

MSPM0L1346, MSPM0L1345, MSPM0L1344, MSPM0L1343 MSPM0L1306, MSPM0L1305, MSPM0L1304, MSPM0L1303

ZHCSR46C - OCTOBER 2022 - REVISED JUNE 2023

MSPM0L130x 混合信号微控制器

1 特性

内核

- Arm® 32 位 Cortex®-M0+ CPU, 频率高达 32MHz

工作特性

- 工作温度范围: -40°C 至 125°C - 宽电源电压范围: 1.62V 至 3.6V

存储器

- 高达 64KB 的闪存
- 高达 4KB 的 SRAM

高性能模拟外设

- 一个具有总计多达 10 个外部通道的 12 位 1.68Msps 模数转换器 (ADC)
- 可配置的 1.4V 或 2.5V 内部 ADC 电压基准 (VREF)
- 两个零漂移、零交叉斩波运算放大器 (OPA)
 - 0.5µV/°C 漂移,具有斩波
 - 6pA 输入偏置电流¹
 - 集成可编程增益级 (1-32x)
- 一个通用放大器 (GPAMP)
- 一个具有 8 位基准 DAC 的高速比较器 (COMP)
 - 32ns 传播延迟
 - 低功耗模式,低至<1µA
- ADC、OPA、COMP 和 DAC 之间的可编程模拟 连接
- 集成温度传感器

经优化的低功耗模式

- 运行:71µA/MHz (CoreMark)
- 停止: 4MHz 时为 151μA, 32kHz 时为 44μA
- 待机: 32kHz 16 位计时器运行时为 1.0μA, SRAM/寄存器完全保留,32MHz 时钟唤醒时间 为 3.2µs
- 关断:61nA, 具有 IO 唤醒能力

智能数字外设

- 3 通道 DMA 控制器
- 3 通道事件结构信号系统
- 四个 16 位通用计时器,每个计时器具有两个捕 捉/比较寄存器,支持待机模式下的低功耗运 行,总共支持8个PWM通道
- 窗口化看门狗计时器

增强型通信接口

- 两个 UART 接口;一个支持 LIN、IrDA、 DALI、Smart Card、Manchester,并且都支持 待机时的低功耗运行
- 两个 I²C 接口;一个支持 FM+ (1 Mbit/s),两个 都支持 SMBus、PMBus 和从停止状态唤醒
- 1 仅限 MSPM0L134x
- ² 16 引脚 WQFN 封装为产品预发布状态。

一个 SPI 支持高达 16Mbit/s

时钟系统

- 精度为 ±1.2% 的内部 4MHz 至 32MHz 振荡器 (SYSOSC)
- 精度为 ±3% 的内部 32kHz 低频振荡器 (LFOSC)

数据完整性

- 循环冗余校验器 (CRC-16 或 CRC-32)

灵活的 I/O 功能

- 多达 28 个 GPIO
- 两个具有失效防护保护功能的 5V 容限开漏 IO

开发支持

- 2 引脚串行线调试 (SWD)

封装选项

- 32 引脚 VQFN (RHB)
- 28 引脚 VSSOP (DGS)
- 24 引脚 VQFN (RGE)
- 20 引脚 VSSOP (DGS)
- 16 引脚 SOT (DYY)、WQFN (RTR)²

系列成员 (另请参阅*器件比较*)

- MSPM0L13x3:8KB 闪存、2KB RAM
- MSPM0L13x4:16KB 闪存、2KB RAM
- MSPM0L13x5:32KB 闪存、4KB RAM
- MSPM0L13x6:64KB 闪存、4KB RAM
- 开发套件与软件(另请参阅*工具与软件*)
 - LP-MSPM0L1306 LaunchPad™ 开发套件
 - MSP 软件开发套件 (SDK)

2 应用

- 电池充电和管理
- 电源和电力输送
- 个人电子产品
- 楼宇安防与防火安全
- 联网外设和打印机
- 电网基础设施
- 智能抄表
- 通信模块
- 医疗和保健
- 照明

ZHCSR46C - OCTOBER 2022 - REVISED JUNE 2023

3 说明

MSPM0L134x 和 MSPM0L130x 微控制器 (MCU) 属于 MSP 高度集成的超低功耗 32 位 MSPM0 MCU 系列,该系列基于增强型 Arm® Cortex®-M0+ 内核平台,工作频率最高可达 32MHz。这些低成本 MCU 提供高性能模拟外设集成,支持 -40°C 至 125°C 的工作温度范围,并在 1.62V 至 3.6V 的电源电压下运行。

MSPM0L134x 和 MSPM0L130x 器件提供高达 64KB 的嵌入式闪存程序存储器和高达 4KB 的 SRAM。这些 MCU 包含精度高达 $\pm 1.2\%$ 的高速片上振荡器,无需外部晶体。其他特性包括 3 通道 DMA、16 位和 32 位 CRC 加速器,以及各种高性能模拟外设,例如一个具有可配置内部电压基准的 12 位 1.68MSPS ADC、一个具有内置基准 DAC 的高速比较器、两个具有可编程增益的零漂移零交叉运算放大器、一个通用放大器和一个片上温度传感器。这些器件还提供智能数字外设,例如四个 16 位通用计时器、一个窗口化看门狗计时器和各种通信外设(包括两个 UART、一个 SPI 和两个 I^2 C)。这些通信外设为 LIN、IrDA、DALI、Manchester、Smart Card、SMBus 和 PMBus 提供协议支持。

TI MSPM0 系列低功耗 MCU 包含具有不同模拟和数字集成度的器件,可让客户找到满足其工程需求的 MCU。此架构结合了多种低功耗模式,并经过优化,可在便携式测量应用中延长电池寿命。

MSPM0L134x 和 MSPM0L130x MCU 由广泛的硬件和软件生态系统提供支持,随附参考设计和代码示例,便于您快速开始设计。开发套件包括可供购买的 LaunchPad 和适用于目标插座板的设计文件。TI 还提供免费的 MSP 软件开发套件 (SDK),该套件在 TI Resource Explorer 中作为 Code Composer Studio™ IDE 桌面版和云版组件提供。MSPM0 MCU 还通过 MSP Academy 提供广泛的在线配套资料、培训,并通过 TI E2E™ 支持论坛提供在线支持。

有关完整的模块说明,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册。

CAUTION

系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范,以防发生电过应力或对数据或代码存储器造成干扰。有关更多信息,请参阅 MSP430™ 系统级 ESD 注意事项;本应用手册中的准则适用于 MSPM0 MCU。

4 功能方框图

图 4-1. MSPM0L130x 功能方框图

内容

1	特性1	8.4 时钟模块 (CKM)
2	应用1	8.5 DMA
	说明2	8.6 事件
	功能方框图3	8.7 存储器
5	器件比较5	8.8 闪存存储器
	引脚配置和功能6	8.9 SRAM
	6.1 引脚图	8.10 GPIO
	6.2 引脚属性7	8.11 IOMUX
	6.3 信号说明10	8.12 ADC
	6.4 未使用引脚的连接	8.13 温度传感器
7	规格	8.14 VREF
•	7.1 绝对最大额定值	8.15 COMP
	7.1 纪列取入锁足值	8.16 CRC
		8.17 GPAMP
	7.3 建议运行条件	8.18 OPA
	7.4 热性能信息	8.19 I2C
	7.5 电源电流特性	8.20 SPI
	7.6 电源定序17	8.21 UART
	7.7 闪存特性19	8.22 WWDT
	7.8 时序特性19	8.23 计时器 (TIMx)
	7.9 时钟规范20	8.24 器件模拟连接
	7.10 数字 IO	8.25 输入/输出图
	7.11 模拟多路复用器 VBOOST25	8.26 串行线调试接口
	7.12 ADC25	8.27 引导加载程序 (
	7.13 温度传感器27	8.28 器件出厂常量
	7.14 VREF27	8.29 识别
	7.15 COMP28	9 应用、实现和布局
	7.16 GPAMP29	9.1 典型应用
	7.17 OPA30	10 器件和文档支持
	7.18 I2C	10.1 器件命名规则
	7.19 SPI	10.2 工具与软件
	7.20 UART	10.3 支持资源
	7.21 TIMx	10.4 商标
_	7.22 仿真和调试	10.5 静电放电警告
8	详细说明	10.6 术语表
	8.1 CPU	11 机械、封装和可订购
	8.2 操作模式36	12 修订历史记录
	8 3 由源管理单元 (PMII) 37	14 廖月川又儿水

8.4 时钟模块 (CKM)	. 38
8.5 DMA	.38
8.6 事件	.39
8.7 存储器	. 39
8.8 闪存存储器	
8.9 SRAM	.42
8.10 GPIO	.42
8.11 IOMUX	
8.12 ADC	
8.13 温度传感器	
8.14 VREF	
8.15 COMP	
8.16 CRC	
8.17 GPAMP	
8.18 OPA	
8.19 I2C	
8.20 SPI	
8.21 UART 8.22 WWDT	
8.23 计时器 (TIMx)	
8.24 器件模拟连接 8.25 输入/输出图	
8.26 串行线调试接口	
8.27 引导加载程序 (BSL)	
8.28 器件出厂常量	
8.29 识别	
应用、实现和布局	
9.1 典型应用	
0 器件和文档支持	
10.1 器件命名规则	
10.2 工具与软件	
10.3 支持资源	
10.4 商标	
10.5 静电放电警告	
10.6 术语表	
1 机械、封装和可订购信息	. 55
2.修订历中记录	76

5 器件比较

表 5-1. 器件比较

					7C 0 11 H	–								
器件名称 (1) (2)	闪存/SRAM (KB)	鉴定 ⁽³⁾	ADC 通道数	COMP	OPA	GPAMP	UART/I2C/SPI	TIMG	GPIO	5V 容限 IO	封装 [封装尺寸] ⁽⁴⁾			
MSPM0L1306xRHB	64/4													
MSPM0L1305xRHB	32/4	T/S	10	1	2	1	2/2/1	4	28	2	32 引脚 VQFN [5mm × 5mm]			
MSPM0L1304xRHB	16/2										[0			
MSPM0L1306xDGS28	64/4													
MSPM0L1305xDGS28	32/4	T/S	10						24	2	28 引脚 VSSOP [7.1mm × 3mm]			
MSPM0L1304xDGS28	16/2			1	2	1	2/2/1	4						
MSPM0L1346xDGS28	64/4	Т	9						22		[7:111111 011111]			
MSPM0L1345xDGS28	32/4	'	9						22					
MSPM0L1306xRGE	64/4													
MSPM0L1305xRGE	32/4	T/S	9	1	2	1	2/2/1	4	20	2	24 引脚 VQFN			
MSPM0L1304xRGE	16/2	1/3	9	'		'	2/2/1	4	20	_	[4mm × 4mm]			
MSPM0L1303xRGE	8/2													
MSPM0L1306xDGS20	64/4													
MSPM0L1305xDGS20	32/4	T/S	T/S	T/S	T/S	8						17		
MSPM0L1304xDGS20	16/2			1	2	1	2/2/1	4		2	20 引脚 VSSOP [5.1mm × 3mm]			
MSPM0L1344xDGS20	16/2	Т	7						15		[0:111111			
MSPM0L1343xDGS20	8/2	'	,						13					
MSPM0L1306xRTR ⁽⁵⁾	64/4										40 71 His 140 5			
MSPM0L1305xRTR ⁽⁵⁾	32/4	T/S	6	1	2	1	2/2/1	4	13	2	16 引脚 WQFN [3mm×2mm]			
MSPM0L1304xRTR ⁽⁵⁾	16/2										[5]			
MSPM0L1306xDYY	64/4										40 71 88 00			
MSPM0L1305xDYY	32/4	T/S	6	1	2	1	1 2/2/1	4	13	2	16 引脚 SOT [4.2mm × 2mm]			
MSPM0L1304xDYY	16/2													

- (1) 如需所有在售产品的最新器件、封装和订购信息,请参阅节 11 中的封装选项附录,或浏览 TI 网站。
- (2) 有关器件名称的更多信息,请参阅节 10.1。
- (3) 器件鉴定:
 - T = -40°C 至 105°C
 - S = -40°C 至 125°C
- (4) 这里显示的尺寸为近似值。如需包含容差的封装尺寸,请参阅节 11 中的机械数据。
- (5) 16 引脚 WQFN 封装为产品预发布状态。

English Data Sheet: SLASEX0

6 引脚配置和功能

6.1 引脚图

图 6-1. 引脚图颜色编码

图 6-2. 32 引脚 RHB (VQFN)(顶视图)-MSPM0L130x

图 6-3. 28 引脚 DGS28 (VSSOP)(顶视图)-MSPM0L130x

图 6-4. 28 引脚 DGS28 (VSSOP)(顶视图)-MSPM0L134x

图 6-5. 24 引脚 RGE (VQFN) (顶视图) - MSPM0L130x

图 6-6. 20 引脚 DGS20 (VSSOP)(顶视图)-MSPM0L130x

图 6-7. 20 引脚 DGS20 (VSSOP)(顶视图)-MSPM0L134x

图 6-8. 16 引脚 RTR (WQFN) (顶视图) - MSPM0L130x

图 6-9. 16 引脚 DYY (SOT) (顶视图) - MSPM0L130x

6.2 引脚属性

表 6-1 介绍了每个器件封装中每个引脚上可用的功能。

备注

器件上的每个数字 I/O 均映射到一个特定的引脚控制管理寄存器 (PINCMx),此寄存器让用户能够使用 PINCM.PF 控制位来配置所需的 引脚功能。

表 6-1. 引脚属性

			引脚功能								
PINC Mx	引脚名称	模拟	数字(1)	32 VQFN	28 VSSOP (2)	28 VSSOP (3)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	I/O 结构
不适 用	不适用	VDD		4	7	7	3	6	6	5	电源
不适 用	不适用	vss		5	8	8	4	7	7	6	电源
不适 用	不适用	VCORE		32	3	3	23	3	3	2	Power
1	PA0		UART1_TX [2] / I2C0_SDA [3] / TIMG1_C0 [4] / SPI0_CS1 [5] (默认 BSL I2C_SDA)	1	4	4	24	4	4	3	5V 容限 开漏

表 6-1. 引脚属性 (continued)

			引脚功能								
PINC Mx	引脚名称	模拟	数字(1)	32 VQFN	28 VSSOP (2)	28 VSSOP (3)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	 I/O 结构
2	PA1		UART1_RX [2] / I2C0_SCL [3] / TIMG1_C1 [4] (默认 BSL I2C_SCL)	2	5	5	1	- 5	5	4	5V 容限 开漏
不适 用	不适用	NRST		3 6		6	2				复位 ⁽⁴⁾
3	PA2	ROSC	TIMG1_C1 [2] / SPI0_CS0 [3]	6	9	9	5	8	8	7	标准
4	PA3		TIMG2_C0 [2] / SPI0_CS1 [3] / UART1_CTS [4] / COMP0_OUT [5]	7	10	10	6	-	-	-	标准
5	PA4		TIMG2_C1 [2] / SPI0_POCI [3] / UART1_RTS [4]	8	11	11	7	9	-	-	标准
6	PA5		TIMG0_C0 [2]/SPI0_PICO [3]/FCC_IN[4]	9	12	12	-	-	9	-	高速
7	PA6		TIMG0_C1 [2] / SPI0_SCK [3]	10	13	13	-	10	10	8	标准
8	PA7		COMP0_OUT [2] / CLK_OUT [3] / TIMG1_C0 [4]	11	-	-	-	-	-	-	标准
9	PA8		UART0_TX [2] / SPI0_CS0 [3] / UART1_RTS [4] / TIMG2_C0 [5]	12	-	-	-	-	-	-	标准
10	PA9		UART0_RX [2]/SPI0_PICO [3]/ UART1_CTS [4]/TIMG2_C1 [5]/ CLK_OUT[6]	13	14	14	8	-	-	-	标准
11	PA10		UART1_TX [2]/SPI0_POCI [3]/I2C0_SDA [4]/TIMG4_C0 [5]/CLK_OUT[6]	14	15	-	9	-	11	-	高速
12	PA11		UART1_RX [2] / SPI0_SCK [3] / I2C0_SCL [4] / TIMG4_C1 [5] / COMP0_OUT [6]	15	16	-	10	11	-	-	标准
13	PA12		UART0_CTS [2]/TIMG0_C0 [3]/FCC_IN[4]	16	-	-	-	-	-	-	标准
14	PA13		UART0_RTS [2] / TIMG0_C1 [3] / UART1_RX [4]	17	-	15	-	-	-	-	标准
15	PA14		UART1_CTS [2] / CLK_OUT [3] / UART1_TX [4] / TIMG1_C0 [5]	18	17	16	-	-	11	-	标准
16	PA15	A9	UART1_RTS [2] / I2C1_SCL [3] / SPI0_CS2 [4] / TIMG4_C1 [5]	19	18	17	11	-	12	-	标准
17	PA16	A8 / OPA1_OUT	COMP0_OUT [2]/I2C1_SDA [3]/ SPI0_POCI [4]/TIMG0_C0 [5]/FCC_IN[6]	20	19	18	12	12	13	-	标准
18	PA17	OPA1_IN1-	UART0_TX [2] / I2C1_SCL [3] / SPI0_SCK [4] / TIMG4_C0 [5] / SPI0_CS1 [6]	21	20	19	13	13 ⁽²⁾	_	9	具有唤醒 功能的标
	不适用	OPA1_IN0-				-					准配置
不适 用	不适用	OPA1_IN0-		-	-	20	-	13 ⁽³⁾		-	模拟
19	PA18	A7 / OPA1_IN0+ / GPAMP_IN-	UART0_RX [2] / SPI0_PICO [3] / I2C1_SDA [4] / TIMG4_C1 [5] (BSL 调 用)	22	21	21	14	14	14	10	具有唤醒 功能的标 准配置
20	PA19		SWDIO [2] / I2C1_SDA [3] / SPI0_POCI [4]	23	22	22	15	15	15	11	高速
21	PA20	A6 / COMP0_IN1 +	SWCLK [2] / I2C1_SCL [3] / TIMG4_C0 [4]	24	23	23	16	16	16	12	标准
22	PA21	A5 / VREF-	TIMG2_C0 [2] / UART0_CTS [3] / UART0_TX [4]	25	24	24	17	-	-	-	标准

