Relatório - Modelagem Matemática

Estudo de População de Aves na Amazônia

Usando o Modelo de Reação-Difusçao para avaliar sobrevida de populações em manchas de floresta em áreas desmatadas.

Paulo Roberto Rodrigues da Silva Filho Pedro Paulo Dantas Silva Martins Vicente Alves da Silva Sirufo

2024-07-20

Contents

1	Introdução	1
2	Modelagem	2
	2.1 Caso 1: Uma única população	2
	2.2 Caso 2: Duas populações	5
3	Simulações	5
	3.1 Análise de uma população	6
	3.2 Análise de duas populações em competição	6

1 Introdução

Em função do processo de desmatamento da Amazônia, percebeu-se que, dentro das regiões desmatadas, formam-se manchas florestadas isoladas. Tais manchas podem ou não ser adequadas para a sustentação de populações animais. O modelo utilizado para se avaliar a capacidade de tais manchas sustentarem populações é o Modelo de Reação/Difusão, regido pela Equação Diferencial Parcial (EDP) FKPP (Modelo Fischer-Kolmogorov-Petrovsky-Piskunov). Foi avaliada a capacidade de sustentação de população de uma única espécie e, também, de duas espécies em competição.

Para entender o problema, vamos, primeiro, apresentar um diagrama, representando a floresta e áreas desmatadas, conforme pode ser visto na Figura 1. Conforme essa figura, temos uma grande área de floresta e uma área desmatada que possui manchas de floresta. A área desmatada pode suportar uma população mínima dos animais em estudo, ou suportar uma população temporária de forma que permita a migração dessas populações entre a área de floresta virgem e as manchas na área desmatada.

Uma vez dada essa representação de ambiente, padrão, podemos utilizar o Modelo de Reação-Difusão, assumindo que, entrando uma determinada população em uma mancha de floresta - ou estando essa população lá isolada, antes do processo de desmatamento - há condições de a população se reproduzir dentro dessa área, estando sujeita a restrições do meio, cooperação e competição intra-específica.

Já no caso de duas populações concorrendo na mesma região, devemos também assumir que a região desmatada tenha capacidade de suportar uma quantidade muito baixa dessas populações, de forma que a hipótese da difusão faça sentido. Fazemos, então, uma análise de ambas as populações em conjunto, em competição.

Tanto no caso da população isolada, quanto na de duas populações, a geometria das manchas (tamanho) e características intrínsecas delas permitem definir uma capacidade de carregamento das populações, que afetam as dinâmicas populacionais. A identificação de um tamanho mínimo de mancha e o isolamento dessa mancha em relação à área florestada, ou a outras manchas também são características a relevantes para o estudo do problema.

Figura 1: Representação de área florestada e de manchas de floresta. A área florestada pode ser imaginada como uma mancha de floresta de tamanho infinito, ou, apenas, uma área de tamanho grande o suficiente para ser considerada infinita.

2 Modelagem

Agora vamos apresentar os dois modelos avaliados, o modelo de uma população e o modelo de duas populações. Para ambos os casos são usados variantes da EDP FKPP, apresentadas tais variantes caso a caso.

2.1 Caso 1: Uma única população

Para o caso de uma população, o modelo considerado foi FKPP com um termo difusivo (termo de segunda ordem) e os termos reativos, com cooperação (termo linear) e com competição (termo quadrático), sobre uma população u:

$$\frac{\partial u(x,t)}{\partial t} = \alpha u - \beta u^2 + D \frac{\partial^2 u}{\partial x^2}$$

Com as condições de contorno de Dirichlet:

$$u(x=0,l) = 0$$

Sendo:

- \bullet $\mathbf{u}(\mathbf{x},t)$: a população presente na posição espacial e no tempo, na mancha de floresta ou em uma área florestada.
- D: taxa de difusividade da população unidade: comprimento²/tempo.
- $\bullet\,$ a: Taxa de cresimento populacional da espécie unidade: 1/tempo
- b: Se 1/C é a capacidade de carregamento de uma população para uma mancha ou região de floresta, então $C = \frac{b}{a}$, de forma que b indica as condições que atrapalhem o crescimento populacional, como geometria da região de mancha, competição por comida, entre outras.

