APPENDIX

1 Load and Analyze Data

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import missingno as msno
     from scipy import stats
     import sklearn
     import statsmodels
     import statsmodels.api as sm
     import statsmodels.formula.api as smf
     from sklearn.metrics import mean_squared_error
     from sklearn.metrics import mean_absolute_error
     from sklearn.metrics import r2_score
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler
     from sklearn-neighbors import KNeighborsRegressor
     from sklearn-decomposition import PCA
     import random
     from sklearn.model selection import cross_val_score
     from sklearn.model_selection import KFold
     from sklearn.model selection import GridSearchCV
     from sklearn.metrics import make_scorer
     from sklearn.pipeline import Pipeline
     from numpy import mean
     from numpy import std
     from sklearn.linear_model import SGDRegressor
     from sklearn.linear_model import Ridge
     from sklearn.preprocessing import PolynomialFeatures
     from sklearn_linear_model import Lasso
     from sklearn.linear_model import ElasticNet
     from sklearn.ensemble import RandomForestRegressor
     import umap
     import tensorflow as tf
     from tensorflow.keras import Model
     from tensorflow.keras import Sequential
```

```
from tensorflow.keras.optimizers import Adam
     from sklearn.preprocessing import StandardScaler
     from tensorflow.keras.layers import Dense, Dropout
     from sklearn.model_selection import train_test_split
     from tensorflow.keras.losses import MeanSquaredLogarithmicError
     from sklearn.metrics import mean_squared_error
     from keras.callbacks import ModelCheckpoint
     from statsmodels.stats.outliers_influence import variance_inflation_factor
     from sklearn.manifold import TSNE
     from statsmodels.tools.tools import maybe_unwrap_results
     from statsmodels.graphics.gofplots import ProbPlot
     from statsmodels.stats.outliers_influence import variance_inflation_factor
     from typing import Type
     style_talk = "seaborn-talk" #refer to plt.style.available
     random.seed(101)
     np.random.seed(101)
     %matplotlib inline
[2]: class Linear_Reg_Diagnostic():
         Diagnostic plots to identify potential problems in a linear regression fit.
         Mainly,
             a. non-linearity of data
             b. Correlation of error terms
             c. non-constant variance
             d. outliers
             e. high-leverage points
             f. collinearity
     ,, ,, ,,
         def __init__(self,
                      results: Type[statsmodels.regression.linear_model.
      →RegressionResultsWrapper]) -> None:
             For a linear regression model, generates following diagnostic plots:
             a. residual
             b. qq
             c. scale location and
             d. leverage
             and a table
             e. vif
             Args:
```

```
results (Type[statsmodels.regression.linear_model.
'→RegressionResultsWrapper]):
               must be instance of statsmodels.regression.linear_model object
       Raises:
           TypeError: if instance does not belong to above object
       Example:
      >>> import numpy as np
      >>> import pandas as pd
      >>> import statsmodels.formula.api as smf
      >>> x = np.linspace(-np.pi, np.pi, 100)
      >>> y = 3*x + 8 + np.random.normal(0,1, 100)
      >>> df = pd.DataFrame(\{'x':x, 'y':y\})
      >>> res = smf.ols(formula= "y ~ x", data=df).fit()
      >>> cls = Linear_Reg_Diagnostic(res)
      >>> cls(plot context="seaborn-paper")
       In case you do not need all plots you can also independently make an_
→individual plot/table
      in following ways
      >>> cls = Linear_Reg_Diagnostic(res)
      >>> cls.residual plot()
      >>> cls.qq plot()
      >>> cls.scale location plot()
      >>> cls.leverage plot()
       >>> cls.vif table()
       if isinstance(results, statsmodels.regression.linear_model.
→RegressionResultsWrapper) is False:
           raise TypeError("result must be instance of statsmodels.regression.
'¬linear_model.RegressionResultsWrapper object")
       self.results = maybe_unwrap_results(results)
       self.y_true = self.results.model.endog
       self.y_predict = self.results.fittedvalues
       self.xvar = self.results.model.exog
       self.xvar_names = self.results.model.exog_names
       self.residual = np.array(self.results.resid)
       influence = self.results.get influence()
       self.residual_norm = influence.resid_studentized_internal
       self.leverage = influence.hat_matrix_diag
       self.cooks_distance = influence.cooks_distance[0]
```

```
self.nparams = len(self.results.params)
   def __call__(self, plot_context="seaborn-paper"):
       # print(plt.style.available)
       with plt.style.context(plot_context):
           fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(10,10))
           self_residual_plot(ax=ax[0,0])
           self_qq_plot(ax=ax[0,1])
           self_scale_location_plot(ax=ax[1,0])
           self_leverage_plot(ax=ax[1,1])
           plt.show()
       self.vif_table()
       return fig, ax
  def residual_plot(self, ax=None):
       Residual vs Fitted Plot
       Graphical tool to identify non-linearity.
       (Roughly) Horizontal red line is an indicator that the residual has a
'→linear pattern
       if ax is None:
           fig, ax = plt.subplots()
       sns.residplot(
           x=self_y_predict,
           y=self_residual,
           lowess=True,
           scatter_kws={ alpha : 0.5},
           line_kws={"color": "red", "lw": 1, "alpha": 0.8},
           ax=ax)
       # annotations
       residual_abs = np.abs(self.residual)
       abs_resid = np.flip(np.sort(residual_abs))
       abs_resid_top_3 = abs_resid[:3]
       for i, _ in enumerate(abs_resid_top_3):
           ax.annotate(
               i,
               xy=(self.y_predict[i], self.residual[i]),
               color="C3")
       ax.set_title("Residuals vs Fitted", fontweight="bold")
       ax_set_xlabel("Fitted values")
```

```
ax_set_ylabel("Residuals")
       return ax
  def qq_plot(self, ax=None):
       Standarized Residual vs Theoretical Quantile plot
       Used to visually check if residuals are normally distributed.
       Points spread along the diagonal line will suggest so.
       if ax is None:
           fig, ax = plt.subplots()
       QQ = ProbPlot(self.residual_norm)
       QQ_qqplot(line=^{45}, alpha=0.5, lw=1, ax=ax)
       # annotations
       abs_norm_resid = np.flip(np.argsort(np.abs(self.residual_norm)), 0)
       abs_norm_resid_top_3 = abs_norm_resid[:3]
       for r, i in enumerate(abs_norm_resid_top_3):
           ax.annotate(
               i,
               xy=(np_flip(QQ_theoretical_quantiles, 0)[r], self.
'→residual_norm[i]),
               ha="right", color="C3")
       ax_set_title("Normal Q-Q", fontweight="bold")
       ax_set_xlabel("Theoretical Quantiles")
       ax_set_ylabel("Standardized Residuals")
       return ax
  def scale_location_plot(self, ax=None):
       Sqrt(Standarized Residual) vs Fitted values plot
       Used to check homoscedasticity of the residuals.
       Horizontal line will suggest so.
       if ax is None:
           fig. ax = plt.subplots()
       residual_norm_abs_sqrt = np.sqrt(np.abs(self.residual_norm))
       ax.scatter(self.y_predict, residual_norm_abs_sqrt, alpha=0.5);
       sns.regplot(
           x=self_y_predict.
           y=residual_norm_abs_sqrt,
```

```
scatter=False, ci=False,
          lowess=True.
          line_kws={"color": "red", "lw": 1, "alpha": 0.8},
          ax=ax)
      # annotations
      abs_sq_norm_resid = np.flip(np.argsort(residual_norm_abs_sqrt), 0)
      abs_sq_norm_resid_top_3 = abs_sq_norm_resid[:3]
      for i in abs_sq_norm_resid_top_3:
          ax.annotate(
              i.
              xy=(self.y_predict[i], residual_norm_abs_sqrt[i]),
              color="C3")
      ax.set_title("Scale-Location", fontweight="bold")
      ax_set_xlabel("Fitted values")
      ax.set_ylabel(r"$\sqrt{|\mathrm{Standardized\ Residuals}|}$");
      return ax
  def leverage_plot(self, ax=None):
      Residual vs Leverage plot
      Points falling outside Cook's distance curves are considered_
'→observation that can sway the fit
       aka are influential.
      Good to have none outside the curves.
      if ax is None:
          fig, ax = plt.subplots()
      ax.scatter(
          self.leverage,
          self.residual_norm,
          alpha=0.5);
      sns.regplot(
          x=self_leverage,
          y=self_residual_norm,
          scatter=False,
          ci=False,
          lowess=True,
          line_kws={"color": "red", "lw": 1, "alpha": 0.8},
          ax=ax)
      # annotations
      leverage_top_3 = np.flip(np.argsort(self.cooks_distance), 0)[:3]
      for i in leverage_top_3:
```

```
ax.annotate(
               i,
               xy=(self_leverage[i], self_residual_norm[i]),
               color = '(3')
      xtemp, ytemp = self._cooks_dist_line(0.5) # 0.5 line
       ax.plot(xtemp, ytemp, label="Cook"s distance", lw=1, ls="--',_
xtemp, ytemp = self._cooks_dist_line(1) # 1 line
       ax.plot(xtemp, ytemp, lw=1, ls="---', color="red")
      ax.set_xlim(0, max(self_leverage)+0.01)
      ax.set_title("Residuals vs Leverage", fontweight="bold")
      ax_set_xlabel("Leverage")
      ax.set_ylabel("Standardized Residuals")
       ax_legend(loc="upper right")
      return ax
  def vif_table(self):
       VIF table
       VIF, the variance inflation factor, is a measure of multicollinearity.
       VIF > 5 for a variable indicates that it is highly collinear with the
       other input variables.
      vif_df = pd.DataFrame()
      vif_df["Features"] = self.xvar_names
      vif_df["VIF Factor"] = [variance_inflation_factor(self.xvar, i) for i_

¬in range(self.xvar.shape[1])]

       print(vif_df
               .sort_values("VIF Factor")
               .round(2)
   def __cooks_dist_line(self, factor):
       Helper function for plotting Cook's distance curves
      p = self.nparams
      formula = lambda x: np.sqrt((factor * p * (1 - x)) / x)
      x = np.linspace(0.001, max(self.leverage), 50)
      y = formula(x)
      return X, y
```

```
[3]: df = pd.read_csv("qsar_fish_toxicity.csv", delimiter = ";", names = ["CICO",_
     ⇒"SM1_Dz", "GATS1i", "NdsCH", "NdssC", "MLOGP", "LC50"])
     df.shape
[3]: (908, 7)
[4]: df.head()
              SM1_Dz GATS1i NdsCH NdssC MLOGP LC50
        CIC0
[4]:
     0
       3.260
               0.829
                       1.676
                                  0
                                         1
                                            1.453 3.770
     1 2.189
               0.580
                       0.863
                                  0
                                           1.348 3.115
                                         0
     2 2.125
               0.638
                       0.831
                                  0
                                           1.348 3.531
     3 3.027
               0.331
                       1.472
                                           1.807 3.510
                                  1
     4 2.094
               0.827
                       0.860
                                  0
                                           1.886 5.390
[5]: df.tail()
                SM1_Dz GATS1i NdsCH NdssC MLOGP LC50
[5]:
          CIC0
     903 2.801
                 0.728
                                           2 0.736 3.109
                         2.226
                                    0
     904 3.652
                 0.872
                                    2
                                           3 3.983 4.040
                         0.867
     905 3.763
                 0.916
                         0.878
                                    0
                                           6 2.918 4.818
     906 2.831
                                             0.906 5.317
                  1.393
                         1.077
                                    0
                                           1
                                           3 4.754 8.201
     907 4.057
                  1.032
                         1.183
[6]: df.describe()
[6]:
                 CIC0
                           SM1_Dz
                                      GATS1i
                                                   NdsCH
                                                               NdssC
                                                                           MLOGP
     count 908.000000 908.000000 908.000000 908.000000 908.000000
             2.898129
                                                0.229075
                                                                        2.109285
                         0.628468
                                     1.293591
                                                            0.485683
    mean
     std
             0.756088
                         0.428459
                                     0.394303
                                                0.605335
                                                            0.861279
                                                                        1.433181
                         0.000000
                                                            0.000000
     min
             0.667000
                                     0.396000
                                                0.000000
                                                                       -2.884000
     25%
             2.347000
                         0.223000
                                     0.950750
                                                0.000000
                                                            0.000000
                                                                        1.209000
     50%
             2.934000
                         0.570000
                                     1.240500
                                                0.000000
                                                            0.000000
                                                                        2.127000
     75%
             3.407000
                         0.892750
                                     1.562250
                                                0.000000
                                                            1.000000
                                                                        3.105000
             5.926000
                         2.171000
                                     2.920000
                                                4.000000
                                                            6.000000
                                                                        6.515000
     max
                 LC50
           908.000000
    count
    mean
             4.064431
     std
             1.455698
             0.053000
     min
     25%
             3.151750
     50%
             3.987500
     75%
             4.907500
```

[7]: msno_bar(df, figsize=(10,5), fontsize=12)

9.612000

max

[7]: <AxesSubplot:>

[8]: sns.pairplot(df)

[8]: <seaborn.axisgrid.PairGrid at 0x29ef9575550>


```
[9]: plt.figure(figsize = (10,10))
plot = plt.scatter(df["CIC0"], df["LC50"])
plt.xlabel("CICO")
plt.ylabel("LC50")
plt.title("CIC0 vs LC50")
plt.show()
```



```
plt.figure(figsize = (10,10))
plot = plt.scatter(df["MLOGP"], df["LC50"])
plt.xlabel("MLOGP")
plt.ylabel("LC50")
plt.title("MLOGP vs LC50")
plt.show()
```



```
[11]: plt.figure(figsize = (10,10))
  plot = plt.scatter(df["SM1_Dz"], df["LC50"])
  plt.xlabel("SM1_Dz")
  plt.ylabel("LC50")
  plt.title("SM1_Dz vs LC50")
  plt.show()
```



```
[12]: plt.figure(figsize = (10,10))
plot = plt.scatter(df["GATS1i"], df["LC50"])
plt.xlabel("GATS1i")
plt.ylabel("LC50")
plt.title("GATS1i vs LC50")
plt.show()
```


[13]: sns.pairplot(df, hue = "NdsCH")

[13]: <seaborn.axisgrid.PairGrid at 0x29efc718b50>

[14]: <seaborn.axisgrid.PairGrid at 0x29efcaa7400>

[15]: sns.pairplot(df, hue = "LC50")

[15]: <seaborn.axisgrid.PairGrid at 0x29efeb51280>


```
[16]: corr = df.corr()
plt.figure(figsize = (10,10))
sns.heatmap(corr, annot = True).set(title = "Correlation Matrix")
```

[16]: [Text(0.5, 1.0, 'Correlation Matrix')]

2 Normalize, Split the Data, and Perform Dimensionality Reduction

```
[17]: X = df.iloc[:, 0:6]
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
    df_scaled = df
    df_scaled.iloc[:, 0:6] = X_scaled
    Train, Test = train_test_split(df_scaled, test_size=0.2, random_state=101)
    X_test = Test.iloc[:, 0:6]
```

```
y_test = Test.iloc[:, 6:]
X_train = Train.iloc[:, 0:6]
y_train = Train.iloc[:, 6:]
```

```
[81]: plt.figure(figsize = (15,10))
    pca = PCA(n_components=2)
    pc = pca.fit_transform(X_scaled)
    plot = plt.scatter(pc[:,0], pc[:,1], c=df_iloc[:, 6:].values)
    plt.xlabel("PC1")
    plt.ylabel("PC2")
    plt.title("PCA")
    plt.colorbar(plot, label = "LC50")
    plt.show()
```



```
[74]: reducer = umap_UMAP(target_metric="l1", random_state=101) embedding = reducer.fit_transform(X_scaled, y = df.iloc[:, 6:].values)
```

```
[75]: plt.figure(figsize = (15,10))
plot = plt.scatter(embedding[:,0], embedding[:,1], c=df.iloc[:, 6:].values)
plt.title("UMAP")
plt.xlabel("UMAP 1")
```

```
plt_ylabel("UMAP 2")
plt.colorbar(plot, label = "LC50")
plt.show()
```


3 Univariate Model Exploration

3.1 CIC0 vs LC50

