Задача 1°. (Теорема Вейерштрасса) Докажите, что любая ограниченная монотонная последовательность сходится.

Задача 2. Докажите, что последовательность (x_n) сходится, и найдите её предел, если **a)** $x_n = \frac{a^n}{n!}, \ a>0;$

a)
$$x_n = \frac{a^n}{n!}, a > 0;$$

6)
$$x_1 = \sqrt{2}, x_2 = \sqrt{2\sqrt{2}}, x_3 = \sqrt{2\sqrt{2\sqrt{2}}}, \dots;$$

B)
$$x_1 = \sqrt{2}, x_2 = \sqrt{2 + \sqrt{2}}, x_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \dots;$$

r)
$$x_1 = \frac{1}{2}, x_{n+1} = x_n - x_n^2.$$

Задача 3. Докажите, что существует предел $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \right)$.

Задача 4°. (*Число е*) Докажите, что:

а) последовательность $x_n = \left(1 + \frac{1}{n}\right)^n$ сходится (её предел обозначают буквой e);

$$\mathbf{6)} \lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = e^k \quad (k \in \mathbb{N});$$

$$\mathbf{B}) \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e};$$

r)*
$$\lim_{n\to\infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right) = e.$$

Определение 1. Число a называется $npedenbhoù moчкой последовательности <math>(x_n)$, если для всякого числа $\varepsilon > 0$ и для любого $k \in \mathbb{N}$ существует такое натуральное n > k, что выполняется неравенство $|x_n - a| < \varepsilon$.

Формально: $\forall \varepsilon > 0 \ \forall k \in \mathbb{N} \ \exists n > k \colon |x_n - a| < \varepsilon$.

Определение 2. Точка a называется $npedenhoй точкой последовательности <math>(x_n)$, если любая окрестность точки a содержит бесконечно много точек последовательности (x_n) .

Задача 5. Докажите эквивалентность определений 1 и 2.

Задача 6. а) Докажите, что если последовательность имеет предел, то этот предел является предельной точкой и других предельных точек нет.

б) Верно ли, что если последовательность имеет единственную предельную точку, то она (последовательность) является сходящейся?

Задача 7. Для следующих последовательностей укажите все их предельные точки:

a)
$$x_n = \frac{n+1}{n}$$
; 6) $x_n = (-1)^n$; B) $x_n = n$; r) $x_n = n^{(-1)^n}$.

1	2 a	2 6	2 B	2 Г	3	4 a	4 б	4 B	4 Г	5	6 a	6 6	7 a	7 б	7 B	$\begin{array}{c c} 7 \\ \Gamma \end{array}$

Листок №18

Задача 8. Существует ли последовательность, множество предельных точек которой есть

а) $\{1, 2, ..., n\}$ $(n \in \mathbb{N})$; б) \mathbb{N} ; в) [0, 1]; \mathbf{r})° (0, 1); д) \mathbb{Q} ; е) \mathbb{R} ?

Задача 9. Докажите, что

а) если a является предельной точкой последовательности, то из этой последовательности можно выделить подпоследовательность, сходящуюся к a;

- б) всякая ограниченная последовательность имеет хотя бы одну предельную точку;
- **в**)° (*Теорема Больцано-Вейерштрасса*) из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Определение 3. Последовательность (x_n) называется $\phi y n \partial a m e n m a n b n o d i, если для всякого числа <math>\varepsilon > 0$ существует такое $k \in \mathbb{N}$, что для любых натуральных m и n, больших k, выполняется неравенство $|x_m - x_n| < \varepsilon$.

Формально: $\forall \, \varepsilon > 0 \,\, \exists \, k \in \mathbb{N} \,\, \forall \, m,n > k \colon |x_m - x_n| < \varepsilon.$

Задача 10°. (*Критерий Коши*) а) Докажите, что сходящаяся последовательность является фундаментальной; б) Докажите, что фундаментальная последовательность имеет предел.

Задача 11. (Признак Лейбница сходимости рядов) Дана бесконечно малая монотонная последовательность (x_n) . Докажите, что существует предел $\lim_{n\to\infty}\sum_{k=1}^n (-1)^k x_k$.

Задача 12. Последовательность (x_n) строится по следующему закону: первый член выбирается произвольно, а каждый следующий вычисляется по формуле $x_{n+1} = ax_n + 1$. При каких a последовательность (x_n) имеет предел?

Задача 13. Про последовательность (x_n) известно, что для любого n верно $|x_n - x_{n+1}| \leqslant \frac{1}{2^n}$. Докажите, что она сходится.

Задача 14. Последовательность (x_n) такова, что существует предел $\lim_{n\to\infty}\sum_{k=1}^n|x_n|$ (ряд cxodumcs абсолютно). Докажите, что тогда существует предел $\lim_{n\to\infty}\sum_{k=1}^n x_n$.

Задача 15°. Докажите, что в упорядоченном поле F полнота эквивалентна

- а) теореме Больцано-Вейерштрасса;
- б) теореме Вейерштрасса.

8 a	8 6	8 B	8 Г	8 Д	8 e	9 a	9 б	9 B	10 a	10 б	11	12	13	14	15 a	15 б

Листок №18

```
<?xml version='1.0'?>
listok number = '18' description='Предел последовательности — 2' type='1' date='12.2013'>
 cproblem group='1' type='3'>1</problem>
 cproblem group='2' type='0'>2a</problem>
 problem group='2' type='0'>26</problem>
 cproblem group='2' type='0'>2B</problem>
 problem group='2' type='0'>2r</problem>
 cproblem group='3' type='0'>3</problem>
 cproblem group='4' type='3'>4a</problem>
 problem group='4' type='3'>46</problem>
 cproblem group='4' type='3'>4B</problem>
 problem group='4' type='3'>4r</problem>
 cproblem group='5' type='0'>5</problem>
 cproblem group='6' type='0'>6a</problem>
 problem group='6' type='0'>66</problem>
 cproblem group='7' type='0'>7a</problem>
 cproblem group='7' type='0'>76</problem>
 cproblem group='7' type='0'>7B</problem>
 problem group='7' type='0'>7r</problem>
 cproblem group='8' type='0'>8a</problem>
 problem group='8' type='0'>86</problem>
 cproblem group='8' type='0'>8B</problem>
 cproblem group='8' type='3'>8r</problem>
 problem group='8' type='0'>8д</problem>
 cproblem group='8' type='0'>8e</problem>
 cproblem group='9' type='0'>9a</problem>
 cproblem group='9' type='0'>96</problem>
 cproblem group='9' type='3'>9B</problem>
 cproblem group='10' type='3'>10a</problem>
 cproblem group='10' type='3'>106</problem>
 cproblem group='11' type='0'>11</problem>
 cproblem group='12' type='0'>12</problem>
 cproblem group='13' type='0'>13</problem>
 cproblem group='14' type='0'>14</problem>
 cproblem group='15' type='3'>15a</problem>
 problem group='15' type='3'>156</problem>
</listok>
```