Solution Book of Mathematic

Ssnior 2 Part I

MELVIN CHIA

Written on 9 October 2022

Contents

12	Mari	ix and Determinant	2
	12.1	Matrix	2
		12.1.1 Exercise 14.1	3
	12.2	Matrix Addition and Substraction	3
		12.2.1 Practice 1	4
		12.2.2 Exercise 14.2	4
	12.3	Scalar Product of Matrices	5
		12.3.1 Practice 2	5
		12.3.2 Exercise 14.3	6
	12.4	Multiplication of Matrices	7
		12.4.1 Practice 3	7
		12.4.2 Exercise 14.4	7

Chapter 12

Marix and Determinant

12.1 Matrix

Definition of Matrix

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. It is generally denoted as:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

where m is the number of rows and n is the number of columns.

Each number in the matrix is called *an entry of the matrix*, the number in the i^{th} row and j^{th} column is denoted as a_{ij} . Thus, a matrix can also be denoted as $A = (a_{ij})$, or $A = (a_{ij})_{mn}$ where m is the number of rows and n is the number of columns.

A matrix with m rows and n columns is called an $m \times n$ matrix, where $m \times n$ is called the *order of the matrix*. For

example, the following matrix is a 3×4 matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

When m = n, the matrix is called a *square matrix*. For example, the following matrix is a **third-order square matrix**:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

When m = 1, the matrix is called a *row matrix*. For example, the following matrix is a **row matrix**:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

When n = 1, the matrix is called a *column matrix*. For example, the following matrix is a **column matrix**:

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Equal Matrices

Two matrices A and B are equal if they have the same order and the same entries. That is, A = B if and only if $A_{ij} = B_{ij}$ for all i and j.

Zero Matrix

The matrix with all entries equal to zero is called the *zero* matrix and is denoted as O. Zero matrix can be in any order. For exmaple, the matrix below is a 2×2 zero matrix or a second-order square zero matrix:

$$O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Identity Matrix

The matrix with all entries equal to zero except the entries on the main diagonal, which are equal to one, is called the *identity matrix* and is denoted as I. Identity matrix can be in any order. The form of an identity matrix is:

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Transpose Matrix

The transpose of a matrix A is denoted as A', A^{I} or A^{T} and is obtained by interchanging the rows and columns of A. For example, given the matrix:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

The transpose of A is:

$$A' = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Thus, we know that the transpose matrix of $m \times n$ matrix is a $n \times m$ matrix.

12.1.1 Exercise 14.1

1. State the order of the following matrices.

(a)
$$A = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Sol. A is a matrix with order 3×1 .

(b)
$$B = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 4 & 2 & 1 & 5 \end{bmatrix}$$

Sol. B is a matrix with order 2×4 .

(c)
$$C = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 3 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

Sol. C is a matrix with order 3×3 .

2. Given
$$A = \begin{bmatrix} 1 & 5 & -2 & 4 \\ 2 & -4 & 3 & 1 \\ 0 & 6 & 4 & 7 \end{bmatrix}$$
, what is a_{23} and a_{34} ?

Sol.
$$a_{23} = 3$$
 and $a_{34} = 7$.

3. If
$$\begin{bmatrix} 2 & 0 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & x \end{bmatrix}$$
, what is x ?

12.2 Matrix Addition and Substraction

Given two matrices A and B of the same order, the sum of A and B is defined as the matrix A + B whose (i, j)-th entry is the sum of the (i, j)-th entries of A and B. That is:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

The difference of A and B is defined as the matrix A - B whose (i, j)-th entry is the difference of the (i, j)-th entries of A and B. That is:

$$A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\ a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn} \end{bmatrix}$$

Note that the order of *A* and *B* must be the same. For example, the following metrices cannot be added or subtracted:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

The addition of matrices has the following properties:

- Commutative: A + B = B + A.
- Associative: (A + B) + C = A + (B + C).
- Identity: $A \pm O = A$.
- Inverse: A + (-A) = O.
- Transpose: $(A \pm B)' = A' \pm B'$.

where A, B, C are matrices of the same order and O is the zero matrix of the same order as A.

Given a matrix A, if A = A', then A is called a *symmetric matrix*. If A = -A', then A is called an *antisymmetric matrix*.

For any given matrix A, A + A' is symmetric, and A - A' is antisymmetric.

