# Machine Learning

Markov Decision Processes

Alberto Maria Metelli and Francesco Trovò

Markov Decision Process

### Markov Decision Process

## Two different problems

We want model the dynamics of a process and the possibility to choose among different actions in each situation

#### Two different problems:

- **Prediction**: given a specific behaviour (policy) in each situation, *estimate the expected long-term reward* starting from a specific state
- **Control**: learn the optimal behaviour to follow in order to *maximize the expected long-term reward* provided by the underlying process

## **Example: Advertising Problem**



- **Prediction**: given the actions in each state (S1, S2, S3) compute the value of a state
- Control: determine the best action in each state

Prediction

### Prediction

## Prediction on the Advertising Problem



Given the policy (do nothing, do nothing), compute the value of each state

## Modeling the MDP

First, we model the MDP  $\mathcal{M} := (\mathcal{S}, \mathcal{A}, P, R, \mu, \gamma)$  for the given problem:

- States:  $S = \{$ first time, repeated purchaser, loyal customer $\}$
- Actions:  $A = \{ do \ nothing, special \ offer, club \ membership \}$
- Transition model:  $P: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ , we need  $\dim(P) = |\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|$  numbers to store it
- Reward function:  $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ , we need  $\dim(R) = |\mathcal{S}||\mathcal{A}|$  numbers to store it
- Initial distribution  $\mu \in \Delta(\mathcal{S})$ , we need dim $(\mu) = |\mathcal{S}|$  numbers to store it
- Discount factor:  $\gamma \in (0, 1]$

where  $\Delta(\cdot)$  represents the simplex over a set

We assume that all the customer are first timers  $\mu = (1,0,0)$  and use  $\gamma = 0.9$ 

## Modeling the MDP

The agent's behavior is modeled by means of a **policy**:

$$\pi: \mathcal{S} \to \Delta(\mathcal{A})$$

Once we select a specific policy  $\pi(a|s)$ ,  $P^{\pi}$  and  $R^{\pi}$  are defined as:

$$P^{\pi}(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s)P(s'|s,a) \qquad \dim(P^{\pi}) = |\mathcal{S}| \times |\mathcal{S}|$$
 
$$R^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)R(s,a) \qquad \dim(R^{\pi}) = |\mathcal{S}|$$

# Computing the Value of the States

We have the Bellman expectation equation:

$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[ \sum_{t=0}^{+\infty} \gamma^{t} R(s_{t}, a_{t}) | s_{0} = s \right] = \sum_{a \in \mathcal{A}} \pi(a|s) \left[ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^{\pi}(s') \right]$$
$$= R^{\pi}(s) + \gamma \sum_{s' \in \mathcal{S}} P^{\pi}(s'|s) V^{\pi}(s')$$

which we can rewrite in matrix form as:

$$V^{\pi} = R^{\pi} + \gamma P^{\pi} V^{\pi} \qquad \dim(V^{\pi}) = |\mathcal{S}|$$

### Alternative 1: Closed-Form Solution

Thanks to the Bellman expectation equation:

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

Since  $P^{\pi}$  is a stochastic matrix, we have that the eigenvalues of  $(I - \gamma P^{\pi})$  are in  $[1 - \gamma, 1]$  for  $\gamma \in [0, 1)$  and the matrix is invertible!

• Inverting matrix  $(I - \gamma P^{\pi})^{-1}$  costs  $O(|\mathcal{S}|^3)$  with straightforward algorithm

### Alternative 2: Recursive Solution

If we are not able to invert the matrix (the state space is too large), let us consider the recursive version of the Bellman expectation equation:

$$V^{\pi} = R^{\pi} + \gamma P^{\pi} V^{\pi}$$

```
V_old = np.zeros(nS)
tol = 0.0001
V = pi @ R_sa
while np.any(np.abs(V_old - V) > tol):
    V_old = V
    V = pi @ (R_sa + gamma * P_sas @ V)
```

## **Evaluating Different Policies**

By changing the policy, which in matrix form is

$$\pi(a|s) = \Pi(s, a|s)$$
  $\dim(\Pi) = |\mathcal{S}| \times |\mathcal{S}||\mathcal{A}|$ 

we are able to compute the values of the states with different strategies:

• myopic: we do not want to spend any money in marketing

• far-sighted: we want to spend some money in marketing for the customer in both cases if she is a new customer or if she repeatedly purchased

### Results with Different Discounts

|                | $\gamma = 0.5$ |             | $\gamma = 0.9$ |             | $\gamma = 0.99$ |             |
|----------------|----------------|-------------|----------------|-------------|-----------------|-------------|
| $\pi$          | myopic         | far-sighted | myopic         | far-sighted | myopic          | far-sighted |
| $V^{\pi}(S_1)$ | 5.3333         | -47.6202    | 36.3636        | -9.2889     | 396.0396        | 785.3831    |
| $V^{\pi}(S_2)$ | 18.6667        | -59.9347    | 54.5455        | 20.1890     | 415.8416        | 824.8548    |
| $V^{\pi}(S_3)$ | 67.5556        | 58.7300     | 166.2338       | 136.8857    | 569.3069        | 939.9320    |

- $\bullet$  For  $\gamma = 0.5$  the myopic policy evidently outperforms the far-sighted one
- For  $\gamma = 0.9$  the two policies are getting close
- $\bullet$  For  $\gamma=0.99$  the far-sighted policy becomes the most rewarding one

Control

## Control

## Select the Policy

- **Brute force**: enumerate all the possible policies, evaluate their values and consider the one having the maximum values
  - There exists a **deterministic** optimal policy
  - Requires evaluating  $|\mathcal{A}|^{|\mathcal{S}|}$  policies
- Dynamic Programming
  - Policy Iteration: iteratively evaluate the current policy and update it in the greedy direction
  - Value Iteration: iteratively apply the Bellman optimality equation in its recursive form
    - we cannot solve the Bellman optimality equation in a closed form since the max operator is not linear!

$$V^*(s) = \max_{a \in \mathcal{A}} \left\{ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|a, s) V^*(s') \right\}$$

## Policy Iteration

- Repeat until convergence:
  - **1 policy evaluation**, where we compute the value  $V^{\pi_k}$  of the given policy  $\pi_k$  (as seen before)
  - **② policy improvement**, where we change the policy from  $\pi_k$  to  $\pi_{k+1}$  according to the newly estimated values (**greedy improvement**)

$$\pi_{k+1}(s) = \arg \max_{a \in \mathcal{A}} Q^{\pi_k}(s, a)$$

$$= \arg \max_{a \in \mathcal{A}} \left\{ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|a, s) V^{\pi_k}(s') \right\} \quad \forall s \in \mathcal{S}$$

• Guaranteed to converge to  $\pi^*$  in a **finite** number of steps!

#### Value Iteration

- Directly evaluate the optimal policy directly, i.e., compute  $V^*(s)$
- Repeated application of the Bellman optimality equation:

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \left\{ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_k(s') \right\}$$

- Once we have  $V^*(s)$ , we can easily recover the optimal policy, i.e., the greedy one w.r.t.  $V^*(s)$
- Guaranteed to converge to  $V^*(s)$  asymptotically