

March 2015

KA78XXE / KA78XXAE 3-Terminal 1 A Positive Voltage Regulator

Features

- · Output Current up to 1 A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24 V
- Thermal Overload Protection
- · Short-Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The KA78XXE / KA78XXAE series of three-terminal positive regulators is available in the TO-220 / D-PAK package with several fixed-output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down, and safe operating area. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed-voltage regulators, these devices can be used with external components for adjustable voltages and currents.

Ordering Information

Product Number	Output Voltage Tolerance ⁽¹⁾	Package	Operating Temperature	Parking Method	
KA7805ETU					
KA7806ETU					
KA7808ETU					
KA7809ETU					
KA7810ETU		TO-220 (Dual Gauge)		Rail	
KA7812ETU					
KA7815ETU	±4%	-40°C to +125°C		40°C to 1425°C	
KA7818ETU	±4 /0	-40 0 10 +123 0			
KA7824ETU					
KA7805ERTF					
KA7805ERTM					
KA7808ERTM		D-PAK ⁽²⁾		Tape and Reel	
KA7809ERTM					
KA7812ERTM					
KA7805AETU					
KA7809AETU					
KA7810AETU	±2%	TO-220 (Dual Gauge)	0°C to +125°C	Rail	
KA7812AETU	±2 /0	10-220 (Dual Gauge)	0 0 10 +125 0	IXali	
KA7815AETU			\		
KA7824AETU					

- 1. Above output voltage tolerance is available at 25°C.
- 2. Refer to below figure for TM / TF Suffix for DPAK.

D-PAK Unit Orientation

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Paramete	r	Value	Unit
V	Input Voltage	V _O = 5 V to 18 V	35	V
V _I	input voitage	V _O = 24 V	40	V
$R_{\theta JC}$	Thermal Resistance Junction-Case (To	5	°C/W	
$R_{\theta JA}$	Thermal Resistance Junction-Air (TO-2	220)	65	°C/W
т	Operating Temperature Range	KA78XXE / KA78XXER	-40 to +125	- °C
T_{OPR}	Operating Temperature Kange	KA78XXAE	0 to +125	
T _{STG}	Storage Temperature Range		-65 to +150	°C

Electrical Characteristics (KA7805E / KA7805ER)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I =10 V, C_I= 0.33 μ F, C_O=0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions			Max.	Unit
		$T_J = +25^{\circ}C$		4.80	5.00	5.20	
V _O	Output Voltage	5.0 mA I_0 $V_1 = 7 \text{ V to } 2$	20 V	4.75	5.00	5.25	V
Regline	Line Regulation ⁽³⁾	T +25°C	$V_1 = 7 \text{ V to } 25 \text{ V}$ $V_2 = 8 \text{ V to } 12 \text{ V}$		4.0	100.0	mV
rtegiirie	Line regulation				1.6	50.0	1110
Regload	Load Regulation ⁽³⁾	T 125°C	$I_O = 5.0 \text{ mA to } 1.5 \text{ A}$		9	100	mV
Regioau	Load Regulation	1 J = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4	50	IIIV
ΙQ	Quiescent Current	$T_J = +25^{\circ}C$			5	8	mA
Al	Quiescent Current Change	$I_O = 5 \text{ mA to}$	$I_{O} = 5 \text{ mA to } 1.0 \text{ A}$		0.03	0.50	mA
ΔI_{Q}	Quiescent Current Change	$V_I = 7 \text{ V to } 2$	25 V		0.30	1.30	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁴⁾	$I_O = 5 \text{ mA}$			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to	100 kHz, T _A = +25°C		42		μV
RR	Ripple Rejection ⁽⁴⁾	f = 120 Hz, \	V _I = 8 V to 18 V	62	73		dB
V_{Drop}	Dropout Voltage	$I_O = 1 A, T_J$	= +25°C		2		V
R _O	Output Resistance ⁽⁴⁾	f = 1 kHz			15		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, \text{ T}_{I}$	_A = +25°C		230		mA
I _{PK}	Peak Current ⁽⁴⁾	$T_{J} = +25^{\circ}C$			2.2		Α

