. 4

DELPHION

No active trail

Salect CR

RESEARCH

PRODUCTS

INSIDE DELPHION

Legous Ward Files Served Servetes My Account

Search: Quick/Number Boolean Advanced Derwent

Help

<u>High</u>

Resolution

The Delphion Integrated View: INPADOC Record

Tools: Add to Work File: Create new Work File Buy Now: PDF | More choices... Add T View: Jump to: Top

JP02971447B2:

JP Japan ♥Country:

> B2 Published registered Patent Specification ! (See also: ହ Kind:

JP11350380A2)

see Assignee

ହAssignee: None

Published / **1999-11-08** / 1998-06-02

Filed:

PApplication JP1998000152814

Number:

@IPC Code: **D21H 17/14**; D21H 21/24;

None **@ECLA Code:**

8 Priority

1998-06-02 JP1998000152814

Number:

@INPADOC

None Buy Now: Family Legal Status Report

Legal Status:

PDesignated

CA EP JP US DE ES FR GB

Country:

Family:

Buy PDF	Publication	Pub. Date	Filed	Title
*	WO9963156A1	1999-12-09	1999-06-02	PAPER BULKING AGENTS
	US6599392B1	2003-07-29		
法	<u>US6599392</u>	2003-07-29	2000-02-02	Paper bulking promoter
Ø	JP11350380A2	1999-12-21	1998-06-02	BULKING AGENT FOR PAPER
Ø	JP02971447B2	1999-11-08	1998-06-02	
	ES2229018T3	2005-04-16	1999-06-02	USO DE UN COMPUESTO ESTER CONTENIENDO GRUPOS OXIALQUILENO COMO PROMOTOR DE VOLUMEN PARA PAPEL Y METODO PARA PRODUCCION DE UN PAPEL ABULTADO.
	ES2207222T3	2004-05-16	1999-06-02	USO DE UN COMPUESTO TIPO ESTER COMO PROMOTOR ESTABILIZADOR DE PAPEL Y

(19) 日本国特許庁 (JP)

(12) 特許公 報(B1)

(11)特許番号

第2971447号

(45)発行日 平成11年(1999)11月8日

(24)登録日 平成11年(1999) 8月27日

(51) Int.Cl.6

識別記号

FΙ

D21H 17/14 21/24 D21H 17/14

21/24

請求項の数4(全 7 頁)

(21)出願番号 特願平10-152814 (73)特許権者 000000918 花王株式会社 (22)出願日 平成10年(1998) 6月2日 東京都中央区日本橋茅場町1丁目14番10 号 審査請求日 平成10年(1998)10月14日 (72)発明者 田所 敬章 和歌山県和歌山市湊1334 花王株式会社 研究所内 (72) 発明者 池田 康司 和歌山県和歌山市湊1334 花王株式会社 研究所内 (72)発明者 池永 尚之 和歌山県和歌山市湊1334 花王株式会社 研究所内 (74)代理人 弁理士 古谷 馨 (外3名)

最終頁に続く

(54)【発明の名称】 紙用當高剤

(57) 【特許請求の範囲】

【請求項1】 多価アルコールと脂肪酸のエステル化合 物及び多価アルコールと脂肪酸のエステル化合物であっ て当該エステル化合物1モル当たり平均で0モル超12モ ル未満の炭素数2~4のオキシアルキレン基を有するエ ステル化合物から選ばれる、1モルの多価アルコール当 たりアルコール中のOHが10~95当量%エステル置換さ れ、HLB が 1~14、融点が100 ℃以下のエステル化合物 からなる紙用嵩高剤。

いてもよい総炭素数2~24の2~14価のアルコールであ る請求項1記載の紙用嵩高剤。

【請求項3】 脂肪酸が炭素数1~24の脂肪酸である請 求項1又は2記載の紙用嵩高剤。

【請求項4】 エステル化合物が、オキシアルキレン基

を含まない請求項1~3の何れか1項記載の紙用嵩高

渕野 留香

【発明の詳細な説明】

[0001]

