1. Considerar los siguientes diagramas. En ambos casos, probar que si los dos triángulos conmutan, también conmuta el cuadrado.

Solución

- Sabemos que $s \circ p = r$ y $t \circ q = r$ por lo tanto $s \circ p = r = t \circ q$, es decir que el cuadrado conmuta.
- Sabemos que $r \circ p = q$ y $t \circ r = s$ por lo tanto:

$$s \circ p = (t \circ r) \circ p = t \circ (r \circ p) = t \circ q$$

2. Sea P un conjunto ordenado. Mostrar que P puede considerarse como una categoría.

Solución Definimos:

- \bullet $ob \mathcal{P} = P$.
- \blacksquare mor $\mathcal{P} = <$.
- $(b,c) \circ (a,b) = (a,c).$

Veamos que en efecto, se trata de una categoría:

- Buena definición: La composición esta bien definida pues si (b, c) y (a, b) son morfismos, por transitividad también lo será su composición (a, c).
- Morfismo identidad: Para cada objeto a por reflexividad $(a, a) \in \leq$ por lo que $(a, a) \in mor \mathcal{P}$; a este morfismo lo llamaremos id_a resultando
 - $(a,b) \circ id_a = (a,b) \circ (a,a) = (a,b).$
 - $id_a \circ (b, a) = (a, a) \circ (b, a) = (b, a).$

- Asociatividad: Sean (a, b), (b, c) y (c, d) morfismos, por transitividad también son morfismos (a, c), (b, d) y (a, d) luego
 - $((c,d)\circ(b,c))\circ(a,b)=\overline{(b,d)}\circ(a,b)=(a,d).$
 - $(c,d) \circ ((b,c) \circ (a,b)) = (c,d) \circ \overline{(a,c)} = (a,d).$
- 3. Verificar que un monoide M define una categoría con un único objeto cuyas flechas son los elementos de M.

Solución Definimos:

- $ob \mathcal{M} = \{*\}.$
- \blacksquare mor $\mathcal{M} = M$.
- $x \circ y = x + y.$

Veamos que en efecto, se trata de una categoría:

- Buena definición: Por clausura de monoides, si x e y son morfismos, también lo será su composición x + y.
- Morfismo identidad: Para el único objeto * existe el morfismo $0 = id_*$ de manera tal que
 - $\bullet \ x \circ id_* = x + 0 = x.$
 - $id_* \circ y = 0 + y = y$.
- Asociatividad: Para tres morfismos x, y, z (elementos de M) por clausura de monoide también son morfismos x + y y y + z, luego

$$(x \circ y) \circ z = (x + y) + z = x + (y + z) = x \circ (y \circ z)$$

4. Dada una categoría \mathcal{C} , podemos definir \mathcal{C}^{op} con los mismo objetos que \mathcal{C} pero las flechas con sentido inverso, es decir, $ob \mathcal{C}^{op} = ob \mathcal{C}$ y $Hom_{\mathcal{C}^{op}}(X,Y) = Hom_{\mathcal{C}}(Y,X)$. Verificar que \mathcal{C}^{op} es una categoría.

Solución Definamos:

- $mor \mathcal{C}^{op} = \{ f_{op} : X \to Y/f : Y \to X \in mor \mathcal{C} \}.$
- $\bullet g_{op} \circ_{op} f_{op} = (f \circ g)_{op}$

Veamos que en efecto, se trata de una categoría:

- Buena definición: Dadas $f_{op}: A \to B$ y $g_{op}: B \to C$ por definición existen en \mathcal{C} los morfismos $f: B \to A$ y $g: C \to B$ luego es valida la composición $f \circ g$ y por definición $(f \circ g)_{op}$ es un morfismo de \mathcal{C}^{op} .
- Morfismo identidad: Para cada objeto X sabemos que existe id_X , luego $id_{X_{op}}$ es un morfismo de la categoría opuesta para el cual
 - $f_{op} \circ_{op} id_{X_{op}} = (id_X \circ f)_{op} = f_{op}$.
 - $id_{X_{op}} \circ_{op} h_{op} = (h \circ id_X)_{op} = h_{op}$.
- Asociatividad: Sean $f_{op}: A \to B$, $g_{op}: B \to C$ y $h_{op}: C \to D$, luego
 - $(h_{op} \circ_{op} g_{op}) \circ_{op} f_{op} = (g \circ h)_{op} \circ_{op} f_{op} = f \circ (g \circ h).$
 - $h_{op} \circ_{op} (g_{op} \circ_{op} f_{op}) = h_{op} \circ_{op} (f \circ g)_{op} = (f \circ g) \circ h.$
- 5. Sean \mathcal{C} y \mathcal{D} dos categorías, se define $\mathcal{C} \times \mathcal{D}$ cuyos objetos son pares ordenados de la forma (C, D) con $C \in ob \mathcal{C}$, $D \in ob \mathcal{D}$ y además:

$$Hom_{\mathcal{C}\times D}\left(\left(C,D\right),\left(C',D'\right)\right)=Hom_{\mathcal{C}}\left(C,C'\right)\times Hom_{\mathcal{C}}\left(D,D'\right)$$

Verificar que $\mathcal{C} \times \mathcal{D}$ es una categoría.

