

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (previously presented): A space cross-connect unit (Z) with N input ports (E_i) and P output ports (S_i), comprising:

a broadcast stage comprising at most N signal dividers (A_i) each having one input and C outputs where C is an integer factor of P less than P, each input being connected to one of said N input ports (E_i) so that each of said at most N dividers (A_i) divides a signal received at one of said N input ports (E_i) into C signals at said C outputs, and

a space switching stage comprising at most C space switching modules (B_i, B'_i),
said space cross-connect unit is characterized in that:

the space switching modules (B_i, B'_i) are non-blocking and non-broadcasting, and
each of said space switching modules (B_i, B'_i) has N inputs and P/C outputs, said N inputs are connected to N outputs of said broadcast stage, each of said N outputs comes from a different divider (A_i) of said at most N dividers, and each of said P/C outputs of said space switching modules (B_i, B'_i) is connected to a respective one of said P output ports (S_i), wherein said space cross-connect unit is operable to perform packet switching and circuit switching, and wherein said space cross-connect unit is adapted to provide broadcasting of input signals to said output ports (S_i) independently of spectral considerations.

2. (Original) A cross-connect unit (Z) according to claim 1, comprising exactly N dividers (A_i) and C modules (B_i, B'_i).

3. (previously presented) A cross-connect unit (Z) according to claim 1, characterized in that each of said space switching modules (B_i, B'_i) comprises means for connecting each of its N inputs to one of its P/C outputs.

4. (Previously presented) A cross-connect unit (Z) according to claim 1, characterized in that each of said space switching modules (B_i, B'_i) is a non-blocking switching matrix (B_i) with N inputs and P/C outputs.

5. (Previously presented) A cross-connect unit (Z) according to claim 1, characterized in that each of said space switching modules (B'_i) comprises:

K non-blocking switching matrices (F_i) with N/K inputs and P/C outputs, where K is an integer factor of N; and

P/C non-blocking switching matrices (G_i) with K inputs and one output, each of said K inputs being connected to a respective output of each of said K switches (F_i).

6. (Previously presented) A cross-connect unit (Z) according to claim 1, characterized in that at least one of said space switching modules (B'_i) comprises:

K non-blocking switching matrices (F_i) with N/K inputs and P/C outputs, where K is an integer factor of N; and

P/C non-blocking switching matrices (G_i) with K inputs and one output, each of said K inputs being connected to a respective output of each of said K switches (F_i).

7. (previously presented) A cross-connect unit (Z) according to claim 5, characterized in that said P/C switching matrices (G_i) are semiconductor optical amplifier (SOA) switches.

8. (Original) A cross-connect unit (Z) according to claim 1, characterized in that said number N of input ports is equal to said number P of output ports.

9. (Original) A cross-connect unit (Z) according to claim 5, characterized in that K is equal to C.

10. (Original) A cross-connect unit (Z) according to claim 1, characterized in that said switching stage uses a technology based on LiNbO₃.

11. (previously presented) A cross-connect unit (Z) according to claim 1, characterized in that each of said P/C outputs of said space switching modules (B_i, B'_i) is followed by an amplifier (D_s).

12. (previously presented) A cross-connect unit according to claim 1, characterized in that the input of each divider is preceded by an amplifier (D_E).

13. (previously presented) A cross-connect unit (Z) according to claim 1,
characterized in that each of said space switching modules (B_i, B'_i) comprises:
a first stage comprising polarization-maintaining space switching matrices (M₁, ..., M_K);

and

a second stage comprising polarization-maintaining semiconductor optical amplifiers
(MQWSOA₁, ..., MQWSOA_k).

14. (Previously Presented) A signal transmission system comprising a cross-connect
unit (Z) according to claim 1 and characterized in that said system comprises:

at least one multiplexer for multiplexing M signals having M different wavelengths
(λ_i)_{1 ≤ i ≤ M}, where M is an integer less than or equal to N;
at least one erbium-doped fiber amplifier (EDFA) for amplifying the multiplexed signal;
and

at least one demultiplexer for demultiplexing the multiplexed signal to yield M
demultiplexed signal that are input to M input ports of said cross-connect unit.

15. (previously presented) A cross-connect unit (Z) according to claim 6,
characterized in that said P/C switching matrices (G_i) are semiconductor optical amplifier (SOA)
switches.

16. (currently amended): A space cross-connect unit (Z) with N input ports (E_i) and P
output ports (S_j), comprising:

a broadcast stage comprising a number of signal dividers (A_i) each having one input and
C outputs where C is an integer factor of P less than P, each input being connected to one of said

N input ports (E_i) so that each of said dividers (A_i) divides a signal received at one of said N input ports (E_i) into C signals at said C outputs, and

a space switching stage comprising at most C space switching modules (B_i, B'_i),

said space cross-connect unit is characterized in that:

the space switching modules (B_i, B'_i) are non-blocking and non-broadcasting, and

each of said space switching modules (B_i, B'_i) has N inputs and P/C outputs, said N

inputs are connected to N outputs of said broadcast stage, and each of said P/C outputs of said

space switching modules (B_i, B'_i) is connected to a respective one of said P output ports (S_j),

wherein said space cross-connect unit is operable to perform packet switching and circuit

switching, and wherein said space cross-connect unit is adapted to provide broadcasting of input

signals to said output ports (S_j) independently of spectral considerations,

The cross connect unit of claim 1, wherein said number of dividers is less than N.