CHAPTER 7 TRIANGLES

Axioms and Theorems

- 1. **SAS Congruence:** Two triangles are congruent if any two sides and the included angle of one are equal to any two sides and the included angle of the other.
- 2. In an isosceles triangle, the angles opposite to the equal sides are equal.
- 3. **ASA Congruence:** Two triangles are congruent if any two angles and the included side of one are equal to any two angles and the included side of the other.
- 4. **AAS Congruence:** If any two angles and a non-included side of one triangle are equal to corresponding angles and side of another triangle, then the two triangles are congruent.
- 5. The sides opposite to equal angles of a triangle are equal.
- 6. **SSS Congruence:** If three sides of a triangle are equal respectively to the corresponding three sides of another triangle, then the two triangles are congruent.

SOLUTIONS

EXERCISE 7.1

1. ABC is an isosceles triangle in which AB = AC. If BA is produced to D so that AD = AB, prove that $\angle BCD = 90^{\circ}$.

Solution:

Given: In the isosceles $\triangle ABC$, AB = AC, BA is produced to D such that AB = AD

To prove: \angle BCD = 90°

Proof: As AB = AC in $\triangle ABC$, $\angle ACB = \angle ABC$

As AC = AD in $\triangle ADC$, $\angle ADC = \angle ACD$

 \therefore \angle ACB + \angle ACD = \angle ABC + \angle ADC

 \Rightarrow \angle BCD = \angle DBC + \angle BDC

In \triangle BCD,

$$\angle$$
 BCD + \angle DBC + \angle BDC = 180°
 \Rightarrow \angle BCD + \angle BCD = 180°

$$\Rightarrow$$
2 \angle BCD = 180⁰

$$\Rightarrow \angle BCD = \frac{180^{\circ}}{2} = 90^{\circ}$$

$$\therefore \angle BCD = 90^{\circ}$$

D

2. BD and CE are two altitudes of a \triangle ABC such that BD = CE. Prove that \triangle ABC is isosceles.

Solution:

BD and CE are altitudes of a \triangle ABC such that BD = CE Given:

ΔABC is isosceles To prove:

Proof: In $\triangle DCB$ and $\triangle EBC$,

$$BD = CE$$

3. If two isosceles triangles have a common base, prove that the line joining their vertices bisects the base at right angles.

Solution:

Two isosceles triangles ABC and DBC have a common base BC. AD is joined Given:

intersecting BC at E.

BE = CE and AD \perp BC. To prove:

Proof: In \triangle ABD and \triangle ACD,

AB = AC [being equal sides of an isosceles triangle]

DB = DC [being equal sides of an isosceles triangle]

AD = AD [common side]

 $\therefore \triangle ABD \cong \triangle ACD [SSS congruence]$

$$\Rightarrow$$
 \angle BAD = \angle CAD i.e. \angle BAE = \angle CAE

Ε

In \triangle ABE and \triangle ACE,

$$AB = AC, \angle BAE = \angle CAE, AD = AD$$

 $\therefore \Delta ABE \cong \Delta ACE [SAS congruence]$

$$\Rightarrow$$
 BE = CE

and,
$$\angle AEB = \angle AEC$$

But, \angle AEB + \angle AEC = 180° [Linear pair angles]

$$\therefore \angle AEB = \angle AEC = \frac{180^{\circ}}{2} = 90^{\circ}$$

So, $AD \perp BC$

Hence BE = CE and $AD \perp BC$

4. In a \triangle ABC, \angle A = 100° and AB = AC. Find \angle B and \angle C.

Solution: In \triangle ABC, \angle A = 100⁰ and AB = AC

$$\therefore \angle C = \angle B$$

But $\angle A + \angle B + \angle C = 180^{\circ}$ [by angle sum property of triangle]

$$\Rightarrow 100^{0} + \angle B + \angle B = 180^{0}$$

$$\Rightarrow 2 \angle B = 180^0 - 100^0$$

$$\Rightarrow \angle B = \frac{80^0}{2} = 40^0$$

$$\therefore \angle B = \angle C = 40^{\circ}$$

5. In a \triangle ABC, if AB = AC and \angle B = 70° , Find \angle A.

Solution: In \triangle ABC, AB = AC, \angle B = 70° .

