清华大学本科生考试试题专用纸

考试科目	微积分Λ(1)	人格	2023年11	月18日
	班级	姓名	学号	
一. 填空題 (母題	3分,共10風)			
1. 极限 lim (√	$\sqrt{x^2+x}-x\Big)=$	·		
2. 函数 $f(z) = \frac{1}{1}$	*** 在点 x = 0 处的	勺 2023 阶导数值为	$f^{(2021)}(0) = $	
3. 设 $a_1 = \sqrt{2}, a_2$	$_{n+1}=(\sqrt{2})^{a_n},\forall n\geq$	1, 則数列 {an}	(填"收敛"	成"发散").
4. 极限 lim (1/(sin s	$\left(\frac{1}{x^{2}}\right)^{2}-\frac{1}{\sin(x^{2})}=$	·		
5. 极限				
n-	$\lim_{n\to+\infty}\left(\frac{1}{n+\sqrt{1}}+\frac{1}{n+1}\right)$	$\frac{1}{1+\sqrt{2}}+\cdots+\frac{1}{n+\sqrt{2}}$	<u>/n</u>) =	
6. 假设当 x → 0	时, 函数 $\sqrt{1+x}$ —	1 与函数 kln(l+z) ;	是等价无穷小,则 k	=
7. 假设 f(x) 在:	エ=0 处可导, 且 lir	$m_{x\to 0}\frac{f(x)-f(\frac{x}{4})}{x}=\frac{3}{4},$	列 f'(0) =	
8. 设 $x = g(y)$ 是 处的微分为 $dg _{y}$	是函数 y = xtan(x· ₌₀ =	- 2) 在点 x = 2 M	∤近的反函数, 则 g	(y) 在点 y = 0
241 N 65	b由参数方程 x = L 2) 处切线的斜串为		确定的可微函数, 贝	∮曲线 y = ∫(x)
10. 函数 $f(x) =$ $f(x) = $: 在点	= 1 处带 Peano 余	·项 $o((x-1)^3)$ 的	Taylor 展式为

- 二. 解答题 (每题10分,共7题)
- 11. 假设当 $x \to 0$ 时, 函数 $f(x) = e^x + A + B \sin x$ 是二阶无穷小量, 求常数 A 和 B, 并计算极限 $\lim_{x\to 0} \frac{f(x)}{x^2}$.
- 12. 试确定常数 a 和 b, 使得函数

$$f(x) = \begin{cases} \cos x, & x \ge 0, \\ \frac{x^2 + ax + b}{1 + x}, & x < 0, \end{cases}$$

在点 x=0 处可导.

13. 设

$$f(x) = \begin{cases} \sin x, & x \text{ 为有理数,} \\ 0, & x \text{ 为无理数.} \end{cases}$$

问函数 f(x) 在 x=0 处是否连续, 并说明理由.

14. 求极限

$$\lim_{n \to +\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{4n} \right).$$

- 15. 设 $0 < x_1 < 1$, 定义 $x_{n+1} = x_n(1 x_n)$, $\forall n \ge 1$. (i) 证明数列 $\{x_n\}$ 收敛, 且 $x_n \to 0$. (ii) 讨论数列 $\{nx_n\}$ 的收敛性, 并说明理由; 当 $\{nx_n\}$ 收敛时, 求极限 $\lim_{n \to +\infty} nx_n$.
- 16. 设函数 f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b) 上可导. 如果存在一点 $c \in (a,b)$, 使得 [f(c)-f(a)][f(b)-f(c)]<0, 证明存在一点 $\xi \in (a,b)$, 使得 $f'(\xi)=0$.
- 17. 设 f(x) 在区间 $[a, +\infty)$ 上连续. 假设极限 $\lim_{x\to +\infty} f(x)$ 存在(有限), 证明 f(x) 在区间 $[a, +\infty)$ 上或者有最大值, 或者有最小值.