Solución Definimos:

- $ob \mathcal{C} \times \mathcal{D} = ob \mathcal{C} \times ob \mathcal{D}$.
- $\bullet (p,q) \circ_{\times} (f,g) = (p \circ f, q \circ g).$

Veamos que en efecto, se trata de una categoría:

- Morfismo identidad: Para cada objeto $(C, D) \in ob \mathcal{C} \times \mathcal{D}$ existen los objetos $C \in ob \mathcal{C}$ y $D \in ob \mathcal{D}$ y también los morfismos id_C e id_D , por lo que también existe el morfismo (id_C, id_D) para el cual
 - $(f,g) \circ_{\times} (id_C, id_D) = (f \circ id_C, g \circ id_D) = (f,g).$
 - $(id_C, id_D) \circ_{\times} (f, g) = (id_C \circ f, id_D \circ g) = (f, g).$

- Asociatividad: Sean $(f,g): (C_1,C_2) \to (D_1,D_2), (p,q): (C_2,C_3) \to (D_2,D_3) \text{ y } (r,s): (C_3,C_4) \to (D_3,D_4), \text{ luego}$
 - $((r,s) \circ_{\times} (p,q)) \circ_{\times} (f,g) = (r \circ p, s \circ q) \circ_{\times} (f,g) = (r \circ p \circ f, s \circ q \circ g).$
 - $(r,s)\circ_{\times}((p,q)\circ_{\times}(f,g))=(r,s)\circ_{\times}(p\circ f,q\circ g)=(r\circ p\circ f,s\circ q\circ g).$
- 6. Definamos C^{\rightarrow} como la categoría de las flechas de una categoría C, es decir, los objetos de C^{\rightarrow} son las flechas de C. Una flecha de C^{\rightarrow} de $f:A\rightarrow B$ en $g:D\rightarrow E$ es un par (a,b) de flechas de C tales que $g\circ a=b\circ f$.
 - a) Expresar las flechas de C^{\rightarrow} en términos de diagramas conmutativos.
 - b) Probar que si en el diagrama los cuadrados conmutan, entonces también conmuta el rectángulo exterior:

- c) Utilizar el apartado anterior para definir la composición en C^{\rightarrow} .
- d) Verificar que C^{\rightarrow} es una categoría.

Soluciones

 $a)\;$ El par (a,b) es una flecha de C^{\rightarrow} si el siguiente diagrama conmuta en $C\colon$

b) Sabemos que $u \circ p = r \circ t$ y $v \circ q = s \circ u$ y queremos ver si $v \circ (q \circ p) = s \circ (r \circ t)$. Por asociatividad en $C v \circ (q \circ p) = (v \circ q) \circ p$, es decir $v \circ (q \circ p) = (s \circ u) \circ p = s \circ (u \circ p) = s \circ (r \circ t)$.

c) Para (r, p) y (s, q) como en el diagrama, definimos $(s, q) \circ (r, p)$ como $(s \circ r, q \circ p)$.

d

- Para cada $f: A \to B$ en $ob C^{\to}$ definimos $id_f = (id_{dom(f)}, id_{cod(f)})$.
 - Observemos que id_f es una flecha de C^{\rightarrow} pues el siguiente diagrama conmuta:

• Sean $a:A\to A'$ y $b:B\to B'$ como en el diagrama, luego:

$$(a,b) \circ id_f = (a \circ id_{dom(f)}, b \circ id_{cod(f)}) = (a,b)$$

• Análogamente sean $a:D\to A$ y $b:E\to B$, entonces:

$$id_f \circ (a,b) = (id_{dom(f)} \circ a, id_{cod(f)} \circ b) = (a,b)$$

■ Sean (r, p), (s, q) y (x, w) como en el siguiente diagrama:

$$((r,p)\circ(s,q))\circ(x,w)=(r\circ s,p\circ q)\circ(x,w)=((r\circ s)\circ x,(p\circ q)\circ w)=$$

$$=(r\circ(s\circ x),p\circ(q\circ w))=(r,p)\circ(s\circ x,q\circ w)=(r,p)\circ((s,q)\circ(x,w))$$

7. Sean C una categoría y A un objeto de C. Definimos C|A como la categoría cuyos objetos son las flechas f de C tales que cod(f) = A. Una flecha g en C|A de $f: X \to A$ en $h: Y \to A$ es una flecha $g: X \to Y$ de C tal que $f = h \circ g$.

- a) Expresar las flechas de C|A en términos de diagramas conmutativos.
- b) Verificar que C|A es una categoría.
- c) Si P es la categoría definida por un conjunto ordenado y $x \in P$, determinar P|x.

Soluciones

a) Si el siguiente diagrama conmuta en C, entonces g es una flecha de C|A.

b)

- Dados dos morfismos $g: X \to Y$ y $p: Y \to Z$ en C|A definimos la composición en C|A como la composición en C y para cada objeto $f: X \to A$ definimos el morfismo $id_f = id_{dom(f)}$.
 - Observemos que $id_{dom}(f)$ es un morfismo de la categoría pues el siguiente diagrama conmuta:

- Una flecha α que parte de f debe tener tipo $X \to Y$, luego $\alpha \circ id_f = \alpha$.
- Una flecha β que llega a f debe tener tipo $W \to X$, luego $id_f \circ \beta = \beta$.

• Sean g, p, q como en el siguiente diagrama conmutativo:

luego $(r \circ p) \circ g = r \circ (p \circ g)$ por asociatividad en C.

- c) COMPLETAR.
- 8. Probar que en *Set* los monomorfismos (epimorfismos) son exactamente las funciones inyectivas (respectivamente sobreyectivas).

Solución

.

• \Longrightarrow : Sea $f: B \to C$ un monomorfismo, luego para cualquier conjunto A y funciones $g, h: A \to B$ sabemos que:

$$f\circ g=f\circ h\Rightarrow g=h$$

Supongamos que f no es inyectiva, es decir que existen $b_1 \neq b_2 \in B$ tales que $f(b_1) = f(b_2)$. Definimos funciones constantes g, h tales que $g(x) = b_1$ y $h(x) = b_2$, luego:

$$f \circ g(x) = f(g(x)) = f(b_1) = f(b_2) = f(h(x)) = f \circ h(x)$$

y como f es monomorfismo resulta g=h lo cual es una contradicción pues $g\left(x\right)=b_{1}\neq b_{2}=h\left(x\right).$

• \sqsubseteq : Sea $f: B \to C$ una función inyectiva, luego sabemos que $f(b_1) = f(b_2) \iff b_1 = b_2$. Para $g, h: A \to B$ tales que $f \circ g = f \circ h$ resulta:

$$f \circ g(x) = f \circ h(x) \iff f(g(x)) = f(h(x)) \iff g(x) = h(x)$$

• \Longrightarrow : Sea $f:A\to B$ un epimorfismo, luego para cualquier conjunto C y funciones $g,h:B\to C$ sabemos que:

$$q \circ f = h \circ f \Rightarrow q = h$$

Supongamos que f no es sobreyectiva, es decir que existe $b \in B$ tal que $f(x) \neq b$ (para cualquier x). Definimos g, h iguales salvo en b donde $g(b) = c_1$ y $h(b) = c_2$, luego:

$$g \circ f(x) = g(f(x)) = h(f(x)) = h \circ f(x)$$

y como f es un epimorfismo resulta g=h lo cual es una contradicción.

• \sqsubseteq : Sea $f:A\to B$ una función sobreyectiva y sean dos funciones $g,h:B\to C$ tales que $g\circ f=h\circ f$. Supongamos que $g\ne h$, luego existe $f(x)\in B$ tal que $g(f(x))\ne h(f(x))$ lo cual es una contradicción pues:

$$g \circ f(x) = h \circ f(x) \iff g(f(x)) = h(f(x))$$

- 9. Sean C una categoría y f, g flechas de C. Probar que:
 - a) Si f y g son monomorfismos, entonces $g \circ f$ también lo es.
 - b) Si $g\circ f$ es un monomorfismo, f también lo es.
 - c) Si f y g son epimorfismos, entonces $g\circ f$ también lo es.
 - d) Si $g\circ f$ es un epimorfismo, g también lo es.
 - e) Si f^{-1} es la inversa de f y g^{-1} es la inversa de g, entonces $f^{-1} \circ g^{-1}$ es la inversa de $g \circ f$.

Soluciones Sean f, g, p, q, r, s como en el siguiente diagrama:

- a) Supongamos $(g \circ f) \circ p = (g \circ f) \circ q$ luego por asociatividad resulta $g \circ (f \circ p) = g \circ (f \circ q)$ y como g es monomorfismo $f \circ p = f \circ q$. Nuevamente como f es monomorfismo tenemos p = q. En definitiva: $(g \circ f) \circ p = (g \circ f) \circ q \Rightarrow p = q$, es decir, $g \circ f$ es monomorfismo.
- b) Supongamos $f \circ p = f \circ q$, luego $g \circ (f \circ p) = g \circ (f \circ q)$ y por asociatividad $(g \circ f) \circ p = (g \circ f) \circ q$. Como $g \circ f$ es monomorfismo resulta p = q. En definitiva: $f \circ p = f \circ q \Rightarrow p = q$.
- c) Supongamos $r \circ (g \circ f) = s \circ (g \circ f)$ luego por asociatividad resulta $(r \circ g) \circ f = (s \circ g) \circ f$ y como f es epimorfismo $r \circ g = s \circ g$. Nuevamente como g es epimorfismo tenemos r = s. En definitiva: $r \circ (g \circ f) = s \circ (g \circ f) \Rightarrow r = s$, es decir, $(g \circ f)$ es epimorfismo.
- d) Supongamos $r \circ g = s \circ g$, luego $(r \circ g) \circ f = (s \circ g) \circ f$ y por asociatividad $r \circ (g \circ f) = s \circ (g \circ f)$. Como $g \circ f$ es epimorfismo resulta r = s. En definitiva: $r \circ g = s \circ g \Rightarrow r = s$.
- e) Sabemos que:

$$\bullet f \circ f^{-1} = id_C.$$

$$g \circ g^{-1} = id_D.$$

$$f^{-1} \circ f = id_B.$$

$$g^{-1} \circ g = id_C.$$

Ahora:

- $(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ g^{-1} = id_D.$
- $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ f = id_B.$
- 10. Mostrar que una flecha de una categoría puede ser monomorfismo y epimorfismo y no isomorfismo.

Solución Consideremos en Mon el morfismo $f: \mathbb{N}_0 \to \mathbb{Z}$ tal que f(n) = n. Observemos que $n_1 \neq n_2 \Rightarrow f(n_1) \neq f(n_2)$.

■ Monomorfismo: Sean $g, h: M \to \mathbb{N}_0$ morfismos tales que $f \circ g = f \circ h$ y supongamos existe $m \in M$ tal que $g(m) \neq h(m)$, luego:

$$f \circ g(m) = f \circ h(m) \iff f(g(m)) = f(h(m))$$

lo cual es una contradicción. Por lo tanto f es monomorfismo.

■ Epimorfismo: Sean $g, h : \mathbb{Z} \to M$ morfismos tales que $g \circ f = h \circ f$ y supongamos existe $z \in \mathbb{Z}$ tal que $g(z) \neq h(z)$, luego:

$$g \circ f(z) = h \circ f(z) \iff g(f(z)) = h(f(z))$$

lo cual es una contradicción. Por lo tanto f es epimorfismo.

■ Isomorfismo: Supongamos que existe $f^{-1}: \mathbb{Z} \to \mathbb{N}_0$ tal que $f \circ f^{-1} = id_{\mathbb{Z}}$ y $f^{-1} \circ f = id_{\mathbb{N}_0}$. En particular para $n \geq 0$ sabemos que $f^{-1}(n) = n$, luego:

$$0 = f^{-1}(0) = f^{-1}(-n+n) = f(-n)^{-1} + f(n)^{-1} = f(-n)^{-1} + n$$

por lo que $f(-n)^{-1} = -n$ lo cual es absurdo ya que $-n \notin \mathbb{N}_0$. Por lo tanto f no es isomorfismo.

11. Mostrar que una flecha de una categoría concreta puede ser epimorfismo y no sobreyectiva.

Solución La misma función del ejercicio anterior cumple dichas características.

12. Mostrar que dos objetos terminales en una categoría son isomorfos. Por dualidad: ¿qué se puede decir de los objetos iniciales?

Solución Sean 1 y 1' dos elementos terminales de una categoría. Por ser 1 terminal, existe un único morfismo $f:1\to 1'$ y análogamente existe un único morfismo $g:1'\to 1$. Como 1' es terminal existe un único morfismo de 1' en 1' luego $f\circ g:1'\to 1'$ debe ser $id_{1'}$. Análogamente para $g\circ f$.

Dos objetos iniciales en una categoría son isomorfos.

13. ¿Cuales son los objetos iniciales y terminales en $Set \times Set$? ¿Cuáles en $Set \rightarrow$?

Solución

 \blacksquare Set \times Set:

 \blacksquare Set $^{\rightarrow}$:

• Iniciales: (\emptyset, \emptyset) .

• Iniciales: $0: \emptyset \to \emptyset$.

• Terminales: $(\{x\}, \{y\})$.

• Terminales: $f: \{x\} \to \{y\}$.

14. Dar una categoría sin objetos iniciales. Dar una sin objetos finales. Dar una donde los objetos finales e iniciales coincidan.

Solución

■ La categoría del poset (\mathbb{Z}^-, \leq) no tiene objetos iniciales.

■ La categoría del poset (\mathbb{Z}^+, \leq) no tiene objetos finales.

■ El monoide trivial es una categoría cuyo único objeto es final e inicial.

15. Sea \mathcal{C} una categoría. Probar que si dos objetos admiten producto (coproducto), éste es único salvo isomorfismo.

Solución Sean A y B dos objetos con productos $A \times B$ (con proyectiones $\pi_A y \pi_B$) y $\overline{A \times B}$ (con proyectiones $\overline{\pi_A} y \overline{\pi_B}$).

Como $A \times B$ es producto sabemos que para cualquier objeto C y par de funciones $f: C \to A$ y $g: C \to B$ (en particular para $\overline{A \times B}$ y sus proyecciones) existe un único morfismo $\langle \overline{\pi_A}, \overline{\pi_B} \rangle : \overline{A \times B} \to A \times B$ tal que $\pi_A \circ \langle \overline{\pi_A}, \overline{\pi_B} \rangle = \overline{\pi_A}$ y $\pi_B \circ \langle \overline{\pi_A}, \overline{\pi_B} \rangle = \overline{\pi_B}$.

Análogamente existe un único morfismo $\langle \pi_A, \pi_B \rangle : A \times B \to \overline{A \times B}$ tal que $\overline{\pi_A} \circ \langle \pi_A, \pi_B \rangle = \pi_A$ y $\overline{\pi_B} \circ \langle \pi_A, \pi_B \rangle = \pi_B$.

Sabemos que entre $A \times B$ y $A \times B$ existe un único morfismo f tal que $\pi_A \circ f = \pi_A$ y $\pi_B \circ f = \pi_B$. Veamos que $\langle \overline{\pi_A}, \overline{\pi_B} \rangle \circ \langle \pi_A, \pi_B \rangle$ cumple estas propiedades:

$$\pi_A \circ (\langle \overline{\pi_A}, \overline{\pi_B} \rangle \circ \langle \pi_A, \pi_B \rangle) = (\pi_A \circ \langle \overline{\pi_A}, \overline{\pi_B} \rangle) \circ \langle \pi_A, \pi_B \rangle = \overline{\pi_A} \circ \langle \pi_A, \pi_B \rangle = \pi_A$$

$$\pi_B \circ (\langle \overline{\pi_A}, \overline{\pi_B} \rangle \circ \langle \pi_A, \pi_B \rangle) = (\pi_B \circ \langle \overline{\pi_A}, \overline{\pi_B} \rangle) \circ \langle \pi_A, \pi_B \rangle = \overline{\pi_B} \circ \langle \pi_A, \pi_B \rangle = \pi_B$$

Como $id_{A\times B}$ también cumple dichas propiedades, entonces debe ser $id_{A\times B} = \langle \pi_A, \pi_B \rangle \circ \langle \overline{\pi_A}, \overline{\pi_B} \rangle$. Análogamente $\langle \pi_A, \pi_B \rangle \circ \langle \overline{\pi_A}, \overline{\pi_B} \rangle = id_{\overline{A\times B}}$.

- 16. Sea P un poset. Determina objetos iniciales, objetos terminales, productos y coproductos en las siguientes categorías:
 - a) Poset.
 - b) Set.
 - c) Mon.
 - d) Grp.

Soluciones

- a) Poset:
 - Iniciales: $0 = (\emptyset, \emptyset)$.
 - Terminales: $1 = (\{x\}, \Delta)$.
 - Productos: $(A, \leq_A) \times (B, \leq_B) = ((A \times B, \leq_A \land \leq_B), fst, snd).$
 - Coproductos: A + B = COMPLETAR.

- b) Set:
 - Iniciales: $0 = \emptyset$.
 - Terminales: $1 = \{x\}$.
 - Productos: $A \times B = (A \times B, fst, snd)$.
 - Coproductos: $A + B = (A \uplus B, \times \{0\}, \times \{1\}).$
- c) Mon:
 - Iniciales: $0 = (\{e\}, \oplus)$
 - Terminales: 1 = 0.
 - Productos: $(A, \oplus) \times (B, \otimes) = ((A \times B,),)$ COMPLETAR.
 - Coproductos: $(A, \oplus) + (B, \otimes) = ((,),,)$ COMPLETAR.
- d) Grp:
 - Iniciales: $0 = (\{e\}, \oplus)$
 - Terminales: 1 = 0.
 - Productos: $(A, \oplus) \times (B, \otimes) = ((,),,)$ COMPLETAR.
 - Coproductos: $(A, \oplus) + (B, \otimes) = ((,),,)$ COMPLETAR.
- 17. Dar una categoría donde algún par de objetos carecen de producto.

Solución (\mathbb{Q}, \leq) .

18. Sea \mathcal{C} una categoría y sean A,B,C,D objetos de \mathcal{C} . Mostrar que en caso de existir $A\times B, C\times D$ y dos morfismos $f:A\to C$ y $g:B\to D$, entonces puede definirse un morfismo $f\times g:A\times B\to C\times D$.

Solución

$$A \stackrel{\pi_1}{\longleftarrow} A \times B \stackrel{\pi_2}{\longrightarrow} B$$

$$f \downarrow \langle f \circ \pi_1 | g \circ \pi_2 \rangle \downarrow g$$

$$C \stackrel{}{\longleftarrow} C \times D \stackrel{}{\longrightarrow} D$$

Dicho morfismo existe pues lo garantiza la propiedad universal de $C \times D$.

19. Mostrar las siguientes identidades:

a)
$$\langle \pi_1, \pi_2 \rangle = id$$
.

b)
$$\langle f \circ h, g \circ h \rangle = \langle f, g \rangle \circ h$$
.

c)
$$(f \times h) \circ \langle g, k \rangle = \langle f \circ g, h \circ k \rangle$$
.

$$d) \ (f \times h) \circ (g \times k) = (f \circ g) \times (h \circ k).$$

$$e) \langle [f, g], [h, k] \rangle = [\langle f, h \rangle, \langle g, k \rangle].$$

Soluciones

a) Sabemos que $\langle \pi_A, \pi_B \rangle$ es el único morfismo que hace conmutar el siguiente diagrama:

Observemos que id hace conmutar el diagrama pues $\pi_B \circ id = \pi_B$ y $\pi_A \circ id = \pi_A$; y como solo existe un morfismo con esa propiedad, debe ser $id = \langle \pi_A, \pi_B \rangle$.

b) Sabemos que $\langle f,g\rangle$ es el único morfismo que hace conmutar el diagrama interior:

Además sabemos que el único morfismo que hace conmutar el diagrama exterior es $\langle f \circ h, g \circ h \rangle$. Veamos entonces que $\langle f, g \rangle$ también conmuta el diagrama exterior:

- $\blacksquare \ \pi_B \circ (\langle f, g \rangle \circ h) = (\pi_B \circ \langle f, g \rangle) \circ h = g \circ h.$
- $\pi_A \circ (\langle f, g \rangle \circ h) = (\pi_A \circ \langle f, g \rangle) \circ h = f \circ h.$
- c) COMPLETAR.
- d) COMPLETAR.
- e) COMPLETAR.
- 20. Probar los siguientes isomorfismos:
 - a) $A \times B \cong B \times A$.
 - b) $A \times 1 \cong A$.
 - c) $A \times (B \times C) \cong (A \times B) \times C$.
 - d) ¿Cuales son los enunciados duales?

Soluciones

a) Sean $(A \times B, \pi_1, \pi_2)$ y $(B \times A, \pi_3, \pi_4)$ dos productos. Como $A \times B$ es producto sabemos que existe un único morfismo $\langle \pi_4, \pi_3 \rangle$ entre $B \times A$ y $A \times B$ tal que $\pi_1 \circ \langle \pi_4, \pi_3 \rangle = \pi_4$ y $\pi_2 \circ \langle \pi_4, \pi_3 \rangle = \pi_3$. Análogamente un único morfismo $\langle \pi_2, \pi_1 \rangle$ entre $A \times B$ y $B \times A$ tal que $\pi_3 \circ \langle \pi_2, \pi_1 \rangle = \pi_2$ y $\pi_4 \circ \langle \pi_2, \pi_1 \rangle = \pi_1$:

También sabemos que existe un único morfismo entre $A \times B$ y si mismo que hace conmutar el diagrama, por lo que este debe ser el morfismo identidad. Análogamente para $B \times A$.

Como el morfismo identidad es el único morfismo entre $A \times B$ y si mismo que hace conmutar el diagrama y $\langle \pi_4, \pi_3 \rangle \circ \langle \pi_2, \pi_1 \rangle$ también tiene esta propiedad, entonces se trata del mismo morfismo. Análogamente para $B \times A$.

b) Por ser $A\times 1$ producto y 1 elemento terminal, sabemos que existen los siguientes morfismos:

$$id_{A} \xrightarrow{i} g$$

$$A \leftarrow (id_{A}, g) \xrightarrow{\pi_{1}} A \times 1 \xrightarrow{\pi_{2}} 1$$

donde
$$\pi_1 \circ \langle id_A, g \rangle = id_A$$
.

Ademas observemos que:

$$\blacksquare \ \pi_1 \circ (\langle id_A, g \rangle \circ \pi_1) = (\pi_1 \circ \langle id_A, g \rangle) \circ \pi_1 = id_A \circ \pi_1 = \pi_1$$

$$\blacksquare \ \pi_2 \circ (\langle id_A, g \rangle \circ \pi_1) = \pi_2$$

por lo que
$$\sqrt{\langle id_A, g \rangle \circ \pi_1 = id_{A \times 1}}$$

- c) COMPLETAR.
- d
- $A + B \cong B + A.$
- $A+0\cong A.$
- $A + (B + C) \cong (A + B) + C$.
- 21. Probar que si dos morfismos $f, g: X \to Y$ admiten egalizador (coegalizador), éste es único salvo isomorfismo.

Solución Sean $e_1:X_1\to A$ y $e_2:X_2\to A$ dos ecualizadores de $f,g:A\to B$, luego sabemos:

- a) $f \circ e_1 = g \circ e_1$.
- $b) f \circ e_2 = g \circ e_2.$
- c) $\forall e': X' \to A$ para el cual $f \circ e' = g \circ e'$ existe un único $k': X' \to X_1$ tal que $e_1 \circ k' = e'$.
- d) $\forall e'': X'' \to A$ para el cual $f \circ e'' = g \circ e''$ existe un único morfismo $k'': X'' \to X_2$ tal que $e_2 \circ k'' = e''$.

Por c), sabemos que para $e'=e_2$ existe un único $k': X_2 \to X_1$ tal que $e_1 \circ k' = e_2$ y análogamente por d), existe un único $k'': X_1 \to X_2$ tal que $e_2 \circ k'' = e_1$. Tenemos entonces:

$$e_2 = e_1 \circ k' = e_2 \circ (k'' \circ k)' \Rightarrow k'' \circ k' = id_{X_2}$$

 $e_1 = e_2 \circ k'' = e_1 \circ (k' \circ k'') \Rightarrow k' \circ k'' = id_{X_1}$

por lo que ambos ecualizadores son isomorfismos.

