Algoritmos y notación asintótica

Clase 18

IIC 1253

Prof. Pedro Bahamondes

Outline

Definiendo los algoritmos

Intro al análisis de algoritmos

Notación asintótica

Epílogo

Hacia la noción de algoritmo

Queremos formalizar la noción de algoritmo (¿por qué?)

Nos interesa la idea de computación efectiva

■ En el sentido de que efectivamente puede realizarse

¿Podemos definir formalmente esta noción?

Intentos de formalización: S. XX

Funciones parcialmente recursivas por K. Gödel, J. Herbrand, S. Kleene.

 $\begin{array}{l} \lambda\text{-}calculus\\ \text{por Alonzo Church}. \end{array}$

Sistemas de Post por Emil Post.

Máquinas de Turing por Alan Turing.

. . .

Intentos de formalización: S. XX

Funciones parcialmente recursivas por K. Gödel, J. Herbrand, S. Kleene.

 $\begin{array}{l} \lambda\text{-}\mathit{calculus} \\ \text{por Alonzo Church}. \end{array}$

Sistemas de Post por Emil Post.

Máquinas de Turing por Alan Turing.

. . .

Spoiler: Todos estos métodos sirven y son equivalentes

¿Qué es un algoritmo?

Estos métodos capturan estas nociones "intuitivas"

¿Qué es un algoritmo?

Estos métodos capturan estas nociones "intuitivas"

- Algoritmos como secuencias de pasos
- Con precondiciones
- Condiciones de término

Esencialmente, un algoritmo es un conjunto de pasos que resuelven un problema

Para este curso nos basta con esta intuición

Algoritmos

Diremos entonces que un algoritmo es un método para convertir un **INPUT** válido en un **OUTPUT**. A estos métodos les exigiremos ciertas propiedades:

- Finitud: el algoritmo está compuesto por un conjunto finito de instrucciones.
- Precisión: cada instrucción debe ser planteada de forma precisa y no ambigua.
- Determinismo: cada instrucción tiene un único comportamiento que depende sólo del input.

Algoritmos

El análisis de algoritmos es una disciplina de la Ciencia de la Computación que tiene dos objetivos:

- Estudiar cuándo y por qué los algoritmos son correctos (es decir, hacen lo que dicen que hacen).
- Estimar la cantidad de recursos computacionales que un algoritmo necesita para su ejecución.

De esta manera, podemos, por ejemplo:

- Entender bien los algoritmos, para luego reutilizarlos total o parcialmente.
- Determinar qué mejorar de un algoritmo para que sea más eficiente.

Algoritmos

Usaremos pseudo-código para escribir algoritmos.

- Instrucciones usuales como if, while, return...
- Notaciones cómodas para arreglos, conjuntos, propiedades lógicas, etc.

Consideraremos que los algoritmos tienen:

- Precondiciones: representan el input del programa.
- Postcondiciones: representan el output del programa, lo que hace el algoritmo con el input.

Objetivos de la clase

- □ Comprender concepto de algoritmo
- □ Identificar las componentes del análisis de algoritmos
- Demostrar correctitud de algoritmos
- □ Comprender notación asintótica

Outline

Definiendo los algoritmos

Intro al análisis de algoritmos

Notación asintótica

Epílogo

Corrección de algoritmos

Queremos determinar cuándo un algoritmo es correcto; es decir, que hace lo que dice que hace.

Definición

Un algoritmo es correcto si para todo INPUT válido, el algoritmo se detiene y produce un OUTPUT correcto.

Corrección de algoritmos

Queremos determinar cuándo un algoritmo es correcto; es decir, que hace lo que dice que hace.

Definición

Un algoritmo es correcto si para todo INPUT válido, el algoritmo se detiene y produce un OUTPUT correcto.

Entonces, ¿cuándo es incorrecto?

Definición

Un algoritmo es incorrecto si existe un INPUT válido para el cual el algoritmo no se detiene o produce un OUTPUT incorrecto.

Debemos demostrar dos cosas:

- Corrección parcial: si el algoritmo se detiene, se cumplen las postcondiciones.
- Terminación: el algoritmo se detiene.

Debemos demostrar dos cosas:

- Corrección parcial: si el algoritmo se detiene, se cumplen las postcondiciones.
- Terminación: el algoritmo se detiene.

Nos preocupamos sólo de los loops de los algoritmos (¿por qué?).

