7. Докажите, что любой граф, содержащий хотя бы две вершины, имеет две вершины одинаковой степени.

Решение:

Идем от обратного. Допустим, что все вершины нашего графа содержат различные степени. Максимальная степень вершины в графе порядка n может быть ровна (n - 1), то есть вершины должны иметь степени (n - 1), (n - 2), (n - 3), ..., 2, 1, 0. Очевидно в графе не может существовать сразу вершины с (n - 1) и 0 степенями. Тогда наша утверждение не правильно, доказано!

Предположим, что граф не связен. Тогда в каждой компоненте более (n-1)/2+1 вершин, то есть больше, чем (n+1)/2. Тогда общее число вершин в графе $((n+1)/2)^*$ k, где k - количество компонент. Если $k \ge 1$, то число вершин $\ge n$, противоречие. Тогда k=1 и граф связен.

Tough Vy & y = goth (x,y) Тогда обязакний В робро (3) Y XEY = V 7 W 464 Mountain rome gour - 1

no compound nyme go 4g & V

Palcuompune H/T 3 H BT=V Tonga 3 et E: baje) & H end(e) ET THE U+= end(e) Процесс констиний градо Danie mun nozgres

26. Докажите, что в связном графе любые два самых длинных простых пути имеют общую вершину.

27

 Докажите или опровергните, что в связном графе все простые пути, имеющие максимальную возможную длину в этом графе, имеют общую вершину.

В задаче 26 было доказано, что в связном графе любые два самых длинных простых пути имеют общую вершину.

Рассмотрим любые 2 самые длинные простые пути а и b. Выберем из оставшегося множества самых длинных простых путей какой-то путь с.

Рассмотрим случай 2, когда все пути пересекаются попарно, но не пересекаются в одной точке. Не умаляя общности, скажем, что AB>=BC>=AC. Но тогда можно провести путь EABCF, который будет очевидно длиннее пути EACF, т.е. этот путь не является самым длинным, т.е. противоречие, а значит все три прямые пересекаются в одной точке.

30. Приведите пример графа, что ни он, ни его дополнение не связаны путями длины не больше 2.

Просто приведем пример графа, который удовлетворяет этим условиям:

50. Demma: Homen benuums v borneraeros & roge Tpropena Torga u Tonbro Torga, korga v ne abnaerea nucrom, nou-Zém betpezaeten этот номер pobro deg v-1 paz. Benommen, kak empources kog Mprogrepa: Mora la konuz. Bennan > 2 1. Budupaeter nuct v e nun. Homerom. 2. B rog Mnogsegra godabnatica nomen benu, emexi-Hou CV. 3. Benuna V u unusugenthoe ei respo ygangiorcos uz geneba. Tenepo gonasecem nemny: 1. Benunha e nomenon n ne moscet dont yganera cnegobatentho na nocneg, mare y neie soma emerce. вершина, и число п встретилось в коде. 2. Ecnu Benung He nuct, To y née na mex. mare onna chexchas benuma nuct, > nonen stou benu. ecto Brage 3. Если вершина явл. пистом с номером меньше п, TO ona Juna yganena go Tozo, kak Jun yganen éé coceg, > => eé nomena met & koge. Brazur, nomena Box Bennin, Korreptie ne nuct une umeror non n, встрегаютия в коде Приофера, а остапиние-нет

59. Будем называть последовательность $(d_n 1, \ldots, d_n)$ степенной последовательностью, если существует граф с такими степенями вершин. Приведите критерий, проверяемый за полиномиальное время, что заданная последовательность является степенной.

Сначала докажем одно утверждение. Пусть у нас есть отсортированный в невозрастающем порядке список степеней вершин $A=(s,t_1,...,t_s,d_1,...d_k)$. Тогда если $A'=(t_1-1,...,t_s-1,d_1,...d_k)$ задаёт некоторый простой граф, то A тоже задаёт простой граф. (Рекурсивное утверждение, которым мы будем пользоваться в нашем алгоритме, который на самом деле назван в часть Гавеля и Хакими).

Докажем в одну сторону. Пусть А' задаёт некоторый простой граф G'. Тогда Возьмём первые t вершин в порядке невозрастающей сортировки, создадим ещё одну вершину S, присоединим к ней ребрами t вершин. Получим искомый граф G.

