DICE Embeddings

Release 0.1.3.2

Caglar Demir

Oct 31, 2024

Contents:

1	Dicee Manual	2
2	Installation 2.1 Installation from Source	3 3
3	Download Knowledge Graphs	3
4	Knowledge Graph Embedding Models	3
5	How to Train	3
6	Creating an Embedding Vector Database 6.1 Learning Embeddings	5 6 6
7	Answering Complex Queries	6
8	Predicting Missing Links	8
9	Downloading Pretrained Models	8
10	How to Deploy	8
11	Docker	8
12	Coverage Report	8
13	How to cite	10
14	dicee 14.1 Submodules 14.2 Attributes 14.3 Classes 14.4 Functions 14.5 Package Contents	12 159 159 160 162
Py	thon Module Index	206

Index 207

DICE Embeddings¹: Hardware-agnostic Framework for Large-scale Knowledge Graph Embeddings:

1 Dicee Manual

Version: dicee 0.1.3.2

GitHub repository: https://github.com/dice-group/dice-embeddings

Publisher and maintainer: Caglar Demir²

Contact: caglar.demir@upb.de

License: OSI Approved :: MIT License

Dicee is a hardware-agnostic framework for large-scale knowledge graph embeddings.

Knowledge graph embedding research has mainly focused on learning continuous representations of knowledge graphs towards the link prediction problem. Recently developed frameworks can be effectively applied in a wide range of research-related applications. Yet, using these frameworks in real-world applications becomes more challenging as the size of the knowledge graph grows

We developed the DICE Embeddings framework (dicee) to compute embeddings for large-scale knowledge graphs in a hardware-agnostic manner. To achieve this goal, we rely on

- 1. Pandas³ & Co. to use parallelism at preprocessing a large knowledge graph,
- 2. PyTorch⁴ & Co. to learn knowledge graph embeddings via multi-CPUs, GPUs, TPUs or computing cluster, and
- 3. **Huggingface**⁵ to ease the deployment of pre-trained models.

Why Pandas⁶ & Co. ? A large knowledge graph can be read and preprocessed (e.g. removing literals) by pandas, modin, or polars in parallel. Through polars, a knowledge graph having more than 1 billion triples can be read in parallel fashion. Importantly, using these frameworks allow us to perform all necessary computations on a single CPU as well as a cluster of computers.

Why PyTorch⁷ & Co. ? PyTorch is one of the most popular machine learning frameworks available at the time of writing. PytorchLightning facilitates scaling the training procedure of PyTorch without boilerplate. In our framework, we combine PyTorch⁸ & PytorchLightning⁹. Users can choose the trainer class (e.g., DDP by Pytorch) to train large knowledge graph embedding models with billions of parameters. PytorchLightning allows us to use state-of-the-art model parallelism techniques (e.g. Fully Sharded Training, FairScale, or DeepSpeed) without extra effort. With our framework, practitioners can directly use PytorchLightning for model parallelism to train gigantic embedding models.

Why Hugging-face Gradio¹⁰? Deploy a pre-trained embedding model without writing a single line of code.

- ¹ https://github.com/dice-group/dice-embeddings
- ² https://github.com/Demirrr
- 3 https://pandas.pydata.org/
- 4 https://pytorch.org/
- ⁵ https://huggingface.co/
- 6 https://pandas.pydata.org/
- ⁷ https://pytorch.org/
- 8 https://pytorch.org/
- 9 https://www.pytorchlightning.ai/
- 10 https://huggingface.co/gradio

2 Installation

2.1 Installation from Source

```
git clone https://github.com/dice-group/dice-embeddings.git conda create -n dice python=3.10.13 --no-default-packages && conda activate dice &&_ 
cd dice-embeddings && 
pip3 install -e .
```

or

```
pip install dicee
```

3 Download Knowledge Graphs

```
wget https://files.dice-research.org/datasets/dice-embeddings/KGs.zip --no-check-

→certificate && unzip KGs.zip
```

To test the Installation

```
python -m pytest -p no:warnings -x # Runs >114 tests leading to > 15 mins

python -m pytest -p no:warnings --lf # run only the last failed test

python -m pytest -p no:warnings --ff # to run the failures first and then the rest of the tests.
```

4 Knowledge Graph Embedding Models

- 1. TransE, DistMult, ComplEx, ConEx, QMult, OMult, ConvO, ConvQ, Keci
- 2. All 44 models available in https://github.com/pykeen/pykeen#models For more, please refer to examples.

5 How to Train

To Train a KGE model (KECI) and evaluate it on the train, validation, and test sets of the UMLS benchmark dataset.

```
from dicee.executer import Execute
from dicee.config import Namespace
args = Namespace()
args.model = 'Keci'
args.scoring_technique = "KvsAll" # 1vsAll, or AllvsAll, or NegSample
args.dataset_dir = "KGs/UMLS"
args.path_to_store_single_run = "Keci_UMLS"
args.num_epochs = 100
args.embedding_dim = 32
args.batch_size = 1024
reports = Execute(args).start()
print(reports["Train"]["MRR"]) # => 0.9912
print(reports["Trest"]["MRR"]) # => 0.8155
# See the Keci_UMLS folder embeddings and all other files
```

where the data is in the following form

```
$ head -3 KGs/UMLS/train.txt
acquired_abnormality location_of experimental_model_of_disease
anatomical_abnormality manifestation_of physiologic_function
alga isa entity
```

A KGE model can also be trained from the command line

```
dicee --dataset_dir "KGs/UMLS" --model Keci --eval_model "train_val_test"
```

dicee automaticaly detects available GPUs and trains a model with distributed data parallels technique. Under the hood, dicee uses lighning as a default trainer.

```
# Train a model by only using the GPU-0

CUDA_VISIBLE_DEVICES=0 dicee --dataset_dir "KGs/UMLS" --model Keci --eval_model

--"train_val_test"

# Train a model by only using GPU-1

CUDA_VISIBLE_DEVICES=1 dicee --dataset_dir "KGs/UMLS" --model Keci --eval_model

--"train_val_test"

NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1 python dicee/scripts/run.py --trainer PL -

--dataset_dir "KGs/UMLS" --model Keci --eval_model "train_val_test"
```

Under the hood, dicee executes run.py script and uses lighning as a default trainer

```
# Two equivalent executions
# (1)
dicee --dataset_dir "KGs/UMLS" --model Keci --eval_model "train_val_test"
# Evaluate Keci on Train set: Evaluate Keci on Train set
# {'H01': 0.9518788343558282, 'H03': 0.9988496932515337, 'H010': 1.0, 'MRR': 0.
→9753123402351737}
# Evaluate Keci on Validation set: Evaluate Keci on Validation set
# {'H@1': 0.6932515337423313, 'H@3': 0.9041411042944786, 'H@10': 0.9754601226993865,
→ 'MRR': 0.8072362996241839}
# Evaluate Keci on Test set: Evaluate Keci on Test set
# {'H01': 0.6951588502269289, 'H03': 0.9039334341906202, 'H010': 0.9750378214826021,
→ 'MRR': 0.8064032293278861}
# (2)
CUDA_VISIBLE_DEVICES=0,1 python dicee/scripts/run.py --trainer PL --dataset_dir "KGs/
→UMLS" --model Keci --eval_model "train_val_test"
# Evaluate Keci on Train set: Evaluate Keci on Train set
# {'H01': 0.9518788343558282, 'H03': 0.9988496932515337, 'H010': 1.0, 'MRR': 0.
\leftrightarrow 9753123402351737}
# Evaluate Keci on Train set: Evaluate Keci on Train set
# Evaluate Keci on Validation set: Evaluate Keci on Validation set
# {'H@1': 0.6932515337423313, 'H@3': 0.9041411042944786, 'H@10': 0.9754601226993865,
→ 'MRR': 0.8072362996241839}
# Evaluate Keci on Test set: Evaluate Keci on Test set
# {'H@1': 0.6951588502269289, 'H@3': 0.9039334341906202, 'H@10': 0.9750378214826021,
→ 'MRR': 0.8064032293278861}
```

Similarly, models can be easily trained with torchrun

```
torchrun --standalone --nnodes=1 --nproc_per_node=gpu dicee/scripts/run.py --trainer_
→torchDDP --dataset_dir "KGs/UMLS" --model Keci --eval_model "train_val_test"

# Evaluate Keci on Train set: Evaluate Keci on Train set: Evaluate Keci on Train set

# {'H@1': 0.9518788343558282, 'H@3': 0.9988496932515337, 'H@10': 1.0, 'MRR': 0.

→9753123402351737}

# Evaluate Keci on Validation set: Evaluate Keci on Validation set

# {'H@1': 0.6932515337423313, 'H@3': 0.9041411042944786, 'H@10': 0.9754601226993865,

→'MRR': 0.8072499937521418}

# Evaluate Keci on Test set: Evaluate Keci on Test set

{'H@1': 0.6951588502269289, 'H@3': 0.9039334341906202, 'H@10': 0.9750378214826021,

→'MRR': 0.8064032293278861}
```

You can also train a model in multi-node multi-gpu setting.

```
torchrun --nnodes 2 --nproc_per_node=gpu --node_rank 0 --rdzv_id 455 --rdzv_backend_

--c10d --rdzv_endpoint=nebula dicee/scripts/run.py --trainer torchDDP --dataset_dir_

--KGS/UMLS

torchrun --nnodes 2 --nproc_per_node=gpu --node_rank 1 --rdzv_id 455 --rdzv_backend_

--c10d --rdzv_endpoint=nebula dicee/scripts/run.py --trainer torchDDP --dataset_dir_

--KGS/UMLS
```

Train a KGE model by providing the path of a single file and store all parameters under newly created directory called KeciFamilyRun.

```
dicee --path_single_kg "KGs/Family/family-benchmark_rich_background.owl" --model Keci--path_to_store_single_run KeciFamilyRun --backend rdflib
```

where the data is in the following form

Apart from n-triples or standard link prediction dataset formats, we support ["owl", "nt", "turtle", "rdf/xml", "n3"]*. Moreover, a KGE model can be also trained by providing an endpoint of a triple store.

```
dicee --sparql_endpoint "http://localhost:3030/mutagenesis/" --model Keci
```

For more, please refer to examples.

6 Creating an Embedding Vector Database

6.1 Learning Embeddings

```
# Train an embedding model
dicee --dataset_dir KGs/Countries-S1 --path_to_store_single_run CountryEmbeddings --
wmodel Keci --p 0 --q 1 --embedding_dim 32 --adaptive_swa
```

6.2 Loading Embeddings into Qdrant Vector Database

6.3 Launching Webservice

```
diceeserve --path_model "CountryEmbeddings" --collection_name "dummy" --collection_

→location "localhost"
```

Retrieve and Search

Get embedding of germany

```
curl -X 'GET' 'http://0.0.0.0:8000/api/get?q=germany' -H 'accept: application/json'
```

Get most similar things to europe

```
curl -X 'GET' 'http://0.0.0.0:8000/api/search?q=europe' -H 'accept: application/json'
{"result":[{"hit":"europe", "score":1.0},
{"hit":"northern_europe", "score":0.67126536},
{"hit":"western_europe", "score":0.6010134},
{"hit":"puerto_rico", "score":0.5051694},
{"hit":"southern_europe", "score":0.4829831}]}
```

7 Answering Complex Queries

```
# pip install dicee
# wget https://files.dice-research.org/datasets/dice-embeddings/KGs.zip --no-check-
→certificate & unzip KGs.zip
from dicee.executer import Execute
from dicee.config import Namespace
from dicee.knowledge_graph_embeddings import KGE
# (1) Train a KGE model
args = Namespace()
args.model = 'Keci'
args.p=0
args.q=1
args.optim = 'Adam'
args.scoring_technique = "AllvsAll"
args.path_single_kg = "KGs/Family/family-benchmark_rich_background.owl"
args.backend = "rdflib"
args.num_epochs = 200
args.batch_size = 1024
args.lr = 0.1
args.embedding_dim = 512
result = Execute(args).start()
# (2) Load the pre-trained model
```

```
pre_trained_kge = KGE(path=result['path_experiment_folder'])
# (3) Single-hop query answering
# Query: ?E : \exist E.hasSibling(E, F9M167)
# Question: Who are the siblings of F9M167?
# Answer: [F9M157, F9F141], as (F9M167, hasSibling, F9M157) and (F9M167, hasSibling,
\hookrightarrow F9F141)
predictions = pre_trained_kge.answer_multi_hop_query(query_type="1p",
                                                      query=('http://www.benchmark.org/
→family#F9M167',
                                                             ('http://www.benchmark.
→org/family#hasSibling',)),
                                                      tnorm="min", k=3)
top_entities = [topk_entity for topk_entity, query_score in predictions]
assert "http://www.benchmark.org/family#F9F141" in top_entities
assert "http://www.benchmark.org/family#F9M157" in top_entities
# (2) Two-hop query answering
# Query: ?D : \exist E.Married(D, E) \land hasSibling(E, F9M167)
# Question: To whom a sibling of F9M167 is married to?
# Answer: [F9F158, F9M142] as (F9M157 #married F9F158) and (F9F141 #married F9M142)
predictions = pre_trained_kge.answer_multi_hop_query(query_type="2p",
                                                      query=("http://www.benchmark.org/
→family#F9M167",
                                                             ("http://www.benchmark.
→org/family#hasSibling",
                                                              "http://www.benchmark.
→org/family#married")),
                                                     tnorm="min", k=3)
top_entities = [topk_entity for topk_entity, query_score in predictions]
assert "http://www.benchmark.org/family#F9M142" in top_entities
assert "http://www.benchmark.org/family#F9F158" in top_entities
# (3) Three-hop query answering
# Query: ?T : \exist D.type(D,T) \land Married(D,E) \land hasSibling(E, F9M167)
# Question: What are the type of people who are married to a sibling of F9M167?
# (3) Answer: [Person, Male, Father] since F9M157 is [Brother Father Grandfather_
→Male] and F9M142 is [Male Grandfather Father]
predictions = pre_trained_kge.answer_multi_hop_query(query_type="3p", query=("http://
→www.benchmark.org/family#F9M167",
                                                                               ("http://
→www.benchmark.org/family#hasSibling",
                                                                              "http://
→www.benchmark.org/family#married",
                                                                              "http://
\rightarrowwww.w3.org/1999/02/22-rdf-syntax-ns#type")),
                                                     tnorm="min", k=5)
top_entities = [topk_entity for topk_entity, query_score in predictions]
print (top_entities)
assert "http://www.benchmark.org/family#Person" in top_entities
assert "http://www.benchmark.org/family#Father" in top_entities
assert "http://www.benchmark.org/family#Male" in top_entities
```

For more, please refer to examples/multi_hop_query_answering.

8 Predicting Missing Links

```
from dicee import KGE
# (1) Train a knowledge graph embedding model..
# (2) Load a pretrained model
pre_trained_kge = KGE(path='..')
# (3) Predict missing links through head entity rankings
pre_trained_kge.predict_topk(h=[".."],r=[".."],topk=10)
# (4) Predict missing links through relation rankings
pre_trained_kge.predict_topk(h=[".."],t=[".."],topk=10)
# (5) Predict missing links through tail entity rankings
pre_trained_kge.predict_topk(r=[".."],t=[".."],topk=10)
```

9 Downloading Pretrained Models

```
from dicee import KGE
# (1) Load a pretrained ConEx on DBpedia
model = KGE(url="https://files.dice-research.org/projects/DiceEmbeddings/KINSHIP-Keci-
-dim128-epoch256-KvsAll")
```

For more please look at dice-research.org/projects/DiceEmbeddings/¹¹

10 How to Deploy

```
from dicee import KGE
KGE (path='...').deploy(share=True,top_k=10)
```

11 Docker

To build the Docker image:

```
docker build -t dice-embeddings .
```

To test the Docker image:

```
docker run --rm -v ~/.local/share/dicee/KGs:/dicee/KGs dice-embeddings ./main.py --
→model AConEx --embedding_dim 16
```

12 Coverage Report

The coverage report is generated using coverage.py¹²:

Name	Stmts	Miss	Cover	Missing
dicee/initpy	7		100%	
dicee/abstracts.py	201	82		104–105, Litinues on next page)

¹¹ https://files.dice-research.org/projects/DiceEmbeddings/

¹² https://coverage.readthedocs.io/en/7.6.0/

```
→123, 146-147, 152, 165, 197, 240-254, 257-260, 263-266, 301, 314-317, 320-324, 364-
\Rightarrow375, 390-398, 413, 424-428, 555-575, 581-585, 589-591
dicee/callbacks.py
                                                           245
                                                                  102
\hookrightarrow67-73, 76, 88-93, 98-103, 106-109, 116-133, 138-142, 146-147, 276-280, 286-287, 305-
→311, 314, 319-320, 332-338, 344-353, 358-360, 405, 416-429, 433-468, 480-486
dicee/config.py
                                                            93
                                                                    2
                                                                         98%
                                                                                141-142
dicee/dataset_classes.py
                                                           299
                                                                   74
                                                                         75%
                                                                                41, 54, ...
→87, 93, 99-106, 109, 112, 115-139, 195-201, 204, 207-209, 314, 325-328, 344, 410-

→411, 429, 528-536, 539, 543-557, 700-707, 710-714

dicee/eval_static_funcs.py
                                                           227
                                                                   95
                                                                         58%
                                                                                101, 106,
→ 111, 258-353, 360-411
dicee/evaluator.py
                                                           262
                                                                   51
                                                                         81%
                                                                                46, 51,_
→56, 84, 89-90, 93, 109, 126, 137, 141, 146, 177-188, 195-206, 314, 344-367, 455, □
→465, 482-487
dicee/executer.py
                                                                         96%
                                                                                116, 258-
                                                           113
⇒259, 291
dicee/knowledge_graph.py
                                                            65
                                                                    3
                                                                         95%
                                                                                79, 110, _
⇔114
dicee/knowledge_graph_embeddings.py
                                                           636
                                                                  443
                                                                         30%
                                                                                27, 30-
→31, 39-52, 57-90, 93-127, 131-139, 170-184, 215-228, 254-274, 324-327, 330-333, 346,
→ 381-426, 484-486, 502-503, 509-517, 522-525, 528-533, 538, 547, 592-598, 630, 688-
→1053, 1084-1145, 1149-1177, 1200, 1227-1265
dicee/models/__init__.py
                                                             9
                                                                        100%
                                                           234
                                                                   31
                                                                         87%
dicee/models/base_model.py
                                                                                54, 56, ...
→82, 88-103, 157, 190, 230, 236, 245, 248, 252, 259, 263, 265, 280, 288-289, 296-297,

→ 351, 354, 427, 439

dicee/models/clifford.py
                                                                  357
→68-117, 122-133, 156-168, 190-220, 235, 237, 241, 248-249, 276-280, 303-311, 325-
→327, 332-333, 364-384, 406, 413, 417-478, 495-499, 511, 514, 519, 524, 571-607, 625-
→631, 644, 647, 652, 657, 686-692, 705, 708, 713, 718, 728-737, 753-754, 774-845, □
→856-859, 884-909, 933-966, 1002-1006, 1019, 1029, 1032, 1037, 1042, 1047, 1051, □
→1055, 1064-1065, 1095, 1102, 1107, 1135-1139, 1167-1176, 1186-1194, 1212-1214, 1232-
→1234, 1250-1252
dicee/models/complex.py
                                                           151
                                                                   15
                                                                         90%
                                                                                86-109
dicee/models/dualE.py
                                                            59
                                                                   10
                                                                         83%
                                                                                93-102,_
→142-156
                                                           262
                                                                  221
dicee/models/function_space.py
                                                                         16%
                                                                                10-24, _
\Rightarrow28-37, 40-49, 53-70, 77-86, 89-98, 101-110, 114-126, 134-156, 159-165, 168-185, 188-
→194, 197-205, 208, 213-234, 243-246, 250-254, 258-267, 271-292, 301-307, 311-328, □
→332-335, 344-352, 355, 366-372, 392-406, 424-438, 443-453, 461-465, 474-478
                                                           227
                                                                   83
                                                                         63%
dicee/models/octonion.py
                                                                                21-44,_
\Rightarrow320-329, 334-345, 348-370, 374-416, 426-474
dicee/models/pykeen_models.py
                                                            50
                                                                    5
                                                                         90%
                                                                                60-63, _
dicee/models/quaternion.py
                                                                                7-21, 30-
                                                           192
                                                                   69
                                                                         64%
→55, 68-72, 107, 185, 328-342, 345-364, 368-389, 399-426
dicee/models/real.py
                                                            61
                                                                   12
                                                                         80%
                                                                                36-39, _
\leftrightarrow 66-69, 87, 103-106
dicee/models/static_funcs.py
                                                            10
                                                                    0
                                                                        100%
dicee/models/transformers.py
                                                           236
                                                                  189
→46, 60-75, 84-102, 105-116, 123-125, 128, 134-151, 155-180, 186-190, 193-197, 203-
→207, 210-212, 229-256, 265-268, 271-276, 279-304, 310-315, 319-372, 376-398, 404-414
```

```
dicee/query_generator.py
                                                              374
                                                                      346
                                                                               7%
                                                                                    18-52,_
\hookrightarrow56, 62-65, 69-70, 78-92, 100-147, 155-188, 192-206, 212-269, 274-303, 307-443, 453-
\hookrightarrow472, 480-501, 508-512, 517, 522-528
                                                                3
                                                                        0
                                                                            100%
dicee/read_preprocess_save_load_kg/__init__.py
dicee/read_preprocess_save_load_kg/preprocess.py
                                                              256
                                                                       41
                                                                             84%
                                                                                    34, 40, _
\hookrightarrow78, 102-127, 133, 138-151, 184, 214, 388-389, 444
dicee/read_preprocess_save_load_kg/read_from_disk.py
                                                               36
                                                                       11
                                                                             69%
                                                                                    33, 38-
\hookrightarrow40, 47, 55, 58-72
dicee/read_preprocess_save_load_kg/save_load_disk.py
                                                               45
                                                                       18
                                                                             60%
                                                                                    39-60
dicee/read_preprocess_save_load_kg/util.py
                                                              219
                                                                      126
                                                                             42%
                                                                                    65-67.
→72-73, 91-97, 100-102, 107-109, 121, 134, 140-143, 148-156, 161-167, 172-177, 182-
→187, 199-220, 226-282, 286-290, 294-295, 299, 303-304, 334, 351, 356, 363-364
                                                                       23
                                                                             57%
dicee/sanity_checkers.py
                                                               54
                                                                                    8-12, 21-
\rightarrow31, 46, 51, 58, 64-79, 85, 89, 96
dicee/static_funcs.py
                                                                      163
                                                                             61%
                                                                                    40, 50, _
                                                              418
→56-61, 83, 105-106, 115, 138, 152, 157-159, 163-165, 167, 194-198, 246, 254, 263-
→268, 290-304, 316-336, 340-357, 362, 386-387, 392-393, 410-411, 413-414, 416-417, □
→419-420, 428, 446-450, 467-470, 474-479, 483-487, 491-492, 498-500, 526-527, 539-
\hookrightarrow 542, 547-550, 559-610, 615-627, 644-658, 661-669
dicee/static_funcs_training.py
                                                              123
                                                                       63
                                                                             49%
                                                                                    118-215, _
⇔223-224
dicee/static_preprocess_funcs.py
                                                              100
                                                                       44
                                                                             56%
                                                                                    17-25.
\hookrightarrow 52, 56, 64, 67, 78, 91-115, 120-123, 128-131, 136-139
dicee/trainer/__init__.py
                                                                        0
                                                                            100%
                                                                1
dicee/trainer/dice_trainer.py
                                                              126
                                                                       13
                                                                             90%
                                                                                    27-32, _
\hookrightarrow 91, 98, 103-108, 147
dicee/trainer/torch_trainer.py
                                                               79
                                                                             95%
                                                                                    31, 196, _
→207-208
dicee/trainer/torch_trainer_ddp.py
                                                              152
                                                                      128
                                                                             16%
                                                                                    13-14,_
→43, 47-72, 83-112, 131-137, 140-149, 164-194, 204-217, 226-246, 251-260, 263-272, □
⇒275-299, 302-309
TOTAL
                                                             6181
                                                                     2828
                                                                             54%
```

13 How to cite

Currently, we are working on our manuscript describing our framework. If you really like our work and want to cite it now, feel free to chose one:)

```
# Keci
@inproceedings{demir2023clifford,
    title={Clifford Embeddings--A Generalized Approach for Embedding in Normed Algebras}

.,
    author={Demir, Caglar and Ngonga Ngomo, Axel-Cyrille},
    booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in_
.Databases},
    pages={567--582},
    year={2023},
    organization={Springer}
}
# LitCQD
```

```
@inproceedings{demir2023litcqd,
 title={LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric_
→Literals},
 author={Demir, Caglar and Wiebesiek, Michel and Lu, Renzhong and Ngonga Ngomo, Axel-
→Cyrille and Heindorf, Stefan},
 booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in_
→Databases},
 pages={617--633},
 year={2023},
 organization={Springer}
# DICE Embedding Framework
@article{demir2022hardware,
 title={Hardware-agnostic computation for large-scale knowledge graph embeddings},
 author={Demir, Caglar and Ngomo, Axel-Cyrille Ngonga},
 journal={Software Impacts},
 year={2022},
 publisher={Elsevier}
# KronE
@inproceedings{demir2022kronecker,
 title={Kronecker decomposition for knowledge graph embeddings},
 author={Demir, Caglar and Lienen, Julian and Ngonga Ngomo, Axel-Cyrille},
 booktitle={Proceedings of the 33rd ACM Conference on Hypertext and Social Media},
 pages={1--10},
 year={2022}
# QMult, OMult, ConvQ, ConvO
@InProceedings{pmlr-v157-demir21a,
                   {Convolutional Hypercomplex Embeddings for Link Prediction},
 title =
                 {Demir, Caglar and Moussallem, Diego and Heindorf, Stefan and Ngonga
 author =
→Ngomo, Axel-Cyrille},
 booktitle =
                       {Proceedings of The 13th Asian Conference on Machine Learning},
 pages =
                  {656--671},
 year =
                  {2021},
 editor =
                    {Balasubramanian, Vineeth N. and Tsang, Ivor},
 volume =
                    {157}.
 series =
                   {Proceedings of Machine Learning Research},
 month =
                   \{17--19 \text{ Nov}\},
 publisher =
                 {PMLR},
                 {https://proceedings.mlr.press/v157/demir21a/demir21a.pdf},
 pdf =
 url =
                 {https://proceedings.mlr.press/v157/demir21a.html},
# ConEx
@inproceedings{demir2021convolutional,
title={Convolutional Complex Knowledge Graph Embeddings},
author={Caglar Demir and Axel-Cyrille Ngonga Ngomo},
booktitle={Eighteenth Extended Semantic Web Conference - Research Track},
year={2021},
url={https://openreview.net/forum?id=6T45-4TFqaX}}
# Shallom
@inproceedings{demir2021shallow,
```

```
title={A shallow neural model for relation prediction},
author={Demir, Caglar and Moussallem, Diego and Ngomo, Axel-Cyrille Ngonga},
booktitle={2021 IEEE 15th International Conference on Semantic Computing (ICSC)},
pages={179--182},
year={2021},
organization={IEEE}
```

For any questions or wishes, please contact: caglar.demir@upb.de

14 dicee

14.1 Submodules

dicee.__main__

dicee.abstracts

Classes

AbstractTrainer	Abstract class for Trainer class for knowledge graph embedding models
BaseInteractiveKGE	Abstract/base class for using knowledge graph embedding models interactively.
AbstractCallback	Abstract class for Callback class for knowledge graph embedding models
AbstractPPECallback	Abstract class for Callback class for knowledge graph embedding models

Module Contents

class dicee.abstracts.AbstractTrainer(args, callbacks)

Abstract class for Trainer class for knowledge graph embedding models

Parameter

```
args
    [str]?

callbacks: list
    ?

attributes

callbacks

is_global_zero = True
global_rank = 0

local_rank = 0

strategy = None
```

```
on_fit_start(*args, **kwargs)
     A function to call callbacks before the training starts.
     Parameter
     args
     kwargs
          rtype
               None
on_fit_end(*args, **kwargs)
     A function to call callbacks at the ned of the training.
     Parameter
     args
     kwargs
          rtype
               None
on_train_epoch_end(*args, **kwargs)
     A function to call callbacks at the end of an epoch.
     Parameter
     args
     kwargs
          rtype
              None
on_train_batch_end(*args, **kwargs)
     A function to call callbacks at the end of each mini-batch during training.
     Parameter
     args
     kwargs
          rtype
              None
\mathtt{static}\ \mathtt{save\_checkpoint}\ (\mathit{full\_path}: \mathit{str}, \mathit{model}) \ 	o \ \mathsf{None}
     A static function to save a model into disk
     Parameter
     full_path: str
     model:
          rtype
              None
```

```
class dicee.abstracts.BaseInteractiveKGE (path: str = None, url: str = None,
             construct\_ensemble: bool = False, model\_name: str = None,
             apply_semantic_constraint: bool = False)
      Abstract/base class for using knowledge graph embedding models interactively.
      Parameter
      path_of_pretrained_model_dir
           [str] ?
      construct_ensemble: boolean
      model_name: str apply_semantic_constraint : boolean
      construct_ensemble
      apply_semantic_constraint
      configs
      get_eval_report() \rightarrow dict
      \texttt{get\_bpe\_token\_representation} (\textit{str\_entity\_or\_relation: List[str] | str}) \rightarrow \texttt{List[List[int]] | List[int]}
                    str_entity_or_relation (corresponds to a str or a list of strings to
                    be tokenized via BPE and shaped.)
                Return type
                    A list integer(s) or a list of lists containing integer(s)
      get_padded_bpe_triple_representation (triples: List[List[str]]) \rightarrow Tuple[List, List, List]
                Parameters
                    triples
      \mathtt{set\_model\_train\_mode}() \rightarrow None
           Setting the model into training mode
           Parameter
      \verb"set_model_eval_mode"() \to None
           Setting the model into eval mode
           Parameter
      property name
      sample\_entity(n:int) \rightarrow List[str]
      sample\_relation(n:int) \rightarrow List[str]
      is\_seen(entity: str = None, relation: str = None) \rightarrow bool
      save() \rightarrow None
      get_entity_index(x: str)
```

```
get_relation_index(x: str)
      index_triple (head_entity: List[str], relation: List[str], tail_entity: List[str])
                   → Tuple[torch.LongTensor, torch.LongTensor, torch.LongTensor]
           Index Triple
           Parameter
           head_entity: List[str]
           String representation of selected entities.
           relation: List[str]
           String representation of selected relations.
           tail_entity: List[str]
           String representation of selected entities.
           Returns: Tuple
           pytorch tensor of triple score
      add_new_entity_embeddings (entity_name: str = None, embeddings: torch.FloatTensor = None)
      get_entity_embeddings (items: List[str])
           Return embedding of an entity given its string representation
           Parameter
           items:
               entities
      get_relation_embeddings (items: List[str])
           Return embedding of a relation given its string representation
           Parameter
           items:
               relations
      construct_input_and_output (head_entity: List[str], relation: List[str], tail_entity: List[str], labels)
           Construct a data point :param head_entity: :param relation: :param tail_entity: :param labels: :return:
      parameters()
class dicee.abstracts.AbstractCallback
      Bases: abc.ABC, lightning.pytorch.callbacks.Callback
      Abstract class for Callback class for knowledge graph embedding models
      Parameter
      on_init_start(*args, **kwargs)
```

```
Parameter
     trainer:
     model:
         rtype
             None
on_init_end(*args, **kwargs)
     Call at the beginning of the training.
     Parameter
     trainer:
     model:
         rtype
             None
\verb"on_fit_start" (\textit{trainer}, model)
     Call at the beginning of the training.
     Parameter
     trainer:
     model:
         rtype
             None
on_train_epoch_end(trainer, model)
     Call at the end of each epoch during training.
     Parameter
     trainer:
     model:
         rtype
             None
on_train_batch_end(*args, **kwargs)
     Call at the end of each mini-batch during the training.
     Parameter
     trainer:
     model:
         rtype
             None
on_fit_end(*args, **kwargs)
```

Call at the end of the training.

```
Parameter
          trainer:
          model:
               rtype
                   None
class dicee.abstracts.AbstractPPECallback (num_epochs, path, epoch_to_start,
            last_percent_to_consider)
     Bases: AbstractCallback
     Abstract class for Callback class for knowledge graph embedding models
     Parameter
     num_epochs
     path
     sample_counter = 0
     epoch_count = 0
     alphas = None
     on_fit_start(trainer, model)
          Call at the beginning of the training.
          Parameter
          trainer:
          model:
               rtype
                   None
     on_fit_end(trainer, model)
          Call at the end of the training.
          Parameter
          trainer:
          model:
               rtype
                   None
     \verb|store_ensemble| (param_ensemble)| \rightarrow None
```

dicee.analyse_experiments

This script should be moved to dicee/scripts

Classes

```
Experiment
```

Functions

```
get_default_arguments()
analyse(args)
```

Module Contents

```
dicee.analyse_experiments.get_default_arguments()
class dicee.analyse_experiments.Experiment
    model_name = []
    callbacks = []
    embedding_dim = []
    num_params = []
    num_epochs = []
    batch_size = []
    lr = []
    byte_pair_encoding = []
    aswa = []
    path_dataset_folder = []
    full_storage_path = []
    pq = []
    train_mrr = []
    train_h1 = []
    train_h3 = []
    train_h10 = []
    val_mrr = []
    val_h1 = []
    val_h3 = []
```

```
val_h10 = []

test_mrr = []

test_h1 = []

test_h3 = []

test_h10 = []

runtime = []

normalization = []

scoring_technique = []

save_experiment(x)

to_df()

dicee.analyse_experiments.analyse(args)
```

dicee.callbacks

Classes

AccumulateEpochLossCallback	Abstract class for Callback class for knowledge graph embedding models
PrintCallback	Abstract class for Callback class for knowledge graph embedding models
KGESaveCallback	Abstract class for Callback class for knowledge graph embedding models
PseudoLabellingCallback	Abstract class for Callback class for knowledge graph embedding models
ASWA	Adaptive stochastic weight averaging
Eval	Abstract class for Callback class for knowledge graph embedding models
KronE	Abstract class for Callback class for knowledge graph embedding models
Perturb	A callback for a three-Level Perturbation

Functions

estimate_q(eps)	estimate rate of convergence q from sequence esp
compute_convergence(seq, i)	

Module Contents

```
\begin{tabular}{ll} \textbf{class} & \texttt{dicee.callbacks.AccumulateEpochLossCallback} & (\textit{path: str}) \\ \textbf{Bases:} & \textit{dicee.abstracts.AbstractCallback} \\ \end{tabular}
```

Abstract class for Callback class for knowledge graph embedding models

```
Parameter
```

```
path
      on\_fit\_end(\mathit{trainer}, \mathit{model}) \rightarrow None
           Store epoch loss
           Parameter
           trainer:
           model:
                rtype
                    None
class dicee.callbacks.PrintCallback
      Bases: dicee.abstracts.AbstractCallback
      Abstract class for Callback class for knowledge graph embedding models
      Parameter
      start_time
      \verb"on_fit_start" (\textit{trainer}, \textit{pl}\_\textit{module})
           Call at the beginning of the training.
           Parameter
           trainer:
           model:
                rtype
                    None
      on_fit_end(trainer, pl_module)
           Call at the end of the training.
           Parameter
           trainer:
           model:
                rtype
                    None
      on_train_batch_end(*args, **kwargs)
           Call at the end of each mini-batch during the training.
           Parameter
           trainer:
           model:
```

```
rtype
                  None
     on_train_epoch_end(*args, **kwargs)
          Call at the end of each epoch during training.
          Parameter
          trainer:
          model:
              rtype
                  None
class dicee.callbacks.KGESaveCallback (every_x_epoch: int, max_epochs: int, path: str)
     Bases: dicee.abstracts.AbstractCallback
     Abstract class for Callback class for knowledge graph embedding models
     Parameter
     every_x_epoch
     max_epochs
     epoch_counter = 0
     path
     on_train_batch_end(*args, **kwargs)
          Call at the end of each mini-batch during the training.
          Parameter
          trainer:
          model:
              rtype
                  None
     on_fit_start (trainer, pl_module)
          Call at the beginning of the training.
          Parameter
          trainer:
          model:
              rtype
                  None
     on_train_epoch_end(*args, **kwargs)
          Call at the end of each epoch during training.
```

```
Parameter
          trainer:
          model:
              rtype
                 None
     on fit end(*args, **kwargs)
          Call at the end of the training.
          Parameter
          trainer:
          model:
              rtype
                 None
     on_epoch_end (model, trainer, **kwargs)
class dicee.callbacks.PseudoLabellingCallback(data_module, kg, batch_size)
     Bases: dicee.abstracts.AbstractCallback
     Abstract class for Callback class for knowledge graph embedding models
     Parameter
     data_module
     kg
     num_of_epochs = 0
     unlabelled_size
     batch_size
     create_random_data()
     on_epoch_end(trainer, model)
dicee.callbacks.estimate_q(eps)
     estimate rate of convergence q from sequence esp
dicee.callbacks.compute_convergence(seq, i)
class dicee.callbacks.ASWA (num_epochs, path)
     Bases: dicee.abstracts.AbstractCallback
     Adaptive stochastic weight averaging ASWE keeps track of the validation performance and update s the ensemble
     model accordingly.
     path
     num_epochs
     initial_eval_setting = None
```

```
epoch_count = 0
     alphas = []
     val_aswa
     on_fit_end(trainer, model)
          Call at the end of the training.
          Parameter
          trainer:
          model:
              rtype
                  None
     static compute\_mrr(trainer, model) \rightarrow float
     get_aswa_state_dict(model)
     {\tt decide} \ (running\_model\_state\_dict, \ ensemble\_state\_dict, \ val\_running\_model,
                 mrr_updated_ensemble_model)
          Perform Hard Update, software or rejection
              Parameters
                   • running_model_state_dict
                   • ensemble_state_dict
                   • val_running_model
                   • mrr_updated_ensemble_model
     on_train_epoch_end(trainer, model)
          Call at the end of each epoch during training.
          Parameter
          trainer:
          model:
              rtype
                  None
class dicee.callbacks.Eval (path, epoch_ratio: int = None)
     Bases: dicee.abstracts.AbstractCallback
     Abstract class for Callback class for knowledge graph embedding models
     Parameter
     path
     reports = []
     epoch_ratio
```

```
epoch_counter = 0
     on_fit_start(trainer, model)
          Call at the beginning of the training.
          Parameter
          trainer:
          model:
              rtype
                  None
     on_fit_end(trainer, model)
          Call at the end of the training.
          Parameter
          trainer:
          model:
              rtype
                  None
     on_train_epoch_end(trainer, model)
          Call at the end of each epoch during training.
          Parameter
          trainer:
          model:
              rtype
                  None
     on_train_batch_end(*args, **kwargs)
          Call at the end of each mini-batch during the training.
          Parameter
          trainer:
          model:
              rtype
                  None
class dicee.callbacks.KronE
     Bases: dicee.abstracts.AbstractCallback
```

Abstract class for Callback class for knowledge graph embedding models

```
Parameter
```

```
f = None
     static batch_kronecker_product(a, b)
           Kronecker product of matrices a and b with leading batch dimensions. Batch dimensions are broadcast. The
           number of them mush :type a: torch.Tensor :type b: torch.Tensor :rtype: torch.Tensor
     get_kronecker_triple_representation(indexed_triple: torch.LongTensor)
           Get kronecker embeddings
     on_fit_start (trainer, model)
           Call at the beginning of the training.
           Parameter
           trainer:
           model:
               rtype
                   None
class dicee.callbacks.Perturb (level: str = 'input', ratio: float = 0.0, method: str = None,
            scaler: float = None, frequency=None)
     Bases: dicee.abstracts.AbstractCallback
     A callback for a three-Level Perturbation
     Input Perturbation: During training an input x is perturbed by randomly replacing its element. In the context of
     knowledge graph embedding models, x can denote a triple, a tuple of an entity and a relation, or a tuple of two
     entities. A perturbation means that a component of x is randomly replaced by an entity or a relation.
     Parameter Perturbation:
     Output Perturbation:
     level
     ratio
     method
     scaler
```

dicee.config

frequency

on_train_batch_start (trainer, model, batch, batch_idx)

Called when the train batch begins.

Classes

Namespace

Simple object for storing attributes.

Module Contents

```
class dicee.config.Namespace(**kwargs)
     Bases: argparse.Namespace
     Simple object for storing attributes.
     Implements equality by attribute names and values, and provides a simple string representation.
     dataset_dir: str = None
          The path of a folder containing train.txt, and/or valid.txt and/or test.txt
     save_embeddings_as_csv: bool = False
          Embeddings of entities and relations are stored into CSV files to facilitate easy usage.
     storage_path: str = 'Experiments'
          A directory named with time of execution under -storage_path that contains related data about embeddings.
     path_to_store_single_run: str = None
          A single directory created that contains related data about embeddings.
     path_single_kg = None
          Path of a file corresponding to the input knowledge graph
     sparql_endpoint = None
          An endpoint of a triple store.
     model: str = 'Keci'
          KGE model
     optim: str = 'Adam'
          Optimizer
     embedding_dim: int = 64
          Size of continuous vector representation of an entity/relation
     num_epochs: int = 150
          Number of pass over the training data
     batch_size: int = 1024
          Mini-batch size if it is None, an automatic batch finder technique applied
     lr: float = 0.1
          Learning rate
     add_noise_rate: float = None
          The ratio of added random triples into training dataset
     gpus = None
          Number GPUs to be used during training
     callbacks
          10}}
               Type
                   Callbacks, e.g., {"PPE"
               Type
                   { "last_percent_to_consider"
```

```
backend: str = 'pandas'
    Backend to read, process, and index input knowledge graph. pandas, polars and rdflib available
separator: str = '\\s+'
    separator for extracting head, relation and tail from a triple
trainer: str = 'torchCPUTrainer'
    Trainer for knowledge graph embedding model
scoring_technique: str = 'KvsAll'
    Scoring technique for knowledge graph embedding models
neg_ratio: int = 0
    Negative ratio for a true triple in NegSample training_technique
weight_decay: float = 0.0
    Weight decay for all trainable params
normalization: str = 'None'
    LayerNorm, BatchNorm1d, or None
init_param: str = None
    xavier_normal or None
gradient_accumulation_steps: int = 0
    Not tested e
num_folds_for_cv: int = 0
    Number of folds for CV
eval_model: str = 'train_val_test'
    ["None", "train", "train_val", "train_val_test", "test"]
            Evaluate trained model choices
save_model_at_every_epoch: int = None
    Not tested
label_smoothing_rate: float = 0.0
num core: int = 0
    Number of CPUs to be used in the mini-batch loading process
random seed: int = 0
    Random Seed
sample_triples_ratio: float = None
    Read some triples that are uniformly at random sampled. Ratio being between 0 and 1
read_only_few: int = None
    Read only first few triples
pykeen_model_kwargs
    Additional keyword arguments for pykeen models
kernel size: int = 3
    Size of a square kernel in a convolution operation
```

```
p: int = 0
    P parameter of Clifford Embeddings
q: int = 1
    Q parameter of Clifford Embeddings
input_dropout_rate: float = 0.0
```

Number of slices in the generated feature map by convolution.

Dropout rate on embeddings of input triples

hidden_dropout_rate: float = 0.0

num_of_output_channels: int = 32

Dropout rate on hidden representations of input triples

feature_map_dropout_rate: float = 0.0

Dropout rate on a feature map generated by a convolution operation

byte_pair_encoding: bool = False

Byte pair encoding

Type WIP

adaptive_swa: bool = False

Adaptive stochastic weight averaging

swa: bool = False

Stochastic weight averaging

block_size: int = None

block size of LLM

continual_learning = None

Path of a pretrained model size of LLM

__iter__()

dicee.dataset_classes

Classes

BPE_NegativeSamplingDataset	An abstract class representing a Dataset.
MultiLabelDataset	An abstract class representing a Dataset.
MultiClassClassificationDataset	Dataset for the 1vsALL training strategy
OnevsAllDataset	Dataset for the 1vsALL training strategy
KvsA11	Creates a dataset for KvsAll training by inheriting from
	torch.utils.data.Dataset.
AllvsAll	Creates a dataset for AllvsAll training by inheriting from
	torch.utils.data.Dataset.
OnevsSample	A custom PyTorch Dataset class for knowledge graph em-
	beddings, which includes
KvsSampleDataset	KvsSample a Dataset:
NegSampleDataset	An abstract class representing a Dataset.
TriplePredictionDataset	Triple Dataset
CVDataModule	Create a Dataset for cross validation

Functions

```
reload_dataset(path, form_of_labelling, ...)
construct_dataset(→ torch.utils.data.Dataset)
```

Reload the files from disk to construct the Pytorch dataset

Module Contents

Reload the files from disk to construct the Pytorch dataset

dicee.dataset_classes.construct_dataset (*, train_set: numpy.ndarray | list, valid_set=None, test_set=None, ordered_bpe_entities=None, train_target_indices=None, target_dim: int = None, entity_to_idx: dict, relation_to_idx: dict, form_of_labelling: str, scoring_technique: str, neg_ratio: int, label_smoothing_rate: float, byte_pair_encoding=None, block_size: int = None)

→ torch.utils.data.Dataset

Bases: torch.utils.data.Dataset

An abstract class representing a Dataset.

All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite __getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite __len__(), which is expected to return the size of the dataset by many Sampler implementations and the default options of DataLoader. Subclasses could also optionally implement __getitems__(), for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples.

DataLoader by default constructs an index sampler that yields integral indices. To make it work with a mapstyle dataset with non-integral indices/keys, a custom sampler must be provided.

```
train_set
  ordered_bpe_entities
  num_bpe_entities
  neg_ratio
  num_datapoints
  __len__()
  __getitem__(idx)
  collate_fn(batch_shaped_bpe_triples: List[Tuple[torch.Tensor, torch.Tensor]])
class dicee.dataset_classes.MultiLabelDataset(train_set: torch.LongTensor, train_indices_target: torch.LongTensor, target_dim: int, torch_ordered_shaped_bpe_entities: torch.LongTensor)
```

Bases: torch.utils.data.Dataset

An abstract class representing a Dataset.

All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite __getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite __len__(), which is expected to return the size of the dataset by many Sampler implementations and the default options of DataLoader. Subclasses could also optionally implement __getitems__(), for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples.

1 Note

DataLoader by default constructs an index sampler that yields integral indices. To make it work with a mapstyle dataset with non-integral indices/keys, a custom sampler must be provided.

```
train_set
     train_indices_target
     target_dim
     num datapoints
     torch_ordered_shaped_bpe_entities
     collate_fn = None
     __len__()
     \__getitem_(idx)
class dicee.dataset_classes.MultiClassClassificationDataset(
           subword_units: numpy.ndarray, block_size: int = 8)
     Bases: torch.utils.data.Dataset
     Dataset for the 1vsALL training strategy
          Parameters
                • train_set_idx - Indexed triples for the training.
               • entity_idxs - mapping.
                • relation_idxs - mapping.
                • form - ?
                                               https://pytorch.org/docs/stable/data.html#torch.utils.data.
                num_workers
                                     int
                                          for
                 DataLoader
          Return type
              torch.utils.data.Dataset
     train_data
     block_size
     num_of_data_points
```

```
collate_fn = None
__len__()
__getitem__(idx)
```

class dicee.dataset_classes.OnevsAllDataset (train_set_idx: numpy.ndarray, entity_idxs)

Bases: torch.utils.data.Dataset

Dataset for the 1vsALL training strategy

Parameters

- train_set_idx Indexed triples for the training.
- entity_idxs mapping.
- relation_idxs mapping.
- form ?
- num_workers int for https://pytorch.org/docs/stable/data.html#torch.utils.data.
 DataLoader

Return type

torch.utils.data.Dataset

```
train_data
target_dim
collate_fn = None
__len__()
__getitem__(idx)
```

Bases: torch.utils.data.Dataset

Creates a dataset for KvsAll training by inheriting from torch.utils.data.Dataset.

Let D denote a dataset for KvsAll training and be defined as D:= $\{(x,y)_i\}_i^n$ N, where x: (h,r) is an unique tuple of an entity h in E and a relation r in R that has been seed in the input graph. y: denotes a multi-label vector in $[0,1]^{l}$ is a binary label.

orall y_i =1 s.t. (h r E_i) in KG

train_set_idx

[numpy.ndarray] n by 3 array representing n triples

entity_idxs

[dictonary] string representation of an entity to its integer id

relation_idxs

[dictonary] string representation of a relation to its integer id

self: torch.utils.data.Dataset

```
>>> a = KvsAll()
>>> a
? array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
train_data = None
train_target = None
label_smoothing_rate
collate_fn = None
__len__()
\__{getitem}_{(idx)}
```

class dicee.dataset_classes.AllvsAll (train_set_idx: numpy.ndarray, entity_idxs, relation_idxs, label_smoothing_rate=0.0)

Bases: torch.utils.data.Dataset

Creates a dataset for AllvsAll training by inheriting from torch.utils.data.Dataset.

Let D denote a dataset for AllvsAll training and be defined as $D := \{(x,y)_i\}_i ^n N$, where x: (h,r) is a possible unique tuple of an entity h in E and a relation r in R. Hence $N = |E| \times |R|$ y: denotes a multi-label vector in $[0,1]^{[E]}$ is a binary label.

orall $y_i = 1$ s.t. (h r E_i) in KG

1 Note

AllvsAll extends KvsAll via none existing (h,r). Hence, it adds data points that are labelled without 1s,

only with 0s.

train set idx

[numpy.ndarray] n by 3 array representing n triples

entity_idxs

[dictonary] string representation of an entity to its integer id

relation idxs

[dictonary] string representation of a relation to its integer id

self: torch.utils.data.Dataset

```
>>> a = AllvsAll()
>>> a
? array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
train_data = None
train_target = None
label_smoothing_rate
```

```
collate_fn = None
target_dim
__len__()
__getitem__(idx)
```

class dicee.dataset_classes.OnevsSample ($train_set$: numpy.ndarray, $num_entities$, $num_relations$, neg_sample_ratio : int = None, $label_smoothing_rate$: float = 0.0)

Bases: torch.utils.data.Dataset

A custom PyTorch Dataset class for knowledge graph embeddings, which includes both positive and negative sampling for a given dataset for multi-class classification problem..

Parameters

- train_set (np.ndarray) A numpy array containing triples of knowledge graph data. Each triple consists of (head_entity, relation, tail_entity).
- num_entities (int) The number of unique entities in the knowledge graph.
- num_relations (int) The number of unique relations in the knowledge graph.
- neg_sample_ratio (int, optional) The number of negative samples to be generated per positive sample. Must be a positive integer and less than num_entities.
- label_smoothing_rate (float, optional) A label smoothing rate to apply to the positive and negative labels. Defaults to 0.0.

train_data

The input data converted into a PyTorch tensor.

Type

torch.Tensor

num_entities

Number of entities in the dataset.

```
Type int
```

num_relations

Number of relations in the dataset.

```
Type int
```

neg_sample_ratio

Ratio of negative samples to be drawn for each positive sample.

```
Type int
```

label_smoothing_rate

The smoothing factor applied to the labels.

Type

torch.Tensor

```
collate_fn
```

A function that can be used to collate data samples into batches (set to None by default).

Type

function, optional

```
train_data
num_entities
num_relations
neg_sample_ratio
label_smoothing_rate
collate_fn = None
__len__()
    Returns the number of samples in the dataset.
__getitem__(idx)
```

Retrieves a single data sample from the dataset at the given index.

Parameters

idx (int) – The index of the sample to retrieve.

Returns

A tuple consisting of:

- x (torch.Tensor): The head and relation part of the triple.
- y_idx (torch.Tensor): The concatenated indices of the true object (tail entity) and the indices of the negative samples.
- y_vec (torch.Tensor): A vector containing the labels for the positive and negative samples, with label smoothing applied.

Return type

tuple

KvsSample a Dataset:

```
D := \{(x,y)_i\}_i ^N, \text{ where }
```

. x:(h,r) is a unique h in E and a relation r in R and . y in $[0,1]^{\{|E|\}}$ is a binary label.

```
orall y_i = 1 s.t. (h r E_i) in KG
```

At each mini-batch construction, we subsample(y), hence n

lnew_yl << |E| new_y contains all 1's if sum(y)< neg_sample ratio new_y contains</pre>

train_set_idx

Indexed triples for the training.

entity_idxs

mapping.

```
relation_idxs
              mapping.
          form
          store
          label smoothing rate
          torch.utils.data.Dataset
     train_data = None
     train_target = None
     neg_ratio
     num_entities
     label_smoothing_rate
     collate_fn = None
     max num of classes
     __len__()
     \__{getitem}_{\_}(idx)
class dicee.dataset_classes.NegSampleDataset(train_set: numpy.ndarray, num_entities: int,
           num_relations: int, neg_sample_ratio: int = 1)
     Bases: torch.utils.data.Dataset
```

An abstract class representing a Dataset.

All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite __getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite __len__(), which is expected to return the size of the dataset by many Sampler implementations and the default options of DataLoader. Subclasses could also optionally implement __getitems__(), for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples.

1 Note

DataLoader by default constructs an index sampler that yields integral indices. To make it work with a mapstyle dataset with non-integral indices/keys, a custom sampler must be provided.

```
neg_sample_ratio
train_set
length
num_entities
num_relations
```

```
__len__()
      \__{getitem}_{(idx)}
class dicee.dataset_classes.TriplePredictionDataset (train_set: numpy.ndarray,
            num\_entities: int, num\_relations: int, neg\_sample\_ratio: int = 1, label\_smoothing\_rate: float = 0.0)
      Bases: torch.utils.data.Dataset
           Triple Dataset
               D := \{(x)_i\}_i \ ^N, \text{ where }
                    . x:(h,r,t) in KG is a unique h in E and a relation r in R and . collact_fn => Generates
                   negative triples
               collect_fn:
      orall (h,r,t) in G obtain, create negative triples \{(h,r,x),(,r,t),(h,m,t)\}
               y:labels are represented in torch.float16
           train_set_idx
               Indexed triples for the training.
           entity_idxs
               mapping.
           relation_idxs
               mapping.
           form
           store
           label_smoothing_rate
           collate_fn: batch:List[torch.IntTensor] Returns ——- torch.utils.data.Dataset
      label_smoothing_rate
      neg_sample_ratio
      train_set
      length
      num_entities
      num relations
      __len__()
      \__{getitem}_{(idx)}
      collate_fn (batch: List[torch.Tensor])
class dicee.dataset_classes.CVDataModule(train_set_idx: numpy.ndarray, num_entities,
            num_relations, neg_sample_ratio, batch_size, num_workers)
      Bases: pytorch_lightning.LightningDataModule
      Create a Dataset for cross validation
```

Parameters

- train_set_idx Indexed triples for the training.
- num_entities entity to index mapping.
- num_relations relation to index mapping.
- batch_size int
- form ?
- num_workers https://pytorch.org/docs/stable/data.html#torch.utils.data. int for DataLoader

Return type

?

```
train_set_idx
num_entities
num_relations
neg_sample_ratio
batch_size
```

num_workers

train_dataloader() → torch.utils.data.DataLoader

An iterable or collection of iterables specifying training samples.

For more information about multiple dataloaders, see this section.

dataloader will be reloaded The you return not unless :paramyou set ref: ~pytorch_lightning.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.

For data processing use the following pattern:

- download in prepare_data()
- process and split in setup()

However, the above are only necessary for distributed processing.

Warning

do not assign state in prepare_data

- fit()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

```
setup(*args, **kwargs)
```

Called at the beginning of fit (train + validate), validate, test, or predict. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.

Parameters

```
stage - either 'fit', 'validate', 'test', or 'predict'
```

Example:

```
class LitModel(...):
    def __init__(self):
        self.l1 = None

def prepare_data(self):
        download_data()
        tokenize()

# don't do this
        self.something = else

def setup(self, stage):
        data = load_data(...)
        self.l1 = nn.Linear(28, data.num_classes)
```

transfer_batch_to_device(*args, **kwargs)

Override this hook if your DataLoader returns tensors wrapped in a custom data structure.

The data types listed below (and any arbitrary nesting of them) are supported out of the box:

- torch. Tensor or anything that implements .to(...)
- list
- dict
- tuple

For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, ...).

1 Note

This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). To check the current state of execution of this hook you can use self.trainer.training/testing/validating/predicting so that you can add different logic as per your requirement.

Parameters

• batch – A batch of data that needs to be transferred to a new device.

- **device** The target device as defined in PyTorch.
- dataloader_idx The index of the dataloader to which the batch belongs.

Returns

A reference to the data on the new device.

Example:

```
def transfer batch to device(self, batch, device, dataloader_idx):
    if isinstance(batch, CustomBatch):
        # move all tensors in your custom data structure to the device
        batch.samples = batch.samples.to(device)
        batch.targets = batch.targets.to(device)
   elif dataloader_idx == 0:
        # skip device transfer for the first dataloader or anything you wish
        pass
   else:
        batch = super().transfer_batch_to_device(batch, device, dataloader_
\hookrightarrow i dx)
   return batch
```

See also

- move_data_to_device()
- apply_to_collection()

prepare_data(*args, **kwargs)

Use this to download and prepare data. Downloading and saving data with multiple processes (distributed settings) will result in corrupted data. Lightning ensures this method is called only within a single process, so you can safely add your downloading logic within.

Warning

DO NOT set state to the model (use setup instead) since this is NOT called on every device

Example:

```
def prepare_data(self):
    # good
   download_data()
   tokenize()
   etc()
    # bad
    self.split = data_split
    self.some_state = some_other_state()
```

In a distributed environment, prepare_data can be called in two ways (using prepare_data_per_node)

- 1. Once per node. This is the default and is only called on LOCAL_RANK=0.
- 2. Once in total. Only called on GLOBAL_RANK=0.

Example:

```
# DEFAULT
# called once per node on LOCAL_RANK=0 of that node
class LitDataModule(LightningDataModule):
    def __init__(self):
        super().__init__()
        self.prepare_data_per_node = True

# call on GLOBAL_RANK=0 (great for shared file systems)
class LitDataModule(LightningDataModule):
    def __init__(self):
        super().__init__()
        self.prepare_data_per_node = False
```

This is called before requesting the dataloaders:

```
model.prepare_data()
initialize_distributed()
model.setup(stage)
model.train_dataloader()
model.val_dataloader()
model.test_dataloader()
model.predict_dataloader()
```

dicee.eval_static_funcs

Functions

```
evaluate_link_prediction_performance(→
Dict)
evaluate_link_prediction_performance_with_.

evaluate_link_prediction_performance_with_i

evaluate_link_prediction_performance_with_i
...)
evaluate_lp_bpe_k_vs_all(model, triples[, er_vocab, ...])
```

Module Contents

Parameters

- model
- triples
- er_vocab

• re_vocab

Parameters

- model
- triples
- within_entities
- er_vocab
- re_vocab

dicee.evaluator

Classes

Evaluator

Evaluator class to evaluate KGE models in various downstream tasks

Module Contents

args

class dicee.evaluator.Evaluator(args, is_continual_training=None)

Evaluator class to evaluate KGE models in various downstream tasks

Arguments

```
re_vocab = None
er_vocab = None
ee_vocab = None
func_triple_to_bpe_representation = None
is_continual_training
num_entities = None
num_relations = None
```

```
report
during_training = False
vocab\_preparation(dataset) \rightarrow None
     A function to wait future objects for the attributes of executor
         Return type
              None
eval (dataset: dicee.knowledge_graph.KG, trained_model, form_of_labelling, during_training=False)
              \rightarrow None
eval_rank_of_head_and_tail_entity(*, train_set, valid_set=None, test_set=None, trained_model)
eval_rank_of_head_and_tail_byte_pair_encoded_entity(*, train_set=None, valid_set=None,
             test_set=None, ordered_bpe_entities, trained_model)
eval_with_byte(*, raw_train_set, raw_valid_set=None, raw_test_set=None, trained_model,
            form\_of\_labelling) \rightarrow None
     Evaluate model after reciprocal triples are added
eval_with_bpe_vs_all (*, raw_train_set, raw_valid_set=None, raw_test_set=None, trained_model,
            form\_of\_labelling) \rightarrow None
     Evaluate model after reciprocal triples are added
eval_with_vs_all(*, train_set, valid_set=None, test_set=None, trained_model, form_of_labelling)
              \rightarrow None
     Evaluate model after reciprocal triples are added
evaluate_lp_k_vs_all (model, triple_idx, info=None, form_of_labelling=None)
     Filtered link prediction evaluation. :param model: :param triple_idx: test triples :param info: :param
     form of labelling: :return:
evaluate_lp_with_byte (model, triples: List[List[str]], info=None)
evaluate_lp_bpe_k_vs_all (model, triples: List[List[str]], info=None, form_of_labelling=None)
         Parameters
              • model
              • triples (List of lists)
              • info
              • form_of_labelling
evaluate_lp (model, triple_idx, info: str)
dummy_eval (trained_model, form_of_labelling: str)
\verb|eval_with_data| (dataset, trained_model, triple_idx: numpy.ndarray, form_of_labelling: str)|
```

dicee.executer

Classes

Execute	A class for Training, Retraining and Evaluation a model.
ContinuousExecute	A subclass of Execute Class for retraining

Module Contents

```
class dicee.executer.Execute(args, continuous_training=False)
     A class for Training, Retraining and Evaluation a model.
       (1) Loading & Preprocessing & Serializing input data.
       (2) Training & Validation & Testing
       (3) Storing all necessary info
     args
     is_continual_training
     trainer = None
     trained model = None
     knowledge_graph = None
     report
     evaluator = None
     start_time = None
     \mathtt{setup\_executor}() \to None
     {\tt dept\_read\_preprocess\_index\_serialize\_data}\,()\,\to None
           Read & Preprocess & Index & Serialize Input Data
           (1) Read or load the data from disk into memory.
           (2) Store the statistics of the data.
           Parameter
               rtvpe
                   None
     {\tt save\_trained\_model}\,()\,\to None
           Save a knowledge graph embedding model
           (1) Send model to eval mode and cpu.
           (2) Store the memory footprint of the model.
           (3) Save the model into disk.
           (4) Update the stats of KG again?
           Parameter
               rtype
                   None
```

 $\verb"end" (form_of_labelling: str") \rightarrow \operatorname{dict}$

End training

- (1) Store trained model.
- (2) Report runtimes.
- (3) Eval model if required.

Parameter

rtype

A dict containing information about the training and/or evaluation

 $write_report() \rightarrow None$

Report training related information in a report.json file

 $\mathtt{start}() \rightarrow \mathrm{dict}$

Start training

(1) Loading the Data # (2) Create an evaluator object. # (3) Create a trainer object. # (4) Start the training

Parameter

rtype

A dict containing information about the training and/or evaluation

class dicee.executer.ContinuousExecute(args)

Bases: Execute

A subclass of Execute Class for retraining

- (1) Loading & Preprocessing & Serializing input data.
- (2) Training & Validation & Testing
- (3) Storing all necessary info

During the continual learning we can only modify * num_epochs * parameter. Trained model stored in the same folder as the seed model for the training. Trained model is noted with the current time.

 $continual_start() \rightarrow dict$

Start Continual Training

- (1) Initialize training.
- (2) Start continual training.
- (3) Save trained model.

Parameter

rtype

A dict containing information about the training and/or evaluation

KG Knowledge Graph

Module Contents

num_tokens

```
class dicee.knowledge_graph.KG (dataset_dir: str = None, byte_pair_encoding: bool = False,
           padding: bool = False, add_noise_rate: float = None, sparql_endpoint: str = None,
           path\_single\_kg: str = None, path\_for\_deserialization: str = None, add\_reciprocal: bool = None,
           eval_model: str = None, read_only_few: int = None, sample_triples_ratio: float = None,
           path_for_serialization: str = None, entity_to_idx=None, relation_to_idx=None, backend=None,
           training\_technique: str = None, separator: str = None)
     Knowledge Graph
     dataset_dir
     sparql_endpoint
     path_single_kg
     byte_pair_encoding
     ordered_shaped_bpe_tokens = None
     add_noise_rate
     num_entities = None
     num_relations = None
     path_for_deserialization
     add_reciprocal
     eval_model
     read_only_few
     sample_triples_ratio
     path_for_serialization
     entity_to_idx
     relation_to_idx
     backend
     training_technique
     idx_entity_to_bpe_shaped
     enc
```

```
num_bpe_entities = None
padding
dummy_id
max_length_subword_tokens = None
train_set_target = None
target_dim = None
train_target_indices = None
ordered_bpe_entities = None
separator
description_of_input = None
\texttt{describe}\,()\,\to None
property entities_str: List
property relations_str: List
exists(h: str, r: str, t: str)
__iter__()
__len__()
func_triple_to_bpe_representation(triple: List[str])
```

dicee.knowledge_graph_embeddings

Classes

KGE Knowledge Graph Embedding Class for interactive usage of pre-trained models

Module Contents

```
generate (h=", r=")
eval_lp_performance (dataset=List[Tuple[str, str, str]], filtered=True)
predict_missing_head_entity (relation: List[str] | str, tail_entity: List[str] | str, within=None)
               \rightarrow Tuple
     Given a relation and a tail entity, return top k ranked head entity.
     argmax_{e} in E  f(e,r,t), where r in R, t in E.
     Parameter
     relation: Union[List[str], str]
     String representation of selected relations.
     tail_entity: Union[List[str], str]
     String representation of selected entities.
     k: int
     Highest ranked k entities.
     Returns: Tuple
     Highest K scores and entities
predict_missing_relations (head_entity: List[str] | str, tail_entity: List[str] | str, within=None)
               \rightarrow Tuple
     Given a head entity and a tail entity, return top k ranked relations.
     argmax_{r} in R \} f(h,r,t), where h, t in E.
     Parameter
     head_entity: List[str]
     String representation of selected entities.
     tail_entity: List[str]
     String representation of selected entities.
     k: int
     Highest ranked k entities.
     Returns: Tuple
     Highest K scores and entities
predict_missing_tail_entity (head_entity: List[str] | str, relation: List[str] | str,
              within: List[str] = None \rightarrow torch.FloatTensor
     Given a head entity and a relation, return top k ranked entities
     argmax_{e} = in E  f(h,r,e), where h in E and r in R.
```

Parameter

```
head_entity: List[str]
```

String representation of selected entities.

```
tail_entity: List[str]
```

String representation of selected entities.

Returns: Tuple

scores

```
predict(*, h: List[str] | str = None, r: List[str] | str = None, t: List[str] | str = None, within=None, logits=True) <math>\rightarrow torch.FloatTensor
```

Parameters

- logits
- h
- r
- t
- within

Predict missing item in a given triple.

Parameter

head_entity: Union[str, List[str]]

String representation of selected entities.

relation: Union[str, List[str]]

String representation of selected relations.

tail_entity: Union[str, List[str]]

String representation of selected entities.

k: int

Highest ranked k item.

Returns: Tuple

Highest K scores and items

```
\label{eq:core} \begin{split} \texttt{triple\_score} \ (h: List[str] \mid str = None, \, r: \, List[str] \mid str = None, \, t: \, List[str] \mid str = None, \, logits = False) \\ &\rightarrow \mathsf{torch}. FloatTensor \end{split}
```

Predict triple score

Parameter

```
head_entity: List[str]
     String representation of selected entities.
     relation: List[str]
     String representation of selected relations.
     tail entity: List[str]
     String representation of selected entities.
     logits: bool
     If logits is True, unnormalized score returned
     Returns: Tuple
     pytorch tensor of triple score
t_norm(tens\_1: torch.Tensor, tens\_2: torch.Tensor, tnorm: str = 'min') \rightarrow torch.Tensor
tensor_t_norm(subquery\_scores: torch.FloatTensor, tnorm: str = 'min') \rightarrow torch.FloatTensor
     Compute T-norm over [0,1] ^{n imes d} where n denotes the number of hops and d denotes number of
     entities
t conorm (tens 1: torch. Tensor, tens 2: torch. Tensor, tconorm: str = 'min') \rightarrow torch. Tensor
negnorm(tens\_1: torch.Tensor, lambda\_: float, neg\_norm: str = 'standard') \rightarrow torch.Tensor
return_multi_hop_query_results (aggregated_query_for_all_entities, k: int, only_scores)
single_hop_query_answering (query: tuple, only_scores: bool = True, k: int = None)
answer_multi_hop_query(query_type: str = None, query: Tuple[str | Tuple[str, str], Ellipsis] = None,
             queries: List[Tuple[str | Tuple[str, str], Ellipsis]] = None, tnorm: str = 'prod',
             neg_norm: str = 'standard', lambda_: float = 0.0, k: int = 10, only_scores=False)
              → List[Tuple[str, torch.Tensor]]
     # @TODO: Refactoring is needed # @TODO: Score computation for each query type should be done in a
     static function
     Find an answer set for EPFO queries including negation and disjunction
     Parameter
     query_type: str The type of the query, e.g., "2p".
     query: Union[str, Tuple[str, Tuple[str, str]]] The query itself, either a string or a nested tuple.
     queries: List of Tuple[Union[str, Tuple[str, str]], ...]
     tnorm: str The t-norm operator.
     neg_norm: str The negation norm.
     lambda_: float lambda parameter for sugeno and yager negation norms
     k: int The top-k substitutions for intermediate variables.
```

returns

• List[Tuple[str, torch.Tensor]]

• Entities and corresponding scores sorted in the descening order of scores

```
find_missing_triples (confidence: float, entities: List[str] = None, relations: List[str] = None,
              topk: int = 10, at_most: int = sys.maxsize) \rightarrow Set
          Find missing triples
          Iterative over a set of entities E and a set of relation R:
      orall e in E and orall r in R f(e,r,x)
          Return (e,r,x)
      otin G and f(e,r,x) > confidence
          confidence: float
          A threshold for an output of a sigmoid function given a triple.
          topk: int
          Highest ranked k item to select triples with f(e,r,x) > confidence.
          at_most: int
          Stop after finding at_most missing triples
          \{(e,r,x) \mid f(e,r,x) > \text{confidence land } (e,r,x) \}
      otin G
deploy(share: bool = False, top\_k: int = 10)
train_triples (h: List[str], r: List[str], t: List[str], labels: List[float], iteration=2, optimizer=None)
train_k_vs_all(h, r, iteration=1, lr=0.001)
      Train k vs all :param head_entity: :param relation: :param iteration: :param lr: :return:
train(kg, lr=0.1, epoch=10, batch\_size=32, neg\_sample\_ratio=10, num\_workers=1) \rightarrow None
      Retrained a pretrain model on an input KG via negative sampling.
```

dicee.models

Submodules

dicee.models.base_model

Classes

BaseKGELightning	Base class for all neural network modules.
BaseKGE	Base class for all neural network modules.
IdentityClass	Base class for all neural network modules.

Module Contents

class dicee.models.base_model.BaseKGELightning(*args, **kwargs)
Bases: lightning.LightningModule
Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
\label{eq:training_step_outputs} \textbf{ = []} \label{eq:mem_of_model()} \rightarrow Dict
```

Size of model in MB and number of params

training_step(batch, batch_idx=None)

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters

- batch The output of your data iterable, normally a DataLoader.
- batch_idx The index of this batch.
- dataloader_idx The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Returns

- Tensor The loss tensor
- dict A dictionary which can include any keys, but must include the key 'loss' in the case of automatic optimization.
- None In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.

In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Example:

```
def training_step(self, batch, batch_idx):
    x, y, z = batch
    out = self.encoder(x)
    loss = self.loss(out, x)
    return loss
```

To use multiple optimizers, you can switch to 'manual optimization' and control their stepping:

```
def __init__ (self):
    super().__init__()
    self.automatic_optimization = False

# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx):
    opt1, opt2 = self.optimizers()

# do training_step with encoder
    ...
    opt1.step()
    # do training_step with decoder
    ...
    opt2.step()
```

1 Note

When accumulate_grad_batches > 1, the loss returned here will be automatically normalized by accumulate_grad_batches internally.

 $loss_function(yhat_batch: torch.FloatTensor, y_batch: torch.FloatTensor)$

Parameters

- yhat_batch
- y_batch

on_train_epoch_end(*args, **kwargs)

Called in the training loop at the very end of the epoch.

To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the Light-ningModule and access them in this hook:

```
class MyLightningModule(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.training_step_outputs = []

def training_step(self):
        loss = ...
        self.training_step_outputs.append(loss)
        return loss

def on_train_epoch_end(self):
```

(continues on next page)

(continued from previous page)

```
# do something with all training_step outputs, for example:
epoch_mean = torch.stack(self.training_step_outputs).mean()
self.log("training_epoch_mean", epoch_mean)
# free up the memory
self.training_step_outputs.clear()
```

test_epoch_end(outputs: List[Any])

$\texttt{test_dataloader}\,() \, \to None$

An iterable or collection of iterables specifying test samples.

For more information about multiple dataloaders, see this section.

For data processing use the following pattern:

- download in prepare_data()
- process and split in setup()

However, the above are only necessary for distributed processing.

Warning

do not assign state in prepare_data

- test()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

1 Note

If you don't need a test dataset and a test_step(), you don't need to implement this method.

${\tt val_dataloader}\,()\,\to None$

An iterable or collection of iterables specifying validation samples.

For more information about multiple dataloaders, see this section.

The dataloader you return will not be reloaded unless you set :param-ref:`~lightning.pytorch.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.

It's recommended that all data downloads and preparation happen in prepare_data().

- fit()
- validate()

- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

1 Note

If you don't need a validation dataset and a validation_step(), you don't need to implement this method.

$predict_dataloader() \rightarrow None$

An iterable or collection of iterables specifying prediction samples.

For more information about multiple dataloaders, see this section.

It's recommended that all data downloads and preparation happen in prepare_data().

- predict()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

Returns

A torch.utils.data.DataLoader or a sequence of them specifying prediction samples.

$\texttt{train_dataloader}() \rightarrow None$

An iterable or collection of iterables specifying training samples.

For more information about multiple dataloaders, see this section.

The dataloader you return will not be reloaded unless you set **:param-ref:**~lightning.pytorch.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.

For data processing use the following pattern:

- download in prepare_data()
- process and split in setup()

However, the above are only necessary for distributed processing.

A Warning

do not assign state in prepare_data

- fit()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

configure_optimizers (parameters=None)

Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.

Returns

Any of these 6 options.

- · Single optimizer.
- List or Tuple of optimizers.
- **Two lists** The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple lr_scheduler_config).
- Dictionary, with an "optimizer" key, and (optionally) a "lr_scheduler" key whose value is a single LR scheduler or lr_scheduler_config.
- None Fit will run without any optimizer.

The <code>lr_scheduler_config</code> is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.

```
lr_scheduler_config = {
    # REQUIRED: The scheduler instance
   "scheduler": lr_scheduler,
    # The unit of the scheduler's step size, could also be 'step'.
    # 'epoch' updates the scheduler on epoch end whereas 'step'
    # updates it after a optimizer update.
   "interval": "epoch",
    # How many epochs/steps should pass between calls to
    # `scheduler.step()`. 1 corresponds to updating the learning
    # rate after every epoch/step.
   "frequency": 1,
    # Metric to to monitor for schedulers like `ReduceLROnPlateau`
   "monitor": "val_loss",
    # If set to `True`, will enforce that the value specified 'monitor'
    # is available when the scheduler is updated, thus stopping
    # training if not found. If set to `False`, it will only produce a warning
   "strict": True,
    # If using the `LearningRateMonitor` callback to monitor the
    # learning rate progress, this keyword can be used to specify
    # a custom logged name
    "name": None,
```

When there are schedulers in which the .step() method is conditioned on a value, such as the torch.optim.lr_scheduler.ReduceLROnPlateau scheduler, Lightning requires that the lr_scheduler_config contains the keyword "monitor" set to the metric name that the scheduler should be conditioned on.

Metrics can be made available to monitor by simply logging it using self.log('metric_to_track', metric_val) in your LightningModule.

1 Note

Some things to know:

- Lightning calls .backward() and .step() automatically in case of automatic optimization.
- If a learning rate scheduler is specified in <code>configure_optimizers()</code> with key "interval" (default "epoch") in the scheduler configuration, Lightning will call the scheduler's <code>.step()</code> method automatically in case of automatic optimization.
- If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizer.
- If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.
- If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them yourself.
- If you need to control how often the optimizer steps, override the optimizer_step() hook.

class dicee.models.base_model.BaseKGE (args: dict)

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
args
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
```

```
forward_byte_pair_encoded_k_vs_all(x: torch.LongTensor)
              Parameters
                 x (B x 2 x T)
     forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
          byte pair encoded neural link predictors
              Parameters
     init_params_with_sanity_checking()
     forward(x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
                 y_idx: torch.LongTensor = None
              Parameters
                  • x
                  • y_idx
                  • ordered_bpe_entities
     forward\_triples(x: torch.LongTensor) \rightarrow torch.Tensor
              Parameters
     forward_k_vs_all(*args, **kwargs)
     forward_k_vs_sample(*args, **kwargs)
     get_triple_representation(idx_hrt)
     get_head_relation_representation(indexed_triple)
     get_sentence_representation(x: torch.LongTensor)
              Parameters
                  • (b (x shape)
                  • 3
                  • t)
     get_bpe_head_and_relation_representation(x: torch.LongTensor)
                 → Tuple[torch.FloatTensor, torch.FloatTensor]
              Parameters
                 x (B x 2 x T)
     get_embeddings() → Tuple[numpy.ndarray, numpy.ndarray]
class dicee.models.base_model.IdentityClass(args=None)
     Bases: torch.nn.Module
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

```
args
__call__(x)
static forward(x)
```

dicee.models.clifford

Classes

Keci	Base class for all neural network modules.
KeciBase	Without learning dimension scaling
DeCaL	Base class for all neural network modules.

Module Contents

```
class dicee.models.clifford.Keci(args)
Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F
```

(continues on next page)

```
class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__ ()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

sigma_{pp} captures the interactions between along p bases For instance, let p e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops

```
results = [] for i in range(p - 1):
```

```
\label{eq:forkin} \begin{split} & \text{for k in range(i+1, p):} \\ & \text{results.append(hp[:,:,i] * rp[:,:,k] - hp[:,:,k] * rp[:,:,i])} \\ & \text{sigma\_pp = torch.stack(results, dim=2) assert sigma\_pp.shape == (b, r, int((p*(p-1))/2))} \end{split}
```

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

```
e2e1, e2e2, e2e3, e3e1, e3e2, e3e3
```

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

```
\texttt{compute\_sigma\_qq}\,(hq,rq)
```

Compute sigma_ $\{qq\}$ = sum_ $\{j=1\}^{p+q-1}$ sum_ $\{k=j+1\}^{p+q}$ (h_j r_k - h_k r_j) e_j e_k sigma_ $\{q\}$ captures the interactions between along q bases For instance, let q e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops

```
results = [] for j in range(q - 1):
                                    for k in range(j + 1, q):
                                           results.append(hq[:, :, j] * rq[:, :, k] - hq[:, :, k] * rq[:, :, j])
                          sigma_q = torch.stack(results, dim=2) assert sigma_qq.shape == (b, r, int((q * (q - 1)) / 2))
              Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1,
              e1e2, e1e3,
                          e2e1, e2e2, e2e3, e3e1, e3e2, e3e3
              Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.
compute_sigma_pq(*, hp, hq, rp, rq)
              sum_{i=1}^{p} sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j
              results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):
                          for i in range(q):
                                     sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]
              print(sigma_pq.shape)
apply_coefficients(hp, hq, rp, rq)
              Multiplying a base vector with its scalar coefficient
clifford_multiplication (h0, hp, hq, r0, rp, rq)
              Compute our CL multiplication
                          h = h_0 + sum_{i=1}^p h_i e_i + sum_{j=p+1}^p h_j e_j r = r_0 + sum_{i=1}^p r_i e_i + sum_{j=p+1}^n h_j e_j r = r_0 + sum_{i=1}^n h_j e_j r = r_0 + sum_{i
                          sum_{j=p+1}^{p+q} r_j e_j
                         ei ^2 = +1 for i = < i = < p e j ^2 = -1 for p < j = < p + q e i e j = -e j e 1 for i =  for <math>i =  for <math>i
              eq j
                          h r = sigma_0 + sigma_p + sigma_q + sigma_{pp} + sigma_{q} + sigma_{pq}  where
                          (1) sigma_0 = h_0 r_0 + sum_{i=1}^p (h_0 r_i) e_i - sum_{j=p+1}^{p+q} (h_j r_j) e_j
                          (2) sigma_p = sum_{i=1}^p (h_0 r_i + h_i r_0) e_i
                          (3) sigma_q = sum_{j=p+1}^{p+q} (h_0 r_j + h_j r_0) e_j
                          (4) sigma_{pp} = sum_{i=1}^{p-1} sum_{k=i+1}^p (h_i r_k - h_k r_i) e_i e_k
                          (5) sigma_{qq} = sum_{j=1}^{p+q-1} sum_{k=j+1}^{p+q} (h_j r_k - h_k r_j) e_j e_k
                          (6) sigma \{pq\} = sum \{i=1\}^{p} sum \{j=p+1\}^{p+q} (h ir j-h jr i) e ie j
construct_cl_multivector(x: torch.FloatTensor, r: int, p: int, q: int)
                                    → tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]
              Construct a batch of multivectors Cl_{p,q}(mathbb\{R\}^d)
              Parameter
              x: torch.FloatTensor with (n,d) shape
```

returns

- **a0** (torch.FloatTensor with (n,r) shape)
- **ap** (torch.FloatTensor with (n,r,p) shape)
- aq $(torch.FloatTensor\ with\ (n,r,q)\ shape)$

```
forward_k_vs_with_explicit(x: torch.Tensor)
      k_vs_all_score (bpe_head_ent_emb, bpe_rel_ent_emb, E)
      forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
           Kvsall training
           (1) Retrieve real-valued embedding vectors for heads and relations mathbb{R}^d.
           (2) Construct head entity and relation embeddings according to Cl_{p,q}(mathbb\{R\}^d).
           (3) Perform Cl multiplication
           (4) Inner product of (3) and all entity embeddings
           forward_k_vs_with_explicit and this funcitons are identical Parameter ----- x: torch.LongTensor with
           (n,2) shape :rtype: torch.FloatTensor with (n, |E|) shape
      construct_batch_selected_cl_multivector(x: torch.FloatTensor, r: int, p: int, q: int)
                    → tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]
           Construct a batch of batchs multivectors Cl_{p,q}(mathbb\{R\}^d)
           Parameter
           x: torch.FloatTensor with (n,k, d) shape
                returns
                    • a0 (torch.FloatTensor with (n,k, m) shape)
                    • ap (torch.FloatTensor with (n,k, m, p) shape)
                    • aq (torch.FloatTensor with (n,k, m, q) shape)
      forward_k\_vs\_sample (x: torch.LongTensor, target_entity_idx: torch.LongTensor) \rightarrow torch.FloatTensor
           Parameter
           x: torch.LongTensor with (n,2) shape
           target_entity_idx: torch.LongTensor with (n, k) shape k denotes the selected number of examples.
                    torch.FloatTensor with (n, k) shape
      score (h, r, t)
      forward\_triples(x: torch.Tensor) \rightarrow torch.FloatTensor
           Parameter
           x: torch.LongTensor with (n,3) shape
                rtype
                    torch.FloatTensor with (n) shape
class dicee.models.clifford.KeciBase(args)
      Bases: Keci
      Without learning dimension scaling
      name = 'KeciBase'
```

requires_grad_for_interactions = False

```
class dicee.models.clifford.DeCaL(args)
Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'DeCaL'
entity_embeddings
relation_embeddings
p
q
r
re
forward_triples(x: torch.Tensor) \rightarrow torch.FloatTensor
```

Parameter

x: torch.LongTensor with (n,) shape

rtype

torch.FloatTensor with (n) shape

 $cl_pqr(a: torch.tensor) \rightarrow torch.tensor$

Input: tensor(batch_size, emb_dim) \longrightarrow output: tensor with 1+p+q+r components with size (batch_size, emb_dim/(1+p+q+r)) each.

1) takes a tensor of size (batch_size, emb_dim), split it into 1 + p + q + r components, hence 1+p+q+r must be a divisor of the emb_dim. 2) Return a list of the 1+p+q+r components vectors, each are tensors of size (batch_size, emb_dim/(1+p+q+r))

compute_sigmas_single(list_h_emb, list_r_emb, list_t_emb)

here we compute all the sums with no others vectors interaction taken with the scalar product with t, that is,

$$s0 = h_0 r_0 t_0 s1 = \sum_{i=1}^{p} h_i r_i t_0 s2 = \sum_{j=p+1}^{p+q} h_j r_j t_0 s3 = \sum_{i=1}^{q} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+1}^{p+q} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s6 = \sum_{i=p+q+r}^{$$

and return:

$$sigma_0t = \sigma_0 \cdot t_0 = s0 + s1 - s2s3, s4ands5$$

compute_sigmas_multivect(list_h_emb, list_r_emb)

Here we compute and return all the sums with vectors interaction for the same and different bases.

For same bases vectors interaction we have

$$\sigma_p p = \sum_{i=1}^{p-1} \sum_{i'=i+1}^p (h_i r_{i'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p)$$

For different base vector interactions, we have

$$\sigma_p q = \sum_{i=1}^p \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) (interactionsn between e_i and e_j for 1 <= i <= p and p + 1 <= j <= p + q) \\ \sigma_p r = \sum_{i=1}^p (h_i r_j - h_j r_i) (interactionsn between e_i and e_j for 1 <= i <= p and p + 1 <= j <= p + q)$$

 $forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor$

Kvsall training

- (1) Retrieve real-valued embedding vectors for heads and relations
- (2) Construct head entity and relation embeddings according to $Cl_{p,q}$, $r_{mathbb}\{R\}^d$.
- (3) Perform Cl multiplication
- (4) Inner product of (3) and all entity embeddings

forward_k_vs_with_explicit and this funcitons are identical Parameter — x: torch.LongTensor with (n,) shape :rtype: torch.FloatTensor with (n, |E|) shape

apply_coefficients(h0, hp, hq, hk, r0, rp, rq, rk)

Multiplying a base vector with its scalar coefficient

construct_cl_multivector (x: torch.FloatTensor, re: int, p: int, q: int, r: int)

→ tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]

Construct a batch of multivectors $Cl_{p,q,r}(mathbb\{R\}^d)$

Parameter

x: torch.FloatTensor with (n,d) shape

returns

- **a0** (torch.FloatTensor)
- **ap** (torch.FloatTensor)
- aq (torch.FloatTensor)
- **ar** (torch.FloatTensor)

 $compute_sigma_pp(hp, rp)$

Compute .. math:

```
\label{eq:sigma_pp}^* = \sum_{i=1}^{p-1}\sum_{i'=i+1}^{p} (x_{i'}-x_{i'}) = \sum_{i'=1}^{p} (x_{i'}-
```

sigma_{pp} captures the interactions between along p bases For instance, let p e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops

```
results = [] for i in range(p - 1):
```

```
for k in range(i + 1, p):
```

$$sigma_pp = torch.stack(results, dim=2) assert sigma_pp.shape == (b, r, int((p * (p - 1)) / 2))$$

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

$compute_sigma_qq(hq, rq)$

Compute

$$\sigma_{q,q}^* = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (x_j y_{j'} - x_{j'} y_j) Eq.16$$

 $sigma_{q} \ captures \ the \ interactions \ between \ along \ q \ bases \ For \ instance, \ let \ q \ e_1, \ e_2, \ e_3, \ we \ compute interactions \ between \ e_1 \ e_2, \ e_1 \ e_3$, and \ e_2 \ e_3 \ This can be implemented with a nested two for loops

results =
$$[]$$
 for j in range($q - 1$):

for k in range(j + 1, q):

$$sigma_q = torch.stack(results, dim=2) assert sigma_qq.shape == (b, r, int((q * (q - 1)) / 2))$$

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

 $compute_sigma_rr(hk, rk)$

$$\sigma_{r,r}^* = \sum_{k=p+q+1}^{p+q+r-1} \sum_{k'=k+1}^{p} (x_k y_{k'} - x_{k'} y_k)$$

 $\texttt{compute_sigma_pq}\,(\,^*\!,\,hp,\,hq,\,rp,\,rq)$

Compute

$$\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

for j in range(q):

$$sigma_pq[:,:,i,j] = hp[:,:,i] * rq[:,:,j] - hq[:,:,j] * rp[:,:,i]$$

print(sigma_pq.shape)

 $\texttt{compute_sigma_pr} \ (*, hp, hk, rp, rk)$

Compute

$$\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

for j in range(q):

$$sigma_pq[:,:,i,j] = hp[:,:,i] * rq[:,:,j] - hq[:,:,j] * rp[:,:,i]$$

print(sigma_pq.shape)

compute_sigma_qr(*, hq, hk, rq, rk)

$$\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

for j in range(q):

$$sigma_pq[:,:,i,j] = hp[:,:,i] * rq[:,:,j] - hq[:,:,j] * rp[:,:,i]$$

print(sigma_pq.shape)

dicee.models.complex

Classes

ConEx	Convolutional ComplEx Knowledge Graph Embeddings
AConEx	Additive Convolutional ComplEx Knowledge Graph Embeddings
ComplEx	Base class for all neural network modules.

