Package 'conicfit'

October 12, 2022

Type Package
Title Algorithms for Fitting Circles, Ellipses and Conics Based on the Work by Prof. Nikolai Chernov
Version 1.0.4
Encoding UTF-8
Description Geometric circle fitting with Levenberg-Marquardt (a, b, R), Levenberg-Marquardt reduced (a, b), Landau, Spath and Chernov-Lesort. Algebraic circle fitting with Taubin, Kasa, Pratt and Fitzgibbon-Pilu-Fisher. Geometric ellipse fitting with ellipse LMG (geometric parameters) and conic LMA (algebraic parameters). Algebraic ellipse fitting with Fitzgibbon-Pilu-Fisher and Taubin.
License GPL (>= 3)
Depends R (>= 2.7.0), pracma, geigen
Author Jose Gama [aut, cre], Nikolai Chernov [aut, cph]
Maintainer Jose Gama <rxprtgama@gmail.com></rxprtgama@gmail.com>
Repository CRAN
Repository/R-Forge/Project conicfit
Repository/R-Forge/Revision 10
Repository/R-Forge/DateTimeStamp 2015-10-05 15:19:30
Date/Publication 2015-10-05 22:57:57
NeedsCompilation no
R topics documented:
AtoG calculateCircle calculateEllipse CircleFitByKasa CircleFitByLandau CircleFitByPratt CircleFitBySpath

2 AtoG

Index		28
	ResidualsG	26
	Residuals.parabola	
	Residuals.hyperbola	
	Residuals.ellipse	
	LMreducedCircleFit	22
	LMcircleFit	21
	JmatrixLMG	20
	JmatrixLMA	19
	GtoA	18
	fitbookstein	17
	fit.ellipseLMG	16
	fit.conicLMA	15
	estimateInitialGuessCircle	14
	ellipticity	
	EllipseFitByTaubin	
	EllipseDirectFit	
	CircleFitByTaubin	10

AtoG

Conversion of algebraic parameters to geometric parameters

Description

AtoG converts algebraic parameters (A, B, C, D, E, F) to geometric parameters (Center(1:2), Axes(1:2), Angle).

Usage

AtoG(ParA)

Arguments

ParA

vector or array with geometric parameters (A, B, C, D, E, F)

Format

code is: -1 - degenerate cases 0 - imaginary ellipse 4 - imaginary parell lines 1 - ellipse 2 - hyperbola 3 - parabola

Value

list(ParG, exitCode

list with algebraic parameters (Center(1:2), Axes(1:2), Angle) and exit code

Author(s)

calculateCircle 3

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```
AtoG(c(0.0551,-0.0908,0.1588,0.0489,-0.9669,0.1620))
```

calculateCircle

Generate points from a circle

Description

calculateCircle generates points from a circle with many options, equally spaced, randomly spaced, with noise added to the radius or limited to a segment of angle alpha.

Usage

```
calculateCircle(x, y, r, steps=50,sector=c(0,360),randomDist=FALSE,randomFun=runif, noiseFun = NA, ...)
```

Arguments

x center point x y center point y

r radius

steps number of points sector limited circular sector

randomDist logical, TRUE = randomly spaced

randomFun random function for the position of the points in the circle

noiseFun random function for the noise

... optional parameters to pass to randomFun

Value

points array n x 2 of point coordinates.

4 calculateEllipse

Author(s)

Jose Gama

Examples

```
## Not run:
# 100 points from a circle at c(0,0) with radius=200
a<-calculateCircle(0,0,200,100)</pre>
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250))
par(new=T)
# 12 points from a circle at c(0,0) with radius=190, points between 0 and 90
#degrees
a<-calculateCircle(0,0,190,12,c(0,90))</pre>
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='red')
par(new=T)
\# 12 points from a circle at c(0,0) with radius=180, points between 0 and 180
#degrees, uniform random distribution
a<-calculateCircle(0,0,180,12,c(0,180),TRUE)</pre>
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='green')
# 12 points from a circle at c(0,0) with radius=170, points between 0 and 180
#degrees, normal random distribution
a<-calculateCircle(0,0,170,12,c(0,180),TRUE,rnorm)</pre>
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='blue')
par(new=T)
# 12 points from a circle at c(0,0) with radius=200, points between 0 and 180
#degrees, positioned by uniform random distribution, noise=normal random
#distribution with sd=10
a<-calculateCircle(0,0,200,12,c(180,360),TRUE,noiseFun=function(x)
(x+rnorm(1, mean=0, sd=10)))
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='orange')
## End(Not run)
```

calculateEllipse

Generate points from a ellipse

Description

calculateEllipse generates points from a ellipse with many options, equally spaced, randomly spaced, with noise added to the radius or limited to a segment of angle alpha.

Usage

