Day 2: On Weights and Clusters

Peter Hull

Design-Based Regression Inference Fall 2024

Outline

- 1. Heterogeneous Treatment Effects
- 2. Clustered Standard Errors

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)
 - Can think about what the regression/IV estimand equals in such models

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)
 - \bullet Can think about what the regression/IV estimand equals in such models
- Today we'll see another difference: how design-based vs. model-based regression/IV weigh together heterogeneous effects
 - Bottom line: design avoids recent concerns over "negative weights"...

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)
 - \bullet Can think about what the regression/IV estimand equals in such models
- Today we'll see another difference: how design-based vs. model-based regression/IV weigh together heterogeneous effects
 - Bottom line: design avoids recent concerns over "negative weights"...
 - ... at least as long as you don't have multiple treatments!

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i -controlled regression actually identify?

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i-controlled regression actually identify?

$$\beta = \frac{Cov(\tilde{x}_i, y_i)}{Var(\tilde{x}_i)} =$$

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i-controlled regression actually identify?

$$\beta = \frac{Cov(\tilde{x}_i, y_i)}{Var(\tilde{x}_i)} = \frac{Cov(\tilde{x}_i, x_i\beta_i)}{Var(\tilde{x}_i)} + \frac{Cov(\tilde{x}_i, \varepsilon_i)}{Var(\tilde{x}_i)} =$$

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i-controlled regression actually identify?

$$\beta = \frac{Cov(\tilde{x}_i, y_i)}{Var(\tilde{x}_i)} = \frac{Cov(\tilde{x}_i, x_i\beta_i)}{Var(\tilde{x}_i)} + \frac{Cov(\tilde{x}_i, \varepsilon_i)}{Var(\tilde{x}_i)} = \frac{E[\tilde{x}_i x_i\beta_i]}{E[\tilde{x}_i^2]}$$

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i-controlled regression actually identify?

$$\beta = \frac{Cov(\tilde{x}_i, y_i)}{Var(\tilde{x}_i)} = \frac{Cov(\tilde{x}_i, x_i\beta_i)}{Var(\tilde{x}_i)} + \frac{Cov(\tilde{x}_i, \varepsilon_i)}{Var(\tilde{x}_i)} = \frac{E[\tilde{x}_i x_i\beta_i]}{E[\tilde{x}_i^2]}$$

• Further, $E[\tilde{x}_i x_i \beta_i] = E[E[\tilde{x}_i x_i \mid w, y(0), y(1)]\beta_i] =$

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i-controlled regression actually identify?

$$\beta = \frac{Cov(\tilde{x}_i, y_i)}{Var(\tilde{x}_i)} = \frac{Cov(\tilde{x}_i, x_i\beta_i)}{Var(\tilde{x}_i)} + \frac{Cov(\tilde{x}_i, \varepsilon_i)}{Var(\tilde{x}_i)} = \frac{E[\tilde{x}_i x_i\beta_i]}{E[\tilde{x}_i^2]}$$

• Further, $E[\tilde{x}_i x_i \beta_i] = E[E[\tilde{x}_i x_i \mid w, y(0), y(1)]\beta_i] = E[Var(x_i \mid w)\beta_i]$ and $E[\tilde{x}_i^2] =$

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i-controlled regression actually identify?

$$\beta = \frac{Cov(\tilde{x}_i, y_i)}{Var(\tilde{x}_i)} = \frac{Cov(\tilde{x}_i, x_i\beta_i)}{Var(\tilde{x}_i)} + \frac{Cov(\tilde{x}_i, \varepsilon_i)}{Var(\tilde{x}_i)} = \frac{E[\tilde{x}_i x_i\beta_i]}{E[\tilde{x}_i^2]}$$

• Further, $E[\tilde{x}_i x_i \beta_i] = E[E[\tilde{x}_i x_i \mid w, y(0), y(1)]\beta_i] = E[Var(x_i \mid w)\beta_i]$ and $E[\tilde{x}_i^2] = E[Var(x_i \mid w)]$

- Let $x_i \in \{0,1\}$; general causal model: $y_i = \underbrace{(y_i(1) y_i(0))}_{\beta_i} x_i + \underbrace{y_i(0)}_{\varepsilon_i}$
 - Design: $x_i \mid w, y(0), y(1) \sim F_x(w_i)$ with linear $E[x_i \mid w_i]$
- What does the w_i-controlled regression actually identify?

$$\beta = \frac{Cov(\tilde{x}_i, y_i)}{Var(\tilde{x}_i)} = \frac{Cov(\tilde{x}_i, x_i\beta_i)}{Var(\tilde{x}_i)} + \frac{Cov(\tilde{x}_i, \varepsilon_i)}{Var(\tilde{x}_i)} = \frac{E[\tilde{x}_i x_i\beta_i]}{E[\tilde{x}_i^2]}$$

- Further, $E[\tilde{x}_i x_i \beta_i] = E[E[\tilde{x}_i x_i \mid w, y(0), y(1)]\beta_i] = E[Var(x_i \mid w)\beta_i]$ and $E[\tilde{x}_i^2] = E[Var(x_i \mid w)]$
- Hence the regression a proper (convex) weighted avg. of the β_i :

$$\beta = \frac{E[Var(x_i \mid w)\beta_i]}{E[Var(x_i \mid w)]}$$

More weight put on observations with more treatment variability

Primer 2: TWFE with Staggered Adoption

- Now suppose we have a panel: $y_{it} = (y_{it}(1) y_{it}(0))x_{it} + y_{it}(0)$
 - Units (non-randomly) adopt treatment over time: $x_{it} = \mathbf{1}[t \geq g_i]$ where $g_i \in \{1, \dots, T\} \cup \infty$ gives adoption time $(g_i = \infty \text{ for never treated})$

Primer 2: TWFE with Staggered Adoption

- Now suppose we have a panel: $y_{it} = (y_{it}(1) y_{it}(0))x_{it} + y_{it}(0)$
 - Units (non-randomly) adopt treatment over time: $x_{it} = \mathbf{1}[t \ge g_i]$ where $g_i \in \{1, \dots, T\} \cup \infty$ gives adoption time $(g_i = \infty \text{ for never treated})$
- We assume parallel trends in $y_{it}(0)$ and run TWFE:

$$y_{it} = \beta x_{it} + \alpha_i + \tau_t + v_{it}$$

If we start with a constant FX model, we'd be done!

Primer 2: TWFE with Staggered Adoption

- Now suppose we have a panel: $y_{it} = (y_{it}(1) y_{it}(0))x_{it} + y_{it}(0)$
 - Units (non-randomly) adopt treatment over time: $x_{it} = \mathbf{1}[t \ge g_i]$ where $g_i \in \{1, \dots, T\} \cup \infty$ gives adoption time $(g_i = \infty \text{ for never treated})$
- We assume parallel trends in $y_{it}(0)$ and run TWFE:

$$y_{it} = \beta x_{it} + \alpha_i + \tau_t + v_{it}$$

If we start with a constant FX model, we'd be done!

- But notice something a bit weird here: we can run this regression even if there are no never-treated units ...
 - How, then, is the regression using parallel trends in $y_{it}(0)$?