12.2.1 Practice 1

Let
$$A = \begin{bmatrix} -4 & 2 & -7 \\ 5 & 4 & 0 \\ 3 & -2 & -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 1 & -5 \\ 4 & -1 & 1 \end{bmatrix}$. Find the following:

1. A + B'. **Sol.**

$$B' = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & -1 \\ 2 & -5 & 1 \end{bmatrix}$$

$$A + B' = \begin{bmatrix} -3 & 5 & -3 \\ 8 & 5 & -1 \\ 5 & -7 & -2 \end{bmatrix}$$

2. (A-B)'
Sol.

$$A - B = \begin{bmatrix} -5 & -1 & -9 \\ 2 & 3 & 5 \\ -1 & -1 & -4 \end{bmatrix}$$

$$(A-B)' = \begin{bmatrix} -5 & 2 & -1 \\ -1 & 3 & -1 \\ -9 & 5 & -4 \end{bmatrix}$$

12.2.2 Exercise 14.2

Let $P = \begin{bmatrix} -5 & 4 & 2 \\ 6 & -4 & 3 \\ -2 & 1 & 6 \end{bmatrix}$ and $Q = \begin{bmatrix} 1 & -2 & 0 \\ 3 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$. Evaluate the following:

1. (P+Q)' **Sol.**

$$P + Q = \begin{bmatrix} -4 & 2 & 2\\ 9 & -2 & 4\\ -2 & 1 & 10 \end{bmatrix}$$

$$\therefore (P+Q)' = \begin{bmatrix} -4 & 9 & -2 \\ 2 & -2 & 1 \\ 2 & 4 & 10 \end{bmatrix}$$

2. Q' - P'

$$Q - P = \begin{bmatrix} 6 & -6 & 2 \\ -3 & 6 & -2 \\ 2 & -1 & -2 \end{bmatrix}$$

$$\therefore Q' - P' = (Q - P)' = \begin{bmatrix} 6 & -3 & 2 \\ -6 & 6 & -1 \\ 2 & -2 & -2 \end{bmatrix}$$

$$(P' - Q)'$$

Sol.

$$P' = \begin{bmatrix} -5 & 6 & -2 \\ 4 & -4 & 1 \\ 2 & 3 & 6 \end{bmatrix}$$

$$P' - Q = \begin{bmatrix} -6 & 8 & -2 \\ 1 & -6 & 0 \\ 2 & 3 & 2 \end{bmatrix}$$

$$\therefore (P' - Q)' = \begin{bmatrix} -6 & 1 & 2 \\ 8 & -6 & 3 \\ -2 & 0 & 2 \end{bmatrix}$$

4. P' - (I - Q)'

Sol.

$$P' - (I - Q)' = P' - I' + Q'$$

= $(P + Q)' - I'$
= $(P + O - I)'$

$$P + Q - I = \begin{bmatrix} -4 & 2 & 2 \\ 9 & -2 & 4 \\ -2 & 1 & 10 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -5 & 2 & 2 \\ 9 & -3 & 4 \\ -2 & 1 & 9 \end{bmatrix}$$

$$\therefore P' - (I - Q)' = (P + Q - I)'$$

$$= \begin{bmatrix} -5 & 9 & -2 \\ 2 & -3 & 1 \\ 2 & 4 & 9 \end{bmatrix}$$

12.3 Scalar Product of Matrices

Let $A = (a_{ij})_{m \times n}$ be an $m \times n$ matrix, k be any real number, then $kA = (ka_{ij})_{m \times n}$. This is called scalar product of a matrix A and scalar k. For example:

$$k \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} k & 2k & 3k \\ 4k & 5k & 6k \end{bmatrix}$$

The scalar product of a matrix has the following properties:

$$\bullet$$
 $r(A+B) = rA + sB$

$$\bullet \ (r+s)A = rA + sA$$

$$\bullet$$
 $(rs)A = r(sA)$

12.3.1 Practice 2

Let $A = \begin{bmatrix} 2 & 0 \\ -3 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 2 & -4 \end{bmatrix}$. Evaluate the following:

1.
$$3A + B$$

Sol.

$$3A + B = \begin{bmatrix} 6 & 0 \\ -9 & 15 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 2 & -4 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & -1 \\ -7 & 11 \end{bmatrix}$$

2. 2A - 3B

Sol.

$$2A - 3B = \begin{bmatrix} 4 & 0 \\ -6 & 10 \end{bmatrix} - \begin{bmatrix} 3 & -3 \\ 6 & -12 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 3 \\ -12 & 22 \end{bmatrix}$$

3. 4B - 2A

Sol.

