Advanced Calc. Homework 9

Colin Williams

October 28, 2020

15.1

Determine which of the following series converge. Justify your answers.

(a)
$$\sum \frac{(-1)^n}{n}$$

• This series converges by the Alternating Series Test since $\frac{1}{n} \to 0$ as $n \to \infty$.

(b)
$$\sum \frac{(-1)^n n!}{2^n}$$

• This series diverges by the Ratio test, since $\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \left(\frac{(n+1)!}{2^{n+1}} \cdot \frac{2^n}{n!} \right) = \lim \left(\frac{n+1}{2} \right) = +\infty > 1$.

15.2

Determine which of the following series converge. Justify your answers.

(a)
$$\sum \left[\sin\left(\frac{n\pi}{6}\right)\right]^n$$

• Note, that in order for a series $\sum a_n$ to converge, that $\lim(a_n)$ must be 0. That also means that for any subsequence, $\lim(a_{n_k}) = 0$. However, in this case for $a_n = \left[\sin\left(\frac{n\pi}{6}\right)\right]^n$ and choosing $n_k = 12k + 3$, we get:

$$a_{n_k} = \left[\sin \left(\frac{(12k+3)\pi}{6} \right) \right]^{12k+3}$$

$$= \left[\sin \left(2k\pi + \frac{\pi}{2} \right) \right]^{12k+3}$$

$$= \left[\sin \left(\frac{\pi}{2} \right) \right]^{12k+3}$$

$$= (1)^{12K+3}$$

• Hence, $\lim(a_{n_k}) = 1 \neq 0$. Therefore, $\lim(a_n) \neq 0$. From this, we can conclude that the series diverges

(b)
$$\sum \left[\sin\left(\frac{n\pi}{7}\right)\right]^n$$

• For this series, I will use the root test. I will also note that $|\sin(x)| \le 1$ for all x. However, $|\sin(x)| = 1$ only for x of the form $x = k\pi + \frac{\pi}{2}$. Thus, for $x = \frac{n\pi}{7}$, $|\sin(x)| < 1$ since x is never of the aforementioned form. Thus,

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\left[\sin\left(\frac{n\pi}{7}\right)\right]^n\right|}$$

$$= \sqrt[n]{\left|\sin\left(\frac{n\pi}{7}\right)\right|^n}$$

$$= \left|\sin\left(\frac{n\pi}{7}\right)\right|$$

by the above comments

Thus, this series converges by the root test

15.3

Show
$$\sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p}$$
 converges if and only if $p > 1$.

Answer.

First, let's assume that p > 1 and note that this sum is strictly less than $\frac{1}{2(\log(2))^p}$ + the area under the curve $\frac{1}{x(\log(x))^p}$ from 2 to ∞ . This translates to:

$$\begin{split} \sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p} &< \frac{1}{2(\log(2))^p} + \int_2^{\infty} \frac{1}{x(\log(x))^p} dx \\ &= \frac{1}{2(\log(2))^p} + \lim_{n \to \infty} \int_2^n \frac{1}{x(\log(x))^p} dx \\ &= \frac{1}{2(\log(2))^p} + \lim_{n \to \infty} \int_{\log(2)}^{\log(n)} \frac{1}{u^p} du \qquad \qquad \text{with } u = \log(x) \text{ and } du = \frac{1}{x} dx \\ &= \frac{1}{2(\log(2))^p} + \lim_{n \to \infty} \frac{u^{-p+1}}{-p+1} \Big|_{u=\log(2)}^{u=\log(n)} \\ &= \frac{1}{2(\log(2))^p} + \lim_{n \to \infty} \frac{1}{1-p} \left(\frac{1}{(\log(n))^{p-1}} - \frac{1}{(\log(2))^{p-1}} \right) \end{split}$$

