

VLSI Physical Design with Timing Analysis

Lecture – 6: Spanning Tree and Shortest Path Algorithms

Bishnu Prasad Das

Department of Electronics and Communication Engineering

- Electronic circuit designs require connecting multiple component pins.
- The goal is to minimize wire usage while ensuring all pins are connected.
 - This is modeled as an undirected graph with pins as vertices and wire costs as edge weights.

Graph Representation:

- Define graph G = (V, E).
- V represents pins, and E represents potential connections.
- Each edge (u, v) has a weight w(u, v) denoting wire cost
 - between pins u and v.

Objective:

- Find an acyclic subset T ⊆ E that connects all vertices.
- Minimize the total weight (wire length) of this subset T.

Spanning Trees:

- The solution forms a tree (acyclic) known as a "spanning tree."
- This tree connects all vertices in the original graph.

The problem is called the "Minimum Spanning Tree (MST)
 Problem."

MSTs are crucial in circuit design to optimize wire usage.

Prim's Algorithm

- MST-PRIM(G, w, r)
 - for each vertex $u \in G.V$
 - u.key = ∞
 - $u.\pi = NIL$
 - r.key = 0
 - $-Q = \emptyset$
 - for each vertex $u \in G.V$
 - INSERT(Q, u)

- while Q $\neq \emptyset$
 - u = EXTRACT-MIN(Q)
 - for each vertex v in G.Adj[u]
 - if v ∈ Q and w(u, v) < v.key
 - » v. $\pi = u$
 - v.key = w(u, v)
 - » DECREASE-KEY (Q, v, w(u, v))

Minimum Spanning Tree

Kruskal's Algorithm

- MST-KRUSKAL(G, w)
 - $-A=\emptyset$
 - for each vertex $v \in G.V$
 - MAKE-SET(v)

Initialize the set A to the empty set and create |V| trees, one containing each vertex.

- create a single list of the edges in G.E
- sort the list of edges into monotonically increasing order by weight w

Kruskal's Algorithm

- for each edge (u, v) taken
 from the sorted list in order
 - if FIND-SET (u) ≠ FIND-SET (v)

return A

- The for loop examines edges in order of weight, from lowest to highest. The loop checks, for each edge (u, v), whether the endpoints u and v belong to the same tree.
- If they belong to different trees, add the edge (u, v) to A and merge the vertices in the two trees.
- Otherwise, ignore the edge.

Minimum Spanning Tree

Shortest Path Algorithms

Dijkstra's algorithm solves the single-source shortest-paths
 problem on a weighted, directed graph G = (V, E) but requires

nonnegative weights on all edges: $w(u, v) \ge 0$ for each edge (u, v)

€ E.

Dijkstra's algorithm

- DIJKSTRA(G, w, s)
 - INITIALIZE-SINGLE-SOURCE(G, s)
 - $-S=\emptyset$
 - $-Q = \emptyset$
 - for each vertex $u \in G.V$
 - INSERT(Q, u)

Dijkstra's algorithm

- while Q ≠ Ø
 - u = EXTRACT-MIN (Q)
 - $S = S \cup \{u\}$
 - for each vertex v in G.Adj(u)
 - RELAX(u, v, w)
 - if the call of RELAX decreased v.d
 - » DECREASE-KEY (Q, v, v.d)

t	0 + 4 = <mark>4 < ∞</mark>
Z	0 + 8 = <mark>8 < ∞</mark>

u	4 + 8 = <mark>12 < ∞</mark>
У	4 + 14 = <mark>18 < ∞</mark>
Z	4 + 1 = <mark>5 < 8</mark>

u	6 + 5 = <mark>11 < 12</mark>
Х	6 + 2 = <mark>8 <∞</mark>

u	8 + 10 = <mark>18 > 12</mark>
V	8 + 4 = <mark>12 < ∞</mark>
W	8 + 11 = <mark>19 < ∞</mark>

Summary

- Discussed Graph search algorithms: DFS and BFS
- Explained the Minimum Spanning Tree Algorithms: Prim's Algorithm and Kruskal's Algorithm
- Discussed shortest Path Algorithms: Dijkstra's Algorithm with examples
- These algorithms have a lot of applications in VLSI Physical Design flow.

Thank You

