

Why

1

Definition

The matrix-vector product between an $m \times n$ -matrix and an n-vector is the result of the linear combination of the columns of the matrix with the sequence of scalars in the vector. So the matrix-vector product is an m-vector.

Notation

Let C be a nonempty set. Let $A \in C^{m \times n}$ and let $x \in C^n$. As usual, we denote the matrix-vector product of A with x by Ax, read "A x," and defined by

$$b_i = \sum_{j=1}^n a_{ij} x_j$$

for $i \in \{1, 2, ..., m\}$. Let

$$A = \left[egin{aligned} a_1^{ op} \ a_2^{ op} \ dots \ a_m^{ op} \end{array}
ight]$$

Or, if a_i^{\top} is the *i*th row of A, then

$$b_i = a_i^{\top} x$$

for
$$i \in \{1, 2, \dots, m\}$$
.

¹Future editions will include.

