Lista 1 - Organização Industrial

Arthur M. Rodrigues

September 2023

Questão 1

Como estamos interessados no impacto das características do carro sobre a demanda dos consumidores, imputar quantidade vendida igual para cada sub-modelo introduz um erro de medida na variável dependente que gera viés nas estimativas caso este erro esteja correlacionado com o vetor de características (i.e., caso a preferência dos consumidores por sub-modelos varie com as características). Por exemplo, se os consumidores demandam mais sub-modelos mais baratos do que submodelos mais caros, esperase que parte do efeito do preço sobre demanda seja neutralizado ao analisar a base desagregada com quantidades iguais imputadas para todos os submodelos. Essa previsão é testável e será avaliada na Questão 4.

A alternativa proposta neste trabalho é agregar os dados de sub-modelo de forma a construir características representativas dos sub-modelos para cada um dos modelos da amostra. Para tal, consideramos a mediana das cilindradas, a média do preço e do IPI e construímos dummys indicando se aquele modelo possui ao menos um sub-modelo com determinado tipo de combustível (álcool, gasolina, flex e diesel). Além disso, extraímos as características de número de portas, câmbio, válvulas e cavalos das descrições textuais dos sub-modelos, que foram agregadas a partir da média, moda, média e média, respectivamente. Entretanto, há uma quantidade grande de NAs nessas características, de modo que elas não foram incluídas em algumas das especificações.

Questão 2

Ao avaliar somente os 50 carros mais vendidos, não estamos lidando com o mercado completo, e sim com uma amostra provavelmente não representativa do mercado. Isso pode ser um problema, na medida em que, caso se incluísse os demais modelos na amostra, obteríamos, potencialmente, resultados econométricos diferentes.

Para tentar garantir a consistência das estimações, testaremos na Questão 4 uma especificação com uma subamostra contendo apenas os 35 modelos mais vendidos de cada ano: caso os resultados para a amostra com os 50 produtos mais vendidos sejam similares aos obtidos a partir da subamostra, teremos um indicativo de consistência.

Questão 3

Para modelar o *outside good*, vamos utilizar dados do número de domicílios do Brasil, de acordo com a estratégia de Berry et al. (1995). Estes dados foram obtidos através do Censo Demográfico de 2010, da Pesquisa Nacional por Amostra de Domicílios (PNAD) para 2003 a 2009 e da Pesquisa Nacional por Amostra de Domicílios Contínua Anual (PNADC/A) de 2016. Definimos a quantidade vendida do *outside good* em determinado ano como o total de domicílios no Brasil naquele ano menos a soma da quantidade vendida de todos os modelos de carro contidos na base. Esta quantidade pode ser observada na Tabela 1:

Ano	Domicílios (mil)	Outside Good (mil)	Market Share (%)
2003	50142	49315	0.983
2004	52158	51299	0.983
2005	53417	52550	0.983
2006	54817	53776	0.981
2007	56448	55089	0.975
2008	58282	56720	0.973
2009	59322	57467	0.968
2010	57428	55244	0.961
2011	62248	60124	0.965
2012	63854	61655	0.965
2013	65258	63002	0.965
2014	67131	65065	0.969
2015	68177	66612	0.977
2016	67213	65996	0.981

Table 1: "Vendas" do outside good por ano (2003 - 2016)

Como podemos verificar, a imensa maioria dos domicílios não compra um carro novo em um dado ano. Este indicador tem leve tendência de queda durante a série histórica e volta a subir no final do período analisado com a crise econômica de 2015-2016.

Questão 4

Considere indivíduos indexados por $i \in \{1, ..., I\}$ e bens indexados por $j \in \{0, 1, ..., J\}$ produzidos por firmas indexadas por $f \in \{1, ..., F\}$, em que a utilidade do indivíduo i ao comprar o bem j é dada por:

$$u_{ij} = \delta_j + \epsilon_{ij} \tag{1}$$

Em que, de modo geral, $\delta_j = X_j \cdot \beta$ e $\epsilon_{ij} \sim Gumbel(0)$. Note que X_j é um vetor arbitrário de características do carro, das quais convém destacar o preço, com $\delta_j = \alpha p_j + X_j \cdot \beta$; ou em alguns casos adicionar efeitos fixos de ano e de marca, de acordo com a especificação de Nevo (2001), com $\delta_{jt} = \alpha p_{jt} + \beta \cdot X_{jt} + \theta_t + \nu_k$. Pelas propriedades da distribuição Gumbel, temos que:

$$P(j \text{ escolhido}) = P(u_{ij} > u_{ik} \forall k \neq j) = \frac{e^{\delta_j}}{\sum_{k=0}^{J} e^{\delta_k}}$$
 (2)

