Propädeutikum Mathematik

Mathematisches Grundwissen

Februar 2020

Dieses Heft steht unter der Lizenz Creative Commons CC0.

Inhaltsverzeichnis

1	Analytische Geometrie			5	1.1.4	Schnittmengen	(
	1.1	Rechn	en mit Koordinaten	5	1.1.5	Schnitt von Geraden	,
		1.1.1	Die Koordinatenebene	5	1.1.6	Schnitt von Kreis und Gerade .	,
		1.1.2	Geraden	6	1.1.7	Abstände	8
		113	Kreise	6			

1 Analytische Geometrie

Die analytische Geometrie stellt eine Weiterentwicklung der klassischen euklidischen Geometrie dar. Diese Entwicklung erfolgte in zwei Schritten. Im ersten Schritt wurden Koordinatensysteme eingeführt, um eine Synthese von rechnerischen und geometrischen Methoden zu ermöglichen. Geometrische Aufgabenstellungen ließen sich hiermit in Gleichungen und Gleichungssysteme übersetzen. In einem zweiten Schritt erfolgte die Einführung der Vektorrechnung, welche eine Übersetzung geometrischer Sachverhalte in rechnerische Ausdrücke erlaubt, die anschaulicher und prägnanter als Ausdrücke mit Koordinaten sind. Mit der Vektorrechnung verbunden sind neue mathematische Objekte, die Vektoren, das sind Verschiebungspfeile die sich addieren und skalieren lassen. Wesentliches Werkzeug sind außerdem neuartige Rechenoperationen mit geometrischer Deutung: das Skalarprodukt, das äußere Produkt, das Vektorprodukt und das Clifford-Produkt. Als weiteres maßgebliches Werkzeug kam später die Matrizenrechnung hinzu. Zwischen all diesen Operationen gibt es vielfältige Beziehungen.

Die Vektorrechnung wurde später selbst weiterentwickelt zur linearen Algebra, wo die Matrizen als Darstellungen linearer Abbildungen zwischen Vektorräumen gedeutet werden konnten. Die Vektorrechnung ist in der linearen Algebra als Spezialfall enthalten, bei dem die Vektoren aus dem reellen euklidischen Vektorraum entstammen. Neben diesem kommen in der linearen Algebra noch viele andere Vektorräume vor. Um Übersicht zu behalten, ermittelt man in der linearen Algebra abstrakte Regeln und Gesetzmäßigkeiten, die in allen Vektorräumen gültig sind.

Abgerundet wird die analytische Geometrie durch Isomorphien, das sind eins-zu-eins-Beziehungen zwischen unterschiedlichen Rechenformalismen. Z.B. lassen sich Vektoren in der Ebene auch als komplexe Zahlen betrachten. Komplexe Zahlen sind wiederum als spezielle Matrizen darstellbar.

Zu Bemerken ist noch, dass die analytische Geometrie nicht als Ersatz für die klassische euklidische Geometrie gedacht ist, sondern als *Vervollständigung*. Die Sätze, Methoden und Beweise der euklidischen Geometrie behalten ihre Gültigkeit, allerdings kommen neue Methoden hinzu. Einige Sachverhalte sind etwas leichter mit klassischer Geometrie verständlich, andere sind

besonders elegant mit Vektorrechnung formulierbar.

1.1 Rechnen mit Koordinaten

1.1.1 Die Koordinatenebene

Die Koordinatenebene ist das kartesische Produkt der reellen Zahlen mit sich selbst, besteht also aus allen geordneten Paaren, deren Komponenten reelle Zahlen sind, kurz

$$\mathbb{R} \times \mathbb{R} := \{ (x, y) \mid x \in \mathbb{R} \text{ und } y \in \mathbb{R} \}. \tag{1.1}$$

Man kann nun jedem Punkt der euklidischen Ebene ein Koordinatenpaar zuordnen, indem man ein Koordinatensystem in die Ebene einzeichnet. Aus Gründen der Einfachheit sollte dieses Koordinatensystem *kartesisch* sein, das heißt die Koordinatenachsen sollten rechtwinklig aufeinander stehen und die Skaleneinheit sollte genau einer Längeneinheit entsprechen.

