电磁学复习大表

2019年5月17日 18:29 Log Creative

静电场	稳恒磁场
电荷周边,对电荷有作用力	稳恒电场,电流,磁针有作用力
$F = \frac{1}{4\pi\epsilon_0} \cdot \frac{qq_0}{r^2} \boldsymbol{e_r}$	$dF_{12} = \frac{\mu_0}{4\pi} \cdot \frac{I_1 I_2 dl_2 \times (dl_1 \times e_{12})}{r_{12}^2}$
$E = \frac{F}{q_0}$	$B = \frac{F}{IL}, F = Il \times B = qv \times B$
	$= m \times B$
$E_{ALL} = E_1 + E_2 = \sum_{i=1}^{N} E_i$	$dB = \frac{\mu_0}{4\pi} \cdot \frac{Idl \times e_r}{r^2}$
$= \int \frac{\rho dV}{4\pi\epsilon_0 r^2}$	
$= \int \frac{\sigma ds}{4\pi\epsilon_0 r^2}$	
$= \int \frac{\lambda dl}{4\pi\epsilon_0 r^2}$	

点电荷	$E = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r^2} e_r$	导线	$B = \frac{\mu_0 I}{4\pi a} (\cos\theta_1 - \cos\theta_2)$
			$B_{\rm mid} = \frac{\mu_0 I}{2\pi a} \cos \theta$
			$B_{\infty} = \frac{\mu_0 I}{2\pi a}$
			$B_{\frac{\infty}{2}} = \frac{B_{\infty}}{2}$
			$B_{\rm ext} = 0$
偶极子	$E = \frac{ql}{4\pi\epsilon_0 \left(r^2 + \frac{l^2}{4}\right)^{\frac{3}{2}}}$	圆环	$B = \frac{\mu_0 I R^2}{2(R^2 + z^2)^{\frac{3}{2}}}$
			$B \approx \frac{\mu_0 I}{2R} e_n$
导线	$E_{\rm mid} = \frac{ql}{4\pi\epsilon_0 r^2} = -\frac{p}{4\pi\epsilon_0 r^3}$	螺线管	$B = \frac{\mu_0 nI}{2} (\cos \beta_2 - \cos \beta_1)$
	$E_{\rm ext} = \frac{2ql}{4\pi\epsilon_0 r^2} = -\frac{2p}{4\pi\epsilon_0 r^3}$		$B_{\infty} = \mu_0 nI$
	0 0		$B_{\frac{\infty}{2}} = \frac{B_{\infty}}{2}$
	$E = \frac{\lambda}{2\pi\epsilon_0 d}$		

 $E_x = \frac{\lambda}{4\pi\epsilon_0 d} (\sin\theta_2 - \sin\theta_1)$

$$E_y = \frac{\lambda}{4\pi\epsilon_0 d} (\cos \theta_2 - \cos \theta_1)$$
$$E = \frac{\sigma}{2\epsilon_0} n$$

高斯定理	稳恒电场	
电通量	磁通量	
$\phi_E = \iint E \cdot dS = \frac{1}{\epsilon_0} \sum_i q_i$	$\phi_B = \iint B \cdot dS = 0$	
$\oint_L E \cdot dl = 0$	$\oint_L B \cdot dl = \mu_0 \sum_i I_i$	

静电场	感应电场
由静止电荷产生	由变化磁场产生
$\oint E \cdot dS = \frac{q}{\epsilon_0}$	$\oint E_{\tilde{m}} \cdot dS = 0 (\nabla \cdot \boldsymbol{E}_{\tilde{m}})$
	≡ 0)
$\oint_{L} E \cdot dl = 0 \left(\nabla \times E \equiv 0 \right)$	$\oint_{L} E_{jk} \cdot dl = -\iint_{S} \frac{\partial B}{\partial t} dS$

$Maxwell's\ Equations$

(1)
$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$

$$(2) \qquad oldsymbol{
abla} imes oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$$

$$(3) \qquad \nabla \cdot \boldsymbol{B} = 0$$

(2)
$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

(3) $\nabla \cdot \boldsymbol{B} = 0$
(4) $c^2 \nabla \times \boldsymbol{B} = \frac{\partial \boldsymbol{E}}{\partial t} + \frac{\boldsymbol{j}}{\epsilon_0}$