我要提问

Memcached 分布式缓存实现原理

2016-05-21 分类:操作系统、编程开发、首页精华 ံ 1人评论

分享到: 🚺 🔀 🚮 🎑 👢 😰 🛨 更多 🦳 3

摘要

在高并发环境下,大量的读、写请求涌向数据库,此时磁盘IO将成为瓶颈,从而导致过高的响应延迟, 因此缓存应运而生。无论是单机缓存还是分布式缓存都有其适应场景和优缺点,当今存在的缓存产品也 是数不胜数,最常见的有redis和memcached等,既然是分布式,那么他们是怎么实现分布式的呢?本 文主要介绍分布式缓存服务mencached的分布式实现原理。

缓存本质

计算机体系缓存

什么是缓存,我们先看看计算机体系结构中的存储体系,根据冯·诺依曼计算机体系结构模型,计算机分 为五大部分:运算器、控制器、存储器、输入设备、输出设备。结合现代计算机, CPU包含运算器和控 制器两个部分,CPU负责计算,其需要的数据由存储提供,存储分为几个级别,就拿我当前的PC举个例 子,我的机器存储清单如下:

- 1. 356G的磁盘
- 2. 4G的内存
- 3. 3MB三级缓存
- 4. 256KB二级缓存(pre core)

除了上述部分,还有CPU内的寄存器,当然有的计算机还有一级缓存等。CPU运算器工作的时候需要数 据,数据哪里来?首先从距离CPU最近的二级缓存去拿,这块缓存速度最快,通常也是体积最小,因为 价格最贵:

存储金字塔

如上图所示,存储体系就像个金子塔,最上层最快,价格最贵,最下层最慢,价格也最便宜,CPU的数 据源优先级一层层从上到下去寻找数据。

很显然,除了最慢的那块存储,在计算机体系中,相对较快的那些存储都可以被称为缓存,他们解决的 问题是**让存储访问更快。**

计算机体系存储系统模型扩展到应用也是一样,应用需要数据,数据哪里来?缓存(更快的存储)->DB

(较慢的存储),他们的工作流程大致如下图所示:

缓存应用系统 职场人生

编程不需要天赋和激情

热门文章

编程不需要天赋和激情

AngularJS 样式指南介绍

游戏编程十年总结

程序员眼中的古典名画

记一次 Google 面试经历

对优秀程序员的思考

C# Lambda表达式的前世今生

Java 远程通讯技术及原理分析

22 个 Android Studio 优秀插件汇总

80 多个 Linux 系统管理员的监控工具

入门软件工程师所面临的5个挑战

程序员编程的 7 + 1 条小贴士

假如程序员生活在童话里...

一个32岁入门的70后程序员给我的启示

程序员每天都在使用的6个惊讶的软技能

一流程序员完全可以有编程之外的生活

回顾15年程序员生涯, 我总结的7点经验

为什么开源可以提高程序员的编程技能?

程序员的走与留?

相关文章

Memcache 内存分配策略和性能(使用)状态...

MemCache超详细解读

使用Memcached改进Java企业级应用性能...

热门栏目订阅

Java RSS 微博

程序员 RSS 微博

Android RSS

RSS

Linux RSS

JavaScript

php PHP

付费投稿计划 点击查看详情

C#客户端Redis服务器的分布式缓存

5个强大的Java分布式缓存框架推荐

Java分布式键-值缓存系统Voldemort

Cacheonix: Java分布式集群缓存框架

Hadoop DistributedCache分布式缓存的使..

带缓存的存储访问一般模型

如上图所示,缓存应用系统一般存储访问流程:首先访问缓存较快的存储介质,如果命中且未失效则返回内容,如果未命中或失效则访问较慢的存储介质将内容返回同时更新缓存。

memcached简介

什么是memcached

memcached是LiveJournal旗下的Danga Interactive公司的Brad Fitzpatric为首开发的一款软件。现在已经成为mixi、hatena、Facebook、Vox、LiveJournal等众多服务中提高Web应用扩展性的重要因素。传统的Web应用都将数据保存到RDBMS中,应用服务器从RDBMS中读取数据、处理数据并在浏览器中显示。但是随着数据量增大、访问的集中、就会出现RDBMS的负担加重、数据库响应变慢、导致整个系统响应延迟增加。

而memcached就是为了解决这个问题而出现的,**memcached是一款高性能的分布式内存缓存服务** 器,一般目的是为了通过缓存数据库的查询命中减少数据库压力、提高应用响应速度、提高可扩展性。

memcached缓存应用

memcached缓存特点

- 1. 协议简单
- 2. 基于libevent的事件处理
- 3. 内置内存存储方式
- 4. memcached不相互通信的分布式

memcached分布式原理

今天的内容主要涉及memcached特点的第四条,memcached不相互通信,那么memcached是如何实现分布式的呢?memcached的分布式实现主要依赖客户端的实现:

付费投稿计划点击查看详情

memcached分布式

如上图所示,我们看下缓存的存储的一般流程:

当数据到达客户端,客户端实现的算法就会根据"键"来决定保存的memcached服务器,服务器选定后,命令他保存数据。取的时候也一样,客户端根据"键"选择服务器,使用保存时候的相同算法就能保证选中和存的时候相同的服务器。

余数计算分散法

余数计算分散法是memcached标准的memcached分布式方法,算法如下:

CRC(\$key)%N

该算法下,客户端首先根据key来计算CRC,然后结果对服务器数进行取模得到memcached服务器节点,对于这种方式有两个问题值得说明一下:

- 1. 当选择到的服务器无法连接的时候,一种解决办法是将尝试的连接次数加到key后面,然后重新进行hash,这种做法也叫rehash。
- 2. 第二个问题也是这种方法的致命的缺点,尽管余数计算分散发相当简单,数据分散也很优秀,当添加或者移除服务器的时候,缓存重组的代价相当大。

Consistent Hashing算法

Consistent Hashing算法描述如下:首先求出memcached服务器节点的哈希值,并将其分配到0~2^3 2的圆上,这个圆我们可以把它叫做值域,然后用同样的方法求出存储数据键的哈希值,并映射到圆上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上,如果超过0~2^32仍找不到,就会保存在第一台memcached服务器上:

memcachd基本原理

再抛出上面的问题,如果新添加或移除一台机器,在consistent Hashing算法下会有什么影响。上图中假设有四个节点,我们再添加一个节点叫node5:

关注我们的微博

付费投稿计划 点击查看详情

添加了node节点之后

node5被放在了node4与node2之间,本来映射到node2和node4之间的区域都会找到node4,当有node5的时候,node5和node4之间的还是找到node4,而node5和node2之间的此时会找到node5,因此当添加一台服务器的时候受影响的仅仅是node5和node2区间。

优化的Consistent Hashing算法

上面可以看出使用consistent Hashing最大限度的抑制了键的重新分配,且有的consistent Hashing的实现方式还采用了虚拟节点的思想。问题起源于使用一般hash函数的话,服务器的映射地点的分布非常不均匀,从而导致数据库访问倾斜,大量的key被映射到同一台服务器上。为了避免这个问题,引入了虚拟节点的机制,为每台服务器计算出多个hash值,每个值对应环上的一个节点位置,这种节点叫虚拟节点。而key的映射方式不变,就是多了层从虚拟节点再映射到物理机的过程。这种优化下尽管物理机很少的情况下,只要虚拟节点足够多,也能够使用得key分布的相对均匀。

总结

本文介在理解缓存基本概念的情况下介绍了memcached的分布式算法实现原理, memcached的分布式是由客户端函数库实现的。

