Maths: DM NX

Il est important avant de commencer lire ce DM d'avoir bien compris le tableau et les exemples suivants

1 1	1 1 1	
symbole usuel		prononciation
	DM	
0	۴	fé
1	Ŋ	ur
2	Þ	tur
3	F	an
4	R	rai
5	<	kau
6	Χ	gèb
7	P	wun
8	H	hag
9	+	nau
10	\$	je
11	1	ei
=	X	ing/i ng
+	1	ti
_	Y	al
×	M	dag
÷	1	lag
€	\$	so
A	K	per
3	₿	ber
∃!	!₿	\
>	M	man
> <	M	e
<u> </u>	MX	maning
≤ ≠ ⊂	MX	ehwing
	*	naing
C	þ	suz
D	4	zus

 $\mathsf{XP} \uparrow \mathrel{<<} \mathsf{XNFF}$ ce qui est équivalant à 79+65=144

$$e^{\mathbf{3}}\underset{\mathbf{3}}{\overset{}{\otimes}}\underset{\rightarrow\mathbb{M}}{\overset{}{\wedge}}\mathbb{N}\uparrow\mathbf{3}\uparrow\frac{\mathbf{3}^{\,\flat}}{\,\flat\,!}\uparrow\dots\uparrow\frac{\mathbf{3}^{\,\mathtt{B}}}{\,\mathtt{B}!}\uparrow o\left(\mathbf{3}^{\,\mathtt{B}}\right)$$

est équivalant à

$$e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{x!} + o(x^n)$$

Problème : nombres algébrique et extensions de corps

Partie I. extensions de corps

N=° ↑. Premiers exemples a.

il est évidant que $\mathbb R$ est un sous-corps de $\mathbb C$ et de plus $\mathbb C$ est de dimension finis, donc $\mathbb C$ est une extention finie de $\mathbb R$

de plus soit $\maltese \in \mathbb{C}$ alors

Ainsi comme $\mathbb N$ et i ne sont pas colinéaire dans $\mathbb R$, $\mathrm{Vect}(\mathbb N,i)$ forme une base de $\mathbb C$ Ainsi $[\mathbb C:\mathbb R]$ $\$

soit \boxplus un sous-corps qui contient $\mathbb R$

comme $[\mathbb{R} : \mathbb{R}] \$ et que l'on vient de prouver que $[\mathbb{C} : \mathbb{R}] \$

il apparait donc comme condition que, $\mathbb{N} M \times [m : \mathbb{R}] M \times \mathbb{R}$

Ainsi $[\oplus : \mathbb{R}] \times \mathbb{N}$ ou $[\oplus : \mathbb{R}] \times \mathbb{N}$

Et ansi \bigoplus $X \mathbb{R}$ ou \bigoplus $X \mathbb{C}$

b.

Soit $\mathfrak{G} \in \mathbb{Q}(\sqrt{\triangleright})$, alors $\triangleright \mathfrak{G}, \mathfrak{G} \times \mathfrak{G} \uparrow \mathfrak{G}$, alors prenons $\mathfrak{G} \times \mathfrak{G} \uparrow \mathfrak{G}$ ainsi $\mathfrak{G} \times \mathfrak{G} \in \mathbb{Q}$, donc $\mathbb{Q} \models \mathbb{Q}(\sqrt{\triangleright})$ et comme \mathbb{Q} est un corps de $\mathbb{Q}(\sqrt{\triangleright})$

de plus, soit $\mathbf{9} \in \mathbb{Q}(\sqrt{\triangleright})$ alors $\mathbb{B} \mathbb{B}, \mathbf{4} \in \mathbb{Q}, \mathbf{9} \times \mathbb{B} \uparrow \mathbb{B} \sqrt{\triangleright}$, soit un telle $\mathbf{4}, \mathbb{B}$ donc $\mathbf{9} \times \mathbf{4} \uparrow \mathbb{B} \sqrt{\triangleright} \in \mathrm{Vect}(\mathbb{N}, \sqrt{\triangleright})$

alors $\frac{9}{11}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{V}$ ce qui est absurde car $\frac{9}{11}$ $\stackrel{\checkmark}{E}$ \mathbb{Q} , donc $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{F}$

