Expectation Maximization (EM) Algorithm and Generative Models for Dim. Red.

Piyush Rai

Machine Learning (CS771A)

Sept 28, 2016

Recap: GMM

- The generative story for each x_n , n = 1, 2, ..., N
 - First choose one of the K mixture components as

$$z_n \sim \text{Multinomial}(z_n|\pi)$$
 (from the prior $p(z)$ over z)

• Suppose $z_n = k$. Now generate x_n from the k-th Gaussian as

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (from the data distr. $p(\mathbf{x} | \mathbf{z})$)

Some simulated data from a 3-component GMM

Note: Arrow-heads point towards the dependent nodes in a directed graphical model

White nodes: Unknowns

• Initialize the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ randomly, or using K-means

- ullet Initialize the parameters $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)

- Initialize the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(x|\Theta)$ ceases to increase)
 - Given Θ , compute each expectation z_{nk} (post. prob. of $z_{nk}=1$), $\forall n,k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t. $\sum_{k=1}^K \gamma_{nk} = 1$)

- Initialize the parameters $\Theta = \{\pi_k, \mu_k, \mathbf{\Sigma}_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(x|\Theta)$ ceases to increase)
 - Given Θ , compute each expectation z_{nk} (post. prob. of $z_{nk}=1$), $\forall n,k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t. $\sum_{k=1}^K \gamma_{nk} = 1$)

• Given $\gamma_{nk} = \mathbb{E}[z_{nk}]$, and $N_k = \sum_{n=1}^N \gamma_{nk}$, update Θ as

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} \mathbf{x}_n$$

$$\mathbf{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top}$$

$$\pi_k = \frac{N_k}{N_k}$$

- ullet Initialize the parameters $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)
 - Given Θ , compute each expectation z_{nk} (post. prob. of $z_{nk}=1$), $\forall n,k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t. $\sum_{k=1}^K \gamma_{nk} = 1$)

• Given $\gamma_{nk} = \mathbb{E}[z_{nk}]$, and $N_k = \sum_{n=1}^N \gamma_{nk}$, update Θ as

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} \mathbf{x}_n$$

$$\mathbf{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top}$$

$$\pi_k = \frac{N_k}{N_k}$$

(This algorithm is an instance of the more general Expectation Maximization (EM) algorithm which we will look at today)

Expectation Maximization (EM)

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ
- Goal: Estimate the model parameters Θ via MLE (or MAP)

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ
- Goal: Estimate the model parameters Θ via MLE (or MAP)

$$\hat{\Theta} = \arg\max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg\max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{ (when } \mathbf{Z} \text{ is discrete)}$$

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ
- Goal: Estimate the model parameters Θ via MLE (or MAP)

$$\hat{\Theta} = \arg\max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg\max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{(when } \mathbf{Z} \text{ is discrete)}$$

$$= \arg\max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z} \quad \text{(when } \mathbf{Z} \text{ is continuous)}$$

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ
- Goal: Estimate the model parameters Θ via MLE (or MAP)

$$\hat{\Theta} = \arg\max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg\max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{(when } \mathbf{Z} \text{ is discrete)}$$

$$= \arg\max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z} \quad \text{(when } \mathbf{Z} \text{ is continuous)}$$

Doing MLE in such models can be difficult because of the log-sum/integral

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ
- Goal: Estimate the model parameters Θ via MLE (or MAP)

$$\hat{\Theta} = \arg\max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg\max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{(when } \mathbf{Z} \text{ is discrete)}$$

$$= \arg\max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z} \quad \text{(when } \mathbf{Z} \text{ is continuous)}$$

- Doing MLE in such models can be difficult because of the log-sum/integral
 - ullet In general, can't do usual MLE/MAP to get closed form solution for Θ

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ
- Goal: Estimate the model parameters Θ via MLE (or MAP)

$$\hat{\Theta} = \arg\max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg\max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{(when } \mathbf{Z} \text{ is discrete)}$$

$$= \arg\max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z} \quad \text{(when } \mathbf{Z} \text{ is continuous)}$$

- Doing MLE in such models can be difficult because of the log-sum/integral
 - ullet In general, can't do usual MLE/MAP to get closed form solution for Θ
 - A reason: Even if $p(\mathbf{X}, \mathbf{Z}|\Theta)$ is in exponential family, $p(\mathbf{X}|\Theta)$ in general isn't

- Consider a generative model with joint distr. $p(\mathbf{X}, \mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n)$
 - Observed data: $\mathbf{X} = \{x_n\}_{n=1}^N$
 - Latent variables: $\mathbf{Z} = \{z_n\}_{n=1}^N$. All the model parameters: Θ
- Goal: Estimate the model parameters Θ via MLE (or MAP)

$$\hat{\Theta} = \arg\max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg\max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{(when } \mathbf{Z} \text{ is discrete)}$$

$$= \arg\max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z} \quad \text{(when } \mathbf{Z} \text{ is continuous)}$$

