Predictors that Specialize

Yoav Freund

March 3, 2025

Outline

Outline

The specialists setup

bounding cumulative loss using relative entropy

Outline

The specialists setup

bounding cumulative loss using relative entropy

Applications of specialists

Up till now we assumed that each expert makes a prediction at each iteration.

- Up till now we assumed that each expert makes a prediction at each iteration.
- Imagine that experts are specialists, they predict only some of the time.

- Up till now we assumed that each expert makes a prediction at each iteration.
- Imagine that experts are specialists, they predict only some of the time.
- Gives the designer a lot of flexibility.

- Up till now we assumed that each expert makes a prediction at each iteration.
- Imagine that experts are specialists, they predict only some of the time.
- Gives the designer a lot of flexibility.
- Generalizes the switching experts setup.

On each iteration t = 1, 2, 3, ...

▶ Adversary chooses a set $E^t \subseteq \{1, ..., N\}$ of awake specialists.

- Adversary chooses a set $E^t \subseteq \{1, ..., N\}$ of awake specialists.
- Adversary chooses predictions for specialists in E^t

- Adversary chooses a set $E^t \subseteq \{1, ..., N\}$ of awake specialists.
- Adversary chooses predictions for specialists in E^t
- Algorithm chooses it's prediction.

- Adversary chooses a set $E^t \subseteq \{1, ..., N\}$ of awake specialists.
- Adversary chooses predictions for specialists in E^t
- Algorithm chooses it's prediction.
- Adversary chooses outcome.

- Adversary chooses a set $E^t \subseteq \{1, ..., N\}$ of awake specialists.
- Adversary chooses predictions for specialists in E^t
- Algorithm chooses it's prediction.
- Adversary chooses outcome.
- Algorithm suffers loss. Specialists in E^t suffer loss. Sleeping specialists suffer no loss.

Algorithm has to predict on each iteration

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- → makes no sense to compare to total loss of best specialist.

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- makes no sense to compare to total loss of best specialist.
- ▶ **u**: comparator distribution, $u_i \ge 0$, $\sum_i u_i = 1$.

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- makes no sense to compare to total loss of best specialist.
- ▶ **u**: comparator distribution, $u_i \ge 0$, $\sum_i u_i = 1$.
- ► Average loss w.r.t. **u**: $\ell_{\mathbf{u}}^{t} \doteq \frac{\sum_{i \in \mathcal{E}^{t}} u_{i} \ell_{i}^{t}}{\sum_{i \in \mathcal{E}^{t}} u_{i}}$

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- makes no sense to compare to total loss of best specialist.
- ▶ **u**: comparator distribution, $u_i \ge 0$, $\sum_i u_i = 1$.
- ▶ Average loss w.r.t. \mathbf{u} : $\ell_{\mathbf{u}}^t \doteq \frac{\sum_{i \in \mathcal{E}^t} u_i \ell_i^t}{\sum_{i \in \mathcal{E}^t} u_i}$
- ► Goal: $L_A \leq \min_{\mathbf{u}} \sum_{t=1}^{T} \ell_{\mathbf{u}}^t + \text{something small}$

► We focus on normalized weights:

$$v_i^t = \frac{w_i^t}{\sum_{j=1}^N w_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

► We focus on normalized weights:

$$\mathbf{v}_i^t = \frac{\mathbf{w}_i^t}{\sum_{j=1}^N \mathbf{w}_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

Algorithm: treat the set E_t as the set of experts.

► We focus on normalized weights:

$$v_i^t = \frac{w_i^t}{\sum_{j=1}^N w_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

- \triangleright Algorithm: treat the set E_t as the set of experts.
- Normalize the weights of specialists in E_t so that

$$\sum_{i \in E^t} v_i^t = \sum_{i \in E^t} v_i^{t+1}$$

We focus on normalized weights:

$$\mathbf{v}_i^t = \frac{\mathbf{w}_i^t}{\sum_{j=1}^N \mathbf{w}_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

- Algorithm: treat the set E_t as the set of experts.
- Normalize the weights of specialists in E_t so that

$$\sum_{i \in E^t} v_i^t = \sum_{i \in E^t} v_i^{t+1}$$

In particular: total weight is always 1.

 \triangleright $x_{t,i}$ prediction of expert i on iteration t

- \triangleright $x_{t,i}$ prediction of expert i on iteration t
- $ightharpoonup \hat{y}_t$ prediction of algorithm.