Ainsi $(\mathbb{N}, \sqrt{\mathbb{P}})$ est une base de $\mathbb{Q}(\sqrt{\mathbb{P}})$

Donc $\left[\mathbb{Q}\left(\sqrt{\mathsf{P}}\right):\mathbb{Q}\right]\mathsf{X}\mathsf{P}$

c. i.

Soit $P \leq \mathbb{Q}[X]$ tel que $P(\sqrt[k]{\mathbb{P}}) \times \mathbb{P}$

prenons la divisions euclidienne de X^{\dagger} \uparrow \flat par P

ce qui nous donne $X^{\dagger} \uparrow \triangleright \ PQ \uparrow R$ avec $Q \in \mathbb{Q}_{\mathbb{R}}[X]$ et $R \in \mathbb{Q}[X]$ tel que deg $R \bowtie \mathbb{R}$

En évaluant notre expression précédente en $\sqrt[h]{\triangleright}$ on obtient :

 $\begin{array}{l} \operatorname{donc} R \ \ \ \, \ \ \, \\ \operatorname{donc} \operatorname{deg} R \ \ \ \, \ \ \, \\ \operatorname{ainsi} P \ \operatorname{divise} \ X^{\upharpoonright} \ \ \ \ \, \\ \end{array}$

Ainsi Comme P divise $X^{\restriction} \uparrow \models$ et que $\deg P \not \models \models$, alors P et $X^{\restriction} \uparrow \models$ possède deux racines en commun dont $\sqrt[\hbar]{\models}$ et comme $X^{\restriction} \uparrow \models \not \models (X \uparrow \sqrt[\hbar]{\models}) (X \uparrow \sqrt[\hbar]{\models} e^{i\frac{\pi}{\models}}) (X \uparrow \sqrt[\hbar]{\models} e^{i\frac{\pi}{\models}})$ donc P à en plus une racine complexe

or un polynôme dans $\mathbb R$ qui possède une racine complexe possède sont conjugée

ce qui n'est pas le cas pour P donc $P \times \mathbb{Q}[X]$ ce qui est absurde $\operatorname{Donc} \mathscr{K} P \, \xi \, \mathbb{Q}[X], P \! \left(\sqrt[\mathfrak{p}] \right) \, \xi \, \mathbb{Y}$

ii.

Par un résonnement annaloge à la question \mathbb{N} .b on montre que $\mathbb{Q} \models \mathbb{Q} (\sqrt[k]{\triangleright})$, De plus soit $\mathbf{J} \in \mathbb{Q} (\sqrt[k]{\triangleright})$ alors soient $\mathbf{H}, \mathbf{L}, \mathbf{J} \in \mathbb{Q}, \mathbf{J} \times \mathbf{H} \uparrow \mathbf{L} \sqrt[k]{\triangleright} \uparrow \mathbf{J} (\sqrt[k]{\triangleright})$ donc $\mathbf{J} \in \mathrm{Vect} (\mathbb{N}, \sqrt[k]{\triangleright}, \sqrt[k]{\triangleright})$ donc $\mathbb{Q}(\sqrt[l]{\mathbb{P}})$ est une extensions finis et $[Q(\sqrt[l]{\mathbb{P}}):\mathbb{Q}]$ \mathbb{X}

d.

