### **5CCS2FC2: Foundations of Computing II**

# Recursive Algorithms & Solving Recursion Relations

Week 6

**Dr Christopher Hampson** 

Department of Informatics

King's College London

#### Warm-up: The Towers of Hanoi

- Move the Tower of Blocks from Post 1 to Post 3
- Can only move one block at a time,
- Cannot place any block on top of a smaller block.



#### The Towers of Hanoi

#### The Towers of Hanoi

- A legend tells of 64 golden disks stacked on three posts and sealed away in a monestry in Hanoi,
- Acting out the command of an ancient prophecy, monks dilligently move the tower (one disk at a time) from one post to another, following the aforementioned prescribed rules,
- Upon completion of their task...

## ...The world will end!

(the legend is likely fabricated by Édouard Lucas who devised the puzzle)

#### The Towers of Hanoi



## When will the World End?

#### **Objectives for Today**

- To solve the **Towers of Hanoi** problem for n = 64,
- Be able to solve problems recursively using the Divide-and-Conquer technique,
- Be able to solve recurrence relations inductively
- Be able to solve common recurrence relations using The Master Theorem,

# **Asymptotic Notation**

#### Asymptotic Notation - Big Oh

- Big Oh Notation (upper bounds)
  - Let f(n) and g(n) be any real-valued function. We say that g eventually dominates f if there is some constant k>0 such that

$$f(n) \leq k \cdot g(n)$$
 for all 'large'  $n$ 

$$O(g(n)) \ = \left\{egin{array}{l} ext{All functions } f(n) \ ext{that are } eventually \ ext{dominated by } g(n) \end{array}
ight\}$$



#### Asymptotic Notation – Big Omega

- Big Omega Notation (lower bounds)
  - Let f(n) and g(n) be any real-valued function. We say that g eventually dominates f if there is some constant k>0 such that

$$f(n) \leq k \cdot g(n)$$
 for all 'large'  $n$ 

$$\Omegaig(g(n)ig) \ = \left\{egin{array}{l} ext{All functions } f(n) \ ext{that eventually} \ ext{dominate } g(n) \end{array}
ight\}$$



#### Asymptotic Notation - Big Theta

- Big Theta Notation (exact bounds)
  - A function f(n) belongs to  $\Theta(g(n))$  if it is eventually bounded above and below by contant multiples of g(n).

$$\Thetaig(g(n)ig) \ = \ Oig(g(n)ig) \ \cap \ \Omegaig(g(n)ig)$$



# **Solving Problems Recursively**

#### The Towers of Hanoi

We would like an **general algorithm** that solves the Hanoi Tower problem for **any number of blocks**:

Move-Tower (n, post 1, post 3)



 The Divide-and-Conquer technique is a useful technique for designing and understanding algorithms by diving them into easier sub-problems.

|          | Divide-and-Conquer Technique                                             |
|----------|--------------------------------------------------------------------------|
| Divide)  | Divide the problem into several 'self-similar' but smaller sub-problems. |
| Conquer) | Solve these sub-problems recursively                                     |
| Combine) | Recombine the sub-problems into a solution for the whole problem         |

#### MOVE-TOWER (n, i, j):

Step 1) MOVE-TOWER  $(n-1,\ i,\ k)$ 

(move the top part of the tower out of the way)



**Step 2)** Move the base of the tower from i to j.



Step 3) MOVE-TOWER  $(n-1,\,k,\,j)$  (replace the top part of the tower)



How long does our Move-Tower algorithm take?

$$T(n) \,=\, {\sf time} \; {\sf to} \; {\sf solve} \; {\sf Move-Tower} \; (n, \, i, \, j)$$

(for any posts i and j)

• We can find a recurrence relation for T(n) by examining the structure of the algorithm:

$$T(1) = 1$$

$$T(n) = \underbrace{T(n-1)}_{\text{Step 1}} + \underbrace{1}_{\text{Step 2}} + \underbrace{T(n-1)}_{\text{Step 3}}$$

$$= 2T(n-1) + 1$$

(to get the next value of T(n) we multiply by 2 and add 1)

• We can start to get an idea about the running time by **iterating** the first few values of T(n)

| n              | T(n)                                                    |
|----------------|---------------------------------------------------------|
| 1              | 1                                                       |
| 2              | $3 \times 2 + 1$                                        |
| 3              | $7 \qquad \begin{array}{c} \times 2 + 1 \\ \end{array}$ |
| 4              | 15 ×2 + 1                                               |
| 5              | 31 ×2 + 1                                               |
|                | :                                                       |
| $oldsymbol{n}$ | $2^{n}-1$                                               |

This gives us an exact formula for the running time...

$$T(n) = 2^n - 1$$

• ...but part that important for scalability is the  $2^n$ ,

$$T(n) \in \Theta(2^n)$$

(since  $2^n - 1 < 2(2^n)$  for sufficiently large values of n)

• The running time for this algorithm quickly becomes infeasible to run!

