Recuperación de Información Multimedia

Índices Multidimensionales (Árboles, Hashing, Filling Curves)

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación Universidad de Chile Juan Manuel Barrios – https://juan.cl/mir/ – 2020

Índices Multidimensionales

- Asumen que los datos son vectores
- Usan los valores de las coordenadas para agrupar vectores
 - □ <u>Árboles</u>: Agrupar vectores en regiones espaciales ordenadas jerárquicamente
 - Hashing: Asignar vectores a una o más tablas de tamaño fijo
 - □ Filling Curves: Convertir el espacio multidimensional en un espacio unidimensional

- En general son árboles balanceados
- Contienen dos tipos de nodos:
 - □ Nodos internos o Páginas de directorio
 - Describen una región espacial
 - Almacenan punteros a nodos hijos (internos/hojas)
 - □ Nodos hoja o Páginas de datos
 - Almacenan punteros a vectores (descriptores)
- Los nodos tienen una capacidad máxima de almacenamiento de punteros

Estructura básica

- Nodos internos definen regiones espaciales jerárquicas
 - Los elementos de un nodo están contenidos por su padre
- Puntos cercanos idealmente se almacenarán en la misma página de datos o subárbol
- Durante la búsqueda se visitan las regiones que tienen intersección con la bola de consulta

- Cada tipo de índice utiliza distintas formas de región espacial:
 - □ Hipercubo
 - □ Hiperesfera
 - Otras regiones convexas (cilindros, intersecciones, etc.)

Índices estáticos y dinámicos

- Fase offline: Se construye el índice con todos los vectores del dataset
- Fase online: El índice se utiliza para responder consultas
- Índice estático: No se modifica su estructura mientras está online
- Índice dinámico: Es posible modificar su estructura mientras está online
 - Operaciones de inserción y borrado incrementales con costo O(log n)
 - □ Puede iniciar vacío y alimentarlo en la medida que se obtienen nuevos datos

R-Tree

- Permite buscar objetos espaciales (ya sea vectores o figuras) en el espacio
- Árbol balanceado similar a un B-Tree
- Construye Minimum Bounding Rectangles (MBR) para agrupar objetos
- Estructura dinámica: inserciones y borrados incrementales

M

Estructura del R-Tree

■ Ejemplo de región espacial (MBR)

Propiedades del R-Tree

- Cada nodo (excepto la raíz) contiene entre m y M registros
 - ☐ M: número máximo de entradas en un nodo

$$m \leq \frac{M}{2}$$

- □ *m*: número mínimo de entradas en un nodo
- Para cada nodo interno se calcula el menor rectángulo que contiene sus objetos hijos
 - Minimum Bounding Rectangle (MBR)
- La raíz contiene a lo menos dos hijos, excepto si es una hoja
- Todas las hojas están al mismo nivel

Estructura del R-Tree

- Cada nodo hoja contiene:
 - □ Una lista de datos (descriptores)
- Cada nodo interno contiene:
 - □ Una lista de nodos hijos
 - Un rectángulo d-dimensional que contiene espacialmente a todos los nodos hijos (ya sean regiones o datos):
 - Intervalos [lb_j, ub_j] con el valor mínimo y máximo de los hijos a lo largo de la dimensión j

M

Ejemplo de R-Tree

Inserción en R-Tree

- Similar a insertar en un B-Tree
- Seleccionar una página de datos adecuada y agregar el objeto a esa página
 - Realizar una búsqueda y seleccionar la región donde debería encontrarse el objeto
 - Si ninguna región contiene el objeto elegir la región que requiere agrandarse menos
- Si se excede la capacidad máxima de la página de datos (overflow), dividir la página en dos regiones (split)
- Modificar la representación del nodo padre:
 - □ Agregar la nueva página de datos a la lista de hijos (si hubo overflow)
 - □ Ajustar el tamaño de la región (si se agrandó la página de datos)
- Si el número de hijos excede la capacidad del nodo padre, dividir el nodo padre. Proceder recursivamente hacia arriba en el árbol
- Si la raíz se divide, el árbol crece en un nivel

División de nodos

■ *Split:* dividir *M+1* elementos en dos conjuntos cada uno con al menos *m* elementos

Criterio 1 "Coverage" Minimizar área de los MBRs

Criterio 2 "Overlap" Minimizar intersección de MBRs

División de nodos

- Criterio usado: minimizar la suma de áreas
 - □ Reduce la probabilidad de visitar ambas regiones en el futuro
- Algoritmo exhaustivo:
 - Probar todas las posibles particiones y seleccionar la óptima (costo exponencial!)
- Algoritmo cuadrático:
 - Escoger semillas: probar todos los pares de elementos y elegir el par que produce la mayor área.
 - 2. Cada semilla inicia un grupo.
 - Mientras queden elementos para elegir:
 - Para cada elemento disponible calcular el aumento requerido por cada grupo para agregarlo.
 - Seleccionar para agregar el elemento con mayor diferencia en el aumento de ambos grupos.

