CSCI338 HW4

Brock Ellefson

March 26, 2017

Question 1

Let β be the set of all infinite sequences over $\{a,b\}$. Show that β is uncountable, using a proof by diagonalization.

Assume that β is countable, then we can list them as β_1 β_1

i		f(i)	
1	b_{11}	b_{12}	b_{13}
2	b_{21}	b_{22}	b_{23}
3	b_{31}	b_{32}	b_{33}

Now construct an x such that the ith bit of x is \neq the ith bit of β

Lets define x as x = (1, 1, 0...) thus making $x \neq \beta$ for any i^{th} sequence in the i^{th} bit. Therefore β is uncountable.

Question 2

Question 3

Question 4

Question 5

Show that EQ_{CFG} is undecidable.

Assume that EQ_{CFG} is decideable

 $EQ_{CFG} = \{ \langle G, H \rangle \mid G, H \text{ are CFG's and } L(G) = L(H) \}$

Reduce ALL_{CFG} to EQ_{CFG} Such That:

 $ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG's and } L(G) = \Sigma^* \}$

Let R be a decider for EQ_{CFG} and construct TM S to decide ALL_{CFG} .

Construct CFG T such that $L(T) = \Sigma^*$

1. Run R on input $\langle G, T_0 \rangle$

- 2. If R accepts, accept.
- 3. If R rejects, reject

R decides if L(G) = L(T). S decides ${\rm ALL}_{CFG}$ but it is undecidable, therefore EQ $_{CFG}$ must also be undecidable

Question 6

Question 7