Exploring data #1

Factor vectors are used in R for **categorical variables**, where more than one observation can have the same category.

Factor variables have one or more **levels**. While you will always see a factor printed with its factor level labels, R "remembers" the variable with each level assigned a number.

In tibbles, factors will be noted with "fctr" under the column name. For example, look at the aqi column in the beijing_pm data:

```
head(beijing_pm, n = 3)
```

You can use the levels function to see the levels of a factor vector, as well as the order those levels are recorded in R.

```
levels(beijing_pm$aqi)
```

```
## [1] "Good"
## [2] "Moderate"
## [3] "Unhealthy for Sensitive Groups"
## [4] "Unhealthy"
## [5] "Very Unhealthy"
## [6] "Hazardous"
## [7] "Beyond Index"
```

To explore a factor vector, you'll often want to **count** the number of observations in each category. You can do that with two functions in the dplyr package, group_by and count.

Start with a dataframe that includes the factor variable as a column. First group_by the factor, then pipe the output of that into the count function.

This will create a new summary dataframe, with a row for each level of the factor. A column called n will give the number of observations in the original data that had that level of the factor.

You can **count** how many observations have each level of a factor.


```
beijing_pm %>%
  group_by(aqi) %>%
  count()
## # A tibble: 8 x 2
## # Groups: aqi [8]
##
   aqi
                                         n
## <fct>
                                     <int>
## 1 Good
                                      2438
## 2 Moderate
                                      1021
                                       374
## 3 Unhealthy for Sensitive Groups
## 4 Unhealthy
                                       167
## 5 Very Unhealthy
                                       179
## 6 Hazardous
                                       107
## 7 Beyond Index
                                        27
## 8 <NA>
                                        31
```

You can jointly explore multiple columns in a dataframe.

For example, if one column is a factor and one is numeric, it can be useful to explore values of the numeric column within each level of the factor column.

For the Beijing data, you may want to find out the mean comcentration of $PM_{2.5}$ within each AQI level.

You can summarize a numeric column within levels of a factor column:

To do this, pipe the dataframe into group_by (where you can group by the factor column) and then into summarize, where you can calculate summaries.

```
beijing_pm %>%
  group by(aqi) %>%
  summarize(mean_pm = mean(value))
## # A tibble: 8 x 2
##
    aqi
                                     mean pm
## <fct>
                                        <dbl>
## 1 Good
                                        23.5
## 2 Moderate
                                        70.7
## 3 Unhealthy for Sensitive Groups
                                        122.
   4 Unhealthy
                                        172.
## 5 Very Unhealthy
                                       243.
## 6 Hazardous
                                       378.
## 7 Beyond Index
                                       554.
```

You can create several summaries at once:

```
## # A tibble: 8 x 3
## aqi
                                  min_pm max_pm
## <fct>
                                   <dbl> <dbl>
## 1 Good
                                             50
## 2 Moderate
                                      51
                                            100
## 3 Unhealthy for Sensitive Groups
                                     101
                                            150
                                     151
                                            200
## 4 Unhealthy
## 5 Very Unhealthy
                                     202
                                            300
## 6 Hazardous
                                     301 500
                                     505
                                            684
## 7 Beyond Index
## 8 <NA>
                                    -999
                                            -2
```

As a note, there's a function called n() that you can use inside summarize to replace count. For example, these two expressions give the same output:

```
beijing_pm %>%
  group_by(aqi) %>%
  count()

beijing_pm %>%
  group_by(aqi) %>%
  summarize(n = n())
```

If a column is in a character class, but you'd like it to be a factor, you can use as_factor from the forcats package:

```
library("forcats")
beijing pm %>%
 mutate(qc = as_factor(qc))
## # A tibble: 4,344 x 4
##
     sample time value qc aqi
##
     <chr> <dbl> <fct> <fct>
   1 1/1/2017 0:00 505 Valid Beyond Index
##
   2 1/1/2017 1:00 485 Valid Hazardous
##
   3 1/1/2017 2:00 466 Valid Hazardous
##
   4 1/1/2017 3:00 435 Valid Hazardous
##
   5 1/1/2017 4:00 405 Valid Hazardous
##
##
   6 1/1/2017 5:00 402 Valid Hazardous
   7 1/1/2017 6:00 407 Valid Hazardous
##
##
   8 1/1/2017 7:00 435 Valid Hazardous
```

13