

认识数据 (I)

朱卫平 博士 计算机学院 武汉大学

数据的性质

- ■数据: 一系列事实的集合
 - 通常是实验、观察、事务或经验获取的结果
- ■数据可能包括数字,文字,图像....
- ■数据是最低层次的抽象(从中产生信息和知识)

Page 2

数据的分类

如何判断数据的相似性

	F	٠	н	
	þ		V	
	L	š	9	
7				ļ
				ŕ

学与	号 姓名	班级号	网络课 成绩	商务智能 成绩	是否感冒	•••••
1	Jack	А	优秀	90	N	
2	Jim	В	一般	95	N	
3	Mary	С	好	85	Υ	•••••
4	Tom	А	优秀	96	N	

如何判断数据之间是否相似,以及如何表征相似程度?

衡量数据相异性的方法

- 相异性矩阵
 - 给定n对象,相异性矩阵D存放n个对象两两之间的邻 近度
 - d(i,j) 值越趋近于0, 相异性越小
 - 相似性可以由此计算: sim(i,j) = 1 d(i,j)

数据对象和属性类型

- ■数据集是由数据对象构成的,一个数据对象表示一个实体
 - 在大学数据库中,数据对象是学生
- 数据对象用属性来描述
 - 数据对象具有多个属性,如班级号、成绩、是否感冒等
 - 每个属性具有不同的数据类型, 如标称型、序数型和数值型等
- 相似性计算和属性类型相关

标称属性

- ■标称属性(nomimal attribute) 是事物的标号或者名称
 - 每一个值表示类别、编码或者状态, 因此也被称为是分 类
 - 值没有次序信息
 - 在计算机领域,也被称为枚举型
 - 举例如: 班级号和发色
 - ◆ 班级可以是A班、 B班、 C班等
 - ◆ 发色可以是黑色、棕色、灰色等

Page 7

标称属性

- ■尽管名词属性是标号或者名称,但也可以是数值的表示形式
 - 比如,对于班级属性,可以用0表示班级A,1表示班 级B等
 - 但是,在这种情况下,该数据并不被当成数值来使用

- ■标称属性的相异性度量
 - 标称属性可以取两个或多个状态
 - 给定两个对象i和j,它们之间的相异性可以根据不匹配率来计算

$$d(i,j) = \frac{p-m}{p}$$

其中p是对象的属性总数, m是匹配属性数目(取值相同的属性数), p-m表示不匹配属性数目

标称属性的相异性度量

例 假设我们有以下数据,求其相异性矩阵为

0			7
d(2,1)	0		
d(3,1)	d(3,2)	0	
d(4,1)	d(4,2)	d(4,3)	0

学号	班级号
1	Α
2	В
3	С
4	А

由于只有一个标称属性,我们令属性总数p=1 当对象i和j匹配时,不匹配属性数目为0,d(i,j)=0 当对象不同时不匹配属性数目为1,d(i,j)=1

于是,我们得到

$$\begin{bmatrix} 0 & & & & \\ 1 & 0 & & & \\ 1 & 1 & 0 & & \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

由此,我们看到除了对象1 和4之外,所有对象都互不 相似

Page 1

二元属性

- 二元属性是一种特殊的标称属性,只有两个状态
 - : 0和1
 - 0一般表示属性缺失, 1表示存在
 - 又称为布尔属性,两个状态表示真和假
 - 如果二进制属性的两个状态是同等重要的, 称为对称 二元属性
 - 比如性别属性的两个值男和女
 - 如果两个状态不是同等重要的,则为非对称二元属性
 - 比如感冒检查的结果呈阴性和阳性
 - 通常,用1表示更重要的(更稀少)的结果

■对于对称二元属性,对象i和j的相异性可以利用以下列表

			对象j	
		1		sum
74 <i>4</i> 2 ·	4		r	q+r
对象i	1	q	<u>'</u>	
	0	S	t	s+t
	sum	q+s	r+t	р

则i和j的相异性为:
$$d(i,j) = \frac{r+s}{q+r+s+t}$$

二元属性的相异性度量

- ■非对称二元属性的相异性度量
 - 两个都取值1的情况(正匹配)被认为比两个都取值0的情况(负匹配)更有意义
 - 很多时候,负匹配的数值将远大于正匹配,使得相异性 绝对值变的很小
 - 因此,不重要的负匹配数在计算时被忽略,如下所示:

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

$$d(i, j) = \frac{r+s}{q+r+s}$$

			对象j	
		1	0	sum
对象i	1	q	r	q+r
	0	S	t	s+t
	sum	q+s	r+t	р

Page 13

二元属性的相异性度量

例 如下图学生数据表计算其相异性,除姓名外其余属性都是非对称二元属性

姓名	是否发烧	是否感冒	检测1	检测2	检测3	检测4
Jack	Y	N	Р	N	N	N
Jim	Y	Υ	N	N	N	N
Mary	Y	N	Р	N	Р	N
		•••	•••	•••		

对于这些属性,值Y (yes) 和P(positive)被设置为1,值N(no或negative)被设置为0。

假设对象之间的距离只基于上述非对称二元属性来计算,则 三个对象之间的距离如下:

二元属性的相异性度量

姓名 5	是否发烧	是否感冒	检测1	检测2	检测3	检测4	
Jack	Y	N	Р	N	Ν	N	
Jim	Y	Y	N	N	N	N	
Mary	Υ	N	Р	N	Р	N	

$$d(Jack, Jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$d(Jim, Mary) = \frac{1+2}{1+1+2} = 0.75$$

$$d(Jack, Mary) = \frac{0+1}{2+0+1} = 0.33$$

这些度量显示如何患病的话, Jim 和 Mary 不大可能患类似的疾病,因为他们有最高相异性;在这三个人中, Jack 和 Mary 最可能患类似的疾病。

ě

数值属性的相异性

- 数值型属性是可测量的数值
 - 用于计算数值属性相异性的距离度量包括欧氏距离、 曼哈顿距离和闵可夫斯基距离
 - 欧氏距离

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

● 曼哈顿距离

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

数值属性的相异性

● 闵可夫斯基距离

闵可夫斯基距离是欧氏距离和曼哈顿距离的推广:

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

其中h是大于等于1的实数

- 当h=1时,它表示曼哈顿距离
- 当h=2时,它表示欧氏距离

数值属性的相异性

- ■可以对每个变量根据其重要性赋予一个权重,从 而形成加权距离
 - 加权的欧几里得距离可以用下式计算:

$$d(i,j) = \sqrt{w_1 |x_{i1} - x_{j1}|^2 + w_2 |x_{i2} - x_{j2}|^2 + \dots + w_p |x_{ip} - x_{jp}|^2}$$

例 请基于下表计算JacK和Jim间的欧几里得距离和 曼哈段距离?

姓名	C语言成绩	商务智能成绩
Jack	90	90
Jim	80	95

欧式距离为
$$\sqrt{(90-80)^2+(90-95)^2}=11.18$$

曼哈顿距离为 |90-80|+|90-95|=15

序数属性

- ■序数属性具有次序或者级别的值。但是相邻值之间的差是未知的
 - 如课程成绩A-, A 和 A+ 之间有排序, 但不能分辨A+比 A多多少

A- A A+

85-89 90-94 95-100

序数属性

- 更多的例子: 饮料尺寸可以是"小杯", "中杯", "大杯"。 值有顺序的意义, 但是不能分辨中杯比大杯大多少。
- 序数属性被用来衡量无法客观衡量的属性,用主观的评估定质量。在调查中常用来排序。比如,参与者作为顾客,他们的满意度可以是:0:非常不满意,1有点不满意,2中立3满意4很满意
- 把数值数据离散化,把它们按照值的范围分类,也可以 得到序数属性的数据。

序数属性的相异性度量

- 序数属性的相异性计算过程
 - 假设第i个对象的属性i值为 x_{if} ,i有 M_f 个有序的状态1,... M_f
 - 用对应的排位r_{if}∈{1,...M_f} 取代x_{if}
 - 进行数据归一化

$$Z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

由于每个序数属性可以有不同的状态数,需要将每个属性的值域映射到[0,1]上,以便每个属性都有相同的权重。

● 基于z_{if},相异性可以用数值属性相异性来计算

序数属性的相异性度量

例 对下表中的数据求相异性矩阵

姓名	商务智能成绩		
Jack	优秀	3	
Jim	一般	1	
Mary	好	2	
Tom	优秀	3	

属性有三个状态,也就是说 $M_f = 3$

第一步:将属性值替换为它的排位,对应3,1,2,3

第二步: 归一化, 排位1映射为0.0, 2为0.5, 3为1.0

第三步: 使用欧式距离计算相异性矩阵

0 1.0 0 0.5 0.5 0 0 1.0 0.5 0

因此Jack和Jim成绩最不相似, Jim与Tom也不相似

Page 23

- ■在许多实际的数据集中,对象是由多种不同类型的属性共同描述的
- 计算混合属性类型的对象之间的相异性
 - 将每种类型的属性分成一组,分别进行数据挖掘,当得到兼容的 结果时这种方法是可行的
 - 更可取的方法是将所有属性类型一起处理,只做一次分析。把所有有意义的属性转换到共同的区间[0,1]上,然后计算单个相异矩阵
 - 假设数据集包含p个混合类型的属性,对象*i*和*j*之间的相异性 *d*(i,j)定义为:

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- 指示符 $\delta_{ij}^{(f)}$
 - 指示符 δ^(f)_{ij} =0
 1) x_{if} 或者 x_{jf} 缺失
 2) x_{if}= x_{jf}=0,且f是
 非对称二元属性
 - 否则指示符 $\delta_{ij}^{(f)}$ = 1

- 两个项目相除,分子是带指示器的相 异性求和,分母是指示器求和
- 在每个求和中,依次考虑每个属性, 一共有p个属性
- 对属性f, 对象i, j之间的计算如下
- 相异性贡献d_{ii}(f)根据它的类型计算
 - f 是标称或二元的: 如果 x_{if} = x_{if} ,则d_{ij}^(f) = 0 ,否则 d_{ij}^(f) = 1
 - f是数值型: $d_{ij}^{(f)} = \frac{|x_{if} x_{jf}|}{\max x_f \min x_f}$
 - f是序数的: 计算排位 r_{if} 和 z_{if}, 然 后做为数值属性对待

例 计算相异性矩阵

学号	班级号	商务智能 成绩	运动次数
1	Α	优秀	45
2	В	一般	22
3	С	好	64
4	Α	优秀	28

在前面的例子中,我们对班级号(标称属性)和商务智能成绩(序数属性)计算了相异性矩阵。

我们需要计算**运动次数**(数值)的相异性矩阵,即我们必须计算 $d_{ij}^{(3)}$ 。根据数值的规则,我们令 $\max x_3 = 64$, $\min x_3 = 22$ 。两者之差用来归一化相异性矩阵的值

三者的相异性矩阵,分别为

$$\begin{bmatrix} 0 & & & & \\ 1 & 0 & & & \\ 1 & 1 & 0 & & \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & & & & \\ 1 & 0 & & & \\ 1 & 1 & 0 & & \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & & & \\ 1.0 & 0 & & \\ 0.5 & 0.5 & 0 & \\ 0 & 1.0 & 0.5 & 0 \end{bmatrix}$$

对于每个属性f, 指示符 $d_{ii}^{(f)} = 1$ 。

例如,我们得到
$$d(3,1) = \frac{1(1) + 1(0.5) + 1(0.45)}{3} = 0.65$$

得到的结果相异性矩阵如下

Thank You!

Q&A