talk

April 24, 2022

```
[1]: %load_ext notexbook
     %texify --code-theme github
[1]: <IPython.core.display.HTML object>
[2]: from IPython.core.display import HTML
     HTML("""
     <style>
     div.text_cell_render h1 {
     text-align:center;
     div.text_cell_render h2 {
     text-align:center;
     div.text_cell_render h3 {
     text-align:center;
     }
     div.text_cell_render h4 {
     text-align:center;
     div.text_cell_render { /* Customize text cells */
     font-size:1em;
     </style>
     """)
```

[2]: <IPython.core.display.HTML object>

1 Proj as a Scheme

1.0.1 Scheme

Scheme is a locally ringed space X that is locally affine, i.e. for any $x \in X$, there is an open neighbourhood $x \in U$, such that $X|_U \cong \operatorname{Spec} R$ for some commutative ring R

1.0.2 Locally ringed space

A locally ringed space is a sheafed space X such that for any $x \in X$, the stalk at x is a local ring.

```
structure LocallyRingedSpace extends SheafedSpace CommRing :=
(local_ring : x, local_ring (presheaf.stalk x))
```

1.0.3 Sheafed space

A sheafed space is a presheafed space whose structure presheaf is a sheaf.

```
structure SheafedSpace extends PresheafedSpace C :=
(is_sheaf : presheaf.is_sheaf)
```

1.0.4 Presheafed space

A presheafed space is a topological space X with a structure presheaf on it.

```
structure PresheafedSpace :=
(carrier : Top)
(presheaf : carrier.presheaf C)
```

Given a N-graded ring, we need a

- 1. a topology
- 2. a sheaf
- 3. a proof that stalks are local ring
- 4. an affine cover

1.1 Topology

Given an \mathbb{N} -graded ring A, define its projective spectrum as

$$\left\{ I : \text{homogeneous prime ideal of } A \middle| \bigoplus_{1 \leq i} A_i \not\subseteq I \right\}$$

Then given any set $S \subseteq A$, the zero locus of s, Z(s) is defined as

$$\{x : \text{Proj} | s \subseteq x\}$$

Then - $Z(\emptyset)$ = Proj and $Z(A) = \emptyset$

- $Z(s) \cup Z(s') = Z(s \cap s')$
- $\bigcap_i Z(s_i) = Z(\bigcup_i s_i)$

Hence, by taking all the zero loci to be closed sets, we get a topology on Proj. This is the Zariski topology.

For any $a \in A$, define basic open set D(a) as the complement of $Z(\{a\})$. All the basic open sets form a basis for the Zariski topology.

To prove this, we need to show that for any open set O = Z(s) and $p \in O$, there is some basic open set $p \in D(a) \subseteq O$. Since $p \notin Z(s)$, $s \not\subseteq p$, so some a is in s but not in p. Then $p \in D(a)$. $D(a) \subseteq O$ if and only if $Z(s) \subseteq Z(a)$

1.2 Structure sheaf

Next we will define a sheaf of rings \mathcal{O} on Proj S. For each $\mathfrak{p} \in \operatorname{Proj} S$, we consider the ring $S_{(\mathfrak{p})}$ of elements of degree zero in the localized ring $T^{-1}S$, where T is the multiplicative system consisting of all homogeneous elements of S which are not in \mathfrak{p} . For any open subset $U \subseteq \operatorname{Proj} S$, we define $\mathcal{O}(U)$ to be the set of functions $s: U \to \coprod S_{(\mathfrak{p})}$ such that for each $\mathfrak{p} \in U$, $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$, and such that s is locally a quotient of elements of S: for each $\mathfrak{p} \in U$, there exists a neighborhood V of \mathfrak{p} in U, and homogeneous elements a, f in S, of the same degree, such that for all $\mathfrak{q} \in V$, $f \notin \mathfrak{q}$, and $s(\mathfrak{q}) = a/f$ in $S_{(\mathfrak{q})}$. Now it is clear that \mathcal{O} is a presheaf of rings, with the natural restrictions, and it is also clear from the local nature of the definition that \mathcal{O} is a sheaf.

