of the American Company of the Common No. Colombia. White growth 178 and thing the Colombia of the Col

Continuous Prob. Distribution

- A continuous random variable X can assume any value in an interval on the real line or in a region in a high dimensional space
 - X usually corresponds to a real-valued measurements of some property, e.g., length, position, ...
 - O It is not possible to talk about the probability of the random variable assuming a particular value --- P(X=x) = 0
 - Instead, we talk about the probability of the random variable assuming a value within a given interval, or half interval

$$P(X \in [x1,x2])$$

$$P(X < x) = P(X \in [-\infty,x])$$

Continuous Prob. Distribution

- The probability of the random variable assuming a value within some given interval from x_1 to x_2 is defined to be the <u>area under</u> the graph of the <u>probability density function</u> between x_1 and x_2 .
 - Probability mass: $P(X \in [x_1, x_2]) = \int_{x_1}^{x_2} p(x) dx$,

Cumulative/distribution function (CDF):

$$F(x) = P(X \le x) = \int_{-\infty}^{x} p(x') dx'$$

Probability density function (PDF):

Car flow on Liberty Bridge (cooked up!)

What is the intuitive meaning of p(x)

• If

$$p(x_1) = a$$
 and $p(x_2) = b$,

then when a value X is sampled from the distribution with density p(x), you are a/b times as likely to find that X is "very close to" x than that x_1 is "very close to" x_2 .

That is:

$$\lim_{h \to 0} \frac{P(x_1 - h < X < x_1 + h)}{P(x_2 - h < X < x_2 + h)} = \lim_{h \to 0} \frac{\int_{x_1 - h}^{x_1 + h} p(x) dx}{\int_{x_2 - h}^{x_2 + h} p(x) dx} \approx \frac{p(x_1) \times 2h}{p(x_2) \times 2h} = \frac{a}{b}$$

Continuous Distributions

Uniform Probability Density Function

$$p(x) = 1/(b-a)$$
 for $a \le x \le b$
= 0 elsewhere

Normal (Gaussian) Probability Density Function

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$$

- The distribution is symmetric, and is often illustrated as a bell-shaped curve.
- O Two parameters, μ (mean) and σ (standard deviation), determine the location and shape of the distribution.
- Exponential Probability Distribution

density:
$$p(x) = \frac{1}{\mu} e^{-x/\mu}$$
, CDF: $P(x \le x_0) = 1 - e^{-x_0/\mu}$

Statistical Characterizations

Expectation: the centre of mass, mean value, first moment

$$E(X) = \begin{cases} \sum_{x} xp(x) & \text{discrete} \\ \int_{-\infty}^{\infty} xp(x)dx & \text{continuous} \end{cases}$$

Variance: the spread

$$Var(X) = \begin{cases} \sum_{x} (x - E(X))^{2} p(x) & \text{discrete} \\ \int_{-\infty}^{\infty} (x - E(X))^{2} p(x) dx & \text{continuous} \end{cases}$$

$$Var(X) = E(5 - EX)^{2} = E(5^{2}) - (EX)^{2}$$

Gaussian (Normal) density in 1D

• If $X \sim N(\mu, \sigma^2)$, the probability density function (pdf) of X is defined as

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

 Here is how we plot the pdf in matlab xs=-3:0.01:3;

plot(xs,normpdf(xs,mu,sigma))

Zero mean

Large variance

Zero mean Small variance

 $E(X) = \mu$

Note that a density evaluated at a point can be bigger than 1!

Gaussian CDF累积分布函数

• If $Z \sim N(0, 1)$, the cumulative density function is defined as

$$\Phi(x) = \int_{-\infty}^{x} p(z) dz$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-z^{2}/2} dz$$

 This has no closed form expression, but is built in to most software packages (eg. normcdf in matlab stats toolbox).

Central limit theorem

- If $(X_1, X_2, ..., X_n)$ are i.i.d. (independent and identically distributed – to be covered next) random variables
- Then define

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

- As $n \rightarrow infinity$,
- $p(\overline{X}) \rightarrow$ Gaussian with mean $E[X_i]$ and variance $Var[X_i]/n$

Somewhat of a justification for assuming Gaussian distribution

Independence

• A and B are independent events if
$$P(A \cap B) = P(A) * P(B)$$

 Outcome of A has no effect on the outcome of B (and vice versa).

