Probabilidad y Estadística Clase 1

Cronograma

Clase 1	Distribuciones útiles. Transf de v.a.: método de la transformada inversa y eventos equivalentes
Clase 2	Transf. de v.a: método del Jacobiano V.a. condicionadas
Clase 3	Esperanza condicional ECM y estimadores de cuadrados mínimos
Clase 4	Estimación Bayesiana Estadísticos y Estimadores puntuales. Estimador de máxima verosimilitud
Clase 5	Estimación no paramétrica Intervalos de confianza
Clase 6	Intervalos de confianza Test de hipótesis
Clase 7	Repaso
Clase 8	Examen

Algunas distribuciones útiles

Algunas variables importantes

• Uniforme: todos los puntos son equiprobables. $X \sim \mathcal{U}(a,b)$

$$f_X(x) = rac{1}{b-a} \mathbf{I}\{a < x < b\}$$

• **Exponencial:** sirve para modelar tiempos hasta eventos que no tienen memoria. Por ejemplo fallas casuales. $X \sim \mathcal{E}(\lambda)$

$$f_X(x) = \lambda e^{-\lambda x} \mathbf{I}\{x>0\}$$

• Normal (gaussiana). $X \sim \mathcal{N}(\mu, \sigma^2)$

$$f_X(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}}$$

Propiedades:
$$X \sim \mathcal{N}(\mu_X, \sigma_X^2), \ Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2) \rightarrow aX + bY \sim \mathcal{N}(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$$

$$X \sim \mathcal{N}(\mu, \sigma^2) \rightarrow \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) \text{ (estandarización)}$$

Sea X una v.a con distribución normal estándar. Hallar la probabilidad de que

- 1. X>1
- 2. X<-1
- 3. |X| <2
- 4. Hallar los cuantiles 0.1 y 0.9

Sea además $Y \sim N(2,9)$

1. Hallar P(2X+Y < 5)

El tiempo (en minutos) entre llamadas a un call center tiene una distribución exponencial de parámetro 1/5.

- Calcular la probabilidad de que la primer llamada llegue despúes de 2 minutos
- 2. Calcular la probabilidad de que la probabilidad de que llegue despúes de los 5 minutos, si se sabe que en los primeros 3 minutos no se recibieron llamados

Distribución normal multivariada

Función de densidad conjunta

Sea $\underline{X} = [X_1, \dots, X_n]^T$ un vector aleatorio continuo, diremos que X tiene distribución normal multivariada, si su función de densidad conjunta es de la forma

$$f_{\underline{X}}(\underline{x}) = rac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}e^{-rac{1}{2}(\underline{x}-\underline{\mu})^T\Sigma^{-1}(\underline{x}-\underline{\mu})}$$

donde $\underline{\mu}$ se corresponde con la media de la v.a. y Σ Es la matriz de covarianza .

Notación: $\underline{X} \sim \mathcal{N}(\underline{\mu}, \Sigma)$

Distribuciones marginales

$$oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, \Sigma) \Rightarrow X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$oldsymbol{\mu} = [\mu_1, \dots, \mu_n]^T$$

$$\Sigma = egin{bmatrix} \sigma_1^2 & cov(X_1,X_2) & \ldots & cov(X_1,X_n) \ cov(X_2,X_1) & \sigma_2^2 & \ldots & cov(X_2,X_n) \ dots & dots & \ddots & dots \ cov(X_n,X_1) & cov(X_n,X_2) & \ldots & \sigma_n^2 \end{bmatrix}$$

Sean X,Y dos v.a. Con función de densidad conjunta

$$f_{X,Y}(x,y)=rac{1}{2\pi0.6}e^{-rac{1}{2}[\,x\,\,\,\,\,\,y\,]iggl[egin{array}{ccc} 1 & -0.8 \ -0.8 & 1 \end{array}iggr]^{-1}iggl[egin{array}{ccc} x \ y \end{array}iggr]$$

- Calcular E[X], E[Y], var(X), var(Y), y cov(X,Y)
- 2. Hallar las densidades marginales de X e Y
- 3. Calcular P(X<2, Y<-1)

Transformaciones de variables

Método de la transformada inversa

El objetivo es poder generar una variable aleatoria con una cierta distribución deseada a partir de una que "tengo a mano".

Es decir, si tengo una función de distribución *F*, y quiero construir una variable aleatoria cuya función de distribución coincida con *F*.

Método de la transformada inversa

Sea $F: \mathbb{R} \to [0,1]$ una función de distribución, existe una variable aleatoria

$$X/F(x) = \mathbb{P}(X \le x)$$

Definimos la inversa generalizada como:

$$F_X^{-1}(u) = \min\{x \in \mathbb{R} : F_X(x) \geq u\}, \ u \in (0,1)$$

Teorema: Si F es una función que cumple que

- Es no decreciente
- $ullet \lim_{x o -\infty} F(x) = 0 ext{ y } \lim_{x o \infty} F(x) = 1$
- Es continua a derecha

Entonces, si defino $X = F^{-1}(U)$, con $U \sim \mathcal{U}(0,1)$ X es una v.a. con función de distribución F

Sea X el resultado de arrojar un dado equilibrado. A partir de 1000 realizaciones de una v.a. uniforme en el intervalo (0,1), simular 1000 realizaciones de X.

A partir de 1000 observaciones de una v.a. uniforme en el intervalo (0,1), simular 1000 valores de la variable definida en el ejercicio 2.

Función de variable aleatoria

Motivación

En este caso, lo que conocemos es la relación entre variables aleatorias (transformación), pero sólo conocemos la distribución de una ellas.

Definición

Sea X una v.a. con función de distribución $F_x(x)$, y sea Y=g(X) una función de la variable aleatoria X. El objetivo es hallar la función de Y.

Esto puede hacerse considerando que $F_{\gamma}(y) = P(Y < y) = P(g(X) < y)$, y desarrollando la probabilidad en términos de la v.a. X. A este camino se lo llama **método de sucesos equivalentes.**

Sea $X\sim U(-1,1)$, y sea $Y=X^2$. Hallar la función de densidad de Y

Sean X e Y dos v.a. con distribución de Poisson de parámetros μ y λ respectivamente. Hallar la función de probabilidad de W = X + Y.

$$X\sim \mathcal{P}oi(\mu)
ightarrow p_X(x)=rac{\mu^x}{x!}e^{-\mu}, \ x\in \mathbb{N}_0$$

Sean X,Y \sim U(0,1) e independientes. Hallar la función de densidad de W = X+Y

Bibliografía

Bibliografía

"Mathematical Statistics with Applications", Dennis D. Wackerly, William Mendenhall III, Richard L. Scheaffer.