Vamos tomar o outside good como um bem com todas as características iguais a 0, de modo que $P(j \text{ escolhido}) = \frac{e^{\delta_j}}{1+\sum_{k=1}^J e^{\delta_k}}$. Defina o market share de j como $s_j = \frac{\text{vendas de } j}{\text{pop. total}} \approx P(j \text{ escolhido})$. Dividindo o market share do bem j pelo outside good, temos $\frac{s_j}{s_0} = \frac{e^{\delta_j}}{e^{\delta_0}} = e^{\delta_j}$. Substituindo δ_j pelas características da base, vamos estimar o modelo a partir da equação

$$log(s_{it}) - log(s_{0t}) = \alpha p_{it} + \theta_t + \nu_k + \beta \cdot X_{it} + x i_{it}$$
(3)

Onde θ_t representa um efeito fixo de tempo, ν_k representa um efeito fixo de marca e X_{jt} é um vetor de características que contém cilindradas, tipo de combustível (com a gasolina omitida em função da multicolinearidade), número de portas, válvulas, cavalos e tipo de câmbio. ξ_{jt} é um termo de erro. Algumas características ou efeitos fixos foram omitidos de algumas das regressões, e um resumo dos resultados pode ser observado na Tabela 2:

Dependent Variable:			у	
Model:	(1)	(2)	(3)	(4)
Variables				
preco_media	$-2.5 \times 10^{-5***}$	$-2.4 \times 10^{-5***}$	$-1.82 \times 10^{-5***}$	$-1.39 \times 10^{-5**}$
	(4.5×10^{-6})	(4×10^{-6})	(2.03×10^{-6})	(5.84×10^{-6})
cc_mediana	-0.3370	-0.3359	0.1134	-0.4994
	(0.2335)	(0.2517)	(0.0912)	(0.3030)
alcool	0.4878**	-0.0248		
	(0.2004)	(0.1628)		
diesel	0.3347	0.0002	0.2599	-0.0906
	(0.2785)	(0.3334)	(0.1783)	(0.1080)
flex	0.5818***	0.8827***	0.4582^{***}	0.5167**
	(0.1171)	(0.2793)	(0.0899)	(0.2383)
$\operatorname{cambioMec}$			0.3722***	0.1624
			(0.1160)	(0.1442)
valvulas				0.0508
				(0.0532)
portas				0.1512
				(0.1848)
Fixed-effects				
ano_ref	Yes		Yes	Yes
marca	Yes	Yes	Yes	Yes
Fit statistics				
Observations	498	498	183	111
\mathbb{R}^2	0.60788	0.53844	0.69421	0.70234
Within \mathbb{R}^2	0.45846	0.44081	0.35323	0.25323

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2: Resultados Logit - Base Completa Agregada

O coeficiente de preços possui o sentido esperado e é relativamente estável e estatisticamente significante nas quatro especificações (na última delas, apenas a 5%). Parece haver uma predileção por carros com combustível de álcool¹ ou flex, possivelmente explicados pelo menor consumo de combustível.

Este modelo logit simples nos permite avaliar os dois questionamentos levantados nas Questões 1 e 2. Em primeiro lugar, vamos rodar o mesmo modelo com a base restrita para avaliarr se os coeficientes de preço se mantêm estáveis. Os resultados podem ser observados na Tabela 3.

 $^{^1}$ O coeficiente de álcool não pode ser calculado nas especificações 3 e 4 porque não há nenhum carro movido a álcool com câmbio automático na amostra.

Dependent Variable:		у		
Model:	(1)	(2)	(3)	(4)
Variables				
preco_media	$-2.46 \times 10^{-5***}$	$-2.38 \times 10^{-5***}$	$-1.8 \times 10^{-5***}$	-1.21×10^{-5} *
	(4.61×10^{-6})	(3.56×10^{-6})	(3.97×10^{-6})	(6.53×10^{-6})
$cc_mediana$	-0.4326*	-0.4681	0.0732	-0.6174
	(0.2407)	(0.2861)	(0.1450)	(0.3501)
alcool	0.4597^{**}	-0.0478		
	(0.2022)	(0.1399)		
diesel	-0.4934**	-0.7177*	-0.0517	-0.1145
	(0.2198)	(0.3703)	(0.1307)	(0.1275)
flex	0.6000***	0.9447***	0.4370***	0.5059*
	(0.1036)	(0.2979)	(0.1089)	(0.2628)
$\operatorname{cambioMec}$			0.3579**	0.1441
			(0.1301)	(0.1607)
valvulas				0.0530
				(0.0536)
portas				0.1704
				(0.1911)
Fixed-effects				
ano_ref	Yes		Yes	Yes
marca	Yes	Yes	Yes	Yes
Fit statistics				
Observations	468	468	168	106
\mathbb{R}^2	0.62517	0.55383	0.68570	0.69096
Within \mathbb{R}^2	0.45276	0.45720	0.31356	0.25411
	0.01 ** 0.05 * 0	,		

