

Multiple Regression

Lecture 7

STA 371G

How would you know how much to pay for a house?

How would you know how much to pay for a house? Zillow? How do they know?

How would you know how much to pay for a house? Zillow? How do they know?

- Square feet
- Year built
- # of rooms

- Distance to downtown
- Crime rate
- Pollution

Boston house price data (by census tract, 1970)

- MEDV: Median Price (response)
- LONG: Longitude
- LAT: Latitude
- CRIME: Per capita crime rate
- ZONE: Proportion of large lots
- INDUS: Proportion of non-retail business acres
- NOX: Nitrogen Oxide concentration

- ROOM: Average # of rooms
- AGE: Proportion of built before 1940
- DIST: Distance to employment centers
- RADIAL: Accessibility to highways
- TAX: Tax rate (per \$10K)
- PTRATIO: Pupil-to-teacher ratio
- LSTAT: Proportion of "lower status"

Can you guess top three factors?

Distribution of house prices (MEDV)

```
> hist(boston$MEDV, col='green',
+ main='', xlab='Census Tract Median House Price')
```


Multiple Regression Model

We model the median price in a census tract (y_i = median price in ith tract) as a linear function of multiple predictors, plus some error.

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{13} x_{i13} + \epsilon_i$$

	eta_0	β_1	β_2	•••	$oldsymbol{eta}_{13}$	
		LAT	LON	•••	LSTAT	error
<i>y</i> ₁	1	X ₁₁	x ₁₂		X _{1,13}	ϵ_1
y ₂	1	x ₂₁	X ₂₂		X _{2,13}	ϵ_2
				•••		

Multiple Regression Model

We model the median price in a census tract (y_i = median price in ith tract) as a linear function of multiple predictors, plus some error.

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{13} x_{i13} + \epsilon_i$$

	eta_0	β_1	eta_2	•••	$oldsymbol{eta}_{13}$	
		LAT	LON		LSTAT	error
У1	1	X ₁₁	X ₁₂		X _{1,13}	ϵ_1
У2	1	x ₂₁	X ₂₂		X _{2,13}	ϵ_2
				•••		

We find $\hat{\beta}_0, \ldots, \hat{\beta}_{13}$ to minimize the residuals $(\hat{y}_i - y_i)$

```
> model <- lm(MEDV ~ LON+LAT+CRIME+ZONE+INDUS+NOX+ROOM+AGE+DIST
                   +RADIAL+TAX+PTRATIO+LSTAT, data=boston)
> summary(model$residuals)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
-258.10 -57.34 -13.64 0.00 39.61 531.30
> summary(model)$r.squared
[1] 0.7305487
> summary(model)$adj.r.squared
[1] 0.7234291
```

This is a high R^2 compared to the prior examples!

Keep an eye on the Adjusted-R²...

Here is how the predictors contribute to the estimation:

```
> round(summary(model)$coefficients,3)
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
           -10815.107
                       6202.196
                                 -1.744
                                          0.082
LON
             -100.538
                         68.540 -1.467 0.143
LAT
              105.814
                         75.440 1.403
                                          0.161
CRIME
               -2.498
                          0.666 -3.752
                                          0.000
ZONE
               0.921
                          0.283 3.257
                                          0.001
INDUS
                0.448
                          1.267 0.353
                                          0.724
NOX
             -320.021
                         82.010
                                 -3.902
                                          0.000
ROOM.
               72.906
                          8.530
                                 8.547
                                          0.000
AGE
               0.167
                          0.273 0.612
                                          0.541
DIST
                          4.296
                                          0.000
              -27.490
                                 -6.399
RADIAL
              6.274
                          1.363 4.604
                                          0.000
TAX
               -0.287
                          0.076
                                 -3.770
                                          0.000
PTRATIO
              -18.304
                          2.802 -6.533
                                          0.000
LSTAT
              -11.416
                          1.022 -11.169
                                          0.000
```

Here is how the predictors contribute to the estimation:

```
> round(summary(model)$coefficients,3)
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
          -10815.107
                     6202.196
                             -1.744
                                      0.082
LON
            -100.538
                      68.540 -1.467 0.143
LAT
            105.814
                      75.440 1.403 0.161
CRIME
             -2.498 0.666 -3.752 0.000
ZONE
              0.921
                       0.283 3.257 0.001
INDUS
              0.448
                       1.267 0.353
                                     0.724
NOX
            -320.021
                      82.010 -3.902
                                     0.000
ROOM.
             72.906
                       8.530 8.547
                                      0.000
AGE
              0.167
                       0.273 0.612
                                      0.541
DIST
                       4.296
                                      0.000
            -27.490
                             -6.399
RADTAI
            6.274
                       1.363 4.604
                                     0.000
TAX
            -0.287
                       0.076 -3.770
                                     0.000
PTRATIO
            -18.304
                       2.802 -6.533
                                      0.000
ISTAT
            -11.416
                       1.022 -11.169
                                      0.000
```

INDUS, AGE, LAT and LON seem to be statistically insignificant. Should we omit them altogether?

P-value of a predictor shown in the summary is in the marginal sense!

