

Digitized by the Internet Archive in 2025

SYMMETRICAL

MASONRY ARCHES

INCLUDING

NATURAL STONE, PLAIN-CONCRETE, AND REINFORCED-CONCRETE ARCHES

FOR THE USE OF TECHNICAL SCHOOLS, ENGINEERS, AND COMPUTERS IN DESIGNING ARCHES ACCORDING TO THE ELASTIC THEORY

BY

MALVERD A. HOWE, M. Am. Soc. C. E.

Professor of Civil Engineering, Rose Polytechnic Institute

FIRST EDITION
FIRST THOUSAND

NEW YORK

JOHN WILEY & SONS

LONDON: CHAPMAN & HALL, LIMITED

1906

Copyright, 1906 BY MALVERD A. HOWE

PREFACE.

THE object of this book is to present in a simple form the method to be employed in the designing of masonry arches according to the *elastic theory*.

The entire subject of arches has been fully treated in the author's Treatise on Arches, in which formulas for special cases and conditions are given. Considering the fact that masonry arches are constructed of materials and under conditions which are more or less uncertain in character, the use of comprehensive or rigid formulas is not necessary or warranted. Consequently the formulas and methods here presented are somewhat approximate, but quite accurate enough for the purpose for which they are intended.

The greater portion of the book is taken up with the solution of examples, giving each step in detail so as to be easily followed by the undergraduate or the engineer who has not the time to review the theory of arches in a comprehensive manner.

The first and second examples have been solved by a somewhat longer method than necessary. This method was used in order to show clearly the several processes and checks.

iii

In the third example will be found the simplest solution of the formulas for the horizontal thrusts and bending moments at the supports presented up to this time.

The numerical and graphical work has been given with such discrepancies as may be expected unless extraordinary care is exercised and many decimal places used. The discrepancies are of no practical importance, as the results are much nearer being exact than any masonry structure can be built, so as to fulfil the conditions upon which the calculations are based.

For the benefit of those who desire to follow precedents and as an aid in making preliminary calculations and estimates, the general data for over five hundred arch bridges have been given in tabular form with references to periodicals, etc., where more extended descriptions can be found. Without any doubt many errors exist in this table, which is quite incomplete in some particulars. The data have been derived from many sources and in some cases supplied from drawings by scaling and in others by calculations.

M. A. H.

TERRE HAUTE, July 1906.

CONTENTS

CHAPTER I.

Fundamental Formulas for the Elastic Arch.	
r. Angular Distortion Produced by Bending	PAGE
2. Changes in the Coordinates x and y Produced by Bending only.	
3. Changes in x and y Produced by a Direct or Axial Stress	
4. Changes in s, x , and y Produced by a Rise of Temperature	
5. The Combination of Bending, Axial Thrust, and Temperature	
Effects	7
6. Neglecting the Axial Stress and Assuming the Modulus of Elas-	
ticity as Constant	7
CHAPTER II.	
SYMMETRICAL ARCHES FIXED AT THE ENDS.	
7. Conditions which must be Satisfied	9
8. Determination of the Horizontal Thrust H1 Produced by Ver-	
tical and Horizontal Loads and Changes of Temperature	IO
9. The Horizontal Thrust Produced by a Single Vertical Load	
Placed at any Point upon the Arch	ΙI
10. The Horizontal Thrust Produced by a Single Horizontal Load	
Placed at any Point upon the Arch	11
11. The Horizontal Thrust Produced by a Change of Temperature.	
12. Determination of the Bending Moment at the Left Support	
Produced by any Single Load and Changes of Tempera-	
ture	13
3. Formulas which Apply for Vertical Loads only	15
14. A Graphical Determination of m_x in (2a) for Vertical Loads, 15. A Graphical Determination of Some of the Factors in the Equa-	16
tion for H_1 for Vertical Loads	- 4
16. A Graphical Representation of the Second Term in the Expres-	17
sion for M_1 for Vertical Loads	18
17. A Graphical Representation of M_x for Vertical Loads only	20
17. A Graphical Representation of M_x for vertical Boats only	20
ing the True Equilibrium Polygon for a Single Vertical	
Load	22

		PAGE
ΙO.	The Effect of the Axial Stress for Vertical Loads only	23
	Loads which Produce Maximum Values of Tx or Radial Shear.	25
	Formulas which Apply for Horizontal Loads only	26
	A Graphical Representation of M_x for a Single Horizontal	
	Load.	27
22.	A Graphical Representation of M_x for Two Equal and Sym-	
- 3 -	metrical Horizontal Loads.	28
21.	Arch Ribs for which 4 is Constant	29
	Formulas for H_1 and M_1 for Vertical Loads when Δ is Constant.	30
	Formulas for h_1 and M_1 for Horizontal Loads when Δ is Con-	
	stant	31
27.	Formulas for H_t and M_1 for Changes of Temperature when Δ is	
,	Constant	31
28.	Effect of the Axial Stress when Δ is Constant	32
29.	Determination of N_x , the Normal or Axial Stress, and T_x , the	
	Radial Shear at any Point	32
30.	A Graphical Determination of N_x and T_x for Vertical Loads	33
31.	Fiber Stresses for any Section	33
32.	Reliability of the Elastic Theory when Applied to Steel Ribs	37
33.	Reliability of the Elastic Theory when Applied to Ribs Com-	
	posed of Natural Stone Voussoirs	37
34.	Reliability of the Elastic Theory when Applied to Plain Con-	
	crete Ribs	41
35-	Reliability of the Elastic Theory when Applied to Reinforced	
	Concrete Ribs	42
	Reliability of the Elastic Theory: Summary	42
		43
38.	Empirical Formulas for the Thickness of the Ring at the	
	Crown in Stone Arches	43
39· 40.	Thickness of Abutment.	46
40. 41.	Thickness of Piers.	47
		48
		48
43. 44.		49
		49
+3,	Ring.	51
		2.
	CVV A DOWN DO THE	
	CHAPTER III.	
]	Examples showing the Application of the Formulas, etc.	
46.	Preliminary	5.3
	First Example: Data	53
	Subdivision of the Arch Axis	54
	Computation of x and y	55
		0.5

		PAGE
50.	Computation of H_1 for Unit Loads	56
	Computation of M_1 , V_1 , y_1 , y_2 , and y_0 for Unit Loads	60
52.		65
53-	Live Loads and Loads Producing Maximum Moments	68
	M_1 , V_1 , and H_1 for Live Loads	69
	Maximum Moments at Point o Produced by the Live Load	69
	Maximum Moments at the Crown Produced by the Live Load.	70
	Moment at the Crown Produced by Live Loads 1-10 Inclusive.	72
	Moment at the Crown Produced by Loads 8-8' Inclusive	72
59.	Maximum Moment at Point 6' Produced by Live Loads 1-8'	
	Inclusive.	73
60.	Maximum Moment at Point 6' Produced by Live Loads 7'-1'	
	Inclusive	73
	Moment at Point 6' Produced by Live Loads 1-10 Inclusive	73
62.	Moments at all Points Produced by Live Loads 1-8' Inclusive	
	Determined Graphically	74
63.	Maximum Moment at Point 6' Produced by Loads 7'-1' Inclu-	
	sive Graphical Determinations	75
	Fiber Stresses Produced by Dead and Live Loads	76
	Effect of Temperature Changes	79
	Effect of the Axial or Direct Stress	81
	A Check upon the Effect of the Axial Stress for Dead Loads	84
65.	Effect of Making Spandrel Filling of Uniform Material Weigh-	
	ing 100 Pounds per Cubic Foot	85
	The Radial Shear	87
	Second Example: Data	88
71.	Subdivision of the Arch Axis	88
72.	Computation of H ₁ for Unit Loads	89
73.	Computation of M_1	89
74.	Values of V_1 , y_1 , y_2 , y_0 , etc., for Unit Loads	96
75.	Values of H_1 and M_1 for the Dead Load	96
76.	Location of the Equilibrium Polygon for the Dead Load	96
77-	Maximum Fiber Stresses Produced by the Dead Load at Point 1	101
78.	Maximum Fiber Stresses Produced by the Live Load at Point I	102
79.	Maximum Fiber Stresses Produced by the Dead Load at	
	Point 7	103
80.		
	Point 7	105
81.	Maximum Fiber Stresses Produced at Points 1 and 7 by the	
	Dead and Live Loads	106
82.	Temperature Stresses	106
83.	Maximum Stresses Produced by Dead Load, Live Load, and	
	Changes of Temperature	108
84.	The Axial Stress.	110
85.	Assumption that the Steel Resists Entire Bending Moment	
	Due to Changes of Temperature	110

	۰	٠	۰
37	4	1	4

CONTENTS.

86. Third Example	III					
CHAPTER IV.						
Typical Arches.						
89. The Rockville Stone Arch Bridge. 90. The Bellefield Stone Arch Bridge. 91. The Luxemburg Stone Arch Viaduct. 92. Approaches to the Thebes Bridge. 93. Vermillion River Plain Concrete Arch Bridge. 94. Steel Reinforcement in the Form of Ribs. 95. Steel Reinforcement other than in the Form of Ribs. 96. Area of Steel Reinforcement. 97. Abstracts from Specifications.	120 121 121 123 123 124 124					
APPENDIX,						
TABLE I.						
Physical Properties of Stone and Concrete,	129					
TABLE II.						
Data for about Five Hundred Masonry Arch Bridges arranged according to Span	134					

NOMENCLATURE.

Fig. a.

 H_1 = the horizontal thrust at the left support for any loading in general and in special formulas for vertical loads only;

 h_1 = the horizontal thrust at the left support for horizontal loads o' ly;

 H_t = the horizontal thrust at the left support for changes of temperature;

 H_a =the horizontal thrust at the left support produced by the axial stress;

 M_1 = the moment at the left support;

 M_2 = the moment at the right support;

 M_x = the moment at any point having the coordinates x and y;

 V_1 = the vertical reaction at the left support;

 V_2 = the vertical reaction at the right support;

l = the span of the arch axis;

f= the rise of the arch axis;

x and y=the coordinates of any point of the arch axis;

 $\phi_0 = -\phi_0$ one half the total central angle subtended by the axis of the arch;

 ϕ = the angular distance to the left of the crown of any point having the coordinates x and y;

P =any vertical load;

Q =any horizontal load;

a = the abscissa of the point of application of P or Q;

b = the ordinate of the point of application of P or Q;

 y_1 , y_0 , and y_2 = ordinates locating the true equilibrium polygon for a vertical load as shown in Fig. a;

 x_1 , x_0 , and x_2 = abscissas locating the true equilibrium polygon for a horizontal load (see Art. 22);

 δs_1 , δs_2 , etc. = finite lengths into which the axis of the arch is divided;

$$\delta x = \delta s \cos \phi$$
;

 $\delta y = \delta s \sin \phi;$

 I_1 , I_2 , etc. = the moment of inertia of the cross-section of the arch ribford ivisions δs_1 , δs_2 , etc.

$$\Delta_1$$
, Δ_2 , etc. $=\frac{\partial s_1}{I_1}$, $\frac{\partial s_2}{I_2}$, etc.;

 Σ = sign of summation, and when without limits the sum is to be taken from o to l;

 $\sum_{n=1}^{\infty} = \text{sum from o to } x;$

E= the modulus of elasticity;

F = area of arch rib at any section;

e =coefficient of linear expansion for one degree;

 t° = number of degrees change of temperature;

p=unit stress in extreme fibers of arch rib;

p'=unit stress in steel reinforcement in reinforced-concrete ribs.

$$y_1 = \frac{M_1}{H_1},$$
 $y_2 = \frac{M_2}{H_2},$ $y_0 = \frac{M_1}{H_1} + \frac{V_1}{H_1}a;$ $x_1 = \frac{M_1}{V_1},$ $x_2 = \frac{M_2}{V_2},$ $x_0 = \left(b - \frac{M_1}{h_1}\right)\frac{h_1}{V_1};$

 $N_x = V_x \sin \phi + H_x \cos \phi = \text{axial or normal stress};$

 $T_x = V_x \cos \phi - H_x \sin \phi = \text{radial shear};$

$$\begin{array}{l} M_x = M_1 + V_1 x - h_1 y + Q(y-b), \text{ horizontal load;} \\ \frac{M_x}{H_1} = \frac{M_1}{H_1} \frac{l-x}{l} + \frac{M_2}{H_1} \frac{x}{l} - y + \frac{m_x}{H_1}, \text{ vertical load.} \end{array}$$

SYMMETRICAL MASONRY ARCHES.

CHAPTER I.

FUNDAMENTAL FORMULAS FOR THE ELASTIC ARCH.

1. Angular Distortion Produced by Bending.—Let Fig. 1 represent an elastic arch which has been distorted so that the angle ϕ has become $\phi - \delta \phi$ at a section having the co-

ordinates x and y. Let the length of the section at x be taken as ∂s on the neutral axis, and assume that the dis-

tortion is confined to this section and produced by bending alone. Then, according to the common theory of flexure, the distortion of the fibers can be represented by Fig. 1a, and the forces producing the distortions by Fig. 1b.

In Fig. 1a, if cd represents the distortion of a fiber distant n from the neutral axis, $cd = +n(-\partial \phi)$, $\partial \phi$ and tan $\partial \phi$ being assumed equal for very small angles.

In Fig. 1b, the intensity of the stress producing the distortion cd is p_n , which may be taken in terms of the intensity p upon the outer fiber, or

$$p_n = \frac{np}{a}$$
.

The moment of p_n about O upon the neutral axis of the arch is

$$np_n = \frac{n^2p}{a},$$

and the sum of the moments of all of the intensities is

$$\sum_{a_1}^a n p_n = \sum_{a_1}^a \frac{n^2 p}{a} = \frac{p}{a} \sum_{a_1}^a n^2 = \frac{p}{a} I_x = M_x,$$

where I_x equals the moment of inertia of the section x, and M_x the bending moment at this section.

Let E_x equal the modulus of elasticity of the material at this section; then, since

$$E_x = \frac{\text{unit stress}}{\text{unit strain}},$$

$$E_x = \frac{p}{\frac{ab}{\delta s}} = \frac{p}{\frac{-a\delta\phi}{\delta s}}. \quad \therefore \quad p = E_x a \frac{-\delta\phi}{\delta s}.$$

This expression is not exactly correct, as it assumes the length of all fibers before distortion to be ∂s , while actually each fiber has a different length. Usually the depth of an arch rib is quite small in comparison with its radius of curvature, so that the error is very small.

Substituting this value of p in the expression $M_x = \frac{p}{a}I_x$ and solving for $\delta \phi$,

$$\delta\phi = -\frac{M_x ds}{E_x I_x}.$$

This represents the change in the angle ϕ due to the distortion at the section x alone. If the effect of the distortion at all sections from A to B, Fig. 1, be represented by $\Delta \phi$, then

$$\Delta\phi = -\sum_{0}^{z} \frac{M_{x} \delta s}{E_{x} I_{x}}.$$

If ϕ_0 is the total central angle upon the *left* of the crown and $-\phi_l$ that upon the *right*, then $\phi_0 - \phi_l$ is the total central angle. The change in this central angle due to the distortions of all sections between o and l (where l is the total span subtending the central angle $\phi_0 - \phi_l$) becomes

$$\label{eq:phi0} \varDelta\phi_0 = \varDelta\phi_l - \mathop{\Sigma}\limits_{0}^{l} \frac{M_x \delta s}{E_x I_x}.$$

2. Changes in the Coordinates x and y Produced by Bending only.—Let the distortion at the section x be the same as in the previous article, and assume the point A free to move; then, after the distortion, it would be in some

position as C, Fig. 2. x will be *increased* by δx and y will be *decreased* by δy .

From Fig. 2,

$$\delta y : \delta v : x : r$$
, or $r \delta y = x \delta v = x r \delta \phi$.
 $\delta x : \delta v : y : r$, or $r \delta x = y \delta v = y r \delta \phi$.
 $\therefore \delta y = x \delta \phi$ and $\delta x = y \delta \phi$.

Substituting the value of $\delta \phi$ from Art. 1,

$$\delta y = \frac{M_x \delta s}{E_x I_x} x$$
 and $\delta x = \frac{M_x \delta s}{E_x I_x} y$.

The total change in x and y due to the distortion of all sections between A and B is

$$\Delta x = \sum_{0}^{x} \frac{M_{x}y\delta s}{E_{x}I_{x}}$$
 and $\Delta y = \sum_{0}^{x} \frac{M_{x}x\delta s}{E_{x}I_{x}}$.

If now x is assumed to equal l, we may write for the total effect of the distortion at all sections upon the span l

$$\Delta l = + \sum_{0}^{l} \frac{M_{x} y \delta s}{E_{x} I_{x}}.$$

If y is assumed as positive when measured upward

and +C is the value of y when x = l, then, noting that y decreases under the particular distortion assumed,

$$JC = -\frac{1}{2} \frac{M_x x \partial s}{E_x I_x}.$$

3. Changes in x and y Produced by a Direct or Axial Stress.

A direct or axial stress is one producing a uniform intensity at the section being considered; consequently the distortion of each fiber will be the same over the entire section (the modulus of elasticity E_x being assumed constant for the section).

If N_x is the magnitude of the stress and F_x the area of the section, $\frac{N_x}{F_x} = p_0$ is the unit stress or intensity upon

the section x. In Fig. 3 let a portion of the arch rib ∂s in length be acted upon by the direct stress N_x , and suppose this stress produces a uniform shortening of the fibers ab; then

$$E_x = \frac{p_0}{ab}$$
, or $ab = \frac{p_0 \delta s}{E_x}$.

If $\sum_{0}^{x} ab$ for all sections between x and o be represented by ds, then

$$\Delta s = \sum_{0}^{x} \frac{p_0 \delta s}{E_x}.$$

If x = l, and since this distortion is in effect a decreasing of the length of the arch axis,

$$\Delta s = -\sum_{0}^{l} \frac{p_0 \delta s}{E_x}.$$

In a similar manner

$$\Delta x = -\sum_{0}^{x} \frac{p_0 \delta x}{E_x}$$
 and $\Delta y = -\sum_{0}^{x} \frac{p_0 \delta y}{E_x}$.

Also

$$\Delta l = -\sum_{0}^{l} \frac{p_0 \delta x}{E_x},$$

and

$$\Delta C = -\sum_{0}^{l} \frac{p_0 \partial y}{E_x}.$$

4. Changes in s, x, and y Produced by a Rise of Temperature.

—Let e=the coefficient of expansion for a change of r° in temperature;

 t^{o} = the number of degrees of change in temperature; δs = the length in which a uniform change of temperature takes place. Then

$$\Delta s = et^{\circ} \sum_{0}^{x} \delta s,$$

$$\Delta x = et^{\circ} \sum_{0}^{x} \delta x,$$

and

$$\Delta y = et^{\circ} \sum_{0}^{x} \delta y.$$

If x = l, then

$$\Delta s = et^{\circ} \sum_{0}^{l} \delta s,$$

$$\Delta l = et^{\circ} \sum_{0}^{l} \delta x,$$

and

$$\Delta c = et^{\circ} \sum_{0}^{l} \delta y.$$

5. The Combination of Bending, Axial Thrust, and Temperature Effects. — Combining the formulas deduced in the previous articles,

$$\begin{split} \varDelta\phi_0 &= \varDelta\phi_1 - \sum\limits_0^l \frac{M_x \delta s}{E_x I_x}, \\ \varDelta l &= \sum\limits_0^l \frac{M_x y \delta s}{E_x I_x} - \sum\limits_0^l \frac{p_0 \delta x}{E_x} + \sum\limits_0^l et^\circ \delta x, \\ \varDelta c &= -\sum\limits_0^l \frac{M_x x \delta s}{E_x I_x} - \sum\limits_0^l \frac{p_0 \delta y}{E_x} + \sum\limits_0^l et^\circ \delta y. \end{split}$$

In comparing the above equations with those given in the author's "Treatise on Arches," it is seen that the signs of the terms containing M_x are of opposite character. If we had assumed the upper fiber extended by the bending, the signs would have been in agreement. The actual sign of the term depends upon M_x , so the disagreement is of no importance as long as the terms are consistently of opposite signs.

6. Neglecting the Axial Stress and Assuming the Modulus of Elasticity as Constant.—* The effect of the axial stress is quite small excepting in arches which are very flat. For fixed arches having a ratio of rise to span of \$^1/_{10}\$ the effect of the axial stress is to reduce the magnitude of the horizontal thrust about 30%, while for a ratio of \$^2/_{10}\$ this percentage drops to about 10%. Formulas which include the effect of the axial stress become somewhat complex, and as its effect can be found with sufficient accuracy for

^{*}See "A Treatise on Arches," by Malverd A. Howe. John Wiley & Sons, New York.

practical purposes by another method, we will omit the term containing p_0 in the formulas which follow.

Usually the modulus of elasticity of the material in an arch rib is uniform, so that it will be unnecessary to consider E_x as a variable in our formulas. We will designate the uniform value by E.

The formulas now become

$$\begin{split} \varDelta\phi_0 - \varDelta\phi_l &= \frac{-1}{E} \mathop{\mathcal{L}}_0^l M_x \varDelta, \\ \varDelta l &= \mathop{E}_0^l \mathop{\mathcal{L}}_0^l M_x y \varDelta + \mathop{\mathcal{L}}_0^l et^\circ \delta x, \\ \varDelta c &= -\frac{1}{E} \mathop{\mathcal{L}}_0^l M_x x \varDelta + \mathop{\mathcal{L}}_0^l et^\circ \delta y, \end{split}$$

where Δ in the second member of each equation $=\frac{\partial s}{I_x}$.

CHAPTER II.

SYMMETRICAL ARCHES FIXED AT THE ENDS.

- 7. Conditions which must be Satisfied.—(a) The total central angle must remain unchanged, or $\Delta \phi \Delta \phi_l = 0$;
- (b) The length of the span must remain constant, or $\Delta l = 0$; and
- (c) The relative elevations of the supports must remain unchanged, or $\Delta c = 0$.

Expressing these conditions in the form of equations, we have from Art. 6

$$\sum_{0}^{l} M_{x} \Delta = 0, \qquad . \qquad (a)$$

$$\sum_{0}^{l} M_{x} y \mathbf{1} + et^{\circ} E \sum_{0}^{l} \delta x = 0, \dots (b)$$

and

$$-\sum_{0}^{l} M_{x} x \Delta + et^{\circ} E \sum_{0}^{l} \delta y = 0. \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (c)$$

From (I),

$$M_x = M_1 + V_1 x - H_1 y - \sum_{0}^{x>a} P(x-a) + \sum_{0}^{x>a} Q(y-b).$$

We have three equations (a), (b), and (c), containing in M_x the three unknowns M_1 , V_1 , and H_1 , and consequently their values can be determined under the assumptions made.

8. Determination of the Horizontal Thrust H_1 Produced by Vertical and Horizontal Loads and Changes of Temperature.— Let two equal vertical loads P and two equal horizontal loads Q be placed upon two points equally distant from the crown. (These may be the vertical and horizontal components of inclined loads.) Then

$$V_1 = P$$
,

and

$$M_{x} = M_{1} - H_{1}y + \left\{ m_{x} = Px - \sum_{0}^{x>a} P(x-a) + \sum_{0}^{x>a} Q(y-b) \right\},\,$$

where m_x = the common moment for symmetrical loads on a simple beam supported at the ends.

Substituting the value of M_x in (a) and (b), we obtain

$$M_1 \underset{0}{\overset{l}{\sum}} \varDelta - H_1 \underset{0}{\overset{l}{\sum}} y \varDelta + \underset{0}{\overset{l}{\sum}} m_x \varDelta = 0$$

and

$$M_1 \underset{0}{\overset{l}{\sum}} y \Delta - H_1 \underset{0}{\overset{l}{\sum}} y^2 \Delta + \underset{0}{\overset{l}{\sum}} m_x y \Delta + et^{\circ} E \underset{0}{\overset{l}{\sum}} \delta x = 0.$$

Multiplying the first equation by $\int_{0}^{l} y J$ and the second by $\int_{0}^{l} J d$, eliminating M_{1} , and solving for H_{1} , we obtain

$$H_{1} = \frac{et^{\circ}E \Sigma \delta x + \Sigma m_{x}y \Delta - \Sigma m_{x}\Delta \frac{\Sigma y \Delta}{\Sigma \Delta}}{\Sigma y^{2}\Delta - \frac{(\Sigma y \Delta)^{2}}{\Sigma \Delta}}, \quad . \quad . \quad (1)$$

which is the general expression for the horizontal thrust produced by two equal and symmetrically placed loads and changes of temperature. Hereafter all summations between the limits l and o will be designated simply by Σ , as in the equation for H_1 above.

9. The Horizontal Thrust Produced by a Single Vertical Load Placed at any Point upon the Arch.—In this case m_x = the common moment due to two equal and symmetrically placed loads, or

$$Px - \stackrel{x>a}{\Sigma} \stackrel{a}{P}(x-a)$$
.

Since the loads are equal and symmetrically placed, the value of H_1 for one load must be just one half that for both loads; hence

$$H_{1} = \frac{\sum m_{x}y\Delta - \sum m_{z}\Delta \frac{\sum y\Delta}{\sum \Delta}}{\sum y^{2}\Delta - \frac{(\sum y\Delta)^{2}}{\sum \Delta}}, \quad . \quad . \quad . \quad (2)$$

where

$$m_x = Px - \sum_{i=1}^{x>a} P(x-a),$$

OT

$$H_{1} = \frac{1}{2} \frac{\sum m_{x} \Delta \left\{ y - \frac{\sum y \Delta}{\sum \Delta} \right\}}{\sum y \Delta \left\{ y - \frac{\sum y \Delta}{\sum \Delta} \right\}}.$$
 (2a)

ro. The Horizontal Thrust Produced by a Single Horizontal Load Placed at any Point upon the Arch. — In this case $m_x =$ the common moment due to two equal and symmetrically placed loads, or

$$m_x = \stackrel{x>a}{\Sigma} \mathcal{Q}(y-b).$$

Let h_1 = the horizontal thrust at the left support due to the load upon the left of the crown, and h_2 = the horizontal thrust at the left support due to the load upon the right of the crown. Then

$$H_1 = h_1 + h_2;$$

but

$$Q = h_1 - h_2;$$

hence

$$2h_1 = H_1 + Q$$

and

$$h_1 = \frac{1}{2}H_1 + \frac{1}{2}Q.$$

Therefore

$$h_{1} = \frac{1}{2} \left\{ Q + \frac{\sum m_{x} y \Delta - \sum m_{x} \Delta \frac{\sum y \Delta}{\sum \Delta}}{\sum y^{2} \Delta - \frac{(\sum y \Delta)^{2}}{\sum \Delta}} \right\}, \quad (3)$$

where $m_x = \sum_{x=0}^{x>a} (y-b)$.

$$h_{1} = \frac{1}{2} \left\{ Q + \frac{\sum m_{x} \Delta \left(y - \frac{\sum y \Delta}{\sum \Delta} \right)}{\sum y \Delta \left(y - \frac{\sum y \Delta}{\sum \Delta} \right)} \right\}. \qquad (3a)$$

11. The Horizontal Thrust Produced by a Change of Temperature.—We have directly from eq. (1), since $\Sigma \delta x = l$,

$$H_t = \frac{et^{\circ}El}{\Sigma y^2 \Delta - \frac{(\Sigma y \Delta)^2}{\Sigma \Delta}}; \qquad (4)$$

also,

$$H_{t} = \frac{et^{o}El}{\Sigma y J\left(y - \frac{\Sigma y \Delta}{\Sigma J}\right)} \cdot \cdot \cdot \cdot (4a)$$

12. Determination of the Bending Moment at the Left Support Produced by any Single Load and Changes of Temperature.—From (III),

$$M_x = M_1 \frac{l-x}{l} + M_2 \frac{x}{l} - H_1 y + m_x,$$

where

$$m_x = P \frac{l-a}{l} x + \frac{Qb}{l} x - P(x-a) + Q(y-b) \ x > a.$$

Taking the two conditions that the angle at the center shall remain unchanged and that the relative elevations of the supports remain constant, we have from (a) and (c)

 $\Sigma M_x A = 0$

and

$$- \sum M_z x \mathcal{I} + et^{\circ} E \sum \delta y = 0.$$

Substituting the above value of M_x in these two equations, neglecting the temperature term for the present, we have

$$\begin{split} &M_1 \, \varSigma \frac{l-x}{l} \varDelta + M_2 \, \varSigma \frac{x}{l} \varDelta - H_1 \, \varSigma y \varDelta + \varSigma m_x \varDelta = 0, \\ &- M_1 \, \varSigma \frac{l-x}{l} x \varDelta - M_2 \, \varSigma \frac{x^2}{l} \varDelta + H_1 \, \varSigma x y \varDelta - \varSigma m_x x \varDelta = 0. \end{split}$$

Multiplying the first equation by $\Sigma \frac{x^2}{l} \Delta$ and the second by $\Sigma \frac{x}{l} \Delta$, they become

$$\begin{split} M_{1} \, \Sigma \frac{l-x}{l} \Delta \, \Sigma \frac{x^{2}}{l} \Delta + M_{2} \, \Sigma \frac{x}{l} \Delta \, \Sigma \frac{x^{2}}{l} \Delta - H_{1} \, \Sigma y \Delta \, \Sigma \frac{x^{2}}{l} \Delta \\ + \, \Sigma m_{x} \Delta \, \Sigma \frac{x^{2}}{l} \Delta = 0, \end{split}$$

$$\begin{split} -M_1 \mathcal{Z} \frac{l-x}{l} x \Delta \mathcal{Z} \frac{x}{l} \Delta - M_2 \mathcal{Z} \frac{x}{l} \Delta \mathcal{Z} \frac{x^2}{l} \Delta + H_1 \mathcal{Z} x y \Delta \mathcal{Z} \frac{x}{l} \Delta \\ - \mathcal{Z} m_x x \Delta \mathcal{Z} \frac{x}{l} \Delta = 0 \,. \end{split}$$

Eliminating M_2 by adding these equations, we obtain

$$M_{1} = H_{1} \frac{\Sigma y \Delta \left(x - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta}\right)}{\Sigma \Delta \left(\frac{\Sigma x \Delta}{\Sigma \Delta} - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta}\right)} - \frac{+\Sigma m_{x} \Delta \left(x - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta}\right)}{\Sigma \Delta \left(\frac{\Sigma x \Delta}{\Sigma \Delta} - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta}\right)}. \tag{5}$$

Since the arch is symmetrical in every particular, $\frac{\Sigma x \Delta}{\Sigma \Delta} = \frac{l}{2}$ and $\Sigma y \Delta x = \frac{l}{2} \Sigma y \Delta$. Therefore we have

$$M_{1} = H_{1} \frac{\Sigma y \Delta}{\Sigma \Delta} - \frac{\sum m_{x} \Delta \left(x - \frac{\sum x^{2} \Delta}{\sum x \Delta} \right)}{\sum \Delta \left(\frac{l}{2} - \frac{\sum x^{2} \Delta}{\sum x \Delta} \right)}. \quad (5a)$$

For changes of temperature, from (a)

$$\Sigma M_x \Delta = 0.$$

From (III),

$$M_x = M_1 - H_t y$$
.

Then

$$M_1 \Sigma \Delta - H_t \Sigma y \Delta = 0$$
,

or

$$M_1 = H_t \frac{\Sigma y \Delta}{\Sigma \Delta}$$
. (5b)

13. Formulas which Apply for Vertical Loads only.

$$H_{1} = \frac{1}{2} \frac{\Sigma m_{x} \Delta \left(y - \frac{\Sigma y \Delta}{\Sigma \Delta} \right)}{\Sigma y \Delta \left(y - \frac{\Sigma y \Delta}{\Sigma \Delta} \right)} = \frac{1}{2} \frac{\Sigma y \Delta \left(m_{x} - \frac{\Sigma m_{x} \Delta}{\Sigma \Delta} \right)}{\Sigma y \Delta \left(y - \frac{\Sigma y \Delta}{\Sigma \Delta} \right)}, \quad (2a)$$

where m_x for each load considered has the following value:

$$m_x = Px - \sum_{i=1}^{x>a} P(x-a).$$

$$M_{1} = H_{1} \frac{\Sigma y \Delta}{\Sigma \Delta} - \frac{\Sigma m_{x} \Delta \left(x - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta}\right)}{\Sigma \Delta \left(\frac{l}{2} - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta}\right)}, \quad . \quad (5a)$$

where

$$m_x = R_1 x - \sum_{P=0}^{x>a} (x - a),$$

or the common moment for loads on a simple beam supported at the ends.

$$M_x = M_1 \frac{l-x}{l} + M_2 \frac{x}{l} - H_1 y + m_x$$
, . . (III)

where

$$m_x = R_1 x - \sum_{i=1}^{x>a} P(x-a) \dots;$$

$$V_1 = \frac{M_2 - M_1}{l} + R_1,$$

where $R = \Sigma P \frac{l-a}{l}$ = the common reaction for loads on a simple beam supported at the ends.

For symmetrical loading

$$M_1 = H_1 \frac{\Sigma y \Delta}{\Sigma \Delta} - \frac{\Sigma m_x \Delta}{\Sigma \Delta} \quad . \quad . \quad . \quad (5aa)$$

14. A Graphical Determination of m_x in (2a) for Vertical Loads.—The equation $m_x = Px - \sum P(x-a)$ may be represented graphically as follows: Lay off a load line 2P in length, and with a pole distance of P construct the ordinary equilibrium polygon as indicated in Fig. 4. Since the

loads are equal and symmetrically placed, the reactions are equal and each equal to P. Then in the equilibrium polygon the ordinate ab, before any load is reached, equals x. The moment $m_x = H(ab) = Px$; hence the ordinate ab represents the true value of m_x for P = unity.

The ordinate a'b' between the loads equals a and $m_x = H(a'b') = Pa = R_1x - P(x-a)$, and as before the ordinate a'b' represents the true value of m_x when P = unity.

From the above construction it is evident that when H_1 is desired for any single load the graphical construction is quite unnecessary, as m_x always equals Px or Pa on the left of the center. Since the equilibrium polygon is symmetrical for each value of m_x on the left, there will be a corresponding value upon the right.

In case the values of m_x are desired for a combination of loads, the method of procedure is essentially the same as outlined for one load. Lay off a load line equal to

twice the loads for which m_x is wanted. Opposite the center of this load line take a pole at any convenient distance H, and construct an equilibrium polygon in the usual manner. The value of m_x at any point equals the ordinate of the equilibrium polygon at that point multiplied by the assumed H. In most cases it is more satisfactory to compute the values of m_x .

15. A Graphical Determination of Some of the Factors in the Equation for H_1 for Vertical Loads.—The expression (2a) in Art. 13 may be written

$$H_{1} = \frac{\sum y \Delta \left(m_{x} - \frac{\sum m_{x} \Delta}{\sum \Delta}\right)}{2 \sum y \Delta \left(y - \frac{\sum y \Delta}{\sum \Delta}\right)}.$$

$$E_{\frac{\sum y \Delta}{\sum \Delta}}$$

$$A = \frac{l}{2}$$
Fig. 5.

Let ABC, Fig. 5, represent the axis of the arch. Compute $\frac{\Sigma yA}{\Sigma A}$ and lay off its value upward from A and C. Then draw DE. The heavy ordinates will be the values of $y - \frac{\Sigma yA}{\Sigma A}$.

In like manner let A'B'C' represent the equilibrium

polygon where the ordinates are $\frac{m_x}{H}$. Draw D'E' as indicated in Fig. 6. Then the heavy ordinates represent $\frac{1}{H}\left(m_x - \frac{\Sigma m_x \Delta}{\Sigma \Delta}\right)$.

16. A Graphical Representation of the Second Term in the Expression for M_1 for Vertical Loads.—The second term of (5a) for convenience we will designate as m_1 , or

$$m_1 = \frac{\sum m_x \varDelta \left(x - \frac{\sum x^2 \varDelta}{\sum x \varDelta} \right)}{\sum \varDelta \left(\frac{l}{2} - \frac{\sum x^2 \varDelta}{\sum x \varDelta} \right)} = \frac{\sum m_x \varDelta}{\sum \varDelta} - \frac{\sum m_x \varDelta \left(x - \frac{1}{2} l \right)}{\sum \varDelta \left(\frac{1}{2} l - \frac{\sum x^2 \varDelta}{\sum x \varDelta} \right)},$$

where $m_x = R_1 x - \sum_{i=1}^{x>a} P(x-a)$.

Fig. 7.

Let the common equilibrium polygon for the given loads be represented by B'AB'' in Fig. 7.

We will now prove that when the line A'A'' is drawn, so that $\Sigma(aa')J=0$ and $\Sigma(aa')xJ=0$, the distance $A'B'=\frac{m_1}{H}$. When $\Sigma(aa')J=0$ it at once follows that $\Sigma(ab)J=\Sigma(a'b)J$. From Fig. 7,

$$aa' = a'b - ab = a'c + cb - ab,$$

$$a'c = \frac{m_2 x}{H}$$
 and $cb = \frac{m_1 l - x}{l}$.

Hence, since $ab = \frac{m_x}{H}$,

$$aa' = \frac{m_2 x}{H l} + \frac{m_1}{H} \frac{l - x}{l} - \frac{m_x}{H};$$

multiplying through by 4,

$$aa'\Delta = \frac{m_2 x}{H} \Delta + \frac{m_1 l - x}{H} \Delta - \frac{m_x}{H} \Delta;$$

also,

$$(aa')x\Delta = \frac{m_2}{H}\frac{x^2}{l}\Delta + \frac{m_1}{H}\frac{(l-x)x}{l} - \frac{m_xx}{H}\Delta.$$

Making $\Sigma(aa') \Delta = 0$ and $\Sigma(aa') x \Delta = 0$ and eliminating $\frac{m_2}{H}$ between the resulting equations, we obtain

$$m_{1} = \frac{\sum m_{x}x\Delta - \sum m_{x}\Delta \frac{\sum x^{2}\Delta}{\sum x\Delta}}{\sum x(l-x)\Delta - \sum(l-x)\Delta \frac{\sum x^{2}\Delta}{\sum x\Delta}}l.$$

This readily reduces to

$$m_1 = \frac{\sum m_x \Delta \left(x - \frac{\sum x^2 \Delta}{\sum x \Delta} \right)}{\sum \Delta \left(\frac{l}{2} - \frac{\sum x^2 \Delta}{\sum x \Delta} \right)},$$

the second term in the expression for M_1 in Art. 13. From the above demonstration it at once follows that

$$m_2 = \frac{\sum m_x \Delta \left(l - x - \frac{\sum x^2 \Delta}{\sum x \Delta}\right)}{\sum \Delta \left(\frac{l}{2} - \frac{\sum x^2 \Delta}{\sum x \Delta}\right)}.$$

In Fig. 7

$$FG = \frac{m_1 + m_2}{2H} = \frac{\sum m_x \Delta}{\sum \Delta},$$

and

$$A'K = A''K = \frac{\sum m_x \Delta(x - \frac{1}{2}l)}{\sum \Delta\left(\frac{1}{2}l - \frac{\sum x^2 \Delta}{\sum x \Delta}\right)}.$$

17. A Graphical Representation of M_x for Vertical Loads only.—From (III),

$$\frac{M_x}{H_1} = \frac{M_1}{H_1} \frac{l - x}{l} + \frac{M_2}{H_1} \frac{x}{l} - y + \frac{m_x}{H_1}.$$

In Fig. 8 let ABC be the axis of the arch and A'bC' the equilibrium polygon for a single load drawn with a pole distance of H_1 and located so that $A'A'' = \frac{m_1}{H_1}$ and

$$C'C'' = \frac{m_2}{H_1}$$
. Then
$$AA' = A'A'' - AA'' = \frac{m_1}{H_1} - \frac{\Sigma yA}{\Sigma A},$$

· OT

$$H_1(AA') = m_1 - H_1 \frac{\Sigma y \Delta}{\Sigma \Delta} = -M_1.$$

In like manner $H(CC') = +M_2$.

Let
$$\frac{M_1}{H_1} = y_1$$
 and $\frac{M_2}{H_1} = y_2$. Then
$$\frac{M_x}{H_1} = y_1 \frac{l - x}{l} + y_2 \frac{x}{l} - y + \left(\frac{m_x}{H_1} = be\right)$$
$$= -df + ef - ad + be = -ab.$$

Therefore $M_x = H_1(ab)$, or the bending moment at any

Fig. 8.

point equals the ordinate between the axis of the arch and the true equilibrium polygon.

Usually the ordinate ab is so small that no very accurate results can be obtained from a drawing. From the

above demonstration it is evident that

$$ab = ac - cb = \left\{ y - \frac{\sum y \Delta}{\sum \Delta} \right\} - \left\{ \frac{m_x}{H_1} - \frac{m_1}{H_1} \frac{l - x}{l} - \frac{m_2}{H} \frac{x}{l} \right\},\,$$

quantities which can be quite accurately determined from a large-scale drawing. However, more satisfactory results will always be obtained by algebraic methods, using graphics merely as a check.

18. The Loads Producing a Maximum M_x and the Ordinates Locating the True Equilibrium Polygon for a Single Vertical Load.—In Fig. 8 take moments of all the forces upon the left of b about b, or

$$M_1 - H_1 y_0 + V_1 a = 0$$
. $\therefore y_0 = \frac{M_1}{H_1} + \frac{V_1}{H_1} a$,

which becomes

$$y_0 = y_1 + \frac{V_1 a}{H_1}$$
.

Since y_1 and y_2 are known, Art. 17, the equilibrium polygon is completely located.

Assume that we wish to determine the loading which will produce the maximum positive and negative moments, respectively, at the point K, Fig. 9. Now, since the moment is proportional to the ordinate between the arch axis and the equilibrium polygon, it is evident that the moment will be zero for any load which has its equilibrium polygon passing through K. As shown in Fig. 9, the shaded portion of the span loaded will cause one kind of moment and the unshaded portion loaded will produce

the opposite kind. In case the moving load is a uniform load these two moments will be greatest at this point.

For arch ribs which do not have too great a variation in section from the crown the absolute maximum moment

Fig. 9.

between the crown and the support is between 0.25 and 0.35, the span for uniform moving loads, while the greatest moment of all is at the support.*

It also appears from examples solved in detail that sensibly the same loading can be used in both cases. The division of the loads is indicated by the sign of M_1 , the moment at the support. Loads which produce positive moments at the left support will produce negative moments at about the three-quarter point of the span.

19. The Effect of the Axial Stress for Vertical Loads only.— The effect of the axial or direct stress is to *shorten* the arch rib, Art. 3, and may be considered, with a close degree of

^{*&}quot;A Treatise on Arches," by Malverd A. Howe. John Wiley & Sons, New York.

approximation, to a certain drop of temperature. Consequently, if we can determine the horizontal thrust produced by axial stress due to any particular loading, we can compute the resulting stresses in the arch rib. We are not concerned with the actual magnitudes of the axial stress at the various points of the rib if we can find the horizontal thrust, The moments and stresses will at once follow by methods outlined for temperature changes.

Formulas which include the effect of the axial stress show that in the expression for H_1 the numerator is so slightly affected that the axial stress terms can be neglected without serious error.*

For convenience let N represent the numerator of H_1 ; then the common expression is

$$H_1 = \frac{N}{2 \, \Sigma y \Delta \left(y - \frac{\Sigma y \Delta}{\Sigma \Delta} \right)}.$$

With the effect of the axial stress included this becomes

$$H_1' = \frac{N}{2 \, \varSigma y \varDelta \left(y - \frac{\varSigma y \varDelta}{\varSigma \varDelta} \right) + 2 \, \varSigma \frac{\partial x}{F} \, \cos \, \phi}.$$

Let H_a =the horizontal thrust due to the axial stress; then

$$H_{a} = H_{1} - H_{1}', \text{ or } \frac{H_{a}}{H_{1}} = \mathbf{I} - \frac{H_{1}'}{H_{1}}.$$

$$\therefore H_{a} = H_{1} \left(\mathbf{I} - \frac{2 \Sigma y A \left(y - \frac{\Sigma y A}{y A} \right)}{2 \Sigma y A \left(y - \frac{\Sigma y A}{\Sigma A} \right) + 2 \Sigma \frac{\delta x}{F} \cos \phi} \right). \tag{6}$$

^{*&}quot;A Treatise on Arches," by Malverd A. Howe. John Wiley & Sons, New York.

This value of H_a , which is quickly obtained, is to be treated as the horizontal thrust due to a drop of temperature which would produce a thrust of equal magnitude.

20. Loads which Produce Maximum Values of T_x or Radial Shear.

$$T_x = (V_1 - \Sigma P)\cos \phi - H_1 \sin \phi$$
.

For loads upon the right of B, Fig. 10,

$$T_x = V_1 \cos \phi - H_x \sin \phi$$
.

If S_1 is normal to the radius passing through B, it is evident from the figure that $T_x = 0$, since $V_1 \cos \phi = H_1 \sin \phi$. Hence all loads upon the right of P'' will produce one kind

of shear and those upon the left the opposite kind until P' is reached. Since $V_1 - \Sigma P$ results in a downward force, the loads upon the left of B produce the same kind of shear as those upon the right of P''. The fields of loading

producing the same kind of shear are clearly shown in Fig. 10.

21. Formulas which Apply for Horizontal Loads only.—From Art. 10,

$$h_1 = \frac{1}{2} \left\{ Q + \frac{\sum m_x \Delta \left(y - \frac{\sum y \Delta}{\sum \Delta} \right)}{\sum y \Delta \left(y - \frac{\sum y \Delta}{\sum \Delta} \right)} \right\}, \quad (3a)$$

where

$$m_x = \stackrel{\mathbf{x}}{\Sigma} Q(y-b). \quad y > b.$$

From Art. 12,

$$M_{1} = h_{1} \frac{\Sigma y \Delta}{\Sigma \Delta} - \frac{\Sigma m_{x} \Delta \left(x - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta} \right)}{\Sigma \Delta \left(\frac{l}{2} - \frac{\Sigma x^{2} \Delta}{\Sigma x \Delta} \right)}, \quad (5c)$$

where

$$\begin{split} m_x &= Q \frac{b}{l} + \overset{x}{\Sigma} Q(y-b), \qquad y > b, \\ \\ M_x &= M_1 \frac{l-x}{l} + M_2 \frac{x}{l} - h_1 y + Q \frac{b}{l} x + \overset{x>a}{\Sigma} Q(y-b), \\ \\ V_1 &= \frac{M_2 - M_1}{l} + Q \frac{b}{l}. \end{split}$$

The above formulas are for a single horizontal load which produces a thrust at the left support. In practice the reverse may be the case, but the solution of the equations presents no difficulties if care is taken to give m_x its proper sign. Of course, when there is a thrust at the left support there will be a pull at the right support.

22. A Graphical Representation of M_x for a Single Horizontal Load.—From (III),

$$M_x = M_1 + V_1 x - h_1 y + Q(y - b).$$
 $y > b$,

Fig. 11.

For all points between x = 0 and x = a

$$M_x = M_1 + V_1 x - h_1 y,$$

or

$$\frac{M_x}{h_1} = \frac{M_1}{h_1} + V_1 \frac{x}{h_1} - y.$$

Let the equilibrium polygon be constructed as shown in Fig. 11, where $y_1 = \frac{M_1}{h_1}$, $y_2 = \frac{M_2}{h_2}$, $x_1 = \frac{M_1}{V_1}$, and $x_2 = \frac{M_2}{V_2}$.

On the left of Q, $cd = y_1 = \frac{M_1}{h_1}$, $bc = \frac{V_1 x}{h_1}$; hence

$$\frac{M_x}{h_1} = ab = cd + cb - y.$$

For points upon the right of Q we can write

$$-M_x = M_2 + V_2 x' - h_2 y,$$

OI

$$-\frac{M_x}{h_2} = \frac{M_2}{h_2} + \frac{V_2 x'}{h_2} - y$$

$$c'd' = y_2 = \frac{M_2}{h_2}, \quad b'c' = \frac{V_2 x'}{h_2}$$

$$\therefore -\frac{M_x}{h_2} = b'a' = c'd' + b'c' - y.$$

The character of the bending moment is clearly shown in Fig. 11 by the shaded areas. The points E, E', etc., are the points of zero moment.

From Fig. 11,

$$x_1:y_1::x_1+x_0:b,$$

OT

$$x_0 = (b - y_1) \frac{x_1}{y_1} = \left(b - \frac{M_1}{h_1}\right) \frac{h_1}{V_1}.$$

If x_0 is computed, it will check the previous work for locating the equilibrium polygon.

23. A Graphical Representation of M_x for Two Equal and Symmetrical Horizontal Loads.—In (3a) m_x for the left

load (Fig. 12) will evidently equal m_x for the load upon the right, but will be opposite in character; therefore

 $h_1 = Q = h_2$ in magnitude. h_1 and h_2 will be opposite in direction.

Also, from (5c),

$$M_1 = h_1 \frac{\Sigma y J}{\Sigma J} = Q \frac{\Sigma y J}{\Sigma J}.$$

From (III),

$$M_x = M_1 + V_1 x - h_1 y + \sum_{i=0}^{x>a} (y-b),$$

which becomes, since $V_1 = 0$,

$$M_x = Q \cdot \left\{ \frac{\Sigma y \Delta}{\Sigma \Delta} - y + y - b \right\} = Q \left(\frac{\Sigma y \Delta}{\Sigma \Delta} - b \right)$$

for all points between the loads, and

$$M_x = Q\left\{\frac{\Sigma yJ}{\Sigma J} - y\right\}$$

for all points between the support and a load. This is shown by the shaded ordinates in Fig. 12.

24. Arch Ribs for which J is Constant.—Since $\Delta = \frac{\partial s}{I}$, it is evident that if we so divide the axis in parts of ∂s_1 , ∂s_2 , etc., in length, that the quotient of each ∂s by the moment of inertia of the section of the rib for this distance is constant for all sections, the value of Δ will be constant. Under this assumption the formulas to be given later can be applied to—

- 1° Arch ribs of constant cross-section when the axis is divided in equal parts, each ∂s in length.
 - 2° Parabolic arch ribs for which $EI \cos \phi$ is constant

when the *span* is divided into equal parts each ∂x in length.

 3° Any arch rib for which $\frac{\partial s}{I}$ is constant when the axis is divided into spaces ∂s , ∂s_1 , ∂s_2 , etc., so that the moment of inertia (usually taken at the center of each division) for each division bears a constant ratio to the length of the division ∂s .

25. Formulas for H_1 and M_1 for Vertical Loads when Δ is Constant.—Remembering that $\frac{\Sigma \Delta}{J} = n$, the number of divisions, we have at once from (2a), Art. 13,

$$H_{1} = \frac{1}{2} \frac{\sum m_{x} \left(y - \frac{\sum y}{n} \right)}{\sum y \left(y - \frac{\sum y}{n} \right)} = \frac{1}{2} \frac{\sum m_{x} (y - y_{a})}{\sum y (y - y_{a})}$$
$$= \frac{1}{2} \frac{\sum y \left(m_{x} - \frac{\sum m_{x}}{n} \right)}{\sum y (y - y_{a})}, \quad (2b)$$

where $m_x = Px - \sum_{i=1}^{x} P(x-a)$, x > a, and

*
$$M_1 = H_1 y_a - \frac{\sum m_x \left(x - \frac{\sum x^2}{\sum x}\right)}{n\left(\frac{l}{2} - \frac{\sum x^2}{\sum x}\right)}$$

Also

$$\frac{M_1}{M_2} = H_1 y_a - \left[\frac{\sum m_x}{n} \pm \frac{\sum m_x \left(x - \frac{l}{2}\right)}{n\left(\frac{l}{2} - \frac{\sum x^2}{\sum x}\right)} \right], \quad (5d)$$

^{*} When the span is divided into n parts δx each and $x = \frac{\delta x}{2}, \frac{3}{2} \delta x, \frac{5}{2})x$, etc., $\frac{\sum x^2}{\sum x} = \frac{n(4n^2 - 1)}{12} (\delta x)^2 \quad \text{and} \quad n\left(\frac{l}{2} - \frac{\sum x^2}{\sum x}\right) = -\frac{n - 1}{6} \delta x.$

where $m_x = R_1 x - \sum_{i=1}^{x>a} P(x-a)$ and $\sum_{i=1}^{x} nl$. (See Art. 88.) For any symmetrical loading

$$M_1 = H_1 y_a - \frac{\sum m_x}{n}. \qquad (5dd)$$

$$H_1 = \frac{1}{2} \text{(total load)}.$$

26. Formulas for h_1 and M_1 for Horizontal Loads when Δ is Constant.—From Art. 21,

$$h_1 = \frac{1}{2} \left\{ Q + \frac{\sum m_x (y - y_a)}{\sum y (y - y_a)} \right\}, \quad (3b)$$

where $m_x = \stackrel{x}{\Sigma} Q(y-b), y > b$.

$$M_1 = h_1 y_a - \frac{\sum m_x \left(x - \frac{\sum x^2}{\sum x}\right)}{n\left(\frac{l}{2} - \frac{\sum x^2}{\sum x}\right)}, \quad . \quad . \quad (5e)$$

where $m_x = Q \frac{b}{l} + \stackrel{x}{\Sigma} Q(y-b)$, y > b, and $\Sigma x = \frac{1}{2} n l$.

For any symmetrical loading

$$M_1 = h_1 y_a$$
. (5ee)
 $h_1 = \frac{1}{2}$ (total load).

27. Formulas for H_t and M_1 for Changes of Temperature when Δ is Constant.—From Art. 11,

$$H_t = \frac{et^{\circ} El}{\Delta \Sigma y (y - y_a)}.$$

From Art. 12,

$$M_1 = H_t y_a.$$

28. Effect of the Axial Stress when Δ is a Constant.—From Art. 19,

$$H_a = H_1 \left(\mathbf{I} - \frac{\Sigma y(y - y_a)}{\Sigma y(y - y_a) + \Sigma \frac{\delta x}{F \Delta}} \right),$$

where H_1 is the horizontal thrust obtained from formulas which neglect the effect of the axial stress.

29. Determination of N_x , the Normal or Axial Stress, and T_x the Radial Shear at any Point.—In Fig. 13 let S_x be the

stress in the equilibrium polygon in position and magnitude; then we have at once

$$N_x = V_x \sin \phi + H_x \cos \phi$$
,

where $V_x = V_1 - \stackrel{x>a}{\Sigma P}$ and $H_x = H_1 - \stackrel{x>a}{\Sigma Q}$.

Also,
$$T_x = V_x \cos \phi - H_x \sin \phi$$
,

 V_x and H_x having the values given above.

30. A Graphical Determination of N_x and T_x for Vertical Loads.—In Fig. 14 let S_2 be the side of the equilibrium

Fig. 14.

polygon cut by the section where N_x and T_x are desired. From the pole in the force diagram draw a line normal to the section, and at the upper extremity of S_2 drop a perpendicular upon this line, forming a right triangle with S_2 as the hypothenuse. The two legs of the triangle will be the magnitudes of N_x and T_x , as indicated in the figure.

31. Fiber Stresses for any Section.—(a) In the case of a steel rib, to which the formulas given above probably more nearly apply than for ribs of any other material, the formula based upon the common theory of flexure may be used. This formula may be written

$$p = \frac{N_x}{F} \pm \frac{M_x z}{I} = \frac{N_x}{F} \pm M_x \frac{I}{S},$$

where p =the stress in the outer fiber;

 N_x = the axial stress or the normal component of the resultant stress upon the section being considered:

F = the area of the section;

 M_x = the bending moment at the section; z = distance of outer fiber from the neutral axis; I = the moment of inertia of the section; $S = \frac{I}{z}$ = the "section modulus."

The above formula considers that the modulus of elasticity E is constant throughout the section for all intensities which do not exceed the elastic limit of the steel.

(b) If the arch rib is composed of natural stone voussoirs, it will be incapable of resisting tension at the joints owing to the uncertainty of the adhesion between the mortar and the stone. Consequently the above formula applies only when the resultant pressure upon any joint lies within the middle third of the joint; that is, the entire joint or section will be in compression.

In case the resultant does not lie within the middle third but does lie within the section we may yet have a perfectly stable structure. Suppose that the resultant cuts the section outside the middle third but not outside the stone, as in Fig. 15.

Let d = distance from edge C. The pressure may be assumed to be uniformly varying from C towards A, so that N_x will pass through the center of gravity of the intensities:

then

or

$$N_{x} = \frac{pCD}{2} = \frac{3pd}{2} = \frac{3}{2}p(\frac{1}{2}B - x_{0}),$$

$$p = \frac{2N_{x}}{3d}.$$

As long as p is so small that there is no danger of the stone being crushed the arch is stable. It is a recognized fact that this condition exists in a large number of arches now standing.

- (c) Arch ribs constructed of plain concrete are capable of resisting a limited amount of tension, but it is better to treat them the same as if of natural stone. The ring may crack entirely through and yet be perfectly stable. Small rods of steel distributed laterally and circumferentially near the surfaces of the rib will prevent a considerable number of small cracks which might be produced by change of shape after removing the false work or changes of temperature.
- (d) Reinforced-concrete ribs have circumferential steel rods or bars placed a short distance from the upper and lower surfaces of the rib to resist any tension which may occur. Even in this case the best designers limit the equilibrium polygons for dead and live load to nearly the middle third of the ring, so that there will be no tensile stresses.

The actual distribution of stress on a section of reinforced concrete is at present unknown. Many experiments have been made upon beams reinforced at the bottom, and various formulas advanced to aid in designing such beams, all giving fairly rational results. The elastic theory of the arch assumes that the linear arch is the neutral axis

of the material arch, and any great departure from the assumed form will affect the stresses; hence, since the experiments upon beams indicate that the neutral axis shifts for different loadings, it is evident that great refinement either in the calculation of stresses or the distribution of stress over a section is entirely out of place.

In the Melan system of reinforcement steel ribs are used spaced about 3 feet on centers. Here the steel may be assumed to resist the bending moments, and the concrete the direct compression. The concrete also prevents the steel ribs from buckling. It is questionable if the above assumption actually obtains. It is well on the side of safety, however.

One of the simplest methods in use merely replaces the steel reinforcement by an equivalent area of concrete and then employs the formula given above.

If the modulus of steel is E_s and that of concrete E_c , then the equivalent area of concrete will be $\frac{E_s}{E_c} = n$ times the actual area of the steel. The fiber stress in the steel will actually be n times the fiber stress found for concrete in the position the steel occupies.

If a equals the area of the steel and A the area of the concrete, then

This formula assumes that the concrete resists tensile stresses which it is not capable of doing to any great extent, its tensile strength being somewhere near one tenth the compressive strength.

The above formula may be applied until the maximum safe tensile strength of the concrete or steel is reached, and then the method employed for stone arches when the resultant pressure lies within the ring until the safe compressive strength is reached.

All of the methods are quite approximate for reasons given above, and since the modulus of elasticity of concrete is not constant.

- Ribs.—There is but little doubt that the theory is correct for solid steel ribs having a depth which is comparatively small when compared with the radius of curvature, when the loading is applied at isolated points through vertical posts which are unbraced in the plane of the rib. The modulus of elasticity of steel is quite constant and it is capable of resisting both tension and compression. The deformation of steel either under direct stress or bending follows very closely that found by theory. In truth the theory is probably as exact for steel arch ribs as the common theory of flexure is for steel beams.
- 33. Reliability of the Elastic Theory when Applied to Ribs Composed of Natural Stone Voussoirs.—Here we have a material which cannot be trusted in tension; this is especially true of the joints between the voussoirs. In direct compression the modulus of elasticity is not constant but varies with the load, and then not according to any very definite law. However, within narrow limits it may be

considered as constant without serious error. Such being the case we may apply the elastic theory with confidence as long as the equilibrium polygon lies within the middle third of the ring, or when every section or joint is subjected to compressive stresses. We may also consider the theory as applicable when the polygon lies within the ring, provided the compression is not sufficient to crush the stone.

In case the equilibrium polygon passes without the ring at any joint, theoretically a free arch ring would fail. In practice this condition often obtains in stone bridges, yet they do not collapse or show serious signs of failure. It is true that some joints open slightly, but this appears to have little if any detrimental effect. This apparently proves that the elastic theory cannot be applied under such conditions. It is no fault in theory, but a failure to carry out in practice the assumptions made in applying the theory or basing the application of the theory upon wrong assumptions. For example, the elastic theory assumes a free rib capable of changing shape under various loads, while in practice the great majority of stone bridges have the ring securely clamped beneath the solid spandre! walls and by a mass of concrete backing of varving thickness. Such a structure may be said to become more and more stable under an increasing uniform loading, until the safe crushing strength of the arch stone is reached. This backing exerts a great passive force preventing any upward movement of the arch ring. It is evident, then, that if the ring is stable under the elastic theory assuming a free ring, it will be quite safe when clamped as explained above, and furthermore it does not necessarily follow. because the equilibrium polygon lies without the ring proper at some joint, that the arch will fail, for the spandrel masonry will prevent a change in shape of the rib to any great extent. The question at once presents itself: What does happen? Probably the masonry readjusts itself until equilibrium exists, the arch joints are compressed unequally, and the friction of the spandrel masonry aids very materially in reducing the opening or compression of the joints at the extrados—in fact introducing an effective tension or compression, as the case may be.

Again, in bridges having a considerable depth of side wall above the crown a large portion, if not all, of the ring under the walls might be removed in many cases without complete failure, the wall masonry forming an arch in itself. In conclusion, for the dead and live loads the arch ring which is safe when assumed to be a free ring will be safe under the usual construction of the spandrels, or if the loads are transmitted to the ring through verticals as in steel structures. All arch rings should be so designed, using a factor of safety of ten for the crushing strength of the stone.

Provision for the stresses produced by changes in temperature was entirely neglected by the old builders, and for that matter by practically all modern builders. A temperature change of but ±40° F., according to the elastic theory, produces a very wide range of stress both of tension and compression. These are a maximum at the supports. If any considerable change of temperature actually occurs and the elastic theory can be correctly applied, the arch ring, if free, should collapse. As stone arch bridges have stood for thousands of years without failure, we must conclude that either the stone does not

change in temperature through anything like the range of change in the air, or the arch ring adjusts itself with the aid of the spandrel masonry so as to resist the temperature stresses without excessive unit stresses, or the theory does not apply. Probably all three conclusions are more or less true. Even in the Northern States it is doubtful if any of the stonework, excepting possibly the more exposed surfaces, has a change of temperature of a great range,—±20° F., say. The ring without any doubt adjusts itself to suit new conditions.

To show how small a change would be required in the mortar joints alone to provide for a change of 40° F., take a free rib of granite having a span of 60 ft. and a rise of 8 ft. (measurements taken for the axis). The length of the rib axis is 62.8 ft. The coefficient of expansion for r° F. is 0.0000038. Then the total change in length of the rib is 0.0005 ft.; if there are 42 joints, the change in each joint would be 0.0002 ft. .0024 in., which is too small to be readily detected. Of course the joints do not all distort the same. Again, assume the rib under masonry spandrel walls, and let there be an increase of 40° F. in temperature, and also assume that the rib cannot rise; then the entire temperature effect must be used up incompressing the ring. The change in length per unit is 40(.0000038) = 0.00015. If the E = 6800000, the stress per square inch is a little over 1000 lbs. This might be increased to 10000 lbs. without the granite being crushed, even with the dead- and live-load stresses added.

Considering our ignorance of the actual temperature changes and the behavior of the stone under these changes, it is useless to attempt any theoretical treatment until our

knowledge of the subject has been very much increased. The temperature stresses appear to be able to take care of themselves as long as the rib is stable for the dead and live loads.

34. Reliability of the Elastic Theory when Applied to Plain Concrete Ribs.—Here we have a material which is fully as variable in its physical qualities as natural stone. Generally we have no joints to consider and no masonry spandrel backing, but we do have monolithic spandrel side walls clamping the rib, in many instances. As concrete resists tensile stresses but indifferently, it is not safe to permit more than *one tenth* its safe compressive strength in designing. As this amounts to about 50 lbs. per square inch, it may as well be neglected entirely, and the rib designed for the dead and live loads so that no tension can exist at any section.

The effects of changes of temperature are as uncertain as in stone arches. Having no joints, the ring cannot readily adjust itself, and hence probably resists some tension. As the modulus of elasticity is much less than for natural stone, and the coefficient of expansion but some 60% greater, the theoretical stresses are very much smaller. For free rings no tension exceeding 50 lbs. per square inch should be allowed under any conditions, unless the concrete is reinforced with steel to prevent cracking. At present there appears to be no rational way of determining the amount of steel required so all that can be done is to experiment and follow previous builders where they have been successful. If the rib should crack through, it would not necessarily mean failure, as then the behavior would follow that of a voussoir ring.

35. Reliability of the Elastic Theory when Applied to Reinforced Concrete Ribs.—Concrete when reinforced with steel is very much more reliable than concrete without the steel. The principal difficulty experienced is the location of the neutral axis of any particular section. The location without any doubt shifts about under the action of different loads. As the elastic theory assumes the arch axis to pass through the neutral axis of each section of the rib, it is evident that we must assume the axis to lie at the center of gravity of the section and treat the material according to the common theory of flexure.

While a reinforced rib will safely resist tension by virtue of the steel, yet the best designers so proportion the arch rib that it is never subjected to tension under dead and live loads. For temperature stresses the compression in the concrete must not exceed about 800 pounds per square inch, including the effect of the dead and live loads. Under this assumption the concrete may crack on the tension side, and the steel resist all of the tension.

Even when considering the difficulties briefly mentioned above and our almost absolute ignorance of the actual distribution of stress over a reinforced section, we are compelled to accept the elastic theory as our best guide in designing reinforced-concrete ribs.

36. Reliability of the Elastic Theory: Summary.—For steel ribs it is without doubt quite reliable. For natural stone, concrete, and reinforced concrete the theory can be used with confidence as long as no tensile stresses occur in the rib. When tensile stresses obtain the theory applied under the usual assumptions is but an approximation.

37. Depth of the Arch Rib.—This must be assumed from the best data available, and then calculations made to see if it will answer under all conditions of loading and changes of temperature. If found necessary, the rib can be modified somewhat without making new calculations by changing the moments of inertia of all sections in the same ratio. The dead- and live-load stresses will remain sensibly unchanged, the change in weight of the rib being very small in comparison with the total dead load. The temperature and axial thrust stresses will be slightly modified. The question of the necessity of a new calculation must be decided by the designer according to his best judgment. In Table II are given the data for a large number of arch ribs to aid in assuming the dimensions of a proposed design.

The articles immediately following give the principal empirical formulas for the dimensions of arch rings, etc.

38. Empirical Formulas for the Thickness of the Ring at the Crown in Stone Arches. — Many formulas have been advanced for the depth of the arch ring at the crown. These are usually based upon the dimensions of arches constructed, and hence they merely indicate that an arch built like one which has been standing some time will probably stand also.

NOMENCLATURE.

to = depth of arch ring at the crown, in feet;

R = radius of curvature of intrados at the crown, in feet;

l = clear span of arch, in feet;

f =clear rise of arch, in feet.

Trautwine's Formulas.*—The following formulas apply to circular and elliptical arches:

For first-class cut stone:

$$t_0 = 0.25\sqrt{R + 0.5l} + 0.2.$$

For second-class work:

$$t_0 = 0.281\sqrt{R + 0.5l} + 0.225.$$

For brickwork or fair rubble:

$$t_0 = 0.333\sqrt{R + 0.5l} + 0.267.$$

Low's Formula: +

$$t_0 = 0.125 \sqrt{10(l-f) + 2H}$$

where H = the surcharge above the extrados at the crown. Rankine's Formulas:

$$t_0 = \sqrt{0.12R}$$
 for a single arch;

$$t_0 = \sqrt{0.17R}$$
 for an arch in a series.

Perronnet's Formula for circular or elliptical arches:

$$t_0 = 1 + 0.035l$$
.

Dejardin's Formulas for circular arches: \$\frac{1}{2}\$

For
$$\frac{f}{l} = \frac{1}{2} \dots t_0 = 1 + 0.10R$$
.

For
$$\frac{f}{l} = \frac{1}{6} \dots t_0 = 1 + 0.05R$$
.

^{*}Trautwine's "Engineer's Pocket-book."

[†] Engineering News, June 15, 1905.

[‡] From paper by E. Sherman Gould, Van Nostrand's Mag., vol. xxix, p. 450. 1883.

For
$$\frac{f}{l} = \frac{1}{8} \dots t_0 = 1 + 0.035R$$
.

For
$$\frac{f}{l} = \frac{1}{10} \dots t_0 = 1 + 0.02R$$
.

Dejardin's Formula * for elliptical and basket-handled arches:

For
$$\frac{f}{l} = \frac{1}{3} \dots t_0 = 1 + 0.07R$$
.

Croizette-Desnoyer's Formulas:*

For
$$\frac{f}{l} > \frac{1}{6}$$
.... $t_0 = 0.50 + 0.28\sqrt{2R}$.

For
$$\frac{f}{l} = \frac{1}{6}$$
..... $t_0 = 0.50 + 0.26\sqrt{2R}$.

For
$$\frac{f}{l} = \frac{1}{12}$$
..... $t_0 = 0.50 + 0.20\sqrt{2R}$.

For elliptical arches use R for circle having same rise and span.

German and Russian Practice: *

$$t_0 = 1 + 0.035l + 0.02H$$
,

where H = the surcharge over the extrados at the crown, including the moving load if any.

Austrian Specifications for large arches of brick and stone: †

f/l between $\frac{1}{2}$ and $\frac{2}{3}$.

For
$$l = 30$$
 metres. . . . $t_0 = 1.1$ m.

For
$$l = 40$$
 " $t_0 = 1.4$ "

For
$$l = 65$$
 " . . . $t_0 = 2.2$ "

^{*}From paper by E. Sherman Gould, Van Nostrand's Mag., vol. xxix, p. 450.

^{† &}quot;A Treatise on Arches," by Malverd A. Howe. Wiley.

For
$$l = 80$$
 metres.... $t_0 = 2.7$ m
For $l = 100$ '' $t_0 = 3.4$ ''
For $l = 120$ '' $t_0 = 4.1$ ''

39. Thickness of Arch Ring of Stone at the Support.—For semicircular stone arches it is generally assumed that the masonry for 30° from the spring line is self-supporting and consequently has no arch action. If this is so, then the maximum angle which a stone arch ring can be considered to subtend is 60° each way from the crown. If the loading is so arranged that the equilibrium polygon follows the axis of the ring, then the pressures will vary directly as the secant of the angle ϕ ; consequently the ring thickness 60° from the crown should be $t_8 = t_0 \sec 60^\circ = 2t_0$.

* Croizette-Desnoyer's Formulas for segmental arches:

For
$$\frac{f}{l} = \frac{1}{6} \dots t_s = 1.40t_0$$
.
For $\frac{f}{l} = \frac{1}{8} \dots t_s = 1.24t_0$.
For $\frac{f}{l} = \frac{1}{10} \dots t_s = 1.15t_0$.
For $\frac{f}{l} = \frac{1}{12} \dots t_s = 1.10t_0$.

For basket-handled arches:

when
$$\frac{f}{l} = \frac{1}{3} \dots t_s = 1.80t_0;$$

 $\frac{f}{l} = \frac{1}{4} \dots t_s = 1.60t_0;$
 $\frac{f}{l} = \frac{1}{5} \dots t_s = 1.40t_0.$

^{*} Van Nostrand's Engineering Magazine, vol. xxix, p. 454.

40. Thickness of Abutment. — Trautwine's rule for all kinds of stone arches is best explained by means of a diagram, Fig. 17. This form of abutment, according to

Fig. 17.

Trautwine, is sufficiently strong to take the thrust due to the dead load before the back filling of earth is in place.

Rankine states that in existing structures the thickness a varies from $\frac{1}{3}$ to $\frac{1}{5}$ the radius of the intrados at the crown.

Baker, in "A Treatise on Masonry Construction," gives a formula, said to represent German and Russian practice, which has the form

$$a = 1 + 0.04(5l + 4h),$$

where h is the distance from the spring line down to the top of the foundation.

41. Thickness of Piers.—In a series of arches it is customary to use several narrow piers and then introduce a much heavier pier, called an abutment pier. This should be of sufficient strength to resist the thrust from one side without any aid from the arches upon the other side. The thickness will then be the same as if it were an abutment in reality without earth backing. For the regular piers various rules have been used. Twice the thickness of the arch ring at the crown plus a fraction of a foot has been used in very important bridges. Usually piers are from 2½ to 3 times the thickness of the arch ring at the crown.

The vertical load upon piers is not very large when measured in tons per square foot, and as far as strength is concerned they could be made considerably smaller than outlined above. The only horizontal thrust to be resisted is the unbalanced thrust produced by the moving load, unless adjacent arches are of different dimensions. With the exception of high bridges the effect of the wind is of no moment.

42. Remarks concerning Empirical Formulas.—The formulas given in the previous articles are based, for the most part, upon actual structures and will without doubt lead to safe structures if the equivalents in materials and workmanship are held throughout. Apparently the formulas apply to all kinds of stone, as no mention is made of the quality of the materials (excepting Trautwine's formulas) used. Unquestionably the arch rings were constructed of average materials, probably no better if as good as those used now; hence the formulas will be of service in assuming dimensions which can be relied upon as

being safe for structures quite similar to those upon which the formulas are based.

43. Albula Railroad Practice * (gage 1 m.).—The following dimensions were used in the construction of a great number of arches on the Albula Railroad.

Span $l = 6$	8	10	12	15	20	25
$Keyt_0 = 0.55$	0.60	0.70	0.75	0.80	0.90	1.00
Spring $t_8 = 0.80$	0.90	I.00	1.10	I.20	1.35	1.50
Pier $b = 1.20$	1.35	1.50	1.70	2.10	2.70	3.60
Abutment $a = 1.70$	1.90	2.10	2.80	3.50	4.20	5.30

Twenty-six viaducts were built of the spans given below:

44. The Dead Load.—Very little is required in the way of discussion in reference to the dead load for steel ribs. The floor and all supports, and even the lateral systems,

^{*} The Engineer, 1904.

can all be designed and the actual weights computed. There remains, then, only the weight of the rib proper to be estimated. The weight of the assumed rib will be sufficiently close for all purposes, as a large error in the weight of the rib will be comparatively small for the entire load. The weight above the rib is usually transmitted to the rib through verticals extending up to the roadway.

In the case of masonry ribs with the spandrels completely filled with earth, sand, gravel, etc., the actual load supported by the rib is not very definite. If the filling is put in in horizontal layers well compacted, the load upon the ring will certainly not exceed the actual weight of the material, and it is very doubtful if such filling creates any considerable horizontal thrust against the rib. If perfectly dry and clean sand or gravel is employed, then there may be horizontal forces acting against the rib. These will be very small, however, for segmental arches. This thrust can be found according to the theory of earth pressure.*

The consideration of the horizontal thrust of the spandrel filling is a refinement not warranted in works of this class. The weight of the spandrel filling with pavement, arch rib, etc., should be considered as divided into vertical loads, the horizontal projection of δs being the measure of each division. For computations the load may be assumed to act at the center of the projection of δs .

In case the spandrels are partially filled with concrete its weight may be taken as divided into vertical forces.

^{* &}quot;Retaining-walls for Earth," by Malverd A. Howe. John Wiley & Sons, New York.

This is probably not as near the truth as when the fill is made of sand or gravel, but the assumption is on the safe side. Overloading the haunches will cause an upward movement at the crown, and overloading the crown causes the haunches to rise; but when the spandrel filling is partially concrete the passive resistance to an upward movement is very much in excess of its weight; so also is that of sand or gravel. The arch rib, then, in this type of bridge is anything but a free member, and consequently any great refinement in its design is time wasted. If we can assure ourselves that the rib is safe by adding a few inches to the thickness of the ring, the very small percentage of extra cost need not be considered at all.

When the roadway is supported by longitudinal walls resting upon the rib, the problem is at least as complex as before, for there is no way of knowing how the weights transmitted by the walls are distributed. The only recourse is to treat the material as in the case of sand or gravel filling.

The use of lateral walls or columns to support the road-way places the problem in a shape to be carefully considered theoretically. The actual magnitudes of the loads can be computed and the points of application to the rib are definitely fixed. For long spans this is unquestionably the best and most economical type which can be built. There is an exception to this in very flat arches where the ring occupies the greater portion of the vertical projection of the bridge.

45. Dead-load Equilibrium Polygon Following the Axis of the Arch Rib.—It is assumed that the rib has been dimensioned and that the fill over the crown is known. Compute

the weight of the shaded portion in Fig. 19 and call it P_1 . Lay off the vertical line DE, and P_1 from D. Draw DO horizontal and CO parallel to the tangent to the arch axis at b. Then from O draw lines parallel to the tangents at c, d, e, etc.; then these lines will cut off on DE the loads P_2 , P_3 , etc., for which an equilibrium polygon will pass

through the points a, b, c, d, etc., and DO will be the horizontal thrust for this loading. A check calculation will show that this is the true horizontal thrust according to the elastic theory, neglecting the effect of the axial stress.

By a similar construction the polygon may be made to pass through the points where the loads are applied to the axis. In either case the bending moments due to the dead load are sensibly zero. This assumes that the loads are reasonably close together.

Filled spandrels can usually be made so that the above conditions are fulfilled by selecting proper filling materials.

CHAPTER III.

EXAMPLES SHOWING THE APPLICATION OF THE FORMULAS, ETC.

- 46. Preliminary. In the examples which follow, the computations will be given in detail, with suggestions as to methods and checks. In some cases it will be found that the algebraic work necessary to get the data into shape for applying the arch theory requires as much time as the computation of H_1 for each load respectively. Some of this work will be found quite unnecessary by many. It is given in one case for the benefit of the few who may use the example as a guide for their first arch calculation.
- 47. First Example: Data.— Let us assume that the design shall be for a single-track railway bridge with an arch ring of Quincy, Mass., granite, and that the axis of the ring has a span of 60 ft. and a rise of 8 ft. Let the spandrel filling be cinders, sand, or gravel, in such proportions that the total dead load will have its equilibrium polygon following the axis of the ring. Since this is to be a railway bridge, there should be at least 3 ft. of fill between the base of the rail and the arch ring at the crown. This will distribute the moving load which may be assumed at 5000 lbs. per foot of span. If the ties are 8 ft. long, we may assume that the fill will distribute 5000 lbs. over at

least 13 ft. under the ties, or that the moving load will be about 400 lbs. per square foot. 30 lbs. per square foot will cover the weight of the track.

48. Subdivision of the Arch Axis.—This should not be decided upon until the shape of the arch ring is determined. In this case let the ring be of uniform depth throughout; then, in order that *J* may be constant, the axis should be divided into equal parts. In all summation formulas it is well known that the smaller the divisions are made the more accurate will be the results. In this

FIG. 20.

particular case δs might be replaced by ds, and the problem solved, as far as H_1 , M_1 , etc., are concerned, by means of integration.

Ordinarily twenty divisions will give results sufficiently accurate for practical purposes. This number will be used.

From Fig. 20,

$$\frac{1}{2}l = 30 = \sqrt{R^2 - (R - 8)^2}$$
. $\therefore R = 60.25 \text{ ft.}$, and $k' = 52.25 \text{ ft.}$

$$\sin \phi_0 = \frac{\frac{1}{2}l}{R} = \frac{30}{60.25}$$
 :. $\phi_0 = 29^{\circ} 51'.76$.

Arc
$$AB = \frac{2\pi R}{360}$$
29.8616 = 31.40 ft.

Hence $\partial s = 3.14$ ft., and the angle at the center for each division is 2°.98616.

49 Computation of x and y.—The values of x and y are computed for the center points of the divisions made above, as shown in detail in Table A.

TABLE A.

Point.	ф.	şin φ.	cos φ.	$R \sin \phi$.	$R\cos\phi$.	x $30 - R \sin \phi$.	γ R cos φ – 52.25.	
1 2 3 4 5 6 7 8 9 10 C	28° 22' . 172 25 22 . 996 22 23 . 820 19 24 . 644 16 25 . 468 13 26 . 292 10 27 . 116 7 27 . 940 4 28 . 764 1 29 . 588	0.47515 .42867 .38102 .33234 .28275 .23239 .18141 .12993 .07810	0.87991 .90346 .92457 .94316 .95919 .97262 .98335 .99152 .99694 .99966	28.628 25.827 22.956 20.023 17.036 14.001 10.930 7.828 4.705 1.570	53.015 54.433 55.705 56.625 57.791 58.600 59.247 59.739 60.065 60.220 60.25	7.044 9.977 12.964	0.765 2.183 3.455 4.575; 5.541 6.350 7.000 7.489 7.815 7.979 8.000	

In this particular case we are probably not warranted in using three decimal places in the values of x and y, although the labor is but a very little greater than if but two were used. This is assuming that multiplications are performed by machine or a multiplication-table. After a little practice Crelle's "Rechentafeln" will be found quite satisfactory for all multiplications and many divisions.

50. Computation of H_1 for Unit Loads.—Table B gives in detail the calculations for H_1 corresponding to a unit load at each point respectively. Since the arch and the loading are symmetrical, the summations have been made from x = 0 to $x = \frac{1}{2}l$.

In column 2 the positive and negative values of $y - y_a$ should sum up the same. As the fourth decimal place has been neglected, the sums differ by 3 in the third decimal place. The method of Art. 14 has been employed in computing m_x , which requires the use of but ten multipliers (the values of x) and fifty-five multiplications in the complete determination of H_1 for each load.

For the first load each value of $y-y_a$ is multiplied by the first value of x, and therefore, since $\Sigma(y-y_a) = 0$, $\Sigma m_x(y-y_a)$ should be zero, and consequently the value of $H_1 = 0$ for this load. Using the figures shown in the table, $H_1 = .000035$ for $P_1 = unity$, which is zero for all practical purposes.

The true values of $\Sigma y(y-y_a)$ and $\Sigma m_x(y-y_a)$ are twice the numerical values given in the table, but since one expression is in the denominator and the other in the numerator the common factor zero has been neglected.

The method employed in Table B is considerably longer than necessary, but has been used on account of its clearness and because all sums are taken between the same limits.

 $\label{eq:table_bound} \texttt{Table} \;\; B.$ $\texttt{computation} \;\; \texttt{of} \;\; \textit{H}_{\text{I}} \;\; \texttt{for} \;\; \texttt{unit Loads}.$

	-	ē2	ಣ		#		10		9
Point.	Values			P_1	$P_1 = 1 + P_1$.	P ₂ -	$P_2 = 1 - P_2$.	$P_3 =$	$P_3 = J$ P_3' .
	2	r Va.	v(v = va).	**************************************	$m_x(y-y_a)$.	mz.	$m_x(y-y_a)$.	mx.	$m_x(y-y_a)$.
0	1 1 1	1		1	* * * * * * * * * * * * * * * * * * * *				
· H	765	4.550	- 3.48I	I.372	- 6.243	I.372	- 6.243	I.372	- 6.243
2	2.183		6.828	1.372	4.297	4.173	-13.070	4.173	-13.070
3	3.455	- I.860	- 6.426	I.372	2.552	4.173	- 7.762	7.044	-13.102
4	4.575		- 3.386	1.372	1.015	4.173	3.088	7.044	- 5.213
L/5\	5.541	. 226	1.252	1.372	018.	4.173	.943	7.044	1.592
0	6.350	1.035	6.572	1.372	1.420	4.173	4.319	7.044	7.291
1~(7.000	1.685	11.795	1.372	2.312	4.173	7.032	7.044	11.869
00	7.489	2.174	16.281	I.372	2.983	4.173	9.072	7.044	15.314
6	7.815	2.500	19.538	1.372	3.430	4.173	10.433	7.044	17.610
10	7.070	2.665	21.267	I.372	3.656	4.173	11.121	7.044	18.772
	53.152	- 10.282	-20.121	13.720	-14.107	38.020	-30.163	61.807	- 17.628
) 51	+10.285	+ 76.705	- mx	+14.111	5 mx	+42.920	Emx.	+ 72.448
	$y_a = \frac{\Sigma y}{10}$		+56.584		+ .004		+12.757		+34 820
	=5.315		$\Sigma y(y-ya)$		$\sum m_x(y-y_a)$		$\sum m_x(y-y_a)$		$\sum m_x(y-y_a)$
	$\sum m_x$	$\sum m_x \div 10$		1.372		3.893		6.190	
	$H_1 = \frac{1}{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} $	$\frac{\sum m_x(y-y_a)}{\sum y(y-y_a)} = .$			0.000035		0.1125		0.3075

TABLE B.—COMPUTATION OF H, FOR UNIT LOADS—(Continued),

10	$P_7 = 1 = P_7'.$	$m_x(y-y_a).$					1 16.551			0 47.675	1 +	+151.771 $\sqrt{m_x(y-y_a)}$	00	
		m.		1.372	7.04	9.977	12.90	19.070	19.07	19.070	127.801 ∑mx		12.78	
6	$P_{6}=_{1}=P_{6}'.$	$m_x(y-y_a)$.	4	- 0.243 - 13.070	-13.102	- 7.383	16.551	26.945	34.764	39.978	39.798	$\frac{1}{2} \frac{123.980}{m_x(y-y_a)}$		1 (
-	. P6=	mx.		4.173	7.044	726.6	15.991	15.991	15.991	15.991	115.485 \(\sum_{x}\)		11.55	
œ	$P_5 = 1 = P_5'.$	$m_x(y-y_a)$.	4	- 0.243 -13.070	-13.102	7.383	13.418	21.844	28.184	32.4TO 34.549	-39.798 +133.335	$\frac{+93.537}{5m_x(y-y_a)}$	-	8265
	$P_5=$	Mx	i i	4.173	7.044	9.977	12.964	12.964	12.964	12.904	100.35 \(\Sigma\)		10.03	1
10	$P_4 = I = P_4'$.	$m_x(y-y_a)$.	200	- 13.070	-13.102	7.383	10.326	16.811	21.690	26.589	-39.798 +102.614	$\begin{array}{c} +62.816 \\ \Sigma m_x(y-y_a) \end{array}$		u u
	P_4 =	m_{x_*}	200	4.173	7.044	9.977	9.977	9.977	6.677	9.977	82.428 ∑mx		8.243	
	Point.	1	0 +	- O	3	4 1	200	1	00	0 I			Sm.,	H.

TABLE B.—COMPUTATION OF H, FOR UNIT LOADS—(Concluded).

14	P-unity.	Load. H1.		O.Y.	" P3"	ce pir	P.'	" P"	P.'	P.,	" P',	P.'	P 10 " P 10 I. 7585			t			
13	P10 1 P10'.	$m_x(y-y_{ra}).$		- 6.243	-13.070	-13.102	- 7.383	2.930	16.551	32.133	48.202	63.238	75.766	- 39.798	+238.820	+ 199.022 $\sum m_x(y-y_a)$			I OX
	P ₁₀	mx.		I.372	4.173	7.044	9.977	12.964	18.991	020.61	22.172	25.295	28.430	146.488	$\sum m_x$		14 66	50.++	
12	$P_{9}-1-P_{9}'$.	$m_x(y-y_a).$		- 6.243	-13.070	- 13.102	- 7.383	2.930	16.551	32.133	48.202	63.238	67.411	-39.798	+23c 465	$+ 190.667$ $\Sigma m_x(y-y_a)$			T 68£
	P ₀ .	Mz.		I.372	4.173	7.044	9.977	12.964	15.091	040.61	22.172	25.295	25.295	143.333	$\sum m_x$		14.22	00.1	
11	$P_{\rm s}-1-P_{\rm s}'$.	$m_x(y-3a).$		- 6.243	-13.070	13.102	- 7.383	2.930	16.551	32.133	48.202	55.430	59.088	-39.798	+214.334	$+ \frac{174.536}{\Sigma m_x(y-y_a)}$			I. 5425
	P_{8}	mz.		I.372	4.173	1.044	6.677	12.064	15.901	19.070	22.172	22.172	22.172	137.107	$\sum m_x$		12.71		
	Point.		0	н	61	3	4	w	9	L ~	00	6	IO				Zm.z	10	H,

Table B also contains the values of $\Sigma m_x \div n$, which will be used in computing the values of M_1 . Having the values of H_1 for unit loads, its value for any other load is simply the product of the load by the values given in Table B.

51. Computation of M_1 , V_1 , y_1 , y_2 , and y_0 for Unit Loads.— The formula for M_1 is, Art. 25,

$$M_1 = H_1 y_a - \frac{\sum m_x x - \sum m_x \frac{\sum x^2}{\sum x}}{n \left(\frac{1}{2}l - \frac{\sum x^2}{\sum x}\right)},$$

in which H_1 and y_a are known from Table B. $\Sigma x = \frac{1}{2}nl = \frac{1}{2}(20)60 = 600$. There remains to be found the value of m_x at each point for each load and also the value of Σx^2 . Of course Σx^2 can be found by squaring each value of x, but this is rather tiresome, as there are twenty different values. The following method will be found shorter and easier and at the same time a portion of the work in computing m_x will be done.

Taking any symmetrical values of x, that is, the values of x for points 1 and 1', say,

$$x^{2} + x_{1}^{2} = x^{2} + (l - x)^{2} = x^{2} + l^{2} - 2lx + x^{2}$$

$$= l^{2} - 2x(l - x)$$

$$= l^{2} - 2x(\frac{1}{2}l - x) - lx,$$

Then, for all points,

$$\Sigma(x^2 + x_1^2) = \frac{nl^2}{2} - 2\sum_{0}^{\frac{1}{2}l} x(\frac{1}{2}l - x) - l\sum_{0}^{\frac{1}{2}l} x = \Sigma x^2,$$

$$\frac{nl^2}{2} = \frac{1}{2}(20)(60)^2 = 36000,$$

$$-2\sum_{0}^{\frac{1}{2}l}x(\frac{1}{2}l-x) = -2(1498.987) = -2997.974, \quad \text{(Table C.)}$$
$$-l\sum_{0}^{l/2}x = -(60)(146.48) = -8788.800. \quad \text{(Table C.)}$$

$$\Sigma x^2 = 24213.23$$
 and $\frac{\Sigma x^2}{\Sigma x} = 40.3554$.

The denominator in the equation for M_1 now becomes

$$20(30-40.3554) = -207.1075.$$

The next step is the determination of m_x at each point for each load. This can be done by constructing an equilibrium polygon for each load and scaling the proper ordinates, which leads to $10 \times 20 = 200$ separate quantities and then 200 multiplications when $m_x x$ is found.

 $\sum m_x x$ can be found as follows:

From Fig. 21 for load unity,

$$R_1 = \frac{l-a}{l}, \qquad R_2 = \frac{a}{l}.$$

From x = 0 to x = a, From x = a to x = l,

$$m_x = R_1 x = \frac{l-a}{l} x$$
, $m_x = R_2(l-x) = \frac{a}{l}(l-x)$.

Now

$$m_x x = m_x [\frac{1}{2}l - (\frac{1}{2}l - x)] = \frac{1}{2}m_x l - m_x (\frac{1}{2}l - x).$$

Therefore

$$\sum m_x x = \frac{1}{2} l \sum m_x - \sum m_x (\frac{1}{2} l - x).$$

The value of $\frac{1}{2}\Sigma m_x$ is given in Table B for two equal and symmetrical loads. This value is equal to Σm_x for a single load. This quickly disposes of $\frac{1}{2}l\Sigma m_x$.

The value of $\sum m_x(\frac{1}{2}l-x)$ can be found quite easily by remembering that for $m_x(\frac{1}{2}l-x)$ upon the left there will be an $m_x'(\frac{1}{2}l-x)$ upon the right but opposite in sign until x=a. For x < a and x=l-x,

$$(m_x + m_{x'})(\frac{1}{2}l - x) = R_1 x(\frac{1}{2}l - x) - R_2 x(\frac{1}{2}l - x) \quad (x < a)$$

$$= (R_1 - R_2)x(\frac{1}{2}l - x);$$

hence

$$\sum_{x=0}^{x=a} (m_x + {m_x}')(\tfrac{1}{2}l - x) = (R_1 - R_2) \sum_{x=0}^{x=a} x(\tfrac{1}{2}l - x).$$

For x = a to x = l - a,

$$\sum_{x=a}^{x=l-a} m_x(\tfrac{1}{2}l-x) = \sum_{x=a}^{x=\tfrac{1}{2}l-a} \{ R_2(l-2x)(\tfrac{1}{2}l-x) = 2R_2(\tfrac{1}{2}l-x)^2 \}.$$

Then

With the above explanations, Table C becomes very simple and gives us all of the coefficients required in treating vertical loads. In col. 21 the values of M_1 give also the values of M_2 by merely numbering the points 1', 2',

	œ	$R_1 - R_2$.	.954	.862	994.	. 668	.568	.466	.364	. 262	.156	.052	O+	OT	Σm_x . Table B.	13.720	38.929	61.897	82.428					143.333	
	20	$\sum_{0}^{a} x(\frac{1}{2}l - x).$	39.223	14.934	308.572	508.372	729.210	953.210	1161.645	1335.236	1454.352	IAC 8 087	'n	10	$H_1 \mathcal{Y}_a$.	000.	.598	I.634	2.950	4.393	5.823	7.127	8, 198	8.956	9.346
yı.	9	$(\frac{1}{2}l - x)^2$.	819.667	667.189	527.162	400.800	290.362	200.000 I	119.465	61.300	22,184	2.465	7.7	1.4	$\sum m_x \frac{1}{2}l$.	411.60	1167.87	1856.91	2472.84	3010.50	3464.55	3834.03.	4113.21	4299.99	4394.64
M1, V1, AND 3	10	$x(\frac{1}{2}l-x).$	39.223	107.711	161.638	199.800	220.838	224.000	208.435	173.591	119.116	44.635	1.0	e1	Column 9 plus Column 12, $\Sigma m_x(\frac{1}{2}l-x)$.	142.618	350.182	492.031	569.265	587.606	553.892	477.508	368.023	228.959	77.947
OF	4	\$2-x.	28.63	25.83	22.96	20.02	17.04	14.00	10.93	7.83	4.71	1.57	1.0	16	Column 10 times Column 11.				229.673						
COMPUTATION	တ	મૈ	1.37	4.17	7.04	0.98	12.96	16.00	. 20.61	22.17	25.29	28.43	-	11	2R2.	.046	. 138	.234	.332	.432	.534	. 636	. 738	.844	.948
	es	R ₂₂	.023	690.	711.	, r66	.216	.267	.318	.369	.422	. 474	10	OT	$\frac{1}{\Sigma}(\frac{1}{2}l-x)^2.$	2286.936	1619.747	1092.585	691.785	401.423	205.423	85.958	24.649	2.465	
	1	R_1 .	716.	.931	. 883	.834	. 784	.733	.082	.031	.578	.526	ō		Column 7 times Column 8.				339.592						
		Point.	I	¢4	3	4	LO!	0	~	×	6	10			Point.	н	2	3	4	rv,	0	1	00	6	OI

TABLE C.—COMPUTATION OF M, V1, AND y1—(Concluded).

24	300	9.588 9.595 9.614 9.639	3
23	V_1 .	1.0000 987 926 879 879 822 750 690 690 615 751 751 751 751 751 751 751 751 751 7	
22	y_1 .	-26.996 -12.468 -12.468 -12.468 -12.468 -13.65 -13.65 -13.68 -13.	3.0
21	M ₁ . Col. (15-20).	1.374 1.3.0374 1.3.0374 1.3.0374 1.562 1.562 1.653 1.692 2.963 3.127 3.127 3.127 3.127 1.582 1.582 1.583	
20	-m ₁ . Col. (19-17).	1	
19	$\sum m_{\pm} \frac{\sum x^2}{2}$	7.583 1.0578 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558 1.10.558	The state of the s
18	$\Sigma m_x x$. Col. (14 – 13).	268 982 817.688 1364.879 1903.575 2422.894 2910.658 3356.522 3745.187 4472.587 4472.587 4472.587 4472.587 4472.587 4528.949 4481.233 4311.538 4311.538 554.218	6.2
17	Smex - 207.1075	- 1.299 - 3.948 - 6.590 - 11.699 - 11.699 - 11.699 - 11.699 - 12.868 - 21.868 - 21.868	
	Point.	н и и 4 и 0 г и о б б д у у у у у у у у у у у у у у у у у	

$$M_1 = H_1 y_a - \sum_{n = -1}^{Nm_x} \left(\frac{\Sigma x^2}{\Sigma x} \right) - H_1 y_a - \frac{\Sigma m_x}{-207.1075} + \sum_{n = -1}^{Nm_x} \frac{\Sigma x^2}{-1D},$$

$$D = -207.1075,$$

$$D = -207.1075,$$

3', etc. The quantities in cols. 22 and 23 reversed give y_2 and V_2 respectively. Col. 24 shows how nearly constant y_0 is in this case.

For mathematical accuracy the value of V_1 for a load at point I should be unity as given in Table C, which evidently is not the actual condition. When the first point is quite near the support, however, the value of V_1 approaches unity very nearly.

In col. 22 the value of y_1 for point r is not given, since it is not possible to obtain its value directly from the formula $M_1 \div H_1 = y_1$, as H_1 is zero. The same is true for point r'. This will be the condition whenever graphical or algebraic summation methods are used. This difficulty does not occur in integration formulas. Fortunately, the peculiarity of the summation methods is of no practical importance if ∂s is not assumed too great. The defect is quite marked where ribs have a much greater depth at the springing than at the crown, and ∂s is so taken that everywhere $\partial s \div I$ is constant.

52. Depth of Ring and the Dead Load.—An examination of Table II shows that a number of railway bridges have been constructed with spans of about 60 feet with arch rings 3 feet deep. Let this be assumed as the depth of the ring.

The load at point 10 can be found as follows: Divide the vertical projection of the arch as shown in Fig. 22, and carefully scale the distances ab, bc, and de. Then the weight of the ring at point 10 is [(bc)(de) = (3.00)(3.14)]170 = 1601 pounds, taking granite at 170 lbs. per cubic foot. Assume the fill to be made of material weighing 95 lbs. per cubic foot, then the weight at 10 is (3.02)(3.14)95 = 905 lbs., say. The weight from the track is (3.14)30 = 94 lbs.

The total dead load at 10 now is 1601 + 905 + 94 = 2600pounds. In order that the equilibrium polygon shall pass

FIG. 22.

through 10 and 9, Fig. 23, the pole distance must be

$$H = \frac{2600}{\tan 2^{\circ} - 59'.2} = \frac{2600}{0.052} = 50000.$$

For the polygon to pass through point 8, load 9 must equal $[50000 \tan 2(2^{\circ} - 59'.2) = 50000(0.1046)] - 2600 = 5250$ -2600 = 2650 pounds. In like manner all loads may be computed, or obtained by drawing strings parallel to the chords connecting the points of division as indicated in Fig. 23.

COMPUTATION OF DEAD LOAD.

Point.	φ.	tan φ.	50000 tan φ.	Dead Load P.	Unit H ₁ , Table B.	Computed H_1 .
1 2 3 4 5 6 7 8 9	29° 51′.76° 26° 52°.584 23° 53°.408 20° 54°.232 17° 55°.056 14° 55°.806 11° 56°.704 8° 57°.528 5 58°.352 2 59°.176	0.574 0.507 0.443 0.382 0.323 0.207 0.211 0.157 0.105	28700 25350 22150 19100 16150 13350 10550 7850 5250 2600	3350 3200 3050 2950 2800 2800 2700 2600 2650 2600	0 0.113 0.308 0.555 0.827 1.096 1.341 1.543 1.685 1.759	362 939 1637 2316 3069 3621 4012 4465 4573

The above table gives the computations necessary for obtaining the proper dead loads and also the corresponding values of H_1 . The value of H_1 for the entire dead load is in round figures 2(25000) = 50000.

The next step will be the separating of the above dead loads into parts, the ring, filling, and track. The ring and track are fixed, so that their combined weight taken from the total will leave the weight of fill required. The tabular statement on page 68 shows the process in detail.

No great degree of accuracy has been attempted in this table, as a hard rain may change the weight of the fill a considerable amount. The last column gives the average weight per cubic foot of the fill which is necessary to just fulfill the requirement that the equilibrium polygon coincides with the arch axis. It will be noticed that the weight of the arch ring is very nearly uniform for each section.

The lack of uniformity in the variation of the values given is due to inaccuracies of scaling ab, bc, and de from a drawing.

FINAL DEAD LOADS.

Point.		Fig. 22.		170 lbs. per cu. ft.	30 lbs. per. sq. ft.	Ring and	Fill.	Area of Fill.	Average Weight of Fill per
	ab.	bc.	de.	Ring.	Track.	Track.	٠		Cubic Foot.
	10.10	3.40	2.77	1601	83	1684	1666	28.5	59
2	8.72	3.28	2.83	1578	85	1663	1537	24.7	62
3	7.45	3.25	2.91	1608	87	1695	1355	21.7	63
4	6.36	3.16	2.96	1590	. 89	1679	1271	18.8	68
5 6	5.42	3.13	3.01	1602	90	1692	1108	16.3	68
	4.62	3.08	3.05	1597	92	1689	IIII	14.1	79
7 8	4.00	3.05	3.09	1602	93	1695	1005	12.4	81
8	3.52	3.00	3.11	1586	93	1679	921	10.9	85
9	3.20	3.00	3.13	1596	94	1690	960	10.0	96
10	3.02	3.00	3.14	1601	94	1695	905	9.5	95

53. Live Load and Loads Producing Maximum Moments.— The live load is 400 lbs. per linear foot and hence the load at each point is obtained by multiplying de, Fig. 22, by 400. These products are given in Table D.

In order to select the loads which produce maximum moments draw the equilibrium polygons for a load unity at each point respectively, as shown on Plate I. One-half of the polygons are shown. These reversed will be the polygons for loads upon the right of the crown.

By inspection we see that loads 1-8 inclusive produce negative moments at the left support, and the remaining loads produce positive moments.

At the crown loads I-7 and 7'-I' inclusive produce negative moments, and loads 8-8' inclusive positive moments.

For point 6', between $\frac{1}{3}$ and $\frac{1}{4}$ point of the span, loads 1-8' produce negative moments, and loads 7'-1' positive moments.

TABLE D.

400 POUNDS PER FOOT.

Pt.	Load.	Ž Leads.	H_1 ,	<i>x</i> ≥ <i>H</i> ₁	M_1 .	$\sum_{\Sigma}^{\infty} M_1$.	V_1 .	$\sum_{\mathcal{\Sigma}V_1}^{x}$
0123456789000000000000000000000000000000000000	1108 1132 1164 1184 1204 1220 1236 1244 1256 1256 1252 1244 1236 1250 1252 1244 1184 1132 1108	1108 2240 3404 4588 5792 7012 8248 9492 10744 12000 13256 14508 15752 16988 18208 19412 20596 221760 22892 24000	00.0 127.4 357.9 657.1 1336.5 1657.5 1918.9 2109.6 2208.7 2208.7 2109.6 1918.9 1657.5 1336.5 -995.1 657.1 357.9 127.4 00.0	00.0 127.4 485.3 1142.4 2137.5 3474.0 5131.5 7050.4 9160.0 11368.7 13577.4 15687.0 17605.9 19263.4 20599.9 21595.0 22252.1 22670.0 22737.4	- 1522.4 - 3437.9 - 4462.8 - 4636.6 - 4161.0 - 3195.2 - 1930.6 - 531.2 866.4 2076.2 3020.7 3634.6 3890.0 3768.6 3330.6 2670.6 1873.1 1068.6 390.5 3.4	- 1522.4 - 4960.3 - 9423.1 - 14059.7 - 21415.9 - 23346.5 - 23877.7 - 23011.3 - 20935.1 - 17914.4 - 14279.8 - 10389.8 - 6621.2 - 3290.6 - 620.0 1253.1 2712.2 2715.6	1108.0 1117.3 1119.8 1096.4 1058.3 1002.8 938.1 858.4 770.0 677.0 579.0 482.0 385.6 297.9 217.2 145.7 87.6 44.2 14.7	1108.0 2225.3 3345.1 4441.5 5499.8 6502.6 7440.7 8299.1 9069.1 9746.1 10325.1 10807.1 11192.7 11490.6 11707.8 11853.5 11941.1 11985.3 12000.0

If the ring is safe at these three points or even at the spring line and points 6 and 6', it will be safe at all other points.

54. M_1 , V_1 , and H_1 for Live Loads.—These values are obtained by multiplying the values for a load unity given in Table C by the live load. The results are given in Table D. For convenience these values are summed from o to x, as shown.

55. Maximum Moments at Point o Produced by the Live Load.—For loads 1-8 inclusive

$$M_1 = -23878$$
 (Table D).

For loads 9-1' inclusive

$$M_1 = 2716 - (-23878) = +26594.$$

For a full load

$$M_1 = -23878 + 26594 = +2716.$$

For a load up to the crown

$$M_1 = -20935$$
 (Table D).

For load 10'-1' inclusive

$$M_1 = +23651$$
 (Table D).

Evidently loading one half the span does not produce maximum moments at point o. The difference between the moment for a load extending from one support up to the crown and the maximum moments will not make any serious difference in the fiber stresses, as the dead load contributes a large portion of these stresses. If temperature effects are considered, the live-load effect becomes almost insignificant.

56. Maximum Moments at the Crown Produced by the Live Load.—For loads 1-7 inclusive

$$M_1 = -23347 \text{ (Table D),}$$

$$V_1 = 7441 \text{ ''} \text{ ''}$$

$$H_1 = 5132 \text{ ''} \text{ ''}$$

$$M_x = M_1 + V_1 x - H_1 y - \overset{x}{\Sigma} P(x-a). \quad x = 30 \text{ and } y = 8.$$

 $\tilde{\Sigma}P(x-a)$ can be found graphically by means of the ordinary equilibrium polygon. In this instance we will compute its value as shown in the following table.

	$\sum_{i=1}^{\infty} P(x_i)$	(-a).	
Point	P.	$\frac{1}{2}l-a$.	P(x-a).
1 2 3 4 5 6 7	11c8 1132 1164 1184 1204 1220 1236	28.63 25.83 22.96 20.02 17.04 14.00	31722 29239 26725 23703 20516 17080 13509
	Table D	Table C	$\sum_{x}^{x} P(x-a)$

$$V_1 x = 7441(30) = 223230,$$

 $H_1 y = 5132(8) = 41056,$
 $\stackrel{*}{\Sigma} P(x-a) = 162494;$

$$M_x = -23347 + 223230 - 41056 - 162494 = -3667.$$

If this is the moment for loads 1-7, then for loads 1-7 and 7'-1' inclusive, $M_x = 2(-3667) = -7334$.

If our coefficients are absolutely correct, the moment for loads 7'-1' inclusive should be the same as for loads 1-7 inclusive, as assumed. For loads 7'-1' inclusive

$$M_x = M_1 + V_1 x - H_1 y$$
,
 $M_1 = +13105$ (Table D),
 $V_1 x = 807(30) = 24210$,
 $H_1 y = 5132(8) = 41056$,

and

$$M_x = +13105 + 24210 - 41056 = -3741.$$

This is 3741 - 3667 = 74 larger than obtained by above method, an error of about 2%.

Considering that the summation method leads necessarily to approximate results, it will be more consistent when possible to always use the formula for M_x in which $\sum_{x=0}^{x} P(x-a)$ does not appear.

57. Moment at the Crown Produced by Live Loads 1-10 Inclusive.—From Table D,

$$M_2 = +23651$$
, $V_2 x = 2254(30) = 67620$, $H_1 y = 11369(8) = 90952$.
 $\therefore M_x = +23651 + 67620 - 90952 = +319$.

For a load over all,

$$M_x = 2(319) = +638.$$

58. Moment at the Crown Produced by Loads 8-8' Inclusive.

—We will first compute the moment for loads 10', 9', and 8' by the formula

$$M_x = M_1 + V_1 x - H_1 y$$
.

From Table D,

$$M_1 = +10545$$
, $V_1 x = 1447(30) = 43410$, $H_1 y = 6237(8) = 49896$.
 $\therefore M_x = +10545 + 43410 - 49896 = +4059$.

'Check:

From Art. 44,
$$M_x = -3741$$
 for loads 1-7 inclusive.
'' '45, $M_x = +319$ '' 'I-IO''
$$\therefore M_x = +4060$$
'' '8-IO''

or practically the same as found above.

The above computations show that the moment at the crown produced by a load covering the half-span is hardly one tenth the maximum moment.

59. Maximum Moment at Point 6' Produced by Live Loads 1-8' Inclusive.—Use the formula

$$M_x = M_2 + V_2 x' - H_1 y$$
.

From Table D,

$$M_2 = +2715 - (-23347) = +26062,$$

 $V_2 x' = 4559(16) = 72944,$
 $H_1 y = 17606(6.35) = 111798.$
 $\therefore M_x = +26062 + 72944 - 111798 = -12792.$

60. Maximum Moment at Point 6' Produced by Live Loads.
7'-1' Inclusive.—From Table D,

$$M_1 = + 13105$$
, $V_1 x = 807(44) = 35508$, $H_1 y = 5132(6.35) = 32588$, $\Sigma P(x-a) = 1236(3.07) = 3795$, $M_x = M_1 + V_1 x - H_1 y - \Sigma P(x-a)$ $= + 13105 + 35508 - 32588 - 3795 = + 12230$.

61. Moment at Point 6' Produced by Live Loads 1-10 Inclusive.

$$M_x = M_2 + V_2 x' - H_1 y$$
.

From Table D,

$$M_2 = +23651$$
, $V_2 x' = 2254(16) = 36064$,
 $H_1 y = 11369(6.35) = 72193$.
 $M_x = +23651 + 36064 - 72193 = -12478$,

which is about $2\frac{1}{2}\%$ less than the maximum moment as found in Art. 59.

62. Moments at all Points Produced by Live Loads 1-8' Inclusive Determined Graphically. — The constructions are given on Plate II. Lay off a load line in the usual way and scale off V_1 downward. Horizontally opposite this point, at a distance H_1 , take a pole and draw the strings S_1 , S_2 , S_3 , etc. The equilibrium polygon can now be drawn. As check upon the correctness of the polygon the common closing line, when transferred to the force polygon, should cut off the value of R_1 , the common reaction, on the load line. (In this particular case the check was not perfect, but so close that it was deemed unnecessary to draw a new polygon. The effect will appear later.) The closing line is AB.

Following the methods of Arts. 16 and 17, scale each ordinate of the equilibrium polygon and find the mean ordinate = $\Sigma B'C' \div 20$. At the center of the span scale upward this distance, and through the point just found draw CD parallel to the string S_0 in the force diagram, and scale the ordinates A'B'. Then M_x at any point equals the difference between the ordinate A'B' for that point and the corresponding value of $y-y_a$ multiplied by H_1 .

The values of $M_x
ildet H_1$ can be found, also, by drawing the arch axis so that the y_a line coincides with the line CD of the equilibrium polygon and scaling the ordinates indicated in the shaded area.

The line CD can also be located by making $AC = m_1$ and $BD = m_2$, where

$$m_1 = \frac{\sum M_1 - \sum H_1 y_a}{H_1}$$
 and $m_2 = \frac{\sum M_2 - \sum H_2 y_a}{H_2}$.

The computation of M_x in detail is given in Table E.

TABLE E.
LIVE LOADS, 1-8' INCLUSIVE.

Point.	A'B'. See Plate II.	y-y _a .	$\frac{M_x}{H_1} = (y - y_a) - A'B'.$	M_z .
0	-5.905	-5.315	.590	- 10387
I	-5.09	-4.550	.54	- 9506
2	-3.48	-3.132	.348	- 6127
3	-2.0I	-1.860	.150	- 2641
4	74	740	.000	- 0000
4 5 6	.40	. 226	174	+ 3066
	1.32	1.035	285	+ 5017
7 8	2.06	1.685	375	+ 6602
	2.60	2.174	426	+ 7509
9	2.88	2.500	380	+ 6690
10 10'	2.96	2.665	295	+ 5194
9'		2.665	135	+ 2377
8'	2.43 1.83	2.500	.070	- 1232 - 6056
7'	1.05	1.685	· 344 · 635	-11180
6'	.27	1.035	.765	-13468
5'	50	.226	.726	- 12781
4'	-1.28	740	.540	- 9506
3'	-2.05	-1.860	.190	- 3345
2'	-2.78	-3.132	352	+ 6198
I"	-3.52	-4.550	-1.030	+18134
0'	-3.834	-5.315	-1.481	+ 26075

The point of maximum moment is at 6', as stated above, and $M_x = -13468$. From Art. 59, by computation, $M_x = -12792$, showing a difference of 676 or an error of about 5%, corresponding to an ordinate of 0.033 feet. The scale employed was 3 feet to the inch, hence 0.033 feet corresponds to 0.011 of an inch on the drawing. This shows that the greatest care must be employed when graphical methods are applied and all possible checks applied.

63. Maximum Moment at Point 6 Produced by Loads 7'-1' Inclusive. Graphical Determinations.—Plate II shows the construction, and Table F the computation of M_x in detail. Here again there is a difference in the results obtained by

the two methods. From Art. 60, $M_x = +12230$, while by graphics $M_x = +11520$, a difference of 710, or about 6%.

	TA	BLE	F.
LIVE	LOADS,	7'-1'	INCLUSIVE.

Point.	A'B'. See Plate II.	y-y _a .	$\frac{M_x}{H_1} = (y - y_a) - A'B'.$	M z.
0	-2.761	-5.315	-2.554	+13105
1	-2.59	-4.550	-1.960	+ 10058
2	-2.16	-3.132	972	+ 4987
3	-1.71	-1.860	150	+ 770
4	-1.26	740	. 520	- 2668
5	80	.226	1.026	- 5262
6	33	1.035	1.365	- 7009
7 8	. 15	i.685	1.535	- 7882
8	.60	2.174	1.574	- 8077
9	1.10	2.500	1.400	- 7184
10	1.55	2.665	1.115	- 5722
10'	2.05	2.665	.615	- 3158.
9 ' 8'	2.53	2.500	030	+ 154
8′	3.00	2.174	826	+ 4238
7'	3.50	1.685	-1.815	+ 9318.
6'	3.28	1.035	-2.245	+11520
5′	2.30	.226	-2.074	+ 10643
4'	.65	740	-1.390	+ 7133
3',	-1.62	-1.860	240	+ 1231
2'	-4.45	-3.132	1.318	- 6763
I'	-7.90	-4.550	3.350	-17188
0'	-9.864	-5.135	4 · 549	-23341

64. Fiber Stresses Produced by Dead and Live Loads.— From Art. 31,

$$p = \frac{N_x}{F} \pm \frac{M_x z}{I}.$$

For this problem, $N_x = (V_1 - \tilde{\Sigma}P) \sin \phi + H_1 \cos \phi$.

$$F = 3 \text{ sq. ft.}, \quad z = 1.5 \text{ ft.}, \quad I = \frac{1}{12}bh^3 = \frac{3^3}{12} = \frac{9}{4}.$$

Then

$$\frac{z}{I} = \frac{1.5 \times 4}{9} = \frac{2}{3}$$

and

$$p = \frac{1}{3}N_x \pm \frac{2}{3}M_x$$
.

Point o.

Dead Load.

From Art. 52, $\frac{1}{2}$ the total load = V_1 = 28700, say 29000, and H_1 = 50000; then

 $N_x = 29000(0.498) + 50000(0.867) = 14442 + 43350 = 57792$. $\therefore p = \frac{1}{3}(57792) + \frac{2}{3}(0) = 19264$, say 19300 comp. for both the upper and lower extreme fibers.

Live Loads.

From Art. 55 . . . $M_x = M_1 = -23878$ for loads 1-8 incl. ... $M_x = M_1 = +26594$ for loads 9-1' "

 $N_x = 8299(0.498) + 7050(0.867) = 10245$ for loads 1-8

$$N_x = 3701(0.498) + 15687(0.867) = 15443$$
 for loads $9-1'$

Then

 $p = \frac{1}{3}(10245) - \frac{2}{3}(23878) = 3415 - 15919 = -12500$ tension in upper fiber and 3415 + 15919 = +19300 compression in the lower fiber for loads 1-8 inclusive.

For loads 9-1' inclusive

 $p = \frac{1}{3}(15443) + \frac{2}{3}(26594) = 5143 + 17729 = 22900$ compression in the *upper fiber* and

p = 5143 - 17729 = 12600 tension in the lower fiber.

Combined Stresses.

Combining the above results we have for the maximum fiber stresses produced by the dead and live loads the following:

Load.	Upper Fiber.	Lower Fiber.
Dead Load	19300 compression 12500 tension 22900 compression 42200	19300 compression 19300 12600 tension 38600

These intensities are pounds per square foot.

For pounds per square inch we have, 293 and 268 as the maximum compression in the upper and lower fibers respectively.

Considering that granite has an ultimate crushing strength of from 13000 to 17000 pounds per square inch, the above fiber stresses are of little consequence if the mortar joints have an equal strength, or even one fourth the strength of the granite. The fiber stresses at other points are obtained in the manner followed for point o. A tabulated statement for points o, 6', and the crown is given below:

FIBER STRESSES.

Load.	N_z .	M 2.	$\frac{1}{3}N_x$.	² / ₃ M ₂.	1	>.	Point.
					Upper.	Lower.	
Dead load		0	19300	0	+ 19300	+ 19300	0
L.L. 1-8		-23878				19300	0
L.L. 9-1'						- 12600 28600	0
Max. tension						0	0
Dead load	10264	- 7482		- 4988	- 1567	+ 16666 + 8409 - 1254	Crown
Max. compression					26200		6.6
Dead load	18170	-12792	6057	- 8528	- 2471	+ 16833 + 14585	·6′
L.L. 7'-o'					26700	- 6546 31400 0	6' 6' 6'

In this table all stresses are given in pounds per square foot.

From the above table we see that there is no tension at the three points considered, and that the maximum compression is well within the safe strength of the material assumed. Also, that the greatest fiber stress is at the supports.

65. Effect of Temperature Changes.—Our knowledge of the effect of changes of temperature upon stone arches is very meager. The coefficients of expansion for different stones are known, but how long it takes for a stone bridge to become of uniform temperature we do not know. Probably all portions of the arch ring are never of the same temperature. The range of the average temperature is probably small. (See Arts. 33 and 34.)

In this case we will assume that the temperature changes 40° above or below the temperature of the arch when built. This is without doubt an excessive range. The horizontal thrust is (Art. 27)

$$H_t = \frac{et^{\circ} lE}{\sum \Delta y (y - y_a)} = \frac{et^{\circ} lE}{1.4(113.168)},$$

where

$$\Delta = \delta s \div I = 3.14 \div 2.25 = 1.4.$$

For Quincy granite

$$e = 0.0000381,$$
 $E = 6776000.$

Then

$$H_t = \frac{(0.00000381)(40)(60)(6776000)(144)}{158.4} = 56100.$$

From Art. 27,

$$M_1 = H_t y_a = 56100(5.315) = 298200,$$

 $M_x = M_1 - H_t y = H_t (y_a - y).$

The above values of H_t and M_1 will have signs depending upon whether the change of temperature is an increase or a decrease.

For falling temperature the upper fibers at the support are in tension, and at the crown in compression.

The following table gives the fiber stresses at the support and the crown.

FIBER STRESSES DUE TO CHANGES OF TEMPERATURE.

Tempera-	N_x .	M_{x} .	$\frac{1}{2}N_{z}$.	$\frac{2}{3}M_x$.	p.		
044.00					Upper.	Lower.	
-40° +40°	-48638 +48638	298200 — 16213 198800 298200 + 16213 198800			-215000 +215000	+182000 -182000	
			CROWN.				
40° +40°	-56100 +56100	149600 149600	- 18700 + 18700	99700 99700	+ 81000 - 81000	-118400 +118400	

Combining the above values with those obtained for the dead load and live load we have

For point o:	Upper Fibers.	Lower Fibers.
Maximum compression	257200	220600
" tension	208200	175300
For the crown:		
Maximum compression	107200	143500
tension	65900	103000

The above values correspond to a maximum compression of 1786 pounds per square inch and a maximum tension of 1446 pounds per square inch. In compression the factor of safety is from 8 to 10, but in tension the ultimate strength of the joints is exceeded. As a large number of railway bridges have been built upon practically the dimensions we assumed and no indications of failure having been found, we must conclude that the range of temperature change assumed in this example is very much too great. Furthermore, it requires a drop in temperature of only four degrees to completely balance the compression produced by the dead load in the upper fibers at the support. Without question, then, our assumptions about the effect of temperature changes are not correct. Until we know more about the subject it is useless to make calculations according to the ordinary assumptions. (See Art. 33.)

66. Effect of the Axial or Direct Stress.—In all of the work above, the effect of the direct compression or tension has been neglected. If the rib is subjected to a uniform stress, it will be shortened or lengthened according to the character of the stress. All vertical loads produce direct stresses which in effect shorten the rib.

As explained in Art. 19, the horizontal thrust produced by this shortening, when found, will be treated the same as the thrust for a change of temperature.

From Art. 19,

$$H_a = H_1 \left(\mathbf{I} - \frac{\Sigma y(y - y_a)}{\Sigma y(y - y_a) + \Sigma \frac{\delta x \cos \phi}{FA}} \right),$$

in which all quantities are known from previous calculations, with the exception of the last term in the denominator. The computation of this term is given in detail below.

Point.	ðx.	cos φ.	$\partial x \cos \phi$.
I	2.77	0.880	2.44
2	2.83	.903	2.56
3	2.90	.925	2.68
4	2.96	.943	2.79
5	3.01	.959	2.89
	3.05	.973	2.97
7	3.08	.983	3.03
8	3.11	.992	3.09
9	3.13	.997	3.12
10	3.14	.999	3.14
			28.71

$$\Sigma \delta x \cos \phi = 2(28.71) = 57.42, \quad F = 3, \quad \Delta = 1.4, \quad F\Delta = 4.2,$$

$$\frac{\Sigma \delta x \cos \phi}{F\Delta} = \frac{57.42}{4.2} = 13.67, \quad \Sigma y (y - y_a) = 113.168.$$

Then

$$\frac{113.168}{126.84} = 0.892$$
. $\therefore H_a = 0.108H_1 = 11\% H_1$, say.

The value of H_1 for the dead load is 50000; then the corresponding axial stress produces a thrust, opposite in character, of 5500. The horizontal thrust produced by a drop of 40° in temperature is 56100; therefore the effect of the axial stress equals $\frac{5500}{56100} = .091$ of the stresses due to this drop of temperature. At joint zero the upper fiber stress due to -40° is 215000 tension. 215000(0.091) = 19600 tension.

FIBER STRESSES DUE TO THE AXIAL STRESS.

	H_1 .	На.	$\frac{H_a}{H_t}$.	Poi	nt o.	Сто	wn.
	271.	Па.	$\overline{H_t}$	Upper.	Lower.	Upper.	Lower.
L.L. r-8	50000 7050 15687 10263 12474 17606 5132 51600	5500 776 1726 1128 1372 1936 565 5676	0.091 0.014 0.031 0.020 0.024 0.034 0.001	- 3000 - 6700 - 4300 - 5200 - 7300 - 220	+ 16600 + 2500 + 5600 + 3600 + 4400 + 6200 + 182 - 20000	+ 1100 + 2500 + 1600 + 1900 + 2800 + 81	- 1700 - 3700 - 2400 - 2900 - 4000 - 118

Combining these stresses with the dead- and live-load stresses previously obtained, we have (see Art. 64):

FINAL STRESSES, INCLUDING EFFECT OF AXIAL STRESS.

	Loads.	Upper Fibers.	Maximums.
ó	Dead load	$ \begin{array}{r} +19300 - 19600 = -300 \\ -12500 - 3000 = -15500 \\ +22900 - 6700 = +15200 \end{array} $	Max. comp.= 12200 '' ten. = 18500
Point o.		Lower Fibers.	
	Dead load L.L. 1-8 ' 9-1'	+ 19300 + 16600 = + 35900 + 19300 + 2500 = + 21800 - 12600 + 5600 = - 7000	Max. comp. = 57700 ten. 0
		Upper Fibers.	
	Dead load	+16666+7400=+24100 -1567+1600=+33 +9570+1900=+11470	Max. comp.= 35600 ten. 0
Crown		Lower Fibers.	
D	Dead load	+ 16666 - 10800 = + 5900 + 8409 - 2400 = + 6000 - 1254 - 2900 = - 4200	Max. comp.=11900
	Temperature.		
	于 40° 于 40° 于 40° ± 40°	$\mp 215000 \pm 24000 = \mp 191000$ $\pm 182000 \mp 20000 = \pm 162000$ $\pm 81000 \mp 8900 = \pm 72100$ $\mp 118400 \pm 13000 = \mp 105400$	Upper fibers at o. Lower ' o. Upper ' crown Lower ' '

These stresses show that the effect of the axial stress is considerable, and also that the fiber stresses at the support are reversed in one case so that the upper fibers are in tension about 128 lbs. per square inch. As this tension is not large and exists for but a short distance, the ring may be considered safe. This assumes that no temperature effects are considered. The maximum compression is 400 lbs. per square inch in the lower fibers at the support.

The effect of the axial stress is to lower the equilibrium polygon at the support and raise it at the crown, or it increases the compression and decreases the tension in the lower fibers and decreases the compression and increases the tension in the upper fibers at the support. While at the crown the reverse is true.

If this arch ring had been assumed free, then the above tension could not have been allowed (see Arts. 31 and 33).

67. A Check upon the Effect of the Axial Stress for Dead Loads.—To show how nearly the results of the above method of considering the axial stress agrees with those obtained by direct calculation, we will briefly compute H_1 and M_1 for the dead load, and also the fiber stresses at the support (see upper table on page 85).

$$\begin{split} M_1 &= \Sigma H_1 y_a - \Sigma m_1 = 237049 - 266020 = -29000, \\ N_x &= 29000(0.498) + 44600(0.867) = 14442 + 38668 = 53100. \\ \therefore p &= \frac{1}{3}(53100) \pm \frac{2}{3}(29000) = 17700 \pm 19300 \end{split}$$

= 1600 tension in upper fibers

=37000 compression in lower fibers.

From Art. 66 the corresponding stresses are 300 tension and 35900 compression, the results in the table being about 1100 too large numerically. This equals a stress of less than 8 pounds per square inch and for the compression a relative error of 3% +.

COMPUTATION OF H_1 and M_1 WHEN AXIAL STRESS IS CONSIDERED.

Point.	Common H ₁ , Art. 52.	True H_1 .	True H_1y_a .	m ₁ for Load Unity, Table C.	Dead Load, Art. 52.	m ₁ for Dead Load.
1 2 3 4 5 6 7 8 9	0 362 939 1637 2316 3069 3621 4012 4465 4573 24994 2	Common H_1 (1-0.108), Art. 66	2,42.5 7,47.5,715, 1able B.	1.377 3.888 6.184 8.234 10.024 11.535 12.767 13.696 14.317 14.634 Symmetrical values combined	3350 3200 3050 2950 2800 2800 2600 2650 2600 28700 say 29000 ½ D.L. or	4613 12442 18861 23669 28067 32298 34471 35610 37940 38048 266020

Evidently the method employed in Art. 66 is quite accurate enough for practical purposes.

68. Effect of Making Spandrel Filling of Uniform Material Weighing 100 Pounds per Cubic Foot.

COMPUTATION OF H_1 .

Point.	Ring and Track.	Fill 100 Lbs. per Cu. Ft.	Total Dead Load.	Common H ₁ , Load Unity.	Common H ₁ .	H ₁ with Effect of Axial Stress.
1 2 3 4 5 6 7 8	1684 1663 1695 1679 1692 1689 1695 1679 1690	2850 2470 2170 1880 1630 1410 1240 1090 1000 950	4500 4100 3900 3600 3300 3100 2900 2800 2700 2600	0.0 0.1125 3975 5550 8265 1.0955 1.3410 1.5425 1.6850 1.7585	0 461 1199 1998 2727 3396 3889 4319 4550 4572	1-0.108)=48300
			33500	Table B	27111	54200(
			67000		54200	

Point.	m ₁ , Load Unity. Table C.	Dead Load.	m ₁ for Dead Load.
I	1.377	4500	6197
2	3.888	4100	15941
3	6.184	3900	24129
4	8.234	3600	29642
5	10.024	3300	33079
6	11.535	3100	35759
7	12.767	2900	37024
8	13.696	2800	38349
9	14.317	2700	38656
10	14.634	2600	38048

206824

Table C

COMPUTATION OF m_1 .

$$M_1 = \Sigma H_1 y_a - \Sigma m_1 = 48300(5.315) - 296824$$

$$= 256715 - 296824 = -40100,$$

$$y_1 = \frac{M_1}{H_1} = \frac{-40100}{48300} = -0.83 \text{ ft.,}$$

$$N_x = 33500(0.498) + 48300(0.867) = 16683 + 41876$$

$$= 58600.$$

$$\therefore p = \frac{1}{3}(58600) \pm \frac{2}{3}(40100) = 19500 \pm 26700$$

$$= 7200 \text{ tension in upper fibers}$$

$$= 46200 \text{ compression in bottom fibers.}$$

This shows that the fill over the haunches and near the supports is too heavy for the load upon the crown. The original loading could be made less to an advantage.

At the crown the moment is

$$M_x = M_1 + V_1 x - H_1 y - \sum_{x=0}^{x} P(x - a)$$
= $-40100 + 1005000 - 386400 - 566400 = +12100$,
 $N_x = H_1 \text{ sensibly} = 48300$.
 $\therefore p = \frac{1}{3}(48300) \pm \frac{2}{3}(12100) = 16100 \pm 8100$
= $24200 \text{ compression in upper fibers}$
= 8000 " lower fibers.

The equilibrium polygon is $M_x \div H_1 = 12100 \div 48300 = 0.25$ ft. above the neutral axis.

Combining these stresses with the live-load stresses of Art. 66, we have

If the above tension is considered more than allowable, then the spandrel filling should be made lighter. Since the maximum compression is very much less than the allowable stress for granite, the ring will unquestionably adjust itself by increasing this compression, and not resist much tension, if any (see Art. 31.)

69. The Radial Shear.—From Art. 29,

$$T_x = V_x \cos \phi - H_x \sin \phi$$
.

For point zero, or the support, this becomes

$$T_x = V_1(0.867) - H_1(0.498).$$

For dead load (see Art. 52)

$$T_x = 28700(0.867) - 50000(0.498) = 24880 - 24900 = 0.$$

For live load over all (see Table D)

$$T_x = 12000(0.867) - 22737(0.498) = 10400 - 11320 = -920.$$

At the crown ϕ is zero, hence

$$T_x = V_x = V_1 - \overset{x}{\Sigma}P.$$

For the dead load $T_x = 0$.

For a live load 10'-1' inclusive $T_x = V_1 = 2254$.

In like manner any other point may be considered. When equilibrium polygons are drawn a glance is sufficient to determine if there is danger of slipping at the joints. Usually the radial shear requires but little attention in stone arches.

70. Second Example. Data.—For this example we will take a reinforced-concrete rib of the Thacher type.* Clear span 50 ft. and rise 10 ft. The thickness at the crown is taken as 12 inches, and at the spring line 4 feet 6 inches. Plate IV gives all data concerning dimension and reinforcement. The dead weight of the entire structure is assumed at 140 pounds per cubic foot, and the live load 112 pounds per square foot. The first step in the solution of a problem of this type is to obtain all the data shown in Plate IV either by algebraic or graphical methods. In the present instance many of the data were obtained from a carefully constructed drawing as indicated in the figure. The modulus of elasticity of the concrete is assumed to be $\frac{1}{20}$ that of steel, and hence the area of the steel is equivalent to twenty times that area in concrete.

71. Subdivision of the Arch Axis.—Contrary to the usual custom we will not attempt to so divide the arch ring that $\partial s \div I$ will be constant, but simply divide the span into twenty equal parts and determine all quantities necessary for points at the centers of these divisions. This is clearly shown in Plate IV.

The moment of inertia at each point is found as shown

^{*} Essentially the arch taken by Professor Cain in "Theory of Concrete Arches and of Vaulted Structures."

in Table I, page 90. Prof. Cain in his book referred to above gives a very complete exposition of the method for dividing the axis so that $\partial s \div I$ shall be constant.

72. Computation of H_1 for Unit Loads.—The process is precisely that followed in the first example, only we use the general formula (Art. 13)

$$2H_1 = \frac{\sum m_x J \left(y - \frac{\sum y J}{\sum J} \right)}{\sum y J \left(y - \frac{\sum y J}{\sum J} \right)} = \frac{\sum m_x B}{C}.$$

Tables I and II give the work in detail (see pp. 90, 91). 73. Computation of M_1 .—The general formula in this case is (Art. 13)

$$\boldsymbol{M}_{1} = \boldsymbol{H}_{1} \frac{\boldsymbol{\Sigma} \boldsymbol{y} \boldsymbol{\Delta}}{\boldsymbol{\Sigma} \boldsymbol{\Delta}} - \frac{\boldsymbol{\Sigma} \boldsymbol{m}_{x} \boldsymbol{\Delta} \left(\boldsymbol{x} - \frac{\boldsymbol{\Sigma} \boldsymbol{x}^{2} \boldsymbol{\Delta}}{\boldsymbol{\Sigma} \boldsymbol{x} \boldsymbol{\Delta}}\right)}{\boldsymbol{\Sigma} \boldsymbol{\Delta} \left(\frac{\mathbf{I}}{2} \boldsymbol{l} - \frac{\boldsymbol{\Sigma} \boldsymbol{x}^{2} \boldsymbol{\Delta}}{\boldsymbol{\Sigma} \boldsymbol{x} \boldsymbol{\Delta}}\right)}.$$

 H_1 and $\frac{\Sigma yJ}{\Sigma A}$ have been found in Tables I and II, so there remains simply the multiplication of the two factors. The determination of the second term we will take up in detail, as it is well to know a few checks and short methods.

Designating this term by m_1 ,

$$m_1 = \frac{\sum m_x \varDelta \left(x - \frac{\sum x^2 \varDelta}{\sum x \varDelta} \right)}{\sum \varDelta \left(\frac{1}{2} l - \frac{\sum x^2 \varDelta}{\sum x \varDelta} \right)} = \frac{\sum m_x \varDelta \left(x - \frac{\sum x^2 \varDelta}{\frac{1}{2} l \sum \varDelta} \right)}{\sum x \varDelta \left(x - \frac{1}{2} l \right) \frac{2}{l}}.$$

To find $\Sigma x^2 A$, let $x = \frac{\delta x}{2}z$; then $x^2 = \left(\frac{\delta x}{2}\right)^2 z^2$, where

TABLE I.—COMPUTATION OF 4.

	1	2	3	4	5	6	7	8	9	10	11	12
06 84 95 F E Boint No.		3.65 2.63 2.20 1.69 1.33 1.09	0.30 0.22 0.18	1.90 1.40 1.04 0.65 0.55 0.55 0.51	1.23 0.87 0.60 0.52 0.48	2.99 1.51 0.77 0.36 0.23 0.18 0.14 0.12	0.054	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.08 2.92 2.81 2.75 2.74 2.70 2.68	7.89 10.41 11.96	3.05 4.66 5.95 6.98 7.77 8.30 8.71 8.98	4.606 15.937 96.946 72.662 92.929 126.326 167.929 218.753
				121.51 2 243.02 \$\(\mathcal{L}\)243.02		1982.46 EyJ						

TABLE II.—COMPUTATION OF H_1 .

	1	2	3	4	5	6	7	8	9
io.		or 576.	8.1576) B.	-8.1576) C.	$P_1 =$	$r = P_1'$.	P_2	$= r = P_2'$.	
Point No.	4.	2-2yd y-54	4(2-8	y4(y-	m_x .	m₂B.	m_x .	m₂B.	x.
1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10	1.51 3.42 7.89 10.41 11.96 15.22 19.28 24.36	+0.8224	$\begin{array}{c} -4.658 \\ -7.712 \\ -11.962 \\ -17.418 \\ -12.259 \\ -4.636 \\ +2.167 \\ +10.650 \\ +20.034 \\ +25.792 \\ -58.645 \\ +58.643 \end{array}$	- 5.1238 - 23.5256 - 55.7412 - 103.6379 - 85.5667 - 36.0192 + 17.9888 + 92.7639 + 179.9024 + 235.2259 - 309.6144 + 525.8810	I.34 I.34 I.34	ot necessary to coute, as sum=ze	4.02	- 31.002 - 48.087 - 70.020 - 49.281	4.02 6.70 9.38 12.06 14.74 17.42 20.10 22.78 25.46
;			.002 ΣΒ	+216.2666 ΣC		$\sum_{i=0}^{\infty} \frac{\sum_{x} B}{i}$	($+ 12.476 \Sigma m_x B$	

TABLE II.—COMPUTATION OF H_1 —Concluded.

	10	11	12	13	14		15	16	1	7	
Point No.	$P_3 = 1 = P_3'.$		$P_4 = 1 = P_4'$		$P_5 = \mathbf{I} = P_5',$		$P_6 = 1 = P_6$		' .	x.	
Poin	m_z . m_zB .		m_x . m_xB .		m_z . m_z		$_{x}B$. m_{x} .		m _z B.		
3 4 5 6 7 8 9	6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.02 6.70 0.38 12.06 12.06 12.06	$\begin{array}{c} 4 - 6.242 \\ - 31.002 \\ - 80.145 \\ 8 - 163.381 \\ \hline - 147.844 \\ - 55.910 \\ 6 + 26.134 \\ 5 + 128.439 \\ \hline 6 + 241.610 \\ 5 + 311.052 \\ \hline + 707.235 \\ - 484.524 \\ \hline + 222.711 \\ \Sigma m_x B \end{array}$		9 · 3 3 12 · 00 14 · 7 4 14 · 7 4 14 · 7 4	2 - 31 - 80 8 - 163 6 - 147 4 - 68 4 + 31 4 + 156 4 + 295 4 + 380 - 496 - 496 + 367	- 31.002 - 80.145 - 163.381		
	2H ₁ =0.2109		0.5123		1.0298		1.6990				
	18	19	20	21		22	2	3	24	,	25
Point No.	$P_7 = r = P_7'.$		P	$P_8 = I = P_8'.$		$P_9 = \mathbf{I} = P$		9'. P ₁₀ =		$= \mathbf{r} = P_{10}'.$	
Poir	m _z .	mzB.	mz.	m _z B	_	m z.	m _z B.		m x.	m_xB .	
1 2 3 4 5 6	- 496.049			-496.949		- 496.949		747.074		-496.949	
7 8 9	17.42 17.42 17.42 17.42	+ 185.52 + 348.99	23 20.1		. 065 2 683 2	7.42	÷ 2 I	7 · 749 4 · 065 6 · 374 7 · 542	20.10 22.78 25.46	+ 2	37 · 749 14 · 065 56 · 374 56 · 664
- [+ 1021.56 - 496.94 + 524.61	19	+1172 - 496 + 675	949		+ 129 - 49 + 79	6.949		- 49	54.852
	$\frac{+ 524.012}{\Sigma m_x B}$ $2H_1 = 2.4257$			$\frac{\Sigma m_x B}{3.1256}$		$\begin{array}{c c} & \Sigma m_x B \\ \hline & 3.6935 \end{array}$			Σm _x R 4.0131		

 $\frac{\partial x}{2}$ = 1.34, or one half of one of the twenty divisions into which we divided the span of the axis. The first five columns of Table III give the complete determination of $\frac{\Sigma x^2 \Delta}{\Sigma x \Delta}$ = 30.373.

$$\Sigma \Delta \left(\frac{1}{2}l - \frac{\Sigma x^2 \Delta}{\Sigma x \Delta}\right) = 243.02(26.8 - 30.373) = -868.304.$$

We now have

$$m_1 = \frac{\sum m_x \Delta(x - 30.373)}{-868.304}.$$

Cols. 6, 7, 8, and 9 give the deduction of $\Delta(x-30.373)$, and in col. 9 the algebraic sum is found to be -868.308, which should equal the denominator when all work is correct. In this case the difference is 4 in the third decimal place (see cols. 10, 11, and 12).

The next step is the computation of

$$\frac{\sum m_x \Delta(x - 30.373)}{-868.304} = \frac{\sum \frac{m_x}{1.34} \Delta(x - 30.373)}{-648}.$$

This may be written

$$-m_1 = R_1 \sum_{x=0}^{x=a} \frac{\Delta(x-30.373)}{648 \times 1.34} x + R_2 \sum_{x=0}^{x'$$

since

$$m_x = R_1 x$$
 for $x = 0$ to $x = a$

and

$$m_x = R_2 x'$$
 for $x = a$ to $x = l$, $x' = l - x$.

TABLE III.—COMPUTATION OF M1.

6	$\frac{A\left(x - \frac{\Sigma x^2 A}{\Sigma x A}\right) \text{ or }}{A(x - 30.373)}.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
œ	А.	0. 66 1.51 1.51 1.74 1.51 1.92 1.92 2.680 2.680 2.680 2.680 2.680 2.680 2.680 2.680 2.680 2.789 1.960 1.97 1.960 1.97 1.960 1.97 1.960 1.97 1.960 1.97 1.960 1.97 1.960 1.97
jo.	$\frac{x - \frac{\sum x^2 d}{\sum x d} \text{ or } x - \frac{x}{30.373}.$	- 29 033 - 29 033 - 23 673 - 23 673 - 23 673 - 25 673 - 2
9	¥	1 4 4 0 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	. 224.	1004.52 2080.78 2080.78 8978.82 10847.22 11505.75 115057.50 10388.00 103888.00 10388.00 10388.00 10388.00 10388.00 10388.00 10388.00 103888.00 10388.00 10388.00 10388.00 10388.00 10388.00 10388.00 103888.00 103888.00 10388.00 10388.00 10388.00 10388.00 10388.00 10388.00 10388.00 10
4	64°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8	Α.	0.66 1.51 3.42 7.89 10.41 11.96 15.22 19.28 24.36 26.80 24.36 26.80 24.36 25.80 24.30 27.24 27.24 27.24 27.24 27.24
8	x2 (1.34)2 22.	25 449 449 449 1069 1069 225 289 289 361 441 441 441 1089 11289 11369 11369
1	x 1.34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Point.	н ч ш 4 го с с о о о о о о о о о о о о о о о о

TABLE III,—COMPUTATION OF M1—(Continued).

19	$\frac{J(x-30.373)x'}{648 \times 1.34}.$	1.1544 2.2718 4.375 8.228 6.555 6.555 6.555 7.650 7.
18	$\frac{J(x-30.373)}{648 \times 1.34}x.$	1
17	R ₂ .	0 0 H H 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
16	R_1 ,	00000 C C 00 0 0 4 4 C 0 0 0 1 + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15	(l-x) + 1.34.	9728833333333333333333333333333333333333
14	x ÷ 1.34.	3333335731107331 3333310731107331
13	$ \frac{\left(x - \frac{\sum x^2 d}{\sum x d}\right) d}{868.304 \div 1.34} $ $ \frac{Or}{A(x - 30.373)} $ $ 648 $	-0.0296 -0.01447 -1.256 -1.256 -1.289 -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 -1.203
123	xd(x-tl) or xd(x-26.8).	$\sum_{i=1}^{2} \frac{x^{2}}{12} = 868.304$ $\sum_{i=1}^{2} \frac{x^{2}}{12} = $
11	ж4.	0.88 22.91 72.91 176.554 176.554 176.576 176.754 1
10	$x - \frac{x}{2} $ or $x - 26.8.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Point.	н и м 4 м 0 г 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE III.—COMPUTATION OF M,—(Concluded).

227	M _I For Symmertical Loading.	- 1.339 - 3.536 - 4.918 - 5.016 - 5.016 - 5.016 + 4.171 + 11.833 + 11.833 + 13.849
98	M_1 Unit Loading.	1.339 - 5.600 - 6.619 - 6.619 - 7.777 - 7.263 + 6.623 + 7.737 + 7.737 + 7.737 + 7.737 + 7.737 + 7.737 + 7.737 + 7.737 + 7.745 + 7.7
255	$H_1 \frac{\Sigma y A}{\Sigma A}$ or $8.1576 H_1$.	0 0 2 3 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 24	M1.	1.339 1.339 1.3.902 1.0.445 1.1.153 1.1.153 1.1.132 1.1.32 1.1
23	R2 "B".	1 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
88	R ₁ "A".	0.0289 0.0289 0.0198 0.0198
21	$\frac{x < (1-a)}{x' = 0.648 \times 1.34} x'.$ See Col. 10.	- 52 4534 - 50 1816 - 45,3866 - 28,73866 - 10,98646 - 11,6556 - 11
30	$\sum_{0}^{a} \frac{A(x-30.373)^{\gamma}}{648 \times 1.34}$ See Col. 18.	- 0.0296 - 0.5388 - 0.5388 - 0.8388 - 1.24078 - 11.4078 - 11.4078 - 21.69078 - 21.69078 - 21.6402 - 21.538 - 21.5402 - 21.6402 - 21.6402 - 21.6402 - 21.6402 - 21.6402 - 21.6402 - 21.6403 - 2
	Point.	н ч ш 4 гл т т т т т т т т т т т т т т т т т т

Dividing both numerator and denominator by 1.34, x becomes z and the denominator 648. Cols. 14 to 26 inclusive show the solution of the above equation in detail. As checks col. 18 should sum zero and col. 19 have an algebraic sum equal to the span, in this case 53.6. The error in each case is 0.0078.

Cols. 26 and 27 give the values of M_1 for unit loads.

74. Values of V_1 , y_1 , y_2 , y_0 , etc., for Unit Loads.—These quantities are quickly determined as shown in Table IV, which also contains for convenience in future calculations the values of \sum_{0}^{x} of H_1 , V_1 , V_2 , M_1 , and M_2 .

75. Values of H_1 and M_1 for the Dead Load.—Since the span is divided into equal parts, the dead load at each point equals $140 \times 2.68 \times$ the ordinate from the intrados to the roadway, nearly; so it is unnecessary to carry the common factor 375.2 through the work. Column 2 of Table V, page 98, contains the ordinates which must be multiplied by 375.2 in order to obtain the dead load assumed at each point.

Tables V and VI give the values of H_1 and M_1 as found by considering each load separately, and also by considering the loading as a whole. For M_1 we have -40.289 and -40.301. For H_1 we have 46.504 and 46.502, in both cases close agreement.

76. Location of the Equilibrium Polygon for the Dead Load. —Knowing H_1 , V_1 , and M_1 we can graphically locate the polygon. The algebraic determination of $M_x \div H_1$, however, is more accurate and requires hardly any more time. From Arts. 16 and 17,

$$\frac{M_x}{H_x} = \left(y - \frac{\Sigma y \Delta}{\Sigma \Delta}\right) - \left(m_x - \frac{\Sigma m_x \Delta}{\Sigma \Delta}\right) \frac{\mathbf{I}}{H_1}.$$

TABLE IV.—VALUES OF V, y, y, ETC.

00	$\sum_{0}^{\pi} M_{2}$.	0	161.0 +	+ 0.0/3	7 2.4/0	45.54	10.330	10.770	1 20 707	1 52 . /2/	+ 40.404	740.570	150.103	+50.700	740.519	+43.050	+37.011	+30.005	+25.392	+21.005	+20.320	
20	$\sum_{0}^{r} M_{1}.$	- I.339	2.066	10.000	-17.285	-23.530	- 28.193	- 30.402	-29.839	-20.250	-20.138	- 12.401	4.157	+ 3.548	+ 9.998	+14.782	+17.850	+19.453	+20.135	+20.326	+20.320	
9	$\sum_{0}^{z} H_{1}$.	0	.0288	. 1342	.3903	.9052	I . 7547	2.9675	4.5303	0.3770	8.3835	10.3900	12.2307	13.7995	15.0123	15.8618	16.3767	l 16.6328	16.7382	16.7670	16.767o	
NO.	. 17 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0	.002	010.	.032	.084	. 183	.346	.589	.927	1.372	1.927	2.589	3.346	4.183	5.084	6.032	7.010	8.002	000.0	IO.000	
4	**************************************	I.000	1.998	2.990	3.968	4.916	5.817	6.654	7.411	8.073	8.628	9.073	9.411	9.654	6:817	9.016	0.068	0.000	0.008	IO.000	10,000	
	$V_0 = V_1 + \frac{V_1 a}{H_1}$		98.6	9.93	10.02	10.07	10.15	10.15	10.13	10.11	10.08											
62	U. M. M. + R.	000 1	800.	.992	.978	.948	100.	.837	757	. 662	10.00	.445	330	. 243	.163	000.	.052	022	800	.002	0	
+	M_1 M_1 M_1	8	129.41	53.13	- 25.84	HZ.	v		0	Ι		~	4	- 4	·	, Lr	່ານ	200	4 6 47	i		
	Point No.	1	1 0	77	4	1/7	9	7	-00	0	IO	IO,	0,0	ò	70	, 0	ù	7	, t	0,0	H	

TABLE V.—H, AND M, FOR DEAD LOAD.

		M tol enoits	Среск свісир)
œ		45.57 266.20 882.19 2525.19 3820.99	4811.15 6513.70 8595.40 11134.96 12396.07	50991.42
2	Table I,	0.66 1.51 3.42 7.89 10.41	11.96 15.22 19.28 24.36 26.80	243.02
9	Table VI,	69.04 176.29 257.95 320.05 367.05	427.97 445.82 457.10 462.54	
ž0	Dead Load. $(2)\times(4)$.	- 15.399 - 33.769 - 35.901 - 28.240 - 13.979	+ 0.465 + 12.221 + 20.404 + 25.796 + 28.113	-127.288 + 86.999 - 40.289
#	$\begin{array}{c} M_1 \\ P - P' = 1 \\ \text{Table III.} \end{array}$	1.339 - 3.536 - 4.918 - 5.016	+ 0.131 + 4.171 + 8.338 + 11.833 + 13.849	-30.462 +50.788 +20.326
က	Dead Load. (1) \times (2).		0.0315 7.1073 7.6577 8.0518 8.1466	46.5019
હ	P. Dead Load.	11.50 9.55 7.30 4.40 4.40	8 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	51.52
-	P = P' = I. Table II.	0.0576 0.2109 0.5123 1.0298	2.4257 3.1256 3.6935 4.0131	16.7675
	Point No.	+ + + + + + + + + + + + + + + + + + +	0+7, 8+8, 9+9, 10+10,	

For symmetrical loading $M_1 = H_1 \frac{\Sigma yJ}{2J} - \frac{\Sigma m_xJ}{\Sigma J} = 379.345 - 419.646 = -40.301$ for dead load,

TABLE VI.—CHECK CALCULATIONS—H, FOR DEAD LOAD.

TABLE VII, -LOCATION OF EQUILIBRIUM POLYGON FOR DEAD LOAD.

æ	Remarks,	The moment M_x at any point equals the ordinate in Col. 6 multiplied by \overline{H}_1 .	
Z**	Above or below Axis of Arch.	below ic above ic ic ic ic ic ic ic ic ic ic	1 46.5
9	$\frac{M_x}{H_1}$	0.844 0.482 0.126 0.021 0.047 0.017 0.017	$\frac{\sum m_x J}{\sum J} \frac{1}{H_1} = (y - 8.158) - (m_x - 419.65) \frac{1}{46.5}.$
10	$y - \frac{\Sigma yd}{\Sigma d}.$ Table II, Col. 2.	1	= (y-8.158)-
4	$m_x - \frac{\sum m_x d}{\sum d}$		$1x - \frac{\sum mxA}{\sum A} \frac{1}{H}$
က	$m_x = \frac{\sum m_x d}{\sum d}$	-419 65 -350.61 -243.36 -161.70 -99.60 -52.60 -17.38 +26.17 +37.45 +42.89	$y - \frac{\Sigma yA}{\Sigma A} - (n)$
62	$\sum m_x d$	419.65 419.65 419.65 419.65 419.65 419.65 419.65 419.65 419.65 419.65 419.65	$\frac{M_x}{H} = \left(\frac{1}{H}\right)^{-1}$
1	mz. Table VI.	69.04 176.29 257.95 320.05 367.05 402.27 427.97 445.82 457.10	
	Point No.	0 + 4 4 4 4 6 6 6 6 6	

Table VII gives the values of $\frac{M_x}{H_1}$ in col. 6, showing that the polygon nearly coincides with the arch axis.

77. Maximum Fiber Stresses Produced by the Dead Load at Point 1.

Moment of inertia = 5.17 = I.

Area of section in equivalent concrete = 3.80 + 0.20= 4.00 sq. ft. = F.

Dist. outermost fiber of concrete from neut. axis = 1.90 = z. "c.g. of steel above or below neutral axis = 1.73 = z'.

$$x = 1.34$$
, $y = 1.10$. $\sin \phi = 0.618$, $\cos \phi = 0.786$.
 $M_x = M_1 + V_1 x - H_1 y$,
 $N_x = V_1 \sin \phi + H_1 \cos \phi$,
 $T_x = V_1 \cos \phi - H_1 \sin \phi$,
 $M_1 = -40.289(375.2) = -15116$,
 $H_1 = +46.502(375.2) = 17448$,
 $V_1 = 51.520(375.2) = 19330$,
 $H_1 y = 17448(1.10) = 19193$,
 $V_1 x = 19330(1.34) = 25902$.

Then

$$M_x = -15116 + 25902 - 19193 = -8400.$$

From Table VII we have

$$M_x = 17448(-0.482) = -8200,$$

a difference of 200 pounds per square foot.

$$N_x = 19330(0.618) + 17448(0.786) = 25660,$$

$$p = \frac{N_x}{4} \pm 0.367(M_x) = \frac{25660}{4} \pm 0.367(-8400).$$

... p = 9500 comp. in the lower fibers of concrete and 3300 comp. in the upper fibers of concrete The unit stresses in the steel are as follows:

$$p' = \left\{ \frac{N_x}{4} \pm 0.334 M_x \right\} 20 = (6415 \pm 2800) 20.$$

... p' = 184300 comp. in lower steel 72300 comp. in upper steel.

and

The above unit stresses are pounds per square foot. Reducing them to pounds per square inch,

the maximum compression in the concrete is 66 lbs. and """ steel is 1280 lbs.

These values are quite insignificant when compared with the ultimate strengths of the materials.

78. Maximum Fiber Stresses Produced by the Live Load at Point 1.—From Plate III we see that loads 1-7 inclusive produce one kind of stress and loads 8-1' inclusive the opposite kind.

A live load of 112 pounds per square foot of roadway is equivalent to about 300 pounds for each division of the span. For loads 1-7 inclusive the fiber stresses are obtained as follows (see Table IV):

$$M_{1} = -30.462(300) = -9139$$

$$H_{1} = 2.9675(300) = 890$$

$$V_{1} = 6.654(300) = 1996$$

$$M_{x} = -9139 + 2680 - 979 = -7438$$

$$V_{1} \sin \phi = 2000(0.618) = 1236$$

$$H_{1} \cos \phi = 890(0.786) = 700$$

$$\therefore N_{x} = 1036$$

$$p = \frac{1926}{4} \pm 7438(0.367)$$

= 3214 compression in lower fibers of concrete and 2246 tension in upper fibers of concrete.

For the steel we obtain

 $p' = \left\{ \frac{1936}{4} \pm 7438(0.334) \right\} \text{ 20} = 59400 \text{ comp. in lower steel}$ and 40000 tension in upper steel.

For loads 8-1' inclusive we have (see Table IV)

$$M_1 = 50.788(300)$$
 = +15236
 $H_1 = 13.7995(300)$ = 4140
 $V_1 = 3.346(300)$ = 1000
 $M_x = +15236 + 1340 - 4550 = +13330$
 $V_1 \sin \phi = 1000(0.618) = 620$
 $H_1 \cos \phi = 4140(0.786) = 3250$
 $\therefore N_x = 3870$

$$p = \frac{3870}{4} \pm 13330(0.367)$$

= 5860 compression in upper fibers of concrete
3920 tension in lower fibers of concrete.

For the steel,

and

 $p' = [970 \pm 13330(0.334)]$ 20 = 108400 comp. in the upper steel and 69600 tens. in the lower steel.

79. Maximum Fiber Stresses Produced by the Dead Load at Point 7.

Moment or inertia = 0.18 (see Table I).

Area of section in equiv. conc. = 1.19 + 020 = 1.39 sq. ft.

$$z = 0.60,$$
 $z' = 0.43,$ $x = 17.42,$ $y = 8.3.$
 $\sin \phi = 0.208,$ $\cos \phi = 0.978.$ $M_1 = -15116$
 $M_x = M_1 + V_1 x - H_1 y - \sum_{z}^{x} P(x - a),$ $H_1 = 17448$
 $N_x = (V_1 - \sum_{z}^{x} P) \sin \phi + H_1 \cos \phi,$ $V_1 = 19330,$
 $T_x = (V_1 - \sum_{z}^{x} P) \cos \phi - H_1 \sin \phi,$ $\sum_{z}^{x} P = 15732,$
 $V_1 x = 336728,$ $H_1 y = 144818.$ $\sum_{z}^{x} P(x - a) = 176241,$
 $\therefore M_x = +553.$

From Table VII,

$$M_x = 17448(+0.037) = +646.$$

This indicates a large percentage of error. The error is of no consequence as it amounts to less than 3 pounds per square inch fiber stress. In order that col. 6 of Table VII should be correct much greater accuracy would be required in the previous work. For practical purposes, however, col. 6 is quite accurate enough.

$$(V_1 - \stackrel{x}{\Sigma}P) \sin \phi = 749,$$
 $H_1 \cos \phi = 17064.$
 $\therefore N_x = 17813.$
 $p = \frac{N_x}{1.39} \pm M_x(3\frac{1}{3}) = 12820 \pm 1843,$

p = 14663 compression in upper fibers of concrete and p = 10977 compression in lower fibers of concrete.

For the steel,

$$p' = \left\{ \frac{N_x}{1.39} \pm M_x(2.4) \right\} 20 = \{12820 \pm 1327\} 20$$

or p' = 282940 compression in upper steel p' = 229860 compression in lower steel.

80. Maximum Fiber Stresses Produced by the Live Loads at Point 7.—From Plate III we find that loads 1-8 inclusive produce positive moments at this point and loads 9-1' negative moments.

Considering first, loads 1-8 inclusive: from Table IV,

$$M_1 = -29.839(300) = -8952$$
, $(V_1 - \stackrel{\pi}{\Sigma}P)\sin\phi = 88$,
 $H_1 = 4.53 (300) = 1359$, $H_1\cos\phi = 1329$.
 $V_1 = 7.411(300) = 2223$, $\therefore N_x = 1417$.
 $V_1 x = 2223(17.42) = 38725$,
 $H_1 y = 1359(8.3) = 11280$,
 $\stackrel{\pi}{\Sigma}P(x-a) = 16884$. $\therefore M_x = +1609$.
 $p = \frac{1417}{1.39} \pm 1610(3\frac{1}{3}) = 1020 \pm 5367$.

Then

p = 4347 tension in the lower fibers of concrete

and p = 6387 compression in the upper fibers of concrete.

For the steel we have

$$p' = \{1020 \pm 1610(2.4)\}\ 20 = \{1020 \pm 3864\}\ 20,$$

or p' = 56880 tension in the lower steel

and p' = 97680 compression in the upper steel.

Proceeding in a manner similar to that employed above for loads 8-1' we obtain

p = 8040 compression in lower fibers of concrete

and p = 2640 tension in upper fibers of concrete,

p' = 145280 compression in lower steel

and p' = 37280 tension in upper steel.

81. Maximum Fiber Stresses Produced at Points 1 and 7 by the Dead and Live Loads.—Tabulating the above results and combining those producing maximums we have the results given in the table at top of page 107.

The maximum stress in the concrete is 146 pounds compression per square inch and in the steel 2650 pounds compression per square inch, values considerably below the allowable. There is no tension at these points.

82. Temperature Stresses.—For a change of temperature of $\pm 40^{\circ}$ F, the horizontal thrust is 6500 when E = 1500000 and e = 0.000006.

MAXIMUM FIBER STRESSES.

(POUNDS PER SQUARE FOOT.)

Loads, etc.	Conc	erete.	Ste	eel.	Point
	Upper.	Lower.	Upper.	Lower.	2 Ollie
Dead load	+ 3300 - 2240 + 5860	+ 9500 + 3214 - 3920	+ 72300 - 40000 + 108400	+ 184300 + 59400 - 69600	ı
Maximum compression tension	9160	12714	180700	243700	·I
Dead load	+ 14663 + 6384 - 2640	+10977 - 4347 + 8040	+282940 + 97680 - 37280	+229860 - 56880 +145280	7 7 7
Maximum compression tension	21047	19017	380620 0	375140	7 7

$$M_x = 6500 \left(y - \frac{\Sigma yA}{\Sigma A} \right) = 6500 (y - 8.1576),$$

$$N_x = H \cos \phi = 6500 \cos \phi$$
.

For point 1,

$$M_x = 6500(7.06) = 45900,$$

$$N_x = 6500(0.786) = 5100.$$

For a drop of 40° F.,

$$p = -\frac{5100}{4} \mp 45900(0.367) = -1275 \mp 16850,$$

or p = 18125 tension in upper fibers of concrete and p = 15575 compression in lower fibers of concrete.

For the steel,

p' = 332100 tension in upper steel

and p' = 281100 compression in lower steel.

For point 7,

$$M_x = 6500(0.142) = 923,$$

$$N_x = 6500(0.978) = 6400.$$

For a drop of 40° F.,

$$p = \frac{-923}{1.39} \mp 6400(3\frac{1}{3}) = -664 \mp 21333,$$

or p = 22000 tension in upper fibers of concrete

and p = 20700 compression in lower fibers of concrete.

For the steel,

$$p' = [-623 \mp 6400(2.4)]20 = -12460 \mp 307200$$

or p' = 319700 tension in upper steel

and p' = 294700 compression in lower steel.

A rise of 40° F. will reverse the above stresses.

83. Maximum Stresses Produced by Dead Load, Live Load, and Changes of Temperature.—Combining the stresses of Art. 81 and 82 we have:

Point 1:

$$p = 27285$$
 compression
 17065 tension upper fibers of concrete;
 $p = 28289$ compression lower fibers of concrete;

The allowable compression in the concrete, whenever temperature is considered, may be assumed at $800 \times 144 = 115200$ pounds per square foot, and the tension at 11500 pounds per square foot.

In compression the maximum stresses are considerably less than the allowable, while in tension they are much larger. Yet if the tensile strength of concrete is taken as one tenth the compressive strength, the above stresses are less than the ultimate strength of the material. If it should happen that a maximum change of temperature and a maximum live load should occur at the same time, the concrete would probably crack, but the steel and the compression concrete have ample margin to cover this contingency. It is quite improbable that a range of ±40° F. ever occurs, so the two sections may

be considered safe. The crown should be examined in an actual case. Although the live-load moment will be small, the temperature moment will be considerably larger than at point 7.

84. The Axial Stress.—Thus far the effect of the axial stress has been neglected. Proceeding in the manner followed in example 1, the value of H_a is found to be about 6.7% of H_1 . The effect is seen to be somewhat less than in the previous example. As the rise of the span increases the effect grows less.

85. Assumption that Steel Resists Entire Bending Moment Due to Changes of Temperature at Point 1.

Max. comp. in upper steel due to D.L. +L.L. = 1255 lbs. per sq. in.

Max. comp. in lower steel due to D.L. +L.L. = 1700 lbs. per sq. in.

Moment due to $\pm 40^{\circ} = \pm 45900$ ft.-lbs.

Area of steel = $\frac{1}{2} \left[\frac{3}{4} \left(2 \frac{5}{8} - \frac{3}{4} \right) \right] = 0.70 \text{ sq. in.}$

Dist. c. c. steel = 3.80 - 0.34 = 3.46 ft.

Total stress in steel = $\frac{45900}{3.46}$ = 13300 lbs.

Stress per sq. in, $=\frac{13300}{0.70} = 19000$ lbs.

Max. comp. = 19000 + 180 + 1700 = 20880 lbs. per sq. in.

Max. tension = -19000 - 180 + 1225 = 17960 lbs. per sq. in. All well within the elastic limit of the steel.

This shows that even if the ring should crack entirely through at point 1, the steel would safely carry the maximum temperature moment even when combined with the dead- and live-load stresses.

A brief calculation for point 7 and the crown shows that the steel is here stressed well within the elastic limit.

86. Third Example.— In this example we will take the data used in the second example and show how the computations of H_1 and M_1 can be quite rapidly made.

87. The Computation of H_1 .—The equation used in the former calculations was

$$H_{1} \!=\! \frac{\varSigma m_{x} \! \varDelta \! \left(y - \! \frac{\varSigma y \varDelta}{\varSigma \varDelta} \right)}{{}_{2} \varSigma y \varDelta \! \left(y - \! \frac{\varSigma y \varDelta}{\varSigma \varDelta} \right)},$$

where m_x =the common moment for equal and symmetrically placed loads. Assuming unit loads, the following values of m_x may be written:

Between the load and the left support

$$m_x = R_1 x = x = \frac{\delta x}{2} z,$$

where δx is the length of the division into which the span is divided, or $l = n\delta x$.

Between the first load and the center of the span

$$m_x = R_1 x - (x - a) = a = k \frac{\delta x}{2}.$$

Then

$$\frac{1}{2} \sum m_x d \left(y - \frac{\sum y d}{\sum d} \right) = \begin{pmatrix} x = a \\ \sum z \\ x = 0 \end{pmatrix} \left(y - \frac{\sum y d}{\sum d} \right) d + k \sum_{x = a}^{x = \frac{1}{2}} \left(y - \frac{\sum y d}{\sum d} \right) d \frac{\partial x}{2} = D \frac{\partial x}{2},$$

an expression which is very quickly handled numerically.

Although the general data, such as the values of x, y, I, δs , etc., are given in the second example, we will repeat some of it for convenience.

GENERAL DATA.

	x.	3/-	I.	ðs.	4.	ys.	$y - \frac{\Sigma y A}{\Sigma A}$.	$4\left(y - \frac{\Sigma y d}{\Sigma d}\right)$
I	1.34	1.10	5.17	3.41	0.66	0.726	-7.0576	- 4.658
2	4.02	3.05	2.13	3.21	1.51	4.606	-5.1076	- 7.712
3	6.70	4.66	0.90	3.08	3.42	15.937	-3.4976	-11.962
4	9.38	5.95	0.37	2.92	7.89	46.946	-2.2076	-17.418
5 6	12.06	6.98	0.27	2.81	10.41	72.662	-1.1776	-12.259
	14.74	7.77	0.23	2.75	11.96	92.929	-0.3876	- 4.636
7 8	17.42	8.30	0.18	2.74	15.22	126.326	+0.1424	+ 2.167
	20.10	8.71	0.14	2.70	19.28	167.929	+0.5524	+10.650
9	22.78	8.98	0.11	2.68	24.36	218.753	+0.8224	+20.034
10	25.46	9.12	0.10	2.68	26.80	244.416	+0.9624	+25.792
								0 (
					121.51	991.23		-58.645
					2	2		+58.643
						0 - 6		
					243.02	1982.46		.002
					ΣΔ	$\Sigma y \Delta$		

The values of B in the last column when multiplied by y give the denominator of the expression for H_1 .

COMPUTATIONS FOR H_1 . (UNIT LOADS.)

Point,	$ \begin{array}{c} C, \\ y \Delta \left(y - \frac{\Sigma y \Delta}{\Sigma \Delta} \right) \end{array} $	2.	k.	zB.	$ \begin{array}{c} x = a \\ \Sigma zB. \\ x = 0 \end{array} $	$x = \frac{l}{z}$ $\sum_{x=a}^{2} B.$	$x = \frac{l}{2}$ $k \sum_{x=a}^{\infty} B.$	D.	$H_1 = \frac{D}{\Sigma C} \frac{\partial x}{2}.$
1 2 3 4 5 6 7 8 9 10	- 5.1238 - 23.5256 - 55.7412 - 103.6379 - 85.5667 - 36.0192 + 17.9888 + 92.7639 + 179.9024 + 235.2259 - 309.6144 + 525.8810 - 2 + 432.5332 EC	3 5 7 9 11 13 15 17	3 5 7 9 11 13 15 17 19	- 23.136 - 59.810 - 121.926 - 110.331 - 50.996 + 28.171 + 159.750 + 340.578	- 4.658 - 27.794 - 87.604 - 209.530 - 319.861 - 370.857 - 342.686 - 182.936 + 157.642 + 647.690	+ 12.368 +24.330 +41.748 +54.007 +58.643 +56.476 +45.826 +25.792	37.104 121.650 292.236 486.063 645.073 734.188 687.390 438.464	9.310 34.046 82.706 166.202 274.216 391.502 404.454	0.1055 0.2562 0.5149 0.8495 1.2129 1.5628 1.8468

The values of H_1 are identical with those obtained in the second example. The number of operations is very much reduced and the multiplications simplified. This method is shorter than any algebraic or graphical method advanced up to this time. (See pages 90 and 91.)

88. The Computation of M_1 and M_2 .—In this case we will employ the formula

$$\begin{split} M_{1} = & H_{1} \frac{\varSigma y \varDelta}{\varSigma \varDelta} - \left(\frac{\varSigma m_{x} \varDelta}{\varSigma \varDelta} + \frac{\varSigma m_{x} \left(x - \frac{l}{2} \right) \varDelta}{\varSigma \varDelta \left(\frac{l}{2} - \frac{\varSigma x^{2} \varDelta}{\varSigma x \varDelta} \right)} \right), \\ - & - H_{1} \frac{\varSigma y \varDelta}{\varSigma \varDelta}. - - - \end{split}$$

This expression contains only known quantities and requires but one division and ten multiplications.

$$\frac{\sum m_x \Delta}{\sum J}$$
.

As before let $x = \frac{\delta x}{2}z$ and $a = \frac{\delta x}{2}k$.

For all points upon the left of the load

$$m_x = R_1 x$$
, $R_1 = \frac{l-a}{l} = \frac{2n-k}{2n}$.
 $\therefore m_x \Delta = \Delta \frac{2n-k}{2n} \cdot z \frac{\delta x}{2}$.

Upon the right of the load, between x'=a and x=o

$$m_x = R_2 x',$$
 $R_2 = \frac{a}{l} = \frac{k}{2n}.$
 $\therefore m_x \Delta = \Delta \frac{k}{2n} z \frac{\delta x}{2}.$

Since 4 has symmetrical values,

$$\sum_{0}^{x=a} m_x \Delta = \left\{ \sum_{x=0}^{x=a} z \Delta \right\} \frac{\delta x}{2},$$

represents the summation of $m_x \Delta$ from x = 0 to x = a and x = l - a to x = l.

Upon the right of the load and until x = l - a, $m_x = R_2x'$, and for the two values of m_x corresponding to symmetrical values of Δ this becomes

$$R_{2}x' + R_{2}(l - x') = R_{2}l = k\frac{\delta x}{2}.$$

$$\therefore \sum_{x=a}^{x=l-a} m_{x}\Delta = \left\{k\sum_{x=a}^{x=l/2} \Delta\right\} \frac{\delta x}{2},$$

and therefore

$$\Sigma m_x \Delta = \left\{ \begin{matrix} x=a \\ \Sigma \\ x=0 \end{matrix} \right. + k \begin{matrix} x=l/2 \\ \Sigma \\ x=a \end{matrix} \Delta \left. \right\} \frac{\partial x}{2}.$$

 ΣA , the denominator of the expression $\frac{\Sigma m_x A}{\Sigma A}$, is already known, hence the value of the expression is quickly determined.

$$---- \sum m_x \Delta(x - \frac{1}{2}l),$$

 $(x-\frac{1}{2}l)=(z-n)\frac{\delta x}{2}$, where the values are evidently symmetrical about the center of the span but *contrary in sign*. Until x=a

$$m_x = \frac{2n - k}{2n} z \frac{\delta x}{2}.$$

Between x = l - a and x = l

$$m_x = \frac{k}{2n} z \frac{\delta x}{2}.$$

Then for the symmetrical values of (z-n) which have contrary signs we have for the two values of m_x

$$\left\{\frac{2n-k}{2n} - \frac{k}{2n}\right\} z \frac{\delta x}{2} = \frac{n-k}{n} z \frac{\delta x}{2}.$$

For x = a to x = o and x' = a to x' = o

$$\sum m_x \Delta(x - \frac{1}{2}l) = \frac{1}{n} \left(\frac{\partial x}{\partial x}\right)^2 (n - k) \sum_{x=0}^{x=a} (x - n) z \Delta.$$

From x = a to x = l - a or x' = a

$$m_x = R_2 x'$$
 and $m_x = R_2 (l - x')$.

For symmetrical points

$$R_2(l-x') - R_2x' = {}_2R_2(\frac{1}{2}l-x') = \frac{k}{n}(n-z)\frac{\delta x}{2}.$$

Summing the symmetrical values,

$$\Sigma m_x \Delta(x - \frac{1}{2}l) = -\frac{k}{n} \left(\frac{\delta x}{2}\right)^{2} \sum_{x=a}^{x=l/2} (z - n)^2.$$

... For the total summation

$$\sum m_x \Delta(x - \frac{1}{2}l) = \left[(n - k) \sum_{x=0}^{x=a} (z - n) z \Delta - k \sum_{x=a}^{x=l/2} (z - n)^2 \Delta \right] \left(\frac{\delta x}{2} \right)^2 \frac{1}{n}.$$

This expression is somewhat long but very easy to use

$$---- \Sigma A \left(\frac{l}{2} - \frac{\Sigma x^2 A}{\Sigma x A}\right), ----$$

$$\Sigma x^2 \Delta = \left(\frac{\partial x}{2}\right)^2 \Sigma z^2 \Delta,$$

$$\Sigma x \Delta = \frac{\delta x}{2} \Sigma z \Delta = n \frac{\delta x}{2} \Sigma \Delta, \quad \frac{1}{2}l = n \frac{\delta x}{2}.$$

$$\therefore \frac{l}{2} - \frac{\sum x^2 \Delta}{\sum x \Delta} = \left(n - \frac{\sum z^2 \Delta}{n \sum \Delta}\right) \frac{\delta x}{2},$$

and the denominator becomes

$$\left(n - \frac{\sum z^2 \Delta}{n \sum \Delta}\right) \frac{\delta x}{2} \sum \Delta.$$

The expression for M_1 now becomes

$$\begin{split} \frac{M_1}{M_2} &= H_1 \frac{\Sigma y \Delta}{\Sigma \Delta} - \boxed{ \begin{cases} \sum\limits_{x=0}^{x=a} \Delta + k \sum\limits_{x=a}^{x=l/2} \Delta \\ \sum\limits_{x=a} \Delta + k \sum\limits_{x=a}^{x=l/2} \Delta \end{cases} \frac{\delta x}{2 \Sigma \Delta} \\ &\pm \left\{ (n-k) \sum\limits_{x=0}^{x=a} (z-n) z \Delta - k \sum\limits_{x=a}^{x=l/2} (z-n)^2 \Delta \right\} \frac{\delta x}{2n \left(n - \frac{\Sigma z^2 \Delta}{n \Sigma \Delta}\right) \Sigma \Delta} \end{aligned} }$$

COMPUTATIONS FOR $\frac{\sum m_x \Delta}{\sum \Delta}$.

	1	2	3	4	5	6	7	8
Point.	z.	zā.	$ \begin{array}{c} x = a \\ \Sigma zA \\ x = 0 \end{array} $	$ \begin{array}{c} x = \frac{1}{2}l \\ \Sigma A. \\ x = a \end{array} $	k.	$ \begin{array}{c} x = \frac{1}{2}l \\ k \Sigma \Delta. \\ x = a \end{array} $	∑m±4 1.34	$\frac{\sum m_x \Delta}{\sum \Delta}$.
1 2 3 4 5 6 7 8 9	1 3 5 7 9 11 13 15 17	0.66 4.53 17.10 55.23 93.69 131.56 197.86 289.20 414.12 509.20	0.66 5.19 22.29 77.52 171.21 302.77 500.63 789.83 1203.95 1713.15	120.85 119.34 115.92 108.03 97.62 85.66 70.44 51.16 26.80	1 3 5 7 9 11 13 15 17	120.85 358.02 579.60 756.21 878.58 942.26 915.72 767.40 455.60	121.51 363.21 601.89 833.73 1049.79 1245.03 1416.35 1557.23 1659.55 1713.15	0.662 2.003 3.318 4.597 5.788 6.865 7.810 8.586 9.150 9.446 Col.7 $\left(\frac{\partial x}{2\Sigma A}\right)$

$$\frac{\delta x}{2\Sigma A} = \frac{2.68}{2(243.02)} = 0.0005514.$$

Col. 8 represents the sum of the moments for each load multiplied by the corresponding value of Δ , divided by $\Sigma \Delta$. By ordinary methods the determination of $\Sigma m_x \Delta$ for one load only requires the scaling of 20 ordinates, 10 additions, and 10 multiplications.

COMPUTATION OF
$$\frac{\sum m_x J(x - \frac{1}{2}l)}{\sum J\left(\frac{l}{2} - \frac{\sum x^2 J}{\sum xJ}\right)}.$$

	1	2	3	4	5	6	7	8
	n-k.	k.	z-n.	2.	(z-n)z.	$z(z-n)\Delta$.	$ \begin{array}{l} x = a \\ \sum \Delta(z - n)z. \\ x = o \end{array} $	$ \begin{array}{c c} x = a \\ (n-k) \sum_{z=0}^{\infty} \Delta(z-n)z. \end{array} $
1 2 3 4 5 6 7 8 9	19 17 15 13 11 9 7 5 3	1 3 5 7 9 11 13 15 17	- 19 - 17 - 15 - 13 - 11 - 9 - 7 - 5 - 3 - 1	1 3 5 7 9 11 13 15 17	- 19 - 51 - 75 - 91 - 99 - 99 - 91 - 75 - 51 - 19	- 12.54 - 77.01 - 256.50 - 717.99 - 1030.59 - 1184.04 - 1385.02 - 1446.00 - 1242.36 - 509.20	- 12.54 - 89.55 - 346.05 - 1064.04 - 2094.63 - 3278.67 - 4663.69 - 6109.69 - 7352.05 - 7861.25	- 238.26 - 1522.35 - 5190.75 - 13832.52 - 229508.03 - 229508.03 - 32645.83 - 30548.45 - 22056.15 - 7861.25
	1							1
	9		10		11	12	13	14
	9 (z-n)) ² . - A		x = l	′2	$x = l/2$ $-k \sum d(z-n)^{2}$ $x = a$		Col. r3

$$\frac{\partial v}{2n\left(n - \frac{\sum z^2 J}{n \sum A}\right) \sum A} = -0.0001034.$$
 See Table III, page 93, of the second example.

Col. 14 is the complete value of $\frac{\sum m_x A(x-\frac{1}{2}l)}{\sum J\left(\frac{1}{2}l-\frac{\sum x^2J}{\sum xJ}\right)}$ for each load, I to 10

respectively.

Note that cols. 1, 2, 3, 4, 5, and 9 will remain the same as long as n=20 regardless of the span. The formation of the remaining columns requires but 50 multiplications and 30 additions.

FINAL VALUES OF M_1 AND M_2 .

	1	2	3	4	5	6	7
	$H_1 \frac{\Sigma yA}{\Sigma A}$.	$ \frac{m_1}{+\frac{\sum m_x d}{\sum d} \pm \frac{\sum m_x d(x - \frac{1}{4}l)}{\sum d\left(\frac{1}{4}l - \frac{\sum x^2 d}{\sum x d}\right)}}. $		9961.		M_1 .	M_2 .
1 2 3 4 5 6 7 8 9	+ 0 + 0.235 + 0.860 + 2.089 + 4.200 + 6.930 + 9.894 + 12.749 + 15.065 + 16.368	+0.662 +2.003 +3.318 +4.597 +5.788 +6.865 +7.810 +8.586 +9.150 +9.446	±0.670 1.958 3.140 4.110 4.656 4.728 4.354 3.540 2.328 ±0.813	1.332 3.961 6.458 8.707 10.444 11.593 12.164 12.126 11.478 10.259	0 0.045 0.178 0.487 1.132 2.137 3.456 5.046 6.822 8.633	-1.332 -3.726 -5.598 -6.619 -6.244 -4.663 -2.270 +0.623 +3.587 +6.109	0 +0.190 +0.682 +1.602 +3.068 +4.793 +6.438 +7.703 +8.243 +7.735

Combining the values found we obtain the values of M_1 and M_2 for each load I to 10 respectively; for loads I' to 10' M_1 and M_2 simply change places. Compare cols. 6 and 7 with col. 26, page 95.

The values of V_1 , y_1 , y_2 , etc., can now be found as in the second example.

The above calculations require but little more time than some of the graphical constructions in common use which only give the equilibrium polygon for one set of loads. Here we can quickly determine the effect of each load and then use those producing maximum results

CHAPTER IV.

TYPICAL ARCHES.

A FEW typical bridges will be illustrated in this chapter which will clearly show that, as ordinarily constructed. the arch ring proper is heavily reinforced either by masonry or concrete backing or masonry side walls. Since this masonry does not readily follow the arch ring if it sinks, the actual dead load is never more than the dead weight of the material above the ring; and since the passive resistance of this masonry against moving upward is large in case the arch ring has such a tendency, it is evident that any ring which is stable under the elastic theory must be stable in the structures as built. Furthermore, experience teaches that temperature stresses may be ignored in stone arches well backed, as is customary. A recording thermometer placed in the ring of a reinforced-concrete bridge having earth filling indicated that the total range of temperature change did not exceed about 20° F. in some ten or twelve months. All rings without backing should be designed to resist a change of temperature of about ±35° F. In rings like that of the Luxemburg bridge full account of temperature must be considered, the range approaching that for steel.

PART SIDE ELEVATION OF 3,820 FT. STONE ARCH BRIDGE FOR THE PENNSYLVANIA R.R. AT ROCKVILLE, PA.

89. The Rockville Stone Arch
Bridge.—This is typical of a large
number of arches recently constructed by the Pennsylvania
R.R. The arch ring is backed
with Portland-cement concrete
to such an extent that it is
increased in thickness nearly
three times near the spring
line. (Eng. News, May 10,
1900.)

90. The Bellefield Stone Arch Bridge, Pittsburg, Pa.—In this bridge the outside spandrels are of solid masonry. Inside there are six longitudinal walls reinforced with three lateral walls. The lateral walls do not support any vertical load, as they stop at the springing of the

arches between the longitudinal walls. The arch ring is securely held by a backing of concrete and the spandrel walls. (Eng. Record, June 9, 1900.)

- 91. The Luxemburg Stone Arch Viaduct.—This bridge is an excellent illustration of spandrels pierced with lateral arched openings. The elastic theory can be applied with confidence in bridges of this type. (Eng. Record, Oct. 12, 1901.)
- 92. Approaches to the Thebes Bridge.—The approaches are composed of eleven plain-concrete arches having a span of 65 feet, and one with a span of 100 feet. The proportions of the 65-foot arches are clearly shown above. Note that the spandrel side walls cover nearly all of the arch ring at the supports, and at the crown two fifths of the ring, practically preventing distortion under moving loads. (R. R. Gazette, Jan. 9, 1903.)

LUXEMBURG BRIDGE

DETAILS OF ARCHES IN APPROACHES: THEBES BRIDGE

93. Vermillion River Plain-concrete Arch Bridge. — This bridge is composed of three spans. The entire loading above the ring is supported by lateral walls which makes the application of the elastic theory quite rational.

CONCRETE ARCH BRIDGE OVER SALT FORK OF THE VERMILLION RIVER

The ring was designed without reinforcement, but when built the entire concrete work was reinforced with steel bars. This reinforcement is shown in the Railroad Gazette, Oct. 27, 1905.

94. Steel Reinforcement in the Form of Ribs.—Where the steel reinforcement has been concentrated in concrete

rings the three types shown below have been successfully used. The steel is usually assumed to take the entire bending moment. The two upper types were used

STEEL RIB, ROLLED I BEAM TYPE
TYPES OF STEEL RIBS

in a viaduct at Jacksonville, Fla., and the third type in St. Louis, Mo.

- 95. Steel Reinforcement other than in the Form of Ribs.—
 The present method of reinforcement appears to follow the idea of thoroughly distributing the steel in layers a few inches from the upper and lower surfaces of the arch ring. This is accomplished by the use of small rods, wire netting, expanded metal, etc. The majority of reinforced concrete bridges in the United States are reinforced with rolled rods, some plain and some "deformed."
- 96. Area of Steel Reinforcement. The amount of steel is seldom less than 0.6% or greater than 1% of the

area of the ring at the crown, regardless of the type of reinforcement employed.

97. Abstracts from Specifications. — The following abstracts from specifications will indicate some of the methods employed and assumptions made in the construction of reinforced-concrete bridges.

Conditions of Calculation.—Modulus of elasticity of concrete, 1,400,000 lbs.; modulus of elasticity of steel, 28,000,000 lbs.; maximum stress per square inch on steel, 10,000 lbs.; maximum compression per square inch on concrete, 500 lbs.; maximum tension per square inch on concrete, 100 lbs.; maximum tension per square inch on concrete, 50 lbs. The above to be exclusive of temperature stresses. The steel ribs, under a stress not exceeding their elastic limit, must be capable of taking the entire bending moment of the arch without aid from the concrete, and have a flange area of not less than one one-hundred-and-fiftieth part of the total area of the arch at crown.

Portland-cement Concrete.—The concrete shall be composed of clean hard broken stone, or gravel with irregular surface, clean sharp sand, and cement, mixed in the proportions hereafter specified. Whenever the amount of work to be done is sufficient to justify it, approved mixing-machines shall be used. The ingredients shall be placed in the machine in a dry state, and in the volumes specified, and be thoroughly mixed, after which clean water shall be added and the mixing continued until the wet mixture is thorough and the mass uniform. No more water shall be used than the concrete will bear without quaking in ramming. The mixing must be made as

rapidly as possible, and the batch deposited in the work without delay. If the mixing is done by hand, the cement and sand shall first be thoroughly mixed dry in the proportions specified. The stone, previously drenched with water, shall then be deposited on this mixture. Clean water shall be added and the mass be thoroughly mixed and turned over until each stone is covered with mortar. and the batch shall be deposited without delay, and be thoroughly rammed until all voids are filled. The grades of concrete to be used are as follows: For the arches between skewbacks, one part Portland cement, two parts sand, and four parts broken stone or gravel that will pass through a one-and-one-quarter-inch ring. For the piers, one part Portland cement, three parts sand, and six parts broken stone that will pass through a two-inch ring. For the foundations, abutments, and spandrels, one part Portland cement, four parts sand, and eight parts broken stone or gravel that will pass through a two-inch ring.

Concrete Facing.—Concrete facing will be used and shall be composed of one part Portland cement and two and one-half parts sand, and shall have a thickness of at least one inch on all arch soffits, arch faces, abutments, piers, spandrels, or other exposed surfaces. There must be no definite plane or surface of demarkation between the facing and the concrete backing. The facing and backing must be deposited in the same layer, and be well rammed in place at the same time. If the arch faces, quoins, or other exposed surfaces are marked to represent masonry, such division-marks shall be made by triangular strips two inches wide and one inch deep fastened to the

casing in perfectly straight and parallel lines, and all projecting corners will be beveled to correspond.

Connections.—In connecting concrete already set with new concrete the surface shall be cleaned and roughened, and mopped with a mortar composed of one part Portland cement and one part sand, to cement the parts together.

Arches.*—The concrete for the arches shall be started simultaneously from both ends of the arch, and be built in longitudinal sections wide enough to inclose at least two steel ribs, and of sufficient width to constitute a day's work. The concrete shall be deposited in layers, each layer being well rammed in place before the previously deposited layer has had time to partially set. The work shall proceed continuously day and night if necessary to complete each longitudinal section. These sections while being built shall be held in place by substantial timber forms, normal to the centering and parallel to each other, and these forms shall be removed when the section has set sufficiently to admit of it. The sections shall be connected as specified above, and also by steel clamps or rib connections built into the concrete.

Steel Ribs.—Steel ribs shall be imbedded in the concrete of the arch. They shall be spaced at equal distances apart, and be of the number shown on plans. Each rib shall consist of two flat bars of the sizes marked on plans. The bars shall be in lengths of about 30 ft., thoroughly spliced together, and extending into the abutments

^{*} The arch rings are also made in the form of voussoirs so as to symmetrically and uniformly load the faisework to prevent its unsymmetrical or excessive distortion.

as shown. Through the center of each bar shall be driven a line of rivets spaced 8 inches c. to c. with heads projecting about 7 inch from each face of bar, except through splice-plates, where ordinary heads will be used. bars shall be in pairs with their centers placed two inches within the inner and outer lines of the arch respectively as shown. All steel must be free from paint and oil, and all scale and rust must be removed before imbedding in the concrete. The tensile strength, limit of elasticity, and ductility shall be determined from a standard testpiece cut from the finished material and turned or planed parallel. The area of cross-section shall not be less than 1/2 square inch. The elongation shall be measured after breaking on an original length of 8 inches. Each melt shall be tested for tension and bending. Test-pieces from finished material prepared as above described shall have an ultimate strength of from 60,000 to 68,000 lbs. per square inch, an elastic limit of not less than one-half of the ultimate, shall elongate not less than 20% in 8 inches, and show a reduction of area at point of fracture of not less than 40%. It must bend cold 180 degrees around a curve whose diameter is equal to the thickness of piece tested without crack or flaw on convex side of bend. In tension tests the fracture must be entirely silky. (Engineering Record, Aug. 3, 1901.)

APPENDIX.

TABLE I.

PHYSICAL PROPERTIES OF STONE AND CONCRETE.

BUILDING STONES.

- C=Ultimate crushing strength in pounds per square inch. Test Specimens Cubes.
- R=Cross-bending fiber stress in pounds per square inch.
- S=Ultimate shearing strength in pounds per square inch.
- e=Expansion per degree F. Determined Wet.
- E = Young's modulus in pounds per square inch. Compression.
- r=Limits between which E was determined.
- W =Weight in pounds per cubic foot.

Compiled from Tests of Metals and Other Materials, etc. made at Watertown Arsenal, Mass.

GRANITE.

	Color, Name, Source, etc.	C	R 102.	S 102.	e 10 ⁻⁸ .	E 105.	r 102.	W
Dark. Light.	Braddock, near Little Rock, Ark. Exeter, Tulare Co., Cal. Platte Cañon, Colorado.	242 196 226 146	12 16 19	24 21 24	324 341 461	71 71	1-50	156
	Branford, Conn. Pine Mt., Quarry, Lithonia, Ga Stone	157 277 200	12 	18	398 398 375	57 83	1-50	161
Black.	Troy, N. H. Maine. Mt. Waldo Quarry, Frankfort, Me	262 210 322	22	22	337	48 45	1-50	165
Light.	White Rock Mt., Millbridge, Me. Cape Ann, Rockport, Mass.	199 242 203 173	20 24	28 25	400	98 65	1-50	
Pink.	Pigeon Hill, Rockport, Mass. Quincy, Mass. Milford, Mass.	197 130 238 190	24 20	15 26 18	381 418	67 68 77 51	10-20 10-30 10-30 10-20	163
Pink.	Ortonville, Minn.	90 252 204	15 21	24	417	53 76	1-50	163
Mottled. Red. Light.	Rockville, Stearns Co. Minn. Sioux Falls, Minn. Korah Station, Va. Broad Rock Quarry, Chesterfield Co., Va. Snoqualmie District, Wash.	181 182 234 154 198	13 12 16 17	19 21 27 21	397 389 431 402	94 60	1-50	

TABLE I.—PHYSICAL PROPERTIES OF STONE AND CONCRETE—(Continued).

SANDSTONE.

	Color, Name, Source, etc.	C 102.	R 102.	S 102.	e 10-8.	E 105.	102.	W
	Near Ft. Smith, Sebastian Co., Ark	128	15	18	620	35	1-40	
Blue.	Cabin Creek, Johnson Co., Ark	185	17	25	613	39	1-50	
4.6	Jasper, Ala	159	10	22				
	Piedmont Quarry, near Oakland, Cal	110	II	16	436			
light Red.	St. Vrain Cafion, Col., laminated	115						15
Red.	Manitou, Col.	110						14
dray.	Ft. Collins, Col., laminated	117						14
	Trinidad, Col.	100						14
Brown.	Portland (Middlesex Quarry), Conn	100						
	44 46 41 41	83						
	46 46 46	43						
Brown.	Portland, Conn., 1st quality	136						
4 6	2d	130						
6.6	11 11 3d 11	150						
11	" Bridge stone	06						
4.4	Cromwell, Conn	169	10	15	540	77	1-50	
Red.	Brainard Quarry Co., Conn.	62			526			
14		107		14				
	Near Redfield, Bourbon Co., Kan	80	21	19	516			
	Carreyville, Ky	106						
Red.	Carreyville, Ky Potomac Red Sandstone Co., Maryland	130	23	23	501	39	10-20	
	Kibbe, East Longmeadow, Mass	190	10					
	Mibbe, Bast Dongmeadow, Mass		10		577	22	1-20	13
	11 11 11	127				22	1-25	
	44 44 44 44	104		12	577	18	10-20	13
Soft Saulsbu	rv '' '' '' ''	85		~ -	311		100	13.
Hard ''	* 11 11 11 11	140						
Red Brown.	6. 46 61 64	114						
	Maynard, East Longmeadow, Mass	94		12	567	IQ	10-20	13
	TIT		8		561	13	1-20	13
	Worcester " " " " " " " " " " " " " " " " " " "		II		517	19	1-20	13
Brown.		98		I 2	517	24	10-20	13
light Drab.	Frontinac, Minn.	101						
44 W-110***	Mautorville, Minn	88						
Salmon.	Mankato, Minn	96		-6	606			
amon.	Ohio	125	9	16	686			
	44	58 87			622			
	Chitwood, Oregon	63		9				
	Cooper Quarry, Douglas Co., Oregon		7		722	22	T-20	
Blue,	Coquille River, Coos Co., Oregon	7.5		13	177	2.2	1-30	
	Cooper Quarry, Douglas Co., Oregon	152		18	177	28	10-20	16
		132		10	7//	20	100	I U

LIMESTONE.

	Beaver, Carrol Co., Ark	0.5	27	20	471	67	1-50
Blue.	Rockwood, Ala	60	7	10	58		
Buff.	Bedford, Ind.		14	10	389	73	1-30
TD 0"	Indiana	60			407	52	2-30
Buff.	Oolitic, Bedford, Ind.	4I 7I		11	375	36	2-10
-	Johnson, Co. Iowa	17		11			
Drab.	Iowa State Quarry	72			}		
Blue.	Hutchinson, Iowa	241					
Mottled. Cream.	Crowley's, Iowa	78					
Cream.	Cedar Valley, Iowa	50					1

TABLE I.—PHYSICAL PROPERTIES OF STONE AND CONCRETE—(Continued).

LIMESTONE.

	Color, Name, Source, etc.	C 102.		S 102.	e 10-8.	E 105.	7 10 ² .	W
Light Buff.	Ft. Riley, Kansas. Junction City, Kansas.	32	5	10	300			
	Mt. Vernon, Ky. Bowling Green, Ky. Oolitic.	60 62	13	12	464 89	93	1-20	
Pink.	Hopkinsville, Ky., Oolitic. Bowling Green, Ky., Oolitic. Spring Ledge, Mt. Vernon, Ky. Kelly Island, Lake Erie. Kasota, Minn.	150 76 122		17	464	32	10-20	13
Pink. Gray. Buff.	Wasioja, Dodge Co., Minn. Carthage, Mo., Quality No. 1.	50		12	217			
	Yammerthal Flint, Buffalo, N. Y	237	17 16	2 I 2 2	219	147	1-40	

MARBLE.

Possiliferous	St Toe Searcy Co Ark	103	11		210	82	1-40	
Chocolate.	St. Joe, Searcy Co, Ark	123	16			107	1-30	
92 0003000	Marble Hill, Ga	115			202	OI	10-30	160
	11 61 11		10		103	55	1-40	168
	Tate, Ga., Creole Quarry		8			41	1-40	160
	11 11	135		14		60	10-30	170
	'' Cherokee Quarry	- 33	4		441	40	1-40	168
	14 11 11	126			441	OI.	10-30	168
	" " Etowah Quarry		18		14-4-	у.	10 30	100
	11 (1 11 11	141		14		78	10-30	170
	" Kennesaw Quarry	06	1.3	12		76	10-30	168
	Lee Co., Mass	160	16		562	67	10-20	
	14 14 14	181		2 I	454	- '		
Drab.	Faribault, Minn.	178			757			
	Tuckahoe, N. Y	162		15	441	136	10-30	178
White.	Richville, Dekalb, St. L. Co., N. Y	125	8		634	120	1-40	
	Vermont	00	10		361	66	10-30	
	8.5	120		10				
White.	Rutland, Vt	IIO	7	10	312	45	1-40	168
Blue.	66 66	139	21	12		65		
1.0	64 66					78}	1-40	
						75)		
Mt. Dark.	44 44	128	18	15	433	93	1-40	
	Sutherland Falls, Vt	162	23	16	550	126	1-40	
	44 44	IT3						
	44 44 41	102						
	Roche Harbor, San Juan Co., Wash	90						
	Snoqualmie District Wash	47						

CONCRETE.

The physical properties of concrete depend upon so many variable factors that it is useless to attempt to give more than approximate values.

Mr. Edwin Thacher, C.E., has deduced formulas, based upon a large number of experiments made at the Watertown Arsenal,

showing the effect of age and composition upon the ultimate strength. Values according to these formulas are given below. For tests of concrete of all kinds reference is made to Tests of Metals and other Materials, etc., made at the Watertown Arsenal, Mass.

ULTIMATE STRENGTH IN POUNDS PER SQUARE INCH.

Mixture.		Ag	1	Remarks.	
wixture.	7 Days.	r Month.	3 Months.	6 Months.	
1-1-3 1-2-4 1-2\frac{1}{2}-5 1-3-6 1-3\frac{1}{2}-7 1-4-8 1-5-10 1-6-12	1600 1400 1300 1200 1100 1000 800 600	2750 2400 2225 2050 1875 1700 1350	3360 2900 2670 2440 2210 1980 1520 1060	4300 3700 3400 3100 2800 2500 1900	S=1800-200%; 7 days S=3100-350%; 1 month S=3820-460%; 3 months S=4900-600%; 6 months x=parts of sand to one part cement. S=ultimate strength for 18- inch cubes.

E = Modulus of Elasticity in Thousands of Pounds per Square Inch.

(Compiled by E. Thacher.)

	Age 7 Days.			Age I Month.			Age 3 Months.			Age 6 Months.			
Mixture.	100 to 600.	100 to 1000.	1000 to 2000.	100 to 600.	100 to 1000.	1000 to 2000.	100 to 600.	100 to 1000.	1000 to 2000.	100 to 600.	100 to	1000 to 2000.	
1-1-3 1-2-4 1-2½-5 1-3-6 1-4-8 1-5-10 1-6-12	í	į.	1380	2830 2660 2550 2440 2100 1740 1380	2580 2450 2300 2130 1800 1460 1140	1910 1460 1350 1220	3500 3670 3320 2970 2530 2100 1640	3140 3160 2900 2650 2220 1780 1360	2120 2160 1980 1800	3850 3670 3630 3600 3020 2420 1820	3580 3570 3540 3500 2840 2200 1520	2700 2580 2220 1860	

These values are means of tests made upon 12-inch cubes made with four brands of cement respectively. A statement of the data upon which the above tables are based is given in an article by Mr. E. Thacher, entitled Effect of Age and Composition on the Strength and Modulus of Elasticity of Concrete, Cement, May 1902.

EXPANSION OF CONCRETE.

Prof. Pence gives 0.0000055 as the coefficient of expansion for one degree F. for 1-2-4 concrete composed of Lehigh Portland cement and limestone. With the limestone replaced with gravel the coefficient becomes 0.0000054. This makes the coefficient of expansion of concrete and steel essentially the same.

WEIGHT OF CONCRETE.

The weight of concrete will vary somewhat according to the materials used and the methods of mixing. In "Tests of Metals, etc.." for 1898, the weights of a large number of 12-inch cubes are given, the proportions varying from 1-1 to 1-4, with 33 and 40 per cent of the stone used as mortar. The mortar was made "dry," "plastic," and "wet." The weights per cubic foot ranged from 138.9 to 143.7 pounds. For all ordinary purposes 140 pounds per cubic foot may be used. Some specifications state that concrete shall be taken at 150 pounds per cubic foot.

WEIGHT OF FILLING MATERIAL.

This will vary according to the kind of material and the method of depositing it. For average conditions, when the spandrels are filled with sand or gravel, 100 pounds per cubic foot may be assumed. For gravel deposited in thin layers and rolled, some specifications state that the fill shall be taken as weighing 120 pounds per cubic foot.

TABLE

DATA FOR ABOUT 500 ARCH BRIDGES

MASONRY

Number.	Name,	Place.	Over.	Date.	Engineer.	No. of Spans.
	Taff Vale Viad.	Near	Taff R.		Brunel	6
2 3 4 5 6 7 8	Queretaro Malaunay Magnolia St. L. Juniata No. 8 Mass. Ave.	Quaker's Yard, S. Wales Near Queretaro, Mexico Near Rouen, France Elizabeth, N. J., U. S. A. Penn., U. S. A. Morpeth, England Washington, D. C., U. S. A.	Valley Malaumay Val. Magmolia St. L. Juniata R. Wansbeck R. Rock Crk. Cree R.	1726-35 1840-44 1894 1831 1900-1	Antonio Avana Lucke Brown Brown Telford Douglas Rennie	74 8 1 3 3 1 1 2 2
9 10 11	Chateau Thierry Charles Starrucca Viad Pont Neuf	France Nuremburg, Bavaria Nr. Lanesboro', Pa., U.S.A. Paris, France	Marne. Starrucca Crk. Seine R.	1786 1728 1847 1578–1604	Perronet Adams Cerceau and	1 17 17
13	Enz Pont au Change	Wildbad, Germany Paris, France	Enz R. Seine R.	1886 1639–47	Marchand Leibbrand	7
15 16 17 18	Court St.	Rochester, N. Y., U.S.A. Rochester, N. Y., U.S.A. Bet. Norwood-Bromley,	Genesee R. Lon. Croydon	1893	McClintock Gibbs	8 7 I
19 20 21		England Dôle, France England Gien, France	Ry. Doubs R. Mouse R. Loire, R. Val.	1760-64? 1822 1888-9	Gueret Telford Lethier	7? 3 15 70
22	Dinan Viad. Guétin	Dinan, France Bet. Digoin and Mains-	Rance R. Valley	1845-50 1890-98	Fessard	18
24 25 26	Stura Digoin	bray, France N. of Turin, Italy Montalierie, Italy Digoin, France	Stura R. Po R. Valley	1849 Changed 1890-98	Bella Barbavara	5 7 11
27	Roquefavour		Arc R. and Val.	1841-47	de Montricher	15 13 51
28 29 30	Strasbourgh Sta. Croydon Abattoir St.	Paris, France Near Croydon, England Paris, France	Station Platform Lon. & C. Ry.		Gibbs	3
31 32 33 34 35 36	Park St. Pathhead	Nemours, France Stirling, Scotland Moret, France Moulins, France Hartford, Conn., U.S.A. Pathhead, Scotland, U.S.A.	Loing R. Forth R. Loing R. Allier R. Tyne R	1805 1400† 1771 1758–60 1898 1830	Perronet Perronet Regemortes Graves Telford	3 13 1 5
37 38	Mill Creek L. Juniata No. 13	W. of Bird-in-Hand, Pa., mi. W. of Tyrone, Pa., U.S.A.	Mill Creek L. Juniata R.	1889-90 1892-93	Brown Brown	4 3

^{*} Maximum.

Remarks.—1. Piers 14' octagon. On curve. Skew 40°. 1320' Radius. 2. Max. H. = 95' Av. = 75'-80'. 3. Found. upon piles. 4. 4 tracks. Intrados to base of rail, 5'.6. 5. Middle Div. Penn. Ry. 7. Skew 17°. Cost \$132,000. 11. 2 tracks. Max. H. = 110'. N. Y., L. E., & W. 12. Repaired 1886. 13. Middle 3d joints at crown and springing filled with lead. 18. Ribbed skew. 20. H. = 134.5'. Piers hollow. 21. Approaches to metal spans. 22. Max.

II.

ARRANGED ACCORDING TO SPAN.

ARCHES.

Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing, te.	Curve.	Radius at Crown,	$\frac{t_0}{R}$	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number,
50.0	25.0			C	25.0		14.0		Blue Grit	Ry.	A. March, 1850	I
50.0 50.0 50.0 *50.0 *50.0 50.0	25.0 7.4 12.5 15.0 25.0 6.6	3.1 2.8 3.0	3.I 2.8	C C E C C C	38.5	.124	27.7 50.0 31.5 200.	_	Brick	Aqued't Ry. Ry. Ry. Ry.	B. June 2, 1888 C. 1851-2 D. E. F. 1852, p. 290 B. Dec. 25, 1902 S.	2 3 4 5 6 7 8
46.0 39.0 51.0 51.1 51.0 *51.1	5.9 4.9 17.0 16.0 †20.0 21.9	to 1.0 4.0 4.3 2.5 2.3	2.5 3.6	EECC	37.2 26.3 25.8	.005	24.8	7.0	Sandstone	H.W. Ry. H.W.	Woodbury, 1858 F. 1852, p. 278 B. Sept. 1, 1888 G. 1891, p. 887	9 10 11 12
51.2 51.2 to 35.2 *52.0 *52.0 52.0	10.7 25.6 17.6 20.5 10.0 †12.0	5.3	3.9 2.3	C; C C C C	35.9 25.6 26.7 38.8 34.2	. 207	?64.0 †30.0		Limestone Brick	H.W. H.W. Aqued't H.W.	G. 1891, p. 918 F. 1852, p. 276 B. Feb. 2, 1893 H. C. 1855-6	13 14 15 16 17 18
\$2.0 \$2.0 \$2.5 \$2.5 to 42.6 *52.5	17.5 26.0 26.2 17.5 14.2 26.2		3 - 3	E C2 C2	26.2			8.5 3.3		H.W. Ry.	I. F. 1852, p. 197 G. VI, 1893 G. 1888, p. 363	19 20 21
52.5 52.5 52.5 52.5	5·I I3.6 23.0	3.6 3.0 3.0 3.9	3.6	3C E C 3C	30.7 102.7 32.1 30.7	.042	31.9 35.1 29.5 31.8	7.5	Brick(?) Brick	H.W. Ry. Canal	G. 1899 F. 1852, p. 296 F. 1852, p. 296 F. 1852, p. 286	23 24 25 26
52.5 49.2 16.4 *52.7 53.0 53.0 53.0 53.0 53.9 54.0 &	26.3 24.6 8.2 5.0 12.0 5.1 3.2 10.3 6.1 21.3 7.3	3-3 3-4 3-0 3-0 3-0 3-2 2-8 4-3 3-2 3-3	3.0	EECCCCE	26.3 24.6 8.2 71.6 71.3 99.1 39.2 61.2	.041	70.0	6.4	Mill'e Grit Brick Freestone Freestone Brick	H.W. H.W.? H.W.? H.W.? H.W. H.W.	A. 1852, p. 296 C. 1855-6 I. F. 1852, p. 286 I. F. 1852, p. 286 I. F. 1852, p. 276 B. Jan. 12, 1899 F. 1852, p. 195	28 29 30 31 32 33 34 35 36
50.0 54.0 54.0	25.0 13.5 13.5	2.7	2.7	CC	33.7		32.0	4.0		Ry. Ry.	E. E.	37 38

[†] About. =

H.=130'.5. Nat. Route No. 176. 23. Max. H.=30'.4. 24. Route Turin-Milan. 25. Turin-Genoa. 27. 3 tiers of arches. Max. H.=271'.o. 29. Ribbed skew. 35. Stone facing 36. Max. H.=75'.o. The 54'.o spans are under roadway. 37. Three tracks—1° curve 38. 4 tracks. Mid. Div. Penn. Ry. ribbed skew.

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
39 40 41 42 43 44	Kennet Monocacy Viad. Nashawtuc Ouctoine Big Conestoga Peas	Near Caversham, England Monocacy, Penn., U.S.A. Concord, Mass., U.S.A. E. of Lancaster, Pa., U.S.A. Bet. Berwick and Edin- burgh, Scotland	Kennet R. Sudbury R. Rieneros R. Deep Dingle	133:	Fisk Wheeler Garipuy Brown Henderson	3 1 1 3 5 4
45 46 47 48 49 50	Oder Bachthal Dauphin Carmes	Kunnersdorf, Saxony Dermitz, Saxony France Löbau, Saxony Königstein, Saxony	Oder R. Bach R. Romanche R. Beauvoir Ravine Spree R.?	1844-5 1842-4 1843-47 1845-46	Potie Cunit	7 11 3 7 2 32
51 52 53	Spreethal No. 28	Saxony Neuneck, Germany 26.5 m. Pittsburg, Pa., U.S.A.	Spree R. Glatt R. Raccoon Crk.	1845-46 1886 1887-88	Leibbrand	15
54	Washington	New York, N. Y., U.S.A.	Harlem R.	1886-89	Hutton	I
55	Nôtre Dame	Paris, France	Seine R.	1507	Jaconde	6
56		Chateau Thierry, France	Marne R.	1765	Pérronet	I
57 58	Gravant	Pontlieu, France France	Huisine R.? Yonne R.	. 1773 1760	Voglie Adwine	3 3
.59 .60	Zempoala Aq.	7 m. south of Huauchin- ango, Mexico England	Valley Severn R.	1553-70	Tembleque Telford	68 I
бı	Johnstown	Johnstown, Penn., U.S.A.	Conemaugh R.	1888	Brown	6
62 63 64	Carrolton Viad. Jamaica St.	Llanrwst, Wales Nr. Baltimore, Md., U.S.A. Glasgow, Scotland	Conway R. Patapsco R. Clyde R.	1634-36 1833-35 1833-36	Inigo Jones Latrobe Telford	3 8 1 2 2
6 5	Brives Tournelle	France Paris, France	Loire R. Seine R.	1772 1630-56	Grangent Marie	5 6
67	Marie	Paris, France	Seine R.	1635-58	Marie	5
68 69	Aelius Sèvres	Rome, Italy Near Paris, France	Tiber R. Seine R.	136	Hadrian Beaupre	3 9
70 71 72	Rahway Ave. Washington Ingersheim	Elizabeth, N. J., U.S.A. New York, N. Y., U.S.A. France	Rahway Ave. Harlem R. Tech R.	1886-89	Brown Hutton Clinchamp	1 6 7
73 74	Trenton L. S. & M. S. Ry.	Near Trenton, N. J., U.S.A. Elyria, Ohio, U.S.A.	Delaware R. W. Br. Black R.	1902	Brown	18
			1			

*Maximum.

*Remarks.—30. Skew. S. E. Ry. Co. 40. Chesapeake & Ohio Canal. 41. Granite from Fitchburg, Mass. 43. Penn. Ry. 44. Max. H. = 124′.0. 45. Löbau-Zitlau, H. = 62.3. 46. Pile found. H. = 50, L. = 725. 40. Saxony-Silesia, H. = 95′.0. 50. Prague-Dresden, H. = 33.6. 41. Saxony-Silesia, H. = 66.0. 52. Sheet-lead "Hinges," 3. 53. 2 tracks. Rail 27′.5 above key. 44. Approach to metal spans. 56. See No. 0. 50. Waterway \$\frac{8}{4}\times \text{Y} \times \text{H} = 124′.0. On the second of the se

Span.	Rise.	Arch Ring at Crown to.	At Spring- ing, te.	Curve.	Radius at Crown.	to R	Width Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number.
*54.0 54.0 54.5 *54.5 *54.5	11.0 9.0 6.0 17.1 27.3	2.6 2.5 1.2 2.1	I.2	E C E C ₂	50.0 63.75 27.3		?24.0 25.0		Brick Granite	Ry. Canal H.W. Ry. H.W.	K. Dec. 20, 1895 I. Wm. Wheeler F. 1852, p. 280 E. L.	3 4 4 4 4 4
*55.8 55.8 55.8 55.8 55.8 55.8 *55.8	27.9 27.9 27.9 27.9 18.9	3.0 3.1		E C2 C2 C2 C2 E	27.88 27.88 27.9 27.9		19.7	7 · 4 9 · 2 4 · 9 9 · 5	Brick	Ry. Ry. Ry.	F. 1852, p. 229 F. 1852, p. 226 F. 1852, p. 292 F. 1852, p. 292 F. 1852, p. 222 F. 1852, p. 222	4 4 4 4 5
*55.8 c-c55.8 56.0	27.9 c-c9.8 28.0	†1.0 3.0	†2.0	C2	27.9 28.0	.108	13.1	15.8	Stone	Ry. H.W. Ry.	F. 1852, p. 228 G. 1891-1, p. 929 D.	5 5
56.0 56.7 to31.2 57.5 51.1 57.5 57.5 to	28.4 15.6 19.2 17.1 21.3	2.0 5.3 4.0 3.7 3.8	2.0	E C2 E E E E	55.8 28.4 41.5 42.6 45.8	. 187	80.8 77·4 35·2 35·2	†13.2 12.8 14.4 12.8 12.8		H.W. H.W. H.W.	Washington Bridge by Hutton F. 1852, p. 274 F. 1852, p. 280 F. 1852, p. 282 F. 1852, p. 282	5
53.9 58.0 58.0 50.0 58.0	21.3 29.0 22.5 20.0 14.5	2.7	2.7	C2 E C C	29.0 36.2		4.7 24.0 48.0		Sandstone	Aqued't	B. July 7, 1888, p. 2 F. 1852, p. 284 B. July 20, 1889	6
40.0 *58.0 58.3 58.5 57.8 55.5	14.5 17.0 29.2 10.8 10.5	2.7 1.5 2.5 2.5	2.7	P C2 C	21.0 29.2 43.7	.085	48.0 14.0 40.0	10.0	Granite	H.W. Ry. H.W.	E. L. I., F. 1852, p. 237 F. 1852, p. 290	6 6 6
52.0 •58.6 58.7 to 44.8 58.7 to	9.7 8.3 26.6 29.8 22.4 29.8	3.2 5.4 4.3		E C ₂	45.8 29.8	. 281	29.1 53.3 77.7	11.7		H.W.	F. 1852, p. 280 F. 1852, p. 276 F. 1852, p. 276	6
44.8 59.0 59.0 16.4 59.2 59.7	22.4 29.5 29.5 8.2 9.5 29.8	3.3	3.2 4.5	C ₂ C ₂ C ₂ E	50.9	.112	†33.5 42.6 62.2 80.8	12.1	Travert'e	H.W. H.W. Ry. H.W.	M. Feb. 18, 1899 A. April, 1847 F. 1852, p. 288 D. See No. 54 F. 1852, p. 282	6: 6: 7: 7: 7:
50.7 to 50.1 60.0 60.0	11.7	3.3	3 · 3	C C ₂		.076	52.0	8.5	Berea sandstone	Ry. Ry.	B. Jan. 30, 1902 N. June 8, 1899	7 7 7

[†] About.

^{62.} On 4½° curve. Arches Cyl. H.=66'.o. 64. 1st Bridge by Mylne, 1768-72 called New Jamaica St Bridge. Old Bromielaw Bridge. 68. Originally 8 arches, 5 now buried. To give access to St Ange Castle. 60. Paris-Versailles. 70. Five tracks. Ribbed arch Skew 45° 44'. Pa. Ry. N. Y. Div. 73. Two abut. piers, 22'.o. Skew 71° 30'. 74. Twin arches 4'.2 apart. Two tracks. L. S. & M. S. Rv.

APPENDIX.

TABLE II.—DATA FOR ABOUT 500 ARCH BRIDGES

MASONRY

Number.	Name.	· Place.	Over.	Date.	Engineer.	No. of Spans.
75	,	Minneapolis, Minn. U.S.A.	Mississippi R.			I 2
76 77	Dee S. approach Voyne	Val. Llangallen, Wales Drogheda Ireland	Dee R. Boyne R.	1851-67	Macneill	19
78	Viad. Muddy Crk.	Addystone O. U.S.A.	Muddy Crk.	†1895	Kittredge	1 2
:79 :80	W. Jersey St. Kennet	Elizabeth N. J. U.S.A. Near Caversham, England	W. Jersey St. Kennet R.	189 - †1840	Brown Brunel	I I I
181	Staines	Staines, England	Thames R.	1796	Sanby	I 2
#82 #83	Ballater Stirling	Ballater, Scotland Stirling, Scotland	Dee R. Forth R.	1809 1829-32	Telford Stevenson	5 I 2
:84 :85 -86 :87	Richmond Alness Anker	Richmond, England Alness, Scotland Warfield, England England	Thames R.	1774-77 1816 1846	Payne & Couse Telford Grainger	2 5 1 21 1
:88 :89 :90	Dutton Viad. Holy Cross (old) Kingston	England Feldkirch, Austria Kingston England	Weaver Val. Ill. R. Thames R.	13th cen.? 1825-28	Stephenson	19 20 1 5 2
·91	Conemaugh	Saumur, France W. of Ben's Crk, Penn.,	Arm of Loire R. Conemaugh R.	1756-64 1896	Voglio & Cessart Brown	1 2 I
·93	Ben's Creek L. Juniata No. 7	U.S.A. Lilly-Portage, Pa., U.S.A. I m. E. Schoenberger's,	Conemaugh R. L. Juniata R.	1896 1889	Brown Brown	3
95 96 97	Big Chiques Big Viaduct L. Conemaugh No. 6	Penn., U.S.A. Penn., U.S.A. Viad. Sta., Penn., U.S.A. E. of L. Conemaugh, Pa.,	Big Chiques Crk. L. Conemaugh R. L. Conemaugh R.	1884 1889 1889-90	Brown Brown Brown	2 2 3
98 99	Chestnut St.	U.S.A. Philadelphia, Pa., U.S.A. Bewdley England	Schuylkill R. Severn R.	1861-66 1797-9	Kneass Telford	I 2
IOI	Congleton Viad.	Congleton England Ratisbon, Germany Berwick England Charmes, France	Dane R. & H.W. Danube R. Tweed R. Moselle R.	1839- 1135 1847-50 1740	Stevenson	42 15 28 10
104		Kew England	Thames R.			5
105	Gőrlitz	Near Görlitz, Silesia	Neisse R. & Val.	1844-47	1	6 6 18
106		Dôle France	Doubs R.	1760-64	Gueret	7
107	W. Grand St.	Elizabeth, N. J. U.S.A.	W. Grand St.	189-	Brown	I

^{*} Maximum.

Remarks.—76. H. = 147'.6. Intrados to rail = 6'.r. Shrewsbury-Chester, stone facing. 78. Appreach to metal spans Av. H. = 90'. 78. Big 4 Ry. 79. Pa. Ry., N. Y. Div. Skew 60'. Ribbed 80 Great Western Ry. Co. 81. Closed 1797 on account of poor foundation. 84. Clear headway above L W. = 25'.0. 86. Leeds-Thirsk. H. = 90'.0. 87. 816' long. 88. Grand Junc. Ry. H = 73'.0. 89. Replaced. 90. Found. upon blue clay. Kingston-Hampton. wick. 91. A. 1856, p. 376. Found. upon piles. 92. Pa. Ry. Pitts. Div. Four tracks. 93. Pa-

ARRANGED ACCORDING TO SPAN—(Continued). ARCHES.

Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing, te.	Curve.	Radius at Crown.	$\frac{t_0}{R}$.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number.
60.0	15.0			C			40.0	8.0		H.W.	N. Nov. 23, 1895	75
57.0 54.0 60.0 60.0	14.3 13.5 30.0 30.0			C2 C2	30.0		27.8	13.1	Brick	Ry. Ry.	F. 1852, p. 156 A. July 1851, p.384	76 77
60.0	12.0		3.0	CC	43.5	.069	30.0	10.0	Berea sandstone	Ry.	Blue	78
55.0 60.0 60.0	9.5	3.5	3.0	C	37·5 52.1	.067	51.0 ?36.0		Brick	Ry.	D.	79 80
18.0 60.0 52.0		3.0	4.5				:30.0	8.0	Brick	Ry. H.W.	K. Dec. 20, 1895 K. Sept. 13, 1895	81
60.0 60.0 58.0	13.5	2.8	3·5 3·5	C	40.0 38.6	.070	?32.8	9.0	Granite Greenst'e from near	H.W. H.W.	C. 1855-56 C. 1855-56	8 ₂ 8 ₃
53.5	10.3		3.5		39.8	.073			Stirling	H.W.	K. July 12, 1895	84
60.0 60.0	30.0			C			25.0		Brick BrickRing	Ry.	F. 1852, p. 288 F. 1852, p. 169 F. 1852, p. 188	85 86 87
30.0 60.0 60.0	30.0			C ₂ E	30.0		30.0 ?11.0 ?25.0		Brick	Ry. H.W. H.W.	A. 1837, 8, p. 125 O. June 1898 A. Dec. 1842	88 89 90
56.0 52.0; *60.0 60.0	18.3 16.5 21.0 20.0	4.8	3.0	E C	55·4 32·5	.087	44. 7 83.5	12.8	faced with stone	H.W. Ry.	K. July 26, 1895 L. F, 1852, p. 276 D.	91 92
60.0	20.0		3.0	CC	32.5 37.5	.092	36.6	7.0		Ry. Ry.	E. E.	93 94
60.0 60.0	15.0 30.0 20.0	2.7	2.8 2.7 3.0	C C 2	37·5 30.0 32.5	.000		8.0	BrickRing	Ry. Ry. Ry.	E. E.	95 96 97
60.0 60.0	18.0	2.0		CC	34.0			8.0	Brick	H.W.	I. I. L. F. 1852 p. 284	98 99
52.0 60.8 60.8 61.5 61.8 to	16.0 20.0 30.4 30.8 30.0	3.2		C C ₂ C ₂ C ₂	30.4 30.8 30.9		31.0 25.6		Brick Brick	Ry. H.W. Ry. H.W.	A. 1839, p. 444 F. 1852, p. 274 F. 1852, p. 155 F. 1852, p. 276	100 101 102 103
34.I 61.8 to	30.9			C2	30.9	.087		8.5			F. 1852, p. 282	104
38.4 61.8 41.2 30.0	19.2 30.9 20.6 15.5			C2	30.9 20.6 15.5				Red Gran.	Ry.	F. 1852, p. 215	105
24.8 61.8 to 51.2 62.0	12.4	4.3	3.6	E C	12.4 44.7 57.9	.096	51.0		11.5 to	Ry.	F. 1852, p. 280 D.	106

[†] About.

Ry. Pitts. Div. 94. Ribbed. Skew 45°. Three tracks. Pa. Ry. 95. Pa. Ry. Phila. Div. 96.

On 2° curve. Replaced 86′ arch, destroyed May 31, 1889, Johnstown Flood. 97. On 5° 33.

curve. Skew 57° 54′. Ribbed. Pa. Ry. Three tracks. 100. Manchester-Birmingham Ry. 101′.

1. 1896, p. 126, gives span = 53-33 and C2. 102. Stone facing. H. = 124′.6. 105. H. = 115′.3.

328′.0 on curve. Berlin-Breslau. 107. Pa. Ry., N. Y. Div. Skew 57° 41′. Ribbed. Four tracks

MASONRY

Number.	Name.	Place.	Over.	Date.	Engineer.	No, of Spans.
100 111 112 113 114	Holy Cross (new) St. Angelo Barton Aq.	Feldkirch, Austria Rome, Italy Worsley, England Athlone, Ireland Mirepoix, France Frouard, France Ferté, France Montélimar, France Rome, Italy	Ill R. Tiber R. Irwell R. Shannon R. Lers R. Moselle R. Marne R. Roubion R.	1898 135 1760- 1844 1776-99 1788 1806 138	Hadrian Brinkley Rhodes Garipuy Le Creuix Pitrou Voglie M. Rusticus	3 3 7 7 1 3 7
117	Neuf	Paris, France	Seine R.	1578-1604	Cerceau & Mar-	12
119 120 121	Rock River Coldstream L. Conemaugh No. 3 L. Conemaugh No. 2 Stockport Viad.	Watertown, Wis., U.S.A. Coldstream, Scotland Summerhill, Penn., U.S.A. Penn., U.S.A. Stockport, England	Rock R. Tweed R. L. Con. R. H. W. L. Conemaugh R.	1902-03 1771- 1887	Loweth Smeaton Brown Brown	4 5 3 1
123 124 125 126	Rivanna Aq. Teviot-Tweed Houghton River Conon	Carlisle, Scotland U.S.A. Near Kelso, Scotland England	Eden R. Teviot R. Conon R.	1794-95 1809	Smirke Ellet Elliot Haskoll Telford	5 ? 3
128	Boberthal	Near Bunzlau, Silesia	Bober R. & Val.			5
130 131 132 133 134 135 136	Cher Scrivia Cinq-Mars Chante-Perdrix Landwasser V. Raritan River	France Italy France Val-Benoist, Belgium Furand Auzon, France France New Brunswick, N. J.,	Cher R. Scrivia R. Loire R. Furand, R. Vienne R. Landwasser R. Raritan R.	1850 1845-46 1832 1834 1846-47	Beaudemoulin Perraris Bailloud Montluisant Beaudemoulin Lamothe Brown	30 6 3 19 5 1 5 9
		U.S.A.				2 8
138	Kew	Kew, England	Thames R.	1789	Paine	I I 2
139	Bow	Stratford, England	Lea R.	1835-39	Walker & Bur-	4
140		Near York, England	Ouse R.		J. & B. Greene	3
141	Montignac	France	Vézère R.	1766-72	Tardif	3
142 143 144	Brig o'Balgownie	Lancaster, England Old Aberdeen, Scotland Horbury, England	Don R. Aire R.	1281	Bishop Cheyne Clinchamp	5
145 146	Bellecour Viad. d'Arles	Lyon, France Near d'Arles, France	Valley	1789-1810		31

* Maximum

REMARKS.—108. Replaced No. 80. 110. Removed for Manch. Ship. Canal. 111. Gravel foundation. Coffer-dams used. H.=08'.5. 110. See Nos. 68 and 100. 117. Repaired 1840-51. E arches built under the circular. See No. 12. 118. C. M. & St. P. Ry. 120. Pitts. Div. Pa. Ry. Skew 60°. Ribbed. On piles. 121. Pitts. Div. Pa. Ry. Stone parapet. 122. Manchester-Birmingham. H.=105'.0. 123. Intrados has five centres. 124. James River and Kanawha Canal. 128. Berlin-Breslau. Intrados of each at same elevation; 75 ft. high.

ARCHES.

Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing, ts.	Curve.	Radius at Crown.	<u>to</u> R.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number.
62.3 *62.3 *62.3 63.0 63.0 63.9 64.0 64.0 to 45.3 64.0 to 64.0 65.0 65.0 *65.0	15.6 31.5 10.7 19.2 23.5 21.3 32.0 12.7	5-3 5-3 3-7 4-3 4-8 4-5 3-0 2-7 2.8 3.8 2.8	3.0 2.7 7.3 2.8 2.8	CZECEEECZ CZ CCCZECCCZC	55.7 59.7 50.6 32.0 12.7 39.3 40.0 32.5 42.7 32.5	.092 .062 .084 .150	72.5 28.3 23.0 32.0 136.0	12.8 19.4 24.5	Limestone Ring sand [stone Brick	H.W. H.W. H.W. - Ry. Ry. Ry. Ry. H.W. Canal H.W.	O. June 1898 L. O. R. Dec. 1888 A. 1844, p. 444 F. 1852, p. 282 F. 1852, p. 276 F. 1852, p. 276 F. 1852, p. 276 B. Mar. 26, 1903 L. E. E. E. C. 1855, p. 158. J C. 1855, p. 158. J C. 1855, p. 158. J C. 1855, p. 286	108 109 110 111 111 111 111 111 111 111 111
45.0 65.6 less 65.6 65.6 65.6 65.6 65.6 65.6	21.9 13.1 21.6 8.8 32.8 21.9 32.8 32.8 33.0	3.9 3.9 3.3 3.3 3.3	4.4	E E C E C C 2 C C 2	47.5 47.7 65.5 32.8 47.5 32.8 33.0		29.5 28.9 26.2 26.2 8.5 55.0	8.5	Brick ring Freestone Limestone	Ry. Ry. Ry. Ry. Ry. Ry. H.W. Ry. Ry. Ry. Ry.	F. 1852, p. 212 F. 1852, p. 294 F. 1852, p. 296 F. 1852, p. 296 J. J. F. 1852, p. 290 J. F. 1852, p. 294 G. 1st Tri., 1901 Engineer, April, '04 N. Oct. 10, 1903	129 130 131 132 133 134 135 136
56.0 51.0 72.0 66.0 55.0 45.8 66.0	28.0 25.5 24.0	2.5	4.0	E ₂	25.5 39.0	.084	24.0 42.5 20.6	to 11.0	Granite ring Brick in-	H.W. H.W. Ry.	K. June 14, 1895 A. Oct. 1837, p. 14; A. April 1839, S	138
66.r to 42.6 66.9 67.0 67.9 to 35.4 68.2 68.9	21.3 33.5 12.6 24.4 23.0	6.4		C C2 P E E E	33·5 57·5		2910	17.1	terior	Canal H.W.	F. 1852, p. 280 F. 1852, p. 286 L. F. 1852, p. 282 F. 1852, p. 284 F. 1852, p. 129	141 142 143 144 145

^{129.} Tours-Bordeaux. Skew 34° 30′. 130. Turin-Genoa. 131. Tours-Nantes. 134. Tours-Bordeaux. 135. Cost 1,017,300 f. 136. Thusis-Engadine. 137. Penn. Rv. 130. Replaced old bridge of 1100-1118. Slight skew. Foundation on gravel. 140. Great North of England Rv. On piles. 142. Bottom of canal to intrados=8′.5. 146. Avignon-Marseilles. H.=27′.9. Pile foundation.

MASONRY

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
147	Central Ave.	Indianapolis, Ind., U.S.A.	Fall Crk.	1899		2 I
140	Bord Karlsbürcke Potarch	Prague, Austria Wales(?)	Oeil R.(?) Moldau Dee R.	1764 1357-1507 1813	Leclerc Telford	1 16 1
151	Lockwood	Nr. Huddersfield, England	Sheffield R. Val.	1846-49	Hawkshaw	2 I I
152 153	Wellesley Wharncliffe Viad.	Limerick, Ireland Brent-Knoll, Enlgand	Shannon R. Brent R.	1827 1836-37	Nimmo Brunel	3 2 5 8
154	Crum Elbow	Hyde-Pkon-Hudson, N. Y., U.S.A.	Crum Elbow Crk.	1898	Morris	I
157	Wissahickon Shock's Mills Rockville	Pa., U.S.A. Shock's Mills, Pa., U.S.A. Rockville, Penn., U.S.A.	Lea R. Susquehanna R. Susquehanna R.	1881-2 1903- 1901	Braithwaite Buchholz Brown Brown	5 28 48
160 161 162 163	Homps Spoleto Aq. Colorado St.	France(?) Pavia, Italy Swatara, Penn., U.S.A. Spoleto, Italy St. Paul, Minn., U.S.A. Helmsdale, Scotland(?) Luxemburg, Germany	Lère R. Ticino R. Aude R. Valley(?) Helmsdale R.(?) Petrusse R.	1787 14th Cent. 1785 741 1889 1816 1899–1903	Pertichamp Under Visconti Osborn Ducros Theodelapius Rundlett Telford Sejourne	3 7 6 3 10 1 2
167	North	Edinburgh, Scotland	Waverley Ry. Sta.	1763†		3
169 170 171	North Loch Schuylkill Black Rock Tunnel London (old) Brunswick	Nr. Edinburgh, Scotland Philadelphia, Pa., U.S.A. Penn., U.S.A. London, England N. Brunswick, N. J., U.S.A.	N. Loch Valley Schuylkill R. Thames R. Raritan R.	1836 1176-1209 1758 1902	Mylne Robinson Peter of Cole- [church Brown	
174 175 176	Aulne Boston Ave. Zeniec Schmiedtobel	France Medford, Mass., U.S.A. Austria Near Klösterle, Austria	Mystic R. Schmiedtobel	1900	Arnoux Bailey Huss	1 8 12 1
178	Po Teviot-Tweed Conon Viad.	Near Valenza, Italy Dresden, Saxony Kelso, Scotland Conon, Scotland	Po R. Elbe R. Tweed R. Conon R.	1850 1179-1260 1799-1803		21 18 5 5
181	Staines	Staines, England	Thames R.	1832	Rennie	1
18:		Fucecchio, Italy	Arno R.	1869		5
			1			1

* Maximum.

Remarks.—147. Cost about \$30,000. Pile foundation 3' center to center. 149. Partially destroyed, flood 1890. 151. Huddersfield & Sheffield Rv. 70' and 45' arches on skew and ribbed. H.—122'.0. 152. "Bell-mouthed" type. 153. Great Western Ry. of England. 156. Cost \$375,000. 157. Penn. Ry., two tracks. 158. Penn. Ry., four tracks, 6° curve at one end. 160. Replaced by another bridge. Covered. Roof supported by marble columns 161. Lebanon Valley Ry. 163. Now in use. Piers of stone. H.=292'.. at springing. 164

ARCHES.

Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing, ts.	Curve.	Radius at Crown.	$\frac{t_0}{R}$.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Minneton
69.0 69.0 60.2	14.0	2.0	2.0	E			50.0	6.0	Limestone Ring Oö-	H.W. and E. Ry.	H. W. Klausman F. 1852, p. 280	I,
69.5	25.8			C	36.6	.068	20.0	10.0	L		P. 1896, p. 126 F. 1852, p. 288	I
60.0 70.0 45.0	8.0	2.6	2.6				28.0	4.5	Sandstone	Ry.	C. 1850 A. April, 1851, p.	ı
70.0			†1.5 †3.6	E E	15.0	.100	43.0		Brick, stone fac'g	H.W. Ry. H.W.	215 C. 1855-6. S, Q. A. 1837-8, p. 126; F. 1852, p. 181 B. Feb. 16, 1899	1 1
70.0	17.5 23.0 20.0 20.0	3.8	3.5	E C C		.086 .086		9·5 8.0	Brick ring Talcose sl. Stone ring	Ry. Ry. Ry. Ry.	S. B. May 2, 1902 T. March 11, 1904 B. March 10, 1900 T. Oct. 25, 1901	III
70.3 70.4 70.0 70.2 70.3 70.5 70.7	35.2 64.0 25.0 9.4 35.2 11.0 25.0 35.4	3.9 3.5 4.3 3.5	†4.6	C2 P C C C2 C C	37.0 68 2 35.2	.046 .093 .063	22.5		Brick Brick Freestone Brick Limestone	H.W. Ry. Aqued't H.W.	F. 1852, p. 284 F. 1852, p. 276 I. J. F. 1852, p. 284 J. Q. N. Nov. 23, 1889 F. 1852, p. 288 N. Oct. 12, 1901 N. Mar. 1, 1902	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
71.0	35 - 5			C2	35.5		54.5	13.5	Craigleith	H.W.	K. Oct. 1899, pp.	I
72.0 72.0 72.0 to 20	36.0 16.5 16.5	2.0	2.8	C ₂ C C	47.5	.078 .042 .059	18.3	25' to		H.W. Ry. Ry. H.W.	I. F. 1852, p. 292 I. L.	I
72.0 72.0 66.0 56.0	36.0 33.0 28.0	3.3	3·3 3·3 3·2	CCCC	33.0	.092	55.0			Penn. Ry. 4 tracks	B. Jan. 30, 1902, p. 86	I
51.0 72.2 72.2 72.2	25.5 31.1 15.5	2.5	2.5 4.3	C2	31.1 49.8	.050	26.6 56.0		Granite	Ry. H.W. Ry. Ry.	G. 1st Tri. 1901 Wm. G. Taylor B. Dec. 7, 1893 G. 1888, XVI, p.	1
72.2 39.4 72.2 72.5 73.0	36.1 19.7 11.2 36.3 21.0	3.8	7.5	C ₂ C ₂ E	19.7 63.9	.059	32.8	[17.1 9.84& 29.9	Brick	Ry. H.W. H.W. Ry.	575 F. 1852, p. 296 F. 1852, p. 274 L. K. Sept. 20, 1867,	
74.0 56.0	9.3	3.0	6.0		78.0	.038	34.0	8.3	Granite	H.W.	pp. 206, 257 C. S. K. Sept. 13, 1895, p. 336 Jour. F. Inst., Feb. 1870, p. 101	1

[†] About.

Skew 60°. Pile foundation. 166. Four lateral arches in each spandrel. 167. Replaced by steel, 1808-9. 168. H. = 65'.0 to top of parapet. 169. To Mt. Carbon, W. Va. 170. Phila. & Reading Ry. 171. Replaced in 1824-31. 172. 72' span. Stepped Skew 63° 10'. Backing of masonry 24' to 28' above springing, then earth fill. 173. Cost 2,165,000 f. 174. Cost \$17,300. Skew 16'. 175. Austrian State Ry. 176. Austrian State Ry. 177. Alessandria to Lake Maggiore. 179. Below Elliot's Bridge. 180. Highland Ry. one track.

MASONRY

						_
Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
I 83	Albany St.	Scotland N. Brunswick, N. J., U.S.A.	Earn R. Raritan R.	1781-1821 1892	Rennie Dean and West- brook	3 7
x 85	Whitadder	Allantown England(?)	Whitadder R.	1842	Stevenson	2
186	Westminster (old)	Westminster, England	Thames R.	1738-50	Labelye	15
187 188 189		St. Maxence, France Navilly, France Roanne, France	Oise R. Doubs R. Loire R.	1774-85 1780 1789-1809	Perronet Gauthey Vareigne and Vimar	3 5 7
190		Compiègne, France	Oise R.	1783	Lahite	3
191 192	Pont Royal	Semur, France Paris, France	Armancon R. Seine R.	1780 1685	Dumorey Mansard	5
194 195 196	Cestius Hyde Park Crown St.	Rome, Italy Perth, Scotland Readville, Mass., U.S.A. Italy Orleans, France Glasgow, Scotland	Tiber R. Tay R. Hyde Park Ave. Taro R. Loire R. Clyde R.	1816-20	Under Cestius Smeaton Curtis Cocconcelli Stevenson	1 9 1 20
199	or Hutchenson Molle	Near Rome, Italy	Tiber R.	†100 B.C.	Scaurus	2
200	Fabricius	Rome, Italy	Tiber R.	†62 B.C.	Fabricius	I
201		Scotland	Avon R.	1820	Telford	I
	Annan High Bridge	Near Johnstown, Scotland New York, N. Y., U.S.A.	Annan R. Harlem R.	1820 1837-42	Telford Jervis	8
	Conewago Schuylkill Falls	W. of Conew'o, Pa., U.S.A. Philadelphia, Pa., U.S.A.	Conewago Crk. E. Pk. Drive	1891-92 1890	Brown Nichols	7 3 I
	Conemaugh	Viad. Station, Pa., U.S.A.	Conemaugh R.	1833	Penn. Ry.	1
208	Posen Viad. Vittorio	Posen, Germany Turin, Italy	Po R.	1810	Pertinchamp	5
209 210	Painsville Viad.	Near Painsville, O., U. S.A. Trilport, France	Marne R.	1758-64	Peronnet	3
211	Pont du Gard	14 m. from Nismes, France	Gardon R.	Bet. 27 B.C14A.D 1st tier 2d tier top tier	Under Agrippa	3 2 12 36
212 213 214 215		Prague Austria York, England Near Montlouis, France Tablonica Austria	Moldau R. Ouse R. Loire R.	16th cent. 1845	Morandière	8 3 12
216		Baiersbonn, Germany Near Pontoise, France	Forbach R. Oise R.	1890 1843	Leibbrand De Breville and Couche	3

^{*} Maximum.

Remarks.—183. On piles. 184. Skew. 186. First use of modern caisson. Replaced by cast-iron bridge. 187. Radial joints in spandrels. 193. Continuation of Pabricius Bridge. 195. Skew 61° and 77° 52′. N. Y. N. H. & H. Ry. 200. 13′ arch in pier. 201. Glasgow-Carlisle. 203. H. = 100′.0. Parapet 116′ above water. 204. Phila. Div. Pa. Ry. 6° curve. Two tracks. 205. Phila. & Reading Ry. 206. Pitts. Div. Pa. Ry. Destroyed by Johnstown Flood, 1889. 208. Commenced by French 1810. Completed by King Victor

ARCHES.

	20.											
Span.	Rise.	Thickness of Arch Ring at Crown 40.	At Spring- ing, ts.	Curve.	Radius at Crown.	$\frac{t_0}{R}$	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number.
75.0 *75.0	18.5		2.4	E C	54.4	.044	40.9	18.6	Brick	H.W. H.W.	S. 1839 B. April 16, 1892,	183
75.0	11.5	2.5	3.0				130.0	10.0	stone fac'g Soft red	H.W.	A. March, 1844, p.	185
*76.0	38.0	7.6	14.0	C2	38.0	. 200	46.9	18.1-	sandstone Portland	H.W.	K. 1895, p. 306; L.	186
76.0 76.7 76.7	6.4 25.6 26.6	4.8		C E E	118.2 53.3 63.9	.080	76.7 35.1	12.8 9.6 16.0 13.3	stone	H.W.	F. S. F. 1852, p. 282 F. 1852, p. 284 F. 1852, p. 284	187 188 189
76.7 to				E	53.3	.080	32.0	12.8		H.W.	F. 1852, p. 278	190
70.3 76.8 76.8 to 68.2	19.3 38.4 25.7 24.6	3.2		C ₂ E	38.4	.084	55-4	14.9		H.W.	F. 1852, p. 282 F. 1852, p. 276	191
76.8 *77.0 78.0 78.7 79.0	38.4 14.3 21.6 26.3 13.4	3.0 1.2 4.0	3.0	C2 CCEC	60.3 46.6		†26.0 165.0	15.1	Brick Sandstone	H.W. H.W. Ry.	Q. F. 1852, p. 274 L. T. Aug. 12, 1898 F. 1852, p. 288 L. C. 1855-6	193 194 195 196 197
74-5 65.0 79.3 to 51.0	8.7	3·5 3·5	4.3		64.7	.054	†29.0			H.W.	Q. Cresy's Enc. C.	199
80.0 70.5 80.0	40.0 39.8 20.0	6.0		C ₂	40.0 39.8 50.0	.151	27.0	†32.0	Peperino, tufa and traverti'e	H.W.	F. 1852, p. 274 M. No. 1207 F. 1852, p. 288	200
80.0	20.0 40.0 25.0	2.5	2.5	C C2		.060	20.0			Aqued't	F. 1852, p. 288 Johnson's Ency.	202
50.0 80.0 80.0	40.0	3 - 5	3.5	C ₂	40.0	.088		12.0		Ry. Ry .	E. B. May 24, 1894;	204
80.0 80.0 *80.0	40.0 16.0		3 - 5	C ₂ C E	40.0 58.0				Sandstone Brick Granite	Ry.	Jan. 24, 1891 Q. Am. Sup. I. U.	206
80.0 80.4 to	40.0		3.0	C ₂	40.0	.075		10.0		Ry. H.W.	B. May 2, 1902 Q. F. 1852, p. 280	200
76.7 80.5 63.0 51.0	27.7 40.3 31.5 25.5	5.3		C2	31.5	.124			Freestone	Aqued't and H.W.	Johnson's Ency. P. Oct. 1896, p. 122	211
15.8 *80.9 *81.0	7.9	2.6		C P	7.9		15.0		Granite	Ry. H.W.	K. May 10, 1878 Q. K. Dec. 22, 1871	212
81.2 82.0 82.0	23.3	3.6	5.2	E	78.5		?21.7	10.7		Ry. Ry. H.W.	B. Dec. 7, 1893 G. 1st T. 1901	214 215 216
82.0	11.7	4.6		C	77.6	.059	25.4	10.1		Ry.	F. 1852, p. 294	217

[†] About.

Emmanuel. 200. Lake Shore & M. S. R.R. 210. First bridge entirely designed by Peronnet. 211. Fifth century, ends destroyed. Repaired 1743 and piers prolonged for new bridge. H. = 160'.0. 212. Between Karlin and Bubua. Viaduct has 87 arches. 214. Orleans-Tours. Damaged in War 1870-71. 215. Austrian State Ry. 216. Three-lead hinges. Cost 18,260 f. 217. Skew 76°. Ch. de fer du Nord.

MASONRY

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
	Crueize Viad. Stulz Viad.	Near Marvejois, France	Crueize R. Stulz Gorge			6
220	Mussy Viad.	Mussy, France	Mussy R.	1892-6	Geoffroy, Morris	18
222	Pont Royal Cart	Paris, France Moret, France Elkader, Iowa, U.S.A. Paisley, Scotland	Seine R. Loing R. Turkey R. Cart R.	1685 1771 1888 1839	Mansard Peronnet Tschirgi Locke	5 3 2
225 226 227 228	Big Walnut Cognet	U.S.A. Sisteron, France Hautes Alpes, France Maligny	Durance R. Drac R. Serin R.	1902 1500 1605	Graham Werbruge	3 1 2
229		Darlaston, England Coatsville, Pa., U.S.A.	W. B. Brandywine	1902	Brown	2
231		Blois, France	Loire R.	1723	Gabriel	7
232		Bordeaux, France	Garonne R.	1813-22	Deschamps	17
233	Lea Cut	Lea Cut, England	Lea Cut R.			
234	Salarius	Narses, Italy	Teverone R.	Rebuilt 6th cent.		2
235	Fouchards	Samur, France	Thougt R.		Trudaine or Voglie	3
236	Pont de Pierre	Grenoble, France	Isère	1839	Picot	I 2
237 238 239	Dee Viad.	La Voulte, France Albois(?), France Bet. Rhos-y-Medre and Chirk, Wales(?)	Allier R. Aveyron R. Dee R.	1770 †1849	Boesnier	3 3 19
240	Dunkeld	Dunkeld, Scotland	Tay R.	1809	Telford	7
	Dean Licking Aq.	Near Edinburgh, Scotland Castellane, France Romans, France	Licking R. Verdon R. Isère	1404	Telford Fisk	1 4
245	Enz	Near Hofen, Germany	Enz R.	1885	Leibbrand	I
246	Jena	Paris, France	Seine R.	1806-12	Lamandé	5
240	Alcantara Louis XVI(?)	Stonleigh, Enlgand Toledo, Spain France	Avon R(?) Tagus R.	1781-1821 997 1791	Rennie Romans(?) Perronet	3
	Spey Trinity	Fochabers, Scotland Florence, Italy	Spey R. Arno R.	1569	Burn Ammanati	3
252 253	St. Edme	Pontoise, France Nogent-on-Seine, France	Oise R.(?) Seine R.	1772	Peronnet Peronnet	3
2 - 4	Vecchio	Florence, Italy	Arno R.	1177	Gaddi	3
2 - 5		Neuville, France	Ain R.	1775	Aubry	2

* Maximum.

Remarks.—218. H. = 207'.6. Midland Rv. 210. Thusis-Engadine. 220. B. Nov. 8, 1804, p. 388. Paris, Lyon. 224. Glasgow & Paisley Joint Ry. 225. B. & O. Ry., Newark Div., two tracks. 230. Over Wilmington & Northern Ry. and deep ravine. 234. Blown up in

ARCHES.

Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing, ts.	Curve.	Radius at Crown.	$\frac{t_0}{R}$	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number
*82.0 82.0	†41.0 41.0	†4.2 3.3	†8.2 4.9	3C	41.0	.102	?26.2 8.5	16.4		Ry. Ry.	R. March, 1891 Engineer, April 8,	218
82.2	41.1	4.6		C2	41.1	.112	26.5	16.4-	Granite	Ry.	K. April 30, 1897.	220
*82.3. 83.1 84.0 85.0	27.9 18.0	4·3 3.0	4.0 3.3	00 05	153.4 45.5	.028	†60.0 41.6 30.0	8.0 8.0	Limestone	H.W. H.W. Ry. Ry.	P. 575 L. F. 1852, p. 280 B. April 11, 1891 A. 1839, p. 313 T. Aug. 22, 1902	221 222 223 224 225
85.2 *85.3 85.3 86.0 86.0 78.0	57.5 42.6 42.6 13.5 43.0	3 - 5		E C2 C2 C	42.6 42.6 75.2 43.0 39.0	.108 .070 .047	11.8 21.3 ?26.5		Freestone	H.W. H.W. H.W. Ry.	F. 1852, p. 282 F. 1852, p. 276 J. F. 1852, p. 282 C. 1855-56 T. Nov. 21, 1902, p. 898	226
86.3 to 54.3 86.9 to 65.9	30.9	3.9		E E	57.5	.120	49.2	15.9 13.8	Brick and stone Brick,	H.W.	F. 1852, p. 276 P. 1886, p. 134 J. F. 1852, p. 288 C. 1855-56	231
87.0 87.8	43.9			C2	43.9		27.8		stone trim	H.W.	M. Feb. 18, 1899.	23;
88.4	7 - 4			С	84.2			10.1			p. 19346 F. 1852, p. 282	23
88.6	22.1		1	E	114.8	.034	32.8	16.4			F. 1852, p. 292	23
75.4 *89.5 *89.5 *90.0	20.7 28.8 33.0			E E	52.2	.070	38.4	12.8	Fine stone	Ry.	F. 1852, p. 282 F. 1852, p. 280 A. Oct. 48, p. 317	23 23 23
90.0 to	30.0	3.0	-		48.7	.062	27.0	16.0-		H.W.	L. F. 1852, p. 286	24
90.0 90.0 90.3 91.1 to	30.0 15.0 29.9 23.9	2.8	-	CCC	76.0	.061			Aqued't	H.W.	I. I. F. 1852, p. 274 F. 1852, p. 282	24 24 24 24
70.2 c -c91.9	c-c9.2	3.3	4.9	C	119.4	.041	10.7		Sandstone	H.W.	K. 1892, p. 560; G. 1891, p. 920	24
*91.8	10.8	4-7	†8.0	C	102.0	.046	46.4	9.8	Freestone	H.W.	C. 1855-56; H. F. 1852, p. 286	24
92.0 *93.0 94.0	13.6 46.5 9.8	14.6		C	87.9	.052				H.W. H.W.	S. P. 1896, p. 130 Woodbury, 1858	24 24 24
*95.0 95.8 to 87.6		3.2	3.2	E			33.8	26.3	marble	H.W. H.W.	L. A. April, 1847, p.	~
95.9	28.8	5.3		C E	79.9					H.W.(?)	F. 1852, p. 280 F. 1852, p. 280; V.	25 25
*95.9	19.2	5-3		P	85.2	.062	105.0	23 - 5	Freestone	H.W.	July 17, 1897 J. F. 1852, p. 276; P. 1896, p. 129	25
96.0	26.6	4.3		E	71.1	.060		19.2		-	F. 1852, p. 282	25

[†] About.

^{1867. 239.} Shrewsbury & Chester Ry. 242. Chesapeake & Ohio Canal. 245. Three lead "hinges." 247. On piles. 254. Covered. Rebuilt about 1350.

448

TABLE II.—DATA FOR ABOUT 500 ARCH BRIDGES

MASONRY

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
256	Dean	Edinburgh, Scotland		1831	Telford	4
257 258	Fleischbrücke	Drôme, France Nuremberg, Bavaria		1774 1599	Bouchet Carln	3
260	Imnau Rialto	Near Imnau Charrey, France Near Chalonnes, France Venice, Italy	Eyach R. Saône R. Loire R. Grand Canal	1896 1888 1864-5 1588-91	Liebbrand Mocquery Morandiere Ant. da Ponte	1 5 17 1
.263	Margherita	Rome, Italy	Tiber R.	1891	Vescovali	3
264 .265	Pont du Jour	Carbonne, France Paris, France	Garonne R. Seine R.	1770 1864	Saget Bassompierre	3 5 31
267 268	Alcantara Aq. Bishop Aukland Etherow River Blackfriars (old)	Near Lisbon, Portugal England London England	Wear R. Etherow R. Thames R.	1731-75 1388 1760-70	Hoskoll Robt. Mylne	35
	Alcantara Wellington	Alcantara, Portugal Leeds, England	Tagus R. Aire R.	100†	Trajan Jno. Rennie	6
.272	Rutherglen	Bet. Glasgow and Ruther- glen, Scotland	Clyde R.	1895	Crouch & Hogg	1 2
-273		Minneapolis, Minn., U.S.A.	Mississippi R.	1882-93	Smith	4
					1	15
:274	Elster Viad.	Bet. Reichenbach and Plauen, Saxony	Elster R. & V. (two tiers)	1846-50	Wilke	18
275	Göltzsh	Bet. Reichenbach and Plauen, Saxony	Göltzsh R. & V. (four tiers)	1846-5-	Wilke(?)	20 23 16
277	Lempde Montlyon	Rouen, France France	Alagnon Seine R.	1785	Mauriset Lamandé	5
	Pont au Double	Paris, France	Durance R. Seine R.	1805	Delbergue-Cor- mon De Lagalisserie	I
	Guillotière	Lyons, France	Rhone R.	1265	Ass. des frères	18
281	P. de la Concorde	Paris, France	Seine R.	1787-92	Dupont	1
	Gère Avignon	Munich, Bavaria Vienna, Austria Avignon, France	Isar R.(?) Rhone R.	1814 1781 1177-87	Wiebeking Vimar Benezet	21

* Maximum.

Remarks.—256. 96'.0 arches are under sidewalks. 257. 90'.0 arches are under roadway. 250. Three granite "hinges." 261. Granite piers on concrete foundation. Two tracks. 265. Parapets, etc., Jura marble. 266. H.=230'.0. Highest single tier of stone arches in the world.

ARCHES.

				,								_
Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing. te.	Curve.	Radius at Crown.	<u>to</u> . ₹	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Manuel
96.0	16.7	3.0			77.5	.030	41.0			H.W.	F. 1852, p. 192	2
*96.0 97.0	27.7	6.4		E P	74.5	.086	53.3	17.1		H.W.	F. 1852, p. 282 P. 1896, p. 132; F.	2.
c-c98.4 *98.4 98.4 98.5	c-c9.8 12.3 †24.6 23.0	3.8	1.6	C C E P	128.4			11.5	Beton Limestone Marble	H.W. H.W. Ry. H.W.	1852, p. 276 G. '98, 2d Tri. G. VI, 1896, p. 737 K. Oct. 18, 1867 Q. P. 1896, p. 122; F. 1852, p. 276	120
*99.0	16.5	†5.0	†6.0	5C			?67.5		Rezzato & travertine stone	H.W.	R. June, 1892, p. 260	20
99.1 99.2 15.8	40.5 31.2 7.9	3·7 5·3		E E C	73.5	.050	25.6 101.7 29.5	22.6	Stone fro Château Haudon	m H.W. Ry.	F. 1852, p. 280 K. Feb. 8 & Jan. 25, 1867	20
*100.0 100.0 *100.0	88.0 22.0 25.0 43.0	1.8	1.8	P C E	62.5	.064	?45.0		11auu011	Aqued't H.W. Ry. H.W.	P. 1896, p. 137 I. I. L. P. 1896, p. 136;	20
*100.0	50.0	4.0	7.0	C2 C	50.0 90.8	.043			Granite Brown sandstone	H.W. H.W.	P. 1852, p. 280 L. A. 1844, p. 128 and	2
90.0	12.6	4.0	4.0	C	97.6	.041	†50.0	13.5	Granite	H.W.	Engineer, Aug. 23,	27
0.001	39 . 7	3.0					28.0		Limestone	Ry. ,	Jour. West. Soc. Eng.	27
80.0 71.4 42.9	15.0	2.7			40.0	.067		14.0			Vol. 8, 1903, p. 421	
40.0 100.3- 23.2	5 · 3	2.7		C2			26.1		Brick mostly	Ry.	F. 1852, p. 209	2
100.3 92.9 46.8 44.6 41.8	46.4 23.4	3.7 3.7 1.5 1.5		C C C C C C E C	46.8 23.4 23.4 23.4 23.4	.064	?26,1		Brick mostly Rings of brick	Ry.	F. 1852, p. 199 Q. Am. Sup.	27
39.0 101.2 101.7	32.0 13.7 32.0	4.5		E C E	93.7					H.W.	F. 1852, p. 284 H. F. 1852, p. 286	2
101.8	9.8	5.3		С	136.2	.039	52.2		Millstone grit	H.W.	J. F. 1852, p. 296	2,
02.3-	38.4	2.1			62.9	.034		34.1	Riit	H.W.	F. 1852, p. 274	2
26.2	9.8	3.7		C	148.0 127.5 138.2	.027	51.1	9.6	Freestone	H.W.	J. F. 1852, p. 284	2
83.1 102.3	6.4 17.1 28.2	3.2 4.3 5.2		C C C ₂	82.5		42.6	9.6	Freestone	H.W.	J. F. 1852, p. 288 F. 1852, p. 284 J. L. P. 1896,	2

[†] About.

^{260.} Replaced by cast iron, 1865. 270. H.=210'.o. 271. Coffer-dams employed. 273. Minneapolis Union Ry. Two tracks. 274. Sax my-Bavaria. 275. Saxony-Bavaria. H.= 264'.o. 284. In ruins.

MASONRY

-	1	1	1	1		1
Number.	Name.	Place.	Over.	Date.	Engineer.	No, of Spans,
285		Port de Piles, France	Creuse R.	1846-47	Вауеиж	T.
286 287	Herault	Route of Nice, France Prague, Bohemia	Herault R.(?) Moldau R.	1878	Grangent Reiter	3 I I 2
28 9	Wissahickon	Marbach, Germany Philadelphia, Pa., U.S.A.	Murr R. Wissahickon Crk.	1887	Leibbrand Gen. Thayer	2 2 I I
	Potomac Aq. Ponthaut	Washington, D. C., U.S.A. Germany Orleans France	Potomac R. Bonne R. Loire R.	1793 1750-60	Hupeau	7 1 9
293 294 295 296 297		Hartford, Conn., U. S. A. Baiersbronn, Germany Wurtemberg, Germany Winstone, England Sault, France	Connecticut R. Murg. R. Nagold R. Tees R. Rhone R. Br.	1903 1889 1882 1762 1825-27	Graves Leibbrand Robinson Montluisant	H
298	Lodi St.	Elyria, Ohio, U.S.A.	W. Br. Black R.	1894	Jackson and	2 I
299		Toulouse, France	Garonne R.	1543-1632	Bunce Souffron	7
300	2d Worochta	Worochta, Austria	Pruth R.	1892-93	Huss	12
301		St. Esprit, France	Rhone R.	1265-1309	Ass. des frères	19
302 303		Nantes, France Mantes, France	Loire R. Seine R.	1757-65	Dupont Hupeau	3
304	Grand-Maître	Fontainebleau, France	Fontainebleau V.	1869	Belgrand	21
	Cresheim	Fairmont Park, Philadel- phia, Penn., U.S.A. Paris, France	Cresheim Crk.	1892	Webster Ma	ny
	Napoleon Tongueland	Paris, France Near Kirkendbright, Scot- land	Dee R.	1806	Telford	r
308		Hartford, Conn., U.S.A.	Connecticut, R.	1904-	Graves	6.
						I I 2 I
300	Waterloo (new)	London, England	Thames R.	1817	Rennie	2 9
310	Devil's Br.	Near Lucca, Italy	Serchio R.	1000†		r
311	Têtes	France Bourbonnais, France	Durance R.	1732	Hanriana	r
313 314	Vingeanne Val. Maidenhead	Near Oisilly, France Rumilly, France Rumilly, France Maidenhead, England	Vingeanne Val. Cheran R. Thames R.	1785 1832-38	Vaudray Garella Brunel	7 1 6.

^{*} Maximum.

Remarks.—285, Tours-Bordeaux. Two tracks. 288. Three lead "hinges." 280. Skew 60° 26'. Ten 4' ribs. 203. See No. 308. 294. Three lead "hinges." Cost 23.800 f. 299. Stone trimmings. 300. Austrian State Ry. 301. Small arches in piers. 304. Paris

ARCHES.

Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing to.	Curve.	Radius at Crown.	$\frac{t_0}{R}$.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number.
103.8	40.5	4.3	4 · 3	E	70.8	.060	30.0	19.2	Freestone	Ry.	C. 1851-52; J. F.	285;
98.4 104.4 105.0 99.8 94.5	15.4 16.2 15.3	2.7	5 - 3	С	90.5	.029	22.4 39.8	13.1	Granite	H.W.	F. 1852, p. 294 F. 1852, p. 280 K. May 10, 1878, p. 359	286 287
89.3 105.0 105.0	13.7 10.2 11.0	3.9	4.9	C(?)	140.2 118.1				Cousho- hocken stone	H.W. H.W.	G. 1891, 1, p. 922 B. Sept. 9, 1897. p.	288 289
*105.0	53.1	5.7		C2	53.T	. 108	29.5		Stone	Aqued't	A. 1837, 8, p. 148 F. 1852, p. 284	200°
106.5-	28.8	6.9				.083		19.2-		H.W.	L. F. 1852, p. 276	292
108.0 108.2 108.8 108.8	27.0 10.8	2.0	2.6 5·3	E			21.7?	†18.0	Granite	H.W. H.W. H.W.	N. Dec. 26, 1903 G. 1st Tri., 1901 G. 1891, 1, p. 903 L.	293 294 295 296
111.5	31.9			E E	114.2	.057		22.2			F. 1852, p. 288	297
112.0			4.3				38.0		Elyria sandstone	H.W.	C. H. Snow, City Engineer, Elyria, O.	298
113.0- 44.8	38.4	3.7				.049		26.6	Brick	H.W.	F. 1852, p. 276	299
113.5- 32.8	56.8	4.3	6.7	C ₂		.076			i	Ry.	B. Dec. 7, 1893, p.	
114.1- 81.0	44.8	5.9		C	70.4	.084	17.6	27.8		H.W.	F. 1852, p. 274	30I
115.2 *115.4	34 · 4			E						H.W.	Q. I.	303
115.8				1					Beton	Aqued't	K. Oct. 1869, p. 275	304.
†42.5 116.0	21.2	3.5	4.5				10.0		Buff sandstone	Sewer	B. Aug. 31, 1893, p.	305
116.0				C	64.8	.056	24.0			Ry. H.W.	I. L. F. 1852, p. 286	306
Small 68.0	21.1							15.0-	Granite	H.W. and	T. Feb. 19, 1904, p.	308.
74.0 81.0	22.9						- Aller and a second	40.0		El. Ry.	N. Dec. 26, 1903 N. Dec. 31, 1904. p.	
108.0	27.0	3.									703	
119.0			10.0	E			44.0	20.0	Granite	H.W.	S. K. Feb. 22, 1895, p. 236; F. 1852	309
120.5	60.3	14.5		C2	60.3	.074	12.0		Limestone		C.	310
123.6			3.6	C ₂	61.8	.06			Granite	H.W. Ry.	F. 1852, p. 278 I.	311
124.0 127.0 127.6	46.6	3, 5.3	7.5	E Č2 E		3 . 08	714.0	5	Freestone Brick	Ry.	B. Dec. 7, 1893 J. F. 1852, p. 284 P. W'ks, G. B., '46 K. Oct. 25, 1895	313. 314 315.
21.0	1		1		1							

[†] About.

water-supply. 308. Pneumatic foundations. Cost (est.) \$1,600,000. 310. Four small side arches. 313. E. Ry. of France. 315. Great W. Ry.

MASONRY

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
316		Neuilly, France	Seine R.	1768-74	Perronet	5
.317		Mantes, France	Seine R.	1757-65	Hupeau under Perronet	I 2
.318	Echo Br.	Newton Upper Falls, Mass.	Charles R.	1876	Fitzgerald	I
.319 .320 .321	North Ave.	U.S.A. Elyria, Ohio Aberdeen, Scotland Wan Hsien, China Baltimore, Md., U.S.A.	Black R. Den Burn Rill Gorge-Jones' F'lls	1801+	Telford Smith	1 1 1 3
	ıst Worochta	Worochta, Austria	Pruth R.	1892-93	Huss	I
	Boucicault	Verjux, France	Saône R.	1888-90	Jozou.	5
.325	Moret Viad.	Moret, France	Loing Val.	1847-49	1	2
:326		Scrivia, Italy	Scrivia R.	1850+	Ranco	30
.328	Vizille Waldi-Tobel	Toledo, Spain Villeneuve, France Near Grenoble, France Near Bludenz, Austria Verdun, France	Tagus R. Lot R. Romanche R. Gorge Doubs R.	1203 1732 1766 1884 1895-97	·Bouchet Huss Jozon	5 4 1 1 1 1 2
.332 .333	Castalet Albula R. Viad.	Sales	Al. R. Gorge	1903	Sejourné	2
334	Br. C33	Bellows Falls, Vt., U.S.A.	Connecticut R.	1899	Cheever	2
336	St. Sauveur Pont-y-tu-prydd Alma	France Nr. Newbridge, S. Wales. Paris, France	Taff R. Seine R.	1755	Edwards Darcel	I
338		Near Narni, Italy		Bet. 27 B.C14A.D	1	2 I I
339	Putney Road	Putney, England	Thames R.	[†1882	Bazalgette	I I 2
.340 .341	Outer Maximilian Verone	Munich, Bavaria Near Vieux-Château, Italy	Isar R. Adige R.	1904	Under Scala	2 2 I I
:342		Moulins, France	Allier R.	1705-1710	Mansard	I
.343	Pont-du-Cèret	Near Perpignan, France	Tech R.	r336		2 I
.344		Turin, Italy	Dora Riparia R.	1834	Mosca	I
						1

^{*} Maximum.

Remarks.—316. In design R.=160'.o. 317. Destroyed in War 1870. 318. Sudbury Aqueduct for Boston. H.=70'.o. 321. Slightly pointed. 322. Skew 55°. Ribbed. 323. Austrian. State Ry. 324. Radius at spr.=75'.5. Paris-Lyon. Two tracks. Approach to metal spans crossing river. Curve about 0° 52'. 330. H.=165'.o. Slight curve. 331. Extrados are of circle 144'.3.

ARCHES.

ARCHE			1									_
Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing, ts.	Curve.	Radius at Crown.	$\frac{t_0}{R}$.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number.
k128.2	32.0	5 - 3		E	250.0	.021	47.9	14.0	Freestone	H.W.	L. J. P. 1896; F.	31
128.2	38.5			C	89.5	.071	35.6	25.6		H.W.	L. V. July 17, 1807	31
115.4	34.9 42.3		6.0	C	67.5	.074	18.0		Granite	H.W.	F. 1852, p. 276 Boston Water W'ks	31
34.0	18.5			C 2	18.5					Aqued't	Fitzgerald A. Fteley	
37.0	20.0			C			27.0		Granite	H.W.	See No. 298. L. p. 477	31
130.0	65.0		8.4	C ₂ E			100.0	16.0	BrickRing			34
131.2	32.8	4.6	7.2				14.7			E. R.R. Rv.		32
36.1											. 448	0 -
131.2	16.4	3-4	14.9	E	177.0	.019	?26.0		Villebois stone	H.W.	G. 1892, p. 445; P.	34
131.2	16.4		1	-	139.4	.019	29.5	8.2		Ry.	F. 1852, p. 117	3:
131.2	43.7			E	86.9	.068			Brick	Ry., Turin	F. 1852, p. 296	3
*132.0	66 -			P	66 -	. 0 -				H.W. H.W.	P. 1896, p. 130	3
*132.6 133.8	138.2	7 - 7		C ₂ E	115.0	.080					F. 1852, p. 280	3
I34.5 I34.5	30.1	3.9	10.2	E ₂			19.7	13.1	Limestone	Ry. H.W.		3;
126.3 134.5 137.8		3.9		The state of the s			8.5			Ry.	n n 1	3;
			t				0.5			ICy.	and Mar. 4, 1904,	3,
98.4		4.0	4.0	C	132.6	.030	27.0			Ry.	pp. 228 and 355 B. June 21, 1900, p.	3.
140.0					-					** ***	402, and Blues P. 1896, p. 140	33
140.0	35.0			C			15.8	16.4	Freestone Millstone	H.W. H.W.		33
126.0	25.2	4.9			1				grit		A. 1856, p. 376	
142.0										H.W.	L.	33
75.0												
144.0	19.3		5 · 5 5 · 3		144.0	.031	47.0	18.0	Granite	H.W.	K. May 17, 1895 K. July 23, 1886,	3.
112.0	13.0		5.2		127.0			10.0	Limestone	H.W.	p. 85	34
144.3	35.8			C	90.5	.059	71.5	36.2	Freestone	H.W.		3
87.4 33 o	17.1							22.4			F -850 D 076	_
147.1 115.1								36.2		TY 337		3
147.6	73.8	4.6	13.1	C2	73.8					H.W.	F. 1852, D. 274	34
148.0	18.0	4.9		C	160.0	.031	40.0		Granite	H.W.	I. U. 1846, p. 27; F. 1852, p. 290	34

[†] About.

and 150'.9 radius. 333. Thusis-Engandine. H. 282'. 335. H. 215'.0. 337. Rubble, grouted. Foundation on piles. 338. Probably the most magnificent bridge built by the Romans in Italy. 340. Three metal hinges. Failed by hinges slipping, June 27, 1904. 342. Failed 1710. 343. Mostly brick. Stone ring.

MASONRY

		1				ns.
Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
345 346	Bellefield	Nr. Kleinwolmsdorff, Sax. Pittsburgh, Penn., U.S.A.	Roeder R. St. Pierre Hollow	1896-	Rust	-
348 349 350 351	Claix Gloucester Vieille Brioud , London	Near Grenoble, France Elyria, Ohio, U.S.A. Gloucester, England Berne, Switzerland Brioude, France London, England	Drac R. Black R. Severn R. Aar R. Allier R. Thames R.	1611 1886 1827 †1204 1454	Kinney Telford Greiner and Es- tone Rennie	
3 53	Jamma	Near Tournon Jamma, Austria	Doux R. Pruth R.	1545	Huss	
.355 .356	Main St { Tyne Wear Viad. Victoria	Wheeling, W. Va., U.S.A. Near Newcastle, Eng. Sunderland Low Lambton	Wheeling Crk. Tyne R. Wear R. Wear R & Val.	1892	Hoge & White	
357		Gignac, France	Herault R.	1777-93	Garipuy	
358 359	Nydeck	Near Lavaur, France Berne, Switzerland	Agout R. Aar R.	1775 1840-44	Saget Müller	
	Antoinette Ballochmoyle	Near Ballochmoyle, Scot.	Ayr R.		Sejourné Millar	1
362	Vieille Brioude	Brioude, France	Allier R.		Romans	
363 364	Gour Noir	Near Coppel, Germany 4 k. from Uzerche, France	Schwaendenholz Ravine & Brook Vézère R.	1901	Daigrement	
	Grosvenor Lavaur	Turin, Italy Chester, England Near Lavaur, France	Dora Riparia R. Dee R. Agout R.	1833 1832-3 1888	Hartley Hartley Sejourné	1
368		Bogenhausen, Bavaria	Isar R.	1901-02	Fischer, Archt.	1
369		Germany	Gutach R.	1901	The state of the s	1
370		Jaremeze, Austria	Pruth R.	1892-3	Huss	
371	Cabin John	Washington, D. C., U.S.A.	Cabin John Crk.	1857-64	Meigs	1
372 373	Trezzo	Italy Near Trezzo, Italy	Adda R. Adda R.	1903	Under Barnabo	1
374 375	Plauen	Luxemburg, Germany Plauen, Saxony	Petrusse R Valley	1899-03	Visconti Sejourné Leibold	1

^{*} Maximum.

REMARKS.—345. Saxony-Silesia. Cut-stone ring. 348. Rock foundation. 350. First stone bridge over Aar near Nydeck castle. 353. Rock foundation. 354. Austrian State Ry. 356. Durham Junc. Ry. H.=151' about. 358. H. says five arches. 361. Glasgow and S. W. Ry. 362. Fell 1822. See No. 351. 363. On curve R = 2660'. Clear H.=124'.5. 364. Limoges-Brive.

ARCHES.

t												
Span.	Rise.	Thickness of Arch Ring at Crown to.	At Spring- ing, te.	Curve.	Radius at Crown.	$\frac{t_0}{R}$.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Material.	Class of Bridge.	Reference.	Number.
148.6 150.0	49·5 36.6	5.6	6.0	С	80.1	.070	†26.0 82.0		Gray sandstone	Ry. H.W.	F. 1852, p. 294 B. June 22, 1899, p.	345 346
150.2 150.0 150.0	54.4 27.0 54.0	3.2 3.8 4.5	4.5	C C E	117.6	.029	28.0		Sandstone	H.W. H.W. H.W. H.W.	H, F. 1852, p. 276 B. May 31, 1890 H, F. 1852, p. 290 B. Dec. 19, 1895	347 348 349 350
150.0	37.7		10.0	C ₂	75.5		24.7 56.1	24.0	Granite	H.W.	A. 1844, p. 247; F. 1852, p. 274 A. 1847, p. 106	351
140.0 130.0 156.7 157.4	65.0	4.6	9.0 8.5 8.5	CC	78.9			-22.0		H.W. Ry.	F. 1852, p. 290 P. 1896, p. 128 J. F. 1852, p. 276 B. Dec. 7, 1893, p.	353
29.5 159.0 159.9 144.6 99.8		4.5 4.6 4.6 4.6	6.0 4.6 4.6 4.6	C ₂ C ₂ C ₂	125.4 79.9 72.0 49.9	.058	25.8	21.5	Sandstone	H.W. Ry.	Blues F. 1852, p. 178 A. 1837-38, p. 57 C. 1855-56	35 5
20,2 160.0 83.1		6.5		E C2	117.7			25.6	from Br. Freestone	H.W.	H. J. F. 1852, p. 284	35 7
160.5 *160.7	65.0			E	103.4				-	H.W. H.W.	H. F. 1852, p. 282 O. Nov. '97, p. 322 B. Dec. 19, 1895 F. 1852, p. 294	358 359
164.0		6.0?	6.0?	C2		.067				Ry.	B. Feb. 27, 1902 C. 1851-52	360 361
283.7		4·5 5·3		С		.180			Volcanic	H.W.	A. June, 44, p. 247	362
287.0	55.8	5.9	8.5				14.4		Sandstone		B. Dec. 26, 1901, p. 487	363
196.8	52.8	5.6	13.8	С	118.1				Granite ring	Ry.	G. 1892, p. 545	364
200.0	42.0	4.0.	7.0	C	140.0		35.5		Sandstone	H.W. H.W.	H. p. 225 A. G. June, 1891; B. Oct. 91, Dec. 7, 93	365 366 367
201.7 CC.	90.2 cc.						60.6		Limestone	Ry. H.W.	R. 1889, p. 584 N. Oct. 4, 1902 B. Sept. 18, 1902	368
209.9	21.4 52.5	3·4 6.6	9.2				13.7		Sandstone	Ry.	B. Jan. 18, 1902 B. Dec. 26, 1901	369
213.0 39.4	59.0	6.9	10.2				14.7			Ry.	B. Dec. 7, 1893, p. 447	370
26.2 220.0	57.3	4.2	6.2	С	134.3		20.3		Granite ring	Aq. and H.W.	K. April 19, 1867; N. July 29, 1899	371
†230.0 251.0	87.8	4.9	7.2	3C C?	246.0 133.6		17.3		Granite	Ry. H.W.	N. Oct. 17, 1903 B. Dec. 7, 1893: C. 1855	372 373
277 · 7 295 · 3 43 · 3	101.7 56.4 15.6	4.7	7.1 6.6		344.5	.044	18.1 52.5		Hard slate	H.W. H.W.	B. Feb. 27,1902 B. Aug. 17, 1905, p. 156	37 4 3 75

[†] About.

^{366.} F. 1852, p. 200. Lead in ring joints \(\frac{1}{3}\) span from abutment. 367. Rough stone in cement. 368. Three metal hinges backed with granite. Five lateral arches in each spandrel. 369. Lateral arches. Max. H. = 111'.5. 372. Three-hinged for D. L. Fixed for L.L. 373. Destroyed 1416. 374. Twin arches 19'.4 apart. 375. Longest stone arch in the world.

PLAIN CON

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
I	Fern St.	W. Hartford, Conn., U.S.A	Trout Brook	1902-3	Crawford	1 2
2 3 4 5	Casey R. Bridge No. 41	Las Marias, Porto Rico Sharpsville, Penn., U.S.A. Cheltenham, Mo., U.S.A. Bet. Manati and Aales, Porto Rico	Casey R. Pine Run Des Peres R. Quebrada R.(?)	1899(?) 1900 1904(?) 1899(?)	Buel Geer Purdon Buel	3
6 7		Mansfield, Ohio, U.S.A. Bet. Santiago and El Caney, Cuba	San Juan R.	1904(?)	Keith Rockenbach	1 2
8 9 10	Cannington Viad. Ewarton Br. Lochnanuamh Viad.	Cannington, England Jamaica, W. I.	Ravine	1900-02 1881-82 1899†	Pain Bell Simpson and Wilson	10 4 8
ıı		Scotland	Arnabol Burn	1899†	Simpson and Wilson	6
12	Finnan Viad.	Scotland	Finnan Valley	1899†	Simpson and Wilson	21
13		Washington, D.C., U.S.A. Northampton, Pa., U.S.A.		1900	Douglas Thompson	1
15 16 17	Bridge No. 242	Adjuntas, Porto Rico Salt River, Ariz., U.S.A. W. of Cincinnati, O.,	Small stream Dam spillway Tanner's Crk.	1899(?) 1905- 1903-4	Buel Kittridge	3
18		U. S. A. Thebes, Ill., U. S.A.	Bank of Missis- sippi R.	1902	Noble and Mo- jeski	11
19		Concord, Mass., U.S.A.	Assabet R.	1901	Worcester	I
20 21	Bridge No. 163	W.of Cincinnati, O., U.S.A. Ehingen, Wurtemberg	Tanner's Crk. Danube R.	1903-04	Kittridge	3 2
22 23	Ashtabula Br.	Ashtabula, Ohio, U.S.A. Near Rechtenstein, Wur- temberg	Ashtabula R. Danube R.	1904	Beckwith Braun	2 2
24 25		Plano, Ill., U.S.A. Near San Leandro, Cal., U.S.A.	Big Rock Crk. S. Leandro Crk.	1903-4	Breckenridge County Sur- veyor	I
26	St. Ana Viad.	Riverside, Cal., U.S.A.	Santa Ana R.	1902-04	Hawgood	8
27	Morar Viad.	Scotland	Morar R. & H.W.	1898-9	Simpson and Wilson	2 T
28 29		Near Imnau, Germany Pittsburg, Penn., U.S.A.	Eyach R. Silver Lake	1806	Leibbrand Brown	2
30		Near Tarvis, Austria	Schlitza R.	†1903		5
3 T		Thebes, Ill., U.S.A.	Bank of Missis- sippi R.	1902	Noble and Mo- jeski	r
32		Near Mechanicsville, N. Y., U.S.A.	Anthony Kill			2

^{*} Maximum.

Remarks.—1. Cost \$4050. 3. Skew, 15° o'. Penn. Ry. 4. 1.6 "chats." St. L. & S. F. Ry. 6. Three cast-iron hinges. 7. Contract price, \$31,000. 9. On curve, 1080' R. Jamaica Govt. Rys. 12. On curve 1200' R. L=1248'; H.=100'. 13. Pebble-faced. Cost \$4159.17. 14. Three tracks. C. R.R. of N. J. Ex. metal used in radial planes. 15. 1600' above sea-level. 16. Very flat arches; about 12" fill over key. 17. "Big 4" Ry., Chicago Div. 18. Approach to

CRETE ARCHES.

Span.	Rise.	Thickness at Crown.	At Spring- ing.	Curve.	Radius at Crown.	Thickness at Crown = t_0 .	$\frac{t_0}{R}$.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Class of Bridge.	Reference.	Number
26.0 10.0 30.0 30.0 36.0 39.4	5.0 3.0 15.0 15.0 18.0 9.8	2.0 1.3 2.5 2.5	2.0	C2 C2 C2	19.5 5.5 15.0 15.0 18.0	2.0 1.3 2.5 2.5	.103 .236 .167° .167	†30.0 75.5 87.0	4.0	H.W. H.W. Ry. Ry. H.W.	N. April 25, 1903 Cem., Jan. 1902 T. Nov. 16, 1900 B. Nov. 3, 1904 Cem., Jan. 1902, p.	
40.0	7.5	1.5	.8		30.0	·7	.050	40.0	8.0	H.W. H.W.	N. Feb. 18, 1905 B. Jun. 13, 1903, p.	
50.0 50.0 50.0	16.0	2.5	3.0	E	25.2	2.5	.079	16.0 16.0	6.0	Light Ry. Ry. Ry.	N. Oct. 21, 1905 B. July 27, 1893 B. Feb. 9, 1899, p.	ı
50.0										Ry.	B. Feb 9, 1899, p.	I
50.0	25.0	2.5		C2	25.0	2.5	.100		6.0	Ry.	B. Feb. 9, 1899, p.	ı
50.3 51.8 34.0	†7.0 13.5 11.3	†1.8 3.5 2.8	†6.0		31.5		.111	26.0		H.W. Ry.	85 N. Jun. 8, 1901, p.	1
55.0 59.0 60.0	26.0	1.5		E C C2		I.5 I.5 2.7	.115	10.3		H.W. H.W. Ry.	Cem., Jan. 1902 N. Oct. 14, 1905 N. Mar. 5, 1904, p.	1
40.0	32.5	3.3		C2	32.5		.102	28.0	12.0	Ry.	T. Jan. 9, '03, p. 21; B. Nov. 20, 1902	1
66.0	11.0	1	1	E	1	ļ		†35.0		H.W.	Municip. Engineer- ring, March, 1902	
68.0 69.0 66.0	17.0	3.5	6.0	sC C	64.0	3.5	.055	33.0	12.5	Ry. H.W.	N. Mar. 5, 1904 B. Jan. 9, 1902, p.	1
74.0	37.0	†6.5 2.1		C2	37.0	6.5	.176	145.0		Ry.	T. Jan. 27, 1905 Y. 1898	
75.0 81.3	26.0	3.0	15'-	5C	43.0 61.5		.070	44.0		Ry. H.W.	N. Jan. 2, '04. p. 18 B. Aug. 27, 1903, p.	3
86.0	43.0	3.5	20	C	43 - 5	3 - 5	.081			Ry.	N. Sept. 9, 1905, p.	-
38.5	24.0	3.0				3.0				Ry.	B. Feb. 9, 1899, p.	
50.0 20.0 98.4 100.0 80.0	9.8 50.0 40.0	1.5 4.0 3.6 2.3	1.6 4.0 3.6 2.3	C2	50.0		.080	8.2		H.W. Ry. H.W.	G. 2 Tri., 1898 N. May 6, 1905, p. 528 Engineer. April 22,	
100.0	50.0	4.5		C2	50.0	4.5	.090	28.0		Ry.	T. Jan. 9, 02, p. 21; B. Nov. 20, 1902	2
100.0			1	-						E1. Ry.	B. Nov. 5, 1903, p.	
50.0											400	

[†] About.

Thebes Bridge.

20. "Big 4" Rv., Chicago Div. 21. Cost \$21,000. 22. L. S. & M. S. Ry. Four tracks.

23. Three lead "hinges." 24. C. B. & Q. Ry. Two tracks. 25. Skew, 10° Cost \$25,840. 26. One track. S. P., L. A. & S. L. Ry. 27. Mallaig Ex. of W. Highland Ry. 28. Three granite "hinges." 29. Penn. Ry. Four tracks, 5° curve. 30. Three steel "Linges." 31. Approach to Thebes Bridge.

PLAIN CON

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
.33	Danville Arch	miles from Danville, lll., U.S.A.	Vermillion R.	1905	"Big 4"	I
34		Near Mittenberg, Germany	Main R.	1898-99	Fleischman and Bosch	2 2 2
35 .36 37 38	Grand Maître 16th St. Borrowdale	Fontainebleu Forest, Fra'e Kirchheim, Wurtemberg Washington, D. C., U.S.A. Scotland	Neckaar R.	1869 1898† 1905 1898–99	Belgrand Douglas Simpson and Wilson	4
39 40	Coulouvrenière Big Muddy	Geneva, Switzerland Near Grand Tower, Ill., U.S.A.	Rhone R. Big Muddy R.	1895 1901-03	Butticaz Parkhurst	2 2 3
41 42	Inzigkofen Vauxhall	Inzigkofen, Wurtemberg London, England	Danube R. Thames R.	1896 1899	Leibbrand Binnie	I I
43	Conn. Ave. Br.	Washington, D. C., U.S.A.	Rock Creek	1889-1906	Morison & Biddle	5
44		Munderkingen, Wurtem- berg	Danube R.	1893	Douglas Leibbrand	1
45 46		Near Oviédo, Spain Neckarhausen, Germany	Nalon R. Neckar R.	Proposed 1903†	Leibbrand	I
-47		Ulm, Germany	Ry. Yards	1905†		1

* Maximum.

Remarks.—34. Three lead "hinges." 35. Paris water-supply from Vanne. 36. Three lead "hinges." 38. Mallaig Ex. of W. Highland Ry. 30. Three "hinges." 40. Two tracks. Ill. Cent. Ry. 41. Three cast-iron "hinges." 42. Three "hinges." 44. Three steel "hinges."

CRETE ARCHES.

Span.	Rise.	Thickness at Crown.	At Spring- ing.	Curve.	Radius Rat Crown.	Thickness at $Crown = t_0$.	$\frac{t_0}{R}$.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Class of Bridge.	Reference.	Number.
100.0	40.0	4.0		C	51.3	4.0	.088	42.0			N. Mar. 3, 1906, p. 338	33
80.0	30.0 16.4 17.5	3.6	2.8		41.7	3.6	.086	23.0	10.2	H.W.	B. July 25,1901, p.	34
107.3	14.8	2.5	2.8			2.5						
*115.8 124.6 125.0 127.5	19.0 19.0 39.0 22.5	1.3 2.6 5.0 4.0	3.0	Par		†1.3 2.6 5.0 4.0		†18.0 25.0		Aqued't H.W. H.W. Ry.	K. Oct. '69, p. 275 B. Mar. 9,1900 B. Nov. 16,1905 B. Feb. 9, 1899, p.	35 36 37 38
20.0 131.2 140.0	18.2	3.0	3.0	C E	127.3	3.0	.024	50.6		H.W. Ry.	Y. 1898 B. Nov. 12, 1903, p.	39 40
141.0 144.6 130.6 150.0	14.4 †18.6 †20.0	2.3 3.9 3.9 5.0	2.6 3.9 3.9	C2	75.0	2.3 3.9 3.9	.067	†12.5 †84.0	}	H.W. H.W.	B. April 22, 1897 N. Feb. 25, 1899 N. July 8, 1905, p.	41 42 43
82.0 164.0	41.0	3.3	3.6	02	41.0		.080	†26.2		H.W.	B. June 1, 1905 G. 3 Tri., 1897, p.	43
165.0 165.0	18.8	3.7	3 - 7 3 - 7			3.7		†17.0 15.8		H.W. H.W.	356 B. Sept. 26, 1901 Engineer, Dec. 30,	45 46
215.0	[And the second s						†46.0		H.W.	B. March 15, 1906	47

[†] About.

^{45.} Three "hinges." 46. Three cast-iron and steel "hinges." 47. Three "hinges;" centre to centre of hinges 187.0; rise centre to centre of hinges 1845,000.

REINFORCED CON

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
1 2 3 4 5 6 7 8	Ridgewood Ave.	Eikhart, Ind., U.S.A. Vulcanite, N. J., U.S.A. Rock Rapids, Ia., U.S.A. Ridgewood, N. J., U.S.A. Marion Co., Ind., U.S.A. Waldwick, N. J., U.S.A. Mahwah, N. J., U.S.A. Crystal Lake, N. J., U.S.A. Delaware Co., Penn, U.S.A.	La Rue H. W. Highway Ravine Br. of Saddle C. Stream Stream Stream	1903 1905-6 1894 1897 1899 1898? 1898	Osgood M. A. C. Co. M. A. C. Co.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 10 11 12	Linwood Ave.	Wayne Township, N. J., U.S.A. Ridgewood, N. J., U.S.A. W. Edwardsville, Kan., U.S.A.	Stream Saddle R. Mission Creek	1895 1895 1904?	M. A. C. Co. M. A. C. Co. Walter	ı
13 14 15 16 17 18	S. Jefferson St. McKinley Arch San Miguel	Indian Creek, Ill., U.S.A. Ocnomowoc, Wis., U.S.A. Battle Creek, Mich., U.S.A. St. Louis, Mo., U.S.A. Sorsogan, Philippines Manila, Philippines Albion, Mich., U.S.A.	Indian Creek Lake Kalamazoo R. Des Peres R. Stream Estero S. Miguel	1003 1899 1899 1902 1905 1905 1898?	Smith Hall Reiseger Phillips Stevens White & Co. Keepers &	3 1 2 1 1 1 3
20 21 22	Como Park Como Park Mount St.	St. Paul, Minn., U.S.A. St. Paul, Minn., U.S.A. Atlantic Highlands, N. J., U.S.A.	Rapid Transit Ry. Rapid Transit Ry. Grand Ave.	1904 1904 1895-96	Thacher Wilson Wilson M. A. C. Co.	I
23 24 25	Salem St. Florida Keys Viad. Lamington Br.	Carbondale, Penn., U.S.A. Florida Keys, U.S.A. Marysborough, Queens- land	Lackawanna R. Salt Water Mary R.	1896 1905- 1896	M. A. C. Co. Brady	1 11
26 27		Louisville, Ky., U.S.A. Decatur Township, Ind.,	Beargrass Creek Goose Creek	1897	Keepers & Thacher Nelson	I
28	Mich. Cent. Ry.	U.S.A. Detroit, Mich., U.S.A. Hyde Park, N. Y., U.S.A.	Southern Bvd.	1895-6	Keepers & Thacher M. A. C. Co.	I
30 31 32 33 34	Arch St. Jackson St. Sixth Ave. Goat Island	Plainwell, Mich., U.S.A. Platerson, N. J., U.S.A. Newark, N. J., U.S.A. Carbondale, Penn., U.S.A. Niagara Falls, N. Y., U.S.A.	Kalamazoo R. Passaic R. Jackson St. Lackawanna R. Niagara R.	1897 1903 1903 1904 1890	Courtwright Schwiers Osgood M. A. C. Co. Buck (State) Waldo (Con.)	7 3 1
35 36 37	Cantle Picham	Clifton, N. J., U.S.A. Route Neutra, Hungary Route Nymphenburg, Wurtemberg	Passaic R.	1903	Schwiers	5 6 1
38 39 40 41	Castle Eichorn Eighth Ave. Franklin Br. Montgomery St.	Mähren, Austria Carbondale, Penn., U.S.A. St. Louis, Mo., U.S.A. Jersey City, N. J., U.S.A.	Ravine Lackawanna R. Des Peres R. Street	1898 1896 1897-98 1895-96	Venier M. A. C. Co. Dean M. A. C. Co.	

* Maximum.

^{**} Maximum.

**REMARKS.—r. L. S. & M. S. Ry. 2, C. R. R. of N. J.; two tracks. 3, Six 4" 7,5-lb I beams, 36" centre to centre. 4. Nine 5" 0,75-lb. I beams; 36" centre to centre. 5. Melan type. 6. Nine 5" 0,75-lb. I beams; 34" centre to centre. 7. Nine 5" 0,75-lb. I beams; 31" centre to centre. 8. Nine 5" 0,75-lb. I beams, 36" centre to centre. 0. Skew. Phila. R. T. Co. 10. Nine 5" 0,75-lb. I beams, 36" centre to centre. 10. Skew. Phila. R. T. Co. 10. Nine 5" 0,75-lb. I beams, 36" centre to centre. 10. Even 5" 0,75-lb. I beams, 36" centre to centre. 10. U. P. Ry.; two tracks. 11. C. I. & St. L. Ry., Short Line; two tracks. 14. Flat bars and expanded metal. 15. Melan type: twenty-one 6" I beams, 17. Various Sizes and shapes of bars. 10. Thacher type. 20. 5" 9,75-lb. I beams; 36" centre to centre (?). 21. Four angles, 2" X 2" X 4"; 38" centre to centre (?). 22. Eight 6" 12,25-lb. I beams; 36" centre to centre (?).

CRETE ARCHES.

							1					
Span.	Rise.	Thickness at Crown.	At Spring- ing.	Curve.	Radius Rat Crown.	Kind of Steel.	Per Cent Steel at the Crown.	Width, Face to Face at Crown	Thickness of Piers at Springing.	Class of Bridge.	Reference.	Number.
30.0 30.0 30.0 30.0	9.0 †9.0 6.6 3.0	3.3	6.4 2.5 1.8	3C	39.0	‡″ J‡	·55	32.5 17.5 26.0		Ry. Ry. H.W. H.W.	B. July 14 1904 N. Sept. 9, 1905 X.	1 2 3 4
32.0 32.0 32.0 33.0 35.0	3.2 3.2 3.2 6.4 16.0	0.9	2.0 2.0 3.3 0.0 2.0	E		0	.85 :93 .80	24.0 22.0 26.0		H.W. H.W. H.W. H.W. Int'r.R.R. H.W.	Cement, Sept. 1900 X. X. X. N. Dec. 2, 1905 X.	4 5 6 7 8 9
40.0	8.0		10.0		21.0	₹″ J	.66	20.0 38.0		H.W. Ry.	X. T. Dec. 8, 1905	11
40.0 42.0 42.0	20.0	2.5		C2	20.0	1 1 ″ J		32.3 42.0 66.0		Ry. H.W. H.W.	T. March 11, 1904 B. Oct. 19, 1899 T. Sept. 24, 1900	13 14 15
45.0 45.0 45.9 46.7	6.0			E E 5C	43.0	∦″ J Var. +		45.0 †35.0 34.0 †28.0		H.W. H.W. H.W.	B. June 11, 1903 N. Oct. 21, 1905 N. July 8, 1905 B. Sept. 21, 1899	16 17 18
50.0 50.0 50.0	12.5 12.5 11.0	0.8	2.5 2.5 3.0	C	33.9		†.75 †.99 I.II	†17.0 †17.0 25.0		Foot-bri'e Foot-bri'e H.W.	N. Dec. 3, 1904 B. April 6, 1905 N. August 22, 1896	20 21 22
50.0 50.0 50.0	8.3 25.0 4.0	0.8 2.0 I.7	2.8	C2	25.0	₹″J	1.25 .76 .71	55.0 15.0 22.7		H.W. Ry. H.W.	X. B. Oct. 19, 1905 N. Nov. 17, 1900	23 24 25
50.0	11.2	1.0	5.0	3C	41.7	3"×8"		†60.0		H.W.	B. Feb. 14, 1901 K. & T. Blues	26
50.0										H.W.	Cement, Nov. 1901	27
50.3	9.5	1.5	7.5	С	38.2		3.75	109.9		Ry.	N. Sept. 28, 1895 T. March 3, 1899	28
53.0 26.0	7.5	0.8	2.5				I.23 I.00	17.0		H.W.	B. Nov. 10, '98; X.	29
54.2 54.3 54.6 55.0	8.0 2.4 10.5 5.5 10.0	1.7	3.0	С	48.4	11 "O	3.60 1.37 1.12 .63	†24.0 †45.5 †32.0 48.0 †40.0	8.0	H.W. H.W. Ry. H.W. H.W.	B. May 12, 1904 N. Sept. 10, 1904 N. August 6, 1904 X. B. Dec. 6, 1900	30 31 32 33 34
50.5 †55.0 55.8 56.7	9.0 3.0 3.7 5.9	2.0					.66 2.40	†30.0 †19.7 †32.8		H.W. H.W. H.W.	N. Sept. 10, 1904 G. 1st Tri., 1904 G. 1st Tri., 1904	35 36 37
57.6 58.7 60.0 61.2	19.7 6.0 15.5 12.0	1.0 1.0 0.9	2.2 3.2 3.6	3C?	32.8 48.0		1.02 1.40 1.02	21.3 49.0 32.0 83.3		H.W. H.W. H.W. H.W.	Öst. Monat.Baud'st X. X. X.	38 39 40 41

[†] About. † J=Johnson bars. O=Round bars.

tre to centre. 23. Nineteen 7" 15-lb. I beams; 36" centre to centre. 24. Arches vary in span but all same type. 25. 41.25-lb. rails; 2' centre to centre. 27. Melan type. 28. Fc.u, 4"×4"ׇ" angles; 22½" centre to centre. 29. Five 7" 15-lb. I beams, 36" centre to centre; fivr 7" 0.75-lb. I beams, 36" centre to centre. 32. Ce R. R. of N. J., two tracks. 33. Sixteen 7" 15-lb. I beams, 36" centre to centre. 34. Thacher type. 35. See No. 31. 36. Winch type, 37. Monier type, 38. Melan type; four I beams. 30. Sixteen 7" 15-lb. I beams, 36" centre to centre. 40. Eleven 8" 18-lb. I beams; 36" centre to centre; two elevated tracks.

REINFORCED CON

					CEINFORCED	
Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
4 ² 43		Troy, N. Y., U.S.A. Route Ebhausen, Wur- temberg Vigneux, France	Wynant's Kill	1897 1891	Kenney	I
44 45 46	Herkimer Viad.	Herkimer, N. Y., U.S.A.	Dora R. W. Canada Crk.	1900 1902 1902-3	Osborn E. Co.	1 2 3 7
47		Jacksonville, Fla., U.S.A.	McCoy's C. & R.R.	1903-4		II
48 49		Auch, France Military Road, San Juan, Ponce, Porto Rico	Gers R. Guayo R.	1899	Thacher	3
50 51	Bloomfield Ave.	Ponce, Porto Rico Newark, N. J., U.S.A. Cincinnati, Ohio, U.S.A.	Park drive Park drive	1894-95	Reynolds M. A. C. Co.	I
52 53 54 55		Trinidad, Col., U.S.A. Copenhagen, Denmark Route Painpardu, Belgium La Salle, Ill., U.S.A. Waterloo, Ia., U.S.A.	Purgatorie R. Railway	1905 1879 1899 1905	Hibbard Strauss	2 I I I
56 57 58 59	Cedar R. Meridian St. Illinois St. Wealthy Ave.	Waterloo, Ia., U.S.A. Indianapolis, Ind., U.S.A. Indianapolis, Ind., U.S.A. Grand Rapids, Mich., U.S.A.	Cedar R. Fall Creek Fall Creek Grand R.	1902-3 1900 1900 190	Z Jeup Jeup Anderson	7 3 3 1
60		Wabash, Ind., U.S.A.	Creek	1905		2
61 62 63 64	Hamilton St.	Hartford, Conn., U.S.A. Hyde Park, N. Y., U.S.A. Polasky, Cal., U.S.A. Route Bade, Austria Washington, D. C., U.S.A.	Park R. Crum Elbow C. S. Joaquin R.	1898 1897 1905 1900	M. A. C. Co. M. A. C. Co. Leonard	1 10
6 5	Rock Creek Soissons	Washington, D. C., U.S.A. Soissons, France	Rock Creek L'Aisne	1903	Beach Riboud	1
						1 1
67		Halder	Lenne R.	1904		I 2
68 69	De l'Empéreur Fabriano Viad.	Sarajero, Bosnie Italy		1897	,	1 2 2
70 71 72	Seeley St	Rt. Payerbach, Austria Brooklyn, N. Y., U.S.A. Austria	Prospect Ave. Bialka R.?	1900 1903-4 1804	Foot	I
73		Gr'd Rapids, Mich., U.S.A	Grand R.	1903-4	Anderson	1 2
74 75	Main St. West St.	Dayton, Ohio, U.S.A. Paterson, N. J., U.S.A.	Great Miami R. Passaic R.	1902-3 1897-8	Turner M. A. C. Co.	7 1
76		Yorktown, Ind., U.S.A. Papigus, Italy	Stream Nera R.	1905?	Luten	2
77 78	N. Sixth Ave.	Des Moines, Ia., U.S.A.	Des Moines R.	1901-2?	Z	3

* Maximum.

Remarks.—42. Nine 8" 18-lb. I beams; 36" centre to centre. 43. Monier type. 44. Piketty type. 45. Hennebique type. 46. U. & M. V. Ry. Two tracks. 47. Melan ribs and Thacher bars. 48. Bonna type. 40. Thacher type. 50. Melan type. Two E. Ry. tracks. 51. Eleven 9" 21-lb. I beams; 36" centre to centre. 53. Five 18.8 lb. (per foot) rails. 54. Hennebique type. 55. Two ribs. In Deer Park. 56. Thacher type. 57. 10" 25-lb. I beams; 36" centre to centre. 60. Kahn

CRETE ARCHES.

Span.	Rise.	Thickness at Crown.	At Spring- ing.	Curve.	Radius Rat Crown.	Kind of Steel.	Per Cent Steel at the Crown.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Class of Bridge.	Reference.	Nismbor
65.0 65.6	8.5	1.0					1.23	27.0		H.W. H.W.	X. G. 1st Tri., 1904	4
65.6 65.6 66.0 62.0	14.8 6.6 14.0 12.0 7.0	1.6 1.8 1.8	4·5 4·5		46.5 46.0	1‡" T‡	.96	†13.1 †46.6	8.0	H.W. H.W. E. Ry.	G. 1st Tri., 1904 G. 1st Tri., 1904 N. Feb. 22, 1903, p. 240 T. July 3, 1903, p.	4
68.9	6.6 2-7.0 1-7.5	1.0						20,0		E. Ry. H.W. H.W.	T. July 3, 1903, p. 428 G. 1st Tri., 1904 N. Aug. 3, 1901, p. 08	4
70.0	8.5	1.3	4.0	C	106.3		†.80	†65.0 32.5		H.W. H.W.	N. Aug. 12, 1905, p. M. A. C. Co., B. Oct. 3, 1895	- / - /
70.0 71.7 71.8 72.0 72.0 74.0 74.0 75.0	7.0 8.5 9.2 7.5 7.2 9.5 9.5 14.0	0.9 1.3 †2.0 1.2	3.0 I.2 †2.0 2.7 I.8 I.8	3C 3C 3C 3C 3C	77.2	1	1.3	†65.0 †39.4 †5.0 †46.0 †70.0 †60.0	8.0	H.W. Foot-bri'e H.W. Foot-bri'e H.W. H.W. H.W. H.W. H.W.	N. Feb. 10, 1906 B. July 21, 1898 G. 18t Tri., 1904 B. Sept. 21, 1905 N. Feb. 13, 1904 B. April 11, 1901 B. April 11, 1901 B. Mar. 22, 1906, p.	
75.0	18.0	1.5	3-3	Par		1\frac{1}{4}"\times 1\frac{2}{4}"\times 3"		†32.0		H.W.	B. Mar. 15, 1906 N. Dec. 2, 1905	4
75.0 75.0 75.0 77.4 80.0 80.7	7.5 14.7 †11.0 7.7 15.0 7.9	1.3 1.3 1.5	4.5	5C	97·5 62·5	4 ″ J	1.17 .69 1.12	19.5	5.0	H.W. H.W. H.W. H.W. H.W.& Ry.	X. X. N. Feb. 24, 1906 G. 1st Tri., 1904 B. Aug. 14, 1902 G. 1st Tri., 1904 G. 3d Tri., 1903, p.	
80.3 79.6 82.0	8.2	1.0	9.0							H.W.	47 G. 4th Tri., 1905, p.	
60.7 83.2 84.9	8.3	1.6	1.6 †9.0 3.3					†37.6 †32.0		H.W. H.W.	G. 1st Tri., 1904 N. Dec. 9, 1905, p.	
30.2 85.3 85.3 86.3 87.0 83.0	13.1 5.9 8.5 20.6	1.5	4.8 †10.0 †1.5			11" J	†.76	†18.0 53.1 64.3		H.W. H.W. H.W. H.W.	645 G. ist Tri., 1904 B. Dec. 31, 1903 G. ist Tri., 1904 B. Dec. 1, 1904, p.	
79.0 88.0 89.0 88.5	9.5 9.5	1.5	3.0 5.5 5.5				I.22 I.37 I.37	54.0		H.W. H.W.	B. May 19, 1904 X. B. March 16, 1899	
95.0	27.7 23.0 20.0	2.3 1.8 1.9	3·3 4.0 4.2 4·3		68.8 79.2 93.6	₹″ O		†18.0 42.7	10.0	H.W.	B. May 11, 1905 G. 4th Tri., 1905 Cement, July, 1902	

[†] About. ‡ T=Thacher bars. O=Round bars. J=Johnson bars.

bars. 61. Seventeen o" 21-lb. I beams; 36" centre to centre. 62. Seven o" 18-lb. I beams, 63. Spandrel wall tied to ring. 64. Hennebique type. 65. Four 3"×3"×6-lb. angles; 33" centre to centre. 66. Hennebique type. 67. Large arch has three "hinges." 68. Wünch type. 69. Totallength=354'. 70. Melantype. 71. Skew. 72. Moniertype. 74. Four angles, 24"×24"×34". 36" centre to centre. 75. Seventeen 10" 25-lb. I beams, 354" centre to centre. 77. Five ribs; four angles latticed. 78. Melan type; four angles latticed.

REINFORCED CON

Number.	Name.	Place.	Over.	Date.	Engineer.	No. of Spans.
79 80	Icy Glen François-Joseph	Stockbridge, Mass., U.S.A. Buda-Pesth(?), Austria-	Housatonic R. Danube R.?	1895	M. A. C. Co.	I
81 82	Green Island	Hungary Laibach, Austria Niagara F'lls, N.Y., U.S.A.	Laibach R. Niagara R.	1900-1	Melan Buck (Con.) Waldo (State)	I
83	Third Street	Dayton, Ohio, U.S.A.	Great Miami R.	1904-	Turner	2 I 2
84	Wayne St.	Peru, Ind., U.S.A.	Wabash R.	1905	Luten	2 2 I 2 2
85 86 87	Lake Park	Portugal Milwaukee, Wis., U.S.A. Yellowstone Nat. Park,	Pena R. Ravine Yellowstone R.	1901 1905 1903	Turneaure Chittenden	5 1
88	Jacaquas R.	U.S.A. Military Road, San Juan- Ponce, Porto Rico	Jacaquas R.	1900-1	Jackson	. 1
89 90	Washington Ave., So. Y-Bridge	Lansing, Mich., U.S.A. Zanesville, Ohio, U.S.A.	Grand R. Muskingum R.	1902 1900-2	Collar Landor	1 4
91 92	Kansas Ave.	Route Wildegg, Switz Topeka, Kan., U.S.A.	Kansas R.	1890 18 9 6-98	M. A. C. Co.	3 1 1 1 1 2
	Park Ave. Schwimmschul- brücke	Newark, N. J., U.S.A. Steyr	Park Stream	1905	Reynolds	2 I
95 96 97 98	St. Pierre Hollow	Playa-del-Rey, Cal., U.S.A. Route Waidhofen, Austria Schenley Park, Pittsburg, Penn., U.S.A. Chatellerault, France	St. Pierre Hollow Vienne R.	1906 Proposed	De Palo Keepers and Thacher	I
99 100 101	Gruenwald	Route Bormida, Italy Decize, France Munich, Bavaria	Loire R. Isar R.	1902	Mörsch	2 I 2 2

* Maximum.

REMARKS.—70. Four 7" 15-lb. I beams; 28" centre to centre. 80. Three "hinges." Lattice ribs. 81. Three "hinges." Fourteen lattice ribs. 83. Four angles, 2\frac{1}{2}\times\frac

ARRANGED ACCORDING TO SPAN-(Continued).

CRETE ARCHES.

Span.	Rise.	Thickness at Crown.	At Spring-	Curve.	Radius Rat Crown.	Kind of Steel.	Per Cent Steel at the Crown.	Width, Face to Face at Crown.	Thickness of Piers at Springing.	Class of Bridge.	Reference.	Number,
100.0	10.0		2.5				2.30	7.5		Foot-bri'e H.W.	X. B. Nov. 7, '95 G. 1st Tri., 1904	79
108.3	14.6	3.2	5.9		123.C	6"×₹"		†50.0 40.0		H.W. H.W.	B. July 16, 1903 B. Dec. 6, 1900 N. Feb. 16, 1901, p.	8 8
103.5 110.0 100.0	10.0 14.3 13.3 11.3	2.I	6.3				.66	†62.0	11.0	H.W.	146 T. Mar. 4, 1904, p.	8
80.0 100 95 85	9.7	1.6				₹ O‡	.91	32?	9.0	H.W.	B. Mar. 29, 1906, p. 347	8.
75 114.8 118.0 120.0	14.4 18.0 15.0	5.0	5.0			″×3″K	†1.39	11.8 14.0 17.5		Tramway H.W. H.W.	G. 1st Tri., 1904 N. Nov. 25, 1905 B. Jan. 14, 1904, p.	8 8
120.0	12.€	2.3		3C	226.0	4"×₹"	.63	20.0	12.0	H.W.	N. Aug. 3, 1901 B. Aug. 1, 1901, p.	8
100.0 120.0 122.0	14.5 11.5 14.5	2.5			167.2	3"&5" ×±"	.80	54.0 43.0		H.W. H.W. El. Ry.	66 Cement, Mar. 1902 N. Mar. 1, 1902, p.	8
99.0 122.0 125.0	10.9 6.3 11.4 18.9	0.6	to.8				1.58	†12.8 36.0		H.W. H.W.	G. 1st Tri., 1904 M. A. C. Co. B. April 2, 1896	9
97.5 132.0 138.4	16.3 14.6 16.2 9.4	1.8 1.7	6.0				1.58 1.73	†72.0 19.7		H.W. H.W.	N. Aug. 12, 1905 Z. Oe. Ing. u. Arch. Ver., Dec. 23, '98	9.
146.0 144.3 150.0	18.0	2.0	8.0			4 angles	.94	84.0		H.W.	N. Mar. 31, 1906 G. 1st Tri., 1904 K. & T. Blues	9
164.0 131.2 167.3	15.8 13.2 16.7	1.8 1.4 1.0	†3.0 †2.6					t19.0		H.W. H.W.	G. 1st Tri., 1904 B. April 10, 1902	9
183.7	15.3	1.6	2.5			1.1"0	.19	34.4		H.W. H.W.	G. 4th Tri., 1905	10

[†] About. † O=Round bars. K=Khan bars.

o1. Monier type. 92. Four angles, 3"×3"×7.2 lbs.. Twelve ribs. 93. Four angles 3"×3"×½"; 36" centre to centre. Thacher bars. 94. Melan type. 95. Foot-bridge 96. Monier type. 97. Twenty-seven ribs. Four angles, 3"×3"×7.2 lbs. 98. Hennebique type. 101. Three steel "hinges."

KEY TO REFERENCES.

Symbol.	Name of Periodical or Book, etc.	Address.
A B C D E F G H I J K L M N O P	Civil Engineers' and Architects' Journal Engineering News and Am. Ry. Journal Weale's Bridges Penn. Ry. Co.'s Blues Wm. H. Brown, Ch. Eng'r Penn. Ry. Co Construction des Viaducs, Tony Fontenay. Annales des Ponts et Chausses Mahan's Civil Engineering Masonry Construction by Baker Spon's Dictionary of Engineering Engineering Edinburgh Encyclopædia, 9th ed Scientific American Supplement Engineering Record. Engineering Magazine. Journal of the Association of Engineering	New York City, U. S. A. Philadelphia, Pa., U. S. A. Philadelphia, Pa., U. S. A. Paris, France. Paris, France. John Wiley & Sons, New York City, U. S. A. John Wiley & Sons, New York City, U. S. A. London, England. New York City, U. S. A. New York City, U. S. A. New York City, U. S. A.
Q R S T U V W X Y Z	Societie Encyclopædia Britannica, 9th ed. Railway and Engineering Journal. Cresy' Bridges. Railway Gazette. Murray's Handbook of Northern Italy. Le Genie Civil. Messrs. Keepers & Thacher The Melan Arch Construction Co. Transactions of Am. Soc. C. E. Concrete-steel Engineering Co.	New York City, U. S. A. John Wiley & Sons, New York City, U. S. A. New York City, U. S. A. Paris, France. Paterson, N. J., U. S. A. New York City, U. S. A.

INDEX.

	GE
	49
thickness of	47
Albula Railway, bridge dimensions.	49
Arch axis, subdivision of	88
	19
	29
	46
	43
	9
Austrian specifications	45
Axial stress, change in coördinates	5
constant J	32
Example 1	81
Example 2	10
horizontal thrust, E_a	24
vertical loads	23
Baker, thickness of abutments	47
Bellefield bridge 1	20
Bending moment, taken entirely by steel 36, 1	10
Concrete, coefficient of expansion	32
in compression	37
in tension	37
physical properties	31
plain	
reinforced	42
Coördinates x and y	5
'Croizette-Desnoyer's formulas	46
Dead load computations	65
Decimals, number	55
Dejardin's formulas	45
Distortion, angular, produced by bending	1
Elasticity, modulus	36
7.67	

INDEX.

PAGE
Elastic theory, reliability
Empirical formulas, remarks
Equilibrium polygon, following arch axis
dead load, Example 2
Example, first
second
third
Fiber stresses, concrete ribs
dead and live loads, Example 1
Example 2 102, 103, 105, 106, 107
final in Example 183
general formulas
maximum, Example 2
polygon outside middle third
reinforced concrete
stone ribs
temperature changes, Example 1
Fill, above key, railroad bridges
weight
Formulas, general
general, constant 4 30, 31
German practice, depth of key
Granite, physical properties
Horizontal loads, constant 4, general formulas
general formulas
horizontal thrust
moments M_x
symmetrical
Horizontal thrust, axial stress
constant 4, vertical loads
1.6
1 1 11 1
live load, Example 1
temperature changes
unit loads, Example 1 56
Example 2 89
Example 3
vertical loads, general formulas
Keystone, Albula Railway
depth of, Example 1
depth
empirical formulas

PAGE
Limestone, physical properties
Live load, distribution
Luxemburg bridge
m_1 , graphical representation
M_1 , live load, Example 1
unit loads, Example 1
Example 2 89
Example 3 113
m_x , graphical determination.
M_x , graphical representation
Marble, physical properties
Maximum moments, crown, live load, Example 1
graphical determination, Example 1
live load, Example 1
point O, live load, Example 1
point 6', live load, Example 1
vertical loads
, ,
Neutral axis
Pence, coefficient of expansion
Peronnet's formulas
Piers, Albula Railway
thickness
Rankine's formulas
Reinforcement, steel, area
steel-ribs
steel-rods, etc124
Reliability, elastic theory
Rockville bridge
Sandstone, physical properties
Second example, data
Shear T _x
Spandrel filling 50
horizontal thrust 50
uniform weight85
weight 50
Spandrel masonry
weight
walls
Specifications, abstracts
Stone, physical properties
Σx , computation
Table I, physical properties of stone, etc
Table II arch data
Table II alon data.

PAGE
Temperature 6, 31, 35, 39, 40, 41
horizontal thrust
rangera
reinforced concrete42
stresses, Example 1
Example 2
Thacher, properties of concrete
Thebes bridge
Third example
Track, weight54
Trautwine's formulas
Unit loads, values of V_1 , y_1 , y_2 , etc
Vermillion River bridge
Vertical loads, constant 4, general formulas
general formulas
horizontal thrust.
M_1 , graphically
M_x , graphically
V_1 , live load, Example 1
unit loads, Example 1
Example 2. 97
y_1 , y_2 , etc., unit loads, Example 1

SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

OF

JOHN WILEY & SONS,

NEW YORK.

LONDON: CHAPMAN & HALL, LIMITED.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application. Books marked with an asterisk (*) are sold at net prices only, a double asterisk (**) books sold under the rules of the American Publishers' Association at net prices subject to an extra charge for postage. All books are bound in cloth unless otherwise stated.

AGRICULTURE.

Armshy's Manual of Cattle-feeding	\$1	75
Principles of Animal Nutrition8vo,	4	00
Budd and Hansen's American Horticultural Manual:		
Part I. Propagation, Culture, and Improvement12mo,	I	50
Part II. Systematic Pomology	1	50
Downing's Fruits and Fruit-trees of America8vo,	5	00
Elliott's Engineering for Land Drainage	I	50
Practical Farm Drainage	1	00
Graves's Forest Mensuration	4	00
Green's Principles of American Forestry	I	50
Grotenfelt's Principles of Modern Dairy Practice. (Woll.)	2	00
Kemp's Landscape Gardening	2	50
Maynard's Landscape Gardening as Applied to Home Decoration 12mo,	I	50
* McKay and Larsen's Principles and Practice of Butter-making 8vo.	I	50
Sanderson's Insects Injurious to Staple Crops	I	50
Insects Injurious to Garden Crops. (In preparation.)		
Insects Injuring Fruits. (In preparation.)		
Stockbridge's Rocks and Soils8vo,	2	50
Winton's Microscopy of Vegetable Foods	7	50
Woll's Handbook for Farmers and Dairymen	I	50
ARCHITECTURE.		
TO ALL DE COLUMN TWO ALL THE THEORY OF THE THEORY		
Baldwin's Steam Heating for Buildings		50
Bashore's Sanitation of a Country House		00
Berg's Buildings and Structures of American Railroads	-	00
Birkmire's Planning and Construction of American Theatres 8vo,	-	00
Architectural Iron and Steel	-	50
Compound Riveted Girders as Applied in Buildings		00
Planning and Construction of High Office Buildings8vo,	_	50
Skeleton Construction in Buildings	-	00
Erigg's Modern American School Buildings	4	00

		00	
Carpenter's Heating and Ventilating of Buildings8vo,		00	
Freitag's Architectural Engineering	3	50	
Fireproofing of Steel Buildings	2	50	
French and Ives's Stereotomy	2	50	
French and Tyes's Steleotomy.		00	
Gerhard's Guide to Sanitary House-inspection			
Theatre Fires and Panics	I	50	
*Greene's Structural Mechanics8vo,	2	50	
Holly's Carpenters' and Joiners' Handbook18mo,		75	
	2	00	
Johnson's Statics by Algebraic and Graphic Methods			
Kidder's Architects' and Builders' Pocket-book. Rewritten Edition. 16mo, mor.,	5	00	
Merrill's Stones for Building and Decoration8vo,	5	00	
Non-metallic Minerals: Their Occurrence and Uses8vo,	А	00	
Non-metanic minerals. Then occurrence and observed			
Monckton's Stair-building4to,		00	
Patton's Practical Treatise on Foundations8vo,	5	00	
Peabody's Naval Architecture8vo,	7	50	
Rice's Concrete-block Manufacture8vo,	2	00	
Richey's Handbook for Superintendents of Construction16mo, mor.,	4	00	
* Building Mechanics' Ready Reference Book. Carpenters' and Wood-			
workers' Edition	I	50	
Sabin's Industrial and Artistic Technology of Paints and Varnish8vo,		00	
	_		
Siebert and Biggin's Modern Stone-cutting and Masonry		50	
Snow's Principal Species of Wood8vo,	3	50	
Sondericker's Graphic Statics with Applications to Trusses, Beams, and Arches.			
8vo,	2	00	
Towne's Locks and Builders' Hardware18mo, morocco,		00	
Wait's Engineering and Architectural Jurisprudence	6	00	
Sheep,	6	50	
Law of Operations Preliminary to Construction in Engineering and Archi-			
tecture8vo,	_	00	
		00	
Sheep,	5	50	
Law of Contracts8vo,		00	
Law of Contracts8vo,	3		
Law of Contracts	3	00	
Law of Contracts	3	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4	00	
Law of Contracts	3 4 I I	00 00 25 00	
Law of Contracts	3 4 I I	00 00 25 00	
Law of Contracts	3 4 I I	00 00 25 00 50 00	
Law of Contracts	3 4 I I	00 00 25 00	
Law of Contracts	3 4 1 1 2 6 3	00 00 25 00 50 00	
Law of Contracts	3 4 1 1 2 6 3 1	00 00 25 00 50 00 50	
Law of Contracts	3 4 1 1 2 6 3 1 3	00 00 25 00 50 50 50	
Law of Contracts	3 4 1 1 2 6 3 1 3 3	50 00 50 50 00	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2	00 00 25 00 50 00 50 50 50	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2	50 00 50 50 00	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7	00 00 25 00 50 00 50 50 50	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7	50 00 50 50 00 50 50 00 50	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2	50 00 50 50 00 50 50 00	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2	50 00 50 50 50 50 00 50	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2	50 00 50 50 50 50 00 50	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2 1 15	50 00 50 50 50 50 00 50	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2 1 1 5 5	50 00 50 50 00 50 00 50 00 25 00	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2 1 1 5 5 3	50 00 50 50 00 50 00 50 00 25 00 00	
Law of Contracts	3 4 I I 2 6 3 I 3 3 2 7 7 2 I I I S 5 3 4	50 00 50 00 50 50 00 50 00 50 00 50 00 0	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2 1 1 5 5 3 4 2	50 00 50 00 50 50 00 50 00 50 00 50 00 0	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2 1 1 5 5 3 4 2	50 00 50 00 50 50 00 50 00 50 00 50 00 0	
Law of Contracts	3 4 1 1 2 6 3 1 3 3 2 7 7 2 1 15 5 3 4 2 1	50 00 50 00 50 50 00 50 00 50 00 50 00 0	

* Rallistic Tables	4	00
24 Motor 2 Motor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I	50
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. 8vo, each,	6	00
* Mahan's Permanent Fortifications. (Mercur.)8vo, half morocco,	7	50
Manual for Courts-martial	I	50
* Mercur's Attack of Fortified Places	2	00
* Elements of the Art of War8vo,	4	00
Metcalf's Cost of Manufactures—And the Administration of Workshops8vo,	5	00
* Ordnance and Gunnery. 2 vols	5	00
Murray's Infantry Drill Regulations18mo, paper,		10
Nixon's Adjutants' Manual24mo.	I	00
Peabody's Naval Architecture8vo,	7	50
* Phelps's Practical Marine Surveying8vo,	2	50
Powell's Army Officet's Examiner		00
Sharpe's Art of Subsisting Armies in War18mo, morocco,		50
* Tupes and Poole's Manual of Bayonet Exercises and Musketry Fencing.		0 -
24mo, leather,		5c
* Walke's Lectures on Explosives	4	oc
Weaver's Military Explosives		00
* Wheeler's Siege Operations and Military Mining		00
Winthrop's Abridgment of Military Law12mo,		
Woodhull's Notes on Military Hygiene		50
Young's Simple Elements of Navigation		50
Torng & Simple Elements of Wavigation	2	00
ASSAYING.		
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.		
12mo, morocco,	I	50
Furman's Manual of Practical Assaying	3	00
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments8vo,	3	00
Low's Technical Methods of Ore Analysis	3	00
Miller's Manual of Assaying.	I	00
Cyanide Process12mo,		00
Minet's Production of Aluminum and its Industrial Use. (Waldo.)12mo,		50
O'Driscoll's Notes on the Treatment of Gold Ores		00
Ricketts and Miller's Notes on Assaying		00
Robine and Lenglen's Cyanide Industry. (Le Clerc.)		00
Ulke's Modern Electrolytic Copper Refining		00
Wilson's Cyanide Processes.	_	50
Chlorination Process		50
Chiormation Process.	1	50
ASTRONOMY.		
Comstock's Field Astronomy for Engineers		50
Craig's Azimuth		50
Doolittle's Treatise on Practical Astronomy	4	00
Gore's Elements of Geodesy	2	50
Hayford's Text-book of Geodetic Astronomy8vo,	3	00
Merriman's Elements of Precise Surveying and Geodesy	2	50
* Michie and Harlow's Practical Astronomy8vo,	3	00
* White's Elements of Theoretical and Descriptive Astronomy 12mo,	2	00
BOTANY.		
Davenport's Statistical Methods, with Special Reference to Biological Variation.		
16mo, morocco,	T	25
Thome and Bennett's Structural and Physiological Botany16mo,		25
Westermaier's Compendium of General Botany. (Schneider.)8vo,	2	00
westermater's compension of General Botany. (Schneider, J	4	00

CHEMISTRY.

Adriance's Laboratory Calculations and Specific Gravity Tables12mo,	I	25
Alexeveff's General Principles of Organic Synthesis. (Matthews.)8vo,	3	00
Allen's Tables for Iron Analysis8vo,	3	00
Arnold's Compendium of Chemistry. (Mandel.)Small 8vo.	3	50
Austen's Notes for Chemical Students	1	50
Bernadou's Smokeless PowderNitro-cellulose, and Theory of the Cellulose		
Molecule12mo,	2	50
* Browning's Introduction to the Rarer Elements8vo,	I	50
Brush and Penfield's Manual of Determinative Mineralogy 8vo,	4	00
Claassen's Beet-sugar Manufacture. (Hall and Rolfe.)8vo,	3	00
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.)8vo,	3	0
Cohn's Indicators and Test-papers12mo,	2	00
Tests and Reagents 8vo,	3	00
Crafts's Short Course in Qualitative Chemical Analysis. (Schaeffer.)12mo,	I	50
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von		
Ende.)	2	50
Drechsel's Chemical Reactions. (Merrill.)	I	25
Duhem's Thermodynamics and Chemistry. (Burgess.)8vo,	4	00
Eissler's Modern High Explosives8vo,	4	00
Effront's Enzymes and their Applications. (Prescott.)8vo,	3	00
Erdmann's Introduction to Chemical Preparations. (Dunlap.)	I	25
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.		
12mo, morocco,	I	50
Fowler's Sewage Works Analyses		00
Fresenius's Manual of Qualitative Chemical Analysis. (Wells.)8vo,	5	00
Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Wells.) 8vo,	3	00
System of Instruction in Quantitative Chemical Analysis. (Cohn.)		
2 vols8vo,		50
Fuertes's Water and Public Health		50
Furman's Manual of Practical Assaying		00
* Getman's Exercises in Physical Chemistry		00
Gill's Gas and Fuel Analysis for Engineers	1	25
Grotenfelt's Principles of Modern Dairy Practice. (Woll.)		00
Groth's Introduction to Chemical Crystallography (Marshall) 12mo,	I	-
Hammarsten's Text-book of Physiological Chemistry. (Mandel.)8vo,		00
Helm's Principles of Mathematical Chemistry. (Morgan.)12mo,		50
Hering's Ready Reference Tables (Conversion Factors) 16mo, morocco,		50
Hind's Inorganic Chemistry		0.
* Laboratory Manual for Students		00
Holleman's Text-book of Inorganic Chemistry. (Cooper.)8vo,	2	50
Text-book of Organic Chemistry. (Walker and Mott.)8vo, * Laboratory Manual of Organic Chemistry. (Walker.)12mo,	2	50
Hopkins's Oil-chemists' Handbook		00
Jackson's Directions for Laboratory Work in Physiological Chemistry. 8vo,		00
		25
Keep's Cast Iron	2	50
Landauer's Spectrum Analysis. (Tingle.)		00
* Langworthy and Austen. The Occurrence of Aluminium in Vege able		00
Products, Animal Products, and Natural Waters8vo,		
Lassar-Cohn's Practical Urinary Analysis. • (Lorenz.)		00
Application of Some General Reactions to Investigations in Organic	1	00
Chemistry. (Tingle.)		
Leach's The Inspection and Analysis of Food with Special Reference to State	I	00
Control		
Löb's Electrochemistry of Organic Compounds. (Lorenz.)8vo,		50
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments 8vo.		00
Low's Technical Method of Ore Analysis8vo.		00
Lunge's Techno-chemical Analysis. (Cohn.).		00

* McKay and Larsen's Principles and Practice of Butter-making 8vo	т	50
Mandel's Handbook for Bio-chemical Laboratory		50
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe12mo.		60
Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)		
3d Edition, Rewritten8vo.	4	00
Examination of Water. (Chemical and Bacteriological.)	I	25
Matthew's The Textile Fibres	3	50
Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). 12mo.	I	00
Miller's Manual of Assaying	1	00
Cyanide Process	I	00
Minet's Production of Aluminum and its Industrial Use. (Waldo.)12mo,	2	50
Mixter's Elementary Text-book of Chemistry	I	50
Morgan's An Outline of the Theory of Solutions and its Results12mo,	I	00
Elements of Physical Chemistry12mo,	3	00
* Physical Chemistry for Electrical Engineers	Ţ	50
Morse's Calculations used in Cane-sugar Factories 16mo, morocco,	1	50
Mulliken's General Method for the Identification of Pure Organic Compounds.		
Vol. I Large 8vo,	5	00
O'Brine's Laboratory Guide in Chemical Analysis8vo,		00
O'Driscoll's Notes on the Treatment of Gold Ores		00
Ostwald's Conversations on Chemistry. Part One. (Ramsey.)12mo,		50
Part Two. (Turnbun.)12mo,	2	00
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.		
8yo, paper,		50
Pictet's The Alkaloids and their Chemical Constitution. (Biddle.)8vo,		00
Pinner's Introduction to Organic Chemistry. (Austen.)		50
Poole's Calorific Power of Fuels	3	00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-		
ence to Sanitary Water Analysis		25
* Deinieta Cuida to Disco ducing	~ -	~~
* Reisig's Guide to Piece-dyeing		
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint, 8vo,	2	00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I.	2	60
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)8vo, morocco,	2	60 75
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3	75 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3	75 00 50
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4	75 00 50 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1	75 00 50 00 25
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4	75 00 50 00 25 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1	75 00 50 00 25
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2	75 00 50 00 25 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2	75 00 50 00 25 00 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3	75 00 50 00 25 00 00 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2	75 00 50 00 25 00 00 00 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2	75 00 50 00 25 00 00 00 50 50
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2	75 00 50 00 25 00 00 00 50 50
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1	75 00 50 00 25 00 00 00 00 50 50 25
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 2 1 3 2 2 1 1 2	75 00 50 00 25 00 00 00 00 50 50 25 25
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 1 2 1 3 2 2 1 1 2 3	75 00 50 00 25 00 00 00 00 50 50 25 25
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 1 2 1 3 2 2 1 1 2 3	75 00 50 00 25 00 00 00 00 50 50 25 25 50
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 2 1 1 2 2 1 1 2 3 3 2 1	75 00 50 00 25 00 00 00 50 50 25 25 50 00 00 50 50
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1 2 3 2 1 3 3 2 1 3 3 2 1 2 1	75 00 50 00 25 00 00 00 50 50 25 25 50 00 00 50 50 50 50 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1 2 3 3 2 1 3 3 3 3 3 3 3	75 00 50 00 25 00 00 60 50 25 50 00 00 50 50 50 00 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1 2 3 2 1 3 3 4 1 3 4 1 3 3 4 1 3 3 4 4 1 3 3 4 1 3 4 3 4	75 00 50 00 25 00 00 60 50 25 50 00 50 50 50 00 00 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1 2 3 3 2 1 3 3 4 5	75 00 50 00 25 00 00 50 50 50 50 50 00 00 00 00
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1 2 3 3 2 1 3 3 4 5 1	75 00 50 00 25 00 00 50 50 50 50 50 00 00 00 00 00 50
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1 2 3 3 2 1 3 3 4 5 1 4	75 00 50 00 25 00 00 50 50 25 50 00 00 50 00 00 50
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.)	3 3 4 1 4 1 2 1 3 2 2 1 1 2 3 3 2 1 3 3 4 5 1 4 4	75 00 50 00 25 00 00 50 50 50 50 50 00 00 00 00 00 50

duan.)12mo,	Ŧ	
Weaver's Military Explosives	3	
Wehrenfennig's Analysis and Softening of Boiler Feed-Water8vo,		00
Wells's Laboratory Guide in Qualitative Chemical Analysis8vo,	ì	50
Short Course in Inorganic Qualitative Chemical Analysis for Engineering		
Students	1	50
Text-book of Chemical Arithmetic	I	-
Whipple's Microscopy of Drinking-water8vo,	3	
Wilson's Cyanide Processes	I	-
Chlorination Process	I	
Winton's Microscopy of Vegetable Foods	7	50
Wulling's Elementary Course in Inorganic, Pharmaceutical, and Medical		0.0
Chemistry12mo,	2	00
CIVIL ENGINEERING.		
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEER	211	VG.
KAILWAY ENGINEERING.		
Baker's Engineers' Surveying Instruments	3	00
Bixby's Graphical Computing Table		25
** Burr's Ancient and Modern Engineering and the Isthmian Cana. (Postage,		
27 cents additional.)8vo,	3	50
Comstock's Field Astronomy for Engineers8vo,	2	
Davis's Elevation and Stadia Tables8vo,	I	00
Elliott's Engineering for Land Drainage	I	50
Practical Farm Drainage12mo,	Ι	00
*Fiebeger's Treatise on Civil Engineering8vo,	5	00
Flemer's Phototopographic Methods and Instruments8vo,	5	00
Folwell's Sewerage. (Designing and Maintenance.)8vo,	3	00
Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo,	3	50
French and Ives's Stereotomy8vo,	2	50
Goodhue's Municipal Improvements12mo,	I	75
Goodrich's Economic Disposal of Towns' Refuse8vo,	3	50
Gore's Elements of Geodesy 8vo,	2	50
Hayford's Text-book of Geodetic Astronomy8vo,	3	00
Hering's Ready Reference Tables (Conversion Factors) 16mo, morocco,	2	50
Howe's Retaining Walls for Earth	1	25
* Ives's Adjustments of the Engineer's Transit and Level16mo, Bds.		25
Ives and Hilts's Problems in Surveying		50
Johnson's (J. B.) Theory and Practice of Surveying		00
Johnson's (L. J.) Statics by Algebraic and Graphic Methods		00
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.). 12mo,		00
Mahan's Treatise on Civil Engineering. (1873.) (Wood.)		00
Descriptive decometry		50
Merriman's Elements of Precise Surveying and Geodesy		50
Merriman and Brooks's Handbook for Surveyors16mo, morocco,		00
Nugent's Plane Surveying 8vo,	_	50
Ogden's Sewer Design		00
Parsons's Disposal of Municipal Refuse		00
		50
Reed's Topographical Drawing and Sketching		00
Siebert and Biggin's Modern Stone-cutting and Masonry.		50
Smith's Manual of Topographical Drawing. (McMillan.)		50
Sondericker's Graphic Statics, with Applications to Trusses, Beams, and Arches.	2	50
8vo.	2	00
٥٧٥,	4	00

Wassermann's Immune Sera: Hæmolysins, Cytotoxins, and Precipitins. (Bol-

* Transpired Civil Engineer's Product & Plain and Reinforcea8vo,	-	00
* Trautwine's Civil Engineer's Pocket-book	_	00
Venable's Garbage Crematories in America		00
Wait's Engineering and Architectural Jurisprudence		CO
Sheep, Law of Operations Preliminary to Construction in Engineering and Archi-	6	50
tecture		
tecture		00
Law of Contracts		50
Warren's Stereotomy—Problems in Stone-cutting 8vo,	_	00
Webb's Problems in the Use and Adjustment of Engineering Instruments.	2	50
16mo, morocco.	T	25
Wilson's Topographic Surveying8vo,		50
,	0	50
BRIDGES AND ROOFS.		
Boller's Practical Treatise on the Construction of Iron Highway Bridges 8vo,		
* Thames River Bridge		00
Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and	5	00
Suspension Bridges8vo,	3	50
Burr and Falk's Influence Lines for Bridge and Roof Computations8vo,		0
Design and Construction of Metallic Bridges	5	00
Du Bois's Mechanics of Engineering. Vol. II Email 4to,	10	
Foster's Treatise on Wooden Trestle Bridges		00
Fowler's Ordinary Foundations. 8vo,		50
Greene's Roof Trusses 8vo,		25
Bridge Trusses		50
Arches in Wood, Iron, and Stone 8vo.		50
Howe's Treatise on Arches 8vo, Design of Simple Roof-trusses in Wood and Steel. 8vo,		
Symmetrical Masonry Arches. 8vo, Johnson, Bryan, and Turneaure's Theory and Practice in the Designing of	2	50
Modern Framed Structures	10	00
Merriman and Jacoby's Text-book on Roofs and Bridges:		
Part I. Stresses in Simple Trusses 8vo, Part II. Graphic Statics		
	2	50
Part IV. Higher Structures 8vo. Morison's Memphis Bridge	-	00
Waddell's De Pontibus, a Pocket-book for Bridge Engineers. 16mo, morocco,		
* Specifications for Steel Bridges		
Wright's Designing of Draw-spans. Two parts in one volume8vo,	3	50
Wight 5 Designing of Dian spans. The parts of the state o		
TITLD ATTI ICC		
HYDRAULICS.		
Barnes's Ice Formation	3	00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from		
an Orifice. (Trautwine.)		00
Bovey's Treatise on Hydraulics		00
Church's Mechanics of Engineering		50
Hydraulic Motors.		00
Coffin's Graphical Solution of Hydraulic Problems 16mo, morocco,		50
Flather's Dynamometers, and the Measurement of Power		00
Folwell's Water-supply Engineering	-	00
PHIMEI S WILE SHIDDY ENGINEERING,		
Frizell's Water-power		00

Fuertes's Water and Public Health, 12mo,	I	50
Water-filtration Works	2	50
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in		
Rivers and Other Channels. (Hering and Trautwine.)8vo,	4	00
Hazen's Filtration of Public Water-supply	3	00
Hazlehurst's Towers and Tanks for Water-works	2	50
Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal		
Conduits 8vo,	2	00
Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)		
8vo.	4	00
Merriman's Treatise on Hydraulics8vo,		00
* Michie's Elements of Analytical Mechanics8vo,		00
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-		
supplyLarge 8vo,	5	00
** Thomas and Watt's Improvement of Rivers (Post., 44c. additional.) 4to,		00
Turneaure and Russell's Public Water-supplies8vo,		co
Wegmann's Design and Construction of Dams		00
		00
Williams and Hazen's Hydraulic Tables 8vo,	I	50
Wilson's Irrigation Engineering		00
Wolff's Windmill as a Prime Mover		00
Wood's Turbines		50
Elements of Analytical Mechanics.		00
Elements of Analytical Mechanics.	3	00
MATERIALS OF ENGINEERING.		
MATERIALS OF ENGINEERING.		
Baker's Treatise on Masonry Construction8vo,	5	00
Roads and Pavements		
Black's United States Public WorksOblong 4to,		00
* Bovey's Strength of Materials and Theory of Structures		
Burr's Elasticity and Resistance of the Materials of Engineering 8vo,		50
Byrne's Highway Construction		50
Inspection of the Materials and Workmanship Employed in Construction.	5	00
Church's Machanics of Engineering		00
Church's Mechanics of Engineering. 8vo, Du Bois's Mechanics of Engineering. Vol. I. Small 4to,		00
*Eckel's Cements, Limes, and Plasters8vo,		50
		00
Johnson's Materials of Construction Large 8vo, Fowler's Ordinary Foundations 8vo,		00
Craves's Forest Manageration		50
Graves's Forest Mensuration 8vc,		00
* Greene's Structural Mechanics		50
Keep's Cast Iron8vo,		50
Lanza's Applied Mechanics		50
Marten's Handbook on Testing Materials. (Henning.) 2 vols8vo,		50
Maurer's Technical Mechanics	4	. 00
Merrill's Stones for Building and Decoration 8vo,	52	00
Merriman's Mechanics of Materials8vo,	- 5	00
Strength of Materials	- 1	00
Metcalf's Steel. A Manual for Steel-users	2	00
Patton's Practical Treatise on Foundations	23	00
Richardson's Modern Asphalt Pavements8vo,	3	00
Richey's Handbook for Superintendents of Construction 16mo, mor.,		
* Ries's Clays: Their Occurrence, Properties, and Uses	4	1 00
7 1 10 7 1 17	E	00
Rockwell's Roads and Pavements in France	. 1	
Rockwell's Roads and Pavements in France		5 00
Rockwell's Roads and Pavements in France	, 1	25

Spalding's Hydraulic Cement		
Text-book on Roads and Pavements		00
Taylor and Thompson's Treatise on Concrete. Plain and Reinforced8vo,		00
Thurston's Materials of Engineering. 3 Parts		00
Part I. Non-metallic Materials of Engineering and Metallurgy8vo,		00
Part II Iron and Steel		50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their	3	50
Constituents	2	50
Thurston's Text-book of the Materials of Construction.		00
Tillson's Street Pavements and Paving Materials8vo.	4	00
Waddell's De Pontibus (A Pocket-book for Bridge Engineers.)16mo, mor.,	2	00
Specifications for Steel Bridges	I	25
Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on		
the Preservation of Timber		00
Wood's (M. P.) Rustless Coatings. Corrosion and Electrolysis of Iron and	3	00
Steel8vo,	4	00
	4	50
DAILWAY PRODUCTION		
RAILWAY ENGINEERING.		
Andrew's Handbook for Street Railway Engineers3x5 inches, morocco,	т	25
Berg's Buildings and Structures of American Railroads4to,		00
Brook's Handbook of Street Railroad Location 16mo, morocco.		50
Butt's Civil Engineer's Field-book		50
Crandall's Transition Curve	I	50
Railway and Other Earthwork Tables	I	50
Dawson's "Engineering" and Electric Traction Pocket-book 16mo, morceco,		00
Dredge's History of the Pennsylvania Railroad: (1870)		00
Fisher's Table of Cubic Yards	25	25
Godwin's Railroad Engineers' Field-book and Explorers' Guide16mo, mor.,	2	50
Howard's Transition Curve Field-book 16mo, morocco,		50
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-		
bankments8vo,	I	00
Molitor and Beard's Manual for Resident Engineers	I	00
Nagle's Field Manual for Railroad Engineers		00
Philbrick's Field Manual for Engineers		00
Searles's Field Engineering	_	00
Railroad Spiral		50 50
* Trautwine's Method of Calculating the Cube Contents of Excavations and	1	50
Embankments by the Aid of Diagrams	2	00
The Field Practice of Laying Out Circular Curves for Railroads.		
12mo, morocco,	2	50
Cross-section Sheet		25
Webb's Railroad Construction	-	00
Economics of Railroad ConstructionLarge 12mo,		50
Wellington's Economic Theory of the Location of Railways Small 8vo-	5	00
DRAWING.		
Barr's Kinematics of Machinery	2	50
* Bartlett's Mechanical Drawing	3	00
* " Abridged Ed8vo,		50
Coolidge's Manual of Drawing	I	00
9		

Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-	
neersOblong 4to,	2 50
Durley's Kinematics of Machines8vo,	4 00
Emch's Introduction to Projective Geometry and its Applications8vo,	2 50
Hill's Text-book on Shades and Shadows, and Perspective8vo,	2 00
Jamison's Elements of Mechanical Drawing8vo,	2 50
Advanced Mechanical Drawing8vo,	2 00
Jones's Machine Design:	
Part I. Kinematics of Machinery8vo,	I 50
Part II. Form, Strength, and Proportions of Parts 8vo,	3 00
MacCord's Elements of Descriptive Geometry8vo,	3 00
Kinematics; or, Practical Mechanism8vo,	5 00
Mechanical Drawing4to,	4 00
Velocity Diagrams8vo,	I 50
MacLeod's Descriptive GeometrySmall 8vo,	I 50
* Mahan's Descriptive Geometry and Stone-cutting	I 50
Industrial Drawing. (Thompson.)8vo,	3 50
Moyer's Descriptive Geometry	2 00
Reed's Topographical Drawing and Sketching	5 00
Reid's Course in Mechanical Drawing	2 00
Text-book of Mechanical Drawing and Elementary Machine Design. 8vo,	3 00
Robinson's Principles of Mechanism	3 00
Schwamb and Merrill's Elements of Mechanism	3 00
Smith's (R. S.) Manual of Topographical Drawing. (McMillan.)8vo,	2 50
Smith (A. W.) and Marx's l'achine Design	3 00
* Titsworth's Elements of Mechanical DrawingOblong 8vo,	I 25
Warren's Elements of Plane and Solid Free-hand Geometrical Drawing. 12mo,	I 00
Drafting Instruments and Operations12mo,	I 25
Manual of Elementary Projection Drawing12mo,	I 50
Manual of Elementary Problems in the Linear Perspective of Form and	
Shadow12mo,	1 00
Plane Problems in Elementary Geometry	I 25
Primary Geometry	75
Elements of Descriptive Geometry, Shadows, and Perspective 8vo,	3 50
General Problems of Shades and Shadows	3 00
Elements of Machine Construction and Drawing8vo,	7 50
Problems, Theorems, and Examples in Descriptive Geometry8vo,	2 50
Weisbach's Kinematics and Power of Transmission. (Hermann and	
Klein.) 8vo,	5 00
Whelpley's Practical Instruction in the Art of Letter Engraving 12mo,	2 00
Wilson's (H. M.) Topographic Surveying8vo,	3 50
Wilson's (V. T.) Free-hand Perspective8vo,	2 50
Wilson's (V. T.) Free-hand Lettering8vo,	I 00
Woolf's Elementary Course in Descriptive GeometryLarge 8vo,	3 00
ELECTRICITY AND PHYSICS.	
EDECIRICITI AND PHISICS.	
Anthony and Brackett's Text-book of Physics. (Magie.)Small 8vo,	3 00
Anthony's Lecture-notes on the Theory of Electrical Measurements12mo,	I 00
Benjamin's History of Electricity8vo,	3 00
Voltaic Cell8vo,	3 00
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). 8vo,	3 00
* Collins's Manual of Wireless Telegraphy	I 50
Могоссо,	2 00
Crehore and Squier's Polarizing Photo-chronograph 8vo,	3 00
Dawson's "Engineering" and Electric Traction Pocket-book. 16mo, morocco.	5 00

Ende.)12mo,	2 50	
Duhem's Thermodynamics and Chemistry. (Burgess.)8vo,	4 00	
Flather's Dynamometers, and the Measurement of Power12mo,	3 00	
Gilbert's De Magnete. (Mottelay.) 8vo,	2 50	
Hanchett's Alternating Currents Explained	I 00	
Hering's Ready Reference Tables (Conversion Factors)16mo, morocco,	2 50	
Holman's Precision of Measurements	2 00	
Telescopic Mirror-scale Method, Adjustments, and TestsLarge 8vo,	75	
Kinzbrunner's Testing of Continuous-current Machines8vo,	2 00	
Landauer's Spectrum Analysis. (Tingle.)	3 00	
Le Chatelier s High-temperature Measurements. (Boudouard-Burgess.) 12mo,	3 00	
Löb's Electrochemistry of Organic Compounds. (Lorenz.)8vo,	3 00	
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. 8vo, each,	6 00	
* Michie's Elements of Wave Motion Relating to Sound and Light 8vo,	4 00	
Niaudet's Elementary Treatise on Electric Batteries. (Fishback.) 12mo.	2 50	
* Parshall and Hobart's Electric Machine Design 4to, half morocco,	12 50	
* Rosenberg's Electrical Engineering. (Haldane Gee-Kinzbrunner.) 8vo,	I 50	
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I	2 50	
Thurston's Stationary Steam-engines	2 50	
* Tillman's Elementary Lessons in Heat	I 50	
Tory and Pitcher's Manual of Laboratory Physics	2 00	
Ulke's Modern Electrolytic Copper Refining8vo,	3 00	
3	5	
LAW.		
L/A.W.		
* Th. ' 1 Th		
* Davis's Elements of Law	2 50	
Treatise of the minuary Law of Office States	7 00	
* Sheep,	7 50	
Manual for Courts-martial16mo, morocco,	I 50	
Wait's Engineering and Architectural Jurisprudence8vo,	6 00	
Sheep,	6 50	
Law of Operations Preliminary to Construction in Engineering and Archi-		
tecture8vo,	5 00	
Sheep,	5 50	
Law of Contracts8vo,	3 00	
Winthrop's Abridgment of Military Law, 12mo,	2 50	
AR I BYYTTA OMYYD TIO		
MANUFACTURES.		
Bernadou's Smokeless Powder-Nitro-cellulose and Theory of the Cellulose		
Molecule12mo,	2 50	
Bolland's Iron Founder	2 50	
The Iron Founder," Supplement	2 50	
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the		
Practice of Moulding	3 00	
Claassen's Beet-sugar Manufacture. (Hall and Rolfe.)8vo,	3 00	
	6 00	
* Eckel's Cements, Limes, and Plasters8vo,	4 00	
* Eckel's Cements, Limes, and Plasters	3 00	
* Eckel's Cements, Limes, and Plasters		
* Eckel's Cements, Limes, and Plasters	1 00	
* Eckel's Cements, Limes, and Plasters	I 00	
* Eckel's Cements, Limes, and Plasters		
* Eckel's Cements, Limes, and Plasters	1 00	
* Eckel's Cements, Limes, and Plasters	1 00 3 00	

Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von

Leach's The Inspection and Analysis of Food with Special Reference to State		
	1-7	50
ControlLarge 8vo,		50
* McKay and Larsen's Principles and Practice of Butter-making8vo,		50
Matthews's The Textile Fibres		50
Metcalf's Steel. A Manual for Steel-users		00
Metcalfe's Cost of Manufactures—And the Administration of Workshops. 8vo,	-	00
arecycl 5 allowed and control control actions and are a series and a series are a series and a series are a series and a series are a s		00
Morse's Calculations used in Cane-sugar Factories16mo, morocco,		50
* Reisig's Guide to Piece-dyeing	-	00
Rice's Concrete-block Manufacture		00
Sabin's Industrial and Artistic Technology of Paints and Varnish8vo,	3	00
Smith's Press-working of Metals8vo,	3	00
Spalding's Hydraulic Cement	2	00
Spencer's Handbook for Chemists of Beet-sugar Houses 16mo, morocco,	3	00
Handbook for Cane Sugar Manufacturers	3	00
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced 8vo,	5	00
Thurston's Manual of Steam-boilers, their Designs, Construction and Opera-		
tion8vo,	5	00
* Walke's Lectures on Explosives8vo,	4	00
Ware's Beet-sugar Manufacture and RefiningSmall 8vo,	4	00
Weaver's Military Explosives 8vo,	3	00
West's American Foundry Practice	2	50
Moulder's Text-book12mo,	2	50
Wolff's Windmill as a Prime Mover8vo,	3	00
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel 8vo,	4	00
MATHEMATICS.		
Dalracia Diliatia Persatiana		
Baker's Elliptic Functions		50
* Bass's Elements of Differential Calculus	4	00
* Bass's Elements of Differential Calculus	4 I	00
* Bass's Elements of Differential Calculus	4 I J	00 00 50
* Bass's Elements of Differential Calculus	4 I I	00 00 50 50
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, * Dickson's College Algebra. Large 12mo,	4 I I I	00 00 50 50 50
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo,	4 1 1 1	00 00 50 50 50 25
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo,	4 1 1 1 1 1 2	00 00 50 50 50 25 50
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 2mo, * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo,	4 1 1 1 1 2	00 00 50 50 50 25 50 75
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo,	4 1 1 1 1 2 1	00 00 50 50 50 25 50 75
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 12mo,	4 1 1 1 1 2 1	00 00 50 50 50 25 50 75 50 75
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 12mo, * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper,	4 1 1 1 1 2 1 1 1	00 00 50 50 50 25 50 75 50 75
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 2vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 12mo, Rational Geometry. 12mo, * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for	4 1 1 1 1 2 1 1 1	00 00 50 50 50 25 50 75 50 75 15
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry 12mo, Compton's Manual of Logarithmic Computations 12mo, Davis's Introduction to the Logic of Algebra 8vo, * Dickson's College Algebra Large 12mo, * Introduction to the Theory of Algebraic Equations Large 12mo, Emch's Introduction to Projective Geometry and its Applications 8vo, Halsted's Elements of Geometry 8vo, Elementary Synthetic Geometry 8vo, Rational Geometry 8vo, Rational Geometry 12mo, * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches,	4 1 1 1 2 1 1 1 1	00 00 50 50 50 25 50 75 50 75 15 00 25
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 12mo, *Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 10 copies for	4 1 1 1 1 2 1 1 1 1 5	00 00 50 50 50 25 50 75 50 75 15 00 25 00
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 8vo, Rational Geometry. 12mo, Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 10 copies for Johnson's (W W.) Elementary Treatise on Differential Calculus. Small 8vo,	4 1 1 1 1 2 1 1 1 1 2 3	00 00 50 50 50 25 50 75 50 75 15 00 25 00
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 2vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 12mo, 12mo, Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8 × 10 inches, 10 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo,	4 1 1 1 1 2 1 1 1 1 2 3 1 1 1 1	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00 50
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 12mo, *Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 10 copies for Johnson's (W W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12mo,	4 1 1 1 1 2 1 1 1 1 2 3 1 1 1 1	00 00 50 50 50 25 50 75 50 75 15 00 25 00
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Elementary Synthetic Geometry. 8vo, Rational Geometry. 12mo, Rational Geometry. 12mo, No copies for Mounted on heavy cardboard, 8×10 inches, 100 copies for Mounted on heavy cardboard, 8×10 inches, 100 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12mo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations.	4 1 1 1 1 2 1 1 1 2 3 1 1	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00
* Bass's Elements of Differential Calculus. Briggs's Elements of Plane Analytic Geometry. Compton's Manual of Logarithmic Computations. Davis's Introduction to the Logic of Algebra. * Dickson's College Algebra. Introduction to the Theory of Algebraic Equations. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. Svo, Halsted's Elements of Geometry. Elementary Synthetic Geometry. * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 100 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12mo, Small 8vo, Small 8vo, Small 8vo,	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00 50
* Bass's Elements of Differential Calculus. Briggs's Elements of Plane Analytic Geometry. Compton's Manual of Logarithmic Computations. Davis's Introduction to the Logic of Algebra. * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo, * Introduction to the Theory of Algebraic Equations. Emch's Introduction to Projective Geometry and its Applications. * Svo, Halsted's Elements of Geometry. Elementary Synthetic Geometry. * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 10 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12mo,	4 1 1 1 1 2 1 1 1 1 1 3 1 1	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00 50 00
* Bass's Elements of Differential Calculus. Briggs's Elements of Plane Analytic Geometry. Compton's Manual of Logarithmic Computations. Davis's Introduction to the Logic of Algebra. * Dickson's College Algebra. Introduction to the Theory of Algebraic Equations. Large 12mo, Introduction to the Theory of Algebraic Equations. Emch's Introduction to Projective Geometry and its Applications. Bvo, Halsted's Elements of Geometry. Elementary Synthetic Geometry. * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, Elementary Treatise on the Integral Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12mo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12mo, * Johnson's (W. W.) Theoretical Mechanics. 12mo, * Johnson's (W. W.) Theoretical Mechanics. 12mo,	4 I I I I I I I I I I I I I I I I I I I	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00 50
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Rational Geometry. 8vo, Rational Geometry. 12mo, Rational Geometry. 12mo, * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 100 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12mo, * Johnson's (W. W.) Theoretical Mechanics. 12mo, Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo,	4 I I I I I I I I I I I I I I I I I I I	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00 50 00
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry. 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, * Dickson's College Algebra. Large 12mo, * Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Rational Geometry. 8vo, Rational Geometry. 12mo, * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8 × 10 inches, 10 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus Small 8vo, Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12mo, Johnson's (W. W.) Theoretical Mechanics. 12mo, Johnson's (W. W.) Theoretical Mechanics. 12mo, Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, * Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other	4 1 1 1 1 2 1 1 1 1 2 3 1 1 1 3 1 1 1 3 1 1 1 1	00 00 50 50 50 25 50 75 50 00 25 00 00 50 00
* Bass's Elements of Differential Calculus. Briggs's Elements of Plane Analytic Geometry. Compton's Manual of Logarithmic Computations. Davis's Introduction to the Logic of Algebra. * Dickson's College Algebra. Introduction to the Theory of Algebraic Equations. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. Svo, Halsted's Elements of Geometry. Elementary Synthetic Geometry. Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 12mo, Mounted on heavy cardboard, 8×10 inches, 100 copies for Mounted on heavy cardboard, 8×10 inches, 100 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12mo, * Johnson's (W. W.) Theoretical Mechanics. 12mo, Laplace's Philosophical Essay on Probabilities. (Truscott and Emory). 12mo, * Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other Tables. 8vo,	4 1 1 1 1 2 1 1 1 1 5 2 3 1 1 3 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3	00 00 50 50 50 25 50 75 50 00 25 00 00 50 00 50 00
* Bass's Elements of Differential Calculus. Briggs's Elements of Plane Analytic Geometry. Compton's Manual of Logarithmic Computations. Davis's Introduction to the Logic of Algebra. * Dickson's College Algebra. Introduction to the Theory of Algebraic Equations. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. Svo, Halsted's Elements of Geometry. Elementary Synthetic Geometry. * Book Rational Geometry. * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 100 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12mo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12mo, * Johnson's (W. W.) Theoretical Mechanics. 12mo, Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, * Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other Tables. Trigonometry and Tables published separately. Each,	4 1 1 1 1 2 1 1 1 1 2 3 1 1 3 2 3 2 3 2 3	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00 50 00 60
* Bass's Elements of Differential Calculus. 12mo, Briggs's Elements of Plane Analytic Geometry 12mo, Compton's Manual of Logarithmic Computations. 12mo, Davis's Introduction to the Logic of Algebra. 8vo, Dickson's College Algebra. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. 8vo, Halsted's Elements of Geometry. 8vo, Rational Geometry. 8vo, Rational Geometry. 1000 copies for Mounted on heavy cardboard, 8×10 inches, 1000 copies for Mounted on heavy cardboard, 8×10 inches, 1000 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, Johnson's (W. W.) Theoretical Mechanics. 12mo, Johnson's (W. W.) Theoretical Mechanics. 12mo, Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, * Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other Tables. 8vo, Trigonometry and Tables published separately. Each, * Ludlow's Logarithmic and Trigonometric Tables. 8vo.	4 1 1 1 1 2 1 1 1 1 2 3 1 1 3 2 3 2 3 2 3	00 00 50 50 50 25 50 75 50 00 25 00 00 50 00 50 00
* Bass's Elements of Differential Calculus. Briggs's Elements of Plane Analytic Geometry. Compton's Manual of Logarithmic Computations. Davis's Introduction to the Logic of Algebra. * Dickson's College Algebra. Introduction to the Theory of Algebraic Equations. Large 12mo, Introduction to the Theory of Algebraic Equations. Large 12mo, Emch's Introduction to Projective Geometry and its Applications. Svo, Halsted's Elements of Geometry. Elementary Synthetic Geometry. * Book Rational Geometry. * Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 100 copies for Mounted on heavy cardboard, 8×10 inches, 100 copies for Johnson's (W. W.) Elementary Treatise on Differential Calculus. Small 8vo, Elementary Treatise on the Integral Calculus. Small 8vo, Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12mo, Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12mo, * Johnson's (W. W.) Theoretical Mechanics. 12mo, Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, * Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other Tables. Trigonometry and Tables published separately. Each,	4 I I I I I I I I I I I I I I I I I I I	00 00 50 50 50 25 50 75 50 75 15 00 25 00 00 50 00 60

Mathematical Monographs. Edited by Mansfield Merriman and Robert	
S. Woodward	1 00
bolic Functions, by James McMahon. No. 5. Harmonic Functions, by William E. Byerly. No. 6. Grassmann's Space Analysis, by Edward W. Hyde. No. 7. Probability and Theory of Errors,	
by Robert S. Woodward. No. 8. Vector Analysis and Quaternions, by Alexander Macfarlane. No. 9. Differential Equations, by William Woolsey Johnson. No. 10. The Solution of Equations,	
William Woolsey Johnson. No. 10. The Solution of Equations, by Mansfield Merriman. No. 11. Functions of a Complex Variable, by Thomas S. Fiske.	
Maurer's Technical Mechanics. Svo.	4 06
Merriman's Method of Least Squares	2 00
Rice and Johnson's Elementary Treatise on the Differential Calculus. Sm. 8vo,	
	2 50
Wood's Elements of Co-ordinate Geometry	1 00
MECHANICAL ENGINEERING.	
MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.	
Bac in's Forge Practice	1 50
Baldwin's Steam Heating for Buildings	2 50 2 50
* Bartlett's Mechanical Drawing	3 00
* " " Abridged Ed8vo,	1 50
Benjamin's Wrinkles and Recipes, 12mo,	2 00
Carpenter's Experimental Engineering8vo,	6 00
Heating and Ventilating Buildings	4 00
Clerk's Gas and Oil EngineSmall 8vo,	4 00
Coolidge's Manual of Drawing8vo, paper,	00 1
Coolidge and Freeman's Elements of General Drafting for Mechanical En-	
gineersOblong 4to,	2 50
Cromwell's Treatise on Toothed Gearing	1 50
Treatise on Belts and Pulleys	1 50 4 00
Flather's Dynamometers and the Measurement of Power	3 00
	2 00
Rope Driving. 12mo, Gill's Gas and Fuel Analysis for Engineers. 12mo,	1 25
Hall's Car Lubrication	1 00
Hering's Ready Reference Tables (Conversion Factors) 16mo, morocco,	2 50 5 00
Hutton's The Gas Engine	2 50
Jones's Machine Design:	2 30
Part I. Kinematics of Machinery8vo,	I 50
Part II. Form, Strength, and Proportions of Parts8vo,	3 00
Kent's Mechanical Engineers' Pocket-book	5 00
Kerr's Power and Power Transmission	2 00
Leonard's Machine Shop, Tools, and Methods8vo, *Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.)8vo,	4 00
MacCord's Kinematics; or Practical Mechanism8vo,	5 00
Mechanical Drawing4to	4 00
Velocity Diagrams. 8vo,	1 50

MacFarland's Standard Reduction Factors for Gases. 8vo, Mahan's Industrial Drawing. (Thompson.). 8vo, Poole's Calorific Power of Fuels. 8vo, Reid's Course in Mechanical Drawing. 8vo, Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, Richard's Compressed Air 12mo, Robinson's Principles of Mechanism. 8vo, Schwamb and Merrill's Elements of Mechanism. 8vo, Smith's (O.) Press-working of Metals. 8vo, Smith (A. W.) and Marx's Machine Design. 8vo, Thurston's Treatise on Friction and Lost Work in Machinery and Mill Work. Animal as a Machine and Prime Motor, and the Laws of Energetics. 12mo, Warren's Elements of Machine Construction and Drawing. 8vo, Weisbach's Kinematics and the Power of Transmission. (Herrmann—Klein.). 8vo, Machinery of Transmission and Governors. (Herrmann—Klein.) 8vo, Wood's Turbines. 8vo, 8vo,	3 3 3 3 3 3 3 3 7 5 5 3 3	50 50 00 00 00 00 00 00 00 00 00 00 00 0
MATERIALS OF ENGINEERING.		
* Bovey's Strength of Materials and Theory of Structures 8vo, Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition.	7	50
Reset8vo,	7	50
Church's Mechanics of Engineering	6	00
* Greene's Structural Mechanics 8vo,	2	50
Johnson's Materials of Construction 8vo,	6	00
Keep's Cast Iron. 8vo,		50
Lanza's Applied Mechanics		50
Martens's Handbook on Testing Materials. (Henning.)8vo,		50
Maurer's Technical Mechanics		00
Strength of Material 12mo,		00
Metcalf's Steel. A manual for Steel-users		00
Sabin's Industrial and Artistic Technology of Paints and Varnish8vo,		00
Smith's Materials of Machines		00
Thurston's Materials of Engineering 3 vols., 8vo,	8	00
Part II. Iron and Steel8vo,	3	50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their		
Constituents8vo,	2	50
Text-book of the Materials of Construction8vo, Wood's (De V.) Treatise on the Resistance of Materials and an Appendix on	5	00
the Preservation of Timber		00
Elements of Analytical Mechanics	.3	00
Steel8vo,	4	00
STEAM-ENGINES AND BOILERS.		
Berry's Temperature-entropy Diagram	1	25
Carnot's Reflections on the Motive Power of Heat. (Thurston.)		50
Dawson's "Engineering" and Electric Traction Pocket-book16mo mor.,	5	
Ford's Boiler Making for Boiler Makers		00
Goss's Locomotive Sparks		00
Hemenway's Indicator Practice and Steam-engine Economy12mo,	2	00

Hutton's Mechanical Engineering of Power Plants8vo,	5	00
Heat and Heat-engines8vo		00
Kent's Steam boiler Economy8vo,	4	00
Kneass's Practice and Theory of the Injector8vo,	I	50
MacCord's Slide-valves8vo,		00
Meyer's Modern Locomotive Construction	10	00
Peabody's Manual of the Steam-engine Indicatorf2mo.	I	50
Tables of the Properties of Saturated Steam and Other Vapors8vo,	I	00
Thermodynamics of the Steam-engine and Other Heat-engines8vo,	5	00
Valve-gears for Steam-engines	2	50
Peabody and Miller's Steam-boilers8vo,	4	00
Pray's Twenty Years with the IndicatorLarge 8vo,	2	50
Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.		
Osterberg		25
Reagan's Locomotives: Simple Compound, and Electric12mo,		50
Rortgen's Principles of Thermodynamics. (Du Bois.)8vo,		00
Sinclair's Locomotive Engine Running and Management		00
Smart's Handbook of Engineering Laboratory Practice		50
Snow's Steam-beiler Practice		00
Spangler's Valve-gears		50
Notes on Ther redynamics. 12mo, Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo,		00
Thomas's Steam-turbines		00
Thurston's Handy Tables		50 50
Manual of the Steam-engine		
Part I. History, Structure, and Theory		00
Part II. Design, Construction, and Operation		00
Handbook of Engine and Boiler Trials, and the Use of the Indicator and		00
the Prony Brake	5	00
Stationary Steam-engines8vo,	_	50
Steam-boiler Explosions in Theory and in Practice		50
Manual of Steam-boilers, their Designs, Construction, and Operation 8vo,	5	00
Wehrenfenning's Analysis and Softening of Boiler Feed-water (Patterson) 8vo,	4	00
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.)8vo,	5	00
Whitham's Steam-engine Design8vo,	5	00
Wood's Thermodynamics, Heat Motors, and Refrigerating Machines8vo,	4	00
MECHANICS AND MACHINERY.		
Barr's Kinematics of Machinery8vo,		50
* Bovey's Strength of Materials and Theory of Structures		50
Chase's The Art of Pattern-making		50
Church's Mechanics of Engineering8vo,		00
Notes and Examples in Mechanics8vo,		00
Compton's First Lessons in Metal-working		50
Compton and De Groodt's The Speed Lathe		50
Cromwell's Treatise on Toothed Gearing		50
Treatise on Belts and Pulleys		50
Dana's Text-book of Elementary Mechanics for Colleges and Schools12mo,		50
Dingay's Machinery Dettern Making	-	00
Dingey's Machinery Pattern Making 12mo, Dradge's Paccard of the Transportation Exhibits Building of the World's		
Dredge's Record of the Transportation Exhibits Building of the World's	5	00
Dredge's Record of the Transportation Exhibits Building of the World's Columbian Exposition of 1893 4to half morocco,	5	00
Dredge's Record of the Transportation Exhibits Building of the World's Columbian Exposition of 1893 4to half morocco, u Bois's Elementary Principles of Mechanics		
Dredge's Record of the Transportation Exhibits Building of the World's Columbian Exposition of 1893 4to half morocco, u Bois's Elementary Principles of Mechanics		
Dredge's Record of the Transportation Exhibits Building of the World's Columbian Exposition of 1893	3 4 7	50
Dredge's Record of the Transportation Exhibits Building of the World's Columbian Exposition of 1893 4to half morocco, u Bois's Elementary Principles of Mechanics	3 4 7	50

Fitzgerald's Boston Machinist	I	
Flather's Dynamometers, and the Measurement of Power	3	00
Rope Driving	2	00
Goss's Locomotive Sparks	2	00
* Greene's Structural Mechanics8vo,	2	50
Hall's Car Lubrication12mo,	I	00
Holly's Art of Saw Filing18mo,		75
James's Kinematics of a Point and the Rational Mechanics of a Particle.		
Sma'l 8vo,		00
* Johnson's (W. W.) Theoretical Mechanics		00
Johnson's (L. J.) Statics by Graphic and Algebraic Methods	2	00
Jones's Machine Design:		
Part I. Kinematics of Machinery		50
Part II. Form, Strength, and Proportions of Parts	3	00
Kerr's Power and Power Transmission		50
Leonard's Machine Shop, Tools, and Methods		00
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.).8vo,		00
MacCord's Kinematics; or. Practical Mechanism		00
Velocity Diagrams		50
* Martin's Text Book on Mechanics, Vol. I, Statics		25
Maurer's Technical Mechanics		00
Merriman's Mechanics of Materials		00
* Elements of Mechanics	-	00
* Michie's Elements of Analytical Mechanics		00
* Parshall and Hobart's Electric Machine Design 4to, half morocco,		50
Reagan's Locomotives Simple, Compound, and Electric12mo,		50
Reid's Course in Mechanical Drawing		00
Text-book of Mechanical Drawing and Elementary Machine Design 8vo,	3	00
Richards's Compressed Air12mo,		50
Robinson's Principles of Mechanism	3	00
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I		50
Sanborn's Mechanics: ProblemsLarge 12mo,	I	50
Schwamb and Merrill's Elements of Mechanism8vo,	3	00
Sinclair's Locomotive-engine Running and Management	2	00
Smith's (O.) Press-working of Metals	3	00
Smith's (A. W.) Materials of Machines	I	00
Smith (A. W.) and Marx's Machine Design		00
Spangler, Greene, and Marshall's Elements of Steam-engineering8vo,	3	00
Thurston's Treatise on Friction and Lost Work in Machinery and Mill		
Work		00
Animal as a Machine and Prime Motor, and the Laws of Energetics, 12mo,		00
Warren's Elements of Machine Construction and Drawing	7	20
Mashinery of Transmission and Governors. (Herrmann—Klein.).8vo,	5	00
Wood's Elements of Analytical Mechanics	5	00
Principles of Elementary Mechanics		00
Turbines	2	,
The World's Columbian Exposition of 18934to,		00
		00
METALLURGY.		
Egleston's Metallurgy of Silver, Gold, and Mercury		
Vol. I. Silver8vo,	7	50
Vol. II. Gold and Mercury8vo,	7	50
Goesel's Minerals and Metals: A Reference Book	3	00
** Iles's Lead-smelting. (Postage o cents additional.)	2	50
Keep's Cast Iron	2	50

Kunhardt's Practice of Ore Dressing in Europe	3 2 1 2	50 00 00 00 50 00
Smith's Materials of Machines. 12mo, Thurston's Materials of Engineering. In Three Parts. 8vo, Part II. Iron and Steel. 8vo, Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents. 8vo,	8	00 00 50
Ulke's Modern Electrolytic Copper Refining		50
•		
MINERALOGY.		
Barringer's Description of Minerals of Commercial Value. Oblong, morocco, Boyd's Resources of Southwest Virginia. 8vo, Map of Southwest Virignia. Pocket-book form. Brush's Manual of Determinative Mineralogy. (Penfield.). 8vo, Chester's Catalogue of Minerals. 8vo, paper,	3 2 4	50 00 00 00
Cloth, Dictionary of the Names of Minerals8vo		25
	I 2 I	50 50 00
Minerals and How to Study Them	I 2	50 00 00
Douglas's Untechnical Addresses on Technical Subjects	I 2	00 25 50 00
Groth's Introduction to Chemical Crystallography (Marshall) 12mo, Hussak's The Determination of Rock-forming Minerals. (Smith.). Small 8vo, Merrill's Non-metallic Minerals. Their Occurrence and Uses8vo,	I 2	25 00
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests. 8vo, paper,		50
Rosenbusch's Microscopical Physiography of the Rock-making Minerals. 11111/115	_	00
MINING.		
Beard's Ventilation of Mines		50 00
Map of Southwest Virginia		00 00
* Drinker's Tunneling, Explosive Compounds, and Rock Drills 4to, hf. mor., Eissler's Medern High Explosives.	25	
Goesel's Minerals and Metals. A Reference Book16mo, mor.		00
Goodyear's Coal-mines of the Western Coast of the United States12mo,		50
Ihlseng's Manual of Mining. 8vo, ** Iles's Lead-smelting. (Postage oc. additional.)		00 50
Kunhardt's Practice of Ore Dressing in Europe 8vo, Miller's Cyanide Process	1	50 00

O'Driscoll's Notes on the Treatment of Gold Ores. Robine and Lenglen's Cyanide Industry. (Le Clerc.). * Walke's Lectures on Explosives. Weaver's Military Explosives. Wilson's Cyanide Processes.	8vo, 8vo, 8vo,	4	00 00 00 00 50
Chlorination Process Hydraulic and Placer Mining		1	50
Treatise on Practical and Theoretical Mine Ventilation			25
SANITARY SCIENCE.			
Bashore's Sanitation of a Country House	.12mo.	I	()(,
* Outlines of Practical Sanitation	.12mo,	I	25
Folwell's Sewerage. (Designing, Construction, and Maintenance.)		_	(17)
Water-supply Engineering		4	00
Fuertes's Water and Public Health		I	50
Water-filtration Works.		2	56
Gerhard's Guide to Sanitary House-inspection			00
Goodrich's Economic Disposal of Town's Refuse	ny 8vo,		36
Hazen's Filtration of Public Water-supplies. Leach's The Inspection and Analysis of Food with Special Reference	o State	3	00
Control		7	50
Mason's Water-supply. (Considered principally from a Sanitary Standpoi	nt)8vo,		00
Examination of Water. (Chemical and Bacteriological.)			25
Ogden's Sewer Design Prescott and Winslow's Elements of Water Bacteriology, with Special	Refer-	2	00
ence to Sanitary Water Analysis		1	25
* Price's Handbook on Sanitation	.12mo,	1	50
Richards's Cost of Food. A Study in Dietaries	.12mo,		00
Costaof Living as Modified by Sanitary Science	.12mo,	I	00
Richards and Woodman's Air. Water, and Food from a Sanitary		_	00
point		2	co
* Richards and Williams's The Dietary Computer			50
Rideal's Sewage and Bacterial Purification of Sewage Turneaure and Russell's Public Water-supplies		_	50
Von Behring's Suppression of Tuberculosis. (Bolduan.)	ovo,	-	00
Whipple's Microscopy of Drinking-water		3	50
Winton's Microscopy of Vegetable Foods		7	50
Woodhull's Notes on Military Hygiene			5-
* Feisonal Hygiene	.12mo,	I	00
MISCELLANEOUS.			
De Fursac's Manual of Psychiatry. (Rosanoff and Collins.)Large	e 12mo,	2	50
Ehrlich's Collected Studies on Immunity (Bolduan)	8vo,	6	00
Emmons's Geological Guide-book of the Rocky Mountain Excursion International Congress of GeologistsLau	of the		
Ferrel's Popular Treatise on the Winds.	8vo.		50
Haines's American Railway Management.	.12mo.		50
Mott's Fallacy of the Present Theory of Sound	.16mo.		00
Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894. Sm	all 8vo,	-	00
Rostoski's Serum Diagnosis. (Bolduan.)	.12mo		00
18	ge eve,	3	00

The world's Columbian Exposition of 1893	1 0	0
Von Behring's Suppression of Tuberculosis. (Bolduan.)	I O	0
Winslow's Elements of Applied Microscopy12mo,	I 5	0
Worcester and Atkinson. Small Hospitals, Establishment and Maintenance;		
Suggestions for Hospital Architecture: Plans for Small Hospital. 12mo,	I 2	5
HEBREW AND CHALDEE TEXT-BOOKS.		
REDREW AND CHALDEE TEXT-BOOKS.		
Green's Elementary Hebrew Grammar	I 2	5
Hebrew Chrestomathy8vo,	2 0	00
Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.		
(Tregelles.)	5 0	00
Letteris's Hebrew Bible	2 2	5

19

Steel's Treatise on the Diseases of the Dog......8vo, 3 50

o res

624.6 H85 007360301Ь 9067

