CMP462: Natural Language Processing

Lecture 09: CKY Parser

Mohamed Alaa El-Dien Aly
Computer Engineering Department
Cairo University
Spring 2013

Agenda

- CKY Parsing Algorithm
- Worked example
- Parsing Evaluation
- PCFG Training

Acknowledgment:

Most slides adapted from Chris Manning and Dan Jurafsky's NLP class on Coursera.

Review: Context Free Grammars (CFGs)

- G = (T, N, S, R)
 - T is a set of terminal symbols e.g. fish, people
 - N is a set of nonterminal symbols e.g. NP, VP
 - S is the start symbol ($S \in N$)
 - R is a set of rules/productions of the form X → γ where X ∈ N and γ ∈ (N ∪ T)* e.g. S → NP VP

A grammar G generates a language L.

Review: Probabilistic Context Free Grammars (PCFGs)

- G = (T, N, S, R, P)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \in N$)
 - R is a set of rules/productions of the form X $\rightarrow \gamma$
 - P is a probability function
 - P: R \rightarrow [0,1]
 - $\forall X \in \mathbb{N}, \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$

Review: A PCFG

$S \rightarrow NP VP$	1.0	N o people	0.5
$VP \rightarrow V NP$	$\begin{array}{c} 0.6 \\ 0.4 \end{array}$ Sum to 1	$N \rightarrow fish$	0.2
$VP \rightarrow V NP PP$	0.6 Sum to 1	N o tanks	0.2
$NP \to NP \; NP$	0.1	$N \rightarrow rods$	0.1
$NP \to NP \; PP$	0.2 Sum to 1	$V \rightarrow people$	0.1
$NP \rightarrow N$	0.7	$V \rightarrow fish$	0.6
$PP \to P \; NP$	1.0	$ extsf{V} ightarrow extsf{tanks}$	0.3
		P o with	1.0

[With empty NP removed so less ambiguous]

Review: The probability of trees and strings

- P(t) The probability of a tree t is the product of the probabilities
 of the rules used to generate it.
- P(s) The probability of the string s is the sum of the probabilities
 of the trees which have that string as their yield

 $P(s) = \sum_{i} P(t)$ where t is a parse of s

Review: Chomsky Normal Form

- All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - $X, Y, Z \in N$ and $w \in T$
- A transformation to this form doesn't change the weak generative capacity of a CFG
 - That is, it recognizes the same language
 - But maybe with different trees
- Transformations:
 - Empties and unaries are removed recursively
 - n-ary rules are divided by introducing new nonterminals (n > 2)

Original CFG

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

people fish tanks
people fish with rods

CFG in Chomsky Normal Form

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S_V$

@S $V \rightarrow NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $PP \rightarrow with$

CKY Parsing

Exact polynomial time parsing of (P)CFGs

Constituency Parsing

Arrive at a parse tree consistent with the grammar

Start with a sentence

PCFG

Rule Prob θ_i

$$S \rightarrow NP VP \theta_0$$

$$NP \rightarrow NP NP \theta_{\scriptscriptstyle 1}$$

...

$$N \rightarrow fish$$
 θ_{42}

$$N \rightarrow people \theta_{43}$$

$$V \rightarrow fish \qquad \theta_{_{44}}$$

. .

Cocke-Kasami-Younger (CKY) Constituency Parsing

Parse Triangle or Chart

Stuff we can build with fish

Combine a constituent from the left with one from the right according to a grammar rule and compute its probability $NP \rightarrow NP NP$ $0.35 \times 0.14 \times 0.1$ = 0.0049 $S \rightarrow VP$ $VP \rightarrow V$ **VP 0.06** NP 0.35 NP0.14 0.6 0.5 0.2 $PP \rightarrow P NP$ people fish

 $S \rightarrow NP VP$ 0.9 0.1 0.5 $VP \rightarrow V NP$ 0.1 $VP \rightarrow V @VP V$ 0.3 $VP \rightarrow VPP$ 0.1 @VP $V \rightarrow NP PP 1.0$ $\mathsf{NP} o \mathsf{NP} \, \mathsf{NP}$ 0.1 0.2 $NP \rightarrow NP PP$ 0.7 $NP \rightarrow N$

