W A 689 N864r 1942

STATE OF NORTH DAKOTA

Research Investigation

A REPORT

Prepared by

THE NORTH DAKOTA STATE DEPARTMENT OF HEALTH

Covering the

JOINT INVESTIGATION

by

THE NORTH DAKOTA STATE DEPARTMENT OF HEALTH
THE MINNESOTA STATE BOARD OF HEALTH

in collaboration with

THE UNITED STATES PUBLIC HEALTH SERVICE

1938 - 1941

Issued by

NORTH DAKOTA STATE DEPARTMENT OF HEALTH
DIVISION OF SANITARY ENGINEERING

WA 689 N864r 1942

31020170R

NLM 05143381 2

NATIONAL LIBRARY OF MEDICINE

ARMY MEDICAL LIBRARY WASHINGTON

Founded 1836

Section Hygnery Ca

Number .

348612

ere 3-10543

FORM 113c, W. D., S. G. O. (Revised June 13, 1936)

STATE OF NORTH DAKOTA

Red River of the North Research Investigation

A REPORT

Prepared by

THE NORTH DAKOTA STATE DEPARTMENT OF HEALTH

Covering the

JOINT INVESTIGATION

by

THE NORTH DAKOTA STATE DEPARTMENT OF HEALTH
THE MINNESOTA STATE BOARD OF HEALTH

in collaboration with

THE UNITED STATES PUBLIC HEALTH SERVICE

1938 - 1941

Issued by

NORTH DAKOTA STATE DEPARTMENT OF HEALTH
DIVISION OF SANITARY ENGINEERING

Buy "Dakota Maid" Flour.

& Bismarck, 1942)

N864r

ACKNOWLEDGMENTS

Grateful Acknowledgment is Made:

To the Work Projects Administration for assistance rendered in collection of samples, measurement of flows of industrial wastes, routine laboratory work, etc. The services of three men during the major portion of a year were granted under a W.P.A. project. Also, some chemicals and glassware were furnished.

To the National Youth Administration for three to four laboratory assistants who helped with laboratory routine, tabulation of data, checking computations, etc.

To the U. S. Geological Survey and Office of the State Engineer in furnishing hydrometric data, including stream flows and stream velocities.

To Dean E. F. Chandler, University of North Dakota, for drainage area and long-range stream flow data.

To Dean L. C. Harrington and the Board of Administration of the University of North Dakota for furnishing laboratory space, janitor service, lights, heat, water, etc.

To the municipalities, the officials of which aided in securing samples and records of waste discharges.

CONTENTS

	Page
PREFACE	7
INTRODUCTION	9
SUMMARY AND CONCLUSIONS	10
PHYSICAL CHARACTERISTICS OF THE RED RIVER BASIN Geology Topography Tributaries Hydrology Climatology	11 12 12 13
ECONOMIC TRENDS Population Agriculture Industry	13 14
STREAM DEVELOPMENT AND WATER PROBLEMS Subsurface Water Supplies Storage Sewage Treatment Flood Control Diversion THE SURVEY PROPER Sampling Stations Collection of Samples	16 17 17 17 18 18
Laboratory Procedure Ice Coverage Classification of Seasons	21
ANALYTICAL DETERMINATIONS AND INTERPRETATION Chemical and Physical Determinations Dissolved Oxygen Biochemical Oxygen Demand Other Determinations Bacteriological Examinations Biological Data	23 23 26 26 27
STREAM LOADINGS AND OXYGEN REQUIREMENTS Stream Loadings Oxygen Requirements under Ice Coverage	29 34
SUMMARY	36

TABLES

Table	Pa	age
I-1	Biological Data—Plankton	42
I - 2	Biological Data—Plankton	43
I - 3.	Biological Data—Plankton	44
II - 1	Biological Data—Bottom Fauna Composite	45
II - 2	Biological Data—Bottom Fauna Composite	46
II - 3	Biological Data—Bottom Fauna Composite	47
III - 1	Biological Data—Bottom Fauna Summary	47
IV & V	Dissolved Oxygen-Monthly Average-P.P.M	48
VI & VII	Dissolved Oxygen—Monthly Average—Percent	
	Saturation	49
VIII & IX	Biochemical Oxygen Demand—Monthly Average	50
X & XI	Nitrite Nitrogen—Monthly Average	51
XII & XIII	Temperature—Monthly Average	52
XIV & XV	Turbidity—Monthly Average	
XVI & XVII	pH—Monthly Average	54
XVIII	Chemical Analysis Before and After Ice Coverage	55
XIX	Coliform Organisms—Monthly Average	56
XX	Coliform Organisms—Monthly Average	57
XXI - 12 to 1	Base Data—River Stations58 to	69
XXII - L, K, J	H Base Data—Tributary Stations76 to	79
XXIII - 1 to 10	Oxygen Requirements Under Ice Coverage for time of flow to Grand Forks or Lake Winnipeg for the 1938-39 winter season80 to	
XXIV - 1 to 4	Oxygen Requirements Under Ice Coverage for time of flow to Grand Forks for the 1939-40 winter season (Sta. 12 to 7)90	
XXV - 1 to 10	Oxygen and Flow Requirements for 1938-39 winter season	96
XXVI - 1 to 3	Oxygen and Flow Requirements for 1939-40 winter season	

FIGURES

Figu	Page
1	Biological Data Bottom FaunaBetween 46 & 47
2	Graphs of Dissolved Oxygen and Biochemical Oxygen Demand at Stations 1 to 12 incBetween 50 & 51
3	Graphs of Dissolved Oxygen and Biochemical Oxygen Demand at Tributary StationsBetween 50 & 51
4, 5	Biochemical Oxygen Demand and Dissolved Oxygen Plotted against River Miles (2 sheets)Between 50 & 51
6	Photographs Between 50 & 51
7	Season A-D.O. and 5-Day, 20°C. B.O.D
8	Season B-D.O. and 5-Day, 20°C. B.O.D
9	Season C-D.O. and 5-Day, 20°C. B.O.D
10	Season A—Stream Loadings in Pounds DailyBetween 72 & 73
11	Season C—Stream Loadings in Pounds DailyBetween 72 & 73
12	Season A-M.P.NColi-Aerogenes in Quantity Units 73
13	Season B-M.P.NColi-Aerogenes in Quantity Units 74
14	Season C-M.P.NColi-Aerogenes in Quantity Units 75
15	November 1938—Pounds D.O. and 0°C. B.O.D. to Station 6 or Lake Winnipeg 85
16	December 1938—Pounds D.O. and 0°C. B.O.D. to Station 6 or Lake Winnipeg 86
17	January 1939—Pounds D.O. and 0°C. B.O.D. to Station 6 or Lake Winnipeg 87
18	February 1939—Pounds D.O. and 0°C. B.O.D. to Station 6 or Lake Winnipeg
19	March 1939 — Pounds D.O. and 0°C. B.O.D. to Station 6 or Lake Winnipeg 89
20	Stream Velocity—Grand Forks to Emerson
21	Stream Velocity—Fargo to Grand Forks
22	First Stage B.O.D.—Station 6A, 7-10-40
23	Second Stage B.O.D. for Values of La123

APPENDICES

	Page
APPENDIX I—HYDROMETRIC DATA	99
Velocities in Red River and Times of Flow	100
Table I —Rate of Travel—Grand Forks to Emerson	101
Table II —Rate of Travel—Fargo to Grand Forks	
Table III —Stream Gaging Stations	105
Table IV —Mean Monthly Discharges at Sampling Stations.	
Table V —Average Stream Gradients	
Table VI —Average Runoff	
Table VII —Discharge Records at Grand Forks	
Table VIII—Summary of Discharge Records at Grand Forks.	
Table IX —Discharge Records at Fargo	108
APPENDIX II—SOURCES OF POLLUTION	109
Table I —Tributaries in North Dakota	
Table II —Tributaries in Minnesota	110
Table III -North Dakota Sources on Red River	
Table IV —Minnesota Sources on Red River	
Table V —Industrial and Muncipal Wastes Discharged D	
rectly into Red River	112
APPENDIX IIITheoretical B.O.D. Calculations	113
Mathematical Formulation of the rate of B.O.D.	
Application of Mathematical Formulation	
Thomas Slope Method of Analysis	
Conversion Table—5-Day, 20°C., B.O.D. to 0°C.	
Long Range B.O.D. Data	
APPENDIX IV—STREAM FLOW REQUIREMENTS	
Stream Flow Requirements	
Table I —Flow Requirements	
APPENDIX V—POPULATION DATA	
Table I —Total Population of Basin by Watersheds	
Table II —Rural Farm and Non-Farm Population Outside	
Incorporated Places	
Table III —Population of Inc. Places (less than 2500)	
APPENDIX VI—DILLUTION WATER SOURCES	
Suitability of Relatively Unpolluted Streams for Dilution	
Purposes	140
SANITARY SURVEY OF RED RIVER OF THE NORTH	143
Report of Joint Investigation-North Dakota and Minneson	ta
Departments of Health, February 1938.	

PREFACE

No extensive information dealing with the effect of ice coverage on the oxygen relationships in a stream was available prior to the undertaking of this study. Repeated requests for such information were received from various agencies concerned with the formulation of a comprehensive water plan for the Red River of the North drainage basin. Specific recommendations in regard to the minimum stream flows necessary for the maintenance of satisfactory standards of stream sanitation were requested.

Accordingly, the North Dakota State Department of Health sought the allocation of Social Security funds for conducting field and laboratory studies necessary to obtain this information. The State Health Officer, Maysil M. Williams, M.D., and the former Director of the Division of Sanitary Engineering, M. D. Hollis, requested and obtained the cooperation of the United States Public Health Service. As a result, Social Security funds were allocated to the State to conduct a research investigation for a period of eight months. Although the original allotment of funds expired by June 30, 1939, it was found necessary to continue the investigation until March 1940.

Mr. J. K. Hoskins, Senior Sanitary Engineer; H. R. Crohurst, Senior Sanitary Engineer; and Frank R. Shaw, Senior Sanitary Engineer, all of the U. S. Public Health Service, assisted in the organization and direction of the study. Mr. C. C. Ruchhoft, Principal Chemist, U. S. Public Health Service, made a field trip covering sampling stations on the Red River south of the International Boundary. He also visited the laboratories in Grand Forks and furnished consultation service on field and laboratory procedures during the course of the study.

The Minnesota Department of Health, A. J. Chesley, M.D., Executive Officer, upon request collected and examined all biological samples. They made special studies of the beet sugar plant wastes and sewage discharged from East Grand Forks, Minnesota. Also, all information on sewage and waste discharge and treatment in Minnesota was furnished. This work was carried out by the Division of Sanitation, Mr. H. A. Whittaker, Director. Mr. H. G. Rogers, Sanitary Engineer, was in responsible charge with Engineers James Drake and Lloyde Kempe obtaining the samples and field information. Theodore Olson, biologist, identified and enumerated the biological organisms.

The study was under the immediate direction of the North Dakota State Department of Health, Maysil M. Williams, M.D., State Health Officer; through the Division of Sanitary Engineering. Harry G. Hanson, Assistant Sanitary Engineer, was in charge of general supervision. Jerome H. Svore was field engineer in charge at Grand Forks, and Gilbert Groff, Chemical Engineer, was responsible for the

chemical laboratory work. K. C. Lauster, Assistant Sanitary Engineer, replaced Mr. Svore during his absence after September 1939. Bacteriological examinations were made under the direction of M. E. Koons, Director, Division of Laboratories.

During the course of the study, four meetings were held to review the progress of the work and to outline future activities. These meetings were attended by representatives of all participating agencies.

This report has been prepared by the Division of Sanitary Engineering of the North Dakota State Department of Health. Jerome H. Svore, Assistant Sanitary Engineer, has been responsible for compilation of data, preparation of graphs and tables, and mathematical and narrative detail. A tentative draft of the report was reviewed by all participating agencies; a comprehensive written review was prepared by a special board of engineers from the United States Public Health Service comprised of H. W. Streeter, Senior Sanitary Engineer; H. R. Crohurst, Senior Sanitary Engineer; C. C. Ruchhoft, Principal Chemist; and M. D. Hollis, Assistant Public Health Engineer.

It is hoped that this report provides the basic information essential to the satisfactory completion of the sanitary phases of a comprehensive water plan for the Red River of the North.

LLOYD K. CLARK, Director
Division of Sanitary Engineering
North Dakota State Department of Health

INTRODUCTION

Two studies have been made on the Red River previous to the present study. In 1931, 1932, and 1933 a joint investigation was made by the Minnesota State Board of Health and the North Dakota State Board of Health in collaboration with the Division of Game and Fish, Minnesota Department of Conservation. It was concluded from the results obtained during this investigation "that in order to improve the existing polluted conditions of the Red River and to promote the best interests of those concerned, it will be necessary to provide treatment for the sewage and industrial wastes from all of the municipalities from Breckenridge to Grand Forks and East Grand Forks inclusive, and for all of the major industrial wastes which are discharged separately into the section of the river under consideration."

In February 1938 a joint investigation was made by the North Dakota State Department of Health and the Minnesota State Board of Health. The "conclusions and requirements" of the report on this survey confirmed the findings of the previous investigation. In addition it was recommended that a more extensive research investigation of the river be made in order to determine the full effects of ice coverage on the oxygen relationships.

The present study was made by the North Dakota State Department of Health in conjunction with the Minnesota State Board of Health with the United States Public Health Service acting in an advisory capacity. The field and laboratory work was performed by personnel of the North Dakota State Department of Health. The biological data were collected and analyzed by the Minnesota Department of Health.

The purpose of this investigation was to obtain information which would serve:

- To determine the oxygen relationships in the stream before and during ice coverage.
- 2. To determine the rate of oxygen depletion in the stream during ice coverage.
- 3. To determine the suitability of relatively unpolluted streams for dilution purposes.
- 4. To determine characteristics and quantities of the various wastes entering the river.

The above information makes possible the computation of minimum stream flows required for the maintenance of a satisfactory standard of stream sanitation. See Appendix IV.

During the course of the study considerable research data were obtained on low temperature B.O.D.'s of Flour Mill, Packing Plant, and Beet Sugar Plant wastes. Time and space do not allow for the interpretation and inclusion of these results in detail in this report.

SUMMARY AND CONCLUSIONS

Some addition to the conclusions reached as a result of previous studies may be made on the basis of information obtained in this study. General agreement with the conclusions reached as a result of previous studies was observed.

From the information collected during this and previous investigations, the following conclusions have been drawn:

- 1. Under ice coverage dissolved oxygen content of the River was depleted to zero in a few weeks except where aeration provided by dams exerted appreciable influence.
- 2. With flows of 200 c.f.s. very unsatisfactory conditions prevailed below Grand Forks during the winter critical period.
- 3. The quantity and nature of the wastes entering the river is such that without additional treatment, the amount of dilution water which reasonably could be provided would not solve the poliution problem.
- 4. High stream flows were accompanied by less septic conditions than were low flows. The less septic condition resulted not only from increased dilution but also from increased stream velocity.
- 5. During the winter critical period and summer critical period, flows from tributaries (except the Red Lake, Ottertail, Sheyenne, Buffalo, and the Minnesota Wild Rice Rivers) were insignificant from the standpoint of pollution contributed and dilution provided.
- 6. Overflow dams (less than 12 feet high) of the type in the Red and Red Lake Rivers, appear capable of providing sufficient aeration to increase the dissolved oxygen content of low temperature oxygen-deficient water to approximately 6 p.p.m. Since dissolved oxygen values during summer periods were not observed to be below about 6 p.p.m. at these dams, no information was collected on aeration by dams during summer months. Undoubtedly, the effectiveness of such dams as aerating devices could be improved if they were designed with this end in view.
- 7. It has been observed that, due to natural pollution* alone, the oxygen content of waters stored in reservoirs or river channels is likely to be diminished seriously or depleted entirely. Therefore, to be of greatest value for dilution purposes during the winter critical season, impounded waters should be aerated upon release from reservoirs.
- 8. Sludge deposits appear to exert an appreciable effect on the River. During periods of higher flow, organic material deposited at lower flows is dislodged and increases the pollution loading on the stream. However, at flows less than those required to dislodge sludge particles, the pollution load also may be increased. This latter effect is attributed to the direct solution of deposited organic

^{*}Not receiving discharges of municipal or industrial wastes. The extent of rural pollution from barnyard drainage, dumped manure, and refuse such as has been observed is not known.

matter and of oxygen-requiring decomposition products of anaerobic sludge digestion. Entrainment of material floated by gas from digestion processes was observed.

- 9. Relatively unpolluted streams may, due to natural pollution alone, become completely devoid of dissolved oxygen during the ice coverage period.
- 10. Research information obtained in this study indicates that the rate and extent of oxygen utilization by industrial wastes depends upon several variable factors including nature of the waste, temperature, extent of dilution and the type of dilution water. It is essential to determine not only the basic behavior of each industrial waste separately but also to determine its effect in combination with other wastes under specific stream conditions. Since the behavior of an industrial waste may be quite different than that of domestic sewage, the fallacy of forecasting the effect of industrial wastes on the basis of the behavior of domestic sewage is evident.

PHYSICAL CHARACTERISTICS

The Red River of the North, located almost at the geographic center of the North American continent, is one of the few rivers that follows a course practically due north. Starting at Wahpeton, North Dakota and discharging into Lake Winnipeg in Manitoba, it forms most of the boundary between North Dakota and Minnesota. The river is formed by the confluence of the Ottertail and Bois-de-Sioux Rivers, the latter forming the remainder of the North-Dakota-Minnesota boundary and headwatering in Lake Traverse.

GEOLOGY

During the glacial period Lake Agassiz was formed covering the area which is now known as the Red River Valley. Originally this lake drained toward the south through Lake Traverse and Big Stone Lake, but when the ice receded lower outlets toward the north were opened from time to time, eventually lowering the elevation of the lake below the southern outlet of Lake Traverse. This receding occurred in stages. The shore line elevations were well marked and may be seen today in the form of a series of gravel ridges formed by the action of the waves. The tributaries of Lake Agassiz carried considerable silt, the heavier particles being deposited at the mouth forming a delta and the finer particles being carried out into the lake. With the receding of the lake these delta formations caused a partial damming effect at the mouth of the tributaries causing some to change their courses. The North Dakota Wild Rice River at one time joined the Red River near Wahpeton, but now enters a few miles south of Fargo. The deposition of the finer particles over the lake bottom formed the excellent agricultural land that is found in the valley today. The central portion of the drainage area, originally the lake bottom, has a flat topography. The entire drainage system

of the Red River gives the impression of a very old river. Geologically it is considered youthful, its winding course resulting from the cutting of the channel in the very level surface of the lake bottom.

TOPOGRAPHY

The river distance from Wahpeton to the International Boundary is 394 miles, or practically twice the airline distance between the two points. The slope, in general, is slight and diminishes toward the north. The surface altitudes above mean sea level arc: 980 feet at Lake Traverse; 963 feet at Wahpeton; 900 feet at Fargo; 830 feet at Grand Forks; 789 feet at the International Boundary; and 755 feet at Winnipeg. The flat gradient of the river (approximately one-half foot drop per mile) produces a very sluggish condition, and considerable pooling occurs during periods of low flow. A heavy growth of aquatic vegetation flourishes during periods of low water in the summer as a result of the rich organic bottom and the shallow littoral margins. Transpiration and evaporation losses are large, and in some stretches of the river, notably between Wahpeton and Fargo, apparent losses have ranged from small percentages during high flows to nearly 100 per cent during very low flows.

The drainage area of the River above the International Boundary is 35,895 square miles. Of this, 670 square miles are in South Dakota, 16,065 square miles in North Dakota, 17,165 square miles in Minnesota, and 1995 square miles in Canada along the upper Pembina River.

Portions of the valley are flat marshy lands which seldom if ever contribute to the annual runoff of the basin. However, the above figures assume all lands to drain into some river or tributary.

TRIBUTARIES

The main tributaries of the Red River below the point of confluence of the Ottertail and Bois-de-Sioux rivers are: the Wild Rice, Sheyenne, Elm, Goose, Turtle, Forrest, Park, and Pembina Rivers on the North Dakota side; the Buffalo, Wild Rice, Red Lake, Snake, Tamarack, and Two Rivers on the Minnesota side; the Roseau, Rat, LaSalle, and Assiniboine in Canada. The headwaters of the Roseau River are in Minnesota.

Following is a list of the principal tributaries of the River in the United States with their drainage areas in square miles:

Pembina (N.DMan.)	3530	sq.mi.
Two Rivers (Minn.)	776	sq. mi.
Tamarack (Minn.)	580	sq.mi.
Park (N.D.)	1130	sq.mi.
Forrest (N.D.)		
Snake (Minn.)	1040	sq.mi.
Turtle (N.D.)		
Red Lake (Minn.)	5760	sq.mi.

Goose (N.D.)	.1260	sq.mi.
Wild Rice (Minn.)	.1440	sq.mi.
Elm (N.D.)	460	sq.mi.
Buffalo (Minn.)	1400	sq.mi.
Sheyenne (N.D.)	.7380	sq.mi.
Wild Rice (N.DS.D.).	.2210	sq.mi.
Ottertail (Minn.)	.1840	sq.mi.
Bois-de-Sioux (N.D		
26.000		

......1860-sq.mi.

NOTE: The difference between the total of the above and the total drainage area of 35,895 square miles at the border represents the drainage area of smaller tributaries not listed.

HYDROLOGY*

The records indicate that many floods occurred throughout the valley during the time of its early settlement. Considerable river traffic was carried on and the flow was seldom inadequate. During 1913, 1916, and 1919 serious floods occurred, probably caused in part by the newly built drainage ditches and other man-made changes in the natural drainage of the valley. During the period of record prior to 1920, the basin experienced a relatively wet cycle, after which a drouth cycle began to appear. Ground water levels receded until many underground supplies were no longer adequate. With one or two exceptions, the situation became more critical until 1930 when serious drouth conditions began. Stream flows decreased steadily during this serious drouth period.

In 1934 zero flows were recorded during the four months, July to October inclusive, at the Fargo gaging station. From 1929 to 1935 there were five periods aggregating 14 months when the flow at Fargo was zero.

CLIMATOLOGY

The climate of the basin is characterized by long cold winters and relatively short warm summers. Temperatures vary from -30 in the winter to 95 degrees Fahrenheit in the summer. Extreme temperatures of -50 and 110 degrees have been recorded. The mean annual temperature of the basin, based on the mean annual temperatures at recording stations in the area, is 38.7 degrees Fahrenheit. There is a geographical uniformity of climate because of the small altitude variation throughout the whole valley.

Prevailing winds are from a northwesterly direction. Rising to great heights in crossing the Rocky Mountains, they are mostly dry winds. The southeasterly winds coming from the Gulf of Mexico bring most of the rain. Fortunately the south winds prevail during the growing season which varies from 103 to 139 days. Throughout the valley the mean annual rainfall from available records of all stations is 20.11 inches; variation is from 16 to 34 inches. Average annual evaporation from water surfaces is approximately 36 inches. Annual runoff varies from 0.54 inches to 3.55 inches; the average for the basin is 1.25 inches.

ECONOMIC TRENDS

POPULATION

From 1890 to 1910 the population of the entire valley increased rapidly. It very nearly doubled, being 228,000 in 1890 and 443,000 in 1910. Since 1910 the increase has been slow; the 1930 population

^{*}Hydrometric data are given in Appendix I.

was 489,000. The rural population has been declining since 1920; this decline has been but slightly more than compensated for by the increase in urban population. A decline is also noted in towns of less than 2500.

Urbanism in this area is advancing much slower than in other parts of the country. During the decade ending 1930, the urban population increased at a rate which was only two per cent greater than the total urban and rural rate for the United States as a whole.

The rural, urban, and total populations of the Red River basin by watersheds are given in Appendix IV, tables I to IV, inclusive.

AGRICULTURE

The primary industry in the Red River basin is agriculture. Grain farming is the most common type of enterprise despite recent trends toward diversification. Dairy and poultry products have undergone a marked increase in production during the last decade although grain crops, of which dark northern spring wheat is the most important, still have by far the largest monetary value. At the turn of the century 61 per cent of the entire land area of the basin was in farms and 72 per cent of this was such that it could be cropped. By 1930, 77 per cent of the entire land area was in farms and of this 92 per cent was improved. The remaining 23 per cent of unfarmed land is largely composed of swamp, muskeg, and peat lands which are not adaptable to farming; it includes also lake shore property used for recreational purposes.

INDUSTRY

Industries within the basin are composed of service industries and those industries necessary to the processing of various agricultural products. In 1930 there were 150 creameries serving the growing dairy industry, with an annual output of creamery products valued at \$21,694,029. In addition, there were in operation one large and several small flour mills, one large and a few small meat packing plants, and one beet sugar plant. Service industries consist of machine shops, bakeries, foundries, print shops, etc. There are no industries within the basin besides the agricultural industries mentioned above that are producing to any extent for inter-territorial trade.

Regarding industrial employment, 38 per cent of the total Minnesota population were gainfully employed in 1930; 20 per cent were engaged in manufacturing and mechanical industries. In that portion of Minnesota which lies in the Red River basin, 36 per cent of the population were gainfully employed in 1930 of which only ten per cent were engaged in manufacturing and mechanical industries.

An important enterprise of the Ottertail Basin is the tourist trade. The wild life and recreation facilities of the Minnesota lake regions have been developed to a great extent within recent years.

STREAM DEVELOPMENT AND WATER PROBLEMS

During the early years of development in the Red River basin, the natural marshy land afforded relatively satisfactory flood control and stabilization of dry weather flow. The spring runoff and occasional summer storms were retarded in the upper reaches of the drainage basin and caused a continuance of flow during normal drouth periods of the summer and fall. With the expansion of agriculture and the cultivation of lands artificial methods of drainage were provided. Canals and ditches were constructed for drainage alone with little thought to control; this together with cultivation and deforestation resulted in increased flood flows and decreased low flows. The dry weather flows at present result largely from the issuance of ground water at the headwaters of the various tributaries.

Beginning in 1929 there followed several years of exceedingly low rainfall. This was accompanied by serious depletion of shallower ground water resources. The deeper ground waters, which were affected less, are highly mineralized and in most cases unsatisfactory for domestic use.

With the receding of useable ground waters during the drouth period some cities turned to the river for additional supplies. This made necessary the construction of water treatment plants and storage reservoirs.

Until very recent years practically all sewered cities on the river and tributaries discharged raw sewage. Most of the major cities now have provided some type of sewage treatment; however, treatment of many important industrial wastes remains to be accomplished. Very unsatisfactory pollutional conditions have existed for the past several years, especially during low flow periods. Usefulness of the river to both municipal and rural riparians has been greatly impaired by the combination of low flow and pollutional discharge. The bacterial and other organic loadings upon water treatment plants have at times exceeded the reasonable capabilities of modern purification processes. All but one of the larger cities depend upon the river as the source of public water supply.

Rural riparians have been affected acutely by the impairment to the quality of river water. Especially below Grand Forks, the farmers on and near the river are dependent on the stream for stock watering, irrigation, general household uses such as laundering and cooking, and even for drinking water. During the February 1938 study meetings were held at points below Grand Forks to hear complaints and gather information on the extent of dependence on the river as a source of water supply.

Eighty-nine farmers and residents were interviewed and detailed information obtained. Altogether, forty persons stated that they used melted ice from the river for cooking; of eighteen farmers who used the river as a source of drinking water, ten used it in the form of melted ice. Seventy-one farmers stated that they watered from the river a total of 4296 head of stock, mostly cattle. Many farmers who were dependent on river water for stock watering stated that during winter months their cattle drank very little water; that normally heavy fed dairy cattle would bloat and become very sick, some of them dying. More detailed information on complaints and rural use of river water is contained in the 1938 report. A complete and detailed investigation of the river and contributed wastes was essential before a satisfactory and practical corrective program could be worked out.

SUBSURFACE WATER SUPPLIES

As pointed out above the loss of usable shallower ground water supplies created a serious problem. In order to obtain the greatest value from remaining usable shallow ground water supplies, relocation or readjustment of existing wells may be necessary in many cases. Through geological investigation additional subsurface supplies may be located. Further, the location and mode of occurrence of both satisfactory and unsatisfactory supplies may be determined and the best method of obtaining the desirable supplies forecast. Water strata of unsatisfactory mineral characteristics may have to be cased out in some localities. With the exception of the larger cities in the valley practically all communities and rural settlements obtain water for domestic purposes from subsurface sources.

STORAGE

The National Resources Committee in their report on the Red River dated August 1937 discussed the necessity of flood flow storage. It was brought out that the detailed solutions which go to make up a comprehensive plan must of necessity be closely coordinated because of the scarcity of water for municipal and industrial use. The headwaters of the streams, it was stated, afford the best opportunities for storage but in addition thereto an extensive channel clearing and channel straightening program must be incorporated to convey the water from storage to the towns below with minimum loss.

The main proposed storage projects consist of control works on the Red Lakes and several small control dams in the Ottertail Basin. For the Sheyenne River there is the proposed Bald Hill Reservoir above Valley City, North Dakota and many small projects throughout the remaining part of the valley. No additional storage reservoirs are recommended for the Red River proper as losses due to evaporation are likely to be greater than the benefits derived from storage. Larger types of dams, although beneficial from a standpoint of oxygen replenishment by aeration, are not in accord with the general plan. The existing structures may even be lowered or removed entirely except where needed as water intakes. Other features of the program which must be taken into consideration are subsurface

water supplies, sewage treatment, flood control, wild life conservation, and diversion from other water sheds.

SEWAGE TREATMENT

Sewage treatment by larger municipalities came about first as a result of an injunction by affected riparians. Later, lawsuits resulted in the installation of sewage and waste treatment facilities. All but a few of the larger municipalities and many of the smaller ones have installed some form of sewage treatment. Extensive industrial waste treatment facilities have been installed at West Fargo. Some important industrial and municipal wastes are being discharged untreated at present.

One of the most important economic problems to be solved is that of securing a practical balance between the cost of constructing or improving and operating sewage treatment works and the cost of constructing and operating storage or diversion works to supply dilution water. The problem of attaining this balance depends to a great extent on the degree of stream cleanliness that is to be achieved.

FLOOD CONTROL

Flood control will be effected to a great extent by the completion of storage projects. Peak floods, however, may be controlled to a great extent only by projects similar to the one under construction at Lake Traverse. Wild life conservation projects may accompany a large percentage of all these undertakings as they are essentially storage at the head waters.

DIVERSION

In recent years considerable attention has been focused on the diversion of water from the Missouri River to the Red River Basin and other watersheds. From a water supply and sewage disposal standpoint there is little doubt of the great value which would result from this project. In a report prepared by the North Dakota State Department of Health and the Office of the State Engineer in 1939 the yearly benefits to water and sewage capitalized at five per cent were estimated at approximately fifteen million dollars. Other benefits computed by the Commission and capitalized at five per cent, exclusive of recreation, water power, and general increase in land values, raised this figure to thirty-eight million dollars. The entire cost of the project was calculated to be approximately thirty-nine million dollars, and provided for the diversion of about 600 c.f.s. A 996,000 acre foot storage reservoir would be constructed at the headwaters of the Sheyenne River with approximately one-third of its capacity available for diversion to Devils Lake or to the James River, the remainder supplementing the flows of the Sheyenne. According to the plan, a portion of this flow would be diverted to the Red River above Fargo. A detailed report by the U. S. Army Engineers on the proposed diversion is now nearing completion.

SURVEY PROPER

SAMPLING STATIONS

The climatic conditions of the Red River basin necessitated the careful selection of sampling stations. During the winter months considerable difficulty was anticipated because of the impassability of snow blocked roads by automobile. As a result stations were located at strategic points that were near main traveled highways. Red River sampling stations selected in previous surveys were utilized with one exception (Station 5 added) in this study.

Twelve sampling stations were maintained on the Red River proper. Eleven sampling stations were maintained at the mouths of the tributaries and one station was maintained at the East Grand Forks Beet Sugar Factory effluent ditch just above its point of discharge into the Red River. All tributaries were sampled whenever they were flowing.

The following tabulation shows the location of the sampling stations in their order upstream from the International Boundary. All river stations were designated by numbers running in order from the International Boundary south and the stations on the tributaries were designated alphabetically starting at the International Boundary. (See map at beginning of report.)

Riverside Park Dam at Station 6 in Grand Forks. A typical Low Overflow Dam.

Red River and tributary sampling stations showing location, miles south of International Boundary, etc. (Mileages taken from U. S. Department of Agriculture Bulletin No. 1017 Report on Drainage, Etc. by Simons & King.) Tributary sampling stations are all on highway bridges within a few miles of the mouths of the streams. Distances given are from mouths of tributaries

Station	Mile No.	Location	Remarks
4	2.8	Mouth of Pembina River. Highway bridge in City of Pembina	Receives Cavalier (40 mi.) and Walhalla (60 mi.) sewage.
	60	Highway bridge at Pembina	
60	20	Two Rivers	Receives Hallock (12 mi.) and Lancaster (30 mi.) sewage.
0.1	53	Highway bridge at Drayton	
7	65	Tamarack River	
	67	Park River	Receives Grafton (24 mi.) and Park River (50 mi.) sewage.
田	75	Snake River	Receives Warren sewage. (30 mi.)
	22	Directly East of Grafton	Annual An
Par.	00	Mouth of Forrest River	
	116	Highway bridge at Oslo	
5	129	Directly East of Manvel	
6a	138	Below Grand Forks	Includes all wastes discharged at Grand Forks - East Grand Forks
	141	Above West End of Riverside Park Dam in Grand Forks	Receives East (Trand Forks sewage and Sugar Beet wastes. Dam 10 Feet High.
FR	141.2	East Grand Forks Beet Sugar Plant Outfall	
-	143	Red Lake River	Receives Crookston 45 mi.) Third River Fulls (117 mi.). Red Lake Falls (83 mi.), Nosson (42 mi.) sewage. Overflow Dam (3 Feet) between sampling Station and mouth.
	145.7	Above Grand Forks	At ski slide in Lincoln Park.
	180	Highway bridge at Climax	
I	203	Goose River	Receives Hillsboro (15 mi.) and Mayville (50 mi.) sewage.
6	220.4	Highway bridge at Halstad	Halstad sewage outfall less than one mile above station.
	225	Minnesota Wild Rice River	Twin Valley sewage (82 mi.), Mahnomen sewage (118 mi.)
	261.4	Highway bridge at Georgetown	
K	262.5	Buffalo River	Hawley sewage (36 mi.), Barnesville sewage (45 mi.)
1	273	Sheyenne River	Armour's Packing Plant at West Fargo (20 mi.). Also other cities at considerable distance.
11	286	Highway bridge below Fargo sewage treatment plant	Fargo sewage '4 mile above; Moorhead sewage 6 miles above. 6' over- flow dam 7 miles above.
12	298	Fargo Water Works intake	1/2 mile above 7-foot dam.
	303	3-Ft. overflow dam	
	329	9-Ft. overflow dam	
	341	9-Ft. overflow dam	
	394		Wahneton & Breckenridge sewage.