表 6-1. 引脚属性 (continued)

	引脚功能 引脚编号											
PINC Mx	引脚名称	模拟	数字 ⁽¹⁾	32 VQFN	28 VSSOP (2)	28 VSSOP (3)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	I/O 结构	
23	PA22	A4 / GPAMP_OU T / OPA0_OUT	UART0_RX [2] / TIMG2_C1 [3] / UART0_RTS [4] / CLK_OUT [5] / UART1_RX [6] (默认 BSL UART_RX)	26	25	25	18	17	1	13	标准	
24	PA23	VREF+ / COMP0_IN1-	UART0_TX [2] / SPI0_CS3 [3] / TIMG0_C0 [4] / UART0_CTS [5] / UART1_TX [6] (默 以 BSL UART_TX)	27	26	26	19	18	2	14	标准	
25	PA24	A3 / OPA0_IN1- / OPA0_IN0-	SPI0_CS2 [2] / TIMG0_C1 [3] / UART0_RTS [4]	28	27	-	20	19 ⁽²⁾	-	15	标准	
不适 用	不适用	OPA0_IN0-		-	-	27	-	19 ⁽³⁾	-	-	模拟	
26	PA25	A2 / OPA0_IN0+	TIMG4_C1 [2] / UART0_TX [3] / SPI0_PICO [4]	29	28	28	21	20	2	16	标准	
27	PA26	A1 / GPAMP_IN+ / COMP0_IN0 +	TIMG1_C0 [2] / UART0_RX [3] / SPI0_POCI [4]	30	1	1	22	1	-	1	标准	
28	PA27	A0 / COMP0_IN0-	TIMG1_C1 [2] / SPI0_CS3 [3]	31	2	2	-	2	-	-	标准	

⁽¹⁾ 对于模拟功能,IOMUX 中的 PINCM.PF 和 PINCM.PC 必须设为 0 (例如,OPA 输入或输出或者 COMP 输入)。器件上的每个数字 I/O 均映射到一个特定的引脚控制管理寄存器 (PINCMx),此寄存器让软件能够使用 PINCM.PF 控制位来配置所需的*引脚功能*。

- (2) 仅限 MSPM0L130x
- (3) 仅限 MSPM0L134x
- (4) 对于 16 引脚和 20 引脚器件,复位引脚会与 PA1 进行多路复用。

表 6-2. 按 IO 类型分类的数字 IO 功能

W = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
IO 结构	反转控制	驱动强度控制	迟滯控制	上拉电阻器	下拉电阻器	唤醒逻辑						
标准驱动	是			是	是							
带唤醒功能的标准驱动	是			是	是	是						
高速	是	是		是	是							
5V 容限开漏	是		是		是	是						

6.3 信号说明

				引	脚编号	(1)						
功能	信号名称	32 VQFN	28 VSSOP (3)	28 VSSOP (4)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	引脚类型	说明		
	A0	31	2	2	-	2	-	-	I	ADC0 模拟输入 0		
	A1	30	1	1	22	1	-	1	I	ADC0 模拟输入 1		
	A2	29	28	28	21	20	2	16	I	ADC0 模拟输入 2		
	A3	28	27	-	20	19 ⁽³⁾	-	15	I	ADC0 模拟输入 3		
ADC	A4	26	25	25	18	17	1	13	I	ADC0 模拟输入 4		
ADC	A5	25	24	24	17	-	-	-	I	ADC0 模拟输入 5		
	A6	24	23	23	16	16	16	12	I	ADC0 模拟输入 6		
	A7	22	21	21	14	14	14	10	I	ADC0 模拟输入 7		
	A8	20	19	18	12	12	13	-	- 1	ADC0 模拟输入 8		
	A9	19	18	17	11	-	12	-	1	ADC0 模拟输入 9		
引导加载程 序 (BSL)	BSL_invoke	22	21	21	14	14	14	10	1	用于调用引导加载程序的输入引脚		
DCI (12C)	BSLSCL	2	5	5	1	5	5	4	I/O	默认 I ² C BSL 时钟		
BSL (I ² C)	BSLSDA	1	4	4	24	4	4	3	I/O	默认 I ² C BSL 数据		
DCL (LIADT)	BSLRX	26	25	25	18	17	1	13	1	默认 UART BSL 接收		
BSL (UART)	BSLTX	27	26	26	19	18	2	14	0	默认 UART BSL 发送		
时钟	CLK_OUT	11 18 26	17 25	16 25	18	17	1 11	13	0	可配置时钟输出		
	ROSC	6	9	9	5	8	8	7	ı	用于提高振荡器精度的外部电阻		
	COMP0_IN0-	31	2	2	-	2	-	-	- 1	比较器 0 反相输入 0		
	COMP0_IN0+	30	1	1	22	1	-	1	- 1	比较器 0 同相输入 0		
	COMP0_IN1-	27	26	26	19	18	2	14	1	比较器 0 反相输入 1		
比较器	COMP0_IN1+	24	23	23	16	16	16	12	- 1	比较器 0 同相输入 1		
	COMP0_OUT	7 11 15 20	10 16 19	10 18	6 12	11 12	13	-	0	比较器 0 输出		
\H_\	SWCLK	24	23	23	16	16	16	12	I	串行线调试输入时钟		
调试	SWDIO	23	22	22	15	15	15	11	I/O	串行线调试数据输入/输出		
	GPAMP_IN+	30	1	1	22	1	-	1	ı	GPAMP 同相端子输入		
通用放大器	GPAMP_OUT	26	25	25	18	17	1	13	0	GPAMP 输出		
	GPAMP_IN-	22	21	21	14	14	14	10	I	GPAMP 反相端子输入		

				引	脚编号	Ļ(1)				
功能	信号名称	32 VQFN	28 VSSOP (3)	28 VSSOP (4)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	引脚类型	说明
	PA0	1	4	4	24	4	4	3	I/O	可从关断状态唤醒的通用数字 I/O
	PA1	2	5	5	1	5	5	4	I/O	可从关断状态唤醒的通用数字 I/O
	PA2	6	9	9	5	8	8	7	I/O	通用数字 I/O
	PA3	7	10	10	6	-	-	-	I/O	通用数字 I/O
	PA4	8	11	11	7	9	-	-	I/O	通用数字 I/O
	PA5	9	12	12	-	-	9	-	I/O	通用数字 I/O
	PA6	10	13	13	-	10	10	8	I/O	通用数字 I/O
	PA7	11	-	-	-	-	-	-	I/O	通用数字 I/O
	PA8	12	-	-	-	-	-	-	I/O	通用数字 I/O
	PA9	13	14	14	8	-	-	-	I/O	通用数字 I/O
	PA10	14	15	-	9	-	11	-	I/O	通用数字 I/O
	PA11	15	16	-	10	11	-	-	I/O	通用数字 I/O
	PA12	16	-	-	-	-	-	-	I/O	通用数字 I/O
CDIO	PA13	17	-	15	-	-	-	-	I/O	通用数字 I/O
GPIO	PA14	18	17	16	-	-	11	-	I/O	通用数字 I/O
	PA15	19	18	17	11	-	12	-	I/O	通用数字 I/O
	PA16	20	19	18	12	12	13	-	I/O	通用数字 I/O
	PA17	21	20	19	13	13 ⁽³⁾	14	9	I/O	可从关断状态唤醒的通用数字 I/O
	PA18	22	21	21	14	14	14	10	I/O	可从关断状态唤醒的通用数字 I/O
	PA19	23	22	22	15	15	15	11	I/O	通用数字 I/O
	PA20	24	23	23	16	16	16	12	I/O	通用数字 I/O
	PA21	25	24	24	17	-	-	-	I/O	通用数字 I/O
	PA22	26	25	25	18	17	1	13	I/O	通用数字 I/O
	PA23	27	26	26	19	18	2	14	I/O	通用数字 I/O
	PA24	28	27	-	20	19 ⁽³⁾	-	15	I/O	通用数字 I/O
	PA25	29	28	28	21	20	2	16	I/O	通用数字 I/O
	PA26	30	1	1	22	1	-	1	I/O	通用数字 I/O
	PA27	31	2	2	-	2	-	-	I/O	通用数字 I/O
	I2C0_SCL	2 15	5 16	5	1 10	5 11	5	4	I/O	I2C0 串行时钟
	I2C0_SDA	1 14	4 15	4	24 9	4	4 11	3	I/O	I2C0 串行数据
I ² C	I2C1_SCL	19 21 24	18 20 23	17 19 23	11 13 16	13 ⁽³⁾ 16	12 16	9 12	I/O	I2C1 串行时钟
	I2C1_SDA	20 22 23	19 21 22	18 21 22	12 14 15	12 14 15	13 14 15	10 11	I/O	I2C1 串行数据

	信号名称			引	脚编号	.(1)						
功能		32 VQFN	28 VSSOP (3)	28 VSSOP (4)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	引脚类型	说明		
	OPA0_IN0+	29	28	28	21	20	2	16	ı	OPA0 同相端子输入 0		
	OPA0_IN0-	28	27	27	20	19	-	15	ı	OPA0 反相端子输入 0		
具有斩波功	OPA0_IN1-	28	27	-	20	19 ⁽³⁾	-	15	ı	OPA0 反相端子输入 1		
能的运算放 大器(零漂	OPA0_OUT	26	25	25	18	17	1	13	0	OPA0 输出		
移运算放大	OPA1_IN0+	22	21	21	14	14	14	10	ı	OPA1 同相端子输入 0		
器)	OPA1_IN0-	21	20	20	13	13	14	9	ı	OPA1 反相端子输入 0		
	OPA1_IN1-	21	20	19	13	13 ⁽³⁾	-	9	I	OPA1 反相端子输入 1		
	OPA1_OUT	20	19	18	12	12	13	-	0	OPA1 输出		
	VSS	5	8	8	4	7	7	6	Р	接地电源		
	VDD	4	7	7	3	6	6	5	Р	电源		
电源	VCORE	32	3	3	23	3	3	2	Р	稳压内核电源输出		
	四方扁平无引线封 装 (QFN) 焊盘	Pad	-	1	Pad	-	Pad	-	Р	QFN 封装外露散热焊盘 TI 建议连接至 Vss。		
	SPI0_CS0	6 12	9	9	5	8	8	7	I/O	SPI0 芯片选择 0		
	SPI0_CS1	1 7 21	4 10 20	4 10 19	6 13 24	4 13 ⁽³⁾	4	3 9	I/O	SPI0 芯片选择 1		
	SPI0_CS2	19 28	18 27	17	11 20	19 ⁽³⁾	12	15	I/O	SPI0 芯片选择 2		
	SPI0_CS3	27 31	2 26	2 26	19	2 18	2	14	I/O	SPI0 芯片选择 3		
SPI	SPI0_SCK	10 15 21	13 16 20	13 19	10 13	10 11 13 ⁽³⁾	10	8 9	I/O	SPI0 时钟信号输入 - SPI 外设模式时钟信号输出 - SPI 控制器模式		
	SPI0_POCI	8 14 20 23 30	1 11 15 19 22	1 11 18 22	7 9 12 15 22	1 9 12 15	11 13 15	1 11	I/O	SPI0 控制器输入/外设输出		
	SPI0_PICO	9 13 22 29	12 14 21 28	12 14 21 28	8 14 21	14 20	2 9 14	10 16	I/O	SPI0 控制器输出/外设输入		
系统	NRST	3	6	6	2	5	5	4	I	复位输入低电平有效		

				引	脚编号	.(1)						
功能	信号名称	32 VQFN	28 VSSOP (3)	28 VSSOP (4)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	引脚类型	说明		
	TIMG0_C0	9 16 20 27	12 19 26	12 18 26	12 19	12 18	2 9 13	14	I/O	通用计时器 0 CCR0 捕捉输入/比较输出		
	TIMG0_C1	10 17 28	13 27	13 15	20	10 19 ⁽³⁾	10	8 15	I/O	通用计时器 0 CCR1 捕捉输入/比较输出		
	TIMG1_C0	1 11 18 30	1 4 17	1 4 16	22 24	1 4	4 11	1 3	I/O	通用计时器 1 CCR0 捕捉输入/比较输出		
Timer	TIMG1_C1	2 6 31	2 5 9	2 5 9	1 5	2 5 8	5 8	4 7	I/O	通用计时器 1 CCR1 捕捉输入/比较输出		
	TIMG2_C0	7 12 25	10 24	10 24	6 17	-	-	-	I/O	通用计时器 2 CCR0 捕捉输入/比较输出		
	TIMG2_C1	8 13 26	11 14 25	11 14 25	7 8 18	9 17	1	13	I/O	通用计时器 2 CCR1 捕捉输入/比较输出		
	TIMG4_C0	14 21 24	15 20 23	19 23	9 13 16	13 ⁽³⁾ 16	11 16	9 12	I/O	通用计时器 4 CCR0 捕捉输入/比较输出		
	TIMG4_C1	15 19 22 29	16 18 21 28	17 21 28	10 11 14 21	11 14 20	2 12 14	10 16	I/O	通用计时器 4 CCR1 捕捉输入/比较输出		

				引	脚编号	(1)							
功能	信号名称	32 VQFN	28 VSSOP (3)	28 VSSOP (4)	24 VQFN	20 VSSOP	16 WQFN	16 SOT	引脚类型	说明			
	UARTO_TX	12 21 25 27 29	20 24 26 28	19 24 26 28	13 17 19 21	13 ⁽³⁾ 18 20	2	9 14 16	0	UART0 发送数据			
	UART0_RX	13 22 26 30	1 14 21 25	1 14 21 25	8 14 18 22	1 14 17	1 14	1 10 13	I	UART0 接收数据			
	UARTO_CTS	16 25 27	24 26	24 26	17 19	18	2	14	ı	UARTO"允许发送"流控制输入			
UART	UARTO_RTS	17 26 28	25 27	15 25	18 20	17 19 ⁽³⁾	1	13 15	0	UARTO"请求发送"流控制输出			
	UART1_TX	1 14 18 27	4 15 17 26	4 16 26	9 19 24	4 18	2 4 11	3 14	0	UART1 发送数据			
	UART1_RX	2 15 17 26	5 16 25	5 15 25	1 10 18	5 11 17	1 5	4 13	I	UART1 接收数据			
	UART1_CTS	7 13 18	10 14 17	10 14 16	6 8	-	11	-	ı	UART1 "允许发送" 流控制输入			
	UART1_RTS	8 12 19	11 18	11 17	7 11	9	12	-	0	UART1"请求发送"流控制输出			
电压基准(5)	VREF+	27	26	26	19	18	2	14	I	电压基准电源 - 外部基准输入			
七丛坐1世(7	VREF-	25	24	24	17	-	-	-	I	电压基准接地电源 - 外部基准输入			

- (1) = 不适用
- (2) I=输入,O=输出,I/O=输入或输出,P=电源
- (3) 仅限 MSPM0L130x
- (4) 仅限 MSPM0L134x
- (5) 当使用 VREF+ 和 VREF- 为 ADC 等模拟外设提供外部电压基准时,必须在 VREF+ 与 VREF-/GND 之间放置一个去耦电容,该电容基于外部基准源

6.4 未使用引脚的连接

表 6-3 列出了未使用引脚的正确端接方式。

表 6-3. 未使用引脚的连接

引脚 ⁽¹⁾	电势	注释			
PAx	1 -11 	将相应的引脚功能设置为 GPIO (PINCMx.PF = 0x1) 并使用内部上 拉或下拉电阻器将未使用的引脚配置为输出低电平或输入。			
OPAx_IN0-	开路	该引脚处于高阻抗状态			
NRST	VCC NRST 为低电平有效复位信号;该引脚必须上拉至 VCC,否无法启动。如需更多信息,请参阅节 9.1。				

(1) 任何具有第二功能 (与通用 I/O 共用)的未使用引脚都必须遵循 "PAx"未使用引脚连接指南。

7 规格

7.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

			最小值	最大值	单位
VDD	电源电压	在 VDD 引脚,相对于 VSS	-0.3	4.1	V
VI	输入电压	施加到任何 5V 容限开漏引脚	- 0.3	5.5	V
Vı	输入电压	施加到任何常见容限引脚	- 0.3	V _{DD} + 0.3 (最大值为 4.1)	V
	流入 VDD 引脚的电流(拉	-40°C ≤ Tj ≤ 130°C		80	mA
I _{VDD}	电流)	-40°C ≤ Tj ≤ 85°C		100	mA
1	流出 VSS 引脚的电流 (灌	-40°C ≤ Tj ≤ 130°C		80	mA
I _{VSS}	电流)	-40°C ≤ Tj ≤ 85°C		100	mA
	SDIO 引脚的电流	SDIO 引脚灌入或拉出的电流		6	mA
I _{IO}	HSIO 引脚的电流	HSIO 引脚灌入或拉出的电流		6	mA
	ODIO 引脚的电流	ODIO 引脚灌入的电流		20	mA
I _D	受支持的二极管电流	任一器件引脚上的二极管电流		±2	mA
Tj	结温		-40	130	°C
T_{stg}	存储温度		-40	150	°C

⁽¹⁾ 超出*绝对最大额定值*下列出的压力可能会对器件造成损坏。这些仅是压力额定值,并不意味着器件在这些条件下以及在*建议运行条件*以 外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。

7.2 ESD 等级

			值	单位
V	静电放电	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001,所有引脚 ⁽¹⁾	±2000	V
V _(ESD)		充电器件模式(CDM),符合 JEDEC 规范 JESD22-C101,所有引脚 ⁽²⁾	±500	V

(1) JEDEC 文件 JEP155 指出: 500V HBM 可实现在标准 ESD 控制流程下安全生产。

(2) JEDEC 文件 JEP157 指出: 250V CDM 可实现在标准 ESD 控制流程下安全生产。

7.3 建议运行条件

在自然通风条件下的工作温度范围内测得(除非另有说明)

