【材料强度学Ⅱ-断裂及韧化】作业

第3次作业

1、下表为一些金属的解理面及解理正应力,请归纳出几条规律,并作简要阐述。

金 属	晶体结构	解理面	试验温度/℃	解理临界正应力/MPa
w	体心立方	(100)		
α - Fe	体心立方	(100)	-100	254.8
			-185	269.5
Zn	密排六方	(0001)	-185	1.76~1.96
Zn(0, 03%Cd)		(0001)	-185	1.86
		(1010)	-185	17. 64
Zn(0, 13%Cd)		(0001)	-185	2.94
Zn(0, 53%Cd)		(0001)	-185	11.76
Mg	密排六方	(0001),(1011)		
		$(10\overline{1}2),(10\overline{1}0)$		
Te	密排六方	(1010)	20	4. 21
Sb	菱方	(111)	20	6.47
Bi	菱方	(111)	20	3. 14

2、在特定场合下,铁素体钢也会发生解理断裂,它是由于位错滑移受到晶界碳化物阻碍而塞积在碳化物前,高的应力集中导致碳化物开裂,形成解理裂纹,并最终断裂。请利用位错塞积群理论和Griffith断裂条件,证明解理裂纹形核时作用在位错塞积群上的临界名义剪应力为:

$$\tau_c \,=\, \tau_i \,+\, \sqrt{3E\gamma_C}\,\cdot\, d^{-\frac{1}{2}}$$

式中, τ_i 为位错滑移的点整摩擦阻力;E为杨氏模量、 γ_c 为碳化物比表面能;d为晶粒直径。

3、对于常用工程金属材料,在室温下最常发生微孔聚集型韧性断裂,微孔萌生有"颗粒/基体界面脱粘"及"颗粒本身碎断"两种可能的方式。假设在某一特定情况下夹杂物颗粒碎断,形成半径为

r 的钱币状微裂纹(应力强度因子表达式为: $K=\frac{2}{\pi}\,\sigma\sqrt{\pi r}$),试证明微孔形核的临界应力为:

$$\sigma_c = \sqrt{\frac{3E\pi\Gamma_s}{8(1-v^2)R_0}}$$

式中,E为基体杨氏模量;v为基体泊松比; R_0 为夹杂物颗粒半径; Γ_s 为颗粒自由比表面能。

- 4、请简要阐述解理断裂和微孔聚集型断裂在宏观表现、微观机制、以及断口等方面的差异。
- 5、简要阐述位错在断裂过程(包括裂纹形核及裂纹扩展两个阶段)中所起的作用。