CSCI046 Notes: Runtime Analysis

1 Counting

Our goal is to count how many times something will happen in our code. This is often used as a proxy for how long it takes a program to run.

Example 1.

```
print('x')
print('x')
print('x')

for i in range(10):
    print('y')

for i in range(10,20):
    print('z')
print('z')
print('z')
print('z')
```

1. What is the exact number of times that the letter x will be printed?

2. What is the exact number of times that the letter y will be printed?

Example 2. Answer the questions below based on the following python code:

```
for i in range(10):
2
       print('x')
3
   for i in range(20):
       print('x')
4
5
   for i in range(10):
6
       for j in range(20):
7
            for k in range(30):
8
9
                print('y')
10
   print('z')
11
   for i in range(10):
12
       print('z')
13
       for j in range(10):
14
            print('z')
15
            print('z')
16
       for j in range(10):
17
            print('z')
18
   for i in range(10):
19
20
       print('z')
```

1. What is the exact number of times that the letter x will be printed?

2. What is the exact number of times that the letter y will be printed?

Example 3. Answer the questions below based on the following python code:

```
for i in range(n):
2
       print('x')
3
   for i in range(n*2):
       print('x')
4
5
   for i in range(n):
6
       for j in range(n*2):
7
            for k in range(n*3):
8
9
                print('y')
10
   print('z')
11
   for i in range(n):
12
       print('z')
13
       for j in range(n):
14
            print('z')
15
            print('z')
16
       for j in range(n):
17
            print('z')
18
   for i in range(n):
19
20
       print('z')
```

1. What is the exact number of times that the letter x will be printed?

2. What is the exact number of times that the letter y will be printed?

Example 4. Answer the questions below based on the following python code:

```
1
   for i in range(n):
2
       for j in range(0,i):
            for k in range(0,j):
3
                print('x')
4
5
   for i in range(n):
6
       for j in range(i,n):
7
            for k in range(j,n):
8
                print('y')
9
10
   for i in range(n):
11
       for j in range(i,n):
12
            for k in range(i,j):
13
                print('z')
14
```

1. What is the exact number of times that the letter x will be printed?

2. What is the exact number of times that the letter y will be printed?

2 Math: Big-O/ Θ/Ω Notation

Key Ideas:

Definition 1. Let f, g be functions from $\mathbb{R}^+ \to \mathbb{R}^+$. Then,

- 1. If $\lim_{x\to\infty} \frac{f(x)}{g(x)} < \infty$, then we say f = O(g).
- 2. If $\lim_{x\to\infty} \frac{f(x)}{g(x)} > 0$, then we say $f = \Omega(g)$.
- 3. We say that $f = \Theta(g)$ if both f = O(g) and $f = \Omega(g)$.

Intuitively, you should think of O as \leq , Ω as \geq , and Θ as =.

Example 5.

1.
$$f(x) = x$$
$$g(x) = x^2$$

$$2. \ f(x) = x^2$$
$$g(x) = x$$

3.
$$f(x) = x^2 + 2x + 5$$

 $g(x) = x$

4.
$$f(x) = x^2 + 2x + 5$$

 $g(x) = x^2$

5.
$$f(x) = x^2 + 2x + 5$$

 $g(x) = x^3$

Example 6. What happens when we double the size of the inputs?

Example 7. You should memorize the relationship between the following functions:

Example 8. Complete each equation below by adding the symbol O if f = O(g), Ω if $f = \Omega(g)$, or Θ if $f = \Theta(g)$. The first row is completed for you as an example.

f(n)		g(n)
1	=	O(n)
$3n\log n$	=	n^2
1	=	1/n
$\log_2 n$	=	$\log_3 n$
$\log n$	=	$\frac{1}{\log n}$
$5 \cdot 10^{30}$	=	$\log n$
$\log n$	=	$\log(n^2)$
2^n	=	3^n
	_	$\sqrt{rac{1}{n}}$
$\frac{1}{n}$	=	<u> </u>
$\log n$	=	$(\log n)^2$

Example 9. Simplify the following expressions:

$$1. \ O\left(n^3 + n^2\right)$$

$$2. \ O\left(n^3 + 5n^2 \log n + \log n\right)$$

3.
$$O(100000000000)$$

4.
$$O\left(\log n + 1000000000000\right)$$

$$5. \ O\left(\frac{1}{n} + \frac{1}{n^2}\right)$$