Schrodinger's Time Dependent Egn: (STDE)

** We know:

$$\frac{1}{u^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} , \quad \text{where } f = f(x,t)$$

** Like Groat: We have to find differential eqn (one/pode), which will describe the micro level of quantum tevel description of the positicle.

** Wave eqn: $f(x,t) = Ae^{\frac{1}{2}(\omega t - Kx)}$

** Where $f(x,t) = Ae^{\frac{1}{2}(\omega t - Kx)}$

** For Quantum tevel:

** For Quantum tevel:

For Quantum level? $E = \frac{p^2}{\delta m}, \quad (\text{if}) \quad v(x) = 0, \quad p = \hbar k. \quad (\hbar = \frac{h}{\delta n})$ # If we have to satisfy this disposon relation, what is the governing one/poe? $E = \frac{hc}{\lambda} = hv = 2\pi\hbar \left(\frac{\omega}{2\pi}\right) = \hbar\omega$ $A = \frac{h}{P} \Rightarrow P = \frac{h}{\lambda} \Rightarrow P = \frac{hv}{\epsilon} \Rightarrow P = \frac{h}{2\pi} \left(\frac{\omega}{\epsilon}\right) = \frac{h\kappa}{2\pi} = \hbar \kappa.$

DAIRSSON GERMER! (WAVE NATURE OF PARTICLE). Positice Notwie Wove Nature de-Bwytie ad sino - ma y Brade = ygeprod ... THEORY : # HEISENBERG UNCERTAINTY ΔP_{x} . $\Delta x \geq \frac{h}{2} = \frac{h}{4\pi}$ ΔP_y . Δy . $\geq h/2$ $\Delta P_2 \cdot \Delta Z \geq \hbar/2$. * $\Delta \epsilon \cdot \Delta t = \frac{1}{2}$ J -> angular momentum: * DJ. App > t/2. \$ -> angle. FUNCTION: $\underline{\underline{Y}} = \underline{\underline{Y}} (\vec{\eta}, t)$ Psi Notation = γ $(\vec{\eta})$ Psi - " * I is in general complex * $|\mp|^2$ has meaning, it isopossents the probability indensity of $|\Xi|^2$ dx is the probability of finding the object (e-, proton, etc) b/w x & x+dx.