Human Standing Control Parameter Identification with Direct Collocation

Jason K. Moore Ton van den Bogert

July 10, 2015 ISB TGCS 2015, Edinburgh, UK

Parameter Identification

Find the parameters ${\bf p}$ such that the difference between the model simulation, ${\bf y}$, and measurements, ${\bf y}_m$ is minimized.

Dynamic system

- Equations of Motion: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{p})$
- Measurement variables: y = g(x, p)

Objective

$$\min_{\mathbf{p}} J(\mathbf{p})$$

where

$$J(\mathbf{p}) = \int [\mathbf{y}_m - \mathbf{y}(\mathbf{p})]^2 dt$$

Parameter Identification By Shooting

- Repeated simulations are computationally costly
- Systems may be unstable and thus have an ill-defined objective
- Local minima are inevitable
 - May requires a superb guess
 - May need time intensive global optimization methods

Local Minima Example: Simple pendulum

Vyasarayani, Chandrika P., Thomas Uchida, Ashwin Carvalho, and John McPhee. "Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach". Multibody System Dynamics 26, no. 4 (2011): 411-24.

1-DoF, 1 parameter pendulum equations of motion

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\theta}(t) \\ \dot{\omega}(t) \end{bmatrix} = \begin{bmatrix} \omega(t) \\ -p\sin\theta(t) \end{bmatrix}$$

Objective: Minimize least squares

$$J(p) = \min_{p} \int_{t_0}^{t_f} [\theta_m(t) - \theta(\mathbf{x}, p, t)]^2 dt$$

Direct Collocation

Betts, J., and W. Huffman. "Large Scale Parameter Estimation Using Sparse Nonlinear Programming Methods." SIAM Journal on Optimization 14, no. 1 (January 1, 2003): 223–44. doi:10.1137/S1052623401399216.

Benefits

- Fast computation times
- Handles unstable systems with ease
- Less susceptible to local minima

Disadvantages

- Accurate solution requires large number of nodes
- Memory management for large sparse matrices and operations
- Tedious and error prone to form gradients, Jacobians, and Hessians

Our Direct Collocation Implementation

Implicit Continous Equations of Motion

No need to solve for $\dot{\mathbf{x}}$.

$$\mathbf{f}(\dot{\mathbf{x}}, \mathbf{x}, \mathbf{r}, \mathbf{p}, t) = 0$$

- \mathbf{x} , $\dot{\mathbf{x}}$: states and their derivatives
- **r**: exogenous inputs
- **p**: constant parameters

Discretization

First order discrete integration options:

Backward Euler:

$$\mathbf{f}(\frac{\mathbf{x}_{i}-\mathbf{x}_{i-1}}{h},\mathbf{x}_{i},\mathbf{r}_{i},\mathbf{p},t_{i})=0$$

Midpoint Rule:

$$\mathbf{f}(\frac{\mathbf{x}_{i+1}-\mathbf{x}_i}{h},\frac{\mathbf{x}_i+\mathbf{x}_{i+1}}{2},\frac{\mathbf{r}_i+\mathbf{r}_{i+1}}{2},\mathbf{p},t_i)=0$$

Nonlinear Programming Formulation

$$\min_{\theta} J(\theta)$$
where $\theta = [\mathbf{x}_i, \dots, \mathbf{x}_N, \mathbf{r}_i, \dots, \mathbf{r}_N, \mathbf{p}]$
subject to $\mathbf{f}(\mathbf{x}_i, \mathbf{x}_{i+1}, \mathbf{r}_i, \mathbf{r}_{i+1}, \mathbf{p}, t_i) = 0$ and $\theta_L \le \theta \le \theta_U$

Software Tool: opty

- User specifies continous symbolic:
 - objective
 - equations of motion (explicit or implicit)
 - additional constraints
 - bounds on free variables: x, r, p
- EoMs can be generated with PyDy (http://pydy.org (http://pydy.org))
- Effficient just-in-time compiled C code is generated for functions that evaluate:
 - objective and its gradient
 - constraints and its Jacobian
- NLP problem automatically formed for IPOPT
- Open source: BSD license
- Written in Python
- http://github.com/csu-hmc/opty (http://github.com/csu-hmc/opty)

Example Code: 1 DoF, 1 Parameter Pendulum

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\theta}(t) \\ \dot{\omega}(t) \end{bmatrix} = \begin{bmatrix} \omega(t) \\ -p\sin\theta(t) \end{bmatrix}$$

Paraphrased from https://github.com/csu-hmc/opty/blob/master/examples/vyasarayani2011.py (https://github.com/csu-hmc/opty/blob/master/examples/vyasarayani2011.py)

Symbolics

Example Code: 1 DoF, 1 Parameter Pendulum

Numerics

Computational Speed

Example Larger System

10 link pendulum on sliding cart (not stiff) 11 DoF, 22 states, 22 parameters 12800 mathematical operations in constraint expressions 100 s sampled @ 100 hz

Computational Speed

Discretization Variables

- 10,000 collocation nodes
- 219,978 constraints
- 14,518,548 nonzero entries in the Jacobian
- 220,022 free variables

Timings

- Integrating with ODEPACK Isoda: 5.6 s
- Constraint evaluation: 33 ms (0.033 s)
- Jacobian evaluation: 128 ms (0.128 s)

Case Study: Human Control Parameter Identification

Plant

Torque driven two-link inverted pendulum with an accelerating base.

States: $\mathbf{x} = [\theta_a \quad \theta_h \quad \omega_a \quad \omega_h]^T$

Exogoneous inputs:

- Controlled: $\mathbf{r}_c = [T_a \quad T_h]^T$
- Specified: $\mathbf{r}_k = [a]$

Known parameters: \mathbf{p}_k

Open Loop Equations of Motion

$$\dot{\mathbf{x}} = \mathbf{f}_o(\mathbf{x}, \mathbf{r}_c, \mathbf{r}_k, \mathbf{p}_k, t)$$

Lumped Passive+Active Controller

- True human controller is practically impossible to isolate and identify
- Identify a controller for a similar system that causes the same behavior as the real system

Simple State Feedback

$$\mathbf{r}_c(t) = -\mathbf{K}\mathbf{x}(t)$$

Unknown Parameters

$$\mathbf{p}_u = \text{vec}(\mathbf{K})$$

Closed Loop Equations of Motion

$$\dot{\mathbf{x}} = \mathbf{f}_c(\mathbf{x}, \mathbf{r}_k, \mathbf{p}_k, \mathbf{p}_u, t)$$

Generate Data

Specify the psuedo-random platform acceleration
$$a(t) = \sum_{i=1}^{12} A_i \sin(\omega_i t)$$
 where, 0.15rad/s $< \omega_i <$ 15.0rad/s

Choose a stable controller

$$\mathbf{K} = \begin{bmatrix} 950 & 175 & 185 & 50 \\ 45 & 290 & 60 & 26 \end{bmatrix}$$

Generate Data

Simulate closed loop system under the influence of perturbations for 60 seconds, sampled at 100 Hz

$$\dot{\mathbf{x}} = \mathbf{f}_c(\mathbf{x}, \mathbf{r}_k, \mathbf{p}_k, \mathbf{p}_u, t)$$

Add Gaussian measurement noise

$$\mathbf{x}_m(t) = \mathbf{x}(t) + \mathbf{v}_{x}(t)$$

$$a_m(t) = a(t) + v_a(t)$$

- σ_{θ} = 0.3 deg
- σ_{ω} = 4 deg/s₋₂
- $\sigma_a = 0.42 \, \text{ms}$

Parameter Identification Problem Specification

Given noisy measurements of the states, \mathbf{x}_m , and the platform acceleration, a_m , can we identify the controller parameters \mathbf{K} ?

$$\min_{\theta} J(\theta), \quad J(\theta) = \sum_{i=1}^{N} h[\mathbf{x}_{mi} - \mathbf{x}_{i}]^{2}$$

where

$$\theta = [\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{p}_u]$$

Subject to the constraints:

$$\mathbf{f}_c(\mathbf{x}_i, \mathbf{x}_{i+1}, a_{mi}, a_{mi+1}, \mathbf{p}_u) = 0, \quad i = 1 \dots N$$

And the initial guess:

$$\theta_0 = [\mathbf{x}_{m1}, \dots, \mathbf{x}_{mN}, \mathbf{0}]$$

For, N = 6000:

- 24008 free variables
- 23996 x 24008 Jacobian matrix with 384000 non-zero entries

Results

Converges in 11 iterations in 2.8 seconds of computation time.

	Known	Identified	Error
k_{00}	950	946	-0.4%
k_{01}	175	177	1.4%
k_{02}	185	185	-0.2%
k_{03}	50	55	9.4%
k_{10}	45	45	1.1%
k_{11}	290	289	-0.3%
k_{12}	60	59	-2.1%
k_{13}	26	27	4.2%

Identified State Trajectories

Conclusion

- Direct collocation is suitable for biomechanical parameter identification
- Computation speeds are orders of magnitude faster than shooting
- Parameter identification accuracy improves with # nodes
- Complex problems can be solved with few lines of code and high level mathematical abstractions