Statistical Inference Course Project Part 1

Muhammad Ali Shaaban

18 December 2018

Peer Graded Assignment: Statistical Inference Course Project

Instructions

The project consists of two parts:

- A simulation exercise.
- Basic inferential data analysis.

Part 1: Simulation Exercise Instructions

Overview

In this project you will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

Question 1 : Show the sample mean and compare it to the theoretical mean distribution

```
n <- 40
Simulations <- 1000
Lambda <- 0.2

SampleMean <- NULL
for(i in 1:Simulations) {
    SampleMean <- c(SampleMean, mean(rexp(n, Lambda)))
}
mean(SampleMean)
## [1] 4.978479</pre>
```

So, as we can see, compared to the theoretical mean distribution of 5, our mean 5 is close.

Question 2: Show the sample is (via variance) and compare it to the thoretical variance of the distribution.

The theoretical standard deviation of the distribution is also 1/lambda, which, for a lambda of 0.2, equates to 5. The variance is the square of the standard deviation, which is 25.

0.6 is close to the theoretical distribution.

Show that the distribution is appoximately normal

```
hist(SampleMean, breaks = n, prob = T, col = "blue", xlab = "Means")
x <- seq(min(SampleMean), max(SampleMean), length = 100)
lines(x, dnorm(x, mean = 1/Lambda, sd = (1/Lambda/sqrt(n))), pch = 25, col =
"green")</pre>
```

Histogram of SampleMean


```
qqnorm(SampleMean)
qqline(SampleMean, col = "blue")
```

Normal Q-Q Plot

The distribution averages of 40 exponentials is very close to a normal distribution