# Aryan Sharma Snack Chain

# **Exploratory Data Analysis & Processing**

The data has 3 tables namely, stores, products, and transactions. In sheet stores there are 9 variables and 79 observations. In sheet Products, there are 6 variables and 58 observations and lastly in sheet transactions which amount for all the transactions at the store there are 12 variables and 524950 observations. The data is 37 Month data starting from Jan 2009 to Jan 2012. The joined data using R has 27 variables. A new column based on transaction weekend date is formulated highlighting the month and year in which the transactions have taken place known as Months. Out of the 28 Variables in the combined dataset 16 are numeric and 2 are in date format, the rest are character variables. Product size variables had different measurements such as OZ, Liters and Milliliters hence all the sizes are converted to OZ scale. The character variables are converted to factor variables depending on the need as mentioned below in the predictor table.

# Histograms of DV:

The distributions of **Spend, Units & HHS** are right-skewed. The distributions of **Spend, Units & HSS** are close to normal, and therefore, more suited for MLS regression. The variable is Poison distribution hence we'll have to use MLS models. Then we can determine which model is the best fit and has least violation of assumptions.











Boxplots:
Boxplot of Spend, Units & HSS with State and Category.







#### **Feature Engineering**

All the three tables have a unique key which can combine them. The table Products and transaction has UPC as a foreign key which connects those two tables. Once this is merged, we can use the store ID present in table transaction and stores to connect the data. Then from table transaction using variable WEEK\_END\_DATE I have created a new column month which has month and year of transaction.

stores\_data = read\_excel("C:/Users/91884/Desktop/BAIS/Statistical Data Mining/8/SnackChain (2).xlsx", sheet = "stores")
product\_data = read\_excel("C:/Users/91884/Desktop/BAIS/Statistical Data Mining/8/SnackChain (2).xlsx", sheet = "products")
transaction\_data = read\_excel("C:/Users/91884/Desktop/BAIS/Statistical Data Mining/8/SnackChain (2).xlsx", sheet = "transactions")
merged\_data1 <- left\_join(transaction\_data, product\_data, by = "UPC")
data <- left\_join(merged\_data1, stores\_data, by = "STORE\_ID")

#### **Correlation:**

There are only 15 variables in the data which are numeric. Hence, we are calculating whether they have any correlation between them or not.

correlation matrix <- Cor(data[c("STORE ID",

"UPC","UNITS","VISITS","HHS","SPEND","PRICE","BASE\_PRICE","FEATURE","DISPLAY","TPR\_ONLY","MSA","PARKING","SIZE","AVG\_WEE KLY BASKETS")])

corrplot(correlation\_matrix, method = "pie")
corrplot(correlation matrix, method = "pie")

print(correlation matrix)



There is a correlation between Units -Visits and HHS, spend – Units, Visits and HHS, hence we are only taking Spend variable.

# **Predictor table:**

| Predictor    | Spend | Units | HHS | Rationale                                    |
|--------------|-------|-------|-----|----------------------------------------------|
|              |       | +     | +   | Whether the product was in store circular    |
|              |       |       |     | can be helpful in sales as it drives the     |
| FEATURE      | +     |       |     | publicity up                                 |
| DISPLAY      |       | +     | +   | If a product is visible to the customer the  |
|              | +     |       |     | chances of sales may increase                |
| PRICE        |       | -     | -   | If the price of the same commodity is more   |
|              |       |       |     | since difference in brand, the shopper may   |
|              | -     |       |     | tend to purchase the cheaper one             |
|              |       | +/-   | +/- | Population and socio-economic factors of     |
|              |       |       |     | the state can be a factor in determining the |
| STATE        | +/-   |       |     | spend                                        |
|              |       | -     | -   | The quantity of the product will increase    |
| PRODUCT SIZE | -     |       |     | price and high price can lead to low sales   |
|              |       | +/-   | +/- | Product belonging to which category can be   |
| CATEGORY     | +/-   |       |     | a factor in determining the sales            |
| SEGMENT      |       | +/-   | +/- | Segments like essential goods always will    |
|              | +/-   |       |     | have more sales                              |
| TPR_ONLY     |       | +     | +   | Rollback and high discount can lead to more  |
|              | +     |       |     | sales                                        |
| STORE ID     | +/-   | +/-   | +/- | To identify which outlet is doing the sale   |

