Task-01

Create a bar chart or histogram to visualize the distribution of a categorical or continuous variable, such as the distribution of ages or genders in a population.

Dataset:- https://www.kaggle.com/datasets/fahmidachowdhury/customer-segmentation-data-for-marketing-analysis/data

This dataset contains simulated customer data that can be used for segmentation analysis. It includes demographic and behavioral information about customers, which can help in identifying distinct segments within the customer base. This can be particularly useful for targeted marketing strategies, improving customer satisfaction, and increasing sales.

#Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

#Read the dataset
df = pd.read_csv('/content/customer_segmentation_data.csv')
df

₹		id	age	gender	income	spending_score	membership_years	purchase_frequency
	0	1	38	Female	99342	90	3	24
	1	2	21	Female	78852	60	2	42
	2	3	60	Female	126573	30	2	28
	3	4	40	Other	47099	74	9	5
	4	5	65	Female	140621	21	3	25
	995	996	57	Male	112170	57	6	1
	996	997	23	Other	65337	76	10	23
	997	998	23	Male	113097	40	5	42
	998	999	22	Female	113695	63	7	44
	999	1000	36	Female	90420	7	2	31
	1000	V (اللحم ال	mno				•

df.head()

df.shape $\#Total\ no.\ of\ rows\ \&\ cols$

→ (1000, 9)

df.info() #summary of df

Data	corumns (corar a coru	11115):							
#	Column	Non-Null Count	Dtype						
0	id	1000 non-null	int64						
1	age	1000 non-null	int64						
2	gender	1000 non-null	object						
3	income	1000 non-null	int64						
4	spending_score	1000 non-null	int64						
5	membership_years	1000 non-null	int64						
6	purchase_frequency	1000 non-null	int64						
7	preferred_category	1000 non-null	object						
8	last_purchase_amount	1000 non-null	float64						
diameter (7) - 104 (4/4) diameter (4/5) diameter (4/5)									

dtypes: float64(1), int64(6), object(2)

```
memory usage: 70.4+ KB
```

df.isnull().sum() #check for null values

```
→ id
                             0
    age
    gender
                             0
    income
                             0
    spending_score
                            0
    membership_years
                            a
    purchase_frequency
                            0
    preferred_category
    last_purchase_amount
                            0
    dtype: int64
```

There are no missing values in the dataset, no duplicate values as well.

```
{\tt df.duplicated().sum()} \ {\tt \#check} \ {\tt for} \ {\tt duplicate} \ {\tt values}
```


Categorical Variables dataset are:-

1.gender: Represents categories (e.g., Male, Female).

2.preferred_category: Represents categories of products (e.g., Electronics, Clothing, Home & Garden, Sports, Groceries).

Continuous Variables

1.income: Represents a continuous measure of income.

2.spending_score: Represents a continuous score based on spending behavior.

3.last_purchase_amount: Represents a continuous measure of the amount spent in the last purchase.

```
import seaborn as sns  #Histogram
plt.figure(figsize=(7, 5))
sns.histplot(df['age'], bins=10)
plt.title('Distribution of Age')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```



```
plt.figure(figsize=(7, 5)) #Hist
sns.histplot(df['income'], bins=10)
plt.title('Distribution of Income')
plt.xlabel('Income')
plt.ylabel('Frequency')
plt.show()
```



```
plt.figure(figsize=(7, 5))  #Hist
sns.histplot(df['spending_score'], bins=10)
plt.title('Distribution of Spending Score')
plt.xlabel('Spending Score')
plt.ylabel('Frequency')
plt.show()
```



```
#Bar Chart
plt.figure(figsize=(7, 5))
sns.countplot(x='gender', data=df)
plt.title('Distribution of Gender')
plt.xlabel('Gender')
plt.ylabel('Count')
plt.show()
```



```
#Bar Chart
plt.figure(figsize=(7, 5))
sns.countplot(x='preferred_category', data=df)
plt.title('Distribution of Preferred Category')
plt.xlabel('Preferred Category')
plt.ylabel('Count')
plt.show()
```



```
sns.histplot(x='income', data=df, hue='gender')
plt.title('Distribution of Income')
plt.xlabel('Income')
plt.ylabel('Frequency')
plt.show()
```



```
sns.histplot(x='last_purchase_amount', data=df, hue='preferred_category')
plt.title('Distribution of last_purchase_amount')
plt.xlabel('last_purchase_amount')
plt.ylabel('Frequency')
plt.show()
```

