Step Current Response of the HH Model

Eleftherios Ioannidis elefthei@mit.edu

James Hobin hobinjk@mit.edu

MIT FECS

December 4, 2014

HH Model Step Current Response

Step Current Stimulation Phase diagram

Applications: Refractory Period

Reducing the Refractory Period can lead to faster reflexes.

Applications: Neuron Inhibition

High current fully damps neuron response

Response in the Ringing, Single AP and AP Train regions

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

HH Model's step current response starting at 0 $\mu A/cm^2$

Naive Mechanism

Equal ratio of current to capacitance

Mechanism

Unequal ratio of current to capacitance

Fourier Transform insufficient: Inconsistent Time Intervals

Least-squares spectral analysis

Frequency The Lomb-Scargle Periodogram works with variable intervals.

Train period over increasing input step

Nonlinearity shows complexity of behavior

Anomalies with precision approximation

Incorrect behavior due to low precision

Conclusion

- Clear definition of saturation threshold
- 2 High accuracy prediction of cell response
- 3 Refuted possible simplification
- 4 Innovative experimental method

References

- Weiss, T. F. (1995). Cellular Biophysics. Volume 1: Transport, MIT Press.
- Weiss, T. F. (1995). Cellular Biophysics. Volume 2: Electrical Properties, MIT Press.
- 3 Blaustein, M.P., Kao, J.P.Y., Matteson, D.R. (2012). Cellular Physiology and Neurophysiology, 2nd edition, Elsevier-Mosby.
- Gerstner, Wulfram, and Werner M. Kistler. Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, 2002.
- 5 Press, William H., and George B. Rybicki. "Fast algorithm for spectral analysis of unevenly sampled data." The Astrophysical Journal 338 (1989): 277–280.