1.2.1 Homogeneous localization

For a prime ideal \mathfrak{p} , the homogeneous localization of $A_{(\mathfrak{p})}$ is the subring

$$\left\{\frac{a}{b} \in A_{(\mathfrak{p})} | a, b \in A_n \text{ for some } n \in \mathbb{N} \right\}.$$

We denote the homogeneously localized ring as $A^0_{(\mathfrak{p})}$ Homogeneously localized rings are local.

Implementation 1

```
def homogeneous_localization : subring (localization.at_prime ) :=
{ carrier := {x | (n : ) (a b : n) (b_not_mem : b.1 ),
        x = localization.mk a.1 b.1, b_not_mem },
        mul_mem' := _,
        one_mem' := _,
        add_mem' := _,
        zero_mem' := _,
        neg_mem' := _ }
```

1.2.2 Implementation 2

Using quotient

```
structure num_denom_same_deg :=
(deg : )
(num denom : deg)
(denom_not_mem : (denom : A) )

def emb (p : num_denom_same_deg ) : localization.at_prime :=
localization.mk p.num p.denom, p.denom_not_mem

def homogeneous_localization : Type* :=
quotient (setoid.ker $ emb )
```

1.3 Structure sheaf

For an open set $U \subseteq \text{Proj}$, take the sections on U as subring of dependent functions $\prod_{x \in U} A^0_{(x)}$ that are locally fractions, i.e.

 $\left\{s \left| \text{for all } x \in U, \text{ there are some } a, b \text{ of same degree and } b \not\in x, \text{ such that } s(x) \text{ locally is } \frac{a}{b} \right.\right\}$

and restriction map as restriction of function.

This is indeed a ring because:

- $0 = \frac{0}{1}$
- $1 = \frac{1}{1}$

if $s(x) = \frac{a}{b}$ on V and $t(x) = \frac{c}{d}$ on W

- $(s+t)(x) = \frac{ad+bc}{bd}$ on $V \cap W$
- $(s \cdot t)(x) = \frac{ac}{bd}$
- $(-s)(x) = \frac{-a}{b}$

1.3.1 Implementation

• Prelocal predicate

```
(w : x : U, (V : opens X) (m : x.1 V) (i : V U),
      pred ( x : V, f (i x : U))), pred f)

    Sheafify

def prelocal_predicate.sheafify
    {T : X \rightarrow Type v}
    (P : prelocal_predicate T) : local_predicate T :=
{ pred := U f,
     x : U, (V : opens X) (m : x.1 V) (i : V U),
        P.pred (x : V, f (i x : U)),
  res := _,
  locality := _}
  • In our case, we take T to be \mathfrak{p} \to A^0_{(\mathfrak{p})} and
def is_fraction
    {U : opens (projective_spectrum.Top )}
    (f : \Pi x : U, at x.1) : Prop :=
 (i : ) (r s : i),
   x : U, (s_nin : s.1 x.1.as_homogeneous_ideal),
  (f x) = quotient.mk' i, r, s, s_nin
def is_fraction_prelocal :
    prelocal_predicate ( (x : projective_spectrum.Top ), at x) :=
{ pred := U f, is_fraction f,
 res := _ }
def is_locally_fraction :
    local_predicate ( (x : projective_spectrum.Top ), at x) :=
(is_fraction_prelocal ).sheafify
Then we can use subsheaf_to_Types which states the presheaf of U \mapsto \{\prod_{x \in U} Tx\} satisfying P
is a sheaf of sets.
def subsheaf_to_Types (P : local_predicate T) : sheaf (Type v) X := _
Then we can use the fact that a presheaf of rings is a sheaf if and only if the underlying presheaf
of sets is sheaf.
variables (G : C
                   D)
variables [reflects_isomorphisms G]
variables [has_limits C] [has_limits D] [preserves_limits G]
variables {X : Top.{v}} (F : presheaf C X)
lemma is_sheaf_iff_is_sheaf_comp :
 presheaf.is_sheaf F presheaf.is_sheaf (F G) := _
```

1.3.2 Proj as a locally ringed space

We will prove that $\mathcal{O}_{\text{Proj},\mathfrak{p}} \cong A^0_{(\mathfrak{p})}$ by constructing a bijective ring homomorphism. Then we are finished since $A^0_{(\mathfrak{p})}$ is always a local ring.

