Xilinx Zynq FPGA, TI DSP, MCU 기반의 회로 설계 및 임베디드 전문가 과정

강사 - Innova Lee(이상훈) gcccompil3r@gmail.com

학생 – Hyungjoo Kim(김형주) mihaelkel@naver.com

엔코더 분석

• 엔코더 스펙

엔코더부 사양 ENCODER SPECIFICATION

항목	사양	항목	사양			
전원	5V ± 5% 0.075 A 이하	실용 회전수	0 ~ 2,000 RPM			
부호	INCREMENTEL	선재	자기 소화성을 가질 것			
분해능	432 P/R	비금속부품 재질	UL94V 이상의 것을 사용할 것			
출력 파형	단파형	온도	작동시 0 ~ +60 ℃			
출력 전압	L=0.4V / 10mA 이하 H=4V 이상	습도	작동시 0 ~ 85 %			
기동 시간	2 usec 이하	진동	작동시 0.25 G			
응답주파수	36 KHz 이하					

분해능(PR)=
$$\frac{432}{2\pi}$$
 pulse/rad

1/분해능 = $\frac{2\pi}{432}$ rad/pulse

주기 = $T_{encoder}$ $\frac{sec}{pulse}$

모터 각속도 $\omega = \frac{1}{T_{encoder}*PR}$
= $\frac{2\pi}{T_{encoder}*432}$

• Ex)

엔코더 pulse 주기 : 0.639ms

모터 각속도
$$\omega = \frac{2\pi}{0.639*10^{-3}*432}$$

= 22.7612 rad/sec

엔코더 분석

• 엔코더->모터속도 변환 코드 2π $\omega = \frac{2\pi}{T_{encoder}*432}$

```
180 void set_omega()
       /*unexpected over values ocurr in case the sampling time is too much shot or long*/
183
       if(2*M_PI/(period*432) * 1000000 > MAX_OMEGA)
184
           goto err;
185
      /*encoder's resolution : 432 P/R, period has ns, but omega should be second, so multiple 10^9*/
186
187
       omega = 2*M PI/(period*432) * 1000000; //period : ns
       omega *= 1000;
                                              // omega : rad/s
189
190 err:
191
```

모터 속도 제어

- 모터 드라이버를 통해 속도제어
- Pulse <->속도 관계 : 실험값 사용
- $\omega = 17.46073 + (duty 100) *$ 0.331994 $duty = 100 + \frac{omega 0.1746073}{0.331994}$
- 선형성이 어느정도 보장되었기 때문에, Linear approximation을 사용하지 않고 수식 하나로 해결.

```
• 코드
   165 float64 get omeaga(int duty)
   166 {
   167
         /*w = 17.46073 + (duty-100)*0.331994*/
          float64 res = 17.46073;
   168
          res += 0.331994*(duty-100);
   169
   170
          return res;
   171 }
   172 int get duty(float64 omega)
   173 {
          /*duty = (omega - 17.46073)/0.331994 + 100*/
   174
   175
          int res = 100;
          res += (int)((omega - 17.46073)/0.331994);
   176
   177
          return res;
   178 }
```

