### » Constrained Optimisation

\* So far we've looked at unconstrained optimisation, e.g. minimise  $f(x) = x^2$ :



x = 0 minimises f(x)

\* What if the allowed choices of x are constrained e.g.  $0.25 \le x \le 1$ :



now x = 0.25 minimises f(x) for  $x \ge 0.25$ 

\* Adding constraints can change the value of x that is the minimiser

#### » Constrained Optimisation

#### **Notation**

\* Unconstrained optimisation:

$$\min_{x} f(x)$$

Constrained optimisation

$$\min_{\mathbf{x} \in X} f(\mathbf{x})$$

with X the set of allowed values for vector x e.g.

$$X = \{x \in \mathbb{R} : x \ge 0.25\} \text{ or } X = \{x \in \mathbb{R}^2 : 0 \le x_1 \le 1, 0 \le x_2 \le 1\}$$

- \* Curly brackets {} indicate its a set
- \*  $\mathbb{R}^2$  superscript 2 indicates that x is a vector with 2 elements,  $\mathbb{R}$  means the elements are real valued
- \* : reads as "such that"
- \* So first example read: x is real-valued such that  $x \ge 0.25$
- \* Second example reads:  $\emph{x}$  is a vector with 2 elements such that  $0 \leq \emph{x}_1 \leq 1$  and  $0 \leq \emph{x}_2 \leq 1$
- See e.g. https://en.wikipedia.org/wiki/Set-builder\_notation for set notation
- \* Special case is  $X = \mathbb{R}^n$ . The n superscript means its a vector with n elements,  $\mathbb{R}$  means the elements are real-valued. Then we're back to an unconstrained optimisation and usually just drop X i.e. write

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \text{ or } \min_{\mathbf{x}} f(\mathbf{x})$$

Sometimes (if we're lucky) we can directly convert a constrained optimisation into an unconstrained optimisation

- \* Example: Suppose  $f(x) = (x+2)^2$  and we require x to be non-negative i.e.  $X = \{x \in \mathbb{R} : x \ge 0\}$ . Make a *change of variable*:
  - \* Define  $x=e^z$  and new function  $g(z)=(e^z+2)^2$ . As z varies between  $-\infty$  and  $+\infty$ ,  $x=e^z$  varies between 0 and  $+\infty$  i.e.  $x\in X$ .



\* Solving unconstrained optimisation

$$\min_{\mathbf{z}} \mathbf{g}(\mathbf{z}) = (\mathbf{e}^{\mathbf{z}} + 2)^2$$

is now the same as solving constrained optimisation

$$\min_{\mathbf{x} \ge 0} f(\mathbf{x}) = (\mathbf{x} + 2)^2$$

\*  $f(x) = (x+2)^2$ ,  $g(z) = (e^z + 2)^2$ . Gradient descent, constant step size  $\alpha = 0.05$ :



- \* Left-hand plot: see that z updates so as to decrease g(z). g(z) is minimised by  $z \to -\infty$  since  $g(-\infty) = 2^2 = 4$
- \* Right-hand plot: see that  $x=e^x$  heads to 0, but never goes negative (so stays within admissible set X). Function  $f(x) \to 2^2 = 4$
- \* If no constraints then minimum would be f(0) = 0 when x = -2, but x = -2 lies outside set X

st Suppose we require x to be between 0 and 1 i.e.

$$X = \{x \in \mathbb{R} : 0 \le x \le 1\}$$
. Make change of variable:  $x = \frac{1}{1 + e^{-x}}$ 



- \* As z varies between  $-\infty$  and  $+\infty$ ,  $x=\frac{1}{1+e^{-z}}$  varies between 0 and +1 i.e.  $x\in X$ .
- \* Example: suppose  $f(x) = (x+2)^2$  then  $g(z) = (\frac{1}{1+e^{-z}}+2)^2$ . Solving unconstrained optimisation

$$\min_{\mathbf{z}} \mathbf{g}(\mathbf{z}) = \left(\frac{1}{1 + \mathbf{e}^{-\mathbf{z}}} + 2\right)^2$$

is now the same as solving constrained optimisation

$$\min_{0 \le \mathbf{x} \le 1} \mathbf{f}(\mathbf{x}) = (\mathbf{x} + 2)^2$$

- \* Usually there no free lunch in optimisation ....
- By adding constraints we might expect that we make the optimisation problem "harder" i.e. it will take longer to find minimiser



- \*  $f(x) = (x+2)^2$  is minimised by x = -2,  $g(z) = (e^z + 2)^2$  is minimised by  $z = -\infty$ .
- \* Recall quadratic-like cost functions (strongly-convex cost functions) like  $f(x) = (x+2)^2$  are easy/fast to minimise
- \* But see that g(z) has a large flat section on left-hand side of plot where gradient is getting smaller and smaller  $\rightarrow$  gradient descent algos will tend to converge slowly in this region.
- \* Our change of variables has converted a strongly-convex optimistion into a harder one which is not strongly-convex

- Change of variables can also make a convex ("easy") optimisation into a non-convex ("hard") one ...
- \* E.g. suppose  $f(x) = 0.02x^2 x 1$  and we change variable so  $x = e^z$ . Then  $g(z) = 0.02(e^z)^2 - e^z - 1$ :



\* See that g(z) is non-convex even though f(x) is convex. The non-convexity is benign in this example (still just one global minimum, gradient descent will find it), but needn't always be ...

