A1) Suppose a non-empty set $X\subset\mathbb{R}$ has an upper bound, and M is an upper bound of X. The following two propositions are equivalent:

- $M = \sup X$.
- For any $\varepsilon > 0$, there exists an $x \in X$ such that $x > M \varepsilon$.

Proof:

$$M = \sup X \iff \forall M' < M, \ \exists x \in X, x > M' \iff \forall \varepsilon = M - M' > 0, \exists x \in X, x > M - \varepsilon.$$

A2) Prove that every non-empty open interval contains infinitely many rational numbers.

Proof: We only need to find one rational number q in the interval (a,b), then we can apply the process to (a,q) and so on.

By the Archimedean rule, there is a positive integer N such that N(b-a)>2, hence there exists an integer p such that $p=\lfloor bN\rfloor\in(aN,bN)$, and $q=\frac{p}{N}\in(a,b)\cap\mathbb{Q}$.

A3) Let (X,d) be a metric space, $Y\subset X.$ We define the distance function on Y:

 $d_Y:Y imes Y o \mathbb{R}, (y_1,y_2)\mapsto d_Y(y_1,y_2)=d(y_1,y_2).$

Prove that d_Y is a distance function, and (Y,d_Y) is a metric space. We call d_Y the induced metric on Y, and (Y,d_Y) is called a subspace.

Proof: Trivial, since $d_Y(y_1,y_2)=d(y_1,y_2)$.

A4) Let $\mathbb{R}^n=\mathbb{R} imes\mathbb{R} imes\cdots imes\mathbb{R}=\{(x_1,\ldots,x_n)\mid x_i\in\mathbb{R},\ldots,x_n\in\mathbb{R}\}$, for any $x,y\in\mathbb{R}^n$, we define

$$d(x,y) = \sqrt{\left(x_1 - y_1
ight)^2 + \dots + \left(x_n - y_n
ight)^2}, \quad x = (x_1, \dots, x_n), y = (y_1, \dots, y_n).$$

Prove that (\mathbb{R}^n, d) is a metric space.

Proof:

- 1. $d(x,y)=0 \iff x_i=y_i, \forall 1\leqslant i\leqslant n \iff x=y.$
- 2. d(x,y) = d(y,x) is trivial.
- 3. $d(x,y)+d(y,z)\geqslant d(x,z)$ is the Minkowski inequality:

$$\left(\sqrt{\sum_{i=1}^n a_i^2} + \sqrt{\sum_{i=1}^n b_i^2}
ight)^2 = \sum_{i=1}^n a_i^2 + b_i^2 + 2\sqrt{\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2} \geqslant \sum_{i=1}^n a_i^2 + b_i^2 + 2a_ib_i = \sum_{i=1}^n (a_i + b_i)^2.$$

A5) Given a metric space (X,d), and $Y\subset X$. If for any $x\in X$ and $\varepsilon>0$, there exists $y\in Y$ such that $d(y,x)<\varepsilon$, then we say Y is dense in X. Prove that the set of rational numbers is dense in \mathbb{R} .

Proof: For any $x\in\mathbb{R}$, let $N=\lfloor x\rfloor$, then for any $\varepsilon>0$, let $q>1/\varepsilon$. Then for $p\in[Nq,(N+1)q]\cap\mathbb{Z}$, choose p such that |x-p/q| is minimal. Suppose p/q< x, then

$$\left| 2\left| x - rac{p}{q}
ight| < \left| x - rac{p}{q}
ight| + \left| x - rac{p+1}{q}
ight| = rac{1}{q} < arepsilon.$$

Hence $d(x, p/q) < \varepsilon$.

A6) For $(x,y)\in\mathbb{R}^2$, if its coordinates x and y are rational numbers, then we call this point a rational point. Prove that (\mathbb{R}^2,d) (refer to question A4) the set of rational points in \mathbb{R}^2 is dense.

Proof: By A5), $\overline{\mathbb{Q}}=\mathbb{R}.$ Hence for any $(x,y)\in\mathbb{R}^2$ and $\varepsilon>0$, there exists $(a,b)\in\mathbb{Q}^2$ such that $|a-x|,|b-y|<\varepsilon/2$. Then

$$d((x,y),(a,b))=\sqrt{(a-x)^2+(b-y)^2}$$

Hence \mathbb{Q}^2 is dense in \mathbb{R}^2

A7) Prove that the axiom (F) and (O), and the boundedness principle imply the Archimedean axiom (A).

