CMIP6 Model Documentation

Institute: CAS

Model: FGOALS-F3-L Atmosphere

Doc. Generated: 2018-12-16

Doc. Seeded From: N/A

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	10
4	Radiation	16
5	Turbulence Convection	29
6	Microphysics Precipitation	34
7	Cloud Scheme	36
8	Observation Simulation	40
9	Gravity Waves	43
10	Natural Forcing	47

1 Key Properties

Atmosphere key properties

1	.1.1	Top	level	pro	perties

Atmosphere key properties

1.1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

Enter TEXT:

1.1.1.2 Keywords *

Keywords associated with atmos model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of atmos model.

Enter TEXT:

1.1.1.4 Model Family *

 $Type\ of\ atmospheric\ model.$

Ш	AGCM - Atmospheric General Circulation Model
	\ensuremath{ARCM} - Atmospheric Regional Climate Model
	Other - please specify:

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

Select MULTIPLE options:

Ш	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
	Hydrostatic
	Quasi-hydrostatic

☐ Other - please specify:
1.2.1 Resolution
Characteristics of the model resolution
1.2.1.1 Horizontal Resolution Name *
This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48
Enter TEXT:
1.2.1.2 Canonical Horizontal Resolution *
Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.
Enter TEXT:
1.2.1.3 Range Horizontal Resolution *
Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg
Enter TEXT:
1.2.1.4 Number Of Vertical Levels *
Number of vertical levels resolved on the computational grid.
Enter INTEGER value:
1.2.1.5 High Top *
Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model to above the stratopause.
Select either TRUE or FALSE:
☐ True ☐ False
1.3.1 Timestepping
Characteristics of the atmosphere model time stepping
1.3.1.1 Timestep Dynamics *
Timestep for the dynamics in seconds
Enter INTEGER value:

1.3.1.2 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.1.3 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

1.4.1 Orography

 $Characteristics\ of\ the\ model\ orography$

1.4.1.1 Type *

 $Type\ of\ orographic\ representation.$

Select SINGLE option:			
	Fixed: present day		
	Fixed: modified - Provide details of modification below		
	Other - please specify:		

1.4.1.2 Modified

If the orography type is modified describe the adaptation.

Select MULTIPLE options:

Related to ice sheets
Related to tectonics
Modified mean
Modified variance if taken into account in model (cf gravity waves)
Other - please specify:

1.4.1.3 Time-varying

 $Describe\ any\ time\ varying\ orographic\ change$

Enter TEXT:

1.5.1 Tuning Applied

Tuning methodology for atmospheric component

1.5.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.1.2 Global Mean Metrics Used

 $List\ set\ of\ metrics\ of\ the\ global\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.5.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.5.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

2 Grid

 $Atmosphere\ grid$

2.1.1 Top level properties

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type *

Horizontal discretisation type

Spectral
Fixed grid
Other - please specify:

Select SINGLE option:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Select	SINGLE	option

	Finite elements
	Finite volumes
П	Finite difference

2.1.2.3	Scheme Order *		
Horizonte	al discretisation function order		
Selec	Select SINGLE option:		
	Second		
☐ Third			
	Fourth		
	Other - please specify:		
2.1.2.4	Horizontal Pole		
Horizonte	al discretisation pole singularity treatment		
Selec	et SINGLE option:		
	Filter		
	Pole rotation		
	Artificial island		
	Other - please specify:		
2.1.2.5	Grid Type *		
Horizonte	al grid type		
Selec	et SINGLE option:		
	Gaussian		
	Latitude-Longitude		
	Cubed-Sphere		
	Icosahedral		
	Other - please specify:		
2.1.3	Vertical		
Atmospi	here discretisation in the vertical		
2.1.3.1	Coordinate Type *		
Type of v	vertical coordinate system		
Selec	Select MULTIPLE options:		
	Isobaric - Vertical coordinate on pressure levels		
	Sigma - Allows vertical coordinate to follow model terrain		

	Hybrid sigma-pressure - Sigma system near terrain and isobaric above
	Hybrid pressure
	Vertically lagrangian
П	Other - please specify:

3 Dynamical Core

Characteristics of the dynamical core

3.3	1.1	Top	level	pro	$\mathbf{perties}$
-----	-----	-----	-------	-----	--------------------

Characteristics of the dynamical core

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.2 Overview

Overview of characteristics of the dynamical core in atmos model.

