

Logarithms

- Video Ted talk
- https://www.youtube.com/watch?v=zzu2POfYv0Y

Define

- Logb (n) = p
- \circ b \land p = n
- Brings the scale to a manageable number

Scale

In powers	Log
power of $0 = 10^{\circ} = 1$ (single item) power of $0 = 10^{\circ} = 1$ (single item)	Log(1) = 0
power of 1 = 10 ¹	Log(10) = 1
power of $3 = 10^3 = $ thousand	Log(10^3) = 3
power of 6 = 10 ⁶ = million	Log(10^6) = 6
power of 12 = 10 ¹² = trillion	Log(10^12) = 12
power of 23 = 10 ²³ = number of molecules in a dozen grams of carbon	Log(10^23) = 23
power of 80 = 10 ⁸⁰ = number of molecules in the universe	Log(10^80) = 80

Scale

- Exponential scales are linear
- Plot them!
- Video

Use case - 1

- Log is a scale where the ratio is constant
- Logarithmic scale
- Mark 1 2 3 etc.
- ∘ Base 10 1 means 10, 2 means 100
- video

Slide Ruler activity

- A truck is 80m behind you and is going twice as fast as you, still you won't get hurt
- Ice cream sticks
- Bands
- Marker
- Log and In values
- Multiply and Divide
- Log a + log b = logab
- \circ Log a log b = loga/b
- Understand why it happens using the slide ruler
- Logarithms can make multiplication and division of large numbers easy because adding logarithms is the same as multiplying, and subtracting logarithms is the same as dividing.

Ritcher scale

- Earthquakes are measured in this scale
- Uses logarithms
- Photo

Compound interest

- \circ P (1+r) \land nt = CI
- 40Rs increases by 5% in 3 years

Other use cases

- 6 digit salary
- Speed of algorithms in CS
- Moore's law
- Memory 8GB of RAM 64 bit memory 2^64
- Benford's law (To plot populations in a bucket)
- Discrete logarithms in cryptography no way computers can solve it, discrete logarithms over chosen values has no solution

Google Page Rank

- Uses logarithms
- Rank 5 and rank 9
- Diff= 4 10^4 times more popular than rank 5
- Ranks 1-10 with loads of information