Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables. P(x) – true or false depending on value of x. P(3) is a proposition.

Quantifiers...

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

Wait! What is N?

Quantifiers: universes.

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

Universe examples include..

- ightharpoonup
 vert
 vert
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- $ightharpoonup \mathbb{Z}^+$ (positive integers)
- $ightharpoonup \mathbb{R}$ (real numbers)
- ▶ Any set: $S = \{Alice, Bob, Charlie, Donna\}.$
- See note 0 for more!

Back to: Wason's experiment:1

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x \text{ went to Chicago."}$$
 $Flew(x) = "x \text{ flew"}$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

$$Chicago(A) = False$$
. Do we care about $Flew(A)$?

No. $Chicago(A) \implies Flew(A)$ is true. since Chicago(A) is False,

$$Flew(B) = False$$
. Do we care about $Chicago(B)$?

Yes. $Chicago(B) \implies Flew(B) \equiv \neg Flew(B) \implies \neg Chicago(B)$. So Chicago(Bob) must be False.

$$Chicago(C) = True$$
. Do we care about $Flew(C)$?

Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true.

$$Flew(D) = True$$
. Do we care about $Chicago(D)$?
No. $Chicago(D) \Longrightarrow Flew(D)$ is true if $Flew(D)$ is true.

Only have to turn over cards for Bob and Charlie.

More for all quantifiers examples.

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.

Quantifiers..not commutative.

► In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) (y = x^2)$$
 True

Quantifiers....negation...DeMorgan again.

Consider

$$\neg(\forall x\in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim. Soon...

Negation of exists.

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that there is no $x \in S$ where P(x) is true.

English: means that for all $x \in S$, P(x) does not hold.

That is,

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$

Which Theorem?

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $\neg(\exists n \in \mathbb{N}) \ (\exists a,b,c \in \mathbb{N}) \ (n \geq 3 \implies a^n + b^n = c^n)$

Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

And now: proofs!

Review.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" \Longrightarrow Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \Longrightarrow Q$.)
- 3. by Contraposition (Prove $P \Longrightarrow Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

Last time: Existential statement.

How to prove existential statement?

Give an example. (Sometimes called "proof by example.")

Theorem: $(\exists x \in N)(x = x^2)$

Pf: $0 = 0^2 = 0$

Often used to disprove claim.

Quick Background, Notation and Definitions!

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|*b* means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

2|-4? Yes! Since for q = 2, -4 = (-2)2.

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

A number x is even if and only if 2|x, or x = 2k for $x, k \in \mathbb{Z}$.

A number x is odd if and only if x = 2k + 1 for $x, k \in \mathbb{Z}$.

Divides.

a|b means

- (A) There exists $k \in \mathbb{Z}$, with a = kb.
- (B) There exists $k \in \mathbb{Z}$, with b = ka.
- (C) There exists $k \in \mathbb{N}$, with b = ka.
- (D) There exists $k \in \mathbb{Z}$, with k = ab.
- (E) a divides b

Incorrect:

- (C) sufficient not necessary.
- (A) Wrong way.
- (D) the product is an integer.

Correct: (B) and (E).

Direct Proof.

```
Theorem: For any a, b, c \in Z, if a \mid b and a \mid c then a \mid (b - c).
Proof: Assume a b and a c
  b = aq and c = aq' where q, q' \in Z
b-c=aq-aq'=a(q-q') Done?
(b-c)=a(q-q') and (q-q') is an integer so by definition of divides
   a|(b-c)
Works for \forall a, b, c?
 Argument applies to every a, b, c \in Z.
  Used distributive property and definition of divides.
Direct Proof Form:
 Goal: P \Longrightarrow Q
  Assume P.
  Therefore Q.
```

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c. Proved Q: 11|n.

The Converse

```
Thm: \forall n \in D_3, (11|\text{alt. sum of digits of }n) \implies 11|n| Is converse a theorem? \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of }n) Yes? No?
```

Another Direct Proof.

Theorem: $\forall n \in D_3$, $(11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow$ $99a + 11b + (a - b + c) = 11k \Longrightarrow$ $a - b + c = 11k - 99a - 11b \Longrightarrow$ $a - b + c = 11(k - 9a - b) \Longrightarrow$ $a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$

That is 11 alternating sum of digits.

Note: similar proof to other direction. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in D_3$, (11|alt. sum of digits of n) \iff (11|n)

Proof by Contraposition

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd = q(2k) = 2(kq)
n is even. \neg P
```

Another Contraposition...

```
Lemma: For every n in N, n^2 is even \implies n is even. (P \implies Q)
n^2 is even. n^2 = 2k \dots \sqrt{2k} even?
Proof by contraposition: (P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)
Q = 'n is even' ..... \neg Q = 'n is odd'
Prove \neg Q \Longrightarrow \neg P: n is odd \Longrightarrow n^2 is odd.
n = 2k + 1
n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.
n^2 = 2l + 1 where l is a natural number..
... and n<sup>2</sup> is odd!
\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...
```

Proof by Obfuscation.

noun

noun: obfuscation; plural noun: obfuscations

the action of making something <u>obscure</u>, unclear, or <u>unintelligible</u>. "when confronted with sharp questions they resort to obfuscation"

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \implies R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow False$ is $True \Longrightarrow P$.

Theorem *P* is true. And proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p \leq (q-x) = 1.$
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first *k* primes..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.
 As it assumed the only primes were the first k primes.

Poll: Odds and evens.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky). (E) xy^5 Even: $2(ky^5)$.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y^3$$
. Odd?

$$y = (2k+1)$$
. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd? Odd.

Any power of an odd number? Odd.

Idea: $(2k+1)^n$ has terms

- (a) with the last term being 1
- (b) and all other terms having a multiple of 2k.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Poll: proof review.

Which of the following are (certainly) true?

- (A) $\sqrt{2}$ is irrational.
- (B) $\sqrt{2}^{\sqrt{2}}$ is rational.
- (C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't.
- (D) $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ is rational.
- (A),(C),(D)
- (B) I don't know.

Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

What's wrong?

Don't assume what you want to prove!

Be really careful!

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

$$P \Longrightarrow Q$$
 does not mean $Q \Longrightarrow P$.

Summary: Note 2.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...

CS70: Note 3. Induction!

Poll. What's the biggest number?

- (A) 100
- (B) 101
- (C) n+1
- (D) infinity.
- (E) This is about the "recursive leap of faith."