K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam(KT 2014)

MAY-JUNE 2021

Max. Marks: 50

Duration: 1 Hr. 45 Min.+(15 for

uploading)

Class: SY Semester: IV Name of the Course: AM-IV Branch: COMP

Course Code: UCEC401

Instructions:

- 1. All questions are compulsory
- 2. Draw neat diagrams
- 3. Assume suitable data if necessary

Q.N0		Question	Max Marks
1(A)		All questions are compulsory. Each question carries 2 marks	
	1	If two regression coefficients are (-0.1) and (-0.9) , the value of coefficient of correlation is (a) -0.03 (b) -0.3 (c) 0.03 (d) 0.3	2
	2	A random variable X is said to follow exponential distribution with parameter λ if its p.d.f. probability density function is of the form (a) $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$ and $\lambda \ge 0$ (b) $f(x) = -\lambda e^{-\lambda x}$, $x \ge 0$ and $\lambda \ge 0$ (c) $f(x) = \lambda e^{\lambda x}$, $x \ge 0$ and $\lambda \ge 0$ (d) $f(x) = -\lambda e^{\lambda x}$, $x \ge 0$ and $\lambda \ge 0$	2
	3	If X is normal variate with mean 3 and standard deviation 4, then what is $P(4 \le X \le 8)$? (a) 0.2957 (b) 0.3944 (c) 0.0987 (d) 0.4931	2
	4	If X is Binomial variate with mean 3 and variance= 4/3, then probability p is (a) 1/2 (b) 0 (c) 1/3 (d) 1	2

	5	The average number of customers in the system if the system is $(M/M/1/\infty)$ and $\mu=15, \lambda=10$ (a) 2 (b) 3 (c) 5 (d) 1	2
1(B)		 Attempt any FIVE of the following. Each question carries 2 marks 	
	1	For a random sample of 625 items having mean 10 and standard deviation 1.5, find 95% confidence limits.	2
	2	Accidents occur on a particular stretch of highway at an average rate 3 per week. What is the probability that there will be exactly two accidents in the week?	2
	3	The mean lifetime of a sample of 100 fluorescent light bulbs produced by a company is computed to be 1570 hours with a standard deviation of 120 hours. company claims that the average life of bulbs produced by it is 1600 hours. Compute the test statistic.	2
	4	The regression lines of sample are $6Y = 5X + 90$, $15X = 8Y + 130$, then sample means are (a)-30, 40 (b) -40, 30 (c) 30, 40 (d))-30, -40	2
	5	Convert the following LPP in the Standard form Maximize $z = 3x_1 + 4x_2 - 2x_3$ Subject to $6x_1 - 4x_2 \le 5$ $3x_1 + x_2 + 4x_3 \ge 11$ $4x_1 + 3x_2 \le 2$ $x_1, x_2, x_3 \ge 0$	2
	6	Find the Hassian Matrix in the solution of following NLPP $z = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$	2
	7	The local one-person barber shop can accommodate maximum of 5 people at a time (4 waiting and 1 getting haircut). Customers arrive according to a Poisson Distribution with mean 4 per hour. The barber cuts hair according to an Exponential Distribution at an average rate of 4 per hour. Find idle time of barber.	2
2	A	(i) The marks obtained by students in a certain examination follow a normal distribution with a mean 70 and standard deviation 5. Find the probability for students scoring more than 75 marks	6
		OR (ii)	6

	Three fair coins are tossed. Find the probability distribution of the number of heads and their expectation.											
	В	Calculate coefficient of correlation. X 12 13 14 15 16 17 18 19								4		
		Y		61	66	70	74	78	85	89		
3	A										6	
											6	
	В	~									4	
4	A	Solve the following linear programming problem by Simplex method Maximize $z = 10x_1 + x_2 + x_3$ Subject to $x_1 + x_2 - 3x_3 \le 10$ $4x_1 + x_2 + 3x_3 \le 20$ $x_1, x_2, x_3 \ge 0$								6		
	B (i) Construct the Dual of the following LPP Minimize $z = 3x_1 - 2x_2 + x_3$ Subject to $2x_1 - 3x_2 + x_3 \le 5$ $4x_1 - 2x_2 \ge 9$ $-8x_1 + 4x_2 + 3x_3 = 8$ $x_1, x_2, x_3 \ge 0$										4	
		Opti	mize z	z = 6x	$x_1 + 8x_2 = 0$ $3x_2 = 0$	$x_2 - x$			the fo	llowing	g NLPP	