

Universidade do Minho Escola de Ciências

I - Som e Acústica

António Mário Almeida

Departamento de Física Universidade do Minho

Sumário

- Definições
 - 1. Som, acústica e ondas
 - 2. Classificação e propriedades das ondas
 - 3. Fenómenos ondulatórios
 - 4. Ondas estacionárias
- 2. Velocidade do som
- 3. Intensidade do som
- 4. Refração do som
- 5. Cavidades ressonantes

1. Definições

O Som

- O som é uma <u>onda</u> de compressão num gás, num líquido ou num sólido.
- Uma onda é uma perturbação periódica que viaja no espaço.
 - É periódica no espaço,
 - em determinado instante t, a perturbação é periódica com z.
 - É periódica no tempo,
 - Numa dada posição z, a perturbação é periódica no tempo t.

Wave propagation: At two times t₁ and t₂

Fig. 10.1. Waves at (a) one time, (b) one place, and (c) two different times, showing wave propagation

O que é a acústica?

- Ramo da Física que estuda o som
- Envolve o estudo de três processos distintos: a produção, a propagação e a recepção do som
- Norma portuguesa NP-3225/1 de 1986: acústica é a ciência que se ocupa do estudo das excitações mecânicas no domínio da audiofrequência

1. Definições

O que é a acústica?

Morcego--- -- 100kHz

Acústica musical

 A acústica musical/acústica da música estuda os aspectos relacionados com a produção, propagação e recepção do som para fins essencialmente musicais.

Luís Henrique, pg. 6

1. Definições

Ondas

- Ondas mecânicas
- Ondas eletromagnéticas
- Ondas longitudinais
- Ondas transversais

O que é uma onda?

1. Definições

Como gerar uma onda?

Começa-se por gerar um pulso: uma pequena perturbação propaga-se num meio elástico

1. Definições

Exemplo de uma perturbação que se propaga num meio não elástico

Se a primeira pedra de dominó é empurrada....

a energia é transmitida de peça para peça, mas as partículas não voltam à posição de equilíbrio.

Uma onda transporta energia...

mas não transporta matéria

1. Definições

O que é uma onda?

What is a Wave?

http://www.acs.psu.edu/drussell/Demos/waves-intro/waves-intro.html

Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State

Frequência e período

O número de pulsos ou oscilações gerados em cada segundo é a frequência **f** e a unidade é o **Hz** ou **s**⁻¹.

O intervalo de tempo entre pulsos ou vibrações sucessivas é o período **T**.

$$f = 1/T$$

2. Classificação e propriedades das onda

Frente de onda

O conjunto de todos os pontos contíguos na mesma fase de vibração constitui uma frente de onda

Comprimento de onda

A distância entre duas frentes de onda sucessivas é o comprimento de onda λ

Se v é a velocidade com que se propagam as ondas num dado meio, então:

$$\lambda = vT = v/f$$

2. Classificação e propriedades das onda

Ondas: classificação

- Ondas mecânicas
- Ondas eletromagnéticas

- Ondas longitudinais
- Ondas transversais

2. Classificação e propriedades das onda

Ondas: classificação

- Quanto à propagação no espaço
 - ondas em uma dimensão
 - ondas em duas dimensões
 - ondas em três dimensões
- Quanto à relação entre a direção de propagação e a direção de vibração
 - ondas transversais
 - ondas longitudinais

2. Classificação e prop<mark>riedades das onda</mark>

Ondas: classificação

ondas transversais

ondas longitudinais

http://www.youtube.com/watch?v=Rbuhdo0AZDU

http://www.acs.psu.edu/drussell/Demos/waves-intro/waves-intro.html

4

@2002, Dan Russell

http://www.acs.psu.edu/drussell/Demos/waves-intro/waves-intro.html

http://www.acs.psu.edu/drussell/Demos/waves-intro/waves-intro.html

3. Fenómenos ondulatórios

Fenómenos ondulatórios

- Princípio de sobreposição
- Princípio de Huygens

3. Fenómenos ondulatórios

Fenómenos ondulatórios

- O que acontece a uma onda quando encontra um obstáculo no seu caminho?
- O que acontece a uma onda quando se alteram as características do meio em que se propaga?
- Como se pode descrever o movimento oscilatório de pontos materiais sujeitos a mais do que uma fonte vibratória?

