Mathematics for Computer Science Linear Algebra

Lecture 7: Euclidean vector spaces

Andrei Krokhin

November 18, 2020

Contents for today's lecture

- Euclidean vector spaces \mathbb{R}^n
- Norm, dot product, and orthogonality in \mathbb{R}^n
- Useful properties of these notions (with proofs ...)
- Dot product and linear systems

Vectors in \mathbb{R}^2 and \mathbb{R}^3

- You are familiar with vectors in two and three dimensions
- Such a vector can be identified with an <u>ordered</u> tuple of real numbers: (a_1, a_2) or (a_1, a_2, a_3) , respectively.
- The numbers in the tuple are the components of the vector.
- The sets of all 2D and 3D vectors are denoted by \mathbb{R}^2 and \mathbb{R}^3 , respectively.
- \bullet Two vectors in \mathbb{R}^2 or \mathbb{R}^3 are equal iff all corresponding coordinates are equal.
- Main operations on vectors: addition and scaling (multiplication by a scalar).
 - If $\mathbf{a} = (a_1, a_2)$, $\mathbf{b} = (b_1, b_2)$ are vectors in \mathbb{R}^2 then $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2)$.
 - If k is a scalar (i.e. a real number) and $\mathbf{a}=(a_1,a_2)\in\mathbb{R}^2$ then $k\mathbf{a}=(ka_1,ka_2)$.
- For example, if $\mathbf{a} = (-1, 3)$ and $\mathbf{b} = (2, 1)$ then $2\mathbf{a} 5\mathbf{b} = (-12, 1)$.

Vectors in \mathbb{R}^2 , \mathbb{R}^3 , and \mathbb{R}^n

- Two vectors in \mathbb{R}^2 or \mathbb{R}^3 are equal iff all corresponding coordinates are equal.
- Main operations on vectors: addition and scaling (multiplication by a scalar).
 - If $\mathbf{a} = (a_1, a_2)$, $\mathbf{b} = (b_1, b_2)$ are vectors in \mathbb{R}^2 then $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2)$.
 - If k is a scalar (i.e. a real number) and $\mathbf{a} = (a_1, a_2) \in \mathbb{R}^2$ then $k\mathbf{a} = (ka_1, ka_2)$.
- All the above can be generalised to n-tuples of real numbers, for any fixed n.
- Notation: $\mathbb{R}^n = \{(a_1, \dots, a_n) \mid \text{ all } a_i \in \mathbb{R}\}.$
- Euclidean vector spaces $= \mathbb{R}^n$ equipped with the two above operations
- Note that one can view a vector in \mathbb{R}^n as a $1 \times n$ (or $n \times 1$) matrix.

The RGB colour model

- Colours in computer monitors are commonly based on the RGB colour model.
- Colours are created by adding percentages of primary colours: red (R), green
 (G) and blue (B).
- We can identify primary colours with vectors, as follows:
 - ${f r} = (1,0,0)$ (pure red) ${f g} = (0,1,0)$ (pure green) ${f b} = (0,0,1)$ (pure blue)
- Each colour vector **c** can be expressed as a sum (aka linear combination) $\mathbf{c} = k_1 \mathbf{r} + k_2 \mathbf{g} + k_3 \mathbf{b} = (k_1, k_2, k_3)$, where $0 \le k_i \le 1$ for i = 1, 2, 3.
- This can be visualised as the RGB colour cube.

An alternative colour model - HSB (aka HSV)

An image on a computer screen is a set of pixels.

Each pixel is a vector $(x, y, h, s, b) \in \mathbb{R}^5$ where (x, y) are the pixel's coordinates, (h, s, b) describe the colour of the pixel:

- h is hue = "colour of the rainbow" it's a number between 0 and 360 0 is red, 120 is green, 240 is blue
- s is saturation = "richness"

 "how injected with colour it is"

 it's a number between 0 and 100
- b is brightness (aka value)
 "how much lightbulb is turned on"
 it's a number between 0 and 100
 brightness 0 is always black

Norm in \mathbb{R}^n

• The length (aka norm) of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ is defined by formula

$$||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

- It holds that
 - $||\mathbf{v}|| \ge 0$, and $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$,
 - $||k\mathbf{v}|| = |k| \cdot ||\mathbf{v}||$.
- A vector of length 1 is called a unit vector.
- For any vector \mathbf{v} , the vector $\frac{1}{||\mathbf{v}||}\mathbf{v}$ is a unit vector in the same direction as \mathbf{v} . It is obtained by normalizing \mathbf{v} .