• $\mathcal{O}_{\mathrm{Proj},\mathfrak{p}} \to A^0_{(\mathfrak{p})}$ is given by $\langle U,f \rangle \mapsto \frac{a}{b}$

where $f(\mathfrak{p}) = \frac{a}{b}$ on some open neighbourhood of \mathfrak{p} . This is formally implemented using universal property of colimit by descending $f \in \mathcal{O}(U) \mapsto f(\mathfrak{p}) \in A^0_{(\mathfrak{p})}$, hence is ring homomorphism by category theory.

• $A^0_{(\mathfrak{p})} \to \mathcal{O}_{\mathrm{Proj},\mathfrak{p}}$ is given by $\frac{a}{b} \mapsto \left\langle D(b), x \mapsto \frac{a}{b} \right\rangle$

We don't need to prove the latter is a ring homomorphism, all we need is that the latter function is the right inverse of the former one.

1.4 An affine cover

Proj can be covered by basic open sets D(f) for $f \in A_m$ with 0 < m.

Let $\mathfrak{p} \in \text{Proj}$, then $\bigoplus_{1 \leq i} A_i \not\subseteq \mathfrak{p}$, then for some $f \in \bigoplus_{1 \leq i} A_i$, $f \notin \mathfrak{p}$.

Write $f = f_1 + f_2 + \cdots$ where $f_i \in A_i$, then for some $0 < m, f_m \notin \mathfrak{p}$. Then $\mathfrak{p} \in D(f_m)$.

We need m to be strictly positive, because we will be using m = (m-1) + 1 a lot.

So we will prove that for f with positive degree m, $\operatorname{Proj}|_{D(f)} \cong \operatorname{Spec} A_f^0$ where A_f^0 is the subring of degree zero elements in the localized ring A_f , i.e.

$$A_f^0 := \left\{ \frac{a}{f^i} \, | a \in A_{mi} \right\}$$

To prove that these are isomorphic as locally ringed space, we need : - a homeomorphism h: $\operatorname{Proj}|_{D(f)} \cong \operatorname{Spec} A_f^0$ and - an isomorphism of sheaf $h_*\mathcal{O}_{\operatorname{Proj}|_{D(f)}} \cong \mathcal{O}_{\operatorname{Spec} A_f^0}$

In the following, we will fix an $f \in A_m$ with 0 < m.

1.4.1 Proj $|_{D(f)} \to \operatorname{Spec} A_f^0$

Given an $\mathfrak{p} \in \operatorname{Proj}|_{D(f)}$, i.e. a relevant homogeneous prime ideal in A, we need a point in $\operatorname{Spec} A_f^0$, i.e. a prime ideal.

So let's define

$$h(\mathfrak{p}) := \operatorname{span}\left\{\frac{g}{1}|g \in \mathfrak{p}\right\} \cap A_f^0 = \operatorname{span}\left\{\frac{g}{f^i}|g \in \mathfrak{p} \cap A_{mi}\right\}$$

Then we need to check: - $h(\mathfrak{p})$ is prime: - $h(\mathfrak{p}) \neq A_f^0$; - if $x_1 x_2 \in h(\mathfrak{p})$, then either $x_1 \in h(\mathfrak{p})$ or $x_2 \in h(\mathfrak{p})$; - h is continuous with respect to Zariski topology.

 $h(\mathfrak{p}) \neq A_f^0$ If $h(\mathfrak{p}) = A_f^0$, then $1 \in \operatorname{span}\left\{\frac{g}{1}|g \in \mathfrak{p}\right\}$. So write

$$1 = \sum_{i} \frac{a_i}{f^{n_i}} \frac{g_i}{1}.$$

By multiplying a suitable power of f, we get

$$\frac{f^N}{1} = \frac{\sum_i a_i g_i f^{k_i}}{1}$$

So $f^M f^N = f^M \sum_i a_i g_i f^{k_i}$, since the right handside is in \mathfrak{p} , the left handside is in \mathfrak{p} too. Contradiction.

