## 1. A Multivariate Discrete Distribution – The Multinomial Distribution

Remark 1.1. While considering a Bernoulli or a Binomial RV, we looked at random experiments with exactly two outcomes. We now consider random experiments with two or more than two outcomes. Suppose a random experiment terminates in one of k possible outcomes  $A_1, A_2, \dots, A_k$  for  $k \geq 2$ . More generally, we may also consider random experiments which terminate in one of k mutually exclusive and exhaustive events  $A_1, A_2, \dots, A_k$  with  $k \geq 2$ . Write  $p_j = \mathbb{P}(A_j), j = 1, 2, \dots, k$ , which does not change from trial to trial. Then,  $p_1 + p_2 + \dots + p_k = 1$ . Suppose n trials are conducted independently and let  $X_j, j = 1, 2, \dots, k$  denote the number of times event  $A_j$  has occurred, respectively. Then the RVs  $X_1, X_2, \dots, X_k$  satisfy the relation  $X_1 + X_2 + \dots + X_k = n$  and we have

$$\mathbb{P}(X_1 = x_1, \dots, X_k = x_k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

for  $x_1, \dots, x_k \in \{0, 1, \dots, n\}$  with  $x_1 + \dots + x_k = n$ . The probability is zero otherwise. Removing the redundancy we have the joint p.m.f. of  $(X_1, X_2, \dots, X_{k-1})$  given by

$$f_{X_1,\dots,X_{k-1}}(x_1,\dots,x_{k-1}) = \frac{n!}{x_1!\dots x_{k-1}!(n-x_1-\dots-x_{k-1})!} p_1^{x_1}\dots p_{k-1}^{x_{k-1}} (1-p_1-\dots-p_{k-1})^{n-x_1-\dots-x_{k-1}}$$

for  $x_1, \dots, x_k \in \{0, 1, \dots, n\}$  with  $x_1 + \dots + x_{k-1} \le n$  and zero otherwise.

**Example 1.2** (Multinomial Distribution). A random vector  $X = (X_1, \dots, X_{k-1})$  is said to follow the Multinomial distribution with parameters n and  $p_1, p_2, \dots, p_k$  if the joint p.m.f. is as in Remark 1.1 above. We now list some properties of the multinomial distribution.

(a) We first compute the joint MGF. For  $t_1, t_2, \dots, t_{k-1} \in \mathbb{R}$ ,

$$M_X(t_1, t_2, \dots, t_{k-1})$$

$$= \mathbb{E} \exp(t_1 X_1 + t_2 X_2 + \dots + t_{k-1} X_{k-1})$$

$$= \sum_{\substack{x_1, \dots, x_k \in \{0, 1, \dots, n\} \\ x_1 + \dots + x_{k-1} \le n}} \frac{n! \exp(t_1 x_1 + t_2 x_2 + \dots + t_{k-1} x_{k-1})}{x_1! \cdots x_{k-1}! (n - x_1 - \dots - x_{k-1})!} p_1^{x_1} \cdots p_{k-1}^{x_{k-1}} p_k^{n-x_1 - \dots - x_{k-1}}$$

$$= \sum_{\substack{x_1, \dots, x_k \in \{0, 1, \dots, n\} \\ x_1 + \dots + x_{k-1} \le n}} \frac{n!}{x_1! \cdots x_{k-1}! (n - x_1 - \dots - x_{k-1})!} \left( p_1 e^{t_1} \right)^{x_1} \cdots \left( p_{k-1} e^{t_{k-1}} \right)^{x_{k-1}} p_k^{n-x_1 - \dots - x_{k-1}}$$

$$= \left( p_1 e^{t_1} + p_2 e^{t_2} + \dots + p_{k-1} e^{t_{k-1}} + p_k \right)^n$$

- (b) If  $t = (t_1, 0, \dots, 0) \in \mathbb{R}^{k-1}$ , then  $M_X(t) = \mathbb{E} \exp(t_1 X_1) = M_{X_1}(t_1)$ . But, using the above expression for the joint MGF, we have  $M_{X_1}(t_1) = M_X(t) = (p_1 e^{t_1} + p_2 + \dots + p_{k-1} + p_k)^n = (p_1 e^{t_1} + 1 p_1)^n$ . Therefore,  $X_1 \sim Binomial(n, p_1)$ . Similarly,  $X_i \sim Binomial(n, p_i), \forall i = 2, \dots, k-1$ . In particular,  $\mathbb{E}X_i = np_i, Var(X_i) = np_i(1-p_i)$ .
- (c) For distinct indices  $i, j \in \{1, 2, \dots, k-1\}$ ,

$$M_{X_i,X_j}(t_i,t_j) = M_X(0,\cdots,0,t_i,0,\cdots,0,t_j,0,\cdots,0) = (p_i e^{t_i} + p_j e^{t_j} + 1 - p_i - p_j)^n, \forall (t_i,t_j) \in \mathbb{R}^2.$$

Therefore  $(X_i, X_j)$  follows the trinomial distribution with the parameters  $p_i, p_j, 1 - p_i - p_j$ , i.e. multinomial distribution with the parameters n = 3 and  $p_i, p_j, 1 - p_i - p_j$ .

(d) For distinct indices  $i, j \in \{1, 2, \dots, k-1\}$ , consider  $t_i = t_j = t \in \mathbb{R}$ . Then,

$$M_{X_i+X_j}(t) = M_{X_i,X_j}(t,t) = [(p_i + p_j)e^t + 1 - (p_i + p_j)]^n$$

which shows  $X_i + X_j \sim Binomial(n, p_i + p_j)$ . Then  $Var(X_i + X_j) = n(p_i + p_j)(1 - p_i - p_j)$ . Using the relation

$$Var(X_i + X_j) = Var(X_i) + Var(X_j) + 2Cov(X_i, X_j),$$

we have  $Cov(X_i, X_j) = -np_ip_j$ . Consequently, the correlation between  $X_i$  and  $X_j$  is

$$\rho(X_i, X_j) = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i) Var(X_j)}} = -\left(\frac{p_i p_j}{(1 - p_i)(1 - p_j)}\right)^{\frac{1}{2}}.$$