	01		▼ (a)	f_x													
- 4	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	C
1	150.459	130.748	112.969	97.187	80.558	63.937	31.196	16.337	46.132		주기	듀티	499	149.9264		<u>l</u>	
2	150.855	130.248	113.145	97.613	80.226	63.52	30.552	16.561	46.553		500	0	450	130.099			
3	149.449	130.326	112.457	97.413	80.748	64.208	32.167	17.051	46.04				400	112.7399			
4	149.286	129.784	112.55	97.413	80.713	64.542	32.254	16.5	46.597				350	97.94244			
5	150.397	130.078	112.006	97.335	80.784	64.638	31.76	15.759	46.367				300	80.68561			
6	150.397	130.28	112.887	97.422	80.85	64.772	32.034	15.778	46.369				250	64.1932			
7	150.294	130.576	113.028	97.213	81.515	64.577	31.08	17.039	46.849				200	47.69378			
8	148.98	130.404	112.969	97.239	81.417	64.356	31.553	18.082	47.075				150	32.30334			
9	150.439	129.215	112.526	97.789	80.952	63.888	32.567	18.222	47.31				100	17.46073			
10	150.128	130.435	112.018	97.517	81	63.244	31.712	17.982	46.095								
11	149.245	130.67	112.422	97.317	80.629	64.261	32.07	17.287	46.472				기울기	0.331994			
12	148.919	129.969	113.133	97.326	80.445	64.212	31.607	17.621	45.768				초기값	100	17.46073		
13	149.942	129.599	113.274	97.239	80.096	63.694	31.362	17.791	46.347				수식	w = 17.460	073 + (duty	/-100)*0.3	31994
14	150.087	130.031	112.272	97.032	80.463	63.769	32.342	17.404	45.706				비교	100	17.46073		
15	149.634	130.717	112.724	97.3	80.874	64.284	31.906	16.815	46.974					150	34.06043		
16	148.736	130.373	111.903	97.824	81.339	65.225	32.003	16.661	46.731					200	50.66013		
17	149.819	130.326	113.262	97.448	80.665	64.954	32.106	17.075	47.122					250	67.25983		
18	150.356	129.506	112.864	97.309	80.516	63.724	31.247	17.987	46.849					300	83.85953		
19	149.819	129.876	113.004	97.239	80.244	64.065	31.904	18.287	47.004					350	100.4592		
20	149.021	130.685	112.295	97.771	80.748	64.306	31.908	17.535	47.265					400	117.0589		
21	150.169	130.968	112.272	97.066	80.671	63.817	31.224	17.451	46.583					450	133.6586		
22	150.563	129.522	112.029	97.43	80.802	63.78	31.871	17.715	47.883					499	149.9263		
23	149.984	129.215	113.298	97.727	80.91	63.933	30.96	17.842	47.228								
24	149.286	130.389	112.724	97.701	81.625	64.001	31.248	17.614	47.284	160	Т						
25	150.149	130.701	112.654	97.161	81.527	63.941	32.166	16.601	46.547	140							
26	150.834	129.892	111.743	96.954	81.266	63.817	31.596	17.502	46.837								
27	149.963	129.768	112.133	96.765	81.236	65.027	32.161	18.805	46.681	120							
28	149.102	129.954	112.958	97.023	80.892	64.919	31.863	18.653	46.669	100	+		/				
29	150.439	130.389	113.028	97.283	80.802	63.806	30.913	18.748	47.314	80			/_			- 계열1	
30	150.542	130.404	112.689	97.797	80.451	63.565	32.21	17.548	47.372							JI 51	
31	150.169	130.342	111.949	97.771	80.635	63.87	32.481	17.516	47.624	60							
32	149.163	129.429	112.122	97.257	80.904	64.276	32.063	18.155	46.559	40	-	_/					
33	150.314	129.583	112.736	96.808	81.308	63.754	32.017	17.543	47.257	20							
34	150.73	130.701	113.298	96.731	80.778	63.657	30.851	17.267	46.897	20	'						
35	149.901	131.015	112.981	96.868	80.474	64.182	31.917	16.408	47.202	0	+						
36	149.265	129.923	112.887	97.43	80.084	64.432	32.389	16.967	47.049		0 100	200	300	400 500	600		

PID 제어기

PID Block diagram

 K_p : 응답속도 제어

 K_i : 정상상태 오차 제어

 K_d : 안정성 제어

•
$$u(t) = \omega_{res} - \omega_{err} K_p + \int \omega_{err} * K_i + \frac{d}{dt} \omega_{err}$$

- $\omega_{err} = \omega_{res} \omega_{goal}$
- 코드 적용

```
105
           /*pid controler*/
           u = omega - Kp*err omega + Ki*sum err + Kd*diff err;
        /*error detection, */
        err omega = omega - goal omega;
139
        cur err = err omega;
140
        /*integral err omega*/
        /*period has ms unit. so, divide 10^9*/
        sum err -= cur err*period/1000000000;
144
        /*differential err omega*/
        diff err = (prev err - cur err);
147
148
        /*update previous error*/
        prev_err = cur_err;
```

