Pathfinder

Manual

Run a simulation

Basic instructions to run a simulation with xarray from the main folder:

1. open python in a terminal, import numpy and xarray:

```
import numpy as np
import xarray as xr
```

2. import the model from one of the mod_ files in core_fct , for instance the emission-driven mode:

```
from core_fct.mod_Edriven import PF_Edriven as PF
```

3. create or load parameters (Par), for instance the saved posterior parameters:

```
Par = xr.open_dataset('internal_data/pyMC_calib/Par_v1.nc').load()
```

4. create or load an initial state (Ini), for instance the end of the posterior historical simulation averaged over 11 years: (Note: this is optional, without a specific initial state, the model will assume it starts from the end of the preindustrial era in 1750.)

```
Ini = xr.open_dataset('internal_data/pyMC_calib/Var_v1.nc')
yr_ini = int(Ini.year.isel(year=slice(-11, None)).mean('year'))
Ini = Ini.isel(year=slice(-11, None)).mean('year')
```

5. create or load some forcings (For), for instance one experiment that keeps forcings constant and another that relaxes them:

```
For = xr.merge([Ini[var] for var in ['Eco2', 'ERFx']])
years = xr.DataArray(yr_ini + np.arange(100), coords={'year': yr_ini + np.arange(100)]
For = 0*years + xr.DataArray([1., 0.], coords={'exp': ['const', 'relax']}, dims=['exp
```

6. run the model by calling the run_xarray method (turn on get_Var2 to save more output variables):

Thomas Gasser 2022-09-30

```
Out = PF.run_xarray(Par, For, Ini, get_Var2=True)
```

7. display results with whatever package you prefer, for instance matplotlib:

```
import matplotlib.pyplot as plt
plt.figure()
for n, var in enumerate(['T', 'CO2']):
    plt.subplot(1, 2, n+1)
    for exp in Out.exp.values:
        plt.plot(Out.year, Out[var].sel(exp=exp).mean('config'), label=exp)
    plt.legend(loc=0)
plt.show()
```

Check the run_scripts/run_diagnostics.py file for more complex examples!

Code structure

The main folder contains the following subfolders:

Folder	Content
core_fct	core classes (cls_), functions (fct_) and objects (mod_) that constitute Pathfinder
input_data	input data used either for calibration or to run Pathfinder
internal_data	internally generated data, notably during calibration
results	output data, normally empty in the open-source version
run_scripts	scripts used to execute calibration and diagnostic (and possibly more)

The core_fct subfolder contains the following files:

File	Content
cls_calib	pymc3 subclasses for use during calibration
cls_model	specific class used to wrap models and solve them
fct_ancillary	compilation of ancillary functions
fct_calib	main functions used for the Bayesian calibration
fct_default	functions setting the default (i.e. prior) values of parameters, forcings and constraints

File	Content
fct_load	functions loading and formatting input_data
fct_param	functions doing the OLS calibration of the prior parameters
fct_traj	functions to generate future trajectories of T and CO2
mod_Cdriven_bgc	Pathfinder model in concentration-driven mode with only the biogeochemical effect of CO2
mod_Cdriven_rad	Pathfinder model in concentration-driven mode with only the radiative effect of CO2
mod_Cdriven	Pathfinder model in concentration-driven mode
mod_Edriven	Pathfinder model in emission-driven mode
mod_OBSdriven	Pathfinder model in observation-driven mode (used for calibration)
mod_Tdriven	Pathfinder model in temperature-driven mode

The input_data subfolder contains the following data folders: (Note that data was kept as close to the original format as possible. Sources are detailed in the core functions that call the files.)