Here the limit only applies to the first term in the parentheses in which the denominator goes to ∞ as $n \to \infty$. Therefore, that term goes to 0 as $n \to \infty$, so the whole expression is finite, meaning the series converges. Since these calculations were only valid under the assumption that p > 1, we have shown one direction of the statement. Now assume that $p \le 1$. We can now use a similar statement about the integrals and say the following:

$$\begin{split} \sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p} &> \int_{2}^{\infty} \frac{1}{x(\log(x))^p} dx \\ &= \lim_{n \to \infty} \int_{2}^{n} \frac{1}{x(\log(x))^p} dx \\ &= \lim_{n \to \infty} \int_{\log(2)}^{\log(n)} \frac{1}{u^p} du \qquad \qquad \text{with } u = \log(x) \text{ and } du = \frac{1}{x} dx \\ &= \lim_{n \to \infty} \left\{ \frac{\log(u)}{u + \log(2)} & \text{for } p = 1 \\ \frac{u - v + 1}{v + 1} & \text{for } p < 1 \\ &= \lim_{n \to \infty} \left\{ \frac{\log(\log(n)) - \log(\log(2))}{u + \log(2)} & \text{for } p = 1 \\ \frac{1}{1 - p} \left((\log(n))^{1 - p} - (\log(2))^{1 - p} \right) & \text{for } p < 1 \\ \end{split}$$

However, in both cases, these expressions diverge since $\log(\log(n)) \to \infty$ as $n \to \infty$ and $(\log(n))^{1-p} \to \infty$ as $n \to \infty$ since 1-p>0. Thus, in this case, the series is greater than a divergent integral, so the series must also be divergent. Therefore, the series is convergent precisely when p>1, just as desired.

15.4

Determine which of the following series converge. Justify your answers.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \log(n)}$$

• As we have shown in 15.3, $\sum \frac{1}{n \log(n)}$ diverges. Furthermore, we know that $\sqrt{n} \log(n) < n \log(n)$ for all $n \ge 2$ since $\sqrt{n} < n$ for all $n \ge 2$. Thus, $\frac{1}{\sqrt{n} \log(n)} > \frac{1}{n \log(n)}$ for all $n \ge 2$ which implies that

this series diverges by the Comparison Test with
$$\frac{1}{n\log(n)}$$

(b)
$$\sum_{n=2}^{\infty} \frac{\log(n)}{n}$$

- Here, we know that $\sum \frac{1}{n}$ diverges, and we also know that $\frac{\log(n)}{n} > \frac{1}{n}$ for all $n \ge 3$ (assuming this is the natural logarithm) since $\log(n) > 1$ for all $n \ge 3$. Thus, this series diverges by the Comparison Test with $\frac{1}{n}$
- (c) $\sum_{n=4}^{\infty} \frac{1}{n(\log n)(\log \log n)}$
 - Here we can note that this series is strictly greater than the integral of that expression from 4 to ∞ . Thus, calculating the integral, we get:

$$\int_{4}^{\infty} \frac{1}{x(\log x)(\log\log x)} dx = \lim_{N \to \infty} \int_{4}^{N} \frac{1}{x(\log x)(\log\log x)} dx$$

$$= \lim_{N \to \infty} \int_{\log\log 4}^{\log\log N} \frac{1}{u} du \qquad \text{with } u = \log\log x \text{ and } du = \frac{1}{x\log x} dx$$

$$= \lim_{N \to \infty} \log(u) \Big|_{u = \log\log 4}^{u = \log\log N}$$

$$= \lim_{N \to \infty} \log\log\log\log(N) - \log\log\log(4)$$

- However, with the limit, this term goes to ∞ as $N \to \infty$; thus, the integral is divergent. Therefore, since the series is strictly greater than this integral, we know that the series also diverges
- (d) $\sum_{n=2}^{\infty} \frac{\log(n)}{n^2}$
 - I claim that this is convergent. To show this, I will first show that $\log(n) < \sqrt{n}$ for all $n \in \mathbb{N}$. Consider $f(x) = \sqrt{x} \log(x)$, then $f'(x) = \frac{1}{2\sqrt{x}} \frac{1}{x} = \frac{1}{\sqrt{x}} \left(\frac{1}{2} \frac{1}{\sqrt{x}}\right) \ge 0 \iff \frac{1}{2} \frac{1}{\sqrt{x}} \ge 0 \iff x \ge 4$. Also note that $f(1) = 1, f(2) \approx 0.721, f(3) \approx 0.622, f(4) \approx 0.614$. Thus, with these values and the fact that $f'(x) \ge 0$ for all $x \ge 4$, we can conclude that f(x) > 0 for all $x \ge 1$. In particular, this means that $\log(n) < \sqrt{n}$ for all $n \in \mathbb{N}$. Thus, $\frac{\log(n)}{n^2} < \frac{\sqrt{n}}{n^2} = \frac{1}{n^{1.5}}$. We know that the series using this last term converges by the p-series test since 1.5 > 1. Thus, our series of interest converges by Comparison Test with $\frac{1}{n^{1.5}}$