• Consider T=2 and two groups: always-treated units (with $g_i=1$; $x_{i1}=x_{i2}=1$) and switchers (with $g_i=2$; $x_{i1}=0$, $x_{i2}=1$)

- Consider T=2 and two groups: always-treated units (with $g_i=1$; $x_{i1}=x_{i2}=1$) and switchers (with $g_i=2$; $x_{i1}=0$, $x_{i2}=1$)
 - We can use the usual two-period trick: $\Delta y_i = \tau + \beta^{OLS} \Delta x_i + \Delta v_i$, so $\beta^{OLS} = E[\Delta y_i \mid g_i = 2] E[\Delta y_i \mid g_i = 1]$

- Consider T=2 and two groups: always-treated units (with $g_i=1$; $x_{i1}=x_{i2}=1$) and switchers (with $g_i=2$; $x_{i1}=0$, $x_{i2}=1$)
 - We can use the usual two-period trick: $\Delta y_i = \tau + \beta^{OLS} \Delta x_i + \Delta v_i$, so $\beta^{OLS} = E[\Delta y_i \mid g_i = 2] E[\Delta y_i \mid g_i = 1]$
- Under PT, $E[y_{i2}(0) y_{i1}(0) \mid g_i = 1] = E[y_{i2}(0) y_{i1}(0) \mid g_i = 2]$ so:

$$\beta = E[y_{i2}(1) - y_{i1}(0) \mid g_i = 2] - E[y_{i2}(1) - y_{i1}(1) \mid g_i = 1]$$

- Consider T=2 and two groups: always-treated units (with $g_i=1$; $x_{i1}=x_{i2}=1$) and switchers (with $g_i=2$; $x_{i1}=0$, $x_{i2}=1$)
 - We can use the usual two-period trick: $\Delta y_i = \tau + \beta^{OLS} \Delta x_i + \Delta v_i$, so $\beta^{OLS} = E[\Delta y_i \mid g_i = 2] E[\Delta y_i \mid g_i = 1]$
- Under PT, $E[y_{i2}(0) y_{i1}(0) \mid g_i = 1] = E[y_{i2}(0) y_{i1}(0) \mid g_i = 2]$ so:

$$\beta = E[y_{i2}(1) - y_{i1}(0) | g_i = 2] - E[y_{i2}(1) - y_{i1}(1) | g_i = 1]$$

$$= E[y_{i2}(1) - y_{i2}(0) | g_i = 2] + E[y_{i2}(0) - y_{i1}(0) | g_i = 2]$$

$$- E[y_{i2}(1) - y_{i2}(0) | g_i = 1] + E[y_{i1}(1) - y_{i1}(0) | g_i = 1]$$

$$- E[y_{i2}(0) - y_{i1}(0) | g_i = 1]$$

- Consider T=2 and two groups: always-treated units (with $g_i=1$; $x_{i1}=x_{i2}=1$) and switchers (with $g_i=2$; $x_{i1}=0$, $x_{i2}=1$)
 - We can use the usual two-period trick: $\Delta y_i = \tau + \beta^{OLS} \Delta x_i + \Delta v_i$, so $\beta^{OLS} = E[\Delta y_i \mid g_i = 2] E[\Delta y_i \mid g_i = 1]$
- Under PT, $E[y_{i2}(0) y_{i1}(0) | g_i = 1] = E[y_{i2}(0) y_{i1}(0) | g_i = 2]$ so:

$$\begin{split} \beta = & E[y_{i2}(1) - y_{i1}(0) \mid g_i = 2] - E[y_{i2}(1) - y_{i1}(1) \mid g_i = 1] \\ = & E[y_{i2}(1) - y_{i2}(0) \mid g_i = 2] + E[y_{i2}(0) - y_{i1}(0) \mid g_i = 2] \\ & - E[y_{i2}(1) - y_{i2}(0) \mid g_i = 1] + E[y_{i1}(1) - y_{i1}(0) \mid g_i = 1] \\ & - E[y_{i2}(0) - y_{i1}(0) \mid g_i = 1] \\ = & \underbrace{E[y_{i2}(1) - y_{i2}(0) \mid g_i = 2]}_{\text{ATE for switchers}} \\ & - \underbrace{(E[y_{i2}(1) - y_{i2}(0) \mid g_i = 1] - E[y_{i1}(1) - y_{i1}(0) \mid g_i = 1])}_{\text{Change in ATE for always-treated}} \end{split}$$

"Forbidden Comparisons," Illustrated

No Problem Under Constant Effects

• We can write the previous expression as a *non-convex* weighted average of $\beta_{it} = y_{it}(1) - y_{it}(0)$:

$$\beta = E[\beta_{i2} \mid g_i = 2] + E[\beta_{i2} \mid g_i = 1] - E[\beta_{i1} \mid g_i = 1]$$

$$= \frac{E[\psi_{it}\beta_{it}]}{E[\psi_{it}]} \quad \text{for } \psi_{it} = \begin{cases} +, & \text{if } t = 2\\ 0, & \text{if } t = 1, g = 2\\ -, & \text{if } t = 1, g = 1 \end{cases}$$

• We can write the previous expression as a *non-convex* weighted average of $\beta_{it} = y_{it}(1) - y_{it}(0)$:

$$\begin{split} \beta = & E[\beta_{i2} \mid g_i = 2] + E[\beta_{i2} \mid g_i = 1] - E[\beta_{i1} \mid g_i = 1] \\ = & \frac{E[\psi_{it}\beta_{it}]}{E[\psi_{it}]} \quad \text{for } \psi_{it} = \begin{cases} +, & \text{if } t = 2\\ 0, & \text{if } t = 1, & \text{g} = 2\\ -, & \text{if } t = 1, & \text{g} = 1 \end{cases} \end{split}$$

We'll term the ψ_{it} "ex-post" weights, for reasons you'll see shortly

• We can write the previous expression as a *non-convex* weighted average of $\beta_{it} = y_{it}(1) - y_{it}(0)$:

$$\beta = E[\beta_{i2} \mid g_i = 2] + E[\beta_{i2} \mid g_i = 1] - E[\beta_{i1} \mid g_i = 1]$$

$$= \frac{E[\psi_{it}\beta_{it}]}{E[\psi_{it}]} \quad \text{for } \psi_{it} = \begin{cases} +, & \text{if } t = 2\\ 0, & \text{if } t = 1, & \text{g} = 2\\ -, & \text{if } t = 1, & \text{g} = 1 \end{cases}$$

We'll term the ψ_{it} "ex-post" weights, for reasons you'll see shortly

- Why is negativity of ψ_{it} a concern? The potential for sign reversals:
 - ullet Even if all TEs are positive $eta^{\it OLS}$ could end up negative (or vice versa)

• We can write the previous expression as a *non-convex* weighted average of $\beta_{it} = y_{it}(1) - y_{it}(0)$:

$$\begin{split} \beta = & E[\beta_{i2} \mid g_i = 2] + E[\beta_{i2} \mid g_i = 1] - E[\beta_{i1} \mid g_i = 1] \\ = & \frac{E[\psi_{it}\beta_{it}]}{E[\psi_{it}]} \quad \text{for } \psi_{it} = \begin{cases} +, & \text{if } t = 2\\ 0, & \text{if } t = 1, & \text{g} = 2\\ -, & \text{if } t = 1, & \text{g} = 1 \end{cases} \end{split}$$

We'll term the ψ_{it} "ex-post" weights, for reasons you'll see shortly

- Why is negativity of ψ_{it} a concern? The potential for sign reversals:
 - ullet Even if all TEs are positive $eta^{\it OLS}$ could end up negative (or vice versa)
 - The recent TWFE literature points this issue out in many settings and proposes alternative specifications / procedures to address it

