Deep Learning for Computer Vision

Feature Matching

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

Acknowledgements

 Most of this lecture's slides are based on lectures of Deep Learning for Vision course taught by Prof Yannis Avrithis at Inria Rennes-Bretagne Atlantique

NPTEL

Review

How to match?

- For each location in an image, find a displacement with respect to another reference image
- Appropriate for small displacements, e.g. stereopsis or optical flow

 $^{^1}$ Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

One dimension:

²Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

One dimension:

Assuming g(x) = f(x + t) and t is small,

$$\frac{df}{dx}(x) \approx \frac{f(x+t) - f(x)}{t} = \frac{g(x) - f(x)}{t}$$

²Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

• Error given by:

$$E(t) = \sum_{x} w(x) \left(f(x+t) - g(x) \right)^{2} \approx \sum_{x} w(x) \left(f(x) + t^{T} \Delta f(x) - g(x) \right)^{2}$$

²Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

• Error given by:

$$E(t) = \sum_{x} w(x) \left(f(x+t) - g(x) \right)^{2} \approx \sum_{x} w(x) \left(f(x) + t^{T} \Delta f(x) - g(x) \right)^{2}$$

Error minimized when gradient vanishes

$$\frac{\partial E}{\partial t} = \sum_{x} w(x) 2\Delta f(x) \left(f(x) + t^{T} \Delta f(x) - g(x) \right) = 0$$

²Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

• Error given by:

$$E(t) = \sum_{x} w(x) \left(f(x+t) - g(x) \right)^{2} \approx \sum_{x} w(x) \left(f(x) + t^{T} \Delta f(x) - g(x) \right)^{2}$$

Error minimized when gradient vanishes

$$\frac{\partial E}{\partial t} = \sum_{x} w(x) 2\Delta f(x) \left(f(x) + t^{T} \Delta f(x) - g(x) \right) = 0$$

• Least-squares solution (ignoring summation and arguments for simplicity):

$$w\Delta f(\Delta f)^T t = w\Delta f(g-f)$$

²Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

• Error given by:

$$E(t) = \sum_{x} w(x) \left(f(x+t) - g(x) \right)^{2} \approx \sum_{x} w(x) \left(f(x) + t^{T} \Delta f(x) - g(x) \right)^{2}$$

Error minimized when gradient vanishes

$$\frac{\partial E}{\partial t} = \sum_{x} w(x) 2\Delta f(x) \left(f(x) + t^{T} \Delta f(x) - g(x) \right) = 0$$

Least-squares solution (ignoring summation and arguments for simplicity):

$$w\Delta f(\Delta f)^T t = w\Delta f(g-f)$$

• 2-D equivalent: Assume an image patch defined by window w; what is the error between patch shifted by t in reference image f and patch at origin in shifted image g?

 $^{^2}$ Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

• The Aperture Problem:

²Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

• The Aperture Problem:

²Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.

- In dense registration, we started from a local "template matching" process and found an efficient solution based on a Taylor approximation
- Both make sense for small displacements
- In wide-baseline matching, every part of one image may appear anywhere in the other
- We start by pairwise matching of local descriptors without any order, and then attempt to enforce some geometric consistency according to a rigid motion model

- In dense registration, we started from a local "template matching" process and found an efficient solution based on a Taylor approximation
- Both make sense for small displacements
- In wide-baseline matching, every part of one image may appear anywhere in the other
- We start by pairwise matching of local descriptors without any order, and then attempt to enforce some geometric consistency according to a rigid motion model

A region in one image may appear anywhere in the other

Features detected independently in each image

Tentative correspondences by pairwise descriptor matching

Subset of correspondences that are 'inlier' to a rigid transformation

Descriptor Extraction:

For each detected feature in each image:

- Construct a local histogram of gradient orientations (HoG)
- Find one or more dominant orientations corresponding to peaks in histogram
- Resample local patch at given location, scale, and orientation
- Extract one descriptor for each dominant orientation

Descriptor Matching:

- For each descriptor in one image, find its two nearest neighbors in the other
- If ratio of distance of first to distance of second is small, make a correspondence
- This yields a list of tentative correspondences

Ratio Test:

Ratio of first to second nearest neighbour distance can determine the probability of a true correspondence

Why is it difficult?

- Should allow for a geometric transformation
- Fitting the model to data (correspondences) is sensitive to outliers: should find a subset of inliers first
- Finding inliers to a transformation requires finding the transformation in the first place
- Correspondences can have gross error
- Inliers are typically less than 50%

• Two images I, I' are equal at points x, x'

$$I(\mathbf{x}) = I'(\mathbf{x}')$$

 \bullet x is mapped to x'

$$\mathbf{x}' = T(\mathbf{x})$$

• T is a bijection of \mathbb{R}^2 to itself:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

Translation: 2 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

Rotation: 1 degree of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

Similarity: 4 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} r\cos\theta & -r\sin\theta & t_x \\ r\sin\theta & r\cos\theta & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

Similarity: 4 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} r\cos\theta & -r\sin\theta & t_x \\ r\sin\theta & r\cos\theta & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

Shear: 2 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & b_x & 0 \\ b_y & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

Affine: 6 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

In all cases, the problem is transformed to a linear system (why?)

$$Ax = b$$

where \mathbf{x} , \mathbf{b} contain coordinates of known point correspondences from images I, I' respectively, and A contains our model parameters

In all cases, the problem is transformed to a linear system (why?)

$$A\mathbf{x} = \mathbf{b}$$

where \mathbf{x} , \mathbf{b} contain coordinates of known point correspondences from images I, I' respectively, and A contains our model parameters

• We need $n = \lceil d/2 \rceil$ correspondences, where d are the degrees of freedom of our model

In all cases, the problem is transformed to a linear system (why?)

$$Ax = b$$

where \mathbf{x} , \mathbf{b} contain coordinates of known point correspondences from images I, I' respectively, and A contains our model parameters

- We need $n = \lceil d/2 \rceil$ correspondences, where d are the degrees of freedom of our model
- Let's take the simplest model as an example: fit a line to two points

• clean data, no outliers : least squares fit ok

• clean data, no outliers : least squares fit ok

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

• one gross outlier - least squares fit fails - what do we do?

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

• one gross outlier - least squares fit fails - what do we do?

Credit: Yannis Avrithis, Inria Rennes-Bretagne Atlantique

 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 Repeat: pick two points at random, draw line through them, count inlier points at fixed distance to line, keep best hypothesis so far

 $^{^3}$ Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 Repeat: pick two points at random, draw line through them, count inlier points at fixed distance to line, keep best hypothesis so far

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 Repeat: pick two points at random, draw line through them, count inlier points at fixed distance to line, keep best hypothesis so far

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 Repeat: pick two points at random, draw line through them, count inlier points at fixed distance to line, keep best hypothesis so far

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 Repeat: pick two points at random, draw line through them, count inlier points at fixed distance to line, keep best hypothesis so far

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

 Repeat: pick two points at random, draw line through them, count inlier points at fixed distance to line, keep best hypothesis so far

³Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

RANSAC

- X: data (tentative correspondences)
- n: minimum number of samples to fit a model
- $s(x; \theta)$: score of sample **x** given model parameters θ
- repeat:
 - hypothesis
 - ullet draw n samples $H \subset X$ at random
 - fit model to H, compute parameters θ
 - verification
 - are data consistent with hypothesis? compute score $S = \sum_{\mathbf{x} \in X} s(\mathbf{x}; \theta)$
 - if $S^* > S$, store solution $\theta^* := \theta$, $S^* := S$

- Inlier ratio w (number of inliers in data / number of points in data) unknown
- Too expensive when minimum number of samples is large (e.g. n > 6) and inlier ratio is small (e.g. w < 10%): 10^6 iterations for 1% probability of failure. (How?)

- Inlier ratio w (number of inliers in data / number of points in data) unknown
- Too expensive when minimum number of samples is large (e.g. n > 6) and inlier ratio is small (e.g. w < 10%): 10^6 iterations for 1% probability of failure. (How?)
 - $w^n \to \text{probability that all } n \text{ points are inliers}$

- Inlier ratio w (number of inliers in data / number of points in data) unknown
- Too expensive when minimum number of samples is large (e.g. n > 6) and inlier ratio is small (e.g. w < 10%): 10^6 iterations for 1% probability of failure. (How?)
 - $w^n \to \text{probability that all } n \text{ points are inliers}$
 - $1 w^n \to \text{probability that at least one of } n \text{ points is an outlier} \implies \text{a bad model will be estimated from this point set}$

- Inlier ratio w (number of inliers in data / number of points in data) unknown
- Too expensive when minimum number of samples is large (e.g. n > 6) and inlier ratio is small (e.g. w < 10%): 10^6 iterations for 1% probability of failure. (How?)
 - $w^n \to \text{probability that all } n \text{ points are inliers}$
 - $1 w^n \to \text{probability that at least one of } n \text{ points is an outlier} \implies \text{a bad model will be estimated from this point set}$
 - $(1 w^n)^k \to \text{probability that algorithm never selects a set of } n \text{ points which all are inliers,}$ where $k \to \text{number of iterations}$

RANSAC Applications

Rotation

Credit: Aaron Bobick, Washington University in St. Louis

RANSAC Applications

Estimating transformation matrix (also called fundamental matrix) relating two views

Credit: Derek Hoeim, UIUC

RANSAC Applications

Computing a homography (e.g., image stitching)

Credit: Ali Farhadi, Univ of Washington

Homework

Readings

- Chapter 4.3, 6.1, Szeliski, Computer Vision: Algorithms and Applications
- Papers on the respective slides (for more information)

.....

References

Martin A. Fischler and Robert C. Bolles. "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". In: *Commun. ACM* 24.6 (June 1981), 381–395.

Bruce D. Lucas and Takeo Kanade. "An Iterative Image Registration Technique with an Application to Stereo Vision". In: *Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2.* IJCAI'81. Vancouver, BC, Canada: Morgan Kaufmann Publishers Inc., 1981, 674–679.

Richard Szeliski. *Computer Vision: Algorithms and Applications*. Texts in Computer Science. London: Springer-Verlag, 2011.

Avrithis, Yannis, Deep Learning for Vision (2018). URL: https://sif-dlv.github.io/ (visited on 05/21/2020).

Hoiem, Derek, CS 543 - Computer Vision (Spring 2011). URL: https://courses.engr.illinois.edu/cs543/sp2017/ (visited on 04/25/2020).