Návrh FIR filtrů

- Při návrhu FIR filtru řešíme obvykle následující problémy:
 - volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř. tzv. toleranční schema
 - stanovení délky (řádu) filtru M; nejčastěji odhadem (první krok) a v dalších krocích se iterativním postupem se zpřesňuje
 - zavedení kriteria kvality posouzení skutečné frekvenční charakteristiky.
 Jako kritérium pro hodnocení aproximace frekvenční charakteristiky lze použít:
 - a) Průměr kvadratické chyby (kritérium nejmenších čtverců), kterým minimalizujeme chybu E

$$E = \sum_{k=0}^{N-1} \left\| H(j\omega) \right| - \left| H_d(j\omega) \right|^2$$

- b) Maximální chybu frekvenční charakteristiky ve specifikované oblasti (propustné, popř. nepropustné) tzv. Čebyševova aproximace
- c) Kritérium založené na aproximaci Taylorovým rozvojem požadované frekvenční charakteristiky tzv. Butterworthova aproximace
- volba metody stanovení koeficientů filtru

Metody návrhu koeficientů filtru

- metoda Fourierových řad s využitím funkce okna
- metoda frekvenčního vzorkování

 Remezův algoritmus optimalizovaného návrhu používající Čebyševovu aproximaci chyby

Metoda Fourierových řad

Postup 1

 Princip metody vychází z toho, že frekvenční charakteristika filtru je periodická a je ji možné reprezentovat jako Fourierovu řadu, tj. frekvenční odezva se rozvine do Fourierovy řady a tento rozvoj se omezí na konečný počet koeficientů. Výsledná odezva aproximuje originální požadovanou charakteristiku.

Algoritmus:

- 1. Specifikace požadavků na frekvenční charakteristiku filtru $H_d(j\omega)$
- Stanovení délky filtru
- 3. Výpočet koeficientů filtru h[n], pro hodnoty n=0,1,...,M s použitím vztahu

$$h_d[n] = \frac{1}{2\pi} \int_{2\pi} |H_d(j\omega)| \cos(m\omega) + j\sin(m\omega)$$

kde m=n-M/2

- Výsledné koeficienty vynásobíme vhodným oknem abychom omezili zákmity ve frekvenční charakteristice (Gibbsův jev)
- 5. Pro výsledné koeficienty vypočteme skutečnou odezvu filtru, pokud nevyhovuje, zvolíme jiné N a postup opakujeme.

Příklad 1: Návrh dolní propusti

Navrhněte FIR filtr, který bude aproximovat amplitudovou charakteristiku ideálního filtru s dolní mezní frekvencí f_d=2kHz při vzorkovací frekvenci f_v=8kHz

frekvenční charakteristika dolní propusti

Řešení: Mezní frekvence ω_c normovaná k vzorkovacímu kmitočtu f_v bude $\omega_d = 2\pi f_d/f_v$.

Aplikujeme rovnici:

$$h_d[n] = \frac{1}{2\pi} \int_{2\pi} |H_d(j\omega)| \cos(m\omega) + j\sin(m\omega) = \frac{1}{2\pi} \int_{-\omega_d}^{\omega_d} \cos(m\omega) d\omega + j\frac{1}{2\pi} \int_{-\omega_d}^{\omega_d} \sin(m\omega) d\omega$$

$$h_d = \frac{\sin(m\omega)}{2\pi m} \bigg|_{-\pi/2}^{\pi/2} = \frac{\sin(\pi m/2)}{\pi m} \quad \text{kde m=n-10}$$

Pro výpočet vzorku $h_d[n]$ pro m=0 a n=10 se použije l'Hositalovo pravidlo (derivujeme čitatel podle m a dosadíme m=0)

$$h_d = \frac{d[\sin(m\omega)]/dm}{d[2\pi m]/dm}\bigg|_{m=0} = \frac{(\pi/2)\cos(\pi m/2)}{\pi}\bigg|_{m=0} = 0.5$$

$$\begin{array}{llll} h[0] = h[20] = & 0.00000 \\ h[1] = h[19] = & 0.03537 \\ h[2] = h[18] = & 0.00000 \\ h[3] = h[17] = & -0.04547 \\ h[4] = h[16] = & 0.00000 \\ h[5] = h[15] = & 0.06366 \\ h[6] = h[14] = & 0.00000 \\ h[7] = h[13] = & -0.10610 \\ h[8] = h[12] = & 0.00000 \\ h[9] = h[11] = & 0.31831 \\ h[10] = & 0.50000 \\ \end{array}$$

koeficienty dolní propusti

Příklad 2: Návrh horní propusti

Navrhněte filtr FIR délky N=21, který bude aproximovat amplitudovou charakteristiku ideálního filtru typu horní propust s normovanou horní mezní frekvencí ω_h = 3 π /5.