Module Contents

class dicee.models.complex.ConEx(args)

Bases: dicee.models.base_model.BaseKGE

Convolutional ComplEx Knowledge Graph Embeddings

name = 'ConEx'

```
conv2d
     fc_num_input
     fc1
     norm_fc1
     bn_conv2d
     feature_map_dropout
     residual_convolution(C_1: Tuple[torch.Tensor, torch.Tensor],
                  C 2: Tuple[torch, Tensor, torch, Tensor]) \rightarrow torch.FloatTensor
           Compute residual score of two complex-valued embeddings. :param C_1: a tuple of two pytorch tensors
           that corresponds complex-valued embeddings :param C_2: a tuple of two pytorch tensors that corresponds
           complex-valued embeddings :return:
     forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
     forward\_triples(x: torch.Tensor) \rightarrow torch.FloatTensor
               Parameters
     forward_k_vs_sample (x: torch.Tensor, target_entity_idx: torch.Tensor)
class dicee.models.complex.AConEx(args)
     Bases: dicee.models.base_model.BaseKGE
     Additive Convolutional ComplEx Knowledge Graph Embeddings
     name = 'AConEx'
     conv2d
     fc_num_input
     fc1
     norm_fc1
     bn_conv2d
     feature_map_dropout
     residual convolution (C 1: Tuple[torch.Tensor, torch.Tensor],
                  C 2: Tuple[torch.Tensor, torch.Tensor]) \rightarrow torch.FloatTensor
           Compute residual score of two complex-valued embeddings. :param C_1: a tuple of two pytorch tensors
           that corresponds complex-valued embeddings :param C_2: a tuple of two pytorch tensors that corresponds
           complex-valued embeddings :return:
     forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
     forward\_triples(x: torch.Tensor) \rightarrow torch.FloatTensor
               Parameters
     forward_k_vs_sample (x: torch.Tensor, target_entity_idx: torch.Tensor)
```

```
class dicee.models.complex.Complex(args)
Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an <u>__init___()</u> call to the parent class must be made before assignment on the child.

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

Parameters

- emb_h
- emb_r
- emb E

 $\textbf{forward_k_vs_all} \ (\textit{x: torch.LongTensor}) \ \rightarrow \ torch.FloatTensor$

forward_k_vs_sample (x: torch.LongTensor, target_entity_idx: torch.LongTensor)

dicee.models.dualE

Classes

DualE	Dual	Quaternion	Knowledge	Graph	Embeddings
		://ojs.aaai.org //16657)	/index.php/A	AAI/artic	le/download/

Module Contents

```
class dicee.models.dualE.DualE(args)
                         Bases: dicee.models.base_model.BaseKGE
                         Dual Quaternion Knowledge Graph Embeddings (https://ojs.aaai.org/index.php/AAAI/article/download/16850/
                         16657)
                         name = 'DualE'
                         entity_embeddings
                         relation_embeddings
                        num_ent
                        {\tt kvsall\_score}\,(e\_1\_h,e\_2\_h,e\_3\_h,e\_4\_h,e\_5\_h,e\_6\_h,e\_7\_h,e\_8\_h,e\_1\_t,e\_2\_t,e\_3\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_
                                                                                e\_5\_t, e\_6\_t, e\_7\_t, e\_8\_t, r\_1, r\_2, r\_3, r\_4, r\_5, r\_6, r\_7, r\_8) \rightarrow \text{torch.tensor}
                                               KvsAll scoring function
                                               Input
                                               x: torch.LongTensor with (n, ) shape
                                               Output
                                               torch.FloatTensor with (n) shape
                         \textbf{forward\_triples} \ (\textit{idx\_triple: torch.tensor}) \ \rightarrow \textbf{torch.tensor}) \ \rightarrow \textbf{torch.tensor}
                                               Negative Sampling forward pass:
                                               Input
                                               x: torch.LongTensor with (n, ) shape
                                               Output
                                               torch.FloatTensor with (n) shape
                         {\tt forward\_k\_vs\_all}\;(\mathcal{X})
                                               KvsAll forward pass
                                               Input
                                               x: torch.LongTensor with (n, ) shape
```

Output

```
torch.FloatTensor with (n) shape

T (x: torch.tensor) → torch.tensor

Transpose function

Input: Tensor with shape (nxm) Output: Tensor with shape (mxn)
```

dicee.models.function_space

Classes

FMult	Learning Knowledge Neural Graphs
GFMult	Learning Knowledge Neural Graphs
FMult2	Learning Knowledge Neural Graphs
LFMult1	Embedding with trigonometric functions. We represent all entities and relations in the complex number space as:
LFMult	Embedding with polynomial functions. We represent all entities and relations in the polynomial space as:

Module Contents

```
class dicee.models.function_space.FMult(args)
      Bases: dicee.models.base_model.BaseKGE
      Learning Knowledge Neural Graphs
      name = 'FMult'
      entity_embeddings
      relation_embeddings
      num_sample = 50
      gamma
      roots
      weights
      \verb|compute_func| (\textit{weights: torch.FloatTensor}, \textit{x}) \rightarrow \textit{torch.FloatTensor}
      chain_func(weights, x: torch.FloatTensor)
      \textbf{forward\_triple:} \ (\textit{idx\_triple:} \ \textit{torch.Tensor}) \ \rightarrow \textbf{torch.Tensor}) \ \rightarrow \textbf{torch.Tensor}
                 Parameters
class dicee.models.function_space.GFMult(args)
      Bases: dicee.models.base_model.BaseKGE
      Learning Knowledge Neural Graphs
```

```
name = 'GFMult'
      entity_embeddings
      relation_embeddings
      num_sample = 250
      roots
      weights
      compute\_func(weights: torch.FloatTensor, x) \rightarrow torch.FloatTensor
      chain_func (weights, x: torch.FloatTensor)
      forward\_triples(idx\_triple: torch.Tensor) \rightarrow torch.Tensor
                Parameters
                    x
class dicee.models.function_space.FMult2(args)
      Bases: dicee.models.base_model.BaseKGE
      Learning Knowledge Neural Graphs
      name = 'FMult2'
      n_{ayers} = 3
      n = 50
      score_func = 'compositional'
      discrete_points
      entity_embeddings
      relation_embeddings
      {\tt build\_func}\,(\textit{Vec}\,)
      build_chain_funcs (list_Vec)
      compute\_func(W, b, x) \rightarrow torch.FloatTensor
      function (list_W, list_b)
      trapezoid(list_W, list_b)
      \textbf{forward\_triples} \ (\textit{idx\_triple: torch.Tensor}) \ \rightarrow \textbf{torch.Tensor}) \ \rightarrow \textbf{torch.Tensor}
                Parameters
                    x
```

71

```
class dicee.models.function_space.LFMult1(args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding with trigonometric functions. We represent all entities and relations in the complex number space as:
     f(x) = sum_{k=0}^{k=0}^{k=d-1}wk e^{kix}, and use the three differents scoring function as in the paper to evaluate
     the score
     name = 'LFMult1'
     entity_embeddings
     relation_embeddings
     forward_triples (idx_triple)
               Parameters
     \verb|tri_score|(h,r,t)
     \mathtt{vtp\_score}(h, r, t)
class dicee.models.function_space.LFMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding with polynomial functions. We represent all entities and relations in the polynomial space as: f(x) =
     sum \{i=0\}^{d-1} a k x^{i} and use the three differents scoring function as in the paper to evaluate the score.
     We also consider combining with Neural Networks.
     name = 'LFMult'
     entity_embeddings
     relation_embeddings
     degree
     x_values
     forward_triples (idx_triple)
               Parameters
     construct_multi_coeff(x)
     poly_NN(x, coefh, coefr, coeft)
           Constructing a 2 layers NN to represent the embeddings. h = sigma(wh^T x + bh), r = sigma(wr^T x + br),
           t = sigma(wt^T x + bt)
     linear(x, w, b)
     scalar_batch_NN(a, b, c)
           element wise multiplication between a,b and c: Inputs: a, b, c ====> torch.tensor of size batch_size x m x
           d Output: a tensor of size batch_size x d
```

```
tri_score (coeff_h, coeff_r, coeff_t)
```

this part implement the trilinear scoring techniques:

```
score(h,r,t) = int_{0}{1} h(x)r(x)t(x) dx = sum_{i,j,k} = 0 ^{d-1} dfrac\{a_i*b_j*c_k\}\{1 + (i+j+k)\%d\}
```

- 1. generate the range for i, j and k from [0 d-1]
- 2. perform $dfrac\{a_i*b_j*c_k\}\{1+(i+j+k)\%d\}$ in parallel for every batch
- 3. take the sum over each batch

$\mathtt{vtp_score}(h, r, t)$

this part implement the vector triple product scoring techniques:

```
score(h,r,t) = int_{0}{1} \quad h(x)r(x)t(x) \quad dx = sum_{i,j,k} = 0^{d-1} \quad dfrac_{a_i*c_j*b_k} - b_i*c_j*a_k}{(1+(i+j)\%d)(1+k)}
```

- 1. generate the range for i,j and k from [0 d-1]
- 2. Compute the first and second terms of the sum
- 3. Multiply with then denominator and take the sum
- 4. take the sum over each batch

$comp_func(h, r, t)$

this part implement the function composition scoring techniques: i.e. score = <hor, t>

polynomial(coeff, x, degree)

This function takes a matrix tensor of coefficients (coeff), a tensor vector of points x and range of integer [0,1,...d] and return a vector tensor (coeff $[0][0] + \text{coeff}[0][1]x + ... + \text{coeff}[0][d]x^d$,

$$coeff[1][0] + coeff[1][1]x + ... + coeff[1][d]x^d$$

```
pop (coeff, x, degree)
```

This function allow us to evaluate the composition of two polynomes without for loops :) it takes a matrix tensor of coefficients (coeff), a matrix tensor of points x and range of integer $[0,1,\ldots d]$

dicee.models.octonion

Classes

OMult	Base class for all neural network modules.
ConvO	Base class for all neural network modules.
AConv0	Additive Convolutional Octonion Knowledge Graph Em-
	beddings

Functions

```
octonion_mul(*, O_1, O_2)
octonion_mul_norm(*, O_1, O_2)
```

Module Contents

```
dicee.models.octonion.octonion_mul(*, O_1, O_2)
dicee.models.octonion.octonion_mul_norm(*, O_1, O_2)
class dicee.models.octonion.OMult(args)
    Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

Completed. Given a head entity and a relation (h,r), we compute scores for all possible triples,i.e., [score(h,r,x)|x in Entities] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

```
class dicee.models.octonion.ConvO(args: dict)
    Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
    def __init__(self) -> None:
       super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'ConvO'
conv2d
fc_num_input
fc1
bn_conv2d
norm_fc1
feature_map_dropout
static octonion_normalizer(emb_rel_e0, emb_rel_e1, emb_rel_e2, emb_rel_e3, emb_rel_e4,
           emb_rel_e5, emb_rel_e6, emb_rel_e7)
residual_convolution (O_1, O_2)
forward triples (x: torch.Tensor) \rightarrow torch.Tensor
        Parameters
```

x

```
forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,)
           Entities()
class dicee.models.octonion.AConvO(args: dict)
     Bases: dicee.models.base_model.BaseKGE
     Additive Convolutional Octonion Knowledge Graph Embeddings
     name = 'AConvO'
     conv2d
     fc_num_input
     fc1
     bn_conv2d
     norm_fc1
     feature_map_dropout
     static octonion_normalizer(emb_rel_e0, emb_rel_e1, emb_rel_e2, emb_rel_e3, emb_rel_e4,
                  emb_rel_e5, emb_rel_e6, emb_rel_e7)
     residual convolution (O 1, O 2)
     forward_triples (x: torch.Tensor) \rightarrow torch.Tensor
               Parameters
                   x
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,|
           Entities<sub>()</sub>
```

dicee.models.pykeen models

Classes

PykeenKGE	A class for using knowledge graph embedding models im-
	plemented in Pykeen

Module Contents

```
class dicee.models.pykeen_models.PykeenKGE (args: dict)
Bases: dicee.models.base_model.BaseKGE
A class for using knowledge graph embedding models implemented in Pykeen
Notes: Pykeen_DistMult: C Pykeen_ComplEx: Pykeen_QuatE: Pykeen_MuRE: Pykeen_CP: Pykeen_HolE: Pykeen_HolE:
model_kwargs
```

```
name
model
loss_history = []
args
entity_embeddings = None
relation_embeddings = None
forward_k_vs_all (x: torch.LongTensor)
                      # => Explicit version by this we can apply bn and dropout
                      # (1) Retrieve embeddings of heads and relations + apply Dropout & Normalization if given. h, r =
                      self.get_head_relation_representation(x) \# (2) Reshape (1). if self.last_dim > 0:
                                       h = h.reshape(len(x), self.embedding\_dim, self.last\_dim) r = r.reshape(len(x), self.embedding\_dim, self.embeddin
                                       self.last_dim)
                      # (3) Reshape all entities. if self.last_dim > 0:
                                       t = self.entity embeddings.weight.reshape(self.num entities, self.embedding dim, self.last dim)
                      else:
                                       t = self.entity_embeddings.weight
                      # (4) Call the score_t from interactions to generate triple scores. return self.interaction.score_t(h=h, r=r,
                      all_entities=t, slice_size=1)
forward\_triples (x: torch.LongTensor) \rightarrow torch.FloatTensor
                      # => Explicit version by this we can apply bn and dropout
                      # (1) Retrieve embeddings of heads, relations and tails and apply Dropout & Normalization if given. h, r, t =
                      self.get_triple_representation(x) \# (2) Reshape (1). if self.last_dim > 0:
                                       h = h.reshape(len(x), self.embedding\_dim, self.last\_dim) r = r.reshape(len(x), self.embedding\_dim, self.embeddin
                                       self.last_dim) t = t.reshape(len(x), self.embedding_dim, self.last_dim)
                      # (3) Compute the triple score return self.interaction.score(h=h, r=r, t=t, slice size=None, slice dim=0)
```

dicee.models.quaternion

Classes

QMult	Base class for all neural network modules.
ConvQ	Convolutional Quaternion Knowledge Graph Embeddings
AConvQ	Additive Convolutional Quaternion Knowledge Graph Embeddings

abstract forward_k_vs_sample (x: torch.LongTensor, target_entity_idx)

Functions

```
quaternion_mul_with_unit_norm(*, Q_1, Q_2)
```

Module Contents

```
dicee.models.quaternion.quaternion_mul_with_unit_norm(*, Q_1, Q_2)
class dicee.models.quaternion.QMult(args)
    Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an $__init__()$ call to the parent class must be made before assignment on the child.

Variables

 $\textbf{training} \ (\textit{bool}) - Boolean \ represents \ whether \ this \ module \ is \ in \ training \ or \ evaluation \ mode.$

```
\label{eq:power_product} $$ \texttt{name} = 'QMult'$ $$ explicit = True $$ quaternion_multiplication_followed_by_inner_product $(h, r, t)$ $$ $$
```

Parameters

- h shape: (*batch_dims, dim) The head representations.
- **r** shape: (*batch_dims, dim) The head representations.
- t shape: (*batch_dims, dim) The tail representations.

Returns

Triple scores.

 $static quaternion_normalizer(x: torch.FloatTensor) \rightarrow torch.FloatTensor$

Normalize the length of relation vectors, if the forward constraint has not been applied yet.

Absolute value of a quaternion

$$|a+bi+cj+dk| = \sqrt{a^2+b^2+c^2+d^2}$$

L2 norm of quaternion vector:

$$||x||^2 = \sum_{i=1}^{d} |x_i|^2 = \sum_{i=1}^{d} (x_i \cdot re^2 + x_i \cdot im_1^2 + x_i \cdot im_2^2 + x_i \cdot im_3^2)$$

Parameters

 \mathbf{x} – The vector.

Returns

The normalized vector.

 $k_vs_all_score$ (bpe_head_ent_emb, bpe_rel_ent_emb, E)

Parameters

- bpe_head_ent_emb
- bpe_rel_ent_emb
- E

 $forward_k_vs_all(x)$

Parameters

x

 ${\tt forward_k_vs_sample}\,(x, target_entity_idx)$

Completed. Given a head entity and a relation (h,r), we compute scores for all possible triples,i.e., [score(h,r,x)|x in Entities] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

class dicee.models.quaternion.ConvQ(args)

Bases: dicee.models.base_model.BaseKGE

Convolutional Quaternion Knowledge Graph Embeddings

name = 'ConvQ'

entity_embeddings

relation_embeddings

conv2d

fc num input

fc1

```
bn_conv1
     bn_conv2
     feature_map_dropout
     residual_convolution (Q_1, Q_2)
     forward\_triples (indexed\_triple: torch.Tensor) \rightarrow torch.Tensor
               Parameters
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,|
           Entities|)
class dicee.models.quaternion.AConvQ(args)
     Bases: dicee.models.base_model.BaseKGE
     Additive Convolutional Quaternion Knowledge Graph Embeddings
     name = 'AConvQ'
     entity_embeddings
     relation_embeddings
     conv2d
     fc_num_input
     fc1
     bn_conv1
     bn_conv2
     feature_map_dropout
     residual_convolution (Q_1, Q_2)
     forward\_triples (indexed\_triple: torch.Tensor) \rightarrow torch.Tensor
               Parameters
                   х
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,|
```

dicee.models.real

Classes

DistMult	Embedding Entities and Relations for Learning and Inference in Knowledge Bases
TransE	Translating Embeddings for Modeling
Shallom	A shallow neural model for relation prediction (https://arxiv.org/abs/2101.09090)
Pyke	A Physical Embedding Model for Knowledge Graphs

```
Module Contents
class dicee.models.real.DistMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding Entities and Relations for Learning and Inference in Knowledge Bases https://arxiv.org/abs/1412.6575
     name = 'DistMult'
     k_vs_all_score (emb_h: torch.FloatTensor, emb_r: torch.FloatTensor, emb_E: torch.FloatTensor)
              Parameters
                   • emb h
                   • emb_r
                   • emb_E
     forward_k_vs_all (x: torch.LongTensor)
     forward_k_vs_sample (x: torch.LongTensor, target_entity_idx: torch.LongTensor)
     \mathtt{score}\left(h,r,t\right)
class dicee.models.real.TransE(args)
     Bases: dicee.models.base_model.BaseKGE
     Translating Embeddings for Modeling Multi-relational Data https://proceedings.neurips.cc/paper/2013/file/
     1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
     name = 'TransE'
     margin = 4
     score (head_ent_emb, rel_ent_emb, tail_ent_emb)
     forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
class dicee.models.real.Shallom(args)
     Bases: dicee.models.base_model.BaseKGE
     A shallow neural model for relation prediction (https://arxiv.org/abs/2101.09090)
     name = 'Shallom'
     shallom
```

dicee.models.static_funcs

Functions

```
quaternion\_mul(\rightarrow Tuple[torch.Tensor, torch.Tensor, Perform quaternion multiplication ...)
```

Module Contents

```
dicee.models.static_funcs.quaternion_mul(*, Q_1, Q_2) \rightarrow Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor] Perform quaternion multiplication:param Q_1::param Q_2::return:
```

dicee.models.transformers

Full definition of a GPT Language Model, all of it in this single file. References: 1) the official GPT-2 TensorFlow implementation released by OpenAI: https://github.com/openai/gpt-2/blob/master/src/model.py 2) hugging-face/transformers PyTorch implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py

Classes

BytE	Base class for all neural network modules.
LayerNorm	LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False
CausalSelfAttention	Base class for all neural network modules.
MLP	Base class for all neural network modules.
Block	Base class for all neural network modules.
GPTConfig	
GPT	Base class for all neural network modules.

Module Contents

```
class dicee.models.transformers.BytE(*args, **kwargs)
Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__ ()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an $__init__()$ call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

```
name = 'BytE'
config
temperature = 0.5
```

```
topk = 2
```

transformer

1m head

loss_function(yhat_batch, y_batch)

Parameters

- yhat_batch
- y_batch

forward(x: torch.LongTensor)

Parameters

```
\mathbf{x} (B by T tensor)
```

generate (idx, max_new_tokens, temperature=1.0, top_k=None)

Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this.

```
training_step(batch, batch_idx=None)
```

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters

- batch The output of your data iterable, normally a DataLoader.
- batch_idx The index of this batch.
- dataloader_idx The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Returns

- Tensor The loss tensor
- dict A dictionary which can include any keys, but must include the key 'loss' in the case of automatic optimization.
- None In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.

In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Example:

```
def training_step(self, batch, batch_idx):
    x, y, z = batch
    out = self.encoder(x)
    loss = self.loss(out, x)
    return loss
```

To use multiple optimizers, you can switch to 'manual optimization' and control their stepping:

```
def __init__ (self):
    super().__init__()
    self.automatic_optimization = False

# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx):
    opt1, opt2 = self.optimizers()

# do training_step with encoder
    ...
    opt1.step()
# do training_step with decoder
    ...
    opt2.step()
```

1 Note

When accumulate_grad_batches > 1, the loss returned here will be automatically normalized by accumulate_grad_batches internally.

class dicee.models.transformers.LayerNorm(ndim, bias)

Bases: torch.nn.Module

LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False

weight

bias

forward(input)

class dicee.models.transformers.CausalSelfAttention(config)

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

As per the example above, an $__init__()$ call to the parent class must be made before assignment on the child.

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
c_attn
c_proj
attn_dropout
resid_dropout
n_head
n_embd
dropout
flash
forward(x)

class dicee.models.transformers.MLP(config)
Bases: torch.nn.Module
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
c_fc
gelu
c_proj
dropout
forward(x)
class dicee.models.transformers.Block(config)
```

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an <u>__init__()</u> call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

ln_1

```
attn
ln_2
mlp
forward(x)

class dicee.models.transformers.GPTConfig

block_size: int = 1024

vocab_size: int = 50304

n_layer: int = 12

n_head: int = 12

n_embd: int = 768

dropout: float = 0.0

bias: bool = False

class dicee.models.transformers.GPT(config)

Bases: torch.nn.Module
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

config

transformer

lm_head

```
get_num_params (non_embedding=True)
```

Return the number of parameters in the model. For non-embedding count (default), the position embeddings get subtracted. The token embeddings would too, except due to the parameter sharing these params are actually used as weights in the final layer, so we include them.

```
forward (idx, targets=None)

crop_block_size (block_size)

classmethod from_pretrained (model_type, override_args=None)

configure_optimizers (weight_decay, learning_rate, betas, device_type)

estimate_mfu (fwdbwd_per_iter, dt)

estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS
```

Classes

BaseKGELightning	Base class for all neural network modules.
BaseKGE	Base class for all neural network modules.
IdentityClass	Base class for all neural network modules.
BaseKGE	Base class for all neural network modules.
DistMult	Embedding Entities and Relations for Learning and Inference in Knowledge Bases
TransE	Translating Embeddings for Modeling
Shallom	A shallow neural model for relation prediction (https://arxiv.org/abs/2101.09090)
Pyke	A Physical Embedding Model for Knowledge Graphs
BaseKGE	Base class for all neural network modules.
ConEx	Convolutional ComplEx Knowledge Graph Embeddings
AConEx	Additive Convolutional ComplEx Knowledge Graph Embeddings
ComplEx	Base class for all neural network modules.
BaseKGE	Base class for all neural network modules.
IdentityClass	Base class for all neural network modules.
QMult	Base class for all neural network modules.
ConvQ	Convolutional Quaternion Knowledge Graph Embeddings
AConvQ	Additive Convolutional Quaternion Knowledge Graph Embeddings
BaseKGE	Base class for all neural network modules.
IdentityClass	Base class for all neural network modules.
OMult	Base class for all neural network modules.
ConvO	Base class for all neural network modules.
AConvO	Additive Convolutional Octonion Knowledge Graph Embeddings
Keci	Base class for all neural network modules.
KeciBase	Without learning dimension scaling

continues on next page

Table 1 - continued from previous page

DeCaL	Base class for all neural network modules.
BaseKGE	Base class for all neural network modules.
PykeenKGE	A class for using knowledge graph embedding models implemented in Pykeen
BaseKGE	Base class for all neural network modules.
FMult	Learning Knowledge Neural Graphs
GFMult	Learning Knowledge Neural Graphs
FMult2	Learning Knowledge Neural Graphs
LFMult1	Embedding with trigonometric functions. We represent all entities and relations in the complex number space as:
LFMult	Embedding with polynomial functions. We represent all entities and relations in the polynomial space as:
DualE	Dual Quaternion Knowledge Graph Embeddings (https://ojs.aaai.org/index.php/AAAI/article/download/16850/16657)

Functions

```
\begin{array}{ll} \textit{quaternion\_mul}(\rightarrow \text{Tuple[torch.Tensor, torch.Tensor,} & \textit{Perform quaternion multiplication} \\ \textit{...}) \\ \textit{quaternion\_mul\_with\_unit\_norm}(*, Q\_1, Q\_2) \\ \textit{octonion\_mul}(*, O\_1, O\_2) \\ \textit{octonion\_mul\_norm}(*, O\_1, O\_2) \\ \end{array}
```

Package Contents

```
class dicee.models.BaseKGELightning(*args, **kwargs)
```

 $Bases: \verb|lightning.LightningModule||$

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
training_step_outputs = []
mem\_of\_model() \rightarrow Dict
```

Size of model in MB and number of params

```
training_step(batch, batch_idx=None)
```

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters

- batch The output of your data iterable, normally a DataLoader.
- batch_idx The index of this batch.
- dataloader_idx The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Returns

- Tensor The loss tensor
- · dict A dictionary which can include any keys, but must include the key 'loss' in the case of automatic optimization.
- None In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.

In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Example:

```
def training_step(self, batch, batch_idx):
   x, y, z = batch
   out = self.encoder(x)
    loss = self.loss(out, x)
    return loss
```

To use multiple optimizers, you can switch to 'manual optimization' and control their stepping:

```
def __init__(self):
   super().__init__()
    self.automatic_optimization = False
# Multiple optimizers (e.g.: GANs)
```

(continues on next page)

(continued from previous page)

```
def training_step(self, batch, batch_idx):
    opt1, opt2 = self.optimizers()

# do training_step with encoder
    ...
    opt1.step()
# do training_step with decoder
    ...
    opt2.step()
```

1 Note

When accumulate_grad_batches > 1, the loss returned here will be automatically normalized by accumulate_grad_batches internally.

loss_function(yhat_batch: torch.FloatTensor, y_batch: torch.FloatTensor)

Parameters

- yhat_batch
- y_batch

```
on_train_epoch_end(*args, **kwargs)
```

Called in the training loop at the very end of the epoch.

To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the Light-ningModule and access them in this hook:

```
class MyLightningModule(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.training_step_outputs = []

def training_step(self):
    loss = ...
    self.training_step_outputs.append(loss)
    return loss

def on_train_epoch_end(self):
    # do something with all training_step outputs, for example:
    epoch_mean = torch.stack(self.training_step_outputs).mean()
    self.log("training_epoch_mean", epoch_mean)
    # free up the memory
    self.training_step_outputs.clear()
```

test_epoch_end (outputs: List[Any])

```
\texttt{test\_dataloader}() \rightarrow None
```

An iterable or collection of iterables specifying test samples.

For more information about multiple dataloaders, see this section.

For data processing use the following pattern:

- download in prepare_data()
- process and split in setup ()

However, the above are only necessary for distributed processing.

▲ Warning

do not assign state in prepare_data

- test()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

1 Note

If you don't need a test dataset and a test_step(), you don't need to implement this method.

$val_dataloader() \rightarrow None$

An iterable or collection of iterables specifying validation samples.

For more information about multiple dataloaders, see this section.

The dataloader you return will not be reloaded unless you set :param-ref:`~lightning.pytorch.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.

It's recommended that all data downloads and preparation happen in prepare_data().

- fit()
- validate()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

1 Note

If you don't need a validation dataset and a $validation_step()$, you don't need to implement this method.

$predict_dataloader() \rightarrow None$

An iterable or collection of iterables specifying prediction samples.

For more information about multiple dataloaders, see this section.

It's recommended that all data downloads and preparation happen in prepare_data().

- predict()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

Returns

A torch.utils.data.DataLoader or a sequence of them specifying prediction samples.

$train_dataloader() \rightarrow None$

An iterable or collection of iterables specifying training samples.

For more information about multiple dataloaders, see this section.

The dataloader you return will not be reloaded unless you set :param-ref:`~lightning.pytorch.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.

For data processing use the following pattern:

- download in prepare_data()
- process and split in setup()

However, the above are only necessary for distributed processing.

A Warning

do not assign state in prepare_data

- fit()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

configure_optimizers (parameters=None)

Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.

Returns

Any of these 6 options.

- · Single optimizer.
- List or Tuple of optimizers.
- Two lists The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple lr_scheduler_config).
- Dictionary, with an "optimizer" key, and (optionally) a "lr_scheduler" key whose value is a single LR scheduler or lr_scheduler_config.
- None Fit will run without any optimizer.

The lr_scheduler_config is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.

```
lr_scheduler_config = {
    # REQUIRED: The scheduler instance
   "scheduler": lr_scheduler,
    # The unit of the scheduler's step size, could also be 'step'.
    # 'epoch' updates the scheduler on epoch end whereas 'step'
    # updates it after a optimizer update.
   "interval": "epoch",
   # How many epochs/steps should pass between calls to
    # `scheduler.step()`. 1 corresponds to updating the learning
    # rate after every epoch/step.
   "frequency": 1,
    # Metric to to monitor for schedulers like `ReduceLROnPlateau`
   "monitor": "val_loss",
   # If set to `True`, will enforce that the value specified 'monitor'
    # is available when the scheduler is updated, thus stopping
    # training if not found. If set to `False`, it will only produce a warning
   "strict": True,
    # If using the `LearningRateMonitor` callback to monitor the
    # learning rate progress, this keyword can be used to specify
    # a custom logged name
    "name": None,
```

When there are schedulers in which the .step() method is conditioned on a value, such as the torch.optim.lr_scheduler.ReduceLROnPlateau scheduler, Lightning requires that the lr_scheduler_config contains the keyword "monitor" set to the metric name that the scheduler should be conditioned on.

Metrics can be made available to monitor by simply logging it using self.log('metric_to_track', metric_val) in your LightningModule.

1 Note

Some things to know:

- Lightning calls .backward() and .step() automatically in case of automatic optimization.
- If a learning rate scheduler is specified in <code>configure_optimizers()</code> with key "interval" (default "epoch") in the scheduler configuration, Lightning will call the scheduler's <code>.step()</code> method automatically in case of automatic optimization.
- If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizer.
- If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.
- If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them yourself.
- If you need to control how often the optimizer steps, override the optimizer_step() hook.

```
class dicee.models.BaseKGE (args: dict)
```

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

args

```
embedding_dim = None
num_entities = None
num_relations = None
```

```
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all (x: torch.LongTensor)
        Parameters
           x (B x 2 x T)
forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
    byte pair encoded neural link predictors
        Parameters
```

```
forward (x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
                 y idx: torch.LongTensor = None)
              Parameters
                  • x
                  y_idx
                  • ordered_bpe_entities
     \texttt{forward\_triples} \ (x: torch.LongTensor) \ \to torch.Tensor
              Parameters
     forward_k_vs_all(*args, **kwargs)
     forward_k_vs_sample(*args, **kwargs)
     get_triple_representation(idx_hrt)
     get_head_relation_representation(indexed_triple)
     get_sentence_representation(x: torch.LongTensor)
              Parameters
                  • (b (x shape)
                  • 3
                  • t)
     get_bpe_head_and_relation_representation(x: torch.LongTensor)
                  → Tuple[torch.FloatTensor, torch.FloatTensor]
              Parameters
                  x (B x 2 x T)
     get_embeddings() → Tuple[numpy.ndarray, numpy.ndarray]
class dicee.models.IdentityClass(args=None)
     Bases: torch.nn.Module
     Base class for all neural network modules.
     Your models should also subclass this class.
```

init_params_with_sanity_checking()

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
```

(continues on next page)

(continued from previous page)

```
def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
args
__call__(x)
static forward(x)

class dicee.models.BaseKGE(args: dict)
Bases: BaseKGELightning
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an $__{init}_{_}()$ call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

```
args
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
```

```
forward_byte_pair_encoded_k_vs_all(x: torch.LongTensor)
              Parameters
                 x (B x 2 x T)
     forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
          byte pair encoded neural link predictors
              Parameters
     init_params_with_sanity_checking()
     forward(x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
                 y_idx: torch.LongTensor = None
              Parameters
                  • x
                  • y_idx
                  • ordered_bpe_entities
     forward\_triples(x: torch.LongTensor) \rightarrow torch.Tensor
              Parameters
     forward_k_vs_all(*args, **kwargs)
     forward_k_vs_sample(*args, **kwargs)
     get_triple_representation(idx_hrt)
     get_head_relation_representation(indexed_triple)
     get_sentence_representation(x: torch.LongTensor)
              Parameters
                  • (b(x shape)
                  • 3
                  • t)
     get_bpe_head_and_relation_representation(x: torch.LongTensor)
                 → Tuple[torch.FloatTensor, torch.FloatTensor]
              Parameters
                 x (B x 2 x T)
     get_embeddings() → Tuple[numpy.ndarray, numpy.ndarray]
class dicee.models.DistMult (args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding Entities and Relations for Learning and Inference in Knowledge Bases https://arxiv.org/abs/1412.6575
     name = 'DistMult'
```

```
k_vs_all_score (emb_h: torch.FloatTensor, emb_r: torch.FloatTensor, emb_E: torch.FloatTensor)
               Parameters
                   • emb h
                   • emb_r
                   • emb_E
     forward_k_vs_all (x: torch.LongTensor)
     forward_k_vs_sample(x: torch.LongTensor, target_entity_idx: torch.LongTensor)
     score(h, r, t)
class dicee.models.TransE(args)
     Bases: dicee.models.base_model.BaseKGE
     Translating Embeddings for Modeling Multi-relational Data https://proceedings.neurips.cc/paper/2013/file/
     1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
     name = 'TransE'
     margin = 4
     score (head_ent_emb, rel_ent_emb, tail_ent_emb)
     forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
class dicee.models.Shallom(args)
     Bases: dicee.models.base_model.BaseKGE
     A shallow neural model for relation prediction (https://arxiv.org/abs/2101.09090)
     name = 'Shallom'
     shallom
     \texttt{get\_embeddings}\,() \, \to Tuple[numpy.ndarray,\,None]
     \mathbf{forward\_k\_vs\_all}\;(x)\;\to \mathrm{torch.FloatTensor}
     forward_triples (x) \rightarrow \text{torch.FloatTensor}
               Parameters
               Returns
class dicee.models.Pyke(args)
     Bases: dicee.models.base_model.BaseKGE
     A Physical Embedding Model for Knowledge Graphs
     name = 'Pyke'
     dist_func
     margin = 1.0
```

```
forward_triples (x: torch.LongTensor)
```

Parameters

x

```
class dicee.models.BaseKGE (args: dict)
```

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

args

```
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
```

```
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all(x: torch.LongTensor)
        Parameters
           x (B x 2 x T)
forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
    byte pair encoded neural link predictors
        Parameters
\verb"init_params_with_sanity_checking" ()
forward (x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
           y_idx: torch.LongTensor = None)
        Parameters
            • x
            • y_idx
            • ordered_bpe_entities
```

```
forward_triples (x: torch.LongTensor) \rightarrow torch.Tensor
               Parameters
                   x
     forward_k_vs_all(*args, **kwargs)
     forward_k_vs_sample(*args, **kwargs)
     get_triple_representation(idx_hrt)
     get_head_relation_representation(indexed_triple)
     get_sentence_representation(x: torch.LongTensor)
               Parameters
                    • (b (x shape)
                    • 3
                    • t)
     get_bpe_head_and_relation_representation (x: torch.LongTensor)
                   → Tuple[torch.FloatTensor, torch.FloatTensor]
               Parameters
                   x (B x 2 x T)
     \mathtt{get\_embeddings}() \rightarrow \mathsf{Tuple}[\mathsf{numpy}.\mathsf{ndarray}, \mathsf{numpy}.\mathsf{ndarray}]
class dicee.models.ConEx(args)
     Bases: dicee.models.base_model.BaseKGE
     Convolutional ComplEx Knowledge Graph Embeddings
     name = 'ConEx'
     conv2d
     fc_num_input
     fc1
     norm_fc1
     bn_conv2d
     feature_map_dropout
     residual_convolution(C_1: Tuple[torch.Tensor, torch.Tensor],
                  C_2: Tuple[torch.Tensor, torch.Tensor]) \rightarrow torch.FloatTensor
           Compute residual score of two complex-valued embeddings. :param C_1: a tuple of two pytorch tensors
           that corresponds complex-valued embeddings :param C_2: a tuple of two pytorch tensors that corresponds
           complex-valued embeddings :return:
     forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
     forward\_triples(x: torch.Tensor) \rightarrow torch.FloatTensor
               Parameters
                   x
```

```
forward_k_vs_sample (x: torch.Tensor, target_entity_idx: torch.Tensor)
class dicee.models.AConEx(args)
     Bases: dicee.models.base_model.BaseKGE
     Additive Convolutional ComplEx Knowledge Graph Embeddings
     name = 'AConEx'
     conv2d
     fc_num_input
     fc1
     norm_fc1
     bn_conv2d
     feature_map_dropout
     residual_convolution (C_1: Tuple[torch.Tensor, torch.Tensor],
                  C_2: Tuple[torch.Tensor, torch.Tensor]) \rightarrow torch.FloatTensor
          Compute residual score of two complex-valued embeddings. :param C_1: a tuple of two pytorch tensors
          that corresponds complex-valued embeddings :param C_2: a tuple of two pytorch tensors that corresponds
          complex-valued embeddings :return:
     forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
     forward\_triples(x: torch.Tensor) \rightarrow torch.FloatTensor
               Parameters
     forward_k_vs_sample (x: torch.Tensor, target_entity_idx: torch.Tensor)
class dicee.models.ComplEx (args)
     Bases: dicee.models.base_model.BaseKGE
     Base class for all neural network modules.
     Your models should also subclass this class.
     Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules
     as regular attributes:
      import torch.nn as nn
      import torch.nn.functional as F
     class Model(nn.Module):
          def __init__(self) -> None:
```

```
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

forward k vs all (x: torch.LongTensor) \rightarrow torch.FloatTensor

forward_k_vs_sample (x: torch.LongTensor, target_entity_idx: torch.LongTensor)

```
dicee.models.quaternion_mul(*,Q_1,Q_2)
```

• emb E

 $\rightarrow Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]$

Perform quaternion multiplication :param Q_1: :param Q_2: :return:

```
class dicee.models.BaseKGE (args: dict)
```

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
args
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
```

```
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all (x: torch.LongTensor)
        Parameters
            x (B x 2 x T)
forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
     byte pair encoded neural link predictors
        Parameters
init_params_with_sanity_checking()
forward(x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
           y_idx: torch.LongTensor = None)
        Parameters
            • x
            • y_idx
            • ordered_bpe_entities
forward\_triples(x: torch.LongTensor) \rightarrow torch.Tensor
        Parameters
forward_k_vs_all(*args, **kwargs)
forward_k_vs_sample(*args, **kwargs)
get_triple_representation(idx_hrt)
get_head_relation_representation(indexed_triple)
get_sentence_representation(x: torch.LongTensor)
        Parameters
            • (b (x shape)
            • 3
            • t)
get_bpe_head_and_relation_representation(x: torch.LongTensor)
            → Tuple[torch.FloatTensor, torch.FloatTensor]
        Parameters
            x (B x 2 x T)
```

```
get_embeddings() → Tuple[numpy.ndarray, numpy.ndarray]
```

```
class dicee.models.IdentityClass(args=None)
```

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
args
__call__(x)
static forward(x)

dicee.models.quaternion_mul_with_unit_norm(*, Q_1, Q_2)

class dicee.models.QMult(args)

Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

(continued from previous page)

```
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

As per the example above, an <u>__init__</u>() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
\label{eq:name} \begin{tabular}{ll} name &= 'QMult' \\ \\ explicit &= True \\ \\ quaternion_multiplication_followed_by_inner_product $(h,r,t)$ \\ \\ \end{tabular}
```

Parameters

- h shape: (*batch_dims, dim) The head representations.
- **r** shape: (*batch_dims, dim) The head representations.
- t shape: (*batch_dims, dim) The tail representations.

Returns

Triple scores.

 $\verb|static quaternion_normalizer| (x: torch.FloatTensor) \rightarrow torch.FloatTensor$

Normalize the length of relation vectors, if the forward constraint has not been applied yet.

Absolute value of a quaternion

$$|a + bi + cj + dk| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

L2 norm of quaternion vector:

$$||x||^2 = \sum_{i=1}^d |x_i|^2 = \sum_{i=1}^d (x_i \cdot re^2 + x_i \cdot im_1^2 + x_i \cdot im_2^2 + x_i \cdot im_3^2)$$

Parameters

 \mathbf{x} – The vector.

Returns

The normalized vector.

```
score (head_ent_emb: torch.FloatTensor, rel_ent_emb: torch.FloatTensor,
                   tail ent emb: torch.FloatTensor)
      k\_vs\_all\_score (bpe_head_ent_emb, bpe_rel_ent_emb, E)
                Parameters
                    • bpe_head_ent_emb
                    • bpe_rel_ent_emb
      forward_k_vs_all(x)
                Parameters
                    x
      forward_k_vs_sample (x, target_entity_idx)
           Completed. Given a head entity and a relation (h,r), we compute scores for all possible triples, i.e.,
           [score(h,r,x)|x \text{ in Entities}] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and
           relations => shape (size of batch,| Entities|)
class dicee.models.ConvQ(args)
      Bases: dicee.models.base_model.BaseKGE
      Convolutional Quaternion Knowledge Graph Embeddings
      name = 'ConvQ'
      entity_embeddings
      relation_embeddings
      conv2d
      fc_num_input
      fc1
      bn conv1
      bn_conv2
      feature_map_dropout
      residual_convolution (Q_1, Q_2)
      \textbf{forward\_triples} \ (\textit{indexed\_triple: torch.Tensor}) \ \rightarrow \textbf{torch.Tensor}) \ \rightarrow \textbf{torch.Tensor}
                Parameters
      forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,)
           Entities l)
class dicee.models.AConvQ(args)
      Bases: dicee.models.base_model.BaseKGE
      Additive Convolutional Quaternion Knowledge Graph Embeddings
```

```
name = 'AConvQ'
     entity_embeddings
     relation_embeddings
     conv2d
     fc_num_input
     fc1
     bn_conv1
     bn_conv2
     feature_map_dropout
     residual_convolution (Q_1, Q_2)
     forward\_triples (indexed\_triple: torch.Tensor) \rightarrow torch.Tensor
               Parameters
                   x
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,|
           Entities()
class dicee.models.BaseKGE (args: dict)
```

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

```
args
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
```

```
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all (x: torch.LongTensor)
         Parameters
             x (B x 2 x T)
forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
     byte pair encoded neural link predictors
         Parameters
init_params_with_sanity_checking()
forward (x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
            y_idx: torch.LongTensor = None)
         Parameters
             • x
             • y_idx
             • ordered_bpe_entities
forward\_triples(x: torch.LongTensor) \rightarrow torch.Tensor
         Parameters
forward_k_vs_all(*args, **kwargs)
forward_k_vs_sample(*args, **kwargs)
get_triple_representation(idx_hrt)
get_head_relation_representation(indexed_triple)
get_sentence_representation(x: torch.LongTensor)
         Parameters
             • (b (x shape)
             • 3
             • t)
get_bpe_head_and_relation_representation(x: torch.LongTensor)
             → Tuple[torch.FloatTensor, torch.FloatTensor]
         Parameters
             x (B x 2 x T)
\mathtt{get\_embeddings}() \rightarrow \mathsf{Tuple}[\mathsf{numpy}.\mathsf{ndarray}, \mathsf{numpy}.\mathsf{ndarray}]
```

```
class dicee.models.IdentityClass(args=None)
```

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
args
__call__(x)
static forward(x)

dicee.models.octonion_mul(*, O_1, O_2)

dicee.models.octonion_mul_norm(*, O_1, O_2)

class dicee.models.OMult(args)

Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

(continued from previous page)

```
class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__ ()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

Completed. Given a head entity and a relation (h,r), we compute scores for all possible triples,i.e., [score(h,r,x)|x in Entities] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

```
class dicee.models.ConvO(args: dict)
```

Bases: dicee.models.base_model.BaseKGE

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
```

(continues on next page)

(continued from previous page)

```
self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

fc_num_input

```
training (bool) – Boolean represents whether this module is in training or evaluation mode.
     name = 'ConvO'
     conv2d
     fc_num_input
     fc1
     bn_conv2d
     norm_fc1
     feature_map_dropout
     static octonion_normalizer(emb_rel_e0, emb_rel_e1, emb_rel_e2, emb_rel_e3, emb_rel_e4,
                  emb_rel_e5, emb_rel_e6, emb_rel_e7)
     residual\_convolution(O\_1, O\_2)
     forward\_triples(x: torch.Tensor) \rightarrow torch.Tensor
               Parameters
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,|
          Entities()
class dicee.models.AConvO(args: dict)
     Bases: dicee.models.base_model.BaseKGE
     Additive Convolutional Octonion Knowledge Graph Embeddings
     name = 'AConvO'
     conv2d
```

```
fc1
```

bn_conv2d

norm_fc1

feature_map_dropout

static octonion_normalizer(emb_rel_e0, emb_rel_e1, emb_rel_e2, emb_rel_e3, emb_rel_e4, emb_rel_e5, emb_rel_e6, emb_rel_e7)

 $residual_convolution(O_1, O_2)$

 $forward_triples(x: torch.Tensor) \rightarrow torch.Tensor$

Parameters

x

forward k vs all (x: torch. Tensor)

Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

```
class dicee.models.Keci(args)
```

Bases: dicee.models.base model.BaseKGE

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'Keci'
р
q
requires_grad_for_interactions = True
compute\_sigma\_pp(hp, rp)
     Compute sigma_{pp} = sum_{i=1}^{p-1} sum_{k=i+1}^p (h_i r_k - h_k r_i) e_i e_k
     sigma {pp} captures the interactions between along p bases For instance, let p e 1, e 2, e 3, we compute
     interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops
          results = [] for i in range(p - 1):
              for k in range(i + 1, p):
                results.append(hp[:, :, i] * rp[:, :, k] - hp[:, :, k] * rp[:, :, i])
          sigma\_pp = torch.stack(results, dim=2) \ assert \ sigma\_pp.shape == (b, r, int((p*(p-1)) / 2))
     Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1,
     e1e2, e1e3,
          e2e1, e2e2, e2e3, e3e1, e3e2, e3e3
     Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.
\texttt{compute\_sigma\_qq}\,(hq,rq)
     Compute sigma_{qq} = sum_{j=1}^{p+q-1} sum_{k=j+1}^{p+q} (h_j r_k - h_k r_j) e_j e_k sigma_{q}
     captures the interactions between along q bases For instance, let q e_1, e_2, e_3, we compute interactions
     between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops
          results = [] for j in range(q - 1):
              for k in range(j + 1, q):
                 results.append(hq[:,:,j]*rq[:,:,k] - hq[:,:,k]*rq[:,:,j]) \\
          sigma_qq = torch.stack(results, dim=2) assert sigma_qq.shape == (b, r, int((q * (q - 1)) / 2))
     Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1,
     e1e2, e1e3,
          e2e1, e2e2, e2e3, e3e1, e3e2, e3e3
     Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.
compute_sigma_pq(*, hp, hq, rp, rq)
     sum_{i=1}^{p} sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j
     results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):
          for j in range(q):
              sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]
     print(sigma_pq.shape)
apply_coefficients(hp, hq, rp, rq)
     Multiplying a base vector with its scalar coefficient
```

```
clifford_multiplication (h0, hp, hq, r0, rp, rq)
```

Compute our CL multiplication

$$h = h_0 + sum_{i=1}^p h_i e_i + sum_{j=p+1}^{p+q} h_j e_j r = r_0 + sum_{i=1}^p r_i e_i + sum_{j=p+1}^{p+q} r_j e_j$$

ei
2
 = +1 for i =< i =< p ej 2 = -1 for p < j =< p+q ei ej = -eje1 for i

eq j

 $h r = sigma_0 + sigma_p + sigma_q + sigma_{pp} + sigma_{q} + sig$

- (1) $sigma_0 = h_0 r_0 + sum_{i=1}^p (h_0 r_i) e_i sum_{j=p+1}^{p+q} (h_j r_j) e_j$
- (2) $sigma_p = sum_{i=1}^p (h_0 r_i + h_i r_0) e_i$
- (3) $sigma_q = sum_{j=p+1}^{p+q} (h_0 r_j + h_j r_0) e_j$
- (4) $sigma_{pp} = sum_{i=1}^{p-1} sum_{k=i+1}^p (h_i r_k h_k r_i) e_i e_k$
- (5) $sigma_{qq} = sum_{j=1}^{p+q-1} sum_{k=j+1}^{p+q} (h_j r_k h_k r_j) e_j e_k$
- (6) $sigma_{pq} = sum_{i=1}^{p} sum_{j=p+1}^{p+q} (h_i r_j h_j r_i) e_i e_j$

construct_cl_multivector (x: torch.FloatTensor, r: int, p: int, q: int)

 \rightarrow tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]

Construct a batch of multivectors $Cl_{p,q}(mathbb\{R\}^d)$

Parameter

x: torch.FloatTensor with (n,d) shape

returns

- **a0** (*torch.FloatTensor with* (*n,r*) *shape*)
- **ap** (*torch.FloatTensor with* (*n,r,p*) *shape*)
- aq (torch.FloatTensor with (n,r,q) shape)

forward_k_vs_with_explicit(x: torch.Tensor)

 $k_vs_all_score$ (bpe_head_ent_emb, bpe_rel_ent_emb, E)

 $forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor$

Kvsall training

- (1) Retrieve real-valued embedding vectors for heads and relations mathbb $\{R\}^d$.
- (2) Construct head entity and relation embeddings according to $Cl_{p,q}(mathbb{R}^d)$.
- (3) Perform Cl multiplication
- (4) Inner product of (3) and all entity embeddings

forward_k_vs_with_explicit and this funcitons are identical Parameter — x: torch.LongTensor with (n,2) shape :rtype: torch.FloatTensor with (n, |E|) shape

construct_batch_selected_cl_multivector(x: torch.FloatTensor, r: int, p: int, q: int)

→ tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]

Construct a batch of batchs multivectors $Cl_{p,q}(mathbb\{R\}^d)$

Parameter

x: torch.FloatTensor with (n,k, d) shape

returns

- **a0** (torch.FloatTensor with (n,k, m) shape)
- **ap** (torch.FloatTensor with (n,k, m, p) shape)
- **aq** (torch.FloatTensor with (n,k, m, q) shape)

 $forward_k_vs_sample$ (x: torch.LongTensor, target_entity_idx: torch.LongTensor) \rightarrow torch.FloatTensor

Parameter

```
x: torch.LongTensor with (n,2) shape target_entity_idx: torch.LongTensor with (n, k) shape k denotes the selected number of examples. 

rtype torch.FloatTensor with (n, k) shape score (h, r, t)

forward_triples (x: torch.Tensor) \rightarrow torch.FloatTensor
```

Parameter

```
x: torch.LongTensor with (n,3) shape
```

rtype

torch.FloatTensor with (n) shape

```
class dicee.models.KeciBase(args)
```

Bases: Keci

Without learning dimension scaling

```
name = 'KeciBase'
```

```
requires_grad_for_interactions = False
```

```
class dicee.models.DeCaL(args)
```

```
Bases: \ \textit{dicee.models.base\_model.BaseKGE}
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
```

(continues on next page)

```
def forward(self, x):
   x = F.relu(self.conv1(x))
   return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

name = 'DeCaL'

entity_embeddings

relation_embeddings

q

r

re

forward_triples (x: torch.Tensor) \rightarrow torch.FloatTensor

Parameter

x: torch.LongTensor with (n,) shape

rtype

torch.FloatTensor with (n) shape

 $cl_pqr(a: torch.tensor) \rightarrow torch.tensor$

Input: tensor(batch_size, emb_dim) —> output: tensor with 1+p+q+r components with size (batch_size, $emb_dim/(1+p+q+r)$) each.

