CD: COMPILER DESIGN CD: UNIT-2 09/2022

SEPTEMBER 2022 / IT-3rd year, Vth semester FALL SEMESTER, YEAR (Vth, 3rd) FALL SESSION (2022-23) (CD)

> MS. SHWETA TIWARI Published: SEPTEMBER, 2022

PREPARED FOR

Engineering Students All Engineering College

CD: COMPILER DESIGN

INSTRUCTOR: Ms. SHWETA TIWARI shwetatiwari08@recabn.ac.in shwetatiwari08aug@gmail.com

September 2022

TOPIC On: QUESTION And ANSWER ON-

Left Recursion, Left Factoring, FIRST() AND FOLLOW()

1. QUESTION And ANSWER ON- Eliminate Left

Recursion

1. Consider the following grammar and eliminate left recursion-

$$A \rightarrow ABd / Aa / a$$

$$B \rightarrow Be / b$$

Answer-1. The grammar after eliminating left recursion is-

$$A \rightarrow aA'$$

$$A' \rightarrow BdA' / aA' / \subseteq$$

$$B \rightarrow bB'$$

$$B' \rightarrow eB' / \subseteq$$

2. Consider the following grammar and eliminate left recursion-

$$E \rightarrow E + E / E \times E / a$$

Answer-2. The grammar after eliminating left recursion is-

$$E \to aA$$

$$A \rightarrow +EA / xEA / \in$$

3. Consider the following grammar and eliminate left recursion-

$$E \rightarrow E + T / T$$

$$T \rightarrow T \; x \; F \; / \; F$$

$$\mathbf{F} \rightarrow \mathbf{id}$$

Answer-3. The grammar after eliminating left recursion is-

$$E \rightarrow TE'$$

$$E' \! \to \! + \! TE' \, / \subseteq$$

$$T \to FT\text{'}$$

$$T' \mathop{\rightarrow} xFT' \mathop{/} \in$$

$$F \rightarrow id$$

4. Consider the following grammar and eliminate left recursion-

$$S \rightarrow (L) / a$$

$$L \rightarrow L$$
 , S / S

Answer-4. The grammar after eliminating left recursion is-

$$S \rightarrow (L) / a$$

$$L \rightarrow SL'$$

$$L' \rightarrow ,SL' / \subseteq$$

5. Consider the following grammar and eliminate left recursion-

$$S \rightarrow SoS1S / o1$$

Answer-5. The grammar after eliminating left recursion is-

$$S \rightarrow 01A$$

$$A \rightarrow oS1SA / \subseteq$$

6. Consider the following grammar and eliminate left recursion-

$$S \mathop{\rightarrow} A$$

$$A \rightarrow Ad / Ae / aB / ac$$

$$B \rightarrow bBc / f$$

Answer-6. The grammar after eliminating left recursion is-

$$S \rightarrow A$$

$$A \rightarrow aBA' / acA'$$

$$A' \mathop{\rightarrow} dA' \mathop{/} eA' \mathop{/} \in$$

$$B \rightarrow bBc / f$$

7. Consider the following grammar and eliminate left recursion-

$$A \rightarrow AA\alpha / \beta$$

Answer-7. The grammar after eliminating left recursion is-

$$A \rightarrow \beta A'$$

$$A'\!\to\! A\alpha A'\,/ \equiv$$

8. Consider the following grammar and eliminate left recursion-

$$A \rightarrow Ba / Aa / c$$

$$B \rightarrow Bb / Ab / d$$

Answer-8. The grammar after eliminating left recursion is-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from A ightarrow Ba / Aa / c

Eliminating left recursion from here, we get-

$$A \rightarrow BaA' / cA'$$

$$A' \rightarrow aA' / \subseteq$$

Now, given grammar becomes-

$$A \rightarrow BaA' / cA'$$

$$A' \rightarrow aA' / \subseteq$$

$$B \rightarrow Bb / Ab / d$$

Step-02:

Substituting the productions of A in B \rightarrow Ab, we get the following grammar-

$$A \rightarrow BaA' / cA'$$

$$A' \rightarrow aA' / \subseteq$$

$$B \rightarrow Bb / BaA'b / cA'b / d$$

Step-03:

Now, eliminating left recursion from the productions of B, we get the following grammar-

 $A \rightarrow BaA' / cA'$

$$A' \rightarrow aA' / \subseteq$$

$$B \rightarrow cA'bB' / dB'$$

$$B' \rightarrow bB' / aA'bB' / \subseteq$$

This is the final grammar after eliminating left recursion.

