

System and Network Security

Dr. Ashok Kumar Das

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas

Personal Home Page: http://sites.google.com/site/iitkgpakdas/

Encrypting Communications Channels

Encrypting Communications Channels

- This is the classical Alice and Bob problem:
 Alice wants to send Bob a secure message.
- What does she do?
- She encrypts the message.
- In theory, this encryption can take place at any layer in the OSI (Open Systems Interconnect) communication model.

Encrypting Communications Channels

- In practice, it takes place either at the lowest layers (one and two) or at the higher layers.
- If it takes place at the lowest layers, it is called *link-by-link* encryption (LLE); everything going through a particular data link
 is encrypted.
- If it takes place at higher layers, it is called end-to-end encryption (EEE); the data are encrypted selectively and stay encrypted until they are decrypted by the intended final recipient.

Datalink Layer: Security protocols for proving the error detection mechanisms due to bit transmission error and bits changed by an adversary (intruder) in between the communication

- Internal Error Control
- External Error Control

Network Layer: Internet Security Protocol (IPSec)

- IPSec is a collection of protocols designed by the Internet Engineering Task Force (IETF) to provide security for a packet at the network layer.
- IPSec helps create authenticated and credential packets for the IP layer.

Different Modes

Transport mode

- In this mode, IPSec protects what is delivered from the transport layer to the network layer.
- In other words, transport mode protects the network layer payload, the payload to be encapsulated in the network layer.
- Note that the transport mode does not protect the IP header.

IPSec in transport mode

H: header T: tailer

Transport mode

- This mode is normally used when we need host-to-host (end-to-end) protection of data.
- The sending host uses IPSec to authenticate and/or encrypt the payload delivered from the transport layer.
- The receiving host uses IPSec to check the authentication and/or decrypt the IP packet and deliver it to the transport layer.

Tunnel mode

- In this mode, IPSec protects the entire IP packet.
- It takes an IP packet, including the header, applies IPSec security methods to the entire packet, and then adds a new IP header.

IPSec in tunnel mode

Tunnel mode

- The new IP header has different information than the original IP header.
- Tunnel mode is normally used between two routers, between a host and a router, or between a router and a host.
- In other words, tunnel mode is used when either the sender or the receiver is not a host.
- The entire original packet is protected from intrusion between the sender and the receiver, as if the whole packet goes through an imaginary tunnel.

Transport mode versus Tunnel mode

- In transport mode, the IPSec layer comes between the transport layer and the network layer.
- In tunnel mode, the flow is from the network layer to the IPSec layer and then back to the network layer again.

Transport mode versus Tunnel mode

(a) Transport mode

(b) Tunnel mode

Transport Layer

- Secure Socket Layer (SSL) provides security services between TCP and applications that use TCP. The Internet standard version is called Transport Layer Service (TLS).
- SSL/TLS provides confidentiality using symmetric encryption and message integrity using a message authentication code.
- SSL/TLS includes protocol mechanisms to enable two TCP users to deter- mine the security mechanisms and services they will use.
- HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to implement secure communication between a Web browser and a Web server.
- Secure Shell (SSH) provides secure remote logon and other secure client/server facilities.

Application Layer

Pretty Good Privacy (PGP)

- PGP is an open-source, freely available software package for e-mail security. It provides authentication through the use of digital signature, confidentiality through the use of symmetric block encryption, compression using the ZIP algorithm, and e-mail compatibility using the radix-64 encoding scheme.
- PGP incorporates tools for developing a public-key trust model and public-key certificate management.

Secure/Multipurpose Internet Mail Extension (S/MIME)

- S/MIME is a security enhancement to the MIME Internet e-mail format standard based on technology from RSA Data Security.
- S/MIME is an Internet standard approach to e-mail security that incorporates the same functionality as PGP.

Application Layer

Secure Electronic Transaction (SET)

- ► SET is an open encryption and security specification designed to protect credit card transactions on the Internet.
- SET emerged from a call for security standards by MasterCard and Visa in February 1996.
- A wide range of companies were involved in developing the initial specification, including IBM, Microsoft, Netscape, RSA, Terisa, and Verisign.
- Beginning in 1996, there have been numerous tests of the concept, and by 1998 the first wave of SET-compliant products was available.

SET Transaction

- customer opens account
- customer receives a certificate
- merchants have their own certificates
- customer places an order
- merchant is verified
- order and payment are sent
- merchant requests payment authorization
- merchant confirms order
- merchant provides goods or service
- merchant requests payment