POLITECHNIKA WARSZAWSKA

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA

Metody komputerowe w spalaniu

Porównanie temperatury spalania różnych substancji w powietrzu

Michał Dzieniszewski 17.06.2024

1 Wprowadzenie

Celem projektu jest porównanie adiabatycznej temperatury spalania różnych substancji przy różnych współczynnikach nadmiaru powietrza. Do symulacji użyto języka programowania Python z biblioteką Cantera (dedykowaną do symulacji procesów spalania itp.).

2 Warunki początkowe

Parametry początkowe: temperatura $T_0 = 300K$ i ciśnienie $p_0 = 1atm = 101325Pa$. Współczynnik nadmiaru powietrza był zmieniany w zakresie $\lambda \epsilon(0, 3.5)$

3 Badane substancje

W symulacji użyto następujących substancji:

- 1. Wodór H_2
- 2. Propan C_3H_8
- 3. Metan CH_4
- 4. Acetylen C_2H_2
- 5. Kwas mrówkowy *HCCOH*
- 6. Acetaldehyd CH_3CHO

4 Równania spalania

Współczynniki bilansowe użyte w kodzie zostały wyznaczone z następujących równań (stosunki molowe):

$$H_2 + 0.50_2 \leftrightarrow H_2O \tag{1}$$

$$C_3H_8 + 5O_2 \leftrightarrow 3CO_2 + 4H_2O$$
 (2)

$$CH_4 + 2O_2 \leftrightarrow CO_2 + 2H_2O \tag{3}$$

$$C_2H_2 + 2.5O_2 \leftrightarrow 2CO_2 + H_20$$
 (4)

$$HCCOH + 2O_2 \leftrightarrow 2CO_2 + H_20$$
 (5)

$$CH_3CHO + 2.5O_2 \leftrightarrow 2CO_2 + 2H_2O \tag{6}$$

5 Wyniki

	H_2	C_3H_8	CH_4	C_2H_2	HCCOH	CH_3CHO
$T_{max}[K]$	2396.51	2277.98	2233.88	2418.80	2617.92	2299.66
λ	0.9369	0.9569	0.9669	0.1653	0.7315	0.9419

6 Wnioski

Z wyjątkiem acetylenu, który sam może sam ulec rozkładowi, najwyższe temperatury osiągnięto dla stężeń bliskich stechiometrycznym.

7 Wykres

Rysunek 1: Wykres adiabatycznej temperatury spalania od współczynnika λ dla różnych substancji