

SEQUENCE LISTING

COPY OF PAPERS
ORIGINALLY FILED

<110> Fisher, Paul B.
Leszcyniecka, Magdalena

<120> GENES DISPLAYING ENHANCED EXPRESSION DURING CELLULAR SENESCENCE AND TERMINAL CELL DIFFERENTIATION AND USES THEREOF

<130> A34584-A-PCT-USA (070050.1664)

<140> PCT/US00/02920
<141> 2000-02-02

<150> US 09/243,277
<151> 1999-02-02

<160> 51

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 674
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 534, 590
<223> a or g or c or t

<400> 1
aattccggcac gagcacgtct tgacccttcaa cgcaaagtgg aatctttgca agaagagatt 60
gccttttga agaaactcca cgaagaggaa atccaggagc tgcaggctca gattcaggaa 120
cagcatgtcc aaatcgatgt ggatgttcc aagcctgacc tcacggctgc cctgcgtgac 180
gtacgtcagc aatatgaaag tgtggctgcc aagaacctgc aggaggcaga agaatggtag 240
aaatccaagt ttgctgaccc ctctgaggct gccaaccgga acaatgacgc cctgcgcccag 300
gcaaagcagg agtccactga gtaccggaga caggtgcagt ccctcacctg tgaagtggat 360
gcccttaaag gaaccaatga gtccctggaa cgccagatgc gtgaaatggaa agagaacttt 420
gccgttgaag ctgctaacta ccaagacact attggcccgcc tgcaggatg agattcagaa 480
tatgaaggag gaaatggctc gtcacccctcg tgaataccaa gacctgctca atgntaagat 540
ggcccttgac attgagattt ccacctaçag gaagctgctg ggaaggcgan gagagcagga 600
tttctctgct cttccaaact tttcctcctt gaccttgagg gaaactaatac tggattcact 660
ccctcttggg tggaa 674

<210> 2
<211> 678
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 566, 669
<223> a or g or c or t

<400> 2

aattcggcac gaggcaggacc caaggaacca aaattgcac tcatggctc aagggtcg 60
tggttgaagt gaggcttgc gatggcaga atgatgaagt tgcattagaa aattcaagct 120
gattactgaa gatgttcagg gtaaaaaactg cctgactaac ttccatggca tggatctac 180
ccgtgacaaa atgtgttcca tggtaaaaa atggcagaca atgattgaag ctcacgttga 240
tgtcaagact accgatggtt acttgctcg tctgttctgt gttgtttt ctaaaaaacg 300
caacaatcag atacggaaga cctcttatgc tcagcaccaa caggtccgaa aatccgaa 360
gaagatgatg gaaatcatga cccgagaggt gcagacaat gactgaaag aagtggtaa 420
taaatttatttccagacagca ttggaaaaga catagaaaag gcttccaat ctatttatcc 480
tctccatgtat gtcttcgtt gaaaagtaaa aatgctgaag aagcccaat ttgaatttgg 540
aaagctcatg gagcttcatg gtgaanggca gtatgttgg aaaaagccac ttggggacga 600
aacaggtgct aaaagtttga acgactgatg gatattgaac cccagtcacaa gaatctgg 660
aaaggtcana cttcaaat 678

<210> 3
<211> 670
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 656
<223> a or g or c or t

<400> 3
aattcggcac gaggatgatg accttcaaga aaatgaagac aataaacaac ataaagaaag 60
cttggaaaaga gtgaccttg ctaccaga tcatggcggaa actgaagata caggttttt 120
aaatgtttaaa aaaaattctg atgaagttaa atccttcctt gaaaaaaagac aggaaaagat 180
gaatgaaaaa attgcattt tagaaaaaaga gttgttagaa aaaaagccgt ggcaacttca 240
gggggaagtg acagcacaga agaggccaga gaacagccctc ctggaggaga ccctacactt 300
tgaccatgtat gtccggatgg cacctgtat tacagaggaa accacccttc aactggaaaga 360
tatcatataa cagaggataa gagatcaggc ttggatgtat gtagtacgtt aagaaaaacc 420
taaagaggat gcatatgaat ataaaaagcg ttttttttta gaccatgaga agatgtttt 480
gaggcttgat gaaattttat aacaggatgat catcaactc aaccagcaaa aaacagcaga 540
agaagaaaaat ccagaacatg tagaaattca gaagatgtat gattccctt tcttaaattt 600
gatgcctctc aaacttccct ttatccctt accgcctgtc cagagattaa agttggggcc 660
aaatctgcca 670

<210> 4
<211> 675
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 530, 534, 650, 651, 655
<223> a or g or c or t

<400> 4
aattcggcac gagatctgt gcaaggcagcc aaatgtttagt agaaggaact gggccgcctg 60
ctaaggatg ccccttcagg cataggcagt attttctgt cagcatctga gcttggatg 120
ggtagtgggg aaatgggcca gggcgagtc agctccagtc ccagagagct cctctctaa 180
tcagagcaac tgaactgaga cagaggagga aaacagagca tcagaagcct gcagtgggg 240
ttgtgacggg taggaggata ggaagacagg gggcccaac ctggattgc tgagcaggaa 300
agctttgcattt gttgtctaa ggtacatggaa taaagatggtt ttttttggcc gggcgagtc 360
gctcatgcct gtaatcccag cactttggca ggcggaggtg ggcggatcac gaggtctgga 420
gtttgagacc atcctggctt acacagtgaa atcccgttca tactaaaaat acaaaaaattt 480
agccaggcgt ggtggctggc acctgttagtc ccagctactt gggagctgan gcangagaat 540

ggcgtgaacc tggaaaggaag aagttgcagg tgagcccaag attgcgcccc cttgcactcc 600
agctggcaa cagagcaaga cttcatctca aaaaaaaaaaaa aaaaaaaactn ncggnggggg 660
ccccccgggc cccca 675

<210> 5
<211> 460
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 411, 412, 415, 416, 423, 430, 433, 439, 442, 446, 452, 454,
456, 457
<223> a or g or c or t

<400> 5
aattcggcac gaggcacctct gtgtctacca tgacccctt cctcacactg acctgtgttc 60
cttcctgtt ctctttctt ttaaaaataa gaacctgggc agagtgcggc agctcatgcc 120
tgtaatccca gcacttaggg aggccgagga gggcagatca cgaggtcagg agatcgaac 180
catcctggct aacacgggtga aaccgggtct ctactaaaaa atacaaaaaaa ttagctggc 240
gcagagggcac gggcctgttag tcccagctac tcaggaggcg gaggcaggag aatggcgtca 300
acccgggagg cggaggttgc agtgagccag gattgtgcga ctgcactcca gcctgggtga 360
cagggtgaaa cgccatctca aaaaataaaaa attaaaaaaa aaaaaaaaaa nntcnngggg 420
ggncggtn cnatttcnc cntatnggg a gncntnncaa 460

<210> 6
<211> 445
<212> DNA
<213> Homo sapiens

<400> 6
aattcggcac gagttctgcc catgtgcag acagtggca agaacaagga ccagggcacc 60
tatgaggatt atgtcgaagg acttcgggtg tttgacaagg aaggaaatgg caccgtcatg 120
ggtgctgaaa tccggcatgt tcttgcaca ctgggtgaga agatgacaga ggaagaagta 180
gagatgctgg tggcagggca tgaggacagc aatgggttga tcaactatga agagctcg 240
cgcatggtgc tgaatggctg aggaccttcc cagtctccc agagtccgtg ccttccttg 300
tgtgaatttt gtatctagcc taaagttcc ctaggcttc ttgtctcagc aactttccca 360
tcttgcgtct ctggatgtat gtttgcgtc agcattcacc aaataaactt gctctctggg 420
ccctcgaaaa aaaaaaaaaa aaaaa 445

<210> 7
<211> 666
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 483, 498, 527
<223> a or c or g or t

<400> 7
aattcggcac gaggcaatgt gcttggttt aaagaaattc tccttggaa aaaagtatcc 60
tcttttaatt ttactccca taagcgtaaa tgcctggaca tagcttctgt gcaaccctta 120
aataaattgt ttgagtggtt ttttgagccc cagacaata atgttttaaa gttatcccct 180
tgctacttta ctgataccctt tattttttctt gagacagttt gctaatttaa aaatgttagca 240
ttccatttgtt atttattttctt ctcccttgcc aaaaagattt tctaatactg cttgtaccag 300
ccagagaaaatc atccaaaaca ctactcagct ctcttgcact gaggaaattt ttccccctac 360

attgactcct ggcctacatc agccaaactt aaccttgggt gggtttggat ttgatagcca 420
attagttctg tgctgggtgc aaagaattga tatttagatg gtttttaata ctcagcagat 480
tgncttcctt tatattgngt cttnnnatg ttgcattgtg ctttgntat cagcctgatt 540
ttttgctcag tatatgatag ttctgctgat gttttggta ttgggcagac atatcttcat 600
taagagttt tgaaaactc atcaaattcg atgaatacat tttcttcata acccattgga 660
aatatc 666

