Linear Algebra

Linear Dependence

Consider a set of k n-dimensional vectors $\{X_1, X_2, ..., X_k\}$. These vectors are,

Definition 0.1. linearly dependent if there exists a set of scalars $\{a_1, a_2, \dots, a_k\}$ such that

$$a_1X_1 + a_2X_2 + \dots + a_kX_k = 0$$

where at least one $a_i \neq 0$.

Alternatively, they are,

Definition 0.2. linearly independent if the only set of scalars $\{a_1, a_2, \dots, a_k\}$ that satisfies the above condition is $a_1, a_2, \dots, a_k = 0$.

If we collect these k column-vectors in a matrix, $X = [X_1 \ X_2 \dots X_k]$, then the linear dependence condition can be written as,

$$a_1X_1+a_2X_2+\ldots+a_kX_k=\begin{bmatrix}X_1\ X_2\ldots X_k\end{bmatrix}\begin{bmatrix}a_1\\a_2\\\vdots\\a_k\end{bmatrix}=Xa=0$$

Given any $n \times k$ matrix X, its columns are,

Definition 0.3. linearly dependent if there exists a vector $a \in \mathbb{R}^k$ such that $a \neq 0$ and Xa = 0; or,

Definition 0.4. linearly independent if the only vector $a \in \mathbb{R}^k$ such that Xa = 0 is a = 0.

For any matrix there may be more than one vector $a \in \mathbb{R}^k$ such that Xa = 0. Indeed, if both $a_1, a_2 \in \mathbb{R}^k$

satisfy this condition and $a_1 \neq a_2$ then you can show that any linear combination of $\{a_1, a_2\}$ satisfies the

condition $X(a_1b_1 + a_2b_2) = 0$ for $b_1, b_2 \in \mathbb{R}$. Thus, there exists an entire set of vectors which satisfy this condition. This set is referred to as the,

Definition 0.5. null space of X,

$$\mathcal{N}(X) = \{a \in \mathbb{R}^k: \ Xa = 0\}$$

It should be evident from the definition that if the columns of X are linearly independent then $\mathcal{N}(X) = \{0\}$, a singleton. That is, it just includes the 0-vector.

Vector spaces, bases, and spans

Here, we concern ourselves only with real vectors from \mathbb{R}^n .

Definition 0.6. A vector space, denoted \mathcal{V} , refers to a set of vectors which is closed under finite addition and scalar multiplication.

Definition 0.7. A set of k linearly independent vectors, $\{X_1, X_2, \dots, X_k\}$, forms a basis for vector space \mathcal{V} if $\forall y \in \mathcal{V}$ there exists a set of k scalars such that,

$$y = X_1b_1 + X_2b_2 + \dots + X_kb_k$$

Based on these definitions, it is evident that for the Euclidean space, \mathbb{E}^n , any n linearly independent vectors from \mathbb{R}^n is a basis. For example, any point in \mathbb{E}^2 can be defined as a multiple of,

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Consider again the $n \times k$ matrix X, where k < n. Then we define the,

Definition 0.8. column space (or span) of X, denoted S(X), as the vector space generate by the k columns of X. Formally,

$$\mathcal{S}(X) = \{ y \in \mathbb{R}^n : \ y = Xb \quad \text{for some } b \in \mathbb{R}^k \}$$

A property to note about the span or column space X is,

Result: S(X) = S(XX') :::

where XX' is a $n \times n$ matrix.

Finally, we can define the,

Definition 0.9. orthogonal column space (or orthogonal span) of X as,

$$\mathcal{S}^{\perp}(X) = \{y \in \mathbb{R}^k: \ y'x = 0 \quad \forall x \in \mathcal{S}(X)\}$$

Rank

Consider a $n \times k$ matrix X, the

Definition 0.10. row rank of X is the maximum number of linearly independent rows:

$$rowrank(X) \le n$$

We say that matrix X has full row rank if rowrank(X) = n.

The,

Definition 0.11. column rank of X is the maximum number of linearly independent columns:

$$colrank(X) \leq k$$

We say that matrix X has full column rank if colrank(X) = k.

An important result is,

• **Result:** the rank of X:

$$r(X) = rowrank(X) = colrank(X) \Rightarrow r(X) \leq min\{n, k\}$$

In addition, since the r(X) depends on the number of linearly independent columns, we can say that,

• **Result:** the dimension of S(X), dim(S(X)), is given by the r(X).

Here are a few additional results,

- Result: r(X) = r(X')
- Result: $r(XY) \leq min\{r(X), r(Y)\}$
- Result: r(XY) = r(X) if Y is square and full rank
- Result: $r(X+Y) \le r(X) + r(Y)$

Properties of square matrices

Consider the case of a square, $n \times n$, matrix A. We say that,

Definition 0.12. A is singular if the r(A) < n,

or that,

Definition 0.13. A is non-singular if the r(A) = n.

The singularity of a square matrix is important as it determines the invertibility of a matrix, which typically relates the existence of a unique solution in systems of linear equations. Here are a few key results,

- Result: There exists a matrix $B = A^{-1}$, such that $AB = I_n$ (where I_n is the identity matrix), if and only if A is non-singular.
- Result: A is non-singular if and only if the determinant of A is non-zero: $det(A) \neq 0.$
- **Result:** Likewise, A is singular if and only if det(A) = 0.
- **Result:** $AA^{-1} = A^{-1}A = I$
- Result: $(A')^{-1} = (A^{-1})'$
- Result: If their respective inverses exist, then $(AB)^{-1} = B^{-1}A^{-1}$.
- Result: det(AB) = det(A)det(B)
- Result: $det(A^{-1}) = det(A)^{-1}$

For any square matrix A,

Definition 0.14. the *trace* of A is the sum of all diagonal elements:

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Regarding the trace of a square matrix, here are a few important results:

- Result: tr(A+B) = tr(A) + tr(B)
- Result: $tr(\lambda A) = \lambda tr(A)$ where λ is a scalar
- Result: tr(A) = tr(A')

¹These notes do not cover how to calculate the determinant of a square matrix. You should be able to find a definition easily online.

- Result: tr(AB) = tr(BA) where AB and BA are both square, but need not be of the same order.
- Result: $||A|| = (tr(A'A))^{1/2}$

Properties of symmetric matrices

A symmetric matrix has the property that A = A'. Therefore, A must be square.

Here are a few important results concerning symmetric matrices.

- Result: A^{-1} exists if $det(A) \neq 0$ and r(A) = n
- Result: A is diagonalizable.²
- Result: The eigenvector decomposition of a square matrix gives you $A = C\Lambda C^{-1}$ where Λ is a diagonal matrix of eigenvalues and C a matrix of the corresponding eigenvectors. The symmetry of A gives you that $C^{-1} = C' \Rightarrow A = C\Lambda C'$ with $C'C = CC' = I_n$.

A key definition concerning symmetric matrices is their positive definiteness:

Definition 0.15. A is positive semi-definite if for any $x \in \mathbb{R}^n$, $x'Ax \geq 0$.

Given the eigenvector decomposition of a symmetric matrix, positive semi-definiteness implies Λ is positive semi-definite: $\lambda_i \geq 0 \quad \forall i$. Likewise,

Definition 0.16. A is positive definite if for any $x \in \mathbb{R}^n$, x'Ax > 0.

Again, based on the ege invector decomposition, positive semi-definiteness implies Λ is positive definite: $\lambda_i>0 \quad \forall i.$

A few more results are:

- Result: $tr(A) = \sum_{i=1}^{n} \lambda_i$
- Result: $r(A) = r(\Lambda)$
- Result: $det(A) = \prod_{i=1}^{n} \lambda_i$

$$Ac = \lambda c \Rightarrow (A - \lambda I_n)c = 0$$

²A matrix is diagonalizable if it is *similar* to some other diagonal matrix. Matrices B and C are similar if $C = PBP^{-1}$. A square matrix which is not diagonalizable is *defective*. This property relates closely to eigenvector decomposition.

³Recall, an eigenvalue and eigenvector pair, (λ, c) , of matrix A satisfy:

This last result can be used to prove that any positive definite matrix is non-singular and therefore has an inverse.

Any full-rank, positive semi-definite, symmetric matrix B has the additional properties:

- Result: $B = C\Lambda C'$ and $B^{-1} = C\Lambda^{-1}C'$
- Result: We can define the square-root of B as $B^{1/2}=C\Lambda^{1/2}C'$. Similarly, $B^{-1/2}=C\Lambda^{-1/2}C'$.

