Inhaltsverzeichnis

Übun	g 1 Zahlenkomparator	2
a.)	Wahrheitstabelle	2
b.)	KV-Diagramm	2
c.) /	Analyse	2
d.)	Aufbau der Schaltung	3
Übun	g 2 8421 / 7-Segment Codeumsetzer	4
a.)	Wahrheitstabelle	4
b.)	KV-Diagramm	4
c.) /	Analyse	5
d.)	Aufbau der Schaltung	6
Üb	ung 3 Volladdierer (1 Bit)	7
a.)	Wahrheitstabelle	7
b.)	KV-Diagramm (AND/OR)	7
c.) /	Analyse (AND/OR)	7
d.)	KV-Diagramm (NAND)	8
e.)	Analyse (NAND)	8
f.)	Aufbau der Schaltung (AND/OR)	9
a.)	Aufbau der Schaltung (NAND)	. 10
	a.) b.) c.) A d.) Übun a.) b.) c.) A d.) b.) c.) A d.) f.) A	b.) KV-Diagramm

I. Übung 1 Zahlenkomparator

Eine digitale Schaltung, mit der zwei Dualzahlen auf Gleich- oder Ungleichheit geprüft werden, wird als Zahlenkomparator bezeichnet. In der Übung wird eine Schaltung entwickelt, die in der Lage ist, zwei Dualzahlen P und Q mit jeweils 2 Bit zu vergleichen. Im Falle der Ungleichheit erfolgt die Ausgabe über ein Größer-Kleiner Signal, mittels LED.

a.) Wahrheitstabelle

	Eingä	änge		Ausgänge		
Zah	1 P	zah	1 Q	P > Q	P = Q	P < Q
Α	В	С	D	Y1	Y2	Y3
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

b.) KV-Diagramm

c.) Analyse

Die Minimierung und anschließende Simulation der Schaltung führte zu dem gewünschten Ergebnis. Es kann jeweils nur ein Ausgangssignal aktiv (HIGH) sein.

d.) Aufbau der Schaltung

II. Übung 2 8421 / 7-Segment Codeumsetzer

Der BCD-Code wird in großem Umfang angewendet. Häufig werden BCD-kodierte Informationen über 7-Segmet-Anzeigeeinheiten ausgegeben. Die Kathode (x) der 7-Segment-Anzeige ist dabei auf LOW zu ziehen.

Segment Bezeichnungen

Numerische Bezeichnungen

a.) Wahrheitstabelle

Eingänge					Ausgänge						
8 D	4 C	2 B	1 A	Ziffer	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	1	0	1	1	0	0	0	0
0	0	1	0	2	1	1	0	1	1	0	1
0	0	1	1	3	1	1	1	1	0	0	1
0	1	0	0	4	0	1	1	0	0	1	1
0	1	0	1	5	1	0	1	1	0	1	1
0	1	1	0	6	1	0	1	1	1	1	1
0	1	1	1	7	1	1	1	0	0	0	0
1	0	0	0	8	1	1	1	1	1	1	1
1	0	0	1	9	1	1	1	0	0	1	1
1	0	1	0	А	X	X	X	X	X	X	X
1	0	1	1	В	X	X	X	X	X	X	X
1	1	0	0	C	X	X	X	X	X	X	X
1	1	0	1	D	X	X	X	X	X	X	X
1	1	1	0	E	X	X	X	X	X	X	X
1	1	1	1	F	X	X	X	X	X	X	X

b.) KV-Diagramm

c.) Analyse

Der Analyse ist zu entnehmen das die KV-Minimierung für die gewünschten Zustände funktioniert.

% bcd[3:0]	1001	0000	0001	0010	0011	0100	0101	0110	0111	1000
🛂 a	1					1				
₩ ь	1						1			
11₀ с	1									
U₀ d	0									
14 e	0				1					
¼ f	1									
₩ g	1									

d.) Aufbau der Schaltung

III. Übung 3 Volladdierer (1 Bit)

Der Volladdierer ist eines der grundlegenden Elemente in der ALU (Arithmetic Logic Unit) eines Mikroprozessors. Ein Nachteil des Volladdierer besteht darin, dass der Übertrag jeder einzelnen Addierer Stufe bis

zum Ende der Berechnung weitergereicht werden muss. Daher werden bei Steigender Bit Zahl auch proportional mehrere Taktzyklen benötigt. Dies kann durch Paralleladdierer (Carry-Lookahead-Addierer) mit Übertragsvorausberechnung und anderen Funktionen verbessert werden.

Abb.: 1:Volladdierer

Der Volladdierer besteht aus zwei Halbaddierern die wiederum in verschiedenen Technologien AND, OR, XOR oder NAND bestehen können. In der Übung ist der Addierer vorerst zu berechnen und anschließend in NAND Technologie umzusetzen.

Abb.: 2:Halbaddierer

a.) Wahrheitstabelle

	Eingänge		Ausg	änge
Cin	В	A	SUM Σ	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

b.) KV-Diagramm (AND/OR)

c.) Analyse (AND/OR)

d.) KV-Diagramm (NAND)

Es ist nicht möglich (A nand B nand C_{in}) durchzuführen, somit wird eine Eingabe mit not(not(A and B and C_{in})) automatisch wieder zurückgekürzt, siehe Ergebnis im Kapitel KV-Diagramm (AND/OR).

e.) Analyse (NAND)

f.) Aufbau der Schaltung (AND/OR)

addSUM:1

a.) Aufbau der Schaltung (NAND)

