

planetmath.org

Math for the people, by the people.

proof of the uniformization theorem

Canonical name ProofOfTheUniformizationTheorem

 $\begin{array}{lll} \text{Date of creation} & 2013\text{-}03\text{-}22 \ 15\text{:}37\text{:}50 \\ \text{Last modified on} & 2013\text{-}03\text{-}22 \ 15\text{:}37\text{:}50 \end{array}$

Owner Simone (5904) Last modified by Simone (5904)

Numerical id 14

Author Simone (5904)

Entry type Proof
Classification msc 30F20
Classification msc 30F10

Our proof relies on the well-known Newlander-Niremberg theorem which implies, in particular, that any Riemmanian metric on an oriented 2-dimensional real manifold defines a unique analytic structure.

We will merely use the fact that $H^1(X,\mathbb{R}) = 0$. If X is compact, then X is a complex curve of genus 0, so $X \simeq \mathbb{P}^1$. On the other hand, the elementary Riemann mapping theorem says that an open set $\Omega \subset \mathbb{C}$ with $H^1(\Omega,\mathbb{R}) = 0$ is either equal to \mathbb{C} or biholomorphic to the unit disk. Thus, all we have to show is that a non compact Riemann surface X with $H^1(X,\mathbb{R}) = 0$ can be embedded in the complex plane \mathbb{C} .

Let Ω_{ν} be an exhausting sequence of relatively compact connected open sets with smooth boundary in X. We may assume that $X \setminus \Omega_{\nu}$ has no relatively compact connected components, otherwise we "fill the holes" of Ω_{ν} by taking the union with all such components. We let Y_{ν} be the double of the manifold with boundary $(\overline{\Omega}_{\nu}, \partial \Omega_{\nu})$, i.e. the union of two copies of $\overline{\Omega}_{\nu}$ with opposite orientations and the boundaries identified. Then Y_{ν} is a compact oriented surface without boundary.

Fact: we have $H^1(Y_{\nu}, \mathbb{R}) = 0$. We postpone the proof of this fact to the end of the present paragraph and we continue with the proof of the uniformization theorem.

Extend the almost complex structure of $\overline{\Omega}_{\nu}$ in an arbitrary way to Y_{ν} , e.g. by an extension of a Riemmanian metric. Then Y_{ν} becomes a compact Riemann surface of genus 0, thus $Y_{\nu} \simeq \mathbb{P}^1$ and we obtain in particular a holomorphic embedding $\Phi_{\nu} \colon \Omega_{\nu} \to \mathbb{C}$. Fix a point $a \in \Omega_0$ and a non zero linear form $\xi^* \in T_a X$. We can take the composition of Φ_{ν} with an affine linear map $\mathbb{C} \to \mathbb{C}$ so that $\Phi_{\nu}(a) = 0$ and $d\Phi_{\nu}(a) = \xi^*$. By the well-known properties of injective holomorphic maps, (Φ_{ν}) is then uniformly bounded on every small disk centered at a, thus also on every compact subset of X by a connectedness argument. Hence (Φ_{ν}) has a subsequence converging towards an injective holomorphic map $\Phi \colon X \to \mathbb{C}$.

Proof of the "fact": Let us first compute the cohomology with compact support $H_c^1(\Omega_{\nu}, \mathbb{R})$. Let u be a closed 1-form with compact support in Ω_{ν} . By Poincaré duality $H_c^1(X, \mathbb{R}) = 0$, so u = df for some "test" function $f \in \mathcal{D}(X)$. As df = 0 on a neighborhood of $X \setminus \Omega_{\nu}$ and as all connected components of this set are non compact, f must be equal to the constant zero near $X \setminus \Omega_{\nu}$. Hence u = df is the zero class in $H_c^1(\Omega_{\nu}, \mathbb{R})$ and we get $H_c^1(\Omega_{\nu}, \mathbb{R}) = H^1(\Omega_{\nu}, \mathbb{R}) = 0$. The exact sequence of the pair $(\overline{\Omega}_{\nu}, \partial \Omega_n u)$

yelds

$$\mathbb{R} = H^0(\overline{\Omega}_{\nu}, \mathbb{R}) \to H^0(\partial \Omega_{\nu}, \mathbb{R}) \to H^1(\overline{\Omega}_{\nu}, \partial \Omega_{\nu}; \mathbb{R}) \simeq H^1_c(\Omega_{\nu}, \mathbb{R}) = 0,$$

thus $H^0(\partial\Omega_{\nu},\mathbb{R})=\mathbb{R}$. Finally, the Mayer-Vietoris sequence applied to small neighborhoods of the two copies of $\overline{\Omega}_{\nu}$ in Y_{ν} gives an exact sequence

$$H^0(\overline{\Omega}_{\nu}, \mathbb{R})^{\oplus 2} \to H^0(\partial \Omega_{\nu}, \mathbb{R}) \to H^1(Y_{\nu}, \mathbb{R}) \to H^1(\overline{\Omega}_{\nu}, \mathbb{R})^{\oplus 2} = 0$$

where the first map is onto. Hence $H^1(Y_{\nu}, \mathbb{R}) = 0$.

References

J.-P. Demailly, Complex Analytic and Algebraic Geometry.