

JAN 3 0 2003 TECH CENTER 1600/2900

In The Claims:

Please amend claims 1 and 52 - 54 as follows:

(Amended Four Times) A compound of the Formula I 1.

$$R^{1} \xrightarrow{N} CO_{2}H \xrightarrow{O} R^{2}$$

$$R^{1} \xrightarrow{N} CO_{2}H \xrightarrow{O} R^{2}$$

$$R^{2} \xrightarrow{O} R^{2}$$

$$R^{3}CO^{-}, R^{3}SO_{2}^{-}, R^{3}SO_{2$$

each R^a is independently hydrogen, C_1 - C_6 alkyl, or -(CH_2) $_n$ aryl;

 R^2 is $-(CRR)_n$ -aryl, $-(CRR)_n$ -X-aryl, -(CRR)_n-(substituted-aryl), $-(CRR)_n$ -X-(substituted-aryl), $-(CRR)_n$ -aryl-aryl,

> $\hbox{-(CRR)}_n\hbox{-aryl-(CH}_2)_n\hbox{-aryl},$ $-(CRR)_n$ -CH(aryl)₂, -(CRR)_n-cycloalkyl, - $(CRR)_n$ -X-cycloalkyl, (CH₂)_n—substituted aryl $(CH_2)_n$ aryl, -(CRR)_n -(CRR)_n CH NH aryl , · (CRR)_n (CRR)_n (CRR)_n· (CRR)_n

Contid

Application No.: 09/284,42

$$-(CRR)_n$$
, or R^4
 N
 $(CHR)_n$ - or N
 $(CHR)_n$ -

each R is independently hydrogen, C₁-C₆ alkyl, halogen or hydroxy;

X is O or S;

$$\begin{array}{c} R^3 \text{ is } C_1\text{-}C_6 \text{ alkyl}, \\ \text{aryl}, \\ \text{-}(CHR)_n\text{-}\text{aryl}, \\ \text{-}(CHR)_n\text{-}\text{substituted aryl}, \\ O \\ \parallel \\ \text{-}(CRR)_nCOR^a, \\ \text{-}(CRR)_nO(CH_2)_n\text{-}\text{aryl}, \\ \text{cycloalkyl}, \\ \text{substituted cycloalkyl}, \\ O \\ \parallel \\ \text{-}(CRR)_nCNR^aR^a, \\ O \\ \parallel \\ \text{-}(CRR)_n\text{-}S\text{-}(CH_2)_n \text{ aryl}, \\ \parallel \\ O \\ \\ \text{-}(CRR)_n\text{-}SC_1\text{-}C_6 \text{ alkyl}, \\ \parallel \\ O \\ \end{array}$$

CONTO

Conto

each R' is independently C_1 - C_6 alkyl, C_1 - C_6 alkylaryl, aryl, or hydrogen;

each J is independently $\begin{array}{c} -\mathrm{CO}_2 R^b, \\ -\mathrm{CONR}^b R^b, \\ -\mathrm{SO}_2 N R^b R^b, \text{ or } \\ -\mathrm{SO}_2 R^b; \end{array}$

each Rb is independently hydrogen, C₁-C₆ alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl;

$$R^4$$
 is hydrogen, $C_1\text{-}C_6$ alkyl, O \parallel CH_3OC -, O O $C_1\text{-}C_6$ alkyl C -;

$$C_{1}\text{-}C_{6} \text{ alkyl C--};$$

$$R^{5} \text{ is } C_{1}\text{-}C_{6} \text{ alkyl-CO--}, \\ -(CH_{2})_{n}\text{aryl}, \\ O \\ \parallel \\ C_{1}\text{-}C_{6}\text{-alkyl-CC--}, \\ C_{1}\text{-}C_{6}\text{-alkyl-X-}(CH_{2})_{n}\text{CO}, \\ O \\ \parallel \\ -C_{1}\text{-}C_{6}\text{-alkyl-X-}(CH_{2})_{n}\text{OC--}, \\ O \\ \parallel \\ -C(CRR)_{n}\text{aryl}, \\ O \\ \parallel \\ -CNR^{a}R^{a}, \\ O \\ \parallel \\ -SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O$$

