СМВМ, задание №1.

Болохонов Артем Владимирович

Основное задание

Описание задания: в качестве базиса полиномиального пространства использовались мономы, для реализации QR-алгоритма использовался метод вращений с выбором главного элемента. Программа написана на языке Python.

Расчеты проводились на компьютере AMD Ryzen 7 7700x $4.5 \mathrm{GHz}$ (up to $5.4 \mathrm{~GHz}$), 8 cores; DIMM DDR5 32 Gb 6000 MHz.

В качестве решателя системы в *методе нормальных уравнений* использовалась функция linalg.solve из библиотеки numpy. Это является возможной причиной более быстрого решения системы в случае использования данного алгоритма.

Далее идут таблицы с результатами вычислений на различных файлах.

N	$cond_2(A)$	t (sec)	NRMSE	$cond_2(A^TA)$	t (sec)	NRMSE
	\ /	()		, ,	()	
0	1.00e+00	4.4209e-02	2.88e-01	1.00e+00	3.0005e-03	2.88e-01
1	1.75e+01	8.1009e-02	1.14e-02	3.06e+02	3.0005e-03	1.14e-02
2	3.41e+02	1.1717e-01	6.72e-04	1.16e+05	6.0005e-03	6.72e-04
3	6.83e + 03	1.5568e-01	6.69e-04	4.67e + 07	5.0013e-03	6.69e-04
4	1.39e+05	1.8417e-01	6.66e-04	$1.94e{+}10$	6.0015e-03	6.66e-04
5	2.87e + 06	1.8855e-01	5.40e-04	$8.24e{+12}$	7.0014e-03	4.41e-04
6	5.95e + 07	1.9106e-01	5.00e-03	$3.54\mathrm{e}{+15}$	7.1044e-03	2.47e-04
7	1.24e+09	1.9316e-01	9.81e-03	$1.54e{+18}$	8.6784e-03	2.36e-04
8	$2.61\mathrm{e}{+10}$	1.9600e-01	1.04e-02	$6.81\mathrm{e}{+20}$	8.8663e-03	2.03e-04
9	$5.51e{+11}$	2.0879e-01	1.06e-02	3.03e+23	1.1000e-02	1.80e-04

Таблица 1: результаты вычислений на файле data_2.txt.

N	$cond_2(A)$	t (sec)	NRMSE	$cond_2(A^TA)$	t (sec)	NRMSE
0	1.00e+00	8.0023e-03	3.32e-01	1.00e+00	1.0056e-03	3.32e-01
1	4.39e+00	1.5143e-02	8.30e-02	1.92e+01	1.0002e-03	8.30e-02
2	$2.28\mathrm{e}{+01}$	2.3132e-02	1.43e-15	5.22e+02	1.0002e-03	6.73e-15
3	1.24e+02	2.9006e-02	1.90e-15	1.54e + 04	9.9993e-04	2.57e-14
4	$6.88 \mathrm{e}{+02}$	3.7009e-02	2.87e-15	4.73e + 05	1.0004e-03	9.43e-14
5	$3.85 e{+03}$	4.4004e-02	2.70e-15	1.48e + 07	2.0001e-03	2.98e-13
6	2.17e+04	4.9999e-02	1.07e-15	4.70e + 08	2.0003e-03	6.18e-13
7	1.23e+05	5.5015e-02	1.80e-15	$1.51\mathrm{e}{+10}$	1.0006e-03	4.32e-12
8	6.97e + 05	6.3044e-02	1.98e-15	$4.86e{+11}$	2.0003e-03	5.22e-11
9	3.97e + 06	6.9114e-02	1.35e-15	$1.58e{+13}$	2.1424e-03	3.04e-10

Таблица 2: результаты вычислений на файле data_4.txt.

N	$cond_2(A)$	t (sec)	NRMSE	$cond_2(A^TA)$	t (sec)	NRMSE
0	1.00e+00	7.9992e-03	2.94e-01	1.00e+00	0.0000e+00	2.94e-01
1	4.39e+00	1.5749e-02	2.76e-02	1.92e+01	0.0000e+00	2.76e-02
2	2.28e + 01	2.2108e-02	2.32e-03	5.22e+02	1.0002e-03	2.32e-03
3	1.24e+02	3.0004e-02	1.46e-04	1.54e + 04	1.0002e-03	1.46e-04
4	6.88e + 02	3.6003e-02	7.32e-06	4.73e + 05	1.0004e-03	7.32e-06
5	3.85e + 03	4.5005e-02	3.06e-07	1.48e + 07	2.0006e-03	3.06e-07
6	2.17e+04	4.9733e-02	1.09e-08	4.70e + 08	1.0006e-03	1.09e-08
7	1.23e+05	5.6402e-02	3.43e-10	$1.51\mathrm{e}{+10}$	2.0006e-03	3.43e-10
8	6.97e + 05	6.8017e-02	3.79e-11	$4.86e{+11}$	2.0003e-03	3.01e-11
9	3.97e + 06	6.7099e-02	5.45e-11	$1.58e{+13}$	2.2211e-03	8.85e-11

Таблица 3: результаты вычислений на файле data_5.txt.

Рис. 1: сравнение точного и приближенного решения на сетке с разбиением на входных данных data_2.txt при N=2 и N=5.

Ответы на вопросы:

1. Kax отличаются числа обусловленности матриц при применении QR-алгоритма и метода HY?

Число обусловленности при применении метода НУ квадратично больше, в сравнении с QR-разложением. Это связано с тем, что в ходе вычислений, метод НУ взаимодействует с матрицей A^TA (в QR-методе просто A). Данную зависимость можно просмотреть на всех входных данных.

- 2. Как убывает погрешность в зависимости от данных? Почему? В целом можно наблюдать уменьшение погрешности на порядок при увеличении числа N при использовании обоих методов. Тем не менее на входных данных data_2.txt такой тенденции не наблюдается. Наоборот, при увеличении N, начиная с 6, QR-алгоритм увеличивает погрешность вычислений. Это связано с тем, что данный набор данных представляет собой быстрые осцилляции, что и создает проблемы с вычислением.
- 3. Как отличается погрешность при решении СЛАУ методом НУ и QR-алгоритмом?
 Чисто теоретически QR-алгоритм должен давать большую точность, т.к. работает с матрицами с меньшим числом обусловленности. На

практике же не все так однозначно:

- data_2.txt: метод НУ показывает себя стабильнее на шумных данных;
- data_4.txt: QR-метод быстрее достиг более высокой точности, чем метод нормальных уравнений;
- data_5.txt: оба метода показывают плюс-минус одинаковую погрешность вычислений.