Package 'mHMMplot'

July 25, 2025

```
Type Package
Title Plotting Bayesian Multilevel Hidden Markov Models from the mHMMbayes Package Using gg-
Version 0.1.0
Maintainer Pepijn Vink <p.a.vink@uu.nl>
Description Visualize objects created using the mHMMbayes package wih ggplot2. The plotting func-
      tions output 'ggplot' objects that can be edited using the 'ggplot2' package. ggmHMM in-
      cludes functions to plot obtained emission and transition probability distribu-
      tions for both the group and the subject level. The package can also be used to ob-
      tain trace plots to evaluate convergence, plot infered states obtained using the viterbi algo-
      rithm, and plot the posterior distributions of estimates.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Imports cli,
      coda,
      dplyr,
      ggplot2,
      ggthemes,
      magrittr,
      mHMMbayes,
      rlang,
      stats,
      tibble,
      tidyr,
      tidyselect
Suggests knitr,
      rmarkdown,
      testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
Contents
```

2 plot_emiss

	plot_gamma .			•	•						 •				•				4
	plot_posterior						 												6
	plot_trace																		8
	plot_viterbi .																		10
Index																			13

plot_emiss

Plot emission distributions of a Bayesian Multilevel Hidden Markov Model

Description

Plot emission distributions of a Bayesian Multilevel Hidden Markov Model

Usage

```
plot_emiss(
  model,
  type = "bar",
  subject_effects = TRUE,
  cat_labels = NULL,
  position = ggplot2::position_jitter(width = 0.2, height = 0),
  alpha = 0.75,
  line = FALSE,
  subject = NULL,
  vrb = NULL,
  burn_in = NULL,
  errorbar = NULL
)
```

Arguments

model	Object of type 'mHMMbayes::mHMM', created using [mHMMbayes::mHMM()].				
type	String specifying the type of plot to return. Takes "bar", "point", and "boxplot".				
subject_effects					
	Logical specifying whether a layer of individual estimates should be plotted.				
cat_labels	Character vector of labels for the categorical variables.				
position	Object created with ggplot2::position_jitter indicating the amount of jitter.				
alpha	Numeric value indicating transparency of subject-specific posterior densities.				
line	Logical indicating whether to plot lines when plotting individual-level distributions.				
subject	Vector indicating the subjects to plot when 'subject_effects = TRUE'. Default is 'NULL', which means all subjects are plotted.				
vrb	Optional string specifying the variable to plot when using categorical data.				
burn_in	Optional integer specifying the number of burnin iterations.				
errorbar	Optional string indicating the type of error bar to use.				

plot_emiss 3

Value

Object of type 'ggplot2::gg' plotting emission distributions.

```
## Not run:
library(mHMMbayes)
# simulating multivariate continuous data
n_t <- 100
n <- 10
m <- 3
n_{ep} < -2
gamma <- matrix(c(</pre>
  0.8, 0.1, 0.1,
  0.2, 0.7, 0.1,
 0.2, 0.2, 0.6
), ncol = m, byrow = TRUE)
emiss_distr <- list(</pre>
  matrix(c(
    50, 10,
    100, 10,
    150, 10
  ), nrow = m, byrow = TRUE),
  matrix(c(
    5, 2,
    10, 5,
    20, 3
  ), nrow = m, byrow = TRUE)
data_cont <- sim_mHMM(</pre>
  n_t = n_t, n = n, data_distr = "continuous",
  gen = list(m = m, n_dep = n_dep),
  gamma = gamma, emiss_distr = emiss_distr,
  var\_gamma = .1, var\_emiss = c(5^2, 0.2^2)
# Specify hyper-prior for the continuous emission distribution
manual_prior_emiss <- prior_emiss_cont(</pre>
  gen = list(m = m, n_dep = n_dep),
  emiss_mu0 = list(
    matrix(c(30, 70, 170), nrow = 1),
    matrix(c(7, 8, 18), nrow = 1)
  emiss_K0 = list(1, 1),
  emiss_V = list(rep(5^2, m), rep(0.5^2, m)),
  emiss_nu = list(1, 1),
  emiss_a0 = list(rep(1.5, m), rep(1, m)),
  emiss_b0 = list(rep(20, m), rep(4, m))
# Run the model on the simulated data:
# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
```

