北京化工大学 2016——2017 学年第二学期 《概率论与数理统计》考试试卷

一、填空题(每空3分,共21分)

1、一口袋装有10只球,其中6只是红球,4只是白球,今不放回的随机地从中同时取出2只球。则第二次抽到红球的概率是_____。

2、 若(ξ 、 η)相互独立, 它们的联合分布律为

(ξ, η)	$\eta = 1$	$\eta = 2$	$\eta = 3$
$\xi = 0$	а	1/6	1/9
$\xi = 1$	1/9	1/3	b

则 *a* =______, *b* =_____

3、 $D(\xi) = 4$, $D(\eta) = 1$, $\rho_{\xi\eta} = 0.6$,则 $D(3\xi - 2\eta) = _____$ 。

5、设 $X_1, X_2, \cdots X_n$ 为来自总体X的样本,已知 $\frac{A}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$ 是方差D(X)的无偏估计量,则A =

6、设总体 $X \sim N(\mu, \sigma^2)$, 其中参数 μ, σ^2 均未知。今抽取容量为 16 的样本,测得样本均值 $\overline{x}=10$, 样本方差 $s^2=0.16$, 求方差 σ^2 的区间估计为______(其中 $\alpha=0.05$)。(**保留小数点之后四位**)

二、(10 分)设总体 $X\sim N(\mu,\sigma^2)$,已知容量为 n 的简单样本为 X_1,X_2,\cdots,X_n ,试求均值 μ 和方差 σ^2 的极大似然估计量。

=、(10 分) 在次品率为 $\frac{1}{6}$ 的一批产品中,任意抽取 300 件,试利用中心极限定理计算在抽取的产品中次品件数在 40 到 60 间的概率。

四、 $(10\, \beta)$ 设随机变量 ξ 在[a,b) 上服从均匀分布,求 $\eta=-3\ln\xi+1$ 的概率密度。(其中 0< a< b)。

六、(12 分) 已知二维随机向量(X,Y)的密度函数 $f(x,y) = \begin{cases} ke^{-(2x+3y)}, & x>0,y>0\\ 0, &$ 其它

- 1) *k* 的取值,
- 2) 别求出X和Y的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$,并判断是否独立.
- 3) 求E(X), E(Y) 以及(X,Y)的协方差Cov(X,Y)。

七、(10 分)某装置的平均工作温度据制造厂讲是 190°、,今从一个由 16 台装置构成的随机样本得出的工作温度平均值和标准差分别为 195°C和 8°。这些数据是否提供了充分证据,说明平均工作温度比制造厂讲的要高?取 $\alpha = 0.05$,可以假定工作温度服从正态分布。

八、(12 分)设随机变量 ξ 与 η 相互独立,且在[0,2]上都服从均匀分布,若 $\zeta=\min(\xi,\eta)$,计算概率 $P\{0<\zeta<1\}$ 。

附表: 可能用到的标准正态分布的下侧分位数, χ^2 -分布, t-分布的上侧分位数:

1.
$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

х	0.12	0.40	0.50	1.20	1.55	1.645	1.96	>2.95
$\Phi(x)$	0.5478	0.6554	0.6915	0.8849	0.9394	0.9500	0.9750	1

2.
$$P\{\chi^2(n) > \chi^2_{\alpha}(n)\} = \alpha$$

$$\chi_{0.05}^{2}(15) = 24.996, \quad \chi_{0.025}^{2}(15) = 27.488, \qquad \qquad \chi_{0.975}^{2}(15) = 7.261,
\chi_{0.975}^{2}(15) = 6.262, \quad \chi_{0.05}^{2}(9) = 16.919, \qquad \chi_{0.05}^{2}(10) = 18.307, \qquad \qquad \chi_{0.10}^{2}(10) = 16,
\chi_{1}^{2}(10) = 1.44$$

$$3. P\{t(n) > t_{\alpha}(n)\} = \alpha$$

$$t_{0.05}(16) = 1.746,$$
 $t_{0.025}(16) = 2.12,$ $t_{0.05}(15) = 1.753,$ $t_{0.025}(15) = 2.1315,$ $t_{0.025}(4) = 2.1318,$ $t_{0.025}(4) = 2.7764,$

4. $P\{F(n_1, n_2) > F_{\alpha}(n_1, n_2)\} = \alpha$

 $F_{0.95}(12,15) = 2.48, F_{0.9}(12,15) = 2.02, F_{0.95}(15,12) = 2.62, F_{0.9}(15,12) = 2.1$