```
calculateEllipse(x, y, a, b, angle = 0, steps = 50, sector = c(0, 360), randomDist = FALSE, randomFun = runif, noiseFun = NA, ...)
```

calculateEllipse 5

Arguments

Х	center point x
У	center point y
a	axis a
b	axis b
angle	tilt angle
steps	number of points
sector	limited circular sector
randomDist	logical, TRUE = randomly spaced
randomFun	random function for the position of the points in the ellipse
noiseFun	random function for the noise
	optional parameters to pass to randomFun

Value

points array n x 2 of point coordinates.

Author(s)

Jose Gama

Examples

```
## Not run:
# 50 points from an ellipse at c(0,0) with axis (200, 100), angle 45 degrees
a<-calculateEllipse(0,0,200,100,45,50)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250))
par(new=T)
# 10 points from an ellipse at c(0,0) with axis (200, 100), angle 45 degrees,
#points between 0 and 180 # degrees, normal random distribution
b<-calculateEllipse(0,0,200,100,45,10,c(0,90))
plot(b[,1],b[,2],xlim=c(-250,250),ylim=c(-250,250),col='red')
par(new=T)
# 50 points from an ellipse at c(0,0) with axis (200, 100), angle 45 degrees
a<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE,noiseFun=function(x)
(x+rnorm(1,mean=0,sd=10)))
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='cyan')
## End(Not run)</pre>
```

6 CircleFitByKasa

CircleFitByKasa

Algebraic circle fit (Kasa method)

Description

CircleFitByKasa applies the simple algebraic circle fit (Kasa method)

Usage

```
CircleFitByKasa(XY)
```

Arguments

 $\chi \gamma$

array of sample data

Value

vector(a, b, R) vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```
xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c3 <- CircleFitByKasa(xy)
xyc3<-calculateCircle(c3[1],c3[2],c3[3])
plot(xyc3[,1],xyc3[,2],xlim=c(-250,250),ylim=c(-250,250),col='green',type='1');par(new=TRUE)</pre>
```

CircleFitByLandau 7

CircleFitByLandau	Geometric circle fit (minimizing orthogonal distances) by Landau algorithm
	gorunm

Description

CircleFitByLandau applies the Geometric circle fit (minimizing orthogonal distances) by Landau algorithm

Usage

```
CircleFitByLandau(XY,ParIni = NA, epsilon = 1e-06, IterMAX = 50)
```

Arguments

XY array of sample data
ParIni initial guess (a, b, R)
epsilon tolerance (small threshold)

IterMAX maximal number of iterations, with a bad initial guess it may take >100 iterations

Value

vector(a, b, R) vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Geometric circle fit (minimizing orthogonal distances) by Landau algorithm M. Landau, "Estimation of a circular arc center and its radius", Computer Vision, Graphics and Image Processing, Vol. 38, pages 317-326, (1987)

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Geometric circle fit (minimizing orthogonal distances) by Landau algorithm M. Landau, "Estimation of a circular arc center and its radius", Computer Vision, Graphics and Image Processing, Vol. 38, pages 317-326, (1987)

8 CircleFitByPratt

Examples

```
 xy <-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50))) \\ plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE) \\ c6 <- CircleFitByLandau(xy) \\ xyc6 <-calculateCircle(c6[1],c6[2],c6[3]) \\ plot(xyc6[,1],xyc6[,2],xlim=c(-250,250),ylim=c(-250,250),col='purple',type='l');par(new=TRUE) \\ \end{aligned}
```

CircleFitByPratt

Algebraic circle fit by Pratt

Description

CircleFitByPratt applies the Algebraic circle fit by Pratt

Usage

```
CircleFitByPratt(XY)
```

Arguments

XY

array of sample data

Value

vector(a, b, R) vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

CircleFitBySpath 9

Examples

CircleFitBySpath

Geometric circle fit by Spath

Description

CircleFitBySpath applies the Geometric circle fit by Spath

Usage

```
CircleFitBySpath(XY, ParIni = NA, epsilon = 1e-06, IterMAX = 50)
```

Arguments

XY array of sample data
ParIni initial guess (a, b, R)
epsilon tolerance (small threshold)

