Complex Analysis I: Problem Set IX

Youngduck Choi CILVR Lab New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the problem set IX of Complex Analysis I 2015 at Courant Institute of Mathematical Sciences.

Question 1.

1. Evaluate the integral

$$\int_{\gamma} \frac{dz}{z^2 + 1}$$

for

$$\gamma(\theta) = 2|\cos 2\theta| e^{i\theta}, \quad 0 \le \theta \le 2\pi.$$

Solution. By drawing the contour on the complex plane, we observe that γ forms 4 simple closed contours, for each direction of the axis. We denote these contours as $\gamma_1, \gamma_2, \gamma_3$, and γ_4 respectively in a counter-clockwise fashion. Observe that $f(z) = \frac{1}{z^2+1}$ is singular at $z=\pm i$. z=i belongs to the interior of γ_2 contour, and z=-i belongs to the interior of γ_4 contour. By the Cauchy-Residue formula, we obtain

$$\begin{split} & \int_{\gamma_1} \frac{dz}{z^2 + 1} &= 0 \\ & \int_{\gamma_2} \frac{dz}{z^2 + 1} &= 2\pi i \mathrm{Res}_{z=i} \frac{1}{z^2 + 1} \\ & \int_{\gamma_3} \frac{dz}{z^2 + 1} &= 0 \\ & \int_{\gamma_4} \frac{dz}{z^2 + 1} &= 2\pi i \mathrm{Res}_{z=-i} \frac{1}{z^2 + 1}. \end{split}$$

As it can be written that $f(z)=\frac{\phi(z)}{z-i}$, where $\phi(z)=\frac{1}{z+i}$, the residue at z=i is $\phi(i)=\frac{1}{2i}$. On the other hand, as it can be written that $f(z)=\frac{\phi(z)}{z+i}$, where $\phi(z)=\frac{1}{z-i}$, the residue at z=-i

is $\phi(i) = -\frac{1}{2i}$. Consequently, we have

$$\begin{split} & \int_{\gamma_2} \frac{dz}{z^2 + 1} &= 2\pi i \frac{1}{2i} = \pi \\ & \int_{\gamma_4} \frac{dz}{z^2 + 1} &= 2\pi i (-\frac{1}{2i}) = -\pi. \end{split}$$

Therefore, it follows that

$$\int_{\gamma} \frac{dz}{z^2 + 1} = \int_{\gamma_1} \frac{dz}{z^2 + 1} + \int_{\gamma_2} \frac{dz}{z^2 + 1} + \int_{\gamma_3} \frac{dz}{z^2 + 1} + \int_{\gamma_4} \frac{dz}{z^2 + 1}$$

$$= 0.$$

Question 2.

2. Let

$$\gamma\left(\theta\right) = \left\{ \begin{array}{ll} \theta e^{i\theta}, & 0 \leq \theta \leq 2\pi, \\ 4\pi - \theta, & 2\pi \leq \theta \leq 4\pi. \end{array} \right.$$

Calculate

$$\int_{\gamma} \frac{dz}{z^2 + \pi^2}.$$

Solution. Observe that the function has isolated singularities at $z=\pm i\pi$. By observing the contour, we see that $i\pi$ lies outside of the contour, as $\gamma(\frac{\pi}{2})=\frac{\pi}{2}e^{i\frac{\pi}{2}}=i\frac{\pi}{2}$. On the other hand, $z=-i\pi$ lies on the interior of the contour as $\gamma(\frac{3\pi}{2})=\frac{3\pi}{2}e^{i\frac{3\pi}{2}}=-\frac{3\pi}{2}i$. Hence, by the Cauchy Residue theorem, we have

$$\int_{\gamma} \frac{dz}{z^2 + \pi^2} \ = \ 2\pi i {\rm Res}_{z=-i\pi} \frac{1}{z^2 + \pi^2}.$$

As it can be written that $f(z)=\frac{\phi(z)}{z+i\pi}$, where $\phi(z)=\frac{1}{z-i\pi}$, the residue at $z=-i\pi$ is $\phi(-i\pi)=-\frac{1}{2i\pi}$. Hence, it follows that

$$\int_{\gamma} \frac{dz}{z^2 + \pi^2} = 2\pi i \left(-\frac{1}{2i\pi}\right)$$
$$= -1.$$

Question 3.

3. Let $\lambda > 1$ and show the equation $\lambda - z - e^{-z} = 0$ has exactly one solution in the right half plane $\{z : \operatorname{Re} z > 0\}$.