# **Regression Analysis**

```
model_1 \leftarrow lmer(log(SPEND) \sim FEATURE + DISPLAY + log(PRICE) + STATE + PRODUCT_SIZE + CATEGORY + SEGMENT + (1|STORE_ID), data=data, REML=FALSE)
model_2 = lmer(log(UNITS) \sim FEATURE + DISPLAY + log(PRICE) + STATE + PRODUCT_SIZE + CATEGORY + SEGMENT + (1|STORE_ID), data=data, REML=FALSE)
model_3 = lmer(log(HHS) \sim FEATURE + DISPLAY + log(PRICE) + STATE + PRODUCT_SIZE + CATEGORY + SEGMENT + (1|STORE_ID), data=data, REML=FALSE)
model_4 = lmer(log(SPEND) \sim FEATURE * DISPLAY * TPR_ONLY * CATEGORY * SEGMENT + log(PRICE) + STATE + PRODUCT_SIZE + (1|STORE_ID), data = data, REML = FALSE)
```

Dependent variable: ..... log(SPEND) log(UNITS) log(HHS)
(1) (2) (3) FEATUREI 0.609\*\*\* (0.004) 0.609\*\*\* (0.004) 0.565\*\*\* (0.004) DISPLAYI 0.664\*\*\* (0.004) 0.666\*\*\* (0.004) 0.666\*\*\* (0.004) 0.666\*\*\* (0.004) 0.666\*\*\* (0.004) 0.666\*\*\* (0.004) 0.666\*\*\* (0.004) 0.666\*\*\* (0.004) 0.666\*\* (0.004) 0.666\*\* (0.004) 0.666\*\* (0.004) 0.043 (0.324) 0.027 (0.327) 0.043 (0.324) 0.027 (0.327) 0.043 (0.324) 0.027 (0.327) 0.043 (0.324) 0.027 (0.327) 0.043 (0.324) 0.027 (0.327) 0.043 (0.324) 0.027 (0.327) 0.045 (0.002) 0.018\*\*\* (0.002) 0.018\*\*\* (0.002) 0.018\*\*\* (0.002) 0.018\*\*\* (0.002) 0.017\*\*\* (0.002) 0.018\*\*\* (0.002) 0.017\*\*\* (0.002) 0.018\*\*\* (0.002) 0.017\*\*\* (0.002) 0.018\*\*\* (0.002) 0.017\*\*\* (0.002) 0.018\*\*\* (0.002) 0.018\*\*\* (0.002) 0.018\*\*\* (0.002) 0.018\*\*\* (0.003) 0.962\*\*\* (0.003) 0.041\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.004) 0.050\*\* (0.005) 0.03 (0.009) 0.003 (0.009) 0.003 (0.009) 0.003 (0.009) 0.003 (0.009) 0.003 (0.009) 0.003 (0.009) 0.003 (0.009) 0.003 (0.009) 0.003 (0.009) 0.052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.016\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.016\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.003) 0.0052\*\*\* (0.00 
 Observations
 538,619
 538,619
 538,619

 Log Likelihood
 -622,321.200
 -622,321.200
 -605,946.700

 Akaike Inf. Crit.
 1,244,674.000
 1,244,674.000
 1,211,925.000

 Bayesian Inf. Crit.
 1,244,854.000
 1,244,854.000
 1,212,105.000
 \*p<0.1; \*\*p<0.05; \*\*\*p<0.01 > #ATC and BTC > AIC(model\_1,model\_2,model\_3)

df AIC model\_1 16 1244674 model\_2 16 1244674 model\_3 16 1211925 > BIC(model\_1,model\_2,model\_3) df BIC model\_1 16 1244854 model\_2 16 1244854 model\_3 16 1212105 Model 4: Estimate Std. Error t value 2.8320642 0.2874573 9.852 (Intercept) FEATURE1 0.4242979 0.0249972 16.974 0.8203795 0.0084502 97.084 DISPLAY1 -0.0508115 0.0077062 -6.594 TPR ONLY1 CATEGORYCOLD CEREAL 0.8950238 0.0044201 202.492 -0.0132293 0.0058533 -2.260 CATEGORYFROZEN PIZZA -1.1113824 0.0053423 -208.035 CATEGORYORAL HYGIENE PRODUCTS 0.2722969 0.0108229 25.159 SEGMENTUPSCALE -0.9127170 0.0764334 -11.941 0.1512678 0.0031077 48.675 0.0432271 0.3219170 0.134 SEGMENTVALUE Log(PRICE) STATEKY 0.0910191 0.2926972 0.311 STATEOH STATETX -0.2223107 0.2915137 -0.763 0.0176901 0.0001596 110.871 PRODUCT SIZE -0.2284370 0.0359864 -6.348 FEATURE1:DISPLAY1 FEATURE1: CATEGORYCOLD CEREAL 0.2244392 0.0280990 7.987 FEATURE1: CATEGORYFROZEN PIZZA 0.4619526 0.0276748 16.692 0.3099981 0.0293497 10.562 -0.2013732 0.0164387 -12.250 FEATURE1: CATEGORYORAL HYGIENE PRODUCTS DISPLAY1: CATEGORYCOLD CEREAL -0.0126924 0.0152824 -0.831 DISPLAY1: CATEGORYFROZEN PIZZA DISPLAY1: CATEGORYORAL HYGIENE PRODUCTS -0.3710475 0.0140813 -26.350 TPR\_ONLY1:CATEGORYCOLD CEREAL 0.1670582 0.0109278 15.287 
 0.2553410
 0.0132957
 19.205

 0.1607554
 0.0108085
 14.873
 TPR ONLY1:CATEGORYFROZEN PIZZA TPR ONLY1:CATEGORYORAL HYGIENE PRODUCTS -0.1508489 0.0465504 -3.241 FEATURE1: SEGMENTUPSCALE -0.0572373 0.0448067 -1.277 FEATURE1:SEGMENTVALUE DISPLAY1: SEGMENTUPSCALE -0.2505182 0.0159594 -15.697 DISPLAY1:SEGMENTVALUE 0.1646993 0.0192408 8.560 -0.1310856 0.0150132 -8.731 TPR\_ONLY1:SEGMENTUPSCALE TPR ONLY1:SEGMENTVALUE 0.0368579 0.0142435 2.588 
 -0.3197020
 0.0081391
 -39.280

 -0.4083789
 0.0090116
 -45.317

 -0.1852934
 0.0088859
 -20.852
 CATEGORYCOLD CEREAL: SEGMENTUPSCALE CATEGORYFROZEN PIZZA:SEGMENTUPSCALE CATEGORYORAL HYGIENE PRODUCTS:SEGMENTUPSCALE 0.6587827 0.0082415 79.935 CATEGORYCOLD CEREAL: SEGMENTVALUE 0.7106940 0.0095012 74.800 CATEGORYFROZEN PIZZA:SEGMENTVALUE CATEGORYORAL HYGIENE PRODUCTS:SEGMENTVALUE 0.6019315 0.0094930 63.408 0.2594207 0.0418814 FEATURE1:DISPLAY1:CATEGORYCOLD CEREAL 6.194

