METRIČKI PROSTORI

Ilija Kovačević, Slavica Medić

19. februar 2024.

Metrika ili **rastojanje** na nepraznom skupu X je svako preslikavanje $d: X^2 \to \mathbb{R}^+ \cup \{0\}$ za koje važi

(
$$M_1$$
) $d(x,y) \ge 0$,
(M_2) $d(x,y) = 0 \Leftrightarrow x = y$,
(M_3) $d(x,y) = d(y,x)$,
(M_4) $d(x,y) \le d(x,z) + d(z,y)$ (nejednakost trougla)

Metrički prostor je uređen par (X, d) skupa X i metrike d na X.

Za skup X kažemo da je nosač metričkog prostora (X, d).

• Realan broj d(x, y) je rastojanje elemenata (tačaka) $x, y \in X$.

• Metrički prostor (X, d) ćemo nekada kraće označavati istim slovom kao i njegov nosač X.

ullet U metričkom prostoru (X,d) važi tzv. **nejednakost mnogougla**:

$$d(x_1,x_n) \leq d(x_1,x_2) + d(x_2,x_3) + \cdots + d(x_{n-1},x_n), \ n \in \mathbb{N} \setminus \{1\}.$$

Primer

 (\mathbb{R}^n,d) je metrički prostor, gde je metrika $d:\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definisana sa

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},$$

za
$$x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n).$$

- Za metriku d kažemo da je euklidska, a prostor (\mathbb{R}^n, d) , koji ćemo kraće obeležavati sa \mathbb{R}^n , n-dimenzionalni euklidski prostor.
- Metrika d je uopštenje metrika iz \mathbb{R} , \mathbb{R}^2 i \mathbb{R}^3 .

Primer

Ako je $X \neq \emptyset$ proizvoljan skup, tada je preslikavanje $d: X^2 \to \mathbb{R}$ definisano sa

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

metrika.

• Za (X, d) kažemo da je diskretan metrički prostor.

Potprostor metričkog prostora

Neka je (X,d) metrički prostor i neka je $\emptyset \neq Y \subset X$. Sa d_Y obeležimo restrikciju preslikavanja d nad skupom Y, tj. neka je

$$d_Y(x,y)=d(x,y),\ x,y\in Y.$$

Očigledno d_Y je metrika na skupu Y, tj. (Y, d_Y) je metrički prostor. Kažemo da je (Y, d_Y) **potprostor prostora** (X, d).

Metriku d_Y najčešće označavamo takođe sa d, pa je reč o potprostoru (Y, d) prostora (X, d).

Ograničenost

Definicija

Za neprazan skup $A \subset X$ metričkog prostora (X, d) kažemo da je **ograničen** ako je skup $\{d(a, b) : a, b \in A\}$ ograničen u skupu \mathbb{R} .

Prazan skup je ograničen skup (po definiciji).

Definicija

Ako je (X,d) metrički prostor i ako je neprazan skup $A \subset X$ ograničen, tada postoji realan broj $d(A) = \sup\{d(a,b) : a,b \in A\}$ koji zovemo **dijametar skupa** A.

Po definiciji uzimamo da je $d(\emptyset) = 0$.

Za preslikavanje $f: D \to X$ skupa D u metrički prostor X kažemo da je **ograničeno nad skupom** $A \subset D$ ako je $f(A) \subset X$ ograničen skup u X.

Ako je A = D, tada je preslikavanje f **ograničeno**.

Ograničeno preslikavanje

$$f: N_1 \to X$$
,

gde je N_1 proizvoljan beskonačan podskup skupa prirodnih brojeva je **ograničen niz**.

Neka je (Y, \preceq) totalno uređen skup. Za funkciju $f: X \to Y$ kažemo da je **ograničena sa gornje** (**donje**) **strane** nad nepraznim podskupom A od X ako je skup njenih vrednosti f(A) ograničen sa gornje (donje) strane u odnosu na relaciju \preceq , tj. ako postoji $\mu \in \mathbb{R}$ tako da za sve $x \in X$ važi da je $f(x) \preceq \mu$ ($\mu \preceq f(x)$).

Reći ćemo da je funkcija f ograničena sa gornje (donje) strane sa μ , a broj μ zvaćemo gornjim (donjim) ograničenjem ili gornjom (donjom) granicom funkcije f.

Funkcija f je **ograničena** ako je ograničena i sa gornje i sa donje strane.

Potreban i dovoljan uslov da je funkcija $f: X \to \mathbb{R}, X \subset \mathbb{R}$ ograničena, je da postoji $\nu \in \mathbb{R}^+$, tako da za svako $x \in X$ važi $|f(x)| \le \nu$.

Neka je (X,d) metrički prostor, $a \in X$ i $r \in \mathbb{R}^+$. Za skup

$$L(a, r) = \{x \in X : d(a, x) < r\}$$

kažemo da je **otvorena lopta** u metričkom prostoru (X, d) sa centrom u tački a poluprečnika r.