if $x_1x_2 \in h(\mathfrak{p})$, then either $x_1 \in h(\mathfrak{p})$ or $x_2 \in h(\mathfrak{p})$ Write $x_1 = \frac{a_1}{f^{n_1}}$ and $x_2 = \frac{a_2}{f^{n_2}}$, then $\frac{a_1a_2}{f^{n_1+n_2}} \in \operatorname{span}\left\{\frac{g}{1}|g \in \mathfrak{p}\right\}$, so write

$$\frac{a_1 a_2}{f^{n_1 + n_2}} = \sum_{i} \frac{c_i}{f^{n_i}} \frac{g_i}{1}.$$

By multiplying a suitable power of f, we get

$$\frac{a_1 a_2 f^N}{1} = \frac{\sum_i c_i g_i f^{k_i}}{1}.$$

So $a_1a_2f^Nf^M=f^M\sum_i c_ig_if^{k_i}$, since right handside is in \mathfrak{p} and $f\not\in\mathfrak{p}$, either $a_1\in\mathfrak{p}$ or $a_2\in\mathfrak{p}$.

continuity Since Spec A_f^0 also has a topological basis of basic open set, we only need to consider preimage of basic open sets. Take $\frac{a}{f^n}$, then $h^{-1}\left(D\left(\frac{a}{f^n}\right)\right) = D(f) \cap D(a)$.

 $D(f)\cap D(a)\subseteq h^{-1}\left(D\left(\frac{a}{f^n}\right)\right)$ because if $y\in D(f)\cap D(a)$ and $\frac{a}{f^n}\in h(y)$, then

$$\frac{a}{f^n} = \sum_{i} \frac{c_i}{f^{n_i}} \frac{g_i}{1}$$

Then by multiplying suitable powers of f,

$$\frac{af^N}{1} = \frac{\sum_i c_i g_i f^{m_i}}{1}$$

then this implies $a \in y$, contradiction.

If $h(y) \in D\left(\frac{a}{f^n}\right)$ and $a \in y$, then $\frac{a}{1} \in h(y)$, contradiction because $\frac{a}{f^n} = \frac{a}{1} \frac{1}{f^n} \in h(y)$.

1.4.2 Spec $A_f^0 \to \text{Proj }|_{D(f)}$

In this case, given a prime ideal in A_f^0 we need to construct an relevant homogeneous prime ideal of A. We define the following

$$g: x \mapsto \left\{ a \mid \text{for all } i \in \mathbb{N}, \frac{a_i^m}{f^i} \in x \right\}.$$

Then we need to prove that - g(x) is an ideal; - g(x) is homogeneous; - g(x) is prime; - g(x) is relevant; - g(x) is continuous.

- g(x) is an ideal $0 \in g(x)$
- g(x) is an ideal if $a, b \in g(x)$, then $a + b \in g(x)$ because

$$\left(\frac{(a_i + b_i)^m}{f^i}\right)^2 = \frac{(a_i + b_i)^{2m}}{f^{2i}}$$

$$= \frac{\sum_{j=0}^{2m} {2m \choose j} a_i^j b_i^{2m-j}}{f^{2i}}$$

$$= \sum_{j=0}^{2m} {2m \choose j} \frac{a_i^j b_i^{2m-j}}{f^{2i}}$$

if $m \leq j$, we write

$$\frac{a_{i}^{j}b_{i}^{2m-j}}{f^{2i}} = \frac{a_{i}^{m}}{f^{i}}\frac{a_{i}^{j-m}b_{i}^{2m-j}}{f^{i}};$$

otherwise, we write

$$\frac{a_i^j b_i^{2m-j}}{f^{2i}} = \frac{b_i^m}{f^i} \frac{a_i^j b_i^{m-j}}{f^i}$$

g(x) is an ideal if $a, b \in A$ and $b \in g(x)$, then $ab \in g(x)$. We induction on a - if a = 0, then $(ab)_i = 0$; - if $a \in A_n$ and $n \leq i$ then $(ab)_i = ab_{n-i}$; - if the result hold for a_1, a_2 , then $(a_1 + a_2)b = a_1b + a_2b \in g(x).$

g(x) is homogeneous If $a \in g(x)$ then for any $i \in \mathbb{N}$, $a_i \in g(x)$, for $(a_i)_i = a_i$ or 0.

g(x) is prime For a homogeneous ideal, prime condition is equivalent to being homogeneously prime, i.e. \mathfrak{p} is prime if and only if $1 \notin \mathfrak{p}$ and for any $a \in A_i$ and $b \in A_j$, $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. $1 \notin g(x)$ because the zeroth projection of 1 is 1.

