(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許出願公告番号

特公平6-12452

(24)(44)公告日 平成6年(1994)2月16日

 (51)Int.Cl.*
 識別記号
 庁内整理番号
 FI
 技術表示箇所

 G 0 3 F
 7/09

 7/30
 7124-2H

 H 0 1 L
 21/30
 7352-4M

発明の数2(全 7 頁)

(71)出願人 999999999 (21)出願番号 特願昭58-179499 プリューワー・サイエンス・インコーポレ (22)出願日 昭和58年(1983)9月29日 イテッド アメリカ合衆国 ミズーリ 65401 ロー ラ ボックス ジー ジー (番地なし) 特開昭59-93448 (65)公開番号 (43)公開日 昭和59年(1984)5月29日 (72)発明者 ジョン・ダブリュー・アーノルド アメリカ合衆国ミズーリ州(65401)ロー (31)優先権主張番号 431798 ラ・フォーラムドライブ1811 1982年9月30日 (32)優先日 (72)発明者 テリー・エル・ブリューワー (33)優先権主張国 米国(US) アメリカ合衆国ミズーリ州 (65401) ロー ラ・ルート 2ポツクス495 審判番号 平3-10798 (74)代理人 弁理士 鈴木 弘男 審判の合議体 審判長 森田 尤夫

審判官 高橋

武彦

審判官 西川 恵雄

最終頁に続く

(54) 【発明の名称 】 集積回路素子の製造方法

1

【特許請求の範囲】

【請求項1】(a)集積回路素子基板に、ホトレジスト とともに現像可能な光吸収性の反射防止コーティングを 施し、

- (b) 前記基板と反射防止コーティングをホトレジスト で被覆し、
- (c)前記ホトレジストをパターン露光し、
- (d) バターン露光されたホトレジストを現像液で現像 し、バターン状にホトレジストおよび反射防止コーティ ングを除去し、
- (e) 現像されたホトレジストおよび反射防止コーティングにより定められるパターンを基板中にエッチングして集積回路素子を形成することから成り、

前記反射防止コーティングが、ボリアミド酸の重合体、その共重合体およびそれらの組合わせよりなる群から選

2

ばれた1種またはそれ以上のベヒクルと染料の組み合わせからなり、前記ベヒクルが、アルコール、芳香族炭化水素、ケトンおよびエステルまたはそれらの組合わせよりなる群から選ばれた低い表面エネルギーを有する溶媒に溶解されていることを特徴とする、ホトリソグラフィによって集積回路素子を製造する方法。

【請求項2】前記染料が、クルクミンおよびその誘導体 およびその均等物、ピクシンおよびその誘導体およびそ の均等物、クマリン誘導体およびその均等物およびそれ 10 に相当する有機ハロゲン化、ヒドロキシル化およびカル ボキシル化染料およびそれらの組み合わせからなる群か ら選ばれた特許請求の範囲第1項に記載の集積回路素子 を製造する方法。

【請求項3】(a)集積回路素子基板に光吸収性の反射 コーティングを施し、

- (b)前記基板と反射防止コーティングをホトレジスト で被覆し、
- (c) 前記ホトレジストをパターン露光し、
- (d) パターン露光されたホトレジストを現像液で現像 し、パターン状にホトレジストを除去し、
- (e) 現像されたホトレジストにより定められるパターンを乾式エッチングにより前記反射防止コーティングにエッチングし、その後そのパターンを基板中にエッチングして集積回路素子を形成することから成り、

前記反射防止コーティングが、ポリアミド酸の重合体、その共重合体、ポリスルフォン、その共重合体、ハロゲン化重合体、その共重合体、ポリアセタール、アセタール共重合体、αー置換ビニル重合体よりなる群から選ばれたベヒクルと染料の組み合わせからなり、前配ベヒクルが、アルコール、芳香族炭化水素、ケトンおよびエステルまたはそれらの組み合わせよりなる群から選ばれた低い表面エネルギーを有する溶媒に溶解されていることを特徴とする、ホトリソグラフィによって集積回路素子を製造する方法。

【請求項4】前記染料が、クルクミンおよびその誘導体 20 およびその均等物、ビクシンおよびその誘導体およびその均等物、クマリン誘導体およびその均等物および相当 する有機ハロゲン化、ヒドロキシル化およびカルボキシル化染料、およびそれらの組み合わせからなる群から選ばれた特許請求の範囲第3項に記載の集積回路素子を製造する方法。