Soient $\mathbb{H}_{\mathbb{N}}, \cdots, \mathbb{H}_{n} \in \mathbb{Q}$ tels que $\sum_{\mathbb{T} \times \mathbb{N}}^{n} \mathbb{H}_{\mathbb{T}} \ln(p_{\mathbb{T}}) \times \mathbb{F}$, alors

$$\ln\left(\prod_{{\mathcal{I}}}^n p_{{\mathcal{I}}}^{{\mathsf{H}}_{{\mathcal{I}}}}\right) \mathsf{XF} \ \mathrm{Donc} \ \prod_{{\mathcal{I}}}^n p_{{\mathcal{I}}}^{{\mathsf{H}}_{{\mathcal{I}}}} \mathsf{X} \mathsf{N}$$

$$\left(\prod_{\gamma \in \mathbb{N}}^n p_{\gamma}^{\mathbf{x}_{\gamma}}\right)^{\frac{1}{\gamma}} \otimes \mathbb{N} \Leftrightarrow \prod_{\gamma \in \mathbb{N}}^n p_{\gamma}^{\mathbf{x}_{\gamma}} \otimes \mathbb{N}$$

Et donc $\mathbf{H}_{\mathbb{N}} \ \& \cdots \ \& \ \mathbf{H}_{n} \ \& \ \mathbb{M}$

Ainsi $(\ln(p_{\mathbb{N}}), \dots, \ln(p_n))$ est libre

Et donc la dimmension de \mathbb{R} n'est pas finis, donc \mathbb{R} n'est pas une extention finis de \mathbb{Q}

 $N=^{\circ}$.

$$\text{soit } \mathbf{9} \stackrel{\textstyle <}{\stackrel{\textstyle <}{}} \mathbf{L} \text{, alors } ! \mathbb{B} \, \mathbf{B}_{\mathbb{N}}, \cdots, \mathbf{B}_n \stackrel{\textstyle <}{\stackrel{\textstyle <}{}} \mathbf{K} \text{ tel que, } \mathbf{9} \stackrel{\textstyle \times}{\stackrel{\textstyle \times}{\stackrel{\textstyle \times}{}}} \sum_{n=1}^n \alpha_{\mathbf{x}} \, \mathbf{B}_{\mathbf{x}}$$

Or on a
$$\mbox{$\begin{tabular}{l} $\begin{tabular}{l} \begin{tabular}{l} \begin{tabular$$

Ainsi
$$! \exists \, \mathbf{H}_{\mathbb{N}}, \cdots, \mathbf{H}_{n} \leq \mathbf{K} \leq k, ! \exists \, \mathbf{\mathcal{Y}}_{\mathbb{N}}, \cdots, \mathbf{\mathcal{Y}}_{p} \leq k, \mathbf{9} \, \mathbf{X} \sum_{\substack{\mathbb{N} \ \mathbb{N} \leq \mathbf{X} \ \mathbb{N} \leq n \\ \mathbb{N} \ \mathbb{N} \leq \mathbf{X} \ \mathbb{N} \leq p}} \alpha_{\mathbf{X}} \beta_{\mathbf{X}} \mathbf{H}_{\mathbf{X}} \mathbf{\mathcal{Y}}_{\mathbf{X}}$$

Donc **9** s'écrit d'une manière unique comme des élément de k, donc la famille $(\alpha_i\beta_j)_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c$

Donc L est une extensions finis de k et $[L:k] \times [L:K][K:k]$

Partie II. Éléments algébriques

 $N=^{\circ}$.

pour montrer que $\mathbb{K}[\alpha] \ \ \{P(\alpha), P \ \ \ \ \mathbb{K}[X]\}$, on montre que $\{P(\alpha), P \ \ \ \ \mathbb{K}[X]\} \ \ \ \mathrm{Vect}_{\mathbb{K}}(\alpha^n, n \ \ \ \ \mathbb{N})$ pour cela,

