Linear Prediction (LPC)

- I. Resonance & The Source-Filter Model
- 2. Linear Prediction (LPC)
- 3. LP Representations
- 4. LP Synthesis & Modification

Dan Ellis

Dept. Electrical Engineering, Columbia University dpwe@ee.columbia.edu http://www.ee.columbia.edu/~dpwe/e4896/

I. Resonance

- Resonance is ubiquitous in physical systems
 - e.g. plucked/struck string, drum head
 - o room "coloration"
 - o vocal tract

- Resonances
 - → Poles
 - easily implemented in LTI filters

Singe Pole-Pair Resonance

Simple resonance =
 Second-order IIR
 Band Pass Filter

Resonances in Speech

Vocal Tract (throat + tongue + lips)
acts as variable resonator

• resonances = "formants"

Source-Filter Model

Separation of:

- Source: fine structure in time/frequency
- Filter: subsequent shaping by physical resonances

Advantages

- Good match to real signals
- Salient pieces

2. Linear Prediction (LPC)

- LPC = Linear Predictive Coding
 - remove redundancy in signal
 - try to predict next point as linear combination of previous values

$$s[n] = \sum_{k=1}^{p} a_k s[n-k] + e[n]$$

- $\{a_k\}$ are p^{th} order linear predictor coefficients
- $oldsymbol{\circ}$ e[n] is residual "innovation" a/k/a prediction error
- Transfer function

$$\frac{S(z)}{E(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}} = \frac{1}{A(z)}$$

• all-pole "autoregressive" (AR) modeling

Voice Modeling & LPC

Direct expression of source-filter model

$$s[n] = \sum_{k=1}^{p} a_k s[n-k] + e[n]$$

- acoustic tube model of vocal tract is all-pole
- vocal tract resonances change slowly ~ 10-20ms
- o but: nasals

Estimating LPC Models

You can "see"
 resonances in
 a spectral slice:

• We can find LPC coefficients $\{a_k\}$ to minimize energy of residual e[n]:

$$\sum_{n} e^{2}[n] = \sum_{n} \left(s[n] - \sum_{k=1}^{p} a_{k} s[n-k] \right)^{2}$$

- \circ differentiate w.r.t. a_k & solve
- end up with p linear equations involving autocorrelations $r_{ss}(|j-k|) = \sum_n s[n-j]s[n-k]$

LPC Illustration

Actual poles:

Short-Time LP Analysis

Solve LPC for each ~20 ms frame

3. LP Representations

- Can interpret LPC filter fit many ways:
- Picking out resonances
 - if signal was source + resonances, should find them
- Low-order spectral approximation
 - \circ minimizing $e^2[n]$ also minimizes $|E(e^{j\omega})|^2$
 - o different from e.g. Fourier approximation...
- Finding & removing smooth spectrum
 - \circ $\frac{1}{A(z)}$ is smooth approximation of S(z)
 - o $\frac{S(z)}{E(z)} = \frac{1}{A(z)} \Rightarrow E(z) = S(z)A(z)$ is "unsmoothed" S(z)
- Signal whitening
 - removing linear dependence makes residual like white noise (iid, flat spectrum)

Alternative Forms

- Many formulations for p^{th} order all-pole IIR:
 - \circ predictor coefficients $\{a_k\}$ / polynomial A(z)
 - $\circ \operatorname{roots} \{\lambda_i = r_i e^{j\omega_i}\} \text{ of } A(z)$
 - reflection coefficients (for lattice filter structure)
 - Line Spectral Frequencies (LSF)

Choice depends on:

- mathematical convenience
- numerical stability
- statistical properties (e.g. for coding)
- opportunities for modification

4. LPC Synthesis

- LP analysis on ~20ms frames gives prediction filter A(z) and residual e[n]
 - ullet recombining them should yield perfect s[n]
 - ullet coding applications further compress e[n]

e.g. simple pitch tracker → "buzz-hiss" encoding

LPC Warping

• Replacing delays z^{-1} with allpass elements $\frac{z+\alpha}{\alpha z+1}$ warps frequencies but not magnitudes

http://www.ee.columbia.edu/~dpwe/resources/matlab/polewarp/

Cross-Synthesis

- Mix residual (source) of one signal with resonances (filter) of another
 - or: just use white noise as excitation
 - o formants carry phonemes → vocoder

Summary

Resonances (poles) color sound

 Source + Filter model decouples excitation and resonances

 Linear Prediction is a simple way to model and implement resonances (filter)

 Many interpretations, representations, modifications