

MATLAB Student Ambassadors

Victor Pennacino Théophine Gurlie victor.pennacino@epfl.ch theophine.gurlie@epfl.ch

Res Joehr

resjøehr@mathworks.com

MATLAB Student Ambassadors

Daniel Tran Carina Käser tranda@ethz.ch cakaeser@ethz.ch

MathWorks Contact

Res Joehr

resjoehr@mathworks.com

SESSION OVERVIEW

6pm-6:45pm Introduction to Deep Leaning on MATLAB

6:45pm-7pm Hackathon presentation

7pm-8:30pm Pizza, Q&A + Beginning of Hackathon!

DEEP LEARNING IN MATLAB

Part I: Intro to Deep Learning

Neural networks

Deep learning

Machine Learning vs Deep Learning

Convolutional Neural Networks

Part II: MATLAB Features

Deep Learning applications

Neural Network Designer

Transfer Learning

Part III: Hackathon presentation

Background info

Workflow

Part I:

Intro to Deep Learning

SIMPLE NEURAL NETWORK

Main points:

Composed of node layers simulating the human brain (Artificial Neural Network) Each node as a linear regression model

Rely on training data to increase accuracy (modifies weights & thresholds using gradient decent on a cost function)

Weights and biases:

$$\sum$$
wixi + bias = w1x1 + w2x2 + w3x3 + bias
output = f(x) = 1 if \sum w1x1 + b>= 0; 0 if \sum w1x1 + b < 0

Architecture:

Data passed between nodes as a feed forward network
Different types of architectures for other purposes (CNN for pattern recognition,
RNN for retaining information)

Part I:

Intro to Deep Learning

DEEPLEARNING

Applications:

Machine vision, Robotics, Generative models (NLP...), Regression ect.

Main idea:

ML technique that learns features from data (images, text, sounds...) End to end learning -> Does not rely on intermediate handcrafted features

Justification:

Higher precision than humans in certain classification tasks, less demanding feature engineering

More accessible computational hardware nowadays

Deep Learning refers to the number of hidden layers in the network -> 120 for GPT4, 1.8 trillion parameters!

To train and modify weights -> Backpropagation algorithm, but that's a little too long to explain right now

Part I: Intro to Deep Learning

ML vs DL Image classification

ML workflow: Manually select edges and features

Train the model (KNN, SVM, K-means...)

Model then references features for new objects

DL workflow: Skip manual feature extraction, DL takes care of it and can repeat after DL

	Machine Learning	Deep Learning
Training dataset	Small	Large
Choose your own features	Yes	No
# of classifiers available	Many	Few
Training time	Short	Long

Part I: Intro to Deep Learning

CNN

CONVOLUTIONAL NEURAL NETWORK

In Machine Vision:

Scene classification

Object detection & segmentation (visualizing sub elements of a picture)

Image processing

Local receptor fields:

Small regions of input layers connected to regions of input layers Receptive field convoluted across the image to extract features of image

Shared weights & Biases:

CNN weights and values are the same for each hidden layer detecting a specific feature

Test each region for the same trained feature (feature ID independent from translations)

Activation & pooling:

Simplifying the inputs to facilitate feature extraction

Part I: Intro to Deep Learning

TRANSFER LEARNING

Classification for different objects share some common features

Eg: NN used to differentiate animals -> NN to differentiate cars

MATLAB FEATURES

For you to discover

Data preprocessing
Deep Network Designer
Transfer learning
Image processing

Main image processing needs for DL
Facilitate NN design
Rely on a variety of pretrained networks
Any kind of image modification you can think of

HACKATHON PRESENTATION

Part 1: Problem definition

Resources

Goal

Part 2: Basic information

Dates

Teams

MATLAB online

PROBLEM DEFINITION

Goal: Classify Rock-Paper-Scissors images

Resources: Green screen images of Rock, paper scissor hand shapes

A simple script to train and test an RS18 NN based on those images

MATLAB Deep learning toolbox

MATLAB Image processing toolbox

Winner: Best performance on a hidden set of images (real backgrounds,

different illuminations...)

Bonus points: If you have developed an additional MATLAB application eg: A visual interface for the data... Try using the MATLAB app builder!

HIDDENTEST SET SAMPLE

BACKGROUND INFO

When:

26th of September-5th of October (Online event)

Testing your NN:

Test your trained .mat file against our secret database using the provided script Results are uploaded Live to a Leaderboard -> Track your progress vs others!

Teams:

Max 4 people

Financial prizes (if any) are to be shared between team members

Prizes:

Top 1: 200 .- in gift cards (to choose from ...)

Top 2: 100 .- in gift cards (to choose from . . .)

Top 3: 50 .- in gift cards (to choose from ...)

Top 4-5: MATLAB mug/shirt + cap

Top 5-10: MATLAB goodies

WORKFLOW

- 1) Choose the base network
- 2) Import data to create Datastore
- 3) Setting up network (manually, or through Graphical Network Designer)
- 4) Train Network
- 5) Test Network (locally)
- 6) Test Network against secret database

Results

Validation accuracy: 99.08%

Training finished: Stopped manually

Training Time

Start time: 11-Aug-2023 08:59:51

Elapsed time: 23 min 45 sec

Training Cycle

Epoch: 2 of 4

Iteration: 16 of 40

Iterations per epoch: 10

Maximum iterations: 40

Validation

Frequency: 5 iterations

Other Information

Hardware resource: Single CPU

Learning rate schedule: Constant

Learning rate: 0.0001

RESSOURCES

Covered during this presentation

Overview on DL

What is Deep Learning

Machine Learning vs Deep learning

Convolutional Neural Networks

Brief overview of MATLAB DL features

Image processing

Neural Network Designer

Transfer learning

Neural networks

Additional content

Image processing example

Deep learning applications

Neural networks series by 3blue1brown