Omitting other predictors might increase the significance (decrease the P-value) of a statistically insignificant predictor.

```
> model red <- lm(MEDV ~ LON+LAT+INDUS+AGE, data=boston)</pre>
> round(summary(model red)$coefficients,3)
             Estimate Std. Error t value Pr(>|t|)
                      8559.058
                                -6.347
                                         0.000
(Intercept) -54327.834
LON
             -709.317
                        92.859 -7.639 0.000
LAT
             107.180 111.630 0.960 0.337
INDUS
            -11.818
                         1.305 -9.052 0.000
AGE
              -0.236 0.324 -0.727 0.468
> summary(model red)$r.squared
[1] 0.3203884
```

LON and INDUS look like a big deal now, although they do not explain as much with $R^2 = 0.32$.

Let's start omiting one by one.

INDUS has been omitted.

 R^2 has not changed too much, Adjusted- R^2 has increased a bit.

```
> round(summary(model)$coefficients,3)
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -11078.359
                      6151.843
                                -1.801
                                         0.072
LON
             -104.687
                        67.467 -1.552 0.121
LAT
             104.977
                        75.335 1.393
                                         0.164
CRIME
              -2.504
                         0.665
                                -3.766
                                         0.000
ZONE
                         0.280
                                3.242
                                         0.001
               0.908
NOX
             -311.363
                        78.196
                                -3.982
                                         0.000
ROOM
              72.587
                        8.474
                                8.566
                                         0.000
AGE
               0.171
                         0.273
                                0.626
                                         0.531
DIST
             -27.725
                         4.240
                                -6.539
                                         0.000
RADTAL
               6.137
                         1.305 4.703
                                         0.000
TAX
              -0.275
                         0.069
                                -4.005
                                         0.000
PTRATIO
             -18.137
                         2.759
                                -6.573
                                         0.000
LSTAT
             -11.391
                         1.019 -11.182
                                         0.000
```

AGE still seems insignificant.

AGE has been omitted.

 R^2 is again about the same, and Adjusted- R^2 has increased a bit.

> round(summary(model)\$coefficients,3)

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -10647.181
                       6109.452
                                 -1.743
                                          0.082
LON
              -97.364
                         66.406 -1.466 0.143
LAT
              107.052
                         75.216 1.423
                                          0.155
CRTMF
                                          0.000
               -2.513
                          0.664
                                 -3.782
ZONE
                0.891
                          0.279 3.199
                                          0.001
NOX
             -300.532
                         76.214
                                 -3.943
                                          0.000
               73.744
R00M
                          8.265 8.922
                                          0.000
DIST
              -28.594
                          4.004
                                          0.000
                                 -7.141
RADIAL
               6.089
                          1.302 4.677
                                          0.000
TAX
               -0.274
                          0.069 -3.986
                                          0.000
PTRATTO
              -18.104
                          2.757
                                 -6.566
                                          0.000
LSTAT
              -11.178
                          0.959 -11.651
                                          0.000
```

LAT is next.

LAT has been omitted.

Both \mathbb{R}^2 and Adjusted- \mathbb{R}^2 have reduced. But still not too bad.

```
> round(summary(model)$coefficients,3)
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
           -5072.211
                      4693.369 -1.081
                                          0.280
LON
             -82.750
                         65.675 -1.260
                                          0.208
CRTMF
              -2.507
                         0.665 -3.770
                                          0.000
ZONE
               0.874
                         0.279 3.137
                                          0.002
NOX
            -318.435
                         75.247 -4.232
                                          0.000
ROOM
              73.595
                         8.273 8.896
                                          0.000
DIST
                         3.933 -7.549
                                          0.000
             -29.692
RADIAL
               5.854
                          1.293 4.529
                                          0.000
TAX
              -0.272
                         0.069 -3.955
                                          0.000
PTRATIO
             -18.212
                         2.759 -6.601
                                          0.000
LSTAT
             -11.062
                         0.957 -11.560
                                          0.000
```

Bye LON...

LON has been omitted.

Both R^2 and Adjusted- R^2 have reduced. But that's OK.

```
> round(summary(model)$coefficients,3)
           Estimate Std. Error t value Pr(>|t|)
           840.065
(Intercept)
                       99.001
                               8.485
                                        0.000
CRIME
                                        0.000
             -2.566
                        0.664 -3.866
70NF
              0.922
                        0.276 3.338
                                        0.001
NOX
           -346.926
                       71.811
                               -4.831
                                        0.000
ROOM.
             74.243
                        8.262 8.986
                                        0.000
DIST
            -31.050
                        3.785
                               -8.203
                                        0.000
RADIAL
             6.000
                        1.288 4.658
                                        0.000
TAX
            -0.265
                        0.069
                              -3.870
                                        0.000
PTRATIO
            -19.280
                        2.627 -7.339
                                        0.000
LSTAT
                        0.957 -11.563
                                        0.000
            -11.072
```

Notice what happened to the intercept. LON (and perhaps the others) was acting like an intercept!

When to omit, when to keep?

We often prefer to omit statistically insignificant variables. Because:

- The model gets simpler.
- Insignificant variables may lead to incorrect interpretations (as in LON).
- Especially when data is small, insignificant variables harm the quality of the model.

When to omit, when to keep?

We often prefer to omit statistically insignificant variables. Because:

- The model gets simpler.
- Insignificant variables may lead to incorrect interpretations (as in LON).
- Especially when data is small, insignificant variables harm the quality of the model.