IterMAX maximal number of iterations, with a bad initial guess it may take >100 iterations

Value

vector(a, b, R) vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

10 CircleFitByTaubin

Examples

```
 xy <-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50))) \\ plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE) \\ c5 <- CircleFitBySpath(xy) \\ xyc5 <-calculateCircle(c5[1],c5[2],c5[3]) \\ plot(xyc5[,1],xyc5[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta',type='l');par(new=TRUE) \\ \end{aligned}
```

CircleFitByTaubin

Algebraic circle fit (Taubin method)

Description

CircleFitByTaubin applies the simple algebraic circle fit (Taubin method)

Usage

```
CircleFitByTaubin(XY)
```

Arguments

XY

array of sample data

Value

vector(a, b, R) vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

EllipseDirectFit 11

Examples

```
 xy <-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50))) \\ plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE) \\ c1 <- CircleFitByTaubin(xy) \\ xyc1 <-calculateCircle(c1[1],c1[2],c1[3]) \\ plot(xyc1[,1],xyc1[,2],xlim=c(-250,250),ylim=c(-250,250),col='red',type='l');par(new=TRUE) \\ \end{aligned}
```

EllipseDirectFit

Algebraic ellipse fit method by Fitzgibbon-Pilu-Fisher

Description

EllipseDirectFit applies the algebraic ellipse fit method by Fitzgibbon-Pilu-Fisher

Usage

```
EllipseDirectFit(XY)
```

Arguments

XΥ

array of sample data

Value

```
vector(A,B,C,D,E,F) vector of algebraic parameters of the fitting ellipse: ax^2 + bxy + cy^2 + dx + ey + f = 0
```

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, 1999 Direct Least Squares Fitting of Ellipses IEEE Trans. PAMI, Vol. 21, pages 476-480

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, "Direct Least Squares Fitting of Ellipses", IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) Halir R, Flusser J (1998) Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, Numerically stable direct least squares fitting of ellipses (WSCG, Plzen, Czech Republic), pp 125–132.

12 EllipseFitByTaubin

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, 1999 Direct Least Squares Fitting of Ellipses IEEE Trans. PAMI, Vol. 21, pages 476-480

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, "Direct Least Squares Fitting of Ellipses", IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) Halir R, Flusser J (1998) Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, Numerically stable direct least squares fitting of ellipses (WSCG, Plzen, Czech Republic), pp 125–132.

Examples

```
xy<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE,noiseFun=function(x)
(x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta');par(new=TRUE)
ellipDirect <- EllipseDirectFit(xy)
ellipDirectG <- AtoG(ellipDirect)$ParG
xyDirect<-calculateEllipse(ellipDirectG[1], ellipDirectG[2], ellipDirectG[3],
ellipDirectG[4], 180/pi*ellipDirectG[5])
plot(xyDirect[,1],xyDirect[,2],xlim=c(-250,250),ylim=c(-250,250),type='l',
col='cyan');par(new=TRUE)</pre>
```

EllipseFitByTaubin

Algebraic ellipse fit by Taubin

Description

EllipseFitByTaubin applies the Algebraic ellipse fit by Taubin

Usage

```
EllipseFitByTaubin(XY)
```

Arguments

XΥ

array of sample data

Value

```
vector(A,B,C,D,E,F)
```

vector with the values for the ellipse

Author(s)

ellipticity 13

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```
xy<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE,noiseFun=function(x)
(x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta');par(new=TRUE)
ellipTaubin <- EllipseFitByTaubin(xy)
ellipTaubinG <- AtoG(ellipTaubin)$ParG
xyTaubin<-calculateEllipse(ellipTaubinG[1], ellipTaubinG[2], ellipTaubinG[3],
ellipTaubinG[4], 180/pi*ellipTaubinG[5])
plot(xyTaubin[,1],xyTaubin[,2],xlim=c(-250,250),ylim=c(-250,250),type='l',
col='red');par(new=TRUE)</pre>
```

ellipticity

Formulas for the ellipse

Description

ellipticity ellipticity = flattening factor ellipseEccentricity eccentricity of the ellipse ellipseFocus focus of the ellipse ellipseRa radius at apoapsis (the farthest distance) ellipseRp radius at periapsis (the closest distance) ellipse.l semi-latus rectum l

Usage

