Package 'TBFmultinomial'

October 12, 2022

October 12, 2022
Type Package
Title TBF Methodology Extension for Multinomial Outcomes
Version 0.1.3
VignetteBuilder knitr
Description Extends the test-based Bayes factor (TBF) methodology to multinomial regression models and discrete time-to-event models with competing risks. The TBF methodology has been well developed and implemented for the generalised linear model [Held et al. (2015) <doi:10.1214 14-sts510="">] and for the Cox model [Held et al. (2016) <doi:10.1002 sim.7089="">].</doi:10.1002></doi:10.1214>
Depends VGAM, nnet, parallel, stats, stringr, plotrix, methods
Suggests knitr, splines
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Author Rachel Heyard [aut, cre]
Maintainer Rachel Heyard <rachel.heyard@uzh.ch></rachel.heyard@uzh.ch>
NeedsCompilation no
Repository CRAN
Date/Publication 2018-10-12 13:30:06 UTC
R topics documented:
TBFmultinomial-package AIC_BIC_based_marginalLikelihood all_formulas as.data.frame.PMP CSVS model_priors PIPs_by_landmarking plot_CSVS

15

Index

PMP													 			
PMP-class													 			 . 1
postInclusionProb													 			 . 1
sample_multinomial .													 			 . 1
TBF													 			 . 1
TBF_ingredients													 			 . 1
VAP_data																 . 1

TBFmultinomial-package

Objective Bayesian variable selection for multinomial regression and discrete time-to-event models with competing risks

Description

Extension of the TBF methology introduced by Held et al. (2015) <doi:10.1214/14-STS510> to discrete time-to-event models with competing risks (also applicable to the multinomial regression model)

Author(s)

Rachel Heyard < rachel.heyard@uzh.ch>

AIC_BIC_based_marginalLikelihood

Marginal likelihoods based on AIC or BIC

Description

This function computes the marginal likelihoods based on the AIC or on the BIC, that will later be used to calculate the TBF.

Usage

```
AIC_BIC_based_marginalLikelihood(fullModel = NULL, candidateModels = NULL,
  data, discreteSurv = TRUE, AIC = TRUE, package = "nnet", maxit = 150,
  numberCores = 1)
```

all_formulas 3

Arguments

fullModel formula of the model including all potential variables

candidateModels

Instead of defining the full model we can also specify the candidate models

whose deviance statistic and d.o.f should be computed

data the data

discreteSurv Boolean variable telling us whether a 'simple' multinomial regression is looked

for or if the goal is a discrete survival-time model for multiple modes of failure

is needed.

AIC if TRUE, AIC will be used, else we use BIC

package Which package should be used to fit the models; by default the nnet package is

used; we could also specify to use the package 'VGAM'

maxit Only needs to be specified with package nnet: maximal number of iterations

numberCores How many cores should be used in parallel?

Value

a vector with the marginal likelihoods of all candidate models

Author(s)

Rachel Heyard

Examples

all_formulas

Formulas of all the candidate models

Description

This function retrieves the formulas of all the candidate models if the reference model is the null / baseline model.

4 as.data.frame.PMP

Usage

```
all_formulas(fullModel, discreteSurv = TRUE)
```

Arguments

fullModel formula of the model including all potential variables

discreteSurv Boolean variable telling us whether a 'simple' multinomial regression is looked

for or if the goal is a discrete survival-time model for multiple modes of failure

is needed.

Value

character vector with all the formulas; the first one will be the reference model; the last element will be the full model.

Author(s)

Rachel Heyard

Examples

```
data("VAP_data")
FULL <- outcome ~ ns(day, df = 4) + male + type + SOFA
models <- TBFmultinomial:::all_formulas(fullModel = FULL,
discreteSurv = TRUE)
# models</pre>
```

as.data.frame.PMP

Convert a PMP object into a data frame

Description

This function takes a PMP object an returns a data. frame summarising the information.

Usage

```
## S3 method for class 'PMP'
as.data.frame(x, ...)
```

Arguments

x valid PMP object

... arguments to be passed to data.frame

Value

a data. frame with the posterior and prior probabilities as well as the definition of the models

CSVS 5

Author(s)

Rachel Heyard

CSVS

Cause-specific variable selection (CSVS)

Description

This function performs CSVS given a model fitted using the multinom() function of the nnet package or the vglm() function of the VGAM package.

