Espaces vectoriels

 \mathbb{K} désigne un corps, par exemple \mathbb{R} .

1.1 Espace vectoriel (début)

Définition. Un \mathbb{K} -espace vectoriel est un ensemble non vide E muni :

d'une loi de composition interne, c'est-à-dire d'une application de $E \times E$ dans E:

 $E \times E \longrightarrow E$ $(u,v) \mapsto u+v$

d'une loi de composition externe, c'est-à-dire d'une application de $\mathbb{K} \times E$ dans E:

 $\mathbb{K} \times E$ Ε (λ, u) \mapsto $\lambda \cdot u$

qui vérifient les propriétés suivantes :

- 1. u + v = v + u (pour tous $u, v \in E$)
- 2. u + (v + w) = (u + v) + w (pour tous $u, v, w \in E$)
- 3. Il existe un *élément neutre* $0_E \in E$ tel que $u + 0_E = u$ (pour tout
- 4. Tout $u \in E$ admet un *symétrique* u' tel que $u + u' = 0_E$. Cet élément u' est noté -u.
- 5. $1 \cdot u = u$ (pour tout $u \in E$)
- 6. $\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$)
- 7. $\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$ (pour tous $\lambda \in \mathbb{K}$, $u, v \in E$)
- 8. $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$)

Exemple fondamental : $E = \mathbb{R}^n$ est un \mathbb{K} -espace vectoriel.

- Addition: $(x_1, ..., x_n) + (x'_1, ..., x'_n) = (x_1 + x'_1, ..., x_n + x'_n).$ Multiplication par un scalaire: $\lambda \cdot (x_1, ..., x_n) = (\lambda x_1, ..., \lambda x_n).$
- L'élément neutre : vecteur nul $(0,0,\ldots,0)$.
- Le symétrique de $(x_1,...,x_n)$ est $(-x_1,...,-x_n)$, que l'on note $-(x_1,...,x_n).$

1.2 Espace vectoriel (fin)

Vocabulaire:

- Un élément de *E* est un *vecteur*.
- Un élément de K est un *scalaire*.
- L'élément neutre 0_E s'appelle le *vecteur nul*. Il est unique.
- Pour chaque $u \in E$, son symétrique (ou opposé) −u est unique.

Proposition. Soit E un espace vectoriel sur un corps \mathbb{K} . Soient $u \in E$ et $\lambda \in \mathbb{K}$. Alors on a:

- 1. $0 \cdot u = 0_E$
- 2. $\lambda \cdot 0_E = 0_E$
- 3. $(-1) \cdot u = -u$
- 4. $\lambda \cdot u = 0_E \iff \lambda = 0 \text{ ou } u = 0_E$

Exemple. L'espace vectoriel $\mathscr{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} .

- Soient f et g deux éléments de $\mathscr{F}(\mathbb{R},\mathbb{R})$. La fonction f+g est définie par : (f + g)(x) = f(x) + g(x) (pour tout $x \in \mathbb{R}$).
- Soit $\lambda \in \mathbb{R}$. La fonction $\lambda \cdot f$ est définie par $(\lambda \cdot f)(x) = \lambda \times f(x)$ (pour tout $x \in \mathbb{R}$).
- L'élément neutre est la fonction nulle, définie par f(x) = 0 pour tout $x \in \mathbb{R}$.
- Le symétrique de f est -f définie (-f)(x) = -f(x) (pour tout $x \in \mathbb{R}$).

Autres exemples :

- L'ensemble $\mathcal S$ des suites réelles $(u_n)_{n\in\mathbb N}$ est un $\mathbb R$ -espace vectoriel.
- L'ensemble $M_{n,p}(\mathbb{R})$ des matrices à n lignes et p colonnes à coefficients dans R est un R-espace vectoriel.
- L'ensemble ℝ[X] des polynômes est un espace vectoriel.

1.3 Sous-espace vectoriel (début)

Définition. Soit E un \mathbb{K} -espace vectoriel. Une partie F de E est appelée un sous-espace vectoriel si:

- $-0_E \in F$,
- $u + v \in F$ pour tous $u, v \in F$ (F est stable pour l'addition),
- $\lambda \cdot u$ ∈ F pour tout $\lambda \in \mathbb{K}$ et tout $u \in F$ (F est stable pour la multiplication par un scalaire).

Exemples:

- L'ensemble des fonctions continues sur R est un sous-espace vectoriel de l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .
- L'ensemble des suites réelles convergentes est un sous-espace vectoriel de l'espace vectoriel des suites réelles.

— Soit $A \in M_{n,p}(\mathbb{R})$. Soit AX = 0 un système d'équations linéaires homogènes à p variables. Alors l'ensemble des vecteurs solutions est un sous-espace vectoriel de \mathbb{R}^p .