		最小值	标称值	最大值	单位
VDD	电源电压	1.62		3.6	V
VCORE	VCORE 引脚上的电压 ⁽²⁾		1.35		V
C _{VDD}	VDD 和 VSS 之间放置的电容器 ⁽¹⁾		10		uF
C _{VCORE}	VCORE 和 VSS 之间放置的电容器 (1) (2)		470		nF
_	环境温度, T 版本	-40		105	°C
T _A	环境温度, S 版本	-40		125	C
TJ	最大结温, T 版本			125	°C
TJ	最大结温, S 版本			130	°C

在自然通风条件下的工作温度范围内测得(除非另有说明)

			最小值	标称值	最大值	单位
ſ.		具有 1 个闪存等待状态的 MCLK、CPUCLK、ULPCLK 频率 ⁽³⁾			32	MHz
	MCLK	具有 0 个闪存等待状态的 MCLK、CPUCLK、ULPCLK 频率 (3)			24	IVII IZ

- (1) 分别在 VDD/VSS 和 VCORE/VSS 之间连接 C_{VDD} 和 C_{VCORE} 并尽可能靠近器件引脚。C_{VDD} 和 C_{VCORE} 需要一个至少具有该额定值和 ±20% 或更高容差的低 ESR 电容器。
- (2) VCORE 引脚只能连接到 C_{VCORE}。请勿向 VCORE 引脚提供任何电压或施加任何外部负载。
- (3) 等待状态由系统控制器 (SYSCTL) 自动管理, 无需由应用软件配置。

7.4 热性能信息

	热指标(1)	封装	值	单位
R ₀ JA	结至环境热阻		36.3	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻		28.5	°C/W
R ₀ JB	结至电路板热阻	VOEN 32 (PUP)	17.2	°C/W
Ψ_{JT}	结至项部特征参数	VQFN-32 (RHB)	0.8	°C/W
Ψ ЈВ	结至电路板特征参数		17.2	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻		6.9	°C/W
R ₀ JA	结至环境热阻		78.9	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻		38.6	°C/W
R ₀ JB	结至电路板热阻	V(CCOD 20 (DCC20))	41.3	°C/W
Ψ_{JT}	结至顶部特征参数	VSSOP-28 (DGS28)	3.4	°C/W
ΨЈВ	结至电路板特征参数		41.0	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻		不适用	°C/W
R ₀ JA	结至环境热阻		44.7	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻		38.1	°C/W
R ₀ JB	结至电路板热阻	VOEN 24 (BCE)	21.9	°C/W
ΨЈТ	结至顶部特征参数	VQFN-24 (RGE)	1.1	°C/W
ΨЈВ	结至电路板特征参数		21.9	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻		7.1	°C/W
R ₀ JA	结至环境热阻		91.3	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻		29.3	°C/W
R ₀ JB	结至电路板热阻	VSSOP-20 (DGS20)	48.3	°C/W
ΨJT	结至顶部特性参数	V33OF-20 (DG320)	0.7	°C/W
ΨЈВ	结至电路板特征参数		47.9	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻		不适用	°C/W
R ₀ JA	结至环境热阻		86.6	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻		39.3	°C/W
R ₀ JB	结至电路板热阻	SOT-16 (DYY)	27.8	°C/W
Ψ_{JT}	结至顶部特征参数	301-10 (011)	1.1	°C/W
ΨЈВ	结至电路板特征参数		27.8	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻		不适用	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用报告。

7.5 电源电流特性

7.5.1 运行/睡眠模式

VDD=3.3V。所有输入都连接至 0V 或 VDD。输出不供应或吸收任何电流。所有外设均禁用。

			-40	°C	25	°C	85	°C	105	s°C	125	s°C	
	参数		典型值	最大 值	典型 <u>值</u>	最大 值	典型值	最 大 值	典型 值	最大 值	典型 值	最大 值	単位
运行模式													
IDD _{RUN}	MCLK=SYSOSC、CoreMark,从闪	32MHz	2.3		2.3		2.3		2.3		2.4		mA
IDDRUN	存执行	4MHz	0.52		0.52		0.54		0.56		0.60		ША
	MCLK=SYSOSC,while (1),从闪存 执行	32MHz	40	48	40	50	41	50	42	51	43	56	uA/Mhz
IDD _{RUN} , 每 MHz	MCLK=SYSOSC、CoreMark,从闪 存执行	32MHz	72		72		72		73		74		
과 IVII IZ	MCLK=SYSOSC、CoreMark,从闪 存执行	4MHz	130		130		135		140		150		
SLEEP 模式	SLEEP 模式												
IDD _{SLEEP}	MCLK-SYSOSC CDIL新庭	32MHz	967	1047	978	1066	1002	1192	1024	1301	1070	1416	uA
IDDSLEEP	MCLK=SYSOSC, CPU 暂停	4MHz	356	416	363	441	389	577	411	689	458	809	uA

7.5.2 停止/待机模式

除非另有说明, VDD=3.3V。所有输入都连接至 0V 或 VDD。输出不供应或吸收任何电流。所有未注明的外设均被禁用。

			-40	°C	25	°C	85	°C	105	°C	125	°C	
	参数		典型值	最 大 值	典型 值	最 大 值	典型值	最 大 值	典型 值	最 大 值	典型 值	最大 值	単位
停止模式				•									
IDD _{STOP0}	SYSOSC=32MHz , USE4MHZSTOP=0 , DISABLESTOP=0	4MHz	316	342	320	344	323	347	327	352	334	361	
IDD _{STOP1}	SYSOSC=4MHz , USE4MHZSTOP=1 , DISABLESTOP=0	4MHz	146	167	151	171	155	176	158	182	166	192	uA
IDD _{STOP2}	SYSOSC 关闭, DISABLESTOP=1, ULPCLK=LFCLK	32kHz	42	51	44	54	47	58	50	64	56	76	
待机模式													
IDD _{STBY0}	STOPCLKSTBY=0,TIMG0 启用		1.2	1.3	1.3	1.7	2.7	6.2	4.7	12	11	25	
IDD	STOPCLKSTBY=1,TIMG0 启用	32kHz	0.9	1.0	1.0	1.4	2.4	5.9	4.4	12	11	25	uA
IDD _{STBY1}	STOPCLKSTBY=1, GPIOA 启用		0.9	1.0	1.0	1.4	2.4	5.9	4.4	12	10	25	

7.5.3 关断模式

所有输入都连接至 0V 或 VDD。输出不供应或吸收任何电流。内核稳压器关断。

			-40	°C	25	°C	85	°C	105	°C	125	°C	
	参数	VDD	典型值	最 大 值	典型值	最 大 值	<u>典型</u> 值	最 大 值	典型 值	最 大 值	典型值	最 大 值	単位
IDD _{SHDN}	关断模式下的电源电流	3.3V	47		61		352		793		2020		nA

7.6 电源定序

7.6.1 POR 和 BOR

在自然通风条件下的工作温度范围内测得 (除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
		上升			1	V/us
dVDD/dt	VDD(电源电压)压摆率	下降(2)			0.01	v/uS
		下降,待机			0.1	V/ms
V _{POR+}	1.由有产品工品亚	上升(1)	0.95	1.30	1.51	V
V _{POR-}	- 上电复位电压电平 	下降(1)	0.9	1.25	1.48	V
V _{HYS, POR}	POR 迟滞	(1)	30	45	60	mV
V _{BOR0+} ,		冷启动 , 上升 ⁽¹⁾	1.54	1.58	1.62	
V _{BOR0+}	- 欠压复位电压电平 0 (默认电平)	上升(1) (2)	1.54	1.59	1.62	V
V _{BOR0} -		下降(1) (2)	1.53	1.58	1.61	
V _{BOR0, STBY}	-	待机模式 ⁽¹⁾	1.51	1.57	1.61	
V _{BOR1+}	ATT A CHATTAN	上升(1) (2)	2.13	2.18	2.23	V
V _{BOR1} -	- 欠压复位电压电平 1	下降(1) (2)	2.10	2.15	2.19	V
V _{BOR2+}	- 欠压复位电压电平 2	上升(1) (2)	2.72	2.77	2.82	V
V _{BOR2} -	-	下降(1) (2)	2.69	2.74	2.79	V
V _{BOR3+}	- 欠压复位电压电平 3	上升(1) (2)	2.91	2.97	3.02	V
V _{BOR3} -	-	下降(1) (2)	2.88	2.94	2.99	V
V	友 正有及识洲	级别 0 ⁽¹⁾		15	21	mV
V _{HYS,BOR}	欠压复位迟滞	级别 1-3 ⁽¹⁾		34	40	IIIV
T	POP 佐塚江沪	运行/睡眠/停止模式			10	us
T _{PD, BOR}	BOR 传播延迟	待机模式			100	us

- (1) $|dVDD/dt| \leq 3V/s$
- (2) 器件在运行、睡眠或停止模式下工作。

7.6.2 电源斜坡

图 7-1 给出了上电和下电期间 POR - POR+、BOR0- 和 BOR0+ 之间的关系。

图 7-1. 下电上电 POR/BOR 条件

7.7 闪存特性

在自然通风条件下的工作温度范围内测得 (除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
电源						
VDD _{PGM/ERASE}	编程及擦除电源电压		1.62		3.6	V
IDD _{ERASE}	擦除操作期间从 VDD 获得的电源电流	电源电流差值		2		mA
IDD _{PGM}	编程操作期间从 VDD 获得的电源电流	电源电流差值		2.5		mA
耐久性					'	
NWEC _(LOWER)	擦除/编程周期耐久性(下部 32kB 闪 存)(1)		100			k 个周期
NWEC _(UPPER)	擦除/编程周期耐久性(其余闪存)(1)		10			k 个周期
NE _(MAX)	发生故障前的总擦除操作(2)		802			K 擦除操作
NW _(MAX)	在扇区擦除之前每个字线的写入操作(3)				83	写入操作
保持		,			'	
t _{RET_85}	闪存数据保留	-40 °C \leq T $_{j}$ \leq 85°C	60			年
t _{RET_105}	闪存数据保留	-40 °C \leq T $_{j}$ \leq 105°C	11.4			年
编程和擦除时序						
t _{PROG (WORD, 64)}	闪存字的编程时间(4)(6)			50	275	μs
t _{PROG (SEC, 64)}	1kB 扇区的编程时间 ⁽⁵⁾ ⁽⁶⁾			6.4		ms
terase (SEC)	扇区擦除时间	≤2k 个擦除/编程周期,T _j ≥ 25°C		4	20	ms
terase (SEC)	扇区擦除时间	≤10k 个擦除/编程周期,T _j ≥ 25°C		20	150	ms
t _{ERASE} (SEC)	扇区擦除时间	≤10k 个擦除/编程周期		20	200	ms
t _{ERASE (BANK)}	组擦除时间	≤10k 个擦除/编程周期		22	220	ms

- (1) 下部 32kB 闪存地址空间支持更高的擦除/编程耐久性,从而实现 EEPROM 仿真应用。在具有 <=32kB 闪存的器件上,整个闪存支持 NWEC_(LOWER) 个擦除/编程周期。
- (2) 发生故障前闪存支持的累计擦除操作总数。一次扇区擦除或组擦除操作被视为一次擦除操作。
- (3) 必须擦除字线之前、每个字线允许的最大写入操作数。如果需要对同一个字线执行额外的写入操作,则一旦达到每个字线的最大写入操作数,就需要执行扇区擦除。
- (4) 编程时间定义为从触发编程命令到在闪存控制器中设置命令完成中断标志所需的时间。
- (5) 扇区编程时间定义为从第一个字编程命令被触发到最后一个字编程命令完成并且在闪存控制器中设置中断标志所需的时间。该时间包括在扇区编程期间软件将每个闪存字(在第一个闪存字之后)加载到闪存控制器所需的时间。
- (6) 闪存字大小为 64 个数据位 (8 个字节) 。在具有 ECC 的器件上,总闪存字大小为 72 位 (64 个数据位加 8 个 ECC 位) 。

7.8 时序特性

VDD=3.3V, T_a=25℃(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
唤醒时间	Ī					
t _{WAKE} , SLEEP	从休眠到运行的唤醒时间(1)			2		个周期
t _{WAKE} ,	从 STOP1 到运行的唤醒时间 (SYSOSC 启用) ⁽¹⁾			14		us
STOP	从 STOP2 到运行的唤醒时间 (SYSOSC 禁用) ⁽¹⁾			13		us
t _{WAKE,} STBY	从待机到运行的唤醒时间(1)			15		us
t _{WAKE} , SHDN	从关断到运行的唤醒时间	快速启动启用		214		us

7.8 时序特性 (continued)

VDD=3.3V, T_a=25℃(除非另有说明)

	参数	测试条件	最小值 典型值	最大值	单位				
t _{WAKE} , SHDN	从关断到运行的唤醒时间	快速启动禁用	230		μs				
异步快速	产步快速时钟请求时序								
		模式为 SLEEP2	0.9		us				
	从异步请求的边沿到第一个 32MHz MCLK 边沿的延迟时间	模式为 STOP1	2.4		us				
DELAY		模式为 STOP2	0.9		us				
		模式为 STANDBY1	3.2		us				
启动时序									
t _{START,}	器件从复位/上电开始的冷启动时间 ⁽²⁾	快速启动启用	241		us				
RESET	备什 <u> </u>	快速启动禁用	284		us				
NRST 时	序								
t _{RST,}	NRST 引脚上用于生成 BOOTRST 的	ULPCLK≥4MHz	2		us				
BOOTRST	脉冲长度下限	ULPCLK=32kHz	100		us				
t _{RST, POR}	NRST 引脚上用于生成 POR 的脉冲长度下限		1		s				

⁽¹⁾ 唤醒时间是指从外部信号(GPIO唤醒事件)的边沿到执行第一条 CPU 指令所需的时间,其中 GPIO 干扰滤波器禁用 (FILTEREN=0x0) 且快速唤醒启用 (FASTWAKEONLY=1)

7.9 时钟规范

7.9.1 系统振荡器 (SYSOSC)

在自然通风条件下的工作温度范围内测得 (除非另有说明)

	参数	测试条件	最小值	典型值 最力	道 单位
	出厂修整的 SYSOSC 频率	SYSOSCCFG.FREQ=00 (BASE)		32	
	出)修整的 STSUSC 频率	SYSOSCCFG.FREQ=01		4	
	用户修整的 SYSOSC 频率	SYSOSCCFG.FREQ=10 , SYSOSCTRIMUSER.FREQ=10		24	MHz
		SYSOSCCFG.FREQ=10 , SYSOSCTRIMUSER.FREQ=01		16	
		SETUSEFCL=1 , T _a = 25℃	-0.41	0	.58
	启用频率校正环路 (FCL),并假设使用理想 ROSC 电阻器时的 SYSOSC 频率精度(1)(2)	SETUSEFCL=1 , -40 °C≤ _{Ta} ≤85 °C	-0.80	0	.93
		SETUSEFCL=1 , -40 °C≤ _{Ta} ≤105 °C	-0.80	1	.09
f _{sysosc}		SETUSEFCL=1 , -40 °C≤ _{Ta} ≤125 °C	-0.80	1	.30
ISYSOSC		SETUSEFCL=1 , T_a = 25°C , ±0.1% ±25ppm R_{OSC}	-0.5		0.7
	启用频率校正环路 (FCL), R _{OSC} 电阻器置于 R _{OSC} 引脚时的 SYSOSC 精度,适用于	SETUSEFCL=1 , -40 $^{\circ}\!$	- 1.1		1.2
	经过出厂调整的频率 (1)	SETUSEFCL=1 , -40 $^{\circ}\mathrm{C} \leqslant T_a \leqslant 105 ^{\circ}\mathrm{C}$, $\pm 0.1\% \ \pm 25 ppm \ R_{OSC}$	- 1.1		1.4
		SETUSEFCL=1 , -40 $^{\circ}\!$	- 1.1		1.7
	禁用频率校正环路 (FCL) 后的 SYSOSC 精度,32MHz	SETUSEFCL=0 , SYSOSCCFG.FREQ=00 , -40 $^{\circ}\!$	-2.6		1.8 %

⁽²⁾ 启动时间是从 VDD 超过 VBOR0+(冷启动)到执行用户程序的第一条指令所需的时间。

7.9.1 系统振荡器 (SYSOSC) (continued)

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
f _{SYSOSC}	禁用频率校正环路 (FCL) 后的 SYSOSC 精度,适用于经过出厂调整的频率,4MHz	SETUSEFCL=0 , SYSOSCCFG.FREQ=01 , -40 $^{\circ}\mathrm{C} \leqslant T_{a} \leqslant 125 ^{\circ}\mathrm{C}$	- 2.7		2.3	%
R _{OSC}	在 ROSC 引脚和 VSS 之间安装外部电阻器 (1)	SETUSEFCL=1		100		kΩ
t _{settle,} SYSOSC	达到目标精度的稳定时间 (3)	SETUSEFCL=1 , ±0.1% 25ppm R _{OSC} ⁽¹⁾			30	us
f _{settle,} SYSOSC	t _{settle} 期间的 f _{SYSOSC} 额外下冲精度 ⁽³⁾	SETUSEFCL=1 , ±0.1% 25ppm R _{OSC} ⁽¹⁾	-11			%

- (1) SYSOSC 频率校正环路 (FCL) 通过外部基准电阻 (R_{OSC}) 实现高 SYSOSC 精度,当使用 FCL 时,该电阻必须连接在器件 ROSC 引脚和 VSS 之间。所示精度为采用 ±0.1% ±25ppm R_{OSC} 时;也可以使用宽松容差电阻(SYSOSC 精度会有所降低)。有关计算各种 R_{OSC} 精度所对应的 SYSOSC 精度的详细信息,请参阅技术参考手册的"SYSOSC"一节。如果未启用 FCL,则无需填充 R_{OSC}。
- (2) 仅表示器件精度。必须将所用 ROSC 电阻器的容差和温度漂移与此规格结合使用,以确定最终精度。±0.1% ±25ppm R_{OSC} 的性能作为基准点提供。
- (3) SYSOSC 被唤醒 (例如,退出低功耗模式时)并且 FCL 己启用时,SYSOSC 最初将下冲目标频率 f_{SYSOSC},额外的误差最高为 f_{settle,SYSOSC},时间为 t_{settle,SYSOSC},之后可达到目标精度。

7.9.1.1 SYSOSC 典型频率精度

图 7-3. FCL 关闭时的 SYSOSC 精度 (32MHz)

FCL 启用时的精度基于 0.1% 容差 25ppm/°C ROSC 电阻器。

7.9.2 低频振荡器 (LFOSC)

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
f _{LEOSC}	LFOSC 频率			32768		Hz
	LFOSC 精度	-40°C ≤ T _a ≤ 125°C	-5		5	%
		-40℃ ≤ T _a ≤ 85℃	-3		3	%
t _{start,} LFOSC	LFOSC 启动时间			1.7		ms

7.10 数字 IO

7.10.1 电气特性

	参数	测试条件		最小值	典型值	最大值	单位
		ODIO (1)	VDD≥1.62V	0.7*VDD		5.5	V
V _{IH}	真由平輪 λ 由圧	电平输入电压	VDD≥2.7V	2		5.5	V
1 1 1	1910年1111111111111111111111111111111111	除 ODIO 和复位 以外的所有 I/O	VDD≥1.62V	0.7*VDD		VDD+0.3	V
		ODIO	VDD≥1.62V	-0.3		0.3*VDD	V
 V _{IL}	ODIO	VDD≥2.7V	-0.3		0.8	V	
- 12	IN THE PROPERTY OF THE PROPERT	除 ODIO 和复位 以外的所有 I/O	VDD≥1.62V	-0.3		0.3*VDD	V
		ODIO		0.05*VDD			V
V _{HYS}	Hysteresis	除 ODIO 以外的 所有 I/O		0.1*VDD			V
I _{lkg}	高阻态漏电流	SDIO ⁽²⁾ (3)				±50	nA
R _{PU}	上拉电阻	除 ODIO 以外的 所有 I/O			40		kΩ
R _{PD}	下拉电阻				40		kΩ
C _I	输入电容				5		pF

7.10.1 电气特性 (continued)

参数			测试条件	最小值	典型值 最大值	单位
		SDIO	$\begin{split} & \text{VDD} \geqslant 2.7 \text{V , } I_{\text{IO}} _{\text{,max}} = 6\text{mA} \\ & \text{VDD} \geqslant 1.71 \text{V , } I_{\text{IO}} _{\text{,max}} = 2\text{mA} \\ & \text{VDD} \geqslant 1.62 \text{V , } I_{\text{IO}} _{\text{,max}} = 1.5\text{mA} \\ & -40^{\circ}\text{C} \leqslant T_{j} \leqslant 25^{\circ}\text{C} \end{split}$	VDD-0.4		
		ЗЫО	$\begin{split} \text{VDD} &\geqslant 2.7 \text{V , } I_{\text{IO}} _{,\text{max}} = 6\text{mA} \\ \text{VDD} &\geqslant 1.71 \text{V , } I_{\text{IO}} _{,\text{max}} = 2\text{mA} \\ \text{VDD} &\geqslant 1.62 \text{V , } I_{\text{IO}} _{,\text{max}} = 1.5\text{mA} \\ -40^{\circ}\text{C} &\leqslant T_{j} \leqslant 130^{\circ}\text{C} \end{split}$	VDD-0.45		
		$\begin{array}{c} \text{VDD} \geqslant 2.7 \text{V , DRV = 1 , } I_{IO} _{,max} = \\ 6\text{mA} \\ \text{VDD} \geqslant 1.71 \text{V , DRV = 1 , } I_{IO} _{,max} = \\ 3\text{mA} \\ \text{VDD} \geqslant 1.62 \text{V , DRV = 1 , } I_{IO} _{,max} = \\ 2\text{mA} \\ -40^{\circ}\text{C} \leqslant T_{j} \leqslant 25^{\circ}\text{C} \\ \hline \text{VDD} \geqslant 2.7 \text{V , DRV = 1 , } I_{IO} _{,max} = \\ 6\text{mA} \end{array}$	VDD-0.4			
V _{OH}	高电平输出电压		6mA $ \begin{array}{l} \text{VDD} \geqslant 1.71 \text{V , DRV} = 1 \text{ , } I_{\text{IOI},\text{max}} = \\ 3\text{mA} \\ \text{VDD} \geqslant 1.62 \text{V , DRV} = 1 \text{ , } I_{\text{IOI},\text{max}} = \\ 2\text{mA} \end{array} $	VDD-0.4		V
			VDD-0.45			
				$\begin{array}{l} \text{VDD} \geqslant 2.7 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 4\text{mA} \\ \text{VDD} \geqslant 1.71 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 2\text{mA} \\ \text{VDD} \geqslant 1.62 \text{V , } I_{IO} _{,max} = 1.5\text{mA} \\ -40 ^{\circ}\text{C} \leqslant T_{j} \leqslant 130 ^{\circ}\text{C} \end{array}$	VDD-0.45	

7.10.1 电气特性 (continued)

	参数		测试条件	最小值	典型值 最大	直単位
		SDIO	$\begin{split} & \text{VDD} \geqslant 2.7 \text{V} \;, \; I_{\text{IO}} _{,\text{max}} = 6\text{mA} \\ & \text{VDD} \geqslant 1.71 \text{V} \;, \; I_{\text{IO}} _{,\text{max}} = 2\text{mA} \\ & \text{VDD} \geqslant 1.62 \text{V} \;, \; I_{\text{IO}} _{,\text{max}} = 1.5\text{mA} \\ & -40^{\circ}\text{C} \leqslant T_{j} \leqslant 25^{\circ}\text{C} \end{split}$		0	4
		ОВІО	$\begin{split} \text{VDD} &\geqslant 2.7 \text{V} \;, \; I_{\text{IO}} _{,\text{max}} = 6\text{mA} \\ \text{VDD} &\geqslant 1.71 \text{V} \;, \; I_{\text{IO}} _{,\text{max}} = 2\text{mA} \\ \text{VDD} &\geqslant 1.62 \text{V} \;, \; I_{\text{IO}} _{,\text{max}} = 1.5\text{mA} \\ -40^{\circ}\text{C} &\leqslant T_{j} \leqslant 130^{\circ}\text{C} \end{split}$		0.4	5
			$\begin{array}{l} \text{VDD} \geqslant 2.7 \text{V , DRV} = 1 \text{ , } I_{IO} _{,max} = \\ 6 \text{mA} \\ \text{VDD} \geqslant 1.71 \text{V , DRV} = 1 \text{ , } I_{IO} _{,max} = \\ 3 \text{mA} \\ \text{VDD} \geqslant 1.62 \text{V , DRV} = 1 \text{ , } I_{IO} _{,max} = \\ 2 \text{mA} \\ T_j \leqslant 85 ^{\circ}\text{C} \end{array}$		0	4
V _{OL}	低电平输出电压	цего	$\begin{array}{l} \text{VDD} \geqslant 2.7 \text{V , DRV} = 1 \text{ , } I_{IO} _{,max} = \\ 6 \text{mA} \\ \text{VDD} \geqslant 1.71 \text{V , DRV} = 1 \text{ , } I_{IO} _{,max} = \\ 3 \text{mA} \\ \text{VDD} \geqslant 1.62 \text{V , DRV} = 1 \text{ , } I_{IO} _{,max} = \\ 2 \text{mA} \\ -40 ^{\circ}\text{C} \leqslant T_{j} \leqslant 130 ^{\circ}\text{C} \end{array}$		0.4	5 V
		HSIO	$\begin{array}{l} \text{VDD} \geqslant 2.7 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 4 \text{mA} \\ \text{VDD} \geqslant 1.71 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 2 \text{mA} \\ \text{VDD} \geqslant 1.62 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 1.5 \text{mA} \\ T_j \leqslant 85 ^{\circ} \text{C} \end{array}$		0	4
			$\begin{array}{l} \text{VDD} \geqslant 2.7 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 4\text{mA} \\ \text{VDD} \geqslant 1.71 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 2\text{mA} \\ \text{VDD} \geqslant 1.62 \text{V , DRV} = 0 \text{ , } I_{IO} _{,max} = \\ 1.5\text{mA} \\ -40^{\circ}\text{C} \leqslant T_{j} \leqslant 130^{\circ}\text{C} \end{array}$		0.4	5
		ODIO	$\begin{split} \text{VDD} &\geqslant 2.7 \text{V , I}_{\text{OL,max}} = 8 \text{mA} \\ \text{VDD} &\geqslant 1.71 \text{V , I}_{\text{OL,max}} = 4 \text{mA} \\ -40 ^{\circ}\text{C} &\leqslant \text{T}_{j} \leqslant 25 ^{\circ}\text{C} \end{split}$		0	4
		02.0	$\begin{split} \text{VDD} &\geqslant 2.7 \text{V , I}_{\text{OL,max}} = 8 \text{mA} \\ \text{VDD} &\geqslant 1.71 \text{V , I}_{\text{OL,max}} = 4 \text{mA} \\ -40 ^{\circ}\text{C} &\leqslant \text{T}_{j} \leqslant 130 ^{\circ}\text{C} \end{split}$		0.4	.5

- (1) I/O 类型: ODIO = 5V 容限开漏, SDIO = 标准驱动, HSIO = 高速
- (2) 除非另有说明,漏电流是在将 VSS 或 VCC 施加到相应引脚的情况下测量的。
- (3) 数字端口引脚的泄漏电流单独测量。为输入选择端口引脚,而且上拉/下拉电阻器被禁用。

7.10.2 开关特性

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

	参数		测试条件	最小值 典型值	最大值	单位
		SDIO ⁽¹⁾	$VDD \geqslant 1.71V$, $C_L = 20pF$		16	
	端口输出频率		VDD ≥ 2.7V , CL= 20pF		32	
f _{max} 端口输出频率		HSIO	VDD ≥ 1.71V , DRV = 0 , CL= 20pF		16	MHz
			VDD ≥ 1.71V , DRV = 1 , CL= 20pF		24	1011 12
			VDD ≥ 2.7V , DRV = 0 , CL= 20pF		32	
		ODIO	VDD ≥ 1.71V , FM ⁺ , CL= 20pF - 100pF		1	
t _r , t _f	输出上升/下降时间	除 ODIO 以外 的所有输出端口	VDD ≥ 1.71V	(0.3*f _{max}	s
t _f	输出下降时间	ODIO	$VDD \geqslant 1.71V$, FM^+ , $CL=20pF-100pF$	20*VDD/5.5	120	ns

(1) I/O 类型: ODIO = 5V 容限开漏, SDIO = 标准驱动, HSIO = 高速

7.11 模拟多路复用器 VBOOST

在自然通风条件下的工作温度范围内测得(除非另有说明)

参数		测试条件	最小值	典型值	最大值	单位
L	VBOOST 电流加法器	MCLK/ULPCLK 是 LFCLK		0.8	uA	
IVBST		MCLK/ULPCLK 不是 LFCLK		8.5		uA
t _{START,VBST}	VBOOST 启动时间			12		us

7.12 ADC

7.12.1 电气特性

在推荐的电源电压和自然通风条件下的工作温度范围内(除非另有说明),所有典型值均在温度为25°C时测得,并且所有精度参数均使用12位分辨率模式测得(除非另有说明)

	参数	測试条件	最小值	典型值	最大值	单位	
Vin _(ADC)	模拟输入电压范围(1)	适用于所有 ADC 模拟输入引脚	0		VDD	V	
		来自 VDD 的 V _{R+}		VDD		V	
V_{R+}	ADC 正基准电压	来自外部基准引脚的 V _{R+} (VREF+)	1.4		VDD	V	
		来自内部基准的 V _{R+} (VREF)		VREF		V	
V _{R-}	ADC 负基准电压			0		V	
Fs	ADC 采样频率	RES = 0x0(12 位模式),外部基准			1.68	Msps	
I _(ADC) (2)	流入 VDD 端子的	F _S = 1MSPS,内部基准关闭,V _{R+} = VDD		454		μА	
	工作电源电流	F _S = 200ksps,内部基准打开,V _{R+} = VREF = 2.5V		300	435	μА	
C _{S/H}	ADC 采样保持电容			3.3	7	pF	
Rin	ADC 采样开关电阻			0.5	1	kΩ,	
ENOB	去社學和	内部基准,V _{R+} = VREF = 2.5V,F _{in} = 10KHz	10	10.2		<i>1</i> →	
ENOB	有效位数	外部基准,F _{in} = 10KHz ⁽⁴⁾	11	11.1		位	
SNR	/>n= 11.	外部基准(3)	68	71		dB	
SINK	信噪比	内部基准,V _{R+} = VREF = 2.5V	63	65		uБ	
		外部基准电压 ⁽³⁾ ,VDD = VDD _(min) 至 VDD _(max)	63	68			
PSRR _{DC}	电源抑制比(直流)	VDD = VDD _(min) 至 VDD _(max) 内部基准,V _{R+} = VREF = 2.5V	49	55		dB	

7.12.1 电气特性 (continued)

在推荐的电源电压和自然通风条件下的工作温度范围内(除非另有说明),所有典型值均在温度为 25℃ 时测得,并且所有精度参数均使用 12 位分辨率模式测得(除非另有说明)

	参数	测试条件		典型值	最大值	单位
PSRR _{AC}	电源抑制比 (交流)	外部基准电压 ⁽³⁾ ,1kHz 时 Δ VDD = 0.1V	61			dB
		1kHz 时 △ VDD = 0.1V 内部基准,V _{R+} = VREF = 2.5V				
T _{wakeup}	ADC 唤醒时间	假设内部基准处于运行状态		1		us
V _{SupplyMon}	电源监测器分压器 (VDD/3) 精度	ADC 输入通道:电源监测器 ⁽⁴⁾	-1.5		+1.5	%
I _{SupplyMon}	电源监测器分压器电流消耗	ADC 输入通道:电源监测器		10		uA

- (1) 模拟输入电压范围必须位于所选的 ADC 基准电压范围 $V_{R+} \subseteq V_{R-}$ 内,才能获得有效的转换结果。
- (2) 内部基准 (VREF) 电源电流不包括在电流消耗参数 I_(ADC) 中。
- (3) 所有外部基准规格都是在 V_{R+} = VREF+ = VDD = 3.3V 且 V_{R-} = VREF- = VSS = 0V 的条件下测得
- (4) 模拟电源监测器。通道 15 上的模拟输入断开连接,并在内部连接到分压器 VDD/3。

7.12.2 开关特性

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

	参数		测试条件		典型值	最大值	单位
f _{ADCCLK}	ADC 时钟频率			4		32	MHz
t _{ADC trigger}	软件触发最小宽度			3			ADCCLK 周期
t _{Sample}	无 OPA 时的采样时间	12 位模式,R _S = 50 Ω Ω,C _{pext} = 10pF			62.5		ns
	使用 OPA 时的采样时间 ⁽¹⁾	12 位模式	GBW = 0x1,PGA 增益= x1		0.22		μs
^t Sample_PGA			GBW = 0x1, PGA 增益= x32		1.5		μs
t _{Sample_GPAMP}	使用 GPAMP 时的采样时间				1.5		μs
t _{Sample_SupplyMon}	使用电源监测器 (VDD/3) 时的采样时间				2		μs

(1) 仅适用于具有 OPA 的器件

7.12.3 线性参数

在推荐的电源电压和自然通风条件下的工作温度范围内(除非另有说明),所有典型值均在温度为 25°C 时测得,并且所有线性参数均使用 12 位分辨率模式测得(除非另有说明)⁽¹⁾

	参数	测试条件	最小值	典型值 最大值	单位
Eı	积分线性误差 (INL)	外部基准(2)	-2.0	+2.0	LSB
E _D	微分线性误差 (DNL) 保证无丢码	外部基准(2)	-1.0	+1.0	LSB
Eo	偏移误差	外部基准(2)	-3	3	mV
		内部基准,V _{R+} = VREF = 2.5V	-3	3	mV
E _G	增益误差	外部基准 ⁽²⁾	-3	3	LSB

(1) 总体未调整误差 (TUE) 可以通过以下公式使用 E_I 、 E_O 和 E_G 来计算得出:TUE = √ (E_I 2 + $|E_O|^2$ + E_G 2) 注意:您必须将所有误差转换为相同的单位,通常为 LSB,以上公式才能进行准确计算

(2) 所有外部基准规格都是在 V_{R+} = VREF+ = VDD 且 V_{R-} = VSS = 0V 的条件下测得

7.12.4 典型连接图

图 7-4. ADC 输入网络

- 1. 请参阅 ADC 电气特性以了解 R_{in} 和 C_{S/H} 的值
- 2. 请参阅数字 IO 电气特性以了解 C_I 的值
- 3. Cpar 和 Rpar 表示外部 ADC 输入电路的寄生电容和电阻

使用以下公式来求解 ADC 转换所需的最小采样时间 (T):

- 1. Tau = $(R_{par} + R_{in})^* C_{S/H} + R_{par}^* (C_{par} + C_I)$
- 2. K= In(2ⁿ/趋稳误差) In((C_{par} + C_I)/C_{S/H})
- 3. T (最小采样时间) = K*Tau

7.13 温度传感器

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
TS _{TRIM}	出厂调整温度(1)		27	30	33	$^{\circ}$ C
TS _c	温度系数		-1.84	-1.75	-1.66	mV/℃
t _{SET, TS}	温度传感器稳定时间(2)			2.5	10	us

- (1) 通过用户校准可以实现更高的绝对精度。
- (2) 这是由 ADC 进行测量时,温度传感器稳定所需的时间上限。它可用于指定测量温度传感器时的最短 ADC 采样时间。

7.14 VREF

7.14.1 电压特性

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

参数		测试条件	最小值	典型值	最大值	单位
VDD _{min}	VPEF 法法院重要基本中海中国	BUFCONFIG = 1	1.62			V
	VREF 运行所需的最小电源电压	BUFCONFIG = 0	2.7			V
VREF	中国并称於山中区	BUFCONFIG = 1	1.379	1.4	1.421	\/
	电压基准输出电压	BUFCONFIG = 0	2.462	2.5	2.538	V

7.14.2 电气特性

参数		测试条件	最小值	典型值	最大值	单位			
I _{VREF}	VREF 工作电源电流	BUFCONFIG = {0, 1}, 无负载		74	100	μΑ			
TC _{VREF}	VREF 的温度系数 (2)	BUFCONFIG = {0, 1}			200	ppm/°C			
TC _{drift}	长期 VREF 漂移	时间 = 1000 小时,BUFCONFIG = {0, 1},T = 25℃			300	ppm			
PSRR _{DC}	VREF 电源抑制比(直流)	VDD = 1.7 V 至 VDDmax,BUFCONFIG = 1	59	64		dB			
		VDD = 2.7V 至 VDDmax , BUFCONFIG = 0	49	53		ub			

7.14.2 电气特性 (continued)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

参数		测试条件	最小值	典型值	最大值	单位
Vanion	VREF 输出端的 RMS 噪声(0.1Hz 至 100MHz)	BUFFCONFIG = 1		500		uVrms
		BUFFCONFIG = 0		750		μνιιιιδ
ADC F _S	支持的最大 ADC 采样频率	使用 VREF 作为 ADC 基准			200	ksps
T _{startup}	VREF 启动时间	BUFCONFIG = {0, 1} , VDD = 2.8V			15	us

(1) VREF 输出的温度系数是 TC_{VRBUF} 与内部带隙基准的温度系数之和。

7.15 COMP

7.15.1 比较器电气特性

	参数	测试条件	最小值	典型值	最大值	单位
比较器电气	—————————————————————————————————————					
Vcm	共模输入范围		0		VDD	V
V _{offset}	输入失调电压				±25	mV
				0.4		
V_{hys}	直流输入迟滞			11		mV
v hys	且抓制八心布			20		IIIV
				30		
+	传播延迟,响应时间	输出滤波器关闭,过驱 = 100mV,高速模式		32	50	ns
t _{PD_ls}		输出滤波器关闭,过驱 = 100mV,低功耗模式			5	μs
+	17.45 88 (年48.04 位)	达到传播延迟规格所需的启动时间,高速模式			10	μs
t _{en}	比较器使能时间	达到传播延迟规格所需的启动时间,低功耗模式			10	μs
	比较器电流消耗。	Vcm = VDD/2,100mV 过驱,DAC 输出作为电压基准,VDD 作为 DAC 的基准,高速模式		120	200	μА
I _{comp}		Vcm = VDD/2,100mV 过驱,DAC 输出作为电压基准,VDD 作为 DAC 的基准,低功耗模式		0.8	2.7	μA
		Vcm = VDD/2, 100mV 过驱,仅比较器。高速模式		100	180	μA
		Vcm = VDD/2, 100mV 过驱, 仅比较器, 低功耗模式		0.7	2.1	μA
8 位 DAC 申	3气特性	,				
V _{dac}	DAC 输出范围		0		VDD	V
V _{dac-code}	给定代码的 8 位 DAC 输出电压	VIN = 8 位 DAC 的基准电压,代码 n = 0 至 255		VIN × (n+1) / 256		V
INL	8 位 DAC 的积分非线性		-1		1	LSB
DNL	8 位 DAC 的微分非线性		-1		1	LSB
增益误差	8 位 DAC 的增益误差	基准电压 = VDD	-2		2	FSR 百分比
失调误差	8 位 DAC 的失调误差		-5		5	mV

7.16 GPAMP

7.16.1 电气特性

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

	参数	测试条件	<u></u>	最小值	典型值	最大值	单位
		RRI = 0x0		-0.1		VDD - 1	
V _{CM}	共模电压范围	RRI = 0x1		1		VDD-0. 2	V
		RRI = 0x2	RRI = 0x2			VDD-0. 2	
Iq	每个运算放大器的静态电流	I_O = 0mA , RRI = 0x0			97		μA
'q	以 区异瓜八品的肝心电机	I _O = 0mA,RRI = 0x1 或 0x2			93		μπ
GBW	增益带宽积	C _L = 200pF			0.32		MHz
V _{OS}	输入失调电压	同相,单位增益,T _A =	CHOP = 0x0		±0.2	±6.5	mV
VOS	- 個人大调电压	25℃ , VDD = 3.3V	CHOP = 0x1 或 0x2		±0.08	±0.4	
dV _{OS} /dT	输入失调电压温漂	同相,单位增益	CHOP = 0x0		7.7		μV/°C
uv _{OS} /u1	和八大 炯 电 压 值 综	円相,平位増皿	CHOP = 0x1 或 0x2		0.34		μν/ Ο
		0.1V <v<sub>in<vdd-0.3v ,="" td="" vdd<=""><td>T_A = 25°C</td><td></td><td>±40</td><td></td><td></td></vdd-0.3v></v<sub>	T _A = 25°C		±40		
I _{bias} S	SoC 上多路复用 I/O 引脚的输入偏置	= 3.3V , CHOP=0x0	T _A = 125°C		±4000		pА
	300 工少时交出 110 加州山州八闸县	0.1V< _{Vin} <vdd-0.3v ,<br="">VDD=3.3V , CHOP =0x1</vdd-0.3v>	T _A = 25°C		±200		pΛ
			T _A = 125°C		±4000		
CMPP-	共模抑制比(直流)	在共模电压范围内	CHOP = 0x0	48	77	dB	ЧB
CIMILATOC	深疾护型化(直视)		CHOP = 0x1 或 0x2	56	105] UB
e _n	输入电压噪声密度	同相,单位增益	f = 1kHz		43		nV/√ Hz
C _n	- 個人电压噪户省及	円相,平世相皿	f = 10kHz		19		110/ 1112
R_{in}	输入电阻(1)				0.65		$\mathbf{k}\Omega$
C _{in}	输入电容	共模			4		pF
Oin	- 個人电台	差分			2		рі
A _{OL}	开环电压增益(直流)	$R_L = 350 \text{ k} \Omega$, $0.3 \text{V} < \text{Vo} < \text{V}$	/DD-0.3V	82	90	107	dB
РМ	相补角	$C_L = 200 pF , R_L = 350 k \Omega$	C_L = 200pF , R_L = 350k Ω		70	72	度
SR	压摆率	同相,单位增益,C _L = 40pF			0.32		V/µs
THDN	总谐波失真 + 噪声				0.012		%
I _{Load}	输出负载电流				±10		μA
C _{Load}	输出负载电容					200	pF

⁽¹⁾ 术语 "Rin"是指 GPAMP 中多路复用器的输入电阻。

7.16.2 开关特性

	参数	测试条件		最小 值	<u>典型</u> 值	最大值	单位
t _{EN}	GPAMP 启用时间	ENABLE = 0x0 至 0x1,带隙基准开 启,0.1%	同相,单位增益		12	20	μs
t _{disable}	GPAMP 禁用时间				4		ULPCLK 周 期
t _{SETTLE}	GPAMP 稳定时间	C _L = 200pF , Vstep = 0.3V 至 VDD - 0.3V , 0.1% , ENABLE = 0x1	同相,单位增益		9		μs

7.17 OPA

7.17.1 电气特性

	参数	测试条	—————————————————————————————————————	最小值	典型值	最大值	单位
\		RRI = 0x0		-0.1		VDD-1.1	
V _{CM}	共模电压范围	RRI = 0x1		-0.1		VDD-0.3	V
V _O	相对于电源轨范围的电压输出摆幅	R _L = 10k Ω 连接至 VDD/2			20	68	mV
		L = 0mA DDL = 0v0	GBW = 0x0		100		
	怎么 怎 你 也去现 奶 帮大山这	I _O = 0mA , RRI = 0x0	GBW = 0x1		350		
l _q	每个运算放大器的静态电流	I _O = 0mA , RRI = 0x1	GBW = 0x0		140	170	μA
		10- UIIA , KKI - UX I	GBW = 0x1		450	600	
I _{BCS}	烧毁电流拉电流				2		μΑ
GBW	₩ 升 ## ф 10	C ₁ = 40pF	GBW = 0x0		1.5		MHz
GBW	增益带宽积	C _L = 40pr	GBW = 0x1		6		IVITZ
		同相,单位增益,VDD=	CHOP = 0x0		±0.4	±2	
\ /	松文件用中区	3.3V , T _A = 25°C	CHOP = 0x1 或 0x2			±0.3	
V _{OS}	输入失调电压	同相,单位增益,VDD=	CHOP = 0x0		±1.5	±3.5	±3.5 ±0.5
		3.3V	CHOP = 0x1 或 0x2		±0.1	±0.5	
		同相,单位增益,CHOP=	GBW = 0x0		±6		
dV _{OS} /dT	输入失调电压温漂	0x0	GBW = 0x1		±5.2		μV/°C
		同相,单位增益, CHOP = 0x	1 或 0x2		±0.5		
	I. Mr. Madall I. A. He Ver		CHOP = 0x0		25	200	
PSRR _{DC}	电源抑制比(直流)	同相,单位增益	CHOP = 0x1 或 0x2		45	200	μV/V
			T _A = 25°C		±50		pА
	输入偏置电流		T _A = 125°C		±0.35	±100	nA
l _{bias}			T _A = 25°C		±0.4		nA
			T _A = 125°C		±0.4	±104	nA
		0.1V <v<sub>in<vdd-0.3v ,="" vdd="</td"><td>T_A = 25°C</td><td></td><td>±6</td><td></td><td>pА</td></vdd-0.3v></v<sub>	T _A = 25°C		±6		pА
L.	专用 OPA 输入引脚的输入偏置电	3.3V , CHOP=0x0	T _A = 125°C		±0.35	±0.4	nA
I _{bias}	流 (1)	0.1V <v<sub>in<vdd-0.3v ,="" vdd="</td"><td>T_A = 25°C</td><td></td><td>±0.4</td><td></td><td>nA</td></vdd-0.3v></v<sub>	T _A = 25°C		±0.4		nA
		3.3V , CHOP=0x1	T _A = 125°C		±0.4	±0.5	nA
		RRI = 0x0 :	CHOP = 0x0		89		
CMRR _{DC}	共模抑制比(直流)	$0V < V_{CM} < VDD-1.1V$ RRI = $0x1$: $0V < V_{CM} < VDD-0.3V$	CHOP = 0x1 或 0x2	73	102		dB
	(A > 1 = un 4 - 3 - 3	GBW = 0x0,同相,单位增	f = 1kHz		240		\ , , , , .
e _n	输入电压噪声密度	益, CHOP = 0x0	f = 10kHz		88		nV/ √ Hz
R _{in}	输入电阻 ⁽²⁾				2.6		k Ω
C _{in}	输入电容	共模			3		pF
A _{OL}	开环电压增益(直流)	R_L = 20k Ω 至 GND , 0.3V <v< td=""><td>o<vdd-0.3v< td=""><td></td><td>93</td><td></td><td>dB</td></vdd-0.3v<></td></v<>	o <vdd-0.3v< td=""><td></td><td>93</td><td></td><td>dB</td></vdd-0.3v<>		93		dB
	In Al A	0 40 5	GBW = 0x0		57		
PM	相补角	$C_1 = 40 \text{pF}$	GBW = 0x1		78		一 度
CD.		同相,单位增益,C ₁ = 40pF	GBW = 0x0		1.3		V/µs
SR	压摆率		GBW = 0x1		4.9		

7.17.1 电气特性 (continued)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

参数		测试条件	最小 值 典型值	最大值	单位
THDN	总谐波失真 + 噪声	同相,单位增益,GBW = 0x0,f = 1.5kHz,积分带宽 = 100kHz	0.0034		%
		同相,单位增益,GBW = 0x1,f = 6kHz,积分带宽= 100kHz	0.004		70
	たこり けいた	GBW = 0x0 , T _A = 25°C	±9		mA
I _{Load}	短路电流	GBW = 0x1 , T _A = 25°C	±30		IIIA
C _{Load}	输出负载电容			40	pF

- (1) 仅限 MSPM0L134x 器件
- (2) R_{in} 这里指的是 OPA 中多路复用器的输入电阻。

7.17.2 开关特性

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

	参数	测试条件		最小值	典型值	最大值	单位
t	OPA 启用时间	ENABLE = 0x0 至 0x1,带隙基准开启,0.1%,	GBW = 0x0		7.3	12	μs
t _{EN}	OFA 归州时间	同相,单位增益	GBW = 0x1		4.4	6	μ5
t _{disable}	OPA 禁用时间				4		ULPCLK 周 期
	OPA 斩波频率		GAIN = 0x0		125		
		CHOP = 0x1 或 0x2	GAIN = 0x1		62.5		
f			GAIN = 0x2		31.25		kHz
f _{CHOP}	OFA 初级频率		GAIN = 0x3		15.625		KIIZ
			GAIN = 0x4		7.8		
			GAIN = 0x5		3.9		
t	ODA 独字时间	PA 稳定时间	GBW = 0x0		2.5	9	ue.
t _{SETTLE} OPA 稳定时间	OFA 怎处时间		GBW = 0x1		1.3	5	μs

7.17.3 PGA 模式

	参数	测试	· 条件	最小值	典型值 最大值	í 単位
		GAIN = 0x0	增益为 1	-0.09	+0.09	
		GAIN = 0x1	增益为 2	-0.33	+0.33	3
	目扣換茶棒時	GAIN = 0x2	增益为 4	- 0.6	+0.0	5
	同相増益精度	GAIN = 0x3	增益为8	- 1.1	+	
		GAIN = 0x4	增益为 16	-1.9	1.5	5
G		GAIN = 0x5	增益为 32	-3.5	+1.	7 %
		GAIN = 0x1	增益为 -1	- 0.4	+0.0	5
		GAIN = 0x2	增益为 -3	-0.8	+0.8	3
	反相增益精度	GAIN = 0x3	增益为 -7	-1	1.:	3
		GAIN = 0x4	增益为 -15	- 1.1	1.7	7
		GAIN = 0x5	增益为 -31	- 2.2	2.0	3

7.17.3 PGA 模式 (continued)

在推荐的电源电压范围及自然通风条件下的工作温度范围内(除非另外注明)

	参数	测记	式条件	最小值	典型值	最大值	单位
		GAIN = 0x1	R1		64		
		GAIN - 0X1	R2(反馈电阻器)		64		
		GAIN = 0x2	R1		32		
		GAIN - UXZ	R2(反馈电阻器)		96		
	三岭和横头烟 中烟	GAIN = 0x3	R1	,	16		kΩ
R _{PGA}	可编程增益级电阻	GAIN - UX3	R2(反馈电阻器)		112		KC2
		GAIN = 0x4	R1		8		
		GAIN - 0X4	R2(反馈电阻器)		120		
		GAIN = 0x5	R1		4		
		GAIN - 0x5	R2(反馈电阻器)		124		
G/dV	增益电源漂移				0.026	0.84	%/V
G/dT	增益温漂				0.0007	0.014	%/C
THD	当,此,冲, 上, 古	f= 3kHz, R_L = 1.5k Ω 至 VDD	0/2 , GBW = 0x1 , GAIN = 0x		88		dB
טווו	总谐波失真	f= 188Hz , R _L = 1.5kΩ 至 VD	D/2 , GBW = 0x1 , GAIN = 0x5		61		uБ

7.18 I2C

7.18.1 I2C 特性

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测计多件				た	快速模	式+	单位
	少蚁	侧似宋件	最小值	最大值	最小值	最大值	最小值	最大值	平仏
f _{I2C}	I2C 输入时钟频率	电源域 0 中的 I2C	2	32	8	32	20	32	MHz
f _{SCL}	SCL 时钟频率			0.1		0.4		1	MHz
t _{HD} , STA	保持时间(重复)启动		4		0.6		0.26		us
t _{LOW}	SCL 时钟的低电平周期		4.7		1.3		0.5		us
t _{HIGH}	SCL 时钟的高电平周期		4		0.6		0.26		us
t _{SU , STA}	一个针对重复启动的建立时间		4.7		0.6		0.26		us
t _{HD} , DAT	数据保持时间		0		0		0		ns
t _{SU , DAT}	数据设置时间		250		100		50		ns
t _{SU} , sto	停止的建立时间		4		0.6		0.26		us
t _{BUF}	STOP 与 START 状态之间的总 线空闲时间		4.7		1.3		0.5		us
t _{VD;DAT}	数据有效时间			3.45		0.9		0.45	us
t _{VD;ACK}	数据有效确认时间			3.45		0.9		0.45	us

7.18.2 I2C 滤波器

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
		AGFSELx = 0		6		ns
f	由输入滤波器进行抑制的尖峰的脉冲持续	AGFSELx = 1		14	35	ns
	时间	AGFSELx = 2		22	60	ns
		AGFSELx = 3		35	90	ns

7.18.3 I²C 时序图

图 7-5. I2C 时序图

7.19 SPI

7.19.1 SPI

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
SPI						
f _{SPI}	SPI 时钟频率	时钟最大速度 = 32MHz 1.71V < VDD < 3.6V 控制器模式			16	MHz
f _{SPI}	SPI 时钟频率	时钟最大速度= 32MHz 1.71V < VDD < 3.6V 外设模式			16	MHz
DC _{SCK}	SCK 占空比		40	50	60	%
控制器						
t _{SCLK_H/L}	SCLK 高电平或低电平时间		(tSPI/2) - 1	tSPI/2	(tSPI/2) + 1	ns
	DOOL (A.) 发展在之时间 (1)	2.7 < VDD < 3.6V,延迟采样已启用 1				
t _{su.cı}	POCI 输入数据建立时间 (1)	1.71 < VDD < 2.7V, 延迟采样已启用	1			ns
t _{su.cı}	POCI 输入数据建立时间 ⁽¹⁾	2.7 < VDD < 3.6V,无延迟采样	27			
	POCI 拥入数据建立时间(*/	1.71 < VDD < 2.7V,无延迟采样	35			ns
t _{HD.CI}	POCI 输入数据保持时间		9			ns
t _{VALID.CO}	PICO 输出数据有效时间 ⁽²⁾				10	ns
t _{HD.CO}	PICO 输出数据保持时间 ⁽³⁾		1			ns
外设			·			
t _{CS.LEAD}	CS 提前时间, CS 有效至时钟		8			ns
t _{CS.LAG}	CS 滞后时间,最后一个时钟到 CS 无效		1			ns
t _{CS.ACC}	CS 访问时间,CS 有效到 POCI 数据输出				23	ns
t _{CS.DIS}	CS 禁用时间,CS 无效到 POCI 高阻抗				19	ns
t _{SU.PI}	PICO 输入数据设置时间		7			ns
t _{HD.PI}	PICO 输入数据保持时间		31.25			ns
t _{VALID.PO}	POCI 输出数据有效时间 ⁽²⁾	2.7V < VDD < 3.6V			24	ns
t _{VALID.PO}	POCI 输出数据有效时间 ⁽²⁾	1.71V < VDD < 2.7V			31	ns

