мощностью, то ее температура изменяется со временем так, как показано на рисунке. Масса смеси воды и льда $m=0.60\,\mathrm{kr}$. Теплоемкости воды и льда в сосуде одинаковы. Определите мощность P нагревателя. Найдите время τ_1 плавления льда в калориметре и время τ_2 дальнейшего разогрева системы до температуры $t_2=20\,\mathrm{^o}C$. Теплообменом с окружающей средой пренебречь.

3. При образовании насыщенного раствора солей (например, алюминиевых квасцов) концентрация η ,% раствора (отношение массы m_1

растворенного вещества к массе m_2 жидкости $\eta = \frac{m_1}{m_2}$) изменяется в зависимости от температуры так, как показано на рисунке. Удельная теплоемкость соли в растворенном состоянии в $c_1 = 2,40 \frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C}$, в

кристаллическом состоянии $c_3 = 1,20 \frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C}$, удельная

теплоемкость жидкости (растворителя) — $c_2=3,60\frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C}$. В начальном состоянии в сосуд, содержащий $m_2=1,00 \, \kappa z$ растворителя, опустили $m=0,600 \, \kappa z$ соли и тщательно перемешали. Постройте график зависимости теплоемкости системы C(t) от температуры. Найдите количество теплоты Q, необходимое для нагрева насыщенного раствора от температуры $t_1=50,0\,{}^{\circ}C$ до температуры $t_2=100\,{}^{\circ}C$. Теплообменом с окружающей средой пренебречь. Кипение в системе отсутствует. Удельной теплотой растворения пренебречь.

Задача 9-3. Скольжение.

1. Шайба массы m лежит на горизонтальном сухом столе. Коэффициент трения шайбы о стол постоянен и равен μ . Шайбе толчком сообщают

горизонтальную скорость v_0 . Какой путь пройдет шайба по столу до полной остановки?

- 2. Шайба массы m лежит на горизонтальном смазанном маслом столе. При движении шайбы со стороны стола действует сила вязкого трения пропорциональная скорости шайбы $\vec{F} = -b\vec{v}$, b постоянный известный коэффициент. Шайбе толчком сообщают горизонтальную скорость v_0 . Какой путь пройдет шайба по столу до полной остановки?
- 3. На длинной горизонтальной доске, размещенной на горизонтальной поверхности, расположена

цепочка из N небольших одинаковых шайб. Шайбы находятся на расстоянии l друг от друга, первая шайба находится на краю доски. Доску вместе с шайбами разогнали до

скорости v_0 , (шайбы движутся вместе с доской), а затем отпустили. Определите, сколько шайб соскользнет с доски (до полной остановки всех движущихся тел), если коэффициент трения шайб о доску равен μ , а доски о поверхность 2μ , Массы шайб значительно меньше массы доски. Шайбы можно считать материальными точками.

- 4. На длинной горизонтальной доске, размещенной на горизонтальной поверхности, расположена цепочка из N небольших одинаковых шайб. Шайбы находятся на расстоянии l друг от друга. Доску вместе с шайбами разогнали до скорости v_0 , (шайбы движутся вместе с доской), а затем отпустили. Определите, сколько шайб соскользнет с доски (до полной остановки всех движущихся тел), если коэффициент трения доски о поверхность равен μ , а на шайбу со стороны доски действует сила вязкого трения, пропорциональная относительной скорости шайбы $\vec{F} = -b\vec{v}$, b постоянный известный коэффициент. Массы шайб значительно меньше массы доски.
- 5. (Опыт Толмена и Стьюарта) Катушка из медного провода содержит N витков, намотанных в один слой. Радиус обмотки равен R, диаметр поперечного сечения проволоки равен d. Выводы катушки через скользящие контакты подключены к гальванометру (прибору для измерения электрического заряда). Катушку раскрутили до угловой скорости ω вокруг ее оси, а затем затормозили, при этом через катушку и гальванометр пошел электрический ток. Какой электрический заряд пройдет через гальванометр, за все время существования электрического тока?

Заряд электрона - e, его масса - m, концентрация электронов (число электронов в единице объема) в меди равна n. При движении электрона в проводнике на него

действует сила вязкого трения, пропорциональная скорости электрона $\vec{F} = -\beta \vec{v}$, β -постоянный известный коэффициент.