Borrar y Actualizar en R-Tree

- Borrar un elemento:
 - Buscar el elemento a borrar y eliminarlo de la página de datos
 - □ Si no se produjo *underflow* ajustar MBRs respectivos
 - □ Si se produce underflow (el nodo queda con menos de m elementos), eliminar el nodo completo y reinsertar todos los datos restantes
- Actualizar un elemento:
 - □ Borrar el valor antiguo e insertar nuevo valor

Búsqueda por rango en R-Tree

- Obtener todos los elementos que están dentro de la bola de consulta B(q,r)
- Búsqueda recursiva (iniciar en la raíz del árbol):
 - □ Si está en un nodo interno (contiene otros nodos):
 - Comparar cada nodo hijo con la bola de consulta y si la intersecta visitar el nodo recursivamente
 - ☐ Si está en una hoja (contiene elementos):
 - Comparar cada elemento con la bola de consulta y reportar los elementos relevantes, i.e. los que están dentro de B(q,r).
- Notar que la bola de consulta puede intersectar varias regiones simultáneamente
- Una búsqueda por similitud puede requerir recorrer varios subárboles, incluso el árbol completo

MINDIST

- Distancia mínima entre objeto q y algún punto de la región R
- Distancia a la que potencialmente podría existir algún elemento en la región
- Para distancia euclidiana:

$$MINDIST(q, R) = \sqrt{\sum_{i=1}^{n} \begin{cases} (lb_i - q_i)^2 & \text{si} & q_i < lb_i \\ 0 & \text{si} & lb_i \le q_i \le ub_i \\ (ub_i - q_i)^2 & \text{si} & q_i > ub_i \end{cases}}$$
 \(\bub_2^-

■ Determinar si la región R intersecta la bola de consulta B(q,r) consiste en determinar si MINDIST $(q,R) \le r$

Dúcauada nar ranga an I

Búsqueda del NN en R-Tree

- Si uno supiera la distancia a la que está el vecino más cercano, bastaría con hacer una consulta por rango con el radio correcto
- Algoritmo recursivo (naive):
 - Aplicar la misma búsqueda en profundad recursiva de la búsqueda por rango
 - □ El rango es desconocido, asumir un rango infinito y reducirlo en la medida que se encuentran candidatos
 - pruningdist es la distancia de corte que se va reduciendo al encontrar mejores candidatos

Búsqueda NN recursiva en R-Tree

Búsqueda del NN en R-Tree

- Desventajas del algoritmo recursivo:
 - □ Toma un camino predefinido (por ejemplo, la rama izquierda del árbol)
 - □ El primer objeto candidato encontrado probablemente está lejos de la consulta
 - □ El algoritmo reduce el espacio de búsqueda lentamente
 - Muchos caminos deben visitarse inútilmente

Búsqueda NN por prioridad en R-Tree

- Búsqueda por prioridad de Hjaltason y Samet
- También llamado algoritmo BBF (Best Bin First)
- No hacer un recorrido recursivo
- Mantener una lista de regiones activas a ser visitadas (Active Page List o APL)
 - Una región está activa cuando aún no ha sido visitada pero su padre ya fue visitado
- La APL es una cola de prioridad que mantiene las regiones ordenadas por MINDIST de menor a mayor (un min-heap)
- La distancia al objeto candidato a NN (pruningdist) se usa para descartar regiones activas

Algoritmo de Búsqueda NN por prioridad

- Iniciar la APL con la raíz del árbol
- Sacar de la APL la región con mejor prioridad (con menor MINDIST)
 - □ Si es hoja (con datos), se comparan todos sus elementos contra la consulta. Si corresponde, se actualiza el NN candidato y *pruningdist*
 - □ Si es nodo interno (con regiones), se obtienen sus hijos y los nodos con MINDIST menor a pruningdist se insertan en la APL
- El algoritmo termina cuando la APL está vacía o cuando la región sacada de la APL tiene un MINDIST mayor o igual a pruningdist

re.

