Group Members

Stephen McGuckin Ryan Peterson Brandon Swanson

Theoretical Runtime Analysis

The statement in the outermost loop is computed exactly N times (N = size of the array). The middle loop is also executed at most N times in each iteration of the outer loop. The inner loop is never executed more than n times. Multiplying these 3 together we get that this algorithm's cost is $\Theta(n^3)$.

Algorithm 2

The statement in the outer loop is executed exactly n times. And the inner loop is executed at most n times therefore this algorithm is $\Theta(n^2)$.

The inner loop will run n times on its first iteration then n-1, n-2, until it runs 1 time. the sum of these iterations is the sum of numbers 1 through n sequence which is equal to $n(n+1)/2 = (n^2 + n)/2$ which asymptotically is $\Theta(n^2)$

```
Algorithm 3
Pseudo code:
maxmiddle(ARRAY[],low, mid, end) {
       leftsum = -INFINITY
       For i = mid downto low.
              sum=sum+ARRAY[i]
              if sum>leftsum
                     lefsum = sum
                     max-left = i
       rightsum = -INFINITY
       For i = mid + 1 upto high.
              sum=sum+ARRAY[i]
              if sum>rightsum
                     rightsum = sum
                     max-right = i
       return maxl-left,max-right, leftsum+rightsum
}
maxsubarray3(ARRAY[],low,high) {
       if low = high we have one element return indexes low mid high
       else
              mid = middle of array
              return the biggest value of the 3(
                     1. max_middle(array[], low,mid,high) //max of anything in the middle
                     2. maxsubarray3(array[],low,mid) // max from the beginning to middle
                     3. maxsubarray3(array[],mid+1,high) // max from the beginning +1 to end
              )
```

by examining the recursion tree we can evaluate that this algorithm does $\Theta((n))$ for each level of recursion. Therefore we get $\Theta(n | g | n)$. We can further prove this by examining the recurrence and applying the master theorem.

Because each call to the algorithm makes a recursive calls on one half of the subarray each, and calls a function that sums all the values of the subarray received by the algorithm, The recurrence can be stated thusly:

```
T(n) = 1 for n = 1

T(n) = 2T(n/2) + n

This fits the masters theorem format and f(n) = \Theta(n^{\log_2 2} * \log^0 n) = \Theta(n) therefore T(n) = \Theta(n \log_n n)
```

}

Pseudo code:

for i from 0 to size of array

max = max + the value of element in array at index iif current $max \le 0$

current max = 0

keep track of greatest max seen so far

This loop only goes through array exactly n times. This is a linear time algorithm and cost $\Theta(n)$.

Proof of Correctness

Problem: Find the subarray of array a that has the greatest sum

Input: a, a start and end point

Output: the start point, end point and sum of the max subarray

Proving max

Precondition: a and b have valid max values

<u>Postcondition:</u> return value is whichever of a and b has the highest max value

Proof:

- 1. a.max > b.max is true if a has a greater max value than b
- 2. if (a.max > b.max) return a returns a if a has a greater max value than b
- 3. else return b returns be if b has a greater max value than a

Proving threemax

Precondition: a, b and c all have valid max values

Postcondition: return value is whichever maxij has the greatest max value

Proof:

- 1. max(a,b) returns a or b with greatest max
- 2. max(max(a,b),c) returns greatest between c and max(a,b);
- 3. return max(max(a,b),c) returns greatest between a,b and c

Proving max_middle

<u>Precondition:</u> a is a valid array, start = x, mid = y, end = z

<u>Postcondition:</u> result represents the subarray with the largest sum that crosses the midpoint

Proof:

Proving for (i = mid-1; i >= start; i--)

Input: an array a, int sum, int left sum, int start, maxij result

<u>Output:</u> result.i = low bound for the subarray with the greatest sum with mid as it's upper

bound and left sum = sum of subarray bound by result.i and mid

<u>Loop Invariant:</u> At step k at the start of each loop sum equals the sum of the values of a from

mid to mid-k, left_sum equals the greatest sum found between i=mid and i=mid-k and result.i = the i corresponding to left_sum

Initialization:

k = 0, sum = a[mid], left_sum = a[mid], result.i = 0. Everything is still where it was at initialization

Maintenance:

i = mid-(k+1), sum = sum(from k) + a[i], left_sum = left_sum(from k) unless sum is greater

then left_sum =sum, the same goes for result.i - if sum is less than left_sum(from k) then

result.i = result.i(from k) otherwise result.i = i

Termination:

The loop terminates when mid-k <= start

Proving for $(i = mid+1; i \le end; i++)$

Input: an array a, int sum, int left_sum, int end, maxij result

<u>Output:</u> result.j = high bound for the subarray with the greatest sum with mid as it's lower

bound and left sum = sum of subarray bound by result.j and mid

Loop Invariant: At step k at the start of each loop sum equals the sum of the values of a from

mid+1 to mid+k when k>0, $right_sum$ equals the greatest sum found between i=mid and

i=mid-k and result.j = the i coresponding to right sum

Initialization:

k = 0, sum = 0, right sum = 0, result.j = 0.

