Van der Pol Equation

Ngoc Luu

Linear damped mass – spring system

$$x'' + \mu x' + \omega_0^2 x = A \omega_0^2 sin(\omega t)$$

Van der Pol Oscillators

Standard form

- x: position coordinate at time t
- : damping coefficient
- : negative damped force
- : positive damped force

Solutions

- unique periodic solution
- as $t \rightarrow \infty$, all nearby solutions tend toward the unique solutions
- is key

General Solution:

Figure 1: Typical solution of van der Pol equation for small values of μ ; top graph – x(t), bottom graph – $\dot{x}(t)$; $\mu=0.1$

Large

Relaxation oscillation

Figure 3: Typical solution of van der Pol equation for large values of μ ; top graph – x(t), bottom graph – $\dot{x}(t)$; $\mu = 10$.

Limit cycles

History

Balthazar van der Pol (1889-1959)

Described mathematical model for triode
oscillations in electrical circuits (1927)

Van der Pol equation

Application

- vacuum tubes triode circuit
- physics, electronics, biology, neurology, sociology and economics

Reference

- http://www.phys.uconn.edu/~rozman/Courses/P2200_13F/downloads/vanderpol/ vanderpol-oscillator-draft.pdf
- http://www.cmp.caltech.edu/~mcc/Chaos_Course/Lesson3/Oscillators.pdf
- http://www2.me.rochester.edu/courses/ME406/webexamp5/vanpol.pdf
- http://mathworld.wolfram.com/vanderPolEquation.html
- http://mathworld.wolfram.com/SimpleHarmonicMotion.html
- http://mathfaculty.fullerton.edu/mathews/n2003/VanDerPolMod.html
- http://tutorial.math.lamar.edu/Classes/DE/Vibrations.aspx
- http://tutorial.math.lamar.edu/Classes/DE/Vibrations.aspx