Solver Performance using Multigrid vs CG et al

Mark Nudelman

Anish Yennapusa

Shen Gao

A Linear Algebra Problem

- Sparse matrix
- Very small eigenvalues (~0.0001)
 - Jacobi, Gauss-Seidel take too long
 - o Conjugate gradient also takes too long
- Multigrid is a solution

What is a Multigrid?

• It is a recursive divide and conquer method used in many fast algorithms for computer science tasks and numerical methods for high performance computing.

• The main idea of multigrid is to accelerate the convergence of a basic iterative method (known as relaxation) by a *global* correction of the fine grid solution approximation from time to time, accomplished by solving a coarse problem.

What is Conjugate Gradient?

- The conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite.
- The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation.

What is Red Black

- An algorithm that reduces data dependence to only even and odd neighbors.
- This method is just as fast as Gauss-Seidel performing 2x faster than Jacobi
- However, like Jacobi it allows for parallel computation
 - Over all even sites
 - Over all odd sites

Red-Black Ordering of Grid Points

Black points have only Red neighbors

Red points have only Black neighbors

Results

Results

Results

Conclusion

• Multigrid solver converges in relatively fewer iterations as the size of the problem increases.

• It also performs less matrix vector computations as size increases.

• Multigrid solver converges in relatively less time as the size of the problem increases.

Future Work

- Compare performance on a larger scale.
- Parallelize with MPI instead of OpenAcc.
- Compare with preconditioned conjugate gradient method.
- Experiment with number of processors

Thank You