The Design of Everyday Things — Don Norman

Research Notes

Purpose: To extract and organize insights relevant to my research question: How could this help me automatically predict what actions are possible with a 3D object?

Core Ideas

Discoverability and Understanding (pg. 19-21)

Two key characteristics of good design:

- 1. **Discoverability:** Can users figure out what actions are possible, where, and how to perform them?
- 2. Understanding: Do users comprehend what those actions mean and how to use the product correctly?
- Relevant components must be visible and communicate the correct message
- "Design is concerned with how things work, how they are controlled, and the nature of the interaction between people and technology"
- Often, designs are made by engineers with limited understanding of people

Human-Centered Design (pg. 23)

- A process ensuring designs match the needs and capabilities of the people who use them
- Balances functionality, usability, and emotional experience

Discoverability: Five Foundational Concepts

1. Affordances (pg. 26-28)

Definition:

"An affordance is the relationship between the properties of an object and the capabilities of the agent that determine how the object could possibly be used."

Key Points:

- Affordance is a relationship, not an intrinsic property
- Exists between object qualities and agent abilities
- Anti-affordance: Prevents interaction (e.g., glass blocks passage)
- If an affordance or anti-affordance is not perceivable, a signifier is required
- Affordances may exist even if invisible but for designers, visibility is critical because it communicates possible

actions

• "Visible affordances provide strong clues to operation"

2. Signifiers (pg. 28-31)

People need clues about what something is for, what is happening, and what actions are possible.

- Signifiers communicate appropriate behavior visual, auditory, or tactile indicators
- **Deliberate:** Signs like "PUSH" or "EXIT"
- Accidental: Footpaths through grass, or people waiting at a station signaling the train hasn't arrived
- Signifiers are signals, not actions
- Misleading signifiers: Something appears to be usable (a false door or button) but isn't

Key Distinction:

- Affordances represent what actions are possible
- Signifiers communicate where and how to act

3. *Mapping (pg. 33)*

The relationship between controls and their results.

Good mapping simplifies understanding:

- Example: Turning a steering wheel right moves the car's front right
- Example: Light switches arranged in the same layout as lights

Natural mappings create intuitive use and reduce memory effort.

4. Feedback (pg. 35)

Feedback communicates the result of an action.

Missing feedback creates user anxiety and repeated attempts (like pressing an elevator button multiple times)

Feedback should be:

- Immediate
- Informative
- Non-distracting

Too much feedback can be overwhelming — e.g., machines giving constant updates.

5. Constraints

Limit possible actions to prevent errors or guide correct behavior.

Can be:

- Physical: Plug only fits one way
- Cultural: Red = stop, green = go
- Logical/Semantic: Shape or position implies function

2 Chapter 3 — Knowledge in the Head vs Knowledge in the World

Conceptual and Mental Models (pg. 38)

- Conceptual model: Simplified explanation of how something works (e.g., files and folders on a computer)
- Mental model: A user's internal understanding of how something works, shaped by experience and signifiers
- Mental models influence perceived affordances and expected feedback

Chapter 2 — The Gulfs of Execution and Evaluation

- Gulf of Execution: Difficulty in figuring out how to operate a system
- Gulf of Evaluation: Difficulty in understanding what happened after acting

Designers must bridge both gulfs by making options and results visible and meaningful.

Seven Stages of Action:

- 1. What do I want to accomplish?
- 2. What are the alternative actions?
- 3. What actions can I do now?
- 4. How do I do it?
- 5. What happened?
- 6. What does it mean?
- 7. Have I accomplished my goal?

Opportunistic actions:

Spontaneous, context-based behaviors that require less effort and emerge naturally from the environment (relevant to emergent gameplay).

Three Levels of Processing

- Visceral: Fast, subconscious, aesthetic
- Behavioral: Routine, learned physical skills
- Reflective: Conscious reasoning, self-critique, planning

Good design engages all three levels for both cognitive and emotional connection.

Human Error (pg. 71)

- Human error often results from poor design, not user failure
- "Machines are not people"
- Designers must ensure machine behavior is understandable and forgiving
- Use affordances, signifiers, mapping, and constraints to guide correct actions

Good design reduces memory load by externalizing cues and structure.

Knowledge in the Head:

• Memory, experience, learned skills (e.g., typing from memory)

Knowledge in the World:

• Cues, signifiers, constraints present in the environment (e.g., labels, symbols)

Types of Knowledge:

- **Declarative Knowledge:** Facts we can state
- Procedural Knowledge: Skills we can perform subconsciously

Tradeoff:

- *In-head knowledge = efficient once learned, but forgettable*
- In-world knowledge = more accessible, but can clutter the environment
- The best design balances both

Natural Mappings & Memory Aids

- Natural mappings reduce memory load (e.g., stove knobs arranged to match burners)
- Constraints and signifiers guide behavior without requiring recall
- Memory aids: Checklists, icons, reminders external supports that align with human limitations

Chapter 4 — Sound and Perception

Sound conveys crucial feedback beyond vision.

Natural sounds indicate:

- Material (metal, wood, soft, hard)
- Type of interaction (hit, slide, tear, crumble)

 ${\it Essential for multisensory feedback-important for game design realism.}$

Real finding: Pedestrians are more likely to be hit by silent hybrid/electric cars — sound cues are safety affordances.

Chapter 5 — Designing for Error

Human error is inevitable; design must anticipate and minimize it.

Systems should:

• Prevent errors with constraints

4 Chapter 3 — Knowledge in the Head vs Knowledge in the World

- Make actions reversible (e.g., undo commands)
- Make acted-upon items prominent
- Support easy recovery from mistakes

Key Insight:

The problem isn't user failure — it's when design requires machine-level precision from humans.

- Put knowledge in the world so users don't need perfect recall
- Bridge the gulfs with **feedforward** (visibility before action) and **feedback** (visibility after action)

Chapter 6 — Design Thinking & Human-Centered Design

HCD Definition: Ensures the product is understandable, usable, effective, and enjoyable.

Effective design satisfies:

- Form and shape
- Cost and reliability
- Usability and joy

Double Diamond Model:

 $Discover \rightarrow Define \rightarrow Develop \rightarrow Deliver$

Includes cycles of prototyping and testing.

Prototyping Example: Wizard of Oz method (simulate systems to study behavior before full build).

Testing: Small iterative groups (e.g., 5 users per round).

Failures = learning experiences.

Chapter 7 — People, Technology, and the Future

As technology evolves, humans and machines will increasingly merge:

- People may become partly artificial (cyborgs)
- Machines will develop neural-like reasoning
- Raises ethical questions about identity, intelligence, and dependence

Technology and Memory

Debate: Does tech make us smarter or dependent?

Tech externalizes memory, freeing the brain for creativity

5 Chapter 3 — Knowledge in the Head vs Knowledge in the World

• Overdependence risks loss of basic skills

Key Idea: Humans + Machines are more powerful together.

The strongest systems combine human creativity with machine precision — a metaphor for AI-driven design and affordance reasoning.

Relevance to My Research

- Affordances and signifiers are the core bridge between object geometry and human action recognition
- Mapping, feedback, and constraints inform how an AI system could predict usable affordances from form and context
- Human-centered design principles align directly with making AI-driven affordance tools intuitive, ethical, and
 assistive

Quote to Remember:

"Affordances exist even if they are not visible. For designers, their visibility is critical." – Don Norman

(This directly parallels the challenge of making hidden 3D affordances machine-detectable for games.)