端侧轻量级人脸检测模型对比研究与性能评估

董霁兴 杨成鑫

山东师范大学信息科学与工程学院

2024年12月17日

- ① 实验背景 人脸检测任务介绍 技术发展历程 端侧人脸检测
- ② 轻量化卷积网络 SqueezeNet MobileNet ShuffleNet
- 3 轻量级人脸检测模型 RetinaFace BlazeFace YOLO5Face
- 4 模型对比试验 实验设计 数据集 实验结果

实验内容概述

- 1 理论研究与综述
 - 人脸检测技术的基本原理与研究现状
 - 经典轻量化卷积神经网络的介绍
 - 本次实验使用的轻量人脸检测模型介绍
- ② 实验与评估
 - 统一导出 ONNX 格式并使用 ONNX Runtime 推理
 - 在 WIDER FACE 和自建数据集上进行测试
 - 评估检测精度、计算效率和存储开销
 - 针对不同场景给模型选择建议
- 3 实验分工
 - 杨成鑫:负责本次实验所用模型的调研及综述,参与实验方案设计与优化,进行实验结果定量分析
 - 董霁兴: 负责实验设计, 数据集整理, 代码实现与性能评估

- 1 实验背景 人脸检测任务介绍 技术发展历程 端侧人脸检测
- 2 轻量化券积网络
- 4 模型对比试验

人脸检测任务介绍

- 人脸检测是人脸智能分析应用的核心 基础组件
- 应用领域广泛:
 - 智能安防: 监控画面中的人脸识别
 - 社交娱乐: 特效和互动功能
 - 人脸识别、属性分析的预处理步骤
- 人脸检测与人脸识别的区别:
 - 人脸检测:确定图像中是否存在人 脸及其位置
 - 人脸识别:识别和验证人脸的身份 (如机场安检、手机解锁)
 - 人脸检测是所有基于人脸特征的分析算法的前提

技术发展历程

基干手工特征的传统方法

- 基于知识的方法
- 特征不变方法
- 模板匹配方法
- 基干外观的方法
- Viola-Jones 算法 (2001)
 - Haar 特征
 - Adaboost 算法

基于深度学习的方法

- 多阶段检测架构
 - Cascade CNN. MTCNN
- 两阶段检测架构
 - Face R-CNN. ScaleFace
- 单阶段检测架构
 - SSD. RetinaNet

端侧设备特点

- 资源受限
 - 计算能力有限
 - 存储容量受限
 - 功耗要求严格

应用场景

- 手机端
 - 自拍美颜
 - 视频通话人脸跟踪
- 嵌入式设备
 - 智能安防摄像头
 - 智能门禁系统

- 1)实验背景
- 2 轻量化卷积网络 SqueezeNet MobileNet ShuffleNet

轻量化卷积网络概述

- 负责提取图像特征
- 直接影响模型效率和准确性
- 主流轻量化卷积网络:
 - SqueezeNet (2016.02)
 - MobileNets (2017.04)
 - ShuffleNet (2017.07)
 - 其他: Xception、EfficientNet、GhostNet 等
- 特别说明: 本次介绍仅涉及各网络的初始版本

SqueezeNet 架构

主要特点

- 2016年2月由伯克利和斯坦福研究人员提出,是较早提出 的一个轻量化神经网络
- 在保持和 AlexNet 相同准确率的情况下,将模型参数减少到 原来的 50 倍
- 压缩后仅 0.47MB

三个设计策略

- 1 用 1×1 卷积替代 3×3 卷积
- ② 减少 3×3 卷积的输入通道数
- 3 延迟下采样,保持较大特征图尺寸

Fire Module

- 核心组成部分:
 - squeeze 层: 使用 1×1 卷积压缩特征图通道数
 - expand 层: 使用 1×1 和 3×3 卷积提升通道数并拼接结果

图 1: Fire Module 结构

CNN architecture	Compression Approach	Data	Original →	Reduction in	Top-1	Top-5
		Type	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al.,	32 bit	$240MB \rightarrow 48MB$	5x	56.0%	79.4%
	2014)					
AlexNet	Network Pruning (Han	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
	et al., 2015b)					
AlexNet	Deep	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%
	Compression (Han					
	et al., 2015a)					
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x https:	57.5%	80.3%

图 2: SqueezeNet 与 AlexNet 在 ImageNet 上的对比

- 在 ImageNet 数据集上的 TOP-1 和 TOP-5 的准确率都与 AlexNet 相似
- SqueezeNet 模型参数量仅为 AlexNet 的 1/50, 压缩后模型 文件仅 0.47MB