- 3. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 4. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7806E)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 11 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions		Тур.	Max.	Unit
		T _J = +25°C		5.75	6.00	6.25	
Vo	Output Voltage	5.0 mA I_{O} $V_{I} = 8.0 \text{ V to}$	1.0 A, P _O 15 W, 21 V	5.70	6.00	6.30	V
Regline	Line Regulation ⁽⁵⁾	T _{.1} = +25°C	$V_{I} = 8 \text{ V to } 25 \text{ V}$		5.0	120.0	mV
Regime	Line Regulation	1 1 - +23 0	V _I = 9 V to 13 V		1.5	60.0	1110
Regload	Load Regulation ⁽⁵⁾	$T_{J} = +25^{\circ}C$ $I_{O} = 5 \text{ mA to } 1.5 \text{ A}$			9	120	mV
Regioau	Load Regulation	1j = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		3	60	IIIV
IQ	Quiescent Current	$T_J = +25^{\circ}C$			5	8	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to}$	1 A			0.5	mA
ΔI_{Q}	Change	V _I = 8 V to 2	5 V			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁶⁾	$I_O = 5 \text{ mA}$			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		45		μV
RR	Ripple Rejection ⁽⁶⁾	f = 120 Hz, \	/ _I = 9 V to 19 V	59	75		dB
V_{Drop}	Dropout Voltage	I _O = 1 A, T _J :	= +25°C		2		V
R _O	Output Resistance ⁽⁶⁾	f = 1 kHz			19		mΩ
I _{SC}	Short-Circuit Current	$V_1 = 35 \text{ V}, T_A$	_λ = +25°C		250		mA
I _{PK}	Peak Current ⁽⁶⁾	$T_J = +25^{\circ}C$			2.2		Α

- 5. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 6. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7808E / KA7808ER)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 14 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
		T _J = +25°C		7.7	8.0	8.3	
V _O	Output Voltage	5.0 mA I _O V _I = 10.5 V to	1.0 A, P _O 15 W, o 23 V	7.6	8.0	8.4	V
Regline	Line Regulation ⁽⁷⁾	T _{.1} = +25°C	V _I = 10.5 V to 25 V		5	160	mV
Regilile	Line Regulation	1	V _I = 11.5 V to 17 V		2	80	IIIV
Regload	Load Regulation ⁽⁷⁾	T _J = +25°C	$I_O = 5.0 \text{ mA to } 1.5 \text{ A}$		10	160	mV
Regioau	Load Regulation	1 1 = +25 C	$I_O = 250 \text{ mA to } 750 \text{ mA}$		5	80	IIIV
IQ	Quiescent Current	$T_J = +25^{\circ}C$			5	8	mA
ΔI_{Q}	Quiescent Current	$I_O = 5 \text{ mA to}$	1.0 A		0.05	0.50	mA
ΔIQ	Change	$V_{I} = 10.5 \text{ A to}$	o 25 V		0.50	1.00	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁸⁾	$I_O = 5 \text{ mA}$			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 10	$00 \text{ kHz}, T_A = +25^{\circ}\text{C}$		52		μV
RR	Ripple Rejection ⁽⁸⁾	f = 120 Hz, \	/ _I = 11.5 V to 21.5 V	56	73		dB
V_{Drop}	Dropout Voltage	I _O = 1 A, T _J =	= +25°C		2		V
R _O	Output Resistance ⁽⁸⁾	f = 1 kHz			17		mΩ
I _{SC}	Short-Circuit Current	$V_1 = 35 \text{ V}, T_A$	(= +25°C		230		mA
I _{PK}	Peak Current ⁽⁸⁾	$T_J = +25^{\circ}C$			2.2		А

- 7. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 8. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7809E / KA7809ER)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 15 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		T _J = +25°C		8.65	9.00	9.35	
Vo	Output Voltage	$5.0 \text{ mA} \le I_O \le V_I = 11.5 \text{ V to}$	≤ 1.0 A, P _O ≤ 15 W, o 24 V	8.60	9.00	9.40	V
Poglino	Line Regulation ⁽⁹⁾	T _{.1} = +25°C	V _I = 11.5 V to 25 V		6	180	
Regline	Line Regulation	1j = +25 C	V _I = 12 V to 17 V		2	90	mV
Poglood	Load Regulation ⁽⁹⁾	T _J = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		12	180	mV
Regload	Load Regulation 7	1j = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4	90	IIIV
IQ	Quiescent Current	$T_J = +25^{\circ}C$	T _J = +25°C		5	8	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to}$	1.0 A			0.5	mA
ΔI_{Q}	Change	V _I = 11.5 V to 26 V				1.3	ША
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽¹⁰⁾	I _O = 5 mA			-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 10	$00 \text{ kHz}, T_A = +25^{\circ}\text{C}$		58		μV
RR	Ripple Rejection ⁽¹⁰⁾	f = 120 Hz, V	_I = 13 V to 23 V	56	71		dB
V_{Drop}	Dropout Voltage	I _O = 1 A, T _J =	: +25°C		2		V
R _O	Output Resistance ⁽¹⁰⁾	f = 1 kHz			17		mΩ
I _{SC}	Short-Circuit Current	$V_1 = 35 \text{ V}, T_A$	= +25°C		250		mA
I _{PK}	Peak Current ⁽¹⁰⁾	$T_J = +25^{\circ}C$			2.2		Α

