

Вопросы

- (1) А/В тестирование
- 2 Статистическая проверка гипотез для связанных выборок
- 3 Дисперсионный анализ
- 4 Проблема множественного сравнения

Допустим у нас есть предположение, что, если поменять цвет сайта, конверсия увеличится. Как проверить?

Другие примеры

А/В тестирование

Требования к тестам

- Понимание метрики/цели
- Одновременность
- Случайность
- Достаточный объём выборки
- Независимость

Требования к тестам

- Понимание метрики/цели
- Одновременность
- Случайность
- Достаточный объём выборки
- Независимость
- и тд (Похожесть/Стратификация)

Multi A/B тесты и как их проводить

А/В тесты при зависимых группах

А/В тесты при зависимых группах

Multi A/B тесты при зависимых группах

Multi A/В тесты и похожие группы

Как делить разные магазины на группы чтоб группы были похожи ?!?!?

Multi A/B тесты и похожие группы

Multi A/B тесты и похожие группы

С А/В тестами ты один в поле воин!

 В 2012 году сотрудник Microsoft, работавший над поисковой системой Bing, провёл эксперимент по тестированию различных способов отображения рекламных заголовков.

В течение нескольких часов альтернативный формат привёл к увеличению доходов на 12% без влияния на показатели взаимодействия с пользователем.

 По итогам 2012 года выручка Microsoft составила \$74 млрд, чистая прибыль — около \$17 млрд.

Что такое гипотеза и что такое p-value?

Понятие p-value

Значение статистики критерия, полученное из выборки, связывают с уже известным распределением, которому она подчиняется, чтобы получить значение p, площадь обоих «хвостов» (или одного «хвоста» в случае односторонней гипотезы) распределения вероятности.

Большинство компьютерных пакетов обеспечивают автоматическое вычисление двустороннего значения \boldsymbol{p} (Python).

Определение:

Значение p — это вероятность получения нашего вычисленного значения или его ещё большего значения, если нулевая гипотеза верна.

Иными словами, **р** — это вероятность отвергнуть нулевую гипотезу при условии, что она верна.

Применение значения P-value

Как по p-value определить, есть ли основания отвергнуть нулевую гипотезу? Тут важно сначала зафиксировать уровень значимости α, а потом уже делать выводы.

Уровень значимости α — это вероятность отвергнуть нулевую гипотезу при условии, что она верна.

p-value — это минимальный уровень значимости, на котором нулевая гипотеза может быть отвергнута.

Соответственно, если **p-value** меньше нашего фиксированного **уровня значимости** α, на котором мы проверяем гипотезу, то **нулевую гипотезу** следует отвергнуть, если больше — оснований отвергать нулевую гипотезу нет.

Применение значения P-value - это просто!

Как по p-value определить, есть ли основания отвергнуть нулевую гипотезу? Тут важно сначала зафиксировать уровень значимости α, а потом уже делать выводы.

Уровень значимости α — это вероятность отвергнуть нулевую гипотезу при условии, что она верна.

p-value — это минимальный уровень значимости, на котором нулевая гипотеза может быть отвергнута.

Соответственно, если **p-value** меньше нашего фиксированного **уровня значимости** α, на котором мы проверяем гипотезу, то **нулевую гипотезу** следует отвергнуть, если больше — отвергать нулевую гипотезу нельзя (и принимать тоже).

НЕПРАВИЛЬНЫЕ, но **понятные** определения **p-value**

p-value — это вероятность, получить различия случайно

p-value — это вероятность ошибки

НЕ говорите никому, что я вас такому учил =)

p-value = 5%

- p-value <= α: отклонить НО
- p-value > α: не отклонять НО

Препарат

Пустышка

p-value <= α: отклонить H0

0.8

p-value > α: не отклонять НО

Control
Treatment

-- Lift

Препарат

Пустышка

- p-value <= α: отклонить H0
- p-value > α: не отклонять Н0

Карта тестов гипотез

t-критерий Стьюдента

 $t = rac{\overline{X}_1 - \overline{X}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$

Рассмотренный ранее <u>t-критерий Стьюдента</u> предназначен для сравнения **двух** совокупностей

Требует нормального распределения данных

Невозможно отклонить H0: μ 1 = μ 2 Отклонить H0: распределения выборок не равны

t-критерий Стьюдента

Легко интерпретируемый критерий. Мы просто смотрим на различие **средних**

Невозможно отклонить H0: μ1 = μ2 Отклонить H0: распределения выборок не равны

Критерий Вилкоксона и Манна-Уитни

- Используемый для проверки различий между двумя выборками зависимых или независимых по количественному признаку (непрерывного или в порядкового шкале)
- Невозможно отклонить Н0: распределения выборок равны Отклонить Н0: распределения выборок не равны
- Тест Вилкоксона для независимых выборок называется критерием Манна-Уитни

