

應用機器學習

Brian Chan 陳醒凡

課程目標

- 1. 了解基本的數據分析
- 2. 了解基本的機器學習(Machine Learning)方法
- 3. 掌握Python的基本操作和一些有用的package
- 4. 處理及從網上下載數據
- 5. 在Python上應用機器學習

今天課堂 概要

1. Optimization algorithm in ML

- Optimization framework
- Application: Least square method

2. Statistical foundation of machine learning methods

- Probability distribution
- Estimation framework
- Basics of statistics
- Bayesian probability

1. Optimization algorithm in ML

- Optimization framework
- Application: Least square method

OPTIMIZATION ALGORITHM (BASIC)

$$\min_{\theta} J(\theta)$$

such that $\theta \in \Theta$

- 1. Objective function, $J(\theta)$
- 2. Control variables, θ
- 3. Constraints, $\theta \in \Theta$

Optimization is a very useful issue in ML.

Many ML methods reply optimization algorithms to solve the parameters in the model.

The example includes regression methods and the class of NN models.

EXAMPLES

Constrainted optimization

$$\min_{x} x^2 + 2x + 1$$

s.t. $x \in [1,2]$

 $x \in \mathbb{R}$

 $\min_{x} x^{T} \Sigma x$

s.t. $x^T \mathbb{I} = 1$

 $x \ge 0$

 $x \in \mathbb{R}^n, \Sigma \in S^n_+$

Portfolio optimization

Argmax (or argmin) are the points, or elements, of the domain of some function at which the function values are maximized (or minimized).

GRADIENT DESCENT

Gradient descent is one of the most basic but commonly used optimization algorithms. Many advanced optimization algorithm is developed based on gradient descent.

Under some conditions, the optimization can be solved by gradient descent.

$$\theta \leftarrow \theta - \eta \cdot \frac{\partial J(\theta)}{\partial \theta}$$

GRADIENT DESCENT

At initial step i=1, the control variable is set to be $\theta^1=\bar{\theta}$.

At each iteration, θ^i is updated with $\theta^i \leftarrow \theta^i - \eta \cdot \frac{\partial J(\theta)}{\partial \theta}|_{\theta=\theta^{i-1}}$.

Repeat this until $|\theta^i - \theta^{i-1}| < \delta$.

GRADIENT DESCENT

SOME MORE OPTIMIZATION ALGORITHM IN ML

Stochastic gradient descent

Momentum

Adagrad

RMSProp

Adam

and some more ...

http://ruder.io/optimizing-gradient-descent/index.html#adam

EXAMPLE: LEAST SQUARE METHOD

LEAST SQUARE METHOD

Let y_i be observed data for i = 1, ..., N.

$$J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} [y_i - (\theta_0 + \theta_1 x_i)]^2$$

LEAST SQUARE METHOD

Let y be observed data such that $y = (y_1, y_2, ..., y_N)^T$ and $Z = (1, X)^T$.

$$J(\theta) = \frac{1}{N} ||y - Z \cdot \theta||^2,$$

where $\theta = (\theta_1, \theta_2)^T$.

2. Statistical foundation of machine learning methods

- Probability distribution
- Estimation framework
- Basics of statistics
- Bayesian probability

PROBABILITY (DISCRETE)

- Event
- Probability measure

Discrete probability distribution:

$$P({Head}) = P({Tail}) = 0.5$$

$$P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = P(\{5\}) = P(\{6\}) = 1/6$$

 $P(\{1\},\{2\}) = P(\{1\}) + P(\{2\}) = 1/6 + 1/6 = 1/3$

NUMBER OF METEORS IN 1 HOUR

Poisson distribution

https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-explained-4e2cb17d459

CREDIT MIGRATION

	Moody's	S&P	Fitch	Meaning	
	Aaa	AAA	AAA	Prime	
	Aa1	AA+	AA+	High Grade	
	Aa2	AA	AA		
Investment	Aa3	AA-	AA-		
Grade	A1	A+	A+		
	A2	Α	Α	Upper Medium Grade	
	A3	A-	A-		
	Baa1	BBB+	BBB+		
	Baa2	BBB	BBB	Lower Medium Grade	
	Baa3	BBB-	BBB-		
	Ba1	BB+	BB+	Non Investment Grade Speculative	
	Ba2	BB	BB		
	Ba3	BB-	BB-		
	B1	B+	B+		
	B2	В	В	Highly Speculative	
Junk	B3	B-	B-		
	Caa1	CCC+	CCC+	Substantial Risks	
	Caa2	CCC	CCC	Extremely Speculative	
	Caa3	CCC-	CCC-		
	Ca	CC	CC+	In Default w/ Little Prospect for Recovery	
		С	CC		
			CC-	In Default	
	D	D	DDD		