Princípio de Huygens

- Cada ponto do meio elástico afetado por uma onda torna-se ele mesmo emissor de uma onda secundária
- Cada ponto de uma frente de onda é um centro emissor de ondas esféricas

FIGURE 4.27 According to Huygens's Principle, a wave propagates as if the wavefront were composed of an array of point sources, each emitting a spherical wave.

Princípio de sobreposição

https://www.youtube.com/watch?v=ypcX1LdmMPM https://www.youtube.com/watch?v=IU8xeJIJ0mk

These pictures show the motion of wave pulses along a spring. To make a pulse, one end of the spring was shaken by hand. Movies were filmed, and a series of frames chosen to show the motion. (a) A pulse travels to the left. (b) Superposition of two colliding positive pulses. (c) Superposition of two collid-

ing pulses, one positive and one negative.

Uncopyrighted photographs from PSSC Physics.

Sobreposição de ondas

Caso 1

 Suponhamos, por simplicidade, 2 ondas sinusoidais de igual frequência e amplitude mas desfasadas no tempo que afetam o movimento de um ponto material. Então, cada uma das ondas será descrita por:

 $y_1 = A\cos(kx-wt)$ $y_2 = A\cos(kx-wt-\phi)$

A onda resultante será:

 $y=y_1+y_2=2A\cos(\phi/2)\cos(kx-wt-\phi/2)$ (*) ou seja, tem a mesma frequência que as outras ondas mas a amplitude é A´=2Acos($\phi/2$): depende do desfasamento.

Os casos extremos de φ:

Se ϕ =0, as ondas dizem-se **em fase** e A'=2A => as ondas <u>interferem</u> <u>construtivamente</u>.

Se $\phi = \pi$ rad, as ondas dizem-se em oposição de fase e A´=0 => as ondas <u>interferem destrutivamente</u>.

(*) –
$$\cos(a)+\cos(b)=2\cos(\underline{a+b})\cos(\underline{a-b})$$

Interferência construtiva

3. Fenómenos ondulatórios

Interferência destrutiva

$$y_1 = y_0 \sin(kx - \omega t)$$

$$y_2 = y_0 \sin(kx - \omega t + \pi)$$

$$Y = y_1 + y_2 = 0$$

Sobreposição de ondas Caso 2

 Consideremos agora 2 ondas sinusoidais de frequências diferentes mas próximas e, sem perda de generalidade, com a mesma amplitude. Por simplicidade, escolhamos o ponto x=0.

```
y_1=Acos(w_1t)

y_2=Acos(w_2t)

(é irrelevante introduzir uma diferença de fase \phi, por isso não o fazemos)
```

A onda resultante será:

$$y=y_1+y_2=A[\cos(w_1t)+\cos(w_2t)]$$

$$=2A \cdot \cos(\underline{w_1+w_2})t \cdot \cos(\underline{w_1-w_2})t$$

$$2$$

- (w1+w2)/2 é a frequência média: w_{med}
- (w1-w2)/2 é a frequência de modulação: w_{mod}

3. Fenómenos ondulatórios

- Podemos então reescrever:
 y=2A.cos(w_{mod}t) . cos(w_{med}t)
- Isto é, passamos a ter uma onda com uma frequência de vibração w_{med} e cuja amplitude é modulada: A_{mod}=2Acos(w_{mod}t) y=A_{mod} cos(w_{med}t)
- Este fenómeno é designado de <u>batimento</u>

O fenômeno dos batimentos. Duas ondas, de frequências pouco diferentes, representadas em (a), superpõem-se em (b), resultando em uma onda cuja amplitude (linha interrompida) varia periodicamente com o tempo.

Sobreposição de ondas Caso geral

Sejam:

```
y_1 = A_1 \cos(kx - w_1 t + \phi_1)
y_2 = A_2 \cos(kx - w_2 t + \phi_2)
```

- $y=A_1\cos(kx-w_1t+\phi_1)+A_2\cos(kx-w_2t+\phi_2)$
- A simplificação de y depende de cada caso, como vimos nos dois exemplos anteriores.
- De qualquer maneira a onda resultante y é periódica mas a sua forma depende não só de w₁ e w₂ como da diferença de fase φ₁-φ₂.

3. Fenómenos ondulatórios

Sobreposição de duas ondas

Sobreposição de duas ondas sinusoidais de frequências muito distintas: 450 e 100 Hz.

- (a) Sobreposição de duas ondas sinusoidais (400 e 600 Hz) quando os máximos coincidem para t=0.
- (b) Sobreposição das mesmas ondas quando os zeros coincidem para t=0.

Interferência

 Considerem-se duas fontes vibratórias com a mesma frequência e amplitude separadas de um certa distância.

 Há pontos nos quais a sobreposição das ondas provenientes das duas fontes resulta numa interferência construtiva, dado que a diferença entre os percursos efetuados por cada onda é um múltiplo exato de um comprimento de onda.

FIGURE 9.1 Water waves from two in-phase point sources in a ripple tank. In the middle of the pattern the wave peaks (thin bright bands) and troughs (thin black bands) lie within long wedge-shaped areas (maxima) separated by narrow dark regions of calm (minima). The optical equivalent is the electric field distribution depicted in Fig. 9.3c. (Photos courtesy PSSC *College Physics*, 1968, @ 1965 Educational Development Center, Inc.)

- Mas também há pontos nos quais temos interferência destrutiva. A diferença de percurso entre as ondas provenientes de cada fonte é igual a um múltiplo de meio comprimento de onda.
- Assim, a sobreposição que ocorre nesses pontos é aproximadamente igual à sobreposição de duas ondas com a mesma amplitude mas em oposição de fase.
- Porquê aproximadamente?

3. Fenómenos ondulatórios

Difração

- Uma onda que se propaga num dado meio encontra um obstáculo de dimensões comparáveis a λ.
- O que vai acontecer?

FIGURE 2.29 Cylindrical waves emerging from a long, narrow slit.

in a ripple tank. (Photo courtesy PSSC Physics, D. C. Heath, Boston,

Difração

Figura 30.2 1

Nos esquemas da Fig. 30.3 mostra-se a propagação da onda plana do lado esquerdo da barreira e o aparecimento da onda esférica do lado direito.

Figura 30.3

Difração

A onda vai passar por uma abertura muito mais larga que o seu comprimento de onda. Daí que as frentes de onda se propaguem imperturbáveis para lá do obstáculo, com exceção da regiões próximas das fronteiras da abertura, em que se observa o fenómeno de difração: a onda contorna o obstáculo.

Reflexão

- Quando uma onda ao propagar-se encontra um meio físico de características diferentes do até aí percorrido vai alterar-se, isto é, dois meios diferentes não reagem da mesma maneira perante estímulos (vibrações, no caso) iguais.
- Dos vários efeitos possíveis de observar nestes casos um ocorre sempre: há reflexão (total ou parcial) da onda incidente. Dito de outra forma, a energia transportada pela onda é refletida (em maior ou menor quantidade) quando há alteração no meio de propagação.
- Por exemplo: observe-se o que acontece às ondas geradas numa superfície de água quando atingem as fronteiras da água (água/terra ou água/recipiente).
- Outro exemplo: o eco resulta de onda sonoras emitidas por alguém que, ao encontrarem um obstáculo denso (uma parede), são refletidas, podendo o emissor ouvir a sua própria voz alguns instantes depois.
- Mais ainda: observem-se as figuras seguintes em que um pulso percorre uma corda. No primeiro caso a extremidade fixa da corda dá origem a um pulso que se propaga em sentido contrário mas invertido. No segundo caso a extremidade livre da corda atua como geradora de um pulso igual àquele que a atingiu.

Reflexão

(a) Circular water waves are reflected from a boundary on the left. Unexpyrighted photo from PSSC Physics.

Refração

- Uma onda que se propaga num dado meio elástico, propaga-se com velocidade constante.
- Se as características físicas (elásticas) do meio se alterarem, o mesmo é dizer, se a onda atingir um meio físico diferente, a sua velocidade de propagação altera-se.
- Dá-se então o fenómeno de refração.
- Cordas de diferentes diâmetros; ondas de água com alteração da profundidade; caso mais conhecido: interface ar/vidro (as lentes)

Reflexão e refração

(e) An uninverted reflection. The reflected pulse is reversed front to back, but is not upside-down.

