6.172 Project 2.1 Writeup

Albert Wang

October 12, 2011

1 1

1.1 1.1

cilkview: running with 19 workers Sort time: 1.027 seconds cilkview: running with 18 workers Sort time: 1.033 seconds cilkview: running with 17 workers Sort time: 1.069 seconds cilkview: running with 16 workers Sort time: 1.055 seconds cilkview: running with 15 workers Sort time: 1.032 seconds cilkview: running with 14 workers Sort time: 1.024 seconds

cilkview: running with 13 workers Sort time: 1.029 seconds

cilkview: running with 20 workers Sort time: 1.032 seconds

cilkview: running with 12 workers Sort time: 1.023 seconds cilkview: running with 11 workers Sort time: 1.089 seconds cilkview: running with 10 workers Sort time: 1.166 seconds cilkview: running with 9 workers Sort time: 1.259 seconds cilkview: running with 8 workers Sort time: 1.387 seconds cilkview: running with 7 workers Sort time: 1.541 seconds cilkview: running with 6 workers Sort time: 1.745 seconds cilkview: running with 5 workers Sort time: 2.049 seconds cilkview: running with 4 workers Sort time: 2.463 seconds cilkview: running with 3 workers Sort time: 3.199 seconds cilkview: running with 2 workers Sort time: 4.656 seconds cilkview: running with 1 workers Sort time: 9.059 seconds

When running with more workers than processors, the times may increase, as extra time is being used to spawn threads.

1.2 1.2

The $sample_q sort$ recursive calls are overlapping with each other, which means that they could modify each other's data

1.3 1.3

Yes, cilkscreen found the race condition. Error rate = 916/1000.

2 2

2.1 2.1

For 8 processors: Actual Speedup: 7.57686084142 times faster, Theoretical

Speedup: 6.26 - 8.00 times faster

cilkview: running with 1 workers

matrix2 time: Oms

matrix256 time: 47ms

matrix1024 time: 9365ms

Test succeeded

cilkview: running with 12 workers

matrix2 time: Oms

matrix256 time: 7ms

matrix1024 time: 932ms

Test succeeded

2.2 2.2

For 8 processors: Middle Loop Parallelization Speedup: 7.71439873418 Outer, Middle loop Parallelization Speedup 7.70332278481 Just outer loop parallel produces the best results because not as many threads are being spawned.

2.3 2.3

2.4 2.4

```
mm_internal(C11, A11, B11, n, mid);
mm_internal(C21, A21, B11, n, mid);
mm_internal(C12, A11, B12, n, mid);
mm_internal(C22, A21, B12, n, mid);
mm_internal(C11, A12, B21, n, mid);
mm_internal(C21, A22, B21, n, mid);
mm_internal(C12, A12, B22, n, mid);
mm_internal(C22, A22, B22, n, mid);
```

$2.5 \quad 2.5$

Can divide 8 recursive calls into two sets of 4 calls. Calls that change the same submatrix of C must be done separately. Passes cilkscreen. cilkview:

Whole Program Statistics

1) Parallelism Profile

Work: 245,301,142,331 instructions

Span : 188,099,983 instructions

Burdened span: 363,019,983 instructions

Parallelism: 1304.10

Burdened parallelism : 675.72

Number of spawns/syncs: 1,246,607,152

Average instructions / strand : 65

Strands along span : 21,537

Average instructions / strand on span : 8,733

Total number of atomic instructions: 1,246,607,173

Frame count : 2,493,214,304

2) Speedup Estimate

2 processors: 1.90 - 2.00

4 processors: 3.80 - 4.00

8 processors: 7.60 - 8.00

16 processors: 15.20 - 16.00

32 processors: 29.68 - 32.00

cilkview: running with 12 workers

matrix2 time: Oms

matrix256 time: 103ms

matrix1024 time: 4912ms

About 1.9 times faster than nested single processor

2.6 2.6

Much faster.

cilkview: running with 12 workers

matrix2 time: Oms

matrix256 time: 9ms

matrix1024 time: 295ms

About 16.7 times faster than 12 worker without looping small matrices.