Řešení: Impulsní charakteristika filtru je dána vztahem

koeficienty horní propusti

frekvenční charakteristika horní propusti

Příklad 3: Návrh pásmové propusti

Navrhněte filtr FIR délky N=21, který bude aproximovat amplitudovou charakteristiku ideálního filtru typu pásmová propust. Normované kmitočty nechť jsou: spodní mez propustného pásma ω_h = 2 π /5, horní mez propustného pásmaí ω_h = 3 π /5.

Řešení: Impulsní charakteristika je dána vztahem

$$\begin{array}{lll} h[0] = h[20] = & 0.00000 \\ h[1] = h[19] = & 0.00000 \\ h[2] = h[18] = & 0.04677 \\ h[3] = h[17] = & 0.00000 \\ h[4] = h[16] = & -0.10091 \\ h[5] = h[15] = & 0.00000 \\ h[6] = h[14] = & 0.15136 \\ h[7] = h[13] = & 0.00000 \\ h[8] = h[12] = & -0.18710 \\ h[9] = h[11] = & 0.00000 \\ h[10] = & 0.20000 \\ \end{array}$$

koeficienty pásmové propusti

frekvenční charakteristika pásmové propusti

Příklad 4: Návrh pásmové zádrže

Navrhněte filtr FIR délky N=21, který bude aproximovat amplitudovou charakteristiku ideálního filtru typu pásmová propust. Mezní kmitočty nepropustného pásma jsou 1.6kHz a 2.4kHz. Normované kmitočty nechť jsou: spodní mez propustného pásma ω_d = 2π/5, horní mez propustného pásmaí ω_h = 3π/5.

Řešení: Impulsní charakteristika je dána vztahem

Koeficienty impulsní odezvy

frekvenční charakteristika pásmové zádrže

Příklad 4: Návrh diferenciátoru

Ideální diferenciátor může být aproximován filtrem FIR s lineární fází. Frekvenční odezva diferenciátoru je $H(j\omega)=j\omega$. Navrhujeme-li diferenciátor se symetrií typu 3, bude mít lichý počet vzorků.

Řešení: Impulsní charakteristika je dána vztahem

$$h_{d}[n] = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \omega \sin(m\omega) d\omega = \begin{cases} 0 & \text{pro } m = 0 \\ \\ \frac{\cos(\pi n)}{n} & \text{pro } m \neq 0 \end{cases}$$

$$H(j\omega)$$
 $S(j\omega)$
 $S(j\omega$

Koeficienty impulsní odezvy

Okna používaná k omezení zákmitů frekvenční charakteristiky

V uvedených příkladech bylo využito pravoúhlé okno. K většímu omezení zákmitů se však častěji používá některé z následujících oken:

• Okno trojúhelníkové (Bartlett):⁸

$$w_T(n) = \left\{ egin{array}{ll} rac{n}{M/2}, & 0 \leq n \leq M/2 \ 2 - rac{2n}{M}, & M/2 \leq n \leq M \ 0 & ext{jinde} \ . \end{array}
ight.$$

• Okno Hann (hanning, Hanning, von Hann):

$$w_{HN}(n) = \begin{cases} \frac{1}{2}(1 - \cos\frac{2\pi n}{M}), & 0 \le n \le M, \\ 0 & \text{jinde.} \end{cases}$$

• Okno Hamming:

$$w_{HM}(n) = \begin{cases} 0,54-0,46 \cdot \cos \frac{2\pi n}{M}, & 0 \le n \le M, \\ 0 & \text{jinde.} \end{cases}$$

• Okno Blackman:

$$w_{BL}(n) = \begin{cases} 0,42 - 0,50 \cdot \cos \frac{2\pi n}{M} + 0,08 \cdot \cos \frac{4\pi n}{M}, & 0 \le n \le M, \\ 0 & \text{jinde.} \end{cases}$$