E.g. Roll of two die
$$P(\{1\},\{3\}) = 1/6*1/6 = 1/36$$

Independence

A, B and C are pairwise independent events if

$$P(A \cap B) = P(A) * P(B)$$

$$P(A \cap C) = P(A) * P(C)$$

$$P(B \cap C) = P(B) * P(C)$$

 A, B and C are mutually independent events if, in addition to pairwise independence,

$$P(A \cap B \cap C) = P(A) * P(B) * P(C)$$

Conditional Probability

 P(A|B) = Probability of event A conditioned on event B having occurred

If
$$P(B) > 0$$
, then $P(A|B) = \frac{P(A \cap B)}{P(B)}$

E.g. H = "having a headache"
F = "coming down with Flu"

- P(H)=1/10
- P(F)=1/40
- P(H|F)=1/2

Fraction of people with flu that have a headache

$$P(A \cap B) = P(A|B) P(B)$$

If A and B are independent, P(A|B) = P(A)

Conditional Independence

A and B are independent if

$$P(A \cap B) = P(A) * P(B) \equiv P(A|B) = P(A)$$

- Outcome of B has no effect on the outcome of A (and vice versa).
- A and B are conditionally independent given C if $P(A \cap B|C) = P(A|C) * P(B|C) = P(A|B,C) = P(A|C)$
- Outcome of B has no effect on the outcome of A (and vice versa) if C is true.

Prior and Posterior Distribution

Suppose that our propositions have a "causal flow"

e.g.,

- Prior or unconditional probabilities of propositions
 e.g., P(Flu) = 0.025 and P(DrinkBeer) = 0.2
 correspond to belief prior to arrival of any (new) evidence
- Posterior or conditional probabilities of propositions
 e.g., P(Headache|Flu) = 0.5 and P(Headache|Flu,DrinkBeer) = 0.7
 correspond to updated belief after arrival of new evidence
- Not always useful: P(Headache|Flu, Steelers win) = 0.5

Probabilistic Inference

- H = "having a headache"
- F = "coming down with Flu"
- OP(H)=1/10
- O P(F)=1/40
- O P(H|F)=1/2
- One day you wake up with a headache. You come with the following reasoning: "since 50% of flues are associated with headaches, so I must have a 50-50 chance of coming down with flu"

Is this reasoning correct?

Probabilistic Inference

- H = "having a headache"
- F = "coming down with Flu"
- OP(H)=1/10
- O P(F)=1/40
- O P(H|F)=1/2
- The Problem:

$$P(F|H) = ?$$

Probabilistic Inference

- H = "having a headache"
- F = "coming down with Flu"
- O P(H)=1/10
- O P(F)=1/40
- O P(H|F)=1/2

The Problem:

$$P(F|H) = \frac{P(F \cap H)}{P(H)}$$

$$= \frac{P(H|F)P(F)}{P(H)}$$

$$= 1/8 \neq P(H|F)$$

The Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Quiz

Which of the following statement is true?

$$P(F| \neg H) = 1 - P(F|H)$$

$$P(\neg F|H) = 1 - P(F|H)$$

$$P(F| \neg H) = P(\neg H|F) P(F) = (1 - P(H|F)) P(F)$$
 $P(\neg H) = (1 - P(H|F)) P(F)$
 $1 - P(H)$

More General Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Law of total probability 全概率

$$P(B) = P(B \cap A) + P(B' \cap \neg A)$$

= $P(B|A) P(A) + P(B| \neg A) P(\neg A)$

•
$$P(A \mid B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A)P(A)}$$

More General Forms of Bayes Rule

•
$$P(Y = y|X) = \frac{P(X|Y=y)P(Y=y)}{\sum_{y} P(X|Y = y)P(Y=y)}$$

$$P(Y | X \land Z) = \frac{P(X | Y \land Z)p(Y \land Z)}{P(X \land Z)} = \frac{P(X | Y \land Z)p(Y \land Z)}{P(X | \neg Y \land Z)p(\neg Y \land Z) + P(X | Y \land Z)p(\neg Y \land Z)}$$
 E.g. P(Flu | Headhead \ \text{DrankBeer}) \qquad \ \text{\left(\lambda \cdot \left(\lambda \cdot \cdot \left(\lambda \cdot \left(\lambda

Joint and Marginal Probabilities

- A joint probability distribution for a set of RVs (say X₁,X₂,X₃) gives the probability of every atomic event P(X₁,X₂,X₃)
 - P(Flu,DrinkBeer) = a 2 × 2 matrix of values:

	В	гB
F	0.005	0.02
¬F	0.195	0.78

- P(Flu,DrinkBeer, Headache) = ?
- Every question about a domain can be answered by the joint distribution, as we will see later.
- A marginal probability distribution is the probability of every value that a single RV can take P(X₁)
 P(Flu) = ?