Debemos demostrar dos cosas:

- Corrección parcial: si el algoritmo se detiene, se cumplen las postcondiciones.
- Terminación: el algoritmo se detiene.

Nos preocupamos sólo de los loops de los algoritmos (¿por qué?).

Estos loops tienen una condición G que determina si se siguen ejecutando:

while(G)

.

end

Para demostrar corrección parcial, buscamos un invariante $\mathcal{I}(k)$ para los loops:

- Una propiedad \mathcal{I} que sea verdadera en cada paso k de la iteración.
- Debe relacionar a las variables presentes en el algoritmo.
- Al finalizar la ejecución, debe asegurar que las postcondiciones se cumplan.

Una vez que encontramos un invariante, demostramos la corrección del loop inductivamente:

- **Base:** las precondiciones deben implicar que $\mathcal{I}(0)$ es verdadero.
- Inducción: para todo natural k > 0, si G e $\mathcal{I}(k)$ son verdaderos antes de la iteración, entonces $\mathcal{I}(k+1)$ es verdadero después de la iteración.
- **Corrección:** inmediatamente después de terminado el loop (i.e. cuando G es falso), si k = N e $\mathcal{I}(N)$ es verdadero, entonces la postcondiciones se cumplen.

Y para demostrar terminación, debemos mostrar que existe un k para el cual G es falso.

Ejercicio

Escriba un algoritmo que multiplique dos números naturales (sin usar la multiplicación):

- Pre: $n, m \in \mathbb{N}$.
- **Post:** $p = n \cdot m$.

Demuestre que su algoritmo es correcto.

(Solución: Apuntes Jorge Pérez, Sección 3.1.1, Teorema 3.1.1, páginas 97 a 99.)

```
Demostración
Proponemos el siguiente algoritmo iterativo
  input : n, m \in \mathbb{N}
  output: p = n \cdot m
  Multipy(n, m):
      z \leftarrow 0
1
    w \leftarrow m
3 while w \neq 0 do
          z \leftarrow z + x
          w \leftarrow w - 1
      return z
Ahora debemos determinar un invariante para el bloque while.
```

Demostración

input :
$$n, m \in \mathbb{N}$$

output: $p = n \cdot m$

output:
$$p = n \cdot m$$

Multipy (n, m) :

1 $z \leftarrow 0$

2 $w \leftarrow m$

3 while $w \neq 0$ do

4 $z \leftarrow z + x$

5 $w \leftarrow w - 1$

6 return z

Si n = a y m = b, luego de la iteración *i* se cumple

i	n	m	Z	W
0	а	Ь	0	Ь
1	a	Ь	a	b-1
2	a	Ь	2 <i>a</i>	<i>b</i> – 2
3	a	b	3 <i>a</i>	<i>b</i> – 3
:	:	÷	÷	÷
Ь	a	Ь	b · a	0

Observemos que

- Existen en total b iteraciones
- Al término de cada una se cumple

$$z_i = n \cdot (m - w_i)$$

Demostración

Demostraremos la **corrección parcial del algoritmo** con el siguiente invariante:

$$P(i)$$
 := Al término de la iteración i , se cumple $z_i = n \cdot (m - w_i)$

Usamos inducción simple sobre el número de iteraciones.

CB: P(0) corresponde al estado previo a la primera iteración. Se tiene

$$z_0 = 0 = n(m-m) = n(m-w_0)$$

- **HI:** Supongamos que *P(i)* es cierta.
- **TI:** Demostraremos que P(i+1) es cierta.

Demostración

TI: Demostraremos que P(i+1) es cierta.

Tenemos que

```
z_{i+1} = z_i + n (línea 4 de Multiply)

= n \cdot (m - w_i) + n (hipótesis inductiva)

= n \cdot (m - w_i + 1) (factorización)

= n \cdot (m - (w_i - 1)) (factorización)

= n \cdot (m - w_{i+1}) (línea 5 de Multiply)
```

Esto demuestra que P(i) es cierta para cada iteración, por lo que Multiply cumple corrección parcial.

Ahora debemos probar que Multiply termina.

Demostración

Observemos que el bloque **while** termina cuando w=0. En la iteración 0, w=m natural y en cada iteración se reduce en 1. Es decir, los valores de w forman una sucesión decreciente de naturales, que en m iteraciones llega a w=0. Por lo tanto, el algoritmo termina.

A partir de estos resultados, Multiply es correcto.

En el caso de los algoritmos recursivos, no necesitamos dividir la demostración en corrección parcial y terminación (¿por qué?).

- Basta demostrar por inducción la propiedad (corrección) deseada.
- En general, la inducción se realiza sobre el tamaño del input.

Ejercicio

Escriba un algoritmo recursivo que encuentre el máximo elemento de un arreglo:

- **Pre:** un arreglo $A = [a_0, a_1, \dots, a_{n-1}]$, y un natural n (largo del arreglo).
- **Post:** $m = \max(A)$.

Demuestre que el algoritmo es correcto.

Solución: Apuntes Jorge Pérez, Sección 3.1.1, página 101.

```
Demostración
Proponemos el siguiente algoritmo recursivo
  input: Arreglo A = [a_0, \ldots, a_{n-1}] y largo n \ge 1
  output: m = \max(A)
  RecMax(A, n):
      if n = 1 then
1
2
          return a<sub>0</sub>
3
      else
          k \leftarrow \text{RecMax}(A, n-1)
          if a_{n-1} \ge k then
              return an-1
          else
              return k
Observemos que el llamado RecMax(A, i) solo toma en cuenta los primeros i
```

elementos de A, es decir, el tramo $[a_0, a_1, \ldots, a_{i-1}]$.

Demostración

Demostraremos la **corrección del algoritmo** con el siguiente invariante sobre número de elementos considerados:

$$P(i)$$
 := El valor retornado por RecMax (A, i) cumple RecMax $(A, i) \ge a_0, a_1, \dots, a_{i-1}$

Usamos inducción simple sobre el número de elementos considerados.

- **CB:** P(1) considera solo el tramo $[a_0]$ y su retorno cumple $a_0 \ge a_0$.
- **HI:** Supongamos que P(i) es cierta, i.e.

$$RecMax(A, i) \ge a_0, a_1, \ldots, a_{i-1}$$

TI: Demostraremos que P(i+1) es cierta, i.e.

$$RecMax(A, i + 1) \ge a_0, a_1, \dots, a_{i-1}, a_i$$

Demostración

TI: Demostraremos que P(i+1) es cierta, i.e.

$$RecMax(A, i + 1) \ge a_0, a_1, \dots, a_{i-1}, a_i$$

Supongamos que se ejecutó $\operatorname{RecMax}(A, i+1)$. Dado que el número de elementos es estrictamente mayor a 1, no estamos en el caso base y se hace un llamado a $\operatorname{RecMax}(A, i)$.

Por HI dicho llamado es correcto y queda guardado en k, i.e.

$$k \geq a_0, a_1, \ldots, a_{i-1}$$

Este valor puede cumplir uno de dos casos en el if de la línea 5:

- Cumple $a_i \ge k$. Luego, por transitividad, $a_i \ge a_0, a_1, \dots, a_{i-1}, a_i$ y RecMax(A, i+1) sería el máximo de A.
- Cumple $a_i < k$. En tal caso, $k \ge a_0, a_1, \dots, a_{i-1}, a_i$ y el retorno RecMax(A, i+1) sería el máximo de A.

Con lo anterior, se prueba que RecMax(A, i) es correcto.

Complejidad de algoritmos

Ya vimos cómo determinar cuando un algoritmo era correcto.

- Esto no nos asegura que el algoritmo sea útil en la práctica.
- Necesitamos estimar su tiempo de ejecución.
 - En función del tamaño del input.
 - Independiente de: lenguaje, compilador, hardware. . .

Lo que nos interesa entonces no es el tiempo *exacto* de ejecución de un algoritmo, sino que su comportamiento a medida que crece el input.

Introduciremos notación que nos permitirá hablar de esto.

Complejidad de algoritmos

Vamos a ocupar funciones de dominio natural (\mathbb{N}) y recorrido real positivo (\mathbb{R}^+).

- El dominio será el tamaño del input de un algoritmo.
- El recorrido será el tiempo necesario para ejecutar el algoritmo.

Outline

Definiendo los algoritmos

Intro al análisis de algoritmos

Notación asintótica

Epílogo

Notación asintótica

Sea $f: \mathbb{N} \to \mathbb{R}^+$.

Definición

$$\mathcal{O}(f) = \{g : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \quad \exists n_0 \in \mathbb{N} \quad \forall n \geq n_0 \quad (g(n) \leq c \cdot f(n))\}$$

Diremos que $g \in \mathcal{O}(f)$ es a lo más de orden f o que es $\mathcal{O}(f)$.

