Name and Student Number:

Yang Zhou 2022282104(HEU) 34463801(UOS)

Techno-Economic Study

Table 1: Base Calculations

Speed, V [kts]	Voyage Days	Loading Days	Total Voyage	Voyages per Year	Sea Days per Year
			Days		
15	16.6666667	1.8	18.46666667	18.95	315.88
16	15.625	1.8	17.425	20.08	313.85
17	14.7058824	1.8	16.50588235	21.20	311.83

Figure 1: Influence on RFR of varying ship speed and fuel costs

Figure 2: Influence of L/B on ship costs.

Figure 3: Required Freight Rate against CB

Table 2: Ship Dimensions

	ShipDes	Maxsurf	% Difference
LBP [m]	135.4	137.785	1.730957651
B mld [m]	20.83	20.774	-0.269567729
D mld [m]	12.92	13.08	1.22324159
D mid deck [m]	7.5	7.5	0
T (load) [m]	9.05	9.050	0
C _B (load)	0.653	0.653	0
Displacement [tonnes]	17074	17185	0.645912133
Cargo DW[tonnes]	10500		
Total DW[tonnes]	11749		
Machinery Mass [tonnes]	726		
Outfit Mass [tonnes]	1156		
Steel Mass [tonnes]	3338		
Lightship Mass [tonnes]	5325		
(C _w) _f at depth D ₁		0.788	
Service Speed [knots]	17		
Endurance [nm]	12000		
Range [nm]	6000		
Installed Power [kW]	7116		
Service Power [kW]	5474		

APPENDIX A – Techno-Economics

Table 3: Required Freight Rates for a range of ship speeds and fuel prices

Speed	£40/Tonne	£55/Tonne	£70/Tonne
15	11.00	11.47	11.94
16	10.94	11.46	11.97
17	<mark>10.91</mark>	11.46	12.02

Table 4: Ship costs for a range of L/B ratios.

L/B	AAC	AFC	Total Cost
5.5	651194.97	350446.66	1001641.6
6.0	650129.66	334629.99	984759.65
<mark>6.5</mark>	<mark>655073.67</mark>	<mark>329631.26</mark>	<mark>984704.93</mark>
7.0	664567.42	332738.99	997306.41

Table 5: Required freight rates for a range of C_B values at the optimum L/B ratio.

Св	RFR
0.60	11.18
0.65	10.91

0.70	11.47
0.75	14.09
0.80	Out of range
0.85	Out of range

APPENDIX B – Floodable Length Curve (Please plot graph rather than use screenshot)

APPENDIX C – EEDI

Table C1: Main and Auxiliary Engine Data

Installed Power MPP [kW]	6990
PME [kW]	5242.5
PAE [kW]	262.125
SFC ME [g/KWh]	171
SFC AE [g/KWh]	215
CF HFO	3.114
CF DO	3.206
Ship Design Speed [knots]	16

Table C2: Deadweight components

Cargo DWT	10500
OF [t]	950
DO [t]	150
LO [t]	50
FW [t]	200
Stores [t]	100
Crew/PX/Sundries [t]	50
Swimming Pool Water [t]	43.4
Total DWT	12043.4

Table C3: EEDI values

Install power = 6990 kW (6 cylinder type Scitofy 6690km requirement) PM- 6940 X 0.75 = 5242.5 kw POE = PINE . 0.05 = 262.125 KW Strag = 215 SFCME = 17/ CFHPD = 3.144 V = 16 knot DWT = 12043.4 t According to the famula. EEDI= 5242.5x 3.144×171+262.125 x 3.206 x 215 12043.4 X16 - 15.564 Type, cargo, so a = 107.48 c= 0.216 So EEDI not = 107.48x 12043.4 = 14. 122 not satisfy. So we cold more ballast water to increase DWT to 13700 EEDI=13.68 EEDI = 13.734 13734 So we need extre about 1700 ton bullast water or cargo or other things to increase the DWT to make EEDI < EEDING

EEDI [g/t-nm]	13.68
Reference EEDI [g/t-nm]	13.734

APPENDIX D – Tonnage

$$GT = K_1 V$$

$$NT = K_2 V_c \left(\frac{4T}{3D}\right)^2 + K_3 \left[N_1 + \frac{N_2}{10}\right]$$