- \* Another example. Suppose  $f(x) = 0.02x^2 x 1$  again but now we change variable to  $x = z^2$ .
- \* As z varies between  $-\infty$  and  $+\infty$ ,  $z^2 \ge 0$ .
- \*  $g(z) = 0.02z^4 z^2 1$ :



- \* See that g(z) has two minima even though f(x) only has one o that's because  $5^2=(-5)^2$
- st This is why tend to prefer  ${\it e}^{\it z}$  rather than  ${\it z}^{\it 2}$  as change of var to ensure  ${\it x} \geq 0$

#### » Projected Gradient Descent

- \* Usually we're not so lucky and can't just make a change of vars.
- \* Recall iterative gradient descent algorithm to minimise function f(x):

for k in range(num\_iters):

$$step_t = \alpha[\frac{\partial f}{\partial x_1}(x_t), \frac{\partial f}{\partial x_2}(x_t), \dots, \frac{\partial f}{\partial x_n}(x_t)]$$
  
 $x_{t+1} = x_t - step_t$ 

\* *Projected gradient descent*: changes  $x_{t+1} = x_t - step_t$  to:

$$egin{aligned} & z_{t+1} = extbf{x}_t - step_t \ & x_{t+1} \in rg \min_{ extbf{x} \in extbf{X}} extbf{d}( extbf{z}_{t+1}, extbf{x}) \end{aligned}$$

- \* Here  $\arg\min_{x\in X} d(z_{t+1},x)$  is the set of x values (there might be more than one) that minimise function  $d(z_{t+1},x)$ .
- \* Function d(z, x) measures the distance between z and x e.g. Euclidean distance

$$d(z,x) = \sum_{i=1}^{n} (z_i - x_i)^2$$

#### » Projected Gradient Descent

\* *Projected gradient descent*: changes  $x_{t+1} = x_t - step_t$  to:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

- \*  $\arg\min_{x\in X} d(z_{t+1},x)$  is the set of x values (there might be more than one) that minimise  $d(z_{t+1},x)$
- \* d(z,x) measures distance between z and x e.g.  $d(z,x) = \sum_{i=1}^n (z_i x_i)^2$
- \*  $z_{t+1}$  might lie outside set X is allowed values, so we choose  $x_{t+1}$  to be the value in X that is closest to  $z_{t+1}$ , e.g.



\* Notation: usually simplified to:  $x_{t+1} = P_X(x_t - step_t)$ , called the *projection* of  $x_t - step_t$  onto X.

- \* In general, calculating  $P_X(x_t-step_t)$  means solving an optimisation problem  $\to$  computationally expensive and slow
- st But in some common special cases we can write the answer directly. E.g:
- \*  $X = \{x \in \mathbb{R} : x \ge 0\}$ , d(x, z) is Euclidean distance. Then

$$P_X(z) = \begin{cases} z & z \ge 0\\ 0 & z < 0 \end{cases}$$

- $\rightarrow$  projection onto the set of positive values
- \*  $X = \{x \in \mathbb{R} : a \le x \le b\}$ , d(x, z) is Euclidean distance. Then

$$P_X(z) = \begin{cases} z & a \le z \le b \\ a & z < a \\ b & z > b \end{cases}$$

 $\rightarrow$  projection onto interval [a, b]

- \* x is a vector  $x = [x_1, x_2, \dots, x_n]$
- \* Have element-wise constraints  $a_1 \le x_1 \le b_1$ ,  $a_2 \le x_2 \le b_2, \ldots, a_n \le x_n \le b_n$ .
- \* d(x, z) is Euclidean distance.
- \* Then just separately project each element  $x_i$  onto interval  $[a_i,b_i]$  i.e

$$[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n]=P_X([\mathbf{z}_1,\mathbf{z}_2,\ldots,\mathbf{z}_n])$$

means

$$x_i = \begin{cases} z_i & a_i \le z_i \le b_i \\ a_i & z_i < a_i \\ b_i & iz_i > b_i \end{cases}$$

for i = 1, 2, ..., n

ightarrow projection onto a (hyper)cube

- \* projection onto a (hyper)cube
- \* e.g.  $x = [x_1, x_2, x_3]$  and  $a_i = -5, b_i = +5, i = 1, 2, 3$ :



 Blue dot is projected onto the closest point (green dot) on face of cube that is nearest to it

- What if sides of cube are not aligned with the axes?
- Simpler case first: suppose we restrict *x* to be on one side of a line, e.q  $x_1 < x_2$ :



Blue dot is projected onto closest point on boundary (marked by green dot) → Projection Onto Half-Plane