• l: Comprimento (não adimensionalizado) da mancha ou região florestada

Para facilitar a análise, as seguintes transformações são feitas, para se adimensionalizar a equação e, então, avaliar as suas propriedades:

$$x = x'\sqrt{\frac{D}{a}}$$

$$\partial_x = \partial_{x'}\sqrt{\frac{a}{D}}$$

$$l = L\sqrt{\frac{D}{a}}$$

$$t = t'\frac{1}{a}$$

$$\partial_t = \partial_{t'}a$$

Depois, retornando o nome da variável de distância de \mathbf{x} ' para \mathbf{x} e de tempo de \mathbf{t} ' para \mathbf{t} , temos a nova equação:

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u(x,t) - Cu^2(x,t)$$
$$C(x) = \begin{cases} C_1, & \text{se } |x| < L/2\\ C_0, & \text{se } |x| > L/2 \end{cases}$$

Onde C_1 e C_0 são a capacidade de carregamento da região interna e externa, respectivamente, de forma que espera-se que a região interna assuma um regime estacionário enquanto a população externa vá assintoticamente para $1/C_0$

Fazemos a seguinte transformação para auxiliar na resolução da EDP:

$$u = \frac{3}{2} \frac{\phi}{C_1},$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2} + \phi - \frac{3}{2} k * (x) \phi^2$$

$$k(x) = \begin{cases} k = \frac{C_0}{C_1}, & \text{se } |x| > L/2\\ 1, & \text{se } |x| < L/2 \end{cases}$$

É importante ressaltar que \mathbf{k} pode ser interpretado como um indicador do nível de "isolamento" da região interna, como o quão difícil é sair da região ideal ou o quanto a região interna é mais atrativa do que a externa.

Como ϕ é uma função contínua e simétrica, e $\frac{2}{3}k$ é uma solução para a parte externa, temos as seguintes condições:

$$\begin{split} \phi_{xx} + \phi - \frac{3}{2}k\phi^2 &= 0, \quad x < L/2, \\ \phi_{xx} + \phi - \frac{3}{2}k\phi^2 &= 0, \quad 0 > x > -L/2, \\ \phi^o\left(-\frac{L}{2},\cdot\right) &= \phi^i\left(-\frac{L}{2},\cdot\right), \\ \phi^o_x\left(-\frac{L}{2},\cdot\right) &= \phi^i_x\left(-\frac{L}{2},\cdot\right), \\ \phi^o(-\infty,\cdot) &= \frac{2}{3k}. \end{split}$$

Onde os índices i/o representam as regiões interna/externa respectivamente.

Resolvendo as equações para vários \mathbf{k} e \mathbf{L} temos os resultados apresentados nas figuras 2 e 3.

Figura 2: Valor máximo de ϕ X L (vários k).

Figura 3: Valor máximo de ϕ X log k (vários L).

A partir da análise do comportamento de \mathbf{k} e de \mathbf{L} , podemos concluir que para valores menores de \mathbf{k} , pode ser que não exista um tamanho necessário para a sobrevivência da espécie, enquanto alterações no valor de \mathbf{k} , quando \mathbf{k} pequeno, impactam mais do que se a mesma alteração fosse feita para valores maiores de \mathbf{k} . Além disso, para qualquer valor de \mathbf{k} , se \mathbf{L} for maior ou igual a π , a população vai sobreviver. Porém, se \mathbf{L} for menor, a tendência é a população se extinguir na região. Ou seja $\mathbf{L_c}$ (tamanho crítico) é sempre menor ou igual a π . Por fim, quanto maior for a taxa de crescimento, menor o tamanho necessário à mancha florestada para a sobrevivência da espécie. O oposto ocorre para o índice de difusividade.

