HCRX_EL2, Extended Hypervisor Configuration Register

The HCRX EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration

This register is present only when FEAT_HCX is implemented. Otherwise, direct accesses to HCRX EL2 are undefined.

If EL2 is not implemented, this register is res0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if:

- EL2 is not enabled in the current Security state.
- SCR EL3.HXEn is 0.

Attributes

HCRX EL2 is a 64-bit register.

Field descriptions

636261605958575655	54	53	52	51	50	49	48	47	46	45 44
									RES0	
RES0	GCSEn	EnIDCP128	EnSDERR	TMEA	EnSNERR	D128En	PTTW	I <mark>SCTLR2E</mark> n	TCR2Er	RES0
313029282726252423	22	21	20	19	18	17	16	15	14	13 12

Bits [63:23]

Reserved, res0.

GCSEn, bit [22] When FEAT_GCS is implemented:

Guarded Control Stack enable. Controls Guarded Control Stack behavior at EL1 and EL0.

U

0b0	The Guarded Control Stack is
	disabled at EL1 and EL0.
0b1	Guarded Control Stack
	behavior at EL1 and EL0 is not
	affected by mechanism.

This field is ignored by the PE and treated as one when EL2 is disabled in the current Security state or HCR_EL2.<E2H,TGE> == {1,1}.

This field is ignored by the PE and treated as zero when EL2 is enabled in the current Security state and $\frac{HCR_EL2}{EL2}$.<E2H,TGE>!= {1,1} and $\frac{SCR_EL3}{EL3}$.HXEn == 0.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnIDCP128, bit [21] When FEAT SYSREG128 is implemented and HCR EL2.[E2H,TGE] != 0b11:

Enables access to implementation defined 128-bit System registers.

EnIDCP128	Meaning
0d0	If EL2 is implemented and enabled in the current Security state, accesses at EL1, EL0 to implementation defined 128-bit System registers are trapped to EL2 using an ESR_EL2.EC value of 0x14, unless the access
0b1	generates a higher priority exception. Disables the functionality of the 128-bit implementation defined System registers that are accessible at EL2. No accesses are trapped by this control.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnSDERR, bit [20] When FEAT ADERR is implemented:

Enable Synchronous Device Read Error. Override SCTLR2 EL1.EnADERR.

EnSDERR	Meaning
0b0	This field has no effect on
	External aborts on Device
	memory reads at EL1 and
	ELO.
0b1	External abort on Device
	memory reads generate
	synchronous Data Abort
	exceptions in the EL1&0
	translation regime.

Setting this field to 1 does not guarantee that the PE is able to take a synchronous Data Abort exception for an External abort on a Device memory read in every case.

Setting this field to 1 might have a performance impact for Device memory reads.

This field is ignored by the PE and treated as zero when any of the following are true:

- SCR EL3.HXEn == 0.
- EL2 is disabled in the current Security state.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TMEA, bit [19] When FEAT DoubleFault2 is implemented:

Trap Masked External Aborts. Controls whether a masked error exception at a lower Exception level is taken to EL2.

TMEA	Meaning
0b0	Synchronous External Abort
	exceptions and SError
	exceptions at EL1 and EL0 are
	unaffected by this mechanism.
0b1	Synchronous External Abort
	exceptions when PSTATE.A is 1
	and masked SError exceptions
	at EL1 and EL0 are taken to
	EL2, unless routed to another
	Exception level by a higher
	priority control.

This field is ignored by the PE and treated as zero when any of the following are true:

- SCR EL3.HXEn == 0.
- $\underline{HCR} EL2.\{E2H,TGE\} == \{1,1\}.$
- EL2 is disabled in the current Security state.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnSNERR, bit [18] When FEAT_ANERR is implemented:

Enable Synchronous Normal Read Error. Override SCTLR2 EL1.EnANERR.

EnSNERR	Meaning
0b0	This field has no effect on
	External aborts on Normal
	memory reads at EL1 and
	ELO.

0b1	External abort on Normal
	memory reads generate
	synchronous Data Abort
	exceptions in the EL1&0
	translation regime.

Setting this field to 1 does not guarantee that the PE is able to take a synchronous Data Abort exception for an External abort on a Normal memory read in every case.

Setting this field to 1 might have a performance impact for Normal memory reads.

This field is ignored by the PE and treated as zero when any of the following are true:

- SCR EL3.HXEn == 0.
- EL2 is disabled in the current Security state.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

D128En, bit [17] When FEAT_D128 is implemented:

128-bit System Register trap control. Enable access to 128-bit System Registers via MRRS, MSRR instructions.

- If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2 and reported using EC syndrome value 0x14:
 - <u>TTBR0 EL1</u>.
 - TTBR1 EL1.
 - If FEAT_THE is implemented, <u>RCWMASK_EL1</u>, <u>RCWSMASK_EL1</u>.
 - PAR EL1.

D128En	Meaning	

0d0	EL1 accesses to the specified registers are disabled, and
	trapped to EL2.
0b1	This control does not cause
	any instructions to be
	trapped.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PTTWI, bit [16] When FEAT_THE is implemented:

Permit Translation Table Walk Incoherence.

Permits RCWS instructions to have Reduced Coherence property.

PTTWI	Meaning
0b0	If EL2 is implemented and
	enabled in the current Security
	state, write accesses generated
	by RCWS at EL1&0 do not have
	the Reduced Coherence
	property.
0b1	Write accesses generated by
	RCWS at EL1&0 have the
	Reduced Coherence property, if
	enabled by <u>TCR2_EL1</u> .PTTWI.

This bit is permitted to be cached in TLB.

This bit is permitted to be built as a read-only bit with a fixed value of $\mathbf{0}$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SCTLR2En, bit [15] When FEAT SCTLR2 is implemented:

<u>SCTLR2_EL1</u> Enable. In AArch64 state, accesses to <u>SCTLR2_EL1</u> are trapped to EL2 and reported using EC syndrome value 0×18 .

SCTLR2En	Meaning
0b0	Accesses to SCTLR2_EL1
	at EL1 are trapped to EL2,
	unless the access
	generates a higher priority
	exception. The value in
	<u>SCTLR2_EL1</u> is treated as
	0.
0b1	This control does not cause
	any instructions to be
	trapped.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCR2En, bit [14] When FEAT TCR2 is implemented:

<u>TCR2_EL1</u> Enable. In AArch64 state, accesses to <u>TCR2_EL1</u> are trapped to EL2 and reported using EC syndrome value 0x18.

TCR2En	Meaning
0b0	Accesses to TCR2_EL1 at EL1
	are trapped to EL2, unless the
	access generates a higher
	priority exception. The value
	in <u>TCR2_EL1</u> is treated as 0.
0b1	This control does not cause
	any instructions to be
	trapped.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.

 Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [13:12]

Reserved, res0.

MSCEn, bit [11] When FEAT MOPS is implemented:

Memory Set and Memory Copy instructions Enable. Enables execution of the CPY*, SETG*, SETP*, SETM*, and SETE* instructions at EL1 or EL0.

MSCEn	Meaning
0b0	Execution of the Memory Copy
	and Memory Set instructions is
	undefined at EL1 or EL0.
0b1	This control does not cause
	any instructions to be
	undefined.

This bit behaves as if it is 1 if any of the following are true:

- EL2 is not implemented or enabled.
- The value of HCR EL2.{E2H, TGE} is {1, 1}.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

MCE2, bit [10] When FEAT_MOPS is implemented:

Controls Memory Copy and Memory Set exceptions generated as part of attempting to execute the Memory Copy and Memory Set instructions from EL1.

	MCE2	Meaning	
--	------	---------	--

0b0	Memory Copy and Memory Set
	exceptions generated from EL1
	are taken to EL1.
0b1	Memory Copy and Memory Set
	exceptions generated from EL1
	are taken to EL2.

When the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this control does not affect any exceptions due to the higher priority <u>SCTLR_EL2</u>.MSCEn control.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

CMOW, bit [9] When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL1 or EL0.

- <u>IC IVAU</u>, <u>DC CIVAC</u>, <u>DC CIGDVAC</u> and <u>DC CIGVAC</u>.
- <u>ICIMVAU</u>, <u>DCCIMVAC</u>.

CMOW	Meaning
0b0	These instructions executed at
	EL1 or EL0 with stage 2 read
	permission, but without stage 2
	write permission do not
	generate a stage 2 permission
	fault.
0b1	These instructions executed at
	EL1 or EL0, if enabled as a
	result of SCTLR_EL1 . UCI==1,
	with stage 2 read permission,
	but without stage 2 write
	permission generate a stage 2
	permission fault.

For this control, stage 2 has write permission if S2AP[1] is 1 or DBM is 1 in the stage 2 descriptor. The instructions do not cause an update to the dirty state.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

VFNMI, bit [8] When FEAT NMI is implemented:

Virtual FIQ Interrupt with Superpriority. Enables signaling of virtual FIQ interrupts with Superpriority.

VFNMI	Meaning
0b0	When <u>HCR_EL2</u> .VF is 1, a
	signaled pending virtual FIQ
	interrupt does not have
	Superpriority.
0b1	When <u>HCR_EL2</u> .VF is 1, a
	signaled pending virtual FIQ
	interrupt has Superpriority.

When HCR EL2.VF is 0, this bit has no effect.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

VINMI, bit [7] When FEAT NMI is implemented:

Virtual IRQ Interrupt with Superpriority. Enables signaling of virtual IRQ interrupts with Superpriority.

VINMI	Meaning	

0b0	When <u>HCR_EL2</u> .VI is 1, a
	signaled pending virtual IRQ
	interrupt does not have
	Superpriority.
0b1	When <u>HCR_EL2</u> .VI is 1, a
	signaled pending virtual IRQ
	interrupt has Superpriority.

When HCR EL2.VI is 0, this bit has no effect.

The reset behavior of this field is:

- On a Warm reset:
 - \circ When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TALLINT, bit [6] When FEAT NMI is implemented:

Traps the following writes at EL1 using AArch64 to EL2, when EL2 is implemented and enabled:

- MSR (register) writes of ALLINT.
- MSR (immediate) writes of <u>ALLINT</u> with a value of 1.

TALLINT	Meaning
0b0	This control does not cause
	any instructions to be
	trapped.
0b1	The specified MSR accesses
	at EL1 using AArch64 are
	trapped to EL2.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SMPME, bit [5] When FEAT SME is implemented:

Streaming Mode Priority Mapping Enable.

Controls mapping of the value of <u>SMPRI_EL1</u>.Priority for streaming execution priority at EL0 or EL1.

SMPME	Meaning
0d0	The effective priority value is taken from
	SMPRI_EL1.Priority.
0b1	The effective priority value is:
	 When the current Exception level is EL2 or EL3, the value of SMPRI_EL1.Priority. When the current Exception level is EL0 or EL1, the value of the SMPRIMAP_EL2 field corresponding to the value of SMPRI_EL1.Priority.

When **SMIDR EL1**.SMPS is '0', this field is res0.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - \circ Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

FGTnXS, bit [4] When FEAT XS is implemented:

Determines if the fine-grained traps in HFGITR_EL2 that apply to each of the TLBI maintenance instructions that are accessible at EL1 also apply to the corresponding TLBI maintenance instructions with the nXS qualifier.

FGTnXS	Meaning

0b0	The fine-grained trap in the
	HFGITR_EL2 that applies to a
	TLBI maintenance instruction
	at EL1 also applies to the
	corresponding TLBI
	instruction with the nXS
	qualifier at EL1.
0b1	The fine-grained trap in the
	HFGITR EL2 that applies to a
	TLBI maintenance instruction
	at EL1 does not apply to the
	corresponding TLBI
	instruction with the nXS
	qualifier at EL1.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

FnXS, bit [3] When FEAT_XS is implemented:

Determines the behavior of TLBI instructions affected by the XS attribute.

This control bit also determines whether an AArch64 DSB instruction behaves as a DSB instruction with an nXS qualifier when executed at EL0 and EL1.

FnXS	Meaning
0b0	This control does not have any
	effect on the behavior of the
	TLBI maintenance instructions.

0b1	A TLBI maintenance instruction without the nXS qualifier
	executed at EL1 behaves in the
	same way as the corresponding
	TLBI maintenance instruction
	with the nXS qualifier.
	An AArch64 DSB instruction
	executed at EL1 or EL0 behaves
	in the same way as the
	corresponding DSB instruction
	with the nXS qualifier executed
	at EL1 or EL0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

- On a Warm reset:
 - \circ When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnASR, bit [2] When FEAT_LS64_V is implemented:

When $\underline{HCR_EL2}$.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 or EL1 to EL2.

EnASR	Meaning
0b0	Execution of an ST64BV
	instruction at EL0 is trapped to
	EL2 if the execution is not
	trapped by <u>SCTLR_EL1</u> .EnASR.
	Execution of an ST64BV
	instruction at EL1 is trapped to
	EL2.
0b1	This control does not cause any
	instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

- On a Warm reset:
 - \circ When EL3 is not implemented, this field resets to 0.

• Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnALS, bit [1] When FEAT LS64 is implemented:

When <u>HCR_EL2</u>.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 or EL1 to EL2.

EnALS	Meaning
0b0	Execution of an LD64B or
	ST64B instruction at EL0 is
	trapped to EL2 if the execution
	is not trapped by
	SCTLR EL1.EnALS.
	Execution of an LD64B or
	ST64B instruction at EL1 is
	trapped to EL2.
0b1	This control does not cause any
	instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR ELx.EC value of 0x0A, with an ISS code of 0x0000002.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnASO, bit [0] When FEAT LS64 ACCDATA is implemented:

When <u>HCR_EL2</u>.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 or EL1 to EL2.

EnASO Meaning	
---------------	--

000	Execution of an ST64BV0 instruction at EL0 is trapped to EL2 if the execution is not
	trapped by <u>SCTLR_EL1</u> .EnAS0. Execution of an ST64BV0
	instruction at EL1 is trapped to EL2.
0b1	This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Accessing HCRX_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCRX_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0010	0b010

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        X[t, 64] = NVMem[0xA0];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.HXEn == '0' then
        UNDEFINED;
```

```
elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = HCRX_EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = HCRX_EL2;
```

MSR HCRX EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0010	0b010

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
        NVMem[0xA0] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.HXEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR EL3.HXEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        HCRX\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    HCRX\_EL2 = X[t, 64];
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.