

planetmath.org

Math for the people, by the people.

continuity and convergent nets

 ${\bf Canonical\ name} \quad {\bf Continuity And Convergent Nets}$

Date of creation 2013-03-22 18:37:53 Last modified on 2013-03-22 18:37:53 Owner azdbacks4234 (14155) Last modified by azdbacks4234 (14155)

Numerical id 5

Author azdbacks4234 (14155)

Entry type Theorem Classification msc 54A20

Related topic Net

Related topic Continuous

Theorem. Let X and Y be topological spaces. A function $f: X \to Y$ is continuous at a point $x \in X$ if and only if for each net $(x_{\alpha})_{\alpha \in A}$ in X converging to x, the net $(f(x_{\alpha}))_{\alpha \in A}$ converges to f(x).

Proof. If f is continuous, $(x_{\alpha})_{\alpha \in A}$ converges to x, and V is an open neighborhood of f(x) in Y, then $f^{-1}(V)$ is an open neighborhood of x in X, so there exists $\alpha_0 \in A$ such that $x_{\alpha} \in f^{-1}(V)$ for $\alpha \geq \alpha_0$. It follows that $f(x_{\alpha}) \in V$ for $\alpha \geq \alpha_0$, hence that $f(x_{\alpha}) \to f(x)$. Conversely, suppose there exists a net $(x_{\alpha})_{\alpha \in A}$ in X converging to x such that $(f(x_{\alpha}))_{\alpha \in A}$ does not converge to f(x), so that, for some open subset V of Y containing f(x) and every $\alpha_0 \in A$, there exists $\alpha \geq \alpha_0 \in A$ such that $f(x_{\alpha}) \notin V$, hence such that $x_{\alpha} \notin f^{-1}(V)$; as $x_{\alpha} \to x$ by hypothesis, this implies that $f^{-1}(V)$ cannot be a neighborhood of x, and thus that f fails to be continuous at x.