| FEATURE1:DISPLAY1:CATEGORYFROZEN PIZZA                         | -0.1612573 | 0.0409514 | -3.938  |
|----------------------------------------------------------------|------------|-----------|---------|
| FEATURE1:DISPLAY1:CATEGORYORAL HYGIENE PRODUCTS                | 0.0659829  | 0.0463597 | 1.423   |
| FEATURE1:DISPLAY1:SEGMENTUPSCALE                               | 0.3001740  | 0.0671364 | 4.471   |
| FEATURE1:DISPLAY1:SEGMENTVALUE                                 | 0.0270228  | 0.0710737 | 0.380   |
| FEATURE1:CATEGORYCOLD CEREAL:SEGMENTUPSCALE                    | -0.0310480 | 0.0522853 | -0.594  |
| FEATURE1:CATEGORYFROZEN PIZZA:SEGMENTUPSCALE                   | 0.0109125  | 0.0517877 | 0.211   |
| FEATURE1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTUPSCALE          | 0.0543988  | 0.0548406 | 0.992   |
| FEATURE1:CATEGORYCOLD CEREAL:SEGMENTVALUE                      | -0.0586642 | 0.0501416 | -1.170  |
| FEATURE1:CATEGORYFROZEN PIZZA:SEGMENTVALUE                     | -0.1162296 | 0.0493532 | -2.355  |
| FEATURE1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTVALUE            | -0.0263169 | 0.0531626 | -0.495  |
| DISPLAY1:CATEGORYCOLD CEREAL:SEGMENTUPSCALE                    | 0.1307704  | 0.0321627 | 4.066   |
| DISPLAY1:CATEGORYFROZEN PIZZA:SEGMENTUPSCALE                   | 0.2242855  | 0.0305646 | 7.338   |
| DISPLAY1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTUPSCALE          | 0.3656792  | 0.0261872 | 13.964  |
| DISPLAY1:CATEGORYCOLD CEREAL:SEGMENTVALUE                      | -0.2130118 | 0.0311223 | -6.844  |
| DISPLAY1:CATEGORYFROZEN PIZZA:SEGMENTVALUE                     | 0.0139705  | 0.0329862 | 0.424   |
| DISPLAY1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTVALUE            | -0.1976299 | 0.0306420 | -6.450  |
| TPR_ONLY1:CATEGORYCOLD CEREAL:SEGMENTUPSCALE                   | 0.0993863  | 0.0213163 | 4.662   |
| TPR_ONLY1:CATEGORYFROZEN PIZZA:SEGMENTUPSCALE                  | 0.0559472  | 0.0251935 | 2.221   |
| TPR_ONLY1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTUPSCALE         | 0.1335876  | 0.0206637 | 6.465   |
| TPR_ONLY1:CATEGORYCOLD CEREAL:SEGMENTVALUE                     | -0.2242148 | 0.0202029 | -11.098 |
| TPR_ONLY1:CATEGORYFROZEN PIZZA:SEGMENTVALUE                    | 0.0102794  | 0.0246879 | 0.416   |
| TPR_ONLY1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTVALUE           | -0.0468379 | 0.0202731 | -2.310  |
| FEATURE1:DISPLAY1:CATEGORYCOLD CEREAL:SEGMENTUPSCALE           | -0.1944257 | 0.0787308 | -2.470  |
| FEATURE1:DISPLAY1:CATEGORYFROZEN PIZZA:SEGMENTUPSCALE          | -0.1883731 | 0.0772902 | -2.437  |
| FEATURE1:DISPLAY1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTUPSCALE | -0.3187632 | 0.0856897 | -3.720  |
| FEATURE1:DISPLAY1:CATEGORYCOLD CEREAL:SEGMENTVALUE             | 0.1423157  | 0.0805755 | 1.766   |
| FEATURE1:DISPLAY1:CATEGORYFROZEN PIZZA:SEGMENTVALUE            | -0.0929021 | 0.0807460 | -1.151  |
| FEATURE1:DISPLAY1:CATEGORYORAL HYGIENE PRODUCTS:SEGMENTVALUE   | 0.0509744  | 0.0936429 | 0.544   |
|                                                                |            |           |         |

# Interpretation

# 1. Product display, being featured in the in-store circular, and temporary price reduction.

| Predictor  | Product Display         | In store Circular         | Temporary Price Reduction            |
|------------|-------------------------|---------------------------|--------------------------------------|
|            | If the product was a    | If the product was in     |                                      |
|            | part of in-store        | store circular, then the  |                                      |
|            | promotional display,    | log spend would be        | If the prices of product are reduced |
|            | then the log spend      | 60.9% more                | temporary, then 5% more log          |
| Spend      | would be 66.4% more     |                           | spending would happen                |
|            | If the product was a    | If the product was in     |                                      |
|            | part of in-store        | store circular log unit   |                                      |
|            | promotional display,    | sold would be 60.9%       | If the prices of product are reduced |
|            | then log(unit) would be | more                      | temporary, then 5% more log unit     |
| Unit Sales | 66.4% more              |                           | would happen                         |
|            |                         | If the product was in     |                                      |
|            | If in store promotion   | store circular, then      |                                      |
|            | happen then there is a  | there is a 5.6% chance    | If the product was price reduction   |
|            | 5.6% chance of increase | of increase in log of no. | on products, then there is a 1.6%    |
|            | in log of no. of        | of purchasing             | chance of increase in log of no. of  |
| HHS        | purchasing households   | households                | purchasing households                |

