openGauss RISC-V 专项报告

测试小队 & 丁丑小队 2024/11/30

摘要

目录

1	简介	3
	1.1 软件说明	3
	1.2 测试目的	3
	1.3 测试概述	3
	1.4 测试总结	3
2	环境说明	4
	2.1 硬件环境	4
	2.2 软件环境	4
	2.3 测试环境搭建	4
	2.3.1 安装 openEuler	4
	2.3.2 安装 openGauss 数据库	5
		6
	2.3.4 性能测试	7
3	·····································	7
	3.1 手动测试	7
	3.1.1 本地测试	7
	3.1.2 远程测试	8
	3.2 性能测试	8
4	测试结果	14
	4.1 功能测试	14
	4.2 性能测试	
	4.2.1 已知问题	16
5	总结	16
A	M录	17

transactions transactions/s

que

1 简介

1.1 软件说明

openGauss 是一个免费的开源关系型数据库管理系统,主要由华为开发和维护。它是一个广泛使用的代码库,为企业级应用提供了高性能、高可用性和高安全性的数据库解决方案。

1.2 测试目的

本次测试旨在验证 openGauss 在 RISC-V 平台上的可用性,特别是在 Milk-V Pioneer Box 和 Sipeed LicheePi 4A 两个典型平台上的表现。本报告通过手动测试的方法,从目前的平台兼容性及用户的日常使用体验两个角度评估了 openGauss 当前在 RISC-V 平台上的可用性,并给出了定性和定量的结论,为其未来进一步的优化和支持提供参考。

1.3 测试概述

1.4 测试总结

Platform

目前 openGauss 在 riscv 上仅支持使用 openEuler 系统进行编译与安装,licheepi 4a 因为性能不足而无法启动 openGauss 服务, Pioneer Box 可以正常本地和远程连接与使用.

write

使用 sysbench 在 Pioneer Box 上性能测试结果如下: SQL statistics

rw: oltp 测试, 包含读写 r:select 测试, 仅读

read

										•	-
SG2042 @ 10 Threads rw	278796 79		79654 3982		.8 398278		11913			331.56	3982
SG2042 @ 64 Threads rw	952280 2		2041	136057		1360378	68009			1128.35	1360
SG2042 @ 64 Threads r	1851630 0			0		1851630 18		1851630		30766.50	185
X86_64 @ 10 Threads rw	584472 16		66989 8349		7	834958	41747		(695.69	8349
Latency											
Platform	min	avg	ma	X	951	h percenti	ile	sum			
SG2042 @ 10 Threads rw	25.62	30.13	99.	91	33.	72		599938	.70	_	
SG2042 @ 64 Threads rw	38.63	56.49	421.75		70.55		3842023.49				
SG2042 @ 64 Threads rw	1.12	2.06	353	353.15		3.30		3822093.08			
X86_64 @ 10 Threads rw	5.23	14.37	156	9.33	21.	1.50		599913.47			
Threads fairness										_	
Platform	events a	avg	event	ts stdc	lev	execution	n tin	ne avg	exe	cution time s	tddev
SG2042 @ 10 Threads rw	1991.30	00	32.68			59.9939			0.01		
SG2042 @ 64 Threads rw	1062.64	1062.6406		24.58		60.0316	0.03			3	
SG2042 @ 64 Threads r	28931.7188		1217.10			59.7202	0.0			3	
X86_64 @ 10 Threads rw	4174.70	174.7000 12.7				59.9913			0.00)	

other

total

2 环境说明

2.1 硬件环境

本次测试主要在 Milk-V Pioneer Box 和 Sipeed LicheePi 4A 上进行,机器硬件配置为: Milk-V Pioneer Box:

· CPU: SG2042 64 Core C920@2.0GHz

· RAM: 4 channel 3200Hz 128GB DDR4 SODIMM (32GB * 4)

· SSD: PCIe 3.0 x 4 1TB

· GPU: AMD R5 230

Sipeed LicheePi 4A:

CPU: TH1520, RISC-V 2.0G C910 x4RAM: 16 GB 64bit LPDDR4X-3733

· Storage: 128 GB eMMC

x86_64:

· OS: openEuler 23.09 x86_64

· CPU: Xeon Gold 5215L CPU @ 2.50GHz, 10*vCPU (Proxmox VE 8.0 虚拟化环境)

