Data Privacy Homework 3

傅申 PB20000051

1. (10') Permutation Cipher

(a) (5') Consider the permutation π on the set 1, 2, ..., 8 defined as follows. Find the inverse permutation π^{-1} .

х	1	2	3	4	5	6	7	8
$\pi(x)$	4	1	6	2	7	3	8	5

(b) (5') Decrypt the following ciphertext encrypted using a permutation cipher with the key being the permutation π from part (a).

TGEEMNELNNTDROEOAAHDOETCSHAEIRLM

(a) The inverse permutation is shown below.

х	1	2	3	4	5	6	7	8
$\pi^{-1}(x)$	2	4	6	1	8	3	5	7

(b) If Columnar Transposition is used to encrypt the plaintext, the plaintext should be written in rows of length 8 and then the columns are permuted according to the permutation π from part (a). The ciphertext is then obtained by reading the columns in order. The grid below shows the process of encryption.

х	1	2	3	4	5	6	7	8
$\pi(x)$	4	1	6	2	7	3	8	5
Plaintext	R	Т	О	M	S	N	I	Α
	О	G	Е	N	Н	N	R	Α
	Е	Е	Т	Е	Α	Т	L	Н
	О	Е	С	L	Е	D	M	D

Thus, the plaintext is

RTOMSNIAOGENHNRAEETEATLHOECLEDMD.

Otherwise, if we **permutate the plaintext block by block**, the plaintext should be divided into blocks of length 8 and then permuted according to the permutation π from part (a). The ciphertext is then obtained by reading the blocks in order. To decrypt the ciphertext, first divide the ciphertext into blocks of length 8: *TGEEMNEL NNTDROEO AAHDOETC SHAEIRLM*, and then permute each block: *ETNGEELM DNONETOR DAEATHCO ESRHLAMI*. So the plaintext is

ETNGEELMDNONETORDAEATHCOESRHLAMI.

Data Privacy Homework 3 傅申 PB20000051

2. (20') Perfect Secrecy

(a) (10') Let n be a positive integer. An n-th order Latin square is an $n \times n$ matrix L such that each of the n integers 1, 2, ..., n appears exactly once in each row and each column of L. The pollowing is an example of a Latin square of order 3:

For any n-th order Latin square L, we can define a related encryption scheme. Let $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{1, 2, ..., n\}$. For $1 \le i \le n$, the encryption rule e_i is defined as $e_i(j) = L(i, j)$ (thus, each row provides an encryption rule). Prove that if the key is chosen uniformly at random, the Latin square cipher has perfect secrecy.

- **(b) (10')** Prove that if a cipher has perfect secrecy and $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}|$, then each ciphertext is equiprobable.
- (a) Accroding to Shannon's theorem, the Latin square cipher has perfect secrecy because
 - (1) Each key is chosen with equal probability.
 - (2) Knowing j, there is only one key that encrypt j to a L(i, j), because each number appears only once on a row.
- **(b)** Since the cipher has perfect secrecy, each key is chosen with equal probability $1/|\mathcal{K}|$. For every $m \in \mathcal{M}$ and $c \in \mathcal{C}$, there is a unique $k \in \mathcal{K}$ such that $e_k(m) = c$. Thus, the probability of c is

$$\Pr[c] = \sum_{m \in \mathcal{M}} \Pr[m] \Pr[c \mid m] = \sum_{m \in \mathcal{M}} \frac{1}{|\mathcal{M}|} \Pr[e_k(m) = c \mid m] = \sum_{m \in \mathcal{M}} \frac{1}{|\mathcal{M}|} \frac{1}{|\mathcal{K}|} = \frac{1}{|\mathcal{K}|} = \frac{1}{|\mathcal{C}|}.$$

So each ciphertext is equiprobable.

3. (25') RSA

Assuming that Bob uses RSA and selects two *large* prime numbers p = 101 and q = 113:

- (a) (5') How many possible public keys Bob can choose?
- (b) (10') Assuming that Bob uses a public encryption key e = 3533. Alice sends Bob a message M = 9726. What will be the ciphertext received by Bob? Show the detailed procedure that Bob decrypts the received ciphertext.
- (c) (10') Let n = pq be a product of two distinct primes. Show that if $\phi(n)$ and n are known, then it is possible to compute p and q in polynomial time. Hint: Derive a quadratic equation (over the integers) in the unknown p.

$$n = pq = 11413, \phi(n) = (p-1)(q-1) = 11200$$

(a) The possible public keys are the integers in (1,11200) that are coprime to 11200, so there are $\phi(11200)$ such integers. Since $11200 = 2^6 \times 5^2 \times 7$, there are

$$\phi(11200) = 11200\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right) = 3840$$

possible public keys.

(b) The private key d should satisfy $d \equiv e^{-1} \pmod{\phi(n)}$. Since e = 3533 and $\phi(n) = 11200$, it can be computed that d = 6597.

