

Computer Vision Problems

Image Classification

 $\longrightarrow \text{ Cat? } (0/1)$

Object detection

Neural Style Transfer

Deep Learning on large images

64x64x3 = 12.288 pixels

 $1000 \times 1000 \times 3 = 3 \text{ M pixels}$

Computer Vision Problem

Detection of layers of Neural Networks

Convolutional Neural Network

Neural networks that include convolution operations

Training set

Convolution Layer

- A network layer that convolves its receptive input before passing it to the next layer.
- Most ML libraries implement convolutional layers as cross-correlation layers.

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$$I(1 * K)(0,0) = I(0,0)K(0,0) + I(0,1)K(0,1) + I(0,2)K(0,2) + I(1,0)K(1,0) + I(1,1)K(1,1) + I(1,2)K(1,2) + I(2,0)K(2,0) + I(2,1)K(2,1) + I(2,2)K(2,2) + I(2,0)K(2,0) + I(2,1)K(2,1) + I(2,2)K(2,2) + I(2,0)K(2,0) + I(2$$

1	0	0	1	2
0	0	0	3	0
0	1	2	1	1
1	1	3	0	0
3	0	0	0	1

$$(K \star I)(0,0) = 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 2 + 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 1 + 2 \cdot 0 + 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 0 + 0 \cdot 1 + 1 \cdot 1$$

$$=$$
 1

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			<u> </u>		
	1 0	0 0	0 1	1	2
K	0 0	0 2	0 0	3	0
	0 1	1 1	2 ₀	1	1
	1	1	3	0	0
	3	0	0	0	1

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			I		
	1 0	0 0	0 1	1	2
K	0 0	0 2	0 0	3	0
	0 1	1 1	2 0	1	1
	1	1	3	0	0
	3	0	0	0	1

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			<u> </u>		
	1	0 0	0 0	1 1	2
K	0	0 0	0 2	3 ₀	0
	0	1 1	2 1	1 0	1
	1	1	3	0	0
	3	0	0	0	1

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			<u> </u>		
	1	0	0 0	1 0	2 1
K	0	0	0 0	3 2	0 0
	0	1	2 1	1 1	1 0
	1	1	3	0	0
	3	0	0	0	1

$I \star K$						
1	4	11				

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			I		
	1	0	0	1	2
K	0 0	0 0	0 1	3	0
	0 0	1 2	2 ₀	1	1
	1 1	1 1	3 ₀	0	0
	3	0	0	0	1

$I \star K$					
1	4	11			
4					

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			I		
	1	0	0	1	2
K	0	0 0	0 0	3 1	0
	0	1 0	2 ₂	1 0	1
	1	1 1	3 1	0 0	0
	3	0	0	0	1

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			I		
	1	0	0	1	2
K	0	0	0 0	3 ₀	0 1
	0	1	2 0	1 2	1 0
	1	1	3 1	0 1	0 0
	3	0	0	0	1

$I \star K$					
1	4	11			
4	11	5			

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

			<u> </u>		
	1	0	0	1	2
K	0	0	0	3	0
	0 0	1 0	2 1	1	1
	1 0	1 2	3 ₀	0	0
	3 1	0 1	0 0	0	1

$I \star K$					
1	4	11			
4	11	5			
7					

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

	I					
	1	0	0	1	2	
K	0	0	0	3	0	
	0	1 ₀	2 ₀	1 1	1	
	1	1 0	3 2	0 0	0	
	3	0 1	0 1	0 0	1	

$I \star K$					
1	4	11			
4	11	5			
7	7				

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

,	I					
	1	0	0	1	2	
K	0	0	0	3	0	
	0	1	2 0	1 0	1 1	
	1	1	3 ₀	0 2	0 0	
	3	0	0 1	0 1	1 0	

$I \star K$					
1	4	11			
4	11	5			
7	7	1			

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

1	0	0	1	2
0	0	0	3	0
0	1	2	1	1
1	1	3	0	0
3	0	0	0	1

1 4 11 4 11 5 7 7 1

=

Often called the feature map

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Vertical edge detection examples

						
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	

	1	0	-1
k	1	0	-1
	1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	

1	0	-1
1	0	-1
1	0	-1
-		

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Horizontal

T 7	, •	1
Ve:	rt.ı	രി
VC.	LUI	cai

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	0	1	2
0	0	0	3	0
0	1	2	1	1
1	1	3	0	0
3	0	0	0	1

Something's not quite right...