Table D1: Ship volumes

Underdeck Volume [m³]	19181.015
Forecastle volume [m³]	1166.956
Superstructure volume Deck1 [m³]	1168.75
Superstructure volume Deck2 [m³]	1111.15
Superstructure volume Deck3 [m³]	894.1
Superstructure volume Deck4 [m³]	772.9
Superstructure volume Deck5 [m³]	580.75
Total Superstructure volume [m³]	4527.65

Table D2: Values used in tonnage calcs

 $K1 = 0.2 + 0.02 \log 10V$

 $K_2 = 0.2 + 0.02 \log 10 V_c$

K_1	0.3079
V	24875.621
K ₂	0.30623
V _c	20499.621
$\left(\frac{4T}{3D}\right)$	0.97222
K ₃	1.25
N ₁	46
N ₂	0

Table D3: Tonnage Values

GT	7659.588
NT	5990.91

APPENDIX E – Freeboard

Ship Type	В
Tabular Freeboard [mm]	1979
Correction to the freeboard for ships under 100 m in length	0
Correction for block coefficient	1.032
Correction for depth	766.75
Correction for position of deck line	0
Correction for recess in freeboard deck	0
Correction for Superstructure and Trunks	-328.49
Correction for Sheer	356.3
Minimum Summer freeboard [mm]	2836.888
Minimum Bow Height [mm]	5806.74

d ₁ [m]	10.2
$C_B@d_1$	0.724
C_{wf}	0.768
Width of Superstructure [m]	18
Length of Superstructure on main deck [m]	26.6
Forecastle height [m]	2.63
Forecastle length [m]	27.3
Effective Superstructure Length [m]	53.2

Station	Factor	Ideal	Actual	Ideal *Factor	Actual *factor	Ideal	Actual	Deficit	Average	Sheer Corr
AP	1	1366.67	0	1366.67	0	3646.22	0	455.78		
1/6L from										
AP	3	606.8	0	1820.34	0					
1/3L from										
AP	3	153.07	0	459.21	0					
Amidships	1	0	0	0	0				549.73	356.3
Amidships	1	0	0	0	0	7292.52	1423.09	733.68	349.73	330.3
1/3L from										
FP	3	306.133	0	918.39	0					
1/6L from										
FP	3	1213.6	141.03	3640.8	423.09					
FP	1	2733.33	1000	2733.33	1000					

APPENDIX F – General Arrangement Results (Engine Room Length, Capacities, Water ballast CG)

Figure F1: Plot of Engine Room Length against Power

Figure F2: Engine Layout Diagram showing required power.

Table F0 - Frame spacing

Ship length	Lloyds req. frame spacing (m)	Chosen frame spacing -l (m)	Number of frames - n at spacing - I	nxl
FP to .05L	0.6	0.6	12.0000	7.2
.05L to .2 L from FP	0. 693	0.6	32	19. 2
.2L to .25L from FP	0.0733	0. 7	10	7
.25L from FP to .15L from AP	0.0733	0. 7	115	80.5
.15L to .05L from AP	0. 733	0. 7	19	13.3
.05L to AP	0.6	0.6	12	7.2
			TOTAL	134.4

Table F1: Bulkheads

Mana	1
Name	Location
1	-63.200
2	-45.500
3	-29.400
4	-18.900
5	5.600
6	38.500
7	58.600

Table F2: Room Definitions

Name	Туре	Intact Perm. %	Damaged Perm. %	Specific gravity	Fluid type	Boundary Surfaces	Aft m	Fore m	F.Port m	F.Stbd.	F.Top m	F.Bott.	A.Port m	A. Stbd.	A.Top m	A.Bott. m	Formed	Calibrated
ER	Compartm	85	85			none	-45.500	-29.400	-10.500	10.500	12.000	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	No
Sharft Tunnel	Compartm	85	85			none	-63.200	-45.500	-2.000	2.000	4.000	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	No
STL	Compartm	85	85			none	-63.200	-45.500	-10.500	-2.000	4.000	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects;	No
STR	Compartm	85	85			none	-63.200	-45.500	2.000	10.500	4.000	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects;	No
Fore peak	Tank	98	98	1.025		none	58.600	67.000	-10.500	10.500	8.750	0.000	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
Aft peak	Tank	98	98	1.025		none	-67.000	-63.200	-10.500	10.500	8.750	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
hold1	Tank	90	63	0.625		none	38.500	58.600	-10.500	10.500	12.000	3.500	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
hold2	Tank	91	63	0.625		none	5.600	38.500	-10.500	10.500	12.000	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
FO	Tank	98	98	0.93		none	-29.400	-18.900	-3.000	3.000	10.800	3.300	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
FO-L	Tank	98	98	0.93		none	-29.400	-18.900	-7.000	-3.000	10.800	3.300	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
FO-R	Tank	98	98	0.93		none	-29.400	-18.900	3.000	7.000	10.800	3.300	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
LO	Tank	98	98	0.9		none	-29.400	-18.900	-1.000	1.000	3.300	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
LO-L	Tank	98	98	0.9		none	-29.400	-18,900	-2.000	-1.000	3.300	1,200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
LO-R	Tank	98	98	0.9		none	-29.400	-18,900	1.000	2.000	3.300	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
DO	Tank	98	98	0.85		none	-29.400	-18.900	-4.000	4.000	12.000	10.800	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
DOL	Tank	98	98	0.85		none	-29.400	-18.900	-8.000	-4.000	12.000	10.800	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
DOR	Tank	98	98	0.85		none	-29.400	-18.900	4.000	8.000	12.000	10.800	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
FWL	Tank	98	98	1		none	-29.400	-18.900	-10.500	-8.500	10.000	3.300	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
FWR	Tank	98	98	1		none	-29.400	-18.900	8.500	10.500	10.000	3.300	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
hold4	Tank	95	63	0.625		none	-63.200	-45.500	-10.500	10.500	12.000	4.000	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
hold3	Tank	95	63	0.625		none	-18.900	5.600	-10.500	10.500	13.000	1.200	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
DB3	Tank	98	98	1.025		none	-14.700	5.600	-10.500	10.500	1.200	0.000	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
DB2	Tank	98	98	1.025		none	5.600	38.500	-10.500	10.500	1.200	0.000	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
DB1	Tank	98	98	1.025		none	38.500	58.600	-10.500	10.500	3.500	0.000	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
Steering Gea	r Compartm	85	85			none	-71.759	-63.200	-10.500	10.500	12.000	8.750	Prismatic	Prismatic	Prismatic	Prismatic	Yes [16 sects:	No
Chain Locker	Compartm	85	85			none	58.600	67.711	-10.500	10.500	16.000	8.750	Prismatic	Prismatic	Prismatic	Prismatic	Yes [17 sects:	No
DBBT	Tank	98	98	1.025		none	-29.400	-18,900	-10.500	10.500	1.200	0.000	Prismatic	Prismatic	Prismatic	Prismatic	Yes [13 sects]	Yes
DBER	Tank	98	98	1.025		none	-45.500	-29,400	-10,500	10.500	1,200	0.000	Prismatic	Prismatic	Prismatic		Yes [13 sects]	Yes
DBH4	Tank	98	98	1.025		none	-51.800	-45.500	-10,500	10.500	1,200	0.000	Prismatic	Prismatic	Prismatic		Yes [13 sects]	Yes
DBSL	Tank	98	98	1.025		none	-29.400	-18,900	-10.500	-2.000	3.300	1,200	Prismatic	Prismatic	Prismatic		Yes [13 sects]	Yes
DBSR	Tank	98	98	1.025		none	-29.400	-18,900	2.000	10.500	3.300	1,200	Prismatic	Prismatic	Prismatic		Yes [13 sects]	Yes
forecastle	Tank	91	63	0.63		none	5 600	58,600	-10.500	10.500	16,000	12.000	Prismatic	Prismatic	Prismatic		Yes [16 sects]	Yes

