Kellerautomaten

"Adventskalender"

Тур	Name	Erlaubte Produktionen	Akzeptierende Maschine	Beispiel
3	Regulär	$ \begin{array}{l} N \to w M \\ N \to w \\ w \in T^* \end{array} $	Endlicher Automat	a^n
2	Kontextfrei	$N \to w$ $w \in (N \cup T)^*$	Kellerautomat	a^nb^n

Skript Worsch: Seite 51-56

Begrenztheit des endlichen Automaten

- Überprüfe, ob ein Eingabewort $w \in X^* = \{0,1\}^*$ die Form $0^n 1^n$ hat.
- Dieses Problem kann nicht von einem endlichen Akzeptor gelöst werden.
- Warum?

Erweiterung des endlichen Automaten

- Wie kann man DEA erweitern?
- Hinzunahme von unendlichem Speicher!
- Eingeschränkter Zugriff auf den unendlichen Speicher: nur das zuletzt geschriebene oberste Element kann gelesen werden
- Die entstehende Maschine heißt Keller oder Stapelmaschine

Formale Definition eines Kellerautomaten

- Wie ist ein DEA/NEA formal definiert?
- Was brauchen wir für die formale Definition eines Kellerautomaten?

Definition 4.1: nichtdeterministischer Kellerautomat

Ein nichtdeterministischer Kellerautomat (NKA) besteht aus endlicher Steuereinheit, Eingabeband und Keller(speicher).

- ▶ Eingabealphabet *X*
- ▶ Kelleralphabet *Y*
- ▶ Kelleranfangssymbol $y_0 ∈ Y$
- ▶ Endliche Zustandsmenge Z
- ▶ Anfangszustand $z_0 \in Z$
- Menge $F \subseteq Z$ akzeptierender Zustände
- ▶ Überführungsfunktion $f: Z \times Y \times (X \cup \{\epsilon\}) \rightarrow 2^{Z \times Y^*}$

Arbeitsweise

Ist ein NKA in Zustand z und liest Kellersymbol y, kann er "entscheiden", ob ein Eingabesymbol gelesen wird oder nicht:

- **kein Eingabesymbol**: $f(z, y, \varepsilon)$ ist die (unter Umständen leere) Menge von möglichen "Aktionen" $(z', v) \in Z \times Y^*$. Dabei ist z' neuer Zustand und v Wort neuer Kellersymbole (letztes Symbol von v zuunterst, . . . , erstes Symbol zuoberst gespeichert).
- ▶ **Eingabesymbol** x: f(z, y, x) ist die (unter Umständen leere) Menge von möglichen "Aktionen" $(z', v) \in Z \times Y^*$ für den Fall, dass das Eingabesymbol gerade x ist.

Arbeitsweise

Immer, wenn das Kelleranfangssymbol y_0 aus dem Keller gelesen wird, soll es auch wieder zuunterst auf den Keller gelegt werden, d. h. in diesem Fall muss bei jeder "Aktion" (z', v) das Wort v mit y_0 enden.

Einschränkungen beim deterministischen Kellerautomaten

- Die Zustandsübergangsfunktion muss eindeutig sein
- Die Entscheidung ob ein Eingabesymbol gelesen wird muss aus dem Zustand des Kellerautomaten bestimmbar sein

Definition 4.2: deterministischer Kellerautomat

Ein deterministischer Kellerautomat (DKA) ist definiert wie ein NKA, muss aber den folgenden Einschränkungen genügen:

- z und y bestimmen eindeutig, ob Eingabesymbol gelesen wird oder nicht:
 - Entweder $f(z, y, \varepsilon) = \emptyset$ oder $\forall x \in X : f(z, y, x) = \emptyset$.
- Wenn $f(z, y, \varepsilon) = \emptyset$, dann enthält f(z, y, x) für alle $x \in X$ genau eine Aktion (z', v).
- Wenn $f(z, y, \varepsilon) \neq \emptyset$, dann enthält es genau eine Aktion (z', v).

Definition 4.3: Sprache eines Kellerautomaten

Die von einem Kellerautomat K erkannte Sprache ist die Menge aller Eingabewörter $w \in X^*$ mit der folgenden Eigenschaft:

Wenn man K mit w als Eingabe startet und mit einem Keller, der nur das Kelleranfangssymbol enthält, dann gibt es für K (mindestens) eine Berechnung, bei der

- nach einigen Schritten alle Eingabesymbole gelesen sind und
- b die Steuereinheit in einem akzeptierenden Zustand ist.
- Der Keller leer ist

Kellerautomat - Namenskonventionen

- \triangleright Startzustand: Z_0
- Akzeptierende Zustände: $F = \{z_+\}$
- Fehlerzustand: Z_
- Kelleranfangssymbol: *

- Überprüfe, ob ein Eingabewort $w \in X^* = \{0,1\}^*$ die Form $0^k 1^k$ hat.
- Dieses Problem kann nicht von einem endlichen Akzeptor gelöst werden.
- Wie kann ein Kellerautomat vorgehen?

- Überprüfe, ob ein Eingabewort $w \in X^* = \{0,1\}^*$ die Form $0^k 1^k$ hat.
- Dieses Problem kann nicht von einem endlichen Akzeptor gelöst werden.
- Wie kann ein Kellerautomat vorgehen?

Idee:

- Erste Worthälfte "einkellern".
- Beim Einlesen der zweiten Worthälfte, die erste Worthälfte "auskellern"
- Am Ende der Eingabe muss der Keller leer sein

Ist zum Beispiel das Eingabewort 00001111, dann werden nacheinander dessen Symbole gelesen und die durchlaufenen Zustände und Kellerinhalte sind:

z_0	0	z_0	0	z_0	0	z_0	0	z_0	1	$\boldsymbol{z_1}$	1	$\boldsymbol{z_1}$	1	z_1	1	z_1	ε	Z_{+}
*		0		0		0		0		0		0		0		*		*
		*		0		0		0		0		0		*				
				*		0		0		0		*						
						*		0		*								
								*										

Alternative Darstellung des Ablaufs

gelesene Eingabe	Zustand	Neuer Kellerinhalt
	z_0	*
0	z_0	0 *
00	z_0	00 *
000	z_0	000 *
0000	z_0	0000 *
00001	z_1	000 *
000011	z_1	00 *
0000111	z_1	0 *
00001111	z_1	*
00001111	Z_{+}	*

Alternative Darstellung des Ablaufs

gelesene Eingabe	Zustand	Neuer Kellerinhalt	Kommentar		
	z_0	*	start		
0	z_0	0 *	read 0; push 0		
00	z_0	00 *	read 0; push 0		
000	z_0	000 *	read 0; push 0		
0000	z_0	0000 *	read 0; push 0		
00001	z_1	000 *	read I; switch $z_{1;}$ pop 0		
000011	z_1	00 *	read I; pop 0		
0000111	z_1	0 *	read I; pop 0		
00001111	z_1	*	read I; pop 0		
00001111	Z_{+}	*	accept		

- Kelleralphabet
- Kelleranfangssymbol
- Zustandsmenge
- Anfangszustand
- Akzeptierende Zustände
- Überführungsfunktion

$$\{0,*\}$$

*

$$\{z_0, z_1, z_+, z_-\}$$

 Z_0

$$\{Z_+\}$$

	Z	y	x	$oldsymbol{z}'$	\boldsymbol{v}
	z_0	*	0		
	z_0	0	0		
	z_0	0	1		
	z_1	0	1		
	z_1	*	${\cal E}$		
sonst	\boldsymbol{Z}	y	$\boldsymbol{\chi}$		