15.6

- (a) Give an example of a divergent series $\sum a_n$ for which $\sum a_n^2$ converges.
 - We know that for $a_n = \frac{1}{n}$, $\sum a_n$ diverges. However, for $a_n^2 = \frac{1}{n^2}$, $\sum a_n^2$ converges, both by the p-series test.
- (b) Observe that if $\sum a_n$ is a convergent series of nonnegative terms, then $\sum a_n^2$ also converges (see Exercise 14.7).
 - Note that if $\sum a_n$ is convergent, then $\lim(a_n) = 0$ which implies that there exists some N such that $a_n < 1$ for all $n \ge N$. In particular, this means that $a_n^2 < a_n$ for all $n \ge N$, thus, $\sum_{n=N}^{\infty} a_n^2$ converges by Comparison Test, which also means that $\sum a_n^2$ converges since a finite number (N) of terms does not affect convergence.
- (c) Give an example of a convergent series $\sum a_n$ for which $\sum a_n^2$ diverges.
 - Let $a_n = \frac{(-1)^n}{\sqrt{n}}$, then $\sum a_n$ converges by the Alternating Series Test since $\lim(a_n) = 0$ and a_n is alternating. However, $a_n^2 = \frac{1}{n}$ and we know that $\sum a_n^2$ diverges by the *p*-series test.

17.5

- (a) Prove that if $m \in \mathbb{N}$, then the function $f(x) = x^m$ is continuous on \mathbb{R} .
- (b) Prove every polynomial function $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ is continuous on \mathbb{R} .

Proof. (a)

I will prove this by using the sequential definition of continuity. Thus, let (x_n) be some sequence that converges to $x_0 \in \mathbb{R}$

and let $f(x) = x^m$. Therefore,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n^m$$

$$= \lim_{n \to \infty} \underbrace{x_n \cdot x_n \cdots x_n}_{m \text{ times}}$$

$$= \underbrace{\left(\lim_{n \to \infty} x_n\right) \cdot \left(\lim_{n \to \infty} x_n\right) \cdots \left(\lim_{n \to \infty} x_n\right)}_{m \text{ times}}$$
by Limit Theorems
$$= \underbrace{x_0 \cdot x_0 \cdots x_0}_{m \text{ times}}$$

$$= x_0^m$$

$$= f(x_0)$$

Thus, f satisfies the sequential definition of continuity at every point $x_0 \in \mathbb{R}$, so f is continuous on \mathbb{R} .

Proof. (b)

First, note that the constant function $f(x) = a_0$ for $a_0 \in \mathbb{R}$, is clearly continuous since $|f(x) - f(x_0)| = 0 < \varepsilon$ for every $\varepsilon > 0$ and any $x_0 \in \mathbb{R}$. Furthermore, by using part (a) of this question and Theorem 17.3, we know that $a_i x^i$ is continuous for all $i \in \mathbb{N}$. Therefore, since $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ is the sum of n + 1 different continuous functions, then Theorem 17.4(i) assures us that p(x) is also a continuous function.

17.7

- (a) Observe that if $k \in \mathbb{R}$, then the function g(x) = kx is continuous by Exercise 17.5.
- (b) Prove that f(x) = |x| is continuous on \mathbb{R} .
- (c) Use parts (a) and (b) and Theorem 17.5 to give another proof of Theorem 17.3.

Answer. (a)

Simply note that g(x) is a first degree polynomial of the form $g(x) = a_0 + a_1 x$ for $a_0 = 0$ and $a_1 = k$. Thus, Exercise 17.5(b) assures us that g(x) is a continuous function.