Suppose $a \in A_i$ and $b \in A_j$, suppose $a, b \notin g(x)$ then $\frac{a_n^m}{f^n} \notin x$ for some $n \in \mathbb{N}$ and $\frac{b_k^m}{f^k} \notin x$ for some $k \in \mathbb{N}$. Then n = i for otherwise $0 \notin x$ and similarly k = j. So $\frac{(ab)_{i+j}^m}{f^{i+j}} = \frac{a_i^m}{f^i} \frac{b_j^m}{f^j} \notin x$.

g(x) is relevant If $\bigoplus_{1 \le i} A_i \le g(x)$ then

- f ∉ g(x), for otherwise 1 = fm/fm ∈ x, but x ≠ Af
 also f ∈ ⊕_{1≤i} A_i, since f₀ = 0. Contradicting ⊕_{1≤i} A_i ≤ g(x) and f ∉ g(x).

 $h \circ g = 1$

• $h(g(x)) \le x$ because if $z \in h(g(x))$ then $z \in \text{span}\left\{\frac{c}{f^i} | c \in g(x) \cap A_{mi}\right\}$. So we write

$$z = \sum_{i} \frac{a_i}{f^{n_i}} \frac{c_i}{f^{k_i}}$$

since $c_i \in g(x) \cap A_{mk_i}, \frac{c_i^m}{f^{mk_i}} \in x$, so $\left(\frac{c_i}{f^{k_i}}\right)^m \in x$, so we are done since x is prime.

• $x \leq h(g(x))$ because if $\frac{a}{f^k} \in x$ for $a \in A_{mk}$, then $a \in g(x)$ for $\frac{a_i^m}{f^i} = \frac{a^m}{f^{mk}} = \left(\frac{a}{f^k}\right)^m \in x$ if i = mk or 0 otherwise. Thus $\frac{a}{f^k} \in \text{span}\left\{\frac{c}{1}|c \in g(x)\right\} \cap A_f^0$ since $\frac{a}{f^k} = \frac{a}{1}\frac{1}{f^k}$.

 $g \circ h = 1$

• $g(h(x)) \leq x$. If $z \in g(h(x))$, we need to show $z_i \in x$. Since $\frac{z_i^m}{f^i} \in h(x)$, we write

$$\frac{z_i^m}{f^i} = \sum_j \frac{c_j}{f^{n_j}} \frac{d_j}{1},$$

with $d_j \in x$, by multiplying a suitable power of f, we get

$$z_i^m f^N = \sum_j c_j d_j f^{N_j}.$$

So $z_i \in x$.

• $x \leq g(h(x))$. If $z \in x$, then $z_i \in x$ because x is homogeneous. So $\frac{z_i^m}{f^i} = \frac{1}{f^i} \left(\frac{z_i}{1}\right)^m \in h(x)$ because $\frac{z_i}{1} \in h(x)$.

Now we know that h and g are both bijective.

continuity $\operatorname{Proj}_{D(f)}$ has a basis of the form $D(f) \cap D(a)$, so we check preimages of these are open. We consider $h(D(f) \cap D(a)) = h\left(D(f) \cap \bigcup_i D(a_i)\right) = \bigcup_i h(D(f) \cap D(a_i))$. Each $h(D(f) \cap D(a_i))$ is open because $h(D(f) \cap D(a_i)) = D\left(\frac{a_i^m}{f^i}\right)$ in $\operatorname{Spec} A_f^0$. To prove $h(D(f) \cap D(a_i)) = D\left(\frac{a_i^m}{f^i}\right)$, it is sufficient to prove $h^{-1}(D\left(\frac{a_i^m}{f^i}\right)) = D(f) \cap D(a)$ and this proven in continuity of h.

