Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC 140 - SISTEMAS OPERACIONAIS I

Turmas A e B

Aula 12 - Gerenciamento de Memória

Profa. Sarita Mazzini Bruschi

Slides de autoria de Luciana A. F. Martimiano baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Gerenciamento de Memória

- Recurso importante;
- Tendência atual do software
 - Lei de Parkinson: "Os programas se expandem para preencher a memória disponível para eles" (adaptação);
- □ Hierarquia de memória:
 - Cache:
 - Principal;
 - Disco:

2

Gerenciamento de Memória Hierarquia de Memória

Cache

- Pequena quantidadeK/M bytes
- Alto custo por byte
- Muito rápida
- Volátil

Memória Principal

- Quantidade intermediária
 M/G bytes
- Custo médio por byte
- Velocidade média

(a)

Volátil

Disco

- Grande quantidade –G/T bytes
- Baixo custo por byte
- Lenta
- Não volátil

3

Gerenciamento de Memória

- □ Para cada tipo de memória:
 - Gerenciar espaços livres/ocupados;
 - Alocar processos/dados na memória;
 - Localizar dado;

□ Gerenciador de memória:

- Responsável por alocar e liberar espaços na memória para os processos em execução;
- Responsável por gerenciar a troca de processos entre a memória principal (MP) e o disco, quando a MP não for suficiente para conter todos os processos;

4

Gerenciamento de Memória ■ Monoprogramação: Sem definição de páginas: gerenciamento mais Apenas um processo na memória; 0xFFF... DRIVERS → ROM S.O. ⊸ROM Programa RAM Programa RAM de usuário RAM de usuário Programa de usuário S.O.

(b)

(c)

Gerenciamento de Memória Partições/Alocação

- Utilizando Multiprogramação, a memória pode ser particionada de duas maneiras:
 - Partições fixas (ou alocação estática);
 - Partições variáveis (ou alocação dinâmica);

Partições Fixas:

- Tamanho e número de partições são fixos (estáticos);
- Não é atrativo, porque partições fixas tendem a desperdiçar memória (Qualquer espaço não utilizado é literalmente perdido)
- Mais simples;

8

Gerenciamento de Memória Partições Fixas

- Partições Fixas:
 - Filas múltiplas:
 - Problema: filas não balanceadas;
 - Fila única:
 - □ Facilita gerenciamento;
 - □ Implementação com Lista:
 - Melhor utilização da memória, pois procura o melhor processo para a partição considerada;
 - Problema: processos menores são prejudicados;

Gerenciamento de Memória Partições Fixas □ Divisão da Memória em Partições Fixas: Múltiplas ► partição 4 partição 4 700 k Fila partição 3 partição 3 Única 400 k partição 2 partição 2 200 k partição 1 partição 1 100 k S.O. S.O.

Gerenciamento de Memória Partições Fixas

- □ Partições Fixas: problemas com fragmentação:
 - Interna: desperdício dentro da área alocada para um processo:
 - Ex.: processo de tamanho 40K ocupando uma partição de 50k;
 - Externa: desperdício fora da área alocada para um processo;
 - Duas partições livres: PL1 com 25k e PL2 com 100k, e um processo de tamanho 110K para ser executado;
 - Livre: 125K, mas o processo não pode ser executado;

11

Gerenciamento de Memória

- Multiprogramação → Vários processos na memória:
 - Como proteger os processos uns dos outros e o kernel de todos os processos?
 - Como tratar a relocação?
- Todas as soluções envolvem equipar a CPU com um hardware especial → MMU (memory management unit);

12

Gerenciamento de Memória

■ Relocação:

- Quando um programa é linkado (programa principal + rotinas do usuário + rotinas da biblioteca → executável) o linker deve saber em que endereço o programa irá iniciar na memória;
- Nesse caso, para que o linker não escreva em um local indevido, como por exemplo na área do SO (100 primeiros endereços), é preciso de relocação:
 - □ #100 + Δ \rightarrow que depende da partição!!!

13

Gerenciamento de Memória

■ Proteção:

- Com várias partições e programas ocupando diferentes espaços da memória é possível acontecer um acesso indevido:
- Solução para ambos os problemas:
 - 2 registradores → base e limite
 - Quando um processo é escalonado o <u>registrador-base</u> é carregado com o endereço de início da partição e o <u>registrador-limite</u> com o tamanho da partição;
 - O registrador-base torna impossível a um processo uma remissão a qualquer parte de memória abaixo de si mesmo.

14

Gerenciamento de Memória

- 2 registradores → base e limite
 - Automaticamente, a MMU adiciona o conteúdo do <u>registrador-base</u> a cada endereço de memória gerado;
 - Endereços são comparados com o registrador-limite para prevenir acessos indevidos;

15

Gerenciamento de Memória

- □ Tipos básicos de gerenciamento:
 - Com troca de processos (swapping):
 Processos são movidos entre a memória principal e o disco; artifício usado para resolver o problema da falta de memória;
 - Se existe MP suficiente n\u00e3o h\u00e1 necessidade de se ter troca de processos;
 - Sem troca de processos: não há chaveamento;

17

Gerenciamento de Memória Alocando memória (tamanho) a) segmento de dados; b) segmento de dados e de pilha; Room for growth Actually in use A-Data B-Program A-Stack A-Program Operating system (a) (b)

Gerenciamento de Memória Partições Variáveis Partições Variáveis: Tamanho e número de partições variam; Otimiza a utilização da memória, mas complica a alocação e liberação da memória; Partições são alocadas dinamicamente; SO mantém na memória uma lista com os espaços livres; Menor fragmentação interna e grande fragmentação externa; Solução: Compactação;

Gerenciamento de Memória Minimizar espaço de memória inutilizados: Compactação: necessária para recuperar os espaços perdidos por fragmentação; no entanto, muito custosa para a CPU; Técnicas para alocação dinâmica de memória: Bitmaps; Listas Encadeadas;

Gerenciamento de Memória

- Algoritmos de Alocação → quando um novo processo é criado:
 - FIRST FIT
 - 1º segmento é usado;
 - Rápido, mas pode desperdiçar memória por fragmentação;
 - NEXT FIT
 - □ 1º segmento é usado;
 - Mas na próxima alocação inicia busca do ponto que parou anteriormente;
 - SIMULAÇÕES: desempenho ligeiramente inferior;

25

Gerenciamento de Memória

- BEST FIT
 - Procura na lista toda e aloca o espaço que mais convém;
 - Menor fragmentação se os processos se encaixam perfeitamente nos espaços vazios, porém maior fragmentação se começar a sobrar poucos espaços;
 - Mais lento;
- WORST FIT
 - Aloca o maior espaço disponível;
- QUICK FIT
 - Mantém listas separadas para os espaços mais requisitados;

26

Gerenciamento de Memória

- Cada algoritmo pode manter listas separadas para processos e para espaços livres:
 - Vantagem:
 - Aumenta desempenho;
 - Desvantagens:
 - Aumenta complexidade quando espaço de memória é liberado – gerenciamento das listas;
 - □ Fragmentação;

27

Gerenciamento de Memória Swapping

- Swapping: chaveamento de processos inteiros entre a memória principal e o disco;
 - Transferência do processo da memória principal para a memória secundária (normalmente o disco): Swap-out;
 - Transferência do processo da memória secundária para a memória principal: Swap-in;
 - Pode ser utilizado tanto com partições fixas quanto com partições variáveis;

28