LA CAPA TRANSPORTE **UDP-TCP**

Comparación de los tipos de entrega a nivel de las diferentes capas

- La ip selecciona al Host
- El número de puerto selecciona el proceso

Dirección de socket:

LA IANA (Internet Assigned Numbers Authority)

- Los puertos"bien conocidos" (Well known) son utilizados para identificar servicios bien conocidos, como http (80) smtp(25) dns (53) ftp (21) etc.
- Los puertos "registrados", pueden ser utilizados por diferentes servicios de comunicación en la red, se llaman asi por que aplicaciones muy populares han registrado ese número de puerto (por ejemplo las bases de datos Oracle utilizan el puerto 1521)
- Los puertos "Dinámicos", son asignados "aleatoriamente" por los sistemas operativos, para establecer comunicaciones regularmente hacia puertos "bien conocidos o Registrados

PUERTOS BIEN CONOCIDOS EN SISTEMAS OPERATIVOS BASADOS EN UNIX

 Los puertos bien conocidos de los servicios que un host presta se pueden encontrar en /etc/services

Port	Protocol		
7	Echo	Echoes a receive	
9	Discard	Discards any dat	
11	Users	Active users	
13	Daytime	Returns the date	
17	Quote	Returns a quote	
19	Chargen	Returns a string	
53	Nameserver	Domain Name S	
67	BOOTPs	Server port to do	
68	BOOTPc	Client port to do	
69	TFTP	Trivial File Tran	
111	RPC	Remote Procedu	
123	NTP	Network Time P	
161	SNMP	Simple Network	
162	SNMP	Simple Network	

USER DATAGRAM PROTOCOL UDP

- El protocolo de Datagramas de Usuario (UDP), es un protocolo"No Orientado a la Conexión"
- No agrega ninguna información de control adicional a la de los servicios del protocolo de Internet (IP), exceptuando que provee comunicación"end to end"entre procesos, en lugar de host a host.

DETECCION DE ERRORES EN UDP

- La detección de errores en UDP se realiza por medio del calculo de sumas de comprobación (CheckSum)
- Cada uno de los elementos del Datagrama de usuario y un"PseudoEncabezado"se convierten a binario.
- Se dividen en grupos de 2bytes (palabras de 16 bits)
- Los datos se rellenan al final con 0 (padding)
 para hacer que los datos sean múltiplos de 16

MANEJO DE COLAS DE UDP

Port	Protocol	Description
7	Echo	Echoes a received datagram back to the sender
9	Discard	Discards any datagram that is received
11	Users	Active users
13	Daytime	Returns the date and the time
17	Quote	Returns a quote of the day
19	Chargen	Returns a string of characters
20	FTP, Data	File Transfer Protocol (data connection)
21	FTP, Control	File Transfer Protocol (control connection)
23	TELNET	Terminal Network
25	SMTP	Simple Mail Transfer Protocol
53	DNS	Domain Name Server
67	ВООТР	Bootstrap Protocol
79	Finger	Finger
80	HTTP	Hypertext Transfer Protocol
111	RPC	Remote Procedure Call

TRANSMISSION CONTROL PROTOCOL - TCP

- TCP es un protocolo "Orientado a la conexión"
- Crea una conexión virtual entre dos hosts que utilizan
- TCP, para enviar datos entre si.
- TCP utiliza mecanismos de control de flujo y errores a nivel de la capa de transporte

Transmisión en TCP

EN TCP, LA TRANSMISIÓN ES UNA "CORRIENTE" DE BYTES

PARA CONTROLAR LA CORRIENTE DE BYTES SE UTILIZAN BUFFERS PARAMANEJAR LAS COLAS DE RECEPCIÓN Y ENVÍO

Three-way handshake

Estado de una conexión TCP

- LISTEN(servidor): la espera poruna conexión remota
- SYN-SENT (cliente): la espera después de enviar una solicitud deconexión
- SYN-RECEIVED (servidor): se espera por la confirmación (Ack), después de ambos recibieron la solicitud de conexión.
- ESTABLISHED (ambos): unaconexión abierta, se envian datos
- FIN-WAIT-1 (ambos): espera por un request de finalización de laconexión o por un ACK de un request de finalización previo, de una conexión TCP remota
- FIN WAIT-2 (ambos): representa la espera de un request de finalización, de una conexión TCP remota

- CLOSE-WAIT(ambos): espera por un requerimiento de finalización de laconexión local
- CLOSING(ambos): espera por un ACK de la solicitud de finalización de la conexión desde una conexiónTCP remota
- LAST-ACK (ambos): espera por unACK de un request de finalización previamente enviado a la conexión TCP REMOTA
- TIME WAIT(cualquiera): timeout maximo para esperar que el TCP remoto recibió el ACK de finalización (este estado puede durarhasta 4 minutos)
- CLOSED (ambos): Indica que nohay conexiones

Secuencias

- Los bytes de datos que se transfieren en cada conexión son numerados por TCP (secuencias).
- Esta numeración inicia con un número generado aleatoriamente
- El valor en el campo de secuencia del segmento TCP, define el número del primer byte de datos contenido en ese segmento
- El valor del campo de acuse (acknowledgment) en el segmento, define el número del siguiente byte que el receptor espera. Este valor es acumulativo.

Banderas de control

URG: El puntero urgente es válido

ACK: Acuse válido

PHS: Requerimiento de Push (Envío de datos)

RST: Reinicio de Conexión

SYN: Sincronización de números de secuencia

FIN: Terminar la conexión

Conexión utilizando un protocolo de tres vías

- Un segmento "SYN", no lleva datos, pero consume secuencias
- Un segmento "SYN-ACK", no lleva datos, pero consume números de secuencia
- Un segmento "ACK", no consume un número de secuencia, siempre y cuando no lleve datos(piggyback)
- El servidor (quien provee el servicio), espera la conexión"Pasivamente"
- El cliente, que utilizara el servicio, solicita la conexión"Activamente"

Transferencia de datos

- Luego de la negociación o"handshake" de la conexión es posible el envio de segmentos de datos
- La bandera "PUSH" se activa en conjunto con "ACK"

Finalización de la conexión

- Para terminar una conexión, uno de los pares que están comunicándose debe iniciar la solicitud de desconexión "Activamente", ajustando la bandera "FIN" en conjunto con "ACK"
- Quien recibe la solicitud de desconexión la realiza de formapasiva y envía un acuse de recibido de esta solicitud, enviando una solicitud dedesconexión también (FIN-ACK), incrementando lasecuencia.
- FIN, consume una secuenciasiempre y cuando llevedatos. FIN-ACK consume siempre un número de secuencia

Finalización de la conexión

- El cliente no tiene más datos por enviar, entonces solicita activamente la desconexión
- El servidor acusa de recibida la solicitud de desconexión, pero el aún no la cierra hasta que concluya su transmisión de datos (no activa la bandera FIN)
- El cliente al no recibir la solicitud de desconexión del servidor, sequeda con la conexión en modo"Half Close"
- Al terminar la transferencia de datos el servidor envía la solicitud de desconexión y el cliente acusa de recibido para completar el cierre de conexión

¡IMPORTANTE!

- Los segmentos ACK, no consumen números de secuencia
- Los ACK no tienen timer de retransmisión
- Los datos pueden arribar fuera de orden y son almacenados temporalmente por el receptor
- TCP garantiza que los segmentos fuera de orden sean ordenados previo a su entrega a la capa superior

Perdida de Segmentos y Reenvío