Introduction to Algebraic Information Theory for Quantitative Finance Homework 1

August 30, 2025

Timothy Tarter
James Madison University
Department of Mathematics

- 1. Explain why we said that $U_p(\mathbb{Z})$ is only a group if p is prime. Show that all four group axioms hold for $U_p(\mathbb{Z})$ and \mathbb{Z}_p .
- 2. Prove that the $G = \{e^{i\theta} : i = \sqrt{-1}, \theta \in \mathbb{R}\}$ is a group under multiplication.
- 3. Show that $U_p(\mathbb{Z})$ is an Abelian group.
- 4. Compute $\sigma_1\tau_2^2\sigma_3$, $\tau_2\sigma_3\tau_1$, and $\sigma_2\sigma_3\tau_2$ in S_3 . Remember we compute from right to left!
- 5. In class, we said that if G is a finite group and we want to show that H is a subgroup of G, we only had to check closure. Explain in your own words why this is true.
- 6. Show that $\{e, \tau_1\}$ is not a subgroup of S_3 . Find what you need to add to it to make it a subgroup, then prove that that list is a subgroup.
- 7. Prove that if $M \triangleleft G$ and $N \triangleleft G$, then $M \cap N \triangleleft G$. (Note, \cap means "intersection of sets.")
- 8. Find all normal subgroups of S_3 , recalling that $H \triangleleft G$ iff aH = Ha (or equivalently $H = a^{-1}Ha$, $\forall a \in G$). For each such normal subgroup, compute the elements of S_3/H . Then use the fundamental homomorphism theorem to find an isomorphic group to S_3/H that is easier to work with. Draw a commutative diagram to show the relationship between groups (it may help to use different greek letters for each homomorphism).
- 9. Find all the normal subgroups of $U_{13}(\mathbb{Z})$, recalling that zero is not in the set. Compute each quotient group like in problem six, then use FHT to find an isomorphic group easily. Draw a commutative diagram to show the relationship between groups (it may help to use different greek letters for each homomorphism).
- 10. Find an isomorphism from G = the group of all real numbers under addition to G' = the group of all positive real numbers under multiplication (note, G' does not include zero). Prove that this is an isomorphism.
- 11. Show that $\varphi: G \to G'$, a homomorphism, is a surjective iff $\ker \varphi = \{e\}$.

- 12. Show that if G is any group, $H \triangleleft G$, and $\varphi : G \rightarrow G'$ is a surjective homomorphism, that $\varphi(H) \triangleleft G'$.
- 13. If G is a group and $N \triangleleft G$, prove that G/N is Abelian iff $aba^{-1}b^{-1} \in N$ for all $a, b \in G$. (Note, iff means you have to prove that G/N is Abelian if $aba^{-1}b^{-1} \in N$ for all $a, b \in G$ AND $aba^{-1}b^{-1} \in N$ for all $a, b \in G$ if G/N is Abelian.)
- 14. Determine, using the fundamental theorem of finite Abelian groups (FToFAG), all of the $\mathbb{Z} \times \mathbb{Z} \times ... \times \mathbb{Z}$ groups isomorphic to \mathbb{Z}_{284} . Note that these are guaranteed to be the ONLY groups isomorphic to \mathbb{Z}_{284} cool, right? Then go through an note all of the groups which are not isomorphic to \mathbb{Z}_{284} (all of the groups $\mathbb{Z}_i \times ... \times \mathbb{Z}_n$ such that $\gcd(i, ..., n) \neq 1$ but $i * \cdots * n = 284$). Feel free to use a GCD calculator online for this problem if you aren't familiar with calculating the GCD via the Euclidean algorithm.
- 15. Determine all of the groups isomorphic to \mathbb{Z}_{984} . Determine all of the groups that aren't isomorphic, as above in (14).
- 16. Determine all of the groups isomorphic to \mathbb{Z}_{725} . Determine all of the groups that aren't isomorphic, as above in (14).
- 17. Determine all of the groups isomorphic to \mathbb{Z}_{796} . Determine all of the groups that aren't isomorphic, as above in (14).