Chapter Outline

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

Relationships

- A relationship relates two or more distinct entities with a specific meaning.
- The degree of a relationship type is the number of participating entity types.
 - For example,

EMPLOYEE John Smith *works on* the ProductX PROJECT, or EMPLOYEE Franklin Wong *manages* the Research DEPARTMENT.

Constraints on Relationships

- Constraints on Relationship Types
 - Cardinality Ratio (specifies maximum participation)
 - One-to-one (1:1)
 - One-to-many (1:N) or Many-to-one (N:1)
 - Many-to-many (M:N)
 - Existence Dependency Constraint (specifies minimum participation) (also called participation constraint)
 - Partial/zero (optional participation, not existence-dependent)
 - Total/one or more (mandatory participation, existencedependent)

1. Total Participation-

- It specifies that each entity in the entity set must compulsorily participate in at least one relationship instance in that relationship set.
- That is why, it is also called as mandatory participation.
- Total participation is represented using a double line between the entity set and relationship set.

Total Participation

Example-

Here,

- . Double line between the entity set "Student" and relationship set "Enrolled in" signifies total participation.
- It specifies that each student must be enrolled in at least one course.

2. Partial Participation-

- It specifies that each entity in the entity set may or may not participate in the relationship instance in that relationship set.
- That is why, it is also called as optional participation.
- Partial participation is represented using a single line between the entity set and relationship set.

Partial Participation

Example-

Here,

- · Single line between the entity set "Course" and relationship set "Enrolled in" signifies partial participation.
- · It specifies that there might exist some courses for which no enrollments are made.

FIGURE

The ER conceptual schema diagram for the COMPANY database.

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types.
 - For each regular (strong) entity type E in the ER schema,
 create a relation R that includes all the simple attributes of E.
 - Choose one of the key attributes of E as the primary key for R.
 - If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types.
- Example: We create the relations
 - EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entities in the ER diagram.
 - SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT as shown.

Step 1 Result

EMPLOYEE

Fname Minit Lname	Ssn Bdate	Address	Sex	Salary
-------------------	-----------	---------	-----	--------

DEPARTMENT

PROJECT

Pname	<u>Pnumber</u>	Plocation
-------	----------------	-----------

Step 2: Mapping of Weak Entity Types

 For each weak entity type W in the ER schema with owner entity type E, create a relation R & include all simple attributes

(or simple components of composite attributes) of W as attributes of R.

- Also, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
- The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.

Step 2: Mapping of Weak Entity Types

- **Example:** Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
 - Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN).
 - The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

EMPLOYEE <u>Ssn</u> Sex Fname Minit Lname Bdate Address Salary **DEPARTMENT** <u>Dnumber</u> Dname **PROJECT** Pname Plocation <u>Pnumber</u> **DEPENDENT** Dependent_name Sex **B**date Relationship Essn

- Step 3: Mapping of Binary 1:1 Relation Types
 - For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- There are three possible approaches:
 - 1. Foreign Key approach: Choose one of the relations-say S-and include a foreign key in S the primary key of T. It is better to choose an entity type with total participation in R in the role of S.
 - 2. **Merged relation option:** An alternate mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when both participations are total.
 - 3. Cross-reference or relationship relation option: The third alternative is to set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types.

Step 3: Mapping of Binary 1:1 Relation Types

Foreign Key approach:

- i. Choose one relation as S, the other TBetter if S has total participation(reduces number of NULL values)
- ii. Add to S, all the simple attributes of the relationship
- Iii. Add the primary key attributes of T as a foreign key in S

- Step 4: Mapping of Binary 1:N Relationship Types.
- Choose the S relation as the type at the N-side of the relationship, other is T
- Add all of the primary key attribute(s) of T, as a foreign key to S

Example: 1:N relationship types

- WORKS_FOR,
- CONTROLS, and
- SUPERVISION in the figure.

 I
 S

 1
 :
 N

 Dept
 Emp

 PK
 ->
 FK

 DNUM
 ->
 DNO

For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO.

EMPLOYEE

For CONTROLS we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the PROJECT relation and call it DNum. Number

Name

Name

Number

Locations

DEPARTMENT

CONTROLS

PROJECT

Location

For SUPERVISION we include the primary key SSN of the EMPLOYEE relation as foreign key in the EMPLOYEE

relation and call it Super SSN

Fname

Ssn

Bdate

Name

Lname

EMPLOYEE

SUPERVISION

Address

Salary

supervisee

EMPLOYEE

- Step 5: Mapping of Binary M:N Relationship Types.
 - For each regular binary M:N relationship type R, create a new relation S to represent R.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
 - Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.

- Step 5: Mapping of Binary M:N Relationship Types.
- Example: The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a relation WORKS_ON in the relational database schema.
 - The primary keys of the PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON and renamed PNO and ESSN, respectively.
 - Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, PNO}.

Step 5: Mapping of Binary M:N Relationship Types.

- Step 6: Mapping of Multivalued attributes.
 - For each multivalued attribute A, create a new relation R.
 - This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type of relationship type that has A as an attribute.
 - The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.

- Step 6: Mapping of Multivalued attributes.
- Example: The relation DEPT_LOCATIONS is created.
 - The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign keyrepresents the primary key of the DEPARTMENT relation.
 - The primary key of R is the combination of {DNUMBER, DLOCATION}.

FIGURE

Result of mapping the COMPANY ER schema into a relational schema.

- Step 7: Mapping of N-ary Relationship Types.
 - For each n-ary relationship type R, where n>2, create a new relationship S to represent R.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
 - Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.
- Example: The relationship type SUPPY in the ER on the next slide.
 - This can be mapped to the relation SUPPLY shown in the relational schema, whose primary key is the combination of the three foreign keys {SNAME, PARTNO, PROJNAME}

Ternary relationship types. (a) The SUPPLY relationship.

Mapping the *n*-ary relationship type SUPPLY.

SUPPLIER

SNAME

PROJECT

PROJNAME

PART

PARTNO

PARTNO

SUPPLY

SNAME	PROJNAME	PARTNO	QUANTITY

Summary of Mapping constructs and constraints

Table 7.1 Correspondence between ER and Relational Models

ER Model Relational Model

Entity type "Entity" relation

1:1 or 1:N relationship type Foreign key (or "relationship" relation)

M:N relationship type "Relationship" relation and two foreign keys

n-ary relationship type "Relationship" relation and n foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

Chapter Summary

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.