Enter TEXT:

3.1.1.3 Timestepping Type *

 $Time stepping\ framework\ type$

Select	SINGLE option:
	Adams-Bashforth
	Explicit
	Implicit
	Semi-implicit
	Leap frog
	Multi-step
	Runge Kutta fifth order
	Runge Kutta second order
	Runge Kutta third order
	Other - please specify:
3.1.1.4]	Prognostic Variables *
List of the	$model\ prognostic\ variables$
Select	MULTIPLE options:
	Surface pressure
	Wind components

	Divergence/curl
	Temperature
	Potential temperature
	Total water
	Water vapour
	Water liquid
	Water ice
	Total water moments
	Clouds
	Radiation
	Other - please specify:
3.2.1.1 Top boun	Top Boundary Condition * adary condition et SINGLE option: Sponge layer Radiation boundary condition Other - please specify:
3.2.1.2	Top Heat *
Top boun	adary heat treatment
Ente	er TEXT:
3.2.1.3	Top Wind *
	ndary wind treatment
Ente	er TEXT:
	Lateral Boundary
$Type \ of$	lateral boundary condition (if the model is a regional model)

3.3.1.1	Condition
Type of la	teral boundary condition
Selec	t SINGLE option:
	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.4.1 I	Diffusion Horizontal
Horizon	tal diffusion scheme
3.4.1.1	Scheme Name
Horizonta	l diffusion scheme name
Enter	TEXT:
3.4.1.2	Scheme Method *
Horizonta	d diffusion scheme method
Selec	t SINGLE option:
	Iterated Laplacian
	Bi-harmonic
	Other - please specify:
3.4.2	Tracers
Tracer a	$dvection\ scheme$
3.4.2.1	Scheme Name
Tracer ad	vection scheme name
Selec	t SINGLE option:
	Heun
	Roe and VanLeer
	Roe and Superbee
	Prather
	UTOPIA
	Other - please specify:

$Tracer\ advection\ scheme\ characteristics$ Select MULTIPLE options: Eulerian Modified Euler Lagrangian ${\bf Semi\text{-}Lagrangian}$ Cubic semi-Lagrangian Quintic semi-Lagrangian Mass-conserving Finite volume Flux-corrected Linear Quadratic Quartic Other - please specify: 3.4.2.3 Conserved Quantities * Tracer advection scheme conserved quantities Select MULTIPLE options: Dry mass Tracer mass Other - please specify: 3.4.2.4 Conservation Method * $Tracer\ advection\ scheme\ conservation\ method$ Select SINGLE option: Conservation fixer Priestley algorithm Other - please specify:

3.4.2.2 Scheme Characteristics *

3.4.3 Momentum

Momentum advection scheme

3.4.3.1 Scheme Name Momentum advection schemes name Select SINGLE option: VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin) Other - please specify: 3.4.3.2 Scheme Characteristics * $Momentum\ advection\ scheme\ characteristics$ Select MULTIPLE options: 2nd order 4th order Cell-centred Staggered grid Semi-staggered grid Other - please specify: 3.4.3.3 Scheme Staggering Type * Momentum advection scheme staggering type Select SINGLE option: Arakawa B-grid Arakawa C-grid Arakawa D-grid Arakawa E-grid Other - please specify: 3.4.3.4 Conserved Quantities * Momentum advection scheme conserved quantities Select MULTIPLE options: Angular momentum

Horizontal momentum

Ш	Enstrophy	
	Mass	
	Total energy	
	Vorticity	
	Other - please specify:	
3.4.3.5	Conservation Method *	
Momentu	$m\ advection\ scheme\ conservation\ method$	
Select SINGLE option:		
	Conservation fixer	
	Other - please specify:	

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

 $Characteristics\ of\ the\ atmosphere\ radiation\ process$

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.1.2 Overview

Overview of characteristics of the atmosphere radiation process in atmos model.

