

CS2080: Applied Privacy for Data Science Membership Inference Attacks: Theory

James Honaker, Priyanka Nanayakkara, Salil Vadhan School of Engineering & Applied Sciences Harvard University

February 5, 2025

Discussion

Consider the simulation experiment performed by Ruggles & van Riper and Hullman's blogpost response. Ruggles & van Riper aimed to cast doubt on the severity of the Census Bureau's findings from their reconstruction attack by comparing to a "null model" (simulating the individual-level 2010 records and finding matches between these and random age-sex draws combined with guesses about race & ethnicity based on previous Census distributions). Hullman argues for a different experiment: compare reconstruction rates on differentially-private data vs. non-differentially-private data.

- Do you agree with Ruggles & van Riper's claims?
- If you were to run your own experiment investigating the need for differential privacy, how would you design it?

Fill in post-discussion Google form!

The Debate Continues...

- Keyes & Flaxman. "How Census Data Put Trans Children at Risk." Scientific American 2022.
- Hotz et al. "Balancing data privacy and usability in the federal statistical system." PNAS 2022.
- Jarmin et al. "An in-depth examination of requirements for disclosure risk assessment." PNAS 2023.
 - Appendix points out severe flaw in Ruggles & van Riper methodology.
 - Several disagreeing response letters.
- Dick et al. "Confidence-Ranked Reconstruction of Census Microdata from Published Statistics." PNAS 2023.

How to Defend Against Reconstruction

• Q: what is a way that we can release many pretty-accurate estimates of proportions (counts divided by n) on a dataset while ensuring that an adversary can only reconstruct a small fraction of our dataset?

• A:

The Utility of Subsampling

Q: why doesn't the subsampling defense disprove the Dinur-Nissim reconstruction theorem?

A:

Q: are attacks still possible if we allow error larger than $1/\sqrt{n}$?

A:

Membership Inference Attacks: Setup

Attacker gets:

- Access to mechanism outputs
- (Some of) Alice's data
- (Possibly) auxiliary info about population
- (Possibly) the code for the mechanism (cf. Kerkhoff's Principle)

Then decides: if Alice is in the dataset x

MIAs: Examples

- Genome-wide Association Studies [Homer et al. `08]
 - release frequencies of SNP's (individual positions)
 - determine whether Alice is in "case group" [w/a particular diagnosis]
- ML as a service [Shokri et al. `17]
 - apply models trained on x to Alice's data

MIAs from Means

Some possible aux:

- The vector $p = (p_1, ..., p_d)$ of population means
- Or the data of several random individuals from the population

Q: how should the Attacker decide "In" vs. "Out"?

A:

MIAs as Hypothesis Testing

Attacker wants to *reject*

The Null Hypothesis H_0 : Alice is not in the dataset, and the dataset is drawn iid from population (given Alice's data and aux)

False Positive Rate (aka Significance Level α , False Alarm, Type I error): $FPR = Pr[MIA says "In" | H_0]$

Q: Suppose we have an MIA with a very low FPR (e.g. 10^{-9}) and it outputs "In" on a real-world data release. What do we need to know to be confident that Alice is in the dataset?

A:

Why is a Low FPR Important?

• A:

 Q: Suppose an attacker goes on a fishing expedition and tries the MIA out on k people, and the MIA says "In" on one of them. Can the attacker be confident that they're in the dataset?

• A:

True Positive Rate

Alternative Hypothesis H_1 : Alice is a random member of the dataset, which is drawn iid from the population

```
True Positive Rate (aka "Power", "Sensitivity", "Recall"):

TPR = Pr[MIA says "In" | H_1] = 1 - FNR
```

FNR = "false negative rate", "type II error β ", "missed detection"

What FPR & TPR are Meaningful?

Hypothesis tests only useful if TPR > FPR.

• MIAs only useful if TPR $\gtrsim 1/n$, where n = size of dataset

• There are very non-private mechanisms w/best TPR = 1/n.

Salil's Opinion: TPR $\gtrsim 1/n \gg$ FPR is most relevant for privacy.

Comparing Attack Frameworks

	Dinur-Nissim Reconstruction	Membership Inference
What is reconstructed?	Explicit attributes	"In" or "Out" attribute
Parameter regime	FPR = o(1), TPR = 1 - o(1)	$TPR \gtrsim 1/n \gg FPR$

- Reconstruction and Membership Inference Attacks are endpoints on a common spectrum.
 - MIAs ↔ "high-confidence partial reconstruction"
- Important variables for both:
 - Distributional assumptions
 - Quantity & quality of mechanism outputs needed
 - Auxiliary information used by attacker
 - Comparisons to appropriate baselines

How to Design MIAs

• Design Test Statistic T = T (everything given to attacker) that you expect to be larger under H_1 than H_0 .

Declare "In" if T ≥ t
 "Out" otherwise
 for a threshold t
 carefully selected
 to tune FPR and TPR.

Q: Why is the "Area Under the ROC Curve" (AUC) not so informative for privacy?

A Test Statistic for Means

Thm [Dwork et al. `15]: under natural distributional assumptions, if mechanism outputs have error smaller than $\gamma < \frac{1}{2}$, can achieve

- FPR = $\exp(-\Omega(d/(\gamma n)^2))$ [very small when $d \gg (\gamma n)^2$]
- TPR = $\Omega(1/(\gamma^2 n))$ [declare "In" for $k = \Omega(1/\gamma^2)$ members of dataset]

Attacks on Aggregate Stats

- What error γ makes sense?
 - Estimation error due to sampling $\approx 1/\sqrt{n}$
 - Reconstruction attacks require $\gamma \lesssim 1/\sqrt{n}$, $d \geq n$
 - Robust membership attacks: $\gamma \lesssim \sqrt{d}/n$
- Lessons
 - "Too many, too accurate" statistics reveal individual data
 - "Aggregate" is hard to pin down

A Test Statistic for ML Models

[Shokri et al. `17]

- Exploits "overfitting" of ML models
- Q: how to set threshold *t*?
- A:

An Optimal Test Statistic

- The Likelihood Ratio: $T_{LR}(z) = \frac{\Pr[z|H_1]}{\Pr[z|H_0]}$
 - where z=everything the attacker sees
 - Well-defined if H_0 , H_1 fully determine probability distribution of z ("simple hypothesis testing")
 - Neyman-Pearson: using T_{LR} with appropriate thresholds t achieves maximum TPR at all FPR, among all hypothesis tests
- T_{LR} be calculated if attacker has full knowledge of mechanism M (e.g. ML training algorithm) and population distribution.
 - Computationally expensive!
 - Much work on efficient approximations to $T_{\rm LR}$ for practical attacks. [Carlini et al. `22, Zarifzadeh et al. `24]

Extracting Training Data from AI Models

[Carlini, Tramèr, Wallace et al. 2021]

Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz

[Carlini, Hayes, Nasr et al. 2023]