WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2019/2020

MATEMATYKA

Informacje dla ucznia

- **1.** Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony przez komisje.
- 2. Sprawdź, czy arkusz konkursowy zawiera 12 stron (zadania 1-17).
- 3. Czytaj uważnie wszystkie teksty i zadania.
- **4.** Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. W zadaniach zamkniętych podane są cztery odpowiedzi: A, B, C, D. Wybierz tylko jedną odpowiedź i zaznacz ją znakiem "X" bezpośrednio na arkuszu.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem **⊗** i zaznacz inną odpowiedź znakiem "X".
- **7.** W zadaniach od 8. do 12. postaw "X" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **8.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **9.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 10. Podczas rozwiązywania zadań nie wolno Ci korzystać z kalkulatora.

KOD	HCZNI	Δ

Stopień: wojewódzki

Czas pracy: 120 minut

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Razem
Liczba punktów możliwych do zdobycia	19	1	1	1	1	1	1	4	4	4	4	4	3	3	3	3	3	60
Liczba punktów uzyskanych przez uczestnika konkursu																		

Liczba punktów umożliwiająca uzyskanie tytułu laureata: 54.

Podpisy członków komisji:

- 1. Przewodniczący
- 2. Członek komisji sprawdzający pracę
- 3. Członek komisji weryfikujący pracę

Zadanie 1. (0-19)

Rozwiąż krzyżówkę, wpisując cyfry w odpowiednie pola. Hasło w zacieniowanych okienkach, to kolejne cyfry rozwiniecia dziesiętnego liczby $\sqrt{27}$. Hasło nie jest oceniane.

- a) Wynik działania $100^2 99^2$.
- **b**) Średnica koła o obwodzie długości 9π .
- c) Miara kata ostrego równoległoboku, w którym suma trzech kolejnych katów jest 5 razy większa od miary czwartego kata.
- d) Najmniejsza liczba pierwsza dwucyfrowa.
- e) Miara kata środkowego opartego na $\frac{1}{24}$ okręgu.
- f) Największy wspólny dzielnik liczb 66 i 154.
- g) Liczba dwucyfrowa, której suma cyfr wynosi 12, o takiej własności, że po przestawieniu jej cyfr otrzymamy liczbę o 36 większą od niej.
- h) Najmniejsza wspólna wielokrotność liczb 51 i 34.
- i) Długość przekątnej kwadratu o boku długości $\sqrt{2}$.
- **j**) Wynik działania $\left(2 \left(\frac{3}{2}\right)^2\right) \cdot 9 \cdot \left(-2\right)^5$
- **k**) Reszta z dzielenia przez 7 sumy takich liczb *a* i *b*, że dzieląc liczbę *a* przez 7 otrzymujemy resztę 2, zaś dzieląc liczbę *b* przez 7 resztę 5.
- 1) Potęga, do której należy podnieść 3², aby potrzymać liczbę 27⁴.
- m) Pole powierzchni sześcianu, którego suma krawędzi wynosi 48.
- n) Obwód trójkąta równoramiennego, którego dwa boki mają długości 30 cm i 13 cm, wyrażony w centymetrach.
- o) Iloczyn najmniejszej liczby pierwszej i najmniejszej liczby trzycyfrowej złożonej.
- **p**) Obwód kwadratu, którego pole wynosi 16 arów, wyrażony w metrach.
- **q**) Wiek pana Zagadki, którego obecny wiek stanowi 105% wieku sprzed 2 lat.
- r) Wartość wyrażenia $2\sqrt{2} (\sqrt{32} 2\sqrt{2} + \sqrt{64}) : \sqrt{8} + \sqrt{16}$
- s) Droga w kilometrach, którą pokonał samochód w ciągu 5 minut, a jego średnia prędkość na tej trasie wynosiła 72 $\frac{\text{km}}{\text{h}}$.

BRUDNOPIS

W zadaniach od 2. do 7. tylko jedna odpowiedź jest poprawna. Zad. 2. (0-1)

Stefan Banach urodził się w marcu MDCCCXCII w Krakowie, a zmarł w sierpniu MCMXLV we Lwowie. Stefan Banach przeżył

- A. 47 lat.
- B. 48 lat.
- C. 53 lata.
- D. 54 lata

Zadanie 3. (0-1)

W ułamku dziesiętnym, który powstał z podzielenia 5 przez 7, na 49 miejscu po przecinku stoi cyfra

- A. 8
- B. 7
- C. 4
- D. 1

Zadanie 4. (0-1)

Punkty A(-40, 21), B(-2, -10), C(2, -10) są trzema kolejnymi wierzchołkami czworokąta wypukłego ABCD, którego osią symetrii jest oś OY. Punkt D ma współrzędne

- A. (40, 21)
- B. (40, -21)
- C. (21, 40)
- D. (21, -40)

Zadanie 5. (0-1)

Dodano najmniejszą i największą spośród liczb trzycyfrowych o sumie cyfr równej 7. Wynikiem tego dodawania jest liczba

- A. 708
- B. 717
- C. 806
- D. 815

Zadanie 6. (0-1)

W graniastosłupie prawidłowym trójkątnym każda krawędź ma długość 2. Objętość tego graniastosłupa wynosi.

- A. $\sqrt{3}$
- B. $2\sqrt{3}$
- C. $4\sqrt{3}$
- D. $8\sqrt{3}$

Zadanie 7. (0-1)

Kat a zaznaczony na rysunku ma miarę

- A. 72°
- B. 63°
- C. 54°
- D. 36°

Strona 4 z 12

W zadaniach od 8. do 12. oceń, czy podane zdania są prawdziwe, czy fałszywe. Zaznacz właściwą odpowiedź.