22. Encontrar el ecualizador en Set.

Solución Veamos primero un ejemplo:

Observemos el conjunto de valores para los cuales f = g: $X = \{0, 2\}$, luego el morfismo e(x) = x cumple trivialmente la conmutatividad.

Consideremos además $e': \mathbb{N} \to \mathbb{Z}$ tal que e'(2x) = 2 y e'(2x+1) = 0, es evidente que este morfismo también conmuta el diagrama.

Intentemos definir un morfismo $k: \mathbb{N} \to X$ tal que $e \circ k = e'$, es decir: $e(k(x)) = e'(x) \iff k(x) = e'(x)$, por lo que esta es la única forma de definirlo.

En definitiva el ecualizador de dos funciones $f, g: A \to B$ es:

$$e: \{a \in A: f(a) = g(a)\} \hookrightarrow B$$

23. Sean $f, g: X \to Y$ dos morfismos en Set. Probar que el coegalizador de f y g es el cociente de Y por la relación de equivalencia $y \equiv z$ si y sólo si existe $x \in X$ tal que y = f(x) y z = g(x) o bien y = g(x) y z = f(x).

Solución COMPLETAR.

24. Probar que en una categoría \mathcal{C} todo ecualizador e es un monomorfismo. Mostrar que si además e es epimorfismo, entonces se tiene un isomorfismo.

Solución Sea $e: X \to A$ ecualizador de $f, g: A \to B$, luego $f \circ e = g \circ e$. Consideremos ademas dos morfismos $k', k'': X' \to X$ para los cuales $e \circ k' = e \circ k''$:

$$X \xrightarrow{e} A \xrightarrow{f} B$$

$$k' \left(\begin{array}{c} k'' \\ X' \end{array} \right)$$

Si definimos $e' := e \circ k'$ tenemos que $f \circ e' = f \circ e \circ k' = g \circ e \circ k' = g \circ e'$ lo que implica por propiedad universal de ecualizadores que k' es el único morfismo para el cual $e \circ k' = e'$, sin embargo también ocurre que $e \circ k'' = e'$; luego k' y k'' deben ser el mismo morfismo, de donde concluimos que e es monomorfismo.

Supongamos que ademas de monomorfismo también es epimorfismo, luego como $f \circ e = g \circ e$ resulta f = g.

Si también consideramos que $f \circ id_A = f = g = g \circ id_A$, sabemos que existe un único morfismo $k: A \to X$ tal que $e \circ k = id_A$.

Como $\boxed{e\circ id_X}=e=id_A\circ e=(e\circ k)\circ e=\boxed{e\circ (k\circ e)}$ y e es monomorfismo, resulta $k\circ e=id_X.$

25. El pullback de dos morfismos $f: X \to Z$ y $g: Y \to Z$ consiste en un objeto P junto con dos morfismos $p_1: P \to X$, $p_2: P \to Y$ tal que $f \circ p_1 = g \circ p_2$, y además si existe otro objeto Q con dos morfismos $q_1: Q \to X$, $q_2: Q \to Y$ tal que $f \circ q_1 = g \circ q_2$, entonces existe un único morfismo $u: Q \to P$ tal que $p_1 \circ u = q_1$ y $p_2 \circ u = q_2$. A continuación, un diagrama que muestra la situación:

Probar que el pullback de dos morfismos, si existe, es único salvo isomorfismo.

Solución COMPLETAR.

26. Encontrar el pull-back en Set.

Solución $P = \{(x, y) \in X \times Y : f(x) = g(y)\}, p1 = fst, p2 = snd.$

- 27. Sea \mathcal{C} una categoría con exponenciales.
 - a) Probar $curry(eval_{A,B}) = id_{B^A}$.
 - b) Dado un morfismo $f: B \to C$, construir un morfismo $B^S \to C^S$.
 - c) Dado un morfismo $f:S\to C^B,$ construir un morfismo $uncurry\left(f\right):S\times B\to C.$
 - d) Probar uncurry(curry(f)) = f y curry(uncurry(f)) = f.

Soluciones

a) Como B^A es un exponencial, sabemos que para cualquier morfismo $g:C\times A\to B$ (en particular para ε) existe un único morfismo $\widetilde{\varepsilon}:B^A\to B^A$ tal que $\varepsilon\circ(\widetilde{\varepsilon}\times id_A)=\varepsilon$:

$$\exists ! \widetilde{\varepsilon} \subset B^{A} \quad B^{A} \times A \xrightarrow{\varepsilon} B \quad B^{A} \xleftarrow{\pi_{1}} B^{A} \times A \xrightarrow{\pi_{2}} A$$

$$\widetilde{\varepsilon} \times id_{A} \qquad f \xrightarrow{\varepsilon} B^{A} \times A \xrightarrow{\varepsilon} B^{A} \xrightarrow{\varepsilon} A \downarrow id_{A} \qquad did_{A}$$

$$B^{A} \times A \qquad B^{A} \xleftarrow{\pi_{1}} B^{A} \times A \xrightarrow{\pi_{2}} A$$

Puesto que id_{B^A} también tiene esa propiedad, entonces $\tilde{\varepsilon} = id_{B^A}$.