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

Cross-correlation: padding

Adding extra pixels outside the image

0	0	0	0	0	0
0	35	19	25	6	0
0	13	22	16	53	0
0	4	3	7	10	0
0	9	8	1	3	0
0	0	0	0	0	0

Technically, our signals have infinite extent... we solve by padding with zeros

Normally we want the output to maintain the input size

Normally we want the output to maintain the input size

Convolutional networks

Reminder: Neural networks that include convolution operations

Can be used in place of dense matrix multiplication (i.e. fully-connected layers)

Motivations:

- Sparse connectivity
- Parameter sharing
- Translation equivariance
- Arbitrary input sizes

Why convolutions: Motivation

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Translation Equivariance

Arbitrary Input Sizes

Neural networks ⇒ Convolutional networks

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$$

Neural networks ⇒ Convolutional networks

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_{i} w_{ij} x_j + b_i$$

Neural networks ⇒ Convolutional networks

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_{i} w_{ij} x_j + b_i$$

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij}x_j + b_i$$

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_{i} w_{ij} x_j + b_i$$

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$$

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$$

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_{i} w_{ij} x_j + b_i$$

$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$$

 $\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$

dense connectivity vs sparse connectivity

In our example:
5x5 multiplications vs 5x3 multiplications

Sparse connectivity scales better e.g. 25x25 vs 25x3

 $\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$

unshared vs shared weights

In our example: 5x5 vs 3 weights

shared weights scale way better: e.g. 25x25 vs 3

Translation equivariance

Translation equivariance

Arbitrary input sizes

$$h_i = \sum_j W_{ij} x_j + b_i$$
 x_1
 x_2
 x_3
 x_4
 x_5
 x_6
No W_{6j} weights!

Arbitrary input sizes

$$h_i = \sum_j W_{ij} x_j + b_i$$
 x_1
 x_2
 x_3
 x_4
 x_5
 x_6
No W_{6j} weights!

- Sparse connectivity
- Parameter sharing
- Translation equivariance
- Arbitrary input sizes

Strided convolution

3	4	4
1	0	2
-1	0	3

91	100	83
69	91	127
44	72	74

$$Stride = 2$$

Stride is the number of pixels shifts over the input matrix (sliding step).

Stride: 2x2

Why use stride > 1?

- Reduce redundancy
- Compress feature map

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Operation to aggregate or "summarize" sub-region of input.

Operation to aggregate or "summarize" sub-region of input.

Operation to aggregate or "summarize" sub-region of input.

Operation to aggregate or "summarize" subregion of input.

Shift input by 1 position:

5/5 inputs change but only 1/3 pooled outputs

Operation to aggregate or "summarize" subregion of input.

Shift input by 1 position:

5/5 inputs change but only 1/3 pooled outputs

Operation to aggregate or "summarize" subregion of input.

Shift input by 1 position:

5/5 inputs change but only 1/3 pooled outputs

Why is pooling useful?

- Adds translation invariance (useful when we care about "what" more than "where")
- Can be used to compress signal (useful to improve computational efficiency)

$$p = f(\mathbf{a})$$

$$f_{max}(\mathbf{a}) = \max_{i} (a_i)$$

$$f_{avg}(\mathbf{a}) = \frac{1}{N} \sum_{i=1}^{N} a_i$$

Operation to aggregate or "summarize" sub-region of input.

Shift input by 1 position:

5/5 inputs change but only 1/3 pooled outputs

Why is pooling useful?

- Adds translation invariance (useful when we care about "what" more than "where")
- Can be used to compress signal (useful to improve computational efficiency)

Borrowed terminology from neuroscience:

⇒ stimulus region that impacts a neuron's firing

For neural networks:

⇒ Region of input signal that impacts node output

Borrowed terminology from neuroscience:

⇒ stimulus region that impacts neuronal firing

For neural networks:

⇒ Region of input signal that impacts node output

Borrowed terminology from neuroscience:

⇒ stimulus region that impacts neuronal firing

For neural networks:

⇒ Region of input signal that impacts node output

Borrowed terminology from neuroscience:

⇒ stimulus region that impacts neuronal firing

For neural networks:

⇒ Region of input signal that impacts node output

Effective field size:

⇒ Region of **network** input signal that impacts node output

Convolutions on RGB image

Multiple filters

*

*

4 x 4

Horizontal Edge