- Doing MLE in such models can be difficult because of the log-sum/integral
 - ullet In general, can't do usual MLE/MAP to get closed form solution for Θ
 - A reason: Even if $p(X, Z|\Theta)$ is in exponential family, $p(X|\Theta)$ in general isn't
 - Note: Exp. famil dist. are easy to work with when doing MLE/MAP on them (note that log exp() would give simple expressions; easy to work with)

Exponential Family

An exponential family distribution is defined as

$$p(x; \theta) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$$

- $oldsymbol{ heta}$ is called the parameter of the family
- h(x), $\eta(\theta)$, T(x), and $A(\theta)$ are known functions
- p(.) depends on x only through T(x)
- T(x) is called the **sufficient statistics**: summarizes the entire $p(x; \theta)$
- Exponential family is the only family for which conjugate priors exist (often also in the exponential family)
- Many other nice properties (especially useful in Bayesian inference)

Many well-known distribution (Bernoulli, Binomial, categorical, beta, gamma, Gaussian, etc.) are exponential family distributions

https://en.wikipedia.org/wiki/Exponential_family

• Assume **Z** is known to us (somehow)

- Assume **Z** is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(X, Z|\Theta)$ instead of $\log p(X|\Theta)$

- Assume **Z** is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(X, Z|\Theta)$ instead of $\log p(X|\Theta)$

- Assume **Z** is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(X, Z|\Theta)$ instead of $\log p(X|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z|\Theta)$, since Z is random

- Assume **Z** is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead of $\log p(\mathbf{X}|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z|\Theta)$, since Z is random
 - Assume that MLE of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is easy to solve (e.g., will be the case if $p(\mathbf{Z})$ and $p(\mathbf{X}|\mathbf{Z})$ are in exponential family) than solving MLE of $\log p(\mathbf{X}|\Theta)$

- Assume Z is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead of $\log p(\mathbf{X}|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z|\Theta)$, since Z is random
 - Assume that MLE of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is easy to solve (e.g., will be the case if $p(\mathbf{Z})$ and $p(\mathbf{X}|\mathbf{Z})$ are in exponential family) than solving MLE of $\log p(\mathbf{X}|\Theta)$
- Two questions to consider here:
 - How do we come up with our "guess" of **Z**?

- Assume Z is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead of $\log p(\mathbf{X}|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z|\Theta)$, since Z is random
 - Assume that MLE of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is easy to solve (e.g., will be the case if $p(\mathbf{Z})$ and $p(\mathbf{X}|\mathbf{Z})$ are in exponential family) than solving MLE of $\log p(\mathbf{X}|\Theta)$
- Two questions to consider here:
 - How do we come up with our "guess" of **Z**?

• Is MLE on $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ equivalent to MLE on $\log p(\mathbf{X}|\Theta)$?

- Assume Z is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(X, Z|\Theta)$ instead of $\log p(X|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z | \Theta)$, since Z is random
 - Assume that MLE of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is easy to solve (e.g., will be the case if $p(\mathbf{Z})$ and $p(\mathbf{X}|\mathbf{Z})$ are in exponential family) than solving MLE of $\log p(\mathbf{X}|\Theta)$
- Two questions to consider here:
 - How do we come up with our "guess" of Z?
 - \bullet Given $\underline{\text{current estimate}}$ of $\Theta = \Theta^{\textit{old}},$ guess \boldsymbol{Z} using the posterior dist. of \boldsymbol{Z}

$$p(\mathbf{Z}|\Theta^{old},\mathbf{X}) \propto p(\mathbf{Z})p(\mathbf{X}|\mathbf{Z}) \qquad \text{(but why this dist.? we will see shortly)}$$

• Is MLE on $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ equivalent to MLE on $\log p(\mathbf{X}|\Theta)$?

- Assume Z is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(X, Z|\Theta)$ instead of $\log p(X|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z | \Theta)$, since Z is random
 - Assume that MLE of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is easy to solve (e.g., will be the case if $p(\mathbf{Z})$ and $p(\mathbf{X}|\mathbf{Z})$ are in exponential family) than solving MLE of $\log p(\mathbf{X}|\Theta)$
- Two questions to consider here:
 - How do we come up with our "guess" of Z?
 - \bullet Given $\underline{\text{current estimate}}$ of $\Theta = \Theta^{\textit{old}},$ guess \boldsymbol{Z} using the posterior dist. of \boldsymbol{Z}

$$p(\mathbf{Z}|\Theta^{old},\mathbf{X}) \propto p(\mathbf{Z})p(\mathbf{X}|\mathbf{Z}) \qquad \text{(but why this dist.? we will see shortly)}$$

• Is MLE on $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ equivalent to MLE on $\log p(\mathbf{X}|\Theta)$?

