

北京航空航天大學

实验三、时序逻辑设计——彩色灯控制

2018年 11月 27日 (版本 v01)

花名册 序号	组长 标记	教学班	学号	姓名	签名
	*	162321	16231275	刘瀚骋	AND SEEDING
提交	201	8-12-28	签收:	评价日期	报告:
日期	201	0-12-20	<u>₩</u> 1X:	· 다비니쬬	现场:
					平均(百分制)

高等理工学院

目录

实验三、时	序逻辑设计——彩色灯控制(实验指导书部分)
1 实验技	指导
1.1	设计需求
1.2	基本实验要求
1.3	扩展要求
1.4	其它提示10
实验三、时户	字逻辑设计——彩色灯控制(实验报告部分)11
2 实验技	报告11
2.1	需求分析11
2.2	系统设计11
	2.2.1 总体设计思路11
	2.2.2 接口设计11
	2.2.3 辅助工具集12
	2.2.4 n 进制计数器模块13
	2.2.5 基于 FSM 的灯控制模块13
	2.2.6 基于门级的灯控制模块14
	2.2.7 附加实验任务模块15
	2.2.8 基于 74HC160 和 PROM 的灯控制模块17
	2.2.9 灯泡控制时钟生成模块17
	2.2.10 串口通信模块17
2.3	功能仿真测试17
	2.3.1 Ripper Counter 仿真
	2.3.2 n 进制技术器仿真17
	2.3.3 灯泡控制逻辑仿真18
	附加任务部分仿真20
	2.3.4 报告问题回答
2.4	设计实现21
	2.4.1 综合和下载过程21

2.4.2	实验关键结果及其解释	22
2.4 小结.		25
参考文献		25
参考代码列表		25

实验三、时序逻辑设计——彩色灯控制(实验指导书部分)

1 实验指导

设计一种通过时序控制彩色灯亮灭的逻辑功能,采用硬件描述语言描述同步时序逻辑电路的方法,体会状态转换和计数器定时,对状态机及顶层可综合模块进行功能仿真,并利用 EELAB-FPGACORE2 实验硬件实验平台(以下简称"实验板")调试并实现,完成较为完整的 EDA 设计实现过程。

1.1 设计需求

若干个彩色灯泡从 1 依次编号,可以被控制或明或暗,亮暗规则是:初始状态,全部灯泡全暗,第一秒全部灯泡变亮,第二秒,凡编号为 2 的倍数(包括 2)的灯泡的亮暗情况翻转,第三秒,凡编号为 3 的倍数(包括 3)的灯泡的亮暗情况翻转,依次类推。

图 1 彩色灯示意

比如: 当有5个灯时,其逻辑控制如下所示(0表示灭,1表示亮):

时间(s)	1#灯	2#灯	3#灯	4#灯	5#灯
0	0	0	0	0	0
1	1	1	1	1	1
2	1	0	1	0	1

表15个灯时的控制逻辑

时间(s)	1#灯	2#灯	3#灯	4#灯	5#灯
3	1	0	0	0	1
4	1	0	0	1	1
5	1	0	0	1	0
0 (6, 全	0	0	0	0	0
黑)					
1(7,循	1 (7,循 1		1	1	1
环)					

1.2 基本实验要求

基本实验要求 1 为:假设当前一共有 6 盏灯泡,并存在周期性的时钟 CP 输入,要求采用正边沿触发的 D 触发器和适当的门电路,对灯泡的控制逻辑进行实现,灯的控制信号输出依次设为 L₁、L₂到 L₆。第 7 秒从新进入全黑状态,然后按照前述逻辑循环。

- a) 请给出必要的设计说明和逻辑表达式,并绘制电路图;
- b) 利用 Verilog, 结合门级结构实现灯的控制逻辑(只是控制部分要求采用门级结构,其他部分比如数码管可以自行随意控制);
- c) 采用 Verilog 中的有限状态机 (FSM), 实现了该灯的逻辑控制;
- d) 采用 ModelSim 功能仿真,验证两个模型中关键设计部分的正确性;
- e) 要求具有暂停功能,当按下按键后(或者 On 状态),当前灯的控制逻辑停止,再按一下按键 (或者 off 状态),从暂停的地方从新开始(灯控制逻辑的最开始状态可以是 off 状态);
- f) 可以切换时钟脉冲,正常情况下由分频的时钟信号进行驱动,在手动模式下,由人按下按键进行时序给定;
- g) 采用 FPGA 开发工具实现相应的逻辑功能并加以演示:
- h) 对比两种设计方法综合后的结构,并给出进一步的解释;
- i) 在实验报告中,请绘制设计的框图(此项为必选项);
- j) 可以利用两个数码管中的一个数码管显示时间,另外一个数码管的不同段位显示不同的彩灯的 亮灭状态。

