1. 用对偶单纯形法解下列问题:

(1)
$$\begin{cases} \min 4x_1 + 6x_2 + 18x_3 \\ s.t. & x_1 + 3x_3 \ge 3 \\ & x_2 + 2x_3 \ge 5 \\ & x_1, x_2, x_3 \ge 0 \end{cases}$$

解答:

引进松弛变量 x4,x5,化成标准形式,并给定初始对偶可行的基本解:

min
$$4x_1 + 6x_2 + 18x_3$$

s. t. $-x_1 - 3x_3 + x_4 = -3$,
 $-x_2 - 2x_3 + x_5 = -5$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

用表格形式计算如下:

最优解 (x_1,x_2,x_3) =(0,3,1),最优值 f_{min} =36.

(3)
$$\begin{cases} \max x_1 + x_2 \\ s.t. & x_1 - x_2 - x_3 = 1 \\ & -x_1 + x_2 + 2x_3 \ge 1 \\ & x_1, x_2, x_3 \ge 0 \end{cases}$$

解答:

max
$$x_1 + x_2$$

s. t. $x_1 - x_2 - x_3 = 1$,
 $-x_3 + x_4 = -2$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$.

构造扩充问题:

max
$$x_1 + x_2$$

s. t. $x_1 - x_2 - x_3 = 1$,
 $-x_3 + x_4 = -2$,
 $x_2 + x_3 + x_5 = M$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

其中 M>0,很大.

用表格形式求解扩充问题:

	x_1	x_2	x_3	x_i	x 5	
x_1	1	-1	-1	0	0.	1
<i>x</i> ₄	0	0	-1	1	0	-2
x5	0	1	1	0	1	М
	0	-2	-1	0	0	1
x_1	1	0	0	0	1	M+1
x,	0	0	\bigcirc	1	0	-2
x2	0	1	1	0	1	М
	0	0	1	. 0	2	2M+1

	x_1	x_2	x_3	x_4	x_5	
x_1	1	0	0	0	1	M+1
x3	0	0	1	-1	0	2
x_2	0	1	0	1	1	M-2
	0	0	0	1	2	2M-1

扩充问题的最优解是(M+1,M-2,2,0,0),最优值为2M-1.显然,原来线性规划无上界.

$$\begin{cases}
\min 4x_1 + 3x_2 + 5x_3 + x_4 + 2x_5 \\
s.t. -x_1 + 2x_2 - 2x_3 + 3x_4 - 3x_5 + x_6 + x_8 = 1 \\
x_1 + x_2 - 3x_3 + 2x_4 - 2x_5 + x_8 = 4 \\
-2x_3 + 3x_4 - 3x_5 + x_7 + x_8 = 2 \\
x_j \ge 0, j = 1,L, 8
\end{cases}$$

解答:

min
$$4x_1 + 3x_2 + 5x_3 + x_4 + 2x_5$$

s. t. $-2x_1 + x_2 + x_3 + x_4 - x_5 + x_6 = -3$,
 $x_1 + x_2 - 3x_3 + 2x_4 - 2x_5 + x_8 = 4$,
 $-x_1 - x_2 + x_3 + x_4 - x_5 + x_7 = -2$,
 $x_j \ge 0$, $j = 1, 2, \dots, 8$.

用表格形式求解如下:

最优解为 $(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8)=(0,0,0,0,3,0,1,10)$,最优解 $f_{min}=6$.

注:最优解不唯一,最优值都是6.

2. 给定下列线性规划问题:

$$\min -2x_1 - x_2 + x_3$$
s.t. $x_1 + x_2 + 2x_3 \le 6$

$$x_1 + 4x_2 - x_3 \le 4$$

$$x_1, x_2, x_3 \ge 0$$

它的最优单纯形表如下表:

- (1) 若右端向量 $b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ 改为 $b' = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$,原来的最优基是否还是最优基?利用原来的最优表求新问题的最优表。
- (2) 若目标函数中 x_1 的系数由 $c_1 = -2$ 改为 c_1' ,那么 c_1' 在什么范围内时原来的最优解也是新问题的最优解?

解 (1) 先计算改变后的右端列向量

$$\overline{b'} = B^{-1}b' = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} \\ \frac{10}{3} \end{bmatrix}, \quad c_{\delta} \overline{b'} = (1, -2) \begin{bmatrix} -\frac{2}{3} \\ \frac{10}{3} \end{bmatrix} = -\frac{22}{3}.$$

右端向量 b 改为 b'后,原来的最优基已不是可行基,对应各变量的判别数不变.下面用对偶单纯形法求最优解:

新问题的最优解 $(x_1,x_2,x_3)=(2,0,0)$,最优值 $f_{min}=-4$.

(2) c1 改为 c1后,令对应各变量的判别数

$$\begin{cases} z'_1 - c'_1 = 0, \\ z'_2 - c'_2 = -6 + 3(c'_1 + 2) & \leq 0, \\ z'_3 - c'_3 = 0 + 0(c'_1 + 2) & \leq 0, \\ z'_4 - c'_4 = -\frac{1}{3} + \frac{1}{3}(c'_1 + 2) \leq 0, \\ z'_5 - c'_5 = -\frac{5}{3} + \frac{2}{3}(c'_1 + 2) \leq 0. \end{cases}$$

解得 $c_1 \le -1$. 因此,当 $c_1 \le -1$ 时原来的最优解也是新问题的最优解.

3. 考虑下列线性规划问题:

$$\max -5x_1 + 5x_2 + 13x_3$$
s.t.
$$-x_1 + x_2 + 3x_3 \le 20$$

$$12x_1 + 4x_2 + 10x_3 \le 90$$

$$x_1, x_2, x_3 \ge 0$$

先用单纯形方法求出上述问题的最优解,然后对原来问题分别进行下列改变,试用原来问题的最优表求新问题的最优解:

- (1) 目标函数中x, 系数c, 由 13 改变为 8;
- (2) b₁ 由 20 改变为 30;

(3) b,由 90 改变为 70;

(4)
$$A$$
 的列由 $\begin{bmatrix} -1 \\ 12 \end{bmatrix}$ 改变为 $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$;

(5) 增加约束条件: $2x_1 + 3x_2 + 5x_3 \le 50$ 。

答案: 最优解为 $(0,20,0), f_{\text{max}} = 100$

- (1) 最优解不变;
- (2) $(0,0,9), f_{\text{max}} = 117$
- (3) $(0,5,5), f_{\text{max}} = 90$
- (4) 最优解不变

(5)
$$\left(0, \frac{25}{2}, \frac{5}{2}\right), f_{\text{max}} = 95$$

过程:

解 先引人松弛变量 x4,x5,化成标准形式:

max
$$-5x_1 + 5x_1 + 13x_1$$

s. t. $-x_1 + x_2 + 3x_3 + x_4 = 20$,
 $12x_1 + 4x_2 + 10x_3 + x_5 = 90$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

用单纯形方法求最优解,过程如下:

最优解 (x_1,x_2,x_3) =(0,20,0),最优值 f_{mex} =100.

(1) 非基变量 x_3 的目标系数 c_3 由 13 改变为 8 后,对应 x_3 的判别数 $z_3'-c_3'=(z_3-c_3)+(c_3-c_3')=2+(13-8)=7>0$.

最优解不变,仍为 (x_1,x_2,x_3) = $(0,20,0),f_{max}$ =100.

(2) b, 由 20 改变为 30 后,原来最优单纯形表的右端向量变为

$$\overline{b} = B^{-1}b = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 30 \\ 90 \end{bmatrix} = \begin{bmatrix} 30 \\ -30 \end{bmatrix}.$$

用对偶单纯形方法计算如下:

最优解 (x_1,x_2,x_3) =(0,0,9),最优值 f_{max} =117.

(3) 62 由 90 改变为 70 后,原来最优表的右端向量变为

$$\boldsymbol{b} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 70 \end{bmatrix} = \begin{bmatrix} 20 \\ -10 \end{bmatrix}.$$

用对偶单纯形法求解如下:

	x_1	x_2	x_3	ż,	x_5	
x2 .	-1	1	3	1	. 0	20
x_5	16	0	\odot	-4	1	-10
	0	0	ż	5	0	100
<i>x</i> ₂	23	1	0	-5	3 2	. 5
<i>x</i> ₃	-8	0	1	2	$-\frac{1}{2}$	5
	16	0	0	1	1	90

最优解(x1,x2,x3)=(0,5,5),最优值 fmax=90.

(4) 约束矩阵
$$A$$
 的列 $\begin{bmatrix} -1 \\ 12 \end{bmatrix}$ 改为 $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$ 后,对应 x_1 的判别数

$$z_1 - c_1 = c_B B^{-1} p_1 - c_1 = (5,0) \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \end{bmatrix} - (-5) = 5 > 0.$$

最优解仍为 $(x_1,x_2,x_3)=(0,20,0),f_{max}=100.$

(5)增加约束条件2x1+3x2+5x3≤50后,原来的最优解不满足这个约束条件,修改原来的最优表,将新增加约束的系数置于最后一行。

	x_1	x_2	x1	x,	x_i	x_i	
x2	-1	1	3	1	0	0	20 10
x,	16	0	-2	-4	1	0	10
z,	2	3	5	0	0	1	50
	0	0	2	5	0	0	100

将第1行的(-3)倍加到第3行,把对应 xx 的列化成单位向量,然后用对偶单纯形法求解:

最优解 $(x_1,x_2,x_3)=(0,\frac{25}{2},\frac{5}{2}),f_{max}=95.$