

VIT®

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

WINTER SEMESTER 2019-2020

COURSE NAME: DIGITAL COMMUNICATION

SYSTEMS

COURSE CODE: ECE4001

LAB MANUAL

TASK 6

MATLAB SIMULATIONS-PCM

NAME: SPARSH ARYA

REG. NO.: 17BEC0656

LAB SLOT: L23+L24

SIMULATION OF PULSE CODE MODULATION AND DEMODULATION

AIM: To Simulate Pulse Code Modulation and Demodulation.

PROGRAM:

```
clc;
clear all;
close all;
%Signal amplitude and Frequency
a=1;
f=2;
t=0:0.01:1;
x=a*sin(2*pi*f*t)+a;
%plot message signal
subplot(2,1,1);
plot(t,x);
title('Input signal');
xlabel('time');
ylabel('amplitude');
%plot sampled signal
subplot(2,1,2);
stem(t,x);
title('Sampled Signal');
xlabel('time');
ylabel('amplitude');
%modulation process
partition=[0:0.1:2*a];
codebook=[0:0.1:((2*a)+0.1)];
[index,d] = quantiz(x,partition,codebook);
%plot quantized DM signal
figure;
subplot(2,1,1);
stairs(t,d);
title('Quantized Signal');
xlabel('time');
ylabel('amplitude');
```

```
%plot 1-bit encoder output

pcm=dec2bin(d);
display(pcm);

%Demodulation process

deco=bin2dec(pcm);
[b,a]=butter(3,0.1,'low');
recovered=filter(b,a,deco);

%plot the reconstucted signal

subplot(2,1,2);
plot(t,recovered);
title('Reconstructed Signal');
xlabel('time');
ylabel('amplitude');
```

MODEL GRAPH:

PCM output

RESULT: Simulation of Pulse Amplitude Modulation and Demodulation is done.