Proof. (b)

I will prove this using the ε - δ definition of limits. Let $\varepsilon > 0$ and $x_0 \in \mathbb{R}$ be fixed. We wish to show that $||x| - |x_0|| < \varepsilon$ whenever $|x - x_0| < \delta$ for sufficiently small δ . First, note that

$$\begin{aligned} ||x| - |x_0|| &= ||x - x_0 + x_0| - |x_0|| \\ &= ||(x - x_0) + x_0| - |x_0|| \\ &\leq ||x - x_0| + |x_0| - |x_0|| \end{aligned}$$
 by the Triangle Inequality
$$= ||x - x_0|| \\ &= |x - x_0|$$

Thus, if $\delta = \varepsilon$, then whenever $|x - x_0| < \delta$, $||x| - |x_0|| \le |x - x_0| < \delta = \varepsilon$. Thus, |x| is continuous on \mathbb{R} .

Proof. (c)

Let g(x) = kx and f(x) = |x|. Then, by parts (a) and (b) of this question, g and f are both continuous functions on \mathbb{R} . Furthermore, let h be any real-valued function with $dom(h) \subseteq \mathbb{R}$. Let's also assume that h is continuous at $x_0 \in dom(h)$.

First, since g is continuous on all of \mathbb{R} , then in particular g is continuous at $h(x_0)$. Thus, Theorem 17.5 guarantees that $g \circ h = kh$ is a continuous function at x_0 .

Next, since f is continuous on all of \mathbb{R} , then in particular, f is continuous at $h(x_0)$. Thus, Theorem 17.5 guarantees that $f \circ h = |h|$ is a continuous function at x_0 . This completes the proof of Theorem 17.3.

17.9

Prove each of the following functions is continuous at x_0 by verifying the ε - δ property of Theorem 17.2.

- (a) $f(x) = x^2, x_0 = 2;$
 - Let $\varepsilon > 0$, then we wish to show that $|x^2 2^2| < \varepsilon$ whenever $|x 2| < \delta$ for δ sufficiently small.

• Since δ will likely be very small, let us assume that $\delta \leq 1$. Thus,

$$|x^2 - 2^2| = |x^2 - 4| = |(x - 2)(x + 2)| = |x - 2||x + 2| < |x - 2| \cdot 5$$

- The last inequality here follows from the assumption that $\delta \leq 1$. In other words, $|x-2| < 1 \implies 1 < x < 3 \implies |x+2| < 5$.
- Therefore, choosing $\delta = \min\{1, \frac{\varepsilon}{5}\}$ yields:

$$|x^{2} - 2^{2}| < |x - 2| \cdot 5$$

$$< \delta \cdot 5$$

$$\leq \frac{\varepsilon}{5} \cdot 5$$

$$= \varepsilon$$

• Which proves that f is continuous at x_0 .

(b) $f(x) = \sqrt{x}, x_0 = 0;$

- Let $\varepsilon > 0$, then we wish to show that $|\sqrt{x} \sqrt{0}| < \varepsilon$ whenever $|x 0| < \delta$ for δ sufficiently small.
- Note that $|\sqrt{x} \sqrt{0}| = \sqrt{x} < \varepsilon$ if and only if $x < \varepsilon^2$.
- Thus, choose $\delta = \varepsilon^2$. This yields:

$$|\sqrt{x} - \sqrt{0}| = \sqrt{x} = \sqrt{|x - 0|} < \sqrt{\varepsilon^2} = \varepsilon$$

• Which proves that f is continuous at x_0 .

(c)
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$
, $x_0 = 0$;

- Let $\varepsilon > 0$, then we wish to show that $|x \sin(\frac{1}{x}) 0| < \varepsilon$ whenever $|x 0| < \delta$ for δ sufficiently small.
- Let us choose $\delta = \varepsilon$ to obtain the following:

$$\left| x \sin\left(\frac{1}{x}\right) - 0 \right| = \left| x \sin\left(\frac{1}{x}\right) \right|$$

$$= |x| \left| \sin\left(\frac{1}{x}\right) \right|$$

$$\leq |x| \qquad \text{since } |\sin(\theta)| \leq 1 \text{ for all } \theta$$

$$= |x - 0|$$

$$< \delta$$

$$= \varepsilon$$

• Which proves that f is continuous at x_0 .