Solution. Firstly, the equation can be re-written as $\lambda-z=e^z$. Observe that it is necessary to have $|\lambda-z|=e^{-\mathrm{Re}z}$ to satisfy the above equation. As we only limit the space of possible solutions to be $\{z:\mathrm{Re}z>0\}$, it follows that it is necessary to have $|\lambda-z|<1$. Define $C=\{z\in\mathbb{C}\,|\,|\lambda-z|<1\}$. So far, we have shown that the solutions to the given equation, if it exists must lie on the interior of C. Let $f(z)=e^{-z}$ and $g(z)=\lambda-z$. Then, it follows that on C, $|g(z)|=|\lambda-z|=1$, and as $\lambda>1$, $|f(z)|=|e^{-z}|=e^{-\mathrm{Re}z}<1$. As f(z) and g(z) are entire, they are also analytic inside and on C. The conditions of Rouche's theorem are thus satisfied. Hence, $\lambda-z$ and $\lambda-z-e^{-z}$ have the same number of zeros, counting multiplicities inside C. Observe that $\lambda-z$ has a zero on $z=\lambda$. Thus, $\lambda-z-e^{-z}$ has one solution inside C. As we have shown that a solution to $\lambda-z-e^{-\lambda}$ must lie inside C, we have shown that $\lambda-z-e^{\lambda}$ has exactly one solution. \square

Question 4.

4. How many roots of

$$z^4 + 8z^3 + 3z^2 + 8z + 3 = 0$$

lie in the right half plane $\{z : \operatorname{Re} z > 0\}$.

Solution. Firstly, observe that the number of poles P is 0, as the given function $z^4+8z^3+3z^2+8z+3$, is entire. Let γ be a contour, which moves from -iR to iR as a semi-circle of a radius R. Since P=0, as $R\to\infty$, by the argument principle $Z=\frac{1}{2\pi}\triangle_{\gamma}{\rm arg}\,f(z)$, where Z is the number of zeros in the right plane. On γ , we can parametrize z has $z=Re^{i\theta}$. Then, the given equation can be re-written as

$$R^4 e^{i4\theta} \left(1 + \frac{8}{Re^{i\theta}} + \frac{3}{R^2 e^{i2\theta}} + \frac{8}{R^3 e^{i3\theta}} + \frac{3}{R^4 e^{i4\theta}}\right) = 0.$$

Observe that as $R\to\infty$, LHS $\to R^4e^{i4\theta}$. Hence, the argument changes by 4π from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. It follows that $Z=\frac{1}{2\pi}4\pi=2$. There are two zeros in the right plane.

Question 5.

5. Let $f \in H(B_R)$ for some R > 1. If |f(z)| > 2 for |z| = 1 and f(0) = 1. Must f have zero in B_1 ?

Solution. As B_1 is a circle of radius 1, centered around the origin, we have that the winding number of B_1 is simply 1. Observe that the given function is holomorphic, hence meromorphic with zero poles, interior to B_1 and is analytic on B_1 . Furthermore, as |f(z)| > 2 for |z| = 1, we have f is nonzero on B_1 . Therefore, by the argument principle, we have that the winding number is equal to Z - P where Z is the number of zeros and P is the number of poles of f(z) inside B_1 . Since P = 0 and the winding number is 1, we have that Z = 1. f must have zero in B_1 .

Question 6.

6. Let $f \in H(B_R)$ for some R > 1. If |f(z)| < 1 for |z| = 1, show that there is a unique z with |z| < 1 and f(z) = z. What can you say if we only have $|f(z)| \le 1$ for |z| = 1 instead.

Solution. As B_1 is a circle of radius 1, centered around the origin, we have that the winding number of B_1 is simply 1. As f is holomorphic on B_R for some R>1, we have f is analytic on B_1 . On B_1 , as we have |f(z)|<1, it follows that $|f(z)-z|\leq ||f(z)|-|z||=1-|f(z)|>0$. Therefore, f(z)-z is nonzero on B_1 . Therefore, by the argument principle, as above, with P=0, we have Z=1. Therefore, there exists a unique solution to the equation f(z)-z=0 inside B_1 , which is also a solution to f(z)=z as well. Hence, there exists a unique solution to f(z)=z inside B_1 . When we only have $|f(z)|\leq 1$ for |z|=1, we lose the nonzero property of f(z)-z on B_1 . Therefore, the argument will not work in that case.

Question 7.

7. Let
$$f, g \in C(\overline{B}_1) \cap H(B_1)$$
. If for $|z| = 1$, we have

$$\left| f\left(z\right) -g\left(z\right) \right| <\left| f\left(z\right) \right| +\left| g\left(z\right) \right| ,$$

then show f and g have the same number of zeroes (counting the multiplicities) in B_1 .

Solution. We are given that $f, g \in H(B_1)$ and f, g are continuous on B_1 . The conditions of symmetric Rouche's theorem are satisfied. Then, by the Symmetric Rouche's theorem, we have the same number of roots for f and g, counting the multiplicies in B_1 .