$$4B - 2A = 2(2B - A)$$

$$= 2\left(\begin{bmatrix} 2 & -2 \\ 4 & -8 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ -3 & 5 \end{bmatrix}\right)$$

$$= 2\begin{bmatrix} 0 & -2 \\ 7 & -13 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -4 \\ 14 & -26 \end{bmatrix}$$

$$4 A' - 2B$$

Sol.

$$A' - 2B' = (A - 2B)'$$

$$= \left(\begin{bmatrix} 2 & 0 \\ -3 & 5 \end{bmatrix} - \begin{bmatrix} 2 & -2 \\ 4 & -8 \end{bmatrix} \right)'$$

$$= \left(\begin{bmatrix} 0 & 2 \\ -7 & 13 \end{bmatrix} \right)'$$

$$= \begin{bmatrix} 0 & -7 \\ 2 & 13 \end{bmatrix}$$

12.3.2 Exercise 14.3

1. Let $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$, Calculate the following:

(a) 2A - 3B + 4C **Sol.**

$$2A - 3B + 4C$$

$$= \begin{bmatrix} 4 & 6 \\ 2 & 0 \end{bmatrix} - \begin{bmatrix} 18 & 3 \\ 9 & 6 \end{bmatrix} + \begin{bmatrix} 12 & 4 \\ 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 16 & 10 \\ 6 & 0 \end{bmatrix} - \begin{bmatrix} 18 & 3 \\ 9 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 7 \\ -3 & -6 \end{bmatrix}$$

(b) 4A' - (C + B)'

Sol.

$$4A' - (C + B')$$

$$= 4 \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} - \left(\begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 6 & 3 \\ 1 & 2 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 8 & 4 \\ 12 & 0 \end{bmatrix} - \begin{bmatrix} 9 & 4 \\ 2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 10 & -2 \end{bmatrix}$$

2. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 4 & -1 \\ 3 & 1 \\ 2 & -3 \end{bmatrix}$, evaluate the following:

(a)
$$3A + B - 2C$$

Sol.

$$3A + B - 2C = \begin{bmatrix} 3 & 6 \\ 0 & 3 \\ 9 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 8 & -2 \\ 6 & 2 \\ 4 & -6 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 7 \\ 4 & 6 \\ 10 & 3 \end{bmatrix} - \begin{bmatrix} 8 & -2 \\ 6 & 2 \\ 4 & -6 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 9 \\ -2 & 4 \\ 6 & -3 \end{bmatrix}$$

(b) 3(A+C)'-B'

Sol.

$$3(A+C)' - B'$$

$$= 3 \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & -1 \\ 3 & 1 \\ 2 & -3 \end{bmatrix})' - \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix}'$$

$$= 3 \begin{bmatrix} 5 & 1 \\ 3 & 2 \\ 5 & -2 \end{bmatrix})' - \begin{bmatrix} 2 & 4 & 1 \\ 1 & 3 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 15 & 9 & 15 \\ 3 & 6 & -6 \end{bmatrix} - \begin{bmatrix} 2 & 4 & 1 \\ 1 & 3 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 13 & 5 & 14 \\ 2 & 3 & -6 \end{bmatrix}$$

3. Given $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \end{bmatrix}$, Find the matrix X in the following expression:

(a)
$$X + 4A = 3(X + B) - A$$

Sol.

$$X + 4A = 3(X + B) - A$$

$$= 3X + 3B - A$$

$$2X = 5A - 3B$$

$$2X = 5\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix} - 3\begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 10 & 15 \\ 0 & 5 & 5 \end{bmatrix} - \begin{bmatrix} 6 & 3 & 9 \\ 3 & 6 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 7 & 6 \\ -3 & -1 & 5 \end{bmatrix}$$

$$x = \begin{bmatrix} -\frac{1}{2} & \frac{7}{2} & 3 \\ -\frac{3}{2} & -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$$

(b)
$$2A - B + X' = B$$

Sol.

$$2A - B + X' = B$$

$$X' = -2A + 2B$$

$$= -2(A - B)$$

$$= -2\left(\begin{bmatrix} 1 & 2 & 3\\ 0 & 1 & 1 \end{bmatrix}\right)$$

$$-\begin{bmatrix} 2 & 1 & 3\\ 1 & 2 & 0 \end{bmatrix}$$

$$= -2\begin{bmatrix} -1 & 1 & 0\\ -1 & -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 0\\ 2 & 2 & -2 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 2\\ -2 & 2\\ 0 & -2 \end{bmatrix}$$

