Ragionamento Automatico

Richiami di tableaux proposizionali

Lezione 1

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 0

Logica proposizionale (SLL Cap. 5))

♦ Alfabeto

- I connettivi proposizionali ¬ (unario) e ∧, ∨, → e ↔ (binari);
- Le **costanti proposizionali** ⊤, ⊥ (per denotare il vero e il falso);
- Un insieme non vuoto (finito o numerabile) di **simboli** $\mathbf{proposizionali} \ \mathcal{P} = \{A, B, \dots, P, Q, \dots\};$
- I simboli separatori '(' e ')'.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 2

Richiami di logica e deduzione proposizionale

(L. Carlucci Aiello & F. Pirri: SLL, Cap. 5)

- ♦ La logica proposizionale
- ♦ I tableau proposizionali

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 1

Logica proposizionale: Sintassi

♦ Formule

L'insieme **Prop** delle **formule ben formate** o **formule** del linguaggio proposizionale \mathcal{L} è l'insieme definito induttivamente come segue:

- 1. Le costanti e i simboli proposizionali sono formule;
- 2. Se A è una formula $(\neg A)$ è una formula;
- 3. Se \circ è un connettivo binario (cioè $\circ \in \{\lor, \land, \to, \leftrightarrow\}$) e se A e B sono due formule, $(A \circ B)$ è una formula.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 3

Logica proposizionale: Semantica

- \Diamond II **sistema di valutazione** $\mathcal{S} = \langle \mathcal{B}, \mathcal{T}, \mathcal{O}p \rangle$ della logica proposizionale è definito da:
- 1. $\mathcal{B} = \{0, 1\};$
- 2. $T = \{1\};$
- 3. $\mathcal{O}p = \{\mathcal{O}p_{\neg}, \mathcal{O}p_{\wedge}, \mathcal{O}p_{\vee}, \mathcal{O}p_{\rightarrow}, \mathcal{O}p_{\rightarrow}\}$ uno per ogni connettivo del linguaggio $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$, con $\mathcal{O}p_{\neg} : \mathcal{B} \mapsto \mathcal{B} \in \mathcal{O}p_{\circ} : \mathcal{B} \times \mathcal{B} \mapsto \mathcal{B}, \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}.$

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 4

Valutazione booleana

- \Diamond Un'assegnazione booleana $\mathcal V$ ai simboli proposizionali $\mathcal P$ è una funzione totale: $\mathcal V:\mathcal P\to\{1,0\}$.
- \Diamond Una **valutazione booleana** $I_{\mathcal{V}}$: **Prop** \mapsto $\{1,0\}$ è l'estensione a **Prop** di un'assegnazione booleana, cioè

$$\begin{split} I_{\mathcal{V}}(A) &= \mathcal{V}(A) \text{ se } A \in \mathcal{P}; \\ I_{\mathcal{V}}(\top) &= 1; \\ I_{\mathcal{V}}(\bot) &= 0; \\ I_{\mathcal{V}}(\neg A) &= \mathcal{O}_{\mathcal{P}_{\neg}}(I_{\mathcal{V}}(A)); \\ I_{\mathcal{V}}(A \circ B) &= \mathcal{O}_{\mathcal{P}_{\circ}}(I_{\mathcal{V}}(A), I_{\mathcal{V}}(B)). \\ \mathsf{dove} \circ \in \{\land, \lor, \neg, \leftrightarrow\}. \end{split}$$

Data $\mathcal V$, l'esistenza e l'unicità della estensione $I_{\mathcal V}$ sono garantite dal teorema di ricorsione.

Se \mathcal{V}_1 e \mathcal{V}_2 coincidono su simb(A) allora $I_{\mathcal{V}_1}(A) = I_{\mathcal{V}_2}(A).$

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 6

Logica proposizionale: Semantica

Dove:

$$\mathcal{O}p_{\neg}(1) = 0 \in \mathcal{O}p_{\neg}(0) = 1$$

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 5

Tautologie e contraddizioni

Definizioni:

- \Diamond Una formula proposizionale A è **soddisfatta** da una valutazione booleana $I_{\mathcal{V}}$ se $I_{\mathcal{V}}(A)=1$.
- \Diamond Una formula proposizionale A è **soddisfacibile** se è soddisfatta da una qualche valutazione booleana $I_{\mathcal{V}}$.
- \diamondsuit Una formula proposizionale A è una ${\bf tautologia}$ se è sod-disfatta da ogni valutazione booleana $I_{\mathcal V}.$
- \diamondsuit Una formula proposizionale A è una **contraddizione** non è soddisfatta da nessuna valutazione booleana I_{Y} .

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 7

Modelli

Sia A una formula, e $\mathcal M$ un insieme di simboli proposizionali se assumendo tutti e soli gli elementi di $\mathcal M$ veri si ha che A è vera diciamo che $\mathcal M$ è un **modello** di A, ovvero che $\mathcal M$ **rende vera** A e scriviamo $\mathcal M \models A$.

Se \mathcal{M} rende vere tutte le formule di un insieme Γ , cioè se $\mathcal{M} \models A$, per ogni formula A in Γ , diciamo che \mathcal{M} è **un modello** per Γ e indichiamo questo con $\mathcal{M} \models \Gamma$.

Se A è una tautologia, possiamo scrivere $\models A$.

Se $\mathcal{M} \models A$ per qualche \mathcal{M} , allora diciamo che A è soddisfacibile.

Se per nessun insieme di simboli proposizionali \mathcal{M} è verificato che $\mathcal{M} \models A$ allora diciamo che A è **insoddisfacibile**.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 8

Decidibilità

La logica proposizionale è decidibile.

Cioè si può decidere se una formula ${\cal A}$ del calcolo proposizionale è una tautologia o meno.

Un altro interessante problema di decisione per il calcolo proposizionale consiste nello stabilire se una formula è soddisfacibile o meno (questo problema è di solito indicato con **SAT**).

Ragionamento Automatico — Carlucci Aiello, 2004/05 $Lezione\ 1$

Notazioni

Se A implica tautologicamente B scriviamo $\models A \rightarrow B$.

Dato un insieme di proposizioni Γ e una proposizione A, se Γ implica logicamente A scriviamo $\Gamma \models A$.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 9

Complessità

Il problema della verifica se una formula del calcolo proposizionale è o meno una tautologia, come pure il problema SAT, sono esponenziali nella dimensione della formula.

Data una formula A con n simboli proposizionali distinti, per verificare se è una tautologia o se è soddisfacibile basta costruire una tabella di verità con 2^n righe.

Si può fare di meglio? È possibile trovare algoritmi polinomiali per risolvere il problema di decisione delle tautologie e della soddisfacibilità del calcolo proposizionale?

SAT non è ancora stato dimostrato intrinsecamente esponenziale, anche se esiste una certa evidenza in questo senso. Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 11

Apparato deduttivo

- \Diamond Un insieme Ax di assiomi (logici) eventualmente vuoto
- \Diamond Un insieme $\mathcal R$ di regole di inferenza

Le regole di inferenza di $\ensuremath{\mathcal{R}}$ spesso vengono scritte nella seguente forma:

$$\frac{A_1 \cdots A_n}{A}$$

premesse - conclusione.

 \Diamond Se $A \in Ax$ possiamo scrivere

 \overline{A}

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 12

Teoremi

- \Diamond Una formula A di Λ è detta un teorema di Λ se esiste una dimostrazione di Λ che ha A come ultima formula. Tale dimostrazione è detta una dimostrazione di A in Λ .
- \Diamond Indicheremo con $\vdash A$ il fatto che A è un teorema di Λ .
- \Diamond Scriveremo anche $\vdash_{\Lambda} A$ oppure $\vdash_{\mathcal{R}} A$
- \Diamond Sia Γ un insieme di formule. Diciamo che una formula A è una conseguenza di Γ (lo scriviamo $\Gamma \vdash A$ se esiste una sequenza di formule A_1, \ldots, A_n tale che A è A_n e per ciascun i compreso tra 1 e n si ha che o $A_i \in Ax$, o $A_i \in \Gamma$ o A_i è conseguenza diretta di alcune delle formule che la precedono nella sequenza. Tale sequenza è detta una derivazione o prova di A d G in A. Gli elementi di G sono detti le G premesse, o ipotesi, o anche G is G in G in

Ragionamento Automatico — Carlucci Aiello, 2004/05 $Lezione\ 1$

Dimostrazione

 \Diamond Una sequenza finita di formule A_1, \cdots, A_n di Λ è detta una **dimostrazione** o **prova** in Λ se, per ogni i compreso tra 1 ed n, o $A_i \in Ax$, cioè è un assioma di Λ , oppure è una conseguenza diretta mediante una delle regole di $\mathcal R$ di alcune delle formule che la precedono nella sequenza.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 13

Chiusura deduttiva

Sia Γ un insieme di formule.:

