

目录

一、经典数据结构	4
1. 并查集	4
1-1. 种类并查集(实现同上)	4
2. 线段树	5
2-1 乘法、加法线段树	7
2-2.典例: 小白逛公园	8
2-3.典例:求区间内 X²的和	10
2-4.典例:线段树优化 DP	11
2-5.线段树动态开点、分裂与合并	12
3. 可持久化线段树(主席树)	
3-1.历史版本查询	18
4. 树状数组	20
4-1.差分树状数组	21
4-2.典例: 扫描线	21
5. ST 表	22
6. 优先队列	23
二、字符串处理	24
1. 最长递增子序列 最大长度	24
1-1.单调数组解法	24
1-2.树状数组解法	24
1-3.DP 解法(N ²)	25
2. KMP	
3. 字典树	
3-1.AC 自动机	
4. 01 字典树	
4-1.可持久化 01 字典树	
4-2.典例:可乐	
5. 马拉车求回文串	
6. k 进制哈夫曼树	
三、图论	
1. 正边权最短路,Di jkstra(贪心)	
1-1.分层图	
1-2.典例: 佳佳的魔法药水	
1-3.典例: 同余最短路	
2. 含负边权最短路,SPFA(贪心)	
2-1.典例: 差分约束	
3. 含负边权最短路,Floyd (dp)	
3-1.典例: 传送门	
4. 最小生成树, Kruskal (贪心)	
4-1.次小生成树	
5. 树链剖分	
り 1号7月/パール-4月-分	10

6-1 图上 LCA-跑路机	50
7. 树的直径	51
7-1.树的重心	52
8. 拓扑排序	52
9. 割点割边,tarjan	53
9-1. 无向图-割点	53
9-2.无向图-割边	54
9-3.无向图-边双连通分量	55
9-4. 无向图-点双连通分量、圆方树	57
10.强连通分量,缩点,KOSARAJU	59
10-1.Tarjan 做法	60
11. DFS、BFS 搜索	61
11-1.折半 DFS 搜索	61
11-2.折半 BFS 搜索	62
11-3.双向 BFS 搜索	63
五、数学	64
1. 快速幂	
1-1 数组版	64
2. 矩阵加速	
3. 线性递推求逆元	66
4. 扩展欧几里得	66
5. 排列组合数、斯特林数等	67
5-1.卢卡斯定理	69
6. 欧拉筛	70
6-1.埃氏筛	70
7. 中国剩余定理	71
8. 容斥原理	72
8-1.典例:硬币购物	72
8-2.典例:倍数关系	72
8-3.典例:分特产,ULB 问题	73
9. 扩展欧拉定理	
9-1.欧拉定理应用	76
10. 整除分块	
11.均值,PSU 问题	
12. 高斯消元	
12-1.行列式求值	79
13. 异或线性基	
14. 质因数分解	
14-1.约数计数	86
15. 三分	87
六、 DP 示范	87
0. 纸币问题	87
1. 字符串 dp	88
2. 背包 dp	89

89
90
90
90
91
91
92
92
92
93
93
94
94
94
95
95
95
96
96
97
97
97
98
98
98
99
100
101
102
102
102
104

一、经典数据结构

1. 并查集

并查集是一种用于管理元素所属集合的数据结构,实现为一个森林,其中每棵树表示一个集合,树中的节点表示对应集合中的元素。

优化方法有: 1.按秩合并, 秩是当前树的最大高度, 按秩合并即将高度小的树合并到高度大的树上, 以尽可能压低最终树高。2.路径压缩: 每次查询时, 将查询路径上的点的父亲, 设置为该树的根节点, 以压低树高。综合使用两种策略, 能将 find 和 union 的均摊复杂度压到 〇(1)。

```
inline void init_set(int n) //初始化并查集
{
    for (int i = 1; i <= n; i++)
        s[i] = i;
}
int find_set(int x) //查找
{
    if (x != s[x])
        s[x] = find_set(s[x]);
    return s[x];
}
void union_set(int x, int y) //原始合并
{
    x = find_set(x);
    y = find_set(y);
    if (x != y)
        s[x] = s[y],
        flag[xx]=flag[yy]=(flag[xx]||flag[yy]); //染色并查集,用于隔离
}
```

1-1. 种类并查集(实现同上)

种类并查集是一种特殊的并查集,对于每个属性点,都维护其"反点"。种类并查集可用于判断一系列等于和不等于的关系中,是否存在矛盾。

```
for(int i=1;i<=m;i++) {
    if(q[i]==0){//种类相同
        if(find(mm[1[i]])==find(mm[r[i]])+cnt) {
            cout<<i-1;
            return 0;
        }
        join(mm[1[i]],mm[r[i]]);
        join(mm[1[i]]+cnt,mm[r[i]]+cnt);
    }
    else{//种类不同
        if(find(mm[1[i]])==find(mm[r[i]])) {
            cout<<i-1;
            return 0;
        }
        join(mm[1[i]],mm[r[i]]+cnt);
        join(mm[1[i]],mm[r[i]]);
    }
```

2. 线段树

线段树可以在 O(log N) 的时间复杂度内实现单点修改、区间修改、区间查询(区间求和,求区间最大值,求区间最小值)等操作。但线段树的码量略大,可使用 ST 表、树状数组作为其简化版本。建树的复杂度为 O(n),小于 ST 表。

线段树将每个长度不为 1 的区间划分成左右两个区间递归求解(**可差分**),若达到修改或查询的目的区间时,则停止递归并修改或查询该节点,并向上合并修改或答案(**可合并**)。

线段树使用一个 lazy_tag,来维护上述停止递归时的修改情况。以在下次更深层次的修改或查询时,完成对该节点的子节点的修改。

复杂度保证:考虑到一个完整的区间,被递归为左右两个区间的次数不超过 logn。

```
long long sum[400005];
long long tag[400005];
void push_up(int now) {
    sum[now]=sum[2*now]+sum[2*now+1]; //求区间和
    sum[now]=max(sum[2*now], sum[2*now+1]); //求最大值
```

```
void build(int now, int 1, int r) {
    if(l==r){
        scanf("%11d", &sum[now]);
        return;
    int mid=(1+r)/2;
   build(now*2, 1, mid);
   build(now*2+1, mid+1, r);
    push_up(now);
void spread(int now, int 1, int r) {
    if(tag[now]){
        tag[now*2]+=tag[now];
        tag[now*2+1]+=tag[now];
        int mid=(1+r)/2;
        sum[now*2] += tag[now]*(mid-1+1);
        sum[now*2+1] += tag[now]*(r-mid);
        tag[now]=0;
void change(int now, int x, int y, int 1, int r, int t) {
    if(x \le 1\&\&r \le y) {
        sum[now]+=t*(r-1+1); //求和
        tag[now]+=t; //求和
        return;
   spread(now, 1, r);
    int mid=(1+r)/2;
    if (x \le mid) change (2*now, x, y, 1, mid, t);
    if(y > mid) change(2*now+1, x, y, mid+1, r, t);
    push_up(now);
long long ask(int now, int x, int y, int l, int r) {
    if(x<=1\&\&r<=y) {
        return sum[now];
   spread(now, 1, r);
    int mid=(1+r)/2;
   long long ans=0;
    if (x<=mid) ans+=ask (now*2, x, y, 1, mid); //求和
    if(y>mid) ans+=ask(now*2+1, x, y, mid+1, r); //求和
if(x<=mid) ans=max(ans,ask(now*2,x,y,1,mid)); //求最大值
if(y>mid) ans=max(ans,ask(now*2+1,x,y,mid+1,r)); //求最大值
```

```
return ans;
}
```

2-1 乘法、加法线段树

```
void spread(int now, int 1, int r){ //乘法优先级比加法高,故先处理乘法 tag
    if(mul[now]!=1){
        mu1[now*2]*=mu1[now];
        mu1[now*2]%=mm;
        mu1[now*2+1]*=mu1[now];
        mul[now*2+1]%=mm;
        tag[now*2]*=mu1[now];
        tag[now*2+1]*=mu1[now];
        tag[now*2]%=mm;
        tag[now*2+1]%=mm;
        sum[now*2]= (sum[now*2]*mu1[now])%mm;
        sum[now*2+1]=(sum[now*2+1]*mu1[now])%mm;
        mu1[now]=1;
    if(tag[now]!=0) {
        tag[now*2]+=tag[now];
        tag[now*2+1]+=tag[now];
        tag[now*2]%=mm;
        tag[now*2+1]%=mm;
        int mid=(r+1)/2;
        sum[now*2] += tag[now]*(mid-1+1);
        sum[now*2]%=mm;
        sum[now*2+1]+=tag[now]*(r-mid);
        sum[now*2+1]%=mm;
        tag[now]=0;
void add(int now, int x, int y, int 1, int r, int t) {
    if(x<=1&&r<=y) {
        sum[now] += t*(r-1+1);
        sum[now]%=mm;
        tag[now] += t;
        tag[now]%=mm;
        return;
    spread(now, 1, r);
```

```
int mid=(1+r)/2;
    if (x<=mid) add (2*now, x, y, 1, mid, t);
    if(y>mid) add (2*now+1, x, y, mid+1, r, t);
    push_up(now);
void mul_(int now, int x, int y, int 1, int r, int t) {
    if(x \le 1\&\&r \le y) {
        sum[now]*=t;
        sum[now]%=mm;
        mul[now] *= t;
        mul[now]%=mm;
        tag[now] *= t;
        tag[now]%=mm;
        return;
    spread(now, 1, r);
   int mid=(1+r)/2;
    if (x \le mid) mul_(2*now, x, y, l, mid, t);
    if(y>mid) mul_(2*now+1, x, y, mid+1, r, t);
    push_up(now);
```

2-2.典例: 小白逛公园

小白只可以选择第 a 个和第 b 个公园之间(包括 a, b 两个公园)选择**连续**的一些公园玩。且这些公园的分数之和尽可能高。

```
struct node{
  long long sum;
  long long mx;
  long long L;
  long long R;
} tree[2000005];

void push_up(int now) {
  tree[now]. mx=tree[now*2]. R+tree[now*2+1]. L;
  tree[now]. mx=max(tree[now]. mx, tree[now*2]. R);
  tree[now]. mx=max(tree[now]. mx, tree[now*2+1]. L);
  tree[now]. mx=max(tree[now]. mx, tree[now*2+1]. L);
  tree[now]. mx=max(tree[now]. mx, tree[now*2+1]. mx);
  tree[now]. R=max(tree[now*2+1]. R, tree[now*2+1]. sum+tree[now*2]. R);
  tree[now]. L=max(tree[now*2]. L, tree[now*2]. sum+tree[now*2+1]. L);
```

```
tree[now].sum=tree[now*2].sum+tree[now*2+1].sum;
void build(int now, int 1, int r) {
    if(l==r){
        scanf("%11d", &tree[now].mx);
        tree[now]. sum=tree[now]. R=tree[now]. L=tree[now]. mx;
   int mid=(1+r)/2;
   build(now*2, 1, mid);
   build(now*2+1, mid+1, r);
    push_up(now);
void change(int now, int x, int y, int 1, int r, int t) {
    if(l==r){//单点修改
        tree[now].sum=tree[now].R=tree[now].L=tree[now].mx=t;
        return;
   }
    int mid=(1+r)/2;
    if (x \le mid) change (2*now, x, y, 1, mid, t);
   if(y>mid) change(2*now+1, x, y, mid+1, r, t);
   push_up(now);
node ask(int now, int x, int y, int 1, int r) {
    if(x<=1\&\&r<=y) {
        return tree[now];
    int mid=(1+r)/2;
//注意分类:
    if(y<=mid) return ask(now*2, x, y, l, mid); //完整段
    else if(x>mid) return ask(now*2+1, x, y, mid+1, r); //完整段
    else{
        node t;
        node 11=ask(now*2, x, y, 1, mid);
        node rr=ask(now*2+1, x, y, mid+1, r);
        t.mx=11.R+rr.L;
        t.mx=max(t.mx, 11.R);
        t.mx=max(t.mx, rr.L);
        t. mx=max(t. mx, 11. mx);
        t.mx=max(t.mx,rr.mx);
        t. R=max(rr. R, rr. sum+11. R);
        t.L=max(11.L,11.sum+rr.L);
```

```
t.sum=11.sum+rr.sum;
return t;
}
```

2-3.典例: 求区间内 X²的和

```
double sum[400005];
 double sum2[400005];
double tag[400005];
void push_up(int now) {
    sum[now]=sum[2*now]+sum[2*now+1];
    sum2[now] = sum2[2*now] + sum2[2*now+1];
void build(int now, int 1, int r) {
    if(l==r){
        scanf("%lf", &sum[now]);
        sum2[now]=sum[now]*sum[now];
        return;
    int mid=(1+r)/2;
    build(now*2, 1, mid);
    build(now*2+1, mid+1, r);
    push_up(now);
void spread(int now, int 1, int r) {
    if(fabs(tag[now]-0)>0.00000000001){
        tag[now*2]+=tag[now];
        tag[now*2+1] += tag[now];
        int mid=(1+r)/2;
        sum2[now*2]+=2*tag[now]*sum[now*2]+(mid-l+1)*tag[now]*tag[now];
        sum2[now*2+1]+=2*tag[now]*sum[now*2+1]+(r-mid)*tag[now]*tag[now];
        sum[now*2] += tag[now]*(mid-l+1);
        sum[now*2+1] += tag[now]*(r-mid);
        tag[now]=0;
   }
void change(int now, int x, int y, int 1, int r, double t) {
```

```
if(x<=1\&\&r<=y) {
         sum2[now] += 2*t*sum[now] + (r-1+1)*t*t;
         sum[now] += t*(r-1+1);
         tag[now]+=t;
         return;
    spread(now, 1, r);
    int mid=(1+r)/2;
    if (x \le mid) change (2*now, x, y, 1, mid, t);
    if(y > mid) change(2*now+1, x, y, mid+1, r, t);
    push_up(now);
double ask(int now, int x, int y, int l, int r) {
    if(x \le 1\&\&r \le y) {
         return sum[now];
    spread(now, 1, r);
    int mid=(1+r)/2;
    double ans=0;
    if (x \le mid) ans = ask(now*2, x, y, 1, mid);
    if (y>mid) ans+=ask (now*2+1, x, y, mid+1, r);
    return ans;
double ask2(int now, int x, int y, int 1, int r) {
    if(x<=1\&\&r<=y) {
         return sum2[now];
    spread(now, 1, r);
    int mid=(1+r)/2;
    double ans=0;
    if (x \le mid) ans = ask2 (now*2, x, y, 1, mid);
    if(y>mid) ans+=ask2(now*2+1, x, y, mid+1, r);
    return ans;
```

2-4.典例: 线段树优化 DP

```
将一个长度为 n 的序列分为 k 段,每一段的价值是不同数的个数,使得总价值最大 void push_up(int now) { sum[now]=max(sum[2*now], sum[2*now+1]); } void build(int now, int l, int r, int lun) {
```

```
if(1==r){}
      sum[now]=dp[1-1][lun-1]; //注意,是 1-1!!! 即转移方程的前半段,从 lun-1 转移
       return;
   sum[now]=0;
   tag[now]=0;
   int mid=(1+r)/2;
   build(now*2, 1, mid, lun);
   build(now*2+1, mid+1, r, lun);
   push_up(now);
//与最大值线段树相同
int pre[35005];
int pos[35005];
signed main(){
 // freopen("1.in", "r", stdin);
   cin>>n>>k;
   for (int i=1; i \le n; i++) {
       cin>>a[i];
       pre[i]=pos[a[i]];
       pos[a[i]]=i;//一个新数对颜色种类的影响,就是给它到上一个相同值的段,+1
   for(int i=1;i<=k;i++){
       build(1,1,n,i);
       for(int j=1; j<=n; j++) {
           change(1, pre[j]+1, j, 1, n, 1);
           dp[j][i]=ask(1,1,j,1,n);
       }
   cout << dp[n][k];
```

2-5.线段树动态开点、分裂与合并

```
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
const int maxn=2e5+5;
```

```
int nn;
class SegmentTree
public:
   long long a[200 * maxn], add[200 * maxn];
   int cnt=1, ls[200 * maxn], rs[200 * maxn], root[200*maxn];//root 编号与 cnt 无关!
    inline void push_up(int rt) //向上更新
       a[rt] = a[ls[rt]] + a[rs[rt]];
void build(int &now, int 1, int r) {
   now=++cnt;//连续分配
   if(l==r){
     scanf("%11d", a+now);
       return;
   int mid=(1+r)/2;
   build(ls[now], 1, mid);
   build(rs[now], mid+1, r);
   inline void push_down(int rt, int l, int r) //向下更新
       if (add[rt] != 0)
           add[ls[rt]] += add[rt];
           add[rs[rt]] += add[rt];
           int mid=1+r>>1;
           a[ls[rt]] += add[rt] * (mid-l+1);
           a[rs[rt]] += add[rt] * (r-mid);
           add[rt] = 0;
       }
   void updatal(int x, int y, long long k, int l, int r, int &rt) //线段树区间为从1到r, 把区间
x 到 y 每个数+k
   {
       if(!rt)
           rt=cnt;
           cnt++;
       if (x \le 1 \&\& y \ge r)
           a[rt] += (r - 1 + 1) * k;
```

```
add[rt] += k;
        return;
   push_down(rt, 1, r);
    int mid = (1 + r) / 2;
    if (x \le mid)
        updata1(x, y, k, l, mid, ls[rt]);
   if (y > mid)
        updata1(x, y, k, mid + 1, r, rs[rt]);
   push_up(rt);
long long query(int x, int y, int l, int r, int rt) //线段树区间为从 l 到 r, 询问区间 x 到 y 的和
{
   if(!rt)
        return 0;
    if (x \le 1 \&\& y \ge r)
       return a[rt];
    push_down(rt, 1, r);
   int mid = (1 + r) / 2;
   long long ans = 0;
   if (x \le mid)
       ans += query(x, y, 1, mid, ls[rt]);
    if (y > mid)
       ans += query(x, y, mid + 1, r, rs[rt]);
    return ans;
void merge(int &x, int &y, int l, int r) //将 y 合并到 x
{
   if(!x) {
       x=y;
       return;
   }
   if(!y){
       return;
   }
   if (1==r)
       a[x]+=a[y];
        return;
    int mid=1+r>>1;
    merge(ls[x], ls[y], l, mid);
    merge(rs[x], rs[y], mid+1, r);
    push_up(x);
```

```
void split(int &p, int &q, int x, int y, int l, int r) //将p中x到y的区间分裂给q[q不一定是空树]
       if(!p)
           return;
        if(x<=1&&r<=y)
          merge(q, p, 1, r);
           p=0;
           return;
       if(!q)
           q=cnt;
           cnt++;
       int mid=1+r>>1;
        if(x \le mid)
            split(ls[p], ls[q], x, y, l, mid);
       if (y>mid)
            split(rs[p], rs[q], x, y, mid+1, r);
        push_up(p);
       push_up(q);
}st;
int main()
  // freopen("1.in", "r", stdin);
 // freopen("1.out", "w", stdout);
   int n, m, tmp, op, p, x, y, cntp=1;
   scanf("%d %d",&n,&m);
   for(int i=1;i<=n;i++)
       scanf("%d", &tmp);
       st.updata1(i, i, tmp, 1, n, st.root[1]);
   while(m--)
       scanf ("%d", &op);
       switch (op)
           case 0: 将可重集 p 中大于等于 x 且小于等于 y 的值移动到一个新的可重集中(或指定集合)
```

```
scanf("%d %d %d", &p, &x, &y);
        cntp++;
        st. split(st. root[p], st. root[cntp], x, y, 1, n);
    case 1: 将可重集 t 中的数放入可重集 p, 且清空可重集 t
        scanf("%d %d",&p,&x);
        st.merge(st.root[p], st.root[x], 1, n);
        break;
    case 2: 在 p 这个可重集中加入 x 个数字 q
        scanf ("%d %d %d", &p, &x, &y);
        st.updata1(y, y, x, 1, n, st.root[p]);
        break;
    case 3: 查询可重集 p 中大于等于 x 且小于等于 y 的值的个数
        scanf ("%d %d %d", &p, &x, &y);
        printf("%lld\n", st. query(x, y, 1, n, st. root[p]));
    case 4: 查询在 p 这个可重集中第 k 小的数,不存在时输出 -1
        scanf("%d %d", &p, &x);
        if (st. query (1, n, 1, n, st. root[p]) \le x)
            printf("-1 \ ");
        else
            printf("%d\n", st. query2(x, 1, n, st. root[p]));
        break;
}
```

3. 可持久化线段树(主席树)

可持久化线段树保留每次"更改"或每次"加入"的状态,即可视为在时空上重合的,

n 棵线段树。用于求第任意次修改后的树的状态, 求指定区间内的第 k 大的数。

```
//求区间第 k 大数

#include bits stdc++. h using namespace std;
#define int long long

int n,m;
struct node {
  int v;
```

```
int left;
    int right;
};
node node[20000005];
int val[20000005];
int tmp[20000005];
int root[20000005];
int cnt=0;
void push_up(int now) {
    node[now].v=node[node[now].left].v+node[node[now].right].v;
void change(int &now, int 1, int r, int q, int v=1){//动态开点
    node[++cnt]=node[now];//暂时连接原 node 节点下的节点(left 和 right)
    now=cnt;//操作新生成的点
    if(l==r){
        node[now].v+=1;
        return;
    int mid=(1+r)>>1;
    if(q \le mid) \{
        change(node[now].left, 1, mid, q, v);
    } else{
        change(node[now].right, mid+1, r, q, v);
    push_up(now);
int query(int 11, int rr, int 1, int r, int q) {
    if(l==r){
        return 1;
   int mid=(1+r)>>1;
    int dec=node[node[rr].left].v-node[node[11].left].v;
    if(dec>=q){//在左边
        return query(node[11].left, node[rr].left, l, mid, q);
   }
        return query(node[11].right, node[rr].right, mid+1, r, q-dec);
\verb|signed main()| \{
    freopen("1. in", "r", stdin);
    cin>>n>>m;
    for (int i=1; i \le n; i++) {
        cin>>val[i];
```

```
tmp[i]=val[i];
}
sort(tmp+1, tmp+1+n);
int total=unique(tmp+1, tmp+1+n)-tmp-1;//总数记得减 1! 因为 tmp 从 1 开始存储
for(int i=1;i<=n;i++) {
    val[i]= lower_bound(tmp+1, tmp+1+total, val[i])-tmp;
    root[i]=root[i-1];//每一个点都相当于一个新的版本:差分性质,从上一个点继承
    change(root[i], 1, total, val[i], 1);
}

int ia, ib, k;
for(int i=1;i<=m;i++) {
    cin>>ia>>ib>>k;
    cout<<tmp[query(root[ia-1], root[ib], 1, total, k)]<<endl;//映射原数
}
}
```

3-1.历史版本查询

```
修改一个数组的值,并保留每一个历史版本。每一次查询也会多一个历史版本。
struct node{
   int v;
   int left;
   int right;
};
node node[256000005];
int val[256000005];
int root[256000005];
int cnt=0;
void build(int &now, int 1, int r) {
   now=++cnt;//连续分配
   if(l==r){
      node[now].v=val[1];
       return;
   int mid=(1+r)/2;
   build(node[now].left,1,mid);
   build(node[now].right, mid+1, r);
```

```
void change(int &now, int l, int r, int num, int v){//动态开点
   node[++cnt]=node[now];//暂时连接原 node 节点下的节点(left 和 right)
   now=cnt;//操作新生成的点
   if(l==r){
       node[now].v=v;
       return;
   int mid=(1+r)>>1;
   if (num<=mid) {</pre>
        change(node[now].left, 1, mid, num, v);
   } else{
        change(node[now].right, mid+1, r, num, v);
int query(int now, int 1, int r, int num) {
   if(l==r){
       return node[now].v;
   int mid=(1+r)>>1;
   if(num<=mid){//在左边
       return query(node[now].left,1,mid,num);
   }
   else{
       return query(node[now].right, mid+1, r, num);
   }
signed main(){
   //freopen("1. in", "r", stdin);
   ios::sync_with_stdio(false);
   cin. tie(nullptr);
   cout.tie(nullptr);
   cin>>n>>m;
   for(int i=1;i<=n;i++){
       cin>>val[i];
   build(root[0],1,n);
   int ia, ib, opt, k;
   for (int i=1; i \le m; i++) {
       cin>>ia>>opt;
        if (opt==1) {
            cin>>ib>>k;
```

4. 树状数组

树状数组是一种支持单点修改和区间查询的,代码量小的数据结构,常常用来处理前缀和的修改问题。普通树状数组维护的信息及运算要满足结合律和消去律,如加法(和)、乘法(积)、异或等。

复杂度保证:我们总能将一段前缀 [1, n] 按 lowerbit 拆成 不多于 logn 段区间,使得这 logn 段区间的信息是已知的,从而实现合并。其中 a[k] 管辖着 lowerbit(k)个元素。

```
class BIT //树状数组
{
    public:
        long long tree[maxn];
        int n;
        int lowbit(int x)
        {
            return x & (-x);
        }
        void add(int x, long long d) //将第 x 个数+k
        {
            while (x <= n)
            {
                tree[x] += d;
                x += lowbit(x);
        }
        long long sum(int x) //求前 x 个数的和
        {
            long long ans = 0;
```

```
while (x > 0)
{
    ans += tree[x];
    x -= lowbit(x);
}
    return ans;
}
```

求 a[i]右边,比 a[i]大的个数:

```
for(int i=1;i<=n;i++) {
    righ[i]=ran[i]-sum(ran[i])-1; //ran[i]为离散化后的,并且和原数据的大小关系相反
    add(ran[i],1);
}
```

4-1.差分树状数组

```
//实现区间修改, 单点查询
void add(int l, int r, int x) {

    for(int i=l;i<=n;i+=(i&-i)) {
        tree[i]+=x;
    }
    for(int i=r+l;i<=n;i+=(i&-i)) {
        tree[i]-=x;
    }
}
Void print(int i) {
        Cout<<sum(i)+a[i]<<endl;
}
```

4-2.典例: 扫描线

```
//给出一系列区间,给出一系列线段。扫描线求系列区间包含的线段条数和
for (int i=1;i<=m;i++){ //b 内是查询区间,按右端点从小到大排序; v 是线段,右端点非递减排序
while (v[j].r<=b[i].r&&j<v.size()){
    add(v[j].l,1);//树状数组
    j++;
```

```
}
ans+=j-sum(b[i].1-1); //j 是处理过的线段条数
}
cout<<ans;
```

5. ST 表

ST 表 (Sparse Table,稀疏表)是用于解决 可重复贡献问题 的数据结构。ST 表基于倍增 思想,可以做到 nlogn 预处理,O (1) 回答每个询问。但是不支持修改操作。

```
int a[100005];
int maxn[100005][25];
void init(){
    for (int j=1; (1<<j)<=n; j++) {
        for (int i=1; i+(1 << j)-1 <= n; i++) {
            \max[i][j] = \max(\max[i][j-1], \max[i+(1 << (j-1))][j-1]);
       }
}
int find(int ia, int ib){
    int k=(int)\log 2(ib-ia+1);
    return max(maxn[ia][k], maxn[ib-(1<<k)+1][k]);
for (int i=1; i \le n; i++) {
       a[i]=read();
       maxn[i][0]=a[i];
```

```
}
init();
```

6. 优先队列

```
//优先队列运算符重载(从小到大排序):
struct t{
   int val;
   bool operator <(const t&ia) const{ //注意,是重载小于号!!!!
        return val>ia.val;
};
priority\_queue < t > \ q;
//动态求第 j 大的数的数
struct t{
   int val;
   bool operator < (const t&ia)const{</pre>
       return val>ia.val;
};
priority_queue\langle t \rangle q;
priority_queue<int> q2;
for(int j=1;j<=m;j++){//q2 为递减队列, q 为递增队列。q2 连接 q
        if(!q2.empty()&&a[j]<q2.top()){
            q.push({q2.top()});
           q2.pop();
            q2.push({a[j]});
        else q.push({a[j]});
   cout<<q.top().val<<endl;
   q2.push(q.top().val);
   q.pop();
```

二、字符串处理

1. 最长递增子序列 最大长度

1-1.单调数组解法

```
int choose_2(int 11, int rr) {
   g[0]=-1e9;
   cnt=0;
   for(int i=11;i<=rr;i++){
       if(a[i]>g[cnt]) g[++cnt]=a[i]; //g 数组单调递增
       else{ //查询从左往右第一个≥a[i]的位置
          int 1=1;
          int r=cnt;
          int ans=0;
          while(1<=r){
             int mid=(1+r)/2;
             if(g[mid]>=a[i]){
                 r=mid-1;
                 ans=mid;
             }
             else{
                1=mid+1;
          g[ans]=a[i];
   return cnt;//最长递增子序列最大长度,等价于不递增子序列的最少个数,g值递增
};
```

1-2.树状数组解法

```
最长上升:
for (int i = 1; i <= n; i++) {
   int q = query(a[i] - 1); // 找到[1,a[i]-1]中的最大值
   add(a[i], q + 1); //这个最大值即是有效的转移 加入到树状数组中去
```

```
res2 = max(res2, q + 1);

最长不上升:

for (int i = n; i >= 1; i--) {
   int q = query(a[i]);
   add(a[i], q + 1);
   res1 = max(res1, q + 1);
}
```

1-3.DP 解法 (N²)

```
for (int i = 1; i <= n; i++) {
   f[i] = 1;
   for (int j = 1; j < i; j++) {
      if (a[j] < a[i]) { // j->i
        f[i] = max(f[i], f[j] + 1);
      }
}
```

2. KMP

时间复杂度为 (n+m)。暴力匹配在随机输入下,复杂度也为 (n+m)。

```
if (s2[i] = s2[j]) j++;
               next[i + 1] = j;
                    num[i+1]=num[j]+1;//所有公共前后缀计数(不同于 next 记录最大值长度)
    int find(int 1, int r) //在 s1 的 1 到 r 范围内查找 (s1 从 0 存储)
        int j = 0;
        for (int i = 1; i <= r; i++) //KMP 算法
            while (j != 0 && s1[i] != s2[j])
              j = next[j];
            if (s1[i] = s2[j])
               j++;
            if (j == s2. size())
              return i - s2. size() + 1;
        return -1;
};
          int get(int i){ //求最短前后缀的长度
   if(tmp[i]) return tmp[i];
   if(inext[i]!=0&&inext[inext[i]]==0) {
       return tmp[i]=inext[i];
   return tmp[i]=get(inext[i]);
}
```

3. 字典树

字典树用边来代表字母,而从根结点到树上某一结点的路径就代表了一个字符串。常用于计算大量字符串中,某个字符串从根节点开始,出现的次数。

```
class Trie
{
    public:
        int trie[3000006][62]; //字典树主体,第一维为字符串可能的最大长度,第二维为可能出现的字符种
        类
```

```
int num[3000006]; //字典树每个节点的计数器
int p = 1;
inline int reflect(char s) //字符映射
   if (s \ge '0' \&\& s \le '9')
       return s - '0';
   else if (s \ge 'A' \&\& s \le 'Z')
       return s - A' + 10;
   else
       return s - 'a' + 36;
void insert(string &s) //将字符串 s 插入字典树
   int now = 0, n;
   for (int i = 0; i < s. size(); i++)
       n = reflect(s[i]);
       if (trie[now][n] == 0)
           trie[now][n] = p;
           p++;
       now = trie[now][n];
       num[now]++;
     num[now]--;
     Finish[now]++;
int find(string &s) //查找字符串
   int now = 0, n;
   for (int i = 0; i < s. size(); i^{++})
       n = reflect(s[i]);
       if (trie[now][n] == 0)
           return 0;
       else
           now = trie[now][n];
   return num[now];
```

3-1.AC 自动机

AC (Aho-Corasick) 自动机是 以 Trie 的结构为基础,结合 KMP 的思想 建立的自动机,用于解决多模式匹配等任务。给你一个文本串 S 和 n 个模式串 T,请你分别求出每个模式串 T 在 S 中出现的次数。

```
struct node{
   int a[30];
   int fail;
   int num;
   int ans;
}AC_[200005];
int cnt=0;
void build(int noww) {
   int now=0;
   for(int i=0; i \le [noww].size(); i++) {
       if (AC [now].a[s[noww][i]-'a']!=0) {
           now=AC_[now].a[s[noww][i]-'a'];
       else {
           AC_{now}. a[s[noww][i] - 'a'] = ++cnt;
           now=AC_[now].a[s[noww][i]-'a'];
if(AC_[now].num==0){
       AC_[now]. num=noww;
         Map[noww]=noww;
   else Map[noww]=AC [now]. num; //这一步将所有相同的字符串的编号,映射到统一编号上
void get_fail(){ //核心函数:利用 bfs 构建失配函数
   AC [0].fail=0;
   queue<int> q;
   for(int i=0;i<26;i++){
       if (AC_[0].a[i]!=0) {
           AC_[AC_[0].a[i]].fail=0;
           q.push(AC_[0].a[i]); //第一个字符压入队列中
```

```
\quad \text{while(!q.empty())} \; \{ \;
        int iq=q.front();
        q. pop();
        for(int i=0; i<26; i++){
            if(AC_[iq].a[i]!=0){
                AC\_[AC\_[iq].a[i]].fail=AC\_[AC\_[iq].fail].a[i];\\
                q.push(AC_[iq].a[i]);//压入新的有效点
           in[AC_[AC_[iq].fail].a[i]]++;//入度++
           }
            else{
                AC_[iq].a[i]=AC_[AC_[iq].fail].a[i];//特殊优化,减少匹配次数
string ss;
void check() {
   int now=0;
    for (int i=0; i \le ss. size(); i++) {
        now=AC_[now].a[ss[i]-'a'];
           AC_[now].ans++;
    topu();
void topu() {
   queue<int> q;
    for(int i=1;i<=cnt;i++){
        if (in[i]==0) q.push(i);
   while(!q.empty()) {
        int iq=q.front();
        q. pop();
            jishu[AC_[iq].num]+=AC_[iq].ans; //按照 num 统计答案。Build 时建立了从字符串编号到 num
的映射
        AC_[AC_[iq].fail].ans+=AC_[iq].ans;
        in[AC_[iq].fail]--;
        if(in[AC_[iq].fail]==0) q.push(AC_[iq].fail);
```

4. 01 字典树

```
//在树中找两个结点, 求异或值最大的路径
//以下处理树上两点间最大的异或和
int sum[100005];
int id;
int tree[2000005][2];
void dfs(int now, int fa){ //记录从根开始的异或和
   for(int i=0;i<v[now].size();i++){</pre>
       if(v[now][i].to==fa) continue;
       sum[v[now][i].to]=sum[now]^v[now][i].val;
       dfs(v[now][i].to, now);
   }
void build() {
   for(int j=1; j<=n; j++) {
      int d=sum[j];
       int now=0;
       for(int i=(1<<MAXN); i>0; i>>=1){ //统一异或的高度,因为0也能改变异或值
           bool c=d&i;
           if(tree[now][c]){
              now=tree[now][c];
           else{
              tree[now][c]=++id;
              now=tree[now][c];
  }
int query(){ //每次固定一个 sum[j], 然后找和它异或和最大的路径
   int ans=0;
   for(int j=1; j \le n; j++){
       int d=sum[j];
       int tmp=0;
       int now=0;
       for(int i=(1<<MAXN); i>0; i>>=1){
           bool c=d&i;
           if(tree[now][!c]) {
              tmp+=i; //求和
              now=tree[now][!c];
```

```
else now=tree[now][c];
}
ans=max(ans, tmp);
}
return ans;
}
```

4-1.可持久化 01 字典树

```
//在1到r区间内,找一个数,其与 val 异或能得到的最大值
int id=0;
int tree[30000005][2];
int num[30000005];
int root[200005];
bitset<MAXN> s;
void insert(int last, int &new_root, int val) {
   s=val;//二进制分解
   if(!new_root) {
       new_root=++id;//创建新的历史版本
   int now=new_root;
   for(int i=MAXN-1;i>=0;i--){ //统一异或的高度,因为 0 也能改变异或值
      if(s[i]) {
          tree[now][0]=tree[last][0];//相同: 沿用旧值
          tree[now][1]=++id;//不同: 使用新节点
         num[id]=num[tree[last][1]]+1;//记录这个差异
         now=id;
         last=tree[last][1];
      }else{
          tree[now][1]=tree[last][1];
          tree[now][0]=++id;//新节点
         num[id]=num[tree[last][0]]+1;
         now=id;
         last=tree[last][0];
   }
bitset<MAXN> b;
int find(int 11, int rr, int val){
   s=val;//二进制分解
```

```
for(int i=MAXN-1;i>=0;i--){ //统一异或的高度,因为0也能改变异或值
    if(s[i]){
         if(num[tree[rr][0]]-num[tree[11][0]]!=0) {
             b[i]=true;//0 异或1得到1
             11=tree[11][0];
             rr=tree[rr][0];
         }else{
             b[i]=false;
             11=tree[11][1];
             rr=tree[rr][1];
    }else{
         \quad \text{if} \left( \text{num}[\text{tree}[\text{rr}][1]] - \text{num}[\text{tree}[11][1]] \right] = 0 \right) \{
             b[i]=true;1 异或0 得到1
             11=tree[11][1];
             rr=tree[rr][1];
         }else{
             b[i]=false;
             11=tree[11][0];
             rr=tree[rr][0];
return b. to_ulong();
```

4-2.典例: 可乐

```
//给出数组 a,要求 a[i]异或 x≪k,构造一个 x,使得满足条件的 a[i]数目最多
void f() {
    int sum=0, kk=k;
    int len1=0, len2=0;
    for(int i=1;i<50;i++) s[i]=0, tmp[i]=0;
    while(dd) {
        s[++len1]=dd%2;
        dd>>=1;
    }
    while(kk) {
        tmp[++len2]=kk%2;
        kk>>=1;
    }
    int len=max(len1, len2);
```

```
for(int i=1;i<=len/2;i++) {
    swap(s[i],s[len-i+1]);
    swap(tmp[i],tmp[len-i+1]);
} //倒序存储: 左大右小

for(int i=1;i<=len;i++) {
    if(tmp[i]==0) {
        sum=sum*2+s[i]; //如果为 0, 只能与 a[i]相同
    }
    else {
        flag[(sum*2+s[i])*(1<<(len-i))]++;
        flag[(sum*2+l+s[i])*(l<((len-i))]--; 如果为 1, 且与 a[i]相同时,后面位可任意
        sum=sum*2+(s[i]^1); 如果为 1, 且与 a[i]不同时,继续处理
    }
}

flag[sum]++;
flag[sum+1]--; //差分操作
}
```

5. 马拉车求回文串

```
void proc() {
   a. push_back('*');
   for (int i=0; i \le ss. size(); i++) {
       a. push_back('-');
       a. push_back(ss[i]);
   a.push_back('-');
   a. push_back('+'); //先处理字符串,首尾防止越界 aba---》 *-a-b-a-+
int manacher(){ //复杂度为0(n)
   int righ=0, mid=0;
   int ans=0;
   for (int i=2; i < a. size () -2; i++) {
       if(i<righ){
           len[i]=min(righ-i, len[2*mid-i]); //利用 mid 至 righ 这一目前包含 i 的最长回文串 的 对称
性质,来加速运算
       }else{
           len[i]=1;
       while(a[i+len[i]]==a[i-len[i]]) len[i]++;//暴力扩展
       if(i+len[i]>righ){
```

```
righ=i+len[i]; //更新区间,使新的区间更可能包含要计算的区间
mid=i;
ans=max(ans,len[i]);
}
return ans-1;
```

6. k 进制哈夫曼树

```
struct node{
   int val;
    int high;
    bool operator <(const node&ia) const{</pre>
        if (val==ia. val) {
            return high>ia.high;
        return val>ia.val;
  }
};
priority_queue<node> q;
while((q.size()-1)%(k-1)!=0) q.push(\{0,1\});
while(q.size()!=1){
   int sum=0;
   node tmp;
    for(int i=1;i \le k\&!q.empty();i++){
        node iq=q.top();
        q. pop();
        sum+=iq.val;
        maxn=max(maxn, iq. high); //最大路径长度
        ans+=iq.val;//最小 WPL
    tmp.val=sum;
    tmp.high=maxn+1;
    q.push(tmp);
cout<<ans<<end1<<maxn;</pre>
```

三、图论

1. 正边权最短路, Dijkstra(贪心)

```
复杂度: O ( (n+m) logm)
```

将结点分成两个集合: 已确定最短路长度的点集 (记为 S 集合) 的和未确定最短路长度的点集 (记为 T 集合)。 —开始所有的点都属于 T 集合。

然后重复这些操作:

- 1.从 ↑ 集合中, 选取一个最短路长度最小的结点, 移到 \$ 集合中。
- 2.对那些刚刚被加入 S 集合的结点的所有出边执行松弛操作。

直到 T 集合为空, 算法结束。

```
struct edge{
    int to;
    int w;
};
struct node{
   int num;
   int dis;
   bool operator (const node& that) const
       return dis > that.dis; //重载后小的数在前
};
vector<edge> v[2*1000000+5];
int dis[2*1000000+5];
void dij(int s) {
    priority_queue<node> q;
    for (int i = 1; i <= n; i++) //初始化
        if (i != s)
           dis[i] = 2147483647;
   q. push({ s, 0 });
    while(!q.empty()) {
       node iq=q. top();
        q. pop();
       if(dis[iq.num]!=iq.dis) continue;
```

```
for(int i=0;i<v[iq.num].size();i++) {
    if(dis[v[iq.num][i].to]==dis[iq.num]+v[iq.num][i].w) {
        ans[v[iq.num][i].to]=ans[v[iq.num][i].to]+ans[iq.num];
    }//最短路计数
    if(dis[v[iq.num][i].to]>dis[iq.num]+v[iq.num][i].w) {
        ans[v[iq.num][i].to]=ans[iq.num]; //最短路计数
        dis[v[iq.num][i].to]=dis[iq.num]+v[iq.num][i].w;
        q.push({v[iq.num][i].to,dis[v[iq.num][i].to]});
    }
}
```

