Contents

re	rface		page xvii
1	Introduct	tion	1
	1.1 Overv	view	1
	1.2 Outlin	ne of the Book	4
2	Vector Au	itoregressive Models	19
	2.1 Statio	onary and Trending Processes	19
	2.2 Linea	r VAR Processes	23
	2.2.1	The Basic Model	23
	2.2.2	The Moving Average Representation	26
	2.2.3	VAR Models as an Approximation to VARMA	
		Processes	27
	2.2.4	Marginal Processes, Measurement Errors,	
		Aggregation, Variable Transformations	28
	2.3 Estim	ation of VAR Models	30
	2.3.1	Least-Squares Estimation	31
	2.3.2	Restricted Generalized Least Squares	34
	2.3.3	Bias-Corrected LS	35
	2.3.4	Maximum Likelihood Estimation	38
	2.3.5	VAR Processes in Levels with Integrated Variables	41
	2.3.6	Sieve Autoregressions	43
	2.4 Predic	ction	46
	2.4.1	Predicting from Known VAR Processes	46
	2.4.2	Predicting from Estimated VAR Processes	47
	2.5 Grang	ger Causality Analysis	48
	2.6 Lag-0	Order Selection Procedures	51
	2.6.1	Top-Down Sequential Testing	51
	2.6.2	Bottom-Up Sequential Testing	52
	2.6.3	Information Criteria	54

vi Contents

			Recursive Mean-Squared Prediction Error Rankings	57
	2	2.0.3	The Relative Merits of Alternative Lag-Order	58
	271	. A 1 . 1	Selection Tools	58 66
			Diagnostics Tests for Autocorrelation in the Innovations	67
			Tests for Nonnormality	67
			Residual ARCH Tests	68
			Time Invariance	69
			t VAR Models, AVAR Models, and VARX Models	72
			Subset VAR Models	72
			Asymmetric VAR Models	73
			VARX Models	74
3	Vecto	or Er	ror Correction Models	75
			egrated Variables and Vector Error Correction Models	75
			Common Trends and Cointegration	75
			Deterministic Terms in Cointegrated Processes	80
	3.2 I	Estima	ation of VARs with Integrated Variables	82
	3	3.2.1	The VAR(1) Case	82
	3	3.2.2	Estimation of VECMs	86
	3	3.2.3	Estimation of Levels VAR Models with Integrated	
			Variables	95
	3.3 N	Model	Specification	99
	3	3.3.1	Choosing the Lag Order	99
	3	3.3.2	Specifying the Cointegrating Rank	100
	3.4 I	Diagn	ostic Tests	104
	3.5	Γhe B	enefits of the VECM Representation	105
	3.6 I	Praction	cal Issues	105
	3	3.6.1	Limitations of Tests for Unit Roots and Cointegration	106
	3	3.6.2	Alternative Approaches	106
4			l VAR Tools	109
			ural Impulse Responses	110
			ast Error Variance Decompositions	113
			ical Decompositions	116
			ast Scenarios	123
	4	1.4.1	Conditional Forecasts Expressed in Terms of	
			Sequences of Structural Shocks	124
	4	1.4.2	Conditional Forecasts Expressed in Terms of	
			Sequences of Observables	130
			ating Counterfactual Outcomes	131
	4.6 I	Policy	Counterfactuals	136

