Eine universelle Turingmaschine mit zwei Zuständen/Symbolen Ein Paper von Claude E. Shannon

Sven Fiergolla

6. Juli 2017

Einführung

Formal definieren wir die Turingmaschine als Septupel $\mathbf{M}=(\mathbf{Q}, \mathbf{\Sigma}, \mathbf{\Gamma}, \mathbf{q_0}, \delta, \Box, \mathbf{F})$ wobei:

 $\mathbf{Q} = \mathsf{die} \; \mathsf{endliche} \; \mathsf{Zustandsmenge}$

 $oldsymbol{\Sigma}=\mathsf{das}$ endliche Eingabealphabet

 $\Gamma=$ das endliche Bandalphabet und es gilt $\Sigma\subset \Gamma$

 $\mathbf{q_0} = \mathsf{der} \; \mathsf{Anfangszustand}$

 $\delta = \text{die (partielle)}$ Überführungsfunktion

 $\square =$ steht für das leere Feld (Blank)

 ${f F}=$ die Menge der akzeptierenden Endzustände

Beispiel

Universelle Turingmaschinen

Formal ist eine universelle Turingmaschine eine Maschine UTM, die eine Eingabe w|x liest. Das Wort w ist hierbei eine die Beschreibung einer Turingmaschine M_w , die zu einer bestimmten Funktion mit Eingabe x die Ausgabe berechnet. UTM simuliert also das Verhalten von $\mathbb{M}_{\stackrel{\sim}{\approx}}$ mit Hilfe der Funktionsbeschreibung w und der Eingabe x.

Konstruktion

Turingmaschine $A: A_1, A_2, ..., A_m \in \Sigma_A$ die Symbole und $q_1, q_2, ...q_n \in Q_A$ die Zustände der Maschine. Maschine B besitzt:

- ▶ elementare Symbolen von Maschine $A, B_1, B_2, ..., B_m \in \Sigma_B$
- ▶ 4mn neue Symbole, welche Informationen über den Zustand und den Status der bouncing operation speichern: $B_{m,n,x,y} \in \Sigma_B$
 - ▶ $m = \text{Symbole von } A, |\Sigma_A|$
 - $ightharpoonup n = \mathsf{Zust"ande} \ \mathsf{von} \ A, |Q_A|$
 - x = + oder ob der Zustand des letzten Feldes in diese Feld übertragen wird oder aus diesem Feld stammt
 - $lackbox{ } y=R$ oder L ob die Information in das rechte oder linke Feld übertragen wird.

Insgesammt besitzt Maschine B also m+4mn Symbole.

Zustände

Die Zustände von Maschine B werden α und β heißen.

Um die Information des aktuellen Zustands nach bearbeiten eines Symbols in der nächsten Zelle zur Verfügung zu haben, auch wenn die $TM\ B$ nur zwei Zustände hat, wird diese in den Symbolen gespeichert (Index n) und über die sogenannte bouncing operation in die nächste Zelle übertragen.

Übergange

Nr.	Symbol	$Zustand \Rightarrow$	Symbol	Zustand	Richtung
(1)	B_i	α	$B_{i,1,-,R}$	α	R
(2)	B_i	β	$B_{i,1,-,L}$	α	L
(3)	$B_{i,j,-,x}$	α or β	$B_{i,(j+1),-,x}$	α	$x \in \{R, L\}$
(4)	$B_{i,j,+,x}$	α or β	$B_{i,(j-1),-,x}$	β	$x \in \{R, L\}$
(5)	$B_{i,1,+,x}$	α or β	B_i	α	$x \in \{R, L\}$

zusätzlich erhält Maschine B für jeden Übergang in A: (6) $(A_i,q_j) \to (A_k,q_l,\frac{R}{L}) \Rightarrow (B_{i,j,-,x},\alpha) \to (B_{k,l,+,\frac{R}{L}}),\frac{\beta}{\alpha},\frac{R}{L}$

Beispiel

Maschine A:

...|
$$A_3$$
 | A_{13} | ...

$$\overbrace{q_7} \quad A_3 A_8 R \longrightarrow \overbrace{q_4}$$

$$...|A_8|\underbrace{A_{13}}|...$$

Beispiel

Maschine B:

Ausgangssituation	Übergangsfunktion	Gleichung
$B_{3,7,-,x}$ B_{13}	$\delta(B_{3,7,-,x},\alpha) = (B_{8,4,+,R},\beta,R)$	(6)
$ B_{8,4,+,R} \underbrace{B_{13}} $		