COLLECTION OF SAMPLES

Samples were collected weekly on Red River stations south of the International Boundary from November 1, 1938 to July 1, 1939 and from September 1939 to December 14, 1939. One complete sampling trip was made in August 1939, two in January, one in February, and one in March 1940. Samples collected from tributaries were obtained regularly during periods of perceptible flow.

In order to balance laboratory work with field work and provide for reasonable hours, the area normally was sampled in three stages making one trip every other day as follows:

- 1. All stations north of Grand Forks, starting with Station 5.
- 2. Stations in Grand Forks area (6, 7, and H) and beet sugar plant wastes, Grand Forks sewage treatment plant, State Mill, Packing Plant, etc.
- 3. Stations from Grand Forks south, starting with Station 8. (Sampling was staggered to avoid sampling the same point on the same day of each week.)

Chemical and bacteriological samples were taken in a sampler so designed that a bacteriological (125 cc), a dissolved oxygen (250 cc), and a biochemical oxygen demand sample (2 liters) could be taken at one time; enough was left over from the B.O.D. sample to make the other necessary chemical and physical determinations. One sample was taken at a point in the channel at mid-depth.

Samples were taken from bridges in most cases. During winter, holes were chiseled through the ice and the sampler lowered into the stream from the ice surface. In the fall and spring when it was unsafe to walk on the ice, skiis were used. A light boat carried on top of the car was used in spring and fall and during open water periods where samples could not be obtained from bridges, docks, etc. Occasionally, samples were obtained by casting the sampler out into the flowing stream. Several trips were made by boat downstream from Grand Forks in an effort to trace the oxygen sag curve. No appreciable sag was observed between Grand Forks and Oslo (Station 4) during the spring and early summer higher flow periods. Algal activity was believed to be an important influence. Later, when the flow decreased, portions of the stream were too shallow to permit use of a boat and outboard motor for such work.

All samples were transported by automobile and brought to the laboratory for examination on the same day they were collected.

LABORATORY PROCEDURE

Routine laboratory procedure consisted of determining the nitrites, turbidity, pH, initial dissolved oxygen, and the 5-day biochemical oxygen demand at 20°C.

Bacteriological examination consisted of making an estimate of coliform organisms by planting triplicate portions of each of four geometric dilutions in standard lactose broth and incubating for 48

hours at 37°C. The highest dilution showing gas formation was then transferred to standard brilliant green bile broth and incubated at 37°C. for 48 hours. Gas production in brilliant green bile would then be considered a positive confirmation of the coli-aerogenes group; otherwise the next lowest dilution would be taken for positive. However, in the event only one or two lactose broth tubes of the highest dilution were positive, the next lowest dilution was also transferred to standard brilliant green bile broth for confirmation. This procedure is a slight variation from that recommended in Standard Methods of Water Analysis, Eighth Edition, but seems entirely satisfactory when it is considered that confirmation was obtained in all but a few cases during the course of the survey. The most probable number was then determined by referring to a table.1

All other determinations were made in accordance with Standard Methods for the Examination of Water and Sewage, Eighth Edition, except that in the presence of nitrites the Sodium-Azide modification of the Winkler method for the determination of dissolved oxygen was used after February 1939. Samples for the determination of biochemical oxygen demand were brought to room temperature and saturated with oxygen by shaking in a half full bottle. This same procedure was used for both unsaturated and supersaturated samples. Whenever dilution of the river water samples was necessary, seeded bicarbonate dilution water was used.

Several long-time B.O.D. determinations were made on river water from most of the Red River stations at both 0°C. and 20°C. At first, the 0°C. incubations were kept under the ice in a creek near the laboratory. Later, 0°C. incubation temperatures were obtained by pumping water from the presedimentation tank of a water plant through a water bath incubator to waste. Constant temperatures of 0°C. were maintained without difficulty.

Bicarbonate dilution water was used in all B.O.D. determinations on industrial wastes except on the sugar beet wastes. Several types of dilution water were used in the B.O.D. determinations of this waste; formula "C" phosphate dilution water gave the most satisfactory results and was adopted for this determination.

Examination of samples from representative river and tributary stations for mineral content and organic nitrogen content was made during ice coverage in 1939.

ICE COVERAGE

In the fall of 1938 the River was completely ice covered on the twenty-third of November excepting at Station 6 (just above Riverside Dam at Grand Forks) and Station 11 at Fargo, which stations stayed open all winter. Most of the river was ice covered

¹M.P.N. table compiled from McCrady's Formula and Tables.
²Altzburg Modification Recommended by C. C. Ruchhoft.
³Volume 48, No. 24, Public Health Reports, Page 683, Footnote 1.

about a week before this. From January to spring break-up the ice had a thickness of about 24 to 26 inches; the thickest ice appeared at northerly stations. The break-up occurred between the twenty-second and twenty-seventh of March on the stations above Grand Forks. The time of ice coverage above Grand Forks varied from 120 to 134 days and below Grand Forks from 132 to 139 days.

Because of the unusually warm weather in the fall of 1939, complete ice coverage occurred from 15 to 41 days later than it did in the fall of 1938. Complete ice coverage occurred on about the tenth of December on the portion of the river below Grand Forks and on the twenty-sixth of December on the portion of the river above Grand Forks.

The river was still ice covered on the twenty-third of March 1940 and no samples were collected after that date. However, some water had flowed over the ice at that time at some of the stations. The following is a tabulation of the observed dates of ice coverage and break-up at the various stations.

DATES OF ICE FORMATION AND SPRING BREAK-UP

1938–1939				1	1	1939-1940	
Station ¹	Ice First Appeared	Complete Ice Coverage	Spring Breakup	Days of Ice Coverage	Ice First Appeared	Complete Ice Coverage	Spring Breakup
12	Nov. 14	Nov. 22	Mar. 22 to 27	120	Nov. 28	Dec. 20	After Mar. 23
11		Open all win	ter	1	Or	en all winter	
_L	Nov. 14	Nov. 30	Mar. 22 to 27	112	Nov. 28	Dec. 26	
K	Nov. 14	Dec. 14	Mar. 22 to 27	98	Nov. 28	Dec. 20	
10	Nov. 14	Nov. 15	Mar. 22 to 27	127	Nov. 28	Dec. 26	
J	Nov. 14	Dec. 14.	Mar. 22 to 27	98	Nov. 28	Dec. 26	
9	Nov. 14	Nov. 15	Mar. 22	127	Nov. 28	Dec. 26	73
8	Nov. 14	Nov. 22	Mar. 22 to 27	120	Nov. 28	Dec. 20	March
7	Nov. 10	Nov. 15	Mar. 29 to Apr. 3	134	Nov. 29	Dec. 13	After N
Н	Nov. 15	Nov. 15	Apr. 10 to Apr. 20	144	Nov. 28	Dec. 20	Aft
6		Nov. 29	Mar. 29 to Apr. 3	120	Dec. 9	Dec. 20	
5	Nov. 16	Nov. 23	Apr. 6	132	Nov. 1	Dec. 10	
4	Nov. 9	Nov. 16	Apr. 6	139	Nov. 1	Dec. 10	
3	Nov. 9	Nov. 16	Apr. 6	139	Nov. 1	Dec. 10	
2	Nov. 9	Nov. 16	Apr. 6	139	Nov. 1	Dec. 10	
1	Nov. 9	Nov. 16	Apr. 6	139	Nov. 1	Dec. 1	

¹Tributary stations not listed had no flow during ice coverage period.

CLASSIFICATION OF SEASONS

In portions of this report data and interpretations have been presented on both a monthly and a seasonal basis. The purpose of seasonal classification is to show trends over longer periods of time under conditions which remain essentially the same. Three seasons have been chosen and are defined as follows:

- A. Winter Critical Season (Dec. 1, 1938 to April 1, 1939) was taken to include that portion of the winter from the time the dissolved oxygen content approached zero to spring break-up. Since these conditions do not occur at the same time at all stations on the river a single winter critical season boundary cannot be taken which will be entirely accurate for each station.
- B. Spring High Flow Season (Apr. 1, 1939 to July 1, 1939) was taken to include the high water season occurring during and after spring break-up until the time the river approached the usual summer stage.
- C. Summer Critical Season (Aug. 1, 1939 to Oct. 1, 1939) was taken to include the period of low flows at summer temperatures.

ANALYTICAL DETERMINATIONS and INTERPRETATION

I. CHEMICAL AND PHYSICAL DETERMINATIONS

1. Dissolved Oxygen. (D.O.)

Regular weekly determinations of dissolved oxygen were made at all Red River and tributary stations south of the International Boundary, except when frozen to the bottom or when not flowing, during the eight months from November 1, 1938 to July 1, 1939, the period of time for which the investigation was originally set up. Sampling was continued on the Red River and some tributaries at irregular intervals from July 1, 1939 to March 21, 1940 in order to obtain additional necessary data.

In Figures 2 and 3, the results of all dissolved oxygen determinations on the Red River and tributaries have been plotted by stations; every dissolved oxygen determination made at these stations during the 17-month period from November 1939 to March 1940, is shown. Biochemical oxygen demand is shown similarly in these graphs.

Figures 4 and 5 show the dissolved oxygen trend as monthly averages expressed in terms of per cent saturation. Monthly averages of 5-day 20°C. B.O.D.'s are also plotted on the graph in order to present a relative picture of the amount of oxygen required and the amount available.

Monthly averages of dissolved oxygen, expressed as p.p.m. and as per cent saturation, are shown for Red River and tributary stations in Tables IV, V, VI, and VII. In interpreting dissolved oxygen values observed, it should be remembered that samples were collected during the day and that the effect of algal activity may be considerable. Supersaturation to the extent of 60 per cent was

observed repeatedly during the early winter open water period of 1939-40.

Discussion of Dissolved Oxygen Observations in Chronological Order.

Referring to Figures 2 and 3, it may be seen that the dissolved oxygen content at most stations approached the saturation value of approximately 14 parts per million just prior to ice coverage in 1938. The oxygen sag is evident below Fargo-Moorhead, and very pronounced below Grand Forks-East Grand Forks.

With the onset of ice coverage, a rapid drop in dissolved oxygen and failure to recover is noted below Fargo and below Grand Forks. Dissolved oxygen content dropped to zero or near zero in the following approximate time intervals after ice cover formed.

Below Fargo:	Below Grand Forks:
Station 10 — 6 weeks	Station 4 — 3 weeks
9 — 6 weeks	3 — 2 weeks
8 — 4 weeks	2 — 2 weeks
	1 — 3 weeks

Following this December critical period, a slight increase in dissolved oxygen was noted at Stations 10, 9, and 8 below Fargo. This may be attributed to a four-fold increase in stream flow at Fargo during January and February. At Station 12 above Fargo the lowest dissolved oxygen content observed throughout the winter of 1938-39 was approximately 6 p.p.m. The reoxygenation provided by three dams above Station 12 is the most probable explanation. Likewise, the dams in Fargo and the open water from the Fargo sewage treatment plant outfall to a point below Station 11, account for the appreciable dissolved oxygen observed at Station 11 throughout the winter.

A low overflow dam on the Red Lake River just prior to its confluence with the Red River and a higher overflow dam on the Red River a short distance downstream from the confluence, provided considerable aeration at these points. These dams, together with the open water stretches in and below Grand Forks, provided sufficient aeration to maintain some dissolved oxygen continuously as far below Grand Forks as Station 5.

Subsequent to the termination of operations at the beet sugar plant in late December, reappearance of one or two p.p.m. of dissolved oxygen at Stations 4, 3, 2, and 1 was observed.

Stream flow during the most critical winter period (January, February, and part of March, 1939) averaged approximately 100 c.f.s. at Fargo and 235 c.f.s. below Grand Forks. Evidence of septic conditions in the river was much less pronounced than during the previous winter critical period when stream flows were from one-third to one-half of these values. The point of significance is that

¹ Joint investigation by North Dakota and Minnesota Departments of Health, February 1938.

even with winter stream flows of reasonable magnitude, very unsatisfactory conditions existed under ice coverage because of excessive organic pollution.

Following spring breakup, high stream flows and open water conditions brought about an immediate improvement in dissolved oxygen content of the river. Reasonably satisfactory dissolved oxygen conditions existed during the high flow period of spring and summer.

The 1939 summer critical period appeared somewhat later than normal; average monthly stream flows dropped from 85 to 15 c.f.s. at Fargo and from 460 to 144 c.f.s. at Grand Forks in August. Flows decreased further to 3 c.f.s. at Fargo in September and increased from 144 to 216 c.f.s. at Grand Forks. At all points except immediately below Fargo and Grand Forks, dissolved oxygen was well in excess of oxygen demand during the critical summer months of August* and September. Dissolved oxygen content fell to nearly zero at Station 11 below Fargo the first week in September.

In the winter of 1939-40 complete ice coverage was delayed until the latter half of December. This condition permitted a longer period of observation under low-temperature open-water conditions. Stream flows at Fargo in November and December were slightly less than in the same months of the previous year. Dissolved oxygen content in p.p.m. was slightly higher because of open water conditions. Also, during these same two months the stream flow at Grand Forks was 300 c.f.s. or about 50 per cent greater than the 1938 flow of 200 c.f.s. This higher flow may have been responsible in part for the observed increase of about 50 per cent in p.p.m. B.O.D. That is, an increase in stream velocity may cause suspended material which would settle out at the lower velocity to be carried in suspension. The velocity difference is approximately 20%.

At no point during these two months was the dissolved oxygen content observed to be zero in the entire stretch of river from Fargo to Pembina. The ability of the stream to maintain satisfactory dissolved oxygen conditions under open water and low temperature conditions, even with heavy organic loadings, is indicated especially below Grand Forks. Supersaturation existing at Stations 7 and 8 in November and December indicated appreciable algal activity at low temperatures, with open water. It is not known whether the supersaturation persisting at Station 7 for approximately one month after ice coverage was a result of algal activity before or after ice coverage or whether it resulted from a combination of both. Following ice coverage, depletion to zero of dissolved oxygen resources was observed at Stations 10, 9, 8, 3, 2, and 1 within approximately one month after ice cover. Sampling was terminated prior to the 1940 spring breakup.

^{*} Only one sampling trip made in August 1939.

2. Biochemical Oxygen Demand

Samples for B.O.D. determination were taken at the same time as dissolved oxygen samples; results of determinations are shown in Figures 2 to 6 inclusive. Separate tabulations of monthly averages are shown in Tables VIII and IX. The points of heaviest pollution and the variation in loading are indicated by the graphs and tables. The surplus or deficit of dissolved oxygen over 5-day 20°C. B.O.D. is shown by stations in Figures 2, 3, and 4.

With the exception of the winter critical period and the late summer critical period, the dissolved oxygen is generally in excess of the B.O.D. A more detailed presentation of the oxygen relationships is included in the section on Stream Loadings and Oxygen Requirements. Sludge deposits appear to exert an appreciable demand; this is most noticeable under ice coverage conditions.

3. Other Determinations

Nitrites, temperature, turbidity, and pH were determined routinely at the same time as dissolved oxygen and B.O.D. Tabulations of monthly averages are included in the report as Tables X to XVII inclusive.

Nitrites.—This determination was made on regular river samples primarily to indicate the dissolved oxygen procedure necessary. Nitrite concentrations were greatest below Fargo-Moorhead; the sewage treatment plants at both of these municipalities include trickling filters. Nitrites persisted greater distances downstream from Fargo-Moorhead during the ice coverage period than at any other time of the year. Below Grand Forks nitrites were observed in significant amounts only under low temperature conditions. A tabulation of monthly averages of nitrite determinations is included as Tables X and XI.

Temperature.—Monthly averages of water temperatures for all Red River stations are shown in the tables XII and XIII. At least four full months of 0°C. water temperature is indicated at most stations. Maximum monthly summer temperature averages are slightly above 20°C.

Turbidity.—The purpose of making turbidity determinations was to provide an approximation of the suspended solids content. Highest turbidities were coincident with highest flows (following spring break-up); lowest turbidities occurred in the late fall and winter months, the minimum being reached just prior to spring breakup. Sufficient correlation was observed between turbidity and oxygen demand to be of value in determining B.O.D. dilutions during periods of high turbidity. A direct relation between stream flow and turbidity over the entire year is not apparent; lower turbidities were observed in winter than in summer for the same stream flow. The average monthly turbidities for each river station are shown in Tables XIV and XV.

pH.—A distinct variation between open water and ice coverage conditions was evident at most stations on both the main river and its tributaries. Highest pH values (8.5) were associated with high dissolved oxygen and low B.O.D. The pH during ice coverage averaged from 0.2 to 0.7 units lower than during the open water period. Maximum monthly average variation was 1.0 pH unit. See Tables XVII and XVIII.

Chemical Analyses.—Two series of chemical analyses were made at some of the representative stations. Tabulations of results are made in Table XVIII and are arranged to show contrast between ice coverage and open water conditions. No particular significance can be attached with only two samples from each point, but the general quality of the water at the time samples were taken is indicated. Since some oxygen was present at most stations when the set of samples was obtained under ice coverage conditions, variations in organic constituents are likely to be as much a result of flow changes as a result of ice coverage.

II. BACTERIOLOGICAL EXAMINATION

Samples for coliform organism determinations were taken at regular sampling stations at the same time other samples were obtained. Examinations were made in the Public Health Laboratory in Grand Forks by the regular laboratory personnel. Standard Methods' procedures were followed except as previously noted. Estimates of most probable numbers were made from the results of confirmation tests on triplicate tubes in a geometric series of four, using McCrady's Formula and Tables.

The figures entered in Tables XIX and XX inclusive are monthly arithmetic averages of individual sample results. In the early part of the study, some dilutions set up were too low; this accounts for the large number of indeterminate results. The numbers following the asterisks in the Tables indicate the number of indeterminate results of magnitude shown by footnotes.

Points along the main stream where pollution is received are clearly indicated. Principal among these are the Fargo-Moorhead area (Sta. 11), and the Grand Forks-East Grand Forks area (Sta. 6). The effect of the beet sugar plant at East Grand Forks is clearly evident during its operation. Results at Station G (beet plant outfall) indicate the tremendous pollutional effect of this industrial waste, which becomes progressively stronger as the operating season proceeds. The effect on the stream is most detrimental because the strongest waste is discharged during ice coverage.

Extremely high coliform organism concentrations at and below points of pollution were noted; the concentration decreased progressively downstream. Average concentrations at water works intakes (Fargo — Sta. 12 and Grand Forks — Sta. 7) were not in

excess of the treatment plants' capabilities with respect to coliform organism loadings.¹ (See Figures 12, 13, and 14.)

III. BIOLOGICAL DATA (by Minnesota State Board of Health)

Samples of bottom sediment were collected at regular sampling points along the Red River from a point immediately above Fargo and Moorhead to the Canadian Boundary. In the field, collections of the sediment were made through the ice. The sample was obtained by using a Petersen dredge and the material collected was immediately concentrated by sifting through a No. 30 U. S. standard sieve. Formalin was used as preservative and the concentrated material sent to the laboratory for examination. The procedure followed in the laboratory was that described in the eighth edition of Standard Methods of Water Analysis. The summarized results obtained in the laboratory examination appear in Tables I — 1 to III — 2, a graphical representation of the data in Fig. 1.

The study of the bottom fauna showed that clean-water forms were scarce in that portion of the Red River included in this survey. This is in accordance with earlier observations made in 1931-1933 and in 1939. With minor exceptions, conditions were so similar that many of the statements made in the earlier reports apply in all essentials to the present survey.

As indicated in the 1933 report, pollutional forms were predominant at most points with a limited number of clean-water forms present in some of the samples at Georgetown (Sta. 10), Halstad (Sta. 9), Oslo (Sta. 4), and Drayton (Sta. 2). At Olso the cleanwater forms were partially decayed, indicating that they had succumbed to the adverse winter conditions which existed there. Their presence in this sample, therefore, is merely evidence that this section of the stream is suitable for less tolerant forms during the warmer months when an ice cover does not exist. The same condition existed last year (1938) during the winter period and remnants of clean-water organisms were also found at that time.

The marked predominance of pollutional forms in slack water areas above dams, referred to in the 1938 report, was again apparent in samples taken above the dams at Fargo and at Grand Forks. 'The tendency for large quantities of organic matter to settle in the quiet water behind these dams is largely responsible for this condition.

Samples obtained north of Oslo during the 1938 survey contained a number of clean-water organisms which up to that time had survived unfavorable conditions. This year collections of the sediment were made about a month later than last year, a fact which probably accounts for the absence of clean-water forms in all but one

¹ Studies of the Effect of Water Purification Processes, H. W. Streeter, Public Health Bulletin.

The field work, including collection and concentration of samples was done from March 16 to 23.

S. M. W. A. Am. P. H. Association 1936.

of the samples taken in this area. (See Fig. 1.) As indicated in the 1938 report, delay in sampling may allow certain soft-bodied organisms which have died earlier in the season to completely disappear by disintegration. For this reason, and because the total winter effect upon the bottom-dwelling fauna is most evident just before the final spring "break-up", it is believed that the samples taken this season are most representative of the winter condition of the stream. Apparently clean-water forms are established in this part of the stream each year only to be eliminated during the ensuing winter when the zone of active decomposition extends downstream.

The Red Lake River, as the largest tributary in this section, is of considerable interest. Samples taken from this stream are almost identical with those taken last year and a considerable degree of upstream pollution, artificial and natural, is indicated.

Nannoplankton organisms were more numerous than observed to be last year but only reached a maximum of 447,000 as compared to a maximum of 12½ million organisms observed during the winter period of 1933. The maximum this season occurred immediately below Moorhead and Fargo and below Grand Forks.

Increases in organic pollution are especially favorable to the growth of certain species of Nannoplankton, such as Oscillatoria and other bluegreen algae. In this connection it is interesting to note that Oscillatoria geminata was especially abundant below the larger municipalities where a marked fertilizing effect might be expected. Protozoa, which are also abundant where a polluted condition obtains, were abundant at almost all stations. This is quite in line with the general evidence of pollution through the whole area.

In general the biological data, including both plankton and bottom fauna, indicate that pollution is extensive during the period of the winter when ice covers the stream, and that it is evident throughout the entire portion of the stream included in the survey.

STREAM LOADINGS AND OXYGEN REQUIREMENTS STREAM LOADINGS

The two major points where pollution is discharged into the section of the Red River under observation are the Fargo area (between Stations 11 and 12) and the Grand Forks area (between Stations 7 and 5) the latter receiving the larger portion. Since there is such a great difference in flow in the two sections of the stream above and below Grand Forks, no direct comparison of the stream loadings can be made from the B.O.D. expressed in parts per million. A tabulation of 20°C. 5-day B.O.D. in pounds per day is included in the Base Data tables XXI, and XXII. These values do not represent the actual oxygen requirements of the stream because the time of flow and the rates of deoxygenation at the prevailing temperature have not been taken into consideration. How-

ever, these values are included because they represent base data expressed in standard terms; they are monthly averages of actual determinations.

Temperature, time of flow and rate of deoxygenation are taken into account in Table XXIII for the 1938-39 winter ice coverage period and in Table XXIV for the 1939-40 winter ice coverage period. For stations below Grand Forks, five-day 20°C. B.O.D. values have been converted to 0°C. B.O.D. values using an incubation period equal to the time of flow from each of these stations to Lake Winnipeg. For stations above Grand Forks, the 0°C. B.O.D. incubation period is taken as the time of flow from each of the stations to Station 6 because at this point the pollution, dilution and aeration change the oxygen relationship entirely.

A comparison of the 5-day 20°C. B.O.D. with the dissolved oxygen, both expressed in pounds daily (Quantity Units), is shown graphically by station and season in Figures 7, 8 and 9. These same quantity unit values of B.O.D.'s for the winter critical season (A) and the summer critical season (C) are shown in Figures 10 and 11 together with the principal sources of pollution.

In Figures 10 and 11, the major tributaries, municipalities, and industries are plotted to show their average seasonal contribution in pounds of 5-day 20°C. B.O.D. daily. It should be noted that the increase, or decrease in B.O.D., as the case may be, between any two stations should approximate the B.O.D. of the entering wastes minus the natural reduction of all wastes effected between these stations. A relative picture is therefore shown, although further explanation is necessary for such apparent discrepancies as are indicated on Figure 10 in the Fargo-Moorhead area.

Fargo-Moorhead Area

Little correlation between the observed B.O.D. of wastes entering in this area (above Station 11) and that found in the stream can be noted. For example, the oxygen demand of the wastes from Fargo and Moorhead as measured and according to treatment plant records is approximately 1400 pounds per day. (See Table V, Appendix II). Therefore, it would be expected that the observed B.O.D. at Station 11 would be approximately 1400 pounds greater than that at Station 12 (above Fargo) since no other drainage or waste of significance enters between these two points. However, the observed increase at times exceeded this amount and at other times was less. The table following shows the monthly variation together with the corresponding stream flow.

Net	Increase	in	Five-day	20°C.	B.O.D.	in	Pounds	Daily	Between
Stat	ions 12 ar	nd :	11						

Month	1938 Nov.	Dec.	1939 Jan.	Feb.	Mar.	Apr.	May	June	Aug.	Sept
Sta.	1627	1661	6033	2644	23270	19965	5415	4155	679	385
Sta. 12	559	446	1152	936	10031	8253	2957	3062	496	135
Gain c.f.s.	1068	1215	4881	1708	13239	11712	2458	1093	183	25 0
Flow	23	25	97	102	743	710	219	135	18	5

From the above tabulation, it is noted that for low stream flows a much lower increase in B.O.D. than the value of 1400 pounds was observed and that during high stream flows a much higher increase was found. Possible reasons may be the extreme variation in quantity and velocity of flows, the effect of sedimentation during lower flows and subsequent scouring of sludge banks during higher flows, and the difficulty of obtaining a representative sample at Station 11 due to the proximity of the Fargo sewage outfall. Various other indeterminate or non-apparent factors may also be involved in this discrepancy.

Excluding March and April, the average increase in B.O.D. for the remaining months probably would approximate the value of the entering wastes, if the low flow months of July and October were taken into consideration. (No samples were taken during these months.) The B.O.D. in p.p.m. of the river above Fargo was found to be relatively constant. It would seem improbable that the high values of March and April were, in any measure, a result of land surface drainage from the relatively small area between the two stations. However, the by-pass arrangement of the combined storm and sanitary sewers of Fargo, may exert an appreciable effect during spring runoff.

Fargo to Grand Forks Area

The Sheyenne (Station L) and Buffalo (Station K) Rivers join the Red River between Stations 10 and 11 which are 25 miles apart. The pollution load of the river at Station 10 should, therefore, approximate the total of that found at Stations 11, L and K. The following table compares the combined pounds of five-day, 20°C. B.O.D. for Stations 11, L and K with that at Station 10. Stream flows are also shown.

Comparison of Combined B.O.D. of Stations 11, L and K with that Found at Station 10

Month	1938 Nov.	Dec.	1939 Jan.	Feb.	Mar.	Apr.	May	June	Aug.	Sept.
Total Lbs. B.O.I Sta. 11, L, & K.	2024	1806	6303	2912	28774	35436	6884	5703	1045	595
Total Lbs. B.O.I Sta. 10	778	328	1436	3774	20315	42174	4666	6444	1283	321
Flow at Sta. 11	23	25	98	102	743	711	218	135	17	5.2
Sta. 10	45	38	95	102	855	1420	320	234	25	9

Excepting for August, when only one sample was taken, and January, the months with flows of 90 second feet or more showed a smaller per cent of difference than those months with flows below 90 second feet.

During the high flow period from April to June, the pounds of 5-day 20°C. B.O.D. in the river increased progressively downstream from Station 10 to Station 8, but dropped between Stations 8 and 7. The influence of the reservoir created by the dam at Grand Forks should be taken into consideration in this latter case.

During the summer critical months, some drop in the B.O.D. was noticed progressively downstream. Except during months of very low flow, the B.O.D. added by the tributaries is relatively small. During times of low flow in the Red River, the Sheyenne River contributes a fairly high per cent of the total B.O.D. in the river. The flow in the Sheyenne during such times may be as great or greater than that found in the Red River.

Grand Forks Area and the Portion of River Between Grand Forks and the International Boundary.

In the section of the river below the confluence of the Red River and the Red Lake River, the quantity of B.O.D. is considerably greater than that in the portion of river between Fargo and Grand Forks because of the greater quantity of contributed wastes and the increased flow. The percentage difference in loading between these two portions of the River is most pronounced during the fall and winter season when the beet sugar plant is in operation. The effect of the beet sugar plant wastes, and their settling characteristics are indicated in the table following:

Comparison of Combined B.O.D. of Stations 7 Plus H with the B.O.D. at Station 6 and at Station 5.

		MONT	пьх	AVER	AGE	POUN	D2-	a DA	Y, 20°	C. B.	U.D.		
Mo.	1938 Nov.	Dec.	1939 Jan.	Feb.	Mar.	Apr.	May	June	Aug.	Sept.	Oct.	Nov.	Dec.
Sta. H & 7	2579	2246	1804	1643	3973	73841	15124	11150	2634	6132	8023	9238	2921
6	19494*	18699*	3495	2844	4806	102970	15267	8162	3059	4495	22725*	36383*	36571*
5	10157	9302	6853	4385	7500	87890	13865	8595	2548	4120	13707	22810	20360
6-5 Flow	9337	9278				15080	1402		511	375	9018	13573	16211
at 7 Flow	59	59	78	99	274	2450	458	336	38	16	24	41	28
at 6	190	199	237	229	455	3126	912	687	118	225	334	332	314

The above tabulation shows that during the months of November and December 1938 and October, November and December 1939, the water gained about 16,000 to 33,000 pounds of B.O.D. per day between the point of confluence of the Red Lake and Red Rivers (Sta. H and 7) and Station 6. During these months the principal sources of pollution in this section of the river were the beet sugar

^{*}Beet Sugar Plant operating.

plant and the City of East Grand Forks. The actual average oxygen demand of these wastes expressed as 5-day 20°C. B.O.D. was about 24,400 pounds for the beet sugar plant and about 690 pounds for East Grand Forks.

The tabulation also shows that during the months referred to above there was a decrease in pounds of B.O.D. from Station 6 to Station 5 of 9,000 to 16,000 pounds. Approximately 1,750 pounds of B.O.D. (City of Grand Forks—1340, Packing Plant—335, and Flour Mill—73) are discharged daily into the river just below Station 6; thus, an actual total reduction of 11,000 to 18,000 pounds of B.O.D. occurred between Stations 6 and 5. During the three months following the close of the beet sugar plant, there was an increase in pounds of B.O.D. from Stations 6 to 5 in excess of the 1750 pounds added by industrial and municipal wastes.

Analysis of the foregoing data seems to indicate that the following deductions offer at least a partial explanation of the observed phenomena with respect to stream loadings and oxygen requirements:

- 1. Sludge deposits may decompose anaerobically even though aerobic conditions exist in the water above. The escaping gases may cause incompletely oxidized products of anaerobic decomposition to go into suspension, resulting in a higher B.O.D. of the liquid. Also the gases themselves and other soluble organic matter may go into solution and increase the B.O.D.
- 2. A reservoir and dam act as a settling basin and aerating device respectively.
- Suspended matter settles out in the stream at lower flows.
 At higher flows much suspended matter is retained; in addition, material previously deposited is dislodged and carried downstream.

The following table gives the monthly averages of B.O.D. in pounds per day at all stations between Grand Forks and the International Boundary.

POUNDS OF 20° - 5-DAY B.O.D. AT STATIONS BELOW GRAND FORKS

Mo.	1938 Nov.	Dec.	1939 Jan.	Feb.	Mar.	Apr.	May	June	Aug.	Sept.	Oct.	Nov.	Dec.
Sta.	10157	9302	6853	4385	7500	87890	13865	8595	2548	4120	13707	22810	20368
4	12442	9574	10852	2401	5045	104420	16947	9772	3055	4330	11508	16878	26169
3	5511	9936	9579	2493	3674	115506	20365	9575	1555	2799	4830	9739	9934
2	2579	9149	9564	2657	2446	118201	20218	5148	2713	3091	4186	10098	7217
1	2683	7568	9730	2203	2387	137489	19753	5930	3858	2608	3833	5023	4447

One significant fact that can be observed from the above tabulation is that the open water months of high pollution, except for spring runoff, show a progressive decrease in B.O.D. from Station 4 to Station 1 and the months of ice coverage, Dec. 1938, Jan. and Feb. 1939, show no significant change in B.O.D.

OXYGEN REQUIREMENTS UNDER ICE COVERAGE

In order to present a picture of the oxygen balance in the stream under existing ice coverage conditions, the oxygen required and the oxygen available have been computed for each station by months. (See tables XXIII and XXIV.) A summary of the 1938-39 winter critical season oxygen relationships at stations 6, 5, 4, 3, 2, and 1 has also been prepared and included in these tables. The net daily oxygen surplus or deficit in pounds for each station is shown in the tables. Oxygen requirement computations cover only the amount of oxygen that would be utilized by the biochemical stabilization of the wastes in the stream and do not take into account the surplus of oxygen required for the maintenance of fish life and the maintenance of other essential standards of stream sanitation.

Calculations are based on observed stream flow, observed dissolved oxygen and 5-day 20°C. B.O.D. Lake Winnipeg has been taken as the point of final disposal of all wastes. However, for each station between Fargo and Grand Forks, the oxygen requirement has been computed for an incubation period equal to the time of flow from the station to Grand Forks. This procedure was followed because aeration, dilution and pollution at Grand Forks change the oxygen relationships entirely. For each station below Grand Forks the oxygen requirement is computed for an incubation period equal to the time of flow to Lake Winnipeg. In Tables XXIII and XXIV only the oxygen requirement in pounds daily under ice coverage has been calculated.

Oxygen requirements during ice coverage in terms of stream flow and for existing conditions are shown in Tables XXV and XXVI. Under ice coverage no pollution of significance is discharged into the river except at Fargo and Grand Forks. If there were no disturbing influences, the stream flow necessary between Fargo and Grand Forks (to be supplied at Fargo) could be calculated on the basis of the observed stream loading at Fargo. Similarly, the flow to be supplied at Grand Forks could be calculated on the basis of the observed stream loading at Grand Forks. In computing stream flows required under existing ice coverage conditions the effect of such influences as sedimentation, scouring of sludge, and solution of sludge and sludge digestion products made necessary a slightly different procedure.

This procedure consisted of calculating, for example, for the stations from Fargo to Grand Forks, the oxygen requirement from Fargo to each station and from each station to Grand Forks. The largest oxygen requirement was considered the determining one. Stream flows required on the basis of one, two, three, and four p.p.m. available oxygen are shown in the tables. Additional data on stream flow requirements are contained in Appendix IV. These data include minimum required stream flows during both ice coverage and

open water conditions with existing treatment and with 85 per cent treatment of all wastes.

