ECRYPT Problems preparing for the TEST #2

28.12.2016

Problem #1

Describe the ElGamal signature algorithm and prove that verification formula is true when the signature parameters are correct.

Problem # 2

Describe the Nyberg-Rueppel signature algorithm and prove that verification formula is true when the signature parameters are correct.

Problem #3

Solve the following set of congruencies:

```
x \equiv 6 \pmod{7}

x \equiv 4 \pmod{5}

x \equiv 10 \pmod{11}

x \equiv 12 \pmod{13}

x \equiv 16 \pmod{17}
```

Problem #4

Assume we use RSA (with $n = p \cdot q$) and we have two cryptograms c_1 and c_2 of the same plain text message m which are ciphered with two different public keys e_1 and e_2 , where $GCD(e_1, e_2) = 1$. Prove that we can in easy way compute the plain text message (without private keys).

Problem # 5

Find the last 4 decimal digits of the number 2¹⁰⁶ using Chinese Remainder Theorem.

Problem # 6

Assume we have two independent random variables X_1, X_2 with values in the set $Z_2 = \{0,1\}$.

Prove that if X_2 has a uniform distribution then $X_1 \oplus X_2$ has also the uniform distribution.

(This fact is known from the protocol "coin tossing by phone")

Problem # 7

Assume we have two independent random variables X_1, X_2 with values in the set $Z_n = \{0,1,2,...n-1\}$. Prove that if X_2 has a uniform distribution then $X_1 \oplus_n X_2$ has also the uniform distribution.

Problem # 8

Compute the following values: a) $\varphi(\varphi(5358))$, b) $\varphi(\varphi(3458))$, c) $\varphi(\varphi(2^{1000}))$, where φ is the Euler's function.

Problem # 9

Assume $GF(2^k)[x]$ (where k is a fixed natural number) is a ring of polynomials with coefficients in the field $GF(2^k)$. Prove that for every polynomial x^n (where $n \in N$) from $GF(2^k)[x]$ we have

$$x^n \pmod{(x^4+1)} = x^{n \pmod{4}}$$

Problem # 10

How many times we have to repeat experiments in the cave of Zero Knowledge to obtain probability of fraud less then 10^{-10} .

Problem # 11

Describe the Fiat-Shamir entity authentication protocol. How many times we have to repeat the Fiat-Shamir protocol to obtain the probability of error less than 100^{-100} .

Problem # 12

Assume we test primality of odd natural numbers with the probabilistic Miller-Rabin test. Assess probability of the fact that an odd composite number n is accepted as a prime for a given security parameter $t \in N$.

Can the Miller-Rabin test qualify a prime as a composite number?

How many experiments (random choices of the basis a) we have to do to be sure with probability $\geq 1-10^{-1000}$ that the tested number n is a prime.

Problem # 13

Assume we test primality of natural numbers with the probabilistic Solovay-Strassen test.

Assess probability of the fact that an odd composite number n is accepted as a prime for a given security parameter $t \in N$.

Can the Solovay-Strassen test qualify a prime as a composite number?

How many experiments (random choices of the basis *a*) we have to do to be sure with probability $\geq 1-10^{-1000}$ that the tested number *n* is a prime.

Problem # 14

Describe the field F_9 (i.e, the field $GF(3^2)$).

Problem # 15

What is it a pseudoprime number. Give an example of the pseudoprime number for the basis 2.

Problem # 16

Solve the following set of 4 congruencies

```
x \equiv 3 \pmod{5}
```

 $x \equiv 6 \pmod{7}$

 $x \equiv 7 \pmod{11}$

 $x \equiv 7 \pmod{13}$

Problem # 17

Solve the following set of 3 congruencies:

```
x \equiv 1 \pmod{5}
```

 $x \equiv 2 \pmod{7}$

 $x \equiv 3 \pmod{11}$

Problem # 18

Assume we have a well defined RSA cryptosystem with $n = p \cdot q$, a public key e and a private key d. Is it possible that for some plain text messages m we have $m^e \pmod{m} = m$? It would mean that there are messages $m \in Z_n$ which are not encrypted correctly.

Problem # 19

Assume we have a hash function MD5. How many independent experiments (consisting in computation at random a hash value) we have to do to be sure that with probability $\geq 1/2$ there are 2 hash values which are identical (see birthday problem).

Problem # 20

We have two numbers (1,2,3) and (3,4,5) given in RNS notation with the moduli: $m_1 = 3$, $m_1 = 7$, $m_3 = 11$. Add and multiply these numbers using RNS algorithms. Verify if the results are correct.

Problem # 21

Define the Diffie-Hellman protocol of key exchanging. Why is it a secure protocol?

Problem # 22

Compute values of the following Legendre's symbols

a)
$$\left(\frac{35}{7}\right)$$

b)
$$\left(\frac{64}{5}\right)$$

Solution

a)
$$\left(\frac{35}{7}\right) = \left(\frac{35 \pmod{7}}{7}\right) = \left(\frac{0}{7}\right) = 0$$

b)
$$\left(\frac{64}{5}\right) = \left(\frac{64 \pmod{5}}{5}\right) = \left(\frac{4}{5}\right) = \left(\frac{2}{5}\right) \cdot \left(\frac{2}{5}\right) = 1$$

Problem #23

Compute values of the following Legendre's symbols knowing that 1097 is a prime.

a)
$$\left(\frac{5}{1097}\right)$$

b)
$$\left(\frac{7}{1097}\right)$$

c)
$$\left(\frac{2}{1097}\right)$$

Solution

From the law of quadratic reciprocity we have:

a)
$$\left(\frac{5}{1097}\right) \cdot \left(\frac{1097}{5}\right) = (-1)^{\frac{5-1}{2} \cdot \frac{1097-1}{2}} = 1$$

but
$$\left(\frac{1097}{5}\right) = \left(\frac{1097 \pmod{5}}{5}\right) = \left(\frac{2}{5}\right) = -1$$
 then also $\left(\frac{5}{1097}\right) = -1$

b)
$$\left(\frac{7}{1097}\right) \cdot \left(\frac{1097}{7}\right) = (-1)^{\frac{7-1}{2}\frac{1097-1}{2}} = (-1)^{1644} = 1$$

but
$$\left(\frac{1097}{7}\right) = \left(\frac{1097 \pmod{7}}{7}\right) = \left(\frac{5}{7}\right) = -1$$
 then also $\left(\frac{7}{1097}\right) = -1$

c) From a general property of the Legendre symbol we have for every odd prime p

$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$$

then
$$\left(\frac{2}{1097}\right) = (-1)^{(p^2-1)/8}$$

5