

Projet MRR

Par Naïm SOUNI et Abdoulaye SAKHO (Groupe 10)

Introduction

Mise en contexte

- Qui sommes-nous?
- Client
- Objectif

Base de Données

Présentation

- Observations: n= 10 308
- Variables explicatives: p=376 (dont 1 qualitative)

Restructuration

 Compression des images et éliminations des observations aberrantes: n'=9596 et p'= 29

Cross Validation

Les modèles utilisés

Type de modèle 1

Type 2

Type 3

Type 4

Type 5

Persistence

Y=aC(windspeed) Référence Régression linéaire simple Méthodes incrémentales

Forward

Bacward

Bothward

Lasso

Ridge

Les résultats obtenus:

Sous Cross validation (spéciale)

Hypothèses des modèles:

- Gaussianité des résidus
- Homoscédalité des résidus

Compression:

- Résultats très proches de ceux de la non compression .
 (à 0.5 près pour le RMSE et 0.1 pour Rcarré)
 - A permis convergences des méthodes incrémentales en un temps décent

RMSE moyen:

- Persitence: 25
- Autres : 12

R-carré moyen:

- Persitence: 0.05
- Autres: 0.74

Variance RMSE:

- Persitence: 7
- Autres: 0.4

Variance R-carré:

- Persitence: 0.02
- Autres: 0.003

Pour aller plus loin:

Limites des modèles dit "strictement linéaire" Un modèle pour aller plus loin:

- Custering des données d'apprentissages en K cluster à partir des variables explicatives
- Construction d'un modèle linéaire pour chaque cluster
- Prédictions

1. Description des k-means:

2.Fonctionnement du nouveau modèle:

I -Une observation de test est affecté au cluster dont il est le plus proche (par rapport aux

barycentres)

Il- Le modèle linéaire du cluster en question est utilisé pour prédire la valeur cible d'étoile

Résultats de ce type de modèle:

 Dans l'ensemble, similaire à ceux des modèles dits "strictement linéaires"

Conclusions sur le projet:

- Construction de meilleurs modèles que celui de Persitance
- Insuffisance des modèles pour atteindre notre objectif:

Échelle de Saffir-Simpson 1 noeud =1,85km/h 12 noeuds=22,52km/h

• Pousser plus loin la recherche d'un modèle adéquat

Merci!

N'hésitez pas à nous contacter si vous avez des questions.

BUREAU D'ÉTUDE S&S

Les résultats détaillés

(présentation indigeste)

A l'aide	de la	compression:

	mean(RMSE) <dbl></dbl>	var(RMSE) <dbl></dbl>	mean(R-squared) <dbl></dbl>	var(R-squared) <dbl></dbl>
simple	24.83048	7.3622599	0.04231985	1.777095e-02
lm	12.64951	0.4171164	0.74046021	3.198731e-03
Bacward	12.66731	0.4157671	0.73955886	3.155247e-03
Forward	12.66446	0.4197694	0.73920921	1.616284e-05
Both	12.66731	0.4157671	0.73921691	1.594405e-05
Lasso	12.64963	0.4164492	0.73952146	3.201413e-03
Ridge	12.64851	0.4140842	0.73715697	3.162626e-03
	Sans la compression			

Sans la compression:

	mean(RMSE) <dbl></dbl>	var(RMSE) <dbl></dbl>	mean(R-squared) <dbl></dbl>	var(R-squared) <dbl></dbl>
lm	12.69944	0.4240635	0.9644352	0.020434849
Bacward	0.00000	0.0000000	0.0000000	0.000000000
Forward	0.00000	0.0000000	0.0000000	0.000000000
Both	0.00000	0.0000000	0.0000000	0.000000000
Lasso	12.45893	0.3537939	0.7499010	0.003697000
Ridge	12.47618	0.3777993	0.7369234	0.003642341