The method of converting 5-day 20°C. B.O.D.'s to 0°C. B.O.D.'s is outlined in Appendix III. It is recognized that the method is somewhat arbitrary. In converting 5-day 20°C. B.O.D.'s to 0°C. B.O.D.'s the method used is basically accurate only at the point of discharge of wastes. It is known that the ultimate first stage B.O.D. at 20°C. is higher than the ultimate first stage B.O.D. at 0°C. In other words, some organic matter that will not be oxidized at 0°C. is oxidized at 20°C. For example, at a Station X 20 days in time of flow below the point of discharge of wastes, 79 per cent of the first stage 0°C. B.O.D. of the wastes discharged will be satisfied. (See Conversion Table in Appendix III.) The ultimate first stage 20°C. B. O. D. of a sample taken at Station X, however, will be in excess of the 21 per cent remaining to be satisfied at 0°C. It is not strictly correct, therefore, to say that the first stage 0°C. B.O.D. for any specific period of incubation at this Station X is the same percentage of the 5-day 20°C. B.O.D. that it would be for the same period of incubation at the point of discharge of wastes.

In the above graph 21 per cent of the ultimate first stage 0°C. B.O.D. remains to be oxidized at the end of 20 days. A sample taken at Station X should give a continuation of the lower curve (A) if incubated at 0°C. However, 20°C. incubations were actually

made resulting in the oxidation of substances not acted upon at 0°C. (Curve C.) Converting the 20°C. results to 0°C. gives a curve (B) which is greater than an actual 0°C. incubation would have given.

The method as employed, while theoretically not entirely correct, appeared to be a practical approach to the problem. The oxygen requirements obtained by this method would tend to be slightly higher than required rather than lower.

SUMMARY

Under ice coverage the dissolved oxygen content depleted to zero in from two to six weeks in the Red River as well as in some of its tributaries. Exceptions to this were stations located immediately below dams or stretches of open water. The effect of aeration resulting from a dam was noticed continuously throughout the winter season at Station 5, located 12 miles below the Riverside Park (Grand Forks) Dam. At no time was a zero dissolved oxygen content recorded at this station despite the fact that during October, November, and December strong sugar refinery wastes were being discharged a short distance above the dam. However, at Station 4, located 25 miles below this dam, zero dissolved oxygen conditions were found three weeks after ice coverage.

A series of dams in the Fargo area and the open stretch of water below the Fargo sewage treatment plant outfall provided oxygen at Station 11 during the entire winter season. At Station 10, located 25 miles below Station 11, the effect of aeration was still observed; zero dissolved oxygen conditions were not found until six weeks after ice coverage.

The dissolved oxygen was depleted more rapidly below Grand Forks because of the greater stream loading. In addition to the 2437 pounds of B.O.D. from other industrial and municipal wastes at Grand Forks, approximately 24,000 pounds of B.O.D. were contributed daily by the beet sugar plant during its period of operation. About 1400 pounds of B.O.D. per day were contributed by Fargo and Moorhead. The stream flow at Grand Forks was not more than three or four times that at Fargo on an average.

In order to maintain a satisfactory condition in the river, it is necessary that the oxygen content shall at no time be entirely depleted. It is assumed that in order to sustain fish life the dissolved oxygen should be approximately three parts per million minimum. With a dissolved oxygen content of six p.p.m. below the dam at Grand Forks there would be three p.p.m. available to oxidize the treated sewage and other wastes. With a flow of 200 c.f.s. the resulting available oxygen would be 3240 pounds per day. The 24,000 pounds of B.O.D. mentioned above as contributed daily from the beet sugar plant is the 5-day 20°C. value, which approximates the 30-day 0°C. B.O.D. The 3240 pounds of available oxygen is obviously inadequate and would be utilized in approximately two days at 0°C.

(See Conversion Table, page 122.) In order to provide sufficient oxygen to accommodate the 0°C. demand to Lake Winnipeg, the flow would have to be seven or eight times the 200 c.f.s. mentioned above or approximately 1500 c.f.s. and this does not take into consideration the daily load of about 2400 pounds of B.O.D. from other industrial and municipal wastes discharged at Grand Forks. From these calculations the need for additional treatment is obvious, since providing supplemental flows of this magnitude is not economically feasible.

In general, higher flows were attended by less objectionable conditions than lower flows. Higher flows, in addition to providing greater dilution, result in higher velocities, thereby carrying the demand farther downstream in a shorter length of time. (Unfortunately, below Grand Forks the critical fall and winter conditions of low flow are coincident with the operation of the beet sugar plant.)

Determination of the re-aeration provided by dams was not included as a regular sampling procedure. However, sufficient samples were collected and data obtained to indicate that low temperature oxygen-deficient waters would contain at least 6 p.p.m. dissolved oxygen after passing over a dam of the type most commonly encountered in the River. The information obtained was for flows up to approximately 200 c.f.s. Normally, high flows do not occur during winter critical periods and it would be only during a time of relatively complete submergence of the dam that a total oxygen content of 6 p.p.m. could not be obtained.

In order to regulate the flow in the Red River from within the Basin, water must be stored in lakes, reservoirs, or river channels. It is known that the oxygen content of water in shallow lakes (less than 20-30 feet) may, due to natural pollution alone, be depleted seriously, and even completely, during ice coverage.1 As the period of ice coverage increases the oxygen depletion becomes greater. Also, water stored in artificial reservoirs has been observed to be devoid of oxygen, during ice coverage, due to natural pollution (See Appendix V). If such impounded waters are to be used for the dilution and oxidation of sewage and other wastes, the quantity of water necessary will depend on the oxygen content of such water. Therefore, to be of greatest value for dilution and oxidation of wastes, such waters should be aerated upon release from storage reservoirs. A low overflow or spilling dam, designed for this purpose, could accomplish aeration to the extent of increasing the dissolved oxygen content to at least 6. parts per million. This statement is based on actual observations at low overflow dams in the Red River.

The suitability of relatively unpolluted streams for dilution purposes was investigated during the course of the study. A detailed

¹ Regional Planning. Part V—Red River of the North, 1937, National Resources Committee.

discussion of the findings is contained in Appendix V. From the data collected it has been concluded that the biochemical oxygen demand of surface runoff, bottom sediment and decaying vegetation is generally sufficient to cause serious oxygen depletion. With the exception of the Missouri River, none of the streams studied were found to be of appreciable value as sources of oxygen—containing dilution water during the critical winter period. In most cases these tributaries would be of value if they were aerated just prior to their confluence with the Red River. The dissolved oxygen content of the Missouri River did not fall below 9.8 p.p.m. during the winter of 1938-39.

In a sluggish stream such as the Red River, the formation of sludge deposits is likely to occur wherever raw or partially treated wastes are discharged. Extensive sludge deposits were observed in and below Grand Forks. As pointed out under "Stream Loadings", higher flows apparently dislodge large quantities of accumulated sludge from behind dams and from other sections of the River below points of pollution. The progressive increase in B.O.D. from Grand Forks to the International Boundary as observed in the February 1938 study indicates the presence of oxygen-requiring sludge deposits throughout this entire stretch of river. From this it would appear that sludge deposits may be picked up, carried downstream and redeposited, at least in part.

Large variations in stream loadings may occur because of sludge deposits. As pointed out previously in this report, the difference in stream loading between two stations may be greater or less than the pollution loading discharged into the River between these two stations depending on whether settling or scouring is taking place. When neither settling nor scouring is taking place, the B.O.D. of the stream may be increased as it flows over sludge deposits. Direct solution of deposited organic matter and of oxygen-requiring decomposition products of sludge digestion, as well as entrainment of organic particles floated by gas evolved during sludge digestion, may be responsible for an increase in the B.O.D. of the stream. This phenomena is evident especially during ice coverage.

The determination of required stream flows under open water conditions is complicated both by sludge deposits and algal activity. Since the exact effect of these two influences cannot practically be determined, and since they tend to offset each other, they have not been taken into consideration in calculating minimum required stream flows. With effective treatment of all wastes the effect of sludge deposits should be of diminishing importance. Algal activity is extremely variable and more or less unpredictable. Dissolved oxygen supersaturation to the extent of 60 per cent has been observed in the Red River. Channel clearance and the elimination of marshy and heavily vegetated areas should tend to decrease the importance of algae in relation to oxygen balance in the stream since such areas favor the growth of many micro-organisms in-

cluding algae. It would be expected that other taste and odor producing organisms also would be less abundant as a result of channel clearance.

Industrial waste discharges into the Red River were of significant importance in this investigation. It was necessary to study the processes from which the wastes result, and to determine the quantity, characteristics, and behavior of the wastes. This phase of the study was almost entirely of a strict research nature since little of the necessary type of information was available prior to this study. Long range incubations of waste samples and river samples containing the wastes were carried out at 0°C. and 20°C.

The research information obtained indicates that the rate and extent of oxygen utilization by industrial wastes is dependent on several factors including nature of the waste, temperature, extent of dilution and type of dilution water. It has long been known that the rate of oxygen utilization becomes less as the temperature is lowered, but the definite rate of use at specific temperatures, including 0°C., had to be determined for each waste and for specific mixtures of wastes and river water. Results indicated that these rates of oxygen use were not the same as the rates generally accepted for domestic sewage dilutions and that a mixture of domestic sewage, wastes and river water did not react at the same rate as domestic sewage dilutions.

At temperatures near 0°C, the mixture reacted at a slower rate than that generally accepted for sewage dilutions. On the basis of limited data, the mixture is believed to react at a faster rate than generally accepted for sewage dilution during summer months at temperatures near 20°C. The rate and extent of oxygen use by samples of wastes diluted with synthetic dilution waters was found to be affected profoundly by the nature of the dilution water and the extent of dilution. Samples of wastes diluted with river water did not react the same as samples diluted with prepared (synthetic) dilution waters. Samples of mixed wastes and river water did not react the same as dilutions of the waste preponderant in the mixture of wastes and river water. The difference in behavior was of varying magnitude. It is essential to determine, therefore, not only the basic behavior of each industrial waste separately but also in combination with other wastes under specific stream conditions. Since the behavior of an industrial waste may be quite different than that of domestic sewage, it is not correct to forecast the effect of industrial wastes on the basis of the behavior of domestic sewage.

A detailed presentation of the research data on industrial wastes and domestic sewage has not been made in this report. A separate report on this phase is contemplated by the North Dakota State Department of Health.

The use of raw Red River water or ice for household purposes, except after boiling, must be considered dangerous from a public health standpoint. In general, no surface water should be used

for drinking and similar purposes unless properly treated. Heavy sewage pollution in the Red River makes the use of this water untreated a very hazardous procedure. Some danger to public health arises also out of the use of the River for swimming, boating, and fishing.

Improvements in the condition of the River can be brought about by sewage and waste treatment, increased stream flow, aeration, and channel clearance. All of the important wastes discharged into the River are considered amenable to effective treatment. Some regulation of flow may be provided within the basin; supplemental flows may be provided from other watersheds. Overflow or spillway dams, designed as aerating devices appear to be a practical means of replenishing the oxygen content of oxygen deficient waters, and may be used in the main stream, at the outlet to natural and artificial reservoirs, or on tributaries or diversion channels just prior to their confluence with the main stream; any combination of these also may be used.

The practice by individuals and villages of dumping garbage, rubbish, potatoes, manure, and the like on the ice during winter months should be prevented. Much of this material, instead of being carried to the mouth of the River, merely settles to the bottom and exerts an additional oxygen demand on the River. Barnyard drainage should be so diverted that it will not discharge directly into the River.

In working out a corrective program, the cost of providing desired treatment must be balanced against the cost of constructing and operating storage, aerating and diversion works. Public convenience must be balanced against reasonable standards of stream sanitation. The entire corrective program should be a coordinated composite of solutions to the individual problems.

TABLES
AND
FIGURES

IOLOGICAL DATA-PLANKTON

	Sta. No. 1 Pembina	Sta. No. 2 Drayton	Sta. No. 3 Grafton	Sta. No. 4	Sta. No. 4	Sta. No. 6 G. Fks.	Sta. No. 7 G. Fiks.
	Composite	Composite	Composite	Minn. Side	N.D. Side	Composite	Composite
Blue-Green Algae Oscillatoria geminata Meriemopedia tenuissima.		1,440	2,592	15,480	6,120	16,200	7,920
Subtotal		1,440	2,592	15,480	6,120	16,200	7,920
Scenedesmus dimorphus.			7.588 7.588 7.588	360	360	1,080	1,080
Subtotal			576	360	360	1,080	1,080
Contronella Reichelti. Coccones placentula. Cyclotella sp. Cymatopleura solea.	13,536	360 13,680 3,960	1,440	18,000	4,680	418,300	39,960
Diatoma vulgare Diatoma sp. Gomphonema acuminatum	1.728	1,080			360	720	360
Gyrosigma sp. Melosira granulata.	864	360	288				720
Melosira Koeseana. Navicula Spp.	3,456	1,440	1,152	720	6,120	3,240	4,680
Synedra tenuissima.	2,016	1,080		1,080	360	2,160	9,000
Subtotal	31,968	27,720	14,400	21,240	11,930	428,380	61,920
Chlamydomonas sp.	2,304	380	576	360	1,675	720	1,800
Copputum sp. Euglena sp. Vorticella sp.	864			3,240		360	•
Subtotal. Miscellaneous Nematode Immature Copepods	3,744	308	200	3,960	1,675	1,130	1,800
TOTAL	35,700	29,560	18,260	41,040	20,085	447,200	72,720

RIOLOGICAL DATA PLANKTON

		BIOLOGICAL	BIOLOGICAL DAIR LAINNION	NOIN	And the second s		
	Sta. H Red. L.R. Composite	Sta. 8 Climax Composite	Sta. 9 Halstad Composite	Sta. 10 Georgetown	Sta. 11 Moorhead Composite	Sta. 12 Moorhead Ab. Intake	Sta. 12 Moorhead Below In.
Blue-Green Algae Oscillatoria geminata Coelosphaerium sp. Merismopedia fenuissima.	2,880	2,160	9,720	69,480	67,935		6,840
Subtotal	2,880	2,160	9,720	69,480	68,582		6,840
Arthrodesmus sp. Closterium moniliferum. Scenedesmus dimorphus. Scenedesmus sp.	2,880	360	Present	720 Present	647		720
Subtotal	2,880	380		720	647		720
Asterionella gracillima Cocconeis placentula. Cyclotella sp.	18,720	12,600	374 13,500 17,950	19,080	29,115	360	360 51,120
(ymbella sp. Diatoma vulgare			374	1,080	23,292	360	360
Comphonema acuminatum Cyrosigma sp.		1,080	2,244		1,941	360	360
Homoeocladia sigmoidea Melosina granulata Melosira Roescuna Navicula spp.	5,760	2,880	374	1,080 4,320 720 26,640	4,529 1,294 23,292	1,800	3,600
Surrella ovata. Surirella ovalia. Synedra tenuissima.	720	360 27,000 10,440	13,090 43,760	1,800 1,080 36,720	1,941 647 12,940	1,800	2,880
Subtotal	27,720	65,880	96,900	98,600	104,800	13,320	70,250
Continued on nowt name		-				occ. Tarrent devile ded	Thursday

Continued on next page

BIOLOGICAL DATA-PLANKTON (Continued)

The second secon	DIG	PLOGICAL DA	DIOLOGICAL DATA-FLANKION (Continued)	(Continued)			
	Sta. H Red L. R. Composite	Sta. 8 Climax Composite	Eta. 9 Halstad Composite	Sta. 10 Georgetown	Sta. 11 Moorhead Composite	Sta. 12 Moorhead Above In.	Sta. 12 Moorhead Below In.
Rotifers Diurella porcellus Feratella quadrata Rotifer sp.		20		20.5	647		20
Subtotal		90		25	647		20
Epistylis sp. Amphileptus anser Chlamydomonas sp. Ciliata. Euglena sp.	360 4,320 360	990	2,620	113 138 25	047 743	2,160	720
Frontonia sp. Vorticella sp. Phacus sp.		150	748	850	1,290	720	150
Subtotal. Miscellaneous Nematode. Immature Copepods.	5,040	920	4,860	1,164	2,680 647 23	2,880	028
TOTAL.	38,520	69,370	111,500	165.000	178,044	16,200	78,730
						RED RIVER SURVEY-1939 Table I-3	RVEY-1939

BIOLOGICAL DATA—BOTTOM FAUNA Composite Tabulation

Average number of organisms per sq. vd.

Nemathelminthes	Crafton	Ponne a	D.8.0	ora.	DIE. II
Sap. 400 6 1 1 1 1 1 1 1 1 1	Creation	Oslo	Gr. Fks.	Gr. Fks.	Gr. Fks.
hundrillus sp. 400 6 1	2.5				
A A A A A A A A A A	190	2083	100	1.527	1.463
1 1 1 1 1 1 1 1 1 1		502		- 1	10.2
17 18 18 19 19 19 19 19 19		Ce		110	****
1 1 2 2 2 2 2 2 2 2	18	29			
1 24 24 24 24 24 24 24	120	99		9	
1 1 2 2 2 2 2 2 2 2					
Chironomus decorus Chironomus decorus Chironomus decorus Sp. No. 8 70 70 70 70 70 70 70	24				
70 59 106 42 24 6					
17 58 42 42 24 6		9		399	12
70 59 106 42 24 6		9			70
17 58 42 42 6 6		1			
24 6 6 17		100		920	247
24 6 7		4.58			
24			15	006	41
	5.4	4-7	121	83	53
					141
		9			
Corixa sp.	9				9
TATAT	333	1,273	61.6	2.732	2,138

BIOLOGICAL DATA—BOTTOM FAUNA Composite Tabulation

Climax Halstad Georgetown Moorhead 53 76 3882 22,472 12 6 6 6 6 12 29 12 6 12 6 12 6 13 6 14 76 6 15 76 6 15 83 16 83 17 83 18 84 19 84 10 84 11 84 12 85 13 84 14 84 15 84 16 84 17 84 18 84 19 84 10 84 10 84 11 84 12 84 13 84 14 84 15 84 15 84 16 84 17 84 18 84 18 84 19 84 10 84 10 84 10 84 11 84 12 84 13 84 14 84 15 84 16 84 17 84 18 84		0 340	0 045	Average 10	Average number of organisms per sq. yd. (Divide all by 2)	2) Sto 19
5.53		Sta. 8 Climax	Sta. 9 Halstad	Sta. 10 Georgetown	Moorhead	Moorhead
6 6 53 6 6 6 370 6 83 23,941 1,7	asthelminthes Memacoda. Sida Oligochaeta. Naididae Ninodinas Ninodinas Mipobodela punctata.	25.53	92	3822 217 6	22,472 1,093	00 00 67 00 67 00
6 53 6 6 12 12 6 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	Uraca Glossiphonia nepheloiden Amnicola sp. Ampisiis siliquoidea Sphaerium sp. rrepoda Crustaea Crustaea Cambarus sp.		50	12 6 6		
83 23,941	Chronomus digitatus Chronomus digitatus plumosus in tentans Diamesa fulva Procladius culiciformis Pertaneura carrea Orthocladius nyoriunda	9 27	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 6 6	9 028	587
	TOTAL.	83	246	653	23,941	1,298

BIOLOGICAL DATA-BOTTOM FAUNA Composite Tabulation

							The same of the sa	
		-	Sta. 8 Climax	Sta. 9 Halstad	Sta. 10 Georgetown	n Noo	Sta. 11 Moorhead	Sta. 12 Moorbead
Insecta Diptera. Tanytarsus dives Tanypus sp. A (Mallech) Psychloda sp. A Psychoda sp. A				21	17		10 H	Pro- proi -
Sp. Pupae Chaoborus punctipenn. Palpomyla sp. Telmatoscopus albipunctatus.				676	1137		20 6 9	\$0 \$0
Ephemoropiera. Hexagenia sp. Ephoron sp. Caenis sp.				18	8 8 °C			
Miscellaneous Insects Polycentropidue Hydropsyche sp.				81				ข
Convarisp. Halipildae Oomphus				51 8	TF 9			o
TOTAL			-	747	275		105	10
on	BIOLOG Summary an	ICAL DATA	BIOLOGICAL DATA—BOTTOM FAUNA Summary and Classification as Index Organisms	FAUNA K Organisms	RED March	RED RIVER OF THE March 1939 Table II—3	THE NORTH	TH
	Pollution	Pollutional Forms	Facu	Facultative Pollutional Forms	Clean-Water Forms	ter Forms	Total	Number
Location of Samples	Average No/sq/yd	Percent of total	Average No/sq/yd	Percent of total	Average No/sq/yd	Percent of total	per sq.	Species
Pembina Sta. 1. Drayton Sta. 2. Grafton Sta. 3. Grafton Sta. 4. Grand Forks Sta. 6. Grand Forks Sta. 6. Grand Forks Sta. 7. Grand Forks Sta. 9. Georgetown Sta. 10. Moorhead Sta. 11.	406 1.59 1.610 1.610 1.610 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125	0044453550110008 00044553550110008 0000000400000040	100 153 153 153 288 388 388 206 206 159	01104440108128828281111888218821111		0.000000000000000000000000000000000000	2000 2330 2330 232 232 232 232 240 240 240 240 240 240 240 240 240 24	00F5180F=4850FF
					RED March	RED RIVER OF March 16-22, 1939	THE NORTH	TH

DISSOLVED OXYGEN-MONTHLY AVERAGES-P.P.M.

+	01 001100000001151 04 001100000001151	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61	0.000.0	
ಣ	70 100000701 60 7840880870	ယ ယ ယ် <u>ဆွဲ</u>
4	4 193860 103860 112 53860 1112 53860 1000	4 H4R 5 054
10	88 28 20 20 20 20 20 20 20 20 20 20 20 20 20	
9	10.95 7.93 7.93 7.93 7.93 7.93 7.93 7.93 7.93	11.5
2	13.2 13.2 10.1 10.1 10.1 10.3 10.5	19.9 18.6 12.0
00	22 22 22 25 25 25 25 25 25 25 25 25 25 2	15.5
6	112 110.4.110.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	3.7
10	7.1. 4.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1	e 600
Ħ	00 000 100 4000 00 500000 500040	00 00 or -
12	90 000 10 10 00 00 00 00 00 00 00 00 00 0	9.2
Station	1938 Nov. Dec. Dec. 1939 Jan. Feb. Mar. Apr. Apr. Ang. Sept. Sept.	Dec. 1940 Jan. Feb.

AVERAGES-P.P.M.	
OXYGEN-MONTHLY	Table V
DISSOLVED	

L	
K	0 1187777018
r	\$ 11. \$ 0. 12.12.12. 1.0. 1.0.12.12.12.12.12.12.12.12.12.12.12.12.12.
I	
H	21. 22.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
F4	
E	4 000000000000000000000000000000000000
А	8 10 10 10 10 10 10 10 10 10 10 10 10 10
C	
В	ω ⊢∞∞∞∞∞∞ 00,000 4,∞ν∞
A	0.0000
Station	1938 Nov. 1939 Jan. 1939 Jan. Keb. May June Apr. Apr. Oct. Oct. Dec. 1940 Jan. Feb.

DISSOLVED OXYGEN MONTHLY AVERAGES-PER CENT SATURATION

				-								
Station	12	111	10	6	90	7	9	22	4	co	??	1
1938												
Nov.	91.	72.8	78.1	83.4	93	94.9	80.8	45	29.7	51.5	63.8	000
Dec.	64	46.2	11.6	15.0	16.4	67.7	.42	23.2	1.4	0.0	0.0	2.7
1939												
Jan.	8.09	60.4	28.7	13.0	4.8	7.52	25.3	19.8	10.3	oo. •	0.0	0.0
Feb.	71.	67.	45.8	22.6	11.6	6.17	17.1	26.0	17.8	5.5	4,00	0.0
Mar.	66.3	67.	46.6	28.1	19.2	7.5	14.4	34.2	22.6	9.6	7.5	7.5
Apr.	00	50.00	84	84.	. 18	75.4	70.1	77.4	73.7	66.8	67.1	67.2
May	84.4	86.5	82.7	101.	000	85.7	74.7	700	78.7	97.6	95.5	0.06
June	87.4	85.6	87.3	91.8	87.4	67.4	56.1	62.8	9.09	98.7	100.1	86.4
Aug.	100.	54.5	111.	67.7	81.0	74.8	63.4	33.2	69.1	85.6	78.1	92.0
Sept.	72.6	27.3	96.5	88.3	84.2	79.6	68.1	57.1	71.3	78.4	79.4	89.4
Oct.	76.	74.1	72.9	88.9	86.4	70.7	75.9	54.6	54.8	85.5	87.9	4.70
Nov.	91.8	66.3	86.2	107.4	109.6	78.6	83.6	67.6	64.6	76.2	81.7	86.2
Dec.	86.1	67.	63,6	103.0	106.	136.	78.6	49.9	30.8	22.6	37.6	65.7
1940												-
Jan.	62.9	21.9	6.1	25.3	300.00	127.	0.69	49.9	13.	2.0	5.0	00
Feb.	36.2	17.8	0.0	0.0	0.0	82.1	46.2	46.5	30.8	50.00	100	4.
Mar.			16.7	0.0	0.0			* * * .	36.9		27.00	4.1
							-			-		-

SATURATION	
VERAGES-PERCENT	the state of the s
OXYGEN-MONTHLY AV	
DISSOLVED	

-	1	82.7	52.0	36.2	25.3	27.3	79.4	86.8	89.4	75.2	67.8	69.1	81.4	20.00				
2	4	65.7	0.0	0.0	0.0	9.6	84.4	00.00	20.1	84.4	75.4	57.0	79.4	57.4				
-	2	81.4	47.8	14.4	11.6	21.9	85.4	77.3	84.0	78.6	81.2	83.5	99.4	62.8	30 1	4.00		
3=	1						94.2	98.7	78.0		:	:	:					
	ш	87.8	52.0	20 00	00	00	63.0	74.4	75.7	84.1	81.4	7.62	91.7	27.9	80 8	0.00	35.5	32.1
F	=						110.4	92.6				84.2	77.9					
F	व	34.4	0.7	0	0.0	6.2	63.6	00.00	97.9	120.0	0.07	67.4						
	n	46.3	0.7	0 0	0.0	00.4	58.6	106.0	92.2	78.6	82.9	81.9						
	0	no. terrorer some					76.5	87.7	:	:		:		:		•		
t	В	000	2.0	0	0.0	21.9	59.9	84.8	68.5	92.2	83.00	78.6						
	A						79.1	73.8	63.2	74.5		:					::	
	Station	1938 Nov	Dec.	71939 1939	Feb.	Z.Mar.	mApr.	Alav	2) une	-Aug.	Sept.	-Oct.	W. Nov.	Dec.	1940	Jan.	Feb.	Mar.

BIOCHEMICAL OXYGEN DEMAND—5-DAY, 20°C. MONTHLY AVERAGES—P.P.M. Table VIII

-	46 10601601000 411
53	46 300004010000 000
က	100 00000000000000 000 401 -0000000004040 410
4	00 %-9466946996 694 00 767-696846- 609
5	00
9	0.000 0.000
-	800 911109949499 6
90	ны инпориодомод Фан г-ж ожновановремени жино
6	### 21.00.00.00.00.00.00.00.00.00.00.00.00.00
10	% % % % % % % % % % % % % % % % % % %
11	1.63 1.44070407.6003 1.60 44080807.41.4447. 0.044
12	ৰ্ড সান্তাৰ্ডাৰ্মক্তৰ্থ তথা নতে সন্দিল্টোডানিক্কথাক ওক
Station	938 Nov. Nov. Nov. Heb. Heb. June June June Sept. Sept. Sept. June June June June June June June June

20°C
-5-DAY, P.M.
NP
YGEN DEMAN AVERAGES— Table IX
OXYGEN ILY AVER Table
CAL OX
MICAI
SIOCHEMIC
BI

1	91- 00000004-00040 1- 80001-8008867-4-4 2- 10848008867-4-4 2-
K	27.00 82.7444 82.750 82.7444 1.151 1
-	20 0.2020
Н	50 000400000 50 5555428
Н	7.93 7.93 7.93 7.93 7.93 7.93 7.93 7.93
5	:::::::::::::::::::::::::::::::::::::::
Ē	Dry Dry Dry 72.18 77.18 7.17 7.17 7.17 7.18 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8
E	84 0120444049 89 7 68 68 68 68 68 68 68 68 68 68 68 68 68
Q	6.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
٥	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
щ	6.25 11.2 2.01 2.25 5.75 6.08 6
A	D D D D D D D D D D D D D D D D D D D
Station	1938 Nov. Doc. 1939 Nov. Doc. 1939 Jan. Feb. Alar. Apr. Apr. Apr. Oct. Oct. Oct. Doc. 1940 Doc. 1940 Feb. Man. Feb. May. Feb. May. May. May. May. May. May. May. May

Bismarck Laboratory

U. S. G. S. Wire Weight Gauge at Sta. 9

Water Bath Incubator-20° C.

Making Dissolved Oxygen Determinations in Grand Forks
Laboratory

Figure 6

Sampling by Boat and Outboard Motor Below Grand Forks.

Above and Lower Right.

About to Lower Sampler From Bridge.

Home-made Dissolved Oxygen Field Kit.

Figure 6

NITRITE NITROGEN MONTHLY AVERAGES PARTS PER MILLION (N)

	1	00.00	0000	Trace	00.	90.	3 5	Trace	2000	00.
	21	000.	.007	+10.	910:	00.	90.	Trace	Liance	00
	27	00.00	.02	+20.	.000	00:	+ . 10.	101-	TIACO	00.
	4	00.	.03	.013	900.	00.	+ 1		Trace	.02
	5	00.	.025	.02	Trace .015	.02	+	Truce	Trace	.03
4	9	Trace .01	.02	-10.	Trace	Trace	-004	Trace	Trace	10.
1	7	00.	.044	10.	00.	.01	88	:00	20.	
	∞	.013	.04	10.	9,8	00.	Trace	-810.	. U.S	.03
	6	.027	.062	Trace .01	Trace	00.	Trace	.032	*0°	.02
	10	.033	.055	.018	.0075	.05	.03	890.	en.	.05
	=	.21	01.	.04	+10.	60.			06.	.25
	12	.00 Trace	Trace .02	-10.	Trage	00.	10.	Trace	00.	00.
	Station	1938 Nov. Dec.	Jan. Feb.	Mar.	May	Aug.	Sept.	Nov.	1940	Jan.

$\widehat{\mathbf{z}}$	
MILLION	
PER	
PARTS	
AVERAGES	Table XI
-MONTHLY	
NITROGEN	
NITRITE	

			NIKIE	IE NIIK	OCEN-INO	Table Table	XI XI	AKIS FER	MILLION	(N		
Station	T	K	r	I	Н	Ü	Œ	E	<u> </u>	Ü	82	¥
1938			-									
Nov.	0.021	00.0	0.00	:	0.00	0.002		00.0	0.014	:	00.0	1
Dec.	10.0	0.002	00.0	:	0.01	00.0	:	00.0	00.00	:	00.0	
1969		000	2100		0.010			00 00	00 0		00 0	
Jan.	Lrace	0.00	010.0	: :	0.012	:	:	00.0	00.0			
Feb.	0.005	0.00	0.002		0.003			00.0			:	
Mar.	0.012	0.004	Trace		Trace	:	:	0.002	* 1			- 4
Apr.	0.005	0.01	Trace	0.015	Trace	:	0.005	0.023	0.025	0.05	0.023	0.01
May	00.0	0.00	00.00	0.00	0.00	•	0.00	0.00.	00.00	0.00	0.00	0.00
June	0.01	0.00	0.005	0.015	0.00		* * * * * * * * * * * * * * * * * * * *	0.00	0.00		0.00	0.00
Aug.	0.10	00.0	00.0		Trace			00.00	0.00		0.00	0.00
Sept.	0.06	00.0	00.0		Trace	0.25	00.00	00.0	0.00		0.00	
Oct.	0.255	Trace	00.0		0.00	0.266	0.00	00.0	0.05	•	0.00	
Nov.	0.03	00.0	0.002		0.00	0.012	0.02	:	0.05		0.01	
Dec.	0.05	00.0	0.00	::			0.03					:
1940												
Jan.	0.01	0.01	0.00		0.00							

MONTHLY TEMPERATURE—AVERAGE—°C.

	П	0.0	0000	14.75 19.5	5.68 1.25 0	0 0		Ы	0.0	0.00	000000000000000000000000000000000000000	0.0
	61	00.0	0.00 0.00 3.00 25	14.9 21 19	0.50 0.00 0.00	0.0		K	0.0	0.0 0.0 0.0 + ° +	0.00 ++	0.0
	ಣ	1.10	000000000000000000000000000000000000000	21.5.5	6.58	00		<u>ب</u>	0.0	0.000.014.000	008079888	0.0
	4	2.07	00000	16.8 21.5 19	6.8.5 0.00	0.0		н		++	0	
AGE C	r3	2.67	0.00 0.00 2.75	21.5	7.88	0.0	AGES—°C	Н	1°	0.00	21° 23° 16° 7°+ 0.0	0.00
XII	9	2.83	0.00 0.00 2.75	16.8 21.5 19.5	0.200	0.00	URE—AVERAGES	3	5°+ 12.5°	:::::	. : : : : : : : : : : : : : : : : : : :	
Table XII	7	1.83	0.00 0.00 3.7	23.0.2	2.0 0.0 0.0	0.0	TEMPERATURE Table XIII	Ħ		+ 0000	:: 30000	: :
MONTHE	00	1.80	0.00 0.00 3.25	20.2	0.00	0.00	MONTHLY	A	10000	0.00	+	::
AND THE PERSON NAMED AND PARTY AND P	5	2.6	0.00%	15.75 20.7 20	8.25 1.7 0.00	0.00		D	1.50	0.0 36 17°—	+ 000465-:	* *
AND THE PARTY AN	10	2.4	0.00%	15.6 20 20 17	8.25 1.8 0.0	0.0		- J		20.	*	::
		1.7	0.0 0.0 3.75	221 221 221 22	0.00.4	0.00		B	0.0	0.0	+ 0000000000000000000000000000000000000	::
100	₹ <u>1</u>	3.8	0.00	22.	10.1	0.0		- F	::	: : : ₀ 4.c	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	::
	Station	1938 Nov. Dec.	Jan. Feb. Mar. Apr.	May June Aug.	Oct. Nov. Dec.	Jan. Feb		Station	1938 Nov. Dec.	Jan. Feb. Mar. May	Aug. Sept. Oct. Nov.	Jan. Feb.

TURBIDITY-MONTHLY AVERAGES-P.P.M.

1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
Ç1	0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00	
ಣ	250 250 285 285 285 267 267 267 267 267 267 267 267 267 267	
4	48 88 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
10	28 1 15 8 15 8 15 8 15 8 15 8 15 8 15 8	
9	8 8 7 2 8 8 7 2 8 8 7 2 8 8 7 2 8 8 7 2 8 8 7 2 8 9 2 1 1 2 8 9 2 1 1 2 8 9 2 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
7	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
∞	20 20 20 123 421 140 160 160 160 222 222 222 222 222 222 222 222 222 2	
5	8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10	01 01 01 01 01 00 00 00 00 00 00 00 00 0	
11	222 110 110 110 110 100 100 100 100 100	
12	10 10 425 885 885 885 885 885 885 885 885 885 8	
Station	1938 Nov. 1939 Jan. Fleb. Mar. Apr. Apr. Aug. Aug. Cet. Dec. 1940 Tan.	T.CD.