 \diamondsuit La chiusura deduttiva di Γ , denotata con $Cn(\Gamma)$, è l'insieme di tutte le formule che sono conseguenza di Γ (cioè $Cn(\Gamma) = \{A|\Gamma\vdash A\}$)

Correttezza e Completezza

 \Diamond Un apparato deduttivo $\mathcal R$ è *corretto* se per ogni formula $A \in \mathbf{F}$,

$$\vdash_{\mathcal{R}} A \text{ implica } \models A$$

 \Diamond Un apparato deduttivo $\mathcal R$ è *completo* rispetto a una classe di formule $\Gamma \subseteq \mathbf{F}$, se per ogni formula $A \in \Gamma$,

$$\models A \text{ implica } \vdash_{\mathcal{R}} A$$

♦ Teorema di completezza:

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 16

Richiami di logica e deduzione proposizionale

- ♦ La logica proposizionale
- ♦ I tableau proposizionali

Riassumendo

sintassi	semantica		
$\Gamma \vdash_{\mathcal{R}} A$	$\Gamma \models A$		
derivabilità	conseguenza logica		
$\vdash_{\mathcal{R}} A$	$\models A$		
teorema	validità		

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 17

I tableau proposizionali

- ♦ Metodo di dimostrazione per refutazione
- ♦ Può agire su formule in forma non clausale

Formule di tipo α e β

α	α_1	α_2	β	β_1	β_2
$A \wedge B$	A	В	$A \lor B$	A	В
$\neg(A \lor B)$	$\neg A$	$\neg B$	$\neg(A \land B)$	$\neg A$	$\neg B$
$\neg (A \rightarrow B)$	A	$\neg B$	$A \rightarrow B$	$\neg A$	В

Per ogni valutazione booleana $I_{\mathcal{V}}$ e per tutte le formule di tipo α e β si ha:

$$I_{\mathcal{V}}(\alpha) = I_{\mathcal{V}}(\alpha_1) \wedge I_{\mathcal{V}}(\alpha_2)$$

$$I_{\mathcal{V}}(\beta) = I_{\mathcal{V}}(\beta_1) \vee I_{\mathcal{V}}(\beta_2).$$

Inoltre, per ogni formula di tipo α e β si ha che $\alpha \leftrightarrow (\alpha_1 \land \alpha_2)$ e $\beta \leftrightarrow (\beta_1 \vee \beta_2)$ sono tautologie.

 \Diamond Le formule α sono dette **congiuntive** e le β **disgiuntive**. Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 20

Regole di espansione dei tableau (cont)

Riassumendo:

$$1. \quad \frac{\neg \neg A}{A} \quad 2. \quad \frac{\neg \top}{\bot} \quad 3. \quad \frac{\neg \bot}{\top} \quad 4. \quad \frac{\alpha}{\alpha_1 \ , \alpha_2} \quad 5. \quad \frac{\beta}{\beta_1 |\beta_2|}$$

Regole di espansione dei tableau

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 21

Regole di espansione dei tableau (cont 1)

Il connettivo ↔ può essere trattato riscrivendo

$$A \leftrightarrow B \ come \ (A \rightarrow B) \land (B \rightarrow A)$$

ma si può anche introdurre una regola composta a esso specifica:

$$\leftrightarrow \text{-regole}) \quad \frac{A \leftrightarrow B}{A, B | \neg A, \neg B} \qquad \frac{\neg (A \leftrightarrow B)}{A, \neg B | \neg A, B}$$

Definizione di tableau

Dato Γ , un **tableau** per Γ è un albero binario i cui nodi sono etichettati da formule di Γ .

Dato Γ , l'albero binario costituito dal solo nodo radice etichettato dalla congiunzione delle formule di Γ è detto **tableau iniziale** per Γ e denotato \mathbf{T}_0 .

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 24

Passo di espansione di tableau (cont)

3. Se una formula di tipo β occorre sul ramo ${\bf B}$ di ${\bf T}_1$ che porta alla foglia A, allora si aggiungono come figli di A due rami contenenti rispettivamente β_1 e β_2 (regola 5 della tabella).

Il tableau T_2 si dice ottenuto da T_1 con un passo di espansione.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 26

Passo di espansione di tableau

Dato Γ , se \mathbf{T}_1 è un tableau per Γ e A è il nodo foglia su un ramo \mathbf{B} di \mathbf{T}_1 , possiamo costruire un tableau \mathbf{T}_2 per Γ attraverso un passo di espansione:

- Se ¬¬B, oppure ¬⊤ oppure ¬⊥ occorrono sul ramo B di
 T₁ che porta alla foglia A, allora si aggiunge come figlio
 di A un ramo contenente B, ⊥ oppure ⊤, rispettivamente
 (regole 1, 2 e 3 della tabella);
- 2. Se una formula di tipo α occorre sul ramo ${\bf B}$ di ${\bf T}_1$ che porta alla foglia A, allora si aggiunge come figlio di A un ramo contenente α_1 e α_2 in successione (regola 4 della tabella);

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 25

Espansione di tableau

Dati due tableau \mathbf{T}_1 e \mathbf{T}_2 per Γ , \mathbf{T}_2 è una **espansione coerente** di \mathbf{T}_1 se esiste un nodo n in \mathbf{T}_1 tale che \mathbf{T}_2 è stato ottenuto da \mathbf{T}_1 attraverso un numero finito di passi di espansione ognuno dei quali ha espanso la formula che etichetta n su tutte le foglie del sottoalbero che ha come radice n.

Un tableau ${\bf T}$ per Γ si dice **ben costruito** se è stato ottenuto per espansioni coerenti dal tableau radice e nessun nodo è stato oggetto di più di una espansione coerente.

Un tableau ${\bf T}$ per Γ è completo se è ben costruito e non può più essere oggetto di espansioni coerenti.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 27

Osservazioni

Il ramo di un tableau è la congiunzione delle formule che appaiono in esso.

Un tableau è una disgiunzione di congiunzioni.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 28

Soddisfacibilità di tableau (cont)

Un **ramo** di un tableau si dice **chiuso** se, per qualche formula A, entrambe A e $\neg A$ etichettano nodi che occorrono sul ramo, oppure $\neg \top$ o \bot occorrono sul ramo. Altrimenti il ramo è detto **aperto**.

Un **tableau è chiuso** se tutti i suoi rami sono chiusi, altrimenti è **aperto.**

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 30

Soddisfacibilità di tableau

Un **ramo** di un tableau è **soddisfacibile** se la congiunzione delle formule che etichettano i suoi nodi è soddisfacibile.

Un **tableau è soddisfacibile** se almeno uno dei suoi rami è soddisfacibile.

Osserviamo che l'espansione preserva la soddisfacibilità, ovvero se un tableau è soddisfacibile il tableau ottenuto attraverso l'applicazione di una regola di espansione è ancora soddisfacibile.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 29

Tableau refutazioni

Una **tableau-refutazione di una formula** A è un tableau chiuso la cui radice è etichettata da A.

Una **tableau-refutazione di una formula** A **da** Γ è un tableau chiuso la cui radice è etichettata da $\Gamma \cup \{A\}$.

Tableau dimostrazioni

Una **tableau-dimostrazione** di una formula A è un tableau chiuso la cui radice è etichettata da $\neg A$. A è un **teorema** del sistema di calcolo dei tableau se A ha una tableaudimostrazione. In questo caso scriviamo:

$$\vdash_T A$$

Una **tableau-deduzione** di una formula A da Γ , insieme finito di formule, è un tableau chiuso la cui radice è etichettata da $\Gamma \cup \{\neg A\}$. In questo caso scriviamo:

$$\Gamma \vdash_T A$$

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 32

Algoritmo per la costruzione di tableau (cont)

Il procedimento si arresta quando tutti i rami sono stati chiusi oppure quando il tableau è completo. Se il tableau è chiuso, A è dedotto a partire da Γ . Altrimenti, se il tableau è completo e c'è ancora qualche ramo aperto, abbiamo provato che il tableau è consistente, quindi $\Gamma \cup \{\neg A\} \not\vdash_T$, cioè $\Gamma \not\vdash_T A$.

Algoritmo per la costruzione di tableau

Per costruire una tableau-deduzione per $\Gamma \vdash_T A$:

- Costruiamo il tableau T_0 etichettato con $\Gamma \cup \{\neg A\}$.
- Finché ci sono nodi non marcati, scegliamo un nodo da espandere e
- facciamo un passo di espansione coerente, cioè espandiamo il nodo rispetto a tutte le foglie a esso sottostanti nei rami ancora aperti;
- marchiamo il nodo espanso;
- verifichiamo se i rami interessati dall'espansione sono chiusi e li marchiamo tali.

Ragionamento Automatico — Carlucci Aiello, 2004/05Lezione 1 33

Correttezza e completezza

 $\vdash_T A \text{ sse } \models A$

 $\Gamma \vdash_T A$ sse $\Gamma \models A$