Example: To normalize vector $\mathbf{v} = (3, -2, -4, 4, 2)$, compute its length

$$||\mathbf{v}|| = \sqrt{3^2 + (-2)^2 + (-4)^2 + 4^2 + 2^2} = \sqrt{49} = 7.$$

So the unit vector obtained by normalizing \mathbf{v} is $\frac{1}{||\mathbf{v}||}\mathbf{v}=(\frac{3}{7},-\frac{2}{7},-\frac{4}{7},\frac{4}{7},\frac{2}{7}).$

Dot product in \mathbb{R}^n

• The dot product (aka Euclidean inner product) of vectors $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ in \mathbb{R}^n is defined as

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\ldots+u_nv_n.$$

Notice similarity to matrix product: If you think of \mathbf{u} and \mathbf{v} as column matrices (of size $n \times 1$) then $\mathbf{u} \cdot \mathbf{v}$ is the same as the (matrix) product $\mathbf{u}^T \mathbf{v}$.

- Note that $||\mathbf{v}||^2 = \mathbf{v} \cdot \mathbf{v}$.
- For example, if $\mathbf{u}=(-1,3,5,7)$ and $\mathbf{v}=(2,-1,3,-5)\in\mathbb{R}^4$ then

$$\mathbf{u} \cdot \mathbf{v} = (-1) \cdot 2 + 3 \cdot (-1) + 5 \cdot 3 + 7 \cdot (-5) = -25.$$

If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n then the following properties (obviously) hold:

- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (Symmetry, aka Commutativity)
- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (Distributivity)
- $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ (Homogeneity)
- $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ iff $\mathbf{v} = \mathbf{0}$ (Positivity)

Dot product and ISBN numbers

- Each book has a unique code: ISBN (International Standard Book Number).
- It used to be 10 digits (ISBN-10) before 2007, now it's 13 digits (ISBN-13).
- ullet So it can thought of as a vector $\mathbf{d}=(d_1,d_2,\ldots,d_{12},d_{13})\in\mathbb{R}^{13}$
- 10th edition of "Elementary Linear Algebra" has ISBN 978-0-470-56157-7
- The last digit is the check digit. For each valid ISBN d the following holds:
 - Let $\mathbf{d}' = (d_1, d_2, \dots, d_{12}) \in \mathbb{R}^{12}$, i.e. it is \mathbf{d} without the last component.
 - Let $\mathbf{a} = (1, 3, 1, 3, \dots, 1, 3) \in \mathbb{R}^{12}$.
 - Compute the dot product $\mathbf{a} \cdot \mathbf{d}'$ and let x be the last digit of this number.
 - Then we must have

$$d_{13} = \begin{cases} 0 & \text{if } x = 0\\ 10 - x & \text{if } x \neq 0 \end{cases}$$

• For (the 10th edition of) our textbook, $\mathbf{a} \cdot \mathbf{d}' =$

$$1 \cdot 9 + 3 \cdot 7 + 1 \cdot 8 + 3 \cdot 0 + 1 \cdot 4 + 3 \cdot 7 + 1 \cdot 0 + 3 \cdot 5 + 1 \cdot 6 + 3 \cdot 1 + 1 \cdot 5 + 3 \cdot 7 = 113$$

The last digit is 3, so we should have $d_{13} = 10 - 3 = 7$, and we do!

The Cauchy-Schwarz and triangle inequalities

Theorem (Cauchy-Schwarz inequality)

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n then $\mathbf{u} \cdot \mathbf{v} \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$.

The proof will appear later today.

Corollary (Triangle inequality)

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n then $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$.

Proof.

$$||\mathbf{u} + \mathbf{v}||^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = ||\mathbf{u}||^2 + 2(\mathbf{u} \cdot \mathbf{v}) + ||\mathbf{v}||^2 \le$$
(use Cauchy-Schwarz)

$$\leq ||\mathbf{u}||^2 + 2||\mathbf{u}|| \cdot ||\mathbf{v}|| + ||\mathbf{v}||^2 = (||\mathbf{u}|| + ||\mathbf{v}||)^2.$$

Now have $||\mathbf{u} + \mathbf{v}||^2 \le (||\mathbf{u}|| + ||\mathbf{v}||)^2$, take square roots.

Orthogonality in \mathbb{R}^n

- Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal (or perpendicular) if $\mathbf{u} \cdot \mathbf{v} = 0$.
- Example: vectors $\mathbf{u}=(-2,3,1,4)$ and $\mathbf{v}=(1,2,0,-1)$ in \mathbb{R}^4 are orthogonal because

$$\mathbf{u} \cdot \mathbf{v} = (-2) \cdot 1 + 3 \cdot 2 + 1 \cdot 0 + 4 \cdot (-1) = 0.$$

Theorem (Pythogoras' theorem in \mathbb{R}^n)

If \mathbf{u} and \mathbf{v} are orthogonal vectors in \mathbb{R}^n then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

Proof.

Since \mathbf{u} and \mathbf{v} are orthogonal, we have $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$, hence

$$||\mathbf{u} + \mathbf{v}||^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = ||\mathbf{u}||^2 + 2(\mathbf{u} \cdot \mathbf{v}) + ||\mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2.$$

Projection theorem

Theorem (Projection theorem)

If \mathbf{u} and $\mathbf{v} \neq \mathbf{0}$ are vectors in \mathbb{R}^n then \mathbf{u} can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 = k\mathbf{v}$, and \mathbf{v} and \mathbf{w}_2 are orthogonal.

