Science Objectives of the Aerosols, Clouds, Convection, and Precipitation Millimeter- and Submillimeter-wave Radiometers

Ian S. Adams¹, S. Joseph Munchak^{1*}, Yuli Liu², Hélène Brogniez³, F. Joseph Turk⁴⁺, Ralf Bennartz⁵, Matthew Walker McLinden¹, Laura Hermozo⁶, and Gerald G. Mace²

¹NASA GSFC, ²University of Utah; ³LATMOS, University of Paris Saclay, ⁴JPL/Caltech, ⁵Vanderbilt University, ⁶CNES *now with tomorrow.io; ⁺The work by FJT was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Government sponsorship acknowledged.

OVERVIEW

Inclined Minimum

To meet the science objectives related to clouds, convection, and precipitation, the Atmospheric Observing System (AOS), part of the Earth System Observatory (ESO), has been conceptualized to include two orbits. The first is a low inclination orbit focusing on convective dynamics, related clouds, and resulting aerosol processes. The other, in a sun-synchronous polar orbit, more broadly addresses AOS science goals, with the inclusion of aerosol and cloud radiative feedbacks and high-latitude processes. The baseline mission is expected to include radars, lidars, radiometers, polarimeters, and spectrometers across both orbits, and the team is working with international partners for potential contributed sensors, including tandem radiometers for the inclined orbit from the Centre National d'Etudes Spatiales (CNES). The radiometers in the inclined and polar orbits will contribute to liquid and ice cloud and precipitation science.

Channel Definition	Frequencies	Radiome	tric Resolution	SATM Drivers	Orbit Requirement
Surface Channel	89–113 GHz x 1	Baseline: 0.5 K	Threshold: 1.0 K	Surface precipitation Liquid water path Ice water path	Polar: Baseline Inclined: Threshold
G-Band Water Vapor Channels	183.31 GHz x 3 offset 1–11 GHz	Baseline: 1.0 K	Threshold: 1.5 K	Ice water path Ice water content Surface precipitation	Polar: Threshold Inclined: Threshold
Low Submm Water Vapor Channels	325.15/380.2 GHz x 3 matched to 183 GHz	Baseline: 1.5 K	Threshold: 2.0 K	Ice water path Ice water content	Polar: Threshold Inclined: Threshold
ce Cloud Channel	640–700 GHz x 1	Baseline: 1.5 K	Threshold: 2.0 K	Ice water path Ice water content	Polar: Threshold Inclined: Baseline
Dual-Pol Ice Cloud Channel	640–700 GHz x 1 matched, orthogonal	Baseline: 1.5 K	Threshold: 2.0 K	Ice water path Particle shape	Polar: Baseline Inclined: Baseline
G-band Window Channel(s)	150–170/210–240 GHz x 1 (or 2 orthogonal)	Baseline: 1.0 K	Threshold: 1.5 K	Ice water path Surface precipitation Liquid water path	Polar: Baseline Inclined: Nice to have
Dual-Pol Surface Channel	89–113 GHz x 1 matched, orthogonal	Baseline: 0.5 K	Threshold: 1.0 K	Surface precipitation Liquid water path Ice water path	Polar: Nice to have Inclined: Baseline
mmWave Oxygen Channels	118.75 GHz x 3 ±1, ±1.5, and ±2 GHz	Baseline: 0.5 K	Threshold: 1.0 K	Ice water path Surface precipitation	Polar: Nice to have Inclined: N/A
High Ice Cloud Channel	820–890 GHz x 1	Baseline: 1.5 K	Threshold: 2.0 K	Ice water path Ice water content	Polar: Nice to have Inclined: N/A

TANDEM RADIOMETERS

The notional configuration for the inclined orbit includes a pair of tandem radiometers contributed by CNES. In addition to directly addressing AOS science objectives, the tandem radiometers will provide time-resolved changes in brightness temperature that are sensitive to vertical ice mass flux associated with convection.

PRECIPITATION RECORD

The suite of sensors, specifically multi-frequency radars and radiometers, will extend and enhance the global precipitation record started under the Tropical Rainfall Measurement Mission (TRMM) and continued by the Global Precipitation Measurement (GPM) mission. The virtual constellation of passive microwave radiometers, complemented with infrared observations, provides global maps of precipitation rate at 30 minute temporal resolution and 10 km spatial resolution. Data collected by AOS will improve estimates of ice phase precipitation.

image source: https://gpm.nasa.gov/data/imerg#latesthalf-hourlyimage