2.7 2.7

3 3

3.1 3.1

Cilkview results:

cilkview: running with 12 workers

nbodies time: 6668ms

done.

cilkview: running with 11 workers

nbodies time: 6371ms

done.

cilkview: running with 10 workers

nbodies time: 6342ms

done.

cilkview: running with 9 workers

nbodies time: 6170ms

done.

cilkview: running with 8 workers

nbodies time: 5771ms

done.

cilkview: running with 7 workers

nbodies time: 5847ms

done.

cilkview: running with 6 workers

nbodies time: 6011ms

done.

cilkview: running with 5 workers

nbodies time: 6066ms

done.

cilkview: running with 4 workers

nbodies time: 5784ms

done.

cilkview: running with 3 workers

nbodies time: 6214ms

done.

cilkview: running with 2 workers

nbodies time: 5930ms

done.

cilkview: running with 1 workers

nbodies time: 8869ms

done.

1.3 times speedup

3.2 3.2

cilkview: running with 12 workers

nbodies time: 10506ms

done.

cilkview: running with 11 workers

nbodies time: 9710ms

done.

cilkview: running with 10 workers

nbodies time: 9365ms

done.

cilkview: running with 9 workers

nbodies time: 9211ms

done.

cilkview: running with 8 workers

nbodies time: 9508ms

done.

cilkview: running with 7 workers

nbodies time: 9647ms

done.

cilkview: running with 6 workers

nbodies time: 9977ms

done.

cilkview: running with 5 workers

nbodies time: 9804ms

done.

cilkview: running with 4 workers

nbodies time: 10426ms

done.

cilkview: running with 3 workers

nbodies time: 12504ms

done.

cilkview: running with 2 workers

nbodies time: 12680ms

done.

cilkview: running with 1 workers

nbodies time: 23158ms

done.

2.2 times speedup

3.3 3.3

Cilkview Scalability Analyzer V2.0.0, Build 1924

nbodies Statistics - Elapsed time: 7.789 seconds

1) Parallelism Profile

Work: 3,876,860,183 instructions

Span: 5,092,369 instructions

Burdened span: 23,488,877 instructions

Parallelism: 761.31

Burdened parallelism : 165.05

Number of spawns/syncs: 63,920

Average instructions / strand : 20,217

Strands along span : 760

Average instructions / strand on span : 6,700

Total number of atomic instructions : 51,200,160

Frame count : 1,151,280

2) Speedup Estimate

2 processors: 1.90 - 2.00

4 processors: 3.80 - 4.00

8 processors: 7.46 - 8.00

16 processors: 13.86 - 16.00

32 processors: 24.26 - 32.00

Whole Program Statistics

1) Parallelism Profile

Work: 36,552,872,516 instructions

Span : 1,706,963,702 instructions

Burdened span: 1,872,529,867 instructions

Parallelism: 21.41

Burdened parallelism : 19.52

Number of spawns/syncs: 575,280

Average instructions / strand : 21,179

Strands along span: 13,681

Average instructions / strand on span : 124,768

Total number of atomic instructions: 460,801,440

Frame count : 1,151,280

2) Speedup Estimate

2 processors: 1.84 - 2.00

4 processors: 3.17 - 4.00

8 processors: 4.97 - 8.00

16 processors: 6.94 - 16.00

32 processors: 8.65 - 21.41

3.4 3.4

Yes, was faster than parallel nbodies_loops. Races come from the symmetric updating of forces (i.e. changing the force for j), which didn't show up before because it wasn't symmetric.

