

112701006 運管大一 吳昭泓

大綱

PartA: 入學錄取資料

- 1. 資料預處理
- 2. 迴歸分析
- 3. 預測結果

PartB: 糖尿病資料

- 1. 變數說明
- 2. 資料預處理
- 3. 迴歸分析
- 4. 預測結果

PartC: 使用Orange

- 1. 參數設定
- 2. 羅吉斯迴歸
- 3. 分類
- 4. 討論與比較

使用 excel

PartA 1.1 檔案轉換

入學錄取資料

PartA 1.2 拆分資料集

入學錄取資料

PartA 2.1 迴歸試算一

excel (線性) 迴歸試算如下

$$y = -0.21$$

+ $0.0004~GRE分數$
+ $0.17~GPA分數$
 $-0.11~畢業學校排名$

截距與GRE分數變項 未通過95%顯著性檢定

迴歸統計	
R的倍數	0.32
R平方	0.11
調整的R平方	0.10
標準誤	0.44
觀察值個數	320

ANOVA

	自由度	SS	MS	F	顯著值
迴歸	3	7.29	2.43	12.42	< 0.001
殘差	316	61.83	0.20		
總和	319	69.12			

	係數	標準誤	t 統計	P-值	下限 95%	上限 95%
截距	-0.21	0.24	-0.86	0.39	-0.69	0.27
GRE 分數	0.0004	0.00	1.89	0.06	0.00	0.00
GPA 分數	0.17	0.07	2.29	0.02	0.02	0.31
畢業學校排名	-0.11	0.03	-4.38	0.00	-0.16	-0.06

PartA 2.2 迴歸試算二

扣除GRE分數變項後試算如下

僅截距未通過95%顯著性檢定

迴歸統計	
R的倍數	0.31
R平方	0.10
調整的R平方	0.09
標準誤	0.44
觀察值個數	320

ANOVA

	自由度	SS	MS	F	顯著值
迴歸	2	6.59	3.30	16.71	< 0.001
殘差	317	62.53	0.20		
總和	319	69.12			

	係數	標準誤	t 統計	P-值 7	限 95%	上限 95%
截距	-0.13	0.24	-0.53	0.59	-0.60	0.34
GPA 分數	0.22	0.07	3.29	0.001	0.09	0.35
畢業學校排名	-0.12	0.03	-4.58	< 0.001	-0.17	-0.07

預測結果

PartA 2.3 迴歸試算整理

由於屆時可設定決定是否錄取的y臨界值,因此截距是否通過顯著檢定可忽略 預測將由以下兩模型分別討論結果:

試算一:加入所有變項

$$y = -0.21$$

+ $0.0004~GRE分數$
+ $0.17~GPA分數$
 $-0.11~畢業學校排名$

試算二:扣除 GRE 分數

PartA 3.1 預測結果評估指標

混淆矩陣	預測錄取	預測 不錄取
實際錄取	TP	FP
實際不錄取	FP	TP

實際不錄取 (54) 較錄取 (36) 偏多,

準確率可能無法準確反映預測情形

精確度 = $\frac{TP}{TP + FP}$

 \rightarrow

若預測正確但實際錯誤,此數值低此失誤的代價僅為教育資源消耗

Precision

PartA

PartB

PartC

資料預處理

迴歸分析

PartA 3.1 預測結果評估指標

$$\frac{G \, \text{回率}}{\text{Recall}} = \frac{TP}{TP + FN}$$

若實際正確但預測錯誤,此數值低 此失誤可能造成錯失人才

$$F1$$
 分數 = $\frac{2}{\frac{1}{precision} + \frac{1}{recall}}$ — 同時考慮精確度與召回率

由於錯失人才的代價巨大,因此本題預測指標將採用 召回率 (Recall) 由於 y 臨界值設定越低召回率勢必越高,因此統一設為 0.5

PartA

PartB

PartC

資料預處理

迴歸分析

PartA 3.2 兩種試算預測結果

試算一:加入所有變項

		預測 不錄取	錄取	小計
實際	不錄取	49	5	54
	錄取	20	6	26
	小計	69	11	80
y臨界	0.5			
準確率	Accuracy	0.69		
精確度	Precision	0.55		
召回率	Recall	0.23		
F1 分數	F1 score	0.32		

試算二: 扣除 GRE 分數

		預測		
		不錄取	錄取	小計
實際	不錄取	50	4	54
	錄取	21	5	26
	小計	71	9	80
y臨界	0.5			
準確率	Accuracy	0.69		
精確度	Precision	0.56		
召回率	Recall	0.19		
F1 分數	F1 score	0.29		

PartA 3.3 降低 y 臨界值

試算一:加入所有變項

		預測 不錄取	錄取	小計
實際	不錄取	21	33	54
	錄取	5	21	26
	小計	26	54	80
y臨界	0.3			
準確率	Accuracy	0.53		
精確度	Precision	0.39		
召回率	Recall	0.81		
F1 分數	F1 score	0.53		

試算二: 扣除 GRE 分數

		預測		
		不錄取	錄取	小計
實際	不錄取	21	33	54
	錄取	6	20	26
	小計	27	53	80
y臨界	0.3			
準確率	Accuracy	0.51		
精確度	Precision	0.38		
召回率	Recall	0.77		
F1 分數	F1 score	0.51		

PartA 3.4 結果討論

- 兩種試算結果相似,各種指標差異皆小於 0.04
- 機率臨界值由 0.5 降至 0.3 有以下變化
 - ✓ 召回率顯著提升 0.58
 - ✓ 但準確率、精確度降低 0.16~0.18
 - ✓ 經過測試,再將臨界值降至0.2,準確率將低於0.5
- 召回率(留住更多人才)與精確度(節省教育開支)必須權衡
- · 將 y 臨界值設為 0.3 似乎為佳,但樣本數有過少之嫌

PartB 1. 糖尿病資料集變數說明

身體質量指數(BMI):身高(公尺)/體重(公斤)²

糖化血色素:血中葡萄糖和紅血球中血色素結合的比例

(資料來源:亞州大學附屬醫院)

吸菸史 no info (無資訊) 資料集並未給出明確定義,kaggle討論區亦眾說紛紜, 無法排序 never (從不)

not current

former

current (目前有)

ever

保留各頻率之英文,並開設虛擬變項 → 以 no info 為基準,開設五個吸菸史 相關變數

PartB 2.1 吸菸史資料轉換

吸菸史		吸菸史 current	吸菸史 ever	吸菸史 former	吸菸史 not current	吸菸史 never
no info	虛擬變項轉換	0	0	0	0	0
never	/_ \	0	0	0	0	1
not current		0	0	0	1	0
former		0	0	1	0	0
current		1	0	0	0	0
ever		0	1	0	0	0

參考 商管實務的資料分析 解釋型迴歸分析 類別自變數(孔令傑副教授) https://youtu.be/0IaZsp025pY?feature=shared

PartB PartA

PartC 變數說明

資料預處理

迴歸分析 預測結果

PartB 2.2 性別資料轉換

事實上有18筆資料性別 為other,但考慮樣本數 100,000,18筆影響甚小, 因此設為女生

PartA PartB

PartC

變數說明

資料預處理

迴歸分析

PartB 2.3 拆分資料集

糖尿病資料

PartA PartB

PartC

變數說明

資料預處理

迴歸分析

PartB 3.1 線性回歸報表

迴歸統計					
R的倍數	0.59				
R 平方	0.35				
調整的R平方	0.35				
標準誤	0.23				
觀察值個數	80000				
ANOVA					
	自由度	SS	MS	F	顯著值
迴歸	12	2181.85	181.821	3582.04	0
殘差	79987	4060.06	0.05076		
總和	79999	6241.91			

	係數	標準誤	t 統計	P-值	下限 95%	上限 95%
截距	-0.87	0.0055	-157.69	< 0.001	-0.88	-0.86
性別	0.01	0.0016	7.72	< 0.001	0.01	0.02
年龄	0.001	0.0000	32.27	< 0.001	0.00	0.00
高血壓	0.09	0.0032	29.68	< 0.001	0.09	0.10
心臟病	0.12	0.0043	28.08	< 0.001	0.11	0.13
吸菸史 current	0.01	0.0030	3.30	< 0.001	0.00	0.02
吸菸史 ever	0.01	0.0043	3.09	< 0.001	0.00	0.02
吸菸史 former	0.03	0.0031	8.76	< 0.001	0.02	0.03
吸菸史 not current	0.01	0.0035	3.29	< 0.001	0.00	0.02
吸菸史 never	0.01	0.0020	5.43	< 0.001	0.01	0.01
BMI	0.004	0.0001	32.20	< 0.001	0.00	0.00
糖化血色素	0.08	0.0008	107.56	< 0.001	0.08	0.08
血糖濃度	0.002	0.0000	113.31	< 0.001	0.00	0.00

各斜率與截距皆通過95%顯著性檢定

PartB PartA

PartC

變數說明 資料預處理

迴歸分析

PartB 3.2 迴歸模型函數

```
y = -0.87 + 0.01 性別(0 女; 1 男) + 0.001 年齡(歲)
+0.09 高血壓(是1; 否0) +0.12 心臟病(是1; 否0)
+0.01 吸菸史(current 1; 否0) +0.01 吸菸史(ever 1; 否0)
+ 0.03 吸菸史 (former 1; 否 0)
+0.01 吸菸史(not current 1; 否0) + 0.01 吸菸史(never 1; 否0)
+0.004 BMI + 0.08 糖化血色素(%) + 0.002 血糖濃度(mg/dL)
```

PartB 4.1 預測結果評估指標

準確率

實際無患病 (18324) 較患病 (1676) 偏多,

Accuracy

準確率可能無法準確反映預測情形

精確度

Precision

若預測正確但實際錯誤,此數值低 此失誤的代價僅為更多額外檢查

由於人命攸關,因此本題預測 指標將採用 召回率 (Recall)

召回率

 \rightarrow

若實際正確但預測錯誤,此數值低

Recall

此失誤可能造成患者得不到及時治療失去性命

PartB 4.2 預測結果

		預測		
		無患病	有患病	小計
實際	無患病	17830	494	18324
	有患病	517	1159	1676
	小計	18347	1653	20000
機率臨界	0.3			
Accuracy	0.95			
Precision	0.70			
Recall	0.69			
F1 score	0.70			

		預測		
		無患病	有患病	小計
實際	無患病	15986	2338	18324
	有患病	221	1455	1676
	小計	16207	3793	20000
機率臨界	0.2			
Accuracy	0.87			
Precision	0.38			
Recall	0.87			
F1 score	0.53			

PartB 4.3 結果討論

- 機率臨界值由 0.3 降至 0.2 有以下變化
 - ✓ 召回率提升 0.18
 - ✓ 準確率降低 0.08
 - ✓ 精確度顯著降低 0.32
- 召回率(挽救更多生命)與精確度(節省醫療開支)必須權衡
- 雖將 y 臨界值設為 0.2 有更高召回率,但精確度下降過多,使醫療開支遽增因此模型將 y 臨界值設為 0.3 為佳(召回率亦有 0.69 已足夠)

PartC 1.1 orange介面

PartC PartB

參數設定

羅吉斯回歸

PartC 1.2 變數設定與拆分資料集

PartA PartB

PartC

參數設定

羅吉斯回歸 分類

類 討論與比較

PartC 2. 羅吉斯回歸

intercept	-10.6366
性別=Other	-3.86464
性別=女	-3.52362
性別=男	-3.24836
年齡 (歲)	0.0454289
高血壓=0	-5.7128
高血壓=1	-4.92381
心臟病=0	-5.70497
心臟病=1	-4.93164
吸菸史=current	-1.58455
吸菸史=ever	-1.63892
吸菸史=former	-1.6562
吸菸史=never	-1.73049
吸菸史=no info	-2.29726
吸菸史=not cu	-1.7292
BMI	0.0906472
糖化血色素 (%)	2.34392
血糖濃度 (%)	0.0334363

準確率 Accuracy = 0.96

精確度 Pprecision = 0.87

召回率 Recall = 0.62

F1 score = 0.73

PartC 3.1 分類試算一

條件設定

- 樹的最大深度 = 10
- 當每群中糖尿病患者達 97% 停止

準確率 Accuracy = 0.83

精確度 Pprecision = 1.00

分類

召回率 Recall = 0.66

F1 score = 0.80

PartC 3. 分類試算一

PartA PartB

PartC

參數設定

羅吉斯回歸

分類

討論與比較

PartC 3. 分類試算二

條件設定

- 樹的最大深度 = 15
- 當每群中糖尿病患者達 98% 停止

準確率 Accuracy = 0.95

精確度 Pprecision = 0.92

召回率 Recall = 0.69

F1 score = 0.79

PartC 3. 分類試算二

PartB **PartC** PartA

參數設定 羅吉斯回歸

分類

討論與比較

PartC 3. 分類試算二

PartC PartB

參數設定 羅吉斯回歸

分類

討論與比較

PartC 3.1 excel迴歸 y臨界值 0.5

補上excel迴歸將y臨界值設為0.5方便與orange結果比較

		預測		
		無患病	有患病	小計
實際	無患病	18315	9	18324
	有患病	1179	497	1676
	小計	19494	506	20000
機率臨界	0.5			
Accuracy	0.94			
Precision	0.98			
Recall	0.30			
F1 score	0.46			

PartA PartB PartC

PartC 3.2 excel 與 orange 比較

模型	準確率 Accuracy	精確度 Precision	召回率 Recall	F1 score
Excel 線性回歸	0.94	0.98	0.30	0.46
Orange 羅吉斯回歸	0.96	0.87	0.62	0.73
Orange 分類 試算一	0.83	1.00	0.66	0.80
• 最大深度 = 10				
• 每群糖尿病患者達 97% 停止				
Orange 分類 試算二	0.95	0.92	0.69	0.79
• 最大深度 = 15				
• 每群糖尿病患者達 98% 停止				

PartA PartB PartC

參數設定 羅吉斯回歸 分類

討論與比較

PartC 3.1 excel 與 orange 比較

- 整體而言, orange 分類設定樹最大深度 = 15、每群糖尿病患者達 98% 停止, 召回率最佳,達0.69接近7成
- 且準確率、精確度亦高皆達9成,可減少醫療資源浪費情形
- excel 迴歸雖可設定y臨界值至 0.3、0.2, 有較高召回率可達0.87, 但精確度 只有0.38,十分浪費醫療資源
- 權衡生命挽救與珍惜醫療資源下, orange分類仍為最佳模型