Projet signal

Accordeur électronique de guitare avec le logiciel Matlab

avril-juin 2014

- Présentation générale (PC1)
- Matlab (Matrix Laboratory) (PC1)
 - Matlab à l'ISAE/campus ENSICA
 - L'environnement Matlab
 - Programmer
- 3 Matlab appliqué au traitement du signal (BE1)

- 1 Présentation générale (PC1)
- 2 Matlab (Matrix Laboratory) (PC1)
- Matlab appliqué au traitement du signal (BE1)

Objectifs

- Introduction au logiciel Matlab
 - opérations de base;
 - création de scripts;
 - création de fonctions ;
 - création de toolbox.
- Application des concepts fondamentaux du traitement du signal
 - théorème de Shannon;
 - création de filtres FIR et/ou IIR ;
 - filtrage;
 - analyse spectrale par transformée de Fourier.

Séquencement

PC 1	présentation et prise en main de Matlab			
BE 1	partie 1 du projet			
TD1-2	partie 1 du projet			

rendre la partie 1 à l'intervenant du TD1-2

PC 2	Matlab avancé : bibliothèque, startup, aide de toolbox
BE2	partie 2 du projet
TD3-4	partie 2 du projet
PC3	partie 2 du projet
BE 3	partie 2 du projet et mini-soutenance

rendre la partie 2 à l'intervenant du BE3

- Présentation générale (PC1)
- Matlab (Matrix Laboratory) (PC1)
- Matlab appliqué au traitement du signal (BE1)

Matlab à quoi et à qui ça sert?

- À qui?
 - aux industriels
 - aux universitaires
- À quoi ?
 - calcul numérique
 - visualisation graphique
 - quelques exemples basiques dans pc1.m

- Présentation générale (PC1)
- Matlab (Matrix Laboratory) (PC1)
 - Matlab à l'ISAE/campus ENSICA
 - L'environnement Matlab
 - Programmer
- Matlab appliqué au traitement du signal (BE1)

Gestion des fichiers

- Travailler en dur dans un dossier sur le bureau
- En fin de séance, compresser le dossier et l'enregistrer sur clef USB
- Effacer le dossier sur le bureau

- Présentation générale (PC1)
- Matlab (Matrix Laboratory) (PC1)
 - Matlab à l'ISAE/campus ENSICA
 - L'environnement Matlab
 - Programmer
- Matlab appliqué au traitement du signal (BE1)

Interface graphique

- Current Directory
- Workspace
- Command Window
- Command History

Fonctions et toolboxes

Noyau et toolboxes

Fonctions

Obtenir de l'aide

À partir de la fenêtre d'aide

- visualiser l'ensemble du contenu de l'aide,
- rechercher un terme de l'index,
- rechercher un mot dans l'ensemble de l'aide,
- accéder aux démonstrations et exemples d'instructions.

À partir de la Command Window

- help nomFonction
- o doc nomFonction
- lookfor MotClef
- help nomToolbox

- Présentation générale (PC1)
- 2 Matlab (Matrix Laboratory) (PC1)
 - Matlab à l'ISAE/campus ENSICA
 - L'environnement Matlab
 - Programmer
- Matlab appliqué au traitement du signal (BE1)

Opérations de base

- concaténation
- opérateur colon :
- création de matrices particulières eye, ones, zeros
- extraire les éléments d'une matrice
- opérations terme à terme

Premiers codes

• Faire un script puis une fonction permettant de faire la somme et la différence de deux matrices.

- Présentation générale (PC1)
- Matlab (Matrix Laboratory) (PC1)
- Matlab appliqué au traitement du signal (BE1)

Accordeur électronique de guitare

Partie 1 réaliser une analyse sur signaux synthétiques, Partie 2 traiter des signaux réels.

Les 6 cordes

freq_gamme.xls

Numéro	Note	Octave	Lettre anglosaxone	Fondamentale (Hz)
1	MI	3	E	329,63
2	SI	2	В	246,94
3	SOL	2	G	196
4	RE	2	D	146,83
5	LA	1	A	110
6	MI	1	E	82,407

Échelle logarithmique

Definition (Octave)

Deux fréquences sont séparées d'une octave si le ratio de la plus haute sur la plus basse est égal à 2.

Definition (Ton, demi-ton)

Une octave est divisée en douze-intervalles réguliers ^a appelés demi-tons (i.e. 6 tons).

a. En échelle logarithmique.

$$DO \underset{+1 \text{ ton}}{\rightarrow} RE \underset{+1 \text{ ton}}{\rightarrow} MI \underset{+1/2 \text{ ton}}{\rightarrow} FA \underset{+1 \text{ ton}}{\rightarrow} SOL \underset{+1 \text{ ton}}{\rightarrow} LA \underset{+1 \text{ ton}}{\rightarrow} SI \underset{+1/2 \text{ ton}}{\rightarrow} DO$$

Échelle logarithmique (suite)

Definition (Le Savart)

$$x_{\mathsf{sav}} = 1000 \log_{10}(x_{\mathsf{dec}})$$

Exemple pour une octave :

$$1000 \log_{10}(2) \approx 300 \text{ Savarts}$$

Combien vaut un ton en Savarts?

Principe d'un accordeur

Accordeur avec microphone ou sensible aux vibrations.

Exemple d'indication

- indique la corde jouée
- 2 indique si la corde est accordée :
 - si la fréquence est supérieure à celle attendue, la corde doit être desserrée;
 - si la fréquence est en-dessous de celle attendue, la corde doit être resserrée.

Hypothèse de travail

Très important

Nous supposerons dans le projet que les cordes sont désaccordées au maximum à environ plus ou moins un quart de ton.