Inference by enumeration

- Start with a Joint Distribution
- Building a Joint Distribution of M=3 variables
 - Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows)
 - For each combination of values, say how probable it is.
 - Normalized, i.e., sums to 1

F	В	Н	Prob
0	0	0	0.4
0	0	1	0.1
0	1	0	0.17
0	1	1	0.2
1	0	0	0.05
1	0	1	0.05
1	1	0	0.015
1	1	1	0.015

 Once you have the JD you can ask for the probability of any atomic event consistent with you query

$$P(E) = \sum_{i \in E} P(row_i)$$

E.g.
$$E = \{ (\neg F, \neg B, H), (\neg F, B, H) \}$$

F	РВ	Ϋ́Η	0.4	
F	РВ	I	0.1	
뚜	В	푸	0.17	
뚜	В	I	0.2	
F	В	Τ̈́	0.05	
F	В	Ι	0.05	
F	В	Τ̈́	0.015	
F	В	Н	0.015	

Compute Marginals

Recall: Law of Total Probability

F	В	Ϋ́Η	0.4	
¬F	В	I	0.1	
F	в	푸	0.17	
F	в	I	0.2	
F	В	Τ̈́	0.05	
F	B	Ι	0.05	
F	В	Ŧ	0.015	
F	В	Н	0.015	

Compute Marginals

P(Headache)

$$= P(H \land F) + P(H \land \neg F)$$

$$= P(H \land F \land B) + P(H \land F \land \neg B)$$

$$+ P(H \land \neg F \land B) + P(H \land \neg F \land \neg B)$$

٦F	¬B	¬Η	0.4	
Ļ	гВ	Η	0.1	
F	В	푸	0.17	
F	В	Ι	0.2	
F	¬В	Τ̈́	0.05	
F	¬В	Н	0.05	
F	В	Ļ	0.015	
F	В	Н	0.015	

Compute Conditionals

$$P(E_1|E_2) = \frac{P(E_1 \land E_2)}{P(E_2)}$$
$$= \frac{\sum_{i \in E_1 \cap E_2} P(row_i)}{\sum_{i \in E_2} P(row_i)}$$

٦F	¬В	Τ̈́Η	0.4	
F	гВ	Ι	0.1	
F	В	Ŧ	0.17	
뚜	В	I	0.2	
F	¬В	ΤH	0.05	
F	¬В	Н	0.05	
F	В	Τ̈́Η	0.015	
F	В	Н	0.015	

- Compute Conditionals
- $P(Flu|Headache) = \frac{P(Flu \land Headache)}{P(Headache)} = ?$

General idea: Compute
distribution on query
variable by fixing
evidence variables and
summing over hidden
variables

F	В	Τ̈́Η	0.4	
F	В	Η	0.1	
뚜	В	푸	0.17	
뚜	В	I	0.2	
F	В	Ŧ	0.05	
F	B	Ι	0.05	
F	В	구	0.015	
F	В	Η	0.015	

Where do probability 联合根外 distributions come from?

- Idea One: Human, Domain Experts
- Idea Two: Simpler probability facts and some algebra

¬F	¬В	¬Η	0.4	
	.D	411	0.4	
∍F	¬В	Н	0.1	
¬F	В	¬Η	0.17	
¬F	В	Н	0.2	
F	¬В	¬Η	0.05	
F	¬В	Н	0.05	
F	В	¬Η	0.015	
F	В	Н	0.015	

Use chain rule and independence assumptions to compute joint distribution

Where do probability distributions come from?

- Idea Three: Learn them from data!
 - OA good chunk of this course is essentially about various ways of learning various forms of them!