Maintenance:

i = mid+1+(k+1), sum = sum(from k) + a[i], right_sum = right_sum(from k) unless sum is

greater then right_sum =sum, the same goes for i - if sum is less than right_sum(from k) then

result.j = result.j(from k) otherwise result.j = j

Termination:

The loop terminates when $mid+1+k \ge end$

The two loops (proved above) set result.j and result.i and set left_sum and right_sum. The final step sets result.max to left_sum + right_sum.

left_sum = greatest sum begin to mid with mid as upper bound right_sum = greatest sum mid to end with mid as lower bound result.max = greatest sum including mid

Proving r maxsubarray 3

Input: array a, int low and int high

<u>Output:</u> a maxij representing the subarray that sums to the greatest amount <u>Base Case:</u> If low = high then the subarray is of size one and a maxij is returned in the form {low,high,a[low]}

Inductive Hypothesis: r_maxsubarray_3 finds the maximum subarray of an array (or subarray) where (high - low) = k

Inductive Step: (high - low) = k + 1

First recursive call takes the array a, int low and the calculated middle (as int high) as input and outputs max subarray of low+1 to mid

Second recursive call takes the array a, the calculated middle plus one (as int low) and int high as input and outputs max subarray of mid+1 to high

max_middle takes array a, int low, the calculated middle as mid and int high as inputs and outputs max subarray including mid

threemax outputs max subarray of the three

Greatest possible subarray is returned

Termination:

Every recursive call halves (high - low) and the recursion terminates at (high - low = 0)

Testing

We tested the algorithms by creating a compiled program that would output the result of each algorithm to a different file each. reading from the MSS_Problems.txt file provided and outputting in the same format as the provided MSS_Results.txt file. Each output could then be automatically compared to the results file using diff. Algorithm 3 sometimes found a different optimal solution but on these small samples could still be verified to be a correct solution. After testing was concluded on these provided tests the algorithms were then tested on larger randomly generated values and then their outputs were compared with each other.

Experimental Analysis

Data for 100 values of n for algorithms 2,3,and 4 and 37 values of n for algorithm 1 are attached as well as plots and fit lines.

The only algorithm with any significant discrepancy from the expected trend line was the 4th algorithm, the linear time algorithm. We believe this was caused by the two conditionals within this algorithm's loop used for tracking the best sum discovered so far and the beginning and end points of that subarray. Each of these conditionals involve variable assignments but are not always triggered on each iteration of the loop. Therefore different arrays with different distributions of positive and negative numbers would cause more variable assignments therefore increasing the time the algorithm takes to finish. This accounts for the distribution of the measured time across both sides of the linear trendline.

Regression model and 10 minute size of N

(functions generated and solved using Matlab and Wolfram Alpha)

Algorithm 1:

Regression Function:

(1351074808815051*n^3)/2417851639229258349412352 - (4764799537088881*n^2)/18889465931478580854784 + (5047297659782551*n)/18446744073709551616 - 1089898065277315/18014398509481984

Largest value of N under 10 minutes: 10377

Algorithm 2:

Regression Function: (7022048938385443*n^2)/4835703278458516698824704 -(1995149045137059*n)/75557863725914323419136 + 8321871326131415/295147905179352825856

Largest value of N under 10 minutes: 642805

Algorithm 3:

Regression Function: (1355390088139563*n^2)/618970019642690137449562112 + (1535378422870539*n)/18889465931478580854784 + 2841859988135817/73786976294838206464

Largest value of N under 10 minutes: 16534510

Algorithm 4:

Regression Function: (2154593805482993*n)/604462909807314587353088 + 4781038308868933/590295810358705651712

