Subcovers of generalized GK curves and their automorphism groups

Giovanni Zini (joint work with Maria Montanucci and Guilherme Tizziotti)

Università degli Studi di Modena e Reggio Emilia

Finite Geometries 2022 Sixth Irsee Conference

Outline

GK curve and generalizations

- subcovers of the first generalized GK curve
- their automorphism groups

- subcovers of the second generalized GK curve
- their automorphism groups

o a characterization of the GK curve

• $\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$ projective, **absolutely irreducible**, non-singular algebraic curve

$$\mathcal{X}:\begin{cases} f_1(x_1,\ldots,x_r)=0\\ \vdots\\ f_{r-1}(x_1,\ldots,x_r)=0 \end{cases}$$

• $\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$ projective, **absolutely irreducible**, non-singular algebraic curve

$$\mathcal{X}:\begin{cases} f_1(x_1,\ldots,x_r)=0\\ \vdots\\ f_{r-1}(x_1,\ldots,x_r)=0 \end{cases}$$

• $f_1, \ldots, f_{r-1} \in \mathbb{F}_q[x_1, \ldots, x_r] \implies \mathcal{X}$ is defined over \mathbb{F}_q

• $\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$ projective, **absolutely irreducible**, non-singular algebraic curve

$$\mathcal{X}:\begin{cases} f_1(x_1,\ldots,x_r)=0\\ \vdots\\ f_{r-1}(x_1,\ldots,x_r)=0 \end{cases}$$

- $f_1, \ldots, f_{r-1} \in \mathbb{F}_q[x_1, \ldots, x_r] \implies \mathcal{X}$ is defined over \mathbb{F}_q
- $g = g(\mathcal{X})$: **genus** of \mathcal{X}

• $\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$ projective, **absolutely irreducible**, non-singular algebraic curve

$$\mathcal{X}:\begin{cases} f_1(x_1,\ldots,x_r)=0\\ \vdots\\ f_{r-1}(x_1,\ldots,x_r)=0 \end{cases}$$

- $f_1, \ldots, f_{r-1} \in \mathbb{F}_q[x_1, \ldots, x_r] \implies \mathcal{X}$ is defined over \mathbb{F}_q
- $g = g(\mathcal{X})$: **genus** of \mathcal{X}
- $ullet \mathcal{X}(\mathbb{F}_q) = \mathcal{X} \cap \mathrm{PG}(r,q) : \mathbb{F}_q$ -rational points of \mathcal{X}

• $\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$ projective, **absolutely irreducible**, non-singular algebraic curve

$$\mathcal{X}:\begin{cases} f_1(x_1,\ldots,x_r)=0\\ \vdots\\ f_{r-1}(x_1,\ldots,x_r)=0 \end{cases}$$

- $f_1, \ldots, f_{r-1} \in \mathbb{F}_q[x_1, \ldots, x_r] \implies \mathcal{X}$ is defined over \mathbb{F}_q
- $g = g(\mathcal{X})$: **genus** of \mathcal{X}
- $\mathcal{X}(\mathbb{F}_q) = \mathcal{X} \cap \mathrm{PG}(r,q)$: \mathbb{F}_q -rational points of \mathcal{X}

Hasse-Weil bound:

$$|q+1-2g\sqrt{q}| \leq |\mathcal{X}(\mathbb{F}_q)| \leq |q+1+2g\sqrt{q}|$$

ullet \mathbb{F}_q -maximal curve: $\mathcal{X}(\mathbb{F}_q)=q+1+2g\sqrt{q}$

- ullet \mathbb{F}_q -maximal curve: $\mathcal{X}(\mathbb{F}_q)=q+1+2g\sqrt{q}$
- many applications, e.g. algebraic geometric (AG) codes

- ullet \mathbb{F}_q -maximal curve: $\mathcal{X}(\mathbb{F}_q)=q+1+2g\sqrt{q}$
- many applications, e.g. algebraic geometric (AG) codes
- Example: Hermitian curve

$$\mathcal{H}_{\sqrt{q}}: \quad y^{\sqrt{q}+1} = x^{\sqrt{q}} + x$$

- ullet \mathbb{F}_q -maximal curve: $\mathcal{X}(\mathbb{F}_q)=q+1+2g\sqrt{q}$
- many applications, e.g. algebraic geometric (AG) codes
- Example: Hermitian curve

$$\mathcal{H}_{\sqrt{q}}: \quad y^{\sqrt{q}+1} = x^{\sqrt{q}} + x$$

 $\bullet \ \ g(\mathcal{H}_{\sqrt{q}}) = \tfrac{q-\sqrt{q}}{2}, \quad \ |\mathcal{H}_{\sqrt{q}}(\mathbb{F}_q)| = q\sqrt{q}+1 \quad \Longrightarrow \quad \mathbb{F}_q\text{-maximal}$

- ullet \mathbb{F}_q -maximal curve: $\mathcal{X}(\mathbb{F}_q)=q+1+2g\sqrt{q}$
- many applications, e.g. algebraic geometric (AG) codes
- Example: Hermitian curve

$$\mathcal{H}_{\sqrt{q}}: \quad y^{\sqrt{q}+1} = x^{\sqrt{q}} + x$$

- $\bullet \ \ g(\mathcal{H}_{\sqrt{q}}) = \tfrac{q-\sqrt{q}}{2}, \quad \ |\mathcal{H}_{\sqrt{q}}(\mathbb{F}_q)| = q\sqrt{q}+1 \quad \Longrightarrow \quad \mathbb{F}_q\text{-maximal}$
- $\mathcal{P} = \mathcal{H}_{\sqrt{q}}(\mathbb{F}_q)$ $\mathcal{L} = \{\mathcal{H}_{\sqrt{q}} \cap \ell : \ell \text{ is a } (\sqrt{q} + 1) \text{-secant } \mathbb{F}_q \text{-rational line}\}$ $\Longrightarrow \text{classical unital } (\mathcal{P}, \mathcal{L})$

Maximal curves from subcovers

$$\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$$
 with affine coordinates x_1,\ldots,x_r
 $\mathcal{Y} \subset \mathrm{PG}(s,\overline{\mathbb{F}_q})$ with affine coordinates y_1,\ldots,y_s

