

Tema 4. Clasificación basada en distancias

Percepción (PER)

Curso 2020/2021

Departamento de Sistemas Informáticos y Computación

Índice

- 1 Introducción: espacio métrico y distancias ▷ 3
- 2 Vecino más cercano ▷ 8
- 3 k-vecinos más cercanos \triangleright 14
- 4 Relación con la probabilidad a posteriori ▷ 18
- 5 Optimizaciones: aprendizaje de distancias, edición y condensado > 23

Índice

- 1 Introducción: espacio métrico y distancias ▷ 3
 - 2 Vecino más cercano ▷ 8
 - 3 k-vecinos más cercanos \triangleright 14
 - 4 Relación con la probabilidad a posteriori ▷ 18
 - 5 Optimizaciones: aprendizaje de distancias, edición y condensado ▷ 23

Introducción

- Clasificadores basados en distancias: basados en la similitud entre la muestras a clasificar y las muestras etiquetadas (prototipos) dados
- lacktriangle En clasificación un prototipo representa el objeto f x y su clase c
- Los prototipos son almacenados para la clasificación de muestras sin etiquetar mediante el cálculo de distancias
- Formalmente:
 - Prototipos: conjunto de pares $X = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$
 - Clasificación: dado y, clasificar según las distancias $d(y, x_i)$, $1 \le i \le n$
- Espacio de representación E: debe ser Métrico o Pseudométrico
 - E puede ser un espacio no vectorial $(E \neq \mathbb{R}^D)$
- **Medida de disimilitud o distancia** d: función que dada la representación de dos objetos $(x, x') \in E \times E$ devuelve un valor de disimilitud, que debería correlarse con la disimilitud de dichos objetos en la realidad

Espacios métricos y pseudométricos

Espacio métrico

- \blacksquare Par (E,d)
- E: espacio de representación
- d: función métrica o distancia, $d: E \times E \to \mathbb{R}$, que cumple $(\forall p, q, r \in E)$:
 - $d(p,q) \ge 0$; $d(p,q) = 0 \Leftrightarrow p = q$

(Positiva o nula)

 $\bullet \ d(p,q) = d(q,p)$

(Simétrica)

• $d(p,q) + d(q,r) \ge d(p,r)$

(Desigualdad Triangular)

Espacio pseudométrico:

- Versión "simplificada"
- No requiere simetría ni desigualdad triangular
- $d(\cdot, \cdot)$ se denomina medida de disimilitud

Espacios métricos y pseudométricos

Los espacios métricos y pseudométricos son más "primitivos" que los *espacios* vectoriales

Todo espacio vectorial con *producto escalar* se convierte en métrico mediante la definición de la **distancia euclídea**:

$$d(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\| = \sqrt{(\mathbf{p} - \mathbf{q})^t (\mathbf{p} - \mathbf{q})} =$$

$$\sqrt{(p_1 - q_1)^2 + \dots + (p_D - q_D)^2}$$

Distancias usuales

Representaciones vectoriales D-dimensionales $(E = \mathbb{R}^D)$

■ Familia
$$Lp$$
: $d_p(\boldsymbol{a}, \boldsymbol{b}) = \left(\sum_{i=1}^D |a_i - b_i|^p\right)^{\frac{1}{p}}$

$$L1$$
 $L2$ (Euclidea) $L_{\infty}/L0$
$$\sum_{i=1}^{D} |(a_i-b_i)| \qquad \left(\sum_{i=1}^{D} (a_i-b_i)^2\right)^{\frac{1}{2}} \qquad \max_{1\leq i\leq D} |(a_i-b_i)|$$

$$lacksquare$$
 Distancia Euclídea Ponderada: $d(m{a}, m{b}) = \left(\sum_{i=1}^D \ w_i \cdot (a_i - b_i)^2\right)^{\frac{1}{2}}$

Representaciones estructurales por cadenas de primitivas $(E \subseteq \Sigma^*)$

■ Distancia (ponderada) de edición: d(a,b) = mínima talla (o peso) de una secuencia de operaciones de edición que transforma a en b

Índice

- 1 Introducción: espacio métrico y distancias ▷ 3
- 2 Vecino más cercano ▷ 8
 - 3 k-vecinos más cercanos \triangleright 14
 - 4 Relación con la probabilidad a posteriori ▷ 18
 - 5 Optimizaciones: aprendizaje de distancias, edición y condensado ▷ 23

Clasificación por el vecino más cercano

Sea $d: E \times E \to \mathbb{R}$ una métrica y sea \mathbf{y} un punto de E

Vecino más cercano (Nearest Neighbour, NN):

Sea X_c el conjunto de prototipos de la clase c:

$$\mathbf{y} \in \hat{c} \Leftrightarrow \exists \mathbf{x} \in X_{\hat{c}} : d(\mathbf{y}, \mathbf{x}) \leq d(\mathbf{y}, \mathbf{x}') \qquad \forall \mathbf{x}' \in X_c, 1 \leq c \leq C, c \neq \hat{c}$$

En caso de empate decidir, entre las empatadas, la clase con mayor número de prototipos o bien aleatoriamente

Clasificación por el vecino más cercano

Fronteras de decisión

Sea E espacio vectorial con m'etrica euclídea:

$$E = \mathbb{R}^D;$$
 $d(\mathbf{y}, \mathbf{x}) = \sqrt{(\mathbf{y} - \mathbf{x})^t (\mathbf{y} - \mathbf{x})}$

La **frontera** de decisión entre las clases i y j son los puntos equidistantes al prototipo más cercano de cada clase:

$$\min_{\mathbf{x} \in X_i} (d(\mathbf{y}, \mathbf{x})) = \min_{\mathbf{x} \in X_j} (d(\mathbf{y}, \mathbf{x})) \equiv \min_{\mathbf{x} \in X_i} (\|\mathbf{y} - \mathbf{x}\|^2) = \min_{\mathbf{x} \in X_j} (\|\mathbf{y} - \mathbf{x}\|^2) \equiv \min_{\mathbf{x} \in X_i} (-2\mathbf{x}^t \mathbf{y} + \mathbf{x}^t \mathbf{x}) = \min_{\mathbf{x} \in X_j} (-2\mathbf{x}^t \mathbf{y} + \mathbf{x}^t \mathbf{x})$$

Separación lineal dependiente de los prototipos involucrados: Funciones Discriminantes Lineales a Trozos (LT)

Existen fronteras de decisión LT que no pueden obtenerse mediante ningún clasificador NN

Fronteras de decisión asociadas al clasificador NN

Fronteras de decisión asociadas al clasificador NN

Índice

- 1 Introducción: espacio métrico y distancias ▷ 3
- 2 Vecino más cercano ▷ 8
- \circ 3 k-vecinos más cercanos \triangleright 14
 - 4 Relación con la probabilidad a posteriori ▷ 18
 - 5 Optimizaciones: aprendizaje de distancias, edición y condensado ▷ 23

Clasificación por los k-vecinos más cercanos

Sea $d: E \times E \to \mathbb{R}$ una métrica y sea \mathbf{y} un punto de E

k-vecinos más cercanos (k-NN):

- Sea X_c el conjunto de prototipos representante de la clase c
- Sea X^k el conjunto de los $k \in \mathbb{N}^+$ prototipos más próximos a \mathbf{y}

$$\mathbf{y} \in \hat{c} \iff |X^k \cap X_{\hat{c}}| \ge |X^k \cap X_c| \qquad 1 \le c \le C, \ c \ne \hat{c}$$

■ En caso de empate, decidir entre las clases empatadas según 1-NN (1-NN equivale a NN)

Clasificación por los k-vecinos más cercanos

Fronteras de decisión

Sea E espacio vectorial con $m\acute{e}trica$ euclídea:

$$E = \mathbb{R}^D;$$
 $d(\mathbf{y}, \mathbf{x}) = \sqrt{(\mathbf{y} - \mathbf{x})^t (\mathbf{y} - \mathbf{x})}$

La **frontera de decisión** para k-NN vendrá dada por los puntos que empatan a número máximo de vecinos de dos clases distintas:

$$|X^k \cap X_i| = |X^k \cap X_j|$$

Separación dada por Funciones Discriminantes Lineales a Trozos

Toda frontera de decisión LT puede obtenerse mediante FDs k-NN

Índice

- 1 Introducción: espacio métrico y distancias ▷ 3
- 2 Vecino más cercano ▷ 8
- 3 k-vecinos más cercanos \triangleright 14
- 4 Relación con la probabilidad a posteriori ▷ 18
 - 5 Optimizaciones: aprendizaje de distancias, edición y condensado > 23

k-NN y probabilidad a posteriori

Planteamiento habitual de estimación de $P(c \mid \mathbf{y})$: por fórmula de Bayes

- A partir de los datos de entrenamiento, estimar:
 - Probabilidades a priori de las clases $P(c), 1 \le c \le C$
 - Probabilidad condicional de cada clase $p(\mathbf{y}|c), \ \mathbf{y} \in E, \ 1 \leq c \leq C$
- Clasificar por máxima probabilidad a posteriori según la regla de Bayes:

$$P(c \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid c) \ P(c)}{\sum_{c'=1}^{C} \ p(\mathbf{y} \mid c') \ P(c')}$$

Posibilidad alternativa: estimar directamente $P(c \mid y)$ a partir de los datos mediante k-NN

k-NN y probabilidad a posteriori

Dado \mathbf{y} un punto en el que queremos estimar $P(c \mid \mathbf{y})$, sean:

 $v(\mathbf{y}, k)$: volumen de la menor hiperesfera centrada en \mathbf{y} que contiene a los k vecinos más próximos de \mathbf{y} (de cualquier clase)

 k_c : número de prototipos de la clase c de entre los k-NN, $\sum_{c=1}^C k_c = k$

 N_c : número de prototipos de la clase $c, \sum_{c=1}^C N_c = N$ (todos los prototipos)

k-NN y probabilidad a posteriori

Estimadores:

- Probabilidades a priori: $\hat{P}(c) = \frac{N_c}{N}$, $1 \le c \le C$
- Masa de probabilidad de la clase c en la hiperesfera de volumen $v(\mathbf{y},k)$ centrada en \mathbf{y} : k_c/N_c
- Con $v(\mathbf{y}, k)$ infinitesimal, la condicional es: $\hat{p}(\mathbf{y} \mid c) = \frac{k_c/N_c}{v(\mathbf{y}, k)} = \frac{k_c}{N_c}$
- Probabilidad a posteriori por regla de Bayes:

$$\hat{P}(c \mid \mathbf{y}) = \frac{\frac{k_c}{N_c \ v(\mathbf{y}, k)} \frac{N_c}{N}}{\sum_{c'=1}^C \frac{k_{c'}}{N_{c'} \ v(\mathbf{y}, k)} \frac{N_{c'}}{N}} = \frac{k_c}{k}$$

 $m{Regla~de~clasificaci\'on}:~\hat{c} = \mathrm{argmax}_c~\hat{P}(c \mid \mathbf{y}) = \mathrm{argmax}_c~\frac{k_c}{k} = \mathrm{argmax}_c~k_c$

Es decir, clasificar y en la clase a la que pertenezcan la mayoría de sus k vecinos más próximos

