Apunte Único: Álgebra Lineal Computacional - Práctica 5

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 02/06/25 @ 13:26

Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- © Ejercicios de la guía:

1.	4.	7.	10.	13.	16.	19.	22.
2.	5.	8.	11.	14.	17.	20.	??.
3.	6.	9.	12 .	15.	18.	21.	

© Ejercicios de Parciales

1.

Esta Guía 5 que tenés se actualizó por última vez: $\frac{02/06/25 @ 13:26}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

Guía 5

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

å

Ejercicios de la guía:

Ejercicio 1. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram extstyle 2, o mejor aún si querés subirlo en IAT $_{ extstyle E}$ Xo una pull request al extstyle 2

Ejercicio 2. Probar que si $A \in K^{n \times n}$ es hermitiana, entonces los elementos de la diagonal $a_{ii} \in \mathbb{R}$.

Si A es hermitiana, entonces:

$$A \cdot A^* = A^* \cdot A$$

Para probar que los elementos diagonales pertenecen a $\mathbb R$ se puede usar la definición:

$$A \cdot A^* \in K^{n \times n}$$

la matriz transpuesta y conjugada va a tener la misma diagonal:

$$a_{ii} \xrightarrow{\text{trasponer y}} \overline{(a_{ii})^t} = \overline{a_{ii}} \stackrel{!}{=} a_{ii}$$

Por lo tanto si a_{ii} es igual a su conjugado debe ser un número real.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 3. Dada $A \in K^{n \times n}$ hermitiana, probar que existen matrices $B, C \in \mathbb{R}^{n \times n}$ con B simétrica y C antisimétrica ($C^t = -C$) tales que A = B + iC.

 \overline{A} apartir de una matriz hermitiana me puedo construir las matrices B y C como:

$$B = \frac{A + A^*}{2}$$
 y $C = \frac{A - A^*}{2}$,

Donde las matrices B y $C \in \mathbb{R}$ y además son simétrica y antisimétrica respectivamente.

Ahora quiero ver la cuenta:

$$B + iC = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + iA}{2} + \frac{A^* - iA^*}{2}$$

$$\stackrel{!}{=} \frac{A + iA}{2} + \frac{A - iA}{2}$$

$$\stackrel{!}{=} A$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

Ejercicio 4. Dada $A \in K^{n \times n}$ hermitiana y $S \subset K^n$ un subespacio invariante por A, es decir $Av \in S$ para todo $v \in S$. Probar que S^{\perp} es invariante por A.

Si tomo un $v \in S$ y un $w \in S^{\perp}$:

$$w^* \cdot \overset{\in S}{\overset{\downarrow}{v}} = 0$$

Ahora que sé que S es un subespacio invariante por A:

$$Av = \lambda v \stackrel{\times A^*}{\Longleftrightarrow} A^* A v \stackrel{!}{=} A^2 \lambda A v = \lambda^2 v \stackrel{\stackrel{\bullet}{=}}{\rightleftharpoons} k v \in S$$

Con esos ingredientes:

$$(Aw)^* \cdot \overset{\in S}{Av} = w^*A^* \cdot Av \stackrel{\bigstar^1}{=} k(w^* \cdot v) = 0$$

Por lo tanto $Aw \in S^{\perp} \ \forall w \in S^{\perp}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 5. Probar que $A \in K^{n \times n}$ es hermitiana y definida positiva si y solo si A es unitariamente semejante a una matriz diagonal real con elementos de la diagonal positivos.

Hay que probar una doble implicación:

 (\Rightarrow)

$$Av = \lambda v \overset{\times v^*}{\Longrightarrow} v^* Av = \lambda v * v \Leftrightarrow v^* Av \overset{\bigstar^1}{=} \lambda ||v||_2^2$$

$$Av = \lambda v \overset{*}{\Longleftrightarrow} v^* A^* = \overline{\lambda} v^* \overset{\times v}{\hookleftarrow} v^* A^* v = \overline{\lambda} v^* v \Leftrightarrow v^* A^* v \overset{\bigstar^2}{=} \overline{\lambda} ||v||_2^2$$

Como $A=A^*$ el miembro izquierdo en \bigstar^1 y \bigstar^2 es igual. Por lo tanto $\lambda=\overline{\lambda} \implies \lambda \in \mathbb{R}$.

