Minimal Polynomials

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 9, 2014

Factoring $x^q - x$ over a Field F_q and F_p

Example

$$F = \{0, 1, y, y + 1\} \subset \mathbb{F}_2[y] \text{ under} + \text{and} * \text{modulo } y^2 + y + 1$$

$$x^4 - x = x(x - 1)(x - y)(x - y - 1)$$

$$= x(x + 1)[x^2 - x(y + y + 1) + y^2 + y]$$

$$= x(x + 1)(x^2 + x + 1)$$

The prime subfield of F is \mathbb{F}_2 . $x, x+1, x^2+x+1 \in \mathbb{F}_2[x]$ are called the minimal polynomials of F

Example

$$\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$$

$$x^5 - x = x(x-1)(x-2)(x-3)(x-4)$$

The prime subfield of \mathbb{F}_5 is \mathbb{F}_5 .

 $x,x-1,x-2,x-3,x-4\in\mathbb{F}_5[x]$ are called the minimal polynomials of \mathbb{F}_5

Factoring $x^q - x$ over a Field F_q and F_p

- Let F_q be a finite field with characteristic p
- F_q has a subfield isomorphic to \mathbb{F}_p
- Consider the polynomial $x^q x \in F_q[x]$
- Since the prime subfield contains ± 1 , $x^q x \in \mathbb{F}_p[x]$
- $x^q x$ factors into a product of prime polynomials $g_i(x) \in \mathbb{F}_p[x]$

$$x^q - x = \prod_i g_i(x)$$

The $g_i(x)$'s are called the minimal polynomials of F_q

• There are two factorizations of $x^q - x$

$$x^q - x = \prod_{\beta \in F_q} (x - \beta) = \prod_i g_i(x) \implies g_i(x) = \prod_{j=1}^{\deg g_i(x)} (x - \beta_{ij})$$

• Each $\beta \in F_q$ is a root of exactly one minimal polynomial of F_q , called the minimal polynomial of β

Properties of Minimal Polynomials (1)

Let F_q be a finite field with characteristic p. Let g(x) be the minimal polynomial of $\beta \in F_q$.

g(x) is the monic polynomial of least degree in $\mathbb{F}_p[x]$ such that $g(\beta)=0$

Proof.

- Let $h(x) \in \mathbb{F}_p[x]$ be a monic polynomial of least degree such that $h(\beta) = 0$
- Dividing g(x) by h(x), we get g(x) = q(x)h(x) + r(x) where deg $r(x) < \deg h(x)$
- Since $r(x) \in \mathbb{F}_p[x]$ and $r(\beta) = 0$, by the least degree property of h(x) we have $r(x) = 0 \implies h(x)$ divides g(x)
- Since g(x) is irreducible and deg $h(x) = \deg g(x)$
- Since both h(x) and g(x) are monic, h(x) = g(x)

Properties of Minimal Polynomials (2)

Let F_q be a finite field with characteristic p. Let g(x) be the minimal polynomial of $\beta \in F_q$.

For any $f(x) \in \mathbb{F}_p[x]$, $f(\beta) = 0 \iff g(x)$ divides f(x)

Proof.

- (\iff) If g(x) divides f(x), then f(x) = a(x)g(x) $\implies f(\beta) = a(\beta)g(\beta) = 0$
- (\Longrightarrow) Suppose $f(x) \in \mathbb{F}_p[x]$ and $f(\beta) = 0$
- Dividing f(x) by g(x), we get f(x) = q(x)g(x) + r(x) where deg $f(x) < \deg g(x)$
- Since $r(x) \in \mathbb{F}_p[x]$ and $r(\beta) = 0$, by the least degree property of g(x) we have $r(x) = 0 \implies g(x)$ divides f(x)

Linearity of Taking pth Power

Let F_a be a finite field with characteristic p.

