01) Calcule as integrais iteradas:

a)
$$\int_{1}^{3} \int_{0}^{1} (1+4xy) dx dy$$

c)
$$\int_{0}^{2} \int_{0}^{\frac{\pi}{2}} (x \operatorname{sen} y) \, dy \, dx$$

b)
$$\int_{2}^{4} \int_{-1}^{1} (x^2 + y^2) dy dx$$
 d) $\int_{1}^{4} \int_{0}^{2} (x + \sqrt{y}) dx dy$

02) Calcule a integral dupla:

$$\iint_{R} (6x^{2}y^{3} - 5y^{4}) dA \quad \text{onde} \quad R = \{(x, y) | 0 \le x \le 3, 0 \le y \le 1\}$$

- 03) Determine o volume do sólido que se encontra abaixo do plano 3x + 3y + z = 12 e acima do retângulo $R = \{(x, y) | 0 \le x \le 1, -2 \le y \le 3\}.$
- 04) Determine o volume do sólido delimitado pela superfície $z = 1 + e^x \operatorname{sen} y$, pelos planos $x = \pm 1$, y = 0, $y = \pi$ e z = 0.
- 05) Calcule as integrais iteradas:

a)
$$\int_{0}^{1} \int_{0}^{x^{2}} (x+2y) dy dx$$

b) $\int_{1}^{2} \int_{y}^{2} xy dx dy$

c)
$$\int_{0}^{1} \int_{y}^{e^{y}} \sqrt{x} \, dx \, dy$$

b)
$$\int_{1}^{2} \int_{y}^{2} xy \, dx \, dy$$

c)
$$\int_{0}^{1} \int_{y}^{e^{y}} \sqrt{x} \, dx \, dy$$

d) $\int_{0}^{1} \int_{x}^{2-x} (x^{2} - y) \, dy \, dx$

06) Calcule a integral dupla:

$$\iint_D x^3 y^2 dA \quad \text{onde} \quad D = \{(x, y) | 0 \le x \le 2, -x \le y \le x\}$$

- 07) Determine o volume do sólido dado:
- a) abaixo do plano x + 2y z = 0 e acima da região limitada por y = x e $y = x^4$.
- b) abaixo da superfície $z = 2x + y^2$ e acima da região limitada por $x = y^2$ e $x = y^3$.
- onde R é a região que está a esquerda do eixo y e entre as circunferências 08) Calcule $\iint_{\mathbb{R}} (x+y) dA$ $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$.
- 09) Utilize coordenadas polares para determinar o volume do sólido abaixo do paraboloide $z = x^2 + y^2$ e acima do disco $x^2 + y^2 \le 9$.