

SUPPLY NETWORK

SUPPLIERS

ROAD SUPPLY

HUBS

RAIL SUPPLY

PLANTS

254 County Suppliers 1303 Potential Hubs

167
Potential
Biorefineries

Supply by County

Potential Hubs

Potential Plants

HUB PARAMETERS

Investment cost \$ 3,476,219

Preprocessing capacity 300,000 Mg

PLANT PARAMETERS

Investment cost \$ 130,956,797

Annual conversion capacity 152,063,705 liters

Conversion yield 232 liters/Mg

DEMAND

Network demand 1,476,310,602 liters

Note: All the parameters are considered for a period of time of one year.

CALCULATIONS

From the datasets and parameters:

Total Supply = 3,053,377.71 Mg

Demand in Mg = Network demand in liters / Conversion yield

= 1,476,310,602 liters / 232 liters/Mg

= 6,363,407.77 Mg

Since the demand supersedes the total supply, a third-party supplier is to be introduced:

3rd party Supply = Demand - Total Supply = 3,310,030.06 Mg

CALCULATIONS

- The Average Road Cost is used as the estimated 3rd party cost per unit

$$=$$
 \$ 30,488,893.10 / 330,962 $=$ \$92.122 \approx \$92

Number of plants to meet demand

= Demand / Annual Conversion Capacity = 9.7085 ≈ 10 plants

- Total Plant Investment Cost = $10 \times $130,956,797 = $1,309,567,970$

Number of hubs to meet plant requirement

= Demand / Hub Capacity = 21.21 ≈ 22 hubs

- Total Hub Investment Cost = $22 \times 3,476,219 = 76,476,818$

RESULTS

	hub_status	road_supply
hubs		
512	1.0	300000.000
17246	1.0	300000.000
17318	1.0	300000.000
17387	1.0	300000.000
17399	1.0	300000.000
17482	1.0	300000.000
17517	1.0	300000.000
17623	1.0	300000.000
17695	1.0	63407.767
17850	1.0	300000.000
17886	1.0	300000.000
17909	1.0	300000.000
17969	1.0	300000.000
18006	1.0	300000.000
18012	1.0	300000.000
18097	1.0	300000.000
18103	1.0	300000.000
18119	1.0	300000.000
18255	1.0	300000.000
18264	1.0	300000.000
18307	1.0	300000.000
18483	1.0	300000.000

	plt_status	rail_supply
plants		
543	1.0	655447.00
9088	1.0	655447.00
9091	1.0	655447.00
9104	1.0	655447.00
9142	1.0	655447.00
9167	1.0	464384.73
9188	1.0	655447.00
9203	1.0	655447.00
10060	1.0	655447.00
10061	1.0	655447.00

Optimal Hubs and Plants

South East Map

East Map

North Map

West Map

South Map

 The optimal number of 22 hubs and 10 plants were obtained for an overall network (investment and transportation) cost of \$1,725,868,653,500

 With 0.025% and 0.215% error rate from the TX_roads and TX_railroad datasets these results were retrieved, but with more accurate data better results would have been reached.