

MovieLens Project Recommendation System Dean Shabi Dedi Kovach July 2019

MovieLens

- Movielens web service by GroupLens
- A research lab at the University of Minnesota
- Since 1997, Publishes Movielens recommender-system datasets

top picks

based on your ratings, MovieLens recommends these movies

recent releases see more

movies released in last 90 days that you haven't rated

Datasets

- 100K Dataset, 1998 (original task)
 - (9K M, 600 U)
- 100K Dataset, 2018
- 1M, 10M Dataset, 2018
- 20M Dataset, 2016
 - The benchmark for movie recommendations
 - 27K Movies
 - 138K Users
 - 465K Tags
 - 25K links to YouTube trailers

"IRRESISTIBLE. AN EXUBERANT CHRONICLE OF CRIME!"

-A.O. Scott, THE NEW YORK TIMES

15 miles from paradise...
one man will do anything to tell the world everything.

Directed by Fernando Meiretter

CITY OF GOD

WARREN NOTE SALES IN ORALL RANKAU HOURS OF FAME OF FAME WHO IS THOUGHT AND A MARKET NOTE OF FOUR WARREN NOTE FAME AND A MARKET NOTE OF FAME OF THE SALES AND A MARKET NOTE OF FAME AND A MARKET NOTE OF THE SALES AND A M

Target

Predict best movie for user based on user ratings

"You're no messiah. You're a movie of the week. You're a fucking t-shirt, at best." David Mills

Objectives

Best Scores

Course Knowledge **Production**

"There was an idea to bring together a group of remarkable people, to see if we could become something more". Nick Fury

EDA

Distribution of Ratings

Worst rated:

Bratz: The Movie (2007) – 1.10, N=180 Glitter (2001) – 1.12, N=685

Best rated:

The Shashank Redemption (94) – 4.44, N=63K The Godfather (72) – 4.36, N=41K

Schen Samufai

Allahy Akita Kurosawa

19

Distribution of Ratings per Movie

Most rated:

Pulp Fiction (94): N= 67K Forrest Gump (94): N=66K

The Shashank Redemption (94): N=63K

EDA

Distribution of Ratings per User

ROBERT DE NIRO

RAY LIOTTA

JOE PESCI

"As far back as I can remember, I've always wanted to be a gangster." -Henry Hill, Brooklyn, N.Y. 1955.

Methods & Libraries We used the following algorithms

- Correlations analysis
- Content based filtering
- Sklearn (CF)
- Surprise library (CF)
- FastAI (Embeddings)
- Keras NN, Embeddings
- Matrix Factorization CF (Andrew Ng)
- Singular Value Decomposition (SVD)
- Funk SVD

Fantasy Films presents

Fantasy Films presents

Suring OUISE FLETCHER and WILLIAM REDFIELD Screenplay LAWRENCE HAUBEN and BO GOLD

Bas I on the novel by KEN KESEY Director of Photography HASKELL WEXLER Music-JACK NITZSCH

Produced by SAULZAENTZ and MICHAEL DOUGLAS Directed by MILOS FORMAN

AND AVAILABLE IN SIGNET PAREDRACK AND UNION COMMISSE TRADE PAREDRACK

Collaborative Filtering

- Collaborative Filtering (CF) is a mean of recommendation based on users' past behavior.
- Core assumption here is that the users who have agreed in the past tend to also agree in the future
- User-based: measure the similarity between target users and other users.
- Item-based: measure the similarity between the items that target users rates/ interacts with and other items

Matrix factorization:

CF weaknesses = Sparsity and Scalability

Decompose the original sparse matrix to low-dimensional matrices with latent factors/features and less sparsity

Matrix Factorization

"Unfortunately, no one can be told what The Matrix is. You'll have to see it for yourself." **Morpheus**

SVD:

- Mathematically, it decomposes R into 3 matrices: 2 unitary matrices and 1 diagonal matrix:

R=U_EVT

"You mustn't be afraid to dream a little bigger, darling." Christopher Nolan

SVD:

