MAT02035 - Modelos para dados correlacionados

Dados longitudinais: conceitos básicos

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021

Introdução

Introdução

Introdução

- Iremos apresentar os principais objetivos da análise longitudinal e algumas das características definidoras de dados longitudinais.
- O foco principal da análise de dados longitudinais está na avaliação de mudanças (na variável resposta) intraindividuais ao longo do tempo.
- Introduziremos a notação e a terminologia utilizada na análise longitudinal.

- Nas ciências da saúde, os estudos longitudinais desempenham um papel importante em aumentar nossa compreensão do desenvolvimento e persistência da doença.
- ► Há muita **heterogeneidade** natural entre os indivíduos em termos de como as doenças se desenvolvem e progridem.
 - Essa heterogeneidade se deve a fatores genéticos, ambientais, sociais e comportamentais.

Um delineamento de estudo longitudinal permite a descoberta de características individuais que podem explicar essas **diferenças interindividuais** nas **mudanças nos resultados** de saúde **ao longo do tempo**.

- A característica que distingue o delineamento longitudinal é que os participantes do estudo são medidos repetidamente ao longo da duração do estudo, permitindo assim a avaliação direta de mudanças na variável resposta ao longo do tempo.
- Em estudos transversais não é possível avaliar as mudanças individuais com base em uma única "fotografia" da resposta do indivíduo em um determinado momento.
- Assim, a característica definidora de um estudo longitudinal é que duas ou mais observações da variável resposta, realizadas em momentos diferentes, são obtidas em pelo menos alguns dos participantes do estudo.
 - Normalmente, os delineamentos de estudo longitudinal exigem um número fixo de medidas repetidas a serem feitas em todos os participantes do estudo em um conjunto de pontos de tempo comuns.
 - As ocasiões de medição não são necessariamente distribuídas uniformemente ao longo da duração do estudo.

- O objetivo principal de um estudo longitudinal é caracterizar a mudança na resposta ao longo do tempo.
- ► Também é interessante determinar se essas mudanças dentro de cada indivíduo na resposta estão relacionadas a covariáveis selecionadas.

- Na forma mais elementar, uma medida da mudança observada dentro do indivíduo na resposta pode ser conceituada em termos de "escores de mudança" ou "escores de diferença".
 - Por exemplo, as diferenças entre as medidas de pós-tratamento e pré-tratamento de a resposta.

$$\Delta_y = y_{t_f} - y_{t_0}.$$

Essa noção simples de mudança dentro do indivíduo se estende naturalmente de "escores de diferença" a "trajetórias de resposta" mais gerais ao longo do tempo.

No entanto, outros tipos de trajetórias de resposta, por exemplo, lineares por partes ou curvilíneas, podem ser usados para suavizar parcimoniosamente e resumir as mudanças intraindividuais na resposta ao longo da duração do estudo.

- Uma análise longitudinal das mudanças dentro do indivíduo procede em dois estágios conceitualmente distintos.
 - A mudança individual na resposta é caracterizada em termos de algum resumo apropriado das mudanças nas medidas repetidas em cada indivíduo durante o período de observação (por exemplo, usando "escores de diferença" ou alguma forma de "trajetória de resposta").
 - Essas estimativas de mudanças individuais são relacionadas a diferenças interindividuais em covariáveis selecionadas.
- Embora essas duas etapas da análise sejam conceitualmente distintas, elas podem ser combinadas em um modelo estatístico para dados longitudinais.
- Um único modelo estatístico para dados longitudinais pode ser usado tanto para (1) capturar como os indivíduos mudam ao longo do tempo quanto para (2) relacionar mudanças individuais na resposta a covariáveis selecionadas.

- As mudanças na resposta dentro de indivíduo (grupo) ao longo do tempo pode ser alcançada apenas de um estudo de delineamento longitudinal.
- Um estudo transversal não pode estimar como os indivíduos mudam com o tempo, já que a resposta é medida em uma única ocasião.
- Um estudo longitudinal pode estimar como os indivíduos mudam e também o fazem com grande precisão, pois cada indivíduo age como seu próprio controle.
 - Ao comparar as respostas de cada indivíduo em duas ou mais ocasiões, uma análise longitudinal pode remover fontes alheias, mas inevitáveis, de variabilidade entre indivíduos.

