Zeta Function Estimations

Colton Williams

September 20, 2017

Values

The following tables contain the results of the zeta forward and zeta backward functions.

Res	Results for $s=2$				
Expression	$N = 10^{4}$	$N = 10^{5}$	$N = 10^{6}$		
- $forward$	1.644725	1.644725	1.644725		
backward	1.644834	1.644924	1.644933		
forward-backward	0.000109	0.000199	0.000208		
zeta(2)-forward	0.000209	0.000209	0.000209		
zeta(2) - backward	0.000100	0.000010	0.000001		
ratio	0.478469	0.047847	0.004785		

Results for $s = 3$				
Expression	$N = 10^{4}$	$N = 10^{5}$	$N = 10^{6}$	
forward	1.202051	1.202051	1.202051	
backward	1.202057	1.202057	1.202057	
$\boxed{ forward - backward }$	0.000006	0.000006	0.000006	
zeta(3) - forward	0.000006	0.000006	0.000006	
zeta(3)-backward	0.000000	0.000000	0.0000010	
ratio	undef	undef	undef	

Conclusion

The zeta function, when evaluated backwards (from the smallest term first), was much more accurate than when evaluated forwards. The backwards sum was always closer to the actual value, and when s=3, it was equivalent to the actual value of the zeta function to within six decimal digits of precision. Both the forward and backward functions were much more accurate just from stepping from s=2 to s=3.

Code

```
1
2
           COLTON WILLIAMS 2017
3
           NUMERICAL ANALYSIS
4
           ZETA FUNCTION
5
  #define ZETA2 1.6449340668482264
   #define ZETA3 1.20205690315959
8
9
10 #include <stdio.h>
  #include <math.h>
11
12
13
   float zeta forward(int s, int n)
14
15
           float total = 0.0;
16
           int N = (int)pow(10, n);
17
           for (int i = 1; i < N + 1; ++i)
18
19
                    total = total + 1.0/(pow(i, s));
20
21
           return total;
22
   }
23
24
   float zeta backward(int s, int n)
25
26
           float total = 0.0;
27
           int N = (int)pow(10, n);
           for (int i = N + 1; i > 0; — i)
28
29
30
                    total = total + 1.0/(pow(i, s));
31
32
           return total;
33
   }
34
35
  int main() {
           printf("ENTER_A_VALUE_FOR_S_::_");
36
37
                            scanf("%d", &s);
           int s, n;
            printf("ENTER_A_VALUE_FOR_N_::_");
38
39
           scanf("%d", &n);
40
           printf("zeta_forward(%d)_{\downarrow}\t%f\n", s, zeta_forward(s, n));
            \begin{array}{l} printf("zeta\_backward(\%d) \setminus t\%f \setminus n", \ s, \ zeta\_backward(s, \ n)); \\ printf("zeta(2)-forward\_\_ \setminus t\%f \setminus n", \ ZETA2-zeta\_forward(s, \ n)); \\ \end{array} 
41
42
            43
44
            45
           return 0;
46
47
   }
```