SECOND SEMESTER 2022-2023

Course Handout Part II

Date: 16-01-2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHE F342

Course Title : PROCESS DYNAMICS & CONTROL

Instructor-in-Charge : Jaideep Chatterjee

Scope and Objective of the Course:

This course deals with the design of the continuous control systems for processes and automation, using the fundamental concepts of Dynamic Analysis. The course will introduce conventional analytical tools used to analyze the dynamic behavior of processes and the stability of controlled processes. The course will also introduce the several alternative control configurations possible for a given processing unit or a complete process plant. The course is intended to educate students to a level where they will be equipped to understand, analyze and ultimately design control systems for process plants of today and the future.

Course Description: Dynamic modeling and simulation of systems of relevance to engineering, and more specifically Chemical engineering; analysis of the dynamic behavior of such systems; analysis and design of simple feedback and advanced control loops; Classical feed-back control and estimation of controller parameters; Analytical tools for stability analysis; introduction to modern evolving control strategies.

Textbooks:

- T1. Coughanowr, D.R. and Steven E LeBlanc, Process Systems Analysis and Control, 3nd Ed., McGraw-Hill, 2009.
- T2. Seborg, D. E., Edgar, T. F. and Mellichamp, D.A., "Process Dynamics and Control", 2nd Ed., John Wiley and Sons, 2004.

Reference books

R1 George Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice, Prentice Hall, 1984.

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1	Introduction to Process Dynamics	What is Process Dynamics with an example. Introduction to unsteady state modelling	T1-Chap 2
2-4	Laplace Transforms	Laplace Transformations, Application to several types of time functions,	T1-Chap 2
5-7	Inversion by partial	Solution of differential equation using Laplace	T1-Chap 3

	शीन प्रमं बंदर		
Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
	fractions	transforms and Inversion. Roots and Stability of Dynamic systems	
8-10	Dynamic behavior of 1 st order systems	Development and properties of transfer functions, linearization of non-linear models. Examples of 1 st order systems.	T1-Chap. 4- 5
11-13	Dynamic behavior of 1 st order systems in series	Dynamic Behavior of 1 st order systems in series	T1-Chap. 6
14-16	Dynamic response of higher order systems	Dynamic response of higher order systems. 2 nd order systems, systems with transportation lag.	T1-Chap. 7
17-19	The Control System	Closing the Loop. Introduction to feedback control. Closed loop transfer functions	T1-Chap. 8
20-21	Control system instrumentation	Transducers, transmitters, final control elements	T1-Chap. 9
22-24	Complete Analysis of a single closed-loop control system	Complete analysis of a single chemical reaction control system by looking at all elements in the loop	T1-Chap. 10
25	Closed loop Transfer functions	Rules for obtaining the Input-output relations for set- point tracking and load rejection	T1-Chap. 11
26-28	Dynamic Response of simple control systems	Effect of process and controller parameters on transient response of a closed loop system for set-point tracking and load rejection.	T1-Chap. 12
29 – 31	Stability Analysis	Analysis of control system stability by Root Locus. Generating root locus plots and Design of Control Systems using Root Locus	T1-Chap. 13 & Chap 14
31-32	Introduction to Frequency Response	Frequency Domain Transfer functions and Bode Plots of various open loop systems	T1-Chap. 15
33-35	Control system Design by frequency Response	Use of Frequency response to determine limits for controller parameters. Gain Margin and Phase margin based determination of controller parameters.	T1-Chap. 16
36-37	Feedforward and ratio control	Ratio control, feed forward controller design based on steady state and dynamics equation, feedforward-feedback controller	T1-Chap. 17
38-40	Advanced Control Strategies	Cascade control, time-delay compensation, Model Predictive control, adaptive control	T1-Chap. 17
41-42	Process Identification and Controller tuning	Determination of optimal controller parameters and online identification of Process Parameters	T1-Chap. 18

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Class Test 1	45 mins	10 %	By 15/03	OB
Mid-semester Exam	90 mins	25 %	16/03 4.00 - 5.30PM	ОВ
Class Test 2	45 mins	10 %	By 15/04	OB
Assignments (1)	1 week	10 %	By 30/04	OB
Comprehensive Exam.	180 mins	45 %	16/05 AN	ОВ

Open Book Exam: Use of any printed / written reference material (books and notebooks) will be permitted inside the exam hall. Use of calculators (no other electronic gadgets) will be allowed in all exams.

Chamber Consultation Hour: Wednesdays (5:00 - 6:00 PM)

Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Notices: All notices related to these courses will be displayed on the CMS system, with email to all registered students

Make-up Policy: Make-up for the Class tests may be granted only when one attends more than 80 % classes and valid justification and with prior permission from the Instructor-in-charge

Jaideep Chatterjee INSTRUCTOR-IN-CHARGE

