Быстрая оптимизация мультизадачных моделей

Филатов Андрей

Московский физико-технический институт Кафедра интеллектуальных систем

Апрель, 2021

Постановка задачи

Задача оптимизации

Рассмотрим T функции (задач) \mathscr{L}^t . Цель заключается в их одновременной оптимизации, то есть:

$$\min_{\substack{\boldsymbol{\theta}^{sh},\\\boldsymbol{\theta}^{1},...,\boldsymbol{\theta}^{T}}} \mathcal{L}\left(\boldsymbol{\theta}^{sh},\boldsymbol{\theta}^{1},...,\boldsymbol{\theta}^{T}\right) = \min_{\substack{\boldsymbol{\theta}^{sh},\\\boldsymbol{\theta}^{1},...,\boldsymbol{\theta}^{T}}} \left(\mathcal{L}^{1}\left(\boldsymbol{\theta}^{sh},\boldsymbol{\theta}^{1}\right),...,\mathcal{L}^{T}\left(\boldsymbol{\theta}^{sh},\boldsymbol{\theta}^{T}\right)\right)^{\top}$$
(1)

где $oldsymbol{ heta}^{sh}$ - параметры общие параметры, а $oldsymbol{ heta}^t$ отдельные параметры для каждой задачи

Обозначения

Парето доминирование

Считаем, что точка $oldsymbol{ heta}_1$ доминируется точкой $oldsymbol{ heta}_2$ если:

$$egin{aligned} orall i = 1 \dots \mathcal{T} \ \mathscr{L}^i(oldsymbol{ heta}_2) & \leq \mathscr{L}^i(oldsymbol{ heta}_1) \end{aligned}$$
 $\exists j : \mathscr{L}^j(heta_2) < \mathscr{L}^j(heta_1)$

Парето оптимальность

Точка $\boldsymbol{\theta} = [\boldsymbol{\theta}^{sh}, \boldsymbol{\theta}^t]$ для задачи (1) Парето оптимальная тогда и только тогда, когда она допустимая и не существует другой точки, которая Парето доминирует $\boldsymbol{\theta}$:

- lacktriangle Для любого допустимой $\hat{m{ heta}}\colon \mathscr{L}^i(m{ heta}) \le \mathscr{L}^i(\hat{m{ heta}})$ для всех $i \in \{1,\dots,T\}$
- $\blacktriangleright \ \mathscr{L}\left(\boldsymbol{\theta}^{sh}, \boldsymbol{\theta}^{1}, \dots, \boldsymbol{\theta}^{T}\right) \neq \mathscr{L}\left(\hat{\boldsymbol{\theta}}^{sh}, \hat{\boldsymbol{\theta}}^{1}, \dots, \hat{\boldsymbol{\theta}}^{T}\right)$

Обозначения

Парето станционарость

Точка
$$m{ heta}^* = [m{ heta}^{sh}, m{ heta}^t]$$
 Парето станционарная, если существует набор коэффициентов $m{lpha}^1, \dots, m{lpha}^T \geq 0$, таких что $m{\Sigma}_{t=1}^T m{lpha}^t = 1$ и $m{\Sigma}_{t=1}^T m{lpha}^t \nabla_{m{ heta}^{sh}} \hat{\mathcal{L}}^t \left(m{ heta}^{sh}, m{ heta}^t
ight) = 0$ и для всех задач $t,
abla_{m{ heta}^t} \hat{\mathcal{L}}^t \left(m{ heta}^{sh}, m{ heta}^t
ight) = 0$

Методы решения

 Взвешивание: сводим мультикритериальную оптимизацию к одномерной оптимизации следующим образом:

$$L(x) = \sum_{t=1}^{T} w_i \mathcal{L}^t(x)$$

- Методы нулевого порядка: эволюционные алгоритмы и мультикритериальная байесовская оптимизация
- ▶ Методы более старшего порядка: градиентный спуск, метод Ньютона

Методы первого порядка

MGDA

$$\min_{\alpha^{1},...,\alpha^{T}} \left\{ \left\| \sum_{t=1}^{T} \alpha^{t} \nabla_{\mathbf{x}} \hat{\mathcal{L}}^{t} (\mathbf{x}) \right\|_{2}^{2} \mid \sum_{t=1}^{T} \alpha^{t} = 1, \alpha^{t} \geq 0 \quad \forall t \right\}$$
 (2)

$$d^* = \sum_{t=1}^T ilde{lpha}^t
abla_{\scriptscriptstyle X} \hat{\mathscr{L}}^t$$

Минмакс подход

$$\min_{u} \max_{t} (\frac{\partial \mathcal{L}}{\partial \mathbf{x}} d)_{t} + g^{t}(d)$$
 (3)

Рассматривая $g^t(d) = \|d\|^2$ получаем двойственную к MGDA. Рассматривая $g^t(d) = \frac{1}{2} d^T H^t d$ получаем метод Ньютона $(H^t$ гессиан \mathcal{L}^t).

Модификации

- PCGrad (Tianhe Yu et al. 2020)
 Предложил преобразование искомых градиентов, которое позволяет получить направление минимизирующие всех функции.
- ► EDM (Katrutsa et al. 2020) Добавил нормирование градиентов, чтобы сделать метод более устойчивым в случае, когда градиенты разных задач сильно различаются по норме.

Линейный поиск

Пусть получено d — направление убывания всех функций. Необходимо найти шаг η , чтобы:

$$\forall t = 1 \dots T : \mathcal{L}^t(x - \eta d) < \mathcal{L}^t(x)$$
 (4)

Теорема

Если это условие (4) будет выполнено на каждой итерации, то каждый частичный предел последовательности, созданной градиентным спуском, — Парето станционарная точка.

Линейный поиск

Armijo rule

На каждом шаге градиентного спуска нам найти шаг η , чтобы выполнялось следующее Armijo rule:

$$\mathscr{L}^{t}(\boldsymbol{\theta}^{sh} - \eta d_{sh}, \boldsymbol{\theta}^{t} - \eta \nabla_{\boldsymbol{\theta}^{t}} \mathscr{L}^{t}) \leq \mathscr{L}^{t} - \eta \beta \left\| \frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{\theta}^{t}} \right\|^{2} - \eta \beta \left(\frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{\theta}^{sh}} \right)^{\top} d_{sh}$$
 (5)

Мотивация

- Получив направление для градиентного спуска нужно выбрать шаг;
- Теоретически обосновано лишь использование линейного поиска для нахождение шага;
- Линейный поиск неэффективен на практике из высокой вычислительной стоимость из-за дополнительных forward и backward проходов;

Цель

Предложить вычислительно эффективный метод, сохранив теоретические результаты.

Линейный поиск

Новое правило Армихо

На каждом шаге градиентного спуска нам найти шаг η , чтобы выполнялось следующее правило Армихо:

$$\mathscr{L}^{t}(\boldsymbol{Z} - \eta d_{z}, \boldsymbol{\theta}^{t} - \eta \nabla_{\boldsymbol{\theta}^{t}} \mathscr{L}^{t}) \leq \mathscr{L}^{t} - \eta \beta \left\| \frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{\theta}^{t}} \right\|^{2} - \eta \beta \left(\frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{Z}} \right)^{\top} d_{z}$$
 (6)

Теорема (Филатов 2021)

Каждый частичный предел последовательности, сгенерированной в результате оптимизации с правилом Армихо (6), является Парето станционарной точкой.

Классический и быстрый алгоритмы

Algorithm 1: Backtracking(γ , I_{rub})

Ensure: Learning rate $\eta = lr_{ub}/\gamma$

1: repeat

2:
$$\eta \leftarrow \gamma \cdot \eta$$

3:
$$\tilde{\boldsymbol{\theta}}^{sh} \leftarrow \boldsymbol{\theta}^{sh} - \eta \cdot d_{sh}$$

4:
$$for_t \leftarrow 1 \text{ to } T \text{ do}$$

5:
$$\boldsymbol{\theta}^t \leftarrow \boldsymbol{\theta}^t - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}^t} L^t$$

end for 6:

7: until Armijo condition 5

8: **for**
$$t \leftarrow 1$$
 to T **do**

9:
$$oldsymbol{ heta}_{new}^t \leftarrow ilde{oldsymbol{ heta}}^t$$

10: end for

11:
$$oldsymbol{ heta}_{new}^{sh} \leftarrow ilde{oldsymbol{ heta}}^{sh}$$

Algorithm 2: Fast backtracking(γ , Ir_{ub})

Ensure: Learning rate $\eta = lr_{ub}/\gamma$

- 1: repeat
- 2: $\eta \leftarrow \gamma \cdot \eta$ 3: $z \leftarrow z \eta \cdot d_z$
- 4: **for** $t \leftarrow 1$ to T **do**
- 5: $\boldsymbol{\theta}^t \leftarrow \boldsymbol{\theta}^t \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\rho}^t} L^t$
- 6: end for
- 7: until Armijo condition 6
- 8: for $t \leftarrow 1$ to T do
- 9: $\boldsymbol{\theta}_{now}^t \leftarrow \tilde{\boldsymbol{\theta}}^t$
- 10: end for

11:
$$\boldsymbol{\theta}_{new}^{sh} \leftarrow \boldsymbol{\theta}^{sh} - \eta \cdot \frac{\partial \boldsymbol{\theta}^{sh}}{\partial z} d_z$$

Эксперименты

Рис.: Сравнение работы предложенного метода против градиентного спуска с фиксированным шагом после 50 эпох на датасете MultiMNIST

Эксперименты

Рис.: Сравнение работы предложенного метода против градиентного спуска с фиксированным шагом после 50 эпох на датасете CIFAR-10

Эксперименты

	$MNIST\downarrow$	CIFAR-10 ↓	Cityscapes \downarrow
Fast backtracking	1.05 (143)	0.15 (85)	1.28 (76800)
Backtracking	1.37 (195)	1.18 (650)	-
Classical SGD	1.0 (143)	1.0 (550)	1.0 (60000)
Latent space SGD	0.95 (136)	0.14 (80)	-

Таблица: Сравнение времени работы (секунд на эпоху), меньше лучше

Результаты, выносимые на защиту

- Предложен метод оптимизации мультизадачных модели;
- Подтверждена теоретическая сходимость предложенного метода;
- Проверена эффективность метода на прикладных задачах при различных условиях.

Дискуссия

- ▶ В рамках работы не были исследованы другие методы линейного поиска. Однако, предложенные выводы не ограничены backtracking line search.
- В рамках работы не были исследованы современные методы оптимизации.
 Рассмотрение методов более высокого порядка и методов редукции дисперсии будут рассмотрены в дальнейшем.