1. PRODUCT AND QUOTIENT GROUPS

- (1) Let $G = H \times K$. Show that G is abelian if and only if both H and K are abelian.
- (2) Is the symmetric group S_3 is a direct product of its proper subgroups?
- (3) Prove that the product of two infinite cyclic group is not cyclic.
- (4) Prove that if $G/\mathbb{Z}(G)$ is cyclic then G is abelian.
- (5) Let a group G contain normal subgroups of order 3 and 5. Show that G has an element of order 15.
- (6) Let G be a group of order ab where G has two subgroups H and K of order a and b respectively. Show that if $H \cap K = (1)$ then G = HK. Is G isomorphic to $H \times K$?
- (7) Show that $H = \{A \in GL_n(\mathbb{R}) | det A > 0\}$ is a normal subgroup of $GL_n(\mathbb{R})$. Describe the quotient group.
- (8) Let G be a group. Prove that $N = \langle x^{-1}y^{-1}xy|x, y \in G \rangle$ is a normal subgroup of G and G/N is abelian (N is called the commutator subgroup of G).
- (9) Let M and N be normal subgroups of a group G such that G = MN. Prove that $G/(M \cap N) \cong G/M \times G/N$.
- (10) Show that $Z(G \times H) = Z(G) \times Z(H)$.
- (11) Show that any normal subgroup of G of order 2 is contained in the centre of G.
- (12) Show that the multiplicative group of non zero complex numbers is isomorphic to the direct product of $(\mathbb{R}_{>0}^{\times},...)$ and $(\mathbb{R}/\mathbb{Z},+)$.