Luiz Guilherme Morais da Costa Faria

APRENDIZADO DE MÁQUINA

Brasília, DF 20 de setembro de 2025

Luiz Guilherme Morais da Costa Faria

APRENDIZADO DE MÁQUINA

Universidade de Brasília

Orientador: Nome do Orientador/Revisor (se aplicável)

Brasília, DF 20 de setembro de 2025

Sumário

Sumário		3
I	HISTÓRIA DA IA E DO COMPUTADOR	5
1	UMA BREVE HISTÓRIA DO COMPUTADOR	7
2	UMA BREVE HISTÓRIA DA INTELIGÊNCIA ARTIFICIAL	9
П	CONCEITOS MATEMÁTICOS	11
3	CÁLCULO PARA APRENDIZADO DE MÁQUINA	13
4	ÁLGEBRA LINEAR PARA APRENDIZADO DE MÁQUINA	15
5	PROBABILIDADE E ESTATÍSTICA PARA APRENDIZADO DE MÁQUINA	17
III	PILARES DAS REDES NEURAIS	19
6	O ALGORITMO DA REPROPROPAGAÇÃO E OS OTIMIZADO- RES BASEADOS EM GRADIENTE	21
7	FUNÇÕES DE ATIVAÇÃO SIGMOIDAIS	23
8	FUNÇÕES DE ATIVAÇÃO RETIFICADORAS	25
9	FUNÇÕES DE ATIVAÇÃO MODERNAS E OUTRAS FUNÇÕES DE ATIVAÇÃO	27
10	FUNÇÕES DE PERDA PARA CLASSIFICAÇÃO BINÁRIA	29
11	FUNÇÕES DE PERDA PARA CLASSIFICAÇÃO MULTILABEL .	31
12	METAHEURÍSTICAS: OTIMIZANDO REDES NEURAIS SEM O	

4 SUMÁRIO

IV	APRENDIZADO DE MÁQUINA CLÁSSICO	35
13	REGRESSÃO LINEAR E LOGÍSTICA	37
14	ÁRVORES DE DECISÃO E FLORESTAS ALEATÓRIAS	39
15	MÁQUINAS DE VETORES DE SUPORTE	41
16	ENSAMBLE	43
17	DIMENSIONALIDADE	45
18	CLUSTERIZAÇÃO	47
V	REDES NEURAIS PROFUNDAS (DNNS)	49
19	PERCEPTRONS MLP - REDES NEURAIS ARTIFICIAIS	51
20	REDES FEEDFORWARD (FFNS)	53
21	REDES DE CRENÇA PROFUNDA (DBNS) E MÁQUINAS DE BOLTZMANN RESTRITAS	55
22	REDES NEURAIS CONVOLUCIONAIS (CNN)	57
23	REDES RESIDUAIS (RESNETS)	59
24	REDES NEURAIS RECORRENTES (RNN)	61
25	TÉCNICAS PARA MELHORAR O DESEMPENHO DE REDES NEURAIS	63
26	TRANSFORMERS	65
27	REDES ADVERSÁRIAS GENERATIVAS (GANS)	67
28	MIXTURE OF EXPERTS (MOE)	69
29	MODELOS DE DIFUSÃO	71
30	REDES NEURAIS DE GRAFOS (GNNS)	7 3
VI	APÊNDICES	75

Parte I História da IA e do Computador

1 Uma Breve História do Computador

2 Uma Breve História da Inteligência Artificial

Parte II Conceitos Matemáticos

3 Cálculo para Aprendizado de Máquina

4 Álgebra Linear para Aprendizado de Máquina

5 Probabilidade e Estatística para Aprendizado de Máquina

Parte III

Pilares das Redes Neurais

6 O Algoritmo da Repropropagação e Os Otimizadores Baseados em Gradiente

7 Funções de Ativação Sigmoidais

8 Funções de Ativação Retificadoras

9 Funções de Ativação Modernas e Outras Funções de Ativação

10 Funções de Perda para Classificação Binária

11 Funções de Perda para Classificação Multilabel

12 Metaheurísticas: Otimizando Redes Neurais Sem o Gradiente

Parte IV

Aprendizado de Máquina Clássico

13 Regressão Linear e Logística

14 Árvores de Decisão e Florestas Aleatórias

15 Máquinas de Vetores de Suporte

16 Ensamble

17 Dimensionalidade

18 Clusterização

Parte V

Redes Neurais Profundas (DNNs)

19 Perceptrons MLP - Redes Neurais Artificiais

20 Redes FeedForward (FFNs)

21 Redes de Crença Profunda (DBNs) e Máquinas de Boltzmann Restritas

22 Redes Neurais Convolucionais (CNN)

23 Redes Residuais (ResNets)

24 Redes Neurais Recorrentes (RNN)

25 Técnicas para Melhorar o Desempenho de Redes Neurais

26 Transformers

27 Redes Adversárias Generativas (GANs)

28 Mixture of Experts (MoE)

29 Modelos de Difusão

30 Redes Neurais de Grafos (GNNs)

Parte VI

Apêndices