

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15120097601

FCC REPORT

(WIFI)

Applicant: Vimtag Technology Co., Ltd.

6F.West, 1st Building, Innovative Industrial Park, Nanshan

Address of Applicant: Cloud Valley, No.1183, Liuxian Avenue, Nanshan District, SZ,

CN.

Equipment Under Test (EUT)

Product Name: Cloud Camera

CP1, CP1-S, CP1-C, CP1-X, CP2, CP2-S, CP2-C, CP2-X,

Model No.: CP3, CP3-S, CP3-C, CP3-X, CP4, CP4-S, CP4-C, CP4-X,

CP5, CP5-S, CP5-C, CP5-X

Trade mark: Vimtag

FCC ID: 2AFG2-CP1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Dec., 2015

Date of Test: 16 Dec., 2015 to 14 Jan., 2016

Date of report issued: 15 Jan., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	15 Jan., 2016	Original

Tested by: Viki Zhu Date: 15 Jan., 2016

Test Engineer

Reviewed by: Date: 15 Jan., 2016

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7 6.7.	GI GINGGO ZIMIGGIGIN	
	6.7.		
	• • • • • • • • • • • • • • • • • • • •		
7	TES	ST SETUP PHOTO	67
8	EU1	CONSTRUCTIONAL DETAILS	69

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Vimtag Technology Co., Ltd.
Address of Applicant:	6F.West, 1st Building, Innovative Industrial Park, Nanshan Cloud Valley, No.1183, Liuxian Avenue, Nanshan District, SZ, CN.
Manufacturer/ Factory:	Vimtag Technology Co., Ltd.
Address of Manufacturer/Factory:	6F.West, 1st Building, Innovative Industrial Park, Nanshan Cloud Valley, No.1183, Liuxian Avenue, Nanshan District, SZ, CN.

5.2 General Description of E.U.T.

Product Name:	Cloud Camera
Model No.:	CP1,CP1-S,CP1-C,CP1-X,CP2,CP2-S,CP2-C,CP2-X,CP3, CP3-S,CP3-C,CP3-X, CP4,CP4-S,CP4-C,CP4-X, CP5,CP5-S, CP5-C,CP5-X
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.5dBi
AC adapter:	Model: XED-UL050200C Input:100-240V AC,50/60Hz 0.3A Output:5V DC MAX 2A
Remark:	Item No.: CP1,CP1-S,CP1-C,CP1-X,CP2,CP2-S,CP2-C,CP2-X,CP3, CP3-S,CP3-C,CP3-X, CP4,CP4-S,CP4-C,CP4-X, CP5,CP5-S, CP5-C,CP5-X were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
4 2427MHz 7		7	2442MHz					
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency	
The lowest channel	2412MHz	
The middle channel	2437MHz	
The Highest channel	2462MHz	

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15120097601

5.3 Test environment and mode

Operating Environment:	Operating Environment:				
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2009	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguency range (MHz)	Limit (d	BuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power a line impedance stabilization network (L.I.S.N.), which proceeds to the measuring equipments. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impowith 50ohm termination. (Please refer to the block diagram test setup and photographs). Both sides of A.C. line are checked for maximum conduction interference. In order to find the maximum emission, the repositions of equipment and all of the interface cables must changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.6 for details	;				
Test mode:	Refer to section 5.3 for details	;				
Test results:	Passed					
		-				

Measurement Data

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

model : CP1
Test Mode : Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark :

Kemark								
		Read	LISN	Cable		Limit		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu√	<u>dB</u>	
1	0.150	37.63	0.25	10.78	48.66	66.00	-17.34	QP
2	0.154	22.58	0.25	10.78	33.61	55.78	-22.17	Average
3	0.202	32.86	0.25	10.76	43.87	63.54	-19.67	QP
4	0.202	21.42	0.25	10.76	32.43	53.54	-21.11	Average
1 2 3 4 5 6 7 8 9	0.226	29.06	0.25	10.75	40.06	62.61	-22.55	QP
6	0.313	20.84	0.26	10.74	31.84	49.88	-18.04	Average
7	0.358	27.03	0.25	10.73	38.01	58.78	-20.77	QP
8	0.358	21.80	0.25	10.73	32.78	48.78	-16.00	Average
9	19.740	24.53	0.26	10.93	35.72	60.00	-24.28	QP
10	21.715	18.85	0.32	10.91	30.08	50.00	-19.92	Average
11	26.558	26.12	0.64	10.87	37.63	60.00	-22.37	QP
12	26.558	20.27	0.64	10.87	31.78	50.00	-18.22	Average

Line:

Trace: 3

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Cloud Camera EUT

: CP1 Model

Test Mode : Wifi mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Re

Remark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.158	35.89	0.27	10.78	46.94	65.56	-18.62	QP
2	0.158	20.62	0.27	10.78	31.67	55.56	-23.89	Average
3	0.174	35.86	0.27	10.77	46.90	64.77	-17.87	QP
4	0.178	20.04	0.28	10.77	31.09	54.59	-23.50	Average
5	0.202	30.90	0.28	10.76	41.94	63.54	-21.60	QP
1 2 3 4 5 6 7 8 9	0.358	28.98	0.27	10.73	39.98	58.78	-18.80	QP
7	0.358	18.37	0.27	10.73	29.37	48.78	-19.41	Average
8	19.740	16.42	0.34	10.93	27.69	50.00	-22.31	Average
9	21.715	22.37	0.40	10.91	33.68	60.00	-26.32	QP
10	23.140	18.14	0.46	10.89	29.49	50.00	-20.51	Average
11	26.558	22.91	0.63	10.87	34.41	60.00	-25.59	QP
12	26.558	17.31	0.63	10.87	28.81	50.00	-21.19	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Ma	ximum Conduct	Limit(dBm)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	rtosuit
Lowest	17.50	12.01	12.37	11.58		
Middle	17.30	12.95	12.99	11.86	30.00	Pass
Highest	17.87	13.19	13.55	11.98		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
1031011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	resuit
Lowest	10.24	16.64	17.76	36.48		
Middle	10.24	16.56	17.76	36.16	>500	Pass
Highest	10.24	16.56	17.76	36.16		

Test CH		99% Occupy	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesuit
Lowest	14.96	16.64	17.76	36.32		
Middle	14.96	16.56	17.76	36.00	N/A	N/A
Highest	15.04	16.64	17.84	36.00		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 27.DEC.2015 16:52:41

Lowest channel

Date: 27.DEC.2015 16:54:25

Middle channel

Date: 27.DEC.2015 17:01:00

Highest channel

Date: 27.DEC.2015 17:31:19

Lowest channel

Date: 27.DEC.2015 17:29:47

Middle channel

Date: 27.DEC.2015 17:28:19

Highest channel

Test mode: 802.11n(H20)

Date: 27.DEC.2015 17:33:28

Lowest channel

Date: 27.DEC.2015 17:34:49

Middle channel

Date: 27.DEC.2015 17:36:00

Highest channel

Test mode: 802.11n(H40)

Date: 27.DEC.2015 17:38:50

Lowest channel

Date: 27.DEC.2015 17:41:59

Middle channel

Date: 27.DEC.2015 17:43:56

Highest channel

99% OBW

Test mode: 802.11b

Date: 27.DEC.2015 17:19:42

Lowest channel

Date: 27.DEC.2015 17:20:13

Middle channel

Date: 27.DEC.2015 17:20:45

Highest channel

Date: 27.DEC.2015 17:18:44

Lowest channel

Date: 27.DEC.2015 17:18:01

Middle channel

Date: 27.DEC.2015 17:17:26

Highest channel

Test mode: 802.11n(H20)

Date: 27.DEC.2015 17:15:49

Lowest channel

Date: 27.DEC.2015 17:16:20

Middle channel

Date: 27.DEC.2015 17:16:51

Highest channel

Test mode: 802.11n(H40)

Date: 27.DEC.2015 17:15:03

Lowest channel

Date: 27.DEC.2015 17:14:20

Middle channel

Date: 27.DEC.2015 17:13:18

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesalt
Lowest	5.18	-0.02	-0.06	-3.39		
Middle	4.80	0.47	0.24	-3.27	8.00	Pass
Highest	4.75	0.76	1.06	-2.94		

Test plot as follows:

Date: 16.JAN.2016 17:36:52

Lowest channel

Date: 16.JAN.2016 17:44:44

Middle channel

Date: 16..TAN.2016 17:48:24

Highest channel

Date: 27.DEC.2015 17:06:33

Lowest channel

Date: 27.DEC.2015 17:07:03

Middle channel

Date: 27.DEC.2015 17:07:41

Highest channel

Test mode: 802.11n(H20)

Date: 27.DEC.2015 17:09:55

Lowest channel

Date: 27.DEC.2015 17:09:10

Middle channel

Date: 27.DEC.2015 17:08:14

Highest channel

Test mode: 802.11n(H40)

