Augmented Annotations

Final Presentation

Augmented Annotations (AA) is a 3D data capture utility on iOS. Users scan their environment while simultaneously annotating objects with labeled bounding boxes.

Introduction

Motivation

- 3D data annotation is a slow, tedious process
- Efficient solutions require infrastructure
 - Mechanical Turk
 - Undergrads
- Huge, unspoken time sink in research
- Expensive to make custom datasets

Dataset	Bounding Boxes		
SUN RGB-D	64,595		
KITTI	80,256		

Key insight

- Realtime SLAM accuracy >= human accuracy
- Scanning has been commodified
 - Cheaper, portable sensors
 - Augmented reality (AR)

AR application mock-up

Intel Realsense D435

Our solution

- Consolidate scanning and annotation processes
- Platform: iOS device (iPad)
- Scan with Occipital's Structure Sensor
- Add/edit bounding boxes as AR objects

Structure sensor mounted on an iPad

Related Works

Traditional methods

- Digital annotation software + outsourced labor
 - Mechanical Turk, oDesk
- Downsides
 - Infrastructure requirement
 - User training requirement
 - Quality-assurance difficult

Screenshots from SUN RGB-D's annotation tool

Augmented reality

- Main workflow: placing localized objects in the world
- Heavy reliance on real-time SLAM
 - Scans are immediately discarded

Popular mobile AR libraries

Example of localized object placement

Augmented reality meets computer vision

Real scene augmented with synthetic cars (Ours)

Popular mobile AR libraries

Methods

Architecture

Scanning

Occipital Structure Sensor

Developed by Occipital Inc. in collaboration with Prime Sense

Parameter or specifications	Value or description		
Length×Width×Height	119.2 mm × 27.9 mm × 29.0 mm		
Min/Max sensing distance	40/350 cm		
Resolution for depth data	VGA (640×480) QVGA (320×240)		
Frame rate	30/60 fps		
Power source	USB charged battery with 3–4 h of active sensing		
Data transfer	Wi-Fi/USB		
Field of view	58° Horizontal and 45° Vertical stand- ard lens		
System on a chip (SOC)	Prime Sense chip (Heindl 2014)		

Annotation: 3D bounding boxes

- Gizmos: touch-and-drag control modules
- Based off of industry 3D manipulation tools

Rotate tool

Unity, Maya, etc.

Position tool

Scale tool

Functionality	
Add	
Remove	
Position	
Rotate	
Scale	
Label	

Annotation: user interface

Annotation: example usage

Annotation: 2D bounding boxes

- Can project 3D \rightarrow 2D bounding box for any perspective
 - Pro: High convenience / speed of producing data
 - ▶ **Con**: 2D bounding boxes larger than necessary

2D bounding boxes at different perspectives

Annotation: 2D bounding boxes

■ Different perspectives → different 2D bounds

Results

Comparison with SUN RGB-D

- Conducted trials comparing SUN RGB-D's method to our app
- Recorded time to completion
- Task: create and label bounding boxes over 4 objects

Unity editor, used for desktop trials

Physical setup for scanning

User feedback

Pros

- Intuitive task and control scheme
- Easy to view boxes from different perspectives

Cons

- Require lots of physical movement
- Gizmo controls occasionally unwieldy/unstable

Example output from our app

Comparison with SUN RGB-D

Trial	1	2	3	Average
SUN RGB-D S	0:46	0:46	0:46	
SUN RGB-D A	4:20	4:04	4:57	5:13
AAS+A	2:58	3:23	4:05	3:28

S: Scanning

A: Annotation

33.5% reduction in time!

Annotation: 2D bounding boxes

Dramatically faster for 2D bounding boxes!

Conclusion

Summary

- Developed an application to combine the scanning and annotation processes of 3D data collection
- Conducted user studies on the effectiveness of our method
- Shown to be faster than desktop-based annotation systems

Future work

- Intelligent bounding box placement
 - Applying corrections faster than starting from scratch
- Smoothing out user experience
- Applying same strategy to other annotation types
 - Semantic segmentation