Probabilidad de error de los clasificadores NN y k-NN

Sea P^* el error de Bayes

Cuando el número de prototipos es ilimitado $(N \to \infty)$, el riesgo de **error del clasificador NN** puede acotarse por:

$$P^* \le P \le P^* \left(2 - \frac{C}{C - 1}P^*\right) \le 2P^*$$

El riesgo de error del clasificador k-NN tiende al error de Bayes si:

$$N \to \infty; \qquad k \to \infty; \qquad \frac{k}{N} \to 0$$

Las dos últimas condiciones se cumplen, por ejemplo, tomando $k=\sqrt{N}$

Índice

- 1 Introducción: espacio métrico y distancias ▷ 3
- 2 Vecino más cercano ▷ 8
- 3 k-vecinos más cercanos \triangleright 14
- 4 Relación con la probabilidad a posteriori ▷ 18
- 5 Optimizaciones: aprendizaje de distancias, edición y condensado ▷ 23

Optimizaciones de k-NN

- En la clasificación por k-NN, el único parámetro directo a establecer es k
- Sin embargo, existen un par de meta-parámetros con gran influencia en la calidad de la clasificación:
 - **Distancia empleada**: puede adecuarse a la distribución de prototipos de cada clase y eliminar efectos de escala en las distintas componentes
 - Conjunto de prototipos (puede no ser el disponible originalmente)
 - Puede limpiarse: fronteras de decisión más simples, mayor generalización
 - Puede reducirse: clasificador más compacto en memoria y más rápido en búsqueda

Limitación: aprendizaje de los pesos asociados a la distancia euclídea ponderada:

$$d(\mathbf{y}, \mathbf{p}) = \sqrt{\left(\sum_{i=1}^{D} w_i \cdot (y_i - p_i)^2\right)}$$

- $\mathbf{y} \in \mathbb{R}^D$ es el objeto a clasificar
- $oldsymbol{p} \in \mathbb{R}^D$ es un prototipo del conjunto de aprendizaje disponible
- $\mathbf{w} \in \mathbb{R}^D$ es el vector de pesos

Restricción: $w_i > 0, i = 1, ..., D$ (para que la distancia sea una métrica)

Distancia euclídea normalizada o *Mahalanobis-diagonal*:

$$d(\mathbf{y}, \mathbf{p}) = \sqrt{\left(\sum_{i=1}^{D} \frac{1}{\sigma_i^2} (y_i - p_i)^2\right)}$$

- ullet σ_i^2 : varianza de la componente i-ésima de la representación vectorial de los prototipos
- $w_i = \frac{1}{\sigma_i^2}$: inversa de la varianza de la componente *i*-ésima

Equivale a pre-normalizar los datos dividiendo cada componente por su desviación típica σ_i y usar la distancia euclídea sobre los datos normalizados

Distancia Mahalanobis-diagonal por clase:

$$d(\mathbf{y}, \mathbf{p}) = \sqrt{\left(\sum_{i=1}^{D} \frac{1}{\sigma_{ic}^2} (y_i - p_i)^2\right)}$$

- c: clase de p
- ullet σ^2_{ic} : varianza de la componente i-ésima en clase c
- $w_i=\frac{1}{\sigma_{ic}^2}$: inversa de la varianza de la componente i-ésima considerando sólo prototipos de la clase c

Esta distancia ya no es una métrica: pesos diferentes según la clase de p

Distancia Mahalanobis-Local:

$$d(\mathbf{y}, \mathbf{p}) = \sqrt{\left(\sum_{i=1}^{D} \frac{1}{\sigma_{i\mathbf{p}}^{2}} (y_i - p_i)^2\right)}$$

- $\sigma_{i\mathbf{p}}^2$: varianza de la componente i-ésima de los prototipos que son k-NN de \mathbf{p} de su misma clase
- $w_i = \frac{1}{\sigma_{ip}^2}$: inversa de la varianza de la componente i-ésima calculada sobre los prototipos k-NN de ${\bf p}$ de su misma clase \to estimación de la varianza local de la clase c

Esta distancia tampoco es una métrica: pesos diferentes dependiendo de p

Edición de prototipos

- Objetivo: eliminar prototipos ruidosos
- Prototipo ruidoso: prototipo de una clase aislado dentro de la zona de prototipos de otra clase

- El punto ruidoso genera *huecos* en las regiones de decisión
- Eliminar prototipos ruidosos da regiones de decisión simplemente conexas (sin *huecos*)

Page 4.29

Edición de prototipos

Algoritmo de edición de Wilson

- Clasifica por k-NN (k parámetro) de cada prototipo frente al resto
- Elimina los prototipos cuya clasificación sea diferente de su propia clase
- Finalización: todos los prototipos se clasifican correctamente
- Coste computacional por recorrido para n prototipos: $O(n^2)$
 - Probar n prototipos
 - ullet Para cada uno calcular vecinos más cercanos (n distancias)
- Técnicas para bajar el coste:
 - Almacenar las distancias ya ordenadas en una matriz en la primera iteración
 - Emplear técnicas de búsqueda rápida
- Usualmente consigue eliminar los prototipos ruidosos
- Crítica principal: resultado dependiente del orden de recorrido

Edición de prototipos

Algoritmo de Wilson:

- Entrada: $X = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)\}$, k, d
- Salida: $X' = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_M, c_M)\}$ $M \leq N$
- Algoritmo:
 - 1. error=true; X' = X;
 - 2. while (error)
 - 3. error=false;
 - 4. for i=1:N
 - 5. $\hat{c} = knn(\mathbf{x}_i, X' \mathbf{x}_i, d, k);$
 - 6. if $(\hat{c} \neq c_i) X' = X' \{\mathbf{x}_i\}$; error=true;
 - 7. endfor
 - 8. endwhile

Entrada: conjunto de prototipos original, valor de k, distancia d a emplear

Salida: conjunto reducido o igual, $X' \subseteq X$

Condensado de prototipos

- Objetivo: reducir drásticamente el conjunto de prototipos sin modificar significativamente las fronteras de decisión
- Algunos algoritmos de condensado deben partir del conjunto de prototipos ya editado (sin ruido)

Condensado de prototipos

Algoritmo CNN (Condensed Nearest Neighbor, Hart, 1968):

- Definir dos conjuntos de prototipos:
 - STORE (S): prototipos a retener
 - GARBAGE (G): prototipos a descartar
- Algoritmo en dos fases:
 - 1. Crear S y G desde los prototipos originales (conjunto X)
 - 2. Recorrer G hasta que quede vacío o no sufra modificaciones
- Esencialmente:
 - S mantiene los prototipos clasificados incorrectamente
 - G mantiene los prototipos clasificados correctamente
- Crítica principal: resultado dependiente del orden de recorrido

Condensado de prototipos

Algoritmo CNN

- Entrada: $X = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)\}$ editado, k, d
- Salida: S
- Algoritmo:
 - 1. // Primera fase
 - a) $S=G=\emptyset$
 - b) $\{(\mathbf{x}_1, c_1)\} \to S$
 - c) for i=2:N
 - d) $\hat{c} = knn(\mathbf{x}_i, S, d, k);$
 - e) if $(\hat{c} \neq c_i) \{(\mathbf{x}_i, c_i)\} \rightarrow S$
 - f) else $\{(\mathbf{x}_i, c_i)\} \rightarrow \mathsf{G}$
 - g) endfor

- 2. //Segunda fase
 - a) error=true
 - b) while $(G \neq \emptyset \&\& error)$
 - c) error=false;
- d) forall $(\mathbf{x}, c) \in \mathsf{G}$
- e) $\hat{c} = knn(\mathbf{x}, S, d, k);$
 - f) if $(\hat{c} \neq c)$
 - g) $\{(\mathbf{x},c)\} \rightarrow \mathsf{S};$
 - h) $G=G-\{(\mathbf{x},c)\};$
 - *i*) error=true;
 - i) endif
 - k) endforall
 - () endwhile