- \triangleright $x_{t,i}$ prediction of expert *i* on iteration *t*
- \triangleright \hat{y}_t prediction of algorithm.
- \triangleright y_t outcome at iteration t (0 or 1)

- \triangleright $x_{t,i}$ prediction of expert i on iteration t
- \triangleright \hat{y}_t prediction of algorithm.
- \triangleright y_t outcome at iteration t (0 or 1)

$$\ell_A^t = L(\hat{y}_t, y_t) = \begin{cases} -\ln \hat{y}_t & \text{if } y_t = 1\\ -\ln(1 - \hat{y}_t) & \text{if } y_t = 0 \end{cases}$$

- \triangleright $x_{t,i}$ prediction of expert *i* on iteration *t*
- \triangleright \hat{y}_t prediction of algorithm.
- \triangleright y_t outcome at iteration t (0 or 1)

$$\ell_A^t = L(\hat{y}_t, y_t) = \begin{cases} -\ln \hat{y}_t & \text{if } y_t = 1\\ -\ln(1 - \hat{y}_t) & \text{if } y_t = 0 \end{cases}$$

 \triangleright ℓ_i^t defined similarly for expert *i*

Iterate for $t = 1, 2, \dots, T$

Iterate for $t = 1, 2, \dots, T$

1. Predict with the weighted average of the experts' predictions:

$$\hat{y}_t = \sum_{i=1}^N p_{t,i} x_{t,i}$$

Iterate for $t = 1, 2, \dots, T$

1. Predict with the weighted average of the experts' predictions:

$$\hat{y}_t = \sum_{i=1}^N p_{t,i} x_{t,i}$$

2. Observe outcome y_t .

Iterate for $t = 1, 2, \dots, T$

1. Predict with the weighted average of the experts' predictions:

$$\hat{y}_t = \sum_{i=1}^N p_{t,i} x_{t,i}$$

- 2. Observe outcome y_t.
- 3. Update the posterior distribution:

$$p_{t+1,i} = \begin{cases} \frac{p_{t,i} x_{t,i}}{\hat{y}_t} & \text{if } y_t = 1\\ \frac{p_{t,i} (1 - x_{t,i})}{1 - \hat{y}_t} & \text{if } y_t = 0 \end{cases}$$

Iterate for $t = 1, 2, \dots, T$

Iterate for $t = 1, 2, \dots, T$

1. Predict with the weighted average of the predictions of the awake specialists:

$$\hat{y}_t = \frac{\sum_{i \in E_t} p_{t,i} x_{t,i}}{\sum_{i \in E_t} p_{t,i}}$$

where E_t is the set of awake specialists.

Iterate for $t = 1, 2, \dots, T$

1. Predict with the weighted average of the predictions of the awake specialists:

$$\hat{y}_t = \frac{\sum_{i \in E_t} p_{t,i} x_{t,i}}{\sum_{i \in E_t} p_{t,i}}$$

where E_t is the set of awake specialists.

2. Observe outcome y_t .

Iterate for $t = 1, 2, \dots, T$

 Predict with the weighted average of the predictions of the awake specialists:

$$\hat{y}_t = \frac{\sum_{i \in E_t} p_{t,i} x_{t,i}}{\sum_{i \in E_t} p_{t,i}}$$

where E_t is the set of awake specialists.

- 2. Observe outcome y_t.
- 3. Update the posterior distribution:

if
$$i \in E_t$$
: $p_{t+1,i} = \begin{cases} \frac{p_{t,i} x_{t,i}}{\hat{y}_t} & \text{if } y_t = 1\\ \frac{p_{t,i} (1 - x_{t,i})}{1 - \hat{y}_t} & \text{if } y_t = 0 \end{cases}$
if $i \notin E_t$: $p_{t+1,i} = p_{t,i}$

For any sequence of awake specialists E_1, \ldots, E_T , specialist predictions and outcomes, and for any comparator \mathbf{u} :

$$\sum_{t=1}^{T} u(E^{t}) \ell_{A}^{t} \leq \sum_{t=1}^{T} \sum_{i \in E^{t}} u_{i} \ell_{i}^{t} + \operatorname{RE} \left(\mathbf{u} \parallel \mathbf{v}^{1} \right)$$

