The Post Correspondence Problem

Some <u>undecidable</u> problems for context-free languages:

• Is
$$L(G_1) \cap L(G_2) = \emptyset$$
 ?
$$G_1, G_2 \text{ are context-free grammars}$$

• Is context-free grammar G ambiguous?

We need a tool to prove that the previous problems for context-free languages are <u>undecidable</u>:

The Post Correspondence Problem

The Post Correspondence Problem

Input: Two sets of n strings

$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, ..., v_n$$

There is a Post Correspondence Solution if there is a sequence i, j, ..., k such that:

PC-solution:
$$w_i w_j \cdots w_k = v_i v_j \cdots v_k$$

Indices may be repeated or omitted

Example:

A:

*w*₁ 100

 $\frac{w_2}{11}$

 v_2

 w_3 111

B :

 v_1

001

111

 v_3

11

PC-solution: 2,1,3

 $w_2 w_1 w_3 = v_2 v_1 v_3$

11100111

Example: w_1 w_2 w_3 A: 00 001 1000 v_1 v_2 v_3 B: 0 11 011

There is no solution

Because total length of strings from $\,B\,$ is smaller than total length of strings from $\,A\,$

The Modified Post Correspondence Problem

Inputs:
$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, ..., v_n$$

MPC-solution: 1, i, j, ..., k

$$w_1 w_i w_j \cdots w_k = v_1 v_i v_j \cdots v_k$$

Example:

A:

*w*₁ 11

w₂
111

 $\frac{w_3}{100}$

B:

ν₁
111

 v_2

11

 v_3 001

MPC-solution: 1,3,2

 $w_1 w_3 w_2 = v_1 v_3 v_2$

11100111

We will show:

1. The MPC problem is undecidable (by reducing the membership to MPC)

2. The PC problem is undecidable (by reducing MPC to PC)

Theorem: The MPC problem is undecidable

Proof: We will reduce the membership problem to the MPC problem

Membership problem

Input: Turing machine M string w

Question: $w \in L(M)$?

<u>Undecidable</u>

Membership problem

Input: unrestricted grammar G string w

Question: $w \in L(G)$?

Undecidable

Suppose we have a decider for the MPC problem

String Sequences MPC solution? $A \longrightarrow MPC \text{ problem } \longrightarrow YES$ $decider \longrightarrow NO$

We will build a decider for the membership problem

The reduction of the membership problem to the MPC problem:

Membership problem decider

We need to convert the input instance of one problem to the other

Membership problem decider

Reduction:

Convert grammar G and string Wto sets of strings A and B

Such that:

G generates w

There is an MPC solution for A, B

\boldsymbol{A}	\boldsymbol{B}	Grammar G
$FS \Rightarrow$	\boldsymbol{F}	S: start variable F: special symbol
a	a	For every symbol a
V	$oldsymbol{V}$	For every variable V

\boldsymbol{A}	\boldsymbol{B}	Grammar G
\boldsymbol{E}	$\Rightarrow wE$	string w $E: special symbol$
\mathcal{Y}	$\boldsymbol{\mathcal{X}}$	For every production $x \rightarrow y$
\Rightarrow	\Rightarrow	

Example:

Grammar
$$G: S \rightarrow aABb \mid Bbb$$

$$Bb \rightarrow C$$

$$AC \rightarrow aac$$

String
$$w = aaac$$

	\boldsymbol{A}		B	
w_1 :	$FS \Rightarrow$	v_1 :	$oldsymbol{F}$	
w_2 :	\boldsymbol{a}	v_2 :	\boldsymbol{a}	
w ₃ :	b	v ₃ :	b	
	$\boldsymbol{\mathcal{C}}$		$\boldsymbol{\mathcal{C}}$	
• •	\boldsymbol{A}	•	\boldsymbol{A}	
	\boldsymbol{B}	·	\boldsymbol{B}	
	\boldsymbol{C}		\boldsymbol{C}	
<i>w</i> ₈ :	\boldsymbol{S}	<i>v</i> ₈ :	S	

Grammar G:

 $S \rightarrow aABb \mid Bbb$

 $Bb \rightarrow C$

 $AC \rightarrow aac$

 $aaac \in L(G)$:

 $S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$

$$S \rightarrow aABb \mid Bbb$$
 $Bb \rightarrow C$
 $AC \rightarrow aac$

$$S \Rightarrow aABb$$

$$S \rightarrow aABb \mid Bbb$$
 $Bb \rightarrow C$
 $AC \rightarrow aac$

$$S \Rightarrow aABb \Rightarrow aAC$$

$$S \rightarrow aABb \mid Bbb$$

 $Bb \rightarrow C$
 $AC \rightarrow aac$

$$S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$$

$$S \rightarrow aABb \mid Bbb$$
 $Bb \rightarrow C$
 $AC \rightarrow aac$

A:
$$w_1$$
 w_{10} w_{14} w_2 w_5 w_{12} w_{14} w_2 w_{13}
F $S \Rightarrow a$ **A B** $b \Rightarrow a$ **A C** $\Rightarrow a$ **a a c E B**: v_1 v_{10} v_{14} v_2 v_5 v_{12} v_{14} v_2 v_{13}

$$S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$$

$$S \rightarrow aABb \mid Bbb$$
 $Bb \rightarrow C$
 $AC \rightarrow aac$

A:
$$w_1$$
 w_{10} w_{14} w_2 w_5 w_{12} w_{14} w_2 w_{13} w_9
F $S \Rightarrow a$ **A B** $b \Rightarrow a$ **A C** $\Rightarrow a$ **a a c E B**: v_1 v_{10} v_{14} v_2 v_5 v_{12} v_{14} v_2 v_{13} v_9