(d) $g(x) = x^3, x_0$ arbitrary.

- Let $\varepsilon > 0$, then we wish to show that $|x^3 x_0^3| < \varepsilon$ whenever $|x x_0| < \delta$ for δ sufficiently small.
- Since δ will likely be very small, let us assume that $\delta \leq 1$. Thus,

$$|x^{3} - x_{0}^{3}| = |(x - x_{0})(x^{2} + xx_{0} + x_{0}^{2})| = |x - x_{0}||x^{2} + xx_{0} + x_{0}^{2}|$$

$$\leq |x - x_{0}|(|x|^{2} + |x||x_{0}| + |x_{0}|^{2})$$
 by Triangle Inequality
$$< |x - x_{0}|(1 + 3|x_{0}| + 3|x_{0}|^{2})$$

• The last inequality follows from the assumption that $\delta \leq 1$. In other words,

$$|x - x_0| < 1$$

$$\implies -1 - |x_0| \le -1 + x_0 < x < 1 + x_0 \le 1 + |x_0|$$

$$\implies |x| < 1 + |x_0|$$

$$\implies |x|^2 + |x||x_0| + |x_0|^2 < (1 + |x_0|)^2 + (1 + |x_0|)|x_0| + |x_0|^2$$

$$= 1 + 2|x_0| + |x_0|^2 + |x_0| + |x_0|^2 + |x_0|^2$$

$$= 1 + 3|x_0| + 3|x_0|^2$$

• Therefore, choosing $\delta = \min\{1, \frac{\varepsilon}{1+3|x_0|+3|x_0|^2}\}$ yields:

$$|x^{3} - x_{0}^{3}| < |x - x_{0}|(1 + 3|x_{0}| + 3|x_{0}|^{2})$$

$$< \delta \cdot (1 + 3|x_{0}| + 3|x_{0}|^{2})$$

$$\leq \frac{\varepsilon}{1 + 3|x_{0}| + 3|x_{0}|^{2}} \cdot (1 + 3|x_{0}| + 3|x_{0}|^{2})$$

$$= \varepsilon$$

• Which proves that g is continuous at x_0 .

17.10

Prove the following functions are discontinuous at the indicated points. You may use either Definition 17.1 or the ε - δ property in Theorem 17.2.

- (a) f(x) = 1 for x > 0 and f(x) = 0 for $x \le 0$, $x_0 = 0$;
 - Let $x_n = \frac{1}{n}$. Then (x_n) is a sequence of positive real numbers that converges to $x_0 = 0$. Thus, $f(x_n) = 1$ for all n since $x_n > 0$ for all n which implies that $\lim_{n \to \infty} f(x_n) = 1 \neq 0 = f(0)$. Thus, f is discontinuous at x_0 .
- (b) $g(x) = \sin(\frac{1}{x})$ for $x \neq 0$ and $g(0) = 0, x_0 = 0$;
 - Let $x_n = \frac{1}{(2n\pi + \frac{\pi}{2})}$. Then (x_n) is a sequence that converges to $x_0 = 0$. Thus, $g(x_n) = \sin\left(\frac{1}{\frac{1}{2n\pi + \frac{\pi}{2}}}\right) = \sin\left(\frac{2n\pi + \frac{\pi}{2}}{2n\pi + \frac{\pi}{2}}\right) = \sin\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$ which implies that $\lim_{n\to\infty} g(x_n) = 1 \neq 0 = g(0)$. Thus, g is discontinuous at x_0 .
- (c) sgn(x) = -1 for x < 0, sgn(x) = 1 for x > 0, and sgn(0) = 0, $x_0 = 0$.
 - Again, let $x_n = \frac{1}{n}$ making (x_n) a sequence of positive real numbers that converges to $x_0 = 0$. Thus, $\operatorname{sgn}(x_n) = 1$ for all n since $x_n > 0$ for all n. Therefore, $\lim_{n \to \infty} \operatorname{sgn}(x_n) = 1 \neq 0 = \operatorname{sgn}(0)$. Thus, $\operatorname{sgn}(\cdot)$ is discontinuous at x_0 .

17.12

- (a) Let f be a continuous real-valued function with domain (a,b). Show that if f(r)=0 for each rational number r in (a,b), then f(x)=0 for all $x\in(a,b)$.
- (b) Let f and g be continuous real-valued functions on (a, b) such that f(r) = g(r) for each rational number r in (a, b). Prove that f(x) = g(x) for all $x \in (a, b)$.

Proof. (a)

I will prove this by contradiction: assume that f is continuous in (a,b) and f(r) = 0 for all $r \in (a,b) \cap \mathbb{Q}$, but there exists some $x_0 \in (a,b)$ such that $|f(x_0)| > 0$.

By Theorem 17.3 (or Question 17.7(c)), |f| is also a continuous function on (a, b). In particular, |f| is continuous at x_0 . That means that for every $\varepsilon > 0$ there exists some $\delta > 0$ such that for all $x \in (a, b)$ satisfying $|x - x_0| < \delta$, we have $||f(x)| - |f(x_0)|| < \varepsilon$. In particular, we can choose $\varepsilon = \frac{|f(x_0)|}{2} > 0$ which gives us

$$-\frac{|f(x_0)|}{2} < |f(x)| - |f(x_0)| < \frac{|f(x_0)|}{2}$$

$$\implies \frac{|f(x_0)|}{2} < |f(x)| < \frac{3|f(x_0)|}{2}$$

$$\implies |f(x)| > 0$$

This means for all $x \in (x_0 - \delta, x_0 + \delta)$ we have |f(x)| > 0. However, by the Denseness of the Rationals inside of the Real Numbers, there exists some $r_0 \in \mathbb{Q}$ where also $r_0 \in (x_0 - \delta, x_0 + \delta)$ which implies that $|f(r_0)| > 0$, which is a contradiction to the definition of f being 0 for all rational numbers in (a, b), so our assumption must have been false, so there does not exist an x_0 such that $|f(x_0)| > 0 \implies f(x) = 0$ for all $x \in (a, b)$.

Proof. (b)

Define h(x) = f(x) - g(x). Then clearly h is a continuous function on (a, b) by Theorem 17.3/17.4(i). Also for $r \in (a, b) \cap \mathbb{Q}$, h(r) = f(r) - g(r) = 0 since f(r) = g(r) for each rational r in (a, b). Then, by part (a) of this question, h(x) = 0 for all $x \in (a, b)$ which implies $f(x) - g(x) = 0 \implies f(x) = g(x)$ for all $x \in (a, b)$, completing the proof.

17.13

- (a) Let f(x) = 1 for rational numbers x and f(x) = 0 for irrational numbers. Show f is discontinuous at every x in \mathbb{R} .
 - Let $x_0 \in \mathbb{R}$ be arbitrary. I will show that f is discontinuous at x_0 . First, let d_n represent the integer part of x_0 plus the first n decimal places of x_0 (For example, if $x_0 = \pi$, then $d_1 = 3.1, d_2 = 3.14, d_3 = 3.141, d_4 = 3.1415, \ldots$) From this, define

$$x_n = \begin{cases} d_n & \text{if } n \text{ is even} \\ d_n + \frac{\sqrt{2}}{n} & \text{if } n \text{ is odd} \end{cases}$$

- It is clear that $\lim(d_n) = x_0$ and $\lim(\frac{\sqrt{2}}{n}) = 0$. Thus, $\lim(x_n) = x_0$. However, for even n we have $f(x_n) = 1$ since d_n is rational and for odd n we have $f(x_n) = 0$ since $d + \frac{\sqrt{2}}{n}$ is irrational. Therefore $\lim f(x_n)$ does not exist. In particular, $\lim f(x_n) \neq f(x_0)$, so f is not continuous for any $x_0 \in \mathbb{R}$.
- (b) Let h(x) = x for rational numbers x and h(x) = 0 for irrational numbers. Show h is continuous at x = 0 and at no other point.
 - First, I will show continuity at $x_0 = 0$. Let $\varepsilon > 0$ be given, then let's examine $|h(x) h(x_0)|$,

$$|h(x) - h(x_0)| = |h(x) - h(0)| = |h(x) - 0| = |h(x)|$$

$$= \begin{cases} |x| & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

- Thus, if we set $\delta = \varepsilon$ in the ε - δ definition of continuity, we get $|x x_0| < \varepsilon \implies |x| < \varepsilon$. Furthermore, since $|x| \ge 0$, we know that $|h(x)| \le |x|$ for all x which implies $|h(x)| \le |x| < \varepsilon$, proving continuity at $x_0 = 0$.
- Now, I will show discontinuity at any $x_0 \neq 0$. I will prove this by contradiction: assume h is continuous at some $x_0 \neq 0$. In the ε - δ definition of continuity, choose $\varepsilon = \frac{|x_0|}{2}$ (> 0 since $x_0 \neq 0$), then there must exist some δ such that for any $x \in (x_0 \delta, x_0 + \delta)$, we have $|h(x) h(x_0)| < \frac{|x_0|}{2}$. However, this cannot possibly be true for all $x \in (x_0 \delta, x_0 + \delta)$ because if x_0 is rational, there there is an irrational x in $(x_0 \delta, x_0 + \delta)$ which forces $|h(x) h(x_0)| = |0 x_0| = |x_0| > \frac{|x_0|}{2} = \varepsilon$. Alternatively, if x_0 is irrational, then by the Denseness of the Rationals in the Reals, there exists a rational x in $(x_0 \delta, x_0 + \delta)$ such that $|x| > |x_0|$ which forces $|h(x) h(x_0)| = |x 0| = |x| > |x_0| > \frac{|x_0|}{2} = \varepsilon$. Therefore, there is never an instance in which $|x x_0| < \delta \implies |h(x) h(x_0)| < \frac{|x_0|}{2}$ which means h can never be continuous (if $x_0 \neq 0$).

17.15

Let f be a real-valued function whose domain is a subset of \mathbb{R} . Show f is continuous at x_0 in dom(f) if and only if, for every sequence (x_n) in dom $(f)\setminus\{x_0\}$ converging to x_0 , we have $\lim f(x_n)=f(x_0)$.

Let's label these premises as (i) and (ii):

- (i) f is continuous at $x_0 \in \text{dom}(f)$.
- (ii) $\lim f(x_n) = f(x_0)$ for every sequence (x_n) in $\operatorname{dom}(f) \setminus \{x_0\}$ that converges to x_0 .

Proof. (i)
$$\implies$$
 (ii)

By the sequential definition of continuity, since (i) says f is continuous at x_0 , we can conclude that $\lim f(x_n) = f(x_0)$ for all sequences $(x_n) \subseteq \operatorname{dom}(f)$ that converge to x_0 . In particular, since $\operatorname{dom}(f) \setminus \{x_0\} \subset \operatorname{dom}(f)$, we know that $\lim f(x_n) = f(x_0)$ for every sequence $(x_n) \subseteq \operatorname{dom}(f) \setminus \{x_0\}$ that converges to x_0 , proving this direction.

Proof. (ii) \Longrightarrow (i)

Now assume that $\lim f(x_n) = f(x_0)$ for every sequence (x_n) in $\operatorname{dom}(f) \setminus \{x_0\}$ that converges to x_0 . However, assume that (i) fails, i.e. that f is not continuous at x_0 . This means that there exists some sequence (x_n) in $\operatorname{dom}(f)$ that converges to x_0 but that $\lim f(x_n) \neq f(x_0)$. In other words, there exists some $\varepsilon > 0$ such that $|f(x_n) - f(x_0)| \ge \varepsilon$ for all n. This statement means that $x_n \neq x_0$ for all n (since if $x_n = x_0$ for some n, then $|f(x_n) - f(x_0)| = 0 < \varepsilon$). Thus, we can see that $(x_n) \subseteq \operatorname{dom}(f) \setminus \{x_0\}$ which contradicts (ii) being true. Thus, (i) must be true.