Methods 3: Multilevel Statistical Modeling and Machine Learning

Week 6: *Mid-way evaluation and Machine Learning Intro*November 2, 2021

by: Lau Møller Andersen

These slides are distributed according to the CC BY 4.0 licence:

https://creativecommons.org/licenses/by/4.0/

Attribution 4.0 International (CC BY 4.0)

Study Café how is it going?

Reminder: Office hours (If assignments are hard, why is no one coming?)

Python book in Stakbogladen

https://www.stakbogladen.dk/soegning.asp?phrase=

9781783555130

Also available online at the Royal Library (thanks, Emil!)

BOG

Python machine learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics

Sebastian Raschka author; Randal S Olson author of foreword 2015; 1st edition

Practical exercise tomorrow

To make sure that *Python* runs within *R Markdown*, make sure you have the *reticulate* package installed install.packages('reticulate')

Also create a text file that is called *.Renviron* (remember the dot) placed in the folder where your *RProj* file is. It should have a single line: RETICULATE_PYTHON=PATH where PATH is the path to your *methods3* conda environment. Use the commands below to find the paths:

```
library(reticulate)
print(conda_list())
```

```
python
##
             name
       miniconda3
## 1
                                     /home/lau/miniconda3/bin/python
                       /home/lau/miniconda3/envs/methods3/bin/python
## 2
         methods3
## 3
                            /home/lau/miniconda3/envs/mne/bin/python
              mne
## 4
         mne 0.17
                       /home/lau/miniconda3/envs/mne 0.17/bin/python
                   /home/lau/miniconda3/envs/mne func sig/bin/python
## 5 mne func sig
## 6
           mnedev
                         /home/lau/miniconda3/envs/mnedev/bin/python
## 7
         psychopy
                       /home/lau/miniconda3/envs/psychopy/bin/python
## 8
        fslpython
                                 /usr/local/fsl/fslpython/bin/python
        fslpython /usr/local/fsl/fslpython/envs/fslpython/bin/python
## 9
```

Practical exercise tomorrow

NB! No spaces around equals sign!

Practical exercise tomorrow

Update environment

conda env create --force -f methods3_environment.yml

Overwrite old environment

Update environment (new packages have been added). Run this command from the folder week_06

Mid-way evaluation

Mid-way evaluation

- 1) Write something you liked about the course so far
- 2) Write something you did not like about the course so far
- 3) What would you change?

Next time: I'll summarise the feedback on the three points and what I'll change

Learning goals

Evaluating and comparing models

- 1) Learning tools for comparing models
 - 1) Variance explained
 - 2) Likelihood ratio tests
 - 3) Information criteria
- 2) Bridging to out-of-sample

Why are we modelling?

Remember Emil's slides from week 03

- To be able to understand the world
- To be able to predict and manipulate the world

$$F = G \frac{m_1 m_2}{r^2}$$

EXPLANATION

NASA/Bill Ingalls

PREDICTION

What constitutes a good model?

Remember Emil's slides from week 03

- Accurate estimation
 of the underlying
 parameters of the
 population distribution
- Generalisation to new data

EXPLANATION

PREDICTION

Within an **explanatory** framework, how can we assess whether we have done a good job?

Variance explained

- Pros
 - R² is intuitive
- Cons
 - More complex models will always explain more variance
 - Hard to interpret in the case of collinearity
 - R² doesn't give us what we want

the likelihood of this particular model to be true

Likelihood ratio

Pros

- Models can be compared in a principled way by reference to a theoretical distribution, χ^2 . (In the single level case, F can be calculated)

Cons

- Models have to be nested in one another can only compare when one of the model is a subset of the other
- Maximum likelihood fitting may be biased for complex models
- Requires large sample sizes
- Be careful if collinearity is high

Information criteria

Pros

 Models can be compared even though one is not nested within the other (response data has to be the same though)

Cons

- Number of effective parameters not well defined for multilevel models
- Maximum likelihood fitting may be biased for complex models

Did you learn? (it's not easy)

Evaluating and comparing models

- 1) Learning tools for comparing models
 - 1) Variance explained
 - 2) Likelihood ratio tests
 - 3) Information criteria
- 2) Bridging to out-of-sample

Learning goals

Explanation and prediction

- 1) Understanding that fitting (explaining) often leads to overfitting
- 2) Learning methods to prevent overfitting by introducing *bias*
- 3) Understanding how the error can be decomposed into *bias* and *variance*

To fit is to overfit

(Yarkoni and Westfall, 2017)

Overfitting: fitting sample-specific noise, which is thus not representative of the population

Fig. 1. Training and test error produced by fitting either a linear regression (left) or a 10th-order polynomial regression (right) when the true relationship in the population (red line) is linear. In both cases, the test data (green) deviate more from the model's predictions (blue line) than the training data (blue). However, the flexibility of the 10th-order polynomial model facilitates much greater overfitting, resulting in lower training error but much higher test error than the linear model. MSE = mean squared error.

the test and training data is from the same distribution. instead of trying to evaluet how weel the first model based on the training data how waell it fits, iyt also have to fit the test data

(Yarkoni and Westfall, 2017)

A sample of 10 linear or quadratic?

A sample of 10 linear or quadratic?

A sample of 10 linear or quadratic?

Residuals (linear)

Residuals (quadratic)

Quadratic:

$$ax^2 + bx + c$$

the quadratic is best

Linear:

$$bx + c$$

Estimates

$$a = 0,6184$$
; $b = 3,0201$

$$b = 3,020$$

Now a sample of 100

$$b = 1,650$$

$$a = -0.03074 \approx 0.5b = 1.650$$

Fig. 2. An estimator's predictions can deviate from the desired outcome (or true scores) in two ways. First, the predictions may display a systematic tendency (or *bias*) to deviate from the central tendency of the true scores (compare right panels with left panels). Second, the predictions may show a high degree of *variance*, or imprecision (compare bottom panels with top panels).

accuracy and precision of source localization. After left median-nerve stimulation, activations is expected in the right-hemisphere hand region of the primary somatosensory cortex. The foot area is shown at the top of the head. See text for further explanation.

(Yarkoni and Westfall, 2017) (Hari and Puce, 2017)

(Yarkoni and Westfall, 2017) Sum of squared errors Bias-variance decomposition In real life its not really possible to calculate the bias Because you need the true function

Fig. 3. Schematic illustration of the bias-variance decomposition. (Left) Under the classical error model, prediction error is defined as the sum of squared differences between true scores and observed scores (black lines). (Right) The bias-variance decomposition partitions the total sum of squared errors into two separate components: a bias term that captures a model's systematic tendency to deviate from the true scores in a predictable way (black line) and a variance term that represents the deviations of the individual observations from the model's expected prediction (gray lines).

Bias variance decomposition

$$E[(y_0 - \hat{f}(x_0))^2] = bias(\hat{f}(x_0))^2 + var(\hat{f}(x_0)) + \sigma^2$$

E = expectation is the value it will take if you do it an infinite number of times

unexplained error

$$bias(\hat{f}(x_0)) = E\left[\left(y_0 - \hat{f}(x_0)\right)^2\right] \qquad \text{\tiny mangler noget her - variance}$$

is the *expected* squared error between the true value y_0 and its estimates based on fits $\hat{f}(x_0)$

We'll look more into this during tomorrow's exercise

Multilevel modelling as a *bias* introducer

"For example, some readers may be surprised to learn that multilevel modeling approaches to analyzing clustered data—which have recently seen a dramatic increase in adoption in psychology—improve on ordinary least squares (OLS) approaches to estimating individual cluster effects by deliberately biasing (through "shrinking" or "pooling") the cluster estimates toward the estimated population average"

(Yarkoni and Westfall, 2017)

Introducing bias

"In a widely used form of penalized regression called lasso regression (Tibshirani, 1996, 2011), this leastsquares criterion is retained, but the overall cost function that the estimation seeks to minimize now includes an additional penalty term that is proportional to the sum of the absolute values of the coefficients."