Доказательство в другую сторону менее тривиально. Рассмотрим A = $(s, t_1, ..., t_s, d_1, ...d_k)$, которое задаёт некоторый граф G. Имеем следующие случаи - либо вершина S связна ребром с T_{1-s} и мы просто удалим рёбра, соединяющие S с этими вершинами, получив валидный граф, либо же имеем случай, когда вершина S не связана ребром с некоторыми T_i . Покажем, что мы можем перестроить граф G так, чтобы он сохранил свою степенную последовательность, но отсылал к первому случаю. Тогда вершина S может быть связна ребром с некоторой вершиной D_j - пусть её степень будет d_j . Известно, что $d_j \leq t_i$ - по порядку вершин. В частном случае равенства степеней мы можем просто поменять эти вершины местами и вернуться к к первому случаю. Если же у нас строгое неравенство, то у вершины T_i больше соседей чем у D_j - назовём этого соседа W (которого нет у D_j). Тогда проведём с G следующие модификации - удалим рёбра S, D_i и T_i, W , затем добавим новые рёбра S, T_i и D_j, W - эта модификация сохраняет степенную последовательность, но теперь S связана ребром с T_i . Этот процесс мы можем проводить вплоть до случая, пока S не станет связана ребром с множеством вершин Т - это первый случай.

Сам алгоритм подразумевает рекурсивную проверку получившейся последовательности на каждом шаге, пока мы не дойдём до нулевого вектора. Сложность - $O(n^2)$ (объясню словами).

62. Реберным графом для графа G называется граф G_E , множество вершин которого совпадает с множеством ребер исходного графа, два ребра е и f соединены ребром в реберном графе, если у них есть общая инцидентная вершина. Докажите или опровергните, что если G является эйлеровым, то реберный граф является гамильтоновым.

62)			0		
Taccount	yeude	Hedey	06	Mymb	
eis,	Vks, li	2 , , , , (Kn-1,	Pin 8	ucscage
yeage	G. Com	nablules	us o	вершин	redgen
	GE				
	Reib B				6
	y Vix				
	e peop				
пуни	enerch	lol, n	w w	oupe	parenia p
HOLO	yaga	culley	en, un	0 000	mb. nog
идущие	верии	ины	8 M	ayra ion	us wall
1/3× , 1	Vikes C	MENCHE	, Cell	9 /HO	Mbl
пащи	uu Ii	alleres	noted	nym6	6. 0.
,	, Vin	8 B		0	251-43

Если $\lambda(G) > \delta(G)$, то удалим все ребра из вершины с минимальной степенью, их будет $\delta(G) < \lambda(G)$, но граф распадется на две компоненты, получаем противоречие. Тогда доказано, что $\lambda(G) \leq \delta(G)$

Докажем теперь $\kappa(G) \leq \lambda(G)$.

Если $\lambda(G)=1$, то граф содержит мост, тогда просто удалим ту из вершин моста, в компоненте которой больше вершин, получим $\kappa(G)=\lambda(G)=1$. Если $\lambda(G)>1$, то при удалении из графа $\lambda(G)-1$ ребра получим граф с мостом, пусть этот мост из вершин х и у. Тогда для каждого удаленного ребра будем удалять одну из вершин на нем, не равную х и у. Получим граф с $\lambda(G)-1$ удаленными вершинами и ребром ху, которое раньше было мостом. Если граф несвязный, то доказано. Если он остался связным, то ху остался мостом. Тогда удалим либо х, либо у, получим несвязный граф, в котором $\kappa(G)=\lambda(G)$. В любом случае $\kappa(G)\leq \lambda(G)$.

83. Докажите, что можно ориентировать ребра планарного графа так, что $deg^-(v) \leq 5$ для всех вершин v.

JOHNSMUM, KAD

JVEV. de g V 55

On Ofmanico

VIE deg U > 6

ZIE1: Zdeg U > 6 |V|

IE1 > 3 |V| => 10 Chramana IE1 (3 |V| -6

2) Opultingglu peopa B noi

145. Найдите математическое ожидание и дисперсию степени вершины в биномиальной модели G(n,p).

Доказательство. По линейности матожидания получим:

$$E[d] = (n-1) \cdot p$$

$$D[d] = (n-1) \cdot (p-p^2)$$

146. Равномерная модель G(n,m) - каждый граф с n вершинами u m ребрами равновероятен. Найдите математическое ожидание степени вершины в равномерной модели G(n,m).