【発明の詳細な説明】

本発明は反射防止コーティングを用いてホトリソグラフィ法によって集積回路素子を製造する方法に関する。複雑な集積回路を使用したシステムが小型化すると、小 30 さいサイズのチップ上にますます複雑な回路を転写することが要求されるようになってきた。このようなサイズの減少または容量の増加は、その産業分野における技術上の限界にきている。したがって、標準的技術により製造される最も進歩した集積回路チップの歩留りは、より小さい容積の中により大きい容量を入れようという試みのために極めて低く、1%の程度である。今日の産業界により要求されている容量の水準においては、現在のホトリソグラフィ法では現在の約1%以上には完全な動作可能な構造を製造することはできない。 40

この問題は大部分は使用される写真プロセスの限界に由来する。要求される顕微鏡的水準においては、チップ材料例えばシリコンの層は完全には平滑および偏平ではない。更に、不均一な下地形状は、チップ各層に塗布されるホトレジストの像形成に使用される光の被長に近似した大きさのものである。ホトレジストの像形成に使用される光はチップ物質の基材すなわちシリコンウェーハーから反射される。この反射は不均一な下地形状の影響を受けてホトレジスト中に不均一な光の分布を生ぜしめ、現像画像中に多数の人為的欠陥を生ぜしめる結果とな

る。これらの人為的欠陥は現在の技術により構成されるすべての半導体構造物に多数の不合格品を生ぜしめる。この人為的欠陥を除外または減少させることができるならば集積回路チップの歩留りを上昇させて効率を大幅に向上し、製造コストを減少させる結果となることは明白である。

最近反射光が原因で生ずる人為的欠陥を減少させる多数

の試みがなされている。米国特許4,102,683号明細書はそのような試みの一つを論じている。その他の議論は「IEEE Transactions on Electron Devices」第28版、第11号、第140~1410頁(1981年11月)、および「Journal of applied Photographic Enqineering」第7巻、第6号、第184~186頁(1981年12月)にあるブリューワー等による「正のホトレジストにおける定在波効果の減少」および「Kodak '80 Interface」1980年10月版、第109~113頁にあるカールソン等による「集積回路における1ミクロン線の制御」に見られる。

本発明者らは集積回路の製造に有用な改善された反射防止コーティング組成物を発見した。本発明の製造方法においては、ウエーハ表面およびホトレジスト表面からの内部反射による劣化的作用を除去するためにこの反射防止コーティング組成物を使用する。本発明で用いるコーティング組成物は、以前に知られていたものよりもでより均一なコーティングを与え、現像が一層制御され、工程段階がより少なくなる。本発明のコーティング組成物は集積回路製造法におけるホトレジストに適合し、且つそれに像形成が可能である。コーティングは現像後には集積回路ウエーハ上により少ない残渣しか残さない。第1図は、本発明方法において、像形成可能な反射防止コーティング組成物を使用して湿式エッチングにより集積回路素子を製造するプロセスを示す。

第2図はやはり本発明方法において、反射防止コーティング組成物を使用して乾式エッチングにより集積回路素子を製造するプロセスを示す。

本発明方法では低い表面(界面)エネルギーを有する一般的有機溶媒の使用を可能ならしめるべく改質され、そしてウェーハ表面に強固に結合した薄いそして一定した コーティングを生成しうる重合体構造を使用している。 適切な重合体および共重合体としては、低い表面エネルギーを有する溶媒例えばアルコール、芳香族炭化水素、ケトン、およびエステル溶媒により可溶性のポリアミド酸およびその均等物である。ここでいうポリアミド酸およびその均等物である。ここでいうポリアミド酸重合体および共重合体は、トルエンジアミン、キシリルジアミンおよびその他のアリールジアミンおよび脂肪族ジアミンと脂肪族および芳香族側鎖基または類似基を有する脂肪族または芳香族酸二無水物の重合体でありうる。これら重合体に関してはコーティングをウエーハに定着 50 させる焼付け温度の変動に対してその速度が余り敏感で

ないために、これらの物質は例えば、反射防止層の現像 速度に対してより有効な制御を与える。これらジアミ ン、酸二無水物および相当する物質により構成された重 合体はまた、集積回路の製造に使用される表面をより均 一に、より少ない欠陥を持ってコーティングさせ、これ らの表面に対してより良好な接着性を有している。これ らポリイミドまたはポリアミド酸から現像後に残る残渣 は問題とならない。その理由はそれら残渣は容易に除去 されるからである。

4, 4'-オキシジアニリンとベンゾフェノンテトラカ 10 ルボン酸二無水物およびピロメリット酸二無水物の重合 体を包含した反射防止コーティングの生成させることは 以前に試みられた。しかしながらこれら物質は満足すべ き反射防止コーティングの生成においては有効ではなか った。これらポリイミド前駆体に対する標準溶媒は大き な表面エネルギーを有しており、小さな凹部分には入っ ていかず、その結果集積回路の多くの部分が基材の形状 変化の故にコーティングされずに残される。以前に試み られたこれらの物質に対して必要な従来の溶媒は、例え ばN-メチルピロリジノン、ジメチルホルムアミドおよ 20 びジメチルスルホキサイドのような高度に極性の溶媒で ある。前記のポリアミド酸の溶解に必要とされたこれら 溶媒は非常に高い表面エネルギーを有しており、そのた めに集積回路チップによくある小さな凹部または溝はコ ーティングされない。そのような高い表面エネルギーを 有するこれらの高度に極性の溶媒を除外するかまたはそ の比率を大きく減少させ、低表面エネルギー溶媒例えば アルコール、芳香族炭化水素、ケトンまたはエステル溶 媒に可溶性の系を利用することによって溶液の表面エネ ルギーは減少し、全ウエーハ表面をコーティングおよび 30 平面化させる。本発明の反射防止コーティングにおける その他の改良点は、コーティング中に水溶性成分を任意 に導入できる点である。とれら成分は例えばポリビニル ピロリジノンおよび相当する重合体である。水溶性成分 は焼き付け条件例えば温度の変動によりもたらされる反 射防止層の除去速度の変動を軽減する。

本発明で用いるコーティング組成物は改善された染料化。 合物を包含してもよい。特に染料クルクミン(C.I.No.7 5300) または相当する誘導体およびその組み合わせた物 を反射防止コーティングに包含させると、コーティング 40 の吸収性能が改善される。これらの染料および関連する 染料は上に載せたホトレジストを通常露光せしめるスペ クトル域 (436、405 μm) を強く吸収し、これら は染料のヒドロキシル基の故に一般に使用されるアルカ リ性ホトレジスト現像液で除去することができる。この 組み合わせは迅速なそして一貫した像形成を可能ならし める。コーティング溶媒中での染料の優れた溶解性およ び染料の強い吸収は非常に薄いコーティングの使用を可 能ならしめる。他の染料を使用して試みられたコーティ ングは大きい吸光係数を有していなかった。すなわちそ 50 層をそれほど失わずに乾式法で非常にに迅速に除去され

れらは染料1分子当り多くの光は吸収せず、またはそれ らはは多くの染料に関して共通の問題であるように、コ ーティングに使用される有機溶媒中に充分に可溶性では なかった。染料の限られた溶解性の故に、本質的にすべ ての反射された光を吸収させるに充分なだけコーティン グすることができず、そして例えば定在波のようなその 効果がホトレジスト中にまだ存在していた。さらに以前 の染料とベヒクルとの組み合わせは本発明のような像形 成可能な層を生成させることに対して有効ではなかっ

た。像形成可能な層を生成させようというこれまでの試 みは、生成されるコーティングの結果例えばピンホール の故に有効でない生成物を与える結果に終った。従来の コーティングは像形成性において信頼できず、一貫性が なくそして信頼できない工程特性を有し、例えば温度焼 付け幅が狭く、処理後には望ましくない酸留物を残し た。より厚いコーティングを使用してこれらの欠点を調 整しようとする試みは有効ではなかった。本発明のコー ティングは像形成において有効であり、厚いコーティン グは必要とせず、望ましくない残渣を後に残さない。

本発明で用いる反射防止コーティング組成物はピクシン (べにの木抽出物) またはその他の相当する誘導体、例 えばノルビクシンを任意に添加することによりさらに有 効とすることができる。クルクミン誘導体のようにこれ ら染料はホトレジストの露光されるスペクトル領域で強 く吸収する。これら染料はまたレジスト現像液により容 易に除去され、これら染料のカルボキシル基およびその 他の特性は焼付け温度の変化による反射防止層の除去速 度の変動を少なくする。

本発明で用いる反射防止コーティング組成物はまた製造 工程においてバターン画像形成を可能ならしめる乾式エ ッチング形態でも使用することができる。この形態にお いては、使用されるベヒクルは乾式処理すなわちプラズ マイオンまたは電子ビームによって迅速に除去される。 ホトレジストに像形成させた場合、その像はその系を短 時間乾式エッチングにかけることによって容易に且つ迅 速に反射防止層に転写される。反射防止コーティングを 製造しようとするこれまでの試みにおいては、乾式エッ チング画像形成を生成させるためには中間層(プラズマ によって容易には除去されない物質の第3の層)の使用 が試みられた。ホトレジストをエッチングしそして完全 にかまたはほとんど除去する2層使用系もまた試みられ た。との第2の方法においては、下にある平坦化作用層 はホトレジストの同時的エッチングを阻止するに充分な ほどにはエッチングが速くない。

本発明で用いる乾式エッチング可能な反射防止コーティ ングはウエーハの表面を平坦化させそしてホトレジスト を通過した光を吸収する比較的厚い重合体層である。中 間のエッチング抵抗層は必要とされない。その理由は光 吸収性平坦化作用層はバターン形成されたホトレジスト

るからである。

この迅速エッチング反射防止コーティングには前記染料 および重合体を使用しうる。この重合体としては、ポリ スルフォンの共重合体例えばポリ(ネオペンチルスルホ ン)、ポリプテン-1-スルホン、ハロゲン化重合体お よび共重合体例えばポリ(ビニリデンクロリドービニル アセテート)、ポリ(エピクロロヒドリン)、塩素化ポ リエチレン、臭素化および塩素化ポリインブチレン、ハ ロゲン化アクリレート重合体およびハロゲン化メタクリ レート重合体およびそれらの共重合体、ポリアセタール 10 およびアセタール共重合体、およびα-置換ビニル重合 体例えばメチルメタクリレートおよびメチルアクリロニ トリル、および相当する重合体があげられる。染料とし ては適当当な吸収能を有し乾式法により容易に除去され る任意の可溶性染料または染料の組合わせであってもよ い。例えばクマリンおよびその誘導体および相当するハ ロゲン化染料を使用でき、これはまた像形成可能な反射 防止層を形成させるのに有効である。乾式エッチング像 形成可能な反射防止層を形成させるのに有効である。乾 式エッチング像形成性射反射止コーティングは歩留りを 20 低下させ、コストを上昇させるようなよけいな処理段階 を加えることなく、形状の制御に重大な進歩を加える。 本発明は従来のホトレジスト材料および装置にそのまま 適合する。

典型的には本発明により使用される染料は像形成性光源 の波長領域で吸収するものである。染料は約1~20% の水準で反射防止コーティング組成物中に包含させると とができる。フィルム形成性ベヒクル例えば重合体は約 3~20%の水準で存在させることができる。任意成分 としての水溶性物質の添加は約0.1~10%の間の濃 30 度でありうる。適当は湿潤剤、接着促進剤、保存剤、可 塑剤および同様の添加剤を所望により適当な水準で包含 させることができ溶媒を包含させて組成物を100%に することができる。

本発明をたとえばスピニング法のような既知の基材コー ティング技術で使用して約500~40000オングス トロームのフィルム厚さを生成させることができる。フ ィルムは例えば約70℃~200℃の既存の集積回路工 程に適合する温度で焼付けることができる。焼付けられ たフィルムは公知の方法でホトレジストでコーティング 40 し焼付けることができる。ホトレジストの厚さはプロセ スにより要求されるものとすることができる。次にこれ らの層を既知の要求された波長の光に露光させる。フィ ルムは例えば約5秒~5分の間ホトレジスト現像液を使 用して同時に現像させ、下にあるフィルムを短時間プラ ズマエッチングサイクルで例えば酸素ブラズマ中でまた はその他の標準プラズマ法で約5秒~5分の間除去する ととができる。残りの集積回路素子工程は当技術分野に 既知のようにして実施することができる。フィルムは標 準ホトレジストクリーンアップ法により除去することが 50 は現像液により除去され、シャープなきれいな画像を生

できる。

本発明は以下の実施例を参照して更に理解されようが、 これらの実施例は実施された多数の実験の中から説明の 目的で選択されたものである。本発明により製造された 像形成されたウエーハは電子顕微鏡で検査された。この 検査の結果反射光により生ぜしめられた定在波効果が除 去されていることが明らかになった。

