α) Η ανίσωση ορίζεται για κάθε $x \in \mathbb{R}$ με $x \neq -1$.

Eίναι
$$\frac{x-2}{x+1} > 0 \Leftrightarrow (x-2)(x+1) > 0 \Leftrightarrow x < -1 \, \dot{\eta} \, x > 2$$
.

Τελικά $x \in (-\infty, -1) \cup (2, +\infty)$.

β)

i. Η συνάρτηση f ορίζεται σε όλο το $\mathbb R$ αν και μόνο αν $\frac{\alpha-2}{\alpha+1}>0$.

Από το ερώτημα (α) έχουμε ότι:
$$\frac{\alpha-2}{\alpha+1} > 0 \Leftrightarrow \alpha \in (-\infty,-1) \cup (2,+\infty)$$
.

ii. Η συνάρτηση f είναι γνησίως φθίνουσα αν και μόνο αν $0<\frac{\alpha-2}{\alpha+1}<1$.

Από το ερώτημα (i) έχουμε ότι:
$$\frac{\alpha-2}{\alpha+1} > 0 \Leftrightarrow \alpha \in (-\infty,-1) \cup (2,+\infty)$$
.

Ακόμη είναι:

$$\frac{\alpha-2}{\alpha+1} < 1 \Leftrightarrow \frac{\alpha-2}{\alpha+1} - 1 < 0 \Leftrightarrow \frac{\alpha-2-1(\alpha+1)}{\alpha+1} < 0 \Leftrightarrow \frac{-3}{\alpha+1} < 0 \Leftrightarrow \alpha+1 > 0 \Leftrightarrow \alpha > -1.$$

Οι παραπάνω ανισώσεις συναληθεύουν για $\alpha \in (2,+\infty)$. Επομένως για $\alpha \in (2,+\infty)$ η συνάρτηση f είναι γνησίως φθίνουσα.

- iii. Ισχύει $\frac{\alpha-2}{\alpha+1} > 0$.
 - Av $\frac{\alpha-2}{\alpha+1} > 1$ τότε η συνάρτηση f είναι γνησίως αύξουσα.
 - Av $0 < \frac{\alpha 2}{\alpha + 1} < 1$ τότε η συνάρτηση f είναι γνησίως φθίνουσα.
 - Αν ισχύει $\frac{\alpha-2}{\alpha+1}=1$, η f είναι σταθερή αφού $f(x)=1^x=1$.

Τότε
$$\frac{\alpha-2}{\alpha+1} = 1 \Rightarrow \alpha-2 = \alpha+1 \Rightarrow 0\alpha = 3$$
, αδύνατη.

Τελικά, δεν υπάρχουν τιμές του πραγματικού αριθμού α για τις οποίες η συνάρτηση f είναι σταθερή.