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 3: Resultados Logit - Base Restrita Agregada

É possível observar que o sentido e magnitude dos coeficiente de preço no modelo restrito se mantêm consistentes na amostra restrita. O último coeficiente de preço é significativo apenas a 10%, mas isto pode ser explicado pelo erro padrão maior decorrente da amostra reduzida. De modo geral, os resultados da estimação na amostra reduzida estão em consonância com a tese de que a amostra de 50 veículos mais vendidos é uma aproximação razoável para o mercado. Além disso, realizamos o mesmo exercício com a base desagregada, com os resultados na Tabela 4.

Dependent Variable:		у		
Model:	(1)	(2)	(3)	(4)
Variables				
preco	$-1.02 \times 10^{-5***}$	-7.92×10^{-6}	-1.1×10^{-6}	$6.24 \times 10^{-6**}$
	(1.46×10^{-6})	(5.11×10^{-6})	(1.19×10^{-6})	(2.59×10^{-6})
cc	-0.3620***	-0.3847^*	-0.0751	-0.4822**
	(0.0562)	(0.2115)	(0.0987)	(0.1994)
alcool	0.1954	0.0139		
	(0.1166)	(0.3241)		
diesel	0.1188	0.3023^{**}	-0.0738	
	(0.0866)	(0.1222)	(0.0610)	
flex	-0.0300	0.3182**	0.0812	0.1085
	(0.0434)	(0.1482)	(0.0638)	(0.0995)
$\operatorname{cambioMec}$			0.0655	0.1172**
			(0.0423)	(0.0411)
valvulas				0.0125
				(0.0095)
portas				0.1302***
				(0.0312)
Fixed-effects				
ano_ref	Yes		Yes	Yes
marca	Yes	Yes	Yes	Yes
Fit statistics				
Observations	$4,\!351$	$4,\!351$	1,629	789
\mathbb{R}^2	0.45242	0.36815	0.61631	0.52148
Within R ²	0.13248	0.12864	0.01533	0.03332

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 4: Resultados Logit - Base Completa Desagregada

Neste exercício, o coeficiente de preço não é estatisticamente significante na terceira regressão e é estatisticamente significante com sinal positivo (contrário ao esperado pela teoria econômica) na quarta especificação. Assim, parece haver fundamento na tese de que há predileção por preço dentro dos submodelos e de que trabalhar com a base desagregada não é o ideal. Portanto, a partir da questão 5 realizaremos todos os exercícios de estimação exclusivamente na base agregada e completa.

Questão 5

Para lidar com a endogeneidade no preço, vamos utilizar o IPI como instrumento. Para tal, necessitamos que ele satisfaça as condições de restrição e exclusão. A alíquota do IPI é calculada a partir de uma série de fatores, dentre eles as cilindradas do carro e o tipo de combustível, além de incidir no momento da venda, de forma a impactar diretamente no preço. Por impactar positivamente no preço, reduziria a quantidade comprada. A relevância do IPI sobre a quantidade se reflete a partir de sua composição no preço, portanto, no primeiro estágio, em que o preço é regredido no IPI e nas demais variáveis. Espera-se, assim, que o IPI exerça um efeito positivo sobre o preço.

A condição de exclusão, todavia, não é testável. De qualquer forma, pode-se argumentar que a única forma que o IPI afeta a quantidade de vendas de certo modelo é por meio de seu efeito no preço, uma vez que sua incidência é direta no preço. Por outro lado, o IPI poderia ferir a condição de exogeneidade caso alguma parte da composição do IPI estivesse ligada a uma variável não observável que afeta a

demanda, como tamanho do carro. Os resultados da forma reduzida da regressão por IV podem ser encontrados na Tabela 5:

Dependent Variable:		у		
Model:	(1)	(2)	(3)	(4)
Variables				
preco_media	-0.0001***	$-5.42 \times 10^{-5***}$	-2.17×10^{-5}	-0.0002
	(4.69×10^{-5})	(1.41×10^{-5})	(1.55×10^{-5})	(0.0003)
alcool	-0.3891	0.3358		
	(0.4978)	(0.2508)		
diesel	-0.0846	2.006***	0.2694	0.6079
	(0.6552)	(0.4392)	(0.3139)	(1.434)
flex	0.3697^*	0.4249***	0.4570***	1.565
	(0.2106)	(0.1323)	(0.1224)	(1.615)
$cc_mediana$	3.390**	0.9463*	0.2526	4.092
1. 2.5	(1.694)	(0.5570)	(0.6288)	(6.573)
cambioMec			0.3545***	-0.4879
			(0.1225)	(0.9982)
portas				0.1698
1 1				(0.3705)
valvulas				0.4102
				(0.5199)
Fixed-effects				
ano_ref	Yes	Yes	Yes	Yes
marca	Yes		Yes	Yes
Fit statistics				_
Observations	498	498	183	111
\mathbb{R}^2	-0.29387	0.31396	0.69274	-0.95555
Within R ²	-0.78687	0.22213	0.35012	-3.9061

 $IID\ standard\text{-}errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 5: Regressão IV

Percebe-se que nesta especificação, o preço exerce um efeito negativo sobre a quantidade vendida - trivialmente - porém com magnitude maior (em módulo) do que no Logit realizado na Questão 4. Ao lidar com a endogeneidade, encontramos a demanda consideravelmente mais sensível ao preço, o que indica que havia viés nos coeficientes estimados por OLS. Os resultados da regressão de 1° Estágio podem ser observados na Tabela 6.

Dependent Variable:		preco.	_media	
Model:	(1)	(2)	(3)	(4)
Variables				
ipi	139,561.0***	283,427.3***	360,433.0***	139,561.0***
	(52,309.9)	(50,865.7)	(103,639.5)	(52,309.9)
alcool	-8,498.6***	-9,835.4***		-8,498.6***
	(2,405.3)	(2,633.9)		(2,405.3)
diesel	-2,677.5	28,406.7***	$7,\!325.3$	-2,677.5
	(5,042.2)	(3,603.8)	(5,910.8)	(5,042.2)
flex	-984.4	-1,865.8	3,239.8	-984.4
	(1,551.4)	(1,562.0)	(2,481.9)	(1,551.4)
$cc_mediana$	32,118.9***	31,204.8***	28,439.4***	32,118.9***
	(1,928.6)	(1,891.7)	(4,484.4)	(1,928.6)
$\operatorname{cambioMec}$			-5,767.0***	
			(1,788.5)	
Fixed-effects				
ano_ref	Yes	Yes	Yes	Yes
marca	Yes		Yes	Yes
Fit statistics				
Observations	498	498	183	498
\mathbb{R}^2	0.83360	0.77753	0.87670	0.83360
Within R ²	0.66331	0.76523	0.57065	0.66331

 $IID\ standard\text{-}errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 6: Primeiro Estágio

Percebe-se, a partir da regressão de primeiro estágio, que a condição de relevância é atendida, na medida em que o IPI apresenta um efeito positivo e significativo a 1% sobre o preço para todas as especificações.

Questão 6

Para calcular as elasticidades, vamos utilizar a formula derivada na Questão 4, de $s_j = \frac{e^{\delta_j}}{\sum_{k=0}^J e^{\delta_k}}$, com $\delta_j = \alpha p_j + \beta \cdot X_j$. Portanto, a elasticidade da demanda do bem j pelo bem k é:

$$e_{j,k} = \frac{\partial s_j}{\partial p_k} \frac{p_k}{s_j} = \begin{cases} -\alpha p_j (1 - s_j) & \text{se } j = k \\ \alpha p_k s_k & \text{c.c.} \end{cases}$$

Para computarmos a elasticidade-preço da demanda do Gol, utilizaremos o valor de $\hat{\alpha}$ estimado na especificação (1) da regressão de IV, isto é, com efeitos fixos de ano e marca com as características de combustível, cilindradas e preço, que estão presentes em todos os carros da amostra. Os resultados para o ano de 2016 (o mais recente da amostra) podem ser observados na Tabela 7.