Now we only need to prove the preimage of $D(f) \cap D(a)$ is $h(D(f) \cap D(a))$, this can be easily proved by the fact that $h \circ g$ and $g \circ h$ are both identity.

Thus we have proven that $\operatorname{Proj}|_{D(f)} \cong \operatorname{Spec} A_f^0$ as topological spaces.

1.5 $\phi: h_*\mathcal{O}_{\operatorname{Proj}|_{D(f)}} \to \mathcal{O}_{\operatorname{Spec} A^0_f}$

Fix an open set $U \subseteq \operatorname{Spec} A_f^0$, so we need a ring homomorphism $\mathcal{O}_{\operatorname{Proj}|_{D(f)}}(h^{-1}(U)) \to \mathcal{O}_{\operatorname{Spec} A_f^0}(U)$.

Fix a $s:\prod_{z\in h^{-1}(U)}A^0_{(z)}$. If $x\in U$, then $g(x)\in h^{-1}(U)$. Then we have $s(g(x))=\frac{n}{d}\in A^0_{(g(x))}$ for some $n,d\in A_i$.

Thus define

$$\phi_U(s)(x) = \frac{\frac{nd^{m-1}}{f^i}}{\frac{d^m}{f^i}}.$$

One can check that this is well defined. Assuming that this is indeed a ring homomorphism, it is easy to check the following diagram commute.

$$\mathcal{O}_{\operatorname{Proj}|_{D(f)}}(h^{-1}(U)) \xrightarrow{\phi_{U}} \mathcal{O}_{\operatorname{Spec}A_{f}^{0}}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{\operatorname{Proj}|_{D(f)}}(h^{-1}(V)) \xrightarrow{\phi_{V}} \mathcal{O}_{\operatorname{Spec}A_{f}^{0}}(V)$$

1.5.1 $\phi_U(1)(x) = 1$

Suppose $1 = s(g(1)) = \frac{n}{d}$ where $n, d \in A_i$, so for some $c \notin g(1)$, nc = dc. Since $c \notin g(1)$, there is some $j \in \mathbb{N}$, $\frac{c_j^m}{f^j} \notin x$. Then $(nc)_{i+j} = (dc)_{i+j} = nc_j = dc_j$. Then

$$\frac{c_j^m}{f^j} \frac{nd^{m-1}}{f^i} = \frac{c_j^m nd^{m-1}}{f^{i+j}} = \frac{(dc_j)^m}{f^{i+j}} = \frac{c_j^m}{f^j} \frac{d^m}{f^i},$$

i.e. $\phi_U(1)(x) = 1$.

Similarly one can prove that $\phi_U(0)(x) = 0$.

1.5.2 $\phi_U(s_1+s_2)(x) = \phi_U(s_1)(x) + \phi_U(s_2)(x)$

Let's say $s_1(g(x)) = \frac{n_1}{d_1}$ with $n_1, d_1 \in A_{i_1}, s_2(g(x)) = \frac{n_2}{d_2}$ with $n_2, d_2 \in A_{i_2}$ and $(s_1 + s_2)(g(x)) = \frac{n_{12}}{d_{12}} = \frac{n_1}{d_1} + \frac{n_2}{d_2}$ with $n_{12}, d_{12} \in A_{i_{12}}$. So our goal is to check

$$\frac{\frac{n_{12}d_{12}^{m-1}}{f^{i_{12}}}}{\frac{d_{12}^{m}}{f^{i_{12}}}} = \frac{\frac{n_{1}d_{1}^{m-1}}{f^{i_{1}}}}{\frac{d_{1}^{m}}{f^{i_{1}}}} + \frac{\frac{n_{2}d_{2}^{m-1}}{f^{i_{2}}}}{\frac{d_{2}^{m}}{f^{i_{2}}}}.$$
(1)

From $\frac{n_{12}}{d_{12}} = \frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_1 d_2 + n_2 d_1}{d_1 d_2}$, so we can find a $c \notin g(x)$, such that

$$n_{12}d_1d_2c = (n_1d_2 + n_2d_1)d_{12}c.$$

Since $c \notin g(x)$, there is some $j \in \mathbb{N}$ such that $\frac{c_j^m}{f^j} \notin x$. Then by taking the $i_1 + i_2 + i_{12} + j$ -th projection

$$n_{12}d_1d_2c_j = (n_1d_2 + n_2d_1)d_{12}c_j.$$

Using this, one can check that by multiplying $\frac{c_j^m}{f^j}$, the desired equality can be proved.

