MATH-UA 120 Discrete Mathematics

Ishan Pranav

PROPOSITION.

Claim. Let $a \in \mathbb{Z}$. 14 | a if and only if 7 | a and 2 | a.

Proof. Let $a \in \mathbb{Z}$. We will demonstrate that $14 \mid a$ if and only if $7 \mid a$ and $2 \mid a$.

 \Rightarrow) Suppose 14 | a. Then there exists $n \in \mathbb{Z}$ such that a = 14n. Note a = 7(2n). There exists $(2n) \in \mathbb{Z}$ such that a = 7(2n). Thus, $7 \mid a$. Note also a = 2(7n). There exists $(7n) \in \mathbb{Z}$ such that a = 2(7n). Thus, $2 \mid a$. Therefore, $7 \mid a$ and $2 \mid a$.

 \Leftarrow) Suppose 7 | a and 2 | a. Then there exists $b \in \mathbb{Z}$ such that a = 7b. Since 2 | a, there exists $c \in \mathbb{Z}$ such that a = 2c. Thus a = 7b = 2c. There exists $c \in \mathbb{Z}$ such that 7b = 2c, so 2 | 7b. Thus 7b is even, so either 7 is even or b is even; but 7 is not even, so b is even. Since b is even, 2 | b and there exists $d \in \mathbb{Z}$ such that b = 2d. Observe

$$a = 7b$$

$$a = 7(2d)$$

$$a = 14d.$$

There exists $d \in \mathbb{Z}$ such that a = 14d. Therefore, $14 \mid a$.

Hence, $14 \mid a$ if and only if $7 \mid a$ and $2 \mid a$. \square