микросхемы интегральные серии кр1810

Общие данные

72'0 79'E

FABAPUTHЫЙ ЧЕРТЕЖ

OCTA/IBHBIX MUKPOCXEM

(корпус 2123.40-2)

40.86180808 0,55-0.14

11/11/9'0 xoul'o

Масса не более 11 г

Нумерация выводов показана условно.

МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ СЕРИИ КР1810

Общие данные

ВНЕШНИЕ ВОЗДЕИСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	1—2000
амплитуда ускорения, м/c² (g)	200 (20)
Механический удар одиночного действия:	
пиковое ударное ускорение, м/с² (g)	1500 (150)
длительность действия ударного ускоре-	. (
ния, мс	0,1-2,0
Механический удар многократного действия:	
пиковое ударное ускорение, м/с² (g)	1500 (150)
длительность действия ударного ускоре-	· · · · · · · · · · · · · · · · · · ·
ния, мс	15
Линейное ускорение, M/c^2 (g)	5000 (500)
Пониженная рабочая температура среды, °С	минус 10
Повышенная рабочая температура среды, °С	70
Повышенная предельная температура сре-	
ды, °C	85
Изменения температуры среды, °С	от минус 60 до +85
	•
НАДЕЖНОСТЬ	•
.N.A	

Минимальная	наработка*,	म्			. ≯ .	 50 000
Срок сохраня	емости*, лет		,			12

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Микросхемы следует применять и эксплуатировать в соответствии с ГОСТ 18725—83 и требованиями, изложенными ниже.

Допустимое значение статического потенциала 30 В.

Микросхемы пригодны для монтажа в аппаратуре методом групповой пайки или паяльником.

Микросхемы серии КР1810 по входам и выходам совместимы с микросхемами транзисторно-транзисторной логики (ТТЛ) и микросхемами серий КР580, КМ580.

^{*} В условиях и режимах, допускаемых ОТУ или ТУ.

МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ СЕРИИ КР1810

Общие данные

К двунаправленным выводам микросхем рекомендуется подключать специальные двунаправленные трехстабильные шинные формирователи.

Замену микросхем при ремонте аппаратуры, установку и извлечение микросхем из контактных приспособлений необходимо производить при отсутствии напряжения на выводах микросхем.

Конструкция изделий обеспечивает трехкратное воздействие групповой пайки и лужение выводов горячим способом без применения теплоотвода и соединение при температуре групповой пайки $255\pm10^{\circ}\mathrm{C}$ в течение не более 4 с.

Интервал между последовательными пайками 5--10 с.

Очистку изделий следует производить в спирто-бензиновой смеси (1:1) или спирто-хладоновой смеси (1:19) при виброотмывке с частотой 50 ± 5 Гц и амплитудой колебаний до 1 мм в течение 4 мин.

KP1810BM86M

ЦЕНТРАЛЬНОЕ ПРОЦЕССОРНОЕ УСТРОИСТВО

ФУНКЦИОНАЛЬНАЯ СХЕМА

- *1, 20* общий
- 2-16 канал адреса/данных A/D14-A/D0
 - 17 немаскируемый запрос прерывания
 - 18 маскируемый запрос прерывания
 - 19 тактовый сигнал
 - 21 сброс
 - 22 готовность
 - 23 проверка
 - $\frac{24}{25}$ подтверждение прерывания; состояние очереди команд 1
 - 25 разрешение фиксации адреса; состояние очереди команд 0 26 разрешение передачи данных; состояние цикла канала 0
 - 27 выдача/прием данных; состояние цикла накала 1
 - 28 признак обращения к 3У или УBB; состояние цикла канала B
 - 29 запись; программная блокировка
 - 30 подтверждение захвата; запрос разрешения доступа к магистрали 1
 - 31 захват; запрос разрешения доступа к магистрали 0
 - 32 чтение; состояние 8
 - 33 режим управления минимальный/максимальный
 - 34 разрешение передачи по старшей половине канала H/D; состояние 7
 - 35 канал адреса/состояния A19/SA6
 - 36 канал адреса/состояния A18/SA5
 - 37 канал адреса/состояния A17/SA4
 - 38 канал адреса/состояния A16/SA3
 - 39 канал адреса/данных A/D15
 - 40 5 B

ЦЕНТРАЛЬНОЕ ПРОЦЕССОРНОЕ УСТРОИСТВО

KP1810BM86M

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

(при температуре $25\pm10^{\circ}$ C)

Напряжение питания, В	5±5%
Ток потребления, мА, не более	350
Выходное напряжение высокого уровня, В,	
не менее	2,4
Выходное напряжение низкого уровня, В, не	
более	0,45
Ток утечки высокого (низкого) уровня на	,
входе, мкА, не более	±10
Выходной ток высокого (низкого) уровня в	
состоянии «выключено», мкА, не более	$ \pm 10 $
Напряжение питания, В: максимальное	5,25
	4,75
минимальное	7,70
максимальное	$U_{-} \pm 0.5$
минимальное	•
Входное напряжение низкого уровня, В:	•
максимальное	0,8
минимальное	• • •
Максимальный выходной ток высокого уров-	
ня, мА	-0,4
Максимальный выходной ток низкого уров-	
ня, мА	2,5
Максимальная емкость нагрузки, пФ	100