Imię i Nazwisko:	Data ćwiczenia:								
Malwina Cieśla	28.05.2021r								
Narzędzia modelowania w inżynierii									
Kierunek studiów:	Ocena:								
Inżynieria Obliczeniowa									

Cel ćwiczenia:

Analiza wpływu kąta natarcia na nośność i opór skrzydła samolotu.

Zadanie:

Na początku należało utworzyć profil skrzydła przy pomocy pliku NACA22112, a następnie dodać zmienną globalną "kąt_natarcia", który zmieniał kąt ułożenia skrzydła samolotu. Następnie przy pomocy Flow Simulation utworzyłam symulację rozkładu ciśnienia dla kąta_natarcia równego 10 stopni:

Ilustracja 1: Rozkład ciśnienia dla kąta = 10 °

Kolejnym krokiem było zbadanie wpływu kąta natarcia na nośność i opór skrzydła samolotu. Wykonałam symulacje parametryczną dla następujących wartości kąta natarcia: 0°, 2°, 4°, 6°, 8°, 10°, 12°, 14°, 16°, 18°, 20°. Po przejściu opisanych w instrukcji kroków otrzymałam poniższą tabelkę:

Summary	Design Point 1	Design Point 2	Design Point 3	Design Point 4	Design Point 5	Design Point 6	Design Point 7	Design Point 8	Design Point 9	Design Point 10	Design Point 11
"kąt_natarcia" (nwtzad12) []	0	2	4	6	8	10	12	14	16	18	20
GG Force (X)ForceX [N]	14.8326581	17.8666355	26.5889962	41.1337557	60.4834529	84.3349948	114.261597	150.105212	178.506927	265.297808	344.301742
GG ForceY [N]	66.2795104	335.779436	610.768293	892.960226	1128.23865	1380.31663	1563.13994	1753.35257	1842.02637	863.956187	937.68109
Status	Finished	Finished									
Run at	This computer	This computer									

Ilustracja 2: Tabela wartości otrzymanych oporów (X) oraz siły nośnej (Y)

Dzięki otrzymanej tabeli mogłam utworzyć wykresy: Wykres zależności oporu od kąta natarcia oraz wykres zależności siły nośnej od kąta natarcia:

Ilustracja 3: Wykres zależności oporu od kąta natarcia

Ilustracja 4: Wykres zależności siły nośnej od kąta natarcia

Wnioski:

Analizując otrzymane wyniki przedstawione w tabeli oraz na wykresach można zauważyć, że opór skrzydła rośnie proporcjonalnie do wzrostu kąta natarcia. Siła nośna natomiast rośnie proporcjonalnie wraz ze wzrostem kąta tylko do pewnej wartości. Po przekroczeniu wartości 1800 N wartość siły nośnej spada o prawie 1000 N, a następnie wraz ze wzrostem kąta ponownie wzrasta. Wykres zależności oporu od kąta również w tym miejscu przedstawia zmianę, jednak mimo widocznego na wykresie w tym miejscu uskoku wartość oporu skrzydła nadal wzrasta proporcjonalnie do nadanego kąta natarcia.