Ток смещения

Одной из важнейших новых идей, выдвинутых Максвеллом, была мысль о симметрии во взаимозависимости электрического и магнитного полей $\stackrel{\text{$\otimes$}}{\otimes}$. А именно, поскольку меняющееся во времени магнитное поле $(\frac{\partial \overrightarrow{B}}{\partial t})$ создает электрическое поле, то следует ожидать, что и меняющееся во времени электрическое поле $(\frac{\partial \overrightarrow{E}}{\partial t})$ создает магнитное поле $\stackrel{\text{$\otimes$}}{\otimes}$.

К этой идее можно прийти разными рассуждениями, но мы рассмотрим противоречие \mathbb{X} , возникающее в теореме о циркуляции магнитного поля, если токи, текущие в проводящей среде или по проводу, изменяются со временем I=I(t).

Рисунок 1 — Ток в цепи с конденсатором

Что тут будет происходить - понятно: конденсатор будет разряжаться, разность потенциалов уменьшается, следовательно, будет уменьшаться и ток. Т.е. по цепи течет переменный ток I(t). Применим теорему о циркуляции к такому случаю:

$$\oint_{\Gamma} \overrightarrow{H} \cdot d\overrightarrow{l} = I \tag{1}$$

В качестве контура Г возьмем кривую, охватывающую наш провод:

Рисунок 2 — Контур Γ - кривая, охватывающая наш провод

Циркуляция вектора \overrightarrow{H} величина вполне определенная, зависит только от формы и расположения контура. Между делом ток I таким свойством не обладает \odot . Для определения I надо мысленно натянуть на контур Γ какую-то поверхность S_{Γ} и найти пронизывающий ее ток.

Рисунок 3 — Поверхность S_{Γ} такая, что либо ток 0, либо I

Но ведь все поверхности должны иметь равные права, иначе теорема перестает быть теоремой и становится каким-то частным случаем.

Проверим дифференциальную (локальную) форму теоремы о циркуляции: $rot\overrightarrow{H}=\overrightarrow{j}$. Сосчитаем дивергенцию правой и левой частей: $div(rot\overrightarrow{H})=div(\overrightarrow{j})$. Мы знаем, что $div(rot\overrightarrow{H})=\nabla\cdot[\nabla,\overrightarrow{H}]=0$. Значит, и $div(\overrightarrow{j})=0$. Это выражение справедливое только в случае постоянных (стационарных) токов, но для переменных токов $\overrightarrow{j}=\overrightarrow{j}(t)$ должно выполняться уравнение непрерывности:

$$\left(\begin{array}{c}
div\overrightarrow{j} = -\frac{\partial p}{\partial t}
\end{array}\right)$$
(2)

Т.е. $div \overrightarrow{j}$ равна скорости изменения плотности заряда в данной точке и может быть отлична от нуля. Значит, и эта форма теоремы о циркуляции становится непригодной... В Короче, Максвелл сказал дополнить ток проводимости в правой части теоремы **ТОКОМ СМЕЩЕНИЯ**, значит, так и сделаем:

$$\oint_{\Gamma} \overrightarrow{H} \cdot d\overrightarrow{l} = I + I_{\text{cm}}$$
(3)

$$rot\overrightarrow{H} = \overrightarrow{j} + \overrightarrow{j_{\mathrm{cM}}}$$

Ну и теперь проделываем с дифференциальной формой тот же трюк, что мы пытались сделать до того, как нам помог Максвелл №, только уже с током смещения:

$$\begin{aligned} div(rot\overrightarrow{H}) &= div(\overrightarrow{j} + \overrightarrow{j_{\text{cM}}}) \\ 0 &= div(\overrightarrow{j} + \overrightarrow{j_{\text{cM}}}) = div\overrightarrow{j} + div\overrightarrow{j_{\text{cM}}} \\ div\overrightarrow{j_{\text{cM}}} &= -div\overrightarrow{j} \\ div\overrightarrow{j_{\text{cM}}} &= -(-\frac{\partial p}{\partial t}) \\ div\overrightarrow{j_{\text{cM}}} &= \frac{\partial p}{\partial t} \end{aligned}$$

Опять использовали *уравнение непрерывности* для электрических токов. Согласно дифференциальной форме теоремы Гаусса для диэлектриков объемная плотность зарядов в некоторой точке пространства равна дивергенции вектора \overrightarrow{D} в этой же точке пространства: $div\overrightarrow{D}=p$ (po) , а значит:

$$div\overrightarrow{j_{\text{cM}}} = \frac{\partial}{\partial t}(div\overrightarrow{D})$$

