Reconocimiento de Patrones

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

... de ... de 2016

Trabajos Prácticos

Integrante	LU	Correo electrónico
Arrondo, Brian Ariel		
Benzo, Mariano		
Maddonni, Axel Ezequiel	200/14	axel.maddonni@gmail.com

Índice

1.	TPI	3
2.	TP2	4
3.	TP3: Métodos no-paramétricos	5
	3.1. Esquema general	5
	3.2. Ventanas de Parzen	5
	3.2.1. Pseudocódigo: Ventanas de Parzen	6
	3.3. k_n vecinos más cercanos	6
	3.3.1. Pseudocódigo: k_N vecinos más cercanos	7
	3.4. Ejercicio 1	7
	3.4.1. Resultados e Imágenes	7
	3.5. Ejercicio 2	8
	3.5.1. Resultados e Imágenes	9
4.	TP4: Discriminante de Fisher	10
5.	TP5: Expectation Maximization	11

1. TP1

2. TP2

3. TP3: Métodos no-paramétricos

Los métodos no paramétricos se utilizan para estimar las funciones de densidad de probabilidad (f.d.p.) cuando no se conoce la expresión de la misma ni los parámetros.

3.1. Esquema general

Sea una cierta región R del espacio de características. La probabilidad P_R de que un cierto x pertenezca a R viene dada por:

$$P_R = p(x \in R) = \int_R p(x)dx \approx p(x) \int_R dx = p(x) * V$$

donde V es el volumen ocupado por la región R.

Supongamos que disponemos de N muestras independientes $x_1, x_2, ..., x_N$ correspondientes a la f.d.p. que queremos estimar, y dados:

- $k_N =$ cuántas de las N muestras pertenecen a la región R
- $\frac{k_N}{N}$ es una estimación de P_R para cada x, lo cual es a su vez una estimación de p(x).

Usando:

$$p(x) * V \approx \frac{k_N}{N}$$

Podemos estimar p(x) como :

$$p(x) = \frac{\frac{k_N}{N}}{V}$$

Es decir, se aproxima p(x) definiendo una región R pequeña alrededor de x y contando cuántos de los x_i caen en R. En los ejercicios se aplicaron dos métodos no paramétricos:

- Ventanas de Parzen
- k_n vecinos más cercanos

3.2. Ventanas de Parzen

Tomando una región R con forma de hipercubo d-dimensional de lado h_N , entonces:

$$V_N = (h_N)^d$$

Y sea la siguiente función de ventana:

$$\varphi(x) = \begin{cases} 1 & |u_j| \le \frac{1}{2}, j = 1..d \\ 0 & \text{caso contrario} \end{cases}$$

Entonces, para un cierto x:

$$\varphi(\frac{x-x_i}{h_N}) = 1$$
 si $x_i \in \text{ hipercubo de volumen } V_N \text{ centrado en x}$

El número de muestras, entonces, se calcula:

$$k_N = \sum_{i=1}^{N} \varphi(\frac{x - x_i}{h_N})$$

y finalmente podemos estimar la f.d.p. resolviendo:

$$p_N(x) = \frac{\frac{k_N}{N}}{V_N} = \frac{1}{N} \sum_{i=1}^N \frac{1}{h_N^d} \varphi(\frac{x - x_i}{h_N})$$
 (1)

3.2.1. Pseudocódigo: Ventanas de Parzen

Algorithm 1 Pseudocódigo del método de ventanas de parzen

```
1: procedure PARZEN HIPERCUBO(x (punto a evaluar), X (muestra), h (tamaño de la ven-
    tana), d(dimensión))
 2:
        L \leftarrow |X|
        k_n \leftarrow 0
 3:
        for i \in (1..L) do
 4:
            in inside \leftarrow 0
 5:
            for j \in (1..d) do
 6:
                if |x(j) - X_i(j)|/h \le 0.5 then
 7:
                    is inside + +
 8:
            if is_inside == d then
 9:
10:
       p(x) \leftarrow \frac{k_n}{L}/h^d
11:
```

3.3. k_n vecinos más cercanos

A diferencia del método de ventanas de parzen, en este método no se fija el V_N sino que se buscan las k_N muestras más próximas a x y se determina el volumen que las contiene. Es decir, V_N se calcula en función de la muestra. Se estima p_N calculando:

$$p_N(x) = \frac{\frac{k_N}{N}}{V_{k,N}} \tag{2}$$

3.3.1. Pseudocódigo: k_N vecinos más cercanos

Algorithm 2 Pseudocódigo del método de k_N vecinos con dimensión 2

```
1: procedure KNN_2D(x (punto a evaluar), X (muestra))
2: L \leftarrow |X|
3: k \leftarrow \sqrt{L}
4: for i \in (1..L) do
5: dist(i) \leftarrow ||x - X_i||
6: sort(dist)
7: V \leftarrow \pi * dist(min(L, k))^2
8: p(x) \leftarrow \frac{k}{L}/V
```

3.4. Ejercicio 1

Se realizó un estudio de la convergencia de la f.d.p. de una distribución Gaussiana univariada utilizando el método de Ventanas de Parzen y k_n vecinos más cercanos. Para dicho estudio se implementaron funciones para calcular N iteraciones de la sucesión p(x) evaluada en x=0,1 y 2 usando ambos métodos, con N=10,100,1000 y 10000. Para cada valor se usaron muestras de distintos tamaños. (ver código de funciones knn_1D y parzen_cubo_1D.

3.4.1. Resultados e Imágenes

Figura 1: Convergencia de la fdp de una dist. Normal (1,0).

Figura 2: Convergencia de la fdp de una dist. Normal (1,0).

Figura 3: Convergencia de la fdp de una dist. Normal (1,0).

3.5. Ejercicio 2

En este ejercicio se generaron datos pertenecientes a dos clases w_1 y w_2 , generados a partir de dos Gaussinas bivariadas. Utilizando los métodos mencionados en el ejercicio anterior, adaptados a dos variables, se realizó la partición del espacio de características resultante (dado por las muestras generadas). Para graficar las particiones, se determinaron intervalos bidimensionales rectangulares de tamaño 1x1 y se evaluaron los centros de cada intervalo para

Figura 4: División del espacio de características resultante usando ventanas circulares.

Figura 5: División del espacio de características resultante usando ventanas hipercúbicas.

aproximar la p(x) correspondiente) cada muestra. A continuación, una comparación de los resultados obtenidos entre los métodos de ventanas de parzen (con un hipercubo de dimensión 2) y $k_n n$ vecinos más cercanos. Además incluimos una comparación usando una ventana circular centrada en el punto a evaluar. Para este último, se implementó un algoritmo de ventanas de Parzen donde el V utilizado es el área del círculo resultante centrado en el x correspondiente, con el radio del círculo ingresado por parámetro. (ver código de función parzenr2_circulo.

3.5.1. Resultados e Imágenes

Uno de los problemas característicos de este método consiste en encontrar la secuencia de volúmenes V_i o el tamaño de ventana óptimo. Por ejemplo, tomando $V_N = V_1/N$, los resultados son sensibles a la elección del volumen inicial V_1 . Si el volumen inicial es muy pequeño, la mayoría de los volúmenes estarán vacíos, y la estimación de p_n se vuelve muy sensible a errores (ver figura ...). Por otro lado, tomando V_1 grande, las variaciones en p(x) que caen dentro de la misma ventana se perderán (ver figura ...). Para solucionar este problema, se presenta el siguiente método.

Figura 6: División del espacio de características resultante usando kvecinos más cercanos.

4. TP4: Discriminante de Fisher

5. TP5: Expectation Maximization