

Projet 6

Classez des images à l'aide d'algorithmes de Deep Learning

Sommaire

- 1. Présentation du sujet et des données
- 2. Cleaning et exploration
- 3. Création d'un CNN
 - 1. From scratch
 - 2. Transfert Learning
- 4. Comparaison des modèles
- 5. Meilleur modèle
- 6. API
- 7. Conclusion

Présentation du sujet

Partenaire: association de protection des animaux

Problématique:

- Souhaite référencer images des animaux pensionnaires
- Base de données: trop long à faire manuellement

Mission: créer un algorithme capable de classer les images en fonction de la race du chien présent sur l'image.

Présentation des données

Base de données initiale: Stanford Dogs Dataset

Nombre de races: 120

Nombre d'images: 20 580

Nombre de races: 120

Base train
12 000 images

Base test 8580 images

Nombre de races: 120

Base train 9609 images

Base validation

2401 images

Utilisé pour améliorer les modèles

Nombre de races: 5

Base train

Base test

400 images

100 images

Utilisé pour tester différents modèles

Cleaning et exploration

Data-augmentation

- Applique modifications sur batch d'image aléatoirement
- Augmente diversité des données sans risquer sur-apprentissage : pas de données supplémentaires
 Exemples:
 - Modification de la luminosité, rotation de l'image, flip de l'image

Photo original

Modification de la luminosité

Flip de l'image

Cleaning et exploration

n02113799-standard poodle n02098413-Lhasa n02107142-Doberman n02107142-Doberman 50 n02113799-standard_poodle n02107142-Doberman n02107142-Doberman n02113799-standard_poodle n02098413-Lhasa n02107142-Doberman n02098413-Lhasa n02108000-EntleBucher 100 100 150 150 200 200 n02113799-standard poodle n02107142-Doberman n02107142-Doberman n02108000-EntleBucher 100

Avec augmentation

<u>Premier modèle pour 5 classes:</u>

Convolution:

1ère et 2ème couche: 64 filtres de taille 3x3 - repère l'ensemble des feature

7/25

- padding: same ajout pixels autour pour ne pas rétrécir l'image
- activation: ReLU remplace valeurs negatives par 0

Max pooling:

• réduit taille image en préservant caractéristiques

Flatten:

Transforme matrice 3D en vecteur

Dense:

- dernière couche du CNN avec 5 classes à prédire
- activation: softmax (N=5 >2)

```
my_CNN = Sequential()
my_CNN.add(Convolution2D(64,(3,3), input_shape = (256,256,3), padding = 'same',
my_CNN.add(Convolution2D(64, (3,3), padding = 'same', activation = 'relu'))
my_CNN.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
my_CNN.add(Flatten())
my_CNN.add(Dense(5, activation = 'softmax'))
Total params: 5,281,605
Trainable params: 5,281,605
Non-trainable params: 0
```

Troisième modèle pour 5 et 120 classes:

```
CNN3_5C = Sequential()
CNN3_5C.add(Convolution2D(32, 3, 3, input_shape=(256,256,3), padding='same', activation='relu'))
CNN3_5C.add(MaxPooling2D((2,2), strides=(2,2)))
CNN3 5C.add(Convolution2D(64, 3, 3, padding='same', activation='relu'))
CNN3_5C.add(MaxPooling2D((2,2), strides=(2,2)))
CNN3_5C.add(Convolution2D(128, 3, 3, padding='same', activation='relu'))
CNN3_5C.add(MaxPooling2D((2,2), strides=(2,2)))
CNN3_5C.add(Convolution2D(256, 3, 3, padding='same', activation='relu'))
CNN3 5C.add(MaxPooling2D((2,2), padding='same'))
CNN3_5C.add(Convolution2D(256, 3, 3, padding='same', activation='relu'))
CNN3 5C.add(MaxPooling2D((2,2), padding='same'))
CNN3_5C.add(Flatten())
CNN3_5C.add(Dense(128, activation='relu'))
CNN3 5C.add(Dropout(0.5)) #prevent overfitting
CNN3_5C.add(Dense(64, activation = 'relu'))
CNN3 5C.add(Dropout(0.5))
CNN3 5C.add(Dense(5, activation='softmax'))
```

Conv, 32

Max Pooling

Conv, 64

Max Pooling

Conv, 128

Max Pooling

Conv, 256

Max Pooling

Conv, 256

Max Pooling

Flatten

Dense, 128

Dropout

Dense, 64

Dropout

Dense, 5 ou 120

Dense: 5 classes

Total params: 1,019,973 Trainable params: 1,019,973

Non-trainable params: 0

Dense: 120 classes

Total params: 1,027,448 Trainable params: 1,027,448 Non-trainable params: 0

Paramètres modifiés et résultats pour 5 classes

Nombres de filtres: 32, 64, 128, 256

	Sans augmentation		Avec augmentation*	
	Accuracy Temps		Accuracy	Temps
SGD	0.2083	13.1450	0.2500	56.7250
Adam	0.3333 13.3523		0.3646	21.6229