Folder	Content
AR5	Data from the IPCC 5th report
AR6	Data from the IPCC 6th report
CMIP5	Outputs of the CMIP5 models compiled for Pathfinder
CMIP6	Outputs of the CMIP6 models compiled for Pathfinder
Edwards_2021	Data from Edwards et al. (2021) for the SLR module
GCB	Data from the Global Carbon Budget
obs_CO2	Observations of atmospheric CO2
obs_T	Observations of global mean surface temperature
RCPs	RCP scenarios
SSPs	SSP scenarios
TRENDYv7	Outputs of the TRENDYv7 models compiled for Pathfinder

The internal_data subfolder contains the following folders:

Folder	Content
prior_calib	Results of the OLS calibration for the prior parameters (for faster loading, can be re-calculated on the fly)
pyMC_calib	Results of the Bayesian calibration, including historical simulations

The run_scripts subfolder contains the following files:

File	Content
get_best_guess	script to extract best-guess configuration after calibration
plot_calib_check	script to display results of the Bayesian calibration
run_calib_and_hist	script to run the Bayesian calibration
run_diagnostics	script to run idealized and scenario experiments for model evaluation

Notations

Forcings and Variables

In manual	In code	Description	Units	Prog?	Dims
R_c	RFco2	CO2 (effective) radiative forcing	W m⁻ 2		
R_x	ERFx	Non-CO2 effective radiative forcing	W m ⁻		
R	ERF	Effective radiative forcing	W m ⁻		
T	T	Global surface temperature anomaly	K	yes	
T_d	Td	Deep ocean temperature anomaly	K	yes	
logit(ff)	logit_ff	Logit of the climate feedback factor (for calib.)	1		

In manual	In code	Description	Units	Prog?	Dims
$U_{ m ohc}$	ОНС	Ocean heat content (anomaly)	W yr m ⁻²		
$H_{ m thx}$	Hthx	Thermosteric sea level rise	mm		
$H_{ m gla}$	Hgla	Glaciers' contribution to sea level rise	mm	yes	
$H_{ m gis}$	Hgis	Grenland ice sheet's contribution to sea level rise	mm	yes	
$H_{ m ais,smb}$	Hais_smb	Surface mass balance component of Hais	mm		
$H_{ m ais}$	Hais	Antartica ice sheet's contribution to sea level rise	mm	yes	
$H_{ m tot}$	Htot	Total sea level rise	mm		
$H_{ m lia}$	Hlia	Sea level rise from relaxation after LIA between 1900 and 2005 (for calib.)	mm		
$C_{o,j}$	Co_j	Change in surface ocean carbon subpools	PgC	yes	$j \in [[1, 5]]$
C_o	Co	Change in surface ocean carbon pool	PgC		
C_d	Cd	Change in deep ocean carbon pool	yes		
$\mathcal{C}_{ ext{dic}}$	dic	Change in surface DIC	μmol kg ⁻¹		
$p_{ m dic}$	pdic	Subcomponent of pc02	ppm		
p_{CO2}	pCO2	CO2 partial pressure at the ocean surface	ppm		

In manual	In code	Description	Units	Prog?	Dims
$F_{ m ocean}$	Focean	Ocean carbon sink	PgC yr ⁻¹		
$r_{ m npp}$	r_npp	Relative change in NPP	1		
$r_{ m fire}$	r_fire	Relative change in wildfire intensity	1		
$r_{ m rh}$	r_rh	Relative change in heterotrophic respiration rate	1		
$F_{ m npp}$	NPP	Net primary productivity	PgC yr ⁻¹		
$E_{ m fire}$	Efire	Emissions from wildfire	PgC yr ⁻¹		
$E_{ m harv}$	Eharv	Emissions from harvest and grazing	PgC yr ⁻¹		
$F_{ m mort}$	Fmort	Mortality flux	PgC yr ⁻¹		
$E_{ m rh1}$	RH1	Litter heterotrophic respiration	PgC yr ⁻¹		
$F_{ m stab}$	Fstab	Stabilization flux	PgC yr ⁻¹		
$E_{ m rh2}$	RH2	Active soil heterotrophic respiration	PgC yr ⁻¹		
$F_{ m pass}$	Fpass	Passivization flux	PgC yr ⁻¹		
$E_{ m rh3}$	RH3	Passive soil heterotrophic respiration	PgC yr ⁻¹		
$F_{ m land}$	Fland	Land carbon sink	PgC yr ⁻¹		

