Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

ME3EL25 Additive Manufacturing

Programme: B.Tech. Branch/Specialisation: ME

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. What is the fundamental difference between subtractive and additive 1 manufacturing?
 - (a) Subtractive uses material removal; additive builds layer by layer
 - (b) Subtractive builds layer by layer; additive uses material removal
 - (c) Both use the same process
 - (d) Neither uses material removal
 - ii. In terms of sustainability, which manufacturing method is often 1 considered more environmentally friendly?
 - (a) Subtractive manufacturing
 - (b) Additive manufacturing
 - (c) Both have similar environmental impacts
 - (d) Neither has significant environmental impacts
 - iii. Which of the following is a liquid-based additive manufacturing **1** process?
 - (a) Fused Deposition Modeling (FDM)
 - (b) Stereolithography (SLA)
 - (c) Selective Laser Sintering (SLS)
 - (d) CNC Machining
 - iv. In solid-based additive manufacturing, what happens to the material **1** after each layer is deposited or melted?
 - (a) It solidifies through cooling or bonding
 - (b) It remains in the same state
 - (c) It is ejected as waste
 - (d) It undergoes a chemical reaction

P.T.O.

[2]

v. What is the primary state of material in powder-based additive 1

		manufacturing during the printing processing	ess?			
		(a) Liquid (b	o) Solid			
		(c) Gas (d	d) Powder			
	vi.	What is a key advantage of powder-based additive manufacturing in				
		terms of design flexibility?				
	(a) Limited design options					
		(b) High tooling constraints				
		(c) Complex geometries without support	rt structures			
		(d) Inability to create intricate structures				
	vii.	What is a key application of direct energy deposition in manufacturing?				
		(a) Low-resolution prototyping				
		(b) High-speed machining				
		(c) Repair and refurbishment of parts				
		(d) Mass production of small components				
viii.		In direct energy deposition, how is mat	erial deposited onto the substrate	1		
		or previous layers?				
		(a) By injection molding				
		(b) By extruding a continuous filament				
		(c) By using a laser to melt and fuse powdered material				
		(d) By using a directed energy source to	-			
	ix.	What is the primary function of the fric	_	1		
			b) Layer-by-layer deposition			
			d) Laser cutting			
	х.	In hybrid additive-subtractive manufa	acturing, how is material added	1		
		and removed in the same process?				
		(a) Sequentially, with separate machines				
		(b) Simultaneously, using a combination of tools				
		(c) Material is only added, not removed				
		(d) Material is only removed, not added	1			
Q.2	i.	Compare and contrast Additive Mar	nufacturing (AM) with reverse	3		
	1,	engineering	muracturing (711v1) with reverse	_		
	ii.	Discuss the role and impact of	Additive Manufacturing (AM)	7		
		technology in product development.	(Tivi)	•		
OR	iii.	Discuss the challenges and advanceme	nts associated with selecting and	7		
-		optimizing materials for different AM I	_			
			L			

Q.3	i.	Explain the classification of liquid-based additive manufacturing systems.	3
	ii.	Elaborate the principles & processes Fused Deposition Modelling (FDM).	7
OR	iii.	Elaborate on the advantages, and applications of solid-based additive manufacturing systems.	7
2.4	i.	Write any three limitations of selective laser sintering.	3
	ii.	Explain the principle of DMLS process. Also write the advantages and limitations,	7
)R	iii.	Explain the principle, advantages, and limitations of 3D printing.	7
Q.5	i.	Write any three advantages of electron beam freedom fabrication principles.	3
	ii.	Explain the principle of wire-laser AM. Also write the advantages and limitations.	7
)R	iii.	Explain the principle of Wire Arc Additive Manufacturing (WAAM). Also write the advantages and limitations.	7
Q .6	i.	What are the various types of post-machining operations with respect to heat treatment?	3
	ii.	Explain Friction Stir Additive Manufacturing (FSAM) with the help of neat sketch.	7
)R	iii.	Explain hybrid additive- subtractive manufacturing in detail.	7

[3]

[4]

Marking Scheme

ME3EL25 (T)-Additive Manufacturing (T)

1

Q.1	i)	a. Subtractive uses material removal; Additive builds layer by layer			
	ii)	b. Additive Manufacturing			
	iii)	b. Stereolithography (SLA)			
	iv)	a. It solidifies through cooling or bonding			
	v)	d. Powder			
	vi)	c. Complex geometries without support structures			
	vii)	c. Repair and refurbishment of parts			
	viii)	d. By using a directed energy source to melt and deposit material			
	ix)	c. Joining and bonding materials			
	x)	b. Simultaneously, using a combination of tools			
Q.2	i.	Compare			
		and contrast Additive Manufacturing (AM) with Reverse			
		Engineering			
	ii.	Discuss the role			
		and impact of Additive Manufacturing (AM) technology in product development 4 marks			
OR	iii.	Discuss the challenges			
Q.3	i.	Explain the classification of Liquid-Based Additive			
	ii.	Manufacturing systems			
	11.	& processes Fused Deposition Modelling (FDM)3 marks			
OR	iii.	Elaborate on the advantages, and applications of Solid-Based			
		Additive Manufacturing systems			
Q.4	i.	Write any three limitations of Selective Laser Sintering3 marks			
	ii.	Explain the Principle of DMLS process 3 marks			
		write the advantages			

		and limitations	2 marks
OR	iii.	Explain the Principle	3 marks
		advantages	2 marks
		limitations of 3D printing	2 marks
Q.5	i.	Write any three advantages of Electron	
		Fabrication Principles	3 marks
	ii.	Explain the principle of Wire-Laser AM	3 marks
		Also write the advantages	2 marks
		and limitations	2 marks
OR	iii.	Explain the principle of Wire Arc Additiv	e Manufacturing
		(WAAM)	3 marks
		Also write the advantages	2 marks
		and limitations	2 marks
Q.6	i.	What are the various types of post-machining	g operations with
		respect to heat treatment	•
	ii.	Explain Friction Stir Additive Manufacturing	
	11.	help of neat sketch.	3 marks
OR	iii.	Explain Hybrid Additive- Subtractive Manufa	cturing in detail. 3 marks
		•••••	Jiiaiks

P.T.O.