Mue	CITA	ф. номер	група	поток	курс	специал
live	0.1.1					
	Име					

Устен изпит по логическо програмиране 21 юни 2021 год.

Зад. 1. а) Какво означава едно множество от съждителни формули да е изпълнимо? Вярно ли е, че ако Γ_1 и Γ_2 са изпълнимо? то и $\Gamma_1 \cup \Gamma_2$ е изпълнимо?

б) Нека Γ ∪ {ψ} е множество от съждителни формули. Да се докаже, че Γ ⊨ ψ точно тогава, когато Γ ∪ {¬ψ} е неизпълнимо.
 в) Да се олише алгоритъм, който по дадено крайно множество от съждителни формули Г разпознава дали то е изпълнимо.

Зад. 2. Нека S е множество от дизюнкти, а D е дизюнкт.

а) Какво е резолютивен извод от S? Какво означава S F D?

6) Нека $S \vdash D$. Докажете, че има такова крайно подмножество S_0 на S_τ че $S_0 \vdash D$.

Зад. 3. Нека S е множество от съждителни дизюнкти, което е затворено относно правилото за резолюцията и не съдържа празния дизюнкт. Да се докаже, че S има булев модел.

Зад. 4. а) Да се дефинира понятието хорнов дизюнкти. Да се докаже, че множествата от хорнови дизюнкти са затворени относно правилото за резолюцията.

6) Нека Σ е множество от непразни хорнови дизюнкт. Да се докаже, че ако Σ е неизпълнимо, то поне един факт принадлежи на Σ .

Пожелаваме ви приятна и успешна работа!

					Име:
					0.1.2
специалност	курс	поток	rpyna	ф. номер	тивидеа

Устен изпит по логическо програмиране 21 юни 2021 год.

Зад. 1. а) Нека $\Gamma \cup \{\psi\}$ е множество от съждителни формули. Какво означава $\Gamma \models \psi$? Вярно ли, че ако $\Gamma \models \varphi \lor \psi$, то $\Gamma \models \varphi$ или $\Gamma \models \psi$?

6) Да се докаже, че за всяка съждителна формула φ е в сила $\Gamma \models \varphi \Rightarrow \psi$ точно тогава, когато $\Gamma, \varphi \models \psi$.

 в) Да се опише алгоритъм, който по дадено крайно множество от съждителни формули Г разпознава дали то е неизпълнимо.

Зад. 2. а) Какво означава дизюнктът D е резолеента на дизюнктите D_1 и D_2 ?

б) Нека дизюнктът D е резолвента на дизюнктите D_1 и D_2 , а I

е булева интерпретация. Да се докаже, че: $I \models \{D_1, D_2\} \longleftrightarrow I \models \{D_1, D_2, D\}.$

Зад. 3. Нека А е фамилия от множества.

а) Какво е трансверзала за A? Какво е минимална трансверзала за A?

6) Да се докаже, че една трансверзала Y за A е минимална трансв. за A точно тогава, когато $(\forall y \in Y)(\exists x \in A)(Y \cap x = \{y\})$.

Зад. 4. а) Да се дефинира понятието хорнов дизюнкти. Да се докаже, че множествата от хорнови дизюнкти са затворени относно правилото за резолюцията.

6) Нека Σ е множество от непразни хорнови дизюнкт. Да се докаже, че ако Σ е неизпълнимо, то поне една цел принадлежи на Σ .

Поэкславаме ви приятна и успешна работа!

курс	-
------	---

Устен изпит по логическо програмиране 21 юни 2021 год.

Избирате 3 от следващите 4 задачи!

Зад. 5. а) Дефинирайте понятията сворасно участие и свободно участие на индивидна променлива в предикатна формула. б) Нека \mathcal{A} е структура за езика \mathcal{L} . Да се докаже, че за всяка формула φ от \mathcal{L} всеки път, когато v и w са оценки в \mathcal{A} , ако за всяка индивидна променлива x от φ е в сила v(x) = w(x), то $\|\varphi\|^{\Delta}[v] = \|\varphi\|^{\Delta}[w]$.

в) Нека \mathcal{A} е структура за \mathcal{L} , Γ е множество от формули от \mathcal{L} в x е индивидна променлива, която няма свободни участия във формулите от Γ . Да се докаже, че ако $\Gamma \models \psi$, то $\Gamma \models \forall x \psi$.

Зад. 6. Нека $\mathcal L$ е предикатен език от първи ред, а $\mathcal A$ и $\mathcal B$ са структури за $\mathcal L$

- г) Какьо означава h е изоморфно влагане на A в В?
- 6) Нека h е изоморфно влагане на A в B. Нека φ е затворена универсална формула от \mathcal{L} . Да се докаже, че ако $\mathcal{B} \models \varphi$, то $\mathcal{A} \models \varphi$.
- Зад. 7. Нека φ е предикатна формула, а x и y са индивидни променливи. Да се докаже, че ако y няма свободни участия във φ и свободните участии на x във φ не са в област на действие на квантор по y, то $\forall x \varphi$ и $\forall y \varphi [x/y]$ са логически еквивалентни.

Зад. 8. Нека \mathcal{L} е език на предикатното смятане без формално равенство и $\mathsf{Const}_\mathcal{L} \neq \mathcal{Q}$.

- а) Какво соначава А с ербранова структура за С?
- б) Нека \(\Delta \) е множество от затворени универсални формули от \(\Lambda \). Да се докаже, че следните са еквивалентни:
- △ няма модел;
- (2) △ няма ербранов модел;
- (3) има крайно подмножество на $\mathrm{CSI}(\Delta)$, което е булево неизпълнимо.

Пожелаваме ви приятна и успешна работа!

O.II.2	вариант	ф. номер	група	поток	курс	специалност
Име:	0.11.2				Control of Control	
	Име:					

Устен изпит по логическо програмиране 21 юни 2021 год.

Scanne avec CamScanner

Избирате 3 от следващите 4 задачи!

Зад. 5. а) Какво означава замяната на свободните участия на $z \in \kappa$ във φ е допустима?

6) Нека A е структура за езика \mathcal{L} , x е индивидна променлива, а x е терм от \mathcal{L} . Нека φ е формула от \mathcal{L} и замяната на свободните участия на x с x във φ е допустима. Да се дохаже, че всеки път, когато ψ и ψ са оценки, удовлетворяващи условията:

 $v(x) = \varkappa^{\wedge}[w]$ и

v(y) = w(y) за всяка променлива $y \in \text{Var}^{\text{ree}}[\varphi] \setminus \{x\}$ е в сила равенството $\|\varphi\|^{\mathcal{A}}[v] = \|\varphi[x/\varkappa]\|^{\mathcal{A}}[w]$.

в) Да се докаже, че ако замяната на свободните участия на x с \varkappa във φ е допустима, то $\models \forall x \varphi \Rightarrow \varphi[x/\varkappa]$.

Зад. 6. Нека $\mathcal L$ е предикатен език от първи ред, а $\mathcal A$ и $\mathcal B$ са структури за $\mathcal L$.

-) Какво означава h е изоморфизъм на A върху В?
- 6) Нека h е изоморфизъм на A върху B. Нека φ е формула от \mathcal{L} . Да се докаже, че ако $\varphi[x_1, x_2, \dots, x_n]$, то за произволни a_1, \dots, a_n от универсума на A е в сила: $A \models \varphi[a_1, a_2, \dots, a_n] \longleftrightarrow B \models \varphi[h(a_1), h(a_2), \dots, h(a_n)]$.

Зад. 7. Нека φ е предикатна формула, а x и y са индивидни променливи. Да се докаже, че ако x няма свободни участия във φ и свободните участия на y във φ не са в област на действие на квантор по x, то $\exists y \varphi$ и $\exists x \varphi[y/x]$ са логически еквивалентни.

Зад. 8. Нека \mathcal{L} е език на предикатното смятане без формално равенство и $\mathsf{Const}_{\mathcal{L}} \neq \emptyset$.

- а) Нека \mathcal{H} е ербранова структура за \mathcal{L} и v е оценка в \mathcal{H} . Да се докаже, че за всеки терм τ , ако $\tau[x_1, x_2, \dots, x_n]$, то $\tau^{\mathcal{H}}[v]$ е $\tau[x_1/v(x_1), x_2/v(x_2), \dots, x_n/v(x_n)]$.
- б) Нека Г е множество от затворени безкванторни формули от С. Да се докаже, че следните са еквивалентии:
- (1) Г има модел;
- (2) Г има ербранов модел;
- (3) всяко крайно подмножество на Г е булево изпълцимо.

Пожелаваме ви примпна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
III.2		- 1	,	1.4	
Име:					

Теоретичен изпит по логическо програмиране (2020/2021) 21 VI 2021 г.

- Зад. 1. Посочете всички подформули и нарисувайте дървото на формулата $\forall x \, (\exists y \, p(x,f(y)) \lor r(x) \Rightarrow p(x,y))$
- Зад. 2. Г е крайно множество от формули. Докажете, че можем по такъв начин да заменим всяка формула в Г с конгруентна на нея, че никои две формули в полученото множество не съдържат квантори с една и съща променлива. Къде във Вашите разсъждения използвате крайността на Г?
- Зад. 3. Нека структурата M е с универсум множеството на естествените числа, а оценките v и w в M са такива, че v(x) = 5, v(y) = 8, v(z) = 3, w(x) = 7, w(y) = 8, w(z) = 9. Да се докаже, че стойността на формулата $\forall x \, p(x,y) \Rightarrow \exists z \, \forall x \, (\neg q(z,x,y) \, \& \, p(x,y))$ в M при оценка v е еквивалентна на стойността ѝ в M при оценка w.
- Зад. 4. Структурата H е ербранова, а v е оценка в H. Докажете, че стойността на терма f(x,x) в H при оценка v е терм, който съдържа нечетен брой запетаи.
- Зад. 5. Приложете алгоритъма за унификация към системата $\{f(a,y)=f(x,g(b))\}.$
- Зад. 6. Да се докаже, че ако празният дизюнкт е тъждествено верен в структурата M, то универсумът на M съдържа само един елемент.

Може да използвате без доказателство всички твърдения от лекциите или записките, но трябва да формулирате твърденията, които използвате.

Пожселаваме ви приятна и успешна работа!