\* When  $x = [x_1, x_2, ..., x_n]$  the general equation of a boundary line/plane:

$$a^T x \leq b$$

where a is some vector and b is a scalar

- \* E.g.
  - \*  $x = [x_1, x_2]$ , a = [1, -1], b = 0 corresponds to  $x_1 x_2 \le 0$  i.e.  $x_1 < x_2$
  - \*  $x = [x_1, x_2]$ , a = [1, 0], b = 1 corresponds to  $x_1 \le 1$
  - \*  $x=[x_1,x_2],$  a=[-1,0], b=-1 corresponds to  $-x_1\leq -1$  i.e.  $x_1>1$
- \*  $X = \{x \in \mathbb{R}^n : a^T x \leq b\}, d(x, z)$  is Euclidean distance. Then

$$P_X(z) = egin{cases} z & a^Tz \leq b \ z - rac{a^Tz - b}{a^Ta} a & a^Tz > b \end{cases}$$

and recall 
$$a^T a = \sum_{i=1}^n a_i^2$$
,  $a^T z = \sum_{i=1}^n a_i z_i$   
 $\rightarrow$  Projection Onto Half-Plane

\*  $X = \{x \in \mathbb{R}^n : a^T x \leq b\}$ , d(x, z) is Euclidean distance. Then

$$P_X(z) = \begin{cases} z & a^T z \le b \\ z - \frac{a^T z - b}{a^T a} a & a^T z > b \end{cases}$$

and recall  $a^T a = \sum_{i=1}^n a_i^2$ ,  $a^T z = \sum_{i=1}^n a_i z_i$ 

- \* E.g.  $x = [x_1, x_2], a = [1, 0], b = 1$  then  $a^T x = [1, 0]^T [x_1, x_2] = x_1$  and constraint is  $x_1 \le 0$ .
- \* Projection is

$$P_X(z) = \begin{cases} z & z_1 \le 1\\ z - \frac{z_1 - 1}{1}[1, 0] = [1, z_2] & z_1 > 1 \end{cases}$$

i.e. if first element of z is greater than 1 we set it equal to 1

\* Formula above also works when line/plane is not aligned with the axes e.g. when  $x_1 \le x_2$ . Then a = [1, -1], b = 0. Will leave that to you to try out ...

\* A polytope is created from several intersecting lines e.g.



- \* red line:  $x_2 = -x_1$ , blue line:  $x_1 = x_2$ , yellow line:  $x_1 = -1$
- \* Intersection of constraints  $x_2 \le -x_1$ ,  $x_1 \le x_2$ ,  $x_1 \ge -1$  is the shaded triangle in the middle.
- \* By combining more lines we can make other shapes e.g. hexagon.
- To project onto polytope just repeatedly use previous projection on half-plane formula (once for each boundary line of polytope)

#### Special case: Projection Onto Simplex

\* 
$$X = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_1 \le 1, x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0\}$$



shaded area indicates set X

- Vectors in simplex X can be thought of as probability vectors (non-negative and elements sum to 1)
- See https://lcondat.github.io/publis/Condat\_simplexproj.pdf for v fast algo

#### » Example

\*  $f(x) = x^2$  and we require x to be less than -1 i.e.  $X = \{x \in \mathbb{R} : x \le -1\}$ . Projected gradient with constant step size  $\alpha = 0.1$ , initial x = -3:



- \* See that x increases until  $z_t = x_t step_t$  starts to become bigger than -1, then  $x_{t+1}$  is snapped back to  $x_{t+1} = -1$  by the projection, and thereafter stays there.
- \* And with  $X = \{x \in \mathbb{R} : x \ge +1\}$ , initial x = +3:



### » Example

\* Toy neural network and we require  $x_1$  to be greater than 0.5 i.e.  $X = \{x \in \mathbb{R}^2 : x_1 \geq 0.5\}$ . Projected gradient with constant step size  $\alpha = 0.75$ , initial x = [1, 1]:



#### » Summary: Projected Gradient Descent

- \* If can efficiently compute projection onto feasible set X, then can use projected gradient descent to solve constrained optimisations
- \* We just looked at constant step sizes, what about using Polyak, Adagrad, RMSprop, Heavy Ball, Nesterov Acceleration, Adam with projected gradient descent?
- Adagrad can be used directly<sup>1</sup> with projected gradient descent
- Nesterov acceleration also carries over directly. Recall with gradient descent we used:

$$z_{t+1} = \beta z_t - \alpha \nabla f(x_t + \beta z_t), x_{t+1} = x_t + z_{t+1}$$
  
See that  $z_t = x_t - x_{t-1}$  and define  $y_t = x_t + \beta z_t$ . Then equivalently  $y_t = x_t + \beta (x_t - x_{t-1}), x_{t+1} = y_t - \alpha \nabla f(y_t)$ 

With projected gradient descent use:

$$y_t = x_t + \beta(x_t - x_{t-1}), x_{t+1} = P_X(y_t - \alpha \nabla f(y_t))$$
 (sometimes called FISTA "Fast Iterative Shrinkage-Thresholding

Algorithm" due to paper where originally proposed)

V little (no?) work on use of Polyak step size, RMSprop, Heavy Ball,
 Adam with projected gradient descent

<sup>&</sup>lt;sup>1</sup>https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf