BMAT201L-Complex Variables and Linear Algebra

Module-4 Vector Space <u>Tutorial-1</u>

- 1. Check whether the following sets form subspace or not.
 - (i) $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 4x_2 + 5x_3 = 2\}$ in the vector space \mathbb{R}^3 .
 - (ii) $S = \{(x_1, x_2) \in \mathbb{R}^2 \mid y = x^2\}$ in the vector space \mathbb{R}^2 .
 - (iii) $S = \{A \in M_{2\times 2} \mid \det(A) = 0\}$ in the vector space $M_{2\times 2}$.
- 2. If a Vector Space is the set of all real valued continuous function over \mathbb{R} , then verify that set W of solutions of differential equation $2\frac{d^2y}{dx^2} 9\frac{dy}{dx} + 2y = 0$ is a subspace of V.
- 3. Let $C^2[-1,1]$ be the Vector space of all functions with continuous second derivative on the domain [-1,1]. Which of the following subset is a subspace and which one is not? Justify?
 - (i) $W = \{f(x) \in C^2[-1,1]: f''(x) + f(x) = 0\}$
 - (ii) $W = \{f(x) \in C^2[-1,1]: f''(x) + f(x) = x^2\}$
- 4. Express the first vector as the linear combination of the remaining vectors.
 - (i) $\{(1,-2,5), (1,1,1), (1,2,3), (2,-1,1)\}$
 - (ii) $\{(2,3,-1), (0,1,3), (2,2,4), (4,2,6)\}$
- 5. Verify whether the following set of vectors are linearly independent or dependent.
 - (i) $\{1, e^x, e^{2x}, e^{3x}\}$ (ii) $\{x, \cos x, \sin x\}$ (iii) $\{x|x|, x^2\}$ (iv) $\{(1,1,1), (1,2,0), (0,-1,2)\}$
 - $(v)\{(1,3,-4,2), (2, 2,-4,0), (1,-3,2,-4), (-1,0,1,0)\}$ $(vi) \{x,x+x^2,2x-x^2\}$
- 6. Determine all the values of k for which the given set of vectors in linearly independent in \mathbb{R}^4
 - (i) $\{(1,0,1,k),(-1,0,k,1),(2,0,1,3)\}$
 - (ii) $\{(1, 1, 0, -1), (1, k, 1, 1), (2, 1, k, 1), (-1, 1, 1, k)\}$
- 7. For the given problem, determine a linearly independent set of vectors that spans the same subspace of *V* as the spanned by the original vectors.
 - (i) $V = P_1, \{2 5x, 3 + 7x, 4 x\}$
 - (ii) $V = \mathbb{R}^3$, $\{(1,2,3), (-3,4,5), (1, -\frac{4}{3}, -\frac{5}{3}\}$
 - (iii) $V = \mathbb{R}^3$, {(1,1,1), (1, -1,1), (1, -3,1)(3,1,2)}
 - $\text{(iv) } V = M_{2\times 2}(\mathbb{R}), \left\{ \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix} \right\}$
 - (v) $V = M_{2\times 2}(\mathbb{R}), \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 5 & 7 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \right\}$