7' Esercitazione https://politecnicomilano.webex.com/meet/gianenrico.conti 2 maggio 2022

Gian Enrico Conti MIPS architecture (pipelined)

II parte

Architettura dei Calcolatori e Sistemi Operativi 2021-22

Architettura Pipelined: recap

 Aggiungendo dei registri tra le varie fasi si ottiene una architettura pipelined in piu punti:

CPI recap

 Per misurare l'efficienza di una certa architettura si utilizza un indicatore chiamato CPI (Cycles Per Instruction)

$$\square CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI}$$

 Intuitivamente il CPI rappresenta il numero medio di cicli necessari per completare un istruzione

- Attenzione!
 - CPI ≥ 1 al massimo termina un istruzione per ciclo se non ci sono stalli

Terminologia: recap

- Five stage "RISC" load-store architecture:
- 1. Instruction fetch (IF)
 - get instruction from memory, increment PC
- 2. Instruction Decode (ID)
 - translate opcode into control signals and read registers
- 3. Execute (EX)
 - perform ALU operation, compute jump/branch targets
- 4. Memory (MEM)
 - access memory if needed
- 5. Writeback (WB)
 - update register file

Conflitti all'interno della pipeline recap

 I conflitti sorgono nelle architetture con pipelining quando non è possibile eseguire un'istruzione nel ciclo immediatamente successivo

- Conflitti struttural
 - Tentativo di usare la sa risorsa hardware da parte di diverse istruzioni in modi diversi nello stesso clock
- Conflitti sui dati
 - Tentativo di usare un risultato prima che sia disponibile
- Conflitti di controllo
 - Nel caso di salti, decidere quale prossima istruzione da eseguire prima che la condizione sia valutata

Conflitti sui dati: recap

 Un'istruzione dipende dal risultato di un'istruzione precedente che è ancora nella pipeline

Nella pipeline queste istruzioni vengono rappresentate come

Conflitti sui dati: recap soluzioni

soluzioni SW

NOP
 Inserimento di istruzioni NOP per evitare il conflitto

Scheduling Cambiamento dell'ordine di esecuzione delle istruzioni

mantenendo equivalenza funzionale

- Soluzioni HW
 - Inserimento di bolle (bubble) o stalli nella pipeline
 - Si inseriscono dei tempi morti
 - Peggiora il throughput
 - Propagazione o scavalcamento (forwarding o bypassing)
 - Si propagano i dati in avanti appena sono disponibili verso le unità che li richiedono

Soluzioni ai conflitti di controllo recap

Soluzioni di tipo hardware

- Inserimento di bolle (bubble) o stalli nella pipeline (3 cicli)
 - Si inseriscono dei tempi morti
 - Peggiora il throughput
- Ridurre i ritardi associati ai salti condizionati
 - Comparatore in fase di decode
 - Calcolo dell'indirizzo di destinazione in fase di decode
- Predizione Statica
 - Si assume branch taken o branch not taken
 - In caso di errore si invalida l'instruzione in esecuzione
- Predizione Dinamica
 - Comparatore in fase di decode
 - Tabella della storia dei salti (branch prediction buffer)
 - Predizione a 1 o 2 bit

Esercizi II

- Dipendenze

- Calcolo del CPI(clock cycles per instruction)

$$CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI}$$

Esercizio 4

Dato il seguente codice assembly:

```
R1, ZERO, 2
      ADDI
      ADDI
              R2, ZERO, 7
              R3, 0(R4)
TAG:
      LW
              R3, R3, R2
      ADD
      SW
              R3, 0(R4)
              R4, R4, 8
      ADDI
              R1, R1, 1
      SUBI
      BNEQ
              R1, ZERO, TAG
      NOP
```

- 1. Identificare le dipendenze dati del seguente codice
- 2. Risolvere i conflitti presenti utilizzando gli STALLI e calcolare il CPI

Esercizio 4: Identificare le dipendenze dati del seguente codice

```
ADDI
              R1, ZERO, 2
              R2, ZERO, 7
      ADDI
              R3, O(R4)
TAG:
      LW
              R3, R3, R2
      ADD
              R3, 0(R4)
      SW
              R4, R4, 8
      ADDI
              R1, R1, 1
      SUBI
      BNEQ
              R1, ZERO, TAG
      NOP
```

1 dip: R2 in ADD4 da ADDI2

E cosi via.

Esercizio 4: Identificare le dipendenze dati del seguente codice

```
R1, ZERO, 2
      ADDI
              R2, ZERO, 7
      ADDI
              R3, 0(R4)
TAG:
     LW
              R3, R3, R2
      ADD
              R3, 0(R4)
      SW
              R4, R4, 8
      ADDI
              R1, R1, 1
      SUBI
      BNEO
              R1, ZERO, TAG
      NOP
```

Dipendenza RAW su R2 tra ADDI2 e ADD4 Dipendenza RAW su R3 tra LW3 e ADD4 Dipendenza RAW su R3 tra ADD4 e SW5 Dipendenza RAW su R1 tra ADD1 e SUBI7 Dipendenza RAW su R1 tra SUBI7 e BNEQ8

Ma anche dip interciclo a causa del salto ...

Esercizio 4: Identificare le dipendenze dati del seguente codice

```
ADDI
              R1, ZERO, 2
      ADDI
              R2, ZERO, 7
TAG:
     LW
              R3, 0(R4)
              R3, R3, R2
      ADD
              R3, 0(R4)
      SW
              R4, R4, 8
      ADDI
              R1, R1, 1
      SUBI
      BNEO
              R1, ZERO, TAG
      NOP
```

Dipendenza RAW su R2 tra ADDI2 e ADD4 Dipendenza RAW su R3 tra LW3 e ADD4 Dipendenza RAW su R3 tra ADD4 e SW5 Dipendenza RAW su R1 tra ADD1 e SUBI7 Dipendenza RAW su R1 tra SUBI7 e BNEQ8

dip interciclo: (salto)

Dipendenza RAW su R4 tra ADDI6 e LW3
Dipendenza RAW su R4 tra ADDI6 e SW4
Dipendenza RAW su R4 tra ADDI6 e ADDI6
Dipendenza RAW su R3 tra ADD4 e ADD4
Dipendenza RAW su R1 tra SUBI7 e SUBI7

Dipendenza di controllo su BNEQ8

	ADDI	R1, ZERO, 2
	ADDI	R2, ZERO, 7
TAG:	LW	R3, 0(R4)
	ADD	R3, R3, R2
	SW	R3, 0(R4)
	ADDI	R4, R4, 8
	SUBI	R1, R1, 1
	BNEQ	R1, ZERO, TAG
	NOP	

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	Е	М	W																
ADDI2		F	D	Е	М	W															
LW3			F	D	Е	М	W														
ADD4				F	X	X	D	Е	М	W											

Dipendenza RAW su R2 tra ADDI2 e ADD4

Ma anche

Dipendenza RAW su R3 tra LW3 e ADD4

• • •

	ADDI	R1, ZERO, 2
	ADDI	R2, ZERO, 7
TAG:	LW	R3, 0(R4)
	ADD	R3, R3, R2
	SW	R3, 0(R4)
	ADDI	R4, R4, 8
	SUBI	R1, R1, 1
	BNEQ	R1, ZERO, TAG
	NOP	

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	Ε	M	W																
ADDI2		F	D	Ε	М	W															
LW3			F	D	Ε	М	W														
ADD4				F	X	X	D	Е	М	W											
SW5							F	X	X	D	Е	М	W								

Dipendenza RAW su R2 tra ADDI2 e ADD4

Dipendenza RAW su R3 tra ADD4 e SW5

• •

	ADDI	R1, ZERO, 2
	ADDI	R2, ZERO, 7
TAG:	LW	R3, 0(R4)
	ADD	R3, R3, R2
	SW	R3, 0(R4)
	ADDI	R4, R4, 8
	SUBI	R1, R1, 1
	BNEQ	R1, ZERO, TAG
	NOP	

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	Ε	М	W																
ADDI2		F	D	Е	М	W															
LW3			F	D	Е	M	W														
ADD4				F	Х	X	D	Ε	М	W											
SW5							F	Х	Χ	D	Е	М	W								
ADDI6										F	D	Е	М	W							
SUBI7											F	D	Е	М	W						

Dipendenza RAW su R2 tra ADDI2 e ADD4

Dipendenza RAW su R3 tra ADD4 e SW5

Dipendenza RAW su R1 tra ADD1 e SUBI7 gia risolta...

• • •

	ADDI	R1, ZERO, 2
	ADDI	R2, ZERO, 7
TAG:	LW	R3, 0(R4)
	ADD	R3, R3, R2
	SW	R3, 0(R4)
	ADDI	R4, R4, 8
	SUBI	R1, R1, 1
	BNEQ	R1, ZERO, TAG
	NOP	

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	Ε	М	W																
ADDI2		F	D	Е	М	W															
LW3			F	D	E	M	W														
ADD4				F	X	X	D	Ε	M	W											
SW5							F	Х	Χ	D	Е	М	W								
ADDI6										F	D	Е	М	W							
SUBI7											F	D	Е	М	W						
BNEQ8												F	Х	X	D	Е	М	W			

Dipendenza RAW su R2 tra ADDI2 e ADD4

Dipendenza RAW su R3 tra ADD4 e SW5

Dipendenza RAW su R1 tra ADD1 e SUBI7 gia risolta

Dipendenza RAW su R1 tra SUBI7 e BNEQ8

ora interciclo...

	ADDI	R1, ZERO, 2
	ADDI	R2, ZERO, 7
TAG:	LW	R3, 0(R4)
	ADD	R3, R3, R2
	SW	R3, 0(R4)
	ADDI	R4, R4, 8
	SUBI	R1, R1, 1
	BNEQ	R1, ZERO, TAG
	NOP	

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	Е	М	W																
ADDI2		F	D	Ε	М	W															
LW3			F	D	Е	М	W														
ADD4				F	Х	Х	D	Е	М	W											
SW5							F	Х	Χ	D	Е	М	W								
ADDI6										F	D	Е	М	W							
SUBI7											F	D	Е	М	W						
BNEQ8												F	X	X	D	Е	М	W			
LW3																		F	D	Е	М

interciclo:

Dipendenza RAW su R4 tra ADDI6 e LW3 gia risolta.

	ADDI	R1, ZERO, 2
	ADDI	R2, ZERO, 7
TAG:	LW	R3, 0(R4)
	ADD	R3, R3, R2
	SW	R3, 0(R4)
	ADDI	R4, R4, 8
	SUBI	R1, R1, 1
	BNEQ	R1, ZERO, TAG
	NOP	

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	Е	М	W																
ADDI2		F	D	Е	М	W															
LW3			F	D	Е	М	W														
ADD4				F	X	X	D	Ε	M	W											
SW5							F	Х	Χ	D	Е	М	W								
ADDI6										F	D	Е	М	W							
SUBI7											F	D	Е	М	W						
BNEQ8												F	Х	Х	D	Е	М	W			
LW3																		F	D	Е	М

interciclo:

Dipendenza RAW su R4 tra ADDI6 e LW3 gia risolta.

Dipendenza di controllo su BNEQ8:

Come detto "o stalli nella pipeline (3 cicli)"

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	Ε	М	W																
ADDI2		F	D	Е	М	W															
LW3			F	D	E	М	W														
ADD4				F	х	Х	D	Е	М	W											
SW5							F	Х	Х	D	E	М	W								
ADDI6										F	D	E	М	W							
SUBI7											F	D	E	М	W						
BNEQ8												F	Х	Х	D	Е	М	W			
LW3																		F	D	E	М

Proseguendo... Ritorna:

Dipendenza RAW su R3 tra LW3 e ADD4

CICLO	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
BNEQ8	w														
LW3	F	D	E	М	W										
ADD4		F	X	X	D	E	М	W							
SW5					F	Х	Х	D	Е	М	W				
ADDI6								F	D	E	М	W			
SUBI7									F	D	E	М	W		
BNEQ8										F	Х	Х	D	Е	М
NOP9															

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ADDI1	F	D	E	М	W																
ADDI2		F	D	E	М	W															
LW3			F	D	Е	М	W														
ADD4				F	х	х	D	Е	М	W											
SW5							F	Х	Х	D	E	М	W								
ADDI6										F	D	Е	М	W							
SUBI7											F	D	Е	М	W						
BNEQ8												F	Х	Х	D	Е	М	W			
LW3																		F	D	Е	М

Completo:

CICLO	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
BNEQ8	W																			
LW3	F	D	Е	М	W															
ADD4		F	Х	Х	D	Е	М	W												
SW5					F	Х	Х	D	Е	М	W									
ADDI6								F	D	Е	М	W								
SUBI7									F	D	Е	М	W							
BNEQ8										F	X	X	D	Е	М	W				
NOP9																F	D	Е	М	W

Esercizio 4: calcolare il CPI

CPI:

$$CPI = \frac{\text{\# TOTALE CICLI}}{\text{\# TOTALE ISTRUZIONI}} = \frac{37}{15} = 2.47$$

Esercizio 5:

```
LOOP:LW R2, A(R3)

ADDI R5, R5, 8

SW R5, A(R4)

ADDI R3, R3, R4

BNEQ R3, R8, LOOP

ADD R2, R2, R5

Con R3 = 0, R4 = 1 e R8 = 2
```

- 1. Identificare le dipende del seguente codice
- 2. Risolvere i conflitti presenti utilizzando gli STALLI e calcolare il CPI

Esercizio 5: dipendenze

LOOP: LW

R2, A(R3)

```
R5, R5, 8
     ADDI
     SW
           R5, A(R4)
     ADDI
           R3, R3, R4
     BNEQ R3, R8, LOOP
     ADD
           R2, R2, R5
Con R3 = 0, R4 = 1 e R8 = 2
Dipendenza RAW su R2 tra LW1 e ADD6
Dipendenza RAW su R5 tra ADDI2 e SW3
Dipendenza RAW su R5 tra ADDI2 e ADD6
Dipendenza RAW su R3 tra ADDI4 e BNEQ5
Dipendenza RAW su R5 tra ADDI2 e ADDI2
                                             (Interciclo)
Dipendenza RAW su R3 tra ADDI4 e LW1
                                             (Interciclo)
                                             (Interciclo)
Dipendenza RAW su R3 tra ADDI4 e ADDI4
Dipendenza di controllo su BNEQ5
```

Esercizio 5: Risolvere i conflitti presenti utilizzando gli STALLI

LOOP: LW R2, A(R3)

ADDI R5, R5, 8

SW R5, A(R4)

ADDI R3, R3, R4

BNEQ R3, R8, LOOP

ADD R2, R2, R5

CICLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
LW1	F	D	Ε	М	W																
ADDI2		F	D	E	М	W															
SW3			F	Χ	Х	D	Ε	М	W												
ADDI4						F	D	Е	М	W											
BNEQ5							F	Χ	Χ	D	E	М	W								
LW1													F	D	Е	М	W				
ADDI2														F	D	Е	М	W			
SW3															F	Х	Х	D	Е	М	W
ADDI4																		F	D	Е	М
BNEQ5																			F	Χ	Х

CICLO	18	19	20	21	22	23	24	25	26	27	28	29
ADDI4	F	D	Е	М	W							
BNEQ 5		F	X	Х	D	E	М	W				
ADD6								F	D	Е	М	W