Suites numériques 1ère STMG

Table des matières

1	Définition et représentation graphique	2
	1.1 Définition : Suite numérique	2
	1.2 Définition : Suite définie par une formule explicite $\dots \dots \dots \dots \dots \dots \dots$	2
	1.3 Défintion : Suite définie par une relation de récurrence	3
	1.4 Représentation graphique d'une suite	5
2	Sens de variation d'une suite numérique	6
	2.1 Définition : Variation d'une suite numérique	7
	2.2 Méthode : Étudier les variations d'une suite	7
3	Suites arithmétiques	8
	3.1 Définition : Suite arithmétique	8
	3.2 Propriété : Variations d'une suite arithmétique	8
	3.3 Représentation graphique d'une suite arithmétique	9
4	Suites géométriques	10
	4.1 Définition : Suite géométrique	10
	4.2 Propriété : Variations d'une suite géométrique	
	4.3 Représentation graphique d'une suite géométrique	11
5	Récapitulatif	12
	5.1 Suite arithmétique	12
	5.2 Suite géométrique	

1 Définition et représentation graphique

Exemple

On considère une liste de nombres formée par tous les nombres impairs rangés dans l'ordre croissant : $1, 3, 5, \dots$

On note u_n l'ensemble des "éléments" de cette suite de nombres tel que :

$$u_0 = 1$$
 $u_1 = 3$ $u_2 = 5$ $u_3 = 7$...

On a ainsi défini une suite numérique.

On peut lui associer une fonction définie sur $\mathbb N$ par u:

$$\mathbb{N} \longmapsto \mathbb{R}$$
$$n \longmapsto u(n) = u_n$$

1.1 Définition : Suite numérique

Une suite numérique u_n est une liste ordonnée de nombres réels telle qu'à tout entier n on associe un nombre réel noté u_n .

 u_n est appelé le **terme de rang** n de cette suite (ou d'indice n).

1.2 Définition : Suite définie par une formule explicite

Lorsqu'on définit une suite par une formule **explicite**, chaque terme de la suite est exprimé en fonction de n et indépendamment des termes précédents.

Exemples

— Pour tout $n \in \mathbb{N}$, on donne : $u_n = 2n$ qui définit la suite des nombres pairs.

Les premiers termes de cette suite sont donc :

$$u_0 = 2 \times 0 = 0$$

 $u_1 = 2 \times 1 = 2$
 $u_2 = 2 \times 2 = 4$
 $u_3 = 2 \times 3 = 6$

— Pour tout $n \in \mathbb{N}$, on donne : $v_n = 3 \times n^2 - 1$.

Les premiers termes de cette suite sont donc :

$$v_0 = 3 \times 0^2 - 1 = 3 \times 0 - 1 = 0$$

$$v_1 = 3 \times 1^2 - 1 = 3 \times 1 - 1 = 2$$

$$v_2 = 3 \times 2^2 - 1 = 3 \times 4 - 1 = 11$$

$$v_3 = 3 \times 3^2 - 1 = 3 \times 9 - 1 = 26$$

1.3 Défintion : Suite définie par une relation de récurrence

Lorsqu'on définit une suite par une relation de **récurrence**, chaque terme de la suite est exprimé en fonction du terme précédent.

Exemples

— On définit la suite u_n par : $u_0 = 5$ et chaque terme de la suite est le **triple** de son précédent.

Les premiers termes de cette suite sont donc :

$$u_0 = 5$$

 $u_1 = 3 \times u_0 = 3 \times 5 = 15$
 $u_2 = 3 \times u_1 = 3 \times 15 = 45$

De façon générale, on peut noter : $u_{n+1} = 3 \times u_n$

— On définit la suite v_n par : $v_0=3$ et pour tout $n\in\mathbb{N},\,v_{n+1}=4\times v_n-6$

Les premiers termes de cette suite sont donc :

$$v_0 = 3$$

 $v_1 = 4 \times v_0 - 6 = 4 \times 3 - 6 = 6$
 $v_2 = 4 \times v_1 - 6 = 4 \times 6 - 6 = 18$
 $v_3 = 4 \times v_2 - 6 = 4 \times 18 - 6 = 66$

Contrairement à une suite définie par une formule explicite, il n'est pas possible, dans l'état, de calculer par exemple v_{13} sans connaître v_{12} .