- Assume **Z** is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead of $\log p(\mathbf{X}|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z|\Theta)$, since Z is random
 - Assume that MLE of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is easy to solve (e.g., will be the case if $p(\mathbf{Z})$ and $p(\mathbf{X}|\mathbf{Z})$ are in exponential family) than solving MLE of $\log p(\mathbf{X}|\Theta)$
- Two questions to consider here:
 - How do we come up with our "guess" of Z?
 - \bullet Given $\underline{\text{current estimate}}$ of $\Theta = \Theta^{\textit{old}},$ guess \boldsymbol{Z} using the posterior dist. of \boldsymbol{Z}

$$p(\mathbf{Z}|\Theta^{old},\mathbf{X})\propto p(\mathbf{Z})p(\mathbf{X}|\mathbf{Z})$$
 (but why this dist.? we will see shortly)

- Is MLE on $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ equivalent to MLE on $\log p(\mathbf{X}|\Theta)$?
 - (We will see that) $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is a tight lower-bound on $\log p(\mathbf{X}|\Theta)$

- Assume Z is known to us (somehow)
- Now do MLE on the joint p.d.f. $\log p(X, Z|\Theta)$ instead of $\log p(X|\Theta)$
 - .. actually MLE on the expected $\log p(X, Z|\Theta)$, since Z is random
 - Assume that MLE of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is easy to solve (e.g., will be the case if $p(\mathbf{Z})$ and $p(\mathbf{X}|\mathbf{Z})$ are in exponential family) than solving MLE of $\log p(\mathbf{X}|\Theta)$
- Two questions to consider here:
 - How do we come up with our "guess" of Z?
 - \bullet Given $\underline{\text{current estimate}}$ of $\Theta = \Theta^{\textit{old}},$ guess \boldsymbol{Z} using the posterior dist. of \boldsymbol{Z}

$$p(\mathbf{Z}|\Theta^{old},\mathbf{X})\propto p(\mathbf{Z})p(\mathbf{X}|\mathbf{Z})$$
 (but why this dist.? we will see shortly)

- Is MLE on $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ equivalent to MLE on $\log p(\mathbf{X}|\Theta)$?
 - (We will see that) $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is a tight lower-bound on $\log p(\mathbf{X}|\Theta)$
 - Maximizing this lower-bound iteratively will also improve $\log p(\mathbf{X}|\Theta)$

Justification

• The incomplete data log lik. can be written as a sum of two terms

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

where q is some distr. on \mathbf{Z} , $p_{\mathbf{Z}} = p(\mathbf{Z}|\mathbf{X},\Theta)$ is the posterior over \mathbf{Z} , and $\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X},\mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$

$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$$

$$\mathsf{KL}(q||p_z) = -\sum_{\mathsf{Z}} q(\mathsf{Z}) \log \left\{ \frac{p(\mathsf{Z}|\mathsf{X},\Theta)}{q(\mathsf{Z})} \right\}$$

(to verify, use $\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \log p(\mathbf{Z}|\mathbf{X}, \Theta) + \log p(\mathbf{X}|\Theta)$ in the expression of $\mathcal{L}(a, \Theta)$)

Justification

The incomplete data log lik. can be written as a sum of two terms

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

where q is some distr. on \mathbf{Z} , $p_{\mathbf{Z}} = p(\mathbf{Z}|\mathbf{X},\Theta)$ is the posterior over \mathbf{Z} , and $\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X},\mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$

$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$$

$$\mathsf{KL}(q||p_z) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)}{q(\mathbf{Z})} \right\}$$

(to verify, use $\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \log p(\mathbf{Z}|\mathbf{X}, \Theta) + \log p(\mathbf{X}|\Theta)$ in the expression of $\mathcal{L}(a, \Theta)$)

• Since $KL(q||p_z) \ge 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$ for any q

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$. Consider the following scheme:

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$. Consider the following scheme:

ullet With Θ fixed to Θ^{old} , maximize the "functional" $\mathcal{L}(q,\Theta^{old})$ w.r.t. q

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$. Consider the following scheme:

ullet With Θ fixed to Θ^{old} , maximize the "functional" $\mathcal{L}(q,\Theta^{old})$ w.r.t. q

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

which is equivalent to making $\mathsf{KL}(q||p_z) = 0$ or setting $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$. Consider the following scheme:

ullet With Θ fixed to Θ^{old} , maximize the "functional" $\mathcal{L}(q,\Theta^{old})$ w.r.t. q

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

which is equivalent to making $KL(q||p_z) = 0$ or setting $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ (This step makes $\mathcal{L}(\hat{q}, \Theta^{old}) = \log p(\mathbf{X}|\Theta^{old})$; see next slide)

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathrm{KL}(q||p_z)$. Consider the following scheme:

• With Θ fixed to Θ^{old} , maximize the "functional" $\mathcal{L}(q, \Theta^{old})$ w.r.t. q

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

which is equivalent to making $KL(q||p_z) = 0$ or setting $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ (This step makes $\mathcal{L}(\hat{q}, \Theta^{old}) = \log p(\mathbf{X}|\Theta^{old})$; see next slide)