Die Beschreibung von waagerechten und senkrechten Geraden erfolgt gemäß Einschränkung der Koordinatenebene auf Teilmengen. Eine waagerechte Gerade wird durch eine feste Koordinate y_0 beschrieben, während die Koordinate x frei variieren darf:

$$\mathbb{R} \times \{y_0\} = \{(x, y_0) \mid x \in \mathbb{R}\}. \tag{1.2}$$

Entsprechend ist bei einer senkrechten Gerade die Koordinate x_0 fest, während y frei variieren darf:

$$\{x_0\} \times \mathbb{R} = \{(x_0, y) \mid y \in \mathbb{R}\}.$$
 (1.3)

Man bezeichnet mit $\mathbb{R}^+=\mathbb{R}_{>0}$ die positiven und mit $\mathbb{R}^-=\mathbb{R}_{<0}$ die negativen reellen Zahlen. Hiermit lassen sich vier Halbebenen beschreiben:

$$\mathbb{R}^+ \times \mathbb{R}, \ \mathbb{R}^- \times \mathbb{R}, \ \mathbb{R} \times \mathbb{R}^+, \ \mathbb{R} \times \mathbb{R}^-.$$
 (1.4)

Außerdem gibt es vier Quadranten:

$$\mathbb{R}^+ \times \mathbb{R}^+, \ \mathbb{R}^- \times \mathbb{R}^+, \ \mathbb{R}^- \times \mathbb{R}^-, \ \mathbb{R}^+ \times \mathbb{R}^-.$$
 (1.5)

Man kann die Betrachtung auch auf Rechtecke einschränken:

$$[a, b] \times [c, d]$$

$$= \{(x, y) \mid a \le x \le b \text{ und } c \le y \le d\}.$$

$$(1.6)$$

Entsprechend gibt es offene Rechtecke:

$$(a, b) \times (c, d)$$

= $\{(x, y) \mid a < x < b \text{ und } c < y < d\}.$ (1.7)

1.1.2 Geraden

Durch je zwei unterschiedliche Punkte verläuft genau eine Gerade g. Gegeben seien daher zwei Punkte $P_1 = (x_1, y_1)$ und $P_2 = (x_2, y_2)$ mit $P_1 \neq P_2$. Es gilt

$$P_1 \neq P_2 \iff x_1 \neq x_2 \text{ oder } y_1 \neq y_2.$$
 (1.8)

Gibt es nun einen weiteren Punkt $P_0 = (x_0, y_0)$, möchte man wissen, ob P_0 auf der Geraden g liegt, kurz $P_0 \in g$ gilt. Ein solche Situation wird klassisch als *Inzidenz* bezeichnet. Zur Lösung dieser Aufgabe ist die Bestimmung einer beschreibenden Gleichung der Geraden notwendig. Wie findet man diese Gleichung?

Betrachten wir den Punkt P_1 . Eine Entfernung Δx von x_1 führt dann zu einer Entfernung Δy von y_1 . Nach den Strahlensätzen muss aber das Verhältnis $m = \frac{\Delta y}{\Delta x}$ eine Konstante sein. Dieses feste m wird als Anstieg bezeichnet. D. h., für einen beliebigen weiteren Punkt P = (x, y) auf der Geraden muss die Beziehung

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1} \tag{1.9}$$

erfüllt sein. Zum Zeichnen der Gerade ist es ggf. günstig, diese Gleichung nach y umzuformen, dann ergibt sich eine Funktion f die jedem x ein y = f(x) zuordnet. Man bekommt

$$f(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1), \tag{1.10}$$

bzw. kurz

$$f(x) = y_1 + m \cdot (x - x_1). \tag{1.11}$$

Hier besteht allerdings die Einschränkung $x_1 \neq x_2$, d. h. die Punkte P_1 und P_2 dürfen nicht senkrecht aufeinander liegen, sonst bekommt man eine unerlaubte Division durch null. Entgehen dieser Einschränkung ist möglich, indem die Gleichung (1.9) durch Umformung von allen Divisionen befreit wird, das ergibt

$$(y_2 - y_1)(x - x_1) = (y - y_1)(x_2 - x_1). (1.12)$$

Die Inzidenz lässt sich nun leicht prüfen, indem einfach $x := x_0$ und $y := y_0$ eingesetzt wird. Die Gleichung ist nur dann erfüllt, wenn P_0 auf der Geraden liegt.

