Définition 0.1.

Une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est dite sous forme échelonnée si:

- 1. toutes ses lignes non identiquement nulles sont situées au dessus de ses lignes identiquement nulles.
- 2. chaque élément de tête d'une ligne (élément non nul le plus ç gauche d'une ligne non identiquement nulle) se trouve dans une colonne à droite de l'élément de tête de la ligne précédente.

Remarque 0.1. La condition (2) implique que tous les éléments en dessous d'un élément de tête sont nuls.

Définition 0.2. Échelonnement d'une matrice Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Il existe une matrice $E \in \mathcal{M}_n(\mathbb{K})$, produit de matrice élémentaires, telle que la matrice $E \times A$ est échelonnée. Autrement dit, toute matrice est équivalente par rapport aux lignes à une matrice échelonnée.

Lemme 0.1: S

it $A \in \mathcal{M}_{n,1}(\mathbb{K}), n \geq 2$ et $i \in \{1, \dots, n-1\}$, tels que l'un des coefficients a_j pour indice $j \in \{i, \dots, n\}$ soit non nul, alors il existe $E_A \in \mathcal{M}_n(\mathbb{K})$ produit de matrice élémentaires. $a \in \mathbb{K}, a \neq 0$ tel que si:

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ a_i \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix}$$

alors

$$E_A \times A = \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ a_i \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Démonstration 0.1.

Quitte à échanger la ligne i avec une ligne j en dessius (ce qui revient à faire le produit $E_{i,j} \times A$), on se ramène au cas $a = a_i \neq 0$, on fait les opérations: $I_j \leftarrow I_j - \frac{a_j}{a_i} I_i, j \in \{i+1, \cdots, n\}$.