Si $g \in \mathcal{O}(f)$, entonces "g crece más lento o igual que f"

Usaremos indistintamente $\mathcal{O}(f(n))$ para referirnos a $\mathcal{O}(f)$ por simplicidad.

Notación asintótica

```
Sea f: \mathbb{N} \to \mathbb{R}^+.
```

Definición

$$\Omega(f) = \{g : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad (g(n) \ge c \cdot f(n))\}$$

Diremos que $g \in \Omega(f)$ es al menos de orden f o que es $\Omega(f)$.

Si $g \in \Omega(f)$, entonces "g crece más rápido o igual que f"

Usaremos indistintamente $\Omega(f(n))$ para referirnos a $\Omega(f)$ por simplicidad.

Notación asintótica

Sea $f: \mathbb{N} \to \mathbb{R}^+$.

Definición

$$\Theta(f) = \mathcal{O}(f) \cap \Omega(f)$$

Diremos que $g \in \Theta(f)$ es exactamente de orden f o que es $\Theta(f)$.

Si $g \in \Theta(f)$, entonces "g crece igual que f"

Ejercicio

Demuestre que $g \in \Theta(f)$ si y sólo si existen $c, d \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $\forall n \geq n_0: c \cdot f(n) \leq g(n) \leq d \cdot f(n)$.

Ejercicio

Demuestre que $g \in \Theta(f)$ si y sólo si existen $c, d \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $\forall n \geq n_0: c \cdot f(n) \leq g(n) \leq d \cdot f(n)$.

```
g \in \Theta(f)
\Leftrightarrow g \in \mathcal{O}(f) \land g \in \Omega(f)
\Leftrightarrow \exists d \in \mathbb{R}^{+} \exists n_{1} \in \mathbb{N} \quad \forall n \geq n_{1} \quad (g(n) \leq d \cdot f(n))
\land \exists c \in \mathbb{R}^{+} \exists n_{2} \in \mathbb{N} \quad \forall n \geq n_{2} \quad (g(n) \geq c \cdot f(n))
Tomamos \quad n_{0} = max\{n_{1}, n_{2}\}
\Leftrightarrow \exists d \in \mathbb{R}^{+} \exists n_{0} \in \mathbb{N} \quad \forall n \geq n_{0} \quad (g(n) \leq d \cdot f(n))
\land \exists c \in \mathbb{R}^{+} \exists n_{0} \in \mathbb{N} \quad \forall n \geq n_{0} \quad (g(n) \geq c \cdot f(n))
\Leftrightarrow \exists c \in \mathbb{R}^{+} \exists d \in \mathbb{R}^{+} \exists n_{0} \in \mathbb{N} \quad \forall n \geq n_{0} \quad (c \cdot f(n) \leq g(n) \leq d \cdot f(n))
```

Ejercicios

Demuestre que:

- 1. $f(n) = 60n^2 \text{ es } \Theta(n^2)$.
- 2. $f(n) = 60n^2 + 5n + 1 \text{ es } \Theta(n^2)$.

Ejercicios

Demuestre que:

- 1. $f(n) = 60n^2$ es $\Theta(n^2)$.
- 2. $f(n) = 60n^2 + 5n + 1 \text{ es } \Theta(n^2)$.

¿Qué podemos concluir de estos dos ejemplos?

- Las constantes no influyen.
- En funciones polinomiales, el mayor exponente "manda".

Solución: Apuntes Jorge Pérez, Sección 3.1.2, páginas 102 y 103.

Ejercicio

Demuestre que $f(n) = \log_2(n)$ es $\Theta(\log_3(n))$.

Ejercicio

Demuestre que $f(n) = \log_2(n)$ es $\Theta(\log_3(n))$.

¿Qué podemos concluir de este ejemplo?

Nos podemos independizar de la base del logaritmo.

Solución: Apuntes Jorge Pérez, Sección 3.1.2, página 103.

Podemos formalizar las conclusiones anteriores:

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Teorema

Si $f(n) = \log_a(n)$ con a > 1, entonces para todo b > 1 se cumple que f es $\Theta(\log_b(n))$.

Ejercicio (propuesto ★)

Demuestre los teoremas.

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Es conveniente expresar f(n) como $\sum_{i=0}^{k} a_i n^i$.

Notemos que $\forall x \in \mathbb{R}, x \leq |x|$, por lo que $f(n) \leq \sum_{i=0}^{k} |a_i| n^i$.

Ahora, $\forall n \geq 1$ se cumple que $n^i \geq n^{i-1}$, y luego $f(n) \leq \left(\sum_{i=0}^k |a_i|\right) n^k$.

Tomamos entonces $n_0 = 1$ y $c = \sum_{i=0}^{k} |a_i|$, con lo que $f \in \mathcal{O}(n^k)$.

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Para demostrar que $f \in \Omega(n^k)$, debemos encontrar c y n_0 tales que

$$\forall n \geq n_0, c \cdot n^k \leq \sum_{i=0}^k a_i n^i$$
 (1)

Notemos que $\lim_{n\to +\infty} \frac{f(n)}{n^k} = a_k$, y luego asintóticamente tendremos que $c \le a_k$. Vamos a elegir un c que sea menor que a_k y luego encontraremos el valor de n_0 desde el cual se cumple (1).

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Tomemos $c = \frac{a_k}{2}$:

$$\frac{a_k}{2} \cdot n^k \le \sum_{i=0}^k a_i n^i$$

$$\le a_k \cdot n^k + \sum_{i=0}^{k-1} a_i n^i$$

$$\le \frac{a_k}{2} \cdot n^k + \frac{a_k}{2} \cdot n^k + \sum_{i=0}^{k-1} a_i n^i$$

$$\Rightarrow \frac{a_k}{2} \cdot n^k \ge -\sum_{i=0}^{k-1} a_i n^i$$

Teorema

Si
$$f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$$
, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Podemos relajar la condición:

$$\frac{a_k}{2} \cdot n^k \ge \sum_{i=0}^{k-1} |a_i| n^i$$
 Dividimos por n^{k-1}
$$\frac{a_k}{2} \cdot n \ge \sum_{i=0}^{k-1} |a_i| n^{i-(k-1)}$$
 Como $n^{i-(k-1)} \le 1$, relajamos de nuevo
$$\frac{a_k}{2} \cdot n \ge \sum_{i=0}^{k-1} |a_i|$$

$$n \ge \frac{2}{a_k} \sum_{i=0}^{k-1} |a_i|$$

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Tomamos entonces $n_0 = \frac{2}{a_k} \sum_{i=0}^{k-1} |a_i|$, con lo que $f \in \Omega(n^k)$, y por lo tanto $f \in \Theta(n^k)$.

Teorema

Si $f(n) = \log_a(n)$ con a > 1, entonces para todo b > 1 se cumple que f es $\Theta(\log_b(n))$.

Sean $x = \log_a(n)$ e $y = \log_b(n)$. Esto es equivalente a que $a^x = n$ y $b^y = n$, y por lo tanto $a^x = b^y$. Aplicando \log_a a ambos lados, obtenemos que $x = \log_a(b^y)$, y por propiedad de logaritmo se tiene que $x = y \cdot \log_a(b)$. Reemplazando de vuelta $x \in y$, tenemos que $\log_a(n) = \log_b(n) \cdot \log_a(b)$, y por lo tanto para todo $n \ge 1$:

$$\log_a(n) \le \log_a(b) \cdot \log_b(n)$$
$$\wedge \log_a(n) \ge \log_a(b) \cdot \log_b(n)$$

Tomamos entonces $n_0 = 1$ y $c = \log_a(b)$ y tenemos que

$$\forall n \ge n_0 \log_a(n) \le c \cdot \log_b(n) \Leftrightarrow \log_a(n) \in \mathcal{O}(\log_b(n))$$
$$\forall n \ge n_0 \log_a(n) \ge c \cdot \log_b(n) \Leftrightarrow \log_a(n) \in \Omega(\log_b(n))$$

de donde concluimos que $\log_a(n) \in \Theta(\log_b(n))$.

Las funciones más usadas para los órdenes de notación asintótica tienen nombres típicos:

Notación	Nombre
Θ(1)	Constante
$\Theta(\log n)$	Logarítmico
$\Theta(n)$	Lineal
$\Theta(n \log n)$	$n \log n$
$\Theta(n^2)$	Cuadrático
$\Theta(n^3)$	Cúbico
$\Theta(n^k)$	Polinomial
$\Theta(m^n)$	Exponencial
$\Theta(n!)$	Factorial

con $k \ge 0, m \ge 2$.

Outline

Definiendo los algoritmos

Intro al análisis de algoritmos

Notación asintótica

Epílogo

Objetivos de la clase

- □ Comprender concepto de algoritmo
- □ Identificar las componentes del análisis de algoritmos
- □ Demostrar correctitud de algoritmos
- □ Comprender notación asintótica