ЛАБОРАТОРНЫЕ РАБОТЫ

по курсу «Вычислительная геометрия»

Лабораторная №1. Аффинные преобразования. Однородные координаты.

Задание 1. Преобразование треугольника.

- а) Задайте треугольник декартовыми координатами его вершин. Составьте матрицу однородных координат вершин треугольника.
- b) Задайте параметры следующих преобразований:
 - вектор \vec{a} для переноса $T_{\vec{a}}$;
 - угол φ для поворота R_{C}^{φ} относительно центра треугольника C ;
 - прямую l для осевой симметрии S_l ;
 - коэффициент k для гомотетии H_0^k относительно начала координат O.
 - коэффициент m для гомотетии H_M^m , где M середина наименьшей стороны треугольника.

Составьте матрицы всех преобразований в однородных координатах и умножением на матрицу вершин найдите образы треугольника при: $T_{\vec{a}}$, $R_{\mathbb{C}}^{\varphi}$, $S_l \circ H_0^k$, $H_M^m \circ R_M^\pi$.

с) Постройте треугольник и все найденные образы.

Задание 2. Преобразование квадрата.

Задайте квадрат *KLMN* декартовыми координатами его вершин. Составьте матрицу однородных координат вершин квадрата.

- а) Найдите аффинное преобразование \mathcal{F} (композицию элементарных преобразований), при котором образом квадрата будет параллелограмм ABCD, причем
 - $\mathcal{F}(K) = A, \mathcal{F}(L) = B, \mathcal{F}(M) = C, \mathcal{F}(N) = D;$
 - вершина A лежит на луче KM и находится в три раза дальше от вершины K, чем точка M:
 - образ стороны KN ей параллелен и его длина в два раза больше KN;
 - угол параллелограмма при вершине A равен $\frac{\pi}{3}$;
 - высота параллелограмма $BH, H \in AD$, равна двум сторонам квадрата.
- b) Составьте матрицу преобразования \mathcal{F} в однородных координатах. Найдите матрицу обратного преобразования \mathcal{F}^{-1} .
- c) Найдите матрицы однородных координат образов $\mathcal{F}(KLMN)$ и $\mathcal{F}^{-1}(ABCD)$
- d) Постройте квадрат и образы $\mathcal{F}(KLMN)$ и $\mathcal{F}^{-1}(ABCD)$.
- е) Убедитесь, что $\mathcal{F}(KLMN) = ABCD$ и $\mathcal{F}^{-1}(ABCD) = KLMN$.

Лабораторная №2. Плоские кривые.

Задание 1. Конические сечения.

- а) Задайте эллипс и гиперболу полуосями a, b. Составьте параметрические уравнения кривых $x = x(t), y = y(t), t \in [0; 2\pi)$.
- b) Найдите уравнения касательных к кривым в точке $(x_0, y_0) = (x(t_0), y(t_0))$.
- с) Разбейте промежуток $[0; 2\pi]$ на n участков $[t_{i-1}; t_i]$, i = 1, ... n. В середине каждого участка постройте касательную к кривой.
- d) Из отрезков касательных составьте многоугольник, описанный около кривой.
- е) Найдите уравнение эволюты кривой. Постройте эволюту.

Задание 2. Специальные кривые.

Выберите две кривые из разных семейств:

- 1) спирали (архимедова, логарифмическая, гиперболическая, синусоидальная);
- 2) гипоциклоиды;
- 3) лемнискаты;
- 4) розы.
- а) Запишите полярные или параметрические уравнения выбранных кривых. Изобразите кривую по уравнению.
- b) Найдите уравнения касательных и нормалей к кривым в какой-либо точке. Постройте касательный и нормальный вектор к кривой.
- с) Найдите радиус кривизны кривой в этой точке.

Лабораторная №3. Растровое изображение линий.

Задание 1. Линейный отрезок.

- а) Задайте отрезок прямой координатами его вершин.
- b) Постройте растровое изображение отрезка
 - і. алгоритмом Брезенхейма;
 - іі. естественным алгоритмом (по уравнению).

Задание 2. Кривые Безье.

- а) Постройте кривую Безье второго порядка. Подвергните её композиции аффинных преобразований $T_{\vec{a}} \circ Sh_x^2 \circ R_O^{\pi/4}$ и масштабируйте, задав эти преобразования матрицей однородных координат опорных точек.
- b) Постройте кривую Безье третьего порядка. Измените конфигурацию опорных точек до получения разных форм кривой.
- с) Постройте сплайн из нескольких кривых 2-го и 3-го порядка.

Лабораторная №4. Локализация точки.

Задание 1.

Задайте отрезки $s_1, s_2, ..., s_{10}$ (должно быть не менее двух пар пересекающихся отрезков среди заданных).

Найдите пересекающиеся отрезки:

- а) параметризацией прямых, содержащих отрезки (найдите точки пересечения);
- b) методом косых произведений;
- с) методом заметающей прямой (алгоритмом Бентли-Оттмана).

Задание 2.

Задайте простой n-угольник координатами его вершин $P_1, P_2, \dots, P_n \ (n \ge 7)$ и точки $M_1, M_2, \dots, M_k \ (k \ge 5)$.

Определите положение точек $M_1, M_2, ..., M_k$ относительно n-угольника:

- а) угловым методом;
- b) лучевым методом.

Лабораторная №5. Выпуклая оболочка множества.

Задание 1.

Задайте множество E точек $P_1, P_2, ..., P_n \ (n \ge 10)$.

- а) Постройте выпуклую оболочку множества E:
 - і. алгоритмом Джарвиса
 - іі. алгоритмом Грэхема
- b) Найти периметр и площадь выпуклой оболочки

Задание 2.

Задайте точками множества E_1 и E_2 (число точек каждого множества — не менее пяти).

- а) Постройте выпуклые оболочки множеств.
- b) Найдите пересечение $P = \text{conv}(E_1) \cap \text{conv}(E_2)$ и внутренние для него точки множеств E_1 , E_2 .

Лабораторная №6. Близость.

Задание 1. Задайте множество E точек $P_1, P_2, ..., P_{10}$.

- а) Найдите ближайшую пару точек в E.
- b) Постройте диаграмму Вороного для E (алгоритмы Форчана и рекурсивный «разделяй и властвуй»).
- с) Постройте триангуляцию Делоне множества E как граф, двойственный диаграмме Вороного.