

# CHOC

Tarek El-Hajjaoui, Micah Fadrigo, Sheldon Gu, Cecilia Nguyen

## Juvenile dermatomyositis (JDM)



- Rare autoimmune disease
- Weak muscle, skin rash ...
- No cure → help alleviate symptoms

## **Diagnosis**

#### Labs & Biomarker

- Expensive
- Difficult to identify

#### **NFC**

- Easily obtained
- Indicate disease activity



Nailfold Capillaroscopy (NFC)

## **Project Description**

**GOAL:** simple, quick & inexpensive pre-screening on JDM

Specifically: differentiate JDM patients from healthy control groups



#### **Data Preprocessing** Load Images Interpolate Images **HOG Feature Engineering Machine Learning Models** SVM CNN **Optimizing Data & Models HOG Features Support Vector Machines** Convolutional Neural Network Image augmentation **Results & Discussion** Overall Results Challenges Future Research

## **Data Description**

<PatientID + Finger>

#### Image Level:

<u>JDM</u>: **1120** images

Control: **321** images

#### Patient Level:

JDM: 111 patients

Control: 31 patients













Response variable: JDM & Control

#### **EDA**





#### **Obstructed Images**



https://www.stylecraze.com/articles/8-simple-nail-art-designs/



https://laurenbbeauty.com/blogs/blog/how-to-remove-nail-polish-from-skin-around-nails

Imbalance: Not all patients represented equally between case/control and within.





**Imbalance**: Not all patients represented equally between case/control and within.





#### **Data Issue - Solution**

Input image



**Histogram of Oriented Gradients** 



- Large image size → Interpolation
- Absence of feature → Histogram of Oriented Gradients (HOG)

## **Data Preprocessing**



initial image [16px x 16px]



PIL.Image.resize [4px x 4px]



tf.image.resize\_bicubic [4px x 4px] <u>CHOC</u>: Manually examined and corrected orientation of NFCs.

#### Our Steps:

1. **Downscale** to size: 128, 64, 32

2. Scale input pixels between (-1, 1)

3. **Vectorize** images

4. **HOG** transformation

5. 10-Fold Stratified Cross-Validation

## **Histogram of Oriented Gradients (HOG)**

#### What is HOG

- Computer vision feature descriptor technique.
- Distribution of edge orientations.

#### Why is this useful

- Learn structural and spatial patterns of images.
- Reduces noise of images (for classification or object detection tasks).
- Generally preferred over vectorized images.

### **HOG Example**



| 2   | 3   | 4   | 4   | 3   | 4   | 2   | 2   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 5   | 11  | 17  | 13  | 7   | 9   | 3   | 4   |
| 11  | 21  | 23  | 27  | 22  | 17  | 4   | 6   |
| 23  | 99  | 165 | 135 | 85  | 32  | 26  | 2   |
| 91  | 155 | 133 | 136 | 144 | 152 | 57  | 28  |
| 98  | 196 | 76  | 38  | 26  | 60  | 170 | 51  |
| 165 | 60  | 60  | 27  | 77  | 85  | 43  | 136 |
| 71  | 13  | 34  | 23  | 108 | 27  | 48  | 110 |

#### **Gradient Magnitude**

| 80  | 36  | 5   | 10  | 0   | 64  | 90  | 73  |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 37  | 9   | 9   | 179 | 78  | 27  | 169 | 166 |
| 87  | 136 | 173 | 39  | 102 | 163 | 152 | 176 |
| 76  | 13  | 1   | 168 | 159 | 22  | 125 | 143 |
| 120 | 70  | 14  | 150 | 145 | 144 | 145 | 143 |
| 58  | 86  | 119 | 98  | 100 | 101 | 133 | 113 |
| 30  | 65  | 157 | 75  | 78  | 165 | 145 | 124 |
| 11  | 170 | 91  | 4   | 110 | 17  | 133 | 110 |

**Gradient Direction** 

Center: The RGB patch and gradients represented using arrows. Right: The gradients in the same patch represented as numbers



#### **Convolution Neural Network**

Widely used for computer vision tasks

- Standard Architectures:
  - Batch normalization is sensitive to large variation in the data
  - Uninterpretable

- CHOC developed NFC-Net = lightweight CNN = 3 layers
  - Working on explainability



## Why Pursue Simpler Models?

- ★ Baseline Measurement & Reference
  - Are simple models able to achieve similar scores to NFC-Net?