Marca	Modelo	Quantidade	Market Share	Elasticidade
PEUGEOT	2008	10692	0.0001591	0.0015220
PEUGEOT	208	10768	0.0001602	0.0011666
CITROEN	C3	11824	0.0001759	0.0012246
HONDA	CITY	15422	0.0002294	0.0020223
HONDA	CIVIC	20857	0.0003103	0.0035805
GM	CLASSIC	11530	0.0001715	0.0007351
RENAULT	CLIO	10869	0.0001617	0.0006177
GM	COBALT	22466	0.0003343	0.0023814
JEEP	COMPASS	6599	0.0000982	0.0013690
TOYOTA	COROLLA	64740	0.0009632	0.0102810
RENAULT	DUSTER	25373	0.0003775	0.0033982
FORD	ECOSPORT	28105	0.0004181	0.0039380
HONDA	FIT	28439	0.0004231	0.0034717
FORD	FOCUS	6766	0.0001007	0.0010477
VW	GOL	57390	0.0008539	-5.4308072
HYUNDAI	HB20	121616	0.0018094	0.0116433
HYUNDAI	HB20S	46023	0.0006847	0.0048706
HONDA	HR-V	55758	0.0008296	0.0093391
HYUNDAI	IX35	10226	0.0001521	0.0022160
VW	JETTA	8654	0.0001288	0.0013839
RENAULT	LOGAN	23707	0.0003527	0.0022138
NISSAN	MARCH	18376	0.0002734	0.0015775
FIAT	MOBI	28731	0.0004275	0.0021451
GM	ONIX	153371	0.0022819	0.0137919
FIAT	PALIO	63996	0.0009521	0.0062821
GM	PRISMA	66337	0.0009870	0.0065397
FIAT	PUNTO	7709	0.0001147	0.0008522
JEEP	RENEGADE	51563	0.0007672	0.0098042
RENAULT	SANDERO	63228	0.0009407	0.0061233
NISSAN	SENTRA	6288	0.0000936	0.0010009
FIAT	SIENA	33478	0.0004981	0.0024763
GM	SPIN	22982	0.0003419	0.0026922
GM	TRACKER	8558	0.0001273	0.0013071
HYUNDAI	TUCSON	11203	0.0001667	0.0014995
FIAT	UNO	34626	0.0005152	0.0026811
NISSAN	VERSA	21897	0.0003258	0.0022733
VW	VOYAGE	26074	0.0003879	0.0024990

Table 7: Elasticidades Logit IV - 2016

Conforme esperado, o único modelo com elasticidade cruzada negativa com o Gol é ele mesmo. Além disso, existe uma relação aproximadamente linear entre a quantidade vendida e a elasticidade cruzada com o Gol, conforme pode ser visto na Figura 1. Esta relação é esperada, visto que a fórmula da elasticidade derivada acima depende diretamente e linearmente do nível de preços.

Figure 1: Elasticidade e Quantidade Vendida 2016 - Logit IV

Questão 7

Para estimar os custos, vamos modelar a oferta de acordo com a formulação de Berry et al. (1995). Considere firmas indexadas por $f \in \{1, ..., F\}$, em que cada produto j é produzido por uma única firma f, e suponha conduta de competição oligopolística de Bertrand-Nash. Defina c'_j como o custo marginal do bem j e M o número de domicílios do mercado. Assim, cada firma f terá o problema:

$$\max_{\{p_j\}_f} \Pi_f = \sum_{j \text{ de } f} (p_j - c_j') M s_j$$

Deste problema, derivamos as CPOs:

$$s_j - \sum_r (p_r - c_r') \Delta_{jr} = 0$$

Onde $\Delta_{jr} = \begin{cases} -\frac{\partial s_r}{\partial p_j} & \text{se } j = k \\ 0 & \text{c.c.} \end{cases}$. Assim, temos uma fórmula para o custo marginal em função da inversa da matriz Δ :

$$c' = p - \Delta^{-1}s$$

Com este resultado, obtemos os markups a partir de:

$$markup = (p - c')/c'$$

Os resultados deste exercício no modelo de Logit para o ano de 2016 podem ser observados na Tabela $8\colon$

Marca	Modelo	Preço	Market Share	Custo Marginal	Markup
PEUGEOT	2008	74405.20	0.0001591	66626.28	0.1167545
PEUGEOT	208	56625.92	0.0001602	48847.01	0.1592506
CITROEN	C3	54131.93	0.0001759	46354.13	0.1677909
HONDA	CITY	68537.75	0.0002294	60747.35	0.1282426
HONDA	CIVIC	89727.80	0.0003103	81937.40	0.0950774
GM	CLASSIC	33323.00	0.0001715	25513.42	0.3060967
RENAULT	CLIO	29702.67	0.0001617	21911.96	0.3555461
GM	COBALT	55402.88	0.0003343	47593.30	0.1640898
JEEP	COMPASS	108433.00	0.0000982	100649.83	0.0773292
TOYOTA	COROLLA	83003.17	0.0009632	75219.24	0.1034832
RENAULT	DUSTER	70001.62	0.0003775	62210.91	0.1252306
FORD	ECOSPORT	73237.09	0.0004181	65456.62	0.1188645
HONDA	FIT	63805.50	0.0004231	56015.10	0.1390767
FORD	FOCUS	80937.12	0.0001007	73156.66	0.1063535
VW	GOL	42268.40	0.0008539	34481.29	0.2258357
HYUNDAI	HB20	50040.38	0.0018094	42242.01	0.1846117
HYUNDAI	HB20S	55314.75	0.0006847	47516.38	0.1641196
HONDA	HR-V	87544.75	0.0008296	79754.35	0.0976799
HYUNDAI	IX35	113267.50	0.0001521	105469.13	0.0739398
$\overline{ m VW}$	JETTA	83585.14	0.0001288	75798.04	0.1027349
RENAULT	LOGAN	48809.56	0.0003527	41018.84	0.1899300
NISSAN	MARCH	44870.36	0.0002734	37088.53	0.2098175
FIAT	MOBI	39023.00	0.0004275	31227.02	0.2496550
GM	ONIX	47001.71	0.0022819	39192.14	0.1992638
FIAT	PALIO	51307.85	0.0009521	43511.86	0.1791691
GM	PRISMA	51526.86	0.0009870	43717.28	0.1786382
FIAT	PUNTO	57782.55	0.0001147	49986.56	0.1559615
JEEP	RENEGADE	99382.43	0.0007672	91599.26	0.0849698
RENAULT	SANDERO	50618.43	0.0009407	42827.72	0.1819081
NISSAN	SENTRA	83199.83	0.0000936	75418.01	0.1031826
FIAT	SIENA	38661.00	0.0004981	30865.02	0.2525831
GM	SPIN	61227.88	0.0003419	53418.30	0.1461966
GM	TRACKER	79829.50	0.0001273	72019.92	0.1084363
HYUNDAI	TUCSON	69960.00	0.0001667	62161.63	0.1254531
FIAT	UNO	40471.44	0.0005152	32675.46	0.2385883
NISSAN	VERSA	54264.00	0.0003258	46482.18	0.1674152
VW	VOYAGE	50094.64	0.0003879	42307.53	0.1840596

