pg 38 #2 Solve
$$u_{tt} = c^2 u_{xx}$$
, $u(x, 0) = \log(1 + x^2)$, $u_t(x, 0) = 4 + x$.

Solution We know that the wave equation has a solution in the form

$$u(x,t) = \frac{1}{2} \left[\phi(x+ct) + \phi(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \ ds$$

The initial data says

$$\phi(x) = u(x, 0) = \log(1 + x^2)$$

 $\psi(x) = u_t(x, 0) = 4 + x.$

Thus,

$$u(x,t) = \frac{1}{2} \left[\log(1 + (x+ct)^2) + \log(1 + (x-ct)^2) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} 4 + s \, ds$$
$$= \frac{1}{2} \left[\log(1 + (x+ct)^2) + \log(1 + (x-ct)^2) \right] + \frac{1}{2c} \left[8ct + \frac{1}{2} (x+ct)^2 - \frac{1}{2} (x-ct)^2 \right]$$

pg 38 #5 The hammer blow problem. SolutionNotice that in this problem,

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \ ds,$$

where

$$\psi(x) = \begin{cases} 1 & \text{if } |x| < a \\ 0 & \text{if } |x| \ge a \end{cases}$$

First, we look at all 6 cases for the location of x + ct and x - ct with respect to -a and a. These are organized in the following table:

Case	Interval	и	Picture
1	x - ct < x + ct < -a < a	$u(x,t) = \int_{x-ct}^{x+ct} 0 \ ds = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	-a < a < x - ct < x + ct	$u(x,t) = \int_{x-ct}^{x+ct} 0 \ ds = 0$	-a a $x-ct$ $x+ct$
3	-a < x - ct < x + ct < a	$u(x,t) = \int_{x-ct}^{x+ct} 1 \ ds = 2ct$	-a $x-ct$ $x+ct$ a
4	-a < x - ct < a < x + ct	$u(x,t) = \int_{x-ct}^{a} 1 ds = a - x + ct$	-a $x-ct$ a $x+ct$
5	x - ct < -a < x + ct < a	$u(x,t) = \int_{-a}^{x+ct} 1 \ ds = x + ct + a$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	x - ct < -a < a < x + ct	$u(x,t) = \int_{-a}^{a} 1 \ ds = 2a$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

So now we just consider this for each of the given t values: $t = \frac{a}{2}$

Case	Interval	и
1	$x < -\frac{3a}{2}$	$u(x,t) = \int_{x-\frac{a}{2}}^{x+\frac{a}{2}} 0 \ ds = 0$
2	$\frac{3a}{2} < x$	$u(x,t) = \int_{x-\frac{a}{2}}^{x+\frac{a}{2}} 0 ds = 0$
3	$-\frac{a}{2} < x < \frac{a}{2}$	$u(x,t) = \int_{x-\frac{a}{2}}^{x+\frac{a}{2}} 1 \ ds = a$
4	$\frac{a}{2} < x < \frac{3a}{2}$	$u(x,t) = \int_{x-\frac{a}{2}}^{a} 1 ds = \frac{3a}{2} - x$
5	$-\frac{3a}{2} < x < -\frac{a}{2}$	$u(x,t) = \int_{-a}^{x+\frac{a}{2}} 1 \ ds = x + \frac{3a}{2}$
6	$x < -\frac{a}{2}, x > \frac{a}{2} \to \leftarrow$	

Now we plot *u* on these intervals to get

 $t = \frac{a}{c}$

<u> </u>		
Case	Interval	и
1	x < -2a	$u(x,t) = \int_{x-a}^{x+a} 0 \ ds = 0$
2	-2a < x	$u(x,t) = \int_{x-a}^{x+a} 0 \ ds = 0$
3	$0 < x < 0 \rightarrow \leftarrow$	
4	0 < x < 2a	$u(x,t) = \int_{x-a}^{a} 1 ds = 2a - x$
5	-2a < x < 0	$u(x,t) = \int_{-a}^{x+a} 1 \ ds = x + 2a$
6	$x < 0, 0 < x \rightarrow \leftarrow$	

 $t = \frac{3a}{2c}$

2c		
Case	Interval	и
1	$x < -\frac{5a}{2}$	$u(x,t) = \int_{x-\frac{3a}{2}}^{x+\frac{3a}{2}} 0 ds = 0$
2	$\frac{5a}{2} < x$	$u(x,t) = \int_{x-\frac{3a}{2}}^{x+\frac{3a}{2}} 0 ds = 0$
3	$x > \frac{a}{2}, x < -\frac{a}{2} \to \leftarrow$	
4	$\frac{a}{2} < x < \frac{5a}{2}$	$u(x,t) = \int_{x-\frac{3a}{2}}^{a} 1 ds = -x + \frac{5a}{2}$
5	$-\frac{5a}{2} < x < -\frac{a}{2}$	$u(x,t) = \int_{-a}^{x + \frac{3a}{2}} 1 ds = x + \frac{5a}{2}$
6	$-\frac{a}{2} < x < \frac{a}{2}$	$u(x,t) = \int_{-a}^{a} 1 \ ds = 2a$

$$t = \frac{2a}{c}$$

Case	Interval	и
1	<i>x</i> < -3 <i>a</i>	$u(x,t) = \int_{x-2a}^{x+2a} 0 \ ds = 0$
2	-3a < x	$u(x,t) = \int_{x-2a}^{x+2a} 0 \ ds = 0$
3	$a < x, x < -a \rightarrow \leftarrow$	$u(x,t) = \int_{x-2a}^{x+2a} 1 \ ds = 4a$
4	a < x < 3a	$u(x,t) = \int_{x-2a}^{a} 1 ds = 3a - x$
5	-3a < x < -a	$u(x,t) = \int_{-a}^{x+2a} 1 \ ds = x + 3a$
6	-a < x < a	$u(x,t) = \int_{-a}^{a} 1 \ ds = 2a$

$$t = \frac{5a}{c}$$

Case	Interval	и
1	<i>x</i> < -6 <i>a</i>	$u(x,t) = \int_{x-5a}^{x+5a} 0 \ ds = 0$
2	-6a < x	$u(x,t) = \int_{x-5a}^{x+5a} 0 \ ds = 0$
3	$4a < x, x < -4a \rightarrow \leftarrow$	
4	4a < x < 6a	$u(x,t) = \int_{x-5a}^{a} 1 \ ds = 6a - x$
5	-6a < x < -4a	$u(x,t) = \int_{-a}^{x+5a} 1 ds = x + 6a$
6	-4a < x < 4a	$u(x,t) = \int_{-a}^{a} 1 \ ds = 2a$

pg 38 #9 Solve

$$u_{xx} - 3u_{xt} - 4u_{tt} = 0$$
$$u(x, 0) = x^{2}$$
$$u_{t}(x, 0) = e^{x}$$

First, we can rewrite the equation as

$$D^2u - 3DTu - 4T^2u = 0,$$

where $D = \frac{\partial}{\partial x}$ and $T = \frac{\partial}{\partial t}$. Factoring gives

$$(D+T)(D-4T)u=0.$$

Now, let's set v = (D - 4T)u. This gives the system of PDEs:

$$u_x - 4u_t = v$$
$$v_x + v_t = 0.$$

To solve this system, we solve the second equation for v and then solve the first with v plugged back in. To solve the second equation, we recognize that it can be written as a dot product:

$$\nabla v \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0.$$

Thus, ∇v is perpendicular to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Thus, v is constant on lines parallel to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. That is, v is constant on lines of the form x - t = c. So v = f(x - t). Putting this into the first equation in our system gives

$$u_x - 4u_t = f(x - t).$$

Now we can do a change of coordinates to solve this equation.

Let
$$\tilde{x} = x - 4t$$
 and $\tilde{t} = 4x + t$.

Doing this change of coordinates gives us that

$$u_x = u_{\tilde{x}} + 4u_{\tilde{t}}$$
$$u_t = -4u_{\tilde{x}} + u_{\tilde{t}}.$$

Rewriting the equation in terms of \tilde{x} and \tilde{t} , we have

$$u_{\tilde{x}} + 4u_{\tilde{t}} + 4(-4u_{\tilde{x}} + u_{\tilde{t}}) = f(x - t)$$
$$-15u_{\tilde{x}} = f(x - t).$$

Now, we just solve for u by integrating. This gives us

$$-15u = \int f(x-t)d\tilde{x} + g(\tilde{t}).$$

If we assume f has antiderivative cF (for some appropriate constant), we can write

$$u(x,t) = F(x-t) + g(4x+t).$$

Now, we use the initial conditions to find F and g.

$$u(x,0) = x^2$$
 \Rightarrow $F(x) + g(4x) = x^2$

and

$$u_t(x,0) = e^x \implies -F'(x) + g'(4x) = e^x.$$

If we differentiate the first equation, we get

$$F'(x) + 4g'(4x) = 2x.$$

Adding these two equations gives us

$$5g'(4x) = e^x + 2x.$$

Integrating gives

$$\frac{5}{4}g(4x) = e^x + x^2 \quad \Rightarrow \quad g(x) = \frac{4}{5}e^{\frac{x}{4}} + \frac{1}{20}x^2.$$

Now, we put this back into the first equation and we get

$$F(x) = x^2 - g(4x) = x^2 - \frac{4}{5}(e^x + x^2) = \frac{1}{5}x^2 - \frac{4}{5}e^x.$$

