

Deep Learning

BITS

Pilani

Dr. Sugata Ghosal sugata.ghosal@pilani.bits-pilani.ac.in

Pilani Campus

Agenda

- Introduction
- Course Objectives and Logistics
- Introduction to Perceptron and MLP
 - Approximation Capabilities
- Characteristics of Deep Learning

Reading: Chapter 1 of Textbook

Neural Networks are taking over!

- Neural networks have become one of the major thrust areas recently in various pattern recognition, prediction, and analysis problems
- In many problems they have established the state of the art
 - Often exceeding previous benchmarks by large margins

Breakthroughs with neural networks

Breakthrough with neural networks

Image segmentation and recognition

Image recognition

https://www.sighthound.com/technology/

Breakthroughs with neural networks

Figure 1: Training AlphaZero for 700,000 steps. Elo ratings were computed from evaluation games between different players when given one second per move. **a** Performance of AlphaZero in chess, compared to 2016 TCEC world-champion program Stockfish. **b** Performance of AlphaZero in shogi, compared to 2017 CSA world-champion program Elmo. **c** Performance of AlphaZero in Go, compared to AlphaGo Lee and AlphaGo Zero (20 block / 3 day) (29).

Success with neural networks

Captions generated entirely by a neural network

Successes with neural networks

- And a variety of other problems:
 - From art to astronomy to healthcare..
 - and even predicting stock markets!

Objectives of this course

- Understanding neural networks
- Comprehending the models that do the previously mentioned tasks
 - And maybe build them
- Design, build and train networks for various tasks
- You will not become an expert in one course

Deep Dive into Artificial Neural Networks

- Concepts
 - Types of neural networks and underlying ideas
 - Learning in neural networks
 - Training, concepts, practical issues
 - Architectures and applications
- Practical
 - Familiarity with training and parameter tuning
 - Implement various neural network architectures
- Overall: Set you up for further work in your area

Course learning objectives: Topics

- Basic network formalisms (for classification and prediction):
 - Multi-Layer Perceptron (MLP)
 - Convolutional networks (CNN)
 - Recurrent networks (RNN)
- Some advanced formalisms (for creation)
 - Generative models: VAEs
 - Adversarial models: GANs
- Applications we will touch upon:
 - Computer vision: recognizing images
 - Text processing: modelling and generating language

—

Reading

- List of books on Canvas Course Page
 - Primary: https://www.deeplearningbook.org/
 - "Deep Learning", Goodfellow, Bengio, Courville
 - Reference:
 https://www.manning.com/books/deep-learning-with-pyt hon
 - "Deep Learning with Python", Francois Chollet.
 - Additional reading material will be posted on Canvas, if needed

Logistics

- Most relevant info on Canvas
 - Handout
 - Schedule of Webinars, Quiz, Assignments,
 - Lecture Slides
 - Lab Sheets
 - One Quiz, Two Assignments
 - Quiz, one assignment before midsem
 - One assignment after midsem
 - submissions beyond deadline will be deducted some marks / day (unless medical emergencies)
 - Programming using Python, Keras / Tensorflow

Questions?

- Please post on Discussions Forum
 - TAs and instructors will answer
 - Collaborate with your fellow students

So what are neural networks??

What are these boxes?

So what are neural networks??

• It begins with this..

Early Models of Human Cognition

- Associationism
 - Humans learn through association
- 400BC-1900AD: Plato, David Hume, Ivan Pavlov..

Observation: The Brain

• Mid 1800s: The brain is a mass of interconnected neurons

Brain: Interconnected Neurons

- Many neurons connect in to each neuron
- Each neuron connects out to many neurons

Connectionist Machines

- Network of processing elements
- All world knowledge is stored in the *connections* between the elements
 - But what are these individual elements?

Modelling the brain

What are the units?

- Signals come in through the dendrites into the Soma
- A signal goes out via the axon to other neurons
 - Only one axon per neuron
- Factoid that may only interest me: Neurons do not undergo cell division
 - Neurogenesis occurs from neuronal stem cells, and is minimal after birth

Rosenblatt's perceptron

- Original perceptron model
 - Groups of sensors (S) on retina combine onto cells in association area A1
 - Groups of A1 cells combine into Association cells A2
 - Signals from A2 cells combine into response cells R
 - All connections may be excitatory or inhibitory

Connectionist Machines

- Neural networks are connectionist machines
 - As opposed to Von Neumann Machines

- The machine has many non-linear processing units
 - The program is the connections between these units
 - Connections may also define memory

Simplified mathematical model of Perceptron

- Number of inputs combine linearly
 - Threshold logic: Fire if combined input exceeds or equal to threshold

$$Y = \begin{cases} 1 & \text{if } \sum_{i} w_i x_i - T >= 0 \\ 0 & \text{else} \end{cases}$$

Also provided a learning algorithm

$$\mathbf{w} = \mathbf{w} + \eta (d(\mathbf{x}) - y(\mathbf{x}))\mathbf{x}$$

Sequential Learning:

d(x) is the desired output in response to input x y(x) is the actual output in response to x

- Boolean tasks
- Update the weights whenever the perceptron output is wrong
- Proved convergence for linearly separable classes

Perceptron

- Easily shown to mimic any Boolean gate
- But...

Perceptron

No solution for XOR! Not universal!

Minsky and Papert, 1968

A single neuron is not enough

- Individual elements are weak computational elements
 - Marvin Minsky and Seymour Papert, 1969,
 Perceptrons: An Introduction to Computational Geometry
- Networked elements are required

Multi-layer Perceptron!

• XOR

- The first layer is a "hidden" layer
- Also originally suggested by Minsky and Papert 1968

A more generic model

 $((A\&\overline{X}\&Z)|(A\&\overline{Y}))\&((X\&Y)|\overline{(X\&Z)})$

- A "multi-layer" perceptron
- Can compose arbitrarily complicated Boolean functions!
 - In cognitive terms: Can compute arbitrary Boolean functions over sensory input
 - More on this in the next class

But our brain is not Boolean

- We have real inputs
- We make non-Boolean inferences/predictions

The perceptron with *real* inputs

- $x_1 ... x_N$ are real valued
- $w_1...w_N$ are real valued
- Unit "fires" if weighted input exceeds a threshold

The perceptron with *real* inputs and a real *output*

- $x_1...x_N$ are real valued
- $w_1...w_N$ are real valued
- The output y can also be real valued
 - Sometimes viewed as the "probability" of firing

The "real" valued perceptron

- Any real-valued "activation" function may operate on the weighted- sum input
 - We will see several later
 - Output will be real valued
- The perceptron maps real-valued inputs to real-valued outputs
- Is useful to continue assuming Boolean outputs though, for interpretation

A Perceptron on Reals

$$y = \begin{cases} 1 & \text{if } \sum_{i} w \times i \geq T \\ 0 & \text{else} \end{cases}$$

- A perceptron operates on real-valued vectors
 - This is a linear classifier

Boolean functions with a real perceptron

- Boolean perceptrons are also linear classifiers
 - Purple regions have output 1 in the figures
 - What are these functions
 - Why can we not compose an XOR?

Composing complicated "decision" boundaries

 Build a network of units with a single output that fires if the input is in the coloured area

More complex decision boundaries

- Network to fire if the input is in the yellow area
 - "OR" two polygons
 - A third layer is required

Complex decision boundaries

- Can compose very complex decision boundaries
 - How complex exactly? More on this in the next class

Complex decision boundaries

- Classification problems: finding decision boundaries in high-dimensional space
 - Can be performed by an MLP
- MLPs can *classify* real-valued inputs

Story so far

MLPs are connectionist computational models

- Individual perceptrons are computational equivalent of neurons
- The MLP is a layered composition of many perceptrons

MLPs can model Boolean functions

- Individual perceptrons can act as Boolean gates
- Networks of perceptrons are Boolean functions

MLPs are Boolean machines

- They represent Boolean functions over linear boundaries
- They can represent arbitrary decision boundaries
- They can be used to classify data

But what about continuous valued *output?*

- Inputs may be real valued
- Can outputs be continuous-valued too?

MLP as a continuous-valued

regression

- A simple 3-unit MLP with a "summing" output unit can generate a "square pulse" over an input
 - Output is 1 only if the input lies between T₁ and T₂
 - T₁ and T₂ can be arbitrarily specified

MLP as a continuous-valued regression

- A simple 3-unit MLP can generate a "square pulse" over an input
- An MLP with many units can model an arbitrary function over an input
 - To arbitrary precision
 - · Simply make the individual pulses narrower
- This generalizes to functions of any number of inputs

Story so far

- Multi-layer perceptrons are connectionist computational models
- MLPs are classification engines
 - They can identify classes in the data
 - Individual perceptrons are feature detectors
 - The network will fire if the combination of the detected basic features matches an "acceptable" pattern for a desired class of signal
- MLP can also model continuous valued functions

So what does the perceptron cachieve lead really model?

- Is there a "semantic" interpretation?
 - Cognitive version: Is there an interpretation beyond the simple characterization as Boolean functions over sensory inputs?

Lets look at the weights

$$y = \begin{cases} 1 & \text{if } \sum_{i} w_{i} x \ge T \\ 0 & \text{else} \end{cases}$$

$$y = \begin{cases} 1 & \text{if } \mathbf{x}^\mathsf{T} \mathbf{w} \ge T \\ 0 & \text{else} \end{cases}$$

- What do the weights tell us?
 - The neuron fires if the inner product between the weights and the inputs exceeds a threshold

The weight as a "template"

- The perceptron fires if the input is within a specified angle of the weight
- Neuron fires if the input vector is close enough to the weight vector.
 - If the input pattern matches the weight pattern closely enough

The weight as a template

- If the *correlation* between the weight pattern and the inputs exceeds a threshold, fire
- The perceptron is a *correlation filter!*

The MLP as a Boolean function over feature detectors

- The input layer comprises "feature detectors"
 - Detect if certain patterns have occurred in the input
- The network is a Boolean function over the feature detectors
- I.e. it is important for the *first* layer to capture relevant patterns

The MLP as a cascade of feature detectors

- The network is a cascade of feature detectors
 - Higher level neurons compose complex templates from features represented by lower-level neurons