For any sequence of awake specialists E_1, \ldots, E_T , specialist predictions and outcomes, and for any comparator \mathbf{u} :

$$\sum_{t=1}^{T} u(E^{t}) \ell_{A}^{t} \leq \sum_{t=1}^{T} \sum_{i \in E^{t}} u_{i} \ell_{i}^{t} + \operatorname{RE} \left(\mathbf{u} \parallel \mathbf{v}^{1} \right)$$

 $ightharpoonup \operatorname{RE}(\mathbf{u} \parallel \mathbf{v}) \doteq \sum_i u_i \log \frac{u_i}{v_i}$

For any sequence of awake specialists E_1, \dots, E_T , specialist predictions and outcomes, and for any comparator **u**:

$$\sum_{t=1}^{T} u(E^{t}) \ell_{A}^{t} \leq \sum_{t=1}^{T} \sum_{i \in E^{t}} u_{i} \ell_{i}^{t} + \operatorname{RE} \left(\mathbf{u} \parallel \mathbf{v}^{1} \right)$$

- $ightharpoonup \operatorname{RE}(\mathbf{u} \parallel \mathbf{v}) \doteq \sum_i u_i \log \frac{u_i}{v_i}$
- $ightharpoonup u(E^t) \doteq \sum_{i \in E^t} u_i$

▶ For any sequence of awake specialists $E_1, ..., E_T$, specialist predictions and outcomes, and for any comparator \mathbf{u} :

$$\sum_{t=1}^{T} u(E^{t}) \ell_{A}^{t} \leq \sum_{t=1}^{T} \sum_{i \in E^{t}} u_{i} \ell_{i}^{t} + \operatorname{RE} \left(\mathbf{u} \parallel \mathbf{v}^{1} \right)$$

- ► RE $(\mathbf{u} \parallel \mathbf{v}) \doteq \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}}$
- $ightharpoonup u(E^t) \doteq \sum_{i \in E^t} u_i$
- ▶ If we assume that $u(E^t) = U$ is constant, we get

$$L_{A} \leq \sum_{t=1}^{T} \ell_{\mathbf{u}}^{t} + \frac{\operatorname{RE}\left(\mathbf{u} \parallel \mathbf{v}^{1}\right)}{U}$$

Lemma:

$$RE(\mathbf{u} \parallel p_t) - RE(\mathbf{u} \parallel p_{t+1}) = u(E_t)L(\hat{y}_t, y_t) - \sum_{i \in E_t} u_iL(x_{t,i}, y_t)$$

Lemma:

$$RE(\mathbf{u} \parallel p_t) - RE(\mathbf{u} \parallel p_{t+1}) = u(E_t)L(\hat{y}_t, y_t) - \sum_{i \in E_t} u_iL(x_{t,i}, y_t)$$

From definition of RE(|):

$$RE(\mathbf{u} \parallel p_t) - RE(\mathbf{u} \parallel p_{t+1}) = \sum_{i \in F_t} u_i \ln \frac{p_{t+1,i}}{p_{t,i}}$$

Lemma:

$$\operatorname{RE}(\mathbf{u} \parallel p_t) - \operatorname{RE}(\mathbf{u} \parallel p_{t+1}) = u(E_t)L(\hat{y}_t, y_t) - \sum_{i \in E_t} u_iL(x_{t,i}, y_t)$$

From definition of RE(|):

$$RE(\mathbf{u} \parallel p_t) - RE(\mathbf{u} \parallel p_{t+1}) = \sum_{i \in E_t} u_i \ln \frac{p_{t+1,i}}{p_{t,i}}$$

If $y_t = 1$ the RHS is equal to

$$\sum_{i \in E_t} u_i \ln \frac{x_{t,i}}{\hat{y}_t} = \sum_{i \in E_t} u_i \ln x_{t,i} - u(E_t) \ln \hat{y}_t$$
$$= -\sum_{i \in E_t} u_i L(X_{t,i}, y_t) + u(E_t) L(\hat{y}_t, y_t)$$

Lemma:

$$RE(\mathbf{u} \parallel p_t) - RE(\mathbf{u} \parallel p_{t+1}) = u(E_t)L(\hat{y}_t, y_t) - \sum_{i \in E_t} u_iL(x_{t,i}, y_t)$$

From definition of RE(||):

$$RE(\mathbf{u} \parallel p_t) - RE(\mathbf{u} \parallel p_{t+1}) = \sum_{i \in F_t} u_i \ln \frac{p_{t+1,i}}{p_{t,i}}$$

If $y_t = 1$ the RHS is equal to

$$\sum_{i \in \mathcal{E}_t} u_i \ln \frac{x_{t,i}}{\hat{y}_t} = \sum_{i \in \mathcal{E}_t} u_i \ln x_{t,i} - u(\mathcal{E}_t) \ln \hat{y}_t$$
$$= -\sum_{i \in \mathcal{E}_t} u_i L(X_{t,i}, y_t) + u(\mathcal{E}_t) L(\hat{y}_t, y_t)$$

Visual intuition

$$\operatorname{RE}\left(\mathbf{u} \parallel \mathbf{v}^{t}\right) - \operatorname{RE}\left(\mathbf{u} \parallel \mathbf{v}^{t+1}\right) = \ell_{A}^{t} - \mathbf{u} \cdot \boldsymbol{\ell}^{t}$$

Visual intuition

RE
$$(\mathbf{u} \parallel \mathbf{v}^t)$$
 – RE $(\mathbf{u} \parallel \mathbf{v}^{t+1}) = \ell_A^t - \mathbf{u} \cdot \ell^t$
V1
V2
V3

Visual intuition

RE
$$(\mathbf{u} \parallel \mathbf{v}^t)$$
 – RE $(\mathbf{u} \parallel \mathbf{v}^{t+1}) = \ell_A^t - \mathbf{u} \cdot \ell^t$

$$\mathbf{v}^{t+1}$$
 is chosen to minimize $\operatorname{RE}\left(\mathbf{v}^{t+1} \parallel \mathbf{v}^{t}\right) + \mathbf{v}^{t+1} \cdot \boldsymbol{\ell}^{t}$

Summing over t = 1, ..., T:

$$RE(\mathbf{u} \parallel \boldsymbol{\rho}_t) - RE(\mathbf{u} \parallel \boldsymbol{\rho}_{t+1}) = u(\boldsymbol{E}_t)L(\hat{\boldsymbol{y}}_t, \boldsymbol{y}_t) - \sum_{i \in \boldsymbol{F}_t} u_iL(\boldsymbol{x}_{t,i}, \boldsymbol{y}_t)$$

Summing over t = 1, ..., T:

$$RE(\mathbf{u} \parallel p_t) - RE(\mathbf{u} \parallel p_{t+1}) = u(E_t)L(\hat{y}_t, y_t) - \sum_{i \in E_t} u_iL(x_{t,i}, y_t)$$

We get

$$RE(\mathbf{u} \parallel p_1) \geq RE(\mathbf{u} \parallel p_1) - RE(\mathbf{u} \parallel p_{T+1})$$

$$= \sum_{t=1}^{T} u(E_t) L(\hat{y}_t, y_t) - \sum_{t=1}^{T} \sum_{i \in E_t} u_i L(x_{t,i}, y_t)$$

► Suppose that loss is (*a*, *c*)-achievable.

- ► Suppose that loss is (*a*, *c*)-achievable.
- Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$

- Suppose that loss is (a, c)-achievable.
- Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- Let u be an arbitrary distribution vector over experts.

- Suppose that loss is (a, c)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- Let **u** be an arbitrary distribution vector over experts.
- ▶ Lemma: RE $(\mathbf{u} \parallel \mathbf{v}^t)$ RE $(\mathbf{u} \parallel \mathbf{v}^{t+1}) \geq \frac{1}{c} \ell_A^t \frac{a}{c} \mathbf{u} \cdot \ell^t$

- Suppose that loss is (a, c)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- Let u be an arbitrary distribution vector over experts.
- ► Lemma: RE $(\mathbf{u} \parallel \mathbf{v}^t)$ RE $(\mathbf{u} \parallel \mathbf{v}^{t+1}) \geq \frac{1}{c} \ell_A^t \frac{a}{c} \mathbf{u} \cdot \ell^t$
- Summing over t = 1, ..., T we get: $RE \left(\mathbf{u} \parallel \mathbf{v}^{1}\right) - RE \left(\mathbf{u} \parallel \mathbf{v}^{T+1}\right) = \frac{1}{c} L_{A} - \frac{a}{c} \mathbf{u} \cdot \sum_{t=1}^{T} \ell^{t}$