- 9. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 10. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7810E)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 16 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		T _J = +25°C		9.6	10.0	10.4	
V _O	Output Voltage	$5.0 \text{ mA} \le I_O \le V_I = 12.5 \text{ V to}$	≤ 1.0 A, P _O ≤ 15 W, o 25 V	9.5	10.0	10.5	V
Regline	Line Regulation ⁽¹¹⁾	T _{.1} = +25°C	$V_1 = 12.5 \text{ V to } 25 \text{ V}$		10	200	mV
Regime	Line Regulation	1)=+25 C	V _I = 13 V to 25 V		3	100	IIIV
Dogland	Load Regulation ⁽¹¹⁾	T _ \25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		12	200	mV
Regload	Load Regulation	$T_J = +25^{\circ}C$	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4	400	IIIV
IQ	Quiescent Current	T _J = +25°C			5.1	8.0	mA
Al	Quiescent Current	$I_0 = 5 \text{ mA to}$	1.0 A			0.5	mA
ΔI_{Q}	Change	V _I = 12.5 V to	29 V			1.0	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹²⁾	$I_O = 5 \text{ mA}$			-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 10	$00 \text{ kHz}, T_A = +25^{\circ}\text{C}$		58		μV
RR	Ripple Rejection ⁽¹²⁾	f = 120 Hz, V	_I = 13 V to 23 V	56	71		dB
V_{Drop}	Dropout Voltage	I _O = 1 A, T _J =	: +25°C		2		V
R _O	Output Resistance ⁽¹²⁾	f = 1 kHz			17		mΩ
I _{SC}	Short-Circuit Current	$V_1 = 35 \text{ V}, T_A$	= +25°C		250		mA
I _{PK}	Peak Current ⁽¹²⁾	T _J = +25°C			2.2		Α

- 11. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 12. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7812E / KA7812ER)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 19 V, C_I = 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		11.5	12.0	12.5	
Vo	Output Voltage	$5.0 \text{ mA } \leq I_{O}$ $V_{I} = 14.5 \text{ V to}$	≤ 1.0 A, P _O ≤ 15 W, o 27 V	11.4	12.0	12.6	V
Regline	Line Regulation ⁽¹³⁾	T _{.1} = +25°C	$V_I = 14.5 \text{ V to } 30 \text{ V}$		10	240	mV
Regilile	Line Regulation 7	1j = +25 C	V _I = 16 V to 22 V		3	120	IIIV
Regload	Load Regulation ⁽¹³⁾	T _J = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		11	240	mV
Regioad	Load Regulation 7	1j = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		5	120	IIIV
IQ	Quiescent Current	$T_J = +25^{\circ}C$			5.1	8.0	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to}$	1.0 A		0.1	0.5	mA
ΔI_Q	Change	V _I = 14.5 V to	o 30 V		0.5	1.0	IIIA
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽¹⁴⁾	$I_O = 5 \text{ mA}$			-1		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 10	$00 \text{ kHz}, T_A = +25^{\circ}\text{C}$		76		μV
RR	Ripple Rejection ⁽¹⁴⁾	f = 120 Hz, V	' _I = 15 V to 25 V	55	71		dB
V_{Drop}	Dropout Voltage	$I_{O} = 1 A, T_{J} =$	+25°C		2		V
R _O	Output Resistance ⁽¹⁴⁾	f = 1 kHz			18		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{A}$	√ = +25°C		230		mA
I _{PK}	Peak Current ⁽¹⁴⁾	$T_J = +25^{\circ}C$			2.2		Α

