

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: June 13 ~ July 18, 2007 Test Report S/N: LR500190707C Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

APPLICANT

VHTEVERUN

RAON Digital Co., Ltd.

FCC Classification : FHSS Sequence Spread Spectrum (FHSS)

Manufacturing Description : Ultra Mobile Personal Computer (UMPC)

Manufacturer : RAON Digital Co., Ltd.

Model name : S66HS / S60H / S6S / S36HS / S46HS / S40 /

L30H / L6S-E

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

RSS-210, Issue 5: 2001/A1:2002/A2:2003

Frequency Range : 2402 ~ 2480MHz

RF power Class : $2 (-6dBm \sim +4dBm)$

Data of issue : July 20, 2007

This test report is issued under the authority of:

The test was supervised by:

Dong –Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	6
3.1 SUMMARY OF TESTS	6
3.2 TECHNICAL CHARACTERISTICS TEST	7
3.2.1 CARRIER FREQUENCY SEPARATION	7
3.2.2 NUMBER OF HOPPING FREQUENCIES	9
3.2.3 20 dB BANDWIDTH	12
3.2.4 TIME OF OCCUPANCY (Dwell Time)	14
3.2.5 TTANSMITTER OUTPUT POWER	16
3.2.6 BAND – EDGE & SPURIOUS	18
3.2.7 FIELD STRENGTH OF HARMONICS	24
3.2.8 AC CONDUCTED EMISSIONS	30
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	41

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2007-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2009-06-20	EMC accredited Lab.
FCC	U.S.A	610755	2008-03-28	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Applicant & Manufacturer

Company name : RAON Digital Co., Ltd.

Address : 18th Floor. KINS Tower, 25-1 Jeongja-Dong, Bundang-Gu,

Seongnam-City, Gyeonggi-Do, 463-811, KOREA

Tel / Fax : +82-31-782-3800 / +82-31-782-3810

2-2 Equipment Under Test (EUT)

Trade name : Ultra Mobile Personal Computer (UMPC)

FCC ID : VHTEVERUN

Model name : S66HS / S60H / S6S / S36HS / S46HS / S40H / L30H / L6S-E

: → Refer to the Model Description

Serial number : Identical prototype

Date of receipt : June 11, 2007

EUT condition : Pre-production, not damaged

Antenna type : Chip antenna

Frequency Range : 2402 ~ 2480MHz

RF output power Range : -6dBm~+4dBm (Class 2)

Number of channels : 79

Channel spacing : 1MHz

Channel Access Protocol : Frequency Hopping

Type of Modulation : GFSK

Power Source for Batt. : Battery Pack: 11.1V (LITHIUM ION RECHARGEABLE BATTERY)

Power Source for Adaptor. : Input: 100-240VAC, 1.2A Output: 16VDC, 2.6A

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2441	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
PC	dx2200Microtower	CNG6500RX9	HP
Monitor	VS11353	E060T4021/1-1	View Sonic
Keyboard	SK-8115	641-OEWW	DELL
Mouse	MO56UO	510022473	DELL
Print	Deskjet 600K	SG7631B1XX	HP
USB Memory stick	memorette	N/A	FM

2-5 Model Description

Model	CPU	RAM	Data Stoage	SSD Option
S66HS	600MHz	512M	60G HDD	6G SSD
S60H	600MHz	512M	60G HDD	-
S6S	600MHz	512M	-	6G SSD
S36HS	600MHz	512M	30G HDD	6G SSD
S46HS	600MHz	512M	40G HDD	6G SSD
S40H	600MHz	512M	30G HDD	-
L30H	500MHz	512M	30G HDD	-
L6S-E	500MHz	256M	-	6G SSD

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	RSS-210 Section	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6.2.2(o)(a1)	Carrier Frequency Separation	> 25 kHz		С
15.247(a)	6.2.2(o)(a3)	Number of Hopping Frequencies > 75 hops			С
15.247(a)	6.2.2(o)(a3)	20 dB Bandwidth	< 1 MHz		С
15.247	6.2.2(o)(a3)	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	6.2.2(o)(a3) 6.2.2(o)(b)	Transmitter Output Power	< 1Watt		С
15.247(d)	6.2.2(o)(e1)	Conducted Spurious emission > 20 dBc			С
15.247(d)	6.2.2(o)(e1)	Band Edge > 20 dBc			С
15.249 / 15.209	6.2.2(o)(e1)	Field Strength of Harmonics	< 54 dBuV (at 3m)	Radiated	С
15.109	-	Field Strength	-	Radiated	С
15.207 /15.107	-	AC Conducted Emissions	EN 55022	Line Conducted	С
15.203	-	Antenna requirement	-	-	С

 $\underline{\textit{Note 1}}{:} \ C\text{=}Complies \qquad NC\text{=}Not \ Complies \qquad NT\text{=}Not \ Tested \qquad NA\text{=}Not \ Applicable}$

Note 2: The data in this test report are traceable to the national or international standards.

→ Antenna Requirement

The RAON Digital. FCC ID: VHTEVERUN unit complies with the requirement of §15.203. The antenna is connected to inside of EUT.

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

RSS-210, Issue 5:2001

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 3 MHz (wide enough to capture the peaks of two adjacent channels)

RBW = 30 kHz (1% of the span or more) Sweep = auto

VBW = 30 kHz Detector function = peak

Trace = max hold

Measurement Data:

Test Results			
Carrier Frequency Separation (MHz) Result			
1.020	Complies		

- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Figure 1: Measurement setup for the carrier frequency separation

Carrier Frequency Separation

3.2.2 Number of Hopping Frequencies

Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Frequency range 1: Start = 2389.5MHz, Stop = 2414.5 MHz

2: Start = 2414.5MHz, Stop = 2439.5 MHz

3: Start = 2439.5MHz, Stop = 2464.5 MHz 4: Start = 2464.5MHz, Stop = 2489.5 MHz

RBW = 300 kHz (1% of the span or more) Sweep = auto

VBW = 300 kHz (VBW RBW) Detector function = peak

Trace = $\max \text{ hold}$ Span = 25MHz

Measurement Data: Complies

Total number of Hopping Channels	79
----------------------------------	----

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

Number of Hopping Frequencies

3.2.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels...

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 2 MHz (approximately 2 or 3 times of the 20 dB bandwidth)

RBW = 30 kHz Sweep = auto

VBW = 30 kHz (VBW RBW) Detector function = peak

Trace = max hold

Measurement Data:

Frequency (MHz)	Channel No.	Test Results		
	Chainlei 140.	Measured Bandwidth (MHz)	Result	
2402	0	0.935	Complies	
2441	39	0.925	Complies	
2480	78	0.925	Complies	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

The transmitter shall have a maximum 20dB bandwidth of 1 MHz.

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

20 dB Bandwidth

3.2.4 Time of Occupancy (Dwell Time)

Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero

RBW = 1 MHz VBW = 1 MHz (VBW RBW)

Trace = max hold Detector function = peak

Measurement Data:

Channel	Channel Frequency	Packet Type	Test 1	Results
Number	(MHz)	гаскеі туре	Dwell Time (ms)	Result
	39 2441	DH 1	140.05	Complies
39		DH 3	271.96	Complies
		DH 5	314.15	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

0.4 seconds within a 30 second period per any frequency

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

DH 1

DH 3

DH 5

3.2.5 Transmitter Output Power

Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 3 MHz (approximately 5 times of the 20 dB bandwidth)

RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)

VBW = 1 MHz (VBW RBW) Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data:

Frequency (MHz)	Ch.	Test Results		
		dBm	mW	Result
2402	0	1.70	1.479	Complies
2441	39	1.80	1.514	Complies
2480	78	2.82	1.914	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Peak Output Power

3.2.6 Band Edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 10 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Band - edge (with Hopping)

Band-edges in the restricted band 2483.5 $\sim 2500 \ MHz$ measurement

- Document DA 00-705 Marker Delta Method

Frequency (MHz)	Detect mode	Pol.	Reading (dBuV/m)	T.F (dB)	Step 1 Data	delta	Step 3 Data	Limit
2400	PK	Н	64.8	34.6	99.4	45.17	54.23	74
2480	AV	Н	59.1	34.6	93.7	45.17	48.53	54

Note) Step 1 = Reading + T.F

T.F = Ant.F + Cable loss

Step 3 = Step 1 - Delta Value

Band-edges in the restricted band 2483.5 ~ 2500 MHz measurement

- Document DA 00-705 Marker Delta Method

Frequency (MHz)	Detect mode	Pol.	Reading (dBuV/m)	T.F (dB)	Step 1 Data	delta	Step 3 Data	Limit
2400	PK	Н	65.6	34.6	100.2	45.36	54.84	74
2480	AV	Н	59.5	34.6	94.1	45.36	48.74	54

Note) Step 1 = Reading + T.F

T.F = Ant.F + Cable loss

Step 3 = Step 1 - Delta Value

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

3.2.7 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ VBW RBW

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

Low c	hannel	Mid cl	hannel	High channel		
Frequency (MHz)	Level (dBuV)	Frequency (MHz)			Level (dBuV)	
4804	43.6	4884	44.7	4960	43.5	
-	-	-	-	-	-	
Measuremen	t uncertainty		± 6	i dB		

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: EVERUN TEST MODE: BLUETOOTH mode

