scratch (/github/ryo0921/scratch/tree/master) / 02 (/github/ryo0921/scratch/tree/master/02)

Stochastic Processes: **Data Analysis and Computer Simulation**

Distribution function and random number

3. The central limit theorem

3.1. Binomial distribution → Gauss distribution

From the previous lesson

• The binomial distribution becomes equivalent to the Gaussian distribution in the limit $n, M \gg 1$, as shown in the 1st plot of this week.

$$P(n) = \frac{M!}{n!(M-n)!} p^n (1-p)^{M-n}$$
 (C6)

$$\frac{n \cdot M \gg 1}{n \to cont.} \xrightarrow{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(n-\mu_1)^2}{2\sigma^2} \right]$$

$$\mu_1 = Mp, \quad \sigma^2 = Mp(1-p)$$
(C1)
(C7, C8)

$$\mu_1 = Mp, \quad \sigma^2 = Mp(1-p)$$
 (C7, C8)

Numerical experiment 1

· While the proof for the equivalence has been given in the supplemental note, let us examine this by performing numerical experiments for various values of M=1,2,4,10,100 and 1000.

Include libraries

In [1]: |% matplotlib inline

import numpy as np # import numpy library as np import math # use mathematical functions defined by the C standard import matplotlib.pyplot as plt # import pyplot library as plt plt.style.use('ggplot') # use "ggplot" style for graphs

1 / 5 2017/05/24 10:18

```
In [2]: p = 0.5
                   # set p, propability to obtain "head" from a coin toss
        M = 50
                  # set M, number of tosses in one experiment
        N = 100000 # number of experiments
        ave = M*p
        std = np.sqrt(M*p*(1-p))
        print('p =',p,'M =',M)
        np.random.seed(0) # initialize the random number generator with seed=0
        X = np.random.binomial(M,p,N) # generate the number of head come up N ti
        nmin=np.int(ave-std*5)
        nmax=np.int(ave+std*5)
        nbin=nmax-nmin+1
        plt.hist(X,range=[nmin,nmax],bins=nbin,normed=True) # plot normalized hi
        x = np.arange(nmin,nmax,0.01/std) # create array of x from nmin to nmax
        y = np.exp(-(x-ave)**2/(2*std**2))/np.sqrt(2*np.pi*std**2) # calculate t
        plt.plot(x,y,color='b') # plot y vs. x with blue line
        plt.xlabel(r'$n$',fontsize=16) # set x-label
        plt.ylabel(r'$P(n)$',fontsize=16) # set y-label
        plt.legend([r'Gauss',r'histogram'], fontsize=16) # set legends
        plt.show() # display plots
```

p = 0.5 M = 50

What we can learn from the experiment

• Stochastic variable "s" is a result of single binary choice,

$$s = 0 \text{ or } 1 \tag{1}$$

and Stochastic variable " n^M " is a sum of M independent binary choices s, with the index j representing the j-th choice.

$$n^M = \sum_{j=1}^M s_j \tag{2}$$

For
$$M = 1$$

$$n^{M=1} = s_1 = s = 0 \text{ or } 1$$
 (D1)

• Distribution function \rightarrow Binary choice, $P^{M=1}(0) = 1 - p$, $P^{M=1}(1) = p$, with

$$\mu_1^{M=1} = p,$$
 $\sigma_{M=1}^2 = p(1-p)$ (D2, D3)

2 / 5 2017/05/24 10:18

For $M \gg 1$

$$n^{M} = \sum_{i=1}^{M} s_{i} = \sum_{j=1}^{M} n_{j}^{M=1}$$
 (D4)

• Distribution function → Gaussian with

$$\mu_1^{M \gg 1} = M \mu_1^{M=1}, \qquad \sigma_{M \gg 1}^2 = M \sigma_{M=1}^2$$
 (D5, D6)

3.2. The central limiting theorem (CLT)

Generalization of Eqs. (D4-D6) for $M\gg 1$

CLT for sum of stochastic variables

• Stochastic variable " n^M " as a SUM of any M independent stochastic variables $n^{M=1}$ with $\mu_1^{M=1}$ and $\sigma_{M=1}^2$,

$$n^{M} = \sum_{j=1}^{M} n_{j}^{M=1} \tag{D7}$$

Distribution function → Gauss with

$$\mu_1^{M\gg 1} = M\mu_1^{M=1}, \qquad \sigma_{M\gg 1}^2 = M\sigma_{M=1}^2$$
 (D8, D9)

CLT for average of stochastic variables

• Stochastic variable " n^M " as an AVERAGE of any M independent stochastic variables with $\mu^{M=1}$ and $\sigma^2_{M=1}$,

$$n^M = \frac{1}{M} \sum_{i=1}^{M} n_i^{M=1}$$
 (D10)

ullet Distribution function o Gauss with

$$\mu_1^{M\gg 1} = \mu_1^{M=1}, \qquad \qquad \sigma_{M\gg 1}^2 = \frac{\sigma_{M=1}^2}{M}$$
 (D11, D12)

• Eqs. (D7-D12) is called "the central limiting theorem".

3.3. Uniform distribution \rightarrow Gauss distribution

From CLT

For M = 1

• Stochastic variable "x" is uniformly distributed between 0 and 1,

$$x^{M=1} \in [0:1] \tag{D13}$$

• Distribution function: $P^{M=1}(x) = 1$ (for $0 \le x < 1$), $P^{M=1}(x) = 0$ (otherwise)

$$\mu_1^{M=1} = \frac{1}{2},$$
 $\sigma_{M=1}^2 = \frac{1}{12}$
(D14, D15)

For $M \gg 1$

ullet Stochastic variable "x" is a sum of M independent uniform random numbers

$$x^{M} = \sum_{j=1}^{M} x_{j}^{M=1}$$
 (D16)

• Distribution function → Gauss with

$$\mu_1^{M\gg 1} = M\mu_1^{M=1} = \frac{M}{2},$$
 $\sigma_{M\gg 1}^2 = M\sigma_{M=1}^2 = \frac{M}{12}$ (D17, D18)

Numerical experiment 2

```
In [3]: M = 10
                  # set M, the number of random variables to add
        N = 100000 # number samples to draw, for each of the random variables
        ave = M/2
        std = np.sqrt(M/12)
        print('M =',M)
        np.random.seed(0)
                                 # initialize the random number generator with s
        X = np.zeros(N)
        for i in range(N):
            X[i] += np.sum(np.random.rand(M)) # draw a random numbers for each c
        nmin=np.int(ave-std*5)
        nmax=np.int(ave+std*5)
        plt.hist(X,range=[nmin,nmax],bins=50,normed=True) # plot normalized hist
        x = np.arange(nmin,nmax,0.01/std) # create array of x from nmin to nmax
        y = np.exp(-(x-ave)**2/(2*std**2))/np.sqrt(2*np.pi*std**2) # calculate t
        plt.plot(x,y,color='b') # plot y vs. x with blue line
        plt.xlabel(r'n, fontsize=16) # set x-label
        plt.ylabel(r'$P(n)$',fontsize=16) # set y-label
        plt.legend([r'Gauss',r'histogram'], fontsize=16) # set legends
        plt.show() # display plots
```

M = 10

5 / 5