<210> 8
<211> 409
<212> DNA
<213> Homo sapiens

<400> 8
aattcggcac gagcgactac ggccggactaa tcttcaactc ctacatactt cccccattat 60
tcctagaacc aggcgacctg cgactcctt acgttgacaa tcgagtagta ctcccgattt 120
aagccccat tcgtataata attacatcac aagacgtctt gcactcatga gctgtcccca 180
cattaggctt aaaaacagat gcaattcccg gacgtctaaa ccaaaccact ttcaccgcta 240
cacgaccggg ggtatactac ggtcaatgct ctgaaatctt tggagcaaac cacagttca 300
tgccccatgt cctagaatttta attcccttaaa aatctttga aatagggccc gtatttaccc 360
tatagcaccc cctctacccctt ctctagagca aaaaaaaaaa aaaaaaaaaa 409

<210> 9
<211> 667
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 436, 663
<223> a or c or g or t

<400> 9
aattcggcac gagacaaggc acaaattgtc caaatcaagg aggctacaaa agggcagcct 60
agagggcaga acagagaaaa gcttagacaaa atgataagat cagccatatt tcattttgaa 120
tctgcagtgg aaaaaaaagcc cacattttagt gttggctcatc tagacctggc aagaatgtat 180
atagaagcag gcaatcacag aaaagctgaa gagaattttc aaaaattgtt atgcatgaaa 240
ccagtggtag aagaaacaat gcaagacata catttccact atggctcggtt tcaggaattt 300
caaaagaaat ctgacgtcaa tgcaatttac cattatttaa aagctataaa aatagaacag 360
gcatcattaa caaggataa aagtatcaat tttttgaaga aattggttt aaggaaacctt 420
cgagaaaaagg cattanactg gaaagcttga gcctccttgg gttcgctcac aaattggaaag 480
gaaatatgaa tgaagccctg gacttactatg agcggggccct gagactggct gctgactttg 540
agactctgtg agacaaggc cttagcccca gatatcagcc ctttccattt catttcattt 600
tatgctaaca ttactaattc atctttctg ctactggta tcagaacctt ataattccct 660
ggnatga 667

<210> 10
<211> 672
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 585
<223> a or c or g or t

<400> 10
aattcttcctt gtacgattgg ggatataacg ggcttcacta accttcccta ggcattgaaa 60

cttcccccaa atctgatgga cctagaagtc tgctttgta cctgctggc cccaaagttg 120
ggcattttc tctctgttcc ctctctttg aaaatgtaaa ataaaaccaa aaatagacaa 180
cttttcttc agccattcca gcatagagaa caaaccttat ggaaacagga atgtcaattg 240
tgtaatcatt gttctaatta ggttaataga agtcctttag tatgtgttac aagaatttcc 300
cccacaacat cctttatgac tgaagttcaa tgacagttt tgtttgggtgg taaaggattt 360
tctccatggc ctgaattaag accattagaa agcaccaggg cgtgggagca gtgaccatct 420
gctgactgtt cttgtggatc ttgtgtccag ggacatgggg tgacatgcct cgtatgtt 480
agagggtgga atggatgtgt ttggcgctgc atgggatctg gtgcccctct tctcctggat 540
tcacatcccc acccaggggcc cggtttact aagtgtctgc cctanattgg gtcaaaggag 600
gtcatccaac tgactttatc aagtggaaatt gggatataatt tgatataactt ctggctaaca 660
acatgggaaa ag 672

<210> 11
<211> 672
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 585
<223> a or c or g or t

<400> 11
aattcttcct gtacgattgg ggatataacg ggcttcacta accttcccta ggcattgaaa 60
cttcccccaa atctgatgga cctagaagtc tgctttgta cctgctggc cccaaagttg 120
ggcattttc tctctgttcc ctctctttg aaaatgtaaa ataaaaccaa aaatagacaa 180
cttttcttc agccattcca gcatagagaa caaaccttat ggaaacagga atgtcaattg 240
tgtaatcatt gttctaatta ggttaataga agtcctttag tatgtgttac aagaatttcc 300
cccacaacat cctttatgac tgaagttcaa tgacagttt tgtttgggtgg taaaggattt 360
tctccatggc ctgaattaag accattagaa agcaccaggg cgtgggagca gtgaccatct 420
gctgactgtt cttgtggatc ttgtgtccag ggacatgggg tgacatgcct cgtatgtt 480
agagggtgga atggatgtgt ttggcgctgc atgggatctg gtgcccctct tctcctggat 540
tcacatcccc acccaggggcc cggtttact aagtgtctgc cctanattgg gtcaaaggag 600
gtcatccaac tgactttatc aagtggaaatt gggatataatt tgatataactt ctggctaaca 660
acatgggaaa ag 672

<210> 12
<211> 669
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 587, 595, 600, 660, 662
<223> a or c or g or t

<400> 12
aattcctaga caccaaatac agtgtggaa tacacaacct actagcctat gtgaaacacc 60
tgaaaggcca gaatgaggaa gccctgaaga gctaaaaga agctaaaaac ttaatgcagg 120
aagaacatga caaccaagca aatgtgagga gtctgggtac ctggggcaac tttgcctgga 180
tgtattacca catgggcaga ctggcagaag cccagactta cctggacaag gtggagaaca 240
tttgcagaa gctttcaaat cccttccgct atagaatggta gtgtccagaa atagactgtg 300
aggaaggatg ggccttgctg aagtgtggag gaaagaattt tgaacgggccc aaggcctgct 360
ttgaaaagggt gcttgaagtgc gaccctgaaa accctgaatc cagcgctggg tatgcgatct 420
ctgcctatcg cctggatggc tttaaatttag ccacaaaaaa tcacaagcca ttttcttgc 480
ttccccctaag gcaggctgtc cgcttaaatac cagataatgg atatattaag ggtctccttg 540
ccctgaagct tcagggatgaa ggacaggaaa cttgaaggag aaaagtnactn tgaanaactn 600

tacccaccat gtcctccaga cctatgcttt gattgcagcc aagttttacc gaaaaaaaagn 660
tntggata 669

<210> 13
<211> 702
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 530, 585, 600, 616, 654, 702
<223> a or c or g or t

<400> 13
aattcggcac gagtgttata ggagatcaca aatcaacatc tcacttccga accggggaag 60
aagacaagaa aattaatgaa gaactggagt ctcaatatca gcaaagtatg gacagtaaat 120
tatcaggaag atatcggcga cattgtggac ttggcttcag tgaggttagaa gaccatgatg 180
gagaaggtga tggctgttga gatgatgatg atgacgtga tgattcacct gatcctgaaa 240
gtccagatga ttctgaaagc gattcagagt cagagaaaga agaatctgct gaagaactcc 300
aagctgctga gcaccctgat gaagtggagg atcccaaaaa caaaaaagat gcaaaaaagca 360
attataaaaat gatgtttgtt aaatccagtg gttcataact cccaaacgct tagtcttgc 420
attaaaaagta agccttattt ttacaatgca cagtggagga ctgcttatacg agcacagacc 480
tttgcattat aatttttaaa aaggccctt taaataatta caaagagtgn ttgcttcaa 540
atgccatggg ttacactttt atggcatga ctataccatt ttgnaaaga gtagagttgn 600
ataaaaataag aaatantcc agtactcact tccttctatt agcatctcac cctntaattc 660
ccttatgggg aaatgcttct ttgtttttt atagctttt an 702

<210> 14
<211> 312
<212> DNA
<213> Homo sapiens

<400> 14
aattcggcac gaggtaaatg ttgagccttt ttggcctggc ttgtttgcaa aggcctggc 60
caacgtcaac attgggagcc tcatctgcaa tggtagggcc ggtggacctg ctccagcagc 120
tggtgctgca ccagcaggag gtcctgcccc ctccactgct gctgctccag ctgaggagaa 180
gaaagtggaa gcaaagaaag aagaatccga ggagtctgat gatgacatgg gcttggct 240
ttttgactaa acctcttttta taacatgttc aataaaaagc tgaactttaa aaaaaaaaaa 300
aaaaaaaaaa ac 312