Průběhy oken v časové oblasti a jejich frekvenční charakteristiky

Obrázek 4.23 Normovaná spektra základních ok
en (obdélníkového, Hannova, Hammingova a Blackmanova) pro
 $M+1=16\,$

Tabulka 4.1 Klasická okna: základní vlastnosti a užití pro návrh FIR DP

název	1. postranní	šířka	šířka	minimální	
okna	lalok	hl. laloku	přech. pásma	zeslabení	
obdélník	-13dB	$4\pi/(M+1)$	$1.8\pi/(M+1)$	21 dB	
trojúhelník	$-25\mathrm{dB}$	$8\pi/(M+1)$	$5.6\pi/(M+1)$	$25~\mathrm{dB}$	
Hann	-31dB	$8\pi/(M+1)$	$6.2\pi/(M+1)$	44 dB	
Hamming	-41dB	$8\pi/(M+1)$	$6.6\pi/(M+1)$	53 dB	
Blackman	-57 dB	$12\pi/(M+1)$	$11\pi/(M+1)$	74 dB	

Speciální typy oken u kterých lze změnou parametrů měnit vlastnosti:

Čebyševovo okno

$$w_{CH}(n) = \frac{\cos\left[M\cos^{-1}\left[\alpha\cos\left(\pi\frac{n}{M}\right)\right]\right]}{\cosh[M\cos^{-1}(\alpha)]} \qquad \alpha = \cosh\left(\frac{1}{N}\cosh^{-1}(10^{\gamma})\right) \qquad \mathbf{n=0,1,...,M}$$

Kaiserovo okno

$$w_K(n) = \frac{I_0[\beta(1 - [(n - \alpha)/\alpha]^2)^{1/2}]}{I_0(\beta)} \qquad 0 \le n \le M$$

Postup 2

Stejný princip jako v předchozím případě, ale umožňuje určit řád filtru
a vhodné okno na základě parametrů A_s (útlum v nepropustné části) a A_p
(útlum v propustné části) použitých v tolerančním schématu.

Násobení impulzní odezvy oknem

N –bodové FIR okno obsahuje N vzorků (zahrnujeme oba koncové vzorky) a N-1 intervalů. Násobení oknem odpovídá násobení vzorku okna proti vzorku impulzní odezvy ⇒ okno musíme vhodně vypočítat vzorky okna tak aby bylo symetrické vzhledem k impulzní odezvě. Symetrická odezva FIR filtru (DP) násobeného oknem pak bude mít tvar

$$hw[n] = 2F_c sinc(2nF_c)w[n], -0.5(N-1) \le n \le 0.5(N-1)$$

Pro sudé N, není index n celé číslo a k vytvoření kauzální impulzní odezvy je nutné použít neceločíselné zpoždění

Tvar frekvenčního spektra FIR filtru násobeného oknem

Parametry filtru (toleranční schéma)

Figure 20.10 The features of a typical filter

- Vztah mezi útlumem A a ziskem G v lineárním a decibelovém měřítku:
 - ❖ lineární měřítko útlum je převrácená hodnota zisku

$$G = |H(f)|, A = 1/|H(f)|$$

❖ decibelové měřítko – útlum v dB je záporná hodnota zisku

$$G_{dB} = 20log|H(f)|, A_{db} = -20log|H(f)|$$

Přepočet mezi parametry zvlnění a decibelovými charakteristikami A_p a A_s

Figure 20.10 The features of a typical filter

$$A_p(dB) = -20 \log \left(\frac{1 - \delta_p}{1 + \delta_p} \right)$$
 $A_s(dB) = -20 \log \left(\frac{\delta_s}{1 + \delta_p} \right) \approx -20 \log \delta_s, \quad \delta_p \ll 1$

$$\delta_p = \frac{10^{A_p/20} - 1}{10^{A_p/20} + 1}$$
 $\delta_s = (1 + \delta_p)10^{-A_s/20} \approx 10^{-A_s/20}, \quad \delta_p \ll 1$

