CICLO DE VIDA DE SISTEMAS DE SOFTWARE.

Prof^o MSC. Danillo da Silva Rocha.

Aula 1.

Conceitos chaves

- Contextualização.
- Ciclo de um Sistema de Software.
 - Etapas.
 - Subtarefas
- Ciclo de Manutenção em Sistema de Software
 - Tipos;
 - Abordagens;

Contextualização

Linha do tempo de um carro

Contextualização

Figura 1: Adaptado de Rezende, 2005.

Ciclo de um Sistema de Software.

 Um Sistema de Software tem um ciclo de vida particular (PRESSMAN e MAXIM, 2016);

Produto Intangível e único!

- O ciclo de vida possui Etapas próprias;
- Que segundo Rezende (2005), não dependem :

De metologia

и.

Etapas do ciclo de vida.

- O ciclo proposto por Rezende (apud Yourdon, 2005) :
 - 1. Estudo de Viabilidade;
 - 2. Análise de Sistemas;
 - 3. Projeto;
 - 4. Implementação;
 - 5. Geração do teste de aceite;
 - 6. Garantia da Qualidade;
 - 7. Descrição de Procedimentos;
 - 8. Conversão de Base de Dados;
 - 9. Instalação;

Estudo de Viabilidade

O Cliente quer um sistemas, porém:

Precisa de um estudo preliminar:

- Quais são as <u>deficiências</u> atuais;
- Quais os <u>objetivos</u> do novo sistema;
- Existe <u>orçamento</u>;
- Melhor <u>desenvolver</u> ou <u>adquirir</u>;

ROI?

Análise de Sistemas

O Engenheiro de Software, faz:

Estabelecendo as fronteiras:

- Os limites homem-máquina;
- As <u>restrições</u> do Sistema
- Custo-benefício do Sistema.

Dá pra fazer tudo que o cliente deseja ?

Análise de Sistemas

A descoberta do sistema:

- Um processo de <u>Elicitação</u> das necessidades;
- Especifica as necessidades:

DIAGRAMAS DFD

DIAGRAMAS UML

Projeto de Análise

DIC. DE DADOS

Projeto

O Engenheiro com a equipe, faz:

Restrições são pensandas:

- Recursos Humanos disponíveis;
- Equipamentos e ferramentas disponíveis;
- Hierarquias apropriadas entre os módulos;
- As <u>interfaces</u> entre os módulos.
- Capturar as <u>estruturas</u> do Sistema.

Projeto de Análise

Projeto Lógico

Projeto

O projeto lógico:

- Coesão entre os módulos;
- Conexão Adequada;
- Descrever o projeto de banco de dados;
- Como será o empacotamento do projeto.

Protótipos

Fluxogramas

Implementação

Os desenvedores, então:

Colocam a mão na massa:

- Escolhem uma linguagem de programação adequada;
- Definem a <u>sequência</u> dos módulos;
- Codificam o que consta no projeto lógico;
- Implementam nesta sequência;

Projeto de Lógico

Projeto Físico

Implementação

Pensam em testes:

- A cada modulo desenvolvido:
 - TESTES DE FORMA INCREMENTAL
- Os módulos são juntados;
 - TESTES A INTEGRAÇÃO DO SISTEMA.

Mas pra que testar?

Geração do teste de aceite

A equipe de testes e usuários:

Testam o Sistema completo:

- Uma especificação estruturada é gerada
- Também chamada de Projeto de Implantação
- Casos de Testes são gerados

Projeto Físico

Projeto de Implantação

Geração do teste de aceite

Elaboram um plano:

- Gerar um <u>plano de testes</u>;
- Escolher entradas para o Sistema;
- Definir as saídas esperadas;
- Executar os testes

Testar é tão importante quanto codificar!

Geração do teste de aceite

Extrapolam o Sistema:

- Produzir testes de Perfomance;
- "Enganar" o Sistema com dados errados;
- Validar as saídas do Sistema;
- Produz a especificação dos testes.

E precisa disso?