b)

$$\begin{array}{ccc} C^S & C^S \times S \xrightarrow{\varepsilon_{SC}} C \\ \overbrace{f \circ \varepsilon_{SB}}^{\uparrow} & & f \circ \varepsilon_{SB} \\ B^S & B^S \times S \end{array}$$

c) Por ser $C^B \times B$ un producto existe $f \times id_B$:

luego $uncurry(f) := \varepsilon \circ (f \times id_B) : S \times B \to C.$

d

- Sean $f: S \to C^B$, y $h:= uncurry(f) = \varepsilon \circ (f \times id_B)$. Como C^B es exponencial entonces para uncurry(f) existe un único morfismo $\tilde{h}: S \to C^B$ para el cual $\varepsilon \circ (\tilde{h} \times id_B) = h$ y como también $\varepsilon \circ (f \times id_B) = h$ entonces $\tilde{h} \times id_B = f \times id_B$ por lo que $\tilde{h} = f$, es decir: curry(uncurry(f)) = f.
- Sea $f: S \times B \to C$. Como C^B es exponencial entonces para f existe un único morfismo $\widetilde{f}: S \to C^B$ para el cual $\varepsilon \circ \left(\widetilde{f} \times id_B\right) = f$, luego $uncurry\left(\widetilde{f}\right) = \varepsilon \circ \left(\widetilde{f} \times id_B\right) = f$.
- 28. Sea $\mathcal C$ una CCC y sean A,B objetos de $\mathcal C.$ Probar:
 - a) B^A es único salvo isomorfismo.
 - b) $1^A \cong 1$.
 - $c) B^1 \cong B.$

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 29. Hallar los exponenciales en Set.

Solución $B^A = Hom(A, B)$.

30. Demostrar que un álgebra de Boole es una CCC.

Solución Un álgebra de Boole es un retículo acotado distributivo con complementos. Consideremos entonces la categoría inducida por el poset.

- En dicha categoría el producto corresponde al ínfimo, luego por ser retículo existe el producto para cualquier par de elementos.
- Por ser acotado tiene mínimo y máximo luego en la categoría corresponden al objeto inicial y terminal.

Veremos ahora que si C es complemento de B entonces C^B es exponencial.

Sabemos que $C \vee B = 1$ y $C \wedge B = 0$. Debemos ver que:

- $C^B \wedge B \leq C$: COMPLETAR.
- $A \wedge B \leq C \Rightarrow A \wedge B \leq C^B \wedge B$: COMPLETAR.
- $A \land B \le C \Rightarrow A \le C^B$: COMPLETAR.
- 31. En una categoría con coproductos y objeto final, podemos definir los booleanos como el objeto Bool = 1 + 1. En este caso, a i_1 le llamamos true y a i_2 le llamamos false. Escribimos un morfismo $not : Bool \rightarrow Bool$ tal que:

$$not \circ true = false$$

 $not \circ false = true$

Suponiendo que la categoría tiene exponenciales: ¿puede escribir un morfismo $and:Bool\times Bool \to Bool$ que se comporte como la conjunción?

Solución COMPLETAR.

Ejercicios adicionales

1. Considerar que en el siguiente diagrama los 4 trapecios conmutan.

Probar que:

- a) Si el cuadrado interno conmuta, también lo hace el cuadrado externo
- b) Si p es epimorfismo y q es monomorfismo, entonces si el cuadrado externo conmuta, también lo hace el cuadrado interno.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- 2. Sea \mathcal{C} con 0. Verificar que si un morfismo $f:X\to Y$ en \mathcal{C} admite núcleo (conúcleo), éste es único salvo isomorfismo.

Solución COMPLETAR.

3. Sean \mathcal{C} una categoría con 0 y $f: X \to Y$ un morfismo en \mathcal{C} . Probar que $p: Y \to C$ es un conúcleo de f en \mathcal{C} si y solo si p^{op} es un núcleo de f^{op} en \mathcal{C}^{op} .

Solución COMPLETAR.

4. Sean \mathcal{C} un categoría con 0 y $f: X \to Y$ un morfismo en \mathcal{C} . Probar que ker(f)(coker(f)) coincice con el egalizador (coegalizador) de f y 0.

Solución COMPLETAR.

- 5. Un ωCPO es un conjunto ordenado con mínimo (notado \bot) tal que toda cadena ascendente numerable $a_0 \sqsubseteq a_1 \sqsubseteq \cdots$ (que notamos $\{a_i\}_{i=0}^{\infty}$ tiene un supremo $\sqcup \{a_i\}_{i=0}^{\infty}$. Una función monótona entre dos ωCPO es continua si $f(\sqcup \{a_i\}_{i=0}^{\infty}) = \sqcup \{f(a_i)\}_{i=0}^{\infty}$ para toda cadena ascendente numerable $\{a_i\}_{i=0}^{\infty}$.
 - a) Probar que podemos armar una categoría cuyos objetos son ωCPO y cuyas flechas son funciones continuas.
 - b) ¿Esta categoría tiene productos? En caso afirmativo, describirlos. ¿Y coproductos?

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.