Ahora si A es una matriz definida positiva:

$$Av = \lambda v \underset{\rightarrow}{\overset{\times v}{\Longrightarrow}} \underbrace{v^*Av}_{>0 \text{ si } v \neq 0} = \lambda v^*v = \lambda \cdot \|v\|_2^2 > 0 \ \forall v \neq 0 \implies \lambda > 0$$

Hasta acá, con las hipótesis tengo *autovalores reales y positivos*, ahora voy a ver que los autovectores tienen que ser ortogonales. Dado 2 autovectores v_1 y v_2 asociados a distintos autovalores:

$$Av_{1} = \lambda_{1}v_{1} \quad \text{y} \quad Av_{2} = \lambda_{2}v_{2} \Leftrightarrow \begin{cases} v_{2}^{*}Av_{1} \stackrel{!}{=} (Av_{2})^{*}v_{1} = \lambda_{2}v_{2}^{*} \cdot v_{1} & \stackrel{*}{=} \lambda_{1}v_{2}^{*} \cdot v_{1} \\ v_{1}^{*}Av_{2} = \lambda_{2}v_{1}^{*} \cdot v_{2} & \stackrel{*}{=} \lambda_{2}v_{1}^{*} \cdot v_{2} \end{cases}$$

Restando \star^3 y \star^4 :

$$0 \stackrel{!!}{=} \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} (v_1^* \cdot v_2) \Leftrightarrow v_1 \perp v_2$$

(⇐) CONSULTAR, probar por absurdo?

Ejercicio 6. Sea $A = \begin{pmatrix} 4 & \alpha + 2 & 2 \\ \alpha^2 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix}$

- (a) Hallar los valores de $\alpha \in \mathbb{R}$ para que A sea simétrica y $\lambda = 0$ sea autovalor de A.
- (b) Para el valor de α hallado en (a), diagonalizar ortonormalmente la matriz A.
- (a) Quiero que A sea simétrica:

$$A = A^t \Leftrightarrow \alpha \in \{-1, 2\}$$

Noto que si $\alpha = 2$ la matriz queda con filas linealmente independientes:

$$A_{\alpha=2} = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \qquad y \qquad A_{\alpha=-1} = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

Por lo tanto cuando $\alpha = 2$ tengo autovalor $\lambda = 0$.

(b) Dado que A es una matriz simétrica, es ortonormalmente diagonalizable. Hay que diagonalizar asegurando que la base de autovectores sea una BON. El procedimientos puede hacerse como cualquier diagonalización, pero acá voy a explotar of el hecho de que la base de autovectores va a ser ortogonal.

Busco autovectores de $\lambda = 0$, que equivale a buscar elementos del núcleo de la matriz A a ojo:

$$(A - \lambda I)v_{(\lambda = 0)} = 0 \Leftrightarrow v_{(\lambda = 0)} \in \{(1, -1, 0), (0, 1, -2)\} \xrightarrow{\text{normalizando}} v_{(\lambda = 0)} \in E_{(\lambda = 0)} = \left\{(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), (0, \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}})\right\}$$

Como estoy en \mathbb{R}^3 no hay muchas opciones para el vector restante, tiene que ser ortogonal a esos dos. Si no ves a ojo que por ejemplo el vector (2,2,1) funciona podés plantear:

$$\left\{ \begin{array}{lcl} (1,-1,0)\cdot (x,y,z) & = & 0 \\ (0,1,-2)\cdot (x,y,z) & = & 0 \end{array} \right.$$

Resolvelo y obtenés así un vector ortogonal.

Ahora quiero ver a que autovalor corresponde:

$$Av = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 18 \\ 18 \\ 9 \end{pmatrix} = 9 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Tengo así la siguiente base ortonormal para diagonalizar la matriz:

BON =
$$\left\{ \underbrace{(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), (0, \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}})}_{E_{(\lambda=9)}}, \underbrace{(\frac{2}{3}, \frac{2}{3}, \frac{1}{3})}_{E_{(\lambda=9)}} \right\}$$

Y ahora queda fácil, porque la inversa de la matriz de autovectores C es C^t , dado que es una matriz ortogonal o matriz unitaria:

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{2}{3} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{5}} & \frac{2}{3} \\ 0 & -\frac{2}{\sqrt{5}} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 7. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 9. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 10. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores. Ejercicio 11. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 12. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 13. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 14. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 15. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 16. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $extbf{1}$, o mejor aún si querés subirlo en IAT $_{ extbf{E}}$ Xo una pull request al $extbf{Q}$.

Ejercicio 17. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en IATEXo una pull request al $rac{1}{2}$

Ejercicio 18. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 19. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en IATEXo una pull request al o.

Ejercicio 22. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🕢, o mejor aún si querés subirlo en LATEX→ una pull request al 📢

♦1. ⊚... hay que hacerlo! **⊕**

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .