Examen de Teoría de Percepción

ETSINF, Universitat Politècnica de València, Abril de 2016

Apellidos:			Nombre:	
Profesor:	☐ Carlos Mar	rtínez 🗆 Roberto Parec	des	
Cuestiones	s (3 puntos, 3	0 minutos, sin apuntes)	
C ¿En qué sit	tuación el clasificador	r por máxima verosimilitud puede ex	$xpresarse por c(x) = \arg x$	$\max p(x c)$?
B) En nin C) Cuanc	alquier situación nguna situación do las probabilidades do hay independencia	$a\ priori\ P(c)$ son iguales para toda de $p(x)$	s las clases	
		ala de grises de tamaño 10×15 centín cuparía suponiendo que se cuantifica		
B) Entre C) Entre	s de 5 Mbytes 5 y 10 Mbytes 10 y 15 Mbytes le 15 Mbytes	TAMAÑO = SUPERFÍCIE * RES. T = 10 * 15 * 250^2 * 1 = 9375000		a nivel
		cimiento de imágenes de gran tamaí ión de puntos de interés para extrac		
B) Detec C) Extra	cción por rejilla com	olementado con extracción por rejilla plementada por extracción aleatoria en información e invarianza		
		coge un rango de frecuencias hasta 1 rocesos de adquisición son los más a		sólo son informativas las
B) Muest C) Filtra		Iz y muestreo a 8KHz Iz y muestreo a 16KHz		
A Emplear un	na función global en	la representación de <i>tokens</i> para cla	sificación de documentos	es conveniente porque:
B) Reduc C) Permi	ce el tamaño de los ve te la introducción de	la colección de documentos completa ectores de representación e contexto basado en secuencias de p n logarítmica de los documentos, dan	alabras	criminativa

- C PCA se resuelve minimizando el error de reconstrucción. Al final se llega a una solución basada en eigenvectores de la matriz de convarianzas. Al aplicar la transformación lineal con dichos eigenvectores se tiene que:
 - A) El error de reconstrucción es 0
 - B) El error de reconstrucción es la suma de los eigenvalores de los eigenvectores empleados
 - C) La matriz de covarianzas en el espacio proyectado es diagonal
 - D) El error de reconstrucción es la suma de los eigenvectores empleados
- A ¿Cuál de estas afirmaciones sobre LDA es correcta?
 - A) LDA obtiene una matriz de proyección lineal optimizando una función objetivo que persigue maximizar las distancias interclase mientras se minimizan las intraclase
 - B) Es una proyección lineal donde no tiene sentido escoger más de d-1 eigenvectores siendo d la dimensionalidad de los datos originales
 - C) Es una proyección lineal que resulta del análisis de eigenvectores de la matriz de covarianzas Σ_x
 - D) LDA obtiene una matriz de proyección lineal optimizando una función objetivo que persigue maximizar las distancias intraclase mientras se minimizan las interclase
- D Cuál de las siguientes afirmaciones respecto a kernels es falsa:
 - A) Las funciones kernel modelan el producto escalar en un espacio de representación alternativo
 - B) El uso de kernels es adecuado cuando el espacio de representación original no es linealmente separable
 - C) El algorimo Kernel Perceptron acaba cuando todas las muestras de aprendizaje están bien clasificadas
 - D) Las funciones kernel implican tener que proyectar los datos a un espacio de representación alternativo
- C Dado un problema de clasificación en 10 clases donde los objetos se representan en un espacio de 1000 dimensiones. Se desea obtener una representación en un espacio reducido de 2 dimensiones. En general, ¿cuál de las siguientes reducciones es la menos aconsejable desde el punto de vista de estabilidad numérica?
 - A) Proyectar primero con PCA a 100 dimensiones y luego con LDA a 2
 - B) Proyectar primero con PCA a 10 dimensiones y luego con LDA a 2
 - C) Proyectar con LDA a 2
 - D) Proyectar primero con PCA a 50 dimensiones y luego con LDA a 2
- B Dado un problema de clasificación en C clases donde los objetos se representan en un espacio de d dimensiones, se desea obtener una representación en un espacio reducido de k dimensiones. Mediante PCA se obtiene W como matriz de proyección a d' dimensiones y a partir de los datos una vez proyectados mediante PCA se obtiene V como la matriz de proyección mediante LDA. Se debe de cumplir que:
 - A) $d' \le C 1'$ y $k \le C 1 \le d$
 - B) $k \le C 1$ y $k \le d' \le d$
 - C) $k \le C 1 \le d' \le d$
 - D) $d' \leq C 1$ y $k \leq d$