Postup návrhu FIR filtru

- normalizace analogové frekvence vzorkovací frekvencí (převod na digitální frekvenci F ∈<0,1>
- stanovení F_p a F_s dolní propusti
- určení frekvence F_c (cut-off frequency) F_c=0.5(F_p+F_s)
- Volba okna (z následující tabulky), které splňuje podmínku A_{ws}≥A_s a A_{wp}≤A_p
- stanovení délky okna N z hodnoty FT=F_s-F_p=F_{ws}=C/N (hodnota C z tabulky)
- výpočet impulzní odezvy DP filtru $h(n)=2F_c sinc(2nF_c)$, $|n| \le 0.5(N-1)$
- vynásobení odezvy zvoleným oknem h_{lp}(n)=w(n)h(n)
- provedení spektrální transformace na (pokud je to nutné)
- Ověření frekvenční charakteristiky a případné doladění N a F_c tak, aby odpovídaly specifikaci

Tabulky parametrů a vlastnosti používaných oken

	Peak	Passband	Peak Sidelobe	Transition Width	
Window	Ripple	Attenuation	Attenuation		
	$\delta_p = \delta_s$	A_{WP} (dB)	$A_{\rm WS}~({ m dB})$	$F_{\rm WS} \approx C/N$	
Boxcar	0.0897	1.5618	21.7	C = 0.92	
Cosine	0.0207	0.36	33.8	C = 2.1	
Riemann	0.0120	0.2087	38.5	C=2.5	
von Hann (Hanning)	0.0063	0.1103	44	C = 3.21	
Hamming	0.0022	0.0384	53	C = 3.47	
Blackman	$(1.71)10^{-4}$	$(2.97)10^{-3}$	75.3	C = 5.71	
Dolph $(R = 40 \text{ dB})$	0.0036	0.0620	49	C = 3.16	
Dolph $(R = 50 \text{ dB})$	$(9.54)10^{-4}$	0.0166	60.4	C = 3.88	
Dolph $(R = 60 \text{ dB})$	$(2.50)10^{-4}$	0.0043	72	C = 4.6	
Harris (0)	$(8.55)10^{-4}$	0.0148	61.4	C = 5.36	
Harris (1)	$(1.41)10^{-4}$	$(2.44)10^{-3}$	77	C = 7.45	
Harris (2)	$(1.18)10^{-4}$	$(2.06)10^{-3}$	78.5	C = 5.6	
Harris (3)	$(8.97)10^{-5}$	$(1.56)10^{-3}$	81	C = 5.6	
Harris (4)	$(9.24)10^{-5}$	$(1.61)10^{-3}$	81	C = 5.6	
Harris (5)	$(9.96)10^{-6}$	$(1.73)10^{-4}$	100	C = 7.75	
Harris (6)	$(1.94)10^{-6}$	$(3.38)10^{-5}$	114	C = 7.96	
Harris (7)	$(5.26)10^{-6}$	$(9.15)10^{-5}$	106	C = 7.85	

Figure 20.8 Commonly used DTFT windows and their spectra

 ${\bf Table~8.2~Some~Windows~for~FIR~Filter~Design}$

Note: $I_0(x)$ is the modified Bessel function of order zero.				
Window	Expression $w[n], -0.5(N-1) \le n \le 0.5(N-1)$			
Boxcar	1			
Cosine	$\cos\left(\frac{n\pi}{N-1}\right)$			
Riemann	$\operatorname{sinc}^{L}\left(\frac{2n}{N-1}\right), L>0$			
Bartlett	$1 - \frac{2 n }{N-1}$			
von Hann (Hanning)	$0.5 + 0.5\cos\left(\frac{2n\pi}{N-1}\right)$			
Hamming	$0.54 + 0.46\cos\left(\frac{2n\pi}{N-1}\right)$			
Blackman	$0.42 + 0.5\cos\left(\frac{2n\pi}{N-1}\right) + 0.08\cos\left(\frac{4n\pi}{N-1}\right)$			
Kaiser	$\frac{I_0(\pi\beta\sqrt{1-4[n/(N-1)]^2})}{I_0(\pi\beta)}$			

Spectral Characteristics of Window Functions								
Window	G_P	G_S/G_P	$A_{\rm SL}$ (dB)	W_M	W_S	W_6	W_3	D_S
Boxcar	1	0.2172	13.3	1	0.81	0.6	0.44	20
Cosine	0.6366	0.0708	23	1.5	1.35	0.81	0.59	40
Riemann	0.5895	0.0478	26.4	1.64	1.5	0.86	0.62	40
Bartlett	0.5	0.0472	26.5	2	1.62	0.88	0.63	40
von Hann (Hanning)	0.5	0.0267	31.5	2	1.87	1.0	0.72	60
Hamming	0.54	0.0073	42.7	2	1.91	0.9	0.65	20
Blackman	0.42	0.0012	58.1	3	2.82	1.14	0.82	60
Kaiser ($\beta = 2.6$)	0.4314	0.0010	60	2.98	2.72	1.11	0.80	20

NOTATION:

 G_P : Peak gain of mainlobe

 $A_{\rm SL}$: Sidelobe attenuation $(\frac{G_P}{G_S})$ in dB W_6 : 6-dB half-width

W₃ 3-dB half-width

 G_S : Peak sidelobe gain

 W_M : Half-width of mainlobe

 D_S : High-frequency attenuation (dB/decade)

 W_S : Half-width of mainlobe to reach P_S

Notes:

All widths (W_M, W_S, W₆, W₃) must be normalized (divided) by the window length N.

2. Values for the Kaiser window depend on the parameter β . Empirically determined relations are

$$G_P = \frac{|\operatorname{sinc}(j\beta)|}{I_0(\pi\beta)}, \qquad \frac{G_S}{G_P} = \frac{0.22\pi\beta}{\sinh(\pi\beta)}, \qquad W_M = (1+\beta^2)^{1/2}, \qquad W_S = (0.661+\beta^2)^{1/2}$$

Kaiserovo okno

$$w_K(n) = \frac{I_0[\beta(1 - [(n - \alpha)/\alpha]^2)^{1/2}]}{I_0(\beta)} \qquad 0 \le n \le M$$

Stanovení délky N a koeficientu β u Kaiserova okna

1. Určení zvlnění v propustné a nepropustné části

$$\delta_p = \frac{10^{A_p/20} - 1}{10^{A_p/20} + 1} \qquad \delta_s = 10^{-A_s/20} \qquad \delta = \min(\delta_p, \delta_s)$$

2. Určení aktuálního útlumu v nepropustné části ze zvlnění δ

$$A_{s0} = -20 \log \delta \, \mathrm{dB}$$

3. Určení délky filtru N

$$N \ge \begin{cases} \frac{A_{s0} - 7.95}{14.36(F_s - F_p)} + 1, & A_{s0} \ge 21 \text{ dB} \\ \frac{0.9222}{F_s - F_p} + 1, & A_{s0} < 21 \text{ dB} \end{cases}$$

4. Určení parametru β Kaiserova okna

$$\beta = \begin{cases} 0.0351(A_{s0} - 8.7), & A_{s0} > 50 \text{ dB} \\ 0.186(A_{s0} - 21)^{0.4} + 0.0251(A_{s0} - 21), & 21 \text{ dB} \le A_{s0} \le 50 \text{ dB} \\ 0, & A_{s0} < 21 \text{ dB} \end{cases}$$

Spektrální transformace

Začínáme s návrhem dolní propusti s jednotkovým ziskem v propustné části a mezní frekvencí $F_c = 0.5(F_p + F_s)$ jejíž nekauzální impulzní odezva $h_{LP}[n]$ je symetricky oříznuta na délku N a má tvar

$$h_{\rm LP}[n] = 2F_C \operatorname{sinc}(2nF_C), \qquad -0.5(N-1) \le n \le 0.5(N-1)$$

Pro N sudé jsou hodnoty n neceločíselné a je lepší pracovat s kauzální verzí, která má tvar hLP[k], $0 \le k \le N-1$, kde k = n+0.5(N-1). Reindexovaná odezva má tvar

$$h_{LP}[k] = 2F_C \operatorname{sinc}\{2[k - 0.5(N - 1)]F_C\}, \quad 0 \le k \le N - 1$$

Transformace LP
$$\rightarrow$$
 HP $H_{HP}(F) = 1 - H_{LP}(F)$

Nekauzální impulzní odezva má tvar:

$$h_{HP}[n] = \delta[n] - h_{LP}[n]$$

 platí to pouze pro liché N a jednotkový zisk G, pro jiný G platí $h_{HP}[n] = G\delta[n] - h_{IP}[n].$