Largest value of N under 10 minutes: 168327663463

n		Time				
	5100	0.037388				
	5200	0.039064				
	5300	0.039004				
		0.040374				
	5400					
	5500	0.050303				
	5600	0.044862				
	5700	0.046475				
	5800	0.048253				
	5900	0.05079				
	6000	0.05158				
	6100	0.053306				
	6200	0.055605				
	6300	0.06487				
	6400	0.059217				
	6500	0.06094				
	6600	0.062716				
	6700	0.06451				
	6800	0.066451				
	6900	0.068915				
	7000	0.070261				
	7100	0.072556				
	7200	0.074973				
	7300	0.075976				
	7400	0.079525				
	7500	0.081063				
	7600	0.083387				
	7700	0.086383				
		0.086857				
	7800					
	7900	0.089833				
	8000	0.092167				
	8100	0.094074				
	8200	0.096172				
	8300	0.099018				
	8400	0.100985				
	8500	0.104037				
	8600	0.105814				
	8700	0.109433				
	8800	0.112031				
	8900	0.114746				
	9000	0.116114				
	9100	0.119281				
	9200	0.13096				
	9300	0.125549				
	9400	0.128259				
	9500	0.131652				
	9600	0.133291				
	9700	0.13573				
	9800	0.13899				
	9900	0.141595				
	10000	0.14567				

n	Time			
4500	0.000449			
4600	0.000454			
4700				
4800				
4900				
5000				
5100				
5200 5300	0.000524 0.000536			
5400	0.000536			
5500	0.000555			
5600				
5700				
5800				
5900	0.000577			
6000				
6100				
6200				
6300				
6400				
6500	0.000652			
6600				
6700	0.000673			
6800				
6900	0.000695			
7000				
7100	0.000706			
7200	0.000722			
7300	0.00073			
7400	0.000749			
7500	0.000756			
7600	0.000777			
7700	0.000776			
7800	0.000788			
7900	0.000813			
8000	0.000814			
8100	0.000816			
8200	0.000824			
8300	0.000873			
8400	0.000911			
8500	0.000928			
8600	0.000926			
8700				
8800	0.000938			

n	Time			
8900	0.000914			
9000	0.000968			
9100	0.000949			
9200	0.000941			
9300	0.000977			
9400	0.00097			
9500	0.000986			
9600	0.00104			
9700	0.001073			
9800	0.001076			
9900	0.001088			
10000	0.001077			

	T:				
n	Time				
5100					
5200					
5300					
5400					
5500	0.00003				
5600	0.000029				
5700	0.00003				
5800	0.000031				
5900	0.000031				
6000	0.000032				
6100	0.000032				
6200	0.000033				
6300	0.000031				
6400	0.000032				
6500	0.000032				
6600	0.000033				
6700	0.000033				
6800					
6900					
7000					
7100					
7200					
7300					
7400					
7500					
7600					
7700					
7800					
7900					
8000					
8100					
8200					
8300					
8400					
8500					
8600					
8700					
8800					
8900					
9000					
9100					
9200					
9300					
9400					
9500					
9600					
9700					
9800					
9900					
10000	0.000041				

All Algorithms

All Algorithms

N	Algorithm 1 Algorithm 2	Algorithm 3	Algorithm 4			
6300	0.06487	0.000631	0.000031			
6400	0.059217	0.00064	0.000032			
6500	0.06094	0.000652	0.000032			
6600	0.062716	0.000663	0.000033			
6700	0.06451	0.000673	0.000033			
6800	0.066451	0.000693	0.000034			
6900	0.068915	0.000695	0.000034			
7000	0.070261	0.000702	0.000035			
7100	0.072556	0.000706	0.000035			
7200	0.074973	0.000722	0.000034			
7300	0.075976	0.00073	0.000034			
7400	0.079525	0.000749	0.000034			
7500	0.081063	0.000756	0.000036			
7600	0.083387	0.000777	0.000036			
7700	0.086383	0.000776	0.000036			
7800	0.086857	0.000788	0.000036			
7900	0.089833	0.000813	0.000035			
8000	0.092167	0.000814	0.000036			
8100	0.094074	0.000816	0.000036			
8200	0.096172	0.000824	0.000036			
8300	0.099018	0.000873	0.000037			
8400	0.100985	0.000911	0.000038			
8500	0.104037	0.000928	0.000038			
8600	0.105814	0.000926	0.000038			
8700	0.109433	0.00094	0.000036			
8800	0.112031	0.000938	0.000036			
8900	0.114746	0.000914	0.000038			
9000	0.116114	0.000968	0.000037			
9100	0.119281	0.000949	0.000039			
9200	0.13096	0.000941	0.000039			
9300	0.125549	0.000977	0.000039			
9400	0.128259	0.00097	0.000038			
9500	0.131652	0.000986	0.000039			
9600	0.133291	0.00104	0.000039			
9700	0.13573	0.001073	0.000039			
9800	0.13899	0.001076	0.00004			
9900	0.141595	0.001088	0.00004			
10000	0.14567	0.001077	0.000041			