<210> 15
<211> 391
<212> DNA
<213> Homo sapiens

<400> 15
aattctgagg aggaactgat gatggcatgg aagaactttt cagtcatctg aaggaggttc 60
cgctggttt cctcaaggct ctctgatggt tctaaccctgg taggatccac ttcaaagcta 120
acatgttgc aatcagagga tggatcaca attcgttaata aaggatccag gagttttgt 180
agataggttag caccatatac cttgaaacag aatgtcatta tttactggc caagctgtt 240
cctcggaga gaggctgcat ggaggctgccc aattctactt ctttagaaaa catgttccag 300
agcagggtt agagtaaatg ccgagaatca aacagagtaa ccagaactcg agggggggcc 360
cggtacccaa ttgccttat agtggatcg t 391

<210> 16
<211> 720
<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 6, 7, 359, 383, 449, 456, 459, 473, 501, 504, 515, 518, 528, 532, 535, 538, 549, 562, 567, 568, 577, 579, 601, 603

<223> a or c or g or t

<221> unsure

<222> 614, 618, 621, 625, 633, 636, 641, 678, 683, 691, 708

<223> a or c or g or t

<400> 16

aattcnnatc gagnttcttt gtatgtgaac ggtcctggaa ggattctgtt gtccttggc 60
aggtgtgtgg tttgcgttat agactggctc cggtgatctg gccattatac tctgctgtct 120
ccatcttgag gatgttagggg attatgctgt ctatcgaaac attgccaatg agaccagtaa 180
aaaaaaagttc ttctgttatg ttggagctca tcagcctgag tgccggcagg cgaacgagga 240
tccgggcca tctataaaag ggagtgtcat tagaaaaagga gactgttga tgcccttcaa 300
ccacagctca gcaaaggctc ctggggtccc gtctgtattt caccagaatc aaaccaacng 360
gatccacctt ccacccacct ttntttctg atttcaacag ttccctttat agaaaatttat 420
catgagaaaaa aaccaaatga gtccaaaang tatgtncana tgggttccct tcnctctggt 480
aatccaactt tcctaaccctt nccnccaaaaaaa aaaaanctngg aattcttnac cnggnggnca 540
ccttaagggng gaagccttca tnggaannac ttgctanana ctcatataaa aaaccgatata 600
ntnccaaccc tghtnttntct gncccnngaa aanaacntccc ntgacatatg gtc当地ataa 660
aaggtttaa aggggaantt ttnaaaaaaa anaaaaaaa aaaccctngg gggggggccc 720

<210> 17

<211> 205

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 158, 159, 161, 163, 176, 182, 186, 189, 191, 193, 197, 1699, 200, 202, 203

<223> a or c or g or t

<400> 17

aattcgaaca gcataccccc gattccgcta cgaccaactc atacacctcc tatgaaaaaa 60
cttccttacca ctcaccctag cattacttat atgatatgtc tccataccca ttacaatctc 120
cagcattccc cctcaaacctt aaaaaaaaaaaa aaaaaaaanntt nngggggggg cccggncccc 180
anttcncnt ntngggngnn gnntt 205

<210> 18

<211> 691

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 479

<223> a or c or g or t

<400> 18

aattcttaca tgggtttcttt gctttaagtg taactggcag tttccattg gtttacatgt 60
gaaatagttc aaagccaaat ttatatacaa ttatatcgtt cctcttcaa agtagccat 120

catggatctg gtagggggaa aatgtgtatt ttattacatc tttcacattg gctatttaaa 180
gacaagaca aattctgttt cttgagaaga gaatattagc tttactgttt gttatggctt 240
aatgacacta gctaataatca atagaaggat gtacatttcc aaattcacaa gttgtgtttg 300
atatccaaag ctgaatacat tctgcttca tcttggcac atacaattat ttttacagtt 360
ctcccaaggg agttaggcta ttcacaacca ctcattcaaa agttgaaatt aaccatagat 420
gtagataaac tcagaaattt aattcatgtt tcttaatgg gctactttgt ccttttgnt 480
attagggtgg tatttagtct attagccaca aaattggaa aggagtagaa aaagcagtaa 540
ctgacaacctt gaataataca ccagagataa tatgagaatc agatcattc aaaactcatt 600
tcctatgtaa ctgcattgag aactgcataat gttcgctga tataatgggt tttccattt 660
cgaatgggtc cattctctc ccggactttt t 691

<210> 19

<211> 483

<212> DNA

<213> Homo sapiens

<400> 19

tctagaacta gtggatcccc cgggctgcag gaattcggca cgaggttta agtactctga 60
aattgatctg ttagtcaataa tactaatatg ttatcttta ccgtattctg cctctcaacta 120
ttgattttaa tttagtttaga gtattttagc tgttatttct tgagcttaat attttttag 180
agttaactct ttaaggagat aatcatggct gtagacaagg ccagggtctgg ctgacgtgcc 240
ttagaaagtt tgaatgcaat aaagcggtgt ttggcggtct cctgcattgt agtgcgggtt 300
acaaatgcta attgttccgt caactgggtg cagcagatga gccgcccact acagacggct 360
actgcccagg gacctgcccc ggccccaccc aagggtctcc aagggttgag atttctgcag 420
acctatagcc agcacactta gtcctgcccct atatagagtt cctttcggtt aagctttga 480
taa 483

<210> 20

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 556, 558, 587

<223> a or c or g or t

<400> 20

gcacgagtgc aaatgtacat tgggtattct gaagcttata tcggagcaga cattaaagac 60
aaattaaat gtatgactt tgatgtgcataaaatgaaga cactaaaaaa cattatttca 120
cctccgtggg attcaggaa atttgaagta gaaaaacaga ctgcagaaga aacggggctt 180
acgccattgg aacactcaag gaaaactcca gattccagac cttccttgga agaaaccctt 240
gaaattgaaa tgaatgaaag tgacatgtatg ttagagacat ctatgtcaga ccacagcacg 300
tgactccagt cagtggctt ggtccactg tcccagtgtt ggttagtatt ctttcacatc 360
ctctccatgg ctttggatgt tcccacttcc taacgtgact ccaaactgca tctctacatt 420
taggaacaga gacccgcctt aagagactgg atcgcacacc tttgcaacag atgtgttctg 480
attctctgaa cttttttttt agttatacat agtggataaa agaaggtaaa ccatcaaaaa 540
aaaaaaaaaa aaaccncngg gggggcccg gcccaatttgc cccttangg 589

<210> 21

<211> 713

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 389, 396, 400, 409, 418, 429, 463, 468, 520, 556, 575, 591,

594, 613, 635, 641, 650, 666, 680, 682, 700, 704
<223> a or c or g or t

<400> 21
aattcaagtg cctgattaat tgaggtggca acatagtttgc agacgagggc agagaacagg 60
aagatacata gctagaagcg acgggtacaa aaagcaatgt gtacaagaag actttcagca 120
agtatacaga gagttcacct ctactctgcc ctccctcatacg tcataatgtt gcaagtaaag 180
aatgagaatg gattctgtac aatacactag aaaccaacat aatgtatttc tttaaaacct 240
gtgtgaaaaaa ataaatgttc caccagttagg gataggggaa aagtaaccaa aagagagaaa 300
gagaaaggaa tgctgggta tctttttaga ttgtaatcga atggagaaaat ttgcagtatt 360
ttagccacta ttaggaattt ttttttng taaaangaan actgaactnt gttcaaangc 420
tttcatganc ctggtttgaa acggtaggaa agcacccaaa cggggancc tggggactaa 480
gggcctgggta caaggacttgc ggaaatggca ttgataataan atgggggggt tttccccct 540
ttaaaaatgt tggatnttaa gggatataac ctttntttta ctccgaaaat ntntgagaa 600
atcccaaaat tcncggatg cttggAACCA ttganatttt ntagggaaan gccttgaata 660
gcctanacct caaagttggc gngAACCAA attggagccn ttgncccacc tcc 713

<210> 22
<211> 480
<212> DNA
<213> Homo sapiens

<400> 22
cggcacgaga agaagtggta caggaggaat ttgtgatgtt gagctgatct taatcaaaaa 60
tactaagct cgtacgtctg catcgattat ctacgtggc gcaaatgatt tcatgtgtt 120
tgagatggag cgctcttac atgatgcact ttgtgttagt aagagattt tggagtcaaa 180
atctgtgtt cccgggggggt gtgctgttgc agcagccctt tccatataacc ttgaaaacta 240
tgcaaccaggc atggggtctc gggAACAGCT tgcgatttgc gagtttgca gatcacttct 300
tgttattttcc aatacactag cagttaatgc tgcccaggac tccacagatc tggttgcaaa 360
attaagagct ttccataatg agggccaggt taacccagaa cgtaaaaatc taaaatgatt 420
ggcttgcatt tgagcaatgg taaacctgc gggggggccc ggtacccaat tcgcccata 480