Un sous-espace vectoriel est lui-même un espace vectoriel.

Théorème. Soient E un \mathbb{K} -espace vectoriel et F un sous-espace vectoriel de E. Alors F est lui-même un K-espace vectoriel pour les lois induites par E.

Méthodologie. Pour répondre à une question du type « L'ensemble F est-il un espace vectoriel? », une façon efficace de procéder est de trouver un espace vectoriel E qui contient F, puis prouver que F est un sous-espace vectoriel de E.

1.4 Sous-espace vectoriel (milieu)

Soit $n \ge 1$ un entier, soient v_1, v_2, \dots, v_n, n vecteurs d'un espace vectoriel E. Tout vecteur de la forme

$$u = \lambda_1 \nu_1 + \lambda_2 \nu_2 + \dots + \lambda_n \nu_n$$

est appelé combinaison linéaire des vecteurs v_1, v_2, \dots, v_n . Les scalaires $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ sont appelés *coefficients* de la combinaison linéaire. Remarque : si n = 1, alors $u = \lambda_1 v_1$ et on dit que u est *colinéaire* à v_1 .

Théorème. Soient E un \mathbb{K} -espace vectoriel et F une partie non vide de E. Fest un sous-espace vectoriel de E si et seulement si

$$\lambda u + \mu v \in F$$
 pour tout $u, v \in F$ et tout $\lambda, \mu \in \mathbb{K}$.

Proposition (Intersection de deux sous-espaces). Soient F, G deux sousespaces vectoriels d'un \mathbb{K} -espace vectoriel E. L'intersection $F \cap G$ est un sousespace vectoriel de E.

La réunion de deux sous-espaces vectoriels de E n'est pas en général un sous-espace vectoriel de E.

1.5 Sous-espace vectoriel (fin)

Définition (Somme de deux sous-espaces). Soient F et G deux sousespaces vectoriels d'un K-espace vectoriel E. L'ensemble de tous les éléments u + v, où u est un élément de F et v un élément de G, est appelé somme des sous-espaces vectoriels F et G. Cette somme est notée F+G. On a donc

$$F + G = \{u + v \mid u \in F, v \in G\}.$$

Proposition.

- 1. F + G est un sous-espace vectoriel de E.
- 2. F + G est le plus petit sous-espace vectoriel contenant à la fois F et G.

Définition (Somme directe de deux sous-espaces). Soient F et G deux sous-espaces vectoriels de E. F et G sont en somme directe dans E si :

$$- F \cap G = \{0_E\},\$$

$$- F + G = E.$$

On note alors $F \oplus G = E$ et on dit que F et G sont des sous-espaces vectoriels

Proposition. F et G sont supplémentaires dans E si et seulement si tout élément de E s'écrit d'une manière unique comme la somme d'un élément de F et d'un élément de G.

Exemple. Dans le \mathbb{R} -espace vectoriel $\mathscr{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , le sous-espace vectoriel des fonctions paires $\mathcal P$ et le sous-espace vectoriel des fonctions impaires \mathscr{I} sont supplémentaires : $\mathscr{P} \oplus \mathscr{I} = \mathscr{F}(\mathbb{R}, \mathbb{R})$.

Théorème (Sous-espace engendré). Soit $\{v_1, \dots, v_n\}$ un ensemble fini de vecteurs d'un K-espace vectoriel E. Alors :

- L'ensemble des combinaisons linéaires des vecteurs $\{v_1, \ldots, v_n\}$ est un sous-espace vectoriel de E, appelé sous-espace engendré par v_1, \ldots, v_n et noté $\text{Vect}(v_1, \ldots, v_n)$.
 - Ainsi : $u \in \text{Vect}(v_1, ..., v_n)$ \iff il existe $\lambda_1, \dots, \lambda_n \in$ \mathbb{K} tels que $u = \lambda_1 \nu_1 + \dots + \lambda_n \nu_n$
- C'est le plus petit sous-espace vectoriel de E contenant les vecteurs v_1, \ldots, v_n (si F est un sous-espace vectoriel de E contenant aussi les vecteurs $v_1, ..., v_n$ alors $Vect(v_1, ..., v_n) \subset F$).

1.6 Application linéaire (début)

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels. Une application f de E dans F est une *application linéaire* si elle satisfait aux deux conditions suivantes :

- 1. f(u+v) = f(u) + f(v), pour tous $u, v \in E$;
- 2. $f(\lambda \cdot u) = \lambda \cdot f(u)$, pour tout $u \in E$ et tout $\lambda \in \mathbb{K}$.

L'application f est linéaire si et seulement si, pour tous $u,v\in E$ et pour tous $\lambda,\mu\in\mathbb{K},$

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$$

Plus généralement, une application linéaire f préserve les combinaisons linéaires

Exemple. Pour une matrice fixée $A \in M_{n,p}(\mathbb{R})$, l'application $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ définie par f(X) = AX est une application linéaire.

Proposition. Si f est une application linéaire de E dans F, alors :

- $f(0_E) = 0_F$
- -f(-u) = -f(u), pour tout $u \in E$.

Vocabulaire:

- L'application identité, notée $id_E : f : E \longrightarrow E$, f(u) = u pour tout $u \in E$.
- Une application linéaire de E dans F est aussi appelée *morphisme* ou *homomorphisme* d'espaces vectoriels. L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.
- Une application linéaire de E dans E est appelée endomorphisme de E. L'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$.

1.7 Application linéaire (milieu)

Symétrie centrale et homothétie.

Soit E un \mathbb{K} -espace vectoriel. $s: E \to E$, s(u) = -u est linéaire et s'appelle la *symétrie centrale*. Pour $\lambda \in \mathbb{K}$, $h_{\lambda}: E \to E$, $h_{\lambda}(u) = \lambda u$ est linéaire et s'appelle l'*homothétie* de rapport λ .

Projection.

Floyedon. Soient E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels supplémentaires dans E, c'est-à-dire $E = F \oplus G$. Tout vecteur u de E s'écrit de façon unique u = v + w avec $v \in F$ et $w \in G$. La *projection* sur F parallèlement à G est l'application $p: E \to E$ définie par p(u) = v.

- Une projection est une application linéaire.
- Une projection p vérifie l'égalité $p^2 = p$. Note : $p^2 = p$ signifie $p \circ p = p$, c'est-à-dire pour tout $u \in E$: p(p(u)) = p(u).

1.8 Application linéaire (fin)

Image

Rappels. Soient E et F deux ensembles et f une application de E dans F. Soit $A \subset E$. L'image directe de A par f est l'ensemble des images par f des éléments de A, appelé $f(A) = \{f(x) \mid x \in A\}$. C'est un sous-ensemble de F. Soit maintenant E et F des \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire.

f(E) s'appelle l'*image* de l'application linéaire f et est noté Im f.

Proposition.

- 1. Im f est un sous-espace vectoriel de F.
- 2. Plus généralement, si E' est un sous-espace vectoriel de E, alors f(E') est un sous-espace vectoriel de F.

Par définition de l'image directe :

f est surjective si et seulement si Im f = F.

Noyau

Définition (Définition du noyau). Soient E et F deux \mathbb{K} -espaces vectoriels et f une application linéaire de E dans F. Le *noyau* de f, noté $\mathrm{Ker}(f)$, est l'ensemble des éléments de E dont l'image est 0_F :

$$\operatorname{Ker}(f) = \left\{ x \in E \mid f(x) = 0_F \right\}$$

Autrement dit, le noyau est l'image réciproque du vecteur nul de l'espace d'arrivée : ${\rm Ker}(f)=f^{-1}\{0_F\}.$

Proposition. Le noyau de f est un sous-espace vectoriel de E.

Exemple. Un plan \mathscr{P} d'équation (ax+by+cz=0), est un sous-espace vectoriel de \mathbb{R}^3 . En effet c'est le noyau de l'application linéaire $f:\mathbb{R}^3\to\mathbb{R}$ définie par f(x,y,z)=ax+by+cz.

Théorème (Caractérisation des applications linéaires injectives).

$$f$$
 injective \iff $Ker(f) = \{0_E\}$

En particulier, pour montrer que f est injective, il suffit de vérifier que : si $f(x)=0_F$ alors $x=0_E$.

L'espace vectoriel $\mathcal{L}(E, F)$

Proposition. L'ensemble des applications linéaires entre deux \mathbb{K} -espaces vectoriels E et F, noté $\mathscr{L}(E,F)$ est un \mathbb{K} -espace vectoriel.

Composition et inverse d'applications linéaires

Proposition (Composée de deux applications linéaires). Soient E, F, G trois \mathbb{K} -espaces vectoriels, f une application linéaire de E dans F et g une application linéaire de F dans G. Alors $g \circ f$ est une application linéaire de E dans G.

Soient E et F deux \mathbb{K} -espaces vectoriels.

- Une application linéaire bijective de *E* sur *F* est appelée *isomorphisme* d'espaces vectoriels. Les deux espaces vectoriels *E* et *F* sont alors dits *isomorphes*.
- Un endomorphisme bijectif de E (c'est-à-dire une application linéaire bijective de E dans E) est appelé automorphisme de E. L'ensemble des automorphismes de E est noté GL(E).