Билет 25

N₂1

2

Постулаты СТО

- 1. <u>Принцип постоянства скорости света</u>: скорость света не зависит от движения источника и одинакова во всех инерциальных системах отсчета в вакууме и является предельной скоростью передачи сигнала. Величина скорости света в вакууме равна $c \approx 3 \cdot 10^8$ м/с.
- 2. <u>Принцип относительности</u>. Все законы природы одинаковы во всех инерциальных системах отсчета уравнения выражающие законы природы инвариантны при переходе от одной системы отсчета к другой.

1й курс. 2й семестр. Лекция 8, 9.

Скорости точек, величина которых сравнима со скоростью света (и, конечно, обязательно меньше!) называются *релятивистскими*.

Выражение для
$$p$$
елятивистского импульса $\vec{p} = \frac{m_0 \vec{\mathrm{v}}}{\sqrt{1 - \frac{{\mathrm{v}}^2}{c^2}}} = m \vec{\mathrm{v}}$.

Основное уравнение релятивистской динамики.

$$\frac{d\vec{p}}{dt} = \vec{F}$$
 Это выражение можно записать в виде
$$\frac{d}{dt} \vec{p} = \frac{d}{dt} (m\vec{\mathbf{v}}) = \vec{\mathbf{v}} \frac{dm}{dt} + m \frac{d\vec{\mathbf{v}}}{dt} = \vec{F}$$

$$\frac{dm}{dt} = \frac{d}{dt} \left(\frac{m_0}{\sqrt{\left(1 - \frac{\mathbf{v}^2}{c^2}\right)}} \right) = m_0 \left(-\frac{1}{2} \frac{-2 \frac{\left(\vec{\mathbf{v}}, \vec{a}\right)}{c^2}}{\left(1 - \frac{\mathbf{v}^2}{c^2}\right)^{3/2}} \right) = \frac{m_0 \left(\vec{\mathbf{v}}, \vec{a}\right)}{c^2 \left(1 - \frac{\mathbf{v}^2}{c^2}\right)^{3/2}}$$

$$\frac{m_0 \left(\vec{\mathbf{v}}, \vec{a}\right) \vec{\mathbf{v}}}{c^2 \left(1 - \frac{\mathbf{v}^2}{c^2}\right)^{3/2}} + m\vec{a} = \vec{F}$$

Вынужденные колебания.

Рассмотрим движение тела в вязкой среде вблизи положения равновесия под действием квазиупругой силы и некоторой периодической силы $F(t) = F_0 \cos(\Omega t + \alpha)$.

Второй закон Ньютона ma = -kx - rv + F(t) перепишем в виде

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_0 \cos(\Omega t + \alpha)$$

где введены обозначения $2\beta = \frac{r}{m}$, $\omega_0^2 = \frac{k}{m}$, $f_0 = \frac{F_0}{m}$. Это уравнение называется *уравнением вынужденных колебаний*.

Решением этого обыкновенного дифференциального уравнения является *сумма* решений *однородного* и частного решения *неоднородного* уравнений. Однородное уравнение

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$$

является уравнением свободных затухающих колебаний. Частное решение неоднородного уравнения

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_0 \cos(\Omega t + \alpha)$$

будем искать в виде $x_B = A_B \cos\left(\omega_B t + \alpha_B\right)$. Изобразим уравнение на амплитудно-векторной диаграмме, на которой величине $\omega_0^2 x_B = \omega_0^2 A_B \cos\left(\omega_B t + \alpha_B\right)$ соответствует вектор \vec{A}_{B1} , такой что $|\vec{A}_{B1}| = \omega_0^2 A_B$. Так как

$$\dot{x}_{\scriptscriptstyle B} = -\omega_{\scriptscriptstyle B} A_{\scriptscriptstyle B} \sin\left(\omega_{\scriptscriptstyle B} t + \alpha_{\scriptscriptstyle B}\right) = \omega_{\scriptscriptstyle B} A_{\scriptscriptstyle B} \cos\left(\omega_{\scriptscriptstyle B} t + \alpha_{\scriptscriptstyle B} + \frac{\pi}{2}\right)$$
, то величине

 $2\beta\dot{x}_{\scriptscriptstyle B}=2\beta\omega_{\scriptscriptstyle B}A_{\scriptscriptstyle B}\cos\left(\omega_{\scriptscriptstyle B}t+\alpha_{\scriptscriptstyle B}+\frac{\pi}{2}
ight)$ соответствует вектор $\vec{A}_{\scriptscriptstyle B2}$, повернутый относительно вектора

$$ec{A}_{_{\!B1}}$$
 на угол $\left.rac{\pi}{2},$ длина которого $\left|ec{A}_{_{\!B2}}
ight|=2\beta\omega_{_{\!B}}A_{_{\!B}}$.

Величине $\ddot{x}_B = -\omega_B^2 A_B \cos\left(\omega_B t + \alpha_B\right) = \omega_B^2 A_B \cos\left(\omega_B t + \alpha_B + \pi\right)$ соответствует вектор \vec{A}_{B3} , повернутый на угол π относительно вектора \vec{A}_{B1} и $|\vec{A}_{B3}| = \omega_B^2 A_B$.

В правой части уравнения величине $f_0 \cos(\Omega t + \alpha)$ соответствует вектор \vec{f}_0 .

Уравнению $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_0 \cos(\Omega t + \alpha)$

будет соответствовать векторная сумма

$$\vec{A}_{B1} + \vec{A}_{B2} + \vec{A}_{B3} = \vec{f}_0.$$

Так как длины векторов не меняются, то это равенство возможно только для случая $\omega_{_B}=\Omega$. Таким образом, вынужденные колебания происходят с частотой вынуждающей силы. Из диаграммы следует, что при этом должно выполняться равенство $f_0^2=\left(A_{_{B1}}-A_{_{B3}}\right)^2+A_{_{B2}}^2$, поэтому получаем

$$f_0^2 = \left(\omega_0^2 A_B - \Omega^2 A_B\right)^2 + \left(2\beta \Omega A_B\right)^2.$$

Откуда находим амплитуду вынужденных колебаний:

$$A_B = \frac{f_0}{\sqrt{\left(\omega_0^2 - \Omega^2\right)^2 + 4\beta^2 \Omega^2}}.$$

Обозначим через $\theta = \alpha - \alpha_{\scriptscriptstyle B}$ - разность фаз вынуждающей силы и вынужденных колебаний.

Из диаграммы следует, что
$$tg\theta = \frac{A_{_{B2}}}{A_{_{B1}}-A_{_{B3}}}$$
 : $tg\theta = \frac{2\beta\omega_{_{B}}A_{_{B}}}{\omega_{_{0}}^2A_{_{B}}-\omega_{_{B}}^2A_{_{B}}} = \frac{2\beta\Omega}{\omega_{_{0}}^2-\Omega^2}$.

Таким образом, при $\omega_0 > \Omega$ получаем, что $\theta > 0$ – вынужденные колебания отстают по фазе от вынуждающей силы, а при $\omega_0 < \Omega$ - вынужденные колебания опережают по фазе вынуждающую силу.