SECTION A (40 Marks)

Compulsory: Attempt all questions.

Question 1

The	elements of group VII A in the Periodic Table are called
A	alkaline earth metals.
В	alkali metals.
C	inert gases.
D	halogens.
Ansv	wer:
The	number of molecules present in one mole of sulphur dioxide is
A	6.023×10^{21} molecules.
В	6.023×10^{22} molecules.
C	6.023×10^{23} molecules.
D	6.023×10^{24} molecules.
Ansv	wer:
	wer:
On r	moving down a group in the Periodic Table, the electro negativity of the elements
On r	moving down a group in the Periodic Table, the electro negativity of the elements increases.
On r A B	moving down a group in the Periodic Table, the electro negativity of the elements increases. decreases.
On r A B C D	moving down a group in the Periodic Table, the electro negativity of the elements increases. decreases. remains same.
On r A B C D	moving down a group in the Periodic Table, the electro negativity of the elements increases. decreases. remains same. decreases and then increases.
On r A B C D	moving down a group in the Periodic Table, the electro negativity of the elements increases. decreases. remains same. decreases and then increases. wer:
On r A B C D Answ	increases. decreases. remains same. decreases and then increases. wer: percentage composition of calcium in calcium sulphate [CaSO ₄] is
On r A B C D Ansv	increases. decreases. remains same. decreases and then increases. wer: percentage composition of calcium in calcium sulphate [CaSO ₄] is 47.05%.
On r A B C D Ansv	increases. decreases. remains same. decreases and then increases. percentage composition of calcium in calcium sulphate [CaSO ₄] is 47.05%. 29.4%.

(v) The flow chart given below shows the extraction of iron.

In the above process, what happens in stage X?

- A smelting
- **B** aluminothermy
- **C** reducing by heating
- **D** electrolytic reduction

Answer:

- (vii) When Bikash added ammonium hydroxide to an aqueous salt solution X, a pale blue precipitate is formed. This pale blue precipitate shows the presence of
 - **A** ferrous ion.
 - **B** copper ion.
 - C ferric ion.
 - **D** zinc ion.

Answer:....

(viii)	From	the following, which has a co-ordinate bond?
	A	NH_3
	В	H_3O^+
	\mathbf{C}	H_2O
	D	CO_3^{2-}
	Answ	ver:
(ix)		get discharged according to their position in the electrochemical series during rolysis. Which of the following will be discharged the least?
	A	Ca^{2+}
	B	Al^{3+}
	C	Zn^{2+}
	D	$Ag^{^{+}}$
	Answ	ver:
(x)	In the	e reaction $ZnO + C \rightarrow Zn + CO$, the reducing agent is
	A	ZnO.
	В	CO ₂ .
	C	Zn.
	D	C.
	D	C.
	Answ	ver:
(xi)	The r	ratio of hydrogen and nitrogen gases in Haber's process is
	A	1:3.
	В	3:1.
	C	1:10.
	D	10:1.
	Answ	ver:
(xii)	Whic	ch one of the following weighs the least?
	٨	1 mala of NH.
	A B	1 mole of NH ₃
		1 mole of H ₂ O
	C	1 mole of CO ₂
	D	1 mole of SO ₂
	Answ	ver:

(xiii)	bromi	e carrying out an investigation, a class X student confirmed that the orange colour of the solution in CCl ₄ disappears upon adding it to an alkene due to the formation of the dibromide. She concluded that this chemical reaction shows the	f
	A B C	presence of unsaturation in an alkene. substitution reaction of alkene with bromine. presence of saturation in an unknown alkene.	
	D	presence of single covalent bond between combining atoms.	
	Answ	er:	
(xiv)		apound has the following structural formula $\mathrm{CH_3CH} = \mathrm{CH_2}$. The IUPAC name compound is	
	A	methyl propene.	
	B C	propene. butane.	
	D	ethane.	
	Answ	er:	
(xv)		onducted an experiment to find out the presence of Fe ²⁺ ions in a compound ding NaOH. Which of the observations given below confirms this?	
	A	A dirty green ppt. is formed which is insoluble in excess of NaOH.	
	В	A reddish brown ppt. is formed which is insoluble in excess of NaOH.	
	C D	A dull white ppt. is formed which is soluble in excess of NaOH. A dirty green ppt. is formed which is soluble in excess of NaOH.	
	Answ	er:	
(b)	Fill in	the blanks with appropriate words. The group number of an element is equal to the number of	[6]
		electrons.	
	(ii)	The molecular formula of CHO_2 will be when $n=2$.	
	(iii)	Cation is formed by of electrons.	
	(iv)	When reacts with conc. hydrochloric acid, it produces	
		dense white fumes.	
	(v)	Magnesium chloride reacts with ammonium hydroxide to form a dull white	
		precipitate of	

Column A		Column B
i. MgSO ₄ .7H ₂ O		a) 44.8 litres
ii. NH ₄ OH		b) haematite
iii. Iron		c) alkene
iv. 34g of NH ₃		d) 22.4 litres
v. Sulphuric aci	d	e) epsom salt
vi. C_nH_{2n}		f) cryolite
		g) Contact process
		h) non-electrolyte
		i) alkane
		j) weak electrolyte
•	•	anging only the underlined words.
Rewrite the corn	ect statements.	
Rewrite the corr (i) The num	ber of moles in 88g of	CO_2 is 1.5 .
Rewrite the corr (i) The num	ber of moles in 88g of	
Rewrite the corr (i) The num	ber of moles in 88g of	CO ₂ is <u>1·5</u> .
Rewrite the corr (i) The num	ber of moles in 88g of	CO_2 is 1.5 .

	(iii)	During electrolysis of water, hydrogen gas evolved is collected at anode.	
	(iv)	In the extraction of aluminium from bauxite, the purification process is	
		carried out by Ostwald's process.	
	(v)	Substance which on exposure to air absorbs moisture without any change in	
		its state is called as <u>deliquescent</u> substance.	
			•
	(vi)	The process of extracting metals from their ore is called <u>electrolysis</u> .	
			•
(e)	(i)	Calcium carbonate decomposes according to the equation given below:	
		$CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$	
		Calculate the weight of CaO formed when 225gm of limestone decomposes	
		on heating.	[2]

(ii)		ents X and Y can be represented as $_{11}X^{23}$ and $_{17}Y^{35.5}$. Study the ents carefully and answer the following questions:	
	1.	Which period and group does element X belong to?	[1]
	2.	What is the formula of the compound formed by X and Y?	[1]
 (iii)		he equation given below to answer the questions that follow:	
	Ca(C	$OH)_2$ (lime water) + $SO_2 \longrightarrow CaSO_3 \downarrow + H_2O$	
	1.	Which chemical property of SO ₂ is shown in the above equation?	[1]
	2.	What change would you observe, if CO_2 is passed instead of SO_2 ?	 [1]
(iv)	Why	is spurious alcohol not fit for human consumption? Give a reason.	 [1]
	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • •		••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••

SECTION B (40 Marks)

Attempt any four questions.

Question 2

(:	a)	(i)	Refer to the table given below and answer the questions that follow:
٧,	uj	(1)	Refer to the table given below and answer the questions that follow.

Elements	Atomic number
A	3
В	8
С	10
D	16

	1.	Write the electronic configuration		[1/2]	
••••	2.	What is the valency of the el		[1/2]	
••••	3.	Which element is an inert ga		[1/2]	
•••••	4.	Which element is a metal?		[1/2]	
(ii) 1.		entiate between the following rated acid	in the table given below: Dilute acid	[1]
2.	Strong ba	ase	Weak base	[1]

Comb			ing percentage composition by mass:	
(i)		%, hydrogen = 6.67% an	la of the organic compound.	
		·		
(ii)		ulate the molecular formute ound is 180.	ula when the molecular mass of the organic	
(i)	Namo	e the catalyst used for the	e industrial preparation of ammonia by	
(i)		e the catalyst used for the	e industrial preparation of ammonia by	
(i)			e industrial preparation of ammonia by	
(i) (ii)	Habe			
(ii)	Habe	r's process.		
(ii)	Habe Comp	r's process. plete the table given belo	w.	

Question 3 Dry ammonia does not affect litmus. Why? [1] (a) (i) Which process is used to obtain zinc oxide from concentrated zinc blende? (ii) [1] (iii) Give reasons for the following: 1. The ionisation potential of elements decreases on moving down [1] a group. 2. The metallic character of elements decreases on moving from left to [1] right across a period.

(b) (i) Study the diagram given below and answer the questions that follow:

1.	<i>y</i>	[1]
 		•••••
2.		[1]

	•	action given below:	
		$H \rightarrow NaCl + H_2O$	
1.	Name	e the type of reaction.	
2.	Rewr	ite the balanced equat	ion by using H ₂ SO ₄ instead of HCl.
	• • • • • • • • • • • • • • • • • • • •		•••••
Complete	the follow	ring table:	
GL NI			
Sl. No.	Gas	Drying agent	Collection of gas
Sl. No.	Gas NH ₃	Drying agent	Collection of gas
		Drying agent	Collection of gas
1.	NH ₃	Drying agent	Collection of gas
1.	NH ₃	Drying agent	Collection of gas
1. 2.	NH ₃ SO ₂		Collection of gas
1. 2. n 4	NH ₃ SO ₂	ements given below an	
1. 2. n 4	NH_3 SO_2 and the electron A^{31}	ements given below an ${}_{12}\mathrm{B}^{24}$ ${}_{14}\mathrm{C}^{28}$	d answer the questions that follow:
1. 2. n 4 (i) Stu	NH_3 SO_2 and the electron A^{31}	ements given below an ${}_{12}\mathrm{B}^{24}$ ${}_{14}\mathrm{C}^{28}$	d answer the questions that follow: ${}_{13}D^{27}$

	• • • • • • • • • • • • • • • • • • • •	
(iii)	Give	reasons for the following:
	1.	Hydrochloric acid is a polar covalent compound.
	• • • • • • • • • • • • • • • • • • • •	
•••••	• • • • • • • • •	
•••••	2.	Ionic compounds in their molten state are good conductors of electricity
•••••	• • • • • • • •	
 (i)	1.	State Avogadro's law
••••	• • • • • • • •	
	2.	Define the term 'Gram atomic mass'.
•••••	• • • • • • • •	
•••••	• • • • • • • •	

3.	What is a flux?	
ıdy the dia	agram shown below and answer the questions that follow:	
	Gas jar containing HCl gas	
	Glass disc	
	Air	
	Blue litmus	

(ii)

es	stion 5							
	(i)	Mention any two con	nditions for the formation of a	n ionic compound.				
	•••••							
	•••••							
	•••••							
	•••••							
	(ii)	Complete the table g	given below:					
	Sl. No.	Salt solution of	Colour of precipitate with NaOH	Solubility in excess of NaOH				
	1		Reddish brown					
	2	Aluminium						
		1. $CH_4 + Cl_2 \xrightarrow{-HCl} \longrightarrow \cdots + HCl$ 2. $CH_3OH \xrightarrow{K_2Cr_2O_7 \atop H_2SO_4} \longrightarrow \cdots \longrightarrow HCOOH$						
	(ii) 1. Electrolysis is an example of a redox reaction. Explain.							
		2. Give <i>two</i> app	plications of electrolysis.					

(c)	(1)	Calculate the molecular mass of:					
		1.	FeSO ₄ .7H ₂ O,		[1]		
		2.	NH ₄ Cl.		[1]		

	(ii)			exture of methane and oxygen in the molar ratio of 9:1 and passed through a copper tube at 200°C?	[1]		
Ques	stion 6						
(a)	(i)	Defin	e 'precipitate' in yo	our own words.	[1]		
	•••••				•		
			•••••		•		
					••••		
	(ii)	Distinguish between the following:					
		1. Calcinat	ion	Smelting	[1]		

2.					
	Mineral	S	Ores	[1	
(iii)	Why	is limestone used in the blast t	furnance?	[1	
(111)		is innestone used in the blast i	turiance.	Į.	
(i)	From the equation $2C_2H_2+5O_2 \rightarrow 4CO_2+2H_2O$,				
	1.	Calculate the volume of oxy	ygen required for the complete combustion		
		of 250ml of acetylene.		[1	
	2.	What volume of CO ₂ will be	e produced?	[1	
	(iii) 	(iii) Why	 (iii) Why is limestone used in the blast (i) From the equation 2C₂H₂+5O₂ → 1. Calculate the volume of oxy of 250ml of acetylene. 	 (iii) Why is limestone used in the blast furnance? (i) From the equation 2C₂H₂+5O₂ → 4CO₂+2H₂O, 1. Calculate the volume of oxygen required for the complete combustion of 250ml of acetylene. 	

	(11)	With reference to the electrolysis of aqueous copper sulphate solution using copper electrodes, answer the following questions:				
		1.	Why does the blue colour of the electrolyte remain unchanged?	[1]		
	•••••					
	•••••					
	• • • • • •					
		2.	Give an anode reaction to justify the above reason.	[1]		
	•••••					
	•••••					
(c)	Calcu	late the	e number of molecules present in 132gm of carbon dioxide.	[2]		
Ques	stion 7					
(a)	(i)	Stud	y the reaction given below and answer the question that follows:			
		C_2H	$_{6} + Cl_{2} \xrightarrow{\text{Diffused} \atop \text{sunlight}} C_{2}H_{5}Cl + HCl$			
		Nam	e the reaction.	[1]		
	(ii)	 Why	are alkenes more reactive than alkanes?	[1]		
	•••••			· • •		
				•••		
	• • • • •	• • • • • • • •		•••		

1. A small amount of ammonium hydroxide is added?	[1]
2. An excess of ammonium hydroxide is added?	 [1]
	••••
What happens to hydrated copper sulphate when treated with concentrated sulphuric acid? Why?	[2]
	••••
	••••
Give a balanced chemical equation to justify your answer.	[1]
Alkali metal nitrate like NaNO ₃ can act as an oxidizing agent. Justify this statement.	[1]
What is an alloy?	[1]
	••••
	2. An excess of ammonium hydroxide is added? What happens to hydrated copper sulphate when treated with concentrated sulphuric acid? Why? Give a balanced chemical equation to justify your answer. Alkali metal nitrate like NaNO ₃ can act as an oxidizing agent. Justify this statement.

(111)	Name the gas which is colourless, poisonous and has a foul smell of rotten	
	eggs.	[1]

Atomic weights of elements

Elements	Atomic weights	Elements	Atomic weights
Hydrogen	1	Phosphorus	31
Helium	4	Sulphur	32
Lithium	7	Chlorine	35.5
Beryllium	9	Potassium	39
Carbon	12	Calcium	40
Nitrogen	14	Iron	56
Oxygen	16	Copper	63.5
Magnesium	24	Zinc	65
Aluminium	27	Bromine	80
Silicon	28		

for Rough Work

for Rough Work

for Rough Work
