B.Tech II (CSE) Discrete Mathematics Quiz 1

*Required

Untitled section	
Responses are limited to only one	
If aN= { ax, for x in N}, then the intersection of 3N and 7N is equa	al to * 1 point
None	
21N	
empty set	
Ози	
○ 7N	
2. Let X be a family of sets and R be a relation in X, defined by 'A from B'. Then, R is *	is disjoint 1 point
reflexive	
transitive	
symmetric	
antisymmetric	
3. If R is reflexive, symmetric and transitive then the relation is sa	aid to be * 1 point
Equivalence relation	
Compatibility relation	
Binary relation	
Partial order relation	
If 76% of students DM and 63% like Engg. Mathematics. What ca about the percentage of persons who like both courses? *	an be said 1 point
O 14	
O 49	
39	
O 37	

The inverse of the permutation (1 3 5)(2 4) is *

(5 3 1)(4 2)

(1 2)(1 4)(3 2)(3 4)(5 2)(5 4)

(4 2)(5 3 1)

(1 3 5)(2 4)

(2 4)(1 3 5)

If R and S be the relations on a set A represented by the matrices $M_R = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, find the matrix that represent $R \oplus S$.

Consider Q={1, -1, i, -i, j, -j, k, -k} with binary operation * defined as x(-1)=

(-1)x=-x, i*i=j*j=k*k=1, i*j=k, j*k=i, k*i=j, j*i=-k, k*j=-i, i*k=-j. Which of the following are true? *

✓ (Q, *) is a group.

(Q, *) is not a group.

(Q, *) is abelian group.

✓ (Q, *) is a cyclic group.

4. * 1 point If $A=\{1,2,3,4\}\times\{1,2,3,4\}$ and the relation R is defined on A by (a, b) R (c, d) if a+b=c+d, then find the quotient set of A by R. [(1,1),(1,2),(1,3),(1,4),(3,3),(3,4),(4,4)][(1,1),(1,2),(1,3),(1,4),(2,4),(3,4),(4,4)]Option 2 Option 3 [(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3)]None of these Option 1 1. The relation R defined on the set A = $\{1, 2, 3, 4, 5\}$ by R = $\{(x, y) : |x^2-y^2| < 1 \text{ point } \}$ 16) is given by * (1, 1), (2, 1), (3, 1), (4, 1), (2, 3)} {(2, 2), (3, 2), (4, 2), (2, 4)} None of the above {(3, 3), (4, 3), (5, 4), (3, 4)} If the binary operation * is defined on a set of ordered pairs of real number 1 point as (a, b)*(c, d)=(ad+bc, bd) then is it associative? (1, 2)*(3, 5)*(3, 4)=____* yes, (32, 40) No (72, 40) yes (72, 40) No (32,40) none Submit Back

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms