

THE UNIVERSITY OF KANSAS

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

EECS 645 – Computer Architecture
Fall 2019

Homework 10 (Single-Cycle MIPS)

Student Name: Student ID:

Single-Cycle MIPS

Describe in structural and behavioral VHDL the Single-Cycle (non-pipelined) version of the MIPS processor that supports the following subset, i.e., 11 instructions, of MIPS ISA:

- a) 7 Arithmetic/Logical instructions: add, sub, and, or, nor, slt, addi
- b) 2 Memory reference: *lw*, *sw*
- c) 2 Control transfer: beq, j

The microarchitecture datapath and control path are shown in Figure 1. Your memory address translation/mapping should follow the convention shown in Figure 2. The processor has the following interface:

- Inputs
 - Clock (clk \rightarrow 1 bit)
 - \circ Asynchronous reset for processor initialization and for mimicking program load (rst \rightarrow 1 bit)

(1-a) Single-Cycle (non-pipelined) Datapath

opcode	funct	ALUControl	RegDst	ALUSrc	MemToReg	RegWr	MemWr	BEQ	J
R-type ≡ 000000	AND 100100	0000							
	OR 100101	0001							
	add 100000	0010	1	0	0	1	0	0	0
	sub 100010	0110	'	Ů		'	"	U	U
	slt 101010	0111							
	NOR 100111	1100							
Iw ≡ 100011	xxxxxx	0010	0	1	1	1	0	0	0
sw ≡ 101011	xxxxxx	0010	0	1	0	0	1	0	0
beq ≡ 000100	xxxxxx	0110	0	0	0	0	0	1	0
j ≡ 000010	xxxxxx	0000	0	0	0	0	0	0	1
addi ≡ 001000	xxxxxx	0010	0	1	0	1	0	0	0

(1-b) Control Unit Functionality

Figure 1. Single-Cycle (non-pipelined) MIPS Processor

(2-a) MIPS Memory Layout/Map

 $\mathbf{Z}_{\text{program}}$ = Allocated size of instruction memory = Size of test program in 32-bit words (instructions) $\mathbf{I}_{0}^{\text{logical}}$ = First address of instruction memory, could be anything, e.g., 0 or $\mathbf{0}$ x0040 0000 = \mathbf{PC}_{0}

(2-b) Formulae for Address Translation/Mapping Figure 2. Convention for Memory Address Translation/Mapping

test_program_assembly.asm								
1		addi	\$a0, \$zero, 3	# Instruction 00				
2		addi	\$t0, \$zero, 10	# Instruction 01				
3		addi	\$tl, \$zero, 6	# Instruction 02				
4		and	\$t2, \$t1, \$t0	# Instruction 03				
5		or	\$t3, \$t1, \$t0	# Instruction 04				
6		nor	\$t4, \$t1, \$t0	# Instruction 05				
7	start:	slt	\$t5, \$t1, \$t0	# Instruction 06				
8		SW	\$t0, 0(\$sp)	# Instruction 07				
9		SW	\$t1, -4(\$sp)	# Instruction 08				
10		lw	\$s0, 0(\$sp)	# Instruction 09				
11		lw	\$s1, -4(\$sp)	# Instruction 10				
12		beq	\$s0, \$s1, else	# Instruction 11				
13		add	\$s3, \$s0, \$sl	# Instruction 12				
14		j		# Instruction 13				
15	else:	sub	\$s3, \$s0, \$sl	# Instruction 14				
16	exit:	add	1, 1, 1	# Instruction 15				
17		or	\$sl, \$sl, \$s3	# Instruction 16				
18		addi	,,	# Instruction 17				
19		addi		# Instruction 18				
20		addi		# Instruction 19				
21		addi	\$a0, \$a0, -1	# Instruction 20				
22		slt	\$al, \$zero, \$a0					
23		beq	\$al, \$zero, end	**				
24		j		# Instruction 23				
25	end:	j	end	# Instruction 24				

Figure 3. Assembly Test Program

In Vivado

- Create a blank project
- o Add design and simulation source files
- o Run behavioral simulation
- Your waveform configuration should be identical to the provided waveform snapshots, see Figure 3.

• Steps:

- 1) Download the file "HW10 MIPS Single Cycle.zip" from blackboard and extract its contents.
- 2) Rename the folder "HW10_MIPS_Single_Cycle" to "HW10_MIPS_Single_Cycle_<your last name>", for example "HW10_MIPS_Single_Cycle_El-Araby".
- 3) Launch Vivado and create a new project, for example "vivado_project", with the default settings under the following directory "\HW10_MIPS_Single_Cycle_<your last name>" resulting in the following project directory "\HW10_MIPS_Single_Cycle_<your last name>\vivado_project\"
- 4) Add to the project the VHDL design and simulation source files from the folders; "\HW10_MIPS_Single_Cycle_<your last name>\design_sources" and "\HW10_MIPS_Single_Cycle_<your last name>\simulation_sources" respectively.
- 5) Edit the VHDL files in the folder "\HW10_MIPS_Single_Cycle_<your last name>\design_sources\" according to your design such that it describes the required *MIPS microarchitecture*.
- 6) Set the simulation time to the proper time, e.g., 750 ns, and then launch Vivado Simulator.
- 7) Verify the correctness of your design by comparing your simulation results, shown in Figure 4, with those of MARS runs, shown in Figure 5, using the provided assembly test program "\HW10_MIPS_Single_Cycle\test_program\test_program_assembly.asm" shown in Figure 3. Your waveform configuration should be identical to the waveform snapshots shown in Figure 4. You may go back to step 5 to correct your code until your design works properly as required.
- 8) After you are done, compress the folder "\HW10_MIPS_Single_Cycle_<your last name>" to "HW10_MIPS_Single_Cycle_<your last name>.zip", for example "HW10_MIPS_Single_Cycle_El-Araby.zip" and upload it to blackboard before the due date and time.

Important Hint:

When you use the components "PC_register", "InstrMem", "RegFile", "ALU", "DataMem", and "CU", in your top-level design "top_mips_single_cycle.vhd", name their instances by appending "_inst" to the end of the component name as follows "PC_register_inst", "InstrMem_inst", "RegFile_inst", "ALU_inst", "DataMem_inst", and "CU_inst". This will guarantee the correct setup of your waveform configuration for showing all needed signals. For example:

Grade Distribution:

- Functional Correctness, i.e., correct source code → 75 / 100
- Proper Setup of Vivado Project → 25 / 100

NOTE:

Homework submission is a "Single Attempt", i.e., carefully review everything that you want to submit before hitting the "submit" button and make sure that you have uploaded all documents you want to submit and have not missed anything.

(4-a)

(4-b)

(4-c)

(4-d)

Figure 4. Snapshots of Correct Waveform Configuration for Single-Cycle (non-pipelined) MIPS Processor

Figure 5: MARS Results of the Assembly Test Program