

FCC Measurement/Technical Report on

77.211.3xx

E.G.O. BLE-Stamp

FCC ID: 2AK48-BST-0001

IC: ---

Test Report Reference: MDE_EGO_1801_FCCa

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11

40880 Ratingen, Germany T +49 (0) 2102 749 0

F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller

Bernhard Retka Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554

USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1 A	pplied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary / Signatures	4
2 A	dministrative Data	7
2.1	Testing Laboratory	7
2.2	Project Data	7
2.3	Applicant Data	7
2.4	Manufacturer Data	8
3 T	est object Data	9
3.1	General EUT Description	9
3.2	EUT Main components	9
3.3	Ancillary Equipment	10
3.4	Auxiliary Equipment	10
3.5	EUT Setups	11
3.6	Operating Modes	11
3.7	Product labelling	11
4 T	est Results	12
4.1	Occupied Bandwidth (6 dB)	12
4.2	Occupied Bandwidth (99%)	14
4.3	Peak Power Output	16
4.4	Spurious RF Conducted Emissions	18
4.5	Transmitter Spurious Radiated Emissions	20
4.6	Band Edge Compliance Conducted	27
4.7	Band Edge Compliance Radiated	29
4.8	Power Density	31
5 T	est Equipment	33
6 A	ntenna Factors, Cable Loss and Sample Calculations	36
6.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	36
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	37
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	38
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	39
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	40
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	41
7 S	etup Drawings	42
8 N	leasurement Uncertainties	43
9 P	hoto Report	43

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-17 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note 1: (DTS Equipment)

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v04, 2017-04-05". ANSI C63.10–2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a)	(2)	
Occupied Bandwidth (6 dB)			
The measurement was performed according to ANSI Co	63.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency			
Bluetooth LE, high	S01_AD01	Passed	Passed
Bluetooth LE, low	S01_AD01	Passed	Passed
Bluetooth LE, mid	S01_AD01	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	IC RSS-Gen Ch. 6.7 & Ch		43;
Occupied Bandwidth (99%)			
The measurement was performed according to ANSI Co	63.10	Final Re	esult
OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
Bluetooth LE, high	S01_AD01	N/A	Performed
Bluetooth LE, low	S01_AD01	N/A	Performed
Bluetooth LE, mid	S01_AD01	N/A	Performed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b)	(3)	
§15.247 Peak Power Output			ocult
§15.247		(3) Final Re	esult
§15.247 Peak Power Output	63.10 Setup		esult IC
§15.247 Peak Power Output The measurement was performed according to ANSI Co OP-Mode	63.10 Setup	Final Re	
§15.247 Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method	53.10 Setup	Final Re	IC
Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted	53.10 Setup od S01_AD01	Final Re	IC Passed
Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted	53.10 Setup od S01_AD01 S01_AD01	Final Re FCC Passed Passed Passed	IC Passed Passed
Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions	Setup Sol_AD01 SOl_AD01 SOl_AD01 SOl_AD01 \$ 15.247 (d)	Final Re FCC Passed Passed Passed	Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	Setup Sol_AD01 SOl_AD01 SOl_AD01 SOl_AD01 \$ 15.247 (d)	Final Re FCC Passed Passed Passed	Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions	Setup Sol_AD01 SOl_AD01 SOl_AD01 SOl_AD01 \$ 15.247 (d)	Final Re FCC Passed Passed Passed	Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI Co OP-Mode	Setup Sol_AD01 SOl_AD01 SOl_AD01 SOl_AD01 SOl_AD01 \$ 15.247 (d)	Final Re	Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency	Setup od S01_AD01 S01_AD01 S01_AD01 \$ 15.247 (d) 63.10 Setup	Final Ref	Passed Passed Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Transmitter Spurious Radiated Emissions

§ 15.247 (d)