Table F3: Fluid Volumes

Name	Total Mass tonne	Total Vol. m^3	Long. Arm m	Trans. Arm m	Vert. Arm m		
Fore peak	134.857	131.568	61.135	0	5.745		
DB1	539.083	525.935	46.007	0	2.036		
DB2	609.712	594.841	20.905	0	0.667		
DB3	409.663	399.671	-4.442	0	0.666		

Aft Tank	24.525	23.927	-63.52	0	1.2
Total Fixed	1717.84	1675.94 2	24.675	0.000	1.595
DBB T	168.619	164.506	-23.894	0	0.674
DBE R	152.532	148.811	-36.309	0	0.689
DBH 4	27.941	27.259	-48.37	0	0.713
DBS R	157.704	153.857	-23.97	5.586	2.286
DBSL	157.704	153.857	-23.97	-5.586	2.286
Total			-27.809	0.000	1.444
Trimmin	664.5	648.29			
g				_	
FO	430.637	463.05	-24.15	0	7.05
FO-L	287.091	308.7	-24.15	-5	7.05
FO-R	287.091	308.7	-24.15	5	7.05
Total FO	1004.81 9	1080.45	-24.150	0.000	7.050
DO	83.966	98.784	-24.15	0	11.4
DOL	41.983	49.392	-24.15	-6	11.4
DOR	41.983	49.392	-24.15	6	11.4
Total DO	167.932	197.568	-24.150	0.000	11.400
LO	38.896	43.218	-24.15	0	2.25
LO-L	19.448	21.609	-24.15	-1.5	2.25
LO-R	19.448	21.609	-24.15	1.5	2.25
Total LO	77.792	86.436	-24.150	0.000	2.250
FWL	122.957	122.957	-23.92	-9.411	6.857
FWR	122.957	122.957	-23.92	9.411	6.857
Total FW	245.914	245.914	-23.929	0.000	6.857

1500T ballast water CG in 25.9m

	Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Total FSM tonne.m	FSM Type
1	Lightship	0	5162.440	0.000			-8.500	0.000	10.010	0.000	User Specifie
2	Fore peak	100%	134.857	134.857	131.568	131.568	61.135	0.000	5.745	0.000	Maximum
3	Aft peak	0%	24.525	0.000	23.927	0.000	-63.522	0.000	1.200	0.000	Maximum
4	hold1	0%	1187.668	0.000	1900.268	0.000	46.545	0.000	3.500	0.000	Maximum
5	hold2	0%	4076.668	0.000	6522.669	0.000	21.118	0.000	1.200	0.000	Maximum
6	FO	0%	430.637	0.000	463.050	0.000	-24.150	0.000	3.300	0.000	Maximum
	FO-L	0%	287.091	0.000	308.700	0.000	-24.150	-5.000	3.300	0.000	Maximum
3	FO-R	0%	287.091	0.000	308.700	0.000	-24.150	5.000	3.300	0.000	Maximum
)	LO	0%	38.896	0.000	43.218	0.000	-24.150	0.000	1.200	0.000	Maximum
10	LO-L	0%	19.448	0.000	21.609	0.000	-24.150	-1.500	1.200	0.000	Maximum
11	LO-R	0%	19.448	0.000	21.609	0.000	-24.150	1.500	1.200	0.000	Maximum
2	DO	0%	83.966	0.000	98.784	0.000	-24.150	0.000	10.800	0.000	Maximum
3	DOL	0%	41.983	0.000	49.392	0.000	-24.150	-6.000	10.800	0.000	Maximum
14	DOR	0%	41.983	0.000	49.392	0.000	-24.150	6.000	10.800	0.000	Maximum
5	FWL	0%	122.957	0.000	122.957	0.000	-23.346	-9.157	3.300	0.000	Maximum
6	FWR	0%	122.957	0.000	122.957	0.000	-23.346	9.157	3.300	0.000	Maximum
7	hold4	0%	957.864	0.000	1532.583	0.000	-51.597	0.000	4.000	0.000	Maximum
8	hold3	0%	3306.808	0.000	5290.892	0.000	-6.511	0.000	1.200	0.000	Maximum
9	DB3	100%	409.663	409.663	399.671	399.671	-4.442	0.000	0.666	0.000	Maximum
0.0	DB2	100%	609.712	609.712	594.841	594.841	20.905	0.000	0.667	0.000	Maximum
1	DB1	100%	539.083	539.083	525.935	525.935	46.007	0.000	2.036	0.000	Maximum
2	DBBT	0%	168.619	0.000	164.506	0.000	-26.318	0.000	0.000	0.000	Maximum
:3	DBER	0%	152.532	0.000	148.811	0.000	-39.543	0.000	0.000	0.000	Maximum
4	DBH4	0%	27.941	0.000	27.259	0.000	-47.581	0.000	0.000	0.000	Maximum
5	DBSR	0%	157.704	0.000	153.857	0.000	-23.886	5.138	1.200	0.000	Maximum
16	DBSL	0%	157.704	0.000	153.857	0.000	-23.886	-5.138	1.200	0.000	Maximum
27	forecastle	0%	735.182	0.000	1166.956	0.000	29.292	0.000	12.000	0.000	Maximum
18	Total Loadcase			1693.315	20347.971	1652.015	25.968	0.000	1.507	0.000	
29	FS correction								0.000		1
0	VCG fluid								1.507		

Table F4: Cargo Capacity

	Total Mass	Total Vol.	Long. Arm	Trans. Arm	Vert. Arm
Name	tonne	m^3	m	m	m
Hold 1	1187.668	1900.268	46.938	0	7.942
Hold 2	4076.668	6522.669	21.628	0	6.666
Hold 3	3306.808	5290.892	-6.622	0	6.675
Hold 4	957.864	1532.583	-52.87	0	8.715
Forecastle	735.182	1166.956	41.836	0	13.207
Total Cargo	10264.19	16413.368	9.950	0.000	7.476

NEED (10500-0.9*10264.19)/12 =106 CONTAINER in the deck

APPENDIX G Intact and Damage Stability

Lightship VCG and LCG

Table G1 – Lightship Loadcase (including CoGs)

Load cases (Full load and Ballast) - Hydrostatics (inc Trim)

Table G2 – Full Load Loadcase (including CoGs)

Table G3 – Ballast Loadcase (including CoGs)

Table G4 – Equilibrium draught and trim for Full load and Ballast loadcases (with comments if unable to meet requirements)

GZ curve (intact)

Table G5 – Large Angle Stability in Full Load against IMO criteria.

Figure G1 - GZ curve for full load

Probabilistic Damage Results

Table G6 – Damage Stability Results for Full Load (with comments if failed to meet requirements)

Description	Status	Case type	Damage (room indices)	pi	v factor	pi.v	stab. range deg	GZ max. m	Equi. angle deg	Immers ion angle deg	Angle of vanishi ng stab. deg	DF angle deg	GZmax . angle deg	ĸ	s factor	A facto	R (requ	Pass/F
Deepest subdivision draft (9							
fullload: Z1; H3; Alt.1/3 (stb			6,25	0.0373	0.1612	0.0060	55.0	0.414		16.7 (P	55.0	n/a	27.3		1.0000	0.0060		
fullload: Z1; H3; Alt.2/3 (stb			6,25				55.0	0.414		16.7 (P	55.0	n/a	27.3	1.000	1.0000			
fullload: Z1; H3; Alt.3/3 (stb			6,25				55.0	0.414		16.7 (P	55.0	n/a	27.3	1.000	1.0000			
fullload: Z1; Hx; Alt.1/4 (stb			6,25	0.0373	0.8387	0.0313	55.0	0.414		16.7 (P	55.0	n/a	27.3		1.0000	0.0313		
fullload: Z1; Hx; Alt.2/4 (stb			6,25				55.0	0.414		16.7 (P	55.0	n/a	27.3	1.000	1.0000			
fullload: Z1; Hx; Alt.3/4 (stb			6,25				55.0	0.414		16.7 (P	55.0	n/a	27.3	1.000	1.0000			
fullload: Z1; Hx; Alt.4/4 (stb			25				55.0	0.413		16.7 (P	55.0	n/a	27.3	1.000	1.0000			
fullload: Z2; Hx; Alt.1/3 (stb			2,4,20,29	0.0629	1.0000	0.0629	56.1	0.430		17.1 (P	56.5	n/a	29.1		1.0000	0.0629		
fullload: Z2; Hx; Alt.2/3 (stb			2,4,20				55.9	0.427		17.1 (P	56.3	n/a	29.1	1.000	1.0000			
fullload: Z2; Hx; Alt.3/3 (stb			20				56.1	0.423		17.1 (P	56.1	n/a	30.0	1.000				
fullload: Z3; Hx; Alt.1/2 (stb			1,28	0.0616	1.0000	0.0616	33.7	0.194		3.0 (Pa	33.7	n/a	16.4			0.0616		
fullload: Z3; Hx; Alt.2/2 (stb			1	0.000			33.7	0.192		3.0 (Pa	33.7	n/a	16.4	1.000	1.0000			
fullload: Z4; Hx; Alt.1/2 (stb			9,11,12,14,15,17	0.0269	1.0000	U.0269	56.0	0.461		17.4 (P	56.0	n/a	27.3		1.0000	U.0269		
fullload: Z4; Hx; Alt.2/2 (stb			9,11,12,14,15,17				56.1	0.457		17.4 (P	56.1	n/a	27.3	1.000	1.0000			
fullload: Z5; Hx; Alt.1/2 (stb			21,22,27	0.1122	1.0000	0.1122	50.2	0.308		17.1 (P	50.2	n/a	26.4		1.0000	0.1122		
fullload: Z5; Hx; Alt.2/2 (stb			21	0.4700	4 0000	0.4700	46.4	0.222		18.3 (P	46.4	n/a	26.4	1.000		0.4700		
fullload: Z6; Hx; Alt.1/2 (stb			8,23	0.1709	1.0000	0.1709	49.1	0.300		16.4 (P	49.1	n/a	25.5		1.0000	0.1709		
fullload: Z6; Hx; Alt.2/2 (stb			8				40.9	0.166		17.1 (P	40.9	n/a	24.5	1.000	1.0000			
fullload: Z7; Hx; Alt.1/2 (stb			7,24	0.0827	1.0000	0.0827	58.6	0.471		15.6 (P	58.6	n/a	28.2		1.0000	0.0827		
fullload: Z7; Hx; Alt.2/2 (stb			7				54.8	0.407		16.2 (P	54.8	n/a	27.3	1.000				
fullload: Z8; Hx; Alt.1/2 (stb			5,26	0.0393	1.0000	0.0393	55.4	0.418		16.4 (P	55.4	n/a	27.3		1.0000	0.0393		
fullload: Z8; Hx; Alt.2/2 (stb		Final stage	26			0.5040	55.3	0.415	0.0	16.8 (P	55.3	n/a	27.3	1.000	1.0000	0.5010	0.5004	
Attained partial index As			-			0.5942										0.5942	0.5031	Pass
0.411.4.4.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.			-										-					
Partial subdivision draft Los		Carl street	0.00	0.0272	0.0400	0.0000	04.4	4.000	0.0	26.7 (0)	04.4	-1-	10.7	4 000	4 0000	0.0000		
ballast-in-mid: Z1; H3; Alt.1			6,25	0.03/3	0.6126	0.0228	81.1	1.658		35.7 (P	81.1	n/a	42.7		1.0000	0.0228		
ballast-in-mid: Z1; H3; Alt.2			6.25				81.1	1.658		35.7 (P	81.1	n/a	42.7	1.000				
ballast-in-mid: Z1; H3; Alt.3			6.25	0.0272	0.3873	0.0444	81.1	1.658		35.7 (P	81.1	n/a	42.7		1.0000	0.0444		
ballast-in-mid: Z1; Hx; Alt.1 ballast-in-mid: Z1; Hx; Alt.2			6,25	0.0373	0.30/3	0.0144	81.1	1.658		35.7 (P	81.1	n/a	42.7	1.000	1.0000	0.0144		
			6,25				81.1			35.7 (P		n/a						
ballast-in-mid: Z1; Hx; Alt.3			25				81.1	1.658		35.7 (P	81.1	n/a	42.7	1.000	1.0000			
ballast-in-mid: Z1; Hx; Alt.4			2,4,29	0.0000	0.0485	0.0020	81.0	1.765				n/a	42.7		1.0000	0.0020		
ballast-in-mid: Z2; H2; Alt.1 ballast-in-mid: Z2; H2; Alt.2			2,4,29	0.0629	0.0405	0.0030	81.2	1.759		34.0 (P	81.2 81.5	n/a n/a	42.7	1.000		0.0030		
ballast-in-mid: Z2; Hx; Alt.1			2,4,20,29	0.0000	0.9514	0.000	77.9	1.687		30.7 (P	78.2	n/a	40.9		1.0000	0.0500		
ballast-in-mid: Z2; Hx; Alt.2			2.4.20	0.0025	0.5514	0.0550	78.1	1.682		30.7 (P	78.3	n/a	40.9	1.000		0.0550		
ballast-in-mid: Z2; Hx; Alt.3			20				77.8	1.593		33.1 (P	77.8		40.9	1.000				
ballast-in-mid: Z2; Hx; Alt.1			1.28	0.0646	1.0000	0.0616	79.0	1.641		26.4 (P	79.0	n/a n/a	40.9		1.0000	0.0616		
ballast-in-mid: Z3; Hx; Alt. I			1,20	0.0016	1.0000	V.0010	78.2	1.539		27.6 (P	78.2	n/a n/a	40.9	1.000	1.0000	0.0016		
ballast-in-mid: Z4; Hx; Alt.1			9.11.12.14.15.17	0.0260	1 0000	0.0260	81.0	1.802		35.2 (P	81.0	n/a	42.7		1.0000	0.0260		
ballast-in-mid: Z4; Hx; Alt.1 ballast-in-mid: Z4; Hx; Alt.2			9,11,12,14,15,17	0.0209	1.0000	U.U209	80.4	1.725		36.1 (P	80.4	n/a n/a	42.7	1.000		0.0269		
ballast-in-mid: Z4; Hx; Alt.2 ballast-in-mid: Z5; Hx; Alt.1			9,11,12,14,15,17 21,22,27	0.4400	1,0000	0.4422	75.5	1.725		28.4 (P	75.5	n/a n/a	40.9		1.0000	0.1122		
ballast-in-mid: 25; Hx; Alt.1 ballast-in-mid: 25; Hx; Alt.2			21,22,27	0.1122	1.0000	0.1122	78.3	1.192		28.4 (P	78.3	n/a n/a	40.9	1.000		0.1122		
ballast-in-mid: Z6; Hx; Alt.1			8,23	0.1700	1.0000	0.1700	73.6	0.968		30.1 (P	73.6	n/a	42.7		1.0000	0.1700		
ballast-in-mid: Z6; Hx; Alt. I			8	0.1/09	1.0000	0.1/09	79.8	1.046		30.1 (P	79.8	n/a n/a	45.5	1.000	1.0000	0.1709		
ballast-in-mid: Z5; Hx; Alt.2 ballast-in-mid: Z7; Hx; Alt.1			7.24	0.0927	1.0000	0.0027	75.3	1.531		35.6 (P	75.3	n/a n/a	40.9		1.0000	0.0927		
ballast-in-mid: Z7; HX; Alt.1 ballast-in-mid: Z7; HX; Alt.2			7	0.0827	1.0000	0.0827	80.4	1.602			80.4		42.7	1.000	1.0000	0.0827		
			5	0.0202	0.4224	0.0470				36.2 (P		n/a				0.0470		
ballast-in-mid: Z8; H1 (stbd)			5.26		0.4331		80.7	1.657		35.1 (P	80.7	n/a	42.7		1.0000			
ballast-in-mid: Z8; Hx; Alt.1 ballast-in-mid: Z8; Hx; Alt.2			26	0.0393	0.0668	0.0222	81.2	1.657		35.1 (P 35.7 (P	80.7	n/a n/a	42.7		1.0000	0.0222		
Attained partial index Ap		armai stage	20			0.5042	01.2	1.007	0.0	35.7 (P	01.2	n/a	42.1	1.000	1.0000	0.5043	0.5024	D
						0.5942										0.5942	0.5031	Pass