Usage

```
CSVS(g, model, discreteSurv = TRUE, nbIntercepts = NULL, package = "nnet")
```

Arguments

g the estimated g, must be fixed to one value model the model fitted using either nnet or VGAM

discreteSurv Boolean variable telling us whether a 'simple' multinomial regression is looked

for or if the goal is a discrete survival-time model for multiple modes of failure

is needed.

nbIntercepts how many cause-specific intercepts are there? they

package Which package has been used to fit the model, nnet or VGAM?

Author(s)

Rachel Heyard

Examples

6 model_priors

model_priors Prior	or model probability
--------------------	----------------------

Description

This function computes the prior model probabilities of the candidate models

Usage

```
model_priors(fullModel, discreteSurv = TRUE, modelPrior = "flat")
```

Arguments

fullModel formula of the model including all potential variables

discreteSurv Boolean var telling us whether a 'simple' multinomial regression is looked for

or if the goal is a discrete survival-time model for multiple modes of failure is

needed.

modelPrior what prior should be used on the model space? modelPrior should be in-

cluded in {'flat','dependent'} where 'flat' means a uniform pior and 'dependent' sets a multiplicity-corrected model prior on the model space.

Value

a numerical vector with the prior model probabilities

Author(s)

Rachel Heyard

Examples

PIPs_by_landmarking 7

PIPs_by_landmarking

Posterior inclusion probabilities (PIPs) by landmarking

Description

This function gives us the PIPs for each landmark.

Usage

```
PIPs_by_landmarking(fullModel, data, discreteSurv = TRUE, numberCores = 1,
  package = "nnet", maxit = 150, prior = "flat", method = "LEB",
  landmarkLength = 1, lastlandmark, timeVariableName)
```

Arguments

fullModel formula of the model including all potential variables data the data frame with all the information

discreteSurv Boolean variable telling us whether a 'simple' multinomial regression is looked

for or if the goal is a discrete survival-time model for multiple modes of failure

is needed.

numberCores How many cores should be used in parallel?

package Which package should be used to fit the models; by default the nnet package is

used; we could also specify to use the package 'VGAM'

maxit Only needs to be specified with package nnet: maximal number of iterations

prior Prior on the model space
method Method for the g definition

landmarkLength Length of the landmark, by default we use each day

lastlandmark Where will be the last landmark?

timeVariableName

What is the name of the variable indicating time?

Value

a list with the PIPs for each landmark

Author(s)

8 plot_CSVS

Examples

plot_CSVS

Plot a CSVS object

Description

Plot a CSVS object

Usage

```
plot_CSVS(CSVSobject, namesVar = NULL, shrunken = FALSE,
    standardized = FALSE, numberIntercepts, ...)
```

Arguments

csvsobject valid csvs object
namesvar names of the variables
shrunken should the coefficients be shrunken?

standardized should the coefficients be standardized?

numberIntercepts

how many cause-specific intercepts are in the model for each outcome

... parameters for plot

Author(s)

PMP 9

PMP	Posterior model probability	

Description

This function computes the posterior probability of all candidate models

Usage

```
PMP(fullModel = NULL, candidateModels = NULL, data = NULL,
  discreteSurv = TRUE, modelPrior = NULL, method = "LEB",
  prior = "flat", package = "nnet", maxit = 150, numberCores = 1)
```

Arguments

fullModel	formula of the model including all potential variables
candidateModel	S
	Instead of defining the full model we can also specify the candidate models whose deviance statistic and d.o.f should be computed
data	the data frame with all the information
discreteSurv	Boolean variable telling us whether a 'simple' multinomial regression is looked for or if the goal is a discrete survival-time model for multiple modes of failure is needed.
modelPrior	optionaly the model priors can be computed before if candidateModels is different from NULL.
method	tells us which method for the definition of g should be used. Possibilities are: LEB, GEB, g=n, hyperG, ZS, ZSadapted and hyperGN
prior	should a dependent or a flat prior be used on the model space? Only needed if method = `GEB`.
package	Which package should be used to fit the models; by default the nnet package is used; we could also specify to use the package 'VGAM'
maxit	Only needs to be specified with package nnet: maximal number of iterations
numberCores	How many cores should be used in parallel?