例 1

次の反射防止コーティング処方すななわち ・ポリ (ブテンスルホン) 8.00重量% ・クマリン504(エクサイトン社製品) 1.00重量 %

残 量 ・シクロペンタノン溶媒 を使用して標準スピンコーティング法によって3インチ アルミニウムーシリコンウエーハに反射防止コーティン グを2. 0μmの平均厚さにコーティングした。このコ ーティングしたウエーハを140℃で60分間焼付けし てコーティングによってホトレジスト (シップレーAZ 1370) でコーティングした。このホトレジストを9 5℃で30分焼付けることによって硬化させた。製造さ れたウエーハをテスト解像パターンおよびコビルト(C obilt) 密着プリンターを使用して像形成させた。 像形成されたウエーハを20秒間シップレー(Ship ley)MF312現像装置を使用して浸漬現像させ た。露光ホトレジストは現像液により除去されシャープ なきれいな画像を生成した。反射防止層を配素プラズマ (0.2トル、100ワット、20秒) により除去し た。一方、末露光ホトレジストはその厚さをほとんど現 象することなく残留した。アルミニウム基材中に画像を エッチングさせて集積回路層のシャープなパターンを生 成させ、残存するホトレジストおよび反射防止コーティ ングを除去した。

例 2

次の反射防止コーティング処方すなわち ・ポリ (プテンスルホン) 6.00重量% ・ハロゲン化染料クマリン540A) 1.00重量% ・シクロペンタノン溶媒 を使用して標準スピンコーティング法によって3インチ アルミニウムーシリコンウエーハに反射防止コーティン グを1.5μmの平均厚さにコーティングした。このコ ーティングしたウエーハを140℃で60分間焼付けし てコーティングを硬化させた。このコーティングされた ウエーハを冷却させ、スピンコーティングによってホト レジスト(シップレーAZ1370)でコーティングし た。このホトレジストを95℃で30分焼付けて硬化さ せた。製造されたウエーハをテスト解像パターンおよび コビルト密着プリンターを使用して像形成させた。この 像形成されたウエーハを20秒間シップレーA2350 現像装置を使用して浸漬現像させた。露光ホトレジスト

1 %

成した。反射防止層を酸素プラズマ(0.2トル、10 0ワット、20秒) により除去した。一方、未露光ホト レジストはその厚さをほとんど減少することなく残留し た。アルミニウム基材中に画像をエッチングして集積回 路層のシャープはパターンを生成させ、次いで残存する ホトレジストおよび反射防止コーティングを除去した。

次の反射防止コーティング処方すなわち

・ポリアミド酸(4, 4′-オキシジアニリンおよび 4. 4% 10 ピロメリット酸二無水物) ピロメリット酸二無水物) 3. 56%

0.45% ・ビクシン(後記溶媒中溶液)

・スダンオレンジG(後記溶媒中溶液) 0.45% .・シクロヘキサノン/N-メチル-2-ピロリドン

残 部

・クルクミン

を使用して標準スピンコーティング法によって3インチ アルミニウムーシリコンウエーハに反射防止コーティン グを2000オングストロームの平均厚さでコーティン グした。このコーティングしたウエーハを148°Cで3 0分間焼付けてコーティングを硬化させた。このコーテ 20 ィングされたウエーハを冷却させ、スピンコーティング によってホトレジスト (シップレーA Z 1 3 7 0) をコ ーティングした。このホトレジストを90℃で30分焼 付けによって硬化させた。製造されたウエーハをテスト 解像パターンおよびコビルト密着プリンターを使用して 像形成せしめた。像形成されたウエーハを10秒間シッ プレーAF312現像装置を使用して浸漬現像した。像 形成されたホトレジストおよび反射防止層は現像液によ り除去され、シャーブなきれいな画像を生成した。現像 された像形成ウエーハのアルミニウムまでをエッチング 30 して集積回路層のシャープなバターンを生成させ、残存 するホトレジストおよび反射防止コーティングを除去し た。

例 4

次の反射防止コーティング処方すなわち

・ポリアミド酸(1、6-ジアミノヘキサンおよび 5% ベンゾフエノンテトラカルボン酸)

・クルクミン 3. 56%

0.45% ・ビクシン

0.45%40・スダンオレンジG

·シクロヘキサノン/N-メチル-2-ピロリドン

残 部

を使用して標準スピンコーティング法によって3インチ シリコンウエーハに反射防止コーティングを1800オ ングストロームの平均厚さにコーティングした。とのコ ーティングしたウエーハを148℃で30分間焼付けて コーティングを硬化させた。このコーティングされたウ エーハを冷却させ、スピンコーティングによってホトレ ジスト(シップレーAZ1370)でコーティングし た。とのホトレジストを90℃で30分焼き付けて硬化 50 焼付けて硬化した。製造されたウエーハをテスト解像パ

させた。製造されたウエーハをテスト解像パターンおよ びコビルト密着フリンターを使用して像形成させた。像 形成されたウエーハを30秒間シップレーMF312現 像装置を使用して浸漬現像した。像形成されたホトレジ ストおよび反射防止像を現像液により除去し、シヤープ なきれいな画像を生成させた。

10

例 5

次の反射止コーティング処方すなわち

・ポリアミド酸(4,4′-オキシジアニリンおよび 6. 7%

5.3% ・クルクミン

・ポリビニルピロリドン(後記溶媒中)

・シクロヘキサノン/N-メチル-2-

残 部 ピロリドン(2:1) を使用して標準スピンコーティング法によって3インチ アルミニウムーシリコンウエーハに反射防止コーティン グを5000オングストロームの平均厚さにコーティン グした。このコーティングしたウエーハを148°Cで3 0分間焼付けてコーティングを硬化させた。このコーテ ィングされたウエーハを冷却させ、スピンコーティング によってホトレジスト (シップレーA Z 1 3 7 0) でコ ーティングした。とのホトレジストを90℃で30分焼 付けして硬化させた。製造されたウエーハをテスト解像 パターンおよびコビルト密着プリンターを使用して像形 成せしめた。像形成されたウエーハを13秒間シップレ -MF312現像装置を使用して含浸現像した。像形成 せしめられたホトレジストおよび反射防止層を現像液に より除去し、シャープなきれいな画像を生成させた。

現像および画像形成されたウエーハをアルミニウム中ま でエッチングして集積回路層のシャープなパターンを生 成させ、残存するホトレジストおよび反射防止コーティ ングを除去した。

例 6

次の反射防止コーティング処方すなわち

・ポリアミド酸(2、4-ジアミノトルエン/

ベンソフェノンテトラカルボン酸二無水物) 5%

3.56% ・クルクミン

0.45% ・ビクシン(後記溶媒中溶液)

・スダンオレンジG(後記溶媒中溶液) 0.45%

・シクロヘキサノン/N-メチル-2-ピロリドン 残 部 (2:1)

を使用して標準スピンコーティング法も3インチアルミ ニウムシリコンウエーファーに反射防止コーティングを 2000オングストロームの平均厚さにコーティングし た。このコーティングしたウエーファーを165°Cで3 0分間焼付けてコーティングを硬化させた。 このコーテ ィングさせたウエーハを冷却させ、スピンコーティング によってホトレジスト (シップレーA 2 1 3 7 0) でコ ーティングした。このホトレジストを90℃で30分間 をせしめた。像形成されたウエーハを20秒間シップレ

* (ニ)像排形成部位の反射防止コーティングをホトレジストととも容易に除去できる

12

ーMF312現像装置を使用して含浸現像した。像形成 (ホ)乾式エッチングの場合は、基板のエッチング工程 されたホトレジストおよび反射防止層を現像液により除 で反射防止コーティングの除去が同時にできる。 本明細書に開示された本発明の変形を本発明の精神から

逸脱することなしになし得ることを当業者は理解するであろう。本発明は本明細書に開示された具体例により限定されるものではない。

【図面の簡単な説明】

10 第1図は本発明により湿式エッチングで集積回路素子を 製造するプロセスを示し、第2図は本発明により乾式エ ッチングで集積回路素子を製造するプロセスを示す。

以上説明したように、本発明によれば次の効果が得られる。 (イ) 像形成部位の反射防止コーティングを理像工程で

- (イ)像形成部位の反射防止コーティングを現像工程でホトレジストとともに除去できる(湿式での効果)
- (ロ) 現像の制御性に優れている
- (ハ) 現像後の基板上に反射防止コーティングの残渣が 少ない

【第1図】

【第2図】

フロントページの続き

(72)発明者 スマリー・プンヤクムリアード アメリカ合衆国ミズーリ州 (65401) ロー ラ・ナゴガミテラス241