Discarding QUIC Old 1-RTT Keys Design Team Proposal

David Schinazi, Google

Design Team Members

Eric Rescorla
Martin Duke
Marten Seemann
Martin Thomson
Kazuho Oku
Christian Huitema

Problem Statement

QUIC short headers contain KEY_PHASE bit

Allows for unilateral key updates without prior permission requests

If endpoint updates keys twice without peer knowing, can end up disagreeing on current key epoch is

Design Principles

Avoid trial decryption

Explicit signal to agree on new epoch before updating again

Not driven by acknowledgments or special retransmission logic

Model: endpoints unilaterally initiate update then require confirmation

Endpoints can update their send keys and force peer to update send keys

Simple implementations but need to support two 1-RTT read keys

Proposal

New encrypted bit in short header: KEY_READY

KEY_READY Bit

Send KEY_READY at a given key phase after you've received at given key phase

Do not initiate key update until after receiving KEY_READY

TODO: Limit Excessive Key Updates

Problem: if

- A initiates key updates as soon as possible
- B only keeps two keys in memory
- There is packet reordering

Then: valid packets dropped — performance degradation

Solutions:

- B waits before sending KEY_READY
- A waits before initiating next key update
- Accept that excessive key updates harm performance

Consequences minor, please send opinions to list

Discarding QUIC Old 1-RTT Keys Design Team Proposal

David Schinazi, Google

Design Team Members

Eric Rescorla
Martin Duke
Marten Seemann
Martin Thomson
Kazuho Oku
Christian Huitema

