

Network Preliminaries

Héctor Corrada Bravo

University of Maryland, College Park, USA CMSC828O 2019-08-28

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

• Number of vertices: 2803

• Number of edges: 67,268

Preliminaries

Network: abstraction of entities and their interactions
Graph: mathematical representation

vertices: nodes

edges: links

Undirected graph

Preliminaries

Network: abstraction of entities and their interactions
Graph: mathematical representation

vertices: nodes

edges: links

Directed graph

Number of vertices: *n*

In our example: *number of genes*

Number of vertices: n

In our example: *number of genes*

Number of edges: m

In our example: *number of genetic interactions*

Number of vertices: *n*

In our example: *number of genes*

Number of edges: m

In our example: *number of genetic interactions*

Degree of vertex i: k_i

Number of genetic interactions for gene i

On the board:

- ullet Calculate number of edges m using degrees k_i (for both directed and undirected networks)
- Calculate *average degree c*
- Calculate *density* ρ

On the board:

• Calculate number of edges m using degrees k_i (for both directed and undirected networks)

- Calculate *average degree c*
- Calculate *density* ρ

In our example:

Average degree: 47.9971459

Density: 0.0171296

(On the board)

Number of edges using degrees (undirected)

$$m=rac{1}{2}\sum_{i=1}^n k_i$$

Number of edges using degrees (directed)

$$m = \sum_{i=1}^n k_i^{ ext{in}} = \sum_{i=1}^n k_i^{ ext{out}}$$

(On the board)

Average degree

$$c = rac{1}{n} \sum_{i=1}^n k_i$$

Density

$$ho=rac{m}{inom{n}{2}}=rac{2m}{n(n-1)}=rac{c}{n-1}pproxrac{c}{n}$$

Degree distribution

Fundamental analytical tool to characterize networks

 p_k : probability randomly chosen vertex has degree k

On the board: how to calculate p_k and how to calculate average degree c using degree distribution.

(On the board)

Degree distribution

$$p_k = rac{n_k}{n}$$

 n_k : number of nodes in graph with degree k

Degree Distribution

log/log degree distribution

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

Diameter. longest shortest path $\max_{ij} d_{ij}$

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

On the board: average path length

(On the board)

Average path length

$$\overline{d} = rac{1}{n(n-1)} \sum_{i,j;i
eq j} d_{ij}$$

Distance Distribution

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

Vertices i and j are connected if $d_{ij} < \infty$

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

Vertices i and j are connected if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i,j

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

Vertices i and j are connected if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i,j

Components maximal subset of connected components

Components

Clustering Coefficient

One more quantity of interest: how dense is the neighborhood around vertex i?

Do the genes that interact with me also interact with each other?

Definition on the board

(On the board)

Clustering coefficient

$$c_i = rac{2m_i}{k_i(k_i-1)}$$

 m_i : number of edges between neighbors of vertex i

Clustering coefficient

Adjacency Matrix

Undirected graph

Adjacency Matrix

On the board:

- Definition
- Computing degree with adj.
 matrix
- ullet Computing num. edges m with adj. matrix
- Computing paths with adj. matrix

Adjacency Matrix

Directed graph

Weighted networks

Edges are assigned a weight indicating quantitative property of interaction

Weighted networks

Edges are assigned a weight indicating quantitative property of interaction

- Strength of genetic interaction (evidence from experiment)
- Rates in a metabolic network
- Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries

Adjacency matrix contains weights instead of 0/1 entries

Path lengths are the sum of edge weights in a path

Hypergraphs

Edges connect more than two vertices

A Protein-protein interaction network

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000385

Trees

Acyclic graphs

Single path between any pair of vertices

We use an *Incidence Matrix* B instead of *Adjacency Matrix*

(On the board): definition

Projections

 $\mathit{vertex\ projection}$: P_{ij} , num. of groups in which vertices i and j co-occur

group projection: P_{ij}^{\prime} , num. of members groups i and j share

Projections

 ${\it vertex~projection}$: P_{ij} , num. of groups in which vertices i and j co-occur

group projection: P_{ij}^{\prime} , num. of members groups i and j share

(On the board)

$$P = B^T B$$

$$P' = BB^T$$

Centrality

What are the *important* nodes in the network?

What are *central* nodes in the network?

Centrality

Undirected Graphs

• Eigenvalue Centrality

Directed Graphs

- Katz Centrality
- Pagerank

Centrality

Betweenness

What are the *important* edges in the network?

What are edges that may connect clusters of nodes in the network?

Betweenness

Girvan-Newman Algorithm hierarchical method to
partition nodes into
communities using edge
betweenness

Girvan-Newman Algorithm

Two phases:

Phase One: Compute betweenness for every edge

Phase Two: Discover communities by removing *high* betweenness

edges (similar to hierarchical clustering)

Girvan-Newman Algorithm

Calculating Betweenness

Formally, $\operatorname{betweenness}(e)$: fraction of node pairs (x,y) where shortest path crossess edge e

For each node x, use breadth-first-search to count number of shortest paths through each edge in graph

Sum result across nodes, and divide by two

Girvan-Newman Algorithm

Example

Cross-language

igraph: http://igraph.org/

Boost Graph Library:

https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/

Python

- igraph
- networkx

R

Workhorses:

- igraph
- Rgraphviz

Tidyverse (https://tidyverse.org):

- tidygraph
- ggraph

For data analysis it is helpful to think in terms of rectangular datasets

For networks, we need to have two distinct tables to represent this data.

• One table represents entities and their attributes:

Second table to represent edges and their attributes:

```
## # A tibble: 202 x 4
              to .tidygraph_edge_index .orig_data
##
       from
      <int> <int> <list>
                                       t>
##
                                       <tibble [2 × 3]>
## 1
              14 <int [2]>
         1
              16 <int [1]>
                                       <tibble [1 × 3]>
## 2
              20 <int [1]>
                                       <tibble [1 × 3]>
## 3
              21 <int [1]>
                                       <tibble [1 × 3]>
## 4
               9 <int [1]>
                                       <tibble [1 × 3]>
## 5
              21 <int [1]>
                                       <tibble [1 × 3]>
## 6
         2
                                       <tibble [2 × 3]>
##
               5 <int [2]>
  7
```

Network-derived attributes

Besides attributes measured for each node, we have seen we can derive node and edge attributes based on the structure of the network.

For instance, we can compute the *degree* of a node, that is, the number of edges incident to the node.

Network-derived attributes

```
## # A tibble: 70 x 3
      name .tidygraph_node_index degree
##
##
      <chr>
                           <int> <dbl>
## 1 1
                                      4
## 2 2
                               2
                                      2
## 3 3
                               3
                                      0
## 4 4
                               4
                                      5
## 5 5
                               5
                                      5
## 6 6
                               6
                                      5
## 7 7
                                      3
##
   8 8
                               8
                                      5
## 9 9
                               9
                                      6
```

Network-derived attributes

The distribution of newly created attributes are fundamental analytical tools to characterize networks.

