Images as Functions Foundations of Computer Vision

Jason Corso

University of Michigan

September 8, 2017

Reflectance at the point x on the surface: $R(\mathbf{x}) = \rho \ell(\mathbf{x})^\mathsf{T} \mathbf{n}(\mathbf{x})$

- This energy is projected onto the image plane by some camera function $P: \mathcal{I}(\mathbf{u}) = P(R(\mathbf{x})),$
- The details of this camera function are not important now.

Potts Model Examples

Bilinear Interpolation

Bilinear Interpolation

$$\mathbf{I}(p_{AB}) = \mathbf{I}(s, t_1) \approx \frac{s_2 - s}{s_2 - s_1} \mathbf{I}(p_A) + \frac{s - s_1}{s_2 - s_1} \mathbf{I}(p_B)$$

$$\mathbf{I}(p_{CD}) = \mathbf{I}(s, t_2) \approx \frac{s_2 - s}{s_2 - s_1} \mathbf{I}(p_C) + \frac{s - s_1}{s_2 - s_1} \mathbf{I}(p_D)$$

$$\mathbf{I}(s, t) \approx \frac{t_2 - t}{t_2 - t_1} \mathbf{I}(p_{AB}) + \frac{t - t_1}{t_2 - t_1} \mathbf{I}(p_{CD})$$

Spatial Range Operation Example: Sum a Window

5	8	10	10	12
4	6	8	10	20
4	4	5	5	7
7	8	10	11	11
10	10	8	8	7

Spatial Range Operation Example: Sum a Window

5	8	10	10	12
4	6	8	10	20
4	4	5	5	7
7	8	10	11	11
10	10	8	8	7

Spatial Range Operation Example: Sum a Window

5	8	10	10	12	
4	6	8	10	20	23
4	4	5	5	7	
7	8	10	11	11	
10	10	8	8	7	

Haar Operator-based Features for Face Detection

Proposed by Viola and Jones CVPR 2001.

Superpixel Example – Arbitrarily-shaped Windows

Superpixel Map

A Human Segmentation

Reconstruction of Human Segmentation with Superpixels

Oversegmentation as a preprocessing step was codified by X. Ren and J. Malik. Learning a classification model for segmentation. JCCV 2003.

Generic Range Map Operator Pseudo-Code

- 1: **procedure** Generic Range Map Operator
- 2: **for** each pixel $\mathbf{s} \in \Lambda_{\mathbf{J}}$ **do**
- $_{
 m 3:}$ let $W_{
 m s}$ be the window into Λ at centered at m s
- $\mathbf{J}(\mathbf{s}) = f(\mathbf{I}, W_{\mathbf{s}}))$
- 5: end for
- 6: end procedure

Single Pixel Range Map: Negative Image

Input Image

Negative Image

Range Map of Binary Functions: Thresholding

Example

$$f_b(\mathbf{I}[W]; 128, 230) = \begin{cases} 1 & 128 \le \mathbf{I}[W] \le 230 \\ 0 & \text{otherwise} \end{cases}$$

Windowed Spatial Range Map: Smoothing an Image

Input Image

Smoothed Image 15×15

Discrete Image Derivative Example

Approximating an Image Laplacian

Approximating an Image Laplacian

 $\mathbf{G}_2 - \mathbf{G}_1$

 $abla^2 \mathbf{I}$ Not exactly: $abla^2 oldsymbol{\kappa}_1 \mathbf{I}$