Kauzální odezva má tvar (po reindexaci):

$$h_{\rm HP}[k] = \delta[k - 0.5(N - 1)] - 2F_C \operatorname{sinc}\{2[k - 0.5(N - 1)]F_C\}, \quad 0 \le k \le N - 1$$

Transformace LP
$$\rightarrow$$
 HP $H_{HP}(F) = H_{LP}(F - 0.5)$

Transformace je vhodná pro FIR i IIR filtry libovolné délky (sudé i liché). Pro kauzální filtr má impulzní odezva tvar:

$$h_{\rm HP}[k] = (-1)^k h_{\rm LP}[k], \qquad 0 \le k \le N - 1$$

kde kauzální prototyp impulzní odezvy ideální dolní propusti má tvar

$$h_{LP}[k] = 2F_C \operatorname{sinc}\{2[k - 0.5(N - 1)]F_C\}, \quad 0 \le k \le N - 1 \quad \text{where } F_C = 0.5 - F_H$$

Transformace LP→ BP

- 1. Přechodová pásma $[F_1,F_2]$ a $[F_3,F_4]$ musí být symetrická, pokud nejsou tak je vytvoříme symetricky z užšího pásma.
- 2. Určíme střed propustného pásma F_0 :

$$F_0 = 0.5(F_2 + F_3) = 0.5(F_1 + F_4)$$

3. Posuneme spektrum dolní propusti o $\pm F_0$:

$$H_{\rm BP}(F) = H_{\rm LP}(F + F_0) + H_{\rm LP}(F - F_0)$$

4. Určíme impulzní odezvu pásmové propusti

$$h_{\rm BP}[n] = 2\cos(2n\pi F_0)h_{\rm LP}[n] = 4F_C\sin(2nF_C)\cos(2\pi nF_0), \quad -\frac{N-1}{2} \le n \le \frac{N-1}{2}$$

kde F_c je mezní frekvence prototypu filtru DP:

$$F_C = 0.5(F_3 + F_4) - F_0$$

5. Přeindexujeme n na k, abychom dostali kauzální impulzní charakteristiku $h_{BP}[k]$: $0 \le k \le N-1$, kde k = n+0.5(N-1)

Transformace LP→ BS

1.způsob

Pro pásmovou zádrž musíme použít filtr typu 4 (sudá symetrie, lichá délka N). Transformace je popsaná vztahem $H_{BS}(F) = 1 - H_{BP}(F)$, což ve de k nekauzální impulzní odezvě:

$$h_{\rm BS}[n] = \delta[n] - h_{\rm BP}[n] = \delta[n] - 4F_C \operatorname{sinc}(2nF_C) \cos(2\pi nF_0), \quad -\frac{N-1}{2} \le n \le \frac{N-1}{2}$$

Přeindexujeme n na k, abychom dostali kauzální impulzní charakteristiku $h_{BP}[k]$: $0 \le k \le N-1$, kde k = n+0.5(N-1)

2. způsob

Pásmovou zádrž můžeme realizovat jako součet dolní propusti s mezní frekvencí $F_L = 0.5(F_1 + F_2)$, a horní propusti s $F_H = 0.5(F_3 + F_4)$ což vede k nekauzální impulzní odezvě:

$$h_{\rm BS}[n] = 2F_L \operatorname{sinc}(2nF_L) + 2(-1)^n(0.5 - F_H) \operatorname{sinc}[2n(0.5 - F_H)], -\frac{N-1}{2} \le n \le \frac{N-1}{2}$$

Přeindexujeme n na k, abychom dostali kauzální impulzní charakteristiku $h_{BP}[k]$: $0 \le k \le N-1$, kde k = n+0.5(N-1)

Příklad: Navrhněte FIR filtry které splňují následující specifikace:

- 1. $f_p = 2 \text{ kHz}$, $f_s = 4 \text{ kHz}$, $A_p = 2 \text{ dB}$, $A_s = 40 \text{ dB}$, S = 20 kHz
- 2. $f_p = 4 \text{ kHz}$, $f_s = 2 \text{ kHz}$, $A_p = 2 \text{ dB}$, $A_s = 40 \text{ dB}$, S = 20 kHz
- 3. propustné pásmo [4,8] kHz, nepropustné pásmo [2,12] kHz, $A_p=3\ dB,\ A_s=45\ dB$, $S=25\ kHz$

