Отбор, 3 тур 11 класс. 2015-16 г.

1. Пор горизонтальной гладкой поверхности навстречу друг другу со скоростями v_1 и v_2 движутся два одинаковых тонких кольца. Угловые скорости колец ω_1 и ω_2 . Определите угловые скорости колец после удара, если в последний момент удара проскальзывания колец относительно друг друга нет.

2. В колебательном контуре конденсатор C_1 ёмкостью 15 мкФ зарядили до напряжения 10 В (см. рисунок) и замкнули ключ. Какова амплитуда тока возникших колебаний? Каково максимальное напряжение на конденсаторе C_2 ? Ёмкость конденсатора C_2 равна 5 мкФ, индуктивность катушки L - 10 мГн.

- 3. Две параллельные полуплоскости равномерно заражены с плотностью заряда $+\sigma$ на верхней и $-\sigma$ на нижней полуплоскости. Найдите величину и направление напряженности электрического поля E в точке M, которая находится на высоте h над краем полуплоскости (см. рисунок). Расстояние между полуплоскостями d мало по сравнению с h.
- 4. В простейшей схеме магнитного гидродинамического генератора плоский конденсатор з площадью пластин S и расстоянием d между ними помещён в поток проводящей жидкости с удельным сопротивлением ρ , которая движется с постоянной скоростью v параллельно пластинам. Конденсатор находится в однородном магнитном поле с индукцией, равной B (см. рисунок). Определите полезную тепловую мощность, которая выделяется на резисторе R. Пренебрегая возможными потерями при протекании жидкости, определите также КПД такого генератора.