Aim:

Implement the Floyd-Warshall algorithm in C for finding the shortest distances between all pairs of vertices in a weighted directed graph. Prompt the user to input the number of vertices (N) and edges (E), and then accept edge information (source, destination, and weight) to build the adjacency matrix.

Source Code:

Warshall.c

```
#include <stdio.h>
#define INF 99999
#define MAX_N 20 // Maximum value for N
int main() {
   int dist[MAX_N][MAX_N];
   int n, e;
   int i, j, k;
   printf("Enter the number of vertices : ");
   scanf("%d", &n);
   printf("Enter the number of edges : ");
   scanf("%d", &e);
   for(i = 0; i < n; i++) {
      for(j = 0; j < n; j++) {
         if(i == j)
            dist[i][j] = 0;
         else
            dist[i][j] = INF;
      }
   }
   for(i = 0; i<e; i++) {
      int u, v, w;
      printf("Enter source : ");
      scanf("%d", &u);
      printf("Enter destination : ");
      scanf("%d", &v);
      printf("Enter weight : ");
      scanf("%d", &w);
      dist[u - 1][v - 1] = w;
   }
   for(k = 0; k < n; k++) {
      for(i = 0; i < n; i++) {
         for(j = 0; j < n; j++) {
            if(dist[i][k] != INF && dist[k][j] != INF &&
               dist[i][j] > dist[i][k] + dist[k][j]) {
               dist[i][j] = dist[i][k] + dist[k][j];
            }
         }
      }
   printf("The following matrix shows the shortest distances between all pairs of the
```

```
vertices.\n");
   for(i = 0; i < n; i++) {
      for(j = 0; j < n; j++) {
         if(dist[i][j] == INF)
            printf("%5s", "INF");
         else
            printf("%5d", dist[i][j]);
      }
      printf("\n");
   }
   return 0;
}
```

Execution Results - All test cases have succeeded!

```
Test Case - 1
User Output
Enter the number of vertices : 4
Enter the number of edges : 5
Enter source : 1
Enter destination : 2
Enter weight: 4
Enter source : 1
Enter destination : 4
Enter weight: 10
Enter source : 1
Enter destination : 3
Enter weight: 6
Enter source : 2
Enter destination : 4
Enter weight: 5
Enter source : 3
Enter destination : 4
Enter weight: 2
The following matrix shows the shortest distances between all pairs of the vertices.
   0
        4
             6
 INF
        0
           INF
                  5
 INF
      INF
             0
                  2
 INF
      INF
           INF
```

Test Case - 2				
Jser Output				
nter the number of vertices : 5				
nter the number of edges : 6				
nter source : 1				
nter destination : 2				
nter weight : 2				
nter source : 1				
nter destination : 5				
nter weight : 3				

Enter s	source	: 2	2						
Enter o	destina	tio	n :	4					
Enter v	weight	: 4	ŀ						
Enter s	source	: 2	2						
Enter o	destina	tio	n :	3					
Enter v	weight	: 7	7						
Enter s	source	: 4	ļ						
Enter o	destina	tio	n :	3					
Enter v	weight	: 2	2						
Enter s	source	: 5	5						
Enter o	destina	tio	n :	4					
Enter v	weight	: 1	L						
The fol	llowing	ma	trix	shows	the	shortest	distances	between a	all pairs of the vertices.
0	2	6	4	3					
INF	0	6	4	INF					
INF	INF	0	INF	INF					
INF	INF	2	0	INF					
INF	INF	3	1	0					

Test Case - 3	
User Output	
Enter the number of vertices : 4	
Enter the number of edges : 5	
Enter source : 1	
Enter destination : 2	
Enter weight : 4	
Enter source : 3	
Enter destination : 2	
Enter weight : 5	
Enter source : 4	
Enter destination : 1	
Enter weight : 1	
Enter source : 4	
Enter destination : 2	
Enter weight: 3	
Enter source : 4	
Enter destination : 3	
Enter weight: 8	
The following matrix shows the shortest distances between all pairs of the vertices.	
0 4 INF INF	
INF 0 INF INF	
INF 5 0 INF	
1 3 8 0	

Test Case - 4
User Output
Enter the number of vertices : 4
Enter the number of edges : 6
Enter source : 1
Enter destination : 2

Enter weight: 1
Enter source : 1
Enter destination : 4
Enter weight : 3
Enter source : 2
Enter destination : 3
Enter weight : 6
Enter source : 3
Enter destination : 1
Enter weight : -2
Enter source : 4
Enter destination : 2
Enter weight : 5
Enter source : 4
Enter destination : 3
Enter weight : 10
The following matrix shows the shortest distances between all pairs of the vertices.
0 1 7 3
4 0 6 7
-2 -1 0 1
8 5 10 0