Defining the Internet

Daniel Zappala

CS 460 Computer Communications and Networking Brigham Young University

What is the Internet?

Internet Map, courtesy Barrett Lyon, 2003

What is the Internet?

Internet Map, courtesy Chris Harrison, 2011

Components

- hosts
- routers
- networks
- links

Services

- distributed applications
 - web
 - social networking
 - email
 - games
 - commerce
 - databases
 - voting
 - file sharing
- · generic services on which applications can be built
 - TCP: reliable data transfer
 - UDP : unreliable data transfer

Protocols

- Application Protocols
 - HTTP
 - FTP
 - SMTP
 - Gnutella
 - BitTorrent
- Transport Protocols
 - TCP
 - UDP
 - RTP

- Network Protocols
 - IP
 - IPv6
 - ICMP
 - DHCP
- Link Protocols
 - ARP
 - Ethernet
 - IEEE 802.11a,b,g,...
 - PPP
 - MPLS
 - ATM

Internet Structure

A Network of Networks

- roughly hierarchical
- customer-provider relationships
- Tier-1 ISPs (UUNet, BBN/Genuity, Sprint, AT&T)
 - provide national, international coverage
 - treat each other as "equals"

Level-3 Tier-1 Map

► Interactive Map

Additional Complexity

- PoP (Point of Presence)
 - router(s) in the provider's network where customer ISPs can connect
- multi-homing
 - customer ISPs may connect to more than one provider, for fault tolerance
- peering
 - connect directly to another ISP at the same level, instead of going through a provider, usually without any cost
- IXP
 - third-party location where ISPs can peer with each other
- content provider networks
 - large content providers (e.g. Google) have large networks, connect directly to lower-level ISPs and IXPs

Internet Structure

The Unique Role of the Internet

- Each network is independent
- Interoperability requires using Internet standards: IP, TCP
 - the <u>Internet</u> is global and must run these standards
 - your private <u>intranet</u> can do whatever you want it to do

Network Edge vs Core

edge

- desktops
- laptops
- cell phones
- PDAs
- digital picture frames
- thermostats
- sensors buildings, the environment
- core
 - mesh of routers that connect end systems

Access Networks

- technologies and speeds
 - modem (56 kbps)
 - DSL (35 Mbps)
 - cable (42 Mbps)
 - satellite
 - fiber optic (10 Gbps)
 - cellular (10 Mbps)
 - WiFi (54 Mbps)

Figure 1.4 + Access networks

How do you transfer data across a worldwide network?

(comprised of heterogeneous systems and organizations)

Circuit Switching and Packet Switching

Circuit Switching

- circuit is established between sender and receiver
- circuit reserves resources for the "call"
 - link bandwidth, switch capacity
 - resources cannot be shared among calls
- guaranteed performance (no packet loss, low delay)
- used in telephone network

- link bandwidth must be divided into "pieces"
 - pieces allocated to calls
 - pieces cannot be shared
- Frequency Division Multiplexing (FDM)
- Time Division Multiplexing (TDM)

Packet Switching

- data is divided into packets
- all packets from all sources share each link
- each packet uses full link bandwidth
- packets are stored before being forwarded
- link never idle if some packets in the queue

Circuit Switching vs. Packet Switching

packet switching: better use of resources for one active source

- transmit a 100,000,000 bit file on a 100 Mbps link
- packet switching
 - 100,000,000 bits / 100,000,000 bits/s = 1 second
- TDM with 100 slots
 - 100,000,000 bits / 1,000,000 bits/s = 100 seconds
- TDM also adds circuit setup time
 - latency a problem for short transactions, e.g. DNS lookup

Circuit Switching vs. Packet Switching

packet switching: more users allowed

- 1 Mbps link, each user 100 kbps when active, active 10% of time
- TDM
 - 10 slots, 10 users, 100 kbps each
- packet switching
 - with 35 users, probability > 10 active is less than 0.004, if more active it just reduces bandwidth to each user

Circuit Switching vs. Packet Switching

packet switching may lose packets

- packet loss whenever the queue at a link overflows
- too many sources sending too many packets too quickly
- requires transport protocol for reliability, congestion control circuit switching provides guaranteed service
 - if you send at your slot rate, there is no loss
 - no interference from other sources

The Triumph of Packet Switching

- one of the founding principles of the Internet
- makes Internet routers very simple, with complexity at the edges
 - See ► End-to-End Argument
- enables the Internet to support a wide variety of applications
- for a long time, circuits were considered best for voice and video but we now use Skype and watch movies over the Internet
 - never underestimate the power of lots of bandwidth and caching