CMOS DRAM

1M×1 Bit CMOS Dynamic RAM with Fast Page Mode

FEATURES

• Performance range:

	t _{RAC}	tcac	t _{RC}
KM41C1000C-6	60ns	15ns	110ns
KM41C1000C-7	70ns	20ns	130ns
KM41C1000C-8	80ns	20ns	150ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- . TTL compatible input and output
- Single +5V ± 10% power supply
- 512 cycles/8ms refresh
- 256K×4 fast test mode
- JEDEC Standard pinout available in Plastic DIP, SOJ, ZIP, TSOP (I), TSOP (II) PLCC Packages.

GENERAL DESCRIPTION

The Samsung KM41C1000C is a CMOS high speed 1,048,576×1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as minicomputers, graphics and high performance microprocessor computers.

The KM41C1000C features Fast Page Mode operation which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RASonly refresh. All inputs and outputs are fully TTL compatible.

The KM41C1000C is fabricated using Samsung's advanced CMOS process.

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part No.	Access Time	Package
KM41C1000CP-6	60ns	
KM41C1000CP-7	70ns	300 mil, 18DIP
KM41C1000CP-8	80ns	
KM41C1000CJ-6	60ns	
KM41C1000CJ-7	70ns	300 mil, 20SOJ
KM41C1000CJ-8	80ns	
KM41C1000CZ-6	60ns	
KM41C1000CZ-7	70ns	400 mil, 20ZIP
KM41C1000CZ-8	80ns	
KM41C1000CV-6	60ns	
KM41C1000CV-7	70ns	20 TOSP(I)
KM41C1000CV-8	80ns	(Forward)
KM41C1000CVR-6	60ns	
KM41C1000CVR-7	70ns	20 TOSP(I)
KM41C1000CVR-8	80ns	(Reverse)
KM41C1000CT-6	60ns	
KM41C1000CT-7	70ns	20 TOSP(II)
KM41C1000CT-8	80ns	(Forward)
KM41C1000CTR-6	60ns	
KM41C1000CTR-7	70ns	20 TOSP(II)
KM41C1000CTR-8	80ns	(Reverse)
KM41C1000CG-6	60ns	
KM41C1000CG-7	70ns	18PLCC
KM41C1000CG-8	80ns	

CMOS DRAM

PIN CONFIGURATION (Top Views)

KM41C1000CV

Pin Names	Pin Function
A ₀ -A ₉	Address Inputs
D	Data In
Q.	Data Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
TF	Test Function
Vcc	Power (+5V)
Vss	Ground
NC	No Connection
NL	No Lead

KM41C1000CVR

CMOS DRAM

ABSOLUTE MAXIMUM RATINGS*

_			
Parameter	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	V _{IN} , V _{OUT}	- 1 to + 7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	- 1 to + 7.0	V
Storage Temperature	T _{stg}	-55 to +150	•C
Power Dissipation	P _D	600	mW
Short Circuit Output Current	los	50	mA

^{*} Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to Vss, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	V _{IH}	2.4	_	V _{CC} +1	٧
Input Low Voltage	V _{IL}	- 1.0		0.8	٧

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Units	
Operating Current* (RAS, and CAS, Address Cycling @ t _{RC} =min.)	KM41C1000C-6 KM41C1000C-7 KM41C1000C-8	lcc1	=	70 65 60	mA mA mA
Standby Current (RAS = CAS = V _{IH})	ICC2 — 2				mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS, Address Cycling @ t _{RC} =min.)	KM41C1000C-6 KM41C1000C-7 KM41C1000C-8	lcca	=	70 65 60	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS, Address Cycling @ t _{PC} =min.)	KM41C1000C-6 KM41C1000C-7 KM41C1000C-8	I _{CC4}	=	55 50 45	mA mA mA
Standby Current (RAS = CAS = V _{CC} -0.2V)	·	I _{CC5}	_	1	mA
CAS-Before-RAS Refresh Current* (RAS and CAS cycling @ t _{RC} =min.)	KM41C1000C-6 KM41C1000C-7 KM41C1000C-8	Icce	=	70 65 60	mA mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$ all other pins not under test = 0 volts.)	1	1 ₁ L	- 10	10	μΑ
Output Leakage Current (Data out is disabled, 0 ≤ V _{OUT} ≤ 5.5V)		loL	- 10	10	μΑ
Output High Voltage Level (IOH = -5mA)		V _{OH}	2.4	_	V
Output Low Voltage Level (I _{OL} =4.2mA)		V _{OL}		0.4	٧

^{*} NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as average current. Icci, Iccs Address can be changed maximum two times while RAS=VIL. ICC4, Address can be changed maximum once while CAS=VIH.

CMOS DRAM

CAPACITANCE (T_A =25°C)

Parameter	Parameter Symbol Min			
Input Capacitance [D]	C _{IN1}	_	5	pF
Input Capacitance [A ₀ -A ₉]	C _{IN1}	_	6	pF
Input Capacitance [RAS, CAS, W]	C _{IN3}	_	7	pF
Output Capacitance [Q]	Соит		7	pF

AC CHARACTERISTICS (0°C ≤Ta ≤70°C, V_{CC} =5.0V ± 10%, See notes 1, 2)

-		KM41	C1000C-6	KM41C1000C-7		KM41C1000C-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	110		130		150		ns	
Read-modify-write cycle time	trwc	130		150		170		ns	
Access time from RAS	trac		60		70		80	ns	3, 4, 11
Access time from CAS	tcac		15		20		20	ns	3, 4, 5
Access time from column address	taa		30		35		40	ns	3, 10
CAS to output in Low-Z	tcLz	0		0		0		ns	3
Output buffer turn-off delay	toff	0	15	0	20	0	20	ns	7
Transition time (rise and fall)	t _T	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	40		50		60		ns	
RAS pulse width	tras	60	10,000	70	10,000	80	10,000	ns	
RAS hold time	trsH	15		20		20		ns	
CAS hold time	tсsн	60		70		80		ns	
CAS pulse width	tcas	15	10,000	20	10,000	20	10,000	ns	
RAS to CAS delay time	tRCD	20	45	20	50	20	60	ns	4
RAS to column address delay time	tRAD	15	30	15	35	15	40	ns	11
CAS to RAS precharge time	tcap	5		5		5		ns	
Row address set-up time	tasr	0		0		0		ns	
Row address hold time	tRAH	10		10		10		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tcah	15		15		15		ns	
Column address to RAS lead time	TRAL	30		35		40		ns	
Read command set-up time	tacs	0		0		0		ns	

CMOS DRAM

AC CHARACTERISTICS (0°C ≤Ta ≤70°C, V_{CC} =5.0V ± 10%, See notes 1, 2)

Barrana		KM410	1000C-6	KM41C1000C-7		KM410	1000C-8		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read command hold time referenced to CAS	tach	0		0		0		ns	9
Read command hold time referenced to RAS	tarh	0		0		0		ns	9
Write command hold time	twch	10		10		10		ns	
Write command hold time referenced to RAS	twcn	45		50		55		ns	6
Write command pulse width	twp	10		10		10		ns	
Write command to RAS lead time	tawl	15		15		15		ns	
Write command to CAS lead time	tcwL	15		15		15		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		15		ns	10
Data-in hold time referenced to RAS	tohr	50		55		60		ns	6
Refresh period (512 cycles)	tREF		8		8		8	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS to W delay time	tcwp	15		20		20		ns	8
RAS to W delay time	tawd	60		70		80		ns	8
Column address to W dealy time	tawd	30		35		40		ns	8
CAS set-up time (CAS-before-RAS refresh)	tcsn	5		5		5		ns	
CAS hold time (CAS-before-RAS refresh)	tchR	15		15		15		ns	
RAS precharge to CAS hold time	trec	5		5		5		ns	
CAS precharge time (C-B-R counter test cycle)	t _{CPT}	20		25		30		ns	
Access time from CAS precharge	topa		35		35		40	ns	3
Fast page mode cycle time	t _{PC}	40		45		50		ns	
Fast page mode read-modify-write cycle time	terwo	60		60		65		ns	
RAS pulse width (Fast page mode)	trasp	60	100K	70	100K	80	100K	ns	
RAS hold time from CAS precharge	TRHCP	40		45		50		ns	
CAS precharge time (Fast page mode)	t _{CP}	10		10		10		ns	