Table 8: Custos Marginais e Markup Logit - 2016

Os resultados apresentam markups e custos marginais relativamente dependentes dos preços e market shares. O modelo é razoável, na medida que todos os markups são positivos. Porém, há

uma relação direta entre o preço dos modelos e markups: carros mais baratos implicam em custos marginais relativamente menores e maiores markups, o que não parece muito crível.

Questão 8

Nesta questão, estimamos um modelo baseado em Berry et al. (1995), em que a utilidade do indivíduo i com relação ao carro j é dada por:

$$u_{ij} = x_j \tilde{\beta}_i + \alpha_i p_j + \xi_j + \epsilon_{ij}$$

Onde p_j é o preço do carro j, x_j são as características do carro j, de modo que cada componente do vetor $\tilde{\beta}_i$ é dado por $\tilde{\beta}_{ik} = \beta_k + \sigma_k u_{ik}$ e $u_{ik} \sim N(0,1)$. Como não temos dados de renda, substituiremos $\alpha \ln (y_i - p_j)$ por $\alpha_i p_i$, onde α_i também é um coeficiente aleatório de preço para cada indivíduo i. ξ_j representa as características não observadas pelo econometrista e ϵ_{ij} é o termo de erro.

Além do IPI, utilizamos os mesmos instrumentos do modelo original, i.e., as somas das variáveis disponíveis, de forma a representar as características dos demais modelos, separados entre da mesma ou das outras marcas. Também de acordo com o paper original, cada ano foi tratado como um mercado diferente. Os resultados dos coeficientes lineares no modelo pode ser visualizado na Tabela 9

 $\Pr(>|t|)$ Estimate Std. Error t value (Intercept) -3.7412.733 -1.3690.171preco_media -0.0010.0002-2.7590.006combustivelFlex 3.640 1.668 2.181 0.029 combustivelGasolina 1.331 1.4520.917 0.359 cc_mediana -0.4241.467 -0.2890.773

Table 9: Coeficientes Lineares - Modelo BLP

Aqui, temos um coeficiente linear negativo e estatisticamente significante para o preço, de acordo com o esperado pela teoria econômica. A magnitude do efeito é consideravelmente superior às estimadas nos modelos Logit com e sem uso de IV. Ainda encontramos um coeficiente positivo e estatisticamente significativo para carros Flex, o que reforça a predileção por esse tipo de combustível. Os coeficientes aleatórios podem ser observados na Tabela 10:

Table 10: Coeficientes Aleatórios - Modelo BLP

	Estimate	Std. Error	t value	$\Pr(> t)$
$unobs_sd*(Intercept)$	-2.108	1.048	-2.013	0.044
$unobs_sd*preco_media$	0.0002	0.0001	2.807	0.005
$unobs_sd*combustivelFlex$	1.660	2.019	0.822	0.411
$unobs_sd*combustivelGasolina$	-0.969	1.863	-0.520	0.603
$unobs_sd*cc_mediana$	0.821	1.120	0.734	0.463

Esse segundo resultado (de coeficiente positivo e estatisticamente significante) indica a existência de heterogeneidade entre os consumidores com relação ao preço. Assim, variações marginais no preço refletiriam em reações de demanda heterogêneas entre consumidores. Nenhum dos outros coeficientes além do intercepto é estatisticamente significante, o que indica que essa heterogeneidade se manifesta especialmente no que se refere ao preço dos veículos.