- 13. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 14. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7815E)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 23 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Condition	S	Min.	Тур.	Max.	Unit
		T _J = +25°C			14.40	15.00	15.60	
Vo	Output Voltage	$5.0 \text{ mA} \le I_0 \le V_1 = 17.5 \text{ V to}$		≤ 15 W,	14.25	15.00	15.75	V
Poglino	Line Regulation ⁽¹⁵⁾	T _J = +25°C	V _I = 17.5 \	/ to 30 V		11	300	mV
Regline	Line Regulation	1j = +25 C	V _I = 20 V	to 26 V		3	150	IIIV
Poglood	Load Regulation ⁽¹⁵⁾	T _J = +25°C	$I_O = 5 \text{ mA}$	to 1.5 A		12	300	mV
Regload	Load Regulation	1j = +25 C	I _O = 250 i	mA to 750 mA		4	150 mv	IIIV
IQ	Quiescent Current	$T_J = +25^{\circ}C$				5.2	8.0	mA
Al	Quiescent Current Change	$I_O = 5 \text{ mA to}$	1.0 A				0.5	mA
ΔI_{Q}	Quiescent Current Change	V _I = 17.5 V to 30 V				1.0	111/2	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁶⁾	$I_O = 5 \text{ mA}$				-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 10	00 kHz, T _A =	= +25°C		90		μV
RR	Ripple Rejection ⁽¹⁶⁾	f = 120 Hz, V	/ _I = 18.5 V 1	to 28.5 V	54	70		dB
V_{Drop}	Dropout Voltage	I _O = 1 A, T _J = +25°C			2		V	
R _O	Output Resistance ⁽¹⁶⁾	f = 1 kHz			19		mΩ	
I _{SC}	Short-Circuit Current	$V_1 = 35 \text{ V}, T_A$	_= +25°C			250		mA
I _{PK}	Peak Current ⁽¹⁶⁾	T _J =+25°C				2.2		Α

- 15. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 16. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7818E)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 27 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
		T _J =+25°C		17.3	18.0	18.7	
Vo	Output Voltage	5.0 mA \leq I _O \leq V _I = 21 V to \leq	≤ 1.0 A, P _O ≤ 15 W, 33 V	17.1	18.0	18.9	V
Regline	Line Regulation ⁽¹⁷⁾	T _{.1} = +25°C	V _I = 21 V to 33 V		15	360	mV
Regilile	Line Regulation	1j = +25 C	V _I = 24 V to 30 V		5	180	IIIV
Doglood	Load Regulation ⁽¹⁷⁾	T _J = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		15	360	m\/
Regload	Load Regulation 7	1j = +25 C	I _O = 250 mA to 750 mA		5	180	mV
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.2	8.0	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to}$	1.0 A			0.5	mA
Δl_{Q}	Change	$V_1 = 21 \text{ V to } 3$	33 V			1.0	IIIA
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽¹⁸⁾	$I_O = 5 \text{ mA}$			-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 10	00 kHz, T _A = +25°C		110		μV
RR	Ripple Rejection ⁽¹⁸⁾	f = 120 Hz, V	/ _I = 22 V to 32 V	53	69		dB
V_{Drop}	Dropout Voltage	I _O = 1 A, T _J =	+25°C		2		V
R _O	Output Resistance ⁽¹⁸⁾	f = 1 kHz			22		mΩ
I _{SC}	Short-Circuit Current	$V_1 = 35 \text{ V}, T_A$	_λ = +25°C	1	250		mA
I _{PK}	Peak Current ⁽¹⁸⁾	$T_J = +25^{\circ}C$			2.2		Α

- 17. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 18. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7824E)

Refer to test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 33 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		23.00	24.00	25.00	
V _O	Output Voltage	$5.0 \text{ mA} \le I_0 \le V_1 = 27 \text{ V to } 3$	≤ 1.0 A, P _O ≤ 15 W, 38 V	22.80	24.00	25.25	V
Regline	Line Regulation ⁽¹⁹⁾	T _{.1} = +25°C	V _I = 27 V to 38 V		17	480	mV
Regilile	Line Regulation	1 1 - +23 0	V _I = 30 V to 36 V		6	240	IIIV
Regload	Load Regulation ⁽¹⁹⁾	T _{.1} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		15	480	mV
Regioad	Load Regulation 7	1j = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		5	240	IIIV
IQ	Quiescent Current	$T_J = +25^{\circ}C$			5.2	8.0	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to}$	1.0 A		0.1	0.5	mA
ΔI_{Q}	Change	$V_1 = 27 \text{ V to } 3$	38 V		0.5	1.0	ША
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁰⁾	$I_O = 5mA$			-1.5		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 10	$00 \text{ kHz}, T_A = +25^{\circ}\text{C}$		120		μV
RR	Ripple Rejection ⁽²⁰⁾	f = 120 Hz, V	1 = 28 V to 38 V	50	67		dB
V_{Drop}	Dropout Voltage	I _O = 1 A, T _J =	+25°C		2		V
R _O	Output Resistance ⁽²⁰⁾	f = 1 kHz			28		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{A}$	= +25°C	1	230		mA
I _{PK}	Peak Current ⁽²⁰⁾	$T_J = +25^{\circ}C$			2.2		Α

