Timur Gaimakov

CS 480 Fall 2021 Written Assignment #02

Due: Friday, October 15th, 11:00 PM CST

Points: **100**

Instructions:

1. Use this document template to report your answers. Name the complete document as follows:

LastName_FirstName_CS480_Written02.doc

2. Submit the final document to the Blackboard Assignments section before the due date. No late submissions will be accepted.

Objectives:

- 1. (20 points) Demonstrate your understanding of MinMax games and the α - β pruning algorithm.
- 2. (80 points) Demonstrate your understanding of propositional logic, its syntax, laws, and inference based on propositional logic.

Problem 1 [20 pts]:

Consider the following MinMax game tree

Evaluate MinMax values for all nodes (you can paste in an edited version of this tree below) [10 pts]:

Now, apply alpha-beta $(\alpha-\beta)$ pruning to prune some of the tree branches. Show (you can paste in an edited version of this tree below) which sections of the tree will be pruned and <u>justify your answer</u> [10 pts]:

Problem 2 [20 pts]:

Use truth tables to show that the following sentences are tautologies [5 pts]:

1.
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q [5 pts]$$

$$\begin{array}{l} KB \Leftrightarrow \neg (p \ \land \ q) \\ Q \Leftrightarrow \neg p \ \lor \ \neg q \end{array}$$

p	q	$p \wedge q$	KB	¬p	¬q	Q	KB => Q
Т	Т	Т	F	F	F	F	Т
T	F	F	T	F	T	Т	T
F	Т	F	T	Т	F	Т	Т
F	F	F	Т	Т	Т	Т	Т

2.
$$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$$
 [5 pts]

KB
$$\Leftrightarrow$$
 p \Rightarrow q ('=>' has higher precedence over ' \Leftrightarrow ') Q \Leftrightarrow \neg q \Rightarrow \neg p

p	q	KB	¬q	¬p	Q	KB => Q
Т	T	T	F	F	T	T
Т	F	F	Т	F	F	T
F	T	Т	F	Т	Т	T
F	F	Т	Т	Т	Т	T

3. $((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$ [5 pts]

$$\begin{array}{l} KB \Leftrightarrow ((p \Rightarrow q) \ \land \ (q \Rightarrow p)) \\ Q \Leftrightarrow (p \Leftrightarrow q) \end{array}$$

p	q	$p \Rightarrow q$	$q \Rightarrow p$	KB	Q	KB => Q
Т	T	T	T	Т	T	T
Т	F	F	T	F	F	T
F	T	T	F	F	F	T
F	F	T	Т	Т	Т	T

4. $(p \lor q) \land (\neg q \lor r) \Rightarrow (p \lor r)$ [5 pts]

$$\begin{array}{l} KB \Leftrightarrow (p \ \lor \ q) \ \land \ (\neg q \ \lor \ r) \\ Q \Leftrightarrow (p \ \lor \ r) \end{array}$$

p	q	r	$p \lor q$	¬q	$\neg q \lor r$	KB	Q	KB => Q
Т	T	Т	T	F	T	T	T	T
Т	Т	F	T	F	F	F	T	T
Т	F	Т	T	Т	Т	T	Т	T
Т	F	F	Т	T	Т	Т	Т	T
F	Т	Т	T	F	T	T	T	T
F	Т	F	T	F	F	F	F	T
F	F	Т	F	Т	Т	F	Т	T
F	F	F	F	T	Т	F	F	Т

Problem 3 [20 pts]:

Use **deduction** to show (**prove**) that the following sentences are **tautologies**:

1.
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$
 [5 pts]

Your pro	oof:	
Step	Resulting sentence	Applied law / rule
1	$(\neg(p \land q)) \Leftrightarrow \neg p \lor \neg q$	De Morgan's Law
	becomes:	$\neg (a \land b) = \neg a \lor \neg b$
	$(\neg p \lor \neg q) \Leftrightarrow \neg p \lor \neg q$	
2	$(\neg p \lor \neg q) \Leftrightarrow \neg p \lor \neg q$	Equivalence Law
	becomes:	$(a \land b) \lor (\neg a \land \neg b) = (a \Leftrightarrow b)$
		Assume that $a = \neg p \lor \neg q$

	$((\neg p \lor \neg q) \land (\neg p \lor \neg q)) \lor (\neg (\neg p \lor \neg q) \land \neg (\neg p \lor \neg q))$	and $b = \neg p \lor \neg q$
	¬q))	
3	$((\neg p \lor \neg q) \land (\neg p \lor \neg q)) \lor (\neg (\neg p \lor \neg q) \land \neg (\neg p \lor \neg q))$	Idempotent Law
	¬q))	$p \land p = p$
	becomes:	
	$((\neg p \lor \neg q) \land (\neg p \lor \neg q)) \lor (\neg (\neg p \lor \neg q))$	
4	$((\neg p \lor \neg q) \land (\neg p \lor \neg q)) \lor (\neg (\neg p \lor \neg q))$	Idempotent Law
	becomes:	$p \land p = p$
	$(\neg p \lor \neg q) \lor (\neg (\neg p \lor \neg q))$	
5	$(\neg p \lor \neg q) \lor (\neg (\neg p \lor \neg q))$	Remove extra parentheses
	becomes:	
	$(\neg p \lor \neg q) \lor \neg (\neg p \lor \neg q)$	
6	$(\neg p \lor \neg q) \lor \neg (\neg p \lor \neg q)$	Law of Excluded Middle
	becomes:	$A \lor \neg A = T$
	T	Assume that $A = \neg p \lor \neg q$
7	So:	We proved that
	$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q = T$	$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$
		is a tautology
Add mor	re rows if necessary Symbols (copy/paste): $T \perp \vee \land \equiv \Leftrightarrow \neg \Rightarrow :$	

2. $p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$ [5 pts]

Your p	proof:	
Step	Resulting sentence	Applied law / rule
1	$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$	Contraposition Law
	becomes:	$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$
	$\neg q \Rightarrow \neg p \Leftrightarrow \neg q \Rightarrow \neg p$	
2	$\neg q \Rightarrow \neg p \Leftrightarrow \neg q \Rightarrow \neg p$	Equivalence Law
	becomes:	$(a \land b) \lor (\neg a \land \neg b) = (a \Leftrightarrow b)$
	$((\neg q \Rightarrow \neg p) \ \land \ (\neg q \Rightarrow \neg p)) \ \lor \ (\neg (\neg q \Rightarrow \neg p) \ \land \ \neg (\neg q \Rightarrow \neg p))$	Assume that $a = \neg q \Rightarrow \neg p$
		and $b = \neg q \Rightarrow \neg p$
3	$((\neg q \Rightarrow \neg p) \ \land \ (\neg q \Rightarrow \neg p)) \ \lor \ (\neg (\neg q \Rightarrow \neg p) \ \land \ \neg (\neg q \Rightarrow \neg p))$	Idempotent Law
	becomes:	$p \wedge p = p$
	$((\neg q \Rightarrow \neg p) \land (\neg q \Rightarrow \neg p)) \lor (\neg (\neg q \Rightarrow \neg p))$ $((\neg q \Rightarrow \neg p) \land (\neg q \Rightarrow \neg p)) \lor (\neg (\neg q \Rightarrow \neg p))$	
4	$((\neg q \Rightarrow \neg p) \land (\neg q \Rightarrow \neg p)) \lor (\neg (\neg q \Rightarrow \neg p))$	Idempotent Law
	becomes:	$p \wedge p = p$
	$((\neg q \Rightarrow \neg p)) \lor (\neg (\neg q \Rightarrow \neg p))$	
5	$((\neg q \Rightarrow \neg p)) \ \lor \ (\neg (\neg q \Rightarrow \neg p))$	Remove extra parentheses
	becomes:	
	$((\neg q \Rightarrow \neg p)) \lor \neg(\neg q \Rightarrow \neg p)$	
6	$((\neg q \Rightarrow \neg p)) \lor \neg(\neg q \Rightarrow \neg p)$	Remove extra parentheses
	becomes:	
7	$(\neg q \Rightarrow \neg p) \lor \neg(\neg q \Rightarrow \neg p)$	Law of Excluded Middle
	becomes:	$A \lor \neg A = T$
	T	Assume that $A = \neg q \Rightarrow \neg p$
8	So:	We proved that
	$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p = T$	$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$
		is a tautology
Add m	ore rows if necessary Symbols (copy/paste): $T \perp \lor \land \equiv \Leftrightarrow \neg \Rightarrow :$	

3. $((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$ [5 pts]

Your proc	of:	
Step	Resulting sentence	Applied law / rule
1	$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$	Equivalence Law
	becomes:	$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$
	$(p \Leftrightarrow q) \Leftrightarrow (p \Leftrightarrow q)$	
2	$(p \Leftrightarrow q) \Leftrightarrow (p \Leftrightarrow q)$	Equivalence Law
	becomes	$(a \land b) \lor (\neg a \land \neg b) = (a \Leftrightarrow b)$
	$((p \Leftrightarrow q) \ \land \ (p \Leftrightarrow q)) \ \lor \ (\neg(p \Leftrightarrow q) \ \land \ \neg \ (p \Leftrightarrow q))$	Assume that $a = (p \Leftrightarrow q)$
		and $b = (p \Leftrightarrow q)$
3	$((p \Leftrightarrow q) \land (p \Leftrightarrow q)) \lor (\neg(p \Leftrightarrow q) \land \neg (p \Leftrightarrow q))$	Idempotent Law
	becomes:	$p \wedge p = p$
	$((p \Leftrightarrow q) \land (p \Leftrightarrow q)) \lor (\neg(p \Leftrightarrow q))$	
4	$((p \Leftrightarrow q) \land (p \Leftrightarrow q)) \lor (\neg (p \Leftrightarrow q))$	Idempotent Law
	becomes:	$p \wedge p = p$
	$((p \Leftrightarrow q)) \lor (\neg (p \Leftrightarrow q))$	
5	$((p \Leftrightarrow q)) \lor (\neg (p \Leftrightarrow q))$	Remove extra parentheses
	becomes:	
	$((p \Leftrightarrow q)) \lor \neg (p \Leftrightarrow q)$	
6	$((\mathbf{p} \Leftrightarrow \mathbf{q})) \lor \neg (\mathbf{p} \Leftrightarrow \mathbf{q})$	Remove extra parentheses
	becomes:	
	$(p \Leftrightarrow q) \lor \neg (p \Leftrightarrow q)$	
7	$(p \Leftrightarrow q) \lor \neg (p \Leftrightarrow q)$	Law of Excluded Middle
	becomes:	$A \lor \neg A = T$
	T	Assume that $A = (p \Leftrightarrow q)$
8	So:	We proved that
	$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q) = T$	$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$
		is a tautology

4. $(p \lor q) \land (\neg q \lor r) \Rightarrow (p \lor r)$ [5 pts]

Your pr	roof:	
Step	Resulting sentence	Applied law / rule
1	$(p \lor q) \land (\neg q \lor r) \Rightarrow (p \lor r)$	Implication Law
	becomes:	
	$\neg [(p \lor q) \land (\neg q \lor r)] \lor (p \lor r)$	
2	$\neg [(p \lor q) \land (\neg q \lor r)] \lor (p \lor r)$	De Morgan's Law
	becomes:	let $n = p \lor q$, $m = \neg q \lor r$
	$\neg (p \lor q) \lor \neg (\neg q \lor r) \lor (p \lor r)$	$\neg (n \land m) \Leftrightarrow \neg n \lor \neg m$
3	$\neg (p \lor q) \lor \neg (\neg q \lor r) \lor (p \lor r)$	De Morgan's Law
	becomes:	
	$(\neg p \land \neg q) \lor (q \land \neg r) \lor (p \lor r)$	
4	$(\neg p \land \neg q) \lor (q \land \neg r) \lor (p \lor r)$	Remove parenthesis
	becomes:	
	$(\neg p \land \neg q) \lor (q \land \neg r) \lor p \lor r$	

5	$(\neg p \land \neg q) \lor (q \land \neg r) \lor p \lor r$	Commutative Law
	becomes:	
6	$(\neg p \land \neg q) \lor (q \land \neg r) \lor r \lor p$	Distributive Law
	becomes:	
7	$(\neg p \land \neg q) \lor [(q \lor r) \land (\neg r \land r)] \lor p$	Law of Excluded Middle
	becomes:	
8	$(\neg p \land \neg q) \lor [(q \lor r) \land T] \lor p$	Identity Law
	becomes:	
	$(\neg p \land \neg q) \lor (q \lor r) \lor p$ $(\neg p \land \neg q) \lor (q \lor r) \lor p$	
9		Remove parenthesis
	becomes:	
10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Distributive Law
	becomes:	
11		Law of Excluded Middle
	becomes:	
10		T
12	l	Identity Law
	becomes:	
1.2		D 41 '
13	\ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Remove parenthesis
	becomes:	
1.4	$\begin{array}{c c} \neg p \lor q \lor r \lor p \\ \neg p \lor q \lor r \lor p \end{array}$	
14	1	Commutative Law
	becomes:	
1.5	$\begin{array}{c c} \neg p \lor p \lor r \lor q \\ \neg p \lor p \lor r \lor q \end{array}$	T
15		Law of Excluded Middle
	becomes:	
1.6	$\begin{array}{c c} T \lor r \lor q \\ T \lor r \lor q \end{array}$	D : I
16	_	Domination Law
	becomes:	
A 11	T	
Add m	ore rows if necessary Symbols (copy/paste): $T \perp \vee \wedge :$	=⇔¬⇒

Problem 4 [20 pts]:

Convert the following sentences into conjunctive normal form (CNF):

a) $p \Leftrightarrow q [6 pts]$

Your c	Your conversion steps:					
Step	Resulting sentence	Applied law / rule				
1	$p \Leftrightarrow q$	Equivalence Law				
	becomes:					
	$(p \Rightarrow q) \land (q \Rightarrow p)$					
2	$(p \Rightarrow q) \land (q \Rightarrow p)$	Implication Law				
	becomes:					
	$(\neg p \lor q) \land (\neg q \lor p)$					

b) $p \land q \Leftrightarrow p \lor q$ [6 pts]

Your c	Your conversion steps:				
Step	Resulting sentence	Applied law / rule			
1	$p \land q \Leftrightarrow p \lor q$	Equivalence Law			
	becomes:	$let n = p \land q, m = p \lor q$			
	$((p \land q) \Rightarrow (p \lor q)) \land ((p \lor q) \Rightarrow (p \land q)$	$((n \Rightarrow m) \land (n \Rightarrow m)) \Leftrightarrow (n \Leftrightarrow m)$			
)				
2	$((p \land q) \Rightarrow (p \lor q)) \land ((p \lor q) \Rightarrow (p \land q)$	Implication Law			
)	$\neg n \lor m \Leftrightarrow n \Rightarrow m$			
	becomes:	$\neg m \lor n \Leftrightarrow m \Rightarrow n$			
	$(\neg(p \land q) \lor (p \lor q)) \land (\neg(p \lor q) \lor (p \land)$	$(\neg n \lor m) \land (\neg m \lor n) \Leftrightarrow$			
	q))	$n \Rightarrow m \land m \Rightarrow n$			
3	$(\neg (p \land q) \lor (p \lor q)) \land (\neg (p \lor q) \lor (p \land q))$	Simplification			
	q))				
	$[(\neg n \lor m) \land (\neg m \lor n)]$				
	becomes:				
	$(\neg p \lor q) \land (p \lor \neg q)$				
Add m	ore rows if necessary Symbols (copy/paste): $T \perp \setminus$	/			

c) $p \land (p \Rightarrow q) \Rightarrow q$ [8 pts]

Your conversion steps:			
Step	Resulting sentence	Applied law / rule	
1	$p \land (p \Rightarrow q) \Rightarrow q$	Implication Law	
	becomes:		
	$\neg (p \land (p \Rightarrow q)) \lor q$		
2	$\neg (p \land (p \Rightarrow q)) \lor q$	Implication Law	
	becomes:		
	$\neg (p \land (\neg p \lor q)) \lor q$		
3	\neg (p \land (\neg p \lor q)) \lor q	Distributive Law	
	becomes:		
	$\frac{\neg (\ (p \land \neg p) \lor (p \land q)\) \lor q}{\neg (\ (p \land \neg p) \lor (p \land q)\) \lor q}$		
4	\neg ((p $\land \neg$ p) \lor (p \land q)) \lor q	Contradiction	
	becomes:		
5	\neg (\perp \lor (p \land q)) \lor q	Identity Law	
	becomes:		
	$\neg (p \land q) \lor q$		
6	$\neg (p \land q) \lor q$	De Morgan's Law	
	becomes:		
	$(\neg p \lor \neg q) \lor q$		
7	$(\neg p \lor \neg q) \lor q$	Associative Law	
	becomes:		
	$\neg p \lor (\neg q \lor q)$		
8	$\neg p \lor (\neg q \lor q)$	Law of Excluded Middle	
	becomes:		

	$\neg p \lor T$	
9	$\neg p \lor T$	Domination Law
	becomes:	
	T	
Add more rows if necessary Symbols (copy/paste): $T \perp \lor \land \equiv \Leftrightarrow \neg \Rightarrow :$		

Problem 5 [20 pts]:

Use **resolution** (convert to CNF first) to show that the:

1. Sentence $(p \lor q) \land (\neg q \lor r) \Rightarrow (p \lor r)$ is a **tautology [10 pts]**

```
Your solution (provide all steps)
 By Implication Law:
 (p \lor q) \land (\neg q \lor r) \Rightarrow (p \lor r)
 becomes:
 \neg [(p \lor q) \land (\neg q \lor r)] \lor (p \lor r)
By De Morgan's Law
 \neg [(p \lor q) \land (\neg q \lor r)] \lor (p \lor r)
 becomes:
[\neg (p \lor q) \lor \neg (\neg q \lor r)] \lor (p \lor r) \equiv (\neg p \land \neg q) \lor (q \land \neg r) \lor p \lor r
 \neg q \lor q \lor p \lor r
 1. \{\neg q, q, p, r\}
                        clause
2. \{\neg p\}
                        clause
3. {q}
                        clause
4. {p}
                        clause
 5. {r}
                        clause
6. {T}
                        2, 3
7. {T}
                        4, 6
8. {T}
                        5, 7
(Problem 4 shows that there is no way to form a CNF from tautology)
```

2. Sentence ¬(¬hasGas ∧ (hasGas ∨ ¬carCanStart) ⇒ ¬carCanStart) is a contradiction [10 pts]

```
      Your solution (provide all steps)

      By Distributive Law
      \neg \{ [\neg hasGas \land (hasGas \lor \neg carCanStart)] \Rightarrow \neg carCanStart \}

      becomes:
      \neg \{ [(\neg hasGas \land hasGas) \lor (\neg hasGas \land \neg carCanStart)] \Rightarrow \neg carCanStart \}

      By Contradiction Law
      \neg \{ [(\neg hasGas \land hasGas) \lor (\neg hasGas \land \neg carCanStart)] \Rightarrow \neg carCanStart \}

      becomes:
      \neg \{ [\bot \lor (\neg hasGas \land \neg carCanStart)] \Rightarrow \neg carCanStart \}

      By Identity Law
      \neg \{ [\bot \lor (\neg hasGas \land \neg carCanStart)] \Rightarrow \neg carCanStart \} becomes

      \neg \{ [\neg hasGas \land \neg carCanStart] \Rightarrow \neg carCanStart \}

      By Implication Law
      \neg \{ [\neg hasGas \land \neg carCanStart] \Rightarrow \neg carCanStart \}

      becomes:
```

```
\neg \{ \neg [\neg hasGas \land \neg carCanStart] \lor \neg carCanStart \}
By De Morgan's Law
\neg \{ \neg [\neg hasGas \land \neg carCanStart] \lor \neg carCanStart \}
becomes:
¬{[¬¬hasGas ∨ ¬¬carCanStart] ∨ ¬carCanStart}
By Double Negation Law:
\neg \{ [\neg hasGas \lor \neg carCanStart] \lor \neg carCanStart \}
becomes:
¬{[hasGas \( \subseteq \text{carCanStart} \) \( \subseteq \text{carCanStart} \)}
By De Morgan's Law
\neg{[hasGas \lor carCanStart] \lor \negcarCanStart}
becomes:
\neg[hasGas \lor carCanStart] \land \neg \negcarCanStart
By Double Negation Law
\neg [hasGas \lor carCanStart] \land \neg \neg carCanStart
¬[hasGas ∨ carCanStart] ∧ carCanStart
By De Morgan's Law
\neg[hasGas \lor carCanStart] \land carCanStart
becomes:
[¬hasGas ∧ ¬carCanStart] ∧ carCanStart
Remove Parenthesis
\lceil \neg hasGas \ \land \ \neg carCanStart \rceil \ \land \ carCanStart
becomes:
¬hasGas ∧ ¬carCanStart ∧ carCanStart
Contradiction Law
\neghasGas \land \negcarCanStart \land carCanStart
becomes:
\neg hasGas \ \land \ \bot
Domination Law
¬hasGas ∧ ⊥
becomes:
\perp
C \equiv \neg
(Problem 4 shows that there is no way to form a CNF from contradiction too)
```