(A,B) has an MPC-solution

$$w \in L(G)$$

Membership problem decider

Since the membership problem is undecidable, The MPC problem is undecidable

END OF PROOF

Theorem: The PC problem is undecidable

Proof: We will reduce the MPC problem to the PC problem

Suppose we have a decider for the PC problem

We will build a decider for the MPC problem

String Sequences MPC solution? $A \longrightarrow MPC \text{ problem } decider \longrightarrow NO$

The reduction of the MPC problem to the PC problem:

We need to convert the input instance of one problem to the other

A,B: input to the MPC problem

$$A = w_1, w_2, ..., w_n$$

 $B = v_1, v_2, ..., v_n$

Translated to

C,D: input to the PC problem

$$C = w'_1, ..., w'_n, w'_{n+1}$$

$$D = v'_1, ..., v'_n, v'_{n+1}$$

$$\boldsymbol{A}$$

$$\mathbf{W}_i = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$w_i' = \sigma_1 * \sigma_2 * \cdots \sigma_k *$$
replace $w_1' = * w_1'$

$$\mathbf{w}_{n+1}' = \Diamond$$

$$B$$
 $\mathbf{v}_i = \pi_1 \pi_2 \cdots \pi_k$

$$\mathbf{v}_{i}' = \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{2} \cdots \mathbf{x}_{k}$$

$$\mathbf{v}_{n+1}' = *\Diamond$$

Has to start with These strings

$$C$$
 PC-solution D

$$w'_1w'_i\cdots w'_kw'_{n+1}=v'_1v'_i\cdots w'_kv'_{n+1}$$

$$\begin{array}{ccc}
A & B \\
\mathbf{w_1}\mathbf{w_i} & \cdots \mathbf{w_k} & = \mathbf{v_1}\mathbf{v_i} & \cdots \mathbf{v_k}
\end{array}$$

MPC-solution

C,D has a PC solution

A, B has an MPC solution

MPC problem decider

Since the MPC problem is undecidable, The PC problem is undecidable

END OF PROOF

Some <u>undecidable</u> problems for context-free languages:

• Is
$$L(G_1) \cap L(G_2) = \emptyset$$
 ?
$$G_1, G_2 \text{ are context-free grammars}$$

• Is context-free grammar G ambiguous?

We reduce the PC problem to these problems

Theorem: Let G_1, G_2 be context-free grammars. It is undecidable to determine if

$$L(G_1) \cap L(G_2) = \emptyset$$

(intersection problem)

Proof: Reduce the PC problem to this problem

Suppose we have a decider for the intersection problem

We will build a decider for the PC problem

The reduction of the PC problem to the empty-intersection problem:

We need to convert the input instance of one problem to the other

Introduce new unique symbols: a_1, a_2, \ldots, a_n

$$A = w_1, w_2, \dots, w_n$$

$$L_A = \{s: s = w_i w_j \cdots w_k a_k \cdots a_j a_i\}$$

Context-free grammar $G_A\colon S_A\to w_iS_Aa_i\ |\ w_ia_i$

$$B = v_1, v_2, \dots, v_n$$

$$L_B = \{s: s = v_i v_j \cdots v_k a_k \cdots a_j a_i\}$$

Context-free grammar $G_B \colon S_B \to v_i S_B a_i \mid v_i a_i$

(A,B) has a PC solution

$$L(G_A) \cap L(G_B) \neq \emptyset$$

$$L(G_1) \cap L(G_2) \neq \emptyset$$

$$s = w_i w_j \cdots w_k a_k \cdots a_j a_i$$

$$s = v_i v_j \cdots v_k a_k \cdots a_j a_i$$

Because a_1, a_2, \dots, a_n are unique

There is a PC solution:

$$\mathbf{W}_i \mathbf{W}_j \cdots \mathbf{W}_k = \mathbf{V}_i \mathbf{V}_j \cdots \mathbf{V}_k$$

PC problem decider

Since PC is undecidable, the Intersection problem is undecidable

END OF PROOF

Theorem: For a context-free grammar ${\cal G}$, it is undecidable to determine if ${\cal G}$ is ambiguous

Proof: Reduce the PC problem to this problem

PC problem decider

 S_A start variable of G_A

 S_B start variable of G_B

S start variable of G

$$S \to S_A \mid S_B$$

(A,B) has a PC solution

G is ambiguous