PSC 202 SYRACUSE UNIVERSITY

INTRODUCTION TO POLITICAL ANALYSIS

MULTIPLE REGRESSION, PART 1

REMINDERS

- No sections this Friday
 - Take-home assignment instead
 - Due Dec 3 (Friday after we're back)
- New Problem Set will be posted on Friday
 - Also due Dec 3

LAST TIME

- Logic of control
 - What is the relationship between X and Y when we control for one confounder Z?
 - Idea: Look at the effect of X among the different values of Z

LAST TIME

	Democrats	Not Democrats	Total
Agree	19.2%	41.4%	27.2%
	(10) 22	.2% (12)	(22)
Disagree	80.8%	58.6%	72.8%
	(42)	(17)	(59)
Total	100% (52)	100% (29)	100% (81)

CONTROLLED COMPARISON TABLE

Female			Male			
	Dem 22 .	Non-	Total	Dem 21.	Non- 7% Pem	Total
Agree	18.9% (7)	41.2% (7)	25.9% (14)	20.0%	41.7% (5)	29.6% (8)
Disagree	81.1%	58.8% (10)	74.1% (40)	80.0%	58.3% (7)	70.4% (19)
Total	100%	100% (17)	100% (54)	100% (15)	100% (12)	100% (27)

Partial effect of gender, "controlling for" gender

Afghanistan war was beneficia

LAST TIME

- 1. Are all controlled effects zero or very close to zero?
 - Yes? \Rightarrow relationship between x and y is spurious
 - No? ⇒ either additive or interactive
- 2. Are all controlled effects approximately the same size?
 - Yes? ⇒ additive relationship
 - No? ⇒ interactive relationship

REMEMBER VARIABLE LEVELS

- So far: Dependent variable was nominal-level
- Now: DV is interval level
 - e.g. GPA
 - We use <u>mean comparison</u>
 - Determination if spurious, additive, interactive works just the same

ZERO-ORDER RELATIONSHIP

Frequency in parentheses

STUDYING

• Spurious? Additive? Interactive?

CONTROLLED COMPARISON

	5 Or Few	6 Or Mor	e Classes	
Sleep	More Than 7 Hours/Night	7 Or Fewer Hours/Night	More Than 7 Hours/Night	7 Or Fewer Hours/Night
Average Gpa	3.53 (30)	3.42 (29)	3.55 (10)	3.52 (13)

• Frequency in parentheses

HOW CAN WE TELL WHICH ONE?

- 1. Are all controlled effects zero or very close to zero?
 - Yes? ⇒ relationship between x and y is spurious
 - No? ⇒ either additive or interactive
- 2. Are all controlled effects approximately the same size?
 - Yes? ⇒ additive relationship
 - No? ⇒ interactive relationship

CONTROLLED COMPARISON

	5 Or Few	er Classes	6 Or Mor	e Classes
Sleep	More Than 7 Hours/Night	7 Or Fewer Hours/Night	More Than 7 Hours/Night	7 Or Fewer Hours/Night
Average Gpa	3.53	3.42 11 (29)	3.55 (10) 0.	3.52 03 (13)

• Frequency in parentheses

HOW CAN WE TELL WHICH ONE?

- 1. Are all controlled effects zero or very close to zero?
 - Yes? \Rightarrow relationship between x and y is spurious
 - No? ⇒ either additive or interactive
- 2. Are all controlled effects approximately the same size?
 - Yes? ⇒ additive relationship
 - No? ⇒ interactive relationship

CONTROLLED COMPARISON

	5 Or Few	er Classes	6 Or More Classes		
Sleep	More Than 7 Hours/Night	7 Or Fewer Hours/Night	More Than 7 Hours/Night	7 Or Fewer Hours/Night	
Average Gpa	3.53	3.42 11 (29)	3.55 (10) 0.	3.52 03 (13)	

• Frequency in parentheses

HOW CAN WE TELL WHICH ONE?

- 1. Are all controlled effects zero or very close to zero?
 - Yes? \Rightarrow relationship between x and y is spurious
 - No? ⇒ either additive or interactive
- 2. Are all controlled effects approximately the same size?
 - Yes? ⇒ additive relationship
 - No? ⇒ interactive relationship

INTERACTIVE RELATIONSHIP

- Number of classes determines how much sleep affects
 GPA
 - Sleep matters quite a bit among students who take 5 or fewer classes
 - Sleep doesn't matter for students who take more classes

ANOTHER EXAMPLE

Frequency in parentheses

ANOTHER EXAMPLE

	Ma	Female		
Partisanship	Democrats	Non- Democrats	Democrats	Non- Democrats
Rating Of J. Biden	68.6 (15)	32.0 (12)	61.6 (37)	37.5 (17)

• Frequency in parentheses

ANOTHER EXAMPLE

	Ma	ale	Female		
Partisanship	Democrats	Non- Democrats	Democrats	Non- Democrats	
Rating Of J. Biden	68.6 (15) 36	32.0	61.6 (37) 24	37.5	

• Frequency in parentheses

HURDLES TO CAUSALITY

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

EXAMPLE

	Male	Female	Total
Democrats			
Non-Democrats			
Total			

2 INDEPENDENT VARIABLES

	Relig	gious	Not Re		
	Male	Female	Male	Female	Total
Democrats					
Non- Democrats					
Total					

3 INDEPENDENT VARIABLES

		Wh	/hite Black			ack/ <i>A</i> Ame			Asian				
	Relig	gious	N Relig	ot gious	Relig	gious	N Relig	ot gious	Relig	gious	N Relig	ot gious	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Total
Demo crats													
Non- Demo crats													
Total													

 As we control for more potential confounders, table gets increasingly unwieldy (and few/no observations in some cells)

ANOTHER ISSUE

- What if a control is interval-level?
 - e.g liberal-conservative (0-100 scale)
 - A table with 100 categories?
 - Again, unwieldy table with many cells where there are no observations

TODAY

- Multiple regression
 - Extends bivariate regression to incorporate not just one, but many independent variables

CONTROLLED COMPARISON

- Logic of controlled comparison:
 - Separate men and women
 - Among men: What is the effect of partisanship on ratings of J. Biden?
 - Among women: What is the effect of partisanship on ratings of J. Biden?
- Gives us the partial effects of partisanship, holding gender constant

MULTIPLE REGRESSION

- Multiple regression does something similar
- Can estimate the effect of two variables on dependent variable (ratings of J. Biden)
 - Gives the partial effect of gender, holding partisanship constant
 - And: gives the partial effect of partisanship, holding gender constant

MULTIPLE REGRESSION

- Can include more than 2 independent variables
 - e.g. age, partisanship, gender
 - Gives the partial effect of age, holding constant partisanship and gender
 - Gives the partial effect of partisanship, holding constant gender and age
 - Gives the partial effect of gender, holding constant partisanship and age

BIVARIATE REGRESSION

BIVARIATE REGRESSION

	Coefficient	Standard Error	T-Value
Intercept	63.80	4.35	14.64
Liberal- Conservative	-0.35	0.12	-2.84

R²: 0.10

LINEAR REGRESSION

- Let's add age as a second control
- $y = a + b_1 * x_1 + b_2 * x_2$
 - y: evaluation of J. Biden
 - x₁: liberal-conservative
 - x₂: age

EFFECT OF LIB/CONS

	Coefficient	Standard Error	T-Value
Intercept	95.2	61.9	1.54
Liberal- Conservative	-0.33	0.13	-2.46
Age	-1.55	3.13	-0.50

R²: 0.10

EFFECT OF LIB/CONS

- Coefficient: -0.33 (SE 0.13, t-value -2.46)
- Interpretation: For every one point increase on the liberal-conservative scale, the evaluation of J. Biden decreases by 0.33 points, holding all other variables constant
- We reject H_0 , so negative effect of liberal-conservative on evaluation is significant at the 5% level
 - even when controlling for age

EFFECT OF AGE

	Coefficient	Standard Error	T-Value
Intercept	95.2	61.9	1.54
Liberal- Conservative	-0.33	0.13	-2.46
Age	-1.55	3.13	-0.50

R²: 0.10

EFFECT OF AGE

- Coefficient: -1.55 (SE 3.13, t-value -0.50)
- Interpretation: For every one year increase in age, the evaluation of J. Biden decreases by 1.55 points, holding all other variables constant
- We cannot reject H_0 , so effect of age on evaluation is *not* significant at the 5% level
 - Age does not have an independent effect from lib/ cons

INTERCEPT

	Coefficient	Standard Error	T-Value
Intercept	95.2	61.9	1.54
Liberal- Conservative	-0.33	0.13	-2.46
Age	-1.55	3.13	-0.50

R²: 0.10

INTERCEPT

- Intercept: 95.2
- Gives expected feeling score when both lib/ cons=0 and age=0

R-SQUARED

	Coefficient	Standard Error	T-Value
Intercept	95.2	61.9	1.54
Liberal- Conservative	-0.33	0.13	-2.46
Age	-1.55	3.13	-0.50

R²: 0.10

- Linear regression allows us to estimate the effect of several independent variables on the dependent variable
- Gives us the effect of an independent variable on the dependent variable, holding all other variables constant
 - "ceteris paribus"
- We can assess the effect of the variables independently of each other

- Evaluation = 95.2 0.33*Lib/Cons 1.55*Age
- What is the predicted evaluation for a person with a lib/cons score of 50 and an age of 20?

- Evaluation = 95.2 0.33*Lib/Cons 1.55*Age
- What is the predicted evaluation for a person with a lib/cons score of 50 and an age of 20?
- Evaluation = 95.2 0.33*50 1.55*20 = 47.7

- Evaluation = 95.2 0.33*Lib/Cons 1.55*Age
- What if that person had a lib/cons score of 100 instead?

- Evaluation = 95.2 0.33*Lib/Cons 1.55*Age
- What if that person had a lib/cons score of 100 instead?
- Evaluation = 95.2 0.33*100 1.55*20 = 31.2

- Evaluation = 95.2 0.33*Lib/Cons 1.55*Age
- And what if they were 25 years old?

- Evaluation = 95.2 0.33*Lib/Cons 1.55*Age
- And what if they were 25 years old?
- Evaluation = 95.2 0.33*100 1.55*25 = 23.5

- Of course, being older might also make someone more conservative
- But the linear regression estimates the effects of liberal/conservative and age independently of each other