Problem 1.

Proof. To show Σ is a σ -algebra.

- Clearly $\emptyset \in \Sigma$.
- If E ∈ Σ, then by definition of Σ, either E is countable or X − E is countable.
 When E is countable, by definition of Σ, X − E ∈ Σ.
 When X − E is countable, by definition of Σ, X − E ∈ Σ.
- Assume $\{E_i\}_{i=1}^{\infty} \subset \Sigma$, if $\bigcup_{i=1}^{\infty} E_i$ is countable, then $\bigcup_{i=1}^{\infty} E_i \in \Sigma$. Otherwise, there must be a k such that E_k is uncountable, which yields that $X E_k$ is countable. Note that de Morgan's laws hold for any family of sets:

$$X - \bigcup_{i=1}^{\infty} E_i = \bigcap_{i=1}^{\infty} (X - E_i),$$

which is at most countable due to $X - E_k$ countable. Thus $\bigcup_{i=1}^{\infty} E_i \in \Sigma$.

Problem 2.

Proof.

a) Let us define $B_1 = A_1$ and $B_{i+1} = A_{i+1} - A_i$ for $i \ge 2$. Note that $B_i \in \Sigma$ and $\{B_i\}_{i=1}^{\infty}$ are pairwise disjoint. Moreover, $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$ and $A_n = \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i$. Therefore,

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i) = \lim_{n \to \infty} \mu(\bigcup_{i=1}^{n} B_i) = \lim_{n \to \infty} \mu(A_n).$$

b) Let us define $B_i = A_1 - A_i$. Note that $B_i \in \Sigma$, $B_i \subset B_{i+1}$ for each i. By (a), we have:

$$\mu(\bigcup_{i=1}^{\infty} B_i) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_1 - A_n) = \mu(A_1) - \lim_{n \to \infty} \mu(A_n),$$

which is well-defined if $\mu(A_1) < \infty$. Thus

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(A_1 - \bigcup_{i=1}^{\infty} B_i) = \mu(A_1) - \mu(\bigcup_{i=1}^{\infty} B_i) = \lim_{n \to \infty} \mu(A_n).$$

Counter-example: Take the measure space as Lebesgue measure on \mathbb{R} . Take $A_i = (i, \infty]$. For each $i, \mu(A_i) = \infty$ thus $\lim_{i \to \infty} \mu(A_i) = \infty$ however $\mu(\bigcap_{i=1}^{\infty} A_i) = 0$.

Problem 3.

Proof.

- a) To show μ is a measure on (X, Σ) :
 - Since $\mu_n(\emptyset) = 0$ for all n, then $\mu(\emptyset) = \lim_{n \to \infty} \mu_n(\emptyset) = 0$.
 - Given a sequence of pairwise disjoint measurable sets $\{E_i\}_{i=1}^{\infty} \subset \Sigma$,

$$\mu(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu_n(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \mu_n(E_i).$$

By monotone convergence theorem, we can exchange the limit with the summation:

$$\mu(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \mu_n(E_i) = \sum_{i=1}^{\infty} \lim_{n \to \infty} \mu_n(E_i) = \sum_{i=1}^{\infty} \mu(E_i).$$

- b) To show μ is a measure on (X, Σ) :
 - Since $\mu_n(\emptyset) = 0$ for all n, then $\mu(\emptyset) = \sum_{n=1}^{\infty} \mu_n(\emptyset) = 0$.
 - Given a sequence of pairwise disjoint measurable sets $\{E_i\}_{i=1}^{\infty} \subset \Sigma$,

$$\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{n=1}^{\infty} \mu_n(\bigcup_{i=1}^{\infty} E_i) = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \mu_n(E_i) = \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \mu_n(E_i) = \sum_{i=1}^{\infty} \mu(E_i).$$

Problem 4.

Proof. When f is Σ -measurable, we have $f^{-1}((a,\infty)) \in \Sigma$ for any $a \in \mathbb{R}$. Since Borel set in \mathbb{R} are generated by open intervals. It suffices to show $f^{-1}((a,b)) \in \Sigma$.

Let us recall some facts from set theory, which can be proved in one line by the definition of sets. Given a function $f: X \mapsto Y$, we have:

$$f^{-1}(Y - B) = X - f^{-1}(B)$$
 for any $B \subset Y$; (1)

$$f^{-1}(\bigcap_{i\in I} B_i) = \bigcap_{i\in I} f^{-1}(B_i) \qquad \text{for any } \{B_i\}_{i\in I} \quad \text{for any index set } I; \qquad (2)$$

$$f^{-1}(\bigcup_{i\in I} B_i) = \bigcup_{i\in I} f^{-1}(B_i) \qquad \text{for any } \{B_i\}_{i\in I} \quad \text{for any index set } I; \qquad (3)$$

Since $f^{-1}((b,\infty)) \in \Sigma$, then by (1) we have

$$f^{-1}((-\infty, b]) = f^{-1}((b, \infty)^c) = X - f^{-1}((b, \infty)) \in \Sigma.$$

Now we have both $f^{-1}((a,\infty)) \in \Sigma$ and $f^{-1}((-\infty,b]) \in \Sigma$, by (2):

$$f^{-1}((a,b]) = f^{-1}((a,\infty) \cap (-\infty,b]) = f^{-1}((a,\infty)) \cap f^{-1}((-\infty,b]) \in \Sigma.$$

Note that $(a, b) = \bigcup_{i=1}^{\infty} (a, b - \frac{1}{i}]$, by (3):

$$f^{-1}((a,b)) = f^{-1}(\bigcup_{i=1}^{\infty} (a,b-\frac{1}{i}]) = \bigcup_{i=1}^{\infty} f^{-1}((a,b-\frac{1}{i}]) \in \Sigma,$$

which completes the proof.

Problem 5. To define the equivalence relationship on the space of **measurable function** $f:(X,\Sigma,\mu)\mapsto (\mathbb{R},\mathcal{B})$, we **DO NOT** require μ is complete.

Proof. The reflexive and symmetric properties are clearly satisfied. Now we prove the transitive property.

Let f, g, h be measurable function on (X, Σ, μ) such that $f \sim g$ and $g \sim h$, i.e., there exists a measurable set X_{fg} and X_{gh} of measure zero, such that f(x) = g(x) on X_{fg}^c , $f(x) \neq g(x)$ on X_{fg}^c , g(x) = h(x) on X_{gh}^c , $g(x) \neq h(x)$ on X_{gh} .

As a result, f(x) = h(x) on $(X \setminus X_{fg}) \cap (X \setminus X_{gh}) = X \setminus (X_{fg} \cup X_{gh})$. In the meanwhile, $f(x) \neq h(x)$ on some subset of $X_{fg} \cup X_{gh}$. Note that $X_{fg} \cup X_{gh} \in \Sigma$ and $\mu(X_{fg} \cup X_{gh}) \leq \mu(X_{fg}) + \mu(X_{gh}) = 0$.

Since f,h are measurable function, then f-h is measurable function as well, which yields that $(f-h)^{-1}(0) \in \Sigma$. By (1), $X_{fh} := (f-h)^{-1}(0^c) = X - (f-h)^{-1}(0) \in \Sigma$. Moreover, $X_{fh} \subset X_{fg} \cup X_{gh}$ which implies that $\mu(X_{fh}) \leqslant \mu(X_{fg} \cup X_{gh}) = 0$.

Remark: f=g μ -almost everywhere is not necessary to be defined for measurable functions. For functions $f,g:X\mapsto\mathbb{R}$, we say f=g μ -almost everywhere if there exists a set X_1 with $\mu(X_1)=0$ such that:

f(x) = g(x) on $X \setminus X_1$ and $f(x) \neq g(x)$ on X_1 .

In this case $\{x: f(x) \neq g(x)\}$ is not necessary a measurable set (an element in Σ).

However, for measurable function f, g, the set $X_{fg} = \{x : f(x) \neq g(x)\}$ is always measurable (an element in Σ).

Furthermore, there is a theorem which might lead this mess as well:

 μ is complete if and only if the following implication is valid: If f is measurable and f=g μ -almost everywhere, then g is measurable.

Further furthermore, other form of definition to "almost everywhere" might increase the mess: We say f=g μ -almost everywhere if there exists a set X_1 with $\mu(X_1)=0$ such that: $\{x:f(x)\neq g(x)\}\subset X_1$.

Problem 6. Finite measure space has at most countable many atoms.

Proof. Consider the set: $X_n = \{x^* \in X : \frac{1}{n} \leqslant \mu(x^*) \leqslant \frac{1}{n-1}\}$. Suppose on contrary there are uncountable number of atoms, then the above set must be uncountable for at least one n. Let X_N denote the uncountable set of atoms. Then

$$\mu(X_N) \geqslant \sum_{x \in X_N} \frac{1}{N} \to \infty$$
 if X_N is uncountable,

which contradicts with $\mu(X_N)$ is finite from μ is finite measure.