1) takes a tensor of size (batch_size, emb_dim), split it into 1 + p + q + r components, hence 1+p+q+r must be a divisor of the emb_dim. 2) Return a list of the 1+p+q+r components vectors, each are tensors of size $(batch_size, emb_dim/(1+p+q+r))$

compute_sigmas_single (list_h_emb, list_r_emb, list_t_emb)

here we compute all the sums with no others vectors interaction taken with the scalar product with t, that is,

$$s0 = h_0 r_0 t_0 s1 = \sum_{i=1}^p h_i r_i t_0 s2 = \sum_{j=p+1}^{p+q} h_j r_j t_0 s3 = \sum_{i=1}^q (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+1}^{p+q} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+1}^{p+q} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+r}^{p+q+r}$$

and return:

$$sigma_0t = \sigma_0 \cdot t_0 = s0 + s1 - s2s3, s4ands5$$

compute_sigmas_multivect(list_h_emb, list_r_emb)

Here we compute and return all the sums with vectors interaction for the same and different bases.

For same bases vectors interaction we have

$$\sigma_p p = \sum_{i=1}^{p-1} \sum_{i'=i+1}^p (h_i r_{i'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \\ \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= i,$$

For different base vector interactions, we have

$$\sigma_p q = \sum_{i=1}^p \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) (interactions nbetween e_i and e_j for 1 <= i <= pand p+1 <= j <= p+q) \\ \sigma_p r = \sum_{i=1}^p \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) (interactions nbetween e_i and e_j for 1 <= i <= pand p+1 <= j <= p+q) \\ \sigma_p r = \sum_{i=1}^p \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) (interactions nbetween e_i and e_j for 1 <= i <= pand p+1 <= j <= p+q)$$

 $forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor$

Kvsall training

- (1) Retrieve real-valued embedding vectors for heads and relations
- (2) Construct head entity and relation embeddings according to $Cl_{p,q, r}(mathbb{R}^d)$.
- (3) Perform Cl multiplication
- (4) Inner product of (3) and all entity embeddings

forward_k_vs_with_explicit and this funcitons are identical Parameter — x: torch.LongTensor with (n,) shape :rtype: torch.FloatTensor with (n, |E|) shape

 $apply_coefficients(h0, hp, hq, hk, r0, rp, rq, rk)$

Multiplying a base vector with its scalar coefficient

construct_cl_multivector (x: torch.FloatTensor, re: int, p: int, q: int, r: int)

→ tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]

Construct a batch of multivectors $Cl_{p,q,r}(mathbb\{R\}^d)$

Parameter

x: torch.FloatTensor with (n,d) shape

returns

- **a0** (torch.FloatTensor)
- **ap** (torch.FloatTensor)
- aq (torch.FloatTensor)
- **ar** (torch.FloatTensor)

 $compute_sigma_pp(hp, rp)$

Compute .. math:

sigma_{pp} captures the interactions between along p bases For instance, let p e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops

results = [] for i in range(p - 1):

for k in range(i + 1, p):

 $sigma_pp = torch.stack(results, dim=2) assert sigma_pp.shape == (b, r, int((p * (p - 1)) / 2))$

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

$compute_sigma_qq(hq, rq)$

Compute

$$\sigma_{q,q}^* = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (x_j y_{j'} - x_{j'} y_j) Eq.16$$

sigma $\{q\}$ captures the interactions between along q bases For instance, let q e $_1$, e $_2$, e $_3$, we compute interactions between e $_1$ e $_2$, e $_1$ e $_3$, and e $_2$ e $_3$ This can be implemented with a nested two for loops

results = [] for j in range(q - 1):

for k in range(j + 1, q):

 $sigma_qq = torch.stack(results, dim=2) assert sigma_qq.shape == (b, r, int((q * (q - 1)) / 2))$

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

 $compute_sigma_rr(hk, rk)$

$$\sigma_{r,r}^* = \sum_{k=p+q+1}^{p+q+r-1} \sum_{k'=k+1}^{p} (x_k y_{k'} - x_{k'} y_k)$$

compute_sigma_pq(*, hp, hq, rp, rq)

Compute

$$\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

 $results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):$

for j in range(q):

$$sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]$$

print(sigma_pq.shape)

 $compute_sigma_pr(*, hp, hk, rp, rk)$

Compute

$$\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

```
for i in range(q):
                       sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]
             print(sigma_pq.shape)
       compute\_sigma\_qr(*, hq, hk, rq, rk)
                                                         \sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j
             results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):
                  for j in range(q):
                       sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]
             print(sigma_pq.shape)
class dicee.models.BaseKGE (args: dict)
```

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
   def init (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
args
embedding_dim = None
num_entities = None
```

```
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all (x: torch.LongTensor)
        Parameters
           x (B x 2 x T)
forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
    byte pair encoded neural link predictors
        Parameters
```

```
init_params_with_sanity_checking()
     forward (x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
                 y idx: torch.LongTensor = None)
              Parameters
                  • x
                  y_idx
                  • ordered_bpe_entities
     forward\_triples(x: torch.LongTensor) \rightarrow torch.Tensor
              Parameters
     forward_k_vs_all(*args, **kwargs)
     forward_k_vs_sample(*args, **kwargs)
     get_triple_representation(idx_hrt)
     get_head_relation_representation(indexed_triple)
     get_sentence_representation(x: torch.LongTensor)
              Parameters
                  • (b (x shape)
                  • 3
                  • t)
     get_bpe_head_and_relation_representation(x: torch.LongTensor)
                 → Tuple[torch.FloatTensor, torch.FloatTensor]
              Parameters
                 x (B x 2 x T)
     get_embeddings() → Tuple[numpy.ndarray, numpy.ndarray]
class dicee.models.PykeenKGE(args: dict)
     Bases: dicee.models.base_model.BaseKGE
     A class for using knowledge graph embedding models implemented in Pykeen
     Notes: Pykeen_DistMult: C Pykeen_ComplEx: Pykeen_QuatE: Pykeen_MuRE: Pykeen_CP: Pykeen_HolE: Py-
     keen_HolE:
     model_kwargs
     name
     model
     loss_history = []
     args
     entity_embeddings = None
```

```
relation embeddings = None
```

```
forward_k_vs_all (x: torch.LongTensor)
```

- # => Explicit version by this we can apply bn and dropout
- # (1) Retrieve embeddings of heads and relations + apply Dropout & Normalization if given. h, $r = self.get_head_relation_representation(x) # (2) Reshape (1). if <math>self.last_dim > 0$:
 - $h = h.reshape(len(x), self.embedding_dim, self.last_dim) r = r.reshape(len(x), self.embedding_dim, self.last_dim)$
- # (3) Reshape all entities. if self.last_dim > 0:
 - t = self.entity_embeddings.weight.reshape(self.num_entities, self.embedding_dim, self.last_dim)

else:

- t = self.entity_embeddings.weight
- # (4) Call the score_t from interactions to generate triple scores. return self.interaction.score_t(h=h, r=r, all entities=t, slice size=1)

```
forward\_triples(x: torch.LongTensor) \rightarrow torch.FloatTensor
```

- # => Explicit version by this we can apply bn and dropout
- # (1) Retrieve embeddings of heads, relations and tails and apply Dropout & Normalization if given. h, r, t = self.get_triple_representation(x) # (2) Reshape (1). if self.last_dim > 0:
 - $$\label{eq:hamma} \begin{split} &h = h.reshape(len(x), self.embedding_dim, self.last_dim) \ r = r.reshape(len(x), self.embedding_dim, self.last_dim) \\ &t = t.reshape(len(x), self.embedding_dim, self.last_dim) \end{split}$$
- # (3) Compute the triple score return self.interaction.score(h=h, r=r, t=t, slice_size=None, slice_dim=0)

abstract forward_k_vs_sample (x: torch.LongTensor, target_entity_idx)

```
class dicee.models.BaseKGE(args: dict)
```

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

```
args
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
```

```
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all (x: torch.LongTensor)
         Parameters
            x (B x 2 x T)
forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
     byte pair encoded neural link predictors
         Parameters
\verb"init_params_with_sanity_checking" ()
forward(x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
            y_idx: torch.LongTensor = None
         Parameters
             • x
            • y_idx
             • ordered_bpe_entities
forward\_triples(x: torch.LongTensor) \rightarrow torch.Tensor
         Parameters
forward_k_vs_all(*args, **kwargs)
forward_k_vs_sample(*args, **kwargs)
get_triple_representation(idx_hrt)
{\tt get\_head\_relation\_representation}\ (indexed\_triple)
get_sentence_representation(x: torch.LongTensor)
         Parameters
             • (b (x shape)
             • 3
             • t)
get_bpe_head_and_relation_representation(x: torch.LongTensor)
            → Tuple[torch.FloatTensor, torch.FloatTensor]
         Parameters
            x (B x 2 x T)
get_embeddings() → Tuple[numpy.ndarray, numpy.ndarray]
```

```
class dicee.models.FMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Learning Knowledge Neural Graphs
     name = 'FMult'
     entity_embeddings
     relation_embeddings
     k
     num_sample = 50
     gamma
     roots
     weights
     compute\_func(weights: torch.FloatTensor, x) \rightarrow torch.FloatTensor
     chain_func (weights, x: torch.FloatTensor)
     forward\_triples(idx\_triple: torch.Tensor) \rightarrow torch.Tensor
              Parameters
                  x
class dicee.models.GFMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Learning Knowledge Neural Graphs
     name = 'GFMult'
     entity_embeddings
     relation embeddings
     num_sample = 250
     roots
     weights
     compute\_func(weights: torch.FloatTensor, x) \rightarrow torch.FloatTensor
     chain_func (weights, x: torch.FloatTensor)
     forward\_triples(idx\_triple: torch.Tensor) \rightarrow torch.Tensor
              Parameters
                  ×
class dicee.models.FMult2(args)
     Bases: dicee.models.base_model.BaseKGE
     Learning Knowledge Neural Graphs
```

```
name = 'FMult2'
     n_{ayers} = 3
     n = 50
     score_func = 'compositional'
     discrete_points
     entity_embeddings
     relation_embeddings
     build_func(Vec)
     build_chain_funcs (list_Vec)
     compute func (W, b, x) \rightarrow \text{torch.FloatTensor}
     function(list_W, list_b)
     trapezoid(list_W, list_b)
     forward\_triples(idx\_triple: torch.Tensor) \rightarrow torch.Tensor
               Parameters
class dicee.models.LFMult1(args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding with trigonometric functions. We represent all entities and relations in the complex number space as:
     f(x) = sum_{k=0}^{k=d-1}wk e^{kix}. and use the three differents scoring function as in the paper to evaluate
     the score
     name = 'LFMult1'
     entity_embeddings
     relation_embeddings
     forward_triples (idx_triple)
               Parameters
     tri_score(h, r, t)
     \mathtt{vtp\_score}\left(h,r,t\right)
class dicee.models.LFMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding with polynomial functions. We represent all entities and relations in the polynomial space as: f(x) =
     sum_{i=0}^{d-1} a_k x^{i\%d} and use the three differents scoring function as in the paper to evaluate the score.
     We also consider combining with Neural Networks.
     name = 'LFMult'
```

```
entity_embeddings
relation_embeddings
degree
x_values
forward_triples (idx_triple)
         Parameters
construct_multi_coeff(X)
poly_NN(x, coefh, coefr, coeft)
     Constructing a 2 layers NN to represent the embeddings. h = sigma(wh^T x + bh), r = sigma(wr^T x + br),
     t = sigma(wt^T x + bt)
linear(x, w, b)
scalar_batch_NN(a, b, c)
     element wise multiplication between a,b and c: Inputs: a, b, c ====> torch.tensor of size batch_size x m x
     d Output: a tensor of size batch size x d
tri_score (coeff_h, coeff_r, coeff_t)
     this part implement the trilinear scoring techniques:
     score(h,r,t) = int_{0}{1} h(x)r(x)t(x) dx = sum_{i,j,k} = 0}^{d-1} dfrac{a_i*b_i*c_k}{1+(i+j+k)%d}
       1. generate the range for i, j and k from [0 d-1]
     2. perform dfrac\{a_i*b_j*c_k\}\{1+(i+j+k)\%d\} in parallel for every batch
       3. take the sum over each batch
\mathtt{vtp\_score}(h, r, t)
     this part implement the vector triple product scoring techniques:
     score(h,r,t) = int_{0}{1} h(x)r(x)t(x) dx = sum_{i,j,k} = 0}^{d-1} dfrac_{a_i}c_j*b_k
     b_i*c_j*a_k{(1+(i+j)%d)(1+k)}
       1. generate the range for i, j and k from [0 d-1]
       2. Compute the first and second terms of the sum
       3. Multiply with then denominator and take the sum
       4. take the sum over each batch
comp\_func(h, r, t)
     this part implement the function composition scoring techniques: i.e. score = <hor, t>
polynomial (coeff, x, degree)
     This function takes a matrix tensor of coefficients (coeff), a tensor vector of points x and range of integer
     [0,1,...d] and return a vector tensor (coeff[0][0] + coeff[0][1]x +...+ coeff[0][d]x^d,
```

```
This function allow us to evaluate the composition of two polynomes without for loops:) it takes a matrix
           tensor of coefficients (coeff), a matrix tensor of points x and range of integer [0,1,...d]
                and return a tensor (coeff[0][0] + coeff[0][1]x + ... + coeff[0][d]x^d,
                    coeff[1][0] + coeff[1][1]x + ... + coeff[1][d]x^d
class dicee.models.DualE(args)
      Bases: dicee.models.base_model.BaseKGE
      Dual Quaternion Knowledge Graph Embeddings (https://ojs.aaai.org/index.php/AAAI/article/download/16850/
      16657)
      name = 'DualE'
      entity_embeddings
      relation_embeddings
      num_ent
      kvsall_score (e_1_h, e_2_h, e_3_h, e_4_h, e_5_h, e_6_h, e_7_h, e_8_h, e_1_t, e_2_t, e_3_t, e_4_t,
                   e_5_t, e_6_t, e_7_t, e_8_t, r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8) \rightarrow \text{torch.tensor}
           KvsAll scoring function
           Input
           x: torch.LongTensor with (n, ) shape
           Output
           torch.FloatTensor with (n) shape
      forward_triples (idx\_triple: torch.tensor) \rightarrow torch.tensor
           Negative Sampling forward pass:
           Input
           x: torch.LongTensor with (n, ) shape
           Output
           torch.FloatTensor with (n) shape
      forward_k_vs_all(x)
           KvsAll forward pass
           Input
           x: torch.LongTensor with (n, ) shape
           Output
           torch.FloatTensor with (n) shape
```

pop(coeff, x, degree)

```
\mathbf{T} (x: torch.tensor) \rightarrow torch.tensor
Transpose function
Input: Tensor with shape (nxm) Output: Tensor with shape (mxn)
```

dicee.query_generator

Classes

QueryGenerator

Module Contents

```
class dicee.query_generator.QueryGenerator(train_path, val_path: str, test_path: str,
            ent2id: Dict = None, rel2id: Dict = None, seed: int = 1, gen_valid: bool = False,
            gen\_test: bool = True)
     train_path
      val_path
      test_path
      gen_valid
      gen_test
      seed
     max_ans_num = 1000000.0
      mode
      ent2id
      rel2id: Dict
      ent_in: Dict
      ent_out: Dict
      query_name_to_struct
      list2tuple(list_data)
      tuple2list(x: List | Tuple) \rightarrow List | Tuple
           Convert a nested tuple to a nested list.
      set_global_seed (seed: int)
           Set seed
      construct\_graph(paths: List[str]) \rightarrow Tuple[Dict, Dict]
           Construct graph from triples Returns dicts with incoming and outgoing edges
      fill_query (query_structure: List[str | List], ent_in: Dict, ent_out: Dict, answer: int) \rightarrow bool
           Private method for fill_query logic.
```

```
achieve\_answer(query: List[str | List], ent\_in: Dict, ent\_out: Dict) \rightarrow set
           Private method for achieve_answer logic. @TODO: Document the code
      write_links (ent_out, small_ent_out)
      ground_queries (query_structure: List[str | List], ent_in: Dict, ent_out: Dict, small_ent_in: Dict,
                   small ent out: Dict, gen num: int, query name: str)
           Generating queries and achieving answers
      unmap (query_type, queries, tp_answers, fp_answers, fn_answers)
      unmap_query (query_structure, query, id2ent, id2rel)
      generate_queries (query_struct: List, gen_num: int, query_type: str)
           Passing incoming and outgoing edges to ground queries depending on mode [train valid or text] and getting
           queries and answers in return @ TODO: create a class for each single query struct
      save_queries (query_type: str, gen_num: int, save_path: str)
      abstract load_queries (path)
      get_queries (query_type: str, gen_num: int)
      static save_queries_and_answers (path: str, data: List[Tuple[str, Tuple[collections.defaultdict]]])
                    \rightarrow None
           Save Queries into Disk
      static load\_queries\_and\_answers (path: str) \rightarrow List[Tuple[str, Tuple[collections.defaultdict]]]
           Load Queries from Disk to Memory
dicee.read_preprocess_save_load_kg
Submodules
dicee.read_preprocess_save_load_kg.preprocess
Classes
```

PreprocessKG

Preprocess the data in memory

Module Contents

None

```
class dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG (kg) Preprocess the data in memory kg start () \rightarrow N one Preprocess train, valid and test datasets stored in knowledge graph instance Parameter rtype
```

```
preprocess_with_byte_pair_encoding()
{\tt preprocess\_with\_byte\_pair\_encoding\_with\_padding}\,()\,\to None
{\tt preprocess\_with\_pandas}\,()\,\to None
     Preprocess train, valid and test datasets stored in knowledge graph instance with pandas
     (1) Add recipriocal or noisy triples
     (2) Construct vocabulary
     (3) Index datasets
     Parameter
         rtype
              None
{\tt preprocess\_with\_polars}\,()\,\to None
sequential\_vocabulary\_construction() \rightarrow None
     (1) Read input data into memory
     (2) Remove triples with a condition
     (3) Serialize vocabularies in a pandas dataframe where
              => the index is integer and => a single column is string (e.g. URI)
```

dicee.read_preprocess_save_load_kg.read_from_disk

Classes

ReadFromDisk

Read the data from disk into memory

Module Contents

$dicee.read_preprocess_save_load_kg.save_load_disk$

Classes

LoadSaveToDisk

Module Contents

```
class dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk (kg) kg save() load()
```

dicee.read_preprocess_save_load_kg.util

Functions

polars_dataframe_indexer(→ polars.DataFrame)	Replaces 'subject', 'relation', and 'object' columns in the input Polars DataFrame with their corresponding index values
<pre>pandas_dataframe_indexer(→ pandas.DataFrame)</pre>	Replaces 'subject', 'relation', and 'object' columns in the input Pandas DataFrame with their corresponding index values
<pre>apply_reciprical_or_noise(add_reciprical, eval_model)</pre>	
timeit(func)	
$read_with_polars(\rightarrow polars.DataFrame)$	Load and Preprocess via Polars
read_with_pandas(data_path[, read_only_few,])	
read_from_disk(→ Tuple[polars.DataFrame, pan-das.DataFrame])	
read_from_triple_store([endpoint])	Read triples from triple store into pandas dataframe
get_er_vocab(data[, file_path])	parameter and parameter
<pre>get_re_vocab(data[, file_path])</pre>	
<pre>get_ee_vocab(data[, file_path])</pre>	
<pre>create_constraints(triples[, file_path])</pre>	
$load_with_pandas(\rightarrow None)$	Deserialize data
<pre>save_numpy_ndarray(*, data, file_path)</pre>	
load_numpy_ndarray(*, file_path)	
<pre>save_pickle(*, data[, file_path])</pre>	
<pre>load_pickle(*[, file_path])</pre>	
<pre>create_recipriocal_triples(X)</pre>	Add inverse triples into dask dataframe
dataset_sanity_checking(→ None)	•
-	

Module Contents

```
dicee.read_preprocess_save_load_kg.util.polars_dataframe_indexer( df_polars.DataFrame, idx_entity: polars.DataFrame, idx_relation: polars.DataFrame) <math>\rightarrow polars.DataFrame
```

Replaces 'subject', 'relation', and 'object' columns in the input Polars DataFrame with their corresponding index values from the entity and relation index DataFrames.

This function processes the DataFrame in three main steps: 1. Replace the 'relation' values with the corresponding index from *idx_relation*. 2. Replace the 'subject' values with the corresponding index from *idx_entity*. 3. Replace the 'object' values with the corresponding index from *idx_entity*.

Parameters:

df polars

[polars.DataFrame] The input Polars DataFrame containing columns: 'subject', 'relation', and 'object'.

idx_entity

[polars.DataFrame] A Polars DataFrame that contains the mapping between entity names and their corresponding indices. Must have columns: 'entity' and 'index'.

idx relation

[polars.DataFrame] A Polars DataFrame that contains the mapping between relation names and their corresponding indices. Must have columns: 'relation' and 'index'.

Returns:

polars.DataFrame

A DataFrame with the 'subject', 'relation', and 'object' columns replaced by their corresponding indices.

Example Usage:

```
>>> df_polars = pl.DataFrame({
        "subject": ["Alice", "Bob", "Charlie"],
        "relation": ["knows", "works_with", "lives_in"],
        "object": ["Dave", "Eve", "Frank"]
})
>>> idx_entity = pl.DataFrame({
        "entity": ["Alice", "Bob", "Charlie", "Dave", "Eve", "Frank"],
        "index": [0, 1, 2, 3, 4, 5]
})
>>> idx_relation = pl.DataFrame({
        "relation": ["knows", "works_with", "lives_in"],
        "index": [0, 1, 2]
})
>>> polars_dataframe_indexer(df_polars, idx_entity, idx_relation)
```

Steps:

- 1. Join the input DataFrame *df_polars* on the 'relation' column with *idx_relation* to replace the relations with their indices.
- 2. Join on 'subject' to replace it with the corresponding entity index using a left join on idx_entity.
- 3. Join on 'object' to replace it with the corresponding entity index using a left join on idx_entity.
- 4. Select only the 'subject', 'relation', and 'object' columns to return the final result.

```
dicee.read_preprocess_save_load_kg.util.pandas_dataframe_indexer( df_pandas: pandas.DataFrame, idx_entity: pandas.DataFrame, idx_relation: pandas.DataFrame) <math>\rightarrow pandas.DataFrame
```

Replaces 'subject', 'relation', and 'object' columns in the input Pandas DataFrame with their corresponding index values from the entity and relation index DataFrames.

Parameters:

df_pandas

[pd.DataFrame] The input Pandas DataFrame containing columns: 'subject', 'relation', and 'object'.

idx_entity

[pd.DataFrame] A Pandas DataFrame that contains the mapping between entity names and their corresponding indices. Must have columns: 'entity' and 'index'.

idx_relation

[pd.DataFrame] A Pandas DataFrame that contains the mapping between relation names and their corresponding indices. Must have columns: 'relation' and 'index'.

Returns:

pd.DataFrame

A DataFrame with the 'subject', 'relation', and 'object' columns replaced by their corresponding indices.

```
dicee.read_preprocess_save_load_kg.util.apply_reciprical_or_noise (add_reciprical: bool, eval_model: str, df: object = None, info: str = None)
```

(1) Add reciprocal triples (2) Add noisy triples

```
dicee.read_preprocess_save_load_kg.util.timeit(func)
dicee.read_preprocess_save_load_kg.util.read_with_polars(data_path,
```

read_only_few: int = None, sample_triples_ratio: float = None, separator: str = None)

→ polars.DataFrame

Load and Preprocess via Polars

```
dicee.read_preprocess_save_load_kg.util.read_with_pandas(data_path, read_only_few: int = None, sample_triples_ratio: float = None, separator: str = None)
```

```
dicee.read_preprocess_save_load_kg.util.read_from_disk(data_path: str, read_only_few: int = None, sample_triples_ratio: float = None, backend: str = None, separator: str = None) → Tuple[polars.DataFrame, pandas.DataFrame]
```

```
dicee.read_preprocess_save_load_kg.util.read_from_triple_store(endpoint: str = None)
```

Read triples from triple store into pandas dataframe

```
dicee.read_preprocess_save_load_kq.util.get_er_vocab(data, file_path: str = None)
```

```
dicee.read_preprocess_save_load_kg.util.get_re_vocab(data, file_path: str = None)
```

```
dicee.read_preprocess_save_load_kg.util.get_ee_vocab(data, file_path: str = None)
```

```
dicee.read_preprocess_save_load_kg.util.create_constraints(triples, file_path: str = None)
```

- (1) Extract domains and ranges of relations
- (2) Store a mapping from relations to entities that are outside of the domain and range. Crete constrainted entities based on the range of relations :param triples: :return: Tuple[dict, dict]

```
dicee.read_preprocess_save_load_kg.util.load_with_pandas(self) \rightarrow None
```

Deserialize data

Classes

PreprocessKG	Preprocess the data in memory
LoadSaveToDisk	
ReadFromDisk	Read the data from disk into memory

Package Contents

(2) Construct vocabulary

(3) Index datasets

```
class dicee.read_preprocess_save_load_kg.PreprocessKG (kg)

Preprocess the data in memory

kg

start () → None

Preprocess train, valid and test datasets stored in knowledge graph instance

Parameter

rtype

None

preprocess_with_byte_pair_encoding()

preprocess_with_byte_pair_encoding_with_padding() → None

preprocess_with_pandas() → None

Preprocess train, valid and test datasets stored in knowledge graph instance with pandas

(1) Add recipriocal or noisy triples
```

Parameter

```
rtvpe
                    None
      {\tt preprocess\_with\_polars}\, () \, \to None
      \verb|sequential_vocabulary_construction|()| \to None
           (1) Read input data into memory
           (2) Remove triples with a condition
           (3) Serialize vocabularies in a pandas dataframe where
                   => the index is integer and => a single column is string (e.g. URI)
class dicee.read_preprocess_save_load_kg.LoadSaveToDisk(kg)
      kg
      save()
      load()
class dicee.read_preprocess_save_load_kg.ReadFromDisk(kg)
      Read the data from disk into memory
      kg
      \mathtt{start}() \rightarrow \mathrm{None}
           Read a knowledge graph from disk into memory
           Data will be available at the train_set, test_set, valid_set attributes.
           Parameter
           None
```

rtype

None

add_noisy_triples_into_training()

dicee.sanity_checkers

Functions

Module Contents

dicee.sanity_checkers.is_sparql_endpoint_alive(sparql_endpoint: str = None)

```
dicee.sanity_checkers.validate_knowledge_graph (args)
     Validating the source of knowledge graph
dicee.sanity_checkers.sanity_checking_with_arguments (args)
```

dicee.scripts

Submodules

dicee.scripts.index

Functions

```
get_default_arguments()
main()
```

Module Contents

```
dicee.scripts.index.get_default_arguments()
dicee.scripts.index.main()
```

dicee.scripts.run

Functions

```
get_default_arguments([description]) Extends pytorch_lightning Trainer's arguments with ours main()
```

Module Contents

dicee.scripts.serve

Attributes

```
app
neural_searcher
```

Classes

NeuralSearcher

Functions

```
get_default_arguments()
root()
search_embeddings(q)
retrieve_embeddings(q)
main()
```

Module Contents

dicee.static_funcs

Functions

create_recipriocal_triples(x)

Add inverse triples into dask dataframe

Table 2 - continued from previous page

```
get_er_vocab(data[, file_path])
get_re_vocab(data[, file_path])
get_ee_vocab(data[, file_path])
timeit(func)
save_pickle(*[, data, file_path])
load_pickle([file_path])
load_term_mapping([file_path])
select_model(args[,
                         is_continual_training,
                                                 stor-
age path])
load_model(→ Tuple[object, Tuple[dict, dict]])
                                                        Load weights and initialize pytorch module from names-
                                                        pace arguments
                                                        Construct Ensemble Of weights and initialize pytorch
load_model_ensemble(...)
                                                        module from namespace arguments
save_numpy_ndarray(*, data, file_path)
numpy_data_type_changer(→ numpy.ndarray)
                                                        Detect most efficient data type for a given triples
save\_checkpoint\_model(\rightarrow None)
                                                        Store Pytorch model into disk
store(\rightarrow None)
                                                        Store trained_model model and save embeddings into csv
add\_noisy\_triples(\rightarrow pandas.DataFrame)
                                                        Add randomly constructed triples
read_or_load_kg(args, cls)
intialize\_model(\rightarrow Tuple[object, str])
load_json(\rightarrow dict)
                                                        Save it as CSV if memory allows.
save\_embeddings(\rightarrow None)
random_prediction(pre_trained_kge)
deploy_triple_prediction(pre_trained_kge,
str subject, ...)
deploy_tail_entity_prediction(pre_trained_kge,
deploy_head_entity_prediction(pre_trained_kge,
deploy_relation_prediction(pre_trained_kge,
vocab_to_parquet(vocab_to_idx, name, ...)
create_experiment_folder([folder_name])
continual\_training\_setup\_executor(\rightarrow None)
exponential_function(\rightarrow torch.FloatTensor)
```

```
load_numpy(\rightarrow numpy.ndarray)
                                                          # @TODO: CD: Renamed this function
evaluate(entity to idx,
                              scores,
                                          easy answers,
hard answers)
download_file(url[, destination_folder])
download\_files\_from\_url(\rightarrow None)
download\_pretrained\_model(\rightarrow str)
```

```
Module Contents
dicee.static_funcs.create_recipriocal_triples(x)
     Add inverse triples into dask dataframe :param x: :return:
dicee.static_funcs.get_er_vocab(data, file_path: str = None)
dicee.static_funcs.get_re_vocab(data, file_path: str = None)
dicee.static_funcs.get_ee_vocab(data, file_path: str = None)
dicee.static_funcs.timeit(func)
dicee.static_funcs.save_pickle(*, data: object = None, file_path=str)
dicee.static_funcs.load_pickle(file_path=str)
dicee.static_funcs.load_term_mapping(file_path=str)
dicee.static_funcs.select_model(args: dict, is_continual_training: bool = None,
            storage\_path: str = None
dicee.static_funcs.load_model(path_of_experiment_folder: str, model_name='model.pt', verbose=0)
             → Tuple[object, Tuple[dict, dict]]
     Load weights and initialize pytorch module from namespace arguments
dicee.static_funcs.load_model_ensemble(path_of_experiment_folder: str)
             → Tuple[dicee.models.base_model.BaseKGE, Tuple[pandas.DataFrame, pandas.DataFrame]]
     Construct Ensemble Of weights and initialize pytorch module from namespace arguments
      (1) Detect models under given path
      (2) Accumulate parameters of detected models
       (3) Normalize parameters
       (4) Insert (3) into model.
dicee.static_funcs.save_numpy_ndarray (*, data: numpy.ndarray, file_path: str)
dicee.static_funcs.numpy_data_type_changer(train_set: numpy.ndarray, num: int)
             \rightarrow numpy.ndarray
     Detect most efficient data type for a given triples :param train_set: :param num: :return:
dicee.static_funcs.save_checkpoint_model (model, path: str) \rightarrow None
     Store Pytorch model into disk
```

```
dicee.static funcs.store (trainer, trained model, model name: str = 'model',
            full\_storage\_path: str = None, save\_embeddings\_as\_csv=False) \rightarrow None
     Store trained_model model and save embeddings into csv file. :param trainer: an instance of trainer class :param
     full_storage_path: path to save parameters. :param model_name: string representation of the name of the model.
     :param trained_model: an instance of BaseKGE see core.models.base_model . :param save_embeddings_as_csv:
     for easy access of embeddings. :return:
dicee.static_funcs.add_noisy_triples(train_set: pandas.DataFrame, add_noise_rate: float)
             \rightarrow pandas.DataFrame
     Add randomly constructed triples :param train_set: :param add_noise_rate: :return:
dicee.static_funcs.read_or_load_kg(args, cls)
dicee.static_funcs.intialize_model(args: dict, verbose=0) \rightarrow Tuple[object, str]
dicee.static_funcs.load_json(p: str) \rightarrow dict
dicee.static_funcs.save embeddings (embeddings: numpy.ndarray, indexes, path: str) \rightarrow None
     Save it as CSV if memory allows. :param embeddings: :param indexes: :param path: :return:
dicee.static_funcs.random_prediction(pre_trained_kge)
dicee.static_funcs.deploy_triple_prediction(pre_trained_kge, str_subject, str_predicate,
            str_object)
dicee.static_funcs.deploy_tail_entity_prediction(pre_trained_kge, str_subject, str_predicate,
dicee.static_funcs.deploy_head_entity_prediction(pre_trained_kge, str_object, str_predicate,
            top_k)
dicee.static_funcs.deploy_relation_prediction(pre_trained_kge, str_subject, str_object, top_k)
dicee.static_funcs.vocab_to_parquet(vocab_to_idx, name, path_for_serialization, print_into)
dicee.static_funcs.create experiment folder (folder name='Experiments')
dicee.static_funcs.continual training setup executor(executor) \rightarrow None
dicee.static_funcs.exponential_function(x: numpy.ndarray, lam: float, ascending_order=True)
             \rightarrow torch.FloatTensor
dicee.static_funcs.load_numpy(path) \rightarrow numpy.ndarray
dicee.static_funcs.evaluate(entity to idx, scores, easy answers, hard answers)
     # @TODO: CD: Renamed this function Evaluate multi hop query answering on different query types
dicee.static_funcs.download_file(url, destination_folder='.')
dicee.static_funcs.download_files_from_url(base\_url: str, destination\_folder='.') \rightarrow None
          Parameters
                 base_url
                                 (e.g.
                                                  "https://files.dice-research.org/projects/DiceEmbeddings/
                   KINSHIP-Keci-dim128-epoch256-KvsAll")
                 • destination_folder(e.g. "KINSHIP-Keci-dim128-epoch256-KvsAll")
```

dicee.static_funcs.download_pretrained_model($\mathit{url}: \mathit{str}$) \to str

dicee.static funcs training

Functions

Module Contents

```
dicee.static_funcs_training.make_iterable_verbose (iterable_object, verbose, desc='Default', position=None, leave=True) → Iterable

dicee.static_funcs_training.evaluate_lp (model, triple_idx, num_entities, er_vocab: Dict[Tuple, List], re_vocab: Dict[Tuple, List], info='Eval Starts')

Evaluate model in a standard link prediction task
```

for each triple the rank is computed by taking the mean of the filtered missing head entity rank and the filtered missing tail entity rank :param model: :param triple_idx: :param info: :return:

dicee.static_preprocess_funcs

Attributes

enable_log

Functions

```
timeit(func)
preprocesses\_input\_args(args) \qquad Sanity Checking in input arguments
create\_constraints(\rightarrow Tuple[dict, dict, dict])
get\_er\_vocab(data)
get\_re\_vocab(data)
get\_ee\_vocab(data)
mapping\_from\_first\_two\_cols\_to\_third(train\_se)
```

Module Contents

- (1) Extract domains and ranges of relations
- (2) Store a mapping from relations to entities that are outside of the domain and range. Create constraints entities based on the range of relations :param triples: :return:

```
dicee.static_preprocess_funcs.get_er_vocab(data)
dicee.static_preprocess_funcs.get_re_vocab(data)
dicee.static_preprocess_funcs.get_ee_vocab(data)
dicee.static_preprocess_funcs.mapping_from_first_two_cols_to_third(train_set_idx)
```

dicee.trainer

Submodules

dicee.trainer.dice_trainer

Classes

EnsembleKGE	
DICE_Trainer	DICE_Trainer implement

Functions

```
load_term_mapping([file_path])
initialize_trainer(...)
get_callbacks(args)
```

Module Contents

```
class dicee.trainer.dice_trainer.EnsembleKGE(model)
     models = []
     optimizers = []
     __iter__()
     __len__()
     __call__(*args, **kwargs)
     __getattr__(name)
     __str__()
dicee.trainer.dice_trainer.load_term_mapping(file_path=str)
dicee.trainer.dice_trainer.initialize_trainer(args, callbacks)
            → dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer_ddp.TorchDDF
dicee.trainer.dice_trainer.get_callbacks(args)
class dicee.trainer.dice_trainer.DICE_Trainer (args, is_continual_training, storage_path,
           evaluator=None)
     DICE Trainer implement
          1- Pytorch Lightning trainer (https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html)
          2- Multi-GPU Trainer(https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.
          html) 3- CPU Trainer
          args
          is_continual_training:bool
          storage_path:str
          evaluator:
          report:dict
     report
     args
     trainer = None
     is_continual_training
```

```
storage_path
evaluator
form_of_labelling = None
continual_start (knowledge_graph)
              (1) Initialize training.
              (2) Load model
             (3) Load trainer (3) Fit model
             Parameter
                         returns

    model

                                    • form_of_labelling (str)
initialize_trainer(callbacks: List)
                                   \rightarrow lightning.Trainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_trainer.torch_tra
             Initialize Trainer from input arguments
initialize_or_load_model()
init_dataloader (dataset: torch.utils.data.Dataset) → torch.utils.data.DataLoader
init_dataset() → torch.utils.data.Dataset
start (knowledge_graph: dicee.knowledge_graph.KG | numpy.memmap)
                                   → Tuple[dicee.models.base_model.BaseKGE, str]
             Start the training
              (1) Initialize Trainer
              (2) Initialize or load a pretrained KGE model
             in DDP setup, we need to load the memory map of already read/index KG.
k\_fold\_cross\_validation(dataset) \rightarrow Tuple[dicee.models.base\_model.BaseKGE, str]
             Perform K-fold Cross-Validation
                 1. Obtain K train and test splits.
                 2. For each split,
                                   2.1 initialize trainer and model 2.2. Train model with configuration provided in args. 2.3. Compute
                                   the mean reciprocal rank (MRR) score of the model on the test respective split.
                 3. Report the mean and average MRR.
                         Parameters
                                    • self

    dataset
```

Returns model

dicee.trainer.model_parallelism

Classes

MP	Abstract class for Trainer class for knowledge graph em-
	bedding models

Module Contents

```
class dicee.trainer.model_parallelism.MP (args, callbacks)
Bases: dicee.abstracts.AbstractTrainer
```

Abstract class for Trainer class for knowledge graph embedding models

Parameter

```
args
    [str] ?

callbacks: list
    ?

get_ensemble()

fit(*args, **kwargs)
    Train model

extract_input_outputs(z: list)
```

dicee.trainer.torch_trainer

Classes

xMP	Abstract class for Trainer class for knowledge graph embedding models
TorchTrainer	TorchTrainer for using single GPU or multi CPUs on a single node

Module Contents

```
class dicee.trainer.torch_trainer.xMP (args, callbacks)
    Bases: dicee.abstracts.AbstractTrainer
```

Abstract class for Trainer class for knowledge graph embedding models

Parameter

```
args
[str] ?
callbacks: list
```

```
loss_function = None
     optimizer = None
     model = None
     train_dataloaders = None
     training_step = None
     available_gpus
     process
     fit (*args, train\_dataloaders, **kwargs) \rightarrow None
               Training starts
               Arguments
           kwargs:Tuple
               empty dictionary
               Return type
                   batch loss (float)
     forward_backward_update (x\_batch: torch. Tensor, y\_batch: torch. Tensor) \rightarrow torch. Tensor
               Compute forward, loss, backward, and parameter update
               Arguments
               Return type
                   batch loss (float)
     \verb|extract_input_outputs_set_device| (\textit{batch: list}) \rightarrow Tuple
               Construct inputs and outputs from a batch of inputs with outputs From a batch of inputs and put
               Arguments
               Return type
                   (tuple) mini-batch on select device
class dicee.trainer.torch_trainer.TorchTrainer(args, callbacks)
     Bases: dicee.abstracts.AbstractTrainer
           TorchTrainer for using single GPU or multi CPUs on a single node
           Arguments
     callbacks: list of Abstract callback instances
     loss_function = None
     optimizer = None
     model = None
     train_dataloaders = None
```

```
training_step = None
```

process

 $fit (*args, train_dataloaders, **kwargs) \rightarrow None$

Training starts

Arguments

kwargs:Tuple

empty dictionary

Return type

batch loss (float)

 $\textbf{forward_backward_update} (x_batch: torch.Tensor, y_batch: torch.Tensor) \rightarrow \text{torch}.Tensor$

Compute forward, loss, backward, and parameter update

Arguments

Return type

batch loss (float)

 $\verb|extract_input_outputs_set_device|(\textit{batch: list})| \to \mathsf{Tuple}|$

Construct inputs and outputs from a batch of inputs with outputs From a batch of inputs and put Arguments

Return type

(tuple) mini-batch on select device

dicee.trainer.torch_trainer_ddp

Classes

TorchDDPTrainer

A Trainer based on torch.nn.parallel.DistributedDataParallel

NodeTrainer

Functions

 $make_iterable_verbose(\rightarrow Iterable)$

Module Contents

dicee.trainer.torch_trainer_ddp.make_iterable_verbose (iterable_object, verbose, $desc='Default', position=None, leave=True) \rightarrow Iterable$

```
class dicee.trainer.torch_trainer_ddp.TorchDDPTrainer(args, callbacks)
     Bases: dicee.abstracts.AbstractTrainer
          A Trainer based on torch.nn.parallel.DistributedDataParallel
          Arguments
     entity_idxs
          mapping.
     relation_idxs
          mapping.
     form
     store
     label_smoothing_rate
          Using hard targets (0,1) drives weights to infinity. An outlier produces enormous gradients.
          Return type
              torch.utils.data.Dataset
     fit (*args, **kwargs)
          Train model
class dicee.trainer.torch_trainer_ddp.NodeTrainer(trainer, model: torch.nn.Module,
            train_dataset_loader: torch.utils.data.DataLoader, callbacks, num_epochs: int)
     trainer
     local_rank
     global_rank
     optimizer
     train_dataset_loader
     loss_func
     callbacks
     model
     num_epochs
     loss_history = []
     ctx
     scaler
     extract_input_outputs (z: list)
     train()
          Training loop for DDP
```

DICE_Trainer

DICE_Trainer implement

Package Contents

```
class dicee.trainer.DICE_Trainer(args, is_continual_training, storage_path, evaluator=None)
     DICE_Trainer implement
           1- Pytorch Lightning trainer (https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html)
           2- Multi-GPU Trainer(https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.
           html) 3- CPU Trainer
           args
          is_continual_training:bool
          storage_path:str
           evaluator:
          report:dict
     report
     args
     trainer = None
     is_continual_training
     storage_path
     evaluator
     form_of_labelling = None
     continual_start (knowledge_graph)
           (1) Initialize training.
           (2) Load model
           (3) Load trainer (3) Fit model
           Parameter
               returns

    model

                   • form_of_labelling (str)
     initialize_trainer(callbacks: List)
```

 \rightarrow lightning.Trainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_tra Initialize Trainer from input arguments

```
initialize_or_load_model()
```

 $init_dataloader$ (dataset: torch.utils.data.Dataset) \rightarrow torch.utils.data.DataLoader

 $init_dataset() \rightarrow torch.utils.data.Dataset$

 $\begin{tabular}{ll} \textbf{start} & (knowledge_graph: dicee.knowledge_graph.KG \mid numpy.memmap) \\ & \rightarrow \textbf{Tuple}[dicee.models.base_model.BaseKGE, str] \\ \end{tabular}$

Start the training

- (1) Initialize Trainer
- (2) Initialize or load a pretrained KGE model

in DDP setup, we need to load the memory map of already read/index KG.

 $k_fold_cross_validation(dataset) \rightarrow Tuple[dicee.models.base_model.BaseKGE, str]$

Perform K-fold Cross-Validation

- 1. Obtain K train and test splits.
- 2. For each split,
 - 2.1 initialize trainer and model 2.2. Train model with configuration provided in args. 2.3. Compute the mean reciprocal rank (MRR) score of the model on the test respective split.
- 3. Report the mean and average MRR.

Parameters

- self
- dataset

Returns

model

14.2 Attributes

__version__

14.3 Classes

Pyke	A Physical Embedding Model for Knowledge Graphs
DistMult	Embedding Entities and Relations for Learning and Infer-
	ence in Knowledge Bases
KeciBase	Without learning dimension scaling
Keci	Base class for all neural network modules.
TransE	Translating Embeddings for Modeling
DeCaL	Base class for all neural network modules.
DualE	Dual Quaternion Knowledge Graph Embeddings
	(https://ojs.aaai.org/index.php/AAAI/article/download/
	16850/16657)
ComplEx	Base class for all neural network modules.
AConEx	Additive Convolutional ComplEx Knowledge Graph Em-
	beddings
AConv0	Additive Convolutional Octonion Knowledge Graph Em-
	beddings

Table 3 - continued from previous page

AConvQ	Additive Convolutional Quaternion Knowledge Graph Embeddings
ConvQ	Convolutional Quaternion Knowledge Graph Embeddings
ConvO	Base class for all neural network modules.
ConEx	Convolutional ComplEx Knowledge Graph Embeddings
QMult	Base class for all neural network modules.
OMult	Base class for all neural network modules.
Shallom	A shallow neural model for relation prediction (https://arxiv.org/abs/2101.09090)
LFMult	Embedding with polynomial functions. We represent all entities and relations in the polynomial space as:
PykeenKGE	A class for using knowledge graph embedding models implemented in Pykeen
BytE	Base class for all neural network modules.
BaseKGE	Base class for all neural network modules.
DICE_Trainer	DICE_Trainer implement
KGE	Knowledge Graph Embedding Class for interactive usage of pre-trained models
Execute	A class for Training, Retraining and Evaluation a model.
BPE_NegativeSamplingDataset	An abstract class representing a Dataset.
MultiLabelDataset	An abstract class representing a Dataset.
MultiClassClassificationDataset	Dataset for the 1vsALL training strategy
OnevsAllDataset	Dataset for the 1vsALL training strategy
KvsAll	Creates a dataset for KvsAll training by inheriting from torch.utils.data.Dataset.
AllvsAll	Creates a dataset for AllvsAll training by inheriting from torch.utils.data.Dataset.
OnevsSample	A custom PyTorch Dataset class for knowledge graph embeddings, which includes
KvsSampleDataset	KysSample a Dataset:
NegSampleDataset	An abstract class representing a Dataset.
TriplePredictionDataset	Triple Dataset
CVDataModule	Create a Dataset for cross validation
QueryGenerator	

14.4 Functions

create_recipriocal_triples(X)	Add inverse triples into dask dataframe
<pre>get_er_vocab(data[, file_path])</pre>	
<pre>get_re_vocab(data[, file_path])</pre>	
<pre>get_ee_vocab(data[, file_path])</pre>	
timeit(func)	
<pre>save_pickle(*[, data, file_path])</pre>	

Table 4 - continued from previous page

```
load_pickle([file_path])
load_term_mapping([file_path])
                         is_continual_training,
select_model(args[,
                                                 stor-
age_path])
load_model(→ Tuple[object, Tuple[dict, dict]])
                                                        Load weights and initialize pytorch module from names-
                                                        pace arguments
                                                        Construct Ensemble Of weights and initialize pytorch
load_model_ensemble(...)
                                                        module from namespace arguments
save_numpy_ndarray(*, data, file_path)
                                                        Detect most efficient data type for a given triples
numpy_data_type_changer(→ numpy.ndarray)
                                                        Store Pytorch model into disk
save\_checkpoint\_model(\rightarrow None)
store(\rightarrow None)
                                                        Store trained_model model and save embeddings into csv
add\_noisy\_triples(\rightarrow pandas.DataFrame)
                                                        Add randomly constructed triples
read_or_load_kg(args, cls)
intialize\_model(\rightarrow Tuple[object, str])
load_json(\rightarrow dict)
save\_embeddings(\rightarrow None)
                                                        Save it as CSV if memory allows.
random_prediction(pre_trained_kge)
deploy_triple_prediction(pre_trained_kge,
str_subject, ...)
deploy_tail_entity_prediction(pre_trained_kge,
deploy_head_entity_prediction(pre_trained_kge,
...)
deploy_relation_prediction(pre_trained_kge,
vocab_to_parquet(vocab_to_idx, name, ...)
create_experiment_folder([folder_name])
continual\_training\_setup\_executor(\rightarrow None)
exponential\_function( \rightarrow torch.FloatTensor)
load_numpy(→ numpy.ndarray)
                                                        # @TODO: CD: Renamed this function
evaluate(entity_to_idx,
                             scores,
                                        easy_answers,
hard_answers)
download_file(url[, destination_folder])
download\_files\_from\_url(\rightarrow None)
download\_pretrained\_model(\rightarrow str)
```

Table 4 - continued from previous page

```
{\it mapping\_from\_first\_two\_cols\_to\_third} (train\_se
timeit(func)
load_term_mapping([file_path])
                                                         Reload the files from disk to construct the Pytorch dataset
reload_dataset(path, form_of_labelling, ...)
construct_dataset(→ torch.utils.data.Dataset)
```

14.5 Package Contents

```
class dicee.Pyke(args)
     Bases: dicee.models.base_model.BaseKGE
     A Physical Embedding Model for Knowledge Graphs
     name = 'Pyke'
     dist_func
     margin = 1.0
     forward_triples (x: torch.LongTensor)
              Parameters
class dicee.DistMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding Entities and Relations for Learning and Inference in Knowledge Bases https://arxiv.org/abs/1412.6575
     name = 'DistMult'
     k_vs_all_score (emb_h: torch.FloatTensor, emb_r: torch.FloatTensor, emb_E: torch.FloatTensor)
              Parameters
                  • emb_h
                  • emb_r
                  • emb E
     forward_k_vs_all (x: torch.LongTensor)
     forward_k_vs_sample (x: torch.LongTensor, target_entity_idx: torch.LongTensor)
     score(h, r, t)
class dicee.KeciBase(args)
     Bases: Keci
     Without learning dimension scaling
     name = 'KeciBase'
```

requires_grad_for_interactions = False

```
class dicee.Keci(args)
```

Bases: dicee.models.base_model.BaseKGE

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'Keci'
p
q
r
requires_grad_for_interactions = True
compute_sigma_pp (hp, rp)
   Compute sigma_{pp} = sum_{i=1}^{p-1} sum_{k=i+1}^p (h_i r_k - h_k r_i) e_i e_k
   sigma_{pp} = saptures the interactions between along p bases For instance, let p e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops
   results = [] for i in range(p - 1):
        for k in range(i + 1, p):
            results.append(hp[:, :, i] * rp[:, :, k] * rp[:, :, i])
        sigma_pp = torch.stack(results, dim=2) assert sigma_pp.shape == (b, r, int((p * (p - 1)) / 2))
```

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

```
e2e1, e2e2, e2e3, e3e1, e3e2, e3e3
```

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

```
compute\_sigma\_qq(hq, rq)
```

Compute $sigma_{qq} = sum_{j=1}^{p+q-1} sum_{k=j+1}^{p+q} (h_j r_k - h_k r_j) e_j e_k sigma_{q}$ captures the interactions between along q bases For instance, let q e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops

```
results = [] for j in range(q - 1):
```

for k in range(j + 1, q):

```
results.append(hq[:, :, j] * rq[:, :, k] - hq[:, :, k] * rq[:, :, j])
```

```
sigma_q = torch.stack(results, dim=2) assert sigma_qq.shape == (b, r, int((q * (q - 1)) / 2))
```

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

```
e2e1, e2e2, e2e3, e3e1, e3e2, e3e3
```

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

```
compute_sigma_pq(*, hp, hq, rp, rq)
```

```
sum \{i=1\}^{p} sum \{j=p+1\}^{p+q} (h ir j-h jr i) e ie j
```

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

for j in range(q):

$$sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]$$

print(sigma_pq.shape)

apply_coefficients(hp, hq, rp, rq)

Multiplying a base vector with its scalar coefficient

clifford_multiplication (h0, hp, hq, r0, rp, rq)

Compute our CL multiplication

```
 h = h_0 + sum_{i=1}^p h_i e_i + sum_{j=p+1}^{p+q} h_j e_j r = r_0 + sum_{i=1}^p r_i e_i + sum_{j=p+1}^{p+q} r_j e_j
```

ei
$$^2 = +1$$
 for i =< i =< p ej $^2 = -1$ for p < j =< p+q ei ej = -eje1 for i

eq j

 $h r = sigma_0 + sigma_p + sigma_q + sigma_{pp} + sigma_{q} + sig$

- (1) $sigma_0 = h_0 r_0 + sum_{i=1}^p (h_0 r_i) e_i sum_{j=p+1}^{p+q} (h_j r_j) e_j$
- (2) $sigma_p = sum_{i=1}^p (h_0 r_i + h_i r_0) e_i$
- (3) $sigma_q = sum_{j=p+1}^{p+q} (h_0 r_j + h_j r_0) e_j$
- (4) $sigma_{pp} = sum_{i=1}^{p-1} sum_{k=i+1}^p (h_i r_k h_k r_i) e_i e_k$
- (5) $sigma_{qq} = sum_{j=1}^{p+q-1} sum_{k=j+1}^{p+q} (h_j r_k h_k r_j) e_j e_k$
- (6) $sigma_{pq} = sum_{i=1}^{p} sum_{j=p+1}^{p+q} (h_i r_j h_j r_i) e_i e_j$

$\verb"construct_cl_multivector"\,(x:\,torch.FloatTensor,\,r:\,int,\,p:\,int,\,q:\,int)$

→ tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]

Construct a batch of multivectors $Cl_{p,q}(mathbb\{R\}^d)$

Parameter

x: torch.FloatTensor with (n,d) shape

returns

- **a0** (torch.FloatTensor with (n,r) shape)
- **ap** $(torch.FloatTensor\ with\ (n,r,p)\ shape)$
- aq (torch.FloatTensor with (n,r,q) shape)

forward_k_vs_with_explicit(x: torch.Tensor)

 $k_vs_all_score$ (bpe_head_ent_emb, bpe_rel_ent_emb, E)

 $\textbf{forward_k_vs_all} \ (x: torch.Tensor) \ \rightarrow \text{torch.FloatTensor}$

Kvsall training

- (1) Retrieve real-valued embedding vectors for heads and relations mathbb $\{R\}^d$.
- (2) Construct head entity and relation embeddings according to $Cl_{p,q}(mathbb{R}^d)$.
- (3) Perform Cl multiplication
- (4) Inner product of (3) and all entity embeddings

forward_k_vs_with_explicit and this functions are identical Parameter — x: torch.LongTensor with (n,2) shape :rtype: torch.FloatTensor with (n, |E|) shape

 $\verb|construct_batch_selected_cl_multivector||(x: torch.FloatTensor, r: int, p: int, q: int)|$

→ tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]

Construct a batch of batchs multivectors $Cl_{p,q}(mathbb{R}^d)$

Parameter

x: torch.FloatTensor with (n,k, d) shape

returns

- **a0** (torch.FloatTensor with (n,k, m) shape)
- **ap** (torch.FloatTensor with (n,k, m, p) shape)
- **aq** (torch.FloatTensor with (n,k, m, q) shape)

 $forward_k_vs_sample$ (x: torch.LongTensor, target_entity_idx: torch.LongTensor) \rightarrow torch.FloatTensor

Parameter

x: torch.LongTensor with (n,2) shape

target_entity_idx: torch.LongTensor with (n, k) shape k denotes the selected number of examples.

rtype

torch.FloatTensor with (n, k) shape

 $\mathtt{score}\,(h,\,r,\,t)$

 $forward_triples(x: torch.Tensor) \rightarrow torch.FloatTensor$

Parameter

```
x: torch.LongTensor with (n,3) shape
```

rtype

torch.FloatTensor with (n) shape

```
class dicee.TransE(args)
```

```
Bases: dicee.models.base_model.BaseKGE
```

Translating Embeddings for Modeling Multi-relational Data https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

```
name = 'TransE'

margin = 4

score (head_ent_emb, rel_ent_emb, tail_ent_emb)

forward_k_vs_all (x: torch.Tensor) → torch.FloatTensor

class dicee.DeCaL (args)

Bases: dicee.models.base_model.BaseKGE
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'DeCaL'
```

entity_embeddings

relation_embeddings

р

q

r

re

forward_triples (x: torch.Tensor) \rightarrow torch.FloatTensor

Parameter

x: torch.LongTensor with (n,) shape

rtype

torch.FloatTensor with (n) shape

 $cl_pqr(a: torch.tensor) \rightarrow torch.tensor$

Input: tensor(batch_size, emb_dim) \longrightarrow output: tensor with 1+p+q+r components with size (batch_size, emb_dim/(1+p+q+r)) each.

1) takes a tensor of size (batch_size, emb_dim), split it into 1 + p + q + r components, hence 1+p+q+r must be a divisor of the emb_dim. 2) Return a list of the 1+p+q+r components vectors, each are tensors of size (batch_size, emb_dim/(1+p+q+r))

compute_sigmas_single (list_h_emb, list_r_emb, list_t_emb)

here we compute all the sums with no others vectors interaction taken with the scalar product with t, that is,

$$s0 = h_0 r_0 t_0 s1 = \sum_{i=1}^p h_i r_i t_0 s2 = \sum_{j=p+1}^{p+q} h_j r_j t_0 s3 = \sum_{i=1}^q (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+1}^{p+q} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+1}^{p+q} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s5 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+1}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r} (h_0 r_i t_i + h_i r_0 t_i) s4 = \sum_{i=p+q+r}^{p+q+r}$$

and return:

$$sigma_0t = \sigma_0 \cdot t_0 = s0 + s1 - s2s3, s4ands5$$

compute_sigmas_multivect (list_h_emb, list_r_emb)

Here we compute and return all the sums with vectors interaction for the same and different bases.

For same bases vectors interaction we have

$$\sigma_p p = \sum_{i=1}^{p-1} \sum_{i'=i+1}^p (h_i r_{i'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q-1} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q-1} (h_j r_{j'} - h_{i'} r_i) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q-1} (h_j r_{j'} - h_{i'} r_j) (models the interactions between e_i and e_i' for 1 <= i, i' <= p) \sigma_q q = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q-1} (h_j r_j - h_{i'} r_j) (models the interactions between e_i and e_i' for 1 <= i, i' <= i, i'$$

For different base vector interactions, we have

$$\sigma_p q = \sum_{i=1}^p \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) (interactions n between e_i and e_j for 1 <= i <= p and p + 1 <= j <= p + q) \sigma_p r = \sum_{i=1}^p (h_i r_j - h_j r_i) (interactions n between e_i and e_j for 1 <= i <= p and p + 1 <= j <= p + q) \sigma_p r = \sum_{i=1}^p (h_i r_i - h_j r_i) (interactions n between e_i and e_j for 1 <= i <= p and p + 1 <= j <= p + q) \sigma_p r = \sum_{i=1}^p (h_i r_i - h_j r_i) (interactions n between e_i and e_j for 1 <= i <= p and p + 1 <= j <= p + q) \sigma_p r = \sum_{i=1}^p (h_i r_i - h_j r_i) (interactions n between e_i and e_j for 1 <= i <= p and p + 1 <= i <= p + q) \sigma_p r = \sum_{i=1}^p (h_i r_i - h_j r_i) (interactions n between e_i and e_j for 1 <= i <= p and p + 1 <= i <= p and p + 1 <= i <= p and p and$$

 $forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor$

Kvsall training

- (1) Retrieve real-valued embedding vectors for heads and relations
- (2) Construct head entity and relation embeddings according to $Cl_{p,q}$, $r_{mathbb}\{R\}^d$.
- (3) Perform Cl multiplication
- (4) Inner product of (3) and all entity embeddings

forward_k_vs_with_explicit and this funcitons are identical Parameter — x: torch.LongTensor with (n,) shape :rtype: torch.FloatTensor with (n, |E|) shape

 $apply_coefficients(h0, hp, hq, hk, r0, rp, rq, rk)$

Multiplying a base vector with its scalar coefficient

construct_cl_multivector (x: torch.FloatTensor, re: int, p: int, q: int, r: int)

→ tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]

Construct a batch of multivectors $Cl_{p,q,r}(mathbb\{R\}^d)$

Parameter

x: torch.FloatTensor with (n,d) shape

returns

- **a0** (torch.FloatTensor)
- **ap** (torch.FloatTensor)
- aq (torch.FloatTensor)
- **ar** (torch.FloatTensor)

 $compute_sigma_pp(hp, rp)$

Compute .. math:

sigma_{pp} captures the interactions between along p bases For instance, let p e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops

```
results = [] for i in range(p - 1):
```

```
for k in range(i + 1, p):
```

```
results.append(hp[:,:,i] * rp[:,:,k] - hp[:,:,k] * rp[:,:,i]) \\
```

 $sigma_pp = torch.stack(results, dim=2) \ assert \ sigma_pp.shape == (b, r, int((p*(p-1)) / 2))$

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

 $\texttt{compute_sigma_qq}\,(hq,rq)$

Compute

$$\sigma_{q,q}^* = \sum_{j=p+1}^{p+q-1} \sum_{j'=j+1}^{p+q} (x_j y_{j'} - x_{j'} y_j) Eq.16$$

sigma_{q} captures the interactions between along q bases For instance, let q e_1, e_2, e_3, we compute interactions between e_1 e_2, e_1 e_3, and e_2 e_3 This can be implemented with a nested two for loops

results = [] for j in range(q - 1):

for k in range(j + 1, q):

results.append(hq[:, :, j] * rq[:, :, k] - hq[:, :, k] * rq[:, :, j])

 $sigma_qq = torch.stack(results, dim=2) assert sigma_qq.shape == (b, r, int((q * (q - 1)) / 2))$

Yet, this computation would be quite inefficient. Instead, we compute interactions along all p, e.g., e1e1, e1e2, e1e3,

Then select the triangular matrix without diagonals: e1e2, e1e3, e2e3.

 $compute_sigma_rr(hk, rk)$

$$\sigma_{r,r}^* = \sum_{k=p+q+1}^{p+q+r-1} \sum_{k'=k+1}^{p} (x_k y_{k'} - x_{k'} y_k)$$

compute_sigma_pq(*, hp, hq, rp, rq)

Compute

$$\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

for j in range(q):

$$sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]$$

print(sigma_pq.shape)

 $\texttt{compute_sigma_pr} \ (*, hp, hk, rp, rk)$

Compute

$$\sum_{i=1}^{p} \sum_{j=n+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

for j in range(q):

$$sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]$$

print(sigma_pq.shape)

 $\texttt{compute_sigma_qr} \ (*, hq, hk, rq, rk)$

$$\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} (h_i r_j - h_j r_i) e_i e_j$$

results = [] sigma_pq = torch.zeros(b, r, p, q) for i in range(p):

for i in range(q):

$$sigma_pq[:, :, i, j] = hp[:, :, i] * rq[:, :, j] - hq[:, :, j] * rp[:, :, i]$$

print(sigma_pq.shape)

```
class dicee.DualE(args)
                    Bases: dicee.models.base_model.BaseKGE
                    Dual Quaternion Knowledge Graph Embeddings (https://ojs.aaai.org/index.php/AAAI/article/download/16850/
                    16657)
                    name = 'DualE'
                    entity_embeddings
                    relation_embeddings
                    num_ent
                    {\tt kvsall\_score}\,(e\_1\_h,e\_2\_h,e\_3\_h,e\_4\_h,e\_5\_h,e\_6\_h,e\_7\_h,e\_8\_h,e\_1\_t,e\_2\_t,e\_3\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e\_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_t,e_4\_
                                                                e_5_t, e_6_t, e_7_t, e_8_t, r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8) \rightarrow \text{torch.tensor}
                                      KvsAll scoring function
                                       Input
                                      x: torch.LongTensor with (n, ) shape
                                       Output
                                      torch.FloatTensor with (n) shape
                    forward_triples (idx\_triple: torch.tensor) \rightarrow torch.tensor
                                       Negative Sampling forward pass:
                                       Input
                                      x: torch.LongTensor with (n, ) shape
                                       Output
                                       torch.FloatTensor with (n) shape
                    {\tt forward\_k\_vs\_all}\;(\mathcal{X})
                                      KvsAll forward pass
                                       Input
                                       x: torch.LongTensor with (n, ) shape
                                       Output
                                       torch.FloatTensor with (n) shape
                    T (x: torch.tensor) \rightarrow torch.tensor
                                       Transpose function
                                       Input: Tensor with shape (nxm) Output: Tensor with shape (mxn)
class dicee.ComplEx(args)
                    Bases: dicee.models.base_model.BaseKGE
                    Base class for all neural network modules.
```

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'ComplEx'
     static score (head_ent_emb: torch.FloatTensor, rel_ent_emb: torch.FloatTensor,
                 tail_ent_emb: torch.FloatTensor)
     static k_vs_all_score (emb_h: torch.FloatTensor, emb_r: torch.FloatTensor,
                 emb E: torch.FloatTensor)
              Parameters
                   • emb_h
                   • emb_r
                   • emb_E
     forward_k_vs_all(x: torch.LongTensor) \rightarrow torch.FloatTensor
     forward_k_vs_sample (x: torch.LongTensor, target_entity_idx: torch.LongTensor)
class dicee.AConEx(args)
     Bases: dicee.models.base_model.BaseKGE
     Additive Convolutional ComplEx Knowledge Graph Embeddings
     name = 'AConEx'
     conv2d
     fc_num_input
```

```
fc1
     norm_fc1
     bn_conv2d
     feature_map_dropout
     residual_convolution (C_1: Tuple[torch.Tensor, torch.Tensor],
                   C_2: Tuple[torch.Tensor, torch.Tensor]) \rightarrow torch.FloatTensor
           Compute residual score of two complex-valued embeddings. :param C_1: a tuple of two pytorch tensors
           that corresponds complex-valued embeddings :param C_2: a tuple of two pytorch tensors that corresponds
           complex-valued embeddings :return:
     \texttt{forward\_k\_vs\_all} \ (\textit{x: torch.Tensor}) \ \rightarrow \text{torch.FloatTensor}
     forward_triples (x: torch.Tensor) \rightarrow torch.FloatTensor
               Parameters
     forward_k_vs_sample (x: torch.Tensor, target_entity_idx: torch.Tensor)
class dicee.AConvO(args: dict)
     Bases: dicee.models.base_model.BaseKGE
     Additive Convolutional Octonion Knowledge Graph Embeddings
     name = 'AConvO'
     conv2d
     fc_num_input
     fc1
     bn_conv2d
     norm fc1
     feature_map_dropout
     static octonion_normalizer(emb_rel_e0, emb_rel_e1, emb_rel_e2, emb_rel_e3, emb_rel_e4,
                  emb_rel_e5, emb_rel_e6, emb_rel_e7)
     residual_convolution (O_1, O_2)
     forward\_triples(x: torch.Tensor) \rightarrow torch.Tensor
               Parameters
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,)
           Entities l)
class dicee.AConvQ(args)
     Bases: dicee.models.base_model.BaseKGE
```

Additive Convolutional Quaternion Knowledge Graph Embeddings

```
name = 'AConvQ'
     entity_embeddings
     relation_embeddings
     conv2d
     fc_num_input
     fc1
     bn_conv1
     bn_conv2
     feature_map_dropout
     {\tt residual\_convolution}\,(Q\_1,\,Q\_2)
     forward\_triples (indexed\_triple: torch.Tensor) \rightarrow torch.Tensor
               Parameters
                   x
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
          [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,|
          Entities l)
class dicee.ConvQ(args)
     Bases: dicee.models.base_model.BaseKGE
     Convolutional Quaternion Knowledge Graph Embeddings
     name = 'ConvQ'
     entity_embeddings
     relation_embeddings
     conv2d
     fc_num_input
     fc1
     bn_conv1
     bn_conv2
     feature_map_dropout
     {\tt residual\_convolution}\,(Q\_I,\,Q\_2)
     forward\_triples (indexed\_triple: torch.Tensor) \rightarrow torch.Tensor
               Parameters
                   x
```

```
forward_k_vs_all (x: torch.Tensor)
```

Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

```
class dicee.ConvO(args: dict)
```

Bases: dicee.models.base_model.BaseKGE

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to (), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training (bool) – Boolean represents whether this module is in training or evaluation mode.

```
name = 'ConvO'
conv2d

fc_num_input

fc1

bn_conv2d

norm_fc1

feature_map_dropout

static octonion_normalizer(emb_rel_e0, emb_rel_e1, emb_rel_e2, emb_rel_e3, emb_rel_e4, emb_rel_e5, emb_rel_e6, emb_rel_e7)
```

```
residual_convolution (O_1, O_2)
     forward\_triples(x: torch.Tensor) \rightarrow torch.Tensor
               Parameters
                   x
     forward_k_vs_all (x: torch.Tensor)
           Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] =>
           [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,|
           Entities l)
class dicee.ConEx(args)
     Bases: dicee.models.base_model.BaseKGE
     Convolutional ComplEx Knowledge Graph Embeddings
     name = 'ConEx'
     conv2d
     fc_num_input
     fc1
     norm_fc1
     bn_conv2d
     feature_map_dropout
     residual_convolution (C_1: Tuple[torch.Tensor, torch.Tensor],
                  C_2: Tuple[torch.Tensor, torch.Tensor]) \rightarrow torch.FloatTensor
           Compute residual score of two complex-valued embeddings. :param C_1: a tuple of two pytorch tensors
           that corresponds complex-valued embeddings :param C_2: a tuple of two pytorch tensors that corresponds
           complex-valued embeddings :return:
     forward_k_vs_all(x: torch.Tensor) \rightarrow torch.FloatTensor
     forward\_triples(x: torch.Tensor) \rightarrow torch.FloatTensor
               Parameters
     forward_k_vs_sample (x: torch.Tensor, target_entity_idx: torch.Tensor)
class dicee.QMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Base class for all neural network modules.
     Your models should also subclass this class.
     Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules
     as regular attributes:
      import torch.nn as nn
      import torch.nn.functional as F
      class Model(nn.Module):
                                                                                             (continues on next page)
```

(continued from previous page)

```
def __init__ (self) -> None:
    super().__init__()
    self.conv1 = nn.Conv2d(1, 20, 5)
    self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an <u>__init__</u>() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
\label{eq:continuous_product} $$ \text{name} = 'QMult'$ $$ explicit = True $$ quaternion_multiplication_followed_by_inner_product $(h,r,t)$ $$ $$
```

Parameters

- h shape: (*batch_dims, dim) The head representations.
- **r** shape: (*batch_dims, dim) The head representations.
- t shape: (*batch_dims, dim) The tail representations.

Returns

Triple scores.

 $static quaternion_normalizer(x: torch.FloatTensor) \rightarrow torch.FloatTensor$

Normalize the length of relation vectors, if the forward constraint has not been applied yet.

Absolute value of a quaternion

$$|a + bi + cj + dk| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

L2 norm of quaternion vector:

$$||x||^2 = \sum_{i=1}^d |x_i|^2 = \sum_{i=1}^d (x_i \cdot re^2 + x_i \cdot im_1^2 + x_i \cdot im_2^2 + x_i \cdot im_3^2)$$

Parameters

 \mathbf{x} – The vector.

Returns

The normalized vector.

 $k_vs_all_score$ (bpe_head_ent_emb, bpe_rel_ent_emb, E)

Parameters

- bpe_head_ent_emb
- bpe_rel_ent_emb

. F

 ${\tt forward_k_vs_all}\;(\mathcal{X})$

Parameters

x

forward_k_vs_sample (x, target_entity_idx)

Completed. Given a head entity and a relation (h,r), we compute scores for all possible triples,i.e., [score(h,r,x)|x in Entities] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

```
class dicee.OMult(args)
```

Bases: dicee.models.base_model.BaseKGE

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model (nn.Module):
    def __init__ (self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'OMult'
     static octonion_normalizer(emb_rel_e0, emb_rel_e1, emb_rel_e2, emb_rel_e3, emb_rel_e4,
                  emb rel e5, emb rel e6, emb rel e7)
     score (head_ent_emb: torch.FloatTensor, rel_ent_emb: torch.FloatTensor,
                  tail_ent_emb: torch.FloatTensor)
     k_vs_all_score (bpe_head_ent_emb, bpe_rel_ent_emb, E)
     forward_k_vs_all(X)
           Completed. Given a head entity and a relation (h,r), we compute scores for all possible triples, i.e.,
           [score(h,r,x)|x \text{ in Entities}] => [0.0,0.1,...,0.8], shape=> (1, |Entities|) Given a batch of head entities and
           relations => shape (size of batch, | Entities|)
class dicee.Shallom(args)
     Bases: dicee.models.base_model.BaseKGE
     A shallow neural model for relation prediction (https://arxiv.org/abs/2101.09090)
     name = 'Shallom'
     shallom
     \texttt{get\_embeddings}\,()\,\to Tuple[numpy.ndarray,\,None]
     \mathbf{forward\_k\_vs\_all}\;(x)\;\to torch.FloatTensor
     forward_triples (x) \rightarrow \text{torch.FloatTensor}
               Parameters
                   x
               Returns
class dicee.LFMult(args)
     Bases: dicee.models.base_model.BaseKGE
     Embedding with polynomial functions. We represent all entities and relations in the polynomial space as: f(x) =
     sum_{i=0}^{d-1} a_k x^{i\%d} and use the three differents scoring function as in the paper to evaluate the score.
     We also consider combining with Neural Networks.
     name = 'LFMult'
     entity_embeddings
     relation_embeddings
     degree
     x values
     forward_triples (idx_triple)
               Parameters
                   x
     construct_multi_coeff(x)
```

```
poly_NN(x, coefh, coefr, coeft)
```

Constructing a 2 layers NN to represent the embeddings. $h = sigma(wh^T x + bh)$, $r = sigma(wr^T x + br)$, $t = sigma(wt^T x + bt)$

linear (x, w, b)

$scalar_batch_NN(a, b, c)$

element wise multiplication between a,b and c: Inputs : a, b, c ====> torch.tensor of size batch_size x m x d Output : a tensor of size batch_size x d

tri_score (coeff_h, coeff_r, coeff_t)

this part implement the trilinear scoring techniques:

$$score(h,r,t) = int_{0}\{1\} \ h(x)r(x)t(x) \ dx = sum_{i,j,k} = 0\}^{d-1} \ dfrac\{a_i*b_j*c_k\}\{1+(i+j+k)\%d\}$$

- 1. generate the range for i, j and k from [0 d-1]
- 2. perform $dfrac\{a_i*b_j*c_k\}\{1+(i+j+k)\%d\}$ in parallel for every batch
- 3. take the sum over each batch

vtp score (h, r, t)

this part implement the vector triple product scoring techniques:

```
score(h,r,t) = int_{0}{1} \quad h(x)r(x)t(x) \quad dx = sum_{i,j,k} = 0^{d-1} \quad dfrac_{a_i*c_j*b_k} - b_i*c_j*a_k}{(1+(i+j)\%d)(1+k)}
```

- 1. generate the range for i,j and k from [0 d-1]
- 2. Compute the first and second terms of the sum
- 3. Multiply with then denominator and take the sum
- 4. take the sum over each batch

comp func (h, r, t)

this part implement the function composition scoring techniques: i.e. score = <hor, t>

```
polynomial(coeff, x, degree)
```

This function takes a matrix tensor of coefficients (coeff), a tensor vector of points x and range of integer [0,1,...d] and return a vector tensor (coeff $[0][0] + \text{coeff}[0][1]x + ... + \text{coeff}[0][d]x^d$,

$$coeff[1][0] + coeff[1][1]x + ... + coeff[1][d]x^d$$

```
pop (coeff, x, degree)
```

This function allow us to evaluate the composition of two polynomes without for loops :) it takes a matrix tensor of coefficients (coeff), a matrix tensor of points x and range of integer [0,1,...d]

```
and return a tensor (coeff[0][0] + coeff[0][1]x + ... + coeff[0][d]x^d,
```

$$coeff[1][0] + coeff[1][1]x + ... + coeff[1][d]x^d$$

class dicee.PykeenKGE(args: dict)

Bases: dicee.models.base_model.BaseKGE

A class for using knowledge graph embedding models implemented in Pykeen

Notes: Pykeen_DistMult: C Pykeen_ComplEx: Pykeen_QuatE: Pykeen_MuRE: Pykeen_CP: Pykeen_HolE: Pykeen_HolE: Pykeen_HolE:

model kwargs

name

```
model
              loss_history = []
              args
              entity_embeddings = None
              relation_embeddings = None
              forward_k_vs_all (x: torch.LongTensor)
                           # => Explicit version by this we can apply bn and dropout
                           # (1) Retrieve embeddings of heads and relations + apply Dropout & Normalization if given. h, r =
                           self.get_head_relation_representation(x) \# (2) Reshape (1). if self.last_dim > 0:
                                      h = h.reshape(len(x), self.embedding\_dim, self.last\_dim) \\ r = r.reshape(len(x), self.embedding\_dim, self.embedding\_dim) \\ r = r.reshap
                                      self.last_dim)
                           \# (3) Reshape all entities. if self.last_dim > 0:
                                      t = self.entity embeddings.weight.reshape(self.num entities, self.embedding dim, self.last dim)
                           else:
                                      t = self.entity_embeddings.weight
                           # (4) Call the score t from interactions to generate triple scores. return self.interaction.score t(h=h, r=r,
                           all_entities=t, slice_size=1)
              forward\_triples(x: torch.LongTensor) \rightarrow torch.FloatTensor
                           # => Explicit version by this we can apply bn and dropout
                           # (1) Retrieve embeddings of heads, relations and tails and apply Dropout & Normalization if given. h, r, t =
                           self.get_triple_representation(x) \# (2) Reshape (1). if self.last_dim > 0:
                                      h = h.reshape(len(x), self.embedding\_dim, self.last\_dim) r = r.reshape(len(x), self.embedding\_dim,
                                      self.last_dim) t = t.reshape(len(x), self.embedding_dim, self.last_dim)
                           # (3) Compute the triple score return self.interaction.score(h=h, r=r, t=t, slice_size=None, slice_dim=0)
              abstract forward_k_vs_sample (x: torch.LongTensor, target_entity_idx)
class dicee.BytE(*args, **kwargs)
```

Bases: dicee.models.base_model.BaseKGE

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
```

```
def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ o 1)$ – Boolean represents whether this module is in training or evaluation mode.

```
name = 'BytE'
config
temperature = 0.5
topk = 2
transformer
lm_head
loss_function(yhat_batch, y_batch)
```

Parameters

- yhat_batch
- y_batch

forward (x: torch.LongTensor)

Parameters

```
\mathbf{x} (B by T tensor)
```

generate (idx, max_new_tokens, temperature=1.0, top_k=None)

Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this.

```
training_step(batch, batch_idx=None)
```

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters

- batch The output of your data iterable, normally a DataLoader.
- batch_idx The index of this batch.
- dataloader_idx The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Returns

- Tensor The loss tensor
- dict A dictionary which can include any keys, but must include the key 'loss' in the case of automatic optimization.
- None In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.

In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Example:

```
def training_step(self, batch, batch_idx):
    x, y, z = batch
    out = self.encoder(x)
    loss = self.loss(out, x)
    return loss
```

To use multiple optimizers, you can switch to 'manual optimization' and control their stepping:

```
def __init__ (self):
    super().__init__()
    self.automatic_optimization = False

# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx):
    opt1, opt2 = self.optimizers()

# do training_step with encoder
    ...
    opt1.step()
    # do training_step with decoder
    ...
    opt2.step()
```

1 Note

When accumulate_grad_batches > 1, the loss returned here will be automatically normalized by accumulate_grad_batches internally.

class dicee.BaseKGE(args: dict)

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

1 Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables

training $(b \circ \circ 1)$ – Boolean represents whether this module is in training or evaluation mode.

args

```
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
```

```
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all (x: torch.LongTensor)
        Parameters
            x (B x 2 x T)
forward_byte_pair_encoded_triple (x: Tuple[torch.LongTensor, torch.LongTensor])
    byte pair encoded neural link predictors
        Parameters
init_params_with_sanity_checking()
forward(x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor],
           y_idx: torch.LongTensor = None)
        Parameters
            • x
            • y_idx
            • ordered_bpe_entities
forward\_triples(x: torch.LongTensor) \rightarrow torch.Tensor
        Parameters
forward_k_vs_all(*args, **kwargs)
forward_k_vs_sample(*args, **kwargs)
get_triple_representation(idx_hrt)
{\tt get\_head\_relation\_representation}\ (indexed\_triple)
```

```
get_sentence_representation(x: torch.LongTensor)
               Parameters
                   • (b (x shape)
                   • 3
                   • t)
     get_bpe_head_and_relation_representation(x: torch.LongTensor)
                   → Tuple[torch.FloatTensor, torch.FloatTensor]
               Parameters
                   x (B x 2 x T)
     get_embeddings() → Tuple[numpy.ndarray, numpy.ndarray]
dicee.create_recipriocal_triples(x)
     Add inverse triples into dask dataframe :param x: :return:
dicee.get_er_vocab(data, file_path: str = None)
dicee.get_re_vocab(data, file_path: str = None)
dicee.get_ee_vocab(data, file_path: str = None)
dicee.timeit(func)
dicee.save_pickle(*, data: object = None, file_path=str)
dicee.load_pickle(file_path=str)
dicee.load_term_mapping(file_path=str)
dicee.select_model(args: dict, is_continual_training: bool = None, storage_path: str = None)
dicee.load_model(path_of_experiment_folder: str, model_name='model.pt', verbose=0)
             → Tuple[object, Tuple[dict, dict]]
     Load weights and initialize pytorch module from namespace arguments
dicee.load_model_ensemble(path_of_experiment_folder: str)
             → Tuple[dicee.models.base_model.BaseKGE, Tuple[pandas.DataFrame, pandas.DataFrame]]
     Construct Ensemble Of weights and initialize pytorch module from namespace arguments
       (1) Detect models under given path
       (2) Accumulate parameters of detected models
       (3) Normalize parameters
       (4) Insert (3) into model.
dicee.save_numpy_ndarray(*, data: numpy.ndarray, file_path: str)
\texttt{dicee.numpy\_data\_type\_changer} (\textit{train\_set: numpy.ndarray}, \textit{num: int}) \rightarrow \texttt{numpy.ndarray}
     Detect most efficient data type for a given triples :param train_set: :param num: :return:
dicee.save_checkpoint_model(model, path: str) \rightarrow None
     Store Pytorch model into disk
```

```
dicee.store(trainer, trained_model, model_name: str = 'model', full_storage_path: str = None,
            save embeddings as csv=False) \rightarrow None
      Store trained_model model and save embeddings into csv file. :param trainer: an instance of trainer class :param
      full_storage_path: path to save parameters. :param model_name: string representation of the name of the model.
      :param trained_model: an instance of BaseKGE see core.models.base_model . :param save_embeddings_as_csv:
      for easy access of embeddings. :return:
dicee.add\_noisy\_triples (train_set: pandas.DataFrame, add_noise_rate: float) \rightarrow pandas.DataFrame
      Add randomly constructed triples :param train set: :param add noise rate: :return:
dicee.read_or_load_kg(args, cls)
dicee.intialize_model(args: dict, verbose=0) → Tuple[object, str]
dicee.load_json(p: str) \rightarrow dict
dicee.save_embeddings(embeddings: numpy.ndarray, indexes, path: str) \rightarrow None
      Save it as CSV if memory allows. :param embeddings: :param indexes: :param path: :return:
dicee.random_prediction(pre_trained_kge)
dicee.deploy_triple_prediction(pre_trained_kge, str_subject, str_predicate, str_object)
dicee.deploy_tail_entity_prediction(pre_trained_kge, str_subject, str_predicate, top_k)
dicee.deploy_head_entity_prediction(pre_trained_kge, str_object, str_predicate, top_k)
dicee.deploy_relation_prediction(pre_trained_kge, str_subject, str_object, top_k)
dicee.vocab_to_parquet(vocab_to_idx, name, path_for_serialization, print_into)
dicee.create_experiment_folder(folder_name='Experiments')
{\tt dicee.continual\_training\_setup\_executor}(\textit{executor}) \rightarrow None
dicee.exponential_function (x: numpy.ndarray, lam: float, ascending\_order=True) \rightarrow torch.FloatTensor
dicee.load_numpy(path) \rightarrow numpy.ndarray
dicee.evaluate(entity_to_idx, scores, easy_answers, hard_answers)
      # @TODO: CD: Renamed this function Evaluate multi hop query answering on different query types
dicee.download_file(url, destination_folder='.')
dicee.download_files_from_url(base\_url: str, destination\_folder='.') \rightarrow None
           Parameters
```

- base_url (e.g. "https://files.dice-research.org/projects/DiceEmbeddings/KINSHIP-Keci-dim128-epoch256-KvsAll")
- destination_folder(e.g. "KINSHIP-Keci-dim128-epoch256-KvsAll")

 ${\tt dicee.download_pretrained_model}\,(\mathit{url}:\mathit{str})\,\to \mathit{str}$

class dicee.DICE_Trainer(args, is_continual_training, storage_path, evaluator=None)

DICE_Trainer implement

- 1- Pytorch Lightning trainer (https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html)
- 2- Multi-GPU Trainer(https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel. html) 3- CPU Trainer

```
args
                 is_continual_training:bool
                 storage_path:str
                 evaluator:
                 report:dict
report
args
trainer = None
is_continual_training
storage_path
evaluator
form_of_labelling = None
continual_start(knowledge_graph)
                   (1) Initialize training.
                   (2) Load model
                 (3) Load trainer (3) Fit model
                 Parameter
                                returns

    model

                                              • form_of_labelling (str)
initialize_trainer(callbacks: List)
                                             \rightarrow lightning. Trainer \mid \textit{dicee.trainer.model\_parallelism.MP} \mid \textit{dicee.trainer.torch\_trainer.TorchTrainer} \mid \textit{dicee.trainer.torch\_trainer} \mid \textit{dicee.trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_trainer.torch\_traine
                 Initialize Trainer from input arguments
initialize_or_load_model()
\verb|init_dataloader| (\textit{dataset: torch.utils.data.Dataset})| \rightarrow torch.utils.data.DataLoader|
\verb"init_dataset"() \rightarrow torch.utils.data.Dataset"
start (knowledge_graph: dicee.knowledge_graph.KG | numpy.memmap)
                                             → Tuple[dicee.models.base_model.BaseKGE, str]
                 Start the training
                   (1) Initialize Trainer
                   (2) Initialize or load a pretrained KGE model
                 in DDP setup, we need to load the memory map of already read/index KG.
```

```
k\_fold\_cross\_validation(dataset) \rightarrow Tuple[dicee.models.base\_model.BaseKGE, str]
```

Perform K-fold Cross-Validation

- 1. Obtain K train and test splits.
- 2. For each split,
 - 2.1 initialize trainer and model 2.2. Train model with configuration provided in args. 2.3. Compute the mean reciprocal rank (MRR) score of the model on the test respective split.
- 3. Report the mean and average MRR.

Parameters

- self
- dataset

Returns

model

```
class dicee.KGE (path=None, url=None, construct_ensemble=False, model_name=None)

Bases: dicee.abstracts.BaseInteractiveKGE

Knowledge Graph Embedding Class for interactive usage of pre-trained models

__str__()

to (device: str) → None

get_transductive_entity_embeddings (indices: torch.LongTensor | List[str], as_pytorch=False, as_numpy=False, as_list=True) → torch.FloatTensor | numpy.ndarray | List[float]

create_vector_database (collection_name: str, distance: str, location: str = 'localhost', port: int = 6333)

generate (h=", r=")

eval_lp_performance (dataset=List[Tuple[str, str, str]], filtered=True)

predict_missing_head_entity (relation: List[str] | str, tail_entity: List[str] | str, within=None)

→ Tuple

Given a relation and a tail entity, return top k ranked head entity.
```

Parameter

```
relation: Union[List[str], str]
```

String representation of selected relations.

 $argmax_{e} in E$ f(e,r,t), where r in R, t in E.

tail_entity: Union[List[str], str]

String representation of selected entities.

k: int

Highest ranked k entities.

```
Returns: Tuple
```

```
Highest K scores and entities
```

Given a head entity and a tail entity, return top k ranked relations.

```
argmax_{r} in R  f(h,r,t), where h, t in E.
```

Parameter

head_entity: List[str]

String representation of selected entities.

tail_entity: List[str]

String representation of selected entities.

k: int

Highest ranked k entities.

Returns: Tuple

Highest K scores and entities

```
predict_missing_tail_entity (head_entity: List[str] | str, relation: List[str] | str,
```

within: List[str] = None \rightarrow torch.FloatTensor

Given a head entity and a relation, return top k ranked entities

 $argmax_{e} in E$ f(h,r,e), where h in E and r in R.

