RISOLUZIONE NUMERICA DI SISTEMI NON LINEARI

Esempio:

si vuole risolvere numericamente

$$\begin{cases} x_1^2 - x_2^2 = 1\\ x_1^2 + x_2^2 - 2x_1 = 3. \end{cases}$$
 (1)

Definisco:

$$\begin{array}{ll} f_1(x_1,x_2) = x_1^2 - x_2^2 - 1 \\ f_2(x_1,x_2) = x_1^2 + x_2^2 - 2x_1 - 3 \end{array} \quad \text{e} \qquad \textbf{F}(\textbf{x}) = \left[\begin{array}{ll} f_1(x_1,x_2) \\ f_2(x_1,x_2) \end{array} \right]$$

Risolvere (1) vuol dire

trovare
$$\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$
 tale che $\mathbf{F}(\alpha) = \mathbf{0}$.

Più in generale, per risolvere il sistema

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

si definiscono $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ e la funzione vettoriale

$$\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n: \quad \mathbf{F}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) = f_1(x_1, x_2, \dots, x_n) \\ f_2(\mathbf{x}) = f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(\mathbf{x}) = f_n(x_1, x_2, \dots, x_n) \end{bmatrix}$$

Si cerca $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_n]^T \in \mathbb{R}^n$: tale che $\mathbf{F}(\boldsymbol{\alpha}) = \mathbf{0}$.

METODO DI NEWTON PER SISTEMI

Ricordo che Newton per equazioni scalari è:

$$\begin{cases} x^{(0)} \text{ dato} \\ x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, & k = 0, 1, \dots \end{cases}$$

Per lavorare con funzioni vettoriali $\mathbf{F}(\mathbf{x})$ devo sostituire: $f'(x^{(k)})$ con la matrice Jacobiana di \mathbf{F} valutata in $\mathbf{x}^{(k)}$

$$J_{F}(\mathbf{x}^{(k)}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}^{(k)}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{x}^{(k)}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{x}^{(k)}) \\ \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{x}^{(k)}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{x}^{(k)}) & \dots & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{x}^{(k)}) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_{n}}{\partial x_{1}}(\mathbf{x}^{(k)}) & \frac{\partial f_{n}}{\partial x_{2}}(\mathbf{x}^{(k)}) & \dots & \frac{\partial f_{n}}{\partial x_{n}}(\mathbf{x}^{(k)}) \end{bmatrix}$$

e reinterpretare la divisione $1/f'(x^{(k)})$ come calcolo della matrice inversa $J_r^{-1}(\mathbf{x}^{(k)})$.

Allora il metodo di Newton per equazioni scalari

$$\begin{cases} x^{(0)} \text{ dato} \\ x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, & k \ge 0 \end{cases}$$

diventa, per equazioni vettoriali:

$$\begin{cases} \mathbf{x}^{(0)} dato \\ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - J_F^{-1}(\mathbf{x}^{(k)}) \mathbf{F}(\mathbf{x}^{(k)}) & k \ge 0 \end{cases}$$
 (2)

Il problema cruciale è: come calcolare il vettore

$$z = x^{(k+1)} - x^{(k)} = -J_F^{-1}(x^{(k)})F(x^{(k)})$$

Come calcolare
$$\mathbf{z} = -J_F^{-1}(\mathbf{x}^{(k)})\mathbf{F}(\mathbf{x}^{(k)})$$

Ad ogni iterazione *k*:

- valuto $J_F(\mathbf{x}^{(k)})$ e la memorizzo in una matrice A
- valuto $-\mathbf{F}(\mathbf{x}^{(k)})$ e lo memorizzo in un vettore **b**
- calcolo $\mathbf{z} = A \backslash \mathbf{b}$

Attenzione: Il comando \ non calcola in maniera esplicita A^{-1} , ma calcola **z** risolvendo il sistema lineare A**z** = **b**

Se
$$A$$
 è non singolare $Az = b \Leftrightarrow z = A^{-1}b$

Partendo dalla function newton.m scrivere NEWTON per SISTEMI

newtonsys.m

```
Input: f, Jf, x0, tol, kmax
k=0, err=tol+1
mentre k < kmax e err> tol
        valuto \mathbf{b} = -\mathbf{F}(\mathbf{x}^{(k)})
        valuto A = J_F(\mathbf{x}^{(k)})
        risolvo Az = b
        aggiorno la soluzione \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{z}
        calcolo l'errore err = \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\| = \|\mathbf{z}\|
        aggiorno k: k=k+1
        aggiorno x
```

Output: zero, f(zero), n_iterazioni, [err].

ESERCIZIO

(essisnl)

Calcolare numericamente le 4 radici del sistema non lineare

$$\begin{cases} x^2 - y^2 = 1 \\ x^2 + y^2 - 2x = 3 \end{cases} \Leftrightarrow \begin{cases} x_1^2 - x_2^2 = 1 \\ x_1^2 + x_2^2 - 2x_1 = 3 \end{cases}$$
 (3)

con il metodo di Newton. Rappresentare graficamente su un solo grafico le storie di convergenza (ovvero gli errori $\|\mathbf{x}_{k+1} - \mathbf{x}_k\|$ al variare di $k = 0, ..., k_{max}$) e commentare i risultati ottenuti. Scegliere questi tre dati inziali $\mathbf{x}0=[1;1]$, $\mathbf{x}0=[2;-1]$, $\mathbf{x}0=[-2;-2]$.

Svolgimento

- 1. Rappresentazione grafica per la localizzazione delle radici
- 2. Risoluzione numerica

1. Rappresentazione grafica per la localizzazione delle radici

```
\mathbf{x} = [x_1, x_2]^t, f_1(\mathbf{x}) = x_1^2 - x_2^2 - 1, f_2(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1 - 3.
Per localizzare le radici del sistema: disegno le superfici
z = f_1(\mathbf{x}) e z = f_2(\mathbf{x}) e le contour f_1(\mathbf{x}) = 0 e f_2(\mathbf{x}) = 0.
f1=0(x1.x2)x1.^2-x2.^2-1:
f2=0(x1,x2)x1.^2+x2.^2-2*x1-3;
[x1, x2] = meshgrid(-3:.1:3);
z_f1=f1(x1,x2);
z_f2=f2(x1,x2);
figure(1); clf
meshc(x1,x2,z_f1); title('z=f1(x_1,x_2)')
xlabel('x_1'); ylabel('x_2')
hold on
contour(x1,x2,z1,[0 0],'g','linewidth',2);
```

Disegnare f_2 su una seconda figura e le due contour (in z=0) su una terza figura.

f e Jf devono essere function handle che dipendono dal vettore x. Prima per disegnare le superifici ho utilizzato gli array x1 e x2. Ora per risolvere il sistema, x(1) e x(2) sono le componenti di un unico array x.

f è un function handle vettore colonna di 2 componenti

f=0(x)[f1(x(1),x(2)); % <--
$$f_1(x_1,x_2)$$

f2(x(1),x(2))] % <-- $f_2(x_1,x_2)$

Jf è un function handle matrice 2×2

$$Jf=0(x)[2*x(1), -2*x(2); % df_1/dx_1, df_1/dx_2 2*x(1)-2, 2*x(2)] % df_2/dx_1, df_2/dx_2$$

Definire gli altri input per newtonsys.m e chiamare newtonsys.m

Storie di convergenza.

Con i comandi

si ottengono le seguenti storie di convergenza:

La rappresentazione non è buona.

Comando semilogy

Sostituendo il comando plot con semilogy

```
semilogy(Err1,'r'); hold on
semilogy(Err2,'b'); semilogy(Err3,'k')
legend('x0=[1;1], alpha=(2,1.73)',...
'x0=[2;-1], alpha=(2,-1.73)',...
'x0=[-2;-2], alpha=(-1,0)')
```

si ottengono le seguenti storie di convergenza:

La curva nera mostra una convergenza lineare. Le altre due curve convergenza quadratica. Infatti alpha=(-1,0) è radice multipla, le altre due sono semplici.

Il metodo di Broyden

E' una possibile generalizzazione del metodo delle secanti per risolvere sistemi di equazioni non lineari.

Non richiede il calcolo della matrice Jacobiana, ma costruisce ad ogni k una matrice B_k che approssima in maniera opportuna $J_F(\mathbf{x}^{(k)})$.

Richiede una matrice iniziale B_0 , una scelta comune consiste nel prendere $B_0 = I$ (matrice identità).

Scaricare broyden.m dal direttorio delle function matlab paola-gervasio.unibs.it/CS/matlab

La sintassi di chiamata è:

[zero,res,niter]=broyden(fun,B0,x0,tol,nmax,pflag) Risolvere il problema precedente con il metodo di Broyden.

Altri esempi di sistemi non lineari

$$\begin{cases} 4x_1^2 + x_2^2 = 4\\ x_1 + x_2 = sin(x_1 - x_2). \end{cases}$$

$$\begin{cases} -\frac{1}{81}\cos(x_1) + \frac{1}{9}x_2^2 + \frac{1}{3}\sin(x_3) = x_1\\ \frac{1}{3}\sin(x_1) + \frac{1}{3}\cos(x_3) = x_2\\ -\frac{1}{9}\cos(x_1) + \frac{1}{3}x_2 + \frac{1}{6}\sin(x_3) = x_3. \end{cases}$$

$$\begin{cases} x_1^2 + x_2^2 - 2x_1 - 2x_2 + 1 = 0\\ x_1 + x_2 - 2x_1x_2 = 0 \end{cases}$$