Test de Sistema Inteligentes - MUIINF

ETSINF, Universitat Politècnica de València, Junio de 2015

Cuestiones(60 minutos, sin apuntes)

Marca cada recuadro con una única opción entre las dadas.

- En el marco de la máxima entropía:
 - A) Se pueden abordar problemas de clasificación de reconocimiento de formas.
 - B) Sólo se pueden abordar problemas de clasificación en dos clases.
 - C) No se pueden abordar problemas de clasificación de reconocimiento de formas.
 - D) Ninguna de las anteriores.
- D En el marco de la máxima entropía, las funciones de distribución de probabilidad condicional son de la forma:

 - $\begin{array}{ll} \text{A)} \ \ p(y,x) = \frac{1}{Z(x)} \exp(\sum_i \lambda_i f_i(x,y)) \ \text{donde} \ Z(x) = \sum_y \exp(\sum_i \lambda_i f_i(x,y)). \\ \text{B)} \ \ p(y|x) = Z(x) \exp(\sum_i \lambda_i f_i(x,y)) \ \text{donde} \ Z(x) = \sum_y \exp(\sum_i \lambda_i f_i(x,y)). \\ \text{C)} \ \ p(y|x) = \frac{1}{Z(x)} \exp(\sum_i \lambda_i) \ \text{donde} \ Z(x) = \sum_y \exp(\sum_i \lambda_i). \\ \text{D)} \ \ p(y|x) = \frac{1}{Z(x)} \exp(\sum_i \lambda_i f_i(x,y)) \ \text{donde} \ Z(x) = \sum_y \exp(\sum_i \lambda_i f_i(x,y)). \end{array}$
- En el marco de la máxima entropía, el algoritmo IIS:
 - A) Se utiliza para clasificar muestras.
 - B) Se utiliza para estimar los *multiplicadores* λ de Lagrange.
 - C) No se utiliza en el marco de máxima entropia.
 - D) Se utiliza para ajustar las muestras de aprendizaje.
- En el algoritmo IIS el incremento δ_i a aplicar a cada λ_i en cada iteración es:

 - $\begin{array}{ll} \text{A)} \ \delta_i = \log \frac{\widetilde{p}(x,y)}{p_{\lambda}(x,y)}. \\ \text{B)} \ \delta_i = \frac{1}{M} \log \frac{\widetilde{p}(x,y)}{p_{\lambda}(x,y)} \ \text{donde} \ M = f^{\#}(x,y). \\ \text{C)} \ \delta_i = \frac{1}{M} \log \frac{\widetilde{p}(f_i)}{p_{\lambda}(f_i)} \ \text{donde} \ M = f^{\#}(x,y). \\ \text{D)} \ \delta_i = \log \frac{\widetilde{p}(f_i)}{p_{\lambda}(f_i)}. \end{array}$
- C Sea un problema de clasificación en cuatro clases A, B, C y D tal que la clasificación se realiza a partir de 3 características c_0, c_1 y c_2 . Se dispone de un modelo entrenado por Máxima Entropía cuyas características son del tipo:

$$f(x,y) = \begin{cases} 1 & \text{si } y = S \text{ la caracter\'istica } c_j \text{ est\'a presente en } x \\ 0 & \text{en otro caso} \end{cases}$$

donde $S \in \{A, B, C, D\}$.

Suponiendo que todos los valores λ asociado a cada característica son 0. Indica cuál sería la clase en la que se clasificaría una muestra que tuviese las características c_1 y c_2 .

- A) En la clase A.
- B) En la clase con mayor probabilidad *a priori*.
- C) En cualquiera de las clases puesto que la probabilidad a *a posteriori* es la misma para todas la clases.
- D) No se puede clasificar.
- En el marco de la máxima entropía, los valores λ :
 - A) Son siempre positivos.
 - B) Son siempre negativos.
 - C) Pueden tomar valores positivos, nulos o negativos.
 - D) Nunca toman valores nulos.

- B C D Para abordar el problema de la traducción estadística mediante la aproximación directa, la expresión utilizada es:
 - A) $\hat{e} = \arg \max_{e} P(e)P(f|e)$.
 - B) $\hat{e} = \arg \max_{e} P(f)P(e|f)$.
 - C) $\hat{e} = \arg \max_{e} P(e|f)$.
 - D) $\hat{e} = \arg \max_{e} P(f, e)$.
- \square Con un modelo de lenguaje de n-gramas la probabilidad de una cadena y se aproxima como:
 - A) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_{i-n+1}).$
 - B) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_i|y_1..y_{i-1}).$
 - C) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_i, y_{i-n+1}..y_{i-1}).$
 - D) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_i | y_{i-n+1} ... y_{i-1}).$
- B En traducción estadística, un alineamiento
 - A) es una función que permite predecir una palabra dada las n anteriores.
 - B) es una función que relaciona palabras de las cadenas de entrada y salida.
 - C) es una función que relaciona una palabra de la cadena de entrada con la cadena vacía en la cadena de salida.
 - D) es una función que relaciona segmentos de palabras de la cadena de entrada con palabras de la cadena de salida.
- C En traducción estadística, el problema de la búsqueda con un modelo log-lineal utiliza la siguiente expresión:
 - A) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} \lambda_k + h_k(x|y).$
 - B) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} h_k(x, y)$.
 - C) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} \lambda_k h_k(x, y)$.
 - D) $\hat{y} = \arg\max_{y} \prod_{k=1}^{K} \lambda_k h_k(x, y)$.
- A El modelo 1 de IBM de traducción estadística:
 - A) Se utiliza para obtener alineamientos entre palabras de las cadenas de entrada y salida.
 - B) Obtiene un alineamiento entre palabras que siempre es simétrico, es decir, que el alineamiento de x contra y es igual que el de y contra x.
 - C) Es un modelo que no está definido.
 - D) Es el modelo de traducción más complejo de los modelos de IBM.
- B En traducción estadística, el BLEU se define como:
 - A) BLEU = $\exp\left(\sum_{n=1}^{N} w_n \log P_n\right)$
 - B) BLEU = BP exp $\left(\sum_{n=1}^{N} w_n \log P_n\right)$
 - C) BLEU = BP exp $\left(\prod_{n=1}^{N} w_n \log P_n\right)$
 - D) BLEU = $\exp\left(\sum_{n=1}^{N} w_n P_n\right)$
- Dada la frase de referencia "la casa hoy" y la frase "se casa hoy" producida por un sistema de traducción estadística, y suponiendo que BP = 1, y w_n es equiprobable, el BLEU con precisión de n-gramas hasta n = 2 es:
 - A) 0,58.
 - B) 0,20.
 - C) 0,50.
 - D) 0.90.
- C El paquete de traducción estadística MOSES
 - A) Solo se utiliza para aprender un modelo de lenguaje.
 - B) Es una paquete que solo se utiliza para traducción estadística basada en palabras.
 - C) Permite aprender la tablas de traducción de un sistema de traducción estadística.
 - D) Ninguna de la anteriores.