Temp Humi : 29 / 60 Tested by: B. S. KIM

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

243 Jubug-ri, yangii-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

KUT/Model No.: EVERUN TEST MODE: BLUETOOTH +WLAN 802.11b mode

Temp Humi : 29 / 60 Tested by: B. S. KIM

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

47.60 -12.96 34.64

6 208.24

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

KUT/Model No.: EVERUN TEST MODE: BLUETOOTH + WLAN 802.11g mode

Temp Humi : 29 / 60 Tested by: B. S. KIM

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

243 Jubug-ri, yangii-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

KUT/Model No.: EVERUN TEST MODE: 'H'+Movie+File up / down mode

Temp Humi : 34 / 42 Tested by: B. S. KIM

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

-12.55 32.65 -11.43 39.17

-11.43

6 480.20 45.00 -5.83 39.17 46.00

50.60

4 120.24

5 240.03

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: EVERUN TEST MODE: PC mode

Temp Humi : 34 / 42 Tested by: B. S. KIM

	Frequency (mitz)								
	Freq	Reading	C.F	Result QK	Limit	Margin	Height	Angle	Polarity
	MHZ	dBuV	dB	dBuV/m	dBuV/m	dB	CM	deg	
1	60.81	40.80	-12.69	28.11	40.00	11.89	100	214	VERTICAL
2	92.78	50.70	-15.48	35.22	43.50	8.28	100	271	VERTICAL
3	115.52	46.20	-13.05	33.15	43.50	10.35	400	259	HORIZONTAL
4	120.24	47.20	-12.55	34.65	43.50	8.85	100	308	VERTICAL
8	240.03	49.10	-11.43	37.67	46.00	8.33	354	11	HORIZONTAL
6	480.20	44.80	-5.83	38.97	46.00	7.03	381	119	HORIZONTAL

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.8 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

AC Conducted Emissions - BT - Line

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

RUT / Model No. : EVERUN Phase : LINE

Test Mode : BlueTooth mode Test Power : 120 / 60

Temp./Humi. : 25 / 49 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions - BT - Neutral

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

KUT / Model No. : EVERUN Phase : NEUTRAL

Test Mode : BlueTooth mode Test Power : 120 / 60

AC Conducted Emissions - BT+WLAN(802.11b) - Line

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

KUT / Model No. : EVERUN Phase : LINE

Test Mode : BlueTooth+WLAN802.11b mode Test Power : 120 / 60

AC Conducted Emissions – BT+WLAN(802.11b) – Neutral

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EVERUN Phase : NEUTRAL

Test Mode : BlueTooth+WLAN802.11b mode Test Power : 120 / 60

AC Conducted Emissions - BT+WLAN(802.11g) - Line

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

KUT / Model No. : EVERUN Phase : LINE

Test Mode : BlueTooth+WLAN802.11g mode Test Power : 120 / 60

Temp./Humi. : 25 / 49 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions - BT+WLAN(802.11g) - Neutral

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

KUT / Model No. : EVERUN Phase : NEUTRAL

Test Mode : BlueTooth+WLAN802.11g mode Test Power : 120 / 60

AC Conducted Emissions - Line

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

KUT / Model No. : KVERUN Phase : LINE

Test Mode : 'H' + Movie File up/down mode Test Power : 120 / 60

Temp./Humi. : 25 / 49 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable los

AC Conducted Emissions -Neutral

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EVERUN Phase : NEUTRAL

Test Mode : 'H' + Movie+File up/down mode Test Power : 120 / 60

AC Conducted Emissions -PC Mode - Line

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EVERUN Phase : LINE

Test Mode : PC mode Test Power : 120 / 60

AC Conducted Emissions - PC Mode - Neutral

243 Jubug-ri, yangi-Myeon, Youngin-si, Gyuonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EVERUN Phase : NEUTRAL

Test Mode : PC mode Test Power : 120 / 60

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	НР	Apr-08
2	Signal Generater	8648C	3623A02597	НР	Apr-08
3	Attenuator (3dB)	8491A	37822	НР	Nov-07
4	Attenuator (10dB)	8491A	63196	НР	Nov-07
5	EMI Test Receiver	ESVD	843748/001	R&S	Jan-08
6	LISN	KNW-407	8-1430-1	Kyoritsu	Jan-08
7	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Jan-08
8	RF Amplifier	8447D	2949A02670	НР	Jan-08
9	RF Amplifier	8447D	2439A09058	НР	Jan-08
10	RF Amplifier	8449B	3008A02126	НР	Apr-09
11	Test Receiver	ESHS10	828404009	R&S	Jan-08
12	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Jul-07
13	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-09
14	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-09
15	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-09
16	Dipole Antenna	VHA9103	2116	Schwarzbeck	Nov-07
17	Dipole Antenna	VHA9103	2117	Schwarzbeck	Nov-07
18	Dipole Antenna	UHA9105	2261	Schwarzbeck	Nov-07
19	Dipole Antenna	UHA9105	2262	Schwarzbeck	Nov-07
20	Spectrum Analyzer	8591E	3649A05888	НР	Jan-08
21	Spectrum Analyzer	8563E	3425A02505	НР	Apr-08
22	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Feb-08
23	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-08
24	RF Switch	MP59B	6200414971	ANRITSU	Jun-08
25	RF Switch	MP59B	6200438565	ANRITSU	Jun-08
26	Power Divider	11636A	6243	НР	Nov-07
27	DC Power Supply	6622A	3448A03079	НР	Oct-07
28	Attenuator (30dB)	11636A	6243	НР	Nov-07
29	Frequency Counter	5342A	2826A12411	НР	Apr-08
30	Power Meter	EPM-441A	GB32481702	НР	Apr-08
31	Power Sensor	8481A	2702A64048	НР	Apr-08
32	Audio Analyzer	8903B	3729A18901	НР	Nov-07
33	Modulation Analyzer	8901B	3749A05878	НР	Nov-07
34	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	Oct-07
35	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-09