1-1.分层图

```
// (从 A 到 B, 但可以做 k 次 "飞机": 没有边权值):

while(m—) {

    scanf("%d %d %d", &ia, &ib, &ic);

    v[ia].push_back({ib, ic});

    v[ib].push_back({ia, ic});

    for(int i=1;i<=k;i++) {

        v[ia+i*n].push_back({ib+i*n, ic});

        v[ib+i*n].push_back({ia+i*n, ic});

        v[ia+(i-1)*n].push_back({ib+i*n, 0});

        v[ib+(i-1)*n].push_back({ia+i*n, 0});

    }

    for(int i=1;i<=k;i++) {
```

```
v[t+(i-1)*n].push_back({t+i*n,0}); //未必需要坐k次飞机
}
dij(s);
printf("%d", dis[t+k*n]);
```

1-2.典例: 佳佳的魔法药水

```
//边权是到某个点的最短路。1 份 A 药水混合 1 份 B 药水就可以得到 1 份 C 药水。最少花多少钱可以配制
成功这种珍贵的药水; 共有多少种不同的花费最少的方案。
void dij() {
   while(!q.empty()) {
       node iq=q. top();
       q. pop();
       if(dis[iq.num]!=iq.dis) continue;
       flag[iq.num]=1;
       for (int i=0; i < v[iq. num]. size(); i++) {
           if(flag[v[iq.num][i].w]) {
                if \ (dis[v[iq.num][i].to] > dis[iq.num] + dis[v[iq.num][i].w]) \ \{ \\
                   dis[v[iq.num][i].to] = dis[iq.num] + dis[v[iq.num][i].w];
                   ans[v[iq.num][i].to] = ans[iq.num]* ans[v[iq.num][i].w];
                   q.push({v[iq.num][i].to, dis[v[iq.num][i].to]});
               else \quad if \quad (dis[v[iq.num][i].to] == dis[iq.num] + dis[v[iq.num][i].w]) \\ \{
                   ans[v[iq.num][i].to] += ans[iq.num] * ans[v[iq.num][i].w];
           }
调用:
for(int i=0;i<n;i++){
   scanf("%11d", &dis[i]); //直接买的价格
   q. push({i, dis[i]});
   ans[i]=1; //默认有一种方案
while (scanf ("%11d %11d %11d", &ia, &ib, &ic) !=EOF) {
   v[ia].push_back({ic, ib}); //ia+ib==ic
```

```
v[ib].push_back({ic, ia});
}
```

1-3.典例: 同余最短路

```
//总高度是 h, 有一个电梯, 可以向上移动 x 层, 向上移动 y 层, 向上移动 z 层, 或回到第一层。问一共能到达多少层。
for(int i=0;i<x;i++) {
    v[i].push_back({(i+y)%x,y});
    v[i].push_back({(i+z)%x,z});
}
dij(0);
int ans=0;
for(int i=0;i<x;i++) {
    if(h>=dis[i]) ans+=(h-dis[i])/x+1;
}
```

2. 含负边权最短路, SPFA(贪心)

一条最短路中, 最多含有 n 个节点。而一个节点每一次入队, 就会为当前的队列内的最短路

的长度增加1

```
class edge
public:
    int to, val;
};
int n;
vector<edge> G[maxn];
int dis[maxn], neg[maxn];
bool flag[maxn];
bool SPFA(int s) //s 为源点,若图中有负环则返回 false
     queue<int> q;
     for (int i = 1; i \le n; i \leftrightarrow)
         dis[i] = 2147483647;
    q. push(s);
          dis[s]=0;
          flag[s] = true;
          neg[s]++;
     int now;
```

2-1.典例: 差分约束

```
//已知不等式组,求任意一组满足这个不等式组的解。
for(int i=1;i<=n;i++) {
    dis[i]=2147483647;
    v[0].push_back({i,0});
}
for(int i=1;i<=m;i++) {
    scanf("%d %d %d",&ia,&ib,&ic);
    v[ib].push_back({ia,ic}); //ia-ib <=ic 时, 转为 ia (汇) <=ib (源) +ic
}

dis[0]=0;
    queue<int> q;
    q.push(0);
    flag[0]=true;
    ans[0]++;
    while(!q.empty()) {
```

```
int id=q.front();
q.pop();
flag[id]=false;
for(int i=0;i<v[id].size();i++){
    if(dis[v[id][i].to]>dis[id]+v[id][i].val){
        dis[v[id][i].to]=false){
        flag[v[id][i].to]=true;
        ans[v[id][i].to]++;
        if(ans[v[id][i].to]>=n+1){
            printf("NO\n");
            return 0;
        }
        q.push(v[id][i].to);
    }
}

for(int i=1;i<=n;i+=1){
    printf("%d ",dis[i]);
}</pre>
```

3. 含负边权最短路, Floyd (dp)

如果存在一条通过节点 k 的路径, 使得从 i 到 j 的距离更短, 那么就更新这个距离。

```
}
}
}
```

3-1.典例: 传送门

```
//在1和r之间建立了传送门,0代价。求更改后的最短路。注意,只能改一条边!!!
for (int 1 = 1; 1 \le n; 1++) {
   for (int r = 1 + 1; r \le n; r++) {
      for (int i = 1; i \le n; i ++) {
         for (int j = 1; j \le n; j++) {
             tmp[i][j] = a[i][j];
      tmp[1][r]=tmp[r][1]=0;
      for (int i = 1; i \le n; i ++) {
         for (int j = 1; j \le n; j++) {
            if (tmp[i][1] != 2147483647 && tmp[1][j] != 2147483647 && tmp[i][j] > tmp[i][1]
+tmp[1][j]) {
                tmp[i][j] = tmp[i][1] + tmp[1][j];
      }
      for (int i = 1; i \le n; i++) {
         for (int j = 1; j \le n; j++) {
            tmp[r][j]) {
                tmp[i][j] = tmp[i][r] + tmp[r][j];
     }
```

4. 最小生成树, Kruskal (贪心)

从最小边权的边开始, 按边权从小到大依次加入, 如果某次加边产生了环, 就扔掉这条

边,直到加入了 n-1 条边,即形成了一棵树。

```
int n, m;
```

```
class edge
public:
    int from, to, val;
    bool operator (edge& that)
        return val < that.val;
}e[maxe];
int s[maxn];
int find(int x) //并查集查找
    if (s[x] == x)
       return x;
    else
        s[x] = find(s[x]);
        return s[x];
void union_set(int x, int y) //并查集合并
    x = find(x);
    y = find(y);
    if (x != y)
       s[y] = s[x];
void k() {
   cin >> n >> m;
   for (int i = 1; i \le m; i++) {
       scanf("%11d %11d %11d", &bian[i].from, &bian[i].to, &bian[i].val);
   sort(bian + 1, bian + m + 1, cmp);
   int count = 0;
   for (int i = 1; i \le m; i ++) {
       if(bian[i].from==bian[i-1].from&&bian[i].to==bian[i-1].to) { flag[i]=1;continue;}
          //去除自环和重边,虽然没什么用
       int j = find(bian[i].from);
       int k = find(bian[i].to);
       if (j == k) continue;
       flag[i]=1;
       join(j, k);
       a[bian[i].from].push_back({bian[i].to,bian[i].val});
       a[bian[i].to].push_back({bian[i].from,bian[i].val});
```

```
total += bian[i].val;
    count++;
    if (count == n - 1) return;
}
printf("orz");
exit(0);
}
```

4-1.次小生成树

```
\#include < bits/stdc++.h>
using namespace std;
#define int long long
struct edge {
   int from;
   int to;
    int val;
}bian[2000005];
struct node{
   int to;
   int val;
};
int father[100005];
int flag[300005];
bool cmp(edge& a, edge& b) {
   return a.val < b.val;
int find(int x) {
   if (father[x] \le 0) return x;
    else return father[x] = find(father[x]);
bool join(int a, int b) {
   int ia = find(a);
   int ib = find(b);
   if (ia == ib) return true;
   if (father[ia] > father[ib]) father[ia] = ib;
   else if (father[ia] < father[ib]) father[ib] = ia;</pre>
    else {
        father[ib] = ia;
        father[ia]--;
   return true;
```

```
int total;
int n, m;
vector < node > a[100005];
void k() {
    cin >> n >> m;
    for (int i = 1; i \le m; i++) {
         scanf("%11d %11d %11d", &bian[i].from, &bian[i].to, &bian[i].val);
    sort(bian + 1, bian + m + 1, cmp);
    int count = 0;
    for (int i = 1; i \le m; i ++) {
         if (bian[i]. from == bian[i-1]. from \&bian[i]. to == bian[i-1]. to) \{ flag[i] = 1; continue; \} \\
         int j = find(bian[i].from);
         int k = find(bian[i].to);
         if (j == k) continue;
         flag[i]=1;
         join(j, k);
         a[bian[i].from].push_back({bian[i].to,bian[i].val});
         a[bian[i].to].push_back({bian[i].from,bian[i].val});
         total += bian[i].val;
         count++;
         if (count == n - 1) return;
    printf("orz");
    exit(0);
int ceng[500005];
int fa[500005][25];
int maxn[500005][25];
int maxn2[500005][25];
void dfs(int now, int faa, int val) {
    ceng[now]=ceng[faa]+1;
    fa[now][0]=faa;
    \max[now][0]=val;
    \max 2[\text{now}][0]=0;
    for (int i=1; (1<<i)<=ceng[now]; i++) {
         fa[now][i]=fa[fa[now][i-1]][i-1];
         \max[now][i] = \max(\max[now][i-1], \max[fa[now][i-1]][i-1]);
         \label{lower_low_loss} \begin{split} \max & now \\ & [i] \\ = \max (\max now) \\ & [i-1], \\ & \max n2 \\ & [fa[now][i-1]] \\ & [i-1]); \end{split}
         if(maxn[now][i-1]!=maxn[fa[now][i-1]][i-1]){
             \max 2[\text{now}][i] = \max (\min (\max [fa[\text{now}][i-1]][i-1], \max [\text{now}][i-1]), \max 2[\text{now}][i]);
```

```
for (int i=0; i \le a[now]. size (); i++) {
        if (a[now][i]. to==faa) continue;
        dfs(a[now][i].\ to, now, a[now][i].\ val);
   }
}
int LCA(int ia, int ib, int val){
    int tmp=0;
    if(ceng[ia]>ceng[ib]) {
        swap(ia, ib);
    for(int i=24;i>=0;i--){
        if(ceng[ia] == ceng[ib]) continue;
        if(ceng[ib]-(1<< i)>=ceng[ia]){
            tmp=max(tmp, (maxn[ib][i]==val?maxn2[ib][i]:maxn[ib][i]));
            ib=fa[ib][i];
    if(ia==ib) return tmp;
    for(int i=24;i>=0;i--){
        if(fa[ia][i]==fa[ib][i]) continue;
        else{
            if(max(maxn[ia][i], maxn[ib][i])!=val){
                 tmp=max(tmp, max(maxn[ia][i], maxn[ib][i]));
            else\{
                 int tmp1=min(maxn[ia][i], maxn[ib][i]);
tmp=max(tmp, tmp1==va1?max(maxn2[ia][i], maxn2[ib][i]):max(tmp1, max(maxn2[ia][i], maxn2[ib][i])));
            ia=fa[ia][i], ib=fa[ib][i];
        }
   }
    return max(maxn[ib][0]==val?0:maxn[ib][0], max(tmp, maxn[ia][0]==val?0:maxn[ia][0]));
signed main()
    freopen("1.in", "r", stdin);
    k();
    int root=-1;
    for (int i=1; i \le m; i++) {
        if(flag[i]==1){
            root=bian[i].from;
            break;
```

```
}

dfs(root, 0, 0);

int ans=le18;

for(int i=1;i<=m;i++) {
    if(flag[i]==1) continue;
    if(bian[i].from==bian[i].to) continue;
    int val=LCA(bian[i].from, bian[i].val);
    if(bian[i].val>val) ans=min(ans, total-val+bian[i].val);
}

cout<<ans;
}
</pre>
```

