Ярославский государственный университет им. П.Г. Демидова Математический институт им. В.А. Стеклова РАН

Международная научная конференция ДИНАМИКА. 2019. ЯРОСЛАВЛЬ ТЕЗИСЫ ДОКЛАДОВ КОНФЕРЕНЦИИ

Ярославль, 10-12 октября 2019 г.

P.G. Demidov Yaroslavl State University Steklov Mathematical Institute (RAS) in Moscow

International Scientific Conference DYNAMICS. 2019. YAROSLAVL ABSTRACTS

Yaroslavl, October 10-12, 2019

Международная научная конференция ДИНАМИКА. 2019. ЯРОСЛАВЛЬ Ярославль, 10–12 октября 2019 г.

ОРГАНИЗАТОРЫ

Ярославский государственный университет им. П. Г. Демидова Математический институт им. В. А. Стеклова РАН

ПРОГРАММНЫЙ КОМИТЕТ

В.В. Козлов (сопредседатель), С.А. Кащенко (сопредседатель), С.Д. Глызин, Н.А. Кудряшов, Л.М. Лерман, Н.Н. Нефедов, Д.В. Трещев, Д.В. Тураев

ОРГАНИЗАЦИОННЫЙ КОМИТЕТ

С. Д. Глызин (председатель),Д. В. Глазков,И. С. Кащенко,П. Н. Нестеров,А. О. Толбей (секретарь),Д. Ю. Чалый

Аверина В. В., Кудряшов Н. А.	
Нелинейные волновые процессы в среде взаимодей-	
ствующих частиц без учета столкновений	
Nonlinear wave processes in a medium of interacting particles	
without collisions	11
Алексеева Е.С., Рассадин А.Э.	
Коэффициенты нелинейных искажений "естественных"	
наблюдаемых для классической частицы в потенциале	
Калоджеро	
Total harmonic distortions of "natural" observable values	
for classical particle in the Calogero potential	14
Бухштабер В. М., Глуцюк А. А., Тертычный С. И.	
Семейства динамических систем и уравнений Гойна	
в модели перехода Джозефсона	
Families of dynamical systems and Heun equations in a	
model of Josephson junction	17
Быков А. А., Ермакова К. Е.	
Контрастные структуры как решения задачи реакции-	
диффузии с корнями произвольной кратности	
Contrast structures as solutions of the reaction-diffusion	
problem with roots of arbitrary multiplicity	21
Глызин С. Д., Кащенко С. А., Толбей А. О.	
Быстро осциллирующие решения уравнения с нели-	
нейностями дислокаций и Ферми–Паста–Улама	
Fast-oscillating solutions of equations with nonlinearities	
of dislocations and Fermi–Pasta–Ulam	24
Глызин С. Д., Колесов А. Ю., Розов Н. Х.	
Двухкластерная синхронизация в полносвязных	
генных сетях	
Two-cluster synchronization in fully coupled genetic	
networks	27

Голубенец В.О. Релаксационные решения уравнения Хатчинсона с непостоянным запаздыванием Relaxation solutions of Hutchinson equation with inconstant	
delay	29
Горюнов В. Е.	
Режимы с самоорганизацией одного класса распределенных биофизических моделей Self-organization modes of one class of distributed biophysical	n.]
models	32
Запов А.С.	
Одномодовые периодические решения в модельной задаче В.В. Болотина	
One-mode periodic solutions in the V.V.Bolotin's model problem	34
Ивановский Л.И.	
Потеря устойчивости нулевого состояния равновесия одной нелинейной краевой задачи с отклонением в краевом условии	
Stability loss of zero balance state of nonlinear boundary-value problem with deviate in boundary condition	37
Кащенко А. А.	
Динамика двух слабо связанных осцилляторов с запаздыванием при различной величине связи Dynamics of two weakly coupled oscillators with delay for	
various coupling strength	38
Кащенко И. С. Локальная динамика логистического уравнения с двумя запаздываниями	4.0
The local dynamics of logistic equation with delays	40
Кащенко И. С., Маслеников И. Н. Исследование локальной динамики модели	
оптоэлектронного осциллятора The study of local dynamics in an optoelectronic oscillator	
$\bmod el \dots $	43

Кащенко С. А.
Динамика двухкомпонентных параболических систем
шредингеровского типа The dynamics of two-componet parabolic schroedinger
type system
Ковалева А. М.
Локальные бифуркации в одном функционально- дифференциальном уравнении Local bifurcations in one functional—differential equation 46
Коновалов Е. В.
Об одной перспективной нейросетевой модели About the one perspective neural network model 48
Коротков А. Г., Казаков А. О., Леванова Т. А. Влияние мемристорной связи на динамику ансамбля элементов ФитцХью-Нагумо Effects of memristor-based coupling in the ensemble of FitzHugh-Nagumo elements
Кудряшов Н. А.
Обобщённые нелинейные уравнения Шредингера для описания оптических солитонов Generalized nonlinear Schrödinger equations for description
optical solitons
Кудряшов Н. А., Лаврова С. Ф.
Нелинейная динамика уравнения Радхакришнана-Кунду- Лаксманана в переменных бегущей волны Nonlinear dynamics of the traveling wave reduction for the Radhakrishnan-Kundu-Laksmanan equation 56
Кудряшов Н. А., Сафонова Д. В., Biswas A.
Интегрируемость уравнения Радхакришнана-Кунду- Лаксманана в переменных бегущей волны
Integrability of traveling wave reduction for the Radhakrishnan-Kundu-Laksmanan equation
Куликов А. Н., Куликов Д. А.
Бифуркации состояний равновесия в вариационном уравнении Гинзбурга-Ландау
Bifurcations of equilibrium states at the variotional Ginzburg- Landau equation

Куликов В. А.	
Исследование состояний равновесия и их устойчивости начально-краевой задачи для нелинейного параболического дифференциального уравнения с оператором поворота пространственного аргумента и запаздыванием Investigation of equilibrium states and their stability of the initial-boundary-value problem for a nonlinear parabolic differential equation with a spatial argument rotation operator and delay	
Левашова Н. Т., Тищенко Б. В.	
Существование и устойчивость автоволнового	
решения системы уравнений в среде с барьерами Existence and stability of the autowave solution to the system of equations in media with barriers 6	7
Лукьяненко Д.В.	
Некоторые особенности использования методов асимптотического анализа при решении обратных задач для нелинейных сингулярно возмущённых уравнений Asymptotic analysis in solving of inverse problems for nonlinear singularly perturbed equations	0''
Марушкина Е. А., Самсонова Е. С.	
Динамические свойства нормальной формы для системы уравнений Хатчинсона с конкурентной и диффузионной связью Dynamic properties of normal form for a system of Hutchinson equations with competitive and diffusion coupling 7	
Мельникова А. А., Дерюгина Н. Н.	
Существование погранслойного решения в эллиптической задаче с сингулярным граничным условием Existence of a boundary layer solution in an elliptic problem with a singular boundary condition	' 6
Нестеров П. Н.	
Aсимптотическое суммирование систем линейных раз- ностных уравнений в критическом случае Asymptotic summation of perturbed linear difference systems	
in critical case	8

Нефедов Н. Н., Никулин Е. И.	
О пограничных и внутренних слоях в многомерных	
задачах реакция-диффузия-адвекция с модульными	
источниками и сингулярно возмущенными граничны-	
ми условиями	
Boundare and internal layers in multidimensional reaction-	
diffusionadvection problems with modular sources and singularly perturbed boundary conditions	79
Николаева О. А., Левашова Н. Т.	
Асимптотически устойчивые стационарные решения	
уравнения реакция-диффузия-адвекция	
The asymptotically stable stationary solutions of reaction-	
diffusion-advection equation	82
Орлов А.О., Нефедов Н.Н.	
Контрастные структуры в задачах для уравнения реакци	Я-
диффузия с разрывной правой частью	
Contrast structures in problems for the reaction-diffusion	
equation with a discontinuous right-hand side	83
Преображенская М. М.	
Периодическое решение релейной модели уравнения	
Мэкки-Гласса с двумя запаздываниями	
A periodic solution of a relay model of the Mackey-Glass	
equation with two delays	84
Розаев А. Е.	
Численное моделирование орбит астероидов, близких	
к резонансу 3:1	
Numeric modeling of asteroid orbits close to 3:1 resonance	86
Ромакина Л. Н.	
Световые петли на сферах в расширенном гиперболи-	
ческом пространстве	
Light loops on spheres in an expanded hyperbolic space	88
Сбоев А. Г., Молошников И. А., Рыбка Р. Б.,	
Грязнов А. В.	
Генеративно-дискриминативная нейросетевая модель	
для решения задачи определения пола автора текста	
на ограниченных выборках	
Generative-discriminative neural model for solving the	
task of determining of author's gender with limited training	
	91
sets	$\mathcal{I}1$

Сбоев А. Г., Рыбка Р. Б., Серенко А. В.	
Оценка изменения синаптических весов нейрона под	
действием Spike-Timing-Dependent Plasticity с ограни-	
ченной симметричной схемой учёта пар спайков	
Synaptic weight change estimate of a neuron with Spike-	
Timing-Dependent Plasticity with the restricted symmetric	
spike pairing scheme	94
Секацкая А.В.	
Характер локальных бифуркаций уравнения Курамото-	
Сивашинского в различных областях	
The nature of local bifurcations of the Kuramoto-Sivashinsky	
equation in different areas	97
Barabash N. V., Belykh V. N.	
Wild attractor in the model of rotator-oscillator coupled	
via right hand sides	99
Borisov A. V., Mamaev I. S., Bizyaev I. A.	
Various models of the rolling of a ball with varying mass	
distribution on a plane as a generalization of the Chaplygin	
problem	101
Buchstaber V. M., Mikhailov A. V.	
Symmetric powers, commuting polynomial Hamiltonians	
and Hydrodynamic type systems	102
Treschev D. V.	
Entropy of an operator	103

