What's up LOD Cloud

Observing The State of Linked Open Data Cloud Metadata

Ahmad Assaf¹², Aline Senart² and Raphaël Troncy¹

Abstract. Linked Open Data (LOD) has emerged as one of the largest collections of interlinked datasets on the web. In order to benefit from this mine of data, one needs to access to descriptive information about each dataset (or metadata). This information can be used to delay data entropy, enhance datasets discovery, exploration and reuse as well as helping data portal administrators in detecting and eliminating spam. However, such metadata information is currently very limited to a few data portals where they are usually provided manually, thus being often incomplete and inconsistent in terms of quality. To address these issues, we propose a scalable automatic approach for extracting, validating, correcting and generating descriptive linked dataset profiles. This approach applies several techniques in order to check the validity of the metadata provided and to generate descriptive and statistical information for a particular dataset or for an entire data portal.

Keywords: Linked Data, Dataset Profile, Metadata, Data Quality

- 1 Introduction
- 2 Related Work

3 Experiments and Evaluation

In this section, we provide the experiments and evaluation of the proposed framework. All the experiments are reproducible by our tool and their results are available on the its Github repository.

We have run the framework on the LOD cloud containing 259 datasets at the time of writing this paper. We ran the instance and resource extractor in order to cache the metadata files for these datasets locally and ran the validation process which took around one and a half hour on a 2.6 Ghz Intel Core i7 processor with 16GB of DDR3 memory machine.

A CKAN dataset metadata describes three main sections in addition to the core dataset's properties. Those are the groups, tags and resources. Each section contains a set of metadata corresponding to one or more metadata type. For

example, a dataset resource will have general information such as the resource name, access information such as the resource url and provenance information such as creation date. The framework generates a report aggregating all the problems in all these sections, fixing field values when possible. Errors can be the result of missing metadata fields, undefined field values or field value errors e.g., unreachable URL or incorrect email address.

Figures 1 and 2 show the percentage of errors found in metadata fields by section and by information type respectively. We found out that the most erroneous information for the dataset core information were ownership related as 41% were missing or undefined. Datasets resources have the poorest metadata. 64% of the general metadata, all the access information and 80% of the provenance information contained missing or undefined values. Table 1 shows the top metadata fields errors in each metadata information type.

Metadata Field		Error %	Section	Error Type	Auto Fix
General	group	100%	Dataset	Missing	-
	vocabulary_id	100%	Tag	Undefined	-
	url-type	96.82%	Resource	Missing	-
	mimetype_inner	95.88%	Resource	Undefined	Yes
	hash	95.51%	Resource	Undefined	Yes
	size	81.55%	Resource	Undefined	Yes
Access	cahce_url	96.9%	Resource	Undefined	-
	webstore_url	91.29%	Resource	Undefined	-
	license_url	54.44%	Dataset	Missing	Yes
	url	30.89%	Resource	Unreachable	-
	license_title	16.6%	Dataset	Undefined	Yes
Provenance	cache_last_updated	96.91%	Resource	Undefined	Yes
	webstore_last_updated	95.88%	Resource	Undefined	Yes
	created	86.8%	Resource	Missing	Yes
	last_modified	79.87%	Resource		Yes
	version	60.23%	Dataset	Undefined	-
Ownership	maintainer_email	55.21%	Dataset	Undefined	-
	maintainer	51.35%	Dataset	Undefined	-
	author_email	15.06%	Dataset	Undefined	-
	$organization_image_url$	10.81%	Dataset	Undefined	-
	author	2.32%	Dataset	Undefined	-

Table 1: Top metadata fields error % by type

We notice that 42.85% of the top metadata problems can be fixed automatically. 44.44% of these problems can be fixed by our tool while the others need tools that are plugged into the data portal. We further present and discuss the results grouped by metadata information type below.

Fig. 1: Error % by section

Fig. 2: Error % by information type

3.1 General information

34 datasets (13.13%) did not have valid notes values. tags information for the datasets were complete except for the vocabulary_id as it was missing from all the datasets' metadata. All the datasets groups information were missing display_name, description, title, image_display_url, id, name. After manual examination, we noticed a clear overlap between group and organization information. Many datasets like event-media used the organization field to show group related information (being in LOD Cloud) instead of the publishers details.

3.2 Access information

25% of the datasets access information (being the dataset URL and any URL defined in its groups) has issues related to them (missing or unreachable URLs). Three datasets (1.15%) did not have a URL defined (tip, uniprotdatabases, uniprotcitations) while 45 datasets (17.3%) defined URLs were not accessible at the time writing this paper. One dataset did not have resources information (bio2rdfchebi) while the other datasets had a total of 1068 defined resources. On the datasets resources level, we noticed wrong or inconsistent values in the size and mimetype fields. 20 (1.87%) resources had incorrect mimetype defined, while 52 (4.82%) had incorrect size values. These values have been automatically fixed based on the values defined in the HTTP response header. However, 44 datasets have valid size field values and 54 have valid mimetype field values where they were not reachable, thus providing incorrect information.

15 (68%) fields of all the other access metadata are missing or have undefined values. Looking closely, we noticed that most of these problems can be easily fixed automatically by tools that can be plugged to the data portal. For example, the top six missing fields are the cache_last_updated, cache_url, urltype, webstore_last_updated, mimetype_inner and hash which can be computed and filled automatically. However, the most important missing information which require manual entry are the dataset's name and description

4

were missing from 817 (76.49%) and 98 (9.17%) resources respectively. A total of 334 resources (31.27%) URLs were not reachable, thus affecting highly the availability of these datasets. CKAN resources can be of various predefined types (file, file.upload, api, visualization, codeanddocumentation). The frame-owork also breaks down these unreachable resources according to their types. 211 (63.17%) resources did not have valid resource_type, 112 (33.53%) were files, 8 (2.39%) and one (0.029%) metadata, example and documentation types.

To have more details about the resources URL types, we created a key: objectmeta – fieldvalues group level report on LOD cloud with resources>format:title. This will aggregate the resources format information for each dataset. We found out that only 161 (62.16%) of the datasets valid URLs have SPARQL endpoints defined by api/sparql resource format. 92.27% provided RDF example links and 56.3% provided direct links to RDF down-loadable dumps.

The noisiest part of the access metadata was license information. A total of 43 datasets (16.6%) did not have a defined license_title and license_id fields, where 141 (54.44%) had missing license_url field. However, we managed to normalize 123 (47.49%) of the datasets' license information using the manual mapping file.

3.3 Ownership information

Ownership information is divided into direct ownership (author and maintainer) and organization information. Four fields (66.66%) of the direct ownership information were missing or undefined. The breakdown for the missing information is: 55.21% maintainer_email, 51.35% maintainer, 15.06% author_email, 2.32% author. Moreover, our framework performs checks to validate existing email values. 11 (0.05%) and 6 (0.05%) of the defined author_email and maintainer_email fields were not valid email addresses respectively.

For the organization information, two field values (16.6%) were missing or undefined. 1.16% of the organization_description and 10.81% of the organization_image_url information with two out of these URLs were unreachable.

3.4 Provenance information

80% of the resources provenance information were missing or undefined. However, most of the provenance information e.g., metadata_created, metadata_modified) can be computed automatically by tools plugged into the data portal. The only field requiring manual entry is the version field which was found to be missing from 60.23% of the datasets.

4 Conclusion and Future Work

In this paper, we proposed a scalable automatic approach for extracting, validating, correcting and generating descriptive linked dataset profiles. This approach

applies several techniques in order to check the validity of the metadata provided and to generate descriptive and statistical information for a particular dataset or for an entire data portal. Based on our experiments running the tool on the LOD cloud, we discovered that the general state of the datasets needs attention as most of them lack informative access information and their resources suffer low availability. These two metrics are of high importance for enterprises looking to integrate and use external linked data.

It has been noticed that the issues surrounding metadata quality affect directly dataset search as data portals rely on such information to power their search index. We noted the need for tools that are able to identify various issues in this metadata and correct them automatically. We found out that 32.25% of all the metadata information can be automatically fixed, on which 50% of them can be directly fixed by our framework. The rest are mainly provenance information that requires special treatment.

As part of our future work, we plan to introduce workflows that will be able to correct the rest of the metadata either automatically or through intuitive manually-driven interfaces. We also plan to integrate statistical and topical profilers to be able to generate full comprehensive profiles. We also intend to suggest a ranked standard metadata model that will help generate more accurate and scored metadata quality profiles. We also plan to run this tool on various CKAN based data portals, schedule periodic reports to monitor the evolvement of datasets metadata. Finally, at some stage, we plan to extend this tool for other data portal types like DKAN and Socrata.