التطورات الرتبيبة

الكتاب الأول

التحولات النووية

الوحدة 02

GUEZOURI Aek - Lycée Maraval - Oran

حلول تمارين الكتاب المدرسي

الجزء الأول (حسب الطبعة الجديدة للكتاب المدرسي المعتمدة من طرف المعهد الوطني للبحث في التربية)

التمرين 01

 $r_0=1,3~fm$ هو ثابت بالنسبة لكل الأنوية وقيمته $r_0=1,3~fm$ هو ثابت بالنسبة لكل الأنوية وقيمته $R=1,3~\sqrt[3]{64}=5,2~fm=5,2 imes 10^{-15} m$ نصف قطر نواة النحاس $R=1,3~\sqrt[3]{64}=5,2~fm=5,2 imes 10^{-15} m$

$$A = \left(\frac{R}{r_0}\right)^3 = \left(\frac{3.7}{1.3}\right)^3 = 23$$
 هي أذا كان نصف قطر نواة هو $3.7 \times 10^{-15} \, \mathrm{m}$ فإن قيمة العدد الكتلي هي

التمرين 02

• وصف التجربة:

 $0.6~\mu~m$ ورقة داخل جفنة محصنة مادة مشعة تصدر الجسيمات α ، ثم وُجّهت نحو ورقة ذهب رقيقة جدا سمكها حوالي α ، ثم وُجّهت نحو ورقة ذهب رقيقة جدا سمكها حوالي α ووُضع وراء ورقة الذهب شاشة مطلية بكبريت التوتياء α ، بحيث إذا سقطت عليها الجسيمات α تبْرُق .

الملاحظة : جزء كبير من الجسيمات α تعبر ورقة الذهب وتسقط على الشاشة أفقيا وجزء صغير (حوالي α 0,01%) تنحرف عن مسارها عند ملاقاة ورقة الذهب .

استعملت مادة الذهب ، لأن بواسطة هذا المعدن يمكن صناعة صفائح رقيقة جدا على غرار باقي المعادن الأخرى . أما سبب وضع صفيحة رقيقة جدا هو حتى لا نترك التعقيب على نتيجة التجربة بفعل سمك الصفيحة .

- النتيجة : المادة فارغة تقريبا ، والذرة تحتوي على نواة موجبة .
- $^{197}\!\mathrm{Au}$ ولدينا: $D=2~\mathrm{R}$ مع العلم أن $D=2~\mathrm{R}$ مع العلم أن $D=2~\mathrm{R}$ مع العلم أن $D=2~\mathrm{R}$ ومنه قطر نواة الذهب هو $D=2\times7,56=15,12~\mathrm{fm}$

(1) $V = \frac{4}{3}\pi R'^3$ محیث ، R' محیث قطر ها ، R' محیث فطر ها ، R' محیث فطر ها ، حصاب نصف قطر ها ، R'

$$V = \frac{m}{\rho} = \frac{197 \times 1,67 \times 10^{-24}}{19,3} = 1,7 \times 10^{-23} \, cm^3$$
 ولدينا الكتلة الحجمية للذهب $\rho = 19,3 \, g/cm^3$ ولدينا الكتلة الحجمية للذهب

$$R' = \sqrt[3]{\left(\frac{3V}{4\pi}\right)} = \sqrt[3]{\frac{3\times1,7\times10^{-23}}{12,56}} = 1.6\times10^{-8} = 1.6\times10^{5} \ fm$$
 باستخراج R من العلاقة (1) والتعويض نجد

$$\frac{D'}{D} \approx 21164$$
 $O' = 1.6 \times 10^5 \times 2 = 3.2 \times 10^5 \text{ fm}$

نلاحظ أن قطر ذرة الذهب أكبر بحوالي 21164 مرة من قطر نواة الذهب .

ملاحظة : رتبة هذا المقدار محققة في جميع الذرات .

التمرين 03

 ^{41}K و ^{40}K و ^{39}K و من بينها 3 نظائر طبيعية فقط و هي ^{39}K و ^{40}K و ^{41}K

. ^{46}K ، ^{34}K ، ^{41}K ، ^{40}K ، ^{39}K : نذکر 5 نظائر ، ولتکن

. Z النواة X النواة X لا تمثل نظيرا للبوتاسيوم ، لأن نواة البوتاسيوم هي البوتاسيوم هي النواة X النواة النواتين ليس لهما نفس قيمة X

المقصود بالوفرة النظائرية هي النسبة المئوية لكل نظير . لتكن x_1 و x_2 هي النسب المئوية للنظيرين x_1 و x_2 على الترتيب x_1

$$M_K = 40.96 = 39 \times \frac{x_1}{100} + 41 \times \frac{x_2}{100}$$
 : إذن نكتب

$$x_1 + x_2 = 100$$

$$\begin{cases} 40,96 = 0,39 \ x_1 + 0,41 \ x_2 \\ x_1 + x_2 = 100 \end{cases}$$

بحل هذه الجملة نجد % = 2 % و هما وفرة النظيرين $X_1 = 2 \%$ على الترتيب .

التمرين 04

العنصر	الهيليوم He	الليثيوم Li	البريليوم Be	البور B	الكربون C
قيمة Z	2	3	4	5	6

- 1 X نظير للبيريليوم لأن لهما نفس العدد Z .
- Z = 1 النواة Z = 1 غير مستقرة لأنها بعيدة عن خط الاستقرار الذي يشمل الأنوية التي لها Z < 20 .
 - β^- نمط التفكك الذي يحدث لها هو β^- .
 - ${}^{10}_{4}Be \rightarrow {}^{0}_{-1}e + {}^{10}_{5}B 4$

التمرين 05

$$^{226}_{88}Ra \rightarrow ^{222}_{86}Rn + ^{4}_{2}He$$
 - 1

$${}_{7}^{12}N \rightarrow {}_{6}^{12}C + {}_{1}^{0}e$$
 - 2

$${}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{-1}^{0}e$$
 - 3

$$^{174}_{73}$$
Ta $\rightarrow ^{174}_{72}$ Hf $+^{0}_{1}$ e - 4

$$^{213}_{84}$$
Po $\rightarrow ^{209}_{82}$ Pb + $^{4}_{2}$ He - 5

$$^{174}_{72}$$
Hf $\rightarrow ^{170}_{70}$ Yb + $^{4}_{2}$ He - 6

التمرين 06

-1

النمط (1) هو α لأن عدد النوترونات نقُص بـ 2 و عدد البروتونات نقُص بـ 2 .

النمط (2) هو $^+\beta$ لأن عدد النوترونات از داد بـ 1 و عدد البروتونات نقص بـ 1

النمط (3) هو β^- لأن عدد النوترونات نقص بـ 1 وعدد البروتونات از داد بـ 1

2 - ميزة هذه الأنوية المستقرّة هي وجود توازن بين عدد بروتوناتها ونيوتروناتها ،

أي الفرق ضئيل بين عدد بروتوناتها وعدد نوتروناتها ($^{23}\,\mathrm{Mg}$) ، وفي بعضها يكون

عدد البروتونات يساوي عدد النوترونات ($^{40}_{20}$ Ca) .

نلاحظ في مخطط β^+ لكي يعطي نواة إبن N=f(Z) Segrè نواة إبن N=f(Z) Segrè نواة إبن N=f(Z) Segrè ندية نسبيا من وادي الاستقرار N=f(Z) النظير N=f(Z) النظير عطي نواة إبن N=f(Z) النظير عطي نواة إبن وادي الاستقرار N=f(Z) النظير عطي نواة إبن الاستقرار على النظير على النظير على النظير النظير على النظير النظير على النظير ال

lpha lpha ثم lpha ثم eta^+ مشعة لأنها بعيدة عن وادي الاستقرار ، يمكنها أن تفكك بالنمط eta^+ ثم lpha

. eta^- بهذا تتفككان حسب النمط N=f(Z) Segrè بالاستقرار في مخطط وادي الاستقرار في مخطط - N=f(Z) الهذا تتفككان حسب النمط - 5

التمرين 07

. ل	الجدو	على	البيان	نقلنا
-----	-------	-----	--------	-------

	لفلت البيان على الجدول .		
العنصر	عائلة اليورانيوم زمن نصف العمر	نمط التفكك	زمن نصف العمر غير مطلوب
Uranium - 238	4,468 milliards d'années	α	في التمرين (إضافة فقط)
Thorium - 234	24,10 jours	β-	ملاحظة :
Protactinium - 234	6,70 heures	β-	البيزموت (²¹⁴ Bi) يمكن أن يمر
Uranium - 234	245 500 ans	α	
Thorium - 230	75 380 ans	α	$lpha$ التاليوم ($^{210}\mathrm{Ti}$) بالتفكك
Radium - 226	1600 ans	α	ثم إلى الرصاص (Pb)
Radon - 222	3,8235 jours	α	eta^- بو اسطة التفكك eta^-
Polonium - 218	3,10 minutes	α	<i>y</i>
Plomb - 214	26,8 minutes	β-	1 - نمط الإشعاع موجود على
Bismuth - 214	19,9 minutes	β-	الجدول .
Polonium - 214	164,3 microsecondes	α	2 – العناصر الناقصة في المخطط
Plomb - 210	22,3 ans	β-	. مكتوبة باللون الأحمر في الجدول .
Bismuth - 210	5,013 jours	β-	محتوب بالنول الاحتمر في الجدول .
Polonium - 210	138,376 jours	α	
Plomb - 206	مستقر		

 $(^{214}\,{
m Bi}\,)$ معادلتا تحوّل البيزموت -3

 $(\beta^{-}$ تفکاف $^{214}_{83}$ Bi ightarrow $^{214}_{84}$ Po $^{-0}_{-1}$ e

 $(\alpha \stackrel{214}{\approx} Bi \rightarrow {}^{210}_{81} Ti + {}^{2}_{4} He$

. الرصاص 206 Pb ينتمي لوادي الاستقرار 206