審査官

【発明の属する技術分野】本発明は、パルプ原料を抄紙 して得られたシートの嵩高を向上させ、且つサイズ剤の 効果を低減させない紙用嵩高剤に関する。

[0002]

【従来の技術】近年高品質、例えば印刷適性やボリュー 【請求項2】 多価アルコールが、エーテル基を含んで 10 ム感に優れた紙が求められるようになっている。この印 刷適性やボリューム感は紙の嵩高さと密接に関係があり 従来より種々の嵩高向上方法が試みられてきた。例えば 架橋パルプを用いたり(特開平4-185792号など)、合 成繊維との混抄による方法(特開平3-269199号な

ど)、パルプ繊維間に無機物等の充填物を満たしたり

10

30

(特開平3-124895号など)、空隙をもたらすなどの方 法(特開平5-230798号など)があるが、パルプのリサ イクルが不可能であったり、紙の平滑度が損なわれたり する。特定のアルコール及び/又はそのポリオキシアル キレン付加物を含有する紙用嵩高剤(W098/03730号)も - 開示されているが、通常併用されるサイズ剤の効果が十 分に発揮できない場合がある。更に、脂肪酸ポリアミド ポリアミン型の嵩高剤が市販されているが、その性能は

3

十分でない。 [0003]

【発明が解決しようとする課題】本発明の課題は、添加 量が少なくても十分な嵩高効果が得られ、更に製紙工程 で添加されるサイズ剤の性能をも低下させない紙用嵩高 剤の提供である。

[0004]

【課題を解決するための手段】本発明は、多価アルコー ルと脂肪酸のエステル化合物及び多価アルコールと脂肪 酸のエステル化合物であって当該エステル化合物1モル 当たり平均で0モル超12モル未満の炭素数2~4のオキ シアルキレン(以下OAと表記する)基を有するエステル 化合物から選ばれるHLB が 1~14、融点が100 ℃以下の エステル化合物からなる紙用嵩高剤を提供する。

[0005]

【発明の実施の形態】本発明の紙用嵩高剤となるエステ ル化合物は、

①多価アルコールと脂肪酸のエステル化合物 (OA基を含 まないエステル化合物)であって、HLB が1~14、融点 が100 ℃以下のもの

②多価アルコールと脂肪酸のエステル化合物であって、 当該エステル化合物1モル当たり平均で0モル超12モル 未満の炭素数2~4の0A基を有し、HLB が1~14、融点 が100 ℃以下のもの

である。これらは両者を併用してもよく、更にそれぞれ は2種以上を使用してもよい。

【0006】本発明のエステル化合物を構成する多価ア ルコールは、エーテル基を含んでいてもよい総炭素数2 ~24の2~14価アルコールが好ましい。2価アルコール としては、エーテル基を含んでいてもよい総炭素数2~ 10のもの、例えばプロピレングリコール、ジプロピレン グリコール、ブチレングリコール、ジブチレングリコー ル、エチレングリコール、ジエチレングリコール、ポリ エチレングリコールが、3価以上のアルコールとして は、エーテルを有していてもよい総炭素数3~24のアル コールで、1分子中の総水酸基数/総炭素数=0.4~1 であるもの、例えばグリセリン、ポリ $(n=2\sim5)$ グ リセリン、ペンタエリスリトール、ジペンタエリスリト ール、アラビトール、ソルビトール、スタキオース、エ リトリット、アラビット、マンニット、グルコース、シ ョ糖などが挙げられる。好ましくはエチレングリコー ル、ジエチレングリコール、プロピレングリコール、エ 50 ・ーテル基を有していてもよい総炭素数3~12のアルコー ルで、1分子中の水酸基数/総炭素数=0.5~1である 3 価以上のアルコールである。 更に好ましくはグリセリ ン、ポリ(n=2~4) グリセリン、ペンタエリスリト ールである。

【0007】また、本発明のエステル化合物を構成する 脂肪酸は、炭素数1~24、好ましくは炭素数10~22の脂 肪酸が挙げられ、飽和、不飽和、直鎖、分岐鎖の何れで もよく、特に直鎖飽和脂肪酸が好ましい。更に好ましく は、ラウリン酸、ステアリン酸、パルミチン酸、オレイ ン酸、ミリスチン酸、ペヘン酸である。

