Homework: Submit the best 7 problems from end of chapter 6.

(x) is it the tent $A \cup A - l = S \Rightarrow d(A) = \frac{d(S)}{2}$? (also consider).

d - additive largeness mensur

dx - multiplicative largoness mensure.

" multiplicative vasion" of BIN: ${}^{\zeta}N = 2^{c_1}3^{c_2}5^{c_3}\cdots p_{\kappa}^{c_{\kappa}}$. ${}^{\zeta}C_1 \in 3N$.

Ex: aln wy ∑ ci ∈ 2N.

 O_i : all $n = \sqrt{\sum c_i} \in 2N - 1$

L; Y: Theorem: $d_x(E_x) = d_x(O_x) = \frac{1}{2}$ (Exercise)

in fact, $d(E_x) = d(O_x) = \frac{1}{2}$!!!

Recall: $\bar{d}(S) = \bar{d}(S-t) = \bar{d}(s+t)$

 \underline{N}_{∞} $\overline{d}_{x}(S) = \overline{d}_{x}(S/t) = \overline{d}_{x}(tS)$ (Exercise)

Cancellative Semigroup: Semigroup where ax = ay => x=y.

Non-cancellative semigroup: (2/62, .), anything with a 0.

J= all finite subsets of N.

- DU A O
- 3 AnB
- 3 AAB

Let A be - finite n-element set. then P(A) is - 2^n element group wite operation Δ .

$$S = \frac{5}{3}n \cdot neNJ$$
, $\frac{5}{2} = 6$

Any set which misses a prime has dx = 0.

Ex. Let SCH. define $M_S = \{2^{c_1}3^{c_2}5^{c_3}...p_n^{c_n} : \Sigma c_i \in S\}$.

does $d_x(M_S) = d(s)$? What about for \overline{d}_x and \overline{d}_x ?

Ex. $\forall \alpha > 1$ let $S_{\alpha} = \{LN\alpha L : \alpha \in \mathbb{N}\}$. Show $J(S_{\alpha}) = \frac{1}{\alpha}$

Ex. Claim: Let $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Prove $S_{\alpha}US_{\beta} = N$.

Exist & D s Sa does not contain an infinite progression.

General quartion: What is dx CSa)?

Theorem: any finite field has prollments for some nEN, pep.

Know this Proof for midterm

Thurse If F, , E are finite fields w/ |F, I = |E, F, = F2.

3 & Z are nonsquare in F₅ so

{a+b\sqrt{3} \cdot a,b\in F₅} and {a+b\sqrt{2}: a,b\in F₅}

or fields. but truy both here cardinality 25,

So they are isomorphic.

Ex. check that there are fields & that they are isomorphic.

Ex. Create a field w/ p^2 elements $\forall p \in P$. (including P=2).

Little Fernat Theorem: $X^{P-1} \equiv 1 \mod P$.

$$\underbrace{Pf}_{X}: X = \underbrace{\left(\underbrace{1 + \dots + 1}_{x + 1 \text{ mes}}\right)^p}_{x + 1 \text{ mes}} = \underbrace{1 + \dots + 1}_{x + 1 \text{ mes}} = x \quad \text{mod } p$$

So if $x \neq 0$, $x^{P-1} \equiv 1$ and p.

(multinomial coefficients are divisible by P). \square

Pf 2: for any χ , the elements $\chi, 2\chi, 3\chi, ..., (p-1)\chi$ are distinct; and equal (in some order) to $1, 2, ..., p_1$ mod p.

So $\chi \cdot 2\chi \cdot 3\chi \cdots \cdot (P-1)\chi \equiv 1 \cdot 2 \cdot 3 \cdots (P-1) \mod P$.

now everything cancels $(1.2.3....(r-1) \equiv 1 \mod p)$

So $\chi^{P-1} \equiv 1 \mod P$.