1.0

from the right according to a grammar rule and compute its probability $S \rightarrow NP VP$ 0.9 $S \rightarrow VP$ 0.1 $VP \rightarrow V NP$ 0.5 0.1 $VP \rightarrow V$ $VP \rightarrow V @VP V$ 0.3 $VP \rightarrow VPP$ 0.1

@VP $V \rightarrow NP PP 1.0$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $PP \rightarrow P NP$

 $NP \rightarrow N$

0.1

0.2

0.7

1.0

Combine a constituent from the left with one from the right according to a grammar rule and compute its probability

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \to V \; NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \to NPPP$	1.0
$NP \to NP \; NP$	0.1
$NP o NP \; PP$	0.2
$NP \to N$	0.7
$PP o P \; NP$	1.0

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn't increase complexity; essentially like unaries

- Binarization is vital
 - Without binarization, you don't get parsing cubic in the length of the sentence and in the number of nonterminals in the grammar
 - Binarization may be an explicit transformation or implicit in how the parser works (Earley-style dotted rules), but it's always there.

The CKY algorithm (1960/1965) ... extended to unaries

```
function CKY (words, grammar) returns [most probable parse, prob]
  score = new double[#(words)+1][#(words)+1][#(nonterms)]
 back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
    //handle unaries
    boolean added = true
    while added
      added = false
      for A, B in nonterms
        if score[i][i+1][B] > 0 && A->B in grammar
          prob = P(A->B) * score[i][i+1][B]
          if prob > score[i][i+1][A]
            score[i][i+1][A] = prob
            back[i][i+1][A] = B
            added = true
```

Array of scores one element per nonterminal per cell

back pointers for reconstructing the best parse tree

Lexicon

The CKY algorithm (1960/1965) ... extended to unaries

```
function CKY (words, grammar) returns [most probable parse, prob]
  score = new double[#(words)+1][#(words)+1][#(nonterms)]
  back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
                                                           Rules A \rightarrow word
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
    //handle unaries
    boolean added = true
    while added
      added = false
                                                      Unary Rules B \rightarrow A
      for A, B in nonterms
        if score[i][i+1][B] > 0 \&\& A->B in grammar
          prob = P(A->B) * score[i][i+1][B]
          if prob > score[i][i+1][A]
             score[i][i+1][A] = prob
            back[i][i+1][A] = B
             added = true
```


The CKY algorithm (1960/1965) ... extended to unaries

```
Loop on spans
for span = 2 to \# (words)
  for begin = 0 to \#(words) - span
    end = begin + span
                                                    Rules A \rightarrow B C
    for split = begin+1 to end-1
      for A,B,C in nonterms
           prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
        if prob > score[begin][end][A]
          score[begin][end][A] = prob
           back[begin][end][A] = new Triple(split, B, C)
    //handle unaries
    boolean added = true
                                                    Rules C \rightarrow A
    while added
      added = false
      for A, B in nonterms
        prob = P(A->B) *score[begin][end][B];
        if prob > score[begin][end][A]
          score[begin][end][A] = prob
          back[begin][end][A] = B
          added = true
return buildTree(score, back)
```


CKY Parsing

A worked example

The grammar: Binary, no epsilons,

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \to V \; NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \to VPP$	0.1
$@VP_V \to NPPP$	1.0
$NP \to NP \; NP$	0.1
$NP \to NP \; PP$	0.2
$NP \to N$	0.7
$PP \rightarrow P NP$	1.0

N \ noonlo	ΛΕ
$N \rightarrow people$	0.5
$N \rightarrow fish$	0.2
N o tanks	0.2
$N \rightarrow rods$	0.1
V ightarrow people	0.1
$V \rightarrow \mathit{fish}$	0.6
$ extsf{V} ightarrow extsf{tanks}$	0.3
$P o \mathit{with}$	1.0

Rotate the triangle 45 degrees to the right!

0_	fish	1	people	2	fish	3	tanks	4
1	score[0][1]		score[0][2]		score[0][3]		score[0][4]	
2			score[1][2]		score[1][3]		score[1][4]	
3					score[2][3]		score[2][4]	
4							score[3][4]	

$S \rightarrow NP VP$	0.9
$S \to VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \to V \;@VP_V$	0.3
$VP \rightarrow V PP$	0.1
$@VP_V \to NPP$	P 1.0
$NP \rightarrow NP NP$	0.4
	0.1
$NP \rightarrow NP PP$	0.1
, , , , , , , , , , , , , , , , , , , ,	• • •
$NP \rightarrow NP PP$	0.2

