VV186: Honors Mathematics

Vector Space & Sequence of Real Functions

Xingjian Zhang

Univerity of Michigan-Shanghai Jiao Tong University Joint Institute

November 17, 2020

Outline

Vector Space

Vector Space I

- 3.3.1. Definition. A triple $(V, +, \cdot)$ is called a *real vector space* (or *real linear space*) if
 - 1. V is any set;
 - 2. $+: V \times V \to V$ is a map (called addition) with the following properties:
 - (u+v)+w=u+(v+w) for all $u,v,w\in V$ (associativity),
 - ▶ u + v = v + u for all $u, v \in V$ (*commutativity*),
 - ▶ there exists an element $e \in V$ such that v + e = v for all $v \in V$ (existence of a neutral element),
 - ▶ for every $v \in V$ there exists an element $-v \in V$ such that v + (-v) = e;
 - 3. \cdot : $\mathbb{R} \times V \to V$ is a map (called scalar multiplication) with the following properties:
 - ▶ $1 \cdot u = u$ for all $u \in V$,
 - $\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$ for all $\lambda \in \mathbb{R}$, $u, v \in V$,
 - $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ for all $\lambda, \mu \in \mathbb{R}$, $u \in V$,
 - $(\lambda \mu) \cdot u = \lambda \cdot (\mu \cdot u)$ for all $\lambda, \mu \in \mathbb{R}$, $u \in V$.

Vector Space II

Remark:

- ▶ Remember all of the 9 properties in the definition.
- ► For both of "+" and "·", the *codomain* is *V*. i.e. Both operators should map into original set *V*.
- ▶ Distinguish clearly a *complex* and a *real* vector space. It is determined by the *domain* of *scalar multiplication*. (Is \mathbb{C}^n a complex or a real vector space?)
- Some common notation:
 - 1. \mathbb{R}^n
 - 2. \mathbb{C}^n
 - 3. \mathcal{P}_n
 - 4. $C(\Omega, \mathbb{R})$
 - 5. $C^k(\Omega,\mathbb{R})$
 - 6. $C^{\infty}(\Omega,\mathbb{R})$
 - 7. ℓ^{∞}
 - 8. c_0^1

¹See Slide p.340 if you forget them.

Subspace

We defined the *subspace*:

3.3.4. Definition. Let $(V, +, \cdot)$ be a real or complex vector space. If $U \subset V$ and $(U, +, \cdot)$ is also a vector space, then we say that $(U, +, \cdot)$ is a *subspace* of $(V, +, \cdot)$.

We have a simple way to verify a candidate $(U, +, \cdot)$ is indeed a subspace of $(V, +, \cdot)$, given that $(V, +, \cdot)$ is a vector space:

3.3.6. Lemma. Let $(V, +, \cdot)$ be a real (complex) vector space and $U \subset V$. If $u_1 + u_2 \in U$ for $u_1, u_2 \in U$ and $\lambda u \in U$ for all $u \in U$ and $\lambda \in \mathbb{R}$ (\mathbb{C}), then $(U, +, \cdot)$ is a subspace of $(V, +, \cdot)$.

Normed Vector Space I

Norm is the "generalized length function" in a vector space. We defined it by three properties:

- 3.3.8. Definition. Let V be a real (complex) vector space. Then a map $\|\cdot\| \colon V \to \mathbb{R}$ is said to be a **norm** if for all $u, v \in V$ and all $\lambda \in \mathbb{R}$ (\mathbb{C}),
 - 1. $||v|| \ge 0$ for all $v \in V$ and ||v|| = 0 if and only if v = 0,
 - $2. \|\lambda \cdot \mathbf{v}\| = |\lambda| \cdot \|\mathbf{v}\|,$
 - 3. $||u+v|| \le ||u|| + ||v||$.

The pair $(V, \|\cdot\|)$ is called a *normed vector space* or a *normed linear space*.

Remark:

- ▶ A norm is a (unary) function. So we can naturally investigate into it as considering a function. (e.g. How to prove a norm is continous?)
- Any normed vector space can also be considered as a metric space. (How should we define the metric $\rho(x, y)$ according to $\|\cdot\|$?)
- Some common notation:

Normed Vector Space II

- 1. $||x||_2$ in \mathbb{R}^n (Euclidean norm)
- 2. $||x||_p$ in \mathbb{R}^n for $p \in \mathbb{N}^+$
- 3. $||x||_{\infty}$ in \mathbb{R}^n
- 4. $\|(a_n)\|_{\infty}$ in ℓ^{∞} or c_0
- 5. $||f||_{\infty}$ in C([a, b])

Have Fun And Learn Well!