2.2 Caso 2: Duas populações

O modelo para duas espécies em competição usa duas EDP FKPP integradas uma à outra, através das seguintes equações:

$$\frac{\partial u_1(x,t)}{\partial t} = u_1 \left[\alpha_1 - \beta_1 u_1 - \gamma_{12} u_2 \right] + D_1 \frac{\partial^2 u_1}{\partial x^2}$$

$$\frac{\partial u_2(x,t)}{\partial t} = u_2 \left[\alpha_2 - \beta_2 u_2 - \gamma_{21} u_1 \right] + D_2 \frac{\partial^2 u_2}{\partial x^2}$$

Onde as váriáveis $\mathbf{u_1}$ e $\mathbf{u_2}$ representam as populações e os valores de α_1 e α_2 representam cooperação internas dessas espécies, β_1 e β_2 representam competição interna e γ_{12} e γ_{21} representam a competição entre as espécies.

Com as seguintes conclusões esperadas:

- 1. Se L for muito pequeno, ambas populações desaparecem.
- 2. Se L for grande o suficiente, $\gamma_1 < 1$ e $\gamma_2 < 1$, populações coexistem.
- 3. Se L for grande o suficiente, $\gamma_1 < 1$ e $\gamma_2 > 1$, eliminação da espécie 2.
- 4. Se L for grande o suficiente, $\gamma_1 > 1$ e $\gamma_2 > 1$, eliminação da espécie 1.
- 5. Se L for grande o suficiente, $\gamma_1>1$ e $\gamma_2<1$, dependendo da condição inicial, ou 1 ou 2 são eliminados.

Mas, em espaço limitado, podemos fazer um ajuste das equações e analisar a área, assumindo:

- 1. $D_1 = 1$
- 2. $D_2 = \kappa$
- 3. $\alpha_1 = \beta_1 = 1$
- 4. $\gamma_{12} = \gamma_1$
- 5. $\alpha_2 = \beta_2 = \alpha$
- 6. $\gamma_{21} = \alpha \gamma_2$

O que implica em:

$$\frac{\partial u_1(x,t)}{\partial t} = u_1 \left[1 - u_1 - \gamma_1 u_2 \right] + \frac{\partial^2 u_1}{\partial x^2}$$
$$\frac{\partial u_2(x,t)}{\partial t} = u_2 \left[\alpha - \alpha u_2 - \alpha \gamma_2 u_1 \right] + \kappa \frac{\partial^2 u_2}{\partial x^2}$$

A análise do comportamento dessas populações e do ${\bf L}$ é apresentada posteriormente, na apresentação dos resultados de simulação.

3 Simulações

Nessa seção serão apresentadas as simulações numéricas da EDP FKPP, para os problemas analisados, variando-se uma série de parâmetros, prinicipalmente no tocante ao tamanho da área das manchas de floresta.

3.1 Análise de uma população

Foi assumida a EDP de reação e difusão, com o espaço unidimensional, para uma única espécie:

$$\frac{\partial u(x,t)}{\partial t} = \alpha u - \beta u^2 + D \frac{\partial^2 u}{\partial x^2}$$

Usando o método de diferenças finitas para resolver essa EDP em um espaço limitado com condições de contorno de Dirichlet.

$$u(x=0,L) = 0$$

Discretizando a EDP via diferenças finitas temos:

$$\frac{\partial^2 u(x,t)}{\partial x^2} \approx \frac{u(x-dx,t) - 2u(x,t) + u(x+dx,t)}{dx^2}$$

Todos os resultados são apresentados nas figuras (...), (...), abaixo. Os parâmetros e o código fonte para se chegar nesses resultados estão no arquivo ipynb (Python Notebook), $Reação-Difusão\ Modelagem$ - $uma\ população.ipynb$, em anexo.

Figura 4: ...

Figura 5: ...

3.2 Análise de duas populações em competição

Figura 6: ...

Figura 7: \dots

Figura 8: ...

Figura 9: ...

Figura 10: ...

Tamanho do espaço x Máximo da População, α=1, β=5, D=10
0.175
0.150
0.125
0.0125
0.075
0.050
0.025
0.000
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tamanho do espaço
(b) label 2

Figura 11: ...

Figura 12: ...

Figura 13: ...

Figura 14: \dots

Figura 15: ...

Figura 16: ...

Figura 17: ...

Figura 18: ...

Figura 19: ...

Figura 20: ...

Figura 21: ...

Figura 22: ...

Figura 23: ...

Figura 24: ...