MobileNet 架构

- 2017 年 4 月由 Google 团队提出
- 基于流线型架构,提出深度可分离卷积构建轻量级深层神经网络,在减少模型参数两的同时保持良好的特征提取能力。
- 深度可分离卷积的两个步骤:
 - 深度卷积 (Depthwise Conv): 每个通道独立卷积,实现空间信息的提取
 - 逐点卷积 (Pointwise Conv): 1×1 卷积融合通道信息, 确保 每个输出特征图包含所有输入特征图的信息

(a) 标准卷积

(b) 深度卷积

(c) 逐点卷积

深度可分离卷积参数量分析

$$P_{std} = K \times K \times C \times N = K^{2} \times C \times N$$

$$P_{ds} = (K \times K \times N) + (1 \times 1 \times C \times N) = (K^{2} + C) \times N$$

压缩比

$$\frac{P_{ds}}{P_{std}} = \frac{(K^2 + C) \times N}{K^2 \times C \times N} = \frac{1}{C} + \frac{1}{K^2}$$

当 K=3 时, 压缩比约为 9 倍

MobileNet 性能对比

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
1.0 MobileNet-224	70.6%	569	4.2	
GoogleNet	69.8%	1550	6.8	
VGG 16	71.5%	15300	138	
	ŀ	ttps://blog.csdn.ne	t/weixin_48249563	

图 4: MobileNet 与其他模型在 ImageNet 上的性能对比

- 精度略高于 GoogLeNet, 但计算量仅为其 1/3
- 相比 VGG-16 精度降低 0.9%, 但参数量和计算量大幅降低

ShuffleNet

- 2017 年 7 月由 Face++ 团队(旷世科技)提出
- MobileNet 中 1×1 卷积耗费了 94.8% 的计算时间
- 提出逐点分组卷积 (Pointwise Group Convolution) 减少计算时间
- 通过通道重排 (Channel Shuffle) 解决分组卷积信息交互问题
- 在相同参数量规模下, ShuffleNet 在 ImageNet 数据集上的 TOP-1 准确率高于 MobileNet

Model	Complexity (MFLOPs)	Cls err. (%)	Δ err. (%)
1.0 MobileNet-224	569	29.4	-
ShuffleNet $2 \times (g = 3)$	524	26.3	3.1
ShuffleNet $2 \times$ (with $SE[13]$, $g = 3$)	527	24.7	4.7
0.75 MobileNet-224	325	31.6	-
ShuffleNet $1.5 \times (g = 3)$	292	28.5	3.1
0.5 MobileNet-224	149	36.3	-
ShuffleNet $1 \times (g = 8)$	140	32.4	3.9
0.25 MobileNet-224	41	49.4	-
ShuffleNet $0.5 \times (g = 4)$	38	41.6	7.8
ShuffleNet $0.5 \times$ (shallow, $g = 3$)	40	42.8	6.6

图 5: ShuffleNet 与其他模型在 ImageNet 上的性能对比

- 1) 实验背景
- 2 轻量化卷积网络
- 3 轻量级人脸检测模型 RetinaFace BlazeFace YOLO5Face
- 4 模型对比试验

轻量级人脸检测模型

轻量级人脸检测模型概述

- 本研究选择三个代表性模型:
 - RetinaFace (2019)
 - BlazeFace (2019)
 - YOLO5Face (2021)
- 选择标准:
 - 模型轻量化,实时性能好
 - 在如今端侧轻量化模型实践中应用广泛
 - 在 WiderFace 数据集取得较高排名
- 其他模型: YuNet、FaceBoxes、MogFace 等也有广泛应用, 但未在本次实验中进行对比

RetinaFace

主要特点

• 2019 年由 Insight Face 团队提出, 曾长期保持 SOTA 水平

轻量级 人脸检测模型

- 采用多任务学习框架, 结合监督学习和自监督学习
- 支持不同 backbone 选择, 可平衡精度和速度
- 支持人脸检测、关键点定位和密集人脸对应关系预测

实验选用版本

- RetinaFace-MobileNet0.25
- RetinaFace-MobileNetV2
- 可直接对原始图片进行推理. 无需预处理缩放

BlazeFace 特点

- Google 专为移动 GPU 优化设计
- Google ML Kit 和 MediaPipe 默认人脸检测模型
- 在 iPhone XS 上推理时间仅需 0.6ms
- 基于 MobileNetV1/V2 定制特征提取网络
- 提出适合 GPU 运算的新型 anchor 方案
- 改进 NMS 策略. 提高视频检测稳定性

BlazeFace 实验选用版本

- BlazeFace-128 为前置摄像头设计,接收 128×128 的输入
- BlazeFace-320 和 BlazeFace-640 分别接受 320×320 和 640×640 的输入
- 采用 padding 方式等比例缩放
- 比 MobileNetV2-SSD 快近 4 倍
- 支持人脸关键点预测和旋转角度估计

YOLO5Face

主要特点

- 将人脸检测视为通用目标检测任务
- 基于 YOLOv5 增加关键点回归功能并改进网络结构
- 在 WiderFace 数据集上性能优异,超过许多专门的人脸检测模型

实验选用版本

- YOLO5Face 基于 ShuffleNetv2 设计轻量级模型,优化网络 架构大幅缩小模型体积
- 本次实验使用 YOLOv5n 和 YOLOv5n-0.5 两个版本
- 输入尺寸: 640×640, 采用 padding 方式等比例缩放
- 非常适合在嵌入式设备和移动设备上部署

目录

- 1) 实验背景
- 2 轻量化卷积网络
- 3 轻量级人脸检测模型
- 4 模型对比试验 实验设计 数据集 实验结果

实验环境

图 6: 模型转换流程

- 统一导出为 ONNX 格式
- 使用 ONNX Runtime 作为推理引擎
- 硬件: i5-10400 CPU (0.5TFLOPS)

实验背景

- 检测精度:使用标准评估代码计算各模型在 WIDER FACE 数据集上的精度,同时在自建数据集 light face 上计算 mAP
- 计算效率: 在 ONNX Runtime 上测试推理时延
- 模型大小: 对比导出为 ONNX 格式后各模型的大小

实验数据集

WIDER FACE 验证集

- 人脸检测领域标准基准数据集
- 具有广泛代表性和权威性
- 提供了标准的评估代码

自建单人人脸数据集 light_face

- 使用笔记本和手机前置摄像头采集单人人脸视频,涵盖不同 姿态和光照条件
- 从视频中每秒抽取两帧,构建约 1000 张图像的数据集
- 数据集特点贴近端侧实际应用场景
- 采用腾讯云人脸检测 API 进行标注

模型性能对比

Model	Size(MB)	FPS	Easy	Medium	Hard	light_face
retinaface_mv1	1.66	8.68	0.91	0.88	0.73	<u>0.991</u>
retinaface_mv2	11.93	4.15	0.94	<u>0.92</u>	0.82	0.991
yolov5n_0.5_face	5.65	22.23	0.91	0.88	0.75	0.987
yolov5n_face	10.51	12.90	0.94	0.92	0.81	0.987
blazeface_128	0.44	<u>70.79</u>	0.18	0.10	0.04	0.667
blazeface_320	0.68	46.46	0.60	0.46	0.20	0.932
blazeface_640	0.68	16.26	0.80	0.64	0.35	0.984

表 1: 各模型性能指标对比

- RetinaFace 和 YOLO5Face 系列精度高但模型较大
- BlazeFace 系列速度快且轻量,但精度有所牺牲
- yolov5n_0.5_face 在模型大小、计算效率和精度上表现均衡

模型性能数据分析 - 模型大小与速度

图 7: 模型大小与推理速度对比

实验背景

模型性能数据分析 - 检测精度

图 8: 不同难度级别下的检测精度对比

图 9: 单人人脸场景下的检测精度对比

应用场景建议

高精度场景

- 推荐: YOLOv5n_face 或 RetinaFace_mv2
- 特点: 各难度级别 AP 值均高 (>0.81)
- 代价: 模型较大 (10-12MB), 速度较慢 (4-13FPS)
- 适用: 安防监控, 门禁考勤等

移动端前置摄像头

- 推荐: BlazeFace_320
- 特点:体积小 (0.68MB),速度快 (46FPS),单人人脸识别场景 AP 达 0.93
- 代价: 非单人场景下精度较低 (0.6-0.8)
- 适用: 移动端实时检测场景, 相机应用、视频会议、AR 试妆等

应用场景建议

轻量级场景

- 推荐: BlazeFace_128
- 特点: 最小体积 (0.44MB),最快速度 (70+FPS),在 light_face 数据集 上精度尚可 (0.67)
- 代价: 精度较低 (0.18-0.6)
- 适用: 资源受限的 IoT 设备, 例如智能门锁、手表、玩具等

平衡场景

- 推荐: YOLOv5n_0.5_face
- 特点: 中等体积 (5MB), 较快速度 (25FPS), 各难度级别 AP 值均衡 (0.7-0.8)
- 代价: 在各方面都不是最优
- 适用: 需要在资源和性能间取得平衡的场景, 如移动端后置摄像头应用

感谢各位的聆听

实验背景