9. Consider the following grammar and eliminate left recursion-

$$X \to XSb \ / \ Sa \ / \ b$$

$$S \rightarrow Sb / Xa / a$$

Answer-9. The grammar after eliminating left recursion is-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from X \rightarrow XSb / Sa / b

Eliminating left recursion from here, we get-

$$X \rightarrow SaX' / bX'$$

$$X' \! \to SbX' \, / \subseteq$$

Now, given grammar becomes-

$$X \rightarrow SaX' / bX'$$

$$X' \rightarrow SbX' / \subseteq$$

$$S \rightarrow Sb$$
 / Xa / a

Step-02:

Substituting the productions of X in $S \rightarrow Xa$, we get the following grammar-

$$X \rightarrow SaX' / bX'$$

$$X' \rightarrow SbX' / \subseteq$$

$$S \rightarrow Sb / SaX'a / bX'a / a$$

Step-03:

Now, eliminating left recursion from the productions of S, we get the following grammar-

$$X \rightarrow SaX' / bX'$$

$$X' \rightarrow SbX' / \subseteq$$

$$S \rightarrow bX'aS' / aS'$$

$$S' \rightarrow bS' / aX'aS' / \subseteq$$

This is the final grammar after eliminating left recursion.

10. Consider the following grammar and eliminate left recursion-

$$S \rightarrow Aa/b$$

$$A \rightarrow Ac / Sd / \subseteq$$

Answer-10. The grammar after eliminating left recursion is-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from $S \rightarrow Aa / b$

This is already free from left recursion.

Step-02:

Substituting the productions of S in A \rightarrow Sd, we get the following grammar-

$$S \rightarrow Aa / b$$

$$A \rightarrow Ac / Aad / bd / \subseteq$$

Step-03:

Now, eliminating left recursion from the productions of A, we get the following grammar-

$$S \rightarrow Aa / b$$

$$A \rightarrow bdA' / A'$$

$$A' \rightarrow cA' / adA' / \subseteq$$

This is the final grammar after eliminating left recursion.

2. QUESTION And ANSWER ON- Eliminate Left

<u>Factoring</u>

1. Do left factoring in the following grammar-

$$E \rightarrow b$$

Answer-1. The grammar after eliminating left factoring is-

$$S \rightarrow iEtSS' / a$$

$$S' \mathop{\rightarrow} eS \mathop{/} \in$$

$$E \rightarrow b$$

2. Do left factoring in the following grammar-

$$A \rightarrow aAB / aBc / aAc$$

Answer-2. The grammar after eliminating left factoring is-

Step-01:

$$A \rightarrow aA'$$

$$A' \rightarrow AB / Bc / Ac$$

Again, this is a grammar with common prefixes.

Step-02:

$$A \rightarrow aA'$$

$$A' \rightarrow AD / Bc$$

$$D \rightarrow B / c$$

This is left factored grammar.

3. Do left factoring in the following grammar-

$$S \rightarrow bSSaaS / bSSaSb / bSb / a$$

Answer-3. The grammar after eliminating left factoring is-

Step-01:

$$S \rightarrow bSS' / a$$

$$S' \rightarrow SaaS / SaSb / b$$

Again, this is a grammar with common prefixes.

Step-02:

$$S \rightarrow bSS' / a$$

$$S' \rightarrow SaA / b$$

$$A \rightarrow aS / Sb$$

This is left -factored grammar.

4. Do left factoring in the following grammar-

$$S \rightarrow aSSbS$$
 / $aSaSb$ / abb / b

Answer-4. The grammar after eliminating left factoring is-

Step-01:

$$S \rightarrow aS' / b$$

$$S' \to SSbS$$
 / $SaSb$ / bb

Again, this is a grammar with common prefixes.

Step-02:

$$S \rightarrow aS' / b$$

$$S' \rightarrow SA / bb$$

$$A \rightarrow SbS / aSb$$

This is left -factored grammar.

5. Do left factoring in the following grammar-

$$S \rightarrow a / ab / abc / abcd$$

Answer-5. The grammar after eliminating left factoring is-

Step-01:

$$S \rightarrow aS'$$

$$S' \mathop{\rightarrow} b \mathop{/} bc \mathop{/} bcd \mathop{/} \in$$

Again, this is a grammar with common prefixes.

Step-02:

$$S \rightarrow aS'$$

$$S' \rightarrow bA / \subseteq$$

$$A \rightarrow c / cd / \subseteq$$

Again, this is a grammar with common prefixes.

Step-03:

$$S \rightarrow aS'$$

6. Do left factoring in the following grammar-

$$S \rightarrow aAd / aB$$

$$A \rightarrow a / ab$$

$$B \rightarrow ccd / ddc$$

Answer-6. The grammar after eliminating left factoring is-

$$S \rightarrow aS'$$

$$S' \rightarrow Ad / B$$

$$A \rightarrow aA'$$

$$A'\!\to\!b\,/\in$$

$$B \to ccd \: / \: ddc$$

This is left factored grammar.

3. QUESTION And ANSWER ON-Find FIRST() And FOLLOW()

1. Calculate the first and follow functions for the given grammar-

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \subseteq$$

$$D \to EF$$

$$E \rightarrow g / \subseteq$$

$$F \rightarrow f / \subseteq$$

Answer-1. The first and follow functions are as follows-

First Functions-

- First(S) = { a }
- First(B) = $\{c\}$
- First(C) = $\{b, \in \}$
- First(D) = { First(E) \in } \cup First(F) = { g, f, \in }
- First(E) = $\{g, \in \}$
- First(F) = $\{f, \in \}$

Follow Functions-

- Follow(S) = { \$ }
- Follow(B) = { First(D) \in } \cup First(h) = { g, f, h }
- Follow(C) = Follow(B) = $\{g, f, h\}$
- Follow(D) = First(h) = { h }
- Follow(E) = { First(F) \in } \cup Follow(D) = { f, h }
- Follow(F) = Follow(D) = { h }

Grammar/Production	FIRST()	FOLLOW()						
$S \rightarrow aBDh$	{ a }	{ \$ }						
$\mathbf{B} ightarrow \mathbf{c} \mathbf{C}$	{c}	{g,f,h}						

$\mathbf{C} \rightarrow \mathbf{b}\mathbf{C}$ / \in	{ b , ∈ }	{g,f,h}
$\mathbf{D} \to \mathbf{E}\mathbf{F}$	$\{g,f,\in\}$	{h}
$\mathrm{E} \mathop{\rightarrow} \mathrm{g} \mathop{/} \in$	$\{\mathrm{g},\in\}$	{f,h}
$\mathbf{F} \! \to \! \mathbf{f} \! \; / \in$	$\{f,\in\}$	{ h }

2. Calculate the first and follow functions for the given grammar-

$$S \rightarrow A$$

$$A \rightarrow aB / Ad$$

$$B \rightarrow b$$

$$C \rightarrow g$$

Answer-2. The first and follow functions are as follows-

We have-

- The given grammar is left recursive.
- So, we first remove left recursion from the given grammar.

After eliminating left recursion, we get the following grammar-

$$S \mathop{\rightarrow} A$$

$$A \rightarrow aBA'$$

$$A' \rightarrow dA' / \subseteq$$

$$B \to b$$

$$C \mathop{\rightarrow} g$$

Now, the first and follow functions are as follows-

First Functions-

• First(A') =
$$\{d, \in\}$$

Follow Functions-

• Follow(B) = { First(A')
$$- \in$$
 } \cup Follow(A) = { d, \$ }

•
$$Follow(C) = NA$$

Grammar/Production	FIRST()	FOLLOW()							
$S \rightarrow A$	{a}	{\$}							
A → aBA'	{a}	{\$}							
A ' → dA ' / ∈	{d,∈}	{\$}							
$\mathbf{B} \rightarrow \mathbf{b}$	{b}	{d, \$}							
$\mathbf{C} \rightarrow \mathbf{g}$	{g}	NA							

3. Calculate the first and follow functions for the given grammar-

$$S \rightarrow (L) / a$$

$$L \rightarrow SL'$$

$$L' \rightarrow ,SL' / \subseteq$$

Answer-3. The first and follow functions are as follows-

First Functions-

- First(S) = { (, a}
- First(L) = First(S) = { (, a}
- First(L') = $\{,, \in \}$

Follow Functions-

- Follow(S) = $\{\$\} \cup \{\text{First}(L') \in \} \cup \text{Follow}(L) \cup \text{Follow}(L') = \{\$, , ,)\}$
- Follow(L) = {) }
- Follow(L') = Follow(L) = {) }

Grammar/Production	FIRST()	FOLLOW()							
$S \rightarrow (L) / a$	{(, a}	{\$,,,∈}							
$L \rightarrow SL'$	{(,a}	{}}							
L' → ,SL' / ∈	$\{,,\in\}$	{}}							

4. Calculate the first and follow functions for the given grammar-

$$S \rightarrow AaAb / BbBa$$

$$A \rightarrow \subseteq$$

$$B \rightarrow \in$$

Answer-4. The first and follow functions are as follows-

First Functions-

- First(S) = { First(A) \in } \cup First(a) \cup { First(B) \in } \cup First(b) = { a, b }
- First(A) = $\{ \in \}$
- First(B) = $\{ \in \}$

Follow Functions-

- Follow(S) = { \$ }
- Follow(A) = First(a) \cup First(b) = { a, b}
- Follow(B) = First(b) ∪ First(a) = { a , b }

Grammar/Production	FIRST()	FOLLOW()							
S -> AaAb / BbBa	{a,b}	{\$}							
$\mathbf{A} ightarrow \in$	{∈}	{a,b}							
$\mathbf{B} ightarrow \in$	{∈}	{a,b}							

5. Calculate the first and follow functions for the given grammar-

$$E \rightarrow E + T / T$$

$$T \rightarrow T \times F / F$$

$$F \rightarrow (E) / id$$

Answer-5. The first and follow functions are as follows-

We have-

- The given grammar is left recursive.
- So, we first remove left recursion from the given grammar.

