HBP D17 2017/2018 Sorting Subsample Experiment

Courtney Meier
12 March 2018

Goal

To determine the efficacy of subsampling various proportions of HBP samples in D17 in order to reduce long sort times associated with removing OSD from current-year clipped biomass. Subsampling is only evaluated in the context of clip harvests that do not require sorting to functional group (i.e., non-peak biomass clips), because the subsample to total mass ratios will not apply to individual herbGroups.

Experimental Setup and Analyses

- Select n=10 plots (10 lowest Morton Order), resulting in n=20 clipID to test, due to both exclosure = Y and N for each plot. Random spatially-balanced plot locations, and locations of clipIDs within plots, will provide an unbiased estimate of biomass throughout the Tower airshed.
- For each clipID harvested in the field, test procedure by creating subsamples (current-year + OSD) with the following percentages of the total freshMass:
 - -10%
 - -25%
 - 50%
 - 100% (no subsampling)
- When subsampling is employed, calculate dryMass as follows: dM = fM * (ssDM/ssFM), where:
 - -dM = dryMass of current-year biomass in the clipID (no OSD)
 - -fM = total freshMass in the clipID (current-year + OSD)
 - ssDM = subsampleDryMass of current-year biomass in the subsample (no OSD)
 - ssFM = fresh mass of all biomass in the subsample (current-year + OSD)
- Compare dryMass results calculated via subsampling with dryMass obtained with no subsampling, and use paired t-test to analyze results.

Procedure

- 1. Perform clip harvest in the field as normal, and bring clipped biomass back to the laboratory in cold storage as normal.
- 2. Identify n=20 clipIDs (n=10 for exclosure = Y and n=10 for exclosure = N), originating from the 10 plotIDs with the lowest Morton Order numbers.
- $3. \ \,$ Thoroughly mix biomass from each clip ID to homogenize as thoroughly as possible.
 - a. For large amounts of biomass, and when there is more than one bag of biomass for a given clipID, use a large bag, box, tray or equivalent vessel to mix the biomass.
- 4. For each clipID, weigh and record to 0.01 g:
 - a. freshMass = total fresh mass in the clipID (current-year + OSD)
- 5. Based on the **freshMass**, calculate the desired subsample fresh masses for testing. For example, assuming **freshMass** = 100 g, the target subsample fresh masses are:

- a. 10% subsample $\rightarrow 10$ g
- b. 25% subsample ->25 g
- c. 50% subsample ->50 g
- 6. Label a coin envelope for each subsample above with the information below. Label an additional coin envelope for the residual clipped biomass that was not subsampled.
 - a. subsampleTest: 10%, 25% or 50%; use subsampleTest = residual for remaining biomass that was not subsampled.
 - b. clipID
 - c. collectDate
 - d. exclosure: Y/N
- 7. Weigh each subsample created above (current-year + OSD), and record the information below. For subsampleTest = residual, leave subsampleFreshMass = NULL.
 - a. subsampleTest: as above
 - b. clipID
 - c. collectDate
 - d. exclosure: Y/N
 - e. subsampleFreshMass: To the nearest 0.01 g; for subsamples < 0.5 g total mass, weigh to the nearest 0.0001 g
- 8. Sort current-year biomass from OSD for each subsample, and place sorted, current-year biomass into the corresponding labeled coin envelope.
 - a. Also sort remaining fresh mass that was not subsampled, and place into the **subsampleTest** = residual envelope.
 - b. Sorted OSD may be discarded at this point.
- 9. Dry subsamples and residual current-year mass until dry; minimum of 48 h @ 65 $^{\circ}$ C, track drying progress as normal.
- 10. Remove dry samples from the oven one at a time, and immediately weigh and record:
 - a. subsampleDryMass: To the nearest 0.01 g; for masses < 0.5 g, weigh to the nearest 0.0001 g; record the dry mass for subsampleTest = residual in this field as well.