12.4 Multiplication of Matrices

Let *A* and *B* be matrices of order $m \times n$ and $n \times p$ respectively. Then the product of *A* and *B* is defined as the matrix *AB* of order $m \times p$ such that the $(i, j)^{th}$ element of *AB* is given by

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

The multiplication of matrices has the following properties:

- Associative: A(BC) = (AB)C
- Distributive: A(B+C) = AB + AC and (B+C)A = BA + CA
- $k(AB) \neq (kA)B$ for $k \neq 0$

12.4.1 Practice 3

Evaluate the following:

1. $\begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$

Sol.
$$\begin{bmatrix}
-1 & -1 \\
2 & 3
\end{bmatrix}
\begin{bmatrix}
2 & 1 \\
-1 & 2
\end{bmatrix}$$

$$= \begin{bmatrix}
-1(-1) + (-1)(2) & -1(2) + (-1)(1) \\
2(2) + 3(-1) & 2(1) + 3(2)
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & -3 \\
1 & 8
\end{bmatrix}$$

$$2. \begin{bmatrix} 3 & 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 3 & -3 & 2 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 3 & 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 3 & -3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3(0) + 4(3) & 3(1) + 4(-3) & 3(2) + 4(2) \\ -1(0) + 1(3) & -1(1) + 1(-3) & -1(2) + 1(2) \end{bmatrix}$$

$$= \begin{bmatrix} 12 & -9 & 14 \\ 3 & -4 & 0 \end{bmatrix}$$

$$3. \begin{bmatrix} 1 & 0 \\ 2 & 4 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} 6 & 1 & 5 \\ -2 & 3 & 2 \end{bmatrix}$$

Sol

$$\begin{bmatrix} 1 & 0 \\ 2 & 4 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} 6 & 1 & 5 \\ -2 & 3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1(6) + 0(-2) & 1(1) + 0(3) & 1(5) + 0(2) \\ 2(6) + 4(-2) & 2(1) + 4(3) & 2(5) + 4(2) \\ 3(6) + (-5)(-2) & 3(1) + (-5)(3) & 3(5) + (-5)(2) \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 1 & 5 \\ 4 & 14 & 18 \\ 28 & -12 & 5 \end{bmatrix}$$

4.
$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ -1 & 3 \end{bmatrix}$$

Sol

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1(1) + 3(2) + 2(-1) & 1(3) + 3(1) + 2(3) \\ 0(1) + 1(2) + 5(-1) & 0(3) + 1(1) + 5(3) \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 12 \\ -3 & 16 \end{bmatrix}$$

12.4.2 Exercise 14.4

Calculate the following products (Question 1 to 8):

1.
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1(1) + 2(2) + 3(3) \end{bmatrix}$$
$$= \begin{bmatrix} 14 \end{bmatrix}$$

$$2. \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Sol

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

3.
$$\begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Sol

$$\begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2(1) + (-3)(0) & 2(0) + (-3)(1) \\ 1(1) + 5(0) & 1(0) + 5(1) \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}$$

$$4. \begin{bmatrix} -6 & -4 & 2 \\ 7 & 8 & -5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} -6 & -4 & 2 \\ 7 & 8 & -5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -6(1) + (-4)(2) + 2(3) \\ 7(1) + 8(2) + (-5)(3) \end{bmatrix}$$

$$= \begin{bmatrix} -8 \\ 8 \end{bmatrix}$$

5.
$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2(2) + 3(3) + 4(4) & 2(0) + 3(1) + 4(2) \\ 0(2) + 1(3) + 2(4) & 0(0) + 1(1) + 2(2) \end{bmatrix}$$

$$= \begin{bmatrix} 27 & 11 \\ 11 & 5 \end{bmatrix}$$

$$6. \begin{bmatrix} 6 & 4 & 2 \\ 5 & -2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 6 & 4 & 2 \\ 5 & -2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 6(5) + 4(2) + 2(3) \\ 5(5) + (-2)(2) + 0(3) \\ 0(5) + 3(2) + 1(3) \end{bmatrix}$$

$$= \begin{bmatrix} 44 \\ 21 \\ 9 \end{bmatrix}$$

$$7. \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0(0)+1(1)+0(0) & 0(1)+1(0)+0(0) & 0(0)+1(0)+0(1) \\ 1(0)+0(1)+0(0) & 1(1)+0(0)+0(0) & 1(0)+0(0)+0(1) \\ 0(0)+0(1)+1(0) & 0(1)+0(0)+1(0) & 0(0)+0(0)+1(1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$8. \begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

Sol.