Cycle and Component Detection in Signed Permutations

1. Problem

Let π be a signed permutation of length n. We are interested in analyzing the cycle and component structure of π using a cycle graph representation.

- 1. Show that the number of cycles in π can be found in O(n) time.
- 2. Show that all components in π can be found in O(n) time.

2. Solution

2.1. (a) Computing the Number of Cycles in O(n) Time

To compute the number of cycles efficiently, we transform the signed permutation π into a cycle graph. This involves the following steps:

Step 1: Extend and Transform the Permutation

1. Extend π with sentinel elements:

$$\pi(0) = 0$$
, $\pi(2n+1) = 2n+1$

- 2. Convert each signed element π_i into an unsigned pair:
 - (a) If $\pi_i > 0$: form the pair $(2\pi_i 1, 2\pi_i)$.
 - (b) If $\pi_i < 0$: form the pair $(2|\pi_i|, 2|\pi_i| 1)$.
- 3. The transformation produces a permutation over $\{0, 1, 2, \dots, 2n + 1\}$, with 2n + 2 vertices.

Step 2: Construct the Cycle Graph

- 1. Add gray edges between $\pi(2i)$ and $\pi(2i+1)$ to represent the permutation.
- 2. Add black edges between 2i and 2i + 1 to represent the identity permutation.
- 3. Each cycle consists of alternating gray and black edges.
- 4. The resulting structure is a disjoint union of cycles.

Step 3: Count Cycles via Overlap Graph in O(n) Time

- 1. Construct the overlap graph:
 - (a) Each vertex corresponds to a pair (i.e., an interval) from the unsigned transformation.
 - (b) An edge exists between two vertices if their intervals overlap.
- 2. Build a forest where each tree corresponds to a cycle (i.e., connected component).
- 3. Traverse each vertex and edge once to detect connected components.

Note

The number of cycles in π equals the number of connected components in the overlap graph. Since each element and edge is visited once, the total time complexity is O(n).

2.2. (b) Computing All Components in O(n) Time

We now describe how to find all connected components in linear time using a stack-based method.

Algorithm Description

- 1. For each i, let $C[i] = (A_i, B_i)$ be the interval from the unsigned pair representation.
- 2. Initialize an empty stack.
- 3. Iterate i from 0 to 2n + 1:
 - (a) If i = C[i].A, push C[i] onto the stack.
 - (b) Set extent $\leftarrow C[i]$.
 - (c) While the top of the stack satisfies top. A > C[i].A:
 - i. Update extent. $A \leftarrow \min(\text{extent.} A, \text{top.} A)$.
 - ii. Update extent.B \leftarrow min(extent.B, top.B).
 - iii. Pop the top of the stack and set parent[top.A] $\leftarrow C[i].A$.
 - (d) Update the top of the stack with the new extent values.
 - (e) If i = top.B, pop the top.
- 4. After the loop, use the parent array to extract trees (i.e., connected components).

Note

Since each vertex and edge is processed only once, all components of π can be found in O(n) time.