Contents	V	ij

5	Bay	esian	VAR Analysis	140
	5.1	Basic	Terms and Notation	141
		5.1.1	Prior, Likelihood, Posterior	141
		5.1.2	Bayesian Estimation and Inference	142
			Simulating the Posterior Distribution	145
	5.2	Priors	for Reduced-Form VAR Parameters	149
		5.2.1	General Procedures for Choosing the Parameters of	
			Prior Densities	150
		5.2.2	Normal Prior for the VAR Parameters for Given Σ_u	151
			The Original Minnesota Prior	155
		5.2.4	The Natural Conjugate Gaussian-Inverse Wishart	
			Prior	162
			The Independent Gaussian-Inverse Wishart Prior	166
	5.3	Exten	sions and Related Issues	169
6	The	Relat	ionship between VAR Models and Other	
	Ma	croeco	nometric Models	171
	6.1	The R	elationship between VAR Models and Traditional	
			mic Simultaneous Equations Models	171
			The VAR Representation of Traditional DSEMs	172
		6.1.2	Incredible Restrictions in Traditional DSEMs	174
		6.1.3	Structural VAR Models as an Alternative to	
			Traditional DSEMs	176
	6.2		elationship between VAR Models and DSGE Models	177
			Basics	177
			The Role of Data Transformations	180
			Why Not Use VARMA Models?	180
		6.2.4	Autoregressive Sieve Approximations of $VAR(\infty)$	101
			Processes	181
		6.2.5	Summary of Potential Problems in Approximating	100
		Dage	DSGE Models with VAR Models	182
	6.3		Models as an Alternative to VAR Models?	183
			Calibrated DSGE Models	184
			Estimated DSGE Models	185
			Calibration versus Bayesian Estimation Are Structural VAR Models Less Credible than	186
		0.3.4	DSGE Models?	187
		6.3.5	Are DSGE Models More Accurate than VAR	107
			Models?	189
		6.3.6	Policy Analysis in DSGE Models and SVAR Models	191
	6.4		verview of Alternative Structural Macroeconometric	
		Mode		193

viii Contents

		6.4.1	Combining DSEMs and SVAR Models	193
			Combining DSGE and SVAR Models	194
_				
7			cal Perspective on Causal Inference in	106
			nometrics	196
			tivating Example	196
	1.2		ger Causality Tests for Covariance Stationary VAR	107
	7.2	Mode		197
	1.3		ger Causality, Predeterminedness, and Exogeneity	199 199
			Basic Concepts Cropper Covality and Forward Leaking Rehavior	201
			Granger Causality and Forward-Looking Behavior	201
	7.4		Strict Exogeneity in Modern Macroeconomic Models	203
			Demise of Granger Causality Tests in Macroeconomics onses to Unanticipated Changes in Money Growth	204
	1.5	-	The Narrative Approach	205
			Exogenous Shocks Derived from Data-Based	203
		1.3.2	Counterfactuals	208
		753	News Shocks	208
			Shocks to Financial Market Expectations	210
			Summary	210
	7.6		ural VAR Shocks	211
	7.0		The Identification Problem	212
			The Relationship between Structural VAR Shocks	212
		7.0.2	and Direct Shock Measures	213
		763	Causality in Structural VAR Models	214
		7.0.5	Cadsanty in Stractara Trice Models	21.
8	Ide	ntifica	tion by Short-Run Restrictions	216
	8.1	Introd	luction	216
			sively Identified Models	219
			es of Identifying Restrictions	221
	8.4		ples of Recursively Identified Models	224
			A Simple Macroeconomic Model	224
			A Model of the Global Market for Crude Oil	225
			Oil Price Shocks and Stock Returns	226
			Models of the Transmission of Energy Price Shocks	227
			Semistructural Models of Monetary Policy	228
			The Permanent Income Model of Consumption	234
	8.5		ples of Nonrecursively Identified Models	235
			Fiscal Policy Shocks	236
			An Alternative Simple Macroeconomic Model	237
			Discussion	237
			The Graph-Theoretic Approach	238
	8.6	Sumn	nary	239

Contents	12

9	Estimation Subject to Short-Run Restrictions	241
	9.1 Model Setup	241
	9.2 Method-of-Moments Estimation	242
	9.2.1 Recursively Identified Models	242
	9.2.2 Nonrecursively Identified Models	250
	9.2.3 GMM Estimation of Overidentified Models	253
	9.3 Instrumental Variable Estimation	258
	9.4 Full Information Maximum Likelihood Estimation	262
	9.5 Bayesian Estimation	265
	9.6 Summary	268
10	Identification by Long-Run Restrictions	269
	10.1 The Traditional Framework for Imposing Long-Run	
	Restrictions	269
	10.2 A General Framework for Imposing Long-Run	
	Restrictions	272
	10.2.1 The Long-Run Multiplier Matrix	272
	10.2.2 Identification of Structural Shocks	275
	10.3 Examples of Long-Run Restrictions	278
	10.3.1 A Real Business Cycle Model with and without	
	Nominal Variables	278
	10.3.2 A Model of Neutral and Investment-Specific	
	Technology Shocks	282
	10.3.3 A Model of Real and Nominal Exchange Rate	
	Shocks	284
	10.3.4 A Model of Expectations about Future Productivity	284
	10.4 Examples of Models Combining Long-Run and Short-Run	
	Zero Restrictions	287
	10.4.1 The IS-LM Model Revisited	287
	10.4.2 A Model of the Neoclassical Synthesis	289
	10.4.3 A U.S. Macroeconomic Model	290
	10.5 Limitations of Long-Run Restrictions	292
	10.5.1 Long-Run Restrictions Require Exact Unit Roots	292
	10.5.2 Sensitivity to Omitted Variables	293
	10.5.3 Lack of Robustness at Lower Data Frequencies	294
	10.5.4 Nonuniqueness Problems without Additional Sign	
	Restrictions	294
	10.5.5 Sensitivity to Data Transformations	296
11	Estimation Subject to Long-Run Restrictions	297
	11.1 Model Setup	297
	11.2 Models Subject to Long-Run Restrictions Only	299
	11.2.1 Method-of-Moments Estimation	301