• With \hat{q} fixed at $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$, maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ , where

$$\mathcal{L}(\hat{q},\Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta^{old}) \log p(\mathbf{X},\mathbf{Z}|\Theta) - \underbrace{\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta^{old}) \log p(\mathbf{Z}|\mathbf{X},\Theta^{old})}_{\text{constant with } \Theta}$$

constant w.r.t. Θ

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$. Consider the following scheme:

ullet With Θ fixed to Θ^{old} , maximize the "functional" $\mathcal{L}(q,\Theta^{old})$ w.r.t. q

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

which is equivalent to making $KL(q||p_z) = 0$ or setting $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ (This step makes $\mathcal{L}(\hat{q}, \Theta^{old}) = \log p(\mathbf{X}|\Theta^{old})$; see next slide)

• With \hat{q} fixed at $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$, maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ , where

$$\mathcal{L}(\hat{q}, \Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \underbrace{\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log p(\mathbf{Z}|\mathbf{X}, \Theta^{old})}_{\text{constant w.r.t. }\Theta}$$

$$=$$
 $\mathcal{Q}(\Theta, \Theta^{old}) + const$

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$. Consider the following scheme:

ullet With Θ fixed to Θ^{old} , maximize the "functional" $\mathcal{L}(q,\Theta^{old})$ w.r.t. q

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

which is equivalent to making $KL(q||p_z) = 0$ or setting $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ (This step makes $\mathcal{L}(\hat{a}, \Theta^{old}) = \log p(\mathbf{X}|\Theta^{old})$: see next slide)

• With \hat{q} fixed at $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$, maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ , where

$$\mathcal{L}(\hat{q}, \Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \underbrace{\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log p(\mathbf{Z}|\mathbf{X}, \Theta^{old})}_{\text{constant w.r.t. }\Theta}$$

$$=$$
 $\mathcal{Q}(\Theta, \Theta^{old}) + const$

$$\Theta^{\textit{new}} = \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{\textit{old}}) \qquad \text{(where } \mathcal{Q}(\Theta, \Theta^{\textit{old}}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)])$$

Recall $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$. Consider the following scheme:

ullet With Θ fixed to Θ^{old} , maximize the "functional" $\mathcal{L}(q,\Theta^{old})$ w.r.t. q

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

which is equivalent to making $KL(q||p_z) = 0$ or setting $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ (This step makes $\mathcal{L}(\hat{q}, \Theta^{old}) = \log p(\mathbf{X}|\Theta^{old})$; see next slide)

• With \hat{q} fixed at $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$, maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ , where

$$\mathcal{L}(\hat{q}, \Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \underbrace{\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log p(\mathbf{Z}|\mathbf{X}, \Theta^{old})}_{\text{constant w.r.t. }\Theta}$$

 $= \mathcal{Q}(\Theta, \Theta^{old}) + const$

$$\Theta^{\textit{new}} = \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{\textit{old}}) \qquad (\text{where } \mathcal{Q}(\Theta, \Theta^{\textit{old}}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)])$$

(This step ensures that $\log p(\mathbf{X}|\Theta^{new}) \geq \log p(\mathbf{X}|\Theta^{old})$; see next slide)

Step 1: Set $q = p(\mathbf{Z}|\mathbf{X}, \Theta)$, $\mathsf{KL}(q||p_z)$ becomes 0, $\mathcal{L}(q, \Theta^{old})$ increases and becomes equal to $\log p(\mathbf{X}|\Theta^{old})$

Step 1: Set $q = p(\mathbf{Z}|\mathbf{X}, \Theta)$, $\mathsf{KL}(q||p_z)$ becomes 0, $\mathcal{L}(q, \Theta^{old})$ increases and becomes equal to $\log p(\mathbf{X}|\Theta^{old})$

Step 2: Θ^{new} makes $\mathcal{L}(q, \Theta^{new})$ go further up, makes $\mathsf{KL}(q||p_z) > 0$ again because $q \neq p(\mathbf{Z}|\mathbf{X}, \Theta^{new})$ and thus ensures that $\log p(\mathbf{X}|\Theta^{new}) \geq \log p(\mathbf{X}|\Theta^{old})$

Step 1: Set $q = p(\mathbf{Z}|\mathbf{X}, \Theta)$, $KL(q||p_z)$ becomes 0, $\mathcal{L}(q, \Theta^{old})$ increases and becomes equal to $\log p(\mathbf{X}|\Theta^{old})$

Step 2: Θ^{new} makes $\mathcal{L}(q, \Theta^{new})$ go further up, makes $\mathsf{KL}(q||p_z) > 0$ again because $q \neq p(\mathbf{Z}|\mathbf{X}, \Theta^{new})$ and thus ensures that $\log p(\mathbf{X}|\Theta^{new}) \geq \log p(\mathbf{X}|\Theta^{old})$

These two steps never decrease $\log p(X|\Theta)$. Thus it's a good way of doing MLE

10

• Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

• Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \text{ (where } q(\mathbf{Z}) \text{ is some dist.)}$$