ИССЛЕДОВАНИЕ ЛОКАЛЬНОЙ ДИНАМИКИ МОДЕЛИ ОПТОЭЛЕКТРОННОГО ОСЦИЛЛЯТОРА

THE STUDY OF LOCAL DYNAMICS IN AN OPTOELECTRONIC OSCILLATOR MODEL

И. С. Кащенко¹, И. Н. Маслеников²

¹ Ярославский государственный университет им. П.Г. Демидова, Ярославль, Россия; igor.maslenikov16@yandex.ru

Рассмотрим модель оптоэлектронного осциллятора, описываемого дифференциально-интегральным уравнением с запаздыванием, которое представляет собой реализацию модифицированного уравнения Икеды с задержкой по времени [1]:

$$\varepsilon \frac{dx}{dt} + x + \delta \int_{t_0}^t x(s) ds = \beta_1 F(x(t - \tau)).$$

Эта задача сводится к уравнению второго порядка с запаздыванием

$$\varepsilon \frac{d^2 y}{dt^2} + \frac{dy}{dt} + \delta y = \beta_1 F\left(\frac{dy}{dt}(t-\tau)\right). \tag{1}$$

Как и в [1], будем считать, что параметры ε и δ малы и пропорциональны:

$$0 < \varepsilon \ll 1, \quad \delta = k\varepsilon.$$

Характеристический квазиполином линеаризованной в нуле задачи имеет вид

$$\varepsilon \lambda^2 + \lambda + k\varepsilon = \lambda \beta e^{-\lambda}.$$

Показано , что при $|\beta| < 1$ нулевое состояние равновесия устойчиво, а при $|\beta| > 1$ — неустойчиво. В критических случаях $\beta = \pm 1$ характеристическое уравнение имеет бесконечное количество корней, стремящихся к мнимой оси при $\varepsilon \to 0$. Таким образом критические случаи имеют бесконечную размерность.

Для исследования поведения решений в случае $\beta=\pm 1$ построены квазинормальные формы – специальные нелинейные уравнения параболического типа, не содержащие малых параметров, решения

²Ярославский государственный университет им. П.Г. Демидова, Ярославль, Россия; iliyask@uniyar.ac.ru

которых дают главную часть асимптотических по невязке равномерно по $t \geq 0$ решений уравнения (1).

ЛИТЕРАТУРА

1. Larger L., Maistrenko Y., Penkovskyi B.. Virtual Chimera States for Delayed-Feedback Systems// Physical Review Letters, 2013. Vol. 111. pp. 054103.

ДИНАМИКА ДВУХКОМПОНЕНТНЫХ ПАРАБОЛИЧЕСКИХ СИСТЕМ ШРЕДИНГЕРОВСКОГО ТИПА

THE DYNAMICS OF TWO-COMPONET PARABOLIC SCHROEDINGER TYPE SYSTEM

С. А. Кащенко

Ярославский государственный университет им. П.Г. Демидова, Ярославль, Россия;

Национальный исследовательский ядерный университет «МИФИ», Москва, Россия;

kasch@uniyar.ac.ru

Рассматривается вопрос о динамических свойствах решений с начальными условиями из некоторой достаточно малой окрестности нулевого состояния равновесия уравнений и систем уравнений параболического типа, близких к уравнениям Шредингера. Наиболее ярким представителем такого класса уравнений является уравнение

$$\frac{\partial u}{\partial t} = (id_0 + \varepsilon d_1) \frac{\partial^2 u}{\partial x^2} + (b_0 + \varepsilon b_1) \frac{\partial u}{\partial x} + (ia_0 + \varepsilon a_1) u + \gamma u |u|^2$$
 (1)

с периодическими краевыми условиями

$$u(t, x + 2\pi) \equiv u(t, x). \tag{2}$$

Здесь $\varepsilon > 0$ — малый параметр: $0 < \varepsilon \ll 1$; коэффициенты d_0 , b_0 , a_0 вещественны, а для коэффициента d_1 выполнено условие $Re\ d_1 > 0$, которое говорит о том, что краевая задача (1), (2) имеет параболический тип. Отметим, что параметры b_0 и a_0 здесь можно считать нулевыми, т.к. они уничтожаются простыми заменами $x \to x + b_0 t$ и $u \to u \exp(ia_0 t)$.