x Contents

		11.2.2	Full Information Maximum Likelihood Estimation	306
		11.2.3	Instrumental Variable Estimation	307
	11.3	Model	s Subject to Long-Run and Short-Run Restrictons	310
		11.3.1	Estimating the Model in VAR Representation	310
		11.3.2	Estimating the Model in VECM Representation	316
	11.4	Practic	cal Limitations of Long-Run Restrictions	320
		11.4.1	Estimators of the Long-Run Multiplier Matrix May	
			Be Unreliable	321
			Lack of Power	321
		11.4.3	Near-Observational Equivalence of Shocks with	
			Permanent Effects and Shocks with Persistent	
			Effects	322
			Weak Instrument Problems	322
	11.5	Can St	ructural VAR Models Recover Responses in	
			Models?	323
			The Origin of This Controversy	323
			The Position of Chari et al. (2008)	325
			The Position of Christiano et al. (2006)	327
			Understanding the Simulation Evidence	328
		11.5.5	Summary	331
12	Infe	rence in	Models Identified by Short-Run or	
			Restrictions	334
			Method Intervals for Structural Impulse Responses	335
			Finite-Order VAR Models	336
		12.1.2	Infinite-Order VAR Models	338
		12.1.3	Discussion	339
		12.1.4	Extensions to Other Statistics	339
		12.1.5	On the Choice of the Significance Level	340
	12.2	Bootst	rap Intervals for Structural Impulse Responses	340
		12.2.1	The Standard Residual-Based Recursive-Design	
			Bootstrap	341
		12.2.2	The Standard Residual-Based Fixed-Design	
			Bootstrap	345
			The Residual-Based Wild Bootstrap	345
		12.2.4	Bootstrapping Tuples of Regressands and	
			Regressors	347
		12.2.5	Block Bootstrap Methods	348
			Alternative Bootstrap Confidence Intervals	356
			rap Intervals Based on Bias-Adjusted Estimators	363
			ial Pitfalls in Impulse Response Inference	365
	12.5	Finite	e-Sample Properties of Bootstrap Confidence	
		Inter	vals	368

Contents xi

12.6	Inference	ce for Integrated and Cointegrated VAR Processes	369
	12.6.1	VAR Models in Differences	369
	12.6.2	Vector Error Correction Models	370
	12.6.3	Integrated and/or Cointegrated VAR Models in	
		Levels	373
12.7	Inference	ce in Local-to-Unity VAR Processes	377
	12.7.1	Local-to-Unity Asymptotics	378
	12.7.2	Inference in Levels for Local-to-Unity VAR	
		Models	381
	12.7.3	The Grid Bootstrap Method	382
	12.7.4	A Hybrid Method	384
	12.7.5	Implications for Second-Stage Inference after	
		Pretesting	385
12.8	Local P	rojections	389
12.9	Synthes		393
12.10	Bayesia	n Regions of Highest Posterior Density	394
	12.10.1	Pointwise Inference on Structural Impulse	
		Responses	395
12.11	Joint In	ference on Structural Impulse Responses	398
	12.11.1	Joint Confidence Sets for Structural Impulse	
		Responses	399
	12.11.2	Joint Credible Sets	406
12.12	Other B	ootstrap Applications	410
		Bootstrap Prediction	410
	12.12.2	Bootstrapping the Critical Values of Test	
		Statistics	411
12.13	Exampl	es of Impulse Response Confidence Intervals	412
		An Exactly Identified Model	412
	12.13.2	Guarding against Conditional	
		Heteroskedasticity	415
	12.13.3	Extensions to Overidentified Models	416
Identi	fication	by Sign Restrictions	421
13.1	A Mode	el of Demand and Supply	421
13.2	How to	Impose Static Sign Restrictions	424
	13.2.1	Givens Rotation Matrices	426
	13.2.2	The Householder Transformation	427
	13.2.3	The Ouliaris-Pagan Approach	428
13.3	Partially	Identified VAR Models	430
13.4	Bevond	Static Sign Restrictions	432

13

xii Contents

	13.4.1	Dynamic Sign Restrictions	432
	13.4.2	Elasticity Bounds	432
	13.4.3	Shape Restrictions	435
13.5	Can Sig	n Restrictions Be Verified?	435
13.6	Estimat	ion and Inference in Sign-Identified	
	VAR M	odels	437
	13.6.1	Frequentist Approaches	438
	13.6.2	Bayesian Approaches	440
	13.6.3	Evaluating the Posterior of the Structural	
		Impulse Responses	442
	13.6.4	The Penalty Function Approach	448
	13.6.5	Using Historical Information to Narrow the Set	
		of Admissible Models	451
13.7		e of the Prior for the Rotation Matrix	452
	13.7.1	An Approach Based on Explicit Bayesian Priors	
		for B_0	453
	13.7.2	An Approach Based on Explicit Bayesian Priors	
		for the Structural Impulse Responses	459
		A Robust Bayesian Approach	461
		An Agnostic Bayesian Approach	462
		A Non-Bayesian Approach	463
13.8		es of Models Identified by Sign Restrictions	464
		A Small-Scale Macroeconomic Model	464
		A Slightly Larger Macroeconomic Model	465
		A Model of Unemployment and Vacancies	466
	13.8.4	An Extended Model of Unemployment and	
		Vacancies	466
		A Model of Technology Shocks	467
	13.8.6	A Model of Exchange Rate Responses to	
		Monetary Policy Shocks	467
	13.8.7		468
	13.8.8	A Model of Speculation in the Global Oil	
		Market	469
13.9		Sign and Exclusion Restrictions	471
	13.9.1	Examples of Models Mixing Sign and	
		Short-Run Zero Restrictions	471
	13.9.2	How to Combine Sign Restrictions and	
		Exclusion Restrictions	474
		Discussion	482
13.10		al Illustrations	483
		A Model of the Global Oil Market	483
		A Model of Monetary Policy	485
13.11	Conclud	ling Remarks	488

	(Contents		xii
14	Ident	ification l	by Heteroskedasticity or Non-Gaussianity	491
	14.1	Introduc	· ·	491
	14.2	The Mo	del Setup	492
			The Baseline Model	492
			An Illustrative Example	494
			The General Model	495
	14.3		tive Volatility Models	496
			Structural VAR Models with Extraneously	
			Specified Volatility Changes	496
		14.3.2	Structural VAR Models with Markov Switching	
			in the Variances	505
		14.3.3	Structural VAR Models with Smooth	
			Transitions in the Variances	511
		14.3.4	Structural VAR Models with GARCH Errors	517
	14.4	Alternat	tive Approaches Using Heteroskedasticity	524
			Time-Varying Instantaneous Effects	525
		14.4.2	Correlated Shocks	525
	14.5	Identific	cation by Non-Gaussianity	52€
		14.5.1	Independent Shocks	526
		14.5.2	Uncorrelated Shocks	528
	14.6	Discuss	ion	530
15	Ident	ification	Based on Extraneous Data	532
	15.1	Identific	eation Based on High-Frequency Futures Prices	532
		15.1.1	A Set-Identified Approach	534
		15.1.2	A Point-Identified Approach	538
		15.1.3	Discussion	542
	15.2	Identific	cation Based on External Instruments	542
			Estimation and Inference	544
		15.2.2	Discussion	548
16	Struc	tural VA	R Analysis in a Data-Rich Environment	549
	16.1	Factor N	Models	551
		16.1.1	Static Factor Models	551
		16.1.2	Dynamic Factor Models	555
		16.1.3	Selecting the Number of Factors	562
		16.1.4	Structural Change	565
	16.2	Factor-A	Augmented Structural VAR Models and Related	
		Techniq		565
			Structural FAVAR Models	565
		16.2.2	Structural Analysis with DFMs	571
		1623	Empirical Examples of FAVAR Models and	

577

DFMs

xiv Contents

	16.3	Large Bayesian V	VAR Models	579
			or Large Bayesian VARs	580
			ral Identification in Large BVARs	583
	16.4		e-Dimensional VAR Models	584
		16.4.1 Panel V		584
		16.4.2 Global	VARs	586
		16.4.3 Spatial	Models	587
	16.5	Discussion		587
17	Nonf	ındamental Shoc	ks	590
	17.1	Introduction		590
	17.2	Fundamental and	l Nonfundamental Moving	
		Average Represe	entations	592
	17.3		sus Nonfundamental Representations	594
			damental Shocks in Economic Models	594
		17.3.2 Nonfun	damentalness Due to MA Roots in the	
		Unit Ci		596
			damentalness Due to Omitted Variables	597
			g Nonfundamentalness by Using	
			Augmented or Large Bayesian VARs	601
			approaches to Dealing with Anticipation	603
	17.4	Conclusions		607
18	Nonli	near Structural V	AR Models	609
	18.1	Motivation		609
	18.2	Nonlinear VAR		612
		18.2.1 General		612
		18.2.2 Structur		614
	18.3		mooth-Transition VAR Models	619
		18.3.1 Model S	*	619
			e: A TVAR Model of U.S. Monetary	
		Policy		621
	18.4	Markov-Switchin		622
		18.4.1 Model S	*	623
		18.4.2 Identific		625
		18.4.3 Estimat		626
		18.4.4 Model S		628
			e: An MS-VAR Model of U.S. Monetary	
		Policy		629
	18.5		pefficient VAR Models	630
		18.5.1 Model S	•	631
		18.5.2 Estimat	ion	633

Contents xv

		18.5.3	Example: A TVC-VAR Model of U.S. Monetary	605	
	10.6	****	Policy	635	
	18.6		odels with GARCH-in-Mean	636	
			Model Setup	636	
			Estimation	637	
		18.6.3	Example: The Effect of Oil Price Uncertainty on		
			U.S. Real Output	638	
	18.7		onlinear Models	640	
			Nonparametric VAR Analysis	640	
			Noncausal VAR Models	645	
	18.8		ion of Nonlinear VAR Modeling	648	
	18.9	18.9 Linear Structural Models with Nonlinear			
			rmations of the Variables	650	
			The Censored Oil Price VAR Model	651	
		18.9.2	A Nonlinear Structural Model Allowing for		
			Asymmetric Responses	652	
		18.9.3			
			Shocks	653	
		18.9.4	Testing the Null of Unconditionally Symmetric		
			Response Functions	654	
		18.9.5	Testing the Null of Conditionally Symmetric		
			Response Functions	655	
			Testing the Null of No Time Dependence	656	
		18.9.7	Conditional Prediction Error Decompositions	657	
		18.9.8	Extensions	658	
19	Practical Issues Related to Trends, Seasonality, and Structural Change 6				
	Structural Change				
	19.1	Alternat	rive Trend Models	659	
		19.1.1	Hodrick-Prescott (HP) Filter	659	
		19.1.2	Band-Pass Filters	660	
			Potential Shortcomings of Trend Filters	661	
		19.1.4	Trend-Filtered Variables in VAR Models	661	
		19.1.5	Choosing between Different Trend Models	662	
		19.1.6	Combining Different Trend Specifications	662	
	19.2	Seasona	lity	663	
		19.2.1	Deterministic Seasonal Variation in VAR		
			Models	663	
		19.2.2	Stochastic Seasonal Variation in VAR Models	664	
		19.2.3	Synthesis	666	
		19.2.4	Periodic Seasonal VAR Models	666	
		19.2.5	Seasonal TVC-VAR Models	667	

xvi Contents

19.2.6 Seasonally Filtered Data in VAR Models	667		
19.2.7 Combining Seasonally Adjusted and Unadjusted			
Data in the same VAR Model	668		
19.2.8 Summary	668		
19.3 Structural Change in the Stochastic Component of			
the VAR Model	669		
19.3.1 Breaks in the Stochastic Component	669		
19.3.2 Smooth Structural Change in the Stochastic			
Component	671		
Bibliography	673		
Notation and Abbreviations			
Author Index			
Subject Index			