- Kako je d(a, a) = 0 < r, jasno je da otvorena lopta L(a, r) sadrži svoj centar.
- Ako je $r_1 \le r_2$, očigledno je $L(a, r_1) \subset L(a, r_2)$.

a)

a)
$$\mathbb{R}$$
: $L(a,r)=(a-r,a+r),$

b)
$$\mathbb{R}^2$$
: $L((a,b),r) = \{(x,y) : \sqrt{(x-a)^2 + (y-b)^2} < r\},$

c)
$$\mathbb{R}^3$$
: $L((a,b,c),r) = \{(x,y,z) : \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} < r\}.$

b)

c)

Tvrđenje

Ako je L(a,r) otvorena lopta u metričkom prostoru (X,d), tada za svaku tačku $b \in L(a,r)$, postoji $s \in \mathbb{R}^+$ tako da je $L(b,s) \subset L(a,r)$.

Dokaz. Kako $b \in L(a, r)$, to je d(a, b) < r, pa možemo uzeti da je

$$s=r-d(a,b)>0.$$

Odatle sledi da je za svaku tačku $x \in L(b, s)$

$$d(a,x) \le d(a,b) + d(b,x) < r,$$

što dokazuje da je

$$L(b,s) \subset L(a,r)$$
.

Za neprazan skup $U \subset X$ kažemo da je **otvoren** u metričkom prostoru (X, d) ako

$$(\forall x \in U)(\exists r \in \mathbb{R}^+) L(x,r) \subset U.$$

Uzimamo da je ∅ po definiciji otvoren.

- Otvorena lopta jeste otvoren skup u metričkom prostoru.
- ullet Za neprazan skup $U\subset X$ koji je otvoren u metričkom prostoru (X,d) za svaku tačku $x\in U$, postoji $r_x\in \mathbb{R}^+,$ tako da je $x\in L(x,r_x)\subset U$, pa je

$$U=\bigcup\{L(x,r_x):x\in U\},\,$$

tj. sledi da je svaki neprazan otvoren skup u metričkom prostoru (X,d) unija neke familije otvorenih lopti iz (X,d).

Familiju τ svih otvorenih skupova metričkog prostora (X, d) zovemo topološka struktura ili **topologija metričkog prostora** (X, d).

- Jasno je da je $\emptyset \in \tau$ i da je $X \in \tau$.
- \bullet Unija svake familije elemenata iz τ je ponovo elemenat iz $\tau.$
- ullet Presek konačno mnogo elemenata iz au je elemenat iz au.

Definicija

Za podskup A metričkog prostora X kažemo da je **zatvoren** ako je $C_X(A) = X \setminus A$ otvoren skup.

Očigledno je da su \emptyset i skup X i zatvoreni skupovi.

Neka je X dati metrički prostor i a tačka u X. Za skup $V\subset X$ kažemo da je **okolina tačke** a u metričkom prostoru X, ako postoji $\varepsilon\in\mathbb{R}^+$ tako da $L(a,\varepsilon)\subset V$.

Ako je V otvoren skup kažemo da je V otvorena okolina tačke a.

Otvorenu loptu $L(a,\varepsilon)$ zovemo ε -**okolina** tačke a.

arepsilon - pozitivan, proizvoljno mali, unapred dat!

- Okolina tačke *a* u prostoru *X* je neki podskup od *X* koji sadrži ne samo tačku *a* već i neku otvorenu loptu sa centrom u tački *a*.
- Skup X okolina svake svoje tačke u prostoru X.
- Neprazan skup $U \subset X$ je otvoren ako i samo ako je U okolina svake svoje tačke.
- Za proizvoljnu tačku a u prostoru (X, d) familiju svih okolina tačke a u X nazivamo **sistem okolina tačke** a u prostoru X, u oznaci $\mathcal{V}(a)$.

Tvrđenje

Ako je (X,d) metrički prostor, za svake dve različite tačke a i b, postoje disjunktne otvorene okoline $L(a,\varepsilon)$ i $L(b,\varepsilon)$, tj. svake dve različite tačke mogu se odvojiti disjunktnim otvorenim okolinama.

Dokaz. Kako je $a \neq b$, to možemo uzeti da je $\varepsilon = \frac{1}{2}d(a,b) > 0$. Dokažimo da je $L(a,\varepsilon) \cap L(b,\varepsilon) = \emptyset$. Pretpostavimo suprotno, tj.

$$L(a,\varepsilon)\cap L(b,\varepsilon)\neq\emptyset$$
,

odnosno da postoji

$$z \in L(a,\varepsilon) \cap L(b,\varepsilon)$$
.

Tada $z \in L(a,\varepsilon)$, tj. $d(a,z) < \varepsilon$ i $z \in L(b,\varepsilon)$, tj. $d(b,z) < \varepsilon$, pa je

$$0 < d(a, b) \le d(a, z) + d(z, b) < \varepsilon + \varepsilon = 2\varepsilon = d(a, b),$$

što je kontradikcija, jer je d(a, b) > 0.

Napomena

Ako je U okolina tačke a, tada postoji $n \in \mathbb{N}$ tako da važi $L(a, \frac{1}{n}) \subset U$.

Zaista, ako je U okolina tačke a, tada postoji $\varepsilon \in \mathbb{R}^+$ tako da je

$$a \in L(a,\varepsilon) \subset U$$
.

No kako postoji $n \in \mathbb{N}$, tako da je

$$\frac{1}{n} < \varepsilon$$
,

to je

$$L\left(a,\frac{1}{n}\right)\subset L\left(a,\varepsilon\right)\subset U.$$

Neka je A podskup metričkog prostora X. Za tačku $a \in X$ kažemo da je **unutrašnja tačka** skupa A, ako postoji $\varepsilon \in \mathbb{R}^+$ tako da je $L(a,\varepsilon) \subset A$.

Skup A° svih unutrašnjih tačaka zovemo **unutrašnjost skupa** A.

Važe tvrđenja:

- $\emptyset^{\circ} = \emptyset$, $X^{\circ} = X$
- Skup A° je najveći otvoren skup sadržan u A.
- Skup A je otvoren ako i samo ako je $A^{\circ} = A$.

Za tačku $a \in X$ kažemo da je **spoljašnja tačka** podskupa A metričkog prostora X ako postoji okolina tačke a koja ne sadrži nijednu tačku skupa A.

Skup svih spoljašnjih tačaka zovemo spoljašnjost skupa A.

Očigledno važi tvrđenje

• Ako je *a* spoljašnja tačka skupa *A*, tada je *a* unutrašnja tačka skupa $X \setminus A$. Dakle, spoljašnjost skupa *A* je skup $(X \setminus A)^{\circ}$.

Za tačku $a \in X$ kažemo da je **rubna tačka** skupa $A \subset X$ ako

$$(\forall \varepsilon \in \mathbb{R}^+)(L(a,\varepsilon) \cap A \neq \emptyset \wedge L(a,\varepsilon) \cap C_X(A) \neq \emptyset)$$

(svaka ε -okolina tačke a ima neprazan presek i sa skupom A i sa njegovim komplementom).

Skup A* svih rubnih tačaka skupa A nazivamo **rubom skupa** A.

Važe tvrđenja:

- $\bullet \ A^* = (X \setminus A)^*$
- $X = A^{\circ} \cup (X \setminus A)^{\circ} \cup A^{*}$

Tačka $a \in X$ je adherentna tačka skupa $A \subset X$ ako svaka ε -okolina tačke a ima neprazan presek sa skupom A, tj.

$$(\forall \varepsilon \in \mathbb{R}^+) \ L(a,\varepsilon) \cap A \neq \emptyset.$$

Skup \overline{A} svih adherentnih tačaka zovemo adherencija ili zatvorenje skupa A.

Važe tvrđenja:

- $\overline{\emptyset} = \emptyset$, $\overline{X} = X$
- Skup \(\overline{A} \) je najmanji zatvoren skup koji sadrži skup \(A \).
- Skup A je zatvoren ako i samo ako je $A = \overline{A}$.
- $\bullet \ A^* = \overline{A} \cap (\overline{X \setminus A}).$

Za tačku $a \in X$ kažemo da je **tačka nagomilavanja** skupa $A \subset X$ ako

$$(\forall \varepsilon \in \mathbb{R}^+) \ L(a,\varepsilon) \cap (A \setminus \{a\}) \neq \emptyset$$

(svaka ε -okolina tačke a ima neprazan presek sa skupom $A \setminus \{a\}$).

- \bullet Skup svih tačaka nagomilavanja skupa A obeležavamo sa A'.
- Svaka tačka nagomilavanja skupa A je adherentna tačka datog skupa, tj. važi da je $A' \subset \overline{A}$.
- Svaka tačka skupa ne mora biti tačka nagomilavanja datog skupa, pa odatle sledi da svaka adherentna tačka ne mora da bude i tačka nagomilavanja datog skupa. Na primer, ako je $A=(0,1)\cup\{3,4\}$, tada je $A'=[0,1],\ \overline{A}=[0,1]\cup\{3,4\}$. Dakle, $3\in\overline{A}$, ali $3\not\in A'$.
- Očigledno važi da je $\overline{A} = A \cup A'$.

Za tačku $a \in A$ kažemo da je **izolovana tačka** skupa $A \subset X$ ako

$$(\exists \varepsilon \in \mathbb{R}^+) \ L(a, \varepsilon) \cap A = \{a\}$$

(postoji ε -okolina tačke a koja sadrži samo tačku a iz skupa A).

∟KLASIFIKACIJA TAČAKA U METRIČKOM PROSTORU

Primer

Za skup
$$A = (1,2] \cup \{3\}$$
 je $A^{\circ} = (1,2),$ $\overline{A} = [1,2] \cup \{3\},$ $A' = [1,2],$ $A^* = \{1,2,3\}.$ Tačka 3 je izolovana tačka skupa A .

Za skup
$$B = \{1, 2, 3\}$$
 je $B^{\circ} = \emptyset$, $\overline{B} = B = B^{*}$, $B' = \emptyset$.

Sve tačke skupa B su izolovane tačke.