Date: 27.DEC.2015 17:10:45

Lowest channel

Date: 27.DEC.2015 17:11:32

Middle channel

Date: 27.DEC.2015 17:12:11

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 16.JAN.2016 21:03:58

Lowest channel

Date: 16.JAN.2016 21:05:03

Highest channel

*RBW 100 kHz Marker 1 [71] *VBW 300 kHz - -31.39 dBm *Att 30 dB SWT 15 ms 2.40000000 GHz

Date: 27.DEC.2015 17:50:15

Lowest channel

Date: 27.DEC.2015 17:54:06

Highest channel

802.11n(H20)

Date: 27.DEC.2015 17:55:31

Lowest channel

Highest channel

Date: 27.DEC.2015 18:00:00

802.11n(H40)

Date: 27.DEC.2015 18:02:36

Lowest channel

Highest channel

Date: 27.DEC.2015 18:03:44

6.6.2 Radiated Emission Method

<u></u>	.2 Nadiated Emission Method							
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1 2.3GHz to 2.5GHz Measurement Distance: 3m						
	Test Method:							
	Test Frequency Range:							
	Test site:							
	Receiver setup:		T	T				
		Frequency	Detector	RBW	VBW	Remark		
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value		
	Limit:		KIVIS	TIVITZ SIVITZ		Average value		
	LIIIII.	Freque	ency	Limit (dBuV/m @3m		Remark		
		Above '	•	54.00		Average Value		
			Peak Value e 0.8 meters above					
	Test setup:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
	Test setup:	AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver						
	Test Instruments:	Refer to section 5.6 for details Refer to section 5.3 for details						
	Test mode:							
	Test results:	Passed						
		1						

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Cloud Camera

: CP1 Model Test mode : B-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

u	P.									
				Cable Preamp						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∇	<u>dB</u> /m	dB	<u>d</u> B	$\overline{dB} \overline{uV/m}$	dBuV/m	<u>dB</u>		_
	2390,000 2390,000				0.00					

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Cloud Camera

Model : CP1
Test mode : B-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

K .								
Erec								Remark
rreq	rever	ractor	F022	ractor	rever	Line	LIMIL	Kemark
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
	Freq MHz 2390.000	Read: Freq Level MHz dBuV 2390.000 18.30	ReadAntenna Freq Level Factor MHz dBuV dB/m 2390.000 18.30 27.58	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 2390.000 18.30 27.58 6.63	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB dB 2390.000 18.30 27.58 6.63 0.00	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2390.000 18.30 27.58 6.63 0.00 52.51	ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 2390.000 18.30 27.58 6.63 0.00 52.51 74.00	ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Cloud Camera

Model : CP1 Test mode : B-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5 C Huni: 55%

Test Engineer: Viki

Remark

omar.	2000	Antenna Factor			
	MHz	<u>d</u> B/m	-EVALVES		
1 2	2483.500 2483.500				

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT Cloud Camera

CP1 Model Test mode : B-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

1,	LK		Read	Ant enna	Cable	Preamn		Limit	Over		
		Freq		Factor							
		MHz	dBuV	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
				27.52 27.52		0.00 0.00				Peak Average	

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Cloud Camera

Model : CP1 Test mode : G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

mar.	к .								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∇		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	18.75	27.58	6.63	0.00	52.96	74.00	-21.04	Peak
2	2390,000	7, 23	27, 58	6, 63	0.00	41.44	54,00	-12.56	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Cloud Camera EUT

Model : CP1 Test mode : G-L Mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

a,	LK .									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000	18.19	27.58	6.63	0.00	52.40	74.00	-21.60	Peak	
	2300 000	7 10	27 58	6 63	0.00	41 31	54 00	-12 69	Amerage	

Remark:

2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Cloud Camera

Model : CP1 Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki Remark :

TT.								
	Freq		Antenna Factor					
Į.	MHz	——dBu∇	<u>d</u> B/m	 <u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>	
i	2483.500 2483.500							

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Cloud Camera Condition

EUT

: CP1 Model Test mode : G-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

.cmari	•	Read	Antenna	Cable	Preamn	Limit Over			r	
	Freq		Factor						Remark	
	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1 2	2483.500 2483.500									

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site : 3m chamber

FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Cloud Camera : CP1 Model

: N20-L Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

4	LR .								
	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2390.000 2390.000			6.63 6.63		53.40 41.42			

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Cloud Camera

Model : CP1

Test mode : N20-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

-	200		Antenna Factor						
	MHz	dBuV	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Cloud Camera

Model : CP1 Test mode : N20-H Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m ₫B --dB dBuV/m dBuV/m 2483.500 19.04 27.52 2483.500 7.60 27.52 0.00 53.41 74.00 -20.59 Peak 0.00 41.97 54.00 -12.03 Average 6.85 6.85

