Rapport final du projet de Graphes et Recherche opérationnelle

Maxence Ahlouche Maxime Arthaud Martin Carton Thomas Forgione

Korantin Auguste Thomas Wagner

Enseeiht

17 décembre 2013

Introduction

Blabla

Shifumi

Équilibre de Nash

Équilibre de Nash : jouer de manière aléatoire.

- Chaines de Markov : bat aisément un humain qui joue « normalement ».
- Variantes : reviennent au Shifumi classique si le nombre d'éléments est impair.

Voyageur de commerce

Énoncé

Chercher un chemin passant par tous les sommets, de longueur minimale.

- cycle hamiltonien de coût minimal
- NP-complet
- méthodes approchées

Résolution approchée

Heuristiques

Aller sur le nœud le plus près

Recherche locale

Métaheuristiques

- Recherche locale itérée
- Recherche tabou
- Recuit simulé
- Algorithmes génétiques
- Colonies de fourmis

Gare de péage

$$\bullet$$
 $\times [12] = random() < p_{ch}$

•
$$x[1] = random() < lambda$$

$$\bullet$$
 $x[2] = (x[2] > 0) * (x[2] - 1 + d_{32}) + d_{12}$

$$d_{23} = (x[2] > 0)$$

$$\bullet$$
 $d_{32} = x[3] * (1 - d_{43})$

$$\bullet$$
 $x[3] = d_{23} + x[3] * (1 - d_{23}) * (1 - d_{43})$

$$\bullet$$
 $d_{311} = x[3] * d_{43}$

•
$$x[10] = random() < \frac{1}{\rho_{cb}/\mu_{cb} + (1-\rho_{cb})/\mu_{ncb}}$$