Quantum machine learning 1: qubits

Onno Huijgen

October 11, 2024

Introduction

- Onno Huijgen
- Studied theoretical physics
- Work as lecturer/researcher at ADSAI
- (slowly) finishing PhD in QML at Radboud

Introduction

Quantum mechanics

What is quantum mechanics? Superposition Language of QM Qubits Entanglement

Assignment 1

Gated quantum computing

Assignment 2

Quantum annealing

Quantum Boltzmann Machines

Classical physics

Classical systems

Classical systems

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi\tag{1}$$

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi\tag{1}$$

•
$$i = \sqrt{-1}$$

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi\tag{1}$$

- $i = \sqrt{-1}$
- *ħ*: constant

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi\tag{1}$$

- $i = \sqrt{-1}$
- *ħ*: constant
- ψ : Wave function

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi\tag{1}$$

- $i = \sqrt{-1}$
- *ħ*: constant
- ψ : Wave function
- \hat{H} : Hamiltonian, or **energy** operator

Classical: continuous energy

Quantum: Discrete energies

Classical: Orbits

Quantum: Orbitals

Meten = interactie

Klassiek meten

Auto heeft:

- snelheid
- positie
- energie
- magnetizatie

Superposition

Superposition

Schödinger's cat

Quantum measurements - Heisenberg's uncertainty principle

- Superposition: properties are not always well-defined
- Sometimes QM particles can be 'in between'
- More precise: some properties are not well-defined at the same time

$$\Delta \hat{x} \Delta \hat{p} \geq \frac{\hbar}{2}$$

Measuring is influencing

Vectors

scalar:

$$10, 3 + 5i, \sqrt{2}, \pi$$

vector:

$$\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ \frac{1}{2} \end{pmatrix}$$

matrix:

$$\mathbf{M} = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Complex numbers

$$z = 10 + 3i$$

$$\bar{z} = 10 - 3i$$

$$|z| = z * \bar{z} = 10^2 + 10 * 3i - 10 * 3i - 3 * 3 * i^2$$

$$= 10^2 + 3^2$$

Dirac notation

$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 $\langle \uparrow | = \begin{pmatrix} 1&0 \end{pmatrix}$

Measurements

Observables in QM: operators/matrices

$$H\ket{\uparrow}=E_1\ket{\uparrow}$$

Classical bits

11110100 11011001 01000101 01001110 11010100 10111100 00010110 01011110 00000101 01111110 11011100 00100001 00101000 10111000 00011101 10000011 11000101 10111111 11110001 00010000 01101010 10000101 11011110 10001000 00010011 10000101 10101001 00100111 10000101 11110010 10101111 11001101 01100111 10100011 00110001 00000101 00101111 11100011 00011000 11110010 01101111 00100010 01010110 10111011 00110010 11101010 10110001 10001010

Spin

Spin

- Spin is quantized: discrete values
- Whole or half integer
- Spin-*n* particle: $\{-n, -n+1, -n+2, ...n-1, n\}$
- For $n = \frac{1}{2}$: $\left\{-\frac{1}{2}, \frac{1}{2}\right\}$

example: electron

Bloch sphere

Qubit states

$$|\!\!\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $|\!\!\downarrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$|\downarrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Spin operators

$$\sigma_z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$
 $\sigma_y = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}$ $\sigma_y = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$

Measurements

$$\langle \sigma_{\mathsf{z}} \rangle = \langle \psi | \sigma_{\mathsf{z}} | \psi \rangle$$

Possible outcomes are given by eigenvectors of operators:

$$\sigma_{z} \left| \downarrow \right\rangle = -1 * \left| down \right\rangle \tag{5}$$

Measurements 2

For those that did linear algebra:

$$\sigma_z = 1 * \ket{\uparrow} ra{\uparrow} - 1 * \ket{\downarrow} ra{\downarrow}$$

show all possible outcomes when measuring $\sigma_{\it z}$

Born's rule

$$\sigma_z\left(rac{1}{\sqrt{2}}\left|\uparrow
ight
angle + rac{1}{\sqrt{2}}\left|\downarrow
ight
angle
ight) = egin{cases} 1*\left|\uparrow
ight
angle & ext{with } p=rac{1}{2} \ -1*\left|\uparrow
ight
angle & ext{with } p=rac{1}{2} \end{cases}$$

