التحولات الكيميائية التي تحدث في المنحنييين . Transformation chimique s'effectuant dans les deux sens

I _ التنفاعلات حمض _ قاعدة (تذكير)

<u>1 ـ المزدوجات قاعدة /حمض</u>

تعریف :

نسمي حمضا حسب برنشتد، كل نوع كيميائي قادر على فقدان بروتون H^+ خلال تفاعل كيميائي .

نسمي قاعدة ، كل نوع كيميائي قادر على اكتساب بروتون H^+ خلال تفاعل كيميائي . نعرف مزدوجة قاعدة/حمض ($^-$ H $^+$ H $^-$ B) بنصف المعادلة حمض $_-$ قاعدة .

 $BH^{+} = B + H^{+}$ $A^{-} + H^{+}$

تمرین تطبیقی :

أكتب نصف المعادلة للمزدوجات قاعدة/حمض التالية:

$$H_3O^+(aq)/H_2O(\ell)$$
 $HCO_3^-(aq)/CO_3^{2-}(aq)$
 $H_3O^+(aq) = H^+ + H_2O(\ell)$ $HCO_3^-(aq) = H^+ + CO_3^-(aq)$

$$H_2O(\ell)/HO^-(aq)$$
 $CO_{2,}H_2O(aq)/HCO_3^-(aq)$

 $H_2O(\ell) = H^+ + HO^-(aq)$ $CO_2(aq) + H_2O(aq) = H^+ + HCO_3^-(aq)$

ملحوظة : يلاحظ أن H_2O_3 و H_2O_3 تارة تتصرف كقاعدة وتارة تتصرف كحمض . لذلك نسميها أمفوليتات .

2 _ التحول حمض _ قاعدة .

نعرف تفاعل حمض ـ قاعدة كل تحول كيميائي يحدث خلاله انتقال برتونات بين النوع الحمضي والنوع القاعدي .

تمرین تطبیقی :

1 _ أُكتب معادلة التفاعل حمض ـ قاعدة التي يمكن أن تحدث بين :

 $NH_4^+(aq)/NH_3(aq)$ و قاعدة المزدوجة $H_3O^+(aq)/H_2O(\ell)$ و قاعدة المزدوجة أ

 $NH_4^+(aq)/NH_3(aq)$ و قاعدة المزدوجة $H_2O(\ell)/HO^-(aq)$ و قاعدة المزدوجة ب -

 $HCO_3^-(aq)/CO_3^{2-}(aq)$ و قاعدة المزدوجة $CH_3COOH(aq)/CH_3COO^-(aq)$ و قاعدة المزدوجة

2 _ حدد المزدوجتان المتدخلتان في التفاعل :

 $HCO_3^-(aq) + HO^-(aq) \rightarrow CO_3^{2-}(aq) + H_2O(\ell)$

II ـ تعریف وقیاس pH محلول مائي .

<u>1 ـ تعریف pH محلول مائی .</u>

. المتواجدة في المحلول الخاصيات الحمضية أو القاعدية لمحلول ما تتعلق بتركيز الأيونات H_3O^+ المتواجدة في المحلول الخاصيات الحمضية أو القاعدية لمحلول ما تتعلق بتركيز الأيونات $10^{-14}mol/l\langle \left[H_3O^+\right]\langle 1mol/l$

نلاحظ أن القيم العددية صعبة الاستعمال لكونها جد صغيرة التركيز لذ تم إدراج مقدار pH.

يعرف pH بالنبة للمحاليل المائية ذات التراكيز الضعيفة ، $\left[\mathsf{H_{3}O^{+}}\right] \leq 5.10^{-2} \mathrm{mol}/\ell$ بالعلاقة

التالية : $[H_3O^+] pH = -log[H_3O^+]$ ، تمثل $[H_3O^+] H_3O^+$ العدد الذي يقيس التركيز المولى لأيونات الأوكسيونيوم ، ونعبر عنه بالوحدة : mol/ℓ .

$$\mathbf{pH} = -\log \left[\mathbf{H_3O^+} \right] \Leftrightarrow \left[\mathbf{H_3O^+} \right] = \mathbf{10^{-pH}}$$

log10 = 1 log1 = 0 logab = loga + logb $log\frac{a}{b} = loga - logb$ $log10^{x} = xlog10 = x$ $y = 10^{x} \Leftrightarrow x = logy$

تذكير لبعض خاصيات الدالة اللوغريتمية تمرين تطبيقي :

نتوفر على أربعة محاليل مائية (A) و (B) و (C) و (D) و (D) تاعا هو : تركيز أيونات الأوكسونيوم في في المحلولين (A) و (B) تباعا هو : $\left[H_3O^+ \right]_{\!\scriptscriptstyle A} = 5,1.10^{-5} \mathrm{mol} / \ell$ و

. $pH_D=8,9$ و $pH_C=2,8$ (D) و (C) باعا هو pH

1 _ أحسب pH المحلولين (A) و (B) .

 $pH_B=4,3$ و $pH_A=2,7$ نستعمل الآلة الحاسبة

. (D) و (C) في المحلولين (B _ أحسب قيمة تركيز الأيونات $\left[H_{3}O^{+}
ight]$

نستعمل الآلة الحاسبة (10^x)

$$\left[H_3O^+\right]_D \simeq 1,3.10^{-9} mol \, / \, \ell \ \, \text{g} \, \left[H_3O^+\right]_C \simeq 1,6.10^{-3} mol \, / \, \ell$$

9 – کیف یتغیر ترکیز أیونات H_3O^+ عند تزاید H_3O^+

. والعكس صحيح بزايد قيمة ال pH يتناقص تركيز الأيونات

لبرهان:

 $\left[H_3O^+
ight]_A > \left[H_3O^+
ight]_B$ و $\left[H_3O^+
ight]_B$ و $\left[H_3O^+
ight]_A$ محلولان مائیان ترکیزهما

لدينا من المتساوية السابقة:

$$\begin{split} & log \Big[H_3 O^+ \Big]_A > log \Big[H_3 O^+ \Big]_B \\ & - log \Big[H_3 O^+ \Big]_A < - log \Big[H_3 O^+ \Big]_B \\ & pH_A < pH_B \end{split}$$

<u>2 ـ قباس pH محلول مائي .</u>

يمكن قياس pH محلول مائي من تحديد تركيز أيونات الأوكسونيوم $\left[H_3O^+
ight]$ وكذلك الحالة النهائية لتفاعل كيميائي .

عمليا نستعمل طريقتان لقياس pH محلول مائي:

أ ــ استعمال الكواشف الملونة

الكواشف الملونة مواد عضوية عند استعمالها وسط يتغير فيه تركيز أيونات الأوكسونيوم أي pH الوسط يتغير لونها بوضوح .

تجربة : نأخذ ثلاثة محاليل ذات pH مختلف (pH>7,6 ،6,0<pH<7,6 ، pH<6,0) نلاحظ بالتتابع أن الكاشف الملون أزرق البروموتيمول BBT يأخذ الألوان التالية : أصفرٍ ، أخضر ، أزرق .

يسمى المجال [7,6; 6,0] منطقة انعطاف الكاشف الملون أزرق البروموتيمول .

ويسـمى اللون الذي يأخذه المحلول في هذا المجال باللوينة الحسـاسـة (اللون الأخضر) . يمكن كذلك أن نسـتعمل ورق pH للقياس pH وهو ورق مشـبع بالكواشـف الملونة حيث نغمره في المحلول المراد قياسـه ونقارن اللون الذي يظهر بسـلم اللوينة المرافق لورق pH .

يمكن ورق pH من تحديد قيمة pH بفارق وحدة .

ب ـ استعمال pH متر .

مبدأ ال pH ـ متر :

يتكون ال pH _ متر من مجس يكون في غالب الأحيان عبارة عن إلكترود ، مركبة من إلكترودين ، إلكترودين ، إلكترود مرجعية ذات جهد ثابت وإلكترود للقياس .

يمكن فرق الجهد الكهربائي U=a-b.pH المقاس بين هذين اإلكترودين من قياس pH محلول مائي شريطة أن يعير الجهاز مسبقا ليأخذ الpH _ متر بعين الاعتبار قيمتي الوسيطين a و b . والتي تتعلق بدرجة الحرارة وبطبيعة الإلكترودين .

تقدر دقة القياس بواسطة ال pH _ متر تقريبا ب 0.1 وحدة ، وتكون هذه الدقة من رتبة 0.05 بالنسبة للأجهزة الأكثر دقة .

کیفیة استعمال pH ـ متر :

<u>ـ يجب قبل إنجاز أي قياس غسل الإلكترود المركبة بالماء المقطر ومسحها يورق نشاف .</u>

<u> يحب تعبير جهاز ال pH _ متر بواسطة محلولين عباريين لهما pH معروف .</u>

* الضبط الأول يجب أن يكون بواسطة محلول عيار ذي pH=7

* الضبط الثاني يحب أن يكون ب pH=4 إذا كان المحلول المدروس حمضيا أو ب pH=9 إذا كان المحلول المدروس قاعديا .

_ بعد الانتهاء من القياسات يجب غسل الإلكترود بالماء المقطر ووضعها في غمدها الوقائي . ج ـ دقة قياس ال pH .

<u>تمرين :</u>

لنعتبر محلولا مائيا ، حيث يعطي قياس pH المحلول القيمة 3,20 حسب هذه اإشارة تكون دقة قياس ال pH من رتبة 0,05 يعني أن $0,05 \leq pH \leq 3,15$

 $^{\circ}$ H $_{3}{
m O}^{+}$ ما هو تأطير تركيز ألأيونات $^{+}$

$$\begin{aligned} &10^{-3,25} \leq 10^{-pH} \leq 10^{-3,15} \\ &10^{-3,25} \leq \left\lceil H_3 O^+ \right\rceil \leq 10^{-3,15} \end{aligned}$$

 $5,623.10^{-4} \text{mol} / \ell \le \lceil H_3 O^+ \rceil \le 7,079.10^{-4} \text{mol} / \ell$

حساب الارتياب المطلق::

$$\begin{split} \Delta \Big[H_3 O^+ \Big] &= \frac{7,079.10^{-4} \text{mol} / \ell - 5,623.10^{-4} \text{mol} / \ell}{2} = 0,7.10^{-4} \text{mol} / \ell \\ \Big[H_3 O^+ \Big] &= 6,3 \pm 0,7.10^{-4} \text{mol} / \ell \end{split}$$

2 _ ما هي دقة تحديد تركيز الأيونات $^+ H_3^-$ ؟ حساب دقة القياس أو الارتياب النسبي :

$$\frac{\Delta \left[H_3 O^+ \right]}{\left[H_3 O^+ \right]} = \frac{7.10^{-5}}{6,3.10^{-4}} = 0,11$$

III ـ التحولات الكلية وغير الكلية .

<u>1 ــ إيراز تحول غير كلي .</u> النشاط التجريبي 1

نصب في حوجلة معيرة سعتها $V_0=500,0m\ell$ مملوءة بالماء المقطر ، حجما $V=1,00m\ell$ من حمض الإيثانويك CH_3COOH الموجود في قنينة لصيقتها تحمل المعلومات الموجودة على الوثيقة جانبه .

acide acétique 99 - 100% pur

 C_2H_4O M=60,05g/mol Point de cristallisation 16,0-16,6°C $CH_3COOH \% 99,5$ d=1,05

بعد تجانس المحلول المحصل عليه نقيس pH المحلول المحصل عليه بواسطة جهاز pH _ متر ، نحصل على النتيجة التالية : pH=3,10 .

1 _ اكتب معادلة التفاعل حمض _ قاعدة الذي يحدث بين حمض الإيثانويك والماء .

خلال هذا التفاعل يحدث انتقال البروتونات من حمض المزدوجة

. $H_3O^+(aq)/H_2O(\ell)$ إلى قاعدة المزدوجة $CH_3COOH(aq)/CH_3COO^-(aq)$

معادلة التفاعل كالتالي:

$$CH_3COOH(aq) + H_2O(\ell) \rightarrow CH_3COO^-(aq) + H_3O^+(aq)$$

2 _ أحسب كمية المادة البدئية لحمض الإيثانويك المستعمل .

لدينا كمية المادة البدئية لحمض الإيثانويك هي:

بحیث أن
$$n_i = \frac{m_i}{M}$$

$$\begin{split} d &= \frac{\rho_{acide}}{\rho_{eau}} \Rightarrow \rho_{acide} = d.\rho_{eau} \\ \rho_{acide} &= \frac{m}{V} \Rightarrow m_i = \rho_{acide}.V = d.\rho_{eau}.V \\ n_i &= \frac{d.\rho_{eau}.V}{M} \\ n_i &= \frac{1,05 \times 1 \times 10^3 \times 1 \times 10^{-3}}{60} = 1,75.10^{-2} \text{mol} \end{split}$$

3 _ أنشئ الجدول الوصفي لتطور المجموعة الكيميائية .

انطلاقا من قيمة pH حدد التقدم النهائي للتفاعل .

المعادلة الكيميائية		$CH_{\sharp}COOH(aq) + H_{\sharp}O(\ell) \rightarrow CH_{\sharp}COO^{-}(aq) + H_{\sharp}O^{+}(aq)$					
الحالة	التقدم	كميات المادة					
البدئية	0	n _i	بوفرة	0	0		
خلال التفاعل	×	n _i - x	بوفرة	×	х		
النهائية	X _{max}	n _i - x _{max}	بوفرة	X _{max}	X _{max}		

ـ المتفاعل المحد هو حمض اإيثانويك لأن الماء دائما يوجد بوفرة .

_ التقدم الأقصى :

$$n_{_{i}} - x_{_{max}} = 0 \Rightarrow$$
 1,75.10 $^{-2} - x_{_{max}} = 0 \Rightarrow x_{_{max}} =$ 1,75.10 $^{-2}$ mol / ℓ

استقرار pH الخليط التفاعلي على القيمة 3ق1 يدل على أن المجموعة توجد في حالتها النهائية أي أن تركيز الأيونات $\left[\mathsf{H_3O}^+
ight]$ في هذه الحالة هو :

$$\left\lceil H_3O^+\right\rceil = 10^{-pH} \Rightarrow \left\lceil H_3O^+\right\rceil = 10^{-3,1} \simeq 7,9.10^{-4} mol \text{/ } \ell$$

: حسب جدول التقدم أن $x: T_3O^+$ فإن التقدم النهائي للتفاعل هو

$$n(H_3O^+) = x_f \Rightarrow x_f = [H_3O^+] \times V_f$$

 $x_f = 1,7.10^{-2} \times 500.10^{-3} = 4,0.10^{-4} \text{mol}$

3 ـ قارن التقدم النهائي والتقدم الأقصى . ماذا تستنتج ؟

التقدم النهائي أصغر من التقدم الأقصى $X_{\rm f} < X_{
m max}$

وتكون كمية حمض الإيثانويك في الحالة النهائية هي :

 $n_f(CH_3COOH) = n_i - x_f \Rightarrow n_f(CH_3COOH) = 1,71.10^{-2} \text{mol}$

نستنتج أن المتفاعل المحد لم يختف كليا وبالتالي فالتحول المدروس ليس كليا ، فكل المتفاعلات والنواتج تتواجد معا في الحالة النهائية .

<u>2 ـ نسبة التقدم النهائي .</u>

لمقارنة التقدم النهائي لتفاعل مع تقدمه الأقصى نعرف مقدار يسمى **نسبة التقدم النهائي** للتفاعل

.
$$\tau = \frac{X_f}{X_{max}}$$
 ونرمز له بالحرف τ حيث

وهو مقدار بدون وحدة . au < au < 1 ويمكن أ، نعبر عنه بنسبة مائوية .

. يعني أن التفاعل كلي $extbf{x}_{ ext{f}} = extbf{X}_{ ext{max}}$ ملحوظة : في حالة au = au أي أن أي أن

4 _ أحسب نسبة التقدم النهائي في النشاط السابق .

$$au = \frac{x_f}{x_{max}} = \frac{4,0.10^{-4}}{0.0175} = 2,3.10^{-2} = 2,3\%$$
 : ناخست العلاقة

وهذا يدل على أن 2.3 من بين 100جزيئة لحمض اإيثانويك هي التي تفاعلت مع الماء . أي أن التفاعل محدود (غير کلي)

<u>3 ـ منحیا تطور تحول کیمیائی</u> .

المناولة 2 في النشاط التجريبي 1

نضيف حوالي 0,50g من بلورات الإيثانوات الصوديوم CH₃COONa فنلاحظ أن pH يأخذ قيمة 5,10 .

1 _ كيف تطورت قيمة pH ؟

$$pH_2>pH_1\Rightarrow \left[H_3O^{\scriptscriptstyle +}\right]_1<\left[H_3O^{\scriptscriptstyle +}\right]_2$$

2 ـ في أي منحى تطورت المجموعة الكيميائية ؟

مما يدل على أن المجموعة تطورت في منحى تناقص الأيونات $^+ extsf{H}_3 extsf{O}^+$ ، أي في المنحى غير المباشر $^-$ لمعادلة التفاعل.

3 _ قارن منحيي التطور في الحالتين .

تطورت المجموعة في منحي اختفاء الأيونات +H₃O لأن الحجم بقي ثابتا تقريبا ، وبالتالي فإن المجموعة تطورت في المنحى غير المباشر لمعادلة التفاعل .

المنحى المباشر (1) CH
$$_3$$
COOH(aq)+ H_2 O(ℓ) \longleftrightarrow CH $_3$ CO $_2$ $^-$ (aq)+ H_3 O $^+$ (aq) laise \bullet laise \bullet المنحى غير المباشر

نستنتج أن التفاعل الحاصل يحدث في منحيين نقول أن هذا <u>التفاعل محدود</u> وننمذجه بالمعادلة الكيميائية التالية مع استعمال الإشارة التالية : ⇒

ونعمم هذه النتيجة بالنسبة لجميع تفاعلات حمض _ قاعدة على الشكل التالي :

يحدث خلال تفاعل كيميائي غير كلي ، تفاعل في المنحيين . (المباشر وغير المباشر لمعادلة التفاعل)

IV ـ حالة توازن مجموعة كيميائية .

تعريف حالة توازن مجموعة كيميائية

مثال:

نحضر محلولا (S) لحمض الميثانويك HCOOH بإذابة $n_i = 5,00.10^{-3} mol$ من حمض الميثانويك في الماء الخالص للحصول على 1ℓ من محلول (S) .

تكون المجموعة المحصلة مقر تحول كيميائي ننمذجه بتفاعل معادلته:

$$HCOOH(aq) + H2O(\ell) \rightleftharpoons HCO2^{-}(aq) + H3O+(aq)$$

 $x_{\rm f} = 0,86.10^{-3} {
m mol}$ المحلول (S) أن التقدم النهائي للتفاعل هو

ما تركيب المجموعة في الحالة النهائية ؟

ننشئ جدول التقدم لتطور المجموعة الكيميائية:

المعادلة الكيميائية HCOOH(aq) + \cdot H $_2$ O(ℓ) \implies HCO $_2$ $^-$ (aq) + H $_3$ O $^+$ (aq)							
الحالة	التقدم	كعيات العادة					
البدئية	0	n _i (HCOOH)	بوفرة	0	0		
خلال التفاعل	x	n _i -x	بوفرة	x	×		
النهائية	x _f	n _i -X _f	بوفرة	Χf	×f		

في الحالة النهائية وحسب جدول التقدم لدينا:

$$n_f(HCOO^-) = n_f(H_3O^+) = x_f = 0.86.10^{-3} \text{mol}$$

وبالنسبة لحمض الميثانويك لدينا:

$$n_f(HCOOH) = n_i - x_f = 5,00.10^{-3} - 0,86.10^{-3} = 4,14.10^{-3} \text{mol}$$

يلاحظ أن المجموعة في الحالة النهائية تتكون من المتفاعلات والنواتج التي تبقى كمية مادتها ثلبتة خلال الزمن أي أن المجموعة الكيميائية في حالة توازن كيميائي .

نعمم هذه النتبجة :

يمكن خلال التحول الكيميائي لبعض المجموعات ، أن نحصل على حالة تتواجد فيها المتفاعلات والنواتج معا بنسب ثابتة . تسمى هذه الحالة النهائية ، حالة التوازن الديناميكي.

٧ ـ التفسير الميكروسكوبي لحالة التوازن الديناميكي .

تكون مجموعة كيميائية في حالة توازن كيميائي ، إذا بقيت درجة الحرارة والضغط وتراكيز المتفاعلات والنواتج ثابتة خلال الزمن .

كيف نفسر ميكروسكوبيا هذا اللاتطور ؟ وما مدلول التوازن الكيميائي من وجهة النظر الميكروسكوبية ؟ نعتبر المجموعة الكيميائية التالية : $A+B \rightleftharpoons C+D$

ماذا نعني بحدوث تفاعل بين A و B ؟ يعني أن تصادمهما يؤدي إلى تكون نوعان كيميائيان D_gC وذلك نتيجة التصادمات الفعالة والتي تؤدي إلى تكسير الروابط فحين هناك تصادمات غير فعالة لا تغير الروابط . فكلما كان تراكيز الأنواع الكيميائية كبيرة ، كان احتمال الالتقاء والتصادمات الفعالة كبيرا وبالتالي تكون سرعة التفاعل أكبر .

إذا كانت المجموعة في الحالة البدئية تضم النوعين A و B فإن التفاعل يحدث بدئيا في المنحى المباشر $A+B \rightarrow C+D$. v_1

ينتج عن تزايد تقدم هذا التفاعل ، خلال الزمن :

- تناقص كميتي النوعين A و B وبالتالي تناقص عدد التصادمات الفعالة بينهما مما يؤدي إلى تناقص السرعة v_1 .
- تزاید کمیتي النوعین C و D وبالتالي تزاید عدد التصادمات الفعالة بینهما مما یؤدي إلى تزاید السرعة V_2 في المنحى غير المباشر $C+D \to A+B$

عند تساوي السرعتين v_1 و v_2 فإن كمية مادة المتفاعل A التي يستهلكها التفاعل المباشر تساوي كميته المتكونة خلال التفاعل في المنحى غير المباشر . أي أن التراكيز المولية للمجموعة تبقى ثابتة خلال الزمن . لكن على مستوى السلم الماكروسكوبي يظهر وكأن المجموعة لا تتطور ، لأن درجة الحرارة والضغط و v_1 لا لاتتغير .