

Neural Discrete Representation Learning

Van den Oord et al.

Park Jungsoo

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

Why Discrete Latent Representation?

- Computational Efficiency
- Interpretability and Communication
- More Natural

Auto-Encoding Variational Bayes

- Maximizing ELBO
- Ancestral sampling from Standard Normal D.

Introduction

Posterior Collapse

- With strong autoregressive decoder, posterior collapse happens
- Not capturing meaningful representation

Vector Quantization

- Quantization technique for modeling probability density function by distribution of prototype vectors
- Originally used in lossy data compression

Overview

Categorical Distribution

Posterior and Prior are categorical distributions.

$$L = \log p(x|z_q(x)) + \|\operatorname{sg}[z_e(x)] - e\|_2^2 + \beta \|z_e(x) - \operatorname{sg}[e]\|_2^2,$$

$$q(z = k|x) = \begin{cases} 1 & \text{for } k = \operatorname{argmin}_j ||z_e(x) - e_j||_2, \\ 0 & \text{otherwise} \end{cases},$$

$$z_q(x) = e_k$$
, where $k = \operatorname{argmin}_j ||z_e(x) - e_j||_2$

Resolving Posterior Collapse

As for vanilla VAE,

$$D_{KL}((q_{\phi}(\mathbf{z})||p_{\theta}(\mathbf{z})) = \int q_{\theta}(\mathbf{z}) \left(\log p_{\theta}(\mathbf{z}) - \log q_{\theta}(\mathbf{z})\right) d\mathbf{z}$$
$$= \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log((\sigma_{j})^{2}) - (\mu_{j})^{2} - (\sigma_{j})^{2}\right)$$

As for VQ VAE,

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right).$$

For specific k, p(x), posterior is 1 and 0 otherwise, therefore yielding

$$\log K$$

Thus, posterior collapse(KL term -> 0) problem doesn't happen

Autoregressive Prior

 After training with uniform prior, autoregressive model is fit for learning prior distribution, thus generating more realistic images

uniform

autoregressive

Generating Diverse High-Fidelity Images with VQ-VAE-2

Ali Razavi et al.

Park Jungsoo

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

Overview

Top CB for global structure, Bottom CB for the details

Algorithm

Algorithm 1 VQ-VAE training (stage 1)	Algorithm 2 Prior training (stage 2)				
Require: Functions E_{top} , E_{bottom} , D , \mathbf{x} (batch of training images) 1: $\mathbf{h}_{top} \leftarrow E_{top}(\mathbf{x})$	1: $\mathbf{T}_{top}, \mathbf{T}_{bottom} \leftarrow \emptyset$ \triangleright training set 2: for $\mathbf{x} \in \text{training set } \mathbf{do}$ 3: $\mathbf{e}_{top} \leftarrow Quantize(E_{top}(\mathbf{x}))$				
ightharpoonup quantize with top codebook eq 1 2: $\mathbf{e}_{top} \leftarrow Quantize(\mathbf{h}_{top})$	4: $\mathbf{e}_{bottom} \leftarrow Quantize(E_{bottom}(\mathbf{x}, \mathbf{e}_{top}))$ 5: $\mathbf{T}_{top} \leftarrow \mathbf{T}_{top} \cup \mathbf{e}_{top}$ 6: $\mathbf{T}_{bottom} \leftarrow \mathbf{T}_{bottom} \cup \mathbf{e}_{bottom}$				
3: $\mathbf{h}_{bottom} \leftarrow E_{bottom}(\mathbf{x}, \mathbf{e}_{top})$	7: end for 8: $p_{top} = \texttt{TrainPixelCNN}(\mathbf{T}_{top})$ 9: $p_{bottom} = \texttt{TrainCondPixelCNN}(\mathbf{T}_{bottom}, \mathbf{T}_{top})$				
> quantize with bottom codebook eq 1 4: $\mathbf{e}_{bottom} \leftarrow Quantize(\mathbf{h}_{bottom})$	⊳ Sampling procedure10: while true do				
5: $\hat{\mathbf{x}} \leftarrow D(\mathbf{e}_{top}, \mathbf{e}_{bottom})$	11: $\mathbf{e}_{top} \sim p_{top}$ 12: $\mathbf{e}_{bottom} \sim p_{bottom}(\mathbf{e}_{top})$				
	13: $\mathbf{x} \leftarrow D(\mathbf{e}_{top}, \mathbf{e}_{bottom})$ 14: end while				

Experiment

Effect of Hierarchical Latent Representation

Figure 3: Reconstructions from a hierarchical VQ-VAE with three latent maps (top, middle, bottom). The rightmost image is the original. Each latent map adds extra detail to the reconstruction. These latent maps are approximately 3072x, 768x, 192x times smaller than the original image (respectively).

Fast Decoding in Sequence Models Using Discrete Latent Variables

Lukasz Kaiser et al.

Park Jungsoo

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

Machine Translation

- Encoder function is a series of convolutional layers with residual connections
- Source sentence is encoded in to sequence of hidden states through multiple causal self-attention layers
- Decoder consists of transpose convolutional layers whose output is fed to a transformer decoder with causal attention.

2 Experiments

Machine Translation

Model	n_c	$\mid n_s \mid$	BLEU	Latency	Speedup	
Autoregressive Model (beam size=4) Autoregressive Baseline (no beam-search)	-		28.1 27.0	331 ms 265 ms	$1 \times 1.25 \times$	
NAT + distillation	-	-	17.7	39 ms	15.6× *	
NAT + distillation + NPD=10	-	-	18.7	79 ms	7.68× *	
NAT + distillation + NPD=100	-	-	19.2	257 ms	2.36 imes *	
LT + Semhash	-	-	19.8	105 ms	$3.15 \times$	
Our Results						
VQ-VAE	3	-	21.4	81 ms	$4.08 \times$	
VQ-VAE with EM	3	5	22.4	81 ms	4.08×	
VQ-VAE + distillation	3	-	26.4	81 ms	4.08×	
VQ-VAE with EM + distillation	3	10	26.7	81 ms	$4.08 \times$	
VQ-VAE with EM + distillation	4	10	25.4	58 ms	$5.71 \times$	