Garantia da qualidade

Toda a equipe e cliente:

Verificar as expectativas do cliente:

- Um teste <u>final</u> é feito;
- Tentar garantir a satisfação do cliente;
- O cliente tem acesso a espeficificação dos testes;
- Observar-se a <u>satisfação</u> do cliente;
- Atendeu as expectativas;

Garantia da qualidade

Condiderações:

- A engenharia de software defende (PRESSMAN e MAXIM, 2016):
 - Que a qualidade desde a <u>etapa de análise</u>;
 - Devemos ficar atentos;
 - Não deixar o cliente insatisfeito.

Descrição do procedimento

Toda a equipe:

Formaliza e estabele:

- O que o sistema pronto faz;
- Quais partes continuaram sendo feitas sem o Sistema
- Uma descrição formal do que o Sistema
- Manuais podem ser elaborados
- Faz parte do:

Projeto de Implantação

Conversão do Banco de Dados

Um analista de banco de dados (DBA):

Sistemas legados:

- Dados históricos
- Importantes para a empresa
- O novo Sistema precisa deles;
- Necessário uma conversão dos dados:
- Faz parte do:

Projeto de Implantação

Instalação

Toda a equipe:

Atividade Final:

- Processo de disponibilizar o Sistema em "produção"
- Pode acontecer do dia para a noite;
- Porém, isso pode causar problemas:
 - Rejeição dos usuários finais
 - Sabotagem do Sistema
 - Uso inadequado do Sistema.

Instalação

Toda a equipe:

Considerações:

- Realizar a etapa progressivamente;
- Oferecer treinamento para os usários;
- Campanhas de concientização;
- Elaborar bons manuais de uso;
- Faz parte:

Projeto de Implantação

Etapa do ciclo de vida	Projeto
Estudo de viabilidade	_
Análise de Sistemas	Análise
Projeto	Lógico
Implementação	Físico
Geração do teste de aceite	Implantação
Garantia da Qualidade	Começa na Análise
Descrição de Procedimentos	Implantação
Conversão de Base de Dados	Implantação
Instalação;	Implantação

Tabela 1: Adaptado de Rezende, 2005.

- De maneira geral, todo sistema de software passa por manutenção (PRESSMAN e MAXIM, 2016)
- Os principais motivos:
 - Ajustes pós-instalação
 - Estar de acordo com a legislação
 - Por estar gerando erros.

- Pode ser um <u>iceberg</u>;
- O erro se manifesta (visível);
- Mas achar o <u>defeito</u> é difícil;
- A <u>falha</u> pode demorar muito para aparecer;

- Pode ser um iceberg;
- O erro se manifesta (visível);
- Mas achar o defeito é difícil;
- A falha pode demorar muito para aparecer;

- Software é para pessoas.
- Precisa sanar suas necessidades.
- Um processo de contínuo:
 - Avaliar
 - Controlar
 - Fazer mudanças

Tipos de manutenção de SW

Por legislação:

- Quando precisa estar em compliance
- Sistemas financeiros
- Demandam sempre avaliação de mudanças

Melhoria ou Implementação

- Incluir novas funções
- Restrições novas
- Melhorar o desempenho

Tipos de manutenção de SW

- Correção de Erros:
 - Eliminar erros;
 - A mais problemática;
 - Pode parar o sistema como um todo;
 - Pode evidências problemas nos testes;
 - Fazer o SW voltar ao normal;

Abordagens de manutenção

- Manutenção preventiva
- Ocorre pensando no futuro;
 - Não existe um erro;
 - Perspectivas de:
 - Ampliações futuras
 - Alterações na legislação
 - Mudanças nos concorrentes
 - Previne futuros problemas.

Sempre uma boa idéia.

Abordagens de manutenção

- Manutenção corretiva:
 - Reativa a um erro no sistema;
 - Evidência problemas na fase de testes
- Manutenção adaptativa:
 - Mudanças de Hardware
 - Novas linguagens
 - Novas tecnologias
 - Precisa estar a frente dos concorrentes.

Chega um momento que

Referência

- REZENDE, Denis Alcides. Engenharia de software e sistemas de informação.
 3 ed. Rio de Janeiro: Brasport, 2005.
- PRESSMAN, Roger; MAXIM, Bruce.
 Engenharia de Software. 8 ed. São Paulo: McGraw Hill Brasil, 2016.