Design of an environment for solving pseudo-Boolean optimization problems

Author: Marc Benedí

Supervisor: Dr Cortadella

CS-FIB-UPC

Index

- Introduction
- Basic concepts
- The base project
- Pseudo-Boolean minimisation
- Bachelor's thesis
- Conclusions and future work
- Analysis of the planning
- Sustainability

Introduction

- C++ library
- Reduce time to solve pseudo-Boolean minimisation problems
- Build onto an existing one, the Base Project
- Pseudo-Boolean constraints are encoded with PBLib
- Two search algorithms to find the optimal value
- Two timeout strategies

Basic concepts

Boolean formula

Variables

$$a, b, c, \dots \in \mathbb{B}$$

Connectors

$$\land$$
, \lor , \neg

For exemple

$$a \wedge b \vee (\neg c)$$

Boolean satisfiability problem

- Given a propositional formula f, is there a truth assignment i such that i(f) = 1?
- NP-complete

Conjunctive Normal Form

Clause: Finite disjunction of literals

$$l_1 \vee \cdots \vee l_n$$

CNF: Conjunction of one or more claues

$$(A \lor B) \land C$$

SAT Solver

Software for solving SAT

Example

Boolean formula:

$$a \lor (b \land c)$$

• CNF:

$$(a \lor b) \land (a \lor c)$$

Solver

Satisfiable
$$I_1(a) = 1, I_1(b) = 0, I_1(c) = 0$$

Base project

Motivation

- Existing encoding to CNF
- New transformation
- Reduce the number of clauses adding auxiliar variables
- See the tradeoffs

Requirements

Straightforward notation: literals and operators

```
1 Formula a = BoolFunc::newLit("a");
2 Formula b = BoolFunc::newLit("b");
3
4 Formula f = (a+b) * b;
```

Transformations Formula f = (a+b)*b;

Formula f = (a+b)*b;
Cnf cnf = CnfConverter::tseitin(f);

Tseytin

- O Length CNF is linear in the size of the formula
- Equisatisfiable

$$x = a \lor b$$

 $a \to x, b \to x, x \to (a \lor b)$

$$y = x \wedge b$$

 $y \to x, y \to b, (x \wedge b) \to y$

Transformations

Formula f = (a+b)*b;
//Convert formula to bdd
Cnf cnf = CnfConverter::convertToCnf(f_bdd);

Extracting primes

$$f = (a * b) + (c * d)$$

$$cnf = (a + c) * (a + d) * (b + c) * (b + d)$$

$$\overline{f} = (\overline{a} + \overline{b}) * (\overline{c} + \overline{d})$$

$$SoP = (\overline{a} * \overline{c}) + (\overline{a} * \overline{d})$$

$$+ (\overline{b} * \overline{c}) + (\overline{b} * \overline{d})$$

Cudd - Colorado University Decision
 Diagram package

http://vlsi.colorado.edu/~fabio/

Transformations

Problem

$$f = XOR(a, b, c, d)$$

$$cnf = \overline{abcd} + \overline{abcd}$$

$$+ \overline{abcd} + \overline{abcd}$$

$$+ a\overline{bcd} + a\overline{bcd}$$

$$+ ab\overline{cd} + abcd$$

 Idea: When function's primes cover a small space then a lot of clauses are required

```
Formula f = (a+b)*b;
Transformations MixCNFConverter m = MixCNFConverter();
                               m.convert(f);
                               Cnf cnf = m.getResult();
```

Extracting primes and adding new variables

- Build BDD subtree
- Look at the largest cube ratio

- If not big enough If big enough
 - Get biggest child (x)
- generate CNF extracting primes

```
Formula f = (a+b)*b;
Transformations MixCNFConverter m = MixCNFConverter();
                               m.convert(f);
                               Cnf cnf = m.getResult();
```

Extracting primes and adding new variables

- Build BDD subtree
- Look at the largest cube ratio

- Get biggest child (x)
- Replace it by an auxiliary variable
- O Add X XNOR aux

 If big enough generate CNF extracting primes

Continue with the parent node

Experiment

The problem: Pseudo-Boolean optimisation

Pseudo-Boolean optimisation

Pseudo-Boolean constraints

$$w_1x_1 + w_2x_2 + \dots + w_nx_n \# k$$

$$w_i, k \in \mathbb{Z}$$

$$x_i \in \mathbb{B}$$

$$\# \in \{=, \leq, \geq, <, >\}$$

Cost function

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$
$$w_i \in \mathbb{Z}$$
$$x_i \in \mathbb{B}$$

maximize	$\mathbf{c}^{\mathrm{T}}\mathbf{x}$
subject to	$A\mathbf{x} \leq \mathbf{b}$
and	$\mathbf{x} > 0$

Example - Knapsack problem

Variables:

$$o_1, o_2, ..., o_n \in \mathbb{B}$$

 $w_1, w_2, ..., w_n \in \mathbb{Z}$
 $v_1, v_2, ..., v_n \in \mathbb{Z}$

Constraints:

$$w_1 o_1 + w_2 o_2 + \dots + w_n o_n \le$$

knapsack's capacity

Cost function:

$$v_1 o_1 + v_2 o_2 + \dots + v_n o_n$$

TFG software

Objectives

- Pseudo-Boolean minimisation
- Timeouts
- Multithreading*

PBLib

- C++ library
- Encodings maintain arc consistency by unit propagation
- Decides which encoder provides the most effective translation
- Variable's management done by the user

At most one	At most K	PB
sequential*	BDD**	BDD
bimander	cardinality networks	adder networks
commander	adder networks	watchdog
k-product	todo: perfect hashing	sorting networks
binary		binary merge
pairwise		sequential weight counter
nested		
t annivelent to DDD Jetter and constant and disc		

^{*} equivalent to BDD, latter and regular encoding

^{**} equivalent to sequential counter
Encodings labeled with *todo* are planed for the (near) future.

Pseudo-Boolean minimisation layer

- Variables int32_t
- Coefficients int64 t

Maximum compatibility with

PBI ib

Compact representation

PBFormula pf = PBFormula(
$$\{-3,2\}$$
, $\{1,-2\}$);
$$-3x_1 + 2\overline{x_2}$$

PBConstraint c = PBConstraint(PBFormula({3,2},{1,2}),1);

$$3x_1 + 2x_2 \le 1$$

Pseudo-Boolean minimisation layer

```
std::vector< PBConstraint > constraints = {
    PBConstraint(PBFormula({1,2},{-1,-2}),1),
    PBConstraint(PBFormula({3,4},{2,-3}),1),
    PBConstraint(PBFormula({3,7},{1,-3}),1)
};

PBMin m = PBMin(constraints, PBFormula({3,-5},{4,5}));
```

$$\overline{x_1} - 2\overline{x_2} \le 1$$
,
 $3x_2 + 4\overline{x_3} \le 1$,
 $3x_1 + 7\overline{x_3} \le 1$
 $3x_4 - 5x_5$

Search algorithms

Search space

Linear search

LinearSearchStrategy ls;
PBMin m = PBMin(constraints, costFunction);
Solver s(&ls,m);

Binary search

BinarySearchStrategy bs;
PBMin m = PBMin(constraints, costFunction);
Solver s(&bs,m);

Timeouts

Base solver

Solver solver(&search, problem);

Simple timeout

SimpleTimeoutSolver s(timeout,&search,problem);

Timeout for each call to the SAT Solver

General timeout

GeneralTimeoutSolver s(timeout,&search,problem);

Timeout for the whole problem

Architecture

Experiment

Conclusions & future work

Conclusions

- Goal of improving the overall time required to solve pseudo-Boolean minimisation problems
- A more user-friendly interface
- Two search algorithms to find the minimum value
- Two timeout strategies to finish the execution

Future work

- Github repository, documentation, installer and wiki
- Iteration 3: Multithreading
- Allow maximisation and other relational operators

Analysis of the planning

Timeline

Stage	Expected hours	Real hours
GEP	70	70
Requirement analysis, architecture and debugging	90	75
It 1: PB Minimisation	80	87
It 2: Timeout	80	88
It 3: Multithreading*	80	-
Finalization	50	65
Total	450	385 49

Budget

Estimated budget

Direct costs	10.015,00
Indirect costs	140,73
Contingency	3.025,61
Unforeseen	816,14
Total	13.997,48

Real budget

Direct costs	8.930,00
Indirect costs	257,73
Contingency	3.025,61
Unforeseen	816,14
Total	13.029,48

Sustainability

	PPP	Useful life	Risks
Environmental	7	20	-4
Economical	7	15	-10
Social	8	15	0
Sustainability range	58		

Thank you for your time

Questions?

https://github.com/marcbenedi/SAT-**TFG**

52