HalCoGen 설정

Driver Enable

Vim channel

• PINMUX

Special Pin Muxing

HalCoGen 설정

Driver Enable

Vim channel

• PINMUX

Special Pin Muxing

HalCoGen 설정

etPWM

eCAP1

General	ECAP1 C	onfiguration	ECAP2	Configuration	ECAP3	Configuration	ECAP4 C
Capture	Configuratio	n —					
ECAPx	c: → []	Prescale:	→ PS			CONTINUOUS	
E7	Enable Lea	ding On Capture				CONTINUOUS	
V	Eriable Loa	ding On Capture	,	Stop/Wrap	Capture:	CAPTURE_EVEN	NT3 -
Capture	1 Polarity:	RISING_EDGE	-	Res	et Count	er After Capture 1	
Capture	2 Polarity:	RISING_EDGE	-	Res	et Count	er After Capture 2	
Capture	3 Polarity:	FALLING_EDG	E +	▼ Res	et Count	er After Capture 3	
Capture	4 Polarity:	RISING_EDGE	-	Res	et Count	er After Capture 4	
Interrupt	Selection -						
Enab	ole CEVT1	Enable	CEVT2	Enable C	EVT3	Enable CE	VT4
Enab	ole CNTOVF	Enable	PRD	Enable C	:MP		

CODE

```
R HL_rti.h R HL_rti.c
Getting Started
                                                                  .c HL_etpwm.h
  2 #include <HL ecap.h>
  3 #include <HL etpwm.h>
  4 #include <HL hal stdtypes.h>
  5 #include <HL reg ecap.h>
  6 #include <HL reg etpwm.h>
  7 #include <HL reg sci.h>
  8 #include <HL sci.h>
  9 #include <HL sys core.h>
 10 #include <HL system.h>
 11 #include <stdio.h>
 12 #include <string.h>
 13 #include <math.h>
 14 #include <stdlib.h>
 16 #define MAX OMEGA 1000
 18 void send data(sciBASE t* sci, uint8* msg, int length);
 19 void set period(int period, int duty);
 20 float64 get_omeaga(int duty);
 21 int get duty(float64 omega);
 22 void set omega();
 24 float64 omega = 0.0, goal omega = 30.0;
 25 float64 duty = 0.0, period = 0.0, prev duty = 0.0;
 26 float64 sum err = 0.0, diff err = 0.0;
 27 float64 err omega = 0.0, u = 0.0;
 28 volatile float prev err = 0.0f;
 29 volatile float cur err = 0.0f;
 30 float64 prev omega = 0.0, cur omega = 0.0;
 31 int goal period = 500, goal duty = 100;
 33 void main(void)
 35 /* USER CODE BEGIN (3) */
 36
 37
       uint8 tx_msg[64] = \{0,\};
 38
 39
       float64 Kp = 1.3, Kd = 0.05, Ki = 0.1; //Ki = 0.4 Kd = 0.02
```

```
enable interrupt ();
43
44
      /* Initialise EPWM and ECAP with GUI configuration */
45
      etpwmInit();
      ecapInit():
      sciInit();
47
      /* Alternate code for configuring ETPWM and ECAP */
           /* Configure ETPWM1 */
50
      /* Set the TBCLK frequency = VCLK3 frequency = 75MHz */
      etpwmSetClkDiv(etpwmREG1, ClkDiv by 1, HspClkDiv by 1);
52
53
      /* Set the time period as 1000 ns (Divider value = (1000ns * 75MHz) - 1 = 74)*/
      etpwmSetTimebasePeriod(etpwmREG1, 74);
55
56
      /* Configure Compare A value as half the time period */
57
      etpwmSetCmpA(etpwmREG1, 37);
      /* Configure mthg module to set PWMA value as 1 when CTR=0 and as 0 when CTR=CmpA */
59
      etpwmActionQualConfig t configPWMA;
      configPWMA.CtrEqZero Action = ActionQual Set;
      configPWMA.CtrEqCmpAUp Action = ActionQual Clear;
      configPWMA.CtrEqPeriod Action = ActionQual Disabled;
      configPWMA.CtrEqCmpADown Action = ActionQual Disabled;
65
      configPWMA.CtrEqCmpBUp Action = ActionQual Disabled;
      configPWMA.CtrEqCmpBDown Action = ActionQual Disabled;
67
      etpwmSetActionQualPwmA(etpwmREG1, configPWMA);
68
69
      /* Start counter in CountUp mode */
      etpwmSetCount(etpwmREG1, 0);
      etpwmSetCounterMode(etpwmREG1, CounterMode Up);
72
      etpwmStartTBCLK();
73
      /* Configure ECAP1 */
      /* Configure Event 1 to Capture the rising edge */
      ecapSetCaptureEvent1(ecapREG1, RISING EDGE, RESET DISABLE);
77
78
      /* Configure Event 2 to Capture the falling edge */
79
       ecapSetCaptureEvent2(ecapREG1, FALLING EDGE, RESET DISABLE);
```

CODE

```
/* Configure Event 3 to Capture the rising edge with reset counter enable */
  82
        ecapSetCaptureEvent3(ecapREG1, RISING_EDGE, RESET_ENABLE);
  83
  84
        /* Set Capure mode as Continuous and Wrap event as CAP3 */
        ecapSetCaptureMode(ecapREG1, CONTINUOUS, CAPTURE EVENT3);
  86
  87
        /* Start counter */
  88
        ecapStartCounter(ecapREG1);
  89
  90
        /* Enable Loading on Capture */
  91
        ecapEnableCapture(ecapREG1);
  92
  93
        /* Enable Interrupt for CAP3 event */
  94
        ecapEnableInterrupt(ecapREG1, ecapInt_CEVT3);
  95
  96
  97
        /* ... run forever */
  98
        while(1)
  99
 100
            /*pid controler*/
 101
            u = omega - Kp*err omega + Ki*sum err + Kd*diff err;
 102
 103
            /*conversion from omega to duty cycle, to set the PWM signal's duty cycle*/
 104
            goal duty = get duty(u);
 105
            set period(goal period, goal duty);
 106
 107
            /*send the data to SCI*/
108
            sprintf(tx_msg, "omega = %.3f, duty = %d%, err = %.3f, u = %.3f, int = %.3f, diff = %.10f\r\n",
 109
                    omega, goal duty, err omega ,u, sum err, diff err); // rad/s
<u>110</u>
            send_data(sciREG1, tx msg, strlen(tx msg));
 111
 112
113 }
114
```

```
114
 115 void ecapNotification(ecapBASE t *ecap, uint16 flags)
 116 {
 117
        uint32 cap1, cap2, cap3;
 118
 119
        cap1 = ecapGetCAP1(ecapREG1);
 120
        cap2 = ecapGetCAP2(ecapREG1);
        cap3 = ecapGetCAP3(ecapREG1);
        duty = (cap2 - cap1)*1000/VCLK3 FREQ;
 123
        period = (cap3 - cap1)*1000/VCLK3_FREQ;
 124
 125
        /*calc with Encoder's specification*/
 126
 127
        set omega();
 128
 129
        /*unexpected over values ocurr in case the sampling time is too much shot or long*/
 130
        if(omega > MAX OMEGA)
 131
            goto err;
 132
 133
       /*error detection, */
        err omega = omega - goal_omega;
        cur err = err omega;
 135
 136
 137
        /*integral err omega*/
 138
        /*period has ns unit. so, divide 10^9*/
        sum_err -= cur_err*period/1000000000;
 139
 140
 141
        /*differential err omega*/
 142
        diff err = (prev err - cur err);
 143
        /*update previous error*/
 144
 145
        prev err = cur err;
 146 err:
♠147 }
```

CODE

```
149 void send_data(sciBASE_t* sci, uint8* msg, int length)
 150 {
 151
        int i;
 152
        for(i=0;i<length;i++)
 153
            sciSendByte(sci, msg[i]);
 154 }
 155
 156 void set_period(int period,int duty)
 158
        etpwmREG1->TBPRD = period;
 159
        etpwmREG1->CMPA = duty;
 160 }
 161 float64 get_omeaga(int duty)
 162 {
 163 /*w = 17.46073 + (duty-100)*0.331994*/
 164 float64 res = 17.46073;
 165 res += 0.331994*(duty-100);
 166 return res;
 167 }
 168 int get_duty(float64 omega)
 169 {
 170
       /*duty = (omega - 17.46073)/0.331994 + 100*/
 171 int res = 100;
 172 res += (int)((omega - 17.46073)/0.331994);
 173 return res;
 174 }
 175 void set_omega()
 176 {
 177
        /*unexpected over values ocurr in case the sampling time is too much shot or long*/
        if(2*M PI/(period*432) * 1000000 > MAX OMEGA)
 179
            goto err;
 180
 181
        /*encoder's resolution : 432 P/R, period has ns, but omega should be second, so divide 10^9*/
        omega = 2*M_PI/(period*432) * 1000000; //period : ns
        omega *= 1000;
 183
                                             // omega : rad/s
 184
 185 err:
▲186 }
```