Information Representation

(a) A seven-bit cell.

(b) Some possible values in a seven-bit cell.

(c) Some impossible values in a seven-bit cell.

Counting in decimal

0	7	14	21	28	35
1	8	15	22	29	36
2	9	16	23	30	37
3	10	17	24	31	38
4	11	18	25	32	•
5	12	19	26	33	•
6	13	20	27	34	•

Counting in octal

0	7	16	25	34	43
1	10	17	26	35	44
2	11	20	27	36	45
3	12	21	30	37	46
4	13	22	31	40	•
5	14	23	32	41	•
6	15	24	33	42	•

Counting in base 3

0	21	112	210	1001	1022
I	22	120	211	1002	1100
2	100	121	212	1010	1101
10	101	122	220	1011	1102
П	102	200	221	1012	•
12	110	201	222	1020	•
20		202	1000	1021	•

Counting in binary

0		1110	10101	11100	100011
1	1000	1111	10110	11101	100100
10	1001	10000	10111	11110	100101
П	1010	10001	11000	11111	100110
100	1011	10010	11001	100000	•
101	1100	10011	11010	100001	•
110	1101	10100	11011	100010	•

(a) The place values for 10110 (bin).

- 0 1's place = 0
- 1 2's place = 2
- 1 4's place = 4
- 0 8's place = 0
- 1 16's place = $\frac{16}{22}$ (dec)
- (b) Converting 10110 (bin) to decimal.

$$1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

(a) The binary number 10110.

$$5 \times 10^4 + 8 \times 10^3 + 0 \times 10^2 + 3 \times 10^1 + 6 \times 10^0$$

(b) The decimal number 58,036.

0 0 1 0 1 1 0

Binary addition rules

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

 0
 0
 1
 0
 1

- The NEG operation
 - ▶ Taking the two's complement
- The NOT operation
 - Change the I's to 0's and the 0's to I's

The two's complement rule

- The two's complement of a number is I plus its one's complement
- NEG x = 1 + NOT x

Decimal	Binary
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

(a) Breaking the number line in the middle.

(b) Shifting the right part to the left side.

The status bits

- \bullet N = I if the result is negative
 - N = 0 otherwise
- Z = I if the result is all zeros
 - Z = 0 otherwise
- V = I if a signed integer overflow occurred
 - V = 0 otherwise
- C = I if an unsigned integer overflow occurred
 - C = 0 otherwise

p	\boldsymbol{q}	p AND q	p	\boldsymbol{q}	p OR q
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

\boldsymbol{q}	p XOR q
0	0
1	1
0	1
1	0
	0

p	\boldsymbol{q}	p AND q	p	$oldsymbol{q}$	p OR q
true	true	true	true	true	true
true	false	false	true	false	true
false	true	false	false	true	true
false	false	false	false	false	false

p	\boldsymbol{q}	p XOR q
true	true	false
true	false	true
false	true	true
false	false	false

Operation R	TL Symbol
AND OR XOR NOT Implies Transfer Bit index Informal description Sequential separator Concurrent separator	

RTL specification of OR operation

$$c \leftarrow a \lor b$$
; N $\leftarrow c < 0$, Z $\leftarrow c = 0$

Arithmetic shift left (ASL)

$$C \leftarrow r\langle 0 \rangle$$
, $r\langle 0...4 \rangle \leftarrow r\langle 1...5 \rangle$, $r\langle 5 \rangle \leftarrow 0$; $N \leftarrow r < 0$, $Z \leftarrow r = 0$, $V \leftarrow \{overflow\}$

Arithmetic shift right (ASR)

RTL specification is a problem for the student

Rotate left (ROL)

Rotate right (ROR)

Counting in hexadecimal

0	7	Е	15	IC	23
	8	F	16	ID	24
2	9	10	17	ΙE	25
3	A	П	18	IF	26
4	В	12	19	20	•
5	C	13	IA	21	•
6	D	14	IB	22	•

(a) The place values for 8BE7.

$$7 \times 1 = 7$$
 $14 \times 16 = 224$
 $11 \times 256 = 2,816$
 $8 \times 4096 = 32,768$
 $35,815$

(b) Converting 8BE7 to decimal.

