Administração e Gerenciamento de Redes

Profa. Dra. Kalinka Regina Lucas Jaquie Castelo Branco kalinka@icmc.usp.br

Conceitos e revisão de redes TCP/IP

- **Visão geral das camadas da pilha de protocolos TCP/IP;

2

Visão Geral TCP/IP

- Baseado no modelo OSI;
- - □Utilizam serviços de outras camadas;
- #Por que usar camadas?

 - ☐Independência;
 - Mudanças efetuadas em uma camada não afetam as demais:

3

Camadas Modelo OSI Layer 7 (Application) Layer N Layer

Camadas Modelo OSI

- **¥Vantagens:**
 - △A comunicação é decomposta em partes menores e mais simples;
 - □Padronização;
 - Mudanças em uma camada não afeta as outras;
 - Facilidade de aprendizado e compreensão.

Camadas Modelo OSI

- Enlace Controle de acesso ao meio (quadros); Transferência de dados confiável;
- Rede Endereço de Rede e Roteamento (pacotes); entrega por melhor esforço

7

Camadas Modelo OSI

Protocolo TCP/IP

utilizada na Internet;

₩O TCP/IP é a implementação do OSI

dos EUA (DoD - Departament of

⊯Foi criado pelo Departamento de Defesa

- #Transporte Estabelecimento de conexões fim-a-fim (segmento); Confiabilidade de dados; Controle de fluxo, detecção de falhas e recuperação de informação;
- #Sessão Comunicação entre hosts (dados); Estabelece, gerencia e termina sessões;

3

Camadas Modelo OSI

Defense); **∺**Padrão aberto;

10

TCP/IP

- ₩Aplicação HTTP, DNS, SMTP, FTP;
- Rede − IP, IPX;
- ₭Enlace Ethernet, ARP, PPP, ATM, Frame-Relay, LAPB;

Camada 2 - Enlace

- **Transforma um meio ruidoso em um canal livre de erros:
- ★ Serviços:
 - □ Enquadramento e acesso ao enlace;

 - □ Detecção/correção de erros;
- Utiliza endereços físicos para identificar origem e destino de quadros.

13

Mac Address

- **#**Endereço físico usado para levar um quadro da interface local até outra na mesma rede;
- ★Endereço único de 48 bits (24 oriundos da OUI Organizational Unique Identifier e 24 bits designados pelo fabricante)

14

ARP

XAddress Resolution Protocol:

- Protocolo utilizado para mapear endereços da camada de rede em endereços da camada de enlace:
- Usado em comunicações locais como PC-PC, PC-Switch/Roteador;
- ─Faz um mapeamento dinâmico entre endereço IP de 32 bits para qualquer endereço de camada de enlace.

15

ARP

- **Nó A quer enviar pacote para endereço IP destino na mesma rede local:
 - Nó de origem verifica primeiro se sua própria tabela ARP contém o endereço IP solicitado;
 - Se o endereço não estiver na Tabela ARP, o módulo ARP difunde o pacote
 - Todos os nós da rede aceitam e inspecionam o pacote ARP
 - O nó com endereço IP solicitado responde ao nó A com um pacote ARP unicast (ponto a ponto) informando seu MAC
 - O Mac do nó solicitado é armazenado na tabela ARP do nó A.

Camada 3 – Funções da Camada de Rede

- #Prover transporte de pacotes fim-a-fim;
- - □Rota seguida pelos pacotes;
- **#Comutação**:
 - Mover pacotes dentro do roteador da entrada à saída apropriada;
- ₩ Qualidade de serviço QoS;

Comutação #Por Circuitos: Sistema telefônico usa um circuito dedicado fim-a-fim; #Pacotes: Sistema de correios onde uma correspondência é "roteada" em várias agências.

Rede de datagramas - Internet

- **%**Não requer estabelecimento de chamada na camada de rede;
- **K**Roteadores não guardam estado de pacotes roteados:
 - Não existe conexão;
 - Dois pacotes com mesma origem-destino podem seguir caminhos diferentes.

Classes de endereçamento

- - ☐Todos os bits do campo host são 1.

25

Esgotamento de IPs

- ★Distribuição ineficiente esgotamento
- **#Solução:**
 - □ Endereços privados definidos pela RFC 1918;
 - □CIDR Classless InterDomain Routing;

26

Endereços Privados

- ₩Não são roteados para a Internet;
- ¥São 3 classes para uso privado
 - □Classe A
 - ≥ 10.0.0.0 a 10.255.255.255
 - - ≥ 172.16.0.0 a 172.31.255.255
 - - ≥ 192.168.0.0 a 192.168.255.255

27

CIDR & VLSM

- **#CIDR**
 - □Parte de rede do endereço tem comprimento variável
 - □Para isso utiliza-se VLSM
 - ▼Varia-se a quantidade de bits utilizada na definição da porção de rede
 - - ≥200.145.202.5/26

 - . Uso de máscaras de sub-rede

28

Sub-redes

- - ☑Informa-se ao roteador o comprimento dos campos de rede e host;
- **Administradores podem definir tamanho de suas sub-redes de acordo com a conveniência.

29

Como fazer?

- **#**Obtem-se bits da porção de hosts:
 - Oum bit 1 − indica que o bit deve ser parte do número de sub-rede;

Camada 4 - Transporte

- - Comunicação lógica entre processos rodando em hosts diferentes
- **#Camada** de rede opera sobre hosts

31

Transporte - Serviços

- #Comunicação lógica entre processos;
- #Provê uma abstração para a camada de aplicação como se dos dois hosts estivessem fisicamente conectados:
- Na Internet
 - □Entrega confiável, ordenada, ponto a ponto TCP;
 - ☑Entrega não confiável, não ordenada, ponto a ponto ou multiponto – UDP
- ₩ Multiplexação.

32

Multiplexação

- Processo de junta múltiplos processos de aplicações em segmentos;
- - ○Uso de números de porta na camada de transporte;
- ₩Número de porta para aplicações bem conhecidas: 25(SMTP); 80 (HTTP). 22 (SSH)...

33

UDP

- ₩ User Datagram Protocol

 - Oferece serviço de melhor esforço:

 - 区Entrega fora de ordem;
 - Serviço sem conexão:
 - ☑Tratamento independente de cada segmento;
 - Não há recuperação de erros.
 - △Aplicações comuns DNS, SNMP

34

TCP

₩ Transmission Control Protocol

- - 区Fluxo de dados ordenados
 - ⋉Entrega confiável
 - Mecanismos de confirmação e retransmissão

 - Mantém estado da conexão
 - 3 Handshake

 - ☑Aplicações conhecidas (HTTP, SMTP, SSH, TELNET)

5

Connection request (SYN=1, seq=client_isn) Connection granted (SYN=1, seq=server_isn, seq=server_isn, seq=client_isn+1) ACK (SYN=0, seq=client_isn+1) ACK (SYN=0, seq=client_isn+1) Time Time

###