

Recognizing Groceries in situ Using in vitro Training Data

Michele Merler

University of Trento (michele.merler@studenti.unitn.it)

Advisor: Prof. Serge Belongie CSE Department, UC San Diego

Using pictures of objects captured under ideal imaging conditions (in vitro) to recognize objects in natural environments (in situ) is an emerging area of interest in computer vision and pattern recognition. We propose a new multimedia database of 120 grocery products, GroZi-120.

For every product, two different recordings are available: in vitro images extracted from the web, and in situ images extracted from camcorder video collected inside a grocery store. We present the results of three commonly used object recognition/detection algorithms on the dataset.

General Problem in Computer Vision

Our Work

APPLICATIONS

Assistive vision systems for the blind

Mobile robots navigation-interaction

> Get from the real world

STATE OF THE ART OBJECT DETECTION -RECOGNITION ALGORITHMS

Do detection and localization work as well as with other databases and problems?

Future Work Needed

Dynamically increase the dataset

Use more precise and elaborate

detection/recognition algorithms

Use context information about physical

object proximity to improve localization

TRAINING

DATA

need

- General + specialized (UPC) code) queries
- Include a variety of sizes, poses and illuminations (coming from different online vendors and stock photo suppliers)

where to get

Database "in vitro"

- Easy to analyze
- Clear foreground-background distinction (binary mask)

World Wide

A. Web

	n. samples	
total	676	
avg	5.63	
max	14	
min	2	

Database "in situ"

Videos Colleceted in Store

- 29 Divx 5.2.1 files, 30 fps, 2kbps
- Cluttered background, different products per frame
- Multiple instances of same object per frame, partially occluded
- Rotated, different illumination, angle of view, affine and projective distortion

n. samples			
11194			
9.33			
814			
14			

TESTING

DATA

Product location saved every 5 frames

Results - Localization

14 frames per product with highest number of keypoints as True Positives

100 frames with none of the dataset products as True Negatives

CHM	%Rec	%Pre	%TP	%FP		
Mean	15	17	18	65		
Std Dev	28	16	35	32		
Best	71	82	100	4		
Worst	0.7	0.2	0	100		
SIFT	%Rec	%Pre	%TP	%FP		
Mean	72	18	22	62		
Std Dev	20	17	26	28		
Best	14	83	93	25		
Worst	26	0.9	0	64		
BHaar	%Rec	%Pre	%TP	%FP		
Mean	15	17	18	65		
Std Dev	13	13	19	24		
Best	35	74	50	38		
Worst	0.5	0.2	0	92		
Rec = Overall Recall, Pre = Overall Precision						

Results - Recognition

10 in situ images per product with highest n. of keypoints as Positives.

110 samples of the remaining products as Negatives

Acknowledgments

Special thanks to Carolina Galleguillos and all the people involved in the GroZi project at UCSD. Michele Merler was supported by the California Institute for Telecommunication and Information Technology (CalIt2) 2006 Summer Undergraduate Scholarship program.