• Consider the 'incomplete" data log likelihood

$$\begin{split} \log \rho(\mathbf{X}|\Theta) &= & \log \sum_{\mathbf{Z}} \rho(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)} \\ &\geq & \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \end{split}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i))$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z})$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i))$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathsf{Z}} q(\mathsf{Z}) \log \frac{p(\mathsf{X}, \mathsf{Z}|\Theta)}{q(\mathsf{Z})}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta) p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta) p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta)$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{\rho(\mathbf{Z}|\mathbf{X}, \Theta)}{\rho(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta) \log \rho(\mathbf{X}|\Theta)$$

$$= \log \rho(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta) = \log \rho(\mathbf{X}|\Theta)$$

• Thus for $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, we have

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

• Thus for $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, we have

$$\log p(X|\Theta) = \sum_{Z} p(Z|X,\Theta) \log p(X,Z|\Theta) + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

• Thus for $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, we have

$$\log p(\mathbf{X}|\Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta) \log p(\mathbf{X},\mathbf{Z}|\Theta) + \text{const.} = \mathbb{E}[\log p(\mathbf{X},\mathbf{Z}|\Theta)] + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ is some dist.)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i) \text{)}$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

• Thus for $q(Z) = p(Z|X,\Theta)$, we have

$$\log p(\mathsf{X}|\Theta) = \sum_{\mathsf{Z}} p(\mathsf{Z}|\mathsf{X},\Theta) \log p(\mathsf{X},\mathsf{Z}|\Theta) + \text{const.} = \mathbb{E}[\log p(\mathsf{X},\mathsf{Z}|\Theta)] + \text{const.}$$

• Thus $\log p(\mathbf{X}|\Theta)$ is tightly lower-bounded by $\mathbb{E}[\log p(\mathbf{X},\mathbf{Z}|\Theta)]$ which EM maximizes

Initialize the parameters: Θ^{old} . Then alternate between these steps:

Initialize the parameters: Θ^{old} . Then alternate between these steps:

• E (Expectation) step:

Initialize the parameters: Θ^{old} . Then alternate between these steps:

- E (Expectation) step:
 - Compute the posterior $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}

Initialize the parameters: Θ^{old} . Then alternate between these steps:

- E (Expectation) step:
 - Compute the posterior $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
 - Compute the expected complete data log-likelihood w.r.t. this posterior

$$\mathcal{Q}(\Theta,\Theta^{old}) = \mathbb{E}_{\rho(\mathbf{Z}|\mathbf{X},\Theta^{old})}[\log \rho(\mathbf{X},\mathbf{Z}|\Theta)] = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X},\Theta^{old})\log \rho(\mathbf{X},\mathbf{Z}|\Theta)$$

Initialize the parameters: Θ^{old} . Then alternate between these steps:

- E (Expectation) step:
 - Compute the posterior $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
 - Compute the expected complete data log-likelihood w.r.t. this posterior

$$\mathcal{Q}(\Theta,\Theta^{old}) = \mathbb{E}_{\rho(\mathbf{Z}|\mathbf{X},\Theta^{old})}[\log \rho(\mathbf{X},\mathbf{Z}|\Theta)] = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X},\Theta^{old})\log \rho(\mathbf{X},\mathbf{Z}|\Theta)$$

M (Maximization) step:

Initialize the parameters: Θ^{old} . Then alternate between these steps:

E (Expectation) step:

- Compute the posterior $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
- Compute the expected complete data log-likelihood w.r.t. this posterior

$$\mathcal{Q}(\Theta,\Theta^{old}) = \mathbb{E}_{\rho(\mathbf{Z}|\mathbf{X},\Theta^{old})}[\log \rho(\mathbf{X},\mathbf{Z}|\Theta)] = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X},\Theta^{old})\log \rho(\mathbf{X},\mathbf{Z}|\Theta)$$

M (Maximization) step:

Maximize the expected complete data log-likelihood w.r.t. Θ

$$\begin{array}{lcl} \Theta^{\textit{new}} & = & \arg\max_{\Theta} \mathcal{Q}(\Theta,\Theta^{\textit{old}}) & (\text{if doing MLE}) \\ \\ \Theta^{\textit{new}} & = & \arg\max_{\Theta} \{\mathcal{Q}(\Theta,\Theta^{\textit{old}}) + \log p(\Theta)\} & (\text{if doing MAP}) \end{array}$$

Initialize the parameters: Θ^{old} . Then alternate between these steps:

E (Expectation) step:

- Compute the posterior $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
- Compute the expected complete data log-likelihood w.r.t. this posterior

$$\mathcal{Q}(\Theta,\Theta^{old}) = \mathbb{E}_{\rho(\mathbf{Z}|\mathbf{X},\Theta^{old})}[\log \rho(\mathbf{X},\mathbf{Z}|\Theta)] = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X},\Theta^{old})\log \rho(\mathbf{X},\mathbf{Z}|\Theta)$$

M (Maximization) step:

Maximize the expected complete data log-likelihood w.r.t. Θ

$$\begin{array}{lll} \Theta^{\textit{new}} & = & \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{\textit{old}}) & (\text{if doing MLE}) \\ \\ \Theta^{\textit{new}} & = & \arg\max_{\Theta} \{\mathcal{Q}(\Theta, \Theta^{\textit{old}}) + \log p(\Theta)\} & (\text{if doing MAP}) \end{array}$$

• If the log-likelihood or the parameter values not converged then set $\Theta^{old} = \Theta^{new}$ and go to the E step.

