Electronics

Basic Electrical Circuit

Circuit Diagram (schematic)

Conventional Current direction

- Electronic devices all share a fine level of control of electrical energy
 - This control happens through the electronic circuit
- To create an electric current the circuit also needs an electrical energy source

like a battery to start the flow of electricity

Circuits

• Closed Circuit

allows current to flow

• Open Circuit

- o has a break in the pathway which stops the current from flowing
- o can be created by placing an on/off switch along the circuit pathway

• Short Circuit

- is usually not created by design
- happens when unintended connection between 2 points bypass normal pathway

Short Circuit Causes:

- too much current to overload components
 - Electrical current normally takes the path of least resistance

- overheating
- unsafe scenarios
 - melting wires
 - component failure
- possibility of electrical fire

Electronic Components

o are usually made with **Leads**

- Leads are protruding wires that
 - connect to the inside of the component
 - provide the means to connect the component to other circuit elements

Series Circuit

Components are interconnected one after another

Current travels through each component in a linear fashion

Example: string of decorative holiday lights

Parallel Circuit (1/2)

Current splits at a junction which leads to parallel pathways

Components connected along each pathway

Solve the common problem of a holiday string of lights

Parallel Circuit (2/2)

- You can power multiple components (like LEDs)
- Each component gets its own supply of current
- If any component were to fail, it would not stop the current from:

- flowing to the other pathways
- powering the other components

Notes

Series or Parallel Circuits?

decision depends on the application

Power Supply

o must be powerful enough to provide power to the entire circuit (series or parallel)

Electrical Device

with switch creates circuit that can be closed or opened

Passive Examples

Passive Component Examples

- Resistors
- Capacitors
- Inductors
- Transformers

Linear Circuits Examples

- Amplifiers
- Differentiators
- Integrators
- Linear Electronic Filters

Resistor

Inductor

Capacitor

Passive Components

o electronic components that maintain/store energy and create linear circuits

o are incapable of controlling electric current by means of another electrical signal

o cannot introduce energy into a circuit

except for what is available to them from the circuit they are connected to

- cannot amplify the power of a signal
 - although they may increase the voltage or current

Active Examples

Active Component Examples

- Diodes
- Transistors
- Silicon Controlled Rectifiers (SCRs)

Nonlinear Circuits Examples

- Mixers
- Modulators
- Digital Logic Circuits

Active Components

Electronic components that produce energy and create nonlinear circuits

o can control electric current with an external source of energy

o provide power gain or amplification that produces voltage signaling that is

discontinuous (nonlinear)

Circuits

• Passive Circuit

An electronic circuit consisting entirely of passive components

• Active Circuit

o is a circuit with at least one **Active Component**

Linear Circuit

- o has no nonlinear components
- o in it, the values of the electronic components (resistors, capacitors, inductors ...)
 - do not change with the level of voltage or current in the circuit
- o are important because
 - they can amplify and process electronic signals without distortion

Example of electronic device that uses linear circuits is a sound system

Circuits

Analog Circuits

- o present a contiguous signaling
- o can assume any value between no power to full power

• Digital Circuits

- present a discrete signaling
- \circ can assume either no power or full power \rightarrow no intermediate steps

Analog Circuits

o in it, current or voltage may vary **continuously** with time to correspond to the information being represented

o used in power management circuits, sensors, amplifiers, and filters

Digital Circuits (1/2)

- have electric signals that
 - take on two discrete values corresponding to the level of voltage
- These values are binary and are represented as 1/0, on/off, or high/low

Digital Circuits (2/2)

- o In it, binary encoding is used:
 - one voltage represents a binary 1
 - another voltage represents a binary 0 (value near the ground potential or 0 volts)
- o can be designed to provide both logic and memory by:
 - interconnecting these binary signals,
 - enabling them to perform arbitrary computational functions

Direct Current (DC)

- Type of current in which the flow of electrons goes one way only
- o Produced by sources like batteries, power supplies, solar cells, or dynamos

- Used to charge batteries and as power supply for electronic systems
- o can be obtained from AC by using a Rectifier to convert AC into DC
 - Rectifiers force current to flow in one direction only
 - Rectifiers are commonly found in an AC to DC power supply

Alternating Current (AC) (1/2)

o its flow of electric current periodically reverses direction

o is the form in which electric power is delivered to businesses and residences

- o its usual waveform of in most electric power circuits is sine wave
 - Also, different waveforms are used like triangular or square waves

Alternating Current (AC) (2/2)

- is produced in the electrical power plant by taking advantage of various forms of mechanical energy to move large scale Alternators
 - mechanical energy like water flowing from a dam or the spin of a wind turbine
 - Alternators then transform the mechanical energy into electricity

 DC produced by a solar plant may be converted into AC with an inverter or a motor-generator set

Questions