En bedrift har variable kostnader gitt av $VC(Q) = 50 \cdot Q + 20 \cdot Q^{1.2}$ kroner, der Q er mengden som produseres. De faste kostnadene er på 3 500 000 kroner per periode. Bedriften produserer 7 500 enheter per periode.

Hva er bedriftens totale kostnader i løpet av en periode?. [4.76, 4.78]

(Svar i millioner kroner, to desimaler er nok, dvs. hvis totalkostnaden er 1 123 456 kroner skal du svare 1.12)

Løsning

$$TC(Q) = FC + VC(Q) = 3500000 + (50.7500 + 20.7500^{1.2}) = 4768518$$

Oppgave 2

Etterspørselen til en bedrift er gitt av P(Q)=100-2Q der P er prisen og Q er mengden.

For hvilken pris, P, er etterspørselselastisiteten bedriften ser lik 1.5? [60]

Gå ut fra definisjon av egenpriselastisitet som gir ikke-negative tall for normal etterspørsel.

Løsning

$$P(Q) = 100 - 2Q \Leftrightarrow Q(P) = 50 - \frac{P}{2} = 50 - 0.5P$$

$$\varepsilon = -\frac{dQ}{dP} \cdot \frac{P}{Q} = -\left(-\frac{1}{2}\right) \cdot \frac{P}{50 - 0.5P} = 1.5 \Leftrightarrow$$

$$P = 1.5 \cdot 2 \cdot (50 - 0.5P) \Leftrightarrow 2.5P = 150 \Leftrightarrow P = \frac{150}{2.5} = 60$$

Oppgave 3

En bedrifts gjeldsgrad dobles fra 0.75 til 1.5. Hvor mye øker gjeldsandelen, dvs. hva er den nye gjeldsandelen minus den gamle? [0.17,0.18]

Løsning

$$\begin{split} \frac{D_{old}}{E_{old}} &= 0.75 \Leftrightarrow D_{old} = 0.75 E_{old} \Rightarrow \frac{D_{old}}{D_{old} + E_{old}} = \frac{0.75 E_{old}}{0.75 E_{old} + E_{old}} = \frac{0.75}{1.75} = 0.428571 \\ \frac{D_{new}}{E_{new}} &= 1.5 \Leftrightarrow D_{new} = 1.5 E_{new} \Rightarrow \frac{D_{new}}{D_{new} + E_{new}} = \frac{1.5 E_{new}}{1.5 E_{new} + E_{new}} = \frac{1.5}{2.5} = 0.6 \end{split}$$

Nye gjeldsandelen minus den gamle = 0.6 - 0.428571 = 0.171428

Selskapet "Bing & Bong" har fire produkter i sortimentet A, B, C og D. Salgsvolum (stykk), pris og direkte kostnader per stykk (kr/stykk) det siste året for de fire produktene er gitt i tabellen:

Produkt	A	В	C	D
Salgspris (kr/stykk)	10000	11000	8000	9000
Direkte material (kr/stykk)	1600	1700	1200	1400
Direkte lønn (kr/stykk)	1500	1800	1200	1500
Øvrige direkte tilvirkningskostnader (kr/stykk)	200	100	100	200
Salgsprovisjon (kr/stykk)	1000	1100	800	900

Tilleggssatser basert på fjorårets indirekte kostnader

- Indirekte faste kostnader materialavd. (MO_F): 20%
- Indirekte faste kostnader produksjonsavd. (TO_F): 156%
- Indirekte variable kostnader produksjonsavd. (TO_V): 25%
- Indirekte faste salgs- og adm. kostnader (S&AO_F): 35%

Hvilket produkt er mest lønnsomt å selge, dvs. gir maksimalt bidrag til profitten per stykk?

Løsning

Faste kostnader er faste så den produkt som ger maksimalt bidrag til dekningsbidraget per stykk ger maksimalt bidrag til profitten per stykk. Dvs. **Produkt B**

	Α	В	С	D
Salgspris (kr/stykk)	10000	11000	8000	9000
Direkte material (kr/stykk)	1600	1700	1200	1400
Direkte lønn (kr/stykk)	1500	1800	1200	1500
Øvrige direkte tilvirkningskostnader (kr/stykk)	200	100	100	200
Salgprovisjon	1000	1100	800	900
$TO_V = 25\%*dL$	375	450	300	375
VC = Direkte kostnader + TO_V	4675	5150	3600	4375
Dekkningsbidrag = p - VC	5325	5850	4400	4625

Hvis de faste kostnadene er 100 000 kroner og den variable kostnaden kan uttrykkes som $VC(Q)=5Q^2$ kroner der Q er mengden.

Hva er marginalkostnaden ved den mengde som gir den laveste gjennomsnittskostnaden per enhet? [1414,1415]

Løsning

$$TC(Q) = FC + VC(Q) = 100\ 000 + 5Q^{2}$$

$$MC(Q) = \frac{dTC}{dQ} = 10Q \qquad ; \quad AC(Q) = \frac{TC(Q)}{Q} = \frac{100\ 000}{Q} + 5Q$$

$$AC'(Q) = \frac{dAC}{dQ} = -\frac{100\ 000}{Q^{2}} + 5 \Rightarrow AC'(Q^{*}) = 0 \Rightarrow Q^{*} = \sqrt{20\ 000} = 141.4214$$

$$MC(Q^{*}) = 10 \cdot 141.4214 = 1414.42 = \frac{100\ 000}{141.4214} + 5 \cdot 141.4214 = AC(Q^{*})$$

Oppgave 6

En bedrift har totalkapitalrentabilitet før skatt på 10%. Renten på gjeld er 4% og gjeldsandelen er 40%.