TURBIDITY—MONTHLY AVERAGES—P.P.M. Table XV

L	111 111 111 111 111 111 112 113 114 115 116 116 116 116 116 117
K	113 222 222 222 222 222 222 232 232 232
J	111 101 101 101 101 101 101 102 102 103 103 103 103 103 103 103 103 103 103
I	
Н	109882221 10988222444 10988224444 10988224444
	2,337 240 1,525 1,100
Ħ	
臼	60 48 48 77 777 777 777 777 777 777 777 77
D	200 200 200 100 100 100 100 100 100 100
C	
æ	355 110 100 100 100 100 100 100 100 100 1
4:	
Station	1938 Nov. Dec. 1939 Jan. Feb. Mar. Apr. Apr. Apr. Oct. Oct. Dec. 1940 Dec.

I	
0	
12	
C	
-90,	
AVER	KVI
回	5
2	۳.
A	_
5	4
LY	å
I	1,
F	
7	
0	
5	

Station	12	11	10	6	∞	10	9	2	4	ಣ	2	1
1938 Nov.	90	7.00		8.1	0.1		00	67	7.9	7.9	000	60
Dec.	7.9	7.75	2.6	2.2	7.7	8.15	7.9	7.8	2.2	2.8	7.75	7.7
Jan.	7.7	7.9	7.7	7.8	7.6	2.2	7.6	7.6	7.6	7.6	7.5	7.6
Feb.	7.7	00	7.7	2.6	7.6	7.7	2.00	7.5	7.6	7.5	7.5	7.6
Mar.	7.54	7.56	7.6	2.6	7.5	7.5	7.45	7.55	7.6	7.5	7.5	7.6
Apr.	6.7	7.75	00.	2.2	7.7	7.9	7.9	7.7	2.7	7.9	7.9	7.00
May	4.00	00	00 4	00	4.0	4.00	00	4.00	ص ص	8.4	8.45	8.35
June	4.	200	00°	8.36	8.4	00.00	00.2	000	8.0	9.4	20.00	8.57
Aug.	9.00	0.00	8.0	4.8	4.0	4,00	8.2	2.2	7.7	00	8.4	20.00
Sept.	00	2.2	00	00		20.00	80.00	00.52	8.26	9.4	8.4	8.00
Oct.	00	7.95	00	00 10	8.4	00	00.1	200	7.85	8.25	8.4	00
Nov.	8.46	8.1	80	8.46	00	8.45	8.0	8.0	8.0	00	27.50	00
Dec.	0.8	2.00	8.0	. œ	8.6	8.4	20.20	7.7	7.7	7.2	2.00	8.0
1940 Jan.	8.0	7.8	7.6	7.7	7.8	8 . 8	8.0		:	:		:
Feb.		:	:	:								

I	
todat .	
6	
page 1	
3 .	
- 1	
1	
Pa3	
100	
(1)	
-	
₹	
~=	
~	
AZ Z	
2-7 5-4	
ER XVI	
211	
100	
4 0	
~ _	
_0	
h 400	
7,5	
P. C. Land	
_	
T	
terior.	
-	
proset.	
Parent.	
7	
[Rims]	
LNO	
0	
terms!	
2	

L	00
×	00 40400000000000000000000000000000000
7	
ı	
H	## ### ###############################
Ď	24
Œ	
ы	<u> </u>
D.	01- r
O	
В	+ + · · · · · · · · · · · · · · · · · ·
A	
Station	1938 Nov. Doe. 1939 Jan. Feb. Mar. Apr. Aug. Sept. Oct. Nov. Nov.

CHEMICAL ANALYSIS OF WATER IN RED RIVER AND ITS TRIBUTARIES

BEFORE AND TABLE SPRING BREAKUP

Table XVIIII

Total Hard- ness as CaCOs	80000000000000000000000000000000000000	286
Sul-	252544481131 252544481131 25554468131 25554468131 2555468131 2555468131	100
Chlor-ide	2002 888 882 7 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	37
Sod-ium	30 133 133 14 16 16 17 17 17 17 17 17 17 18 18 18 18 19 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	33
Mag- nesium	7444840404040014841 73778833334040401104841	30
Cal-	88447679544880 7777777777777777777777777777777777	63
Bicarb.	20000000000000000000000000000000000000	246
Alka- linity as CaCO3	448046044000000000000000000000000000000	202
Sus- pended Solids	00-0044900002000-1	000
Ignited Solids	2 1 4 2 6 2 6 2 6 4 4 2 6 2 2 2 2 2 2 2 2 2	266
Total Solids	250 250 250 250 250 250 250 250 250 250	325
Nitrate	0.0622 0.01477 0.02267	0.282
Nitrite	0.000 0.000	0.010
Albumi- noid Ammonia	0.4440 0.5450 0.	0.360
Free	0.512 0.302 1.568 1.1440 0.397 0.397 0.190 0.190 0.190 1.265 0.423 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	0.080
Date	3.22.39 9.22.39 9.22.39 6.13.39 6.1	6-15-39
Station	21 1 X P 6 P H 4	-

MOST PROBABLE NUMBERS OF COLIFORM ORGANISMS PER 100 cc. MONTHLY AVERAGES

-	12.7	.866	12,726	84	35.	5,025	120.5	153.2	93	317.7	505	8.750	109.5
61	461	17,500 3	5,577.5 12	80.1	299	1,461 5	182	136.4	240	473.3	548.2	3,068 8	330
ෆ	*1		2,735	240	240	4,840	827.5	113.8	240	273.3	6,940	4,232.5	930
4	*3 24,000	18,600	7,800	3,376.8	2,483.3	5,407.5	8,926	6,822.5	150	3,910	460,000	,313,333	Ind.
20	*3	19,150	10,007	24,000+	13,200	8,750	189,866	38,966	210	350,200	893,250	347,500 1	3,600
9	*2 24,000	24,000	8,000	11,050	13,675	16,100	49,342	15,500	2,400	30,333	3,024,000	927,500	2,000,000
7	3.6	13.7	785.7	17.2	511	415	988.8	289.7	240	1,087	9,565	7,756	
00	533	324.8	8963	776.5	1,104	2,032	43.5	1,475	150	9,513	341	656.5	91
6	888	632	1,320	4,612	3,746	4,600	299	1,113	93	693	330	114	23
10	096	4,143	14,250	20,750	16,740	23,075	5,075	18,600	2,400	1,080	963	5,810	7,300
pool pool	*3 Ind.				***1 25,460	72,075	114,250	*, 1,737,860	Ind.	1,680,000	1,822,500	1,041,000,000	330,000,000
12	89	110.2	127	827	1,193	341	423	528.6	240	1,863	299	45	9.1
Date	1938 Nov.	Dec	Jan	Feb	Mar	Apr	May	June	Aug	Sept	Oct	Nov.	Dec

*Indeterminate samples: More than 24,000 per 100 cc. **Indeterminate samples: Less than 360 per 100 cc. ***Indeterminate samples: More than 240,000 per 100 cc.

MOST PROBABLE NUMBER OF COLIFORM ORGANISMS PER 100 cc. MONTHLY AVERAGES

J K L	421 109 955 321.5 199 17,600 375.5 1,275 3,422 372.6 2,782.6 8,210 1,386 248 875 1,386 248 875 1,200 200 1,177 242.5 4,060 1,177 242.5 2,725 1,444 1 7320 1,44.4 73 1,500
I	2,006 4,300
H	** 261 ** 20,750+ 20,750+ 20,745 20,266 20,266 20,266 1950
Ü	*24,000+ *4,000+ *4,000+ *1,00
E	121. 413. 11,253. 2,7793.
A	2,530 2,530 2,530 2,400 2,400 62—
D	*1 316 12,100 307 885 880 627 627 1,081 23
0	6,392
В	625 1,945 902.5 462.5 555 555 680 680 52.5
A	8 204 152 2 2 2
Month	1938 Nov. Dec. 1939 Jan. Feb. Mar. Apr. May. June. Aug. Sept. Oort. Doc.

*Indeterminate samples: more than 24,000 per 100 cc. **Indeterminate samples: less than 360 per 100 cc. ***Indeterminate samples: more than 240,000 per 100 cc.

	(15)	- Sections	Quant. Units	21 60	12884	242 93	71	10	0.1	::		248 135	
	(14) (15) Coliform Organisms	THE STATE OF THE S	M.F.N. per 100 cc.	68	127 827 1 193	341 423	528.6	1,863	9.1	::		430.9	
	(13)		P.P.M. (8)-(7)	5.5	1.000					2.7		5.30	
	(12) (13) Oxygen Balance		Pounds (10)-(11)	931	3,510 4,792 98,887	12.838	2,624	351 075	006	144		9,498	
	(11)	er Day	B.O.D.	559	1,152	8,253 2,957	3.062	10 00 4 10 00 00 10 00 00	257	154		3,141	The second secon
2	(10) (11) Daily Average	Pounds p	D.0.	1,490	4,662 5,728 38,918	9,933	5,686	604	1,157	224		12,637 12,237 519	
DATA-Table XXI-12	(6)	Dissolved	% Sat.	91	60.8 71 66.3			76.6 91.8	86.1	62.9 36.2	AVERAGES	65.53 86.60 86.30	
DATA-Tal	(8)	Dissolved	P.P.M.	9.2	0.80	8.4	00 00	0 00 0 0 00 00	12.6	0.00	SONAL A	9.55	A COLUMN TO A COLU
BASE	(2)	Ave. BOD	P.P.M.	4.60 io.60	27.2					60.00	SEASC	3.80 4.95	-
	(9)		pH.	8.4	7.7	0.4.	4.0:	0 00 00 0 00 4 10 6	8.0	8.0	•	7.71 8.18 8.35	
	(5)	Ave.	P.P.M.	17 10	7 6 45	225	308	24.0	20	::		20 74 34	
	(4)	Ave.	C.C.	3.8	000	16	22.4	10.1	0.0	0.0		13.8	
	(3)	Ave.	P.P.M.	0.00 Trace	Trace 0.02 0.01—	0.013	0.00	0.01-	0.00	0.00		.008	
	(2)	No.	Samples	10.4	440	44	4-:	C 41.C	_	C3	¥	171	
	(1)	Ave.	Flow C.F.S.	223	102 743	219	180	2 13 2	17	11.5		: : :	
	Station		12	1938 Nov. Dec. 1939	Jan. Feb. Mar.	Apr.	Aug.	Nov.	Dec. 1940	Jan. Feb.		∀ ₩Û	

rganisms	M.P.N. Quant. Units	552	009	2,352	2,448 18,917 51,245 24,907 234,611	408 8.736 27.338 229x10 ⁵ 627x10 ¹	: : .		6,079 103,588	4,072
(14) (15) Coliform Organisms	M.P.N. per 100 cc.	Ind. 24,000+	24.000+	24,000+	24,000+ 25,460 72,075 114,250 1,737,860	24,000+ 1,680,000 1,822,500 1,041×10 ⁶ 330×10 ⁶	• 0 0		Ind. 24,385 641,395	852.000
(13)	P. P. M. (8)-(7)	80.00	- 5.8	- 2.7	0.0000	- 2.5 - 11.2 - 8.0 - 6.6	-22.1 -22.1		4.23	68 85
(12) (13) Oxygen Balance	Pounds (10)-(11)	572	783	-1,429	2,754 16,050 28,036 4,709 1,438	229 - 315 - 648 - 1,785 - 1,221	689		4,148	020
(11)	B.O.D.	1,627	1,661	6,033	2,644 23,270 19,965 5,415 4,155	679 3885 2,124 2,124	1,601		8,402 9,845	539
(10) (11) Daily Average	D.O.	1,155	878	4,604	5,398 39,320 43,001 10,124 5,613	450 70 680 1,045	168	502	12,550 19,579	DAO
(8) (9)	Oxygen - % Sat.	72.8	46.2	60.4	8867 805.53 805.53	54.5 27.3 74.1 66.3 67.0	21.9	VERAGES	60.15 85.80	40 00
(8)	Dissolved Oxygen P.P.M.	9.3	6.5	00.7	9.8 11.2 7.7	4,7,30,00 2,5,4,00,00	86. 516.	SONAL A	8.70	02 6
(7)	Ave. BOD 20° 5 Day P.P.M.	13.1	12.3	11.4	41010410 889967	13.7 16.4 15.4 20.7	26.0	SEAS	8.58	100
(9)	Ave. pH	7.80	7.75	7.9	7.8 7.75 8.3 8.3	8.6 7.7 7.95 7.85 7.85	20		7.75	0
(2)	Ave. Turb. P.P.M.	22	37	17	10 63 116 104 61	90 60 775 40 20	:::		31.8	ii I
	Temp.	5.1	1.4	9.0	0.0 0.0 3.75 16.2	21 20 9.9 3.6 4.0	0.0		.04	00 00
(3)	Ave. Nog-N P.P.M.	0.21	0.14	0.10	0.004	0.09 0.18 0.97 0.53	0.25		.085	O E F
(2)	of of Samples	10	4	4	410444	− 82 4 10 −	21-		::	
(1)	Ave. Daily Flow c.F.S.	23	25	98	102 743 711 218 135	17 15.2 22 22 19	5.6		122	,
Station	1 1	1938 Nov.	Dec.	Jan.	Feb. Mar. Apr. May June	Aug. Sept. Oct. Doc.	1940 Jan. Feb. Mar.		BA	ζ

_
9
-
(mark
- 54
X
- 175
41
-
2
F
-
1
I,
<
H
-
~
-
12
ASE
~
20

	Organisms	M.P.N. Quant. Units	43	2,117	32.767	4,352	10 21 991	248	: : :		4,485
* *************************************	(14) Conform (M.P.N. per 100 ec.	960	14,250	23,075	18,600	1,080 1963 1080 1080	7,300			13.971 15.583 1.740
	(13) Balance	P.P.M. (8)-(7)	7.5		#1.01C				- 6.6 -11.0		+1.73
	Oxygen F	Pounds (10)-(11)	1,922	3.060	43,707	3,664	131	587	- 179 - 653 -3,843		3,745 19,015 115
	Average	per Day B.O.D.	328	3.774	42,174	6,444	891 759	1,120	203 653 4.206		6,463 17,761 802
10	(10) Daily A	Pounds p	2,600	2.155 6.834	85,881 14,342	10,108	1,022	1,707	24 0.00	30	10.184 36.777 912
DATA-Table XXI-10	(6)	Oxygen % Sat.	78.1	45.87	82.7	87.3	25.00	63.6	6.1 0.0 16.7	VERAGE	33.2 84.7 103.7
DATA-T	(8)	Oxygen P.P.M.	10.7	4.00		10.2	4.9.5. 4.9.0.	0.33	0.0	SONAL A	4.85 9.17 9.80
BASE	(7)	Ave. BOD 20° 5 Day P.P.M.	3.5	01 to 4					7.5	SEAS	3.12 4.43 8.05
	(9)	Ave. pH	8.0	1-1-3	- 1- 00 - 00 4	4.00	00 00 00	0.00	7.6		7.65 8.20 8.55
	(3)	Turb. P.P.M.	01	40%	165	125	137	30	:::		23 148 179
	(4)	Temp.	2.4	000	5.50	50 20	8.25	0.0	000		18.0
	(3)	NO2-N P.P.M.	0.033	0.055	0.012	0.03	0.075	0.05	0.05		0.046 0.016 0.04
	(2)	of Samples	:04	4141	. 4 4 	4	Q 44 10		27		12 4
	(1)	Ave. Daily Flow c.F.S.	388	95 102 855	1,420	234	3 52 6	34	511 59		: : :
	Station	10	1938 Nov. Dec.	Jan. Feb.	Apr. May	June Aug.	Oct.	Dec. 1940	Jan. Feb. Mar.		AWO.

	-
6—IXX	-
DATA-Table	
BASE	

		1															ı	à	2
	Organisms	NAN	Quent.	25.5	129	2.708	x.4-x	286	40.0	13	-	9-	7	:			CCX	3.017	50
	(14) Coliform (ンゴフ	per 100 ec.	888	1,320	3.746	4.600	667	1,113	693	330	114	3	:	:		0.007	2, 127	393
	(13) Balance		P.P.M. (8)-(7)	10.06		017	21.1	6.7	4.60	4.0	20.	 5,0 6,2	16.0	4.0	19.6			92:	
	Oxygen I		Pounds (10)-(11)	3,368	200	22, 12,53	56,327	15,522	8,071	612	229	2,620	3,040	237	953	en.	020	26,640	703
			B.O.D.	435 523	1,058	13.274	54,351	7,876	6,182	363	1,194	1.349	101	457	953	20014	9 001	22,808	488
6	(10) (11) Daily Average	Pounds 1	D.O.	3,803	1,005	16.007	110,678	23,398	14,253	973	1.871	396.50	700'0	550	000	7.	4 020 (49.442	1,190
rable XXI-	(6)	Dissolved	% Nat.	83.4	130	0.22	84.0	101.0	91.0	000	88.9	107.4	0.601	25.3	0,0	in	1.63	92.39	78.0
DATA-T	(8)	Dissolved	P.P.M.	1.35 8.33 8.33	0.1	x 4 x –	11.2	10.1	30 e	00.00	10.5	15.0	1.01	3.7	0.0	A TANO		0.00	7.40
BASE	(2)	Ave. BOD	P.P.M.	8.1.3					200					7.7	9.6	N.E.A.S.	00.0	4.17	2.95
	3	Ann	pH.	1.2	20.0	9.7	7.7	00	30.00	000	00	8.46	0.0	00	:		Pr C 197	8.20	8.45
	(5)	Ave.	P.P.M.	8 61	16	2000	304	1.54	144	- 13	06	62	40	:	:	:		201	106
	(4)	Ave.	,) _o (;	2.6	0.0	0.0	2 10	15.75	20.7	212	8.25	7.7	0.0	0.0	0.0		0	13.32	18.5
	(3)	Ave.	P.P.M.	0.027	0.062	0.014	0.01	Trace	Trace	Trace	Trace	0.032	0.04	0.05	:		0 000	0.006	Trace
	(2)	No.	Samples	10.4	4	410	4	4	1.7 F	400	4	101	-	21		7	1.	13	4
	(1)	Ave.	Flow C.F.S.	62	98	7.03	1.830	429	318	216	. 25	49	4.5	111	14	-		: :	
	Station		6	Nov. Dec.	Jan.	Feb.	Apr.	May	June	Sent	Oct.	Nov.	Dec.	Jan.	Feb.	INTERE.	4	4 2	C

	(15) Organisms	M D M	Quant. Units	233	28.20	991	4.105	507	162	5.	000 000 000 000				293	84
	(14) Coliform O	MDM	per 100 cc.	533	963	1,104	2,032		9 513	341	91				1,183	4,831
	(13) Salance		P.P.M. (8)-(7)	11.26	1.8	1.0	9.5	4.6	4.4	5.9	11.3	00	22.4		+4.87	+4.601
	(12) (13) Oxygen Balance	4	Pounds (10)-(11)	3.770	827	3,380	50,176 13,151	8,545	1,042		2,319	61	968 9 202		9.945	728
	Average	er Day	B.O.D.	569 461	1.056	6.084	8.280	6,130	340		2,509	484	968		27,345	479
op.	(10) Daily Avera	Founds p	D.0.	4,339	973	9.464	21.431	14.675	1,661	1.432	3.181	428	0.00	X.	2.864	1.207
	(6)	Dissolved	% Sat.	93.0	3.4	19.2	0.088	4.78	84.2	86.4	9.601	3000	0.0	VERAGE	85.47	83.0
DATA-Table XXI	(8)	Dissolved	P.P.M.	12.96	1.7	00:	0. so so so	7.9	000	10.2	15.3	5.6	0.0	ONAL A	9.17	7.80
BASE	(7)	Ave. BUD	P.P.M.	7.1	6.4	00:	& 35 57 4	00.0	20.00	4.3	4.2	6.4	22.4	A S	1.72	3.20
	(9)	A 170	hd	8.1	7.6							7.8	: :		8.17	8.40
	(5)	Turb	P.P.M.	12 20	20 13	13	140	160	222	97	- 09	:	: :		16.5	191
	(4)	Tomn	°C.	1.80	0.0	0.0	17.5	20.2	17.5	7.0	× 0.0	0.0	0.0		0.0	18.20
	(3)	NO. N	P.P.M.	0.013	0.04	0.01	0.00	0.00	Trace	Trace	0.018	0.03			0.02	Trace
	(2)	of.	Samples	44	44	10°	44	1 ? P	-1 00	4		22			13	4
	(1)	Daily	Flow C.F.S.	62 56	85		451	344	17	26	388	14	× 0×		: :	
	Station		00	1938 Nov. Dec.	Jan. Feb.	Mar.	Apr. May	June	Sept.	Oet.	Nov.	1940 Jan.	Feb.		ABS	

	(15) rganisms	M.P.N. Quant. Units	6/00	140 1,017 453 106 106 17 230 318 318	394
	(14) (15) Coliform Organisms	M.P.N. per 100 cc.	13.6	185.7 185.7 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087	564
	(13) Salance	P. P. M. (8)-(7)	10 7.2	0.47-031717100 0	3.10
	Oxygen Balance	Pounds (10)-(11)	3,187	67 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9,739
	(11) verage	B.O.D.	1,019	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	26,121
7.	(10) (11) Daily Average	D.O.	4,206	S	55,336
BASE DATA-Table XXI-7	(6)	Oxygen - % Sat.	94.9	25 25 25 25 25 25 25 25 25 25 25 25 25 2	76.17
DATA-T	(8)	Oxygen P.P.M.	13.2	1.1 10.1 10.9 10.9 10.9 10.9 10.9 10.0 10.0	8.13
BASE	(2)	Ave. BOD 20° 5 Day P.P.M.	21.2		30.00
	(9)	Ave.	80.00 0.15	FFFF 000000000000000000000000000000000	8.45
	(5)	Turb. P.P.M.	10	3,550 1.3 3,500	158
	(4)	Temp.	1.83	00000000000000000000000000000000000000	13.98
	(3)	NO:-N P.P.N.	0.00	440.00.00.00.00.00.00.00.00.00.00.00.00.	0.005
	(2)	of Samples	65 At	70 44 410 4 H 00 4 40 00 H : 1	113
	(1)	Ave. Daily Flow	59	21 21 21 24 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	1,091
	Station	17	1938 Nov. Dec.	Jan. Fleb. Mar. May. May. June Aug. Sept. Nov. 1840 Dec. 1850.	mo

6.6	
9-	
- 3	
- 3	
XXI	
- Land	
- 50	
P2	
10.0	
- 20	
P 3	
61	
. w	
2000	
_0	
Table	
- 63	
Table 1	
-	
- 1	
- 1	
- 24	
-90	
DATA	
- 2	
\sim	
_	
6-3	
1000	
7.0	
20	
de	
-4	
BASE	
Diffe.	

	(15) Organisms	M.P.N. Quant. Units	4,560	1,896	50,329 45,000 10,580	6.825 1,010,016 308,857 630,000	: : :		3.856 35,303 3.554
	(14) Coliform 0	M.P.N. per 100 cc.	24,000	8,000 11,050	16,100 49,342 15,400	30,333 3,024,000 927,500 2,000,000	: : :		14,181 26,947 16,366
	(13) Balance	P.P.M. (8)-(7)	8.05			10.00	6.9		3.47
	(12) Oxygen E	Pounds (10)-(11)	8,254 -10,110	1,280	57,393 20,684 10,387	3,645 - 6,493 -15,704	7,938.0		29,488 2,045
	Average	per Day B.O.D.	19,494			22,725 22,725 36,383 36,571	1,606.5		7,427 42,133 3,777
9-	(10) Daily	Founds D.O.	11,240			8,140 16,232 20,679 19,561	9,544.5	20	5,341 71,621 5,822
Table XXI-	(6)	Oxygen % Sat.	80.8	25.3 17.1 14.4	74.7	7.5.9	69.0	VERAGE	27.7 66.97 65.75
DATA-T	(8)	Oxygen P.P.M.	10.95	2000 7:01	1000 m	6.7 9.0 11.5	6.75	NAL A	4.05 7.27 6.1
BASE	(7)	Ave. BOD 20° 5 Day P.P.M.	19.0	7.60.0	08834	12.6 20.4 21.5	17	SEASC	6.1 3.8 4.25
	(9)	Ave.	8.1	9.7.7	0.0000	000000	0.00		7.69 8.13 8.25
	(5)	Turb. P.P.M.	15	170	321 102 40	09 44.09 00 09			31 173 50
	(4)	Temp.	2.83	0.00	216.8	16.5 8.0 2.25 0.0	0.0		0.0 14 19.75
	(3)	Nog-N P.P.M.	Trace 0.01	0.02	0.00 Trace	0.001 0.004 Trace	0.01		0.005
	(2)	of Samples	, , , , , ,	1044	4:04-	- cc c 4	21:		13
	(E)	Plow C.F.S.	190	237 229 455	3,126 912 687	2222 23224 3334 1535 1535 1535 1535 1535 1535 153	17.5		280 1,575 171
	Station	9	1938 Nov. Dec.	Jan. Feb. Mar.	Apr. May June	Sept. Nov. Dec.	Jan. Feb. Mar.		CBA

*Number of B. O. D. samples when the number of D. O. samples is greater than number of B. O. D. samples.

*

1	1	
100	× ×	1 1 1 1 1
-	i	5
A LE	4	
000	406	
THE OW	200	

cq.	7 + 0	0.24	21003	82.9	0410	100		1	0 4 4
Organisms	M.P.N. Quant. Units	4,560	2,352 5,568 5,729	27,388 174,107 27,656		114,67			4,360 76,384 38,184
(14) Coliform (M.P.N. per 100 cc.	24,000 19,150	10,007 24,000+ 13,200	8,750 189,866 39,966	350,200 893,250	347,500	: : :		16,589 79,527 175,205
(13) Balance	P.P.M. (8)-(7)	- 8.79 - 5.39	20.10.00.00.00.00.00.00.00.00.00.00.00.00	10 41 to	1 200	 8.3 4.4	5144 5180 :		- 1.4 4.47 0.65
Oxygen F	Pounds (10)-(11)	3,888	- 3,173 376 4,218	89,581 23,769 12,331	2,472	- 5,881 - 8,660	2,031		-1,062 41,894 975
(10) Daily Average	B.O.D.	10,157	6,853 4,385 7,500	87,890 113,865 8,595	2,548 4,120 13,707	22,810 20,368	8,772		7,010 36,783 3,334
Daily A	D.O.	6,269	3,680 4,761 11,718	177,471 37,634 20,926	6,592	16,929	6,741	202	5,948 78,677 4,309
(9)	Oxygen % Sat.	44.9 23.2	19.8 26.0 34.2	4.829	54.6	67.6	49.9	VERAGE	25.8 72.67 45.1
(8) Discolared		6.11	21.82 to 20.80 O	10.5			.00	SONAL A	3.8 7.90 4.35
(7)	20° 5 Day P.P.M.	9.9	10 to to 4 10 01	च्यात्र चळळ			20.0	SEAS	3.43
(9)	Ave. pH	3100	7.50	F-30.30 F-4-1	-0100	8.0	: : :		7.6 8.07 7.95
(5)	Turb.	38	150	282 80 120	25.52	42	:::		161
(4)	Temp.	2.7	0.00	21.2	271	0.0	0.0		13.7
(3)	NOS-N P.P.M.	0.00	0.025	0.01 Trace 0.015	0.02	Trace	0.03		0.019
(a)	of of Samples	6,3	400	ಸ್ತ 41ರಬ	→ co 4	4:01	27 -		138
(E)	Flow C.F.S.	190 198	235 232 434	3,130 917 692	218 334 334	330	171 184 230		1,580 170
Station	22	Nov. Dec.	Jan. Feb. Mar.	Apr. May June	Aug. Sept. Oct.	Nov. Dec.	Jan. Feb. Mar.		CBA

XXI-4	
-Table	
DATA	
BASE	

	(15) Organisms	M.P.N.	Quant. Units	4,608	1,802	17,142	47,902		153,180		:			1,779	421	
	(14) Coliform 0	M.P.N.	per 100 cc.	24,000 18,600	376	2,483.3 5,407.5	6.882.5	3,910	460,000	Ind.	:			8.065	2,030	
	(13) Balance		P.P.M. (8)-(7)	7.89		0 to 4						200		- 3.7	2.4	
	Oxygen B		Pounds (10)-(11)	- 8,181 - 9,361		1.121 66.760 99.596		3,760	540	18,855	- 4,671	2,484		4,084	2,379	
	Average	er Day	B.0.D.	12,442	10,852	5.045 104.420 16.947	9.772	4,330	11,508	26,169		5,103		6,968	3,692	Joe
	(10) Daily A	Founds p	D.0.	4,261	1,871	6,166	20,295	8,090	12,048	7,314	1,775	6,561	502	2,884	6,071	B O D common
-IVV ald	(6)	Dissolved Oxvgen -	% Sat.	29.7	10.3	73.7	60.6	71.3	54.8	30.8	13.0	30.8	VERAGE	13.0	70.2	then the manner of F
DAIA-IA			P.P.M.	4.11	1.5	10.0	4.	7.1	6.7	4.5		4.0	ONAL A	1.9	9.9	a then the
DASE	(7)	Ave. BOD	P.P.M.	12.0		2000						4.2.0	SEAS		4.4	loss in common town
	(9)		Hd	7.9		9.7.0					:	: :			0.00	
	(2)	Ave.	P.P.M.	45	128	340	107	270	62	255	:	: :		111	185	C 3
	(4)	Ave.	C.	2.07	0.0	0.0	21.5	22.	900	0.0		0.0		0.0	13.7	41-
	(3)	Ave.	P.P.M.	0.00	0.03	0.013	0.023	0.00	0.01	Trace	0.05	: :			0.008	
	(2)	S. S.	Samples	***************************************	400	€ 41 d	24	cc	4	107	23	p=1 p=1		14	4.4	4
	(1)	Ave.	Flow C.F.S.	192	231	3,170	969	123	2333	301	173	184		252	1,606	O 0 3 1 1 1 1 1
	Station		4	1938 Nov. Dec.	Jan. Jan. Feb.	Mar. Apr.	June	Aug.	Oet.	Dec.	Jan.	Feb. Mar.		A	ಇಲ	4.77

*Number of B.O.D. samples when the number of D.O. samples is greater than the number of B.O.D. samples.

(14) (15) Coliform Organisms	M.P.N. Quant. Units	1,629		16	25.387 20.00			5.866
(14) Coliform (M.P.N. per 100 cc.	8,620 13,257		4,840 827.5 113.8	240. 273.3 6,940			4,118
(13) Balance	P.P.M. (8)-(7)	1.9	- 7.4 - 1.1 - 0.4	21.00 20 0 0 1	0.10 F.10 0.40 @	8.00	00.1	5.70
Oxygen B	Pounds (10)-(11)	1,939	- 8,751 - 1,443 - 816	32, 164 32, 141 22, 834	4,666 6.299 14.675	- 4,731	000,1	- 5,236 35,713 5,482
	1 .	5,511 9,936	9,579 2,493 3,674	20,356 9,575	2,799 4,830 7,339	9.934	2,400	6.420 48.479 2.177
(10) (11) Daily Average	D.O.	7,450	1,050 1,050 2,858	52,497 32,409	9,098	5,203	302	1,184 84,192 7,659
(9)	Oxygen - % Sat.	51.5	4:000 8:000	97.6	285.5 285.5 26.5 26.5 26.5 26.5	25.0	VERAGE	4.92 87.7 82.0
(8)	Oxygen P.P.M.	7.3	7.00) 00 00 0 0 00 00 0	0.0010	. m . m . m	~	9.2
(7)	20° 5 Day P.P.M.	9.2	-0.80					5.25 4.2 2.20
(8)	Ave. pH	6.7	2777	- 00 00 0	000000	7.1		7.6 8.23 8.35
(5)	Turb. P.P.M.	70	25.6	855	135	0% :		162
(4)	Temp.	1.1	0000	21.5	19. 6.6 5.6	0.0	0.0	0.0 13.3 17.5
(3)	NO2-N P.P.M.	0.00	0.02	0.00	+10.00	Trace		0.012
(2)	of Samples	6, 3*	4-00	440.	- co 4 4	101 OI-		12 13
(1)	Daily Flow C.F.B.	189 200		992	216 344 334	292	225	1,708 1,708 180
Station	8	1938 Nov. Dec.	Jan. Feb. Mar.	Apr. May June	Sept.	Dec. 1940 Jan.	Mar.	ABO

	(15) rganisms	M.P.N.	Quant. Units		3,448	1,205	50	067 2	180	93	300	100	00	1,043	280	:	:			1,191	1,901	000	
	(14) (15) Coliform Organisms	M.P.N.	100 cc.		461	5,577.5	80.1	567	1,461	136.4	240	473.3	548.2	3,068	330		:			5,864	593	0.01	
	(13)		P.P.M. (8)-(7)		6.7	-8.2	-1.3	4.0-	20.0	7.6	4.1	5.5	6.8	6.3	1.0	-7.5	4.0-	0.0			0.0		
	Oxygen Balance		Pounds (10)-(11)		-7,200 $-9,149$	- 9,564	1,727	652	62,105	27.849	3,476	5,953	16,196	11,567	1,604	- 6,520	378	0.000		-5,273	41,437	4./14	
	(11) verage	er Day	B.0.D.		2,597 9,149				118,201	5.148	2,713	3,091	4,186	10,098	7,217	6,681	1,418	1,413		5,954	47,856	2,902	
-2	(10) (11) Daily Average	Pounds p	D.0.		9,779	0.0	930	1,794	180,306	33.097	6,189	9,044	20,382	21,665	8,821	261	1,040	1,413	3 2	681	89,293	(,010	
able XXI-	(6)	Dissolved	% Sat.		63.8	0.0	4.8	7.0	67.1	100.1	78.1	79.4	6.78	81.7	37.6	2.0	7.5	8.2	VERAG	3.08	87.6	78.75	
DATA-T	(8)	Dissolved	P.P.M.		9.1	0.0	0.7	1.1	0.0	-0	7.00	7.9	11.2	11.8	5.5	00	1.1	1.2	ONAL A	0.45	9.23	9.7	
BASE	(2)	Ave. BOD	P.P.M.		8.6				0.0							00.	1.5	1.2	SEAS		3.63		
	(9)		Hd		7.75	7.5	7.5	7.5	7.9	10 00 CH 10	900	4.	8.4	8.5	7.00			:			8.28		
	(5)	Ave.	P.P.M.		24	22	10	9	410	200	09	167	29	98	20			:		15	190	113	
	(4)	Ave.	C.		0.0	0.0	0.0	0.0	3.25	91.9	10	16.	5.25	0.5	0.0	0.0	0.0	0.0		0.0	13.05	6.71	
	(3)	Ave.	P.P.M.		0.00	0.007	0.025	0.01+	0.01	0.00	00.00	0.00	0.01-	Trace	Trace	0.00		:		0.01	0.000	0.00	
	(2)	No.	Samples		6,3*	4	00	4	41-	4 10)	(0)	4	4	22	2	_			15	13	4	
	(1)	Ave.	Flow C.F.S.		199	216	246	302	3,710	1,040	157	212	337	340	297	161	175	218		240	1,810	184	
	Station		24	1938	Nov.	Jan.	Feb.	Mar.	Apr.	June	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.		Y	ф(

*Number of B.O.D. samples when the number of D.O. samples is greater than the number of B.O.D. samples.

