وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Analog IC Design

Lecture 10 Current Mirrors

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

10: Current Mirrors [Sedra/Smith, 2015]

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mv_{bs}} \longrightarrow r_{o} \longrightarrow p_{mv_{bs}} \longrightarrow p_{mv_{$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \blacksquare Bulk effect: $g_m \to g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- ☐ Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D ,Vout Vin Liout,sc V _X	R _D , V _{out} j _{out,sc} V _{in}	iout,sc V _x Vout Rs
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb}) R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Why Current Source?

 Current sources act as a large resistor without consuming excessive voltage headroom (and without consuming excessive chip area)

BAD Current Source

Sensitive to PVT (process, voltage, and temperature) variations

$$I_{out} \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2$$

10: Current Mirrors [Razavi, 2017]

How to Generate Robust Currents?

10: Current Mirrors [Razavi, 2017]

How to Copy (Mirror) Currents?

$$I_{out} = \frac{(W/L)_2}{(W/L)_1} I_{REF}$$

13

Is This a Current Mirror?

10: Current Mirrors [Razavi, 2017]

Sink and Source Currents

10: Current Mirrors [Razavi, 2017]

Accurate Mirroring

ALWAYS use matched unit transistors (same L, W, orientation, etc.)

10: Current Mirrors [Razavi, 2017]

Scale Current Up and Down

17

V_{DS} Dependence

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS1})$$

$$I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_2 (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS2})$$

$$\frac{I_{D2}}{I_{D1}} = \frac{(W/L)_2}{(W/L)_1} \cdot \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}$$

18

First solution: Force VDS2 to be equal to VDS1

Cascode Current Mirror

- $\Box V_{DS2} = V_{DS1} = V_{GS1} = V_{TH1} + V_{ov1}$
- \blacksquare The cascode also boosts $R_{out} = \frac{\Delta V_{out}}{\Delta I_{out}} \Rightarrow$ Less current variation

19

Cascode CM Wastes Headroom

- Cascode wastes headroom, but we need to keep VDS equal
- ☐ First solution wastes headroom: Do not force VDS2 to be equal to VDS1
- ☐ Second solution: force VDS1 to be equal to VDS2 ☺

20

Low Voltage Cascode CM

A.k.a. wide swing current mirror, low compliance current mirror

$$V_{TH0} + V_{ov0} + V_{ov1} < V_b < V_{TH0} + V_{TH1} + V_{ov1}$$

What is the magic battery that will generate V_h ?

[Razavi, 2017] 10: Current Mirrors

How to Generate Vb?

- ☐ Assume M1-M4 have the same W/L
- \Box Length of M5 should be a little > 4L
 - Bias M1 and M2 a little more into saturation
 - Account for body effect of M3 and M4
- ☐ M5 may be implemented as unit transistors in series

Regulated (Super) Cascode CM

Feedback keeps $V_{DS1} \approx V_{DS2}$ and boosts R_{out} $R_{out} \approx r_{o,super} (1 + g_{m,super} R_S) = r_{o4} (Ag_{m4} r_{o2}) \sim A(g_m r_o^2)$

10: Current Mirrors [Baker, 2010]

Thank you!