Computer Networks: Assignment 1

Students Astha Meena (2021CS10122), Bhupesh (2021CS10101)

Network Analysis

• a) Traceroute from mobile hotspot to www.iitd.ac.in via wifi .

```
C:\Users\bhupe>tracert www.iitd.ac.in
Tracing route to www.iitd.ac.in [2001:df4:e000:29::212]
over a maximum of 30 hops:
       52 ms
                   7 ms
  1
                             3 ms
                                   2409:4050:2d90:c421::e2
  2
                             *
                                   Request timed out.
        *
  3
       48 ms
                177
                           72
                     ms
                               ms
                                   2405:200:331:eeee:20::808
  4
      181 ms
                 57
                            79
                                   2405:200:801:300::e78
                     ms
                              ms
  5
                   *
                             *
                                   Request timed out.
         *
  6
                                   Request timed out.
  7
                                   Request timed out.
  8
      127
                 49
                            52
                                   2405:203:982:68d::6
          ms
                     ms
                               ms
  9
       79
                 43
                           55
                                   2405:203:982:68d::e
          ms
                     ms
                               ms
 10
       90
           ms
                 68
                     ms
                            60
                               ms
                                   2405:8a00:a:1::3
 11
                  *
                             *
                                   Request timed out.
                                   Request timed out.
 12
                  *
                             *
       36
 13
           ms
                 58
                     ms
                           62
                               ms
                                   2001:4408:a::1
        73
 14
           ms
                 41
                     ms
                           54
                               ms
                                   2405:8a00:a:2::c5
 15
       65
                 54
                            56
                                   2405:8a00:a:2::c6
           ms
                     ms
                               ms
 16
       85
                 34
                            59
                                   2001:df4:e000:108::2
          ms
                     ms
                               ms
 17
       47
          ms
                 63
                          168
                                   2001:df4:e000:26::24
                    ms
                               ms
 18
       61 ms
                 43 ms
                            50 ms
                                   2001:df4:e000:29::212
Trace complete.
```

• b) Curious things noted during the traceroute.

- Trace route by default performs maximum 30 hops and sends 3 packets each hop.
- Traceroute might use IPv6 due to network settings, but you can force IPv4 with "-4" flag (e.g., traceroute -4 destination).
- Traceroute passing through 10.x.x.x, 172.x.x.x, or 192.168.x.x in the same hop of traceroute suggests internal networks before the public internet.
- Missing Routers or Unresponsive Nodes were encountered where Request timed out was received as output. Gaps in traceroute indicate non-responsive routers due to firewalls, congestion, etc.
- Different times between hops indicate network congestion, routing variations, or performance differences.

• c) Maximum size of packet over ping

- 1472 . The maximum packet size allowed for transmission is 1500 bytes, with 28 bytes allocated for the header.
- As a result, our ping command operates by sending individual packets. The actual size of the largest packet that can be utilized is determined by the specific link layer. Consequently, the effective limit is calculated to be 1472 bytes.
- The ping command uses the ICMP Echo Request Packets. The typical maximum packet size for ICMP Echo Request packets is determined by the Maximum Transmission Unit (MTU) of the network, which is often around 1500 bytes for standard Ethernet networks.
- Each such packet sent over has IP and ICMP headers mandatorily of 28 bytes in them, Hence our observed packet limit of 1472 in this context is around the network constraints of ethernet network which we used.

Traceroute Using ping

• **Script Functionality** We created a shell script to replicate traceroute using the ping command. The script utilizes the "ping -t ttl destination" command, allowing us to set a *Time-to-Live (TTL)* value for reaching the destination. The TTL value is incremented from 1 to a maximum of 30, mirroring traceroute's default hop limit.

• Documentation Process

For each TTL value, we recorded the reached IP address. Using another ping command with the current intermediate IP address as the destination, we measured the time taken to reach that point.

• Handling Secured or Untraceable Intermediates

Intermediate IP addresses that were secured and untraceable were marked with "***". Some intermediate routers couldn't be timed due to unresponsiveness to ping command.