(it takes 'exponential time' to solve)

#### How long until the end of the world?

If we have 64 golden disks to move,

$$n = 64$$

• The number of moves required to complete the puzzle is, therefore:

$$T(64) = 2^{64} - 1$$
  
= 18,446,744,073,709,551,615

(or 1000 moves every second for 5 billion years...)

## The world is safe for now!



# Sorting Arrays with Divide-and-Conquer

#### **Sorting Algorithms**

ullet Suppose we have an **array of integers (or cards)** of length n that we want to sort **ascending order** 

(we are ignoring the suit)



















































- What is the (worst case) running time for the naïve sorting algorithm?
  - Step 1) Locating the first card may take at most n steps,
  - Step 2) Adding to the new pile takes 1 step,

(depending on the data structure)

Step 3) Locating the next card takes at most (n-1) steps plus 1 to add to the new pile,

(there is one fewer card to search through)

Step 4) etc.

$$T(n) \approx n + (n-1) + \dots + 3 + 2 + 1$$
  
=  $\frac{1}{2}(n^2 + n) = \Theta(n^2)$ 

 $\mathsf{Merge} ext{-}\mathsf{Sort}(X[1:n])$ :

Step 1) Divide into two (roughly) even piles

(cannot divide perfectly if n is odd!)





Step 2) MERGE-SORT $(X[1:\frac{1}{2}n])$ 

#### (sort the first pile recursively)





### Step 3) Merge-Sort $(X[rac{1}{2}n:n])$

#### (sort the second pile recursively)





#### **Step 4)** Merge the two sorted piles,



**Step 4)** Merge the two sorted piles,







**Step 4)** Merge the two sorted piles,





**Step 4)** Merge the two sorted piles,





#### **Step 4)** Merge the two sorted piles,





# Step 4) Merge the two sorted piles,





Again, we can ask: how long does our algorithm take?

$$T(n) \,=\, {\sf time} \; {\sf to} \; {\sf solve} \; {\sf Merge-Sort}(X)$$

(for any array X of length n)

Again, we can ask: how long does our algorithm take?

$$T(n) \, = \, {\sf time \, to \, solve \, Merge-Sort}(X)$$

(for any array X of length n)

• We can find a recurrence relation for T(n) by examining the structure of the algorithm:

$$T(1) = 1$$

Again, we can ask: how long does our algorithm take?

$$T(n) \, = \, \operatorname{time} \, \operatorname{to} \, \operatorname{solve} \, \operatorname{Merge-Sort}(X)$$

(for any array X of length n)

• We can find a recurrence relation for T(n) by examining the structure of the algorithm:

$$T(1) = 1$$
 $T(n) pprox \underbrace{n}_{ ext{Step 1}} + \underbrace{T(\lceil n/2 \rceil)}_{ ext{Step 2}} + \underbrace{T(\lceil n/2 \rceil)}_{ ext{Step 3}} + \underbrace{n}_{ ext{Step 4}}$ 

Again, we can ask: how long does our algorithm take?

$$T(n) \, = \, {\sf time \, to \, solve \, Merge-Sort}(X)$$

(for any array X of length n)

• We can find a recurrence relation for T(n) by examining the structure of the algorithm:

$$T(1) = 1$$
 $T(n) \approx \underbrace{n}_{\text{Step } 1} + \underbrace{T(\lceil n/2 \rceil)}_{\text{Step } 2} + \underbrace{T(\lceil n/2 \rceil)}_{\text{Step } 3} + \underbrace{n}_{\text{Step } 4}$ 
 $= 2T(\lceil n/2 \rceil) + 2n$ 

Again, we can ask: how long does our algorithm take?

$$T(n) \,=\, {\sf time} \; {\sf to} \; {\sf solve} \; {\sf Merge-Sort}(X)$$

(for any array X of length n)

• We can find a recurrence relation for T(n) by examining the structure of the algorithm:

$$T(1) = 1$$

$$T(n) \approx \underbrace{n}_{\text{Step } 1} + \underbrace{T(\lceil n/2 \rceil)}_{\text{Step } 2} + \underbrace{T(\lceil n/2 \rceil)}_{\text{Step } 3} + \underbrace{n}_{\text{Step } 4}$$

$$= 2T(\lceil n/2 \rceil) + 2n$$

(where  $\lceil x \rceil$  is the *ceiling function* of x)

• Again, we can **iterate** the first few values of T(n)

(easier if we look only at powers of two!)

| n  | T(n)                  |
|----|-----------------------|
| 1  | $1 \times 2 + 4$      |
| 2  | 6                     |
| 4  | 20 ×2 + 8             |
| 8  | 56 ×2 + 16            |
| 16 | $\times 2 + 32$       |
| 32 | $352$ $\times 2 + 64$ |
| ;  | :                     |

(it is not quite so easy to see what the growth-rate is...)

# **Solving Recurrence Relations**

# **Proof by Induction**

Base Case) Show that your solution holds for n=1, Inductive Case) (i) Assume your result holds for n=k, (ii) Substitute to confirm that it also holds for n=(k+1).

- Like knocking over an infinite stack of dominoes:
  - The base case knocks over the first domino,
  - The inductive case shows that the dominoes are spaced close enough that the  ${m k}$ th domino always knocks down the  $({m k}+1)$ st domino!

(therefore ALL dominoes will fall!)

• Example: Show that the solution to the recurrence relation

$$T(1) = 1$$
  
 $T(n) = 2T(n-1) + 1$ 

is given by  $T(n) = 2^n - 1$ .

Base Case) We just need to check that our formula gives the correct value for n=1.

$$T(1) = 1 = 2^1 - 1$$

### **Induction Case)** Assume that

$$T(k) = 2^k - 1$$
 for some  $k \ge 1$ 

(this is known as the 'Induction Hypothesis')

We can substitute into the recurrence relation to find T(k + 1)

$$T(k+1) = 2 \cdot T(k) + 1$$

$$= 2 \cdot (2^{k} - 1) + 1$$

$$= 2 \cdot 2^{k} - 2 + 1$$

$$= 2^{k+1} - 1$$

Conclusion) Since this has the same form as the Induction Hypothesis, the formula must hold for **ALL** values of n.

How about a more complicated recurrence relation such as

$$T(1) = 1$$
 $T(n) = 2T(\lceil n/2 \rceil) + 2n$ 

(this was the approximate running time for the merge-sort algorithm)

- Since T(n) depends on T(n/2) rather than the immediate predecessor T(n-1), we need a slightly stronger version of induction!
  - It is not enough to consider the spacing between neighbouring dominos,

# **Proof by Induction (Strong)**

Base Case) Show that your solution holds for n=1,

Inductive Case) (i) Assume your result holds for all  $m \le k$  for some k,

- (ii) Substitute to confirm that it also holds for n=(k+1).
- We may rely not just on the previous 'domino' but on all those that have fallen before!
- When is this useful?
  - If your recurrence relation does not depend on the previous value,
  - Or if your recurrence relation involves multiple calls to itself, e.g.

$$F(n) = F(n-1) + F(n-2)$$

(this recurrence relation generates the Fibonacci numbers)

• Example: Show that the solution to the recurrence relation

$$T(1) = 1$$
  
 $T(n) = 2T(\lceil n/2 \rceil) + 2n$ 

bounded above by  $T(n) \geq n \log_2 n$ , for  $n \geq 1$ 

Base Case) Again, we just need to check that our formula gives the correct value for n=1.

$$T(1) = 1 \ge 0 = \log_2 1$$

### **Induction Case)** Assume that

$$T(m) \geq m \log_2 m$$
 for all  $m \leq k$  for some  $k \geq 1$ 

We can substitute into the recurrence relation to find T(k+1)

$$T(k+1) = 2 \cdot T\left(\left\lceil \frac{k+1}{2} \right\rceil\right) + 2(k+1)$$

$$\geq 2 \cdot T\left(\frac{k+1}{2}\right) + 2(k+1)$$

$$\geq 2 \cdot \left(\frac{k+1}{2}\right) \log_2 \frac{k+1}{2} + 2(k+1)$$

$$= (k+1) \left[\log_2(k+1) - 1\right] + 2(k+1)$$

$$= (k+1) \log_2(k+1) + (k+1)$$

$$\geq (k+1) \log_2(k+1)$$

Conclusion) Hence, it follows that

$$T(n) \geq n \log_2 n$$

for **ALL** values of n > 1.

