

SM16106

Übersicht

Der SM16106 ist ein Treiberchip für LED-Anzeigen mit eingebauten CMOS-Bit-Shift-Registern und Latch-Funktion zur Umwandlung serieller Eingangsdaten in parallele Ausgangsdaten.

Der SM16106 arbeitet mit 3,3 V bis 5,0 V und verfügt über 16 Stromquellen, die an jedem Ausgang einen konstanten Strom von 1 mA bis 32 mA liefern können; die Schwankung des Ausgangsstroms innerhalb eines einzelnen ICs beträgt weniger als ±2,5 %; die Schwankung des Ausgangsstroms zwischen mehreren **ICs** beträgt weniger ±3.5 %: der Kanalausgangsstrom variiert nicht mit der Ausgangsspannung (V). Der Kanalausgangsstrom variiert nicht mit der Spannung am Ausgang (VDS); und der Strom variiert um weniger als 1% in Abhängigkeit Spannung von der und der Umgebungstemperatur; der Ausgangsstrom iedes Kanals wird durch einen externen Widerstand eingestellt.

Der SM16106-Ausgangsport kann Spannungen von bis zu 17V standhalten, so dass mehrere LEDs in Reihe an jeden Ausgang angeschlossen werden können; außerdem kann der SM16106 mit bis zu 25MHz getaktet werden, um den Bedarf des Systems an großer Datenübertragung zu erfüllen.

Eigenschaften

- ◆ 16-Kanal-Konstantstromquellen-Ausgang
- Konstanter Strom.

1-32mA@VDD=5.0V

@ Intra-Slice-Fehler <±2,5%, Inter-

Slice-Fehler <±3,5% 1-22mA@VDD=3.3V

@ Intra-Slice-Fehler <±2,5%, Inter-Slice-Fehler <±3,5%

- ◆ Ausgangsstrom einstellbar mit externem Rext-Widerstand
- ◆ Schnelle Ausgangsstromreaktion, OE (min): 35ns
- ◆ Bis zu **25MHz** Taktfrequenz
- ♦ Betriebsspannung: 3.3V~5.0V
- ♦ Gehäusetyp: SSOP24, QSOP24, QFN24 (4*4)

E-Mail: market@chinaasic.com

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Tel: 0755-26991392

Informationen zur Verpackung

Name des Produkts	Paket- Formular	Abmessungen des Plastisols (mm)	Fußabst ä nde (mm)
SM16106D	SSOP24	13.0*6.0*1.8	1.0
SM16106SC	QSOP24	8.65*3.9*1.4	0.635
SM16106CN-2	QFN24(4*4)	4*4*0.85	0.5

Pin-Definitionen

E-Mail: market@chinaasic.com Tel: 0755-26991392 Fax: 0755-26991336

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Anwendungsbereiche

- ◆ Werbebildschirme
- ◆ LED-Beleuchtung

Einfaches Blockdiagramm der internen Funktionen

Pin Beschreibung

Name	Beschreib
	ung der
	Funktion
GND	Chip-Land
SDI	Serieller Dateneingangsanschluss
CLK	Eingangsport für Taktsignal; verschiebt Daten bei steigender Flanke des Takts
LE	Datenlatch-Steueranschluss. Wenn LE hoch ist, werden die seriellen Daten an das Ausgangslatch weitergeleitet; wenn LE niedrig ist, werden die Daten im Ausgangslatch gespeichert.
	Die Informationen werden gesperrt
OUT0 bis OUT15	Ausgang der Konstantstromquelle

Tel: 0755-26991392

E-Mai1: market@chinaasic.com

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

ŌE	Steueranschluss für die Ausgangsfreigabe. Wenn OE niedrig ist, werden die Ausg ä nge OUTO bis OUT15 aktiviert; wenn OE hoch ist, werden die
	Die Ausg ä nge OUT0 bis OUT15 werden abgeschaltet
SDO	Serieller Datenausgang; kann mit dem SDI-Port des n ä chsten Chips verbunden werden

E-Mail: market@chinaasic.com Tel: 0755-26991392 Fax: 0755-26991336

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

R-EXT	Eingang für den Anschluss eines externen Widerstands; ein zusätzlicher Widerstand kann angeschlossen werden, um den Ausgangsstrom aller Ausgangskanäle einzustellen
VDD	Chip-Leistung

