

# **Outline Advanced Process Modeling Challenges for Petrochemical Producers** Operational Excellence for Olefins Production **Olefins Optimization Framework**

**Summary & Outlook** 

# **ADVANCED PROCESS MODELING**



### **ADVANCED PROCESS MODELING**

### **Definition**

 Advanced Process Modeling concerns the development of High-Fidelity predictive process models within an Equation-Oriented modelling & Optimisation platform

### **Advantages**

- One single platform for process design → online monitoring & optimisation →
  multi-period production planning
- Model can be tuned to predict operational performance for accuracy needed → the "high-fidelity" element
- Combines Optimisation & Dynamic Simulation functionalities
- Lower cost of ownership

## **KEY FEATURES**

### **Equation-oriented power**

- Solves large-scale optimisation problems including multiple or complex recycles
  - rapidly & robustly, using parallelisation to speed up solution where needed.

### Multiple applications with same high-fidelity predictive model

- Steady-state & dynamic simulation / optimisation
- Parameter estimation
- Data reconciliation & State estimation
- Global system analysis
- Multi-site, multi-period optimisation

# **CHALLENGES PETROCHEMICAL PRODUCERS**



### CHALLENGES PETROCHEMICAL PRODUCERS

Business Continuity

Which investments for which markets & products? Strategy

Which technologies to develop? R&D

How to make best use of the assets? Operational Excellence

### ADVANCED PROCESS MODELING DECISION FRAMEWORK



# OPERATIONAL EXCELLENCE FOR OLEFINS PRODUCTION



## **OLEFINS MANUFACTURING TECHNOLOGY**

- I. Pyrolysis of paraffins:
  - Decomposition of hydrocarbons by adding heat (to drive endothermic reactions)
  - Hydrogen abstraction and recombination reactions yield lower olefins
    & heavy hydrocarbons (aromatics & naphthalenes).
  - Steam is added to influence residence time ( $\tau$ ) and partial pressure of hydrocarbons ( $P_{hc}$ )
  - Yields are a function of residence time (τ), temperature (Τ) and pressure (P) over the cracking coil
- II. Compression & Deep Cooling to get almost all components liquefied
- III. Fractionation into "pure" product streams by gradual release of pressure& simultaneously warming up

# SIMPLIFIED FLOW-SCHEME OLEFINS PLANT



# **FURNACE SECTION OLEFINS PLANT**



Typical furnace capacity: 100 t/h feed @ 25% yield on ethylene per pass

@ 6 + 1 philosophy

 $\rightarrow$  1.25 mln ton  $C_2^=$  per year

# **HEAT & POWER BALANCE OLEFINS PLANT**



### **OLEFINS MANUFACTURING ECONOMICS**

- Capacity: 800 kton of ethylene per year
- Investment: 2 bln\$ @ 2500 \$/ton  $C_2^=$
- Cash costs:  $600 \frak{100}$  Cash costs:  $600 \frak{100}$ 
  - Nett Hydrocarbon Feedstock Costs: 310 \$/ton C<sub>2</sub><sup>=</sup>
    @ 30% ultimate C<sub>2</sub><sup>=</sup> yield; 80 \$/bbl Brent; uplift ~150 \$/ton byproduct
  - Specific Energy Consumption: 190 \$/t C<sub>2</sub><sup>=</sup>
    20 GJ/ton C<sub>2</sub><sup>=</sup> @ 10 \$/MMBTU
  - Fixed costs: 100 \$/t C<sub>2</sub><sup>=</sup>
    4% of investment
- Cash margin:  $400 \frak{1000} \frak{100$
- Value over Investment Ratio: 0.25 (pay-back time < 6 years)</li>

# "VALUE" OPERATIONAL EXCELLENCE



# **ETHYLENE COST SUPPLY CURVE**

# Benchmarking Solomon Associates - IHS



# **HOW TO IMPROVE SUPPLY COST POSITION?**

### Radical:

- Developing alternative processes with  $Q_1/Q_2$  economics: e.g. MTO
- New build @ larger capacities → economies of scale; higher efficiency
- **Debottlenecking**  $\rightarrow$  lower unit fixed costs (~ 10 \$/ton C<sub>2</sub>=) & better energy efficiency (5% lower SEC  $\rightarrow$  10 \$/ton C<sub>2</sub>=); assume same yield pattern
- Debottlenecking economics: assume base load 800 ktpa increased to 1000 ktpa @ 1500 \$/ton C₂ → investment 300 mln \$; cash cost reduction of 20 \$/ton → cash margin of 420 \$/t → Improvement: 1000 ktpa \* 420 \$/t 800 \* 400 \$/t = 100 mln \$/a → VIR ~ 1.6 (pay-back < 3 years)</p>

### Evolutionary:

- Continuous improvement of asset utilisation → Operational Excellence:
  - Buy more favorable feedstock package @ 2 \$/bbl → 20 \$/ton C<sub>2</sub>=
  - Operate for a more attractive yield pattern @ 2% better uplift  $\rightarrow$  7 \$/ton  $C_2^{=}$
  - Operate @ 3% lower energy consumption → 6 \$/ton
  - Total 33 \$/ton lower cash costs → 26 mln \$/a
- Key enabler: Advanced Process Modeling & Optimization

# **OLEFINS OPTIMIZATION FRAMEWORK**



### UTILIZATION CHALLENGES OLEFINS PRODUCERS

 Buy feeds with highest upgrading potential, for a given downstream product portfolio: feedstock procurement challenge

 Process feeds such that margin potential is captured at lowest possible energy consumption within major plant limitations: furnace allocation challenge

"Sweat the assets": Local Optimization & Advanced Process Control challenge

 Adjust operating conditions when needed to exploit market opportunities and/or manufacturing & logistic constraints; both upstream; in-plant; and downstream: off-line optimization challenge

# **OLEFINS DECISION SUPPORT FRAMEWORK**



# OPERATIONAL EXCELLENCE OLEFINS PLANTS: WHERE OPTIMISATION ADDS VALUE



## **FEEDSTOCK ALLOCATION**

### Background:

- Many plants have a mix of different furnace types & capacities & the option of processing different feedstocks.
- Product requirements change from week to week



Scope: whole plant model

### Operational Challenge:

- Decide which feeds to run through which furnaces and at what conditions (feed rate, severity, STOR) also given the state of coking in each furnace
- Consider impact on the back-end of the plant e.g. operation of the downstream separation system with constraints imposed by refrigeration system capacity. Also the rate of  $C_2$ ,  $C_3$  and perhaps  $C_4$  recycles need to be taken into account (which in turn affects feedstock allocation)

### Benefit: a higher revenue stream

- Better asset utilisation due to higher furnace throughputs
- Lower energy consumption and hence a lower CO<sub>2</sub> footprint
- More valuable product mix

# **FURNACE MARGIN OPTIMIZER**

#### Detailed furnace model estimates:

- Cracking Yields
- Coke build-up over run length
- Heat recovery

#### Combines:

- Cracking & coking kinetics for any coil geometry, fired duty, heat recovery convection section & TLE
- State estimation technology to reconcile performance estimates with available furnace data (feed rate, effluent composition, CIT, COT)

#### Benefits:

 On-line margin optimization on a furnace by furnace basis



- Better furnace utilization through advanced EOR projection for decoke scheduling
- Solid basis for dynamic optimization entire furnace section

# **ACETYLENE & MAPD HYDROGENATION**

### Scope:

• Fixed bed reactor models for conversion of Acetylene ( $C_2H_2$ ) & Methyl Acetylene and PropaDiene to Ethylene ( $C_2H_4$ ) and Propylene ( $C_3H_6$ )

### Objective function:

Maximise acetylene / MAPD conversion for maximum ethylene & propylene gains

### Subject to:

- Max allowable levels of ethane and green oil production
- Allowable activity loss over time to avoid catalyst regeneration before turn-around

### Degrees of freedom:

- Temperature profile over reactor
- $H_2/C_2H_2$  and  $H_2/MAPD$  ratio's

### Support to design and engineering:

- Reactor scale-up from laboratory to pilot to commercial scale
- Tune catalytic bed properties (length, activity, shape of particles) & cooling system design to for thermal stability so to avoid hot spots during operation

# **PROPYLENE & ETHYLENE REFRIGERATION SYSTEMS**



### **HEAT & WORK BALANCE REFRIGERATION SYSTEMS**

Distribution of heat load and work requirements



Relative cost of heat extraction by the refrigeration systems at different temperatures



- a) Net heat absorbed by the refrigeration systems;
- b) Net work done by the refrigeration systems

# OPTIMIZATION $C_2^{-1}$ & $C_3^{-1}$ REFRIGERATION SYSTEMS

### Scope:

- $C_2^{=} \& C_3^{=}$  compressors, including suction, inter-stage & discharge systems
- Demethanizer feed train
- Condensors & Reboilers cold distillation columns: demethanizer, deethaniser, depropanizer and EE-splitter

Objective function: minimize  $C_2^{=} \& C_3^{=}$  compression power

### Subject to:

- Hydraulic limitations distillation columns
- Product quality specifications

### Degrees of Freedom:

- Suction, intermediate & discharge pressures C<sub>2</sub> & C<sub>3</sub> compressors
- Tower pressures

# **SUMMARY & OUTLOOK**

- Advanced Process Modeling supports Olefins producers addressing Operational Excellence challenges so to improve their cost of ethylene supply position:
  - Feedstock procurement; furnace allocation and capacity utilization by optimization of the furnace section within back-end limitations
  - Optimization C<sub>2</sub> & C<sub>3</sub> refrigeration cycles AC & MAPD hydrogenation
  - Utilities optimization
  - Better integration at site and enterprise level
- Advanced Process Modeling delivers lower cash costs and a lower CO<sub>2</sub> footprint
- New challenges ahead for olefins (and other petrochemical) producers:
  - Increasing efforts and investments to reduce GHG emissions
  - Call for Licensors for radical process redesigns (e.g. to benefit from electrification potential) → process integration & process intensification
  - This also calls for more advanced process synthesis / optimisation approaches
- A new challenging arena for Advanced Process Modeling

# **Q&A**