(f) An inverted reflection. The reflected pulse is reversed both front to back and top to bottom.

- Princípio de sobreposição
- Reflexão

http://www.youtube.com/watch?v=oyLfCPNf_hE&feature=related

Gerar ondas estacionárias numa corda

http://www.youtube.com/watch?v=-n1d1rycvj4&feature=related

 Admitamos um sistema percorrido por uma onda que em determinado ponto não encontra condições para continuar a propagar-se (a extremidade fixa de uma corda, por exemplo). Se o estímulo que produziu a onda for contínuo (uma onda sinusoidal, por exemplo), a onda refletida vai interagir com a onda incidente, isto é, vão sobrepor-se as ondas incidente e refletida.

http://www.acs.psu.edu/drussell/Demos/superposition/superposition.html

 Podemos encarar a interação observada com uma onda propagando-se para a direita e outra para a esquerda, com a mesma frequência e amplitude:

 A equação que descreve o comportamento da corda será:

$$y = y_1 + y_2 = 2Asen(kx + \phi/2)cos(wt + \phi/2)$$

$$sen(a) + sen(b)=2 sen(\underline{a+b}) cos(\underline{a-b})$$

2 2

$y = 2Asen(kx + \phi/2)cos(wt + \phi/2)$

Esta equação descreve uma onda, com a particularidade de termos uma <u>amplitude de vibração para cada ponto x</u> e todos os pontos vibram com a mesma frequência.

- Se φ=0
 - Há pontos em que a <u>amplitude é zero</u>: são os **nodos** em que sen(kx)=0, ou seja kx=0, π, 2π,
 - Há também pontos em que a <u>amplitude é máxima</u> e vale 2A: são os **anti-nodos ou ventres** para os quais sen(kx)=1, ou seja, kx=π/2, 3π/2, ...
- Trata-se de uma onda estacionária

- As ondas estacionárias não transportam energia, retêm-na.
- Podem ser obtidas ondas estacionárias numa corda com uma extremidade fixa sendo a outra posta a vibrar. Também podem estar as duas extremidades fixas sendo gerada a onda estacionária pela perturbação da corda (por exemplo, uma corda de uma guitarra).
- Consideremos então um sistema unidimensional (por exemplo uma corda com pelo menos uma extremidade fixa e sob tensão) de comprimento L. Podemos ter neste sistema vários modos de vibração, isto é, podemos gerar ondas estacionárias com diferentes comprimentos de onda (ou frequências).

Modo fundamental ou 1ª harmónica

Neste caso apenas as extremidades têm amplitude zero.

sen(kx)=0 para x=0 e x=L Como k= $2\pi/\lambda$, então para que sen($2\pi L/\lambda$)=0 $\Rightarrow 2\pi L/\lambda = \pi$ λ =2L

2ª harmónica

Há um nodo para x=L/2, então λ =L

Podemos generalizar e então teremos o harmónico n com comprimento de onda λ_n dado por:

 $\lambda_n = 2L/n$ (com n inteiro)

A equação de onda estacionária para o harmónico n é dada por:

$$y_n = A_n sen(n\pi x/L)cos(w_n t)$$

4. Ondas estacionárias Transversais

http://www.acs.psu.edu/drussell/Demos/StandingWaves/StandingWaves.html

4. Ondas estacionárias Longitudinais

http://www.acs.psu.edu/drussell/Demos/StandingWaves/StandingWaves.html

4. Ondas estacionárias em duas dimensões

Placas, membranas

http://physics.usask.ca/~hirose/ep225/animation/drum/anim-drum.htm

Modos de vibração e ressonâncias

- As frequências que originam ondas estacionárias são denominadas frequências de ressonância do sistema.
- Cada uma destas frequências juntamente com a respectiva função de onda é denominado modo de vibração.
- Chama-se frequência fundamental à frequência de ressonância mais baixa e ao modo de vibração correspondente, modo fundamental ou primeira harmónica.