Búsqueda NN por prioridad en R-Tree

Búsqueda NN por prioridad

- Las páginas se acceden en orden creciente de MINDIST (círculos azules)
- pruningdist (círculos rojos) va decreciendo en la medida que se encuentran puntos más cercanos
- El algoritmo se detiene cuando ambos círculos se encuentran
- Requerimientos de espacio:
 - □ Puede suceder que todas las regiones del último nivel se inserten en la APL
 - □ La complejidad en espacio (peor caso) es O(n), mucho peor que la búsqueda en profundidad $O(\log n)$

Optimalidad del algoritmo

- El algoritmo NN por prioridad es óptimo con respecto al número de regiones visitadas:
 - Visita la mismas cantidad de regiones que una consulta por rango de tamaño exacto para obtener el NN
 - □ Visita todas las regiones con MINDIST menor a la distancia del NN (asegurar que es el NN)
 - No visita regiones con MINDIST mayor que la distancia del NN
- Notar que la búsqueda no necesariamente termina cuando aparece como candidato el NN real, porque se debe asegurar que no existe un candidato mejor (visitar regiones con MINDIST menor)

Búsqueda k-NN en R-Tree

- Para resolver una búsqueda k-NN se requieren dos colas de prioridad:
 - APL (min-heap ordenando regiones por MINDIST)
 - □ Lista de *k* candidatos (max-heap ordenando elementos por su distancia a *q*)
- pruningdist corresponde a la distancia del peor candidato (k-ésimo)
 - □ La cabeza del max-heap de candidatos
 - □ infinito si hay menos de *k* candidatos

Búsqueda k-NN aproximada

- La búsqueda por prioridad visita páginas en orden de distancia creciente a la consulta
 - Idea: Realizar una detención anticipada (early stop)
 y retornar los candidatos hasta ese momento
- Parámetro: c número máximo de regiones con datos a visitar
- Realizar una búsqueda k-NN por prioridad pero finalizar la búsqueda cuando se han visitado c regiones con datos y retornar los candidatos hasta ese momento

Variantes del R-Tree

MINMAXDIST

- □ Distancia al punto más lejano de la cara más cercana
- Un MBR garantiza que existe al menos un elemento a esa distancia, se puede usar como pruningdist

R* Tree.

- Cambia criterio de creación de MBR: hojas minimizan intersección, nodos internos minimizan área total
- □ Evita splits resolviendo overflows con re-inserciones

R+ Tree

 Elimina la necesidad de recorrer varios árboles en una búsqueda insertando un mismo elemento en más de una región.

X-Tree

- □ Si no existe un buen split, se crea un "super-nodo" donde se van agregando los objetos en una lista enlazada de nodos.
- Si hay mucho overlap X-Tree deriva en búsqueda secuencial

SS-Tree

- SS-Tree (Similarity Search Tree):
 - Usar hiper-esferas para definir las regiones espaciales (en vez de MBRs).
 - Las esferas tienen ventaja con respecto a la probabilidad de acceso si las consultas también son regiones esféricas.
 - □ Split más complicado
 - Cuando se divide una esfera en dos, no se obtiene como resultado dos esferas
 - Se utiliza la esfera de cobertura mínima para encerrar a los puntos de las regiones resultantes
 - Produce traslape alto
 - El centroide (centro de masa) de los puntos en la región se utiliza como centro de la esfera, y se busca el radio mínimo tal que todos los objetos de la región queden cubiertos

SS-Tree

- Algoritmo de inserción
 - □ El objeto se inserta en el nodo hijo cuyo centroide tenga la mínima distancia al nuevo punto
- Manejo de overflow
 - Se reinserta un 30% de los puntos (los más lejanos al centroide)
- Criterio de split
 - Para la posición de corte se prueban todas las posibilidades que garantizan la utilización mínima de espacio
 - El punto de corte minimiza la suma de las varianzas de ambos nodos resultantes

SR-Tree

- SR-Tree (Sphere-rectangle tree)
 - Utiliza la combinación (intersección) de un MBR y una esfera como región espacial
 - □ Busca combinar las ventajas de ambos métodos
 - Menor probabilidad de acceso de una esfera
 - Mejor "particionabilidad" de un MBR
 - Experimentalmente se muestra un mejor rendimiento que el SS-tree

KD-Tree

- Árbol binario balanceado
- Particiona recursivamente el espacio por medio de hiper-planos paralelos a los ejes
- Nodo Interno: almacena un número de dimensión k y un valor umbral x
 - El subárbol izquierdo es la región con coordenada k menor o igual a x
 - El subárbol derecho es la región con coordenada k mayor o igual a x
- Nodo externo: almacena los vectores que se encuentran dentro de la región definida por los hiperplanos de sus ancestros

Ejemplo kd-Tree

Ejemplo kd-Tree

d₁

M

Construcción de un kd-Tree

- Sea R un conjunto de n vectores de d dimensiones, es decir, R={v₁,...,v_n} donde v_i es un vector con coordenadas (v_{i1},...,v_{id})
- Calcular la varianza de cada dimensión, es decir, para cada dimensión j calcular la varianza σ²_j de los n valores {v_{1j},...,v_{nj}}
- Comparar las varianzas {σ²₁,..., σ²๗} y elegir la dimensión k que tiene mayor varianza
- Particionar **R** en subconjuntos **S** y **T** según la mediana de la dimensión **k**, es decir, sea λ_k la mediana de $\{v_{1k},...,v_{nk}\}$, $\mathbf{v_i}$ está en **S** si $v_{ik} \leq \lambda_k$
- Dividir recursivamente ambos subconjuntos S y T

Ejemplo kd-Tree

Búsqueda del NN en kd-Tree

- Opción Naive (búsqueda recursiva): bajar recursivamente por el árbol hasta la hoja que contiene a q, comparar vectores en esa hoja y obtener un candidato, continuar el recorrido recursivo descartando regiones más lejanas que el candidato actual
- Mejor (búsqueda por prioridad): Análogo a la búsqueda en el R-Tree. Utilizar una cola de prioridad (APL) que ordena regiones por distancia a q (MINDIST) y visitar regiones en orden ascendente

Randomized kd-Trees

- Para un conjunto de vectores el algoritmo de construcción del kd-tree produce un único árbol
- Se pueden crear varios kd-tree (un kd-forest) si en cada nivel se particiona por una dimensión al azar entre las D dimensiones de mayor varianza (por e.j. D=5)
- Algoritmo de Búsqueda del NN:
 - Búsqueda por prioridad utilizando una única cola de prioridad para las regiones de todos los árboles
 - La búsqueda va visitando todos los árboles al mismo tiempo
 - □ Limitar hojas visitadas → búsqueda aproximada

Ejemplo Randomized k-d Trees

Hierarchical K-Means Tree

- Utilizar k-means para dividir un conjunto en k grupos de objetos cercanos entre sí
 - División recursiva, terminar cuando quedan menos de k vectores en un grupo
 - □ Árbol balanceado *k*-ario (*k* es un parámetro).

Hierarchical K-Means Tree

- Búsqueda aproximada con cola de prioridad
- Algoritmo de Búsqueda del NN:
 - □ Búsqueda por prioridad donde la regiones se ordenan por distancia de q al centroide
 - No hay gran cambio al ordenar por distancia de q al borde de celda de Voronoi
 - No hay gran cambio si se realizan múltiples kmeans trees

Efectividad versus Eficiencia

- La búsqueda lineal (linear scan) logra la máxima efectividad (retorna el 100% de los NN correctos) pero es lento
- Los métodos aproximados permiten mejorar la eficiencia (búsquedas más rápidas) con costo en la efectividad (bajar la calidad de la respuesta)
 - En algunos casos puede ser tolerable o incluso imperceptible retornar otro objeto cercano que no sea necesariamente el NN
 - Se debe medir experimentalmente cuanto decrece la calidad de la respuesta al acelerar la búsqueda
 - Esta relación depende el espacio de búsqueda (distribución de los descriptores)

Locality Sensitive Hashing

Locality Sensitive Hashing (LSH)

- Algoritmo aleatorio de búsqueda por similitud
- Búsqueda no es exacta
 - Su grado de aproximación se ajusta en la fase offline
- Se definen varias funciones de hash que producen colisiones para objetos similares
- Cada función de hash consiste en unir varias proyecciones aleatorias de los datos
- Una función de hash se dice locality-sensitive cuando la probabilidad de colisión de dos objetos disminuye cuando la distancia entre ellos aumenta

LSH para Espacios de Hamming

- Descriptores binarios y distancia de Hamming
- Si los descriptores son vectores se deben convertir a cadenas de bits
- Notación unaria, vector de coordenadas x_i:
 - □ Cada x_i debe ser un entero entre 0 y M
 - □ Cada x_i se mapea a un "1" repetido x_i veces seguido de un "0" repetido (M-x_i) veces
 - □ Se concatenan las cadenas de todos los x_i
 - □ Ej.: vector (2,5) para M=6 se mapea a la cadena "110000111110"

Construcción del Índice

- Una función de hash h convierte el espacio sdimensional a un subespacio m-dimensional
 - □ La función h(o) escoge en forma aleatoria m posiciones entre 1 y s (s es el largo de la cadena de bits)
 - \square Si x e y son cercanos probablemente h(x)=h(y)
 - \square Si x e y son lejanos probablemente $h(x)\neq h(y)$
- La probabilidad total de cometer un error se reduce al utilizar L funciones de hash $\{h_1, ..., h_L\}$
 - □ Para cada función h_i construir una tabla T_i asignando cada objeto o_i a la celda $T_i[h_i(o_i)]$
 - Dos objetos muy parecidos debieran coincidir en varias tablas

Búsqueda k-NN con LSH

- Para cada una de las L tablas:
 - □ Calcular la proyección correspondiente h(q)
 - □ Determinar los objetos que tienen colisión con q, i.e., localizar todos los o que h(o)=h(q)
 - Para cada objeto o sumar uno a su contador de ocurrencias
- Retornar los k objetos con más ocurrencias
- Opcional: realizar una búsqueda k'-NN (k' ≥ k), calcular la distancia real de los k' candidatos y retornar los k-NN

LSH para Espacios de Hamming

Números entre 1 y 14 al azar

			HS = UNARY()	PROJECTION INSTANCES				
L			UNARY(X)	UNARY(Y)	{2,9,13}	{7,10,14}	{1,5,11}	{8,12,14}
Chicago	2	3	1100000	1110000	110	010	100	100
Mobile	4	0	1111000	0000000	100	000	100	000
Toronto	4	6	1111000	1111110	111	010	101	110
Buffalo	6	5	1111110	1111100	110	010	111	110
Denver	0	3	0000000	1110000	010	010	000	100
Omaha	2	2	1100000	1100000	110	000	100	100
Atlanta	6	1	1111110	1000000	100	000	110	100
Miami	7	0	1111111	0000000	100	100	110	000
q = Reno	0	4	0000000	1111000	010	010	001	100

Una cadena de 14 bits de largo

Parámetros *m*=3 *L*=4

Ver Samet, pág 713

M

LSH para Espacios de Hamming

Colisiones

Object	Chicago	Mobile	Toronto	Buffalo	Denver	Omaha	Atlanta	Miami	q = Reno
Chicago		1	1	11	11	111	1		11
Mobile	3.6					1	11	111	
Toronto	3.6	6.0		1					1
Buffalo	4.5	5.4	2.1						1
Denver	2.0	5.0	5.0	6.3					(111)
Omaha	1.0	2.8	4.5	5.0	2.2				↑ 1
Atlanta	4.5	2.2	5.4	4.0	6.3	4.1		1	1
Miami	5.8	3.0	6.7	5.1	7.6	5.4	1.4		
q = Reno	2.2	5.7	4.5	6.1	1.0	2.8	6.7	8.1	

Consulta

Distancias L₂

q tiene muchas colisiones con su NN

LSH para Espacios Euclidianos

- Descriptores vectoriales y distancia L2
- Proyección aleatoria:
 - □ Escoger vector aleatorio a y valor aleatorio b
 - a sigue distribución normal con media 0 y varianza 1
 - □ *b* sigue distribución uniforme en el rango [0,*w*] (*w*: tamaño del bin)

$$h_{a,b}\left(v\right) = \left|\frac{a \cdot v + b}{w}\right|$$

Indexamiento LSH

- Una función h_{a,b}(o) entrega un valor numérico
- Concatenar m funciones h_{a,b} para definir un hash de vector
- Calcular L valores de hash por vector
- Para descriptores SIFT (128-d) se ha recomendado:
 - □ w=700; m=24; L=32

Búsqueda k-NN de LSH

- Para cada una de las L tablas:
 - \Box Calcular el hash de q aplicando las m funciones $h_{a,b}$
 - Obtener los vectores v que coinciden en el hash h(v)=h(q)
- Reportar como NN los vectores que coinciden en uno o más de los L hash

Space-Filling Curves

Space-Filling Curves

- Un espacio multidimensional se puede recorrer ordenadamente en forma lineal
- Un espacio de n-dimensiones se convierte en un espacio unidimensional
- Vectores cercanos en el espacio ndimensional debieran quedar cerca en el espacio unidimensional