Enter TEXT:

4.1.1.3 Aerosols *

 $Aerosols\ whose\ radiative\ effect\ is\ taken\ into\ account\ in\ the\ atmosphere\ model$

Select MULTIPLE options:			
	Sulphate		
	Nitrate		
	Sea salt		
	Dust		
	Ice		
	Organic		
	BC - Black carbon / soot		
	SOA - Secondary organic aerosols		
	POM - Particulate organic matter		
	Polar stratospheric ice		
	NAT - Nitric acid trihydrate		
	NAD - Nitric acid dihydrate		
	STS - Supercooled ternary solution aerosol particle		
	Other - please specify:		

4.2.1 Shortwave Radiation

Properties of the shortwave radiation scheme

Commonly used name for the shortwave radiation scheme		
Enter	TEXT:	
4.2.1.2	Spectral Integration *	
Shortwave	radiation scheme spectral integration	
Select	t SINGLE option:	
	Wide-band model	
	Correlated-k	
	Exponential sum fitting	
	Other - please specify:	
40101		
	Transport Calculation *	
	radiation transport calculation methods	
Select	t MULTIPLE options:	
	Two-stream	
	Layer interaction	
	Bulk - Highly parameterised methods that use bulk expressions	
	Adaptive - Exploits spatial and temporal correlations in optical characteristics	
	Multi-stream	
	Other - please specify:	
4914	Spectral Intervals *	
	radiation scheme number of spectral intervals	
	· INTEGER value:	
Enter	INTEGER value:	
4915	General Interactions *	
	diative interactions e.g. with aerosols, cloud ice and cloud water	
	•	
Select	t MULTIPLE options:	
	Emission/absorption,	
	Scattering	
	Other - please specify:	

4.2.1.1 Name

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:	
	CO2 - Carbon Dioxide	
	CH4 - Methane	
	N2O - Nitrous Oxide	
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalenc	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a $CFC-12$ ee concentration	
concentrat	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion	
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons	
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $	
	O3	
	H2O	
	Other - please specify:	
4.3.1.2 ODS Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model		
Selec		
	t MULTIPLE options:	
	t MULTIPLE options: CFC-12 - CFC	
	CFC-12 - CFC	
	CFC-12 - CFC CFC-11 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC	

	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	rinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC

	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 \$	Shortwave Cloud Ice
Shortwa	ve radiative properties of ice crystals in clouds
4.4.1.1	Physical Representation *
Physical 1	representation of cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
typically l	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
	Optical Methods *
-	ethods applicable to cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

4.5.1.1	Physical Representation *
Physical 1	representation of cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2 $$
	Other - please specify:
4.5.1.2	Optical Methods *
Optical m	sethods applicable to cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.6.1 \$	Shortwave Cloud Inhomogeneity
Cloud in	phomogeneity in the shortwave radiation scheme
4.6.1.1	Cloud Inhomogeneity *
Method fo	or taking into account horizontal cloud inhomogeneity
Selec	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:

4.7.1 Shortwave Aerosols

 $Shortwave\ radiative\ properties\ of\ aerosols$

4.7.1.1 Physical Representation * $Physical\ representation\ of\ aerosols\ in\ the\ shortwave\ radiation\ scheme$ Select MULTIPLE options: Number concentration Effective radii Size distribution Asymmetry Aspect ratio Mixing state - For shortwave radiative interaction Other - please specify: 4.7.1.2 Optical Methods * Optical methods applicable to aerosols in the shortwave radiation scheme Select MULTIPLE options: T-matrix - For non-spherical particles Geometric optics - For non-spherical particles Finite difference time domain (FDTD) - For non-spherical particles Mie theory - For spherical particles Anomalous diffraction approximation Other - please specify: 4.8.1 Longwave Radiation Properties of the longwave radiation scheme 4.8.1.1 Name $Commonly\ used\ name\ for\ the\ longwave\ radiation\ scheme.$ Enter TEXT: 4.8.1.2 Spectral Integration * $Longwave\ radiation\ scheme\ spectral\ integration$ Select SINGLE option: Wide-band model

