

32K × 8 CMOS STATIC RAM

GENERAL DESCRIPTION

The W24258 is a normal speed, very low power CMOS static RAM organized as 32768×8 bits that operates on a wide voltage range from 2.7V to 5.5V power supply. The W24258 family, W24258-70LE and W24258-70LI, can meet requirement of various operating temperature. This device is manufactured using Winbond's high performance CMOS technology.

FEATURES

- Low power consumption:
 - Active: 350 mW (max.)
 - Standby: 6 μ W (max.)/3V
 - 25 μW (max.)/5V
- Access time: 70 nS (max.)/5V
 - 100 nS (max.)/3V
- Single 3V/5V power supply
- · Fully static operation

- · All inputs and outputs directly TTL compatible
- Three-state outputs
- · Battery back-up operation capability
- Data retention voltage: 2V (min.)
- Packaged in 28-pin 600 mil DIP, 330 mil SOP and standard type one TSOP (8 mm x 13.4 mm)

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION			
A0-A14	Address Inputs			
I/O1–I/O8	Data Inputs/Outputs			
CS	Chip Select Input			
WE	Write Enable Input			
ŌĒ	Output Enable Input			
Vdd	Power Supply			
Vss	Ground			

TRUTH TABLE

CS	OE	WE	MODE	I/O1 - I/O8	VDD CURRENT
Н	Χ	Х	Not Selected	High Z	ISB, ISB1
L	Н	Н	Output Disable	High Z	IDD
L	L	Н	Read	Data Out	IDD
L	Х	L	Write	Data In	IDD

DC CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER		RATING	UNIT
Supply Voltage to Vss Potential	Supply Voltage to Vss Potential		V
Input/Output to Vss Potential	put/Output to Vss Potential		V
Allowable Power Dissipation		1.0	W
Storage Temperature		-65 to +150	°C
Operating Temperature	Operating Temperature LE		°C
	LI	-40 to 85	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

Operating Characteristics

(VDD = 5V \pm 10%; VDD = 3V \pm 10%; VSS = 0V; TA (°C) = -20 to 85 for LE; -40 to 85 for LI)

PARAMETER	SYM.	TEST CONDITIONS	5V	5V -10%		′ – 10 %	UNIT
			MIN.	MAX.	MIN.	MAX.	
Input Low Voltage	VIL	-	-0.5	+0.8	-0.5	+0.6	V
Input High Voltage	Vih	-	+2.2	VDD +0.5	+2.0	VDD +0.5	V
Input Leakage Current	I⊔	VIN = VSS to VDD	-1	+1	-1	+1	μΑ
Output Leakage Current	ILO	$V_{I/O} = V_{SS}$ to V_{DD} , $\overline{CS} = V_{IH}$ (min.) or $\overline{OE} = V_{IH}$ (min.) or $\overline{WE} = V_{IL}$ (max.)	-1	+1	-1	+1	μА
Output Low Voltage	Vol	IOL = +2.1 mA	-	0.4	-	0.4	V
Output High Voltage	Vон	IOH = -1.0 mA	2.4	-	2.2	-	V

Operating Characteristics, continued

PARAMETER	SYM.	TEST CONDITIONS	,	5V -10%		3V -10%			UNIT
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Operating Power Supply Current	IDD	CS = VIL (max.), I/O = 0 mA, Cycle = min., Duty = 100%	-	-	70	-	-	30	mA
Standby Power Supply Current	ISB	CS = VIH (min.), Cycle = min., Duty = 100%	-	-	3	-	-	1	mA
	ISB1	CS ≥ VDD -0.2V	-	0.7	5	-	0.5	2	μΑ

Note: Typical parameter is measured under ambient temperature $TA = 25^{\circ} C$ and VDD = 5V / 3V.

CAPACITANCE

 $(VDD = 5V, TA = 25^{\circ} C, f = 1 MHz)$

PARAMETER	SYM.	CONDITIONS	MAX.	UNIT
Input Capacitance	CIN	VIN = 0V	6	pF
Input/Output Capacitance	CI/O	Vout = 0V	8	pF

Note: These parameters are sampled but not 100% tested.

AC CHARACTERISTICS

AC Test Conditions

PARAMETER	CONDITIONS	
Input Pulse Levels	3V ±10%, 0V to 2.4V	
	5V ±10%, 0V to 3.0V	
Input Rise and Fall Times	5 nS	
Input and Output Timing Reference Level	1.5V	
Output Load	See the drawing below	

AC Test Loads and Waveform

AC Characteristics, continued

(VDD = 5V $\pm 10\%$; VDD = 3V $\pm 10\%$; VSS = 0V; TA (°C) = -20 to 85 for LE; -40 to 85 for LI)

Read Cycle

PARAMETER	SYM.	5V		3V		UNIT
		MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	Trc	70	-	100	-	nS
Address Access Time	Таа	-	70	1	100	nS
Chip Select Access Time	TACS	-	70	-	100	nS
Output Enable to Output Valid	TAOE	-	35	-	50	nS
Chip Selection to Output in Low Z	TcLz*	10	-	15	-	nS
Output Enable to Output in Low Z	Tolz*	5	-	5	-	nS
Chip Deselection to Output in High Z	Тснz*	-	30	-	35	nS
Output Disable to Output in High Z	Тонz*	-	30	-	35	nS
Output Hold from Address Change	Тон	10	-	15	-	nS

