

Treinamento RBF (revisão) Problemas: ■ Dadas as funções de base radial, como determinar o melhor vetor de pesos w? ■ Como determinar bons parâmetros para as funções de base radial (centros e aberturas)? ■ reduzír no. de funções para dada precisão, ou ■ aumentar precisão para dado no. de funções

Treinamento RBF (revisão)

- Problemas:
 - Dadas as funções de base radial, como determinar o melhor vetor de pesos w ?
 - Como determinar bons parâmetros para as funções de base radial (centros e aberturas)?
 - reduzir no. de funções para dada precisão, ou
 - aumentar precisão para dado no. de funções

7

Determinação das Funções Radiais

- Método 1 (Heurística Simples):
 - Distribuir as funções de maneira homogênea sobre o domínio das variáveis de entrada
 - Por exemplo, se a rede possui duas entradas, x₁ e x₂, que assumem valores no intervalo [-10,+10], então o domínio das funções são todos os pontos (x₁,x₂) tais que x₁ ∈ [-10,+10] e x₂ ∈ [-10,+10]

Determinação das Funções Radiais

- Método 1 (cont.):
 - Os centros das funções com relação a cada variável (dimensão) podem ser distribuídos uniformemente (eqüidistantes) ao longo do domínio daquela var.
 - As aberturas das funções (desvios padrão) com relação a cada variável podem ser feitas iguais à distância entre dois centros consecutivos.

Determinação das Funções Radiais

- Método 2 (back-propagation):
 - Análogo ao treinamento de MLPs
 - A cada iteração ajusta-se o conjunto de parâmetros (centros e aberturas das funções) no sentido de minimizar o erro entre a saída da rede e a saída desejada para um conjunto de padrões
 - Usualmente tenta-se minimizar: $J = \frac{1}{N} \sum_{k=1}^{N} (y(\mathbf{x}_k) y_{RBF}(\mathbf{x}_k))^2$
 - Demanda o cálculo do gradiente (derivadas) de J com relação aos parâmetros...
 - Usualmente aplica-se para refinar o resultado inicial obtido com o método 1 ou método 3 (visto depois)

Exemplo

- Problema:
 - Aproximar a função f(x) = sen(2x) / exp(x/5)
- N = 21 padrões de entrada e saída (k = 1, ..., 21):

Padrão E/S	X	f(x)
1	0	0
2	0.5	0.7614
3	1.0	0.7445
4	1.5	0.1045
5	2.0	-0.5073
6	2.5	-0.5816
7	3.0	-0.1533
8	3.5	0.3262
9	4.0	0.4445
10	4.5	0.1676

11	5.0	-0.2001
12	5.5	-0.3329
13	6.0	-0.1616
14	6.5	0.1145
15	7.0	0.2443
16	7.5	0.1451
17	8.0	-0.0581
18	8.5	-0.1756
19	9.0	-0.1241
20	9.5	0.0224
21	10.0	0.1236
	77	

Exemplo (comparação)

Notas:

- A heurística de distribuição homogênea das funções radiais (método 1) foi muito eficaz nesse exemplo agindo sozinha, mas não necessariamente é sempre assim
- Embora a rede com 8 neurônios refinados com backpropagation tenha uma quantidade de parâmetros maior durante a fase de **treinamento**, é um modelo mais simples e compacto do que aquele com 11 neurônios (para **utilização**).
- A rede com 11 neurônios poderia ficar ainda mais precisa se seus parâmetros também fossem refinados com backpropagation

23

Dicas Básicas

- Usualmente utiliza-se apenas uma parcela dos padrões disponíveis para treinar a rede e reserva-se uma outra parcela para teste ou validação
- Uma boa heurística para saber quando interromper o treinamento (sintonia fina) dos parâmetros via backpropagation é observar os erros de ambas as parcelas:

A mesma idéia pode ser usada para determinar quando parar de acrescentar neurônios à rede...

- Uma outra boa dica é normalizar os padrões de E/S de forma que cada variável tenha valores entre -1 e +1
 - Isso minimiza problemas numéricos durante o treinamento

25

Determinação das Funções Radiais

- ♦ Método 3 (Clustering):
 - Agrupar os padrões em grupos (clusters) de padrões mais similares entre si do que aos demais padrões.
 - Associar um neurônio (função radial) para cada grupo de padrões, otimizando a representatividade de cada neurônio / função.
 - Idéia é que cada neurônio responda de forma apropriada e similar a um determinado conjunto de padrões similares
 - Tipicamente (sub)classes em problemas de classificação

Determinação das Funções Radiais

- ♦ Método 3 (cont.):
 - Um dos algoritmos de agrupamento mais populares é o K-means, que agrupa N padrões em K grupos:
 - 1. Escolher K protótipos iniciais dos grupos
 - padrões ou pontos quaisquer do domínio de entrada
 - 2. Atribuir cada um dos N padrões a um dos K grupos, de acordo com a maior proximidade aos protótipos dos grupos
 - 3. Recalcular os protótipos como **centróides** (ponto médio) dos padrões pertencentes àquele grupo
 - 4. Parar se não houver mais mudanças, ou retornar ao passo 2

Determinação das Funções Radiais Método 3 (cont.): Executa-se K-means com K igual ao número m de neurônios (funções radiais) desejado na rede RBF Toma-se o protótipo (centróide) de cada grupo resultante como centro de uma função radial cada componente do centróide é o centro da função radial correspondente na respectiva variável Toma-se os desvios padrão de cada grupo, em cada variável, como o desvio padrão da função radial correspondente na respectiva variável forma simplificada...

Método 3 (Exemplo)

- ♦ K-means com K = 3 produziria tipicamente os protótipos (1.5 , 1.5), (8.5 , 8.5), (1.5 , 14.5)
- O terceiro grupo, por exemplo, possui desvios padrão em x₁ e em x₂ respectivamente iguais a:

$$\sigma_{1} = \sqrt{\frac{(1-1.5)^{2} + (2-1.5)^{2} + (1-1.5)^{2} + (2-1.5)^{2}}{4}} = 0.5$$

$$\sigma_{2} = \sqrt{\frac{(15-14.5)^{2} + (15-1.5)^{2} + (14-14.5)^{2} + (14-14.5)^{2}}{4}} = 0.5$$

Logo, a função radial (Gaussiana) correspondente pode ser definida como:

$$h_3(x_1, x_2) = \exp\left(-\frac{(x_1 - 1.5)^2}{0.5^2}\right) \times \exp\left(-\frac{(x_2 - 14.5)^2}{0.5^2}\right)$$

Bibliografia

- Braga, et al., "Redes Neurais Artificiais:
 Teoria e Aplicações", LTC, 2ª Edição, 2007
- ♦ Haykin, "Neural Networks", Prentice Hall, 2nd Edition, 1999
- Kovács, "Redes Neurais Artificiais:
 Fundamentos e Aplicações", Collegium
 Cognitio, 2ª Edição, 1996