· RAM: 8 GiB

2.2 软件环境

本次测试涵盖的系统版本和 openGauss 版本如下:

openEuler¹ 24.03 LTS

openGauss² 6.0.0

2.3 测试环境搭建

2.3.1 安装 openEuler

Sipeed LicheePi 4A

从 官网 ³ 下载镜像:

选择 RISC-V - 嵌入式 - lpi4a。

使用 fastboot 刷写镜像到板载 eMMC

由于 LPi4A 默认的 USB VID/PID 通常不在默认 udev 规则内,在 Linux 下烧写时可能需要在 fastboot 前添加 sudo。

¹https://www.openeuler.org/zh/download/?version=openEuler%2024.03%20LTS

²https://gitee.com/opengauss/riscv

³https://www.openeuler.org/zh/download/?version=openEuler%2024.03%20LTS

按住板上的 **BOOT** 按键不放,然后插入 USB-C 线缆上电(线缆另一头接 PC),即可进入 USB 烧 录模式。

在 Windows 下使用设备管理器查看,会出现 USB download gadget 设备。

在Linux下,使用 lsusb 查看设备,会显示以下设备: ID 2345:7654 T-HEAD USB download gadget。 使用如下指令刷写镜像。

```
fastboot flash ram u-boot-with-spl-lpi4a-16g.bin
fastboot reboot
# 稍等几秒,等待开发板重启后重新连接至电脑
fastboot flash uboot u-boot-with-spl-lpi4a-16g.bin
fastboot flash boot openEuler-24.03-LTS-riscv64-lpi4a-base-boot.ext4
fastboot flash root openEuler-24.03-LTS-riscv64-lpi4a-base-root.ext4
```

Milk-V Pioneer Box

下载系统镜像 4 ,解压,使用 **dd** 烧录至 NVMe 硬盘。下载固件 5 ,解压,使用 **dd** 烧录至 microSD 卡。

请将下面的 /dev/sda /dev/sdb 替换成实际使用的硬盘和存储卡位置。

```
unzip openEuler-24.03-LTS-riscv64-sg2042.img.zip
sudo wipefs -af /dev/sda
sudo dd if=openEuler-24.03-LTS-riscv64-sg2042.img of=/dev/sda bs=1M status=progress
sudo eject /dev/sda
unzip sg2042_firmware_linuxboot.img.zip
sudo dd if=sg2042_firmware_linuxboot.img of=/dev/sdb bs=1M status=progress
```

将存储卡和硬盘插入系统上电开机。

2.3.2 安装 openGauss 数据库

因为官网提供的下载中⁶ 没有 riscv 架构的,所以需要手动构建并安装 opengauss 数据库 此文档针对 riscv 平台编写,在其他平台下使用请自行配置 qemu

编译

使用 openEuler 容器编译可参考 https://github.com/QA-Team-lo/dbtest/blob/main/opengauss/install.md 以下使用 Pioneer Box 裸机编译:

下载源码

⁴https://mirrors.hust.edu.cn/openeuler/openEuler-24.03-LTS/embedded_img/riscv64/SG2042/openEuler-24.03-LTS-riscv64-sg2042.img.zip

⁵https://mirrors.hust.edu.cn/openeuler/openEuler-24.03-LTS/embedded_img/riscv64/SG2042/sg2042_firmware_linuxboot.img.zip

⁶https://opengauss.org/zh/download/

```
su
mkdir /root/rpmbuild
cd /root/rpmbuild
git clone https://gitee.com/opengauss/riscv SOURCES
cd SOURCES
```

配置编译环境

```
# 安装必要工具
dnf install -y rpm-build rpmdevtools dnf-plugins-core
# 安装编译依赖
yum-builddep -y opengauss-server.spec
# 下载源码
spectool -g opengauss-server.spec
```

编译 rpm 包

```
rpmbuild -ba opengauss-server.spec
```

安装

等待一段时间,编译完成后,安装

```
cd ../RPMS/riscv64/
dnf install -y opengauss-server-6.0.0-1.riscv64.rpm
```

初始化 & 启动

```
systemctl enable --now opengauss-server
```

2.3.3 功能测试

在 PostgreSQL 中创建数据库和用户:

```
# 切换至 opengauss 用户
su opengauss
# 连接数据库
gsql -d postgres
```

当 gsql 连接数据库成功后,在 gsql 交互界面中输入

```
alter role "opengauss" password "openGauss@2024"; -- 修改默认用户密码

CREATE USER testuser WITH PASSWORD 'openEuler12#$'; -- 创建用户

CREATE DATABASE testdb owner testuser; -- 创建数据库
```

修改 opengauss 配置文件

```
vim /var/lib/opengauss/data/postgresql.conf
# 配置 listen_addresses = '*'
# 配置 password_encryption_type = 1

vim /var/lib/opengauss/data/pg_hba.conf
# 末尾增加:
# host all testuser 0.0.0.0/0 md5

gs_ctl -D $HOME/data reload
# reload 后即可生效
```

2.3.4 性能测试

安装 sysbench

```
sudo dnf install sysbench
```

修改 opengauss 配置文件

```
vim /var/lib/opengauss/data/postgresql.conf
# 配置 listen_addresses = '*'
# 配置 password_encryption_type = 1

gs_ctl -D $HOME/data reload
# reload 后即可生效
```

在 openGauss 中创建数据库和用户(在修改密码规则后必须新建用户或修改密码才能使用)

```
su - opengauss

gsql -d postgres

CREATE USER testuser WITH PASSWORD 'openEuler12#$';

CREATE DATABASE testdb owner testuser;
```

授予权限用于测试

3 测试内容

3.1 手动测试

3.1.1 本地测试

使用 gsql -U testuser -d testdb 连接数据库, 创建表, 并作简单的增删查操作

```
create table phonebook (
    id serial primary key,
    name varchar(20),
    phone varchar(20)
);

insert into phonebook (name, phone) values ('工商银行', '95588');
insert into phonebook (name, phone) values ('招商银行', '95555');
insert into phonebook (name, phone) values ('农业银行', '95599');

insert into phonebook (name, phone) values ('邮政快递', '11183');
insert into phonebook (name, phone) values ('顺丰快递', '95338');
insert into phonebook (name, phone) values ('京东物流', '95311');

select * from phonebook where name like '%银行';
select * from phonebook where name = '农业银行';
select * from phonebook;
```

远程连接测试

3.1.2 远程测试

下载 JDBC_6.0.07 数据库驱动并解压

启动 Dbeaver, 并选择菜单->数据库->驱动管理器, 在弹出对话框中, 选择新建

填写新建驱动名称->选择 JDBC 驱动文件,添加解压出来的 opengauss-jdbc-6.0.0.jar->选择 JDBC Driver 类

填写 URL 模板, 值为:jdbc:opengauss://{host}:{port}/{database}, 勾选嵌入, 其他复选框不选择, 然后确认, 添加驱动即完成

选择菜单->数据库->新建连接,在弹出的框中搜索上一步中新建的 JDBC 驱动名,选择后点击下一步,如下图示

在弹出框中填写 openGauss 主机地址、端口、将要连接的数据库以及认证用户名和密码,点击测试链接验证是否可正确连接

⁷https://opengauss.org/zh/download/

Driver Manager Type part of database/driver name to filter Name **₩** openGauss nema **♥** SQLite ✓Altibase ■ Apache Calcite Avatica ♦ Apache Ignite Apache Kylin ▶ ■ AWS Azure Azure Databricks Babelfish via TDS (beta) 1 Cache

			Ed:	it Driver	'openGauss'	
	Settings L	.ibrar:	ies Driver p	roperties	Advanced par	
	Driver Nam	me:	openGauss		Driver 1	
nema	Class Name	e:	org.opengaus	ss.Driver		
	URL Templa	ate:	jdbc:openga	uss://{ho	st}:{port}/{d	
	Default Po	ort:	5432		Default Datab	
	Default Us	ser: (
	Allow	Empty safe			perties No cy JDBC instar	
	ID:		380CF77E-266	C5D-818764E0A		
	Descripti	.on:				
			Reset to [Defaults	Cancel	
nnections	× /	_ Errb	r Log × 🖶 D	atabase T	asks – Genera	

Connec

Connection settings

openGauss connection settings

▼ Connection settings

Initialization

Shell Commands

Transactions

General

Metadata

Errors and timeouts

Data Transfer

- Data Editor
- SQL Editor

Main Driver properties

General

Connect by: Host

JDBC URL: jdbc:open

Host: localhost

Database/Schema: testdb

Authentication (Database Nature testuser

Password: ••••••••••

① Connection variables info

Connec **Connection settings** openGauss connection settings Connection settings Main Driver properties Initialization General Shell Commands Connect by: O Host Transactions JDBC URL: jdbc:open General Host: localhost Metadata Database/Sch Errors and timeouts Authenticati Data Transfer Connected Username: Data Editor Password: SQL Editor Server: Driver:

3.2 性能测试

初始化数据库

```
sysbench --db-driver=pgsql --oltp-table-size=100000 --oltp-tables-count=24 --threads=1 --pgsql-host=127.0.0.1

→ --pgsql-port=5432 --pgsql-user=testuser --pgsql-password=openEuler12#$ --pgsql-db=testdb

→ /usr/share/sysbench/tests/include/oltp_legacy/parallel_prepare.lua run
```

使用下列命令验证生成的数据

执行读/写测试

```
sysbench --db-driver=pgsql --report-interval=2 --oltp-table-size=100000 --oltp-tables-count=24 --threads=64 --time=60

→ --pgsql-host=127.0.0.1 --pgsql-port=5432 --pgsql-user=testuser --pgsql-password=openEuler12#$ --pgsql-db=testdb

→ /usr/share/sysbench/tests/include/oltp_legacy/oltp.lua run
```

上述命令将从名为 /usr/share/sysbench/tests/include/oltp_legacy/oltp.lua 的 LUA 脚本生成 OLTP 工作负载,针对主服务器上 24 个表的 100,000 行(具有 64 个工作线程)持续 60 秒)。每 2 秒,sysbench 将报告中间统计信息(– report-interval=2)。

执行只读测试

```
sysbench --db-driver=pgsql --report-interval=2 --oltp-table-size=100000 --oltp-tables-count=24 --threads=64 --time=60

→ --pgsql-host=127.0.0.1 --pgsql-port=5432 --pgsql-user=testuser --pgsql-password=openEuler12#$ --pgsql-db=testdb

→ /usr/share/sysbench/tests/include/oltp_legacy/select.lua run
```

清理测试数据

4 测试结果

4.1 功能测试

licheepi 4a 由于性能较弱, 在启动 openGauss 服务时超时, 而 Pioneer Box 可以正常进行本地和远程连接

使用 dbeaver 远程连接 openGauss 数据库结果如图所示:

4.2 性能测试

详细结果参见 logs⁸ 目录或附录。

性能对比

SQL statistics

rw: oltp 测试, 包含读写 r:select 测试, 仅读

Platform	read	wr	ite	other		total	tra	nsaction	ns	transactions/s	quei
SG2042 @ 10 Threads rw	278796		654	39828		398278	119	11913		331.56	3982
SG2042 @ 64 Threads rw	952280 2 1851630 0		272041		57	1360378	68009			1128.35	1360
SG2042 @ 64 Threads r				0		1851630	1851630			30766.50	1851
X86_64 @ 10 Threads rw	584472	166989		8349	7	834958	41747			695.69	8349
Latency											
Platform	min a	avg	ma	X	95t	h percenti	ile	sum			
SG2042 @ 10 Threads rw	25.62	30.13	99.9	91 33		.72		599938.70		_	
SG2042 @ 64 Threads rw	38.63	56.49	421.75		70.55		3842023.49		3.49		
SG2042 @ 64 Threads rw	1.12	2.06	353	.15	3.3	3.30		3822093.0			
X86_64 @ 10 Threads rw	5.23	14.37	156	1569.33		21.50		599913.47			
Threads fairness										-	
Platform	events avg		events stdde		lev	ev executio		n time avg		cution time std	ldev
SG2042 @ 10 Threads rw	Threads rw 1991.3000			32.68			59.9939			1	
SG2042 @ 64 Threads rw	1062.640	5406 24.5		3		60.0316			0.03	3	
SG2042 @ 64 Threads r	28931.7188		1217.10		59.7202		(0.03	3	
X86_64 @ 10 Threads rw	4174.700	00	12.74			59.9913			0.00	0	

4.2.1 已知问题

时间所限,笔者暂时没有找到合适的测试机,文中所使用的 Openeuler X86_64 机器运行在 Hdd 上, I/O 性能会有严重瓶颈。这可能会影响 Tidb 的性能表现。

x86_64 机器运行在 PVE 虚拟化环境下。通常来说,KVM 虚拟化会有性能损失,但不会很大。这也可能会影响性能表现。

此外,内存大小不同也可能影响性能。

5 总结

⁸https://github.com/QA-Team-lo/dbtest/tree/main/opengauss/logs

A 附录