【0008】本発明のエステル化合物は、従来公知のエ ステル化反応及びアルキレンオキサイド付加反応を行う ことで得ることができる。例えば、脂肪酸と多価アルコ ールの混合物に要すればエステル化触媒を添加し、150 ~250 ℃で反応させることによりエステル化合物が得ら れ、更にアルカリ触媒等の存在下にアルキレンオキサイ ドを付加することにより、アルキレンオキサイド付加物 が得られる。また、脂肪酸あるいは多価アルコールにア ルキレンオキサイドを付加後、エステル化してもよい。 更に脂肪酸にアルキレンオキサイド付加のみを行って得 られる場合もある。

【0009】本発明のエステル化合物のエステル平均置 換度は0より大きく、好ましくは1モルの多価アルコー ル当たり、アルコール中のOHが10~95当量%置換された ものであり、特には1モルの多価アルコール当たり1~ 2 モルの脂肪酸基を有するものである。

【0010】本発明の紙用嵩高剤として、炭素数2~4 のOA基を含むエステル化合物を用いる場合、その数は、 エステル化合物1モル当たり平均で0モル超12モル未満 であり、6モル以下、具体的には0.1~6モルが好まし い。なお、エチレングリコール等のようにOA基となり得 る多価アルコールを使用した場合においては、それらも OA基の数に算入する。OA基は、炭素数2~4のアルキレ ンオキサイドを付加することで形成される。アルキレン オキサイドはエチレンオキサイド (EO) 、プロピレンオ キサイド (PO) が好ましい。これらはEO、POあるいはEO とPOの混合の何れでもよい。本発明では、OA基を含まな いエステル化合物を紙用嵩高剤として用いることが特に 40 好ましい。

【0011】本発明のエステル化合物は、HLB が1~1 4、好ましくは1.5~10、更に好ましくは2.5~6の範 囲内にある。HLB は界面活性剤の親水性の尺度であり、 値が大きいほど親水性が高くなる。本発明では、グリフ ィンの方法に準じて各化合物のHLB を下記の式で算出す

[0012]

【数1】

親水基部分の分子量 エステル化合物の分子量

*テル化合物中の下記の基をいう。 (1) - (CH₂CH₂O) _m -[0014]

【0013】ただし、本発明における親水基とは、エス* 【化1】

> $(2) - (R0)_n -$ (R:炭素数3~4のアルキレン基、

> > n < 2.0 (但しn は1分子中の合計))

例えば、RCOO-(PO)1.5B の下線部分は親水基である。

しかし、RCOO-(PO)2.0H の下線部分は疎水基である。

B₂C-O-CR B-C-0-(E0)₂(P0)₁H また、 の場合も、POは1分子中に H2C-0-(E0)2(P0)1H

20

合計2モルあるので、何れのPO基も疎水基である。

【0015】(3)エーテル基を有していてもよい総炭 素数3~24の3価以上のアルコールであって、1分子 中の総水酸基数/総炭素数=0.4~1であるものに由来 する基。

(4) カルボニル基に隣接する酸素原子。

【0016】また、本発明のエステル化合物は、取り扱 い性、サイズ性能保持の点より、融点が100 ℃以下であ り、好ましくは-15℃以上80℃以下、更に好ましくは20 ℃以上70℃以下である。融点は、予め冷却して固体とし たエステル化合物を示差走査熱量測定装置(DSC) にて測 定(昇温速度2℃/分)した際の、ピークの立ち上がり の温度とする。

【0017】本発明のエステル化合物としては、HLBが 2~8で融点が10~70℃のものが好ましく、より好まし くはHLB が2~7で融点が45~70℃のものである。この 範囲のものは、嵩高効果とサイズ効果(サイズ剤の効果 の維持)により好ましい結果が得られる。

【0018】本発明の紙用嵩高剤は、抄紙工程の何れか において添加されるものであり、液体品はそのままで添 加してもよいが、固体品は粉砕後あるいは加熱溶融して 又は水等で希釈して添加してもよい。また、要すればノ ニオン系、アニオン系、カチオン系、ポリマー系、好ま しくはノニオン系の界面活性剤を乳化剤もしくは分散剤 として使用してもかまわない。その際の本発明の紙用嵩 高剤と界面活性剤との比率は、〔本発明の紙用嵩高剤〕 /界面活性剤=99.5/0.5 ~70/30 (重量比)、好まし くは98/2~80/20である。

【0019】本発明の嵩高剤を適用できるパルプ原料と しては、TMP (サーモメカニカルパルプ) 等の機械パ ルプ、LBKP(広葉樹晒パルプ)等の化学パルプなど のヴァージンパルプから、各種古紙パルプに至るものま で広くパルプー般に適用できるものである。また、本発

明の嵩高剤の添加場所としては、パルプ原料の希薄液が 金網上を進む間に濾水されて紙層を形成するまでの抄紙 工程であれば特に限定するものではないが、例えば工場 ではレファイナー、マシンチェスト、ヘッドボックスで 添加するなど均一にパルプ原料にブレンドできる場所が 望ましい。なお、本発明の嵩高剤はパルプ原料に添加 後、そのまま抄紙され紙上に残存する。本発明の紙用嵩 高剤の添加量は、パルプ原料に対して0.01~10重量%、 好ましくは0.1~5重量%であるが、系によっては0.1 ~1 重量%の少量添加でも優れた嵩高効果が得られる。 【0020】本発明の紙用嵩高剤を用いて得られたパル 30 プシートは、無添加品に比べて緊度(測定方法は、後述 の実施例記載の方法による)が5%以上、好ましくは7 %以上低いことがより好ましい。

【0021】なお、抄紙時にはロジン、アルキルケテン ダイマー、ゼラチン、デンプン、ラテックス等のサイズ 剤の他、填料、歩留り向上剤、遮水性向上剤、紙力向上 剤等が添加されてもよい。サイズ剤は紙の表面や内部の 空隙を耐水性物質でふさぎ、水やインキの浸透を抑える ものであり、パルプスラリーに添加したり(内面サイジ ング)、抄紙した紙に塗布する(表面サイジング)こと により、処理される。サイズ剤は、紙の種類などにもよ るが、通常はパルプ原料に対して0.01~1.0 重量%添加 される。本発明の紙用嵩高剤は、サイズ性能を保持する 効果にも優れるため、サイズ剤を併用して高嵩高性パル プシートを得る製造方法に好適である。

[0022]

【実施例】実施例1~24及び比較例1~10 〔パルプ原料〕パルプ原料としては下記に示される古紙 パルプ及びヴァージンパルプを用いた。

< 古紙パルプ> 古紙パルプは市中回収された原料古紙 (新聞紙/チラシ=70/30%) に温水及び水酸化ナトリ 7

ウム(対原料) 1%(重量基準、以下同じ)、珪酸ソーダ(対原料) 3%、30%過酸化水素水(対原料) 3%、脱墨剤として、牛脂/グリセリン(1:1) E070モルP0 10モルブロック付加物(平均付加モル数) 0.3%(対原料)を加え、離解後フロテーション処理、水洗、濃度調・整を行い得た1%の脱墨パルプスラリーを用いた。このもののフリーネスは 220mlであった。

<ヴァージンパルプ>ヴァージンパルプはLBKP(広 薬樹晒パルプ)を、室温下叩解機にて離解、叩解して1 %のLBKPスラリーとしたものを用いた。このものの 10 フリーネスは420ml であった。