Initialize the parameters: Θ^{old} . Then alternate between these steps:

E (Expectation) step:

- Compute the posterior $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
- Compute the expected complete data log-likelihood w.r.t. this posterior

$$\mathcal{Q}(\Theta,\Theta^{old}) = \mathbb{E}_{\rho(\mathbf{Z}|\mathbf{X},\Theta^{old})}[\log \rho(\mathbf{X},\mathbf{Z}|\Theta)] = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X},\Theta^{old})\log \rho(\mathbf{X},\mathbf{Z}|\Theta)$$

M (Maximization) step:

Maximize the expected complete data log-likelihood w.r.t. Θ

$$\begin{array}{ll} \Theta^{new} & = & \arg\max_{\Theta} \mathcal{Q}(\Theta,\Theta^{old}) \quad (\text{if doing MLE}) \\ \\ \Theta^{new} & = & \arg\max_{\Theta} \{\mathcal{Q}(\Theta,\Theta^{old}) + \log p(\Theta)\} \quad (\text{if doing MAP}) \end{array}$$

• If the log-likelihood or the parameter values not converged then set $\Theta^{old} = \Theta^{new}$ and go to the E step.

The algorithm converges to a local maxima of $p(X|\Theta)$ (as we saw)

EM: A View in the Parameter Space

- ullet E-step: Update of q makes the $\mathcal{L}(q,\Theta)$ curve touch the $\log p(\mathbf{X}|\Theta)$ curve
- ullet M-step gives the maxima Θ^{new} of $\mathcal{L}(q,\Theta)$
- Next E-step readjusts $\mathcal{L}(q,\Theta)$ curve (green) to meet $\log p(\mathbf{X}|\Theta)$ curve again
- This continues until a local maxima of $\log p(\mathbf{X}|\Theta)$ is reached

• A general framework for parameter estimation in latent variable models

- A general framework for parameter estimation in latent variable models
- Very widely used in problems with "missing data", e.g., missing features, or missing labels (semi-supervised learning)

- A general framework for parameter estimation in latent variable models
- Very widely used in problems with "missing data", e.g., missing features, or missing labels (semi-supervised learning)
 - "Missing" parts can be treated as latent variables z and estimated using EM
- More advanced probabilistic inference algorithms are based on similar ideas

- A general framework for parameter estimation in latent variable models
- Very widely used in problems with "missing data", e.g., missing features, or missing labels (semi-supervised learning)
 - "Missing" parts can be treated as latent variables z and estimated using EM
- More advanced probabilistic inference algorithms are based on similar ideas
 - E.g., variational Bayesian inference

- A general framework for parameter estimation in latent variable models
- Very widely used in problems with "missing data", e.g., missing features, or missing labels (semi-supervised learning)
 - "Missing" parts can be treated as latent variables z and estimated using EM
- More advanced probabilistic inference algorithms are based on similar ideas
 - E.g., variational Bayesian inference
- Very easy to extend to online learning setting and gives SGD like algorithms (will post a reading on "Online EM" on the class webpage)

EM: Some Comments

- A general framework for parameter estimation in latent variable models
- Very widely used in problems with "missing data", e.g., missing features, or missing labels (semi-supervised learning)
 - "Missing" parts can be treated as latent variables z and estimated using EM
- More advanced probabilistic inference algorithms are based on similar ideas
 - E.g., variational Bayesian inference
- Very easy to extend to online learning setting and gives SGD like algorithms (will post a reading on "Online EM" on the class webpage)
- Note: The E and M steps may not always be possible to perform exactly (approximate inference methods may be needed in such cases)

• Assume the following generative model for each $\mathbf{x}_n \in \mathbb{R}^D$

- Assume the following generative model for each $\mathbf{x}_n \in \mathbb{R}^D$
 - ullet First draw a latent variable (latent factors or latent features) $oldsymbol{z}_n \in \mathbb{R}^K$ as $oldsymbol{z}_n \sim \mathcal{N}(oldsymbol{z}|0, oldsymbol{I}_K)$

- Assume the following generative model for each $\mathbf{x}_n \in \mathbb{R}^D$
 - First draw a latent variable (latent factors or latent features) $z_n \in \mathbb{R}^K$ as $z_n \sim \mathcal{N}(z|0, \mathbf{I}_K)$
 - Now draw x_n by transforming z_n as $x_n = Wz_n + \epsilon_n$

