```
In [1]: import nltk
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import process_words
   import word_reporting
   from naive_bayes import naiveBayes
   from knn import kNearestNeighbors as knn
# Suppress warnings
   import warnings
   import warnings
```

```
In [2]: dataframe = pd.read_csv('statements.csv', encoding='utf-8')
# drop id column
dataframe = dataframe.drop('id', axis=1)
# Move the speaker column to the end of the dataframe
dataframe = dataframe[[c for c in dataframe if c not in ['speaker']] + ['sp
# filter and lemmatize the text column
dataframe = process_words.filter_and_lemmatize_df(dataframe)
dataframe.head()
```

text speaker

Out[2]:

0	recession marvins competitor closed dozen plan	obama
1	rise fall journey one nation one people	obama
2	difference difference personal	obama
3	thats weve excluded lobbyist policymaking job	obama
4	recognize many still strong desire focus past	obama

A

In [3]: reporting_df = word_reporting.create_reporting_df(dataframe, class_col='spe
reporting_df.head(50)

Out[3]:

	word	count	trump_count	obama_count	phi
0	abedini	1	0	1	0.031639
1	ability	3	1	2	0.018285
2	able	7	3	4	0.011994
3	abroad	2	0	2	0.044766
4	absolute	2	2	0	-0.031639
5	absolutely	1	1	0	-0.031639
6	absorbing	1	0	1	0.031639
7	accommodate	1	0	1	0.031639
8	accompanied	1	0	1	0.031639
9	according	2	1	1	0.000000
10	accountable	4	0	4	0.063372
11	accuracy	1	0	1	0.031639
12	accused	1	0	1	0.031639
13	achievable	1	0	1	0.031639
14	achieve	3	0	3	0.054855
15	achieved	2	0	2	0.044766
16	achievement	2	1	1	0.000000
17	acknowledge	1	0	1	0.031639
18	acquired	1	0	1	0.031639
19	acrimony	1	0	1	0.031639
20	across	8	0	8	0.089803
21	act	8	0	8	0.089803
22	action	2	1	1	0.000000
23	active	1	1	0	-0.031639
24	activity	1	0	1	0.031639
25	actual	2	0	2	0.044766
26	actually	6	6	0	-0.077693
27	ad	9	9	0	-0.083960
28	add	3	2	1	-0.018285
29	additional	1	0	1	0.031639
30	administration	5	1	4	0.042533
31	administrator	1	0	1	0.031639
32	admiration	1	0	1	0.031639
33	admission	1	1	0	-0.031639
34	admit	1	1	0	-0.031639

	word	count	trump_count	obama_count	phi	
35	adopt	1	1	0	-0.031639	
36	advance	2	0	2	0.044766	
37	advanced	1	0	1	0.031639	
38	advancing	1	0	1	1 0.031639	
39	advantage	1	0	0 1 0.03163 0 1 0.03163		
40	adversary	1	0			
41	advice	1	1	0	-0.031639	
42	affect	1	0	1	0.031639	
43	affection	1	1	0	-0.031639	
44	affiliate	1	1 0	1	0.031639	
45	afford	5	2	3	0.014178	
46	affordable	2	0	2	0.044766	
47	affront	2	1	1	0.000000	
48	afghan	2	0	2	0.044766	
49	afghanistan	7	2	5	0.035983	

In [4]: # Sort by phi coefficient and show the top 10
reporting_df.sort_values(by='phi', ascending=False).head(10)

Out[4]:

	word	count	trump_count	obama_count	phi
2484	year	32	6	26	0.109625
2256	today	18	2	16	0.105302
1437	must	27	5	22	0.100543
996	health	11	0	11	0.100504
938	government	9	0	9	0.095298
20	across	8	0	8	0.089803
21	act	8	0	8	0.089803
2396	war	11	1	10	0.086288
679	economy	11	1	10	0.086288
2257	together	11	1	10	0.086288

```
# Show the bottom 10
 In [5]:
           reporting df.sort values(by='phi', ascending=True).head(10)
 Out[5]:
                 word count trump_count obama_count
                                                           phi
            930 going
                         114
                                      99
                                                  15 -0.224039
                 think
                          43
                                      39
                                                   4 -0.169501
           2236
           1900
                         58
                                      46
                                                  12 -0.147299
                  said
                 know
                         75
                                      57
                                                  18 -0.142233
           1222
                          16
                                      16
                                                   0 -0.127515
           1315
                  love
                         21
                                      19
                                                   2 -0.118563
            991
                   he
           2234
                 thing
                          24
                                      21
                                                   3 -0.117609
                  look
                                      18
                                                   1 -0.116035
           1302
                          19
                          42
                                      34
                                                   8 -0.115065
           1077
                   im
            233
                          13
                                      13
                                                   0 -0.114766
                   big
In [30]: # Get the trump count for the word 'member'
           int(reporting df[reporting df['word'] == 'member']['trump count'])
Out[30]: 0
In [31]: # Seperate data into training and test sets
           \# Create a two lists, one of 80% of the indexes and one of 20% of the index
           indexes = np.arange(len(dataframe))
          np.random.shuffle(indexes)
           training indexes = indexes[:int(len(indexes) * .8)]
          test indexes = indexes[int(len(indexes) * .8):]
           # Create the training and test dataframes
          training df = dataframe.iloc[training indexes]
           test df = dataframe.iloc[test indexes]
In [32]: training df.head()
Out[32]:
                                                   text speaker
                used move new york florida theyd move new jers...
                                                          trump
           667
                              oh well cried ill take ill take care
                                                          trump
                  given history course guarantee iranian regime ...
            27
                                                         obama
                     ill tell term income inequality going create I...
           832
                                                          trump
           497
                    neither assad ally interest escalation would I...
                                                         obama
```

```
test_df.head()
In [33]:
Out[33]:
                                                               text speaker
                         took program made transparent accountable
              395
                                                                      obama
               45
                       city town across country libyan took street cl...
                                                                      obama
              958
                        look united state weak forgiving feel obligati...
                                                                       trump
              562
                                       rubio nice guy youve got vote
                                                                       trump
                   go news conference think he going apologize do...
                                                                       trump
```

B

```
In [34]: model = naiveBayes()
In [35]: model.train(training_df=dataframe, text_col='text', class_col='speaker')
In [36]: predictions, scores = model.predict(test_df=dataframe, text_col='text')
In [37]: # add a score_val column to the dataframe that is the trump score - the obadataframe['score_val'] = [score['trump'] - score['obama'] for score in scordataframe
Out[37]: text_speaker__score_val
```

		text	speaker	score_val
-	0	recession marvins competitor closed dozen plan	obama	-9.486168e-37
	1	rise fall journey one nation one people	obama	-2.945966e-23
	2	difference difference personal	obama	-2.593024e-12
	3	thats weve excluded lobbyist policy making job \dots	obama	-2.359174e-36
	4	recognize many still strong desire focus past	obama	-3.480274e-24
	995	would like ask observe moment silence victim a	trump	3.217391e-28
	996	dont give answer im going win write incredibly	trump	1.341739e-29
	997	said possibly join team said mr	trump	8.758414e-21
	998	wanted get really really quickly pertain whats	trump	2.909799e-27
	999	say going election opinion thats based competence	trump	1.988495e-23

1000 rows × 3 columns

In [39]: # Append predictions to the test_df
 dataframe['prediction'] = predictions
 dataframe.head()

