

21Al637 Deep Learning 3-0-2-4 (S2 MTech Al)

21AM645 Deep Learning 3-0-2-4 (S2 M.Tech CS(AI/ML)

PhD Coursework

Class Timings

- Tuesday 11 am to 11:40 am
- Wednesday 11 am to 11:40 am
- Thursday 8:50 am to 9:40 am
- Lab Tuesday(3.00PM to 4:50PM)

•

Course Objectives

- To introduce to students,
 - Different deep neural network architectures,
 - Training strategies/algorithms, possible challenges, tools and techniques available in designing and deploying solutions to different practical/ Engineering problems.

Course Outcomes

- After the course completion, the students will be able to,
- **CO1:** Be able to design, train, deploy neural networks for solving different practical/engineering problems and analyse and report its efficacy
- **CO2**: Have a good level of knowledge (Both Conceptual and Mathematical) on different neural network settings to pursue Research in this Field
- CO3: Build skills in using established ML tools/libraries and in building self-learning skills in the field

• Prerequisites • Linear Algebra and Probability • Computational Methods for Optimisation

Syllabus

- Neural Networks basics Linear Separable Problems and Perceptron –
- Multi layer neural networks and Back Propagation, Practical aspects of Deep Learning: Train/ Dev / Test sets, Bias/variance, Vanishing/exploding gradients, Gradient checking, Hyper Parameter Tuning
- Convolutional Neural Networks Basics and Evolution of Popular CNN architectures Transfer Learning Applications: Object Detection and Localization, Face Recognition,
- Neural Style Transfer Recurrent Neural Networks GRU LSTM NLP Word Embeddings Transfer Learning –
- Attention Models Applications : Sentinel Classification, Speech Recognition, Action Recognition
- Restricted Boltzmann Machine Deep Belief Network –
- Auto Encoders Applications: SemiSupervised classification, Noise Reduction, Non-linear Dimensionality Reduction Goal Oriented Decision Making – Policy and Target Networks –
- Deep Quality Network for Reinforcement Learning
- Introduction to GAN Encoder/Decoder, Generator/Discriminator architectures Challenges in NN training –
- Data Augmentation Hyper parameter Settings Transfer Learning Developing and Deploying ML Models (e.g., Matlab/Tensor Flow/PyTorch)

Deep Learning Models (Big Picture)

Deep Neural Networks

- Neural Networks
- Deep Neural Networks/Feed forward Networks

Convolutional Neural Networks (CNN)

- LeNet
- AlexNet
- VGG
- ResNet
- GoogleNet

Object Detection models

- RCNN
- Yolo

Generative models

Generative Adversarial Networks, (GAN)

Sequential Models

- RNN
- LSTM
- Encoder Decoder models
- Attention mechanism
- Transformers
- Transformers, Transformer-XL, Masked Language Modelling
- Generative Pre-trained Transformer 3 (GPT-3)

Autoregressive models

- Time series forecasting
- Generative Pre-trained Transformer 3 (GPT-3)
- NADE, MADE(Masked Autoencoder Density Estimator), PixelRNN

Introduction to Computer Vision

Image Formation: Simple Model

Digital Camera

The Eye

Image Matrix- pixel, resolution (spatial, graylevel)

Gray Scale image 8 bit gray scale image 0-255 0-black, 255- white

Color image

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

PERSON, CAT, DOG

(A) Classification

(B) Detection

(C) Segmention

Biometric Applications

Medical Image Analysis

Video Processing - Gesture Recognition/Action Recognition

What is the sandwich laying on?

Is this a sandwich?

What is the food on?

Has the sandwich been cut?

Is the boy wearing a hat?

Is the boy playing baseball?

Is this a professional baseball player?

Did the boy hit the ball?

http://visualgenome.org/

Traffic Sign Recognition

Traffic Sign Recognition

Static Sign Language Recognition

Image Negative

Spatial domain enhancement methods can be generalized as

```
\Box g(x,y) = T [f(x,y)]
f(x,y): \text{ input image}
```

g(x,y): processed (output) image

 $\mathcal{T}[*]$: an operator on f (or a set of input images), defined over neighborhood of (x,y)

Image Negative: s = L - 1 - r

Thresholding Function

Thresholding Example

Original Image

Thresholded Image

Gama Correction

Histogram : Example

- A selection of images and their Histograms
- Note that the high contrast image has the most evenly spaced histogram
- Histograms of low contrast images are located in certain portions and not in the entire gray scale range

Histogram Equalization: Example

Convolution operation in images

Image

Kernel/Filter			
-1	0	1	
-2	0	2	
-1	0	1	

-100
-200
-100
200
400
<u>+200</u>
=400

Edge detection using sobel operator

Smoothing Spatial Filters

- One of the simplest spatial filtering operations we can perform is a smoothing operation
 - Simply average all of the pixels in a neighbourhood around a central value
 - Especially useful in removing noise from images

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

or

Simple Averaging Filter

Image Preprocessing- Erosion and dilation

erosion

original

dilation

字母"j":(左) 侵蚀, (中) 原始图像, (右) 扩张

Erosion Example 1

Watch out: In these examples a 1 refers to a black pixel!

Original image

Erosion by 3*3 square structuring element

Erosion by 5*5 square structuring element

What Is Erosion For?

Erosion can split apart joined objects

Feature Extraction and Classification

Feature Extraction- Hand Crafted

- Chaincode (shape)
- Fourier Descriptors (shape)
- Harris Corner Detection
- •Gray Level Co-Occurrence Matrix (GLCM)- texture
- •Histogram of Oriented Gradients (HOG)- shape
- Moment based feature (shape)
- •Haar Cascades
- •Color features- color spaces
- •Scale-Invariant Feature Transform (SIFT)- keypoint based
- •Speeded Up Robust Feature (SURF)- keypoint
- •Lot more.....

Feature extraction (hand-crafted)

Learning algorithm SVM or Adaboost

Output

Car Not a car

Deep Learning- A breakthrough

Given the Availability of Data, Deep Learning performance has surpassed all traditional algorithms

Artificial Intelligence Paradigmshift!-**Machine Learning** and **Deep Learning?**

Promising results if trained with lot of data!

Thank you