R=UΣVT

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & & \\ \vdots & \vdots & \ddots & & \\ x_{m1} & & & x_{mn} \end{pmatrix} \approx \begin{pmatrix} u_{11} & \dots & u_{1r} \\ \vdots & \ddots & & \\ u_{m1} & & u_{mr} \end{pmatrix} \begin{pmatrix} s_{11} & 0 & \dots \\ 0 & \ddots & & \\ \vdots & & s_{rr} \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & & \\ v_{r1} & & v_{rn} \end{pmatrix}$$

$$m \times n$$

$$r \times n$$

"Have you found Jesus yet, Gump?" – Lieutenant Daniel Taylor
"I didn't know I was supposed to be looking for him, sir." – Forrest Gump

Funk SVD:

Based on Simon Funk Algorithm

- Simple to use
- Very fast
- Diamond class results

Got 3rd place in Netflix Prize on April 23rd, 2007

Funk SVD:

Based on Simon Funk Algorithm

Not an SVD but a MF method, Fast for sparse rating matrices.

$$egin{bmatrix} 1 & ? & 5 \ ? & ? & 3 \ 1 & 3 & 5 \ 3 & 4 & 4 \end{bmatrix} pprox egin{bmatrix} (heta_1)^T imes x_1 & - & (heta_1)^T imes x_3 \ - & - & (heta_2)^T imes x_3 \ (heta_3)^T imes x_1 & (heta_3)^T imes x_2 & (heta_3)^T imes x_3 \ (heta_4)^T imes x_1 & (heta_4)^T imes x_2 & (heta_4)^T imes x_3 \end{bmatrix}$$

"It's only after we've lost everything that we're free to do anything." Chuck Palahniuk

Step 1 – Random Search

Sampling hyperparameters from a distributions and training the algorithm.

- Iterations: 100 (with Early Stopping on Val Loss)
- **Regularization**: Uniform(0.001, 0.1)
- Learning Rate: Uniform(0.001,0.1)
- **Factors** = Uniform(30,500)
- n_epochs = 100 trials

"Every gun makes its own tune." The Good

Step 1 – Random Search

```
Epoch 1/200 | val_loss: 0.77 - val_rmse: 0.87 - val_mae: 0.67 - took 6.9 sec Epoch 2/200 | val_loss: 0.75 - val_rmse: 0.86 - val_mae: 0.67 - took 6.2 sec Epoch 3/200 | val_loss: 0.73 - val_rmse: 0.85 - val_mae: 0.66 - took 6.2 sec Epoch 4/200 | val_loss: 0.71 - val_rmse: 0.84 - val_mae: 0.65 - took 6.1 sec Epoch 5/200 | val_loss: 0.70 - val_rmse: 0.83 - val_mae: 0.64 - took 6.1 sec Epoch 6/200 | val_loss: 0.68 - val_rmse: 0.83 - val_mae: 0.63 - took 6.1 sec Epoch 7/200 | val_loss: 0.67 - val_rmse: 0.82 - val_mae: 0.63 - took 6.1 sec Epoch 8/200 | val_loss: 0.66 - val_rmse: 0.81 - val_mae: 0.62 - took 6.1 sec Epoch 9/200 | val_loss: 0.65 - val_rmse: 0.81 - val_mae: 0.62 - took 6.1 sec Epoch 10/200 | val_loss: 0.64 - val_rmse: 0.80 - val_mae: 0.61 - took 6.1 sec Epoch 11/200 | val_loss: 0.64 - val_rmse: 0.80 - val_mae: 0.61 - took 6.1 sec Epoch 12/200 | val_loss: 0.63 - val_rmse: 0.80 - val_mae: 0.61 - took 6.1 sec Epoch 13/200 | val_loss: 0.63 - val_rmse: 0.80 - val_mae: 0.61 - took 6.1 sec Epoch 14/200 | val_loss: 0.63 - val_rmse: 0.79 - val_mae: 0.61 - took 6.1 sec Epoch 14/200 | val_loss: 0.62 - val_rmse: 0.79 - val_mae: 0.60 - took 6.1 sec Epoch 14/200 | val_loss: 0.62 - val_rmse: 0.79 - val_mae: 0.60 - took 6.1 sec
```

"Just because you are a character doesn't mean that you have character." -The Wolf

Step 2 – Training Best Model

- Training took 2 min and 32 sec
 - 90 latent features (factors)
 - Learning Rate: 0.007
 - Lambda: 0.03
- Test MAE: 0.59
- Test RMSE: 0.77

And getting recommendations.

