

I2C 제어 SW 설계

학습목표

- I2C 버스 프로토콜과 STM32F429의 I2C를 설명할 수 있다.
- STM32F429의 I2C 제어 소프트웨어를 설계하고 테스트할 수 있다.

학습내용

- STM32F429의 I2C
- STM32F429의 I2C 제어 SW 설계하기

STM32F429의 I2C

이 I2C 버스의 소개

- ··· 아이투씨 또는 아이스퀘어씨라고 읽음
- ··· Inter-Integrated Circuit의 약자
- ··· Philips사에 의해 만들어짐 → 현재는 NXP 반도체로 분사함
- ··· 반도체 칩과 반도체 칩간의 통신 방법으로 아주 널리 사용되고 있음
- → Data 선과 clock 선 2개로만 통신이 가능함
 - 특히 여러 칩을 연결할 때 2개의 선만으로 모든 칩의 연결이 가능하여 널리 사용됨
- → Protocol이 간편함
- → 주로 control용으로 사용되며 저속이기 때문에 전용 HW없이 일반 GPIO로도 구현 가능

○ I2C 버스의 연결

I2C 버스 연결의 예

- ··· I2C버스에 여러 개의 칩을 연결할 때 SDA라는 data선과 SCL이라는 clock선만으로 연결이 가능함
- ··· SDA, SCL 라인은 Vdd 전원과 연결된 pull-up 저항으로 연결되어 있음

μC

Master 칩

마이크로 프로세서의 약자로 같은 버스에 연결된 칩들 중 하나가 master 역할을 할 때 나머지는 모두 slave가 되어 동작함

여러 개의 slave중 I2C slave address를 사용하여 하나의 slave와만 통신하게 됨

통신 속도

표준 모드에서 100KHz, fast 모드에서 400kHz로 동작

○ I2C 버스 프로토콜

Master, Slave

→ 버스는 Master와 Slave 개념을 가짐

Master

버스를 잡은 주인, I2C를 GPIO로 구현한다면 Master는 GPIO output으로 설정하여 GPIO의 레벨을 결정함

Slave

master에게 잡힌 노예, I2C를 GPIO로 구현한다면 Slave는 GPIO input으로 설정되어 Master의 GPIO의 레벨을 인식함

→ 버스에 물려있는 디바이스는 누구나 Master나 Slave가 가능함

Start 조건과 Stop 조건

→ I2C는 여러 개의 칩이 같은 버스에 연결되어 있을 수 있기 때문에 Master가 Slave에게 알려줄 수 있는 Start 조건과 Stop 조건이 있음

Start 조건

I2C 통신을 시작하는 조건

Stop 조건

I2C 통신을 끝내는 조건

→ 모두 Master가 만드는 조건으로 pull-up 저항에 의해 모두 high로 있다가 Master가 SDA를 low로 하고 약간의 시간차를 두고 SCL을 low로 하면 Start 조건이 됨

I2C 버스 Start 조건과 Stop 조건

○ I2C 버스 프로토콜

데이터 전송 포맷

- ··· Master가 Slave에게 값을 전송하는 포맷
- ··· 주로 byte 단위로 전송
 - 즉, Master가 MSB부터 LSB까지 7bit를 보내고 8번째 신호는 R/W 신호
- → SCL이 rising edge일 때 SDA 신호를 가져감
- → 마지막 9번째 bit는 ACK(애크)신호

ACK 신호

Acknowledge의 약자로 Slave가 Master에게 값을 잘 받았다는 신호

I2C 버스 데이터 전송 포맷과 ACK 신호

I2C slave address

- → I2C 칩들은 공장 출하 때부터 고유의 주소를 가지며 대부분 datasheet를 찾아보면 고유의 주소를 알 수 있음
- → I2C 프로토콜에서 제일 먼저 나오는 8비트가 I2C slave address임

I2C slave address

STM32F429의 I2C

STM32F429의 I2C 개요

O STM32F429의 I2C 특징

27.2 I²C main features

- Parallel-bus/I²C protocol converter
- Multimaster capability: the same interface can act as Master or Slave
- I²C Master features:
 - Clock generation
 - Start and Stop generation
- I²C Slave features:
 - Programmable I²C Address detection
 - Dual Addressing Capability to acknowledge 2 slave addresses
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and General Call
- Supports different communication speeds:
 - Standard Speed (up to 100 kHz)
 - Fast Speed (up to 400 kHz)
- Analog noise filter
- Programmable digital noise filter for STM32F42xxx and STM32F43xxx
- - Transmitter/Receiver mode flag
 - End-of-Byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgment failure after address/ data transmission
 - Detection of misplaced start or stop condition
 - Overrun/Underrun if clock stretching is disabled

STM32F429의 I2C 특

- ··· 총 3개의 I2C 컨트롤러 내장
- → I2C 버스의 Master로도 동작할 수도 있고 Slave로도 동작할 수 있음
- → 표준 모드인 100kHz로 동작 가능하고 Fast 모드인 400kHz로도 동작 가능
- → 에러 관련 여러 기능 지원
- → 통신의 성공 유무와 에러 관련된 인터럽트 지원
- ₩ DMA 모드 지원

SMBus 지원

→ SMBus는 기존 I2C에 Intel사가 규격을 약간 변경하여 packet 단위로 통신하는 형식으로 변경한 버스

- 📀 STM32F429의 I2C 개요
 - O STM32F429의 I2C 컨트롤러

··· 외부 핀으로 Data 라인인 SDA와
Clock 라인인 SCL

···→ SMBA 핀은 SMBus를 위한 추가 핀

···→ Noise 제거 위한 필터

- 📀 STM32F429의 I2C 개요
 - O STM32F429의 I2C 컨트롤러

→ Data control 블록과

Clock control 블록으로 나뉨

··· I2C slave 모드로 동작할 때 필요한
Own address register 등이 있음

- STM32F429의 I2C 개요
 - O Nucleo-F429 보드의 I2C

Nucleo-F429 보드의 I2C 인터페이스 사용

Zio 커넥터가 아두이노와 호환된다는 것을 이용함

- ™ Nucleo-F429보드의 I2C인터페이스를 사용하기 위해 Zio 커넥터가 아두이노와 호환된다는 것을 이용함
- → 아두이노는 A4, A5번 핀과 오른쪽 최상단에 위치한 27,28번 핀이 I2C 인터페이스로 사용 가능

- 📀 STM32F429의 I2C 개요
 - O Nucleo-F429 보드의 I2C

Nucleo-F429 보드

아두이노 27, 28번 핀에 해당하는 위치인 CN7의 2, 4번 핀을 이용

STM32F429의 I2C 인터페이스

STM32F429의 I2C 제어 SW 설계하기

- 🔯 I2C 제어 초기화 SW 생성
 - O Nucleo-F429 보드 2개를 사용한 실습
 - ™ Nucleo-F429보드를 2개 사용하여 하나는 I2C Master, 다른 하나는 I2C Slave로 설정하여 실습 진행
 - → 2개의 보드를 SCL, SDA끼리 연결하고 GND도 서로 연결

STM32F429의 I2C 제어 SW 설계하기

- ☑ I2C 제어 초기화 SW 생성
 - 교수님 실습 영상
 - CubeMX를 사용하여 I2C1을 enable
 - PB9번 핀과 PB8번 핀을 I2C 용도의 핀으로 설정
 - 3 하나는 mater 모드로 하나는 slave 모드로 설정
 - 4 각각 코드 생성

STM32F429의 I2C 제어 SW 설계하기

- 🧿 I2C 제어 SW 코딩 및 테스트
 - 교수님 실습 영상
 - Main.c의 main 함수에 I2C 제어 코드 작성
 - 2 컴파일 후 펌웨어를 보드에 다운로드
 - 3 두 보드 간에 통신을 통하여 I2C 제어 SW 검증

요점노트

1. STM32F429의 I2C

- I2C
 - Inter-Integrated Circuit의 약자로 반도체 칩과 반도체 칩간의 통신 방법으로 아주 널리 사용되고 있음
 - 여러 칩을 연결할 때 Data선과 clock선의 2개 선만으로 모든 칩의 연결이 가능하여 널리 사용됨

STM32F429

- 총 3개의 I2C 컨트롤러 내장하고 있음
- I2C 버스의 master로도 동작할 수도 있고 slave로도 동작할 수 있음
- CubeMX를 사용하여 I2C를 설정할 수 있음

요점노트

2. STM32F429의 I2C 제어 SW 설계하기

- STM32F429의 I2C 제어 SW 설계하기
 - Nucleo-F429 보드를 2개 사용하여 하나는 I2C Master, 다른 하나는 I2C Slave로 설정할 수 있음
 - 두 보드를 연결할 때 SCL, SDA끼리 연결하고 GND도 서로 연결하여 사용함
 - 두 보드를 하나는 I2C Master, 다른 하나는 I2C Slave로 설정하여 데이터 통신을 할 수 있음