	Oliform Organ sems	M.P.N. Quant. Units	104	025.2	<u>s</u>	123-10	00 44. 20.00		-	6,261	
	Coliform (M.P.N. per 100 cc.	3.866	12.7.58 8.8.88 8.8.88	5.025	20 50 50 50 50 50 50 50 50 50 50 50 50 50	8.750	• • •		4.178	
	(13)	P.P.M. (8)-(7)	10.26	-9.0	01 © @	4 © 0	345	22.7		49.44	
	Oxygen Bulance	Pounds (10)-(11)	11.468	2 203 2 203 2 203	38.869	4 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	17,736	$\begin{array}{c} -2,101 \\ -1,368 \\ -1,337 \end{array}$		34.894 6.597	
	(10) (11) Daily Average	B.O.D.	2,683	9.730 2.203 2.203	19,753	200 01 60 00 00 00 00 00 00 00 00 00 00 00 00	8,023	3,002 1,529 2,066		54.391	
-	(10) Daily A	D.O.	14,151	0.0	58,622	10.930	25,759	901 161 729	ES	484 89,285 9,830	samples is greater than the number of B.O.D. samples.
DATA-Table XXI-	(6)	Oxygen % Sat.	2.73	0.07	90.08	989.0	86.2	2.4.1.	VERAGI	81.2	number of 1
	(8)	~	12.66	0.0=	5.000	0 00 00 c	9.6	1.2	SONALA	08.38	r than the
BASE	(7)	20° 5 Day P.P.M.	4.1-	1.6	- G − t	-00	100 01	1.9	1	93.02	oles is greate
	(9)	Ave.	21.5 21.5	77.6	- 00 0 00 00 00 00 00 00	000000	0 00 00 0 00 00			1-00 00	O.O. samı
		P.P.M.	45	100	187	140	57.5	:::		260	per of L
	(4)	Temp.	0.75	0.00	8.45	19.0	0.00	0000		12.35	the nun
	(3)	NO-N P.P.M.	0.00	0.00	Trace 0.00	2000	Trace Trace	0.00		0.008	mples when the number of D.O.
	(2)	of Samples	6,3*	4 গ ব	 H 44 47 F	n — ee =	+40	2		13	30
	8	Flow C.F.8.	207	198 255	3,690	788 788 788 788 788 788 788 788 788 788	391	139 149 225		226	*Number of B.O.D.
	Station	-	1938 Nov. Dec.	Jan. Feb.	Apr. May	Aug. Sept.	Nog.	Jan. Feb.		K M C	*Nun

	(15) rganisms	M.P.N.	Quant. Units	14	211	21	4004	2.176	56	198	0 =	. 17	62	11						189	000	
	(14) (15) Coliform Organisms	M.P.N.	per 100 cc.	9555	17,600	1,907	3,422	001.00	875	3.606	450	1,177	5.681	1,500						7,009	1,248	
	(13)		P.P.M. (8)-(7)	8.51	6.02	3.15	.62	20100	5.75	3.55	1.04	2.80	7.45	8.98		::	:			+2.49	+1.95	
	(12) (13) Oxygen Balance		Pounds (10)-(11)	789	390	187	400	200 200	1,987	1,045	625	109	684	873		:	:				5,787	
	Average	er Day	B.O.D.	234	102	182	166	2,353	1,123	1,390	348	181	2004	235	C L	3)	:				265	
L	(10) Daily A	Lonnas p	D.0.	923	492	315	200	16 749	3.110	2,435	410	320	1 085	1,108					τΩ	770	365	
DATA-Table XXII-L	(6)	Oxygen	% Sat.	82.7	52.0	36.2	25.3	27.3	86.8	89.4	75.2	67.8	81.4	82.3		:	-		VERAGE		71.50	
DATA-Tal		_	P.P.M.	11.4	7.6	60.00	200	0.4.0	9.0	8.2	6.9	9.0	10.01	11.4		:	:		SONAL A	5.15	6.75	
BASE	(7)	Ave. BOD	P.P.M.	2.89	1.58	2.15	3.08	47:52	3.00	4.68	5.86	4.1.	0.47	2.42	3	1.94	:		SEAS	2.66	4.80	
	(9)		Hd	00.1	7.7	7.5+	7.55	7.0	- 00 - 00 - 00 - 00	00	4.	4,00	00.00	. 4	1	9.7	:			7.56	2.4.	
	(5)	Ave.	P.P.M.	17	15	11	11	2000	62	65	100	202	16	20		:	:	:		24	85	
	(4)	Ave.	C	67	0.0	0.0	0.0	0.0	14+	20-	20	17+	H-H	- 21		0.0	0.0	:		0.0	18.5	
	(3)	Ave.	P.P.M.	0.021	0.01	Trace	0.005	0.012	00.00	0.01	0.10	0.06	0.200	0.02	0	0.01					0.002	
	(2)	S. S.	Samples	10	4	4	4	€0 4	4 4	4	-	00 9	41 11	>		:	:			17	12	
	(1)	Ave.	Flow C.F.S.	15	12	11	10	96	64	55	11	000	177	00		-	x 1	1			: :	
	Station		L	1938 Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	June	Aug.	Sept.	Nor.	Dec.	1940	Jan.	Feb.	Mar.		A	20	

(15) ganisms	AT D NT	Quant. Units	787	0144	103	ත රා	4.0	14	7.0		:			141	4.2
(14) (15) Coliform Organisms	MEDM	per 100 cc.	109	1,032.5		448	200	2,725	840					1,072	2,130
(13) j	-	P.P.M. (8)-(7)	6.35	4.38	0.00	5.76	6.27	10.4	9.08	:	:			-0.62 +6.57	+5.54
(12) (13) Oxygen Balance		Pounds (10)-(11)	378	- 142 - 102	121-		67	200	392	•				4,662	29
(11) verage	er Day	B.O.D.	163	1022	7,057	158	90 0	181	823	13				963	24
(10) (11) Daily Average	Pounds p	D.0.	541		19.060		30 0	181	475	:				7.182	200
(6) (8) (2)	Dissolved	% Sat.	65.7	0.00	04.4	78.1	84.4	57.0	79.4	:			AVERAGES	82.10	29.90
(8)	Dissolved	P.P.M.	9.1	00-	1 - 1	- 50	0.1	6.7	0.4		:		NAL	9.03	7.7
(7)	Ave. BOD	P.P.M.	2.75	44 4 85.7.5	4.11	1.54	1.63	6.71	1.92	1.17	:	: 1	SEASO	1.04	2.16
(9)		pH.	8.0+	4:01	+00.	4.4.	2000	7.95	0.00	7.7	:			8.20	
(6)	Ave.	P.P.M.	13	1252	97	16	06	322	30		:	:		27.5	65
(4)	Ave.	o.C.	0.0	0.00	0.4	14	19	++	0.0	0.0	0.0			0.0	17.5
(3)	Ave.	P.P.M.	0.00	0.00	0.04	0.00	0.00	Trace	0.00	0.01				0.002	00.0
(2)	°°	Samples	104	441	o 41 ⋅	4 4		x: 4	104		:			12	4
(1)	Ave.	Flow C.F.S.	11 80	946	318	37	213	Mic	ාග ආ	67	prod (00		: :	
Station		K	Nov. Dec.	Jan. Feb.	Apr.	May	Aug.	Sept.	Nov.	Jan.	Feb.	Mar.		B	O

(15) rganisms	M.P.N. Quant. Units	24	H 73 00 G	134	18 4	0101			7.8 68.0 10.5
(14) (15) Coliform Organisms	M.P.N. per 100 cc.	421	305.5 372.6	1,386	1,263	144.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1,153
(13) Balance	P.P.M. (8)-(7)	9.45	1.38	6.99	5.35	10.35	2.32		+1.95 +7.25 +5.83
(12) Oxygen E	Pounds (10)-(11)	868	134	3,775	940 405 317	950	113		235 6,125 475
(11) verage	B.O.D.	197	70 175 692 469	761	147	133	101		263 1,808 125
(10) (11) Daily Average	D.O.	1,065	204 165 1829	2,994	552	1,083	214	- SC	498 7,900 600
(8) (9)	Oxygen - % Sat.	81.4	14.4 111.6 21.9 85.4	777.3	83.2.0	99.4	30.1	VERAGE	23.92 82.23 79.90
(8)	-	11.6	13.7.7	-00 F-1	-1-00	8.7	4.4	NAL A	3.50 9.20 7.4
(7)	20° 5 Day P.P.M.	2.15	0.72 1.80 2.67	1.41	1.95	1.58	2.08	SEASO	1.55 1.95 1.57
(9)	Ave. pH	7.8.1	77.77				2.7		7.57 8.23 8.45
(5)	Turb. P.P.M.	17 10	112	75	63	15.	::		13 82 66
(4)	Temp.	1+1	0.000	14+	21 16+	+	0.0		0.0 12.3 19.5
(3)	NOz-N P.P.M.	00.00	0.015 0.005 Trace	0.00	000	0.00	0.00		0.005 Trace 0.00
(S) N	of Samples	ro 44	4404	k 44 44 +	⊣ cc 4ा।	с-I	::		17 12 4
	Daily Flow	17 21	100044	100	140	20	97-1		: : :
Station	م	1938 Nov. Dec.	Jan. Feb. Mar.	May	Sept.	Dec.	Jan. Feb.		CBA

	5	7.50	94	52.133	530 131 62	431	. cc ·				51	73
	Organisms	Ouant.	34	4.00	1,5	1-10	1,6883	:			1,251	000
	(14) Coliform	M.P.N. per 100 cc.	20,750	2,848 4,775 5,550	2,266 286.5 195	8,151 15,106	5,765	:	• •		8,481	4,290
	(13) Balance	P. P. M. (8)-(7)	9.73	1.83	3.67	2.30	9.74	7.46			+1.86	+3.05
	Oxygen E	Pounds (10)-(11)	7,283	1,570 - 35 - 143	23,291 9,037 6,134	3,340	11,495	986,9			1,448	2,365
	(10) (11) Daily Average	B.O.D.	1,560	919	7,691 8,446 5,616	5.795	8,530	1,252			1,141	3,805
H	(10) Daily	D.O.	8,843	2,489	30,982 17,483 11,750	3,154 9,185	20.025	7,738	4,061	ES	20,072	
ble XXII-	(9)	Oxygen % Sat.	87.8	8.6.8	63.0 74.4 75.7	84.1	91.7	60.8	32.1	AVERAGI	22.45	82.75
. DATA-Table XXII-	(8)		12.5	2.1.0	0 - 0 0 - 0	N 00 0	11.4	6.8	4.7	SONAL	3.25	7.7
BASE	(7)	20° 5 Day P.P.M.	2.77	1.35	3.43	5.11	5.41	1.44		SEAS	1.39	4.65
	(9)	Ave. pH	8.3+	7.55	1-20 00 20 00 4	00 00 00 44 44 00		00	: :		7.59	4.8
	(5)	Turb. P.P.M.	10.51	12	9862	40	1229	<i>a</i> :	: :		14	43
	(4)	Temp.	1 0.0	0.00	18-	23 17 7+	0.0	0.0	0.0		0.0	19.5
	(8)	P.P.M.	0.00	0.012 0.003 Trace	Trace 0.00	Trace	0.00	0.00	: :		0.006 Trace	Trace
	8	of Samples	०० व	10 41 4	4104	1 60 4	40	21.5			17	4
	(1)	Daily Flow	131	159	675 456 320	210	292	161	160		: :	
	Station	H	1938 Nov. Dec.	1939 Jan. Feb.	Apr. May	Aug. Sept.	Nov. Dec.	1940 Jan.	Mar.		B	0

l de

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Grand Forks)
(November 1938)

		Deficit Du to Demand Only	P.P.M.			
	RELATIONSHIPS	Surplus Over Demand Only	P.P.M.	8.17	8.38	12.39
	XYGEN REL	Deficit Due to Demand Only	Lbs. Daily	0 0		
	0	Surplus Over Demand Only	Lbs. Daily	1,014	2,036 3,555	4,148
	Discolund	Oxygen	Lbs. Daily	1,490	3,600	4,339
able XXIII-1	Discolated	Oxygen Available	P.P.M.	12.0	10.7	12.96
lab	Oxygen	O'C for Time of Flow To Grand Forks	Lbs. Daily	1.335	564 248	191
	0°C B.O.D.	of Flow to Grand Forks	P.P.M.	3.83	2.32	.14
	Wive a	Day 20°C B.O.D.	P.P.M.	13.1	& 67.65	3.2
	Time of	to Grand Forks	Days	24.4	17.0	5.2
		Flow	C.F.S.	233	45 62	62 59
		Station		112	000	-100

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Grand Forks)

December 1938

		Deficit Due to Demand Only	P.P.M.	: 00		
	RELATIONSHIPS	Surplus Over Demand Only	P.P.M.	6.4	0-	9.7
	XYGEN REL	Deficit Due to Demand Only	Lbs. Daily	500	•	
	0	Surplus Over Demand Only	Lbs. Daily	864	103	3,090
,	Discolate	Oxygen Available	Lbs. Daily	1,242	349	3,154
le XXIII-2	Discolution	Oxygen Available	P.P.M.	6.0	2.0	9.00
Table	Oxygen	O'C for Time of Flow To Grand Forks	Lbs. Daily	378	308	151
	0°C B.O.D.	of Flow to Grand Forks	P.P.M.	3.8	1.5	0.52
	Kitto	Day 20°C B.O.D.	P. P. M.	12.3	1.6	4.5
	Time of	to Grand Forks	Days	25.6	100.00	5.7
		Flow	C.F.S.	255	57 50 7 50	50
		Station		12	00	-1 00 L

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Lake Winnipeg)
December 1938

		Deficit Due to Demand Only	P. P. M.	7.60 44.80 7.66 7.64 6.84 5.03
	RELATIONSHIPS	Surplus Over to Demand Demand Only	P.P.M.	
	XYGEN REL	Deficit Due to Demand Only	Lbs.	25,132 8,148 8,148 77,251 4,944
	.00	Surplus Over Demand Only	Lbs.	
	Dissolved	Oxygen Available	Lhs.	8,490 3,635 213 0.00 393.00
e XXIII-3	Discolared	Oxygen Available	P.P.M.	3.4 3.4 0.00 0.00 0.00 0.40
Table	Oxygen	Definition at 10°C for Time of Flow to Lake Winnipeg	Lbs.	16,656 8,767 8,361 8,251 7,276
	0°C B.O.D.	of Flow to Lake	P.P.M.	25.88 20.20 2.80.20 44.86.64 44.84.84
		Day 20°C B.O.D.	P. P. M.	17.3 9.0 9.2 7.7
	Time of Flow to Lake Winnipeg		Days	222.28 20.26 20.26 20.26 20.26
		Flow	C.F.S.	199 198 197 200 197 182
		Station		010400m

	Forks)
ICE COVERAGE	Specified To Grand
UNDER	Station 1939
REQUIREMENTS	Demand From The January
OXYGEN	On Oxygen
	(Based

		Deficit Due to Demand Only	P. P. M.	0.1
	7.	Deficit er to Den ly Oul	- A	
	ATTONSHIP	Surplus Over Demand Only	P. P.M.	7
	ONYGEN RELATIONSHIPS	Deficit Due to Demand Only	Lhs. Daily	20
The same of the sa	0	Surplus Over Demand Only	Lbs. Daily	3,772
	Dissolved Oxygen Available		Lbs. Daily	4,665 2,155 1,005 1,005 463
e AAIII—4	Dissolved Oxygen Available		P. P. M.	8.8.4 0.00 0.00 0.00 0.00
Lab	Oxygen	Demand at 0% for Time of Flow To Grand Forks	Lbs. Daily	4,657 975 529 321 42
	0°C B.O.D.	For Time of Flow to Grand Forks	P.P.M.	7.00 0.10 0.71 0.71
	i	Pave Day 20°C B.O.D.	P.P.M.	31133333 348081
	Time of	Flow to Grand Forks	Days	18.3 16.9 14.9 4.8 6.0
-	Flow		C.F.S.	185857 185858
	Station			1112

(Based On Oxygen Demand From The Station Specified To Lake Winnipeg)

		Def	P.P.M.	1.77	5.90	5.92	6.48	6.36
	RELATIONSHIPS	Surplus Over Demand Only	P.P.M.	1.34				
	XYGEN REL	Deficit Due to Demand Only	Lbs.	2.246	7,360	7,001	7,558	6,800
	.00	Surplus Over Demand Only	Lbs.	1,719				
	Dissolved	Oxygen Available	Lbs.	4,739	1,871	828	0.0	0.0
able XXIII—5	Discolared	Oxygen Available	P.P.M.	3.7	1.5	0.7	0.0	0.0
Iab	Oxygen	Demand at 0°C for Time of Flow to Lake Winnipeg	Lbs.	3,020	9,231	7,829	7,558	008'9
	0°C B.O.D.	of Flow to Lake Winnipeg	P.P.M.	2.36	7.40	6.62	6.48	6.36
		Day 20°C B.O.D.	P.P.M.	2.4	00.7	00.1	80.2	9.1
	Time of	to Lake Winnipeg	Days	26.7	24.4	21.7	19.4	15.3
		Flow	C.F.S.	237	231	219	216	198
		Station		© rd	4	60	22	-

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Grand Forks)
February 1939
Table XXIII—6

RELATIONSHIPS	d Surplus Over to Demand Only	N P.P.M. P.P.M.	Ο Φ 4 Ω ™ Ο Ο 4 ώ 4 4 8
XYGEN F	Deficit Due to Demand Only	Lbs. Daily	
	Surplus Over Demand Only	Lbs. Daily Lbs. Daily	5,067 3,526 2,368 1,477 428
Discolused	Dissolved Oxygen Available		5,728 5,399 3,690 2,031 973 481
Discooling	Oxygen Available	P.P.M.	10.4 9.8 8.3 3.3 1.7 0.9
1	Demand at 0°C for Time of Flow To Grand Forks	Lbs. Daily	661 1,873 1,322 554 172 53
0°C B.O.D.	of Flow to Grand	P.P.M.	1.8.4.0.00 8.4.4.0.0.1.
	Day 20°C B.O.D.	P.P.M.	148111 787846
Time of	to to Grand Forks	Days	17.3 16.0 13.3 8.7 4.4
	Flow	C.F.S.	102 102 102 114 106
	Station		12 11 10 9 9 7

.83

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Lake Winnipeg)

		Deficient to D	Д	
	RELATIONSHIPS	Surplus Over to D Demand Only	P.P.M.	
	XYGEN REL	Deficit Due to Demand Only	Lbs.	958
	(0)	Surplus Over Demand Only	Lbs.	593 952 1.238
	Discolvod	Oxygen Available	Lbs.	3,091 4,761 3,285 1,050 930 0.00
Table XXIII-7	Dissolved	Oxygen Available	P.P.M.	00000000000000000000000000000000000000
Tab	Oxygen	Time of Flow	Lbs.	2,498 2,609 2,008 2,008 1,446
	0°C B.O.D.	of Flow to Lake Winnipeg	P.P.M.	22.02 33.04 1.533 1.533 1.53
		Day 20°C B.O.D.	P.P.M.	8.60 - 18.1 8.60 - 18.1
	Time of	to Lake Winnipeg	Days	27.0 25.9 24.7 20.7 18.6
		Flow	C.F.S.	2229 2332 234 243 246 255
		Station		0 104001

Demand Only

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Grand Forks)
Table XXIII—8

	Deficit Due to Demand Only	P.P.M.	
RELATIONSHIPS	Surplus Over Demand Only	P.P.M.	80.082. 7.7.48.90.
OXYGEN REL	Deficit Due to Demand Only	Lbs. Daily	
0	Surplus Over Demand Only	Lbs. Daily	34, 906 30, 894 24, 932 12, 884 8, 786 1, 480
Distriction	Oxygen Available	Lbs. Daily	38,918 39,320 31,396 16,007 9,465 1,628
Position of the second	Dissolved Oxygen Available		7-8-8-1-8-1 8-8-1-8-1
Oxygen	Oxygen Demand at 0°C for Time of Flow To Grand Forks		4,012 8,426 6,464 3,123 679 148
0°C B.O.D.	of Flow to Grand Forks	P.P.M.	1.0 0.2 0.2 0.2 0.2 0.2
G S S S S S S S S S S S S S S S S S S S	Day 20°C B.O.D.	P.P.M.	03704844 70004400
Time of	to Grand Forks	Days	0.0348.00
	Flow		743 743 855 723 626 274
Station			11 10 10 88

OXYGEN REQUIREMENTS UNDER ICE COVERAGE (Based On Oxygen Demand From The Station Specified To Lake Winnipeg) March 1939

		Deficit Due to Demand Only	P.P.M.	
The second secon	TIONSHIPS	Surplus Over Demand Only	P.P.M.	2.51 1.14 1.27 .01
	DXYGEN RELATIONSHIPS	Deficit Due to Demand Only	Lbs.	41
	0	Surplus Over Demand Only	Lbs.	1,189 5,882 3,130 551 16
	Dissolved Oxygen Available		Lbs. ,	5,046 11,718 6,166 2,858 1,794 1,544
Table AAIII—9	Dissolved	Oxygen Available	P.P.M.	2.1 3.3 1.4 1.1
Lab	Oxygen	Time of Flow	Lbs.	3,857 5,836 4,303 1,778 1,558
		of Flow to Lake Winnipeg	P.P.M.	2.49 2.49 2.16 1.13 1.09 1.11
	T. T.	Day 20°C B.O.D.	P.P.M.	027.827.
	Time of	to Lake Winnipeg	Days	19.6 19.2 20.5 16.8 16.7
		Flow	C.F.S.	455 434 346 378 302 260
		Station		&r04004

The rapid rise in the last week of March accounts for high Same time of flow as February is used because same flow existed during most of month. monthly average.

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Lake Winnipeg)
Critical Winter Season Averages—Dec. 1, 1938 To April 1, 1939
Table XXIII—10

	Deficit Due to Demand Only	P.P.M.	2.2.2.2.3.0.3.4.6.3.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0
RELATIONSHIPS	Surplus Over Demand Only	P.P.M.	
XYGEN REL	Deficit Due to Demand Only	Lbs.	01 8448 0780,00,00,00,00,00,00,00,00,00,00,00,00,0
00	Surplus Over Demand Only	Lbs.	· · · · · · · · · · · · · · · · · · ·
Dissolved	Oxygen Available	Lbs.	25,341 27,884 1,184 681 484
Discolator	Dissolved Oxygen Available		3.78 3.78 1.90 0.72 0.45
Oxygen .	Oxygen . Demand at 0°C for Time of Flow		7,865,63,4 6,53,4 7,53,2 7,06,7 13,7
0°C B.O.D.	of Flow to Lake Winnipeg	P.P.M.	5.20 4.40 4.80 8.91 3.91
Ç.	Day 20°C B.O.D.	P.P.M.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Time of	Time of Flow to Lake Winnipeg		22.22.22.22.22.22.22.22.22.22.22.22.22.
	Flow		280 275 252 260 240 224
	Station		© 70 400 0 −

NOTE: Values shown here are averages of monthly averages for which reason figures from column to column do not check mathematically.

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Grand Forks)
Table XXIV—1

		Deficit Due to Demand Only	P.P.M.	6
	ATIONSHIPS	ue Surplus Over to	P.P.M.	10.1 13.2 13.8 19.6
The state of the s	XYGEN REL	Deficit Due to Demand Only	Lbs. Daily	1,015
	0	Surplus Over Demand Only	Lbs. Daily	928 928 968 968 968
	Discolated	Oxygen Available	Lbs. Daily	1,157 1,707 1,707 3,847 3,181
The same of the sa	Discolator	Oxygen Available	P.P.M.	12 88.0 155.1 155.1 0
25 4	Oxygen	O'C for Time of Flow To Grand Forks	Lbs. Daily	1,918 1,918 881 510 349 45
	OC BOD.	of Flow to-Grand Forks	P. P. M.	182.5 18.4 1.0 1.0 1.0 1.0
	(A	Day 20°(° B.O.D.	P. P. M.	20.2 6.07.7 8.2.2 9.2.2 9.2.2 9.3.2
	Time of	to Grand Forks	Days	2022 2023 6.302 6.89
		Flow	C.F.S.	117 344 388 388 388 388
		Station		11 11 10 9 9 8

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Grand Forks)
Table XXIV.—2

	Deficit Due to Demand Only	P.P.M.	.0040
ATIONSHIPS	Surplus Over Demand Only	P.P.M.	
XYGEN RELAT	Deficit Due to Demand Only	Lbs. Daily	816 200 172
00	Surplus Over Demand Only	Lbs. Daily	88 129 880
10000	Oxygen Available	Lbs. Daily	224 220 423 423 904
T. Control of the con	Oxygen Available	P. P. M.	9.55 3.09 18.6 6
Oxygen	Deniand av 0°C for Time of Flow To Grand Forks	Lbs. Daily	136 816 8224 294 244
0°C B.O.D.	of Flow to Grand Forks	P.P.M.	27.0 8.30 6.6 0.30 0.50
2	Day 20°C B.O.D.	P.P.M.	26.0 26.0 77.7 77.7 3.0
Time of	to Crand Forks	Days	64 57.9 45.6 12.1 2.1
	Flow	C.F.S.	8.55 H
	Station		111 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Based On Oxygen Demand From The Station Specified To Grand Forks)
February 1940
February 1940

	Due nand ly	F.P.M.	22.5 111.3 111.1 16.0
	Deficit Dur to Denand	P.P.	222 111 111 116
ATIONSHIPS	Surplus Over to Denial Demand Only	P.P.M.	80
XYGEN REL	Deficit Due to Demand only	Lbs, Daily	1,456 671 839 691
0	Surplus Over Demand Only	Llus, Daily	90
Discolared	Oxygen	Lbs. Daily	315 168 0 0 0 0 324
_	Oxygen Available	P. P. M.	5.3 2.6 0.0 0.0 12.0
Oxygen	Time of Flow To Grand Forks	Lbs. Daily	1, 626 671 839 691
0°C B.O.D.	of Flow to Crand Forks	P. P. M.	254.5 111.3 16.0
- A	Day 20°C B.O.D.	P. P. M.	2.6 11.0 12.6 22.4
Time of	to Grand Forks	Days	27.5 166.53
	Flow	C.F.S.	112114.000
	Station		112 110 99 77

OXYGEN REQUIREMENTS UNDER ICE COVERAGE
(Based On Oxygen Demand From The Station Specified To Grand Forks)

March 1940
Table XXIV—4

ONSHIPS	Surplus Over to Demand Only, Only	P.P.M. P.P.M.	88.00
ONYGEN RELATIONSHIPS	Deficit Due to Demand Surj Only Den	Lbs. Daily	22,568
	Surplus Over Demand Only	Lbs. Daily	
	Oxygen Available	Lbs. Daily	363
	7 = 4	P.P.M.	0.0
Oxygen	Demand at 0°C for Time of Flow To Crand Forks	Lbs. Daily	2,931 2,980 2,980
0°C B.O.D.	of Flow to Grand Forks	P.P.M.	· ःत्युष्ण ·
[3]	Day 20% B.O.D.	P.P.M.	13.2
Time of	to to Grand Forks	Days	21.4 19.5 10.0 10.0 4.9 0.6
	Flow	C.F.S.	944 057 77 87 87
	Station		112 100 100 175

OXYGEN AND FLOW REQUIREMENTS Fargo (Sta. 11) To Grand Forks (Sta. 6) November 1938 Table XXV—1

		From Sta. 11 From Sta. Per Day for Indicated Available** Sta. 11 to Sta. 11 to Shown of Grand Forks Grand Forks	Lbs. Daily Lbs. Daily 1 1 2 3 4	1,335 1,335	564 1	248 1,205	191 1,383* 256 128 85	325 45 1,370	000
	xygen Demand	From Sta. 11 Fr To Sta.	P.P.M I	0	4.25	7.70	09.6	10.66	10 75
		From Sta. 11 F	Days	0	r¢.	11.3	16.8	21.4	00
		Station		11	10	0	00	1-	B
-	n 11	5-Day 20°C. B.O.D.	P.P.M.	13.1			:		
	Station 11	Flow	C.F.S.	23	:		:		

*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value.

**Artifical point. This amount must be furnished at Fargo and other wastes only. Does not include amount necessary to sustain fish life or other requirements of stream sanitation.

OXYGEN AND FLOW REQUIREMENTS Fargo (Sta. 11) To Grand Forks (Sta. 6) December 1938 Table XXV—2

And in case of the	Ce	20	41	:				99	
	omired of Rer	Available**	00	•	:		-	00	
	in See B	for Indicated Available** P.P.M. of Oxygen	2			•	:	132	:
	Mon	0.14	1		•	•		264	
	Total The	Per Day Sta. 11 to Grand Forks		1,377	786	1,308	1,379	1,426*	1,377
andre zhizh v	ime of Flow	From Sta. Shown to Grand Forks	Lbs. Daily	1,377	246	308	151	64	0
I able	Oxygen Demand at 0°C, for Time of Flow	From Sta. 11 To Sta.	Lbs. Daily	0	540	1,000	1.228	1,362	1,377
	Oxygen Deman	om Sta. 11 To Sta. Shown	P.P.M.	0	4.0	7.4	.6.	10.1	10.2
	Time of Flow	From Sta. 11 Fr To Sta.	Days	0	5.0	11.8	17.6	22.5	23.2
		Station		11	10	6	00	2	9
	n 11	5-Day 20°C. B.O.D.	P.P.M.	12.3				:	
-	Station 11	Flow .	C.F.B.	25			:	:	

*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value.

**Critical point. This amount must be furnished at Fargo and other wastes only. Does not include amount necessary to sustain fish life or other requirements of stream sanitation.

OXYGEN AND FLOW REQUIREMENTS Grand Forks (Sta. 6) To Lake Winnipeg December 1938 Table XXV.—3

		Flow in c.F.S. Required at Grand Forks for Indicated Available** P.F.M. of Oxygen	2 3						1.078	0 0 0 0 0
	100	Flow in C.	1			4			3.233	
		Per Day Sta. 6 to Lake	winnipeg	16,656	10,433	11,520	15,408	16.399	17.458*	12 252
able XXV—3	Fime of Flow	From Sta. Shown to L. Winnipeg	Lbs. Daily	16,656	8,767	8,361	8,251	7.276	5,337	-
labi	Dxygen Demand at 0°C, for Time of Flow	From Sta. 6 To Sta. Shown	Lbs. Daily	0	1,666	3,159	7,157	9,123	12,121	18 858
	Oxygen Deman	From Sta. 6 To Sta. Shown	P.P.M.	0	1.55	2.94	6.66	8.49	11.28	15 50
	T	From Sta. 6 To Sta. Shown	Days	0	1.2	4.7	6.2	0.00	13.5	2000
		Station		9	3	4	co	03		I.W.
	Station 6	5-Day 20°C. B.O.D.	P.P.M.	17.3			:		:	
	Stati	Flow	C.F.S.	199	:	:	:		:	

*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value.

**Available for the exidation of untreated or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements of stream sanitation.

OXYGEN AND FLOW REQUIREMENTS Fargo (Sta. 11) To Grand Forks (Sta. 6) January 1939 Table XXV—4

		0	4	:		•	:		12.71
		jured at rar Available** Nygen	3	:					287
	6	Flow in C.F.S. required at rargo for Indicated Available** P.F.M. of Oxygen	- 2	f					431
	Ē	Flow	-			• • • • • • • • • • • • • • • • • • • •			862
	E E	Per Day Sta. 11 to Grand Forks		4,657	2,195	3,179	4,081	4.492	4.657*
2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Time of Flow	From Sta. Shown to Grand Forks	Lbs. Daily	4,657	975	629	321	21	0
	Oxygen Demand at 0°C, for Time of Flow	From Sta. 11 From Sta. 11 From Sta. 12 Shown to Shown Grand For	Lbs. Daily	0	1,220	000,2	3,760	4,450	4.657
	Oxygen Demai	From Sta. 11 To Sta. Shown	P.P.M.	0	20.00	0.0	1.0	4.00	oc oc
	Time of Diame	From Sta. 11 To Sta. Shown	Days	0	101	0.7	70	10.3	16.9
		Station		111	01	D 0	10	,	9
	Station 11	5-Day 20°C. B.O.D.	P.P.M.	11.4	:				
-	Static	Flow	C.F.S.	98	:	:	:		

*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value. ments of stream sanitation.

OXYGEN AND FLOW REQUIREMENTS Grand Forks (Sta. 6) To Lake Winnipeg January 1939 Tahla XXV.-5

1	FOIRS	4	:	:	454	:			
Diversity December of Canad Dealer	Available** Oxygen	33			605			:	
0	for Indicated Available*	0.1	:		806	:		:	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		-	:		1,815	:::		-	
Total	Per Day Sta. 6 to Lake	w innipeg	3,020	6,205	9.805*	9,073	9,157	8,932	3,020
ime of Flow	From Sta. Shown to L. Winnipeg	Lhs. Daily	3,020	5,926	9,231	7,829	7,558	6,800	0
Oxygen Demand at 0°C. for Time of Flow	From Sta. 6 To Sta. Shown	Lbs. Daily	0	279	571	1,244	1,599	2,132	3,020
Oxygen Demar	From Sta. 6 To Sta. Shown	P.P.M.	0	. 22	.45	86.	1.26	1.68	2.36
T: 200 Oct.	From Sta. 6 To Sta.	Days	0	1.1	50.00	00.	0.8	12.5	26.7
	Station		9	20	4	00	67		L.W.
9 uc	5-Day 20°C. B.O.D.	P.P.M.	2.7	:	:				
Station 6	Flow	C.F.S.	235		:		:	:	•

*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value.

**Available for the oxidation of untreated or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements assurtant on.

OXYGEN AND FLOW REQUIREMENTS Fargo (Sta. I) To Grand Forks (Sta. 6) February 1939 Table XXV—6

-	Caba	20	4		:	:	:0	50	
	o position of E	Available**	3	:	:	:		121	
	Clow in a Beautaged of Roses	for Indicated Availab	67	•	:	:	• • • • • • • • • • • • • • • • • • • •	781	
The second secon	E		1	:	:	:	.00	363	
	Total The	Per Day Sta. 11 to Grand Forks		1,873	1,818	1,654	1,737	1,903*	1,873
apic way	Cime of Flow	From Sta. Shown to Grand Forks	Lhs. Daily	1,873	1,322	554	172	53	0
I and	Oxygen Demand at 0°C, for Time of Flow	11 From Sta. 11 To Sta. Shown	Lbs. Daily	0	496	1,100	1,565	1,850	1,873
	Oxygen Deman	From Sta. 11 To Sta. Shown	P.P.M.	0	0.80	2.00	25.84	3.36	3.40
	Time of Dlom	From Sta. 11 To Sta. Shown	Days	0	2.7	7.3	11.6	15.0	16.0
		Station		11	10	Φ	GC I	2	8
	n 11	5-Day 20°C. B.O.D.	P.P.M.	4.8	•	:::	:	:	
	Station 11	Flow	C.F.B.	102	:	:	:	:	

*Critical point. This amount must be furnished at Grand Forks and flow requirements are calculated on the basis of this value.

**Revisible for the oxidation of untreated or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements assitiation.

OXYGEN AND FLOW REQUIREMENTS Grand Forks (Sta. 6) To Lake Winnipeg February 1939 Table XXV—7

	Forks		*	187				• • • •	
	Rlow in ore Required at Grand Forks	Available** Oxygen	60	250	•				0 - 0
	C F B Bedi	for Indicated Available*	2	375	:			:	
	Ti oa		1	749					
	Total Lbs	Per Day Sta. 6 to Lake	Sadmin	2,498 . 4,044*	2,529	3,108	3,416	3,289	2,498
Table XXV-7	Fime of Flow	From Sta. Shown to L. Winnipeg	Lbs. Daily	2,498 3,809	2,047	2,008	2,032	1,446	0
Tab	Oxygen Demand at 0°C. for Time of Flow	From Sta. 6 To Sta. Shown	Lbs. Daily	235	482	1,100	1,384	1,843	2,498
	Oxygen Demai	From Sta. 6 To Sta. Shown	P.P.M.	0 19	.39	68.	1.12	1.49	2.02
	Time of Plour	From Sta. 6 To Sta. Shown	Days	0	2.4	6.2	00 10	13.3	27.0
		Station		& rc	4	00	23		L.W.
The same same same	Station 6	5-Day 20°C. B.O.D.	P.P.M.	2.3					
	Stati	Flow	C.F.B.	229					

*Critical point. This amount must be furnished at Grand Forks and flow requirements are calculated on the basis of this value.
*Available for the oxidation of untreated or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements of stream santiation.

OXYGEN AND FLOW REQUIREMENTS Fargo (Sta. 11) To Grand Forks (Sta. 6) March 1939 Table XXV—8

tion	Station 11		12	Oxygen Dema	Oxygen Demand at 0°C, for Time of Flow	Time of Flow	Total The	Flor	in one Re	Flour in own Received of Forgo	TO.
	5-Day 20°C. B.O.D.	Station		From Sta. 11 To Sta. Shown	From Sta. 11 From Sta. 11 To Sta. Shown	From Sta. Shown to Grand Forks	Per Day Sta. 11 to Grand Forks		for Indicated Availal P.P.M. of Oxygen	Available** Oxygen	0
	P.P.M.		Days	P.P.M.	Lbs. Daily	Lbs. Daily		1	7	60	4
	5.8	111	0	0	0	8,426	8,426*	1,560	780	530	390
		10		.44	1,765	6,464	8,229	•		:	:
i		6	4.2	1.00	4,020	3,123	7,143				:
		00	4.0	1.56	6,260	629	6,939				:
		10	5.5	2.03	8,150	148	8,298	:			•
Ī		9	00	2.10	8,426	0	8,426				

*Critical point. This amount must be furnished at Grand Forks and flow requirements are calculated on the basis of this value.
**Available for the ardanion of untreated or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements of streat assistation.

Grand Forks (Sta. 6) To Lake Winnipeg March 1939

				The second secon	The same of the sa	The second secon			-	other Processing	
Stati	Station 6		7. m. C. T. D. C. T. T.	Oxygen Dema	Oxygen Demand at 0°C, for Time of Flow	Time of Flow	Total The			,	Donley
Flow	5-Day 20°C. B.O.D.	Station	From Sta. 6 To Sta. 6 Shown	From Sta. 6 To Sta. Shown	From Sta. 6 To Sta. Shown	From Sta. Shown to L. Winnipeg	Per Day Sta. 6 to Lake	T WOLF	from III C.F.S. Neglines for Indicated Available** P.P.M. of Oxygen	Available** Oxygen	FOLKS
C.F.S.	P.P.M.		Days	P.P.M.	Lbs. Daily	Lbs. Daily	a municipal services	-	84	63	4
455	2.0	9	0	0	0	3,857	3,857		:		
		20	0.5	80.	197	5,836	6,033*	1,117	559	372	279
		4	1.1	91.	393	4,036	4,429			:	:
:		eo	00.	.40	983	2,307	3,290			:	:
:		22	30,00	.51	1,253	1,778	3,031				
:		-	0.9	.75	1,843	1,558	3,401				
:		L.W.	19.6	1.57	3.857	0	3.857				

*Critical point. This amount must be furnished at Grand Forks and flow requirements are calculated on the basis of this value.

**Available for the oxidation of untrented or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements as assistance.

OXYGEN AND FLOW REQUIREMENTS Grand Forks (Sta. 6) To Lake Winnipeg Critical Winter Season Averages Dec. 1, 1938 to April 1, 1939 Table XXV—10

Flow 20°C. Station B.O.D. C.F.8. P.P.M. 280 6.07 6	Fro	9.		From Sta. Shown to L. Winnipeg	Per Day Sta. 6 to Lake Winnipeg		for Indicated Available** P.P.M. of Oxygen	Available** Oxygen	4
		Maa			Sadiuuia				*
	Days	E . E . Ma.	Lbs. Daily	Lbs. Daily		-	2	ಣ	
1	0	0	0	7,862	7,862	:			
e - · · · ·	1.0	.46	969	6,534	7,230	:	:		
***	7.7	.92	1,391	6,532	7,923	•		:	•
	5.4	2.09	3,160	5,827	8,987			•	
	7.4	2.67	4,037	5,067	9,104		:		:
-	11.6	3.62	5,473	4,137	9,610*	1,780	890	593	445
L.W.	24.7	5.20	7,862	0	7,862		:	:	:

*Critical point. This amount must be furnished at Grand Forks and flow requirements are calculated on the basis of this value.

**Critical point. This amount must be furnished at Grand Forks and other wastes only. Does not include amount necessary to sustain fish life or other requirements of stream sanitation.

OXYGEN AND FLOW REQUIREMENTS Fargo (Sta. 11) To Grand Forks (Sta. 6) December 1939 Table XXVI—1

11								
	000	4				00		
	Flow in c.r.s. Required at Fargo for Indicated Available** P.P.M. of Oxygen	80			193	0	•	0 0 0
	w in C.F.S. Re for Indicated P.P.M. of	63			• tr	201		0 0 0
	Flo	-		:	370	5	•	0 0 0
	Total Lbs. Per Day Sta. 11 to Grand Forks		1,918	1,636	1,860	1 860	1 990	4 + 0 000
Time of Flow	From Sta. Shown to Grand Forks	Lbs. Daily	1,918	2001	510	45	20	>
Oxygen Demand at 0°C, for Time of Flow	From Sta. 11 From Sta. 11 To Sta. Shown Shown	Lbs. Daily	0	755	1,350	100	1 990	L to United
	1	P.P.M.	0	7.35	13.17	17.70	18 70	70.07
	From Sta. 11 To Sta. Shown	Days	0	5.6	12.9	24.9	25.00	0.00
	Station		11	10	cn 00	1	9	,
tation 11	5-Day 20°C. B.O.D.	P.P.M.	1 20.7	:				
Static	Flow	C.F.S.	19	:	: :			

*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value.

**Arabable for the oxidation of untreated or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements of stream sanitation.

OXYGEN AND FLOW REQUIREMENTS Fargo (Sta, 11) To Grand Forks (Sta, 6) January 1940 Toble XXVII...9

Station 11										
		Time of Tellons	Oxygen Dema	Oxygen Demand at 0°C. for Time of Flow	Time of Flow	The The	Ē		F	
Flow 20°C. B.O.D.	Station	From Sta. 11 To Sta.	From Sta. 11 To Sta. Shown	From Sta. 11 To Sta. Shown	From Sta. Shown to Grand Forks	Per Day Sta. 11 to Grand Forks	714	riow in C.F.s. required at rargo for Indicated Available** P.P.M. of Oxygen	d Available** f Oxygen	ogaz
C.F.S. P.P.M.		Days	P.P.M.	Lbs. Daily	Lbs. Daily		1	21	88	4
5.6 26.0	11	0,	0	0	816	816	:			
_	0.0	12.3	16.1	7001	2224	711	000			. 6
	000	45.0	96.0	727	200	1,110*	200	100	/0	70
	-10	000.00	26.8	810	24	834	. 1.	• •		
	9	57.9	27.0	816	0	816				

Does not include amount necessary to sustain fish life or other require-*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value. **Available for the oxidation of untreated or treated sewage and other wastes only. Does not include amount necessary to ments of stream sanitation. OXYGEN AND FLOW REQUIREMENTS Fargo (Sta. 11) To Grand Forks (Sta. 6) February 1940

Station 11	n 11		Ties of the second	Oxygen Dema	Oxygen Demand at 0°C, for Time of Flow	Time of Flow	White I The	Ē		E 7 - 1 - 1	
WO	5-Day 20°C. B.O.D.	Station	From Sta. 11 To Sta.	From Sta. 11 To Sta. Shown	From Sta. 11 To Sta. Shown G	From Sta. Shown to Grand Forks	Per Day Sta. 11 to Grand Forks	#101#	for Indicated	Frow in C.F.s. required at rargo for Indicated Available** P.F.M. of Oxygen	0.000
C.F.8.	P.P.M.		Days	P.P.M.	Lbs. Daily	Lbs. Daily		1	21	60	4
12	24.7	11	0	0	0	1,626	1,626				
	:	10	00.73	11.7	760	671	1,431				
		6	21.8	20.2	1,310	9339	2,149	0			
	:	00	33.3	23.0	1,490	691	2,181*	404	202	135	101
	-	9	49.3	25.2	1.626	0	1.626				

*Critical point. This amount must be furnished at Fargo and flow requirements are calculated on the basis of this value.
*Available for the oxidation of untreated or treated sewage and other wastes only. Does not include amount necessary to sustain fish life or other requirements of stream sariation.

APPENDIX I

Hydrometric Data

VELOCITIES IN RED RIVER AND TIMES OF FLOW

Stream gaging and flow computations are functions of the U. S. Geological Survey, which agency works in cooperation with the State Engineer. Unfortunately, sufficient stream measurements, with particular respect to determining more definitely the time required for passage of a given mass of water from point to point, were not made during the period of the field investigations because it was assumed that sufficiently accurate estimates could be made from available records. It would no doubt have been better to have requested the desired flow data at the inception of the investigation, thus allowing time for making accurate measurements for the duration of the study, especially during ice coverage periods.

As a result of a conference with Mr. Paul R. Speer, District Engineer, U. S. Geological Survey, a man was detailed to study the flow characteristics of the Red River and tributaries with the end in view of estimating (1) the mean flows at the sampling stations and (2) the time interval between occurrence of specific discharges at the various points in the stream. Computations were checked by the office of the North Dakota State Engineer, E. J. Thomas.

Gaging stations on the Red River are maintained at Emerson, Manitoba, (computed by Department of Interior, Dominion Water Power and Hydrometric Bureau); Grand Forks, North Dakota; and Fargo, North Dakota.

Inflow from tributaries was estimated from gaging-station records, by transposing the figures downstream on the basis of the estimated time required for the movement through the stream distance.

"It should be understood that the discharge figures, except at gaging stations, do not represent actual stream-flow records. They are estimates based on such actual gaging-station records as are available. There is a good possibility that erroneous assumptions may have been made in arriving at the time intervals between occurrence of specific discharges at the various points in estimating unmeasured inflow, losses, etc." *

RED RIVER

Time Interval Between Occurrence of Specific Discharges in Reach from Grand Forks, North Dakota to Emerson, Manitoba (Approximate River Mileage—146 miles)

"The following table gives an approximation of the time interval between occurrence of specific discharges between Grand Forks, North Dakota and Emerson, Manitoba. These values were arrived at through a study of discharge hydrographs for the gaging stations at Grand Forks and Emerson. As the cross-sectional area of the channel varies considerably from point to point along the reach,

^{*}Paul R. Speer, District Engineer, U.S.G.S.

these values cannot be applied to any selected place along the river. They represent only the approximate mean through a considerable length of the river. The time interval for a given discharge will also vary considerably, as the conditions vary from one of rapidly increasing rate of discharge through a constant rate to a rapidly decreasing rate. Another factor affecting the interval is the varying amount of aquatic growth in the channel." *

Table I

TIME INTERVAL BETWEEN OCCURRENCE OF SPECIFIC DISCHARGES (by U.S.G.S.)

Discharge in second-feet	Approxima of travel i Grand Forks t	n days	Approxim of tra Miles pe	avel
	Rapidly rising stage	Constant to falling stage	Rapidly rising stage	Constant to falling stage
6,000	3	. 4	49	36
1,000	4	5	36	30 29
500	5	8	29	18
300 200	6	11 15	24 21	13
100	10	16	15	9

NOTE: The above values are for open-water conditions. The general trend under conditions of ice cover is toward lower mean velocities in the channel, undoubtedly, resulting in longer time intervals between observation points. The amount of decrease in mean velocity varies greatly under varying conditions of ice cover. The average mean velocity under ice cover is probably about 2/3 of that for the same open-water discharge. This figure cannot be applied for short individual periods, however, with any assurance of reasonable accuracy.

^{*}P. R. Speer, Dist. Engr. U.S.G.S.

RED RIVER

Rate of Travel of Specific Discharges in Reach from Fargo, North Dakota to Grand Forks, North Dakota (Approximate River Mileage—156 miles) by U.S.G.S.

The following table gives an approximation of the rate of travel of specific discharges between Fargo and Grand Forks, North Dakota. These values were arrived at through a study of discharge hydrographs for the gaging stations at Fargo and Grand Forks, and for the discontinued station at Halstad, Minnesota, and also from discharge measurements at these stations. As the cross-sectional area varies considerably from point to point along the river, these values do not apply to selected points, but represent an approximation of the average rate through a long reach of the river. The rate of travel of a given discharge will also vary considerably as the channel becomes more or less choked with aquatic growth. Still another factor entering into the computations is that of rate of change of rate of discharge, the rate of travel being greater during conditions of rapidly rising stage.

Table II

RATE OF TRAVEL OF SPECIFIC DISCHARGE

Discharge Second-feet		e Rate of Travel Per Day
	Rapidly Rising Stage	Constant to Falling Stage
50	12	8
150	20	12
250	26	15
500	32 .	20
1,000	39	32
4,000	40	33

NOTE: See note under table I concerning rate of travel under ice cover.

STREAM GAGING STATIONS Table III

RED RIVER			TRIB	UTARIES	
			*Distance		
Location	Type	Location	from Mouth	Stream	Type
Emerson, Manitoba	Chain Gage	Neche	25	Pembina	Recording
Grand Forks, N. Dak. below Sta. 6	Recording Gage	Cavalier	40	Tongue (Pembina)	Wire weight
Fargo, N. Dak, Between Sta. 11 & 12	Staff Gage	Grafton	24	Park	Chain
		Crookston	45	Red Lake	Recording
		Twin Valley	55	Wild Rice (Minn.)	Recordi: c
		Hillsboro	14	(joose	Chair.
		Dilworth	2007	Buffalo	Recording
		West Fargo	16	Sheyenne	Recording
				The state of the s	

*Distances approximately estimated.

The above gaging stations in the United States are maintained by The U. S. Geological Survey. Estimates obtained from that agency are based on records from those stations. Tributaries not listed above are of little or no significance with respect to the pollution problem of the Red River.

*MEAN MONTHLY DISCHARGE AT CAMPING STATIONS OF

Table IV

		13.51	-	10	96	64	() X	11	D 9	-12	20	1-3	~1 00	T
	4	= &	9	737	163	0 120	22	21	211	3.0	s.	21.	ec	1
	f	12.21	20	28	48	100	24 25 1~ 15	91	7	21-	07	3.1		
1	н	::		3-23	00 K	54 	∞ ∞ 0:0	Stop 7-15	:	: :	:	:		
	Many Many	254	159	130	181	456	220 220 220 220	08	210	282	560	161	1682	
	1	::	****	3-29	5.3.7	2 20	21 m	Stop 7-16	:	: :	:	:	:	
	4	::	:		4-4	2 - 1 - 2	한 -	Stop 7-14	:	: :	:	:		. II
Ċ.F.;	12	83 53 83 53	26	102	743	218	135	2 20	5.15	2 - 2	17		11 40	
IONS	Ξ	20,00	86	102	743	- 20	135.	1	51	2 81	19	5.6	- - 4	1
SIAI	9	12 %	35	102	8555	320	134	5 61	5.	70 70 70 70 70 70	70	10	1.05	66
MPLING	5	9170	86	114	723	429	20 CG	423	21	£ 54	47	11	41-	
AI SA	20	562	<u>6</u> 8	106	626	451	344	14		26	30	14	oc 5	00
IARGES	~1	\$ 56	738	66	274	2,450	366	200	16	수 4	200	6.	20 5	6.1
DISCH	9	190 199 199	237	229	455	3,126	687	200	225	20.00 20.00 40.00	314	17.5	186	
ONTHE		081	23.5	232	434	917	692	181	213	33.54 4.055 4.005	297	171	184	000
EAN M	4	192 197	231	234.	346	951	696	123	211	25.55	301	173	184	Comme Co.
W _*	က	189	219	243	378	5,402	685	144	216	3344	292	163	178	(, , , , , , , , , , , , , , , , , , ,
the contract of the contract o	21	199	216	246	302	1,040	681	157	212	337	297	161	175	017
A married A		207	861	255	260	1,180	5646	188	230	3338	384	139	149	
	Station	1938 Nov. Dec.	1939 Jan.	Feb.	Mar.	Apr. May	June	Ang	Sept.	Nov.	Dec.	Jan.	Feb.	197 (91

*Not actual gaging station records. (Except Station 6) Estimates only of flows based on available records. By U.S.G.S.

 ${\bf Table~V}$ AVERAGE STREAM GRADIENTS FOR VARIOUS REACHES OF THE RIVER

	Elevation Ordinary Stage	Drop—feet.	Miles	Drop— ft/mile	Bank Elevation
Lake Traverse	973	100			990
Wahpeton	. 956	17	0.79	0.0#	963
Fargo	870	86	97	.887	900
Grand Forks	784	86	154	558	828
International Boundary	748	36	143	.252	780
Winnipeg	733	15	110	.136	758

Elevation from Simons and King's Report

Table VI AVERAGE ANNUAL RUN-OFF OF THE RED RIVER DRAINAGE BASIN

River	Years of Record	Drainage Area	Average Annual Run-Off	Average Flow	Acre Ft. Per Sq. Mi.
	1000014	Sq. Mi.	Acre Ft.	Sec. Ft.	oq. www.
Red River Grand Forks.	53	25,500	1,700,000	2,350	67.9
Red River Fargo	32	6,420	375,000	518	59.2
Red Lake River	26	5,760 3,530	768,000 158,000	1,060	135.8 45.8
Ottertail River	19 15	1,840 1,860	268,000 20,000	370 27	149.3 10.9
Wild Rice River Minnesota	12	1,440	145,000	200	103.3
Sheyenne River. Two Rivers	10 9	7,380 1,020	164,000 103,000	227 143	22.8 103.3
Estimates assisted by records for two or three years:		4 400			40.4
Park River Red River	• •	1,130	48,000	66	43.4
International Boundary Forest River		35,895 1,000	2,320,000 54,000	3,200 74	66.2 53.3
Buffalo River Estimates based on records of adjoining streams:		1,400	96,000	133	70.5
Tamarac		580 1,040	46,000 83,000	64 115	79.4 80.0
Turtle River. Sand Hill.		700 530	30,000 28,000	41 39	43.0 52.8

Unless otherwise stated the above figures are at the mouth of the River.

All drainage areas shown in table VI were figured by Dean E. F. Chandler, and were carefully measured in square miles from the best available maps. If the location of the station was not at the mouth of the river the run-off was figured in acre feet per square mile of drainage area for that portion and a modification was made by Dean Chandler based upon differences in topography toward the mouth.

The records of run-off at regular stations are entirely from the published records of the U. S. Geological Survey.

The complete fifty-three year record at Grand Forks, North Dakota was used as a control. By proportionment, depending on the percentage of flow of the control station, E. F. Chandler calculated the run-off data for the shorter record periods so as to give an assumed fifty-three year average for all tributaries.

For rivers with no records at all, the run-off figures were merely based on estimates from adjoining streams and topography.

Table VII

ANNUAL DISCHARGES OF THE RED RIVER Grand Forks, North Dakota

Drainage Area 25,500 Square Miles

1	Mean Discharge	Run Off	Days
Year	In Sec. Ft.	Acre Ft.	Record
1882	7.181	3,917,300	275
1883	4,302	3,029,100	365
1884	2,936		366
		2,131,100	
1885	3,158	2,286,600	365
1886	1,858	1,345,200	365
1887	1,007	729,300	365
1888	2,752	1,998,000	366
1889	761	551,200	365
1890	782	565,900	365
1891	1,205	872,500	365
1892	3.782	2,745,200	366
1893	3,499	2,533,400	365
1894	2.086	1.510.000	365
189.5	786	569,100	365
1896	3,452	2,505,800	366
1897	5,616	4,065,800	365
1898	1,670	1,209,200	365
1899	2,141	1,549,800	365
1900	1,871	1,354,600	365
1901	3,287	2,379,600	365
1902	1.957	353,369	91
1903	2,997	2,169,535	365
1904	6,152	2,781,920	228
1905	4,790	2,232,900	23.5
1906	4,619	3,344,300	365
1907	3,557	2,575,100	365
1908	3,081	2,230,600	365
1909	2.666	1,930,400	365
1910	2,362	1,710,000	365
1911	737	533,400	365
1912	870	472,740	274
1912-1913	1,350	977,535	365
1913-1914	1.694	1,226,253	365
1914-1915	2,897	2,096,900	365
1915-1916	5,579	4,051,000	365
1916-1917	2,706	1,959,200	365
1917-1918	966	699,300	365
1918-1919	2,101	1,521,000	365
1919-1920	3,079	2,235,500	366
1920-1921	1,602	1,160,000	365
1921-1922	2,151	1,557,100	365
1922-1923	1,333	965,300	365
1923-1924	731	530,900	366
	1.248	902.670	365
1924-1925			365
1925-1926	1,216	880.500	
1926-1927	2,603	1,884,800	365
1927-1928	1,796	1,304,000	366
1928-1929	1,728	1,250,800	365
1929-1930	1,226	887,280	365
1930-1931	351	254,000	365
1931-1932	623	451.920	366
1932-1933	401	290,140	365
	244	176,430	365
1933-1934			365
1934-1935 1937-1938	439 894	317,850 647,410	365

Table VIII

MONTHLY SUMMARY OF DISCHARGE RECORDS
Grand Forks, North Dakota

Month	Length of Record	Total Recorded Runoff	Average Mean Discharges	Maximur Disch		Minimum Dischar	
Wollen	Days	Acre Ft.	Sec. Ft.	Sec. Ft.	Year	Sec. Ft.	Year
October	1.643	4.123.954	1.265	5,690	1900	31.7	1933
November	1,585	3,675,565	1,169	4,590	1900	73.0	1934
December	1,550	2,613,016	850	2,430	1909	40.7	1934
January	1,550	1,983,841	645	1,830	1901	27.7	1935
February	1,410	1,606,883	575	1,630	1883	31.8	1935
March	1,550	4,956,888	1.612	8,420 i	1910	234.	1888
April	1,570	24,000,956	7,707	30,500	1897	1,090	1931
May	1,643	14,635,405	4,491	15,240	1893	373	1934
June	1,590	10,457,698	3,316	12,000	1896	151	1934
July	1,643	8,741,897	2,683	11,300	1916	116	1933
August	1,643	5,044,775	1,548	6,640	1897	30.6	1934
September	1.620	3.922.464	1.221	4.507	1905	20.7	1934

Table IX

ANNUAL DISCHARGES OF THE RED RIVER Fargo, North Dakota

Drainage Area 6,420 Square Miles

Year	Mean Discharge In Sec. Ft.	Run Off Acre Ft.	Days Record
1902	540	300,971	231
1903	530.5	257,786	245
1904	1,061.4	513, 660	244
1905	944.6	455,300	243
1906	1,393.1	674,200	244
1907	1,160.8	665,400	289
1908	666.8	484,100	366
1909	782	406,400	262
1910	609.9	332,650	275
1911	226.1	109,890	245
1912	466.3	174,790	189
1912-1913	357.0	177,745	251
1913-1914	593.5	. 429,706	365
1914-1915	791.3	572,900	365
1915-1916	2,679.5	1,264,900	238
1916-1917	1,069.9	502,930	237
1917-1918	246.8	127,740	261
1918-1919	239.6	173,470	365
1919-1920	629	456,630	366
1920-1921	380.6	275,530	365
1921-1922	589.2	426,550	365
1922-1923	292.8	211,990	365
1923-1924	151.5	84,150	280
1924-1925	185.6	134,370	365
1925-1926	150.4	108,880	365
1926-1927	334.4	242,110	365
1927-1928	272.7	198,000	366
1928-1929	264.1	191,220	365
1929-1930	211.1	152,834	365
1930-1931	72.7	52,628	365
1931-1932	52.5	38,077	366
1932-1933	41.8	30,241	365
1933-1934	17.5	12,662	365
1934–1935	82.0	59,374	365
1937-1938	126.0	90,886	365

APPENDIX II SOURCES OF POLLUTION

SOURCES OF POLLUTION

Table I

Red River tributaries in North Dakota showing distance of mouth above International Boundary, distance of municipalities discharging sewage above mouth of tributaries, population, and type of treatment, are shown in the following table.

Distances of cities above mouths of tributaries are roughly estimated. Many other cities with sewerage systems, located in the water shed, discharge sewage into dry-run coulees, sloughs, etc., which rarely, if ever, reaches any watercourse. Among these are Langdon (1,221), Larimore (979), Casselton (1,253), McVille (513), Hankinson (1,400), Lidgerwood (1,029), Finley, Cooperstown, Northwood, Milnor. Except for the Sheyenne, tributaries in North Dakota are intermittent, flowing only during spring and early summer.

Tributary	Miles Above Boundary	Municipality (1930 Pop.)	Miles Above Mouth of Tributary	Type System* Treatment Date of Installation
Pembina	. 2.8	Cavalier (850)	40	Comb. Septic tank
Pembina	. 2.8	Walhalla (700)	60	Comb. None
Park		Grafton (3, 136)	24	Comb. P.C., S.S.D., Tr. Filt., Sl.B., 1936
Park	. 67	Park River (1,131)	50	Comb. Septic tank. 1916
Goose		Hillsboro (1.317)	15	Comb., None
Goose		Mayville (1, 199)	50	Comb. Imhoff
Sheyenne		Enderlin (1.839)	95	Comb. Septic tank, 1929
Sheyenne		Harvey (2,200)	520	Comb., None
Sheyenne		Lisbon (1,650)	150	Comb. Sc., Imh. T. Tr.F., Sl.B., 1936
Sheyenne	. 273	Valley City (5,268)	230	Comb., Sc., Pr.S., Act. Sl., Sec.S., S.S.D., S.B.,
				1934
Sheyenne	. 273	West Fargo Packing Plan	it 20	Sc., Pr.S., Tr.F., Sec.S., Tr.F., Fin.S., Grease Sep.

Table II

Red River tributaries in Minnesota showing distance of mouth above the International Boundary, distance of municipalities discharging sewage above mouth of tributaries, population, and types of treatment. Data submitted by Minnesota Department of Health.

Tributary	Miles Above Boundary	Municipality (1930 Pop.)	Miles Above Mouth of Tributary	Treatment
Two Rivers	25	Hallock (869)	12	None
Two Rivers	· 25	Lancaster (456)	30	Imhoff Tank
Snake River	70	Warren (1472)	30	Imhoff Tank
Middle River	76	Argyle (700)	12	Septic Tank
Red Lake River		Crookston (6,321)	45	None
Red Lake River	143	Red Lake Falls (1,386)	83	None—Plant Under Con- struction
Red Lake River	143	Thief River Falls (4,368)	117	Primary settling trick- ling filter secondary set- tling sep.Sl.D. Chl.
Red Lake River	143	Fosston (978)	123	None
Sand Hill River		Fertile (800)	30	None
Sand Hill River		Climax (239)	3	None
Marsh River		Ada (1,285)	26	Septic Tank
Wild Rice River	205	Mahnomen (989)	118	None-Plant Under Con-
Wild Rice River	205	Twin Valley (657)	82	struction None
Buffalo River		Hawley (958)	36	None
Buffalo River		Barnesville (1,279)	45	Primary Settl. T., Act.
Ottertail River	395	Fergus Falls (9.389)	56	Sl., Reset.T., Chl. Settl.T., Sep.Sl. D., Chl.
Ottertail River		Frazee (1,041)	141	None-Plant Under
				Construction
Ottertail River	395	New York Mills (667)	135	Imh.T., Tr.F., Reset.T. Settl.T., Tr.F., Reset.T.
Ottertail River	395	Perham (1,411)	129	Settl.T., Tr.F., Reset.T.
Mustinka River	435	Wheaton (1,279)	7	None
Mustinka River		Graceville (969)	20	Imhoff Tank
Mustinka River		Elbow Lake (903)	40	Imh.T., Sept.T.
Mustinka River	435	Herman (515)	30	None
Mustinka River	435	Donnelly (309)	40	None
Pelican River	451	Detroit Lakes (3,675)	46	Imhoff tanks, crickling
Pelican River	451	Pelican Rapids (1,365)	25	filters, resettling tanks Imhoff tank, trickling filter, resettling tank

^{*}Key Follows Table VI

Table III

Municipalities in North Dakota with Sewerage Systems Discharging into the Red River of the North

Municipality	Population 1930	Miles above International Boundary	Treatment Units
Fairmount (Bois de Sioux).	611	430	Comb. Septic tank
Abercrombie	242	367	None Did The Bull of Control
Wahpeton	3,136	395	Comb., Pri.C., Tr. Filt.Ser., S.S.D.,
			Sl.B., Sec.C. (None prior to Sept. '39
Fargo	28,619	286.5	Comb., G.C., Det., P.C., Tr.F., S.S.D., Sl.B., 1936
State Mill & Elevator		140.8	None
Northern Packing Co		140.7	None
Grand Forks	17,112	140.5	Comb., Sc., P.C., Ch.P., Sec.C., Cl., 1936

Table IV

Municipalities in Minnesota with Sewerage Systems Discharging into the Red River of the North

Municipality	Population 1930	Miles above International Boundary	Treatment Units
Breckenridge	2,264	395	None
Wolverton	206	323	Imhoff tank
Moorhead	7,651	292	Settling tank, trickling filter, reset tling tanks
Halstad	535	220	None
East Grand Forks East Grand Forks	2,922	142	None
American Crystal Sugar Company	142,000*	141.2	Lagoons

*Estimated population equivalent of wastes, Report 1931-32-33. Plant operates two and one-half to three months starting in September.

Key for Sewage Treatment

Comb. Combined storm and sanitary sewerage systems.

Combined storm and sames Screen.
Primary Clarification.
Primary Settling.
Separate Sludge Digestion.
Trickling Filter.
Sludge Beds.
Imhoff Tank.
Activated Sludge.
Secondary Settling.
Final Settling.
Chlorination.
Resettling Tank.
Chemical Precipitation. Comb.
Se.
P.C.
Pr. S.
S.S.D.
Tr.F.
Sl. B.
Imh. T.
Act. Sl.
Sec. S.
Ein S

Fin. S. Chl. Reset. T. Ch. P.

INDUSTRIAL AND MUNICIPAL WASTES DISCHARGED DIRECTLY INTO THE RED RIVER Table V

Source	Miles Above International Boundary	Population Equivalent	Quantity Gal./Day	Per Cent Treatment	Average 5-day B.O.D.	Average 5-day B.O.D. Lbs./Day
Moorhead, Minnesota	292	12,500**		00	•	306*
rargo, North Dakota.	286 1/2	33,109	1,960,000	77.45	69	1,126.6
Minnesota.	220	535		None	:	62***
Minnesota	142	2,922	138,609	None	595.5	687.6
American Crystal Sugar Co., East Grand Forks, Minnesota.	141 14	:	5,706,963***	Retention in Lagoon	513.5	25,412
Orth Dakota State Mill Grand Forks, North Dakota.	14034		42,871*dolek	None	237	72.7
Grand Forks, North Dakota	140 1/2	19,878	830,000	38.3	194.1	1,342
Northern Packing Co., Grand Forks. North Dakota.	140 14		62,119***	None	656.2*	335*

*Calculated from equivalent population using .163 lb. per capita or 68% of .24. (Combined sewer) **Calculated from 1931, 32, 33 Report on Red River of the North Pollution Survey. ***Calculated from equivalent population using .115 lbs. per day per capita or 68% of .17. (Separate ******Average calculated from sampling data.

APPENDIX III

Theoretical B.O.D. Calculations

APPENDIX III

MATHEMATICAL FORMULATION OF THE RATE OF B.O.D.

One of the most important problems of this study was the determination of oxygen demands under conditions of ice coverage. Several samples, taken from the river at different stations, were incubated at 0° and 2°C. over long periods of time in order to provide data for the formulation of the rate constants at these temperatures. It was found after several tests that the carbonaceous, or first stage B.O.D., was practically completed after about 30 days. For this reason the first stage unimolecular curves developed were assumed to hold only for the first 30 days. The first stage B.O.D. is represented by the well-known oxidation formula, $\log \frac{L_a}{L_t} = kt$

where L_a = the first stage B.O.D.

Xt = amount reacted at time t.

 $L_t = L_a - X_t = amount left to react at time t.$

k = reaction velocity constant.

t = time in days.

The Thomas Slope Method* of analysis was used in determining the values of k and L and the following results were obtained:

Jan. 5, 1940 0°C.

Sta.	k	L
2	.0387	7.52
3	.0431	7.31
4	.0381	13.81
5	.0180	39.59
Ave.	.0340	

Feb. 6, 1940 0°C

reb.	0, 1940	U.C.
Sta.	k	L
6A	.0338	7.65

Jan. 11, 1940 2°C.

Jan.	Jan. 11, 1940 2°C.				
Sta.	k	L			
1	.0334	4.81			
2	.0491	8.03			
3	.0321	12.97			
4	.0357	5.55			
5	.0288	5.77			
6A	.0416	4.14			
Ave.	.0368				

It was found by this method that samples taken at stations below Grand Forks gave an average value of k of .034 at 0°C. and a value of .037 for 2°C. Insufficient data were available to make an accurate determination of k at 20°C. Since the 20°C. value of k was necessary in converting 20°C. data to 0°C. data, an attempt was made to determine k at 20°C. empirically from the data, by cut and try methods. A value of .08 was found to give the best general fit to the data and has been used in the computations. This value is lower than the generally accepted figure of 0.1 for sewage dilutions at 20°C.

