Sharan Sahu

www.sharansahu.com \cdot ss4329@cornell.edu \cdot Google Scholar

Last updated: August 11, 2025

Research interests

High-dimensional statistics, robust and stochastic optimization, reinforcement learning, deep learning, language and diffusion models, differential privacy

Education

	Education
2024 – Present	Cornell University – Ithaca, NY
	PhD in Statistics and Machine Learning
	GPA: 4.100 / 4.000
2020 - 2024	University of California, Berkeley – Berkeley, CA
	BA in Computer Science
	GPA: 3.998 / 4.000
	Advisors: Iain Carmichael, Ryan Tibshirani
	Awards
2025	G-Research Doctoral Fellowship
2024	Cornell University Graduate Fellowship
2023	UC Berkeley Department of Data, Society, and Computing Data Science Insights Award
	Winner
2022	Science, Mathematics, and Research For Transformation DoD Scholarship (SMART)
2020	Northrop Grumman Engineering Scholarship
2020	Lockheed Martin Engineering Scholarship
2019	Math Olympiad Program (MOP) Invitee
2019	USA Physics Olympiad (USAPhO) Qualifier
2018	USA Mathematics Olympiad (USAMO) Qualifier
2017	USA Junior Mathematics Olympiad (USAJMO) Qualifier
	Publications and preprints * denotes first author(s
2025	DRO-REBEL: Distributionally Robust Relative-Reward Regression for Fast and Effi
	cient LLM Alignment

Sharan Sahu*, Martin T. Wells

In Preparation

2025 Mixed Supervision Improves Performance As A Function Of Human Annotation Time For Nuclear Instance Segmentation

Van Hovenga, Sharan Sahu, Iain Carmichael

Submitted (NeurIPS)

2025	Towards Optimal Differentially Private Regret Bounds in Linear MDPs Sharan Sahu* Submitted (NeurIPS)
2024	WSIC: A Python Package To Facilitate Running Nuclear/Cellular Segmentation On Whole Slide Images Sharan Sahu*, Jerry Li, Van Hovenga, Kaitlin Smith, Neo Yin, Richard J. Chen, Iain Carmichael In Preparation (JOSS)
2023	Developing Multi-Dimensional Metrics for Precision, Recall, Fidelity, Diversity, and Authenticity in Evaluating Generative Networks Performance using Deep Perceptual Embeddings Sharan Sahu*, Daniel Flaherty, Abhishek Vinchure, Jonny Pei, Suya You SPIE DCS
	Invited Talks and Guest Lectures
July 2025	Beyond RNNs: An Introduction to Transformers and LLM Basics Cornell Tech (Break Through Tech AI Program)
May 2025	Towards Optimal Differentially Private Regret Bounds in Linear MDPs Cornell University (Statistics Graduate Society)
February 2025	The Machine Learning Problems Behind Large Language Models: Self-Supervision, Fine-Tuning, and Reinforcement Learning University of North Carolina, Chapel Hill (Computational Pathology Labs)
·	Unlocking the Power of Databases: The Crucial Role of Theory and Indices in Scalable Vector Databases for Machine Learning
August 2024	Naval Postgraduate School (NPS)
December 2023	How Do Neural Networks Learn Naval Postgraduate School (NPS)
October 2023	Anchored Intelligence: Navigating the Waters of Machine Learning And Charting the Course to Augmented Decision-Making Naval Postgraduate School (NPS)
F.1 2005	Conference Posters and Oral Presentations
	System Requirements Clustering with Machine Learning and Architecture Design
February 2025 March 2024	Naval Applications of Machine Learning (NAML) Naval Applications of Machine Learning (NAML)
March 2023	Neptune Office of Naval Research (ONR) Conference
	Developing Multi-Dimensional Metrics for Precision, Recall, Fidelity, Diversity, and Authenticity in Evaluating Generative Networks Performance using Deep Perceptual Embeddings

September 2022 DoD 6.1 Research Conference

> Advancing Procedural Scene Synthesis through Enhanced Grammars and Gradient Policies in MetaSim

September 2021 UC Berkeley Data Science Conference

> Using Machine Learning to Model and Discover New Catalysts To Address The Energy Challenges Posed by Climate Change

May 2021 UC Berkeley Data Science Conference

Teaching experience

Fall 2021 EECS 16A: Foundations of Signals, Dynamical Systems, and Information Processing

> Served as an undergraduate course assistant for the EECS 16AB sequence, delivering foundational instruction in signal processing, control, circuit design, and machine learning with a strong emphasis on practical linear algebra applications. Facilitated both individual and group tutoring sessions, led EECS 16A review workshops, and supported over 50 students in lab settings by connecting theoretical concepts to hands-on implementation. Consistently recognized for teaching excellence, earning an average student rating of 4.9/5.0 for instructional quality, subject expertise, and proactive support.

Spring 2021 CS 61A: Structure and Interpretation of Computer Programs

> Served as a undergraduate course assistant for the CS 61A series, covering software construction, machine operations, and programming abstraction using Python, Scheme, and SQL. Led weekly tutorials and bi-weekly labs focused on fundamental concepts such as recursion, induction, and data structures including trees and binary search trees. Prepared and delivered review sessions before exams, collaborated on the development of problem sets and assessments, and provided individualized support during office hours, contributing to measurable improvements in student performance.

Industry experience

2025-Present Google Deepmind, Student Researcher – London, UK

RLHF and LLM Reasoning With RL.

2023 - 2025 167 Labs, Cofounder and Lead Research Scientist – San Francisco, CA

> Employee Self-Service AI Framework — Building an LLM-powered HR assistant using Multi-Modal RAG, API integrations, and personalized function calling for real-time pol-

icy, bonus, and paycheck insights.

Summer 2023 **US Department of Defense (DoD)**, Data Science Intern – San Diego, CA

> System Requirements Automation — Built ML models and full-stack tools for classifying military system requirements, saving \$1M and presenting to Pentagon and Marine Corps leadership.

US Department of Defense (DoD), Software Engineering Intern – San Diego, CA

Defense ML & Cloud Systems — Built ML and cloud tools for EMF waveform classification, automated document parsing, and scalable resource management, boosting detection and efficiency across key pipelines.

Summer 2021

Novartis, Product Data Science Intern – Chicago, IL

Operations & Forecasting Analytics — Delivered ML and statistical solutions for inventory forecasting, database optimization, and secure access control, driving \$1.5M in savings and boosting system efficiency and security.

2018 - 2020

Northrop Grumman, Software Engineering and Data Science Intern – Chicago, IL

Autonomous Systems Research — Developed ML models for sensor fusion and defect detection, combining filtering techniques and CNNs; published findings in a 20-page paper presented at Northrop Grumman's research conference.

Mentorship and service

2024 - Present

Cornell Statistics Graduate Society, Vice President

Represented Ph.D. students in academic and departmental affairs, while organizing initiatives to support professional, social, and community development.

Skills

Programming

Proficient: Python, C++, C, Java Familiar: R, Rust, C#, Go, Dart

Software

LATEX, Git, Docker, PowerBI, Tableau, Spotfire, Qlik

Languages

English (native), Oriya (Advanced)

Coursework

Statistics: High dimensional statistics, asymptotic statistics, mean field asymptotics, mathematical statistics, nonparametric estimation, statistical computing, generalized linear models, empirical process theory, optimal transport, statistical learning theory

Mathematics: Real analysis, functional analysis, measure theoretic probability and martingale theory, robust and stochastic optimization, convex and variational analysis, differential manifolds, ring and group theory, random matrix theory, partial differential equations, linear algebra, topology and metric spaces

Machine Learning: Machine learning theory (PAC & PAC-Bayes, online convex optimization, stochastic bandits), reinforcement learning theory, deep learning and generative models, recommender and feedback systems, natural language processing, computer vision

Computer Science: Data structures and algorithms, operating systems, compilers, computer security, computer architecture, database systems, networking and internet protocols, parallel computing

Other interests

Basketball, Guitar, Reading, Cooking