Remarque

Cependant il est possible d'écrire un algorithme avec Python :

```
v=3
for i in range(1,10):
    v=4*v-6
    print(i,v)

Et on obtient:
(1, 6)
(2, 18)
(3, 66)
(4, 258)
(5, 1026)
(6, 4098)
(7, 16386)
(8, 65538)
(9, 262146)
```

Ou sur une calculatrice :

Table 1 – Calcul des termes d'une suite définie par récurrence

A noter : Le mot récurrence vient du latin recurrere qui signifie "revenir en arrière".

1.4 Représentation graphique d'une suite

Dans un repère du plan, on représente une suite par un nuage de points de coordonnées $(n; u_n)$.

Exemple

Pour tout $n \in \mathbb{N}$, on donne : $u_n = \frac{n^2}{2} - 3$.

On construit le tableau de valeurs avec les premiers termes de la suite :

\overline{n}	0	1	2	3	4	5	6	7	8
$\overline{u_n}$	-3	-2,5	-1	1,5	5	9,5	15	21,5	29

Il est possible d'obtenir un nuage de points à l'aide d'un **tableur**

		А	В
1	n		un
2		0	-3
3		1	-2.5
4		2	-1
5		3	1.5
6		4	5
7		5	9.5
8		6	15
9		7	21.5
10		8	29

FIGURE 1 – Les termes de la suite u_n calculés par un tableur

Figure 2 – Les termes de la suites u_n représentés par un nuage de points

2 Sens de variation d'une suite numérique

Exemple

On a représenté ci-dessous le nuage de points des premiers termes d'une suite u_n :

FIGURE 3 – Les termes de la suites u_n représentés par un nuage de points

On peut conjecturer que cette suite est **croissante**.

On constate par exemple que $u_1 < u_2$ ou encore $u_4 < u_5$.

De manière générale, on peut écrire : $u_n < u_{n+1}$

2.1 Définition : Variation d'une suite numérique

Soit une suite numérique u_n .

- La suite u_n est **croissante** signifie que pour tout entier n, on a $u_{n+1} \ge u_n$.
- La suite u_n est **décroissante** signifie que pour tout entier n, on a $u_{n+1} \leq u_n$.

Figure 4 – Suite croissante en rouge et décroissante en bleu

2.2 Méthode : Étudier les variations d'une suite

- a) Pour tout $n \in \mathbb{N}$, on donne la suite u_n définie par : $u_{n+1} = u_n + 2$. Démontrer que la suite u_n est croissante.
- b) Pour tout $n \in \mathbb{N}$, on donne la suite vn définie par : $v_n = 4n + 4$. Démontrer que la suite v_n est croissante.
- (a) Calculons $u_{n+1} u_n$ et étudions son signe.

 $u_{n+1} - u_n = 2 > 0 \Longrightarrow$ On en déduit que u_n est croissante.

(b) Caculons $v_{n+1} - v_n$ et étudions son signe.

On a : $v_n = 4n + 4$ donc $v_{n+1} = 4(n+1) + 4 = 4n + 4 + 4 = 4n + 8$

$$v_{n+1} - v_n = (4n+8) - (4n+4)$$
$$= 4n+8-4n-4$$
$$= 4 > 0$$

Pour tout n entier $v_{n+1} - v_n > 0 \Longrightarrow$ On en déduit que la suite (u_n) est croissante.

3 Suites arithmétiques

Exemples

— Considérons une suite numérique (u_n) où la différence entre un terme et son précédent reste constante et égale à 5.

Si le premier terme est égal à 3, les premiers termes successifs sont :

$$u_0 = 3$$
$$u_1 = 8$$
$$u_2 = 13$$

$$u_2 = 18$$

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : $u_{n+1} = u_n + 5$ et $u_0 = 3$.

— Soit la suite numérique v_n de premier terme 5 et de raison -2.

Les premiers termes successifs sont :

$$v_0 = 5$$

 $v_1 = 5 - 2 = 3$
 $v_2 = 3 - 2 = 1$
 $v_3 = 1 - 2 = -1$

La suite est donc définie par : $v_{n+1} = v_n - 2$ et $v_0 = 5$.

3.1 Définition : Suite arithmétique

Une suite (u_n) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a :

$$u_{n+1} = u_n + r$$

.

Le nombre r est appelé **raison** de la suite.

3.2 Propriété : Variations d'une suite arithmétique

Soit (u_n) est une suite **arithmétique** de raison r

- Si r > 0 alors la suite (u_n) est **croissante**.
- Si r = 0 alors la suite (u_n) est **constante**.
- Si r < 0 alors la suite (u_n) est **décroissante**.

3.2.1 Démonstration

Etudions le signe de $u_{n+1} - u_n$.

 (u_n) est une suite arithmétique de raison r donc $u_{n+1} = u_n + r$.