Půlpásmový (Half-Band) FIR filtr

Vlastnosti:

- ✓ má lichý počet koeficientů impulzní odezvy
- ✓ polovina koeficientů impulzní odezvy má nulovou hodnotu (h[n] = 0 pro sudé n) → jednodušší realizace (je potřeba pouze polovina násobiček
- ✓ mezní frekvence F_C = 0.25 ⇒ při návrhu je potřeba upravit vzorkovací frekvenci

Postup návrhu půl-pásmového FIR filtru

- Stanovení vzorkovací frekvence S = 2(f_p+f_s) (pro DP a HP) nebo S = 4f₀ (pro PP a PZ)
- stanovení F_p a F_s dolní propusti
- určení frekvence F_c (cut-off frequency) F_c=0.5(F_p+F_s)
- Volba okna (z následující tabulky), které splňuje podmínku $A_{ws} \ge A_s$ a $A_{wp} \le A_p$
- stanovení délky okna N z hodnoty FT=F_s-F_p=F_{ws}=C/N (hodnota C z tabulky). N musí být liché!
- výpočet impulzní odezvy DP filtru $h(n)=2F_c sinc(2nF_c)$, $|n| \le 0.5(N-1)$
- vynásobení odezvy zvoleným oknem h_{lp}(n)=w(n)h(n)
- provedení spektrální transformace na (pokud je to nutné)
- Ověření frekvenční charakteristiky a případné doladění N, aby frekvenční charakteristika odpovídala specifikaci

Příklad: Navrhněte půl-pásmovou dolní propust, která splňuje následující požadavky: konec propustného pásma F_p=8kHz

začátek nepropustného pásma F_s=16kHz

$$A_p = 1dB$$

$$A_s = 50dB$$

Příklad: Navrhněte půl-pásmovou pásmovou zádrž, která splňuje následující požadavky: hrany nepropustného pásma [2,3] kHz

hrany propustného pásma [1,4] kHz

$$A_p = 1dB$$

$$A_s = 50dB$$

Metoda frekvenčního vzorkování

Princip:

- Vycházíme z amplitudové frekvenční charakteristiky, kterou navzorkujeme a určíme pro ní impulsovou odezvu.
- Výhodné, pokud máme složitejší tvar frekvenční charakteristiky

Postup:

Vybereme N ekvidistantních hodnot (vzorků) požadované amplitudové frekvenční odezvy H(F), které odpovídají frekvenčnímu rozsahu 0 ≤ F < 1

$$H[k] = H(F)|_{F=k/N}, \qquad k = 0, 1, 2, \dots, N-1$$

- Jelikož h[n] musí být reálné ⇒ H[k] musí být komplexně sdružené okolo k=0.5N ⇒ H[0] je samostatný a nastavuje se na hodnotu v souladu s typem filtru H[0]=0 pro HP a PP
- 3. Pro sudé N není h[n] symetrické, abychom zajistily symetrii nastavuje se h[0]=h[N]=0.5h[0].
- 4. Aby byla h[n] kauzální, musíme jí zpozdit ⇒ zavedeme fázový posun do frekvenční charakteristiky, která bude mít tvar H[k]|e^{jφ[k]} ⇒ určíme fázi prvních N/2 vzorků

$$\phi[k] = \frac{-\pi k(N-1)}{N}, \qquad k = 0, 1, 2, \dots, 0.5(N-1)$$

- 5. Pro filtry typu 3 a 4 (antisymetrické) musíme přidat k φ[k] konstantní fázový posun (až do indexu k=0.5N). Zbývající vzorky jsou komplexně sdružené
- 6. Na takto získanou poskoupnost aplikujeme IDFT (IFFT)
- 7. Ze získaných koeficientů určíme frekvenční charakteristiku, porovnáme s požadovanou a popř. upravíme amplitudy koeficientů frekvenční charakteristiky a pokračujeme krokem 3.
- 8. Výslednou impulsovou odezvu násobíme vhodným oknem

Příklad: Uvažujte charakteristiku ideální DP podle obrázku a určete koeficienty filtru

Příklad: Uvažujte charakteristiku ideální HP podle obrázku a určete koeficienty filtru