Questão 9

Calcularemos as elasticidades cruzadas no modelo de BLP a partir da derivação de Nevo (2001), implementada no pacote BLPestimatoR. Assim como na Questão 6, estimamos as elasticidades cruzadas para o Gol no ano de 2016. Os resultados estão na Tabela

ano_ref	marca	modelo	mkt_sh	preco_media	elasticidade
2016	PEUGEOT	2008	0.0001591	74405.20	0.3359636
2016	PEUGEOT	208	0.0001602	56625.92	0.3015594
2016	CITROEN	C3	0.0001759	54131.93	0.3244718
2016	HONDA	CITY	0.0002294	68537.75	0.3274589
2016	HONDA	CIVIC	0.0003103	89727.80	0.4045317
2016	GM	CLASSIC	0.0001715	33323.00	0.8230661
2016	RENAULT	CLIO	0.0001617	29702.67	1.6118567
2016	GM	COBALT	0.0003343	55402.88	0.2795829
2016	JEEP	COMPASS	0.0000982	108433.00	0.8280049
2016	TOYOTA	COROLLA	0.0009632	83003.17	0.3639499
2016	RENAULT	DUSTER	0.0003775	70001.62	0.2843691
2016	FORD	ECOSPORT	0.0004181	73237.09	0.3296597
2016	HONDA	FIT	0.0004231	63805.50	0.3155383
2016	FORD	FOCUS	0.0001007	80937.12	0.3174014
2016	VW	GOL	0.0008539	42268.40	-23.4025177
2016	HYUNDAI	HB20	0.0018094	50040.38	0.3327720
2016	HYUNDAI	HB20S	0.0006847	55314.75	0.3051631
2016	HONDA	HR-V	0.0008296	87544.75	0.4107576
2016	HYUNDAI	IX35	0.0001521	113267.50	1.0466716
2016	VW	JETTA	0.0001288	83585.14	0.5756293
2016	RENAULT	LOGAN	0.0003527	48809.56	0.3429495
2016	NISSAN	MARCH	0.0002734	44870.36	0.3884793
2016	FIAT	MOBI	0.0004275	39023.00	0.6172562
2016	GM	ONIX	0.0022819	47001.71	0.3904088
2016	FIAT	PALIO	0.0009521	51307.85	0.3239371
2016	GM	PRISMA	0.0009870	51526.86	0.3537721
2016	FIAT	PUNTO	0.0001147	57782.55	0.2992683
2016	JEEP	RENEGADE	0.0007672	99382.43	0.6061618
2016	RENAULT	SANDERO	0.0009407	50618.43	0.8316650
2016	NISSAN	SENTRA	0.0000936	83199.83	0.3357919
2016	FIAT	SIENA	0.0004981	38661.00	0.5777535
2016	GM	SPIN	0.0003419	61227.88	0.2693628
2016	GM	TRACKER	0.0001273	79829.50	0.3377460
2016	HYUNDAI	TUCSON	0.0001667	69960.00	0.2595379
2016	FIAT	UNO	0.0005152	40471.44	0.5824479
2016	NISSAN	VERSA	0.0003258	54264.00	0.3088879
2016	VW	VOYAGE	0.0003879	50094.64	0.3323610

Table 11: Elasticidades BLP - 2016

Mais uma vez, a única elasticidade negativa é a do próprio Gol. Além disso, nota-se que as elasticidades são consideravelmente maiores do que as estimadas via Logit. Dentre todas, a de maior magnitude é a do Clio, modelo de entrada da Renault que, apesar de poucas vendas, parece uma previsão bem razoável de concorrente para o Gol. Entretanto, os carros seguintes no ranking de elasticidade (com elasticidade em módulo de cerca de metade do Clio) são concorrentes menos óbvios: Hyundai ix35,

Renault Sandero, Jeep Compass e GM Classic. Utilizando-se as estimativas do BLP, pode verificar a relação entre as elasticidades e a quantidade vendida e os custos marginais e markups estimados, disponíveis na Figura 2.