The measurement was performed according to ANSI C63.10 Final Result		esult	
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	FCC	IC
Bluetooth LE, high, 1 GHz - 26 GHz	S01_AA01	Passed	Passed
Bluetooth LE, high, 30 MHz - 1 GHz	S01_AA01	Passed	Passed
Bluetooth LE, low, 1 GHz - 26 GHz	S01_AA01	Passed	Passed
Bluetooth LE, low, 30 MHz - 1 GHz	S01_AA01	Passed	Passed
Bluetooth LE, mid, 1 GHz - 26 GHz	S01_AA01	Passed	Passed
Bluetooth LE, mid, 30 MHz - 1 GHz	S01_AA01	Passed	Passed
Bluetooth LE, mid, 9 kHz - 30 MHz	S01_AA01	Passed	Passed
§15.247	§ 15.247 (d)		
		Final Re	esult
§15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI C63. OP-Mode		Final Re	esult IC
§15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI C63.	10		
Band Edge Compliance Conducted The measurement was performed according to ANSI C63. OP-Mode Radio Technology, Operating Frequency, Band Edge	10 Setup	FCC	IC
Band Edge Compliance Conducted The measurement was performed according to ANSI C63. OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low	10 Setup S01_AD01	FCC Passed	IC Passed
Band Edge Compliance Conducted The measurement was performed according to ANSI C63. OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C	Setup S01_AD01 S01_AD01 501_AD01	FCC Passed	IC Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart C	§ 15.247 (e)
§15.247	

Power Density
The measurement was performed according to ANSI C63.10

Final Result

Passed

Passed

OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency			
Bluetooth LE, high	S01_AD01	Passed	Passed
Bluetooth LE, low	S01_AD01	Passed	Passed
Bluetooth LE, mid	S01_AD01	Passed	Passed

layers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

(responsible for accreditation scope)

Marco Kullik

Bluetooth LE, high, high

(responsible for testing and report)
Wolfgang Richter

S01_AA01

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

Responsible for accreditation scope: Marco Kullik

Report Template Version: 2018-01-10

2.2 PROJECT DATA

Responsible for testing and report: Wolfgang Richter

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2018-07-20

Testing Period: 2018-05-02 to 2018-06-26

2.3 APPLICANT DATA

Company Name: E.G.O. Elektro Gerätebau GmbH

Address: Rote-Tor-Straße 14

75038 Oberderdingen

Germany

Contact Person: Mr. Stefan Calmbach

2.4 MANUFACTURER DATA

Company Name & Address:

E.G.O. Componentes Electrónicos, S.A. de C.V. Calle Benito Juárez #125
Parque Industrial Querétaro
Querétaro, Qro., C.P. 76220

E.G.O. Appliance Controls, S.L.U Calle Maresme n°1 08185 Lliçà de Vall, Barcelona

E.G.O. Components (China) Co., Ltd.123 East Guang Zhou RoadTaicang, JiangSu 215400

E.G.O. Produktion GmbH & Co. KGRote-Tor-Straße 1475038 Oberderdingen

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Bluetooth Low Energy Module
Product name	E.G.O. BLE-Stamp
Туре	77.211.3xx
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	5.0 V
Tested Modulation Type	GFSK Modulation
Tested Data Rates	1 Mbps
General product description	Bluetooth Low Energy Module
Specific product description for the EUT	The EUT is a Bluetooth Low Energy Module for EGO Controls for several Home Appliance Application with EGO-BUS; LIN-Bus or SPI Interface connected to E.G.O. Appliance Controls. It is mounted on an evaluation board. Sample No. 00001: no housing; PCB Antenna original; Controller: Cypress PSOC4 with BLE 4.2; Quartz: 24 MHz; Date: 2018-03-28 Sample No. 00002: no housing; temporary antenna connector for testing purpose Controller: Cypress PSOC4 with BLE 4.2; Quartz:
The EUT provides the following ports:	Port 1: DC input and data port to USB converter, provided cable connected (approx. 0.8 m, +5 V, 0 V, max. allowed cable length: 3 m, DC cable not intended for direct connection to a dedicated AC/DC power supply Port 2: data port, connected to provided cable (approx. 0.8 m UART-Data cable connected to USB converter, max allowed cable length: 3 m Port 3: Chrystal sync port, for evaluation purpose only, not populated in series, no coaxial cable provided / connected, max allowed cable length: 3 m
Special software used for testing	HCI Test SW

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
Conducted Sample #AD01	DE1227005ad01	Sample for conducted testing
Sample Parameter		Value
Serial No.	CTI-MIN250 NXY	
HW Version	98.000.00-01	
SW Version	HCI Test SW	
Comment	Manufacturer: E.G.O. Com	ponentes Electrónicos, S.A. de C.V.

Sample Name	Sample Code	Description
Radiated Sample #AA01	DE1227005aa01	Sample for radiated testing
Sample Parameter	Valu	е
Serial No.	CTI-MIN250 N25	
HW Version	98.000.00-01	
SW Version	HCI Test SW	
Comment	Manufacturer: E.G.O. Componentes Electrónicos, S.A. de C.V.	
Integral Antenna	1.6dBi	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
AC Adapter (for Laptop RE 02)	Fujitsu Ltd., -, -, 05335621F	Model SEB100P2-19.0
Laptop RE 02 (Fujitsu)	Fujitsu Ltd., -, -, DSCM004672	Lifebook E series E782
USB Fiber Optic Converter (Pontis)	PONTIS Messtechnik GmbH, -, -, 4461520060	foUSB-M USB-B

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	Radiated Sample #AA01, USB Fiber Optic Converter (Pontis), AC Adapter (for Laptop RE 02), Laptop RE 02 (Fujitsu),	Radiated Setup #AA01
S01_AD01	Conducted Sample #AD01, AC Adapter (for Laptop RE 02), Laptop RE 02 (Fujitsu),	Conducted Setup #AD01

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

	2.4 GHz ISM					
	2400 - 3	2400 - 2483.5 MHz				
BT LE Test Channels:	low	mid	high			
Channel:	0	19	39			
Frequency [MHz]	2402	2440	2480			

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produces the worst-case (smallest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Span: 3 MHz
Trace: Maxhold
Sweeps: 2000
Sweep Time: 5 ms
Detector: Peak

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.3 TEST PROTOCOL

Ambient 23 °C

temperature:

Air Pressure: 999 hPa Humidity: 44.5 % BT LE GFSK

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.758	0.5	0.258
	19	2440	0.745	0.5	0.245
	39	2480	0.752	0.5	0.252

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa Page 12 of 43

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = mid (S01_AD01)

4.1.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 100 kHz

Span: 3 MHz
Trace: Maxhold
Sweeps: 2000
Sweep Time: 8.5 ms
Detector: Sample

The 99 % measurement function of the spectrum analyzer function was used to determine the 99 % bandwidth.

4.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit (RSS-Gen: §6.7: The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.)

4.2.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 999 hPa
Humidity: 44 %
BT LE

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.052
	19	2440	1.052
	39	2480	1.058

Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = high (S01_AD01)

Date: 26.JUN.2018 09:37:26

4.2.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 1 MHzVideo Bandwidth (VBW): 3 MHz

Trace: MaxholdSweeps: 2000Sweep Time: 5 msDetector: Peak

The channel power function of the spectrum analyzer was used (Used channel bandwidth = DTS bandwidth)

4.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

4.3.3 TEST PROTOCOL

Ambient 23 °C

temperature:

Air Pressure: 999 hPa Humidity: 44 %

BT LE

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-2.9	30.0	32.9
	19	2440	-3.0	30.0	33.0
	39	2480	-3.4	30.0	33.4

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa Page 16 of 43

4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement method = conducted (S01_AD01)

Date: 26.JUN.2018 08:59:28

4.3.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 2

Sweep Time: 330 sDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

4.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.4.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 999 hPa
Humidity: 44 %
BT LE GFSK

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402			PEAK	100	-3.5	-23.5	>20
19	2440			PEAK	100	-3.5	-23.5	>20
39	2480			PEAK	100	-4.1	-24.1	>20

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa Page 18 of 43

4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = mid (S01_AD01)

Title: spurious emissions Comment A: CH M2: 2440 MHz Date: 26.JUN.2018 08:30:23

4.4.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

- Frequency steps: 30 kHz - IF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

- Height variation range: 1 - 3 m - Height variation step size: 2 m - Polarization: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by ± 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by ± 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: ± 45 ° around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarization: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated this contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyzer settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 1 MHzMeasuring time: 1 s

4.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.5.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 1017 hPa
Humidity: 30 %

BT low Energy

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	2389.4	51.8	PEAK	1000	74.0	22.2	RB
0	2402	2389.7	35.4	AV	1000	54.0	18.6	RB
0	2402	4803.7	54.2	PEAK	1000	74.0	19.8	RB
0	2402	4804.4	43.5	AV	1000	54.0	10.5	RB
19	2440	4879.8	55.6	PEAK	1000	74.0	18.4	RB
19	2440	4880.3	44.8	AV	1000	54.0	9.2	RB
39	2480	2494.6	54.9	PEAK	1000	74.0	19.1	RB
39	2480	2494.6	36.4	AV	1000	54.0	17.6	RB
39	2480	4959.6	55.8	PEAK	1000	74.0	18.2	RB
39	2480	4960.4	45.7	AV	1000	54.0	8.3	RB

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa Page 23 of 43

4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AA01)

Legend: blue trace = Peak detector, green = QP detector

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AA01)

Legend: blue trace = Peak detector, green = QP detector, stars = critical frequencies, Rhombus = final measurement QP-detector

Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AA01)

Legend: blue trace = Peak detector, green = CISPR-AV detector, stars = critical frequencies, blue Rhombus = final measurement Peak detector, green = final measurement AV-detector

Radio Technology = Bluetooth LE, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AA01)

4.5.5 TEST EQUIPMENT USED

- Radiated Emissions

4.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

• Lower Band Edge:

Minimum frequency: 2397.0 MHz

Upper Band Edge

Maximum frequency: 2485.0 MHz

• Span:

Bluetooth: 6 MHz Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Sweep Time: 5 msSweeps: 2000Trace: Maxhold

4.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa

4.6.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 999 hPa
Humidity: 44 %
BT LE GFSK

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-39.5	PEAK	100	-3.4	-23.4	16.1
39	2480	2483.5	-45.6	PEAK	100	-4.1	-24.1	21.5

Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = low, Band Edge = low (S01_AD01)

Title: Band Edge Compliance Comment A: CH B: 2402 MHz
Date: 26.JUN.2018 08:02:59

4.6.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.7.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

TEST REPORT REFERENCE: MDE_EGO_1801_FCCa Page 29 of 43

4.7.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 23 \ ^{\circ}\mbox{C} \\ \mbox{Air Pressure:} & 1017 \ \mbox{hPa} \\ \mbox{Humidity:} & 30 \ \% \end{array}$

BT LE GFSK Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
39	2480	2483.5	64.7	PEAK	1000	74.0	9.3	BE
39	2480	2483.5	36.4	AV	1000	54.0	17.6	BE

Remark: Please see next sub-clause for the measurement plot.

4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = high, Band Edge = high (S01_AA01)

4.7.5 TEST EQUIPMENT USED

- Radiated Emissions

4.8 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 30 kHz

Trace: MaxholdSweeps: 2000Sweep Time: 5 msDetector: Peak

4.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. . .

The same method of determining the conducted output power shall be used to determine the power spectral density.

4.8.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 999 hPa
Humidity: 44 %
BT LE

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-17.6	8.0	25.6
	19	2440	-17.9	8.0	25.9
	39	2480	-18.2	8.0	26.2

Remark: Please see next sub-clause for the measurement plot.

4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = low (S01_AD01)

4.8.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

5 TEST EQUIPMENT

1 Radiated EmissionsLab to perform radiated emission tests

Ref. No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2017-10	2018-10
1.2	Opus10 TPR (8253.00)	ThermoAirpres	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.3	ESW44	EMI Test Receiver	Rohde & Schwarz GmbH & Co. KG	101603		
1.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2018-05	2020-05
1.5	FS-Z60	Harmonic Mixer 40 - 60 GHz	Rohde & Schwarz Messgerätebau GmbH	100178	2016-12	2019-12
1.6	FS-Z220	Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2017-03	2020-03
1.7	SGH-05	Standard Gain / Pyramidal Horn Antenna (140 - 220 GHz)		075		
1.8	HL 562		Rohde & Schwarz	830547/003	2015-06	2018-06
1.9		High Pass Filter	Trilithic	9942012		
1.10	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.11	Fully Anechoic Room	8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2015-06	2018-06
1.12	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.13	HF 906		Rohde & Schwarz	357357/002	2015-06	2018-06
1.14		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.15	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
1.16	3160-09	Standard Gain	EMCO Elektronic GmbH	00083069		
1.17	SGH-19	Standard Gain / Pyramidal Horn Antenna (40 - 60 GHz)		093		
1.18	WHKX 7.0/18G- 8SS		Wainwright	09		
1.19		High Pass Filter	Trilithic	9942011		

Ref. No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.20	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.21	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.22	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.23	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.24	HF 906	horn	Rohde & Schwarz	357357/001	2018-03	2021-03
1.25	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2017-03	2020-03
1.26	3160-10		EMCO Elektronic GmbH	00086675		
1.27	SGH-08	Standard Gain / Pyramidal Horn Antenna (90 - 140 GHz)		064		
1.28	SGH-12	Standard Gain / Pyramidal HornAntenna (60 - 90 GHz)		326		
1.29	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
1.30	FS-Z140	Harmonic Mixer 90 -140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2017-02	2020-02
1.31	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
1.32	Opus10 THI (8152.00)	, ,	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
1.33	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
1.34	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.35	AS 620 P	Antenna mast	HD GmbH	620/37		
1.36	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg		TD1.5- 10kg/024/37907 09		
1.37	SGH-03	Standard Gain / Pyramidal Horn Antenna (220 - 325 GHz)		060		
1.38	FS-Z90	Mixer 60 - 90 GHz	Rohde & Schwarz Messgerätebau GmbH	101686	2017-03	2020-03
1.39	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01
1.40		Antenna Mast	Maturo GmbH	-		
1.41	AFS42- 00101800-25-S- 42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
1.42	AM 4.0		Maturo GmbH	AM4.0/180/1192 0513		
		·	·	· · · · · · · · · · · · · · · · · · ·		

Ref.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
No.					Calibration	Due
1.43	HF 907	Double-ridged	Rohde & Schwarz	102444	2015-05	2018-05
		horn				

2 Regulatory Bluetooth RF Test Solution Regulatory Bluetooth RF Tests

Ref. No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2017-10	2018-10
2.2	EX520	Digital Multimeter 12 (Multimeter)	Extech Instruments Corp	05157876	2018-02	2020-02
2.3	NRV Z1 A	Power Sensor	Rohde & Schwarz	832279/013	2017-09	2018-09
2.4	Opus10 THI (8152.00)	T/H Logger 15	Lufft Mess- und Regeltechnik GmbH	13985	2017-04	2019-04
2.5	TOCT Switching Unit		7layers, Inc.	040107		
2.6	KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2018-04	2020-04
2.7	ADU 200 Relay Box 7	used for automated testing (EMMI) only	Ontrak Control Systems Inc	A04380		
2.8	CBT	IL BT RF Test Solution	Rohde & Schwarz	100302	2018-03	2019-03
2.9	NRVD	Power Meter	Rohde & Schwarz	832025/059	2017-09	2018-09
2.10	FSIQ26	Signal Analyser	Rohde & Schwarz	832695/007	2016-09	2018-09
2.11	Shielded Room 07	Shielded Room 4m x 6m				
2.12	SMP02	Signal Generator SMP	Rohde & Schwarz	833286/0014	2016-05	2019-05
2.13	SMIQ 03B	Signal Generator	Rohde & Schwarz GmbH & Co. KG	832870/017	2016-06	2019-06
2.14	СВТ	Bluetooth Tester "CBT- 01"	Rohde & Schwarz GmbH & Co. KG	100589	2018-05	2021-05
2.15	NGSM 32/10	Power Supply	Rohde & Schwarz	2725	2017-06	2019-06

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	 11.1
26	11.2
28	11.2
30	11.3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z 5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

(7 10112	00 1111 12					
cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 $(d_{Limit} = 3 m)$

(u _{Limit} = 3 m)							
5	AF R&S	0.000					
Frequency	HL562	Corr.					
MHz	dB (1/m)	dB					
30	18.6	0.6					
50	6.0	0.9					
100	9.7	1.2					
150	7.9	1.6					
200	7.6	1.9					
250	9.5	2.1					
300	11.0	2.3					
350	12.4	2.6					
400	13.6	2.9					
450	14.7	3.1					
500	15.6	3.2					
550	16.3	3.5					
600	17.2	3.5					
650	18.1	3.6					
700	18.5	3.6					
750	19.1	4.1					
800	19.6	4.1					
850	20.1	4.4					
900	20.8	4.7					
950	21.1	4.8					
1000	21.6	4.9					

cable	cable	cable	cable	distance	d_{Limit}	d _{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(c	Limit	= '	<u> 10</u>	m)	

(uLimit - 10	••••				
30	18.6	-9.9	0.29	0.04	0.
50	6.0	-9.6	0.39	0.09	0.
100	9.7	-9.2	0.56	0.14	0.
150	7.9	-8.8	0.73	0.20	0.
200	7.6	-8.6	0.84	0.21	0.
250	9.5	-8.3	0.98	0.24	0.
300	11.0	-8.1	1.04	0.26	0.
350	12.4	-7.9	1.18	0.31	0.
400	13.6	-7.6	1.28	0.35	1.
450	14.7	-7.4	1.39	0.38	1.
500	15.6	-7.2	1.44	0.39	1.
550	16.3	-7.0	1.55	0.46	1.
600	17.2	-6.9	1.59	0.43	1.
650	18.1	-6.9	1.67	0.34	1.
700	18.5	-6.8	1.67	0.42	1.
750	19.1	-6.3	1.87	0.54	1.
800	19.6	-6.3	1.90	0.46	1.
850	20.1	-6.0	1.99	0.60	1.
900	20.8	-5.8	2.14	0.60	1.
950	21.1	-5.6	2.22	0.60	1.
1000	21.6	-5.6	2.23	0.61	1.

0.29	0.04	0.23	0.02	-10.5	10	3
0.39	0.09	0.32	0.08	-10.5	10	3
0.56	0.14	0.47	0.08	-10.5	10	3
0.73	0.20	0.59	0.12	-10.5	10	3
0.84	0.21	0.70	0.11	-10.5	10	3
0.98	0.24	0.80	0.13	-10.5	10	3
1.04	0.26	0.89	0.15	-10.5	10	3
1.18	0.31	0.96	0.13	-10.5	10	3
1.28	0.35	1.03	0.19	-10.5	10	3
1.39	0.38	1.11	0.22	-10.5	10	3
1.44	0.39	1.20	0.19	-10.5	10	3
1.55	0.46	1.24	0.23	-10.5	10	3
1.59	0.43	1.29	0.23	-10.5	10	3
1.67	0.34	1.35	0.22	-10.5	10	3
1.67	0.42	1.41	0.15	-10.5	10	3
1.87	0.54	1.46	0.25	-10.5	10	3
1.90	0.46	1.51	0.25	-10.5	10	3
1.99	0.60	1.56	0.27	-10.5	10	3
2.14	0.60	1.63	0.29	-10.5	10	3
2.22	0.60	1.66	0.33	-10.5	10	3
2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

_	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber) dB	cable loss 2 (inside chamber) dB	cable loss 3 (outside chamber) dB	cable loss 4 (switch unit, atten- uator & pre-amp) dB	cable loss 5 (to receiver) dB	used for FCC 15.247
, ,					
	`	`		`	
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

_	AF EMCO	0
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ – 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-15.6	3	0.5
4.4				-15.6	3	0.5
4.5				-15.6	3	0.5
4.6				-15.6	3	0.5
4.7				-15.6	3	0.5
4.7				-15.6	3	0.5
4.8				-15.6	3	0.5
4.9				-15.6	3	0.5
5.0				-15.6	3	0.5
5.1				-15.6	3	0.5
5.1				-15.6	3	0.5
5.2				-15.6	3	0.5
5.3				-15.6	3	0.5
5.4				-15.6	3	0.5
5.5				-15.6	3	0.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

9 PHOTO REPORT

Please see separate photo report.