MNIST Data Reduction and Performance Analysis

By Inam ul haq azad

Introduction

- Most datasets contain correlated variables
- Principal Component Analysis (PCA) dimensionality reduction technique
- Identify a set of orthogonal axis that capture maximum variance in data
- Methods for PCA :-
 - Singular Value Decomposition (SVD) of data matrix X = USV^T
 - 2. Eigenvalue decomposition of covariance matrix X^TX
- PCA given by top k SVDs
- Choice of k Horn's parallel analysis

$$\sum_{i=1}^{k} \hat{\lambda}_i / \operatorname{tr}(\hat{\Sigma}_n) > q, \quad \text{e.g.} \quad q = 0.95$$

Horn's Parallel analysis

- Randomly permute sample features for decorrelation
- Compute singular values of random matrices
- Repeat for R times, we get R set singular values
- Define p-value for i-th eigenvalue

$$pval_i = \frac{1}{R} \# \{ \widehat{\lambda}_i^r > \widehat{\lambda}_i \},$$

• Keep $λ_i$ if pval_i < 0.05

$$X = \begin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,n} \\ X_{2,1} & X_{2,2} & \cdots & X_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{p,1} & X_{p,2} & \cdots & X_{p,n} \end{bmatrix}$$

$$X^{1} = \begin{bmatrix} X_{1,\pi_{1}(1)} & X_{1,\pi_{1}(2)} & \cdots & X_{1,\pi_{1}(n)} \\ X_{2,\pi_{2}(1)} & X_{2,\pi_{2}(2)} & \cdots & X_{2,\pi_{2}(n)} \\ \vdots & \vdots & \ddots & \vdots \\ X_{p,\pi_{p}(1)} & X_{p,\pi_{p}(2)} & \cdots & X_{p,\pi_{p}(n)} \end{bmatrix}$$

MNIST Dataset

- ▶ 28*28 grayscale images of handwritten digits (0-9)
- 70,000 images 60k for training,10k for testing
- Data Preprocessing
 - 1. Flatten to get a single array of 784 dimension
 - 2. Normalize pixel values divide by 255
 - 3. Data centering subtract the mean from data

Methodology

- Deep Learning architecture MLP with 3 hidden layers
- Train on the original dataset 784 features
- Data reduction with PCA 47 Principal components
- Performance reported in both cases
- Adam optimization algorithm
- Trained for 5 epochs


```
model = models.Sequential([
    layers.Dense(512, activation='relu',
    layers.Dropout(0.2),
    layers.Dense(128, activation = 'relu
    layers.Dropout(0.2),
    layers.Dense(64, activation = 'relu'
    layers.Dropout(0.2),
    layers.Dense(10, activation='softmax
])
```

Results

Input Data	Input features	Model parameters	Training time	Accuracy
MNIST Dataset	784	476k	46 sec	97.79 %
Reduced MNIST data	47	99k	11 sec	98.08 %

Top 47 PCs for explained variance ratio

- Top 47 PCs capture more than 80% of the total variance in dataset
- First PC captures most variance and decreases subsequently

Data Visualization (2D)

3D visualization (3 PCs)

PCA Vs t-SNE

- ► Non-Linearity: PCA is linear dimensionality reduction technique, while t-SNE is non-linear
- Preservation of Local Structure: t-SNE groups similar instances together in low-dimensional space (e.g. multiple instances of digit '5')
- PCA focuses on global variance, not effective for preserving local structure
- ► Sensitivity to perplexity: number of nearest neighbours considered when constructing high-dimensional similarities
- Speed and Scalability: PCA is computationally faster and more scalable compared to t-SNE

Conclusion

- PCA reduces model complexity, decreases training time
- ▶ Retains the crucial information for classification boundaries
- Original data might have noise and all features not important for drawing perfect boundaries
- 2D visualization PCs do not yield significant boundaries
- We need the order of 10 PCs to capture useful data
- t-SNE embeddings good visualization in 2D space
- ► t-SNE tends to provide more visually appealing and informative visualizations for moderate-sized datasets like MNIST

Acknowledgement

- 1. Yao Yuan, Topological and Geometric Data Reduction and Visualization Spring 2024, Lecture Notes
- 2. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.
- 3. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011; 12:2825-2830
- 4. Abadi M, Barham P, Chen J, et al. TensorFlow: A system for large-scale machine learning
- 5. Hinton, Geoffrey; Roweis, Sam (January 2002). Stochastic neighbor embedding (PDF). Neural Information Processing Systems.

Thank You

Questions