- ▶ A beleza de um delineamento longitudinal é que quaisquer fatores externos (independentemente de terem sido medidos) influenciam a resposta, e cuja influência persiste, mas permanece relativamente estável durante toda a duração do estudo (por exemplo, gênero, status socioeconômico e muitos fatores genéticos, ambientais, sociais e comportamentais) são eliminados ou bloqueados quando as respostas de um indivíduo são comparadas em duas ou mais ocasiões.
- Ao eliminar essas principais fontes de variabilidade ou "ruído" da estimativa de mudança individual, uma estimativa muito precisa da mudança pode ser obtida.

Características definidoras dos dados longitudinais

Características definidoras dos dados longitudinais

Terminologia: indivíduos e tempos

- Em um estudo longitudinal, os participantes, ou, mais geralmente, as unidades em estudo, são referidas como **indivíduos** ou **sujeitos**.
 - Em muitos, mas não em todos, estudos longitudinais, os indivíduos são sujeitos humanos.
 - Em outros estudos longitudinais, os indivíduos podem ser animais.
- Como já mencionado, em um estudo longitudinal, os indivíduos são medidos repetidamente em diferentes ocasiões ou tempos.
- Assim, adotando a terminologia introduzida até agora, a característica definidora de um estudo longitudinal é que as medidas da variável resposta são obtidas nos mesmos indivíduos em diversas ocasiões.

Terminologia: dados balanceados

- ▶ O número de observações repetidas e seu tempo (momento de ocorrência) podem variar muito de um estudo longitudinal para outro.
- Por exemplo, um ensaio clínico projetado para examinar a eficácia de um novo agente analgésico pode realizar medidas repetidas de uma escala de dor autorreferida na linha de base e ao final de seis intervalos de 15 minutos.
 - Isso resultaria em sete medidas repetidas que são igualmente separadas no tempo.

Terminologia: dados balanceados

- Por outro lado, um estudo observacional do crescimento humano pode fazer medições de altura e peso em intervalos de 3 meses, do nascimento até a idade de 2 anos, seguido por observações anuais desde a infância até a idade adulta jovem.
 - Por delineamento, este último estudo resultaria em uma sequência de medidas repetidas de altura e peso que são separadas de forma desigual no tempo.
- Em ambos os exemplos, o número e o momento das medições repetidas são os mesmos para todos os indivíduos, independentemente das ocasiões de medição serem igualmente ou desigualmente distribuídas ao longo da duração do estudo.
- Empregando a terminologia estatística emprestada do campo do delineamento experimental, nos referimos aos últimos estudos como sendo "balanceados" (equilibrados) ao longo do tempo.

Terminologia: dados balanceados Exemplo TLC

Table 1: Níveis de chumbo no sangue de dez crianças do estudo TLC

ID	Grupo	Linha de base	Semana 1	Semana 4	Semana 6
44	Succimer	26.8	20.4	19.3	23.8
46	Placebo	35.4	30.4	26.5	28.1

Exemplo ensaio clínico medicamento anti-epilético

Table 2: Número de convulsões por semana

ID	Grupo	Linha de base	Sem 1	Sem 2	Sem 3	Sem 4
43	Progabide	46	11	14	25	15
9	Placebo	23	5	6	6	5

Terminologia: dados desbalanceados

- É uma característica dos estudos longitudinais, especialmente aqueles em que as medidas repetidas se estendem por um período relativamente longo, que alguns indivíduos perderão sua visita programada ou data de observação.
- Em alguns estudos, isso pode exigir que as observações sejam feitas algum tempo antes ou depois do momento programado.
 - Consequentemente, a sequência dos tempos de observação não é mais comum a todos os indivíduos no estudo.
- Nesse caso, nos referimos aos dados como "desbalanceados" ao longo do tempo.

