Model Inference & Partitioning Regression Error

SDS 291

2/5/2020

Regression Output

```
##
## Call:
## lm(formula = y1 ~ x1, data = anscombe)
## Residuals:
##
       Min
                 1Q
                    Median
                                  ЗQ
                                          Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                   2.667 0.02573 *
## (Intercept)
                3.0001 1.1247
                                  4.241 0.00217 **
## x1
                0.5001
                          0.1179
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
```

1. Interpret the slope in a sentence.

2. Use the information in the table for x1 to calculate the t-value for the slope.

2. Test the hypothesis that x1 has a linear relationship with y1.

Residuals and Model Error

	observ	vepdredicted	residual			model deviation	
x1	(y)	$(\hat{y} \text{ line})$	$(y - \hat{y})$	$residual^2$	mean y (\bar{y})	$\hat{y} - \bar{y}$	model^2
$\overline{4}$	4.26				7.5		
5	5.68				7.5		
6	7.24				7.5		
7	4.82				7.5		
8	6.95				7.5		
9	8.81				7.5		
10	8.04				7.5		
11	8.33				7.5		
12	10.84				7.5		
13	7.58				7.5		
14	9.96				7.5		
$Sum\ the$		Residuals			$and\ Model$		

- 1. Calculate the residual (observed predicted, or $y-\bar{y}$) and the model (predicted mean, or $\hat{y}-\bar{y}$) for each value of x.
- 2. Square each residual and model term.
- 3. Calculate the sum of squared residuals (SSR) and the Sum of Squares of the Model (SSM).
- 4. Calculate the sum of squares total (SST = SSR + SSM)
- 5. Calculate r^2 $(r^2 = \frac{SSModel}{SSTotal})$ or $r^2 = 1 \frac{SSError}{SSTotal})$

ANOVA Table

Source	df	Sum of Squares	Mean Square	F-Statistic
Model Error	1 n-2			
— Total	n-1			
_				

- 1. Calculate the mean squares for the model $(MSModel = \frac{SSModel}{1})$ and the $MSError = \frac{SSE}{n-2})$
- 2. Calculate the F statistic: $F = \frac{MSModel}{MSError}$
- 3. Look at the F Distribution calculator (at https://gallery.shinyapps.io/dist_calc/) and estimate the p-value for your F statistic with 1 and n-2 degrees of freedom.

Comparing to R output

Regression Output

```
summary(m1)
##
## Call:
## lm(formula = y1 ~ x1, data = anscombe)
##
## Residuals:
       Min
                 1Q Median
                                  3Q
                                          Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## x1
                0.5001
                          0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
```

Confidence Intervals

```
confint(m1)
##
                   2.5 %
                            97.5 %
## (Intercept) 0.4557369 5.5444449
## x1
               0.2333701 0.7668117
```

ANOVA table

```
anova(m1)
## Analysis of Variance Table
##
## Response: y1
##
            Df Sum Sq Mean Sq F value Pr(>F)
## x1
             1 27.510 27.5100
                                 17.99 0.00217 **
## Residuals 9 13.763 1.5292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  1. Identify where in the output above you find the results that you calculated:
```

- 1. t-statistic for the slope
- 2. confidence interval for the slope
- 3. F statistic
- 4. R^2