$$\mathfrak{M} \, \xi \, \{P(\alpha), P \, \xi \, \mathbb{K}[X]\} \Leftrightarrow \\ \xi \, \mathcal{J}_{\mathbb{F}} \, , \cdots, \mathcal{J}_{n} \, \xi \, \mathbb{K} \, \, \mathfrak{M} \, \, \\ \mathfrak{X} \, \sum_{\mathbf{H} \, \, \S \, \mathbb{F}}^{n} \, \mathcal{J}_{\mathbf{H}} \, \alpha^{\mathbf{H}} \, \, \xi \, \mathrm{Vect}_{\mathbb{K}}(\alpha^{n}, n \, \xi \, \mathbb{N}) \, \\ \mathfrak{X} \, \mathbb{K}[\alpha] \, , \, \mathcal{J}_{n} \, \xi \, \mathbb{K}[\alpha] \, , \, \mathcal{J}_{n} \, \mathcal{J}_{n} \, \mathcal{J}_{n} \, , \, \mathcal{J}_{n} \, \mathcal{J}$$

Donc $\{P(\alpha), P \in \mathbb{K}[X]\} \otimes \mathbb{K}[\alpha]$

soient $\mathbb{B}, \mathbb{7} \leq \mathbb{K}[\alpha]$, alors $P, Q \leq \mathbb{K}[X], P(\alpha) \otimes \mathbb{B}$ et $Q(\alpha) \otimes \mathbb{7}$, alors:

- $\mathbb{M} \in \mathbb{K}[\alpha]$
- $\exists \Upsilon \nabla P(\alpha) \Upsilon Q(\alpha) (P \Upsilon Q)(\alpha) \text{ et } P \Upsilon Q \in \mathbb{K}[X]$

Donc $\mathbb{K}[\alpha]$ est un sous-anneau de \mathbb{L}

Et $\mathrm{Vect}(\alpha^n, n \in \mathbb{N})$ est le plus petit ensemble stable par \uparrow et \mathbb{M} , ce qui fais de luis le plus petit sous-anneau contanant α et \mathbb{K}

 $N=^{\circ} R$.

procédons par double inclusion pour prouver que α est algébrique sur $\mathbb K$ si et seulement si il existe $n \stackrel{<}{\sim} \mathbb N$ tel que $(1,\alpha,\cdots,\alpha^n)$ soit une famille liée

 (\Rightarrow) Supposons que α est algébrique sur \mathbb{K} , alors

$$\mathbb{B}\,\mathfrak{M}\, \tilde{\mathbf{x}}\, \mathbb{K}[X], \mathfrak{M}(\alpha)\, \tilde{\mathbf{x}}\, \mathbb{F} \Leftrightarrow \mathbb{B}\, n\, \tilde{\mathbf{x}}\, \mathbb{N}, \mathbb{B}\, \mathbf{H}_{\mathbb{F}}, \cdots, \mathbf{H}_{n}\, \tilde{\mathbf{x}}\, \mathbb{K}, \mathfrak{W}(\alpha)\, \tilde{\mathbf{x}}\, \sum_{\mathbf{y}\, \tilde{\mathbf{x}}\, \mathbb{F}}^{n}\, \mathbf{H}_{\mathbf{y}}\alpha^{\mathbf{y}}\, \tilde{\mathbf{x}}\, \mathbb{F}$$

Donc
$$Y \sum_{n=1}^{n} \mathbf{H}_{n} \alpha^{n} \mathbf{X} \mathbf{H}_{n}$$

Donc
$$(1, \alpha, \dots, \alpha^n)$$
 est liée

(⇐) Supposons que $(1, \alpha, \dots, \alpha^n)$ soit liée, alors:

$$\mathbb{B}\,\mathbf{H}_{\mathbb{F}}\,,\cdots,\mathbf{H}_{n}\,\mathbb{E}\,\mathbb{K},\mathbb{B}\,\mathbf{\Upsilon}\,\mathbb{E}\,\mathbb{N},\mathbf{F}\,\alpha^{\mathbf{\Upsilon}}\,\mathbb{X}\,\sum_{\substack{\mathbf{Y}\,\,\mathbb{X}\,\mathbb{F}\\\mathbf{Y}\,\,\mathbf{A}\,\mathbf{Y}}}^{n}\,\mathbf{H}_{\mathbf{Y}}\alpha^{\mathbf{Y}}$$

Donc
$$\sum_{\substack{\gamma \ \chi \not | \\ \gamma \ \circ \ \gamma}}^{n} \exists_{\gamma} \alpha^{\gamma} \uparrow \not \leftarrow \alpha^{\gamma} \not \downarrow \not \parallel$$

en posant ኘፋጷፄ, on obtient

$$\sum_{\substack{\gamma \ \chi \not | \\ \gamma \ \diamond \ \gamma}}^n \mathbf{H}_{\gamma} \alpha^{\gamma} \, \Upsilon \, \mathbf{4} \, \, \alpha^{\gamma} \, \, \mathring{\chi} \sum_{\substack{\gamma \ \chi \not | \\ \gamma \ \diamond \ \gamma}}^n \mathbf{H}_{\gamma} \alpha^{\gamma} \, \mathring{\chi} \, \mathring{r}$$

Donc α est algébrique

```
Par le principe de double inclusion
     \alpha est algébrique si et seulement si il existe n \leq \mathbb{N} tel que (1, \alpha, \dots, \alpha^n) est liée
N=° <.
     Soit \mathfrak{Z} \subset \mathbb{L}, alors \mathfrak{Z} est algébrique de degré \mathbb{N} sur \mathbb{K} si et seulement si (\mathbb{N}, \mathfrak{Z}) est liée
     si et seulement si il existe \mathbf{H} \leq \mathbb{K}, \mathbf{9} \times \mathbf{H} \times \mathbf{N} \times \mathbf{H} si et seulement si \mathbf{9} \leq \mathbb{K}
     Donc on a bien (\mathbb{N}, \mathfrak{G}) liée \Leftrightarrow \mathfrak{G} \in \mathbb{K}
N=° X.
     Supposons que \mathbb L est une extention finie de \mathbb K et soit \mathbf 9 \in \mathbb L
     alors 9 est algébrique sur 𝔻 si:
                                                                                                    a
N=° ▷. a.
     On sait par la définitions que (1, \alpha, \dots, \alpha^{d + 1}) est libre
     Et Vect(\alpha^n, n \in \mathbb{N}) \times Vect(\alpha^n, n \in [n; d + n])
     Ainsi \operatorname{Vect}(\alpha^n, n \in [\![ \mathbb{N} ]\!]) est une base de \mathbb{K}[\alpha]
b.
     Supposons que \beta \diamond V, alors prouvons que f_{\beta} est linéaire et bijective
• linéarité:
     Soient \mathbb{H} \leq \mathbb{K}, \mathfrak{I}, \mathfrak{I} \leq \mathbb{K}[\alpha], f_{\beta}(\mathbb{H} \mathfrak{I} \uparrow \mathfrak{I} \downarrow) \otimes \beta \mathbb{H} \mathfrak{I} \uparrow \beta \mathfrak{I} \otimes \mathbb{H} f_{\beta}(\mathfrak{I}) \uparrow f_{\beta}(\mathfrak{I}) \text{ donc } f_{\beta} \text{ ets linéaire}
• bijectivité:
     soit \mathbf{9} \in \mathbb{K}[\alpha], f_{\beta}(\mathbf{9}) \ \mathbb{Y}
     alors \beta \not S \not S \not S \not S donc \beta \not S \not S \not S \not S \not S \not S \not S
     donc \operatorname{Ker}(f_{\beta}) \ \ \{\ \ \ \ \}. Donc f_{\beta} est injéctive
     Et soient \mathfrak{G}, \mathfrak{A} \stackrel{\leq}{\sim} \mathbb{K}[\alpha], f_{\beta}(\mathfrak{G}) \stackrel{\vee}{\vee} \mathfrak{A}
     alors \mathfrak{Z} \overset{\boldsymbol{\xi}}{\beta} car \beta \diamond \mathscr{V}, et donc f_{\beta} est surjective
     et comme f_{\beta} va de \mathbb{K}[\alpha] dans \mathbb{K}[\alpha]
     f_{eta} est un automorphisme
c.
     On a: \mathbb{K} \models \mathbb{K}[\alpha], donc \mathbb{K} est un sous-corps de \mathbb{K}[\alpha]
     De plus comme \left(1,\alpha,\cdots,\alpha^{d\ \ \ \ \ }\right) est une base de \mathbb{K}[\alpha] qui comporte d élément
     Ainsi \mathbb{K}[\alpha] est une extensions finie de \mathbb{K}, avec [\mathbb{K}[\alpha] : \mathbb{K}] \ \delta d
d.
     Il est évidant que \mathbb{Q}(\sqrt[h]{\mathbb{P}}) \not\models \mathbb{C}, et comm<br/>me \mathbb{Q} est un sous groupe et que \sqrt[h]{\mathbb{P}} \not\in \mathbb{C},
```

