Chapter 7 Turing Machines

(Solutions/Hints)

7.1 Design a Turing machine M over $\{0, 1\}$ such that $L(M) = \{w \mid w \text{ contains equal numbers 0s and 1s}\}$.

Sol.

	0	1	X	β
\rightarrow q ₀	(q_1, x, R)	(q_2, x, R)	(q_0, x, R)	(q_f, β, L)
q_1	$(q_1, 0, R)$	(q_3, x, L)		
q_2	(q_4, x, L)	$(q_1, 1, R)$		
q_3		$(q_3, 1, L)$	(q_3, x, L)	(q_0, β, R)
q ₄	$(q_4, 0, L)$		(q ₄ , x, L)	(q_0, β, R)
*q _f				

7.2 Design a Turing machine M to compute $\sum_{k=1}^{n} k$ for a given positive integer n.

Sol.

Input Tape

β	ſ	3	β	0	0	0	1	β	β	β	β	β	β	β	β	β

Output Tape

Transition Table

	0	1	β	Х
$\rightarrow q_0$	(q_l, x, R)			
q_1	$(q_1, 0, R)$	(q ₂ , 1, R)		
q_2	$(q_2, 0, R)$		$(q_3, 0, L)$	
q_3	$(q_3, 0, L)$	(q ₄ , 1, L)		
q ₄	(q4, 0, L)			(q_5, x, R)
q_5	(q_l, x, R)	(q ₆ , 1, L)		
q_6			(q_7, β, R)	(q_6, x, L)
q_7		$(q_{f}, 1, R)$		(q_8, β, R)
q_8		(q ₉ , 1, L)		$(q_8,0,R)$
q_9	(q ₉ , 0, L)		$(q_0, 0, R)$	
*q _f				

7.3 Design a Turing machine M over $\{0, 1\}$ such that $L(M) = \{0^n 1^{2n} \mid n \ge 1\}$.

	0	1	β	X
$\rightarrow q_0$	(q_l, x, R)			
q_l	$(q_1, 0, R)$	(q ₂ , 1, R)		
q_2		(q ₂ , 1, R)	(q ₃ , β, L)	
q_3		(q_4, β, L)		
q ₄		(q_5, β, L)		
q_5	$(q_6, 0, L)$	(q ₅ , 1, L)		(q_f, x, R)
q ₆	$(q_6, 0, L)$			(q_0, x, R)
*q _f				

7.4 Design a Turing machine *M* over $\{0, 1\}$ such that $L(M) = \{0^{2n}1^n \mid n \ge 1\}$.

Sol.

	0	1	β	X
$\rightarrow q_0$	(q_1, x, R)			
q_l	(q_2, x, R)			
q_2	$(q_2, 0, R)$	(q ₃ , 1, R)		
q_3		(q ₃ , 1, R)	(q ₄ , β, L)	
q_4		(q ₅ , β, L)		
q_5	$(q_6, 0, L)$	(q ₅ , 1, L)		
q_6	$(q_6, 0, L)$		(q _f , β, L)	(q_0, x, R)
*q _f				

7.5 Design a Turing machine M over $\{0, 1, 2\}$ such that $L(M) = \{0^n 1^{2n} 2^n \mid n \ge 1\}$. Sol.

	0	1	2	В	X
$\rightarrow q_0$	(q_l, β, R)				
q_1	$(q_1, 0, R)$	(q ₂ , x, R)			
q_2		(q_3, x, R)			
q_3		(q ₄ , 1, R)			
q ₄			$(q_5, 2, R)$		
q_5			$(q_5, 2, R)$	(q_6, β, L)	
q ₆			(q_7, β, L)		
q_7		(q ₈ , 1, L)	(q ₇ , 2, L)		
q_8		(q ₈ , 1, L)			(q ₉ , x , L)

q_9	$(q_{10}, 0, L)$			(q ₉ , x, L)
q_{10}	$(q_{10}, 0, L)$		(q_{11}, β, R)	
q_{11}	(q_1, β, R)			(q_{12}, x, R)
q ₁₂			(q_f, β, R)	(q_{12}, x, R)
*q _f				

7.6 Design a Turing machine *M* over $\{0, 1, 2, 3\}$ such that $L(M) = \{0^{2n}1^n2^n3^{2n} \mid n \ge 1\}$. Sol.

	0	1	2	3	В	X	у
$\rightarrow q_0$	(q_l, β, R)					(q_{12}, x, R)	
q_1	(q_2, β, R)						
q_2	$(q_2, 0, R)$	(q_3, x, R)				(q_2, x, R)	
q_3		$(q_3, 1, R)$	(q ₄ , y, R)				(q ₃ , y, R)
q_4			(q ₄ , 2, R)	$(q_5, 3, R)$			
q_5				$(q_5, 3, R)$	(q_6, β, L)		
q_6				(q_7, β, L)			
\mathbf{q}_7				(q_8, β, L)			
q_8			$(q_9, 2, L)$	$(q_8, 3, L)$			
q_9		$(q_{10}, 1, L)$	$(q_9, 2, L)$				
q_{10}	$(q_{11}, 0, L)$	$(q_{10}, 1, L)$					
q_{11}	$(q_{11}, 0, L)$				(q ₀ , β, R)		
q_{12}	(q_{12}, x, R)						(q_{13}, y, R)
q_{13}					(q_f, β, L)		(q_{13}, y, R)
*q _f							

7.7 Design a Post machine M over $\{a, b\}$ such that $L(M) = \{0^n 1^n 0^n \mid n \ge 1\}$.

Sol. The language L accepted by the post machine is $L=\{010,\ 001100,\ 000111000,\ \ldots\}$

Let the string be 000111000. The initial state of the Post machine is

Que ue front

The algorithm for the design of Post machine is as follow:

- 1. Start in the state q_0 with the r/w head pointing to first symbol of the input string. The first symbol has to be 0. Read it and remove it from the queue front. Change the state to q_1 . Add nothing to the rear of queue. The corresponding transition is $(q_0, 0) \vdash (q_1, \epsilon, \epsilon)$
- 2. In the state q_1 read subsequent 0s of the input string without changing state. Remove them from queue front and add them to the rear of queue. The corresponding transition is

$$(q_1, 0) \vdash (q_1, \epsilon, 0)$$

- 3. In the state q_1 when a symbol 1 is encountered change the state to q_2 . Remove 1 from queue front and add nothing to the rear of queue. The corresponding transition is $(q_1, 1) \vdash (q_2, \epsilon, \epsilon)$
- 4. In the state q_2 read subsequent 1s of the input string without changing state. Remove them from queue front and add them to the rear of queue. The corresponding transition is

$$(q_2, 1) \vdash (q_2, \epsilon, 1)$$

- 5. In the state q_2 when a symbol 0 is encountered change the state to q_3 . Remove 0 from queue front and add nothing to the rear of queue. The corresponding transition is $(q_2, 0) \vdash (q_3, \epsilon, \epsilon)$
- 6. In the state q_3 read subsequent 0s of the input string without changing state. Remove them from queue front and add them to the rear of queue. The corresponding transition is

$$(q_3, 0) \vdash (q_3, \epsilon, 0)$$

7. In the state q_3 when a symbol Z_0 is encountered change the state to q_4 . Remove Z_0 from queue front and add it to the rear of queue. The corresponding transition is $(q_3, Z_0) \models (q_4, \epsilon, Z_0)$

(This completes one cycle of matching).

8. The behavior of q_4 is same as q_0 . The name change has been done to ensure one that null string is not accepted by the machine. If a 0 is encountered in q_4 then new cycle of matching starts. If Z_0 is encountered then the string is accepted and state changes to the final state q_f . Also the queue becomes empty, The corresponding transitions are

$$(q_4, 0) \vdash (q_1, \epsilon, \epsilon)$$

 $(q_4, Z_0) \vdash (q_f, \epsilon, \epsilon)$

7.8 Design a two-track Turing machine M to compute $\sum_{k=1}^{n} k$ for a given positive integer n.

Sol.

Initial tape: k number of 0s followed by 1.

В	β	β	β	β	β	β	β	β	β	β	β	β	β	β	β	β
В	β	β	0	0	0	1	β	β	β	β	β	β	β	β	β	β

Final Tape:

В	β	β	V	1	1	β	β	β	β	β	β	β	β	β	β	β
В	β	β	0	0	0	1	0	0	0	0	0	0	β	β	β	β

Put * mark on the 0s on LHS of 1 (one by one) and copy them on the RHS of 1. Corresponding transitions are

 $\begin{array}{l} ([q_0,\beta],[\beta,0]) \\ ([q_1,\beta],[\beta,0]) \\ ([q_1,\beta],[\beta,0]) \\ ([q_1,\beta],[\beta,1]) \\ ([q_2,\beta],[\beta,1]) \\ ([q_2,\beta],[\beta,\beta]) \\ ([q_2,\beta],[\beta,0]) \\ ([q_2,\beta],[\beta,0]) \\ ([q_3,\beta],[\beta,0]) \\ ([q_3,\beta],[\beta,0]) \\ ([q_3,\beta],[\beta,1]) \\ ([q_4,\beta],[\beta,1]) \\ ([q_4,\beta],[\beta,0]) \\ ([q_5,\beta],[\beta,0]) \\ ([q_5,\beta],[\beta,0]) \\ ([q_5,\beta],[\beta,0]) \\ ([q_5,\beta],[\beta,0]) \\ ([q_5,\beta],[\beta,0]) \\ ([q_6,\beta],[\beta,0]) \\ ([q_6,\beta],[\beta,0]) \\ ([q_6,\beta],[\alpha,0]) \\ ([q_6,\beta],[\alpha,0]) \\ ([q_6,\beta],[\alpha,0]) \\ ([q_6,\beta],[\alpha,0]) \\ \end{array}$

This copies number k on RHS of 1. Put a check mark \sqrt{a} bove the left most 0 to reduce k to k-1. Repeat the above process to copy k-1.

A check mark is encountered just next to left 1 when all numbers are copied to RHS of 1

 $([q_4, \beta], [[\sqrt{0}, 0]) \mid ([q_f, \beta], [\sqrt{0}, 0], L)$

7.9 Design a Turing machine *M* to find the predecessor of a positive integer. Sol.

	0	β
$\rightarrow q_0$	(q_1, β, R)	
*q ₁		

7.10 Design a Turing machine M to find the successor of a positive integer. Sol.

	0	β
$\rightarrow q_0$	$(q_0, 0, R)$	$(q_1, 0, R)$
*q1		

7.11 Design a Turing machine *M* over $\{a, b\}$ such that $L(M) = \{x \mid \text{length of } x \text{ is odd}\}$.

Sol.

	a	b	β
$\rightarrow q_0$	(q_1, a, R)	(q_l, b, R)	
*q ₁	(q_0, a, R)	(q ₀ , b, R)	