4 plot_gamma

```
# and a burn_in of 200.
out_3st_cont_sim <- mHMM(
    s_data = data_cont$obs,
    data_distr = "continuous",
    gen = list(m = m, n_dep = n_dep),
    start_val = c(list(gamma), emiss_distr),
    emiss_hyp_prior = manual_prior_emiss,
    mcmc = list(J = 11, burn_in = 5)
)

plot_emiss(out_3st_cont_sim)

## End(Not run)</pre>
```

plot_gamma

Heat Plot for Transition Probability Matrix of a Bayesian Multilevel Hidden Markov Model

Description

Heat Plot for Transition Probability Matrix of a Bayesian Multilevel Hidden Markov Model

Usage

```
plot_gamma(
  model = NULL,
  level = "group",
  subject = NULL,
  digits = 2,
  facet = TRUE,
  ncol_facet = 2
)
```

Arguments

model	Object of type 'mHMMbayes::mHMM' or 'mHMMbayes::mHMM_gamma', created using [mHMMbayes::mHMM()] or [mHMMbayes::obtain_gamma()].
level	String specifying the level of transition distributions to plot. Options are "group" and "subject".
subject	Optional integer or integer vector specifying the subject(s) to plot.
digits	Integer specifying the number of digits to round to.
facet	Logical specifying whether subjects should be faceted when plotting subject-specific transition probability matrices.
ncol_facet	Integer specifying the number of columns in the facet grid when plotting subject-specific transition probability matrices.

Value

Object of type 'ggplot2::gg' with the visualized transition distributions.

plot_gamma 5

```
## Not run:
library(mHMMbayes)
# simulating multivariate continuous data
n_t <- 100
n <- 10
m <- 3
n_dep <- 2
gamma <- matrix(c(</pre>
 0.8, 0.1, 0.1,
  0.2, 0.7, 0.1,
 0.2, 0.2, 0.6
), ncol = m, byrow = TRUE)
emiss_distr <- list(</pre>
 matrix(c(
    50, 10,
    100, 10,
    150, 10
  ), nrow = m, byrow = TRUE),
  matrix(c(
    5, 2,
    10, 5,
    20, 3
 ), nrow = m, byrow = TRUE)
data_cont <- sim_mHMM(</pre>
  n_t = n_t, n = n, data_distr = "continuous",
  gen = list(m = m, n_dep = n_dep),
 gamma = gamma, emiss_distr = emiss_distr,
  var_gamma = .1, var_emiss = c(5^2, 0.2^2)
# Specify hyper-prior for the continuous emission distribution
manual_prior_emiss <- prior_emiss_cont(</pre>
  gen = list(m = m, n_dep = n_dep),
  emiss_mu0 = list(
   matrix(c(30, 70, 170), nrow = 1),
    matrix(c(7, 8, 18), nrow = 1)
  ),
  emiss_K0 = list(1, 1),
  emiss_V = list(rep(5^2, m), rep(0.5^2, m)),
  emiss_nu = list(1, 1),
  emiss_a0 = list(rep(1.5, m), rep(1, m)),
  emiss_b0 = list(rep(20, m), rep(4, m))
# Run the model on the simulated data:
# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_3st_cont_sim <- mHMM(</pre>
  s_data = data_cont$obs,
  data_distr = "continuous",
```

6 plot_posterior

```
gen = list(m = m, n_dep = n_dep),
start_val = c(list(gamma), emiss_distr),
emiss_hyp_prior = manual_prior_emiss,
mcmc = list(J = 11, burn_in = 5)
)

plot_gamma(out_3st_cont_sim)

## End(Not run)
```

plot_posterior

Plot posterior distributions of a Bayesian Multilevel Hidden Markov Model

Description

Plot posterior distributions of a Bayesian Multilevel Hidden Markov Model

Usage

```
plot_posterior(
  model,
  component = "gamma",
  vrb = NULL,
  state_labels = NULL,
  cat_labels = NULL,
  burnin = NULL,
  alpha = 0.2
)
```

Arguments

model	Object of type 'mHMMbayes::mHMM' or 'mHMMbayes::mHMM_vary' created using [mHMMbayes::mHMM()] or [mHMMbayes::mHMM_vary()].
component	Character string specifying the component to plot. Takes "gamma" or "emiss".
vrb	Character string specifying the dependent variable to plot when plotting emission distributions.
state_labels	Optional character string specifying labels to use for the inferred states.
cat_labels	Optional character string used to specify labels for categories when plotting emission distributions of categorical variables.
burnin	Optional integer specifying number of burnin iterations. If unspecified, the number of burnin iterations specified when fitting the model is used.
alpha	Transparency of densities representing subject-specific posterior densities.