Terminologia: dados desbalanceados

Terminologia: dados ausentes

- ▶ Dados ausentes são um problema comum e desafiador em estudos longitudinais.
 - A ocorrência de dados ausentes em estudos longitudinais é a regra, e não a excecão.
- Por exemplo, os participantes do estudo nem sempre aparecem para uma observação agendada, ou podem simplesmente deixar o estudo antes de sua conclusão (padrão dropout).
- Quando faltam algumas observações, os dados são necessariamente desbalanceados ao longo do tempo, uma vez que nem todos os indivíduos têm o mesmo número de medidas repetidas obtidas em um conjunto comum de ocasiões.

Terminologia: dados ausentes

- Para distinguir dados ausentes em um estudo longitudinal de outros tipos de dados desbalanceados, esses conjuntos de dados são geralmente chamados de "incompletos".
 - Essa distinção é importante e enfatiza o fato de que uma medida pretendida em um indivíduo não pôde ser obtida.
- Uma das consequências da falta de balanceamento e/ou ausência de dados é que requer alguns cuidados para recuperar a mudança dentro de cada indivíduo.
- Por exemplo, considere uma configuração em que cada indivíduo é medido em cada uma das n ocasiões.
 - Em seguida, considere traçar a resposta média em cada ocasião.
 - Diferenças na resposta média ao longo do tempo medem a mudança dentro de cada indivíduo.
 - Isso ocorre porque a diferença nas médias também é a média das diferenças quando cada indivíduo é medido em todas as ocasiões.

Terminologia: dados ausentes

- Quando há dados ausentes, um gráfico da resposta média sobre o tempo pode ser enganador.
 - Mudanças ao longo do tempo podem refletir o padrão de ausência de dados, e não de mudança individual.
- Como discutiremos ao longo do curso, será necessário examinar cuidadosamente as suposições e a adequação da análise para determinar a validade das inferências com delineamentos desbalanceados e/ou ocorrência de dados ausentes.

Terminologia: correlação

- Um aspecto dos dados longitudinais que aparece com destaque em sua análise estatística é que as medidas repetidas no mesmo indivíduo são geralmente positivamente correlacionadas.
- As observações correlacionadas são uma característica positiva dos dados longitudinais porque fornecem estimativas mais precisas da taxa de mudança ou o efeito das covariáveis nessa taxa de mudança do que seria obtido a partir de um número igual de observações independentes de indivíduos diferentes.
- No entanto, a correlação entre medidas repetidas viola a suposição de independência que é fundamental em tantas técnicas de regressão padrão.

Notação: variável resposta

- Seja Y_{ij} a variável resposta para o *i*-ésimo indivíduo (i = 1, ..., N) na j-ésima ocasião do tempo (j = 1, ..., n).
 - ► Variável aleatória: Y_{ii}
 - Realização da variável aleatória: yij

Indivíduo	Ocasião					
marviduo	1	2	3		n	
1	<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> ₁₃		y_{1n}	
2	<i>y</i> ₂₁	<i>y</i> ₂₂	<i>y</i> ₂₃	• • •	y_{2n}	
•	•	•	•	• • •	•	
•	•	•	•	• • •	•	
•	•	•	•	• • •	•	
N	<i>y</i> _{N1}	y _{N2}	УNЗ		y_{Nn}	

Notação: variável resposta

As n medidas repetidas da variável resposta em cada indivíduo pode ser agrupada em um vetor resposta $n \times 1$, denotado por

$$Y_i = \begin{pmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{in} \end{pmatrix}.$$

Uma forma equivalente é dada por

$$Y_i = (Y_{i1}, Y_{i2}, \dots, Y_{in})'.$$

Notação: resposta média

- Na análise de dados de um estudo longitudinal, o principal interesse está na resposta média.
 - Mudanças ao longo do tempo na resposta média.
 - Como estas mudanças dependem de covariáveis (grupo de tratamento, exposições).
- ightharpoonup Denotamos a média ou o valor esperado de cada resposta Y_{ij} por

$$\mu_j = \mathsf{E}(Y_{ij}).$$

Podemos pensar em μ_j como uma média sobre uma grande **população** de indivíduos na *j*-ésima ocasião do tempo.