(Yarkoni and Westfall, 2017)

Penalised regression

RSS= $\sum (y_i - \hat{y}_i)^2$ (minimise to obtain least squares solution)

lasso regression: RSS+
$$\lambda \sum_{j=1}^{p} |\beta_j|$$
 (minimise this sum)

ridge regression: RSS+
$$\lambda \sum_{j=1}^{p} (\beta_j^2)$$
 (minimise this sum)

i:observations

p:predictor variables

 λ : a constant

Penalised regression

RSS =
$$\sum (y_i - \hat{y}_i)^2$$
 (minimise to obtain least squares solution)

lasso regression : RSS+
$$\lambda \sum_{j=1}^{p} |\beta_{j}|$$
 (minimise this sum)

ridge regression : RSS +
$$\lambda \sum_{j=1}^{p} (\beta_{j}^{2})$$
 (minimise this sum)

i:observations

p: predictor variables

 λ : a constant

Group discussion

In each case: what happens when?

- 1. λ increases?
- 2. λ decreases?
- 3. λ is 0?
- 4. λ goes towards infinity?

Penalised regression

 $RSS = \sum_{i} (y_i - \hat{y}_i)^2 (minimise to obtain least squares solution)$

$$\underset{\lambda}{\operatorname{argmin}} = \operatorname{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\underset{\lambda}{\operatorname{argmin}} = \operatorname{RSS} + \lambda \sum_{j=1}^{p} \left(\beta_{j}^{2} \right)$$

i:observations

p: predictor variables

 λ : a constant

How to choose λ ?

```
##
## Call:
## lm(formula = hp ~ mpg + wt + drat + qsec, data = mtcars)
##
## Coefficients:
## (Intercept) mpg wt drat qsec
## 473.779 -2.877 26.037 4.819 -20.751
```

What is λ equal to here?

```
sum.of.squares.total <- sum((y - mean(y))^2)
sum.of.squared.errors.lm <- sum(residuals(linear_model)^2)
print(r.squared.lm <- 1 - sum.of.squared.errors.lm/sum.of.squares.total)</pre>
```

```
## [1] 0.8072553
```

How to choose λ (lasso)?

```
##
## Call: glmnet(x = x, y = y, alpha = 1, lambda = c(0, 0.2, 2, 4, 20,
100))
##
                           lambda
                                          RSS
                                                  penalty
                                                                  sum
##
     Df
         %Dev Lambda
                                                            145726.9
                            100.0 145726.9
                                                0.0
                100.0
      0.0000
## 2
      2 0.6567
                 20.0
                         20.00000 50025.64218
                                                  14.05496 50039.69714
## 3
     3 0.8004
                  4.0
                          4.00000 29082.92003
                                                  41.34363 29124.26366
                          2.00000 28408.50683
                                                  44.99057 28453.49740
##
               2.0
     3 0.8051
## 5
      4 0.8072
                  0.2
                          0.20000 28097.60764
                                                  52.47741 28150.08505
                          0.00000 28088.09951
                                                  54.46997 28142.56948
## 6
     4 0.8073
                  0.0
```

How to choose λ ?

What does \(\lambda\) do (ridge)?

$$\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

I : an identity matrix with p predictor variables λ : a constant (small)

What is X^TX?

head(X)

$X_{COV} = X^T X$

print(cov.X)

drat ## wt qsec mpg ## mpg 14042.310 1909.7528 2380.2770 11614.745 360.9011 ## wt 1909.753 358.7190 1828.095 ## drat 2380.277 358.7190 422.7907 2056.914 ## qsec 11614.745 1828.0946 2056.9140 10293.480

$$X_{COV} = X^T X$$

The fact that the off-diagonal > 0, indicates that there is collinearity

Covariance matrix

Collinearity can be bad

```
##
## Call:
## lm(formula = hp ~ mpg + wt + drat + qsec, data = mtcars)
##
## Coefficients:
## (Intercept) mpg wt drat qsec
## 473.779 -2.877 26.037 4.819 -20.751
```

Assuming no collinearity, what is the interpretation of the coefficients? With collinearity, is that interpretation possible?

