AMS 261 - Probability Theory (Spring 2005) Instructor: A. Kottas

- · Characterization of Borel subsets of R
- · Borel subsets of R+

Borel subsets of R

Consider the topological space (R, σ) , with σ the collection of open sets in R and $B = \sigma(\sigma)$ the Borel σ -field (in R). Also consider $(R, \overline{\sigma})$, where $R = R \cup \{-\infty, \infty\}$ is the two-point compactification of R and $\overline{\sigma}$ is the collection of open sets in R, consisting of the open sets in R, sets of the form $[-\infty, \times)$ for some $\times \in R$, sets of the form $(\times, \infty]$ for some $\times \in R$, and unions of sets of these types. Then, $\overline{B} = \sigma(\overline{\sigma})$ is the Borel σ -field (in \overline{R}).

In order to characterize the sets in B through set in B we'll need the following important result:

Lemma: Let & be a class of subsets of (2), ACQ and denote by $B \cap A$ the class $EB \cap A: B \in GF$. Also let $\sigma(B)$ be the σ -field generated by B. Then $\sigma_A(B \cap A) = \sigma(B) \cap A$ (where on the left hand side A rather than Q is regarded as the entire space).

First of all we must show that $o(6) \cap A = 260 A = 660$ of Proof Subsets of A. 6(6) $\cap A$ obviously Jonus a collection of subsets of A. • Since e ∈ o(e) ⇒ = nA = A ∈ o(e) nA (first axiom) • Consider D∈ σ(6) ∩A ⇒ D= G∩A, G∈ σ(6) The complement of D with respect to A is $D^c = A \sim (G \cap A) = A \cap (G \cap A)^c$ (now the complement is w.r.t. 2) = A M (GCUAC) $= (A \cap G^{c}) \cup (A \cap A^{c}) \qquad (A \cap A^{c} = \phi)$ = GC NA Since GEO(4) => GCEO(4) => (GCNA) E O(4) NA ⇒ DC ∈ o(6) ∩A. (second axiom) • Finally consider D1, D2, --- € 5(€) ∩ A > Di= Gi (A), with Gie o(4); i=1,2,--Then $UDi = U(Gi \cap A)$ $= \left(\overset{\circ}{U} \text{Gi} \right) \cap A \quad \in \quad \sigma(\mathcal{E}) \cap A$ Since $\overset{\circ}{U} \text{Gi} \in \sigma(\mathcal{E})$, $\sigma(\mathcal{E})$ being a σ -field. (third axiom).

We have $G \subseteq \sigma(G) \Rightarrow G \cap A \subseteq \sigma(G) \cap A$ (both collections of) $\Rightarrow \sigma_A(G \cap A) \subseteq \sigma_A(\sigma(G) \cap A) = \sigma(G) \cap A$ Since we have seen that $\sigma(G) \cap A$ is a σ -field of subsets of A.

Thus it remains to show that $\sigma(\mathcal{C}) \cap A \subseteq \sigma_A(\mathcal{C} \cap A)$ to establish the result. In other words we must prove that $G \cap A \in \sigma_A(\mathcal{C} \cap A)$, for any $G \in \sigma(\mathcal{C})$. Following the "good sets" idea define $\mathcal{H} = \{G \in \sigma(\mathcal{C}) \mid G \cap A \in \sigma_A(\mathcal{C} \cap A)\} \subseteq \sigma(\mathcal{C})$

H is a collection of subsets of Q. We want to show that H is a 6-field.

• A=2 $\cap A$ $\in \sigma_A(C \cap A)$, since $\sigma_A(C \cap A)$ is a σ -field of subsets of A , so $Q \in H$. (First axiom)

Consider GEH => GNA & OA (40A)

⇒ (GNA) € € 5A(GNA) (complement w.r.t. A).

 \Rightarrow Ar(GNA)=An(GNA)^c (>> -> 2)

= An (GcuAc)

= (Angc)U (Anac)

= GCNA E OA (GNA)

⇒ GC ∈ H. (second axiom)

Finally consider G1,G2,--- ∈ 7 ⇒ G2 NA ∈ 5A (GNA)

Jor i=1,2,--

Then Ü(GinA) & OA (COA)

→ (ÜGi) ΛA ∈ σA (GNA) → ÜGi ∈ H. (Haird axiom)

Now if BEC >> BNA & CNA & GA (CONA)

⇒ Be H

So $C \subseteq \mathcal{H} \rightarrow \sigma(C) \subseteq \sigma(\mathcal{H}) = \mathcal{H}$ (since \mathcal{H} is a σ -field) and since from the definition $\mathcal{H} \subseteq \sigma(C)$, we have that $\mathcal{H} = \sigma(C)$, hence for any $G \in \sigma(C)$, $G \cap A \in \sigma_A(C \cap A)$,

which completes the proof.