3.5 3.5

Cilkview Scalability Analyzer V2.0.0, Build 1924

nbodies Statistics - Elapsed time: 6.943 seconds

1) Parallelism Profile

Work: 3,225,295,516 instructions

Span: 8,244,840 instructions

Burdened span: 24,973,893 instructions

Parallelism: 391.19

Burdened parallelism : 129.15

Number of spawns/syncs: 63,920

Average instructions / strand : 16,819

Strands along span : 800

Average instructions / strand on span : 10,306

Total number of atomic instructions: 51,200,160

Frame count : 1,151,280

2) Speedup Estimate

2 processors: 1.90 - 2.00

4 processors: 3.80 - 4.00

8 processors: 7.33 - 8.00

16 processors: 13.36 - 16.00

32 processors: 22.73 - 32.00

Whole Program Statistics

1) Parallelism Profile

Work: 30,688,883,602 instructions

Span : 1,735,328,515 instructions

Burdened span : 1,885,890,905 instructions

Parallelism: 17.68

Burdened parallelism : 16.27

Number of spawns/syncs: 575,280

Average instructions / strand : 17,781

Strands along span : 14,401

Average instructions / strand on span : 120,500

Total number of atomic instructions: 460,801,440

Frame count : 1,151,280

2) Speedup Estimate

2 processors: 1.81 - 2.00

4 processors: 3.05 - 4.00

8 processors: 4.62 - 8.00

16 processors: 6.23 - 16.00

32 processors: 7.55 - 17.68

3.6 3.6

A triangle itself is split into two triangles and a rectangle. Therefore, the

rectangles will coarsen the data for it's parent triangles. Also, a triangle itself

doesn't do much work, other than to spawn other triangles and rectangles.

3.7 3.7

Added cilk_spawn for the first lines of A, B, and C, and a sync at the end of

each A/B/C block.

3.8 3.8

cilkview: running with 12 workers

nbodies time: 1112ms

done.

cilkview: running with 11 workers

nbodies time: 1168ms

done.

16

cilkview: running with 10 workers

nbodies time: 1247ms

done.

cilkview: running with 9 workers

nbodies time: 1346ms

done.

cilkview: running with 8 workers

nbodies time: 1479ms

done.

cilkview: running with 7 workers

nbodies time: 1650ms

done.

cilkview: running with 6 workers

nbodies time: 1881ms

done.

cilkview: running with 5 workers

nbodies time: 2215ms

done.

cilkview: running with 4 workers

nbodies time: 2682ms

done.

cilkview: running with 3 workers

nbodies time: 3557ms

done.

cilkview: running with 2 workers

nbodies time: 5230ms

done.

cilkview: running with 1 workers

nbodies time: 10421ms

done.

cilkview: generating scalability data

nbodies time: 65083ms

done.

--- albertyw-12.stderr ---

Cilkview Scalability Analyzer V2.0.0, Build 1924

nbodies Statistics - Elapsed time: 7.220 seconds

1) Parallelism Profile

Work: 3,315,985,410 instructions

Span : 106,840,183 instructions

Burdened span: 216,840,183 instructions

Parallelism: 31.04

Burdened parallelism : 15.29

Number of spawns/syncs: 116,000

Average instructions / strand : 9,528

Strands along span : 5,360

Average instructions / strand on span : 19,932

Total number of atomic instructions : 51,252,240

Frame count : 3,132,360

2) Speedup Estimate

2 processors: 1.80 - 2.00

4 processors: 3.00 - 4.00

8 processors: 4.50 - 8.00

16 processors: 6.00 - 16.00

32 processors: 7.20 - 31.04

Whole Program Statistics

1 1	Parallelism	Drofila
11	rararrerrem	LIOTITE

Work: 31,504,917,256 instructions

Span : 2,622,692,230 instructions

Burdened span: 3,612,692,230 instructions

Parallelism: 12.01

Burdened parallelism : 8.72

Number of spawns/syncs: 1,044,000

Average instructions / strand : 10,059

Strands along span : 96,481

Average instructions / strand on span : 27,183

Total number of atomic instructions: 461,270,160

Frame count : 3,132,360

2) Speedup Estimate

2 processors: 1.67 - 2.00

4 processors: 2.52 - 4.00

8 processors: 3.38 - 8.00

16 processors: 4.08 - 12.01

32 processors: 4.54 - 12.01