Thus,

$$u(x,t) = F(x-t) + g(4x-t) = \frac{1}{5}(x-t)^2 - \frac{4}{5}e^{(x-t)} + \frac{4}{5}e^{\frac{4x+t}{4}} + \frac{1}{20}(4x+t)^2$$

pg 38 #10 Solve

$$u_{xx} + u_{xt} - 20u_{tt} = 0$$
$$u(x, 0) = \phi(x)$$
$$u_t(x, 0) = \psi(x)$$

As in the previous problem, we rewrite the PDE using operators as

$$(D^2 + DT - 20T^2)u = 0,$$

where D, T are defined as before. Factoring gives us the equation

$$(D-4T)(D+5T)u=0.$$

Now, as before, we substitute

$$v = (D + 5T)u$$

to get the system of equations

$$u_x + 5u_t = v$$
$$v_x - 4v_t = 0.$$

Again, we recognize the second equation as a dot product and rewrite it as

$$\nabla v \cdot \begin{pmatrix} 1 \\ -4 \end{pmatrix} = 0.$$

This tells us that since ∇v is perpendicular to $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$, v is constant on lines of the form 4x + t = c. That is, v(x,t) = f(4x + t). Now, we plug this into the first equation to get the equation

$$u_x + 5u_t = f(4x + t).$$

We can use the change of coordinates

$$\tilde{x} = x + 5t, \tilde{t} = 5x - t$$

to get

$$u_x = u_{\tilde{x}} + 5u_{\tilde{t}}$$
 and $u_t = 5u_{\tilde{x}} - u_{\tilde{t}}$.

This transforms our PDE to

$$u_{\tilde{x}} + 5u_{\tilde{t}} + 5(5u_{\tilde{x}} - u_{\tilde{t}}) = f(4x + t) \implies 6u_{\tilde{x}} = f(4x + t).$$

Integrating gives (again, assuming cF is the antiderivative of f with the appropriate constant c)

$$u = F(4x + t) + g(\tilde{t}).$$

Thus, u(x, t) = F(4x + t) + g(5x - t).

Now, we use the initial conditions:

$$u(x, 0) = \phi(x)$$
 \Rightarrow $F(4x) + g(5x) = \phi(x)$

and

$$u_t(x,0) = \psi(x) \implies F'(4x) - g'(5x) = \psi(x).$$

Differentiating the first gives

$$4F'(x) + 5g'(x) = \phi'(x).$$

Adding this to 5 times the second equation gives

$$9F'(4x) = \phi'(x) + 5\psi(x).$$

Thus,

$$F'(x) = \frac{1}{9} \left(\phi'\left(\frac{x}{4}\right) + 5\psi\left(\frac{x}{4}\right) \right).$$

Integrating gives

$$F(x) = \frac{1}{36}\phi\left(\frac{x}{4}\right) + \frac{5}{36}\int_{0}^{x/4} \psi(s) \ ds.$$

Using the first equation again, we get

$$g(5x) = \phi(x) - F(4x) = \phi(x) - \frac{1}{36}\phi(x) - \frac{5}{36} \int_0^{x/4} \psi(s) \, ds$$

Thus

$$g(x) = \phi(x/5) - F(4x/5) = \phi(x/5) - \frac{1}{36}\phi(x/5) - \frac{5}{36}\int_0^{x/20} \psi(s) \ ds = \frac{35}{36}\phi(x) - \frac{5}{36}\int_0^{x/20} \psi(s) \ ds.$$

This gives us our solution:

$$u(x,t) = \frac{1}{36}\phi\left(\frac{4x+t}{4}\right) + \frac{5}{36}\int_0^{\frac{4x+t}{4}}\psi(s)\ ds + \frac{35}{36}\phi(5x-t) - \frac{5}{36}\int_0^{\frac{5x-t}{20}}\psi(s)\ ds.$$

1. In a Vector Calculus class, Green's Theorem is presented as:

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \int \int_{D} di v \mathbf{F}(x, y) \, dA,\tag{1}$$

where **F** is a vector-valued function. Use this to prove these other versions of Green's Theorem.

To get this, we replace, in (1) $F = f\nabla g$ to get

$$\oint_{\partial D} f \nabla g \cdot \mathbf{n} \ ds = \iint_{D} div (f \nabla g) \ dA.$$

Using the product rule, we compute

$$div(f\nabla g) = \nabla f \cdot \nabla g + f\Delta g.$$

Thus, we have

$$\oint_{\partial D} f \nabla g \cdot \mathbf{n} \ ds = \iint_{D} \nabla f \cdot \nabla g + f \Delta g \ dA.$$

Rearranging gives the desired result.

(b)

$$\int \int_{D} (f\Delta g - g\Delta f) \ dA = \oint_{\partial D} (f\nabla g - g\nabla f) \cdot \mathbf{n} \ ds$$

For this one, we substitute in (1) $F = f\nabla g - g\nabla f$ to get

$$\oint_{\partial D} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, ds = \int \int_{D} di \nu (f \nabla g - g \nabla f) \, dA.$$

Using the product rule twice, we compute

$$div(f\nabla g - g\nabla f) = \nabla f \cdot \nabla g + f\Delta g - \nabla g \cdot \nabla f - g\Delta f = f\Delta g - g\Delta f.$$

Thus, we have

$$\oint_{\partial D} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, ds = \iint_{D} f \Delta g - g \Delta f \, dA,\tag{2}$$

which the desired result.