【0023】〔抄紙方法〕1%のパルプスラリーを抄紙後のシートの秤量が $60\,g/m^2$ になるように、上記パルプを量り取ってからpHを硫酸パンドで 4.5に調整した。それから表1、2に示す種々の嵩高剤を対パルプ0.8%、サイズ剤としてロジンサイズを対パルプ0.5%添加し、攪拌後、角型タッピ抄紙機にて80メッシュワイヤーで抄紙しシートを得た。抄紙後のシートは、 $3.5\,kg/cm^2$ で2分間プレス機にてプレスし、鏡面ドライヤーを用い $105\,C$ で1分間乾燥した。乾燥されたシートを $20\,C$ 、湿度65%の条件で1日間調湿してから紙の嵩高性、サイ

ズ度を下記方法で測定した。測定値は10回の平均値である。結果を表3に示す。

【0024】〈評価項目・方法〉

・嵩高性 (緊度)

調湿されたシートの秤量(g/m^2)と厚み(mm)を測定し、下記計算式により緊度(g/cm^3)を求めた。 計算式: 嵩高性(緊度)=(秤量)/(厚み) \times 0.001 緊度は絶対値が小さいほど嵩が高く、また緊度の0.02の 差は有意差として十分に認識されるものである。

0 ・サイズ性

JIS P 8122-54 の紙のステキヒトサイズ度試験方法で行った。すなわち、シャーレに入れた 20 ± 1 $\mathbb C$ の 2% ロダンアンモニウム溶液上に抄紙された紙の試験片($2\,\mathrm{cm}\times 2\,\mathrm{cm}$)を浮かべると同時に,同じ温度の 1% の塩化第二鉄の溶液をピペットで 1 滴試験片上に滴下してから試験片上に 3 個の赤色の斑点が現れるまでの秒数を計り、それをもってサイズ度とする。サイズ度はブランク(比較例 1)の80%以上の値を保持することが操業上好ましい。

20 【0025】 【表1】

		紙 用 嵩 高 剤				
		エステル化合物	AO種類及び 付加モル数	AO 付加 形態	HLB	融点 (°C)
	1	エチレングリコールモノラウレート	_	_	5.0	-2
	2	ステアリン酸モノグリセライド	_		5.1	66
	3	ペンタエリスリトールモノステアレート		1	6.7	52
	4	プロピレングリコールセスキパルミテート	_	1	3.7	41
	5	ソルビタンモノミリステート	_		8.7	30
実	6	アラビトールジオレエート		1	4.4	25
	7	ソルビトールトリラウレート	_	_	4.9	11
	8	サッカロースモノオレエート	_	_	11.3	59
	9	エチレングリコールモノベヘネート		_	3.2	64
	10	ジグリセリンモノミリステート	_	-	8.8	52
施	11	ジペンタエリスリトールジパルミテート	-	-	6.9	49
	12	トリグリセリンセスキオレエート	<u> </u>	-	7.8	12
	13	テトラグリセリンモノステアレート	_	_	10.8	61
	14	スタキオースモノオレエート	_	_	14.3	37
	15	エチレングリコールモノオレエート	EO1モル	_	5.7	-3
例	16	ラウリン酸モノグリセライド	P00.4モル	_	7.7	45
	17	ペンタエリスリトールモノミリステート	EO2モル PO2モル	ブロック	8.1	18
	18	プロピレングリコールモノパルミテート	E01.5モル P04モル	ランタ・ム	4.6	13
	19	ソルビタンモノラウレート	E06モル	_	14.0	-4
	20	キシリトールモノステアレート	P02モル	_	5.7	41
	21	マンニトールセスキオレエート	E06モル P04モル	プロック	8.4	5
	22	ソルビタンモノステアレート	E011.5モル	_	14.3	19
	23	ジエチレングリコールモノデシレート	E02モル P05モル	ランダム		-1
	24	実施例3の乳化物		_	. –	

AO付加モル数は、エステル化合物1モルに対する平均付加モル数である。 ブロック付加の場合は、EO、POの順に付加を行う。

【0026】(注) 実施例24の組成は、実施例3/ポリオキシエチレン(E0平均付加モル数10) ソルピタンモノラウレート=95/5(重量比)の10%乳化物である。

[0027]

