

Densely-Anchored Sampling for Deep Metric Learning

Lizhao Liu^{1,2}, Shangxin Huang¹, Zhuangwei Zhuang¹, Ran Yang¹, Mingkui Tan^{1,3}, and Yaowei Wang² ¹South China University of Technology ²PengCheng Laboratory ³Key Laboratory of Big Data and Intelligent Robot, Ministry of Education

Problem Definition and Contribution

Goal: To train a deep model that projects semantically similar data into nearby embedding space, Deep Metric Learning (DML) methods often highly depends on sampling effective data from the embedding space.

Key Contributions: A PnP Densely-Anchored Sampling (DAS) scheme for DML that

- exploits embeddings' nearby embedding space and densely produces embeddings.
- includes two models, namely Discriminative Feature Scaling (DFS) and Memorized Transformation Shifting (MTS).
- consistently improves existing DML baselines without bells and whistles.

Problem Formulation

Motivations:

- The basic hypothesis of metric learning: Embeddings close to each other in the embedding space have similar semantics.
- The missing embedding issue: The embedding space often has a barren area due to the absence of data points.

Main Idea: Considering the embeddings v with data points as anchor points, we alter anchor points semantics by semantic scaling and shifting to produce embedding \mathbf{v}' :

$$\mathbf{v}' = \mathrm{DAS}(\mathbf{v}; \mathbf{s}, \mathbf{b}) = \underbrace{\mathbf{s} \odot \mathbf{v} + \mathbf{b}}_{scaling \ shifting},$$
 (1

where s and b denote the semantic scaling and shifting factors, respectively.

Method

DAS comprises two parts, namely a discriminative feature scaling for producing semantic scaling factors, and a memorized transformation for producing semantic shifting factors.

Discriminative Feature Scaling:

$$\mathbf{s} = \boldsymbol{\gamma} \odot \mathbf{M}[y_{\mathbf{v}}] + \mathbf{1}^d \odot (1 - \mathbf{M}[y_{\mathbf{v}}]), (2)$$

- s is the semantic scaling factor.
- $\mathbf{M} \in \mathbb{R}^{c \times d}$, a binary mask, records the frequently activated neurons for each class.
- $\gamma \sim \text{Uniform}[1-r_s,1+r_s]^d \text{ and } r_s \in$ (0,1) is a hyper-parameter.

Memorized Transformation Shifting:

$$\mathbf{b} = r_b \mathbf{t}, \ \mathbf{t} \sim \{ \mathbf{B}[y_{\mathbf{v}}, z] \mid z = 1, 2, \dots, Z \}.$$
 (3)

- b is the semantic shifting factor.
- B is the memory bank that records the intra-class transformations according to the FIFO principle.
- $r_b \in (0, +\infty)$ is a hyper-parameter.

Experiments & Results

Dataset:

We use three popular benchmarks:

- CUB2011-200 (CUB), a fine-grained bird dataset, #Train / #Test classes: 100 / 100.
- CARS196 (CARS), a fine-grained vehicle dataset, #Train / #Test classes: 98 / 98.
- Stanford Online Products (SOP), a large-scale online products dataset, #Train / #Test classes: 11,318 / 11,316.

Improvements over Pair-based Methods:

Method		CUB			CARS		SOP			
	R@1	F1	NMI	R@1	F1	NMI	R@1	F1	NMI	
Triplet [S]	60.25	32.82	64.64	74.64	31.98	63.22	73.51	33.47	89.33	
Triplet [S] + DAS	60.82	33.86	65.67	77.21	33.88	64.84	73.99	33.91	89.42	
Triplet [D]	62.68	36.39	67.03	78.86	35.80	65.85	77.54	37.10	90.05	
Triplet [D] + DAS	64.28	38.16	68.06	82.63	39.14	68.12	77.95	37.64	90.18	
Contrastive [D]	61.65	35.23	66.58	76.03	32.77	64.09	73.13	35.60	89.78	
Contrastive [D] + DAS	63.67	36.25	67.15	80.74	36.07	65.93	74.80	36.21	89.89	
Margin	62.61	37.33	67.58	80.10	37.85	67.15	78.69	39.20	90.50	
Margin + DAS	64.50	37.86	68.04	82.29	38.22	67.94	79.14	39.52	90.56	
GenLifted	58.81	34.64	65.50	72.45	32.43	64.00	76.18	37.26	90.13	
GenLifted + DAS	59.94	35.09	66.07	73.55	32.85	64.11	76.92	37.64	90.21	
N-Pair	60.55	36.94	67.19	77.35	36.26	66.74	77.71	37.13	90.15	
N-Pair + DAS	62.81	38.37	68.43	79.93	38.06	68.20	77.98	37.82	90.28	
MS	62.63	38.88	68.19	82.04	40.85	69.45	78.89	37.53	90.12	
MS + DAS	64.13	39.18	69.08	83.31	42.78	70.77	79.44	38.77	90.40	

