Vector IRAM

A Media-enhanced Vector Processor with Embedded DRAM

Christoforos Kozyrakis, Joseph Gebis, David Martin, Samuel Williams, Ioannis Mavroidis, Steven Pope, Darren Jones*, and David Patterson

Computer Science Division
University of California at Berkeley
http://iram.cs.berkeley.edu

* MIPS Technologies Inc.

Mountain View, CA

http://www.mips.com

Motivation and Goals

- Processor features for PostPC systems:
 - High, predictable performance for multimedia
 - Low power and energy consumption
 - Tolerance to memory latency
 - Scalability and modularity
 - Low design complexity
 - System integration
 - Mature, HLL-based software model
- Design a prototype processor chip
 - Complete proof of concept
 - Explore detailed architecture and design issues
 - Fast platform for software development

Key Technologies

Vector IRAM HOT CHIPS 12

Vector processing

- High performance for media processing
- Low power/energy for issue and control logic
- Low design complexity
- Scalable and modular
- Well understood compiler technology

Embedded DRAM

- High bandwidth for vector processing
- Low power/energy for memory accesses
- Scalable and modular
- System integration

Vector Instruction Set

- Complete load-store vector ISA
 - Uses the MIPS64TM ISA coprocessor 2 opcode space
 - Data types supported: 64b, 32b, 16b (and 8b)
 - Architecture state
 - 32 general-purpose vector registers
 - 32 vector flag registers, 16 scalar registers, control registers
 - 91 instructions, 661 opcodes
 - Arithmetic (integer/FP), logical, DSP, vector processing
 - Strided and indexed loads and stores
- Not specified by the ISA
 - Vector register length
 - Functional unit datapath width
 - Alignment restrictions for vectors in memory

Vector ISA Enhancements

Vector IRAM HOT CHIPS 12

• DSP support

- Fixed-point shift, multiply and multiply-add, saturated arithmetic, rounding modes
- Simple instructions for intra-register permutations for reductions and butterfly operations
 - High performance for dot-products and FFT without the complexity of a random permutation

Compiler and OS support

- Conditional execution of vector operations
- Support for software speculation of load operations
- MMU-based virtual memory
- Valid and dirty bits for vector registers
- Restartable arithmetic exceptions

VIRAM Prototype Architecture

Architecture Details (1)

- MIPS64TM 5Kc core (200 MHz)
 - Single-issue core with 6 stage pipeline
 - 8 KByte, direct-map instruction and data caches
 - Single-precision scalar FPU
- Vector unit (200 MHz)
 - 8 KByte register file (32 64b elements per register)
 - 4 functional units:
 - 2 arithmetic (1 FP), 2 flag processing
 - 256b datapaths per functional unit
 - Memory unit
 - 4 address generators for strided/indexed accesses
 - 2-level TLB structure: 4-ported, 4-entry microTLB and single-ported, 32-entry main TLB
 - Pipelined to sustain up to 64 pending memory accesses

Architecture Details (2)

- Main memory system
 - No SRAM cache for the vector unit
 - 8 2-MByte DRAM macros
 - Single bank per macro, 2Kb page size
 - 256b synchronous, non-multiplexed I/O interface
 - 25ns random access time, 7.5ns page access time
 - Crossbar interconnect
 - 12.8 GBytes/s peak bandwidth per direction (load/store)
 - Up to 5 independent addresses transmitted per cycle
- Off-chip interface
 - 64b SysAD bus to external chip-set (100 MHz)
 - 2 channel DMA engine

Vector Unit Pipeline

- Single-issue, in-order pipeline
- Efficient for short vectors
 - Pipelined instruction start-up
 - Full support for instruction chaining, the vector equivalent of result forwarding
- Hides long DRAM access latency
 - Random access latency could lead to stalls due to long load→use RAW hazards
 - Simple solution: "delayed" vector pipeline

Delayed Vector Pipeline

Vector IRAM **HOT CHIPS 12** E M W R DRAM latency: >25ns vld **VLD** VW vadd Load → Add RAW hazard vst vld **VADD** VR VX **DELAY** vadd vst **VST** VR