```
[15]: mod = smf.ols(formula = "LC50~CICO", data = Train).fit()
    print(mod.summary())
    table = sm.stats.anova_lm(mod, typ=1)
    print(table)
    y_pred = mod.predict(X_test)
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = mean_squared_error(y_test, y_pred, squared = False)
    r2 = r2_score(y_test, y_pred)
    print("MAE: {}\nMSE: {}\nRMSE: {}\nRMSE
```

OLS Regression Results

Dep. Variable:	LC50	R-squared:	0.099
Model:	OLS	Adj. R-squared:	0.098
Method:	Least Squares	F-statistic:	79.97
Date:	Wed, 27 Jul 2022	Prob (F-statistic):	3.14e-18
Time:	13:00:21	Log-Likelihood:	-1257.0
No. Observations:	726	AIC:	2518.
Df Residuals:	724	BIC:	2527.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.0056	0.051	78.850	0.000	3.906	4.105
CIC0	0.4496	0.050	8.943	0.000	0.351	0.548
==========	=======	:======:		========	:========	=======
Omnibus:	: 16.273 Durbin-Watson:					1.946
Prob(Omnibus)		0.	000 Jarq	ue-Bera (JB):		19.812
Skew:		0.	269 Prol	b(JB):		4.99e-05
Kurtosis:		3.	605 Con	d. No.		1.01

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F)
CICO 1.0 149.824163 149.824163 79.968749 3.137657e-18
Residual 724.0 1356.438551 1.873534 NaN NaN

MAE: 1.1518681199451974 MSE: 2.228243869070734 RMSE: 1.4927303403732148

R_squared: -0.0032098309987493856

3.2 SM1_Dz vs LC50

```
[16]: mod = smf.ols(formula = "LC50~SM1_Dz", data = Train).fit()
    print(mod.summary())
    table = sm_stats_anova_lm(mod, typ=1)
    print(table)
    y_pred = mod_predict(X_test)
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = mean_squared_error(y_test, y_pred, squared = False)
    r2 = r2_score(y_test, y_pred)
    print("MAE: {\nMSE: {\nRMSE: {\nRMSE:
```

OLS Regression Results

Dep. Variable: LC50 R-squared: 0.151

Model: OLS Adj. R-squared: 0.150 Least Squares Method: F-statistic: 129.0 Date: Wed, 27 Jul 2022 Prob (F-statistic): 1.25e-27 Time: 13:00:21 Log-Likelihood: -1235.6No. Observations: 726 AIC: 2475. BIC: Df Residuals: 724 2484.

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept SM1_Dz	4.0165 0.5762	0.049 0.051	81.432 11.359	0.000 0.000	3.920 0.477	4.113 0.676
Omnibus: Prob(Omnibus): Skew: Kurtosis:		12.73 0.00 0.16 3.68	2 Jarqu 9 Pro b			1.987 17.750 0.000140 1.03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F)
SM1_Dz 1.0 227.822418 227.822418 129.019268 1.250371e-27
Residual 724.0 1278.440295 1.765802 NaN NaN

MAE: 0.9679574343670176 MSE: 1.7668341949514315 RMSE: 1.3292231546852589 R_squared: 0.2045280775935706

3.3 GATS1i vs LC50

```
[17]: mod = smf.ols(formula = "LC50~GATS1i", data = Train).fit()
    print(mod.summary())
    table = sm_stats_anova_lm(mod, typ=1)
    print(table)
    y_pred = mod_predict(X_test)
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = mean_squared_error(y_test, y_pred, squared = False)
    r2 = r2_score(y_test, y_pred)
    print("MAE: {\nMSE: {\nRMSE: {\nRMSE:
```

OLS Regression Results

Dep. Variable: LC50 R-squared: 0.141

Model: OLS Adj. R-squared: 0.140

Method: Least Squares F-statistic: 118.7 Wed, 27 Jul 2022 Prob (F-statistic): Date: 1.07e-25 Time: 13:00:21 Log-Likelihood: -1240.0AIC: 2484. No. Observations: 726 Df Residuals: 724 BIC: 2493.

Df Model: 1 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept GATS1i	4.0170 -0.5417	0.050 0.050	80.946 -10.894	0.000 0.000	3.920 -0.639	4.114 -0.444
Omnibus: Prob(Omnibus Skew: Kurtosis:		0. 0.		• .	=======	1.998 47.144 5.79e-11 1.02

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq GATS1i 1.0 212.150803 212.150803 118.689257 1.065895e-25 Residual 724.0 1294.111910 1.787447 NaN NaN

MAE: 1.0042377587990872 MSE: 1.7954857477079382 RMSE: 1.339957367869567

R_squared: 0.1916284485189962

3.4 NdsCH vs LC50

```
[18]: mod = smf.ols(formula = "LC50~NdsCH", data = Train).fit()
      print(mod.summary())
      table = sm_stats_anova_lm(mod, typ=1)
      print(table)
      v_pred = mod_predict(X_test)
      mae = mean_absolute_error(y_test, y_pred)
      mse = mean_squared_error(y_test, y_pred)
      rmse = mean_squared_error(y_test, y_pred, squared = False)
      r2 = r2_score(y_test, y_pred)
      print("MAE: {\nMSE: {\nRMSE: {\nR_squared: {\frac{1}{1}}}.format(mae, mse, rmse, r2))
```

OLS Regression Results

Dep. Variable:	LC50	R-squared:	0.035
Model:	OLS	Adj. R-squared:	0.034
Method:	Least Squares	F-statistic:	26.32

Date:	Wed, 27 Jul 2022	Prob (F-statistic):	3.73e-07
Time:	13:00:21	Log-Likelihood:	-1282.1
No. Observations:	726	AIC:	2568.
Df Residuals:	724	BIC:	2577.

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept NdsCH	4.0059 0.2618	0.053 0.051	76.178 5.130	0.000 0.000	3.903 0.162	4.109 0.362
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0.0		•		1.960 26.860 1.47e-06 1.03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F)
NdsCH 1.0 52.829295 52.829295 26.315901 3.726305e-07
Residual 724.0 1453.433418 2.007505 NaN NaN

MAE: 1.1750910409244002 MSE: 2.2797661983049387 RMSE: 1.5098894655917494

R_squared: -0.026406442429465216

3.5 NdssC vs LC50

```
[19]: mod = smf.ols(formula = "LC50~NdssC", data = Train).fit()
print(mod.summary())
table = sm.stats.anova_lm(mod, typ=1)
print(table)
y_pred = mod.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = mean_squared_error(y_test, y_pred, squared = False)
r2 = r2_score(y_test, y_pred)
print("MAE: {\nRMSE: {\nRMSE:
```

OLS Regression Results

Dep. Variable: LC50 R-squared: 0.023
Model: OLS Adj. R-squared: 0.022
Method: Least Squares F-statistic: 17.03
Date: Wed, 27 Jul 2022 Prob (F-statistic): 4.10e-05

Time:	13:00:21	Log-Likelihood:	-1286.6
No. Observations:	726	AIC:	2577.
Df Residuals:	724	BIC:	2586.
	_		

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept NdssC	4.0051 0.2227	0.053 0.054	75.686 4.127	0.000 0.000	3.901 0.117	4.109 0.329
Omnibus: Prob(Omnibus): Skew: Kurtosis:		8.5 0.0 0.1 3.4	14 Jarque 69 Prob(- '		1.973 9.901 0.00708 1.02

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F)
NdssC 1.0 34.623039 34.623039 17.033436 0.000041
Residual 724.0 1471.639674 2.032651 NaN NaN

MAE: 1.149265041501467 MSE: 2.18208473043618 RMSE: 1.477188116130163

R_squared: 0.01757214098887272

3.6 MLOGP vs LC50