• **Reproduced Traceroute Functionality** Our script successfully emulates the traceroute functionality by monitoring various router IP addresses along the path to the destination.

```
fire@MyDELL:~$ ./script.sh
Enter the destination IP or hostname: www.google.com
Traceroute to www.google.com (142.250.207.196), 30 hops max, 60 byte packets
1: MyDELL.mshome.net Router could not be timed
2: 10.184.0.13 6.89 ms 5.61 ms 4.95 ms
3: 10.254.175.5 6.17 ms 3.00 ms 3.67 ms
4: 10.255.1.34 Router could not be timed
5: 10.119.233.65 Router could not be timed
6:
   ***
7: ***
8: 10.119.234.162 Router could not be timed
9: 72.14.194.160 7.55 ms 6.33 ms 6.67 ms
10: 108.170.251.113 7.56 ms 6.95 ms 7.00 ms
11: 142.251.76.171 Router could not be timed
12: 142.250.207.196 115 ms 5.95 ms 8.43 ms
```

Internet architecture

• AS Number for the IP addressess

AS	AS Number	IP address	
UTAH	17055	155.98.186.21	
UCT	36982	137.158.159.192	
Indian Institute of technology	132780	103.27.9.24	
google	15169	142.250.207.196	
Facebook	32934	157.240.16.35	

• A) Table for the Number of Hopes from Different Source to the Destination

- Traceroute Source is Equinix New York(NY9) IP address of the source 216.218.252.22

Destination	Number of Hopes
www.utha.edu	15
www.uct.ac.za	11
www.iitd.ac.in	17
www.google.com	11
www.facebook.com	8

- Traceroute Source is Equinix Osaka (OS1) IP address of the source (216.218.252.58), Japan

Destination	Number of Hopes
www.utha.edu	16
www.uct.ac.za	17
www.iitd.ac.in	15
www.google.com	10
www.facebook.com	9

- Traceroute form my Mobile Network via Wifi

Destination	Number of Hopes
www.utha.edu	28
www.uct.ac.za	29
www.iitd.ac.in	17
www.google.com	9
www.facebook.com	9

- Some Key points observed during the traceroute.
 - * Effect of Geographical distance of the source from the destination on Hops: If the sources and destinations of the traceroute are near together, there may be fewer hops overall. As there will be fewer routers, gateways, and subnets to pass, there are more likely to be fewer network nodes and routers in between. We cannot, however, generalize this assertion because other elements, such as network coverage, traffic, and routing regulations, can also affect the number of hops. For instance, because the University of Utah is nearer to New York than Osaka, Japan, the traceroute from New York required less hops.
 - * Google and Facebook both use networks and data centers spread across the world. Google and Facebook exhibit notable uniformity in the amount of hops, typically fewer hops, across many traceroute providers. This is because their provider uses dedicated paths, sound network protocol policies, and efficient routing; however, hops counts may vary depending on factors including traffic volume, network congestion, and changes in routing.
- B) Latencies between the traceroute sources and the web servers Equinix New York(NY9) IP address of the source 216.218.252.22

Destination	Range of Latenices(RTT)
www.utha.edu	72.812 ms-76.926 ms
www.uct.ac.za	233.000 ms- 240.326 ms
www.iitd.ac.in	227.831 ms-227.951 ms
www.google.com	63.980 ms- 71.135 ms
www.facebook.com	79.227 ms-81.606 ms

Source is Equinix Osaka (OS1) IP address of the source (216.218.252.58)

Destination	Range of Latenices(RTT)
www.utha.edu	110.988 ms - 112.187 ms
www.uct.ac.za	353.935 ms- 354.040 ms
www.iitd.ac.in	256.705 ms-257.048 ms
www.google.com	113.399 ms - 113.746 ms
www.facebook.com	140.007 ms -140.417 ms

Source is cellular mobile network via wifi

Range(RTT)		
299ms - 358ms		
no packet received		
28ms - 82ms		
52ms - 89ms		
30.ms - 52.9ms		

