The 30th Annual International Conference On Mobile Computing And Networking (MobiCom 2024)

Mobile Foundation Model as Firmware

The Way Towards a Unified Mobile AI Landscape

Jinliang Yuan*, Chen Yang*, Dongqi Cai*

Shihe Wang, Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang, Hanzi Mei, Xianqing Jia

Shangguang Wang, Mengwei Xu

Beijing University of Posts and Telecommunications

Presenter: Hao Wen (Tsinghua University)

Motivation: Mobile AI Fragmentation

Input word prediction; QA; ASR; SLU; Image classification; Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

MobileNet; ResNet; Bert; StyleFlow; RoBERTa; DistilBERT; Deeplabv3plus; GFNet; MSINet; LIMU-BERT; YOLO;

Operating System

Hardware

Diversified on-device DNN types, parameters, and configurations

Motivation: Mobile Al Fragmentation

Input word prediction; QA; ASR; SLU; Image classification; Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

MobileNet; ResNet; Bert; StyleFlow; RoBERTa; DistilBERT; Deeplabv3plus; GFNet; MSINet; LIMU-BERT; YOLO;

Operating System

Hardware

Diversified on-device DNN types, parameters, and configurations

1) H/W accelerator design trades off efficiency for generality

Motivation: Mobile Al Fragmentation

Input word prediction; QA; ASR; SLU; Image classification; Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

MobileNet; ResNet; Bert; StyleFlow; RoBERTa; DistilBERT; Deeplabv3plus; GFNet; MSINet; LIMU-BERT; YOLO;

Operating System

Hardware

Diversified on-device DNN types, parameters, and configurations

- 1) H/W accelerator design trades off efficiency for generality
- 2) S/W optimizations becomes ad-hoc

Motivation: Mobile Al Fragmentation

Input word prediction; QA; ASR; SLU; Image classification; Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

MobileNet; ResNet; Bert; StyleFlow; RoBERTa; DistilBERT; Deeplabv3plus; GFNet; MSINet; LIMU-BERT; YOLO;

Operating System

Hardware

Diversified on-device DNN types, parameters, and configurations

- 1) H/W accelerator design trades off efficiency for generality
- 2) S/W optimizations becomes ad-hoc
- 3) OS-agnostic, so no opportunity for caching/scheduling/batching

A Vision: Mobile Foundation Model

Input word prediction; QA; ASR; SLU; Image classification; Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

MobileNet; ResNet; Bert; StyleFlow; RoBERTa; DistilBERT; Deeplabv3plus; GFNet; MSINet; LIMU-BERT; YOLO;

Hardware

Input word prediction; QA; ASR; SLU; Image classification; Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

A One-size-fits-all Model

Operating System

Hardware

A Vision: Mobile Foundation Model

Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

MobileNet; ResNet; Bert; StyleFlow; RoBERTa; DistilBERT; Deeplabv3plus; GFNet; MSINet; LIMU-BERT; YOLO;

Operating System

Hardware

Input word prediction; QA; ASR; SLU; Image classification; Machine translation; Object detection; Style transfer; TTS; Audio captioning; Image captioning; Visual QA;

Runtime Operating System

NPU

Hardware

Our Contributions

a. How to **design** such a model?

M4 – an any-to-any modality mobile foundation model

b. How to evaluate such a model?

eAIBench – a comprehensive mobile AI benchmark

M4 Design

M4 Design

M4 Design

M4 Implementation

Evaluation: eAlBench

	Tasks	Mobile Application	Dataset	Task-specific Models		Accuracy
				Name	Size (M)	Accuracy
:	Input word prediction T1	Input method (Gboard)	PTB	RNN	1.4	Acc: 0.17

eAIBench: a collection of real-world mobile AI tasks and a representative baseline DNN

- 38 mobile AI tasks
- 50 classical ML datasets
- 4 modalities (text, image, audio, IMU)
- Many hardware setups: Octa-core CPU, Mali-G710 MP7 GPU, and edge TPU, etc.

Evaluation: End-to-end Performance

M4 can well support most mobile AI tasks and datasets.

Figure 1. Normalized accuracy comparison of M4 and TS-models on 50 popular mobile tasks and datasets.

M4 can achieve comparable performance across **85%** of tasks, with over **50%** of these tasks showcasing considerable performance improvement.

Evaluation: Zero/Few-shot Ability

 M4 also has a certain zero-shot ability, but fine-tuning makes it much more accurate.

 M4 has better few-shot ability than TS-models that are trained from scratch.

Evaluation: Runtime Cost

 M4 is more storage-efficient when the model number scales out.

 M4 greatly simplify accelerator design.

M4 evolves with better backbones

M4 can be further enhanced with enhanced foundation models.

M4 evolves with better backbones

M4 can be further enhanced with enhanced foundation models.

M4 evolves with better backbones

M4 can be further enhanced with enhanced foundation models.

No longer a vision now!

Google has turned our vision into reality on Android!

- Gemini Nano as a standalone system service
- Apps access the LLM through prompts or LoRa
- On-device LLM directly accelerated by TPU/NPU

[1] https://developer.android.com/ai/gemini-nano

Mobile Foundation Model as Firmware

Jinliang Yuan*, Chen Yang*, Dongqi Cai*,..., Shangguang Wang, Mengwei Xu

Contact: mwx@bupt.edu.cn

Summary of our contribution

- A vision of having one foundation model to replace all fragmented DNNs on mobile devices.
- A design and prototype of such a foundation model.
- · A comprehensive benchmark that demonstrates its feasibility.

Takeaway: time to revolutionize mobile AI landscape!

Code: https://github.com/UbiquitousLearning/MobileFM