Доп. задачи из книг "Сборник задач по математическому анализу". Том 1. Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И. ФИЗМАТЛИТ, 2003 год ([1]); "Математический анализ в задачах и упражнениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

Вычисление производных и дифференциалов

При $x \neq 0$ справедливо равенство $(\ln |x|)' = 1/x$, которое легко проверить для положительных и отрицательных x отдельно. Если функция f дифференцируема на своей области определения и не равна нулю, то $(\ln |f(x)|)' = \frac{f'(x)}{f(x)}$, откуда $f'(x) = f(x)(\ln |f(x)|)'$. Такая формула применяется, когда производная логарифма от модуля функции вычисляется проще, чем производная самой функции.

Для кусочно заданных функций производные можно находить по определению.

1. Найти производные и дифференциалы:

a)
$$y = \frac{\sin x}{\cos^3 x}$$
; B) $y = x^{a^a} + a^{x^a} + a^{a^x} (a > 0)$; B) $y = x \ln(x + \sqrt{x^2 + 1})$; r) $\frac{x^x \sqrt[7]{(2x-1)^2}}{(x+3)^4(x-5)^3}$. Cm. [1], $c.266 - c.270$ N°1 - N°166, [2], N°5.63 - N°5.66.

2. Найти производную функции
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
 См. [1], с.271 – с.272 №176 – №180, [2], №5.1 – №75.14.

Свойства производной

Если функция периодическая и всюду дифференцируема, то её производная тоже является периодической функцией. Производная чётной и всюду дифференцируемой функции является нечётной функцией, а производная чётной и всюду дифференцируемой функции является нечётной функцией. Все эти свойства полезно доказать в качестве упражнения.

Кроме того, важное свойства производной как функции обсуждается в задаче 4, а в качестве вопроса к коллоквиуму под номером 5 дано важное следствие этой задачи.

- **3.** Доказать, что функция $f(x) = \sin x + \cos \sqrt{2}x$ не является периодической. См. [1], с.271 – с.273 №172 – №189, [2], №75.1 – №75.14.
- **4.** (Теорема Дарбу). Пусть функция f является производной некоторой функции на интервале (a,b), а $[a_1,b_1]\subset (a,b)$. Доказать, что для любого $\mu\in (f(a_1),f(b_1))$ найдётся такая точка $c\in [a_1,b_1]$, что $f(c)=\mu$.

Односторонние производные

Если односторонние производные в точке существуют и не равны, то функция не является дифференцируемой в этой точке. Будет ли функция дифференцируема в точке, если обе односторонние производные в этой точке существуют и равны?

5. Найти $f'_{-}(x)$ и $f'_{+}(x)$, если

a)
$$f(x) = \sqrt{1 - e^{-x^2}}$$
; 6) $f(x) = \begin{cases} x \sin \frac{1}{x^2}, & x \neq 0, \\ 0, & x = 0; \end{cases}$ B) $f(x) = \begin{cases} \frac{\sin x}{|x|}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

См. набор задач после всех предыдущих.

Кривые, заданные параметрически

Здесь сначала нужно поговорить с семинаристами о параметрически заданных кривых, посмотреть на простые примеры, такие, как окружность, а потом решать задачу 6.

6. а) Пусть $t \in (\alpha, \beta)$ и на (α, β) заданы функции $x : (\alpha, \beta) \to \mathbb{R}$ и $y : (\alpha, \beta) \to$ \mathbb{R} . Пусть функция x непрерывна и строго монотонна на (α, β) . Пусть функции x и yдифференцируемы на (α, β) и $x'(t) \neq 0 \ \forall t \in (\alpha, \beta)$. Доказать, что функция y = f(t(x))определена на промежутке $x((\alpha,\beta))$, дифференцируема на нём и

$$f'(x) = \frac{y'(t)}{x'(t)}.$$

- **б)** Вычислить производную функции y=f(x), если $\begin{cases} x(t)=e^{-t};\\ y(t)=e^{2t}. \end{cases}$ **в)** Вычислить производную функции y=f(x), если $\begin{cases} x(t)=\ln(1+t^2);\\ y(t)=t-\arctan t. \end{cases}$ См. [1], c.275, №201 – №206, [2], №5.93 – №5.100.

Производные высших порядков

В некоторых задачах используется обобщенное правило Лейбница и индукция.

7. Найти $f^{(n)}(x)$, если:

а) $f(x) = \cos^4 x$; б) $f(x) = \frac{x}{x^2 - 4x - 12}$; в) $f(x) = (3 - 2x)^2 e^{3 - 2x}$; г) $f(x) = (x^2 + x)\cos^2(x/3)$; д) $f(x) = e^{2x}\sin^2 x$; е) $f(x) = \frac{\ln x}{x}$, x > 0; ж) производные функций из номера 6 б, в) при

n=2.