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1_	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2_	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
3_	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
4_	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
5_	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
6_	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
7_	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
8_	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
9_	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
A _	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
B _	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
C _	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
D _	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
E _	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
F _	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Hex	xadecimal	Binary
	0	0000
	1	0001
	2	0010
	3	0011
	4	0100
	5	0101
	6	0110
	7	0111

Char	Bin	Hex	Char	Bin	Hex	Char	Bin	Hex	Char	Bin	Hex
NUL	000 0000	00	SP	010 0000	20	@	100 0000	40	-	110 0000	60
SOH	000 0001	01	l !	010 0001	21	A	100 0001	41	a	110 0001	61
STX	000 0010	02	"	010 0010	22	В	100 0010	42	b	110 0010	62
ETX	000 0011	03	#	010 0011	23	С	100 0011	43	С	110 0011	63
EOT	000 0100	04	\$	010 0100	24	D	100 0100	44	d	110 0100	64
ENQ	000 0101	05	%	010 0101	25	E	100 0101	45	е	110 0101	65
ACK	000 0110	06	&	010 0110	26	F	100 0110	46	f	110 0110	66
BEL	000 0111	07	1	010 0111	27	G	100 0111	47	g	110 0111	67
BS	000 1000	08	(010 1000	28	н	100 1000	48	h	110 1000	68
HT	000 1001	09)	010 1001	29	I	100 1001	49	i	110 1001	69
LF	000 1010	0A	*	010 1010	2A	J	100 1010	4A	j	110 1010	6A
VT	000 1011	0B	+	010 1011	2B	K	100 1011	4B	k	110 1011	6B
FF	000 1100	0C	,	010 1100	2C	L	100 1100	4C	1	110 1100	6C
CR	000 1101	0D	_	010 1101	2D	M	100 1101	4D	m	110 1101	6D
SO	000 1110	0E		010 1110	2E	N	100 1110	4E	n	110 1110	6E
SI	000 1111	0F	/	010 1111	2F	0	100 1111	4F	0	110 1111	6F
DLE	001 0000	10	0	011 0000	30	P	101 0000	50	р	111 0000	70
DC1	001 0001	11	1	011 0001	31	Q	101 0001	51	q	111 0001	71
DC2	001 0010	12	2	011 0010	32	R	101 0010	52	r	111 0010	72
DC3	001 0011	13	3	011 0011	33	s	101 0011	53	s	111 0011	73
DC4	001 0100	14	4	011 0100	34	Т	101 0100	54	t	111 0100	74
NAK	001 0101	15	5	011 0101	35	U	101 0101	55	u	111 0101	75
SYN	001 0110	16	6	011 0110	36	v	101 0110	56	v	111 0110	76
ETB	001 0111	17	7	011 0111	37	W	101 0111	57	w	111 0111	77
CAN	001 1000	18	8	011 1000	38	Х	101 1000	58	x	111 1000	78
EM	001 1001	19	9	011 1001	39	Y	101 1001	59	y	111 1001	79
SUB	001 1010	1A	:	011 1010	3A	Z	101 1010	5A	Z	111 1010	7A
ESC	001 1011	1B	;	011 1011	3B]	101 1011	5B	{	111 1011	7B
FS	001 1100	1C	<	011 1100	3C	\	101 1100	5C		111 1100	7C
GS	001 1100	1D	=	011 1101	3D)	101 1100	5D	}	111 1100	7D
RS	001 1101	1E	>	011 1110	3E	^	101 1110	5E	~	111 1110	7E
US	001 1110	1F	?	011 1111	3F		101 1110	5F	DEL	111 1111	7E 7F
	001 1111	11	•	011 1111	J1	_	101 1111	Ji		111 1111	7.1

Abbreviations for Control Characters

vertical tabulation

NUL	null, or all zeros	FF	form feed	CAN	cancel
SOH	start of heading	CR	carriage return	EM	end of medium
STX	start of text	SO	shift out	SUB	substitute
ETX	end of text	SI	shift in	ESC	escape
EOT	end of transmission	DLE	data link escape	FS	file separator
ENQ	enquiry	DC1	device control 1	GS	group separator
ACK	acknowledge	DC2	device control 2	RS	record separator
BEL	bell	DC3	device control 3	US	unit separator
BS	backspace	DC4	device control 4	SP	space
HT	horizontal tabulation	NAK	negative acknowledge	DEL	delete
LF	line feed	SYN	synchronous idle		

ETB end of transmission block

EBCDIC	Binary
A	1100 0001
В	1100 0010
C	1100 0011
•	•
•	•
•	•
0	1111 0000
1	1111 0001
2	1111 0010
•	•
•	•
	•

(a) The place values for 101.011 (bin).

- 1^{-1} /s's place = 0.125
- $1^{-1}/4$'s place = 0.25
- $0^{-1}/2$'s place = 0.0
- 1 1's place = 1.0
- 0 2's place = 0.0
- 1 4's place = $\frac{4.0}{5.375}$ (dec)

(b) Converting 101.011 (bin) to decimal.

$$1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$$

(a) The binary number 101.011.

$$5 \times 10^{2} + 0 \times 10^{1} + 6 \times 10^{0} + 7 \times 10^{-1} + 2 \times 10^{-2} + 1 \times 10^{-3}$$

(b) The decimal number 506.721.

$$6 (dec) = 110 (bin)$$

(a) Convert the whole part

	.5859375
1	.171875
0	.34375
0	.6875
1	.375
0	.75
1	.5
1	0.

(b) Convert the fractional part

	.2
0	.4
0	.8
1	.6
1	.2
0	.4
0	.8
1	.6
•	•

Decimal	Excess 3	Two's Complement
-4		100
-3 -2 -1 0	000 001 010 011	101 110 111 000
1 2 3 4	100 101 110 111	001 010 011

- Zero
 - Exponent field all 0's
 - Significand all 0's
 - ▶ There is a +0 and a -0

- Infinity
 - Exponent field all I's
 - Significand all 0's
 - ▶ There is a $+\infty$ and a $-\infty$
 - Produced by operation that gives result in overflow region

- Not a Number (NaN)
 - Exponent field all I's
 - Significand nonzero
 - Produced by illegal math operations

- Denormalized number
 - Exponent field all 0's
 - Significand nonzero
 - Hidden bit is assumed to be 0 instead of I
 - If the exponent is stored in excess *n* for normalized numbers, it is stored in excess *n*
 - I for denormalized numbers

	Binary	Scientific notation	Decimal
Not a Number	1 111 nonzero		
Negative infinity	1 111 0000		$-\infty$
Negative normalized	1 110 1111 1 110 1110	-1.1111×2^3 -1.1110×2^3	-15.5 -15.0
	 1 011 0001	-1.0001×2^{0}	 -1.0625
	1 011 0000 1 010 1111	-1.0000×2^{0} -1.1111×2^{-1}	-1.0 -0.96875
	1 001 0001 1 001 0000	$\begin{array}{c} \dots \\ -1.0001 \times 2^{-2} \\ -1.0000 \times 2^{-2} \end{array}$	-0.265625 -0.25
Negative denormalized	1 000 1111 1 000 1110	-0.1111×2^{-2} -0.1110×2^{-2}	-0.234375 -0.21875
delioimanzed	1 000 0010	0.1110×2 -0.0010×2^{-2}	 -0.03125
	1 000 0001	-0.0001×2^{-2}	-0.015625
Negative zero	1 000 0000		-0.0
Positive zero	0 000 0000		+0.0

Negative zero	1 000 0000		-0.0
Positive zero	0 000 0000		+0.0
Positive	0 000 0001	0.0001×2^{-2}	0.015625
denormalized	0 000 0010	0.0010×2^{-2}	0.03125
	•••		
	0 000 1110	0.1110×2^{-2}	0.21875
	0 000 1111	0.1111×2^{-2}	0.234375
Positive	0 001 0000	1.0000×2^{-2}	0.25
normalized	0 001 0001	1.0001×2^{-2}	0.265625
	•••	•••	
	0 010 1111	1.1111×2^{-1}	0.96875
	0 011 0000	1.0000×2^{0}	1.0
	0 011 0001	1.0001×2^{0}	1.0625
	•••	•••	•••
	0 110 1110	1.1110×2^3	15.0
	0 110 1111	1.1111×2^3	15.5
Positive infinity	0 111 0000		+∞
Not a Number	0 111 nonzero		

Bits 1 8		23		
(a) Single pre	ecision			
Bits 1	11		52	
(b) Double pr	recision			

	0	1	2	3	4	5	6	7
0	1e30	35	45	40	55	65	80	70
1	35	1e30	30	1e30	1e30	1e30	1e30	1e30
2	45	30	1e30	1e30	1e30	1e30	1e30	60
3	40	1e30	1e30	1e30	70	1e30	1e30	1e30
4	55	1e30	1e30	70	1e30	40	60	1e30
5	65	1e30	1e30	1e30	40	1e30	40	1e30
6	80	1e30	1e30	1e30	60	40	1e30	50
7	70	1e30	60	1e30	1e30	1e30	50	1e30

City Numbers

0 Los Angeles

4 San Francisco

1 San Diego

- 5 Sacramento
- 2 Palm Springs
- 6 Reno
- 3 Santa Barbara
- 7 Las Vegas

Route number	From	То	Cost
0	0	1	35
1	0	2	45
2	0	3	40
3	0	4	55
4	0	5	65
5	0	6	80
6	0	7	70
7	1	2	30
8	2	7	60
9	3	4	70
10	4	5	40
11	4	6	60
12	5	6	40
13	6	7	50