• For any $\alpha, \beta \in F$

$$(\alpha + \beta)^p = \sum_{j=0}^p {p \choose j} \alpha^j \beta^{p-j} = \alpha^p + \beta^p$$

• For any integer $n \ge 1$,

$$(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n}$$

• For any $g(x) = \sum_{i=0}^m g_i x^i \in F[x]$,

$$[g(x)]^{p^n} = (g_0 + g_1 x + g_2 x^2 + \dots + g_m x^m)^{p^n}$$

= $g_0^{p^n} + g_1^{p^n} x^{p^n} + g_2^{p^n} x^{2p^n} + \dots + g_m^{p^n} x^{mp^n}$

Test for Membership in $\mathbb{F}_p[x]$

Let F_q be a finite field with characteristic p. F has a subfield isomorphic to \mathbb{F}_p . For any $g(x) \in F[x]$

$$g^{p}(x) = g(x^{p}) \iff g(x) \in \mathbb{F}_{p}[x]$$

Note that $g(x) \in \mathbb{F}_p[x] \iff$ all its coefficients g_i belong to \mathbb{F}_p Proof.

$$g^{\rho}(x) = (g_0 + g_1 x + g_2 x^2 + \dots + g_m x^m)^{\rho}$$

$$= g_0^{\rho} + g_1^{\rho} x^{\rho} + g_2^{\rho} x^{2\rho} + \dots + g_m^{\rho} x^{m\rho}$$

$$g(x^{\rho}) = g_0 + g_1 x^{\rho} + g_2 x^{2\rho} + \dots + g_m x^{m\rho}$$

$$g^{p}(x) = g(x^{p}) \iff g_{i}^{p} = g_{i} \iff g_{i} \in \mathbb{F}_{p}$$

Roots of Minimal Polynomials

Theorem

Let F_q be a finite field with characteristic p. Let g(x) be the minimal polynomial of $\beta \in F_q$.

If $q = p^m$, then the roots of g(x) are of the form

$$\left\{\beta, \beta^{p}, \beta^{p^{2}}, \dots, \beta^{p^{n-1}}\right\}$$

where n is a divisor of m

Proof.

We need to show that

- There is an integer n such that β^{p^i} is a root of g(x) for 1 < i < n
- n divides m
- All the roots of g(x) are of this form

Roots of Minimal Polynomials

Proof continued.

- Since $g(x) \in \mathbb{F}_p[x]$, $g^p(x) = g(x^p)$
- If β is a root of g(x), then β^p is also a root
- β^{p^2} , β^{p^3} , β^{p^4} , ..., are all roots of g(x)
- Let *n* be the smallest integer such that $\beta^{p^n} = \beta$
- All elements in the set β , β^p , β^{p^2} , β^{p^3} , ..., $\beta^{p^{n-1}}$ are distinct
- If $\beta^{p^a} = \beta^{p^b}$ for some $0 \le a < b \le n-1$, then

$$\left(\beta^{p^a}\right)^{p^{n-b}} = \left(\beta^{p^b}\right)^{p^{n-b}} \implies \beta^{p^{n+a-b}} = \beta^{p^n} = \beta$$

• If *n* does not divide *m*, then m = qn + r where 0 < r < n

$$\beta^{p^m} = \beta \implies \beta^{p^r} = \beta$$

which is a contradiction

Roots of Minimal Polynomials

Proof continued.

- It remains to be shown that $\left\{\beta,\beta^p,\beta^{p^2},\dots,\beta^{p^{n-1}}\right\}$ are the only roots of g(x)
- Let $h(x) = \prod_{i=0}^{n-1} (x \beta^{p^i})$
- $h(x) \in \mathbb{F}_p[x]$ since

$$h^{p}(x) = \prod_{i=0}^{n-1} (x - \beta^{p^{i}})^{p} = \prod_{i=0}^{n-1} (x^{p} - \beta^{p^{i+1}}) = \prod_{i=0}^{n-1} (x^{p} - \beta^{p^{i}}) = h(x^{p})$$

• Since g(x) is the least degree monic polynomial in $\mathbb{F}_p[x]$ with β as a root, g(x) = h(x)

Note: The roots of a minimal polynomial are said to form a cyclotomic coset

Minimal Polynomials of F_{16}

The prime subfield of F_{16} is \mathbb{F}_2 .

$$x^{16} + x = x(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$$

Let $F_{16} = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{14}\}$ where α is a root of $x^4 + x + 1$

- x has root 0 and x + 1 has root 1
- The roots of $x^2 + x + 1$ are $\{\alpha^5, \alpha^{10}\}$
- The roots of $x^4 + x + 1$ are $\{\alpha, \alpha^2, \alpha^4, \alpha^8\}$
- The roots of $x^4 + x^3 + 1$ are $\{\alpha^7, \alpha^{14}, \alpha^{13}, \alpha^{11}\}$
- The roots of $x^4 + x^3 + x^2 + x + 1$ are $\{\alpha^3, \alpha^6, \alpha^9, \alpha^{12}\}$

Questions? Takeaways?