

Système d'information halieutiques - Campagnes à la mer

Département Sciences et Techniques Halieutiques Laboratoire Biologie des pêcheries – Station de Lorient

J.C. Mahé - J.C. Poulard

DSTH/LBP/05-xxx

Version du 23/05/2005

Manuel des protocoles de campagne halieutique

Campagnes EVHOE

(EValuation des ressources Halieutiques de l'Ouest Europe)

Version 1

Nota. L'édition des *Manuels des protocoles* des campagnes halieutiques vise en particulier les campagnes inscrites dans des séries de relevés pluri-annuels (campagnes benthiques, démersales et pélagiques). Mais elle concerne également toutes les campagnes halieutiques dont les données sont déposées auprès du Système d'information halieutique - campagnes à la mer. Cette documentation est publiée pour répondre aux objectifs suivants :

- Constituant la référence unique des travaux à mener pendant les campagnes, les *Manuels des protocoles* contribuent à la stabilité des méthodes d'observation au cours des séries, même dans le cas de changement de responsable de campagne.
- Les *Manuels des protocoles* fournissent à tout utilisateur potentiel des données des campagnes halieutiques toutes les informations utiles sur la nature de ces données et sur les conditions de leur recueil.
- Les *Manuels des protocoles* sont révisés autant que de besoin, après approbation des modifications par le Comité directeur *ad hoc*. L'édition des révisions permet de documenter et de suivre toute évolution éventuelle du système d'observation des séries concernées.

Sommaire

Introduction	5
1 Stratégie générale de la campagne	5
2 Caractéristiques des engins d'échantille	onnage et des matériels de relevés5
2.1 Le chalut GOV 36/47	5
3 Méthodes de prélèvement et de relevés	7
3.1 Plan d'échantillonnage3.2 Les chalutages, mise en oeuvre et contrôles	
4 Traitement des captures	10
4.1 Echantillonnage des captures4.2 Paramètres biologiques	
5 Autres relevés	10
5.1 Données hydrologiques	10
6 Qualification de l'information	11
7 Spécifications des formats de transfert	des données11
8 Historique des campagnes EVHOE avar	nt 199711
Annexes	
Annexe I Annexe II Annexe III Annexe IV	Codification des espèces Echantillonnage Calcul des indices d'abondances Formats des fichiers

Laboratoire responsable : **Ressources Halieutiques Lorient**

Responsable scientifique : Jean-Claude Mahé

Tél.: 02 97 87 38 18

E-mail: Jean.Claude.Mahe@ifremer.fr

Introduction

Les diagnostics sur l'état de l'exploitation et l'évolution des ressources marines nécessitent de disposer d'indicateurs qui constituent des tableaux de bord de l'état du système régulé. Les relevés par campagnes standardisées systématiques participent directement à l'établissement de ces tableaux de bord. Dans le cadre de l'Union Européenne, ces campagnes ont d'ailleurs été retenues en priorité 1 dans le dispositif de collecte de données requises pour la conduite de la Politique commune des pêches. Le concours financier de l'Union fait l'objet d'une contractualisation pluriannuelle avec les Etats membres. La France participe au suivi des ressources marines en réalisant des campagnes pluriannuelles sur la majorité des façades du littoral métropolitain. Chaque série de campagnes possède sa propre dynamique, le plus souvent dans un cadre international, pour répondre aux questions posées sur les pêcheries concernées.

Sur le plateau continental de la façade atlantique, les campagnes Evhoe ont débuté en 1987 dans le golfe de Gascogne. La zone prospectée a été étendue à une partie de la mer Celtique en 1990. Cette première série de campagnes avait pour objectifs de mesurer l'abondance des populations exploitées mais aussi d'étudier la variabilité saisonnière des abondances et des distributions spatiales ; elles ont ainsi été menées au printemps et à l'automne de 1988.

A l'occasion du changement de navire de recherche utilisé survenu en 1997, une révision des objectifs et des protocoles d'échantillonnage a été réalisée. Depuis cette date, la campagne est annuelle et plus axée sur la fourniture d'indices d'abondances et la collecte de paramètres biologiques et environnementaux (température et salinité). Le protocole d'échantillonnage suit un schéma aléatoire stratifié et la zone d'étude couvre le golfe de Gascogne et la mer Celtique.

A noter qu'en 1996 une campagne d'intercalibration entre les deux Thalassa a été réalisée pour permettre la continuité dans les séries chronologiques (Pelletier 1998).

Depuis la conférence annuelle du CIEM en 1994, la campagne est coordonnée par le groupe de travail International Bottom Trawl Survey (IBTS) du CIEM (C. Res. 1994/2:35). Cette coordination initialement exercée que sur les campagnes IBTS de mer du Nord englobe maintenant toute la façade Atlantique européenne.

Le présent manuel décrit les protocoles des campagnes Evhoe depuis 1997. Les principales différences par rapport à ces protocoles lors des campagnes conduites au cours de la période antérieure (1987-1996) sont présentées à la fin du manuel.

1 Stratégie générale de la campagne

La campagne est axée sur des chalutages de fond répartis selon un plan d'échantillonnage aléatoire stratifié et couvre la mer Celtique et le golfe de Gascogne (fig . 4). A chaque station de chalutage, des profils surface - fond (sonde Seabird SBE-19) de la température et de la salinité sont également réalisés. Pendant la durée de la campagne (en principe de 45 jours), les chalutages sont réalisés de jour, les travaux progressant en principe du sud vers le nord.

2 Caractéristiques des engins d'échantillonnage et des matériels de relevés

2.1 Le chalut GOV 36/47

Le chalut est un chalut GOV 36/47 (figures 1 à 3) identique à celui utilisé en mer du Nord et décrit dans le manuel IBTS (ICES 1999). Une exception cependant, le plateau élévateur (Exocet) est remplacé par 6 boules supplémentaires sur la corde de dos (Anon. 2002). Ce chalut ouvre typiquement à 20 m à l'horizontal et 4 m en vertical. Le chalut est équipé d'un cul doublé à l'intérieur par une poche en maillage de 20 mm. Les caractéristiques du chalut, du gréement et du bourrelet sont données dans les figures 1, 2 et 3. A noter que la longueur des bras (fig. 2) dépend de la profondeur des fonds à la station de chalutage (50 m pour des sondes inférieures à 120 m et 100 m au delà). Les panneaux sont des Morgère ovales-plans de 1300 kg.

Figure 1 – Chalut GOV 36/47 utilisé pour les campagnes EVHOE (d'après Anon. 2002).

Figure 2 – Gréement du chalut GOV 36/47 utilisé pour les campagnes EVHOE.

GOV 36/47 GROUND FISH SURVEY TRAWL: Ground gear rigging (Ground gear A)

Figure 3 – Le bourrelet du chalut GOV 36/47 utilisé pour les campagnes EVHOE (d'après Anon. 2002).

3 Méthodes de prélèvement et de relevés

3.1 Plan d'échantillonnage

Les chalutages sur le fond sont répartis suivant un schéma aléatoire stratifié. Le choix des limites des strates bathymétriques (tableau 1) s'appuie sur les connaissances acquises au cours des campagnes effectuées en 1968, 1969, 1973 et 1976 principalement sur le plateau continental de l'est du golfe de Gascogne. La définition des secteurs géographiques (figure 4) prend en compte la distribution des assemblages des espèces de poissons identifiés à partir des données des premières campagnes. Une analyse des données acquises entre 1997 et 2003 a permis de valider la stratification utilisée en mer Celtique et établie sur la base de celle utilisée dans le golfe de Gascogne. Cette stratification a été validée et adoptée par le groupe de travail IBTS en 2005 (Anon 2004, Anon, 2005).

Figure 4 . Zone couverte par la campagne EVHOE et stratification utilisée.

Le nombre de traits par strate est alloué pour chaque campagne de manière proportionnelle aux surfaces des strates mais aussi en fonction des variances observées sur les principales espèces commerciales (merlu, baudroies, cardine) (allocation de Neyman, Cochran, 1977) pendant les années précédentes. Depuis 2002, et sur la base des variances observées depuis 1997, ce nombre a été fixé pour une durée de principe de 45 jours (Tab. 1) Ce nombre est ajusté en final en fonction de certaines contraintes (minimum de 2 à 3 traits par strate, révision annuelle du nombre de jours de mer disponible ou décalage de la campagne dans le temps pouvant réduire le nombre total d'heures de jour disponibles).

Tableau 1 - Caractéristiques des strates utilisées pendant les campagnes EVHOE et allocation de principe du nombre de traits pour une durée de campagne de 45 jours.

Strate	Zone	limites	Surface (mi ²)	Nb de
		bathymétriques		traits
Cc3	Mer Celtique - Centre	81 - 120 m	5909	
Cc4	Mer Celtique - Centre	121 - 160 m	8162	20
Cc5	Mer Celtique - Centre	161 - 200 m	1548	
Cc6	Mer Celtique - Centre	201 - 400 m	1018	3
Cc7	Mer Celtique - Centre	401 - 600 m	509	
Cn2	Mer Celtique - Nord	31 - 80 m	4052	7
Cn3	Mer Celtique - Nord	81 - 120 m	6386	
Cs3	Mer Celtique - Sud	81 - 120 m	4154	0 ¹
Cs4	Mer Celtique - Sud	121 - 160 m	12100	20
Cs5	Mer Celtique - Sud	161 - 200 m	4433	10
Cs6	Mer Celtique - Sud	201 - 400 m	1165	3
Cs7	Mer Celtique - Sud	401 - 600 m	748	
Gn1	Golfe de Gascogne - Nord	15 - 30 m	2391	3
Gn2	Golfe de Gascogne - Nord	31 - 80 m	3432	4
Gn3	Golfe de Gascogne - Nord	81 - 120 m	5052	16
Gn4	Golfe de Gascogne - Nord	121 - 160 m	5497	21
Gn5	Golfe de Gascogne - Nord	161 - 200 m	470	3
Gn6	Golfe de Gascogne - Nord	201 - 400 m	318	2
Gn7	Golfe de Gascogne - Nord	401 - 600 m	493	2
Gs1	Golfe de Gascogne - Sud	15 - 30 m	571	3
Gs2	Golfe de Gascogne - Sud	31 - 80 m	1353	3
Gs3	Golfe de Gascogne - Sud	81 - 120 m	1170	3
Gs4	Golfe de Gascogne - Sud	121 - 160 m	873	3
Gs5	Golfe de Gascogne - Sud	161 - 200 m	129	2
Gs6	Golfe de Gascogne - Sud	201 - 400 m	175	2
Gs7	Golfe de Gascogne - Sud	401 - 600 m	191	2

¹ Aucun trait alloué depuis 1999 car fonds trop durs.

Les positions des traits sont déterminées par tirages aléatoires sans remise dans une banque de données de positions de traînes référencées par strate. Une règle quide le choix définitif des positions : deux chalutages dans une même strate bathymétrique doivent être distants d'au moins 5 milles nautiques.

3.2 Les chalutages, mise en oeuvre et contrôles

Les chalutages sont réalisés de jour à une vitesse de 4 nœuds et durent 30 minutes. Le signal du début de traîne est donné au moment de la stabilisation du chalut sur le fond. La fin du trait est déterminée par le début du virage du chalut. Pour qu'un trait soit déterminé de jour, le début de traîne doit s'effectuer moins de 15 minutes avant l'heure du lever du soleil à la position de chalutage pour un trait matinal et la fin de traîne doit s'effectuer moins de 15 minutes après le coucher du soleil. Les paramètres de la géométrie du chalut (écartement panneaux, ouvertures horizontale et verticale, hauteur du bourrelet) sont mesurés en permanence par des capteurs Scanmar et suivis en temps réel.

Les paramètres de géométrie du chalut sont archivés via le réseau informatique du bord, de même que les longueurs et tensions des funes et autres paramètres de navigation et de météorologie Ces données sont récupérées sur support informatique à la fin de la campagne et les valeurs moyennes sont archivées dans la base de données RAPTRITOT (voir annexe IV).

Un trait est déclaré valide si sa durée est d'au moins 20 minutes et d'au plus 40 minutes. En cas d'avaries, si l'heure de l'événement ayant causé l'avarie est connue (croche, fortes tensions sur les funes), le trait peut être déclaré valide si l'avarie se situe bien en avant de la poche et si la durée de chalutage avant l'événement est au moins de 20 minutes.

4 Traitement des captures

4.1 Echantillonnage des captures

La capture totale non triée est toujours pesée. Dans la plupart des cas, l'intégralité de la poche est triée par espèce (tous les poissons et certains invertébrés). Dans le cas d'une grosse capture, seule une fraction est triée. Dans ce cas, si la capture comporte quelques individus remarquables, ils sont sortis de la capture et traités en « Hors Vrac ».

La codification utilisée pour l'identification des espèces et leur saisie dans les logiciels est une codification du type RUBIN. La liste de ces codes est donnée en annexe I.

4.2 Paramètres biologiques

Toutes les espèces de poissons et certains invertébrés sont mesurés, certains par sexe.

Tous les poissons sont mesurés en longueur totale jusqu'à l'extrémité du plus grand des rayons de la nageoire caudale pris dans le prolongement de la colonne vertébrale. Les céphalopodes sont mesurés par la longueur totale du manteau, les langoustines en longueur céphalo-thoracique. Toutes ces mesures sont reportées à la borne inférieure de la classe de taille correspondante.

Le détail des mesures et des échantillonnages par espèce est donné en annexe II.

Dans le cas de sous-échantillonnages, il n'existe pas de nombre minimum d'individus à mesurer par espèce et par sexe mais l'échantillon doit permettre d'obtenir une bonne estimation de la structure en taille de la capture.

Pour certaines espèces commerciales, des prélèvements d'otolithes sont réalisés en vue d'estimation de l'âge (tableau 2).

Tableau 2 - Plan d'échantillonnage pour l'âgeage des principales espèces commerciales.

Espèce	Prélèvements d'otolithes
Merlan	1/10/cm/sexe/trait (1)
Baudroies	3/cm/sexe pour Lt > 24 cm, 5 pour Lt < 25 cm (2)
Lieu jaune	totalité
Cardine	6/cm/sexe
Sole	totalité
Merlu	8/cm/sexe/zone (1)
Lingue franche	totalité
Morue	totalité
Eglefin	5/cm/sexe
Sardines	5/0.5 cm pour Lt < 16 cm, 2 pour Lt > 15.5 cm
Anchois	5/0.5 cm pour Lt > 9 cm

- (1) Clés séparées pour la mer Celtique et le golfe de Gascogne
- (2) Illicium et 2^{ème} rayon de la première nageoire dorsale

Si les prélèvements suivent un schéma stratifié, il est important que l'ensemble des pièces dures collectées soient réparties le plus uniformément possible sur l'aire de distribution du stock considéré. On ne prélève qu'un seul otolithe par sexe, par classe de taille et par station de chalutage pour les tailles courantes.

Les formules utilisées pour le calcul des indices d'abondance sont données en annexe III.

5 Autres relevés

5.1 Données hydrologiques

A chaque station de chalutage, des profils de température et de salinité sont réalisés au moyen d'une sonde CTD Seabird SBE-19. Les données sont envoyées en léger différé pour archivage au SISMER via Coriolis.

6 Qualification de l'information

A bord, une vérification des données biologiques saisies est effectuée par SOP¹ (cohérence des poids saisis avec la structure en tailles enregistrée). A terre, les données formatées au format DATRAS (Piet et al., 2004) sont envoyés au CIEM et vérifiées (tailles mini, maxi, présence de l'espèce dans la zone échantillonnée, cohérence des poids et nombre) par le CIEM dans la base commune.

7 Spécifications des formats de transfert des données

Les données de navigation, les paramètres du chalut, et les mesures de thermosalinomètre de surface sont enregistrées et archivée sur la centrale TS-ARCHIV de la Thalassa. De plus une sélection de ces données sont également archivées par le logiciel CASINO+.

Les données biologiques (poids capturés, mensurations) sont saisies à bord dans une base sous ACCESS par le logiciel RAPTRI. Une version modifiée de ce logiciel (RAPTRITOT) permettant également la saisie des données d'âgeage est utilisée à terre et la base est archivée sur réseau à la station de Lorient.

Les caractéristiques et paramètres physiques des stations sont importés à partir du logiciel CASINO+ par le logiciel FISHVIEW. Les données traitées sont ensuite importés dans RAPTRITOT.

Les formats des différents fichiers sont donnés en annexe IV.

8 Historique des campagnes EVHOE avant 1997

8.1 Calendrier et zone échantillonnée

Les campagnes EVHOE ont débuté en 1987 et se sont succédées jusqu'en 1995 au rythme d'une campagne par an (tableau 3). Deux années ont fait exception. En 1988, deux campagnes ont été réalisées l'une au printemps (mai - juin) et l'autre en automne (septembre - octobre). La campagne de 1993, d'abord programmée, a été annulée en raison de contraintes budgétaires.

La zone étudiée s'est limitée au golfe de Gascogne (entre les latitudes 43°40' et 48°30' N) de 1987 à 1989. En 1990, elle a été étendue vers le nord (latitude 51°15' N) à une partie de la mer Celtique. Cependant, cette dernière partie de la zone de travail n'a pu être échantillonnée en 1994 et 1995 à la suite d'avaries survenues au moteur de propulsion de la Thalassa 1.

Toutes ces campagnes ont bien sûr été réalisées sur l'ancienne Thalassa. En 1996 une campagne d'intercalibration entre l'ancien navire (Thalassa I) et la nouvelle unité (Thalassa) a été réalisée pour permettre la comparaison des indices d'abondance calculés à partir des données collectées sur les deux navires (Pelletier 1998).

Sum of products

Année Code Période Zone étudiée 1987 EVHOE871 octobre golfe de Gascogne EVHOE882 1988 golfe de Gascogne mai 1988 EVHOE883 octobre golfe de Gascogne 1989 EVHOE894 golfe de Gascogne octobre EVHOE905 golfe de Gascogne et mer Celtique 1990 octobre -novembre mai - juin 1991 EVHOE916 golfe de Gascogne et mer Celtique EVHOE927 1992 septembre -octobre golfe de Gascogne et mer Celtique 1993 pas de campagne 1994 EVHOE948 golfe de Gascogne octobre -novembre EVHOE959 1995 novembre -décembre golfe de Gascogne INTERCAL Inter calibration des deux navires Thalassa en mer 1996 novembre Celtique et mer du Nord

Tableau 3.- Calendrier des campagnes de la série EVHOE réalisées de 1987 à 1995.

8.2 Plan d'échantillonnage

La stratification bathymétrique (sept strates) est demeurée inchangée au cours du temps. Elle est toujours utilisée pour les campagnes actuelles. La zone prospectée recouvre les fonds de 15 à 600 m de profondeur.

8.2.1 Le golfe de Gascogne

8.2.1.1 Les secteurs géographiques

Le découpage en secteurs géographiques a évolué et le nombre des unités géographiques a fortement diminué au cours de la période 1987 - 1995.

A l'origine, l'ensemble de la zone a été divisée en quatre secteurs géographiques (A à B) euxmêmes divisés en sous-secteurs (figure 5). Les limites des secteurs prennent en compte la distribution des espèces, les grands traits de l'hydrologie et la distribution des sédiments. La superposition des découpages géographique et bathymétrique conduit à identifier 56 strates ou unités d'échantillonnage.

Le nombre des strates s'est révélé trop important et le nombre de secteurs géographiques a été réduit. D'abord, les sous-secteurs ont été supprimés (1989 à 1992) puis les secteurs B et C (figure 5) ont été regroupés (1994 et 1995).

8.2.1.2 Implantation des stations de chalutage

A l'origine deux lots de stations sont considérés. Les stations fixes (75% de l'effort d'échantillonnage total) sont disposées, pour environ la moitié d'entre elles, sur huit radiales perpendiculaires aux isobathes (2 radiales dans le secteur A, 3 dans B, 1 dans C et 2 dans D). L'autre moitié des stations fixes est positionnée entre les radiales depuis la côte jusqu'à la sonde des 160 m. Les stations mobiles d'une année à l'autre (25% de l'effort d'échantillonnage total) se répartissent entre les sondes 30 et 160 m.

Pour tenir compte de la diminution de l'effort d'échantillonnage imposée, seules les stations fixes sont conservées à partir de la campagne Evhoe de 1992.

8.2.2 La mer Celtique

En 1990, la zone d'étude a été étendue à une partie de la mer Celtique limitée par :

- la latitude 51°15' N au nord ;
- l'isobathe des 600 m à l'ouest :
- l'isobathe des 100 m à l'est.

La bathymétrie de la zone étudiée (la majorité des fonds est comprise entre 100 et 200 m de sonde) a conduit à retenir un plan d'échantillonnage systématique : les chalutages sont localisés au sommet d'un réseau de mailles de 25 milles nautiques de côté. Les données acquises à partir de ce type d'échantillonnage se prêtent particulièrement bien au traitement géostatistique. Environ 55 stations ont été chalutées au cours des automnes de 1990 et 1992 et au printemps 1991.

Figure 5. Secteurs et sous-secteurs géographiques utilisés pour les campagnes de 1987 à 1988. Position des chalutages lors de la campagne Evhoe883 (automne 1988).

8.3 Les chalutages

Le chalut GOV 36/47 est utilisé depuis 1987 avec les mêmes spécifications. Les conditions de réalisation des chalutages (vitesse, durée, validité d'un trait) sont restés les mêmes. Seule la règle des traits diurnes a probablement été moins strictement appliquée.

Le contrôle de la géométrie du chalut pendant les opérations a débuté en 1992 par l'utilisation de capteurs SCANMAR sur les panneaux, les pointes d'ailes et la corde de dos.

Un autre événement important est l'utilisation du GPS pour le positionnement à partir de 1992.

La stratégie a toujours consisté à commencer par le sud de la zone puis à remonter vers le nord.

8.4 Observation sur les captures

Les modalités du traitement des captures sont les mêmes que celles actuellement appliquées. Tous les poissons ont été systématiquement mesurés à partir de la campagne de printemps de 1991. Le nombre des espèces sexées a varié au cours du temps. Un état est fourni en annexe V. Pour les espèces d'invertébrés, le protocole est resté globalement le même et était identique à celui d'aujourd'hui.

Les modes de collecte des pièces dures pour l'âgeage des poissons ont été laissés à la discrétion des responsables des espèces et n'ont donc pas été systématisés. Il est possible de préciser cependant que le merlu, le merlan, les baudroies, la cardine ont toujours été échantillonnés. Des clefs taille/âge sont également disponibles pour le tacaud jusqu'en 1992.

8.5 Autres relevés

Des profils surface - fond de température et salinité ont été effectués au moyen d'une bathysonde (CTD Seabird SBE-19):

- en 1992, les stations étaient positionnées sur une grille indépendante des positions de chalutage:
- en 1994 et 1995, les profils ont été associés aux chalutages.

Pour répondre à une demande ponctuelle, un collecteur de sédiment (tube) a été monté sur la pointe d'aile tribord en 1994 et 1995. Des informations sur la nature du sédiment superficiel rencontré pendant les chalutages sont donc disponibles pour ces deux années.

Références

Anon., 2002. Manual for the international bottom trawl surveys in the western and southern areas -Revision II. ICES, Addendum to ICES CM 2002/D:03. 28 p.

ANON, 2004, Report of the International Bottom Trawl Survey Working Group. ICES CM

ANON, 2005, Report of the International Bottom Trawl Survey Working Group. ICES CM 2005/D:05.

COCHRAN, W.G. 1977. Sampling Technics. J. Wiley & Sons. 428 p.

ICES, 1999. Manual for the International Bottom trawl Surveys. Revision VI. ICES/CIEM, ICES CM 1999/D:2 Addendum 2 Ref. G. 49 p.

Pelletier D., 1998. Intercalibration of research survey vessels: a review and an application. Can. J. Fish. Aquat. Sci. 55: 2672-2685.

Piet G.J. ed 2004 Development of a central database for European trawl survey data DATRAS. Database TRAwl Surveys. Project number QLRT-2001-00025. RIVO, IJmuiden, The Netherlands: 70 p.

Acantholabrus Palloni	ACAN-PAL	Ciliata mustela	CILI-MUS	Labrus bimaculatus	LABR-BIM	Octopus sp	OCTO-SPP	Scorpaena scrofa	SCOR-SCR
Agonus cataphractus	AGON-CAT	Clupea harengus	CLUP-HAR	Labrus spp	LABR-SPP	Octopus vulgaris	OCTO-VUL	Scyliorhinus canicula	SCYL-CAN
Alepocephalus bairdii	ALEP-BAI	Coelorhynchus coelorhynchus	COEL-COE	Lamna nasus	LAMN-NAS	Pagellus acarne	PAGE-ACA	Scyliorhinus stellaris	SCYL-STE
Alepocephalus rostratus	ALEP-ROS	Conger conger	CONG-CON	Lampanyctus ater	LAMP-ATE	Pagellus bogaraveo	PAGE-BOG	Scyllarus arctus	SCYL-ARC
Alloteuthis sp	ALLO-SPP	Crangon crangon	CRAN-CRA	Lampanyctus crocodilus	LAMP-CRO	Pagellus erythrinus	PAGE-ERY	Scymnodon ringens	SCYM-RIN
Alosa alosa	ALOS-ALO	Crystallogobius linearis	CRYS-LIN	Lampanyctus macdonaldi	LAMP-MAC	Palaemon serratus	PALA-SER	Sepia elegans	SEPI-ELE
Alosa fallax	ALOS-FAL	Ctenolabrus rupestris	CTEN-RUP	Lepidion eques	LEPI-EQU	Palinurus mauritanicus	PALI-MAU	Sepia officinalis	SEPI-OFF
Ammodytes marinus	AMMO-MAR	Cyttopsis roseus	CYTT-ROS	Lepidopus caudatus	LEPI-CAU	Palinurus spp	PALI-SPP	Sepia orbignyana	SEPI-ORB
Ammodytes tobianus	AMMO-TOB	Dalatias licha	DALA-LIC	Lepidorhombus boscii	LEPI-BOS	Palinurus vulgaris	PALI-VUL	Sepietta oweniana	SEPI-OWE
Anarhichas lupus	ANAR-LUP	Dasyatis pastinaca	DASY-PAS	Lepidorhombus whiffiagonis	LEPI-WHI	Parablennius gattorugine	PARA-GAT	Sepiola spp	SEPI-SPP
Anguilla anguilla	ANGU-ANG	Dasyatis spp	DASY-SPP	Lepidotrigla cavillone	LEPI-CAV	Paraliparis hystrix	PARA-HYS	Solea lascaris	SOLE-LAS
Aphanopus carbo	APHA-CAR	Deania calceus	DEAN-CAL	Lesueuriogobius friesii	LESU-FRI	Paromola cuvieri	PARA-MOL	Solea vulgaris	SOLE-VUL
Aphia minuta	APHI-MIN	Derichthys serpentinus	DERI-SER	Limanda limanda	LIMA-LIM	Pecten maximus	PECT-MAX	Sparus aurata	SPAR-AUT
Apletodon dentatus	APLE-DEN	Dicentrarchus labrax	DICE-LAB	Liparis liparis	LIPA-LIP	Petromyzon marinus	PETR-MAR	Sparus pagrus	SPAR-PAG
Argentina silus	ARGE-SIL	Dicentrarchus punctatus	DICE-PUN	Liparis montagui	LIPA-MON	Pholis gunnellus	PHOL-GUN	sphaerechinus granularis	SPHA-GRA
Argentina sphyraena	ARGE-SPH	Dicologoglossa cuneata	DICO-CUN	Lithognathus mormyrus	LITH-MOR	Phrynorhombus norvegicus	PHRY-NOR	Spinachia spinachia	SPIN-SPI
Argyropelecus hemigymnus	ARGY-HEM	Diplodus cervinus	DIPL-CER	Liza aurata	LIZA-AUR	Phrynorhombus regius	PHRY-REG	Spondyliosoma cantharus	SPON-CAN
Argyropelecus olfersi	ARGY-OLF	Diplodus cervinus Diplodus sargus	DIPL-SAR	Liza adrata Liza ramada	LIZA-AON	Phycis blennoides	PHYC-BLE	Sprattus sprattus	SPRA-SPR
Argyrosomus regius	ARGY-REG	Diplodus sargus Diplodus vulgaris	DIPL-VUL	Loligo forbesi	LOLI-FOR	Phycis spp	PHYC-SPP	Squalus acanthias	SQUA-ACA
0,	ARNO-IMP	, · · · · · ·	ECHI-VIP		LOLI-FUR		PLAT-FLE	·	SQUA-ACA SQUA-SQU
Arnoglossus imperialis	ARNO-IIVIP	Echilichthys vipera	ECHI-DRU	Loligo vulgaris	LOPH-BUD	Platichthys flesus	PLEU-PLA	Squatina squatina	SQUI-MAN
Arnoglossus laterna		Echiodon drummondi		Lophius budegassa	LOPH-BUD	Pleuronectes platessa		Squilla mantis	STOM-BOF
Arnoglossus thori	ARNO-THO	Eledone cirrhosa	ELED-CIR	Lophius piscatorius		Pollachius pollachius	POLL-YID	Stomias boa ferox	
Aspitrigla cuculus	ASPI-CUC	Enchelyopus cimbrius	ENCH-CIM	Lumpenus lampretaeformis	LUMP-LAM	Pollachius virens	POLL-VIR	Symbolophorus veranyi	SYMB-VER
Aspitrigla obscura	ASPI-OBS	Engraulis encrasicolus	ENGR-ENC	Macropipus puber	MACR-PUB	Polymetme corythaeola	POLY-COR	Symphodus bailloni	SYMP-BAI
Asterias rubens	ASTE-RUB	Epigonus telescopus	EPIG-TEL	Macrorhamphosus scolopax	MACR-SCO	Polyprion americanus	POLY-AME	Symphodus melops	SYMP-MEO
Atherina presbyter	ATHE-PRE	Etmopterus spinax	ETMO-SPI	Maia squinado	MAJA-SQU	Pomatoschistus minutus	POMA-MIN	Synaphobranchus kaupi	SYNA-KAU
Balistes carolinensis	BALI-CAP	Eutrigla gurnardus	EUTR-GUR	Malacocephalus laevis	MALA-LAE	Pomatoschistus pictus	POMA-PIC	Syngnathus acus	SYNG-ACU
