CHARACTERIZING VERTICES OF WAASSERSTEIN BALL

 \mathbf{S}

ABSTRACT. We study the combinatorics of the Wasserstein-1 metric for various distances.

1. Introduction

The probability simplex

$$\Delta_{n-1} := \left\{ (p_1, \dots, p_n) \mid \sum_{i=1}^n p_i = 1 \text{ and } p_i \ge 0 \ \forall \ i = 1, \dots, n \right\}$$

consists of probability distributions of a discrete random variable with a state space of size n. We take this state space to be $[n] := \{1, \ldots, n\}$. A statistical model \mathcal{M} is a subset of Δ_{n-1} which represents distributions to which a hypothesized unknown distribution $\boldsymbol{\nu}$ belongs. Typically, after collecting data $\boldsymbol{u} = (u_1, \cdots, u_n)$ where u_i is the number of times outcome i is observed, one forms the empirical distribution $\bar{\boldsymbol{\mu}} = \frac{1}{N}\boldsymbol{u}$ where $N = \sum_{i=1}^{n}u_i$ is the sample size. Note that $\bar{\boldsymbol{\mu}} \in \Delta_{n-1}$. To estimate the unknown distribution $\boldsymbol{\nu}$, a standard approach is to locate $\boldsymbol{\nu} \in \mathcal{M}$, that is a "closest" point to $\bar{\boldsymbol{\mu}}$. For instance, $\boldsymbol{\nu}$ can be taken to be the maximum likelihood estimator [Sul18, Chapter 7] of $\bar{\boldsymbol{\mu}}$. In this case, $\boldsymbol{\nu}$ is the point on \mathcal{M} that minimizes the Kullback-Leibler divergence from $\bar{\boldsymbol{\mu}}$ to \mathcal{M} . However, Kullback-Leibler divergence is not a metric, and the maximum likelihood estimator does not minimize a true distance function from $\bar{\boldsymbol{\mu}}$ to \mathcal{M} .

For the above density estimation problem, one can use a distance minimization approach if the state space [n] is also a metric space. A metric on [n] is a collection of nonnegative real numbers d_{ij} for $i, j \in [n]$ such that $d_{ii} = 0$ for all $i \in [n]$, $d_{ij} = d_{ji}$, and the triangle inequality $d_{ik} \leq d_{ij} + d_{jk}$ holds for all $i, j, k \in [n]$. Sometimes, the metric on [n] is written as an $n \times n$ nonnegative symmetric matrix $d = (d_{ij})_{i,j \in [n]}$. Common examples include the discrete metric (all $d_{ij} = 1$), the L_1 metric $(d_{ij} = |i - j|)$, the L_0 metric, and the Hamming distance metric.

For two probability distributions $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ in Δ_{n-1} , the optimal value $W_d(\boldsymbol{\mu}, \boldsymbol{\nu})$ of the following linear program is the Wasserstein distance between $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ based on the metric (d_{ij}) :

(1) maximize
$$\sum_{i=1}^{n} (\mu_i - \nu_i) x_i$$
 subject to $|x_i - x_j| \le d_{ij}$ for all $1 \le i < j \le n$.

Date: July 2024.

This means we can define $W_d(\boldsymbol{\mu}, \boldsymbol{\nu})$ for any pair of vectors $\boldsymbol{\mu}, \boldsymbol{\nu}$ satisfying $\mathbf{1}^\top \boldsymbol{\mu} = \mathbf{1}^\top \boldsymbol{\nu}$. One should note that the constraint set of the variable \boldsymbol{x} in problem 1 is unbounded and that if $\boldsymbol{\alpha} \in H_{n-1} := \{ \boldsymbol{x} \in \mathbb{R}^n \mid \mathbf{1}^\top \boldsymbol{x} = 0 \}$ and $\boldsymbol{\lambda} \in \mathbb{R}$ then $\boldsymbol{\alpha}^\top (\boldsymbol{x} + \lambda \mathbf{1}) = \boldsymbol{\alpha}^\top \boldsymbol{x}$. So we can equivalently formulate it as

$$W_d(\boldsymbol{\mu}, \boldsymbol{\nu}) = \max \left\{ (\boldsymbol{\mu} - \boldsymbol{\nu})^\top \boldsymbol{x} \mid \boldsymbol{x} \in H_{n-1}, |x_i - x_j| \le d_{ij} \ \forall \ i, j \right\}$$

which has a bounded constraint set. The constraint set of this linear program is called the Lipshitz polytope

$$P_d = \{ \boldsymbol{x} \in H_{n-1} \mid |x_i - x_j| \le d_{ij} \ \forall \ 1 \le i < j \le n \}.$$

The Wasserstein distance $W_d(\boldsymbol{\mu}, \mathcal{M})$ from $\boldsymbol{\mu} \in \Delta_{n-1}$ to a set $\boldsymbol{\mathcal{M}}$ is the infimum of $W_d(\boldsymbol{\mu}, \boldsymbol{\nu})$ as $\boldsymbol{\nu}$ ranges over $\boldsymbol{\mathcal{M}}$:

(2)
$$W_d(\boldsymbol{\mu}, \mathcal{M}) := \min_{\boldsymbol{\nu} \in \mathcal{M}} W_d(\boldsymbol{\mu}, \boldsymbol{\nu}).$$

This has been successfully used to construct a version of Generative Adversarial Networks [ACB17] where $W_d(\cdot, \mathcal{M})$ is used as the loss function. However, for large n, computing $W_d(\boldsymbol{\mu}, \mathcal{M})$ exactly is not feasible with the current state of knowledge. If we take $\mathcal{M} = \{\boldsymbol{\nu}\}$ we recover the original Wasserstein distance $W_d(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min\{\lambda \geq 0 \mid \boldsymbol{\nu} \in \boldsymbol{\mu} + \lambda B\}$.

In this paper our starting point is [ÇJM+20; ÇJM+21] to study the combinatorics of the Wasserstein unit ball. Such combinatorics is governs the combinatorial complexity (contrast against algebraic complexity) of problem 2. We first recall this approach.

The Wasserstein distance W_d induced by the finite metric d on [n] defines a norm on H_{n-1} namely

$$\|\boldsymbol{\alpha}\|_d = \|\boldsymbol{\alpha}\|_d^W = \max\left\{\boldsymbol{\alpha}^\top \boldsymbol{\mu} \mid \boldsymbol{x} \in H_{n-1}, |x_i - x_j| \le d_{ij} \ \forall \ 1 \le i < j \le n\right\}.$$

The unit ball of this norm is the polytope

(3)
$$B_d = \operatorname{conv} \left\{ \frac{1}{d_{ij}} (\boldsymbol{e}_i - \boldsymbol{e}_j) : 1 \le i < j \le n \right\},$$

where B lies in the hyperplane H_{n-1} and is the dual of the Lipshitz polytope P_d . It is well known that the k dimensional facets of P_d are in on-to-one correspondence with the k codimensional facets of B_d . In other words, the number of k dimensional facets of P_d is equal to the number of n-2-k dimensional facets of B_d .

2. Vertices of B_d with d induced by a graph

Consider the discrete metric d on [n]. Formally this is given by $d_{ij} = 1 \,\forall i \neq j$. [CM14; $\Color CJM+21$] prove that the number of k dimensional facets of B_d is $\binom{n}{k+2}(2^{k+2}-2)$. In particular, the number of vertices (k=0) is n(n-1). This is the maximum number of possible vertices a Wasserstein ball can have, for any metric d, by the description in Equation (3). Here is an alternate way to think about the metric d. Consider the complete graph K_n on n vertices, labelled with [n], so every vertex is connected to every other vertex

by an edge. Then $d_{ij} = 1$ is the length of the shortest path to reach j from i on this graph. This graph has precisely $\binom{n}{2}$ edges. Soon it will turn out that the number of vertices of B_d being double the number of edges is not a coincidence. Further, based on this example, we propose the following definition.

Definition 2.1 (Wasserstein metric based on a graph). Let G = ([n], E, w) be a connected weighted undirected graph without self loops that has vertices [n], edges E and non-negative weights given by $w : E^2 \to \mathbb{R}_{\geq 0}$. If G is unweighted, we simply treat G as a weighted graph with weights of all edges as 1. Define d_{ij} to be the weighted length of the shortest path from vertex i to j. The Wasserstein metric W_G based on graph G is defined to be the Wasserstein metric W_d based on d.

Corresponding to the abovementioned Wasserstein metric W_G , its unit ball in H_{n-1} will be denoted by B_G .