基本实验要求 2 为: 进一步,考虑 100 盏灯的控制情况,基本控制逻辑不变,解决如下问题:

- k) 分析第 100 秒, 当所有灯的亮暗控制结束后,继续点亮的灯有几盏(理论分析);
- 1) 利用 Verilog, 采用行为级方法进行逻辑设计,同样要求有暂停功能和手动功能。
- m) 注意:便携式器件上没有那么多资源显示 100 盏灯,可以采用分段显示处理,比如:两个数目管共有 8 个分段(包括 DP),一次最多显示 16 盏,可以采用不同的策略。比如:只显示 1-16 盏灯,或者只显示 17-32 盏灯,用 LED 进行不同段位的灯的标示;或者先显示 1-16 盏灯,再显示 17-32 盏灯,……,最后显示 97-100 盏灯,同样用 LED 进行不同段位的灯的标示。显示方法不做任何限制。

本实验将采取**实验报告和现场汇报演示相结合**的形式,实验报告上交的具体**截止期限**请注意任课 教师的通知,实验报告格式请参考本文档;**现场汇报演示**的时间和分组情况请注意任课老师的通知。 特此广而告之。

1.3 扩展要求

扩展的实验要求(根据完成的工作量逐次提高评价的等级,但鼓励大家积极地去实验——即:只要至少完成其中一项,即可显著地获得好评,并可根据局部完成的质量酌情提高评价的等级。)

对于 100 盏灯的情况采用定制的手段,即对于 100 盏灯的设计采用基于 PROM 的设计方案,利用 PROM 存储 100 盏灯的亮灭情况,然后在时序的控制下提取存储的信息进行 100 盏灯的控制。其基本框架图如图 2 所示。

其中:

C part 部分进行时钟信号和 100 盏灯选段信号(图中未给出)生成;

B part 部分在调整后的时钟信号 clk mod 的节拍下依次输出地址编码 $D_0 \sim D_9$,范围为: $0 \sim 699$;

A part 部分可编程 PROM 根据地址编码查询灯的亮暗控制逻辑,并实施灯亮暗的具体控制。

为了节省灯控制信号,对 100 盏灯采用分段控制的方式,结合灯选段信号,先对 1~16 号灯进行控制,然后对 17~32 号灯进行控制,以此类推,最后对 97~100 号灯进行控制。当一轮结束后,灯全部熄灭,重新开始。

完成以下设计要求:

图 2 基于 PROM 的彩色灯控制

n) 结合 C_part 部分时钟信号 clk_ori 和 clk_mod 的调整关系,采用正边沿触发的 D 触发器和适当

的门电路,实现 clk mod 的信号生成,绘制出电路图;

- o) C_part 生成的时钟信号 clk_mod 接入到 B_part 部分进行时序控制,其中,芯片 74160 为同步十进制加法计数器,对其进行整体进位和地址输出设计;
- p) A_part 部分 PROM 存储了灯的亮暗控制逻辑,表 2 给出了其存储矩阵的部分存储情况,"1"表示灯亮,"0"表示灯暗。每 7 个地址构成一组,对应 100 盏灯的逻辑控制情况。根据灯的控制逻辑,结合前述分析结果,在 A_part 部分的存储矩阵(即表 2)给出最后 100 秒时刻的 7 个地址对应的或逻辑阵列连接情况;
- q) 利用 Verilog, 采用自己熟悉方法设计 PROM 和 74160 单位电路功能;
- r) 利用 Verilog, 通过调用 PROM 和 74160 实现该 100 盏灯的逻辑控制;
- s) 同样要求具有暂停功能和手动功能;
- t) 增加灯亮灭时间控制功能,比如可以设定为1s,2s,0.5s,或者任意时间。

表 2 PROM 存储数值

													, ,,,,												
	地址输入									数据输出															
D_9	D_8	D ₇	D_6	D_5	D_4	D_3	D_2	D ₁	D_0	\mathbf{Y}_{0}	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_{3}	\mathbf{Y}_4	\mathbf{Y}_{5}	\mathbf{Y}_{6}	\mathbf{Y}_7	Y_8	\mathbf{Y}_{9}	Y ₁₀	Y ₁₁	Y ₁₂	Y ₁₃	Y ₁₄	Y ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	0	0	0	0	0	1	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	0	0	0	0	0	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	0	0	0	0	0	1	0	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	0	0	0	0	0	1	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	0	0	0	0	0	1	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~