Given the plaintext m = 9726, the ciphertext Bob received is

$$c = m^e \mod n = 9726^{3533} \mod 11413 = 5761.$$

To decrypt the ciphertext, Bob computes

傅申 PB20000051 Data Privacy Homework 3

$$m = c^d \mod n = 5761^{6597} \mod 11413 = 9726,$$

which is the plaintext.

(c) Since n = pq is a product of two distinct primes, $\phi(n) = (p-1)(q-1) = n - p - q + 1$. Thus, we have

$$\begin{cases} pq = n \\ p + q = n + 1 - \phi(n) \end{cases}$$

Accroding to Vieta's formulas, p and q are the roots of equation $x^2 - (n+1-\phi(n))x + n = 0$. So p and q can be computed by solving the equation, which can be done in polynomial time:

$$p, q = \frac{(n+1-\phi(n)) \pm \sqrt{(n+1-\phi(n))^2 - 4n}}{2}$$

4. (20') Multi-Party Computation

(a) (10') Paillier Encryption. Assuming Alice employs the Paillier encryption scheme with the prime numbers p = 11 and q = 17, along with a randomly chosen value of r = 83 and g = n + 1. Alice transmits a message M = 175 to Bob. What ciphertext will Bob receive? Additionally, please prove the Homomorphic addition property of Paillier:

$$Decrypt((c_1 \cdot c_2) \bmod n^2) = m_1 + m_2$$

- (b) (10') Secret Sharing. We define a 2-out-of-3 secret sharing scheme as follows. In order to share a bit v, the dealer chooses three random bits $x_1, x_2, x_3 \in \{0, 1\}$ under the constraint that $x_1 \oplus x_2 \oplus x_3 = 0$. Then:
 - P_1 's share is the pair (x_1, a_1) where $a_1 = x_3 \oplus v$.
 - P_2 's share is the pair (x_2, a_2) where $a_2 = x_1 \oplus v$.
 - P_3 's share is the pair (x_3, a_3) where $a_3 = x_2 \oplus v$.

Let $(x_1, a_1), (x_2, a_2), (x_3, a_3)$ be a secret sharing of v_1 , and let $(y_1, b_1), (y_2, b_2), (y_3, b_3)$ be a secret sharing of v_2 . Try to explain that no communication is needed in order to compute a secret sharing of $v_1 \oplus v_2$. (\oplus means XOR.)

- (a) (Encryption) First, run the key generation procedure as follows:
 - (1) Pick p = 11 and q = 17.
 - (2) Compute $n = 11 \times 17 = 187$.
 - (3) Compute $\lambda = \text{lcm}(p-1, q-1) = \text{lcm}(10, 16) = 80$.

 - (4) Pick g = n + 1 = 188 is picked. (5) Compute $\mu = (L(g^{\lambda} \mod n^2))^{-1} \mod n = 180$

Thus, the public key is (n, g) = (187, 188) and the private key is $(\lambda, \mu) = (80, 180)$. Given the plaintext M = 175, the ciphertext Bob received is

$$C = g^M r^n \mod n^2 = (188^{175} \times 83^{187}) \mod 187^2 = 23911.$$

(Proof of Homomorphic addition property) For two arbitrary plaintext m_1, m_2 , the ciphertexts are

$$c_1 = g_1^m r_1^n \bmod n^2, c_2 = g_2^m r_2^n \bmod n^2 \Rightarrow c_1 \cdot c_2 = g^{m_1 + m_2} (r_1 r_2)^n \bmod n^2.$$

Thus, the product is decrypted as

Data Privacy Homework 3 傅申 PB20000051

Decrypt
$$(c_1 \cdot c_2 \mod n^2)$$
 = Decrypt $(g^{m_1+m_2}(r_1r_2)^n \mod n^2)$
= Decrypt $(g^{m_1+m_2}r_*^n \mod n^2)$
= $m_1 + m_2$.

So the Homomorphic addition property of Paillier holds.

(b) For each P_i , simply compute $(x_i \oplus y_i, a_i \oplus b_i)$ would form a secret sharing of $v_1 \oplus v_2$. It does not require any communication. The result secret sharing is shown as follows:

Player	Computed Secret Sharing
P_1	$(x_1 \oplus y_1, (x_3 \oplus y_3) \oplus (v_1 \oplus v_2))$
P_2	$(x_2 \oplus y_2, (x_1 \oplus y_1) \oplus (v_1 \oplus v_2))$
P_3	$(x_3 \oplus y_3, (x_2 \oplus y_2) \oplus (v_1 \oplus v_2))$

Since $(x_3 \oplus y_3) \oplus (x_1 \oplus y_1) \oplus (x_2 \oplus y_2) = (x_1 \oplus x_2 \oplus x_3) \oplus (y_1 \oplus y_2 \oplus y_3) = 0 \oplus 0 = 0$, the computed secret sharing is valid.