We have,
$$\angle C = \angle B [::AB = AC]$$

$$\therefore \angle C = 70^{\circ}$$

We know, $\angle A + \angle B + \angle C = 180^{\circ}$ [by angle sum property of triangle]

$$\Rightarrow \angle A + 70^0 + 70^0 = 180^0$$

$$\Rightarrow \angle A + 140^0 = 180^0$$

$$\Rightarrow \angle A = 180^{0} - 140^{0} = 40^{0}$$

$$\therefore \angle A = 40^{\circ}$$

6. Prove that the medians of an equilateral triangle are equal.

Solution:

Given: AD, BE, CF are medians of equilateral \triangle ABC

To prove: AD = BE = CF

Proof: Since ABC is an equilateral triangle, AB = BC

$$\therefore \angle A = \angle B = \angle C$$

In \triangle FBC and \triangle ECB, we have

$$BC = CB$$

$$\angle B = \angle C$$

$$BF = CE \qquad \left[\because \frac{AB}{2} = \frac{AC}{2} \right]$$

 $\therefore \Delta FBC \cong \Delta ECB [SAS congruence]$

$$\Rightarrow$$
 CF = BE

Similarly, $\Delta EAB \cong \Delta DBA$

$$\Rightarrow$$
 BE = AD

So,
$$AD = BE = CF$$

7. Two lines AB and CD intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect each other at O.

Given: Two lines AB and CD intersect at O such

that BC is equal and parallel to AD.

To prove: AB and CD bisect each other at O.

Proof: In \triangle AOD and \triangle BOC,

$$AD = BC [given]$$

 \angle ODA = \angle OCB [Alternate angles as AD \parallel BC]

$$\angle OAD = \angle OBC$$

 $\therefore \Delta AOD \cong \Delta BOC [ASA congruence]$

$$\Rightarrow$$
 OA = OB and OD = OC

So, AB and CD bisect each other at O.

8. Line segment AB is parallel to another equal line segment CD. O is the mid-point of AD. Prove that (i) \triangle AOB \cong \triangle DOC (ii) O is mid-point of BC.

Solution:

Given: AB is parallel to another equal line segment CD and O is the mid-point of AD.

To prove: (i) \triangle AOB \cong \triangle DOC

(ii) O is mid-point of BC

Proof: In $\triangle AOB$ and $\triangle DOC$

AB = CD [Given]

 $OA = OD [\because 0 \text{ is the mid_point of AD}]$

 $\angle OAB = \angle ODC[\because alternate angles]$

$$\therefore \triangle AOB \cong \triangle DOC [SAS]$$

$$\Rightarrow$$
 OB = OC

So, O is the mid-point of BC.

9. In \triangle ABC, the bisector AD of \angle A is perpendicular to the side BC. Prove that \triangle ABC is isosceles.

Solution:

Given: In \triangle ABC, the bisector AD of \angle A is perpendicular to BC.

Α

To prove: \triangle ABC is isosceles.

Proof: As AD bisects $\angle A$, $\angle BAD = \angle CAD$

As AD \perp BC, \angle ADB = \angle ADC [90⁰]

In \triangle ADB and \triangle ADC,

$$\angle ADB = \angle ADC$$
, $AD = AD$, $\angle BAD = \angle CAD$

$$\therefore \Delta ADB \cong \Delta ADC [ASA congruence]$$

$$\Rightarrow$$
 AB = AC

As two sides are equal in length, \triangle ABC is isosceles.

10. P is a point equidistant from two lines I and m intersecting at a point A. Prove that the line AP

bisects the angle between the lines.

Solution:

Given: P is a point equidistant from two lines 1

and m intersecting at a point A.

To prove: AP bisects the angle between the lines 1 and m.

Construction: We draw PM and PN perpendicular to 1 and m respectively.

Proof: As P is equidistant from 1 and m, PM = PN

In Δ PMA and Δ PNA,

$$\angle PMA = \angle PNA [90^{\circ}]$$

$$AP = AP$$

$$PM = PN$$

∴ \triangle PMA \cong \triangle PNA [RHS congruence]

$$\Rightarrow \angle PAM = \angle PAN$$

So, AP bisects the angle between 1 and m.

11. ABCD is a rectangle. P,Q,R and S are the mid points of AB, BC, CD and DA respectively. Prove that PQRS is rhombus.

Given: P,Q,R,S are the mid-points of AB, BC,

CD,DA of rectangle ABCD.

To prove: PQRS is a rhombus.

Proof: In $\triangle PAS$ and $\triangle PBQ$.,

S and
$$\triangle PBQ$$
.,

AP =BP [: P is the mid_point of AB]

$$\angle PAS = \angle PBQ [90^{\circ}]$$

AS=BQ
$$\left[\because \frac{AD}{2} = \frac{BC}{2}\right]$$

∴ $\triangle PAS \cong \triangle PBQ$ [SAS congruence]

$$\Rightarrow$$
 PS = PQ

Similarly,
$$\triangle QBP \cong \triangle QCR \Rightarrow PQ = QR$$

And
$$\triangle RCQ \cong \triangle RDS \Rightarrow QR = RS$$

$$\therefore PS = PQ = QR = RS$$

As all the four sides are equal in length, PQRS is a rhombus.

Α

Ν

12. Prove that the diagonals of a rhombus bisect each other at right angles.

Solution:

Given: The diagonals AC and BD of a rhombus ABCD intersect at D.

To prove: OA=OC, OB=OD and AC \perp BD

Proof: In $\triangle AOD$ and $\triangle COB$

EDUCATION (S)

$$\angle$$
OAD = \angle OCB [alternate angles]

AD = BC [sides of rhombus]

$$\angle ODA = \angle OBC$$

$$\therefore \triangle AOD \cong \triangle COB [ASA]$$

$$\Rightarrow$$
 OA = OC, OD = OB

In $\triangle AOB$ and $\triangle COB$,

$$OA = OC$$

$$OB = OB$$

$$AB = CB$$

$$∴$$
 \triangle AOB \cong \triangle COB [SSS]

$$\Rightarrow \angle AOB = \angle COB$$

But,
$$\angle AOB + \angle COB = 180^{\circ}$$
 [linear pair]

$$\Rightarrow \angle AOB + \angle AOB = 180^{\circ}$$

$$\Rightarrow 2 \angle AOB = 180^{\circ}$$

$$\Rightarrow \angle AOB = \frac{180^{\circ}}{2} = 90^{\circ}$$

$$\Rightarrow$$
 AC \perp BD

$$\therefore$$
 OA = OC, OB = OD and AC \perp BD.

13. ABCD is a parallelogram and AC is one of the diagonals. Prove that \triangle ABC \cong \triangle CDA.

Solution:

Given: AC is one of the diagonal of a parallelogram ABCD.

To prove: $\triangle ABC \cong \triangle CDA$

Proof: In \triangle ABC and \triangle ACD

 $\angle ACB = \angle CAD[alternate angles]$

$$AC = CA$$

$$\angle CAB = \angle ACD$$

$$: \Delta ABC \cong \Delta CDA$$
 [ASA congruence]

14. AB and AC are equal sides of an isosceles $\triangle ABC$. If the bisectors of $\angle ABC$ and $\angle ACB$ intersect each other at O, prove that $\triangle AOB \cong \triangle AOC$.

Solution:

Given: In isosceles \triangle ABC, AB = AC. The bisectors of \angle ABC and \angle ACB intersect at O.

To prove: $\triangle AOB \cong \triangle AOC$

Proof: As AB=AC in $\triangle ABC$,

$$\angle C = \angle B$$

$$\Rightarrow \frac{1}{2} \angle C = \frac{1}{2} \angle B$$

$$\Rightarrow \angle OCB = \angle OBC$$

As
$$\angle OCB = \angle OBC$$
 in $\triangle OBC$, $OB = OC$

In $\triangle AOB$ and $\triangle AOC$,

$$OA = OA$$
, $AB = AC$, $OB = OC$

$$\ \, :: \Delta AOB \cong \Delta AOC \, [SSS \, congruence]$$

The image of an object placed at a point A before a plane mirror LM is seen at the point B by 15. an observer at D as in the adjoining figure. Prove that the image is as far behind the mirror as the object is in front of the mirror.

Solution:

A light ray coming perpendicularly from A to the mirror is reflected in the same way. Another ray AM incident at M is reflected as MD such that $\angle AMN = \angle DMN$ where MN is normal to the plane mirror.

$$\therefore \angle DMN = \angle MBL$$
 [Corresponding angles]

and
$$\angle AMN = \angle MAL$$
 [alternate angles]

so,
$$\angle MAL = \angle MBL \ [\because \angle AMN = \angle DMN]$$
In $\triangle MAL$ and $\triangle MBL$

In ΔMAL and ΔMBL

$$\angle MLA = \angle MLB [90^{\circ}]$$

$$\angle$$
MAL = \angle MBL

$$LM = LM$$

$$\therefore \Delta MAL \cong \Delta MBL [AAS]$$

$$\Rightarrow$$
 AL = BL

Hence, the image is as far behind the mirror as the object is in front of the mirror.

Theorem (RHS Congruence):

If the hypotenuse and a side of a right angled triangle are equal to the hypotenuse and a side of another right angled triangle, the two right triangles are congruent.

SOLUTIONS

EXERCISE 7.2

1. If the altitudes of a triangle are equal prove that the triangle is equilateral.

Solution:

Given: The altitudes AD, BE, CF of \triangle ABC are equal.

To prove: \triangle ABC is equilateral.

Proof: In \triangle FBC and \triangle ECB, we have

$$\angle BFC = \angle CEB = 90^{\circ}$$

BC = BC

CF = BE

∴ ΔFBC \cong ΔECB [RHS congruence]

$$\Rightarrow \angle B = \angle C$$
 i.e. $AB = AC$

Similarly, $\Delta EAB \cong \Delta DBA$

$$\Rightarrow \angle A = \angle B \text{ i.e. } AB = BC$$

In
$$\triangle ABC$$
, $AB = BC = CA$

So, \triangle ABC is equilateral.

Ε

OF EDUCATION (S)

D

C

F

2. If perpendiculars from any point within an angle on its arms are congruent, prove that the point lies on the bisector of that angle.

Solution:

Given: From a point P within an angle $\angle AOB$, PM $\perp OA$ and PN $\perp OB$ such that

$$PM = PN$$

To prove: P lies on the bisector of $\angle AOB$ i.e.

$$\angle AOP = \angle BOP$$

Proof: In \triangle MOP and \triangle NOP,

$$\angle PMO = \angle PNO[90^{\circ}]$$

$$OP = OP$$

$$PM = PN$$

$$\therefore \Delta MOP \cong \Delta NOP[RHS]$$

$$\Rightarrow \angle MOP = \angle NOP$$

$$\Rightarrow \angle AOP = \angle BOP$$

 \therefore P lies on the bisector of \angle AOB.

- 3. The diagonals AC and BD of a rhombus ABCD bisect each other at right anles at O. Prove that
 - (i) $\triangle AOB \cong \triangle COD$, (ii) $\triangle AOD \cong \triangle COB$.

Solution:

Given: The diagonals AC and BD of a rhombus ABCD bisect each other at right

To prove: (i) $\triangle AOB \cong \triangle COD$

$$(ii)\Delta AOD \cong \Delta COB$$

Proof: As AC and BD bisect each other at right angles at 0,

$$OA = OC$$
, $OB = OD$ and $AC \perp BD$.

(i) In $\triangle AOB$ and $\triangle COD$,

$$OA = OC$$
, $OB = OD$ and $\angle AOB = \angle COD[= 90^{\circ}]$

$$\therefore$$
 △AOB \cong ∠COD[SAS congruence]

(ii) In \triangle AOD and \triangle COB,

$$OA = OC$$
.

$$OD = OB$$

$$\angle AOD = \angle COB = 90^{\circ}$$

$$\therefore \triangle AOD \cong \triangle COB [SAS congruence]$$

C

4. AB is trisected at P and Q such that P is between A and Q and AL \perp AB, BM \perp AB. If LQ and MP intersect at O and LQ=MP, prove that \triangle OPQ is isosceles.

Solution:

Given: AB is trisected at P and Q such that P is between A and Q. AL \perp AB, BM \perp AB.

LQ and MP intersect at 0 and LQ = MP

To prove: \triangle OPQ is isosceles

Proof: As AB is trisected at P and Q,

$$AP = PQ = BQ$$

$$\therefore AP + PQ = BQ + PQ$$

$$\Rightarrow AQ = BP$$

In Δ LAQ and Δ MBP,

$$AQ = BP$$

$$LQ = MP[Given]$$

$$\angle LAQ = \angle MBP [= 90^{\circ}]$$

$$\therefore \Delta LAQ \cong \Delta MBP$$

$$\Rightarrow \angle LQA = \angle MPB$$

$$\Rightarrow$$
 OQP = \angle OPQ

As
$$\angle OQP = \angle OPQ$$
 in $\triangle POQ$,

$$OP = OQ$$

So, ΔOPQ is isosceles

MENT OF EDUCATION (S)

Inequality Relations in a triangle

Theorem: If two sides of triangle are unequal, the angle opposite to the longer side is larger.

Theorem: In a triangle, the side opposite to the larger angle is longer.

Theorem: The sum of any two sides of a triangle is greater than the third side.

SOLUTIONS

EXERCISE 7.3

1. If D is any point on the base BC produced of an isosceles triangle ABC, prove that AD > AB

Solution:

Given: D is a point on the base BC produced of an isosceles \triangle ABC.

To prove: AD>AB

Proof: In the isosceles \triangle *ABC*,

$$AB = AC$$

As \angle ACB is exterior to \triangle ACD,

$$\angle ACB = \angle CAD + \angle ADC$$

$$\Rightarrow \angle ABC = \angle CAD + \angle ADB$$

$$\Rightarrow \angle ABD = \angle CAD + \angle ADB$$

$$\Rightarrow \angle ABD > \angle ADB$$

$$As \angle ABD > \angle ADB \ in \ \Delta ABD,$$

2. Of all the line segments that can be drawn to a given line, from a point, not lying on it, prove that the perpendicular line segment is the shortest.

Solution:

Given: A is a point not lying on a line PQ. AB is perpendicular to PQ and AC is not

perpendicular to PQ.

To prove: AB<AC

Proof: As $AB \perp PQ$, $\angle ABC = 90^{\circ}$

In ΔABC,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

$$\Rightarrow 90^{\circ} + \angle ACB + \angle BAC = 180^{\circ}$$

$$\Rightarrow \angle ACB + \angle BAC = 180^{\circ} - 90^{0} = 90^{0}$$

$$\therefore \angle ABC = \angle ACB + \angle BAC$$

$$\Rightarrow \angle ABC > \angle ACB$$

As
$$\angle ABC > \angle ACB$$
 in $\triangle ABC$, $AC > AB$

OF EDUCATION (S)

3. Prove that the perimeter of triangle is greater than the sum of its three medians.

Solution:

Given: AD, BE and CF are medians of \triangle ABC.

To prove: AB + BC + CA = AD + BE + CF

Construction: AD is produced to P such that AD = DP. BP

and CP are joined.

Proof: Since AD = DP and BD = DC, ABPC is a

parallelogram.

$$\Rightarrow$$
 BP = AC

In $\triangle ABP$, we have

$$AB + BP > AP$$

$$\Rightarrow$$
 AB + CA > 2.AD ----- (1)

Similarly,
$$AB + BC > 2.BE$$
 -----(2)

And
$$CA + BC > 2.CF$$
 ----(3)

Adding (1), (2) and (3), we get

$$2.AB + 2.BC + 2.CA > 2.AD + 2.BE + 2.CF$$

$$\Rightarrow$$
 2 (AB + BC + CA) > 2(AD + BE + CF)

$$\therefore$$
 AB + BC + CA > AD + BE + CF

PARTICUE (ALOW)

Given: ABC is a triangle.

To prove: BC - AB < AC

$$\therefore$$
 AB + AC > BC

$$\Rightarrow$$
 BC $<$ $AB + AC$

$$\Rightarrow$$
 BC - AB $<$ AC

$$\therefore$$
 BC – AB < AC

EDUCATION (S)

C

5. Prove that in quadrilateral, the sum of sides is greater than the sum of its diagonals.

Solution:

Given: ABCD is a quadrilateral in which AC and BD are diagonals.

To prove: AB + BC + CD + DA > AC + BD

Proof: In $\triangle ABC$,

$$AB + BC > AC \dots (1)$$

In $\triangle BCD$,

$$BC + CD > BD \dots (2)$$

In $\triangle ADC$,

$$CD + DA > AC$$
(3)

In $\triangle ABD$,

$$AB + DA > BD \dots (4)$$

Adding (1), (2), (3) and (4),

(A10(U))

$$\Rightarrow$$
 2AB+2BC+2CD+2DA > 2AC+ 2BD

$$\Rightarrow$$
2(AB+BC+CD+DA) > 2(AC + BD)

$$\Rightarrow$$
AB+BC+CD+DA $>$ AC+BD

$$\therefore$$
 AB+BC+CD+DA >AC+BD

6. In \triangle PQR, S is any point on the side QR. Show that PQ + QR + PR > 2PS.

Solution:

Given: S is any point on the side QR of \triangle PQR.

To prove: PQ + QR + PR > 2PS

Proof: In \triangle PQS,

In \triangle PSR,

$$PR + RS > PS \dots (2)$$

Adding (1) and (2),

$$PQ + QS + PR + RS + > PS + PS$$

$$\Rightarrow$$
 PQ + (QS + RS) + PR > 2PS

$$\Rightarrow$$
 PQ + QR + PR > 2PS

$$\therefore PQ + QR + PR > 2PS$$