On a donc:

$$u_{n+1} - u_n = (u_n + r) - u_n$$
$$- r$$

- Si r > 0 alors $u_{n+1} u_n > 0$ et la suite (u_n) est **croissante**.
- Si r < 0 alors $u_{n+1} u_n < 0$ et la suite (u_n) est **décroissante**.

Exemple

La suite **arithmétique** (u_n) définie par $u_{n+1} = u_n - 4$ et $u_0 = 5$ est **décroissante** car de raison -4 < 0.

3.3 Représentation graphique d'une suite arithmétique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

FIGURE 5 – Représentation de $u_{n+1}=u_n-0.5$ et $u_0=4$

4 Suites géométriques

Exemples

— Considérons une suite numérique (u_n) où le **rapport** entre un terme et son précédent reste constant et égale à 2.

$$u_0 = 5$$

$$u_1 = 10$$

$$u_2 = 20$$

$$u_2 = 40$$

Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La suite est donc définie par : $u_{n+1} = 2 \times u_n$ et $u_0 = 5$.

— Soit la suite géométrique v_n de premier terme 4 et de raison 0, 1.

Les premiers termes successifs sont :

$$v_0 = 4$$

 $v_1 = 4 \times 0.1 = 0.4$
 $v_2 = 0.4 \times 0.1 = 0.04$
 $v_3 = 0.04 \times 0.1 = 0.004$

La suite est donc définie par : $v_{n+1} = 0, 1 \times v_n$ et $v_0 = 4$.

4.1 Définition : Suite géométrique

Une suite (u_n) est une **suite géométrique** s'il existe un nombre q, strictement positif, tel que pour tout entier n, on a :

$$u_{n+1} = q \times u_n$$

Le nombre q est appelé **raison** de la suite.

Exemple : Intérêt d'un capital

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04.

Ce capital suit une progression **géométrique** de raison 1,04.

On a ainsi:

$$u_0 = 500$$

 $u_1 = 1,04 \times 500 = 520$
 $u_2 = 1,04 \times 520 = 540,80$
 $u_3 = 1,04 \times 540,80 = 562,432$

De manière générale : $u_{n+1} = 1,04 \times u_n$ avec $u_0 = 500$

4.2 Propriété : Variations d'une suite géométrique

Soit (u_n) est une suite **géométrique** de raison q et de premier terme u_0 strictement positif.

- Si q > 1 alors la suite (u_n) est **croissante**.
- Si q = 1 alors la suite (u_n) est **constante**.
- Si 0 < q < 1 alors la suite (u_n) est **décroissante**.

Exemple

La suite géométrique (u_n) définie par $u_{n+1} = 0, 5 \times u_n$ et $u_0 = 5$ est **décroissante** car la raison est q = 0.5 et 0 < q < 1.

FIGURE 6 – Représentation de $u_{n+1}=0.5\times u_n$ et $u_0=5$

4.3 Représentation graphique d'une suite géométrique

Les points de la représentation graphique d'une suite géométrique ne sont pas alignés.

Exemple

Soit la suite géométrique (u_n) définie par $u_{n+1} = 1,04 \times u_n$ et $u_0 = 500$.

FIGURE 7 – Représentation de $u_{n+1} = 1.04 \times u_n$ et $u_0 = 500$

5 Récapitulatif

5.1 Suite arithmétique

	u_n une suite arithmétique de raison r et de 1^{er} terme u_0	Exemple: $r = -0.5$ et $u_0 = 4$			
Définition	$u_{n+1} = u_n + r$	$u_{n+1} = u_n - 0.5$			
Variation	$r > 0 \Rightarrow u_n$ croissante $r < 0 \Rightarrow u_n$ décroissante	$r = 0.5 < 0 \Rightarrow u_n$ décroissante			
Représentation Les points de la représentation sont alignés. On parle de croissance linéaire.		Représentation de $u_{n+1} = u_n - 0.5$			

5.2 Suite géométrique

	u_n une suite géométrique de raison $q > 0$ et de 1 ^{er} terme $u_0 > 0$	Exemple: $q = 2$ et $u_0 = 4$	
Définition	$u_{n+1} = u_n \times q$	$u_{n+1} = u_n \times 2$	
Variation	$q > 1 \Rightarrow u_n$ croissante $0 < q < 1 \Rightarrow u_n$ décroissante	$q=2>0 \Rightarrow u_n$ croissante	
Représentation	Les points de la représentation ne sont pas alignés.	Représentation de $u_{n+1}=2\times u_n$	