N=° ⅓.

i) \Rightarrow ii) est évidant car $\mathbb{K}[\alpha]$ est un corps et donc stable par \mathbb{M}

alors par les questions précédente: $\mathbb{Q}(\sqrt[l]{\mathbb{P}})$ est un sous-corps de \mathbb{C}

ii) \Rightarrow iii) Supposons que $\alpha^{\uparrow \uparrow \uparrow} \models \mathbb{K}[\alpha]$, alors \mathbb{R} $\mathfrak{M} \models \mathbb{K}[X]$, $\mathfrak{M}(\alpha) \not \land \alpha \uparrow \mathbb{N}$, soit \mathfrak{M} un telle polynôme, alors:

Et donc α est constructible

iii) \Rightarrow i) Supposons que α est algébrique sur \mathbb{K} , alors par la question $^{\triangleright}$.

 $\mathbb{K}[\alpha]$ est un sous-corps de \mathbb{L}

Ainsi par un raisonnement cyclique,

on a bien que $\mathbb{K}[\alpha]$ est un sous-corps de $\mathbb{L} \Leftrightarrow \alpha^{\mathsf{Y} \mathsf{h}} \mathsf{E}[\alpha] \Leftrightarrow \alpha$ est algébrique sur \mathbb{K}

Partie III. Polynômes minimal d'un élément algébrique

 $N=^{\circ} \uparrow$.

Si I_{α} na possède pas une polynôme de degré q,

alors soit $\mathfrak{U} \leq I_{\alpha}$ de degré q, alors soit Ξ sont coefficient dominant

alors le polynome $\frac{\mathfrak{M}}{\mathfrak{g}}$ est de degrés q et sont coefficient dominant vaut Γ De plus $\frac{\mathfrak{M}}{\mathfrak{g}}(\alpha) \mbox{ } \mb$

Donc I_{α} possède un polynôme unitaire de degrés q

Alors
$$\mathfrak{W}(\alpha) \neq \mathfrak{W}(\alpha) \times \sum_{\substack{\gamma \in \mathbb{N} \\ \gamma \neq 0}}^{\gamma + 1} \mathfrak{A}_{\gamma} \alpha^{\gamma} + \sum_{\substack{\gamma \in \mathbb{N} \\ \gamma \neq 0}}^{\gamma + 1} \mathfrak{P}_{\gamma} \alpha^{\gamma} \times \mathbb{N}$$

$$\operatorname{donc} \sum_{\mathbf{\Lambda} \ \S \ \mathbb{F}}^{q + 1} (\mathbf{H}_{\mathbf{\Lambda}} \ \Upsilon \ \mathbf{Y}_{\mathbf{\Lambda}}) \alpha^{\mathbf{\Lambda}}, \text{ et comme } \left(1, \alpha, \cdots, \alpha^{q \ \Upsilon \ \mathbb{I}}\right) \text{ est libre, on a: } \mathbb{K} \ \mathbf{\Lambda} \ \S \ \mathbb{F}; q \ \Upsilon \ \mathbb{I} \ \mathbb{F}, \mathbf{H}_{\mathbf{\Lambda}} \ \S \ \mathbf{Y}_{\mathbf{\Lambda}}$$

Ainsi on a bien ជវ 🗴 ឈ

Donc il existe un unique polynome unitaire de degré q dans I_{α}

 $N=^{\circ}$ \$.

Supposons par l'absurde que μ_{α} est réductible,

donc α est algébrique de degrés inférieur stricte à d, absurde !

Donc μ_{α} est irréductible

donc $\mathfrak{M} \leq I_{\alpha}$ et donc $\{\mu_{\alpha}, \mathfrak{W}, \mathfrak{W} \leq \mathbb{K}[X]\} \models I_{\alpha}$

Ainsi par double inclusion $\{\mu_{\alpha} \text{ ns}, \text{ns} \leq \mathbb{K}[X]\} \otimes I_{\alpha}$

$N=^{\circ} 1$.

étant donner que μ_{α} est le plus petit polynômes telle que $\mu_{\alpha}(\alpha)$ $\$ $\$ alors $(1,\alpha,\cdots,\alpha^q)$ est la plus petite famille liée, donc le degrés de alpha vaut q est d, si bien que: $\deg \mu_{\alpha} \$ $\$ d

 $N=^{\circ} \mathbb{N}^{r}$.

il est évidant que le polynôme minimal est X^{\dagger}

N=° NN.

Posons $\mathfrak{M} \otimes \mathfrak{A} X^{\mathbb{R}} \uparrow \mathfrak{Y} X^{\mathbb{R}} \uparrow \mathfrak{A} X^{\mathbb{R}} \uparrow \mathfrak{A} X^{\mathbb{R}} \uparrow \mathfrak{A} X^{\mathbb{R}} \uparrow \mathfrak{A} X \uparrow \mathfrak{A} \in \mathbb{Q}[X]$, avec $\mathfrak{A}, \mathfrak{Y}, \mathfrak{A}, \mathfrak{A}, \mathfrak{A}$ non tous nul Alors cherchons $\mathfrak{A}, \mathfrak{Y}, \mathfrak{A}, \mathfrak{A}, \mathfrak{A}$ tel que $\mathfrak{M}(\alpha) \otimes \mathbb{R}$ Ainsi

$$\mathfrak{U}\mathfrak{I}(\alpha) \stackrel{\times}{\times} \mathbf{H} \left(\sqrt{\mathbb{P}} \uparrow \sqrt{\mathbb{F}} \right)^{\mathbb{R}} \uparrow \mathcal{Y} \left(\sqrt{\mathbb{P}} \uparrow \sqrt{\mathbb{F}} \right)^{\mathbb{F}} \uparrow \mathcal{Y} \left(\sqrt{\mathbb{P}} \uparrow \sqrt{\mathbb{P}} \right)^{\mathbb{F}} \uparrow \mathcal{Y} \left(\sqrt{$$

Alors comme $(1, \sqrt{F}, \sqrt{F}, \sqrt{X})$ est libre, on obtient:

Ainsi $\mathfrak{M} \times \mathcal{K} \times X^{\mathbb{R}} \times \mathcal{K}^{\mathbb{R}} \to X^{\mathbb{R}} \times X^{\mathbb{R}} \to X^{\mathbb{R}}$, ainsi on prouve que α est algébrique et que \mathfrak{M} est le polynôme minimal de α sur \mathbb{Q} car sinon on aurais $\mathbb{H} \times \mathbb{R}$

Partie IV. Nombres algébriques (sur Q)

N=° \\ **a**.