Maximal curves from subcovers

 $\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$ with affine coordinates x_1,\ldots,x_r $\mathcal{Y} \subset \mathrm{PG}(s,\overline{\mathbb{F}_q})$ with affine coordinates y_1,\ldots,y_s

Non-constant rational map:

$$\varphi: \mathcal{X} \to \mathcal{Y}, \quad \begin{cases} y_1 = \frac{F_1(x_1, \dots, x_r)}{G_1(x_1, \dots, x_r)} \\ \dots \\ y_s = \frac{F_s(x_1, \dots, x_r)}{G_s(x_1, \dots, x_r)} \end{cases} F_i, G_j \in \mathbb{F}_q[x_1, \dots, x_r]$$

 ${\mathcal Y}$ is a subcover of ${\mathcal X}$, ${\mathcal Y}$ is covered by ${\mathcal X}$

Maximal curves from subcovers

 $\mathcal{X} \subset \mathrm{PG}(r,\overline{\mathbb{F}_q})$ with affine coordinates x_1,\ldots,x_r $\mathcal{Y} \subset \mathrm{PG}(s,\overline{\mathbb{F}_q})$ with affine coordinates y_1,\ldots,y_s

Non-constant rational map:

$$\varphi: \mathcal{X} \to \mathcal{Y}, \quad \begin{cases} y_1 = \frac{F_1(x_1, \dots, x_r)}{G_1(x_1, \dots, x_r)} \\ \dots \\ y_s = \frac{F_s(x_1, \dots, x_r)}{G_s(x_1, \dots, x_r)} \end{cases} F_i, G_j \in \mathbb{F}_q[x_1, \dots, x_r]$$

 ${\mathcal Y}$ is a subcover of ${\mathcal X}$, ${\mathcal Y}$ is covered by ${\mathcal X}$

Theorem

if $\mathcal X$ is $\mathbb F_q$ -maximal and $\mathcal Y$ is an $\mathbb F_q$ -subcover of $\mathcal X \Longrightarrow \mathcal Y$ is $\mathbb F_q$ -maximal

ullet $\varphi:\mathcal{X} o \mathcal{Y}$ birational : rational and invertible, with rational inverse

- ullet $\varphi:\mathcal{X} o \mathcal{Y}$ birational : rational and invertible, with rational inverse
- $Aut(\mathcal{X}) = \{ \varphi : \mathcal{X} \to \mathcal{X} \text{ birational} \} : automorphism group}$
- $\bullet \ \operatorname{Aut}_{\mathbb{F}_q}(\mathcal{X}) = \{\varphi: \mathcal{X} \to \mathcal{X} \ \text{ birat. and over } \mathbb{F}_q\}: \mathbb{F}_q\text{-aut. group}$

- ullet $\varphi:\mathcal{X} o \mathcal{Y}$ birational : rational and invertible, with rational inverse
- $Aut(\mathcal{X}) = \{ \varphi : \mathcal{X} \to \mathcal{X} \text{ birational} \} : automorphism group}$
- $\bullet \ \operatorname{Aut}_{\mathbb{F}_q}(\mathcal{X}) = \{\varphi: \mathcal{X} \to \mathcal{X} \ \text{ birat. and over } \mathbb{F}_q\}: \mathbb{F}_q\text{-aut. group}$
- $G \leq \operatorname{Aut}(\mathcal{X})$ subgroup, $\mathcal{X}/G = \{\text{orbits of } G \text{ on } \mathcal{X}\}$ is a **curve** quotient curve, Galois subcover of \mathcal{X}

- ullet $\varphi:\mathcal{X}
 ightarrow \mathcal{Y}$ birational : rational and invertible, with rational inverse
- $Aut(\mathcal{X}) = \{ \varphi : \mathcal{X} \to \mathcal{X} \text{ birational} \} : automorphism group}$
- $\bullet \ \operatorname{Aut}_{\mathbb{F}_q}(\mathcal{X}) = \{\varphi: \mathcal{X} \to \mathcal{X} \ \text{ birat. and over } \mathbb{F}_q\}: \mathbb{F}_q\text{-aut. group}$
- $G \leq \operatorname{Aut}(\mathcal{X})$ subgroup, $\mathcal{X}/G = \{\text{orbits of } G \text{ on } \mathcal{X}\}$ is a **curve** quotient curve, Galois subcover of \mathcal{X}

Theorem

$$\mathcal{X} \ \mathbb{F}_q$$
-maximal $+ G \leq \operatorname{Aut}_{\mathbb{F}_q}(\mathcal{X}) \implies \mathcal{X}/G \ \mathbb{F}_q$ -maximal

- ullet $\varphi:\mathcal{X}\to\mathcal{Y}$ birational : rational and invertible, with rational inverse
- $Aut(\mathcal{X}) = \{ \varphi : \mathcal{X} \to \mathcal{X} \text{ birational} \} : automorphism group}$
- ullet $\operatorname{Aut}_{\mathbb{F}_q}(\mathcal{X})=\{arphi:\mathcal{X} o\mathcal{X}\ \ ext{birat. and over }\mathbb{F}_q\}:\mathbb{F}_q$ -aut. group
- $G \leq \operatorname{Aut}(\mathcal{X})$ subgroup, $\mathcal{X}/G = \{\text{orbits of } G \text{ on } \mathcal{X}\}$ is a **curve** quotient curve, Galois subcover of \mathcal{X}

Theorem

$$\mathcal{X} \ \mathbb{F}_q$$
-maximal $+ G \leq \operatorname{Aut}_{\mathbb{F}_q}(\mathcal{X}) \implies \mathcal{X}/G \ \mathbb{F}_q$ -maximal

maximal curve $\mathcal X$ with $\operatorname{Aut}_{\mathbb F_q}(\mathcal X)$ <u>rich</u> \implies <u>many</u> maximal curves $\mathcal X/G$ Example:

$$\mathbb{F}_q$$
-max. Hermitian curve $\mathcal{H}_{\sqrt{q}}$, $\operatorname{Aut}(\mathcal{H}_{\sqrt{q}}) = \operatorname{Aut}_{\mathbb{F}_q}(\mathcal{H}_{\sqrt{q}}) \cong \operatorname{PGU}(3,\sqrt{q})$

$$\mathcal{GK}: \begin{cases} z^{m} = y^{q^{2}} - y \\ y^{q+1} = x^{q} + x \end{cases} \qquad m = \frac{q^{3} + 1}{q + 1}$$

- ullet \mathcal{GK} is \mathbb{F}_{q^6} -maximal
- ullet for any q>2, \mathcal{GK} is not covered by \mathcal{H}_{q^3}

$$\mathcal{GK}: \begin{cases} z^{\mathbf{m}} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad \mathbf{m} = \frac{q^3 + 1}{q + 1}$$

- \mathcal{GK} is \mathbb{F}_{q^6} -maximal
- ullet for any q>2, \mathcal{GK} is not covered by \mathcal{H}_{q^3}
- $\operatorname{PGU}(3,q) \leq \operatorname{Aut}(\mathcal{GK})$ $\operatorname{PGU}(3,q)$ acts on x,y as on $\mathcal{H}_q: y^{q+1} = x^q + x$

$$\mathcal{GK}: \begin{cases} z^{\mathbf{m}} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad \mathbf{m} = \frac{q^3 + 1}{q + 1}$$

- ullet \mathcal{GK} is \mathbb{F}_{q^6} -maximal
- ullet for any q>2, \mathcal{GK} is not covered by \mathcal{H}_{q^3}
- $\operatorname{PGU}(3,q) \leq \operatorname{Aut}(\mathcal{GK})$ $\operatorname{PGU}(3,q)$ acts on x,y as on $\mathcal{H}_q: y^{q+1} = x^q + x$
- $C_m \leq \operatorname{Aut}(\mathcal{GK})$, $(x, y, z) \mapsto (x, y, \lambda z)$, $\lambda^m = 1$

$$\mathcal{GK}: \begin{cases} z^{\mathbf{m}} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad \mathbf{m} = \frac{q^3 + 1}{q + 1}$$

- ullet \mathcal{GK} is \mathbb{F}_{q^6} -maximal
- ullet for any q>2, \mathcal{GK} is not covered by \mathcal{H}_{q^3}
- $\operatorname{PGU}(3,q) \leq \operatorname{Aut}(\mathcal{GK})$ $\operatorname{PGU}(3,q)$ acts on x,y as on $\mathcal{H}_q: y^{q+1} = x^q + x$
- $C_m \leq \operatorname{Aut}(\mathcal{GK})$, $(x, y, z) \mapsto (x, y, \lambda z)$, $\lambda^m = 1$
- $\operatorname{Aut}(\mathcal{GK}) = \operatorname{PGU}(3,q) \cdot C_m$, contains $\operatorname{PGU}(3,q) \times C_{m/\gcd(3,m)}$

Garcia-Güneri-Stichtenoth 2010:

$$\mathcal{GGS}_n: \begin{cases} z^m = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases}$$
 $m = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$

• \mathcal{GGS}_n is $\mathbb{F}_{q^{2n}}$ -maximal

$$\mathcal{GGS}_n: \begin{cases} z^{\mathbf{m}} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad \mathbf{m} = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

- \mathcal{GGS}_n is $\mathbb{F}_{q^{2n}}$ -maximal
- Duursma-Mak 2012, Giulietti-Montanucci-Z. 2016: for $n \geq 5$ and any q, \mathcal{GGS}_n is not Galois covered by \mathcal{H}_{q^n}

$$\mathcal{GGS}_n: \begin{cases} z^{\mathbf{m}} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad \mathbf{m} = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

- \mathcal{GGS}_n is $\mathbb{F}_{q^{2n}}$ -maximal
- Duursma-Mak 2012, Giulietti-Montanucci-Z. 2016: for $n \geq 5$ and any q, \mathcal{GGS}_n is not Galois covered by \mathcal{H}_{q^n}
- ullet Güneri-Özdemir-Stichtenoth 2013, Guralnick-Malmskog-Pries 2012: $\mathrm{Aut}(\mathcal{GGS}_n)$

$$\mathcal{GGS}_n: \begin{cases} z^{\mathbf{m}} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad \mathbf{m} = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

- \mathcal{GGS}_n is $\mathbb{F}_{q^{2n}}$ -maximal
- Duursma-Mak 2012, Giulietti-Montanucci-Z. 2016: for $n \geq 5$ and any q, \mathcal{GGS}_n is not Galois covered by \mathcal{H}_{q^n}
- ullet Güneri-Özdemir-Stichtenoth 2013, Guralnick-Malmskog-Pries 2012: $\mathrm{Aut}(\mathcal{GGS}_n)$

$$\text{for } n \geq 5 \colon \operatorname{Aut}(\mathcal{GGS}_n) = \operatorname{PGU}(3,q)_{P_\infty} \cdot \textcolor{red}{C_m} = S_{q^3} \rtimes \textcolor{black}{C_{(q^2-1)m}} \quad \text{fixes } P_\infty$$

$$\mathcal{GGS}_n: \begin{cases} z^{\mathbf{m}} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad \mathbf{m} = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

- \mathcal{GGS}_n is $\mathbb{F}_{a^{2n}}$ -maximal
- Duursma-Mak 2012, Giulietti-Montanucci-Z. 2016: for $n \geq 5$ and any q, \mathcal{GGS}_n is not Galois covered by \mathcal{H}_{q^n}
- ullet Güneri-Özdemir-Stichtenoth 2013, Guralnick-Malmskog-Pries 2012: $\mathrm{Aut}(\mathcal{GGS}_n)$

for
$$n \ge 5$$
: $\operatorname{Aut}(\mathcal{GGS}_n) = \operatorname{PGU}(3, q)_{P_{\infty}} \cdot C_m = S_{q^3} \rtimes C_{(q^2-1)m}$ fixes P_{∞}
 $\operatorname{PGU}(3, q)_{P_{\infty}} = S_{q^3} \rtimes C_{q^2-1} = \{(x, y, z) \mapsto (a^{q+1}x + ab^qy + c, ay + b, z) \\ a, b, c \in \mathbb{F}_{q^2}, a \ne 0, c^q + c = b^{q+1}\}$

$$C_m = \{(x, y, z) \mapsto (x, y, \lambda z) \mid \lambda^m = 1\}$$

 $n \ge 3$ odd, $m = \frac{q^n + 1}{q + 1}$, s divisor of m

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases}$$

 $n \ge 3$ odd, $m = \frac{q^n + 1}{q + 1}$, s divisor of m

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases}$$

 $\bullet \ s = 1 \ \to \ \mathcal{Y}_{n,1} = \mathcal{GGS}_n \qquad \ s = m \ \to \ \mathcal{Y}_{n,m} = \mathcal{H}_q$

 $n \ge 3$ odd, $m = \frac{q^n + 1}{q + 1}$, s divisor of m

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases}$$

- $\bullet \ s = 1 \ \to \ \mathcal{Y}_{n,1} = \mathcal{GGS}_n \qquad \ s = m \ \to \ \mathcal{Y}_{n,m} = \mathcal{H}_q$
- $\mathcal{Y}_{n,s} = \mathcal{GGS}_n/\mathcal{C}_s$, $\mathcal{C}_s = \{(x,y,z) \mapsto (x,y,\lambda z) \mid \lambda^s = 1\}$ $\Rightarrow \mathcal{Y}_{n,s} \text{ is } \mathbb{F}_{q^{2n}}\text{-maximal}$

 $n \ge 3$ odd, $m = \frac{q^n + 1}{q + 1}$, s divisor of m

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases}$$

- $s = 1 \rightarrow \mathcal{Y}_{n,1} = \mathcal{GGS}_n$ $s = m \rightarrow \mathcal{Y}_{n,m} = \mathcal{H}_q$
- $\mathcal{Y}_{n,s} = \mathcal{GGS}_n/C_s$, $C_s = \{(x, y, z) \mapsto (x, y, \lambda z) \mid \lambda^s = 1\}$ $\Rightarrow \mathcal{Y}_{n,s} \text{ is } \mathbb{F}_{q^{2n}}\text{-maximal}$
- if n=3 and $s(s+1) < q \implies \mathcal{Y}_{3,s}$ is not covered by \mathcal{H}_{q^n} Technique: find a contradiction to

$$\frac{|\mathcal{H}_{q^n}(\mathbb{F}_{q^{2n}})|}{|\mathcal{Y}_{n,s}(\mathbb{F}_{q^{2n}})|} \leq \deg(\varphi) \leq \frac{2g(\mathcal{H}_{q^n}) - 2}{2g(\mathcal{Y}_{n,s}) - 2}, \qquad \varphi: \mathcal{H}_{q^n} \to \mathcal{Y}_{n,s}$$

Automorphism group of $\mathcal{Y}_{n,s}$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

Problem

Determine $Aut(\mathcal{Y}_{n,s})$

Automorphism group of $\mathcal{Y}_{n,s}$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

Problem

Determine $Aut(\mathcal{Y}_{n,s})$

For s=1: prove that $\operatorname{Aut}(\mathcal{GGS}_n)$ fixes the unique point at infinity P_∞

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

Problem

Determine $Aut(\mathcal{Y}_{n,s})$

For s=1: prove that $\operatorname{Aut}(\mathcal{GGS}_n)$ fixes the unique point at infinity P_{∞}

- Güneri-Özdemir-Stichtenoth:
 - determine the Weierstrass semigroup $H(P_{\infty}) = \langle q^3, qm, (q+1)m \rangle$
 - show $H(Q) \neq H(P_{\infty})$ for all $Q \in \mathcal{GGS}_n(\mathbb{F}_{q^{2n}})$
- Malmskog-Guralnick-Pries:
 - structural results on groups with TI p-subgroups
 - use that $m = \frac{q^n + 1}{q + 1} >> q$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

Theorem (Montanucci-Tizziotti-Z.)

- If $3 \nmid n$ or $\frac{m}{s} \nmid \frac{q^3+1}{q+1} \implies \operatorname{Aut}(\mathcal{Y}_{n,s}) = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$ fixes P_{∞}
- ullet If $3\mid n$ and $rac{m}{s}\mid rac{q^3+1}{q+1}\implies \mathcal{Y}_{n,s}\cong \mathcal{GK}/\mathcal{C}_{rac{q^2-q+1}{m/s}}$ and

$$\operatorname{Aut}(\mathcal{Y}_{n,s}) = \langle \operatorname{PGU}(3,q), C_{m/s} \rangle$$
 , of order $(q^3+1)q^3(q^2-1)\frac{m}{s}$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

Theorem (Montanucci-Tizziotti-Z.)

- If $3 \nmid n$ or $\frac{m}{s} \nmid \frac{q^3+1}{q+1} \implies \operatorname{Aut}(\mathcal{Y}_{n,s}) = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$ fixes P_{∞}
- ullet If $3\mid n$ and $rac{m}{s}\mid rac{q^3+1}{q+1}\implies \mathcal{Y}_{n,s}\cong \mathcal{GK}/\mathcal{C}_{rac{q^2-q+1}{m/s}}$ and

$$\operatorname{Aut}(\mathcal{Y}_{n,s}) = \langle \operatorname{PGU}(3,q) \,,\; C_{m/s} \,
angle$$
 , of order $(q^3+1)q^3(q^2-1)rac{m}{s}$

Notice: if $3\mid n \implies \mathbb{F}_{q^{2n}}=\mathbb{F}_{q^{6d}}$ with d odd $\implies \text{the } \mathbb{F}_{q^6}\text{-maximal curve } \mathcal{GK} \text{ is also } \mathbb{F}_{q^{2n}}\text{-maximal}$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

$$\mathcal{O} := \left\{ P = (a, b, 0) \mid a, b \in \mathbb{F}_{q^2}, b^{q+1} = a^q + a \right\}$$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

$$\mathcal{O} := \left\{ P = (a,b,0) \ | \ a,b \in \mathbb{F}_{q^2}, b^{q+1} = a^q + a \right\}$$

• Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

$$\mathcal{O} := \{ P = (a, b, 0) \mid a, b \in \mathbb{F}_{q^2}, b^{q+1} = a^q + a \}$$

- ullet Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$
- Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{O} \cup \{P_{\infty}\} = \{\text{fixed points of } C_{m/s}\}$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

$$\mathcal{O} := \left\{ P = (a, b, 0) \mid a, b \in \mathbb{F}_{q^2}, b^{q+1} = a^q + a \right\}$$

- Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{a^3} \rtimes C_{(a^2-1)^{\underline{m}}}$
- Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{O} \cup \{P_{\infty}\} = \{\text{fixed points of } C_{m/s}\}$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

$$\mathcal{O} := \{ P = (a, b, 0) \mid a, b \in \mathbb{F}_{q^2}, b^{q+1} = a^q + a \}$$

- ullet Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$
- ullet Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{O} \cup \{P_{\infty}\} = \left\{ \mathsf{fixed points of } C_{m/s} \right\}$

$$\Longrightarrow \operatorname{Aut}(\mathcal{Y}_{n,s})/\textcolor{red}{C_{m/s}} \, \leq \, \operatorname{Aut}(\mathcal{Y}_{n,s}/\textcolor{red}{C_{m/s}}) \, = \, \operatorname{Aut}(\textcolor{red}{\mathcal{H}_q}) = \operatorname{PGU}(3,q)$$

$$\implies \text{either} \ \ \frac{\operatorname{Aut}(\mathcal{Y}_{n,s})}{C_{m/s}} \cong \operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} \ \ \text{or} \ \ \frac{\operatorname{Aut}(\mathcal{Y})_{n,s}}{C_{m/s}} \cong \operatorname{PGU}(3,q)$$

$$\mathcal{Y}_{n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ y^{q+1} = x^q + x \end{cases} \qquad m = \frac{q^n + 1}{q + 1}$$

$$\mathcal{O} := \{ P = (a, b, 0) \mid a, b \in \mathbb{F}_{q^2}, b^{q+1} = a^q + a \}$$

- ullet Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$
- Prove: $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{O} \cup \{P_{\infty}\} = \{\text{fixed points of } C_{m/s}\}$ $\Longrightarrow \operatorname{Aut}(\mathcal{Y}_{n,s})/C_{m/s} \leq \operatorname{Aut}(\mathcal{Y}_{n,s}/C_{m/s}) = \operatorname{Aut}(\mathcal{H}_q) = \operatorname{PGU}(3,q)$ $\Longrightarrow \operatorname{either} \ \frac{\operatorname{Aut}(\mathcal{Y}_{n,s})}{C_{m/s}} \cong \operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} \ \text{or} \ \frac{\operatorname{Aut}(\mathcal{Y}_{n,s})}{C_{m/s}} \cong \operatorname{PGU}(3,q)$
- Prove: $\frac{\operatorname{Aut}(\mathcal{Y})_{n,s}}{C_{m/s}} \cong \operatorname{PGU}(3,q) \iff 3 \mid n \text{ and } \frac{m}{s} \mid \frac{q^3+1}{q+1}$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$

To prove that
$$\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$$

- $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S \times C$, S: p-Sylow, $C: \operatorname{cyclic}$
- ullet Hurwitz genus formula for $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/E_q$, $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/S_{q^3}$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$

- $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S \times C$, S: p-Sylow, $C: \operatorname{cyclic}$
- ullet Hurwitz genus formula for $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/E_q$, $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/S_{q^3}$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{A} := \mathcal{O} \cup \{P_{\infty}\}$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$

- $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S \times C$, S: p-Sylow, $C: \operatorname{cyclic}$
- ullet Hurwitz genus formula for $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/E_q$, $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/S_{q^3}$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{A} := \mathcal{O} \cup \{P_{\infty}\}$

- ullet $rac{m}{s}\gtrsim q^3$: show explicitly H(P)
 eq H(Q) for $P\in\mathcal{A}$ and $Q
 otin\mathcal{A}$
- ullet $rac{m}{s}\lesssim q^3$: use the structure of
 - short orbits of $\operatorname{Aut}(\mathcal{Y}_{n,s})$ when $|\operatorname{Aut}(\mathcal{Y}_{n,s})| > 84(g-1)$
 - curves $\mathcal X$ when $|\mathrm{Aut}(\mathcal X)|>8g^3$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$

- $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S \times C$, S: p-Sylow, $C: \operatorname{cyclic}$
- ullet Hurwitz genus formula for $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/E_q$, $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/S_{q^3}$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{A} := \mathcal{O} \cup \{P_{\infty}\}$

- ullet $rac{m}{s}\gtrsim q^3$: show explicitly H(P)
 eq H(Q) for $P\in\mathcal{A}$ and $Q
 otin\mathcal{A}$
- ullet $rac{m}{s}\lesssim q^3$: use the structure of
 - short orbits of $\operatorname{Aut}(\mathcal{Y}_{n,s})$ when $|\operatorname{Aut}(\mathcal{Y}_{n,s})| > 84(g-1)$
 - curves \mathcal{X} when $|\mathrm{Aut}(\mathcal{X})| > 8g^3$

To find when $\operatorname{Aut}(\mathcal{Y}_{n,s})/\mathcal{C}_{m/s}\cong\operatorname{PGU}(3,q)=\langle\operatorname{PGU}(3,q)_{P_\infty},\,\tau\,\rangle$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S_{q^3} \rtimes C_{(q^2-1)\frac{m}{s}}$

- $\operatorname{Aut}(\mathcal{Y}_{n,s})_{P_{\infty}} = S \times C$, S: p-Sylow, $C: \operatorname{cyclic}$
- ullet Hurwitz genus formula for $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/E_q$, $\mathcal{Y}_{n,s}\longrightarrow \mathcal{Y}_{n,s}/S_{q^3}$

To prove that $\operatorname{Aut}(\mathcal{Y}_{n,s})$ acts on $\mathcal{A}:=\mathcal{O}\cup\{P_\infty\}$

- ullet $rac{m}{s}\gtrsim q^3$: show explicitly H(P)
 eq H(Q) for $P\in\mathcal{A}$ and $Q
 otin\mathcal{A}$
- $\frac{m}{s} \lesssim q^3$: use the structure of
 - short orbits of $\operatorname{Aut}(\mathcal{Y}_{n,s})$ when $|\operatorname{Aut}(\mathcal{Y}_{n,s})| > 84(g-1)$
 - curves \mathcal{X} when $|\operatorname{Aut}(\mathcal{X})| > 8g^3$

To find when $\operatorname{Aut}(\mathcal{Y}_{n,s})/\mathcal{C}_{m/s}\cong\operatorname{PGU}(3,q)=\langle\operatorname{PGU}(3,q)_{P_{\infty}},\,\tau\,\rangle$

- ullet lift of au + fundamental equation ullet element of $H(P_{\infty})$
- $H(P_{\infty})$ is known (Tafazolian, Teherán-Herrera, Torres)

$$n \geq 3$$
 odd, $m = \frac{q^n + 1}{q + 1}$, $s \mid m$, $q = p^a$, $\bar{q} = p^b$ with $b \mid a$, $c^{q-1} = -1$

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \dots + x^{q/\bar{q}} \end{cases}$$

$$n \geq 3$$
 odd, $m = \frac{q^n + 1}{q + 1}$, $s \mid m$, $q = p^a$, $\bar{q} = p^b$ with $b \mid a$, $c^{q-1} = -1$

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \dots + x^{q/\bar{q}} \end{cases}$$

ullet $\mathcal{X}_{a,b,n,s}$ is $\mathbb{F}_{q^{2n}}$ -covered by $\mathcal{GGS}_n \implies \mathcal{X}_{a,b,n,s}$ is $\mathbb{F}_{q^{2n}}$ -maximal

$$n\geq 3$$
 odd, $m=rac{q^n+1}{q+1}$, $s\mid m,\ q=p^a$, $ar q=p^b$ with $b\mid a,\ c^{q-1}=-1$

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \dots + x^{q/\bar{q}} \end{cases}$$

- $\bullet \ \mathcal{X}_{a,b,n,s} \text{ is } \mathbb{F}_{q^{2n}}\text{-covered by } \mathcal{GGS}_n \implies \mathcal{X}_{a,b,n,s} \text{ is } \mathbb{F}_{q^{2n}}\text{-maximal}$
- ullet if $a \geq 2b+1$, then $\mathcal{X}_{a,b,3,1}$ is not covered by \mathcal{H}_{q^3}
- if b < a, then $\mathcal{X}_{a,b,n,1}$ is not Galois covered by \mathcal{H}_{q^n}

$$n \geq 3$$
 odd, $m = \frac{q^n + 1}{q + 1}$, $s \mid m$, $q = p^a$, $\bar{q} = p^b$ with $b \mid a$, $c^{q-1} = -1$

Tafazolian, Teherán-Herrera, Torres (2016):

$$\mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \dots + x^{q/\bar{q}} \end{cases}$$

- ullet $\mathcal{X}_{a,b,n,s}$ is $\mathbb{F}_{q^{2n}}$ -covered by $\mathcal{GGS}_n \implies \mathcal{X}_{a,b,n,s}$ is $\mathbb{F}_{q^{2n}}$ -maximal
- ullet if $a \geq 2b+1$, then $\mathcal{X}_{a,b,3,1}$ is not covered by \mathcal{H}_{q^3}
- if b < a, then $\mathcal{X}_{a,b,n,1}$ is not Galois covered by \mathcal{H}_{q^n}
- Aut $(\mathcal{X}_{a,b,n,s})$?

$$\mathcal{Y}_{n,s}: \begin{cases} w^{m/s} = v^{q^2} - v \\ v^{q+1} = u^q + u \end{cases} \qquad \mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \cdots + x^{q/\bar{q}} \end{cases}$$

 $\bullet \ \mathcal{X}_{a,b,n,s} = \mathcal{Y}_{n,s}/E_{\bar{q}} \ \text{with} \ E_{\bar{q}} = \left\{ (u,v,w) \mapsto (u + \frac{\alpha}{c},v,w) \mid \alpha \in \mathbb{F}_{\bar{q}} \right\}$

$$\mathcal{Y}_{n,s}: \begin{cases} w^{m/s} = v^{q^2} - v \\ v^{q+1} = u^q + u \end{cases} \qquad \mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \cdots + x^{q/\bar{q}} \end{cases}$$

- $\bullet \ \mathcal{X}_{a,b,n,s} = \mathcal{Y}_{n,s}/E_{\bar{q}} \ \text{with} \ E_{\bar{q}} = \left\{ (u,v,w) \mapsto (u + \frac{\alpha}{c},v,w) \ | \ \alpha \in \mathbb{F}_{\bar{q}} \right\}$
- $C_{m/s} = \{(x, y, z) \mapsto (x, y, \lambda z) \mid \lambda^{m/s} = 1\} \le \operatorname{Aut}(\mathcal{X}_{a,b,n,s})$

$$\mathcal{Y}_{n,s}: \begin{cases} w^{m/s} = v^{q^2} - v \\ v^{q+1} = u^q + u \end{cases} \qquad \mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \cdots + x^{q/\bar{q}} \end{cases}$$

- $\bullet \ \mathcal{X}_{a,b,n,s} = \mathcal{Y}_{n,s}/E_{\bar{q}} \ \text{with} \ E_{\bar{q}} = \left\{ \left(u,v,w\right) \mapsto \left(u + \frac{\alpha}{c},v,w\right) \ | \ \alpha \in \mathbb{F}_{\bar{q}} \right\}$
- $C_{m/s} = \{(x, y, z) \mapsto (x, y, \lambda z) \mid \lambda^{m/s} = 1\} \le \operatorname{Aut}(\mathcal{X}_{a,b,n,s})$
- $\bullet \ \ \mathsf{Normalizer:} \quad \ \mathsf{N}_{\mathrm{Aut}(\mathcal{Y}_{n,s})}(E_{\bar{q}}) \, = \, \langle \ S_{q^3} \rtimes C_{(q+1)(\bar{q}-1)} \, , \ C_{m/s} \, \rangle$

$$\mathcal{Y}_{n,s}: \begin{cases} w^{m/s} = v^{q^2} - v \\ v^{q+1} = u^q + u \end{cases} \qquad \mathcal{X}_{a,b,n,s}: \begin{cases} z^{m/s} = y^{q^2} - y \\ cy^{q+1} = x + x^{\bar{q}} + \cdots + x^{q/\bar{q}} \end{cases}$$

- $\bullet \ \mathcal{X}_{a,b,n,s} = \mathcal{Y}_{n,s}/E_{\bar{q}} \ \text{with} \ E_{\bar{q}} = \left\{ (u,v,w) \mapsto (u + \frac{\alpha}{c},v,w) \ | \ \alpha \in \mathbb{F}_{\bar{q}} \right\}$
- $C_{m/s} = \{(x, y, z) \mapsto (x, y, \lambda z) \mid \lambda^{m/s} = 1\} \le \operatorname{Aut}(\mathcal{X}_{a,b,n,s})$
- $\bullet \ \ \mathsf{Normalizer:} \quad \ \mathsf{N}_{\mathrm{Aut}(\mathcal{Y}_{n,s})}(E_{\bar{q}}) \, = \, \langle \ S_{q^3} \rtimes \mathit{C}_{(q+1)(\bar{q}-1)} \, , \ \mathit{C}_{m/s} \, \rangle$

Theorem (Montanucci-Tizziotti-Z.)

$$\operatorname{Aut}(\mathcal{X}_{a,b,n,s})\cong \frac{S_{q^3}}{E_{\bar{q}}}\rtimes C_{(q+1)(\bar{q}-1)\frac{m}{s}}$$

$$\mathcal{BM}_n: \begin{cases} z^m = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

Beelen-Montanucci 2018:

$$\mathcal{BM}_{n}: \begin{cases} z^{m} = y \frac{x^{q^{2}} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases}$$

$$m=rac{q^n+1}{q+1},\quad n\geq 3 ext{ odd}$$

ullet \mathcal{BM}_n is $\mathbb{F}_{q^{2n}}$ -maximal

$$\mathcal{BM}_n: \begin{cases} z^m = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = \frac{q^n + 1}{q + 1}, \quad n \ge 3 \text{ odd}$$

- ullet \mathcal{BM}_n is $\mathbb{F}_{q^{2n}}$ -maximal
- for n=3, \mathcal{BM}_3 is (a different model of) the GK curve \mathcal{GK}

$$\mathcal{BM}_n: \begin{cases} z^m = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

- ullet \mathcal{BM}_n is $\mathbb{F}_{q^{2n}}$ -maximal
- for n=3, \mathcal{BM}_3 is (a different model of) the GK curve \mathcal{GK}
- $g(\mathcal{BM}_n) = g(\mathcal{GGS}_n)$, but $\mathcal{BM}_n \not\cong \mathcal{GGS}_n$ for $n \geq 5$

$$\mathcal{BM}_n: \begin{cases} z^m = y rac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = rac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

- ullet \mathcal{BM}_n is $\mathbb{F}_{q^{2n}}$ -maximal
- for n = 3, \mathcal{BM}_3 is (a different model of) the GK curve \mathcal{GK}
- $g(\mathcal{BM}_n) = g(\mathcal{GGS}_n)$, but $\mathcal{BM}_n \not\cong \mathcal{GGS}_n$ for $n \geq 5$
- for q>2 and any $n\geq 3$, \mathcal{BM}_n is not Galois covered by \mathcal{H}_{q^n}

Beelen-Montanucci 2018:

$$\mathcal{BM}_n: \begin{cases} z^m = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = \frac{q^n + 1}{q+1}, \quad n \ge 3 \text{ odd}$$

- \mathcal{BM}_n is $\mathbb{F}_{q^{2n}}$ -maximal
- for n=3, \mathcal{BM}_3 is (a different model of) the GK curve \mathcal{GK}
- $g(\mathcal{BM}_n) = g(\mathcal{GGS}_n)$, but $\mathcal{BM}_n \ncong \mathcal{GGS}_n$ for $n \ge 5$
- for q>2 and any $n\geq 3$, \mathcal{BM}_n is not Galois covered by \mathcal{H}_{q^n}
- for $n \ge 5$:

$$\operatorname{Aut}(\mathcal{BM}_n) = \langle \operatorname{PGU}(3,q)_{\ell}, C_{m/s} \rangle \cong \operatorname{SL}(2,q) \rtimes C_{q^n+1}$$

 $\operatorname{Aut}(\mathcal{BM}_n)$ is the lift of the stabilizer $\operatorname{PGU}(3,q)_\ell$

of a
$$(q+1)$$
-secant ℓ to $\tilde{\mathcal{H}}_q$: $y^{q+1}=x^{q+1}-1$

Subcovers $\tilde{\mathcal{Y}}_{n,s}$ of the BM curve

$$\tilde{\mathcal{Y}}_{n,s}: \begin{cases} z^{m/s} = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = \frac{q^n + 1}{q + 1}, \quad s \mid m$$

Subcovers $\tilde{\mathcal{Y}}_{n,s}$ of the BM curve

$$\tilde{\mathcal{Y}}_{n,s}: \begin{cases} z^{m/s} = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = \frac{q^n + 1}{q + 1}, \quad s \mid m$$

Theorem (Montanucci-Tizziotti-Z.)

- If $3 \nmid n$ or $\frac{m}{s} \nmid \frac{q^3+1}{q+1} \implies \operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s}) \cong \operatorname{SL}(2,q) \rtimes C_{(q^n+1)/s}$
- ullet If $3\mid n$ and $rac{m}{s}\mid rac{q^3+1}{q+1}\implies \mathcal{Y}_{n,s}\cong \mathcal{GK}/\mathcal{C}_{rac{q^2-q+1}{m/s}}$ and

$$\operatorname{Aut}(ilde{\mathcal{Y}}_{n,s}) = \langle \operatorname{PGU}(3,q) \,, \; C_{m/s} \, \rangle$$
 , of order $(q^3+1)q^3(q^2-1)rac{m}{s}$

Subcovers $\tilde{\mathcal{Y}}_{n,s}$ of the BM curve

$$\tilde{\mathcal{Y}}_{n,s}: \begin{cases} z^{m/s} = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad m = \frac{q^n + 1}{q + 1}, \quad s \mid m$$

Theorem (Montanucci-Tizziotti-Z.)

- If $3 \nmid n$ or $\frac{m}{s} \nmid \frac{q^3+1}{q+1} \implies \operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s}) \cong \operatorname{SL}(2,q) \rtimes \mathcal{C}_{(q^n+1)/s}$
- \bullet If $3\mid n$ and $rac{m}{s}\mid rac{q^3+1}{q+1}\implies \mathcal{Y}_{n,s}\cong \mathcal{GK}/\mathcal{C}_{rac{q^2-q+1}{m/s}}$ and

$$\operatorname{Aut}(ilde{\mathcal{Y}}_{n,s})=\langle\operatorname{PGU}(3,q)\,,\;\mathcal{C}_{m/s}\,
angle$$
 , of order $(q^3+1)q^3(q^2-1)rac{m}{s}$

In the first case: $g(\tilde{\mathcal{Y}}_{n,s}) = g(\mathcal{Y}_{n,s})$ but $\tilde{\mathcal{Y}}_{n,s}
ot \cong \mathcal{Y}_{n,s}$

 \implies new $\mathbb{F}_{q^{2n}}$ -maximal curves not covered by \mathcal{H}_{q^n}

Subcovers $\tilde{\mathcal{X}}_{a,b,n,s}$ of the BM curve

$$n \geq 3$$
 odd, $m = \frac{q^n + 1}{q + 1}$, $s \mid m$, $q = p^a$, $\bar{q} = p^b$, $b \mid a$

$$\tilde{\mathcal{Y}}_{n,s}: \begin{cases} z^{m/s} = y\frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad \tilde{\mathcal{X}}_{a,b,n,s} := \tilde{\mathcal{Y}}_{n,s}/E_{\bar{q}}$$

where $E_{\bar{q}} \leq \operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s})$ is the lift to $\tilde{\mathcal{Y}}_{n,s}$ with $E_{\bar{q}}(z) = z$ of an elementary abelian group of elations fixing a point $P \in \tilde{\mathcal{H}}_q(\mathbb{F}_{q^2})$, $\tilde{\mathcal{H}}_q: \ y^{q+1} = x^{q+1} - 1$

Subcovers $\tilde{\mathcal{X}}_{a,b,n,s}$ of the BM curve

$$n \geq 3$$
 odd, $m = \frac{q^n + 1}{q + 1}$, $s \mid m$, $q = p^a$, $\bar{q} = p^b$, $b \mid a$

$$\tilde{\mathcal{Y}}_{n,s}: \begin{cases} z^{m/s} = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad \tilde{\mathcal{X}}_{a,b,n,s} := \tilde{\mathcal{Y}}_{n,s} / E_{\bar{q}}$$

where $E_{\bar{q}} \leq \operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s})$ is the lift to $\tilde{\mathcal{Y}}_{n,s}$ with $E_{\bar{q}}(z) = z$ of an elementary abelian group of elations fixing a point $P \in \tilde{\mathcal{H}}_q(\mathbb{F}_{q^2})$, $\tilde{\mathcal{H}}_q: y^{q+1} = x^{q+1} - 1$

Theorem (Montanucci-Tizziotti-Z.)

$$\operatorname{Aut}(\tilde{\mathcal{X}}_{a,b,n,s}) \ = \ \operatorname{N}_{\operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s})}(E_{\bar{q}})/E_{\bar{q}} \ \cong \ (E_q/E_{\bar{q}}) \rtimes C_{(q+1)(\bar{q}-1)\frac{m}{s}}$$

Subcovers $\tilde{\mathcal{X}}_{a,b,n,s}$ of the BM curve

$$n \geq 3$$
 odd, $m = \frac{q^n + 1}{q + 1}$, $s \mid m$, $q = p^a$, $\bar{q} = p^b$, $b \mid a$

$$\tilde{\mathcal{Y}}_{n,s}: \begin{cases} z^{m/s} = y \frac{x^{q^2} - x}{x^{q+1} - 1} \\ y^{q+1} = x^{q+1} - 1 \end{cases} \qquad \tilde{\mathcal{X}}_{a,b,n,s} := \tilde{\mathcal{Y}}_{n,s} / E_{\bar{q}}$$

where $E_{\bar{q}} \leq \operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s})$ is the lift to $\tilde{\mathcal{Y}}_{n,s}$ with $E_{\bar{q}}(z) = z$ of an elementary abelian group of elations fixing a point $P \in \tilde{\mathcal{H}}_q(\mathbb{F}_{q^2})$, $\tilde{\mathcal{H}}_q: y^{q+1} = x^{q+1} - 1$

Theorem (Montanucci-Tizziotti-Z.)

$$\operatorname{Aut}(\tilde{\mathcal{X}}_{a,b,n,s}) \; = \; \operatorname{N}_{\operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s})}(E_{\bar{q}})/E_{\bar{q}} \; \cong \; (E_q/E_{\bar{q}}) \rtimes \, C_{(q+1)(\bar{q}-1)\frac{m}{s}}$$

$$g(\tilde{\mathcal{X}}_{a,b,n,s}) = g(\mathcal{X}_{a,b,n,s}), \ \tilde{\mathcal{X}}_{a,b,n,s} \not\cong \mathcal{X}_{a,b,n,s}$$

 \implies new $\mathbb{F}_{q^{2n}}$ -maximal curves not covered by \mathcal{H}_{q^n}

Conclusion

- Subcovers $\mathcal{Y}_{n,s}$, $\mathcal{X}_{a,b,n,s}$, $\tilde{\mathcal{Y}}_{n,s}$, $\tilde{\mathcal{X}}_{a,b,n,s}$ of the first (GGS) and second (BM) generalized GK curve
- their automorphism groups
- new maximal curves not covered by the Hermitian curve
- a characterization of the curves

$$\mathcal{GK}/\mathcal{C}_s \;\in\; \left\{\; \mathcal{Y}_{n,s} \,,\; \mathcal{X}_{a,b,n,s} \,,\; \tilde{\mathcal{Y}}_{n,s} \,,\; \tilde{\mathcal{X}}_{a,b,n,s} \right\}$$
 by
$$\mathrm{PGU}(3,q) \;\leq\; \mathrm{Aut}(\mathcal{GK}/\mathcal{C}_s)$$

Thank you for your attention!
Guten Appetit!