Relações de Recorrência: Introdução

Análise de Algoritmos - Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Recorrência

Em algoritmos recursivos, o tempo de execução pode ser descrito por recorrências, que são equações ou desigualdades que descrevem uma função em termos de seu valor em entradas menores.

Exemplo

$$T(n) = \begin{cases} \Theta(1), & n = 1 \\ 2T(n/2) + \Theta(n), & n > 1 \end{cases}$$

Exemplo: Fibonacci

Algorithm 1: FIB(n)

Input: $n \in \mathbb{N} \cup \{0\}$

Output: i-ésimo número da sequência de Fibonacci

- 1 if($n \le 2$)
- $\mathbf{2}$ return 1
- 3 return $\operatorname{FiB}(n-1) + \operatorname{FiB}(n-2)$

Exemplo: Fibonacci

A relação de recorrência é dada por:

$$T(n) = \begin{cases} \Theta(1), & n \le 2 \\ T(n-1) + T(n-2) + \Theta(1), & n > 2 \end{cases}$$

Exemplo: Busca Binária

Algorithm 2: BSEARCH(V, l, r, k)

Input:
$$V[0, n-1], 0 \le l, r < n, k$$

Output:
$$x$$
, $V[x] = k$, ou -1 caso $V[x] \neq k, 0 \leq x < n$

- 1 if(l>r)
- 2 \lfloor return -1
- 3 $m \leftarrow l + \lfloor \frac{r-l}{2} \rfloor$
- 4 if(k=V[m])
- $\mathsf{return}\ m$
- 6 else if(k < V[m])
- 7 | return BSEARCH(V, l, m-1, k)
- 8 return BSEARCH(V, m+1, r, k)

Exemplo: Busca Binária

A relação de recorrência é dada por:

$$T(n) = \left\{ \begin{array}{ll} \Theta(1), & n = 0 \\ T(\lfloor \frac{n}{2} \rfloor) + \Theta(1), & n > 0 \end{array} \right.$$

- Como analisar algoritmos recursivos?
- Precisamos identificar cotas superiores e inferiores a partir da relação de recorrência.

Recorrências

Para encontrar a complexidade de um algoritmo descrito por uma recorrência, geralmente recorre-se aos seguintes métodos:

- Método da Substituição (Indução);
- Método da Iteração;
- Método Master;