Proof: Otherwise assume that $\mathbb N$ has an upper bound. Then $M=\sup\mathbb N$ exists. Let $\varepsilon=1/2$ then there is an $n\in\mathbb N$ such that $n>M-\varepsilon$. Hence n+1>M, leading to contradiction.

A8) (Existence of irrational numbers) Let $X=\left\{x\in\mathbb{Q}\mid x^2<2\right\}$ be a bounded set, and $\sqrt{2}=\sup X.$ Prove that $\sqrt{2}$ is an irrational number.

Proof: If $\sqrt{2}=s=p/q$ is rational, then $p^2\geqslant 2q^2$, otherwise let $x=s(2-s^2)/4+s$, then s< x and $x^2<2$, a contradiction. If $s^2>2$, then $x=s(2-s^2)/4< s$ and $x^2>2$, hence x is an upper bound of X, leading to contradiction. Therefore $s^2=2$ which is impossible.

A9) Prove that every open interval contains infinitely many irrational numbers.

Proof: Otherwise the open interval will be a countable set.

PSB: Countable and Uncountable Sets

Let $\mathbb N$ denote the set of natural numbers (including 0). X is a set, if there is an injective map $f:X\to\mathbb N$, then we say X is countable; if X is not countable, then we say X is uncountable.

B1) Prove that finite sets are countable.

Proof: For any finite set $X=\{a_1,\cdots,a_n\}$, the map $f:a_k\mapsto k$ is an injective, hence X is countable.

B2) Prove that subsets of countable sets are countable.

Proof: If X is countable and $Y \subset X$, then there is an injective map $f: X \to N$, so $f|_Y: Y \to N$ is an injective map, hence Y is countable.

B3) Prove that if X is a countable set, then we can always write $X=\{x_1,x_2,x_3,\ldots\}$ (that is, the elements of X can be indexed by natural numbers).

Proof: Let
$$I=\{n\in\mathbb{N}:f^{-1}(n)\neq\emptyset\}$$
, $x_k=f^{-1}(\min I\setminus\{f(x_1),\cdots,(x_{k-1})\})$. Then $x_x\in X$, and for any $x\in X$, $f(x)\in I$ hence $x\in\{x_1,\cdots,x_{f(x)}\}$. Therefore $X=\{x_1,\cdots,x_n,\cdots\}$.

B4) Prove that the set of rational numbers $\mathbb Q$ is countable.

Proof: List every positive rational number as below:

$$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \dots$$

such that p/q is before m/n if p+q < m+n or p+q = m+n and p < m, then every number in $\mathbb{Q}_{>0}$ is listed at least once. Hence $\mathbb{Q}_{>0}$ is countable and so is \mathbb{Q} .

B5) Prove that the countable union of countable sets is countable, that is, if $X_1, X_2, \ldots, X_n, \ldots$ are all countable sets, then their union $\bigcup_{n=1}^{\infty} X_n$ is also a countable set.

Proof: Assume X_n are disjoint. Since X_n are countable, we can write

$$X_n = \{a_1^{(n)}, a_2^{(n)}, \cdots, a_m^{(n)}, \cdots\}.$$

Then

$$igcup_{n=1}^{\infty} X_n = \{a_1^{(1)}, a_2^{(1)}, a_1^{(2)}, a_3^{(1)}, \cdots \}$$

where the order is the same as in B4). Hence $\bigcup_{n\geqslant 1}X_n$ is countable.

B6) If X is countable, and the map $f:X\to Y$ is surjective, then Y is countable.

Proof: Since X is countable, there is an injective map $g:X \to \mathbb{N}$. Let

$$h:Y o \mathbb{N},\, y\mapsto \min g(f^{-1}(\{y\})).$$

then g is injective, hence Y is countable.

B7) Prove the following using proof by contradiction: $\mathbb R$ is uncountable.

B7-1) Suppose $J\subset\mathbb{R}$ is a closed interval and its length |J|>0. For any $x\in\mathbb{R}$, there always exists an interval $I\subset J$ such that |I|>0 and $x\not\in I$.

Proof: Any closed interval J=[a,b] can be written in the form $J=A\cup B\cup C$, where $A=\left[a,\frac{2a+b}{3}\right], B=\left[\frac{2a+b}{3},\frac{a+2b}{3}\right], C=\left[\frac{a+2b}{3},b\right]$, and x can only be in at most 2 of these sets. Hence we can choose a set I in A,B,C.

B7-2) Prove that if $\{x_1, x_2, \ldots\}$ is a countable subset of \mathbb{R} , then there exists a nested interval sequence $I_1 \supset I_2 \supset \cdots$ such that for any $n, x_n \notin I_n$.

Proof: Simple application of B7-1)

B7-3) Prove that $\mathbb R$ is uncountable.

Proof: If $\mathbb R$ is countable, write $\mathbb R=\{r_1,r_2,\cdots\}$, then set $I_0=[0,1]$. By B7-2) we can obtain a sequence $I_0\supset I_1\supset\cdots$ such that $x_n\not\in I_n$ for any n. Hence

$$igcap_{n=0}^{\infty}I_n=\emptyset,$$

leading to contradiction.

B8) Prove that if X is an uncountable set, and A is a countable subset of X, then X-A is uncountable.

Proof: Otherwise suppose that both A and X-A is countable, then there exist injective mappings $f:A\to\mathbb{N}$ and $g:X-A\to\mathbb{N}$. Define

$$h:X o \mathbb{N},\, x\mapsto egin{cases} 2f(x), & x\in A,\ 2g(x)+1, & x
otin A. \end{cases}$$

Then h is injective, hence X is countable.

B9) Prove that any interval of non-zero length (open or closed) is uncountable.

Proof: Same as B7).

Or use the fact that \mathbb{R} is the countable union of intervals of the same length, and the countable union of countable sets is still countable.

B10) Prove that the set of complex numbers $\mathbb C$ is uncountable.

Proof: \mathbb{C} has an uncountable subset \mathbb{R} .

B11) Suppose $\mathcal I$ is a collection of non-overlapping closed intervals, satisfying the following property: for any $I,J\in\mathcal I$, if $I\neq J$, then their intersection is empty, i.e., $I\cap J=\emptyset$. Prove that $\mathcal I$ is countable.

Proof: For any $I \in \mathcal{I}$, there exists a rational number $r_I \in I$. Consider $f : \mathcal{I} \to \mathbb{Q}, \ I \mapsto r_I$, then f is injective. Since \mathbb{Q} is countable, so is \mathcal{I} .

PSC: Schröder-Bernstein Theorem

Suppose X and Y are two sets, and mappings $f:X\to Y$ and $g:Y\to X$ are both injective. Let X'=X-g(Y).

C1) If X is a finite set, prove that there exists a bijection $\varphi:X o Y$.

Proof: $g:Y\to X$ is injective and X is finite, $\implies Y$ is finite. Hence $|X|\leqslant |Y|$, and $|X|\geqslant |Y|$, so |X|=|Y|. Therefore we can write $X=\{x_1,x_2,\cdots,x_n\}$ and $Y=\{y_1,y_2,\cdots,y_n\}$, and obtain

$$arphi:X o Y,\, x_k\mapsto y_k.$$

C2) If X is countable, prove that there exists a bijection $\varphi:X o Y$.

Proof: Assume X is infinite, then Y is countable (by g) and infinite (by f). Hence we can list $X=\{x_1,x_2,\cdots\}$ and $Y=\{y_1,y_2,\dots\}$ and define

$$\varphi:X o Y,\, x_k\mapsto y_k.$$

From now on, we impose no restrictions on X. Let h:X o X be the composite map $h=g\circ f$.

$$egin{array}{cccc} X & \stackrel{f}{
ightarrow} & Y \ \downarrow h & & \downarrow g \ X & \leftarrow & \end{array}$$

C3) Consider the set family $\mathcal{F}=\{A\subset X\mid X'\cup h(A)\subset A\}$. Prove that \mathcal{F} is non-empty.

Proof: $X \in \mathcal{F}$.

C4) Prove that if $A \in \mathcal{F}$, then $X' \cup h(A) \in \mathcal{F}$.

Proof: If $A \in \mathcal{F}$ then $X' \cup h(A) \subset A$, hence (let B denote $X' \cup h(A)$)

$$X' \cup h(B) \subset X' \cup h(A) = B$$
.

C5) We define

$$A_0 = \bigcap_{A \in \mathcal{F}} A = \{x \in X \mid ext{for any } A \in \mathcal{F}, ext{ we have } x \in A\}.$$

Prove that $A_0 \in \mathcal{F}$.

Proof:

$$X' \cup h(A_0) \subset X' \cup (igcap_{A \in \mathcal{F}} h(A)) = igcap_{A \in \mathcal{F}} X' \cup h(A) \subset igcap_{A \in \mathcal{F}} A = A_0.$$

Hence $A_0 \in \mathcal{F}$.

C6) Prove that $X' \cup h(A_0) = A_0$.

Proof:

$$A_0 \in \mathcal{F} \implies X' \cup h(A_0) \in \mathcal{F} \implies A_0 \subset X' \cup h(A_0).$$

The other side is proved in C5).

C7) Let
$$B_0=X-A_0$$
. Prove that $f(A_0)\cap g^{-1}(B_0)=\emptyset$ and $f(A_0)\cup g^{-1}(B_0)=Y$.

Proof: If $f(A_0) \cap g^{-1}(B_0) \neq \emptyset$, then there exist $a \in A_0, b \in B_0$ such that $f(a) = g^{-1}(b)$, i.e. b = h(a). Since $a \in A_0$, for any $A \in \mathcal{F}$, $a \in A$, hence $b = h(a) \in X' \cup h(A) \subset A$. Therefore $b \in A_0$, a contradiction.

Otherwise if there exists $y\in Y$ such that $y\not\in f(A_0)\cup g^{-1}(B_0)$, then $g(y)\not\in B_0\implies g(y)\in A_0$. Let $z=g(y)\in A_0\cap g(Y)$, then $z\not\in X'$ so $z\in h(A_0)$ by C6). Let z=h(t) then $y=f(t)\in f(A_0)$ since g is injective, leading to contradiction.

C8) We define the map $\varphi:X o Y.$ For $x\in X$, we require

$$arphi(x) = egin{cases} f(x), & ext{if } x \in A_0; \ g^{-1}(x), & ext{if } x \in B_0. \end{cases}$$

Prove that this is a bijection.

Proof:

- 1. φ is injective: for any $x,y\in A_0, x\neq y$, $\varphi(x)\neq \varphi(y)$ since f is injective. For any $x,y\in B_0$, $x\neq y$, $\varphi(x)\neq \varphi(y)$ since g is a mapping. For any $x\in A_0, y\in B_0$, $\varphi(x)\neq \varphi(y)$ since $f(A_0)\cap g^{-1}(B_0)=\emptyset$.
- 2. arphi is subjective: $arphi(X)=arphi(A_0\cup B_0)=f(A_0)\cup g^{-1}(B_0)=Y.$

Based on the above, we have proved:

Theorem (Schroeder-Bernstein). If there exist injective maps $f:X\to Y$ and $g:Y\to X$, then there exists a bijection $\varphi:X\to Y$ between the two sets.

PSD: Details of Dedekind Cut

The goal of this part of the exercise is to complete the part of the Dedekind cut construction method taught in class, thereby providing a complete proof for the construction of real numbers.

D1) Prove that if X and Y are both Dedekind cuts, then the product $X\cdot Y$ as defined in the lecture is also a Dedekind cut, i.e.,

$$\times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (X, Y) \mapsto X \cdot Y,$$

is well-defined. (Hint: You only need to prove the case where X>0,Y>0.) Proof: The set $X\cdot Y$ is define as $Z=\bar 0\cup\{x\cdot y:x,y\geqslant 0,x\in X,y\in Y\}$. Let $Z'=\mathbb Q-Z$, then

- 1. $Z \neq \emptyset, Z' \neq \emptyset$, since for any $x \in X', y \in Y', x \cdot y \notin Z$.
- 2. For any $z \in Z, z' \in Z'$, if z' < z then z > 0. So assume $z = x \cdot y, x \in X, y \in Y, x, y \geqslant 0$, then $z' = x \cdot (yz'/z) \in Z$, a contradiction.
- 3. If Z has a maximal element $z=x\cdot y, x,y\geqslant 0, x\in X, y\in Y$, then since x,y are both not maximal, there exists $x'\in X, y'\in Y$, such that x< x', y< y' so $z< z'=x'\cdot y'\in Z$, a contradiction.

D2) Prove that
$$(X\cdot Y)\cdot Z=X\cdot (Y\cdot Z)$$
. (\Longrightarrow (F5))

Proof: We only need to verify the case where X,Y,Z>0. Then both $(X\cdot Y)\cdot Z$ and $X\cdot (Y\cdot Z)$ are the set

$$ar{0} \cup \{x \cdot y \cdot z : x, y, z \geqslant 0, x \in X, y \in Y, z \in Z\}.$$

D3) Prove that $X \cdot Y = Y \cdot X$. (\Longrightarrow (F6))

Proof: Same as D2).

D4) Prove that
$$X \cdot (Y+Z) = X \cdot Y + X \cdot Z$$
. (\Longrightarrow (F9))

Proof: We can assume that X, Y, Z > 0, then

$$X \cdot (Y+Z) = \{xy + xz : x \in X, y \in Y, z \in Z\}$$

while

$$X\cdot Y+X\cdot Z=\{xy+x'z:x,x'\in X,y\in Y,Z\in Z\}.$$

Hence $X \cdot (Y + Z) \subset X \cdot Y + X \cdot Z$.

For any $xy+x'z\in X\cdot Y+X\cdot Z$, suppose $x\geqslant x'$, then

 $xy+xz\in X\cdot (Y+Z)$ and $xy+x'z\leqslant xy+xz$, so $xy+x'z\in X\cdot Y+X\cdot Z$, therefore $X\cdot Y+X\cdot Z=X\cdot (Y+Z)$.

D5) Prove that $\overline{1}\cdot X=X$ and $\overline{1} eq \overline{0}$. (\Longrightarrow (F7))

Proof: Assume that X>0, then $\overline{1}\cdot X=\{u\cdot v:u<1,v\in X\}$. Foy any $u<1,v\in X$, $u\cdot v< v$ hence $u\cdot v\in X$. For any $x\in X$, there exists $x'\in X,x'>x$, then $x=x'\cdot (x/x')\in \overline{1}\cdot X$. Therefore $\overline{1}\cdot X=X$ and $1/2\in \overline{1}\setminus \overline{0}$, so $\overline{1}\neq \overline{0}$.

D6) Prove that if $X\cdot Y=\overline{0}$, then $X=\overline{0}$ or $Y=\overline{0}$; conversely, if $X\geq\overline{0},Y\geq\overline{0}$, then $X\cdot Y\geq\overline{0}$. (\Longrightarrow (O5))

Proof: Otherwise there exists $x,x'\in X,y,y'\in Y$, such that x,y>0,x',y'<0. Hence $xy,x'y\in X\cdot Y$, where xy>0>x'y, so $X\cdot Y\neq \overline{0}$.

Suppose X,Y>0, then there exists $x\in X,y\in Y$ such that x,y>0, hence $0< xy\in X\cdot Y$, so $X\cdot Y>\overline{0}$.

D7) X is a positive Dedekind cut. Prove that for any integer n, there exist $x \in X, x' \in X'$ such that

$$1 < \frac{x'}{x} < 1 + \frac{1}{n}.$$

Proof: Let $l_0=x\in X, r_0=x'\in X'$. Define l_n,r_n as follows: If $(l_{n-1}+r_{n-1})/2\in X$, then $l_n=(l_{n-1}+r_{n-1})/2, r_n=r_{n-1}$, otherwise $l_n=l_{n-1},r_n=(l_{n-1}+r_{n-1})/2$. Then

$$0 < rac{r_n - l_n}{l_n} \leqslant rac{1}{2} rac{r_{n-1} - l_{n-1}}{l_{n-1}}.$$

Hence there exist such x, x'.

D8) Prove that for any Dedekind cuts X and Y, if $Y \neq \overline{0}$, there exists a unique Dedekind cut Z such that

$$Y \cdot Z = X$$
.

We denote Z as $\frac{X}{Y}$. When $X=\overline{1}$, we also denote it as Y^{-1} . (\Longrightarrow (F8)) Proof: By D6), Z is unique. By D2) we can assume that $X=\overline{1}$, and Y>0. Let

$$Z = \left\{rac{1}{y}: y \in Y'
ight\} \cup \overline{0} \cup \{0\}.$$

Then by D7), $Y \cdot Z = \overline{1}$.