Value

```
an object of class TBF.ingredients
```

Author(s)

10 postInclusionProb

Examples

PMP-class

Class for PMP objects

Description

Class for PMP objects

postInclusionProb

Posterior inclusion probability (PIP)

Description

This function computes the PIPs of all potential predictors

Usage

```
postInclusionProb(object)
```

Arguments

object

An object of class PMP

Value

an named vector with all PIPs

Author(s)

sample_multinomial 11

Examples

sample_multinomial

Samples from a PMP object

Description

This function samples from a specific model inside a PMP object.

Usage

```
sample_multinomial(PMP_object, shrink = TRUE, data, which = "MPM",
    discreteSurv = TRUE)
```

Arguments

PMP_object formula of the model including all potential variables

shrink should the coefficients be shrunken towards their prior mean?

data the (training) data frame with all the information

which which model should be sampled from? either an integer, 'MPM' or 'MAP'

discreteSurv Boolean variable telling us whether a 'simple' multinomial regression is looked

for or if the goal is a discrete survival-time model for multiple modes of failure

is needed.

Value

returns an object with the model coefficients and supplementary information

Author(s)

12 TBF

TBF	Test-based Bayes factor

Description

This function computes the TBF as well as g

Usage

```
TBF(ingredients = NULL, fullModel = NULL, method = "LEB", data = NULL,
    discreteSurv = TRUE, prior = NULL, package = "nnet", maxit = 150)
```

Arguments

ingredients	TBF_ingredients_object ingredients for the TBF (and g) calculation.
fullModel	if ingredients is NULL, formula of the model including all potential variables
method	tells us which method for the definition of g should be used. Possibilities are: LEB, GEB, g=n, hyperG, ZS, ZSadapted and hyperGN $$
data	the data frame with all the information. Only needed if ingredients is NULL
discreteSurv	Boolean variable telling us whether a 'simple' multinomial regression is looked for or if the goal is a discrete survival-time model for multiple modes of failure is needed.
prior	should a dependent or a flat prior be used on the model space? Only needed if $method = GEB$.
package	Which package should be used to fit the models; by default the nnet package is used; we could also specify to use the package 'VGAM'
maxit	Only needs to be specified with package nnet: maximal number of iterations

Value

A list with the TBF and the g (if it is fixed) for all the candidate models.

Author(s)

TBF_ingredients 13

|--|--|

Description

This function calculates the ingredients needed to compute the TBFs: like the deviances with their degrees of freedom of the relevant candidate models.

Usage

```
TBF_ingredients(fullModel = NULL, data, discreteSurv = FALSE,
  numberCores = 1, candidateModels = NULL, package = "nnet",
  maxit = 150)
```

Arguments

fullModel	formula of the model including all potential variables
data	the data frame with all the information
discreteSurv	Boolean variable telling us whether a 'simple' multinomial regression is looked for or if the goal is a discrete survival-time model for multiple modes of failure is needed.
numberCores	How many cores should be used in parallel?
candidateModel	S
	Instead of defining the full model we can also specify the candidate models whose deviance statistic and d.o.f should be computed
package	Which package should be used to fit the models; by default the nnet package is used; we could also specify to use the package 'VGAM'
maxit	Only needs to be specified with package nnet: maximal number of iterations

Value

```
an object of class TBF.ingredients
```

Author(s)

VAP_data

VAP_data

Data on VAP acquistion in one ICU

Description

It is a tiny subset of the OUTCOMEREA database whose only perhaps will be to test an illustrate the functions of this package.

Usage

data(VAP_data)

Format

A data frame with 1640 rows and 7 variables on 90 distinct patients:

ID distinct ID for each patient

day day of ventilation, day = 1 is the first day of ventilation

type is it a medical or a surgical patient

gender gender of the patient, 1 = male, 0 = female

SAPSadmission the SAPS 2 score at admission to the ICU

SOFA the daily SOFA score

outcome final outcome after the first observation period

Index

```
* package
    TBFmultinomial-package, 2
{\tt AIC\_BIC\_based\_marginalLikelihood, 2}
all\_formulas, 3
as.data.frame.PMP,4
CSVS, 5, 8
model_priors, 6
{\tt PIPs\_by\_landmarking, 7}
plot_CSVS, 8
PMP, 4, 9
PMP-class, 10
{\tt postInclusionProb}, {\tt 10}
sample\_multinomial, 11
TBF, 12
TBF_ingredients, 13
TBFmultinomial
         (TBFmultinomial-package), 2
TBFmultinomial-package, 2
VAP\_data,\, \textcolor{red}{14}
```