Bathynectes maravigna	BATH-MAR	Gadiculus argenteus	GADI-ARG	Maurolicus muelleri	MAUR-MUE	Psetta maxima	PSET-MAX	Syngnathus rostellatus	SYNG-ROS
Bathysolea profundicola	BATH-PRO	Gadus morhua	GADU-MOR	Melanogrammus aeglefinus	MELA-AEG	Raja batis	RAJA-BAI	Syngnathus spp	SYNG-SPP
Belone belone	BELO-BEO	Gaidropsarus macrophthalmus	GAID-MAC	Merlangius merlangus	MERL-MNG	Raja brachyura	RAJA-BRA	Syngnathus typhle	SYNG-TYP
Beryx decadactylus	BERY-DEC	Gaidropsarus mediterraneus	GAID-MED	Merluccius merluccius	MERL-MCC	Raja circularis	RAJA-CIR	Taurulus bubalis	TAUR-BUB
Beryx splendens	BERY-SPL	Gaidropsarus vulgaris	GAID-VUL	Microchirus variegatus	MICR-VAR	Raja clavata	RAJA-CLA	Todarodes sagittatus	TODA-SAG
Blennius ocellaris	BLEN-OCE	Galeorhinus galeus	GALE-GAL	Micromesistius poutassou	MICR-POU	Raja fullonica	RAJA-FUL	Todaropsis eblanae	TODA-EBL
Boops boops	BOOP-BOO	Galeus melastomus	GALE-MEL	Microstomus kitt	MICR-KIT	Raja microocellata	RAJA-MIC	Torpedo marmorata	TORP-MAR
Buccinum undatum	BUCC-UND	Geryon quinquedens	GERY-QUI	Mola mola	MOLA-MOL	Raja montagui	RAJA-MON	Torpedo nobiliana	TORP-NOB
Buglossidium luteum	BUGL-LUT	Geryon tridens	GERY-TRI	Molva dipterygia macrophthalma	MOLV-DYP	Raja naevus	RAJA-NAE	Trachinus draco	TRAC-DRA
Callionymus lyra	CALL-LYR	Glossanodon leioglossus	GLOS-LEI	Molva molva	MOLV-MOL	Raja nidarosiensis	RAJA-NID	Trachurus mediterraneus	TRAC-MED
Callionymus maculatus	CALL-MAC	Glyptocephalus cynoglossus	GLYP-CYN	Mora moro	MORA-MOR	Raja oxyrhynchus	RAJA-OXY	Trachurus picturatus	TRAC-PIC
Callionymus reticulatus	CALL-RET	Gobius niger	GOBI-NIG	Mullus surmuletus	MULL-SUR	Raja radiata	RAJA-RAI	Trachurus trachurus	TRAC-TRU
Callionymus spp	CALL-SPP	Gobius paganellus	GOBI-PAG	Munida bamffia	MUNI-BAM	Raja undulata	RAJA-UND	Trachyrhynchus trachyrhynchus	TRAC-TRC
Cancer belianus	CANC-BEL	Goneplax rhomboides	GONE-RHO	Mustelus asterias	MUST-AST	Raniceps raninus	RANI-RAN	Trachyscorpia cristulata echin	TRAC-CRI
Cancer pagurus	CANC-PAG	Gymnammodytes semisquamatus	GYMN-SEM	Mustelus mustelus	MUST-MUS	Remora remora	REMO-REM	Trigla lucerna	TRIG-LUC
Capros aper	CAPR-APE	Halargyreus johnsonii	HALA-JOH	Myctophidae	MYCT-SPP	Rossia macrosoma	ROSS-MAC	Trigla lyra	TRIG-LYR
Centrolabrus exoletus	CENT-EXO	Helicolenus dactylopterus	HELI-DAC	Myctophum punctatum	MYCT-PUN	Salmo salar	SALM-SAL	Trigloporus lastoviza	TRIG-LAS
Centrophorus squamosus	CENT-SQU	Hexanchus griseus	HEXA-GRI	Myliobatis aquila	MYLI-AQU	Sarda sarda	SARD-SAR	Trisopterus esmarki	TRIS-ESM
Centroscymnus coelolepis	CENT-COE	Hippocampus hippocampus	HIPP-HIC	Myoxocephalus scorpius	MYOX-SCU	Sardina pilchardus	SARD-PIL	Trisopterus luscus	TRIS-LUS
Centroscymnus crepidater	CENT-CRE	Hippoglossoides platessoides limandoides	HIPP-LIM	Myoxocephalus scorpius	MYOX-SCU	Sarpa salpa	SARP-SAL	Trisopterus minutus	TRIS-MIN
Cepola rubescens	CEPO-RUB	Histioteuthis bonelliana	HIST-BON	Myxine glutinosa	MYXI-GLU	Scomber japonicus	SCOM-JAP	Umbrina canariensis	UMBR-CAN
Cetorhinus maximus	CETO-MAX	Homarus gammarus	HOMA-GAM	Nephrops norvegicus	NEPH-NOR	Scomber scombrus	SCOM-SCO	Xenodermichthys copei	XENO-COP
Chelon labrosus	CHEL-LAB	Hoplostethus mediterraneus	HOPL-MED	Nerophis ophidion	NERO-OPH	Scomberesox saurus	SCOM-SAU	Xiphias gladius	XIPH-GLA
Chimaera monstrosa	CHIM-MON	hyperoplus immaculatus	HYPE-IMM	Nezumia aequalis	NEZU-AEQ	Scophthalmus rhombus	SCOP-RHO	Zeugopterus punctatus	ZEUG-PUN
Chirolophis ascanii	CHIR-ASC	Hyperoplus lanceolatus	HYPE-LAN	Notacanthus bonapartei	NOTA-BON	Scorpaena loppei	SCOR-LOP	Zeus faber	ZEUS-FAB
Chlamys opercularis	CHLA-OPE	Illex coindeti	ILLE-COI	Notolepis rissoi	NOTO-RIS	Scorpaena notata	SCOR-NOT		
Chlamys varius	CHLA-VAR	Labrus bergylta	LABR-BER	Notoscopelus kroeyerii	NOTO-KRO	Scorpaena porcus	SCOR-POR		
		and a series Devision	L IDIX DEIX	. totocopolao kilooyom		ecc.paona porodo	550K 1 5K	l	