Hva blir bedriftens egenkapitalrentabiliteten før skatt? [0.135,0.145]

Løsning

$$R_{tot} = \frac{E}{D+E} \cdot R_E + \frac{D}{D+E} \cdot R_D$$

$$0.1 = (1 - 0.4) \cdot R_E + 0.4 \cdot 0.04 \Rightarrow R_E = \frac{0.1 - 0.4 \cdot 0.04}{0.6} = 0.14$$

Oppgave 7

Hvis nåverdien av en betaling på 1000 kroner om tre år er 800 kroner, inflasjonen er 4%, hva er da den reale kalkulasjonsrenten? [0.035,0.036]

Løsning

$$NV = \frac{k_{N,t}}{(1+r_N)^t} \Longrightarrow 800 = \frac{1000}{(1+r_N)^3} \Leftrightarrow r_N = \left(\frac{1000}{800}\right)^{\frac{1}{3}} - 1 = 0.07722$$
$$r_R = \frac{r_N - infl.}{1 + infl.} = \frac{0.07722 - 0.04}{1.04} = 0.03579$$

En investering på 1000 nå vil gi en positiv kontantstrøm på 205 per år fra år 2 til år x.

Hva er den laveste verdien av x som gjør at investeringen er lønnsom dersom kalkulasjonsrenten er 10 %? [10]

Løsning

$$NNV_{x=2} = -1000 + \frac{205}{1.1^2} = -830.57851$$

$$NNV_{x=3} = NNV_{x=2} + \frac{205}{1.1^3} = -830.57851 + \frac{205}{1.1^3} = -676.55898$$

$$NNV_{x=4} = NNV_{x=3} + \frac{205}{1.1^4} = -676.55898 + \frac{205}{1.1^4} = -536.54122$$

$$NNV_{x=5} = NNV_{x=4} + \frac{205}{1.1^5} = -536.54122 + \frac{205}{1.1^5} = -409.25235$$

$$NNV_{x=6} = NNV_{x=5} + \frac{205}{1.1^6} = -409.25235 + \frac{205}{1.1^6} = -293.53519$$

$$NNV_{x=7} = NNV_{x=6} + \frac{205}{1.1^7} = -293.53519 + \frac{205}{1.1^7} = -188.33778$$

$$NNV_{x=8} = NNV_{x=7} + \frac{205}{1.1^8} = -188.33778 + \frac{205}{1.1^8} = -92.70377$$

$$NNV_{x=9} = NNV_{x=8} + \frac{205}{1.1^9} = -92.70377 + \frac{205}{1.1^9} = -5.76375$$

$$NNV_{x=10} = NNV_{x=9} + \frac{205}{1.1^9} = -5.76375 + \frac{205}{1.1^9} = 73.27262 > 0$$

Den indirekte etterspørselsfunksjonen i et monopolmarked er P(Q)=150-1.5Q og monopolselskapets marginalkostnad er MC(Q)=75+Q, der P er prisen, MC er marginalkostnaden og Q er mengden.

Hva er det samfunnsøkonomiske dødvektstapet hvis monopolselskapet maksimerer sin profitt? [158,159]

Løsning

$$TR(Q) = Q \cdot P(Q) = 150Q - 1.5 \cdot Q^{2}$$

$$MR(Q) = 150 - 3Q$$

$$MR(Q_{M}^{*}) = MC(Q_{M}^{*}) \Leftrightarrow 150 - 3Q_{M}^{*} = 75 + Q_{M}^{*} \Leftrightarrow Q_{M}^{*} = 75/4 = 18.75$$

$$P(Q_{SF}^{*}) = MC(Q_{SF}^{*}) \Leftrightarrow 150 - 1.5Q_{SF}^{*} = 75 + Q_{SF}^{*} \Leftrightarrow Q_{SF}^{*} = 75/2.5 = 30$$

$$\int_{Q_{M}^{*}}^{Q_{SF}^{*}} (P(Q) - MC(Q)) dQ = \int_{18.75}^{30} (150 - 1.5Q - (75 + Q)) dQ =$$

$$\left[75Q - 2.5\frac{Q^{2}}{2}\right]_{18.75}^{30} = \left(75 \cdot 30 - 2.5\frac{30^{2}}{2} - 75 \cdot 18.75 + 2.5\frac{18.75^{2}}{2}\right) = 158.2031$$

Kontantstrømmene for fire investeringer med økonomisk levetid på henholdsvis 4, 5, 5 og 6 år er som følger:

	A	В	C	D
\mathbf{k}_0	-2100	-2200	-2300	-2400
\mathbf{k}_1	750	650	600	650
k_2	750	650	600	650
k_3	750	650	700	650
k_4	1000	650	700	650
k_5		1000	1100	650
k_6				800

Kalkulasjonsrenten for alle investeringene er 10%.

Hvilken av de fire investeringene er best økonomisk om det er forutsatt at man ikke kan gjenta investeringene og man har mangel på midler (penger)?

Løsning

Har man mangel på midler (penger), er den beste investeringen den som gir høyest verdi per investert krone $(NNV/|k_0|)$.

NV	t	А	В	С	D
	0	-2100	-2200	-2300	-2400
	1	681.8182	590.9091	545.4545	590.9091
	2	619.8347	537.1901	495.8678	537.1901
	3	563.4861	488.3546	525.9204	488.3546
	4	683.0135	443.9587	478.1094	443.9587
	5		620.9213	683.0135	403.5989
	6				451.5791

NNV	448.1524	481.3339	428.3655	515.5905
NNV/Ik ₀ I	0.213406	0.218788	0.186246	0.214829

Korrekt svar er Investering B