4. Root finding

Last time

- · Approximating functions by polynomials
- · Taylor series
- · Taylor polynomials + Lagrange remainder

Goal for today

- · Methods for finding roots of functions
- · Convergence of those methods

Solving equations

- Suppose we need to solve the equation g(x) = h(x)
- Write f(x) := g(x) h(x)
- Equivalent to solve f(x) = 0 instead
- Solutions x^* such that $f(x^*) = 0$: roots or zeros of f
- · We may want to find a single root or all roots

Roots of polynomials

- Suppose $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ is polynomial
- How many roots does p have?
- Fundamental theorem of algebra:

a degree-n polynomial has exactly n roots in $\mathbb C$

• So can factor p as

$$p(x) = (x - x_1)^{m_1} (x - x_2)^{m_2} \cdots (x - x_k)^{m_k}$$

where x_i are the roots and $\sum_{i=1}^k m_i = n$

• m_i is the **multiplicity** of root x_i

Roots of polynomials II

- · Some of the roots may be multiple roots
- E.g. $p=(x-1)^2(x^2-2)$ has roots $1,1,\sqrt{2}$ and $-\sqrt{2}$
- Roots may be complex even if coefficients \boldsymbol{a}_i are real
- E.g. x^2+1 has roots $x_{1,2}=\pm i$ and \emph{no} real roots

Can we find roots of polynomial analytically?

- Suppose p is a degree-n polynomial with coefficients a_i
- n=2 (quadratic): exact formula for roots in terms of a_i
- n=3,4: more complicated formulae exist
- Abel–Ruffini theorem:

for $n \ge 5$, in general **no such formula exists!**

Numerical methods for root finding

- Need numerical methods to approximate roots
- Some methods for all roots of a polynomial simultaneously, e.g. Aberth method (PS 2)
- · Here we focus on methods to find single root

Fixed-point iteration

Numerical method for roots must be iterative:

$$x_{n+1} = g(x_n)$$

- algorithm g and initial guess x_0
- Produces a sequence x_0 , x_1 , x_2 , ...
- If iteration converges, $x_n \to x^*$ as $n \to \infty$, then

$$g(x^*) = x^*$$

provided g is **continuous**

• x^* is a fixed point of g; solves f(x) := g(x) - x = 0

Existence of fixed point

- If g is continuous and maps [a,b] into itself, \exists a fixed point.
- If $|g'(x)| \le k \ \forall x \in [a,b]$ with k < 1, then unique.
- · Called a contraction mapping

Dynamics of iterations

- · Such an iteration is a discrete-time dynamical system
- Assume there is a fixed point x^*
- What condition do we need for $\left(x_{n}\right)$ to converge?
- Look at distance $\delta_n := x_n x^*$

Dynamics II

· We have

$$\delta_{n+1} = x_{n+1} - x^*$$

$$=g(x_n)-x^*=g(x^*+\delta_n)-x^*\simeq \delta_n g'(x^*)$$

- So (asymptotically) $\delta_{n+1} = \alpha \, \delta_n$ with $\alpha = g'(x^*)$
- $\delta_{n+1} = \alpha \, \delta_n \Rightarrow \delta_n = \alpha^n$
- Decays (stable fixed point) if $|\alpha|<1$
- Grows (unstable fixed point) if $\alpha>1$

Rate of convergence

- For $\sqrt{\ }$, Babylonian converges **faster** than bisection
- · How can we make this precise?
- If $x_n \to x^*$ then $x_n x^* \to 0$
- Estimate distance or error $|\boldsymbol{x}_n \boldsymbol{x}^*|$ as function of n
- In bisection, error reduces by constant factor 2 at each step

Rate of convergence II

• If there are constants λ and α such that

$$\lim_{n\to\infty}\frac{|x_{n+1}-x^*|}{|x_n-x^*|^\alpha}=\lambda$$

then the iteration is of **order** α

• $\alpha = 1$: linearly convergent

• $\alpha = 2$: quadratic convergence

Note that "linear" actually means that the sequence converges exponentially fast!

Newton method

• Want to solve f(x) = 0; have guess x_0

• Let $x = x_0 + \delta$; solve $f(x_0 + \delta) = 0$

- Taylor theorem: $f(x_0) + \delta f'(x_0) + \frac{1}{2} \delta^2 f''(\xi)$ = 0

• So $\delta \simeq rac{-f(x_0)}{f'(x_0)}$

• Newton method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

· Quadratically convergent!

· Babylon is special case

Newton method viewed as a fixed-point iteration

- How design quadratically-convergent algorithm for $f(\boldsymbol{x}) = 0$?

- Look for fixed-point algorithm with $g(x) := x - \phi(x) f(x)$

• Impose $q'(x^*) = 0$ at root $f(x^*) = 0$

 $\bullet \ g'(x) = 1 - \phi'(x) f(x) - \phi(x) f'(x)$

• So $g'(x^*)=1-\phi(x^*)f'(x^*)=0$

- So need $\phi(x^*) = \frac{1}{f'(x^*)}$

- Take $\phi(x) := \frac{1}{f'(x)}$ – gives Newton method

Convergence of Newton method

- Newton is very powerful when it works
- Generalises
- · When "sufficiently close" to a root, Newton converges fast
- Otherwise, not guaranteed to converge; may fail
- There are known conditions for Newton to converge:
 - Smale α theory
 - Radii polynomials
- Interval Newton method: Use interval arithmetic to guarantee convergence

Summary

- There are many methods for finding **roots** of functions
- · Rewrite as fixed-point iteration
- · Do not always converge
- Methods differ in convergence rate