7.19.1 SPI (continued)

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
t _{HD.PO}	POCI 输出数据保持时间 ⁽³⁾		5			ns

- (1) 启用延迟采样功能后, POCI 输入数据设置时间可得到完全补偿。
- (2) 指定输出更改 SCLK 时钟边沿后将下一个有效数据驱动到输出所需的时间。
- (3) 指定输出更改 SCLK 脉冲边沿后输出上数据保持有效的时长。

7.19.2 SPI 时序图

图 7-6. SPI 时序图 - 控制器模式

图 7-7. SPI 时序图 - 外设模式

7.20 UART

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
f _{UART}	UART 输入时钟频率				32	MHz
	BITCLK 时钟频率(等于波特率,单位为 MBaud)				4	MHz
	由输入滤波器进行抑制的尖峰的	AGFSELx = 0		6		ns
t		AGFSELx = 1		14	35	ns
t _{SP}	脉冲持续时间	AGFSELx = 2		22	60	ns
		AGFSELx = 3		35	90	ns

7.21 TIMx

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值 最大值	单位
t _{res}	江西即八旅家叶高	f _{TIMxCLK} = 32MHz	31.25		ns
	计时器分辨率时间		1		t _{TIMxCLK}
t _{res}	计时器分辨率时间	带有 16 位计数器的 TIMx		16	位
t		f _{TIMxCLK} = 32MHz	0.03125	2048	us
tCOUNTER			1	65536	t _{TIMxCLK}

7.22 仿真和调试

7.22.1 SWD 时序

在自然通风条件下的工作温度范围内测得(除非另有说明)

参数		测试条件	最小值	典型值	最大值	单位
f_{SWD}	SWD 频率				10	MHz

8 详细说明

以下各节介绍了构成此数据表中器件的所有元件。这些器件中集成的外设由软件通过存储器映射寄存器 (MMR) 进行配置。有关更多详细信息,请参阅 *MSPM0 L 系列 32MHz 微控制器技术参考手册* 的相应章节。

8.1 CPU

CPU 子系统 (MCPUSS) 上实现了 Arm Cortex-M0+ CPU、指令预取和高速缓存、系统计时器以及中断管理功能。Arm Cortex-M0+ 是一款成本优化的 32 位 CPU,可为嵌入式应用提供高性能和低功耗。该 CPU 子系统的主要特性包括:

- Arm Cortex-M0+ CPU 支持 32kHz 至 32MHz 的时钟频率
 - 带有单周期 32×32 乘法指令的 ARMv6-M Thumb 指令集(小端字节序)
 - 通过 Arm 单周期 IO 端口对 GPIO 寄存器进行单周期访问
- 用于改进顺序代码执行的预取逻辑和具有 2 个 64 位高速缓存行的指令缓存
- 具有 24 位递减计数器和自动重新加载功能的系统计时器 (SysTick)
- 具有 4 个可编程优先级和尾链的嵌套矢量中断控制器 (NVIC)
- 用于扩展总中断源的中断组,具有用于实现低中断延迟的跳转索引

8.2 操作模式

MSPMOL MCU 提供五种主要工作模式(功耗模式),可根据应用要求优化器件功耗。这些模式按照功耗从高到低排列如下:运行、睡眠、停止、待机和关断。CPU 会在运行模式中执行代码。外设中断事件可将器件从睡眠、停止或待机模式唤醒至运行模式。关断模式会完全禁用内部内核稳压器,以更大限度地降低功耗,并且只能通过NRST、SWD 或某些 IO 上的逻辑电平匹配来实现唤醒。运行、睡眠、停止和待机模式还包括多个可配置的策略选项(例如,RUN.x),用于平衡性能与功耗。

为了进一步平衡性能和功耗,MSPMOL器件实现了两个电源域:PD1(用于CPU、存储器和高性能外设)和PD0(用于低速、低功耗外设)。在运行和睡眠模式下,PD1始终通电,但在所有其他模式下会禁用。PD0在运行、睡眠、停止和待机模式下始终通电。PD1和PD0在关断模式下都会禁用。

8.2.1 不同工作模式下的功能

表 8-1 提供了每种工作模式下支持的功能。

功能键:

• EN:该功能会在指定的模式下启用。

DIS:该功能会在指定的模式下被禁用(时钟或电源门控),但该功能的配置会保留。

• OPT:该功能在指定的模式下是可选的,如果配置为启用,则保持启用状态。

• NS:该功能在指定的模式下不会自动禁用,但不受支持。

• OFF:该功能在指定的模式下会完全断电,不会保留任何配置信息。

表 8-1. 不同工作模式下支持的功能

				运行			SLEEP			STOP		STAN	IDBY	
	工作	模式	RUNO	RUN1	RUN2	SLEEPO	SLEEP1	SLEEP2	STOP0	STOP1	STOP2	STANDBY0	STANDBY1	米
+=	:	SYSOSC	EN	EN	DIS	EN	EN	DIS	OPT ⁽¹⁾	EN	DIS	DIS	DIS	OFF
1/10	振荡器 LFOSC						•	EN			•			OFF

表 8-1. 不同工作模式下支持的功能 (continued)

		72		1 1 3 1) <u> </u>	1-2110	(00111111			6=:	LID D'	
			运行			SLEEP			STOP			NDBY	
٥	工作模式	RUNO	RUN1	RUN2	SLEEP0	SLEEP1	SLEEP2	STOP0	STOP1	STOP2	STANDBY0	STANDBY1	*************************************
	CPUCLK	32M	32k	32k				D	IS				关闭
	MCLK 至 PD1	32M	32k	32k	32M	32k	32k			DIS			关闭
	ULPCLK 至 PD0	32M	32k	32k	32M	32k	32k	4M ⁽¹⁾	4M	3:	2k	DIS	关闭
时钟	ULPCLK 至 TIMG0/1	32M	32k	32k	32M	32k	32k	4M ⁽¹⁾	4M		32k		OFF
	MFCLK	OPT	D	IS	OPT	D	IS	OI	PT		DIS		关闭
	LFCLK					3:	2k					DIS	关闭
	LFCLK 到 TIMG0/1						32k						OFF
	MCLK 监测器					Ol	PT T					DIS	关闭
	POR 监测器							EN					
PMU	BOR 监测器						EN						OFF
	内核稳压器			全里	驱动				减速驱动	J	低	驱动	关闭
	CPU		EN					DIS			关闭		
++ > +L+4k	DMA			0	PT				NS (支持的触	发器)		OFF
核心功能	闪存			Е	N					DIS			关闭
	SRAM	EN				DIS			OFF				
PD1 外设	SPI0	OPT DIS					OFF						
PDI外以	CRC			0	PT					DIS			关闭
	TIMG0/1						OPT						OFF
	TIMG2/4					Ol	PT .					OPT ⁽²⁾	OFF
PD0 外设	UART0/1					Ol	PT					OPT ⁽²⁾	OFF
100/10	I2C0/1					Ol	PT					OPT ⁽²⁾	OFF
	GPIOA					Ol	PT					OPT ⁽²⁾	OFF
	WWDT0					Ol	PT					DIS	OFF
ADC0					OPT NS(支持的触发器)			发器)	OFF				
模拟	OPA0/1	OPT	N	IS	OPT	N	S	OI	PT .		NS		关闭
大10	GPAMP					PT					NS		OFF
	COMP0	OPT	OPT	(ULP)	OPT	OPT	(ULP)	OI	PT		OPT (ULI	P)	OFF
IOMUX 和 IO	唤醒						EN						具有唤醒功 能的 DIS
唤醒源			不适用			任何 IRC)			PD0 IRG	Q		IOMUX、 NRST、 SWD

⁽¹⁾ 如果从 RUN1 进入 STOP0(SYSOSC 启用,但 MCLK 来自 LFCLK),则 SYSOSC 保持启用状态,就像它在 RUN1 中一样, ULPCLK 保持在 32kHz,就像它在 RUN1 中一样。如果从 RUN2 进入 STOP0(SYSOSC 禁用并且 MCLK 来自 LFCLK),则 SYSOSC 保持禁用状态,就像它在 RUN2 中一样,ULPCLK 保持在 32kHz,就像它在 RUN2 中一样。

8.3 电源管理单元 (PMU)

电源管理单元 (PMU) 为器件生成内部稳压内核电源,并对外部电源 (VDD) 进行监控。PMU 还包含 PMU 本身以及模拟外设所使用的带隙电压基准。PMU 的主要特性包括:

⁽²⁾ 当对待机模式使用 STANDBY1 策略时,只有 TIMG0 和 TIMG1 有时钟。其他 PD0 外设可在发生外部活动时生成异步快速时钟请求,但不会主动配备时钟。

- 上电复位 (POR) 电源监测器
- 欠压复位 (BOR) 电源监测器,具有使用三个可编程阈值的预警功能
- 支持运行、睡眠、停止和待机工作模式的内核稳压器,可在性能与功耗之间实现动态平衡
- 受奇偶校验保护的修整,可在电源管理修整损坏时立即生成上电复位 (POR)

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 的"PMU"一章。

8.4 时钟模块 (CKM)

时钟模块提供以下振荡器:

- LFOSC: 内部低频振荡器 (32kHz)
- SYSOSC:内部高频振荡器(采用出厂调整时为 4MHz 或 32MHz,采用用户调整时为 16MHz 或 24MHz)

以下时钟由时钟模块分配,供处理器、总线和外设使用:

- MCLK: PD1 外设的主系统时钟,源自 SYSOSC或 LFCLK,在运行和睡眠模式下有效
- CPUCLK:处理器的时钟(源自 MCLK),在运行模式下有效
- ULPCLK: PD0 外设的超低功耗时钟,在运行、睡眠、停止和待机模式下有效
- MFCLK:外设的 4MHz 固定中频时钟,可用于运行、睡眠和停止模式
- LFCLK:外设或 MCLK 的 32kHz 固定低频时钟,在运行、睡眠、停止和待机模式下有效
- ADCCLK: ADC 时钟,在运行、睡眠和停止模式下可用
- CLK_OUT:用于在外部输出时钟,在运行、睡眠、停止和待机模式下可用

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 的"CKM"一章。

8.5 DMA

直接存储器存取 (DMA) 控制器支持将数据从一个存储器地址移到另一个存储器地址,而无需 CPU 干预。例如, DMA 可用于将数据从 ADC 转换存储器移动到 SRAM。通过使 CPU 保持在低功耗模式,而无需将其唤醒来在外设之间移动数据,DMA 降低了系统功耗。

这些器件中的 DMA 支持以下重要特性:

- 3 个独立的 DMA 传输通道
 - 1 个全功能通道 (DMAO), 支持重复传输模式
 - 2 个基本通道(DMA1、DMA2), 支持单次传输模式
- 可配置的 DMA 通道的优先级
- 字节(8位)、短字(16位)、字(32位)和长字(64位)或混合字节和字传输能力
- 传输计数器块大小支持传输高达 64k 的任何类型数据
- · 可配置的 DMA 传输触发器选择
- 为其他通道提供服务的活动通道中断
- 乒乓缓冲器架构的提前中断生成
- 在另一个通道上的活动完成时级联通道
- 跨步模式支持数据重组

表 8-2 列出了使用 DMA 存储器映射寄存器中的 DMATCTL. DMATSEL 控制位配置的可用 DMA 触发。

表 8-2. DMA 触发映射

触发器 0:6	SOURCE	触发器 7:13	SOURCE
0	软件	7	I2C1 发布者 2
1	通用订阅者 0 (FSUB_0)	8	SPI0 发布者 1
2	通用订阅者 1 (FSUB_1)	9	SPI0 发布者 2
3	ADC0 发布者 2	10	UART0 发布者 1
4	I2C0 发布者 1	11	UART0 发布者 2
5	I2C0 发布者 2	12	UART1 发布者 1

表 8-2. DMA 触发映射 (continued)

触发器 0:6	SOURCE	触发器 7:13	SOURCE
6	I2C1 发布者 1	13	UART1 发布者 2

8.6 事件

事件管理器将数字事件从一个实体(例如外设)传输到另一个实体(例如,另一个外设、DMA 或 CPU)。事件管理器通过一组定义的事件发布者(发生器)和订阅者(接收器)实现事件传输,这些事件发布者和订阅者通过包含静态路由和可编程路由组合的事件结构进行互连。

事件管理器传输的事件包括:

- 作为中断请求 (IRQ) 传输到 CPU 的外设事件 (静态事件)
 - 示例: GPIO 中断会发送到 CPU
- 作为 DMA 触发器传输到 DMA 的外设事件 (DMA 事件)
 - 示例:传输到 DMA、请求 DMA 传输的 UART 数据接收触发器
- 传输到另一个外设以直接触发硬件中操作的外设事件(通用事件)
 - 示例: TIMx 计时器外设将周期性事件发布到 ADC 订阅者端口, ADC 使用该事件触发采样开始

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册中的"事件"一章。

表 8-3. 通用事件通道

通用路由是点对点 (1:1) 路由或一分二 (1:2) 分离器路由,其中发布事件的外设配置为使用多个可用的通用路由通道之一来将事件发布到另一个实体(如果是分离器路由,则为多个实体)。实体可以是另一个外设、通用 DMA 触发事件或通用 CPU 事件。

CHANID	通用路由通道选择	通道类型
0	未选择通用事件通道	不适用
1	选择了通用事件通道 1	1 : 1
2	选择了通用事件通道 2	1 : 1
3	选择了通用事件通道 3	1:2(分离器)

8.7 存储器

8.7.1 内存组织

表 8-4 总结了各个器件的存储器映射。有关存储器区域详情的更多信息,请参阅 $MSPM0 \ L \ \overline{S}$ 列 $32MHz \$ 微控制器 技术参考手册 中的 平台存储器映射 一章。

表 8-4. 内存组织

存储器区域	子区域	MSPM0L1304、 MSPM0L1344	MSPM0L1305 MSPM0L1345	MSPM0L1306、 MSPM0L1346
代码(闪存)	MAIN (3)	16KB - 8B 0x0000.0000 至 0x0000.3FF8	32KB - 8B ⁽¹⁾ 0x0000.0000 至 0x0000.7FF8	64KB - 8B ⁽¹⁾ 0x0000.0000 至 0x0000.FFF8
	别名 MAIN ^{(2) (3)}	0x0040.0000 至 0x0040.3FF8	0x0040.0000 至 0x0040.7FF8	0x0040.0000 至 0x0040.FFF8
SRAM (SRAM)	SRAM	2KB 0x2000.0000 至 0x2000.0800	4KB 0x2000.0000 至 0x2000.1000	4KB 0x2000.0000 至 0x2000.1000
	别名 SRAM ⁽²⁾	0x2000.0000 至 0x2000.0800	0x2000.0000 至 0x2000.1000	0x2000.0000 至 0x2000.1000

表 8-4. 内存组织 (continued)

存储器区域	子区域	MSPM0L1304、 MSPM0L1344	MSPM0L1305、 MSPM0L1345	MSPM0L1306、 MSPM0L1346
	外设	0x4000.0000 至 0x40FF.FFFF	0x4000.0000 至 0x40FF.FFFF	0x4000.0000 至 0x40FF.FFFF
	MAIN (3)	0x0000.0000 至 0x0000.3FF8	0x0000.0000 至 0x0000.7FF8	0x0000.0000 至 0x0000.FFF8
	别名 MAIN ^{(2) (3)}	0x0040.0000 至 0x0040.3FF8	0x0040.0000 至 0x0040.7FF8	0x0040.0000 至 0x0040.FFF8
外设	NONMAIN	512 字节 0x41C0.0000 至 0x41C0.0200	512 字节 0x41C0.0000 至 0x41C0.0200	512 字节 0x41C0.0000 至 0x41C0.0200
	别名 NONMAIN ⁽²⁾	0x41C1.0000 至 0x41C1.0200	0x41C1.0000 至 0x41C1.0200	0x41C1.0000 至 0x41C1.0200
	FACTORY	0x41C4.0000 至 0x41C4.0080	0x41C4.0000 至 0x41C4.0080	0x41C4.0000 至 0x41C4.0080
	别名 FACTORY ⁽²⁾	0x41C5.0000 至 0x41C5.0080	0x41C5.0000 至 0x41C5.0080	0x41C5.0000 至 0x41C5.0080
	子系统	0x6000.0000 至 0x7FFF.FFFF	0x6000.0000 至 0x7FFF.FFFF	0x6000.0000 至 0x7FFF.FFFF
3	系统 PPB		0xE000.0000 至 0xE00F.FFFF	0xE000.0000 至 0xE00F.FFFF

- (1) 第一个 32KB 闪存 (地址 0x0000.0000 至 0x0000.8000) 具有高达 100000 个编程和擦除周期。
- (2) 别名存储器读取与相应存储器区域相同的区域。之所以包含别名存储器是为了保持兼容具有 ECC 的器件。
- (3) CPU 访问闪存区域最后 8 个字节之一将导致硬故障。这是因为预取逻辑会尝试提前读取一个闪存字(64位),导致对无效存储器位置的读取尝试。

