© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Un développement asymptotique de la série harmonique (d'après ENS BL 2010)

Dans tout le problème, on considère les suites $(H_n)_{n\in\mathbb{N}^*}$ et $(u_n)_{n\in\mathbb{N}^*}$ définies pour tout entier naturel non nul n par :

$$H_n = \sum_{k=1}^n \frac{1}{k} \quad \text{et} \quad u_n = H_n - \ln n$$

Partie I -

I.1 Etablir pour tout entier naturel k non nul l'encadrement suivant :

$$\frac{1}{k+1} \le \ln(k+1) - \ln(k) \le \frac{1}{k}$$

- **I.2.a** Quelle est la limite de la suite (H_n) ?
 - **I.2.b** En utilisant le résultat de la question **I.1**, montrer pour tout entier naturel non nul *n* l'encadrement suivant :

$$\ln(n) + \frac{1}{n} \le H_n \le \ln(n) + 1$$

- **I.2.c** En déduire un équivalent simple de H_n quand n tend vers $+\infty$.
- **I.3.a** En utilisant à nouveau l'encadrement obtenu à la question **I.1**, montrer que la suite (u_n) est décroissante.
 - **I.3.b** En déduire que cette suite est convergente; on note γ sa limite. Montrer que γ appartient à [0,1].
- **I.4** Soit f une fonction de classe \mathcal{C}^2 sur \mathbb{R}_+^* . On pose pour tout entier naturel non nul k:

$$J_k = \frac{1}{2} \int_k^{k+1} \left(t - k - \frac{1}{2} \right)^2 f''(t) dt$$

I.4.a Établir pour tout entier naturel non nul k l'égalité suivante :

$$J_k = \frac{f'(k+1) - f'(k)}{8} - \frac{f(k+1) + f(k)}{2} + \int_k^{k+1} f(t) dt$$

I.4.b En déduire pour tout entier naturel non nul *n* la relation suivante :

$$\sum_{k=1}^{n} f(k) = \frac{f(1) + f(n)}{2} + \frac{f'(n) - f'(1)}{8} + \int_{1}^{n} f(t) dt - \sum_{k=1}^{n-1} J_{k}$$

© Laurent Garcin MP Dumont d'Urville

I.5 On suppose dans cette question que la fonction f est définie sur \mathbb{R}_+^* par $f(x) = \frac{1}{x}$.

I.5.a Établir pour tout entier naturel non nul k la double inégalité suivante :

$$0 \le J_k \le \int_k^{k+1} \frac{\mathrm{d}t}{4t^3}$$

- **I.5.b** En déduire que la série de terme général J_k est convergente.
- **I.5.c** En déduire également, pour tout entier naturel non nul *n* l'encadrement suivant :

$$0 \le \sum_{k=n}^{+\infty} J_k \le \frac{1}{8n^2}$$

I.5.d En déduire le développement asymptotique suivant :

$$H_n = \ln(n) + \gamma + \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Partie II -

On considère les suites $(x_n)_{n\geq 1}$ et $(y_n)_{n\geq 2}$ définies par :

$$\forall n \ge 1, \ x_n = u_n - \frac{1}{2n}$$
 et $\forall n \ge 2, \ y_n = x_n - x_{n-1}$

- **II.1.** Quelle est la limite de la suite $(x_n)_{n\geq 1}$?
 - **II.1.b** Justifier pour tout entier naturel non nul n l'égalité suivante :

$$\gamma - x_n = \sum_{k=n+1}^{+\infty} y_k$$

II.1.c En déduire pour tout entier naturel non nul *n* l'égalité suivante :

$$\gamma - x_n = \frac{1}{2} \sum_{k=n+1}^{+\infty} \left(\frac{1}{k} + \frac{1}{k-1} + 2 \ln \left(1 - \frac{1}{k} \right) \right)$$

II.2 Montrer que

$$\frac{1}{k} + \frac{1}{k-1} + 2\ln\left(1 - \frac{1}{k}\right) \mathop{\sim}_{k \to +\infty} \frac{1}{3k^3}$$

II.3 En déduire que

$$H_n = _{n \to +\infty} \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

© Laurent Garcin MP Dumont d'Urville

Problème 2 – Série de restes

Soient $n \in \mathbb{N}$ et $\sum_{n \ge n_0} a_n$ une série à termes réels. Dans le cas où cette série converge, on note R_n le reste de

rang n de cette série, c'est-à-dire $R_n = \sum_{k=n+1}^{+\infty} a_k$ pour tout entier $n \ge n_0$.

On souhaite étudier la convergence de la série $\sum_{n \in \mathbb{N}} R_n$ dans plusieurs cas.

Partie I - Cas d'une série géométrique

On se donne $q \in \mathbb{R}$ et on pose $a_n = q^n$ pour $n \in \mathbb{N}$ (on a donc $n_0 = 0$).

- **I.1** Pour quelles valeurs de q la série $\sum_{n \in \mathbb{N}} a_n$ convergent-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- **I.2** Exprimer R_n en fonction de q et n.
- **I.3** En déduire que la série $\sum_{n \in \mathbb{N}} R_n$ converge et calculer sa somme.

Partie II - Cas d'une série de Riemann

On se donne dans cette partie $\alpha \in \mathbb{R}$ et on pose $a_n = \frac{1}{n^{\alpha}}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$).

- II.4 Pour quelles valeurs de α la série $\sum_{n \in \mathbb{N}^*} a_n$ converge-t-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- II.5 A l'aide d'une comparaison série/intégrale, montrer que $R_n \sim \frac{1}{n \to +\infty} \frac{1}{(\alpha 1)n^{\alpha 1}}$.
- II.6 En déduire une condition nécessaire et suffisante sur α pour que la série $\sum_{n\in\mathbb{N}^*} R_n$ converge.

Partie III – Cas de la série harmonique alternée

Dans cette partie, on pose $a_n = \frac{(-1)^n}{n}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$). On note également S_n la somme partielle de rang n de la série $\sum_{n \in \mathbb{N}^*} a_n$, c'est-à-dire $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

III.7 Calculer
$$\int_0^1 x^n dx$$
 pour $n \in \mathbb{N}$.

- III.8 En déduire que $S_n = -\ln(2) + (-1)^n \int_0^1 \frac{x^n}{1+x} dx$.
- III.9 En déduire la convergence et la somme de la série $\sum_{n\in\mathbb{N}^*} a_n$.
- **III.10** Exprimer R_n à l'aide d'une intégrale puis, à l'aide d'une intégration par parties, déterminer deux constantes réelles α et β telles que $\alpha > 1$ et $R_n = \frac{(-1)^{n+1}\beta}{n+1} + \mathcal{O}\left(\frac{1}{n^{\alpha}}\right)$.
- III.11 En déduire la nature de la série $\sum_{n \in \mathbb{N}^*} R_n$.