- Assume the following generative model for each $\mathbf{x}_n \in \mathbb{R}^D$
 - First draw a latent variable (latent factors or latent features) $z_n \in \mathbb{R}^K$ as $z_n \sim \mathcal{N}(z|0, \mathbf{I}_K)$
 - Now draw x_n by transforming z_n as $x_n = \mathbf{W} z_n + \epsilon_n$, where \mathbf{W} is a $D \times K$ matrix, $K \ll D$

- Assume the following generative model for each $\mathbf{x}_n \in \mathbb{R}^D$
 - First draw a latent variable (latent factors or latent features) $z_n \in \mathbb{R}^K$ as $z_n \sim \mathcal{N}(z|0, \mathbf{I}_K)$
 - Now draw \mathbf{x}_n by transforming \mathbf{z}_n as $\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$, where \mathbf{W} is a $D \times K$ matrix, $K \ll D$ and Gaussian noise $\epsilon_n \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_D)$

- Assume the following generative model for each $\mathbf{x}_n \in \mathbb{R}^D$
 - First draw a latent variable (latent factors or latent features) $z_n \in \mathbb{R}^K$ as

$$\boldsymbol{z}_n \sim \mathcal{N}(\boldsymbol{z}|\boldsymbol{0},\boldsymbol{I}_K)$$

• Now draw x_n by transforming z_n as $x_n = \mathbf{W} z_n + \epsilon_n$, where \mathbf{W} is a $D \times K$ matrix, $K \ll D$ and Gaussian noise $\epsilon_n \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_D)$. Equivalent to saying

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z}_n, \sigma^2\mathbf{I}_D)$$

- ullet Assume the following generative model for each $oldsymbol{x}_n \in \mathbb{R}^D$
 - ullet First draw a latent variable (latent factors or latent features) $oldsymbol{z}_n \in \mathbb{R}^K$ as

$$\boldsymbol{z}_n \sim \mathcal{N}(\boldsymbol{z}|\boldsymbol{0},\boldsymbol{I}_K)$$

• Now draw x_n by transforming z_n as $x_n = \mathbf{W} z_n + \epsilon_n$, where \mathbf{W} is a $D \times K$ matrix, $K \ll D$ and Gaussian noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$. Equivalent to saying

- Assume the following generative model for each $\mathbf{x}_n \in \mathbb{R}^D$
 - ullet First draw a latent variable (latent factors or latent features) $oldsymbol{z}_n \in \mathbb{R}^K$ as

$$\boldsymbol{z}_n \sim \mathcal{N}(\boldsymbol{z}|\boldsymbol{0},\boldsymbol{I}_K)$$

• Now draw x_n by transforming z_n as $x_n = \mathbf{W} z_n + \epsilon_n$, where \mathbf{W} is a $D \times K$ matrix, $K \ll D$ and Gaussian noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$. Equivalent to saying

• This defines a probabilistic PCA (PPCA) generative model

- Assume the following generative model for each $x_n \in \mathbb{R}^D$
 - ullet First draw a latent variable (latent factors or latent features) $oldsymbol{z}_n \in \mathbb{R}^K$ as

$$\boldsymbol{z}_n \sim \mathcal{N}(\boldsymbol{z}|\boldsymbol{0},\boldsymbol{I}_K)$$

• Now draw x_n by transforming z_n as $x_n = \mathbf{W} z_n + \epsilon_n$, where \mathbf{W} is a $D \times K$ matrix, $K \ll D$ and Gaussian noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$. Equivalent to saying

- This defines a probabilistic PCA (PPCA) generative model
- When Gaussian noise has diag. instead of spherical covar: Factor Analysis

- ullet Assume the following generative model for each $oldsymbol{x}_n \in \mathbb{R}^D$
 - ullet First draw a latent variable (latent factors or latent features) $oldsymbol{z}_n \in \mathbb{R}^K$ as

$$\boldsymbol{z}_n \sim \mathcal{N}(\boldsymbol{z}|\boldsymbol{0},\boldsymbol{I}_K)$$

• Now draw x_n by transforming z_n as $x_n = \mathbf{W} z_n + \epsilon_n$, where \mathbf{W} is a $D \times K$ matrix, $K \ll D$ and Gaussian noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$. Equivalent to saying

- This defines a probabilistic PCA (PPCA) generative model
- When Gaussian noise has diag. instead of spherical covar: Factor Analysis
- Given observations $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$, we want to learn params $\Theta = \{\mathbf{W}, \sigma^2\}$ and latent variables $\mathbf{Z} = \{\mathbf{z}_n\}_{n=1}^N$. EM gives a nice and efficient way of doing this.

