Problema 28. Sigui A un domini d'integritat amb la propietat que donada una cadena descendent de ideals $I_1 \supseteq I_2 \supseteq ... \supseteq I_n \supseteq ...$, existeix un enter m tal que $I_n = I_m \ \forall n \ge m$. Demostrar que A és un cos.

Solució. Hem de veure que per a tot $a \in A - \{0\}$ existeix un invers a^{-1} .

Suposem que $a \neq 0$. Llavors la successió d'ideals $(a) \supseteq (a^2) \supseteq (a^3) \supseteq \dots$ és estacionaria i, per tant, es té que $(a^n) = (a^{n+1})$, per a algun $n \in \mathbb{N}$.

Per tant, existeix un element $b \in A$ tal que $a^n = ba^{n+1}$ i, aïllant, tenim que $a^n(1-ba) = 0$. Com que a no és divisor de zero, obtenim que 1 = ba, de manera que a és invertible i $b = a^{-1}$.