Deutsche Kl.:

12

Offenlegungsschrift 1618795 1 P 16 18 795.4 (P 42410) Aktenzeichen: 21) 20. Juni 1967 Anmeldetag: 2

Offenlegungstag: 13. April 1972

Ausstellungspriorität:

Unionspriorität

43

32)

12. Mai 1967 Datum:

V. St. v. Amerika Land: 33 Aktenzeichen: 637905

Flüssige Gemische aus **64**) Bezeichnung: 4,4'-Methylen-Bis(Cyclohexylisocyanat)-Isomeren

Zusatz zu: **(61)**

Ausscheidung aus: 62) E. I. Du Pont de Nemours and Co., Wilmington, Del. (V. St. A.) 1

Anmelder:

Kreisler, A. von, Dr.-Ing.; Schönwald, K., Dr.-Ing.; Vertreter gem. § 16 PatG: Meyer, Th., Dr.-Ing.; Fues, J. F., Dipl.-Chem. Dr. rer. nat.;

Patentanwälte, 5000 Köln

Irwin, Carl Francis, New Castle, Del. (V. St. A.) 72 Als Erfinder benannt:

> Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960): Prüfungsantrag gemäß § 28 b PatG ist gestellt

> > ORIGINAL INSPECTED

DR.-ING. VON KREISLER DR.-ING. SCHONWALD DR.-ING. TH. MEYER DR. FUES DIPL.-CHEM. ALEK VON KREISLER DIPL.-CHEM. CAROLA KELLER DR.-ING. KLOPSCH

KOLN 1, DEICHMANNHAUS

Köln, den 26. Januar 1970 Fu/ak P 16 18 795.4

E.I. de Pont de Nemours & Company, Wilmington, Delaware 19898 (USA)

Flüssige Gemische aus 4,4°-Methylen-Bis(Cyclohexylisocyanat)Isomeren

Die Erfindung bezieht sich auf flüssige Gemische von 4,4!Methylen-bis(cyclohexylisocyanat)-Isomeren.

Es gilt seit langem als sehr erwünscht, gewisse technische Materialien, insbesondere Diisocyanate, in einer unter normalen Bedingungen der Temperatur und des Drucks flüssigen Form verfügbar zu haben, da es hierdurch möglich ist, die Materialien mit Hilfe von Pumpen zu handhaben, ohne daß es notwendig ist, beheizte Lagereinrichtungen und Pumpleitungen zuerstellen, die teuer und unzweckmäßig sind und häufig zu einer Schädigung, z.B. Verfärbung, der erhitzten Materialien und/oder ihrer Reaktionsprodukte führen. Obwohl dies seit langem erkannt ist, was bisher keine normalerweise flüssige Form von 4,4'-Methylen-bis(cyclohexylisocyanat) im Handel erhältlich.

Diisocyanate sind allgemein bekannte technische Materialien, die im allg meinen durch Phosgenierung des entsprechenden Diamins hergestellt und hauptsächlich für die Herstellung von Polyurethanderivaten durch Umsetzung der Isocyanat-BAD ORIGINAL

gruppen mit den miroxylgruppen eines Polyamers oder Polyesters und/oder für die Herstellung von Polynarnstoffderivaten durch Umsetzung der Isocyanatgruppen mit Wasser oder Diaminen verwendet werden. 4,4'-Methylen-bis(cyclohexylisocyanat) ist eine bekannte aliphatische feste Verbindung und kann durch übliche Phosgenierung von 4,4'-Methylen-bis(cyclohexylamin), z.B. nach einem Phosgenierungsverfahren der in der USA-Patentschrift 2 822 373 beschriebenen Art, hergestellt werden. 4.4'-Methylen-bis(cyclohexylamin) selbst kann in drei stereoisomeren Formen vorliegen, die als cis, cis-, trans- und cis, trans-Isomere bekannt sind, die ausführlich in der USA-Patentschrift 2 606 925 und in den USA-Patentschriften 2 994 563, 2 606 924, 3 153 088 und 3 155 724. Es handelt sich dabei um verschiedene Kombinationen dieser 4,4'-Methylen-bis(cyclohexylamin)-Isomeren und Verfahren zur Herstellung von bestimmten Isomeren und deren Kombinationen.

Gegenstand der Erfindung ist ein aus 4,4'-Methylen-bis(cyclohexylisocyanat)-Isomeren bestehendes Gemisch, das
bei Normaltemperaturen, zuweilen als Raumtemperatur bezeichnet, z.B. bei 30°C oder vorzugsweise sogar bei 25°C oder
darunter, z.B. bei 20°C, flüssig ist. Diese normalerweise
flüssigen Gemische enthalten im allgemeinen weniger als etwa
26 Gew.-%, vorzugsweise weniger als etwa 23 Gew.-% des trans,
trans-Isomeren und weniger als etwa 75 %, vorzugsweise weniger als etwa 72 % des cis, cis-Isomeren. Der Schmelzpunkt
des cis, trans-Isomeren beträgt 17 bis 18°C.

Diese normalerweise flüssigen Gemische mit den gewünschten Anteilen von 4,4'-Methylen-bis(cyclohexylisocyanat)-Isomeren können hergestellt werden durch übliche Phosgenierung der jeweiligen 4,4'-Methylen-bis(cyclohexylamin)-Isomeren oder durch Herstellung von reinen 4,4'-Methylen-bis(cyclohexyl-isocyanat)-Isomeren und Mischen der Isomeren in geeigneten Mengenverhältnissen oder durch Herstellung normalerweise fester Gemische solcher Isomeren und anschließende Einstellung der Mengenanteile der Isomeren in diesen Gemischen nach BAD ORIGINAL

üblichen Metelen z.B. durch Zusatz ode Extraktion eines Teils eines gewünschten oder unerwünschten Isomeren, bis das Gemisch, wie gewünscht, bei Normalbedingungen flüssig ist.

Die neuen erfindungsgemäßen Materialien sind hauptsächlich als bequeme Ausgangsmaterialien für die Herstellung von Polyurethanen und/oder Polyharnstoffen vorgesehen. Natürlich können geringe Mengen von Nebenprodukten der Phosgenierung und Verunreinigungen in gewissen Fällen bei Verwendung für diese Zwecke in Kauf genommen werden, z.B. die Nebenprodukte und Verunreinigungen in rohen oder undestillierten Gemischen von 4,4'-Methylen-bis(cyclohexylisocyanat)-Isomeren, die durch Phosgenierung erhalten werden, einschließlich eines Materials, wie 2,4'-Di-(isocyanat-cyclohexyl)-methan, das durch Phosgenierung der geringen Menge des entsprechenden Diamins gebildet wird, das in dem Diamingemisch vorhanden ist, das der Phosgenierung unterworfen ist.

Die Polyisocyanatgemische der Erfindung sind insbesondere brauchbar für die Herstellung von farblosen, optisch klaren thermoplastischen Polyurethanen mit hoher Schlagfestigkeit und insgesamt hervorragenden physikalischen-Eigenschaften. Solche Polyurethane kann man beispielsweise durch Umsetzung der folgenden Komponenten erhalten: a) 1,0 Mol eines Polyäther- oder Polyesterglycols mit einem Schmelzpunkt unterhalb etwa 40° C und einem Molekulargewicht M von etwa 500 bis 3000, b) etwa $\frac{0.6 \text{ M}}{1000} - \frac{3.5 \text{ M}}{1000}$ Mol eines Diols mit einem Molekulargewicht weniger als 250 sowie

c) flüssige Polyisocyanatmaterialien im Sinne der Erfindung.

Typische Vertreter für die Komponente b) sind-1,4-Butandiol und Äthylenglycol. Geeignete Polyole hierfür sind Polyalkylen- ätherpolyole und Elyesterpolyole auf Basis von Dicarbonsäuren und Glycolen niederen Molekulargewichts. Bezüglich der Komponente c) ist es zweckmäßig, die Isocyanatgemische einzusetzen, die höchstens bis zu 30 % trans/trans-Isomere

enthalten, um Polygrethane höchster Qualität zu erhalten.

In den folgenden Beispielen beziehen sich die Mengenangaben auf das Gewicht, falls nicht anders angegeben.