Density Estimation密度估价

 A Density Estimator learns a mapping from a set of attributes to a Probability

- Often know as parameter estimation if the distribution form is specified
 - Binomial, Gaussian...
- Some important issues:
 - Nature of the data (iid, correlated, ...)
 - Objective function (MLE, MAP, ...)
 - Algorithm (simple algebra, gradient methods, EM, ...)
 - Evaluation scheme (likelihood on test data, predictability, consistency,)

Parameter Learning from iid data

 Goal: estimate distribution parameters θ from a dataset of independent, identically distributed (iid), fully observed, training cases

$$D = \{x_1, \ldots, x_N\}$$

最大似然估计

- Maximum likelihood estimation (MLE)
 - 1. One of the most common estimators
 - 2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$L(\theta) = P(D; \theta) = P(x_1 x_2, , x_N; \theta)$$

$$= P(X_1; \theta) P(X_2; \theta) ... P(X_N; \theta)$$

$$= \prod_{i}^{N} P(X_i; \theta)$$

3. pick the setting of parameters most likely to have generated the data we saw:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \boldsymbol{L}(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \boldsymbol{log}(\boldsymbol{L}(\boldsymbol{\theta}))$$

MLE:模型已定,参数未知(是个固定值)

Example 1: Bernoulli model

- Data: / 目的为找出参数,使观测数据出现的可能
- · Model: 结果准确性依赖于潜在数据分布

$$P(x) = \begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases} \Rightarrow P(x) = \theta^{x} (1 - \theta)^{1 - x}$$

• How to write the likelihood of a single observation x_i?

$$P(x_i) = \theta^{x_i} (\mathbf{1} - \theta)^{\mathbf{1} - x_i}$$

The likelihood of dataset D = {x₁, ..., x_N}: $T = \{x_1, \dots, x_n\}$: $L(\theta) = P(x_1, x_2, \dots, x_N; \theta) = \prod_{i=1}^{N} P(x_i; \theta) = \prod_{i=1}^{N} \left(\theta^{x_i} (1-\theta)^{1-x_i}\right) \quad L(\theta) = \theta^{\text{thead}} (1-\theta)^{\text{trails}}$ $= \theta^{\text{thead}} (1-\theta)^{\text{trails}}$

MLE

$$\ln L(\theta) = \ln \theta^{\sum \delta i} + \ln (1-\theta)^{n-\sum \delta i}$$

$$= \sum \delta i \ln \theta + (n-\sum \delta i) \ln (1-\theta)$$

$$\frac{\partial \ln L(\theta)}{\partial \theta} = \frac{\sum \delta i}{\theta} - \frac{n-\sum \delta i}{1-\theta} = 0$$

$$Q = \frac{\sum \delta i}{\eta}$$

Objective function:

$$\ell(\theta) = logL(\theta) = log \theta^{n_h} (1 - \theta)^{n_t} = n_h log \theta + (N - n_h) log(1 - \theta)$$

- We need to maximize this w.r.t. θ
- Take derivatives w.r.t θ

$$\frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0 \qquad \qquad \widehat{\theta}_{MLE} = \frac{n_h}{N} \qquad \text{or} \quad \widehat{\theta}_{MLE} = \frac{1}{N} \sum_i x_i$$

$$N_h - Q + h = Q + Q + h$$
Frequency as

$$\widehat{\theta}_{\text{MLE}} = \frac{n_h}{N}$$

Frequency as sample mean

Sufficient statistics

The counts, n_h , where $n_h = \sum_i x_i$, are sufficient statistics of data D

Example 2: univariate normal

- Data:
 - We observed Niid real samples:
 D={-0.1, 10, 1, -5.2, ..., 3}

- Model: $P(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$ $\theta = (\mu, \sigma^2)$
- · Log likelihood:

$$\ell(\theta) = \log L(\theta) = \prod_{i=1}^{N} P(x_i) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^2}$$

MLE: take derivative and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_{n} (\mathbf{x}_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n} (\mathbf{x}_n - \mu)^2$$

$$\mathbf{\mu}_{MLE} = \frac{1}{N} \sum_{n} \mathbf{x}_n$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (\mathbf{x}_n - \mu_{ML})^2$$

Overfitting

Recall that for Bernoulli Distribution, we have

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}}$$

What if we tossed too few times so that we saw zero head? We have $\hat{\theta}_{ML}^{head} = 0$, and we will predict that the probability of seeing a head next is zero!!!

- The rescue "smoothing":
 - Where n' is know as the pseudo- (imaginary) count

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head} + n'}{n^{head} + n^{tail} + n'}$$

But can we make this more formal?

