Results (Updated)

Datasets	GLADC		
MMP	0.696 ± 0.042	\rightarrow	0.508 ± 0.138
HSE	0.618 ± 0.110	→	0.551 ± 0.070
p53	0.649 ± 0.216	\rightarrow	0.497 ± 0.122
BZR	0.715 ± 0.067	\rightarrow	0.683 ± 0.045
DHFR	0.612 ± 0.041	\rightarrow	0.560 ± 0.053
COX2	0.615 ± 0.044	\rightarrow	0.595 ± 0.093
ENZYMES	0.583 ± 0.035	\rightarrow	0.529 ± 0.071
IMDB	0.656 ± 0.023	\rightarrow	
AIDS	0.993 ± 0.005	\rightarrow	0.993 ± 0.005
NCI1	0.683 ± 0.011	\rightarrow	0.330 ± 0.016

Results (Updated) cont.

Attributed datasets tested with plain graph procedure

- Not accounting for dataset node features
- Computing node degree either way
- Missing parameter specification

parser.add argument('--feature', dest='feature', default='deg-num', help='use what node feature')

Plain Graphs

- Compute 'degs' (1D array) as the sum of each row of 'adj' (square matrix)
 - 'deg[i]' represents degree of node i
 - Degree is the number of edges connected to a node
- If graph has more nodes than expected ('max_num_nodes'), we remove nodes with least amount of edges
 - Feature dimension consistency across all graphs
 - If less than 'max_num_nodes', we add padding

Loss

As formulated in the paper

$$L_{total} = L_1 + L_2 + L_3.$$

And expanded...

$$L_1 = \left\| \mathbf{A} - \hat{\mathbf{A}} \right\|_F^2 + \left\| \mathbf{X} - \hat{\mathbf{X}} \right\|_F^2.$$

$$L_{2} = -log \frac{exp\left(sim\left(\hat{\mathbf{Z}}_{\acute{G}i}, \mathbf{Z}_{\acute{G}i}\right)/\tau\right)}{\sum_{\acute{i}=1, \acute{i}\neq i}^{N} exp\left(sim\left(\mathbf{Z}_{\acute{G}i}, \mathbf{Z}_{\acute{G}i}\right)/\tau\right)},$$

$$L_3 = L_{node} + L_{graph}$$
.

Loss (cont.)

In code:

Note L2 carries no node contrastive learning paradigm

Loss (cont.)

Some notation:

- **h0** -> real node features
- adj_label -> real adjacency matrix
- x1_r -> node-level latent feature representation (array where each row corresponds to a node feature)
- **Feat_0** -> graph-level latent representation
- **x1_r_1** -> randomized node-level latent representation
- **Feat_0_1** -> randomized graph-level latent representation
- x_fake -> reconstructed node features
- **s_fake** -> reconstructed adjacency matrix
- **x2** -> node-level latent feature representation of reconstructed feature array
- **Feat_1** -> graph-level latent representation of reconstructed adjacency matrix

Loss (cont.)

L1

```
err_g_con_s, err_g_con_x = loss_func(adj_label, s_fake, h0, x_fake)
```

- Loss to measure how well the reconstruction matches the original
- Steps:
 - Squared differences (s_fake adj_label)^2 and (x_fake h0)^2
 - Summations of those differences (along dimension 1)
 - Square root of those square differences
- Basically a form of **Euclidean distance** loss for both node features and graph structure

L2

```
err_g_enc=loss_cal(Feat_0_1, Feat_0)
```

- Contrastive loss (ensures that model can distinguish between different views of the graph)
- 'loss_cal()' follows formula proposed in paper

L3

- node_loss=torch.mean(F.mse_loss(x1_r, x2, reduction='none'), dim=2).mean(dim=1).mean(dim=0)
 - Mean squared error of latent node-level feature representations
- graph_loss = F.mse_loss(Feat_0, Feat_1, reduction='none').mean(dim=1).mean(dim=0)
 - Mean squared error of latent adjacency matrix representations

Loss Evolution (BZR)

Loss Evolution (DHFR)

Loss Evolution (COX2)

Loss Evolution (AIDS)

Loss Evolution (ENZYMES)

Loss Evolution (NCI1)

Loss Evolution (p53)

Loss Evolution (MMP)

Loss Evolution (HSE)

Discussion

- Big disparity on I3 loss between datasets trained on linear layers vs graph convolution layers.
 - L3 in linear layers model is extremely higher in magnitude than the other 2 losses.
 - L3 in graph convolution layers model is negligible compared to the other two.

Future Steps

- Try different configuration of the loss function (ie. exclude L3)?
- Try running attributed datasets through gc layers (refactor 'main.py')?