Assignment Compiler Design

Code Generation

Priyank Lohariwal

001710501055

BCSE-III - 2nd Semester

Problem Statement

Consider the following three-address code:

```
p = q + r

s = p + q

u = s * v

if (u > 100)

v = r + u

else

q = s * u

q = v + r
```

- a) Construct the flow graph of the above piece of code.
- b) Find the liveness and next use for each variable at each statement and at the entry of each basic block.
- c) Construct the Register Interference Graph.
- d) Write a target code for the above code. Ensure maximum reuse of the register. Justify your answer.

Control Flow Graph

Liveness and Next Use

S.No	Statement	Liveness	Next Use
1	p = q+r	Live: {p,q,r}	p->2, q->2, r->5
2	s = p+q	Live: {s} , Dead: {p,q}	s->3
3	u = s*v	Live: {u, s, v}	u->4, s->7, v->8
4	if (u>100)	Live: {u}	u->5
5	v = r+u	Live: {v, r}	v -> 8, r -> 8
6	else		
7	q = s*u	Nothing is live	
8	q = v+r	Nothing is live	

Register Interference Graph

Target Code

LD R0, q
ADD R0, r
MOV R0, p
ADD R0, q
MOV R0, s
MUL R0, v
MOV R0, u
CMP R0, #100
JLT LABEL
ADD R0, r
MOV R0, v
LABEL: MUL R0, s
LD R0, r
ST R0, q