

Machine Learning

Session 6 - Advanced neural networks

hadrien.salem@centralelille.fr

<u>introduction-to-data-science</u>

Introduction

What did we do last time?

Course outline

Machine learning course

Session 1: Regression

Session 2: Supervised classification

Session 3: Clustering

Session 4: Decision trees and ensemble methods

Session 5: Introduction to neural networks

Session 6: Advanced neural networks

Session 7: Introduction to reinforcement learning

Session 8: Reading science papers

Project

Convolutional Neural Networks

What is a filter?

Generative Adversarial Networks

Other state-of-the-art networks

Other neural network architectures

In recent years, several ANN architectures have been invented to solve a wide variety of problems

Recurrent Neural Network (RNN)

- Designed for processing sequences of data
- Connections that loop back on themselves to capture information from previous steps
- Used for NLP and time series processing

Long Short-Term Memory (LSTM)

- Designed as an improvement to RNNs (addresses the vanishing gradient problem)
- Capture long-range dependencies (e.g. in NLP)

U-Net

- Encoder-decoder architecture
- Mostly used for medical image segmentation

Practical work

The notebook contains all the necessary instructions

Debrief

Debrief - G3

https://forms.gle/iLE8fborrAuNgAnX9

Debrief

What did we learn today?

What could we have done better?

What are we doing next time?