Notação: resposta média

- Em muitos estudos longitudinais o principal objetivo é relacionar mudanças na resposta média sobre o tempo à covariáveis.
- Para permitir adicionalmente que a resposta média e as mudanças na resposta média variem de indivíduo para indivíduo em função de covariáveis de nível individual, utilizaremos a seguinte notação

$$\mu_{ij} = \mathsf{E}(Y_{ij}).$$

- Aqui, o valor esperado denota uma média sobre uma grande subpopulação de indivíduos que compartilham valores semelhantes das covariáveis (por exemplo, indivíduos designados para o grupo de tratamento ativo, sujeitos não expostos) na j-ésima ocasião do tempo.
 - Diremos que μ_{ij} é a resposta média condicional na j-ésima ocasião, em que o termo condicional é usado para denotar a dependência da média nas covariáveis.

- Na estatística, as noções de dependência e independência têm significados precisos.
- Duas variáveis são consideradas independentes se a distribuição condicional de uma delas não depender da outra.
- Por exemplo, o nível de colesterol LDL seria considerado independente do sexo se a distribuição do nível de colesterol LDL fosse a mesma para homens e mulheres.

- Muitas técnicas estatísticas (por exemplo, regressão linear e análise de variância para uma resposta única e univariada) assumem que as observações do estudo são realizações de variáveis aleatórias que são independentes umas das outras.
- Esta suposição será bastante razoável:
 - Quando o delineamento do estudo exigir que uma observação seja obtida de cada indivíduo e os indivíduos sejam selecionados aleatoriamente de uma população maior.
 - Quando o estudo exige que uma observação seja obtida de cada indivíduo e os indivíduos sejam aleatoriamente designados para diferentes condições de tratamento.
- Além disso, a suposição de observações independentes pode ser justificada em bases puramente físicas ou científicas, quando as respostas de indivíduos distintos no estudo são consideradas como completamente não relacionadas entre si.
 - Ou seja, a resposta de um indivíduo não influencia nem é influenciada pela resposta do outro.

- No caso em que mais de uma única observação é obtida no mesmo indivíduo, a suposição de observações independentes é simplesmente insustentável.
- Ou seja, a resposta de um indivíduo em uma ocasião é muito provável que seja preditiva da resposta do mesmo indivíduo em uma ocasião futura.
 - Por exemplo, um indivíduo com um alto nível de colesterol LDL em uma ocasião é muito provável que também tenha um alto nível de colesterol LDL na próxima ocasião.
- Além disso, com uma variável resposta quantitativa, essa dependência entre as medidas repetidas no mesmo indivíduo pode ser caracterizada pela sua correlação.

- Considere um delineamento longitudinal simples que é balanceado e completo, com n medidas repetidas da variável resposta em um conjunto comum de ocasiões em N indivíduos.
- Se denotamos a **média condicional** de Y_{ij} por $\mu_{ij} = E(Y_{ij})$, então a **variância condicional** de Y_{ij} é definida como

$$\sigma_j^2 = E \{ Y_{ij} - E (Y_{ij}) \}^2 = E (Y_{ij} - \mu_{ij})^2.$$

- ▶ O desvio-padrão condicional $\sigma_j = \sqrt{\sigma_j^2}$.
- **Observação:** note que assumimos que a variância pode variar de ocasião para ocasião (σ_j^2).

A **covariância condicional** entre as respostas em duas diferentes ocasiões, Y_{ij} e Y_{ik} , é denotada por

$$\sigma_{jk} = \mathsf{E}\left\{ (Y_{ij} - \mu_{ij})(Y_{ik} - \mu_{ik}) \right\},\,$$

e fornece uma medida de **dependência linear** entre Y_{ij} e Y_{ik} , dado as covariáveis.

- A covariância entre Y_{ij} e Y_{ik} pode assumir valores positivos ou negativos.
- Quando a covariância é zero, então não há dependência linear entre as respostas nas duas ocasiões (dado as covariáveis).
- A magnitude da covariância é de difícil interpretação.

