

TA201P: Introduction of Manufacturing Processes

<u>Mangalyaan</u>

Project Report SECTION: S7 GROUP: 9

GROUP MEMBERS

- DEVESH KUMAR [190277]
- DHAROOR SAI ASHWITH [190284]
- DHRUV GOYAL [190291]
- DHRUV SHIKHAR GUPTA [190293]
- DIVYANSH SATI [190310]
- DIVYANSHU ASERI [190315]
- DIVYANSHU GANGWAR [190316]
- DIVYANSHU NARANG [190318]
- GANTA ABHIMITHRA [190331]
- PRANJAL KHATRI [190624]

Instructor: Dr. Anish Upadhyaya

Tutor: Dr. Shashank Shekhar

Lab Technical Staff: Mr. Indra Pal Singh Teaching Assistants: Abhishek Kumar,

Albert Linda

Table of Contents

S. No.	Contents
1	Introduction and Motivation
2	Work Distribution
3	Components and Manufacturing Processes
4	Detailed Cost Analysis
5	Isometric Drawing of Model
6	Sectional Drawings
7	Acknowledgement

Introduction

After considering a lot of options for our project, we stumbled upon this idea which we unanimously decided to choose. Mangalyaan is one of the biggest glories of our country and hence the reason the backside of the 2000 Rupee note has a picture of it around Mars. Mars orbital mission (MOM) also called Mangalyaan is a space probe orbiting Mars since 2014. It made India the first Asian nation to reach the Martian orbit and the First Nation in the world to do it in its maiden attempt. One of the most impressive fact about MOM is the cost it took to make it. The total cost of the mission was ONLY 73 million USD making it the least expensive Mars mission to date. The low cost of the mission is ascribed to K. Radhakrishan, Chairman of ISRO, and continues a legacy of our frugally innovative minds.

Motivation

We came across the idea while we were looking for some inspiration for our TA201 project. When we saw the animated image of this idea, we were amazed. It captured our attention, and we were filled with astonishment by the concept of its workings. In that moment, we decided that we will apply our concepts and understanding to make this project.

We were amazed by the image of the project, that we wondered how it would feel to have this experience, sadly not in physical, but nonetheless in theory. We thus embarked on this route to feel how will it work out to be.

Work Distribution

SN.	Name	Work Contribution	
1.	Divyanshu Gangwar	Modelling - Solar Panel Cost Analysis,, Group Presentation	
2.	Pranjal Khatri	Modelling - Reflector, 2 Reflector Stands	
3.	Divyanshu Aseri	Modelling - Extension Sheer Web and Fuel Tank Cost Analysis	
4.	Divyansh Sati	Modelling - Bottom 4 Thrusters, Writing of Introduction	
5.	Devesh Kumar	Modelling - TTC antenna,Medium gain antenna and High Gain antenna	
6.	Dhruv Shikhar	Modelling - Propulsion System Cost Analysis	
7.	Sai Ashwith Dharoor	Modelling - MSM and MENCA Cost Analysis	
8.	Dhruv Goyal	Modelling - 4 Reaction wheels, Writing of Motivation	
9.	Ganta Abhimithra	Isometric views and Drawings of the components	
10.	Divyanshu Narang	Modelling-Pressurant Tank and its fitting.	

Components, Material and Manufacturing processes used

1	Propellant Tank	1	GI Sheets	Sheet Metal Cutting and Bending	Welding
2	Reaction Wheels	4	Mild Steel Sheets 0.5 mm thick	Sheet Metal Cutting and Bending	Soldering
3	Extension Shear Web	1	Mild Steel Sheets 1 mm thick	Sheet Metal Cutting and Bending	Welding
4	Lyman Alpha Photometer(LAP)	1	Aluminium	Sheet Metal Cutting and Bending	Soldering
5	Solar Panel	3	GI Sheets	Sheet Metal Cutting and Bending	Welding
6	MENCA	1	Mild Steel Sheets 0.5mm thick	Sheet Metal Cutting and Bending	Soldering
7	Medium Gain Antenna	1	Mild Steel Sheets 0.5 mm thick	Sheet Metal Cutting and Bending	Soldering
8	TTC Antenna	1	Mild Steel,	Soldering and Sheet Metal Cutting	Soldering
9	High Gain Antenna	1	Mild Steel Sheets 0.5 mm thick	Sheet Metal Cutting and Bending	Soldering
10	Pressurant Tank	1	GI Sheets	Sheet Metal Cutting and Bending	Welding
11	Reflector	1	GI Sheets	Sheet Metal Cutting and Bending	Soldering
12	Thermal Infrared Spectrometer(TIS)	1	Mild Steel Sheets	Sheet Metal Cutting and Bending	Soldering
13	Methane Sensor for Mars(MSM)	1	Mild Steel Sheets 0.5mm thick	Sheet Metal Cutting and Bending	Soldering
14	Mars Colour Camera(MCC)	1	GI Sheets	Sheet metal cutting and Bending	Soldering
15	Interface Ring	1	Mild Steel Rod	Bending	Welding
16	Thrust Propulsion System	1	Mild Steel Square Rod	Casting	Welding

17	Thrusters	4	Mild Steel Sheets 0.5 mm thick	Cone made using Sheet Metal forming	Welding
18	(-)Pitch Panel	1	Mild Steel Sheets 1 mm thick	Sheet Metal Cutting	Welding
19	(+)Pitch Panel	1	Mild Steel Sheets 1 mm thick	Sheet Metal Cutting	Welding
20	(+)Yaw Panel	1	Mild Steel Sheets 1 mm thick	Sheet Metal Cutting	Welding
21	(-)Yaw Panel	1	Mild Steel Sheets 1 mm thick	Sheet Metal Cutting	Welding
22	Bottom Deck	1	Mild Steel Sheets 1 mm thick	Sheet Metal Cutting	Welding
23	Top Deck	1	Mild Steel Sheets 1 mm thick	Sheet Metal Cutting	Welding
24	Reflector Stand	2	Mild Steel Sheets 0.5 mm thick	Sheet Metal Cutting	Soldering

Detailed Cost Analysis

S.No	Component Area	<u>Material</u>	<u>Cost</u>
1	2400 cm2 (Centre cube)		
2	78.54 cm2 (Reaction wheel)		
3	100 cm2 (Antena)	Mild Steel Sheet (4 ft x 8 ft x 0.5 mm) at Rs. 945 / sheet	<u>Rs 120</u>
4	485 cm2 (Extension sheer)	<u>Total Area Required = 4 Feet sq.</u>	
5	350 cm2 (Sensors)		
7	500cm2 (Solar panel)		
8	160 cm2 (Fuel tank)		
9	200 cm2 (Pressure tank)	Galvanized Iron Sheet (3 ft x 8 ft x 0.5 mm) at Rs. 820/sheet	<u>Rs 70</u>
10	400 cm2 (Antenna)	<u>Total Area Required = 2 Feet sq.</u>	
11	100 cm2 (Reflector stand)		
12	229.6+43 cm3 (Propulsion system)	Aluminium at Rs. 380/Kg	<u>Rs 280</u>
13	60 cm (Interface ring)	Mild Steel Square pipe 15x15 at Rs. 300/20ft length	<u>Rs 30</u>
		Total Cost-	<u>Rs 500</u>

Dept.	Technical reference	Created by	Approv	ed by	
		Document type	Docum	nent status	
		Title	DWG N	No.	
		Mangalyaan			
			Rev.	Date of issue	Sheet
					1/1

Dept.	Technical reference	Created by	Approv	ved by	
		Document type	Docum	nent status	
		Title Mangalyaan	DWG I	No.	
			Rev.	Date of issue	Sheet
					1/1

Dept.	Technical reference	Created by	Approv	ed by	
		Document type	Docum	nent status	
		Title	DWG N	No.	
		Mangalyaan			
			Rev.	Date of issue	Sheet
					1/1

Front view Solve of the second of the secon

Top View

Side view

Dept.	Technical reference	Created by	Approved by
		Document type	Document status
		Title	DWG No.
		REACTION WHEELS	2
			Rev. Date of issue Sheet 1/1

Front View

Side View

Dept.	Technical reference	Created by	Approved by
		Document type	Document status
		Title	DWG No.
		SOLAR PANEL	5
		OOL/ (I CT / (I VLL	Rev. Date of issue Sheet

Top View

Dept.	Technical reference	Created by	Approved by
	<u> </u>	Document type	Document status
		Title	DWG No.
		HANDLING BRACKET	7
		I IANDEINO DIVAORET	Rev. Date of issue Sheet 1/1

Top view

Dept.	Technical reference	Created by	Approved by
		Document type	Document status
		MEDIUM GAIN ANTENNA	DWG No. 10
			Rev. Date of issue Sheet 1/1

Front View

Dept.	Technical reference	Created by	Approved by
		Document type	Document status
		Title	DWG No.
		PRESSURANT TANK	14
			Rev. Date of issue Sheet 1/1

Bottom View

Dept.	Technical reference	Created by	Approved by
		Document type	Document status
		Title	DWG No.
		PROPULSION SYSTEM	20
		I IVOI OLOION OTOTLINI	Rev. Date of issue Sheet
			1/1

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to our Tutor Dr. Shashank Shekhar and our Lab Technical Personnel Mr. Indra Pal Singh for their support and instruction in this project. Their support and guidance were instrumental throughout the execution of our project.

We thank Professor Anish Upadhyaya, Course instructor, for providing us with this opportunity to explore our creativity and design the whole process of manufacturing something through lab manufacturing processes.

We thank our TAs, Mr. Albert Linda, and Mr. Abhishek Kumar for their valuable guidance.

Once again, thanks to all who helped us!