Table 1.8
One-year transition matrix (%)

Initial		Rating at year-end (%)							
rating	AAA	AA	Α	BBB	BB	В	CCC	Default	
AAA	90.81	8.33	0.68	0.06	0.12	0	0	0	
AA	0.70	90.65	7.79	0.64	0.06	0.14	0.02	0	
A	0.09	2.27	91.05	5.52	0.74	0.26	0.01	0.06	
BBB	0.02	0.33	5.95	86.93	5.30	1.17	0.12	0.18	
BB	0.03	0.14	0.67	7.73	80.53	8.84	1.00	1.06	
В	0	0.11	0.24	0.43	6.48	83.46	4.07	5.20	
CCC	0.22	0	0.22	1.30	2.38	11.24	64.86	19.79	

Source: Standard & Poor's CreditWeek (15 April 96)

Markov Chain

MOMENTS

Expectation:

$$E[X] = \sum P(x_i)x_i$$

Variance:

$$Var[X] = \sum P(x_i)(x_i - \mu)^2$$

Covariance:

$$Cov[X,Y] = E[(X - \mu_x)(Y - \mu_y)]$$

Correlation:

$$Corr[X,Y] = \frac{Cov[X,Y]}{\sigma_x \sigma_y}$$

Expectation:

$$E[X] = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6 = 3.5$$

Variance:

$$Var[X] = \frac{1}{6} \cdot (1 - 3.5)^2 + \frac{1}{6} \cdot (2 - 3.5)^2 + \frac{1}{6} \cdot (3 - 3.5)^2 + \frac{1}{6} \cdot (4 - 3.5)^2 + \frac{1}{6} \cdot (5 - 3.5)^2 + \frac{1}{6} \cdot (6 - 3.5)^2$$

COVARIANCE & CORRELATION

Dice1\Dice2	0	1
0	1/4	1/4
1	1/4	1/4

Covariance:

$$Cov[X,Y] = E\left[(X - \mu_x)(Y - \mu_y)\right] = \frac{1}{4} \cdot (0 - 0.5)(0 - 0.5) + \frac{1}{4} \cdot (1 - 0.5)(0 - 0.5) + \frac{1}{4} \cdot (0 - 0.5)(1 - 0.5) + \frac{1}{4} \cdot (1 - 0.5)(1 - 0.5) = 0$$

Correlation:

$$Corr[X,Y] = \frac{Cov[X,Y]}{\sigma_X \sigma_Y}$$

COVARIANCE & CORRELATION

Dice1\Dice2	0	1
0	2/4	0
1	0	2/4

Covariance:

$$Cov[X,Y] = E[(X - \mu_x)(Y - \mu_y)] = \frac{2}{4} \cdot (0 - 0.5)(0 - 0.5) + \frac{2}{4} \cdot (1 - 0.5)(1 - 0.5) = 0.25$$

Correlation:

$$Corr[X,Y] = \frac{Cov[X,Y]}{\sigma_x \sigma_y}$$

REMINDER ABOUT CORRELATION

Relationship with regression

Interpretation of correlation:

When correlation = 1

When correlation = 0

Multivariate:

$$\Sigma = E[(X - \mu)(X - \mu)^{T}] = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_{d}^{2} \end{pmatrix},$$

where $X = (x_1, x_2, ..., x_d)^T$.

PROBABILITY (CONTINUOUS)

Continuous probability distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Conditions:

$$1. \int f(x) \, dx = 1$$

2.
$$f(x) \ge 0$$

GAUSSIAN DISTRIBUTION

FAMILY OF PROBABILITY DENSITY

ESTIMATION FRAMEWORK

Parameter θ

A statistical parameter is a quantity characterize probability distribution or statistical model.