Bestellinformationen

Modell bestellen	Formular f ü r		oackun ethode	Gr öß e der	
	das Paket	Rohrverschrau bung	Geflochte nes Band	Spule	
SM16106D	SSOP24	36000 St ü ck/Karton	2000 St ü ck/Plat te	13	
SM16106SC	QSOP24	100000 St ü ck/Karton	4000 St ü ck/Plat te	13	
SM16106CN-2	QFN24(4*4)	1	5000 St ü ck/Tabl ett	13	

E-Mail: market@chinaasic.com Tel: 0755-26991392 Fax: 0755-26991336

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Ausgangs- und Eingangsersatzschaltungen

♦ OE-Eingang

LE-Eingang

◆ CLK, SDI-Eingang

SDO-Ausgang

Fax: 0755-26991336

♦ OUT0 bis OUT15 Ausgänge

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Tel: 0755-26991392

Zeitreihendiagramm

Wahrheitstabelle

CLK	LE	O E	SDI	OUT0····OUT7····OUT15	SDO
_	Н	L	Dn	DnDn-7Dn-15	Dn-15
	L	L	Dn+1	No Change	Dn-14
_	Н	L	Dn+2	Dn+2Dn-5Dn-13	Dn-13
*	×	L	Dn+3	Dn+2Dn-5Dn-13	Dn-13
Y _	X	Н	Dn+3	off	Dn-13

Maximale Grenzparameter

Eigenschaften	Repr ä sentative Symbole	H ö chstgrenze	Einheit
Versorgungsspannung	VDD	0 bis 7,0	V
Spannung am Eingang	VSDA,VCLK,VLE,VOE	-0,4 bis VDD+0,4V	V
Stromausgang Klemmenstrom	IOUT	+45	mA
Stehende Spannung am Ausgang	VDS	-0,5 bis +17,0	V
Taktfrequenz	fCLK	30	MHz
Umgebungstemperatur , bei der der IC arbeitet	Topr	-40 bis +85	°C
Umgebungstemperatur für die IC- Lagerung	Tstg	-55 bis +150	°C
HBM Human Discharge Mode	VESD	>4	KV

Tel: 0755-26991392

Fax: 0755-26991336

 $\hbox{$E$-$Mail: market@chinaasic.com}$

 ${\tt Website:} \, \underline{{\tt www.chinaasic.com}} \,$

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Hinweis: Die maximale Spitzenlöttemperatur für oberflächenmontierbare Produkte darf 260°C nicht überschreiten. Das Temperaturprofil basiert auf der Norm J-STD-020 und wird vom Werk unter Berücksichtigung der tatsächlichen Fabrik und der Empfehlungen des Lötpastenlieferanten festgelegt.

E-Mail: market@chinaasic.com Tel: 0755-26991392 Fax: 0755-26991336

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

DC-Eigenschaften

(VDD= 5,0V, $Ta = 27^{\circ} C$)

Eigenschaften	Repr ä sent ative Symbole	Messb	Minimale r Wert	Typisc he Werte	Maximaler Wert	Einheit	
Statischer Strom	IDD	VDD = 5,0V, R-EX	-	1.5	-	mA	
OUT-Port Spannungsfestigkeit	VDS (MAX)	OUT0	~ OUT15	-	-	17	V
Ausgangsstrom des OUT- Anschlusses	IOUT	VDD = 5,0 V		1	-	32	mA
ano m	IOH	VDF	2 50	-	-21	-	mA
SDO-Treiberstrom	I OL		O = 5,0 V	-	21	-	mA
r: 11	VIH			0,7*VDD	-	VDD	V
Eingangsanschluss Flip-Level	VIL			GND	-	0,3*VDD	V
OUT Ausgangsleckstrom	IOH	_{VDS} = 17V		-	-	0.5	uA
900	V _{OL}	IOL =	+1mA	-	-	0.4	V
Spannung am SDO- Ausgang	V	IOH =	= -1mA	4.6	-	-	V
Strom am Ausgang von OUT Port 1	IOUT1	_{VDS} =1,0V	rext = 1800Ω	-	8.8	-	mA
Fehler im	DIOUT	$_{IOUT} = 8.8 \text{mA}$ $_{VDS} = 1.0 \text{V}$	Im Inneren des Films	-	-	±2.5%	
Ausgangsstrom		rext = 1800Ω	zwischen den Filmen	-	-	±3.5%	
Strom am Ausgang von OUT Port 2	IOUT2	_{VDS} = 1,0 V	rext = 920Ω	-	17.5	-	mA
Fehler beim	DIOUT	$_{IOUT} = 17,5$ mA $_{VDS} = 1,0$ V	Im Inneren des Films	-	-	±2.5%	
Ausgangsstrom		$rext = 920\Omega$	zwischen den Filmen	-	-	±3.5%	
Ausgangsstromfehler/VDS- Abweichung	%/ΔVDS	_{VDS} = 1,	0V bis 3,0V	-	±0.5%	-	%/V
Ausgangsstromfehler/VDD- Schwankung	%/ΔVDD	_{VDD} = 4,	5V bis 5,5V	-	±0.5%	-	%/V
Klimmzugwiderstand	R _{OE} (oben)		ŌE	-	250	-	ΚΩ
Durchzugswiderstand	R _{LE^(unten)}		LE	-	250	-	ΚΩ
	I DD ^{(aus)1}	R-EXT Überhang = OFF	, OUT0 bis OUT15	-	1.5	-	
IC Statischer	l DD(aus)2		OUT0~OUT15 = AUS	-	2.6	-	mA