Q.E.D

Hence it follows that the Merge-sort algorithm runs belongs to the class

$$T(n) = \Omega(n \log_2 n)$$

(we can similarly, show that  $T(n) = \Theta(n \log_2 n)$ , as well)

- Remarks on Proof by Induction:
  - Often easier to establish upper and lower bounds than to prove an exact formula.
  - You need to correctly 'guess' the correct formula before you start!
    - If the algorithm is similar to one whose growth-rate is known, try that!
    - If your first guess does not work, adjust accordingly!
       (if you can't bound above by a quadratic, try a cubic, etc..)
    - If the first few values 'misbehave', use a bigger base case!

# The Master Theorem

#### The Master Theorem

Let T(n) be a monotonically increasing recurrence relation such that

$$T(n) \ = \ a \ T\left(rac{n}{b}
ight) + f(n)$$

(for some constants a > 1, b > 2.)

Then

$$T(n) \ \in egin{cases} \Theta(n^k) & ext{if } f(n) \in O(n^\ell) ext{ for } \ell < k \ & \ \Theta(n^k \log_2 n) & ext{if } f(n) \in \Theta(n^\ell) ext{ for } \ell = k \ & \ \Theta(f(n)) & ext{if } f(n) \in \Omega(n^\ell) ext{ for } \ell > k \end{cases}$$

$$k = \log_b a = \log_{10} a / \log_{10} b$$

#### The Master Theorem





Case 3  $T(n) = \Theta(f(n))$ 



 $\ell$  increasing

$$\ell$$
 decreasing



$$\ell < k$$

$$\Theta(n^\ell)$$

$$\ell = k$$

$$\Omega(n^\ell)$$

$$\ell > k$$

## The Master Theorem: Some Examples

• Example 1: Let T(n) be given by the following recurrence relation

$$T(n) = 4T\left(\frac{n}{2}\right) + 2^n$$

Step 1) Identify the parameters:

$$a=4$$
,  $b=2$ , therefore  $k=\log_2 4=2$ 

Step 2) Identify the growth rate of f(n)

$$f(n) = 2^n \in \Omega(n^3)$$

(bounded below by a cubic, and k < 3)

**Step 3)** Therefore, Case 3 applies, and we have:

$$T(n) \in \Theta(f(n)) = \Theta(2^n)$$

## The Master Theorem: Some Examples

• Example 2: Let T(n) be given by the following recurrence relation

$$T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n+1}$$

Step 1) Identify the parameters:

$$a=2$$
,  $b=4$ , therefore  $k=\log_4 2=0.5$ 

Step 2) Identify the growth rate of f(n)

$$f(n) \ = \ \sqrt{n+1} \ \in \ \Theta(\sqrt{n})$$

(bounded above and below by a square root, and k = 0.5)

**Step 3)** Therefore, Case 2 applies, and we have:

$$T(n) \ \in \ \Theta(n^k \log_2 n) \ = \ \Theta(\sqrt{n} \log_2 n)$$

## The Master Theorem: Some Examples

Example 3: Let T(n) be given by the following recurrence relation

$$T(n) = 3T\left(\frac{n}{2}\right) + \log_2 n$$

Step 1) Identify the parameters:

$$a=3$$
,  $b=2$ , therefore  $k=\log_2 3 \approx 1.5849$ 

Step 2) Identify the growth rate of f(n)

$$f(n) = \log_2 n \in \Theta(n)$$

(bounded above by a linear function, and k > 1)

**Step 3)** Therefore, Case 1 applies, and we have:

$$T(n)~\in~\Theta(n^k)~=~\Theta(n^{1.5849})$$

## The Master Theorem : Some Examples



- There is a **mistake** is the previous slide!
- Every approximation, no matter how accurate, will eventually diverge!

$$\Theta(n^{1.58}) 
eq \Theta(n^{1.584}) 
eq \Theta(n^{1.5849}) 
eq \cdots 
eq \Theta(n^{\log_2 3})$$

(we cannot use approximations when writing grown rates)

• The **correct** growth-rate for T(n) should be

$$T(n) \, \in \, \Theta(n^{\log_2 3})$$

#### **Next Time...**

- SAT Solving
  - Greedy Algorithms,
  - The DPLL Algorithm
- Solving simple instances of SAT.

# **End of Slides!**