O O
$$\parallel$$
 \parallel \parallel \parallel $-C(CH_2)_nCNR^aR^a$, O \parallel $-CO(CH_2)_n$ aryl, O \parallel $-CO(CH_2)_n$ substituted aryl, O O \parallel \parallel \parallel $-C(CRR)_nNHCO(CH_2)_n$ -aryl, O \parallel \parallel $-C$ $-CH$ $-N$ R^a R^6 R^6 R^6 R^6 R^6 R^6 R^6 R^6 R^6 R^6

$$R^{5a}$$
 is O

$$\parallel CC_1\text{-}C_6 \text{ alkyl}, O$$

$$\parallel -COC_1\text{-}C_6 \text{ alkyl}, O$$

$$\parallel 0$$

$$\parallel -C\text{-}CH\text{-}NHCC_1\text{-}C_6 \text{ alkyl}, O$$

$$\parallel (CH_2)_n$$

$$\parallel aryl \text{ or substituted aryl, } O$$

$$\parallel CO(CH_2)_n \text{ aryl, } or$$

$$O$$

$$\parallel CO(CH_2)_n \text{ aryl, } or$$

$$O$$

R⁶ is hydrogen,

 $C_1\text{-}C_6 \text{ alkyl, -}(\text{CH}_2)_n \text{ aryl, -}(\text{CH}_2)_n \text{CO}_2 \text{R}^a, \text{ or hydroxyl substituted } C_1\text{-}C_6 \text{ alkyl;}$

> each n is independently 0 to 3, and the pharmaceutically acceptable salts thereof; excluding the following compounds:

N-(3-Phenylpropionyl)-L-valine-L-alanine-L-aspartic acid 2,6-dihydroxybenzovloxymethyl ketone;

N-(3-Phenylpropionyl)-L-valine-L-alanine-L-aspartic acid 2,6-dimethylbenzovloxymethyl ketone;

N-Benzyloxycarbonyl-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxycarbony-L-aspartic acid 2,6-ditrifluoromethyl benzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-aspartic acid 2,6-dimethoxybenzoyloxy methyl ketone;

N-Benzyloxycarbonyl-L-aspartic acid 2,-dichloro-3-(benzyloxy)benzoyloxymethyl ketone:

N-Benzyloxycarbonyl-L-aspartic acid 2-acetamido-6-chlorobenzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-aspartic acid 2,6-difluorobenzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-aspartic acid 3-(N-butylsulfonamido)-2,6dichlorobenzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-aspartic acid 2,6-dichloro-3-sulfonamido benzoyloxymethyl

N-Benzyloxycarbonyl-L-aspartic acid 3-(N-benzylsulfonamido)-2,6dichlorobenzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-aspartic acid 3-(N-(2-aminoacetamidoyl)-sulfonamido)-2,6dichlorobenzoyloxymethyl ketone;

N-Methoxycarbonyl-L-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Methoxycarbonyl glycine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Methoxycarbonyl-L-phenylalanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl

N-Methoxycarbonyl-L-valine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-valine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxycarbonyl-L-valine-L-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone:

N-(3-Phenylpropionyl)-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Methoxycarbonyl-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-(4-N,N-dimethylaminomethyl)benzoyl-L-aspartic acid 2,6-diclorobenzoloxymethyl ketone;

N-Benzyloxycarbonyl-D-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Methoxy-glycine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Methoxy-L-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Methoxy-L-valine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxy-L-valine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxy-D-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxy-L-alanine-L-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxy-L-valine-L-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-Benzyloxy-D-alanine-L-alanine-L-aspartic acid 2,6-dichlorobenzoyloxymethyl ketone;

N-(N-phenylpropionyl-valinyl-alaninyl)-3-amino-4-oxo-5-(2,6-bistrifluoro methylbenzoyloxy) pentanoic acid;

N-(N-phenylpropionyl-valinyl-alaninyl)-3-amino-4-oxo-5-benzoyloxy pentanoic acid;

N-(N-Acetyl-tyrosinyl-valinyl-alaninyl)-3-amino-4-oxo-5-(pentafluorobenzoyloxy) pentanoic acid;

3-Phenylpropionyl-L-valine-L-alanine-aspartic acid 2-phenylethylcarbonyloxymethyl ketone;

Adamantane-1-carboxylic acid 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-carboxy-2-oxo-butyl ester;

3-[2-(2-Benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-5-diphenylacetoxy-4-oxo-pentanoic acid;

2,6-Dichloro-benzoic acid 3-(5-benzyloxycarbonylamino-naphthalene-1-sulfonylamino)-4-carboxy-2-oxo-butyl ester;

2,6-Dichloro-benzoic acid 3-[2-(3-benzyloxycarbonylamino-phenyl)-propionylamino]-4-carboxy-2-oxo-butyl ester;

2,6-Dichloro-benzoic acid 3-[2-(6-benzyloxycarbonyloxy-naphthalen-2-yl)-propionylamino]-4-carboxy-2-oxo-butyl ester;

2,6-Dichloro-benzoic acid 3-(5-benzyloxycarbonylamino-naphthalene-1-sulfonylamino)-4-carboxy-2-oxo-butyl ester;

2,6-Dichloro-benzoic acid 3-[(5-benzyloxycarbonylamino-naphthalene-1-carbonyl)-amino]-4-carboxy-2-oxo-butyl ester; and

2,6-Dichloro-benzoic acid 3-[(4-benzyloxycarbonylamino-cyclohexanecarbonyl)-amino]-4-carboxy-2-oxo-butyl ester.

52. (Amended) A compound of the Formula I

wherein R^1 is R^3 OC-, R^3 CO-, R^3 SO₂-, R^a | R^5 NCH R^6 CO-.

$$R^{a}O \xrightarrow{C} Q \qquad NH_{2}$$

$$Q \qquad$$

each Ra is independently hydrogen, C1-C6 alkyl, or -(CH2)n aryl;

 R^2 is $-(CRR)_n$ -aryl,

 $-(CRR)_n-X-aryl,$

 $-(CRR)_n$ -(substituted-aryl), provided that the aryl group is not substituted with alkoxy, halogen, or trifluoromethyl,

-(CRR)_n-X-(substituted-aryl),

-(CRR)_n-aryl-aryl,

 $-(CRR)_n$ -aryl- $(CH_2)_n$ -aryl,

 $-(CRR)_n$ -CH(aryl)₂,

- $(CRR)_n$ -cycloalkyl,

-(CRR)_n-X-cycloalkyl,

$$(CH_2)_n$$
—aryl

 $-(CRR)_n$ —CH

 $(CH_2)_n$ —aryl

 $-(CRR)_n$ —Substituted aryl

 $-(CRR)_n$ —CH

 $(CH_2)_n$ —aryl

 $-(CRR)_n$ —aryl

 $(CH_2)_n$ —aryl

Conto

each R is independently hydrogen, C₁-C₆ alkyl, halogen or hydroxy;

X is O or S;

$$R^3$$
 is C_1 - C_6 alkyl, aryl,

D'd Whid

Contd

Did Contid

each R' is independently C_1 - C_6 alkyl, C_1 - C_6 alkylaryl,

aryl, or hydrogen;

each J is independently

- $-CO_2R^b$,
- -CONRbRb,
- $-SO_2NR^bR^b$, or
- -SO₂R^b;

each R^b is independently hydrogen, C₁-C₆ alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl;