The vector \mathbf{w}_1 is called the orthogonal projection of \mathbf{u} on \mathbf{v} .

Proof.

First, find out what k must be if we were to have $\mathbf{u} = k\mathbf{v} + \mathbf{w}_2$ and $\mathbf{v} \cdot \mathbf{w_2} = 0$.

Take the dot product of the two sides of equality $\mathbf{u} = k\mathbf{v} + \mathbf{w}_2$ with \mathbf{v} :

$$\mathbf{u} \cdot \mathbf{v} = (k\mathbf{v} + \mathbf{w}_2) \cdot \mathbf{v} = k(\mathbf{v} \cdot \mathbf{v}) + \mathbf{w}_2 \cdot \mathbf{v} = k(\mathbf{v} \cdot \mathbf{v}) = k||\mathbf{v}||^2.$$

So, we must have $k = (\mathbf{u} \cdot \mathbf{v})/||\mathbf{v}||^2$. Then $\mathbf{w_2} = \mathbf{u} - k\mathbf{v}$ is uniquely determined.

It remains to check that, with this k, the vectors \mathbf{v} and $\mathbf{w_2}$ are indeed orthogonal:

$$\mathbf{v} \cdot (\mathbf{u} - k\mathbf{v}) = \mathbf{v} \cdot \mathbf{u} - k(\mathbf{v} \cdot \mathbf{v}) = \mathbf{u} \cdot \mathbf{v} - k||\mathbf{v}||^2 = \mathbf{u} \cdot \mathbf{v} - \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||^2}||\mathbf{v}||^2 = 0$$

Proof of Cauchy-Schwarz

Theorem (Cauchy-Schwarz inequality)

If **u** and **v** are vectors in \mathbb{R}^n then $\mathbf{u} \cdot \mathbf{v} \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$.

Proof.

The inequality clearly holds if $\mathbf{v} = \mathbf{0}$. Assume now $\mathbf{v} \neq \mathbf{0}$.

Apply Projection theorem to \mathbf{u} and \mathbf{v} : we get $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 = k\mathbf{v}$ and $\mathbf{v} \cdot \mathbf{w}_2 = 0$. Moreover, we have $k = (\mathbf{u} \cdot \mathbf{v})/||\mathbf{v}||^2$.

Let's prove that $||\mathbf{u}||^2 \geq k^2 ||\mathbf{v}||^2$ by applying Pythagoras' theorem to \mathbf{w}_1 and \mathbf{w}_2

$$||\mathbf{u}||^2 = ||\mathbf{w}_1 + \mathbf{w}_2||^2 = ||\mathbf{w}_1||^2 + ||\mathbf{w}_2||^2 \ge ||\mathbf{w}_1||^2 = ||k\mathbf{v}||^2 = (k\mathbf{v}) \cdot (k\mathbf{v}) = k^2 ||\mathbf{v}||^2.$$

Substituting $k = (\mathbf{u} \cdot \mathbf{v})/||\mathbf{v}||^2$ into $||\mathbf{u}||^2 \ge k^2||\mathbf{v}||^2$, we get

$$||\mathbf{u}||^2 \ge k^2 ||\mathbf{v}||^2 = \frac{(\mathbf{u} \cdot \mathbf{v})^2}{(||\mathbf{v}||^2)^2} ||\mathbf{v}||^2 = \frac{(\mathbf{u} \cdot \mathbf{v})^2}{||\mathbf{v}||^2}.$$

Re-arrange to get $(\mathbf{u} \cdot \mathbf{v})^2 \le ||\mathbf{u}||^2 \cdot ||\mathbf{v}||^2$ and take square roots.

Dot product and linear systems

A linear equation $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ can be re-written as follows:

Letting $\mathbf{a}=(a_1,a_2,\ldots,a_n)$ and $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, the equation is

$$\mathbf{a} \cdot \mathbf{x} = b$$
.

Similarly, a homogeneous linear system $A\mathbf{x}=\mathbf{0}$ can be re-written as a system

$$\mathbf{r}_1 \cdot \mathbf{x} = 0$$

$$\mathbf{r}_2 \cdot \mathbf{x} = 0$$

$$\vdots$$

$$\mathbf{r}_m \cdot \mathbf{x} = 0$$

where $\mathbf{r}_1, \dots, \mathbf{r}_m$ are the row vectors of A.

Fact

For any $m \times n$ matrix A, the set of solutions of the linear system $A\mathbf{x} = \mathbf{0}$ is equal to the set of all vectors in \mathbb{R}^n which are orthogonal to every row vector of A.

What we learnt today

Euclidean vector spaces \mathbb{R}^n :

- What they are
- Norm, dot product, and orthogonality in \mathbb{R}^n
- Useful properties: Cauchy-Schwarz, triangle, Pythagoras
- Dot product and linear systems

Next time:

General vector spaces