Problem 1

Find the Norton equivalent to the left of terminals a and b of the circuit shown in the figure below.

Problem 2

Determine the voltage drop on the 3Ω resistor. See the 3Ω resistor as a load resistor. Replace the rest of the network by its Thevenin equivalent. Then calculate the voltage on the 3Ω resistor using the equivalent circuit.

Problem 3

Find the Thevenin equivalent circuit and the Norton equivalent circuit that the load sees for the circuit below.

Problem 4

Find the Thevenin equivalent and Norton equivalent of the circuit connected to R_L as shown below.

Problem 5

Find the Thevenin equivalent and the Norton equivalent of the circuit connected to R_L in the figure below, where $R_I = 10 \Omega$, $R_2 = 20 \Omega$, $R_g = 0.1 \Omega$, and $R_p = 1 \Omega$.

Problem 6

Construct the Thevenin equivalent circuit between terminals a and b. $V_s = 12 \text{ V}$, $R = 1 \text{ k}\Omega$, $R_x = 996 \Omega$.