```
ellipticity(minorAxis, majorAxis)
```

Arguments

```
minorAxis minor ellipse axis
majorAxis major ellipse axis
```

Value

scalar result

estimateInitialGuessCircle

Author(s)

Jose Gama

Source

Wikipedia Ellipse http://en.wikipedia.org/wiki/Ellipse#Mathematical_definitions_and_properties

References

Wikipedia Ellipse http://en.wikipedia.org/wiki/Ellipse#Mathematical_definitions_and_properties

estimateInitialGuessCircle

Estimate Initial Guess Circle values

Description

estimateInitialGuessCircle estimates initial guess values for the center and radius of the circle

Usage

```
estimateInitialGuessCircle(XY)
```

Arguments

XY

array of sample data

Value

vector(a, b, R) vector with the estimates for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Examples

```
xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50))) estimateInitialGuessCircle(xy)
```

fit.conicLMA

٠.						
+ 1	t	_	n	٦T	\sim	LMA

Fitting a conic to a given set of points (Implicit method)

Description

fit.conicLMA fits a conic to a given set of points (Implicit method) using algebraic parameters. Conic: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

Usage

```
fit.conicLMA(XY, ParAini, LambdaIni, epsilonP = 1e-10, epsilonF = 1e-13,
IterMAX = 2e+06)
```

Arguments

XY array of sample data

ParAini initial parameter vector c(A,B,C,D,E,F)

LambdaIni initial value of the control parameter Lambda

epsilonP tolerance (small threshold)
epsilonF tolerance (small threshold)

IterMAX maximum number of (main) iterations, usually 10-20 will suffice

Value

list(ParA, RSS, iters

list with algebraic parameters (Center(1:2), Axes(1:2), Angle), Residual Sum of Squares and number of iterations

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

16 fit.ellipseLMG

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

Examples

```
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParAini <- matrix(c(0.2500,0, 1.0000, 0, 0, -1.0000),ncol=1)
LambdaIni=0.1
fit.conicLMA(XY,ParAini,LambdaIni)</pre>
```

fit.ellipseLMG

Fitting an ellipse using Implicit method

Description

fit.ellipseLMG Fits an ellipse to a given set of points (Implicit method) using geometric parameters. Conic:

Usage

```
fit.ellipseLMG(XY,ParGini,LambdaIni = 1, epsilon = 1e-06, IterMAX = 200,
L = 200)
```

Arguments

XY array of sample data

ParGini initial parameter vector c(Center(1:2), Axes(1:2), Angle)

LambdaIni initial value of the control parameter Lambda

epsilon tolerance (small threshold)

IterMAX maximum number of (main) iterations, usually 10-20 will suffice

L boundary for major/minor axis

Value

```
list(ParG,RSS,iters,TF)
```

list with geometric parameters (A,B,C,D,E,F), Residual Sum of Squares, number of iterations and TF==TRUE if the method diverges

Author(s)

fitbookstein 17

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

Examples

```
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParGini <- matrix(c(0,0,2,1,0),ncol=1)
LambdaIni=0.1
fit.ellipseLMG(XY,ParGini,LambdaIni)</pre>
```

fitbookstein

Linear ellipse fit using bookstein constraint

Description

```
fitbookstein Linear ellipse fit using bookstein constraint conic2parametric Diagonalise A - find Q, D such at A = Q' * D * Q fitggk Linear least squares with the Euclidean-invariant constraint Trace(A) = 1
```

Usage

```
fitbookstein(x)
```

Arguments

x array of sample data

Value

```
list(z, a, b, alpha)
list with fitted ellipse parameters
```

18 GtoA

Author(s)

Jose Gama

Source

 $Richard\ Brown, May\ 28, 2007\ http://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m/content/demo/html/ellipsedemo.html$

References

Richard Brown, May 28, 2007 http://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m/content/demo/html/ellipsedemo.html

W. Gander, G. H. Golub, R. Strebel, 1994 Least-Squares Fitting of Circles and Ellipses BIT Numerical Mathematics, Springer

GtoA

Conversion of geometric parameters to algebraic parameters

Description

GtoA converts geometric parameters (A, B, C, D, E, F) to algebraic parameters (Center(1:2), Axes(1:2), Angle).

Usage

GtoA(ParG)

Arguments

ParG list with geometric parameters (A, B, C, D, E, F)

Value

ParA vector or array with algebraic parameters (Center(1:2), Axes(1:2), Angle)

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

JmatrixLMA 19

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```
GtoA(c(0,0,20,60,45))
```