Eine weitere Umformung der Gleichung führt zu

$$(y_2 - y_1)x - (x_2 - x_1)y = (y_2 - y_1)x_1 - (x_2 - x_1)y_1.$$

Definiert man nun

$$a_1 := y_2 - y_1, \quad a_2 := x_1 - x_2, \quad b := a_1x_1 + a_2y_1,$$

dann bekommt die Gleichung die kurze Form

$$a_1 x + a_2 y = b. (1.13)$$

Diese Form der Gleichung benutzen wir später als Ausgangspunkt zur Beschreibung der Schnittmenge von zwei Geraden.

1.1.3 Kreise

Viele Kurven sind mit Gleichungen beschreibbar, darunter fallen auch Kreise. Ein Kreis ist eine Menge von Punkten, die alle den gleichen Abstand r vom Mittelpunkt haben. Der Mittelpunkt falle zunächst mit dem Koordinatenursprung zusammen. Ist nun P=(x,y) ein beliebiger Punkt auf dem Kreis, dann ergibt sich ein rechtwinkliges Dreieck mit den Kathetenlängen |x| und |y| und der Hypotenusenlänge r. Gemäß des Satzes von Pythagoras muss also $|x|^2 + |y|^2 = r^2$ sein. Da negative Vorzeichen beim Quadrieren verschwinden, können die Betragsstriche entfallen. Der Kreis ist demnach die Punktmenge

$$K(r) := \{(x, y) \mid x^2 + y^2 = r^2\}.$$
 (1.14)

Liegt der Mittelpunkt nicht im Koordinatenursprung, sondern im Punkt $P_0=(x_0,y_0)$, kann man die Differenzen $\Delta x:=x-x_0$ und $\Delta y:=x-y_0$ bilden, dann sind $|\Delta x|$ und $|\Delta y|$ wieder die Längen der Katheten. Somit ergibt sich

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$
(1.15)

als allgemeine Gleichung.

1.1.4 Schnittmengen

Wir haben gesehen, dass sich bestimmte geometrische Objekte durch Gleichungen beschreiben lassen. Eine Gleichung ist eine Relation R(x, y). Jede Relation beschreibt eine Punktmenge

$$R := \{(x, y) \mid R(x, y)\}. \tag{1.16}$$

Eine wichtige Aufgabe in der Geometrie besteht nun darin, für zwei solcher Punktmengen R_1 und R_2 die Schnittmenge $R_1 \cap R_2$ zu bestimmen. Der Schnittmenge entspricht eine und-Verknüpfung der beiden Relationen, d. h.

$$R_1 \cap R_2 = \{(x, y) \mid R_1(x, y) \text{ und } R_2(x, y)\}, \quad (1.17)$$

bzw.

$$(x,y) \in R_1 \cap R_2 \Leftrightarrow R_1(x,y) \text{ und } R_2(x,y).$$
 (1.18)

Eine solche und-Verknüpfung wird als *System* von Relationen bezeichnet. Handelt es sich bei den Relationen um Gleichungen, spricht man von einem *Gleichungs-system*.

Zunächst ein ganz einfaches Beispiel. Wir wollen eine waagerechte Gerade $\mathbb{R} \times \{y_0\}$ und eine senkrechte Gerade $\{x_0\} \times \mathbb{R}$ schneiden. Dass sich als Schnittmenge

nur ein einziger Punkt ergibt, und zwar $\{(x_0, y_0)\}$, sollte klar sein, im Zweifelsfall fertige man eine Skizze an. Das kann man nun auch genau nachrechnen:

$$(x, y) \in \mathbb{R} \times \{y_0\} \cap \{x_0\} \times \mathbb{R}$$

 $\Leftrightarrow x \in \mathbb{R} \text{ und } y = y_0 \text{ und } y \in \mathbb{R} \text{ und } x = x_0$
 $\Leftrightarrow x = x_0 \text{ und } y = y_0$
 $\Leftrightarrow (x, y) = (x_0, y_0).$

1.1.5 Schnitt von Geraden

Die Schnittmenge $g_1 \cap g_2$ von zwei Geraden

$$g_1 := \{(x, y) \mid a_{11}x + a_{12}y = b_1\}, g_2 := \{(x, y) \mid a_{21}x + a_{22}y = b_2\}$$
(1.19)

ist die Lösungsmenge des Gleichungssystems

$$a_{11}x + a_{12}y = b_1,$$

 $a_{21}x + a_{22}y = b_2.$ (1.20)

Der Anschauung nach ist schon klar, dass drei verschiedene Umstände bestehen können: die beiden Geraden haben genau einen Schnittpunkt, stehen entfernt parallel zueinander oder stimmen überein. Diese Umstände müssen sich in der Lösungsmenge des Gleichungssystems manifestieren.

Umformung der ersten Gleichung bringt

$$x = \frac{b_1 - a_{12}y}{a_{11}}.$$

Einsetzen von x in die zweite Gleichung und Umformung nach y bringt dann

$$y = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{21}a_{12}}. (1.21)$$

Nun besteht noch das Problem, dass bei der Umformung eine Division durch null aufgetreten sein könnte, die Umformung daher ungültig ist. War das nicht der Fall, gab es nur Äquivalenzumformungen, das System besitzt demnach dann genau eine Lösung.

Zwar ließe sich die Umformung auch so ausführen, dass eine Division umgangen wird, allerdings ist die Multiplikation mit null ebenfalls keine Äquivalenzumformung.

Es ist allerdings so, dass man auf vier Wegen zur gleichen Lösung gelangt, je nachdem welche Variable welcher Gleichung eingesetzt wird. Demnach lässt sich eine Division durch null immer vermeiden, wenn nicht gleichzeitig alle Koeffizienten a_{11} , a_{12} , a_{21} , a_{22} verschwinden. Bei der Geradengleichung (1.13) können

aber nicht gleichzeitig beide Koeffizienten verschwinden. Demnach verbleibt nur noch die Division durch die Zahl

$$D := a_{11}a_{22} - a_{21}a_{12}, (1.22)$$

die als *Determinante* bezeichnet wird. Wenn $D \neq 0$ ist, muss es eine eindeutige Lösung geben. Betrachten wir daher nun den Fall D = 0, das führt zur Gleichung

$$a_{11}a_{22} = a_{21}a_{12}. (1.23)$$

Unter der Prämisse $a_{12} \neq 0$ und $a_{22} \neq 0$ ist die Gleichung äquivalent zu

$$-\frac{a_{11}}{a_{12}} = -\frac{a_{21}}{a_{22}}. (1.24)$$

Die Terme auf den beiden Seiten sind die Anstiege der Geraden g_1 und g_2 für den funktionalen Zusammenhang y(x), was nach Umformung von (1.20) nach y ersichtlich ist:

$$y = f_1(x) = \frac{b_1}{a_{12}} - \frac{a_{11}}{a_{12}}x,$$
(1.25)

$$y = f_2(x) = \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}}x. \tag{1.26}$$

Die Geraden müssen also zwangsläufig parallel stehen. Parallelität schließt allerdings nicht aus, dass die Geraden auch übereinstimmen könnten. Das ist genau dann der Fall, wenn $f_1 = f_2$, wenn also zusätzlich

$$\frac{b_1}{a_{12}} = \frac{b_2}{a_{22}} \tag{1.27}$$

gilt. Nun kann die Prämisse noch verletzt sein, dann ist aber $a_{11} \neq 0$ und $a_{21} \neq 0$, und man kann stattdessen den funktionalen Zusammenhang x(y) betrachten.

1.1.6 Schnitt von Kreis und Gerade

Man kann Schnittmengen aller möglichen durch Gleichungen beschreibbaren Kurven betrachten, was zu unterschiedlichsten Gleichungssystemen führt. Wir könnten uns ewig mit dieser Thematik aufhalten. Beim Schnitt von Kreis und Gerade treten allerdings die wichtigen Begriffe Passante, Sekante und Tangente auf. Eine Konzepterweiterung des Begriffs Tangente lässt sich mittels Differentialrechnung ermitteln. Aus diesem Grund wollen wir uns hier mit dem Ursprung dieses Begriffs am Kreis beschäftigen.

