目录

第-	一章 一元函数极限	1
	§ 1.1 预备	1
	一、几点注释	1
	a. 关于反函数(1) b. 关于奇函数和偶函数(2) c. 关于周期函数(3)	
	二、几个常用的不等式	4
	三、Wallis 公式	6
	四、单元练习 1.1	7
	§ 1.2 用定义证明极限的存在性	9
	一、用定义证明极限	10
	a. $\varepsilon - N$ 方法(10) b. 拟合法(12) c. 用邻域描述极限(13)	
	二、用 Cauchy 准则证明极限	L4
	三、否定形式及"∀和"∃的使用法则	l5
	四、利用单调有界原理证明极限存在	17
	五、数列与子列、函数与数列的极限关系	18
	六、极限的运算性质	19
	七、单元练习 1.2	20
	§ 1.3 求极限值的若干方法	22
	一、利用等价代换和初等变形求极限	22
	a. 等价代换(22) b. 利用初等变形求极限.(23)	
	二、利用已知极限	24
	三、利用变量替换求极限	25
	四、两边夹法则	26
	五、两边夹法则的推广形式	28
	六、求极限其他常用方法	30
	a. L'Hospital 法则(30) b. 利用 Taylor 公式求极限(32) c. 利用积分定义求极	
	限(32) d. 利用收敛级数余项趋向零(34) e. 利用连续性求极限(35) f. 综合	
	性例题(35) g. e^x 的妙用(36) h. e^{-x} 的妙用(36)	

为函数的变形(164)
三、导数的两大特性
a. 条数无第一类间断点(168) b. 复合函数的极限(168) c. 提示见例 3.2.22.(169) d. 导数的介值性(169)
四、Cauchy 中值定理及 L'Hospital 法则
a. 推导中值公式(170) b. 作为函数与导数的关系(172) c. 附: 导数的推广一 广义导数(178)
五、单元练习 3.2
a. 关于函数零值点 (方程根) 的存在唯一性(179) b. 推导新的中值形式(181) c. 提示参考例 3.2.8.(181) d. 微分中值定理的灵活应用(183)
§ 3.3 Taylor 公式
一、证明中值公式
二、用 Taylor 公式证明不等式
三、用 Taylor 公式作导数的中值估计
四、关于界的估计
五、求无穷远处的极限
六、中值点的极限
七、函数方程中的应用
八、Taylor 展开的唯一性问题
九、符号 "O" 与 "o" 的含义和应用
十、单元练习 3.3
a. Taylor 公式及其应用(203) b. 提示参考例 3.3.5.(204) c. 提示参考例 3.3.7.(204)
§ 3.4 不等式与凸函数
一、不等式
a. 利用单调性证明不等式(206) b. 利用微分中值定理证明不等式(207) c. 利用 Taylor 公式证明不等式(208) d. 用求极值的方法证明不等式(208) e. (吉
林大学)(209) f. 利用单调极限证明不等式(209)
二、凸函数
a. 凸函数的几种定义以及它们的关系(211) b. 凸函数的等价描述(213) c. 凸 函数的性质及应用(217)
三、单元练习 3.4
a. 凸函数(224)
§ 3.5 导数的综合应用
一、极值问题