2. kontrolna zadaća iz Arhitekture i organizacije računala, problemski dio. 28.1.2002. Grupa A.

Napomene: Obvezatno upisati ime i prezime na papir sa zadacima i na papir s odgovorima. Vrijeme za rješavanje problemskog dijela ispita je 90 min. Uz svaki zadatak označen je pripadni broj bodova. Za prolaznu ocjenu potrebno je prikupiti najmanje 50% mogućih bodova ovog dijela ispita. (Ispitne zadatke sastavio je prof. dr. sc. S. Ribarić).

<i>Ime i prezime:</i>	, bro	oj indeksa:

1. Napisati mikroprogram za fazu IZVRŠI za instrukciju koja ispituje sadržaj akumulatora B i u skladu s njegovom vrijednošću obavlja grananje: ako je B < −3, tada PC ← PC + 8; ako je B = −3, tada PC ← PC + 16; ako je B > −3, tada PC ← PC + 24. Mikroprogram dokumentirati dijagramom toka, programom u jeziku poput CDL-a, te prikazom sadržaja memorijskih lokacija na kojima se pohranjuje mikroprogram. Operacijski kod instrukcije je 0A_H, a mikrorutina za fazu PRIBAVI nalazi se na adresi 7C_H. (4 boda)

29	27		24	22	20	17	15	13	11		5	0
C	CA	CB	COP	CSH	CMB	CAB	CBB	CST	CNA		CEM	
CA	.:			(CB:			COP:		CSH:		
01 10	00 nema prijenosa 01 L(15-6, 5-0) ← 0, F(CEM) 10 L(15-10, 9-0) ← F(CEM), 0 11 L ← A				000 nema prijenosa 001 R ← B 010 R ← B' 011 R ← PC 100 R ← SR			00 suma uz 01 suma uz 10 ne korist 11 ne korist	C=1 i se	00 MB ← Q, Q=S 01 MB ← Q, Q=shr S 10 MB ← Q, Q=shl S 11 MB ← IN		

CMB:	CAB:	CBB:	CST:
 000 nema prijenosa 001 A ← MB 010 B ← MB 011 PC ← MB 100 SR ← MB 101 OUT ← MB 	00 $H(1) \leftarrow 0$	00 $H(0) \leftarrow 0$	00 nema utjecaja na SR
	01 $H(1) \leftarrow 1$	01 $H(0) \leftarrow 1$	01 SR(15) ← ZT
	10 $H(1) \leftarrow SR(15)$	10 $H(0) \leftarrow SR(14)$	10 SR(14) ← MB(15)
	11 $H(1) \leftarrow SR(14)$	11 $H(0) \leftarrow MB(15)$	11 SR(15) ← ZT; SR(14) ← MB(15)

- 2. Nacrtati 3-bitovno paralelno zbrajalo i to tako da se svaki njegov stupanj prikaže s dva poluzbrajala. Nakon toga napisati logičke jednadžbe za njemu odgovarajući sklop za predviđanje bita prijenosa i nacrtati taj sklop, te nacrtati konačnu izvedbu 3-bitovnog paralelnog zbrajala čiji je rad ubrzan uporabom sklopa za predviđanje bita prijenosa. (4 boda)
- 3. Pretpostavite da je model 8-instrukcijskog procesora (slika 1) preinačen tako da mu je pridodan još jedan registar akumulator B. Skup instrukcija je obogaćen s još tri instrukcije: TAB prenesi A u B, TBA prenesi B u A i COMB komplementiraj sadržaj registra B (jedinični komplement). Modelu su još pridodane sljedeće nezavisne upravljačke točke: C₁₃ aktiviranje puta iz A u B; C₁₄ aktiviranje puta iz B u A; C₁₅ aktiviranje sklopa za komplementiranje registra B. Nacrtajte organizaciju sklopovske upravljačke jedinice sa svim potrebnim preinakama. Napišite logičke jednadžbe za fazu PRIBAVI i IZVRŠI za sve pridodane instrukcije i nacrtajte kombinacijski sklop koji podržava te operacije. Ako procjenjujete da je riječ o "brzim" instrukcijama, izvedite i potrebne preinake koje "skraćuju" instrukcijski ciklus. (4 boda)

Slika 1

4. Uporabom odgovarajućeg multipleksora kao građevne komponente realizirajte (i nacrtajte) 4-bitovni posmačni sklop koji funkcionira na sljedeći način: (4 boda)

Upravljački signali		ignali	
S_2	S_2	S_2	ponašanje sklopa
0	0	0	bez posmaka
0	0	1	posmak ulijevo za jedno mjesto
0	1	0	posmak ulijevo za dva mjesta
0	1	1	posmak udesno za jedno mjesto
1	0	0	posmak udesno za dva mjesta
1	0	1	sve nule
1	1	0	sve jedinice
1	1	1	ne koristi se

5. Za računalo temeljeno na mikroprocesoru MC68000 zadan je slijed događaja prikazan na slici 2. Stog ima bajtnu adresnu zrnatost, a početne vrijednosti kazala stoga su USP=00A00000_H i SSP= 09000000_H. Nacrtati stanja stogova, odrediti vrijednosti kazala stogova, te odrediti stanje zastavica sistemskog bajta statusnog registra, u točkama (a), (b), (c) i (d) označenim na slici 2. Raspored zastavica u statusnom registru prikazan je na slici 3. (4 boda)

