Inference script for detection (with Rajin's model)

Documentation & User Guide

- 1. Overview
- 2. Model Details
- 3. Installation
- 4. Running the Pipeline
- 5. Understanding the Results
- 6. Dataset Information
- 7. Training Process

Model Details

Purpose

The model is trained to detect and classify various Unilever Bangladesh Limited (UBL) products in retail environments, distinguishing them separately. My model (UBLModel_v2.pt) focuses on sachets, specifically Horlicks (CTSL 18ml), Clear Men's Shampoo (5ml), and Dove Conditioner (IRP DOLCE 7ml).

Classes

My model was trained on the following classes:

Sachet Products:

- ClearMen5ml Specifically labeled and trained on this product
- HorlicksCTSL18ml Specifically labeled and trained on this product
- DoveConditionerIRPDOLCE7ml Specifically labeled and trained on this product

Model Versions

The best version of the model has been provided:

2. **UBLModel_v2.pt** - Trained for 500 epochs (recommended for better accuracy)

Installation

Prerequisites

- Python 3.8 or higher (my specific one was 3.13)
- Git (for cloning the repository)

Step 1: Clone the Repository

git clone https://github.com/rajin-khan/UBLRetailAnalysis.git
cd UBLRetailAnalysis/Pipeline

Step 2: Install Dependencies

```
pip install ultralytics opencv-python numpy tqdm pyyaml
```

or,

pip install -r requirements.txt

Running the Pipeline

Basic Usage

python pipeline.py --model ../Main/models/UBLModel_v2.pt --input ../test_images/ --output ../predictions/

Command Line Arguments

Argument	Description	Default
model	Path to the trained YOLOv8 model (.pt file)	Required
input	Path to input directory or image file(s)	Required
output	Path to output directory	"output"
conf	Confidence threshold for detections	0.25 (optional)
iou	IoU threshold for non-maximum suppression	0.45 (optional)

Argument	Description	Default
img-size	Image size for detection	640 (optional)
no-visualize	Don't visualize detections	False (optional)
no-save-results	Don't save detection results to text files	False (optional)

Examples

Process a Single Image

python pipeline.py --model ../Main/models/UBLModel_v2.pt --input /path/to/image.jpg --output ../predictions/

Process Multiple Images

python pipeline.py --model ../Main/models/UBLModel_v2.pt --input /path/to/image1.jpg /path/to/image2.jpg --output ../prediction

Process a Directory with Higher Confidence Threshold

python pipeline.py --model ../Main/models/UBLModel_v2.pt --input ../test_images/ --output ../predictions/ --conf 0.4

Understanding the Results

Output Structure

The pipeline generates several types of output:

1. Visualized Images:

- · Original images with bounding boxes around detected objects
- Class labels and confidence scores displayed on the image
- Detection quality and accuracy metrics shown in the top-left corner
- Object count summary

2. Per-Image Text Files:

- Lists of detected objects with their class names and counts
- · Estimated detection accuracy and quality assessment
- Detailed information about each detection (coordinates, confidence)
- 3. Summary File (detection_summary.txt):
 - Overall detection accuracy and quality across all processed images
 - Total object counts by class
 - Per-image breakdown of detections

Accuracy Metrics

The pipeline provides two metrics to evaluate detection quality:

- 1. Estimated Accuracy: A percentage score derived from the average confidence of detections
 - 90-100%: Excellent detections (confidence > 0.8)
 - 80-90%: Good detections (confidence 0.6-0.8)
 - 70-80%: Moderate detections (confidence 0.4-0.6)
 - 50-70%: Low quality detections (confidence 0.25-0.4)
- 2. **Detection Quality**: A human-readable label (Excellent, Good, Moderate, or Low)

Dataset Information

Dataset Structure

Two folders have been provided:

/annotated: The original folder, with all the images together, and classes.txt and other files in /labels.

/dataset: The files after train/test/val split was done.

Labeling Process

The dataset was annotated using Labellmg, with specific focus on:

- Clear Men's Shampoo 5ml (ClearMen5ml)
- Horlicks Standard 18ml (HorlicksCTSL18ml)
- Dove Conditioner 7ml (DoveConditionerIRPDOLCE7ml)

Training Process

Data Preparation

- 1. Collection: Gathered images of Horlicks, Dove and Clear sachets
- 2. **Augmentation**: Applied techniques like rotation, cropping, brightness variations, and background noise using albumentations library to created augmented images.
- 3. **Annotation**: Used Labellmg to create bounding box annotations for each product class

Model Training

1. Initial Training:

- 50 epochs locally using YOLOv8 architecture
- Resulted in UBLModel_v1.pt

2. Extended Training:

- 500 epochs on Google Colab with TPU/GPU acceleration
- Resulted in UBLModel_v2.pt with improved generalization

3. Hyperparameter Tuning:

- · Adjusted batch size, learning rate, and augmentation strategies
- Optimized for best performance across diverse retail environments

I have also provided the dataset.yaml used when training.

Getting Info

For additional assistance, please refer to my GitHub repository for the latest updates and issue tracking.