*Augmentation = luminosité et flip

Adam – Avec augmentation

Paramètres modifiés et résultats pour 120 classes

Optimizer	Learning rate	Accuracy	Temps (en s.)
SGD	0,0001	0.0208	684,9746
Adam	0,0001	0.0469	533,2239
Adam	0,001	0.0156	408,1274
Adagrad	0,0001	0.0312	303,6105
Adagrad	0,001	0.0208	249,3780

- Précision très faible malgré les différents paramètres
- Nouveaux modèles plus performants

Transfert Learning

Transfert Learning = utilises connaissances acquises par un autre CNN pour résoudre un problème + ou - similaire

<u>Différentes stratégies:</u>

- Fine-tuning total: ré-entraîne tout le réseau
- Extraction de features: ne ré-entraîne pas les couches du réseau
- Fine-tuning partiel: entraîne couches hautes

CNN choisis:

- ResNet50
- VGG-16
- InceptionV3

Extraction de features

Epochs: 10

Batch_size: 40

	Resi	ResNet50		VGG-16		InceptionV3	
Optimizer	Précision	Temps	Précision	Temps	Précision	Temps	
SGD	0.2188	19.0068 s.	0.2188	17.2785 s.	0.9896	21.7252 s.	
Adam	0.2500	18.6200 s.	0.2812	26.9603 s.	0.9967	21.7443 s.	

ResNet50 – optimizer Adam

Inception V3 – optimizer SGD

- Montée à la fin de la courbe
- Tester avec plus d'epochs
- Résultats similaires: temps important et précision moyenne

Fine tuning

Epochs: 10

Batch_size: 40

	ResNet50				
	Précision	Temps (en s.)	Nombre de couches non-entraînée		
	0.2083	29.6655	10		
SGD	0.2188	29.1727	4		
	0.2396	46.4502	17		
Adam	0.2604	50.5133	10		

SGD – 10 couches

SGD – 4 couches

model accuracy

epoch

0.300

0.275

0.200

0.175

0.150

Adam - 10 couches

Fine tuning

Epochs: 40

Batch_size: 40

	ResNet50				
	Précision validation	Nombre de couches non- entraînée			
	0.2083	0.8059	181.1179	10	
SGD	0.2500	0.9572	181.6613	4	
	0.2708	0.8224	171.2812	17	
Adam	0.2083	1.0000	184.6009	10	

Fine tuning

Epochs: 40

Epochs: 20

Batch_size: 16

	VGG-16				InceptionV3	
Optimizer	Précision	Temps	NCNE	Précision	Temps	NCNE
SGD	0.8333	172.8461	4	0.0000	71.4795 3	2
300	0.8021	131.7296	8	0.9896	/1.4/95	3
Adam	0.8854	185.3149	4	0.9792	80.4870	3

- Tests avec différents epochs: 10, 20, 40
- Amélioration des précisions

NCNE = Nombre de couches non-entraînées

Temps d'exécution important

16/25

VGG-16: Optimizer SGD, 4 couches - 10 vs 40 epochs

Comparaison des différents CNN

Différents CNN du projet:

From scratch

Extraction de features

Fine-tuning partiel

Précision similaire Temps d'exécution plus long Nombre d'epochs = 40

	InceptionV3		
Optimizer	Précision Temps		
SGD	0.9896	71.4795	
Adam	0.9792	80.4870	

Précision trop faible

Max accuracy des modèles = 0.3646

Précision similaire au fine-tuning Temps d'exécution beaucoup plus faible Nombre d'epochs = 10

	InceptionV3		
Optimizer	Précision Temps		
SGD	0.9896	21.7252 s.	
Adam	0.9967	21.7443 s.	

Comparaison des meilleurs modèles

4 meilleurs modèles (précision) = InceptionV3

A. Extraction de features: Optimizer SGD

B. Extraction de features: Optimizer Adam

C. Fine-tuning partiel: 3 couches non entraînées - SGD

D. Fine-tuning partiel: 3 couches non entraînées - Adam

		•
Précision	Temps	_
0.9896	21.7252 s.	10 epochs
0.9967	21.7443 s.	
0.9896	71.4795	10
0.9792	80.4870	40 epochs
		·

10 epochs	Précision	Temps
Modèle A	0.9896	21.7252 s.
Modèle B	0.9967	21.7443 s.
Modèle C	0.9479	47.0188
Modèle D	0.9896	41.7289

40 epoch	Précision	Temps
Modèle A	1.0000	72.5857
Modèle B	0.9896	41.7289
Modèle C	0.9896	71.4795
Modèle D	0.9792	80.4870

Meilleurs modèles choisis: A, B et C

Comparaison des meilleurs modèles

Comparaison des meilleurs modèles

Pour choisir le meilleur modèle, on teste les modèles avec et sans augmentation sur 120 classes et on compare les résultats.

Travail avec 120 classes = Recherche de gain de temps ----> EarlyStopping

EarlyStopping: s'arrête si la valeur val_accuracy n'augmente pas après un nombre X=8 d'epoch.

Pour confirmer le meilleur modèle, j'ai testé avec différents paramètres:

- Nombre d'epoch:
 - 30, 50, 60
- Batch size:
 - 40,80
- Avec et sans augmentation

	Sans augmentation		Avec augmentation	
	Précision	Temps	Précision	Temps
Modèle A	0,0156	14 s.	0,0156	20 s.
Modèle B	0,8594	52 s.	0,7188	78 s.
Modèle C	0,0219	12 s.	0,0156	26 s.

batch_size = 80, epochs = 50

Meilleur modèle

Le meilleur modèle est:

Modèle B = Inception V3 - Extraction de features - Optimizer Adam

Précision: 85,94 %

Temps: 52 s.

Evaluation sur data set de test: Résultat: [1.1557236909866333, 0.7933403253555298]

Précision = 79,33 %

API et prédiction

Après avoir enregistré le meilleur modèle, il est importé en 1ère ligne. La fonction qui suit prend en entrée le chemin d'accès d'une photo, la redimensionne, transformée puis utilisé par le modèle pour la prédiction

```
# Import model
model = tf.keras.models.load_model('saved_models/best_model.h5')
# Create function that gives the breed and the percentage of matching from a photo
def predict breed(path file):
  # load the image from file
  image = load img(path file, target size = (256,256))
  # convert the image pixels to a numpy array
  image = img_to_array(image)
  # reshape data for the model
  image = image.reshape(1, 256,256, 3)
  image = image/255.
  # predict the breed
  prediction = model.predict(image)
  name_classes = os.listdir('train')
  pos = np.argmax(prediction)
  print('Ce chien est : {} avec une probabilité de {}%'.format(name_classes[pos][10:], prediction[0][pos]*100))
```

La fonction renvoie le nom de la race prédite ainsi que la probabilité de réussite.

API et prédiction

predict_breed('test/n02085620-Chihuahua/n02085620_10131.jpg')

Ce chien est : Chihuahua avec une probabilité de 70.54483890533447%

predict_breed('test/n02102177-Welsh_springer_spaniel/n02102177_1681.jpg')

Ce chien est : Welsh_springer_spaniel avec une probabilité de 71.06332182884216%

predict_breed('test/n02108915-French_bulldog/n02108915_3520.jpg')

Ce chien est : bull_mastiff avec une probabilité de 50.591373443603516%

B)

Conclusion

Ce que j'ai appris:

- Découverte de nouvelles librairies pour le traitement d'image
- Familiarisation avec les CNN et leurs architectures --> différence CNN from scratch et transfert learning
- Travail sur l'optimisation de modèle exigeant en ressource

Améliorations possibles:

- Modification des paramètres du modèle choisi

Ressources

Voici les liens qui m'ont aidé à travers ce projet:

https://towardsdatascience.com/google-colab-import-and-export-datasets-eccf801e2971

https://machinelearningmastery.com/image-augmentation-deep-learning-keras/

https://elitedatascience.com/keras-tutorial-deep-learning-in-python

https://www.geeksforgeeks.org/working-images-python/

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

https://kuanhoong.medium.com/how-to-use-tensorboard-with-google-colab-43f7cf061fe4

https://blog.octo.com/classification-dimages-les-reseaux-de-neurones-convolutifs-en-toute-simplicite/

https://machinelearningmastery.com/display-deep-learning-model-training-history-in-keras/

https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/

https://openclassrooms.com/fr/courses/4470531-classez-et-segmentez-des-donnees-visuelles/5097666-tp-

<u>implementez-votre-premier-reseau-de-neurones-avec-keras</u>

https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/

https://medium.com/@kenneth.ca95/a-guide-to-transfer-learning-with-keras-using-resnet50-a81a4a28084b

https://keras.io/api/preprocessing/image/

https://keras.io/api/layers/