

Instrumented.

Interconnected.

Hadoop architecture

IBM Information Management
Cloud Computing Center of Competence
IBM Canada Labs

Agenda

- Terminology review
- HDFS
- MapReduce
- Type of nodes
- Topology awareness

Agenda

- Terminology review
- HDFS
- MapReduce
- Type of nodes
- Topology awareness

Node 1

Node 1

Node 2

Node 1

Node 2

Node n

Hadoop cluster

Hadoop architecture

- Two main components:
 - Hadoop Distributed File System (HDFS)
 - MapReduce Engine

Agenda

- Terminology review
- HDFS
- MapReduce
- Type of nodes
- Topology awareness

Hadoop distributed file system (HDFS)

- Hadoop file system that runs on top of existing file system
- Designed to handle very large files with streaming data access patterns
- Uses <u>blocks</u> to store a file or parts of a file

HDFS - Blocks

- File Blocks
 - 64MB (default), 128MB (recommended) compare to 4KB in UNIX
 - Behind the scenes, 1 HDFS block is supported by multiple operating system (OS) blocks

HDFS - Blocks

Fits well with replication to provide fault tolerance and availability

Advantages of blocks:

- Fixed size easy to calculate how many fit on a disk
- A file can be larger than any single disk in the network
- If a file or a chunk of the file is smaller than the block size, only needed space is used. Eg: 420MB file is split as:

128 MB	128 MB	128 MB	36 MB
--------	--------	--------	-------

HDFS - Replication

- Blocks with data are replicated to multiple nodes
- Allows for node failure without data loss

HDFS Client

HDFS Client

HDFS Command line interface

- File System Shell (fs)
 - Invoked as follows:

hadoop fs <args>

- Example:
 - Listing the current directory in hdfs

hadoop fs -ls.

HDFS Command line interface

- FS shell commands take paths URIs as argument
 - URI format: scheme://authority/path
- Scheme:
 - For the local filesystem, the scheme is file
 - For HDFS, the scheme is hdfs

```
hadoop fs -copyFromLocal 

file://myfile.txt

hdfs://localhost/user/keith/myfile.txt
```

- Scheme and authority are optional
 - Defaults are taken from configuration file core-site.xml

HDFS Command line interface

- Many POSIX-like commands
 - cat, chgrp, chmod, chown, cp, du, ls, mkdir, mv, rm, stat, tail
- Some HDFS-specific commands
 - copyFromLocal, copyToLocal, get, getmerge, put, setrep

- copyFromLocal / put
 - Copy files from the local file system into fs

hadoop fs -copyFromLocal <localsrc> .. <dst>

Or

hadoop fs -put <localsrc> .. <dst>

- copyToLocal / get
 - Copy files from fs into the local file system

```
hadoop fs -copyToLocal [-ignorecrc] [-crc] <src> <localdst>
```

Or

```
hadoop fs -get [-ignorecrc] [-crc] <src> <localdst>
```


getMerge

- Get all the files in the directories that match the source file pattern
- Merge and sort them to only one file on local fs
- <src> is kept

hadoop fs -getmerge <src> <localdst>

setRep

- Set the replication level of a file.
- The -R flag requests a recursive change of replication level for an entire tree.
- If -w is specified, waits until new replication level is achieved.

hadoop fs -setrep [-R] [-w] <rep> <path/file>

Agenda

Terminology review

HDFS

- MapReduce
- Type of nodes
- Topology awareness

MapReduce engine

- Technology from Google
- A MapReduce program consists of map and reduce functions
- A MapReduce job is broken into tasks that run in parallel

Agenda

- Terminology review
- HDFS
- MapReduce
- Type of nodes
- Topology awareness

- HDFS nodes
 - NameNode
 - DataNode
- MapReduce nodes
 - JobTracker
 - TaskTracker
- There are other nodes not discussed in this course

Types of nodes - NameNode

NameNode

- Only one per Hadoop cluster
- Manages the filesystem namespace and metadata
- Single point of failure, but mitigated by writing state to multiple filesystems

 Single point of failure: Don't use inexpensive commodity hardware for this node, large memory requirements

Types of nodes - DataNode

DataNode

- Many per Hadoop cluster
- Manages blocks with data and serves them to clients
- Periodically reports to name node the list of blocks it stores
- Use inexpensive commodity hardware for this node

Types of nodes - JobTracker

JobTracker node

- One per Hadoop cluster
- Receives job requests submitted by client
- Schedules and monitors MapReduce jobs on task trackers

Types of nodes - TaskTracker

TaskTracker node

- Many per Hadoop cluster
- Executes MapReduce operations
- Reads blocks from DataNodes

Agenda

- Terminology review
- HDFS
- MapReduce
- Type of nodes
- Topology awareness

Topology awareness (or Rack awareness)

Bandwidth becomes progressively smaller in the following scenarios:

1. Process on the same node.

- 1. Process on the same node
- 2. Different nodes on the same rack

- 1. Process on the same node
- 2. Different nodes on the same rack
- 3. Nodes on different racks in the same data center

- 1. Process on the same node
- 2. Different nodes on the same rack
- 3. Nodes on different racks in the same data center
- 4. Nodes in different data centers

Instrumented.

Interconnected.

Thank you!