File system internals

Tanenbaum, Chapter 4

COMP3231
Operating Systems

Syscall interface:

creat open read

write

. . .

Application

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Device driver

Operating System

Hard disk platters: tracks sectors

Application

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Disk controller:

Hides disk geometry, bad sectors
Exposes linear sequence of blocks

Application

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Device driver:

Hides device-specific protocol Exposes block-device Interface (linear sequence of blocks)

Application

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

File system:

Hides physical location of data on the disk

Exposes: directory hierarchy, symbolic file names, random-access files, protection

Application

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Optimisations:

Keep recently accessed disk blocks in memory

Schedule disk accesses from multiple processes for performance and fairness

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Virtual FS:

Unified interface to multiple FSs

File desctriptor and Open file tables:

Keep track of files opened by user-level processes

Matches syscall interface to VFS Interface

Application FD table OF table **VFS** FS Buffer cache Disk scheduler Device driver

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Architecture of the OS storage stack

File system:

- Hides physical location of data on the disk
- Exposes: directory
 hierarchy, symbolic file
 names, random-access
 files, protection

Some popular file systems

- FAT16
- FAT32
- NTFS
- Ext2
- Ext3
- Ext4
- ReiserFS
- XFS
- ISO9660

- HFS+
- UFS2
- ZFS
- JFS
- OCFS
- Btrfs
- JFFS2
- ExFAT
- UBIFS

Question: why are there so many?

Why are there so many?

- Different physical nature of storage devices
 - Ext3 is optimised for magnetic disks
 - JFFS2 is optimised for flash memory devices
 - ISO9660 is optimised for CDROM
- Different storage capacities
 - FAT16 does not support drives >2GB
 - FAT32 becomes inefficient on drives >32GB
 - ZFS, Btrfs is designed to scale to multi-TB disk arrays
- Different CPU and memory requirements
 - FAT16 is not suitable for modern PCs but is a good fit for many embedded devices
- Proprietary standards
 - NTFS may be a nice FS, but its specification is closed

Outline

- File allocation methods
 - How files are stored in disk blocks, and what book keeping is required.
- Layout on disk
- Managing free space
- Directories
- Block size trade off

Assumptions

- In this lecture we focus on file systems for magnetic disks
 - Seek time
 - ~15ms worst case
 - Rotational delay
 - 8ms worst case for 7200rpm drive
 - For comparison, disk-to-buffer transfer speed of a modern drive is ~10µs per 4K block.
- Conclusion: keep blocks that are likely to be accessed together close to each other

Implementing a file system

- The FS must map symbolic file names into a collection of block addresses
- The FS must keep track of
 - which blocks belong to which files.
 - in what order the blocks form the file
 - which blocks are free for allocation
- Given a logical region of a file, the FS must track the corresponding block(s) on disk.
 - Stored in file system metadata

File Allocation Methods

- A file is divided into "blocks"
 - the unit of transfer to storage
- Given the logical blocks of a file, what method is used to choose were to put the blocks on disk?

File 1 2 3 4 5 6 7 8

Disk

Contiguous Allocation

- Easy bookkeeping (need to keep track of the starting block and length of the file)
- Increases performance for sequential operations
- Need the maximum size for the file at the time of creation
- As files are deleted, free space becomes divided into many small chunks (external fragmentation)

Example: ISO 9660 (CDROM FS)

Dynamic Allocation Strategies

- Disk space allocated in portions as needed
- Allocation occurs in fixed-size blocks
- No external fragmentation
- Does not require pre-allocating disk space
- × Partially filled blocks (internal fragmentation)
- x File blocks are scattered across the disk
- Complex metadata management (maintain the collection of blocks for each file)

External and internal fragmentation

- External fragmentation
 - The space wasted external to the allocated memory regions
 - Memory space exists to satisfy a request but it is unusable as it is not contiguous
- Internal fragmentation
 - The space wasted internal to the allocated memory regions
 - Allocated memory may be slightly larger than requested memory; this size difference is wasted memory internal to a partition

Dynamic allocation: Linked list allocation

- Each block contains a pointer to the next block in the chain. Free blocks are also linked in a chain.
 - Only single metadata entry per file
 - Best for sequentially accessed files

Question: What are the downsides?