• We can write the previous expression as a *non-convex* weighted average of $\beta_{it} = y_{it}(1) - y_{it}(0)$:

$$\begin{split} \beta = & E[\beta_{i2} \mid g_i = 2] + E[\beta_{i2} \mid g_i = 1] - E[\beta_{i1} \mid g_i = 1] \\ = & \frac{E[\psi_{it}\beta_{it}]}{E[\psi_{it}]} \quad \text{for } \psi_{it} = \begin{cases} +, & \text{if } t = 2\\ 0, & \text{if } t = 1, & \text{g} = 2\\ -, & \text{if } t = 1, & \text{g} = 1 \end{cases} \end{split}$$

We'll term the ψ_{it} "ex-post" weights, for reasons you'll see shortly

- Why is negativity of ψ_{it} a concern? The potential for sign reversals:
 - ullet Even if all TEs are positive $eta^{\it OLS}$ could end up negative (or vice versa)
 - The recent TWFE literature points this issue out in many settings and proposes alternative specifications / procedures to address it
- It turns out that such ψ_i also arise in design-based specifications, and they can also be negative
 - But sign reversals are impossible in design-based specs: then we can also write $\beta = E[\phi_i \beta_i]/E[\phi_i]$ for "ex-ante" ϕ_i which are non-negative

Simple Setup

• Suppose a researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i$$

for some outcome y_i , treatment x_i , and vector of controls w_i

Simple Setup

Suppose a researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i$$

for some outcome y_i , treatment x_i , and vector of controls w_i

• To interpret β , we consider a linear-effect causal model:

$$y_i = \beta_i x_i + \varepsilon_i$$

with heterogeneous effects eta_i and untreated potential outcomes $arepsilon_i$

Simple Setup

Suppose a researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i$$

for some outcome y_i , treatment x_i , and vector of controls w_i

• To interpret β , we consider a linear-effect causal model:

$$y_i = \beta_i x_i + \varepsilon_i$$

with heterogeneous effects eta_i and untreated potential outcomes eta_i

In large enough samples, OLS consistently estimates:

$$\beta = \frac{E[\tilde{x}_i y_i]}{E[\tilde{x}_i^2]} = \frac{E[\tilde{x}_i x_i \beta]}{E[\tilde{x}_i^2]} + \frac{E[\tilde{x}_i \varepsilon_i]}{E[\tilde{x}_i^2]}$$

where \tilde{x}_i are residuals from the population regression of x_i on w_i

Two Paths to Avoiding Omitted Variables Bias

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

Two Paths to Avoiding Omitted Variables Bias

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1:
$$E[\varepsilon_i \mid x_i, w_i] = w_i' \gamma$$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where i indexes unit-period pairs in a panel and w_i includes unit and time dummies

Two Paths to Avoiding Omitted Variables Bias

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1:
$$E[\varepsilon_i \mid x_i, w_i] = w_i' \gamma$$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where i indexes unit-period pairs in a panel and w_i includes unit and time dummies

ASSUMPTION 2: $E[x_i \mid \varepsilon_i, \beta_i, w_i] = w_i' \lambda$

- Treatment is conditionally mean-independent of potential outcomes, with a linear expected treatment $E[x_i \mid w_i]$ (e.g. the propensity score)
- E.g. a stratified experiment, where x_i is randomly assigned within strata dummied out in w_i
- Note we're conditioning on both ε_i and β_i , ruling out "selection on gains" (will relax with IV version soon)

Two Paths to Avoiding Omitted Variables Bias

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1: $E[\varepsilon_i \mid x_i, w_i] = w_i' \gamma$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where i indexes unit-period pairs in a panel and w_i includes unit and time dummies

ASSUMPTION 2: $E[x_i | \varepsilon_i, \beta_i, w_i] = w_i' \lambda$

- Treatment is conditionally mean-independent of potential outcomes, with a linear expected treatment $E[x_i \mid w_i]$ (e.g. the propensity score)
- E.g. a stratified experiment, where x_i is randomly assigned within strata dummied out in w_i
- Note we're conditioning on both ε_i and β_i , ruling out "selection on gains" (will relax with IV version soon)
- The second assumption yields a design-based OLS specification
 - Stronger (sufficient) condition: $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} F_x(w_i)$

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{x}_i x_i$$

• Since $E[\tilde{x}_i \varepsilon_i] = 0$, the OLS estimand has an average-effect representation under either assumption:

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{x}_i x_i$$

• But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values

11

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{x}_i x_i$$

- But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values
 - E.g. if $x_i > 0$ then i with low values of x_i (the effective control group) will always receive negative ex-post weight

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{\mathsf{x}}_i \mathsf{x}_i$$

- But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values
 - E.g. if $x_i > 0$ then i with low values of x_i (the effective control group) will always receive negative ex-post weight
 - This can lead to sign reversals: e.g. $\beta < 0$, despite $\beta_i > 0$

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{\mathsf{x}}_i \mathsf{x}_i$$

- But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values
 - E.g. if $x_i > 0$ then i with low values of x_i (the effective control group) will always receive negative ex-post weight
 - This can lead to sign reversals: e.g. $\beta < 0$, despite $\beta_i > 0$
- ullet The ex-post weights are the end of the story for eta under Assumption
 - 1. But in design-based specifications we can take one more step
 - In experiments, who is in the effective control group is *random*. Before treatment is drawn, everyone expects the same weight!

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

• Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i=\psi_i$

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

- Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i = \psi_i$
- But under Assumption 2, $\phi_i = Var(x_i \mid w_i, \beta_i)$ which is non-negative!

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

- Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i=\psi_i$
- But under Assumption 2, $\phi_i = Var(x_i \mid w_i, \beta_i)$ which is non-negative!
 - $E[\tilde{x}_i x_i \mid w_i, \beta_i] = E[\tilde{x}_i^2 \mid w_i, \beta_i] + E[\tilde{x}_i \mid w_i, \beta_i] w_i' \lambda = Var(x_i \mid w_i, \beta_i) + 0$

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

- Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i=\psi_i$
- But under Assumption 2, $\phi_i = Var(x_i \mid w_i, \beta_i)$ which is non-negative!

•
$$E[\tilde{x}_i x_i \mid w_i, \beta_i] = E[\tilde{x}_i^2 \mid w_i, \beta_i] + E[\tilde{x}_i \mid w_i, \beta_i] w_i' \lambda = Var(x_i \mid w_i, \beta_i) + 0$$

• Hence: sign reversals cannot occur in design-based OLS specifications

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)
- With the stronger design assumption of $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} G(w_i)$, the ex ante weights become identified: $\phi_i = Var(x_i \mid w_i, \beta_i) = Var(x_i \mid w_i)$
 - C.f. earlier results in Angrist (1998), Angrist and Krueger (1999), etc

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)
- With the stronger design assumption of $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} G(w_i)$, the ex ante weights become identified: $\phi_i = Var(x_i \mid w_i, \beta_i) = Var(x_i \mid w_i)$
 - C.f. earlier results in Angrist (1998), Angrist and Krueger (1999), etc
 - Could inverse-weight by $\widehat{Var}(x_i \mid w_i)$ to estimate unweighted $E[\beta_i]$

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)
- With the stronger design assumption of $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} G(w_i)$, the ex ante weights become identified: $\phi_i = Var(x_i \mid w_i, \beta_i) = Var(x_i \mid w_i)$
 - C.f. earlier results in Angrist (1998), Angrist and Krueger (1999), etc
 - Could inverse-weight by $\widehat{Var}(x_i \mid w_i)$ to estimate unweighted $E[\beta_i]$
- Of course, the ϕ_i -weighted estimand may not be most of interest!
 - If $Cov(\phi_i,\beta_i)\approx 0$, we'll still get something close to $E[\beta_i]$
 - Otherwise, ϕ_i -weighting has desirable efficiency properties (Goldsmith-Pinkham et al. 2024)
 - Large class of alternative propensity-score-based estimators for other estimands under the stronger design assumption

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **1** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i | y_i(\cdot), w_i] = w_i'\lambda$

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **1** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i | y_i(\cdot), w_i] = w_i'\lambda$

- For convex ex-ante weights in IV we require first-stage monotonicity: that x_i is non-decreasing in z_i for all units regardless of $y_i(\cdot)$
 - C.f. earlier results in Imbens and Angrist ('94, '95), Angrist et al. ('00)

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **1** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i | y_i(\cdot), w_i] = w_i'\lambda$

- For convex ex-ante weights in IV we require first-stage monotonicity: that x_i is non-decreasing in z_i for all units regardless of $y_i(\cdot)$
 - C.f. earlier results in Imbens and Angrist ('94, '95), Angrist et al. ('00)
 - Ex post weights are still potentially non-convex under monotonicity

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **1** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i | y_i(\cdot), w_i] = w_i'\lambda$

- For convex ex-ante weights in IV we require first-stage monotonicity: that x_i is non-decreasing in z_i for all units regardless of $y_i(\cdot)$
 - C.f. earlier results in Imbens and Angrist ('94, '95), Angrist et al. ('00)
 - Ex post weights are still potentially non-convex under monotonicity
- Framework is general, allowing for "formula" IVs (e.g. shift-share) where the first stage relationship need not be causal
 - We'll see more about this in tomorrow's class

$$\beta = \frac{Cov(\tilde{z}_i, y_i)}{Cov(\tilde{z}_i, x_i)} =$$

$$\beta = \frac{Cov(\tilde{z}_i, y_i)}{Cov(\tilde{z}_i, x_i)} = \frac{Cov(\tilde{z}_i, \beta_i x_i + \varepsilon_i)}{Cov(\tilde{z}_i, x_i)} = \frac{Cov(\tilde{z}_i, y_i)}{Cov(\tilde{z}_i, y_i)} = \frac{Cov(\tilde{z}_i, y_i)}{Cov(\tilde{z}_i$$

$$\beta = \frac{Cov(\tilde{z}_i, y_i)}{Cov(\tilde{z}_i, x_i)} = \frac{Cov(\tilde{z}_i, \beta_i x_i + \varepsilon_i)}{Cov(\tilde{z}_i, x_i)} = \frac{E[\tilde{z}_i x_i \beta_i]}{E[\tilde{z}_i x_i]}$$
=

$$\beta = \frac{Cov(\tilde{z}_{i}, y_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{Cov(\tilde{z}_{i}, \beta_{i}x_{i} + \varepsilon_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{E[\tilde{z}_{i}x_{i}\beta_{i}]}{E[\tilde{z}_{i}x_{i}]}$$

$$= \frac{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]\beta_{i}]}{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]]} =$$

$$\beta = \frac{Cov(\tilde{z}_{i}, y_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{Cov(\tilde{z}_{i}, \beta_{i}x_{i} + \varepsilon_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{E[\tilde{z}_{i}x_{i}\beta_{i}]}{E[\tilde{z}_{i}x_{i}]}$$

$$= \frac{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]\beta_{i}]}{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]]} = \frac{E[Cov(z_{i}, x_{i} \mid w, \beta)\beta_{i}]}{E[Cov(z_{i}, x_{i} \mid w, \beta)]}$$

• Suppose $y_i = \beta_i x_i + \varepsilon_i$ (without loss of generality for binary x_i). Then:

$$\beta = \frac{Cov(\tilde{z}_{i}, y_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{Cov(\tilde{z}_{i}, \beta_{i}x_{i} + \varepsilon_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{E[\tilde{z}_{i}x_{i}\beta_{i}]}{E[\tilde{z}_{i}x_{i}]}$$

$$= \frac{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]\beta_{i}]}{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]]} = \frac{E[Cov(z_{i}, x_{i} \mid w, \beta)\beta_{i}]}{E[Cov(z_{i}, x_{i} \mid w, \beta)]}$$

$$= \frac{E[\sigma_{i}\pi_{i}\beta_{i}]}{E[\sigma_{i}\pi_{i}]}$$

where:

$$\sigma_i = Var(z_i \mid w, \beta) \implies$$
 more weight where z_i varies more $\pi_i = \frac{Cov(z_i, x_i \mid w, \beta)}{Var(z_i \mid w, \beta)} \implies$ more weight where the first stage is larger

• Suppose $y_i = \beta_i x_i + \varepsilon_i$ (without loss of generality for binary x_i). Then:

$$\beta = \frac{Cov(\tilde{z}_{i}, y_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{Cov(\tilde{z}_{i}, \beta_{i}x_{i} + \varepsilon_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{E[\tilde{z}_{i}x_{i}\beta_{i}]}{E[\tilde{z}_{i}x_{i}]}$$

$$= \frac{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]\beta_{i}]}{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]]} = \frac{E[Cov(z_{i}, x_{i} \mid w, \beta)\beta_{i}]}{E[Cov(z_{i}, x_{i} \mid w, \beta)]}$$

$$= \frac{E[\sigma_{i}\pi_{i}\beta_{i}]}{E[\sigma_{i}\pi_{i}]}$$

where:

$$\sigma_i = Var(z_i \mid w, \beta) \implies$$
 more weight where z_i varies more $\pi_i = \frac{Cov(z_i, x_i \mid w, \beta)}{Var(z_i \mid w, \beta)} \implies$ more weight where the first stage is larger

• Reduces to Angrist '98 result if $z_i = x_i$ is fully independently assigned

• Suppose $y_i = \beta_i x_i + \varepsilon_i$ (without loss of generality for binary x_i). Then:

$$\beta = \frac{Cov(\tilde{z}_{i}, y_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{Cov(\tilde{z}_{i}, \beta_{i}x_{i} + \varepsilon_{i})}{Cov(\tilde{z}_{i}, x_{i})} = \frac{E[\tilde{z}_{i}x_{i}\beta_{i}]}{E[\tilde{z}_{i}x_{i}]}$$

$$= \frac{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]\beta_{i}]}{E[E[\tilde{z}_{i}x_{i} \mid w, \beta]]} = \frac{E[Cov(z_{i}, x_{i} \mid w, \beta)\beta_{i}]}{E[Cov(z_{i}, x_{i} \mid w, \beta)]}$$

$$= \frac{E[\sigma_{i}\pi_{i}\beta_{i}]}{E[\sigma_{i}\pi_{i}]}$$

where:

$$\sigma_i = Var(z_i \mid w, \beta) \implies$$
 more weight where z_i varies more $\pi_i = \frac{Cov(z_i, x_i \mid w, \beta)}{Var(z_i \mid w, \beta)} \implies$ more weight where the first stage is larger

- Reduces to Angrist '98 result if $z_i = x_i$ is fully independently assigned
- Reduces to Imbens-Angrist LATE result if the first stage is causal

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here
- The coefficient on treatment j estimates the sum of two terms:
 - A weighted average of treatment j's effects, with convex weights in design-based specifications √

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here
- The coefficient on treatment j estimates the sum of two terms:
 - A weighted average of treatment j's effects, with convex weights in design-based specifications √
 - A non-convex combination of effects from other treatments k ("contamination bias") X

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here
- The coefficient on treatment j estimates the sum of two terms:
 - A weighted average of treatment j's effects, with convex weights in design-based specifications √
 - A non-convex combination of effects from other treatments k ("contamination bias") X

See also Sun and Abraham (2021) for earlier finding in event studies

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here
- The coefficient on treatment j estimates the sum of two terms:
 - A weighted average of treatment j's effects, with convex weights in design-based specifications √
 - A non-convex combination of effects from other treatments k ("contamination bias") X

See also Sun and Abraham (2021) for earlier finding in event studies

- We derive alternative estimators which avoid contamination bias while maintaining some nice properties of OLS weighting
 - Ultimately, becomes an empirical question of how important bias is

General Problem

• Goldsmith-Pinkham et al. (2024) consider a partially linear regression:

$$y_i = \sum_k x_{ik} \beta_k + g(w_i) + u_i$$

for mutually exclusive $x_{ik} \in \{0,1\}$ (usual regression: $g(w_i) = w_i' \gamma$)

General Problem

• Goldsmith-Pinkham et al. (2024) consider a partially linear regression:

$$y_i = \sum_k x_{ik} \beta_k + g(w_i) + u_i$$

for mutually exclusive $x_{ik} \in \{0,1\}$ (usual regression: $g(w_i) = w_i' \gamma$)

- Assume "exogeneity": $E[y_i(k) \mid x_i, w_i] = E[y_i(k) \mid w_i]$ for all k
- Suppose $g(\cdot)$ is flexible enough to span either $E[y_i(0) \mid w_i]$ (e.g. parallel trends) or $p_k = E[x_{ik} \mid w_i]$ for all k (i.e. design)

General Problem

• Goldsmith-Pinkham et al. (2024) consider a partially linear regression:

$$y_i = \sum_k x_{ik} \beta_k + g(w_i) + u_i$$

for mutually exclusive $x_{ik} \in \{0,1\}$ (usual regression: $g(w_i) = w_i' \gamma$)

- Assume "exogeneity": $E[y_i(k) \mid x_i, w_i] = E[y_i(k) \mid w_i]$ for all k
- Suppose $g(\cdot)$ is flexible enough to span either $E[y_i(0) \mid w_i]$ (e.g. parallel trends) or $p_k = E[x_{ik} \mid w_i]$ for all k (i.e. design)
- They show each regression coefficient β_k can be decomposed:

$$eta_k = E[\lambda_{kk}(w_i) au_k(w_i)] + \sum_{\ell \neq k} E[\lambda_{k\ell}(w_i) au_\ell(w_i)]$$

for
$$\tau_k(w_i) = E[y_i(k) - y_i(0) \mid w_i]$$
, $\lambda_{kk} = \frac{E[\tilde{x}_{ik} x_{ik} \mid w_i]}{E[\tilde{x}_{ik}^2]}$, $\lambda_{k\ell} = \frac{E[\tilde{x}_{ik} x_{i\ell} \mid w_i]}{E[\tilde{x}_{ik}^2]}$; \tilde{x}_{ik} is the residual from regressing x_{ik} on $g(w_i)$ and all other $x_{i,-k}$

• $E[\lambda_{kk}(w_i)] = 1$, $E[\lambda_{k\ell}(w_i)] = 0$. Further $\lambda_{kk}(w_i) \ge 0$ if $g(\cdot)$ spans p_k

Unpacking The Result

$$\beta_k = \underbrace{E[\lambda_{kk}(w_i)\tau_k(w_i)]}_{\text{Own treatment effect}} + \sum_{\ell \neq k} \underbrace{E[\lambda_{k\ell}(w_i)\tau_\ell(w_i)]}_{\text{Contamination bias}}$$

•
$$E[\lambda_{kk}(w_i)] = 1$$
, $E[\lambda_{k\ell}(w_i)] = 0$. If $[(*) \ g(\cdot) \ \text{spans} \ p_k]$, $\lambda_{kk}(w_i) \ge 0$

$$\beta_k = \underbrace{E[\lambda_{kk}(w_i)\tau_k(w_i)]}_{\text{Own treatment effect}} + \sum_{\ell \neq k} \underbrace{E[\lambda_{k\ell}(w_i)\tau_\ell(w_i)]}_{\text{Contamination bias}}$$

- $E[\lambda_{kk}(w_i)] = 1$, $E[\lambda_{k\ell}(w_i)] = 0$. If $[(*) g(\cdot) \text{ spans } p_k]$, $\lambda_{kk}(w_i) \ge 0$
 - (*) corresponds to a "design-based" regression: No negative own-treatment weights (generalizing Angrist '98 further)

$$\beta_k = \underbrace{E[\lambda_{kk}(w_i)\tau_k(w_i)]}_{\text{Own treatment effect}} + \sum_{\ell \neq k} \underbrace{E[\lambda_{k\ell}(w_i)\tau_\ell(w_i)]}_{\text{Contamination bias}}$$

- $E[\lambda_{kk}(w_i)] = 1$, $E[\lambda_{k\ell}(w_i)] = 0$. If $[(*) g(\cdot) \text{ spans } p_k]$, $\lambda_{kk}(w_i) \ge 0$
 - (*) corresponds to a "design-based" regression: No negative own-treatment weights (generalizing Angrist '98 further)
 - ullet Unless $\lambda_{k\ell}=0$ identically, there's potential for contamination bias

$$\beta_k = \underbrace{E[\lambda_{kk}(w_i)\tau_k(w_i)]}_{\text{Own treatment effect}} + \sum_{\ell \neq k} \underbrace{E[\lambda_{k\ell}(w_i)\tau_\ell(w_i)]}_{\text{Contamination bias}}$$

- $E[\lambda_{kk}(w_i)] = 1$, $E[\lambda_{k\ell}(w_i)] = 0$. If $[(*) g(\cdot) \text{ spans } p_k]$, $\lambda_{kk}(w_i) \ge 0$
 - (*) corresponds to a "design-based" regression: No negative own-treatment weights (generalizing Angrist '98 further)
 - ullet Unless $\lambda_{k\ell}=0$ identically, there's potential for contamination bias
- Intuition: FWL partials both $g(w_i)$ and $x_{i,-k}$ out of x_{ik} to estimate β_k
 - The trick to Angrist '98 was that this auxilliary regression identified a CEF (the p-score). But here $E[x_{ik} \mid w_i, x_{i,-k}]$ is inherently nonlinear

$$\beta_k = \underbrace{E[\lambda_{kk}(w_i)\tau_k(w_i)]}_{\text{Own treatment effect}} + \sum_{\ell \neq k} \underbrace{E[\lambda_{k\ell}(w_i)\tau_\ell(w_i)]}_{\text{Contamination bias}}$$

- $E[\lambda_{kk}(w_i)] = 1$, $E[\lambda_{k\ell}(w_i)] = 0$. If $[(*) g(\cdot) \text{ spans } p_k]$, $\lambda_{kk}(w_i) \ge 0$
 - (*) corresponds to a "design-based" regression: No negative own-treatment weights (generalizing Angrist '98 further)
 - ullet Unless $\lambda_{k\ell}=0$ identically, there's potential for contamination bias
- Intuition: FWL partials both $g(w_i)$ and $x_{i,-k}$ out of x_{ik} to estimate β_k
 - The trick to Angrist '98 was that this auxilliary regression identified a CEF (the p-score). But here $E[x_{ik} \mid w_i, x_{i,-k}]$ is inherently nonlinear
 - FWL residual \tilde{x}_{ik} is thus not mean-zero given $(w_i, x_{i,-k})$, so it "picks up" effects of other treatments x_{ik} given w_i

Is This a Problem?

- In principle, contamination bias applies to a large number of settings:
 - RCTs with multiple treatments and randomization strata
 - Selection-on-obs with multiple treatments (e.g. "value-added" models)
 - 3 TWFE with multiple treatments (e.g. "mover" regressions)
 - IV with multiple instruments (e.g. "examiner/judge" IVs)
 - Descriptive regressions on multiple variables (e.g. disparity analyses)

Is This a Problem?

- In principle, contamination bias applies to a large number of settings:
 - RCTs with multiple treatments and randomization strata
 - Selection-on-obs with multiple treatments (e.g. "value-added" models)
 - **1** TWFE with multiple treatments (e.g. "mover" regressions)
 - IV with multiple instruments (e.g. "examiner/judge" IVs)
 - Oescriptive regressions on multiple variables (e.g. disparity analyses)
- But again, the severity of the issue is an empirical matter
 - Since the CB weights average to zero, if they're uncorrelated with effect heterogeneity there's no issue
 - The weights are identified; we can estimate them to diagnose bias

Solutions

• Contamination bias comes from the FWL auxilliary regression not controlling "flexibly enough" for $(w_i, x_{i,-k})$... but we can fix that:

$$y_i = \sum_k x_{ik} \beta_k + g(w_i) + \sum_k x_{ik} (q_k(w_i) - E[q_k(w_i)]) + u_i$$

The blue term captures non-linearities in (w_i, x_i)

Solutions

• Contamination bias comes from the FWL auxilliary regression not controlling "flexibly enough" for $(w_i, x_{i,-k})$... but we can fix that:

$$y_i = \sum_k x_{ik} \beta_k + g(w_i) + \sum_k x_{ik} (q_k(w_i) - E[q_k(w_i)]) + u_i$$

The blue term captures non-linearities in (w_i, x_i)

- When $x_i \mid w_i$ is as-good-as-randomly assigned, β_k identifies the ATE of treatment k (Imbens and Wooldridge, 2009)
- See our multe Stata package for automating this + other CB checks

Solutions

• Contamination bias comes from the FWL auxilliary regression not controlling "flexibly enough" for $(w_i, x_{i,-k})$... but we can fix that:

$$y_i = \sum_k x_{ik} \beta_k + g(w_i) + \sum_k x_{ik} (q_k(w_i) - E[q_k(w_i)]) + u_i$$

The blue term captures non-linearities in (w_i, x_i)

- When $x_i \mid w_i$ is as-good-as-randomly assigned, β_k identifies the ATE of treatment k (Imbens and Wooldridge, 2009)
- ullet See our *multe* Stata package for automating this + other CB checks
- This works in principle, but in practice can fail / be really noisy
 - Key challenge: limited overlap $(p_k(w_i))$ may be close to zero or one)
 - If CB is limited, an uninteracted regression is likely more efficient...

We could of course instead just focus on one treatment at a time:

$$y_i = x_{ik}\beta_k + g(w_i) + u_i,$$

just using observations where either $x_{ik} = 1$ or $x_{i0} = 1$

• We know β_k has no negative weights, and is likely precise because of the $Var(x_{ik} \mid w_i)$ weighting regression uses

We could of course instead just focus on one treatment at a time:

$$y_i = x_{ik}\beta_k + g(w_i) + u_i,$$

just using observations where either $x_{ik} = 1$ or $x_{i0} = 1$

- We know β_k has no negative weights, and is likely precise because of the $Var(x_{ik} \mid w_i)$ weighting regression uses
- But the weights are k specific, so β_k is hard to compare across k

We could of course instead just focus on one treatment at a time:

$$y_i = x_{ik}\beta_k + g(w_i) + u_i,$$

just using observations where either $x_{ik} = 1$ or $x_{i0} = 1$

- We know β_k has no negative weights, and is likely precise because of the $Var(x_{ik} \mid w_i)$ weighting regression uses
- But the weights are k specific, so β_k is hard to compare across k
- Goldsmith-Pinkham et al. (2024) derive an alternative estimator, which uses common variance weights across treatments
 - Formally, we show this weighting scheme attains a semiparametric efficiency bound while still avoiding containination bias

We could of course instead just focus on one treatment at a time:

$$y_i = x_{ik}\beta_k + g(w_i) + u_i,$$

just using observations where either $x_{ik} = 1$ or $x_{i0} = 1$

- We know β_k has no negative weights, and is likely precise because of the $Var(x_{ik} \mid w_i)$ weighting regression uses
- But the weights are k specific, so β_k is hard to compare across k
- Goldsmith-Pinkham et al. (2024) derive an alternative estimator, which uses common variance weights across treatments
 - Formally, we show this weighting scheme attains a semiparametric efficiency bound while still avoiding containination bias
- As before, whether any of these alternatives give a different answer than OLS is an empirical matter...

Example: Project STAR

- Krueger (1999) studies the STAR RCT, which randomized students in public elementary to one of three classroom types:
 - Regular-sized (20-25 students) Control
 - Small (13-17 students) Treatment 1
 - Regular-sized with a teaching aide Treatment 2

Example: Project STAR

- Krueger (1999) studies the STAR RCT, which randomized students in public elementary to one of three classroom types:
 - Regular-sized (20-25 students) Control
 - Small (13-17 students) Treatment 1
 - Regular-sized with a teaching aide Treatment 2
- Kids were randomized within schools, so the propensity of assignment to each treatment varied by school
 - Krueger thus estimates: $TestScore_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \gamma_{school(i)} + \varepsilon_i$

Example: Project STAR

- Krueger (1999) studies the STAR RCT, which randomized students in public elementary to one of three classroom types:
 - Regular-sized (20-25 students) Control
 - 2 Small (13-17 students) Treatment 1
 - Regular-sized with a teaching aide Treatment 2
- Kids were randomized within schools, so the propensity of assignment to each treatment varied by school
 - Krueger thus estimates: $TestScore_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \gamma_{school(i)} + \varepsilon_i$
- We find significant potential for contamination bias: lots of treatment effect heterogeneity and variation in contamination weights
 - But actual contamination bias is minimal: $Corr(effects, weights) \approx 0$

Project STAR, Revisited

	A. Contamination Bias Estimates				
	Regression	egression Own	Bias	Worst-Case Bias	
	Coefficient	Effect	Dias	Negative	Positive
	(1)	(2)	(3)	(4)	(5)
Small Class Size	5.357	5.202	0.155	-1.654	1.670
	(0.778)	(0.778)	(0.160)	(0.185)	(0.187)
Teaching Aide	0.177	0.360	-0.183	-1.529	1.530
	(0.720)	(0.714)	(0.149)	(0.176)	(0.177)
	B. Treatment Effect Estimates				
		Unweighted Efficiently-Weighted			
		(ATE)	One-at-a-time	Common	
		(1)	(2)	(3)	
Small Class Size		5.561	5.295	5.563	
		(0.763)	(0.775)	(0.764)	
		[0.744]	[0.743]	[0.742]	
Teaching Aide		0.070	0.263	-0.003	
		(0.708)	(0.715)	(0.712)	
		[0.694]	[0.691]	[0.695]	

STAR Regression Weights vs. Treatment Effects

Does Contamination Bias Ever Matter?

