极端支持向量机ESVM 及增量学习与样本选择

何清 研究员 中国科学院计算技术研究所

- 引言
- 非线性PSVM增量学习算法
- PSVM样本选择技术
- 极端支持向量: ESVM

- 引言
- 非线性PSVM增量学习算法
- PSVM样本选择技术
- 极端支持向量: ESVM

Vladimir Naumovich Vapnik • VC Dimension $R_{emp}(T_i) + \frac{\ln N - \ln n}{1 + \ln n}$ Vapnik Chervonenkis Statistical Learning Theory

预备知识-SVM

Proximal support vector machine classifiers

https://dl.acm.org > citation - 翻译此页

作者: G Fung - 2001 - 被引用次数: 1190 - 相关文章

2001年8月26日 - Computational results on publicly available datasets indicate that the proposed

proximal SVM classifier has comparable test set correctness to ...

Abstract · References · Cited By · Publication

- 设计了非线性PSVM的增量学习算法
- 设计了PSVM的样本选择技术
- 提出了一种新的SVM分类模型

- 引言
- 非线性PSVM增量学习算法
- PSVM样本选择技术
- 极端支持向量: ESVM

- 易于增量学习的Nonlinear PSVM分类器;
- 利用分块矩阵求逆公式,设计了PSVM增量学习算法;
- 理论及实验证明: 在线学习过程中采用该算法不仅可以得到与批量学习相同的分类器、正确率; 而且解决了重复学习的问题, 可以显著地缩短训练时间。

非线性PSVM增量学习算法

Separating Plane: $x'\dot{w} = \gamma$

 $x'w - \gamma = +1$ $x'w - \gamma = +1$ $x'w - \gamma = -1$ $x'w - \gamma = -1$

Separating Plane: $x'\dot{w} - \gamma = 0$

Proximal SVM

SVM

非线性PSVM增量学习算法

为了叙述的方便,首先把这里将用到的数学表示符号声明如下:所有的向量默认均为列向量,上标'表示转置,向量x和y在空间中的点积表示为: $x^!y$,向量x的2-nom 表示为 $\|x\| = \sqrt{x^!\cdot x}$;这里我们利用矩阵 $A[m \times n]$ 表示 n 维空间 R^* 中的m 个训练样本;对角线元素为 ± 1 的对角矩阵 $D[m \times n]$ 的对角线上的元素声明了m 个训练样本的类别是 ± 1 或一1;对于矩阵 $A \in R^{m \times n}$ 和 $B \in R^{m \times l}$,核函数 k(A,B) 将 $R^{m \times n}$, $R^{m \times l}$,默认情况下我们将使用下面的 Gaussian 核: +

$$(K(A,B))_{i,j} = \varepsilon^{-AA,i-B,j}, i=1...m, j=1...l$$

其中 μ 是正常量, ε 表示自然对数的底; ε 为元素为1的任意维向量(维度根据上下文确定);w,r分别为分类超平面的方向系数和偏置,y为松弛向量,参数 $v \ge 0$ 用于控制模型复杂度和准确率之间的平衡;I表示单位向量。 ε

$$\min_{\substack{(w,\gamma,y) \in R^{n+1+m} \\ \text{s.t.}}} \frac{\nu \frac{1}{2} ||y||^2 + \frac{1}{2} (w'w + \gamma^2)}{D(Aw - c\gamma) + y} = c$$

$$\min_{\substack{(w,r,y)\in R^{n+1+\alpha}}} v\frac{1}{2}\|y\|^2 + \frac{1}{2}(w'w+r^2),$$
 NPSVM的解 $s.t.$ $D(\phi(A)w-er)+y=e.$ $Ds=(\frac{I}{v}+KK'+ee')^{-1}De$ 新NPSVM模型

$$\min_{(u,r,y) \in R^{m+1+m}} v \frac{1}{2} \| y \|^2 + \frac{1}{2} (u'u + r^2),$$

$$st. \quad D(K(A,A')Du - er) + y = e.$$

Nonlinear PSVM

NPSVM的解

$$Ds = (\frac{I}{v} + KK' + ee')^{-1}De$$

新NPSVM模型的解

$$Du = (I/v + \phi(A)\phi(A)' + ee')^{-1}De$$
$$= (I/v + K + ee')^{-1}De$$

$$Du = (I/v + \phi(A)\phi(A)' + ee')^{-1}De$$
$$= (I/v + K + ee')^{-1}De$$

新NPSVM模型的解

$$A_{11}^{-1} = (I/v + K(A_1, A_1') + ee')^{-1}$$

历史训练结果

$$A_{tt} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

新数据

where
$$A_{12} = (K(A_1, A_2') + ee'), A_{22} = (I/V + K(A_2, A_2') + ee')$$
 and $A_{21} = A_{12}'$.

$$A_{\pi}^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1} + X & Y \\ Y' & T \end{bmatrix},$$

历史训练结果的更新

$$T \! = \! (A_{22} - A_{21} A_{11}^{-1} A_{12})^{-1}, Y \! = \! -A_{11}^{-1} A_{12} T, X = \! -Y \! A_{12}^{-1} A_{11}^{-1} \ .$$

非线性PSVM增量学习算法

	Data Set	Ionosphere	Bupa Liver	Tic-Tac-Toe
	$m \times n$	351×34	345×6	958 × 9
	Recall	99.43%	80.23%	100%
NPSVM	Test	93.17%	66.87%	99.06%
	Time(Sec.)	0.16	0.16	2.32
	Recall	99.94%	84.73%	100%
NNPSVM	Test	94.80%	67.27%	99.06%
	Time(Sec.)	0.14	0.13	1.56

	Data Set	Ionosphere	Bupa Liver	Tic-Tac-Toe
	$m \times n$	351×34	345×6	958 × 9
INPSVM	Recall	99.72%	83.48%	100.00%
	Time(Sec.)	0.21	0.21	3.75
NNPSVM	Recall	99.72%	83.48%	100.00%
	Time(Sec.)	0.33	0.33	5.03

 Qiuge Liu, Qing He, and Zhongzhi Shi. Incremental Nonlinear Proximal Support Vector Machine, in D. Liu et al. (Eds.): ISNN 2007, LNCS 4493, Part III, pp. 336–341, 2007(EI已收录).

- 引言
- 非线性PSVM增量学习算法
- PSVM样本选择技术
- 极端支持向量: ESVM

矩阵大小!?

$$A_{\pi}^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1} + X & Y \\ Y' & T \end{bmatrix},$$

- 我们设计了根据训练结果对样本进行选择的技术
 - 历史数据
 - 新数据
 - 非线性分类器
- 与增量学习算法结合,大数据集的增量学习框架

- SVM: 保留对偶变量值为非零的点——支持 向量
- 实验结果表明:距离拟合超平面较近的样本 点具有较强的描述能力,利用这些样本点重 新训练可得到与原分类器相似的结果
- PSVM: ε 支持向量 概念——对偶变量绝对值 小于ε的样本点

PSVM样本选择技术

PSVM样本选择技术

• 非线性分类器情形: 由于非线性分类器难以描述, 我们把被误分的样本点也选择出来

假设我们已经对数据集 $A_i \in R^{n_i \times n_i}$ 及其类别信息 $D_i \in R^{n_i \times n_i}$ 进行训练得到了分类器:

 $f_c(x) = \operatorname{sgn}(K(x',A_c')(Du)_c - r_c)$,现在到来了一批新的数据 $A_n \in R^{n_n \times n}$ 及其类别信息 $D_n \in R^{n_n \times n_n}$

需要加入到分类器中。我们用 $A_r \in R^{n_r \times n}$ 表示从历史数据中选择出的样本, $A_{n_r} \in R^{n_r \times n}$ 表示

从新数据中选择出的样本, A, ER***** 表示错分的样本。初始时我们有如下初

值: $A_c = \emptyset$, $A_r = \emptyset$, $A_m = \emptyset$, $(Du)_c = 0$, $r_c = 0$ 。 最后,令num 表示每一步需要选择出的样本的个数。

- 1) 等待,直到有新的数据集 4. 需要学习:
- 如果A_e≠Ø,令A_a=A_a∪A_a并跳转到第7步,否则令A_e=A_a;
- 利用公式(3.16)、(3.17)求得(Du), r, 的解;
- 按照样本点 Lagrange 对偶变量 (Du)_e 的绝对值递增的顺序选择前 num 个样本构造数据集 A_e, 并令 A_e = A_e;
- 5) 利用数据集 A。重新训练分类器,并得到(Du), r. 的新的解;
- 6) 利用分类器 f_c(x) 对全部样本进行测试,获得错分的样本 A_w,转移到步骤 1;
- 7) 通过下述公式获得新数据集 A, 距离当前拟合超平面的距离向量 a:

$$d = |f(A_n)| = \operatorname{sgn}(K(A_n', A_c')(Du)_c - r_c)$$
(4. 1)

- 8) 设定一个界 d_{bound} 作为样本点与拟合超平面距离的界,一个可能的选择是(Du)_e 中 元素绝对值的最大值;
- 9) 将数据集 A_i 压缩至 A_i , 仅保留对应距离向量 d 中元素 d_i 满足 d_i > d_{bound} 条件的点;
- 10) 将 A_m 作为增量学习中新增数据集,利用增量学习算法得到(Du)_c, r_c 的新的解,即令公式(3.20)、(3.21)、(3.22)中 A = A_c, A_c = A_c, 以转到第 4 步(此时 A_m)已经包含进 A_c)。

Data Set	t	Iris	Ionospher	Tic-
$m \times n$		150×4	e	Tac-Toe
			351×34	958×9
PSVM	Train	73.93%	90.76%	98.33%
	Test	71.33%	86.08%	98.33%
PSVM-I(0.1)	Train	76.52%	84.74	98.33%
	Test	74.67%	82.05	98.32%
PSVM-I(0.2)	Train	75.70%	89.43%	98.33%
	Test	73.33%	86.06%	98.33%
PSVM-I(0.3)	Train	73.93%	89.30%	98.33%
	Test	71.33%	86.63%	98.32%

Data Set	Iris	Ionosphere	Tic-Tac-	BUPA
$m \times n$	150×4	351×34	Toe	Liver
			958×9	345×6
RSWM	95.33	92.31%	98.50%	74.86%
	%			
NPSVM-III	95.33	93.44%	98.23%	68.69%
(10%)	%			
NPSVM-III	97.33	95.15%	98.54%	75.65%
(20%)	%			
NPSVM-III	98.00	95.73%	98.64%	77.39%
(30%)	%			

实验显示上述样本选择技术仅需付出较小时间 代价,就可以有效地处理大样本集的在线学习 问题,而且可以得到与利用全部样本进行训练 的结果相近的正确率。

PSVM样本选择技术

 Qiu-ge Liu, Qing He, Zhong-zhi Shi. Data Selection for Nonlinear Proximal Support Vector Machine, Third International Conference on Natural Computation, Vol.1,pp.120-124. (EI已收录)

- 引言
- 非线性PSVM增量学习算法
- PSVM样本选择技术
- 极端支持向量: ESVM

- 我们提出了一种新的非线性SVM学习方法: Extreme Support Vector Machine (ESVM)
- 它基于随机构造的映射函数和正则化网络得到 非线性模型
- 优点:
 - 与SVM比:运算速度快,扩展能力强,相当的正确率
 - 与SFLNSs比: 更好的泛化性能

- 单隐层神经网络训练算 法Extreme Learning Machine: ELM
 - 随机确定输入参数
 - 解析求解输出参数
- 速度快,避免局部极小值

- ELM两个步骤
 - 1. 输入数据被映射到隐层输出向量
 - 2. 由隐层输出向量解析求解隐层输出权重
- 同Nonlinear SVM中的核思想类似
- 神经网络的学习能力

$$\min_{\substack{(w,\gamma,y)\in R^{n+1+m}\\\text{s.t.}}} \frac{\nu \frac{1}{2}||y||^2 + \frac{1}{2}(w'w + \gamma^2)}{\text{s.t.}} D(Aw - e\gamma) + y = c$$

$$\begin{split} \min_{(w,r,y)\in R^{n+1+\alpha}} v \frac{1}{2} \parallel y \parallel^2 + \frac{1}{2} \left(w'w + r^2 \right), \\ s.t. \quad D\left(\phi(A) \mathbf{w} - er \right) + y = e. \end{split}$$

$$\Phi(x): R^n \to R^{\tilde{n}}$$

显示的利用一个非线性转换函数

$$\begin{bmatrix} w \\ \gamma \end{bmatrix} = (\frac{I}{\nu} + E'E)^{-1}E'De,$$

$$\begin{bmatrix} w \\ r \end{bmatrix} = (\frac{I}{\nu} + E_{\Phi}' E_{\Phi})^{-1} E_{\Phi}' De$$

ESVM 分类器

$$\Phi(x)'w-r \begin{cases} >0, \text{ then } x \in A+\\ <0, \text{ then } x \in A-\\ =0, \text{ then } x \in A+ \text{ or } x \in A- \end{cases}$$

增量计算

$$E_{\Phi}'E_{\Phi} = \sum E_{\Phi i}'E_{\Phi i}, E_{\Phi}'De = \sum E_{\Phi i}'D_{i}e$$

Datasets	ESVM					SVM	NPSVM	
	Train					Train	Train	
			$T\epsilon$	est			Test	Test
			Ti	me			Time	Time
	20	60	100	140	180	200		
Australia	91.26%	96.09%	97.86%	98.42%	99.19%	99.28%	92.59%	100%
690×14	92.32%	96.38%	97.39%	98.12%	97.97%	97.54%	83.91%	96.52%
	0.0047	0.0141	0.0219	0.0469	0.0703	0.0828	0.1703	0.3297
breast-cancer	97.08%	97.54%	97.77%	97.74%	97.92%	97.85%	96.73%	97.48%
683×10	97.39%	98.12%	97.68%	97.68%	97.54%	97.25%	96.63%	97.73%
	0	0.0125	0.0281	0.0453	0.0672	0.0781	0.125	0.3281
diabetes	78.17%	80.46%	79.15%	80.81%	79.83%	85.33%	77.47%	79.15%
768×8	79.22%	78.44%	78.96%	80.81%	79.83%	85.33%	75.78%	77.48%
	0.0078	0.0172	0.0313	0.0516	0.0766	0.0906	0.1689	0.4406
heart	85.76%	85.35%	88.72%	89.26%	90.12%	84.73%	96.75%	83.29%
270×13	88.15%	83.70%	86.67%	87.41%	84.44%	86.30%	75.56%	82.96%
	0.0047	0.063	0.0109	0.0219	0.0313	0.0344	0.0312	0.0297
ionosphere	85.62%	94.19%	96.67%	96.32%	94.19%	97.46%	100%	99.37%
351×34	85.83%	88.61%	89.72%	92.22%	91.39%	91.11%	92.02%	94.87%
	0.0031	0.0094	0.0156	0.0281	0.0344	0.0437	0.0610	0.0626
liver	75.13%	75.35%	77.23%	78.16%	76.32%	74.97%	80.58%	76.75%
345×6	70.57%	75.43%	73.14%	76.57%	74.29%	74.57%	72.49%	73.34%
	0.0016	0.0063	0.0156	0.0234	0.0359	0.0453	0.05	0.0581
sonar	81.18%	90.43%	90.91%	99.89%	99.57%	87.49%	100%	100%
208×60	76.67%	83.33%	85.24%	81.90%	84.76%	80%	74.04%	89.47%
	0.0016	0.0031	0.0141	0.0172	0.0313	0.0281	0.0405	0.0156
splice	68.31%	80.08%	83.99%	86.63%	88.44%	86.17%	100%	-
1000×60	70.30%	78.50%	81.10%	81.30%	81.10%	81.20%	56.9%	-
	0.0063	0.0234	0.0484	0.0703	0.1	0.1141	1.25	-

- 我们提出了一种新的Extreme Support Vector Machine (ESVM) 分类模型:
 - 利用随机构造的映射函数代替核函数
 - 正则化最小二乘
- 优点:
 - 比SLFN具有更好的泛化能力
 - 比SVM更简单,更快速
 - 具有与SVM相似的正确率
 - 可用于大数据集的训练

 Qiuge Liu, Qing He, and Zhongzhi Shi. Extreme Support Vector Machine, in PAKDD'08(EI源).

Most Influential Paper Award

"Extreme Support Vector Machine Classifier"

co-authored by Qiuge Liu, Qing He and Zhongzhi Shi, published at PAKDD 2008

研究工作总结

- Qiuge Liu, Qing He, and Zhongzhi Shi. Extreme Support Vector Machine, in PAKDD'08 (EI源).
- Qiuge Liu, Qing He, and Zhongzhi Shi. Incremental Nonlinear Proximal Support Vector Machine, in D. Liu et al. (Eds.): ISNN 2007, LNCS 4493, Part III, pp. 336–341, 2007(EI已收录).
- Qiu-ge Liu, Qing He, Zhong-zhi Shi. Data Selection for Nonlinear Proximal Support Vector Machine, Third International Conference on Natural Computation, Vol.1,pp.120-124. (EI已收录)
- 刘秋阁,何清,史忠植.一种新的非线性支持向量机分类 算法. CAAI-12,北京邮电大学出版社,2007,190-195.

- ESVM的进一步完善
 - 随机映射函数对分类器性能的影响,及其与核函数、核优化理论的关系;
 - ESVM对大数据集分类能力的分析;
 - ESVM中两步学习方式,可以推广到很多不同的 (几乎任意)学习算法中用于学习非线性模型;

谢谢!