Parameter

head_entity: List[str]

String representation of selected entities.

tail_entity: List[str]

String representation of selected entities.

Returns: Tuple

scores

```
predict(*, h: List[str] | str = None, r: List[str] | str = None, t: List[str] | str = None, within=None, logits=True) <math>\rightarrow torch. Float Tensor
```

Parameters

- logits
- h
- r
- +
- within

```
predict_topk(*, h: str \mid List[str] = None, r: str \mid List[str] = None, t: str \mid List[str] = None, topk: int = 10,
              within: List[str] = None)
      Predict missing item in a given triple.
      Parameter
      head entity: Union[str, List[str]]
      String representation of selected entities.
      relation: Union[str, List[str]]
      String representation of selected relations.
      tail_entity: Union[str, List[str]]
      String representation of selected entities.
      k: int
      Highest ranked k item.
      Returns: Tuple
      Highest K scores and items
 \texttt{triple\_score} \ (h: List[str] \mid str = None, \, r: \, List[str] \mid str = None, \, t: \, List[str] \mid str = None, \, logits = False) 
               \rightarrow torch.FloatTensor
      Predict triple score
      Parameter
      head_entity: List[str]
      String representation of selected entities.
      relation: List[str]
      String representation of selected relations.
      tail_entity: List[str]
      String representation of selected entities.
      logits: bool
      If logits is True, unnormalized score returned
      Returns: Tuple
      pytorch tensor of triple score
t_norm(tens\_1: torch.Tensor, tens\_2: torch.Tensor, tnorm: str = 'min') \rightarrow torch.Tensor
tensor_t_norm(subquery\_scores: torch.FloatTensor, tnorm: str = 'min') \rightarrow torch.FloatTensor
      Compute T-norm over [0,1] ^{n imes d} where n denotes the number of hops and d denotes number of
      entities
t_{conorm} (tens_1: torch.Tensor, tens_2: torch.Tensor, tconorm: str = 'min') \rightarrow torch.Tensor
```

 $negnorm(tens_1: torch.Tensor, lambda_: float, neg_norm: str = 'standard') \rightarrow torch.Tensor$

return_multi_hop_query_results(aggregated_query_for_all_entities, k: int, only_scores)

```
single_hop_query_answering(query: tuple, only_scores: bool = True, k: int = None)
answer_multi_hop_query (query_type: str = None, query: Tuple[str | Tuple[str, str], Ellipsis] = None,
              queries: List[Tuple[str | Tuple[str, str], Ellipsis]] = None, tnorm: str = 'prod',
             neg norm: str = 'standard', lambda : float = 0.0, k: int = 10, only scores=False)
              → List[Tuple[str, torch.Tensor]]
     # @TODO: Refactoring is needed # @TODO: Score computation for each query type should be done in a
     static function
     Find an answer set for EPFO queries including negation and disjunction
     Parameter
     query_type: str The type of the query, e.g., "2p".
     query: Union[str, Tuple[str, Tuple[str, str]]] The query itself, either a string or a nested tuple.
     queries: List of Tuple[Union[str, Tuple[str, str]], ...]
     tnorm: str The t-norm operator.
     neg_norm: str The negation norm.
     lambda_: float lambda parameter for sugeno and yager negation norms
     k: int The top-k substitutions for intermediate variables.
          returns
               • List[Tuple[str, torch.Tensor]]
               • Entities and corresponding scores sorted in the descening order of scores
find_missing_triples (confidence: float, entities: List[str] = None, relations: List[str] = None,
              topk: int = 10, at_most: int = sys.maxsize) \rightarrow Set
          Find missing triples
          Iterative over a set of entities E and a set of relation R:
     orall e in E and orall r in R f(e,r,x)
          Return (e,r,x)
     otin G and f(e,r,x) > confidence
          confidence: float
          A threshold for an output of a sigmoid function given a triple.
          Highest ranked k item to select triples with f(e,r,x) > confidence.
          at most: int
          Stop after finding at_most missing triples
          \{(e,r,x) \mid f(e,r,x) > \text{confidence land } (e,r,x)\}
     otin G
deploy(share: bool = False, top_k: int = 10)
train_triples (h: List[str], r: List[str], t: List[str], labels: List[float], iteration=2, optimizer=None)
```

```
train_k_vs_all(h, r, iteration=1, lr=0.001)
```

Train k vs all :param head_entity: :param relation: :param iteration: :param lr: :return:

train (kg, lr=0.1, epoch=10, $batch_size=32$, $neg_sample_ratio=10$, $num_workers=1$) \rightarrow None Retrained a pretrain model on an input KG via negative sampling.

class dicee.Execute(args, continuous_training=False)

A class for Training, Retraining and Evaluation a model.

- (1) Loading & Preprocessing & Serializing input data.
- (2) Training & Validation & Testing
- (3) Storing all necessary info

args

```
is_continual_training
```

trainer = None

trained_model = None

knowledge_graph = None

report

evaluator = None

start_time = None

 $\mathtt{setup_executor}\left(\right) \to None$

 ${\tt dept_read_preprocess_index_serialize_data}\,()\,\to None$

Read & Preprocess & Index & Serialize Input Data

- (1) Read or load the data from disk into memory.
- (2) Store the statistics of the data.

Parameter

rtype

None

 ${\tt save_trained_model}\,()\,\to None$

Save a knowledge graph embedding model

- (1) Send model to eval mode and cpu.
- (2) Store the memory footprint of the model.
- (3) Save the model into disk.
- (4) Update the stats of KG again?

Parameter

rtype

None

end (form of labelling: str) \rightarrow dict

End training

- (1) Store trained model.
- (2) Report runtimes.
- (3) Eval model if required.

Parameter

rtype

A dict containing information about the training and/or evaluation

```
\textbf{write\_report}\,(\,)\,\to None
```

Report training related information in a report json file

 $start() \rightarrow dict$

Start training

(1) Loading the Data # (2) Create an evaluator object. # (3) Create a trainer object. # (4) Start the training

Parameter

rtype

A dict containing information about the training and/or evaluation

Bases: torch.utils.data.Dataset

An abstract class representing a Dataset.

All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite __getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite __len__(), which is expected to return the size of the dataset by many Sampler implementations and the default options of DataLoader. Subclasses could also optionally implement __getitems__(), for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples.

1 Note

DataLoader by default constructs an index sampler that yields integral indices. To make it work with a mapstyle dataset with non-integral indices/keys, a custom sampler must be provided.

```
train_set
  ordered_bpe_entities
num_bpe_entities
neg_ratio
num_datapoints
  __len__()
  __getitem__(idx)
collate_fn(batch_shaped_bpe_triples: List[Tuple[torch.Tensor, torch.Tensor]])
class dicee.MultiLabelDataset(train_set: torch.LongTensor, train_indices_target: torch.LongTensor, target_dim: int, torch_ordered_shaped_bpe_entities: torch.LongTensor)
Bases: torch.utils.data.Dataset
An abstract class representing a Dataset.
```

All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite __getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite __len__(), which is expected to return the size of the dataset by many Sampler implementations and the default options of DataLoader. Subclasses could also optionally implement __getitems__(), for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples.

Note

DataLoader by default constructs an index sampler that yields integral indices. To make it work with a mapstyle dataset with non-integral indices/keys, a custom sampler must be provided.

```
train_set

train_indices_target

target_dim

num_datapoints

torch_ordered_shaped_bpe_entities

collate_fn = None

__len__()
__getitem__(idx)
```

```
Bases: torch.utils.data.Dataset
     Dataset for the 1vsALL training strategy
          Parameters
                • train_set_idx - Indexed triples for the training.
                • entity_idxs - mapping.
                • relation_idxs - mapping.
                • form - ?
                • num_workers - int
                                           for
                                                 https://pytorch.org/docs/stable/data.html#torch.utils.data.
                  DataLoader
          Return type
              torch.utils.data.Dataset
     train_data
     block_size
     num_of_data_points
     collate_fn = None
     __len__()
     \__{\texttt{getitem}} (idx)
class dicee.OnevsAllDataset(train_set_idx: numpy.ndarray, entity_idxs)
     Bases: torch.utils.data.Dataset
     Dataset for the 1vsALL training strategy
          Parameters
                • train_set_idx - Indexed triples for the training.
                • entity_idxs - mapping.
                • relation_idxs - mapping.
                • form - ?
                                          for https://pytorch.org/docs/stable/data.html#torch.utils.data.
                • num_workers - int
                  DataLoader
          Return type
              torch.utils.data.Dataset
     train_data
     target_dim
     collate_fn = None
     __len__()
     \__getitem__(idx)
```

class dicee.MultiClassClassificationDataset (subword_units: numpy.ndarray, block_size: int = 8)

class dicee. KvsAll (train_set_idx: numpy.ndarray, entity_idxs, relation_idxs, form, store=None, label_smoothing_rate: float = 0.0)

Bases: torch.utils.data.Dataset

Creates a dataset for KvsAll training by inheriting from torch.utils.data.Dataset.

Let D denote a dataset for KvsAll training and be defined as D:= $\{(x,y)_i\}_i ^N$, where x: (h,r) is an unique tuple of an entity h in E and a relation r in R that has been seed in the input graph. y: denotes a multi-label vector in $[0,1]^{\{E\}}$ is a binary label.

orall $y_i = 1$ s.t. (h r E_i) in KG

train_set_idx

[numpy.ndarray] n by 3 array representing n triples

entity idxs

[dictonary] string representation of an entity to its integer id

relation_idxs

[dictonary] string representation of a relation to its integer id

self: torch.utils.data.Dataset

```
>>> a = KvsAll()
>>> a
? array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
train_data = None
train_target = None
label_smoothing_rate
collate_fn = None
__len__()
__getitem__(idx)
```

class dicee. AllvsAll (train_set_idx: numpy.ndarray, entity_idxs, relation_idxs, label_smoothing_rate=0.0)

Bases: torch.utils.data.Dataset

Creates a dataset for AllvsAll training by inheriting from torch.utils.data.Dataset.

Let D denote a dataset for AllvsAll training and be defined as D:= $\{(x,y)_i\}_i^n N$, where x: (h,r) is a possible unique tuple of an entity h in E and a relation r in R. Hence $N = |E| \times |R| y$: denotes a multi-label vector in $[0,1]^{\{|E|\}}$ is a binary label.

orall y_i =1 s.t. (h r E_i) in KG

AllysAll extends KysAll via none existing (h,r). Hence, it adds data points that are labelled without 1s,

only with 0s.

train_set_idx

[numpy.ndarray] n by 3 array representing n triples

entity_idxs

[dictonary] string representation of an entity to its integer id

relation_idxs

[dictonary] string representation of a relation to its integer id

self: torch.utils.data.Dataset

```
>>> a = AllvsAll()
>>> a
? array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
train_data = None
train_target = None
label_smoothing_rate
collate_fn = None
target_dim
__len__()
__getitem__(idx)
```

class dicee.OnevsSample(train set: numpy.ndarray, num entities, num relations,

neg_sample_ratio: int = None, label_smoothing_rate: float = 0.0)

Bases: torch.utils.data.Dataset

A custom PyTorch Dataset class for knowledge graph embeddings, which includes both positive and negative sampling for a given dataset for multi-class classification problem..

Parameters

- train_set (np.ndarray) A numpy array containing triples of knowledge graph data. Each triple consists of (head_entity, relation, tail_entity).
- num_entities (int) The number of unique entities in the knowledge graph.
- $num_relations(int)$ The number of unique relations in the knowledge graph.
- neg_sample_ratio (int, optional) The number of negative samples to be generated per positive sample. Must be a positive integer and less than num_entities.
- label_smoothing_rate (float, optional) A label smoothing rate to apply to the positive and negative labels. Defaults to 0.0.

train_data

The input data converted into a PyTorch tensor.

Type

torch.Tensor

```
num_entities
```

Number of entities in the dataset.

```
Type
```

int

num_relations

Number of relations in the dataset.

Type

int

neg_sample_ratio

Ratio of negative samples to be drawn for each positive sample.

Type

int

label_smoothing_rate

The smoothing factor applied to the labels.

Type

torch.Tensor

collate_fn

A function that can be used to collate data samples into batches (set to None by default).

Type

function, optional

train_data

num_entities

num_relations

neg_sample_ratio

label_smoothing_rate

collate_fn = None

__len__()

Returns the number of samples in the dataset.

 $__getitem__(idx)$

Retrieves a single data sample from the dataset at the given index.

Parameters

idx (int) - The index of the sample to retrieve.

Returns

A tuple consisting of:

- x (torch.Tensor): The head and relation part of the triple.
- y_idx (torch.Tensor): The concatenated indices of the true object (tail entity) and the indices of the negative samples.
- y_vec (torch.Tensor): A vector containing the labels for the positive and negative samples, with label smoothing applied.

```
tuple
class dicee.KvsSampleDataset(train_set_idx: numpy.ndarray, entity_idxs, relation_idxs, form,
            store=None, neg_ratio=None, label_smoothing_rate: float = 0.0)
     Bases: torch.utils.data.Dataset
           KvsSample a Dataset:
               D := \{(x,y)_i\}_i ^N, where
                   . x:(h,r) is a unique h in E and a relation r in R and . y in [0,1]^{\{|E|\}} is a binary label.
     orall y_i = 1 s.t. (h r E_i) in KG
               At each mini-batch construction, we subsample(y), hence n
                   |new_y| << |E| new_y contains all 1's if sum(y)< neg_sample ratio new_y contains</pre>
           train_set_idx
               Indexed triples for the training.
           entity_idxs
               mapping.
           relation_idxs
               mapping.
           form
           store
           label_smoothing_rate
           torch.utils.data.Dataset
     train_data = None
     train_target = None
     neg_ratio
     num_entities
     label_smoothing_rate
     collate_fn = None
     max_num_of_classes
     __len__()
     \__{\texttt{getitem}} (idx)
class dicee. NegSampleDataset (train_set: numpy.ndarray, num_entities: int, num_relations: int,
            neg\_sample\_ratio: int = 1)
     Bases: torch.utils.data.Dataset
```

Return type

An abstract class representing a Dataset.

All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite __getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite __len__(), which is expected to return the size of the dataset by many Sampler implementations and the default options of DataLoader. Subclasses could also optionally implement __getitems__(), for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples.

1 Note

DataLoader by default constructs an index sampler that yields integral indices. To make it work with a mapstyle dataset with non-integral indices/keys, a custom sampler must be provided.

```
neg_sample_ratio
      train_set
      length
      num_entities
      num relations
      __len__()
      getitem (idx)
class dicee. TriplePredictionDataset (train_set: numpy.ndarray, num_entities: int, num_relations: int,
             neg sample ratio: int = 1, label smoothing rate: float = 0.0)
      Bases: torch.utils.data.Dataset
           Triple Dataset
                D := \{(x)_i\}_i \ ^N, \text{ where }
                    . x:(h,r, t) in KG is a unique h in E and a relation r in R and . collact_fn => Generates
                    negative triples
                collect_fn:
      orall (h,r,t) in G obtain, create negative triples \{(h,r,x),(r,t),(h,m,t)\}
                y:labels are represented in torch.float16
           train_set_idx
                Indexed triples for the training.
           entity idxs
                mapping.
           relation_idxs
                mapping.
           form
           store
           label_smoothing_rate
           collate_fn: batch:List[torch.IntTensor] Returns ——- torch.utils.data.Dataset
```

```
label_smoothing_rate
     neg_sample_ratio
     train_set
     length
     num_entities
     num_relations
     __len__()
     \__getitem__(idx)
     collate_fn (batch: List[torch.Tensor])
class dicee. CVDataModule (train_set_idx: numpy.ndarray, num_entities, num_relations, neg_sample_ratio,
            batch size, num workers)
     Bases: \verb"pytorch_lightning.LightningDataModule" \\
     Create a Dataset for cross validation
          Parameters
                 • train_set_idx - Indexed triples for the training.
                 • num_entities - entity to index mapping.
                 • num_relations - relation to index mapping.
                 • batch_size - int
                 • form - ?
                                                  https://pytorch.org/docs/stable/data.html#torch.utils.data.
                 • num_workers -
                                        int
                                             for
                   DataLoader
           Return type
     train_set_idx
     num_entities
     num_relations
     neg_sample_ratio
     batch_size
     num_workers
     train\_dataloader() \rightarrow torch.utils.data.DataLoader
           An iterable or collection of iterables specifying training samples.
           For more information about multiple dataloaders, see this section.
                  dataloader
                               you
                                      return
                                               will
                                                      not
                                                             be
                                                                   reloaded
                                                                              unless
                                                                                        you
                                                                                                     :param-
           ref: ~pytorch_lightning.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs to a positive
          integer.
           For data processing use the following pattern:
```

- download in prepare_data()
- process and split in setup ()

However, the above are only necessary for distributed processing.

▲ Warning

do not assign state in prepare_data

- fit()
- prepare_data()
- setup()

1 Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

```
setup(*args, **kwargs)
```

Called at the beginning of fit (train + validate), validate, test, or predict. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.

Parameters

```
stage - either 'fit', 'validate', 'test', or 'predict'
```

Example:

```
class LitModel(...):
    def __init__(self):
        self.l1 = None

def prepare_data(self):
        download_data()
        tokenize()

# don't do this
        self.something = else

def setup(self, stage):
        data = load_data(...)
        self.l1 = nn.Linear(28, data.num_classes)
```

transfer_batch_to_device(*args, **kwargs)

Override this hook if your DataLoader returns tensors wrapped in a custom data structure.

The data types listed below (and any arbitrary nesting of them) are supported out of the box:

- torch. Tensor or anything that implements .to(...)
- list
- dict

• tuple

For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, ...).

This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). To check the current state of execution of this hook you can use self.trainer.training/testing/validating/predicting so that you can add different logic as per your requirement.

Parameters

- batch A batch of data that needs to be transferred to a new device.
- device The target device as defined in PyTorch.
- dataloader idx The index of the dataloader to which the batch belongs.

Returns

A reference to the data on the new device.

Example:

```
def transfer_batch_to_device(self, batch, device, dataloader_idx):
   if isinstance(batch, CustomBatch):
        # move all tensors in your custom data structure to the device
       batch.samples = batch.samples.to(device)
        batch.targets = batch.targets.to(device)
   elif dataloader_idx == 0:
        # skip device transfer for the first dataloader or anything you wish
   else:
        batch = super().transfer_batch_to_device(batch, device, dataloader_
\rightarrowidx)
    return batch
```

See also

- move_data_to_device()
- apply_to_collection()

prepare_data(*args, **kwargs)

Use this to download and prepare data. Downloading and saving data with multiple processes (distributed settings) will result in corrupted data. Lightning ensures this method is called only within a single process, so you can safely add your downloading logic within.

Warning

DO NOT set state to the model (use setup instead) since this is NOT called on every device

Example:

```
def prepare_data(self):
    # good
    download_data()
    tokenize()
    etc()

# bad
self.split = data_split
self.some_state = some_other_state()
```

In a distributed environment, prepare_data can be called in two ways (using prepare_data_per_node)

- 1. Once per node. This is the default and is only called on LOCAL_RANK=0.
- 2. Once in total. Only called on GLOBAL_RANK=0.

Example:

```
# DEFAULT
# called once per node on LOCAL_RANK=0 of that node
class LitDataModule(LightningDataModule):
    def __init__(self):
        super().__init__()
        self.prepare_data_per_node = True

# call on GLOBAL_RANK=0 (great for shared file systems)
class LitDataModule(LightningDataModule):
    def __init__(self):
        super().__init__()
        self.prepare_data_per_node = False
```

This is called before requesting the dataloaders:

```
model.prepare_data()
initialize_distributed()
model.setup(stage)
model.train_dataloader()
model.val_dataloader()
model.test_dataloader()
model.predict_dataloader()
```

```
train_path
val_path
test_path
gen_valid
gen_test
seed
```

```
max ans num = 1000000.0
      mode
      ent2id
      rel2id: Dict
      ent_in: Dict
      ent_out: Dict
      query_name_to_struct
      list2tuple (list_data)
      tuple2list(x: List | Tuple) \rightarrow List | Tuple
           Convert a nested tuple to a nested list.
      set_global_seed(seed: int)
           Set seed
      construct\_graph(paths: List[str]) \rightarrow Tuple[Dict, Dict]
           Construct graph from triples Returns dicts with incoming and outgoing edges
      fill_query (query_structure: List[str | List], ent_in: Dict, ent_out: Dict, answer: int) \rightarrow bool
           Private method for fill_query logic.
      achieve_answer (query: List[str | List], ent_in: Dict, ent_out: Dict) → set
           Private method for achieve_answer logic. @TODO: Document the code
      write_links(ent_out, small_ent_out)
      ground_queries (query_structure: List[str | List], ent_in: Dict, ent_out: Dict, small_ent_in: Dict,
                   small_ent_out: Dict, gen_num: int, query_name: str)
           Generating queries and achieving answers
      unmap (query_type, queries, tp_answers, fp_answers, fn_answers)
      unmap_query (query_structure, query, id2ent, id2rel)
      generate_queries (query_struct: List, gen_num: int, query_type: str)
           Passing incoming and outgoing edges to ground queries depending on mode [train valid or text] and getting
           queries and answers in return @ TODO: create a class for each single query struct
      save_queries (query_type: str, gen_num: int, save_path: str)
      abstract load_queries (path)
      get_queries (query_type: str, gen_num: int)
      static save_queries_and_answers (path: str, data: List[Tuple[str, Tuple[collections.defaultdict]]])
                    \rightarrow None
           Save Queries into Disk
      static load_queries_and_answers (path: str) → List[Tuple[str, Tuple[collections.defaultdict]]]
           Load Queries from Disk to Memory
dicee.__version__ = '0.1.5'
```

Python Module Index

d

```
dicee, 12
dicee.__main__,12
dicee.abstracts, 12
dicee.analyse_experiments, 17
dicee.callbacks, 19
dicee.config, 25
dicee.dataset_classes, 28
dicee.eval_static_funcs, 40
dicee.evaluator, 41
dicee.executer, 42
dicee.knowledge_graph, 45
dicee.knowledge_graph_embeddings,46
dicee.models, 50
dicee.models.base_model, 50
dicee.models.clifford, 59
dicee.models.complex,66
dicee.models.dualE, 69
dicee.models.function_space, 70
dicee.models.octonion, 73
dicee.models.pykeen_models, 76
dicee.models.quaternion, 77
dicee.models.real, 81
dicee.models.static_funcs, 82
dicee.models.transformers, 82
dicee.query_generator, 136
dicee.read_preprocess_save_load_kg, 137
dicee.read_preprocess_save_load_kg.preprocess,
dicee.read_preprocess_save_load_kg.read_from_disk,
       138
dicee.read_preprocess_save_load_kg.save_load_disk,
dicee.read_preprocess_save_load_kg.util,
       139
dicee.sanity_checkers, 144
dicee.scripts, 145
dicee.scripts.index, 145
dicee.scripts.run, 145
dicee.scripts.serve, 145
dicee.static_funcs, 146
dicee.static_funcs_training, 150
dicee.static_preprocess_funcs, 150
dicee.trainer, 151
dicee.trainer.dice_trainer, 151
dicee.trainer.model_parallelism, 154
dicee.trainer.torch_trainer, 154
dicee.trainer.torch_trainer_ddp, 156
```

Index

Non-alphabetical

```
__call__() (dicee.models.base_model.IdentityClass method), 59
 _call__() (dicee.models.IdentityClass method), 99, 110, 116
__call__() (dicee.trainer.dice_trainer.EnsembleKGE method), 152
__getattr__() (dicee.trainer.dice_trainer.EnsembleKGE method), 152
__getitem__() (dicee.AllvsAll method), 197
__getitem__() (dicee.BPE_NegativeSamplingDataset method), 194
__getitem__() (dicee.dataset_classes.AllvsAll method), 33
__getitem__() (dicee.dataset_classes.BPE_NegativeSamplingDataset method), 29
__getitem__() (dicee.dataset_classes.KvsAll method), 32
__getitem__() (dicee.dataset_classes.KvsSampleDataset method), 35
__getitem__() (dicee.dataset_classes.MultiClassClassificationDataset method), 31
__getitem__() (dicee.dataset_classes.MultiLabelDataset method), 30
__getitem__() (dicee.dataset_classes.NegSampleDataset method), 36
__getitem__() (dicee.dataset_classes.OnevsAllDataset method), 31
__getitem__() (dicee.dataset_classes.OnevsSample method), 34
__getitem__() (dicee.dataset_classes.TriplePredictionDataset method), 36
__getitem__() (dicee.KvsAll method), 196
__getitem__() (dicee.KvsSampleDataset method), 199
__getitem__() (dicee.MultiClassClassificationDataset method), 195
__getitem__() (dicee.MultiLabelDataset method), 194
__getitem__() (dicee.NegSampleDataset method), 200
__getitem__() (dicee.OnevsAllDataset method), 195
__getitem__() (dicee.OnevsSample method), 198
__getitem__() (dicee.TriplePredictionDataset method), 201
__iter__() (dicee.config.Namespace method), 28
__iter__() (dicee.knowledge_graph.KG method), 46
__iter__() (dicee.trainer.dice_trainer.EnsembleKGE method), 152
__len__() (dicee.AllvsAll method), 197
__len__() (dicee.BPE_NegativeSamplingDataset method), 194
__len__() (dicee.dataset_classes.AllvsAll method), 33
  _len__() (dicee.dataset_classes.BPE_NegativeSamplingDataset method), 29
__len__() (dicee.dataset_classes.KvsAll method), 32
__len__() (dicee.dataset_classes.KvsSampleDataset method), 35
__len__() (dicee.dataset_classes.MultiClassClassificationDataset method), 31
__len__() (dicee.dataset_classes.MultiLabelDataset method), 30
__len__() (dicee.dataset_classes.NegSampleDataset method), 35
__len__() (dicee.dataset_classes.OnevsAllDataset method), 31
__len__() (dicee.dataset_classes.OnevsSample method), 34
__len__() (dicee.dataset_classes.TriplePredictionDataset method), 36
__len__() (dicee.knowledge_graph.KG method), 46
__len__() (dicee.KvsAll method), 196
__len__() (dicee.KvsSampleDataset method), 199
__len__() (dicee.MultiClassClassificationDataset method), 195
__len__() (dicee.MultiLabelDataset method), 194
  _len__() (dicee.NegSampleDataset method), 200
__len__() (dicee.OnevsAllDataset method), 195
__len__() (dicee.OnevsSample method), 198
__len__() (dicee.trainer.dice_trainer.EnsembleKGE method), 152
__len__() (dicee.TriplePredictionDataset method), 201
__str__() (dicee.KGE method), 188
__str__() (dicee.knowledge_graph_embeddings.KGE method), 46
__str__() (dicee.trainer.dice_trainer.EnsembleKGE method), 152
__version__ (in module dicee), 205
AbstractCallback (class in dicee.abstracts), 15
AbstractPPECallback (class in dicee.abstracts), 17
AbstractTrainer (class in dicee.abstracts), 12
AccumulateEpochLossCallback (class in dicee.callbacks), 19
achieve_answer() (dicee.query_generator.QueryGenerator method), 136
achieve_answer() (dicee.QueryGenerator method), 205
AConEx (class in dicee), 171
AConEx (class in dicee.models), 106
AConEx (class in dicee.models.complex), 67
```

```
AConvo (class in dicee), 172
AConvO (class in dicee.models), 118
AConvo (class in dicee.models.octonion), 76
AConvQ (class in dicee), 172
AConvQ (class in dicee.models), 112
AConvQ (class in dicee.models.quaternion), 80
\verb"adaptive_swa" (\textit{dicee.config.Namespace attribute}), 28
add_new_entity_embeddings() (dicee.abstracts.BaseInteractiveKGE method), 15
add_noise_rate (dicee.config.Namespace attribute), 26
add_noise_rate (dicee.knowledge_graph.KG attribute), 45
add_noisy_triples() (in module dicee), 186
add_noisy_triples() (in module dicee.static_funcs), 149
add_noisy_triples_into_training() (dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk method), 138
add_noisy_triples_into_training() (dicee.read_preprocess_save_load_kg.ReadFromDisk method), 144
add_reciprocal (dicee.knowledge_graph.KG attribute), 45
AllvsAll (class in dicee), 196
AllvsAll (class in dicee.dataset_classes), 32
alphas (dicee.abstracts.AbstractPPECallback attribute), 17
alphas (dicee.callbacks.ASWA attribute), 23
analyse() (in module dicee.analyse_experiments), 19
answer_multi_hop_query() (dicee.KGE method), 191
\verb"answer_multi_hop_query" () \textit{ (dicee.knowledge\_graph\_embeddings.KGE method)}, 49
app (in module dicee.scripts.serve), 146
apply_coefficients() (dicee.DeCaL method), 168
apply_coefficients() (dicee.Keci method), 164
apply_coefficients() (dicee.models.clifford.DeCaL method), 64
apply_coefficients() (dicee.models.clifford.Keci method), 61
apply_coefficients() (dicee.models.DeCaL method), 124
{\tt apply\_coefficients()} \ \textit{(dicee.models.Keci method)}, \, 120
apply_reciprical_or_noise() (in module dicee.read_preprocess_save_load_kg.util), 142
apply_semantic_constraint (dicee.abstracts.BaseInteractiveKGE attribute), 14
apply_unit_norm (dicee.BaseKGE attribute), 183
apply_unit_norm (dicee.models.base_model.BaseKGE attribute), 57
apply_unit_norm (dicee.models.BaseKGE attribute), 97, 100, 103, 108, 114, 127, 130
args (dicee.BaseKGE attribute), 183
args (dicee.DICE_Trainer attribute), 187
args (dicee.evaluator.Evaluator attribute), 41
args (dicee.Execute attribute), 192
args (dicee.executer.Execute attribute), 43
args (dicee.models.base_model.BaseKGE attribute), 57
args (dicee.models.base_model.IdentityClass attribute), 59
args (dicee.models.BaseKGE attribute), 96, 100, 103, 108, 114, 126, 130
args (dicee.models.IdentityClass attribute), 99, 110, 116
args (dicee.models.pykeen_models.PykeenKGE attribute), 77
args (dicee.models.PykeenKGE attribute), 128
args (dicee.PykeenKGE attribute), 180
args (dicee.trainer.DICE_Trainer attribute), 158
args (dicee.trainer.dice_trainer.DICE_Trainer attribute), 152
ASWA (class in dicee.callbacks), 22
aswa (dicee.analyse_experiments.Experiment attribute), 18
attn (dicee.models.transformers.Block attribute), 87
attn_dropout (dicee.models.transformers.CausalSelfAttention attribute), 86
attributes (dicee.abstracts.AbstractTrainer attribute), 12
available_gpus (dicee.trainer.torch_trainer.xMP attribute), 155
backend (dicee.config.Namespace attribute), 26
backend (dicee.knowledge_graph.KG attribute), 45
BaseInteractiveKGE (class in dicee.abstracts), 13
BaseKGE (class in dicee), 182
BaseKGE (class in dicee.models), 96, 99, 103, 107, 113, 126, 129
BaseKGE (class in dicee.models.base_model), 56
BaseKGELightning (class in dicee.models), 90
BaseKGELightning (class in dicee.models.base_model), 50
batch_kronecker_product() (dicee.callbacks.KronE static method), 25
batch_size (dicee.analyse_experiments.Experiment attribute), 18
batch_size (dicee.callbacks.PseudoLabellingCallback attribute), 22
```

```
batch size (dicee.config.Namespace attribute), 26
batch_size (dicee.CVDataModule attribute), 201
batch_size (dicee.dataset_classes.CVDataModule attribute), 37
bias (dicee.models.transformers.GPTConfig attribute), 88
bias (dicee.models.transformers.LayerNorm attribute), 85
Block (class in dicee.models.transformers), 87
block_size (dicee.BaseKGE attribute), 184
block_size (dicee.config.Namespace attribute), 28
block_size (dicee.dataset_classes.MultiClassClassificationDataset attribute), 30
block_size (dicee.models.base_model.BaseKGE attribute), 57
block_size (dicee.models.BaseKGE attribute), 97, 100, 104, 109, 115, 127, 131
\verb+block_size+ (\textit{dicee.models.transformers.GPTC} on fig \textit{ attribute}), 88
block_size (dicee.MultiClassClassificationDataset attribute), 195
bn_conv1 (dicee.AConvQ attribute), 173
bn_conv1 (dicee.ConvQ attribute), 173
bn_conv1 (dicee.models.AConvQ attribute), 113
bn_conv1 (dicee.models.ConvQ attribute), 112
bn_conv1 (dicee.models.quaternion.AConvQ attribute), 80
bn_conv1 (dicee.models.quaternion.ConvQ attribute), 79
bn_conv2 (dicee.AConvQ attribute), 173
bn_conv2 (dicee.ConvQ attribute), 173
bn_conv2 (dicee.models.AConvQ attribute), 113
bn_conv2 (dicee.models.ConvQ attribute), 112
bn_conv2 (dicee.models.quaternion.AConvQ attribute), 80
bn_conv2 (dicee.models.quaternion.ConvQ attribute), 80
bn_conv2d (dicee.AConEx attribute), 172
bn_conv2d (dicee.AConvO attribute), 172
bn_conv2d (dicee.ConEx attribute), 175
bn_conv2d (dicee.ConvO attribute), 174
bn_conv2d (dicee.models.AConEx attribute), 106
bn_conv2d (dicee.models.AConvO attribute), 119
bn conv2d (dicee.models.complex.AConEx attribute), 67
bn_conv2d (dicee.models.complex.ConEx attribute), 67
bn_conv2d (dicee.models.ConEx attribute), 105
bn_conv2d (dicee.models.ConvO attribute), 118
bn_conv2d (dicee.models.octonion.AConvO attribute), 76
bn conv2d (dicee.models.octonion.ConvO attribute), 75
BPE_NegativeSamplingDataset (class in dicee), 193
BPE_NegativeSamplingDataset (class in dicee.dataset_classes), 29
build_chain_funcs() (dicee.models.FMult2 method), 133
\verb|build_chain_funcs()| \textit{ (dicee.models.function\_space.FMult2 method)}, 71
build_func() (dicee.models.FMult2 method), 133
build_func() (dicee.models.function_space.FMult2 method), 71
BytE (class in dicee), 180
BytE (class in dicee.models.transformers), 83
byte_pair_encoding (dicee.analyse_experiments.Experiment attribute), 18
byte_pair_encoding (dicee.BaseKGE attribute), 184
byte_pair_encoding (dicee.config.Namespace attribute), 28
byte_pair_encoding (dicee.knowledge_graph.KG attribute), 45
byte_pair_encoding (dicee.models.base_model.BaseKGE attribute), 57
byte_pair_encoding (dicee.models.BaseKGE attribute), 97, 100, 104, 109, 115, 127, 130
С
c_attn (dicee.models.transformers.CausalSelfAttention attribute), 86
c_fc (dicee.models.transformers.MLP attribute), 87
c_proj (dicee.models.transformers.CausalSelfAttention attribute), 86
c_proj (dicee.models.transformers.MLP attribute), 87
callbacks (dicee.abstracts.AbstractTrainer attribute), 12
callbacks (dicee.analyse_experiments.Experiment attribute), 18
callbacks (dicee.config.Namespace attribute), 26
callbacks (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
CausalSelfAttention (class in dicee.models.transformers), 85
chain_func() (dicee.models.FMult method), 132
chain_func() (dicee.models.function_space.FMult method), 70
chain_func() (dicee.models.function_space.GFMult method), 71
chain_func() (dicee.models.GFMult method), 132
cl_pqr() (dicee.DeCaL method), 167
```

```
cl pgr() (dicee.models.clifford.DeCaL method), 64
cl_pqr() (dicee.models.DeCaL method), 123
clifford_multiplication() (dicee.Keci method), 164
clifford_multiplication() (dicee.models.clifford.Keci method), 61
clifford_multiplication() (dicee.models.Keci method), 120
collate_fn (dicee.AllvsAll attribute), 197
{\tt collate\_fn}~(\textit{dicee.dataset\_classes.AllvsAll~attribute}),\,32
collate fn (dicee.dataset classes.KvsAll attribute), 32
collate_fn (dicee.dataset_classes.KvsSampleDataset attribute), 35
collate_fn (dicee.dataset_classes.MultiClassClassificationDataset attribute), 30
collate_fn (dicee.dataset_classes.MultiLabelDataset attribute), 30
collate_fn (dicee.dataset_classes.OnevsAllDataset attribute), 31
collate_fn (dicee.dataset_classes.OnevsSample attribute), 33, 34
collate_fn (dicee.KvsAll attribute), 196
collate_fn (dicee.KvsSampleDataset attribute), 199
collate_fn (dicee.MultiClassClassificationDataset attribute), 195
collate_fn (dicee.MultiLabelDataset attribute), 194
collate_fn (dicee.OnevsAllDataset attribute), 195
collate_fn (dicee.OnevsSample attribute), 198
collate_fn() (dicee.BPE_NegativeSamplingDataset method), 194
collate_fn() (dicee.dataset_classes.BPE_NegativeSamplingDataset method), 29
collate fn() (dicee.dataset classes.TriplePredictionDataset method), 36
collate_fn() (dicee. TriplePredictionDataset method), 201
collection_name (dicee.scripts.serve.NeuralSearcher attribute), 146
comp_func() (dicee.LFMult method), 179
comp_func() (dicee.models.function_space.LFMult method), 73
comp_func() (dicee.models.LFMult method), 134
Complex (class in dicee), 170
Complex (class in dicee.models), 106
Complex (class in dicee.models.complex), 67
compute_convergence() (in module dicee.callbacks), 22
compute func() (dicee.models.FMult method), 132
compute_func() (dicee.models.FMult2 method), 133
compute_func() (dicee.models.function_space.FMult method), 70
compute_func() (dicee.models.function_space.FMult2 method), 71
compute_func() (dicee.models.function_space.GFMult method), 71
compute func () (dicee.models.GFMult method), 132
compute_mrr() (dicee.callbacks.ASWA static method), 23
compute_sigma_pp() (dicee.DeCaL method), 168
compute_sigma_pp() (dicee.Keci method), 163
\verb|compute_sigma_pp()| \textit{(dicee.models.clifford.DeCaL method)}, 65
compute_sigma_pp() (dicee.models.clifford.Keci method), 60
compute_sigma_pp() (dicee.models.DeCaL method), 124
compute_sigma_pp() (dicee.models.Keci method), 120
compute_sigma_pq() (dicee.DeCaL method), 169
compute_sigma_pq() (dicee.Keci method), 164
compute_sigma_pq() (dicee.models.clifford.DeCaL method), 66
compute_sigma_pq() (dicee.models.clifford.Keci method), 61
compute_sigma_pq() (dicee.models.DeCaL method), 125
compute_sigma_pq() (dicee.models.Keci method), 120
compute_sigma_pr() (dicee.DeCaL method), 169
compute_sigma_pr() (dicee.models.clifford.DeCaL method), 66
compute_sigma_pr() (dicee.models.DeCaL method), 125
compute_sigma_gq() (dicee.DeCaL method), 168
compute_sigma_qq() (dicee.Keci method), 164
\verb|compute_sigma_qq()| \textit{(dicee.models.clifford.DeCaL method)}, 65
compute_sigma_qq() (dicee.models.clifford.Keci method), 60
compute_sigma_qq() (dicee.models.DeCaL method), 125
compute_sigma_qq() (dicee.models.Keci method), 120
compute_sigma_qr() (dicee.DeCaL method), 169
compute_sigma_qr() (dicee.models.clifford.DeCaL method), 66
compute_sigma_qr() (dicee.models.DeCaL method), 126
compute_sigma_rr() (dicee.DeCaL method), 169
compute_sigma_rr() (dicee.models.clifford.DeCaL method), 65
compute_sigma_rr() (dicee.models.DeCaL method), 125
compute_sigmas_multivect() (dicee.DeCaL method), 167
compute_sigmas_multivect() (dicee.models.clifford.DeCaL method), 64
compute_sigmas_multivect() (dicee.models.DeCaL method), 124
```

```
compute_sigmas_single() (dicee.DeCaL method), 167
compute_sigmas_single() (dicee.models.clifford.DeCaL method), 64
\verb|compute_sigmas_single()| \textit{(dicee.models.DeCaL method)}, 123
ConEx (class in dicee), 175
ConEx (class in dicee.models), 105
ConEx (class in dicee.models.complex), 66
config (dicee.BytE attribute), 181
config (dicee.models.transformers.BytE attribute), 83
config (dicee.models.transformers.GPT attribute), 88
configs (dicee.abstracts.BaseInteractiveKGE attribute), 14
configure_optimizers() (dicee.models.base_model.BaseKGELightning method), 55
configure_optimizers() (dicee.models.BaseKGELightning method), 94
configure_optimizers() (dicee.models.transformers.GPT method), 89
construct_batch_selected_cl_multivector() (dicee.Keci method), 165
construct_batch_selected_cl_multivector() (dicee.models.clifford.Keci method), 62
construct_batch_selected_cl_multivector() (dicee.models.Keci method), 121
construct_cl_multivector() (dicee.DeCaL method), 168
construct_cl_multivector() (dicee.Keci method), 164
construct_cl_multivector() (dicee.models.clifford.DeCaL method), 64
construct_cl_multivector() (dicee.models.clifford.Keci method), 61
construct_cl_multivector() (dicee.models.DeCaL method), 124
construct_cl_multivector() (dicee.models.Keci method), 121
construct_dataset() (in module dicee), 193
construct_dataset() (in module dicee.dataset_classes), 29
construct_ensemble (dicee.abstracts.BaseInteractiveKGE attribute), 14
construct_graph() (dicee.query_generator.QueryGenerator method), 136
construct_graph() (dicee.QueryGenerator method), 205
construct_input_and_output() (dicee.abstracts.BaseInteractiveKGE method), 15
construct_multi_coeff() (dicee.LFMult method), 178
construct_multi_coeff() (dicee.models.function_space.LFMult method), 72
construct_multi_coeff() (dicee.models.LFMult method), 134
continual_learning (dicee.config.Namespace attribute), 28
continual_start() (dicee.DICE_Trainer method), 187
continual_start() (dicee.executer.ContinuousExecute method), 44
continual_start() (dicee.trainer.DICE_Trainer method), 158
continual_start() (dicee.trainer.dice_trainer.DICE_Trainer method), 153
continual_training_setup_executor() (in module dicee), 186
continual_training_setup_executor() (in module dicee.static_funcs), 149
Continuous Execute (class in dicee.executer), 44
conv2d (dicee.AConEx attribute), 171
conv2d (dicee.AConvO attribute), 172
conv2d (dicee.AConvQ attribute), 173
conv2d (dicee.ConEx attribute), 175
conv2d (dicee, ConvO attribute), 174
conv2d (dicee.ConvQ attribute), 173
conv2d (dicee.models.AConEx attribute), 106
conv2d (dicee.models.AConvO attribute), 118
conv2d (dicee.models.AConvQ attribute), 113
conv2d (dicee.models.complex.AConEx attribute), 67
conv2d (dicee.models.complex.ConEx attribute), 66
conv2d (dicee.models.ConEx attribute), 105
conv2d (dicee.models.ConvO attribute), 118
conv2d (dicee.models.ConvQ attribute), 112
conv2d (dicee.models.octonion.AConvO attribute), 76
conv2d (dicee.models.octonion.ConvO attribute), 75
conv2d (dicee.models.quaternion.AConvQ attribute), 80
conv2d (dicee.models.quaternion.ConvQ attribute), 79
ConvO (class in dicee), 174
ConvO (class in dicee.models), 117
ConvO (class in dicee.models.octonion), 74
ConvO (class in dicee), 173
ConvQ (class in dicee.models), 112
ConvQ (class in dicee.models.quaternion), 79
create_constraints() (in module dicee.read_preprocess_save_load_kg.util), 142
create_constraints() (in module dicee.static_preprocess_funcs), 151
create_experiment_folder() (in module dicee), 186
create_experiment_folder() (in module dicee.static_funcs), 149
create_random_data() (dicee.callbacks.PseudoLabellingCallback method), 22
```

```
create_recipriocal_triples() (in module dicee), 185
create_recipriocal_triples() (in module dicee.read_preprocess_save_load_kg.util), 143
create_recipriocal_triples() (in module dicee.static_funcs), 148
create_vector_database() (dicee.KGE method), 188
create_vector_database() (dicee.knowledge_graph_embeddings.KGE method), 46
crop_block_size() (dicee.models.transformers.GPT method), 89
ctx (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
CVDataModule (class in dicee), 201
CVDataModule (class in dicee.dataset_classes), 36
D
data_module (dicee.callbacks.PseudoLabellingCallback attribute), 22
dataset_dir (dicee.config.Namespace attribute), 26
{\tt dataset\_dir}~(\textit{dicee.knowledge\_graph.KG~attribute}), 45
dataset_sanity_checking() (in module dicee.read_preprocess_save_load_kg.util), 143
DeCal. (class in dicee), 166
DeCal (class in dicee.models), 122
DeCal (class in dicee.models.clifford), 63
decide() (dicee.callbacks.ASWA method), 23
degree (dicee.LFMult attribute), 178
degree (dicee.models.function_space.LFMult attribute), 72
degree (dicee.models.LFMult attribute), 134
deploy() (dicee.KGE method), 191
deploy() (dicee.knowledge_graph_embeddings.KGE method), 50
deploy_head_entity_prediction() (in module dicee), 186
{\tt deploy\_head\_entity\_prediction()} \ \textit{(in module dicee.static\_funcs)}, 149
deploy_relation_prediction() (in module dicee), 186
deploy_relation_prediction() (in module dicee.static_funcs), 149
deploy_tail_entity_prediction() (in module dicee), 186
deploy_tail_entity_prediction() (in module dicee.static_funcs), 149
deploy_triple_prediction() (in module dicee), 186
deploy_triple_prediction() (in module dicee.static_funcs), 149
{\tt dept\_read\_preprocess\_index\_serialize\_data()} \ \textit{(dicee.Execute method)}, 192
dept_read_preprocess_index_serialize_data() (dicee.executer.Execute method), 43
describe() (dicee.knowledge_graph.KG method), 46
description_of_input (dicee.knowledge_graph.KG attribute), 46
DICE_Trainer (class in dicee), 186
DICE_Trainer (class in dicee.trainer), 158
DICE_Trainer (class in dicee.trainer.dice_trainer), 152
dicee
     module, 12
dicee.___main_
     module, 12
dicee.abstracts
     module, 12
dicee.analyse_experiments
     module, 17
dicee.callbacks
     module, 19
dicee.config
     module, 25
dicee.dataset_classes
    module, 28
dicee.eval_static_funcs
     module, 40
dicee.evaluator
     module, 41
dicee.executer
     module, 42
dicee.knowledge_graph
     module, 45
dicee.knowledge_graph_embeddings
     module, 46
dicee.models
     module, 50
dicee.models.base_model
     module, 50
```

```
dicee.models.clifford
     module, 59
dicee.models.complex
     module, 66
dicee.models.dualE
    module, 69
dicee.models.function_space
    module, 70
dicee.models.octonion
     module, 73
dicee.models.pykeen_models
    module, 76
dicee.models.quaternion
    module, 77
dicee.models.real
    module, 81
dicee.models.static_funcs
    module, 82
dicee.models.transformers
     module, 82
dicee.query_generator
    module, 136
dicee.read_preprocess_save_load_kg
    module, 137
dicee.read_preprocess_save_load_kg.preprocess
    module, 137
dicee.read_preprocess_save_load_kg.read_from_disk
    module, 138
dicee.read_preprocess_save_load_kg.save_load_disk
     module, 139
dicee.read_preprocess_save_load_kg.util
    module, 139
dicee.sanity_checkers
    module, 144
dicee.scripts
    module, 145
dicee.scripts.index
    module, 145
dicee.scripts.run
    module, 145
dicee.scripts.serve
    module, 145
dicee.static_funcs
    module, 146
dicee.static_funcs_training
    module, 150
dicee.static_preprocess_funcs
    module, 150
dicee.trainer
    module, 151
dicee.trainer.dice_trainer
    module, 151
dicee.trainer.model_parallelism
    module, 154
dicee.trainer.torch_trainer
    module, 154
dicee.trainer.torch_trainer_ddp
    module, 156
discrete_points (dicee.models.FMult2 attribute), 133
discrete_points (dicee.models.function_space.FMult2 attribute), 71
dist_func (dicee.models.Pyke attribute), 102
dist_func (dicee.models.real.Pyke attribute), 82
dist_func (dicee.Pyke attribute), 162
DistMult (class in dicee), 162
DistMult (class in dicee.models), 101
DistMult (class in dicee.models.real), 81
download_file() (in module dicee), 186
download_file() (in module dicee.static_funcs), 149
```

```
download_files_from_url() (in module dicee), 186
download_files_from_url() (in module dicee.static_funcs), 149
download_pretrained_model() (in module dicee), 186
download_pretrained_model() (in module dicee.static_funcs), 149
dropout (dicee.models.transformers.CausalSelfAttention attribute), 86
dropout (dicee.models.transformers.GPTConfig attribute), 88
dropout (dicee.models.transformers.MLP attribute), 87
DualE (class in dicee), 169
DualE (class in dicee.models), 135
DualE (class in dicee.models.dualE), 69
dummy_eval() (dicee.evaluator.Evaluator method), 42
\verb|dummy_id| (\textit{dicee.knowledge\_graph.KG attribute}), 46
during_training (dicee.evaluator.Evaluator attribute), 42
Ε
ee_vocab (dicee.evaluator.Evaluator attribute), 41
efficient_zero_grad() (in module dicee.static_funcs_training), 150
embedding_dim (dicee.analyse_experiments.Experiment attribute), 18
embedding dim (dicee.BaseKGE attribute), 183
embedding_dim (dicee.config.Namespace attribute), 26
embedding_dim (dicee.models.base_model.BaseKGE attribute), 57
embedding_dim (dicee.models.BaseKGE attribute), 96, 100, 103, 108, 114, 126, 130
enable_log (in module dicee.static_preprocess_funcs), 151
enc (dicee.knowledge_graph.KG attribute), 45
end() (dicee.Execute method), 193
end() (dicee.executer.Execute method), 43
EnsembleKGE (class in dicee.trainer.dice_trainer), 152
ent2id (dicee.query_generator.QueryGenerator attribute), 136
ent2id (dicee.QueryGenerator attribute), 205
ent_in (dicee.query_generator.QueryGenerator attribute), 136
ent_in (dicee.QueryGenerator attribute), 205
ent_out (dicee.query_generator.QueryGenerator attribute), 136
ent_out (dicee.QueryGenerator attribute), 205
entities_str (dicee.knowledge_graph.KG property), 46
entity_embeddings (dicee.AConvQ attribute), 173
entity_embeddings (dicee.ConvQ attribute), 173
entity_embeddings (dicee.DeCaL attribute), 166
entity_embeddings (dicee.DualE attribute), 170
entity_embeddings (dicee.LFMult attribute), 178
entity_embeddings (dicee.models.AConvQ attribute), 113
entity_embeddings (dicee.models.clifford.DeCaL attribute), 63
entity_embeddings (dicee.models.ConvQ attribute), 112
entity_embeddings (dicee.models.DeCaL attribute), 123
entity_embeddings (dicee.models.DualE attribute), 135
entity_embeddings (dicee.models.dualE.DualE attribute), 69
entity_embeddings (dicee.models.FMult attribute), 132
entity_embeddings (dicee.models.FMult2 attribute), 133
entity embeddings (dicee.models.function space.FMult attribute), 70
entity_embeddings (dicee.models.function_space.FMult2 attribute), 71
entity_embeddings (dicee.models.function_space.GFMult attribute), 71
entity_embeddings (dicee.models.function_space.LFMult attribute), 72
entity_embeddings (dicee.models.function_space.LFMult1 attribute), 72
entity_embeddings (dicee.models.GFMult attribute), 132
entity_embeddings (dicee.models.LFMult attribute), 133
entity_embeddings (dicee.models.LFMult1 attribute), 133
entity_embeddings (dicee.models.pykeen_models.PykeenKGE attribute), 77
entity_embeddings (dicee.models.PykeenKGE attribute), 128
entity_embeddings (dicee.models.quaternion.AConvQ attribute), 80
entity_embeddings (dicee.models.quaternion.ConvQ attribute), 79
entity_embeddings (dicee.PykeenKGE attribute), 180
entity_to_idx (dicee.knowledge_graph.KG attribute), 45
epoch_count (dicee.abstracts.AbstractPPECallback attribute), 17
epoch_count (dicee.callbacks.ASWA attribute), 22
epoch_counter (dicee.callbacks.Eval attribute), 23
epoch_counter (dicee.callbacks.KGESaveCallback attribute), 21
epoch_ratio (dicee.callbacks.Eval attribute), 23
er_vocab (dicee.evaluator.Evaluator attribute), 41
```

```
estimate mfu() (dicee.models.transformers.GPT method), 89
estimate_q() (in module dicee.callbacks), 22
Eval (class in dicee.callbacks), 23
eval () (dicee.evaluator.Evaluator method), 42
eval_lp_performance() (dicee.KGE method), 188
eval_lp_performance() (dicee.knowledge_graph_embeddings.KGE method), 47
eval_model (dicee.config.Namespace attribute), 27
eval_model (dicee.knowledge_graph.KG attribute), 45
eval_rank_of_head_and_tail_byte_pair_encoded_entity() (dicee.evaluator.Evaluator method), 42
\verb|eval_rank_of_head_and_tail_entity()| \textit{(dicee.evaluator.Evaluator method)}, 42
eval_with_bpe_vs_all() (dicee.evaluator.Evaluator method), 42
eval_with_byte() (dicee.evaluator.Evaluator method), 42
eval_with_data() (dicee.evaluator.Evaluator method), 42
eval_with_vs_all() (dicee.evaluator.Evaluator method), 42
evaluate() (in module dicee), 186
evaluate() (in module dicee.static_funcs), 149
evaluate_bpe_lp() (in module dicee.static_funcs_training), 150
evaluate_link_prediction_performance() (in module dicee.eval_static_funcs), 40
evaluate_link_prediction_performance_with_bpe() (in module dicee.eval_static_funcs), 41
\verb|evaluate_link_prediction_performance_with_bpe_reciprocals()| \textit{(in module dicee.eval\_static\_funcs)}, 41 \\
evaluate\_link\_prediction\_performance\_with\_reciprocals() \textit{ (in module dicee.eval\_static\_funcs)}, 41
evaluate_lp() (dicee.evaluator.Evaluator method), 42
evaluate_lp() (in module dicee.static_funcs_training), 150
evaluate_lp_bpe_k_vs_all() (dicee.evaluator.Evaluator method), 42
evaluate_lp_bpe_k_vs_all() (in module dicee.eval_static_funcs), 41
evaluate_lp_k_vs_all() (dicee.evaluator.Evaluator method), 42
evaluate_lp_with_byte() (dicee.evaluator.Evaluator method), 42
Evaluator (class in dicee.evaluator), 41
evaluator (dicee.DICE_Trainer attribute), 187
evaluator (dicee. Execute attribute), 192
evaluator (dicee.executer.Execute attribute), 43
evaluator (dicee.trainer.DICE Trainer attribute), 158
evaluator (dicee.trainer.dice_trainer.DICE_Trainer attribute), 153
every_x_epoch (dicee.callbacks.KGESaveCallback attribute), 21
Execute (class in dicee), 192
Execute (class in dicee.executer), 43
exists() (dicee.knowledge_graph.KG method), 46
Experiment (class in dicee.analyse_experiments), 18
explicit (dicee.models.QMult attribute), 111
explicit (dicee.models.quaternion.QMult attribute), 78
explicit (dicee.QMult attribute), 176
exponential_function() (in module dicee), 186
exponential_function() (in module dicee.static_funcs), 149
extract_input_outputs() (dicee.trainer.model_parallelism.MP method), 154
extract_input_outputs() (dicee.trainer.torch_trainer_ddp.NodeTrainer method), 157
extract_input_outputs_set_device() (dicee.trainer.torch_trainer.TorchTrainer method), 156
extract_input_outputs_set_device() (dicee.trainer.torch_trainer.xMP method), 155
f (dicee.callbacks.KronE attribute), 25
fc1 (dicee.AConEx attribute), 171
fc1 (dicee.AConvO attribute), 172
fc1 (dicee.AConvQ attribute), 173
fc1 (dicee.ConEx attribute), 175
fc1 (dicee.ConvO attribute), 174
fc1 (dicee.ConvQ attribute), 173
fc1 (dicee.models.AConEx attribute), 106
fc1 (dicee.models.AConvO attribute), 118
fc1 (dicee.models.AConvQ attribute), 113
fc1 (dicee.models.complex.AConEx attribute), 67
fc1 (dicee.models.complex.ConEx attribute), 67
fc1 (dicee.models.ConEx attribute), 105
fc1 (dicee.models.ConvO attribute), 118
fc1 (dicee.models.ConvQ attribute), 112
fc1 (dicee.models.octonion.AConvO attribute), 76
fc1 (dicee.models.octonion.ConvO attribute), 75
fc1 (dicee.models.quaternion.AConvQ attribute), 80
```

```
fc1 (dicee.models.quaternion.ConvO attribute), 79
fc_num_input (dicee.AConEx attribute), 171
fc_num_input (dicee.AConvO attribute), 172
fc_num_input (dicee.AConvQ attribute), 173
fc_num_input (dicee.ConEx attribute), 175
fc_num_input (dicee.ConvO attribute), 174
fc_num_input (dicee.ConvQ attribute), 173
fc num input (dicee.models.AConEx attribute), 106
fc_num_input (dicee.models.AConvO attribute), 118
fc_num_input (dicee.models.AConvQ attribute), 113
fc_num_input (dicee.models.complex.AConEx attribute), 67
fc_num_input (dicee.models.complex.ConEx attribute), 67
fc_num_input (dicee.models.ConEx attribute), 105
fc_num_input (dicee.models.ConvO attribute), 118
fc_num_input (dicee.models.ConvQ attribute), 112
fc_num_input (dicee.models.octonion.AConvO attribute), 76
fc_num_input (dicee.models.octonion.ConvO attribute), 75
fc_num_input (dicee.models.quaternion.AConvQ attribute), 80
fc_num_input (dicee.models.quaternion.ConvQ attribute), 79
feature_map_dropout (dicee.AConEx attribute), 172
feature_map_dropout (dicee.AConvO attribute), 172
feature_map_dropout (dicee.AConvQ attribute), 173
feature_map_dropout (dicee.ConEx attribute), 175
feature_map_dropout (dicee.ConvO attribute), 174
feature_map_dropout (dicee.ConvQ attribute), 173
feature_map_dropout (dicee.models.AConEx attribute), 106
feature_map_dropout (dicee.models.AConvO attribute), 119
feature_map_dropout (dicee.models.AConvQ attribute), 113
{\tt feature\_map\_dropout}~(\textit{dicee.models.complex.AConEx}~\textit{attribute}), 67
feature_map_dropout (dicee.models.complex.ConEx attribute), 67
feature_map_dropout (dicee.models.ConEx attribute), 105
feature_map_dropout (dicee.models.ConvO attribute), 118
feature_map_dropout (dicee.models.ConvQ attribute), 112
feature_map_dropout (dicee.models.octonion.AConvO attribute), 76
feature_map_dropout (dicee.models.octonion.ConvO attribute), 75
feature_map_dropout (dicee.models.quaternion.AConvQ attribute), 80
feature map dropout (dicee.models.quaternion.ConvO attribute), 80
feature_map_dropout_rate (dicee.BaseKGE attribute), 183
feature_map_dropout_rate (dicee.config.Namespace attribute), 28
feature_map_dropout_rate (dicee.models.base_model.BaseKGE attribute), 57
feature_map_dropout_rate (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
fill_query() (dicee.query_generator.QueryGenerator method), 136
fill_query() (dicee.QueryGenerator method), 205
find_missing_triples() (dicee.KGE method), 191
{\tt find\_missing\_triples()} \ (\textit{dicee.knowledge\_graph\_embeddings.KGE method}), 50
fit () (dicee.trainer.model_parallelism.MP method), 154
fit () (dicee.trainer.torch_trainer_ddp.TorchDDPTrainer method), 157
fit () (dicee.trainer.torch_trainer.TorchTrainer method), 156
fit () (dicee.trainer.torch_trainer.xMP method), 155
flash (dicee.models.transformers.CausalSelf Attention attribute), 86
FMult (class in dicee.models), 131
FMult (class in dicee.models.function_space), 70
FMult2 (class in dicee.models), 132
FMult2 (class in dicee.models.function_space), 71
form_of_labelling (dicee.DICE_Trainer attribute), 187
form_of_labelling (dicee.trainer.DICE_Trainer attribute), 158
form_of_labelling (dicee.trainer.dice_trainer.DICE_Trainer attribute), 153
forward() (dicee.BaseKGE method), 184
forward() (dicee.BytE method), 181
forward() (dicee.models.base_model.BaseKGE method), 58
forward() (dicee.models.base model.IdentityClass static method), 59
forward() (dicee.models.BaseKGE method), 98, 101, 104, 109, 115, 128, 131
forward() (dicee.models.IdentityClass static method), 99, 110, 116
forward() (dicee.models.transformers.Block method), 88
forward() (dicee.models.transformers.BytE method), 84
forward() (dicee.models.transformers.CausalSelfAttention method), 86
forward() (dicee.models.transformers.GPT method), 89
forward() (dicee.models.transformers.LayerNorm method), 85
```

```
forward() (dicee.models.transformers.MLP method), 87
forward_backward_update() (dicee.trainer.torch_trainer.TorchTrainer method), 156
forward_backward_update() (dicee.trainer.torch_trainer.xMP method), 155
forward_byte_pair_encoded_k_vs_all() (dicee.BaseKGE method), 184
forward_byte_pair_encoded_k_vs_all() (dicee.models.base_model.BaseKGE method), 57
forward_byte_pair_encoded_k_vs_all() (dicee.models.BaseKGE method), 97, 100, 104, 109, 115, 127, 131
forward_byte_pair_encoded_triple() (dicee.BaseKGE method), 184
forward_byte_pair_encoded_triple() (dicee.models.base_model.BaseKGE method), 58
forward_byte_pair_encoded_triple() (dicee.models.BaseKGE method), 97, 101, 104, 109, 115, 127, 131
forward_k_vs_all() (dicee.AConEx method), 172
forward_k_vs_all() (dicee.AConvO method), 172
forward_k_vs_all() (dicee.AConvQ method), 173
forward_k_vs_all() (dicee.BaseKGE method), 184
forward_k_vs_all() (dicee.ComplEx method), 171
forward_k_vs_all() (dicee.ConEx method), 175
forward_k_vs_all() (dicee.ConvO method), 175
forward_k_vs_all() (dicee.ConvQ method), 173
forward_k_vs_all() (dicee.DeCaL method), 167
forward_k_vs_all() (dicee.DistMult method), 162
forward_k_vs_all() (dicee.DualE method), 170
forward_k_vs_all() (dicee.Keci method), 165
forward_k_vs_all() (dicee.models.AConEx method), 106
forward_k_vs_all() (dicee.models.AConvO method), 119
forward_k_vs_all() (dicee.models.AConvQ method), 113
forward_k_vs_all() (dicee.models.base_model.BaseKGE method), 58
forward_k_vs_all() (dicee.models.BaseKGE method), 98, 101, 105, 109, 115, 128, 131
forward_k_vs_all() (dicee.models.clifford.DeCaL method), 64
forward_k_vs_all() (dicee.models.clifford.Keci method), 62
forward_k_vs_all() (dicee.models.ComplEx method), 107
forward_k_vs_all() (dicee.models.complex.AConEx method), 67
forward_k_vs_all() (dicee.models.complex.ComplEx method), 68
forward_k_vs_all() (dicee.models.complex.ConEx method), 67
forward_k_vs_all() (dicee.models.ConEx method), 105
forward_k_vs_all() (dicee.models.ConvO method), 118
forward_k_vs_all() (dicee.models.ConvQ method), 112
forward_k_vs_all() (dicee.models.DeCaL method), 124
forward k vs all() (dicee.models.DistMult method), 102
forward_k_vs_all() (dicee.models.DualE method), 135
forward_k_vs_all() (dicee.models.dualE.DualE method), 69
forward_k_vs_all() (dicee.models.Keci method), 121
{\tt forward\_k\_vs\_all()} \ (\textit{dicee.models.octonion.AConvO method}), 76
forward_k_vs_all() (dicee.models.octonion.ConvO method), 75
forward_k_vs_all() (dicee.models.octonion.OMult method), 74
forward_k_vs_all() (dicee.models.OMult method), 117
forward_k_vs_all() (dicee.models.pykeen_models.PykeenKGE method), 77
forward_k_vs_all() (dicee.models.PykeenKGE method), 129
forward_k_vs_all() (dicee.models.QMult method), 112
forward_k_vs_all() (dicee.models.quaternion.AConvQ method), 80
forward_k_vs_all() (dicee.models.quaternion.ConvQ method), 80
forward_k_vs_all() (dicee.models.quaternion.QMult method), 79
forward_k_vs_all() (dicee.models.real.DistMult method), 81
forward_k_vs_all() (dicee.models.real.Shallom method), 82
forward_k_vs_all() (dicee.models.real.TransE method), 81
forward_k_vs_all() (dicee.models.Shallom method), 102
forward_k_vs_all() (dicee.models.TransE method), 102
forward_k_vs_all() (dicee.OMult method), 178
forward_k_vs_all() (dicee.PykeenKGE method), 180
{\tt forward\_k\_vs\_all()} \ (\textit{dicee.QMult method}), 177
forward_k_vs_all() (dicee.Shallom method), 178
forward_k_vs_all() (dicee. TransE method), 166
forward_k_vs_sample() (dicee.AConEx method), 172
forward_k_vs_sample() (dicee.BaseKGE method), 184
forward_k_vs_sample() (dicee.ComplEx method), 171
forward_k_vs_sample() (dicee.ConEx method), 175
forward_k_vs_sample() (dicee.DistMult method), 162
forward_k_vs_sample() (dicee.Keci method), 165
forward_k_vs_sample() (dicee.models.AConEx method), 106
forward_k_vs_sample() (dicee.models.base_model.BaseKGE method), 58
```

```
forward k vs sample() (dicee.models.BaseKGE method), 98, 101, 105, 109, 115, 128, 131
forward_k_vs_sample() (dicee.models.clifford.Keci method), 62
forward_k_vs_sample() (dicee.models.ComplEx method), 107
forward_k_vs_sample() (dicee.models.complex.AConEx method), 67
forward_k_vs_sample() (dicee.models.complex.ComplEx method), 68
forward_k_vs_sample() (dicee.models.complex.ConEx method), 67
forward_k_vs_sample() (dicee.models.ConEx method), 105
forward k vs sample() (dicee.models.DistMult method), 102
forward_k_vs_sample() (dicee.models.Keci method), 122
forward_k_vs_sample() (dicee.models.pykeen_models.PykeenKGE method), 77
forward_k_vs_sample() (dicee.models.PykeenKGE method), 129
{\tt forward\_k\_vs\_sample()} \ (\textit{dicee.models.QMult method}), \, 112
forward_k_vs_sample() (dicee.models.quaternion.QMult method), 79
forward_k_vs_sample() (dicee.models.real.DistMult method), 81
forward_k_vs_sample() (dicee.PykeenKGE method), 180
forward_k_vs_sample() (dicee.QMult method), 177
forward_k_vs_with_explicit() (dicee.Keci method), 165
forward_k_vs_with_explicit() (dicee.models.clifford.Keci method), 61
forward_k_vs_with_explicit() (dicee.models.Keci method), 121
forward_triples() (dicee.AConEx method), 172
forward_triples() (dicee.AConvO method), 172
forward_triples() (dicee.AConvQ method), 173
forward_triples() (dicee.BaseKGE method), 184
\verb|forward_triples()| \textit{(dicee.ConEx method)}, 175
forward_triples() (dicee.ConvO method), 175
forward_triples() (dicee.ConvQ method), 173
forward_triples() (dicee.DeCaL method), 167
forward_triples() (dicee.DualE method), 170
forward_triples() (dicee.Keci method), 165
forward_triples() (dicee.LFMult method), 178
forward_triples() (dicee.models.AConEx method), 106
forward triples() (dicee.models.AConvO method), 119
forward_triples() (dicee.models.AConvQ method), 113
forward_triples() (dicee.models.base_model.BaseKGE method), 58
forward_triples() (dicee.models.BaseKGE method), 98, 101, 104, 109, 115, 128, 131
forward_triples() (dicee.models.clifford.DeCaL method), 63
forward triples() (dicee.models.clifford.Keci method), 62
forward_triples() (dicee.models.complex.AConEx method), 67
forward_triples() (dicee.models.complex.ConEx method), 67
forward_triples() (dicee.models.ConEx method), 105
forward_triples() (dicee.models.ConvO method), 118
forward_triples() (dicee.models.ConvQ method), 112
forward_triples() (dicee.models.DeCaL method), 123
forward_triples() (dicee.models.DualE method), 135
forward_triples() (dicee.models.dualE.DualE method), 69
forward_triples() (dicee.models.FMult method), 132
forward_triples() (dicee.models.FMult2 method), 133
forward_triples() (dicee.models.function_space.FMult method), 70
forward_triples() (dicee.models.function_space.FMult2 method), 71
forward_triples() (dicee.models.function_space.GFMult method), 71
forward_triples() (dicee.models.function_space.LFMult method), 72
forward_triples() (dicee.models.function_space.LFMult1 method), 72
forward_triples() (dicee.models.GFMult method), 132
forward_triples() (dicee.models.Keci method), 122
forward_triples() (dicee.models.LFMult method), 134
forward_triples() (dicee.models.LFMult1 method), 133
forward_triples() (dicee.models.octonion.AConvO method), 76
forward_triples() (dicee.models.octonion.ConvO method), 75
forward_triples() (dicee.models.Pyke method), 102
forward_triples() (dicee.models.pykeen_models.PykeenKGE method), 77
forward triples() (dicee.models.PykeenKGE method), 129
forward_triples() (dicee.models.quaternion.AConvQ method), 80
forward_triples() (dicee.models.quaternion.ConvQ method), 80
forward_triples() (dicee.models.real.Pyke method), 82
forward_triples() (dicee.models.real.Shallom method), 82
forward_triples() (dicee.models.Shallom method), 102
forward_triples() (dicee.Pyke method), 162
forward_triples() (dicee.PykeenKGE method), 180
```

```
forward triples() (dicee.Shallom method), 178
frequency (dicee.callbacks.Perturb attribute), 25
from_pretrained() (dicee.models.transformers.GPT class method), 89
full_storage_path (dicee.analyse_experiments.Experiment attribute), 18
{\tt func\_triple\_to\_bpe\_representation} \ (\textit{dicee.evaluator.Evaluator attribute}), 41
func_triple_to_bpe_representation() (dicee.knowledge_graph.KG method), 46
function() (dicee.models.FMult2 method), 133
function() (dicee.models.function_space.FMult2 method), 71
G
gamma (dicee.models.FMult attribute), 132
gamma (dicee.models.function space.FMult attribute), 70
gelu (dicee.models.transformers.MLP attribute), 87
gen_test (dicee.query_generator.QueryGenerator attribute), 136
gen_test (dicee.QueryGenerator attribute), 204
gen_valid (dicee.query_generator.QueryGenerator attribute), 136
gen_valid (dicee.QueryGenerator attribute), 204
generate() (dicee.BytE method), 181
generate() (dicee.KGE method), 188
generate() (dicee.knowledge_graph_embeddings.KGE method), 46
generate() (dicee.models.transformers.BytE method), 84
generate_queries() (dicee.query_generator.QueryGenerator method), 137
generate_queries() (dicee.QueryGenerator method), 205
get () (dicee.scripts.serve.NeuralSearcher method), 146
get_aswa_state_dict() (dicee.callbacks.ASWA method), 23
get_bpe_head_and_relation_representation() (dicee.BaseKGE method), 185
get_bpe_head_and_relation_representation() (dicee.models.base_model.BaseKGE method), 58
get_bpe_head_and_relation_representation() (dicee.models.BaseKGE method), 98, 101, 105, 109, 115, 128, 131
get_bpe_token_representation() (dicee.abstracts.BaseInteractiveKGE method), 14
get_callbacks() (in module dicee.trainer.dice_trainer), 152
get_default_arguments() (in module dicee.analyse_experiments), 18
get_default_arguments() (in module dicee.scripts.index), 145
get_default_arguments() (in module dicee.scripts.run), 145
get_default_arguments() (in module dicee.scripts.serve), 146
get_ee_vocab() (in module dicee), 185
get_ee_vocab() (in module dicee.read_preprocess_save_load_kg.util), 142
get_ee_vocab() (in module dicee.static_funcs), 148
get_ee_vocab() (in module dicee.static_preprocess_funcs), 151
get_embeddings() (dicee.BaseKGE method), 185
\verb"get_embeddings" () \textit{ (dicee.models.base\_model.BaseKGE method)}, 58
get_embeddings() (dicee.models.BaseKGE method), 98, 101, 105, 109, 115, 128, 131
get_embeddings() (dicee.models.real.Shallom method), 81
get_embeddings() (dicee.models.Shallom method), 102
get_embeddings() (dicee.Shallom method), 178
\verb"get_ensemble()" (\textit{dicee.trainer.model\_parallelism.MP method}), 154
get_entity_embeddings() (dicee.abstracts.BaseInteractiveKGE method), 15
get_entity_index() (dicee.abstracts.BaseInteractiveKGE method), 14
get er vocab() (in module dicee), 185
get_er_vocab() (in module dicee.read_preprocess_save_load_kg.util), 142
get_er_vocab() (in module dicee.static_funcs), 148
get_er_vocab() (in module dicee.static_preprocess_funcs), 151
get_eval_report() (dicee.abstracts.BaseInteractiveKGE method), 14
get_head_relation_representation() (dicee.BaseKGE method), 184
get_head_relation_representation() (dicee.models.base_model.BaseKGE method), 58
get_kronecker_triple_representation() (dicee.callbacks.KronE method), 25
get_num_params() (dicee.models.transformers.GPT method), 89
get_padded_bpe_triple_representation() (dicee.abstracts.BaseInteractiveKGE method), 14
get_queries() (dicee.query_generator.QueryGenerator method), 137
get_queries() (dicee.QueryGenerator method), 205
get_re_vocab() (in module dicee), 185
get_re_vocab() (in module dicee.read_preprocess_save_load_kg.util), 142
get_re_vocab() (in module dicee.static_funcs), 148
get_re_vocab() (in module dicee.static_preprocess_funcs), 151
get_relation_embeddings() (dicee.abstracts.BaseInteractiveKGE method), 15
get_relation_index() (dicee.abstracts.BaseInteractiveKGE method), 14
get_sentence_representation() (dicee.BaseKGE method), 184
```

```
get sentence representation() (dicee.models.base model.BaseKGE method), 58
get_sentence_representation() (dicee.models.BaseKGE method), 98, 101, 105, 109, 115, 128, 131
\verb"get_transductive_entity_embeddings()" (\textit{dicee.KGE method}), 188
get_transductive_entity_embeddings() (dicee.knowledge_graph_embeddings.KGE method), 46
get_triple_representation() (dicee.BaseKGE method), 184
get_triple_representation() (dicee.models.base_model.BaseKGE method), 58
get_triple_representation() (dicee.models.BaseKGE method), 98, 101, 105, 109, 115, 128, 131
GFMult (class in dicee.models), 132
GFMult (class in dicee.models.function_space), 70
global_rank (dicee.abstracts.AbstractTrainer attribute), 12
global_rank (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
GPT (class in dicee.models.transformers), 88
GPTConfig (class in dicee.models.transformers), 88
gpus (dicee.config.Namespace attribute), 26
gradient_accumulation_steps (dicee.config.Namespace attribute), 27
ground_queries() (dicee.query_generator.QueryGenerator method), 137
ground_queries() (dicee.QueryGenerator method), 205
н
hidden_dropout (dicee.BaseKGE attribute), 184
hidden_dropout (dicee.models.base_model.BaseKGE attribute), 57
hidden_dropout (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
hidden_dropout_rate (dicee.BaseKGE attribute), 183
hidden_dropout_rate (dicee.config.Namespace attribute), 28
hidden_dropout_rate (dicee.models.base_model.BaseKGE attribute), 57
hidden_dropout_rate (dicee.models.BaseKGE attribute), 97, 100, 103, 108, 114, 127, 130
hidden_normalizer (dicee.BaseKGE attribute), 184
hidden_normalizer (dicee.models.base_model.BaseKGE attribute), 57
hidden_normalizer (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
IdentityClass (class in dicee.models), 98, 110, 115
IdentityClass (class in dicee.models.base_model), 58
\verb|idx_entity_to_bpe_shaped| (\textit{dicee.knowledge\_graph.KG attribute}), 45
index_triple() (dicee.abstracts.BaseInteractiveKGE method), 15
init_dataloader() (dicee.DICE_Trainer method), 187
init_dataloader() (dicee.trainer.DICE_Trainer method), 158
init_dataloader() (dicee.trainer.dice_trainer.DICE_Trainer method), 153
init_dataset() (dicee.DICE_Trainer method), 187
init_dataset() (dicee.trainer.DICE_Trainer method), 159
init_dataset() (dicee.trainer.dice_trainer.DICE_Trainer method), 153
init_param (dicee.config.Namespace attribute), 27
init_params_with_sanity_checking() (dicee.BaseKGE method), 184
init_params_with_sanity_checking() (dicee.models.base_model.BaseKGE method), 58
init_params_with_sanity_checking() (dicee.models.BaseKGE method), 97, 101, 104, 109, 115, 127, 131
initial_eval_setting (dicee.callbacks.ASWA attribute), 22
initialize_or_load_model() (dicee.DICE_Trainer method), 187
initialize_or_load_model() (dicee.trainer.DICE_Trainer method), 158
initialize_or_load_model() (dicee.trainer.dice_trainer.DICE_Trainer method), 153
initialize_trainer() (dicee.DICE_Trainer method), 187
initialize_trainer() (dicee.trainer.DICE_Trainer method), 158
initialize_trainer() (dicee.trainer.dice_trainer.DICE_Trainer method), 153
initialize_trainer() (in module dicee.trainer.dice_trainer), 152
input_dp_ent_real (dicee.BaseKGE attribute), 184
input_dp_ent_real (dicee.models.base_model.BaseKGE attribute), 57
input_dp_ent_real (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
input_dp_rel_real (dicee.BaseKGE attribute), 184
input_dp_rel_real (dicee.models.base_model.BaseKGE attribute), 57
input_dp_rel_real (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
input_dropout_rate (dicee.BaseKGE attribute), 183
\verb"input_dropout_rate" (\textit{dicee.config.Namespace attribute}), 28
input_dropout_rate (dicee.models.base_model.BaseKGE attribute), 57
input_dropout_rate (dicee.models.BaseKGE attribute), 97, 100, 103, 108, 114, 127, 130
intialize_model() (in module dicee), 186
intialize_model() (in module dicee.static_funcs), 149
is_continual_training (dicee.DICE_Trainer attribute), 187
is_continual_training (dicee.evaluator.Evaluator attribute), 41
```

```
is continual training (dicee. Execute attribute), 192
is_continual_training (dicee.executer.Execute attribute), 43
is_continual_training (dicee.trainer.DICE_Trainer attribute), 158
is_continual_training (dicee.trainer.dice_trainer.DICE_Trainer attribute), 152
is_global_zero (dicee.abstracts.AbstractTrainer attribute), 12
is_seen() (dicee.abstracts.BaseInteractiveKGE method), 14
is_sparql_endpoint_alive() (in module dicee.sanity_checkers), 144
K
k (dicee.models.FMult attribute), 132
k (dicee.models.FMult2 attribute), 133
k (dicee.models.function_space.FMult attribute), 70
k (dicee.models.function_space.FMult2 attribute), 71
k (dicee.models.function_space.GFMult attribute), 71
k (dicee.models.GFMult attribute), 132
k_fold_cross_validation() (dicee.DICE_Trainer method), 187
k_fold_cross_validation() (dicee.trainer.DICE_Trainer method), 159
k_fold_cross_validation() (dicee.trainer.dice_trainer.DICE_Trainer method), 153
k vs all score() (dicee.ComplEx static method), 171
k_vs_all_score() (dicee.DistMult method), 162
k\_vs\_all\_score() (dicee.Keci method), 165
k_vs_all_score() (dicee.models.clifford.Keci method), 62
k_vs_all_score() (dicee.models.ComplEx static method), 107
k_vs_all_score() (dicee.models.complex.ComplEx static method), 68
k_vs_all_score() (dicee.models.DistMult method), 101
k_vs_all_score() (dicee.models.Keci method), 121
k_vs_all_score() (dicee.models.octonion.OMult method), 74
k_vs_all_score() (dicee.models.OMult method), 117
k_vs_all_score() (dicee.models.QMult method), 112
k_vs_all_score() (dicee.models.quaternion.QMult method), 79
k_vs_all_score() (dicee.models.real.DistMult method), 81
k_vs_all_score() (dicee.OMult method), 178
k_vs_all_score() (dicee.QMult method), 177
Keci (class in dicee), 163
Keci (class in dicee.models), 119
Keci (class in dicee.models.clifford), 59
KeciBase (class in dicee), 162
KeciBase (class in dicee.models), 122
KeciBase (class in dicee.models.clifford), 62
kernel_size (dicee.BaseKGE attribute), 183
kernel_size (dicee.config.Namespace attribute), 27
kernel_size (dicee.models.base_model.BaseKGE attribute), 57
kernel_size (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
KG (class in dicee.knowledge_graph), 45
kg (dicee.callbacks.PseudoLabellingCallback attribute), 22
kg (dicee.read_preprocess_save_load_kg.LoadSaveToDisk attribute), 144
kg (dicee.read_preprocess_save_load_kg.PreprocessKG attribute), 143
kg (dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG attribute), 137
kg (dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk attribute), 138
\verb|kg| (dicee.read\_preprocess\_save\_load\_kg.ReadFromDisk \ attribute), 144
kg (dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk attribute), 139
KGE (class in dicee), 188
KGE (class in dicee.knowledge_graph_embeddings), 46
KGESaveCallback (class in dicee.callbacks), 21
knowledge_graph (dicee.Execute attribute), 192
knowledge_graph (dicee.executer.Execute attribute), 43
KronE (class in dicee.callbacks), 24
KvsAll (class in dicee), 195
KvsAll (class in dicee.dataset_classes), 31
kvsall_score() (dicee.DualE method), 170
kvsall_score() (dicee.models.DualE method), 135
kvsall_score() (dicee.models.dualE.DualE method), 69
KvsSampleDataset (class in dicee), 199
KvsSampleDataset (class in dicee.dataset_classes), 34
```

```
label_smoothing_rate (dicee.config.Namespace attribute), 27
label_smoothing_rate (dicee.dataset_classes.AllvsAll attribute), 32
label_smoothing_rate (dicee.dataset_classes.KvsAll attribute), 32
label_smoothing_rate (dicee.dataset_classes.KvsSampleDataset attribute), 35
label_smoothing_rate (dicee.dataset_classes.OnevsSample attribute), 33, 34
label_smoothing_rate (dicee.dataset_classes.TriplePredictionDataset attribute), 36
label_smoothing_rate (dicee.KvsAll attribute), 196
label smoothing rate (dicee. KvsSampleDataset attribute), 199
label_smoothing_rate (dicee.OnevsSample attribute), 198
label_smoothing_rate (dicee. TriplePredictionDataset attribute), 200
LayerNorm (class in dicee.models.transformers), 85
learning_rate (dicee.BaseKGE attribute), 183
learning_rate (dicee.models.base_model.BaseKGE attribute), 57
learning_rate (dicee.models.BaseKGE attribute), 97, 100, 103, 108, 114, 127, 130
length (dicee.dataset_classes.NegSampleDataset attribute), 35
length (dicee.dataset_classes.TriplePredictionDataset attribute), 36
length (dicee.NegSampleDataset attribute), 200
length (dicee. TriplePredictionDataset attribute), 201
level (dicee.callbacks.Perturb attribute), 25
LFMult (class in dicee), 178
LFMult (class in dicee.models), 133
LFMult (class in dicee.models.function_space), 72
LFMult1 (class in dicee.models), 133
LFMult1 (class in dicee.models.function_space), 71
linear() (dicee.LFMult method), 179
linear() (dicee.models.function_space.LFMult method), 72
linear() (dicee.models.LFMult method), 134
list2tuple() (dicee.query_generator.QueryGenerator method), 136
list2tuple() (dicee.QueryGenerator method), 205
lm_head (dicee.BytE attribute), 181
lm_head (dicee.models.transformers.BytE attribute), 84
lm head (dicee.models.transformers.GPT attribute), 89
ln_1 (dicee.models.transformers.Block attribute), 87
ln_2 (dicee.models.transformers.Block attribute), 88
load() (dicee.read_preprocess_save_load_kg.LoadSaveToDisk method), 144
load() (dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk method), 139
load json() (in module dicee), 186
load_json() (in module dicee.static_funcs), 149
load_model() (in module dicee), 185
load_model() (in module dicee.static_funcs), 148
load_model_ensemble() (in module dicee), 185
load_model_ensemble() (in module dicee.static_funcs), 148
load_numpy() (in module dicee), 186
load_numpy() (in module dicee.static_funcs), 149
load_numpy_ndarray() (in module dicee.read_preprocess_save_load_kg.util), 142
load_pickle() (in module dicee), 185
load_pickle() (in module dicee.read_preprocess_save_load_kg.util), 143
load_pickle() (in module dicee.static_funcs), 148
load_queries() (dicee.query_generator.QueryGenerator method), 137
load_queries() (dicee.QueryGenerator method), 205
{\tt load\_queries\_and\_answers()} \ (\textit{dicee.query\_generator.QueryGenerator static method}), 137
load_queries_and_answers() (dicee.QueryGenerator static method), 205
load_term_mapping() (in module dicee), 185, 193
load_term_mapping() (in module dicee.static_funcs), 148
load_term_mapping() (in module dicee.trainer.dice_trainer), 152
load_with_pandas() (in module dicee.read_preprocess_save_load_kg.util), 142
LoadSaveToDisk (class in dicee.read_preprocess_save_load_kg), 144
LoadSaveToDisk (class in dicee.read_preprocess_save_load_kg.save_load_disk), 139
local_rank (dicee.abstracts.AbstractTrainer attribute), 12
local_rank (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
loss (dicee.BaseKGE attribute), 183
loss (dicee.models.base_model.BaseKGE attribute), 57
loss (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
loss_func (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
loss_function (dicee.trainer.torch_trainer.TorchTrainer attribute), 155
loss_function (dicee.trainer.torch_trainer.xMP attribute), 154
loss_function() (dicee.BytE method), 181
loss_function() (dicee.models.base_model.BaseKGELightning method), 52
```

```
loss function() (dicee.models.BaseKGELightning method), 92
loss_function() (dicee.models.transformers.BytE method), 84
loss_history (dicee.BaseKGE attribute), 184
loss_history (dicee.models.base_model.BaseKGE attribute), 57
loss_history (dicee.models.BaseKGE attribute), 97, 100, 104, 109, 114, 127, 130
loss_history (dicee.models.pykeen_models.PykeenKGE attribute), 77
loss_history (dicee.models.PykeenKGE attribute), 128
loss_history (dicee.PykeenKGE attribute), 180
{\tt loss\_history}~(\textit{dicee.trainer.torch\_trainer\_ddp.NodeTrainer~attribute}),~157
1r (dicee.analyse_experiments.Experiment attribute), 18
1r (dicee.config.Namespace attribute), 26
M
m (dicee.LFMult attribute), 178
m (dicee.models.function_space.LFMult attribute), 72
m (dicee.models.LFMult attribute), 134
main() (in module dicee.scripts.index), 145
main() (in module dicee.scripts.run), 145
main() (in module dicee.scripts.serve), 146
make_iterable_verbose() (in module dicee.static_funcs_training), 150
make_iterable_verbose() (in module dicee.trainer.torch_trainer_ddp), 156
mapping_from_first_two_cols_to_third() (in module dicee), 193
mapping_from_first_two_cols_to_third() (in module dicee.static_preprocess_funcs), 151
margin (dicee.models.Pyke attribute), 102
margin (dicee.models.real.Pyke attribute), 82
margin (dicee.models.real.TransE attribute), 81
margin (dicee.models.TransE attribute), 102
margin (dicee. Pyke attribute), 162
margin (dicee. TransE attribute), 166
max_ans_num (dicee.query_generator.QueryGenerator attribute), 136
max_ans_num (dicee.QueryGenerator attribute), 204
max_epochs (dicee.callbacks.KGESaveCallback attribute), 21
max_length_subword_tokens (dicee.BaseKGE attribute), 184
max_length_subword_tokens (dicee.knowledge_graph.KG attribute), 46
max_length_subword_tokens (dicee.models.base_model.BaseKGE attribute), 57
max_length_subword_tokens (dicee.models.BaseKGE attribute), 97, 100, 104, 109, 115, 127, 131
max_num_of_classes (dicee.dataset_classes.KvsSampleDataset attribute), 35
max_num_of_classes (dicee.KvsSampleDataset attribute), 199
mem_of_model() (dicee.models.base_model.BaseKGELightning method), 51
mem_of_model() (dicee.models.BaseKGELightning method), 91
method (dicee.callbacks.Perturb attribute), 25
MLP (class in dicee.models.transformers), 86
mlp (dicee.models.transformers.Block attribute), 88
mode (dicee.query_generator.QueryGenerator attribute), 136
mode (dicee. Query Generator attribute), 205
model (dicee.config.Namespace attribute), 26
model (dicee.models.pykeen_models.PykeenKGE attribute), 77
model (dicee.models.PykeenKGE attribute), 128
model (dicee.PykeenKGE attribute), 179
model (dicee.scripts.serve.NeuralSearcher attribute), 146
model (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
model (dicee.trainer.torch_trainer.TorchTrainer attribute), 155
model (dicee.trainer.torch_trainer.xMP attribute), 155
model_kwargs (dicee.models.pykeen_models.PykeenKGE attribute), 76
model_kwargs (dicee.models.PykeenKGE attribute), 128
model_kwargs (dicee.PykeenKGE attribute), 179
\verb|model_name| (\textit{dicee.analyse\_experiments.Experiment attribute}), 18
models (dicee.trainer.dice_trainer.EnsembleKGE attribute), 152
module
      dicee, 12
      dicee.__main__, 12
      dicee.abstracts, 12
      dicee.analyse_experiments, 17
      dicee.callbacks, 19
      dicee.config. 25
      dicee.dataset_classes, 28
      dicee.eval_static_funcs, 40
```

```
dicee.evaluator, 41
     dicee.executer, 42
     dicee.knowledge_graph, 45
     dicee.knowledge_graph_embeddings,46
     dicee.models.50
     dicee.models.base_model, 50
     dicee.models.clifford, 59
     dicee.models.complex,66
     dicee.models.dualE, 69
     {\tt dicee.models.function\_space,70}
     dicee.models.octonion, 73
     dicee.models.pykeen_models,76
     dicee.models.quaternion, 77
     dicee.models.real, 81
     dicee.models.static funcs.82
     dicee.models.transformers, 82
     dicee.query_generator, 136
     dicee.read_preprocess_save_load_kg, 137
     dicee.read_preprocess_save_load_kg.preprocess, 137
     dicee.read_preprocess_save_load_kg.read_from_disk, 138
     dicee.read_preprocess_save_load_kg.save_load_disk, 139
     dicee.read_preprocess_save_load_kg.util, 139
     dicee.sanity_checkers, 144
     dicee.scripts, 145
     dicee.scripts.index, 145
     dicee.scripts.run, 145
     dicee.scripts.serve, 145
     dicee.static_funcs, 146
     dicee.static_funcs_training, 150
     dicee.static_preprocess_funcs, 150
     dicee.trainer, 151
     dicee.trainer.dice_trainer, 151
     dicee.trainer.model_parallelism, 154
     dicee.trainer.torch_trainer, 154
     dicee.trainer.torch_trainer_ddp, 156
MP (class in dicee.trainer.model_parallelism), 154
MultiClassClassificationDataset (class in dicee), 194
{\tt MultiClassClassificationDataset} \ \textit{(class in dicee.dataset\_classes)}, 30
MultiLabelDataset (class in dicee), 194
MultiLabelDataset (class in dicee.dataset_classes), 29
Ν
n (dicee.models.FMult2 attribute), 133
n (dicee.models.function_space.FMult2 attribute), 71
n_embd (dicee.models.transformers.CausalSelfAttention attribute), 86
n_embd (dicee.models.transformers.GPTConfig attribute), 88
n_head (dicee.models.transformers.CausalSelfAttention attribute), 86
n head (dicee.models.transformers.GPTConfig attribute), 88
n_layer (dicee.models.transformers.GPTConfig attribute), 88
n_layers (dicee.models.FMult2 attribute), 133
n_layers (dicee.models.function_space.FMult2 attribute), 71
\verb"name" (\textit{dicee.abstracts.BaseInteractiveKGE property}), \ 14
name (dicee.AConEx attribute), 171
name (dicee.AConvO attribute), 172
name (dicee.AConvQ attribute), 172
name (dicee.BytE attribute), 181
name (dicee.ComplEx attribute), 171
name (dicee.ConEx attribute), 175
name (dicee.ConvO attribute), 174
name (dicee.ConvQ attribute), 173
name (dicee.DeCaL attribute), 166
name (dicee.DistMult attribute), 162
name (dicee.DualE attribute), 170
name (dicee. Keci attribute), 163
name (dicee.KeciBase attribute), 162
name (dicee.LFMult attribute), 178
name (dicee.models.AConEx attribute), 106
```

```
name (dicee.models.AConvO attribute), 118
name (dicee.models.AConvQ attribute), 112
name (dicee.models.clifford.DeCaL attribute), 63
name (dicee.models.clifford.Keci attribute), 60
name (dicee.models.clifford.KeciBase attribute), 62
name (dicee.models.ComplEx attribute), 107
name (dicee.models.complex.AConEx attribute), 67
name (dicee.models.complex.ComplEx attribute), 68
name (dicee.models.complex.ConEx attribute), 66
name (dicee.models.ConEx attribute), 105
name (dicee.models.ConvO attribute), 118
name (dicee.models.ConvQ attribute), 112
name (dicee.models.DeCaL attribute), 123
name (dicee.models.DistMult attribute), 101
name (dicee.models.DualE attribute), 135
name (dicee.models.dualE.DualE attribute), 69
name (dicee.models.FMult attribute), 132
name (dicee.models.FMult2 attribute), 132
name (dicee.models.function_space.FMult attribute), 70
name (dicee.models.function_space.FMult2 attribute), 71
name (dicee.models.function_space.GFMult attribute), 70
name (dicee.models.function_space.LFMult attribute), 72
name (dicee.models.function_space.LFMult1 attribute), 72
name (dicee.models.GFMult attribute), 132
name (dicee.models.Keci attribute), 119
name (dicee.models.KeciBase attribute), 122
name (dicee.models.LFMult attribute), 133
name (dicee.models.LFMult1 attribute), 133
name (dicee.models.octonion.AConvO attribute), 76
name (dicee.models.octonion.ConvO attribute), 75
name (dicee.models.octonion.OMult attribute), 74
name (dicee.models.OMult attribute), 117
name (dicee.models.Pyke attribute), 102
name (dicee.models.pykeen_models.PykeenKGE attribute), 76
name (dicee.models.PykeenKGE attribute), 128
name (dicee.models.QMult attribute), 111
name (dicee.models.quaternion.AConvO attribute), 80
name (dicee.models.quaternion.ConvQ attribute), 79
name (dicee.models.quaternion.QMult attribute), 78
name (dicee.models.real.DistMult attribute), 81
name (dicee.models.real.Pyke attribute), 82
name (dicee.models.real.Shallom attribute), 81
name (dicee.models.real.TransE attribute), 81
name (dicee.models.Shallom attribute), 102
name (dicee.models.TransE attribute), 102
name (dicee.models.transformers.BytE attribute), 83
name (dicee.OMult attribute), 177
name (dicee.Pyke attribute), 162
name (dicee.PykeenKGE attribute), 179
name (dicee.QMult attribute), 176
name (dicee.Shallom attribute), 178
name (dicee. TransE attribute), 166
Namespace (class in dicee.config), 26
neg_ratio (dicee.BPE_NegativeSamplingDataset attribute), 194
neg_ratio (dicee.config.Namespace attribute), 27
neg_ratio (dicee.dataset_classes.BPE_NegativeSamplingDataset attribute), 29
neg_ratio (dicee.dataset_classes.KvsSampleDataset attribute), 35
neg_ratio (dicee.KvsSampleDataset attribute), 199
neg_sample_ratio (dicee.CVDataModule attribute), 201
neg_sample_ratio (dicee.dataset_classes.CVDataModule attribute), 37
neg sample ratio (dicee.dataset classes.NegSampleDataset attribute), 35
neg_sample_ratio (dicee.dataset_classes.OnevsSample attribute), 33, 34
neg_sample_ratio (dicee.dataset_classes.TriplePredictionDataset attribute), 36
neg_sample_ratio (dicee.NegSampleDataset attribute), 200
neg_sample_ratio (dicee.OnevsSample attribute), 198
neg_sample_ratio (dicee. TriplePredictionDataset attribute), 201
negnorm() (dicee.KGE method), 190
\verb"negnorm"()" (\textit{dicee.knowledge\_graph\_embeddings.KGE method}), 49
```

```
NegSampleDataset (class in dicee), 199
NegSampleDataset (class in dicee.dataset_classes), 35
neural_searcher (in module dicee.scripts.serve), 146
Neural Searcher (class in dicee.scripts.serve), 146
NodeTrainer (class in dicee.trainer.torch_trainer_ddp), 157
norm_fc1 (dicee.AConEx attribute), 172
norm_fc1 (dicee.AConvO attribute), 172
norm fc1 (dicee.ConEx attribute), 175
norm_fc1 (dicee.ConvO attribute), 174
norm_fc1 (dicee.models.AConEx attribute), 106
norm_fc1 (dicee.models.AConvO attribute), 119
norm_fc1 (dicee.models.complex.AConEx attribute), 67
norm_fc1 (dicee.models.complex.ConEx attribute), 67
norm_fc1 (dicee.models.ConEx attribute), 105
norm_fc1 (dicee.models.ConvO attribute), 118
norm_fc1 (dicee.models.octonion.AConvO attribute), 76
norm_fc1 (dicee.models.octonion.ConvO attribute), 75
normalization (dicee.analyse_experiments.Experiment attribute), 19
normalization (dicee.config.Namespace attribute), 27
{\tt normalize\_head\_entity\_embeddings}~(\textit{dicee.BaseKGE attribute}),~184
normalize_head_entity_embeddings (dicee.models.base_model.BaseKGE attribute), 57
normalize_head_entity_embeddings (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
normalize_relation_embeddings (dicee.BaseKGE attribute), 184
normalize_relation_embeddings (dicee.models.base_model.BaseKGE attribute), 57
normalize_relation_embeddings (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
normalize_tail_entity_embeddings (dicee.BaseKGE attribute), 184
\verb|normalize_tail_entity_embeddings| \textit{(dicee.models.base\_model.BaseKGE attribute)}, 57
normalize_tail_entity_embeddings (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
normalizer_class (dicee.BaseKGE attribute), 183
normalizer_class (dicee.models.base_model.BaseKGE attribute), 57
normalizer_class (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
num bpe entities (dicee.BPE NegativeSamplingDataset attribute), 194
num_bpe_entities (dicee.dataset_classes.BPE_NegativeSamplingDataset attribute), 29
num_bpe_entities (dicee.knowledge_graph.KG attribute), 45
num_core (dicee.config.Namespace attribute), 27
\verb|num_datapoints| (\textit{dicee.BPE\_NegativeSamplingDataset attribute}), 194
num datapoints (dicee.dataset classes.BPE NegativeSamplingDataset attribute), 29
num_datapoints (dicee.dataset_classes.MultiLabelDataset attribute), 30
num_datapoints (dicee.MultiLabelDataset attribute), 194
num_ent (dicee.DualE attribute), 170
num_ent (dicee.models.DualE attribute), 135
num_ent (dicee.models.dualE.DualE attribute), 69
num_entities (dicee.BaseKGE attribute), 183
num_entities (dicee.CVDataModule attribute), 201
num_entities (dicee.dataset_classes.CVDataModule attribute), 37
num_entities (dicee.dataset_classes.KvsSampleDataset attribute), 35
num_entities (dicee.dataset_classes.NegSampleDataset attribute), 35
num_entities (dicee.dataset_classes.OnevsSample attribute), 33, 34
num_entities (dicee.dataset_classes.TriplePredictionDataset attribute), 36
num_entities (dicee.evaluator.Evaluator attribute), 41
num entities (dicee.knowledge graph.KG attribute), 45
num_entities (dicee.KvsSampleDataset attribute), 199
num_entities (dicee.models.base_model.BaseKGE attribute), 57
num_entities (dicee.models.BaseKGE attribute), 96, 100, 103, 108, 114, 126, 130
num_entities (dicee.NegSampleDataset attribute), 200
num_entities (dicee. Onevs Sample attribute), 197, 198
num_entities (dicee. TriplePredictionDataset attribute), 201
num_epochs (dicee.abstracts.AbstractPPECallback attribute), 17
num_epochs (dicee.analyse_experiments.Experiment attribute), 18
num_epochs (dicee.callbacks.ASWA attribute), 22
num_epochs (dicee.config.Namespace attribute), 26
num_epochs (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
num_folds_for_cv (dicee.config.Namespace attribute), 27
num_of_data_points (dicee.dataset_classes.MultiClassClassificationDataset attribute), 30
num_of_data_points (dicee.MultiClassClassificationDataset attribute), 195
num_of_epochs (dicee.callbacks.PseudoLabellingCallback attribute), 22
num_of_output_channels (dicee.BaseKGE attribute), 183
num_of_output_channels (dicee.config.Namespace attribute), 27
```

```
num of output channels (dicee.models.base model.BaseKGE attribute), 57
num_of_output_channels (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
num_params (dicee.analyse_experiments.Experiment attribute), 18
num_relations (dicee.BaseKGE attribute), 183
num_relations (dicee.CVDataModule attribute), 201
num_relations (dicee.dataset_classes.CVDataModule attribute), 37
num_relations (dicee.dataset_classes.NegSampleDataset attribute), 35
num relations (dicee.dataset classes.OnevsSample attribute), 33, 34
num_relations (dicee.dataset_classes.TriplePredictionDataset attribute), 36
num_relations (dicee.evaluator.Evaluator attribute), 41
num_relations (dicee.knowledge_graph.KG attribute), 45
num_relations (dicee.models.base_model.BaseKGE attribute), 57
num_relations (dicee.models.BaseKGE attribute), 96, 100, 103, 108, 114, 126, 130
num_relations (dicee.NegSampleDataset attribute), 200
num_relations (dicee. Onevs Sample attribute), 198
num_relations (dicee. TriplePredictionDataset attribute), 201
\verb|num_sample| (\textit{dicee.models.FMult attribute}), 132
num_sample (dicee.models.function_space.FMult attribute), 70
num_sample (dicee.models.function_space.GFMult attribute), 71
num_sample (dicee.models.GFMult attribute), 132
num_tokens (dicee.BaseKGE attribute), 183
\verb|num_tokens| (\textit{dicee.knowledge\_graph.KG attribute}), 45
num_tokens (dicee.models.base_model.BaseKGE attribute), 57
num_tokens (dicee.models.BaseKGE attribute), 96, 100, 103, 108, 114, 127, 130
num_workers (dicee.CVDataModule attribute), 201
num_workers (dicee.dataset_classes.CVDataModule attribute), 37
numpy_data_type_changer() (in module dicee), 185
numpy_data_type_changer() (in module dicee.static_funcs), 148
\cap
octonion_mul() (in module dicee.models), 116
octonion_mul() (in module dicee.models.octonion), 74
octonion mul norm() (in module dicee.models), 116
octonion_mul_norm() (in module dicee.models.octonion), 74
octonion_normalizer() (dicee.AConvO static method), 172
octonion_normalizer() (dicee.ConvO static method), 174
octonion_normalizer() (dicee.models.AConvO static method), 119
octonion_normalizer() (dicee.models.ConvO static method), 118
octonion_normalizer() (dicee.models.octonion.AConvO static method), 76
octonion_normalizer() (dicee.models.octonion.ConvO static method), 75
octonion_normalizer() (dicee.models.octonion.OMult static method), 74
octonion_normalizer() (dicee.models.OMult static method), 117
octonion_normalizer() (dicee.OMult static method), 178
OMult (class in dicee), 177
OMult (class in dicee.models), 116
OMult (class in dicee.models.octonion), 74
on_epoch_end() (dicee.callbacks.KGESaveCallback method), 22
on_epoch_end() (dicee.callbacks.PseudoLabellingCallback method), 22
on_fit_end() (dicee.abstracts.AbstractCallback method), 16
on_fit_end() (dicee.abstracts.AbstractPPECallback method), 17
on_fit_end() (dicee.abstracts.AbstractTrainer method), 13
on_fit_end() (dicee.callbacks.AccumulateEpochLossCallback method), 20
on_fit_end() (dicee.callbacks.ASWA method), 23
on_fit_end() (dicee.callbacks.Eval method), 24
on_fit_end() (dicee.callbacks.KGESaveCallback method), 22
on_fit_end() (dicee.callbacks.PrintCallback method), 20
on_fit_start() (dicee.abstracts.AbstractCallback method), 16
on_fit_start() (dicee.abstracts.AbstractPPECallback method), 17
on_fit_start() (dicee.abstracts.AbstractTrainer method), 12
on_fit_start() (dicee.callbacks.Eval method), 24
on_fit_start() (dicee.callbacks.KGESaveCallback method), 21
on_fit_start() (dicee.callbacks.KronE method), 25
on_fit_start() (dicee.callbacks.PrintCallback method), 20
on_init_end() (dicee.abstracts.AbstractCallback method), 16
on_init_start() (dicee.abstracts.AbstractCallback method), 15
on_train_batch_end() (dicee.abstracts.AbstractCallback method), 16
on_train_batch_end() (dicee.abstracts.AbstractTrainer method), 13
```

```
on train batch end() (dicee.callbacks.Eval method), 24
on_train_batch_end() (dicee.callbacks.KGESaveCallback method), 21
on_train_batch_end() (dicee.callbacks.PrintCallback method), 20
on_train_batch_start() (dicee.callbacks.Perturb method), 25
on_train_epoch_end() (dicee.abstracts.AbstractCallback method), 16
on_train_epoch_end() (dicee.abstracts.AbstractTrainer method), 13
on_train_epoch_end() (dicee.callbacks.ASWA method), 23
on train epoch end() (dicee.callbacks.Eval method), 24
on_train_epoch_end() (dicee.callbacks.KGESaveCallback method), 21
\verb"on_train_epoch_end()" (\textit{dicee.callbacks.PrintCallback method}), 21
on_train_epoch_end() (dicee.models.base_model.BaseKGELightning method), 52
\verb"on_train_epoch_end"()" \textit{ (dicee.models.BaseKGELightning method}), 92
OnevsAllDataset (class in dicee), 195
OnevsAllDataset (class in dicee.dataset_classes), 31
OnevsSample (class in dicee), 197
OnevsSample (class in dicee.dataset_classes), 33
optim (dicee.config.Namespace attribute), 26
optimizer (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
optimizer (dicee.trainer.torch_trainer.TorchTrainer attribute), 155
optimizer (dicee.trainer.torch_trainer.xMP attribute), 155
optimizer_name (dicee.BaseKGE attribute), 183
optimizer_name (dicee.models.base_model.BaseKGE attribute), 57
optimizer_name (dicee.models.BaseKGE attribute), 97, 100, 103, 108, 114, 127, 130
optimizers (dicee.trainer.dice_trainer.EnsembleKGE attribute), 152
ordered_bpe_entities (dicee.BPE_NegativeSamplingDataset attribute), 194
ordered_bpe_entities (dicee.dataset_classes.BPE_NegativeSamplingDataset attribute), 29
ordered_bpe_entities (dicee.knowledge_graph.KG attribute), 46
ordered_shaped_bpe_tokens (dicee.knowledge_graph.KG attribute), 45
p (dicee.config.Namespace attribute), 28
p (dicee.DeCaL attribute), 167
p (dicee.Keci attribute), 163
p (dicee.models.clifford.DeCaL attribute), 63
p (dicee.models.clifford.Keci attribute), 60
p (dicee.models.DeCaL attribute), 123
p (dicee.models.Keci attribute), 120
padding (dicee.knowledge_graph.KG attribute), 46
pandas_dataframe_indexer() (in module dicee.read_preprocess_save_load_kg.util), 141
param_init (dicee.BaseKGE attribute), 184
param init (dicee.models.base model.BaseKGE attribute), 57
param_init (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
parameters () (dicee.abstracts.BaseInteractiveKGE method), 15
path (dicee.abstracts.AbstractPPECallback attribute), 17
path (dicee.callbacks.AccumulateEpochLossCallback attribute), 20
path (dicee.callbacks.ASWA attribute), 22
path (dicee.callbacks.Eval attribute), 23
path (dicee.callbacks.KGESaveCallback attribute), 21
path_dataset_folder (dicee.analyse_experiments.Experiment attribute), 18
path_for_deserialization (dicee.knowledge_graph.KG attribute), 45
path_for_serialization (dicee.knowledge_graph.KG attribute), 45
path_single_kg (dicee.config.Namespace attribute), 26
path_single_kg (dicee.knowledge_graph.KG attribute), 45
path_to_store_single_run (dicee.config.Namespace attribute), 26
Perturb (class in dicee.callbacks), 25
polars_dataframe_indexer() (in module dicee.read_preprocess_save_load_kg.util), 140
poly_NN() (dicee.LFMult method), 178
poly_NN() (dicee.models.function_space.LFMult method), 72
poly_NN() (dicee.models.LFMult method), 134
polynomial () (dicee.LFMult method), 179
polynomial() (dicee.models.function_space.LFMult method), 73
polynomial() (dicee.models.LFMult method), 134
pop () (dicee.LFMult method), 179
pop() (dicee.models.function_space.LFMult method), 73
pop () (dicee.models.LFMult method), 134
pq (dicee.analyse_experiments.Experiment attribute), 18
predict() (dicee.KGE method), 189
```

```
predict () (dicee.knowledge graph embeddings.KGE method), 48
predict_dataloader() (dicee.models.base_model.BaseKGELightning method), 54
predict_dataloader() (dicee.models.BaseKGELightning method), 94
predict_missing_head_entity() (dicee.KGE method), 188
predict_missing_head_entity() (dicee.knowledge_graph_embeddings.KGE method), 47
predict_missing_relations() (dicee.KGE method), 189
predict_missing_relations() (dicee.knowledge_graph_embeddings.KGE method), 47
predict_missing_tail_entity() (dicee.KGE method), 189
predict_missing_tail_entity() (dicee.knowledge_graph_embeddings.KGE method), 47
predict_topk() (dicee.KGE method), 189
predict_topk() (dicee.knowledge_graph_embeddings.KGE method), 48
prepare_data() (dicee.CVDataModule method), 203
prepare_data() (dicee.dataset_classes.CVDataModule method), 39
preprocess_with_byte_pair_encoding() (dicee.read_preprocess_save_load_kg.PreprocessKG method), 143
preprocess_with_byte_pair_encoding() (dicee.read_preprocess_save_load_kg.preprocess.Preprocess.Reprocess.G method), 137
preprocess_with_byte_pair_encoding_with_padding() (dicee.read_preprocess_save_load_kg.PreprocessKG method), 143
preprocess_with_byte_pair_encoding_with_padding() (dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG method), 138
preprocess_with_pandas() (dicee.read_preprocess_save_load_kg.PreprocessKG method), 143
preprocess_with_pandas() (dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG method), 138
preprocess_with_polars() (dicee.read_preprocess_save_load_kg.PreprocessKG method), 144
preprocess_with_polars() (dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG method), 138
preprocesses_input_args() (in module dicee.static_preprocess_funcs), 151
PreprocessKG (class in dicee.read_preprocess_save_load_kg), 143
PreprocessKG (class in dicee.read_preprocess_save_load_kg.preprocess), 137
PrintCallback (class in dicee.callbacks), 20
process (dicee.trainer.torch_trainer.TorchTrainer attribute), 156
process (dicee.trainer.torch_trainer.xMP attribute), 155
PseudoLabellingCallback (class in dicee.callbacks), 22
Pyke (class in dicee), 162
Pyke (class in dicee.models), 102
Pyke (class in dicee.models.real), 82
pykeen_model_kwargs (dicee.config.Namespace attribute), 27
PykeenKGE (class in dicee), 179
PykeenKGE (class in dicee.models), 128
PykeenKGE (class in dicee.models.pykeen_models), 76
q (dicee.config.Namespace attribute), 28
q (dicee.DeCaL attribute), 167
q (dicee.Keci attribute), 163
q (dicee.models.clifford.DeCaL attribute), 63
q (dicee.models.clifford.Keci attribute), 60
q (dicee.models.DeCaL attribute), 123
q (dicee.models.Keci attribute), 120
qdrant_client (dicee.scripts.serve.NeuralSearcher attribute), 146
QMult (class in dicee), 175
QMult (class in dicee.models), 110
OMult (class in dicee.models.quaternion), 78
quaternion_mul() (in module dicee.models), 107
quaternion_mul() (in module dicee.models.static_funcs), 82
quaternion_mul_with_unit_norm() (in module dicee.models), 110
\verb"quaternion_mul_with_unit_norm()" \textit{(in module dicee.models.quaternion)}, 78
quaternion_multiplication_followed_by_inner_product() (dicee.models.QMult method), 111
quaternion_multiplication_followed_by_inner_product() (dicee.models.quaternion.QMult method), 78
quaternion_multiplication_followed_by_inner_product() (dicee.QMult method), 176
quaternion_normalizer() (dicee.models.QMult static method), 111
quaternion_normalizer() (dicee.models.quaternion.QMult static method), 79
quaternion_normalizer() (dicee.QMult static method), 176
query_name_to_struct (dicee.query_generator.QueryGenerator attribute), 136
query_name_to_struct (dicee.QueryGenerator attribute), 205
QueryGenerator (class in dicee), 204
QueryGenerator (class in dicee.query_generator), 136
r (dicee.DeCaL attribute), 167
r (dicee.Keci attribute), 163
r (dicee.models.clifford.DeCaL attribute), 63
```

```
r (dicee.models.clifford.Keci attribute), 60
r (dicee.models.DeCaL attribute), 123
r (dicee.models.Keci attribute), 120
random_prediction() (in module dicee), 186
random_prediction() (in module dicee.static_funcs), 149
random_seed (dicee.config.Namespace attribute), 27
ratio (dicee.callbacks.Perturb attribute), 25
re (dicee.DeCaL attribute), 167
re (dicee.models.clifford.DeCaL attribute), 63
re (dicee.models.DeCaL attribute), 123
re_vocab (dicee.evaluator.Evaluator attribute), 41
read_from_disk() (in module dicee.read_preprocess_save_load_kg.util), 142
read_from_triple_store() (in module dicee.read_preprocess_save_load_kg.util), 142
read_only_few (dicee.config.Namespace attribute), 27
read_only_few (dicee.knowledge_graph.KG attribute), 45
read_or_load_kg() (in module dicee), 186
read_or_load_kg() (in module dicee.static_funcs), 149
read_with_pandas() (in module dicee.read_preprocess_save_load_kg.util), 142
read_with_polars() (in module dicee.read_preprocess_save_load_kg.util), 142
ReadFromDisk (class in dicee.read_preprocess_save_load_kg), 144
ReadFromDisk (class in dicee.read_preprocess_save_load_kg.read_from_disk), 138
rel2id (dicee.query_generator.QueryGenerator attribute), 136
rel2id (dicee.QueryGenerator attribute), 205
relation_embeddings (dicee.AConvQ attribute), 173
relation_embeddings (dicee.ConvQ attribute), 173
relation_embeddings (dicee.DeCaL attribute), 167
relation_embeddings (dicee.DualE attribute), 170
relation_embeddings (dicee.LFMult attribute), 178
relation_embeddings (dicee.models.AConvQ attribute), 113
relation_embeddings (dicee.models.clifford.DeCaL attribute), 63
relation_embeddings (dicee.models.ConvQ attribute), 112
relation embeddings (dicee.models.DeCaL attribute), 123
relation_embeddings (dicee.models.DualE attribute), 135
relation_embeddings (dicee.models.dualE.DualE attribute), 69
relation_embeddings (dicee.models.FMult attribute), 132
relation_embeddings (dicee.models.FMult2 attribute), 133
relation embeddings (dicee.models.function space.FMult attribute), 70
relation_embeddings (dicee.models.function_space.FMult2 attribute), 71
relation_embeddings (dicee.models.function_space.GFMult attribute), 71
relation_embeddings (dicee.models.function_space.LFMult attribute), 72
{\tt relation\_embeddings}~(\textit{dicee.models.function\_space.LFMult1~attribute}), 72
relation_embeddings (dicee.models.GFMult attribute), 132
relation_embeddings (dicee.models.LFMult attribute), 134
relation_embeddings (dicee.models.LFMult1 attribute), 133
relation_embeddings (dicee.models.pykeen_models.PykeenKGE attribute), 77
relation_embeddings (dicee.models.PykeenKGE attribute), 128
relation_embeddings (dicee.models.quaternion.AConvQ attribute), 80
relation_embeddings (dicee.models.quaternion.ConvQ attribute), 79
relation_embeddings (dicee.PykeenKGE attribute), 180
relation_to_idx (dicee.knowledge_graph.KG attribute), 45
relations_str (dicee.knowledge_graph.KG property), 46
reload_dataset() (in module dicee), 193
reload_dataset() (in module dicee.dataset_classes), 29
report (dicee.DICE_Trainer attribute), 187
report (dicee.evaluator.Evaluator attribute), 41
report (dicee. Execute attribute), 192
report (dicee.executer.Execute attribute), 43
report (dicee.trainer.DICE_Trainer attribute), 158
report (dicee.trainer.dice_trainer.DICE_Trainer attribute), 152
reports (dicee.callbacks.Eval attribute), 23
requires_grad_for_interactions (dicee.Keci attribute), 163
requires_grad_for_interactions (dicee.KeciBase attribute), 162
{\tt requires\_grad\_for\_interactions}~(\textit{dicee.models.clifford.Keci attribute}), 60
requires_grad_for_interactions (dicee.models.clifford.KeciBase attribute), 62
requires_grad_for_interactions (dicee.models.Keci attribute), 120
requires_grad_for_interactions (dicee.models.KeciBase attribute), 122
resid_dropout (dicee.models.transformers.CausalSelfAttention attribute), 86
residual_convolution() (dicee.AConEx method), 172
```

```
residual convolution() (dicee.AConvO method), 172
residual_convolution() (dicee.AConvQ method), 173
residual_convolution() (dicee.ConEx method), 175
residual_convolution() (dicee.ConvO method), 174
residual_convolution() (dicee.ConvQ method), 173
residual_convolution() (dicee.models.AConEx method), 106
residual_convolution() (dicee.models.AConvO method), 119
residual convolution() (dicee.models.AConvO method), 113
residual_convolution() (dicee.models.complex.AConEx method), 67
residual_convolution() (dicee.models.complex.ConEx method), 67
residual_convolution() (dicee.models.ConEx method), 105
residual_convolution() (dicee.models.ConvO method), 118
residual_convolution() (dicee.models.ConvQ method), 112
residual_convolution() (dicee.models.octonion.AConvO method), 76
{\tt residual\_convolution()} \ ({\it dicee.models.octonion.ConvO method}). \ 75
residual_convolution() (dicee.models.quaternion.AConvQ method), 80
residual_convolution() (dicee.models.quaternion.ConvQ method), 80
retrieve_embeddings() (in module dicee.scripts.serve), 146
\verb"return_multi_hop_query_results"() \textit{ (dicee.KGE method)}, 190
return_multi_hop_query_results() (dicee.knowledge_graph_embeddings.KGE method), 49
root () (in module dicee.scripts.serve), 146
roots (dicee.models.FMult attribute), 132
roots (dicee.models.function_space.FMult attribute), 70
roots (dicee.models.function_space.GFMult attribute), 71
roots (dicee.models.GFMult attribute), 132
runtime (dicee.analyse_experiments.Experiment attribute), 19
sample_counter (dicee.abstracts.AbstractPPECallback attribute), 17
sample_entity() (dicee.abstracts.BaseInteractiveKGE method), 14
sample_relation() (dicee.abstracts.BaseInteractiveKGE method), 14
sample_triples_ratio (dicee.config.Namespace attribute), 27
{\tt sample\_triples\_ratio}~(\textit{dicee.knowledge\_graph.KG attribute}), 45
sanity_checking_with_arguments() (in module dicee.sanity_checkers), 145
save() (dicee.abstracts.BaseInteractiveKGE method), 14
save() (dicee.read_preprocess_save_load_kg.LoadSaveToDisk method), 144
save() (dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk method), 139
save_checkpoint() (dicee.abstracts.AbstractTrainer static method), 13
save_checkpoint_model() (in module dicee), 185
save_checkpoint_model() (in module dicee.static_funcs), 148
save_embeddings() (in module dicee), 186
save_embeddings() (in module dicee.static_funcs), 149
save_embeddings_as_csv (dicee.config.Namespace attribute), 26
save_experiment() (dicee.analyse_experiments.Experiment method), 19
save_model_at_every_epoch (dicee.config.Namespace attribute), 27
save_numpy_ndarray() (in module dicee), 185
save_numpy_ndarray() (in module dicee.read_preprocess_save_load_kg.util), 142
save_numpy_ndarray() (in module dicee.static_funcs), 148
save_pickle() (in module dicee), 185
save_pickle() (in module dicee.read_preprocess_save_load_kg.util), 143
save_pickle() (in module dicee.static_funcs), 148
save_queries() (dicee.query_generator.QueryGenerator method), 137
save_queries() (dicee.QueryGenerator method), 205
save_queries_and_answers() (dicee.query_generator.QueryGenerator static method), 137
save_queries_and_answers() (dicee.QueryGenerator static method), 205
save_trained_model() (dicee.Execute method), 192
save_trained_model() (dicee.executer.Execute method), 43
scalar_batch_NN() (dicee.LFMult method), 179
scalar_batch_NN() (dicee.models.function_space.LFMult method), 72
scalar_batch_NN() (dicee.models.LFMult method), 134
scaler (dicee.callbacks.Perturb attribute), 25
scaler (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
score () (dicee.ComplEx static method), 171
score () (dicee.DistMult method), 162
score() (dicee.Keci method), 165
score () (dicee.models.clifford.Keci method), 62
score () (dicee.models.ComplEx static method), 107
```

```
score() (dicee.models.complex.ComplEx static method), 68
score () (dicee.models.DistMult method), 102
score() (dicee.models.Keci method), 122
score () (dicee.models.octonion.OMult method), 74
score () (dicee.models.OMult method), 117
score () (dicee.models.QMult method), 111
score() (dicee.models.quaternion.QMult method), 79
score () (dicee.models.real.DistMult method), 81
score() (dicee.models.real.TransE method), 81
score () (dicee.models.TransE method), 102
score () (dicee.OMult method), 178
score () (dicee.QMult method), 176
score() (dicee. TransE method), 166
score_func (dicee.models.FMult2 attribute), 133
score_func (dicee.models.function_space.FMult2 attribute), 71
scoring_technique (dicee.analyse_experiments.Experiment attribute), 19
scoring_technique (dicee.config.Namespace attribute), 27
search() (dicee.scripts.serve.NeuralSearcher method), 146
search_embeddings() (in module dicee.scripts.serve), 146
seed (dicee.query_generator.QueryGenerator attribute), 136
seed (dicee.QueryGenerator attribute), 204
select_model() (in module dicee), 185
select_model() (in module dicee.static_funcs), 148
selected_optimizer (dicee.BaseKGE attribute), 183
selected_optimizer (dicee.models.base_model.BaseKGE attribute), 57
selected_optimizer (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
{\tt separator}~(\textit{dicee.config.Namespace~attribute}),\,27
separator (dicee.knowledge_graph.KG attribute), 46
sequential_vocabulary_construction() (dicee.read_preprocess_save_load_kg.PreprocessKG method), 144
sequential_vocabulary_construction() (dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG method), 138
set_global_seed() (dicee.query_generator.QueryGenerator method), 136
set_global_seed() (dicee.QueryGenerator method), 205
set_model_eval_mode() (dicee.abstracts.BaseInteractiveKGE method), 14
set_model_train_mode() (dicee.abstracts.BaseInteractiveKGE method), 14
setup() (dicee.CVDataModule method), 202
\verb"setup"()" (\textit{dicee.dataset\_classes.CVDataModule method}), 38
setup executor() (dicee.Execute method), 192
setup_executor() (dicee.executer.Execute method), 43
Shallom (class in dicee), 178
Shallom (class in dicee.models), 102
Shallom (class in dicee.models.real), 81
shallom (dicee.models.real.Shallom attribute), 81
shallom (dicee.models.Shallom attribute), 102
shallom (dicee.Shallom attribute), 178
single_hop_query_answering() (dicee.KGE method), 190
\verb|single_hop_query_answering()| \textit{(dicee.knowledge\_graph\_embeddings.KGE method)}, 49
spargl_endpoint (dicee.config.Namespace attribute), 26
sparql_endpoint (dicee.knowledge_graph.KG attribute), 45
start() (dicee.DICE_Trainer method), 187
start () (dicee.Execute method), 193
start () (dicee.executer.Execute method), 44
start() (dicee.read_preprocess_save_load_kg.PreprocessKG method), 143
start() (dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG method), 137
start() (dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk method), 138
start() (dicee.read_preprocess_save_load_kg.ReadFromDisk method), 144
start () (dicee.trainer.DICE_Trainer method), 159
start() (dicee.trainer.dice_trainer.DICE_Trainer method), 153
start_time (dicee.callbacks.PrintCallback attribute), 20
start_time (dicee.Execute attribute), 192
start_time (dicee.executer.Execute attribute), 43
storage_path (dicee.config.Namespace attribute), 26
storage_path (dicee.DICE_Trainer attribute), 187
storage_path (dicee.trainer.DICE_Trainer attribute), 158
storage_path (dicee.trainer.dice_trainer.DICE_Trainer attribute), 152
store() (in module dicee), 185
store() (in module dicee.static_funcs), 148
store_ensemble() (dicee.abstracts.AbstractPPECallback method), 17
strategy (dicee.abstracts.AbstractTrainer attribute), 12
```