R⁴ is hydrogen,

$$C_1$$
- C_6 alkyl,

-C₁-C₆ alkyl X-C₁-C₆ alkyl aryl;

```
\begin{array}{c} R^{5a} \text{ is} \\ O \\ \parallel \\ CC_1\text{-}C_6 \text{ alkyl}, \\ O \\ \parallel \\ \text{-}COC_1\text{-}C_6 \text{ alkyl}, \\ O \\ O \\ \parallel \\ \text{-}C\text{-}CH\text{-}NHCC_1\text{-}C_6 \text{ alkyl}, \\ (CH_2)_n \\ \parallel \\ CO(CH_2)_n \text{ aryl}, \\ O \\ \parallel \\ CO(CH_2)_n \text{ aryl}, \\ O \\ \parallel \\ C(CH_2)_n \text{ aryl}; \end{array}
```

 R^6 is hydrogen, C_1 - C_6 alkyl, - $(CH_2)_n$ aryl, - $(CH_2)_n$ CO₂ R^a , or hydroxyl substituted C_1 - C_6 alkyl;

```
each n is independently 0 to 3, provided that when R^{5a} is O

CO(CH<sub>2</sub>)<sub>n</sub> aryl, then n is 0, 2, or 3, and provided that when R^{5a} is O

C(CH<sub>2</sub>)<sub>n</sub> aryl, then n is 0, 1, or 3,
```

and the pharmaceutically acceptable salts thereof.

53. (Amended) A compound of the Formula I

each R^a is independently hydrogen, $C_1\text{-}C_6$ alkyl, or - $(CH_2)_n$ aryl;

 $R^2 \text{ is } -(CRR)_n\text{-aryl}, \\ -(CRR)_n\text{-}X\text{-aryl}, \\ -(CRR)_n\text{-}X\text{-(substituted-aryl)}, \\ -(CRR)_n\text{-aryl-aryl}, \\ -(CRR)_n\text{-aryl-(CH}_2)_n\text{-aryl}, \\ -(CRR)_n\text{-CH(aryl)}_2, \\ -(CRR)_n\text{-cycloalkyl}, \\ -(CRR)_n\text{-}X\text{-cycloalkyl}, \\ -(CRR)_n\text{-}X\text{-cycloalkyl}, \\ \end{array}$

$$-(CRR)_{n}-CH \\ (CH_{2})_{n}-aryl \\ (CRR)_{n}-aryl \\ (CRR)_{n}-aryl$$

Conto

$$\mathbb{R}^4$$
 \mathbb{R}^4
 \mathbb{R}^4
 $\mathbb{C}(CHR)_n$
or
 \mathbb{R}^4
 $\mathbb{C}(CHR)_n$

each R is independently hydrogen, C1-C6 alkyl, halogen or hydroxy;

X is O or S;

$$R^3 \text{ is } C_1\text{-}C_6 \text{ alkyl}, \\ \text{aryl}, \\ \text{-}(\text{CHR})_n\text{-}\text{aryl}, \\ \text{-}(\text{CHR})_n\text{-}\text{substituted aryl}, \\ \text{O} \\ \parallel \\ \text{-}(\text{CRR})_n\text{COR}^a, \\ \text{-}(\text{CRR})_n\text{O}(\text{CH}_2)_n\text{-}\text{aryl}, \\ \text{cycloalkyl}, \\ \text{substituted cycloalkyl}, \\ \text{O} \\ \parallel \\ \text{-}(\text{CRR})_n\text{CNR}^a\text{R}^a, \\ \text{O} \\ \parallel \\ \text{-}(\text{CRR})_n\text{-S-}(\text{CH}_2)_n \text{ aryl}, \\ \parallel \\ \text{O} \\ \text{CRR})_n\text{-SC}_1\text{-C}_6 \text{ alkyl}, \\ \parallel \\ \text{O} \\ \text{R}^a \\ \text{J-CH}_2\text{CH-}, \\ \text{O} \\ \parallel \\ \text{-}(\text{CRR})_n\text{S}(\text{CH}_2)_n\text{COR}^a, \\ \end{pmatrix}$$

CONF.

each R' is independently C₁-C₆ alkyl,

 C_1 - C_6 alkylaryl,

aryl, or

hydrogen;

each J is independently

-CO₂Rb,

-CONRbRb,

-SO₂NR^bR^b, or

 $-SO_2R^b$;

each Rb is independently hydrogen, C1-C6 alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl;

 $\begin{array}{c} R^{5a} \text{ is} \\ O \\ \parallel \\ CC_1\text{-}C_6 \text{ alkyl}, \\ O \\ \parallel \\ -COC_1\text{-}C_6 \text{ alkyl}, \\ O \\ O \\ \parallel \\ \parallel \\ -C\text{-}CH\text{-}NHCC_1\text{-}C_6 \text{ alkyl}, \\ \parallel \\ (CH_2)_n \\ \parallel \\ CO(CH_2)_n \text{ aryl, or } \\ O \\ \parallel \\ CO(CH_2)_n \text{ aryl, or } \\ O \\ \parallel \\ C(CH_2)_n \text{ aryl;} \end{array}$

 R^6 is hydrogen, C_1 - C_6 alkyl, - $(CH_2)_n$ aryl, - $(CH_2)_n$ CO₂ R^a , or hydroxyl substituted C_1 - C_6 alkyl;

each n is independently 0 to 3,

provided that when R^{5a} is

O

CO(CH2)n aryl,
then n is 0, 2, or 3, and

provided that when R^{5a} is O \parallel $C(CH_2)_n$ aryl, then n is 0, 1, or 3, and the pharmaceutically acceptable salts thereof.

54. (Amended) A compound of the Formula I

wherein
$$R^1$$
 is R^3 OC-, R^3 SO2-, R^3 SO2-, R^3 OC-, R^3 O

each R^a is independently hydrogen, C_1 - C_6 alkyl, or -(CH₂)_n aryl;

 R^2 is $-(CRR)_n$ -aryl,

> $-(CRR)_n$ -X-aryl, -(CRR)_n-X-(substituted-aryl), $-(CRR)_n$ -aryl-aryl, - $(CRR)_n$ -aryl- $(CH_2)_n$ -aryl, $-(CRR)_n$ -CH(aryl)₂, -(CRR)_n-cycloalkyl, -(CRR)_n-X-cycloalkyl, $-(CRR)_{n}^{} - CH_{2}^{})_{n}^{} - aryl$ $(CH_2)_n$ aryl, (CH₂)_n—substituted aryl -(CRR)_n -(CRR)_n CH NH aryl , (CRR)_n (CRR)_n

> > (CRR)_n

·(CRR)_n·

$$-(CRR)_n$$
, or R^4
 N
 $(CHR)_n$ - or N
 $(CHR)_n$ - N

each R is independently hydrogen, C₁-C₆ alkyl, halogen or hydroxy;

X is O or S;

$$R^{3} \text{ is } C_{1}\text{-}C_{6} \text{ alkyl}, \\ \text{aryl}, \\ \text{-}(CHR)_{n}\text{-}\text{aryl}, \\ \text{-}(CHR)_{n}\text{-}\text{substituted aryl}, \\ O \\ \parallel \\ \text{-}(CRR)_{n}COR^{a}, \\ \text{-}(CRR)_{n}O(CH_{2})_{n}\text{-}\text{aryl}, \\ \text{cycloalkyl}, \\ \text{substituted cycloalkyl}, \\ O \\ \parallel \\ \text{-}(CRR)_{n}CNR^{a}R^{a}, \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}S\text{-}(CH_{2})_{n} \text{ aryl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}SC_{1}\text{-}C_{6} \text{ alkyl}, \\ \parallel \\ O \\ O \\ \parallel \\ \text{-}(CRR)_{n}\text{-}CRR)_{n}\text{-}CRR$$

Conti

each R' is independently C₁-C₆ alkyl, C₁-C₆ alkylaryl, aryl, or hydrogen;

each J is independently $\begin{array}{c} -\mathrm{CO}_2 R^b, \\ -\mathrm{CONR}^b R^b, \\ -\mathrm{SO}_2 N R^b R^b, \text{ or } \\ -\mathrm{SO}_2 R^b; \end{array}$

each R^b is independently hydrogen, C₁-C₆ alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl;

 $\begin{array}{c} \mathrm{R}^4 \text{ is hydrogen,} \\ \mathrm{C}_1\text{-}\mathrm{C}_6 \text{ alkyl,} \\ \mathrm{O} \\ \parallel \\ \mathrm{CH}_3\mathrm{OC}\text{-,} \\ \text{-phenyl, or} \\ \mathrm{O} \\ \parallel \\ \mathrm{C}_1\text{-}\mathrm{C}_6 \text{ alkyl C-;} \end{array}$

C1-C6 alkyl-C0-,
-(CH₂)_n aryl,

O

C1-C6-alkylOC-,
C1-C6-alkyl-X-(CH₂)_nCO,

O

C1-C6-alkyl-X-(CH₂)_nOC-,
O

C1-C6-a

O O
$$\parallel$$
 \parallel \parallel $-C(CH_2)_nCNR^aR^a$, O \parallel $-CO(CH_2)_n$ aryl, O \parallel $-CO(CH_2)_n$ substituted aryl, O O \parallel \parallel \parallel $-C(CRR)_nNHCO(CH_2)_n$ -aryl, O $-C$ $-CH$ $-N$ R^a R^6 R^6 R^6 R^6 R^6 R^6 R^6 R^6

$$\begin{array}{c} {\rm R}^{5a}\,{\rm is} \\ {\rm O} \\ \parallel \\ {\rm CC}_1\text{-C}_6\,{\rm alkyl}, \\ {\rm O} \\ \parallel \\ {\rm -COC}_1\text{-C}_6\,{\rm alkyl}, {\rm or} \\ {\rm O} \\ {\rm O} \\ \parallel \\ \parallel \\ {\rm -C-CH-NHCC}_1\text{-C}_6\,{\rm alkyl}, \\ \parallel \\ {\rm (CH}_2)_n \\ \parallel \\ {\rm aryl\,\,or\,\,substituted\,\,aryl;} \end{array}$$

Concid

 R^6 is hydrogen, C_1 - C_6 alkyl, - $(CH_2)_n$ aryl, - $(CH_2)_n$ CO₂ R^a , or hydroxyl substituted C_1 - C_6 alkyl;

each n is independently 0 to 3, and the pharmaceutically acceptable salts thereof.

Please add new claims 55 - 61 as follows:

- (New) A pharmaceutically acceptable ester, amide, or prodrug of a compound of formula I according to Claim 1, wherein said ester is a C₅-C₇ cycloalkyl ester or an arylalkyl ester.
- 56. (New) The pharmaceutically acceptable ester of a compound of formula I according to Claim 55.
- 57. (New) The pharmaceutically acceptable amide of a compound of formula I according to Claim 55.
- 58. (New) The pharmaceutically acceptable prodrug of a compound of formula I according to Claim 55.
- 59. (New) The pharmaceutically acceptable amide of a compound of formula I according to Claim 57, wherein said amide is derived from ammonia, primary C₁-C₆ alkyl amines, and secondary C₁-C₆ dialkyl amines; wherein the alkyl groups are straight or branched chain.
- 60. (New) The pharmaceutically acceptable amide of a compound of formula I according to Claim 57, wherein said amide is derived from ammonia, primary C₁-C₃ alkyl amines, and secondary C₁-C₂ dialkyl amines; wherein the alkyl groups are straight or branched chain.
- 61. (New) The pharmaceutically acceptable prodrug of a compound of formula I according to Claim 55.