- 19. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 20. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7805AE)

Refer to the test circuit, 0° C < T_J < +125 $^{\circ}$ C, I_O = 1 A, V_I = 10 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25°C		4.9	5.0	5.1	
V _O	Output Voltage	$I_O = 5 \text{ mA to } 1$ $V_I = 7.5 \text{ V to } 2$	A, P _O ≤ 15 W, 20 V	4.8	5.0	5.2	V
		$V_1 = 7.5 \text{ V to } 2$	25 V, I _O = 500 mA		5.0	50.0	
Regline	Line Regulation ⁽²¹⁾	V _I = 8 V to 12	V		3.0	50.0	mV
Regime		T _J = +25°C	V _I = 7.3 V to 20 V		5.0	50.0	1110
		1j = +25 C	V _I = 8 V to 12 V		1.5	25.0	
		$T_J = +25^{\circ}C$, $I_O = 5$ mA to 1.5 A			9	100	
Regload	Load Regulation ⁽²¹⁾	I _O = 5 mA to 1 A			9	100	mV
			$I_{O} = 250 \text{ mA} \text{ to } 750 \text{ mA}$		4	50	
IQ	Quiescent Current	T _J = +25°C			5	6	mA
//		$I_O = 5 \text{ mA to } 1$	Α			0.5	
ΔI_{Q}	Quiescent Current Change	$V_1 = 8 \text{ V to } 25$	$V_1 = 8 \text{ V to } 25 \text{ V}, I_0 = 500 \text{ mA}$			0.8	mA
		$V_1 = 7.5 \text{ V to } 2$	20 V, T _J = +25°C			0.8	
ΔV/ΔΤ	Output Voltage Drift ⁽²²⁾	I _O = 5 mA			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 10	00 kHz, T _A =+25°C		42		μV
RR	Ripple Rejection ⁽²²⁾	$f = 120 \text{ Hz}, I_O = 500 \text{ mA},$ $V_I = 8 \text{ V to } 18 \text{ V}$			68		dB
V _{Drop}	Dropout Voltage	$I_{O} = 1 \text{ A}, T_{J} = +25^{\circ}\text{C}$			2		V
R _O	Output Resistance ⁽²²⁾	f = 1 kHz			17		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _A :	= +25°C		250		mA
I _{PK}	Peak Current ⁽²²⁾	T _J = +25°C			2.2		Α

- 21. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 22. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7809AE)

Refer to the test circuit, 0° C < T_J < +125 $^{\circ}$ C, I_O = 1 A, V_I = 15 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _O		$T_J = +25^{\circ}C$	8.82	9.00	9.18	V
	Output Voltage	$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W},$ $V_I = 11.2 \text{ V to 24 V}$	8.65	9.00	9.35	
		$V_I = 11.7 \text{ V to } 25 \text{ V}, I_O = 500 \text{ mA}$		6	90	
Regline	Line Regulation ⁽²³⁾	$V_I = 12.5 \text{ V to } 19 \text{ V}$		4	45	mV
rtegiirie		$T_J = +25^{\circ}C$ $V_I = 11.5 \text{ V to } 24 \text{ V}$ $V_I = 12.5 \text{ V to } 19 \text{ V}$		6	90	1110
		$V_1 = 12.5 \text{ V to } 19 \text{ V}$		2	45	
	L 1 D 1 - (; (23)	$T_J = +25^{\circ}C$, $I_O = 5$ mA to 1.0 A		12	100	
Regload	Load Regulation ⁽²³⁾	I _O = 5 mA to 1.0 A		12	100	mV
		$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		5	50	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		5	6	mA
		$V_I = 11.7 \text{ V to } 25 \text{ V}, T_J = +25^{\circ}\text{C}$			0.8	mA
ΔI_Q	Quiescent Current Change	$V_{I} = 12 \text{ V to } 25 \text{ V}, I_{O} = 500 \text{ mA}$			0.8	
		I _O = 5 mA to 1.0 A			0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽²⁴⁾	I _O = 5 mA		-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C		58		μV
RR	Ripple Rejection ⁽²⁴⁾	f = 120 Hz, I _O = 500 mA, V _I = 12 V to 22 V		62		dB
V _{Drop}	Dropout Voltage	I _O = 1 A, T _J = +25°C		2		V
R _O	Output Resistance ⁽²⁴⁾	f = 1 kHz		17		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _A = +25°C		250		mA
I _{PK}	Peak Current ⁽²⁴⁾	$T_J = +25^{\circ}C$		2.2		Α

