Iniziato martedì, 19 dicembre 2023, 14:11

Stato Completato

Terminato martedì, 19 dicembre 2023, 14:40

Tempo impiegato 29 min. 25 secondi

Valutazione 6,50 su un massimo di 8,00 (81,25%)

Domanda 1

Parzialmente corretta

Punteggio ottenuto 0,50 su 1,00 Si considerino tre diversi processori P1, P2 e P3 che eseguono lo stesso insieme di istruzioni.

- P1 ha una frequenza di clock di 2 GHz e un CPI (Cicli Per Istruzione) di 1,0.
- P2 ha una frequenza di clock di 2,5 GHz e un CPI di 2,5.
- P3 ha una frequenza di clock di 3 GHz e un CPI di 2,0.
- Quale processore ha le prestazioni migliori espresse in numero di istruzioni al secondo?

• Si consideri un programma costituito da  $3 \cdot 10^9$  istruzioni. Determinare il tempo (in secondi) richiesto da P1 per eseguire il programma. Nota: esprimere il risultato usando il punto . come separatore tra la parte intera e quella frazionaria se necessario. Non inserire alcun carattere di spaziatura o unità di misura. 0.3

Domanda **2**Risposta errata

Punteggio ottenuto 0,00 su 1,00 Dati i seguenti numeri relativi codificati in complemento a 2 su 6 bit X=111101 e Y=111110 quello con modulo maggiore è:

Scegli un'alternativa:

● a. Y X

 $\circ$  b. X

La risposta corretta è: X

Domanda 3

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Dati i numeri X=302 in base 4 e Y=201 in base 5:

Scegli un'alternativa:

 $\odot$  a.  $X < Y \checkmark$ 

 $\bigcirc$  b. X > Y

 $\circ$  c. X = Y

La risposta corretta è: X < Y

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Quale numero è rappresentato dalla seguente sequenza di bit ottenuta dall'inesistente codifica IEEE 754 in precisioneinsoddisfacente che utilizza 1 bit per il segno, 5 bit per l'esponente e 4 bit per la mantissa?

## 1100111001

Nota: esprimere il risultato usando il punto . come separatore tra la parte intera e quella frazionaria. Non inserire alcun carattere di spaziatura.

| Risposta: | -25 | ~ |
|-----------|-----|---|
|-----------|-----|---|

La risposta corretta è : -25

Domanda **5** 

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Semplificare la seguente espressione logica:

$$(B \cdot C + A \cdot D) \cdot B + D \cdot \overline{C}$$

Come riferimento, le seguenti equivalenze logiche sono valide:

| Name             | AND form                                      | OR form                                       |
|------------------|-----------------------------------------------|-----------------------------------------------|
| Identity law     | 1A = A                                        | 0 + A = A                                     |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |

Scegli un'alternativa:

$$\bullet$$
 a.  $A \cdot B + \overline{D} + C$ 

Ob. 
$$A \cdot B + D + C$$

$$O$$
 c.  $A \cdot D + \overline{B} + C$ 

$$\bigcirc$$
 d.  $\overline{A} \cdot B + \overline{D} + C$ 

La risposta corretta è:  $A \cdot B + \overline{D} + C$ 

Domanda **6** 

Risposta corretta

Punteggio ottenuto 1,00 su 1,00



Data la rete sequenziale sincrona mostrata in figura, si supponga che i due flip-flop di tipo D, etichettati E ed F, memorizzino inizialmente lo stato  $(Q_E,Q_F)=(1,0)$ . Assumendo inoltre che sugli ingressi vengano fissati i valori (A,B)=(1,0), determinare:

- lo stato del flip-flop E dopo 1 ciclo di clock  $\bigcirc$
- lo stato del flip-flop F dopo 1 ciclo di clock  $oldsymbol{0}$
- lo stato del flip-flop E dopo 2 cicli di clock  $oldsymbol{0}$
- ullet lo stato del flip-flop F dopo 2 cicli di clock ullet 1

Domanda **7** 

Risposta corretta

Punteggio ottenuto 1,00 su 1,00



Data la rete combinatoria mostrata in figura, determinare l'espressione logica relativa all'uscita OUT:

Scegli un'alternativa:

$$\bullet$$
 a.  $(A+B)\cdot (A+C)\cdot (B+C)\cdot (\overline{A}+\overline{B}+\overline{C})$ 

$$\bigcirc$$
 b.  $(A+B)\cdot A\cdot (B+C)\cdot (\overline{A}+\overline{B}+\overline{C})$ 

$$\bigcirc$$
 c.  $(A+B)\cdot(A+C)\cdot(B+C)\cdot(A+\overline{B}+\overline{C})$ 

O d. 
$$(A+B)\cdot (A+C)\cdot (B+C)\cdot (\overline{A}+\overline{B}+C)$$

La risposta corretta è:  $(A+B)\cdot (A+C)\cdot (\overline{B}+C)\cdot (\overline{A}+\overline{B}+\overline{C})$ 

Domanda **8**Risposta

corretta

Punteggio

Si supponga che il registro PC abbia il valore **0x0000000040008** (in esadecimale), e che l'istruzione corrente sia la prima istruzione riportata nel frammento di codice RISC-V di seguito.

ottenuto 1,00 su 1,00

Determinare l'indirizzo che sarà presente nel PC dopo l'esecuzione dell'istruzione blt t0, zero, cont1

addi t0, zero, -4 addi t1, zero, -4 xor t0, t0, t1 blt t0, zero, cont1 addi t0, zero, 0 jal zero, cont0 cont 1: addi t0, zero, 1 cont0: nop

Come riferimento, il PC viene aggiornato dalla seguente rete nel RISC-V:



## Scegli un'alternativa:

- a. 0x00000000040001C
- b. **0**x**000000000400018**
- Oc. 0x000000000400010
- Od. 0x000000000400014
- e. 0x000000000400020

La risposta corretta è: 0x00000000400018