Measuring the state destroys the state! Also,

$$\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = 1$$

Two particles

So far, we have dealt with one particle or qubit. Multiple qubits?

$$|\!\!\uparrow\uparrow\rangle = egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix}$$

Four possibilities:

$$\left|\uparrow\uparrow\rangle\right.,\left|\uparrow\downarrow\right\rangle,\left|\downarrow\uparrow\right\rangle,\left|\downarrow\downarrow\right\rangle$$

entanglement

Suppose we have a superposition state:

$$\frac{1}{\sqrt{2}}\left|\uparrow\uparrow\rangle+\frac{1}{\sqrt{2}}\left|\downarrow\downarrow\rangle\right\rangle\tag{6}$$

And we measure the first particle to be $|\!\!\uparrow\rangle.$ What do we know about the second particle?

entanglement

Suppose we have a superposition state:

$$\frac{1}{\sqrt{2}}\left|\uparrow\uparrow\rangle+\frac{1}{\sqrt{2}}\left|\downarrow\downarrow\rangle\right\rangle\tag{6}$$

And we measure the first particle to be $|\uparrow\rangle$. What do we know about the second particle? Measuring the first particle **changed** the second particle

Spooky action at a distance

Introduction

Quantum mechanics

What is quantum mechanics? Superposition Language of QM Qubits Entanglement

Assignment 1

Gated quantum computing

Assignment 2

Quantum annealing

Quantum Boltzmann Machines

Python environment

Need:

- Python ¿= 3.8
- numpy
- scipy

Assignment 1

```
• states: up = np.array([[1], [0]])
```

- Transpose: up.T
- Operators: sigma_x = np.array([[0, 1], [1, 0]])
- Matrix product: sigma_x @ up
- Expectation value: up.T @ \sigma_x @ up

Introduction

Quantum mechanics

What is quantum mechanics? Superposition Language of QM Qubits Entanglement

Assignment 1

Gated quantum computing

Assignment 2

Quantum annealing

Quantum Boltzmann Machines

Logical operations on bits

Bit 1	Bit 2	&	I	٨
1	0	1	1	0
1	0	0	1	1
0	1	0	1	1
0	0	0	0	0

bit	~
1	0
0	1

Classical computer programs

Operations on qubits

40 /E

Gated quantum computers

Quantum fourier transform

Quantum Fourier Transform

Uniform family of networks

n Hadamard gates and n(n-1)/2 phase shifts, the size of the network = n(n+1)/2

Shor's algorithm

Variational algorithms

VQE

Remember: Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} \ket{\psi} = H\ket{\psi}$$

H: energy operator. so:

$$\langle \psi | H | \psi \rangle$$

measures energy of a state.

VQE - optimization

Look for a state with a low energy:

$$\min_{\theta} \ \langle \phi(\theta) | H | \phi(\theta) \rangle$$

Done with gradient descent.

Difficulties in gated QC

Introduction

Quantum mechanics

What is quantum mechanics? Superposition Language of QM Qubits Entanglement

Assignment 1

Gated quantum computing

Assignment 2

Quantum annealing

Quantum Boltzmann Machines

Running code on a QPU

Introduction

Quantum mechanics

What is quantum mechanics? Superposition Language of QM Qubits Entanglement

Assignment 1

Gated quantum computing

Assignment 2

Quantum annealing

Quantum Boltzmann Machines

Introduction

Quantum mechanics

What is quantum mechanics? Superposition Language of QM Qubits Entanglement

Assignment 1

Gated quantum computing

Assignment 2

Quantum annealing

Quantum Boltzmann Machines

Nobel prize in Physics, 2024

Boltzmann distribution

$$p(s) = e^{-\frac{1}{T}E(s)} / \sum_{s'} e^{-\beta \frac{1}{T}E(s')}$$

where E(s) is the energy function.

Boltzmann disribution

Connected BM