Similarly $\phi_U(s_1 s_2)(x) = \phi_U(s_1)(x)\phi_U(s_2)(x)$.

$$\frac{\frac{n_1d_1^{m-1}d_2^m}{f^{i_1+i_2}} + \frac{n_2d_2^{m-1}d_1^m}{f^{i_1+i_2}}}{\frac{d_1^md_2^m}{f^{i_1+i_2}}}$$

$$\frac{\frac{d_1^md_2^m}{f^{i_1+i_2}}}{\frac{d_1^md_2^m}{f^{i_1+i_2}}}$$

$$\frac{\frac{n_1d_1^{m-1}d_2^m + n_2d_2^{m-1}d_1^m}{f^{i_1+i_2}}}{\frac{d_1^md_2^m}{f^{i_1+i_2}}} + \frac{n_2d_2^{m-1}d_1^m}{f^{i_1+i_2}} = \frac{n_1d_1^{m-1}d_2^m + n_2d_2^{m-1}d_1^m}{\frac{f^{i_1+i_2}}{f^{i_1+i_2}}}$$

$$= \frac{\frac{n_1d_1^{m-1}d_2^m + n_2d_2^{m-1}d_1^m}{f^{i_1+i_2}}}{\frac{d_1^md_2^m}{f^{i_1+i_2}}}$$

1.5.3 $\phi_U(s)$ is locally quotient

Since s is locally quotient, for any $x \in U$, there is some open set $V \subseteq \text{Proj}$ such that $g(x) \in V \subseteq h^{-1}(U)$ such that $g(x) \in h^{-1}(U)$ such that $g(x) \in V$ such that $g(x) \in h^{-1}(U)$ such that g(

To check $\phi_U(s)$ is locally quotient, use the open subset h(V) and check that for all $z \in h(V)$

$$\phi_U(s)(z) = \frac{ab^{m-1}}{b^m}.$$

1.6 $\psi: \mathcal{O}_{\operatorname{Spec} A^0_f} \to h_* \mathcal{O}_{\operatorname{Proj}|_{D(f)}}$

Fix an open set $U \subseteq \operatorname{Spec} A^0_f$, so we need a ring homomorphism $\mathcal{O}_{\operatorname{Spec} A^0_f}(U) \to \mathcal{O}_{\operatorname{Proj}|_{D(f)}}(h^{-1}(U))$.

Let $s \in \mathcal{O}_{\operatorname{Spec} A_f^0}(U)$ and $y \in h^{-1}(U)$, then $h(y) \in U$, so we can write

$$s(h(y)) = \frac{a}{b}$$

where $a,b \in A_f^0$. Then we can write $a = \frac{n_a}{f^{i_a}}$ for some $n_a \in A_{mi_a}$ and $b = \frac{n_b}{f^{i_b}}$ for some $n_b \in A_{mi_b}$.

Then we can define

$$\psi_U(s)(y) = \frac{n_a f_b^i}{n_b f^{i_a}}$$

.

One can check this is well defined. Assuming that this is a ring homomorphism, it is easy to check the following diagram commute.

$$\mathcal{O}_{\operatorname{Spec} A_f^0}(U)) \xrightarrow{\psi_U} \mathcal{O}_{\operatorname{Proj}|_{D(f)}}(h^{-1}(U))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{\operatorname{Spec} A_f^0}(V)) \xrightarrow{\psi_V} \mathcal{O}_{\operatorname{Proj}|_{D(f)}}(h^{-1}(V))$$

1.6.1 $\psi_U(1)(y) = 1$

Suppose $\frac{1}{1} = 1(h(y)) = \frac{a}{b}$ where $a, b \in A_f^0$, then for some $\frac{c}{f^l} \notin h(y)$

$$\frac{n_a c}{f^{i_a + l}} = \frac{n_b c}{f^{i_b + l}}$$

Thus, for some $n_1 \in \mathbb{N}$

$$n_a c f^{i_b + l + n_1} = n_b c f^{i_a + l + n_1}$$

Thus

$$\psi_U(1)(y) = \frac{n_a f^{b_i}}{n_b f^{i_a}} = 1.$$

Similarly $\psi_U(0)(y) = 0$.

1.6.2 $\psi_U(s_1s_2)(y) = \psi_U(s_1)(y) \cdot \psi_U(s_2)(y)$

Let's write

$$s_1(h(y)) = \frac{\frac{a_1}{f^{i_1}}}{\frac{b_1}{f^{j_1}}}, s_2(h(y)) = \frac{\frac{a_2}{f^{i_2}}}{\frac{b_2}{f^{i_2}}}, (s_1s_2)(h(y)) = \frac{\frac{a_{12}}{f^{i_{12}}}}{\frac{b_{12}}{f^{j_{12}}}}.$$

Then $\frac{\frac{a_1 a_2}{f^{i_1+i_2}}}{\frac{b_1 b_2}{f^{j_1+j_2}}} = \frac{\frac{a_{12}}{f^{i_{12}}}}{\frac{b_{12}}{f^{j_{12}}}}$, i.e. for some $\frac{c}{f^l}$, we have

$$\frac{a_1 a_2 b_{12} c}{f^{i_1 + i_2 + j_{12} + l}} = \frac{a_{12} b_1 b_2 c}{f^{i_{12} + j_1 + j_2 + l}},$$

i.e. for some $L \in \mathbb{N}$, we have

$$a_1 a_2 b_{12} c f^{i_{12} + j_1 + j_2 + l + L} = a_{12} b_1 b_2 c f^{i_1 + i_2 + j_{12} + l + L}.$$

We can use this to prove that

$$\frac{a_{12}f^{j_{12}}}{b_{12}f^{i_{12}}} = \frac{a_1f^{j_1}}{b_1f^{i_1}} \cdot \frac{a_2f^{j_2}}{b_2f^{i_2}}.$$

Similarly, we can prove that $\psi_U(s_1 + s_2)(y) = \psi_U(s_1)(y) + \psi_U(s_2)(y)$.

1.6.3 $\psi_U(s)$ locally is fraction

Since s locally is a fraction, there are open sets $h(y) \in V \subseteq U$, such that for all $z \in V$,

$$s(z) = \frac{\frac{a}{f^{l_1}}}{\frac{b}{f^{l_2}}}.$$

Then we use $h^{-1}(V)$ and verify that locally

$$\psi_U(s)(y) = \frac{af^{l_2}}{bf^{l_1}}.$$

1.7 $\psi \circ \phi = 1$

Let $s \in \mathcal{O}_{\text{Proj}|_{D(f)}}(h^{-1}(U))$, then for $x \in h^{-1}(U)$

$$\phi_U(s) = x \mapsto \frac{\frac{nd^{m-1}}{f^i}}{\frac{d^m}{f^i}},$$

where $s(x) = \frac{n}{d}$.

Thus

$$\psi_U(\phi_U(s))(x) = \frac{nd^{m-1}f^i}{d^mf^i} = \frac{n}{d} = s(x)$$

1.8 $\phi \circ \psi = 1$

Let $s \in \mathcal{O}_{\operatorname{Spec} A_f^0}(U)$, then for $x \in U$

$$\psi_U(s) = x \mapsto \frac{n_a f^{i_b}}{n_b f^{i_a}}$$

where

$$s(x) = \frac{\frac{n_a}{f^{i_a}}}{\frac{n_b}{f^{i_b}}}.$$

Thus

$$\phi_U(\psi_U(s))(x) = \frac{\frac{n_a f^{i_b} (n_b f^{i_a})^{m-1}}{f^j}}{\frac{(n_b f^{i_a})^m}{f^j}} = \frac{\frac{n_a}{f^{i_a}}}{\frac{n_b}{f^{i_b}}} = s(x).$$