Дивергенцией $\ \ \ \$ называется операция скалярного умножения оператора набла на произвольный вектор : $div \overrightarrow{D} = \nabla \cdot \overrightarrow{D}$, а оператор набла, в свою очередь, это векторный дифференциальный оператор, компоненты которого являются частными производными по координатам, например, в декартовой системе координат:

$$div \overrightarrow{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

Воспользовавшись тем, что дифференцирование по пространству и дифференцирование по времени, с точки зрения математики, независимые операции, так что преспокойно меняем их порядок:

$$div\overrightarrow{j_{\text{cM}}} = div(\frac{\partial \overrightarrow{D}}{\partial t})$$

ИЛИ:

$$\overrightarrow{j_{\text{cM}}} = \frac{\partial \overrightarrow{D}}{\partial t}$$
 (4)

Максвелл назвал эту величину плотностью тока смещения 😯

Подставляя полученное выражение в $rot \overrightarrow{H}$, получаем:

$$rot\overrightarrow{H} = (\overrightarrow{j} + \frac{\partial \overrightarrow{D}}{\partial t})$$
(5)

Это дифференциальная форма теоремы о циркуляции 😵

Вспомним, что $\overrightarrow{D}=\varepsilon_0\overrightarrow{E}+\overrightarrow{P}$, тогда, учитывая то, что $\overrightarrow{P}=0$ в вакууме, то **ТОК СМЕЩЕНИЯ**:

$$\overrightarrow{j_{\text{cM}}} = \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$$
(6)

Рисунок 4 — Ток смещения противонаправлен напряженности

Сумму же тока проводимости и тока смещения называют полным током. Его плотность:

$$\overrightarrow{j}_{\text{полн}} = \overrightarrow{j} + \frac{\partial \overrightarrow{D}}{\partial t}$$
 $div(\frac{\partial \overrightarrow{D}}{\partial t}) = div\overrightarrow{j}_{\text{полн}} = 0$

Из этого следует, что линии полного тока замкнутые $\stackrel{\text{so}}{=}$, в отличие от токов проводимости ($\overrightarrow{j}=-\frac{\partial p}{\partial t}$). Токи проводимости, если они не замкнуты, замыкаются $\stackrel{\text{!?}}{=}$ токами смещения.

$$\overrightarrow{D}, \overrightarrow{E} \searrow \Rightarrow \frac{\partial \overrightarrow{D}}{\partial t} < 0 \Rightarrow \overrightarrow{j_{\rm cm}} > 0 \Rightarrow \overrightarrow{j_{\rm cm}} \uparrow \downarrow \overrightarrow{D}, \overrightarrow{E}$$

Перепишем в новом «исправленном» виде интегральную форму теоремы о циркуляции. Согласно Максвеллу, для этого необходимо в её правой части вместо тока проводимости I записать полный ток $I_{\text{полн}} = I + I_{\text{см}}$:

$$\oint_{\Gamma} \vec{H} \cdot d\vec{l} = I_{\text{полн}}; \quad \text{где} \quad I_{\text{полн}} = \oint_{S_{\Gamma}} \vec{J}_{\text{полн}} \cdot d\vec{S}$$

$$\oint_{\Gamma} \vec{H} \cdot d\vec{l} = \oint_{S_{\Gamma}} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{S}$$

- *теорема о циркуляции* вектора \vec{H} . В таком виде теорема справедлива для всех случаев (и постоянных и переменных токов), свидетельством чему является согласие этого уравнения с результатами опытов во всех без исключения случаях.

Некоторые замечания:

- ток смещения эквивалентен току проводимости только в отношении способности создавать магнитное поле.
- ток смещения существует лишь там, где меняется со временем электрическое поле. В диэлектриках ток смещения состоит из двух принципиально различных составляющих: т.к. в диэлектрике вектор $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$, то

$$\vec{J}_{\text{CM}} = \frac{\partial \vec{D}}{\partial t} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \frac{\partial \vec{P}}{\partial t}.$$

 $\varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ — «истинный» ток смещения и ток поляризации $\frac{\partial \vec{F}}{\partial t}$ — определяемый движением связанных зарядов в диэлектрике в процессе поляризации. С точки зрения, что ток — упорядоченное движение заряженных частиц, нет ничего неожиданного в том, что движение связанных зарядов, как и движение обычных носителей тока возбуждает магнитное поле. Принципиально новое состоит в том, что что слагаемое $\varepsilon_0 \frac{\partial \vec{E}}{\partial t}$, не связанное с перемещением никаких зарядов, также возбуждает магнитное поле. Получается, что всякое изменение электрического поля во времени возбуждает в окружающем пространстве магнитное поле.

Открытие этого явления — наиболее существенный и решающий шаг, сделанный Максвеллом при построении теории электромагнитного поля. Это открытие также революционно, как и открытие электромагнитной индукции, согласно которому переменное магнитное поле возбуждает в пространстве вихревое электрическое поле.