10. Смесено произведение

Считаме, че сме фиксирали ориентацията в пространството.

1. Дефиниция: Смесено произведение на векторите а,b,с наричаме числото

$$(\mathbf{a},\mathbf{b},\mathbf{c}) = \langle a \times b, c \rangle$$
.

1. Теорема: Нека векторите $\mathbf{a}, \mathbf{b}, \mathbf{c}$ не са компланарни. Тогава обемът на паралелепипеда построен върху $\mathbf{a}, \mathbf{b}, \mathbf{c}$ е равен на $|(\mathbf{a}, \mathbf{b}, \mathbf{c})|$, а обемът на тетраедъра, построен върху $\mathbf{a}, \mathbf{b}, \mathbf{c}$ е равен на $\frac{1}{6}|(\mathbf{a}, \mathbf{b}, \mathbf{c})|$.

Доказателство:

Нека т.O е произволна точка от пространството и точките A, B, C са, такива че $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ и $\overrightarrow{OC} = \mathbf{c}$.

Нека $OAC_1BCB_1O_1A_1$ е паралелепипед построен върху **a,b,c**. Нека h е височната спусната от т.C към страната OAC_1B . Обемът на паралелепипеда е $V = S_{OAC_1B}h$.

 OAC_1B е успоредник постоен върху **a,b**. Следователно лицето S_{OAC_1B} е равно на $|a \times b|$. Нека $\varphi = \angle(a \times b, c)$.

Ако $\varphi \leq \frac{\pi}{2}$, то $\alpha = \varphi$, следователно $\cos \alpha = \cos \varphi \geq 0$ и $\cos \alpha = |\cos \varphi|$.

Ако $\varphi \geq \frac{\pi}{2}$, то $\alpha = \pi - \varphi$, следователно $\cos \alpha = -\cos \varphi \geq 0$ и $\cos \alpha = |\cos \varphi|$.

Имаме $h=|c|\cos\alpha=|c||\cos\varphi|$. Следователно обемът $V=|a\times b||c||\cos\varphi|=|< a\times b, c>|=|(a,b,c)|$.

Лицето на тетраедъра построен върху **a,b,c** е равен на $\frac{S_{OAB}h}{3}$, а $S_{OAB}=\frac{1}{2}|a\times b|$, т.е. $\frac{1}{3}\frac{1}{2}|a\times b||c||\cos\varphi|=\frac{1}{6}(a,b,c)$.

Свойства: Смесеното произведение има следните свойства:

- 1) (a,b,c)=(b,c,a)=(c,a,b)=-(b,a,c)=-(c,b,a)=-(a,c,b);
- 2) $(\lambda \mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a}, \lambda \mathbf{b}, \mathbf{c}) = (\mathbf{a}, \mathbf{b}, \lambda \mathbf{c}) = \lambda \mathbf{a}, \mathbf{b}, \mathbf{c}, \exists \mathbf{a} \lambda \in \mathbb{R};$
- 3) $(a_1 + a_2, \mathbf{b}, \mathbf{c}) = (a_1, \mathbf{b}, \mathbf{c}) + (a_2, \mathbf{b}, \mathbf{c}).$
- **2.** Теорема: Нека $K = Oe_1e_2e_3$ е афинна координатна система в пространството и векторите **a,b,c** имат кординати съответно (a_1,a_2,a_3) , (b_1,b_2,b_3) и (c_1,c_2,c_3) спрямо K, тогава

$$extbf{(a,b,c)} = egin{array}{cccc} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \ \end{array} egin{array}{cccc} (e_1,e_2,e_3) \end{array}$$

Доказателство:

Имаме $(\mathbf{a},\mathbf{b},\mathbf{c}) = (a_1e_1 + a_2e_2 + a_3e_3, b_1e_1 + b_2e_2 + b_3e_3, c_1e_1 + c_2e_2 + c_3e_3);$

Тъй като смесеното произведение е линейно относно трите си аргумента получаваме:

$$(\mathbf{a},\mathbf{b},\mathbf{c}) = \sum_{i,j,k=1}^{3} a_i b_j c_k (e_i, e_j, e_k).$$

Ако два от векторите e_i, e_j, e_k са равни, то смесеното произведение $(e_i, e_j, e_k) = 0$ и така получаваме

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (a_1 b_2 c_3 - a_1 b_3 c_2 - a_2 b_1 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1)(e_1, e_2, e_3) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} (e_1, e_2, e_3)$$