Київський національний університет ім.Т.Г.Шевченка 03680, Київ, проспект Академіка Глушкова, 4 тел/факс 044 526 4567

ЗВІТ ПО ЛАБОРАТОРНІЙ РОБОТІ №4 З курсу «Основи електроніки»

МОДЕЛЮВАННЯ ПІДСИЛЮВАЧІВ НА ТРАНЗИСТОРАХ

Виконала

студентка 5Б гр.

Ямбулатова А.А.

Київ

Зміст

1 Вст	уп	3
1.1		
1.2	Метод вимірювання	3
2 П	Герелік скорочень, умовних познак, одиниць і термінів	4
3 П	рактична частина	5
3.1	Підготовка	5
3.2	Емітерний повторювач	5
3.3	Парафазний підсилювач	7
3.4	Підсилювач зі спільним емітером	9
3.	.4.1 Без конденсатора	10
3.	.4.2 З підключеним конденсатором	12
3.5	Диференційний підсилювач	13
3.6	Диференційний синфазний підсилювач	15
4 Вис	сновки	17
5 B	икористана література	18

,

1 Вступ

1.1 Мета роботи

Виміряти коефіцієнти передачі за напругою підсилювальних каскадів різних типів для гармонічних і імпульсних вхідних сигналів, а також зсуви фаз між вихідними і вхідними сигналами.

1.2 Метод вимірювання

— це метод *співставлення*: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

2 Перелік скорочень, умовних познак, одиниць і термінів

Підсилювач електричних сигналів — радіоелектронний пристрій, що перетворює вхідний електричний сигнал, який являє собою залежність від часу напруги Uвх (t) або струму Івх (t), у пропорційний йому вихідний сигнал Uвих (t) або Івих (t), потужність якого перевищує потужність вхідного сигналу.

Підсилювальний каскад — підсилювач, який містить мінімальне число підсилювальних елементів (1—2 транзистори) і може входити до складу багатокаскадного підсилювача.

Коефіцієнт передачі за напругою Ки — відношення амплітуди вихідного напруги підсилювача до амплітуди вхідної.

3 Практична частина

3.1Підготовка

Поставлена задача полягає у спостереження вхідного та вихідного сигналів підсилювачів на транзисторах. Роботу будемо виконувати за допомогою пакету Work Bench 5.12

У вищезгаданій програмі змоделювали та запустили робочі схеми відповідно для декілкох видів підсилювачів.

3.2Емітерний повторювач

Рис.1 Схема емітерного підсилювача

		×1 -		
Frequency	2	4	kHz	٥
Duty cycle	50	+	%	
Amplitude	700	-	mV	1
Offset	0	1		

Рис.2 Покази генератора

Рис.3 Сигнали на вузлах 2, 4

x1	413.4000u	x1	413.4000u
y1	2.4829	y1	-620.0706m
x2	1.1009m	x2	1.1009m
у2	3.7531	у2	668.1434m
dx	687.5000u	dx	687.5000u
dy	1.2701	dy	1.2882
1/dx	1.4545K	1/dx	1.4545K
1/dy	787.3087m	1/dy	776.2685m
min x	0.0000	min x	0.0000
max x	1.5000m	max x	1.5000m
min y	2.3664	min y	-697.1764m
max y	3.7531	max y	697.1764m

Рис.4 Покази на вертикальних прямих

3.3Парафазний підсилювач

Рис. 5 Схема парафазного підсилювача

\sim	~~	7
Frequency	2	kHz
Duty cycle	50	%
Amplitude	600	mV ;
Offset	0	3
_	Common	+

Рис.6 Покази генератора

Рис.7 Сигнали на вузлах 5, 4

₹	·		
x1	475.9000u	x1	513.4000u
y1	4.2099		10.8611
x2	1.1040m	x2	1.1040m
у2	4.9552	у2	10.7420
dx	628.1250u	dx	590.6250u
dy	745.2555m	dy	-119.0784m
-1/dx	1.5920K	1/dx	1.6931K
1/dy	1.3418	1/dy	-8.3978
min x	0.0000	min x	0.0000
max x	1.5000m	max x	1.5000m
min y	3.7875	min y	10.7370
max y	4.9749	max y	11.0385

Рис. 8 Покази на вертикальних прямих

3.4Підсилювач зі спільним емітером

В цьому підсилювачі можмо зняти покази як з осцилографа, так і з вузлів напряму. Також вікриваючи ключ [1], можемо підключати додатковий конденсатор.

Рис.9 Покази генератора

Рис. 10 Схема підсилювача зі спільним емітером

3.4.1 Без конденсатора

Рис.11 Сигнали на вузлах 2, 6 осцилограф

Рис.12 Сигнали на вузлах 2, 6

3.4.2 3 підключеним конденсатором

Зауважимо, що не змінювали масштаб на осцилографі.

Рис.13 Сигнали на вузлах 2, 6 осцилограф

3.5 Диференційний підсилювач

Рис. 14 Схема диференційного підсилювача

Рис.15 Покази на генераторі

Рис.16 Сигнали на вузлах осцилограф

Рис.17 Сигнали на вузлах 1,7,10

3.6 Диференційний синфазний підсилювач

Рис. 18 Схема диференційного синфазного підсилювача

Рис.19 Покази на генераторі

Рис. 20 Сигнали на вузлах осцилограф

Рис.21 Сигнали на вузлах осцилограф

4 Висновки

Виконали цю лабораторну роботу присвячену вивченню підсилювачів на транзисторах. Навчились будувати відповідні схеми, використовувати інструменти для досліду напруги у вузлах, моделювати сигнали двохканального осцилографа.

5 Використана література

- 1. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання":
- Методичне видання. K.: 2006.- c.
- 2. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.