This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS

40

- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
H04L 12/56, 12/44

(11) International Publication Number: WO 97/36406

A1

(43) International Publication Date: 2 October 1997 (02.10.97)

(21) International Application Number: PCT/FI97/00189

(22) International Filing Date: 24 March 1997 (24.03.97)

(30) Priority Data: 961359 25 March 1996 (25.03.96) FI

(71) Applicant (for all designated States except US): NOKIA TELECOMMUNICATIONS OY [FI/FI]; Upseerinkatu 1,

TELECOMMUNICATIONS OY [FI/FI]; Upseerinkatu I FIN-02600 Espoo (FI).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MIKKILĀ, Petri [FI/FI]; Lyhdekuja 3 A, FIN-02200 Espoo (FI).

(74) Agent: KOLSTER OY AB; Iso Roobertinkatu 23, P.O. Box 148, FIN-00121 Helsinki (FI).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD OF ASSIGNING ADDRESSES IN NODES OF A TELECOMMUNICATION NETWORK

(57) Abstract

The invention relates to a method of assigning addresses in nodes of a telecommunication network. The network comprises several nodes (A...G) connected together by transfer connections so that the network constitutes a tree-like structure, one of the nodes being the root node (A). The nodes transmit to each other signals containing address data used by the nodes. For providing a flexible method easy to use, the root node (A) of the network assigns unique address identifiers to all transfer connections it uses and transmits each address identifier over the transfer connection concerned to its adjacent node, and after having received the address identifier the other nodes of the network a) assign unique identifiers to all transfer connections they use, except to the connection from which they received the address identifier, and b) transmit to each of said transfer connections an address identifier, which comprises the address identifier received by the node itself and the identifier corresponding to said connection, whereby each node assigns its own address by means of the address identifier it has received.

BIOCOCIO ANO OTREADER I I

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL		Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AN		Armenia	FI	Finland	LT	Lithuania	sĸ	Slovakia
AT		Austria	FR	France	LU	Luxembourg	SN	Senegal
AU		Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ		Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA		Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	3	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE		Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF		Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG		Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ		Benin	IE	beland	MN	Mongolia	UA	Ukraine
BR		Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY		Belarus	LS	Iceland	MW	Malawi	US	United States of America
CA		Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF		Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CC		Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CF		Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI		Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CN		Cameroon		Republic of Korea	PL	Poland		
Ch		China	KR	Republic of Korea	PT	Portugal		
Cŧ		Cuba	KZ	Kazakstan	RO	Romania		
CZ		Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DI		Germany	LI	Liechtenstein	SD	Sudan		
DI	-	Denmark	LK	Sri Lanka	SE	Sweden		
E		Estonia	LR	Liberia	SG	Singapore		

15

35

METHOD OF ASSIGNING ADDRESSES IN NODES OF A TELECOMMUNICATION **NETWORK**

The invention relates to a method of assigning addresses in nodal 5 devices of a telecommunication network having a tree-like topology, according to the preamble of the attached claim 1.

In this description, intersections of transfer connections of a telecommunication system are called nodal devices or nodes. A node can be any device or equipment that is able to interfere in clock synchronization, e.g. a branching or cross-connect device.

The nodes of a telecommunication network have to know their own addresses (i.e. locations) in the network, because the role of the node in the network (configuration etc.) depends on the address. An address information is necessary also in order that the node may route messages in the network.

Many modern telecommunication protocols use logical addresses not informing unambiguously the physical location of the device. In an internet address, for instance, the host section informs which device is in question in one network, from which, however, no conclusions can be drawn about the physical location of the device in said network. The nodal device shall be as-20 signed a logical address at the installation stage of the network and also when the nodal device is moved to another location in the network. An address is assigned typically by configuring a logical address for each device manually. This can take place e.g. by means of a network management system from a network management workstation of a network operator, or by assigning at 25 first each nodal device at commissioning in a centralized manner an address corresponding to the intended location of the node in the network, and subsequently, each node is moved to its own location.

A drawback of such methods is the great amount of work required, especially when a big network shall be installed (which means a large number 30 of nodes).

Another drawback is the inflexibility associated with such methods in situations of changing the network, because a new address must be configured manually for all such nodes the location of which in the network has changed.

The object of the present invention is to effect an improvement for overcoming the above drawbacks by providing a novel method of assigning

30

addresses in the nodes of a telecommunication network having a tree-like topology and consisting of point-to-point connections. This object is achieved by means of the method according to the invention, which is characterized in what is described in the characterizing portion of the attached claim 1.

The idea of the invention is to form node addresses in the nodes of a tree-like network structure automatically by assigning unique identifiers to all (point-to-point) transfer connections except to the connection leading to a parent node, and by transmitting to each node situated lower down in the tree-like structure (a child node) an address identifier consisting both of an address identifier received from the parent node and of an identifier assigned to said connection. Because the root node of the network has no parent node, it transmits either an address identifier consisting merely of the identifier assigned to the connection or an address identifier consisting of the own fixed address identifier of the root node and of the identifier assigned to the connec-15 tion.

When the method according to the invention is used, only the root node of the network has to be assigned an address at the installation of said nodal device (or at some other stage). Subsequently, the other nodes (nodal devices) of the network receive automatically an information of their location 20 with respect to the root node. Accordingly, the address of the node is assigned automatically in a predetermined manner on the basis of the location of the node. Additionally, when devices are changed or new ones are installed, a reconfiguration of addresses is avoided.

The solution according to the invention is very advantageous especially in networks where nodal devices are physically situated at such locations 25 that they are difficult to access.

In the following, the invention and its preferred embodiments are described in greater detail by way of example with reference to the attached drawings, in which

Figure 1 illustrates the general principle of the method according to the invention.

Figures 2a...2f illustrate the operation of the method according to the invention in situations of changing the network,

Figure 3 is a flow chart describing the operation of an individual 35 nodal device.

INCOCCIO: JAIO 073940941 I

fit.

Figure 4 is a high-level block diagram of those parts of the node which are substantial for the invention, and

Figure 5 illustrates the parts of the nodal device which are substantial for the invention.

The starting point of the method according to the invention is that only the root node of the network is assigned (manually) an address when the nodal device in question is installed. On the other hand, the other individual nodal devices do not need to know their own addresses (i.e. locations) in the network when they are started. The other individual nodal devices know only 10 that they have a number of point-to-point connections to other nodes. One of these connections is a connection to the parent node of said nodal device in the tree structure, but in the initial situation (when a node is started) the node does not need to know, which of its connections is the connection concerned.

The principle of the method according to the invention will be de-15 scribed in the following with reference to Figure 1. Encircled nodes constitute a tree-like hierarchic structure, the root node of which is indicated by reference mark R. Links (i.e. transfer connections) between the nodes are indicated by arrows (the transfer connections are naturally bidirectional, the arrow direction representing transmission of address identifiers). Essential for the invention is 20 that the network constitutes a tree-like hierarchic structure. In other words, the nodes of the network and the connections between them form an acyclic graph (no nodes are produced in the network).

The root node R determines identifiers for each connection e.g. by numbering the connections from zero onwards by using a predetermined 25 method. Subsequently, the root node transmits over each connection the identifier of said connection. In the example case of the figure, integers are used as identifiers, indicated by reference marks 0 to N.

When any node (i.e. node X), except the root node, has started and connections have been established, node X waits for information of its location 30 over some connection. Alternatively, the node may send an inquiry to adjacent nodes. When receiving the location information, node X registers this connection as the connection leading to its parent node in the tree-like network structure. The location information received consists of a set of identifiers, the first one informing over which connection there is access from the root node of 35 the network to next node on the way to node X. The next node informs the connection over which there is access from said next node closer to node X,

WO 97/36406 PCT/F197/00189

4

etc. In the example of the figure, the identifiers are separated from each other by a dot.

After having received the location information, node X determines identifiers (according to a predetermined method) for all other connections ex-5 cept the one from which the location information was received. Subsequently, node X transmits over each connection a location information consisting of its own location (which is the same as was received by node X earlier) added by the identifier of the connection in question.

Accordingly, the length of the location information received depends 10 on the level of the receiving node in the tree. In the example of Figure 1, for instance, in which the identifiers are integers separated from each other by a dot, node A1 receives location information 0 (zero) from the root node and node B1 at next level receives location information 0.0 from node A1. The location data transmitted are indicated in the figure at the corresponding link.

When new connections then are established to node X, the node provides them with identifiers (numbers them) and transmits location information over them. If a new location information is received from the parent node of node X, it is transmitted further over other connections, provided with the identifier of the connection in question.

15

20

Figures 2a...2f illustrate how the method according to the invention functions in a situation in which nodes E, F and G are connected to a network in which nodes A...D are already operational (Figure 2a). The figures show in broken lines the nodes not yet operating. The nodes which operate are shown with an unbroken line, and if an address identifier is denoted inside the node, 25 the node also knows its address (i.e. its location in the network). Accordingly, empty nodes do not know their address yet. From the example, it appears that the method is functioning, even if the nodes start in an arbitrary order.

In the situation of Figure 2a, only node F among the nodes to be added has started, but it is disengaged from the network, because its parent 30 node (node E) has not yet started. In the situation of Figure 2b, node E has started, whereby it receives an address 0.1 from node B. Node E thus knows that said connection leads to its parent node in the network. Node E numbers then all other existing links beginning from zero and transmits over them its own address, after which is added the number of said link. In this example 35 case, there is only one existing link, which thus gets the number zero and over which is transmitted the address 0.1.0. This is illustrated in Figure 2c. After

35

this, node F knows its address (Figure 2d). In case of Figure 2e, node G starts, whereby its parent node (E) observes the "starting" of the link and updates the list of active links by providing it with a number (one) according to a predetermined numbering method. Node E then sends node G an identifier 0.1.1 (own address added by the identifier of said link). In the final situation (Figure 2f) all nodes know their addresses (locations in the network).

Link identifiers can be assigned in many different ways. It is not worth while to give numbers in the same order as the links start, because numbering does not give any useful additional information then. Points of compass, for instance, could be utilized for the numbering, a link towards north could be provided with number one and a link towards south could be zero. Another alternative, more probable in the practice, is to determine identifiers for instance in such a way that when the device is looked at from a certain direction, e.g. from the front, the identifiers change in the selected direction, e.g. from the left to the right or from above downwards.

The flow chart of Figure 3 illustrates the operation of an individual node. After having started, the node is at stage 31, where it waits for an address message and a link event. The nodes of the network can send their address information continuously, whereby the node receives the address immediately after having started. Link event signifies in this connection a breaking or starting of some link of the node. Stage 31 is the starting stage, where no normal data transmission occurs. When a node observes an address message (stage 32), it stores the received address and the identifier of said connection, assigns identifiers to the other links in operation and transmits addresses to its child nodes (stage 34). Subsequently, the node changes to its normal state (stage 35), where it performs normal data transmission.

If the node observes a link event at stage 32, it updates the linkage listing maintained by it (stage 33) and returns to stage 31, from where there is no access to the normal state until after the address has been received.

In normal state (stage 35), the node is able to observe:

- a) a link event of a child node (a link leading to a child node breaks or a link to a new child node is established)
- b) a new address message, if changes occur in the network above the node (closer to the root node), or
 - c) a breaking of a link leading to a parent node.

In case a), the node updates the linkage listing and sends a new address, if a link was established to a new child node (stage 37). In case b), the node moves to stage 34, where it stores the received address and the identifier of the connection in question, determines identifiers for the other links in operation and sends the addresses to its child nodes. In case c), the node moves back to the starting stage (stage 31) to wait for a new address from the parent node.

e.g. a digital cross-connect device and it can be implemented in many different ways in practice. The way of implementation can vary e.g. according to where a control section of the node (the section that controls the operation of the nodal device) is located. Figure 4 shows a high-level block diagram of those parts of the nodal device which are substantial for the invention. The node (indicated by reference mark N) has in this case four bidirectional connections (L1...L4) to adjacent nodes. In this example case, the control section CTRL of the node is a separate unit, which is common to all interface units IF of the node. The node is connected to the network through the interface units IF, the interface can be e.g. a 2 Mbit/s PCM interface. The transfer mode between the nodes is not essential for the invention; any frame-based method can be used as transfer mode, for instance.

It is essential for the node that the address processing section (control unit CTRL) receives from each interface unit an information of whether said link is in operation (i.e. whether the signal to be received is serviceable). This message is indicated in the figure by reference mark CR (carrier). Reference mark DATA denotes bidirectional data transmission taking place between each interface unit IF and the control unit.

Figure 5 illustrates in greater detail the parts of the control section CTRL which are essential for the invention. The input of the control section is formed by a decoding unit 51, which receives from the interface unit e.g. a frame for which the interface unit has calculated a checksum. The decoding unit decodes from the frames the Protocol Data Units (PDU) contained therein and transmits them further to a connection unit 53. The data units contain information of the type of the frame received, the address possibly included in the frame and the data included in the frame. If the type is e.g. normal (normal frame), the connection unit connects the data units further either directly to

.

another connection unit or to other parts of the nodal device. In transmission direction, a coding unit 52 generates a frame going out of the data units PDU.

If the received frame contains address information, the connection unit connects the data unit to an address processing unit 54, which stores the 5 received address in a storage area M1, where the node has its own address stored. Additionally, the processing unit stores the identifier of the link leading to the parent node in a storage area M2 and the identifiers of the other links in a storage area M3, which also may contain the information of which link is active/passive at each particular time.

The invention is described above as an embodiment in which the root node transmits to its adjacent node only the identifier of said transfer connection. However, the root node may transmit except the identifier of the transfer connection also its own address. Consequently, if the address of the root node is e.g. zero in Figure 1, it transmits to node A1 the identifier 0.0, 15 which further transmits the identifier 0.0.0 to node B1. Accordingly, the address identifier to be transmitted becomes in this case one level longer than above.

Though the invention has been described above referring to the examples of the attached drawings, it is obvious that the invention is not re-20 stricted to that but it can be modified within the scope of the inventive idea set forth above and in the attached claims. It is for instance possible that the address identifier received from the parent node is not used directly as, the address of the node itself, but the node assigns its own address according to the address identifier received from the parent node (by processing the address 25 identifier received in a predetermined manner so that the final result is a unique address identifier).

20

35

CLAIMS

A method of assigning addresses in nodes of a telecommunication network, which network comprises several nodes (A...G) connected together by transfer connections so that the network constitutes a tree-like structure, one of the nodes being the root node (A), according to which method the nodes transmit to each other signals containing address data used by the nodes,

characterized in that

- the root node (A) of the network forms unique address identifiers for all transfer connections it uses and transmits each address identifier over the transfer connection concerned to its adjacent node, and
- after having received the address identifier, the other nodes of the network a) form unique identifiers for all transfer connections they use, except
 for the connection from which they received the address identifier, and b) transmit to each of said transfer connections an address identifier, which comprises the address identifier received by the node itself and the identifier corresponding to said connection, whereby each node assigns its own address by means of the address identifier it has received.
 - 2. A method according to claim 1, **c h a r a c t e r i z e d** in that each node uses the address identifier it has received directly as its own address.
- 3. A method according to claim 1, c h a r a c t e r i z e d in that the root node of the network transmits except the address identifier of the transfer connection also its own address to its adjacent node.
 - 4. A method according to claim 1, c h a r a c t e r i z e d in that integers are used as identifiers.
- 5. A method according to claim 1, **c h a r a c t e r i z e d** in that the identifiers of the transfer connections are formed according to a predetermined principle irrespective of in which order the transfer connections are started.
 - 6. A method according to claim 5, **c h a r a c t e r i z e d** in that the identifiers are formed according to the physical location of the transfer connection in the nodal device.
 - 7. A method according to claim 1, **c h a r a c t e r i z e d** in that the address identifier transmitted by the node is formed in serial form by sepa-

WO 97/36406 PCT/F197/00189

9

rating the address identifier received by the node from the identifier of the transfer connection with a predetermined separator.