Bayesian Learning

即P(D;0)

The Bayesian Rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

一一步数别级极别,有些我一个一步数别假设,以先验机率的对抗

Or equivalently,

$$P(\theta \mid \mathcal{D}) \stackrel{|\Gamma|}{\sim} P(\mathcal{D} \mid \theta) P(\theta)$$
posterior likelihood prio

最大后验概率

(Belief about coin toss probability)

- MAP estimate: $\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$
- If prior is uniform, MLE = MAP

Bayesian estimation for Bernoulli

Beta(α,β) distribution:

$$P(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = B(\alpha, \beta) \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

• Posterior distribution of θ :

$$\begin{split} P(\theta \,|\, D) = \frac{p(x_1, ..., x_N \,|\, \theta) p(\theta)}{p(x_1, ..., x_N)} \propto \theta^{n_h} \, (1 - \theta)^{n_t} \times \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \theta^{n_h + \alpha - 1} (1 - \theta)^{n_t + \beta - 1} \\ \text{Beta}(\alpha + n_h, \beta + n_t) \end{split}$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior
- α and β are hyperparameters (parameters of the prior) and correspond to the number of "virtual" heads/tails (pseudo counts)

MAP

$$P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta)p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (\mathbf{1} - \theta)^{n_t} \times \theta^{\alpha-1} (\mathbf{1} - \theta)^{\beta-1} = \theta^{n_h + \alpha - 1} (\mathbf{1} - \theta)^{n_t + \beta - 1}$$

Maximum a posteriori (MAP) estimation:

$$\hat{\theta}_{MAP} = \arg \max_{\theta} \log P(\theta \mid x_1, ..., x_N)$$

Posterior mean estimation:

$$\hat{\theta}_{MAP} = \frac{n_h + \alpha}{N + \alpha + \beta}$$
 Beta parameters can be understood as pseudo-counts

With enough data, prior is forgotten

Dirichlet distribution

- number of heads in N flips of a two-sided coin
 - follows a binomial distribution
 - Beta is a good prior (conjugate prior for binomial)
- what it's not two-sided, but k-sided?
 - follows a multinomial distribution
 - Dirichlet distribution is the conjugate prior

$$P(heta_1, heta_2, ... heta_K) = rac{1}{B(lpha)} \prod_i^K heta_i^{(lpha_1 - 1)}$$

Estimating the parameters of a distribution

 Maximum Likelihood estimation (MLE) Choose value that maximizes the probability of observed data

$$\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} P(D \mid \theta)$$

 Maximum a posteriori (MAP) estimation Choose value that is most probable given observed data and prior belief

$$\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D) = \arg \max_{\theta} P(D \mid \theta) P(\theta)$$

先验概率

MLE vs MAP (Frequentist vs Bayesian)

- Frequentist/MLE approach:
 - → θ is unknown constant, estimate from data
- Bayesian/MAP approach: 中華
 - ○θ is a random variable, assume a probability distribution 支量
- Drawbacks
 - MLE: Overfits if dataset is too small
 - MAP: Two people with different priors will end up with different estimates

Bayesian estimation for normal distribution

Normal Prior:

$$P(\mu) = (2\pi\tau^2)^{-1/2} \exp\{-(\mu - \mu_0)^2 / 2\tau^2\}$$

· Joint probability:

$$P(\mathbf{x}, \mu) = \left(2\pi\sigma^{2}\right)^{-N/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (\mathbf{x}_{n} - \mu)^{2}\right\}$$
$$\times \left(2\pi\tau^{2}\right)^{-1/2} \exp\left\{-\left(\mu - \mu_{0}\right)^{2} / 2\tau^{2}\right\}$$

Posterior:

$$P(\mu \mid \mathbf{X}) = \left(2\pi\widetilde{\sigma}^2\right)^{-1/2} \exp\left\{-\left(\mu - \widetilde{\mu}\right)^2 / 2\widetilde{\sigma}^2\right\}$$
where $\widetilde{\mu} = \frac{N/\sigma^2}{N/\sigma^2 + 1/\tau^2} \overline{\mathbf{X}} + \frac{1/\tau^2}{N/\sigma^2 + 1/\tau^2} \mu_0$, and $\widetilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}$
Sample mean

Probability Review

What you should know:

- Probability basics
 - random variables, events, sample space, conditional probs, ...
 - independence of random variables
 - Bayes rule
 - Joint probability distributions
 - calculating probabilities from the joint distribution
- Point estimation
 - maximum likelihood estimates
 - maximum a posteriori estimates
 - distributions binomial, Beta, Dirichlet, ...