【表2】

		紙 用 嵩 高	利			
		エステル化合物	AO種類及び 付加モル数	AO 付加 形態	HLB	融点 (°C)
	1	ブランク(嵩髙向上剤無し)		_	1	_
	2	ラウリルアルコール	E03モル P01モル	ブロック	11.0	5
	З	C _{12~13} のオキソアルコール	EO1.5モル	-	6.4	-2
比	4	デシルアルコール/ソルピタントリオレエートEO30モル付加物=80/20(重量比)混合物	_	-	4.3	2
較	5	ソルビトールテトラオレエート	E030モル	_	11.7	-10
	6	ソルビタンモノパルミテート	E020モル	_	16.3	-14
例	7	硬化ヒマシ油	_	-	1.9	84
	8	市販品嵩高剤「バイボリュームPリキッド」 (脂肪酸ポリアミドポリアミン型、バイエル社製)	-	-	-	
	9	ソルビタンモノオレエート	E012モル	_	14.5	-5
	10	フタル酸ジステアリル		_	1.0	45

AO付加モル数は、単量体エステル1モルに対する平均付加モル数である。 ブロック付加の場合は、EO、POの順に付加を行う。

【0028】 【表3】 13

11 3 3 5

		古紙/	ヾルプ	LBKP		
		緊度 (g/cm³)	サイズ度 (秒)	聚度 (g/cm ³)	サイズ度 (秒)	
	1	0.339	58	0.382	66	
	2	0.315	73	0.361	82	
	3	0.313	72	0.360	82	
	4	0.327	67	0.372	76	
	5	0.330	64	0.376	72	
	6	0.331	63	0.377	71	
寒	7	0.335	61	0.377	67	
	8	0.326	70	0.369	78	
	9	0.318	72	0.362	82	
	10	0.320	71	0.364	81	
	11	0.324	69	0.367	78	
施	12	0.338	62	0.378	67	
	13	0.317	72	0.363	81	
	14	0.332	65	0.379	73	
	15	0.340	57	0.384	66	
	16	0.322	69	0.366	78	
例	17	0.338	62	0.380	70	
	18	0.337	62	0.379	69	
	19	0.344	56	0.388	65	
	20	0.328	68	0.373	76	
	21	0.339	59	0.383	68	
	22	0.342	57	0.387	66	
	23	0.341	57	0.385	67	
	24	0.313	71	0.360	82	
	1	0.376	70	0.413	80	
	2	0.362	0	0.404	0	
比	3	0.362	9	0.405	10	
	4	0.365	0	0.406	0	
较	5	0.367	0	0.407	0	
	6	0.383	0	0.404	0	
例	7	0.374	16	0.412	17	
	8	0.372	0	0.411	0	
	9	0.360	8	0.403	10	
	10	0.373	15	0.412	17	

[0029]

【発明の効果】本発明の紙用嵩高剤によれば、少量の添加でも優れた嵩高効果が得られ、且つサイズ剤の効果を損なうことなく嵩高なシートを得ることができる。

14

【要約】

【課題】 サイズ剤の効果を損なうことなく嵩高なシートを得る。

【解決手段】 多価アルコールと脂肪酸のエステル化合物及び多価アルコールと脂肪酸のエステル化合物であっ10 て当該エステル化合物1モル当たり平均で0モル超12モル未満の炭素数2~4のオキシアルキレン基を有するエステル化合物のから選ばれるHLBが1~14、融点が100℃以下のエステル化合物を、紙用嵩高剤として用いる。

20

30

フロントページの続き

(72) 発明者 森 厚人

和歌山県和歌山市湊1334 花王株式会社

研究所内

(72) 発明者 石橋 洋一

和歌山県和歌山市湊1334 花王株式会社

研究所内

(72) 発明者 石井 保夫

和歇山県和歌山市湊1334 花王株式会社

研究所内

(56) 参考文献 特開 昭57-101096 (JP, A)

CASEY編、大江礼三郎訳、「紙及

びパルプ 第2巻」、中外産業有限会社 発行、昭和59年2月、100頁左蘭1-8

行

(58) 調査した分野 (Int. Cl. 6, DB名)

D21H 17/14

D21H 21/22 - 21/24