

Hệ thống Xuất/Nhập (i/o)

Nội dung

- Thiết bị phần cứng I/O
- Giao diện I/O cho ứng dụng
- Các dịch vụ của I/O subsystem
- Hiệu suất I/O

- Các thiết bị I/O khác biệt về chức năng, tốc độ,... nên cần có các phương thức quản lý, điều khiển tương ứng khác nhau
 - Chính là chức năng của I/O subsystem của kernel
- Các trình điều khiển thiết bị (device driver) cung cấp cho I/O subsystem một giao diện thuần nhất để truy cập các thiết bị

Thiết bị phần cứng I/O

- Kết nối giữa hệ thống máy tính và các thiết bị I/O
 - Port (connection point)
 - Bus (daisy chain, shared direct access)
- Điều khiển
 - Controller (device controller, SCSI host adapter)
- Giao tiếp giữa CPU và thiết bị I/O
 - I/O port: dùng lệnh I/O để tác động lên các thanh ghi dữ liệu / trạng thái / lệnh của controller.
 - Memory-mapped I/O

Cấu trúc bus trong PC

Một số I/O port trong PC

I/O address range (hexadecimal)	device	
000-00F	DMA controller	
020-021	interrupt controller	
040-043	timer	
200-20F	game controller	
2F8-2FF	serial port (secondary) controller	
320-32F	hard-disk controller	
378-37F	parallel port controller	
3D0-3DF	graphics controller	
3F0-3F7	diskette-drive controller	
3F8-3FF	serial port (primary) controller	

- Kỹ thuật polling (busy waiting) hay programmed I/O
 - Kiểm tra trạng thái của thiết bị khi muốn thực hiện I/O
 - ready hoặc busy hoặc error
 - Tiêu tốn thời gian trong vòng lặp để kiểm tra trạng thái (busy-wait) và thực hiện I/O.

Các kỹ thuật thực hiện I/O (tt.)

- Kỹ thuật I/O dùng ngắt quãng (interrupt-driven I/O)
 - CPU có một ngõ Interrupt Request (IR), được kích hoạt bởi thiết bị I/O
 - Nếu ngắt xảy ra (IR = active), CPU chuyển quyền điều khiển cho trình phục vụ ngắt (interrupt handler)
 - Các ngắt có thể che được (maskable) hoặc không che được (non-maskable)
 - Hệ thống có một bảng vector ngắt chứa địa chỉ các trình phục vụ ngắt
- Ngắt cũng có thể dùng xử lý các sự kiện khác trong hệ thống (lỗi chia cho 0, lỗi vi phạm vùng nhớ,...)

Chu trình I/O với ngắt quãng

PC interrupt

(4) Take exception to address k*4

Bång vector Pentium processor

vector number	description	
0	divide error	
1	debug exception	
2	null interrupt	
3	breakpoint	
4	INTO-detected overflow	
5	bound range exception	
6	invalid opcode	
7	device not available	
8	double fault	
9	coprocessor segment overrun (reserved)	
10	invalid task state segment	
11	segment not present	
12	stack fault	
13	general protection	
14	page fault	
15	(Intel reserved, do not use)	
16	floating-point error	
17	alignment check	
18	machine check	
19–31	(Intel reserved, do not use)	
32–255	maskable interrupts	

Các kỹ thuật thực hiện I/O (tt.)

- Kỹ thuật I/O dùng direct memory access (DMA)
 - Các kỹ thuật polling và interrupt-driven I/O không thích hợp khi thực hiện di chuyển khối lượng lớn dữ liệu.
 - Kỹ thuật DMA cần có phần cứng hỗ trợ đặc biệt, đó là DMA controller
 - Kỹ thuật DMA thực hiện truyền dữ liệu trực tiếp giữa thiết bị I/O và bộ nhớ mà không cần sự can thiệp của CPU.

4

6 bước thực hiện DMA

- DMA controller transfers bytes to buffer X, increasing memory address and decreasing C until C = 0
- 6. when C = 0, DMA interrupts CPU to signal transfer completion

- device driver is told to transfer disk data to buffer at address X
- device driver tells disk controller to transfer C bytes from disk to buffer at address X

DMA/bus/interrupt controller

PCI bus

memory

buffer

IDE disk controller

- 3. disk controller initiates DMA transfer
- disk controller sends each byte to DMA controller

Giao diện I/O cho ứng dụng

- OS cung cấp một giao diện I/O chuẩn hóa, thuần nhất cho các ứng dụng.
 - Ví dụ: một ứng dụng in tài liệu ra máy in mà không cần biết hiệu máy in, đặc tính máy in,...
- Giao diện làm việc là các I/O system call của OS.
- Trình điều khiến thiết bị là "cầu nối" giữa kernel và các bộ điều khiển thiết bị (device controller).

Cấu trúc I/O cấp kernel

Đặc tính của các thiết bị I/O

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controller disk

Các dịch vụ I/O

- Giao diện chuẩn cho nhóm thiết bị có liên quan
 - Thiết bị khối (block device)
 - Disk
 - Các tác vụ: read, write, seek
 - Thiết bị kí tự (character device)
 - Keyboard, mouse, serial port, line printer,...
 - Tác vụ: get, put
 - Thiết bị mạng (network device)
 - Block hoặc character.
 - Socket interface trên Unix, Windows/NT,...
- Clock và timer
- Cung cấp thời gian hiện tại, timer
 - Có thể lập trình được.

- Blocking: process bị suspended cho đến khi I/O hoàn tất.
 - Dễ dàng sử dụng
 - Không hiệu quả trong một số trường hợp
- Nonblocking: process sẽ tiếp tục thực thi ngay sau lệnh gọi I/O.
 - Ví dụ: data copy (buffered I/O)
 - Thường hiện thực với multithreading
 - Khó kiểm soát kết quả thực hiện I/O
- Asynchronous: process vẫn thực thi trong lúc hệ thống đang thực hiện I/O.
 - Khó sử dụng
 - I/O subsystem báo hiệu cho process khi I/O hoàn tất

I/O subsystem của kernel

I/O subsystem cung cấp các chức năng

- Định thời các yêu cầu I/O
 - Các yêu cầu I/O xếp hàng tại các hàng đợi của mỗi thiết bị
 - Bảo đảm công bằng, hiệu suất cao.
- Đệm dữ liệu (buffering): lưu dữ liệu tạm thời trong bộ nhớ khi thực hiện I/O
 - Giải quyết trường hợp chênh lệch tốc độ, kích thước dữ liệu khi thực hiện I/O
- Caching
- Spooling

BK

TP.HCM

- Xử lý lỗi (error handling)
 - OS sẽ phục hồi lại sau những lỗi đọc đĩa, thiết bị không tồn tại, lỗi đọc/ghi hay vận chuyển dữ liệu
 - Trả về mã lỗi khi yêu cầu truy cập I/O không thành công.
 Lỗi hệ thống được lưu lại dưới dạng báo cáo trong ghi nhớ lỗi.

Chu trình của một yêu cầu I/O

- Hiệu suất I/O ảnh hưởng rất lớn đến hiệu suất toàn hệ thống. I/O gây tải cao do
 - CPU thực hiện các lệnh điều khiển của device driver, của kernel I/O code.
 - Chuyển ngữ cảnh vì các I/O interrupt, chi phí copy dữ liệu gửi nhận.
 - Network traffic gây tốc độ context switch cao.
- Tăng hiệu suất I/O
 - Giảm số lần chuyển ngữ cảnh, giảm thiểu quá trình copy dữ liệu (bằng caching,...)
 - Giảm số lần ngắt quãng (truyền khối dữ liệu lớn, dùng các bộ controller thông minh, dùng kỹ thuật polling,...)
 - Sử dụng DMA nếu có thể.

Ví du: remote login

subdaemon for the remote login session

I/O system call