Figure 2: Elasticidade e Quantidade BLP - 2016

Pode-se perceber que não há correlação clara entre a quantidade de carros vendida de certo modelo e a elasticidade, muito diferente do resultado via Logit. Este resultado é mais realista, uma vez que espera-se que o Gol concorra mais diretamente com modelos de entrada (carros populares) de todas as marcas, que não necessariamente são os mais bem sucedidos comercialmente. A partir da metodologia utilizada na Questão 7, também podemos calcular os custos marginais e markups de cada modelo para o ano de 2016, como pode ser visto na Tabela 12:

ano_ref	marca	modelo	$qtdd_total$	mkt_sh	preco_media	cmg_BLP	markup
2016	PEUGEOT	2008	10692.000	0.0001591	74405.20	72214.51	0.0303358
2016	PEUGEOT	208	10768.000	0.0001602	56625.92	54633.13	0.0364760
2016	CITROEN	C3	11824.001	0.0001759	54131.93	52204.77	0.0369155
2016	HONDA	CITY	15422.000	0.0002294	68537.75	66241.09	0.0346712
2016	HONDA	CIVIC	20857.000	0.0003103	89727.80	87185.73	0.0291569
2016	GM	CLASSIC	11530.000	0.0001715	33323.00	31488.10	0.0582728
2016	RENAULT	CLIO	10869.000	0.0001617	29702.67	27169.07	0.0932529
2016	GM	COBALT	22466.000	0.0003343	55402.88	53285.34	0.0397396
2016	JEEP	COMPASS	6599.000	0.0000982	108433.00	102207.21	0.0609135
2016	TOYOTA	COROLLA	64740.000	0.0009632	83003.17	80725.14	0.0282196
2016	RENAULT	DUSTER	25373.008	0.0003775	70001.62	67686.10	0.0342098
2016	FORD	ECOSPORT	28105.000	0.0004181	73237.09	71026.74	0.0311200
2016	HONDA	FIT	28438.998	0.0004231	63805.50	61577.88	0.0361756
2016	FORD	FOCUS	6766.000	0.0001007	80937.12	78643.32	0.0291672
2016	VW	GOL	57390.000	0.0008539	42268.40	40409.23	0.0460085
2016	HYUNDAI	HB20	121616.001	0.0018094	50040.38	47743.44	0.0481101
2016	HYUNDAI	HB20S	46023.000	0.0006847	55314.75	52748.10	0.0486586
2016	HONDA	HR-V	55758.000	0.0008296	87544.75	85020.61	0.0296886
2016	HYUNDAI	IX35	10226.000	0.0001521	113267.50	104237.42	0.0866299
2016	VW	JETTA	8654.002	0.0001288	83585.14	81209.87	0.0292485
2016	RENAULT	LOGAN	23706.999	0.0003527	48809.56	46602.91	0.0473500
2016	NISSAN	MARCH	18375.994	0.0002734	44870.36	43026.32	0.0428583
2016	FIAT	MOBI	28731.000	0.0004275	39023.00	37104.81	0.0516964
2016	GM	ONIX	153370.980	0.0022819	47001.71	44997.29	0.0445454
2016	FIAT	PALIO	63996.010	0.0009521	51307.85	49259.00	0.0415933
2016	GM	PRISMA	66336.998	0.0009870	51526.86	49456.80	0.0418558
2016	FIAT	PUNTO	7709.000	0.0001147	57782.55	55661.53	0.0381056
2016	JEEP	RENEGADE	51563.001	0.0007672	99382.43	95269.50	0.0431715
2016	RENAULT	SANDERO	63228.004	0.0009407	50618.43	47913.78	0.0564483
2016	NISSAN	SENTRA	6288.000	0.0000936	83199.83	80885.35	0.0286144
2016	FIAT	SIENA	33478.000	0.0004981	38661.00	36758.83	0.0517472
2016	GM	SPIN	22982.000	0.0003419	61227.88	59038.08	0.0370913
2016	GM	TRACKER	8558.000	0.0001273	79829.50	77488.76	0.0302075
2016	HYUNDAI	TUCSON	11203.000	0.0001667	69960.00	66437.62	0.0530179
2016	FIAT	UNO	34626.000	0.0005152	40471.44	38534.57	0.0502632
2016	NISSAN	VERSA	21896.996	0.0003258	54264.00	52270.37	0.0381407
2016	VW	VOYAGE	26074.004	0.0003879	50094.64	48135.64	0.0406974

Table 12: Custos Marginais e Markup BLP - 2016

No BLP, temos markups relativamente menores e mais homogêneos do que via Logit. A relação entre preços e markups é menos direta e linear: os modelos com maior markup são justamente o Renault Clio, o Hyundai ix35, o Renault Sandero, o Jeep Compass e GM Classic, que apresentam dispersão alta de preço. Apesar dos valores dos markups como um todo parecerem demasiadamente baixos, a relação não homogênea entre preços e markups parece mais realista do que a encontrada na Questão 7.

References

Berry, S., J. Levinsohn, and A. Pakes (1995): "Automobile Prices in Market Equilibrium," *Econometrica*, 63, 841–890.

Nevo, A. (2001): "Measuring market power in the ready-to-eat cereal industry," Econometrica, 69, 307–342.