- ★ Quicker Deployment to Mobile Devices
  - Automate clinical analyses of NFC
  - Accelerate JDM data collection & research

- ★ Robustness
  - Deals with high-level of noise

## Why only focus on SVM for Simple Models

#### **Logistic Regression + Lasso**

X Assumptions violated

#### **Random Forest**

Poor explainabilityLong training times

#### **SVM**

- Despite default hyper-parameters, SVM had better scores.
- RBF Kernel sensitivity to hyper-parameters.
- HOG + SVM is proven in Computer Vision tasks.
- Model explainability with Support Vectors.



## **HOG & SVM Tuning**

Leveraged Scikit-Learn library to create a tuning framework:

| HOG parameters                                                                 | SVM parameters                               | Stratified CV                             |
|--------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|
| <ul><li>Orientations</li><li>Pixels per cell</li><li>Cells per block</li></ul> | <ul><li>♦ C</li><li>♦ Class weight</li></ul> | \$<br>Refit based on ROC Calculate scores |

## **Optimal Parameter Results**

#### Achieved significantly better results:

| ROC AUC | Class 0 Acc. | Precision | Accuracy | Recall | F1    |
|---------|--------------|-----------|----------|--------|-------|
| 0.920   | 0.726        | 0.923     | 0.896    | 0.945  | 0.934 |

#### Contradicts previous presentation's results.

Highlights the importance of hyperparameter tuning.

## **SVM Comparison**

| Previous Best - Linear SVM [32x32] (Vectorized)   |  |  |  |  |  |  |  |  |
|---------------------------------------------------|--|--|--|--|--|--|--|--|
| ROC AUC Class 0 Acc. Precision Accuracy Recall F1 |  |  |  |  |  |  |  |  |
| 0.756 0.624 0.892 0.830 0.890 0.890               |  |  |  |  |  |  |  |  |



| New Best - RBF SVM [32x32] (HOG)                  |  |  |  |  |  |  |  |
|---------------------------------------------------|--|--|--|--|--|--|--|
| ROC AUC Class 0 Acc. Precision Accuracy Recall F1 |  |  |  |  |  |  |  |
| 0.920 0.726 0.923 0.896 0.945 0.934               |  |  |  |  |  |  |  |

## **SVM** Improvements



### **Model Explainability**

- How does the model arrive at its predictions?
- Why do we need interpretable models?
  - Build trust & user confidence
  - Develop ethical Al systems
- Trade-off between performance & interpretability
- Gradient-based methods have been developed

Gradient-weighted
Class Activation
Mapping







Goal: Create an equivalent of CNN explainability but for SVM model



## **SVM** Explainability

[SVM explainability pics with suboptimal parameters]

[SVM explainability pics with optimal parameters]

#### **Convolution Neural Network**



Feature Extraction (conv2d + ELU)



Classification Layer

#### **Convolution Neural Network**

#### **Image Augmentation:**

- random flip
- random zoom
- random rotation

With Class weight {0: 1.5, 1: 1}

• **Accuracy**: 0.84



#### **Overall Results**

- Simple Models (SVM) performance can compare to CNN (NFC-Net) Results
  - Interpretability, robustness

|                             | Accuracy | Precision | Recall | F1 Score | ROC-AUC | Specificity |
|-----------------------------|----------|-----------|--------|----------|---------|-------------|
| NFC-Net                     | 0.91     | 0.95      | 0.85   | 0.897    | .93     | 0.90        |
| SVM RBF<br>[32*32]<br>(HOG) | 0.896    | 0.923     | 0.945  | 0.934    | .920    | 0.726       |

- Determining Simple Models
  - Trade-off
- Hyperparameter Tuning SVM
  - HOG feature tuning



## **Challenges & Future Research**

#### Issues and Potential reasons?

- Data
- Computational time
- Limited timeline

#### What to do in the future to improve?

- Better Image Preprocessing
- Parameters
- Test Interpretability Techniques
- Standardizing Procedure
- Proof-of-Concept

## Special thanks to

Dr. Peyman Kassani Nadine Afari Louis Ehwerhemuepha

# Q&A