```
[20]: mod = smf.ols(formula = "LC50~MLOGP", data = Train).fit()
    print(mod.summary())
    table = sm_stats_anova_lm(mod, typ=1)
    print(table)
    y_pred = mod_predict(X_test)
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = mean_squared_error(y_test, y_pred, squared = False)
    r2 = r2_score(y_test, y_pred)
    print("MAE: {\nRMSE: {\nRMSE:
```

OLS Regression Results

______ Dep. Variable: LC50 R-squared: 0.423 Model: OLS Adj. R-squared: 0.422 F-statistic: Method: Least Squares 531.3 Wed, 27 Jul 2022 Prob (F-statistic): Date: 1.38e-88 Time: 13:00:21 Log-Likelihood: -1095.3 No. Observations: 726 AIC: 2195. Df Residuals: 724 BIC: 2204.

Df Model: 1 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.0443	0.041	99.405	0.000	3.964	4.124
MLOGP	0.9410	0.041	23.050	0.000	0.861	1.021
Omnibus:		 123.	======================================	 -Watson:		2.037
Prob(Omnibus)):	0.0	000 Jarque	-Bera (JB):		322.369
Skew:		0.0	377 Prob(J	IB):		9.97e-71
Kurtosis:		5.7	753 Cond.	No.		1.04
=========	=======	========	========	========	========	======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F)
MLOGP 1.0 637.505102 637.505102 531.280172 1.377389e-88
Residual 724.0 868.757612 1.199941 NaN NaN

MAE: 0.8431096632604543 MSE: 1.3046098164437467 RMSE: 1.1421951744092367

R_squared: 0.41263278600664965

4 Model Exploration

Dep. Variable:

4.1 Multivariate Model with Every Factor

LC50 R-squared:

0.564

Model:	OLS	Adj. R-squared:	0.561
Method:	Least Squares	F-statistic:	155.2
Date:	Wed, 03 Aug 2022	Prob (F-statistic):	4.06e-126
Time:	17:41:47	Log-Likelihood:	-993.50
No. Observations:	726	AIC:	2001.
Df Residuals:	719	BIC:	2033.

Df Model: 6 Covariance Type: nonrobust

========	=======	========	========	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.0379	0.036	113.732	0.000	3.968	4.108
CIC0	0.2863	0.052	5.476	0.000	0.184	0.389
SM1_Dz	0.5260	0.042	12.484	0.000	0.443	0.609
GATS1i	-0.2717	0.045	-5.971	0.000	-0.361	-0.182
NdsCH	0.2326	0.036	6.405	0.000	0.161	0.304
NdssC	0.0476	0.041	1.174	0.241	-0.032	0.127
MLOGP	0.5696	0.055	10.325	0.000	0.461	0.678

91.056 Durbin-Watson: 1.968 Omnibus: 357.171 Prob(Omnibus): 0.000 Jarque-Bera (JB): Skew: 0.522 Prob(JB): 2.76e-78 6.274 Cond. No. **Kurtosis:** 2.91

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

•	df	sum_sq	mean_sq	F	PR(>F)
CIC0	1.0	149.824163	149.824163	164.140644	5.401678e-34
SM1_Dz	1.0	332.561060	332.561060	364.339007	5.071243e-66
GATS1i	1.0	222.531248	222.531248	243.795272	1.525815e-47
NdsCH	1.0	46.872834	46.872834	51.351778	1.917520e-12
NdssC	1.0	0.874501	0.874501	0.958064	3.280044e-01
MLOGP	1.0	97.310678	97.310678	106.609222	2.125854e-23
Residual	719.0	656.288230	0.912779	NaN	NaN

MAE: 0.6646693501498407 MSE: 0.8671610192409167 RMSE: 0.9312148083234698 R_squared: 0.609582922391621

[23]: fig, ax = cls()

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence. ax.plot(x, y, fmt, **plot_style)

	Features	VIF	Factor
0	Intercept		1.00
4	NdsCH		1.11
5	NdssC		1.26
2	SM1_Dz		1.33
3	GATS1i		1.64
1	CIC0		2.22
6	MLOGP		2.40

4.2 Reduced Model

OLS Regression Results

Dep. Variable:	LC50	R-squared:	0.563
Model:	OLS	Adj. R-squared:	0.560
Method:	Least Squares	F-statistic:	185.9
Date:	Wed, 03 Aug 2022	Prob (F-statistic):	5.62e-127
Time:	17:41:50	Log-Likelihood:	-994.20
No. Observations:	726	AIC:	2000.
Df Residuals:	720	BIC:	2028.
Df Madal.	F		

Df Model: 5 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.0381	0.036	113.707	0.000	3.968	4.108
CIC0	0.3066	0.049	6.215	0.000	0.210	0.403
SM1_Dz	0.5407	0.040	13.437	0.000	0.462	0.620
GATS1i	-0.2729	0.045	-5.997	0.000	-0.362	-0.184
NdsCH	0.2432	0.035	6.915	0.000	0.174	0.312
MLOGP	0.5562	0.054	10.302	0.000	0.450	0.662
	=======		CC1 Db.		========	1.075
Omnibus:				n-Watson:		1.975
Prob(Omnibus	s):	0.0	000 Jarqu	e-Bera (JB):		364.204
Skew:		0.	533 Prob	(JB):		8.20e-80
Kurtosis:		6.	302 Cond.	No.		2.71

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

	df	sum_sq	me	ean_sq	F	PR(>F)
CIC0	1.0	149.824163	149.8	24163	164.054642	5.539706e-34
SM1_Dz	1.0	332.561060	332.5	61060	364.148110	5.207671e-66
GATS1i	1.0	222.531248	222.5	31248	243.667534	1.569730e-47
NdsCH	1.0	46.872834	46.8	72834	51.324872	1.939865e-12
MLOGP	1.0	96.927875	96.9	27875	106.134201	2.607435e-23
Residual	720.0	657.54553	4 0.9	913258	NaN	NaN
df_resi	d	ssr df	_diff	ss_dif	ff F	Pr(>F)
0 720	.0 657	7.545534	0.0	Na	aN NaN	NaN
1 719	.0 656	5.288230	1.0	1.25730	04 1.377446	0.240925

MAE: 0.6648025405914847 MSE: 0.8725132414740466 RMSE: 0.9340841725851299 R_squared: 0.6071732211751176

R_squared: 0.60/1/32211/511

[28]: fig, ax = cls()

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence. ax.plot(x, y, fmt, **plot_style)

	Features	VIF Factor
0	Intercept	1.00
4	NdsCH	1.04
2	SM1_Dz	1.22
3	GATS1i	1.64
1	CIC0	1.98
5	MLOGP	2.30

5 Interaction Testing

5.1 All First Order Interaction Terms

```
[29]: mod_3 = smf.ols(formula = 1)
      '--"LC50~(CIC0+SM1_Dz+GATS1i+NdsCH+NdssC+MLOGP)*(CIC0+SM1_Dz+GATS1i+NdsCH+NdssC+MLOGP)",...
      '→data = Train).fit()
     print(mod_3.summary())
     table = sm_stats_anova_lm(mod_3, typ=1)
     print(table)
     variables = mod_3_model_exog
     y_pred = mod_3.predict(X_test)
     mae = mean_absolute_error(y_test, y_pred)
     mse = mean_squared_error(y_test, y_pred)
     rmse = mean_squared_error(y_test, y_pred, squared = False)
     r2 = r2_score(y_test, y_pred)
     cls = Linear_Reg_Diagnostic(mod_3)
     print("MAE: {\nMSE: {\nRMSE: {\nR_squared: {\frac{1}{1}}}.format(mae, mse, rmse, r2))
                             OLS Regression Results
     ______
    Dep. Variable:
                                 LC50
                                        R-squared:
                                                                     0.614
    Model:
                                  OLS
                                        Adj. R-squared:
                                                                     0.603
    Method:
                          Least Squares F-statistic:
                                                                     53.42
                       Wed, 03 Aug 2022 Prob (F-statistic):
                                                                3.18e-130
    Date:
                              17:42:28
                                        Log-Likelihood:
                                                                   -949.12
    Time:
    No. Observations:
                                   726
                                        AIC:
                                                                     1942.
    Df Residuals:
                                  704
                                        BIC:
                                                                     2043.
    Df Model:
                                   21
    Covariance Type:
                             nonrobust
    ______
                      coef
                             std err
                                            t
                                                  P>|t|
                                                            [0.025
    0.9751
    Intercept
                    3.8885
                               0.049
                                       79.473
                                                  0.000
                                                             3.792
    3.985
    CIC0
                    0.3172
                               0.060
                                        5.250
                                                  0.000
                                                             0.199
    0.436
    SM1_Dz
                    0.6134
                               0.044
                                       13.825
                                                  0.000
                                                             0.526
    0.700
                                                  0.000
                    -0.2828
    GATS1i
                               0.050
                                       -5.631
                                                            -0.381
    -0.184
    NdsCH
                    0.2652
                               0.048
                                        5.522
                                                  0.000
                                                             0.171
    0.360
                                                  0.067
    NdssC
                    -0.0940
                               0.051
                                       -1.836
                                                            -0.194
    0.007
```

MLOGP	0.5200	0.067	7.713	0.000	0.388
0.652 CIC0:SM1_Dz	-0.0868	0.053	-1.647	0.100	-0.190
0.017 CIC0:GATS1i	0.0519	0.048	1.077	0.282	-0.043
0.146					
CIC0:NdsCH 0.072	-0.0567	0.066	-0.863	0.388	-0.186
CIC0:NdssC	0.1522	0.052	2.953	0.003	0.051
0.253 CIC0:MLOGP	0.1543	0.034	4.529	0.000	0.087
0.221					
SM1_Dz:GATS1i 0.116	0.0179	0.050	0.357	0.721	-0.081
SM1_Dz:NdsCH	0.0152	0.048	0.318	0.751	-0.079
0.109	0.2140	0.044	1 021	0.000	0 127
SM1_Dz:NdssC 0.301	0.2140	0.044	4.834	0.000	0.127
SM1_Dz:MLOGP	-0.0593	0.048	-1.233	0.218	-0.154
0.035 GATS1i:NdsCH	0.0352	0.057	0.618	0.537	-0.077
0.147					
GATS1i:NdssC 0.085	-0.0024	0.044	-0.054	0.957	-0.089
GATS1i:MLOGP	-0.0179	0.040	-0.447	0.655	-0.096
0.061	0.0400	0.021	1 504	0.111	0.012
NdsCH:NdssC 0.111	0.0499	0.031	1.594	0.111	-0.012
NdsCH:MLOGP	-0.1503	0.070	-2.159	0.031	-0.287
-0.014 NdssC:MLOGP 0.065	-0.0313	0.049	-0.637	0.524	-0.128
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=======	63.570 0.000 0.301 5.810	Durbin-V	Vatson: Bera (JB):):	1.943 249.871 5.51e-55 8.29

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

•	df	sum_sc	nean_so	γ F	PR(>F)
CIC0	1.0	149.824163	149.824163	181.616861	5.428992e-37
SM1_Dz	1.0	332.561060	332.561060	403.130541	3.047164e-71
GATS1i	1.0	222.531248	222.531248	269.752395	1.468387e-51
NdsCH	1.0	46.872834	46.872834	56.819253	1.474241e-13
NdssC	1.0	0.874501	0.874501	1.060070	3.035529e-01

MLOGP	1.0	97.310678	97.310678	117.960011	1.637170e-25
CIC0:SM1_Dz	1.0	0.447692	0.447692	0.542692	4.615646e-01
CIC0:GATS1i	1.0	0.073509	0.073509	0.089107	7.654034e-01
CIC0:NdsCH	1.0	13.029795	13.029795	15.794718	7.788002e-05
CIC0:NdssC	1.0	9.908538	9.908538	12.011131	5.609252e-04
CIC0:MLOGP	1.0	19.988482	19.988482	24.230039	1.065758e-06
SM1_Dz:GATS1i	1.0	1.849727	1.849727	2.242240	1.347346e-01
SM1_Dz:NdsCH	1.0	1.266545	1.266545	1.535306	2.157308e-01
SM1_Dz:NdssC	1.0	16.334674	16.334674	19.800894	9.988010e-06
SM1_Dz:MLOGP	1.0	1.180579	1.180579	1.431098	2.319881e-01
GATS1i:NdsCH	1.0	4.068860	4.068860	4.932272	2.667712e-02
GATS1i:NdssC	1.0	0.008698	0.008698	0.010544	9.182437e-01
GATS1i:MLOGP	1.0	0.153957	0.153957	0.186627	6.658713e-01
NdsCH:NdssC	1.0	2.445800	2.445800	2.964799	8.553430e-02
NdsCH:MLOGP	1.0	4.433940	4.433940	5.374822	2.071503e-02
NdssC:MLOGP	1.0	0.335218	0.335218	0.406351	5.240346e-01
Residual	704.0	580.762216	0.824946	NaN	NaN

MAE: 0.6252053863994669 MSE: 0.8722338398525055 RMSE: 0.9339346014858351

R_squared: 0.6072990146115622

[30]: fig, ax = cls()

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence. ax.plot(x, y, fmt, **plot_style)

	Features	VIF Factor
11	CIC0:MLOGP	1.35
14	SM1_Dz:NdssC	1.47
16	GATS1i:NdsCH	1.64
2	SM1_Dz	1.64
17	GATS1i:NdssC	1.68
8	CIC0:GATS1i	1.72
13	SM1_Dz:NdsCH	1.78
18	GATS1i:MLOGP	1.81
12	SM1_Dz:GATS1i	1.93
7	CIC0:SM1_Dz	2.10
0	Intercept	2.11
4	NdsCH	2.16
3	GATS1i	2.21

```
5
           NdssC
                         2.22
19
     NdsCH:NdssC
                         2.60
15
   SM1_Dz:MLOGP
                         2.71
21
    NdssC:MLOGP
                         2.72
10
      CIC0:NdssC
                         2.99
             CIC0
                         3.28
1
6
           MLOGP
                         3.97
20
     NdsCH:MLOGP
                         5.49
      CIC0:NdsCH
9
                         7.53
```

5.2 Reduced Interactions Model

```
[24]: mod_4 = smf.ols(formula = "LC50~CIC0+SM1_Dz+GATS1i+NdsCH+MLOGP+CIC0:NdssC+CIC0:
       "
MLOGP+SM1_Dz:NdssC+NdsCH:MLOGP", data = Train).fit()
      print(mod_4.summary())
      table = sm_stats_anova_lm(mod_4, typ=1)
      print(table)
      table = sm_stats_anova_lm(mod_4,mod_3, typ=1)
      print(table)
      variables = mod_4_model_exog
      vif = [variance_inflation_factor(variables, i) for i in range(variables.
       '-shape[1])]
      print(vif)
      y_pred = mod_4.predict(X_test)
      mae = mean_absolute_error(y_test, y_pred)
      mse = mean_squared_error(y_test, y_pred)
      rmse = mean_squared_error(y_test, y_pred, squared = False)
      r2 = r2_score(y_test, y_pred)
      cls = Linear_Reg_Diagnostic(mod_4)
      print("MAE: {\nMSE: {\nRMSE: {\nR_squared: {\}".format(mae, mse, rmse, r2))
```

OLS Regression Results

Dep. Variable:	LC50	R-squared:	0.603
Model:	OLS	Adj. R-squared:	0.598
Method:	Least Squares	F-statistic:	121.0
Date:	Wed, 27 Jul 2022	Prob (F-statistic):	2.44e-137
Time:	13:00:21	Log-Likelihood:	-959.51
No. Observations:	726	AIC:	1939.
Df Residuals:	716	BIC:	1985.
Df Model:	٥		

Df Model: 9
Covariance Type: nonrobust

std err [0.025 0.9751 coef P>|t|Intercept 3.9337 0.038 103.544 0.000 3.859 4.008 CIC0 0.3073 0.049 6.314 0.000 0.212 0.403 SM1_Dz 0.5587 0.040 14.049 0.000 0.481 0.637

GATS1i	-0.2886	0.044	-6.526	0.000	-0.375	-0.202
NdsCH	0.2483	0.036	6.813	0.000	0.177	0.320
MLOGP	0.5476	0.053	10.290	0.000	0.443	0.652
CIC0:NdssC	0.1103	0.035	3.192	0.001	0.042	0.178
CIC0:MLOGP	0.1440	0.031	4.578	0.000	0.082	0.206
SM1_Dz:NdssC	0.1658	0.038	4.370	0.000	0.091	0.240
NdsCH:MLOGP	-0.1739	0.034	-5.123	0.000	-0.241	-0.107
=========	========	========	=======	========	========	=====
a		61 406				1 000

Omnibus:	61.426	Durbin-Watson:	1.938
Prob(Omnibus):	0.000	Jarque-Bera (JB):	266.636
Skew:	0.229	Prob(JB):	1.26e-58
Kurtosis:	5.933	Cond. No.	3.63

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df		sum_sq	mean_sq	F	PR(>F)
CIC0	1.0	149.	824163	149.824163	179.503126	1.095941e-36	5
SM1_Dz	1.0	332.	561060	332.561060	398.438735	8.115997e-71	1
GATS1i	1.0	222.	531248	222.531248	266.612901	3.482681e-51	l
NdsCH	1.0	46.	872834	46.872834	56.157966	1.977608e-13	3
MLOGP	1.0	96.	927875	96.927875	116.128508	3.380675e-25	5
CIC0:NdssC	1.0	2.	973956	2.973956	3.563073	5.948244e-02	2
CIC0:MLOGP	1.0	17.	586136	17.586136	21.069809	5.229643e-06	ĵ
SM1_Dz:NdssC	1.0	17.	462449	17.462449	20.921620	5.637720e-06	5
NdsCH:MLOGP	1.0	21.	906098	21.906098	26.245520	3.870201e-07	7
Residual	716.0	597.	616893	0.834660	NaN	NaN	١
df_resid		ssr	df_diff	ss_diff	F	Pr(>F)	
0 716.0	597.610	6893	0.0	NaN	NaN	NaN	
1 704.0	580.762	2216	12.0	16.854678	1.702603	0.061921	
[1.25541680949	99518,	2.1044	9819054	82576, 1.300	045389788847	799, 1.69343129	9597

[1.255416809499518, 2.1044981905482576, 1.3004538978884799, 1.6934312959727862, 1.2264784684887298, 2.443022742239267, 1.3292692131540762, 1.1348823438792845, 1.0676744718552331, 1.2905891804746232]

MAE: 0.6466933021246712 MSE: 0.9118498576541835 RMSE: 0.9549082980339962

R_squared: 0.5894629154864519

[31]: fig, ax = cls()

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence. ax.plot(x, y, fmt, **plot_style)

	Features	VIF Factor
11	CIC0:MLOGP	1.35
14	SM1_Dz:NdssC	1.47
16	GATS1i:NdsCH	1.64
2	SM1_Dz	1.64
17	GATS1i:NdssC	1.68
8	CIC0:GATS1i	1.72
13	SM1_Dz:NdsCH	1.78
18	GATS1i:MLOGP	1.81
12	SM1_Dz:GATS1i	1.93
7	CIC0:SM1_Dz	2.10
0	Intercept	2.11
4	NdsCH	2.16
3	GATS1i	2.21

5 NdssC	2.22
19 NdsCH:NdssC	2.60
15 SM1_Dz:MLOGP	2.71
21 NdssC:MLOGP	2.72
10 CIC0:NdssC	2.99
1 CIC0	3.28
6 MLOGP	3.97
20 NdsCH:MLOGP	5.49
9 CIC0:NdsCH	7.53

6 Evaluation of Linear Models

There doesn't seem to be much good performance with Linear Models on this dataset. While the model with all first order interaction terms did perform the best, it may be due to there being more features. There was no significance between both reduced models and their respective parent model. The models with interaction terms had less MAE, but had worse MSE, meaning errors may be bigger when interaction terms are included. R^2 on the test data for the models without interaction was higher as well. It is unlikely that interaction is present. Assumptions for linear regression hold for each model.

7 KNN Regression

7.1 KNN Example 6 Neighbors

```
[32]: knn1 = KNeighborsRegressor(n_neighbors=6)
knn1.fit(X_train, y_train)
knn1.score(X_test, y_test)
y_pred = knn1.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = mean_squared_error(y_test, y_pred, squared = False)
r2 = r2_score(y_test, y_pred)
print("MAE: {}\nMSE: {}\nRMSE: {}\nR_squared: {}".format(mae, mse, rmse, r2))
MAE: 0.5972747252747254
MSE: 0.7172062567155068
```

MAE: 0.5972747252747254 MSE: 0.7172062567155068 RMSE: 0.8468803083762821

R_squared: 0.6770962202216795

7.2 Grid Search Optimization for KNN

```
[33]: scoring = {"MSE": "neg_mean_squared_error", "R2":"r2"}

# Setting refit='AUC', refits an estimator on the whole dataset with the
# parameter setting that has the best cross-validated AUC score.
# That estimator is made available at ``gs.best_estimator_`` along with
# parameters like ``gs.best_score_``, ``gs.best_params_`` and
```

```
# ``gs.best_index_``
gs = GridSearchCV(
    KNeighborsRegressor(),
     param_grid={"n_neighbors": range(1, 6), "weights":["uniform","distance"],
  ' \rightarrow "p":[1,2]
     scoring=scoring,
     refit="MSE",
     return_train_score=True,
     n_{jobs} = -1,
    cv = 100,
    verbose = 3
)
gs.fit(X_train, y_train)
results = gs.cv_results_
Fitting 100 folds for each of 20 candidates, totalling 2000 fits
```

```
[34]: gs.best_params_
```

```
[34]: {'n_neighbors': 5, 'p': 1, 'weights': 'distance'}
```

```
[35]: knn = gs.best_estimator_
```

```
[36]: y_pred = knn.predict(X_test)
      mae = mean_absolute_error(y_test, y_pred)
      mse = mean_squared_error(y_test, y_pred)
      rmse = mean_squared_error(y_test, y_pred, squared = False)
      r2 = r2_score(y_test, y_pred)
      print("MAE: {\nMSE: {\nRMSE: {\nR_squared: {\}".format(mae, mse, rmse, r2))
```

MAE: 0.549976177393366 MSE: 0.6426008012295652 RMSE: 0.8016238527074685 R_squared: 0.7106854190650043

7.3 PCA and KNN

```
[28]: def get_models():
          models = dict()
          for i in range(1,7):
              steps = [('pca', PCA(n_components=i)), ('n',_

→KNeighborsRegressor(n_neighbors=5, p = 1, weights = "distance"))]

              models[str(i)] = Pipeline(steps=steps)
          return models
      # evaluate a given model using cross-validation
      def evaluate_model(model, X, y):
          cv = KFold(n_splits=5, random_state=101, shuffle = True)
```

```
scores = cross_val_score(model, X, y, scoring="neg_mean_squared_error",_
       '→cv=cv, n_jobs=-1, error_score="raise")
          return scores
      # get the models to evaluate
      models = get_models()
      # evaluate the models and store results
      results, names = list(), list()
      for name, model in models.items():
          scores = evaluate_model(model, X_train, y_train)
          results.append(scores)
          names.append(name)
          print(">%s %.3f (%.3f)" % (name, mean(scores), std(scores)))
     >1 -1.738 (0.114)
     >2 -1.161 (0.140)
     >3 -0.950 (0.105)
     >4 -0.812 (0.157)
     >5 -0.866 (0.141)
     >6 -0.847 (0.148)
[29]: steps = [('pca', PCA(n_components=4)), ('i', KNeighborsRegressor(n_neighbors=5,_
       □p = 1, weights = "distance"))]
      model = Pipeline(steps=steps)
      model.fit(X_train, y_train)
      y_pred = model.predict(X_test)
      mae = mean_absolute_error(y_test, y_pred)
      mse = mean_squared_error(y_test, y_pred)
      rmse = mean_squared_error(y_test, y_pred, squared = False)
      r2 = r2_score(y_test, y_pred)
      print("MAE: {\nMSE: {\nRMSE: {\nR_squared: {\frac{1}{\n}} .format(mae, mse, rmse, r2)}
     MAE: 0.5937420511872225
     MSE: 0.7569008399616851
     RMSE: 0.8700004827364667
     R_squared: 0.6592247490139198
```

8 Evaluation of KNN

KNN improves performance on the Test dataset. It was optimized, and led to a higher R^2 score and lower MSE. PCA compresses the data too much and does not allow for meaningful relationships to be seen by the model. KNN with 5 neighbors, l1 distance performs the best on the data.

9 Gradient Descent