Ohne Beschränkung der Allgemeinheit lässt sich das Koordinatensystem so wählen, dass der Mittelpunkt des Kreises im Koordinatenursprung liegt. Der Einfachheit halber wollen wir vertikale Geraden ausschließen, dann ist der Schnitt beschrieben durch die Lösungsmenge des Gleichungssystems

$$x^2 + y^2 = r^2, (1.28)$$

$$y = n + mx. (1.29)$$

Einsetzen von *y* in die erste Gleichung liefert

$$x^{2} + (n + mx)^{2} = r^{2}$$

$$\iff x^{2} + n^{2} + 2mnx + m^{2}x^{2} = r^{2}$$

$$\iff (m^{2} + 1)x^{2} + 2mnx + n^{2} - r^{2} = 0.$$

Dies ist unter allen Umständen eine quadratische Gleichung in x, denn $m^2+1 \ge 1$, also insbesondere $m^2+1 \ne 0$. Mit

$$p = \frac{2mn}{m^2 + 1}, \quad q = \frac{n^2 - r^2}{m^2 + 1}$$

bekommt man die Diskriminante

$$D = p^2 - 4q = \frac{4r^2}{m^2 + 1} - \left(\frac{2n}{m^2 + 1}\right)^2.$$

Bei D<0 gibt es keine Lösung, es liegt eine Passante vor. Bei D>0 gibt es zwei Lösungen, es Sekante vor. Bei D=0 sind beide Lösungen zu einer einzigen zusammengefallen, man bekommt eine Tangente. Es ergibt sich das Kriterium

$$D = 0 \iff r^2(m^2 + 1) = n^2. \tag{1.30}$$

Wir wollen nun aufzeigen, dass die mittels Differentialrechnung ermittelten Tangenten tatsächlich dieses Kriterium erfüllen. Umformung von Gleichung (1.28) nach y führt zum funktionalen Zusammenhang

$$y = f(x) = \sqrt{r^2 - x^2}. (1.31)$$

An einer Stelle x_0 mit $y_0 = f(x_0)$ ist die Tangente nun beschrieben durch die Funktion

$$T(x) = f(x_0) + f'(x_0)(x - x_0)$$
(1.32)

$$=\underbrace{f(x_0) - f'(x_0)x_0}_{n} + \underbrace{f'(x_0)}_{m} x. \tag{1.33}$$

Die Ableitung der Funktion f ist

$$f'(x) = \frac{-x}{\sqrt{r^2 - x^2}} = \frac{-x}{f(x)}.$$
 (1.34)

Es ergibt sich

$$m^2 + 1 = f'(x_0)^2 + 1 = \frac{r^2}{r^2 - x_0^2} = \frac{r^2}{f(x_0)^2}.$$
 (1.35)

Man bekommt

$$\frac{n^2}{m^2 + 1} = \frac{(f(x_0) - f'(x_0)x_0)^2}{f'(x_0)^2 + 1}$$

$$= \frac{f(x_0)^2}{r^2} (f(x_0) - f'(x_0)x_0)^2$$

$$= \frac{1}{r^2} (f(x_0)^2 - f(x_0)f'(x_0)x_0)^2$$

$$= \frac{1}{r^2} (f(x_0)^2 + x_0^2)^2 = \frac{1}{r^2} (r^2 - x_0^2 + x_0^2)^2$$

$$= \frac{r^4}{r^2} = r^2.$$

Tatsächlich ergibt sich das gewünschte Resultat (1.30).

1.1.7 Abstände

Der Abstand $d(P_1, P_2)$ von zwei Punkten $P_1 = (x_1, y_1)$ und $P_2 = (x_2, y_2)$ lässt sich leicht berechnen, denn hier gilt der Satz des Pythagoras:

$$d(P_1, P_2)^2 = (\Delta x)^2 + (\Delta y)^2$$

= $(x_2 - x_1)^2 + (y_2 - y_1)^2$. (1.36)

Mit dieser Abstandsfunktion

$$d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

lässt sich ein Kreis um den Punkt P_0 mit Radius r auch kurz so beschreiben:

$$K(P_0, r) := \{ P \mid d(P_0, P) = r \}.$$
 (1.37)

Der Kreis ist also die Menge der Punkte P, welche konstanten Abstand r vom Punkt P_0 haben. Dieser Abstand heißt Radius des Kreises.