In manual	In code	Description	Units	Prog?	Dims
$E_{ m rh}$	RH	Heterotrophic respiration	PgC yr ⁻¹		
C_{v}	Cv	Vegetation carbon pool	PgC	yes	
C_{s1}	Cs1	Litter carbon pool	PgC	yes	
C_{s2}	Cs2	Active soil carbon pool	PgC	yes	
C_{s3}	Cs3	Passive soil carbon pool	PgC	yes	
C_s	Cs	Total soil carbon pool	PgC		
$r_{ m rt}$	r_rt	Relative change in permafrost respiration rate	1		
ā	abar	Theoretical thawed fraction	1		
а	а	Actual thawed fraction	1	yes	
$E_{ m pf}$	Epf	Emissions from permafrost	PgC yr ⁻¹		
$C_{\mathrm{th},j}$	Cth_j	Thawed permafrost carbon subpools	PgC	yes	$j \in [[1,3]]$
$C_{ m fr}$	Cfr	Frozen permafrost carbon pool	PgC		
$E_{\rm CO2}$	Eco2	Anthropogenic CO2 emissions	PgC yr ⁻¹		
С	C02	Atmospheric CO2 concentration	ppm	yes	

In manual	In code	Description	Units	Prog?	Dims
рН	рН	Surface ocean pH	1		

Parameters

In manual	In code	Description	Units	Dims
ϕ	phi	Radiative parameter of CO2	W m ⁻²	
$T_{2 imes}$	T2x	Equilibrium climate sensitivity	K	
$\Theta_{\scriptscriptstyle S}$	THs	Heat capacity of the surface	W yr m ⁻	
Θ_d	ТН	Heat capacity of the deep ocean	W yr m ⁻	
θ	th	Heat exchange coefficient	W m ⁻² K ⁻¹	
$\epsilon_{ m heat}$	eheat	Deep ocean heat uptake efficacy	1	
$T_{2\times}^*$	T2x0	Minimal value of the ECS distribution (for calib.)	К	
$lpha_{ m ohc}$	аОНС	Fraction of energy warming the ocean	1	
$\Lambda_{ ext{thx}}$	Lthx	Proportionality factor of thermosteric SLR	mm m ² W ⁻¹ yr ⁻¹	
$\lambda_{ m gla}$	lgla0	Initial imbalance in SLR from Glaciers	mm yr ⁻	
$\Lambda_{ m gla}$	Lgla	Maximum contribution to SLR from Glaciers	mm	

In manual	In code	Description	Units	Dims
$\Gamma_{ m gla1}$	Ggla1	Linear sensitivity of steady-state Glaciers SLR to climate	K ⁻¹	
$\Gamma_{ m gla3}$	Ggla3	Cubic sensitivity of steady-state Glaciers SLR to climate	K ⁻³	
$ au_{ m gla}$	tgla	Timescale of Glaciers' contribution to SLR	yr	
$\gamma_{ m gla}$	ggla	Sensitivity of Glaciers' timescale to climate	K ⁻¹	
$\lambda_{ m gis}$	lgis0	Initial imbalance in SLR from GIS	mm yr ⁻	
$\Lambda_{ m gis1}$	Lgis1	Linear sensitivity of steady-state GIS SLR to climate	mm K ⁻¹	
$\Lambda_{ m gis3}$	Lgis3	Cubic sensitivity of steady-state GIS SLR to climate	mm K ⁻³	
$ au_{ m gis}$	tgis	Timescale of GIS contribution to SLR	yr	
$\Lambda_{ m ais,smb}$	Lais_smb	Sensitivity of AIS SMB increase due to climate	mm yr ⁻	
$\lambda_{ m ais}$	lais	Initial imbalance in SLR from AIS	mm yr ⁻	
$\Lambda_{ m ais}$	Lais	Sensitivity of steady-state AIS SLR to climate	mm K ⁻¹	
$ au_{ m ais}$	tais	Timescale of AIS contribution to SLR	yr	
$lpha_{ m ais}$	aais	Sensitivity of AIS timescale to AIS SLR	mm ⁻¹	

iomas Gassei		2022-09-30		
ln manual	In code	Description	Units	Dims
$lpha_{ m dic}$	adic	Conversion factor for DIC	μmol kg ⁻¹ PgC ⁻¹	
$eta_{ m dic}$	bdic	Inverse-scaling factor for DIC	1	
γdic	gdic	Sensitivity of pCO2 to climate	K ⁻¹	
T_o	То	Preindustrial surface ocean temperature	°C	
$v_{ m gx}$	vgx	Surface ocean gas exchange rate	yr ⁻¹	
$\gamma_{ m gx}$	ggx	Sensitivity of gas exchange to climate	K ⁻¹	
$lpha_{o,j}$	aoc_j	Surface ocean subpools fractions	1	$j \in [[1, 5]]$
$ au_{o,j}$	toc_j	Timescales of surface ocean subpools	yr	<i>j</i> ∈ [[1,5]]
$\mathcal{K}_{ au_o}$	k_toc	Scaling factor for timescales of surface ocean subpools	1	
$eta_{ m npp}$	bnpp	Sensitivity of NPP to CO2 (= fertilization effect)	1	
$lpha_{ m npp}$	anpp	Shape parameter for fertilization effect	1	
γпрр	gnpp	Sensitivity of NPP to climate	K ⁻¹	
$eta_{ m fire}$	bfire	Sensitivity of wildfire intensity to CO2	1	

In manual	In code	Description	Units	Dims
Yfire	gfire	Sensitivity of wildfire intensity to climate	K ⁻¹	
$eta_{ m rh}$	brh	Sensitivity of heterotrophic respiration to fresh organic matter	1	
$\gamma_{ m rh}$	grh	Sensitivity of heterotrophic respiration to climate	K ⁻¹	
$F_{ m npp,0}$	npp0	Preindustrial NPP	PgC yr⁻ 1	
$v_{ m fire}$	vfire	Wildfire intensity	yr ⁻¹	
$v_{ m harv}$	vharv	Harvest and grazing rate	yr ⁻¹	
$v_{ m mort}$	vmort	Mortality rate	yr ⁻¹	
$\mathcal{V}_{ ext{stab}}$	vstab	Stabilization rate	yr ⁻¹	
$v_{ m rh1}$	vrh1	Litter heterotrophic respiration rate	yr ⁻¹	
Vrh23	vrh23	Soil (active and passive) respiration rate	yr ⁻¹	
$v_{ m rh3}$	vrh3	Passive soil respiration rate	yr ⁻¹	
$lpha_{ m pass}$	apass	Fraction of passive soil	1	
$lpha_{ m lst}$	aLST	Climate scaling factor over permafrost regions	1	
Yrt1	grt1	Sensitivity of (boreal) heterotrophic respiration to climate	K ⁻¹	

ioma.	s Gasser		2022-09-30	I	l e
In m	ı ıanual	In code	Description	Units	Dims
	γrt2	grt2	Sensitivity of (boreal) heterotrophic respiration to climate (quadratic)	K ⁻²	
	$\kappa_{ m rt}$	krt	Scaling factor for sensitivity of permafrost respiration to climate	1	
($a_{ m min}$	amin	Minimal thawed fraction	1	
	κ_a	ka	Shape parameter for theoretical thawed fraction	1	
	γa	ga	Sensitivity of theoretical thawed fraction to climate	K ⁻¹	
1	$\mathcal{V}_{ ext{thaw}}$	vthaw	Thawing rate	yr ⁻¹	
	$v_{ m froz}$	vfroz	Freezing rate	yr ⁻¹	
	$lpha_{ ext{th},j}$	ath_j	Thawed permafrost carbon subpools fractions	1	$j \in [[1,3]]$
	$ au_{ ext{th},j}$	tth_j	Timescales of thawed permafrost carbon subpools	yr	$j \in [[1,3]]$
	$\mathcal{K}_{ au_{ ext{th}}}$	k_tth	Scaling factor for timescales of surface ocean subpools	1	
	$C_{ m fr,0}$	Cfr0	Preindustrial frozen permafrost carbon pool	PgC	
	α_C	aCO2	Conversion factor for atmospheric CO2	PgC ppm ⁻¹	
	$C_{\rm pi}$	CO2pi	Preindustrial CO2 concentration	ppm	
	$\kappa_{ m pH}$	k_pH	Scaling factor for surface ocean pH	1	