Доказательство. Рассмотрим равновероятную модель $G_{n,m}$.

$$p(edgeismarked) = \frac{2m}{n(n-1)}$$

$$E[d] = (n-1) \cdot \frac{2m}{n(n-1)} = \frac{2m}{n}$$

(47) $X_i = \begin{cases} 1, & \text{equiver redo } 8 \text{ is } i \in [1, n-1] \end{cases}$ $\mathcal{D}_d = Ed^2 - (Ed)^2$ $\text{up } \text{up } Ed = \frac{2m}{n}$ $p_*(uv) = \frac{am}{n(m-1)}$ $p_*(uv) = \frac{2(m-1)}{(n-1)(n-2)}$ $Ed^2 = E(X_i)^2 - \sum_{i=1}^{2} X_i^2 + 2\sum_{i=1}^{2} (X_i X_j) = \frac{2}{n}$ $= \sum_{i=1}^{2} X_i + 2\sum_{i=1}^{2} (X_i X_j) = \frac{2m}{n} + 2\binom{n-1}{n} \cdot \frac{2m}{n(n-1)} \cdot \frac{2m}{(n-1)(n-2)}$ $= \sum_{i=1}^{n} X_i + 2\binom{n-1}{2} \cdot \frac{2m}{n(n-1)} \cdot \frac{2m}{(n-1)(n-2)} = \frac{2m}{n} \cdot 2\binom{m-1}{n}$ $= \sum_{i=1}^{n} X_i + 2\binom{n-1}{2} \cdot \frac{2m}{n(n-1)} \cdot \frac{2m}{(n-1)(n-2)} = \frac{2m}{n} \cdot 2\binom{m-1}{n}$

150. Найдите вероятность, что граф в равномерной модели G(n, m), является гамильтоновым циклом (m = n).

Решение:

Найдем количество различных гамильтоновых циклов длины n и он будет равен $\dfrac{(n-1)!}{2}$

Случай различных бус [править | править код]

Для данного набора из n (различных) бусин число различных ожерелий, сделанных из этих бусин, если считать повёрнутые ожерелья теми же самыми, равно $\frac{n!}{n} = (n-1)!$. Это следует из того, что бусины могут быть расположены линейно n! способами и n циклических сдвигов каждого такого линейного порядка даёт то же самое ожерелье. Аналогично, число различных браслетов, если считать повороты и отражения теми же самыми, равно $\frac{n!}{2n}$ для $n \geqslant 3$.

Общее количество графов с m ребрами равно
$$\binom{n*(n-1)}{2}$$
 (так как m == n).

Тогда финальный ответ будет:

$$\frac{\frac{(n-1)!}{2}}{\binom{\frac{n*(n-1)}{2}}{n}}$$

151

$$V P(m=k) = P^{k} h - P^{k-k} \cdot C_{n}^{k}$$

$$V P(y_{n} k_{n} g_{n} h_{n} h_{n}) = P^{n} (n-p)^{\binom{n}{n}-n} \cdot C_{n}^{n} \cdot \frac{(n-n)!}{2} \cdot \frac{1}{C_{n}^{n}} =$$

$$= P^{n} (1-p)^{\binom{n}{n}-n} \cdot \frac{(n-n)!}{2}$$

152. Оцените центральный биномиальный коэффициент $\binom{2n}{n}$ снизу величиной порядка $c\frac{4^n}{\sqrt{n}}$, используя формулу Стирлинга.

$$n! \sim \sqrt{2\pi n} \Big(rac{n}{e}\Big)^n$$
 .

$$\frac{\left(2 \text{ n}\right)!}{\text{N! n!}} \sim \frac{\sqrt{4\pi n} \left(\frac{2 \text{ n}}{e}\right)^{2}}{2\pi n} = \frac{4^{n}}{\sqrt{\pi n}}$$

$$C \frac{4}{\sqrt{n}} \leq \frac{4}{\sqrt{\pi n}} \Rightarrow C \leq \frac{1}{\sqrt{\pi}}$$

155. Рассмотрим спедующую модель генерации случайного графа. Сначала проведем каждое ребро с вероятностью $\frac{1}{2}$. Затем, для каждой пары вершин, между которыми не было проведено ребро на первом шаге, проведем ребро с вероятностью $\frac{1}{3}$. Предложите более простое описание этой модели в терминах моделей Эрдёша-Реньи.