Value

Object of type 'ggplot2::gg' plotting posterior distributions.

plot_posterior 7

```
## Not run:
library(mHMMbayes)
# simulating multivariate continuous data
n_t <- 100
n <- 10
m <- 3
n_dep <- 2
gamma <- matrix(c(</pre>
  0.8, 0.1, 0.1,
  0.2, 0.7, 0.1,
  0.2, 0.2, 0.6
), ncol = m, byrow = TRUE)
emiss_distr <- list(</pre>
  matrix(c(
    50, 10,
    100, 10,
    150, 10
  ), nrow = m, byrow = TRUE),
  matrix(c(
    5, 2,
    10, 5,
    20, 3
  ), nrow = m, byrow = TRUE)
data_cont <- sim_mHMM(</pre>
  n_t = n_t, n = n, data_distr = "continuous",
  gen = list(m = m, n_dep = n_dep),
  gamma = gamma, emiss_distr = emiss_distr,
  var_gamma = .1, var_emiss = c(5^2, 0.2^2)
# Specify hyper-prior for the continuous emission distribution
manual_prior_emiss <- prior_emiss_cont(</pre>
  gen = list(m = m, n_dep = n_dep),
  emiss_mu0 = list(
    matrix(c(30, 70, 170), nrow = 1),
    matrix(c(7, 8, 18), nrow = 1)
  ),
  emiss_K0 = list(1, 1),
  emiss_V = list(rep(5^2, m), rep(0.5^2, m)),
  emiss_nu = list(1, 1),
  emiss_a0 = list(rep(1.5, m), rep(1, m)),
  emiss_b0 = list(rep(20, m), rep(4, m))
# Run the model on the simulated data:
# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_3st_cont_sim <- mHMM(</pre>
  s_data = data_cont$obs,
  data_distr = "continuous",
```

8 plot_trace

```
gen = list(m = m, n_dep = n_dep),
start_val = c(list(gamma), emiss_distr),
emiss_hyp_prior = manual_prior_emiss,
mcmc = list(J = 11, burn_in = 5)
)

plot_posterior(model = out_3st_cont_sim)
## End(Not run)
```

plot_trace

Plot trace plots to assess convergence of a Bayesian Multilevel Hidden Markov Model

Description

Plot trace plots to assess convergence of a Bayesian Multilevel Hidden Markov Model

Usage

```
plot_trace(
  model,
  component = "gamma",
  param = NULL,
  level = "group",
  vrb = NULL,
  prob = TRUE,
  subject = NULL,
  state_labels = NULL,
  cat_labels = NULL,
  alpha = 1
)
```

Arguments

model	Object or a list of objects of type 'mHMMbayes::mHMM' created using [mH-MMbayes::mHMM()].
component	Character string specifying the component to plot. Takes "gamma" or "emiss".
param	Optional character string specifying the parameter to plot for the plotted component. If 'NULL' (default), plots the means (or probabilities). Takes "var" for between-person variances, "sd" for standard deviations of normal emission distributions, and "beta" for regression coefficients.
level	Character string specifying the level of parameter to plot. Takes "group" or "subject".
vrb	Optional character string specifying the variable to plot when plotting categorical emission distributions.
prob	Logical specifying whether trace plots of transitions or categorical emissions should be plotted on the probability scale, rather than the log scale.
subject	Integer specifying the subject to plot subject specific parameters for.
state_labels	Optional character string specifying labels to use for the states.

plot_trace 9

cat_labels Optional character string used to specify labels for categories when plotting emission distributions of categorical variables.

alpha Numeric value specifying the transparency of the lines in the plot. Default is 1.

Value

Object of type 'ggplot2::gg', plotting parameter distributions.

```
## Not run:
library(mHMMbayes)
# simulating multivariate continuous data
n_t <- 100
n <- 10
m <- 3
n_dep <- 2
gamma <- matrix(c(</pre>
 0.8, 0.1, 0.1,
  0.2, 0.7, 0.1,
 0.2, 0.2, 0.6
), ncol = m, byrow = TRUE)
emiss_distr <- list(</pre>
  matrix(c(
    50, 10,
    100, 10,
    150, 10
  ), nrow = m, byrow = TRUE),
  matrix(c(
    5, 2,
    10, 5,
    20, 3
 ), nrow = m, byrow = TRUE)
data_cont <- sim_mHMM(</pre>
  n_t = n_t, n = n, data_distr = "continuous",
  gen = list(m = m, n_dep = n_dep),
  gamma = gamma, emiss_distr = emiss_distr,
  var_{gamma} = .1, var_{emiss} = c(5^2, 0.2^2)
# Specify hyper-prior for the continuous emission distribution
manual_prior_emiss <- prior_emiss_cont(</pre>
  gen = list(m = m, n_dep = n_dep),
  emiss_mu0 = list(
    matrix(c(30, 70, 170), nrow = 1),
    matrix(c(7, 8, 18), nrow = 1)
  ),
  emiss_K0 = list(1, 1),
  emiss_V = list(rep(5^2, m), rep(0.5^2, m)),
  emiss_nu = list(1, 1),
  emiss_a0 = list(rep(1.5, m), rep(1, m)),
  emiss_b0 = list(rep(20, m), rep(4, m))
```

