Riassunto

martedì 7 giugno 2022

Istruzio	one	Tempo
For i =	0 to n	М
For i =	0 to m	m^2
	For $j = 0$ to m	
For i =	0 to m For j = 0 to i	$\frac{n(n-1)}{2}$
For i =	0 to m For j = i to m	$\frac{n(n+1)}{2}$
While	i < m	log _k m
While	i < m While j < m	$\log_k^2 m$
While	i < m For j to m	$n * \log_2 m$

Limiti asintotici

- O -> è la o grande, equivale al limite superiore estretto
- o -> è la o piccola, equivale al limite superiore largo (una O è anche una o, ma non il contrario)
- Ω -> è la omega grande, cioè limite inferiore stretto
- ω -> è la omega piccola, cioè limite inferiore largo
- $0 = \Omega \rightarrow \theta$ -> theta

Ricerche

- Ricerca sequenziale
 - O Scorre tutto un vettore alla ricerca di un valore K
 - $\circ \quad T_m(n) = 1 \quad T_p(n) = n$
- Ricerca dicotomica
 - O Dato un array ordinato e un valore k che vogliamo cercare, Troviamo la metà del nostro array, la confrontiamo con k, se k è più piccolo Restringiamo il nostro array verso sinistra, senò verso destra E si continua così fino a che o abbiamo trovato il valore, oppure si inverte l'array
 - $\circ \quad T_m(n) = 1. \ T_P(n) = \log n$

Metodo dell'esperto

Dato un tempo di una funzione ricorsiva
$$T(n) = aT\left(\frac{n}{b}\right)D(n) + C(n)$$

Con a quante volte la parte ricorsiva è ripetuta (ex. 2 se facciamo sinistra e destra) Ed n quante volte dividiamo un array (ex. 2 se l'array è diviso in 2 parti) Definendo questo:

-
$$r(n) = aT\left(\frac{n}{b}\right) + n^{\log_b a}$$

- $f(n) = D(n) + C(n)$

$$f(n) = D(n) + C(n)$$

Abbiamo 3 casi:

$$-> f(n) = O(\log_b a - F) > 0$$
-> Tempo = $O(\log_b a)$

-> Tempo =
$$\theta n^{\log_b a}$$

2) F(n)>R(n)

$$f(n) > R(n)$$

$$-> f(n) = \Omega d^{\log_b a + E} f > 0$$

$$\rightarrow af\left(\frac{n}{\cdot}\right) kf(n)$$

->
$$af\left(\frac{n}{b}\right) \not= kf(n)$$

-> Tempo = $f(n)$

3) R(n)=F(n)

$$\rightarrow$$
 Tempo = $\partial n^{\log_b a} * \log n$

Ordinamenti

- Selection sort
 - Scorriamo l'array alla ricerca del minimo ogni volta, per poi metterlo all'inizio
 - $T_m(n) = n^2 T_p(n) = n^2$
- Insertion sort
 - Confrontiamo il secondo numero ed il primo e, nel caso il secondo è minore del primo, scambiamo.
 Ora confrontiamo il secondo e il terzo e, mettendo caso il terzo sia maggiore del secondo,
 - A. Scambiamo il 2 e il 3
 - B. Controlliamo se il 2 è minore del primo. In caso affermativo, scambiamo
 - $\circ \quad T_m(n) = n \quad T_p(n) = n^2$
- Merge sort
 - o E' un algoritmo divide et impera suddiviso in:
 - Divide: Dividiamo l'array in 2 parti
 - Impera: Ordiniamo la prima metà e poi la seconda
 - Combina: Fonde in maniera ordinata le parti divise
 - Caso base: Abbiamo 1 valore

$$o t(n) = \begin{cases} \theta(1) \to n = 1 \\ n * \log(n) \to n > 1 \end{cases} \to \theta(n)$$

- Quick sort
 - E' un algoritmo divide et impera non stabile ed è suddiviso in:
 - Divide: Divide l'array in 2 parti; una con i numeri più grandi del pivot,
 l'altra con i numeri più piccoli del pivot, con il pivot fra i due array
 - Impera: Ordina la prima parte e poi la seconda richiamando divide
 - Combina: Inutile
- Counting Sort
 - Algoritmo, non basato sui confronti, non in loco.
 Abbiamo 3 array: 1) Il nostri input 2) L'output 3) Contatore di valori
 Scorriamo il nostro array di input, contiamo i valori dentro il 3 array e poi mettiamo
 I valori del 3 array sul 2
 - $\circ \quad T(n) = n + k \to O(n + k)$
- Radix sort
 - Metodologia per potere ordinare per più campi:
 Dati 3 parametri in ordine per importanza con cui dover ordinare: X, Y, Z
 Ordiniamo prima per Z, poi Y e infine X
 Nota: L'ordinamento usato deve essere statbile
- Heap Sort
 - Ordinamento non stabile
 - Prima esegue la buildHeap
 - scambia radice con l'ultima foglia, decrementa la lunghezza
 - Chiama heapify, ritorna al punto 2 fino a che la heap non è vuota
 - $\circ \quad \theta(n) = n \log n$

Strutture dati

	Ins	Search	Del	Upd	Max	Min	Succ	Prec
Array	1 - N	N	N - 1	1	N	N	N	N
Array Ord	n	Log n	N	N	1	1	1	1
Liste	1	N	1	1	N	N	N	N
Liste ord	N	N	1	N	1	1	1	1
Pile	N	N	1	1	N	N	N	N
Code	1	N	1	1	N	N	N	N
ABR	log n	Log n	Log n	Log n	Log n	Log n	Log n	Log n
Max heap	log n	N	Log n	Log n	1	N	N	N
Min heap	log n	N	Log n	Log n	N	1	N	N

- Array:
 - Elemento statico, ci permette di accedere rapidamente a tutti gli elementi con però Problemi di spazio
- Liste

Elemento dinamico, permette una buonissima gestione dello spazio a discapito del tempo.

Questo perché ogni elemento punta al proprio next (anche al prev nel caso di liste circolari)

E quindi, per raggiungere l'ultima posizione dobbiamo continuare a fare next

Nota: per raggiungere il primo valore dobbiamo fare head[L] con L la nostra variabile

Operazioni:

- Insert
- Delete
- o listMin
- Stack

Viene utilizzata una politica LIFO (last in first out) Operazioni:

- o Push
- o Pop
- StackEmpty
- o Top
- Queue

Viene utilizzata una politica Fifo (first in first out) Operazioni:

- Enqueue
- Dequeue
- QueueEmpty
- o Top

- Albero

E' un particolare grafo che non è orientato, è connesso ed aciclico. Quando un albero è binario, ogni nodo può avere alpiù 2 figli Termologie:

- o Parent di un nodo: E' il nodo che possiede in left/right il nodo in questione
- o Radice: L'unico nodo che non ha un parent
- Figlio: Nodi in left/right di un determinato nodo
- o Grado: Quanti figli ha un determinato nodo
- o Profondità: Quanto lontano un nodo è dalla radice
- o Altezza albero: profondità massima di un albero
- o Albero completo: Ogni foglia ha la stessa profondità e tutti i nodi non foglia hanno 2 figli

-> altezza = $\log_2 n$

- O Successore: il minimo numero più grande di un determinato nodo
- o Albero binario di ricerca: Ogni nodo è sempre più piccolo di ciò che è a destra
- Tipologie di visite:
 - preOrdine: [radice][sinistra][destra] -> print-sinistra-destra
 - inOrder: [sinistra][radice][destra] -> sinistra-print-destra
 - postOrder: [sinistra][destra][radice] -> sinistra-destra-print

Operazioni:

- SBT_min: Andiamo a sinistra fino a che troviamo null
- AVL: Indica quanto un albero è sbilanciato
- SBT_Search

Cerchiamo un determinato valore in un albero. Per farlo confrontiamo il nodo con k Se k è più grande allora andiamo a destra, senò a sinistra e continuiamo i confronti. Si continua così fino a che o si trova k, oppure raggiungiamo null

- o Insert: Facciamo SBT_Search senza = e continuiamo fino a che troviamo null; li metteremo il valore
- Eliminazione:

abbiamo 2 casi:

- 0 figli, cancelliamo il riferimento ed è fatta
- Cancellare un nodo con 1 figlio
 E' il caso più Semplice. Cancelliamo il nodo
 Ed uniamo il padre del nodo cancellato con
 L'unico figlio. L'albero rimane uguale
- Cancellare un nodo con 2 figli
 In questo caso, bisogna mettere il successore di quel nodo

 Heap / Code con priorità E' un array visto come se fosse un albero binario quasi completo. Operazioni: heapSize -> Quanto l'array è lungo Max -> Prendi massimo senza toglierlo extractMax -> Prendi massimo e toglilo Insert Left Right Heapify Dato un nodo, prendiamo left e right. Facciamo il massimo fra il nodo, left e right e, Se il massimo è il nodo stesso, non facciamo nulla. Nel caso fosse o left oppure right, Si scambia il nodo con left/right, e poi si fa heapify su left/right Sono tanti heapify che partono dalle foglie fino alla radice