2022 00 00				
In manual	In code	Description	Units	Dims
$\widetilde{\sigma}_C$	std_CO2	Relative standard deviation of the historical co2 time series (for calib.)	1	
ϵ_C	ampl_CO2	Noise amplitude of the historical co2 time series (for calib.)	ppm	
ρс	corr_CO2	Autocorrelation of the historical co2 time series (for calib.)	1	
$\widetilde{\sigma}_T$	std_T	Relative standard deviation of the historical T time series (for calib.)	1	
ϵ_T	ampl_T	Noise amplitude of the historical T time series (for calib.)	К	
$ ho_T$	corr_T	Autocorrelation of the historical T time series (for calib.)	1	

Equations

1. Climate

diagnostic

$$R_c = \phi \ln(\frac{C}{C_{\rm pi}})$$

$$R = R_c + R_x$$

prognostic

$$\Theta_s \frac{dT}{dt} = R - \frac{\phi \ln(2)}{T_{2\times}} T - \epsilon_{\text{heat}} \theta (T - T_d)$$

$$\Theta_d \frac{\mathrm{d}T_d}{\mathrm{d}t} = \theta \left(T - T_d \right)$$

diagnostic (2nd; for calib.)

$$logit(ff) = ln(\frac{T_{2\times}}{T_{2\times}^*} - 1)$$

2. Sea level

•
$$U_{\text{ohc}} = \alpha_{\text{ohc}} \left(\Theta_s \ T + \Theta_d \ T_d \right)$$

$$\frac{\mathrm{d}U_{\mathrm{ohc}}}{\mathrm{d}t} = \alpha_{\mathrm{ohc}} \left(\Theta_s \frac{\mathrm{d}T}{\mathrm{d}t} + \Theta_d \frac{\mathrm{d}T_d}{\mathrm{d}t}\right)$$

$$H_{
m thx} = \Lambda_{
m thx} \ U_{
m ohc}$$

$$\frac{\mathrm{d}H_{\mathrm{thx}}}{\mathrm{d}t} = \Lambda_{\mathrm{thx}} \; \frac{\mathrm{d}U_{\mathrm{ohc}}}{\mathrm{d}t}$$

prognostic

•
$$\frac{\mathrm{d}H_{\mathrm{gla}}}{\mathrm{d}t} = \lambda_{\mathrm{gla}} + \frac{\exp(\gamma_{\mathrm{gla}} T)}{\tau_{\mathrm{gla}}} \left(\Lambda_{\mathrm{gla}} \left(1 - \exp(-\Gamma_{\mathrm{gla1}} T - \Gamma_{\mathrm{gla3}} T^3) \right) - H_{\mathrm{gla}} \right)$$

$$\frac{dH_{gis}}{dt} = \lambda_{gis} + \frac{1}{\tau_{gis}} \left(\Lambda_{gis1} \ T + \Lambda_{gis3} \ T^3 - H_{gis} \right)$$

$$\frac{\mathrm{d}H_{\mathrm{ais,smb}}}{\mathrm{d}t} = -\Lambda_{\mathrm{ais,mb}} T$$

•
$$\frac{dH_{ais}}{dt} = \frac{dH_{ais,smb}}{dt} + \lambda_{ais} + \frac{1 + \alpha_{ais} (H_{ais} - H_{ais,smb})}{\tau_{ais}} (\Lambda_{ais} T - (H_{ais} - H_{ais,smb}))$$

diagnostic (2nd)

$$\bullet H_{\text{tot}} = H_{\text{thx}} + H_{\text{gla}} + H_{\text{gis}} + H_{\text{ais}}$$

$$\frac{dH_{\text{tot}}}{dt} = \frac{dH_{\text{thx}}}{dt} + \frac{dH_{\text{gla}}}{dt} + \frac{dH_{\text{gis}}}{dt} + \frac{dH_{\text{ais}}}{dt}$$

diagnostic (3rd; for calib.)

•
$$H_{\text{lia}} = \sum_{\text{ice} \in \{\text{gla,gis,ais}\}} \lambda_{\text{ice}} \tau_{\text{ice}} \left(\exp(-150/\tau_{\text{ice}}) - \exp(-205/\tau_{\text{ice}}) \right)$$

3. Ocean carbon

diagnostic

$$C_o = \sum_{j} C_{o,j}$$

$$c_{\rm dic} = \frac{\alpha_{\rm dic}}{\beta_{\rm dic}} \ C_o$$

$$p_{\text{dic}} = (1.5568 - 0.013993 \ T_o) \ c_{\text{dic}}$$

$$+ (7.4706 - 0.20207 \ T_o) \ 10^{-3} \ c_{\text{dic}}^2$$

$$- (1.2748 - 0.12015 \ T_o) \ 10^{-5} \ c_{\text{dic}}^3$$

$$+ (2.4491 - 0.12639 \ T_o) \ 10^{-7} \ c_{\text{dic}}^4$$

$$- (1.5768 - 0.15326 \ T_o) \ 10^{-10} \ c_{\text{dic}}^5$$

•
$$p_{\text{CO2}} = (p_{\text{dic}} + C_{\text{pi}}) \exp(\gamma_{\text{dic}} T)$$

•
$$F_{\text{ocean}} = v_{\text{gx}} \left(1 + \gamma_{\text{gx}} T \right) \left(C - p_{\text{CO2}} \right)$$

prognostic

$$\frac{\mathrm{d}C_{o,j}}{\mathrm{d}t} = -\frac{C_{o,j}}{\kappa_{\tau_o} \tau_{o,j}} + \alpha_{o,j} F_{\mathrm{ocean}}$$

$$\frac{\mathrm{d}C_d}{\mathrm{d}t} = \sum_j \frac{C_{o,j}}{\kappa_{\tau_o} \ \tau_{o,j}}$$

4. Land carbon

diagnostic

•
$$r_{\text{npp}} = \left(1 + \frac{\beta_{\text{npp}}}{\alpha_{\text{npp}}} \left(1 - \left(\frac{C}{C_{\text{pi}}}\right)^{-\alpha_{\text{npp}}}\right)\right) \left(1 + \gamma_{\text{npp}} T\right)$$

•
$$r_{\text{fire}} = (1 + \beta_{\text{fire}} \left(\frac{C}{C_{\text{pi}}} - 1 \right)) \left(1 + \gamma_{\text{fire}} T \right)$$

•
$$r_{\text{rh}} = (1 + \beta_{\text{rh}} \left(\frac{C_{s1}}{C_{s1} + C_{s2} + C_{s3}} \left(1 + \frac{v_{stab}}{v_{rh23}} \right) - 1 \right) \exp(\gamma_{\text{rh}} T)$$

$$F_{\rm npp} = F_{\rm npp,0} \ r_{\rm npp}$$

•
$$E_{\text{fire}} = v_{\text{fire}} r_{\text{fire}} C_{v}$$

$$E_{\rm harv} = v_{
m harv} \ C_{
m v}$$

•
$$F_{\text{mort}} = v_{\text{mort}} C_v$$

$$E_{\rm rh1} = v_{\rm rh1} \ r_{\rm rh} \ C_{\rm s1}$$

•
$$F_{\text{stab}} = v_{\text{stab}} r_{\text{rh}} C_{\text{s1}}$$

$$E_{\rm rh2} = \frac{v_{\rm rh23} - v_{\rm rh3} \ \alpha_{\rm pass}}{1 - \alpha_{\rm pass}} \ r_{\rm rh} \ C_{s2}$$

$$F_{\text{pass}} = v_{\text{rh3}} \frac{\alpha_{\text{pass}}}{1 - \alpha_{\text{pass}}} r_{\text{rh}} C_{s2}$$

