World Models

Ganga Meghanath EE15B025 gangamegha29@gmail.com

Topics in Reinforcement Learning Indian Institute of Technology Madras

September 27, 2018

Motivation

Motivation

- Humans develop a mental model of the world based on what they are able to perceive with their limited senses
- Brain learns abstract representation of both spatial and temporal aspects of the information. Eg: Baseball
- Artificial agent can benefit from having a good representation of past and present states, and a predictive model of the future

Perceive time spatially

Figure: "In the world of comics, time and space are one and the same" - Scott McCloud, cartoonist and comics theorist

Model

Theory

- Generative Neural Network models for learning a compressed spatial and temporal representation of the environment
- Divide agent into a large world model and a small controller model
- Model is learned in latent space
- Optimize Controller: Covariance- Matrix Adaptation Evolution Strategy (CMA-ES)
- A small controller lets the training algorithm focus on the credit assignment problem on a small search space, while not sacrificing capacity and expressiveness via the larger world model

World Model

At each time step, our agent receives an **observation** from the environment.

World Model

The Vision Model (V) encodes the high-dimensional observation into a low-dimensional latent vector.

The Memory RNN (M) integrates the historical codes to create a representation that can predict future states.

A small Controller (C) uses the representations from both V and M to select good actions.

The agent performs actions that go back and affect the environment.

990

Visual Model: VAE

Figure: Convolutional Variational Autoencoder

Memory Model: MDN-RNN

Figure: RNN with a Mixture Density Network layer: Outputs parameters of a mixture of Gaussian distribution - used to sample a prediction of the next latent vector z.

World Model

- V and M has no knowledge about the actual reward signals from the environment
- Only the Controller (C) Model has access to the reward information from the environment

Pseudo-code

Algorithm 1 Rollout

```
1: procedure def rollout(controller) :
 2:
        obs \leftarrow env.reset()
        h \leftarrow rnn.initial state()
 3:
 4.
        done \leftarrow False
        cumulative reward \leftarrow 0
 5:
        while not done do
 6.
 7:
             z \leftarrow vae.encode(obs)
             a \leftarrow controller.action([z, h])
 8:
             obs, reward, done \leftarrow env.step(a)
 9.
             cumulative reward \leftarrow cumulative reward + reward
10:
             h \leftarrow rnn.forward([a, z, h])
11:
          return cumulative reward
```

Experiments

Observation captured by World Model

Procedure

Algorithm 2 Car-Racing

- 1: Collect 10,000 rollouts from a random policy
- 2: Train VAE (V) to encode frames into $z \in \mathbb{R}^{32}$
- 3: Train MDN-RNN (M) to model $P(z_{t+1}|a_t,z_t,h_t)$
- 4: Define Controller (C) as $a_t = W_c[z_t h_t] + b_c$
- 5: Use CMA-ES: W_c & b_c : maximize expected cumulative reward

Model	Parameter Count
VAE	4,348,547
MDN-RNN	422,368
Controller	867

Controller

Table: Controller models

Model	Method	Avg. Score
I	V Model	632 ± 251
П	V model with Hidden layer	788 ± 141
III	Full World Model	906 ± 21

I: Wobbles around and misses the tracks on sharper corners

II: Performance improves; but not enough

III: Driving is more stable; agent is able to tackle sharp corners

Car Racing Dreams

- Hallucinated car racing environment generated by M
- ullet Adjust au to control the uncertainty of the environment generated by M

VizDoom

VizDoom

- Learning Inside of a Dream
- Substitute the actual environment with the world model
- Making the game more challenging in the Dream environment
- Transfer Policy to Actual Environment

Temperature $ au$	Virtual Score	Actual Score
0.10	2086 ± 140	193 ± 58
0.50	2060 ± 277	196 ± 50
1.00	1145 ± 690	868 ± 511
1.15	918 ± 546	1092 ± 556
1.30	732 ± 269	753 ± 139

Procedure

Algorithm 3 VizDoom

- 1: Collect 10,000 rollouts from a random policy
- 2: Train VAE (V) to encode frames into $z \in R^{64}$
- 3: Train MDN-RNN (M) to model $P(z_{t+1}, d_{t+1}|a_t, z_t, h_t)$
- 4: Define Controller (C) as $a_t = W_c[z_t h_t]$
- 5: Use CMA-ES : W_c : max(expected survival time) : Virtual envt
- 6: Use learned policy from (5) on actual environment

Model	Parameter Count
VAE	4,446,915
MDN-RNN	1,678,785
Controller	1,088

Observation captured by World Model

Cheating the World Model

- Controller has access to all of the hidden states of M
- Adversarial policy : M model never shoots a fireball

Measures:

- MDN-RNN: dynamics model models the distribution of possible outcomes
- \bullet τ : tradeoff between realism and exploitability.

Cheating the World Model

Iterative Training Procedure

- Sophisticated Environments : Strategical Navigation parts of the environment revealed at a time
- Curriculum Learning: allow the C-M model to develop a natural hierarchical way to learn

Algorithm 4 Iterative Training Procedure

- 1: Initialize M, C with random model parameters
- 2: Rollout to actual environment N times
- 3: Save all actions a_t and observations x_t during rollouts to storage
- 4: Train M to model $P(x_{t+1}, r_{t+1}, a_{t+1}d_{t+1}|x_t, a_t, h_t)$
- 5: Train C to optimize expected rewards inside of M
- 6: Go back to (2) if task has not been completed

Implementation details

VAE

 Trained the model for 1 epoch over the data collected from a random policy

MDN-RNN

- Probability distribution of z_{t+1} modeled as a Mixture of Gaussian distribution : 5 Gaussian mixtures
- Trained for 20 epochs on the data collected from a random policy agent
- LSTM hidden units :
 - Car Racing task: 256 hidden units
 - Doom task: 512 hidden units

Implementation details

Controller

- Action space was bound to appropriate ranges.
- Car Racing
 - Steering wheel: [-1,1]
 - Acceleration pedal : [0, 1]
 - Brakes : [0, 1]
 - Agent is rewarded for visiting as many tiles as possible in the least amount of time
- VizDoom
 - Left, Stay, Right: [-1,1]
 - Cumulative reward : number of time steps the agent manages to stay alive during a rollout

Points to Critique

- Not end-to-end trainable
- Dynamics of the environment are not considered in the VAE
- ullet Temperature parameter au is a tunable parameter which has significant effects on the model performance
- Random policy used to generate sample trajectories for V & M
- ullet For Car Racing task, N_z is 32 while for the Doom task N_z is 64
- Does not require running the actual Doom game engine; used VizDoom only for the purpose of collecting training data
- Controller access to all of the hidden states of M

Related Work

Hallucination with RNNs

Figure: Probabilistic model of Enduro (Atari)

- Guest lecture by Alex Graves of Google Deepmind at the University of OXFORD
- Trained RNNs to learn the structure of the game and hallucinate similar game levels on its own

From Pixels to Torques

Figure: Feature learning and prediction model in feature space

- Agent must learn a closed-loop control policy from pixel information only
- Use deep autoencoders to learn a low-dimensional embedding of images jointly with a predictive model
- Joint learning ensures that not only static but also dynamic properties of the data are accounted for

PILCO

- PILCO: Probabilistic Inference for Learning COntrol
- Learning a probabilistic dynamics model and explicitly incorporating model uncertainty into long-term planning
- Reduce model bias; cope with very little data
- Gaussian process (GP) model is used to learn the system dynamics, and sample trajectories for training the controller

$$P(x_t|x_{t-1},u_{t-1}) = \mathcal{N}(x_t|\mu_t,\Sigma_t)$$

References

- Marc Deisenroth and Carl E Rasmussen. "PILCO: A model-based and data-efficient approach to policy search". In: *Proceedings of the 28th International Conference on machine learning (ICML-11)*. 2011, pp. 465–472.
- David Ha and Douglas Eck. "A neural representation of sketch drawings". In: arXiv preprint arXiv:1704.03477 (2017).
- David Ha and Jürgen Schmidhuber. "World models. arXiv preprint". In: arXiv preprint arXiv:1803.10122 (2018).
- Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. "From pixels to torques: Policy learning with deep dynamical models". In: arXiv preprint arXiv:1502.02251 (2015).

THANK YOU!!

Hope it was informative :)

CMA-ES

- Stochastic, derivative-free methods for numerical optimization of non-linear or non-convex continuous optimization problems
- Covariance matrix of the distribution is updated such that the likelihood of previously successful search steps is increased: facilitates a possibly much faster variance increase of favorable directions
- The step-size control aims to make consecutive movements of the distribution mean orthogonal in expectation and effectively prevents premature convergence yet allowing fast convergence to an optimum.