Exercise 11

陈志杰 524531910034

In this text, $\llbracket \rightarrow \rrbracket$ denotes the truth table of the logical connective \rightarrow .

Problem 1.

Solution. (a) If Φ does not talk about x, and $\Phi, \psi \vdash \phi$, then $\Phi \vdash \forall x(\psi \to \phi)$.

- (b) No logic. This is a mathematical definition.
- (c) If Φ and ϕ do not talk about x, and $\Phi, \psi \vdash \phi$, then $\Phi, \exists x \psi \vdash \phi$.

Problem 2.

Proof. Let \mathfrak{I} be an interpretation with domain A such that $\llbracket \phi[x \to t] \rrbracket_{\mathfrak{I}} = \mathbf{T}$ and $\llbracket \forall x(\phi \to \psi) \rrbracket_{\mathfrak{I}} = \mathbf{T}$. Thus for any $a \in A$, $\llbracket \phi \to \psi \rrbracket_{\mathfrak{I}[x \to a]} = \mathbf{T}$. Let $a = \llbracket t \rrbracket_{\mathfrak{I}}$ and we have $\llbracket \phi \to \psi \rrbracket_{\mathfrak{I}[x \to \llbracket t \rrbracket_{\mathfrak{I}}]} = \mathbf{T}$, which implies that $\llbracket \to \rrbracket (\llbracket \phi \rrbracket_{\mathfrak{I}[x \to \llbracket t \rrbracket_{\mathfrak{I}}]}, \llbracket \psi \rrbracket_{\mathfrak{I}[x \to \llbracket t \rrbracket_{\mathfrak{I}}]}) = \mathbf{T}$, which implies that $\llbracket \to \rrbracket (\llbracket \phi[x \to t] \rrbracket_{\mathfrak{I}}, \llbracket \psi[x \to t] \rrbracket_{\mathfrak{I}} = \mathbf{T}$. Now that $\llbracket \phi[x \to t] \rrbracket_{\mathfrak{I}} = \mathbf{T}$, by definition of $\llbracket \to \rrbracket$ we have $\llbracket \psi[x \to t] \rrbracket_{\mathfrak{I}} = \mathbf{T}$, completing the proof.

Problem 3.

- *Proof.* (a) Let \mathfrak{I} be an interpretation with domain A such that $\llbracket \forall x \phi \rrbracket_{\mathfrak{I}} = \mathbf{T}$. For every $a \in A$, we have $\llbracket \phi \rrbracket_{\mathfrak{I}[x \to a]} = \mathbf{T}$. Then $\llbracket \psi \rrbracket_{\mathfrak{I}[x \to a]} = \mathbf{T}$ follows from that $\phi \models \psi$. Now that we have proved that for every $a \in A$, $\llbracket \psi \rrbracket_{\mathfrak{I}[x \to a]} = \mathbf{T}$, we conclude that $\llbracket \forall x \psi \rrbracket_{\mathfrak{I}} = \mathbf{T}$, completing the proof.
 - (b) Let \Im be an interpretation with domain A such that $\llbracket \forall x \phi \rrbracket_{\Im} = \mathbf{T}$ and $\llbracket \chi \rrbracket_{\Im} = \mathbf{T}$ for each $\chi \in \Phi$. For every $a \in A$, we have $\llbracket \phi \rrbracket_{\Im[x \to a]} = \mathbf{T}$. For each $\chi \in \Phi$, because x does not freely occur in Φ , x does not freely occur in χ , which implies that $\llbracket \chi \rrbracket_{\Im[x \to a]} = \llbracket \chi \rrbracket_{\Im} = \mathbf{T}$. Then $\llbracket \psi \rrbracket_{\Im[x \to a]} = \mathbf{T}$ follows from that $\Phi, \phi \models \psi$. Now we conclude that $\llbracket \forall x \psi \rrbracket_{\Im} = \mathbf{T}$, completing the proof.
 - (c) Let $S = \{P, Q, R\}$ where P, Q, R are unary predicate symbols. Let $\mathfrak{A} = (\mathbb{Z}^+, \mathfrak{a})$ be an S-structure such that $\mathfrak{a}(P)(x) = \mathbf{T}$ if and only if x = 2, $\mathfrak{a}(Q)(x) = \mathbf{T}$ if and only if x is even, and $\mathfrak{a}(R)(x) = \mathbf{T}$ if and only if x is composite. Let $\Phi = \{P(x)\}$, $\phi = ((\neg P(x) \land Q(x)) \to R(x))$, and $\psi = (\neg P(x) \to R(x))$. x obviously occurs freely in Φ .

First we show that $\Phi, \phi \models \psi$. Let \Im be an S-interpretation such that $\llbracket P(x) \rrbracket_{\Im} = \mathbf{T}$ and $\llbracket \phi \rrbracket_{\Im} = \mathbf{T}$. Then $\llbracket \neg P(x) \rrbracket_{\Im} = \mathbf{F}$, which implies that $\llbracket \psi \rrbracket_{\Im} = T$ by the truth table of the logical connective \to . Hence $\Phi, \phi \models \psi$.

Now we show that $\Phi, \forall x\phi \not\models \forall x\psi$. Let $\mathfrak{I}=(\mathfrak{A},\beta)$ be an S-interpretation such that $\beta(x)=2$. By definition $\llbracket P(x) \rrbracket_{\mathfrak{I}}=\mathbf{T}$. Notice the mathematical fact that "if $n\neq 2$ and n is even, then n is composite". Let $n\in \mathbb{Z}^+$. If $\llbracket (\neg P(x) \land Q(x)) \rrbracket_{\mathfrak{I}[x\to n]}=\mathbf{T}$, then $n\neq 2$ and n is even. Thus n is composite, which implies that $\llbracket R(x) \rrbracket_{\mathfrak{I}[x\to n]}=\mathbf{T}$. Thus $\llbracket \phi \rrbracket_{\mathfrak{I}[x\to n]}=\mathbf{T}$. Because n is arbitrary, $\llbracket \forall x\phi \rrbracket_{\mathfrak{I}}=\mathbf{T}$. Consider $\llbracket \psi \rrbracket_{\mathfrak{I}[x\to 3]}=\mathbf{F}$, which implies that $\llbracket \forall x\psi \rrbracket_{\mathfrak{I}}=\mathbf{F}$. Hence $\Phi, \forall x\phi \not\models \forall x\psi$.