5. (25') Computational Security

- (a) (5') Explain the difference between *Interchangeable* and *Indistinguishable*.
- **(b) (10')** Which of the following are negligible functions in λ ? Justify your answers.

$$\frac{1}{2^{\lambda/2}} \quad \frac{1}{2^{\log(\lambda^2)}} \quad \frac{1}{\lambda^{\log \lambda}} \quad \frac{1}{\lambda^2} \quad \frac{1}{2^{(\log \lambda)^2}} \quad \frac{1}{(\log \lambda)^2} \quad \frac{1}{\lambda^{1/\lambda}} \quad \frac{1}{\sqrt{\lambda}} \quad \frac{1}{2^{\sqrt{\lambda}}}$$

- (c) (10') Suppose f and g are negligible.
 - (1) Show that f + g is negligible.
 - (2) Show that $f \times g$ is negligible.
 - (3) Give an example f and g which are both negligible, but where $f(\lambda)/g(\lambda)$ is not negligible.
- (a) The definition of these two terms are

Interchangeable \mathcal{L}_1 and \mathcal{L}_2 are interchangeable if for all programs \mathcal{A} that output a single bit, $\Pr[\mathcal{A} \diamond \mathcal{L}_1 \Rightarrow 1] = \Pr[\mathcal{A} \diamond \mathcal{L}_2 \Rightarrow 1].$

Indistinguishable \mathcal{L}_1 and \mathcal{L}_2 are indistinguishable if for all polynomial-time programs \mathcal{A} that output a single bit, $\Pr[\mathcal{A} \diamond \mathcal{L}_1 \Rightarrow 1] - \Pr[\mathcal{A} \diamond \mathcal{L}_2 \Rightarrow 1]$ is negligible.

So the difference is that, interchangeable is a stronger condition than indistinguishable. There is no program $\mathscr A$ that can distinguish two interchangeable libraries, but there may exist a (non-polynomial-time) program $\mathscr A$ that can distinguish two indistinguishable libraries.

- **(b)** $\frac{1}{2^{\lambda/2}}$ is negligible, because $2^{\lambda/2} = (\sqrt{2})^{\lambda}$ is exponential.
 - $\frac{1}{2^{\log(\lambda^2)}}$ is not negligible, because $2^{\log(\lambda^2)} = \lambda^{\frac{2}{\log_2 e}}$ is a lower order infinity than some polynomial (e.g. λ^2).
 - $\frac{1}{\lambda^{\log \lambda}}$ is negligible, because for any finite order n, there exists $\lambda_0 \ge \exp(n)$ such that $\forall \lambda > \lambda_0$, $\lambda^{\log \lambda} > \lambda^n$, proving that $\lambda^{\log \lambda}$ is a higher order infinity than any polynomial.
 - + $\frac{1}{\lambda^2}$ is obviously not negligible, because λ^2 is a polynomial.
 - $\frac{1}{2^{(\log \lambda)^2}}$ is negligible. Since $2^{(\log \lambda)^2} = \lambda^{\frac{2}{\log_2 e} \log \lambda}$, for any finite order n, there exists $\lambda_0 \ge \exp(n \log_2 e/2)$ such that $\forall \lambda > \lambda_0$, $\lambda^{\frac{2}{\log_2 e} \log \lambda} > \lambda^n$, proving that $2^{(\log \lambda)^2}$ is a higher order infinity than any polynomial.
 - $\frac{1}{(\log \lambda)^2}$ is obviously not negligible, because $\log(\lambda)^2 < \lambda^2$ for λ large enough.

- $\frac{1}{\lambda^{1/\lambda}}$ is obviously not negligible, because $\lambda^{1/\lambda} < \lambda$ for $\lambda > 1$.
- $\frac{1}{\sqrt{\lambda}}$ is obviously not negligible, because $\sqrt{\lambda} < \lambda$ for $\lambda > 1$.
- $\frac{1}{2\sqrt{\lambda}}$ is negligible, because for any $k \in \mathbb{N}$,

$$\lim_{\lambda \to +\infty} \frac{\lambda^k}{2\sqrt{\lambda}} = \lim_{\lambda \to +\infty} \exp(k \log \lambda - \sqrt{\lambda} \log 2) = \exp(-\infty) = 0.$$

So $2^{\sqrt{\lambda}}$ is a higher order infinity than any polynomial. (c) (1) Since $2\max(f,g) > f+g$, $P(\lambda) \times (2\max(f,g)) > P(\lambda)(f+g)$. And there is

$$\lim_{\lambda \to +\infty} P(\lambda) \times (2 \max(f, g)) = 2 \lim_{\lambda \to +\infty} P(\lambda) \max(f, g) = 0.$$

So

$$\lim_{\lambda \to +\infty} P(\lambda)(f+g) = 0.$$

In other words, f + g is negligible.

(2) By definition,

$$\lim_{\lambda \to +\infty} P(\lambda) \times (f \times g) = \lim_{\lambda \to +\infty} (P(\lambda) \times f) \times g = 0 \times 0 = 0.$$

shows that $f \times g$ is negligible.

(3) For example, $f(\lambda) = \exp(-\lambda)$ and $g(\lambda) = \lambda \exp(-\lambda)$ are both negligible, but $f(\lambda)/g(\lambda) = 1/\lambda$ is not negligible.