Example 2.2. The metric induced by an unweighted line graph on n vertices is said to be the L_1 metric on [n]. Let's look at n=3. So G is 1—2—3. The corresponding metric is given by $d_{ij}=|i-j|$. According to Equation (3), B_G is the convex hull of the points $\mathbf{u}_{\pm}=\pm(1,-1,0), \mathbf{v}_{\pm}=\pm(0,1,-1), \mathbf{w}_{\pm}=\pm(0.5,0,-0.5)$. But $\mathbf{w}_{\pm}=\frac{1}{2}\mathbf{u}_{\pm}+\frac{1}{2}\mathbf{v}_{\pm}$ hence not vertices. The vertices of B_G turn out to be exactly $\mathbf{u}_{\pm}, \mathbf{v}_{\pm}$; so total 4 in number. Again observe that the number of vertices of B_G is double the number of edges in G.

Next we will turn towards the key result in this section, namely the phenomenon we observed both for the discrete and L_1 metric. Such results have been studied for weighted graphs in [MP22, Theorem 2, §3.1], however our proof technique is purely combinatorial and constructions are slightly different.

Theorem 2.3. Let G = ([n], E) be a connect unweighted undirected graph without self loops on n vertices. Then the unit ball B_G of the Wasserstein metric induced by G has precisely 2|E| vertices, namely $\{e_i - e_j \mid \{i, j\} \in E\}$.

Before starting the proof right away, we present an observation that was key in the examples of discrete and L_1 metrics. Our graph G is connected, unweighted and undirected. If shortest path from i to j is $i = x_1 \to x_2 \to \cdots \to x_p = j$ then $d_{ij} = p - 1$ and $\frac{\boldsymbol{e}_j - \boldsymbol{e}_i}{d_{ij}} = \frac{\boldsymbol{e}_j - \boldsymbol{e}_i}{p - 1} =$

$$\frac{1}{p-1} \sum_{t=1}^{p-1} (\boldsymbol{e}_{t+1} - \boldsymbol{e}_t) = \frac{1}{p-1} \sum_{t=1}^{p-1} \frac{\boldsymbol{e}_{x_{t+1}} - \boldsymbol{e}_{x_t}}{d_{x_t x_{t+1}}}.$$
 In other words, $\frac{\boldsymbol{e}_j - \boldsymbol{e}_i}{d_{ij}}$ is never a vertex of B_G

because it is a convex combination of some other points in B_G corresponding to edges in G.

If we want to determine a d, for given n and number of vertices 2α , for which the constraint matrix M satisfies that its rank is 2α , we want to find a rank 2 matrix M with the rows being $\frac{\mathbf{e}_i - \mathbf{e}_j}{d_{ij}}$, such that its rank is 2α , then equivalently we want to search for a matrix $X = M^{\top}M \succeq 0$ with rank 2α .

References

- [CM14] P. Cellini and M. Marietti. "Root polytopes and Abelian ideals". In: *Journal of Algebraic Combinatorics* 39.3 (2014), pp. 607–645. DOI: 10.1007/s10801-013-0458-5. URL: https://doi.org/10.1007/s10801-013-0458-5.
- [ACB17] M. Arjovsky, S. Chintala, and L. Bottou. "Wasserstein Generative Adversarial Networks". In: *Proceedings of the 34th International Conference on Machine Learning*. Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017, pp. 214–223. URL: https://proceedings.mlr.press/v70/arjovsky17a.html.
- [Sul18] S. Sullivant. Algebraic statistics. Vol. 194. American Mathematical Soc., 2018.
- [ÇJM+21] T. Ö. Çelik, A. Jamneshan, G. Montúfar, B. Sturmfels, and L. Venturello. "Wasserstein distance to independence models". In: *Journal of symbolic computation* 104 (2021), pp. 855–873.
- [MP22] L. Montrucchio and G. Pistone. "Kantorovich distance on finite metric spaces: Arens–Eells norm and CUT norms". In: *Information Geometry* 5.1 (2022), pp. 209-245. DOI: 10.1007/s41884-021-00050-w. URL: https://doi.org/10.1007/s41884-021-00050-w.
- [ÇJM+20] T. Ö. Çelik, A. Jamneshan, G. Montúfar, B. Sturmfels, and L. Venturello. "Optimal transport to a variety". In: Mathematical aspects of computer and information sciences. Vol. 11989. Lecture Notes in Comput. Sci. Springer, Cham, [2020] ©2020, pp. 364–381.