Lecture 4

Multiple Linear Regression II

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
4.1

Notes

Agenda

- General Linear F-Test
- Prediction
- Multicollinearity
- **Model Selection**
- Model Diagnostics
- **6** Non-Constant Variance & Transformation

Multiple Linear Regression II

General Linear F-Tost Prediction Multicollinearity Model Selection Model Diagnostics Non-Constant Variance & Transformation Notes

Review: t-Test and F-Test in Linear Regression

- t-test: Testing one predictor

 - ② Test Statistic: $t^* = \frac{\hat{\beta}_j 0}{\hat{\operatorname{se}}(\hat{\beta}_j)}$
- Overall F-test: Test of all the predictors

 - $\textbf{2} \quad H_a: \text{ at least one } \beta_j \neq 0, 1 \leq j \leq p-1$
 - **1** Test Statistic: $F^* = \frac{MSR}{MSE}$

Both tests are special cases of General Linear F-test

Multiple Linear

General Linear
F-Test
Prediction
Multicollinearity
Model Selection

General Linear F**-Test**

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- ullet Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- $\bullet \ \ \text{Test statistic:} \ F^* = \frac{(\text{SSE}_{\text{reduce}} \text{SSE}_{\text{full}})/(k-\ell)}{\text{SSE}_{\text{full}}/(n-k-1)} \Rightarrow \text{Testing } H_0$ that the regression coefficients for the extra variables are all zero
 - Example 1: x_1, x_2, \dots, x_{p-1} vs. intercept only \Rightarrow Overall F-test
 - Example 2: $x_j, 1 \le j \le p-1$ vs. intercept only $\Rightarrow t$ -test
 - Example 3: x_1, x_2, x_3, x_4 vs. $x_1, x_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

Notes

Geometric Illustration of General Linear F-Test

Notes			

Species Diversity on the Galapagos Islands: Full Model

> summary(gala_fit2)

Call: lm(formula = Species ~ Elevation + Area) Residuals: Min 1Q Median -192.619 -33.534 -19.199 7.541 261.514 Coefficients: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Multiple Linear
December 11
Regression II

Notes			

Species Diversity on the Galapagos Islands: Reduce Model

> summary(gala_fit1)

lm(formula = Species ~ Elevation)

Residuals:

Min 10 Median 30 Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Notes

Performing a General Linear F-Test

 \bullet $H_0: eta_{
m Area} = 0$ vs. $H_a: eta_{
m Area} \neq 0$

 $F^* = \frac{(173254 - 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$

 \bullet P-value: $\mathrm{P}[\mathit{F} > 0.5254]$ = 0.4748, where $\mathit{F} \sim$ F $_{1}$, $_{27}$ $k-\ell$ n-k-1

> anova(gala_fit1, gala_fit2)

Analysis of Variance Table

Model 1: Species ~ Elevation Model 2: Species ~ Elevation + Area Res.Df RSS Df Sum of Sq F Pr(>F) 28 173254 1

27 169947 1 3307 0.5254 0.4748 2

Notes

Visualizing p-value

p-value is the shaped area under the density curve of the null distribution

Another Example of General Linear F-Test

Notes

Performing a General Linear F-Test

• Null and alternative hypotheses:

$$H_0: eta_{\mathtt{Area}} = eta_{\mathtt{Nearest}} = eta_{\mathtt{Scruz}} = 0$$
 $H_a:$ at least one of the three coefficients $\neq 0$

$$\bullet \ F^* = \frac{(100003 - 89231)/(5 - 2)}{89231/(30 - 5 - 1)} = 0.9657$$

•
$$p$$
-value: $P[F > 0.9657] = 0.425$, where $F \sim F_{3,24}$

> anova(reduced, full) Analysis of Variance Table

```
Analysis of Variance Table

Model 1: Species ~ Elevation + Adjacent

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent

Res.Df RSS Df Sum of Sq F Pr(>F)

2 7 1000003

2 24 89231 3 10772 0.9657 0.425
```


General Linear

Multicollinearity

Model Selection

Model Diagnostics

Non-Constant Variance & Transformation

411

Notes

Multiple Linear Regression Prediction

Given a new set of predictors,

$$x_0 = (1, x_{0,1}, x_{0,2}, \dots, x_{0,p-1})^T$$
, the predicted response is

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_{0,1} + \hat{\beta}_2 x_{0,2} + \dots + \hat{\beta}_{p-1} x_{0,p-1}.$$

Again, we can use matrix representation to simplify the notation

$$\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

where
$$\boldsymbol{x}_0^{\mathrm{T}}$$
 = $(1, x_{0,1}, x_{0,2}, \cdots, x_{0,p-1})$

We will use this formula to carry out two different kinds of predictions

Multiple Linear

General Linear F-Test

Prediction

Multicollinearity

Model Selection

Notes

4.12

Two Kinds of Predictions

There are two kinds of predictions can be made for a given x_0 :

Predicting a future response:

Based on MLR, we have $y_0 = x_0^T \beta + \varepsilon$. Since $E(\varepsilon)$ = 0, therefore the predicted value is

$$\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}$$

• Predicting the mean response:

Since $E(y_0) = \boldsymbol{x}_0^{\mathrm{T}} \boldsymbol{\beta}$, there we have the predicted mean response

$$\widehat{E(y_0)} = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

the same predicted value as predicting a future response

Next, we need to assess their prediction uncertainties, and then we will identify the differences in terms of these uncertainties

Notes

Prediction Uncertainty

From page 30 of slides 3, we have $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1}$. Therefore we have

$$\operatorname{Var}(\hat{y}_0) = \operatorname{Var}(\boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{x}_0^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_0$$

We can now construct $100(1-\alpha)\%$ CI for the two kinds of predictions:

• Predicting a future response y_0 :

$$\boldsymbol{x}_{0}^{\mathrm{T}}\boldsymbol{\hat{\beta}} \pm t_{1-\alpha/2,n-p} \times \hat{\sigma} \sqrt{\underbrace{1}_{\mathrm{accounting for } \varepsilon}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X})^{-1} \boldsymbol{x}_{0}}$$

• Predicting the mean response $E(y_0)$:

$$\boldsymbol{x}_{0}^{\mathrm{T}}\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-p} \times \hat{\sigma} \sqrt{\boldsymbol{x}_{0}^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}}$$

Notes

Example: Predicting Body Fat (Faraway 2014 Chapter 4.2)

lm(formula = brozek ~ age + weight + height + neck + chest +
 abdom + hip + thigh + knee + ankle + biceps + forearm + wrist,
 data = fat) Residuals: Min 1Q Median 3Q Max -10.264 -2.572 -0.097 2.898 9.327 16.06992 0.02996 0.04958 0.08893 0.21533 0.09184 0.08808 0.13516 0.13372 0.22414 0.20514 0.15851 0.18445 Residual standard error: 3.988 on 238 degrees of freedom Multiple R-squared: 0.749, Adjusted R-squared: 0.7353 F-statistic: 54.63 on 13 and 238 DF, p-value: < 2.2e-16

What is our prediction for the future response of a "typical" (e.g., each predictor takes its median value) man?

Example: Predicting Body Fat Cont'd

- Calculate the median for each predictor to get x_0
- ② Compute the predicted value $\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}$
- Quantify the prediction uncertainty

Multicollinearity

> cor(sim1)

y x1 x2 y 1.0000000 0.7987777 0.8481084 x1 0.7987777 1.0000000 0.9281514 x2 0.8481084 0.9281514 1.000000

Notes

Multicollinearity Cont'd

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix ${m X}^T{m X}$ is nearly singular
- Statistical issues/consequences
 - β's are not well estimated ⇒ spurious regression coefficient estimates
 - $\bullet \ R^2$ and predicted values are usually okay even with multicollinearity

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Multicollinearity

Notes				

An Simulated Example

Suppose the true relationship between response y and predictors (x_1,x_2) is

$$Y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon,$$

where $\varepsilon\sim N(0,1)$ and x_1 and x_2 are positively correlated with $\rho=0.9$. Let's fit the following models:

- Model 1: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_1$ This is the true model with parameters unknown
- Model 2: $Y = \beta_0 + \beta_1 x_1 + \varepsilon_2$ This is the wrong model because x_2 is omitted

Multiple Linear Regression II Matternation With Market Linear F-Tost Prediction Multicollinearity Model Selection Model Diagnostics Non-Constant Variance & Transformation

Scatter Plot: x_1 vs. x_2

Notes

Model 1 Fit

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Multicollinearity

Notes			

Model 2 Fit

Call: lm(formula = Y ~ X1)

Residuals:

Min 1Q Median 3Q Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0347 0.1763 22.888 < 2e-16 ***
X1 1.4293 0.1955 7.311 5.84e-08 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

Multiple Linear Regression II

STATISTICAL SCIENCES

F-Test

Prediction

Multicollinearity

Model Selection

Non-Constant Variance & Transformation

Notes

Notes

Takeaways

Model 1 fit:

Call: lm(formula = Y ~ X1 + X2)

Model 2 fit:

Call: lm(formula = Y ~ X1)

Residuals: Min 1Q Median 3Q Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Residuals: Min 1Q Median 3Q Ma:

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0710 0.1778 22.898 < 2e-16 ***

\(\text{Cintercept}\) \(\frac{\quad \quad \quad

Signif. codes: 0 *** 0.801 *** 0.80 *** 0.85 *." 0.1 **
Residual standard error: 0.9569 on 27 degrees of freedom
Multiple R-squared: 0.6673, Adjusted R-squared: 0.6488
F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

---Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Recall the true model: $Y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon,$

 $Y = 4 + 0.8x_1 + 0.0x_2 + \varepsilon,$

where $\varepsilon \sim N(0,1), \, x_1$ and x_2 are positively correlated with $\rho = 0.9$

Summary:

- β's are not well estimated in model 1
- Spurious regression coefficient estimates
- In model 2, R² and predicted values are OK compared to model 1

General Linear F-Test

Multicollinearity

Model Selection

Model Diagnostics

Non-Constant Variance & Transformation

4.23

Variance Inflation Factor (VIF)

We can use the variance inflation factor (VIF)

$$\mathsf{VIF}_i = \frac{1}{1 - \mathsf{R}_i^2}$$

to quantifies the severity of multicollinearity in MLR, where R_i^2 is the **coefficient of determination** when X_i is regressed on the remaining predictors

R example code

> library(faraway)
> vif(sim1[, 2:3])
 x1 x2
7.218394 7.218394

 $\sqrt{\text{VIF}}$ indicates how much larger the standard error increases compared to if that variable had 0 correlation to other predictor variables in the model.

Multiple Linear

General Linear
F-Test
Prediction
Multicollinearity
Model Selection

Model Diagnostics

Non-Constant

Variance &
Transformation

Model Selection in Multiple Linear Regression

Multiple Linear Regression Model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} \mathrm{N}\big(0,\sigma^2\big)$$

Basic Problem: how to choose between competing linear regression models?

- Model too "small": underfit the data; poor predictions; high bias; low variance
- Model too big: "overfit" the data; poor predictions; low bias; high variance

In the next few slides we will discuss some commonly used model selection criteria to choose the "right" model to balance bias and variance

Notes

An Example of Bias and Variance Tradeoff

Notes

Balancing Bias And Variance: Mallows' C_p Criterion

A good model should balance bias and variance to get good predictions

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbb{E}(\hat{Y}_i) + \mathbb{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbb{E}(\hat{Y}_i))^2}_{\sigma^2_{\hat{Y}_i} \text{ Variance}} + \underbrace{(\mathbb{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

- where $\mu_i = \mathbb{E}(Y_i|X_i = x_i)$ Mean squared prediction error (MSPE): $\textstyle \sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbb{E}(\hat{Y}_i) - \mu_i)^2$
 - C_p criterion measure:

$$\Gamma_p = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (\mathbb{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2}$$
$$= \frac{\sum \text{Var}_{\mathsf{pred}} + \sum \mathsf{Bias}^2}{\text{Var}_{\mathsf{error}}}$$

C_p Criterion

 C_p statistic:

$$C_p = \frac{\mathrm{SSE}}{\mathrm{MSE_F}} + 2p - n$$

- When model is correct $E(C_p) \approx p$
- ullet When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around line C_p = p
 - ${\color{red} \bullet}$ By definition: C_p for full model equals p

We desire models with small p and C_p around or less than p. See R session for an example

Regression II General Linear F-Test Prediction Multicollinearity Model Selection Model Diagnostics Non-Constant Variance & Transformation

Notes

Adjusted \mathbb{R}^2 Criterion

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\text{adj}}^2 = 1 - \frac{\text{SSE}/(n-p-1)}{\text{SST}/(n-1)}$$

- ullet Choose model which maximizes $R^2_{
 m adi}$
- Same approach as choosing model with smallest MSE

Notes

Information criteria

Information criteria are statistical measures used for model selection. Commonly used information criteria include:

Akaike's information criterion (AIC)

$$n\log(\frac{\mathrm{SSE}_k}{n}) + 2k$$

• Bayesian information criterion (BIC)

$$n\log(\frac{\mathrm{SSE}_k}{n}) + k\log(n)$$

Here k is the number of the parameters in the model.

These criteria balance the goodness of fit of a model with its complexity

Regression II				
MATHEMATICAL AND STATISTICAL SCIENCES				
Model Selection				

Notes			

Automatic Search Procedures

- Forward Selection: begins with no predictors and then adds in predictors one by one using some criterion (e.g., p-value or AIC)
- Backward Elimination: starts with all the predictors and then removes predictors one by one using some criterion
- Stepwise Search: a combination of backward elimination and forward selection. Can add or delete predictor at each stage
- All Subset Selection: Comparing all possible models using a selected criterion. Impractical for "large" number of predictors

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Model Selection Model Diagnostics

Notes	

Model Assumptions

Model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \overset{i.i.d.}{\sim} \mathrm{N}\big(0,\sigma^2\big)$$

We make the following assumptions:

Linearity:

$$E(Y|x_1, x_2, \dots, x_{p-1}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1}$$

 Errors have constant variance, are independent, and normally distributed

$$\varepsilon \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

F-Test
Prediction
Multicollinearity
Model Selection

Model Diagnostics

Jon-Constant

lon-Constant /ariance & ransformation

4.00

Notes		

Residuals versus Fits Plot

We will revisit this in the end of the lecture

Plot mod\$fitted.values, mod\$residuals, pch = 16, col = "blue")

abline(h = 0, col = "red")

88

99

00

100

200

300

400

Regression II

Regression II

Regression II

Fraction Authority

Model Diagnostics

Non-Constant

Variance & Transformation

Assessing Normality of Residuals: Histogram

Histogram of mod\$residuals 0.010 0.008 Density 0.006 0.004 0.002 0.000

Notes

Assessing Normality of Residuals: QQ Plot

Notes

Notes

Leverage: Detecting "Extreme" Predictor Values

Recall in MLR that $\hat{y} = X(X^TX)^{-1}X^Ty = Hy$ where His the hat-matrix

 \bullet The leverage value for the $i_{\rm th}$ observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = y_i \hat{y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \le h_i \le 1$, $1 \le i \le n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages greater than $\frac{2p}{n}$ should be examined more closely

Leverage Values of Species ~ Elev + Adj

Notes

Standardized Residuals

As we have seen $Var(e_i) = \sigma^2(1 - h_i)$, this suggests the use of $r_i = \frac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

- ullet r_i 's are called **standardized residuals**. r_i 's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- If the model assumptions are correct then $Var(r_i) = 1$ and $Corr(r_i, r_j)$ tends to be small

Notes

Standardized Residuals of Species \sim Elev + Adj

Studentized (Jackknife) Residuals

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{y}_{i(i)}$
- The observation i is an outlier if $\hat{y}_{i(i)}$ y_i is "large"
- Can show $Var(\hat{y}_{i(i)} y_i) =$ $\sigma_{(i)}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i \right) = \sigma_{(i)}^2 (1 - h_i)$
- Define the Studentized (Jackknife) Residuals as

$$t_i = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\hat{\sigma}_{(i)}^2 \left(1 - h_i\right)}} = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\mathsf{MSE}_{(i)} (1 - h_i)}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

Notes

Studentized (Jackknife) Residuals of Species ~ Elev + Adj

Jacknife Residuals

Notes

Identifying Influential Observations: Cook's Distance

Cook's Distance quantifies how much the predicted values change when a particular observation is excluded from the analysis.

• Cook's distance measure (D_i) is defined as:

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p \times \text{MSE}} \left(\frac{h_i}{(1 - h_i)^2}\right)$$

- Cook's Distance considers both leverage and residual, providing a broader measure of influence
- Here are the guidelines commonly used:
 - $\bigcirc \hspace{0.1in} \text{If } D_i > 0.5 \text{, then the i}^{\text{th}} \text{ data point is worthy of further}$ investigation as it may be influential
 - ② If $D_i > 1$, then the ith data point is quite likely to be influential

Cook's Distance of Species ~ Elev + Adj Cook's distance Labels Cook's distance Labels Cook's distance SantaCruz Fetta Frod Cition Multicollinearity Model Selection Model Diagnostics Non-Constant Variance & Transformation Transformation Cook's distance Constant Linear Frod Cition Multicollinearity Model Selection Model Diagnostics Non-Constant Variance & Transformation

Notes			

Box-Cox Transformation

The Box-Cox method [Box and Cox, 1964] is a powerful way to determine if a transformation on the response is needed

$$g_{\lambda}(y) = \begin{cases} \frac{y^{\lambda}-1}{\lambda} & \text{if } \lambda \neq 0; \\ \log(y) & \text{if } \lambda = 0. \end{cases}$$

In R, we can use the boxcox function from the MASS package to perform a Box-Cox transformation. The plot suggests a cube root may be needed

Multiple Linear Regression II

General Linear F-Test
Prediction
Multicollinearity
Model Selection
Model Diagnostic

Notes

Summary

These slides cover:

- General Linear F-Test provides a unifying framework for hypothesis tests
- Making predictions and quantifying prediction uncertainty
- Multicollinearity and its implications for MLR
- Model/variable selection can be done via some criterion-based methods to balance bias and variance
- Model diagnostics is crucial to ensure valid statistical inference
- Box-Cox Transformation can be used to transform the response in order to correct model violations

Multiple Linear Regression II

General Linear F-Test
Prediction
Multicollinearity
Model Selection
Model Diagnostics

N	otos
I٧	otes

Notes

R Functions to Know

- anova for model comparison based on F-test
- predict: obtain predicted values from a fitted model
- vif under the faraway library: computes the variance inflation factors
- regsubsets in the leaps library and step for model selection
- influence.measures includes a suite of functions (hatvalues, rstandard, rstudent, cooks.distance) for computing regression diagnostics
- boxcox in the MASS library for performing a Box-Cox transformation

Multiple Linear

Prediction
Multicollinearity
Model Selection
Model Diagnostics
Non-Constant
Variance &