

Intuiția în cadrul logistie regression este că w^Tx=0 repruzintă un plan (puntru două variabile-o deaptă) care împarte spațiul în două zone: zona pozitivă și zona regativă. Exemplu pt 2 variabile:

Apropo, geometric $w^T x_A$ are si o semnificative: distant, a de la punchul x_A pánor la flanul $w^T x = 0$ este proportionalor cu $w^T x_A$. In timp ce distant, a nu neaparat ne intereseazar în această lecție, semnul produsului sealar $w^T x$ ne indică: pozitiv \rightarrow clasa

O proprietate faina a logistic regression este ca inloc sa ne returneze o anumita clasa (0 sau 1), aceasta ne returneaza probabilitatea.

Avand capacitatea de a returna nu doar un raspuns ("0" sau "1") ci probabilitatea asignarii unei observatii la clasa "1" este o cerinta foarte importanta in multe probleme de business. Spre exemplu, scoringul creditelor este adesea o aplicarea a regresiei " clientii bancii care au aplicat pentru un imprumut sunt evaluati in baza probabilitatilor prezise pentru a intelege daca acestia sunt potentiali platitori "nesatisfacatori" pana la "buni". lata un exemplu:

dient	P. va	cobabilitate prezisa (ca uturna ba	a ny nii) Refut
Mihai Andrui		0.78 0.45	
Oana		0.13	p*=0.15
Natalia Cosmir		0.06	Accept

Intuitia in spatele logistic regression:

$$2^{4} = 16$$

$$4 = \log_{2} 16$$

$$2^{x} = 16$$

$$e^{x} = y$$

$$x = \log_{e} y = (\ln y)$$

$$e^{x} = y$$

Pana acum am inteles cum facem preziceri cu ajutorul functiei logistice (de unde vine si numele logistic regression). Dar, ca si la regresia liniara, am folosit vectorul de parametri w (lectia trecuta notat cu theta). Cum gasim w?

Ca şi în ledia ankrioară, funtu a minimira (în cazul nostru muximira) o fundic avem revaie de derivata acestei funcăii:

$$\frac{\partial L}{\partial w} = \sum_{n=1}^{N} y_n x_n - \frac{1}{1 + e^{wT} x_n} \cdot e^{w^T x_n} \cdot x_n$$

$$= \sum_{n=1}^{N} x_n \left(y_n - \hat{y}_n \right)$$

$$= x^T \left(y_n - \hat{y}_n \right$$

Mai multe detalii despre pasii de derivare poti gasi in K. Murphy - Machine Learning - A probabilistic approach.

Sa ne uitam la implementarea algoritmului intr-un Jupyter Notebook.