Design A lead Screw For Lathe Machine

Presenters:

Ayman Khan (200108149)
Hasin Anjum Junayed (200108138)
Tarek Ahmed (200108144)
Nazmul Ahsan Nahid (200108135)
Ishtiyak Karim Ratul (200108136)

RESEARCH & INVESTIGATION

Review on "Investigation and implementation for forming lead screw by through-feed rolling process with active rotation" (paper 1)

TFRPAR creates a lead screw by,

- utilizing parallel-axis rolling dies with a taper angle,
- active rotation of both the rolling die and workpiece

Feasibility verified through experiments for manufacturing long threaded parts with high thread and large deformation.

Courtesy: https://ars.els-cdn.com/content/image/1-s2.0-S1526612522005308-ga1.jpg

Review on "<u>Dynamic characteristics analysis of a lead screw by considering the variation in thread parameters.</u>" (paper 2)

Natural frequency: The natural frequency is affected by screw length and worktable position

Mode 1 to 4, from paper

Formula:

Frequency = (Lead / Screw Length) * RPM

Stress distribution: Stress amplitude decreases as the nut moves towards the center of the screw, but increases as it moves towards the rear end

ACME profile, from paper

Review on "<u>Optimizing Backlash Reduction in</u> <u>Lead Screws for Enhanced Precision in Lathe</u> <u>Machines: A Design Optimization Approach</u>" (paper 3)

- Backlash Analysis
- PV curve defines the safe limits of load and speed (100000 watt vs 13000 watt), an observation

Formula:

PV = (Load/Projected area) * Velocity

Fig 1 courtesy: https://www.iqsdirectory.com/articles/ball-screw/lead-screws/axial-anti-backlash-nuts.jpg

Fig 2 Courtesy: https://www.linearmotiontips.com/wp-content/uploads/2015/08/pressure-velocity-chart.jpg

Review on "Two methods for improving the axial static and dynamic characteristics of hydrostatic lead screws" (paper 4)

Method 1: Implementing a membrane restrictor

- Reduces total flow and pumping power
- Improves axial load capacity,
- Stiffness coefficient
- Damping coefficient

Fig. 1. (a) Hydrostatic lead screw and (b) cross section of the hydrostatic nut.

Courtesy:https://scihub.se/https://doi.org/10.1016/j.tr iboint.2016.12.035

Review on "Two methods for improving the axial static and dynamic characteristics of hydrostatic lead screws" (paper 4), CONT'D

Method 2: Introducing intentional periodic pitch errors in the hydrostatic nut,

- Generates hydrodynamic effect of lubricating film
- Enhances axial load capacity

Formula: (Periodic pitch error)

$$\begin{cases} f_1(\theta) = E \times \sin\left(\frac{2\pi}{T}\theta + \varphi_1\right) \\ f_2(\theta) = E \times \sin\left(\frac{2\pi}{T}\theta + \varphi_2\right) \end{cases}$$

Fig. 3. Approximately unfolded drawing of the flank surface of threads and grid points.

Courtesy:https://scihub.se/https://doi.org/10.1016/j.triboint.2016.12.035,

Citations:

- Zhang, D.-W., Li, D.-H., Liu, B.-K., Yu, Z.-C., & Zhao, S.-D. (2022). Investigation and implementation for forming lead screw by through-feed rolling process with active rotation. Journal of Manufacturing Processes, 82, 96–112. https://doi.org/10.1016/j.jmapro.2022.07.062 (paper 1)
- Syriac, Alex & Chiddarwar, Shital. **(2019)**. **Dynamic characteristics analysis of a lead screw by considering the variation in thread parameters.** IOP Conference Series: Materials Science and Engineering. 624. 012007. 10.1088/1757-8999/624/1/012007. **(paper 2)**
- Brown, R. W., & Davis, M. E. (2019). Optimizing Backlash Reduction in Lead Screws for Enhanced Precision in Lathe Machines: A Design Optimization Approach. In Proceedings of the International Conference on Manufacturing Engineering (pp. 234-245). Retrieved from https://www.conferenceproceedings.org/proceeding/86664933 (paper 3)
- Zhang, Y., Lu, C., & Ma, J. **(2017).** Research on two methods for improving the axial static and dynamic characteristics of hydrostatic lead screws. Tribology International, 109, 152–164. https://doi.org/10.1016/j.triboint.2016.12.035. **(paper 4)**

Generate Alternative Design

Design Elements:

- Force (6400N is selected)
- Coefficient of friction, f = 0.08
- Major Diameter, d = 8mm
- Acme Thread Pitch, p = 2mm
- Length, L = 290mm

Courtesy:

https://www.orientalmotor.com/images/technology/load-torque-calculation-ball-screw-drive.jpg

Major Diameter Varied

Major Diameter,d	Thread Depth	Thread Width	Pitch Diameter	Minor Dlameter	Lead	T(raise)	T(lower)	Efficiency
6	1	0.97	5	4	2	3.35	-0.75	60.79
8	1	0.97	7	6	2	3.86	-0.24	52.81
9	1	0.97	8	7	2	4.11	0.01	49.55
10	1	0.97	9	8	2	4.37	0.27	46.66
13	1	0.97	12	11	2	5.13	1.03	39.70
15	1	0.97	14	13	2	5.64	1.54	36.11
20	1	0.97	19	18	2	6.92	2.82	29.44

Efficiency Decreased

Pitch Varied

Major Diameter,d	Thread Depth	Thread Width	Pitch Diameter	Minor Dlameter	Lead	T(raise)	T(lower)	Efficiency
8	1	0.97	7	6	2	3.86	-0.24	52.81
8	1	0.97	6	6	2	3.60	-0.50	56.53
8	1	0.97	5	6	2	3.35	-0.75	60.79
8	1	0.97	4	6	2	3.10	-1.00	65.70
8	1	0.97	3	6	2	2.85	-1.25	71.39
8	1	0.97	2	6	2	2.62	-1.49	77.88
8	1	0.97	1	6	2	2.42	-1.69	84.31

Efficiency Increased

Diameter 8mm Length 290mm ACME Thread Pitch 2mm

Fig 2: Zoomed in section

Courtesy: Rendered from Autodesk Fusion 360

Fig 1: 8mm Lead Screw

THANK YOU