- $W = w_1 \dots w_n$ words in the corpus (observed)
- $T = t_1 \dots t_n$ the corresponding tags (unknown)

- $W = w_1 \dots w_n$ words in the corpus (observed)
- $T = t_1 \dots t_n$ the corresponding tags (unknown)

Tagging: Probabilistic View (Generative Model)

$$\hat{T} = argmax_T P(T|W)$$

- $W = w_1 \dots w_n$ words in the corpus (observed)
- $T = t_1 \dots t_n$ the corresponding tags (unknown)

Tagging: Probabilistic View (Generative Model)

$$\hat{T} = argmax_T P(T|W)$$

$$= argmax_T \frac{P(W|T)P(T)}{P(W)}$$

- $W = w_1 \dots w_n$ words in the corpus (observed)
- $T = t_1 \dots t_n$ the corresponding tags (unknown)

Tagging: Probabilistic View (Generative Model)

$$\hat{T} = argmax_T P(T|W)
= argmax_T \frac{P(W|T)P(T)}{P(W)}
= argmax_T P(W|T)P(T)$$

- $W = w_1 \dots w_n$ words in the corpus (observed)
- $T = t_1 \dots t_n$ the corresponding tags (unknown)

Tagging: Probabilistic View (Generative Model)

$$\hat{T} = argmax_T P(T|W)
= argmax_T \frac{P(W|T)P(T)}{P(W)}
= argmax_T P(W|T)P(T)
= argmax_T \prod_i P(w_i|w_1...w_{i-1},t_1...t_i)P(t_i|t_1...t_{i-1})$$

$$\hat{T} = argmax_T \prod_i P(w_i|w_1 \dots w_{i-1}, t_1 \dots t_i) P(t_i|t_1 \dots t_{i-1})$$

The probability of a word appearing depends only on its own POS tag

$$\hat{T} = argmax_T \prod_i P(w_i|w_1 \dots w_{i-1}, t_1 \dots t_i) P(t_i|t_1 \dots t_{i-1})$$

- The probability of a word appearing depends only on its own POS tag $P(w_i|w_1...w_{i-1},t_1...t_i) \approx P(w_i|t_i)$
- Bigram assumption: the probability of a tag appearing depends only on the previous tag

$$\hat{T} = argmax_T \prod_i P(w_i|w_1 \dots w_{i-1}, t_1 \dots t_i) P(t_i|t_1 \dots t_{i-1})$$

- The probability of a word appearing depends only on its own POS tag $P(w_i|w_1...w_{i-1},t_1...t_i) \approx P(w_i|t_i)$
- Bigram assumption: the probability of a tag appearing depends only on the previous tag

$$P(t_i|t_1...t_{i-1})\approx P(t_i|t_{i-1})$$

$$\hat{T} = argmax_T \prod_i P(w_i|w_1 \dots w_{i-1}, t_1 \dots t_i) P(t_i|t_1 \dots t_{i-1})$$

- The probability of a word appearing depends only on its own POS tag $P(w_i|w_1...w_{i-1},t_1...t_i) \approx P(w_i|t_i)$
- Bigram assumption: the probability of a tag appearing depends only on the previous tag

$$P(t_i|t_1...t_{i-1}) \approx P(t_i|t_{i-1})$$

• Using these simplifications:

$$\hat{T} = argmax_T \prod_{i} P(w_i|t_i)P(t_i|t_{i-1})$$

Computing the probability values

Tag Transition probabilities $p(t_i|t_{i-1})$

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT, NN)}{C(DT)} = \frac{56,509}{116,454} = 0.49$$

Computing the probability values

Tag Transition probabilities $p(t_i|t_{i-1})$

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT, NN)}{C(DT)} = \frac{56,509}{116,454} = 0.49$$

Word Likelihood probabilities $p(w_i|t_i)$

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = 0.47$$

Disambiguating "race"

Disambiguating "race"

Difference in probability due to

- P(VB|TO) vs. P(NN|TO)
- P(race|VB) vs. P(race|NN)
- P(NR|VB) vs. P(NR|NN)

Disambiguating "race"

Difference in probability due to

- P(VB|TO) vs. P(NN|TO)
- P(race|VB) vs. P(race|NN)
- P(NR|VB) vs. P(NR|NN)

After computing the probabilities

- $P(NN|TO)P(NR|NN)P(race|NN) = 0.0047 \times 0.0012 \times 0.00057 = 0.00000000032$
- $P(VB|TO)P(NR|VB)P(race|VB) = 0.83 \times 0.0027 \times 0.00012 = 0.00000027$

What is this model?