10 plot_viterbi

```
# Run the model on the simulated data:
# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_3st_cont_sim <- mHMM(</pre>
  s_data = data_cont$obs,
  data_distr = "continuous",
  gen = list(m = m, n_dep = n_dep),
 start_val = c(list(gamma), emiss_distr),
 emiss_hyp_prior = manual_prior_emiss,
  mcmc = list(J = 11, burn_in = 5)
)
plot_trace(
 model = out_3st_cont_sim,
  param = "gamma",
  level = "group",
 prob = TRUE
## End(Not run)
```

plot_viterbi

Plot inferred states of a Bayesian Multilevel Hidden Markov Model

Description

Plot inferred states of a Bayesian Multilevel Hidden Markov Model

Usage

```
plot_viterbi(states, s_data, subject = NULL)
```

Arguments

states	Data Frame with inferred states obtained using [mHMMbayes::vit_HMM()] or
	object of class 'mHMMbayes:mHMM'.
s_data	Data Frame with data used to infer states using the viterbi algorithm. Only re-

quired when the object given to 'states' is of class 'mHMMbayes::mHMM'.

subject Optional numeric vector with indices of subjects to plot.

Value

Object of type 'ggplot2::gg' with the plotted inferred states over time.

```
## Not run:
library(mHMMbayes)
# simulating multivariate continuous data
n_t <- 100
n <- 10</pre>
```

plot_viterbi 11

```
m <- 3
n_{ep} < -2
gamma <- matrix(c(</pre>
 0.8, 0.1, 0.1,
 0.2, 0.7, 0.1,
 0.2, 0.2, 0.6
), ncol = m, byrow = TRUE)
emiss_distr <- list(</pre>
  matrix(c(
    50, 10,
    100, 10,
    150, 10
  ), nrow = m, byrow = TRUE),
  matrix(c(
    5, 2,
    10, 5,
    20, 3
  ), nrow = m, byrow = TRUE)
data_cont <- sim_mHMM(</pre>
 n_t = n_t, n = n, data_distr = "continuous",
  gen = list(m = m, n_dep = n_dep),
  gamma = gamma, emiss_distr = emiss_distr,
 var_{gamma} = .1, var_{emiss} = c(5^2, 0.2^2)
# Specify hyper-prior for the continuous emission distribution
manual_prior_emiss <- prior_emiss_cont(</pre>
  gen = list(m = m, n_dep = n_dep),
  emiss_mu0 = list(
    matrix(c(30, 70, 170), nrow = 1),
    matrix(c(7, 8, 18), nrow = 1)
  ),
  emiss_K0 = list(1, 1),
  emiss_V = list(rep(5^2, m), rep(0.5^2, m)),
  emiss_nu = list(1, 1),
  emiss_a0 = list(rep(1.5, m), rep(1, m)),
 emiss_b0 = list(rep(20, m), rep(4, m))
# Run the model on the simulated data:
# Note that for reasons of running time, J is set at a ridiculous low value.
# One would typically use a number of iterations J of at least 1000,
# and a burn_in of 200.
out_3st_cont_sim <- mHMM(</pre>
  s_data = data_cont$obs,
  data_distr = "continuous",
  gen = list(m = m, n_dep = n_dep),
 start_val = c(list(gamma), emiss_distr),
 emiss_hyp_prior = manual_prior_emiss,
  mcmc = list(J = 11, burn_in = 5)
)
states <- vit_HMM(</pre>
```

12 plot_viterbi

```
s_data = data_cont$obs,
  object = out_3st_cont_sim
)
plot_viterbi(states)
## End(Not run)
```

Index

```
plot_emiss, 2
plot_gamma, 4
plot_posterior, 6
plot_trace, 8
plot_viterbi, 10
```