NOTES

- V_{IH}(min) and V_{IL}(max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH}(min) and V_{IL}(max), and are assumed to be 5ns for all inputs.
- Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the t_{RCD}(max) limit insures that t_{RAC}(max) can be met. t_{RCD}(max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD}(max) limit, then access time is controlled exclusively by t_{CAC}.
- Assumes that t_{RCD}≥t_{RCD}(max).
- 6. twcn, tohn are referenced to trad(max).
- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}≥t_{WCS}(min) the cycle is an early write cycle and

the data output will remain open circuit throughout the entire cycle. If $t_{\text{CWD}} \geq t_{\text{CWD}}(\text{min})$ and $t_{\text{RWD}} \geq t_{\text{RWD}}(\text{min})$ and $t_{\text{RWD}} \geq t_{\text{RWD}}(\text{min})$, then the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

- Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD} (max) limit insures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled by t_{AD}.
- Normal operation requires the "T.F" pin to be connected to V_{ss} or TTL logic low level or left unconnected on the printed wiring board.
- 13. When the "T.F" pin is connected to a defined positive voltage, the internal test function may be activated. Contact Samsung for specific operational details of the "test function."
- In a test mode read cycle, the value of trac, tcac, taa is delayed for 3ns.

TIMING DIAGRAMS

READ CYCLE VIH-RAS VILtcsh **TRCD** toss VIH. CAS VIL-TRAL t_{CAH} LAAH tasi TASR ROW COLUMN ADDRESS teantore tcı z VALID DATA Vон OPEN Q VoL-DON'T CARE

66

CMOS DRAM

TIMING DIAGRAMS (Continued)

WRITE CYCLE (EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

CMOS DRAM

TIMING DIAGRAMS (Continued)

FAST PAGE MODE READ CYCLE

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

CMOS DRAM

TIMING DIAGRAMS (Continued)

FAST PAGE MODE READ-WRITE CYCLE

CMOS DRAM

TIMING DIAGRAMS (Continued)

RAS-ONLY REFRESH CYCLE

OPEN

HIDDEN REFRESH CYCLE

VOH-

VOL-

CAS-BEFORE-RAS REFRESH CYCLE

CMOS DRAM

TIMING DIAGRAMS (Continued)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

DEVICE OPERATION

Device Operation

The KM41C1000C contains 1,048,576 memory locations. Twenty address bits are required to address a particular memory location. Since the KM41C1000C has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (CAS) and the valid row and column address inputs.

Operation of the KM41C1000C begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41C1000C cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (tRP) requirement.

RAS and CAS Timing

The minimum RAS and CAS pulse widths are specified by tRAS(min) and tCAS(min) respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing RAS low, it must not be aborted prior to satisfying the minimum RAS and CAS pulse widths. In addition, a new cycle must not begin until the minimum RAS precharge time, tRP, has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C1000C begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(W) high during a RAS/CAS cycle. The access time is normally specified with respect to the falling edge of RAS. But the access time also depends on the falling edge of CAS and on the valid column address transition.

If CAS goes low before tRCD(max) and if the column address is valid before tRAD(max) then the access time to valid data is specified by tRAC(min). However, if CAS goes low after tRCD(max) or if the column address becomes valid after tRAD(max), access is specified by tCAC or tAA. In order to achieve the minimum access: time, tRAC(min), it is necessary to meet both tRCD(max) and tRAD(max).

Write

The KM41C1000C can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between W and CAS. In any type of write cycle. Data-in must be valid at or before the falling edge of W or CAS, whichever is later.

Early Write: An early write cycle is performed by bringing W low before CAS. The data at the data input pin (D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing W low after CAS and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If W is brought low after CAS, a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters tCWD and tAWD are not necessarily met. The state of data-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C1000C has a three-state output buffers which is controlled by CAS. Whenever CAS is high (VIH) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output, the output goes into the low impedance state in a time specified by tCLZ after the falling edge of CAS. Invalid data may be present at the output during the time after tCLZ and before the valid data appears at the output. The timing parameters tCAC, tRAC and tAA specify when the valid data will be present at the output. The valid data remains at the output until CAS returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C1000C operating cycles is listed below after the corresponding output state produced by the cycle.