Analyses

D17 HBP Clip Strip subsampling

Results: Mixed-Effects model analysis

1. Model accounting for subsampling effect on **dryMass** when controlling for **eventID**, and using **clipID** as a random effect (no need to use **exclosure** as a fixed effect since random effect accounts for variation across exclosure treatment).

```
m1ML <- lmer(estimatedDryMass ~ treatment + eventID + (1|clipID), longDF, REML = FALSE)
summary(m1ML)</pre>
```

```
## Linear mixed model fit by maximum likelihood t-tests use Satterthwaite
     approximations to degrees of freedom [lmerMod]
## Formula: estimatedDryMass ~ treatment + eventID + (1 | clipID)
##
      Data: longDF
##
##
        AIC
                 BIC
                        logLik deviance df.resid
      457.6
               478.6
                       -221.8
                                             141
##
                                  443.6
##
## Scaled residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
## -3.5590 -0.3427
                    0.0175
                            0.2886
                                     3.2982
##
## Random effects:
    Groups
             Name
                         Variance Std.Dev.
    clipID
             (Intercept) 24.4391 4.944
```

```
0.2683 0.518
## Residual
## Number of obs: 148, groups: clipID, 37
## Fixed effects:
                         Estimate Std. Error
                                                 df t value Pr(>|t|)
## (Intercept)
                          1.9847
                                   1.2029 37.2800 1.650 0.1074
## treatmentdryMass10
                          0.2741
                                   0.1204 111.0000 2.276 0.0248 *
## treatmentdryMass25
                                 0.1204 111.0000 1.267 0.2077
                          0.1526
                                  0.1204 111.0000 1.339
## treatmentdryMass50
                          0.1612
                                                            0.1834
## eventIDhbp.2018.SJER.02 8.5734 1.6330 37.0000 5.250 6.5e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
              (Intr) trtM10 trtM25 trtM50
## trtmntdrM10 -0.050
## trtmntdrM25 -0.050 0.500
## trtmntdrM50 -0.050 0.500 0.500
## eID.2018.SJ -0.734 0.000 0.000 0.000
anova(m1ML)
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom
           Sum Sq Mean Sq NumDF DenDF F.value
                                               Pr(>F)
## treatment 1.4056 0.4685
                             3
                                111 1.7465
                                               0.1617
## eventID 7.3943 7.3943
                                 37 27.5618 6.502e-06 ***
                             1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

2. Model providing for an interaction with **eventID** and **treatment**, to account for the possibility that subsampling is less/more effective for bouts with greater versus less growth.

```
m2ML <- lmer(estimatedDryMass ~ treatment*eventID + (1|clipID), longDF, REML = FALSE)
summary(m2ML)</pre>
```

```
## Linear mixed model fit by maximum likelihood t-tests use Satterthwaite
     approximations to degrees of freedom [lmerMod]
## Formula: estimatedDryMass ~ treatment * eventID + (1 | clipID)
      Data: longDF
##
##
##
        AIC
                 BTC
                       logLik deviance df.resid
##
      456.6
               486.5
                       -218.3
                                 436.6
##
## Scaled residuals:
##
       Min
                                3Q
                10 Median
                                       Max
   -3.4959 -0.3229
                   0.0511
                            0.2733
                                    3.0618
##
## Random effects:
                         Variance Std.Dev.
##
   Groups
             Name
             (Intercept) 24.4432 4.9440
   clipID
   Residual
                          0.2518 0.5018
## Number of obs: 148, groups: clipID, 37
##
## Fixed effects:
##
                                                 Estimate Std. Error
                                                            1.205258
                                                 2.064118
## (Intercept)
## treatmentdryMass10
                                                -0.007459
                                                            0.172110
## treatmentdryMass25
                                                 0.176645
                                                            0.172110
## treatmentdryMass50
                                                 0.100871
                                                            0.172110
## eventIDhbp.2018.SJER.02
                                                 8.426382
                                                            1.639328
## treatmentdryMass10:eventIDhbp.2018.SJER.02
                                                 0.520831
                                                            0.234095
## treatmentdryMass25:eventIDhbp.2018.SJER.02
                                                -0.044446
                                                            0.234095
## treatmentdryMass50:eventIDhbp.2018.SJER.02
                                                 0.111662
                                                            0.234095
##
                                                       df t value Pr(>|t|)
                                                37.570000
## (Intercept)
                                                            1.713
                                                                    0.0950
                                                           -0.043
## treatmentdryMass10
                                               111.000000
                                                                    0.9655
## treatmentdryMass25
                                               111.000000
                                                            1.026
                                                                    0.3070
                                                            0.586
## treatmentdryMass50
                                               111.000000
                                                                    0.5590
## eventIDhbp.2018.SJER.02
                                               37.570000
                                                            5.140 8.8e-06 ***
## treatmentdryMass10:eventIDhbp.2018.SJER.02 111.000000
                                                            2.225
                                                                    0.0281 *
## treatmentdryMass25:eventIDhbp.2018.SJER.02 111.000000
                                                           -0.190
                                                                    0.8498
## treatmentdryMass50:eventIDhbp.2018.SJER.02 111.000000
                                                            0.477
                                                                    0.6343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
               (Intr) trtM10 trtM25 trtM50 eID.20 tM10:I tM25:I
##
## trtmntdrM10 -0.071
## trtmntdrM25 -0.071 0.500
## trtmntdrM50 -0.071
                      0.500
                              0.500
## eID.2018.SJ -0.735 0.052
                              0.052 0.052
## tM10:ID.201 0.052 -0.735 -0.368 -0.368 -0.071
## tM25:ID.201 0.052 -0.368 -0.735 -0.368 -0.071
                                                   0.500
## tM50:ID.201 0.052 -0.368 -0.368 -0.735 -0.071 0.500 0.500
```

```
anova(m2ML)
```

```
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom
                   Sum Sq Mean Sq NumDF DenDF F.value
##
                                                      Pr(>F)
                   1.2072 0.4024 3 111 1.5981 0.19392
## treatment
                   6.9397 6.9397 1
## eventID
                                        37 27.5618 6.502e-06 ***
                                  3 111 2.4241
## treatment:eventID 1.8310 0.6103
                                                      0.06954 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(m1ML, m2ML)
## Data: longDF
## Models:
## object: estimatedDryMass ~ treatment + eventID + (1 | clipID)
## ..1: estimatedDryMass ~ treatment * eventID + (1 | clipID)
              AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## object 7 457.61 478.59 -221.81
                                 443.61
       10 456.57 486.54 -218.28 436.57 7.0439
                                                    3
                                                        0.07051 .
## ..1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

3. Null model, and using **clipID** as a random effect.

```
m3ML <- lmer(estimatedDryMass ~ 1 + (1 clipID), longDF, REML = FALSE)
summary(m3ML)
## summary from lme4 is returned
## some computational error has occurred in lmerTest
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: estimatedDryMass ~ 1 + (1 | clipID)
     Data: longDF
##
##
##
        AIC
                      logLik deviance df.resid
                BIC
      475.3
                      -234.7
##
               484.3
                                469.3
                                            145
##
## Scaled residuals:
              1Q Median
      Min
                               3Q
                                      Max
## -3.4399 -0.3120 -0.0440 0.2561 3.4720
##
## Random effects:
## Groups
            Name
                        Variance Std.Dev.
## clipID
            (Intercept) 42.6909 6.534
## Residual
                         0.2809 0.530
## Number of obs: 148, groups: clipID, 37
## Fixed effects:
##
              Estimate Std. Error t value
                 6.766
                            1.075
                                    6.294
## (Intercept)
anova(m1ML, m3ML)
## Data: longDF
## Models:
## ..1: estimatedDryMass ~ 1 + (1 | clipID)
## object: estimatedDryMass ~ treatment + eventID + (1 | clipID)
                     BIC logLik deviance Chisq Chi Df Pr(>Chisq)
         Df
               AIC
          3 475.33 484.32 -234.67
                                    469.33
## object 7 457.61 478.59 -221.81
                                                       4 3.608e-05 ***
                                    443.61 25.718
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Results: Linear model analysis

4. Linear model, using treatment, eventID, exclosure, and no random effect.

```
m1LM <- lm(estimatedDryMass ~ eventID + exclosure + treatment, data = longDF)
summary(m1LM)
##
## Call:
## lm(formula = estimatedDryMass ~ eventID + exclosure + treatment,
##
       data = longDF)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -8.9469 -2.4268 -0.5746 1.3005 14.4916
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             1.2622
                                        1.0149
                                                 1.244
                                                         0.2157
## eventIDhbp.2018.SJER.02
                                                         <2e-16 ***
                             8.5282
                                        0.8273 10.308
## exclosureY
                             1.5353
                                        0.8249
                                                 1.861
                                                         0.0648 .
## treatmentdryMass10
                             0.2741
                                        1.1657
                                                 0.235
                                                         0.8145
## treatmentdryMass25
                             0.1526
                                        1.1657
                                                 0.131
                                                         0.8960
## treatmentdryMass50
                             0.1612
                                        1.1657
                                                 0.138
                                                         0.8902
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.014 on 142 degrees of freedom
## Multiple R-squared: 0.4387, Adjusted R-squared: 0.419
## F-statistic: 22.2 on 5 and 142 DF, p-value: < 2.2e-16
AIC(m1ML, m1LM)
##
        df
                AIC
## m1ML 7 457.6142
## m1LM 7 905.0900
```

5. Linear model, using treatment, eventID*exclosure, and no random effect.

m2LM <- lm(estimatedDryMass ~ eventID*exclosure + treatment, data = longDF)

```
summary(m2LM)
##
## Call:
## lm(formula = estimatedDryMass ~ eventID * exclosure + treatment,
      data = longDF)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -9.1804 -2.2441 -0.7553 1.0411 14.6444
##
## Coefficients:
##
                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                       1.5216
                                               1.1014 1.381
## eventIDhbp.2018.SJER.02
                                       8.0354
                                                  1.1544 6.961 1.18e-10
## exclosureY
                                       0.9840
                                                  1.2208 0.806
                                                                    0.422
## treatmentdryMass10
                                       0.2741
                                                  1.1683 0.235
                                                                    0.815
## treatmentdryMass25
                                       0.1526
                                                  1.1683 0.131
                                                                    0.896
                                                  1.1683 0.138
## treatmentdryMass50
                                       0.1612
                                                                    0.890
## eventIDhbp.2018.SJER.02:exclosureY 1.0181
                                                  1.6592 0.614
                                                                    0.540
##
## (Intercept)
## eventIDhbp.2018.SJER.02
                                     ***
## exclosureY
## treatmentdryMass10
## treatmentdryMass25
## treatmentdryMass50
## eventIDhbp.2018.SJER.02:exclosureY
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.025 on 141 degrees of freedom
## Multiple R-squared: 0.4402, Adjusted R-squared: 0.4164
## F-statistic: 18.48 on 6 and 141 DF, p-value: 8.946e-16
anova(m1LM, m2LM)
## Analysis of Variance Table
##
## Model 1: estimatedDryMass ~ eventID + exclosure + treatment
## Model 2: estimatedDryMass ~ eventID * exclosure + treatment
              RSS Df Sum of Sq
    Res.Df
                                    F Pr(>F)
## 1
       142 3569.6
       141 3560.1 1 9.5079 0.3766 0.5404
## 2
```

Outcomes

- D17 Clip Strips should be subsampled at the 25% level for all bouts with **herbGroup** = ALL.
 - Estimates of dryMass using a 10% subsample are significantly higher than the entire sorted sample, using data from both bouts.
 - Other subsamples are not significantly different than the entire sorted subsample -> go with 25%
 - No overall interaction effect for eventID:treatment, but sorting at 10% level leads to higher estimates of dryMass when total biomass is higher. Not a huge issue since subsampling at 25% is not affected.
- Effect of exclosure, as evaluated in standard linear model:
 - Effect of exclosure not significant across both bouts (m1LM), and effect of exclosure not bout dependent, as eventID:exclosure is not significant (m2LM).
- Random effect associated with ${f clip ID}$ explains considerable variability in the data. See summary output for model = m1ML.