$T = \Sigma R_r$

Где R_r — ранговые значения сдвигов с более редким знаком

Nº	Уровень тревожности (до тренинга)	Уровень тревожности (после тренинга)	Шаг 2: Разность (после-до)	Шаг 3: Значение разности по модулю	Шаг 4: Ранг разности
1	15	14	-1	1	3
2	14	11	-3	3	8
3	16	17	1	1	3

Критерий Вилкоксона и Манна-Уитни

- Используемый для проверки различий между двумя выборками зависимых или независимых по количественному признаку (непрерывного или в порядкового шкале)
- Невозможно отклонить Н0: распределения выборок равны Отклонить Н0: распределения выборок не равны
- Тест Вилкоксона для независимых выборок называется критерием Манна-Уитни

Почему не использовать всегда Манна-Уитни?

В отличии от t-Критерия Стьюдента не требует нормального распределения, **HO** трудно интерпретируемый

Дисперсионный анализ

- В случае, когда нужно сравнить две или больше выборок, целесообразно применение дисперсионного анализа.
- Название метода указывает на то, что выводы делают на основе исследования составляющих дисперсии.

Суть анализа состоит в том, что общее изменение показателя разбивают на составляющие части, которые соответствуют действию каждого отдельно взятого фактора.

Дисперсионный анализ

Что можно сказать про эффективность удобрений?

Нам нужен четкий и понятный критерий чтобы различить эти случаи!

Как будем оценивать? t-Тест?

Нам хорошо знаком <u>t-критерий</u>
<u>Стьюдента</u>, который мы часто
с легкостью рассчитывают для каждой
пары сравниваемых групп.

Получив достаточно высокое значение t в каком-либо из этих сравнений, исследователь сообщает, что p < 0.05.

Это утверждение означает, что вероятность ошибочного заключения о существовании различий между групповыми средними не превышает 5%.

Но тут проблема множественного сравнения!

К чему приводит тестирование множества гипотез?

Очевидно, что дальнейшее увеличение числа проверяемых гипотез будет неизбежно сопровождаться возрастанием ошибки первого рода.

t-критерий Стьюдента не подходит для попарного сравнения большего количества групп что вызывает т. н. эффект множественных сравнений.

$$P' = 1 - (1 - \alpha)^m = 1 - (1 - 0.05)^3 = 0.143$$

Дисперсионный анализ

А теперь что можно сказать про эффективность тестов?

Дисперсионный анализ

Сравните разброс значений **внутри** групп с разбросом **между** трёх групповых средних:

Это ключевая идея дисперсионного анализа!

Идея дисперсионного анализа

Получается, для дисперсионного анализа важны дисперсия внутри групп и дисперсия между группами!

Идея дисперсионного анализа

различить выборки

Как будем оценивать?

Принципы однофакторного дисперсионного анализа как раз предназначены для одновременного сравнения средних значений двух и более групп.

Как еще будем оценивать?

Виды и критерии дисперсионного анализа

Этот метод используется для исследования связи между качественными (номинальными) признаками и количественной (непрерывной) переменной.

В случае двух выборок результаты дисперсионного анализа будут идентичны результатам t-критерия Стьюдента. Однако в отличие от других критериев, это исследование позволяет изучить проблему более детально.

Мотивирующие примеры применения дисперсионного анализа

В троллейбусном депо работают троллейбусы различных типов. Всего на троллейбусных маршрутах оплату собирают 125 контролёров.

Как сравнить экономические показатели работы каждого контролёра (выручку) учитывая различные маршруты и типы троллейбусов?

Evgenii Pliusnin on Unsplash

Дисперсионный анализ

 $MS_W = SS_W/(N-k)$

Внутригрупповая дисперсия

 $MS_B = SS_B/(k-1)$

Межгрупповая дисперсия $F = MS_B/MS_W$

Критерий Фишера

Ну и где тут p-value 5%?

Ну и где тут p-value 5%?

Дисперсионный анализ = ANOVA

Замечание: в специальной литературе его часто называют ANOVA (от англоязычного названия Analysis of Variance).

Впервые этот метод был разработан Р. Фишером в 1925 г.

Дисперсионный анализ

$$(\bar{x_i} - \bar{X})$$

Отклонения групповых средних от общего среднего значения

$$(x_{ij}-\bar{x_i})$$

Отклонения отдельных наблюдений от среднего значения группы, к которой они принадлежат