# 2. the effects of display, feature, and TPR on SPEND vary by product categories (cold cereals, frozen pizza, bag snacks) and store segments

| Product      |                          | In store Circular        |                                     |
|--------------|--------------------------|--------------------------|-------------------------------------|
| Category     | Product Display          | (Feature)                | Temporary Price Reduction           |
|              | With bag snacks as the   | With bag snacks as the   |                                     |
|              | base, if the product is  | base, if there is an in- |                                     |
|              | displayed the chances    | store feature then sales | With bag snacks as the base, if TPA |
|              | of sales decline by      | grow by 22.44%           | happens then 16.70% growth would    |
| Cold Cereals | 20.13%                   |                          | be there                            |
|              | With bag snacks as the   | With bag snacks as the   |                                     |
|              | base, if the product is  | base, if there is an in- | With bag snacks as the base, if TPA |
|              | displayed the chances    | store feature then sales | happens then 25.53% growth would    |
| Frozen pizza | of sales decline by 1.2% | grow by 46.19%           | be there                            |
|              | With bag snacks as the   | With bag snacks as the   |                                     |
|              | base, if the product is  | base, if there is an in- |                                     |
|              | displayed the chances    | store feature then sales | With bag snacks as the base, if TPA |
| Hygiene      | of sales decline by      | grow by 30.99%           | happens then 16.70% growth would    |
| Products     | 37.1%                    |                          | be there                            |

|               |                          | In store Circular        |                                     |
|---------------|--------------------------|--------------------------|-------------------------------------|
| Store Segment | Product Display          | (Feature)                | Temporary Price Reduction           |
|               | With mainstream as       | With mainstream as       |                                     |
|               | base, there would be a   | base, there would be a   | With mainstream as base, there      |
|               | 25.05% less sales if the | 15.08% less sales if the | would be a 13.13% less sales if the |
| Upscale       | product is displayed     | product is in circular   | product price is reduced            |
|               | With mainstream as       | With mainstream as       |                                     |
|               | base, there would be     | base, there would be a   | With mainstream as base, there      |
|               | 16.46% more sales if the | 5.7% less sales if the   | would be 3.6% more sales if the     |
| Value         | product is displayed     | product is in circular   | product price is reduced            |

# 3. the five most price elastic and five least price elastic products

```
> print(top_five)
          UPC Price_Elasticity
55 2066200532
                      -3.785198
32 7218063979
                      -3.345891
33 7218063983
                      -3.245785
31 7218063052
                      -3.014127
25 4116709428
                      -2.895474
> print("Bottom Five Least Price Elastic Products:")
[1] "Bottom Five Least Price Elastic Products:"
> print(bottom_five)
          UPC Price_Elasticity
27 7027316404 -0.03942242
26 7027316204
                    -0.03824922
2 1111009497
                   0.03424793
  1111085345
                    -0.02483807
7 1111085319
                   0.01555133
```

|            | Product Name &      | Bottom 5   |                           |
|------------|---------------------|------------|---------------------------|
| Top 5      | Volatility          |            | Product Name & Volatility |
| 2066200532 | Own Supreme Pizza   | 7027316404 | Shurgd pretzel sticks     |
| 7218063979 | Pepperoni Pizza     | 7027316204 | Shurgd mini pretzels      |
| 7218063983 | 4 Cheese Pizza      | 1111009497 | PI pretzel sticks         |
| 7218063052 | Brck OVN ITL Pep pz | 1111085345 | PL raisin bran            |
| 4116709428 | Mint Fluor RNS      | 1111085319 | PL honey nut toasted oats |

# 4. Products would you lower the price to maximize (a) Spend and (b) unit sales

- A) To maximize spend the price of pretzels i.e. 1111009497 should be dropped so that the spend is more.
- B) To maximize unit sales UPC 3700019521 i.e CREST PH WHTG toothpaste should be sold.

### **Recommendations:**

Exploring additional features or transform existing ones to capture more complex relationships in the data. Consider interaction terms, polynomial features, or domain-specific transformations to better represent the underlying patterns. Regularization helps control model complexity and prevents extreme parameter estimates, leading to better performance on unseen data.