- Yes, the latency in a traceroute can related to the number of hops, and it generally increases as the number of hops increases. This phenomenon is due to the delays introduced at each intermediate network device (router or gateway) that the packets pass through which increasing the number of hops Here are some of the reasons for the delays:-
 - * Network Congestion and Queueing of packets
 - * which Routing Protocol is used
 - * time taken by the network device to process the packets
 - * Load Balancing at a particular server.
- **C)**The same IP address is used to resolve the destinations www.utah.edu, www.uct.ac.za, and www.iitd.ac.in in tracer-oute from several sources. When accessed from several sources, websites like www.google.com and www.facebook.com display multiple IP addresses. This may be because some businesses maintain many data centers around the globe to guarantee high availability, lessen server load, and provide redundancy across various routes. Users are routed to the closest location when they submit inquiries from several places, which results in distinct IP addresses.
- **D)** Facebook and Google provide distinct IP addresses on the traceroute from the same starting point for my traceroute. Due to the intricacy of routing protocols, network congestion, server load, and load balancing, the pathways can appear different when traceroutes are done from the same starting point. Large web servers are typically where this kind of problem appears. The longest path will be taken if our traceroute was mapped to an IP address that is geographically the most remote from the source.
- **E)** Greece, Sweden, and China are some of countries whose local ISPs are not directly peered with Google and Facebook. Traceroute form this country to Google and Facebook have some other intermediate IP addresses also.

Packet Analysis

• a) DNS Queries and Responses:

```
> Frame 12: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on interface \Device\NPF_{D4C8CFC9-C8A2-419D-9916}
> Ethernet II, Src: IntelCor_a5:ee:bb (4c:79:6e:a5:ee:bb), Dst: IETF-VRRP-VRID_f2 (00:00:5e:00:01:f2)
> Internet Protocol Version 4, Src: 10.184.9.80, Dst: 10.10.1.4
> User Datagram Protocol, Src Port: 52336, Dst Port: 53
> Domain Name System (query)
```

```
..^...Ey n----E-
     00 00 5e 00 01 f2 4c 79
                              6e a5 ee bb 08 00 45 00
0000
0010
     00 3e 3c cf 00 00 80 11
                              00 00 0a b8 09 50 0a 0a
                                                        .><.....P...
                                                        ···p·5·* ·Q·-····
     01 04 cc 70 00 35 00 2a
                              1f 51 86 2d 01 00 00 01
0020
     00 00 00 00 00 00 05 61
                              63 74 34 64 04 69 69 74
                                                        ····a ct4d·iit
0030
0040 64 02 61 63 02 69 6e 00 00 41 00 01
                                                        d-ac-in- -A--
```

DNS Query to http://act4d.iitd.ac.in

```
Frame 14: 129 bytes on wire (1032 bits), 129 bytes captured (1032 bits) on interface \Device\NPF_{D4C8CFC9-C8A2-419D-9916}
Ethernet II, Src: Cisco_1b:48:73 (5c:3e:06:1b:48:73), Dst: IntelCor_a5:ee:bb (4c:79:6e:a5:ee:bb)
Internet Protocol Version 4, Src: 10.10.1.4, Dst: 10.184.9.80
User Datagram Protocol, Src Port: 53, Dst Port: 52336
Domain Name System (response)
```

```
4c 79 6e a5 ee bb 5c 3e 06 1b 48 73 08 00 45 00
0000
                                                          Lyn···\> ··Hs··E·
0010 00 73 4b 13 40 00 3d 11 d3 51 0a 0a 01 04 0a b8
                                                          ·sK·@·=· ·Q·····
                                                          \cdot P \cdot 5 \cdot p \cdot \_ \ \cdots - \cdots
0020 09 50 00 35 cc 70 00 5f d0 15 86 2d 81 80 00 01
0030 00 00 00 01 00 00 05 61 63 74 34 64 04 69 69 74
                                                          ·····a ct4d·iit
0040 64 02 61 63 02 69 6e 00 00 41 00 01 c0 12 00 06
                                                          d-ac-in- -A-----
0050 00 01 00 01 51 80 00 29 06 69 6e 74 64 6e 73 c0
                                                          ····Q··) ·intdns·
     12 06 73 79 73 61 64 6d 02 63 63 c0 12 78 95 c4
0060
                                                          --sysadm -cc--x--
0070 29 00 00 2a 30 00 00 0e 10 00 05 7e 40 00 01 51
                                                          )··*0···~@··Q
080 80
```

DNS Response from www.iitd.ac.in

After doing DNS packet analysis using wireshark while visiting http://act4d.iitd.ac.in we got a DNS query and response of Type A (which is used to figure out the IP address of the website) and a DNS query and response related to HTTPS . All these DNS request and response took 5.239 ms in execution. We also did DNS packet analysis using wire shark while visiting www.iitd.ac.in which took comparatively more DNS queries and response due to redirection happening to home.iitd.ac.in All these DNS requests and responses took 74.842 ms in execution

• b)HTTP Requests in Packet Trace:

					•
No.	Time	Source	Destination	Protocol Le	ength Info
-	40 12.620126	10.184.9.80	10.237.26.108	HTTP	458 GET / HTTP/1.1
-	52 13.101338	10.237.26.108	10.184.9.80	HTTP/X	574 HTTP/1.1 200 OK
	54 13.138451	10.184.9.80	10.237.26.108	HTTP	472 GET /act4d/media/system/js/mootools.js HTTP/1.1
	61 13.143815	10.184.9.80	10.237.26.108	HTTP	491 GET /act4d/templates/beez/css/template.css HTTP/1.
	73 13.148430	10.184.9.80	10.237.26.108	HTTP	491 GET /act4d/templates/beez/css/position.css HTTP/1.
	74 13.148626	10.184.9.80	10.237.26.108	HTTP	489 GET /act4d/templates/beez/css/layout.css HTTP/1.1
	75 13.148779	10.184.9.80	10.237.26.108	HTTP	490 GET /act4d/templates/beez/css/general.css HTTP/1.1
	76 13.148923	10.184.9.80	10.237.26.108	HTTP	471 GET /act4d/media/system/js/caption.js HTTP/1.1
	83 13.159795	10.237.26.108	10.184.9.80	HTTP	99 HTTP/1.1 200 OK (text/css)
	93 13.161377	10.184.9.80	10.237.26.108	HTTP	466 GET /wiki1-bak/wiki1/statf0e.php HTTP/1.1
	119 13.167756	10.237.26.108	10.184.9.80	HTTP	323 HTTP/1.1 200 OK (text/css)
	123 13.168117	10.237.26.108	10.184.9.80	HTTP	68 HTTP/1.1 404 Not Found (text/html)
	132 13.170697	10.237.26.108	10.184.9.80	HTTP	290 HTTP/1.1 200 OK (application/javascript)
	141 13.171762	10.237.26.108	10.184.9.80	HTTP	153 HTTP/1.1 200 OK (text/css)
	155 13.176114	10.237.26.108	10.184.9.80	HTTP	165 HTTP/1.1 200 OK (application/javascript)
	163 13.180087	10.237.26.108	10.184.9.80	HTTP	558 HTTP/1.1 200 OK (text/css)
	165 13.181445	10.184.9.80	10.237.26.108	HTTP	537 GET /act4d/templates/beez/images/act4d.png HTTP/1.
	166 13.186463	10.184.9.80	10.237.26.108	HTTP	526 GET /act4d/images/balazahir.jpg HTTP/1.1
	168 13.190129	10.184.9.80	10.237.26.108	HTTP	488 GET /act4d/templates/beez/css/print.css HTTP/1.1
	190 13.195231	10.237.26.108	10.184.9.80	HTTP	254 HTTP/1.1 200 OK (text/css)
	830 13.290510	10.237.26.108	10.184.9.80	HTTP	529 HTTP/1.1 200 OK (PNG)
	1305 13.364602	10.237.26.108	10.184.9.80	HTTP	161 HTTP/1.1 200 OK (JPEG JFIF image)
	1307 13.429646	10.184.9.80	10.237.26.108	HTTP	532 GET /act4d/templates/beez/favicon.ico HTTP/1.1
	1310 13.434817	10.237.26.108	10.184.9.80	HTTP	462 HTTP/1.1 200 OK (image/x-icon)
1 '					

HTTP requests for http://act4d.iitd.ac.in

-	39 13.071339	10.184.9.80	10.10.211.212	HTTP	456 GET / HTTP/1.1	
4	41 13.077066	10.10.211.212	10.184.9.80	HTTP	495 HTTP/1.1 302 Found (text/html)	