Properties of idempotent matrices

An idempotent matrix has the property that D = DD. Therefore, D must be square.

Here are a few important results concerning idempotent matrices.

- **Result:** *D* is positive definite
- Result: D is diagonalizable
- Result: $(I_n D)$ is also an idempotent matrix
- Result: With the exception of I_n , all idempotent matrices are singular.
- Result: $r(D) = tr(D) = \sum_{i=1}^{n} \lambda_i$
- Result: $\lambda_i \in \{0,1\} \quad \forall i$

Projection matrices are idempotent, but need not be symmetric. However, for the purposes of this module we will deal exclusively with symmetric idempotent projection matrices.

Vector Differentiation

Here we will look at the derivatives of scalar with respect to (W.r.t.) a vector. You can also define other derivatives, such as the derivative of a vector w.r.t. a vector and the derivative of a scalar with respect to a matrix. However, these are not needed for these notes.

General case

Suppose $f(x) \in R$ (i.e. a scalar) and $x \in R^n$ (i.e. a $n \times 1$ vector). Then we can define the partial derivative of f(x) w.r.t. x as,

$$\frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Linear: scalar case

A special case is when f(x) is linear in x,

$$f(x) = a'x = \sum_{i=1}^{n} a_i x_i$$

for $a \in \mathbb{R}^n$. The derivative of a'x with respect to the **vector** x can be defined as,

$$\frac{\partial a'x}{\partial x} = \begin{bmatrix} \frac{\partial a'x}{\partial x_1} \\ \frac{\partial a'x}{\partial x_2} \\ \vdots \\ \frac{\partial a'x}{\partial x_n} \end{bmatrix}$$
$$= \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
$$= a$$

since the the partial derivate of $a'x = \sum_{i=1}^{n} a_i x_i$ w.r.t. x_i is just the scalar a_i .

The derivative of a scalar w.r.t. to a vector yields a vector of partial derivatives.

Since a'x is a scalar, it is by definition symmetric: a'x = x'a. Thus,

$$\frac{\partial x'a}{\partial x} = \frac{\partial a'x}{\partial x} = a$$

Linear: vector case

Suppose f(x) is a linear transformation of x,

$$f(x) = A'x$$

for any $m \times n$ matrix A,

$$A = \begin{bmatrix} a_1' \\ a_2' \\ \vdots \\ a_m' \end{bmatrix}$$

where $a_i \in \mathbb{R}^n \ \forall i = 1, \dots, m \text{ and,}$

$$Ax = \begin{bmatrix} a_1'x \\ a_2'x \\ \vdots \\ a_m'x \end{bmatrix}$$

Note, $f(x) = Ax \in \mathbb{R}^m$, a $m \times 1$ vector. We can then define,

$$\frac{\partial Ax}{\partial x'} = \begin{bmatrix} \frac{\partial a_1'x}{\partial x_1} & \frac{\partial a_1'x}{\partial x_2} & \dots & \frac{\partial a_1'x}{\partial x_n} \\ \frac{\partial a_2'x}{\partial x_1} & \frac{\partial a_2'x}{\partial x_2} & \dots & \frac{\partial a_2'x}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial a_m'x}{\partial x_1} & \frac{\partial a_m'x}{\partial x_2} & \dots & \frac{\partial a_m'x}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$= A$$

Since Ax is $m \times 1$ column vector, we take the derivative w.r.t. x' a row vector and not the column vector x. This results in a matrix of partial derivatives.

Quadratic form

A second special case is where the function takes on the quadaratic form,

$$f(x) = x'Ax = \sum_{i=1}^N \sum_{j=1}^n a_{ij}x_ix_j$$

for $n \times n$ (square) matrix A. As in the first linear case, f(x) is scalar.

Define c = Ax, the x'Ax = x'c. From the linear case, we know that,

$$\frac{\partial x'c}{\partial x} = c$$

Similarly, if we define d = A'x then x'Ax = d'x. From the linear case, we know that,

$$\frac{\partial d'x}{\partial x} = d$$

We can define the total derivative as the sum of the partial derivatives w.r.t. to the first and second x. Combining these two results, we have that,

$$\frac{\partial x'Ax}{\partial x} = Ax + A'x$$

And if A is symmetric, this result simplifies to 2Ax.