<210> 23
<211> 198
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 21
<223> a or c or g or t

<400> 23
cctgttaaaa gctgttcttg ngtgttacat gtaacagaca tggtaaatat ttgtttacag 60
tctttgttta acaaaccatg catttaagtt taagtgaagt caacaaaaag gaaataggtg 120
tatggatatg tgattttgag attaaagtta gtcttaaat gtaaaaaaaa aaaaaaaaaa 180
aaaaaaaaaaa aaaaaaaaaa 198

<210> 24
<211> 414
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 368, 370, 372, 374, 375, 376, 377 383, 386, 389

<223> a or c or g or t

<400> 24

aattcggcac gagaaaagca gtataactgc ctgacacagc gggattgaac gagagaagaa 60
attgttcgtt attgctcaga aaattcaaac acgcaaagat cttatggata aaactcagaa 120
agtgaaggta aagaaaagaaa cggtaactc cccagctatt tataaatttc agagtcgtcg 180
aaaacgttga cgtgttatag ataagccttg tcattctgta tcaaaaatct gttgtcggtt 240
tctagtaact tcaaattcca ttactccaaa tggcatggtt ttccgggttg taaccataac 300
taaattgtca gtctgacatt taatgtctt ctatggacaa cattaaatct ccctcccttc 360
tgtagaanan anannnnaaa aancnccng gggggggccg ggtccccatt cccc 414

<210> 25

<211> 367

<212> DNA

<213> Homo sapiens

<400> 25

aattcggcac gagaaaagca gtataactgc ctgacacagc gggattgaac gagagaagaa 60
attgttcgtt attgctcaga aaattcaaac acgcaaagat cttatggata aaactcagaa 120
agtgaaggta aagaaaagaaa cggtaactc cccagctatt tataaatttc agagtcgtcg 180
aaaacgttga cgtgttatag ataagccttg tcattctgta tcaaaaatct gttgtcggtt 240
tctagtaact tcaaattcca ttactccaaa tggcatggtt ttccgggttg taaccataac 300
taaattgtca gtctgacatt taatgtctt ctatggaca acattaaatc tccctccctt 360
ctgtaaa 367

<210> 26

<211> 432

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 386, 389, 390, 397, 404, 409, 413, 416, 424, 426, 430

<223> a or c or g or t

<400> 26

aattcggcac gaggcagact tgaaacagtt ctgtctgcag aatgctcaac atgaccctct 60
gctgactgga gtatctcaa gtacaaatcc cttcagaccc cagaaagtct gttccttttt 120
gtagtaaaat gaatcttca aaggttttcc aaaccactcc ttatgatcca gtgaatattc 180
aagagagcta catttgaagc ctgtacaaaa gcttacccct gtaacacatg tgccataata 240
tacaaacttc tacttcgtc agtccttaac atctacccct ctgaattttc atgaatttct 300
atttcacaag ggttaattgtt ttatatacac tggcagcagc atacaataaa acttagtatg 360
aaactttaaa aaaaaaaaaaaa aaaacntcnn ggggggnccc ggancccant tcnccntata 420
gggngnccgn tt 432

<210> 27

<211> 398

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 288, 298, 345, 348, 352, 357, 358, 368

<223> a or c or g or t

<400> 27

aattcggcac gagtacaaaa ccagttggtg gtgacaagaa cggcggtacc cgggtggta 60

aacttcgcaa aatgcctaga tattatccta ctgaagatgt gcctcgaaag ctgtttagcc 120
acggcaaaaa acccttcagt cagcacgtga gaaaactgcg agccagcatt acccccggga 180
ccattctgtat catcctcaact ggacgccaca gggcaagag ggtggtttc ctgaagcagc 240
tggctagtggtt cttattactt gtgactggac ctctggcct caatcgantt cctctacnaa 300
gaacacacca gaaatttgcattt atgcccattt caaccaaaaat cgatntcngc antgtannaa 360
atcccaanac atcttactga tgcttacttc aagatgaa 398

<210> 28
<211> 232
<212> DNA
<213> Homo sapiens

<400> 28
aattcggcac gagattgtat cggtttata ttacctgttc tgcttcacca ggagatcatg 60
ctgctgtgtat actgagttt ctaaacagca taaggaagac ttgctccct gtcctatgaa 120
agagaatagt tttggagggg agaagtggga caaaaaagat gcagtttcc tttgtattgg 180
gaaatgtgaa aataaaatttgcattt caaaaaaaaaaa aaaaaaaaaaa aa 232

<210> 29
<211> 539
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 495, 508, 511, 526, 529
<223> a or c or g or t

<400> 29
aattcggcac gaggacaacc agaaagtaag gtgttctact tgaaaatgaa aggagattat 60
tttaggtatc tttctgaagt ggcatctgga gacaacaaac aaaccactgt gtcgaactcc 120
cagcaggctt accaggaagc atttgaattt agtaagaaag aaatgcagcc tacacacccca 180
attcgtcttg gtctggactt aaatttctca gtctttactt atgagattctt aaactctcct 240
gaaaaggcctt gtgcctggc aaaaacggca tttgatgaag caattgctga attggatacg 300
ctgaatgaag agtcttataa agacagcact ctgatcatgc agttacttag ggacaattca 360
ctctgtggac atcgaaaac cagggagacg aaggagacgc tggggagggg gagaactaat 420
gtttctcgatc ctttgtatc tgttcgtgtt cactctgtac cctcaacata tatcccttgt 480
gcgataaaaaa aaaanaaaaaa aaaaaccntc ngggggggccc ccgganccn attccccct 539

<210> 30
<211> 568
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 274, 278, 283, 291, 308, 314, 324, 326, 327, 331, 341, 355,
371, 419, 461, 531, 534, 545, 558
<223> a or c or g or t

<400> 30
attccaaacc aagtagtgtc tgtcagccctt cttaactctg tgcacgcctt atttcgtct 60
tttacatttg ttcttcttagg gaatgtatgc atctctat atatttccct tctcaaaacc 120
agaacatcaa cagtgtgtt tctgacactt cagacatccc acgcaaagcc acattgaattt 180
tttgccaaat gaaaaacaca tccacaatca agttctaaga ggggtgtcaag tggggaaat 240
taatattgtt tattattcaa aaattttagtt tatnaaangg aancaaaacc nttgaacctt 300
tttcccnnaa aaanaaggaa aattnnntgt ngaccaaggg ncgaacctga atccncctt 360

aaaaattgtt ntctcagaaa ggaaaagcgc cctccagttc ttttaccca agaattana 420
aaaatttggt ccaagattt atatgttcag ttgttatgt ntaaaataa ctttctggat 480
tttgtgggg aggaccggaa aaggaaggga gtttattcct atgttataca ntanaaactt 540
ccccnataaa atgcccataatnaga tgggttga 568

<210> 31
<211> 315
<212> DNA
<213> Homo sapiens

<400> 31
aattcggcac gagcagggag ccgctagtga aaatctggca tgaaataagg actaatggcc 60
ccaaaaaagg aggtggctct aagtaaaact gggattggac agtagtggtg catctgggcc 120
ttgcccgcctg agagccccag gagacatcggt ctagagtgcac catggctatg ctcccgctcg 180
gaagatgcca gcatctggcc tcccactgtt ttcagctgtg tccccagtc cgtgtcttt 240
tagaatgtga atgatgataa agttgtgaaa taaaggtttc tatctagttt gaaaaaaaaa 300
aaaaaaaaaaa aaaaa 315

<210> 32
<211> 458
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 342, 355, 365, 368, 375, 381, 385, 414, 445
<223> a or c or g or t

<400> 32
aattcaagga actttacatt gtaagagaaa acaaaacact gcaaaaagaag tggccgact 60
atcaaataaa tggtaaaatc atctgcaat gtggccagggc ttggggaca atgatggtgc 120
acaaaaggctt agattgcct tggctcaaaa taaggaattt tggtagtggtt ttcaaaaata 180
attcaacaaa gaaacaatac aaaaagtggg tagaattacc tatcacattt cccaatcttg 240
actattcaga atgctgttta ttttagtgcattt aggatttagca cttgattgaa gattctttt 300
aaatactatc agttaaacat ttaatatgat tatgattaat gnattcatta tgctncagac 360
tgacntanga atcantaaaa ngatngttt actctgcaaa aaaaaaaaaa aacncggggg 420
ggggccccggc cccaaatttcc ccttntgggg gggggttt 458

<210> 33
<211> 470
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 434, 459, 460
<223> a or c or g or t

<400> 33
aattcttatac ttccagaggc tacaattatt ataatggaca atactttac ctttgcgtct 60
aaagatcaga ttagtttat ttgttcaattt acgtgcattt attatccctt ctgaattata 120
gaccgagtct tgggttttag cctaagagaa gatttatgtt gtaatttctt ctcaggtatg 180
gaaccacggc cataactaac atgttggcca gaatagaacc actggtaaa catatttat 240
tcaccatataa gtgatcttta tcaatattt ggatttagaca acaaattacc tttctgggtg 300
tttcttgcata actatactcc tgggttgcattt ttaaactttt tggctaaatgtt ttaatttaa 360
gatgtttgaa tggcgtttt atgttattgtt actacaataa accaaccctt tttatataaa 420
aaaaaaaaaaa aacntcgagg gggggccccggc cccaaatttcc ccttntgggg 470

<210> 34
<211> 261
<212> DNA
<213> Homo sapiens

<400> 34
aattcgaact gtgtgtatgt cagtggaaatc aaatcaaaag ccactaacat ggctgtctgt 60
ttcactggac tggccattt gctggtaaa aggattgggg cccaaatcct ctggcctagc 120
atttctcagt gttgctatt cagactgtct aaatacagca tggacaaggc tgaagaagcc 180
aaatctagca gtcatttctg atttcattat attctcccc tttccctgct aaaaagacaa 240
aaaacaaaaa aaaaaaaaaa a 261

<210> 35
<211> 309
<212> DNA
<213> Homo sapiens

<400> 35
aattcggcac gagctggaca ccaacagtga tggtcagcta gatttctcag aatttcttaa 60
tctgatttgtt ggcctagcta tggcttgcctt cttcaaggctg tcccttccca 120
gaagcggacc tgaggacccc ttggccctgg cttcaaaacc caccctt cttccagcc 180
tttctgtcat catctccaca gcccacccat cccctgagca cactaaccac cttcatgcagg 240
ccccacctgc caatagtaat aaagcaatgt cactttta aaacatgaaa aaaaaaaaaa 300
aaaaaaaaa 309

<210> 36
<211> 243
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 8
<223> a or c or g or t

<400> 36
aattcggntc gagctcgaat aagtttgact tggttttat cttaccacc agatcattcc 60
ttctgttagct caggagagca cccctccacc ccatttgctc gcagtatcct agaatcttg 120
tgctctcgct gcagttccct ttgggttcca tggtttccctt gttccctccc atgcctagct 180
ggattgcaga gttaagttta tgattatgaa ataaaaacta aataacaaaa aaaaaaaaaa 240
aaa 243

<210> 37
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 546, 553, 573
<223> a or c or g or t

<400> 37
aattcggcac gagtaccatt cgcctgaat ttgcttagtggcaggctctaaa tcaagtgttag 60
ttccgtgtga acttgcctgc agaaccaggc gtgctttgaa gcaatgttggcggacactac 120
cacaagcccc ttctggaaag gatgcagaaa agaccccgac agtttagcatt tcttggtag 180

aacttagtaa caatctagag aagaagccca ggaggactaa agctgaaaac atccctgctg 240
ttgtataga gataaaaaac atgccaaca aacaacctga atcatcttg tgagtcttg 300
aaaagatgt atatttgact ttgccttaa actgcaagag gaaaaagact ccactgaaat 360
tctaagttt ccaagtagtg taattgaagt ccttgcgtgg tcacacagtt taattctatt 420
tttgcataa cataatggga ctgcataaca gagttctata ttacaatttt gtgatttata 480
gtacagagta cagctatgt gtgactgttt tgaaagcca gtttaacac tatgttacat 540
ttttgnttaa agnaagttaa accttatata acntaatgac atttgatttc tggattttcc 600
catgataaaa aatttaggggg gataaataaa aatggttact ggaatttcaa 650

<210> 38
<211> 687
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 444, 448, 451, 460, 461, 462, 468, 471, 476, 490, 506, 510,
514, 522, 524, 535, 550, 563, 567, 568, 573, 579, 587, 590
<223> a or c or g or t

<221> unsure
<222> 592, 593, 596, 608, 615
<223> a or c or g or t

<400> 38
gaattcgcga cgagattttt ttattttca ttttccctt aggcatattt agtattttc 60
cctcaggcag atcattctga gtgtgcgagt gtgtgtgcac atgttacaaa ggcaactacc 120
atgttaataa aatattcaat ttgaaatcct ttgcgttatt tgaattgttt ttgaaataatg 180
tttttatct ggtatgtaca ttgttgcatt agcttttaa ctttcccaag taattgaata 240
cattttatta cttggacttt tataaactct ttccctaccc actataaatg agacattcac 300
agcgttcaag ttgttattaa aggaaaggat tagtttgacc ctttctttt atggtaatg 360
catacatgca gttaaatccc tttatgcaaa tggacactg ctttactagg tcttttagtt 420
atttattttt ttttttttt ttgnccantt natttttan nntaattnct naaacncatt 480
atttttttn aaaataaaaaa aacacnatcn ttnttttta ananttaaac cttantaaat 540
tttcccccn aaaaaaaaaa accncatcn ttnttttta ananttaaac cttantaaat 540
tttcccccn aaaaaaaaaa ccntaanntt ttnaattttt tgaattnaan annaantaaa 600
cctttttnaa accnggcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 660
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 687

<210> 39
<211> 2549
<212> DNA
<213> Homo sapiens

<400> 39
gatggtcctt tccttctgcc acggcgggat cgggcactca cccagttgca agtgcgagca 60
ctatggagta ggcgagggtc tcgagctgtg gccgtggact taggcaacag gaaatttagaa 120
atatcttctg gaaagctggc cagatttgc gatggctctg ctgttagtaca gtcaggtgac 180
actgcagtaa tggcacagc ggtcagtaaa acaaaacctt ccccttccca gtttatgcct 240
ttggtggttg actacagaca aaaagctgct gcagcaggta gaattccac aaactatctg 300
agaagagagg ttgttacttc tgataaaagaa attctaacaa gtcgaataat agatcggtca 360
attagaccgc tctttccagc tggctacttc tatgatacac aggttctgtg taatctgtt 420
gcagtagatg gtgttaatga gcctgatgtc ctgcattt atggcgcttc cgtagccctc 480
tcattatcag atattccttg gaatggacct gttggggcag tacgaatagg aataattgat 540
ggagaatatg ttgttaaccc aacaagaaaa gaaatgttctt ctgtacttt aaatttagtg 600
gttgctggag cacctaaaag tcagattgtc atgttggaaag cctctgcaga gaacatttt 660
cagcaggact tttgccatgc tatcaaagtg ggagtgaaat atacccaaca aataattcag 720
ggcattcagc agttggtaaa agaaactgtt gttaccaaga ggacacctca gaagtttattt 780

accccttcgc cagagattgt gaaatatact cataaacttg ctatggagag actctatgca 840
gttttacag attacgagca tgacaaaagtt tccagagatg aagctgttaa caaaataaga 900
ttagatacgg aggaacaact aaaagaaaaa tttccagaag ccgatccata tgaataata 960
gaatccctca atgttggatc aaaggaaagtt tttagaagta ttgtttgaa tgaatacaa 1020
aggtgcgatg gtcgggatt gacttcactt aggaatgtaa gttgtgaggt agatatgtt 1080
aaaacccttc atggatcagc attatttcaa agaggacaaa cacaggtgt ttgtaccgtt 1140
acatttgatt cattagaatc tggattaaag tcagatcaag ttataacagc tataaatggg 1200
ataaaagata aaaatttcat gctgactac gagttccctc cttatgcaac taatgaaatt 1260
ggcaaagtca ctggttaaa tagaagagaa cttgggcatg gtgccttgc tgagaaagct 1320
ttgtatcctg ttattccag agatttcct ttcaccataa gagttacatc tgaagtccct 1380
gagtcaaatg ggtcatctc tatggcatct gcatgtggcg gaagtttagc attaatggat 1440
tcaggggttc caatttcattc tgctgttgc ggcgtagcaa taggattggt caccaaaacc 1500
gatcctgaga agggtaaat agaagattat cgtttgcgtc agatatttt gggatttggaa 1560
gattacaatg gtgacatgga cttcaaaaata gctggcacta ataaaggaat aactgcattt 1620
caggctgata ttaaattacc tggataatcca ataaaaattt tgatggaggc tattcaacaa 1680
gcttcagtgg caaaaaaggaa gatattacag atcatgaaaca aaactatttc aaaacctcga 1740
gcatctagaa aagaaaatgg acctgttgc gaaactgttc aggttccatt atcaaaacga 1800
gcaaaatttgg ttggacctgg tggctataac ttaaaaaaaac ttcaggctga aacagggtgt 1860
actatttagtc aggtggatgtc agaaacgttt tctgtatttgc caccacacc cagtgttatg 1920
catgaggcaa gagacttcat tactgaaatc tgcaaggatg atcaggagca gcaatttagaa 1980
tttggacgcg tatataccgc cacaataact gaaatcagag atactgggt aatggtaaaa 2040
ttatatccaa atatgactgc ggtactgctt cataacacac aacttgataa cgaaagattt 2100
aacatcctac tgcccttagga tttagaagttt gccaagaaat tcaggtgaaa tactttggac 2160
gtgaccgcg ccatggaaatc atgaggctt ctcggaaatg gcttcagtc ccagctacaa 2220
ccgtggtcg aactttgaat gacagaagta gtattgtat gggagaacct atttcacagt 2280
catcatctaa ttctcagtgc tttttttttt ttaaagagaa ttctagaattt ctatggatc 2340
tagggtgatg tgctgttagag caacattttt gtagatctt cattgtgttag atttctat 2400
aatataaata catttttaattt atttgtacta aatgctcat ttacatgtgc cattttttt 2460
attcgagtaa cccatatttgc tttaatttgc ttacattt aatcaagaa atatttattt 2520
ttaaaagtaa gtcatttata catcttgc 2549

<210> 40
<211> 650
<212> DNA
<213> Homo sapiens

<400> 40
ttgaagatta caatggtgac atggacttca aaatagctgg cactaataaa ggaataactg 60
cattacaggc tggatattaa ttacccggaa taccataaa aatttgtatg gaggctattc 120
aacaagcttca agtggcaaaa aaggagat taccatcat gaacaaaact atttcaaaac 180
ctcgagcatc tagaaaagaa aatggacctg ttgttagaaac tggtcagggtt ccattatcaa 240
aacggacaaa atttgttggc cctgggtggct ataactttaaaa aaaacttcag gctgaaacag 300
gtgtactat tagtcagggt gatgaagaaa cggtttctgt atttgcacca acacccagtg 360
ttatgcatttgc ggcaagaaga cttcattactt gaatctgcaaa ggatgtatcg gagcagcaat 420
tagaattttgg agcgtatata accggccacaa taactgaaat cagagatact ggtgtatgg 480
taaaattata tccaaatatgc actggcggtac tgcttcataa cacacaactt gataacgaaa 540
gattaaacat cctactgccc taggatttgc agttggccaa gaaattcagg tgaaatactt 600
tggacgtgac ccagccgatg gaagaatgag gctttctcga aaagtgcattc 650

<210> 41
<211> 640
<212> DNA
<213> Mus musculus

<400> 41
aatggtgac tggatatttgc aatagccggt acaaataaaag gaataactgc attacaggct 60
gatattaatgtc tacctggagt accaatttttattataatgg aagccatccaa acaagcgtca 120

gtggcaaaga aggagatact gcagataatg aacaaaacga tttcaaaacc tcgagcatca 180
agaaaagaaa atggaccagt tgtagaaaca gtaaagggttc cattatcaaa acgagcaaaa 240
ttcggtggc ctgggtggata tcacttaaaa aaactccagg ctgagacagg tctaacaatt 300
agtcagggtg atgaagaaac cttctccata tttgcaccaa cacctactgc aatgcataaa 360
gcaagagatt tcattacaga aatttgcaga gatgatcaag agcaacaatt agaatttgaa 420
gcagttata cccgcacaat aactgaaatc agagacactg gagtgatggt aaaactgtat 480
ccaaacatga ctgcagtgtc gcttcataat tcacaacttg accaacgaaa gattaaacat 540
cccactgccc taggactaga ggttggccaa gaaattcagg tcaaatactt tggccgtgt 600
ccagctgatg gaagaatgag gcttctcgt aaagtacttc 640

<210> 42
<211> 705
<212> PRT
<213> Homo sapiens

<400> 42
Asp Gly Pro Phe Leu Leu Pro Arg Arg Asp Arg Ala Leu Thr Gln Leu
1 5 10 15
Gln Val Arg Ala Leu Trp Ser Ser Ala Gly Ser Arg Ala Val Ala Val
20 25 30
Asp Leu Gly Asn Arg Lys Leu Glu Ile Ser Ser Gly Lys Leu Ala Arg
35 40 45
Phe Ala Asp Gly Ser Ala Val Val Gln Ser Gly Asp Thr Ala Val Met
50 55 60
Val Thr Ala Val Ser Lys Thr Lys Pro Ser Pro Ser Gln Phe Met Pro
65 70 75 80
Leu Val Val Asp Tyr Arg Gln Lys Ala Ala Ala Ala Gly Arg Ile Pro
85 90 95
Thr Asn Tyr Leu Arg Arg Glu Val Gly Thr Ser Asp Lys Glu Ile Leu
100 105 110
Thr Ser Arg Ile Ile Asp Arg Ser Ile Arg Pro Leu Phe Pro Ala Gly
115 120 125
Tyr Phe Tyr Asp Thr Gln Val Leu Cys Asn Leu Leu Ala Val Asp Gly
130 135 140
Val Asn Glu Pro Asp Val Leu Ala Ile Asn Gly Ala Ser Val Ala Leu
145 150 155 160
Ser Leu Ser Asp Ile Pro Trp Asn Gly Pro Val Gly Ala Val Arg Ile
165 170 175
Gly Ile Ile Asp Gly Glu Tyr Val Val Asn Pro Thr Arg Lys Glu Met
180 185 190
Ser Ser Ser Thr Leu Asn Leu Val Val Ala Gly Ala Pro Lys Ser Gln
195 200 205
Ile Val Met Leu Glu Ala Ser Ala Glu Asn Ile Leu Gln Gln Asp Phe
210 215 220
Cys His Ala Ile Lys Val Gly Val Lys Tyr Thr Gln Gln Ile Ile Gln
225 230 235 240
Gly Ile Gln Gln Leu Val Lys Glu Thr Gly Val Thr Lys Arg Thr Pro
245 250 255
Gln Lys Leu Phe Thr Pro Ser Pro Glu Ile Val Lys Tyr Thr His Lys
260 265 270
Leu Ala Met Glu Arg Leu Tyr Ala Val Phe Thr Asp Tyr Glu His Asp
275 280 285
Lys Val Ser Arg Asp Glu Ala Val Asn Lys Ile Arg Leu Asp Thr Glu
290 295 300
Glu Gln Leu Lys Glu Lys Phe Pro Glu Ala Asp Pro Tyr Glu Ile Ile
305 310 315 320
Glu Ser Phe Asn Val Val Ala Lys Glu Val Phe Arg Ser Ile Val Leu

