Announcements for Thursday, 170CT2024

- Week 7 Homework Assignments available on eLearning
 - Graded and Timed Quiz 7 "Bonding" due Monday, 210CT2024, at 6:00 PM (EDT)
- Exam 2 Location Requests due by Friday, 18OCT2024, 11:59 PM (EDT)
 - for students having a class ending at 7:00 PM or later on exam day

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try This On Your Own

Rank the following species in order of increasing N-O bond length:

$$NO_2^-$$
, NO^+ , NO_2^+

Hint: Start by drawing the Lewis structures

$$[:N\equiv O:]^+ \leftarrow [\ddot{Q}=N=\ddot{Q}]^+ \leftarrow [\ddot{Q}=\ddot{N}-\ddot{Q}:]^- \leftrightarrow [:\ddot{Q}-\ddot{N}=\ddot{Q}]^-$$

Try This On Your Own

Predict the electron geometry, molecular geometry, and approximate bond angle(s) for the following species:

e⁻ g.: trigonal bipyramidal

m.g.: seesaw

< 90°, < 120°, < 180°

6 electron groups

e⁻ g.: octahedral m. g.: square planar = 90°, = 180° (ideal bond angles)

3 electron groups

e⁻ g.: trigonal planar m. g.: trigonal planar $= 120^{\circ}$ (ideal bond angles)

Molecular Polarity

- we already learned that bonds can be polar due to uneven sharing of bonding electrons between two atoms
 - example: HF
 - the bond acts similar to a little magnet and will respond to an external electric field
- molecules also may exhibit polarity (i.e., have a net dipole moment)
- polar molecules can interact with each other much like different poles of magnets interact
- polar molecule will easily mix with other polar molecules to make homogeneous solutions
 - like dissolves like

© 2018 Pearson Education, Inc.

Requirements for Molecular Polarity

in molecules where there are two or more bonds, the entire molecule can be polar and may exhibit a net dipole moment provided some requirements are met

© 2018 Pearson Education, Inc.

H₂O: has net dipole = polar molecule

- contains polar bonds (...we will be ignoring some exceptions to this)
- 2. the individual bond dipoles around the central atom do not cancel each out

Geometries That Commonly Lead to Molecular Polarity

this is assuming that all bonds are identical

- it gets more complicated when there is more than one type of bond
 - example: FCN
- bond dipoles are vector quantities
 - they have both magnitude AND direction

Try This

Determine if the following molecules are polar or nonpolar

Organic Lewis Structures

alkene: ethene $H_2C=CH_2$

alkyne: ethyne $H_2C \equiv CH_2$

alcohol: methanol CH₃OH

carboxylic acid: ethanoic acid (acetic acid) CH₃COOH

amine: methylamine CH₃NH₂

aldehyde: ethanal CH₃CHO

Organic Lewis Structures

ethene (C_2H_4) CH₂CH₂

ethyne (C_2H_2) **CHCH**

methanol

acetic acid

CH₃OH

CH₃COOH

methylamine

CH₃NH₂

acetaldehyde

CH₃CHO

Chapter 6: Chemical Bonding II

Some questions we'll try to answer

- What are some limitations to Lewis structures and VSEPR in predicting the shapes of some molecules?
- What actually happens on the atomic level when covalent bonds are formed?
- What are the different ways in which orbitals can overlap?
- How does the type of orbital overlap impact the behavior of the resulting chemical bond?
- What are hybrid orbitals and how do they fundamentally differ from unhybridized orbitals?

Problems with Lewis Theory of Bonding

- Lewis theory (and structures) does not give good numerical predictions regarding bond lengths and energies
- Lewis theory gives good approximations of bond angles for a molecule but can't account for actual bond angles for many molecules
 - example H₂S is 92° not ≈ 109.5°
- molecules showing resonance are not adequately dealt with in Lewis theory
- there are other bonding theories that improve upon Lewis theory and can explain things that Lewis theory can't
 - example: how are double bonds and triple bonds made?

© 2018 Pearson Education, Inc.

$$\vdots$$
O $=$ O $-$ O \vdots \longleftrightarrow O $-$ O $=$ O

RECALL FROM CHAPTER 2

s-orbitals, p-orbitals, d-orbitals unhybridized

© 2018 Pearson Education, Inc.

© 2018 Pearson Education, Inc.

Valence Bond Theory: an Improvement to Lewis Theory

- a chemical bond is the overlap between two *half-filled* atomic orbitals
 - the orbitals are necessarily in the valence shell (i.e., outermost)
 - the electrons in the orbitals must have paired spins
 - the bonding in HF
 - coordinate covalent bonds can also occur

Valence Bond Theory: an Improvement to Lewis Theory (continued)

- the amount of orbital overlap between atoms represents an energy minimum and a balance between e⁻/nucleus attraction and nucleus/nucleus repulsion
 - example: H₂
- the geometry of the overlapping orbitals determines the shape of the molecule

Interaction Energy of Two Hydrogen Atoms

An Issue with Methane (CH₄) and Valence Bond Theory

valence bond theory does not adequately account for certain attributes of CH₄

- C readily makes 4 identical bonds with H
- all H–C–H bond angles are 109.5°
- carbon must NOT be using its regular s-orbital and p-orbitals to make bonds
- there must be more to the story...

