Computational Semantics

Assignment 4: Compositional Semantics

1. Spatial relations

See images directory in .zip file.

2. Exercise 2.3.1

Vincent: λu.(u@VINCENT)

Mia: λy.(y@MIA)

Loves: $\lambda w.\lambda z.(\underline{w@\lambda x.LOVE}(z,x))$

-> Functional application LOVES, MIA

 $\lambda w.\lambda z.(\underline{w@\lambda x.LOVE}(z,x))@\lambda y.(y@MIA)$

-> β-conversion λw

 $\lambda z.(\lambda y.(y@MIA)@\lambda x.LOVE(z,x))$

—> β-conversion λy

 $\lambda z.(\lambda x.LOVE(z,x)@MIA))$

-> β-conversion λx

 $\lambda z.(LOVE(z,MIA))$

-> Function application LOVES MIA, VINCENT

λu.(u@VINCENT))@λz.LOVE(z,MIA)

-> β-conversion λu

λz.(LOVE(z,MIA)@VINCENT)

-> β-conversion λz

LOVE(VINCENT, MIA)

3. Compositional semantics DCG grammar

$$\begin{split} &n([\text{tree:}n(\text{owl}),\text{sem:}\text{lam}(X,\text{n_owl_1}(X))]) \dashrightarrow [\text{owl}]. \\ &n([\text{tree:}n(\text{eye}),\text{sem:}\text{lam}(X,\text{n_eye_1}(X))]) \dashrightarrow [\text{eye}]. \\ &n([\text{tree:}n(\text{desert}),\text{sem:}\text{lam}(X,\text{n_desert_1}(X))]) \dashrightarrow [\text{desert}]. \\ &\text{tv}([\text{tree:}\text{tv}(\text{standing}),\text{sem:}\text{lam}(Y,\text{sapp}(P,\text{lam}(Y,\text{s_supports}(Y,X))))])} \dashrightarrow [\text{standing,in}]. \\ &\text{iv}([\text{tree:}\text{iv}(\text{looking}),\text{sem:}\text{lam}(X,\text{some}(Y,\text{and}(\text{n_eye_1}(Y),\text{and}(\text{s_part_of}(Y,X),\text{a_open_1}(Y)))))])} \dashrightarrow [\text{looking}]. \\ &\text{mod}([\text{tree:}\text{mod}(\text{in}),\text{sem:}\text{lam}(X,\text{some}(Y,\text{and}(\text{n_owl_1}(Y),\text{and}(\text{s_part_of}(Y,X),\text{n_open_1}(Y),\text{a_looking})])} \\ &\text{mod}([\text{tree:}\text{mod}(\text{at}),\text{sem:}\text{lam}(X,\text{some}(Y,\text{and}(\text{n_eye_1}(Y),\text{and}(\text{s_part_of}(Y,X),\text{n_open_1}(Y),\text{n_looking})])})))))} \\ &\text{-->} [\text{at}]. \end{aligned}$$