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT

: Cloud Camera : CP1 Model

Test mode : N20-H Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

		Read	Antenna	Cable	Preamp	Limit Ove			er	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
2	MHz	—dBu∜	$\overline{dB/m}$		<u>ab</u>	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>d</u> B		
	2483.500									
7	2483, 500	(. 5.1	21.52	h. Xb	11. 1111	41.911	54.1111	-12.111	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Cloud Camera

: CP1 Model Test mode : N40-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

11	·ĸ		Read	Antenna	Cable	Preamo		Limit	Over		
		Freq		Factor						Remark	
		MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	(Fig. 27) (1990)			27.58 27.58		0.00 0.00				Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Cloud Camera

: CP1 Model

Test mode : N40-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki Remark :

ar	. A.								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	18.80	27.58	6.63	0.00	53.01	74.00	-20.99	Peak
	2390,000	7.58	27.58	6, 63	0.00	41.79	54.00	-12.21	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site Condition

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT Cloud Camera

Model CP1

Test mode : N40-H Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

Rema

aı	ck :									
	500 See		Ant enna				Limit		121	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	dB/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B		
	2483.500			6.85			74.00			
	2483.500	11.22	21.52	b. 85	0.00	45.59	54.00	-8.41	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Cloud Camera : CP1 Model

: N40-H Mode Test mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

a.	LR .								
	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500 2483.500))				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	C IN C DI						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 16.JAN.2016 21:03:00

30MHz~25GHz

Middle channel

Date: 16.JAN.2016 21:02:00

30MHz~25GHz

Date: 16.JAN.2016 20:59:52

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 27.DEC.2015 17:49:30

30MHz~25GHz

Middle channel

Date: 27.DEC.2015 17:51:43

30MHz~25GHz

Highest channel

Date: 27.DEC.2015 17:52:48

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 27.DEC.2015 17:56:46

30MHz~25GHz

Middle channel

Date: 27.DEC.2015 17:58:13

30MHz~25GHz

Highest channel

Date: 27.DEC.2015 17:59:21

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 27.DEC.2015 18:18:43

30MHz~25GHz

Middle channel

Date: 27.DEC.2015 18:05:37

30MHz~25GHz

Highest channel

Date: 27.DEC.2015 18:04:37

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	5				
Test Method:	ANSI C63.10:2	009						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement [Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak V							
	Above 1GHz	Peak Value						
	Above 1GHz	RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Remark			
	30MHz-8		40.0)	Quasi-peak Value			
	88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-960MHz 46.0 Quasi-peak Value							
	960MHz-1GHz 54.0 Quasi-peak Value							
	54.0 Average V							
	Above 1GHz 74.0 Peak Value							
Test Procedure:	the ground degrees to antenna, we tower. 3. The anten the ground Both horiz make the reach so case and to find the specified I for the emister of the EUT have 10dE	d at a 3 meters determine the was set 3 meters which was more and height is was more and height is was measurement and the rota tab maximum respected embers and width with sion level of the rota tab maximum respected to the r	r chamber. The position of the position of the position of the ters away from punted on the formal of the maximum tical polarization. The EU na was turned ading. In was set to Find the EUT in peatesting could be ported. Otherwood of the position of the ported. Otherwood of the position of the positi	e table was he highest in the interference of a varie meter to fund a value of the constant of the analysis of the enterference of the constant of the constan	radiation. rence-receiving able-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: Cloud Camera EUT

CP1 Model Test mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

	Freq		Antenna Factor					Over Limit	
_	MHz	dBu₹	<u>dB</u> /m	dB	dB	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	74.135	56.51	7.93	0.82	29.69	35.57	40.00	-4.43	QP
2	178.758	60.30	9.62	1.36	28.98	42.30	43.50	-1.20	QP
	292.058	56.85	12.89	1.75	28.46	43.03	46.00	-2.97	QP
4	360.448	54.06	14.43	1.98	28.61	41.86	46.00	-4.14	QP
5	651.942	50.82	18.65	2.80	28.77	43.50	46.00	-2.50	QP
6	851.035	45.37	20.60	3.25	28.00	41.22	46.00	-4.78	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Cloud Camera Condition