Step 3 – Analyze Recommendations

Rated Movies	i
Star Wars: Episode IV - A New Hope (1977)	Į
Monty Pythons Life of Brian (1979)	Ę
Star Wars: Episode V - The Empire Strikes Back (1980)	Į
Star Wars: Episode VI - Return of the Jedi (1983)	Į
Star Wars: Episode I - The Phantom Menace (1999)	Į
Harry Potter and the Sorcerers Stone (2001)	Į
The Lord of the Rings: The Fellowship of the Ring (2001)	Ę

Rated Movies	R
The Lord of the Rings: The Two Towers (2002)	5.0
Band of Brothers (2001)	5.0
The Lord of the Rings: The Return (2003)	5.0
Phone Box, The (Cabina, La) (1972)	5.0
Matrix, The (1999)	5.0
Star Wars: Ep. II - Attack of the Clones (2002)	5.0
Shawshank Redemption, The (1994)	4.98
Prime Suspect (1991)	4.97
Frozen Planet (2011)	4.97
Usual Suspects, The (1995)	4.96
Monty Python and the Holy Grail (1975)	4.94
Princess Bride, The (1987)	4.93
Indiana Jones and the Last Crusade (1989)	4.92
Jekyll (2007)	4.91
Braveheart (1995)	4.91
Cosmos (1980)	4.91
Day of the Doctor, The (2013)	4.90
Jim Gaffigan: Obsessed (2014)	4.89
Guardians of the Galaxy (2014)	4.89
Welfare (1975)	4.88
Raiders of the Lost Ark (1981)	4.87
Runaway Brain (1995)	4.86
Hollow Crown, The (2012)	4.85

From Model to Product:

Step 4 – Setting up the Survey

Movie List Criterions:

- Familiarity N ratings > 100
- Variance High STD
- Updated Manually

Platform: Segmanta

Distribution:

Social networks

From Model to Product Step 5 – Analyze Survey

Movie	% Rate	<u>Mean</u>	STD
Fight Club (1999)	91%		1.5
Titanic (1997)	91%	0.4	1.4
The Lion King (1994)	86%	 0.3	1.0
Pirates of the Caribbean (2003)	86%	X b.4	1.3
The Shawshank Redemption (1994)	82%	0.8	1.3
Star Wars: Episode I (1999)	82%	0.3	1.4
Austin Powers (1997)	82%	X 0.3	0.9
Raiders of the Lost Ark (Indiana Jones) (1981)	82%	0.0	1.3
Jurassic Park (1993)	82%	-0.3	1.4
The Matrix (1999)	82%	≥0.5	1.3
Saving Private Ryan (1998)	82%	≥ 0.3	1.1
Lord of the Rings: The Return of the King (2003) $$	82%	X 0.3	1.5
Harry Potter and the Prisoner of Azkaban (2004)	82%	-0.0	1.5
Batman (1989)	77%	X 0.3	1.1
Men in Black (MIB) (1997)	77%	0.1	0.9
Mission: Impossible (1996)	77%	-0.0	1.0
X-Men (2000)	77%	-0.1	1.4
Spider-Man (2002)	77%	-0.1	1.5
Kill Bill: Vol. 2 (2004)	77%	≥ 1.5	1.3
The Incredibles (2004)	77%	-0.0	1.1
Back to the Future Part II (1989)	77%	≥ 0.3	1.1
The Dark Knight (2010)	77%	∑ 0.3	1.4
Iron Man (2008)	77%	-0.2	1.4
Borat (2006)	77%	≥ 0.5	1.1
Independence Day (a.k.a. ID4) (1996)	73%	-0.6	1.1

From Product to Glory

Step 6 – Getting prediction's feedback

Trick to improve recommendations

- We got weird Soviet documentaries...
- Decided to recommend only popular movies (>100 ratings)
- Reduced the variety and hurts discovery a bit, but improves results substantially!
- Also done by the big guys!

Some Insights:

- Talk to end-users & domain experts
- Find the right balance between Theory and Practice
- Inconsistency in 'good predictions' between users. Perhaps related to movies survey list.
- Make them an offer they can't refuse

Future work

- Combine Content-based with CF
- Predict similar movies by genre
- **Ensemble** recommendations from different models/hyperparameters
- Implement **Embeddings** as latent features, from tags/reviews

"Hope is a good thing, maybe the best of things, and no good thing ever dies." — Andy Dufresne

Thanks