Thomas Gasser

2022-09-30
$$E_{\text{rh3}} = v_{\text{rh3}} r_{\text{rh}} C_{\text{s3}}$$

$$F_{\text{land}} = F_{\text{npp}} - E_{\text{fire}} - E_{\text{harv}} - E_{\text{rh}1} - E_{\text{rh}2} - E_{\text{rh}3}$$

prognostic

$$\frac{dC_v}{dt} = F_{\rm npp} - E_{\rm fire} - E_{\rm harv} - F_{\rm mort}$$

$$\frac{dC_{s1}}{dt} = F_{\text{mort}} - F_{\text{stab}} - E_{\text{rh1}}$$

$$\frac{\mathrm{d}C_{s2}}{\mathrm{d}t} = F_{\mathrm{stab}} - F_{\mathrm{pass}} - E_{\mathrm{rh2}}$$

$$\frac{\mathrm{d}C_{s3}}{\mathrm{d}t} = F_{\mathrm{pass}} - E_{\mathrm{rh3}}$$

diagnostic (2nd)

$$E_{\rm rh} = E_{\rm rh1} + E_{\rm rh2} + E_{\rm rh3}$$

$$C_s = C_{s1} + C_{s2} + C_{s3}$$

5. Permafrost carbon

diagnostic

•
$$r_{\rm rt} = \exp(\kappa_{\rm rt} \, \gamma_{\rm rt1} \, \alpha_{\rm lst} \, T - \kappa_{\rm rt} \, \gamma_{\rm rt2} \, (\alpha_{\rm lst} \, T)^2)$$

•
$$\bar{a} = -a_{\min} + \frac{(1 + a_{\min})}{(1 + ((1 + \frac{1}{a_{\min}})^{\kappa_a} - 1) \exp(-\gamma_a \kappa_a \alpha_{\text{lst}} T))^{\frac{1}{\kappa_a}}}$$

$$E_{\rm pf} = \sum_{j} \frac{C_{\rm th,j}}{\kappa_{\tau_{\rm th}} \ \tau_{\rm th,j}} \ r_{\rm rt}$$

prognostic

$$\frac{\mathrm{d}a}{\mathrm{d}t} = 0.5 \left(v_{\mathrm{thaw}} + v_{\mathrm{froz}}\right) \left(\bar{a} - a\right) + 0.5 \left|\left(v_{\mathrm{thaw}} - v_{\mathrm{froz}}\right) \left(\bar{a} - a\right)\right|$$

$$\frac{\mathrm{d}C_{\mathrm{th},j}}{\mathrm{d}t} = \alpha_{\mathrm{th},j} \, \frac{\mathrm{d}a}{\mathrm{d}t} \, C_{\mathrm{fr},0} - \frac{C_{\mathrm{th},j}}{\kappa_{\tau_{\mathrm{th}}} \, \tau_{\mathrm{th},j}} \, r_{\mathrm{rt}}$$

diagnostic (2nd)

•
$$C_{\rm fr} = (1 - a) C_{\rm fr.0}$$

$$\frac{\mathrm{d}C_{\mathrm{fr}}}{\mathrm{d}t} = -\frac{\mathrm{d}a}{\mathrm{d}t} C_{\mathrm{fr},0}$$

6. Atmospheric CO2

diagnostic

• pH =
$$\kappa_{pH}$$
 (8.5541 - 0.00173 C + 1.3264 10^{-6} C^2 - 4.4943 10^{-10} C^3)

prognostic

$$\alpha_C \frac{dC}{dt} = E_{CO2} + E_{pf} - F_{land} - F_{ocean}$$