EUT

Model : CP1

: WIFI Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

			Antenna					Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∜	$\overline{-dB}/\overline{m}$	dB	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	182.559	58.78	9.92	1.36	28.95	41.11	43.50	-2.39	QP
2	189.074	59.03	10.48	1.37	28.91	41.97	43.50	-1.53	QP
3	219.075	56.98	11.17	1.48	28.71	40.92	46.00	-5.08	QP
4	294.114	57.03	12.95	1.75	28.46	43.27	46.00	-2.73	QP
5 6	368.112	55.63	14.49	2.01	28.64	43.49	46.00	-2.51	QP
6	550, 948	53, 08	17.57	2, 54	29, 10	44.09	46,00	-1.91	ΩP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	i olai.	
4824.00	43.26	31.54	10.58	40.22	45.16	74.00	-28.84	Vertical	
4824.00	43.95	31.54	10.58	40.22	45.85	74.00	-28.15	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	33.67	31.54	10.58	40.22	35.57	54.00	-18.43	Vertical	
4824.00	33.94	31.54	10.58	40.22	35.84	54.00	-18.16	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.38	31.57	10.64	40.15	46.44	74.00	-27.56	Vertical	
4874.00	43.97	31.57	10.64	40.15	46.03	74.00	-27.97	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.85	31.57	10.64	40.15	36.91	54.00	-17.09	Vertical	
4874.00	33.99	31.57	10.64	40.15	36.05	54.00	-17.95	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.07	31.61	10.70	40.08	46.30	74.00	-27.70	Vertical
4924.00	42.55	31.61	10.70	40.08	44.78	74.00	-29.22	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.62	31.61	10.70	40.08	36.85	54.00	-17.15	Vertical
4924.00	32.68	31.61	10.70	40.08	34.91	54.00	-19.09	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	43.28	31.54	10.58	40.22	45.18	74.00	-28.82	Vertical	
4824.00	44.02	31.54	10.58	40.22	45.92	74.00	-28.08	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	33.65	31.54	10.58	40.22	35.55	54.00	-18.45	Vertical	
4824.00	33.97	31.54	10.58	40.22	35.87	54.00	-18.13	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.41	31.57	10.64	40.15	46.47	74.00	-27.53	Vertical
4874.00	44.12	31.57	10.64	40.15	46.18	74.00	-27.82	Horizontal
Test mode: 80	02.11g		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	34.92	31.57	10.64	40.15	36.98	54.00	-17.02	Vertical
4874.00	34.21	31.57	10.64	40.15	36.27	54.00	-17.73	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.11	31.61	10.70	40.08	46.34	74.00	-27.66	Vertical
4924.00	42.64	31.61	10.70	40.08	44.87	74.00	-29.13	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.59	31.61	10.70	40.08	36.82	54.00	-17.18	Vertical
4924.00	32.73	31.61	10.70	40.08	34.96	54.00	-19.04	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	43.31	31.54	10.58	40.22	45.21	74.00	-28.79	Vertical
4824.00	44.08	31.54	10.58	40.22	45.98	74.00	-28.02	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Lowest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	33.72	31.54	10.58	40.22	35.62	54.00	-18.38	Vertical
4824.00	34.21	31.54	10.58	40.22	36.11	54.00	-17.89	Horizontal

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.47	31.57	10.64	40.15	46.53	74.00	-27.47	Vertical
4874.00	44.23	31.57	10.64	40.15	46.29	74.00	-27.71	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.01	31.57	10.64	40.15	37.07	54.00	-16.93	Vertical
4874.00	34.52	31.57	10.64	40.15	36.58	54.00	-17.42	Horizontal

Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.16	31.61	10.70	40.08	46.39	74.00	-27.61	Vertical
4924.00	42.73	31.61	10.70	40.08	44.96	74.00	-29.04	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.78	31.61	10.70	40.08	37.01	54.00	-16.99	Vertical
4924.00	32.92	31.61	10.70	40.08	35.15	54.00	-18.85	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	43.52	31.55	10.61	40.19	45.49	74.00	-28.51	Vertical
4844.00	44.23	31.55	10.61	40.19	46.20	74.00	-27.80	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Lowest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	33.94	31.55	10.61	40.19	35.91	54.00	-18.09	Vertical
4844.00	34.65	31.55	10.61	40.19	36.62	54.00	-17.38	Horizontal

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.74	31.57	10.64	40.15	46.80	74.00	-27.20	Vertical
4874.00	44.38	31.57	10.64	40.15	46.44	74.00	-27.56	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.11	31.57	10.64	40.15	37.17	54.00	-16.83	Vertical
4874.00	34.83	31.57	10.64	40.15	36.89	54.00	-17.11	Horizontal

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	44.26	31.59	10.67	40.10	46.42	74.00	-27.58	Vertical
4904.00	43.08	31.59	10.67	40.10	45.24	74.00	-28.76	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	35.11	31.59	10.67	40.10	37.27	54.00	-16.73	Vertical
4904.00	33.04	31.59	10.67	40.10	35.20	54.00	-18.80	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.