- Random access latency included in the vector unit pipeline
- Arithmetic operations and stores are delayed to shorten RAW hazards
- Long hazards eliminated for the common loop cases
- Vector pipeline length: 15 stages

Handling Memory Conflicts

- Single sub-bank DRAM macro can lead to memory conflicts for non-sequential access patterns
- Solution 1: address hashing
 - Selects between 3 address interleaving modes for each virtual page
- Solution 2: address decoupling buffer (128 slots)
 - Allows scheduling of long indexed accesses without stalling the arithmetic operations executing in parallel

Modular Vector Unit Design

- Single 64b "lane" design replicated 4 times
 - Reduces design and testing time
 - Provides a simple scaling model (up or down) without major control or datapath redesign
- Most instructions require only intra-lane interconnect
 - Tolerance to interconnect delay scaling

Floorplan

- Technology: IBM SA-27E
 - 0.18μm CMOS
 - 6 metal layers (copper)
- 290 mm² die area
 - 225 mm² for memory/logic
 - DRAM: 161 mm²
 - Vector lanes: 51 mm²
- Transistor count: ~150M
- Power supply
 - 1.2V for logic, 1.8V for DRAM
- Peak vector performance
 - 3.2/6.4 /12.8 Gops w. multiply-add (64b/32b/16b operations)
 - 1.6/3.2/6.4 Gops wo. multiply-add
 - 1.6 Gflops (single-precision)

Power Consumption

Vector IRAM HOT CHIPS 12

- Power saving techniques
 - Low power supply for logic
 - Possible because of the low clock rate
 - Wide vector datapaths provide high performance
 - Extensive clock gating and datapath disabling
 - Utilizing the explicit parallelism information of vector instructions and conditional execution
 - Simple, single-issue, in-order pipeline
- Power consumption: 2.0 W

– MIPS core: 0.5 W

Vector unit: 1.0 W

– DRAM: 0.2 W

– Misc.: 0.3 W

Software Tools

Vector IRAM HOT CHIPS 12

• VIRAM compiler

- Vectorizing compiler with C/C++/Fortran front-ends
- Based on the Cray's PDGCS production environment for supercomputers (J90, T3E, SV1, SV2)
- Extensive vectorization and optimization capabilities including outer loop vectorization
- No need to use special libraries or variable types for vectorization

Other software tools

- Assembler, disassembler, debugger
- ISA simulator and performance model

Performance: Efficiency

	Peak	Sustained	% of Peak
Image Composition	6.4 GOPS	6.40 GOPS	100%
iDCT	6.4 GOPS	3.10 GOPS	48.4%
Color Conversion	3.2 GOPS	3.07 GOPS	96.0%
Image Convolution	3.2 GOPS	3.16 GOPS	98.7%
Integer VM Multiply	3.2 GOPS	3.00 GOPS	93.7%
FP VM Multiply	1.6 GFLOPS	1.59 GFLOPS	99.6%
Average			89.4%

Performance: Comparison

	VIRAM	MMX	VIS
Image Composition	0.13	-	2.2 (17.0x)
iDCT	0.75	3.75 (5.0x)	-
Color Conversion	0.78	8.00 (10.2x)	-
Image Convolution	5.49	5.49 (4.5x)	6.19 (<mark>5.1x</mark>)
QCIF (176x144)	7.1M	33M (4.6x)	-
CIF (352x288)	28M	140M (5.0x)	-

- QCIF and CIF numbers are in clock cycles per frame
- All other numbers are in clock cycles per pixel

Performance: FFT

Conclusions

Vector IRAM HOT CHIPS 12

Vector IRAM

- An integrated architecture for media processing
- Based on vector processing and embedded DRAM
- Simple, efficient, and scalable

Prototype

- 16 MBytes DRAM, 256b vector unit
- 150M transistors, 290 mm²
- 1.6 Gops/W at 200 MHz

Prototype status

- RTL model completed
- Back-end design and verification in progress
- Design tape-out in late fall 2000

Acknowledgments

- IBM Microelectronics
- MIPS Technologies Inc
- Katherine Yelick, Randi Thomas, Thinh Nguyen, James Beck, Dave Judd, Krste Asanovic, and Richard Fromm
- This research is sponsored by DARPA, NSF, and the California State MICRO program