Temario detallado del módulo - UNC- Argentina

I. Introducción a lenguajes de programación

- 1. Presentación y características generales de Python
- 2. Programación interactiva con Notebooks.
 - Instalación e introducción al uso de Jupyter Notebook, Jupyter Lab
 Introducción al uso de Google Colab
- 3. Elementos del lenguaje: variables, ciclos, condicionales, estructuras de datos. Tipos y estructuras de datos
 - Bloques de código y estructuras de control
 - Funciones y programación estructurada.
- 4. Módulos y librerías:
 - Librería algebraica Numpy (arrays, datatypes, operaciones matemáticas con arrays
)
 - Librería de gráficos Matplotlib (gráficos, histogramas, gráficos de barras, representaciones gráficas de funciones y datos)
- 5. Pandas y uso de dataframes.
 - Introducción a Pandas.
 - Estructuras y análisis de datos.
 - Filtrado y manipulación de datos.
 - Gráficos

Herramienta: Python, Jupyter, Google Colaboratory

II. Matemática para IA

1. Algebra Lineal

- 1. Vectores y escalares (operaciones, representación geométrica)
- 2. Matrices (tipos de matrices, propiedades y operaciones matriciales) Sistemas de ecuaciones lineales (métodos de solución)
- 3. Espacios Vectoriales (subespacios, dependencia e independencia lineal, norma, ortogonalidad,)
- 4. Transformaciones lineales. Autovalores y autovectores. Descomposición en valores singulares. Análisis de componentes principales
- 5. El concepto de distancia. Espacio métrico.
- Aplicaciones con Python.

Herramienta: Librerías de Python, Google Colaboratory

2. Cálculo

- Funciones de una variable real.
- 2. Noción intuitiva de límite. Cálculo infinitesimal.
- Funciones trigonométricas, exponencial y logarítmica. Función inversa. El concepto de continuidad.
- 4. Cociente incremental. Derivada de una función de una variable real en un punto. Interpretación geométrica.
- 5. Extremos y puntos de inflexión. Concavidad y convexidad.

- 6. El concepto de la primitiva de una función. Integrales indefinidas y definidas. El teorema de Taylor.
- 7. Elementos de cálculo en varias variables. Derivadas parciales.
- 8. Aplicaciones con Python.

Herramienta: Librerías de Python, Google Colaboratory

3. Estadística y probabilidad

- 1. Representación de datos (numéricos/categóricos) y extracción de características
- 2. Teoría de decisión estadística (teorema de bayes)
- 3. Modelos estadísticos
 - Modelos de regresión (Selección de modelos,y balance entre sesgo y varianza, bondad de ajuste, generalización, y complejidad del modelo).
 - Modelos de clasificación (LDA y regresión logística, matriz de confusión y medidas de desempeño). Curva ROC (para evaluar desempeño en Clasificación Binaria)
 Aplicaciones con Python.

Herramienta: Librerías de Python, Google Colaboratory

III. Introducción a la Inteligencia Artificial

1. Historia de la IA, Campos de la IA y disciplinas asociadas

IV. Introducción al aprendizaje automático

- 1. Aprendizaje para la Regresión. El descenso por el gradiente
- 2. Tipos de aprendizaje: Supervisado, No supervisado, por refuerzo e híbridos.
- Aprendizaje supervisado para Regresión y Clasificación (Naive Bayes, SVM, Random Forest)
- 4. Aprendizaje no supervisado. Técnicas de Agrupamiento (k-medias, SOM, HAC)
- 5. Ciclo experimental de Ciencia de Datos
- Técnicas de regularización
- 7. Aplicaciones con Python.

Herramienta: Librerías de Python, Google Colaboratory

V. Introducción a Redes Neuronales

- Regresión Logística Perceptrón no lineal Generalidades de Redes Neuronales -Percetron Simple
- Redes feedforward multicapa Aprendizaje supervisado por corrección del error hacia atrás: Backpropagation. El descenso por el gradiente.
- 3. Supresión y explosión del gradiente. El descenso por el gradiente estocástico. Dropout y minibatch. Redes neuronales profundas (Deep Learning).
- 4. Clasificación con Deep Learning- Redes convolucionales (CNN)
- Redes recurrentes (RNN) Reinforcement Autoencoders Transfer Learning -Mecanismo de atención y Transformer
- 6. Aplicaciones con Python, keras, Tensor Flow

Herramienta: Librerías en Python: Tensor Flow, Keras, Google Colaboratory

VI. Impacto e Infraestructura tecnológica

- El valor estratégico de la IA en la cuarta revolución tecnológica. El contexto latinoamericano
- Ética y regulaciones. IA y sociedad

Calendario para la impartición del módulo y asignación de talleristas responsables

Temas	Tiempo	Día	Talleristas a cargo
I. Introducción a lenguajes de programación	3 hs	Lunes 12	Gabriela Grad Edgardo Bonzi Laura Diaz Dávila
II. Matemática para IA 1. Cálculo Tratamiento conceptual y trabajo de Laboratorio	1hs 1hs	Lunes 12 Martes 13	Adolfo Vignoli Carolina Maldonado Valeria S Rulloni

II. Matemática para IA 2. Algebra Tratamiento conceptual y trabajo de Laboratorio	2 hs	Martes 13	Valeria S Rulloni Carolina Maldonado Adolfo Vignoli
II. Matemática para IA 3. Estadística Tratamiento conceptual y trabajo de Laboratorio	1 hs 2 hs	Martes 13 Miércoles 14	María Inés Stimolo Pablo Ortiz Valeria Rulloni
III. Introducción a la Inteligencia Artificial (teórico)	1 hs	Miércoles 14	Francisco Tamarit Laura Diaz Dávila
IV. Introducción al aprendizaje automático Tratamiento conceptual y trabajo de Laboratorio	1 hs 2 hs	Miércoles 14 Jueves 15	Laura Diaz Dávila Francisco Tamarit Sandro Comerci Edgardo Bonzi
V. Introducción a Redes Neuronales Tratamiento conceptual y trabajo de Laboratorio	2 hs 3 hs	Jueves 15 Viernes 16	Francisco Tamarit Laura Diaz Dávila Sandro Comerci Gabriela Grad
VI. Impacto e Infraestructura tecnológica (teórico)	1 hs síncrona	Viernes 16 de junio	Laura Diaz Dávila Francisco Tamarit José Daniel Britos