JmatrixLMA

Compute the Jacobian matrix using algebraic parameters

Description

JmatrixLMA Computes the Jacobian matrix(Implicit method) using algebraic parameters

Usage

```
JmatrixLMA(XY,ParA,XYproj)
```

Arguments

XY array of sample data

ParA initial parameter vector c(Center(1:2), Axes(1:2), Angle)

XYproj corresponding n projection points on the conic

Value

list (Res, J) list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

20 JmatrixLMG

Examples

```
\label{eq:constraint} $XY < -\max(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)$ \\ ParA < -\max(c(0.250000000000000,1,0,0,-1),ncol=1)$ \\ $XYproj=matrix(c(0.394467220216675,0.980356518335872,0.833315950425981,0.909063326557293,1.40466123643977,0.711850899213363,1.70601340510202,0.521899957274429,1.89925244997324,0.313384799914835,1.06482258038841,0.846485805004280,1.95308457257492,0.215325713960169,1.91319150256275,0.291418202297698),8,2,byrow=TRUE)$ \\ $JmatrixLMA(XY,ParA,XYproj)$ \\
```

JmatrixLMG

Compute the Jacobian matrix using geometric parameters

Description

JmatrixLMG Computes the Jacobian matrix (Implicit method) using geometric parameters

Usage

```
JmatrixLMG(XY,A,XYproj)
```

Arguments

XY array of sample data

A initial parameter vector c(Xc,Yc,a,b,alpha)

XYproj corresponding n projection points on the conic

Value

list (Res, J) list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

LMcircleFit 21

Examples

```
\label{eq:constraint} $XY < -\max(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)$$A < -\max(c(0,0,2,1,0),ncol=1)$$$XYproj=matrix(c(0.394467220216675,0.980356518335872,0.833315950425981,0.909063326557293,1.40466123643977,0.711850899213363,1.70601340510202,0.521899957274429,1.89925244997324,0.313384799914835,1.06482258038841,0.846485805004280,1.95308457257492,0.215325713960169,1.91319150256275,0.291418202297698),8,2,byrow=TRUE)$$$JmatrixLMG(XY,A,XYproj)$$
```

LMcircleFit

Geometric circle fit (minimizing orthogonal distances) based on the Levenberg-Marquardt method

Description

LMcircleFit applies a Geometric circle fit (minimizing orthogonal distances) based on the standard Levenberg-Marquardt scheme

Usage

```
LMcircleFit(XY, ParIni, LambdaIni = 1, epsilon = 1e-06, IterMAX = 50)
```

Arguments

XY array of sample data ParIni initial guess (a, b, R)

LambdaIni initial value for the correction factor lambda

epsilon tolerance (small threshold)

IterMAX maximum number of (main) iterations, usually 10-20 will suffice

Value

vector(a, b, R) vector with the estimates for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

22 LMreducedCircleFit

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

LMreducedCircleFit

Geometric circle fit (minimizing orthogonal distances) based on the Levenberg-Marquardt method

Description

LMreducedCircleFit applies a Geometric circle fit (minimizing orthogonal distances) based on the standard Levenberg-Marquardt scheme in the "reduced" (a,b) parameter space

Usage

```
LMreducedCircleFit(XY, ParIni, LambdaIni = 1, epsilon = 1e-06,
IterMAX = 50)
```

Arguments

XY array of sample data ParIni initial guess (a, b)

LambdaIni initial value for the correction factor lambda

epsilon tolerance (small threshold)

IterMAX maximum number of (main) iterations, usually 10-20 will suffice

Value

```
vector(a, b, R) vector with the estimates for the circle: center (a,b) and radius R
```

Author(s)

Residuals.ellipse 23

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

Residuals.ellipse

Projecting a given set of points onto an ellipse

Description

Residuals.ellipse projects a given set of points onto an ellipse and computing the distances from the points to the ellipse