• The model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

ullet Note: We'll assume data to be centered, otherwise $oldsymbol{x}_n = oldsymbol{\mu} + oldsymbol{\mathsf{W}} oldsymbol{z}_n + \epsilon_n$

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

- ullet Note: We'll assume data to be centered, otherwise $oldsymbol{x}_n = oldsymbol{\mu} + oldsymbol{\mathsf{W}} oldsymbol{z}_n + \epsilon_n$
- Zooming in at the relationship between each x_n and each z_n

• The model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

- ullet Note: We'll assume data to be centered, otherwise $oldsymbol{x}_n = oldsymbol{\mu} + oldsymbol{\mathsf{W}} oldsymbol{z}_n + \epsilon_n$
- Zooming in at the relationship between each x_n and each z_n

• A directed graphical model linking z_n and x_n via "edge weights" **W**

$$\boldsymbol{x}_n = \boldsymbol{\mathsf{W}}\boldsymbol{z}_n + \boldsymbol{\epsilon}_n$$

- ullet Note: We'll assume data to be centered, otherwise $oldsymbol{x}_n = oldsymbol{\mu} + oldsymbol{\mathsf{W}} oldsymbol{z}_n + \epsilon_n$
- Zooming in at the relationship between each x_n and each z_n

- A directed graphical model linking z_n and x_n via "edge weights" **W**
- The $D \times K$ matrix **W** is also called the factor loading matrix

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

- ullet Note: We'll assume data to be centered, otherwise $oldsymbol{x}_n = oldsymbol{\mu} + oldsymbol{\mathsf{W}} oldsymbol{z}_n + \epsilon_n$
- ullet Zooming in at the relationship between each $oldsymbol{z}_n$ and each $oldsymbol{z}_n$

- A directed graphical model linking z_n and x_n via "edge weights" **W**
- ullet The $D \times K$ matrix $oldsymbol{W}$ is also called the factor loading matrix
 - Can think of each column of **W** as a basis (but not mutually orthogonal)

$$\boldsymbol{x}_n = \mathbf{W}\boldsymbol{z}_n + \epsilon_n$$

- Note: We'll assume data to be centered, otherwise $\mathbf{x}_n = \boldsymbol{\mu} + \mathbf{W}\mathbf{z}_n + \epsilon_n$
- Zooming in at the relationship between each x_n and each z_n

- A directed graphical model linking z_n and x_n via "edge weights" **W**
- The $D \times K$ matrix **W** is also called the factor loading matrix
 - Can think of each column of **W** as a basis (but not mutually orthogonal)
 - W can be used to interpret the relationship of b/w the K latent features and D observed features of each observation x_n

• Can also be seen as modeling data using a low-rank Gaussian

$$p(\boldsymbol{x}_n) = \mathcal{N}(\boldsymbol{x}_n|0, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I}_D)$$

Can also be seen as modeling data using a low-rank Gaussian

$$p(\boldsymbol{x}_n) = \mathcal{N}(\boldsymbol{x}_n|0, \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_D)$$

• PPCA reduces to PCA as the noise variance σ^2 tends to zero

Can also be seen as modeling data using a low-rank Gaussian

$$p(\boldsymbol{x}_n) = \mathcal{N}(\boldsymbol{x}_n|0, \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_D)$$

- PPCA reduces to PCA as the noise variance σ^2 tends to zero
- Can use EM to estimate the model parameters (which can be more efficient than standard PCA based on eigen-decomposition)

Can also be seen as modeling data using a low-rank Gaussian

$$p(\boldsymbol{x}_n) = \mathcal{N}(\boldsymbol{x}_n|0, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I}_D)$$

- PPCA reduces to PCA as the noise variance σ^2 tends to zero
- Can use EM to estimate the model parameters (which can be more efficient than standard PCA based on eigen-decomposition)
- Gaussian assumption of x_n and z_n can be removed to model other data types

Can also be seen as modeling data using a low-rank Gaussian

$$p(\mathbf{x}_n) = \mathcal{N}(\mathbf{x}_n|0, \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_D)$$

- PPCA reduces to PCA as the noise variance σ^2 tends to zero
- Can use EM to estimate the model parameters (which can be more efficient than standard PCA based on eigen-decomposition)
- Gaussian assumption of x_n and z_n can be removed to model other data types
- Can extend this basic model to dynamic settings, e.g., by changing the prior

$$p(\boldsymbol{z}_n) = \mathcal{N}(\boldsymbol{z}_n | \boldsymbol{z}_{n-1}, \boldsymbol{I}_K)$$

Can also be seen as modeling data using a low-rank Gaussian

$$p(\boldsymbol{x}_n) = \mathcal{N}(\boldsymbol{x}_n|0, \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_D)$$

- PPCA reduces to PCA as the noise variance σ^2 tends to zero
- Can use EM to estimate the model parameters (which can be more efficient than standard PCA based on eigen-decomposition)
- Gaussian assumption of x_n and z_n can be removed to model other data types
- Can extend this basic model to dynamic settings, e.g., by changing the prior

$$p(\boldsymbol{z}_n) = \mathcal{N}(\boldsymbol{z}_n | \boldsymbol{z}_{n-1}, \boldsymbol{I}_K)$$

Can model data using a mixture of PPCA or mixture of FA models

Next Class

- Talk in more detail about PPCA, Factor Analysis, and extensions
- EM algorithm for parameter estimation in these models
- Finish off the discussion of generative models and unsupervised learning and move on to "Assorted Topics"