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China Hinweis: Die aktuelle Version des Handbuchs finden Sie auf der

						_
Strom	I DD ^{(off)3}	rext = 920 • , OUT0~OUT15 = AUS	-	3.8	-	

E-Mail: market@chinaasic.com Tel: 0755-26991392 Fax: 0755-26991336

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

(VDD = 3,3 V, Ta = 27 ° °C)

Eigenschaften	Repr ä sent ative Symbole	Messbedingun gen		Minimale r Wert	Typisc he Werte	Maximaler Wert	Einheit
Statischer Strom	IDD	VDD =3,3V, R-EXT Überhang, IOUT aus		-	1.2	-	mA
OUT-Port Spannungsfestigkeit	VDS (MAX)	OUT0	~ OUT15	-	-	17	V
Ausgangsstrom des OUT- Anschlusses	IOUT	VDI	O = 3,3 V	1	-	22	mA
ODO TO 1	IOH	\/DD	0.01/	-	-10.5	-	mA
SDO-Treiberstrom	l OL	טטע	VDD = 3,3V		13.3	-	mA
	VIH			0,7*VDD	-	VDD	V
Eingangsanschluss Flip-Level	VIL			GND	-	0,3*VDD	V
OUT Ausgangsleckstrom	IOH	VDS	_{VDS} = 17V		-	0.5	uA
	V _{OL}	IOL =	: +1mA	-	-	0.3	V
Spannung am SDO- Ausgang	V	IOH = -1mA		3.0	-	-	V
Strom am Ausgang von OUT Port 1	IOUT1	_{VDS} =1,0V	rext = 1800Ω	-	8.8	-	mA
Fehler im	DIOUT	_{IOUT} = 8,8mA _{VDS} = 1,0V	Im Inneren des Films	-	-	±2.5%	
Ausgangsstrom		rext = 1800Ω	zwischen den Filmen	-	-	±3.5%	
Strom am Ausgang von OUT Port 2	IOUT2	_{VDS} = 1,0 V	rext = 920Ω	-	17.5	-	mA
Fehler im	DIOUT	_{IOUT} = 17,5mA _{VDS} = 1,0V	Im Inneren des Films	-	-	±2.5%	
Ausgangsstrom		$rext = 920\Omega$	zwischen den Filmen	-	-	±4.5%	
Ausgangsstromfehler/VDS- Abweichung	%/ΔVDS	_{VDS} = 1,	0V bis 3,0V	-	±0.5%	-	%/V
Ausgangsstromfehler/VDD- Schwankung	%/ΔVDD	_{VDD} = 3,	3V bis 3,8V	-	±1%	-	%/V
Klimmzugwiderstand	R _{OE} (oben)		\overline{OE}	-	250	-	ΚΩ
Durchzugswiderstand	R LE ^(unten)		LE	-	250	-	ΚΩ
	I DD(aus)1	R-EXT Überhang, OUT0 bis OUT15 = OFF		-	1.2	-	
IC Statischer Strom	I DD ^{(aus)2}		OUT0~OUT15 = AUS	-	3.6	-	mA
~ 42 0m	I DD(off)3	rext = 920 · . C	OUT0~OUT15 = AUS	_	2.5	_	

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China Hinweis: Die aktuelle Version des Handbuchs finden Sie auf der

Tel: 0755-26991392 Fax: 0755-26991336

DC-Charakteristik-Testschaltung

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Dynamische Eigenschaften

(VDD= 5,0V)

Ei _i nss af	ch te	Darstel lung Symbol	Messbedingun gen	Minima ler Wert	Allgem eine Werte	Maxima ler Wert	Einh eit
	CLKOUT	tpLH1			30		ns
Verz ö gerungszeit	LEOUT	tpLH2			26		ns
(niedrig bis hoch)	OE - OUT	tpLH3	_{VIH} = VDD	-	30		ns
	CLK - SDO	tpLH	VIL = GND		28		ns
	CLKOUT	tpHL1	Rext=1800Ω		35		ns
Verz ö gerungszeit	LEOUT	tpHL2	VDD = 5,0 V		33		ns
(Hoch zu niedrig)	OE - OUT	tpHL3	RL=400Ω		35		ns
,	CLK - SDO	tpHL	CL=10pF		27		ns
Zeit der s Stromausga	steigenden Flanke am	tOUT-RISE			30		ns
Zeit der f Stromausga	Callenden Flanke am	tOUT-FALL			35		ns

(VDD= 3,3V)

(122 0,01)							
Eig nsc af n	ch te	Darstel lung Symbol	Messbedingun gen	Minima ler Wert	Allgem eine Werte	Maxima ler Wert	Einh eit
	CLKOUT	tpLH1			42		ns
Verz ö gerungszeit	LEOUT	tpLH2			36		ns
(niedrig bis hoch)	OE - OUT	tpLH3	VIH = VDD		45		ns
	CLK - SDO	tpLH	VIL = GND		30		ns
	CLKOUT	tpHL1	Rext=1800Ω		38		ns
Verz ö gerungszeit	LEOUT	tpHL2	VDD = 3,3V		33		ns
(Hoch zu niedrig)	OE - OUT	tpHL3	RL=200Ω		40		ns
5,	CLK - SDO	tpHL	CL=10pF		29		ns
Zeit der s Stromausga	teigenden Flanke am	tOUT-RISE			26		ns
Zeit der f Stromausga	allenden Flanke am Ing	tOUT-FALL			18		ns

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China Hinweis: Die aktuelle Version des Handbuchs finden Sie auf der

Tel: 0755-26991392 Fax: 0755-26991336

Testschaltung für dynamische Eigenschaften

Timing-Wellenform-Diagramm

Tel: 0755-26991392

E-Mail: market@chinaasic.com

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. 015, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Produktanwendungen

Wenn der SM16106 in LED-Display-Designs verwendet wird, gibt es nur sehr geringe Stromschwankungen zwischen den Kanälen oder sogar zwischen den Chips. Dies ist auf die hervorragenden Konstantstrom-Ausgangseigenschaften des SM16106 zurückzuführen.

- ◆ Der maximale Stromfehler zwischen Kanälen innerhalb eines Chips beträgt weniger als ±2,5 %, während der maximale Stromfehler zwischen Chips weniger als ±3,5 % beträgt.
- ◆ Die Stabilität des Ausgangsstroms wird nicht beeinträchtigt, wenn die Spannung auf der Lastseite (V_{DS}) schwankt, wie im folgenden Diagramm dargestellt.

Beziehungskurve zwischen lout und V_{DS} für VDD = 5V

E-Mai1: market@chinaasic.com

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China Hinweis: Die aktuelle Version des Handbuchs finden Sie auf der

Tel: 0755-26991392 Fax: 0755-26991336

Einstellung des Ausgangsstroms

Wie in der Abbildung unten gezeigt, wird der Ausgangsstrom durch einen externen rext-Widerstand I_{OUT} eingestellt, und der Ausgangsstromwert kann durch Anwendung der folgenden Formel berechnet werden: I_{OUT} = (16/rext)*1000 mA.

Das rext in der Formel ist der Widerstand des R-EXT-Anschlusses gegen Masse und der Strom in mA. Wenn z.B. rext = 750Ω , ergibt die Formel einen Ausgangsstrom von 21,4mA; wenn rext = 6000Ω , beträgt der Ausgangsstrom 2,7mA.

lout gegen rext Widerstandskurve

Tel: 0755-26991392

E-Mail: market@chinaasic.com

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Gehäuse-Verlustleistung (PD)

Die maximale Wärmeabgabeleistung des Gehäuses ergibt sich aus der Gleichung

$$PD(max) = \frac{\left(T_{j}-T_{a}\right)}{Rth(j-a)}$$
 bestimmen

Wenn die 16 Kanäle vollständig geöffnet sind, beträgt der tatsächliche Stromverbrauch.

Die tatsächliche Leistungsaufnahme muss geringer sein als die maximale Leistungsaufnahme, **d.** h. PD(act)<PD(max),为了保持 PD(act)<PD(max), und die maximale Stromabgabe im Verhältnis zum Tastverhältnis ist:

$$_{Iout} \ \underset{j \square a)}{\overset{Tj \ Ta}{\underset{th \ (}{R_{th \ (}}}} - IDD* \ VDD}$$

Dabei ist **Tj** die Betriebstemperatur des **ICs**, **Ta die** Umgebungstemperatur, **V**_{DS} die geregelte Ausgangsspannung, **Duty die Einschaltdauer** und **R**_{th (j-a)} der Wärmewiderstand des Gehäuses. Das folgende

Diagramm zeigt den maximalen Ausgangsstrom in Abhängigkeit vom Tastverhältnis.

Wenn ein höherer Ausgangsstrom lout erforderlich ist, wird eine bestimmte Menge an Kühlkörper hinzugefügt, die wie folgt berechnet wird

$$von$$
 + $total IPD (\alpha \chi \tau)$ $total IPD (a \chi \tau$

$$Rfc = \underbrace{\begin{array}{c} \frac{\text{Rth(j-a)} * \ \Box \text{Tj-Ta} \)}{P_D \ \Box \ act \ \Box * \ \text{Rth(j-a)-Tj+Ta}}}_{P_D \ \Box \ act \ \Box * \ \text{Rth(j-a)-Tj+Ta} \end{array}$$

wobei PD(act)=IDD*VDD+IOUT*Duty*VDS *16

Um einen höheren Strom lout zu liefern, kann daher aus der obigen Gleichung berechnet werden, dass der IC mit einem Kühlkörper mit dem Widerstand R_{fc} beheizt werden muss.

E-Mail: market@chinaasic.com

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China

Spannung an der Last (VLED)

Um die Wärmekapazität des Gehäuses zu optimieren, wird empfohlen, die Ausgangsspannung (VDS) im optimalen Bereich von 1,0 V zu halten (basierend auf lout = 1 mA bis 32 mA). Wenn VDs = VLED - VF und VLED =5,0V, kann eine zu hohe Ausgangsspannung (VDs) zu PD (act) > PD (max) führen. In diesem Fall wird empfohlen, wenn möglich eine niedrigere Versorgungsspannung (VLED) zu verwenden oder einen externen Widerstand oder Spannungsregler als V_{Drop} zu verwenden, was zu $V_{DS} = (V_{LED} - V_F) - V_{DROP}$ führt und somit die Ausgangsspannung (V_{DS}) verringert.

 V_{LED}

Fax: 0755-26991336

Tel: 0755-26991392

Formular f**ü**r das Paket SSOP24

Symbol	Min(mm)	Max(mm)
А	-	2.15
A1	0.05	0.35
A2	1.2	1.9
b	0.15	0.75
С	0.05	0.45
D	12.6	13.5
E	7.6	8.5
E1	5.6	6.5
е	1.0TYP	
L	0.2	1.0
θ	0°	10°

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China Hinweis: Die aktuelle Version des Handbuchs finden Sie auf der

Tel: 0755-26991392 Fax: 0755-26991336

QSOP24

Symbol	Min(mm)	Max(mm)
А	-	1.95
A1	0.05	0.35
A2	1.05	-
b	0.1	0.4
С	0.05	0.254
D	8.2	9.2
E1	3.6	4.2
E	5.6	6.5
е	0,635TYP	
L	0.3	1.5
θ	0°	10°

Tel: 0755-26991392

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China Hinweis: Die aktuelle Version des Handbuchs finden Sie auf der

Fax: 0755-26991336

QFN24(4*4)

Top VIew

Bottom Vew

Fax: 0755-26991336

Side View

Symbol	Min(mm)	Max(mm)
А	0.6	1.0
A1	-	0.1
A3	0,203REF	
D	3.8	4.3
Е	3.8	4.3
D1	2.4	3.0
E1	2.4	3.0
K	0.2min	
е	0,5TYP	
b	0.1	0.4
L	0.2	0.7

Tel: 0755-26991392

 $\hbox{$E$-$Mail: market@chinaasic.com}$

Website: www.chinaasic.com

Adresse: 3rd Floor, SMi R&D Building, No. **015**, Gaoxin Nan Yi Road, South Zone, Hi-Tech Industrial Park, Nanshan District, Shenzhen, China