PHY 831: Statistical Mechanics Homework 2

Due Monday September 27th, 2021

1. Show that

$$\left(\frac{\partial E}{\partial N}\right)_{T,V} = \mu - T \left(\frac{\partial \mu}{\partial T}\right)_{N,V}.$$

2. Prove the relationship

$$C_P = C_V + TV \frac{\alpha_P^2}{\kappa_T} \,,$$

where the expansivity $\alpha_P = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,N}$ and the isothermal compressibility $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,N}$. Since the isothermal compressibility is always greater than zero for a thermodynamically stable gas, this implies the heat capacity at constant pressure is always greater than the heat capacity at constant volume. Explain in very simple terms why $C_P > C_V$ makes physical sense.

3. Assume that the entropy S and the multiplicity factor Ω for some physical system are related through an arbitrary functional form,

$$S = f(\Omega)$$
.

Show that the additive feature of S and the multiplicative character of Ω necessarily require that $f(\Omega) = k \log \Omega$, where k is some constant. Hint: consider the derivatives of $f(\Omega_1 \Omega_2) = f(\Omega_1) + f(\Omega_2)$.

- 4. An "Einstein solid" is a simple model of a solid that makes use of the fact that each atom can oscillate about it's equilibrium lattice site, and therefore treats the system as N independent harmonic oscillators, all with the same frequency ω^{-1} .
 - (a) Derive the multiplicity function $\Omega(N,q)$ for a system of N harmonic oscillators with total energy $E=q\hbar\omega=\sum_{i=1}^N n_i\hbar\omega$. Hint: This is the same combinatoric problem as finding the number of different ways to arrange q balls in N urns. Moreover, this is a commonly worked out example in many text books:).
 - (b) For the limit where N >> 1 use Stirling's approximation to derive the asymptotic form for the entropy as a function of N, q, and use this to show that the total energy E at temperature T is

$$E = \frac{N\hbar\omega}{\exp(\hbar\omega/k_B T) - 1}.$$

 $^{^{1}}$ Actually, since each atom can vibrate in 3-independent directions, you would model it as 3N oscillators. Here we don't worry about this detail.

This is the famous result of Max Planck. Later, we'll derive this in a more modern and less cumbersome way using partition functions, etc., that steer clear of having to find multiplicity functions.

- 5. Consider two thermally isolated Einstein solids each consisting of $N_A = N_B = 3$ oscillators. Initially, the two solids are separated with an adiabatic wall, with $q_A = 0$ and $q_B = 6$, which is subsequently removed so that they can exchange heat. Make a table with columns labelled q_A , Ω_A , q_B , Ω_B , and $\Omega = \Omega_A \Omega_B$, and enumerate all possibilities that the system can relax to. What are the most likely new equilibrium values for q_A and q_B ?
- 6. Now consider two Einstein solids with $N_A = 300$, $N_B = 200$ and $q = q_A + q_B = 100$. Use a computer (Excel spreadsheet, a simple Python code, Mathematica, or whatever else you're comfortable with) to make a similar table as the previous problem for the possible 101 macrostates, and make a plot of the total multiplicity function $\Omega_A\Omega_B$ as a function of q_A .