Solution	Marks	Remarks
1. $\frac{m^{-12}n^8}{n^3} = \boxed{m^{-12}n^{8-3}}$	1M	for $\frac{a^p}{a^q} = a^{p-q}$ 1M for $a^{-p} = \frac{1}{a^p}$
$=\frac{n^5}{m^{12}}$	1M+1A	1M for $a^{-p} = \frac{1}{a^p}$
***************************************	(3)	u·
2. $\frac{3a+b}{8} = b-1$		
3a + b = 8(b-1)	1M	for $8(b-1)$
3a + b = 8b - 8		,
3a = 8b - 8 - b	1M	for putting a on one side
$a = \frac{7b - 8}{3}$	1A	or equivalent
	(3)	
3. (a) $x^2 - 6xy + 9y^2$		
$=(x-3y)^2$	1A	or equivalent
(b) $x^2 - 6xy + 9y^2 + 7x - 21y$		
$=(x-3y)^2+7x-21y$	1M	for using (a)
$=(x-3y)^2 + 7(x-3y)$ =(x-3y)(x-3y+7)	1A	or equivalent
-(x - 0y)(x - 0y + 1)	(3)	or equivalent
4. (a) The daily wage of Ada		
= 480(1 + 20%)	1M	
=\$576	1A	u−1 for missing unit
(b) The daily wage of Christine		
$=\frac{480}{1-20\%}$	1M	
=\$600		
Thus, Christine has the highest daily wage.	1A	f.t.
	(4)	
5. Let x and y be the number of male and female security guards in each zone respectively.		pp-1 for undefined symbols
]	
$\begin{cases} 6(x+y) &= 132\\ y-x &= 4 \end{cases}$	$\left \right. \right. $ $\left. \right $ $\left \right $	
So, we have $6(2x+4) = 132$.	1M	for getting a linear equation in x or y only
Solving, we have $x = 4$. Thus, the total number of male security guards is 24.	1A	
Let x be the number of male security guards in each zone.		pp-1 for undefined symbols
6(x+x+4) = 132	1A+1M+1A	1A for $y = x + 4 + 1$ M for $6(x + y) = 132$
Solving, we have $x = 4$.		
Thus, the total number of male security guards is 24.	1A	
	(4)	

	Solution	Marks	Remarks
6.	(a) $\frac{4x+6}{7} > 2(x-3)$		
	4x + 6 > 14x - 42		
	-10x > -48	1M	for putting x on one side
	10x < 48 $x < 4.8$	1A	
	For $2x - 10 \le 0$, we have $x \le 5$.	111	
	Therefore, the solution of $\frac{4x+6}{7} > 2(x-3)$ and $2x-10 \le 0$ is $x < 4.8$.	1A	
	(b) The positive integers satisfying both inequalities in (a) are 1,		
	2, 3 and 4. Thus, the number of possible positive integers is 4.	1A	f.t.
	Thus, the number of possible positive integers is 4.	(4)	1.6.
		, ,	
7.	(a) $18.1 - a = 6.8$		
	a = 11.3	1A	
	b - 12.1 = 3.2		
	b = 15.3	1A	
	(b) Let c s be the longest running time after training.		
	c = 18.1 - 2.9		
	=15.2	1M	
	Since $c < b = 15.3$, all the students whose running time fall		
	between 15.3 and 18.1 must have shorter running time after training.		
	Thus, at least 25% students have improved in their running	1A	f.t.
	time.	(4)	1.6.
		, ,	
8.	(a) $\triangle AED \sim \triangle BEC$	1A	
	$\frac{AE}{BE} = \frac{DE}{CE}$	1M	for using side ratio
	$AE = 8 \cdot \frac{15}{20}$		
	= 6	1A	
	(b) $AE^2 + BE^2 = 6^2 + 8^2$		
	= 100		
	$=AB^2$	1M	
	Thus, $\triangle AEB$ is a right-angled triangle. $AC \perp BD$.	1A	f.t.
	110 ± 32.	(5)	1.0.

	Solution	Marks	Remarks
9. ($\frac{(BC + AD) \cdot AB}{2} \cdot DE = 1020$ $\frac{(6 + AD) \cdot 12}{2}$	1M	
(1	$\frac{(6 + AD) \cdot 12}{2} \cdot 10 = 1020$ $AD = 11 \text{ cm}$ b) $CD = \sqrt{AB^2 + (AD - BC)^2}$ $= \sqrt{12^2 + (11 - 6)^2}$ $= \sqrt{169}$	1A 1M	u-1 for missing unit for using Pythagoras' theorem
	$= 13 \text{ cm}$ The total surface area of prism $ABCDEFGH$ $= 2 \times \text{Area of } ABCD + DE \times (AB + BC + CD + AD)$ $= 2 \cdot \frac{(6+11) \cdot 12}{2} + 10 \cdot (12+6+13+11)$ $= 624 \text{ cm}^2$	1A 1A (5)	u−1 for missing unit
`	$\begin{array}{ll} \text{mean} = 18 \\ \text{median} = 16 \end{array}$	1A 1A (2)	
(1	(i) The mean number of hours of the 24 questionaires $= \frac{18 \times 20 + 18 \times 4}{24}$ $= 18$ (ii) Let a and b be the number of hours of the other 2 questionaires of the last 4 questionaires. $\frac{a+b+19+20}{4} = 18$	1A	pp-1 for undefined symbol
	$a+b=33$ If the median number of hours of the 24 questionaires is the same as the median in (a), both a and b must be less than or equal to 16, i.e. $a+b\leq 32$. Thus, it is impossible the new median to be the same as the median in (a).	1M 1M 1A (4)	f.t.
11. (a) Let $C=a+bA$, where a and b are non-zero constants. So, we have $a+2b=62$ and $a+6b=74$. Solving, we have $a=56$ and $b=3$. The required cost $=56+3(13)$	1A 1M 1A	for either substitution for both correct
	=\$ 95	1A(4)	u−1 for missing unit
(1	The surface area of the larger can $=13 \times (\sqrt[3]{8})^{2}$ $=52 \text{ m}^{2}$ The required cost	1M	for using similarity
	The required cost $=56 + 3(52)$ $=\$ 212$	1A (2)	u−1 for missing unit

	3.5.3	D 1
Solution	Marks	Remarks
12. (a) The volume of the cone $= \frac{1}{3}\pi r^2 h$	1M	for $V = \frac{1}{3}\pi r^2 h$
$= \frac{1}{3}\pi \cdot 0.48^2 \cdot 0.96$ $= 0.073728\pi \text{ m}^3$	1A(2)	u-1 for missing unit 0.0737π
(b) (i) The volume of the milk $= \frac{1}{2} \cdot \frac{4}{3}\pi r^{3}$ $= \frac{2}{3}\pi \cdot 0.6^{3}$	1M	for $V = \frac{4}{3}\pi r^3$
$= 0.144\pi \text{ m}^3$ (ii) The height of the portion of the cone in the milk	1A	u−1 for missing unit
$= \sqrt{0.6^2 - 0.48^2}$ = 0.36 m	1M	for using Pythagoras' theorem
The volume of the portion of the cone in the milk $= (0.073728\pi) \left[1 - \left(\frac{0.96 - 0.36}{0.96} \right)^{2} \right]$	1M	for using similarity
=0.044928 π m ³ The volume of the remaining milk in the container =0.144 π – 0.044928 π =0.311 m ³ Thus, the volume of the remaining milk in the container is larger than 0.3 m ³ .	1A (5)	f.t. 36 cm 36 cm
13. (a) Since $x-2$ is a factor of $kx^3-21x^2+24x-4$, we have $k(2^3)-21(2^2)+24(2)-4=0$ $8k=40$ $k=5$	1M 1A	
	(2)	
(b) (i) The coordinates of R $=(0, 15m^2 - 63m + 72)$ The area of rectangle $OPQR$ $=(m)(15m^2 - 63m + 72)$	1M	
$=15m^3-63m^2+72m$ (ii) If the area of rectangle $OPQR$ is 12, m satisfy $15m^3-63m^2+72m=12$	1A	
$5m^{3} - 21m^{2} + 24m - 4 = 0$ $(m-2)(5m^{2} - 11m + 2) = 0$ $(m-2)(5m-1)(m-2) = 0$ $m = \frac{1}{5} \text{ or } m = 2 \text{ (repeated)}$	1M+1A	1M for $(m-2)(am^2 + bm + c)$
Thus, there are only 2 possible locations of Q such that the area of rectangle $OPQR$ is 12.	1A(5)	f.t.

