2017-11-30

- A universal Turing machine (UTM) is a Turing machine U that gets as input a description of a Turing machine |M| and a word w. On such input, it simulates M on w.
- Given a TM $M = \langle \Sigma, \Gamma, Q, q_0, q_a, q_r, \delta \rangle$, there is a TM $M' = \langle \Sigma', \Gamma', Q', q'_0, q'_a, q'_r, \delta' \rangle$ with 3 tapes that can simulate M on a given input W. How?
 - Store input w on tape 1.
 - Write the initial configuration of M on w on tape 2.
 - Write the next configuration on tape 3.
- Define $A_{TM} = \{(M, w) | w \in L(M)\}.$
- **Theorem**: A_{TM} is recognizable.
 - Let a recognizer for A_{TM} be U := On input (M, w): Run M on w. Accept if M accepts w. Reject if M rejects w. Loop if M does not halt on w.
- **Theorem**: A_{TM} is undecidable.
 - Let a decider for A_{TM} be H := On input (M, w): Run M on w. Accept if M accepts w. Reject if M does not accept w.
 - Construct D: On input [M], run H on (M, [M]). Accept if H rejects (M, [M]). Reject if H accepts (M, [M]).
 - Run D on $|D| \Rightarrow$ Contradiction.
- Cantor's diagonalization: If D is in the figure, a contradiction occurs at?

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	\overline{accept}	accept	accept	accept		accept	
M_3	reject	\overline{reject}	reject	reject	• • •	reject	• • •
M_4	accept	accept	\overline{reject}	reject		accept	
:	<u>:</u>				·		
D	reject	reject	accept	accept			
:		:					·

- **Theorem**: If L and L' are recognizable, then L is decidable.
 - Let M be a recognizer for L and M' be a recognizer for L.
 - Construct D := On input w : Run M and M' on w in parallel. Accept if M accepts w . Reject if M' accepts w.
- Corollary: A'_{TM} is not recognizable.
 - A_{TM} is recognizable but undecidable. Hence, A'_{TM} is not recognizable.
- Define the halting problem HALT = $\{(M, w)|M \text{ halts on } w\}$.
- Theorem: HALT is recognizable.
 - Let a recognizer for HALT be U := On input (M, w): Run M on w. Accept if M halts on w. Loop if M does not halt on w.

- **Theorem**: HALT is undecidable. (Intuition: $A_{TM} \leq_T HALT$)
 - Let a decider for HALT be H := On input (M, w): Run M on w. Accept if M halts on w. Reject if M does not halt on w.
 - Construct D := On input (M, w): Run H on (M, w). Reject if H rejects (M, w). Otherwise, run M on W. Accept if M accepts W. Reject if M rejects W.
 - If H decides HALT, then D decides A_{TM} . A_{TM} is undecidable, so HALT is undecidable.
- Define HALT₀ = {|M||M accepts |M|}.
- **Theorem**: HALT₀ is recognizable.
 - Let a recognizer for HALT be U := On input [M] : Run M on [M]. Accept if M accepts [M]. Reject if M rejects [M]. Loop if M does not halt on [M].
- Theorem: HALTo is undecidable.
 - Let a decider for HALTo be H := On input [M] : Run M on [M]. Accept if M accepts [M]. Reject if M does not accept [M].
 - Construct D: On input [M], run H on [M]. Accept if H rejects [M]. Accept if H accept [M].
 - Run D on $[D] \Rightarrow$ Contradiction.
- Define $HALT'_0 = \{ \lfloor M \rfloor | M \text{ does not accept } \lfloor M \rfloor \}.$
- Corollary: HALT'₀ is not recognizable.
 - HALT₀ is recognizable but undecidable. Hence, HALT'₀ is not recognizable.
- **Theorem**: HALT'₀ is undecidable.
 - Let a decider for HALT'₀ be H := On input [M] : Run M on [M]. Accept if M does not accept [M]. Reject if M accept [M].
 - Run H on $[H] \Rightarrow$ Contradiction.