Estimator $\hat{\theta}$

An estimator is a quantity as an estimate of a given quantity based on observed data.

Unbiased estimator $\theta = E[\hat{\theta}]$

Consistent estimator $\hat{\theta} \stackrel{p}{\rightarrow} \theta$, as $n \rightarrow \infty$

EXAMPLE

Sample Mean

$$\hat{\mu} = \frac{\sum x_i}{n}$$

One can show

$$E[\hat{\mu}] = \mu$$
 $var[\hat{\mu}] = \frac{\sigma_x^2}{\sqrt{n}}$ $\hat{\mu} \xrightarrow{p} \mu$, as $n \to \infty$

One can see that estimator of sample average $\hat{\mu}$ is an unbiased and consistent estimator.

HYPOTHESIS TEST

The t test (also called Student's T Test) compares two averages (means) and tells you if they are different from each other.

The t test also tells you how significant the differences are.

The t score is a ratio between the difference between two groups and the difference within the groups. The larger the t score, the more difference there is between groups.

A p-value is the probability that the results from your sample data occurred by chance. (Null hypothesis is correct)

KEY STEPS OF TESTING

- 1. Determine a null and alternative hypothesis (H_0 and H_1)
- 2. Collect sample data
- 3. Determine a confidence interval and degrees of freedom
- 4. Calculate the t-statistics and critical t-value
- 5. Determine reject the null or not

T-TEST (UNEQUAL SAMPLE SIZES & UNEQUAL VARIANCES)

- 1. Determine a null and alternative hypothesis (H_0 and H_1)
- 2. Collect sample data
- 3. Determine a confidence interval and degrees of freedom

$$df = n_{\chi} + n_{\gamma} - 2$$

4. Calculate the t-statistics and critical t-value

$$t = \frac{M_{x} - M_{y}}{\sqrt{\frac{S_{x}^{2} + \frac{S_{y}^{2}}{n_{y}}}{n_{y}}}} \qquad \text{for } S^{2} = \frac{\sum (x - M)^{2}}{n - 1}$$

5. Determine reject the null or not (reject if $|t| > t_{\alpha}$)

BAYESIAN PROBABILITY

Conditional probability:

$$P(B \text{ and } A) = P(B|A)P(A)$$
 or $P(B) = \frac{P(B \text{ and } A)}{P(A)}$,

where

P(A) and P(B) are the probabilities of observing A and B.

P(A | B) is a conditional probability: the likelihood of event A occurring given that B is true.

P(B|A) is also a conditional probability: the likelihood of event B occurring given that A is true.

Bayesian theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \qquad \left(=\frac{P(A \text{ and } B)}{P(B)}\right)$$

EXAMPLE

	Women	Men	
With short hair	25	48	73
With long hair	25	2	27
	50	50	100

$$P(Woman) = 25/50 = 0.5$$

 $P(Man) = 25/50 = 0.5$

P(Woman with long hair | Woman) = 25/50 = 0.5P(Woman with long hair) = P(Woman with long hair | Woman) *P(Woman) = 0.5*0.5 = 0.25

EXAMPLE

$$P(man | long hair) = \frac{P(long hair | man)P(man)}{P(long hair)}$$

P(man | long hair) =
$$\frac{P(long hair | man)P(man)}{P(long hair)}$$
P(man | long hair) =
$$\frac{\frac{2}{50} * \frac{1}{2}}{\frac{2}{50} * \frac{1}{2} + \frac{25}{50} * \frac{1}{2}} = 2/27 = 0.074$$

Bayesian probability has a wide range of applications in machine learning and statistical analysis. It will be applied in Bayesian classifier in later class.

SUMMARIZE

Optimization -> foundation of regression, SVM, Neural Network and etc...

Probability -> Regression, Hypothesis testing

Bayesian -> Bayesian classifier

SUMMARY

- 1. Framework of optimization
- 2. Probability distribution
- 3. Bayesian probability
- 4. Least square method

下一課...

迴歸分析及例子:

- 1. 線性迴歸基礎
- 2. 線性迴歸的統計特質
- 3. 非線性迴歸 (Nonlinear regression)
- 4. 正規化迴歸 (Regularized regression)