- 23. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 24. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7810AE)

Refer to the test circuit, 0° C < T_J < +125 $^{\circ}$ C, I_O = 1 A, V_I = 16 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		T _J =+25°C	9.8	10.0	10.2	V
V _O	Output Voltage	$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W},$ $V_I = 12.8 \text{ V to 25 V}$	9.6	10.0	10.4	
		$V_I = 12.8 \text{ V to } 26 \text{ V}, I_O = 500 \text{ mA}$		8	100	
Regline	Line Regulation ⁽²⁵⁾	V _I = 13 V to 20 V		4	50	mV
ixegiirie		$T_J = +25^{\circ}C$ $V_I = 12.5 \text{ V to } 25 \text{ V}$ $V_I = 13 \text{ V to } 20 \text{ V}$		8	100] '''V
		$V_1 = 13 \text{ V to } 20 \text{ V}$		3	50	
	(25)	$T_J = +25^{\circ}C$, $I_O = 5$ mA to 1.5 A		12	100	
Regload	Load Regulation ⁽²⁵⁾	$I_O = 5 \text{ mA to 1 mA}$		12	100	mV
		I _O = 250 mA to 750 mA		5	50	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		5	6	mA
		I _O = 5 mA to 1.0 A			0.5	
ΔI_Q	Quiescent Current Change	$V_I = 12.8 \text{ V to } 25 \text{ V}, I_O = 500 \text{ mA}$			0.8	mA
		$V_I = 13 \text{ V to } 26 \text{ V}, T_J = +25^{\circ}\text{C}$			0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽²⁶⁾	I _O = 5 mA		-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C		58		μV
RR	Ripple Rejection ⁽²⁶⁾	f = 120 Hz, I _O = 500 mA, V _I = 14 V to 24 V		62		dB
V_{Drop}	Dropout Voltage	$I_{O} = 1 \text{ A}, T_{J} = +25^{\circ}\text{C}$		2		V
R _O	Output Resistance ⁽²⁶⁾	f = 1 kHz		17		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _A = +25°C		250		mA
I _{PK}	Peak Current ⁽²⁶⁾	$T_J = +25^{\circ}C$		2.2		Α

- 25. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 26. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7812AE)

Refer to the test circuit, 0° C < T_J < +125 $^{\circ}$ C, I_O = 1 A, V_I = 19 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		11.75	12.00	12.25	V
V _O	Output Voltage	$I_O = 5 \text{ mA to 1 A, } P_O \le 15 \text{ W,}$ $V_I = 14.8 \text{ V to 27 V}$		11.50	12.00	12.50	
		V _I = 14.8 V to 30 V, I _O = 500 mA			10	120	
Danling	Line Regulation ⁽²⁷⁾	V _I = 16 V to 22	2 V		4	120	mV
Regline	Line Regulation 7	T - 125°C	V _I = 14.5 V to 27 V V _I = 16 V to 22 V		10	120	
		1j = +25 C	V _I = 16 V to 22 V		3	60	
	(27)	$T_J = +25^{\circ}C$, $I_O = 5$ mA to 1.5 A			12	100	mV
Regload	Load Regulation ⁽²⁷⁾	I _O = 5 mA to 1.0 A			12	100	
		I _O = 250 mA to 750 mA			5	50	
IQ	Quiescent Current	T _J = +25°C			5.1	6.0	mA
//		$V_{I} = 15 \text{ V to } 30 \text{ V}, T_{J} = +25^{\circ}\text{C}$				0.8	
ΔI_{Q}	Quiescent Current Change	$V_{I} = 14 \text{ V to } 27 \text{ V}, I_{O} = 500 \text{ mA}$				0.8	mA
		$I_{O} = 5 \text{ mA to } 1.0 \text{ A}$				0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽²⁸⁾	I _O = 5 mA			-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C			76		μV
RR	Ripple Rejection ⁽²⁸⁾	f = 120 Hz, I _O = 500 mA, V _I = 14 V to 24 V			60		dB
V _{Drop}	Dropout Voltage	I _O = 1 A, T _J = +25°C			2		V
R _O	Output Resistance ⁽²⁸⁾	f = 1 kHz			18		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _A = +25°C			250		mA
I _{PK}	Peak Current ⁽²⁸⁾	$T_J = +25^{\circ}C$			2.2		Α

- 27. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 28. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7815AE)