Zadanie 8. (0-4)

Z sześcianu o krawędzi długości 6 cm odcięto czworościan w sposób pokazany na rysunku. Punkty E, F, G są środkami krawędzi, odpowiednio: A_1B_1 , BB_1 , B_1C_1 .

I	Czworościan <i>EFGB</i> ₁ jest foremny.	PRAWDA □	FAŁSZ □
II	Objętość odciętego czworościanu jest równa 4,5 cm ³ .	PRAWDA □	FAŁSZ □
III	Stosunek objętości czworościanu do objętości sześcianu jest równy 1:24.	PRAWDA □	FAŁSZ □
IV	Pole powierzchni całkowitej czworościanu wynosi 18 cm ² .	PRAWDA □	FAŁSZ □

Zadania 9. (0-4)

Średnia arytmetyczna wieku trzech przyjaciół to 20 lat. Różnica wieku między najmłodszym i średnim wynosi 2 lata, a między średnim i najstarszym 5 lat.

Ι	Za trzy lata średnia ich wieku zwiększy się o 1 rok.	PRAWDA □	FAŁSZ □
II	Dwa lata wcześniej mediana ich wieku była mniejsza o 2 lata.	PRAWDA □	FAŁSZ □
III	W roku urodzenia najmłodszego z przyjaciół, najstarszy miał 7 lat.	PRAWDA □	FAŁSZ □
IV	Mediana wieku przyjaciół jest mniejsza od średniej ich wieku.	PRAWDA □	FAŁSZ □

Zadania 10. (0-4)

W postaci potęg zapisano 4 liczby: 2⁵⁰⁰, 3²⁵⁰, 4²⁵⁰ i 8¹²⁵.

I	Najmniejsza z danych liczb to 3 ²⁵⁰ .	PRAWDA □	FAŁSZ □
II	Trzy spośród danych potęg mają tę samą wartość.	PRAWDA □	FAŁSZ □
III	Suma liczb 2 ⁵⁰⁰ , 4 ²⁵⁰ i 8 ¹²⁵ jest podzielna przez 5.	PRAWDA □	FAŁSZ □
IV	Iloczyn liczb 2 ⁵⁰⁰ i 3 ²⁵⁰ jest równy 12 ²⁵⁰ .	PRAWDA □	FAŁSZ □

Zadania 11. (0-4) W pudełku są cztery kule białe i *n* kul czarnych. Z pudełka losujemy jedną kulę.

I	Jeżeli prawdopodobieństwo wylosowania kuli czarnej wynosi $\frac{2}{5}$, to w pudełku jest 10 kul czarnych.	PRAWDA □	FAŁSZ □
II	Jeżeli prawdopodobieństwo wylosowania kuli białej wynosi $\frac{2}{3}$, to w pudełku muszą być dwie kule czarne.	PRAWDA □	FAŁSZ □
III	Jeżeli <i>n</i> = 4, to prawdopodobieństwo wylosowania kuli białej jest równe prawdopodobieństwu wylosowania kuli czarnej.	PRAWDA □	FAŁSZ □
IV	Jeżeli prawdopodobieństwo wylosowania kuli białej jest trzy razy mniejsze niż prawdopodobieństwu wylosowania kuli czarnej to w pudełku kul czarnych jest dwa razy więcej niż kul białych.	PRAWDA □	FAŁSZ □

Zadania 12. (0-4)

Wśród uczniów klasy ósmej przeprowadzono ankietę dotyczącą uprawiania sportu. Co trzeci uczeń trenuje tylko piłkę nożną, co czwarty tylko lekkoatletykę, dwóch uczniów uprawia kolarstwo i pływanie, a czterech tylko pływanie. Pozostałych czterech uczniów nie uprawia żadnej dyscypliny sportu.

I	W tej klasie jest 26 uczniów.	PRAWDA □	FAŁSZ □
II	W tej klasie tyle samo uczniów uprawia lekkoatletykę, co pływanie.	PRAWDA □	FAŁSZ □
III	Co czwarty uczeń nie uprawia sportu.	PRAWDA □	FAŁSZ □
IV	W tej klasie dwa razy więcej uprawia piłkę nożną niż pływanie.	PRAWDA □	FAŁSZ □

Zadania 13. (0-3)

Dany jest trójkąt ABC. Tworzymy trójkąt A'B'C' tak, że C' jest punktem symetrycznym do C względem punktu A, B' punktem symetrycznym do B względem punktu C, a A' punktem symetrycznym do A względem punktu B. Oblicz, ile razy pole trójkąta A'B'C' jest większe od pola trójkąta ABC.

Zadanie 14. (0-3)

Świeże jabłka zawierają 90% wody, a suszone – 15% wody. Oblicz, ile kilogramów suszonych jabłek otrzymamy z 34 kg świeżych jabłek?

Zadanie 15. (0-3)

Trzy lata temu Paweł był 3 razy starszy od Piotra, a za dwa lata będzie już tylko 2 razy starszy od niego. Oblicz, ile lat ma obecnie Piotr, a ile Paweł.

Zadanie 16. (0-3)

Jeden z boków trójkąta prostokątnego równoramiennego ma długość $\left(\sqrt{3}+\sqrt{2}\right)$ cm. Czy ten trójkąt może być przystający do trójkąta prostokątnego równoramiennego, którego jeden bok ma długość $\left(2+\sqrt{6}\right)$ cm? Odpowiedź uzasadnij.

Zadanie 17. (0-3)

Dany jest trójkąt prostokątny o przyprostokątnej długości 4 cm i kącie ostrym, leżącym naprzeciw tej przyprostokątnej, o mierze 30°. Z wierzchołka kąta prostego poprowadzono łuk o promieniu 4 cm w sposób przedstawiony na rysunku. Oblicz pole zacieniowanej figury.

BRUDNOPIS