Correlated-k

	Exponential sum fitting
	Other - please specify:
	Transport Calculation *
Longwave	radiation transport calculation methods
Selec	t MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
Ente	r INTEGER value:
4.8.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 I	Longwave GHG
Represer	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexis	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide

concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence centration of CFC-11		
 equivalen	${ m CFC}$ -12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration		
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m eq}$ equivalence ation		
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons		
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $		
	O3		
	H2O		
	Other - please specify:		
4019	ODS		
4.9.1.2 Ozone de model	epleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere		
Selec	et MULTIPLE options:		
	CFC-12 - CFC		
	CFC-11 - CFC		
	CFC-113 - CFC		
	CFC-114 - CFC		
	CFC-115 - CFC		
	HCFC-22 - HCFC		
	HCFC-141b - HCFC		
	HCFC-142b - HCFC		
	Halon-1211 - Halon		
	Halon-1301 - Halon		
	Halon-2402 - Halon		
	Methyl chloroform - CH3CCl3		
	Carbon tetrachloride - CCl4		
	Methyl chloride - CH3Cl		
	Methylene chloride - CH2Cl2		
	Chloroform - CHCl3		
	Methyl bromide - Ch3Br		

	Other - please specify:
1013	Other Flourinated Gases
	urinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model
	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:

4.10.1 Longwave Cloud Ice

Longwave radiative properties of ice crystals in clouds

4.10.1.1 Physical Reprenstation *

 $Physical\ representation\ of\ cloud\ ice\ crystals\ in\ the\ longwave\ radiation\ scheme$

Selec	et MULTIPLE options:
typically	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area eres
	Ice water path - Integrated ice water path through the cloud kg m-2
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.10.1.	2 Optical Methods *
Optical n	nethods applicable to cloud ice crystals in the longwave radiation scheme
Selec	et MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.11.1	Longwave Cloud Liquid
Longwa	ve radiative properties of liquid droplets in clouds
4.11.1.	1 Physical Representation *
Physical	representation of cloud liquid droplets in the longwave radiation scheme
Selec	et MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution

	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:
4.11.1.2	2 Optical Methods *
Optical m	nethods applicable to cloud liquid droplets in the longwave radiation scheme
Selec	et MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.12.1	Longwave Cloud Inhomogeneity
	phomogeneity in the longwave radiation scheme
4 10 1 1	Claud Juliana annita *
	Cloud Inhomogeneity * or taking into account horizontal cloud inhomogeneity
	et SINGLE option:
Selec	•
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
Ш	Other - please specify:
4.13.1	Longwave Aerosols
	ve radiative properties of aerosols
4 10 1 1	
	1 Physical Representation * representation of aerosols in the longwave radiation scheme
Selec	et MULTIPLE options:
	Number concentration
_	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
11	Mixing state - For shortwave radiative interaction

	Other - please specify:
	Optical Methods *
•	ethods applicable to aerosols in the longwave radiation scheme t MULTIPLE options:
Selec	•
Ш	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

Atmosphere Convective Turbulence and Clouds

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.1.2 Overview

Overview of atmosphere convective turbulence and clouds in atmos model.

Enter TEXT:

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name

Boundary layer turbulence scheme name

Select SINGLE option:		
	Mellor-Yamada	
	Holtslag-Boville	
	EDMF - Combined Eddy Diffusivity Mass-Flux	
	Other - please specify:	
5.2.1.2 Scheme Type *		
Boundary layer turbulence scheme type		
Select MULTIPLE options:		
	TKE prognostic	
	TKE diagnostic	
	TKE coupled with water	
	Vertical profile of Kz	
	Non-local diffusion	

Monin-Obukhov similarity

Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land
Coupled with convection
Coupled with gravity waves
Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
Other - please specify:
* 0.1.0 Cl
5.2.1.3 Closure Order * Boundary layer turbulence scheme closure order
Enter INTEGER value:
Enter INTEGER value.
5.2.1.4 Counter Gradient *
Uses boundary layer turbulence scheme counter gradient
Select either TRUE or FALSE:
☐ True ☐ False
5.3.1 Deep Convection
Properties of the deep convection scheme
5.3.1.1 Scheme Name
Deep convection scheme name
Enter TEXT:
5.3.1.2 Scheme Type *
Deep convection scheme type
Select MULTIPLE options:
Mass-flux
Adjustment
Plume ensemble - Zhang-McFarlane
Other - please specify:
5.3.1.3 Scheme Method *
Deep convection scheme method
Select MULTIPLE options:

	CAPE - Mass flux determined by CAPE, convectively available potential energy.	
	Bulk - A bulk mass flux scheme is used	
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics	
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-	
	TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer	
	Other - please specify:	
5.3.1.4	Processes *	
Physical p	processes taken into account in the parameterisation of deep convection	
Selec	t MULTIPLE options:	
	Vertical momentum transport	
	Convective momentum transport	
	Entrainment	
	Detrainment	
	Penetrative convection	
	Updrafts	
	Downdrafts	
	Radiative effect of anvils	
	Re-evaporation of convective precipitation	
	Other - please specify:	
5.3.1.5	Microphysics	
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of rometeor and water vapor from updrafts	
Selec	t MULTIPLE options:	
	Tuning parameter based	
	Single moment	
	Two moment	
	Other - please specify:	

5.4.1 Shallow Convection

 $Properties \ of \ the \ shallow \ convection \ scheme$

5.4.1.1 Scheme Name			
Shallow convection scheme name			
Enter	Enter TEXT:		
5.4.1.2	Scheme Type *		
Shallow co	onvection scheme type		
Selec	t MULTIPLE options:		
	Mass-flux		
	Cumulus-capped boundary layer		
	Other - please specify:		
5.4.1.3	Scheme Method *		
Shallow co	onvection scheme method		
Selec	t SINGLE option:		
	Same as deep (unified)		
	Included in boundary layer turbulence		
	Separate diagnosis - Deep and Shallow convection schemes use different thermodynamic closure criteria		
	Other - please specify:		
5.4.1.4	Processes *		
Physical p	processes taken into account in the parameterisation of shallow convection		
Selec	t MULTIPLE options:		
	Convective momentum transport		
	Entrainment		
	Detrainment		
	Penetrative convection		
	Re-evaporation of convective precipitation		
	Other - please specify:		
5.4.1.5 Microphysics			
Microphysics scheme for shallow convection			
Select MULTIPLE options:			
	Tuning parameter based		

Single moment
Two moment
Other - please specify:

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

Overview of large scale cloud microphysics and precipitation in atmos model.

Enter TEXT:

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

Enter TEXT:

6.2.1.2 Hydrometeors *

Precipitating hydrometeors taken into account in the large scale precipitation scheme

Select MULTIPLE options:	
	Liquid rain
	Snow
	Hail
	Graupel
	Other - please specify:

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

 $Commonly\ used\ name\ of\ the\ microphysics\ parameterisation\ scheme\ used\ for\ large\ scale\ clouds.$

Enter TEXT:

6.	.3.	.1.	.2	Processes	*

La

9.1.2 1 Tocchbeb				
erge scale cloud microphysics processes				
Select MULTIPLE options:				
	Mixed phase			
	Cloud droplets			
	Cloud ice			
	Ice nucleation			
	Water vapour deposition			
	Effect of raindrops			
	Effect of snow			
	Effect of graupel			
	Other - please specify:			

7 Cloud Scheme

Characteristics of the cloud scheme

	7.1	L.1	Top	level	pro	pertie
--	-----	------------	-----	-------	-----	--------

Characteristics of the cloud scheme

7	7 1	1 1	1 1	1	N	้ฉ	m	P

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.1.3 Scheme Type *

 $Describes\ the\ type(s)\ of\ cloud\ scheme:\ prognostic,\ diagnostic,\ other.$

Select MULTIPLE options:				
	Prognostic			
	Diagnostic			
	Other - please specify:			

7.1.1.4 Uses Separate Treatment *

Description for when different cloud schemes are used for different types of clouds e.g. convective, stratiform and boundary layer)

Enter TEXT:

7.1.1.5 Processes *

Processes included in the cloud scheme

Select MULTIPLE options:			
	Entrainment		
	Detrainment		
	Bulk cloud		
	Other - please specify:		

7.1.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:
	Cloud amount
	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.1.7	Atmos Coupling
Atmosphe	re components that are linked to the cloud scheme
Selec	t MULTIPLE options:
	Atmosphere_radiation
	$Atmosphere_microphysics_precipitation$
	Atmosphere_turbulence_convection
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2.1	Optical Cloud Properties
Optical o	cloud properties
7.2.1.1	Cloud Overlap Method
$Method\ fo$	r taking into account overlapping of cloud layers
Selec	t SINGLE option:
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
П	Other - please specify:

7.2.1.2 Cloud Inhomogeneity

 $Method\ for\ taking\ into\ account\ cloud\ inhomogeneity$

Enter TEXT:

7.3.1 Sub Grid Scale Water Distribution

 $Sub\mbox{-}grid\ scale\ water\ distribution$

7.3.1.1 Type *
Sub-grid scale water distribution type
Select SINGLE option:
Prognostic
Diagnostic
7.3.1.2 Function Name *
Sub-grid scale water distribution function name
Enter TEXT:
7.3.1.3 Function Order * Sub-grid scale water distribution function type Enter INTEGER value:
7.3.1.4 Convection Coupling * Sub-grid scale water distribution coupling with convection
Select MULTIPLE options:
Coupled with deep
Coupled with shallow
Not coupled with convection
7.4.1 Sub Grid Scale Ice Distribution Sub-grid scale ice distribution
7.4.1.1 Type *
Sub-grid scale ice distribution type

Select SINGLE option:

	Prognostic
	Diagnostic
7.4.1.2	Function Name *
Sub-grid	scale ice distribution function name
Ente	r TEXT:
7.4.1.3	Function Order *
Sub-grid	scale ice distribution function type
Ente	r INTEGER value:
	Convection Coupling * scale ice distribution coupling with convection
	- •
Selec	t MULTIPLE options:
	Coupled with deep
	Coupled with shallow
	Not coupled with convection

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

 $Cloud\ simulator\ ISSCP\ top\ height\ estimation\ method\ Uo$

Select MULTIPLE options:	
	No adjustment
	IR brightness
	Visible optical depth
	Other - please specify:

8.2.1.2 Top Height Direction

Cloud simulator ISSCP top height direction

Selec	et SINGLE option:
	Lowest altitude level
	Highest altitude level
	Other - please specify:

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1 Run Configuration		
Cloud simulator COSP run configuration		
Select SINGLE option:		
☐ Inline		
Offline		
Other - please specify:		
8.3.1.2 Number Of Grid Points		
Cloud simulator COSP number of grid points		
Enter INTEGER value:		
8.3.1.3 Number Of Sub Columns Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability		
Enter INTEGER value:		
8.3.1.4 Number Of Levels		
Cloud simulator COSP number of levels		
Enter INTEGER value:		
8.4.1 Radar Inputs		
Characteristics of the cloud radar simulator		
8.4.1.1 Frequency		
Cloud simulator radar frequency (Hz)		
Enter FLOAT value:		
8.4.1.2 Type		
Cloud simulator radar type		
Select SINGLE option:		
Surface		
Space borne		
Other - please specify:		

8.4.1.3	Gas Ab	sorptio	n
Cloud sin	nulator rad	ar uses g	$as\ absorption$
Selec	t either I	TRUE or	FALSE:
	True		False
	Effective		
	nulator raa et either T		ffective radius
	True		False
8.5.1 l	Lidar I	nputs	
Charact	eristics o	f the clo	ud lidar simulator
8.5.1.1	Ice Typ	es	
Cloud sin	nulator lide	ır ice type	2
Selec	t SINGL	E option	:
	Ice sphere	es	
	Ice non-s	pherical	
	Other - p	lease spec	cify:
8.5.1.2	Overlap	1	
Cloud sin	nulator lide	ır overlap	
Selec	t MULTI	PLE opt	tions:
	Max		
	Random		
	Other - n	lesse sne	rify:

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources\ in\ atmos\ model.$

Enter TEXT:

9.1.1.3 Sponge Layer *		
Sponge la	yer in the upper levels in order to avoid gravity wave reflection at the top.	
Selec	t SINGLE option:	
	Rayleigh friction	
	Diffusive sponge layer	
	Other - please specify:	

9.1.1.4 Background *

 $Background\ wave\ distribution$

Selec	et SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify

9.1.1.5 Subgrid Scale Orography *

 $Subgrid\ scale\ orography\ effects\ taken\ into\ account.$

Select	MULTIPLE options:
	Effect on drag

	Effect on lifting
	Enhanced topography - To enhance the generation of long waves in the atmosphere
	Other - please specify:
9.2.1	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1.1	Name
Common	ly used name for the orographic gravity wave scheme
Ente	or TEXT:
9.2.1.2	Source Mechanisms *
Orograph	ic gravity wave source mechanisms
Selec	ct MULTIPLE options:
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orograph	ic gravity wave calculation method
Selec	et MULTIPLE options:
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orograph	ic gravity wave propogation scheme
Selec	et SINGLE option:
	Linear theory
	Non-linear theory

	Includes boundary layer ducting	
	Other - please specify:	
9.2.1.5	Dissipation Scheme *	
Orograph	ic gravity wave dissipation scheme	
Selec	t SINGLE option:	
	Total wave	
	Single wave	
	Spectral	
	Linear	
	Wave saturation vs Richardson number	
	Other - please specify:	
9.3.1 [Non Orographic Gravity Waves	
Gravity waves generated by non-orographic processes.		
9.3.1.1	Name	
Common	ly used name for the non-orographic gravity wave scheme	
Ente	r TEXT:	
9.3.1.2	Source Mechanisms *	
Non-orog	raphic gravity wave source mechanisms	
Selec	t MULTIPLE options:	
	Convection	
	Precipitation	
	Background spectrum	
	Other - please specify:	
	Calculation Method *	
Ü	raphic gravity wave calculation method	
Selec	t MULTIPLE options:	
	Spatially dependent	

9.3.1.4 Propagation Scheme *		
Non-orographic gravity wave propogation scheme		
Select SINGLE option:		
	Linear theory	
	Non-linear theory	
	Other - please specify:	
9.3.1.5	Dissipation Scheme *	
Non-orographic gravity wave dissipation scheme		
Select SINGLE option:		
	Total wave	
	Single wave	
	Spectral	
	Linear	
	Wave saturation vs Richardson number	
	Other - please specify:	

10	Natural	\mathbf{F}	orcin	g
----	---------	--------------	-------	---

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ natural\ forcing\ in\ atmos\ model.$

Enter TEXT:

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper e, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.
	Other - please specify:

10.3.1 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

 $Time\ adaptation\ of\ the\ solar\ constant.$

Select SINGLE option:

	Fixed

Transient

10.3.1.2 Fixed Value		
If the solar constant is fixed, enter the value of the solar constant (W m-2).		
Enter FLOAT value:		
10.3.1.3 Transient Characteristics		
$Solar\ constant\ transient\ characteristics\ (W\ m\text{-}2)$		
Enter TEXT:		
10.4.1 Orbital Parameters		
Orbital parameters and top of atmosphere insolation characteristics		
10.4.1.1 Type *		
Type of orbital parameter		
Select SINGLE option:		
Fixed		
Transient		
Iransient		
10.4.1.2 Fixed Reference Date		
$Reference\ date\ for\ fixed\ orbital\ parameters\ (yyyy)$		
Enter INTEGER value:		
10.4.1.3 Transient Method		
Description of transient orbital parameters		
Enter TEXT:		
10.4.1.4 Computation Method		
Method used for computing orbital parameters.		
Select SINGLE option:		
· 		
☐ Berger 1978		
Laskar 2004		
Other - please specify:		

10.5.1 Insolation Ozone

 $Impact\ of\ solar\ insolation\ on\ stratospheric\ ozone$

10.5.1.1	Solar Ozone Impact *
Does top	$of \ atmosphere \ in solation \ impact \ on \ stratospheric \ ozone?$
Selec	t either TRUE or FALSE:
	True
10.6.1	Volcanoes Treatment
Characte	eristics and treatment of volcanic forcing in the atmosphere
10.6.1.1	Volcanoes Characteristics *
Description	on of how the volcanic forcing is taken into account in the atmosphere.
Enter	TEXT:
10.6.1.2	2 Volcanoes Implementation *
How volce	unic effects are modeled in the atmosphere.
Selec	t SINGLE option:
	High frequency solar constant anomaly
	Stratospheric aerosols optical thickness
	Other - please specify: