**Problem 1.** In the context of our proof of the zig-zag lemma. Prove that  $\ker(\phi_*) \subset \operatorname{Im}(\partial_*)$  and  $\ker(\psi_*) \subset \operatorname{Im}(\phi_*)$ .

*Proof.* The following diagram contains the necessary maps



with the long exact sequence from the zig-zag lemma

$$\cdots \longrightarrow H_n(C) \xrightarrow{\phi_*} H_n(D) \xrightarrow{\psi_*} H_n(E) \xrightarrow{\partial_*} H_{n-1}(C) \longrightarrow \cdots$$

First we'll show that  $\ker(\phi_*) \subset \operatorname{Im}(\partial_*)$ . Start with  $[c] \in \ker(\phi_*)$ . Then  $\phi(c) = d$  where [d] = 0. This implies that there is a  $d' \in D_{p+1}$  such that  $\partial d' = d$ . In addition we have  $\psi \circ \partial(d) = 0$  and if we have  $e := \psi(d)$  then  $\partial e = 0$  by commutativity and thus [e] is a class in homology. Let  $e' := \psi(d')$ . Then  $\partial e' = e$  which implies that [e'] is a class in homology. Finally by commutativity we have that  $\partial_*[e'] = c$  which implies that  $\ker(\phi_*) \subset \operatorname{Im}(\partial_*)$ .

Next we'll show that  $\ker(\psi_*) \subset \operatorname{Im}(\phi_*)$ . Let  $[d] \in \ker(\psi_*)$ . Then we know that  $\partial d = 0$  and that for  $e := \psi(d)$  that there exists  $\partial e' := e$ . Since  $\psi$  is surjective we have  $\psi(d') := e'$ . By commutativity we have that  $\psi(d - \partial d') = 0$  so there exists an c such that  $\phi(c) = d - \partial d'$  which is unique by injectivity of  $\phi$ . In addition  $\partial c = 0$  by commutativity. Then in homology we get that  $\phi_*[c] = [d - \partial d'] = [d]$ . Therefore  $\ker(\psi_*) \subset \operatorname{Im}(\phi_*)$ .

**Problem 2.** Let  $A: S^n \to S^n$  be the antipodal map. What is  $A_*: H_n(S^n) \to H_n(S^n)$ ?

*Proof.* We'll start by showing that the map  $r_i: S^n \to S^n$  defined by

$$r(x_1, \ldots, x_i, \ldots, x_{n+1}) = (x_1, \ldots, -x_i, \ldots, x_{n+1})$$

has degree -1. Start with  $S^n$  and consider it as two  $D^n$ , called p and q, joined at their boundaries with the boundary coinciding with  $x_i$ . The only non-zero reduced homology for  $S^n$  is  $\widetilde{H}_n(S^n) \cong \mathbb{Z}$  that is generated by p+q. Then  $r_{i*}(p+q)=-(p+q)$  since it will swap p,q and their orientations. Therefore the degree of  $r_i$  is -1.

We can express the map  $A: S^n \to S^n$  as the composition  $A = r_1 \circ \cdots \circ r_{n+1}$ . Thus the degree of the map A is  $(-1)^{n+1}$ .

Therefore  $A_*: H_n(S^n) \to H_n(S^n)$  is the identity map when n is odd and the inverse map when n is even.

**Problem 3.** Give a geometric description of the boundary map in the Mayer-Vietoris sequence.

Begin with our space  $X = U \cup V$  satisfying the conditions for the Mayer-Vietoris sequence. Start with a cycle  $[h] \in H_n(X)$ . Then we can write h = u + v where u, v lie wholly in U and V respectively. Since h represents a class in homology we have  $\partial x = 0$ . However this implies that  $\partial u + \partial v = 0$  giving us that  $\partial u = -\partial v$ . It then follows that  $\partial u, \partial v \in U \cap V$  and thus  $\partial_*[h] = [\partial u]$ .

**Problem 4.** Using the Mayer-Vietoris sequence, compute the homology of the n-Sphere,  $H_*(S^n)$ .

*Proof.* We'll start by computing the reduced homology of  $S^0$  and proceed by induction. The zeroth reduced homology group is the one less than the number of connected components copies of  $\mathbb{Z}$ . Since  $S^0$  is two disjoint points we have that  $\widetilde{H}_0(S^0) \cong \mathbb{Z}$ .

Next assume that  $\widetilde{H}_{n-1}(S^{n-1}) \cong \mathbb{Z}$  and is zero elsewhere. Then consider  $S^n$  as the union of a point \* and  $D^n$  enlarging them both slightly. Their intersection will be homotopy equivalent to  $S^{n-1}$ . Then using the Mayer-Vietoris sequence we have the long exact sequence

$$\cdots \longrightarrow H_n(S^{n-1}) \longrightarrow H_n(*) \oplus H_n(D^n) \longrightarrow H_n(S^n) \longrightarrow H_{n-1}(S^{n-1}) \longrightarrow \cdots$$

All other portions of the sequence be either zero or  $H_p(S^n)$  sandwiched between two zeros forcing it to be zero. Rewrite the above sequence with the portions we know and we get

$$0 \longrightarrow H_n(S^n) \longrightarrow (H_{n-1}(S^{n-1}) \cong \mathbb{Z}) \longrightarrow 0$$

Which implies that  $\widetilde{H}_n(S^n) \cong \widetilde{H}_{n-1}(S^{n-1}) \cong \mathbb{Z}$ .

Therefore the homology of  $S^n$  is

$$H_p(S^n) = \begin{cases} \mathbb{Z} & p = n, 0 \\ 0 & \text{else} \end{cases}$$

except for  $S^0$  which has  $H_0(S^0) = \mathbb{Z}^2$  and 0 otherwise.

**Problem 5.** Let  $T^2 = S^1 \times S^1$  be the torus, and  $h: S^1 \to T^2$  an embedding of the unit circle into  $T^2$ . Form the space

$$X = T^2 \cup_h D^2$$

by attaching a 2-cell  $D^2$  to  $T^2$  via the map h. Compute the homology of X. Note that there is more than one case.

*Proof.* We begin by using the Mayer-Vietoris sequence to decompose X into  $T^2$  and  $D^2$  to get an exact sequence describing our problem. The only nonzero portions of the sequence are

$$0 \longrightarrow H_2(T^2) \oplus H_2(D^2) \xrightarrow{k_* - l_*} H_2(X) \xrightarrow{\partial_*} H_1(S^1) \xrightarrow{i_* \oplus j_*} H_1(T^2) \oplus H_1(D^2) \xrightarrow{k_* - l_*} H_1(X) \longrightarrow 0$$

Then filling in for some of the groups we have the exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow H_2(X) \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow H_1(X) \longrightarrow 0$$

For  $H_0(X)$  there is a single connected component which implies that  $H_0(X) \cong \mathbb{Z}$ . Otherwise for the higher homotopy groups there are two cases to consider for the map h. The first is where h is homotopic to one of the generators of  $H_1(T)$  and the latter is when h is null.

Suppose that  $h \sim (m, n) \in H_1(T^2)$ . Then the kernel of  $i_* \oplus j_*$  is 0 as  $i_* \oplus j_*(1) = (m, n)$ . This implies that the image of  $\partial_*$  is 0 giving us that  $k_* - l_*$  is surjective from exactness. Also from exactness the map is injective which means that  $H_2(X) \cong H_2(T^2) \oplus H_2(D^2) \cong \mathbb{Z}$ .

For  $H_1(X)$  note that the image of  $i_* \oplus j_*$  is k(m,n) which by exactness is the kernel of  $k_* - l_*$ . We know that  $k_* - l_*$  is surjective by exactness. It then follows from the first isomorphism theorem that

$$H_1(X) \cong \mathbb{Z} \oplus \mathbb{Z} / \ker(k_* - l_*) \cong \mathbb{Z} \oplus \mathbb{Z} / \langle (m, n) \rangle \cong \mathbb{Z}_m \oplus \mathbb{Z}_n$$

Now we consider the case where h is null. If h is null then the kernel of  $i_* \oplus j_*$  is  $H_1(S^1)$ . Then  $\operatorname{Im}(\partial_*) = H_1(S^1)$  which implies that  $\partial_*$  is surjective. Using the first isomorphism theorem we have that  $H_2(X)/\ker \partial_* \cong H_1(S^1) \cong \mathbb{Z}$ . However  $\ker \partial_* = \operatorname{Im}(k_* - l_*) \cong \mathbb{Z}$  as  $H_2(T^2) \oplus H_2(D^2) \cong \mathbb{Z}$  and  $k_* - l_*$  is injective by exactness. Thus  $H_2(X)/\mathbb{Z} \cong \mathbb{Z}$  which implies that  $H_2(X) \cong \mathbb{Z} \oplus \mathbb{Z}$ .

For  $H_1(X)$ , by the first isomorphism theorem we have that  $H_1(T^2) \oplus H_1(D^2)/\ker(k_* - l_*) \cong H_1(X)$ . However since  $\ker(k_* - l_*) = \operatorname{Im}(i_* \oplus j_*) \cong 0$  we have that  $\mathbb{Z} \oplus \mathbb{Z}/0 \cong \mathbb{Z} \oplus \mathbb{Z} \cong H_1(X)$ .

Therefore if  $h \sim (m, n) \in H_1(T^2)$  the nonzero homology groups are

$$H_0(X) \cong \mathbb{Z}$$
  
 $H_1(X) \cong \mathbb{Z}_m \oplus \mathbb{Z}_n$   
 $H_2(X) \cong \mathbb{Z}$ 

and if h is null

$$H_0(X) \cong \mathbb{Z}$$
  
 $H_1(X) \cong \mathbb{Z} \oplus \mathbb{Z}$   
 $H_2(X) \cong \mathbb{Z} \oplus \mathbb{Z}$