```
[30]: sgd_reg = SGDRegressor(max_iter=1000, tol=1e-3, penalty="l2", eta0=0.01)
    sgd_reg.fit(X_train, y_train.values.ravel())
    sgd_reg.intercept_, sgd_reg.coef_
    y_pred = sgd_reg.predict(X_test)
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = mean_squared_error(y_test, y_pred, squared = False)
    r2 = r2_score(y_test, y_pred)
    print("MAE: {}\nMSE: {}\nRMSE: {}\nR_squared: {}".format(mae, mse, rmse, r2))

MAE: 0.6641009021334089
    MSE: 0.8673091952076947
    RMSE: 0.931294365497663
    R_squared: 0.6095162099510966
```

10 Evaluation of Gradient Descent

Same performance as linear model but is outperformed by KNN. Cant be optimized as well since parameters are continuous

11 11. Ridge, Lasso, and Elasticnet Regularization

11.1 Ridge Regression

```
[39]: poly = PolynomialFeatures(2)
      poly_X_train = poly.fit_transform(X_train)
      poly_X_test = poly.fit_transform(X_test)
      ridge_reg = Ridge(alpha=1, solver= "auto")
      ridge_reg.fit(poly_X_train , y_train)
      y_pred= ridge_reg.predict(poly_X_test)
      mae = mean_absolute_error(y_test, y_pred)
      mse = mean_squared_error(y_test, y_pred)
      rmse = mean_squared_error(y_test, y_pred, squared = False)
      r2 = r2_score(y_test, y_pred)
      print("MAE: {\nMSE: {\nRMSE: {\nR_squared: {\frac{1}{\n}} .format(mae, mse, rmse, r2)}
     MAE: 0.6192753750697797
     MSE: 0.8440158736842909
     RMSE: 0.9187033654473521
     R_squared: 0.6200034324105659
[62]: intercept = ridge_reg.intercept_[0]
      print("E(y) = " + str(intercept), end =" ")
      i = 1
      for coef in ridge_reg.coef_[0]:
          print("+" + str(coef) + "*X_"+ str(i),end ="")
```

```
i+=1
```

```
 E(y) = 3.892252012873493 + 0.0*X_1 + 0.3009287547124961*X_2 + 0.5846542581855313*X_3 + -0.2885722891861736*X_4 + 0.33561044270534446*X_5 + -0.04691621569339529*X_6 + 0.5147181910314026*X_7 + -0.011844581261028983*X_8 + -0.07988945669958426*X_9 + 0.0724036613395784*X_10 + -0.027615552497574667*X_11 + 0.17945067847378657*X_12 + 0.16240783769337988*X_13 + 0.04029647132214782*X_14 + 0.017151044825168892*X_15 + -0.005330546352793698*X_16 + 0.23548063628815477*X_17 + -0.07834081616696212*X_18 + 0.009090663384291042*X_19 + 0.014132939074507442*X_20 + -0.02385617257690637*X_21 + -0.013281152434592177*X_22 + -0.02893142065627501*X_23 + 0.06865771394750197*X_24 + -0.16582416385791565*X_25 + -0.0317079979197357*X_26 + -0.059135522124548326*X_27 + 0.0019317900535462068*X_28 \\
```

11.2 Lasso Regression

MAE: 0.6531654769265813 MSE: 0.8695790137885683 RMSE: 0.9325122057048735 R_squared: 0.608494282169078

```
[67]: intercept = lasso_reg.intercept_[0]
print("E(y) = " + str(intercept), end =" ")
i = 1
for coef in lasso_reg.coef_:
    print("+ " + str(coef) + "*X_"+ str(i),end =" ")
i+=1
```

 $E(y) = 3.9173103213192504 + 0.0*X_1 + 0.19886736243419062*X_2 + 0.4559465671701525*X_3 + -0.21256611454121532*X_4 + 0.18174835873080378*X_5 + 0.0*X_6 + 0.5931181518839378*X_7 + 0.04905532044355343*X_8 + -0.0*X_9 + 0.0*X_10 + -0.0*X_{11} + 0.050231234305945914*X_{12} + 0.04983652536927835*X_{13} + 0.02268194583406715*X_{14} + 0.0*X_{15} + 0.0*X_{16} + 0.09999300518796372*X_{17} + -0.03501765577178401*X_{18} + -0.0*X_{19} + 0.0*X_{20} + 0.0*X_{21} + 0.0*X_{22} + 0.0*X_{23} + 0.017039571692934158*X_{24} + -0.10798183174529531*X_{25} + 0.011519941933311422*X_{26} + 0.0*X_{27} + 0.0*X_{28}$

11.3 Elasticnet

```
[68]: elastic_net = ElasticNet(alpha=0.01, l1_ratio=0.01)
               elastic_net.fit(poly_X_train, y_train)
               y_pred = elastic_net.predict(poly_X_test)
               mae = mean_absolute_error(y_test, y_pred)
               mse = mean_squared_error(y_test, y_pred)
               rmse = mean_squared_error(y_test, y_pred, squared = False)
               r2 = r2_score(y_test, y_pred)
               print("MAE: {}\nMSE: {}\nRMSE: {}\nR_squared: {}".format(mae, mse, rmse, r2))
             MAE: 0.6197670116899672
             MSE: 0.8445688324608495
             RMSE: 0.9190042613942818
             R squared: 0.6197544768592995
[69]: intercept = elastic_net.intercept_[0]
               print("E(y) = " + str(intercept), end =" ")
               for coef in elastic_net.coef_:
                        print("+ " + str(coef) + "*X_"+ str(i),end =" ")
             E(y) = 3.8846309242680777 + 0.0*X_1 + 0.2927933522346351*X_2 +
             0.5701587565393743*X_3 + -0.2853155296133328*X_4 + 0.3232608010829245*X_5 +
             -0.040683191849905674*X_6 + 0.5176625959975297*X_7 + -0.005686391706115492*X_8 + 0.5176625959975297*X_8 + 0.51766259759757*X_8 + 0.517662597597*X_8 + 0.517662597597*X_8 + 0.517662597597*X_8 + 0.517662597597*X_8 + 0.517662597597*X_8 + 0.517662597597*X_8 + 0.51766259757*X_8 + 0.51766259757*X_8 + 0.51766259757*X_8 + 0.51766259757*X_8 + 0.51766259757*X_8 + 0.517662597*X_8 + 0.517667*X_8 + 
             -0.07347373561585265*X_9 + 0.06744551223755198*X_10 + -0.026991311089282124*X_11
             + 0.17140210905060943*X_{12} + 0.1489001291691723*X_{13} + 0.04387944907565253*X_{14}
             + 0.015432694442330381*X_15 + -0.003522939339889553*X_16 +
             0.22665360496982379*X_17 + -0.07987184434323709*X_18 + 0.010778170793633652*X_19
             + 0.015419767927768628*X_20 + -0.019190216994567962*X_21 +
             -0.004776018749484832*X_22 + -0.026267038845699857*X_23 +
             0.06587236709111102*X_24 + -0.16512229677517617*X_25 +
             -0.029005690231739913*X_{26} + -0.05148489107405104*X_{27} +
             0.008550690699392257*X_28
```

12 Evaluation of Regularization

Slight improvement, but not as good as KNN

13 Ridge, Lasso, and Elasticnet Regularization

```
[74]: scoring = {"MSE": "neg_mean_squared_error", "R2":"r2"}

# Setting refit='AUC', refits an estimator on the whole dataset with the 
# parameter setting that has the best cross-validated AUC score.

