

LEGACY CRYPTO 2

TTM4205 - Lecture 6

Tjerand Silde

07.09.2023

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Reference Group

I am looking for (at least) three students to form a reference group in this course, preferably students from different programs. We will meet three times during the semester, and your feedback is extremely valuable.

Send me an email and/or talk to me in the break:)

Deadlines

- Topic/scope/group approval: November 1st
- Short oral presentations: November 23rd (TBC)
- Draft submission for feedback: November 23rd
- "Weekly Problems": December 1st at 23:59.
- "Special Topics Project": December 22nd at 23:59

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Legacy Crypto is...

- Old and outdated crypto
- Insecure, weakened, or flawed crypto
- Crypto regulated by export control
- Potentially backdoored crypto
- Key escrow and surveillance
- Downgradable crypto protocols

Two Categories

Secret Key Crypto

Public Key Crypto

Today

Secret Key Crypto

Public Key Crypto

Public Key Crypto

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Legacy Ciphers

While we have many attacks against symmetric key ciphers that made them obsolete, we do not have groundbreaking attacks against the legacy public key ciphers.

However, we need to be careful when setting parameters, and (as with CBC) be careful when using padding schemes.

Here are some examples...

ightharpoonup Improved discrete log ightarrow Must use larger keys

- Improved discrete log → Must use larger keys
- ▶ Non-prime group $\mathbb{Z}_q^* \to \text{Leaks Legendre symbol of } m$
 - lacktriangle computing DL depends on largest prime factor p|(q-1)
 - lacktriangle messages with different Legendre symbol ightarrow break DDH
 - need generator g to be of order p for CPA security

- Improved discrete log → Must use larger keys
- ▶ Non-prime group \mathbb{Z}_q^* → Leaks Legendre symbol of m
 - computing DL depends on largest prime factor p|(q-1)
 - lacktriangle messages with different Legendre symbol ightarrow break DDH
 - lacktriangle need generator g to be of order p for CPA security
- lacktriangle Supersingular curves ightarrow Can break Decisional DH

- ► Improved discrete log → Must use larger keys
- ▶ Non-prime group $\mathbb{Z}_q^* \to \text{Leaks Legendre symbol of } m$
 - lacktriangle computing DL depends on largest prime factor p|(q-1)
 - lacktriangle messages with different Legendre symbol ightarrow break DDH
 - need generator g to be of order p for CPA security
- Supersingular curves → Can break Decisional DH
- Choose safe curves? → Standardized P-256, X25519, ...

ECC in Practice

Elliptic Curve Cryptography in Practice

Joppe W. Bos 1, J. Alex Halderman 2, Nadia Heninger 3, Jonathan Moore, Michael Naehrig 1, and $\rm Eric~Wustrow^2$

 1 Microsoft Research 2 University of Michigan

³ University of Pennsylvania

Figure: https://eprint.iacr.org/2013/734.pdf

ightharpoonup Improved factoring ightarrow Must use larger keys

- ightharpoonup Improved factoring ightarrow Must use larger keys
- ▶ If $d < \frac{1}{3}N^{1/4}$ → Wiener's attack to recover d

- ightharpoonup Improved factoring ightarrow Must use larger keys
- ▶ If $d < \frac{1}{3}N^{1/4}$ → Wiener's attack to recover d
- lacktriangle Small key e o Håstad's attack to recover m

- ► Improved factoring → Must use larger keys
- ▶ If $d < \frac{1}{3}N^{1/4}$ → Wiener's attack to recover d
- lacktriangle Small key e o Håstad's attack to recover m
- Several attacks by Don Coppersmith (NSA since 2005)
 - ightharpoonup Efficient factoring when e is very small
 - Message recovery against short padding
 - Factoring given partial bits of p

- ightharpoonup Improved factoring ightarrow Must use larger keys
- ▶ If $d < \frac{1}{3}N^{1/4}$ → Wiener's attack to recover d
- lacksquare Small key e o Håstad's attack to recover m
- Several attacks by Don Coppersmith (NSA since 2005)
 - Efficient factoring when e is very small
 - Message recovery against short padding
 - Factoring given partial bits of p
- ▶ If $e < \sqrt{N}$, given $\frac{1}{4} \log_2 N$ bits of $d \to \mathsf{Can}$ reconstruct d

- ► Improved factoring → Must use larger keys
- ▶ If $d < \frac{1}{3}N^{1/4}$ → Wiener's attack to recover d
- lacktriangle Small key e o Håstad's attack to recover m
- Several attacks by Don Coppersmith (NSA since 2005)
 - Efficient factoring when e is very small
 - Message recovery against short padding
 - Factoring given partial bits of p
- ▶ If $e < \sqrt{N}$, given $\frac{1}{4} \log_2 N$ bits of $d \to \mathsf{Can}$ reconstruct d
- ► PKCS 1 padding → Bleichenbacher's padding attack

RSA

Twenty Years of Attacks on the RSA Cryptosystem

Dan Boneh dabo@cs.stanford.edu

Figure:

https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

RSA Challenges

Challenge Name	Digits	Bits	Date Factored	Factored by		
RSA-100	100	330	Apr 1, 1991	A. K. Lenstra		
RSA-110	110	364	Apr 14, 1992	A. K. Lenstra and M.S. Manasse		
RSA-120	120	397	Jul 9, 1993	T. Denny et al.		
RSA-130	130	430	Apr 10, 1996	A. K. Lenstra et al.		
RSA-140	140	463	Feb 2, 1999	H. te Riele et al.		
RSA-150	150	496	Apr 16, 2004	K. Aoki et al.		
RSA-155	155	512	Aug 22, 1999	H. te Riele et al.		
RSA-160	160	530	Apr 1, 2003	J. Franke et al.		
RSA-170	170	563	Dec 29, 2009	D. Bonenberger and M. Krone		
RSA-576	174	576	Dec 3, 2003	J. Franke et al.		
RSA-180	180	596	May 8, 2010	S. A. Danilov and I. A. Popovyan		
RSA-190	190	629	Nov 8, 2010	A. Timofeev and I. A. Popovyan		
RSA-640	193	640	Nov 2, 2005	J. Franke et al.		
RSA-200	200	663	May 9, 2005	J. Franke et al.		
RSA-210	210	696	Sep 26, 2013	R. Propper		
RSA-704	212	704	Jul 2, 2012	S. Bai, E. Thomé and		
				P. Zimmermann		
RSA-220	220	729	May 13, 2016	S. Bai, P. Gaudry, A. Kruppa,		
			•	E. Thomé and P. Zimmermann		
RSA-230	230	762	Aug 15, 2018	S. S. Gross		
RSA-768	232	768	Dec 12, 2009	T. Kleinjung et al.		
RSA-240	240	795	Nov 24, 2019	F. Boudot, P. Gaudry, A. Guille-		
				vic, N. Heninger, E. Thomé and		
				P. Zimmermann		
RSA-250	250	829	Feb 28, 2020	F. Boudot, P. Gaudry, A. Guille-		
			ĺ	vic, N. Heninger, E. Thomé and		
				P. Zimmermann		
		1	1	1		

Table 1. The solved RSA Challenges

Figure: https://eprint.iacr.org/2021/894.pdf

Key Sizes

			Future System Use	
	Parameter	Legacy	Near Term	Long Term
Symmetric Key Size	k	80	128	256
Hash Function Output Size	m	160	256	512
MAC Output Size	m	80	128	256
RSA Problem	$\ell(n) \ge$	1024	3072	15360
Finite Field DLP	$\ell(p^n) \ge$	1024	3072	15360
	$\ell(p), \ell(q) \ge$	160	256	512
ECDLP	$\ell(q) \ge$	160	256	512
Pairing	$\ell(q^n) \ge$	1024	3072	15360
	$\ell(p), \ell(q) \ge$	160	256	512

Table 2. Key Size Analysis, where $\ell(\cdot)$ refers to the bit-length of the parameter.

Figure: https://eprint.iacr.org/2021/894.pdf

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

▶ A MitM attack on TLS \leq 1.2 can choose weak ciphers

- ▶ A MitM attack on TLS \leq 1.2 can choose weak ciphers
- ▶ Export Diffie-Hellman accept 512 bit prime groups

- ▶ A MitM attack on TLS \leq 1.2 can choose weak ciphers
- ► Export Diffie-Hellman accept 512 bit prime groups
- ▶ One week of pre-computation \rightarrow DL takes 1 min

- ▶ A MitM attack on TLS \leq 1.2 can choose weak ciphers
- Export Diffie-Hellman accept 512 bit prime groups
- ▶ One week of pre-computation \rightarrow DL takes 1 min
- 2015: two 1024 groups break 18% HTTPS and 26% SSH

Logjam Attack

Figure: https://weakdh.org/imperfect-forward-secrecy.pdf

Old Attacks on TLS

RC4

- Roos's Bias 1995
- Fluhrer, Martin & Shamir 2001
- Klein 2005
- Combinatorial Problem 2001
- Roval Holloway 2013 Bar-mitzvah 2015
- NOMORE 2015

RSA-PKCS#1 v1.5 Encryption

- Bleichenbacher 1998
- Jager 2015
- **DROWN 2016**

Renegotiation

- Marsh Ray Attack 2009 Renegotiation DoS 2011
- Triple Handshake 2014

3DES

Sweet32

AES-CBC

- Vaudenay 2002
- Boneh/Brumley 2003
- **BEAST 2011**
- Luckv13 2013
- POODLE 2014
- Lucky Microseconds 2015