Refer to the test circuit, 0° C < T_J < +125 $^{\circ}$ C, I_O = 1 A, V_I = 23 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
	T _J = +25°C			14.7	15.0	15.3	V
V _O	Output Voltage	$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W},$ $V_I = 17.7 \text{ V to 30 V}$		14.4	15.0	15.6	
		V _I = 17.9 V to 30 V, I _O = 500 mA			10	150	
Regline	Line Regulation ⁽²⁹⁾	$V_{I} = 20 \text{ V to } 2$	6 V		5	150	mV
ixegiirie		T 125°C	$V_I = 17.5 \text{ V to } 30 \text{ V}$ $V_I = 20 \text{ V to } 26 \text{ V}$		11	150	
		1 J = +25 C	V _I = 20 V to 26 V		3	75	
	1 15 17 (29)	$T_J = +25^{\circ}\text{C}$, $I_O = 5 \text{ mA to } 1.5 \text{ A}$ $I_O = 5 \text{ mA to } 1.0 \text{ A}$ $I_O = 250 \text{ mA to } 750 \text{ mA}$			12	100	mV
Regload	Load Regulation ⁽²⁹⁾				12	100	
					5	50	
IQ	Quiescent Current	$T_J = +25^{\circ}C$			5.2	6.0	mA
		$V_I = 17.5 \text{ V to } 30 \text{ V}, T_J = +25$				0.8	
ΔI_{Q}	Quiescent Current Change	$V_I = 17.5 \text{ V to } 30 \text{ V}, I_O = 500 \text{ mA}$				0.8	mA
		$I_{O} = 5 \text{ mA to } 1.0 \text{ A}$				0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽³⁰⁾	I _O = 5 mA			-1		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C			90		μV
RR	Ripple Rejection ⁽³⁰⁾	f = 120 Hz, I _O = 500 mA, V _I = 18.5 V to 28.5 V			58		dB
V _{Drop}	Dropout Voltage	I _O = 1 A, T _J = +25°C			2		V
R _O	Output Resistance ⁽³⁰⁾	f = 1 kHz			19		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _A = +25°C			250		mA
I _{PK}	Peak Current ⁽³⁰⁾	$T_J = +25^{\circ}C$			2.2		Α

- 29. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 30. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7824AE)

Refer to the test circuit, 0° C < T_J < +125 $^{\circ}$ C, I_O =1 A, V_I = 33 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		23.5	24.0	24.5	V
V _O	Output Voltage	$I_O = 5 \text{ mA to 1 A, } P_O \le 15 \text{ W,}$ $V_I = 27.3 \text{ V to } 38 \text{ V}$		23.0	24.0	25.0	
		$V_{I} = 27 \text{ V to } 38 \text{ V}, I_{O} = 500 \text{ mA}$			18	240	
Danling	Line Regulation ⁽³¹⁾	$V_1 = 21 \text{ V to } 3$	33 V		6	240	mV
Regline		T - 125°C	$V_1 = 26.7 \text{ V to } 38 \text{ V}$ $V_1 = 30 \text{ V to } 36 \text{ V}$		18	240	
		1j = +25 C	V _I = 30 V to 36 V		6	120	
	(31)	$T_J = +25^{\circ}C$, $I_O = 5$ mA to 1.5 A			15	100	mV
Regload	Load Regulation ⁽³¹⁾	I _O = 5 mA to 1.0 A			15	100	
		I _O = 250 mA to 750 mA			7	50	
IQ	Quiescent Current	T _J = +25°C			5.2	6.0	mA
//		V _I = 27.3 V to	38 V, T _J = +25°C			0.8	
ΔI_{Q}	Quiescent Current Change	$V_{I} = 27.3 \text{ V to } 38 \text{ V}, I_{O} = 500 \text{ mA}$				0.8	mA
		$I_{O} = 5 \text{ mA to } 1.0 \text{ A}$				0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽³²⁾	I _O = 5 mA			-1.5		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C			120		μV
RR	Ripple Rejection ⁽³²⁾	f = 120 Hz, I _O = 500 mA, V _I = 28 V to 38 V			54		dB
V _{Drop}	Dropout Voltage	I _O = 1 A, T _J = +25°C			2		V
R _O	Output Resistance ⁽³²⁾	f = 1 kHz			20		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _A = +25°C			250		mA
I _{PK}	Peak Current ⁽³²⁾	$T_J = +25^{\circ}C$			2.2		Α

- 31. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 32. These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

Figure 2. Quiescent Current

Figure 3. Peak Output Current

Figure 4. Output Voltage

Figure 5. Quiescent Current

Typical Applications

Figure 6. DC Parameters

Figure 7. Load Regulation

Figure 8. Ripple Rejection

Figure 9. Fixed Output Regulator

Figure 10. Constant Current Regulator

- 33. To specify an output voltage, substitute voltage value for "XX". A common ground is required between the input and the output voltage. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
- 34. C_I is required if regulator is located an appreciable distance from power supply filter.
- 35. C_O improves stability and transient response.