HTTP requests for http://act4d.iitd.ac.in

- Upon applying the "HTTP" filter to the packet trace in Wireshark, it was observed that 24 HTTP-related entries were captured for http://act4.d.iitd.ac.in and 2 HTTP-related entries were captured for www.iitd.ac.in
- In each case , half of the entries were GET requests and their acknowledgments, which were replied with a 200 status code.
- One of the request was also reported as not found. While the only HTTP response for www.iitd.ac.in was replied with a status code "302 Modified Temporarily" suggests a temporary modification of the requested resource.
- The website http://act4d.iitd.ac.in also reported Additional resources like images, stylesheets, scripts, and other assets, which initiate only after the initial HTML request. Web browsers initially process the provided HTML content, and subsequently, they pursue included links and references to retrieve extra resources(images, CSS, JavaScript). This collective effort leads to the comprehensive display of a webpage. This tells the process through which browsers render complex webpages with images and various other style-based files.

• c) Investigating TCP Connections

s.syn == 1 and tcp.flags.ack== 0

, ,	, r and topinage.					
	Time	Source	Destination	Protocol	Length	Info
15	10.551895	10.184.9.80	10.237.26.108	TCP	66	57501 → 443 [SYN] Seq=0 Win=64240
17	10.804973	10.184.9.80	10.237.26.108	TCP	66	57502 → 443 [SYN] Seq=0 Win=64246
19	11.054871	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57501 → 443
21	11.318502	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57502 → 443
23	11.568472	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57501 → 443
25	11.833581	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57502 → 443
27	12.081359	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57501 → 443
29	12.347735	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57502 → 443
31	12.596858	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57501 → 443
37	12.613793	10.184.9.80	10.237.26.108	TCP	66	57503 → 80 [SYN] Seq=0 Win=64240
42	12.863309	10.184.9.80	10.237.26.108	TCP	66	[TCP Retransmission] 57502 → 443
55	13.139736	10.184.9.80	10.237.26.108	TCP	66	57504 → 80 [SYN] Seq=0 Win=64240
56	13.141690	10.184.9.80	10.237.26.108	TCP	66	57505 → 80 [SYN] Seq=0 Win=64240
60	13.143522	10.184.9.80	10.237.26.108	TCP	66	$57506 \rightarrow 80$ [SYN] Seq=0 Win=64240
62	13.144169	10.184.9.80	10.237.26.108	TCP	66	$57507 \rightarrow 80$ [SYN] Seq=0 Win=64240
63	13.144472	10.184.9.80	10.237.26.108	TCP	66	57508 → 80 [SYN] Seq=0 Win=64240

TCP requests monitored while visiting http://act4d.iitd.ac.in

The above TCP requests were filtered about allowing only SYN requests using "tcp.flags" filter. The TCP ports are displayed at the ends of arrows in the Info of the requests. The first 10 TCP requests shown here which have a TCP port numbered 443 do not have a TCP port catering to http requests and are most probably TCP requests not related to the exchange of data.

- http://act4d.iitd.ac.in

- * A total of **six** distinct TCP connections were identified between the browser and the web server which cater to the HTTP requests.
- * These TCP connections are distinguished by one TCP port number being 80 for the HTTP requests. The HTTP requests are specifically fetched from the connections of other port numbers being 57503-57508.

- * Comparing the number of TCP connections with the number of HTTP requests, the number of HTTP requests was much more than the number of TCP requests. This is because a single TCP connection was used to fetch multiple HTTP requests. This enhances efficiency by minimizing the need to create new connections for every resource.
- * Furthermore, it was observed that some content objects were indeed fetched over the same TCP connection.

• d) Absence of traceable data of webpage

- On doing HTTP filter in Wireshark, there was no HTTP traffic coming from www.indian.express.com.
 No traffic of html and javascript files was also not encountered when we browsed through the entire trace without any filters.
- The reason for this could be that HTTP traffic is encrypted, so Wireshark won't be able to decipher the payload of the packets unless we have administrative rights or SSL encryption key. We won't be able to see content of HTML and javascript files being transferred as explained above content of the packets will be encrypted and we constantly get encryption alerts in the trace. This is a security feature that ensures data privacy during transmission.