光电效应测普朗克常数实验报告

学号: PB22511902 姓名: 王冬雪

实验目的

测量普朗克常数h。

实验原理

单色光照射在光电管的阴极上有电子发射出来的现象叫光电效应,出射的电子称之为光电子,形成的电流称之为光电流。光电流很弱。在光电管里加载在阳极与阴极之间的电压为正值时,随着电压的增大光电流迅速增大,电压增大到一定值后,光电流趋于饱和。加载负电压时,随着电压数值逐渐变大,光电流变弱,负电压数值增大到Uo值时,光电流变为零。把电压Uo称之为遏止电压。本实验要求测量5种不同单色光分别照射下,光电流的遏止电压5个值。本实验还需测量和验证饱和光电流与光强之间的关系,是否满足线性正比关系。

(**实验提高内容**)有能力的同学,要求测量5种不同单色光分别照射下,光电管完整的伏安特性曲线,以及基于此曲线分析和测量出光电流的遏止电压(拐点法)。

实验仪器介绍

智能光电效应(普朗克常数)实验仪如上图所示。

实验数据记录以及分析处理

基本必做实验内容

- ①零电流法、补偿法分别测遏止电压;②饱和光电流与光强之间的变化关系。
- 1.固定一种直径大小光阑的情况下,分别测量5种不同单色光照射下,光电流的遏止电压。
 - a) 测量数据记录列表(1)
 - b) 用最小二乘法计算普朗克常数h大小,以及与公认值ho之间的相对误差。
- c) 计算此光电管阴极材料,产生光电效应的单色照射光的波长红限,以及光电子从材料表面逸出的功大小。

表1不同单色光照射	下的光电流的遏止电压(距离	L=400mm 光阑孔Φ=2mm)
-----------	---------------	--------------------------

波长λi(nr	365.0	404.7	435.8	546.1	577.0	
频率v _i (×10 ¹⁴	Hz)	8.214	7.408	6.879	5.490	5.196
零电流法测遏止电压 <i>Uoi</i> (V)			1.584	1.272	0.716	0.610
补偿法测遏止电压 <i>U</i> _{0i} (V)	手动	1.904	1.590	1.278	0.728	0.618

数据处理和分析

对上述表1中的单色光频率与遏止电压(正值)之间,在直角坐标纸上进行画图、描点,再进行(最小二乘)线性回归拟合分析,做出拟合直线。写出拟合直线方程。

根据上述拟合直线方程,计算

- ①普朗克常数值h
- ②与公认值ho比较计算相对误差
- ③计算入射光红限(频率、波长值)
- ④计算电子的逸出功
- ⑤二种方法测量结果的比较。

(1) 零电流法

图2零电流法遏止电压与频率关系图

根据拟合结果,

$$U = \frac{h}{e}v + \frac{W_{\pm}}{e} = (4.302 \times 10^{-15}v - 1.632)V \tag{*}$$

故, 普朗克常数值

$$h = ek = 6.8926 \times 10^{-34} J \cdot s$$

由 $\left| \frac{h-h_0}{h_0} \right| \times 100\% = 4.02\%$ 知相对误差为4.02%。

在(*)式中令U=0,可得

$$v = 3.794 \times 10^{14} Hz$$

$$\lambda = \frac{c}{v} = 790.8 nm$$

在(*)式中令v=0,可得

$$U = -1.632V$$

那么阴极材料逸出功

$$W = eU = 2.615 \times 10^{-19} J$$

根据拟合结果,

$$U = \frac{h}{e}v + \frac{W_{i/2}}{e} = (4.288 \times 10^{-15}v - 1.632)V$$

(2) 补偿法

图3补偿法遏止电压与频率关系图

同上述分析, 可得

h` = 6.8701 × 10⁻³⁴J·s

$$\left| \frac{h` - h_0}{h_0} \right|$$
 × 100% = 3.68%
v` = 3.794 × 10¹⁴Hz
 λ ` = 790.8nm
W` = 2.615 × 10⁻¹⁹J

经比较两种测量所得数据,补偿法较为精确,但差别不大。

2.测量饱和光电流与光强的关系

- a)其一种情况是,选择一种单色光,固定光电管阴阳极电压(在饱和区),改变不同的光阑(直径) 大小,来改变光强
- b)另一种情况是,选择一种单色光,固定光电管阴阳极电压(在饱和区),改变光电管与汞灯光源的距离,来改变光强c)二种测量内容,分别列表,画图。验证饱和光电流与光强,成正比关系。