Т

```
T() (dicee.DualE method), 170
T () (dicee.models.DualE method), 135
T () (dicee.models.dualE.DualE method), 70
t_conorm() (dicee.KGE method), 190
t_conorm() (dicee.knowledge_graph_embeddings.KGE method), 49
t_norm() (dicee.KGE method), 190
t_norm() (dicee.knowledge_graph_embeddings.KGE method), 49
target_dim (dicee.AllvsAll attribute), 197
target dim (dicee.dataset classes. Allvs All attribute), 33
target_dim (dicee.dataset_classes.MultiLabelDataset attribute), 30
target_dim (dicee.dataset_classes.OnevsAllDataset attribute), 31
target_dim (dicee.knowledge_graph.KG attribute), 46
target_dim (dicee.MultiLabelDataset attribute), 194
target_dim (dicee. Onevs All Dataset attribute), 195
temperature (dicee. BytE attribute), 181
temperature (dicee.models.transformers.BytE attribute), 83
tensor_t_norm() (dicee.KGE method), 190
{\tt tensor\_t\_norm()} \ (\textit{dicee.knowledge\_graph\_embeddings.KGE method}), 49
test_dataloader() (dicee.models.base_model.BaseKGELightning method), 53
test_dataloader() (dicee.models.BaseKGELightning method), 92
test_epoch_end() (dicee.models.base_model.BaseKGELightning method), 53
test_epoch_end() (dicee.models.BaseKGELightning method), 92
test_h1 (dicee.analyse_experiments.Experiment attribute), 19
test_h3 (dicee.analyse_experiments.Experiment attribute), 19
test_h10 (dicee.analyse_experiments.Experiment attribute), 19
test_mrr (dicee.analyse_experiments.Experiment attribute), 19
test_path (dicee.query_generator.QueryGenerator attribute), 136
test_path (dicee.QueryGenerator attribute), 204
timeit() (in module dicee), 185, 193
timeit() (in module dicee.read_preprocess_save_load_kg.util), 142
timeit() (in module dicee.static_funcs), 148
timeit() (in module dicee.static_preprocess_funcs), 151
to () (dicee, KGE method), 188
to() (dicee.knowledge_graph_embeddings.KGE method), 46
to_df() (dicee.analyse_experiments.Experiment method), 19
topk (dicee.BytE attribute), 181
topk (dicee.models.transformers.BytE attribute), 83
torch_ordered_shaped_bpe_entities (dicee.dataset_classes.MultiLabelDataset attribute), 30
torch_ordered_shaped_bpe_entities (dicee.MultiLabelDataset attribute), 194
TorchDDPTrainer (class in dicee.trainer.torch_trainer_ddp), 156
TorchTrainer (class in dicee.trainer.torch_trainer), 155
train() (dicee.KGE method), 192
train() (dicee.knowledge_graph_embeddings.KGE method), 50
train() (dicee.trainer.torch_trainer_ddp.NodeTrainer method), 157
train_data (dicee. Allvs All attribute), 197
train_data (dicee.dataset_classes.AllvsAll attribute), 32
train_data (dicee.dataset_classes.KvsAll attribute), 32
train_data (dicee.dataset_classes.KvsSampleDataset attribute), 35
\verb|train_data| (\textit{dicee.dataset\_classes.MultiClassClassificationDataset| attribute), 30
train_data (dicee.dataset_classes.OnevsAllDataset attribute), 31
train_data (dicee.dataset_classes.OnevsSample attribute), 33, 34
train_data (dicee.KvsAll attribute), 196
train_data (dicee.KvsSampleDataset attribute), 199
train_data (dicee.MultiClassClassificationDataset attribute), 195
train_data (dicee.OnevsAllDataset attribute), 195
train_data (dicee.OnevsSample attribute), 197, 198
train_dataloader() (dicee.CVDataModule method), 201
train_dataloader() (dicee.dataset_classes.CVDataModule method), 37
train_dataloader() (dicee.models.base_model.BaseKGELightning method), 54
train_dataloader() (dicee.models.BaseKGELightning method), 94
train_dataloaders (dicee.trainer.torch_trainer.TorchTrainer attribute), 155
train_dataloaders (dicee.trainer.torch_trainer.xMP attribute), 155
train_dataset_loader (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
train_h1 (dicee.analyse_experiments.Experiment attribute), 18
```

```
train h3 (dicee.analyse experiments.Experiment attribute), 18
train_h10 (dicee.analyse_experiments.Experiment attribute), 18
train_indices_target (dicee.dataset_classes.MultiLabelDataset attribute), 30
train_indices_target (dicee.MultiLabelDataset attribute), 194
train_k_vs_all() (dicee.KGE method), 191
train_k_vs_all() (dicee.knowledge_graph_embeddings.KGE method), 50
train_mrr (dicee.analyse_experiments.Experiment attribute), 18
train path (dicee.query generator. Query Generator attribute), 136
train_path (dicee.QueryGenerator attribute), 204
train_set (dicee.BPE_NegativeSamplingDataset attribute), 194
train_set (dicee.dataset_classes.BPE_NegativeSamplingDataset attribute), 29
\verb|train_set| (\textit{dicee.dataset\_classes.MultiLabelDataset attribute}), 30
train_set (dicee.dataset_classes.NegSampleDataset attribute), 35
train_set (dicee.dataset_classes.TriplePredictionDataset attribute), 36
train_set (dicee.MultiLabelDataset attribute), 194
train_set (dicee.NegSampleDataset attribute), 200
train_set (dicee. TriplePredictionDataset attribute), 201
train_set_idx (dicee.CVDataModule attribute), 201
train_set_idx (dicee.dataset_classes.CVDataModule attribute), 37
train_set_target (dicee.knowledge_graph.KG attribute), 46
train_target (dicee.AllvsAll attribute), 197
train_target (dicee.dataset_classes.AllvsAll attribute), 32
train_target (dicee.dataset_classes.KvsAll attribute), 32
train_target (dicee.dataset_classes.KvsSampleDataset attribute), 35
train_target (dicee.KvsAll attribute), 196
train_target (dicee.KvsSampleDataset attribute), 199
train_target_indices (dicee.knowledge_graph.KG attribute), 46
train_triples() (dicee.KGE method), 191
\verb|train_triples()| \textit{(dicee.knowledge\_graph\_embeddings.KGE method)}, 50
trained_model (dicee.Execute attribute), 192
trained_model (dicee.executer.Execute attribute), 43
trainer (dicee.config.Namespace attribute), 27
trainer (dicee.DICE_Trainer attribute), 187
trainer (dicee. Execute attribute), 192
trainer (dicee.executer.Execute attribute), 43
trainer (dicee.trainer.DICE_Trainer attribute), 158
trainer (dicee.trainer.dice trainer.DICE Trainer attribute), 152
trainer (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute), 157
training_step (dicee.trainer.torch_trainer.TorchTrainer attribute), 155
training_step (dicee.trainer.torch_trainer.xMP attribute), 155
training_step() (dicee.BytE method), 181
training_step() (dicee.models.base_model.BaseKGELightning method), 51
training_step() (dicee.models.BaseKGELightning method), 91
training_step() (dicee.models.transformers.BytE method), 84
training_step_outputs (dicee.models.base_model.BaseKGELightning attribute), 51
training_step_outputs (dicee.models.BaseKGELightning attribute), 91
training_technique (dicee.knowledge_graph.KG attribute), 45
TransE (class in dicee), 166
TransE (class in dicee.models), 102
TransE (class in dicee.models.real), 81
transfer_batch_to_device() (dicee.CVDataModule method), 202
transfer_batch_to_device() (dicee.dataset_classes.CVDataModule method), 38
transformer (dicee. BytE attribute), 181
transformer (dicee.models.transformers.BytE attribute), 84
transformer (dicee.models.transformers.GPT attribute), 89
trapezoid() (dicee.models.FMult2 method), 133
trapezoid() (dicee.models.function_space.FMult2 method), 71
tri_score() (dicee.LFMult method), 179
tri_score() (dicee.models.function_space.LFMult method), 72
tri_score() (dicee.models.function_space.LFMult1 method), 72
tri score() (dicee.models.LFMult method), 134
tri_score() (dicee.models.LFMult1 method), 133
triple_score() (dicee.KGE method), 190
triple_score() (dicee.knowledge_graph_embeddings.KGE method), 48
TriplePredictionDataset (class in dicee), 200
TriplePredictionDataset (class in dicee.dataset_classes), 36
\verb|tuple2list(|)| (dicee.query\_generator.QueryGenerator\ method), 136
tuple2list() (dicee.QueryGenerator method), 205
```

```
U
unlabelled_size (dicee.callbacks.PseudoLabellingCallback attribute), 22
unmap() (dicee.query_generator.QueryGenerator method), 137
unmap() (dicee.QueryGenerator method), 205
unmap_query() (dicee.query_generator.QueryGenerator method), 137
unmap_query() (dicee.QueryGenerator method), 205
V
val_aswa (dicee.callbacks.ASWA attribute), 23
val_dataloader() (dicee.models.base_model.BaseKGELightning method), 53
val_dataloader() (dicee.models.BaseKGELightning method), 93
val_h1 (dicee.analyse_experiments.Experiment attribute), 18
val_h3 (dicee.analyse_experiments.Experiment attribute), 18
val_h10 (dicee.analyse_experiments.Experiment attribute), 18
val_mrr (dicee.analyse_experiments.Experiment attribute), 18
val_path (dicee.query_generator.QueryGenerator attribute), 136
val_path (dicee.QueryGenerator attribute), 204
validate_knowledge_graph() (in module dicee.sanity_checkers), 144
vocab_preparation() (dicee.evaluator.Evaluator method), 42
vocab_size (dicee.models.transformers.GPTConfig attribute), 88
vocab_to_parquet() (in module dicee), 186
vocab_to_parquet() (in module dicee.static_funcs), 149
vtp_score() (dicee.LFMult method), 179
\verb|vtp_score|()| \textit{(dicee.models.function\_space.LFMult method)}, 73
vtp_score() (dicee.models.function_space.LFMult1 method), 72
vtp_score() (dicee.models.LFMult method), 134
vtp_score() (dicee.models.LFMult1 method), 133
W
weight (dicee.models.transformers.LayerNorm attribute), 85
weight_decay (dicee.BaseKGE attribute), 183
weight_decay (dicee.config.Namespace attribute), 27
weight_decay (dicee.models.base_model.BaseKGE attribute), 57
weight_decay (dicee.models.BaseKGE attribute), 97, 100, 104, 108, 114, 127, 130
weights (dicee.models.FMult attribute), 132
weights (dicee.models.function_space.FMult attribute), 70
weights (dicee.models.function_space.GFMult attribute), 71
weights (dicee.models.GFMult attribute), 132
write_links() (dicee.query_generator.QueryGenerator method), 137
\verb|write_links()| \textit{(dicee.QueryGenerator method)}, 205
write_report() (dicee.Execute method), 193
write_report() (dicee.executer.Execute method), 44
Χ
x_values (dicee.LFMult attribute), 178
x\_values (dicee.models.function_space.LFMult attribute), 72
```

x_values (dicee.models.LFMult attribute), 134 xMP (class in dicee.trainer.torch_trainer), 154