Lecture 12 Continuous Probability Distribution

BIO210 Biostatistics

Xi Chen

Fall 2024

School of Life Sciences
Southern University of Science and Technology

Probability Density Function (PDF)

Probability Density Function (PDF)

Probability Density Function (PDF)

$$\mathbf{ff}_{\mathbf{X}}(x) \geqslant 0, \int_{-\infty}^{+\infty} \mathbf{ff}_{\mathbf{X}}(x) \, \mathrm{d}x = 1$$

$$\mathbb{P}\left(\boldsymbol{X}=a\right)=?$$

$$\mathbb{P}(x \leqslant \mathbf{X} \leqslant x + \delta)$$

$$= \int_{x}^{x+\delta} \mathbf{f}_{\mathbf{X}}(x) \, \mathrm{d}x = \mathbf{f}_{\mathbf{X}}(x) \cdot \delta$$

$$\mathbf{ff}_{\mathbf{X}}(x) = \frac{\mathbb{P}\left(x \leqslant \mathbf{X} \leqslant X + \delta\right)}{\delta}$$

Cumulative Distribution Function

$$\mathbb{F}_{\boldsymbol{X}}(x) = \mathbb{P}(\boldsymbol{X} \leqslant x) = \int_{-\infty}^{x} \mathbf{ff}_{\boldsymbol{X}}(t) dt$$

$$\mathbb{F}_{\boldsymbol{X}}(a) = \mathbb{P}\left(\boldsymbol{X} \leqslant a\right) = \int_{-\infty}^{a} f_{\boldsymbol{X}}(x) dx$$
$$\mathbb{F}_{\boldsymbol{X}}(b) = \mathbb{P}\left(\boldsymbol{X} \leqslant b\right) = \int_{-\infty}^{b} f_{\boldsymbol{X}}(x) dx$$

Cumulative Distribution Functions (CDFs)

0.8

0.5

0.2

Expectation and Variance

The continuous case

$$\mathbb{E}\left[\boldsymbol{X}\right] = \int_{-\infty}^{+\infty} x \, \mathbf{ff}_{\boldsymbol{X}}(x) \, \mathrm{d}x$$

$$\mathbb{E}\left[g(\boldsymbol{X})\right] = \int_{-\infty}^{+\infty} g(x) \mathbf{ff}_{\boldsymbol{X}}(x) \, \mathrm{d}x$$

$$\int_{-\infty}^{\infty} g(w) \mathbf{x} \mathbf{A}(w)$$

$$\operatorname{\mathbb{V}ar}\left(X\right) = \sigma_X^2 = \mathbb{E}\left[\left(\boldsymbol{X} - \mathbb{E}\left[\boldsymbol{X}\right]\right)^2\right]$$

$$0 = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E}[X])^{\infty} \right]$$

 $(X - \mathbb{E}[X])^2 \text{ ff }_X(x) \, dx$

$$= \int_{-\infty}^{+\infty} (\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])^2 \, \mathbf{f}_{\boldsymbol{X}}(x) \, \mathrm{d}x$$
$$= \mathbb{E}[\boldsymbol{X}^2] - (\mathbb{E}[\boldsymbol{X}])^2$$

$$\mathbb{E}\left[\boldsymbol{X}\right] = \sum_{x} x \mathbb{P}_{\boldsymbol{X}}(x)$$

 $= \mathbb{E}\left[\boldsymbol{X}^2\right] - (\mathbb{E}\left[\boldsymbol{X}\right])^2$

The discrete case

$$[X] = \sum a(x) \mathbb{P}$$

$$\mathbb{E}\left[g(\boldsymbol{X})\right] = \sum g(x) \mathbf{P}_{\boldsymbol{X}}(x)$$

$$g(x)\mathbf{P}_{X}(x)$$

$$\mathbb{E}\left[(X-\mathbb{E}\left[X
ight])
ight]$$

$$\operatorname{Var}\left(\boldsymbol{X}\right) = \sigma_{\boldsymbol{X}}^2 = \mathbb{E}\left[\left(\boldsymbol{X} - \mathbb{E}\left[\boldsymbol{X}\right]\right)^2\right]$$

$$\operatorname{Var}(X) = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$
$$= \sum (X - \mathbb{E}[X])^2 \mathbb{P}_X(x)$$

6/12

Continuous Uniform Distribution

$$\mathbf{ff}_{\mathbf{X}}(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & x < a \text{ or } x > b \end{cases}$$

$$\mathbf{ff}_{X}(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b \\ 0, & x < a \text{ or } x \end{cases}$$

$$\mathbb{E}\left[\boldsymbol{X}\right] = ?$$

$$Var(\boldsymbol{X}) = ?$$

The Idea of The Normal Distributions

The Bean Machine by Francis Galton

A Little History of The Normal Distribution - Binomial Approximation

Abraham de Moivre: The Doctrine of Chances, 1738

- The middle term of the binomial coefficient is approximately: $\frac{2}{\sqrt{2\pi n}}$
- Stirling's formula: $n! \simeq n^n e^{-n} \sqrt{2\pi n}$

The de Moivre-Laplace Theorem

When n becomes large, and np, nq are also large:

$$\mathbb{P}_{\boldsymbol{X}}(k) = \binom{n}{k} p^k q^{n-k} \approx \frac{1}{\sqrt{2\pi} \sqrt{npq}} \cdot e^{-\frac{(k-np)^2}{2npq}}, where \ q = 1-p$$

A Little History of the Normal Distribution - The Error Curve

Carl Friedrich Gauss: Theoria motus corporum coelestium in sectionibus conicis solem ambientium (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections), 1809.

- least squares
- maximum likelihood
- normal distribution

Pierre Simon de Laplace

- In 1782: $\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$
- In 1810: the central limit theorem

A Little History of the Normal Distribution - Beyond Errors

Adolphe Quetelet: the average man - Letters addressed to H.R.H. the grand duke of Saxe Coburg and Gotha, on the Theory of Probabilities as Applied to the Moral and Political Sciences, 1846.

TABLE 1: Chest measurement of Scottish soldiers

Girth	Frequency
33	3
34	18
35	81
36	185
37	420
38	749
39	1,073
40	1,079
41	934
42	658
43	370
44	92
45	50
46	21
47	4
48	1