	325	330	335
Asn Glu Tyr Lys Arg Cys Asp Gly Arg Asp Leu Thr Ser Leu Arg Asn			
340	345	350	
Val Ser Cys Glu Val Asp Met Phe Lys Thr Leu His Gly Ser Ala Leu			
355	360	365	
Phe Gln Arg Gly Gln Thr Gln Val Leu Cys Thr Val Thr Phe Asp Ser			
370	375	380	
Leu Glu Ser Gly Ile Lys Ser Asp Gln Val Ile Thr Ala Ile Asn Gly			
385	390	395	400
Ile Lys Asp Lys Asn Phe Met Leu His Tyr Glu Phe Pro Pro Tyr Ala			
405	410	415	
Thr Asn Glu Ile Lys Val Thr Gly Leu Asn Arg Arg Glu Leu Gly			
420	425	430	
His Gly Ala Leu Ala Glu Lys Ala Leu Tyr Pro Val Ile Pro Arg Asp			
435	440	445	
Phe Pro Phe Thr Ile Arg Val Thr Ser Glu Val Leu Glu Ser Asn Gly			
450	455	460	
Ser Ser Ser Met Ala Ser Ala Cys Gly Gly Ser Leu Ala Leu Met Asp			
465	470	475	480
Ser Gly Val Pro Ile Ser Ser Ala Val Ala Gly Val Ala Ile Gly Leu			
485	490	495	
Val Thr Lys Thr Asp Pro Glu Lys Gly Glu Ile Glu Asp Tyr Arg Leu			
500	505	510	
Leu Thr Asp Ile Leu Gly Ile Glu Asp Tyr Asn Gly Asp Met Asp Phe			
515	520	525	
Lys Ile Ala Gly Thr Asn Lys Gly Ile Thr Ala Leu Gln Ala Asp Ile			
530	535	540	
Lys Leu Pro Gly Ile Pro Ile Lys Ile Val Met Glu Ala Ile Gln Gln			
545	550	555	560
Ala Ser Val Ala Lys Lys Glu Ile Leu Gln Ile Met Asn Lys Thr Ile			
565	570	575	
Ser Lys Pro Arg Ala Ser Arg Lys Glu Asn Gly Pro Val Val Glu Thr			
580	585	590	
Val Gln Val Pro Leu Ser Lys Arg Ala Lys Phe Val Gly Pro Gly Gly			
595	600	605	
Tyr Asn Leu Lys Lys Leu Gln Ala Glu Thr Gly Val Thr Ile Ser Gln			
610	615	620	
Val Asp Glu Glu Thr Phe Ser Val Phe Ala Pro Thr Pro Ser Val Met			
625	630	635	640
His Glu Ala Arg Asp Phe Ile Thr Glu Ile Cys Lys Asp Asp Gln Glu			
645	650	655	
Gln Gln Leu Glu Phe Gly Ala Val Tyr Thr Ala Thr Ile Thr Glu Ile			
660	665	670	
Arg Asp Thr Gly Val Met Val Lys Leu Tyr Pro Asn Met Thr Ala Val			
675	680	685	
Leu Leu His Asn Thr Gln Leu Asp Asn Glu Arg Leu Asn Ile Leu Leu			
690	695	700	
Pro			
705			

<210> 43
 <211> 705
 <212> PRT
 <213> *Bacillus subtilis*

<400> 43

Met Gly Gln Glu Lys His Val Phe Thr Ile Asp Trp Ala Gly Arg Thr
1 5 10 15
Leu Thr Val Glu Thr Gly Gln Leu Ala Lys Gln Ala Asn Gly Ala Val
20 25 30
Met Ile Arg Tyr Gly Asp Thr Ala Val Leu Ser Thr Ala Thr Ala Ser
35 40 45
Lys Glu Pro Lys Pro Leu Asp Phe Phe Pro Leu Thr Val Asn Tyr Glu
50 55 60
Glu Arg Leu Tyr Ala Val Gly Lys Ile Pro Gly Gly Phe Ile Lys Arg
65 70 75 80
Glu Gly Arg Pro Ser Glu Lys Ala Val Leu Ala Ser Arg Leu Ile Asp
85 90 95
Arg Pro Ile Arg Pro Leu Phe Ala Asp Gly Phe Arg Asn Glu Val Gln
100 105 110
Val Ile Ser Ile Val Met Ser Val Asp Gln Asn Cys Ser Ser Glu Met
115 120 125
Ala Ala Met Phe Gly Ser Ser Leu Ala Leu Ser Val Ser Asp Ile Pro
130 135 140
Phe Glu Gly Pro Ile Ala Gly Val Thr Val Gly Arg Ile Asp Asp Gln
145 150 155 160
Phe Ile Ile Asn Pro Thr Val Asp Gln Leu Glu Lys Ser Asp Ile Asn
165 170 175
Leu Val Val Ala Gly Thr Lys Asp Ala Ile Asn Met Val Glu Ala Gly
180 185 190
Ala Asp Glu Val Pro Glu Glu Ile Met Leu Glu Ala Ile Met Phe Gly
195 200 205
His Glu Glu Ile Lys Arg Leu Ile Ala Phe Gln Glu Glu Ile Val Ala
210 215 220
Ala Val Gly Lys Glu Lys Ser Glu Ile Lys Leu Phe Glu Ile Asp Glu
225 230 235 240
Glu Leu Asn Glu Lys Val Lys Ala Leu Ala Glu Glu Asp Leu Leu Lys
245 250 255
Ala Ile Gln Val His Glu Lys His Ala Arg Glu Asp Ala Ile Asn Glu
260 265 270
Val Lys Asn Ala Val Val Ala Lys Phe Glu Asp Glu Glu His Asp Glu
275 280 285
Asp Thr Ile Lys Gln Val Lys Gln Ile Leu Ser Lys Leu Val Lys Asn
290 295 300
Glu Val Arg Arg Leu Ile Thr Glu Glu Lys Val Arg Pro Asp Gly Arg
305 310 315 320
Gly Val Asp Gln Ile Arg Pro Leu Ser Ser Glu Val Gly Leu Leu Pro
325 330 335
Arg Thr His Gly Ser Gly Leu Phe Thr Arg Gly Gln Thr Gln Ala Leu
340 345 350
Ser Val Cys Thr Leu Gly Ala Leu Gly Asp Val Gln Ile Leu Asp Gly
355 360 365
Leu Gly Val Glu Glu Ser Lys Arg Phe Met His His Tyr Asn Phe Pro
370 375 380
Gln Phe Ser Val Gly Glu Thr Gly Pro Met Arg Gly Pro Gly Arg Arg
385 390 395 400
Glu Ile Gly His Gly Ala Leu Gly Glu Arg Ala Leu Glu Pro Val Ile
405 410 415
Pro Ser Glu Lys Asp Phe Pro Tyr Thr Val Arg Leu Val Ser Glu Val
420 425 430
Leu Glu Ser Asn Gly Ser Thr Ser Gln Ala Ser Ile Cys Ala Ser Thr
435 440 445
Leu Ala Met Met Asp Ala Gly Val Pro Ile Lys Ala Pro Val Ala Gly

450	455	460
Ile Ala Met Gly Leu Val Lys Ser Gly Glu His Tyr Thr Val Leu Thr		
465	470	475
Asp Ile Gln Gly Met Glu Asp Ala Leu Gly Asp Met Asp Phe Lys Val		480
485	490	495
Ala Gly Thr Glu Lys Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile		
500	505	510
Glu Gly Leu Ser Arg Glu Ile Leu Glu Glu Ala Leu Gln Gln Ala Lys		
515	520	525
Lys Gly Arg Met Glu Ile Leu Asn Ser Met Leu Ala Thr Leu Ser Glu		
530	535	540
Ser Arg Lys Glu Leu Ser Arg Tyr Ala Pro Lys Ile Leu Thr Met Thr		
545	550	555
Ile Asn Pro Asp Lys Ile Arg Asp Val Ile Gly Pro Ser Gly Lys Gln		560
565	570	575
Ile Asn Lys Ile Glu Glu Thr Gly Val Lys Ile Asp Ile Glu Gln		
580	585	590
Asp Gly Thr Ile Phe Ile Ser Ser Thr Asp Glu Ser Gly Asn Gln Lys		
595	600	605
Ala Lys Lys Ile Ile Glu Asp Leu Val Arg Glu Val Glu Val Gly Gln		
610	615	620
Leu Tyr Leu Gly Lys Val Lys Arg Ile Glu Lys Phe Gly Ala Phe Val		
625	630	635
Glu Ile Phe Ser Gly Lys Asp Gly Leu Val His Ile Ser Glu Leu Ala		
645	650	655
Leu Glu Arg Val Gly Lys Val Glu Asp Val Val Lys Ile Gly Asp Glu		
660	665	670
Ile Leu Val Lys Val Thr Glu Ile Asp Lys Gln Gly Arg Val Asn Leu		
675	680	685
Ser Arg Lys Ala Val Leu Arg Glu Glu Lys Glu Lys Glu Glu Gln Gln		
690	695	700
Ser		
705		

<210> 44
 <211> 705
 <212> PRT
 <213> Homo sapiens

<400> 44
 Asp Gly Pro Phe Leu Leu Pro Arg Arg Asp Arg Ala Leu Thr Gln Leu
 1 5 10 15
 Gln Val Arg Ala Leu Trp Ser Ser Ala Gly Ser Arg Ala Val Ala Val
 20 25 30
 Asp Leu Gly Asn Arg Lys Leu Glu Ile Ser Ser Gly Lys Leu Ala Arg
 35 40 45
 Phe Ala Asp Gly Ser Ala Val Val Gln Ser Gly Asp Thr Ala Val Met
 50 55 60
 Val Thr Ala Val Ser Lys Thr Lys Pro Ser Pro Ser Gln Phe Met Pro
 65 70 75 80
 Leu Val Val Asp Tyr Arg Gln Lys Ala Ala Ala Gly Arg Ile Pro
 85 90 95
 Thr Asn Tyr Leu Arg Arg Glu Val Gly Thr Ser Asp Lys Glu Ile Leu
 100 105 110
 Thr Ser Arg Ile Ile Asp Arg Ser Ile Arg Pro Leu Phe Pro Ala Gly
 115 120 125

Tyr Phe Tyr Asp Thr Gln Val Leu Cys Asn Leu Leu Ala Val Asp Gly
130 135 140
Val Asn Glu Pro Asp Val Leu Ala Ile Asn Gly Ala Ser Val Ala Leu
145 150 155 160
Ser Leu Ser Asp Ile Pro Trp Asn Gly Pro Val Gly Ala Val Arg Ile
165 170 175
Gly Ile Ile Asp Gly Glu Tyr Val Val Asn Pro Thr Arg Lys Glu Met
180 185 190
Ser Ser Ser Thr Leu Asn Leu Val Val Ala Gly Ala Pro Lys Ser Gln
195 200 205
Ile Val Met Leu Glu Ala Ser Ala Glu Asn Ile Leu Gln Gln Asp Phe
210 215 220
Cys His Ala Ile Lys Val Gly Val Lys Tyr Thr Gln Gln Ile Ile Gln
225 230 235 240
Gly Ile Gln Gln Leu Val Lys Glu Thr Gly Val Thr Lys Arg Thr Pro
245 250 255
Gln Lys Leu Phe Thr Pro Ser Pro Glu Ile Val Lys Tyr Thr His Lys
260 265 270
Leu Ala Met Glu Arg Leu Tyr Ala Val Phe Thr Asp Tyr Glu His Asp
275 280 285
Lys Val Ser Arg Asp Glu Ala Val Asn Lys Ile Arg Leu Asp Thr Glu
290 295 300
Glu Gln Leu Lys Glu Lys Phe Pro Glu Ala Asp Pro Tyr Glu Ile Ile
305 310 315 320
Glu Ser Phe Asn Val Val Ala Lys Glu Val Phe Arg Ser Ile Val Leu
325 330 335
Asn Glu Tyr Lys Arg Cys Asp Gly Arg Asp Leu Thr Ser Leu Arg Asn
340 345 350
Val Ser Cys Glu Val Asp Met Phe Lys Thr Leu His Gly Ser Ala Leu
355 360 365
Phe Gln Arg Gly Gln Thr Gln Val Leu Cys Thr Val Thr Phe Asp Ser
370 375 380
Leu Glu Ser Gly Ile Lys Ser Asp Gln Val Ile Thr Ala Ile Asn Gly
385 390 395 400
Ile Lys Asp Lys Asn Phe Met Leu His Tyr Glu Phe Pro Pro Tyr Ala
405 410 415
Thr Asn Glu Ile Gly Lys Val Thr Gly Leu Asn Arg Arg Glu Leu Gly
420 425 430
His Gly Ala Leu Ala Glu Lys Ala Leu Tyr Pro Val Ile Pro Arg Asp
435 440 445
Phe Pro Phe Thr Ile Arg Val Thr Ser Glu Val Leu Glu Ser Asn Gly
450 455 460
Ser Ser Ser Met Ala Ser Ala Cys Gly Gly Ser Leu Ala Leu Met Asp
465 470 475 480
Ser Gly Val Pro Ile Ser Ser Ala Val Ala Gly Val Ala Ile Gly Leu
485 490 495
Val Thr Lys Thr Asp Pro Glu Lys Gly Glu Ile Glu Asp Tyr Arg Leu
500 505 510
Leu Thr Asp Ile Leu Gly Ile Glu Asp Tyr Asn Gly Asp Met Asp Phe
515 520 525
Lys Ile Ala Gly Thr Asn Lys Gly Ile Thr Ala Leu Gln Ala Asp Ile
530 535 540
Lys Leu Pro Gly Ile Pro Ile Lys Ile Val Met Glu Ala Ile Gln Gln
545 550 555 560
Ala Ser Val Ala Lys Lys Glu Ile Leu Gln Ile Met Asn Lys Thr Ile
565 570 575
Ser Lys Pro Arg Ala Ser Arg Lys Glu Asn Gly Pro Val Val Glu Thr

580	585	590
Val Gln Val Pro Leu Ser Lys Arg Ala Lys Phe Val Gly Pro Gly Gly		
595	600	605
Tyr Asn Leu Lys Lys Leu Gln Ala Glu Thr Gly Val Thr Ile Ser Gln		
610	615	620
Val Asp Glu Glu Thr Phe Ser Val Phe Ala Pro Thr Pro Ser Val Met		
625	630	635
His Glu Ala Arg Asp Phe Ile Thr Glu Ile Cys Lys Asp Asp Gln Glu		
645	650	655
Gln Gln Leu Glu Phe Gly Ala Val Tyr Thr Ala Thr Ile Thr Glu Ile		
660	665	670
Arg Asp Thr Gly Val Met Val Lys Leu Tyr Pro Asn Met Thr Ala Val		
675	680	685
Leu Leu His Asn Thr Gln Leu Asp Asn Glu Arg Leu Asn Ile Leu Leu		
690	695	700
Pro		
705		

<210> 45
 <211> 245
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Consensus sequence between Homo sapiens OLD-35 and
 Bacillus subtilis PNPase

<400> 45		
Asp Arg Leu Gly Leu Ala Ala Gly Asp Thr Ala Val Thr Ala Pro		
1	5	10
Pro Phe Pro Leu Val Tyr Ala Gly Ile Pro Arg Glu Ser Lys Leu Ser		
20	25	30
Arg Ile Asp Arg Ile Arg Pro Leu Phe Gly Gln Val Val Asp Ala Gly		
35	40	45
Ser Ala Leu Ser Ser Asp Ile Gly Pro Val Gly Ile Asp Asn Pro Thr		
50	55	60
Ser Asn Leu Val Val Ala Gly Lys Ile Met Glu Ala Ala Ala Ile Gly		
65	70	75
Ile Val Gly Lys Leu Phe Glu Leu Ala Glu Leu Glu Lys Glu Val		
85	90	95
Glu Val Arg Ile Glu Arg Asp Gly Arg Arg Ser Glu Val His Gly Ser		
100	105	110
Leu Phe Arg Gly Gln Thr Gln Leu Thr Leu Asp Lys Phe Met His Tyr		
115	120	125
Phe Pro Glu Gly Arg Arg Glu Gly His Gly Ala Leu Glu Ala Leu		
130	135	140
Pro Val Ile Pro Asp Phe Pro Thr Arg Ser Glu Val Leu Glu Ser Asn		
145	150	155
Gly Ser Ser Ala Ser Cys Leu Ala Met Asp Gly Val Pro Ile Val Ala		
165	170	175
Gly Ala Gly Leu Val Glu Tyr Leu Thr Asp Ile Gly Glu Asp Gly Asp		
180	185	190
Met Asp Phe Lys Ala Gly Thr Lys Gly Thr Ala Leu Gln Asp Ile Lys		
195	200	205
Gly Ile Glu Ala Gln Gln Ala Glu Ile Leu Met Thr Ser Arg Pro Thr		
210	215	220

Lys Gly Pro Gly Lys Glu Thr Gly Val Ile Thr Ser Ala Ile Gln Leu
225 230 235 240
Gly Val Lys Leu Glu
245

<210> 46
<211> 47
<212> RNA
<213> Homo sapiens

<400> 46
uaauauuuau auauuuauau uuuuuaaaaua uuuauuuuuuu uaauuuua 47

<210> 47
<211> 11
<212> RNA
<213> Homo sapiens

<400> 47
uaauuuauuuua a 11

<210> 48
<211> 33
<212> RNA
<213> Homo sapiens

<400> 48
uaauuuauuuua aaauuuuaaa uuuuauuuuu aau 33

<210> 49
<211> 62
<212> RNA
<213> Homo sapiens

<400> 49
guuuuuuaauu uaauuuauuaa gauggauucu cagauauuuua uauiuuuuuuau uuuauuuuuuu 60
uu 62

<210> 50
<211> 111
<212> RNA
<213> Homo sapiens

<400> 50
auuuuacaugu gccauuuuuuu uaaauucgagu aacccauauu ugaaaaauug uauiuuacauu 60
auaaaaaucaag aaauauuuau uauiuaaaagu aaguauuuua uacaucuuag a 111

<210> 51
<211> 34
<212> RNA
<213> Homo sapiens

<400> 51
aauuaauuuua uuaauuuauuu auuaauuuauu uaau 34