- On the "advice" of a referee, we added eight empirical applications:
 - Five stratified RCTs, like STAR
 - Three observational apps (analyses of multiple racial disparities)

Does Contamination Bias Ever Matter?

- On the "advice" of a referee, we added eight empirical applications:
 - Five stratified RCTs, like STAR
 - Three observational apps (analyses of multiple racial disparities)
- Key finding: virtually no contamination bias in the experiments, but significant bias in 2/3rds of the observational regressions
 - Intuitively, experimental strata are unlikely to strongly predict TE heterogeneity (variation driven by experimenter constraints, etc.)

Does Contamination Bias Ever Matter?

- On the "advice" of a referee, we added eight empirical applications:
 - Five stratified RCTs, like STAR
 - Three observational apps (analyses of multiple racial disparities)
- Key finding: virtually no contamination bias in the experiments, but significant bias in 2/3rds of the observational regressions
 - Intuitively, experimental strata are unlikely to strongly predict TE heterogeneity (variation driven by experimenter constraints, etc.)
- Practical takeaway: bias diagnostics can be useful, especially in observational analyses (use our *multe* package!)

Outline

1. Heterogeneous Treatment Effects ✓

2. Clustered Standard Errors

Journey to the Red Arrow...

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \left(\frac{\mathbf{x}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{y} = \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \left(\frac{\mathbf{x}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

• Under rather mild conditions (a LLN), $\frac{\mathbf{x}'\mathbf{x}}{N} \xrightarrow{p} E\left[\frac{1}{N}\sum_{i}x_{i}x_{i}'\right]$

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \left(\frac{\mathbf{x}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

- Under rather mild conditions (a LLN), $\frac{\mathbf{x}'\mathbf{x}}{N} \stackrel{P}{\to} E\left[\frac{1}{N}\sum_{i}x_{i}x_{i}'\right]$
- W/slightly stronger conditions (a CLT), $\frac{\mathbf{x}'\mathbf{\varepsilon}}{\sqrt{N}} \Rightarrow \mathrm{N}(0, Var(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i))$

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \left(\frac{\mathbf{x}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

- Under rather mild conditions (a LLN), $\frac{\mathbf{x}'\mathbf{x}}{N} \xrightarrow{p} E\left[\frac{1}{N}\sum_{i}x_{i}x_{i}'\right]$
- W/slightly stronger conditions (a CLT), $\frac{\mathbf{x}'\mathbf{\mathcal{E}}}{\sqrt{N}} \Rightarrow \mathrm{N}(0, Var(\frac{1}{\sqrt{N}}\sum_i x_i \mathbf{\mathcal{E}}_i))$
- ullet This gives our general asymptotic approximation for OLS: $\hat{eta}pproxeta^*$ for

$$eta^* \sim N(eta, V/N), \quad V = E\left[\frac{1}{N}\sum_i x_i x_i'\right]^{-1} Var\left(\frac{1}{\sqrt{N}}\sum_i x_i arepsilon_i
ight) E\left[\frac{1}{N}\sum_i x_i x_i'\right]^{-1}$$

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \left(\frac{\mathbf{x}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

- Under rather mild conditions (a LLN), $\frac{\mathbf{x}'\mathbf{x}}{N} \stackrel{p}{\to} E\left[\frac{1}{N}\sum_{i}x_{i}x_{i}'\right]$
- W/slightly stronger conditions (a CLT), $\frac{\mathbf{x}'\mathbf{\varepsilon}}{\sqrt{N}} \Rightarrow \mathrm{N}(0, Var(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i))$
- ullet This gives our general asymptotic approximation for OLS: $\hat{eta}pproxeta^*$ for

$$\beta^* \sim \mathrm{N}(\beta, V/N), \ \ V = E\left[\frac{1}{N}\sum_i x_i x_i'\right]^{-1} \mathit{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) E\left[\frac{1}{N}\sum_i x_i x_i'\right]^{-1}$$

• SEs come from $\hat{V} = \left(\frac{1}{N}\sum_i x_i x_i'\right)^{-1} \widehat{Var} \left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) \left(\frac{1}{N}\sum_i x_i x_i'\right)^{-1}$

• Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right)$?

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}x_{i}\varepsilon_{i}\right)$?
- In *iid* data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) =$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}x_{i}\varepsilon_{i}\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i x_i \mathcal{E}_i\right) = \frac{1}{N}\sum_i Var(x_i \mathcal{E}_i) = \frac{1}{N}\sum_i Var(x_i \mathcal{E}_i)$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(x_i \varepsilon_i) = E[x_i x_i' \varepsilon_i^2]$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(x_i \varepsilon_i) = E[x_i x_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \mathcal{E}_i^2\right) = \frac{1}{N}\sum_i x_i x_i' \hat{\mathcal{E}}_i^2$ for $\hat{\mathcal{E}}_i = y_i x\hat{\beta}$, which leads to our usual heteroskedasticity-robust estimator

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \mathcal{E}_i\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(x_i \varepsilon_i) = E[x_i x_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \mathcal{E}_i^2\right) = \frac{1}{N}\sum_i x_i x_i' \hat{\mathcal{E}}_i^2$ for $\hat{\mathcal{E}}_i = y_i x\hat{\beta}$, which leads to our usual heteroskedasticity-robust estimator
- The motivation for alternative estimators comes from the possibility that $x_i \varepsilon_i$ and $x_j \varepsilon_j$ may be correlated for $i \neq j$
 - Generally, $Var\left(\frac{1}{\sqrt{N}}\sum_{i}x_{i}\varepsilon_{i}\right)=\frac{1}{N}\sum_{i}Var(x_{i}\varepsilon_{i})+2\sum_{i,j\neq i}Cov(x_{i}\varepsilon_{i},x_{j}\varepsilon_{j})$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \mathcal{E}_i\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(x_i \varepsilon_i) = E[x_i x_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i^2\right) = \frac{1}{N}\sum_i x_i x_i' \hat{\varepsilon}_i^2$ for $\hat{\varepsilon}_i = y_i x\hat{\beta}$, which leads to our usual heteroskedasticity-robust estimator
- The motivation for alternative estimators comes from the possibility that $x_i \varepsilon_i$ and $x_j \varepsilon_i$ may be correlated for $i \neq j$
 - Generally, $Var\left(\frac{1}{\sqrt{N}}\sum_{i}x_{i}\varepsilon_{i}\right)=\frac{1}{N}\sum_{i}Var(x_{i}\varepsilon_{i})+2\sum_{i,j\neq i}Cov(x_{i}\varepsilon_{i},x_{j}\varepsilon_{j})$
 - But we can't allow for arbitrary cross-sectional correlations, since then we couldn't guarantee $\frac{1}{\sqrt{N}}\sum_i x_i \mathcal{E}_i$ converges ...

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \mathcal{E}_i\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(x_i \varepsilon_i) = E[x_i x_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i^2\right) = \frac{1}{N}\sum_i x_i x_i' \hat{\varepsilon}_i^2$ for $\hat{\varepsilon}_i = y_i x\hat{\beta}$, which leads to our usual heteroskedasticity-robust estimator
- The motivation for alternative estimators comes from the possibility that $x_i \varepsilon_i$ and $x_j \varepsilon_j$ may be correlated for $i \neq j$
 - Generally, $Var\left(\frac{1}{\sqrt{N}}\sum_{i}x_{i}\varepsilon_{i}\right)=\frac{1}{N}\sum_{i}Var(x_{i}\varepsilon_{i})+2\sum_{i,j\neq i}Cov(x_{i}\varepsilon_{i},x_{j}\varepsilon_{j})$
 - But we can't allow for arbitrary cross-sectional correlations, since then we couldn't guarantee $\frac{1}{\sqrt{N}}\sum_i x_i \varepsilon_i$ converges ...
 - We need to zero out some covariances to make progress

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{x}'\boldsymbol{\varepsilon}}{\sqrt{CT}}\right)$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{x}'\mathbf{\varepsilon}}{\sqrt{CT}}\right)$
- Define $q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} x_i \varepsilon_i$ and note that $\frac{\mathbf{x}' \varepsilon}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c q_c$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{x}'\mathbf{\varepsilon}}{\sqrt{CT}}\right)$
- Define $q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} x_i \varepsilon_i$ and note that $\frac{\mathbf{x}' \varepsilon}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c q_c$
 - If the q_c clusters are *iid*, a CLT applies: $\frac{1}{\sqrt{C}}\sum_c q_c \Rightarrow \mathrm{N}(0, Var(q_c))$
 - E.g. in a balanced panel, could have *iid* series $(x_{c1}\varepsilon_{c1}...,x_{cT}\varepsilon_{cT})$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N=CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta}-\beta)=\left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1}\cdot\left(\frac{\mathbf{x}'\mathbf{\epsilon}}{\sqrt{CT}}\right)$
- Define $q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} x_i \varepsilon_i$ and note that $\frac{\mathbf{x}' \varepsilon}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c q_c$
 - If the q_c clusters are *iid*, a CLT applies: $\frac{1}{\sqrt{C}}\sum_c q_c \Rightarrow \mathrm{N}(0, Var(q_c))$
 - E.g. in a balanced panel, could have *iid* series $(x_{c1}\varepsilon_{c1}...,x_{cT}\varepsilon_{cT})$
- ullet This gives us a new "clustered" variance estimate to plug into \hat{V} :

$$\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}x_{i}\varepsilon_{i}\right) = \frac{1}{C}\sum_{c}\hat{q}_{c}^{2}, \text{ for } \hat{q} = \frac{1}{\sqrt{T}}\sum_{i:c(i)=c}x_{i}\hat{\varepsilon}_{i}$$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{x}'\mathbf{x}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{x}'\boldsymbol{\varepsilon}}{\sqrt{CT}}\right)$
- Define $q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} x_i \varepsilon_i$ and note that $\frac{\mathbf{x}' \varepsilon}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c q_c$
 - If the q_c clusters are *iid*, a CLT applies: $\frac{1}{\sqrt{C}}\sum_c q_c \Rightarrow \mathrm{N}(0, Var(q_c))$
 - E.g. in a balanced panel, could have *iid* series $(x_{c1}\varepsilon_{c1}...,x_{cT}\varepsilon_{cT})$
- ullet This gives us a new "clustered" variance estimate to plug into \hat{V} :

$$\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}x_{i}\varepsilon_{i}\right) = \frac{1}{C}\sum_{c}\hat{q}_{c}^{2}, \text{ for } \hat{q} = \frac{1}{\sqrt{T}}\sum_{i:c(i)=c}x_{i}\hat{\varepsilon}_{i}$$

This is what's going on under the hood when you ", cluster(c)"!

Easy, Right?

Types of Headaches

Source: Khoa Vu

• At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(x_i\varepsilon_i, x_i\varepsilon_i) \neq 0$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(x_i\varepsilon_i, x_j\varepsilon_j) \neq 0$
- With design, however, this may not be too hard to figure out:
 - Suppose $(x_1,...,x_N) \mid (\varepsilon_1,...,\varepsilon_N)$ is mean-zero with $x_i \perp x_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(x_i\varepsilon_i, x_j\varepsilon_j) \neq 0$
- With design, however, this may not be too hard to figure out:
 - Suppose $(x_1,...,x_N) \mid (\varepsilon_1,...,\varepsilon_N)$ is mean-zero with $x_i \perp x_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(x_i\varepsilon_i, x_j\varepsilon_j) = E[x_ix_j'\varepsilon_i\varepsilon_j] =$$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(x_i\varepsilon_i, x_j\varepsilon_j) \neq 0$
- With design, however, this may not be too hard to figure out:
 - Suppose $(x_1,...,x_N) \mid (\varepsilon_1,...,\varepsilon_N)$ is mean-zero with $x_i \perp x_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(x_i\varepsilon_i, x_j\varepsilon_j) = E[x_ix_j'\varepsilon_i\varepsilon_j] = E[E[x_ix_j' \mid \varepsilon_i, \varepsilon_j]\varepsilon_i\varepsilon_j] =$$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(x_i\varepsilon_i, x_j\varepsilon_j) \neq 0$
- With design, however, this may not be too hard to figure out:
 - Suppose $(x_1,...,x_N) \mid (\varepsilon_1,...,\varepsilon_N)$ is mean-zero with $x_i \perp x_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(x_i\varepsilon_i,x_j\varepsilon_j)=E[x_ix_j'\varepsilon_i\varepsilon_j]=E[E[x_ix_j'\mid\varepsilon_i,\varepsilon_j]\varepsilon_i\varepsilon_j]=0$$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(x_i\varepsilon_i, x_j\varepsilon_j) \neq 0$
- With design, however, this may not be too hard to figure out:
 - Suppose $(x_1,...,x_N) \mid (\varepsilon_1,...,\varepsilon_N)$ is mean-zero with $x_i \perp x_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(x_i\varepsilon_i, x_j\varepsilon_j) = E[x_ix_j'\varepsilon_i\varepsilon_j] = E[E[x_ix_j' \mid \varepsilon_i, \varepsilon_j]\varepsilon_i\varepsilon_j] = 0$$

• So we only need to cluster by c(i): the design tells us what to do!

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(x_i\varepsilon_i, x_j\varepsilon_j) \neq 0$
- With design, however, this may not be too hard to figure out:
 - Suppose $(x_1,...,x_N) \mid (\varepsilon_1,...,\varepsilon_N)$ is mean-zero with $x_i \perp x_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(x_i\varepsilon_i, x_j\varepsilon_j) = E[x_ix_j'\varepsilon_i\varepsilon_j] = E[E[x_ix_j' \mid \varepsilon_i, \varepsilon_j]\varepsilon_i\varepsilon_j] = 0$$

- So we only need to cluster by c(i): the design tells us what to do!
- This leads to the popular (and sometimes misused) heuristic: cluster at the level of treatment / identifying variation
 - See Abadie et al. (2023) for a more complete version of this argument

Where Intuition Can Fall Short: Paired Randomization

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?

Where Intuition Can Fall Short: Paired Randomization

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?
- de Chaisemartin and Ramirez-Cuellar (2022) show the answer is no: non-clustered SEs will generally be downward-biased (maybe badly)
 - Under constant effects, $E[\hat{V}] = V/2$; severe over-rejection!

Where Intuition Can Fall Short: Paired Randomization

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?
- de Chaisemartin and Ramirez-Cuellar (2022) show the answer is no: non-clustered SEs will generally be downward-biased (maybe badly)
 - Under constant effects, $E[\hat{V}] = V/2$; severe over-rejection!
- Paired randomization makes x_i and x_j negatively correlated in pairs
 - Clustering by pair solves this; treatment assignment is iid across pairs