A correlação condicional entre Y_{ij} e Y_{ik} é denotada por

$$\rho_{jk} = \frac{\mathsf{E}\left\{ (Y_{ij} - \mu_{ij})(Y_{ik} - \mu_{ik}) \right\}}{\sigma_j \sigma_k},$$

em que σ_i e σ_k são os desvios-padrão de Y_{ii} e Y_{ik} , respectivamente.

- ightharpoonup A correlação pode variar entre -1 e 1.
- Correlação positiva implica que uma variável aumenta conforme a outra aumenta.

- Embora duas variáveis que são estatisticamente independentes uma da outra sejam necessariamente não correlacionadas, as variáveis podem ser não correlacionadas sem serem independentes (uma vez que a correlação apenas mede a dependência linear).
- A independência estatística é uma condição mais forte que a correlação zero.
 - Implica "nenhuma dependência", isto é, nenhuma dependência linear ou não linear entre as variáveis.
- Por outro lado, a correlação quantifica o grau em que duas variáveis são relacionadas ou dependentes, desde que a dependência seja linear.

Quando n medidas repetidas são coletadas em um vetor Y_i = (Y_{i1}, Y_{i2},..., Y_{in}), podemos definir a matriz de variância-covariância:

$$\mathsf{Cov} \left(\begin{array}{c} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{in} \end{array} \right) \ = \ \left(\begin{array}{cccc} \mathsf{Var} \left(Y_{i1} \right) & \mathsf{Cov} \left(Y_{i1}, Y_{i2} \right) & \ldots & \mathsf{Cov} \left(Y_{i1}, Y_{in} \right) \\ \mathsf{Cov} \left(Y_{i2}, Y_{i1} \right) & \mathsf{Var} \left(Y_{i2} \right) & \ldots & \mathsf{Cov} \left(Y_{i2}, Y_{in} \right) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov} \left(Y_{in}, Y_{i1} \right) & \mathsf{Cov} \left(Y_{in}, Y_{i2} \right) & \ldots & \mathsf{Var} \left(Y_{in} \right) \end{array} \right) \\ = \left(\begin{array}{cccc} \sigma_{11} & \sigma_{12} & \ldots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \ldots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \ldots & \sigma_{nn} \end{array} \right) .$$

- Note que Cov $(Y_{ij}, Y_{ik}) = \sigma_{ik} = \sigma_{kj} = \text{Cov}(Y_{ik}, Y_{ij})$ (simetria).
- Ainda, $\sigma_{kk} = \text{Cov}(Y_{ik}, Y_{ik}) = \text{Var}(Y_{ik}) = \sigma_k^2$.
- Dessa forma podemos nos referir a matriz de variância-covariância de Y_i como a (matriz) covariância de Y_i, ou Cov (Y_i)

$$\mathsf{Cov}(Y_i) = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}.$$

► Também podemos definir a matriz de **correlação**, Corr (*Y_i*)

$$\operatorname{Corr}(Y_i) = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{pmatrix}.$$

Comentários

- Em dados longitudinais, os pressupostos usuais da análise de regressão padrão não são válidos.
- A heterogeneidade da variância ao longo do tempo pode ser explicada ao permitir que os elementos na diagonal principal da matriz de covariância sejam diferentes.
- A falta de independência entre as medições repetidas é explicada por permitir que os elementos fora da diagonal das matrizes de covariância e correlação sejam diferentes de zero.
- Além disso, espera-se que as correlações sejam positivas e a natureza sequencial dos dados longitudinais implica que pode haver um padrão para as correlações.
 - Por exemplo, espera-se que um par de medidas repetidas que foram obtidas próximas no tempo sejam mais altamente correlacionadas do que um par de medidas repetidas separadas no tempo.
 - Em geral, espera-se que a correlação entre as medidas repetidas diminua com o aumento da separação de tempo.

Avisos

- ▶ Para casa: ler o Capítulo 1 do livro "Applied Longitudinal Analysis". Caso já tenha lido o Cap. 1, leia o Capítulo 2.
- Próxima aula: Dados longitudinais: exemplo, fontes de variação e consequências de ignorar a correlação entre dados longitudinais.

Bons estudos!