# That estimator is made available at ``gs.best_estimator_`` along with 
# parameters like ``gs.best_score_``, ``gs.best_params_`` and
```

```
# ``gs.best_index_``
gs = GridSearchCV(
    RandomForestRegressor(),
    param_grid={"n_estimators": [10,25,30,50,100,200], "max_depth":
    -[2,3,5,10,20], "min_samples_leaf":[5,10,20,50,100,200]},
    scoring=scoring,
    refit="MSE",
    return_train_score=True,
    n_jobs = -1,
    cv = 20,
    verbose = 3
)
gs.fit(X_train, y_train.values.ravel())
results = gs.cv_results_
```

Fitting 20 folds for each of 180 candidates, totalling 3600 fits

```
[75]: gs.best_params_
[75]: {'max_depth': 20, 'min_samples_leaf': 5, 'n_estimators': 50}
[76]: rf = gs.best_estimator_
```

```
[77]: y_pred = rf.predict(X_test)
  mae = mean_absolute_error(y_test, y_pred)
  mse = mean_squared_error(y_test, y_pred)
  rmse = mean_squared_error(y_test, y_pred, squared = False)
  r2 = r2_score(y_test, y_pred)
  print("MAE: {}\nMSE: {}\nRMSE: {}\nR_squared: {}".format(mae, mse, rmse, r2))
```

MAE: 0.6061146426280116 MSE: 0.7715916605381403 RMSE: 0.8784029033069849 R_squared: 0.6526105826597295

14 Evaluation of Random Forest Regression

Allows for the learning of nonlinear trends, increases in performance compared to linear models and regularization techniques, indicating there is a nonlinear trend in the data.

15 Neural Network Regression

```
[268]: NN_model = Sequential()

NN_model.add(Dense(64, kernel_initializer="normal",input_dim = 6,_

→activation="relu"))
```

Model: "sequential_32"

Layer (type)	Output Shape	Param #
dense_167 (Dense)	(None, 64)	448
dense_168 (Dense)	(None, 64)	4160
dense_169 (Dense)	(None, 128)	8320
dense_170 (Dense)	(None, 64)	8256
dense_171 (Dense)	(None, 32)	2080
dense_172 (Dense)	(None, 1)	33

Total params: 23,297 Trainable params: 23,297 Non-trainable params: 0

```
checkpoint_name = "Weights-{epoch:03d}--{val_loss:.5f}.hdf5"
checkpoint = ModelCheckpoint(checkpoint_name, monitor="val_loss", verbose = 3, -save_best_only = True, mode = "auto")
callbacks_list = [checkpoint]
```

Epoch 1: val_loss improved from inf to 0.93916, saving model to Weights-001--0.93916.hdf5

Epoch 2: val_loss improved from 0.93916 to 0.88233, saving model to Weights-002 --0.88233.hdf5

Epoch 3: val_loss did not improve from 0.88233

Epoch 4: val_loss improved from 0.88233 to 0.84274, saving model to Weights-004 --0.84274.hdf5

Epoch 5: val_loss did not improve from 0.84274

Epoch 6: val_loss improved from 0.84274 to 0.82479, saving model to Weights-006 --0.82479.hdf5

Epoch 7: val_loss did not improve from 0.82479

Epoch 8: val_loss did not improve from 0.82479

Epoch 9: val_loss did not improve from 0.82479

Epoch 10: val_loss improved from 0.82479 to 0.78585, saving model to Weights-010 --0.78585.hdf5

Epoch 11: val_loss improved from 0.78585 to 0.76202, saving model to Weights-011 --0.76202.hdf5

Epoch 12: val_loss did not improve from 0.76202

Epoch 13: val_loss did not improve from 0.76202

Epoch 14: val_loss improved from 0.76202 to 0.75242, saving model to Weights-014 --0.75242.hdf5

Epoch 15: val_loss did not improve from 0.75242

Epoch 16: val_loss did not improve from 0.75242

Epoch 17: val_loss did not improve from 0.75242

Epoch 18: val_loss improved from 0.75242 to 0.74493, saving model to Weights-018 --0.74493.hdf5

Epoch 19: val_loss did not improve from 0.74493

Epoch 20: val_loss did not improve from 0.74493

Epoch 21: val_loss did not improve from 0.74493

Epoch 22: val_loss improved from 0.74493 to 0.73038, saving model to Weights-022 --0.73038.hdf5

- Epoch 23: val_loss did not improve from 0.73038
- Epoch 24: val_loss did not improve from 0.73038
- Epoch 25: val_loss did not improve from 0.73038
- Epoch 26: val_loss did not improve from 0.73038
- Epoch 27: val_loss did not improve from 0.73038
- Epoch 28: val_loss did not improve from 0.73038
- Epoch 29: val_loss did not improve from 0.73038
- Epoch 30: val_loss did not improve from 0.73038
- Epoch 31: val_loss did not improve from 0.73038
- Epoch 32: val_loss did not improve from 0.73038
- Epoch 33: val_loss did not improve from 0.73038
- Epoch 34: val_loss did not improve from 0.73038
- Epoch 35: val_loss did not improve from 0.73038
- Epoch 36: val_loss did not improve from 0.73038
- Epoch 37: val_loss did not improve from 0.73038
- Epoch 38: val_loss did not improve from 0.73038
- Epoch 39: val_loss did not improve from 0.73038
- Epoch 40: val_loss improved from 0.73038 to 0.71186, saving model to Weights-040 --0.71186.hdf5
- Epoch 41: val_loss did not improve from 0.71186
- Epoch 42: val_loss did not improve from 0.71186
- Epoch 43: val_loss did not improve from 0.71186
- Epoch 44: val_loss did not improve from 0.71186
- Epoch 45: val_loss did not improve from 0.71186
- Epoch 46: val_loss did not improve from 0.71186

Epoch 47: val_loss did not improve from 0.71186 Epoch 48: val_loss did not improve from 0.71186 Epoch 49: val_loss did not improve from 0.71186 Epoch 50: val_loss did not improve from 0.71186 Epoch 51: val_loss did not improve from 0.71186 Epoch 52: val_loss did not improve from 0.71186 Epoch 53: val_loss did not improve from 0.71186 Epoch 54: val_loss did not improve from 0.71186 Epoch 55: val_loss did not improve from 0.71186 Epoch 56: val_loss did not improve from 0.71186 Epoch 57: val_loss did not improve from 0.71186 Epoch 58: val_loss did not improve from 0.71186 Epoch 59: val_loss did not improve from 0.71186 Epoch 60: val_loss did not improve from 0.71186 Epoch 61: val_loss did not improve from 0.71186 Epoch 62: val_loss did not improve from 0.71186 Epoch 63: val_loss did not improve from 0.71186 Epoch 64: val_loss did not improve from 0.71186 Epoch 65: val_loss did not improve from 0.71186 Epoch 66: val_loss did not improve from 0.71186 Epoch 67: val_loss did not improve from 0.71186 Epoch 68: val_loss did not improve from 0.71186 Epoch 69: val_loss did not improve from 0.71186 Epoch 70: val_loss did not improve from 0.71186 Epoch 71: val_loss did not improve from 0.71186 Epoch 72: val_loss did not improve from 0.71186 Epoch 73: val_loss did not improve from 0.71186 Epoch 74: val_loss did not improve from 0.71186 Epoch 75: val_loss did not improve from 0.71186 Epoch 76: val_loss did not improve from 0.71186 Epoch 77: val_loss did not improve from 0.71186 Epoch 78: val_loss did not improve from 0.71186 Epoch 79: val_loss did not improve from 0.71186 Epoch 80: val_loss did not improve from 0.71186 Epoch 81: val_loss did not improve from 0.71186 Epoch 82: val_loss did not improve from 0.71186 Epoch 83: val_loss did not improve from 0.71186 Epoch 84: val_loss did not improve from 0.71186 Epoch 85: val_loss did not improve from 0.71186 Epoch 86: val_loss did not improve from 0.71186 Epoch 87: val_loss did not improve from 0.71186 Epoch 88: val_loss did not improve from 0.71186 Epoch 89: val_loss did not improve from 0.71186 Epoch 90: val_loss did not improve from 0.71186 Epoch 91: val_loss did not improve from 0.71186 Epoch 92: val_loss did not improve from 0.71186 Epoch 93: val_loss did not improve from 0.71186 Epoch 94: val_loss did not improve from 0.71186

print("MAE: {\nMSE: {\nRMSE: {\nR_squared: {\frac{1}{\n}} .format(mae, mse, rmse, r2)}

6/6 [=======] - 0s 3ms/step

Epoch 95: val_loss did not improve from 0.71186

MAE: 0.5881101118706086 MSE: 0.7509005102090602 RMSE: 0.8665451576283029

R_squared: 0.6619262440704632

16 Evaluation of Neural Network

Took a while to train, but negligible increase in performance compared to the random forest and worse performance than KNN. Distance based modeling is a necessity in this case.