- Suppose that loss is (a, c)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: RE $(\mathbf{u} \parallel \mathbf{v}^t)$ RE $(\mathbf{u} \parallel \mathbf{v}^{t+1}) \geq \frac{1}{c} \ell_A^t \frac{a}{c} \mathbf{u} \cdot \ell^t$
- Summing over t = 1, ..., T we get: $RE \left(\mathbf{u} \parallel \mathbf{v}^{1}\right) - RE \left(\mathbf{u} \parallel \mathbf{v}^{T+1}\right) = \frac{1}{c} L_{A} - \frac{a}{c} \mathbf{u} \cdot \sum_{t=1}^{T} \ell^{t}$
- ► $L_A \le \min_{\mathbf{u}} \left(a\mathbf{u} \cdot \sum_{t=1}^{T} \ell^t + c \text{RE} \left(\mathbf{u} \parallel \mathbf{v}^1 \right) \right)$

- Suppose that loss is (a, c)-achievable.
- Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- Let u be an arbitrary distribution vector over experts.
- ► Lemma: RE $(\mathbf{u} \parallel \mathbf{v}^t)$ RE $(\mathbf{u} \parallel \mathbf{v}^{t+1}) \ge \frac{1}{c} \ell_A^t \frac{a}{c} \mathbf{u} \cdot \ell^t$
- Summing over t = 1, ..., T we get: $RE \left(\mathbf{u} \parallel \mathbf{v}^{1}\right) - RE \left(\mathbf{u} \parallel \mathbf{v}^{T+1}\right) = \frac{1}{c} L_{A} - \frac{a}{c} \mathbf{u} \cdot \sum_{t=1}^{T} \ell^{t}$
- ► $L_A \le \min_{\mathbf{u}} \left(a\mathbf{u} \cdot \sum_{t=1}^{T} \ell^t + c \text{RE} \left(\mathbf{u} \parallel \mathbf{v}^1 \right) \right)$
- For any mixable loss, a = 1, using $\mathbf{u} = \langle 0, \dots, 0, 1, 0, \dots, 0 \rangle$ and $\mathbf{v}^1 = \langle 1/N, \dots, 1/N \rangle$ we get the old bound: $L_A \leq \min_i L_i + c \log N$

Consider the context algorithm.

- Consider the context algorithm.
- Each pruning is a generalist.

- Consider the context algorithm.
- Each pruning is a generalist.
- Each node is a specialist.

- Consider the context algorithm.
- Each pruning is a generalist.
- Each node is a specialist.
- Gives an inferior algorithm (regret bound is twice as large as Context alg

- Consider the context algorithm.
- Each pruning is a generalist.
- Each node is a specialist.
- Gives an inferior algorithm (regret bound is twice as large as Context alg
- But much easier to generalize.

Consider the fixed share switching algorithm

- Consider the fixed share switching algorithm
- Each sequence of d switches between base expert = generalist.

- Consider the fixed share switching algorithm
- Each sequence of d switches between base expert = generalist.
- Specialist for each base expert sleeps unless active.

- Consider the fixed share switching algorithm
- Each sequence of d switches between base expert = generalist.
- Specialist for each base expert sleeps unless active.
- gives the same algorithm.

Consider a communication network defined by a DAG.

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.
- protocol: after route is selected, delay is known.

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.
- protocol: after route is selected, delay is known.
- This is a multiple arm problem.

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.
- protocol: after route is selected, delay is known.
- This is a multiple arm problem.
- Generalist: a possible route.

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.
- protocol: after route is selected, delay is known.
- This is a multiple arm problem.
- Generalist: a possible route.
- Specialist: The choice of next hop for an individual router.

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.
- protocol: after route is selected, delay is known.
- This is a multiple arm problem.
- Generalist: a possible route.
- Specialist: The choice of next hop for an individual router.
- Number of generalist is exponential in the number of specialists.

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.
- protocol: after route is selected, delay is known.
- This is a multiple arm problem.
- Generalist: a possible route.
- Specialist: The choice of next hop for an individual router.
- Number of generalist is exponential in the number of specialists.
- Is it possible to achieve, using specialists?

- Consider a communication network defined by a DAG.
- goal: send packets from source to sink with minimal delay.
- protocol: after route is selected, delay is known.
- This is a multiple arm problem.
- Generalist: a possible route.
- Specialist: The choice of next hop for an individual router.
- Number of generalist is exponential in the number of specialists.
- Is it possible to achieve, using specialists?
- ▶ I don't know, could not find in the literature.