数字电路与系统 (实验报告) 第 9 页

- TRI																									
				封	也址输。	入				数据输出															
D_9	D_8	D ₇	D_6	D_5	D_4	D_3	D_2	D ₁	D_0	\mathbf{Y}_{0}	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_{3}	\mathbf{Y}_4	Y_5	Y_6	\mathbf{Y}_7	Y_8	Y_9	Y ₁₀	Y ₁₁	Y ₁₂	Y ₁₃	Y ₁₄	Y ₁₅
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
1	0	1	0	1	1	0	1	0	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	0	1	0	1	1	0	1	1	0	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	0	1	0	1	1	0	1	1	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	0	1	0	1	1	1	0	0	0	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	0	1	0	1	1	1	0	0	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	0	1	0	1	1	1	0	1	0	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	0	1	0	1	1	1	0	1	1	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

1.4 其它提示

实验板的开关非常脆弱,如果操作不便,请用按键代替开关,但需要加入防抖电路,并适当修改开灯、关灯信号的逻辑(由电平信号变为脉冲信号)。

"实验板"的 I/O 接口和人机接口资源请参考《digiC2018 课程实验实验指导书(01)》,或参考实验一手册后面的附录。

实验三、时序逻辑设计——彩色灯控制(实验报告部分)

2 实验报告

2.1 需求分析

本次实验要求按照一定的规律控制 5 个或 100 个 LED 灯的亮灭情况。本次实验共完成四项任务

- 1. 使用门级描述,控制 5 盏灯
- 2. 使用 FSM, 控制 5 盏灯
- 3. 使用门级描述,控制 100 盏灯
- 4. 使用规定的控制方式,控制 100 盏灯

2.2 系统设计

2.2.1 总体设计思路

系统顶层负责处理人机交互,响应用户的操作和将计算出的数据发出。

系统顶层会调用四个不同的模块

- 1. lamb5Control
- 2. lamb5FSMControl
- 3. lamb100Control
- 4. extraLampControl

这四个模块分别对应需求分析(见上方)中的四项实验需求。他们拥有完全相同的接口,即时钟输入, 复位输入,状态计数输出及灯泡状态输出。灯牌状态输出将会被发送到显示模块进行显示。

四个模块的设计思路详见 2.2 节内的其他内容。

该部分代码参见 GoldenTop.v

2.2.2 接口设计

输入接口

使用实验板上的硬件实现各个输入接口。二段式拨码开关控制控制信号状态切换的间隔,包括 0.5s

1s 1.5s 的时钟与手动时钟给定。按键一在手动模式下用于控制灯控信号的步进;按键二负责切换暂停与 开始。

响应输入信号的模块仅有 2.2.9 灯泡控制时钟生成模块。暂停,手动时钟给定及分频比变化功能亦由该模块提供。

输出接口

由于实验板上的资源不足,故将输出结果通过串口发送到 PC 机,于 PC 机上实现显示功能。 串口模块的实现在实验四中讨论,代码可以参见 Uart.v

PC 机显示模块通过 Django 和 React 实现,与本课程实验无关,在此不多赘述。具体代码可以参见 [3]用于演示的 Django 和 React 项目

2.2.3 辅助工具集

为了便于系统的设计与验证,本项目在进行的过程中额外开发了若干辅助工具。

真值表生成器

该工具可用于用于根据实验要求中给定的控制规则及灯泡的数量,计算灯泡的状态并以真值表的形式输出。其中真值表的输出为 n 盏灯的亮灭状态,而输入为自然顺序下的二进制编码。

该工具的具体实现参见 lambTTGenerator.py

真值表化简器

该工具用于将真值表化简为最简与或表达式,并支持以前缀表达式或是 verilog 门级代码片段的形式输出化简结果。该工具可以读取由真值表生成器生成的真值表,并输出 verilog 门级实现代码片段。

该工具的具体实现参见 TT2Verilog.py

PROM 生成器

该工具用于将真值表生成器生成的真值表转换为 16 字的 Verilog 模拟 PROM 代码实现。生成的 Verilog 代码使用 Always 和 case 语句对 PROM 的行为进行模拟。