Examen de Teoría de Percepción

ETSINF, Universitat Politècnica de València, Abril de 2016

Apellidos:	Nombre:	
	TAOIIIDIO.	

Profesor: □ Carlos Martínez □ Roberto Paredes

Problemas (4 puntos, 90 minutos, con apuntes)

1. (2 puntos) Se dispone del siguiente conjunto de datos sobre \mathbb{R}^5 para un problema de tres clases:

			Clase			
$\overline{x_1}$	1	1	1	1	1	1
x_2	2	1	-1	0	1	1
x_3	-1	2	-1	1	0	2
x_4	1	-1	1	2	-1	2
x_5	0	-1	-1	0	1	3
x_6	0	1	-2	2	1	3

Se han realizado los procesos para obtener proyecciones PCA y LDA al espacio \mathbb{R}^2 , dando los siguientes resultados:

$$\overline{\mathbf{x}} = \begin{bmatrix} 0.5 \\ 0.5 \\ -0.5 \\ 1 \\ 0.5 \end{bmatrix} \qquad W_{pca} = \begin{bmatrix} -0.3 & 0.6 \\ 0.6 & -0.2 \\ -0.7 & -0.1 \\ -0.1 & -0.6 \\ 0.3 & 0.5 \end{bmatrix} \qquad W_{lda} = \begin{bmatrix} 0.6 & -0.1 \\ 0.4 & -0.4 \\ 0.4 & -0.2 \\ -0.2 & 0.3 \\ 0.5 & 0.9 \end{bmatrix}$$

Se pide:

- a) Obtener la proyección de los datos mediante el uso de PCA. (0.75 puntos)
- b) Obtener la proyección de los datos mediante el uso de LDA. (0.5 puntos)
- c) Realizar una representación gráfica de ambas proyecciones. (0.25 puntos)
- d) A la vista de los resultados, ¿qué técnica de reducción de dimensionalidad parece más adecuada para este caso? Razona tu respuesta. (0.25 puntos)
- e) ¿Aplicar LDA a una única dimensión daría buenos resultados? Razona tu respuesta. (0.25 puntos)

Solución:

	Primer pa	aso: re	star $\overline{\mathbf{x}}$:					Segundo paso: proyección	
			Muest	$_{\mathrm{ra}}$			Clase	Muestra	Clase
	$x_1 - \overline{\mathbf{x}}$	0.5	0.5	1.5	0	0.5	1	$(x_1 - \overline{\mathbf{x}})W_{pca} \mid -0.75 0.3$	1
a)	$x_2 - \overline{\mathbf{x}}$	1.5	0.5	-0.5	-1	0.5	1	$(x_2 - \overline{\mathbf{x}})W_{pca} \mid 0.45 1.7 \mid$	1
a)	$x_3 - \overline{\mathbf{x}}$	-1.5	1.5	-0.5	0	-0.5	2	$(x_3 - \overline{\mathbf{x}})W_{pca} \mid 1.55 - 1.4 \mid$	2
	$x_4 - \overline{\mathbf{x}}$	0.5	-1.5	1.5	1	-1.5	2	$(x_4 - \overline{\mathbf{x}})W_{pca} \mid -2.65 -0.9 \mid$	2
	$x_5 - \overline{\mathbf{x}}$	-0.5	-1.5	-0.5	-1	0.5	3	$(x_5 - \overline{\mathbf{x}})W_{pca} \mid -0.15 0.9 \mid$	3
	$x_6 - \overline{\mathbf{x}}$	-0.5	0.5	-1.5	1	0.5	3	$(x_6 - \overline{\mathbf{x}})W_{pca} \mid 1.55 - 0.6 \mid$	3

b) Proyección:

Muestra		Clase	PCA						LDA										
x_1W_{lda}	1.7	0.5	1		2						. 2		,	,					
x_1W_{lda} x_2W_{lda} x_3W_{lda} x_4W_{lda} x_5W_{lda} x_6W_{lda}	1.7	0.5	1		1.5				+	C1 + C2 X C3 *	1.5	ļ			*			C1 C2 C3	
x_3W_{lda}	-0.4	-0.2	2		1			*		/	1								
x_4W_{lda}	-0.3	-0.2	2		0.5						0.5	ļ	ļ				<u> </u>	ļ	+
x_5W_{lda}	-0.3	1.5	3	$^{\mathrm{c})}$	0			+		-	0	ļ							
$r_c W_{lJz}$	-0.3	1.5	3		-0.5					*	-0.5				××				
worr taa	0.0	1.0	0		-1	×				*	-1		ļ			ļ	ļ		
					-1.5					×	-1.5								
					.2						.2								
						3 -	2 -	1	0	1	2	-2 -	1.5	-1 -	0.5	0 (0.5	1 ?	1.5 2

- c) LDA permite una clara separabilidad lineal en \mathbb{R}^2 , por lo que sería la opción más apropiada.
- d) No, pues la proyección de la primera dimensión haría indistinguibles los elementos de las clases 2 y 3.

- 2. (2 **puntos**) Dada la función kernel $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 3)^2$ y el conjunto de aprendizaje en \mathbb{R}^2 $X = \{(\mathbf{x}_1, +1), (\mathbf{x}_2, +1), (\mathbf{x}_3, -1), (\mathbf{x}_4, -1), (\mathbf{x}_5, +1)\}$, siendo $\mathbf{x}_1 = [1 \ -1], \mathbf{x}_2 = [0 \ 1], \mathbf{x}_3 = [1 \ 1], \mathbf{x}_4 = [2 \ -1], \mathbf{x}_5 = [1 \ 0],$ se pide:
 - a) Obtener la matriz de kernel K asociada a X (0.5 puntos)
 - b) Realizar una iteración del algoritmo Kernel Perceptron partiendo del conjunto de pesos $\alpha = (0, 0, 0, 0, 0)$ (1 punto)
 - c) Clasificar la muestra $y = [-2 \ 1]$ de acuerdo a los pesos obtenidos en el apartado previo (0.5 puntos)

Solución:

a) Matriz kernel:

$$\mathbf{K} = \begin{vmatrix} 25 & 4 & 9 & 36 & 16 \\ 4 & 16 & 16 & 4 & 9 \\ 9 & 16 & 25 & 16 & 16 \\ 36 & 4 & 16 & 64 & 25 \\ 16 & 9 & 16 & 25 & 16 \end{vmatrix}$$

b) Iteraciones algoritmo kernel perceptron

```
muestra 1, clase 1, fdl=0.000000 0.0000000 --> error muestra 2, clase 1, fdl=5.000000 5.000000 --> ok muestra 3, clase -1, fdl=10.000000 -10.000000 --> error muestra 4, clase -1, fdl=20.000000 -20.000000 --> error muestra 5, clase 1, fdl=-26.000000 -26.000000 --> error
```

alfas:

- 1.000000 0.000000 1.000000 1.000000 1.000000
- c) Clasificación de y. g(y) = -7 por lo tanto y pertenece a la clase -1