Escuela de Matemática y Ciencias de la Computación Departamento de Matemática Pura

Sílabo de la Asignatura:

Topología

Código:

MM 425

Período Académico:

12020

Profesor:

Fredy Vides

Universidad Nacional Autónoma de Honduras UNAH

Facultad de Ciencias - Centro Regional Universitario Ciudad Universitaria

Departamento: Matemática Pura

Carrera: Licenciatura en Matemática

PROGRAMACION DIDÁCTICA POR COMPETENCIAS

Datos generales del Espacio de Aprendizaje			
Código y Nombre	delMM524	Período 2020	
Espacio de Aprendizaje:	Sistemas Dinámicos II	Académico:	
Requisitos:	MM523	Nombre del Fredy Vides	
	Sistemas Dinámicos I	docente:	
C.A:	4	Horario de 11:00-12:00	
		tutoría:	
Horas Semanales:	4	Horario de11:00-12:00	
		consulta:	
Sección:	800	Modalidad: Presencial	

Presentación del Espacio de Aprendizaje: (Breve descripción del Espacio de Aprendizaje en relación al Plan de Estudio)

En el curso de Sistemas Dinámicos II se tratan los temas fundamentales relacionados con la teoría de sistemas y la dinámica topológica.

Contenido

PRESENTACIÓN	3
COMPETENCIAS ESPECÍFICAS Y RESULTADOS DE APRENDIZAJE	
CALENDARIZACIÓN	
EVALUACIÓN DE PROCESOS Y RESULTADOS DE APRENDIZAJE	
Ribliografía	

PRESENTACIÓN

El curso de Sistemas Dinámicos II, es una asignatura de formación avanzada, y es parte de las asignaturas de la orientación en ingeniería matemática de la licenciatura en matemática. El curso consta de 4 unidades valorativas. Tiene como prerrequisito el curso de Sistemas Dinámicos I con código MM 523.

Este curso está orientado a estudiantes intermedios de la licenciatura en matemática, en él se presentan los conceptos, las técnicas y procedimientos básicos de espacios métricos y topológicos, junto con su aplicación en la teoría de sistemas.

En el curso se hace uso de diversas técnicas y procedimientos topológicos y numéricos, por esta razón, es altamente recomendable que el estudiante tenga una sólida formación previa en cálculo topología y análisis numérico.

Como libro de texto para el curso, utilizamos el clásico de Ecuaciones Diferenciales y Sistemas Dinámicos de Hirsch, Smale y Devaney. (M. W. Hirsch, S. Smale, R. L. Devaney. (2004)).

Las anteriores referencias han sido seleccionadas para proveer el material de apoyo bibliográfico necesario, con el fin de iniciar el estudio riguroso de la teoría de sistemas dinámicos.

COMPETENCIAS ESPECÍFICAS Y RESULTADOS DE APRENDIZAJE

COMPETENCIAS ESPECÍFICAS (CE)

- 1. Reconoce y aplica resultados fundamentales de la teoría de sistemas y la dinámica topológica.
- 2. Desarrolla algoritmos computacionales elementales basados en técnicas de dinámica topológica.
- 3. Identifica e interpreta los fundamentos de la naturaleza topológica y geométrica de los sistemas dinámicos.
- 4. Aplica métodos de espacios topológicos a la solución de problemas de conectividad en espacios de estados de sistemas dinámicos.
- 5. Clasifica espacios de estados en términos de sus propiedades topológicas preservadas por homeomorfismos.

RESULTADOS DE APRENDIZAJE COGNITIVOS (RAc)

1. Enuncia e interpreta los resultados fundamentales de la topología general aplicada a la

- teoría de sistemas.
- 2. Enuncia e identifica las propiedades topológicas fundamentales de los espacios de estados de sistemas dinámicos.
- 3. Bosqueja argumentos deductivos formales implementando conceptos de teoría de sistemas y dinámica topológica.
- 4. Bosqueja argumentos constructivos implementando nociones topológicas y procedimientos de teoría de sistemas.

RESULTADOS DE APRENDIZAJE INSTRUMENTALES (RAI)

- 1. Aplica técnicas de espacios topológicos a la solución de problemas de conectividad en espacios de estados de sistemas dinámicos.
- 2. Clasifica espacios de estado de sistemas dinámicos en base a sus propiedades topológicas fundamentales.
- 3. Aproxima elementos en espacios de estado de sistemas dinámicos aplicando técnicas y argumentos de densidad y continuidad.

RESULTADOS DE APRENDIZAJE ACTITUDINALES (RAa)

- 1. Realiza investigación bibliográfica de forma ética y responsable.
- 2. Trabaja en equipo en la solución de problemas de aplicación, de forma cordial y responsable.
- 3. Presenta resultados derivados del estudio de problemas de aplicación de los espacios normados, de forma clara y coherente.

CALENDARIZACIÓN

Horas de clase por semana: 4

Fecha	Contenidos
27/01/2020	Sistemas no lineales
28/01/2020	Sistemas dinámicos
29/01/2020	Sistemas dinámicos
30/01/2020	Sistemas dinámicos
03/02/2020	Existencia y unicidad
04/02/2020	Existencia y unicidad
05/02/2020	Existencia y unicidad
06/02/2020	Dependencia continua de soluciones

10/02/2020	Dependencia continua de soluciones
11/02/2020	Dependencia continua de soluciones
12/02/2020	Ecuación variacional
13/02/2020	Ecuación variacional
17/02/2020	Ecuación variacional
18/02/2020	Fuentes y atractores no lineales
19/02/2020	Fuentes y atractores no lineales
20/02/2020	Fuentes y atractores no lineales
24/02/2020	Puntos silla
25/02/2020	Puntos silla
26/02/2020	Puntos silla
27/02/2020	Estabilidad
02/03/2020	Estabilidad
03/03/2020	Estabilidad
04/03/2020	Estabilidad
05/03/2020	Actividad de Conceptualización
09/03/2020	Actividad de Coneptualización
10/03/2020	EXAMEN 1
11/03/2020	Técnicas globales no lineales
12/03/2020	• Isoclinas
16/03/2020	• Isoclinas
17/03/2020	• Isoclinas
-	

1	
	Estabilidad de equilibrios
18/03/2020	Estabilidad de equilibrios
19/03/2020	Estabilidad de equilibrios
23/03/2020	Sistemas gradiente
24/03/2020	Sistemas gradiente
25/03/2020	Sistemas Hamiltonianos
26/03/2020	Sistemas Hamitonianos
30/03/2020	Sistemas Hamiltonianos
31/03/2020	Actividad de Conceptualizacón
01/04/2020	EXAMEN 2
02/04/2020	Sistemas dinámicos discretos
13/04/2020	Introducción a los sistemas dinámicos discretos
14/04/2020	Introducción a los sistemas dinámicos discretos
15/04/2020	Bifurcaciones
16/04/2020	Bifurcaciones
20/04/20120	Modelos dinámicos discretos
21/04/2020	Dinámica simbólica
22/04/2020	Dinámica simbólica
23/04/2020	Mapas de desplazamiento
27/04/2020	Mapas de desplazamiento
28/04/2020	ACTIVIDAD DE CONCEPTUALIZACIÓN
29/04/2020	EXAMEN FINAL
30/04/2020	EXAMEN DE REPOSICIÓN
4	•

NDARIZACIÓN DE EXÁMENES	
FECHA	EXAMEN
10/03/2020	Examen 1
01/04/2020	Examen 2
29/04/2020	Examen 3
30/04/2020	Reposición

EVALUACIÓN DE PROCESOS Y RESULTADOS DE APRENDIZAJE

ACTIVIDADES DE EVALUACIÓN	Criterios de Valoración	Instrumento de Evaluación	Porcentaje puntaje final	en
	práctica de forma clara y	Actividad de conceptualización realizada mensualmente en el aula de clase.	10 %	
	Resuelve problemas en dinámica topológica, de n forma clara, ordenada y rigurosa, implementando técnicas y procedimientos topológicos y computacionales.	3 Exámenes escritos nensuales.	90 % (30% uno)	cada
Total de evaluación:			100 %	

Bibliografía

1. M. W. Hirsch, S. Smale, R. L. Devaney. (2004). Ecuaciones Diferenciales y Sistemas Dinámicos. 2a Ed. Elsevier Academic Press.