PRIOREGIES AND DESCRIPTION

INTERNATIONAL SEARCH REPORT

International application No. PCT/FI 97/00189

A. CLASSIFICATION OF SUBJECT MATTER								
IPC6: H04L 12/56, H04L 12/44 According to International Patent Classification (IPC) or to both	national classification and IPC							
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed) IPC6: H04L	by classification symbols)							
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
SE,DK,FI,NO classes as above	ic exem that such documents are included i	n the neits searched						
Electronic data base consulted during the international search (name	ne of data base and, where practicable, searc	h terms used)						
EDOC, WPIL								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.						
P,X WO 9702680 A1 (PHILIPS ELECTRON 23 January 1997 (23.01.97), line 20 - page 15, line 26	NICS N.V.), page 14,	1-7						
A EP 0614297 A2 (SONY CORPORATION (07.09.94), column 5, line	l), 7 Sept 1994 42 - column 6, line 22	1-7						
A WO 9520849 A1 (ZOGHAIB, HUSSEIN (03.08.95), page 5, line 22), 3 August 1995 - page 6, line 9	1-7						
A US 5394556 A (FLORIN OPRESCU), (28.02.95), column 9, line	28 February 1995 53 - column 10, line 55	1-7						
X Further documents are listed in the continuation of Bo	x C. X See patent family annex	.						
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" entire document but published on or after the international filing date	"T" later document published after the inte date and not in conflict with the applie the principle or theory underlying the "X" document of particular relevance: the	cation but cited to understand invention						
"L" document which may throw doubts on priority ctaim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	considered novel or cannot be considered step when the document is taken alone "Y" document of particular relevance: the	claimed invention cannot be						
"O" document referring to an oral disclosure, use, exhibition or other means "P"— document published prior to the international filing date but later than the priority date claimed	considered to involve an inventive step combined with one or more other such being obvious to a person skilled in the	when the document is a documents, such combination e art						
Date of the actual completion of the international search	Date of mailing of the international s							
20 August 1997	2 1 -08- 19	97						
Name and mailing address of the ISA/	Authorized officer							
Swedish Patent Office								
Box 5055, S-102 42 STOCKHOLM Facsimile No. + 46 8 666 02 86	Anders Ströbeck Telephone No. + 46 8 782 25 00							
Form PCT/ISA/210 (second sheet) (July 1992)	Telephone No. + 46 8 782 25 00							

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FI 97/00189

	PCIA	PCT/FI 97/00189				
. (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the relevant pa	assages F	Relevant to claim No.			
A	EP 0396084 A2 (THE UNIVERSITY OF TORONTO INNOVATIONS FOUNDATION), 7 November 1990 (07.11.90), page 3, line 8 - line 28		1-7			
A	EP 0275076 A2 (FUJITSU LIMITED), 20 July 1988 (20.07.88), column 5, line 65 - column 7, line	е б	1-7			
			·			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

06/08/97

International application No. PCT/FI 97/00189

Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
WO	9702680	A1	23/01/97	EP WO EP WO WO	0782802 9702677 0781477 9702678 9702676	A A A	09/07/97 23/01/97 02/07/97 23/01/97 23/01/97
EP	0614297	A2	07/09/94	JP US	6232890 5513182		19/08/94 30/04/96
WO	9520849	A1	03/08/95	AU EP FR	1582295 0742977 2715787	A	15/08/95 20/11/96 04/08/95
US	5394556	A	28/02/95	AU EP JP WO	5954094 0674789 8505722 9415303	A T	19/07/94 04/10/95 18/06/96 07/07/94
EP	0396084	A2	07/11/90	CA JP US	2015220 3068233 5027342	A	03/11/90 25/03/91 25/06/91
EP	0275076	A2	20/07/88	SE CA CN DE JP JP US	0275076 1316242 1008875 3850128 6034537 63172589 5077554	A B D,T B A	13/04/93 18/07/90 10/11/94 02/05/94 16/07/88 31/12/91

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)