More intuition on phylogenetic tree estimation

Working with real data

• Tips in the phylogeny: genes, species, individuals, or some other evolving entity, are referred to as taxa.

Add taxa

- Adding taxa breaks up branches in the phylogeny. This often improves the performance of maximum likelihood
- Improve model evaluation and model parameter estimation
- Adding more outgroup taxa often improves rooting
- Adding taxa can considerably increase the computational demand of analyses

Types of real data

- Full genome: Largely restricted to organisms with small genomes. Expensive and difficult to build phylogenies with large genome sequences, though this is rapidly changing.
- Transcriptome: RNA gives a snapshot of an enriched subset of the genome mRNA is then copied to complimentary DNA (cDNA) and sequenced. Less stable than DNA.
- Targeted enrichment: We design short bait sequences that are similar to conserved genome regions. Data are difficult to combine across different studies that used different baits.
- RAD-seq: Sequence data from specific regions scattered across the genome. It uses intrinsic properties of the genome for enrichment, rath, er than user-designed baits

Building a phylogenetic tree

01

Assume a substitution model (Jukes-Cantor, HKY, Kimura)

02

Assume a clock (constant or variable molecular clock) 03

Give an algorithm to propose new tree shapes (cladograms)

Constant molecular clock

1 substitution rate per 25 million lyears

P(+) = P

Rejecting the Global Molecular Clock

Rates of evolution vary across lineages and over time

Mutation rate

- metabolic rate
- generation time
- DNA repair

Fixation rate

- strengths/targes of selection
- population size

Unconstrained Analysis

Sequence data provide information about **branch lengths**

In units of the expected # of substitutions per site

branch length = rate X time

Estimating Rate & Time

The sequence data provide information about branch length

for any possible rate, there's a time that fits the branch length perfectly

Phylogenetic tree dating

Bayesian Divergence Time Estimation

For each branch we estimate a rate r_i and for each node we estimate an age a_i

BRANCH LENGTH = RATE

BRANCH LENGTH = TIME

$$\mathbf{R} = (r_1, r_2, r_3, ..., r_{2N-2})$$

$$A = (a_1, a_2, a_3, ..., a_{N-1})$$

2025 Workshop on Molecular Evolution – Tracy Heath

 Proposes as new model called birth-and-death model that has speciation rates, extinction rates but also absolute times for some nodes using fossils, or biogeography.

• Island orogenesis / absolute time

Landis et al. 2018. Sys Bio