

PICTOGRAMM-PLOTS MIT R: pic.plot() — Hans Peter Wolf^a —

Ziel

Ziel statistischer Graphiken ist die **Repräsentation** von Datengefügen, um Werte, Anzahlen, Verhältnisse, Zusammenhänge, Strukturen usw. unmittelbar sehen zu können, [1], [5], [8].

Beispiele (\mapsto steht für *repräsentieren*):

Scatterplot Koordinaten \mapsto Messwerte Stabdiagramm Stablängen \mapsto Häufigkeiten Kreisdiagramm Sektoren \mapsto Anteile

Boxplot Elemente \mapsto Extrema, Angeln, Ausreißer Chernoff face Gesichtselemente \mapsto Ausprägungen Verbindungshöhen \mapsto Distanzen Mosaic-Plot Flächen \mapsto Häufigkeiten

Farbe, Form, Symbol, Größe \mapsto Infos, Gruppeneigenschaften

Ziel für pic.plot(): Visualisierung von Kontingenztabellen

Repräsentation von Objekten und Anzahlen

ullet Darstellung einzelner Objekte o Punkte, Symbole, Bilder:

ullet Darstellung von 19 Objekten o Reihe von Symbolen:

• Anzahlen \rightarrow Aufteilung der Reihe auf mehrere **Stacks** für 19 Objekte \rightarrow mit drei Stacks (mit max. Länge 8):

• Unterscheidung von Gruppen durch verschiedene Symbole

→ 12 bzw. 7 Strichmännchen zweier Gruppen:

• Unterscheidung von Gruppen durch Symbole *und* Farben:

Das Projekt pic.plot()

- Urknall: R-Package aplpack [6], Logo-Diskussionen sowie pictogram() von Ulrike Grömping, [2].
- Vision: Visualisierung mehrdimensionaler Häufigkeitstabellen mittels Repräsentation der zugrundeliegenden Elemente durch Pictogramme in schachbrettartigen Feldern (Panels).
- Anforderungen, die bisher erfüllt wurden:
 - o schachbrettartige Zerlegung der Ausgabefläche in *Panels*
 - o wiederholte Zerlegung der Fläche: horizontal wie vertikal
 - o gruppenabhängige Farb- und Symbol-Wahl
 - o einfache Bediensprache für Zerlegung, Farb-, Symbol-Wahl
 - o Inputs aus den Klassen table und data frame
 - Transformation numerischer Größen
 - Verarbeitung gebrochener und negativer Einträge
 - o Größen- und Randmodifikation für die Panels
 - o diverse Layout-Anordnungen für Pictogramme in Panels
 - o Symbole, Liniengraphiken und Bilder als Pictogramme
 - Erklärungstexte: Randbeschriftungen und Legenden
 - Verfeinerungen durch Low-Level-Routinen
 - ^aHans Peter Wolf, Fak. für Wirtschaftswissenschaften, Uni Bielefeld, e-Mail: pwolf@wiwi.uni-bielefeld.de

User Interface

Um die Argumentenvielfalt beherrschbar zu machen, erhielten Argumente je nach Kontext gleiche Namensanfänge (grp, panel, pic, lab). Die hinteren Namensteile weisen auf die Konfigurationszwecke hin (z. B. cex, frame, space.factor).

Die zulässigen Wertemengen wurden für die intendierten Fälle möglichst sinnvoll und sparsam entworfen. So lassen sich Zerlegungen der Ausgabefläche in x- und y-Richtung durch R-Formeln mit Variablennamen wie bei linearen Modellen ausdrücken. Variablen können aber auch einfach über Dimensionsnummern referenziert werden. Taucht auf der linken bzw. rechten Seite von ~ mehr als eine Variable auf – verbunden durch ein +-Zeichen –, führt das zu verschachtelten Zerlegungen des x- bzw. y-Bereichs.

Argumente von pic.plot()

Liste wichtiger Argumente mit Bedeutungshinweisen:

Bezug	Argument	Bedeutung
Input	data	Input: Tabelle oder data frame
Input	vars.to.factors	Transformation von Zahlen in factors
Gruppierung	grp.xy	Variablen für horizontale / vertikale Zerlegung
Gruppierung	<pre>grp.color</pre>	Variable für Farb-Wahl
Gruppierung	<pre>grp.pic</pre>	Variable für Pictogramm-Wahl
Gruppierung	colors	Menge der Farben
Gruppierung	pics	Menge der Pictogramme
Panels	panel.prop.to.size	Festlegung der Panelgrößen
Panels	panel.margin	Größen der Ränder
Panels	<pre>panel.space.factor</pre>	Zwischenraum zwischen Panels
Panels	panel.frame	Umrahmung der Panels
Pictogramme	pic.horizontal	horizontale oder vertikale Stacks
Pictogramme	pic.stack.type	Layout-Typ für Pictogramm-Platzierung
Pictogramme	nic cay	C C "0
	pro.cex	Symbol-Größe
Pictogramme	pic.cex pic.aspect	Symbol-Große Symbol-Seitenverhältnis
_	_	•
_	<pre>pic.aspect pic.space.factor</pre>	Symbol-Seitenverhältnis
Pictogramme	<pre>pic.aspect pic.space.factor</pre>	Symbol-Seitenverhältnis Zwischenraum zwischen Pictogrammen
Pictogramme Pictogramme	<pre>pic.aspect pic.space.factor pic.frame</pre>	Symbol-Seitenverhältnis Zwischenraum zwischen Pictogrammen Umrahmung der Pictogramme
Pictogramme Pictogramme Beschriftung	pic.aspect pic.space.factor pic.frame lab.side	Symbol-Seitenverhältnis Zwischenraum zwischen Pictogrammen Umrahmung der Pictogramme Seiten für Randbeschriftungen
Pictogramme Pictogramme Beschriftung Beschriftung	pic.aspect pic.space.factor pic.frame lab.side lab.cex	Symbol-Seitenverhältnis Zwischenraum zwischen Pictogrammen Umrahmung der Pictogramme Seiten für Randbeschriftungen Beschriftungsgröße

Bereitstellung und weiteres Vorgehen

• Stand:

- Konzept und Struktur von pic.plot() steht.
- Alle wesentlichen Programm-Teile sind umgesetzt.
- Demo mit über 75 Beispielen liegt als .R- und PDF-File vor.
- Aktuelle Dateien zu pic.plot() sind zu finden unter [7]:
 Funktionsdefinition pic.plot.R, Beispiele: pic.demo.pdf

• Plan:

- Check der Argumentenliste: Bezeichnungen, Wirkungen
- Entwurf weiterer Generierungsfunktionen für Pictogramme
- Durchführung zusätzlicher Tests
- Aktualisierung der help page
- Integration in das R-Paket aplpack
- Bereitstellung der neuen Version von aplpack über CRAN

Quellen

- [1] J. M. Chambers, W. S. Cleveland, B. Kleiner, P. A. Tukey (1988): Graphical Methods for Data Analysis.
- [2] U. Grömping (2015): pictogram, R package version 1.0-3, private communications.
- [3] M. Mazziotta, A. Pareto (2014): Non-compensatory Aggregation of Social Indicators: An Icon Representation. In: F. Crescenzi, S. Mignani (eds.), Statistical Methods and Applications from a Historical Perspective, Studies in Theoretical and Applied Statistics.
- [4] D. Meyer, A. Zeileis, K. Hornik (2006): The Structplot Framework: Visualizing Multi-way Contingency Tables with vcd. Journal of Statistical Software, 17(3), 1–48.
- [5] E. R. Tufte (2001): The visual Display of Quantitative Information.
- [6] H. P. Wolf (2015): aplpack, R package version 1.3.0, URL: https://cran.r-project.org/web/packages/aplpack
- [7] H. P. Wolf (2016): Web-Seite zu aplpack,
- URL: http://www.wiwi.uni-bielefeld.de/lehrbereiche/statoekoinf/comet/wolf/wolf_aplpack
- [8] F. W. Young, P. M. Valero-Mora, M. Friendly (2006): Visual Statistics.

Anhang: Beispiele

Folgende Beispiele stammen aus der oben erwähnten Demo, siehe [7].

```
HairEyeColor: Geschlecht, Haarfarbe der Personen hervorgehoben
> pic.plot(aperm(HairEyeColor, c(2,1,3)), grp.xy = NULL,
                             = Sex,
           grp.pic
           grp.color
                             = Hair,
                             = c(15, 17),
           pics
                             = c("black", "brown", "red",
           colors
                                "yellow2"),
                             = FALSE,
           pic.frame
           pic.space.factor = 0,
                          = FALSE,
           lab.parallel
```


Blond


```
HairEyeColor: x-Bereich zerlegt nach Hair, Eye
> pic.plot(HairEyeColor,
                          = . ~ 1 + 2,
           grp.xy
           grp.color
                         = 3,
           pic.stack.type = "bl",
           lab.parallel = c(FALSE, NA, TRUE),
           pic.aspect
                          = .5,
                         = FALSE,
           panel.frame
           lab.color
                          = "lightblue",
                          = 0,
           lab.boxes
                          = 0.8,
           main = "grouping 2 vars in x, compact labs")
```


HairEyeColor

> pic.	olot(mw,	
+	grp.xy	= 2 ~ 1,
+	grp.color	= 1,
+	pic.aspect	= 2,
+	pic.stack.type	= rep(c("t", "b"), nrow(mw));
+	pic.horizontal	= FALSE,
+	pic.space.factor	= 0,
+	pic.frame	= FALSE,
+	panel.frame	= FALSE,
+	panel.space.factor	c = c(.0, .02),
+	lab.n.max	= c(2, 10),
+	main = paste("Pyra	amide einer Population, 2014")
	Pyramide einer Po	pulation, 2014

trees: \	/erwendung von faces(zur Volumenrepräsentation, [6]		
> library(aplpack, lib.loc	= "~/lib")		
<pre>> faces.of.trees <- faces(trees, plot.faces = FALSE)</pre>				
> f.list <- generate.fns(faces.of.trees, 1:31)				
> pic.plot	(trees,			
+	grp.pic	= 3,		
+	grp.col	= 3,		
+	vars.to.factors	= c(.25, .3, .12),		
+	pics	= f.list,		
+	pic.space.factor	r = 0.3,		
+	pic.frame	= FALSE,		
+	panel.frame	= FALSE,		
+	lab.cex	= 0.7,		
+	lab.parallel	= c(TRUE, TRUE, FALSE),		
+	main = "trees by	faces and pic.plot")		

pic.plot() kann verschiedenste Repräsentationen mehrdimensionaler Datensätze erstellen. Die neuen Perspektiven führen vielleicht auch zu neuen Erkenntnissen. Im Gegensatz zu Tabellen können dekorative Pictogramm-Plots neugierig machen und Interesse wecken. Der Anwender muss deshalb einen geeigneten Kompromiss zwischen Information und Dekoration finden.

Fazit