- Kelleralphabet
- Kelleranfangssymbol
- Zustandsmenge
- Anfangszustand
- Akzeptierende Zustände
- Überführungsfunktion

$$\{0,*\}$$

*

$$\{z_0, z_1, z_+, z_-\}$$

 Z_0

$$\{Z_+\}$$

	Z	y	\boldsymbol{x}	z'	\boldsymbol{v}
	z_0	*	0	z_0	0 *
	z_0	0	0	z_0	00
	z_0	0	1	z_1	ε
	z_1	0	1	z_1	ε
	z_1	*	ε	Z_{+}	*
sonst	\boldsymbol{Z}	у	\boldsymbol{x}	Z_	y

Definition 4.4: Spiegelbild

Für eine $w \in A^*$ bezeichne w^R das Spiegelbild von w:

$$\varepsilon^R = \varepsilon$$

$$\forall x \in A, w \in A^* \colon (xw)^R = w^R x$$

• Allgemein: $(w_1 w_2)^R = w_2^R w_1^R$

Was benötigt die Implementierung eines endlichen Automaten/Kellerautomaten?

Palindrome

- Fin Wort v mit der Eigenschaft $v^R = v$ heißt Palindrom.
- zum Beispiel: RELIEFPFEILER oder SAIPPUAKAUPPIAS (finnisch: Seifenhändler)
- $(ww^R)^R = ww^R$
- D. h.: Jedes Wort der Form $v = ww^R$ ist ein Palindrom, und zwar gerader Länge.
- ▶ Und: Jedes Palindrom gerader Länge hat die Form ww^R

Palindrome – Vorgehen?

Idee:

- Erste Worthälfte "einkellern".
- Beim Einlesen der zweiten Worthälfte,
- diese mit dem Keller vergleichen

- ▶ Gesucht: Kellerautomat für $L_{pal} = \{ww^R | w \in \{a, b\}^*\}$
- ▶ Beispieleingabe: *abaaaaba*

$\boldsymbol{z}_{\mathrm{i}}$	a	$\boldsymbol{z}_{\mathrm{i}}$	b	$\boldsymbol{z}_{\mathrm{i}}$	a	$\boldsymbol{z}_{\mathrm{i}}$	а	$\boldsymbol{z}_{\mathrm{i}}$	3	$\boldsymbol{z}_{\mathrm{o}}$	a	$\boldsymbol{z}_{\mathrm{o}}$	a	$\boldsymbol{z}_{\mathrm{o}}$	b	$\boldsymbol{z}_{\mathrm{o}}$	a	\boldsymbol{Z}_{0}	ε	Z_+
*		а		b		a		a		a		а		b		а		*		*
		*		а		b		a		a		b		а		*				
				*		а		b		b		a		*						
						*		a		a		*								
								*		*										

$$Z = \{z_0, z_i, z_+, z_-\},$$

- \blacktriangleright Anfangszustand z_0 ,
- $F = \{z_+\},$
- $Y = \{a, b, *\}$
- Kelleranfangssymbol *

Z	y	X	\mathbf{z}'	v
Z_{O}	*	а		
Z_{O}	*	b		
Z_{O}	а	а		
Z_{O}	а	b		
Z_{O}	b	а		
Z_{O}	b	b		
Z_{O}	а	ε		
Z_{O}	b	ε		
z_i	а	а		
z_i	а	b		
z_i	b	а		
z_i	b	b		
z_i	*	ε		
\overline{Z}	ν	x	Z_{-}	ν

In allen anderen Fällen

$$Z = \{z_0, z_i, z_+, z_-\},$$

- Anfangszustand z_0 ,
- $F = \{z_+\},$
- $Y = \{a, b, *\}$
- Kelleranfangssymbol *