 $I_{R1} \ge 5IQ$ $V_{O} = V_{XX}(1+R_{2}/R_{1}) + I_{Q}R_{2}$

Figure 11. Circuit for Increasing Output Voltage

$$I_{R1} \ge 5 I_{Q}$$

 $V_{Q} = V_{XX}(1+R_{2}/R_{1}) + I_{Q}R_{2}$

Figure 12. Adjustable Output Regulator (7 V to 30 V)

Figure 13. High-Current Voltage Regulator

Figure 14. High Output Current with Short-Circuit Protection

Figure 15. Tracking Voltage Regulator

Figure 16. Split-Power Supply (±15 V - 1 A)

Figure 17. Negative Output Voltage Circuit

Figure 18. Switching Regulator

Physical Dimensions SUPPLIER "B" PACKAGE SHAPE Ø Ø4.00 3.50 10.67 SUPPLIER "A" PACKAGE 9.65<u>E</u> 3.40 2.50 IF PRESENT, SEE NOTE Ł 16.51 15.42 [2.46] C 14.04 12.70 FRONT VIEWS 1.62 1.42 OPTIONAL CHAMFER 6.69 6.06 <u></u> -NOTE "I" BOTTOM VIEW NOTES: IOLES: A) REFERENCE JEDEC, TO-220, VARIATION AB B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS COMMON TO ALL PACKAGE SUPPLIERS EXCEPT WHERE NOTED []. D) LOCATION OF MOLDED FEATURE MAY VARY 3 D) LOCATION OF MOLDED FEATURE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE) ENDOES NOT COMPLY JEDEC STANDARD VALUE. F) "A1" DIMENSIONS AS BELOW: SINGLE GAUGE = 0.51 - 0.61 DUAL GAUGE = 1.10 - 1.45 G) DRAWING FILE NAME: TOZZOBOJREV8 PRESENCE IS SUPPLIER DEPENDENT I) SUPPLIER DEPENDENT MOLD LOCKING HOLES IN HEATSINK. IN HEATSINK. J) FAIRCHILD SEMICONDUCTOR **BACK VIEW** SIDE VIEW

Figure 19. TO-220, MOLDED, 3-LEAD, NON-JEDEC, VARIATION AB (DUAL GUAGE)

Figure 20. 3-LEAD, TO-252, NOT COMPLIANT TO JEDEC TO-252 VAR. AB, SURFACE MOUNT (DPAK)

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ AccuPower™ AttitudeEngine™ FRFET[®] Awinda® AX-CAP®* Global Power Resource SM GreenBridge™

BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ GTO™ $CROSSVOLT^{\text{\tiny TM}}$ IntelliMAX™ CTL™ ISOPI ANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder **DEUXPEED**® and Better™

MicroPak2™

Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficientMax™ MicroFET™ ESBC™ MicroPak™

MillerDrive™ Fairchild® MotionMax™ Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT® FAST® MTx® MVN® FastvCore™ mWSaver® FETBench™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

® PowerTrench® PowerXS™

Programmable Active Droop™

QFET QS^{TM} Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinvWire™ TranSiC™

TriFault Detect™ TRUECURRENT®* μSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms							
Datasheet Identification	Product Status	Definition					
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.					
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.					
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.					

Rev. 173

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

KA7812E KA7808AE KA7815AE KA7809ETSTU KA7809AE KA7818ETSTU KA7806AE KA7812ETSTU

KA7808ETSTU KA7808AETU KA7812AE KA7815E KA7815ETSTU KA7824E KA7805AE KA7818E

KA7824ETSTU KA7805AETSTU KA7805ETSTU KA7806E KA7806ETSTU KA7812TSTU KA7810TU KA7812_Q

KA7810 KA7809A KA7818 KA7805A KA7805ATU_Q KA7824TU KA7806 KA7818ATU KA7809TU KA7808TSTU

KA7812TU KA7815 KA7809 KA7812ATU KA7805TU_Q KA7805TU KA7805TU KA7812A KA7806ATU KA7806A

KA7809TU_Q KA7815_Q KA7815ATU KA7806TSTU KA7815TU KA7808 KA7805ATU KA7815TSTU KA7815A

KA7808TU KA7805 KA7806TU KA7824