^{*}S.W.J. May 1937, Vol. IX, No. 3, page 425.

Since the calculated values of k at 0° and 2°C, were slightly lower than what is commonly experienced with domestic sewage, it would seem likely, therefore, that the 20° value would also be lower. Values ranging from .062 to .08 were obtained at 20°C. from packing plant wastes and Grand Forks sewage during the months of January, February and March 1939. The rate constant of a contributing waste should influence to some degree the rate constant of the stream. As a result a uniformity of k for different rivers or for different reaches of the same river should not be anticipated.

The Thomas Slope method* of analysis was used in determining the value of k on one sample taken in July 1940 from a point below Grand Forks. No definite conclusions may be drawn from the results of one analysis but if the value of .132 which was found for k at 20°C. is any indication of summer conditions it may be expected that quite different types of wastes and organisms were

being encountered.

The following formula is an accepted relationship between rate constants at different temperatures:

 $k_T = k_0 \, \, \mathbf{Q}^{(T-0)}$

For this specific case:

 $k_{20} = k_0 \, \, (20^{\circ})$

when $k_{\mbox{\tiny 20}}=.08$ and $k_{\mbox{\tiny 0}}=.034$

 $\Theta = 1.044$ (This same value of Θ also holds for $k_0 - .034$ and $k_2 = .037$)

For a 5-day B.O.D. of 1.00 at 20°C. and a k of .08 the following value of La was found:

$$\log \frac{L_{t}}{L_{a}} = -kt$$

$$\log \frac{L_{t}}{L_{a}} = -.08 \times 5 = -.40$$

$$\frac{L_{t}}{L_{a}} = .398$$
% of total = 100(1-.398) = 60.2
$$L_{a} = L_{20} = \frac{1.0}{.602} = 1.66$$

The ultimate B.O.D. at 20°C. may then be converted to 0°C. by the following formula of Streeter & Phelps:

 $L_{T} = L_{20} [1 + 0.02(T-20)]$ $L_0 = 1.66 [1 + 0.02(0-20)]$ $L_0 = 1.66 \times .6 = .996 \text{ (say 1.00)}$

From the above it may be seen that the ultimate first stage B.O.D. at 0°C. is equal to the 5-day 20°C. B.O.D. of this river water. Knowing this relationship it was possible to set up the attached table of 0° B.O.D.'s corresponding to a 5-day 20°C. B.O.D. of 1.0 p.p.m. As stated before the unimolecular first stage curve is taken here

to represent the B.O.D. only for the first 30 days of oxidation; after this time the nitrification or second stage oxidation begins to show its effect. The unimolecular type of curve has been found to apply to the second as well as the first stage of oxidation. Streeter*, in his analysis of several samples of the Illinois River water, incubated by the Sanitary District of Chicago during 1927-30, found the nitrifica-

^{*}Mathematics shown on page 193.

tion or second stage rate of reaction to be approximately one-third the first stage rate of reaction. As before, the amount reacting in any time **t** is a function of the ultimate second stage B.O.D. The routine laboratory determination of this ultimate value, of course, was not a practical procedure. Therefore, in order to calculate the B.O.D. for any period over 30 days, a relationship between the 5-day 20°C. B.O.D. and the ultimate second stage B.O.D. at 0°C. was necessary.

An inverse relationship was found between the ultimate first stage B.O.D. (L_n) and the probable ultimate second stage B.O.D. (L_n). As an example, in the event of an L_n of 10 p.p.m. the total 50-day B.O.D. was found to be approximately 1.3 p.p.m. in excess of the first stage value for the same number of days, while an L_n of 3 p.p.m. resulted in the total B.O.D. of approximately 1.7 p.p.m. in excess of

the first stage at 50 days.

The following formula represents one form of the unimolecular expression of the nitrogenous stage of oxidation beginning at 30 days:

$$X_{tb} = L_b (1-10^{-k(t-go)})$$

The value of X_{th} must be added to the first stage B.O.D. for the corresponding number of days to obtain the total B.O.D. at any time. It may be seen that the formula holds only for positive values of (t-30). A value of .012 for k_h at 0°C. was found to give the best general fit to the data and is in accord with the finding that k_h is approximately one-third k_h .

By means of this formula the 50-day X_{1b} values of 1.3 p.p.m. and 1.7 p.p.m. mentioned above were found to give ultimate second-stage B.O.D.'s of 3.06 p.p.m. and 4.00 p.p.m. respectively for corresponding ultimate first-stage 0°C. B.O.D.'s of 10 p.p.m. and 3 p.p.m. The following empirical equation was developed in order that L_b value

in the formula above may be given in terms of La:

$$\begin{array}{cccc} L_b &= C - x \ log \ L_n \\ Where & C &= 4.86 \\ x &= 1.8 \end{array}$$

It is believed that the constant and exponent in this equation would vary considerably for different rivers containing various types of wastes. Referring again to Streeter's paper on Natural Oxidation, the following values were found for L_n and L_n on Illinois River samples:

Sampling Point	L _a	$L_{\rm b}$
Lockport	20.5	20.5
Morris	10.2	18.5
Marseilles	9.8	15.0
Peru	7.9	13.0
Henry	4.8	7.7

By plotting these values on semi-log paper and drawing the line of best fit, the constant (C) is equal to the value of L_b where L_a equals

^{*}S.W.J. Vol. VII, No. 3, March 1935.

unity, with due respect to sign. The value of (x) is equal to the reciprocal of the slope of the line, also with due respect to sign. For the above data C = -7.8 and x = -23.2. The resulting equation is therefore:

$$L_b = 23.0 \log L_a - 7.8$$

Following is a comparison between the observed values of $L_{\scriptscriptstyle b}$ and the calculated values using the formula above:

Station	Calculated	Observed
Lockport	22.4	20.5
Morris	15.4	18.5
Marseilles	15.0	15.0
Peru	12.8	13.0
Henry	7.9	7.7

Insufficient data are available for definite determinations of the constants in this relationship. However, the trend is apparent even though the values used for this study were determined empirically. The resulting second stage formula used in this study in terms of the first stage ultimate B.O.D. is as follows and is shown graphically in Figure 25.

$$X_{tb} = (C - x \log L_a) (1 - 10^{-k(t-y_0)})$$

Where $C = 4.86$
 $x = 1.8$
 $k = .012$

or X_{tb} ($4.86 - 1.8 \log L_a$) $(1-10^{-.012(t-y_0)})$

Combining the first and second stage formula, the following

discontinuous equation was obtained which holds for positive values of (t-30) and $0^{\circ}C$:

Total B.O.D. =
$$L_a$$
 (1-10 $\cdot \cdot ^{084t}$) + (4.86 — 1.8 log L_a) (1-10 $\cdot \cdot _{012} (^{t} \cdot _{80})$)

For negative values of (t-30) the latter portion of the equation is dropped and the unimolecular expression for first stage oxidation remains. This formula is used with the full knowledge that the proposed logarithmic relationship between the first and second stage ultimate B.O.D.'s may not hold for all types of wastes or river water. It closely approximates actual observed data of this study and its application to Illinois River data has been shown. However, it should not be applied without reservation in other studies.

APPLICATION OF MATHEMATICAL FORMULATION

In analyzing the data, it was found that the ultimate 0°C. B.O.D. closely approximated the 5-day 20°C. B.O.D. in most cases. For Station 5 on January 11, 1940, the 5-day 20°C. value was found to be 4.34 p.p.m. The 31-day value read from the table should be .911 x 4.34 or 3.95 p.p.m. As the first stage curve holds only to 30 days the second stage oxidation must be taken into consideration. From Figure 25 the 31 day value of X_{1h} for an L_n of 4.34 p.p.m. is .09 p.p.m. This added to the 31-day first stage value of 3.95 gives a total of 4.04 p.p.m. Similarly for 41 days the first stage value is found to be .959 x 4.34 or 4.16 p.p.m. From the graph 41 days gives

an X_{tb} of .96 p.p.m. for an L_a of 4.34 p.p.m. The resulting total B.O.D. is 4.16 plus .96 = 5.12 p.p.m.

B.O.D. is 4.16 plus .96 = 5.12 p.p.m.

The above values of 4.04 p.p.m. and 5.12 p.p.m. at 0°C. compare favorably with the 2°C. values, which were actually determined, of 4.44 p.p.m. and 5.15 p.p.m. respectively.

If, with a flow of 200 c.f.s. during any one period, the time of flow from Station 5 to Lake Winnipeg was 31 days, the oxygen utilized would be:

> $200 \times 5.4 \times 4.04 = 4363$ lbs. oxygen (Note: $5.4 = 1 \text{bs.} 0_2 / \text{day/p.p.m.}$ B.O.D. / c./f./s.)

If a flow of 100 c.f.s. required 41 days, the oxygen utilized would be: $100 \times 5.4 \times 5.12 = 2765$ lbs. oxygen

The above procedure was used throughout this report in determining the oxygen utilized to Lake Winnipeg for the river stations below Grand Forks. The condition between Fargo and Grand Forks presents a slightly different problem due to the fact that considerable aeration is obtained by means of the Grand Forks dam. It is therefore necessary to provide sufficient oxygen at Fargo to satisfy the oxygen demand only to Grand Forks. For this reason 0°C. B.O.D.'s above Grand Forks were calculated in terms of pounds of oxygen required for time of flow to Station 6. The flow may, however, be in excess of the amount required for this portion of the river because of the greater requirements at and below Grand Forks.

EXAMPLE ILLUSTRATING USE OF THOMAS SLOPE METHOD** Station 6-A 26°C. 7-10-40

Days		B.O.D.				
t	Δt	У	ΔУ	y'	уу′	y ²
0		0				
	1		2.46			
1 1		2.46		*1.62	3.985	6.052
	1		.78			
2		3.24		.70	2.268	10.498
	1		.62			
3		3.86		.70	2.702	14.900
	1	,	.78			
4		4.64		.545	2.529	21.530
	1		.31			
5		4.95		.245	1.213	24.502
	1		.18			
6		5.12 (not in	c. in su	m)	
			1			
Total		19.15		3.810	12.697	77.482

$$*y'_{n} = \frac{(y_{n} - y_{n-1}) \left(\frac{t_{n+1} - t_{n}}{t_{n} - t_{n-1}}\right) + (y_{n+1} - y_{n}) \left(\frac{t_{n} - t_{n-1}}{t_{n-1} - t_{n}}\right)}{t_{n+1} - t_{n-1}}$$

$$= (\Delta y)_{n-1} \left(\frac{\Delta t_{n-1}}{\Delta t_{n-1}}\right) + (\Delta y)_{n+1} \left(\frac{\Delta t_{n-1}}{\Delta t_{n+1}}\right) = \frac{2.46 + 0.78}{1.62} = 1.62$$

^{**}S.W.J. May, 1937, Vol. IX, No. 3, p. 425, Thomas.

Normal Equations

Data for Plotting Unimolecular Curves

First Stage Oxidation

General Formula:
$$\text{Log} \frac{L}{L_t} = \text{kt}$$

 $\text{Log } 5.493 - \text{Log } L_t = .1989t$

$$.73981 - \text{Log} (5.493 - \text{B.O.D.}) = .1989t$$

$$Log (5.493 - B.O.D.) = .7398 - .1989t$$

Days	kt	$\frac{\mathbf{L}}{\mathbf{L}_{\mathrm{t}}}$	Lt	\mathbf{X}_{t}
1.	.1989	1.581	3.474	2.019
2	.3978	2.499	2.198	3.295
3	.5967	3.952	1.390	4.103
4	.7956	6.246	.879	4.614
5	.9945	9.874	.556	4.937
6	1.1934	15.610	.352	5.141
7	1.3923	24.682	.223	5.270
8	1.5912	39.012	.141	5.352

To Obtain k @ 20°C:

$$k_{26} = k_0 \Theta^{26}$$

$$\frac{.1989}{.034} = \omega^{26} = 5.85$$

$$\Theta = 5.85^{.0377} = 1.070$$

$$k_{20} = .034 \times 1.070^{20} = .132$$

CONVERSION TABLE

For converting 5-day 20°C, B.O.D. to 0°C, B.O.D. for any stated number of days.

$Log \frac{L_t}{L} = -kt$		k = 0.034		Temperature = 0°C.	
Days	$-\log \frac{L_{\mathrm{t}}}{L}$	$\frac{\mathbf{L_t}}{\mathbf{L}}$	B.O.D.—0°C. % of Total First Stage	B.O.D. at 0°C. for 5-day 20°C. B.O.D. of 1.0 p.p.m.	
2	.068	.855	.145	.145	
4	.136	.731	.269	.269	
5	.170	.676	.324	.324	
6	.204	.625	.375	.375	
8	.272	.535	.465	.465	
10	.340	.457	.543	.543	
12 14 16 18 20	.408 .476 .544 .612 .680	.391 .334 .286 .244 .209	.609 .666 .714 .756	.609 .666 .714 .756 .791	
22	.748	.178	.822	.822	
24	.816	.153	.847	.847	
26	.884	.131	.869	.869	
28	.952	.112	.888	.888	
30	1.020	.095	.905	.905	
35	1.190	.065	.935	.935	
40	1.360	.044	.956	.956	
45	1.530	.030	.970	.970	
50	1.700	.020	.980	.980	
60	2.040	.009	.991	.991	
70	2.380	.004	.996	.996	

LONG RANGE BIOCHEMICAL OXYGEN DEMAND DATA Samples Collected January 11, 12, 1940

	41 51 60	5.82 · 6.75	9.56		6.52	5.83	6.01	3.83		8.22	:	A 64
C. neubation	31 4	4.66 5.		_	_		_		-	_		_
Days of L	20	3.89	7.09	10.86	4.56	4.65	4.98	1.84	3.82	3.72	26.41	00 6
	91	4.26	6.48	10.61	4.31	3.81	3.20	1.92	3.20	3.22	24.56	0 72
	10	2.38	5.20	7.55	2.95	2.73	2.44	1.29	1.99	3.41	19.68	1 02
,	20	1.59	3.77	90.9	1.99	1.85	1.78	06	1.48	2.09	10.46	111
	31		1		16.80	15.20	12.95					
ion	20		22.20	25.96	15.04	12.15	10.25					
20°C.	16		20.32	24.38	12.00	11.80	7.20	14.98	29.87	39.03	115.52	00 01
Da	10 1	10.44	13,98	11.12	8.20	6.65	.4.30	1 14	21.53	15.36	68.67	0 10
	10	4.84	9.52	000	5.34	4 34	5.20	08	6.75	200	28.90	001
Sample	Station		121	000	4	uç	6A	000	0.00	10	11	100

LONG RANGE BIOCHEMICAL OXYGEN DEMAND DATA

	59	:	:	:	:		:		:	:	:	:		:	9.35		-	
	44	:	:	:						:					7.75			
°C.	39	:	2.48			:	:			9.72		4.70	2.03					
ion at 0	30	2.98					6.86		10.03	8.96	25.36	2.93	1.65		6.85	6.84	14.06	
Days of Incubation at 0°C.	20	1.50	1.80	1.91	1.36	1.85	5.98		.65	84		0.0	48	20			11.02	
Days of	15	.87	68.	. 60	.72	.1.15	5.07	17.47+	6.32	5.56	16.56	1.71	2.03	2.70	5.58	7.21	9,91	18.02
	10	1.63	. 59	.30	.57	.92	4.14	8.80十	4.32	3.42	10.96	1.25	.56	1.34	4.33	4.55	8.21	13.00
	20	60.	.14	.05	.10	.27	2.51	1.89	2.80	1.34	4.80	.45	.21	.30	2.50	2.58	4.20	6.88
5-day	at 20°C.	2,13	1.87	1.40	1.68	1.84	5.70	22.68+	12.45	10.51	24.49	2.14	1.73	2.95	68.9	7.23	13.76	23.85
Date	Coll.	2-6-40	2-6-40	2-6-40	2-6-40	2-6-40	2-6-40	2-7-40	2-7-40	2-7-40	2-7-40	2-7-40	2-7-40	1-5-40	1-5-40	1-5-40	1-5-40	1-5-40
Sample	Station	1	23	3	4	10	6A	90	6	10	-	12	-	-	23	00	4	10

APPENDIX IV STREAM FLOW REQUIREMENTS

APPENDIX IV

STREAM FLOW REQUIREMENTS

During open water periods the oxygen content of the stream is dependent upon the rate of oxygen use (k₁), the rate of reaeration (k₂), and the ultimate first stage B.O.D. (L_a) of the river immediately below the point of pollution. Assuming that the dilution water or the stream above the point of pollution has a B.O.D. of zero, it follows that the ultimate B.O.D. of the stream (L_a) times the total stream flow is equal to the ultimate B.O.D. of the sewage times the sewage flow. For example, during the summer months the Fargo-Moorhead area discharges 2.7 m.g.d. of sewage containing 1400 lbs. of 5 day 20°C. B.O.D. per day. This results in a 5 day 20°C. B.O.D. of 62.1 p.p.m. or an ultimate first stage B.O.D. of 91.3 p.p.m.* A flow of 2.7 m.g.d. equals 4.18 c.f.s. Therefore, where c equals the required stream flow for dilution purposes and L_a equals the ultimate first stage B.O.D. of the stream, immediately below the point of pollution,

$$L_a (c + 4.18) = 4.18 \times 91.3$$
or $L_a = \frac{4.18 \times 91.3}{(c + 4.18)} = \frac{381.6}{(c + 4.18)}$ (1)

Immediately below the point of pollution the dissolved oxygen deficit (D_a) is equal to the ratio of the sewage flow to the total flow, times the saturation value, assuming the dilution water is saturated and the sewage is entirely depleted of dissolved oxygen. For the conditions mentioned above

$$D_a = \frac{4.18}{c + 4.18} \times 9.17$$

$$D_a = \frac{38.33}{(c + 4.18)} \tag{2}$$

From equations (1) and (2)

$$\frac{D_a}{L_a} = \frac{38.33}{(c + 4.18)} \times \frac{381.6}{c + 4.18} = 0.10$$

^{*}Based on a value of k equal to 0.1 for summer conditions.

Fair* developed the following equations which may be used to advantage in determining the required flow (c) for dilution purposes:

$$k_1 t_e = \frac{1}{(f-1)} \log \left\{ f \left[1 - (f-1) \frac{D_a}{L_a} \right] \right\}$$
 (3)

$$D_c = \frac{L_a}{f} (10^{-k_1 t_c}) \qquad(4)$$

or
$$L_a = D_c \times f \times 10^{-k_1 t_c}$$
 (4a)

Where $k_1 = B.O.D.$ rate of constant.

t_e = time in days of miximum dissolved oxygen deficit.

f = k₂k₁ = self-purification constant, taken as 1.3 for sluggish streams at 20°C.

 D_c = allowable deficit = 9.17 - 3.00 = 6.17 at 20°C.

Continuing the analysis of the example taken above and applying equation (3):

$$\begin{array}{l} k_i t_c = \frac{1}{1.3 - 1} \log \left\{ 1.3 \left[1 - (1.3 - 1) \ 0.10 \ \right] \right\} \\ = 3.33 \quad \log \quad 1.261 \quad = \quad 0.338 \end{array}$$

Substituting in equation (4a)

 $L_a = 6.7 \times 1.3 \times 10^{\circ,888} = 17.48 \text{ p.p.m.}$

Substituting in equation (1)

$$17.48 = \frac{381.6}{c \times 4.18}$$

$$c = \frac{381.6}{17.48} - 4.18 = 17.63 \text{ c.f.s.}$$

Applying the same analysis to the wastes from the West Fargo Packing Plant, on the basis of 98% treatment the required flow was 2.12 c.f.s., giving a total of 19.75 c.f.s. An arbitrary value of 20% has been added to all calculated summer flows to compensate for the assumptions that all dilution water has a B.O.D. of zero and that no pollution enters between major points of pollution. It is known that waters carried in a natural channel will pick up some material which will exert a demand, the magnitude of which is difficult to estimate. Adding 20% to the flow of 19.75 c.f.s. the resulting required flow for dilution purposes at Fargo and West Fargo is 23.7 c.f.s.

The water consumption of the Packing Plant and the Fargo area, 1.0 and 9.0 c.f.s. respectively, must be added to the above requirement giving a total of 33.7 c.f.s. during summer months.

The allowable critical deficit is dependent upon the oxygen saturation value and will vary inversely with respect to temperature. The self-purification constant (f) will also change with temperature according to the following relationship:

$$f_T = f_{20} \times 0.970^{(T-20)}$$

^{*}S.W.J.-May, 1939, Vol. II, No. 3, p. 451.

The foregoing analysis is based on relationships developed in connection with other studies, in the absence of algal activity and sludge deposits. As both of these interfering factors exist in the Red River, it was impossible to determine accurately the self-purification constants. It is believed that the calculated flow, as shown, is ample for sewage dilution purposes during average existing summer conditions below Fargo.

Similar analyses were made for other portions of the River for various seasons and the results are shown in Table I.

The average summer water temperature was taken as 20°C. which closely approximates the water temperatures observed during the months of June to September inclusive. During the month of October, the average temperature was taken as 7°C. The increased flow requirement at Grand Forks for this month is a result of beet sugar plant operations. The magnitude of this increase, however, is not exactly proportional to the increased pollution load as the rate of oxidation is slower and the dissolved oxygen saturation value of the water is greater at lower temperatures.

Flows as shown in Table I are for existing summer and winter conditions and also for summer and winter conditions in the event of 85 per cent treatment of all municipal and industrial wastes. Under ice coverage conditions no natural pollution was assumed to enter the stream between major sources of pollution. The flow at a municipality was calculated to satisfy the demand of 15 per cent of the untreated waste to the next source of pollution. For example, during the winter critical period, the B.O.D. of 15 per cent of the untreated wastes at Lisbon plus the B.O.D. remaining in the stream from upper sources must be satisfied for the time of travel to Fargo. That portion of the B.O.D. which did not have time to exidize was then added to 15 per cent of the untreated contribution from the Fargo area and the demand for the time of travel to Grand Forks calculated.

The same method was followed for the Grand Forks area: the remaining unoxidized portion of the wastes from Fargo and Crookston were added to 15 per cent of the untreated contribution at Grand Forks. The oxygen requirement of this total was then calculated for the time of flow to Lake Winnipeg. A trial and error method of analysis was employed as the time of flow between two points varies with the magnitude of flow. For this reason the correct flow had to be assumed before an accurate oxygen demand between two points could be determined.

All winter calculations were made on a basis of 3 p.p.m. of oxygen available in the dilution water for the oxidation of wastes. The dissolved oxygen content necessary for the maintenance of normal fish life was considered as approximately 3 p.p.m. and this value has been set as the allowable minimum residual. The total minimum oxygen requirement at a point of dilution is, therefore, 6 p.p.m.

The winter "Existing Conditions" in Table I were derived from average observed conditions in the River, while the summer "Existing Conditions" and the 85 per cent treatment values were based on the measured amount of wastes discharged into the stream during the time of the survey. The average monthly flow requirements for these winter and summer conditions are shown on the attached graphs. No attempt was made to forecast industrial expansion and future population.

Because of open water conditions, flow requirements during the summer are not accumulative. No supplemental flow from the Red Lake River or other tributaries was assumed since the flow in these streams have approached zero and dependable flow is therefore not assured. For this reason all flow requirements must be provided at Fargo. The flow requirements for the section of the River from Fargo to Lake Winnipeg were based on the maximum demand whether it was incurred at Fargo or Grand Forks.

Stream flows for other standards of stream sanitation based on oxygen content may be determined by the same procedure as outlined above. A summary of stream flow requirements is presented in Table I following:

Table I

FLOW REQUIREMENTS — C.F.S.

(Cumulative Flows At Locations Shown)

	11	ions with E tment of W	_	Conditions with 85% Treatment of Wastes				
LOCATION	Summer	October	Winter	Summer	October	Winter		
Fargo	33.7	12.2	129.	47.6*	17.8*	145*		
Grand Forks Without beet sugar wastes	46.5	004000	253.	12.9	0 40 40 40	112		
Grand Forks With beet sugar wastes		177	1081.	000000	23.4	305		

In the foregoing discussion the flow necessary for the formation of ice has not been considered. For the stretch of river from Fargo to Lake Winnipeg, at least 160 c.f.s. for a period of one month would be necessary to form an ice cover 2 feet thick. This requirement may coincide with the highest winter requirement (during operation of beet sugar plant).

During the process of freezing a large portion of the impurities are expelled from the ice, leaving them in solution or suspension

^{*}Larger demand than with existing treatment of wastes because of the 98% treatment provided at present by West Fargo Packing Plant.

in the water below. This seems true for dissolved oxygen. If an original dissolved oxygen content of 6 p.p.m. is assumed, at least 8 p.p.m. additional could be absorbed before saturation is obtained. During operation of the Beet Sugar Plant and with 85% treatment of all wastes 305 c.f.s. are necessary for dilution purposes at Grand Forks under ice coverage. If 160 c.f.s. are used to form ice, the resulting flow at Lake Winnipeg may decrease to 145 c.f.s. According to the above theory the total oxygen content of the stream in pounds would still be the same along the entire stretch of the river as it would be if 305 c.f.s. were flowing. On a basis of 3 p.p.m. of oxygen remaining at Lake Winnipeg 305 c.f.s. would contain 4941 pounds per day. This same amount of oxygen contained in 145 c.f.s. would represent 6.3 p.p.m. which is actually more than necessary at Lake Winnipeg.

It would be difficult to calculate the requirements on the basis of the analysis just preceding because of other interfering factors. Bubbles are frequently noticed in the ice; an abundance of these result in "frosty" ice. Considerable oxygen must be entrained in this manner. Also the stream frequently flows over the ice and freezes to form a layer of ice over the original ice cover.

The volume of water actually contained on a certain stretch of river is also an important factor. The ice formed may not be a large percentage of the volume of a slowly moving mass of water although the number of cubic feet of ice formed per second may be a large percentage of the flow. It is doubtful, therefore, whether continued freezing for only one month is ample to decrease the flow at Lake Winnipeg in an amount equal to the average rate of freezing.

The entrainment of oxygen in the ice may necessitate an increase rather than a decrease in the flow requirements. If ice formation begins during a flow of 305 c.f.s. the channel capacity under 2 feet of ice will be considerably less. It has been shown above that the oxygen concentration of the water may be increased during the freezing process although the following month with no additional freezing 305 c.f.s. are again necessary. It may, therefore, be necessary to supply a large quantity of flow prior to freeze-up to insure channel capacity during the later winter months. The frequency with which streams have been observed to flow over previously formed ice indicates that consideration should be given to the establishment of adequate channel capacity, and to the influence of ice formation on the establishment of such channel capacity.

Because of the complications attending the calculation of stream flow requirements for the formation of ice, the effect of ice cover has not been taken into consideration except insofar as it precludes reaeration of the stream.

APPENDIX V Population Data

Table I
TOTAL POPULATION OF THE RED RIVER BASIN BY WATERSHEDS

State	Sub-basin (1890	1900	1910	1920	1930
Minnesota	a—Bois de SiouxBuffalo-Wild RiceOttertail.Red Lake.Snake-Roseau	10,917 39,000 26,085 21,304 16,631	17,070 56,070 37,056 39,690 31,866	16,898 60,549 40,913 52,882 36,190	17,155 70,594 45,182 62,640 40,497	18,199 71,677 46,614 58,448 37,625
Minnesota	a Total	113,937	181,952	207,430	236,068	232,563
North Da	kota—Sheyenne Wild Rice Other	29,373 13,379 70,453	57,706 19,854 108,890	86,279 24,711 116,695	89,210 25,452 125,786	88,032 24,989 135,486
	kota Totalkota Total	113,205 950	186,450 7,075	227,685 7,891	240,448 8,688	248,507 8,021
Red River	Basin Total	228,092	375,277	443,006	485,204	489,091

Table II

RURAL FARM AND NON FARM POPULATION OUTSIDE INCORPORATED PLACES

Red River of the North Drainage Basin

State	Sub-basin	1890	1900	1910	1920	1930
Minnesota	Bois de Sioux Buffalo-Wild Rice Ottertail Snake-Roseau Red Lake	9,279 33,526 18,624 15,110 15,894	12,977 45,098 23,818 27,564 26,737	11,736 43,831 23,005 29,081 32,971	12,275 50,333 24,854 31,324 40,703	13,011 49,424 24,609 28,962 37,071
Minnesota	Total	92,433	136,194	140,624	159,489	153,077
North Dal	Wild Rice Other	25,365 12,922 50,787	50,140 17,977 69,182	66,832 19,073 63,380	66,708 19,551 60,828	64,702 19,247 59,177
	kota Total	89,074 950	137,299 6,869	149,285 7,304	146,887 7,426	143,126 6,854
Red River	Basin Total	182.457	280.362	297,213	313.802	303,057

Table III

POPULATION OF INCORPORATED PLACES (Less Than 2,500)

Red River of the North Drainage Basin

State	Sub-basin	1890	1900	1910	1920	1930	No.
Minnesota-	Bois de Sioux Buffalo-Wild Rice Ottertail	1,638 3,386 2,435 967 1,521	4,093 7,242 5,456 3,698 4,302	5,160 11,878 8,214 6,105 7,109	4,880 14,541 9,321 7,937 9,173	5,188 14,602 8,941 7,866 8,663	12 33 14 21 21
Minnesota '	Total	9,947	24,791	38,466	45,852	45,260	101
North Dak	ota—Sheyenne Wild Rice Other	2,919 457 10,112	5,120 1,877 24,913	14,841 5,638 26,506	17,816 6,101 23,406	16,062 5,742 24,266	40 13 54
North Dak South Dak	ota Totalota Total	13,488	31,910 206	46,985	47,323 1,262	48,070 1,167	107
Red River	Basin Total	23,435	56,907	86,038	94,437	94,497	214

Table IV

URBAN POPULATION (Over 2,500)

Red River of the North Drainage Basin

			1	1			No.
State	Sub-basin	1890	1900	1910	1920	1930	Cities
Minnesota	—Bois de Sioux Buffalo-Wild Rice Ottertail Red Lake Snake-Roseau	2,088 5,026 4,443	3,730 7,782 9,255	4,840 9,694 13,806	5,720 11,007 14,000	7,651 13,064 13,511	1 2 3
Minnesota	Total	11,557	20,767	28,340	30,727	34,226	6
North Dal	kota Sheyenne Wild Rice Other	1,089	2,446	4,606	4,686	5,268	1
	kota Totalkota Total	10,643	17,241	31,415	46,238	57,311	5
Red River	Basin Total	22,200	38,008	59,755	76,965	91,537	111

Stream Pollution Other Than Sewage or Industrial Wastes. Garbage, Trash and Rotten Potatoes Dumped on Red River.

APPENDIX VI Dilution Water Sources

THE SUITABILITY OF RELATIVELY UNPOLLUTED STREAMS FOR DILUTION PURPOSES

Investigations were made as to the suitability of relatively unpolluted streams under ice coverage for dilution purposes. Three tributaries of the Red River, namely the Wild Rice, Buffalo, and Sheyenne, as well as the Missouri River, were studied in order to formulate some conclusions.

Sheyenne River at Valley City

Above Valley City the only municipal sewage discharged into the Sheyenne River is from Harvey (population 2,200—no treatment—distance approximately 290 miles). Flow in the Sheyenne at Valley City ceased about July 10-15, 1939, and did not resume again until spring breakup. The Faust dam, approximately 12 feet high, located about six miles above Valley City, and the Mill dam, approximately 10 feet high, located in Valley City, provide channel storage. Sampling stations were established in the reservoir a few yards above the Faust dam and approximately one mile above the Mill dam, the latter at a point above sources of pollution from residential areas in the city. The reservoirs froze over about December 25, 1939. The first sample taken at Faust dam on January 27, 1940, showed only 0.2 p.p.m. dissolved oxygen.

About eight weeks after ice coverage, no dissolved oxygen could be detected at either station. On February 16, the gate in Faust dam was opened and the reservoir lowered to such an extent that no further samples could be obtained. A stretch of open water extending about 200 feet below the dam resulted from the flow through the gate. Sampling was continued at the Mill dam station, several miles below Faust dam, but no recovery was perceptible at this station.

From the above, it appears that even in relatively unpolluted streams the B.O.D. from natural sources such as surface runoff, bottom sediment, and decaying vegetation, is sufficient to cause serious oxygen depletion. It is agreed that storage is not great in these channel reservoirs. However, the results may point to the conclusion that, even in relatively large storage reservoirs, aeration upon release is necessary to provide dissolved oxygen for dilution purposes. Detailed data is presented in the table following.

Wild Rice River (Minnesota) (Station J)

The Wild Rice River, because of its low B.O.D. at the mouth, may be considered relatively unpolluted. However, the dissolved oxygen decreased to 9.8 per cent saturation on February 15, 1939, approximately three months after ice formation. This may be due partially to sewage from Twin Valley (population 657—82 miles—no treatment) and Mahnomen (population 989—118 miles—no treatment). An overflow dam at Twin Valley provides aeration. Flows during February 1939 averaged 17 c.f.s. Without aeration

provided either prior to or after its confluence with the Red River, this stream is considered of little value for dilution purposes. With a minimum flow of 7 c.f.s. during February 1940, zero dissolved oxygen was observed approximately six weeks after ice coverage.

Buffalo River (Minnesota) (Station K)

Samples from the Buffalo River during the 1938-39 winter season indicated B.O.D. values over 6 p.p.m. due probably to the discharge of raw sewage from Hawley (population 958—36 miles above station) and Barnesville (population 1,279—45 miles above station.)

The dissolved oxygen in this case dropped to practically zero within two weeks after ice coverage and remained at zero for the following 3½ months. The following year, freeze-up occurred at approximately the first of January and no extensive sampling was carried on thereafter.

Red River above Fargo

The Red River above Fargo illustrates the capacity of a stream to satisfy oxygen demand during ice coverage where aeration is provided. Breckenridge (population 2,264) and Wahpeton (population 3,136) were discharging raw sewage into the Red River during the winter of 1938-1939. (Wahpeton has since installed a treatment plant). Flows averaged approximately 100 c.f.s. during January and February 1939. The dissolved oxygen at Fargo (Station 12) during this time averaged about 10 p.p.m.; one sample showed 6 p.p.m. Undoubtedly, aeration provided by the overflow dams in the stream account for the satisfactory condition. One dam is located in Breckenridge and one in Wahpeton (97 and 96 river miles from Fargo); two 9-foot dams are located 43 miles and 32 miles above Fargo, respectively, and a 3-foot dam is located 5 miles above Fargo. In view of the fact that observations showed a maximum of about 6 p.p.m. dissolved oxygen picked up by an oxygen-deficient water in flowing over these types of dams, the condition at Fargo is probably a result of the progressive effect of each dam. It should be noted, however, that these dams were not constructed primarily for aeration purposes and their efficiency as aerating devices could most likely be greatly improved.

