Homework 2

Bohan Niu

October 14, 2018

Problem 1

a) The goal is to find ϕ that:

$$\int p(\mathcal{R}, U, V, \phi) d\phi = p(\mathcal{R}, U, V)$$
(1)

By assuming that ϕ_{ij} are independent, we can write:

$$p(\phi|\mathcal{R}, U, V) = \frac{\prod_{(i,j)\in\Omega} p(r_{ij}|\phi_{ij}, u_i, v_j) p(\phi_{ij}|u_i, v_j)}{\prod_{(i,j)\in\Omega} \int p(r_{ij}|\phi_{ij}, u_i, v_j) p(\phi_{ij}|u_i, v_j) d\phi_{ij}}$$

$$= \prod_{(i,j)\in\Omega} \frac{p(r_{ij}|\phi_{ij}, u_i, v_j) p(\phi_{ij}|u_i, v_j)}{\int p(r_{ij}|\phi_{ij}, u_i, v_j) p(\phi_{ij}|u_i, v_j) d\phi_{ij}}$$

$$= \prod_{(i,j)\in\Omega} p(\phi_{ij}|r_{ij}, u_i, v_j)$$
(2)

From EM equation, we can know that:

$$\ln p(\mathcal{R}, U, V) = \ln p(U, V) + \sum_{(i,j)\in\Omega} \ln p(r_{ij}|u_i, v_j)$$

$$= \ln p(U, V) + \sum_{(i,j)\in\Omega} \int q(\phi_{ij}) \ln \frac{p(r_{ij}, \phi_{ij}|u_i, v_j)}{q(\phi_{ij})} d(\phi_{ij})$$

$$+ \sum_{(i,j)\in\Omega} \int q(\phi_{ij}) \ln \frac{q(\phi_{ij})}{p(\phi_{ij}|r_{ij}, u_i, v_j)} d(\phi_{ij})$$
(3)

In order to make the last fraction in RHS equals to 0, we select q:

$$q(\phi_{ij}) = p(\phi|\mathcal{R}, \mathcal{U}, \mathcal{V}) = \prod_{(i,j)\in\Omega} p(\phi_{ij}|r_{ij}, u_i, v_j) = \prod_{(i,j)\in\Omega} q(\phi_{ij})$$
(4)

In the data, $r_{ij} = \{1, -1\}$, but it is fine for us suppose that $r_{ij} = \{1, 0\}$ when we derive $q(\phi_{ij})$. Thus, we set an indicator for r_{ij} :

$$r_{ij} = \mathbb{1}(\phi_{ij} > 0), \quad \phi_{ij} \sim \text{Normal}(u_i^T v_j, \sigma^2)$$
 (5)

Then for $r_{ij} = 1$ we can write the joint likelihood:

$$p(r_{ij} = 1, \phi_{ij} | u_i, v_j) = p(r_{ij} = 1 | \phi_{ij}) p(\phi_{ij} | u_i, v_j)$$

$$= \mathbb{1}(\phi_{ij} > 0) (2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2}(\phi_{ij} - u_i^T v_j)^2}$$
(6)

By integrating equation (6), we can show that it equals to $\Phi(u_i^T v_j/\sigma)$:

$$\int p(r_{ij} = 1, \phi_{ij} | u_i, v_j) d\phi_{ij} = \int_{-\infty}^{\infty} \mathbb{1}(\phi_{ij} > 0) (2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2}(\phi_{ij} - u_i^T v_j)^2} d\phi_{ij}
= \int_{0}^{\infty} (2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2}(\phi_{ij} - u_i^T v_j)^2} d\phi_{ij}
= P(\phi_{ij} > 0)$$
(7)

Since we now that $\phi_{ij} \sim \text{Normal}(u_i^T v_j, \sigma^2)$, we can write $\phi_{ij} = u_i^T v_j + \sigma s$, where $s \sim \text{Normal}(0, 1)$. Therefore, we turn equation (7) into:

$$\int p(r_{ij} = 1, \phi_{ij} | u_i, v_j) d\phi_{ij} = P(\phi_{ij} > 0) = P(\phi_{ij} = u_i^T v_j + \sigma s > 0)$$

$$= P(s \le -u_i^T v_j / \sigma) = \Phi(u_i^T v_j / \sigma)$$
(8)

After showing this, we have proved that we found the right ϕ_{ij} . So finally, we can derive $q(\phi_{ij})$:

$$q(\phi_{ij}) = p(\phi_{ij}|r_{ij}, u_i, v_j) = \frac{p(r_{ij}|\phi_{ij})p(\phi_{ij}|u_i, v_j)}{\int p(r_{ij}|\phi_{ij})p(\phi_{ij}|u_i, v_j)d\phi_{ij}}$$

$$= \frac{\mathbb{1}(\text{sign}(\phi_{ij}) = r_{ij})e^{\frac{1}{2\sigma^2}(\phi_{ij} - u_i^T v_j)^2}}{\int_{-\infty}^{\infty} \mathbb{1}(\text{sign}(\phi_{ij}) = r_{ij})e^{\frac{1}{2\sigma^2}(\phi_{ij} - u_i^T v_j)^2}d\phi_{ij}}$$
(9)

That is, a truncated normal distribution $TN_1(u_i^T v_j, \sigma^2)$ when $r_i j = 1$ and $TN_0(u_i^T v_j, \sigma^2)$ when $r_i j = -1$.

b) Then we can calculate:

$$\mathcal{L}(U,V) = \ln p(U,V) + \sum_{(i,j)\in\Omega} \mathbb{E}_q[\ln p(r_{ij},\phi_{ij}|u_i,v_j)] + \text{const.}$$
(10)

We suppose that U and V are independent, so $\ln p(U, V) = \ln p(U) + \ln p(V) = \sum_i \ln p(u_i) + \sum_i \ln p(v_j)$. Then we plug in $p(r_{ij}, \phi_{ij}|u_i, v_j)$ and get:

$$\mathcal{L}(U, V) = \sum_{i} \ln p(u_i) + \sum_{j} \ln p(v_j) + \sum_{(i,j) \in \Omega} \mathbb{E}_q[\ln \mathbb{1}(\operatorname{sign}(\phi_{ij}) = r_{ij})]$$

$$- \sum_{(i,j) \in \Omega} \mathbb{E}_q[(\phi_{ij} - u_i^T v_j)^2] + \operatorname{const.}$$

$$= - \sum_{i} \frac{1}{2c} u_i^T u_i - \sum_{j} \frac{1}{2c} u_j^T u_j - \sum_{(i,j) \in \Omega} \frac{1}{2\sigma^2} (u_i^T v_j v_j^T u_i - 2u_i^T v_j \mathbb{E}_q[\phi_{ij}]) + \operatorname{const.}$$
(11)

and $\mathbb{E}_q[\phi_{ij}]$ is:

$$\mathbb{E}_{q}[\phi_{ij}] = \begin{cases}
 u_i^T v_j + \sigma \times \frac{\Phi'(-u_i^T v_j/\sigma)}{1 - \Phi(-u_i^T v_j/\sigma)} & \text{if } r_{ij} = 1 \\
 u_i^T v_j + \sigma \times \frac{-\Phi'(-u_i^T v_j/\sigma)}{\Phi(-u_i^T v_j/\sigma)} & \text{if } r_{ij} = -1
\end{cases}$$
(12)

c) Because U, V are independent, so we can derive then separately. We first derive U:

$$u_i = \arg\max_{u_i} \mathcal{L}(U) \Leftrightarrow u_i = (c^{-1}I + \sum_{(i,j)\in\Omega} v_j v_j^T / \sigma^2)^{-1} (\sum_{(i,j)\in\Omega} v_j \mathbb{E}_q[\phi_{ij}] / \sigma)$$
(13)

In the same way, we can derive V:

$$v_j = \arg\max_{v_j} \mathcal{L}(V) \Leftrightarrow v_j = (c^{-1}I + \sum_{(i,j)\in\Omega} u_i u_i^T / \sigma^2)^{-1} (\sum_{(i,j)\in\Omega} u_i \mathbb{E}_q[\phi_{ij}] / \sigma)$$
(14)

- d) In summary, the steps of the EM algorithm are:
 - 1. Initialize U, V, σ and c in some way.
 - 2. For iteration t = 1, ..., T
 - (a) E-Step: Calculate the matrix $\mathbb{E}[\phi]$, where:

$$\mathbb{E}_{q}[\phi_{ij}] = \begin{cases} u_{i}^{T} v_{j} + \sigma \times \frac{\Phi'(-u_{i}^{T} v_{j}/\sigma)}{1 - \Phi(-u_{i}^{T} v_{j}/\sigma)} & \text{if } r_{ij} = 1\\ u_{i}^{T} v_{j} + \sigma \times \frac{-\Phi'(-u_{i}^{T} v_{j}/\sigma)}{\Phi(-u_{i}^{T} v_{j}/\sigma)} & \text{if } r_{ij} = -1 \end{cases}$$

(b) M-Step: Update the vector u_i and v_j using the expectations above in the following equation

$$u_{i} = (c^{-1}I + \sum_{(i,j)\in\Omega} v_{j}v_{j}^{T}/\sigma^{2})^{-1}(\sum_{(i,j)\in\Omega} v_{j}\mathbb{E}_{q}[\phi_{ij}]/\sigma)$$
$$v_{j} = (c^{-1}I + \sum_{(i,j)\in\Omega} u_{i}u_{i}^{T}/\sigma^{2})^{-1}(\sum_{(i,j)\in\Omega} u_{i}\mathbb{E}_{q}[\phi_{ij}]/\sigma)$$

(c)Calculate $\ln p(\mathcal{R}, U, V)$ using the equation

$$\ln p(\mathcal{R}, U, V) = \frac{d}{2}(M + N)\ln(\frac{1}{2c\pi}) - \frac{1}{2c}\sum_{i} u_i^T u_i - \frac{1}{2c}\sum_{j} v_j^T v_j + \sum_{(i,j)\in\Omega} \frac{1 + r_{ij}}{2}\ln\Phi(u_i^T v_j/\sigma) + \sum_{(i,j)\in\Omega} \frac{1 - r_{ij}}{2}\ln(1 - \Phi(u_i^T v_j/\sigma))$$

Problem 2

a)

b)

c) confusion matrix

	like	not like
like	2180	554
not like	1115	1151