SCTLR2_EL3, System Control Register (EL3)

The SCTLR2 EL3 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL3.

Configuration

This register is present only when FEAT_SCTLR2 is implemented. Otherwise, direct accesses to SCTLR2 EL3 are undefined.

Attributes

SCTLR2 EL3 is a 64-bit register.

Field descriptions

636261605958575655545352515049484746454443424140393837	36	35	34	33	32
RES0					
RES0	EnANERR	EnADERR	RES0	EMEC	RES0
31302928272625242322212019181716151413121110 9 8 7 6 5	4	3	2	1	0

Bits [63:5]

Reserved, res0.

EnANERR, bit [4] When FEAT_ANERR is implemented:

Enable Asynchronous Normal Read Error.

EnANERR	Meaning
0b0	External abort on Normal
	memory reads generate
	synchronous Data Abort
	exceptions in the EL3
	translation regime.
0b1	External abort on Normal
	memory reads generate
	synchronous Data Abort or
	asynchronous SError
	exceptions in the EL3
	translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the following:

- FP&SIMD register loads.
- SVE register loads.
- SME register loads.
- LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.
- ST64BV{0} instructions that return a value to the PE.
- RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort exception for an External abort on a Normal memory read in every case. There might be implementation-specific circumstances when an error on a load cannot be taken synchronously. These circumstances should be rare enough that treating such occurrences as fatal does not cause a significant increase in failure rate.

Setting this field to 0 might have a performance impact for Normal memory reads.

This field is ignored by the PE and treated as zero when \underline{SCR} $\underline{EL3}$. $\underline{SCTLR2En} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnADERR, bit [3] When FEAT_ADERR is implemented:

Enable Asynchronous Device Read Error.

EnADERR	Meaning
0b0	External abort on Device
	memory reads generate
	synchronous Data Abort
	exceptions in the EL3
	translation regime.
0b1	External abort on Device
	memory reads generate
	synchronous Data Abort or
	asynchronous SError
	exceptions in the EL3
	translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the following:

- FP&SIMD register loads.
- SVE register loads.
- SME register loads.
- LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.
- ST64BV{0} instructions that return a value to the PE.
- RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort exception for an External abort on a Device memory read in every case. There might be implementation-specific circumstances when an error on a load cannot be taken synchronously. These circumstances should be rare enough that treating such occurrences as fatal does not cause a significant increase in failure rate.

Setting this field to 0 might have a performance impact for Device memory reads.

This field is ignored by the PE and treated as zero when \underline{SCR} $\underline{EL3}$. $\underline{SCTLR2En} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [2]

Reserved, res0.

EMEC, bit [1] When FEAT MEC is implemented:

Enables MEC for the Realm physical address space at EL3.

EMEC	Meaning
0b0	MEC is not enabled for the
	Realm physical address space at
	EL3.
0b1	MEC is enabled for the Realm
	physical address space at EL3.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

Bit [0]

Reserved, res0.

Accessing SCTLR2_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR2_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	0b0000	0b011

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    X[t, 64] = SCTLR2_EL3;
```

MSR SCTLR2_EL3, <Xt>

op0	op1	CRn	CRm	op2	
0b11	0b110	0b0001	0b0000	0b011	

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
```

 $SCTLR2_EL3 = X[t, 64];$

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.