## Como medir indutância em Ltspice

1) Considere circuito reativo representado na figura



- a) Determine a expressão da impedância de entrada do circuito.
- b) Determine a frequência de ressonância do circuito
- c) Determine o valor da indutância do circuito para uma frequência de 100Hz.
- d) Determine o fator de qualidade, para uma frequência de 100Hz
- 2) Simulação do circuito em Ltspice:
  - a) Edite o esquemático do circuito

Para a fonte considere a seguinte caraterização:



b) Fazer uma análise AC, selecionando

| Transient                                                                                                | AC Analysis DC Sweep | Noise   | DC Transfer | DC Bias Point |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------|---------|-------------|---------------|--|--|--|
| Compute the small signal AC behavior linearized about the circuit's DC operating point.                  |                      |         |             |               |  |  |  |
|                                                                                                          | De                   | ecade 🗘 |             |               |  |  |  |
| Number of points per decade:                                                                             |                      |         | 1e1         |               |  |  |  |
| Start frequency:                                                                                         |                      |         | 1e3         |               |  |  |  |
| Stop frequency:                                                                                          |                      |         | 1e10        |               |  |  |  |
| This analysis is useful for continuous-time, non-switching, circuits.                                    |                      |         |             |               |  |  |  |
| Syntax: .ac <oct, dec,="" lin=""> <npoints> <startfreq> <endfreq></endfreq></startfreq></npoints></oct,> |                      |         |             |               |  |  |  |
| .ac dec 1e1 1e3 1e10                                                                                     |                      |         |             |               |  |  |  |
|                                                                                                          | С                    | ancel   |             |               |  |  |  |

c) Obter o gráfico da tensão aos terminais da fonte de corrente, devendo obter:



Este gráfico constitui o diagrama de Bode da tensão aos terminais da fonte de corrente.

Sendo vi(f)= Z(f).i(f), uma vez que consideramos uma fonte de corrente unitária, concluímos que o gráfico que obtivemos, corresponde ao gráfico da impedância do circuito.

Analisando o gráfico verificamos que existe uma gama inicial de frequências para a qual a fase é positiva, i.e., o circuito tem um comportamento indutivo. E existe uma gama de frequências elevadas, para as quais o circuito tem um comportamento capacitivo.

Concluímos igualmente que existe uma frequência de ressonância por volta dos 500MHz o circuito.

d) Vamos agora analisar o comportamento do circuito, para baixas frequências, i.e. para frequências inferiores à frequência de ressonância. Considerando a expressão genérica para a impedância de um circuito indutivo dada por

$$\bar{Z}_i = R1 + j\omega.L0$$

e) Para obtermos os gráficos da resistência, i.e.  $R1 = Real\{\bar{Z}_{in}\}$ , da indutância, i.e.,  $L0 = Imag\{\bar{Z}_{in}\}/\omega$ , e do factor de qualidade, i.e.,  $Q = Imag\{\bar{Z}_{in}\}/Real\{\bar{Z}_{in}\}$ , deve-se proceder segundo os passos seguintes:

i) "add plot" e depois "add trace"

|                                       | 1       |         |          |                        |       |  |  |
|---------------------------------------|---------|---------|----------|------------------------|-------|--|--|
| Compose Expressions to Plot           |         |         |          |                        |       |  |  |
| Only list data matching this pattern: |         |         | Q Search |                        |       |  |  |
|                                       |         |         |          | Asterisks match colons |       |  |  |
| Avalible Data                         |         |         |          |                        |       |  |  |
| frequency                             | V(n001) | V(n002) | I(C1)    | I(L1)                  | I(I1) |  |  |
| I(R1)                                 |         |         |          |                        |       |  |  |
|                                       |         |         |          |                        |       |  |  |
|                                       |         |         |          |                        |       |  |  |
|                                       |         |         |          |                        |       |  |  |
|                                       |         |         |          |                        |       |  |  |
| Expression(s) to Add to Plot          |         |         |          |                        |       |  |  |
| re( V(n001))                          |         |         |          |                        |       |  |  |
|                                       |         |         |          |                        |       |  |  |
|                                       |         | Cance   | I        |                        | OK    |  |  |
|                                       |         |         |          |                        |       |  |  |

E devemos mudar o eixo vertical para "linear"

| Left Vertical Axis Manual Plot Limits |      |                               |  |  |  |  |  |
|---------------------------------------|------|-------------------------------|--|--|--|--|--|
| Axis Range                            |      | Representation                |  |  |  |  |  |
| Тор:                                  | 10V  | Bode                          |  |  |  |  |  |
| Tick:                                 | 0.2V | <ul><li>Linear</li></ul>      |  |  |  |  |  |
| Bottom:                               | 0V   | <ul><li>Logarithmic</li></ul> |  |  |  |  |  |
|                                       | Auto | Decibel                       |  |  |  |  |  |
| Cancel Don't Plot Magnitude OK        |      |                               |  |  |  |  |  |



Obtendo-se para baixas frequências uma parte real da impedância de 3, que corresponde ao valor da resistência, R1.

f) Para obter a o valor da indutância equivalente, basta dividir a parte imaginária da impedância, por  $\omega=2.\pi.f$  Então fazemos novamente "add plot", e "add trace" e seleccionamos



E obtemos:



## 3) Matlab

- a) Implemente uma função em Matlab que permita obter a impedância de entrada do circuito, tendo como parâmetros de entrada o valor da frequência, f, e dos componentes R, L e C. Sugestão: implemente e invoque uma função que devolva a impedância do paralelo de duas impedâncias.
- b) Usando a função implementada em a), obtenha o gráfico do valor da indutância em função da frequência (eixo do X logarítmico e a variar ente 1KZ e 10GHz).
- c) Determine o valor da frequência de ressonância.