

Self-Filtering: A Noise-Aware Sample Selection for Label Noise with Confidence Penalization

Qi Wei, Haoliang Sun, Xiankai Lu, Yilong Yin TIME Lab, Shandong University

Summary

- ➤ A novel selection criterion dubbed fluctuation criterion is proposed for retaining valuable samples lying around decision boundary.
- ➤ A confidence regularization term is designed to further mitigate the over-confidence in noisy samples.
- Any semi-supervised method can be applicable to our framework, improving the performance of SFT.
- > SFT outperforms its counterparts by sharp margins.

Code is available at https://github.com/1998v7/Self-Filtering

Sample selection strategy

Main idea: Use a preset selection criterion to select a subset with smaller noise ratio from the label-corrupted training set.

A label-corrupted training set

A subset with smaller noise ratio

ACML 2021 Tutorial. Learning under Noisy Supervision

Selection bias in the small-loss criterion

Essential boundary samples are entangled with noise samples and discarded.

Our framework Self-Filtering

(a) Flowchart of Self-Filtering+

(b) Illustration of memory bank

Fluctuation selection criterion

➤ Definition of **fluctuation event**:

$$\beta = (\arg \max(p^{t_1}) = y) \land (\arg \max(p^{t_2}) \neq y)$$

> The selected set (filter the noise)

$$\widetilde{D} = \{(x^i, y^i) \in D^{train} | \beta^i \neq 1\}_{i=1}^N$$

The fluctuation criterion provides discriminative
information for filtering the noise as shown in right figure.

Confidence regularization

An adaptive weight function

Confidence regularization term

$$\alpha(p_j) = \max(0, T - \frac{p_j}{p_y})$$

$$L_{CR} = -\frac{1}{K} \sum_{k \in [K]} \alpha(p_j) \cdot log p_k$$

Merits:

- > muting at the beginning and casting the objective to cross entropy for **fast convergence**.
- ➤ **Adaptive** strength for confidence penalty

Improved by semi-supervised technique

Self-Filtering can be improved by current semi-supervised learning strategy.

The selected (clean) set:

 $\widetilde{D} = \{(x^i, y^i) \in D^{train} | \beta^i \neq 1\}_{i=1}^N$

The filtered (noisy) set:

 $\widehat{D} = \{(x^i, y^i) \in D^{train} | \beta^i = 1\}_{i=1}^N$

For $(x, y) \in \widetilde{D}$ and $(x', y') \in \widehat{D}$, the total training objective:

$$L_{CR}(x,y) + \alpha \cdot L_{SSL}(x',y')$$

Experimental results

SFT achieves the SOTA performance on CIFAR-10 and CIFAR-100.

	Symm.		Pair.		Inst.	
Method	20%	40%	20%	40%	20%	40%
DMI [39]	88.18 ± 0.36	83.98 ± 0.48	89.44 ± 0.41	84.37 ± 0.78	89.14 ± 0.36	84.78 ± 1.97
Peer Loss [17]	88.97 ± 0.47	84.29 ± 0.52	89.61 ± 0.66	85.18 ± 0.87	89.94 ± 0.51	85.77 ± 1.19
Co-teaching [9]	87.16 ± 0.11	83.59 ± 0.28	86.91 ± 0.37	82.77 ± 0.57	86.54 ± 0.11	80.98 ± 0.39
JoCoR [32]	88.69 ± 0.19	85.44 ± 0.29	87.75 ± 0.46	83.91 ± 0.49	87.31 ± 0.27	$82.49 {\pm} 0.57$
SELFIE [27]	90.18 ± 0.25	86.27 ± 0.31	89.29 ± 0.19	85.71 ± 0.30	89.24 ± 0.27	84.16 ± 0.44
CDR [35]	89.68 ± 0.38	86.13 ± 0.44	89.19 ± 0.29	85.79 ± 0.41	90.24 ± 0.39	83.07 ± 1.33
Me-Momentum [3]	91.44 ± 0.33	88.39 ± 0.34	90.91 ± 0.45	87.49 ± 0.56	$90.86 {\pm} 0.21$	86.66 ± 0.91
PES[4]	92.38 ± 0.41	87.45 ± 0.34	91.22 ± 0.42	89.52 ± 0.91	$92.69 {\pm} 0.42$	89.73 ± 0.51
SFT (ours)	$\bf 92.57 {\pm} 0.32$	$89.54{\pm}0.27$	$91.53 {\pm} 0.26$	$89.93{\pm}0.47$	$91.41 {\pm} 0.32$	$89.97{\pm}0.49$
DMI [39]	58.73 ± 0.70	$49.81{\pm}1.22$	59.41 ± 0.69	48.13 ± 0.52	58.05 ± 0.20	47.36 ± 0.68
Peer Loss [17]	58.41 ± 0.55	50.53 ± 1.31	58.73 ± 0.51	50.17 ± 0.42	58.91 ± 0.41	48.61 ± 0.78
Co-teaching [9]	59.28 ± 0.47	51.60 ± 0.49	58.07 ± 0.61	49.79 ± 0.69	57.24 ± 0.69	49.39 ± 0.99
JoCoR [32]	64.17 ± 0.19	55.97 ± 0.46	$60.42 {\pm} 0.35$	50.97 ± 0.58	61.98 ± 0.39	50.59 ± 0.71
SELFIE [27]	67.19 ± 0.30	61.29 ± 0.39	65.18 ± 0.23	58.67 ± 0.51	$65.44{\pm}0.43$	53.91 ± 0.66
CDR [35]	$66.52 {\pm} 0.24$	60.18 ± 0.22	66.12 ± 0.31	59.49 ± 0.47	67.06 ± 0.50	56.86 ± 0.62
Me-Momentum [3]	68.03 ± 0.53	$63.48 {\pm} 0.72$	68.42 ± 0.19	59.73 ± 0.47	68.11 ± 0.57	$58.38{\pm}1.28$
PES [4]	$68.89 {\pm} 0.41$	$64.90 {\pm} 0.57$	69.31 ± 0.25	59.08 ± 0.81	70.49 ± 0.72	$65.68 {\pm} 0.44$
SFT (ours)	71.98 ± 0.26	69.72 ± 0.31	71.23 ± 0.29	69.29 ± 0.42	$71.83 {\pm} 0.42$	$69.91 {\pm} 0.54$

More analyses

➤ Visualization of selection

SFT selects more boundary examples as training proceeds.

> Stable selection curves

Higher F1-score of selection results is achieved by SFT.

➤ Hyper-parameter selection

SFT is not sensitive to hyper-parameters.

➤ Ablation study

With the support of the two terms, the selected subset contains less noisy labels

Contact

Mail: 1998v7@gmail.com

Towards Intelligence Mechanism Lab

School of Software – Shandong University – China