Comparison with State-of-The-Arts:

						1				1			
Method	Backbone			JB				RS				SOP	
		R@1	R@2	R@4	R@8	R@1	R@2	R@4	R@8	R@1	R@10	R@100	R@1000
Margin	R^{128}	63.60	74.40	83.10	90.00	79.60	86.50	91.90	95.10	72.70	86.20	93.80	98.00
HDC	G^{384}	53.60	65.70	77.00	85.60	73.70	83.20	89.50	93.80	69.50	84.40	92.80	97.70
A-BIER	G^{384}	57.50	68.70	78.30	86.20	82.00	89.00	93.20	96.10	74.20	86.90	94.00	97.80
ABE	G^{512}	60.60	71.50	79.80	87.40	85.20	90.50	94.00	96.10	76.30	88.40	94.80	98.20
HTL	IBN^{512}	57.10	68.80	78.70	86.50	81.40	88.00	92.70	95.70	74.80	88.30	94.80	98.40
RLL-H	IBN^{512}	57.40	69.70	79.20	86.90	74.00	83.60	90.10	94.10	76.10	89.10	95.40	N/A
SoftTriple	IBN^{512}	65.40	76.40	84.50	90.40	84.50	90.70	94.50	96.90	78.30	90.30	95.90	N/A
MS	IBN^{512}	65.70	77.00	86.30	91.20	84.10	90.40	94.00	96.50	78.20	90.50	96.00	98.70
ProxyGML	IBN^{512}	66.60	77.60	86.40	N/A	85.50	91.80	95.30	N/A	78.00	90.60	96.20	N/A
ProxyAnchor	IBN^{512}	68.40	79.20	86.80	91.60	86.10	91.70	95.00	97.30	79.10	90.80	96.20	98.70
Contrastive + XBM	IBN^{512}	65.80	75.90	84.00	89.90	82.00	88.70	93.10	96.10	79.50	90.80	96.10	98.70
MS^*	IBN^{512}	64.50	76.20	84.60	90.50	82.10	88.80	93.20	96.10	76.30	89.70	96.00	98.80
$MS + EE^*$	IBN^{512}	65.10	76.80	86.10	91.00	82.70	89.20	93.80	96.40	77.00	89.50	96.00	98.80
ProxyAnchor + MemVir	IBN^{512}	69.00	79.20	86.80	91.60	86.70	92.00	95.20	97.40	79.70	91.00	96.30	98.60
MS [†]	IBN^{512}	65.72	77.19	85.74	91.56	83.86	90.41	94.64	96.99	76.89	89.58	95.59	98.60
MS + DAS (Ours)	IBN^{512}	67.07	78.11	86.43	91.88	85.66	91.60	95.27	97.37	78.16	90.26	95.99	98.76
MS^\dagger	R^{512}	66.46	77.28	85.85	91.69	83.99	90.39	94.51	96.80	79.53	91.06	96.30	98.83
MS + DAS (Ours)	R^{512}	69.19	79.25	87.09	92.62	87.84	93.15	95.99	97.85	80.59	91.80	96.68	98.95

Experiments on Different Batch Size:

Evolution of Training Process:

Image Retrieval Results:

Comparisons with Proxy-based Approaches:

Method	CUB				CARS		SOP			
	R@1	F1	NMI	R@1	F1	NMI	R@1	F1	NMI	
Softmax Softmax + DAS	61.58 62.02					67.01 68.91			90.05 90.40	
ArcFace + DAS		35.73 37.63				67.82 69.82		37.79 38.08	90.18 90.26	