Space-Filling Curves

- El espacio se divide en celdas y se define un orden de recorrido de las celdas
- Propiedades deseables del recorrido:
 - □ Visitar cada celda una y solo una vez
 - □ Celdas cercanas deben quedar cerca en la curva
 - □ Celdas lejanas deben quedar lejos en la curva
 - □ La función debe ser rápida de calcular

Curva de Hilbert

Multi-curves

 En vez de crear una única curva, crear varias curvas para subespacios

Curse of Dimensionality

Alta Dimensionalidad

- "Curse of Dimensionality" o "Maldición de la Dimensionalidad"
- Se refiere a los efectos adversos que suceden cuando aumenta la dimensión de los datos
 - La distancia entre cualquier par de objetos tiende a una valor constante (desaparece la varianza en las distancias)
 - Todos los índices comienzan a fallar (todas las regiones intersectan la bola de consulta)
 - El volumen de las regiones aumenta exponencialmente con la dimensión del espacio
 - □ No hay imaginación geométrica, falla la intuición

M

Alta Dimensionalidad

- "Si un círculo toca todos los bordes, siempre incluye el punto central?" No!
 - ☐ Hiper-cubo 16-dimensional unitario
 - \Box c= (0.5,0.5,....0.5) (punto central)
 - \Box p= (0.3,0.3,....0.3)
 - □ Círculo centrado en p y radio 0.7 (toca todas las caras)
 - □ Distancia $L_2(p,c) = 0.8$!!

Volumen en las superficies

- Todo el volumen está en la superficie!
 - Probabilidad que un punto aleatorio esté cerca del borde en un MBR

Volumen Bola de Consulta

- Volumen crece exponencialmente:
 - □ Hiper-cubo

$$Vol_{d\text{-cubo}}(a) = a^d$$

$$Diag_{d\text{-cubo}}(a) = a\sqrt{d}$$

□ Hiper-esfera

$$\operatorname{Vol}_{d\text{-esfera}}(r) = r^d \frac{\pi^{d/2}}{\Gamma(\frac{d}{2}+1)}$$

 Cuando la dimensión aumenta, el volumen de la hiperesfera de radio 1 comparado con el hipercubo de lado 1 tiende a 0!

Aproximación de Stirling: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Alta Dimensionalidad

 Al aumentar las dimensiones, los objetos tienden a ubicarse a una misma distancia

Histograma de distancias

- Histograma de d(a,b) con a y b aleatorios del conjunto R
- Al aumentar dimensiones las distancias tienden a concentrarse a un valor fijo
- La dificultad de indexar un conjunto tiene relación con poca varianza en valores de distancias

Alta Dimensionalidad

- No se puede evaluar el desempeño de un índice con datos aleatorios
 - Seguro fallará porque es imposible indexar datos aleatorios de dimensión alta
 - □ No es realista
- Los datos reales no son aleatorios!
 - □ Cada dataset tiene consultas y datos relevantes para esas consultas (existen grupos de objetos cercanos)
- Al capturar datos se debe evitar incluir datos irrelevantes ya que sólo se conseguirá igualar los registros

Bibliografía

Foundations of Multidimensional and Metric Data Structures. Samet 2006.

- □ Cap 1.5 (Kd-Tree)
- □ Cap 2.1.5.2 (R-Tree)
- □ Cap 4.7.4 (LSH)

Papers

- Guttman. R-trees: A dynamic index structure for spatial searching. 1984.
- Hjaltason and Samet. Ranking in Spatial Databases. 1995.
- Roussopoulus, Kelley and Vincent. Nearest Neighbor Queries. 1995.
- Böhm, Berchtold and Keim. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. 2001.
- Muja and Lowe. Scalable Nearest Neighbor Algorithms for High Dimensional Data. 2014.
- Beyer, Goldstein, Ramakrishnan and Shaft. When is "nearest neighbor" Meaningul? 1998.
- Hinnenburg, Aggarwal and Keim. What is the nearest neighbor in high dimensional spaces?. 2000.
- Shaft and Ramakrishnan. Theory of Nearest Neighbors Indexability. 2006.

Implementaciones

Implementación de Kd-Tree y K-Means Tree:

http://www.cs.ubc.ca/research/flann/

- Implementación de LSH:
 http://www.mit.edu/~andoni/LSH/
 https://github.com/pixelogik/NearPy
- Implementación para curva de Hilbert: https://en.wikipedia.org/wiki/Hilbert curve