What is this model?

This is a Hidden Markov Model

- Tag Transition probabilities $p(t_i|t_{i-1})$
- Word Likelihood probabilities (emissions) $p(w_i|t_i)$

- Tag Transition probabilities $p(t_i|t_{i-1})$
- Word Likelihood probabilities (emissions) $p(w_i|t_i)$
- What we have described with these probabilities is a hidden markov model.
- Let us quickly introduce the Markov Chain, or observable Markov Model.

Weather example

• Three types of weather: sunny, rainy, foggy

Weather example

- Three types of weather: sunny, rainy, foggy
- q_n : variable denoting the weather on the n^{th} day

Weather example

- Three types of weather: sunny, rainy, foggy
- q_n : variable denoting the weather on the n^{th} day
- We want to find the following conditional probabilities:

$$P(q_n|q_{n-1},q_{n-2},...,q_1)$$

Weather example

- Three types of weather: sunny, rainy, foggy
- q_n : variable denoting the weather on the n^{th} day
- We want to find the following conditional probabilities:

$$P(q_n|q_{n-1},q_{n-2},...,q_1)$$

First-order Markov Assumption

$$P(q_n|q_{n-1},q_{n-2},...,q_1) = P(q_n|q_{n-1})$$

Markov Chain Transition Table

Table 1: Probabilities $p(q_{n+1}|q_n)$ of tomorrow's weather based on today's weather

	Tomorrow's weather		
Today's weather	*	#	0
*	0.8	0.05	0.15
#	0.2	0.6	0.2
69	0.2	0.3	0.5

$$P(q_2 = sunny, q_3 = rainy | q_1 = sunny)$$

$$P(q_2 = sunny, q_3 = rainy|q_1 = sunny)$$

= $P(q_3 = rainy|q_2 = sunny, q_1 = sunny) \times P(q_2 = sunny|q_1 = sunny)$

$$P(q_2 = sunny, q_3 = rainy|q_1 = sunny)$$

$$= P(q_3 = rainy|q_2 = sunny, q_1 = sunny) \times P(q_2 = sunny|q_1 = sunny)$$

$$= P(q_3 = rainy|q_2 = sunny) \times P(q_2 = sunny|q_1 = sunny)$$

$$= 0.05 \times 0.8$$

$$= 0.04$$

• For Markov chains, the output symbols are the same as the states 'sunny' weather is both observable and state

- For Markov chains, the output symbols are the same as the states 'sunny' weather is both observable and state
- But in POS tagging

- For Markov chains, the output symbols are the same as the states 'sunny' weather is both observable and state
- But in POS tagging
 The output symbols are words

- For Markov chains, the output symbols are the same as the states 'sunny' weather is both observable and state
- But in POS tagging
 The output symbols are words
 But the hidden states are POS tags
- A Hidden Markov Model is an extension of a Markov chain in which the output symbols are not the same as the states
- We don't know which state we are in

Hidden Markov Models (HMMs)

Elements of an HMM model

- A set of states (here: the tags)
- An output alphabet (here: words)
- Initial state (here: beginning of sentence)
- State transition probabilities (here $p(t_n|t_{n-1})$)
- Symbol emission probabilities (here $p(w_i|t_i)$)

Graphical Representation

When tagging a sentence, we are walking through the state graph:

Edges are labeled with the state transition probabilities: $p(t_n|t_{n-1})$

Graphical Representation

At each state we emit a word: $P(w_n|t_n)$

Walking through the states: best path

Walking through the states: best path