表2饱和光电流I _M —光强P的关系 U _{AK} =30V L=400mm											
$\lambda = 435.8$ nm	光阑孔直径/mm			2	4		8		14. 35		
$\lambda = 435.81111$	饱和光电流/A		7.6	× 10 ⁻¹⁰	29.3×10^{-10}		109.4 ×	109.4×10^{-10}		34.2×10^{-9}	
	表3饱和光电流 I _ν —光强 P的关系 U _{λκ} =30V Φ=2mm										
$\lambda = 435.8$ nm	L/cm	30	. 00	32.00	3	34.00	36.00	38.0	00	40.00	
λ – 455.811111	$I/10^{-10}$ A	1	6 . 2	13.5		11.4	10.5	8.5	5	7. 5	

对上述二个表中的饱和光电流的测量数据,进行如下数据处理和分析。

图4 饱和光电流与光阑孔平方的关系

图5 饱和光电流与距离平方的倒数的关系

由图可以看出,饱和光电流与光强有着良好的正比关系。

提高性实验向客

测量完整的伏安特性曲线,以及使用"拐点法"测量光电流的遏止电压。计算普朗克常数h。

	表4 光电管伏安特性曲线测量							400mm, Ф=	2mm,λ=5	77.0nm
U_{AK}/V	-1.9	-1.8	-1.7	-1.6	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0
$I/10^{-13}A$	-2.8	-2.7	-2 . 7	-2.6	-2.6	-2.6	-2.6	-2.5	-2.5	-2.5
U_{AK}/V	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1	0
$I/10^{-13}A$	-2.4	-2.4	-2.2	-0.7	3.6	9.8	18.6	29. 2	39. 7	49. 4
U_{AK}/V	1	2	3	4	5	10	15	20	25	30
$I/10^{-12}A$	11.7	14.6	16. 7	19.2	21.5	33. 9	39.6	43.3	48.3	49. 1
U_{AK}/V	35	40	45	50						
$I/10^{-12}A$	53. 5	53.9	56. 5	57.2						

表5 光电管伏安特性曲线测量

T 400			^
L=400 mm	$\Phi = 2mm$.λ=365.	.()nm

	农6 九七百八文刊 庄面 次 附重							100mm, 4		,00.011111
U_{AK}/V	-1.99	-1.97	-1.96	-1.95	-1.94	-1.93	-1.92	-1.91	-1.90	-1.89
$I/10^{-13}A$	-5.3	-4.8	-4.5	-4.3	-4.0	-3.7	-3.4	-3.1	-2.8	-2.3
U_{AK}/V	-1.88	-1.87	-1.86	-1.85	-1.84	-1.83	-1.82	-1.81	-1.80	-1.7
$I/10^{-13}A$	-1.9	-1.5	-0.9	-0.3	0.2	0.9	1.6	2.4	3.2	15.8
U_{AK}/V	-1.6	-1.5	-1.4	-1.3	-1.2					
$I/10^{-13}A$	41.0	73.6	111.4	150.6	194.4					
U_{AK}/V	-1.0	0	1.0	2.0	3.0	4.0	5.0	10	15	20
$I/10^{-11}A$	2.8	8.5	16.1	24.7	33.2	37.4	387	53.3	71.4	82.7
U_{AK}/V	25	30	35	35	40	45	50			
$I/10^{-11}A$	95.4	103.0	116.6	123.3	127.4	134.0				

处理数据得

图6 光电管伏安特性曲线

对斜率突变处放大,可得

由图可知577.0nm遏止电压为0.641V,365.0nm遏止电压为1.912V 同零电流法处理,可得

光电效应测量普朗克常
$$h^{``} = \frac{\Delta U}{\Delta v} e = 6.7474 \times 10^{-34} J \cdot s$$

$$\left| \frac{h^{``} - h_0}{h_0} \right| \times 100\% = 2.72\%$$

$$v^{``} = 3.676 \times 10^{14} Hz$$

$$\lambda^{`} = 816 nm$$

$$W^{`} = 2.370 \times 10^{-19} J$$