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 0)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 1)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 10)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 100)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 1000)

So why is it called regularisation?

Two notes about the inverted matrix:

with increase of λ

- 1. Diagonal shrinks (bias is added)
- 2. Off-diagonal shrinks (collinearity is reduced, which improves the stability of the model)

In a stable model:

Feeding new data or adding new predictor variables will not change the parameter estimates a lot

We have succeeded in finding a λ making our model more stable (improved **in-sample** validity), but we haven't found a λ that optimises predictive power – (**out-of-sample**)

Out-of-sample as validity check

mtcars.1 <- mtcars[1:10,]</pre>

Out-of-sample as validity check

```
Call:
lm(formula = hp \sim mpg + wt + drat + qsec, data = mtcars.1)
Coefficients:
(Intercept)
                                                 drat
                                     wt
                                                                qsec
                      mpg
    414.541
                  -13.638
                                 12.753
                                               11.263
                                                             -5.042
Call:
 lm(formula = hp \sim mpq + wt + drat + qsec, data = mtcars)
Coefficients:
                                                  drat
 (Intercept)
                                      wt
                       mpg
                                                                qsec
     473.779
                    -2.877
                                  26.037
                                                 4.819
                                                             -20.751
```

Suddenly, someone shows up with

Let's check our model

mtcars.2 <- mtcars[11:32,]</pre>

Predictions based on mtcars.1

Finding optimal lambda

Ridge Regression

$$MSE = mean((y - \hat{y})^2)$$

Which dataset is the MSE calculated on?

```
Call:
lm(formula = hp \sim mpg + wt + drat + qsec + 0, data = mtcars.1)
Coefficients:
   mpg wt drat qsec
-8.379 76.588 45.705 -5.850
print(beta.hat.ridge <- ridge.regression(X, y, mtcars.1, min.lambda))</pre>
##
             mpg wt drat gsec
## [1,] -7.421887 33.637 22.0378 4.70691
```

What has happened to the coefficients?

Predictions based on mtcars.1; lambda=3,53

Prediction on mtcars.2

$$\lambda = 0$$

Predictions based on mtcars.1; lambda=3,53

"Prediction" on mtcars.1

$$\lambda = 0$$

Predictions based on mtcars.1; lambda=0

Nomenclature

- mtcars.1 -> training set
- mtcars.2 -> test set
 - NB! Normally, we prefer that out training set is bigger than our test set
- By introducing bias in our training set, we at the same time reduce the variance of our training set, increasing the reliability of our predictions on a test set

"Testing" on training set

greater bias lesser variance

smallest bias greater variance (of \hat{y})

Predictions based on mtcars.1; lambda=3,53

Predictions based on mtcars.1; lambda=0

Optimal λ

lesser bias lesser variance more bias greater variance (of \hat{y})

Did you learn?

Explanation and prediction

- 1) Understanding that fitting (explaining) often leads to overfitting
- 2) Learning methods to prevent overfitting by introducing *bias*
- 3) Understanding that the error can be decomposed into *bias* and *variance*

Next time

- The Perceptron
- Adaline
- Linear regression

References

- Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.-S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008
- Gelman, A., Hill, J., 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
- Hari, R., Puce, A., 2017. MEG-EEG Primer. Oxford University Press, New York, NY, US.
- Yarkoni, T., Westfall, J., 2017. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect Psychol Sci 12, 1100–1122. https://doi.org/10.1177/1745691617693393