San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-R11

Automatic Search for A Variant of Division Property Using Three Subsets

Kai Hu* and Meiqin Wang

Key Lab of Cryptologic Technology and Information Security, Ministry of Education, Shandong University

- 1. Background of Division Property and Automatic Search
- 2. Motivation and Contribution
- 3. A Variant of Three-Subset Division Property (VTDP)
- 4. Automatic Search for VTDP
- 5. Applications
- 6. Summary

- 1. Background of Division Property and Automatic Search
- 2. Motivation and Contribution
- 3. A Variant of Three-Subset Division Property (VTDP)
- 4. Automatic Search for VTDP
- 5. Applications
- 6. Summary

What is Division Property (DP)?

- A technique to find integral distinguishers easily and efficiently
- Proposed by Yosuke Todo at Eurocrypt'15
- Divided into Word-based DP and Bit-Based DP
- Bit-Based DP is divided into Two-Subset and Three-Subset

What is Three-Subset Bit-Based Division Property?

Sum all the ciphertexts together

• Two-Subset DP indicates the sum of one bit of all the ciphertexts is

0 or Unknown

• Three-Subset DP indicates the sum of one bit of all the ciphertexts is

0 or 1 or Unknown

• Three-Subset DP is **more accurate** than any other division property

What is Automatic Search?

- Tools from graph theory can solve constraint problems
- Transform cryptologic problems into constraint problems
- Solve the constraint problems

Why Automatic Search is Needed?

- C(python, etc.)-programming will cost too much time to write
- Not easy to optimize for the efficiency
- Concentration can be focused on the problem itself

• ...

Automatic Search for Two-Subset Division Property

Xiang et al. modeled two-subset DP based MILP@Asiacrypt16

Difficult to Model Three-Subset Division Property

 Propagation Rules of XOR for Two-Subset and Three-Subset DP are ESSENTIALLY DIFFERENT!

Two-Subset Division Property

$$\mathbb{K}' \leftarrow (k_1 + k_2, k_3, k_4, ..., k_m)$$

Three-Subset Division Property

$$l_1' \leftarrow (l_1 + l_2, l_3, l_4, ..., l_m)$$

Removed if exits

Why Is It So Difficult?

At any time, the automatic search tool can process only one trial

- 1. Background of Division Property and Automatic Search
 - 2. Motivation and Contribution
- 3. A Variant of Three-Subset Division Property (VTDP)
- 4. Automatic Search for VTDP
- 5. Applications
- 6. Summary

Motivations

- Three-Subset Division Property can find more distinguishers
- It still cannot be modeled by automatic search methods

Contributions

- A new division property is proposed
- More integral distinguishers than two-subset division property
- Improvement of the results of SIMON, SPECK and KATAN

- 1. Background of Division Property and Automatic Search
- 2. Motivation and Contribution
- 3. A Variant of Three-Subset Division Property (VTDP)
- 4. Automatic Search for VTDP
- 5. Applications
- 6. Summary

Variant Three-Subset Division Property

Rule (Variant XOR)

Let F be a function compressed by an XOR, where the input (x_1, x_2, \ldots, x_m) takes values of $(\mathbb{F}_2)^m$, and the output is calculated as $(x_1 \oplus x_2, x_3, \ldots, x_m)$. Let \mathbb{X} and \mathbb{Y} be the input and output multiset, respectively. Assuming that \mathbb{X} has $\mathcal{D}^{1^m}_{\mathbb{K},\mathbb{L}}$, \mathbb{Y} has $\mathcal{D}^{1^{m-1}}_{\mathbb{K}',\mathbb{L}'}$, where \mathbb{K}' is computed from $\mathbf{k} \in \mathbb{K}$ s.t. $(k_1, k_2) = (0, 0), (1, 0), \text{ or } (0, 1)$ as

$$\mathbb{K}' \leftarrow (k_1 + k_2, k_3, k_4, \dots, k_m).$$

Moreover, \mathbb{L}' is computed from $\mathbf{l} \in \mathbb{L}$ s.t. $(l_1, l_2) = (0, 0), (1, 0), \text{ or } (0, 1)$ as

$$\mathbb{L}' \leftarrow (l_1 + l_2, l_3, l_4, \dots, l_m),$$

Variant XOR Propagation Rules

• Duplicated vectors will not be removed

•
$$\mathbb{L}' \stackrel{x}{\leftarrow} (l_1 + l_2, l_3, l_4, \dots, l_m) \longrightarrow \mathbb{L}' \leftarrow (l_1 + l_2, l_3, l_4, \dots, l_m)$$

Relationship of OTDP and VTDP

Relationship between VTDP and OTDP

More bits are indicated unknown

Some even-parity bits are indicated Odd-parity

- 1. Background of Division Property and Automatic Search
- 2. Motivation and Contribution
- 3. A Variant of Three-Subset Division Property (VTDP)
 - 4. Automatic Search for VTDP
- 5. Applications
- 6. Summary

Propagation Rule of Key-XOR

- ullet Some new vectors are **generated** from $\mathbb L$ and **appended** into $\mathbb K$
 - $l \in \mathbb{L}$, $l' = (l_0, l_1, ..., l_i \lor 1, ..., l_{s-1})$ for $l_i = 0$

$$(0,0,1,0) \rightarrow \{(1,0,1,0),(0,1,1,0),(0,0,1,1)\}$$

- Two problems in automatic search model?
 - How to generate the new vectors?

Models of Key-XOR for Three-subset Division Property

Model the VTDP for Key-XOR

1 Allocate n-bit variables \mathcal{V}_j $(j \in \{0, 1, 2, \dots, s-1\})$. Check each bit of \mathcal{L} , i.e., $\mathcal{L}[0], \mathcal{L}[1], \dots, \mathcal{L}[s-1]$, and assign \mathcal{V}_j as follows,

$$\mathcal{V}_j = \begin{cases} \mathcal{L} \lor \vec{e}_j, & \text{if } \mathcal{L}[j] = 0, \\ \vec{1}, & otherwise, \end{cases}$$

STP ASSERT $\mathcal{L}^j = \text{IF } \mathcal{L}[j] = 0 \text{ THEN } \mathcal{L} \vee \vec{e}_j \text{ ELSE } \vec{1} \text{ ENDIF};$

2 Let $\{\mathcal{K}'\} = \{\mathcal{K}\} \cup \{\mathcal{V}_0\} \cup \{\mathcal{V}_1\} \cup \cdots \cup \{\mathcal{V}_{s-1}\}.$

STP ASSERT $\mathcal{K}' = \mathcal{K}$ OR $\mathcal{K}' = \mathcal{V}_0$ OR $\mathcal{K}' = \mathcal{V}_1$ OR ... OR $\mathcal{K}' = \mathcal{V}_{s-1}$;

Initial Rules for Three-subset Division Property

Initial Rules

Let $((\mathcal{K}_0^0,\mathcal{K}_1^0,\dots,\mathcal{K}_{n-1}^0)$, $(\mathcal{L}_0^0,\mathcal{L}_1^0,\dots,\mathcal{L}_{n-1}^0)$) denote the initial division property, where n is the block size. The constraints on \mathcal{K}_i^0 and \mathcal{L}_i^0 are

$$\mathcal{K}_i^0 = 1$$
, for $i = 0, 1, 2, \dots, n - 1$.

$$\mathcal{L}_i^0 = \begin{cases} 1, & \text{if the } i\text{-th bit is active,} \\ 0, & \text{otherwise.} \end{cases}$$

Stopping Rules for Three-subset Division Property

Stopping Rules

1 examine whether there is a unit vector $\vec{e}_{i_0} \in \mathbb{K}$:

$$\mathcal{K}_i^r = \begin{cases} 1, & \text{if } i = i_0, \\ 0, & \text{otherwise.} \end{cases}$$

2 If not stopped. Check whether there is a unit vector $\vec{e}_{i_0} \in \mathbb{L}$:

$$\mathcal{L}_i^r = \begin{cases} 1, & \text{if } i = i_0, \\ 0, & \text{otherwise.} \end{cases}$$

- 1. Background of Division Property and Automatic Search
- 2. Motivation and Contribution
- 3. A Variant of Three-Subset Division Property (VTDP)
- 4. Automatic Search for VTDP
- 5. Applications
- 6. Summary

Applications on Some Ciphers

Cipher	Data	Round	bits	Time	Reference
SIMON32	2^{31}	14	32		TM16@FSE'16, XZBL@Asiacrpt'16
		15	3	27s	TM16@FSE'16, Ours
SIMON32(102)	2^{31}	20	1		XZBL@Asiacrpt'16
		20	3	25s	Ours
SIMON48(102)	2^{47}	28	1		XZBL@Asiacrpt'16
		28	3	9.3s	Ours
SIMON64(102)	2^{63}	36	1		XZBL@Asiacrpt'16
		36	3	1.1h	Ours
KATAN/KTANTAN32	2^{31}	99	1		SWLW@eprint
		101	1	5.6h	Ours
KATAN/KTANTAN48	2^{47}	63.5	1		SWLW@eprint
		64	1	16h	Ours
KATAN/KTANTAN64	2^{63}	72.3	1		SWLW@eprint
		72.3	2	18h	Ours
SPECK32	2^{31}	6	1		SWW@eprint
		6	2	3.5m	Ours

- 1. Background of Division Property and Automatic Search
- 2. Motivation and Contribution
- 3. A Variant of Three-Subset Division Property (VTDP)
- 4. Automatic Search for VTDP
- 5. Applications
- 6. Summary

Summary

- A new division property that can find more distinguishers
- Automatic search model of the variant division property
- It may bring some new insights into bit-based division property