5. 树链剖分

将一棵树,分成诺干不重复的链,放入一个数组中。同时,属于同一棵子树的点,在数组中保持连续(dfn **序**保证)。同时,将每个点的最大的儿子作为其重儿子,在向下经过一条 **轻边** 时,所在子树的大小至少会除以二。因此,树上的每条路径都可以被拆分成不超过 O(log n) 条重链。

```
int sum[400005];
int tag[400005];
int a[100005];
int wt[100005];
void push_up(int now) {
    sum[now]=(sum[2*now]+sum[2*now+1])%p;
}

void build(int now, int 1, int r) {
    if(l==r) {
        sum[now]=wt[1];
        return;
    }
    int mid=(1+r)/2;
    build(now*2, 1, mid);
    build(now*2+1, mid+1, r);
    push_up(now);
}

void spread(int now, int 1, int r) {
```

```
if(tag[now]) {
        tag[now*2]=(tag[now*2]+tag[now])%p;
        tag[now*2+1] = (tag[now*2+1] + tag[now])%p;
        int mid=(1+r)/2;
        sum[now*2] = (sum[now*2] + tag[now] * (mid-l+1)) %p;
        sum[now*2+1] = (sum[now*2+1] + tag[now]*(r-mid))%p;
        tag[now]=0;
    }
void change(int now, int x, int y, int l, int r, int t) {
    if(x<=1&&r<=y) {
        sum[now] = (sum[now] + t*(r-1+1))%p;
        tag[now]=(tag[now]+t)%p;
        return;
    spread (now, 1, r);
    int mid=(1+r)/2;
    if(x<=mid) change(2*now, x, y, 1, mid, t);
    if(y > mid) change(2*now+1, x, y, mid+1, r, t);
    push_up(now);
int ask(int now, int x, int y, int 1, int r) {
    if(x<=1&&r<=y) {
        return sum[now]%p;
    spread(now, 1, r);
    int mid=(1+r)/2;
    int ans=0;
    if (x \le mid) ans = ask (now*2, x, y, 1, mid);
    ans%=p;
   if(y>mid) ans+=ask(now*2+1,x,y,mid+1,r);
    return ans%p;
int ia, ib, ic;
vector<int> v[100005];
int dep[100005];
int fa[100005];
int siz[100005];
int son[100005];
int id[100005];
int top[100005];
int cnt=0;
```

```
void dfs1(int now, int father) {
   dep[now]=dep[father]+1;
   fa[now]=father;
   siz[now]=1;
   int Maxson=-1;
   for (int i=0; i < v [now]. size (); i++) {
        if(v[now][i]==father) continue;
           a[v[now][i].to]=v[now][i].val; //点边转换: 边权给点权
       dfs1(v[now][i], now);
        siz[now] += siz[v[now][i]];
        if(siz[v[now][i]]>Maxson) {
           Maxson=siz[v[now][i]];
           son[now]=v[now][i];
void dfs2(int now, int father) {
   id[now]=++cnt;
   wt[cnt]=a[now];
numm[cnt]=now; //有时候题目要求输出特定点的编号,此处为了记录逆转换关系(和 id 互逆)
   top[now]=father;
   if(!son[now]) return;
   dfs2(son[now], father);
   for(int i=0;i<v[now].size();i++){
        if(v[now][i]==fa[now]||v[now][i]==son[now]) continue;
       dfs2(v[now][i], v[now][i]);
void upRange(int 1, int r, int t) {
   while (top[1]!=top[r]) {
        if(dep[top[1]] \leq dep[top[r]]) swap(1,r);
        change(1, id[top[1]], id[1], 1, n, t);
        l=fa[top[1]];
   if(dep[1]>dep[r]) swap(1,r);
   change (1, id[1], id[r], 1, n, t);
change(1, id[1], id[1], 1, n, -t); //点边转换: 去掉顶点的值
int qRange(int 1, int r) {
   int ans=0;
   while (top[1]!=top[r]) {
        if (dep[top[1]] \langle dep[top[r]]) swap(1, r);
        ans+=ask(1, id[top[1]], id[1], 1, n);//从根到下, id 单增
```

```
ans%=p;
           l=fa[top[1]];
     if(dep[1]>dep[r]) swap(1,r);
     ans+=ask(1,id[1],id[r],1,n);
                ans-=ask(1, id[1], id[1], 1, n);//点边转换: 去掉顶点的值
     return ans%p;
void upSon(int now, int t) {
     change(1, id[now], id[now]+siz[now]-1, 1, n, t);
 change(1, id[now], id[now], 1, n, -t); //点边转换
int qSon(int now) {
     \texttt{return} \quad \text{ask} (1, \texttt{id}[\texttt{now}], \texttt{id}[\texttt{now}] + \texttt{siz}[\texttt{now}] - 1, 1, \texttt{n}) \% \\ \texttt{p-ask} (1, \texttt{id}[\texttt{now}], \texttt{id}[\texttt{now}], 1, \texttt{n}) \% \\ \texttt{p};
//后半段是点边转换: 去掉顶点的值
调用:
dfs1(R,0);
dfs2(R, R);
build(1, 1, n);
```

6. 最近公共祖先 LCA

倍增算法的预处理时间复杂度为 nlogn, 单次查询时间复杂度为 logn。

```
int ceng[500005];
vector<int> a[500005];
int fa[500005][25];
void dfs(int now, int faa) {
    ceng[now]=ceng[faa]+1;
    fa[now][0]=faa;
    for(int i=1; (1<<i)<=ceng[now];i++) {
        fa[now][i]=fa[fa[now][i-1]][i-1];
    }
    for(int i=0;i<a[now].size();i++) {
        if(a[now][i]==faa) continue;
        dfs(a[now][i], now);
    }
}</pre>
```

```
int LCA(int ia,int ib){
    if(ia=ib) return ia; //本身就是一个点
   if(ceng[ia]>ceng[ib]) {
       swap(ia, ib);
   }
   for (int i=24; i>=0; i--) {
       if(ceng[ia] == ceng[ib]) continue;
       if(ceng[ib]-(1<<i)>=ceng[ia]){
           ib=fa[ib][i];
       }
   if(ia==ib) return ia; //此时不 return, 下面就犯错!
   if(ceng[ia]==0) return -1; //两个点不在一个树上!
   for(int i=24; i>=0; i--) {
       if(fa[ia][i]==fa[ib][i]) continue;
       else{
           ia=fa[ia][i], ib=fa[ib][i];
       }
   if(ceng[ia]==0) return -1; //两个点不在一个树上!
   return fa[ia][0];
```

6-1 图上 LCA-跑路机

```
for(int t=1;t<=n;t++) {
    for(int i=1;i<=n;i++) {
        for(int j=1;j<=n;j++) {
            if(i!=j&&i!=t&&dis[i][t]!=1e18&&dis[t][j]!=1e18) {
                dis[i][j]=min( dis[i][j], dis[i][t]+dis[t][j]);
            }
        }
    }
}
cout<<dis[1][n];</pre>
```

7. 树的直径

在一棵树上,从任意节点 y 开始进行一次 DFS, 到达的距离其最远的节点 z 必为直径的一端。

```
int nod=0;
int ceng[100005];
void dfs(int now, int fa) {
          Path[now]=fa;//记录路径
   ceng[now]=ceng[fa]+1;
   if(ceng[now]>ceng[nod]) {
       nod=now;
   }
   for(int i=0; i < xintu[now]. size(); i++) {
       if(tu[now][i]==fa) continue;
       dfs(tu[now][i], now);
   }
调用:
dfs(1,0);
ceng[nod]=0;//设置为新的根节点
dfs(nod, 0);
for(int i=nod;i;i=path[i]) {
   v2.push_back(i);
```

7-1.树的重心

重心性质:

- 1. 所有子树的大小小于总大小的一半
- 2. 所有点到重心的距离和最小
- 3. 两棵树合并后,重心在两棵树重心的连线上

```
void zhongxing(int now, int fa) {
    siz[now]=1;
    f[now]=0;
    for(int i=0;i<v[now].size();i++) {
        if(v[now][i]==fa) continue;
        zhongxing(v[now][i], now);
        siz[now]+=siz[v[now][i]];
        f[now]=max(f[now], siz[v[now][i]]);
    }
    f[now]=max(f[now], n-siz[v[now]]);
    if(f[now]<f[center]) {
        center=now;
    }
}</pre>
```

8. 拓扑排序

在 AOV 网中,顶点表示活动,弧表示活动间的优先关系。AOV 网中不应该出现环,这样就能够找到一个顶点序列,使得每个顶点代表的活动的前驱活动都排在该顶点的前面,这样的序列称为拓扑序列(一个 AOV 网的拓扑序列不是唯一的),由 AOV 网构造拓扑序列的过程称为拓扑排序。

```
vector<int> G[maxn];
int rudu[maxn];
bool flag[maxn];
int ans[maxn];
int top = 0;
```

```
int n;
void tuopu()
   std::priority_queue<int,vector<int>,greater<int>> q; //若不需要按照字典序输出,可将优先队列
  换成普通队列
   for (int i = 0; i < n; i++)
       if (rudu[i] = 0)
           q. push(i);
   int now;
   while (!q. empty())
       now = q. top();
       ans[top] = now;
       flag[now] = true;
       top++;
       q. pop();
       for (int i = 0; i < G[now].size(); i^{++})
           rudu[G[now][i]]--;
           if (rudu[G[now][i]] == 0)
               q. push (G[now][i]);
```

9. 割点割边, tarjan

9-1. 无向图-割点

如果 y 是 x 的子节点且 low(y)≥dfn(x), 那么 x 就是割点。

由定义, y 在不经过 (x,y) 的情况下只能到达比 x 更晚访问到的节点, 所以删去 (x,y) 后, y 必定与比 x 更早访问到的点不相连, 就必然会分裂成一张不联通的子图。

```
map<int, int> ans;
stack<int> s;
void tarjan(int now, int fa) {
  int lstnum=0;
```

```
low[now]=dfn[now] = ++cnt;
   s.push(now);
   for (int i = 0; i < a[now].size(); i++) {
       if (a[now][i]==fa) {
          1stnum++;
          if(lstnum<2){
              continue;
       }//如果有重边:即根到B有两条边,那么根和B为同一个连通块
       int child = a[now][i];
       if(dfn[child]){ //触底反弹
           low[now]=min(low[now], dfn[child]);
       else {
           tarjan(child, now);
           if (dfn[now] <= low[child]) {</pre>
              ans[now]++; //加入树根/割点
              while (s.top() != child) {
                  ans[s.top()]++; //统计圆方树的度数: 度数>2的为割点。否则, 根会被误判为割点
(因为满足 low(y)≥dfn(root))
                  s. pop();
              ans[s. top()]++;
              s.pop();
          low[now] = min(low[now], low[child]);
   }
   调用:
for(int i=1;i<=n;i++){
   if(dfn[i]==0) tarjan(i,0);
```

9-2.无向图-割边

```
void tarjan(int now, int father) {
   dfn[now]=cnt++;
   low[now]=dfn[now];
   int lstnum=0;
   for (int i=0; i \le now]. size (); i++) {
       int child = a[now][i];
    if(child==father) {
   1stnum++;
   if(lstnum<2)
       continue;
}//如果有重边:即A到B有两条边,那么A和B为同一个连通块
       if(child==father) continue;
       if (dfn[child]) {
           low[now]=min(low[now], dfn[child]);
       else {
           tarjan(child, now);
           if (dfn[now] < low[child]) { //处理割边,比如记录下来
                v.push_back({child, now});
          low[now]=min(low[now], low[child]);
  }
}调用: for(int i=1;i<=n;i++){
   if(dfn[i]==0) tarjan(i,0);
```

9-3.无向图-边双连通分量

无向图的<mark>缩点</mark>问题,连通分量通过割边连接。一个边双联通分量中,断开任何一条边,都不能破坏分量内部的连通性。

一个点可能属于多个点双,但是一条边属于恰好一个点双。

```
void taijan(int now, int father) {
    s. push(now);
    dfn[now]=cnt++;
    low[now]=dfn[now];
    int lstnum=0;
    for(int i=0;i<a[now].size();i++) {
        int child = a[now][i];
    }
}</pre>
```

```
if (child==father) {
           lstnum++;
           if(lstnum<2)
               continue;
       }//如果有重边:即A到B有两条边,那么A和B为同一个连通块
       if (dfn[child]) {
           low[now]=min(low[now], dfn[child]);
       }
       else {
           taijan(child, now);
           low[now]=min(low[now], low[child]);
       }
    if (dfn[now] = low[now]) { //放在外面!!!
       while(s.top()!=now) {
           id[s. top()]=cnt2;
           s. pop();
       id[s. top()]=cnt2;
       s. pop();
       cnt2++;
void suodian() {
   for(int i=1;i<=n;i++) {
       if (dfn[i]==0) taijan(i,0);
 void jiantu() {
   for (int i = 1; i \le n; i ++) {
       for (int j = 0; j < a[i].size(); j++) {
           if(id[i]!=id[a[i][j]]) {
               xintu[id[i]].push_back(id[a[i][j]]);
               xintu[id[a[i][j]]].push_back(id[i]);
```

```
}
}
```

9-4. 无向图-点双连通分量、圆方树

圆方树:圆方交替、度数超过2的圆点,是割点、方点所连的点,属于同一个点双联通分量。

每个点双形成一个「菊花图」,多个「菊花图」通过原图中的割点连接在一起(因为点双的分隔点是割点)。

```
void tarjan(int now, int fa) {
   total++;
   int lstnum=0;
   low[now] = dfn[now] = ++cnt;
   s. push (now);
   for (int i = 0; i < a[now].size(); i++) {
       if(a[now][i]==fa){
           1stnum++;
           if(lstnum<2){
              continue;
       }//如果有重边:即A到B有两条边,那么A和B为同一个连通块
       int child = a[now][i];
       if(dfn[child]){
           low[now]=min(low[now], dfn[child]);
       else {
           tarjan(child, now);
           if (dfn[now] <= low[child]) {</pre>
               cnt2++;
               ans[cnt2].push_back(now); //加入树根/割点!!! 因为一个割点属于多个分量
               xintu[n+cnt2].push back(now); //建立圆方树
               xintu[now].push_back(n+cnt2);
               while (s.top() != child) {
                  ans[cnt2].push_back(s.top());
                  xintu[n+cnt2].push_back(s.top());
```

```
xintu[s.top()].push_back(n+cnt2);
                    s. pop();
                ans[cnt2].push_back(s.top()); //ans 存储点双联通分量
                xintu[n+cnt2].push_back(s.top());
                xintu[s. top()].push_back(n+cnt2);
                s.pop();
            low[now] = min(low[now], low[child]);
调用:
   for(int i=1; i \le n; i++) {
        if(!dfn[i]) {
            total=0; //清空总点数,实现下方dfs
            while(!s.empty()) s.pop();
            if (a[i].empty()) { //特判孤立点
               cnt2++;
               ans[cnt2].push_back(i);
               continue;
            tarjan(i, -1);
            dfs(i,-1); //下示 统计删除某点产生的(a,b)对:
   }
void dfs(int now, int fa) {
   int ans=0;
   \texttt{if} \, (\texttt{now} < = \texttt{n}) \; \{ \\
       siz[now]=1;
   }else{
       siz[now]=0; //方点为0
   for(int i=0;i<xintu[now].size();i++){
       if(xintu[now][i]==fa) continue;
       dfs(xintu[now][i], now);
        ans+=2*siz[now]*siz[xintu[now][i]];
        siz[now]+=siz[xintu[now][i]];
```

```
}//计算两两子树的圆点 siz 积
ans+=2*siz[now]*(total-siz[now]);
anss[now]=ans;
}
```

10. 强连通分量,缩点,KOSARAJU

第一次 DFS, 选取任意顶点作为起点, 遍历所有未访问过的顶点, 并在回溯之前给顶点编号, 也就是**后序遍历**。

第二次 DFS,对于反向后的图,以标号最大的顶点作为起点开始 DFS。这样遍历到的顶点集合就是一个强连通分量。对于所有未访问过的结点,选取标号最大的,重复上述过程。

```
void dfs1(int d) {
   flag[d] = 1;
   for (int i = 0; i < a[d].size(); i++) {
       if (flag[a[d][i]] == 0) {
           dfs1(a[d][i]);
   s.push_back(d);
void dfs2(int d) {
   tflag[d] = number;
   sum[number]+=1;
   for (int i = 0; i < ta[d]. size(); i^{++}) {
       if (tflag[ta[d][i]] == 0) {
           dfs2(ta[d][i]);
void suodian() {
   for (int i = 1; i \le n; i++) {
       if (flag[i] == 0) dfs1(i);
   for (int i = n-1; i \ge 0; i--) {
        if (tflag[s[i]] == 0) {
            number++;
```

```
dfs2(s[i]);
}

vector<int> xintu[100005];
void jiantu() {
   for(int i=1;i<=n;i++) {
      for(int j=0;j<a[i].size();j++) {
        if(tflag[i]!=tflag[a[i][j]]) {
            xintu[tflag[i].push_back(tflag[a[i][j]]);
        }
    }
}

jüntu();</pre>
```

10-1.TARJAN 做法

```
void tarjan(int now) { //有向图不需要 father 参数!!!
   s. push (now);
   visi[now] = true;
   low[now]=dfn[now] = cnt++;
   for (int i = 0; i < a[now].size(); i++) {
       int child = a[now][i];
         if (visi[child]) { //与无向图不同的地方!!!!!
           low[now] = min(low[now], dfn[child]);
       else if (!dfn[child]) {
           tarjan(child);
          low[now] = min(low[now], low[child]);
   }
   if (dfn[now] == low[now]) { //放在外面!!!!
       while (s. top() != now) {
           id[s. top()] = cnt2;
           visi[s.top()] = false;
           s.pop();
```

11. DFS、BFS 搜索

11-1.折半 DFS 搜索

```
void dfs(int now, int sum) {
    if(sum>S) return;
    if(now>n/2) {
        id录;
        return;
    }

    dfs(now+1, sum+a[now]);
    dfs(now+1, sum);
}

void dfs2(int now, int sum) {
    if(sum>S) return;
    if(now>n) {
        id录或处理;
        return;
    }

    dfs2(now+1, sum+a[now]);
    dfs2(now+1, sum);
```

11-2.折半 BFS 搜索

```
void bfs() {
    queue<node> q;
   q.push(start);
    m[start.ss]=0;
    while(!q.empty()){
       node iq=q.front();
       q. pop();
        if(iq.ss==ans) {
            return;
        if(m[iq.ss]>7) break;
        for(int i=1;i<=maxn;i++) {
               node tmp=iq;
                     //修改 tmp.ss,得到下一个状态
                if(m.find(tmp.ss)!=m.end()) continue;
                m[tmp.ss]=m[iq.ss]+1; //路径长度+1
                q.push(tmp);
void bfs2() {
    queue<node> q;
    q.push(end);
    m2[end.ss]=0;
    while(!q.empty()){
       node iq=q.front();
       q. pop();
        if (m. find(iq. ss) !=m. end()) {
           合并处理;
            return;
        if(m2[iq.ss]>8) break;
         for (int i=1; i \le \max_{i=1}; i \le +) {
               node tmp=iq;
               //与上面不同,这里要逆向处理!!
               if(m2.find(tmp.ss)!=m2.end()) continue;
               m2[tmp.ss]=m2[iq.ss]+1;
                q.push(tmp);
```

```
}
}
}
```

11-3.双向 BFS 搜索

```
\quad \text{while(!q.empty())} \, \{\\
   int state=q.front();
   q.pop();
   for(int i=1;i<=maxn;i++) {
       if(direction[state]==1) {
          获得下一个正状态 nexstate
          获得下一个逆状态 nexstate (规则和正状态规则相反)
       if(visi[nexstate]){
           if(direction[state] == direction[nexstate]) {
               continue;//访问过了
           else{ //成功相遇
              合并答案
               return;
       visi[nexstate]=1;
       direction[nexstate]=direction[state];
       q. push(nexstate);
```

五、数学

1. 快速幂

```
long long FastPow(long long a, long long n, const long long p) //求 a 的 n 次方模 p 的值
{
    long long ans=1;
    while(n)
    {
        if (n&1)
            ans=(ans*a)%p;
        a=(a*a)%p;
        n>>=1;
    }
    return ans;
}
```

1-1 数组版

```
while(m) {
    if(m&1) {
        for(int i=1;i<=n;i++) {
            ans[i]=f[ans[i]];
        }
    }
    for(int i=1;i<=n;i++) {
            tmp[i]=f[i]; //复制一份
        }
        for(int i=1;i<=n;i++) {
            f[i]=tmp[tmp[i]]; //倍增一次
        }
        m>>=1;
    }
```

2. 矩阵加速

```
//以下求 Concatenate(n) MOD m
struct juzheng{
   void clear() {
        for(int i=0;i<SIZE;i++) {
           for(int j=0; j<SIZE; j++) {
                a[i][j]=0;
   }
   void init() {
        for(int i=0;i<SIZE;i++) {
           a[i][i]=1;
   }
   int a[SIZE][SIZE];
    juzheng operator * (const juzheng& a2)const{
        juzheng tmp;
        tmp.clear();
        for(int i=0; i \le SIZE; i++) {
            for(int j=0; j<SIZE; j++) {
                for(int k=0;k<SIZE;k++){
                    tmp. a[i][j]=(tmp. a[i][j]+(a[i][k]*a2. a[k][j])%m)%m;
       return tmp;
};
juzheng _pow(juzheng tmp, int b) {
    juzheng ans;
   ans.clear();
   ans.init();
    while(b){
        if (b&1) {
            ans=ans*tmp; //同样的矩阵, 无所谓左右乘
        tmp=tmp*tmp;
        b >>=1;
```

```
return ans;
}

// Concatenate(n) 是将 1~n 所有正整数 顺序连接起来得到的数。下计算 C(n) mod m

tmp.a[0][1]=tmp.a[1][1]=tmp.a[1][2]=tmp.a[2][2]=1;

for(int i=10;;i*=10){//枚举位数; 10 即一位数, 100 即两位数

    tmp.a[0][0]=i%m;
    if(n>=i){
        ans=(_pow(tmp,i-i/10))*ans;
    }else{
        ans=(_pow(tmp,n-i/10+1))*ans;//注意是右乘,最后为转移矩阵左乘初始矩阵
        break;
    }
}

cout<<(ans.a[0][1]%m+ans.a[0][2]%m)%m;
```

3. 线性递推求逆元

```
long long inv[maxn];
void getinverse(int n, long long p) //求1到 n%p 的逆元存入 inv
{
    inv[1]=1;
    for(int i=2;i<=n;i++)
        inv[i]=p-inv[p%i]*(p/i)%p;
}
```

4. 扩展欧几里得

Ax+by=c 有解条件: gcd (a, b) 整除 c

不定方程的一个特解: x0=x*c/gcd (a, b)

对应齐次线性方程组的通解: 先求最小非零解 ax1+by1=0, 得 x1= b/gcd (a, b),y1= -a/gcd (a, b)

通解格式: x0+k*x1, y0+k*y1

```
void exgcd(long long a, long long b, long long &x, long long &y) //求解 ax+by=gcd(a, b) {
   if(b==0)
```

```
{
    x=1;
    y=0;
    return;
}
exgcd(b, a%b, y, x);
y-=a/b*x;
}
```

5. 排列组合数、斯特林数等

```
int C(int n, int k){//不取模版
    if (k==n | | k==0) return 1;
   if (k>=n/2) k=n-k;
   int ans=1;
   for(int i=n, j=1; j<=k; i--, j++) {
       ans*=i/j;
   return ans;
int jie[10000005]; //阶乘
void init(int n, int mod) {
   int ans=1;
   for(int i=1;i<=n;i++){
       ans=ans*i%mod;
       jie[i]=ans;
   }
int C(int n, int k, int mod){ //取模版
   if(n==k) return 1;
   long long ans=jie[n];
   ans=(ans*pow_(jie[k], mod-2, mod))%mod;
   ans=(ans*pow_(jie[n-k], mod-2, mod))%mod; //逆元
   return ans;
void buid_C(int n){ //递推求组合数,可取模
   c[0][0]=1;
   c[1][0]=c[1][1]=1;
   for(int i=2;i<=n;i++){
```

```
c[i][0]=1;
       for(int j=1; j<=n; j++) {
           c[i][j]=(c[i-1][j-1]+c[i-1][j]);
   }
int A(int n, int k) {
   int ans=1;
   for(int i=n;i>=n-k+1;i--){
       ans*=i;
   return ans;
}
int pow_(int a, int b, int mod) { //取模版
   int ans=1;
   int tmp=a;
   while(b){
       if(b&1){
           ans=(ans*tmp)%mod;
       }
       b>>=1;
       tmp=(tmp*tmp)%mod;
   return ans;
int stirling(int k, int n){//k球入n盒,使得没有盒为空的方案数
   if (n \le 0 | | k \le n) return 0;
   if(k==n) return 1;
   return f(k-1, n-1)+f(k-1, n)*n;
int f[1000005];
int xinfeng(int n, int p){//n 封信送 n 个人,不在其位上的数为 n,有几种方式
   if (n==0) return 1;
   if(n==1) return 0;
   if(f[n]) return f[n];
   return f[n]=((n-1)*(xinfeng(n-1,p)%p+xinfeng(n-2,p)))%p;
```

5-1.卢卡斯定理

```
// (计算组合数 C, P 为较小质数)
long long p;
long long jie[100006];
long long reverse(long long a) //逆元
    long long ans=1;
    long long n=p-2;
    while(n)
        if(n&1)
            ans=(ans*a)%p;
        a=(a*a)%p;
        n >>=1:
    return ans;
long long f(long long n, long long k)
    if(k>n)
        return 0;
    return (jie[n]* reverse(jie[k])%p*reverse(jie[n-k]))%p;
long long cnk(long long n, long long k) //模p 意义下的组合数
    if(!k)
        return 1;
    return f(n\%p, k\%p)*cnk(n/p, k/p)\%p;
```

6. 欧拉筛

```
1. bool vis[maxn];
 2. int prime[maxn];
 3. int top=0;
 4. void GetPrime(int n) //筛出小于等于 n 的所有素数,按序存入 prime 数组
        for (int i=2; i \le n; i++)
 6.
 7.
            if(!vis[i])
 8.
 9.
                prime[top++]=i;
            for(int j=0; j<top&&i*prime[j]<=n; j++)</pre>
10.
11.
12.
                vis[i*prime[j]]=true;
13.
                if(i%prime[j]==0)
                    break;
14.
15.
16.
17. }
```

6-1.埃氏筛

```
int flag[100005];
int a[100005];

void getprime(int n) {
    for(int i=2;i <= n;i++) {
        if(flag[i]==0) {
            flag[i]=1;
            a[++cnt]=i;
            for(int j=i+i;j <= n;j+=i) {
                flag[j]=1;
            }
        }
     }
}</pre>
```

7. 中国剩余定理

```
void exgcd(long long a, long long b, long long &x, long long &y) {
    if(b==0){}
        x=1;
        y=0;
   }
    else{
        exgcd(b, a%b, y, x);
        y=y-(a/b)*x;
long long gcd(long long a, long long b) {
    if(b==0) return a;
    else return gcd(b,a%b);
int n;
long long m[11];
long long a[11]; // a 同  x mod m
long long t[11];
long long Mi[11];
long long M=1; //M 是所有 m 之积
long long IntChina() {
    long long ans=0;
    long long y=0;
    for(int i=1;i<=n;i++){
        Mi[i]=M/m[i];
        \operatorname{exgcd}(Mi[i], m[i], t[i], y);
        t[i]=(m[i]+t[i]%m[i])%m[i];
        for(int j=1; j<=a[i]; j++) {
            ans=(ans+Mi[i]*t[i])%M;//防止溢出
    return ans;
```

8. 容斥原理

8-1.典例: 硬币购物

```
//对于每次购买, 他带了 di 枚价值为 ci 的硬币, 想购买 s 的价值的东西, 求方案数。
dp[0]=1;
for (int i=1; i \le 4; i++) {
    for(int j=c[i]; j<100005; j++){
       dp[j]+=dp[j-c[i]];
   cin>>d[1]>>d[2]>>d[3]>>d[4]>>s;
    int ans=dp[s];
    for(int i=1;i<=15;i++){
       int cn=0, sum=0;
        for(int j=1; j \le 4; j++) {
            if(i&(1<<(j-1))) cn++, sum+=c[j]*(d[j]+1);
       if(s<sum) continue;
       if (cn%2==0) {
           ans+=dp[s-sum];
       }else{
            ans -= dp[s-sum];
   cout<<ans<<endl;</pre>
```

8-2.典例: 倍数关系

```
//求数组 c 中数 (不存在倍数关系) 的倍数中,在[a,b]内的个数
void dfs(int now, __int128 sum, int num) {
    if(sum>b) return;
    if(now>cnt) {
        if (num==0) return; //没有选
        if (num%2==1) {
            ans+=b/sum-(a-1)/sum;
        }
        else ans-=b/sum-(a-1)/sum; //求 sum 的倍数个数
        return;
    }
```

```
dfs(now+1,1c(sum,c[now]),num+1);//利用最小公倍数的性质
dfs(now+1,sum,num);
}
```

8-3.典例: 分特产, ULB 问题

```
//M 种特产分给 N 个人, 求方案数。
//我们设 g[i]表示刚好有 i 个同学没有土特产,由于每个同学都至少要获得一个土特产,那么显然 g[0]即为我
们的答案。
//f[0]=g[0]+g[1]+g[2]+g[3]+g[4]
//f[1]=g[1]+g[2]*2+g[3]*3+g[4]*4
//f[2]=g[2]+g[3]*3+g[4]*4
//f[3]=g[3]+g[4]*4
//f[4]=g[4]
   int flag=-1;
   for(int i=0;i<=n;i++){
       flag=-flag;
       int tmp=1;
       for(int j=1; j<=m; j++) {
             tmp=(tmp*c[a[j]+n-i-1][n-i-1])%MOD; //a[j]个物品分给 n-i 个人,有人可以不分到物
品,有多少种方案: ULB 问题
       tmp=(tmp*c[n][i])%MOD; //选这i个人
       ans=(ans+flag*(tmp)+MOD)%MOD;//容斥定理!
```

9. 扩展欧拉定理

```
}
void init(int n) {
   phi[1]=1;
   for(int i=2;i<=n;i++){
       if(!phi[i]){
           prime[++cnt]=i,phi[i]=i-1; //prime 存的是质数
       for(int j=1; j<=cnt&&i*prime[j]<=n; j++) {</pre>
            if(i%prime[j]==0){
               phi[i*prime[j]]=phi[i]*prime[j];
               break;
           else{
               phi[i*prime[j]]=phi[i]*(prime[j]-1);
      }
  }
long long phi(long long n){
    long long tmp=n;
    for(int i=2; i*i <=n; i++){
       if (n%i==0) {
            tmp=tmp/i*(i-1);
            while (n\%i==0) n/=i;
```

```
if (n!=1) tmp=tmp/n*(n-1);
   return tmp;
}
long long q(long long n, long long e, long long p) { 求 a 的 b 次方 mod m
   n%=p;
   long long ans=1;
   long long pow=n;
   while(e){
       if (e&1) {
           ans*=pow;
           ans%=p;
       }
       e >>=1;
       pow=(pow*pow)%p;
   }
   return ans;
调用:
p=phi(m);
b=input();
if(b≥p) b=b%p+p; //注意, 当 a 和 m 互素时, b 取 b%p。
cout << q(a, b, m);
```

9-1.欧拉定理应用

```
统计 x, y≤n 中有多少对数的 gcd 为质数:
init(n);
int ans=0;
for (int i=1;i<=n;i++) {//前缀和
    sum[i]=sum[i-1]+phi[i];
}
for (int i=1;i<=cnt;i++) { //令 x=x' *p,1≤x' ≤n/p, 枚举这个 p
    ans=(ans+2*(sum[n/prime[i]])-1); //计算 x, y 对。-1 是因为(x=gcd, y=gcd)被计算了两次
}

计算 gcd (x, n) 的和, x<=n:

for (int i=1;i*i<=n;i++) {
    if (n%i==0) {
        ans+=i*phi (n/i);
        if (i*i!=n) {
            ans+=(n/i)*phi(i); 原理: gcd (x/i, n/i)=1
        }
    }
}</pre>
```

10. 整除分块

```
//快速找 flour (a/i) 相同的区间

for(int l=1,r=1;1<=n&&r<=n; l=r+1;){//计算 i*flour (k/i), 1≤i≤n的和

int tmp=k/l;

if(tmp==0) r=n;

else r=min(k/tmp,n);

ans+=tmp*(r-1+1)*(1+r)/2; //俩值相乘:值乘以1到r范围的求和

}
```

```
求 x/y 为有限小数的对数。//可分解为 ac/bc,c 不包含 2、5 因子,b 只包含 2、5 因子。最终可化简为 e*f
(n/c)*flour(n/c),即满足条件的 c 的个数,乘以满足条件的 b 的个数,再乘以 a 的个数
void init(){
   for(int i=1;i<=n;i*=2){
      for(int j=i; j<=n; j*=5) {
      x[++cnt]=j;
    }
   }
   cnt= unique (x+1, x+1+cnt)-x-1;
   sort(x+1, x+1+cnt);
}
for(int l=1,r=1;1<=n&&r<=n;l=r+1){ //枚举 c
      int t=n/1;
      if (t==0) r=n;
      else r=n/t;//除法分段
      while(coun>=1&&x[coun]>t) coun—;//满足单调性: 随着 c 的增加, 满足条件的 a 会变小
      int tmp=r-1+1;
      tmp-=r/2-(1-1)/2;
      tmp=r/5-(1-1)/5;
      tmp+=r/10-(1-1)/10;//容斥, 求出 c 的个数 (不含 2、5 因子)
      ans+=coun*tmp*t;//在这个区间内, b 的个数, 乘以 c 的个数, 乘以 a 的个数
```

11. 均值, PSU 问题

```
// 连续的 X 个 1 可以贡献 X³ 的分数,每格有概率 p 成功,求总分数期望
for(int i=1;i<=n;i++) {
    a[i]=(a[i-1]+1)*p[i]; //第 i 位为 1 的期望,不考虑为 0 x
    b[i]=(b[i-1]+2*a[i-1]+1)*p[i]; //第 i 位为 1 的期望,不考虑为 0 x²
    c[i]=(c[i-1]+3*b[i-1]+3*a[i-1]+1)*p[i]+c[i-1]*(1-p[i]); //第 i 位的期望 x³
}
```

12. 高斯消元

```
int line=1;
void gaosixiaoyuan() {
   for(int j=1; j<=n; j++) {
       for(int i=line;i<=n;i++){
           if(fabs(gaosi[i][j])>eps) {
               for(int s=1;s \le n+1;s++){
                   swap(gaosi[line][s], gaosi[i][s]);
               break;
           if(i==n) goto cn;//这一列没有非零元素,无法消元
       for(int i=n+1;i>=j;i--){//注意是倒序
           gaosi[line][i]/=gaosi[line][j];
       for(int i=1;i \le n;i++) {
           if(i!=line){
               for(int k=n+1;k>=j;k--){//注意是倒序
                   gaosi[i][k]-=gaosi[line][k]*gaosi[i][j]; //消元
       line++;
       cn:;
```

```
}

if(line<=n) {
	for(int i=line;i<=n;i++) {
		if(fabs(gaosi[i][n+1])>eps) {
			cout<<"-1"; //无解; 一边为 0, 一边不为 0
			return 0;
	}

}

cout<<"0"; //无穷多解
	return 0;
}

for(int i=1;i<=n;i++) {
			cout<<"x"<<i<"=";
			printf("%.2f\n", gaosi[i][n+1]); //有限解
}
```

12-1.行列式求值

```
swap(gaosi[i], gaosi[j]);

flag=-flag;//辗转消元法: 保证精度问题

}

illian

hanglieshi();

for(int i=1;i<=n;i++) sum=(sum*gaosi[i][i])%m;

cout<<(sum*flag%m+m)%m;
</pre>
```

13. 异或线性基

```
//以下求线段树的每个节点都是一个线性基,并对多个线性基进行合并的情况
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
const int maxv=30;
vector<int> G[maxn];
int siz[maxn], dfn[maxn], cnt=1;
void dfs(int now, int father)
   siz[now]=1;
   dfn[now]=cnt++;
  for(int i=0; i < G[now]. size(); i++) {
      int to=G[now][i];
      if(to==father) continue;
      dfs(to, now);
      siz[now]+=siz[to];
class Hamel //线性基
public:
  int p[maxv]={0}; //maxv 为位数上限
```

```
int d_{\max} = \{0\};
bool have_zero=false;
bool operator == (const Hamel &that) const
    for (int i=0; i \le \max ; i++)
        if (p[i]==0&&that.p[i]!=0)
            return false;
        if (p[i]!=0&&that.p[i]==0)
            return false;
    return true;
void rebuild() {
    cnt=0;
    for(int i=maxv-1;i>=0;i--){
        for (int j=i-1; j>=0; j--) {
            if(p[i]&(111<<j)){
                 p[i]=p[i]^p[j]; //求最简型; 求 getmin rank findkth 使用
    for(int i=0; i \le \max ; i++) {
        if(p[i]) d_{cnt++}=p[i];
        p[i]=0;
    for(int i=0;i<cnt;i++){
       p[i]=d_[i];
}
bool insert(int x) //贪心方法;将 x 插入线性基
{
    bitset\langle maxv \rangle b(x);
    for (int i = \max_{i} -1; i \ge 0; i--)
        if(b[i]){
            if(p[i]){
                 b^=p[i];
            }else{
                 p[i]=b. to_ulong();
                 return true;
```

```
have_zero=true;
   return false;
int findkth(int k) //查找第 k 小
   if(have_zero) k--; //线性基无法计算出0
   if(k==0) return 0; //特殊处理 0
   if(k>=(111<<cnt)){
       return -1; //超出最大范围
   int ans=0;
   bitset < maxv > b(k);
   for(int i=60;i>=0;i--){
       if(b[i]){
          ans^=p[i];
   return ans;
int ask(long long x){ //一个数能否异或出来
   for(int i=maxv-1;i>=0;i--){
       if(x&(111<<i)){
          x=x^p[i];
   }
   return x==0;
long long get_max(){ //最大值是第(111<<cnt)-!have_zero 小, 当需要处理 0 时
   long long ans=0;
   for(int i=maxv-1;i>=0;i--){
       if((ans^p[i])>ans){
          ans=ans^p[i];
   return ans;
long long get_min(){
```

```
\verb|if(have_zero)| \{
            return 0;
        for(int i=0; i \le \max v; i++) {
            if(p[i]!=0){
                return p[i];
        return -1;
    }
    long long rank(long long x) {
        long long ans=0;
        for(int i=60;i>=0;i--){
            if(x)=p[i]){
                ans+=(111<<i);
                x^=p[i];
        return ans+have_zero;
   }
    void clear() //清空
        for (int i = 0; i < maxv; i++)
            p[i] = 0, d_[i]=0;
        cnt=0;
        have_zero= false;
    Hamel operator*(const Hamel &that)
        Hamel ans=*this;
        for (int i=\max_{i}1;i>=0;i--)
            if (that.p[i])
                ans.insert(that.p[i]);
        return ans;
   }
};
class SegmentTree
public:
   Hamel a[4*maxn];
    bool push_up(int rt) //向上更新
```

```
auto nxt=a[rt*2]*a[rt*2+1];
        if (nxt == a[rt])
           return false;
       a[rt]=nxt;
       return true;
   bool updatal(int loc, int k, int l, int r, int rt) //线段树区间为从 l 到 r, 把区间 x 到 y 每个数
+\mathbf{k}
    {
       if (1==r)
           return a[rt].insert(k);
       int mid = (1 + r) / 2;
       bool ans=false;
       if (loc <= mid)
           ans=updata1(loc, k, l, mid, rt * 2);
        else
           ans=updata1(loc, k, mid + 1, r, rt * 2 + 1);
        if (ans)
           return push_up(rt);
        return ans;
   }
   void build(int l, int r, int rt) //从l到r建立线段树
       a[rt].clear();
        if (1 == r)
           return;
       int mid = (1 + r) / 2;
        build(1, mid, rt * 2);
       build(mid + 1, r, rt * 2 + 1);
   Hamel query(int x, int y, int l, int r, int rt) //线段树区间为从1到r, 询问区间 x 到 y 的和
    {
       if (x \le 1 \&\& y \ge r)
           return a[rt];
        int mid = (1 + r) / 2;
       Hamel ans;
        if (x \le mid)
           ans = query(x, y, 1, mid, rt * 2);
        if (y > mid)
           ans =ans* query(x, y, mid + 1, r, rt * 2 + 1);
        return ans;
```

```
}st;
signed main()
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t;
    cin>>t;
    while(t--)
        int n, m, u, v;
        cin>>n>>m;
        for (int i=1; i \le n; i++)
             G[i].clear();
        st.build(1, n, 1);
        cnt=1;
        for (int i=1; i \le n; i++)
             cin>>u>>v;
            G[u].push_back(v);
            G[v].push_back(u);
        dfs(1,0);
        int op, x, y;
        while (m--)
             cin >> op >> x >> y;
             if (op==1)
                 st.updata1(dfn[x], y, 1, n, 1);
             else
                 auto ans=st.query(dfn[x], dfn[x]+siz[x]-1, 1, n, 1);
                 ans.rebuild();
                 cout << ans. findkth(y) << ' \n';
        }
```

14. 质因数分解

```
void get_prim(int tmp) {
```

```
prim.clear();
for(int i=2;i*i<=tmp;i++) {
    if(tmp%i==0) {
        while(tmp%i=0) {
            tmp=tmp/i;
        }
        prim.push_back(i);
    }
}
if(tmp!=1) {
    prim.push_back(tmp);
}

bool is_prim(int a) {
    if(a==2) return true;
    for(int i=2;i*i<=a;i++) {
        if(a%i==0) {
            return false;
        }
    }
    return true;
}</pre>
```

14-1.约数计数

15. 三分

```
double find(double 1, double r) //求1到r 单峰函数的极大值点
{
    double ans;
    while(r-1>eps)
    {
        double mid=(1+r)/2;
        double lmid=mid-eps, rmid=mid+eps;
        if(f(lmid)>f(rmid))
        {
            ans=mid;
            r=mid;
        }
        else
            l=mid;
    }
    return ans;
}
```

六、dp 示范

最优子结构:问题的最优解所包含的子问题的解也是最优的。 无后效性:当前阶段的求解只与之前阶段有关,而与之后的阶段无关。 决策并不是线性的,而需要全面考虑不同情况,分别决策。 步骤:寻找子问题、定义状态、导出状态转移方程、确定边界条件。

0. 纸币问题

```
void dp() {

//至少多少纸币可以凑够 w 元:

for(int i=1;i<=w;i++) {

   for(int j=1;j<=n;j++) {

       if (i >= v[j]) {

            dp[i] = min(dp[i], dp[i - v[j]] + 1);

       }

   }

//有多少种纸币组合可以凑够 w 元:

for(int i=1;i<=n;i++) {
```

```
for(int j=v[i];j<=w;j++) {
          dp[j] = dp[j]+dp[j - v[i]];
     }
}</pre>
```

1. 字符串 dp

```
//求能由一些小串组成的大串的最大长度
  dp[0]=1;
   int ans=0;
   for (int i=1; i \le s. size(); i++) {
      for(int j=i; j>=1; j--) {
          string tmps=bs.substr(j, i-j+1);
          if(dp[j-1]&&s.find(tmps)!=s.end()){ //字符集合存放在 s 中
             dp[i]=1;
             ans=max(ans, i);
             break;
      }
   }
   //两个字符串,可以增,删,改,最少要操作几个字符才能相同?
void dp() {
         for(int i=1;i \le lena;i++)
           f[i][0]=i;
          for (int i=1; i \le lenb; i++)
           f[0][i]=i;
         for(int i=1;i \le lena;i++){
             for (int j=1; j \le lenb; j++) {
               if(a[i-1]==b[j-1]) {
                  f[i][j]=f[i-1][j-1];
                  continue;
                  f[i][j]=min(min(f[i-1][j], f[i][j-1]), f[i-1][j-1])+1;//分别对应增,删,改
         }
//从字符串 A 中,选取 k 个块拼成 B,有几种方式
dp[0][0][0][0]=1;
```

2. 背包 dp

2-1.典例: 聪明的奶牛

```
if(dp[j]>=0){//里面存着情商
    ans=max(ans, dp[j]+j-400000);
}
```

2-2.分组背包 DP

3. 区间 dp

3-1.典例: 祖玛

```
for(int i=1;i<=n;i++){ //不断移除回文字串,最多要几次
    scanf("%d",&a[i]);
    dp[i][i]=1;
    if(a[i]==a[i-1]) dp[i-1][i]=1;
    else dp[i-1][i]=2;
}

for(int t=2;t<=n;t++){
    for(int i=1;i<=n-t;i++){
        int j=i+t;
        if(a[i]==a[j]) dp[i][j]=min(dp[i][j],dp[i+1][j-1]);

        for(int k=i;k<j;k++){
            dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]);
        }

    }
}
```

3-2.典例: 大爷关灯

```
//有一个大爷在 c 点,左右去关灯,关灯前持续消耗功率

dp[c][c][0]=dp[c][c][1]=0;

for(int step=2;step<=n;step++) {
    for(int i=1;i+step-1<=n;i++) {
        int j=i+step-1;//0 表示区间向左扩大
        dp[i][j][0]=min(dp[i+1][j][0]+(a[i+1].wei-a[i].wei)*(sum[i]+sum[n]-sum[j])); //sum是功率的前缀和
        dp[i][j][1]=min(dp[i][j-1][0]+(a[j].wei-a[i].wei)*(sum[i-1]+sum[n]-sum[j-1]), dp[i][j-1][1]+(a[j].wei-a[j-1].wei)*(sum[i-1]+sum[n]-sum[j-1]));

}
cout<<min(dp[1][n][1],dp[1][n][0]);
```

3-3.典例: 手串 (矩阵优化)

环状图,任意 m 个连续的地方,不得超过 k 个 1

```
cin>>n>>m>k;
    juzheng b;
    for(int i=0;i<(1<<m);i++)[//枚举新状态
        if(cnt(i)>k) continue;
        b.a[i>>1][i]=1; a[10]可由a[01]、a[11]转化来,在对应位置填1。行表示上一个状态,列表示下一个状态
        if(cnt(i>>1)<=k-1){
            b.a[(i>>1)|(1<<(m-1))][i]=1;
        }
        juzheng ans=pow(b,n); //注意: 先预定0号点的状态, 它与n号点相同。故总共需要n次方。
        int tans=0;
        for(int i=0;i<(1<<m);i++){
            if(cnt(i)>k) continue;
            tans=(tans+ans.a[i][i])*MOD;
        }
        cout<<<tans:
```

3-4.典例: 合数

```
//相邻两相同数合成大 1 数。以下利用倍增思想
for(int i=1;i<=n;i++) {
    cin>>a[i];
    dp[a[i]][i]=i+1;
}
int ans=0;
for(int i=1;i<100;i++) {
    for(int j=1;j<=n;j++) {
        if(dp[i-1][dp[i-1][j]]!=0) dp[i][j]=dp[i-1][dp[i-1][j]];
        if(dp[i][j]!=0) ans=max(ans,i);
    }
}
```

4. 树上 dp

4-1.树上背包 DP

4-2 树上路径 DP

4-3.换根 DP

```
void dfs(int now, int father) {
    son[now]=1;
    for(int i=0;i<v[now].size();i++) {
        if(v[now][i]==father) continue;
        dfs(v[now][i], now);
    }
}</pre>
```

5. 状压 dp

5-1.典例: 吃奶酪

5-2.典例: 炸鱼

```
nextstate=i;

//对被炸到的有鱼位置都减一

for(int z=0;z<bomb[j].arr.size();z++){//枚举炸弹能炸到的鱼塘位置

if(check(i,bomb[j][z])) //如果这个鱼塘还有鱼

nextstate==1*pow4[bomb[j].arr[z]];

}

dp[nextstate]=min(dp[i]+1,dp[nextstate]);

}
```

6. 其他 dp

6-1.典例: 道路游戏

6-2.典例: 买股票(单调队列优化)

6-3.典例: 午饭

6-4.典例: 游戏

```
//n 个格子有 k 个连续块的方案数, n、k 为 le5
int main() {
    f[k]=1;
    for(register int i=k+1;i<=n;++i) {
        f[i] = 2*f[i-1] + pow(2,i-k-1)- f[i-k-1]; //随意 01+仅这段做出贡献
```

```
}
printf("%d", f[n]);
}
```

6-5.典例: 拆分

```
//给定一个整数 n, 求将 n分解为互不相同的不小于 2 的整数的乘积的方案数。
for (int i=1; i \le n/i; i++) {
   if(n\%i==0) {
      a[++cnt]=i;
      if(i*i!=n){
         a[++cnt]=n/i;
  }
}//0logn 统计因数。注意,一个数的因数,其因数也是这个数的因数。
sort(a+1, a+1+cnt);
for (int i=1;2*i <= cnt+1; i++) {
   pos1[a[i]]=i;
   pos2[a[i]]=cnt-i+1; //优化: 将取值范围优化为 log (MAXN)
memset(dp, 0, sizeof(dp));
dp[1][1]=1;//要构成第1个数,利用前1给数,有1种方案
for (int i=1; i \le cnt; i++) {
   for(int j=1; j<=cnt; j++) {
      dp[i][j]= (dp[i][j]+dp[i][j-1])%MOD; //不使用第 j 个数
      if(a[i]%a[j]==0){
         1])%MOD; //使用第 j 个数, 利用 pos[]找到下标并转移
cout << dp[cnt][cnt]-1 << end1;
```

七、其它

4. 反悔贪心

```
T1 为抢修时间, t2 为截止时间。求最多维修量
for(int i=1;i<=n;i++){//按 t2 排序
    if(now+a[i].t1<=a[i].t2){
```

```
ans++;
q.push(a[i]);//q为优先队列,按tl排序
now+=a[i].tl;
}
else{
    if(a[i].tl<q.top().tl) {
        now =now- q.top().tl+a[i].tl;
        q.pop();
        q.push(a[i]);
    }
}
```

1. 关闭同步流

```
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
```

2. 快读

```
inline long long input() {
    long long n=0;
    int f=1;
    char c=getchar();
    while(c<'0' || c>'9') {
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0' && c<='9') {
        n=(n<<3)+(n<<1)+(c^48);
        c=getchar();
    }
    return n*f;
}</pre>
```

3. 数列离散化

```
int a[maxn], d[maxn];
void discrete(int n) //将 0-n-1 的数离散化放入 d
```

```
{
    for(int i=0;i<n;i++)
        d[i]=a[i];
    sort(a,a+n);
    n=unique(a, a + n)-a;
    for (int i = 0; i < n; i++)
        d[i] = lower_bound(a, a + nn, d[i]) - a + 1;
}

//离散化写法 2
    for(int i=1;i<=n;i++) {
        cin>>a[i].val;
        a[i].num=i;
    }
    sort(a+1,a+1+n);
    for(int i=1;i<=n;i++) {
        ran[a[i].num]=i; //ran[1]即原数列第 1 个数离散化后的值。
}
```

3-1.二维离散化

```
//OVERPLANTING 问题
    for(int i=1; i<=n; i++) {//坐标系内有多个可重叠矩形, 求其面积之和
   cin>>a[i].x1>>a[i].y1>>a[i].x2>>a[i].y2;
   b[++cnt]=a[i].x1;
   b[++cnt]=a[i].x2;
   b[++cnt]=a[i].y1;
   b[++cnt]=a[i].y2;
}
sort(b+1,b+1+cnt);
int cn= unique(b+1, b+1+cnt)-b-1;
for (int i=1; i \le cn; i++) {
    m[b[i]]=i;
for (int i=1; i \le n; i++) {
    for (int j=m[a[i].x1]; j \le m[a[i].x2]; j++) {
       f[j][m[a[i].y2]]++;
       f[j][m[a[i].y1]]--;
```

```
for(int i=1;i<=cn;i++) {
    for(int j=1;j<=cn;j++) {
        f[i][j]+=f[i][j-1];
    }
}
long long ans=0;
for(int i=1;i<=cn;i++) {
    for(int j=1;j<=cn;j++) {
        if(f[i][j]) ans+=(long long)(b[i+1]-b[i])*(b[j+1]-b[j]);
    }
}
cout<<ans;</pre>
```

4. 双指针

```
for (int i=1, j=1; i<=n; i++) { //一次需要包含 num 个不同的 id, 求最小的距离差
    if(i>=2) {
        number[a[i-1].id]--;
        if(number[a[i-1].id]==0){
            number[0]--;
        }
   }
   while (j \le n) {
        if(number[0]==num) {
            break;
        number[a[j].id]++;
        if(number[a[j].id]==1){
            number[0]++;
        j++;
   if(number[0]==num) {
        ans=min(ans, a[j-1]. x-a[i]. x);
   }
//求离自己第 k 近的数
  f[1]=k+1;
   int 1=1, r=k+1;
   for(int i=2;i<=n;i++){
        \label{eq:while (r+1 <= n&&a[i]-a[1]>a[r+1]-a[i]) 1++, r++;} \\
```

```
if(a[i]-a[1]>=a[r]-a[i]) {
    f[i]=1;
}
else f[i]=r;
}
```

5. 根号分治

```
给你一个长度为 5×1e5 的序列,初值为 0 ,你要完成 q 次操作,操作有如下两种:
1 x y: 将下标为 x 的位置的值加上 y。
2 x y: 询问所有下标模 x 的结果为 y 的位置的值之和。
#include<bits/stdc++.h>
#define 11 long long
#define mp make_pair
using namespace std;
11 sum[755][755], a[500005]; //这里我的阈值取了700: 根号5e5
int main() {
         ios_base::sync_with_stdio(false);cin.tie(0),cout.tie(0);
         int q;cin >> q;
         for(;q--;){
                   int tp,x,y;cin>>tp>>x>>y;
                   if(tp==1){
                            for(int i=1;i<700;++i)sum[i][x%i]+=y; //枚举模数
                            a[x] +=y;
                   }else{
                            if (x<700) {
                                      cout<<sum[x][y]<<end1;</pre>
                            }else{
                                      11 rt=0;
                                      for(int i=y;i<=500000;i+=x)rt+=a[i]; //暴力统计
                                      cout<<rt<<endl;</pre>
         }
```

6. 单调队列

7. 单调栈 H

```
for(int i=1;i<=n+1;i++){ //求每个数后面第一个大于自己的数;建立非递增栈
while(!s.empty()&&d[s.top()]<d[i]){
    m[i].push_back(s.top());
    s.pop();
}
s.push(i);
```

8. 迭代器等

```
//map 迭代器
map<int, int> m;
map<int, int>::iterator it;
m. insert({1,2});
it=m. lower_bound(2); //第一个>2 的元素的迭代器位置
it=m. upper_bound(2); //第一个>2 的元素的迭代器位置

//map 删除
for (it=m. begin(); it!=m. end();) {
    if(it->second==val) {
        m. erase(it);
    }
    else {
        it++;
    }
}
```

```
//vector 删除
vector<int> v;
v. insert(v.begin()+2,-1);
v. erase(v. begin(), v. end());
//固定数组、vector 查询
int a[5]=\{0, 1, 2, 3, 4\};
cout<<upre>upper_bound(a+1, a+5, 2)-a; //返回下标, 从1开始
vector<int> v;
v.\ push\_back\left(0\right),\ v.\ push\_back\left(1\right),\ v.\ push\_back\left(2\right),\ v.\ push\_back\left(3\right);
cout<<upre>cout<<upre>cout<<upre>(v.begin(), v.end(), 2) -v.begin();//返回下标
注意:: set 不使用 STL 提供的 lower_Bound 函数!!
//permutation 排列
int a[5]=\{1, 2, 3, 4, 5\};
 next_permutation(a, a+5);
//string 类字符串操作
while (ss. find (s[i]) !=ss. npos) \{
              int now=ss.find(s[i]);
              num++;
             ss.erase(now, s[i].size());
              ss. insert (now, "-=-");
```

9. bitset 操作

```
std::bitset<1000> bs; //声明
bitset(unsigned long val): //设为 val 的二进制形式。
bitset(const string& str): //设为 串 str。
count(): 返回 1 的数量。
flip(): 翻转每一位。
to_string(): 返回转换成的字符串表达。
To_ulong()转为 int
```

}

10. 对拍器

1. 数据生成代码 data.cpp 示例:

```
#include <bits/stdc++.h>
int main()
{
    struct _timeb T;
    _ftime(&T);
    srand(T.millitm);

    freopen("in.txt", "w", stdout); //生成 使两份基本代码 将要读入的数据
    int a = rand(), b = rand();
    printf("%d %d\n", a, b);
}
```

2. 暴力代码 baoli.cpp 示例:

3. 正解代码 std. cpp 示例:

```
#include <bits/stdc++.h>
int main()
{
    freopen("in.txt", "r", stdin);
    freopen("std.txt", "w", stdout);
    int a, b;
    scanf("%d %d", &a, &b);
    printf("%d\n", a + b);
}
```

4. 对拍代码 duipai.cpp 示例:

```
#include bits stdc++.h>
```

```
using namespace std;
int main()
{

while (1) //一直循环,直到找到不一样的数据
{

system("data.exe");

system("baoli.exe");

system("std.exe");

if (system("fc std.txt baoli.txt")) //当 fc 返回 1 时,说明这时数据不一样

break; //不一样就跳出循环
}

return 0;
}
```

5. 运行对拍程序

目前,我们有了 4 份代码。为了实现对拍,我们要把这些代码放在同一个文件夹的同一层里。再次确保打开每一份代码,编译,让每一份代码都生成一个同名的 . exe 程序。