 $[\]ast$ These parameters are sampled but not 100% tested

Write Cycle

PARAMETER		SYM.	5V		3V		UNIT
			MIN.	MAX.	MIN.	MAX.	
Write Cycle Time		Twc	70	-	100	-	nS
Chip Selection to End of W	rite	Tcw	50	-	70	-	nS
Address Valid to End of Wr	ite	Taw	50	-	70	-	nS
Address Setup Time		Tas	0	ı	0	-	nS
Write Pulse Width		TWP	50	ı	70	-	nS
Write Recovery Time	$\overline{\text{CS}}, \overline{\text{WE}}$	Twr	0	-	0	-	nS
Data Valid to End of Write		Tow	30	-	50	-	nS
Data Hold from End of Writ	е	TDH	0	ı	0	-	nS
Write to Output in High Z		Twnz*	-	25	-	30	nS
Output Disable to Output in High Z		Тонz*	-	25	-	30	nS
Output Active from End of \	Write	Tow	5	-	10	-	nS

^{*} These parameters are sampled but not 100% tested

TIMING WAVEFORMS

Read Cycle 1

(Address Controlled)

Read Cycle 2

(Chip Select Controlled)

Read Cycle 3

(Output Enable Controlled)

Timing Waveforms, continued

Write Cycle 1

Write Cycle 2

(OE = VIL Fixed)

Notes:

- 1. During this period, I/O pins are in the output state, so input signals of opposite phase to the outputs should not be applied.
- 2. The data output from Dout are the same as the data written to DIN during the write cycle.
- 3. Dout provides the read data for the next address.
- 4. Transition is measured ± 500 mV from steady state with CL = 5 pF. This parameter is guaranteed but not 100% tested.

DATA RETENTION CHARACTERISTICS

 $(TA (^{\circ}C) = -20 \text{ to } 85 \text{ for LE}; -40 \text{ to } 85 \text{ for LI})$

PARAMETER	SYM.	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
VDD for Data Retention	VDR	CS ≥ VDD -0.2V	2.0	-	-	V
Data Retention Current	IDDDR	$\overline{\text{CS}} \ge \text{VDD -0.2V}, \text{VDD} = 3\text{V}$	-	-	2	μΑ
Chip Deselect to Data Retention Time	TCDR	See data retention waveform	0	-	-	nS
Operation Recovery Time	Tr		Trc*	-	-	nS

^{*} Read Cycle Time

DATA RETENTION WAVEFORM

ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	OPERATING VOLTAGE (V)	OPERATING TEMPERATURE (°C)	PACKAGE
W24258H	100	3V	0 to 70	Die form
W24258-70LE	70/100	5V/3V	-20 to 85	600 mil DIP
W24258S-70LE	70/100	5V/3V	-20 to 85	330 mil SOP
W24258Q-70LE	70/100	5V/3V	-20 to 85	Standard type one TSOP
W24258-70LI	70/100	5V/3V	-40 to 85	600 mil DIP
W24258S-70LI	70/100	5V/3V	-40 to 85	330 mil SOP
W24258Q-70LI	70/100	5V/3V	-40 to 85	Standard type one TSOP

Notes:

^{1.} Winbond reserves the right to make changes to its products without prior notice.

^{2.} Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

BONDING PAD DIAGRAM

PAD NO.	Х	Y
1	-276.73	2047.90
2	-421.97	2047.90
3	-568.93	2047.90
4	-714.17	2047.90
5	-861.13	2047.90
6	-1006.37	2047.90
7	-1190.70	1796.55
8	-1190.70	-1797.65
9	-1023.69	-2049.00
10	-878.45	-2049.00
11	-730.05	-2049.00
12	-584.79	-2049.00
13	-438.69	-2049.00
14S-1	-293.69	-2049.00
14S-2	-152.23	-2049.00
15	-9.22	-2049.00
16	437.42	-2049.00
17	582.68	-2049.00
18	730.42	-2049.00
19	875.68	-2049.00
20	1025.65	-2049.00
21	1189.20	-1797.65
22	1188.70	1796.55
23	1025.68	2047.90
24	878.72	2047.90
25	733.48	2047.90
26	586.52	2047.90
27	441.28	2047.90
28S-1	18.40	2047.90
28S-2	-131.73	2047.90

Note: For bare chip form (C.O.B.) applications, the substrate must be connected to VDD or left floating in the PCB layout.

PACKAGE DIMENSIONS

28-pin P-DIP

28-pin SOP Wide Body

Package Dimensions, continued

28-pin Standard Type One TSOP

VERSION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A4	Mar. 1997	8	Add bonding PAD diagram
A5	Jan. 1998	8	Modify bonding PAD diagram
A6	Feb. 1998	1, 2, 4, 7	Delete operating temperature (SL = 0 to 70 °C)
A7	Apr. 1998	3	Add standby power supply current (ISB1) typical parameter when operation temperature T _A = 25° C
A8	Nov. 1998	1, 3, 7, 10	Deduct reverse type one TSOP package

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5796096

http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-27197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan

TEL: 886-2-27190505 FAX: 886-2-27197502

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II, 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

- 11 -

Winbond Systems Lab. 2727 N. First Street, San Jose, CA 95134, U.S.A.

Winbond Microelectronics Corp.

Winbond Memory Lab.

TEL: 408-9436666 FAX: 408-5441798

Note: All data and specifications are subject to change without notice.

Publication Release Date: November 1998 Revision A8

Winbond Electronics North America Corp.