Estimation of Channel Distribution Functions using a Neural Network

Peter Hartig

March 15, 2020

The channel state perspective

The optimization framework

Incorporating a Neural Network

Extension of ViterbiNet: Reduced

Simulation Results

Outline

The channel state perspective

The optimization framework

Incorporating a Neural Network

Extension of ViterbiNet: Reduced

Simulation Results

The Channel State

- Observations are made of some channel in a point-to-point communication system.
- ▶ For each observation, this channel takes on a state $s[k] \in S$.
- ▶ The true state s[k] is hidden by the addition of noise to an observation y[k].

Sampling Channel State

Over many observations, the sequence \mathbf{y} corresponds to a sequence of channel states $\mathbf{s} \in \mathcal{S}^{N}$

Sampling Channel State

Over many observations, the sequence \mathbf{y} corresponds to a sequence of channel states $\mathbf{s} \in S^N$

For a channel represented by an LTI system, the state is determined entirely by the transmitted information \mathbf{x} .

Estimating the True Channel State

Goal:

We attempt to estimate the true, hidden, sequence of channel states, \mathbf{s} , based the sequence of samples \mathbf{y} .

Note

We assume that we known how many states the channel |S|

Outline

The channel state perspective

The optimization framework

Incorporating a Neural Network

Extension of ViterbiNet: Reduced

Simulation Results

$$\underset{\mathbf{s}\in S^N}{\mathsf{maximize}}\ p(\mathbf{s}|\mathbf{y}).$$

$$\underset{\mathbf{s}\in S^N}{\mathsf{maximize}}\ p(\mathbf{s}|\mathbf{y}).$$

Using Bayes' theorem

$$p(\mathbf{s}|\mathbf{y}) = rac{p(\mathbf{y}|\mathbf{s})p(\mathbf{s})}{p(\mathbf{y})}$$

Noting that p(y) can be ignored

$$\underset{\mathbf{s} \in S^N}{\text{maximize }} p(\mathbf{s}|\mathbf{y}).$$

Using Bayes' theorem

$$ho(\mathbf{s}|\mathbf{y}) = rac{
ho(\mathbf{y}|\mathbf{s})
ho(\mathbf{s})}{
ho(\mathbf{y})}$$

Noting that p(y) can be ignored

$$\max_{\mathbf{s} \in S^N} p(\mathbf{y}|\mathbf{s}) p(\mathbf{s}) \tag{1}$$

$$\underset{\mathbf{s} \in S^N}{\mathsf{maximize}} \ p(\mathbf{y}|\mathbf{s})p(\mathbf{s})$$

$$\underset{\mathbf{s} \in S^N}{\mathsf{maximize}} \ p(\mathbf{y}|\mathbf{s})p(\mathbf{s})$$

Assuming

$$p(\mathbf{y}|\mathbf{s}) = \prod_{k=0}^{N-1} p(y[k]|\mathbf{s})$$

$$\underset{\mathbf{s} \in S^N}{\mathsf{maximize}} \ p(\mathbf{y}|\mathbf{s})p(\mathbf{s})$$

Assuming

$$p(\mathbf{y}|\mathbf{s}) = \prod_{k=0}^{N-1} p(y[k]|\mathbf{s})$$

and

$$p(y[k]|\mathbf{s}) = p(y[k]|s[k])$$

$$\underset{\mathbf{s} \in S^N}{\text{maximize }} p(\mathbf{y}|\mathbf{s})p(\mathbf{s})$$

Assuming

$$p(\mathbf{y}|\mathbf{s}) = \prod_{k=0}^{N-1} p(y[k]|\mathbf{s})$$

and

$$p(y[k]|\mathbf{s}) = p(y[k]|s[k])$$

this simplifies to

maximize
$$\prod_{s \in S^N}^{N-1} p(y[k]|s[k]) p(s).$$

For the LTI channel

$$p(\mathbf{s}) = \\ p(s[N]|s[N-1]...s[0])p(s[N-1]|s[N-2]...s[0])...p(s[1]|s[0])p(s[0])$$

describes the consistency of transmitted symbols implied by the state sequence. The channel states of the LTI channel satisfy the Markov property

$$p(s[N]|s[N-1]...s[0]) = p(s[N]|s[N-1]]).$$

Example with LTI channel - Continued

With these assumptions,

maximize
$$\prod_{s \in S^N} p(y[k]|s[k])p(s)$$

is equivalent to

minimize
$$\sum_{s \in S^N}^{N-1} -log(p(y[k]|s[k])p(s[k]|s[k-1])).$$

For the LTI channel p(s[k]|s[k-1]) is 0 if states contradict transmission sequence, otherwise this term is constant.

Viterbi Algorithm

minimize
$$\sum_{k=0}^{N-1} -log(p(y[k]|s[k])p(s[k]|s[k-1])).$$

Example with channel impulse response length 2 and constellation size 2.

Outline

The channel state perspective

The optimization framework

Incorporating a Neural Network

Extension of ViterbiNet: Reduced

Simulation Results

The individual terms in

$$\underset{s \in S^{N}}{\text{minimize}} \sum_{k=0}^{N-1} -log(p(y[k]|s[k])p(s[k]|s[k-1])).$$

can be rewritten

$$p(y[k]|s[k])p(s[k]|s[k-1]) = \frac{p(s[k]|y[k])p(y[k])}{p(s[k])}p(s[k]|s[k-1]).$$

$$\frac{p(s[k]|y[k])p(y[k])}{p(s[k])}$$
$$p(y[k]) = \sum_{s_i \in \mathcal{S}} p(y[k], s_i)$$

$$\frac{p(s[k]|y[k])p(y[k])}{p(s[k])}$$

Outline

The channel state perspective

The optimization framework

Incorporating a Neural Network

Extension of ViterbiNet: Reduced

Simulation Results

State Redundancy

Include picture of channel taps

Exploiting State Redundancy

 Cluster some set of observed channel output into desired number of states

Exploiting State Redundancy

- Cluster some set of observed channel output into desired number of states
- 2. For states with ambiguous channel input, use majority decision

Exploiting State Redundancy

- Cluster some set of observed channel output into desired number of states
- 2. For states with ambiguous channel input, use majority decision
- 3. *Choosing too few states will degrade performance

Outline

The channel state perspective

The optimization framework

Incorporating a Neural Network

Extension of ViterbiNet: Reduced

Simulation Results

Conclusion

Simulation Results 21

Simulation System

▶ BPSK with AWGN at receiver with SNR given by

SNR =
$$\frac{E\{|x[k]|^2\}}{E\{|n[k]|^2\}}$$

Detection Performance: LTI Channel

$$CIR = [.9, 0, .0, .4, .7]$$

*Reduced states uses 8 states in both figures above

Detection Performance: Quantizer

Easy implementation by rounding down to chosen decimal place (one in the following) after adding noise.

Simulation Results 24

Detection Performance: LTI Channel with Quantization

^{*}Reduced states uses 8 states in both figures above

Simulation Results 25

^{*}Note that the "Classic" Viterbi is no longer using ideal metric here

Outline

The channel state perspective

The optimization framework

Incorporating a Neural Network

Extension of ViterbiNet: Reduced

Simulation Results

Conclusion

Other Notes

- ► Can be applied to other algorithms (BCJR).
- ► Generate training data for molecular communications channel and test on real data.

Thank You.

Questions or Comments?