Introduction to Reinforcement Learning

A mini course @ HCMUS, Vietnam Lectures 1-3 (cont'd)

Long Tran-Thanh
Long.tran-thanh@warwick.ac.uk

Model-free approaches

Agent + environment

Abstract model:

- Agent
- Environment

Environment model

- Having access to this model gives us P and R
- Using DP + Bellman operator would work very well

Environment model

- Knowing this model gives us full information about P and R
- Using DP + Bellman operator would work very well

What happens if we don't know P and/or R?

Unknown environment model

- We don't know the model
- But we have access to it through interactions
- We can observe what happens if we make actions

Unknown environment model

- We don't know the model
- But we have access to it through interactions
- We can observe what happens if we make actions

MDP: we assume full observability (received reward, new state)

POMDP: partially observable MDP (some feedback is missing)

In this course we only focus on MDPs

Covered methods in this lecture

- Monte Carlo policy
- Temporal Difference: TD[0], TD[lambda]
- SARSA
- Q-learning

Main question: how to evaluate a policy's value if we don't know the MDP model

Idea:

- Just follow the policy, let the randomness of the model and policy guide us
- Observe the trajectory T of the policy starting from certain state s
- Repeat this many times, and take the average total returns -> estimate for the value of s

Main question: how to evaluate a policy's value if we don't know the MDP model

Idea:

- Just follow the policy, let the randomness of the model and policy guide us
- Observe the trajectory T of the policy starting from certain state s
- Repeat this many times, and take the average total returns -> estimate for the value of s

Justification:

$$G_t = r_t + \gamma t_{t+1} + \gamma^2 r_{t+2} + \dots$$

$$V^{\pi}(s) = \mathbb{E}_{T \sim \pi}[G_t | s_t = s]$$

This is called the MC method:

- Follow the policy, let the randomness of the model and policy guide us
- Observe the trajectory *T* of the policy starting from certain state *s*
- Repeat this many times, and take the average total returns -> estimate for the value of s

We need to know when to stop following the policy -> works for finite trajectories only

-> MC method can **only be applied to episodic MDPs** (finite horizon H)

Goal: estimate the value $V^{\pi}(s)$ of each state s under policy π

Observe random state-action sequence by following the policy with episode length H:

$$s_1, a_1, s_2, a_2, \ldots, s_H, a_H, s_{H+1}$$

- Calculate return $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$ for each t
- Repeat this for multiple episodes
- For each s: MC computes the empirical mean of relevant returns

Goal: estimate the value $V^{\pi}(s)$ of each state s under policy π

Observe random state-action sequence by following the policy:

$$s_1, a_1, s_2, a_2, \ldots, s_H, a_H, s_{H+1}$$

- Calculate return $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$ for each t
- For each s: MC computes the empirical mean of relevant returns

What are the **relevant** return values?

- During the process, we may visit s multiple times
 - Include the corresponding return of every time we visit s?
 - Include the return of first time visit only?

- First-visit MC method:
 - Aim: to evaluate value of state s
 - For each episode *i*: The **first time step** *t* that state *s* is visited in the episode:
 - Increment counter N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Value is estimated by empirical mean return $\hat{V}(s) = G(s)/N(s)$
 - By law of large numbers, $\hat{V}(s) \to V(s)$ as $N(s) \to \infty$

- Every-visit MC method:
 - Aim: to evaluate value of state s
 - For each episode *i*: for **every time step** *t* that state *s* is visited in the episode:
 - Increment counter N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Value is estimated by empirical mean return $\hat{V}(s) = G(s)/N(s)$
 - By law of large numbers, $\hat{V}(s) \to V(s)$ as $N(s) \to \infty$

- First-visit MC
 - Unbiased estimator of true value
 - Slower convergence (slower updates)
- Every-visit MC:
 - Duplicated rewards (introduce estimation bias)
 - Faster convergence

- Third option Incremental MC:
 - Idea: the value update is in fact the same as the following incremental update:

$$\hat{V}(s) = \hat{V}(s) \frac{N(s) - 1}{N(s)} + \frac{1}{N(s)} G_{i,t}$$

- Third option Incremental MC:
 - Idea: the value update is in fact the same as the following incremental update:

$$\hat{V}(s) = \hat{V}(s) \frac{N(s) - 1}{N(s)} + \frac{1}{N(s)} G_{i,t}$$

$$= \hat{V}(s) + \frac{1}{N(s)} \left(G_{i,t} - \hat{V}(s) \right)$$

- Third option Incremental MC:
 - Idea: the value update is in fact the same as the following incremental update:

$$\hat{V}(s) = \hat{V}(s) \frac{N(s) - 1}{N(s)} + \frac{1}{N(s)} G_{i,t}$$

$$= \hat{V}(s) + \frac{1}{N(s)} \left(G_{i,t} - \hat{V}(s) \right)$$

- Third option Incremental MC:
 - Idea: the value update is in fact the same as the following incremental update:

$$\hat{V}(s) = \hat{V}(s) \frac{N(s) - 1}{N(s)} + \frac{1}{N(s)} G_{i,t}$$

$$= \hat{V}(s) + \frac{1}{N(s)} \left(G_{i,t} - \hat{V}(s) \right)$$

• More general update rule: $\hat{V}(s) = \hat{V}(s) + lpha \left(G_{i,t} - \hat{V}(s)
ight)$

- Third option Incremental MC:
 - Every-visit MC + general update rule $\hat{V}(s) = \hat{V}(s) + lpha \left(G_{i,t} \hat{V}(s)
 ight)$

- Third option Incremental MC:
 - Every-visit MC + general update rule $\hat{V}(s) = \hat{V}(s) + \alpha \left(G_{i,t} \hat{V}(s)\right)$
- If $\alpha = 1/N(s)$ then incremental MC = every-visit MC
- $\alpha > 1/N(s)$ is useful when MDP is not stationary (i.e., we prioritise more recent updates)

Summary of the MC method

- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- Updates V estimate using sample of return to approximate the expectation
- Does not assume Markov property (why?)
- Converges to true value under some (generally mild) assumptions
- But: works for finite/episodic MDPs only

Recall:

- Dynamic programming: efficient calculations + can handle infinite horizon, but needs to know MDP (i.e., model-based)
- MC method/learning: model-free, but requires episodic nature

Idea: Why not combine these 2 and take the best of each?

Recall:

- Dynamic programming: efficient calculations + can handle infinite horizon, but needs to know MDP (i.e., model-based)
- MC method/learning: model-free, but requires episodic nature

Idea: Why not combine these 2 and take the best of each? – this is what TD does

"If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." - Sutton and Barto 2017

TD learning (or more precisely, TD(0) learning)

- Bellman operator: $B^{\pi}V^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,\pi(s))V^{\pi}(s')$
- Incremental MC method: $\hat{V}(s) = \hat{V}(s) + lpha \left(G_{i,t} \hat{V}(s)
 ight)$

TD learning (or more precisely, TD(0) learning)

- Bellman operator: $B^{\pi}V^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,\pi(s))V^{\pi}(s')$
- Incremental MC method: $\hat{V}(s) = \hat{V}(s) + \alpha \left(G_{i,t} \hat{V}(s)\right)$
- From the latter, we can write: $\hat{V}^{\pi}(s) = \hat{V}^{\pi}(s) + \alpha \left(\left[r_t + \gamma \hat{V}^{\pi}(s_{t+1}) \right] \hat{V}^{\pi}(s) \right)$
 - $[r_t + \gamma \hat{V}^{\pi}(s_{t+1})]$ is a 1-step look-ahead estimate of $G_{i,t}$
 - Note that in MC we only do this update at the end of each epoch (but then we do for each state s)

TD learning (or more precisely, TD(0) learning)

- Bellman operator: $B^{\pi}V^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,\pi(s))V^{\pi}(s')$
- Incremental MC method: $\hat{V}(s) = \hat{V}(s) + \alpha \left(G_{i,t} \hat{V}(s)\right)$
- From the latter, we can write: $\hat{V}^{\pi}(s) = \hat{V}^{\pi}(s) + \alpha \left([r_t + \gamma \hat{V}^{\pi}(s_{t+1})] \hat{V}^{\pi}(s) \right)$
- In TD do this update, but straight after we visit a state (and don't wait until the end of the episode):

$$\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha \left([r_t + \gamma \hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_t) \right)$$

TD learning (or more precisely, TD(0) learning):

- Can immediately update after each visit of s
- Therefore, there's no need for episodic setting
- If we repeat this many times, it resembles the Bellman operator (why?)

TD learning (or more precisely, TD(0) learning):

- Can immediately update after each visit of s
- Therefore, there's no need for episodic setting
- If we repeat this many times, it resembles the Bellman operator (why?)
- TD target: $[r_t + \gamma \hat{V}^{\pi}(s_{t+1})]$
- TD error: $\delta_t = [r_t + \gamma \hat{V}^\pi(s_{t+1})] \hat{V}^\pi(s_t)$

TD learning (or more precisely, TD(0) learning):

Input: α

Initialisation: $\forall s \in \mathcal{S}: \hat{V}(s) = 0$

While (interacting with environment):

Sample tuple (s_t, a_t, r_t, s_{t+1}) Update $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha \left(\left[r_t + \gamma \hat{V}^{\pi}(s_{t+1}) \right] - \hat{V}^{\pi}(s_t) \right)$

Recall that in TD(0):
$$\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha \left([r_t + \gamma \hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_t) \right)$$

1-step estimate of return $G_{i,t}$

Recall that in TD(0):
$$\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha \left([r_t + \gamma \hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_t) \right)$$

1-step estimate of return $G_{i,t}$

We can use n-step estimates as well

$$G_{i,t}^{(1)} = r_t + \gamma \hat{V}^{\pi}(s_{t+1})$$

$$G_{i,t}^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 \hat{V}^{\pi}(s_{t+2})$$

$$\vdots$$

$$G_{i,t}^{(\infty)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

Recall that in TD(0):
$$\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha \left([r_t + \gamma \hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_t) \right)$$

1-step estimate of return $G_{i,t}$

We can use n-step estimates as well

$$G_{i,t}^{(1)} = r_t + \gamma \hat{V}^{\pi}(s_{t+1})$$

$$G_{i,t}^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 \hat{V}^{\pi}(s_{t+2})$$

$$\vdots$$

$$G_{i,t}^{(\infty)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

Which n would be the best?

- Small n = worse accuracy but faster update
- Large n = the opposite

Idea: why not combine return of different nsteps?

- E.g., take the average of n = 2 and n = 5
- How to efficiently combine these together?

Recall that in TD(0):
$$\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha \left([r_t + \gamma \hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_t) \right)$$

1-step estimate of return $G_{i,t}$

We can use n-step estimates as well

$$G_{i,t}^{(1)} = r_t + \gamma \hat{V}^{\pi}(s_{t+1})$$

$$G_{i,t}^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 \hat{V}^{\pi}(s_{t+2})$$

:

$$G_{i,t}^{(\infty)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

Lambda-return $G_t^{(\lambda)}$:

$$G_t^{(\lambda)} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

 $\mathsf{TD}(\lambda)$:

$$\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$$

Forward-view TD(lambda)

**TD(
$$\lambda$$
):** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$

How to calculate G_t^{λ} ?

Forward-view:

- Look into the future and calculate return for each n
- This has restrictions similar to MC: only works for finite episodes

**TD(
$$\lambda$$
):** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$

How to calculate G_t^{λ} ?

Backward-view:

- We update the returns of states visited in the past instead
- This sounds good, but how to implement it in practice?

**TD(
$$\lambda$$
):** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$

How to calculate G_t^{λ} ?

Backward-view:

- We update the returns of states visited in the past instead
- This sounds good, but how to implement it in practice?

Some heuristics:

- Frequency heuristic: assign current value to most frequent states
- Recency heuristic: assign current value to most recent states

**TD(
$$\lambda$$
):** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$

How to calculate G_t^{λ} ?

Backward-view:

- We update the returns of states visited in the past instead
- This sounds good, but how to implement it in practice?

Some heuristics:

- Frequency heuristic: assign current value to most frequent states
- Recency heuristic: assign current value to most recent states

Eligibility trace:
$$E_0(s) = 0$$
 $E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbb{I}(s_t = s)$

**TD(
$$\lambda$$
):** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$

Backward-view:

- Eligibility trace: $E_0(s) = 0$ $E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbb{I}(s_t = s)$
- Recall TD error: $\delta_t = [r_t + \gamma \hat{V}^\pi(s_{t+1})] \hat{V}^\pi(s_t)$
- Value update: $\hat{V}^{\pi}(s) = \hat{V}^{\pi}(s) + \alpha \delta_t E_t(s_t)$

**TD(
$$\lambda$$
):** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$

Backward-view:

- Eligibility trace: $E_0(s) = 0$ $E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbb{I}(s_t = s)$
- Recall TD error: $\delta_t = [r_t + \gamma \hat{V}^\pi(s_{t+1})] \hat{V}^\pi(s_t)$
- Value update: $\hat{V}^{\pi}(s) = \hat{V}^{\pi}(s) + \alpha \delta_t E_t(s_t)$

Theorem: The sum of the updates is identical for forward-view and backward-view in the offline setting (i.e., episodic/batch)

**TD(
$$\lambda$$
):** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \alpha(G_t^{\lambda} - \hat{V}^{\pi}(s_t))$

Backward-view:

- Eligibility trace: $E_0(s) = 0$ $E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbb{I}(s_t = s)$
- Recall TD error: $\delta_t = [r_t + \gamma \hat{V}^\pi(s_{t+1})] \hat{V}^\pi(s_t)$
- Value update: $\hat{V}^{\pi}(s) = \hat{V}^{\pi}(s) + \alpha \delta_t E_t(s_t)$

Theorem: The sum of the updates is identical for forward-view and backward-view in the offline setting (i.e., episodic/batch)

Theorem: With a slightly different eligibility trace, backward = forward-view in online setting (ICML 2014)

From policy evaluation to finding optimal policy

So far what we have done:

Given a policy π , we want to compute its value function

- DP: relies on Bellman operator, needs knowledge of MDP
- MC method: model-free, but episodic
- TD learning: model-free, works for both episodic and infinite horizon

From policy evaluation to finding optimal policy

So far what we have done:

Given a policy π , we want to compute its value function

- DP: relies on Bellman operator, needs knowledge of MDP
- MC method: model-free, but episodic
- TD learning: model-free, works for both episodic and infinite horizon

Next question: Can we find the optimal policy without the knowledge of the MDP model?

From policy evaluation to finding optimal policy

Recall: in case of known MDP model -> policy iteration

• State-action value function + policy improvement

$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^{\pi_i}(s')$$

$$\forall s \in \mathcal{S} : \ \pi_{i+1}(s) = \arg \max_{a \in \mathcal{A}} Q^{\pi_i}(s, a)$$

Can we do the same without knowing R and P?

Idea: combine the model-free policy evaluation techniques (MC, TD) with policy iteration -> model-free policy iteration

Model-free policy iteration

Ideal case:

- Initialise policy π_0
- Repeat:
 - Policy evaluation: compute Q^{π_i}
 - Policy improvement: compute π_{i+1} given Q^{π_i}

Model-free policy iteration

Ideal case:

- Initialise policy π_0
- Repeat:
 - Policy evaluation: compute Q^{π_i}
 - Policy improvement: compute π_{i+1} given Q^{π_i}

Possible issues:

• If π_i is deterministic then we cannot compute $Q^{\pi_i}(s,a)$ for all $a \neq \pi(s)$

Model-free policy iteration

Ideal case:

- Initialise policy π_0
- Repeat:
 - Policy evaluation: compute Q^{π_i}
 - Policy improvement: compute π_{i+1} given Q^{π_i}

Possible issues:

• If π_i is deterministic then we cannot compute $Q^{\pi_i}(s,a)$ for all $a \neq \pi(s)$

How to visit other $a \neq \pi(s)$?

Idea: add some extra exploration (e.g., add random noise to the action choice)

Epsilon-greedy policy iteration

Initialise policy π_0 , $\varepsilon \in [0,1]$ Repeat:

- Policy evaluation: compute Q^{π_i} (MC or TD)
- Policy improvement:

$$\pi_{t+1}(s_t) = \arg\max_{a \in \mathcal{A}} Q(s_t, a) \text{ with probability } (1 - \varepsilon)$$

$$= \text{arbitrary action } a \text{ with probability } \frac{\varepsilon}{|\mathcal{A}|} \text{ (i.e., uniformly randomly pick } a)$$

SARSA: epsilon-greedy policy iteration + TD evaluation

Initialise epsilon-greedy policy π_0 , $\varepsilon \in [0,1]$, t = 0, initial state $s_t = s_0$ Choose $a_t \sim \pi_t(s_t)$

Repeat:

- Take action a_t , observe (r_t, s_{t+1})
- Choose action $a_{t+1} \sim \pi_t(s_{t+1})$ // note: still using the same policy
- Update Q given tuple $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$ // note: hence the name

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha ([r_t + \gamma Q(s_{t+1}, a_{t+1})] - Q(s_t, a_t))$$

SARSA: epsilon-greedy policy iteration + TD evaluation

Initialise epsilon-greedy policy π_0 , $\varepsilon \in [0,1]$, t = 0, initial state $s_t = s_0$ Choose $a_t \sim \pi_t(s_t)$

Repeat:

- Take action a_t , observe (r_t, s_{t+1})
- Choose action $a_{t+1} \sim \pi_t(s_{t+1})$ // note: still using the same policy
- Update Q given tuple $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$ // note: hence the name

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left([r_t + \gamma Q(s_{t+1}, a_{t+1})] - Q(s_t, a_t) \right)$$

Policy improvement:

$$\pi_{t+1}(s_t) = \arg\max_{a \in \mathcal{A}} Q(s_t, a)$$
 with probability $(1 - \varepsilon)$

= arbitrary action a with probability $\frac{\varepsilon}{|\mathcal{A}|}$ (i.e., uniformly randomly pick a)

• $s_t = s_{t+1}, \ a_t = a_{t+1}, \ t = t + 1$

Q-learning

Initialise epsilon-greedy policy π_0 , $\varepsilon \in [0,1]$, t = 0, initial state $s_t = s_0$ Repeat:

- Take action $a_t \sim \pi_t(s_t)$, observe (r_t, s_{t+1})
- Update Q:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left(\left[r_t + \gamma \max_a Q(s_{t+1}, a) \right] - Q(s_t, a_t) \right)$$

Because of the max operator, we don't need to sample an additional action a_{t+1}

Q-learning

Initialise epsilon-greedy policy π_0 , $\varepsilon \in [0,1]$, t = 0, initial state $s_t = s_0$ Repeat:

- Take action $a_t \sim \pi_t(s_t)$, observe (r_t, s_{t+1})
- Update Q:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left([r_t + \gamma \max_{a} Q(s_{t+1}, a)] - Q(s_t, a_t) \right)$$

Policy improvement:

$$\pi_{t+1}(s_t) = \arg\max_{a \in \mathcal{A}} Q(s_t, a) \text{ with probability } (1 - \varepsilon)$$

$$= \text{arbitrary action } a \text{ with probability } \frac{\varepsilon}{|\mathcal{A}|} \text{ (i.e., uniformly randomly pick } a)$$

• t = t + 1

Q-learning vs. SARSA

SARSA:
$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha ([r_t + \gamma Q(s_{t+1}, a_{t+1})] - Q(s_t, a_t))$$

- On-policy learning
 - Direct experience
 - Learn to estimate and evaluate a policy from experience obtained from following that policy (here a_{t+1} was sampled from the same policy)

Q-learning:
$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left([r_t + \gamma \max_a Q(s_{t+1}, a)] - Q(s_t, a_t) \right)$$

- Off-policy learning
 - Learn to estimate and evaluate a policy using experience gathered from following a different policy (here max_a is not part of the same policy)