il est évidant que $\mathbb{Q}[\alpha,\beta]$ est stable par \uparrow et \mathbb{M} et deplus, soit $\mathbf{9},\mathbf{4},\mathbf{7} \lesssim \mathbb{Q}[\alpha,\beta]$ alors $\mathbf{8}\mathbf{1},\mathbf{7},\mathbf{7},\mathbf{1}',\mathbf{7}',$

$$(\maltese \uparrow \Im) \Upsilon \ \& \ (\blacksquare \uparrow \Im \alpha \uparrow \mp \beta \uparrow \blacksquare' \uparrow \Im' \alpha \uparrow \mp' \beta) (\blacksquare'' \uparrow \Im'' \alpha \uparrow \mp'' \beta)$$

$$\& \ (\blacksquare \uparrow \Im \alpha \uparrow \mp \beta) (\blacksquare'' \uparrow \Im'' \alpha \uparrow \mp'' \beta) \uparrow (\blacksquare' \uparrow \Im'' \alpha \uparrow \mp' \beta) (\blacksquare'' \uparrow \Im'' \alpha \uparrow \mp'' \beta)$$

$$\& \maltese \Upsilon \uparrow \Im \Upsilon$$

De même **^**(**9 ↑ 4**) **§ ^ 4 ^ ↑ ^ ^ 4**

De plus par la question ${}^{\triangleright} \, \mathbb{Q}[\alpha,\beta]$ est une extention finie de $\mathbb{Q}[\alpha]$

Or $\mathbb{Q}[\alpha]$ est une extensions finis de \mathbb{Q}

Donc $\mathbb{Q}[\alpha,\beta]$ est un corps et est une extention finie de \mathbb{Q}

b.

Pourvons d'abord que
$$\sqrt{\uparrow} \mathscr{L} \mathbb{Q} (\sqrt{\flat})$$
,
Pour cela cherchons $\mathbb{H}, \mathbb{Y} \in \mathbb{Q}, \mathbb{H} \uparrow \mathbb{Y} \sqrt{\flat} \times \sqrt{\uparrow}$, alors:

$$\begin{split} & \exists^{\, \flat} \uparrow \, \flat \, \not \! \neg^{\, \flat} \uparrow \, \flat \, \exists \, \not \! \neg \, \sqrt{\, \flat} \, \not \! \rangle \, f \\ & \operatorname{Donc} \left\{ \begin{matrix} \, \flat \, \exists \, \not \! \neg \, \sqrt{\, \flat} \, \not \! \rangle \, \not \! \rangle \\ \, \exists^{\, \flat} \, \uparrow \, \flat \, \not \! \neg^{\, \flat} \, \not \! \rangle \, f \end{matrix} \right. \\ & \Leftrightarrow \left\{ \begin{matrix} \, \exists \, \not \! \wedge \, \not \! \mid \, \nabla \, \not \! \mid \, \nabla \, \not \! \mid \, \mathcal{Y} \, \not \mid$$

Il est évidant que
$$\mathcal{V} \diamond \mathcal{V}$$
 car $\mathcal{V} \boldsymbol{\xi} \mathbb{Q}$ et $\sqrt{\mathbb{N}} \mathbb{Q}$ donc $\mathbf{H} \boldsymbol{\xi} \mathcal{V}$
Ainsi $\boldsymbol{\mathcal{V}} \boldsymbol{\mathcal{V}} \boldsymbol{\xi} \boldsymbol{\mathcal{V}} \boldsymbol{\mathcal$

N=° || || .

Soit $\mathbb{H}, \mathbb{7} \gtrless \overline{\mathbb{Q}}$. Alors $\mathbb{Q}[\mathbb{H}, \mathbb{7}]$ est un corps, et en particulier une extension finie de \mathbb{Q} . Donc la somme,l'inverse et le produits sont stables dans $\mathbb{Q}[\mathbb{H}, \mathbb{7}]$, et donc par la question $\mathbb{X}.\overline{\mathbb{Q}}$ est un corps, et est donc un sous-corps de \mathbb{C}