浙江大学

题目	霍尔传感器实验
姓名学号	四 焯 3120100170
学 院	生工食品学院
专业班级	生物系统工程 1202 班
指导老师	王剑平、叶尊忠

霍尔传感器实验

一、 实验目的:

了解线性以及开关型霍尔传感器的工作原理和工作情况。

二、 实验内容:

本实验主要学习以下几方面的内容

- 1. 了解霍尔元件的特性曲线,计算线性霍尔元件工作曲线斜率
- 2. 解霍尔元件的工作方式,区别上升沿计数和下降沿计数。

三、 实验仪器、设备和材料:

所需仪器

● myDAQ、myboard、nextsense05 霍尔传感器实验模块、万用表

注意事项

- 1. 在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件插针弯曲,影响模块使用。
- 2. 禁止弯折实验模块表面插针,防止焊锡脱落而影响使用。
- 3. 更换模块或插槽前应关闭平台电源。
- 4. 开始实验前,认真检查电阻连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。

四、 实验原理:

基于霍尔效应原理工作的半导体器件称为霍尔元件。假设霍尔元件通电电流为 Is,当 磁场作用于霍尔元件时,电子将受到洛伦兹力的作用而发生偏转,如图中虚线所示。半导体的上下方向积聚的电荷形成了电场(EH)。当 EH 对电子的作用力 fE 足够抵消洛伦兹力 fB 时,电子积累达到平衡。此时的电势称为霍尔电势。霍尔电势随外磁场强度增加而增加。

霍尔元件种类有线性霍尔元件和开关型霍尔元件。其中,开关型霍尔元件由半导体霍尔 材料的输出电压经放大器放大后,送至施密特整形电路将线性变化量转换为开关量。线性霍 尔元件常用于磁场测量、电压电流测量。开关型霍尔元件常用于速度、位置测量。

五、 实验步骤:

注意: 带*号的步骤为选做部分。

- 1. 打开 nextpad, 运行霍尔传感器实验应用程序, 单击课程右上角 ②图标打开用户说明书。
- 2. 根据用户说明书(P9)提示安装直流电机、电机支架、侧轮片以及圆盘片。
- 3. 关闭平台电源 (nextboard 或者 myboard 或者 ELVISboard),插上霍尔传感器实验模块。 开启平台电源,此时可以看到模块左上角电源指示灯亮。
- 4. 查看传感器介绍,了解光敏电阻的原理以及温度计算公式。
- 5. 在特性曲线页面。
 - 1) 移动线性霍尔元件磁场-输出电压(B-V)曲线中的游标,观察右侧输出电压的变化曲线。
 - 2) 在开关型霍尔元件仿真曲线中,将鼠标移动到红色游标十字中心位置,单击鼠标,按照下图路径移动开关型霍尔元件曲线中的红色游标,观察右侧波形图中输出电压的变化曲线。

6. 在仿真与测量页面

1) 在线性霍尔仿真部分,左右移动永磁片,查看传感器输出电压波形。切换软件上磁片 N、S 极的按钮,重复观察。了解磁场强度和极性对应的线性霍尔传感器电压输出情况。

2) *旋转模块上的圆盘片角度,改变永磁片和线性霍尔传感器的距离。用万用表测量模块上线性霍尔传感器区域 Vout 和 GND 两个插针之间的电压值,完成软件中表格,见下图。具体操作参考用户手册 P19 提示。

3) 在开关型霍尔仿真部分,将鼠标移动到测轮片上,单击并旋转侧轮片,查看永磁片 经过传感器时出的现输出电压跳变,观测跳变波形的上升沿和下降沿和计数值之间 的关机。改变计数方式,重新观测。

7. 在自动测量页面,测量霍尔传感器实际值。

六、 数据及结论(绘制数据点散图,建立回归方程,分析灵敏度和 线性误差)

1、测量在不同磁场强度下,线性霍尔传感器的输出电压。(使用一个大磁片)

距离 (cm)	无磁片	1.0	0.7	0.4	0.2	0.1
垂直磁场 Vout(V)	2.54	2.588	2.6575	2.9026	3.9928	5.0833
垂直磁场反相 Vout(V)	2.54	2.4893	2.4195	2.1183	1.3237	0.1094

距离 (cm)	无磁片	1.0	0.7	0.4	0.2	0.1
10° 夹角 Vout(V)	2.54	2.5851	2.6532	2.9153	3.9974	5.0944
10°夹角磁场反相 Vout(V)	2.54	2.4814	2.4077	2.1348	1.1872	0.1097

结论:

- 1、随着磁片距离不断增加,作用的磁场强度也减小。但磁片处于垂直磁场时,随着磁场强度的增加,输出电压测量值变大。由于测量的电压与原电路电压相反,所以总电压变大。在磁场反相时,与前面情况相反,随着磁场强度的增加,输出电压变小。
- 2、存在 10° 夹角时,总的变化趋势与垂直时相同,只是磁场强度不断变大时,电压变化的差值有所不同,变化幅度也稍有变化。

2、开关霍尔传感器的测量中,通过调节 nextboard 上+12V 可调电压调整直流电机转速,记录开关型霍尔元件测量到的转速。(电压用万用表测量 A0 和 GND,根据一定时间内脉冲计数个数来计算转速。)

电压 (V)	0	1	2	3	4	5	6	7	8	9	10
时间长度		1.266	2.07	2.99	3.96	5.01	5.96	7.1	7.99	9.02	10
脉冲个数		10.59	10.56	10.03	10.46	10.33	10.6	9.95	10.6	10	10
电机转速	0	31	61	91	135	162	212	230	270	312	348

绘制电压V和转速曲线

结论: 上图可得,转速与电压基本呈正比,回归方程为 Y=34.964X-6.4545,且 R^2 =0.9974,相 关程度较好。

讨论与心得:

- 1、由于元器件故障,在征得实验室老师同意后,使用了其他小组的实验数据。
- 2、磁片等体积都较小,操作是应小心。
- 3、距离控制要准确,不然会影响实验结果的准确性。
- 4、在记录转速和时间时,要尽可能减少人为误差。