Z	y	X	\mathbf{z}'	v
Z_{O}	*	а	Z_{O}	<i>a</i> *
Z_{O}	*	b	Z_{O}	b*
Z_{O}	а	a	Z_{O}	aa
Z_{O}	а	b	Z_{O}	ba
Z_O	b	a	Z_{O}	ab
Z_{O}	b	b	Z_{O}	bb
Z_{O}	а	3	z_i	а
Z_{O}	b	3	z_i	b
z_i	а	а	z_i	${\cal E}$
z_i	а	b	Z_{-}	${\cal E}$
z_i	b	а	Z_{-}	${\cal E}$
z_i	b	b	z_i	\mathcal{E}
z_i	*	ε	Z_{+}	*
\overline{z}	y	\boldsymbol{x}	Z_{-}	<u> </u>

In allen anderen Fällen

Palindrome - Nichtdeterministisch?

Palindrome - Nichtdeterministisch

- Die Länge des Eingabewortes ist im Voraus nicht bekannt
- Die Entscheidung ob die Wortmitte erreicht ist und damit das Umschalten von Einkellern auf Auskellern ist nichtdeterministisch

$$Z = \{z_0, z_i, z_+, z_-\},$$

- Anfangszustand z_0 ,
- $F = \{z_+\},$
- $Y = \{a, b, *\}$
- Kelleranfangssymbol *

Z	y	X	\mathbf{z}'	v
Z_{O}	*	а	Z_{O}	<i>a</i> *
Z_{O}	*	b	Z_{O}	b*
Z_{O}	а	a	Z_{O}	aa
Z_{O}	а	b	Z_{O}	ba
Z_O	b	a	Z_{O}	ab
Z_{O}	b	b	Z_{O}	bb
Z_{O}	а	3	z_i	а
Z_{O}	b	3	z_i	b
z_i	а	а	z_i	${\cal E}$
z_i	а	b	Z_{-}	${\cal E}$
z_i	b	а	Z_{-}	${\cal E}$
z_i	b	b	z_i	\mathcal{E}
z_i	*	ε	Z_{+}	*
\overline{z}	y	\boldsymbol{x}	Z_{-}	<u> </u>

In allen anderen Fällen

Mächtigkeit nichtdeterministischer Kellerautomat

- Beim endlichen Automaten sind nichtdeterministischer und deterministischer Automat äquivalent
- Bei der Turing Maschine ist das ebenso
- Warum gilt das nicht für die Kellermaschine?

Mächtigkeit nichtdeterministischer Kellerautomat

- Nichtdeterminismus auf der endliche Zustandsmenge lässt sich durch Potenzmenge deterministisch ausdrücken
- Nichtdeterminismus des Kellerinhalts bzw. Bandinhalts lässt sich durch Potenzmenge des deterministisch Keller/Bandalphabets ausdrücken
- Nichtdeterminismus bei der Tiefe des Kellers lässt sich nicht ausdrücken

Ausblick

Es gibt formale Sprachen, die auch von keinem nichtdeterministischen Kellerautomaten erkannt werden können.

- ▶ Beispiel: $L = \{0^k 1^k 2^k | k \in \mathbb{N}_0\}$
- Warum?

Ausblick

Es gibt formale Sprachen, die auch von keinem nichtdeterministischen Kellerautomaten erkannt werden können.

▶ Beispiel:
$$L = \{0^k 1^k 2^k | k \in \mathbb{N}_0\}$$

- Warum?
- Der Keller kann sich die beliebig große Zahl k nur einmal merken

Kellerautomat: Lernziele

- Verstehen wie der Keller die Möglichkeiten des endlichen Automaten erweitert
- Den Keller als Basis für rekursive Abläufe verstehen

Kellerautomat: Mögliche Klausuraufgaben

- Definition eines Kellerautomaten
- Beschreibe wie ein Kellerautomat eine bestimmte Sprache erkennen kann
- Erstelle die Zustandsübergangstabelle für einen Kellerautomat um eine bestimmte Sprache zu erkennen
- Zeige die Berechnung mit der ein Kellerautomat ein Wort akzeptiert oder ablehnt