

19 de junio

Kinepolis Ciudad de la Imager

Madrid

Powered by

plain concepts

¿Autenticación sin complicaciones?

#dotNET2025

ORGANIZATION

plain a concepts

plain a concepts

О NTT Data Microsoft intel intelequia

Raúl Piracés

Full Stack Engineer @ SCRM International Hub

Víctor Rubio

Software Development Engineer @ Plain Concepts

plain a concepts

SAML

OIDC

¿Protocolos de autenticación?

Kerberos

LDAP

¿Por qué OpenID Connect?

Microsoft, Google, Amazon, Okta, AuthO, Apple, GitHub, Salesforce, Twitch

And many more...

OAuth vs OpenID Connect

¿Qué es un token?

- ¿Más común? Entonces hablamos de <u>Json Web Token (JWT)</u>
 - Otros: Opacos / por referencia (string random).
- Siempre los encontraremos en la cabecera "Authorization":
 - Authorization: Bearer U2ltcGxlU3RyaW5nQmFzZTY0RW5jb2RlZA==
- <u>JWT</u>:
 - cabecera.payload.firma
 - En base64 cada "parte" (excepto firma)
 - Utilidades: <u>jwt.io, jwt.ms</u>...

Actores en un flujo de autenticación

- Proveedor de identidad (IdP) servicio que autentica y emite tokens
- Cliente aplicación o servicio que solicita la autenticación al IdP
- Usuario final persona que intenta acceder a un recurso protegido
 - Recursos protegidos datos, servicios que requieren de autenticación (y autorización)

Tipos de aplicaciones cliente

- No interactivas: autenticación sin interacción usuario/en nombre de la aplicación
 - Flujos máquina-máquina, demonios

- Interactivas: interacción entre el usuario físico y el IdP
 - SPAs, aplicaciones de escritorio/móviles

Autenticación cliente no interactivo

- Máquina a máquina (M2M)
- En el estándar:
 - Flujo <u>Client Credentials</u>

#dotNET2025

Demo time!

Autenticación cliente interactivo

- Flujo <u>Authorization code + PKCE</u> (obligatorio con <u>OAuth 2.1</u>)
- Credenciales NO expuestas a la aplicación cliente
- Previene ataques de intercepción

#dotNET2025

#dotNET2025

Demo time!

¿Preocupaciones?

- Autenticación gestionada en frontend
- Protección del token frente a acceso no autorizado
- Token expuesto al cliente (ataques <u>XSS</u>) + robo de token

Backend for Frontend (BFF)

#dotNET2025

¿Que ha cambiado?

- Responsabilidad de autenticación en el backend
- No se tiene un cliente público negociando el token (uso de secreto)
- El frontend no tiene tokens
- Sesión basada en cookies
 - Uso de atributo <u>Same-Site</u>
 - Protección contra XSS Atributos <u>Secure</u> + <u>HttpOnly</u>
 - Protección contra XSRF
 - Uso de una cabecera custom

Demo time!

Todavía pueden robar el token...

Pruebas de posesión (POP)

¿PoP?

- Por defecto los tokens en OIDC no se asocian al cliente
 - Riesgo de fuga de tokens
- Los tokens PoP se asocian al cliente que pide el token
 - Uso de criptografía para garantizar que el emisor del token
 (IdP) es consciente de un secreto del cliente adicional
 - Claim "cnf"
- Uso de Mutual TLS (mTLS) o Demonstrating Proof of Possession (DPoP)

TLS Mutuo

PoP con TLS mutuo

- Asociar un certificado a un Access Token
- Nuevo claim "cnf" que contiene la huella del certificado
- El cliente ha de usar el certificado para llamar a los recursos
- Los recursos protegidos validan el claim "cnf" contra la huella del certificado del cliente

Demo time!

Encriptación asimétrica

Demonstrating PoP (DPoP)

- Asocia una clave asimétrica a un token de acceso
- El IdP incrustará la huella digital de la clave pública dentro del claim "cnf"
- Al llamar a un recurso protegido, se envía el token de acceso y una nueva prueba DPoP firmada con la clave privada
- NO es un mecanismo de autorización

Demo time!

TL;DR

- Uso de protocolos estándares. OIDC es fácil de implementar y ligero
- Dos tipos de clientes
 - No interactivos Flujo Client Credentials
 - Interactivos Authorization Code + PKCE
- **Mínimo recomendado: Patrón BFF** responsabilidad de autenticación en back y permite sesión basada en cookies
- PoP permite asociar tokens a un cliente, minimizando riesgos de fuga de tokens
 - mTLS
 - DPoP

plain a concepts

dotNET by Plain Concepts

Thank you!

Powered by plain a concepts