After eliminating left recursion, we get the following grammar-

$$E \rightarrow TE'$$
 $E' \rightarrow + TE' / \subseteq$
 $T \rightarrow FT'$
 $T' \rightarrow x FT' / \subseteq$
 $F \rightarrow (E) / id$

Now, the first and follow functions are as follows-

First Functions-

- First(E) = First(T) = First(F) = { (, id }
- First(E') = $\{+, \in\}$
- First(T) = First(F) = { (, id }
- First(T') = $\{x, \in \}$
- First(F) = { (, id }

Follow Functions-

- Follow(E) = $\{ ,) \}$
- Follow(E') = Follow(E) = $\{ ,) \}$
- Follow(T) = { First(E') \in } \cup Follow(E) \cup Follow(E') = { + , \$,) }
- Follow(T') = Follow(T) = $\{+, \$, \}$
- Follow(F) = { First(T') \in } \cup Follow(T) \cup Follow(T') = { x , + , \$,) }

Grammar/Production	FIRST()	FOLLOW()						
$E \rightarrow TE'$	{(,id}	{\$,)}						
$E' \rightarrow + TE' / \in$	{+,∈}	{\$,)}						
$T \rightarrow FT'$	{(,id}	{+,\$,)}						
$T' \rightarrow x FT' / \in$	{x,∈}	{+,\$,)}						
$F \rightarrow (E) / id$	{(,id}	{x,+,\$,)}						

6. Calculate the first and follow functions for the given grammar-

$$S \rightarrow ACB / CbB / Ba$$

 $A \rightarrow da / BC$
 $B \rightarrow g / \subseteq$
 $C \rightarrow h / \subseteq$

Answer-6. The first and follow functions are as follows-

First Functions-

- First(S) = { First(A) \in } \cup { First(C) \in } \cup First(B) \cup First(b) \cup { First(B) \in } \cup First(a) = { d , g , h , \in , b , a }
- $\bullet \quad First(A) = First(d) \, \cup \, \{ \, First(B) \, \, \in \, \} \, \cup \, First(C) = \{ \, d \, , g \, , h \, , \, \in \, \}$
- First(B) = $\{g, \in \}$
- First(C) = $\{h, \in \}$

Follow Functions-

- Follow(S) = { \$ }
- Follow(A) = { First(C) \in } \cup { First(B) \in } \cup Follow(S) = { h, g, \$ }
- $\bullet \quad \text{Follow(B)} = \text{Follow(S)} \ \cup \ \text{First(a)} \ \cup \ \{ \ \text{First(C)} \in \ \} \ \cup \ \text{Follow(A)} = \{ \ \$ \ , \ a \ , \ h \ , \ g \ \}$

 $\bullet \quad \text{Follow(C)} = \{ \text{ First(B)} - \in \} \ \cup \ \text{Follow(S)} \ \cup \ \text{First(b)} \ \cup \ \text{Follow(A)} = \{ \text{ g , \$, b , h } \}$

Grammar/Production	FIRST()	FOLLOW()						
S -> ACB / CbB / Ba	$\{a,b,d,g,h,\in\}$	{\$}						
$A \rightarrow da / BC$	{d,g,h,∈}	{h,g,\$}						
$oldsymbol{B} { o} oldsymbol{g} / \in$	{g,∈}	{\$,h,g,a}						
$\mathbf{C} \rightarrow \mathbf{h} / \subseteq$	{h,∈}	{b,g,\$,h}						

****	***	***	* **	***	***	***	** *	**>	**	***	***	**	* * *	**	***	***	* **	**>	** *	**>	***	***	***	**>	·**·	***	***	***	**>	(-)
****	***	: * * :	(**	***	**×	: * * ;	(**	** >	(**	***	: * *	**:	× * *	**	***	***	(**	**>	(**	** >	***	* * *	: * *	** >	:**	* * *	***	***	**>	(
****	***	·**	* **	***	***	:**	(**	**>	(**	***	·**	**:	×-×-×	**	** *	·**	(**	**>	(**	**>	·**	***	***	**>	: * *	***	·**	** *	**>	(- - -