Домашняя работа № 1

Автор: Минеева Екатерина

Задача 3

Опишем алгоритм решения задачи:

1. При помощи двочного возведения в степень вычисляем q^t . Делается это следующим образом: пусть $t=\overline{t_1t_2\dots t_h}$ — двоичная запись числа. Будем в цикле вычислять q^t . Инициализируем $q^t=id$. Далее в цикле $i=h,\ h-1,\dots,2,\ 1$:

$$q^t = egin{cases} (q^t)^2, & ext{ecfin} \ t_i = 0 \ q \cdot (q^t)^2, & ext{ecfin} \ t_i = 1 \end{cases}$$

Таким образом, после завершения работы цикла, будет вычислено ровно q^t . Заметим, что на каждой итерации цикла соврешается 1 или 2 перемножения перестановок, то есть $\underline{O}(k)$ действий. Итераций цикла всего t, поэтому общая сложность $\underline{O}(kt)$. После этого осталось только сравнить подстановки q^t и p, на что уходит $\underline{O}(k)$ операций.

Итого, сложность алгоритма $\underline{O}(kt) + \underline{O}(k) = \underline{O}(tk)$. Это полиномиально от размера входа, поскольку t – длина двоичной записи t, а k – размер перестановок q и p.