		1	
	Solution	Marks	Remarks
14. (a)	 (i) Γ and L are parallel with Γ lies below L by a vertical distance of 1. (ii) The equation of L is 	1A+1A	1A for parallel + 1A for vertical distance
	(ii) The equation of L is $\frac{x}{3} + \frac{y}{-1} = 1$ $y = \frac{x}{3} - 1$	1M	for intercept form
	Thus, the equation of Γ is		
	$y = \frac{x}{3} - 1 - 1$	1M	
	x - 3y - 6 = 0	1A(5)	
(b)	(i) The coordinates of Q =(6,0)		
	Subtituting the coordinates of Q into the equation of Γ , we have $ \text{L.S.} = 6 - 3(0) - 6 $ $ = 0 $ $ = \text{R.S.} $		
	Thus, Q passes through Γ .	1A	
	(ii) Since Q passes through Γ , $HQ=KQ=$ radius of C . Let F and G be the feet of the perpendiculars from A and B to Γ respectively.	1M	
	$AF = BG$ =perpendicular distance from L to Γ . Hence, we have $ \text{Area of } \triangle AQH : \text{Area of } \triangle BQK $	1M	
	$= \frac{1}{2}HQ \cdot AF : \frac{1}{2}KQ \cdot BG$		
	=1:1	1A (4)	
15. (a)	The standard deviation after the adjustment $=10\times(1+20\%)$ $=12$ Let μ be the mean score before the adjustment. Let x_i be the test score of a student before the adjustment.	1A (1)	
	The standard score of that student after the adjustment $= \frac{(1.2x_i + 5) - (1.2\mu + 5)}{12}$ $= \frac{1.2(x_i - \mu)}{12}$ $= \frac{x_i - \mu}{10}$	1A	for mean score after adjustment
	Thus, the standard score of each student remains unchange.	1A(2)	f.t.
		•	•

itor
itor
itor
$\left(\frac{-6}{-3}\right)$

		Solution	Marks	Remarks
The equation of C is $(x-6)^2+(y-10)^2=10^2$ (b) The equation of L is $y=-x+k$. Substituting $y=-x+k$ into the equation of C , we have $ (x-6)^2+(-x+k-10)^2=10^2 $ $2x^2-2(k-4)x+(k-10)^2-64=0$ Let (x_0,y_0) be the mid-point of AB . $ x_0=\frac{k-4}{2}=\frac{k}{2}-2 $ $y_0=-\left(\frac{k}{2}-2\right)+k=\frac{k}{2}+2 $ Thus, the mid-point of $AB=\left(\frac{k}{2}-2,\frac{k}{2}+2\right)$. The equation of L is $y=-x+k$. The line passing through $(6,10)$ and perpendicular to L has equation $ \frac{y-10}{x-6}=1 $ $y=x+4 $ Substituting $y=-x+k$ into the equation, we have $ -x+k=x+4 $ Substituting $y=-x+k$ into the equation, we have $ -x+k=x+4 $ $x=\frac{k}{2}-2, y=\frac{k}{2}+2 $ $1A$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$		Solution		nemarks
(b) The equation of L is $y=-x+k$. Substituting $y=-x+k$ into the equation of C , we have $ (x-6)^2+(-x+k-10)^2=10^2 $ $ 2x^2-2(k-4)x+(k-10)^2-64=0 $ Let (x_0,y_0) be the mid-point of AB . $ x_0=\frac{k-4}{2}=\frac{k}{2}-2 $ $ 1M+1A $ 1M for using sum of roots $ y_0=-\left(\frac{k}{2}-2\right)+k=\frac{k}{2}+2 $ 1A $ Thus, \text{ the mid-point of } AB=\left(\frac{k}{2}-2,\frac{k}{2}+2\right). $ The equation of L is $y=-x+k$. The line passing through $(6,10)$ and perpendicular to L has equation $ \frac{y-10}{x-6}=1 $ 1A $ y=x+4 $ Substituting $y=-x+k$ into the equation, we have $ -x+k=x+4 $ Substituting $y=-x+k$ into the equation, we have $ -x+k=x+4 $ 1M $ x=\frac{k}{2}-2, y=\frac{k}{2}+2 $ 1M $ 1A+1A $	` '		1A	can be absorbed
(b) The equation of L is $y=-x+k$. Substituting $y=-x+k$ into the equation of C , we have $(x-6)^2+(-x+k-10)^2=10^2$ $2x^2-2(k-4)x+(k-10)^2-64=0$ Let (x_0,y_0) be the mid-point of AB . $x_0=\frac{k-4}{2}=\frac{k}{2}-2$ $y_0=-\left(\frac{k}{2}-2\right)+k=\frac{k}{2}+2$ 1A Thus, the mid-point of $AB=\left(\frac{k}{2}-2,\frac{k}{2}+2\right)$. The equation of L is $y=-x+k$. The line passing through $(6,10)$ and perpendicular to L has equation $\frac{y-10}{x-6}=1$ $y=x+4$ Substituting $y=-x+k$ into the equation, we have $-x+k=x+4$ Substituting $y=-x+k$ into the equation, we have $-x+k=x+4$ $x=\frac{k}{2}-2, y=\frac{k}{2}+2$ 1M		$(x-6)^2 + (y-10)^2 = 10^2$	1A	
Substituting $y=-x+k$ into the equation of C , we have $(x-6)^2+(-x+k-10)^2=10^2$ $2x^2-2(k-4)x+(k-10)^2-64=0$ Let (x_0,y_0) be the mid-point of AB . $x_0=\frac{k-4}{2}=\frac{k}{2}-2$ $y_0=-\left(\frac{k}{2}-2\right)+k=\frac{k}{2}+2$ $1A$ Im for using sum of roots $y_0=-\left(\frac{k}{2}-2\right)+k=\frac{k}{2}+2$ $1A$ Thus, the mid-point of $AB=\left(\frac{k}{2}-2,\frac{k}{2}+2\right)$. $The equation of L is y=-x+k. The line passing through (6,10) and perpendicular to L has equation \frac{y-10}{x-6}=1 y=x+4 Substituting y=-x+k into the equation, we have -x+k=x+4 x=\frac{k}{2}-2, y=\frac{k}{2}+2 1M+1A 1M for using sum of roots 1A 1M 1M 1A$			(2)	
$(x-6)^2 + (-x+k-10)^2 = 10^2$ $2x^2 - 2(k-4)x + (k-10)^2 - 64 = 0$ Let (x_0, y_0) be the mid-point of AB . $x_0 = \frac{k-4}{2} = \frac{k}{2} - 2$ $y_0 = -\left(\frac{k}{2} - 2\right) + k = \frac{k}{2} + 2$ Thus, the mid-point of $AB = \left(\frac{k}{2} - 2, \frac{k}{2} + 2\right)$. The equation of L is $y = -x + k$. The line passing through $(6, 10)$ and perpendicular to L has equation $\frac{y-10}{x-6} = 1$ $y = x+4$ Substituting $y = -x + k$ into the equation, we have $-x + k = x + 4$ $x = \frac{k}{2} - 2, y = \frac{k}{2} + 2$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$			1M	
$2x^2 - 2(k - 4)x + (k - 10)^2 - 64 = 0$ Let (x_0, y_0) be the mid-point of AB . $x_0 = \frac{k - 4}{2} = \frac{k}{2} - 2$ $y_0 = -\left(\frac{k}{2} - 2\right) + k = \frac{k}{2} + 2$ Thus, the mid-point of $AB = \left(\frac{k}{2} - 2, \frac{k}{2} + 2\right)$. The equation of L is $y = -x + k$. The line passing through $(6, 10)$ and perpendicular to L has equation $\frac{y - 10}{x - 6} = 1$ $y = x + 4$ Substituting $y = -x + k$ into the equation, we have $-x + k = x + 4$ $x = \frac{k}{2} - 2, y = \frac{k}{2} + 2$ $1M + 1A$ $1M$ $1M$ $1A$				
Let (x_0, y_0) be the mid-point of AB . $x_0 = \frac{k-4}{2} = \frac{k}{2} - 2$ $y_0 = -\left(\frac{k}{2} - 2\right) + k = \frac{k}{2} + 2$ Thus, the mid-point of $AB = \left(\frac{k}{2} - 2, \frac{k}{2} + 2\right)$. The equation of L is $y = -x + k$. The line passing through $(6, 10)$ and perpendicular to L has equation $\frac{y-10}{x-6} = 1$ $y = x+4$ Substituting $y = -x + k$ into the equation, we have $-x + k = x + 4$ $x = \frac{k}{2} - 2, y = \frac{k}{2} + 2$ $1M+1A$ $1M$ In for using sum of roots $1M$ $1M$ $1M$				
$x_0 = \frac{k-4}{2} = \frac{k}{2} - 2$ $y_0 = -\left(\frac{k}{2} - 2\right) + k = \frac{k}{2} + 2$ $Thus, the mid-point of AB = \left(\frac{k}{2} - 2, \frac{k}{2} + 2\right). The equation of L is y = -x + k. The line passing through (6, 10) and perpendicular to L has equation \frac{y-10}{x-6} = 1 y = x+4 Substituting y = -x + k into the equation, we have -x + k = x + 4 x = \frac{k}{2} - 2, y = \frac{k}{2} + 2 1M+1A 1M \text{ for using sum of roots} 1M 1M 1M 1M 1M 1M 1M 1M$				
$y_0 = -\left(\frac{k}{2} - 2\right) + k = \frac{k}{2} + 2$ Thus, the mid-point of $AB = \left(\frac{k}{2} - 2, \frac{k}{2} + 2\right)$. The equation of L is $y = -x + k$. The line passing through $(6, 10)$ and perpendicular to L has equation $\frac{y - 10}{x - 6} = 1$ $y = x + 4$ Substituting $y = -x + k$ into the equation, we have $-x + k = x + 4$ $x = \frac{k}{2} - 2, y = \frac{k}{2} + 2$ $1A$ $1M$ $1A + 1A$			1 3 4 1 4	1M for usingf
Thus, the mid-point of $AB = \left(\frac{k}{2} - 2, \frac{k}{2} + 2\right)$. The equation of L is $y = -x + k$. The line passing through $(6, 10)$ and perpendicular to L has equation $\frac{y - 10}{x - 6} = 1$ $y = x + 4$ Substituting $y = -x + k$ into the equation, we have $-x + k = x + 4$ $x = \frac{k}{2} - 2, y = \frac{k}{2} + 2$ $1A + 1A$			11VI+1A	INI IOF USING SUM OF POOTS
The equation of L is $y=-x+k$. The line passing through $(6, 10)$ and perpendicular to L has equation $\frac{y-10}{x-6}=1$ $y=x+4$ Substituting $y=-x+k$ into the equation, we have $-x+k=x+4$ $x=\frac{k}{2}-2, y=\frac{k}{2}+2$ 1M $1A$		· · · ·	1A	
The line passing through $(6, 10)$ and perpendicular to L has equation $\frac{y-10}{x-6}=1 \qquad \qquad 1A$ $y=x+4$ Substituting $y=-x+k$ into the equation, we have $-x+k=x+4 \qquad \qquad 1M$ $x=\frac{k}{2}-2, y=\frac{k}{2}+2 \qquad \qquad 1A+1A$,		
equation $\frac{y-10}{x-6}=1$ $y=x+4$ Substituting $y=-x+k$ into the equation, we have $-x+k=x+4$ $x=\frac{k}{2}-2, y=\frac{k}{2}+2$ $1A$ $1M$ $1A+1A$			1M	
$y = x + 4$ Substituting $y = -x + k$ into the equation, we have $-x + k = x + 4$ $x = \frac{k}{2} - 2, y = \frac{k}{2} + 2$ $1M$ $1A+1A$				
$y = x + 4$ Substituting $y = -x + k$ into the equation, we have $-x + k = x + 4$ $x = \frac{k}{2} - 2, y = \frac{k}{2} + 2$ $1M$ $1A + 1A$		$\frac{y-10}{x-6} = 1$	1A	
		Substituting $y = -x + k$ into the equation, we have		
		-x+k=x+4		
		$x = \frac{1}{2} - 2, y = \frac{1}{2} + 2$		
			$ \dots (5) $	

	<u> </u>	
Solution	Marks	Remarks
18. (a) By sine formula,		
$\frac{PA}{\sin \angle PBA} = \frac{AB}{\sin \angle APB}$	1M	
PA 20		
$\frac{\sin 60^{\circ}}{\sin (180^{\circ} - 72^{\circ} - 60^{\circ})}$		
$PA \approx 23.30704256$		
$PA \approx 23.3$	1A	r.t.
	\dots (2)	
(b) (i) Let E , F , G be the feet of the perpendicular of P to the plane $ABCD$, the line AB and the line BC respectively.		
$\frac{AF}{PA} = \cos \angle PAB$		
$AF \approx 7.20227224$		
$\frac{AF}{AE} = \cos \angle EAF$		
$AE \approx \frac{7.20227224}{\cos 45^{\circ}}$		
≈ 10.18555108	13.5	
$PE = \sqrt{PA^2 - AE^2}$	1M	
$\approx \sqrt{23.30704256^2 - 10.18555108^2}$ ≈ 20.96360613		
\sim 20.90300013 $EG = FB$	1M	
= AB - AF	11.1	
≈ 12.79772776		
$\tan \alpha = \tan \angle PGE$	1M	for identifying the angle
		,
$=rac{PE}{EG}$		
≈ 1.638072518		
$\alpha \approx 58.59703733^{\circ}$		
$lpha pprox 58.6^{\circ}$	1A	
(ii) $\tan \beta = \tan \angle PBE = \frac{PE}{EB}$	1M	for identifying the angle
EB > EG		
$\frac{PE}{EB} < \frac{PE}{EG}$		
$\tan \beta < \tan \alpha$		
$\beta < \alpha$	1A	f.t.
V	\dots (6)	
P C E C C		
A F B		

	3.5 2	D 1
Solution	Marks	Remarks
19. (a) (i) $\begin{cases} A(1) = ab^2 = 254100 \\ A(2) = ab^{2(2)} = 307461 \end{cases}$ Solving, we have $b = 1.1$ and $a = 210000$. $A(4) = ab^{2(4)} $ $= (210000)(1.21^4) $ $= 450, 153.6501$	1A+1A	
Thus, the weight of the cargos handled in the 4-th year is $450,153.6501$ tonnes. (ii) The total weight of the cargos handled in n years	1A	r.t. 450,000
$=\sum_{i=1}^{n}A(i)$	1M	for summing up $A(i)$
$=\frac{ab^2(b^{2n}-1)}{b^2-1}$	1M	for $\sum_{i=1}^{n} kr^{i} = \frac{kr(r^{n}-1)}{r-1}$
$= \frac{(210,000)(1.21)(1.21^n - 1)}{1.21 - 1}$ =1,210,000(1.21 ⁿ - 1) tonnes	1A	
(b) (i) $\frac{A(n)}{B(m)} = \frac{ab^{2n}}{2ab^m}$	1M	for considering the ratio $\frac{A(n)}{B(m)}$
$=\frac{b^{2n}}{2b^{n-4}}$	1A	for changing m to $n-4$
$= \frac{1}{2} 1.1^{n+4}$		
≤ 1 for $n \leq \log_{1.1} 2 - 4 \approx 3.27$		
 Thus, for the first 3 years, the weight of the cargos handled by Y is larger than that by X. (ii) The total weight of the cargos handled in n years by X and Y 	1A	f.t.
$= \sum_{i=1}^{n} ab^{2i} + \sum_{i=1}^{n-4} 2ab^{i}$	1A	for correct upper limits
$=1,210,000(1.21^{n}-1)+\frac{2(210,000)(1.1)(1.1^{n-4}-1)}{1.1-1}$ $=1,210,000(1.1^{2n})+\frac{4,200,000}{1.331}(1.1^{n})-5,830,000$		
Let $x = 1.1^n$, we have		
$1,210,000x^{2} + \frac{4,200,000}{1.331}x - 5,830,000 > 20,000,000$ $1,610,510x^{2} + 4,200,000x - 34,379,730 > 0$	1M	for setting up a quadratic equation
$x<-6.104700691$ (rejected $\boxed{\text{since }1.1^n>0}$) or $x>3.496831134.$ Thus, we have	1A	
$1.1^n > 3.496831134$ n > 13.13455888		
The new facility should be installed in the 13-th year.	1A (7)	

Question No.	Key	Question No.	Key
1.	\mathbf{C}	31.	В
2.	D	32.	\mathbf{C}
3.	\mathbf{C}	33.	A
4.	В	34.	\mathbf{C}
5.	В	35.	A
6.	D	36.	D
7.	\mathbf{C}	37.	A
8.	D	38.	\mathbf{C}
9.	A	39.	D
10.	D	40.	D
11.	С	41.	\mathbf{C}
12.	В	42.	В
13.	D	43.	В
14.	В	44.	D
15.	A	45.	A
16.	В		
17.	В		
18.	A		
19.	С		
20.	С		
21.	D		
22.	A		
23.	D		
24.	A		
25.	С		
_			
26.	A		
27.	A		
28.	В		
29.	В		
30.	D		