См. [1], c.303 - c.304 №24 - №28, [2], 5.80 - 5.92.

Правило Лопиталя

Если можно сначала упростить выражение, перейти к эквивалентным функциям, чтобы дифференцировать более простые выражения, то стоит это сделать.

8. Найти пределы:

- а) $\lim_{x\to +\infty} x^{7/8} x^{6/7} \ln^2 x$; б) $\lim_{x\to 0+} x^{x^x-1}$; в) $\lim_{h\to 0} \frac{f(a+h)+f(a-h)-2f(a)}{h^2}$ (в предположении, что f''(a) существует.)

Cм. [1], c.318 – c.320, все задачи, [2], N25.189 – N25.218.

Разложение по формуле Тейлора

Здесь мы разберём, как раскладывать не только в окрестности нуля, пользуясь известными разложениями.

9. Представить формулой Тейлора в точке x = a с $o((x-a)^n)$:

- a) $f(x) = \frac{2x+5}{x^2+5x+4}$, a = 0; 6) $f(x) = (x^2-1)e^{2x}$, a = -1;
- в) $f(x) = (x+2)\ln(2x^2+8x+11), a = -2, n$ чётное.

См. [1], c.332 - c.335, N21 - N28; [2], N25.183 - N25.188.

Приближенные вычисления

Мы будем использовать формулу Тейлора с остатком в форме Лагранжа, подбирая точки, в которых нужно раскладывать функции.

10. С помощью формулы Тейлора с остаточным членом в форме Лагранжа вычислить с точностью до 10^{-3} : a) $\sqrt[4]{83}$; б) arctg 0, 8.

См. [1],
$$c.335 - c.338$$
, $N=39 - N=48$; [2], $N=5.183 - N=5.188$.

Домашнее задание 9

1. Найти производные и дифференциалы:

a)
$$y = x \arcsin \sqrt{1 - 2x^2}$$
; 6) $y = (\arcsin x)^{\frac{\sin x}{x}}$; B) $f(x) = \begin{cases} \frac{\sin x}{x} + x, & x \neq 0, \\ 1, & x = 0. \end{cases}$

- **2.** Вычислить производную функции y = f(x) в точке t_0 , если $\begin{cases} x(t) = \pi t \sin \pi t; \\ y(t) = t \operatorname{arctg} t \end{cases}$
- a) $t_0 = 0$; **б**) $t_0 = 1$; **в**) $t_0 = 2$.
- 3. Найти $f^{(n)}(x)$, если: **a**) $f(x) = \frac{1+2x}{3x-1}$; **б**) $f(x) = \sin x \cdot \cos^2 x$; **в**) $f(x) = (x^3)2^x$. 4. Найти пределы: **a**) $\lim_{x\to 0} \frac{x \arcsin x^2}{x \cos x \sin x}$; **б**) $\lim_{x\to 0} (\cos x)^{1/x^2}$. 5. С помощью формулы Тейлора с остаточным членом в форме Лагранжа вычислить с точностью до 10^{-3} значение $\cos 72^{\circ}$.

Дополнительные вопросы к коллоквиуму

(дифференцируемость)

1. (0,5 балла) Имеют ли производные в точке x = 0 следующие функции: **a)** y = x|x|; **6**) $y = |x^3|$.

См. [1], c.271 - c.273 №272 - №289, [2], №T5.1 - №T5.14.

- **2.** (0.5 балла) Привести пример двух недифференцируемых в точке x_0 функций:
- а) сумма которых дифференцируема в точке x_0 ; б) произведение которых дифференцируемо в точке x_0 .

См. [1], c.271 - c.273 №272 - №289, [2], №T5.1 - №<math>T5.14.

3. (0.5 балла) Следует ли дифференцируемость функции f в точке x из существования конечного предела $\lim_{h\to 0} \frac{f(x+h)-f(x-h)}{2h}$? См. [1], c.271-c.273 №272 — №289, [2], №T5.1- №T5.14.

- **4.** (1 балл) Известно, что уравнение $x^3 px + q = 0$ имеет три действительных корня. Kаков знак числа p?
- **5.** (1 балл) Пусть функция f дифференцируема на (a,b). Доказать, что функция f' не может иметь разрывов первого рода на (a, b).
- **6.** (1 балл) Укажите ошибку в следующем рассуждении. Пусть $f \in D(\mathbb{R})$, тогда в силу теоремы Лагранжа для любой точки $a \in \mathbb{R}$ имеем

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} f'(c) = \lim_{c \to a} f'(c),$$

где c – точка между a и x, стремящаяся к a, когда $x \to a$, поэтому функция f' непрерывна в каждой точке прямой.

3