Compression

CRIME 2012

MD5 & SHA1

- **SLOTH 2016**
- SHAttered 2017

Figure: https://owasp.org/www-chapter-london/assets/slides/ OWASPLondon20180125_TLSv1.3_Andy_Brodie.pdf

Downgrade Attacks on TLS

TLS: a long year of downgrade attacks

```
    POODLE TLS 1.2 → SSLv3 [Dec'14]
    FREAK RSA-2048 → RSA-512 [Mar'15]
    LOGJAM DH-2048 → DH-512 [May'15]
    BLEICH? RSA-Sign → RSA-Enc [Aug'15]
    SLOTH RSA-SHA256 → RSA-MD5 [Jan'16]
```

Figure: https://rwc.iacr.org/2016/Slides/Downgrade.pdf

Removed RSA for key exchange

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions
- Removed AES-CBC encryption mode

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions
- Removed AES-CBC encryption mode
- Removed static (EC) Diffie-Hellman

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions
- Removed AES-CBC encryption mode
- Removed static (EC) Diffie-Hellman
- Only standardized groups/curves

New Cipher Suits

TLS 1.3 only allows for 5 different cipher suits:

- ► (EC)DHE-AES-128-GCM-SHA256
- ► (EC)DHE-AES-256GCM-SHA384
- ► (EC)DHE-CHACHA20-POLY1305-SHA256
- ► (EC)DHE-AES-128-CCM-SHA256
- ► (EC)DHE-AES-128-CCM-8-SHA256

Matthew Green's Blog

- ➤ Standards: https://blog.cryptographyengineering.com/2011/10/04/how-standards-go-wrong-constructive
- ► Logjam: https://blog.cryptographyengineering.com/2 015/05/22/attack-of-week-logjam
- ► FREAK: https://blog.cryptographyengineering.com/2 015/03/03/attack-of-week-freak-or-factoring-nsa

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

PRNG designed by NSA and standardized by NIST

- PRNG designed by NSA and standardized by NIST
- ▶ It is provably random from DDH over elliptic curves

- PRNG designed by NSA and standardized by NIST
- ▶ It is provably random from DDH over elliptic curves
- ▶ The input is a random seed s and two points P, Q

- PRNG designed by NSA and standardized by NIST
- It is provably random from DDH over elliptic curves
- ▶ The input is a random seed s and two points P, Q
- The points P and Q are chosen at random

- PRNG designed by NSA and standardized by NIST
- It is provably random from DDH over elliptic curves
- ▶ The input is a random seed s and two points P, Q
- lacktriangle The points P and Q are chosen at random
- ▶ Let x(P) output the x coordinate of the point P

- PRNG designed by NSA and standardized by NIST
- It is provably random from DDH over elliptic curves
- ▶ The input is a random seed s and two points P, Q
- lacktriangle The points P and Q are chosen at random
- Let x(P) output the x coordinate of the point P
- Let ϕ be a function that truncates x(P) to bits

This is provably biased if you know DLOG $log_P Q$

DUAL EC Backdoor (Simplified)

The user

- Two parameters (P,0)
- Compute next state $S_{i+1} = P^{S_i} \mod N$
- Compute next output $r_i = Q^{s_i} \mod N$

The attacker

- Keep x such that $P = Q^x \mod N$
- Observe any output
 - Compute next state $s_{i+1} = r_i^x \mod N$
- Predict all future outputs!

$$s_{i+1} = P^{s_i} = (Q^x)^{s_i} = (Q^{s_i})^x = r_i^x \mod N$$

A Security Analysis of the NIST SP 800-90 Elliptic Curve Random Number Generator

Daniel R. L. Brown* and Kristian Gjøsteen[†] February 15, 2007

Figure: https://eprint.iacr.org/2007/048.pdf

Matthew Green's Blog

- ▶ Dual-EC-DRBG: https://blog.cryptographyengineering .com/2013/09/18/the-many-flaws-of-dualecdrbg
- RSA warning:

```
https://blog.cryptographyengineering.com/2013/09/2
0/rsa-warns-developers-against-its-own
```

NSA random number:

```
https://blog.cryptographyengineering.com/2013/12/28/a-few-more-notes-on-nsa-random-number
```

► Juniper backdoor: https://blog.cryptographyenginee ring.com/2015/12/22/on-juniper-backdoor

Micali-Schnorr?

On the Possibility of a Backdoor in the Micali-Schnorr Generator

```
Hannah Davis<sup>1</sup> Matthew Green<sup>2</sup> Nadia Heninger<sup>1</sup>
Keegan Ryan<sup>1</sup> Adam Suhl<sup>1</sup>
```

```
Figure: paper: https://eprint.iacr.org/2023/440.pdf, talk: https://www.youtube.com/watch?v=608NQdTn39Q&t=2629s, slides: https://iacr.org/submit/files/slides/2023/rwc/rwc2023/119/slides.pdf
```

Micali-Schnorr?

Unclear how to recover the state using RSA decryption.

Questions?

