Creek Organism Collection / Observation

Location(s) _4/5_ _6/7_ _10/11_ _12_ _14_ & walk bridge

Very Sensitive to Pollution	 #	Somewhat Tolerant to Pollution	V	#	Very Tolerant of Pollution	 #
Caddis Fly Larvae	7	Crayfish		4	Pouched Snail	18
Mayfly Larvae	1	Amphipod		100+	Orb Snail	5
Helgremite (Dobsonfly)	0	Damselfly Larvae		12	Flatworms	14
Stonefly Larvae	0	Dragonfly Larvae		3	Nematode (not segmented)	1
Riffle Beetle	0	Cranefly Larvae		0	Leech (segmented)	5
Water Penny	0	Soldierfly Larvae		1	Oligochaete (segmented – bristles)	2
Gilled Snail	2	Black Bass		17	Blackfly Larvae	7
Frogs/Tadploes	1	Blue Gill		seen	Midge Larvae	2
Creek Chub	0	Mosquito Fish		many	Clams	14
Volvox	0	Daphnia		0	Spirogyra	abun dant
# of different species multiplied by 3 =	4	# of different species multiplied by 1 =		8	# of different species multiplied by (5) =	

Date:

8/31/2010

Add the number from the three groups above and use the scale below to assess water quality Excellent (>24) Good (17-24) Fair (11-16) Poor (<11) (circle ranking)

Dipnet & Kicknet Data - To be used in Early Fall and Late Spring Assessments Only

Unknowns	 #	Description (legs / segmented / appendages / shape / appx. Size / movement / shell / color)
A	3	3 Squaw Fish Observed – (moderately tolerant) at least three
В	1	Carp Observed – (tolerant) at least one
С	1	Copepod (moderately tolerant)
D		No daphnia, one copepod, and minimal phytoplankton is concerning

Data - 8/31/2010
Water Temp - 18C - 22C
Barrometric Pressure - 760mm/hg
Dissolved Oxygen

Site	Initial	<u>Light</u>	<u>Dark</u>	Difference
3	6.9	5.6	5.6	0
3	7.3	6.5	6.2	0.3
3.5	6.3	6.1	5.8	0.3
4	4.6	9.1	8.5	0.6
4	7.2	5.2	5.2	0
4	7.2	6.3	6.3	0
5	5	5.5	4.8	0.7
6	4.4	9.4	9.4	0
7	6	9.4	8.4	1
10	7.4			0
10.5	7	6.2	6	0.2
11	7.4	6.6	5.1	1.5

Site	Conductivity	Turbidity	pН	<u>Nitrate</u>
6	600	0	4	0.2
6	474	0		0.5
7	500	0	4.6	0.2
10	480	11		
10	460	0	4.8	0.1
10	460	2.2		0.5
11	470	17		
11	447	0	4.99	0.1
12	472	10		
12	460	1.6	4.7	0.1
12	459	0	5.07	0.1
12	470	3.1		0.5
13	470	13		
13	449	0	5.05	0
14	449	0	5.1	0.1

Both the organismal data as well as the chemical data suggests that water quality on this date is some where between Fair and Poor. High conductivity, low pH, and minimal turbidity in most areas along with the numbers and types of species identified suggests that productivity is currently low and decomposition is high.