Heaps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 6

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

■ Maintaining as a list incurs cost $O(N^2)$ across N inserts and deletions

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Maintaining as a list incurs cost $O(N^2)$ across N inserts and deletions
- Using a $\sqrt{N} \times \sqrt{N}$ array reduces the cost to $O(\sqrt{N})$ per operations
 - $O(N\sqrt{N})$ across N inserts and deletions

Binary trees

- Values are stored as nodes in a rooted tree
- Each node has up to two children
 - Left child and right child
 - Order is important
- Other than the root, each node has a unique parent
- Leaf node no children
- Size number of nodes
- Height number of levels

Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap

Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap

Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap
- Root always has the largest value
 - By induction, because of the max-heap property

Non-examples

No "holes" allowed

Non-examples

No "holes" allowed

Cannot leave a level incomplete

Non-examples

Heap property is violated

■ insert(77)

- insert(77)
- Add a new node at dictated by heap structure

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)

- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)

- Need to walk up from the leaf to the root
 - Height of the tree

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have *N* nodes, at most 1 + log *N* levels

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have *N* nodes, at most 1 + log *N* levels
- insert() is $O(\log N)$

Maximum value is always at the root

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$

Implementation

- Number the nodes top to bottom left right
- Store as a list
 H = [h0,h1,h2,...,h9]
- Children of H[i] are at H[2*i+1], H[2*i+2]
- Parent of H[i] is at H[(i-1)//2], for i > 0

Building a heap — heapify()

■ Convert a list [v0,v1,...,vN] into a heap

Building a heap - heapify()

- Convert a list [v0,v1,...,vN] into a heap
- Simple strategy
 - Start with an empty heap
 - Repeatedly apply insert(vj)
 - Total time is $O(N \log N)$

■ List L = [v0, v1, ..., vN]

12 / 13

Madhavan Mukund Heaps PDSA using Python Week 6

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition

12 / 13

Madhavan Mukund Heaps PDSA using Python Week 6

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level

. . .

- Fix heap property at level 1
- Fix heap property at the root

■ Each time we go up one level, one extra step per node to fix heap property

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps
- Fourth last level, $n/16 \times 3$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps
- Fourth last level, $n/16 \times 3$ steps
- Cost turns out to be O(n)

12 / 13

. . .

Summary

- Heaps are a tree implementation of priority queues
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - heapify() builds a heap in O(N)

Summary

- Heaps are a tree implementation of priority queues
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - heapify() builds a heap in O(N)
- Can invert the heap condition
 - Each node is smaller than its children
 - min-heap
 - delete_min() rather than
 delete_max()

