We claim:

5

10

15

- A method of depositing an optical quality silica film by PECVD (Plasma Enhanced Chemical Vapor Deposition), comprising:
 - a) independently setting a predetermined flow rate for a raw material gas;
 - b) independently setting a predetermined flow rate for an oxidation gas;
 - c) independently setting a predetermined flow rate for a carrier gas;
 - d) independently setting a predetermined total deposition pressure; and
- e) applying a post deposition heat treatment to the deposited film at a temperature selected to optimize the mechanical properties without affecting the optical properties determined in steps a to d.
- A method as claimed in claim 1, further comprising independently setting a
 predetermined flow rate for a dopant gas.
- A method as claimed in claim 2, wherein the observed FTIR characteristics of the deposited film are monitored to determine the optimum post deposition heat treatment temperature.
- A method as claimed in claim 1, wherein the post deposition heat treatment temperature lies in the range 600 to 900°C.
- 5. A method as claimed in claim 4, wherein the deposition is carried out at a temperature in the range 100 to 650°C.
- A method as claimed in claim 5, wherein the deposition is carried out at a temperature of about 400°C.
 - 7. A method as claimed in claim 1, wherein the raw material gas is selected from the group consisting: silane, SiH₄; silicon tetra-chloride, SiCl₄; silicon tetra-fluoride, SiF₄; disilane, Si,H₆; dichloro-silane, SiH₂Cl₂; chloro-fluoro-silane SiCl₂F₂; difluoro-silane, SiH₂F₃; and any other silicon containing gas containing hydrogen, H, chlorine, Cl, fluorine, F, bromine, Br, or iodine, I.
 - A method as claimed in claim 7, wherein the oxidation gas is selected from the group consisting of: nitrous oxide, N₂O; O₂, nitric oxide, NO₃; water, H₂O; hydrogen peroxide, H₂O; carbon monoxide, CO; and carbon dioxide, CO,

10

15

25

- A method as claimed in claim 8, wherein the carried gas is selected from the group consisting of nitrogen, N₂, helium, He; neon, Ne; argon, Ar; or krypton, Kr.
- 10. A method as claimed in claim 2, wherein the dopant gas is selected from the group consisting of phosphene, PH_{ij} ; diborane, $B_{2}H_{e}$; Arsine (AsH₂); Titanium hydride, TiH_{e} ;
- germane, GeH_a; Silicon Tetrafluoride, SiF_a; and carbon tetrafluoride, CF_a.
 - 11. A method as claimed in claim 2, wherein the raw material gas is SiH₄, the oxidation gas is N₂O, the carrier gas is N₂, and the dopant gas is PH₃.
 - 12. A method as claimed in claim 11, wherein the SIH_4 gas flow is set at about 0.2 std liters/min., the N_2O gas flow is set at about 6.00 std liters/min., the N2 flow is set at about 3.15 liters/min., and the PH_3 is set at about 0.50 std liters/min.
 - 13. A method of depositing an optical quality silica film by PECVD (Plasma Enhanced Chemical Vapor Deposition), comprising:
 - a) independently setting a flow rate for SiH₄ at about 0.2 std liters/min.;
 - b) independently setting a flow rate for N2O at about 6.00 .2 std liters/min.;
 - c) independently setting a flow rate for a carrier gas;
 - d) independently setting a predetermined total deposition pressure; and
 - e) applying a post deposition heat treatment to the deposited film at a temperature between 600° and 900°C selected to optimize the mechanical properties without affecting the optical properties determined in steps a to d.
- 20 14. A method as claimed in claim 13, wherein the carrier gas is N₂ and the flow rate is set at about 3.15 2 std liters/min.
 - 15. A method as claimed in claim 14, further comprising independently setting a predetermined flow rate for a dopant gas.
 - A method as claimed in claim 15, wherein the dopant gas is PH₃ and the flow rate is set at about 0.50 std liters/min.
 - 17.., A method as claimed in claim 15, wherein the total deposition pressure is set at about 2.6 Torr.

- 18. A method as claimed in claim 13, wherein the observed FTIR characteristics of the deposited film are monitored to determine the optimum post deposition heat treatment temperature.
- A method as claimed in claim 13, wherein said deposited film forms a buffer, core
 or cladding of an optical component.
 - 20. A method as claimed in claim 19, wherein said optical component is a multiplexer or demultiplexer.