

GEA Tianjin / 中国民航大学中欧航空工程师学院

Case study: Onboard Information System of the A350 XWB

Adapted from a communication of "Journée AFIS: Architecture des systèmes"

By Aurélie Garcia – (Aeroconseil) Thalès, Henri Cuiller – Aeroconseil Stéphane Petit – Airbus

Fly Smart with Airbus (FSA)

Support the good aircraft operation during all its life cycle

- Reduce Turn-Around Time
- Reduce the amount of paper in aircraft

FSA-NG history

- **Before FSA:**
 - ☐ Lots of Paper to be carried by the pilot:
 - Flight Plan
 - Charts, Abacus
 - Heavy Documentations
- > FSA on Long Range (A330-A340): LPC
 - A laptop is introduced inside the cockpit, so called the Electronic Flight Bag and hosts the LPC applications (Less Paper Cockpit) that enables:
 - the consultation of the electronic documentation
 - The calcul of performances Heavy Documentations
- > FSA on A380: NSS-OIS
 - Beginning of A/C and Fleet operations Support and host
 - Flight crew applications
 - Cabin crew applications
 - Maintenance applications
 - Communication means
- FSA-NG on A350 XWB
 - ☐ FSA-NG is an Airbus solution to enable Airlines to operate a fleet of aircrafts, to ensure aircraft dispatch, maintenance, and upgrade:
 - It allows information exchange between A/L ground information system and board
 - It enables to operate the fleet without paper

FSA environment

Strong interaction between aircraft and airline network on ground

Development context

New and complex system ☐ Based on up-to-date technologies (java, virtual machines,) ☐ Must conform to ergonomy standard at Entry into Service (2013) ☐ Few operational feedbacks from existing programmes
Concurrent Engineering ☐ Several developments levels, defined by different teams, on several sites ☐ Hundreds of people, from different organizations, with various methods and tools ☐ Large ratio of sub-contracting
Domains of competences ☐ Skills about Airlines way of working ☐ Skills about architecture and complex systems ☐ Transverse subjects: operational reliability, data security, safety, certification

FSA domains

Line operators

Cabin Crew

Passengers

Aircraft Control Domain Airline
Information
System
Domain

Passenger
Information &
Entertainment
Domain

Passenger Owned Devices Domain

Air traffic Control

Œ

Applications

Flight Crew

Maintenance team

Cabin Crew

Passengers

A/C Control Domain

Cockpit Display System,
Head-up Display,...
Electronic Flight Bag

Communication, Navigation,
Surveillance

Airline IS Domain

E-logbook,
Maintenance terminal
Electronic Flight Bag

Cabin Information System

Air traffic Control

Maintenance centre

Information and communication architecture

A/C Control Domain	Airline IS Domain	PIESD	
Cockpit Display System, Head-up Display,	E-logbook, Maintenance terminal, Cabin logbook	Entertainment & Inf. System	Qperations/ Functions
Communication, Navigation, Surveillance Flight Controls & Mngt,	Onboard Maintenance System		Systems
Modular avionics, BITE	Onboard Information Mngt		Middleware, Inf. Systems
AFDX, ARINC 429	Ethernet	Ethernet	Network
VHF, HF, SATCOM, ACARS	SATCOM, Wireless	SATCOM/ Cellular	Communicatio

Development constraints

A/C Control Domain

 Highly critical: failure of functions can lead to dangerous situations

Mostly DO-178B level A-C: high development costs for software

Airline IS Domain

- Open: to external communication, including during flights
- Interconnected with airlines information systems

Mostly DO-178B level C to F: medium to low development costs for software

Passenger IE Domain

- Availability
- Open to various devices

Focus on OnBoard Maintenance System (1/2)

Operational need: reduce the maintenance time for the aircraft on ground between 2 flights

Focus on OnBoard Maintenance System (2/2)

Maintenance Function team

Activities

Maintenance Function modeling

Maintenance Function requirements definition

Validation matrix

Customization and settings

On ground Fligh On-hoard Fligh preparation T/O - CLB DES - APP Maintenance Control Cent Preparation of the spare LRU Dispatcher W&B Prelimary computation of ZEW ZEWCG

Flight closure

Maintenance Operations team

Activities **Operational needs analysis New maintenance concepts definition Operational scenarii definition**

Functional breakdown analysis

Architecture definition

Functions allocation on systems

Data security validation

Operating environment definition

Open world architecture process definition

Interface management

ísae

Activities

Maintenance integrated workflow concept definition

HMI mock-up definition

Human factors evaluations

HMI requirements definition

Aircraft Development Process

Model Driven Engineering Approach Example

3 axes

- Requirement Analysis & Traceability
- 2 Behavior Op&Functional Modeling
- Solution definition and architecture design

3 Levels

Operational Context Analysis

Black box description

White box description

Zoom on Functional Requirement Document – content

Internal Functional Breakdown

Modeling techniques and tools

Maintenance Function

Rhapsody

IBM

Activities

Maintenance Function modeling

Maintenance Function requirements definition

Validation matrix

Customization and settings

Maintenance team Vitech CORE

Activities
Operational needs analysis
New maintenance concepts
definition
Operational scenarii definition

Open World architecture team

Activities

FLIGHT DOMAIN

Functional breakdown analys

Architecture definition

Functions allocation on systems

Data security validation

Operating environment definition

Open world architecture process definition

Interface management

HMI team

Activities

Maintenance integrated workflow concept definition

concept definition

HMI mock-up definition

Human factors evaluations

HMI requirements definition

Modelling: using multi formalisms/Multiple tools

Using one <u>single</u> formalism/tool is not always possible, nor desirable

- > Multiple teams, and competences
- No universal modeling language
 - Several design levels, needing different views and levels of details
 - Structure, electricity, aerodynamics, control systems, hardware/software, thermics, safety, acoustics,
 - A functional architecture <> a logical/physical architecture
 - Event driven, Data flow, control flow, synchronous, asynchronous, parallel, ...

Methodology

Source AFIS

From functional analysis to physical architecture in a common Core® (Vitech) model

Content

- Requirements analysis
- Functional architecture definition
- Architecture concepts and definition
- Physical architecture
- From method to tool
- > Figures

Requirements analysis

- > Requirements elicitation performed by different teams:
 - ☐ By domains of competences operational, functional and performance aspects

- ☐ By architecture team major constraints for architecture
- ✓ Identification of requirements inconsistencies

Modelling scheme

Requirements

e.g. " Information system shall enable maintenance operator to export maintenance report to a USB key"

Functional architecture definition

Objective: Define functional decomposition answering to identified system needs

Functional architecture definition

Analyse des exigences

Choix de concepts
Processus
d'architecture
iltératif
Conception système

Définition de l'arbre produit

Définition de l'arbre exigences des composants

- ➤ 2nd step: Formal requirements analysis
- Considering aircraft life cycle (In Operation, FAL, tests, maintenance, ...)
- Functions refined down
 - ☐ Target: functions allocation on physical architecture
- ✓ Better understanding between actors
- ✓ Early identification of interfaces potential problems

Modelling

Architecture concepts

Analyse des exigences

Définition de l'architecture fonctionnelle

Processus

Définition de l'arbre produit

Définition de l'arbre produit

Promalisation de exigences des composants

At the same time...

- Definition of high-level architecture considering:
 - ☐ Safety
 - ☐ Data Security
 - ☐ Access to Communication Means
 - ☐ Portability...

> ... and represented by logical domains

Architecture definition

Sub-systems

designers

- Identification of functions clusters ...
- > ... according to architecture drivers ...
 - ☐ Reduce interfaces
 - Reuse
 - ☐ Communication capabilities
 - ☐ Customisation...
- > ... and allocated to domains

Each domain has its own directives for sub-systems development

Modelling

Benefits

- ✓ Architecture optimization
- ✓ Architecture trade-off
 - ✓ Hot topics modelled through architecture patterns
- ✓ Early definition and sharing of
 - ✓ Architecture
 - ✓ Flows going through Air/Ground communication means
 - ✓ Development directives (interfaces, development...)
- ✓ Eased modifications follow-up
- ✓ Early design validation

Physical architecture

- Definition of physical components (HW & SW)
- Allocation of functions to physical components
- In collaboration with sub-systems designers.
- ✓ Identification of sub-systems functional scope and interfaces

Modelling

Figures

Up to 10 engineers during 2 years

- Supporting up to 20 domains of competences
 - ☐ represented by their experts
- Interfacing with 16 teams for requirements definition
- ➤ Interfacing with >30 teams for sub-systems design
- Around 2000 input requirements
- ➤ 1605 functions 2431 data flows
- ➤ 148 domain functions clusters 199 systems functions clusters

Conclusion

This approach has allowed to model the A350 XWB on-board FSA-NG

- ✓ Stable and mature architecture before the Preliminary Design Review
- ✓ Reference model for all system designers
- Next steps
 - ☐ Support for Integration and V&V activity
 - ☐ Application to A30X and other programmes
- Perspectives
 - ☐ Dynamic modelling and simulation
 - ☐ Performance analysis