Missouri River at Bismarck

Dissolved oxygen in the Missouri River at Bismarck was determined frequently during the winter of 1938-1939. In North Dakota, the only municipalities discharging sewage into this stream are Washburn (population 800—60 miles) and Williston (population 5,000—300 miles). No treatment is provided at either of these municipalities. A beet suger refinery at Sidney, Montana, probably discharges considerable waste into the Yellowstone River, principal tributary of the Missouri River. There are no dams in the stream to provide aeration during winter months in North Dakota. However, portions of the River remain open during moderately severe

sub-zero weather because of the swift currents. Flows were in excess of 5,000 second feet during the entire winter. The fact that dissolved oxygen decreased to 9.8 p.p.m. during the latter part of the ice coverage period (see following table) indicates that considerable oxygen demand is satisfied in this relatively unpolluted stream and that critical dissolved oxygen conditions may occur if pollution is increased at the same time that flows are markedly below normal. The rich organic bottom deposits occurring in streams in the Red River Valley are not generally present in the Missouri River because of the high stream velocities. A tabulation of dissolved oxygen determinations on the Missouri River is included.

SHEYENNE RIVER AT VALLEY CITY

Date		FAUST DAM	(c	MILL DAM**			
Date	Temp.	Dissolved Oxygen	Remarks	Temp.	Dissolved Oxygen	Remarks	
1-27-40 2- 3-40	2°C. 2°C.	0.2 p.p.m. 0.0	Odor	3°C.	1.4		
2- 9-40 2-17-40 3- 1-40	2°C.	0.0	Odor	3°C. 2°C.	0.6 0.0 0.0	Odor Odor	
3-12-40 4- 1-40				2°C. 3°C.	0.0	Odor Odor	

Freeze-up about December 25, 1939. The gate in Faust Dam was opened Feb. 16, 1940. The river opened up about April 5, 1940.

Temperatures above 0°C observed under ice coverage are believed to result from appreciable infiltration from springs and other ground water sources. Thermometers used were checked to eliminate the possibility of thermometer error.

*Located about six miles above Valley City. Dam about 12 feet high.

**Located just above Valley City about one-fourth mile above residential area. Channel

reservoir created by 10-foot dam in Valley City approximately one mile below sampling

DISSOLVED OXYGEN-MISSOURI RIVER

		At Dis	marck, P	torth Dakot	.a
Date	Station	Temp.	рН	Dissolved	Remarks
				Oxygen	Remarks
11 -7-38	River	2°C.	8.2	12.9*	
	Plant‡	2°C.		12.8‡	,
11-16-38	River*	0°C.		12.7*	
	Plant!	0°C.		12.7‡	Ice floating in River
11-22-38	River*	0°C.		12.6*	
	Plant‡	0°C.		12.6‡	Ice floating in River
11-28-38	Plant	0°C.	8.1	13.1	R. ice covered for about 4-5 days
12 -6-38	Plant	0°C.	8.1	12.9	River ice covered
12-13-38	Plant	0°C.	8.1	12.7	
12-20-38	River	0°C.	8.1	12.8	Hole in ice—13 1/2' water
12-30-38	Plant	0°C.	8.1	12.9	
1-12-39	River*	0°С.		11.7	*600' above R.R. bridge-ice
					harvesting, 10' water. Few
	701	000		4 4 20	small open stretches
1 10 00	Plant	0°C.	8.1	11.7	
1-16-39	River*	0°C.	8.0	11.7	denot 1 To To 1 11
	Plant‡	0°C.		11.7	*600' above R.R. bridge—20"
2-11-39	Plant	0°C.	8.0	10.8	
2-18-39	Plant	0°C.	8.0	10.3	
2-25-39	Plant	0°C.	7.9	9.8	
3- 6-39	Plant	0°C.	8.0	10.9	
3-17-39	Plant	0°C.	8.0	10.8	
4- 6-39	Plant	3.5°C.	7.9	11.2	
4-22-39	River	10°C.		11.3	
5 -5-39	River	17°C.		8.4	
5-31-39	Plant	18.5°C.		7.65	
6-15-39	River	17°C.		8.13	
6-15-39	Plant	17°C.		8.18	
4.00					

*Sample taken directly from river.

‡Sample taken at inlet well, Bismarck water treatment plant.

SANITARY SURVEY OF THE RED RIVER OF THE NORTH REPORT OF JOINT INVESTIGATION

by the

North Dakota State Department of Health

and the

Minnesota State Department of Health

February, 1938

SANITARY SURVEY OF THE RED RIVER OF THE NORTH FROM GRAND FORKS TO PEMBINA, NORTH DAKOTA

February, 1938

This survey was made by the Minnesota and the North Dakota departments of health to follow up a previous investigation which extended from 1931 through 1933, and covered the river from Breckenridge, Minnesota to the International boundary.*

Since the 1931-1933 survey, there have been some changes in the factors which affect the pollution of the Red River. The cities of Fargo and Grand Forks in North Dakota, and the cities of Moorhead and Fergus Falls in Minnesota, have installed sewage treatment plants for the treatment of their domestic sewage. The packing plant at West Fargo has provided treatment for its wastes and the beet sugar factory at East Grand Forks passes its waste water through lagoons before discharging it to the river.

A new dam has been erected in the Ottertail River above Breckenridge, Minnesota and Wahpeton, North Dakota to assure these towns of a more dependable source of water supply, and a series of reservoirs has been installed on the Ottertail River basin which should provide a more constant flow of water to the Red River.

The following table shows the present status of treatment of municipal and industrial waste on the Red River:

^{*}Pollution of the Red River of the North. Report of Joint Investigation by the Minnesota Department of Health and the North Dakota State Board of Health in collaboration with the Division of Game and Fish, Minnesota Department of Conservation, 1931, 1932, and 1933.

Status of Municipal and Industrial Waste Treatment on the Red River

Municipality (population 1930) or industry (population equivalent)		Year pleted
Wahpeton, N.D. 3,900	None	
Breckenridge, Minn. 2,264	None	
Fargo, N.D. 28,619	Bar screen, detrition, primary clarifier, trickling filter, pri- mary and secondary sludge di- gestion, sludge beds	1935
Moorhead, Minn. 7,651	Bar screen, primary clarifier, trickling filter, final settling, separate sludge digestion, sludge beds	1935
Armour Packing Plant, West Fargo, N.D. 46,400*	Fine screens, primary settling, primary filters, mechanical clarifiers, primary and secondary trickling filters, primary and secondary mechanical clarifiers, pre- and post-chlorination	1938
Grand Forks, N.D. 17,112	Bar screen, grit chamber, aeration, chemical precipitation, primary clarifier, primary and secondary sludge digestion, sludge beds	1937
East Grand Forks, Minn. 2,922	None	
American Crystal Sugar Co., East Grand Forks, Minn. 142,000**	Cattling Taggang	1094
Northern Packing Co.,	Settling Lagoons	1934
Grand Forks, N.D. 7,200***	Settling tanks Pr	rior to 1931
Grafton, N.D. 3,136	Bar screen, grit chamber, primary clarifier, trickling filter, primary and secondary sludge digestion, sludge beds	

^{*1933} Report. Population equivalent based on average kill of 2,000 animals per day and 27.8 per animal, from Bulletin 171, United States Public Health Service. Figure shown allows for 16½ per cent reduction of biochemical oxygen demand by screens.

**1933 Report. Population based on oxygen demand data.

***Estimate; oxygen demand data lacking.

PRESENT SURVEY

Because numerous complaints had been received from farmers in the Red River basin north of Grand Forks, the present survey was confined to that section of the river between Grand Forks and the Canadian border. Meetings were held at Oslo, Drayton, and Joliette, for riparians and residents along both sides of the Red River, and eighty-nine farmers and residents who owned or rented more than 6,800 acres along the river were interviewed. The following is a summary of the principal facts obtained:

- 1. Eighteen persons stated that they used either water or ice from the river for drinking and cooking purposes. Of this number, three farmers said that they boiled the water before using it for drinking. Ten farmers said that they depended upon melted river ice for drinking purposes.
- 2. Altogether forty persons stated that they used melted ice from the river for cooking.
- 3. River water or melted ice or both were used for washing and laundry purposes by seventy persons.
- 4. According to the statement of ten farmers, they used the river water for irrigating small gardens.
- 5. Seventy-eight persons complained of bad odors and objectionable conditions in the river during the season of open water.
- 6. Seventy-one farmers stated that they water from the river, a total of 4,296 head of stock, mostly cattle.
- 7. Many farmers who were dependent on river water for stock stated that during winter months their cattle drank very little water; that dairy cattle, due to heavy feeding, would bloat and become very sick, some of them dying.

The points chosen for sampling the river were the same as those used in the previous investigation, and were located as follows:

	Miles below	
Station	Station 11	Description
11	0	Red River at Lincoln Park as it enters
		Grand Forks.
12	2	Red River at dam in Riverside Park below
		sewer outlets of East Grand Forks and the
		beet sugar factory.
14		Red Lake River at water intake.
13	28	Red River at bridge at Oslo, Minn.
G	23	Red river at site of old pontoon bridge
		east of Grafton, N. Dak.
D	93	Red River at bridge at Drayton, N. Dak.
P	143	Red River at bridge between Pembina, N.
		Dak., and St. Vincent, Minn.

Sources of Pollution: In the section of the stream investigated, the principal sources of pollution were at Grand Forks, N. Dak. and East Grand Forks, Minn. At East Grand Forks, pollution consists of untreated sewage from the municipal sewer system and the waste from the beet sugar factory.

Nothing has been done regarding the treatment of sewage at East Grand Forks. The beet sugar factory constructed lagoons in 1934 so as to pond their waste water, to allow settling of the suspended material and to permit the re-use of some of the water. This form of treatment has been of limited value, however, for the oxygen demand of the waste after it has settled is still high, and the strength of the effluent has been observed to increase as the season progressed. This increase in strength refers particularly to the five-day biochemical oxygen demand and has been discussed in a brief report made by the Minnesota Department of Health in 1935*. Re-use or re-circulation of a part of the waste for utilization in the plant, physico-chemical changes in the beets brought about by freezing, and the effect of sludge accumulations in the lagoon are factors which contribute to an increase in the strength of wastes as the operating season advances. The plant operates from 85 to 90 days each year, beginning in mid-September.

At Grand Forks, polluting materials come from the untreated waste of the Northern Packing Company, from the State Flour Mill, and from the sewage treatment plant which, at the time of the investigation, was utilizing only primary treatment. All of the wastes from Grand Forks enter the stream below the Riverside dam and all from East Grand Forks, above the dam. None of the towns on the Red River north of Grand Forks have a sewerage system. In this area, the hospital at Drayton is, as far as is known, the only establishment that discharges sewage directly to the river. village of Grafton, which is situated ten miles west of the Red River, discharges treated sewage into the Park River which, in turn, discharges into the Red River, but a sample of the Park River water showed that this stream, at the time of the investigation, was not a material factor in the pollution of the Red River. Tributaries on the Minnesota side of the river which were investigated for . possible pollution were found to be frozen to the bottom.

The principal changes as far as pollution is concerned since the previous survey has been the installation of treatment for the sewage of the City of Grand Forks and the discharge of its waste below instead of above the dam. On the Minnesota side, the ponding of the beet sugar factory waste before it is discharged to the river has been the only alteration.

Analytical Results: The analytical determinations included dissolved oxygen, five-day biochemical oxygen demand, coli-aerogenes, solids, plankton, and the examination of bottom sediment. One set of samples only was collected for solids, plankton, and bottom sediment, but for the other determinations three or more samples were collected at each station.

Table 1 shows a tabulation of the five-day biochemical oxygen demand, dissolved oxygen and coli-aerogenes results, and Table 2

^{*}Report on the Waste Treatment Plant of the American Beet Sugar Company. East Grand Forks, Minnesota. October and November, 1934.

gives the maximum, minimum and average results for five-day biochemical oxygen demand and coli-aerogenes. The coli-aerogenes results are expressed as the most probable number per 100 cubic centimeters, and were calculated on the basis of using three tubes in each dilution.

Table 3 is a summary of results obtained in the determination of hardness, pH and solids.

Table 4 is the tabulation of the organisms which occur in the bottom sediment of the river, expressed as numbers of organisms per square yard of bottom area. Table 5 is a summary and condensation of the preceding table with respect to the occurrence of pollutional index organisms. The number and kinds of planktom organisms occurring at each station are presented in Tables 6 and 7. The plankton results are expressed in terms of numbers of organisms per liter in the case of nannoplankton, Table 6, and as numbers per 100 liters in the case of the net plankton, Table 7.

The river was completely ice-locked at the time of the investigation except for a small stretch below the Riverside Dam at Grand Forks. The dissolved oxygen test showed no oxygen at any of the stations except Station 14 on the Red Lake River. At all of the stations except 14, the odor of hydrogen sulphide was noticeable. At stations north of Grand Forks, this odor became increasingly pronounced until at Pembina the water was extremely foul.

Table 1 and Table 2 show the five-day biochemical oxygen demand increasing as the stream flows north. Since, as far as is known, no heavy pollution enters the stream north of Grand Forks, the rise in biochemical oxygen demand in downstream samples may possibly be attributed to the flow of the water over sludge beds which are decomposing under anaerobic conditions. It is possible that the sludge, in undergoing decomposition, liberates soluble organic matter or colloidal material which is picked up by the stream. Furthermore, the character of the sludge may change so that it floats or can be carried along even by a very sluggish stream. Still another explanation is that under anaerobic conditions a "delayed demand" is created which is satisfied when oxygen is again available. One or all of these may be possible factors in accounting for the rise in five-day biochemical oxygen demand as the stream flows northward under septic conditions and over sludge deposits. Table 3 shows the results obtained on the determination of solids on one set of samples. A significant rise in suspended and volatile matter is indicated at Stations G, D, and P. This corresponds closely with the rise in five-day biochemical oxygen demand.

The wide variation between maximum and minimum results at Station 12 is attributed to the difference in sampling depths. This station was located at the pool back of the Riverside Dam. Three of the samples were taken near the bottom and show the high biochemical oxygen demand of the water just above the sludge deposits. This condition is also reflected in the determina-

tions of solids from this point, which showed the highest total, suspended, and volatile matter of all stations. The fourth sample at Station 12 was taken near the surface and had a biochemical oxygen demand of only fifteen parts per million as compared with 200 or greater at the bottom. The surface sample represented more nearly the water which was going over the dam.

Station 14, on the Red Lake River, had the lowest five-day biochemical oxygen demand results and indicated that the oxygen demand established by pollution of this stream at points above had been largely satisfied and that it was not an important factor in the pollution of the Red River, at least during the time of this investigation. This station also has a small amount of dissolved oxygen.

Station 11, being above all immediate sources of pollution, was least septic of the stations on the Red River but proved to be slightly more polluted than Station 14 on the Red Lake River.

Coli-Aerogenes. Results from all stations on the Red River from the Riverside Dam to Pembina showed that the number of coli-aerogenes organisms was of about the same magnitude. The counts ranged from a minimum of 7,500 to a maximum of 46,000 per 100 cubic centimeters. The station at Grafton showed consistently slightly lower results than Stations 13, D or P. This might possibly be due to the fact that this station is not in the immediate vicinity of a community. Station 14 on the Red Lake River proved also to be the least polluted with respect to coli-aerogenes. It has a maximum count of 75 coli-aerogenes organisms per 100 cubic centimeters.

Comparison of Results with those of Former Survey: In comparing the five-day biochemical oxygen demand results obtained in this survey with those of the earlier investigation, it becomes evident that the results obtained this year are as high as and in some cases higher than the maximum demands observed previously. The maximum biochemical oxygen demand recorded for the earlier survey occurred in December, 1933, during the early period of ice coverage and at a time when beet sugar wastes were discharged into the stream. Samples collected this winter were also taken during the period of ice coverage but the collections were made later, approximately a month after the close of the operating season of the American Crystal Sugar Company.

This winter, as shown in Table 8, the five-day biochemical oxygen was much higher at Stations 11 and 12 and at Pembina than formerly. At Grafton and at Drayton, results were similar to those obtained in the prior investigation, while results from Stations 13 and 14 were slightly lower. As intimated earlier, the extremely high demands which occurred at Station 12 this season may be attributed to the depth of sampling. The highest demand occurred near the bottom and pointed to the presence of an extensive de-

posit of sludge, rich in organic matter. In part, at least, this sludge was derived from the deposition of beet sugar wastes behind the dam.

Dissolved oxygen was depleted at all points in the Red River and offensive odors prevailed. This condition was very similar to that observed while the stream was under ice coverage during the winter of 1932-33.

It is difficult to compare the bacteriological results in this case because the results were reported according to Phelps' index in the earlier investigations and according to the most probable number in this survey. On the basis of a very general consideration, however, it is permissible to make the observation that in contrast to the very substantial increase in the five-day biochemical oxygen demand that occurred at certain stations there was no proportionate increase in the number of coli-aerogenes organisms over that observed earlier.

Station 14, located on the Red Lake River, showed some improvement of conditions as compared to results obtained in 1932 and 1933. Formerly, fairly high five-day biochemical oxygen demands and high bacteriological counts occurred at this station at times, but this winter the demand was reasonably low and the bacteria were few, although the low dissolved oxygen indicated pollution. The improvement noted at this station may be attributed to the construction of a dam, which prevents backflow of contaminated water from the Red River. Oxidation of organic substances from some upstream sources and the inability of the stream to provide re-aeration under ice coverage accounts for the low dissolved oxygen at this point.

Biological Results. Samples of bottom sediment were taken at each station and the organisms removed and counted in accordance with the procedure set forth in the Eighth Edition of Standard Methods of Water Analysis.*

Because the bottom-dwelling organisms have a much reduced metabolism in winter and respond, therefore, more slowly to changes in the environment, there is also a lag in their response to an increase in pollution. It is also true that in winter, when cleanwater forms are killed by rather extended periods of oxygen depletion, their bodies may, as a result of prevalent low temperatures, remain in the sediment for long periods before they disintegrate. It is, therefore, necessary to interpret winter data with some care especially where summer and winter conditions may be widely variant. This lag in the response of the biological index of pollution is, in a sense, a disadvantage, but it may also be useful inasmuch as it is evidence of the past characteristics of the stream. If, for example, under winter conditions, the dissolved oxygen is entirely depleted and the biochemical oxygen demand is high, and collections of bottom sediment are made early enough to retain recogniz-

^{*}Standard Methods for the Examination of Water and Sewage, Eighth Edition, American Public Health Association, 1936.

able remnants of clean-water forms, very definite evidence is offered that conditions have been better. It may be assumed from the evidence of these clean-water forms that during periods of open water the stream was relatively unpolluted at that point and that the zone of pollution had advanced downstream under ice coverage as indicated by the other determinations. Conversely, collections containing no clean-water forms indicate that serious pollution exists summer and winter or that the collections of samples took place after the more sensitive forms disappeared through decomposition. In extreme cases even the hardy pollutional types of organisms may be killed off during the later period of ice coverage.

If these facts are kept in mind, the interpretation of the results obtained during this survey is simplified. In this case, there was a complete oxygen reduction in the Red River proper, and the presence of hydrogen sulphide was readily detected. This combination is toxic to most forms of life. The presence of partially decayed mayfly nymphs and gaping, blackened mollusk shells with muscle fragments still adhering to the valves, indicated that clean-water forms were disappearing. A number of clean-water forms-which did not yet show any signs of disintegration-occurred in certain downstream samples. These organisms may have been more resistant to decay or to the increasing oxygen depletion than the soft-bodied mayflies and mollusks. The final disintegration and disappearance of these forms would have been only a matter of time, however, under the conditions which prevailed. In the pool above the dam at Grand Forks, where oxygen depletion probably occurred first, even hardy pollutional types were found as disintegrated fragments.

Because remnants of the clean-water forms which occur in summer still remained at certain points, the full effect of winter conditions was not registered on the bottom fauna at the time of this investigation. The data obtained reflected, therefore, late summer and early fall conditions to a large extent. On this basis, it is evident that serious pollution extends only as far as Station 13 at Oslo in summer during periods of open water. Clean-water forms were missing or were few in number at and above Oslo, and pollutional types predominated. North of Station 13, conditions were improved as was evidenced by increasing numbers of cleanwater forms and facultative pollutional types. (See Table 5.)

Pollutional forms were predominant in the sediment samples taken at Station 14 although the supernatant water had a very low five-day biochemical oxygen demand and thus showed no evidence of pollution other than low dissolved oxygen. The construction of a dam across the Red Lake River a short distance below Station 14 has facilitated the deposition of rich organic sediment. This sedimentation has shifted purification from the supernatant water to the bottom material, and thus the deposit reflects some of the artificial or natural upstream pollution of the river. The bottom

organisms have responded to the characteristics of this environment and, in this case, indicate pollution although it is not evident in the water flowing above it.

Plankton organisms unlike the bottom forms respond rather quickly to changes in the environment even in winter, and may vary rapidly with the supernatant water. At the time of this survey, plankton were relatively scarce at most points in the Red River. The nannoplankton, which in the winter of 1933 ranged from one million to twelve and one-half million organisms per liter, reached a maximum of only 67,000 per liter this winter. This maximum occurred at Station 11 above the sources of pollution at Grand Forks and East Grand Forks; all other samples contained lower concentrations of nannoplankton.

The net plankton representing larger, less abundant forms was collected by straining 100 liters through a standard silk net. Appreciable numbers of net plankton forms occurred only at Station 11 and consisted almost entirely of rotifers and immature copepods. Whereas formerly, there had been an increase in rotifers between Station 11 and Station 12, there was now a distinct reduction in numbers. At Station 11 there were 150 rotifers per liter and these were reduced to two per liter at Station 12. Although rotifers feed on bacteria and normally occur in large numbers where pollution exists, they do succumb to extreme conditions. Their sudden disappearance in so short a distance may be attributed to definite increase in pollution. Below Station 12 neither rotifers nor crustacea were taken in the plankton collections. With respect to pollution, increasingly unfavorable conditions are therefore indicated by the character and concentrations of net plankton and nannoplankton in the Red River below Station 11.

The following tables show the quantity of water flowing in the Red River during the time of the survey and during the winter of 1937-38, and comparative flows in 1932-34:

Discharge Records*

Discharge in cubic feet per second of the Red River of the North at Grand Forks, North Dakota. Measurements taken downstream from the junction of the Red Lake River and the Red River below Riverside Park Dam.

Dat	е	Flow in	Cu.Ft./Sec.
Feb.	1	\$0000000000000000000000000000000000000	66
Feb.	2	040000000000000000000000000000000000000	77
Feb.	3		89
Feb.	4	45400000000000000000000000000000000000	89
Feb.	5	#0000000000000000000000000000000000000	81
Feb.	6	######################################	73
Feb.	7		66
Feb.	8	gaacaassagace***********************************	63
Feb.	9	\$65600000000000000000000000000000000000	63
Feb.	10		77
Feb.	11	#0000#W00#G0000#GW000000000000000000000	91
Feb.	12	860000000000000000000000000000000000000	91
Feb.	13		94
Feb.	14	800000000000000000000000000000000000000	89
Feb.	15	######################################	82
Mean	n V	elocity0	.30 feet per second

Discharge Cu.Ft./Sec. 1937-1938

Month	Mean	Maximum	Minimum	Mean	Velocity	Ft./Sec.
October	316	484	166		0.85	
November	214	336	94		0.75	
December	55.9	95	30		0.42	
January	61.3	91	36		0.34	
February	82.5	113	63		0.30	

Discharge Cu.Ft./Sec. 1933-1934

Month	Mean	Maximum	Minimum
October	31.7	60	21
November	79.0	135	50
December	52.5	61	42
January	39.0	56	18
February	40.7	64	24

Discharge Cu.Ft./Sec. 1932-1933

Month	Mean	Maximum	Minimum
October	36.0	100	13
November	82.7	114	64
December	57.4	81	33
January	38.6	48	31
February	33.6	76	-

^{*}From records of the United States Geological Survey, Office of District Engineer, St. Paul, Minnesota.

SUMMARY AND CONCLUSION

Information collected during this investigation agrees in general with that obtained in the former survey at the same season and on this portion of the river. It is apparent, however, that from the standpoint of oxygen resources the stream showed more marked evidence of pollution this winter than formerly. There was no trace of dissolved oxygen, the five-day biochemical oxygen demand was considerably higher, plankton organisms were seriously reduced and offensive odors were more general. Therefore, in spite of slightly higher stream flow and partial treatment of certain types of wastes, conditions seem to have been aggravated this winter.

To minimize these objectionable conditions in the stream, it will be necessary to reduce further the oxygen requirements of the wastes now discharged into the river. This will involve provisions for effective treatment of sewage from East Grand Forks and will necessitate additional treatment of wastes from the American Crystal Sugar Company. Further reduction in the strength of the sewage from Grand Forks is needed and treatment should be provided for the wastes from the flour mill and the packing plant.

This investigation confirmed the conclusions and requirements of the previous survey which were as follows:

"The Minnesota State Board of Health and the North Dakota State Department of Health are of the opinion, based on the findings of this investigation, that in order to improve the existing polluted condition of the Red River and to promote the best interests of those concerned, it will be necessary to provide treatment for the sewage and industrial wastes from all of the municipalities from Breckenridge to Grand Forks and East Grand Forks, inclusive, and for all of the major industrial wastes which are discharged separately into the section of the river under consideration."

It can also be logically concluded that this study has shown the desirability of carrying out a more extensive research investigation on the Red River of the North in order to determine the full effects of ice coverage. The period covered in such an investigation should extend from a time before freeze-up in the fall to several months after break-up in the spring. Sampling should include all flowing tributaries.

Tabulation of Dissolved Oxygen, Five-Day Biochemical Oxygen Demand, and Coli-Aerogenes Results

				and Con-	iner of erre.		
Station	Determination	2/2/38	2/3/38	2/4/38	2/7/38	2/8/38	2/9/38
11	5-day B.O.D. D.O. Coli-Aerog.		6.4 0.0 230	3.9 0.0 150		$^{12}_{0.0}_{230}$	4.6
12	5-day B.O.D. D.O. Coli-Aerog.		150 0.0 9,300	15 0.0 24,000		276+ 0.0 4,300	235 270
14	5-day B.O.D. D.O. Coli-Aerog.		2.7 1.2 36	2.9 0.7 73		2.2 0.15 75	2.7
13	5-day B.O.D. D.O. Coli-Aerog.	12 0.0	* * * * * * * * * * * * * * * * * * * *	13 0.0 46,000	9,300	10 0.0	8 21,000
G	5-day B.O.D. D.O. Coli-Aerog.	15 0.0		17 0.0 9,300	7,500	18 0.0	9,300
D	5-day B.O.D. D.O. Coli-Aerog.	26 0.0		33 0.0 15,000	24,000	16 0.0	18
P	5-day B.O.D. D.O. Coli-Aerog.	93 0.0		98 0.0 9,300	24,000	82 0.0	80 15,000

RED RIVER OF THE NORTH SURVEY February, 1938 Table 1

5-Day B.O.D. and Coli-Aerogenes Numbers Results Expressed as Maximum, Minimum, and Average (A) B.O.D.

Station	Maximum	Minimum	Average
11	12	3.9	6.7
12	276+	15	169
14	2.9	2.2	2.6
13	13	8	11
G	18	15	. 17
D	33	. 16	23
P	98	80	88

Station .	Maximum	Aerogenes Minimum	Average
11	230	91	164
12	24,000	270	4,020
14	75	30	49
13	46,000	9,300	20,800
G	9,300	7,500	8,650
D	24,000	15,000	20,500
	24,000		· 15,000

RED RIVER OF THE NORTH SURVEY February, 1938 Table 2

TABULATION OF CHEMICAL ANALYSIS Hardness, Alkalinity and Solids as Parts Per Million February 2 and 3, 1938

Determination	Sta. 14	Sta. 11	Sta. 12	Sta. 13	Sta. G	Sta. D	Sta. P
Total Hardness. Alkalinity pH Total Solids Total Suspended Solids Total Volatile Matter Total Suspended Volatile Matter.	7.5 1,100 2.3	570 560 7.6 760 9 250 5.5	1,000 820 7.1 1,500 54 520 54	740 470 7.4 1,100 7.5 310 6	720 410 7.4 1,100 6 250 3.5	660 440 7.4 1,000 11 270 10	770 490 7.4 1,200 40 330 30

RED RIVER OF THE NORTH SURVEY

BOTTOM FAUNA

Organisms per Square Yard

				0.0	or alamba rad ourselle	of market	T COL							
Owniewe	Station	Station No. 14	Station No. 11	No. 11	Station No. 12	No. 12	Station No. 13	No. 13	Station G	on G	Station	n D	Station	n P
Organisms	*West	East	South	North	West	East	South	North	West	East	West	East	West	East
Limnodrilus	259	1,187	940	564	12	:	165	329	94	306	12	82	47	188
Tubliex		.0	47		:		· 0			- (:		:
Errobdella punctata	47	250	:	- 61		:	935	94	27	702	:	10		76
Glossiphonia complanata		1 :		1:	: :	: :	3 :	: :	24.	3 :		3 :		H .
Nematodes	:	:			12	:	:	:	:			:		
Ephoron		12	:	:	:	:	:	:		:				•
Polycentropidae			:					12	240	7.1	:	1,340	00 07 07 07	:
Chaoborus punctipennis		•	47			:	24	12		:	:			
Chironomus sp. No. 1		:		:		:		000	12	24	176	1000		
Chironomus decorus		:	24	000		12	:	:	12	:		:	:	:
Palpomyia	12	,	24	:	:	:	71	12	35	30		141	. 12	200
Pentaneura carnea	:	* * * * * * * * * * * * * * * * * * * *	:	200			*]	59	240		:	2,515	153	24
Fentaneura decolorata	:1	.0	• (:	• (7.1	+	• !					*!
Freeladius cuiteitormis	17	273	921	341	:	77		:	122					47
Tanypus species	* 1	- 1	:	:	:	•	:	:	:	24	:		:	:
Amnicola	12	12	• • • • • • • • • • • • • • • • • • • •			:						141		:
Sphaenum	53	12	25.0	22			118	00	306	1710	11388	30	:	
Ferrissia	:	:		:	:	•	:	:	• • •	12	:	* 1		
Valvata		:	:	:	:	:	:	:		:		12	:	:
Hyallela knickerbockeri	77	:	:	:	:	:	:	:	24	:	:	27	:	:
		-			-									

HJaws and heads of decomposed C. decorus present.

TDecayed remains of mayfly mymphs present.

10th yone-third of total number of shells taken—remaining fingernail clams dead.

*Refers yo sail, young specimens.

*Refers to side of river bank.

RED RIVER OF THE NORTH SURVEY February, 1938

Table 4

BOTTOM FAUNA Summary and Classification as Pollutional Index Organisms

-	Pollution	al Forms	Facult Pollution		Clean-Wa	ter Forms	Total No. Per	No. of
Station	Average No. Per Sq. Yd.	Per Cent	Average No. Per Sq. Yd.	Per Cent	Average No. Per Sq. Yd.	Per Cent	Sq. Yd.	Species
14 11 12 13 G D	864 1,234 18 646 283 94 153	80.7 74.5 75 70.4 24.7 3.7 39.4	194 411 6 223 670 1,727 88	18.2 24.8 25 24.4 58.7 67.4 22.7	12 12 0 47 190 740 147	1.1 0.7 0.0 5.2 16.6 28.9 37.9	1,071 1,657 24 918 1,144 2,562 388	9 9 4 10 9 10 6

RED RIVER OF THE NORTH SURVEY February, 1938 Table 5

NANNOPLANKTON

			121011				
Organism		0	RGANIS	MS PEF	RLITER	3	
Organism	Sta. 14	Sta. 11	*Sta. 12	Sta. 13	Sta. G	Sta. D	Sta. P
ALGAE Myxophyceae Oscillatoria sp Oscillatoria geminata	75 92,800	Present 2,880		.)			
Bacillarieae	92,875	2,880					
Cocconeis placentula. Cyclotella. Diatoma vulgare Gyrosigma. Homoeocladia sigmoidea Lysigonium. Navicula. Synedra ulna	38,800 Present 75 525	58,300 Present 50 1,350 50 75		Present 29,500 400 1,300 150 1,950	2,880 Present 125 200	2,160 150 	47,500 Present
Chlorophyceae Ankistrodesmus Coelastrum microporum Crucigenia quadrata Glococystis. Scenedesmus quadricauda		59,825 Present Present		Present Present	3,455 Present	2,385	47,675
PROTOZOA Mastigophora Trachelomonas volvocina Infusoria Ciliate protozoa	1,440	2,880		1,750	475	2,160	150
MISCELLANEOUS Rotifer eggs	Present						
Total No. of organisms Per Liter	2,740 135,015	67,185		35,050	3.930	2,360 4,745	$\frac{150}{47,825}$

*Too much sediment—no count could be made. RED RIVER OF THE NORTH SURVEY February, 1938 Table 6

NET PLANKTON

Organism		ORG	ANISMS	PER	00 LITI	ERS	
Organism	*Sta. 14	Sta. 11	Sta. 12	Sta. 13	*Sta. G	*Sta. D	Sta. P
ALGAE Myxophyceae Oscillatoria Bacillarieae			75	120			1
Diatoma vulgare							150 1,425
PROTOZOA			75	120			1,575
Infusoria Ciliate protozoa Vorticella		1,600 200		60			
ROTIFERA		1,800		60			
Brachionus capsuliflorus Keratella cochlearis Keratella aculeata		2,100 8,900 1,600	75				
Polyarthra trigla Soft-bodied rotifers		1,700	75				
Synchaeta		400	75				
CRUSTACEA Nauplii		14,800	225				
MISCELLANEOUS		1,100					
Rotifer eggs		11,700					
Total No. of organisms		11,700					
per 100 liters		29,400	300	180			1,575

*No organisms.

RED RIVER OF THE NORTH SURVEY February, 1938 Table 7

Comparison of Oxygen Resources and Bacterial Concentrations December 1933 and February 1938*

	Dissolved Oxygen			B.O.D.	**Coli-A	
Station	1315501700		0 (41)		Phelps' I	M.P.N.
	Dec. 1933	Feb. 1938	Dec. 1933	Feb. 1938	Dec. 1933	Feb. 1938
14 11	10.0 18.1	0.15 0.0	4.7 5.5	2.9	1,000	75 230
12 13	0.0	0.0	78 23+	276+	1,000	24,000 46,000
D P	0.0 0.0 0.6	0.0 0.0 0.0	32	33 98	1,000 1,000 10,000	24,000 24,000

RED RIVER OF THE NORTH SURVEY
Table 8

^{*}Maximum B.O.D. and bacterial count, and minimum D.O. **Number of organisms of coli-aerogenes group per 100 ml. at 37°C.

Phelps' I—Coli-aerogenes recorded according to Phelp's Index.

M.P.N.—Coli-aerogenes recorded as most probable number.

B.O.D.—Biochemical oxygen demand, incubated sample, 5 days at 20°C. expressed in parts per million.

D.O.-Dissolved oxygen in parts per million.

WA 689 N864r 1942

31020170R

10201700

NLM 05143381 2

NATIONAL LIBRARY OF MEDICINE