该工具仅用于完成本次实验的附加任务。

该工具的具体实现参 TT2Prom.py

2.2.4 n 进制计数器模块

图 1n进制计数器电路图

如图 1 n 进制计数器电路图所示,由三个边沿驱动的带有 Reset 和 Set 端口的 D 触发器,采用异步清零法,实现了一个六进制计数器。该部分的代码实现详见 Carry6Counter.。

此外,驱动 100 个 LED 时同样使用了类似的方法,使用七个 D 触发器搭建了 101 进制的计数器,代码实现详见 Carry101Counter.。

2.2.5 基于 FSM 的灯控制模块

实现状态机,使用两个 Always 语句实现。其中一个 always 用于更新当前状态,另一个 always 用于产生驱动 LED 的输出。该状态机和上一个状态(即状态机的输出)有关而且当前状态机输入(高有效的异步复位信号)有关,属于 Melay Machine。

控制模块的状态转换图如图 2 有限状态机实现的状态转换图所示。实现代码参见Lamb5FSMControl.v

图 2 有限状态机实现的状态转换图

2.2.6 基于门级的灯控制模块

该节阐述基本实验要求 1 中的第一部分,即使用门级建模控制部分电路的设计思路。使用门级实现时,设计可分为时序发生部分和组合逻辑部分。

时序发生部分

对于时序发生部分,从给定的控制规律中可以推断出,对于存在 n 盏灯的情况,总共可能有 n+1 种状态,因此可以使用上升沿触发的 n+1 种发器构成一个计数器,并结合相应的门电路将计数器设计为异步清零的 n+1 进制计数器,以此产生 n+1 种状态的编码。

在控制模块内部实例化一个 2.2.4 n 进制计数器模块用于提供时序。

组合逻辑部分

当控制 n 盏灯时,存在 n+1 种状态。因此,n 盏灯控制电路组合逻辑部分可以由一个 y_1 输入,n 输出的真值表完全表示。其中, y_1 由下式计算(ceil 表示向上取整)

$$y1 = \text{ceil}[\log_2 n + 1]$$

使用 2.2.3 辅助工具集编写的工具首先生成灯控制信号的真值表,其次用其中的工具化简真值表得到门级表示的 Verilog 代码片段。引出门级实现的输出作为灯控信号。

控制 5 盏灯时的代码参见 Lamb5Control.v

控制 100 盏灯时的代码参见 Lamb100Control.v

2.2.7 附加实验任务模块

C Part

C Part 时钟生成模块可以由 D 触发器构成 Ripple Counter, 然后结合一定的组合逻辑输出要求的波形。

Ripple Counter 复用 2.2.4 n 进制计数器模块。额外的门电路由 2.2.3 辅助工具集中的工具进行设计。电路图见图 3 C Part 电路图

图 3 C Part 电路图

代码实现参见 CPartClockGenerator.v

B Part

B Part 首先使用门级描述建模 74HC160, 然后将三个 74HC160 串接, 使用异步清零法, 配合相应的组合逻辑构成 700 进制计数器。

由于 74HC160 输出的为二进制 BCD 码,故还需将 BCD 码转换成 10 位的二进制地址。使用纯组合逻辑实现这部分的转换。BCD 转换部分和计数器部分在同一个 module 中实现。

BPart 的电路图如图 474HC160700进制计数器所示,实现代码参见BPartCounter.v

图 474HC160700进制计数器

A Part

A Part 使用 verilog 中的 always 和 case 语句模拟 PROM 的行为。设计了一个单周期的 ROM,地址 线为 9 位 bit,16bit。其中,前 700 个字分别存储 1-7 段灯在第 0-99 个时间单位时的亮灭情况。

使用了 2.2.3 辅助工具集中的工具生成了符合应用需求的 PROM 代码,具体实现参见 Lamp100Prom.v

2.2.8 基于 74HC160 和 PROM 的灯控制模块

该模块用于将 2.2.7 附加实验任务模块的三个模块互联,并提供和 2.2.4 n 进制计数器模块 2.2.5 基于 FSM 的灯控制模块相同的接口方便顶层模块调用。

具体实现代码参见 extraLampControl.v

2.2.9 灯泡控制时钟生成模块

灯泡时钟生成模块内部读取输入的两位信号(由开发板上的 switch)指定,当输入分别是 2'b00 2'b01 2'b10 时将时钟输入连接到系统时钟,并分别设置了不同的分频比,产生周期为 0.5s 1s 1.5s 的时钟信号; 当输入为 2'b11 时,将时钟输入连接到按键一,并设置分频比为 0 实现手动控制。

该模块实现了暂停/时钟分频比可调/可以手动控制时钟三项功能。

此外,该模块还监测按键二的输入。当按键二信号出现上升沿(被按下)时,翻转内部的一个用于标记暂停状态的寄存器。当该寄存器被置位时认为系统处在暂停状态,将停止时钟输出。

这部分的代码参见 clockGenerator.v

2.2.10 串口通信模块

串口通信模块实现了满足部分 Avalon Streaming 总线协议的内部接口。具体实现在实验四中阐述。 代码可参见 Uart.v

2.3 功能仿真测试

按照实验要求,本节中的所有仿真均是编写基于 Verilog 的 Testcase,然后在 Modelsim 中进行手动 仿真。注意在 ISE 开发环境中,首次调用 Modelsim 仿真前,需要在 ISE Commander 中执行以此 compxlib 对 Xilinx 器件库进行编译。

2.3.1 Ripper Counter 仿真

2.3.2 n 进制技术器仿真

在对 Ripper Counter 进行仿真时,请注意建模用于产生异步清零信号的门电路时,需要为门电路声明额外的传播时延。否则 Modelsim 会将该门电路视为理想的无传输时延的门,进而导致产生一个仿真器无法仿真的脉冲信号,使计数器无法正确清零。

在门级建模时, 描述额外时延的文法如下例所示

and #(1) U1(foo,bar1,bar2);

该文法将会创建一个传播时延为1个时间单位的与门。

6 进制计数器仿真

6进制计数器的仿真结果如图 56进制计数器仿真结果所示

图 56 进制计数器仿真结果

异步信号进行清零操作的细节如图 66进制计数器置位细节所示

图 66 进制计数器置位细节

由上两图,可以看出,当计数器计数到6时,额外的组合逻辑产生一个清零信号将计数器清零。

101 进制计数器仿真

101 计数器的仿真结果如图 7101 进制计数器仿真结果所示

图 7101 进制计数器仿真结果

2.3.3 灯泡控制逻辑仿真

基于门级实现和 FSM 实现的控制模块接口相同,二者使用相同的 TestCase 进行测试。

基于门级实现的控制逻辑

n=5 时,基于门级实现的仿真结果如图 8 n=5 门级实现仿真结果所示

图 8 n=5 门级实现仿真结果

n=100 时,基于门级实现的仿真结果如图 $9\,n=100$ 循环起始状态,图 $10\,n=100$ 仿真循环结束状态所示

图 9 n=100 循环起始状态

图 10 n=100 仿真循环结束状态

基于有限状态机实现的控制逻辑

n=5 时,基于 FSM 的仿真结果如图 11 n=5FSM 实现仿真结果所示

图 11 n=5FSM 实现仿真结果

附加任务部分仿真

Bpart 仿真

74160 模块仿真

74160 模块的仿真结果如图 12 74HC160 功能仿真结果所示

图 12 74HC160 功能仿真结果

此外,还测试了74160的预置数功能,如图 1374HC160预置数功能仿真所示,将初始值置为7.

图 13 74HC160 预置数功能仿真

整体仿真

Bpart 整体仿真结果如图 14 B Part 整体仿真所示。可见计数器可被正常复位,且 BCD 到 2 进制转换器正常工作。

图 14 B Part 整体仿真

Cpart 仿真

Cpart 整体仿真结果如图 15 C Part 仿真结果所示,可见输出了题目要求的时钟信号。

图 15 C Part 仿真结果

2.3.4 报告问题回答

问:分析第100秒,当所有灯的亮暗控制结束后,继续点亮的灯有几盏(理论分析);

答: 10 盏

问:请给出 PROM 最后几位存储的数据

答:

10'h2af:data=16'b0000000010000000;//STATE:99	SEG:2	COUNTER:687
10'h2b0:data=16'b000100000000000;//STATE:99	SEG:3	COUNTER:688
10'h2b1:data=16'b10000000000001;//STATE:99	SEG:4	COUNTER:689
10'h2b2:data=16'b000000000000000;//STATE:99	SEG:5	COUNTER:690
10'h2b3:data=16'b100000000000000;//STATE:99	SEG:6	COUNTER:691
10'h2b4:data=16'b000000000000000;//STATE:99	SEG:7	COUNTER:692
10'h2b5:data=16'b1001000010000001;//STATE:100	SEG:1	COUNTER:693
10'h2b6:data=16'b0000000010000000;//STATE:100	SEG:2	COUNTER:694
10'h2b7:data=16'b000100000000000;//STATE:100	SEG:3	COUNTER:695
10'h2b8:data=16'b10000000000001;//STATE:100	SEG:4	COUNTER:696
10'h2b9:data=16'b000000000000000;//STATE:100	SEG:5	COUNTER:697
10'h2ba:data=16'b100000000000000;//STATE:100	SEG:6	COUNTER:698
10'h2bb:data=16'b000100000000000;//STATE:100	SEG:7	COUNTER:699

2.4 设计实现

2.4.1 综合和下载过程

点击 ISE 开发环境中的综合按钮进行综合。 使用 IMPACT 软件进行下载。

2.4.2 实验关键结果及其解释

实验结果采用现场答辩的方式进行演示,此处列出一些 UI 的照片。

任务一及任务二的测试最终结果如图 16 任务一/二 实验结果所示,展示了五盏灯在Counter=2 时,偶数灯熄灭时的情景

state:2

图 16 任务一/二 实验结果

任务三的测试最终结果如图 17 任务三实验结果所示,展示了 Counter=2 时偶数灯泡被熄灭时的情景,见

state:2

图 17 任务三实验结果

任务四的测试最终结果如图 18 附加实验结果所示,展示了 Counter=1 时第 5 段偶数灯泡被熄灭时的情景

状态:1

控制段:5

图 18 附加实验结果

综合结果对比

按照实验要求,对比使用门级实现和使用 FSM 实现所消耗的系统资源数对比。

使用门级实现时综合结果见图 19 门级实现综合结果

Device Utilization Summary													
Logic Utilization	Vsed	Available	Utilization	Note(s)									
Number of Slice Flip Flops	4, 434	9, 312	47%										
Number of 4 input LUTs	3, 117	9, 312	33%										
Number of occupied Slices	3, 698	4, 656	79%										
Number of Slices containing only related logic	3, 698	3, 698	100%										
Number of Slices containing unrelated logic	0	3, 698	0%										
Total Number of 4 input LUTs	3, 251	9, 312	34%										
Number used as logic	3, 117												
Number used as a route-thru	134												
Number of bonded <u>IOBs</u>	22	66	33%										
Number of BUFGMUXs	1	24	4%										
Average Fanout of Non-Clock Nets	3.51												

图 19 门级实现综合结果

使用 FSM 实现时综合结果见图 20 FSM 实现综合结果

对比图 19 门级实现综合结果,图 20 FSM 实现综合结果,可见两种实现方式下的资源占用并无区别。可能是 ISE 自带的综合算法对于两种不同的文法优化后,综合出了相同的结果。

Device Utilization Summary												
Logic Utilization	Vsed	Available	Utilization	Note(s)								
Total Number Slice Registers	4, 442	9, 312	47%									
Number used as Flip Flops	4, 437											
Number used as Latches	5											
Number of 4 input LUTs	3, 121	9, 312	33%									
Number of occupied Slices	3, 703	4,656	79%									
Number of Slices containing only related logic	3, 703	3, 703	100%									
Number of Slices containing unrelated logic	0	3, 703	0%									
Total Number of 4 input LUTs	3, 259	9, 312	34%									
Number used as logic	3, 121											
Number used as a route-thru	138											
Number of bonded <u>IOBs</u>	22	66	33%									
Number of BUFGMUXs	1	24	4%									
Average Fanout of Non-Clock Nets	3.51	-W										

图 20 FSM 实现综合结果

2.4 小结

本次实验,加深了我对时序电路的理解,提高了我的 Verilog 的编码水平。

参考文献

参考代码列表

- [1] GoldenTop.v
- [2] <u>Uart.v</u>
- [3] 用于演示的 Django 和 React 项目
- [4] TT2Prom.py
- [5] <u>lambTTGenerator.py</u>
- [6] TT2Verilog.py
- [7] Carry101Counter.v
- [8] <u>Carry6Counter.v</u>
- [9] <u>Lamb5FSMControl.v</u>
- [10]Lamb5Control.v
- [11]Lamb100Control.v
- [12]CPartClockGenerator.v
- [13]BPartCounter.v

 $[14] \underline{Lamp100Prom.v}$

 $[15] \underline{extraLampControl.v}$

[16] <u>clockGenerator.v</u>