

Galaxy Classification with Decision Tree & Random Forest

Tintin Nguyen
PHYS 305 Final Project
University of Arizona
April 28, 2022

INTRODUCTION: SDSS GALAXY OBSERVATIONS

Sloan Digital Sky Survey (SDSS)

From 1M+ galaxy observations:

- ★ Origin and evolution of galaxies
 - Star formation zones
 - Ionized gas in galaxy center
- ★ Large-scale structure
 - Cosmic inflation
 - Dark matter
 - Dark energy

INTRODUCTION: GALAXY ZOO

- ★ PROBLEM: Too much data!!!
- ★ SOLUTION: Volunteer helps classify galaxies
 - Types of galaxies with consistent majority vote are reliable
 - Immense dataset to train machine learning galaxy classifications

INTRODUCTION: GALAXY CLASSIFICATION

TRAINING DATASET

TRAINING DATASET

DECISION TREE

TRAINING DATASET

DECISION TREE

TRAINING DATASET

DECISION TREE

5

TRAINING DATASET

DECISION TREE

EXTRACTING RIGHT FEATURES ARE IMPORTANT!

TRAINING DATASET

DECISION TREE

METHOD: RANDOM FOREST

METHOD: IMAGE PROCESSING

RESULTS: IMPORTANT FEATURES

RESULTS: DECISION TREE vs RANDOM FOREST

★ Tuned random forest: ~69%

Confusion Matrix

10

Disk (0) or smooth (1)?

SMOOTH - How rounded? Completely round (0), in-between (1), or cigar-shaped (2)?

SMOOTH - How rounded? Completely round (0), in-between (1), or cigar-shaped (2)?

DISK + FACE ON - Spiral?: No (0), tight (1), medium (2) or loose (3)?

★ No-spiral galaxies form the majority of this subgroup

★ Algorithm is biased towards predicting that an unknown of galaxy belongs to the majority class (no-spiral)

CONCLUSION AND FUTURE WORK

- ★ Random forests (~69%) outperform decision trees (~56%)
- ★ Great prediction for the following cases:
 - Disk vs Smooth (~85%)
 - Roundedness of smooth galaxies (~89%)
- ★ Terrible prediction (~60%) for spiral galaxies classification with bias towards the majority type
- ★ Possible next steps:
 - Minimize bias towards the majority type
 - Find better classification features for spiral galaxies
 - Compare performance with neural networks

REFERENCES / ACKNOWLEDGEMENTS

PAPERS

- **S. Goderya and S. Lolling, 2001**, "Morphological Classification of Galaxies Using Computer Vision and Artificial Neural Networks: A Computational Scheme"
- J. Lotz et al., 2004, A New Non-Parametric Approach to Galaxy Morphological Classification"
- **K. Willett et al., 2013**, "Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey"
- M. Walmsley et al., 2021, "Galaxy Zoo DECaLS: Detailed Visual Morphology Measurements from Volunteers and Deep Learning for 314,000 Galaxies"

TUTORIALS / CODE REFERENCES

OpenCV: Image Processing, Contour Features

Towards Data Science: Decision Tree, Random Forest, Hyperparameter Tuning

Scikit-learn and OpenCV documentation

ACKNOWLEDGEMENTS: SDSS for the galaxy images, Galaxy Zoo and the volunteer citizen scientists for the training and testing datasets, AstroNN for sampling the Galaxy Zoo dataset for educational purposes, Kaggle Galaxy Zoo Challenge contestants for sharing their ideas, and Prof. Johns for valuable suggestions and feedbacks