Linked list allocation

- Each block contains a pointer to the next block in the chain. Free blocks are also linked in a chain.
 - Only single metadata entry per file

- x Poor for random access
- Blocks end up scattered across the disk due to free list eventually being randomised

Dynamic Allocation: File Allocation Table (FAT)

- Keep a map of the entire FS in a separate table
 - A table entry contains the number of the next block of the file
 - The last block in a file and empty blocks are marked using reserved values
- The table is stored on the disk and is replicated in memory

File allocation table

- Issues
 - Requires a lot of memory for large disks
 - 200GB = 200*10^6 * 1K-blocks ==>
 200*10^6 FAT entries = 800MB
 - Free block lookup is slow
 - searches for a free entry in table

File allocation table disk layout

- Examples
 - FAT12, FAT16, FAT32

Two copies of FAT for redundancy

Dynamical Allocation: inode-based FS structure

- Idea: separate table (index-node or i-node) for each file.
 - Only keep table for open files in memory
 - Fast random access
- The most popular FS structure today

i-node implementation issues

i-nodes occupy one or several disk areas

- i-nodes are allocated dynamically, hence free-space management is required for i-nodes
 - Use fixed-size i-nodes to simplify dynamic allocation
 - Reserve the last i-node entry for a pointer (a block number) to an extension i-node.

i-node implementation issues

i-node implementation issues

- Free-space management
 - Approach 1: linked list of free blocks in free blocks on disk
 - Approach 2: keep bitmaps of free blocks and free i-nodes on disk

1001101101101100
0110110111110111
1010110110110110
0110110110111011
1110111011101111
1101101010001111
0000111011010111
1011101101101111
1100100011101111
) Î
0111011101110111
1101111101110111

Free block list

- List of all unallocated blocks
- Background jobs can re-order list for better contiguity
- Store in free blocks themselves
 - Does not reduce disk capacity
- Only one block of pointers need be kept in the main memory

Bit tables

- Individual bits in a bit vector flags used/free blocks
- 16GB disk with 512-byte blocks --> 4MB table
- May be too large to hold in main memory
- Expensive to search
 - Optimisations possible, e.g. a two level table
- Concentrating (de)allocations in a portion of the bitmap has desirable effect of concentrating access
- Simple to find contiguous free space

Implementing directories

- Directories are stored like normal files
 - directory entries are contained inside data blocks
- The FS assigns special meaning to the content of these files
 - a directory file is a list of directory entries
 - a directory entry contains file name, attributes, and the file i-node number
 - maps human-oriented file name to a system-oriented name

Fixed-size vs variable-size directory entries

- Fixed-size directory entries
 - Either too small
 - Example: DOS 8+3 characters
 - Or waste too much space
 - Example: 255 characters per file name
- Variable-size directory entries
 - Freeing variable length entries can create external fragmentation in directory blocks
 - Can compact when block is in RAM

Searching Directory Listings

- Locating a file in a directory
 - Linear scan
 - Implement a directory cache in software to speed-up search
 - Hash lookup
 - B-tree (100's of thousands entries)

Storing file attributes

- (a) disk addresses and attributes in directory entry
- -FAT
- (b) directory in which each entry just refers to an i-node
- **–UNIX**

Trade-off in FS block size

- File systems deal with 2 types of blocks
 - Disk blocks or sectors (usually 512 bytes)
 - File system blocks 512 * 2^N bytes
 - What is the optimal N?
- Larger blocks require less FS metadata
- Smaller blocks waste less disk space (less internal fragmentation)
- Sequential Access
 - The larger the block size, the fewer I/O operations required
- Random Access
 - The larger the block size, the more unrelated data loaded.
 - Spatial locality of access improves the situation
- Choosing an appropriate block size is a compromise