Now we will apply the lemma with $Q = \mathbb{R}$, $C = \overline{\sigma}$ and $A = \mathbb{R}$. From the form of the open sets in $\overline{\mathbb{R}}$, we have that $\overline{\sigma} \cap \mathbb{R} = \{ \overline{\sigma} \cap \mathbb{R} : \overline{\sigma} \in \overline{\sigma} \} = \overline{\sigma}$. Hence $\sigma_{\mathbb{R}}(\overline{\sigma} \cap \mathbb{R}) = \sigma(\overline{\sigma}) \cap \mathbb{R} \implies \sigma_{\mathbb{R}}(\overline{\sigma}) = \overline{\mathbb{R}} \cap \mathbb{R}$

 $\Rightarrow B = \overline{B} \cap \mathbb{R} = \{ \overline{B} \cap \mathbb{R} : \overline{B} \in \overline{B} \}.$

Thus a Borel set B in R is equal to the intersection of a Borel set B in R and R.

Now since B = R = R U \(\frac{2}{2} - \omega \, , we have

B=(BIR)U(BOR)

=(BnRc)UB

(complement w.r.t. R)

 $= (\overline{B} \cap \{-\infty, \infty\}) \cup B$

The intersection B 1 {-00,00} can be:

if $B \subset \mathbb{R}$, or $\{-\infty\}$ if, for example, $B = [-\infty, x)$, for some $x \in \mathbb{R}$, or $\{\infty\}$ if, for example, $B = (x, \infty]$, for some $x \in \mathbb{R}$ or finally $\{-\infty, \infty\}$ if, for example, $B = [-\infty, x) \cup (y, \infty]$, for $x, y \in \mathbb{R}$.

Hence, in conclusion, a Borel subset of \mathbb{R} is characterized as the union of a Borel subset of \mathbb{R} and one of the Four subsets of $\{-\infty,\infty\}$.

Borel subsets of R+

Topological space $(R^+, \bar{\sigma}^+)$, where $R^+ = R^+ \cup \{\infty\}$ and $\bar{\sigma}^+$ the collection of open sets in R^+ consisting of the open sets in R^+ (i.e., sets of the form (a,b), a>0, [0,b) and unions of such), sets of the form $(a,\infty]$, for some a>0 and unions of sets of these types. The Borel σ -field is $B^+ = \sigma(\bar{\sigma}^+)$

Now apply the lemma with $Q = \overline{R}^+$, $G = \overline{O}^+$ and $A = \overline{R}^+$. We have $\overline{O}^+ \cap \overline{R}^+ = \{\overline{O}^+ \cap \overline{R}^+ : \overline{O}^+ \in \overline{O}^+\} = O^+$ the collection of open sets in \overline{R}^+ . Then $\sigma_{R}^+ (\overline{O}^+ \cap \overline{R}^+) = \sigma(\overline{O}^+) \cap \overline{R}^+$

⇒ $\sigma_{R^+}(0^+) = B^+ \cap R^+$ ⇒ $B^+ = B^+ \cap R^+$ with B^+ the Borel σ -field of R^+ which can be described as the collection of the Borel subsets of R that contain only nonnegative numbers. To see this we can apply again the lemma with O = R, O = O and $O = R^+$ (now $O \cap R^+ = O^+$) to get $O = B \cap R^+ = O \cap R^+ = O \cap R^+$

Returning to the relation $B^+ = \overline{B}^+ \cap R^+$, we can write a Borel subset \overline{B}^+ of \overline{R}^+ in the form $\overline{B}^+ = (\overline{B}^+ \cap R^+) \cup (\overline{B}^+ \cap R^+)$ $= (\overline{B}^+ \cap (R^+)^c) \cup \overline{B}^+ \qquad \text{(complement w.r.t. } \overline{R}^+)$ $= (\overline{B}^+ \cap \{\infty\}^c) \cup \overline{B}^+$ $= \begin{cases} \phi \cup \overline{B}^+ = \overline{B}^+ \\ B^+ \cup \{\infty\}^c \end{cases}$

Hence a Borel subset of R+ is either equal to a Borel subset of R+ or to the union of a Borel subset of R+ and 2003.