Uncovering the process of reprioritizing weaker meanings in human brain

Po-Heng Chen National Taiwan University

Research background & aim

Research background & aim

- The downside of Electroencephalography (EEG) is bad spatial resolution.
- In the present project, we take advantage of Magnetoencephalography (MEG) to investigate the neural substrates of meaning reprioritization.

Methods

MEG data were collected from 26 young participants while they read short phrases in Taiwan Mandarin.

	Word type	Condition	Context	Target
	Unambiguous words	Unambiguous	這支 'this'	球隊 'team'
	Homographs	Dominate usage	一套 'a set of'	制服 'uniform'
		Subordinate usage	一同 'together'	制服 'subdue'
			time wind	this pho
500	0 ms 500 -1000 6	200 ms 300 ms	200 ms 10	next tria

Data will be analyzed at sensor level and source level following the Workflow of the MNE-Python software.

Objectives and keywords

- To familiarize myself with the analyses of MEG data and set up a pipeline of doing these analyses via MNE-Python package
- To better understand the neural substrates of the process of meaning reprioritization (indexed by the frontal positivity in past EEG studies)
- Keywords: lexical ambiguity, frontal/anterior positivity, EEG/ERP, MEG

References

- 1. Federmeier, K. D., Wlotko, E. W., De Ochoa-Dewald, E., & Kutas, M. (2007). Multiple effects of sentential constraint on word processing. *Brain research*, *1146*, 75-84.
- 2. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., ... & Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. *Neuroimage*, *86*, 446-460.
- 3. MacGregor, L. J., Rodd, J. M., Gilbert, R. A., Hauk, O., Sohoglu, E., & Davis, M. H. (2020). The neural time course of semantic ambiguity resolution in speech comprehension. *Journal of Cognitive Neuroscience*, 32(3), 403-425.
- 4. Rodd, J. M., Johnsrude, I. S., & Davis, M. H. (2012). Dissociating frontotemporal contributions to semantic ambiguity resolution in spoken sentences. *Cerebral Cortex*, 22(8), 1761-1773.