3 задача: LCA

4 модуль, 2 семестр

ФИВТ МФТИ, 2019

Описание by Илья Белов

1. Текст задачи

Задано дерево с корнем, содержащее n (1 \leq n \leq 100 000) вершин, пронумерованных от 0 до n-1. Требуется ответить на m (1 \leq m \leq 10 000 000) запросов о наименьшем общем предке для пары вершин. Запросы генерируются следующим образом. Заданы числа a_1 , a_2 и числа a_3 , a_2 , числа a_3 , a_2 , генерируются следующим образом: a_i = (x: a_{i-2} +y: a_{i-1} +z) mod a_3 . Первый запрос имеет вид a_1 , a_2 . Если ответ на a_2 -1-й запрос равен a_3 -1-й запрос имеет вид $a_$

Для решения задачи можно использовать метод двоичного подъёма.

Формат входных данных.

- Первая строка содержит два числа: n и m. Корень дерева имеет номер 0.
- Вторая строка содержит n-1 целых чисел, i-е из этих чисел равно номеру родителя вершины i.
- Третья строка содержит два целых числа в диапазоне от 0 до n-1: a_1 и a_2 .
- Четвертая строка содержит три целых числа: x, y и z, эти числа неотрицательны и не превосходят 10^9 .

Формат выходных данных.

Выведите в выходной файл сумму номеров вершин — ответов на все запросы.

in	out
3 2	2
0 1	
2 1	
1 1 0	

2. Описание алгоритма

Пользуемся методом двоичного подъёма, описанного здесь:

https://neerc.ifmo.ru/wiki/index.php?title=Метод двоичного подъёма

3. Доказательство корректности

Следует из построения алгоритма

4. Время работы и дополнительная память

Препроцесинг:

 $T = O(n \log n)$

Запрос:

 $T = O(\log n)$

Память:

 $M = O(n \log n)$

5. Доказательство времени работы

Всего состояний динамики O(nlogn). Каждое состояние считается за O(1). Поэтому суммарная сложность времени и памяти препроцессинга — O(nlogn).

Весь алгоритм ответа на запрос состоит из изменения I от $L = \lceil log \ n \rceil$ до 0, а также проверки на каждом шаге за O(1), является ли одна вершина предком другой. Следовательно, на каждый запрос будет найден ответ за $O(log \ n)$.