CMOS DRAM

KM41C1000C

DEVICE OPERATION (Continued)

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-before-RAS Refresh, CAS-only cvcle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41C1000C is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 8 ms. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with RAS while CAS remains high. This cycle must be repeated for each of the 512 row addresses, (A0-A8). The state of address A9 is ignored during refresh.

CAS-before-RAS Refresh: The KM41C1000C has CASbefore-RAS on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held low for the specified set up time (tCSR) before RAS goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next CAS-before-RAS refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the CAS active time and cycling RAS. The KM41C1000C hidden refresh cycle is actually a CASbefore-RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C1000C by using read, write or read-modifywrite cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

CAS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS refresh counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry. The cycle begins as a CASbefore-RAS refresh operation. Then, if CAS is brought high and then low again while RAS is held low, the read and write operations are enabled. In this mode, the row address bits A0 through A8 are supplied by the on-chip refresh counter. The A9 bit is set low internally.

Fast Page Mode

The KM41C1000C has Fast Page mode capability which provides high speed read, write or read-modifywrite access to all memory cells within a selected row. These cycles may be mixed in any order. A fast page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

Power-up

If RAS = Vss during power-up, the KM41C1000C could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that RAS and CAS track with Vcc during power-up or be held at a valid VIH in order to minimize the power-up current.

An initial pause of 200 µsec is required after powerup followed by 8 initialization cycles before proper device operation is assured. Eight initialization cycles are also required after any 8 msec period in which there are no RAS cycles. An initialization cycle is any cycle in which RAS is cycled.

Termination

The lines from the TTL driver circuits to the KM41C1000C inputs act like unterminated transmission lines resulting in significant overshoot and undershoot at the inputs. To minimize overshoot it is advisable to terminate the input lines and to keep them as short as possible. Although either series or parallel termination may be used, series termination is generally recommended since it is simple and draws no additional power. It consists of a resistor in series with the input line placed close to the KM41C1000C input pin. The optimum value depends on the board layout. It must be determined experimentally and is usually in the range of 20 to 40 ohms.

DEVICE OPERATION (Continued)

Board Layout

It is important to lay out the power and ground lines on memory boards in such a way that switching transient effects are minimized. The recommended methods are gridded power and ground lines or separate power and ground planes. The power and ground lines act like transmission lines to the high frequency transients generated by DRAMS. The impedance is minimized if all the power supply traces to all the DRAMS run both horizontally and vertically and are connected at each intersection or better yet if power and ground planes are used.

Decoupling

The importance of proper decoupling can not be over emphasized. Excessive transient noise or voltage droop on the V_{cc} line can cause loss of data integrity (soft errors). It is recommended that the total combined voltage changes over time in the VCC to VSS voltage (measured at the device pins) should not exceed 500mV.

A high frequency 0.1 µF ceramic decoupling capacitor should be connected between the Vcc and ground pins of each KM41C1000C using the shortest possible traces. These capacitors act as a low impedance shunt for the high frequency switching transients generated by the KM41C1000C and they supply much of the current used by the KM41C1000C during cycling.

In addition, a large tantalum capacitor with a value of $47\mu\text{F}$ to $100\mu\text{F}$ should be used for bulk decoupling to recharge the 0.1 µF capacitors between cycles, thereby reducing power line droop. The bulk decoupling capacitor should be placed near the point where the power traces meet the power grid or power plane. Even better results may be achieved by distributing more than one tantalum capacitor around the memory array.

PACKAGE DIMENSIONS

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (Millimeters)

CMOS DRAM

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

Units: Inches (millimeters)

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

CMOS DRAM

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE (II) (Forward and Reverse Type)

Units: Inches (millimeters)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE (I) (Forward and Reverse Type)

PACKAGE DIMENSIONS (Continued) 18- LEAD PLASTIC CHIP CARRIER

SAMSUNG **ELECTRONICS**