Problem 1 z-Transforms

- (a) $\hat{x}(z) = 1$, ROC: C. The Fourier transform exists.
- (b) $\hat{x}(z) = z^{-1}$, ROC: $\mathbb{C} \setminus \{0\}$. The Fourier transform exists.
- (c) $\hat{x}(z) = z$, ROC: $\mathbb{C} \setminus \{\infty\}$. The Fourier transform exists.
- (d) $\hat{x}(z) = \frac{1}{1 2z}$, ROC: $|z| < \frac{1}{2}$. The Fourier transform does not exist.
- (e) $\hat{x}(z) = \frac{1}{1 \frac{1}{2}z^{-1}} + \frac{1}{1 \frac{1}{4}z^{-1}}$, ROC: $|z| > \frac{1}{2}$. The Fourier transform exists.
- (f) $\hat{x}(z) = \frac{1}{1 \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}z}{1 \frac{1}{2}z}$, ROC: $\frac{1}{3} < |z| < 3$. The Fourier transform exists.
- (g) $\hat{x}(z) = \frac{1-z^{-10}}{1-z^{-1}}$, ROC: $\mathbb{C} \setminus \{0\}$. The Fourier transform exists.
- (h) $\hat{x}(z) = \frac{1 \frac{1}{4^{11}}z^{-11}}{1 \frac{1}{2}z^{-1}}$, ROC: $\mathbb{C} \setminus \{0\}$. The Fourier transform exists.

Problem 2 Inverse z-Transform I

(a)
$$x[n] = \left(-\frac{1}{2}\right)^n I\{n \ge 0\}.$$

(b)
$$x[n] = -\left(-\frac{1}{2}\right)^n I\{n < 0\}.$$

(c)
$$x[n] = \left[-3\left(-\frac{1}{4}\right)^n + 4\left(-\frac{1}{2}\right)^n\right] I\{n \ge 0\}.$$

(d)
$$x[n] = \delta[n] - (\frac{1}{4})^n I\{n \ge 1\}.$$

(e)
$$x[n] = a^{-n+1} I\{n \ge 1\} - a^{-n-1} I\{n \ge 0\}.$$

Problem 3 Partial Fraction Decomposition

(a)
$$\hat{x}(z) = 1 - \frac{1 - 3z}{1 - 3z + 2z^2}$$
.

(b)
$$\hat{x}(z) = 1 + \frac{1}{1 - 2z} - \frac{2}{1 - z}$$
.

(c)
$$x[n] = \left[\left(\frac{1}{2} \right)^n - 2 \right] I\{n < 0\}$$

Problem 4 Inverse z-Transform II

$$x[n] = 0, n < -3.$$

$$x[-3] = 1.$$

$$x[-2] = 4.$$

$$x[-3] = 1.$$

 $x[-2] = 4.$
 $x[-1] = -5.$

Problem 5 Power-Series Expansion

(a)
$$x[n] = \left(\frac{1}{2}\right)^n \frac{1}{n} I\{n < 0\}.$$

(b)
$$x[n] = -\left(\frac{1}{2}\right)^n \frac{1}{n} I\{n > 0\}.$$

Problem 6 Real-Valued Sequences

...

Problem 7 Time Reversal

...

Problem 8 Even Sequences

•••

Problem 9 LTI System I

(a)
$$\hat{h}_1(z) = 1 - e^{-8\alpha} z^{-8}$$
, ROC: $\mathbb{C} \setminus \{0\}$.

(b)
$$\hat{h}_2(z) = \frac{1}{1 - e^{-8\alpha}z^{-8}}$$
, ROC: $|z| < e^{-\alpha}$ or $|z| > e^{-\alpha}$.

(c)
$$h_2[n] = \begin{cases} e^{-\alpha n}, & \text{if } n = 0, 8, \dots \\ 0, & \text{otherwise} \end{cases}$$

or

$$h_2[n] = \begin{cases} -e^{-\alpha n}, & \text{if } n = -8, -16, \dots \\ 0, & \text{otherwise} \end{cases}$$

Problem 10 LTI System II

$$y[n] = \frac{1 - a^{n+1}}{1 - a} \operatorname{I} \left\{ 0 \le n < N \right\} + \frac{a^{n+1-N} - a^{n+1}}{1 - a} \operatorname{I} \left\{ n \ge N \right\}$$