1

Assignment 8

D V K M Rishab AI20MTECH14004

Download the latex file and the pdf doc from

https://github.com/Rishab9991/EE5609/tree/master/ Assignments/Assignment8

QUESTION

(Q.No.27, UGC Dec 2015)

Let $A \neq I_n$ be an $n \times n$ matrix such that $A^2 = A$, where I_n is the Identity matrix of order n. Which of the following is false?

Options

- $1) (\mathbf{I_n} \mathbf{A})^2 = \mathbf{I_n} \mathbf{A}$
- 2) $Trace(\mathbf{A}) = Rank(\mathbf{A})$
- 3) $Rank(\mathbf{A}) + Rank(\mathbf{I_n} \mathbf{A}) = n$
- 4) The eigenvalues of A are each equal to 1

SOLUTION

Option 1	$(\mathbf{I_n} - \mathbf{A})^2 = \mathbf{I_n} - \mathbf{A}$
Assumptions	Made from the Question
	We know that $(\mathbf{A} - \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{B}^2 - \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}$ (A and B are matrices of same order)
Proof	$\implies (\mathbf{I_n} - \mathbf{A})^2 = \mathbf{I_n^2} + \mathbf{A^2} - \mathbf{I_n} \mathbf{A} - \mathbf{A} \mathbf{I_n}$
	$\implies (\mathbf{I_n} - \mathbf{A})^2 = \mathbf{I_n} + \mathbf{A} - 2\mathbf{A}$
	$\implies (\mathbf{I_n} - \mathbf{A})^2 = \mathbf{I_n} - \mathbf{A}$. Therefore, Option 1 is true.

TABLE I: Option 1

Option 2	$Trace(\mathbf{A}) = Rank(\mathbf{A})$	
Assumptions	Made from the Question	
	Using Rank Factorisation, $A = BC$ where B is a full column rank matrix of	
Proof	order $n \times r$ and C is a full row rank matrix of order $r \times n$ then	
	B has left inverse and C has right inverse. Since $A^2 = A$, $(BC)(BC) = BC$	
	\implies CBC = C \implies CB = I	
	Here, I is a $r \times r$ matrix \implies Trace(A) = Trace(BC) = Trace(CB) =	
	Trace(I) = r = Rank(A). Therefore, Option 2 is true.	

TABLE II: Option 2

Option 3	$Rank(\mathbf{A}) + Rank(\mathbf{I_n} - \mathbf{A}) = n$
Assumptions	Made from the Question
	Using Rank-Nullity Theorem, $Rank(A) + Rank(I_n - A) = n$
Proof	Therefore, Option 3 is true.

TABLE III: Option 3

Option 4	The eigenvalues of A are each equal to 1
Assumptions	Let $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
Proof by Counter Example	\Rightarrow $ \mathbf{A} = 0 \Rightarrow \lambda_1 \lambda_2 = 0$ which means that either λ_1 or λ_2 are $0 \Rightarrow$ Each eigenvalue need not be 1 Therefore, Option 4 is the only false option.

TABLE IV: Option 4