$NP \to N$	0.7
$PP \to P \; NP$	1.0
N o people	0.5
$N o \mathit{fish}$	0.2
N o tanks	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow fish$	0.6

 $V \to \textit{tanks}$

0	fish	1 people	2	fish	3	tanks 4
1	$N \rightarrow fish 0.2$ $V \rightarrow fish 0.6$					
2		$N \rightarrow \text{people } 0.5$ $V \rightarrow \text{people } 0.1$				
3				\rightarrow fish 0.2 \rightarrow fish 0.6		
	ri=0; i<#(words); i++ for A in nonterms if A -> words[i] in gra score[i][i+1][A] = P					N → tanks 0.2 V → tanks 0.1
4						

0.3

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPP$	P 1.0
$NP \to NP \; NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \rightarrow N$	0.7
$PP \rightarrow P NP$	1.0

$NP \rightarrow NP NP$	0.1	
$NP \rightarrow NP PP$	0.2	
$NP \rightarrow N$	0.7	
$PP \rightarrow P NP$	1.0	
$N \rightarrow people$	0.5	
$N \rightarrow fish$	0.2	
N o tanks	0.2	
$N \rightarrow rods$	0.1	
$V \rightarrow people$	0.1	
$V \rightarrow fish$	0.6	
$V \rightarrow tanks$	0.3	
$P \rightarrow with$	1.0	_

0	fish	1	people	2	2 1	fish	3	tanks 4
	$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$							
1	$\begin{array}{c} \text{NP} \rightarrow \text{N } 0.14 \\ \text{VP} \rightarrow \text{V } 0.06 \\ \text{S} \rightarrow \text{VP } 0.006 \end{array}$							
2			→ people 0.5 → people 0.1					
	ndle unaries					ish 0.2 ish 0.6		
bool wl	ean added = true nile added added = false or A, B in nonterms if score[i][i+1][B] > 0 & prob = P(A->B)*score if(prob > score[i][i+1] score[i][i+1][A] = pro back[i][i+1][A] = B added = true	e[i][i+1 [A])						N → tanks 0.2 V → tanks 0.1

oudy"	
$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	/ 0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPF$	PP 1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \to N$	0.7
$PP \rightarrow P NP$	1.0
N o people	0.5
$N \rightarrow fish$	0.2
N o tanks	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow fish$	0.6
$V \rightarrow tanks$	0.3

fish O	1 p	people	2	fish	3	tanks	4
$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$S \rightarrow N$	V NP 0.10 P VP 0.001 NP NP 0.0	L26				
2	$\begin{array}{c} V \rightarrow p \\ NP \rightarrow \end{array}$ $VP \rightarrow $	eople 0.5 eople 0.1 N 0.35 V 0.01 P 0.001					
3			V - NP VP	\rightarrow fish 0.2 \rightarrow fish 0.6 \rightarrow N 0.14 \rightarrow V 0.06 \rightarrow VP 0.006			
prob=score[begin][split][if (prob > score[begin][electric score[begin]end][A] = back[begin][end][A] =	nd][A]) prob		√->BC)		1	N \rightarrow tanks 0.2 V \rightarrow tanks 0.1 NP \rightarrow N 0.14 VP \rightarrow V 0.03 S \rightarrow VP 0.003	
4							

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPP$	P 1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \to N$	0.7
$PP \rightarrow P NP$	1.0
N o people	0.5
$N \rightarrow fish$	0.2
$ extsf{N} ightarrow extsf{tanks}$	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow fish$	0.6
V ightarrow tanks	0.3
$P \rightarrow with$	1.0

0_	fish 1	people	2 fish	3	tanks	4
1	$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$VP \rightarrow V NP 0.105$ $S \rightarrow NP VP 0.00126$ $NP \rightarrow NP NP 0.0049$ $S \rightarrow VP 0.0105$				
2		$N \rightarrow \text{people } 0.5$ $V \rightarrow \text{people } 0.1$ $NP \rightarrow N \ 0.35$ $VP \rightarrow V \ 0.01$ $S \rightarrow VP \ 0.001$	$\begin{array}{c} \text{NP} \rightarrow \text{NP NP} \\ 0.0049 \\ \text{VP} \rightarrow \text{V NP} \\ 0.007 \\ \text{S} \rightarrow \text{NP VP} \\ 0.0189 \end{array}$			
	//handle unaries boolean added = true		$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	V	$NP \rightarrow NP NP$ 0.00196 $VP \rightarrow V NP$ 0.042 $S \rightarrow NP VP$ 0.00378	
3	while added added = false for A, B in nonterms prob = P(A->B)*sco if prob > score[begi score[begin][end][A back[begin][end][A added = true	n][end][A] A] = prob		\ 	N \rightarrow tanks 0.2 V \rightarrow tanks 0.1 NP \rightarrow N 0.14 VP \rightarrow V 0.03 S \rightarrow VP 0.003	

0

1

2

3

4

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow V PP$	0.1
$@VP_V \to NPP$	P 1.0
$NP \to NP \; NP$	0.1
$NP \to NP \; PP$	0.2
$NP \to N$	0.7
$PP \to P \; NP$	1.0
N o people	0.5
$N \rightarrow fish$	0.2
$ extsf{N} o extsf{tanks}$	0.2
$N \rightarrow rods$	0.1

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

fish	1 people	2 fish	3	tanks	4
$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$\begin{array}{c} \text{NP} \rightarrow \text{NP NP} \\ 0.0049 \\ \text{VP} \rightarrow \text{V NP} \\ 0.105 \\ \text{S} \rightarrow \text{VP} \\ 0.0105 \end{array}$				
	$N \rightarrow \text{people } 0.5$ $V \rightarrow \text{people } 0.1$ $NP \rightarrow N \ 0.35$ $VP \rightarrow V \ 0.01$ $S \rightarrow VP \ 0.001$	$\begin{array}{c} \text{NP} \rightarrow \text{NP NP} \\ 0.0049 \\ \text{VP} \rightarrow \text{V NP} \\ 0.007 \\ \text{S} \rightarrow \text{NP VP} \\ 0.0189 \end{array}$			
		$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	\	$NP \rightarrow NP NP$ 0.00196 $VP \rightarrow V NP$ 0.042 $S \rightarrow NP VP$ 0.00378	
			1	N \rightarrow tanks 0.2 V \rightarrow tanks 0.1 NP \rightarrow N 0.14 VP \rightarrow V 0.03 S \rightarrow VP 0.003	

0.1

0.6

0.3

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow V PP$	0.1
$@VP_V \to NPP$	P 1.0
$NP \to NP \; NP$	0.1
$NP \to NP \; PP$	0.2
$NP \to N$	0.7
$PP \to P \; NP$	1.0
N o people	0.5
N1 . C' 1	0.3

$S \rightarrow NP VP$	0.9
$S \to VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPP$	P 1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \to N$	0.7
$PP \to P \; NP$	1.0
N o people	0.5
$N \rightarrow fish$	0.2
$ extsf{N} ightarrow extsf{tanks}$	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow \mathit{fish}$	0.6
V ightarrow tanks	0.3
$P \rightarrow with$	1.0

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_{\ \ \ }$	V 0.3
$VP \to VPP$	0.1
$@VP_V \rightarrow NP$	PP 1.0
NP o NP NP	0.1
$NP \rightarrow NP PP$	0.2
$NP \to N$	0.7
$PP \rightarrow P NP$	1.0
N o people	0.5
$N \rightarrow fish$	0.2
$ extsf{N} o extsf{tanks}$	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow fish$	0.6
$ extsf{V} ightarrow extsf{tanks}$	0.3
$P \rightarrow with$	1.0

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow V PP$	0.1
$@VP_V \to NPP$	P 1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \to N$	0.7
$PP \to P \; NP$	1.0
N o people	0.5
$N \rightarrow fish$	0.2
$ extsf{N} ightarrow extsf{tanks}$	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow \mathit{fish}$	0.6
V ightarrow tanks	0.3
$P \rightarrow with$	1.0

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_{}$	V 0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NP$	PP 1.0
$NP \to NP \; NP$	0.1
$NP \to NP \; PP$	0.2
$NP \to N$	0.7
$PP \rightarrow P NP$	1.0
$ extsf{N} o extsf{people}$	0.5
$N o \mathit{fish}$	0.2
$ extsf{N} o extsf{tanks}$	0.2
$N \rightarrow rods$	0.1
V ightarrow people	0.1
$V \rightarrow \mathit{fish}$	0.6
$ extsf{V} ightarrow extsf{tanks}$	0.3
P → with Mohamed Aly – C	1.0 MP462 Spring 2013

0	fish 1	people	2 fish	3	tanks 4
1	$N \rightarrow fish \ 0.2$ $V \rightarrow fish \ 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$\begin{array}{c} \text{NP} \rightarrow \text{NP NP} \\ 0.0049 \\ \text{VP} \rightarrow \text{V NP} \\ 0.105 \\ \text{S} \rightarrow \text{VP} \\ 0.0105 \end{array}$	$\begin{array}{c} \text{NP} \rightarrow \text{NP NP} \\ 0.0000686 \\ \text{VP} \rightarrow \text{V NP} \\ 0.00147 \\ \text{S} \rightarrow \text{NP VP} \\ 0.000882 \end{array}$		
2		$N \rightarrow \text{people } 0.5$ $V \rightarrow \text{people } 0.1$ $NP \rightarrow N \ 0.35$ $VP \rightarrow V \ 0.01$ $S \rightarrow VP \ 0.001$	$\begin{array}{c} \text{NP} \rightarrow \text{NP NP} \\ 0.0049 \\ \text{VP} \rightarrow \text{V NP} \\ 0.007 \\ \text{S} \rightarrow \text{NP VP} \\ 0.0189 \end{array}$		
3	Handle unarie	es!	$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$,	$NP \rightarrow NP NP$ 0.00196 $VP \rightarrow V NP$ 0.042 $S \rightarrow VP$ 0.0042
4	if prob > score[beg score[begin]end	is [split][B]*score[split][end gin][end][A]		1	$N \rightarrow tanks 0.2$ $V \rightarrow tanks 0.1$ $NP \rightarrow N 0.14$ $VP \rightarrow V 0.03$ $S \rightarrow VP 0.003$

$S \rightarrow NP VP$	0.9
$S \to VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow V PP$	0.1
$@VP_V \to NPP$	P 1.0
$NP \rightarrow NP NP$	0.1
$NP \to NP \; PP$	0.2
$NP \to N$	0.7
$PP \rightarrow P NP$	1.0
N o people	0.5
$N \rightarrow fish$	0.2
N o tanks	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow fish$	0.6
$V \rightarrow tanks$	0.3

 $P \rightarrow with$

$S \rightarrow NP VP$	0.9	
$S \to VP$	0.1	
$VP \rightarrow V NP$	0.5	
$VP \to V$	0.1	
$VP \rightarrow V @VP_V$	0.3	
$VP \rightarrow VPP$	0.1	
$@VP_V \rightarrow NP PP 1.0$		
$NP \rightarrow NP NP$	0.1	
$NP \rightarrow NP PP$	0.2	
$NP \to N$	0.7	
$PP \rightarrow P NP$	1.0	
N o people	0.5	
$N \rightarrow fish$	0.2	
$ extsf{N} o extsf{tanks}$	0.2	
$N \rightarrow rods$	0.1	
$V \rightarrow people$	0.1	
$V \rightarrow fish$	0.6	
V o tanks	0.3	

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \to V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \to NPP$	P 1.0
$NP \to NP \; NP$	0.1
$NP \to NP \; PP$	0.2
$NP \to N$	0.7
$PP \rightarrow P NP$	1.0
$N \rightarrow people$	0.5
$N \rightarrow fish$	0.2
$ extsf{N} ightarrow extsf{tanks}$	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow fish$	0.6
$V \rightarrow tanks$	0.3

 $P \rightarrow with$

1.0

Mohamed Aly - CMP462 Spring 2013

Constituency Parser Evaluation

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

POS Tagging Accuracy 11/11 = 100.0%

One small mistake causes a big drop in the prec/recall!

PCFG Training

PCFG Training

- We saw how to transform an arbitrary PCFG into Chomsky Normal Form
- And we saw how to use a PCFG to get most probable parse of a sentence
- But, where do these PCFGs come from i.e. where to get the grammar rules and their probabilities?

PCFG Training

- The answer is: Treebanks
- To train a PCFG:
 - Use all the hand-labeled rules in the treebank as grammar rules
 - The probability of a given rule is its relative count

$$P(N \to \zeta) = \frac{\text{Count}(N \to \zeta)}{\sum_{\gamma} \text{Count}(N \to \gamma)}$$

Recap

- CKY Parsing Algorithm
- Worked example
- Parsing Evaluation
- PCFG Training