8.7.2 外设文件映射

表 8-5 列出了可用的外设和每个外设的寄存器基地址。

表 8-5. 外设汇总

外设名称	基址	尺寸
ADC0	0x40004000	0x2000
COMP0	0x40008000	0x2000
OPA0	0x40020000	0x2000
OPA1	0x40022000	0x2000
VREF	0x40030000	0x2000
WWDT0	0x40080000	0x2000
TIMG0	0x40084000	0x2000
TIMG1	0x40086000	0x2000
TIMG2	0x40088000	0x2000
TIMG4	0x4008C000	0x2000
GPIO0	0x400A0000	0x2000
SYSCTL	0x400AF000	0x3000
DEBUGSS	0x400C7000	0x2000
事件	0x400C9000	0x3000
NVMNW	0x400CD000	0x2000
I2C0	0x400F0000	0x2000
I2C1	0x400F2000	0x2000
UART1	0x40100000	0x2000
UART0	0x40108000	0x2000

表 8-5. 外设汇总	(continued)
-------------	-------------

外设名称	基址	尺寸
MCPUSS	0x40400000	0x2000
WUC	0x40424000	0x1000
IOMUX	0x40428000	0x2000
DMA	0x4042A000	0x2000
CRC	0x40440000	0x2000
SPI0	0x40468000	0x2000
ADC0 (1)	0x4055A000	0x1000

⁽¹⁾ ADC0 存储器映射寄存器的别名区域。

8.7.3 外设中断向量

表 8-6 显示了此器件中每个外设的 IRQ 编号和中断组号。

表 8-6. 中断向量编号

外设名称	NVIC IRQ	组 IIDX
WWDT0	0	0
DEBUGSS	0	2
NVMNW	0	3
事件子端口 0	0	4
事件子端口 1	0	5
SYSCTL	0	6
GPIO0	1	0
COMP0	1	2
TIMG1	2	-
ADC	4	-
SPI0	9	-
UART1	13	-
UART0	15	-
TIMG0	16	-
TIMG2	18	-
TIMG4	20	-
I2C0	24	-
I2C1	25	-
DMA	31	-

8.8 闪存存储器

该器件提供了单组非易失性闪存存储器来存储可执行程序代码和应用数据。

该闪存的主要特性包括:

- 在整个推荐电源电压范围内支持电路内编程和擦除操作
- 1KB 小扇区大小(最小擦除分辨率为 1KB)
- 在下部 32KB 闪存上最多可执行 100000 个编程和擦除周期,在其余闪存上最多可执行 10000 个编程和擦除周期(闪存为 32KB 或更低的器件在整个闪存上支持 100000 个周期)

有关闪存的完整说明,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 的"NVM"一章。

8.9 SRAM

MSPM0Lxx MCU 包含一个低功耗高性能 SRAM 存储器,可在器件支持的 CPU 频率范围内实现零等待状态访 问。SRAM 存储器可用于存储易失性信息,例如调用栈、堆、全局数据和代码。SRAM 存储器内容在运行、睡 眠、停止和待机操作模式下完全保留,并在关断模式下丢失。提供了写保护机制,使应用能够防止意外修改 SRAM 存储器的部分内容。将可执行代码放入 SRAM 时,SRAM 写保护很有用,可针对 CPU 或 DMA 无意覆盖 代码的行为提供一定程度的保护。将代码放置在 SRAM 中可以通过实现零等待状态操作和降低功耗来提高关键循 环的性能。

8.10 **GPIO**

通用输入/输出 (GPIO) 外设允许应用通过器件引脚写入数据和读取数据。通过使用端口 A GPIO 外设,这些器件 支持多达 28 个 GPIO 引脚。

GPIO 模块的主要特性包括:

- 从 CPU 访问 MMR 的 0 等待状态
- 无需在软件中使用读取、修改、写入结构,即可设置、清除或切换多个位
- "快速唤醒"功能支持通过任意 GPIO 端口从停止和待机模式进行低功耗唤醒
- 用户控制的输入滤波

8.11 IOMUX

IOMUX 外设支持 IO 焊盘配置并控制进出器件引脚的数字数据流。IOMUX 的主要特性包括:

- IO 焊盘配置寄存器支持可编程驱动强度、速度、上拉或下拉等
- 数字引脚多路复用允许将多个外设信号路由到同一个 IO 焊盘
- 引脚功能和能力由用户使用 PINCM 寄存器进行配置

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 中的"IOMUX"一章。

8.12 ADC

这些器件中的 12 位模数转换器 (ADC) 模块支持采用单端输入的快速 12 位转换。

ADC 模块特性包括:

- 12 位输出分辨率,速率高达 1.68MSPS 且 ENOB 大于 11 位
- 多达 10 个外部输入通道
- 内部通道用于温度检测、电源监测和模拟信号链(与 OPA、GPAMP 或其他的互连)
- 软件可选基准:
 - 1.4V 和 2.5V 的可配置内部专用 ADC 基准电压 (VREF)
 - MCU 电源电压 (VDD)
 - 通过 VREF+和 VREF- 引脚为 ADC 提供外部基准
- 在运行、睡眠和停止模式下运行,并支持从待机模式触发

表 8-7. ADC0 通道映射

CHANNEL[0:7]	信号名称	CHANNEL[8:15]	信号名称(1)(2)
0	A0	8	A8
1	A1	9	A9
2	A2	10	-
3	A3	11	温度传感器
4	A4	12	OPA0 输出
5	A5	13	OPA1 输出
6	A6	14	GPAMP 输出
7	A7	15	电源/电池监测器

(1) 以斜体显示的信号名称表示 SoC 的内部信号。这些信号用于内部外设互连。

(2) 有关器件模拟连接的更多信息,请参阅节8.24。

有关更多详细信息,请参阅 *MSPM0 L 系列 32MHz 微控制器技术参考手册* 中的"ADC"一章。

8.13 温度传感器

温度传感器提供随器件温度呈线性变化的电压输出。温度传感器输出在内部连接到其中一个 ADC 输入通道,以实现温度数字转换。

出厂常量存储器区域中提供了温度传感器的单位专用单点校准值。该校准值表示与在 12 位模式下使用 1.4V 内部 VREF 在出厂修整温度 (TS_{TRIM}) 下测量的温度传感器相对应的 ADC 转换结果 (采用 ADC 代码格式)。此校准值可与温度传感器温度系数 (T_{SC}) 一起使用,以估算器件温度。有关如何通过出厂修整值估算器件温度的指导,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册中的"温度传感器"一节。

8.14 VREF

这些器件中的电压基准模块 (VREF) 包含一个专用于板载 ADC 的可配置电压基准缓冲器。这些器件还支持为要求更高精度的应用连接外部基准。

VREF 的功能包括:

- 1.4V 和 2.5V 用户可选的 ADC 内部基准
- 内部基准支持高达 200ksps 的 ADC 运行
- 支持在 VREF+ 和 VREF- 器件引脚上为 ADC 以及其他模拟外设引入外部基准 (仅限 24、28 和 32 引脚封装)

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 的"VREF"一章。

8.15 COMP

器件中的比较器外设会比较两个输入端子上的电压电平,并根据该比较提供数字输出。该 COMP 支持以下主要特性:

- 可编程迟滞
- 可编程基准电压:
 - 集成式 8 位基准 DAC,输出还可以在内部连接到 OPA 输入端子作为输出缓冲器。
- 可配置工作模式:
 - 高速模式 (40ns 传播延迟)
 - 低功耗模式 (1.5µA 功耗)
- 可编程输出干扰滤波器延迟
- 支持所有低功耗模式的输出唤醒器件
- 输出连接到高级计时器故障处理机制
- 比较器寄存器中的 IPSEL 和 IMSEL 位可用于从器件引脚或内部模拟模块选择比较器通道输入。

表 8-8. COMPO 输入通道选择(1)

IPSEL/IMSEL 位	正极端子输入	负极端子输入
0x0	COMP0_IN0+	COMP0_IN0-
0x1	COMP0_IN1+	COMP0_IN1-
0x6	OPA1 输出	OPA0 输出

(1) 有关器件模拟连接的更多信息,请参阅节8.24。

有关更多详细信息,请参阅 *MSPM0 L 系列 32MHz 微控制器技术参考手册* 中的"COMP"一章。

8.16 CRC

循环冗余校验 (CRC) 模块为输入数据序列提供签名。CRC 模块的主要特性包括:

- 支持基于 CRC16-CCITT 的 16 位 CRC
- 支持基于 CRC32-ISO3309 的 32 位 CRC

• 支持位反转

有关更多详细信息,请参阅 *MSPM0 L 系列 32MHz 微控制器技术参考手册* 的"CRC"一章。

8.17 GPAMP

通用放大器(GPAMP)外设是具有轨到轨输入和输出的斩波稳定型通用运算放大器。

该 GPAMP 支持以下特性:

- 软件可选斩波稳定
- 轨至轨输入和输出
- 可编程内部单位增益反馈环路

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 的"ADC"一章。

8.18 OPA

这些器件中的零漂移运算放大器 (OPA) OPA0 和 OPA1 都是具有轨到轨输入/输出和可编程增益级反馈环路的斩波 稳定型运算放大器。

OPA 外设支持以下主要特性:

- 软件可选的零漂移斩波稳定性提高了精度和漂移性能
- MSPM0L134x 器件具有专用 OPA 反相输入引脚,可实现超低 In 性能
- 工厂修整以消除失调误差
- 集成烧毁电流源 (BCS) 以监测传感器运行状况
- 高达 32 倍的可编程增益放大器 (PGA)

OPA 具有可配置的输入多路复用器 P-MUX、N-MUX 和 M-MUX,用于支持各种模拟信号链放大器配置,包括通 用、反相、同相、单位增益、级联、同相级联、差分等。下面的表列出了每个 OPA 的输入通道映射。

有关器件模拟连接的更多信息,请参阅节8.24。

有关更多详细信息,请参阅 *MSPM0 G 系列 80MHz 微控制器技术参考手册* 中的"OPA"一章。

8.19 I2C

这些器件中的内部集成电路接口 (I²C) 外设提供与总线上其他 I2C 器件的双向数据传输,并支持以下主要特性:

- 具有多个 7 位目标地址的 7 位和 10 位寻址模式
- 多控制器发送器或接收器模式
- 具有可配置时钟扩展的目标接收器或发送器模式
- 支持标准模式 (SM), 比特率高达 100kbit/s
- 支持快速模式 (FM), 比特率高达 400kbit/s
- 支持超快速模式 (FM+), 比特率高达 1Mbit/s
- · 独立的发送和接收 FIFO 支持 DMA 数据传输
- 支持具有 PEC、ARP、超时检测和主机支持的 SMBus 3.0
- 在地址匹配时从低功耗模式唤醒
- 支持用于输入信号干扰抑制的模拟和数字干扰滤波器
- 8条目发送和接收 FIFO

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 的"I2C"一章。

8.20 SPI

这些器件中的串行外设接口 (SPI) 外设支持以下主要特性:

- 支持 ULPCLK/2 比特率,最高可达 16Mb/s (在控制器和外设模式下)
- 可配置为控制器或外设
- 控制器和外设的可配置芯片选择
- 可编程时钟预分频器和比特率

www.ti.com.cn

- 4位至16位的可编程数据帧大小(控制器模式)3
- 可编程数据帧大小从7位到16位(外设模式)(2)
- 发送和接收 FIFO(4个条目,每个条目16位),支持 DMA 数据传输
- 支持 TI 模式、Motorola 模式和 National Microwire 格式

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册 的"SPI"一章。

8.21 **UART**

UART 外设提供以下主要特性:

- 标准的异步通讯位:起始位、停止位、奇偶校验位;
- 完全可编程串行接口
 - 5、6、7或8个数据位
 - 偶校验、奇校验、固定校验或无奇偶校验位生成与检测
 - 可产生1或2个停止位
 - 线路中断检测
 - 输入信号上的干扰滤波器
 - 可编程波特率生成,过采样率为16、8或3
 - 本地互连网络 (LIN) 模式支持
- 独立的发送和接收 FIFO 支持 DAM 数据传输
- 支持发送和接收环回模式操作
- 有关受支持协议的详细信息,请参阅表 8-9

表 8-9. UART 特性

表 6-9. UART 特性				
UART 特性	UART0(扩展)	UART1 (主要)		
在停止和待机模式下处于运行状态	有	有		
独立的发送 FIFO 和接收 FIFO	是	有		
支持硬件流控制	有	有		
支持9位配置	有	是		
支持 LIN 模式	是	-		
支持 DALI	是	-		
支持 IrDA	是	-		
支持 ISO7816 Smart Card	是	-		
支持曼彻斯特编码	是	-		
FIFO 深度	4 个条目	4 个条目		

有关更多详细信息,请参阅 *MSPM0 L 系列 32MHz 微控制器技术参考手册* 的"UART"一章。

8.22 WWDT

窗口化看门狗计时器 (WWDT) 可用于监控器件的运行,特别是代码执行。如果应用软件在一个指定的时间窗口内没有成功地复位看门狗,WWDT 可用来生成一个复位或者中断。WWDT 的主要特性包括:

- 25 位计数器
- 可编程时钟分频器
- 八个软件可选看门狗计时器周期
- 八种软件可选窗口大小
- · 支持在进入睡眠模式时自动停止 WWDT
- 提供间隔计时器模式,适用于不需要看门狗功能的应用

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册中的"WWDT"一章。

³ MSPM0L 不支持将 2 个 16 位 FIFO 条目打包为一个 32 位值的 PACKEN 功能

8.23 计时器 (TIMx)

这些器件中的计时器外设支持以下关键特性。有关具体配置,请参阅表 8-10。

通用计时器 (TIMGx) 的具体特性包括:

- 具有重复重新加载模式的 16 位递减、递增/递减或递增计数器
- 具有重复重新加载模式的 32 位递减、递增/递减或递增计数器
- 可选和可配置的时钟源
- 用于对计数器时钟频率进行分频的 8 位可编程预分频器
- 两个独立通道,用于:
 - 输出比较
 - 输入捕捉
 - PWM 输出
 - 单稳态模式
- 支持用于定位和移动检测的正交编码器接口 (QEI)
- 支持同一电源域中不同 TIMx 实例之间的同步和交叉触发
- 支持中断/DMA 触发生成以及跨外设(例如 ADC)触发功能
- 霍尔传感器输入的交叉触发事件逻辑

表 8-10. 不同的 TIMG 配置

			·					
TIM 名称	电源域	分辨率	预分频器	捕捉/比较通道	外部 PWM 通 道	相负载	影子负载	影子 CC
TIMG0	PD0	16 位	8 位	2	2	-	-	-
TIMG1	PD0	16 位	8 位	2	2	-	-	-
TIMG2	PD0	16 位	8 位	2	2	-	-	-
TIMG4	PD0	16 位	8 位	2	2	-	是	有

有关更多详细信息,请参阅 MSPM0 L 系列 32MHz 微控制器技术参考手册中的计时器章节。

8.24 器件模拟连接

图 8-1 显示了该器件的内部模拟连接。

图 8-1. 模拟连接

8.25 输入/输出图

IOMUX 管理要在数字 IO 上使用哪个外设功能的选择,并为输出驱动器、输入路径和用于从关断模式唤醒的唤醒逻辑提供控制。有关更多信息,请参阅 *MSPM0 L 系列 32MHz 微控制器技术参考手册* 的"IOMUX"部分。

全功能 IO 引脚的混合信号 IO 引脚切片图如图 8-2 所示。并非所有引脚都具有模拟功能、唤醒逻辑、驱动强度控制以及上拉或下拉电阻器。有关特定引脚支持哪些功能的详细信息,请参阅特定于器件的数据表。

图 8-2. 超集输入/输出图

8.26 串行线调试接口

一个串行线调试 (SWD) 两线制接口由一个与 Arm 兼容的串行线调试端口 (SW-DP) 提供,用于访问器件内的多个调试功能。有关 MSPM0 器件上提供的调试功能的完整说明,请参阅技术参考手册的调试一章。

表 8-11. 串行线调试引脚要求和功能

器件信号	方向	SWD 功能
SWCLK	输入 来自调试探针的串行线时钟	
SWDIO	输入/输出	双向(共享)串行线数据

8.27 引导加载程序 (BSL)

引导加载程序 (BSL) 支持进行器件配置以及通过 UART 或 I2C 串行接口对器件存储器进行编程。通过 BSL 对器件存储器和配置的访问受 256 位用户定义的密码保护,如果需要,可以完全禁用器件配置中的 BSL。TI 默认会启用 BSL,以支持将 BSL 用于生产编程。

使用 BSL 至少需要两个引脚:BSLRX 和 BSLTX 信号(用于 UART),或 BSLSCL 和 BSLSDA 信号(用于 I^2C)。此外,可以使用一个或两个额外引脚(BSL_invoke 和 NRST)来通过外部主机对引导加载程序进行受控调用。

如果启用,则可通过以下方式调用(启动)BSL:

- 如果 BSL_invoke 引脚状态与定义的 BSL_invoke 逻辑电平匹配,则会在引导过程中调用 BSL。如果启用了器件快速引导模式,则会跳过此调用检查。外部主机可以通过置位调用条件并向 NRST 引脚施加复位脉冲来触发 BOOTRST,从而强制器件进入 BSL。之后,器件将在重启过程中验证调用条件,如果调用条件与预期的逻辑电平匹配,则启动 BSL。
- 如果复位矢量和堆栈指针未编程,则在启动过程中会自动调用 BSL。因此,TI 的空白器件将在引导过程中调用 BSL,而无需在 BSL invoke 引脚上提供硬件调用条件。这使得只使用串行接口信号即可进行生产编程。
- 可在运行时通过使用 BSL 进入命令发出 SYSRST 从应用软件调用 BSL。

农 0-12. B3L 引牌安尔和切能				
器件信号	连接	BSL 功能		
BSLRX	UART 所需	UART 接收信号 (RXD),输入		
BSLTX	UART 所需	UART 发送信号 (TXD),输出		
BSLSCL	I2C 所需	I ² C BSL 时钟信号 (SCL)		
BSLSDA	I2C 所需	I ² C BSL 数据信号 (SDA)		
BSL_invoke	可选	用于在引导期间启动 BSL 的高电平有效数字输入		
NRST	可选	用于触发调用信号复位和后续检查 (BSL_invoke) 的 低电平有效复位引脚		

表 8-12. BSL 引脚要求和功能

8.28 器件出厂常量

所有器件都包含一个存储器映射出厂区域,该区域提供描述器件功能的只读数据以及任何出厂提供的修整信息, 供应用软件使用。请参阅 *MSPM0 L 系列 32MHz 微控制器技术参考手册* 的*出厂常量* 一章。

表 8-13. DEVICEID

DEVICEID 地址为 0x41C4.0004, VERSION 为 28 至 31 位, PARTNUM 为 12 至 27 位, MANUFACTURER 为 1 至 11 位。

器件	DEVICEID.VERSION	DEVICEID.PARTNUM	DEVICEID.MANUFACTURER
MSPM0L1304、MSPM0L1344		0xBB82	0x17
MSPM0L1305、MSPM0L1345	表示硬件版本的单调增加值	0xBB82	0x17
MSPM0L1306、MSPM0L1346		0xBB82	0x17

表 8-14. USERID

USERID 地址为 0x41C4.0008, PART 为位 0 至 15, VARIANT 为位 16 至 23

器件	器件	变体	器件	器件	变体
MSPM0L1306SRHBR	0xBB70	0x3C	MSPM0L1305SRHBR	0x4D03	0x2D
MSPM0L1306TRHBR	0xBB70	0x52	MSPM0L1305TRHBR	0x4D03	0x85
MSPM0L1306QRHBR	0xBB70	0xC2	MSPM0L1305QRHBR	0x4D03	0x78
MSPM0L1306SDGS28R	0xBB70	0x5	MSPM0L1305SDGS28R	0x4D03	0x64
MSPM0L1306TDGS28R	0xBB70	0x63	MSPM0L1305TDGS28R	0x4D03	0xFB
MSPM0L1306QDGS28R	0xBB70	0xF7	MSPM0L1305QDGS28R	0x4D03	0x74
MSPM0L1306SRGER	0xBB70	0x7F	MSPM0L1305SRGER	0x4D03	0x73

表 8-14. USERID (continued)

USERID 地址为 0x41C4.0008, PART 为位 0 至 15, VARIANT 为位 16 至 23

器件	器件	变体	器件	器件	变体
MSPM0L1306TRGER	0xBB70	0xAA	MSPM0L1305TRGER	0x4D03	0xEA
MSPM0L1306SDGS20R	0xBB70	0xF4	MSPM0L1305SDGS20R	0x4D03	0xC7
MSPM0L1306TDGS20R	0xBB70	0xA	MSPM0L1305TDGS20R	0x4D03	0xA0
MSPM0L1306QDGS20R	0xBB70	0x59	MSPM0L1305QDGS20R	0x4D03	0xB7
MSPM0L1306SDYYR	0xBB70	0xE	MSPM0L1305SDYYR	0x4D03	0x91
MSPM0L1306TDYYR	0xBB70	0x35	MSPM0L1305TDYYR	0x4D03	0xDE
MSPM0L1306QDYYR	0xBB70	0x9F	MSPM0L1305QDYYR	0x4D03	0xEC
MSPM0L1304SRHBR	0xD717	0xE4	MSPM0L1303SRGER	0xEF0	0x17
MSPM0L1304TRHBR	0xD717	0x5A	MSPM0L1303TRGER	0xEF0	0xE2
MSPM0L1304QRHBR	0xD717	0xA9	MSPM0L1346TDGS28R	0xF2B5	0xEF
MSPM0L1304SDGS28R	0xD717	0x73	MSPM0L1345TDGS28R	0x98B4	0x74
MSPM0L1304TDGS28R	0xD717	0xA8	MSPM0L1344TDGS20R	0x40B0	0xD0
MSPM0L1304QDGS28R	0xD717	0xB6	MSPM0L1343TDGS20R	0xB231	0x2E
MSPM0L1304SRGER	0xD717	0x26			
MSPM0L1304TRGER	0xD717	0xB7			
MSPM0L1304SDGS20R	0xD717	0xFA			
MSPM0L1304TDGS20R	0xD717	0x33			
MSPM0L1304QDGS20R	0xD717	0x91			
MSPM0L1304SDYYR	0xD717	0xB7			
MSPM0L1304TDYYR	0xD717	0xF9			
MSPM0L1304QDYYR	0xD717	0xA0			

8.29 识别

修订版本和器件标识

硬件修订版本和器件标识值存储在存储器映射出厂区域中(请参阅"器件出厂常量"部分),该区域提供了描述器件功能的只读数据以及任何出厂提供的修整信息,以供应用软件使用。有关更多信息,请参阅 MSPMO L 系列 32MHz 微控制器技术参考手册的出厂常量一章。

器件修订版本和标识信息也包含在器件封装的顶部标记中。特定于器件的勘误表中介绍了这些标记。

9应用、实现和布局

9.1 典型应用

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1.1 原理图

TI 建议在 VDD 和 VSS 引脚之间连接 10µF 和 0.1µF 低 ESR 陶瓷去耦电容器的组合,并将这些电容器尽可能靠近其去耦的电源引脚放置(几毫米以内),以实现最小的环路面积。10µF 大容量去耦电容器是大多数应用的推荐值,但可以根据 PCB 设计和应用要求,在需要时调整该电容。例如,可以使用容量更大的电容器,但会影响电源轨斜升时间。

必须将 NRST 复位引脚上拉至 VDD(电源电平),器件才能解除复位状态,开始引导过程。对于大多数应用,TI 建议将一个外部 $47k\Omega$ 上拉电阻器与一个 10nF 下拉电容器连接,使 NRST 引脚能够由另一个器件或调试探针控制。

SYSOSC 频率校正环路 (FCL) 电路在 ROSC 引脚和 VSS 之间安装了容差为 0.1%, 温度系数 (TCR) 为 25ppm/C 或更好的 $100k\Omega$ 外部电阻器。该电阻器可建立基准电流,通过校正环路稳定 SYSOSC 频率。如果使用 FCL 功能实现更高的精度,则需要该电阻器;如果未启用 SYSOSC FCL,则不需要该电阻器。如果未使用 FCL 模式,PA2 引脚可用作数字输入/输出引脚。

VCORE 引脚上需要连接一个 0.47 µ F 的电容,并且该电容必须靠近器件放置,与器件地之间的距离最小。请勿将其他电路连接到 VCORE 引脚。

对于 5V 容限开漏 (ODIO),需要一个上拉电阻器为 I2C 和 UART 功能输出高电平,因为开漏 IO 仅实现了低侧 NMOS 驱动器,无高侧 PMOS 驱动器。5V 容限开漏 IO 具有失效防护功能,即使未提供 VDD 也可能有电压。

图 9-1. 基本应用原理图

10 器件和文档支持

TI 提供大量的开发工具。下面列出了用于评估器件性能、生成代码和开发解决方案的工具和软件。

10.1 器件命名规则

为了指出产品开发周期所处的阶段,TI 为所有 MSP MCU 器件和支持工具的产品型号分配了前缀。.每个 MSP MCU 商用系列产品都具有以下两个前缀之一:MSP 或 X。这些前缀代表了产品开发的发展阶段,即从工程原型(X)直到完全合格的生产器件 (MSP)。

X或XMS - 实验器件,不一定代表最终器件的电气规格

MSP - 完全合格的生产器件

X和XMS器件在供货时附带如下免责声明:

"开发中的产品用于内部评估用途。" MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。 TI 的标准保修证书对该器件适用。预测显示原型器件 (X) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。

TI 的器件命名规则还包含具有器件产品系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。图 10-1 提供了解读完整器件名称的图例。

图 10-1. 器件命名规则

表 10-1. 器件命名规则

处理器系列	MSP = 混合信号处理器 X,XMS = 实验性器件			
MCU 平台	M0 = 基于 Arm 的 32 位 M0+			
产品系列	L = 32MHz 频率			
器件子系列	130 = ADC、2x OPA、COMP 134 = ADC、2x OPA(10pA 输入偏置电流)、COMP			
内部存储器	3 = 8KB 闪存、2KB SRAM 4 = 16KB 闪存、2KB SRAM 5 = 32KB 闪存、4KB SRAM 6 = 64KB 闪存、4KB SRAM			
温度范围	T = -40°C 至 105°C S = -40°C 至 125°C			
封装类型	请参阅表 5-1 和 www.ti.com/packaging			
配送形式	T = 小卷带 R = 大卷带 无标记 = 管装或托盘			

如需 MSP 器件不同封装类型的可订购器件型号,请参阅本文的"封装选项附录",浏览 ti.com,或联系您的 TI 销售代表。

10.2 工具与软件

设计套件与评估模块

MSPM0 LaunchPad (LP) 板:LP-MSPM0L1306 支持立即在业内出色的集成式模拟和低成本通用 MSPM0 MCU 系列上开始进行开发。展示了所有器件引脚和功能;包括一些内置电路、开箱即用软件演示,以及用

于编程、调试和 EnergyTrace™ 技术的板载 XDS110 调试探针。 LP 生态系统包括数十个用于扩展功能的 BoosterPack™ 可堆叠插件模块。

嵌入式软件

MSPM0 软件开发套件 (SDK)

包含软件驱动程序、中间件库、文档、工具和代码示例,可为所有 MSPM0 器件提供熟悉且简单的用户体验。

软件开发工具

TI 云工具

在网络浏览器上开始评估和开发,无需进行任何安装。云工具还具有可下载的离线

版本。

TI Resource Explorer

TI SDK 的在线门户。可在 CCS IDE 或 TI 云工具中访问。

SysConfig

直观的 GUI,可用于配置器件和外设、解决系统冲突、生成配置代码,以及自动进

行引脚多路复用设置。可在 CCS IDE 或 TI 云工具中访问。(离线版)

MSP Academy

所有开发人员了解 MSPM0 MCU 平台的良好起点,其中包含涵盖各种主题的培训

模块。TIRex 的一部分。

GUI Composer

简化评估某些 MSPM0 功能的 GUI,例如无需任何代码即可配置和监测完全集成的

模拟信号链。

IDE 和编译器工具链

Code Composer Studio™

(CCS)

包括 TI Arm-Clang 编译器。支持所有 TI Arm Cortex MCU,并具有有竞争力的代码大小性能优势、编译时间短、代码覆盖支持、安全认证支持和完全免费使用。

IAR Embedded Workbench® IDE

Keil® MDK IDE

GNU Arm 嵌入式工具链

10.3 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

10.4 商标

LaunchPad[™], Code Composer Studio[™], TI E2E[™], EnergyTrace[™], and BoosterPack[™] are trademarks of Texas Instruments.

Arm® and Cortex® are registered trademarks of Arm Limited.

所有商标均为其各自所有者的财产。

10.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

ZHCSR46C - OCTOBER 2022 - REVISED JUNE 2023

10.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

11 机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

DGS0020A

PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.

EXAMPLE BOARD LAYOUT

DGS0020A

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- Solider mask tolerances between and around signal pads can vary based on board fabrication site.
 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

DGS0020A

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

^{11.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{12.} Board assembly site may have different recommendations for stencil design.

DGS0028A

PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.

EXAMPLE BOARD LAYOUT

DGS0028A

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- Publication in C-7331 may have alternate designs.
 Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

DGS0028A

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

^{11.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{12.} Board assembly site may have different recommendations for stencil design.

PACKAGE OUTLINE

DYY0016A

SOT-23-THIN - 1.1 mm max height

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- 5. Reference JEDEC Registration MO-345, Variation AA

DYY0016A

EXAMPLE BOARD LAYOUT

SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

SOT-23-THIN - 1.1 mm max height

DYY0016A

PLASTIC SMALL OUTLINE 16X (1.05) -SYMM Œ 16 1 16X (0.3) SYMM Œ 14X (0.5) (R0.05) TYP (3) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 20X

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

4224642/B 07/2021

GENERIC PACKAGE VIEW

RGE 24

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4204104/H

RGE0024B

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RGE0024B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

^{4.} This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RGE0024B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

GENERIC PACKAGE VIEW

RHB 32

VQFN - 1 mm max height

5 x 5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224745/A

RHB0032E

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RHB0032E

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RHB0032E

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

RTR0016A

PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

EXAMPLE STENCIL DESIGN

RTR0016A

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

EXAMPLE STENCIL DESIGN

RTR0016A

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12	修订	历史	记录
----	----	----	----

注:以前版本的页码可能与当前版本的页码不同

Changes from APRIL 28, 2023 to JUNE 26, 2023	Page
• 发布了 MSPM0L134x 器件	1

3-Aug-2023 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSPM0L1303SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1303S	Samples
MSPM0L1303TRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1303T	Samples
MSPM0L1304SDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1304S	Samples
MSPM0L1304SDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	L1304S	Samples
MSPM0L1304SDYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1304S	Samples
MSPM0L1304SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1304S	Samples
MSPM0L1304SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1304S	Samples
MSPM0L1304TDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1304T	Samples
MSPM0L1304TDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	L1304T	Samples
MSPM0L1304TDYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1304T	Samples
MSPM0L1304TRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1304T	Samples
MSPM0L1304TRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1304T	Samples
MSPM0L1305SDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1305S	Samples
MSPM0L1305SDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	L1305S	Samples
MSPM0L1305SDYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1305S	Samples
MSPM0L1305SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1305S	Samples
MSPM0L1305SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1305S	Samples
MSPM0L1305TDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1305T	Samples

3-Aug-2023 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSPM0L1305TDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	L1305T	Samples
MSPM0L1305TDYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1305T	Samples
MSPM0L1305TRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1305T	Samples
MSPM0L1305TRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	MSPM0 L1305T	Samples
MSPM0L1306SDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	M0L1306S	Samples
MSPM0L1306SDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	L1306S	Samples
MSPM0L1306SDYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	M0L1306S	Samples
MSPM0L1306SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	MSPM0 L1306S	Samples
MSPM0L1306SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	MSPM0 L1306S	Samples
MSPM0L1306TDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	M0L1306T	Samples
MSPM0L1306TDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	L1306T	Samples
MSPM0L1306TDYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	M0L1306T	Samples
MSPM0L1306TRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	MSPM0 L1306T	Samples
MSPM0L1306TRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	MSPM0 L1306T	Samples
MSPM0L1343TDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1343T	Samples
MSPM0L1344TDGS20R	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	M0L1344T	Samples
MSPM0L1345TDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	L1345T	Samples
MSPM0L1346TDGS28R	ACTIVE	VSSOP	DGS	28	5000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	L1346T	Samples
XMSM0L1304SDGS28R	ACTIVE	VSSOP	DGS	28	1	TBD	Call TI	Call TI	-40 to 105		Samples
XMSM0L1305SDGS28R	ACTIVE	VSSOP	DGS	28	1	TBD	Call TI	Call TI	-40 to 125		Samples

www.ti.com 3-Aug-2023

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
XMSM0L1306SDGS20R	ACTIVE	VSSOP	DGS	20	1	TBD	Call TI	Call TI	-40 to 125		Samples
XMSM0L1306SDGS28R	ACTIVE	VSSOP	DGS	28	5000	TBD	Call TI	Call TI	-40 to 125		Samples
XMSM0L1306SDYYR	ACTIVE	SOT-23-THIN	DYY	16	1	TBD	Call TI	Call TI	-40 to 125		Samples
XMSM0L1306SRGER	ACTIVE	VQFN	RGE	24	1	TBD	Call TI	Call TI	-40 to 125		Samples
XMSM0L1306SRHBR	ACTIVE	VQFN	RHB	32	3000	TBD	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 3-Aug-2023

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MSPM0L1305, MSPM0L1306:

Automotive: MSPM0L1305-Q1, MSPM0L1306-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

www.ti.com 5-Aug-2023

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSPM0L1303SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1303TRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1304SDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1304SDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1
MSPM0L1304SDYYR	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
MSPM0L1304SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1304SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSPM0L1304TDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1304TDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1
MSPM0L1304TDYYR	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
MSPM0L1304TRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1304TRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSPM0L1305SDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1305SDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Aug-2023

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSPM0L1305SDYYR	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
MSPM0L1305SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1305SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSPM0L1305TDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1305TDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1
MSPM0L1305TDYYR	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
MSPM0L1305TRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1305TRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSPM0L1306SDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1306SDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1
MSPM0L1306SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1306SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSPM0L1306TDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1306TDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1
MSPM0L1306TDYYR	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
MSPM0L1306TRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MSPM0L1306TRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSPM0L1343TDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1344TDGS20R	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
MSPM0L1345TDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1
MSPM0L1346TDGS28R	VSSOP	DGS	28	5000	330.0	16.4	5.5	7.4	1.45	8.0	16.0	Q1

www.ti.com 5-Aug-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSPM0L1303SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1303TRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1304SDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0
MSPM0L1304SDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0
MSPM0L1304SDYYR	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
MSPM0L1304SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1304SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
MSPM0L1304TDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0
MSPM0L1304TDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0
MSPM0L1304TDYYR	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
MSPM0L1304TRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1304TRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
MSPM0L1305SDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0
MSPM0L1305SDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0
MSPM0L1305SDYYR	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
MSPM0L1305SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1305SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
MSPM0L1305TDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Aug-2023

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSPM0L1305TDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0
MSPM0L1305TDYYR	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
MSPM0L1305TRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1305TRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
MSPM0L1306SDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0
MSPM0L1306SDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0
MSPM0L1306SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1306SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
MSPM0L1306TDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0
MSPM0L1306TDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0
MSPM0L1306TDYYR	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
MSPM0L1306TRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
MSPM0L1306TRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
MSPM0L1343TDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0
MSPM0L1344TDGS20R	VSSOP	DGS	20	5000	356.0	356.0	35.0
MSPM0L1345TDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0
MSPM0L1346TDGS28R	VSSOP	DGS	28	5000	356.0	356.0	35.0

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司