Usage

```
Residuals.ellipse(XY,ParG)
```

Arguments

XY array of sample data

ParG vector 5x1 of the ellipse parameters (Center(1:2), Axes(1:2), Angle)

Value

list (Res, J) list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

24 Residuals.hyperbola

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```
XY \leftarrow matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG \leftarrow matrix(c(0,0,2,1,0),ncol=1)
Residuals.ellipse(XY,ParG)
```

Residuals.hyperbola

Projecting a given set of points onto an hyperbola

Description

Residuals. hyperbola projects a given set of points onto an hyperbola and computing the distances from the points to the hyperbola

Usage

```
Residuals.hyperbola(XY,ParG)
```

Arguments

XY array of sample data

ParG vector 5x1 of the hyperbola parameters (Center(1:2), Axes(1:2), Angle)

Value

```
list(RSS, XYproj)
```

list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

Residuals.parabola 25

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```
XY \leftarrow matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG \leftarrow matrix(c(0,0,2,1,0),ncol=1)
Residuals.hyperbola(XY,ParG)
```

Residuals.parabola

Projecting a given set of points onto an parabola

Description

Residuals.parabola projects a given set of points onto an parabola and computing the distances from the points to the parabola

Usage

```
Residuals.parabola(XY,ParG)
```

Arguments

XY array of sample data

ParG vector 4x1 of the parabola parameters (Vertex(1:2), p, Angle)

Value

```
list(RSS, XYproj)
```

list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

26 ResidualsG

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```
 \begin{tabular}{ll} XY &<- \mbox{ matrix}(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE) \\ ParG &<- \mbox{ matrix}(c(\emptyset,\emptyset,2,1,\emptyset),ncol=1) \\ Residuals.parabola(XY,ParG) \\ \end{tabular}
```

ResidualsG

Projecting a given set of points onto an ellipse

Description

ResidualsG projects a given set of points onto an ellipse and computing the distances from the points to the ellipse

Usage

```
ResidualsG(XY,ParG)
```

Arguments

XY array of sample data

ParG vector 5x1 of the ellipse parameters (Center(1:2), Axes(1:2), Angle)

Value

```
list(RSS, XYproj)
```

list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

ResidualsG 27

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```
 \begin{tabular}{ll} XY &<- \mbox{ matrix} (c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE) \\ ParG &<- \mbox{ matrix} (c(\emptyset,\emptyset,2,1,\emptyset),ncol=1) \\ ResidualsG(XY,ParG) \end{tabular}
```

Index

* datasets	ellipseEccentricity (ellipticity), 13
AtoG, 2	EllipseFitByTaubin, 12
CircleFitByKasa, 6	ellipseFocus (ellipticity), 13
CircleFitByLandau, 7	ellipseRa (ellipticity), 13
CircleFitByPratt,8	ellipseRp(ellipticity), 13
CircleFitBySpath, 9	ellipticity, 13
CircleFitByTaubin, 10	estimateInitialGuessCircle, 14
EllipseDirectFit, 11	
EllipseFitByTaubin, 12	fit.conicLMA, 15
ellipticity, 13	fit.ellipseLMG, 16
estimateInitialGuessCircle, 14	fitbookstein, 17
fit.conicLMA, 15	fitggk (fitbookstein), 17
fit.ellipseLMG, 16	0
fitbookstein, 17	GtoA, 18
GtoA, 18	JmatrixLMA, 19
JmatrixLMA, 19	JmatrixLMG, 20
JmatrixLMG, 20	Jiliati TXLPIO, 20
LMcircleFit, 21	LMcircleFit, 21
LMreducedCircleFit, 22	LMreducedCircleFit, 22
Residuals.ellipse, 23	2111 Caaccao11 C1C1 11, 22
Residuals.hyperbola, 24	Residuals.ellipse, 23
Residuals.parabola,25	Residuals.hyperbola, 24
ResidualsG, 26	Residuals.parabola, 25
* programming	ResidualsG, 26
<pre>calculateCircle, 3</pre>	
calculateEllipse, 4	
AtoG, 2	
calculateCircle,3	
calculateEllipse, 4	
CircleFitByKasa, 6	
CircleFitByLandau, 7	
CircleFitByPratt,8	
CircleFitBySpath, 9	
CircleFitByTaubin, 10	
conic2parametric(fitbookstein), 17	
ellipse.l (ellipticity), 13	
EllipseDirectFit, 11	