Вероятность, что ребро не будет проведено в итоге:

$$\frac{1}{2} \cdot \left(1 - \frac{1}{3}\right) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$$

Следовательно, вероятность, что ребро будет проведено в итоге:

$$1 - \frac{1}{3} = \frac{2}{3} = p$$

Тогда можно предложить следующую биномиальную модель G(n, p) для рассматриваемой генерации: G(n, 2/3)

157. Придумайте та стремится к $\frac{1}{4}$		рятность, что $G(n, \frac{1}{2})$ (обладает этим свойством,
_			2 определиных
pespa uz Jilozga be	palmkoenus m	ono, emo cyw	emby was
2 pespa	$=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$	_	

W 158 Georgies bejuins no gle newbienos I lb-60 menuno, emen 7k: « bepur uneens peopo c u-1 bepur us n ce unouceurba 2 es c u+1 begins us brugger noulobunds (om \frac{n}{2} + 1 go \frac{n}{2} + 14+1) -> Ceparannound lunuminouncy $P = \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{4} + \dots + \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)^{2} + \dots + \left(\frac{1}{4}\right)^{\frac{n}{2}} = \frac{1}{4} + \frac{$ n

161. Докажите, что
$$G(n, \frac{2 \ln n}{n})$$
 а.п.н. не содержит вершин степени 0.

 $P = \frac{2 \ln n}{n}$
 $\xi - \kappa \omega_1 - \delta_0$ из ω_1 . верм

 $P(\xi \ge 1) \le \frac{E\xi}{1} - \frac{1}{2} - \frac{1}{2} + \frac$

162. Рассмотрим модель случайного двудольного графа G (n, n, p): из полного двудольного графа Kn,n каждое ребро удаляется с вероятностью 1-р. Пусть X -- количество изолированных вершин первой доли. Найдите EX и DX.

(62) G(u, h, p) a_1, \dots, a_n $(1-p) & y_1 pedyon$ $X = X (6) - kal, ug_1 lepunux$ b nephon gase $X = X + \dots + X_n$ $X = X + \dots + X_n$

7/63 $P = O(n^{\frac{3}{2}})$ $X = X_{1}t_{-} + X_{2}e_{n}^{2}$ $ny76 gnund 2 \qquad (ny76 gnund 2)$ $E X = Z_{1} = 3 \cdot C_{n}^{3} \cdot p^{2} \rightarrow 0$ $p^{2} = O(n^{\frac{3}{2}}) \quad 3 \cdot \frac{n \cdot (n-1)(n-2)}{3!} \cdot p^{2} \rightarrow 0$ $\Rightarrow an m \text{ wet } ny70 gnund 2, 7 \cdot e. \text{ Bce } k.c.$ $pasuepa \in \mathbb{R}$

Begin occusios opero, 200 G(n,p) coperator K_{u} : $H^{q} \cdot o(h^{-1}) = o(h) = o$ $P = \binom{n}{q} \cdot p^{6} = (\frac{1}{2\eta}(n-3)(n-2)(n-2)(n-2)n)p^{6}$ Someon, 200 $\binom{n}{q} \leq h^{\frac{1}{2}}$.

To you, 200 $G(n) \neq 0$ o means coperator $P^{6} = o(n^{\frac{1}{3}}) \neq 0$ $P = o(n^{\frac{1}{3}}) = o(n^{\frac{2}{3}})$ P(n,p) G(n,u) we experient K_{u}

= 12 ph W164. $EX = (\frac{n}{u}) \frac{1}{2u} p^{u} \approx \frac{s(1)}{2u} - \frac{s}{s} \infty$ = EX2 = E (Xi)2 = E (Xi) + E (Xi) = $= EX + C_{2}^{2u} \cdot C_{2}^{u} \cdot C_{2}^{u} \cdot C_{2}^{u} \cdot C_{2}^{u} \cdot C_{2}^{u} + \sum_{i=1}^{2} d_{i} \cdot C_{i} \cdot C_{i} \cdot C_{i}^{u} \cdot C_{i}^{u$ n! hem neglecer

zuin-zu! Kint inepecer (when smon whiteheren) 22 W211 Bauennen uns ealer begunne nograng regnerales 6 down upinlan, no norgo doublie pedep a m. v. un nonverso, no un aprento EX-0(1) => Ex2 = EX+ EX(1+0/1)+ E2X.0(1)+ E3X.0(1)= = E2x(1+0(1)) >> no nemogy 2 Mollemma ann earl your gueste ve

168. Пусть $p=o(rac{1}{n})$. Покажите, что G(n,p) а.п.н. не содержит циклов.

$$p = \sum_{k=3}^{n} {n \choose k} \frac{(k-1)!}{2} p^k \in \sum_{k=3}^{n} (np)^k$$
 $n \ge h_0 : hp < 1$
 $\sum_{k=3}^{n} (np)^{\frac{1}{2}} \rightarrow 0$
 $\sum_{k=3}^{n} (np)^{\frac{1}{2}} \rightarrow 0$

доказательством а.п.н. связности графа $G(n, \frac{2 \ln n}{n})$? **НЕ**T

$$n^{n-2} p^{n-1} = n^{n-2} \cdot \frac{2^{n-1} \ln^{n} n}{n^{n-1}} = \frac{2^{n-1} \ln^{n} n}{n} \to \infty$$

Signoroban accours noch Ku n-const TEX = Ch. p(x) = a nk pxxx nouse $J P = O(n^{-\frac{K}{(\frac{K}{2})}}) = O(n^{-\frac{2}{K-1}}) \Rightarrow EX = 0$ $\Rightarrow an \times neegg$ JP= S(n-(5))= D(n-2) $Ex^{2} = E(\mu\omega + 60\mu)^{2} = F(2x_{1} - \alpha_{1})^{2} = E = 2\alpha_{1} - \alpha_{1}^{2} = 2\alpha_{1}^{2} = 2\alpha_{1}^{2$ + $C \circ C_{N}^{2k-1} P_{p^{2\binom{k}{2}}} P_{p^{-1}}$ + $C \circ C_{N}^{2k-1} P_{p^{-2\binom{k}{2}}} P_{p^{-1}}$ + $C \circ C_{N}^{2k-1} P_{p^{-2\binom{k}{2}}} P_{p^{-1}}$ + $C \circ C_{N}^{2k-1} P_{p^{-1}}^{2\binom{k}{2}} P_{p^{-1}}^{2\binom{k}{2}}$ + $C \circ C_{N}^{2k-1} P_{p^{-1}}^{2\binom{k}{2}} P_{p^{-1}}^{2\binom{k}{2}}$ + $C \circ C_{N}^{2k-1} P_{p^{-1}}^{2\binom{k}{2}} P_{p^{-1}}^{2\binom{k}{2}}$ + $C \circ C_{N}^{2k-1} P_{p^{-1}}^{2\binom{k}{2}} P_{p^{-1}}^{2\binom{k}{2}} P_{p^{-1}}^{2\binom{k}{2}}$ + $C \circ C_{N}^{2k-1} P_{p^{-1}}^{2\binom{k}{2}} P_{p^{-1}}$

V181 EX = nCn-1 px+1 = n(1) w/1. must is e Energ + 1 ne Energ + 1 6 Enemut 1 (love + luchy Enem (6 en m + 1) Evenu + 1 (6 enn+luluy) 6 en 4 1
en en y = (2) Even 1 - Corn 6 chan + 1 . (1 + en can 16 chan 1 chen 1 che Bun en en 4 est Vent) bent = e ent = e tent est estant

195. Докажите, что если $x \neq y$, то $M \setminus x / y = M / y \setminus x$

Решение:

Давайте просто посмотрим, что происходит в обоих частях равенства.

Мы уже из 194 и 193 знаем, что такое матроид с выброшенным элементом и так же знаем, что такое матроид стянутый по элементу.

Очевидно, что $M_1 = M_2$ тогда и только тогда, когда $X_1 = X_2$ и $I_1 = I_2$

В первом случаи мы удаляем из X_1 **х** и берем те множества из I_1 которые не содержат **х** и после удаляем из X_1 **у** и берем все множества из I_1 которые содержат **у**.

Во втором случаи все точно так же только порядок другой:

Удаляем из X_2 у и берем все множества из I_2 , которые содержат у, а после удаляем из X_2 х и берем все множества из I_2 , которые не содержат х.

Очевидно, что $X_1 = X_2$ и $I_1 = I_2$