Annexe I – Codification des espèces (type Rubin).

NOM COMMUN	NOM SCIENTIFIQUE	sexer	mesurer	maturité	otolithes	remarques
POISSONS				1 = vierge, 2	en maturation	
callyonime lyre	Callionymus lyra	oui		0 ,		
chimère	Chimaera monstrosa	oui				
hareng	Clupea harengus	non	0.5 cm			
squale liche	Dalatias licha	oui				
pastenague commune	Dasyatis pastinaca	oui				
squale savate	Deania calceus	oui				
anchois	Engraulis encrasicolus	non	0.5 cm			
morue	Gadus morhua	oui		oui (1-2)	tous les poissons	Prélever les 2 otolithes
requin hâ	Galeorhinus galeus	oui		, ,	·	
chien espagnol	Galeus melastomus	oui				
plie cynoglosse	Glyptocephalus cynoglossus	oui				
requin griset	Hexanchus griseus	oui				
cardine à 4 taches	Lepidorhombus boscii	oui				
cardine franche	Lepidorhombus whiffiagonis	oui			6/cm/sexe	Prélever les 2 otolithes
baudroie rousse	Lophius budegassa	oui		oui	3/cm/sexe	congeler les individus Lt<15cm si incertitudes sur espèce
baudroie commune	Lophius piscatorius	oui		oui	3/cm/sexe	congeler les individus Lt<15cm si incertitudes sur espèce
églefin	Melanogrammus aeglefinus	oui		oui (1-2)	5/cm/sexe	Prélever les 2 otolithes
merlu	Merluccius merluccius	oui		,	8/cm/sexe	clés séparées GG/MC
merlan	Merlangius merlangus	oui		Lt >15 cm	1/10/cm/sexe/station	Prélever les 2 otolithes
merlan bleu	Micromesistius poutassou	oui			.,	ne pas sexer pour L< 20 cm
lingue franche	Molva molva	oui			tous les poissons	Prélever les 2 otolithes
émissole tachetée	Mustelus asterias	oui				
émissole lisse	Mustelus mustelus	oui				
plie	Pleuronectes platessa	oui				
lieu jaune	Pollachius pollachius	oui		oui (1-2)	tous	Prélever les 2 otolithes
lieu noir	Pollachius virens	oui		oui (1 2)	1000	Trolovor los 2 diolitilos
turbot	Psetta maxima	oui				
raie lisse	Raja brachyura	oui				
raie circulaire	Raja circularis	oui				
raie bouclée	Raja clavata	oui				
raie chardon	Raja fullonica	oui				
raie mêlée	Raja microocellata	oui				
raie douce	Raja montagui	oui				
raie fleurie	Raja naevus	oui				
raie brunette	Raja undulata	oui				
sardine	Sardina pilchardus	non	0.5 cm			
petite roussette	Scyliorhinus canicula	oui	0.0 0111			
grande rousette	Scyliorhinus stellaris	oui				
sole	Solea vulgaris	oui			tous	Prélever les deux otolithes
sprat	Sprattus sprattus	non	0.5 cm		.540	
aiguillat commun	Squalus acanthias	oui	0.0 0111			
torpille marbre	Torpedo marmorata	oui				
torpille noire	Torpedo nobiliana	oui				
INVERTEBRES	101podo Hobiliana	Jui				
encornet	Loligo vulgaris	non				
encornet rouge	Illex coindeti	non				
encornet rouge encornet veiné	Loligo forbesi	non				
langoustine	Nephrops norvegicus	oui	mm			
autres invertébrés d'intérêt ce			dénombremer	l nt		
autres invertebres d'intéret co	JIIIIICIGI	ļ (remonnoreniet	ıı		

Annexe II – Récapitulatif des travaux particuliers réalisés sur certaines espèces hors schéma général (schéma général : mensuration longueur totale au cm inférieur, individus non sexés).

Annexe III – Calcul des indices d'abondances et des compositions en tailles et en âge

8.5.1.1 Calcul des indices globaux

Les indices globaux en poids et nombre moyen par trait (moyenne stratifiée Y_{st} et sa variance $V(\mathbf{y}_{st})$) sont calculés selon les formules données par Pennington and Grosslein $(1978)^{2}$:

$$\overline{\boldsymbol{Y}_{st}} = \frac{1}{A} * \sum_{h} A_{h} * \overline{\boldsymbol{Y}_{h}}$$

$$V(\overline{Y_{st}}) = \frac{1}{A^2} * \sum_{h} \left(\frac{A_h^2 * S_h^2}{N_h} \right)$$

 A_h = surface de la strate h

A =la surface totale

 \overline{Y}_{L} = la valeur moyenne par trait pour la strate h

 N_h = le nombre de traits dans la strate h

 S_h^2 = la variance de la valeur moyenne dans la strate h

8.5.1.2 Calcul des indices par âge

a. Première phase, calcul du nombre moyen par classe de taille et la variance associée

L'estimation du nombre moyen par classe de taille j pour un groupe de h strates (moyenne stratifiée $m{E}_i$) et sa variance $m{V}(m{E}_i)$) sont calculés comme pour les indices globaux :

Pour chaque classe de taille i:

$$\overline{E}_{j} = \frac{1}{A} * \sum_{h} A_{h} * \overline{E}_{jh}$$

$$\overline{E}_{j} = \frac{1}{A} * \sum_{h} A_{h} * \overline{E}_{jh}$$

$$\overline{E}_{j} = \frac{1}{A} * \sum_{h} A_{h} * \overline{E}_{jh}$$

$$V(\overline{E}_{j}) = \frac{1}{A^{2}} * \sum_{h} \left(\frac{A_{h}^{2} * V(\overline{E}_{jh})}{N_{h}} \right)$$

où:

 $A_h = \text{surface de la strate } h$

A =la surface totale

 \overline{E}_{jh} = la valeur moyenne par trait pour la taille j et la strate h

 $N_h =$ le nombre de traits dans la strate h

la variance de la valeur moyenne par trait pour la taille j et la strate h

Ifremer Manuel des protocoles Campagne

² Pennington M.R. and M.D. Grosslein, 1978. Accuracy of abundance indices based on stratified random trawl surveys. ICNAF Res. Doc. 78/IV/77: 42 p.

b. Deuxième phase, construction de la clé taille-âge, calcul des proportions de chaque âge

à chaque taille et leurs variances.

Pour chaque classe de taille j on calcule la proportion d'âge i et sa variance :

$$p_{ij} = \frac{n_{ij}}{n_{ij}}$$

$$V(p_{ij}) = \frac{p_{ij}(1-p_{ij})}{n_{i}}$$

où:

 n_{ii} = nombre d'otolithes d'âge *i* dans la classe de taille *j*

 n_i = nombre total d'otolithes dans la classe de taille j

c. Troisième phase, calcul du nombre moyen par âge et sa variance associée

Le nombre moyen par âge i:

$$\overline{\boldsymbol{E}_{i}} = \sum_{j} \overline{\boldsymbol{E}}_{j} * \boldsymbol{p}_{ij}$$

$$V(\overline{E_{i}}) = \sum_{j} \left[V(\overline{E_{j}}) p_{ij}^{2} + \overline{E}_{j}^{2} V(p_{ij}) + V(p_{ij}) V(\overline{E_{j}}) \right]$$

La variance associée:

Les calculs sont fait par sexe et le nombre total pour l'âge i est donné par :

$$\overline{Et}_{i} = \overline{Em}_{i} + \overline{Ef}_{i}$$

Et sa variance:

$$V(\overline{Et_i}) = V(\overline{Em_i}) + V(\overline{Ef_i})$$

L'échantillonnage étant indépendant du sexe, la covariance n'est pas prise en compte.

Annexe IV - Formats des fichiers de données (base RAPTRI)

Fichier Stations	
Champs	Commentaires
MISSION	
NAVIRE	
JJ	Jour
MM	Mois
AA	An
DATE	
REFCIEM	Référence carré CIEM
STRATE	
NOCHAL	N° chalutage
NOSTA	N° Station
CAPTOT	Capture totale
D_N	Jour/Nuit
HF	Heure début de trait
SONDF	Sonde début de trait
LATF	Latitude début de trait
LATFDD	Latitude début de trait en décimal
LGF	Longitude début de trait
LGFDD	Longitude début de trait en décimal
HV	Heure fin de trait
SONDV	Sonde fin de trait
LATV	Latitude fin de trait
LGV	Longitude fin de trait
LATVDD	Latitude fin de trait en décimal
LGVDD	Longitude fin de trait en décimal
TYPECHAL	Engin
LFUNE	Longueur filée
VMAX	Vitesse maxi navire
VMIN	Vitesse mini navire
Distance	Distance chalutée
OUVV	Ouverture verticale chalut
OUVA	ouverture pointes d'ailes chalut
OUVP	Distance panneaux
MINF	Longueur filée minimale
MAXF	Longueur filée maximale
CAP	Cap navire
VCHALF	Vitesse fond du chalut
VBATF	Vitesse fond navire
DIRVENT	Direction du vent
VENT	Virtesse du vent

Annexe IV (suite) - Formats des fichiers de données (base RAPTRI)

Fichier Tri	
Champs	Commentaires
Annee	
Station	
Poche	Si chalut en plusieurs poches
Espèce	
Signe	si sous-échantillonnage
Tri	Poids trié
Total	Poids total
PoidsMoy	
LongueurMoy	
NbIndividus	
Moule	

Fichier mensuration							
Champs	Commentaires						
Station							
Poche							
Espèce							
Signe	si sous-échantillonnage						
Sexe							
PoidsEchantillon							
PoidsSexe							
NBSexe							
Unite	Vrai : cm, Faux : mm						

Fichier	
mensuration_class	se
Champs	Commentaires
Station	
Poche	
Espèce	
Signe	si sous-échantillonnage
Sexe	
Longueur	
Nombre	

Annexe V . Liste des 68 espèces qui ont été sexées à différentes périodes pendant les campagnes Evhoe

ant les campagnes Evhoe													
Espèce	1987	1988	1989	1990	1992	1994	1995	1997	1998	1999	2000	2001	2002
ALOSFAL													
ARNOIMP													
BASOPRO													
CALMLYR													
CALMMAC													
CHIMMON													
CLUPHAR													
CONGCON													
DALALIC													
DASYPAS													
DEANCAL													
DICELAB													
DICEPUN													
DICOCUN													
ETMOSPI													
GADUMOR													
GALUME													
GALUMEL													
HEXAGRI LABSBER													
LABSMIX													\vdash
LEPIBOS													
LEPIWHI													
LEUCCIR													
LEUCFUL													
LEUCNAE													
LIMDLIM													
LOPHBUD													
LOPHPIS													
MELAAEG													
MERLMER													
MERNMER													
MICMPOU													
MICTKIT													
MICUVAR													
MOLVMOL													
MULLSUR													
MUSTAST													
MUSTMUS													
MYLIAQU													
PHYIBLE													
PLATFLE													
PLEUPLA													
POLLPOL													
POLLVIR													
RAJABRA													
RAJACLA													
RAJAMIC													
RAJAMON													
RAJAUND		\vdash		\vdash					\vdash				\blacksquare
SARDPIL				\vdash					\vdash				\vdash
SCOMJAP									\vdash				\vdash
SCORMAX									\vdash				
SCOPMAX SCOPRHO									\vdash				
SCYMRIN													
SCYOCAN													
COTOCAIN													

Espèce	1987	1988	1989	1990	1992	1994	1995	1997	1998	1999	2000	2001	2002
SCYOSTE													
SOLELAS													
SOLESEN													
SOLESOL													
SPARAUR													
SPONCAN													
SQUAACA													
TORPMAR													
TORPNOB													
TRISLUS													
ZEUSFAB													