Interpretation of the simply-typed λ -calculus in a CCC

The simply-typed λ -calculus

The simple types A, B are constructed by the grammar:

$$A,B ::= \alpha \mid A \Rightarrow B.$$
 $A \times B$

A typing context Γ is a finite sequence

$$\Gamma = (x_1 : A_1, ..., x_n : A_n)$$

where each x_i is a variable and each A_i is a simple type.

A sequent is a triple

$$x_1: A_1, ..., x_n: A_n \vdash P: B$$

where

$$x_1 : A_1, ..., x_n : A_n$$

is a typing context, P is a λ -term and B is a simple type.

The simply-typed λ -calculus

Variable

 $\overline{x:A \vdash x:A}$

Abstraction

 $\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x . P : A \Rightarrow B}$

Application

 $\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$

Weakening

 $\frac{\Gamma \vdash P : B}{\Gamma, x : A \vdash P : B}$

structural

Contraction

 $\frac{\Gamma, x : A, y : A \vdash P : B}{\Gamma, z : A \vdash P[x, y \leftarrow z] : B}$

rules

Exchange

 $\Gamma, x : A, y : B, \Delta \vdash P : C$

 $\overline{\Gamma, y: B, x: A, \Delta \vdash P: C}$

Interpretation of the λ -calculus

We suppose given a function Step 1.

 $\xi: \alpha \mapsto \left[\xi(\alpha)\right]$ is an object of ℓ .

which associates an object $\xi(\alpha)$ to every type variable α .

Step 2. Every type A is then interpreted as an object A of the category C

of the cartesian closed category by structural induction:

$$[a] = \xi(\alpha)$$

$$[A \times B] = [A] \times [B]$$

$$[A \Rightarrow B] = [A] \Rightarrow [B]$$

$$f$$

$$f$$

$$syntax$$

$$of types$$

$$structure of ccc.$$

Interpretation of the λ -calculus

by structural induction on the derivation tree which produced it.

The logical rules

$$\llbracket A \rrbracket \xrightarrow{id} \llbracket A \rrbracket$$

▶ Lambda:

$$A \times \Gamma \xrightarrow{f} B$$

becomes

$$\Gamma \xrightarrow{\phi_{A,\Gamma,B}(f)} A \Rightarrow B$$

Application:

$$\Gamma \longrightarrow A$$

and

$$\Delta \longrightarrow A \Rightarrow B$$

become

adjunction Every K I B exercise of natural transformations t Id t Counit (EB; LRB ---> B) BEODB: LOR=> Idg P/JE B LA ridia LA S DA DA PRESE LR B EB B

in the case of a cartesian closed category; we get two natural transformations for each object A: B coeval A > (AXB) $b:B \vdash \lambda a.(a,b):A\Rightarrow (A\times B)$ $A \times (A \Rightarrow B) \xrightarrow{eval} B$ $a:A, f:A \Rightarrow B \vdash fa:B$

Exercise: show that the families are also natural in the object A.

The structural rules

 $\delta_{A} \times \Gamma = \delta_{A} \times id_{n}$

Contraction:

$$A \times A \times \Gamma \xrightarrow{f} B$$

becomes

$$A \times \Gamma \xrightarrow{\delta_A \times \Gamma} A \times A \times \Gamma \xrightarrow{f} B$$

Weakening:

$$\Gamma \xrightarrow{f} B$$

becomes

Permutation:

becomes

$$\Gamma \times B \times A \times \Delta \xrightarrow{\Gamma \times \gamma_{A,B} \times \Delta} \Gamma \times A \times B \times \Delta \xrightarrow{f} B$$

54

Soundness theorem

Theorem.

In every cartesian closed category \mathbb{C} , the interpretation [-] is an invariant modulo β , η .

Exercise. Establish the soundness theorem.