Out[39]:		text	speaker	score_val	prediction
	0	recession marvins competitor closed dozen plan	obama	-9.486168e-37	obama
	1	rise fall journey one nation one people	obama	-2.945966e-23	obama
	2	difference difference personal	obama	-2.593024e-12	obama
	3	thats weve excluded lobbyist policymaking job	obama	-2.359174e-36	obama
	4	recognize many still strong desire focus past	obama	-3.480274e-24	obama

```
In [16]: model.accuracy(predictions=dataframe['prediction'], actual=dataframe['speak
Out[16]: 0.987
In [18]: # Find number of words in the model vocabulary to find total number of feat
         # Create a new column that is binary trump vs obama where trump is 1 and ob
         dataframe['binary speaker'] = [1 if speaker == 'trump' else 0 for speaker i
         # Create a column that is the prediction column but trump is 1 and obama is
         dataframe['binary prediction'] = [1 if prediction == 'trump' else 0 for pre
         model.metrics(y true=dataframe['binary speaker'], y pred=dataframe['binary
Out[18]: {'accuracy': 0.987,
           'sensitivity': 0.996,
           'precision': 0.9783889980353635,
           'specificity': 0.978,
           'f1-score': 0.9871159563924677}
In [16]: knn_model = knn(k=5)
In [17]: knn_model.train_on_df(df=dataframe, text_col='text', class_col='speaker',
In [18]: knn model.vocab
Out[18]: ['abedini',
           'ability',
           'able',
           'abroad',
           'absolute',
           'absolutely',
           'absorbing',
           'accommodate',
           'accompanied',
           'according',
           'accountable',
           'accuracy',
           'accused',
           'achievable',
           'achieve',
           'achieved',
           'achievement',
           'acknowledge',
           'acquired',
```

```
In [19]: knn_model.training_array
Out[19]: array([[0., 0., 0., ..., 0., 0., 0.],
                [0., 0., 0., ..., 0., 0., 0.],
                [0., 0., 0., ..., 0., 0., 0.]
                [0., 0., 0., ..., 0., 0., 0.],
                [0., 0., 0., ..., 0., 0., 0.],
                [0., 0., 0., ..., 0., 0., 0.]]
In [20]: test_array, test_classes = knn_model.vectorize_df(df=dataframe, text_col=
In [21]: predictions = knn model.predict(test_array=test_array)
In [22]: # Lets determine the accuracy of the model
         # Lets get the number of correct predictions
         np.sum(predictions == test classes) / len(predictions)
Out[22]: 0.608
In [23]: # Lets try that TFIDF vectorizer
         knn tfidf model = knn(k=5)
         knn tfidf model.train on df(df=dataframe, text col='text', class col='speak
         test array, test classes = knn tfidf model.vectorize df(df=dataframe, text
In [29]: tfidf predictions euclid = knn tfidf model.predict(test array=test array)
         tfidf predictions cosine = knn tfidf model.predict(test array=test array, d
         tfidf predictions manhattan = knn tfidf model.predict(test array=test array
In [31]:
         print(np.sum(tfidf_predictions_euclid == test_classes) / len(predictions))
         print(np.sum(tfidf_predictions_cosine == test_classes) / len(predictions))
         print(np.sum(tfidf predictions_manhattan == test_classes) / len(predictions
         0.659
         0.5
         0.579
```

```
In [34]: k_values = [ 3, 5, 7, 9, 11, 13, 15, 21, 25, 31]
         accuracy = []
         for k in k_values:
             knn_tfidf model.k = k
             model_predictions = knn_tfidf_model.predict(test_array=test_array)
             accuracy.append(np.sum(model_predictions == test_classes) / len(model_p
             print('Done with k = {}'.format(k))
         Done with k = 3
         Done with k = 5
         Done with k = 7
         Done with k = 9
         Done with k = 11
         Done with k = 13
         Done with k = 15
         Done with k = 21
         Done with k = 25
         Done with k = 31
In [35]: accuracy
Out[35]: [0.834, 0.659, 0.558, 0.515, 0.508, 0.501, 0.5, 0.5, 0.5, 0.5]
```

```
In [38]: # Create a matplotlib scatterplot of k_values on the x-axis and accuracy on
   plt.scatter(k_values, accuracy)
   plt.xlabel('k')
   plt.ylabel('Accuracy')
   plt.title('Accuracy of KNN Model with TFIDF Vectorizer')
   plt.show()
```



```
In [19]: knn_tfidf_final_model = knn(k=3)
    knn_tfidf_final_model.train_on_df(df=dataframe, text_col='text', class_col=
In [22]: test_array, test_classes = knn_tfidf_final_model.vectorize_df(df=dataframe,
In [23]: predictions = knn_tfidf_final_model.predict(test_array=test_array)
In [24]: # add a new knn_prediction column to the dataframe
    dataframe['knn_prediction'] = predictions
    # Create binary version of knn_prediction
    dataframe['binary_knn_prediction'] = [1 if prediction == 'trump' else 0 for
    # Metrics for knn model
    model.metrics(y_true=dataframe['binary_speaker'], y_pred=dataframe['binary_
Out[24]: {'accuracy': 0.834,
    'sensitivity': 0.95,
    'precision': 0.7711038961038961,
    'specificity': 0.718,
    'f1-score': 0.8512544802867382}
```

In []: