Mathématique - Corrigé Devoir Maison n°16

Exercice 1

Cherchons l'ensemble des vecteurs invariants par f:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in Ker(f-Id) \iff \begin{cases} -\frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z = 0 \\ -\frac{1}{3}x - \frac{1}{3}y + \frac{2}{3}z = 0 \\ \frac{2}{3}x - \frac{1}{3}y - \frac{1}{3}z = 0 \end{cases} \qquad \iff \begin{cases} -\frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z = 0 \\ -y + z = 0 \\ y - z = 0 \end{cases} \iff \begin{cases} x = z \\ y = z \end{cases}$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \lambda u_1 \text{ avec } u_1 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \text{ et } \lambda \in \mathbb{R}. \text{ On a donc } Ker(f - Id) = Vect(u_1)$$

L'ensemble des vecteurs invariants par f est la droite vectorielle engendrée par u_1 .

Soit le vecteur
$$u_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$
. On a $u_1 \perp u_2$ et $||u_1|| = ||u_2|| = 1$. On pose alors $u_3 = u_1 \wedge u_2 = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \end{pmatrix}$.

La famille $\mathscr{B}' = (u_1, u_2, u_3)$ est une base orthonormale directe de \mathbb{R}^3 .

La matrice de passage de la base canonique \mathscr{B} à la base \mathscr{B}' est $P_{\mathscr{B}\mathscr{B}'} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix}$.

Son inverse est
$$P_{\mathscr{B}'\mathscr{B}} = {}^{t}P_{\mathscr{B}\mathscr{B}'} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{pmatrix}$$
.

La matrice de f dans la nouvelle base est donnée par la formule : $Mat_{\mathscr{B}'}(f) = P_{\mathscr{B}'\mathscr{B}}Mat_{\mathscr{B}'}(f)P_{\mathscr{B}\mathscr{B}'}$.

$$\text{Ce qui fait, après calculs}: Mat_{\mathscr{B}'}(f)P_{\mathscr{B}\mathscr{B}'} = \left(\begin{array}{ccc} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \end{array}\right) \text{puis } Mat_{\mathscr{B}'}(f) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right)$$

On reconnait la matrice d'une rotation $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$ dans une base orthonormale directe.

$$f$$
 est la rotation d'axe $Vect(u_1)$, orienté par u_1 , et d'angle $\theta = -\frac{\pi}{3} [2\pi]$

Exercice 2

I- Étude d'une application de $\mathcal{M}_2(\mathbb{R})$

- 1. φ_B est une application de l'espace vectoriel $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$ dans lui-même telle que : $\forall (X_1, X_2) \in \mathcal{M}_2(\mathbb{R})^2$ et $\forall \lambda \in \mathbb{R}$, $\varphi_B(X_1 + \lambda X_2) = B \times (X_1 + \lambda X_2) = B \times X_1 + \lambda B \times X_2 = \varphi_B(X_1) + \lambda \varphi_B(X_2)$ Donc φ_B est un endomorphisme de l'espace vectoriel $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$.
- 2. (a) Par un calcul de pivot $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ est inversible et son inverse est $B^{-1} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$. Pour tout $Y \in \mathcal{M}_2(\mathbb{R})$, l'équation $\varphi_B(X) = B \times X = Y$ admet une unique solution $X = B^{-1} \times Y$. φ_B est bijective et donc surjective.

(b)
$$\varphi_B(E_{1,1}) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = 1 \times E_{1,1} + 0 \times E_{1,2} + 2 \times E_{2,1} + 0 \times E_{2,2}$$

$$\varphi_B(E_{1,2}) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = 0 \times E_{1,1} + 1 \times E_{1,2} + 0 \times E_{2,1} + 2 \times E_{2,2}$$

$$\varphi_B(E_{2,1}) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \times \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix} = 1 \times E_{1,1} + 0 \times E_{1,2} + 3 \times E_{2,1} + 0 \times E_{2,2}$$

$$\varphi_B(E_{2,2}) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \times \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix} = 0 \times E_{1,1} + 1 \times E_{1,2} + 0 \times E_{2,1} + 3 \times E_{2,2}$$

La matrice de φ_B dans la base canonique de $M_2(\mathbb{R})$ est constituée colonne par colonne des coordonnées (dans cette base) des images des vecteurs de cette base.

$$Mat(\varphi_B) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 \end{pmatrix}$$

3. Pour toute matrice $X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, on a

$$\varphi_B(X) = B \times X = \left(\begin{array}{cc} 2 & -2 \\ 2 & -2 \end{array} \right) \times \left(\begin{array}{cc} x & y \\ z & t \end{array} \right) = \left(\begin{array}{cc} 2x - 2z & 2y - 2t \\ 2x - 2z & 2y - 2t \end{array} \right).$$

Une matrice comme $Y = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ ne peut pas avoir d'antécédent par φ_B car $1 \neq 3$. φ_B n'est pas surjective et donc φ_B n'est pas bijective.

II- Calcul des puissances n-ième d'une matrice de $\mathcal{M}_3(\mathbb{R})$

4.
$$M_a = \begin{pmatrix} -a & 1 & 0 \\ 2 & -a & 2 \\ 0 & 1 & -a \end{pmatrix}$$

5. Par la méthode du pivot de Gauss:

$$\begin{split} M_a & \mathop{\sim}_{\ell_1 \leftrightarrow \ell_2} \left(\begin{array}{cccc} 2 & -a & 2 \\ -a & 1 & 0 \\ 0 & 1 & -a \end{array} \right) & \mathop{\sim}_{\ell_2 \leftarrow 2\ell_2 + a\ell_1} \left(\begin{array}{cccc} 2 & -a & 2 \\ 0 & 2 - a^2 & 2a \\ 0 & 1 & -a \end{array} \right) & \mathop{\sim}_{\ell_3 \leftrightarrow \ell_2} \left(\begin{array}{cccc} 2 & -a & 2 \\ 0 & 1 & -a \\ 0 & 2 - a^2 & 2a \end{array} \right) \\ & \mathop{\sim}_{\ell_3 \leftrightarrow \ell_3 + (a^2 - 2)\ell_2} \left(\begin{array}{cccc} 2 & -a & 2 \\ 0 & 1 & -a \\ 0 & 0 & 4a - a^3 \end{array} \right) \end{split}$$

On remarque que $4a - a^3 = 0 \iff a = -2$ ou a = 0 ou a = 2.

- Si $a \in \mathbb{R} \setminus \{-2, 0, 2\}$ alors le rang de M_a vaut 3.
- si $a \in \{-2,0,2\}$ alors le rang de M_a vaut 2.
- 6. si a = -2 alors :

$$(x,y,z) \in \operatorname{Ker} f_{-2} \iff f_{-2} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} 2x+y=0 \\ 2x+2y+2z=0 \\ y+2z=0 \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Donc Ker (f_{-2}) = Vect (u_3) .

• si a = 0 alors :

$$(x, y, z) \in \operatorname{Ker} f_0 \iff f_0 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} y = 0 \\ 2x + 2z = 0 \\ y = 0 \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Donc Ker (f_0) = Vect (u_1) .

• si a = 2 alors :

$$(x,y,z) \in \operatorname{Ker} f_2 \iff f_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} -2x + y = 0 \\ 2x - 2y + 2z = 0 \\ y - 2z = 0 \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Donc Ker (f_2) = Vect (u_2) .

Pour la suite, on choisit a = -2 et on définit les vecteurs $u_1 = (1, 0, -1)$, $u_2 = (1, 2, 1)$ et $u_3 = (1, -2, 1)$.

7. (a) Le produit mixte des trois vecteurs : $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & -2 \\ -1 & 1 & 1 \end{vmatrix} = 4 \neq 0$

Donc $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .

(b)
$$P_{\mathscr{B}_0\mathscr{B}_1}=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & -2 \\ -1 & 1 & 1 \end{array}\right)$$
 et il faut calculer son inverse. On pose $\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & -2 \\ -1 & 1 & 1 \end{array}\right)\times\left(\begin{array}{c} x \\ y \\ z \end{array}\right)=\left(\begin{array}{ccc} a \\ b \\ c \end{array}\right)$

et on résout le système :
$$\begin{cases} x + y + z = a \\ 2y -2z = b \\ -x + y + z = c \end{cases} \iff \begin{cases} x = (a-c)/2 \\ 2y -2z = b \\ y + z = (a+c)/2 \end{cases}$$

$$\iff \begin{cases} x = (a-c)/2 \\ y = (a+b+c)/4 \\ z = (a-b+c)/4 \end{cases} \iff \begin{cases} 1/2 & 0 & -1/2 \\ 1/4 & 1/4 & 1/4 \\ 1/4 & -1/4 & 1/4 \end{cases} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

(c)
$$f_{-2}(u_1) = (2, 0, -2) = 2.u_1$$
 $f_{-2}(u_2) = (4, 8, 4) = 4.u_2$ $f_{-2}(u_3) = (0, 0, 0) = 0.u_3$

On a donc
$$D_{-2} = Mat_{\mathcal{B}_1}(f_{-2}) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(d) Pour tout
$$n \ge 1$$
 on a $D_2^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 4^n & 0 \\ 0 & 0 & 0 \end{pmatrix} = \left(Mat_{\mathscr{B}_1}(f_{-2})\right)^n = Mat_{\mathscr{B}_1}((f_{-2})^n)$

Par les formules de changement de base :

$$(M_{-2})^n = (Mat_{\mathscr{B}_0}(f_{-2}))^n = Mat_{\mathscr{B}_0}((f_{-2})^n) = P_{\mathscr{B}_0\mathscr{B}_1} \times D_2^n \times P_{\mathscr{B}_1\mathscr{B}_0}$$

Ce qui fait
$$M_{-2}^{n} = \begin{pmatrix} 2^{n-1} + 4^{n-1} & 4^{n-1} & -2^{n-1} + 4^{n-1} \\ 4^{n}/2 & 4^{n}/2 & 4^{n}/2 \\ -2^{n-1} + 4^{n-1} & -4^{n-1} & 2^{n-1} + 4^{n-1} \end{pmatrix}$$

(e) On constate que pour n=0, la formule ne donne pas $M_{-2}{}^0=I$. De plus, le rang de $M_{-2}: \operatorname{rg}(M_{-2})=2$ n'est pas maximal, alors M_{-2} n'est pas inversible. L'expression de $M_{-2}{}^n$ ainsi obtenue ne peut pas se généraliser à tout entier relatif n.