Beispiel l

Stündlich werden 77 Teile eines Gemisches von 4,4'-Methylenbis(cyclohexylamin)-isomeren, das 19 % des trans, trans-Isomeren, 14 % des cis, cis-Isomeren, 62 % des cis, trans-Isomeren und 5 % 2,4'-Di(aminocyclohexyl)-methan enthält, im wesentlichen nach dem Verfahren des USA-Patents 2 882 373 in 13%iger Lösung in o-Dichlorbenzol unter Verwendung von stündlich 14,1 Teilen (50%iger Überschuß) Phosgen in 7%iger Lösung in o-Dichlorbenzol phosgeniert, wobei die Temperatur im Behälter und in der Schleife bei 165°C und der Druck im Behälter bei 0,35 atu und in der Schleife bei 14 atu gehalten wird. Die mittlere Verweilzeit beträgt 2 Stunden. Das Material wird mit etwa 650 Teilen/Minute durch die Leitungsschleife umgewälzt. Das Produkt wird, während seine Temperatur noch 165°C beträgt. 30 Minuten in einem Rührwerksbehälter mit stündlich 10 Teilen Phosgen bei 1,4 atu behandelt und dann zur Entfernung von niedrigsiedenden Materialien und o-Dichlorbenzol destilliert. Der Umsatz zu dem als Produkt gewünschten 4,4'-Methylen-bis-(cyclohexylisocyanat) beträgt etwa 96 % der Theorie. Das rohe Produkt wird in einem stehenden, mit Wischern versehenen Dünnschichtverdampfer bei einem Filmdruck von 0,2 bis 0,25 mm Hg und einer Außenwandtemperatur von 155 bis 165°C destilliert, wobei 4,4'-Methylen-bis(cyclohexylisocyanat) erhalten wird, das einen Schmelzpunkt von etwa 21°C und, bezogen auf den Isocyanatgehalt, eine Reinheit von mehr als 99 % hat.

> en og til for en til forstille i skriveting fill. I forskriveting fill mæger og en forskelser

> > Constitution of the Consti

AL BAD ORIGINAL

. .

-

Beispiel 2

Im wesentlichen reine Isomere von 4,4'-Methylen-bis(cyclo-hexylisocyanat) werden in den folgenden Mengenanteilen gemischt, wobei Gemische erhalten werden, die di in der folgenden Tabelle genannte Zusammensetzung haben. Diese Gemische werden sämtlich auf eine Temperatur unter -20°C gekühlt, bis sie kristallisieren, worauf sie bei 25°C stehen gelassen werden. Hierbei werden alle Gemische vollständig flüssig.

Probe	trans, trans %	cis, trans %	cis, cis %
Α .	20	.80	
В	22	61	17
C	20	40	40
D	15	30	55 .
E	-	30	70
F	15	15	70

Beispiel 3

45 Teile eines aus Isomeren von 4.4'-Methylen-bis(cyclohexylamin) bestehenden Gemisches, das etwa 15 bis 17 % des trans, trans-Isomeren, 4 % des cis, cis-Isomeren, 76 % des cis, trans-Isomeren und 4 % 2,4'-Di-(aminocyclohexyl)methan enthält, in etwa 423 Teilen o-Dichlorbenzol werden in ein gut bewegtes Reaktionsgefäß gegeben. Unter die Oberfläche der Flüssigkeit wird Chlorwasserstoff eingeführt, und zwar 2 Stunden in einer Menge von 7 Teilen/Stunde und eine weitere Stunde in einer Menge von 3 Teilen/Stunde, während die Temperatur bei 65 bis 80°C gehalten wird. Dann wird Phosgen in einer Menge von stündlich 8,5 Teilen eingeführt. während die Reaktionsmasse möglichst schnell auf 150°C erhitzt und zwei Stunden bei 150°C gehalten, dann auf 160°C erhitzt und 2,5 Stund n bei dieser Temperatur gehalten und abschließend auf 170°C erhitzt und 5 Stunden bei dieser Temperatur gehalten wird. Die erhaltene Masse wird durch

langsame Einführer, von Stickstoff auf 50°C der darunt r gekühlt. Ein Teil der Phosgenierungsmasse wird zur Entfernung
des als Lösungsmittel verw ndeten o-Dichlorbenzols unter
v rmindert m Druck destilliert, wobei flüssiges 4,4'-Methylen-bis(cyclohexylisocyanat) erhalten wird, das bezog n auf
den Isocyanatgehalt, eine Reinheit von 99,5 % hat und bei
twa 166°C/0,7 mm Hg siedet. Wenn die Flüssigkeit längere
Zeit bei etwa 24°C gehalten wird, sind keine Anzeichen einer
Kristallisation festzustellen.

BAD ORIGINAL

Patentansprüch

- 2. Gemisch nach Anspruch 1, dadurch gekennzeichnet, daß es mehr als 17 Gew.-% und weniger als 26 Gew.-% des trans, trans-Isomeren und mehr als 4 Gew.-% und weniger als 75 Gew.-% des cis, cis-Isomeren enthält.
- 3. Gemisch nach Anspruch 1, dadurch gekennzeichnet, daß es weniger als 15 Gew.-% des trans, trans-Isomeren enthält.
- 4. Gemisch nach Anspruch 1, dadurch gekennzeichnet, daß es weniger als 4 Gew.-% des cis, cis-Isomeren enthält.

Neue Uniteriagen An Alexander Interior and Anderungeges v. 4.

BAD ORIGINAL