# Lösung von Übungsblatt 5

# Aufgabe 1 (Speicherverwaltung)

| 1.                                                                                            | . Kreuzen Sie an, bei welchen Konzepten der Speicherpartitionierung interne Fragmentierung entsteht.  |                                       |                    |                                                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|------------------------------------------------------|--|--|--|--|
|                                                                                               | <ul><li>☑ Statische Par</li><li>☑ Dynamische</li><li>☑ Buddy-Algor</li></ul>                          | Partitionierung                       |                    |                                                      |  |  |  |  |
| 2. Kreuzen Sie an, bei welchen Konzepten der Speicherpartitionierung Fragmentierung entsteht. |                                                                                                       |                                       |                    |                                                      |  |  |  |  |
|                                                                                               | <ul><li>☐ Statische Par</li><li>☑ Dynamische</li><li>☑ Buddy-Algor</li></ul>                          | Partitionierung                       |                    |                                                      |  |  |  |  |
| 3.                                                                                            | Geben Sie eine                                                                                        | Möglichkeit an,                       | um externe Fra     | gmentierung zu beheben.                              |  |  |  |  |
|                                                                                               | Durch Defragmentierung. Bei virtuellem Speicher spielt externe Fragmentierung allerdings keine Rolle. |                                       |                    |                                                      |  |  |  |  |
| 4.                                                                                            |                                                                                                       | , <u>-</u>                            | 0                  | onzept im kompletten Adress-<br>r Anforderung passt. |  |  |  |  |
|                                                                                               | ☐ First Fit                                                                                           | □ Next Fit                            | ⊠ Best fit         | ☐ Random                                             |  |  |  |  |
| 5.                                                                                            |                                                                                                       | n, welches Spei<br>en ersten passenc  | ~                  | konzept ab dem Anfang des<br>sucht.                  |  |  |  |  |
|                                                                                               | ⊠ First Fit                                                                                           | $\square$ Next Fit                    | $\square$ Best fit | ☐ Random                                             |  |  |  |  |
| 6.                                                                                            |                                                                                                       | welches Speiche<br>de des Adressra    | _                  | zept den großen Bereich freien stückelt.             |  |  |  |  |
|                                                                                               | ☐ First Fit                                                                                           | $\boxtimes$ Next Fit                  | $\square$ Best fit | $\square$ Random                                     |  |  |  |  |
| 7.                                                                                            | Kreuzen Sie an<br>passenden Block                                                                     |                                       | erverwaltungko     | nzept zufällig einen freien und                      |  |  |  |  |
|                                                                                               | $\square$ First Fit                                                                                   | $\square$ Next Fit                    | $\square$ Best fit | ⊠ Random                                             |  |  |  |  |
| 8.                                                                                            |                                                                                                       | , welches Speiche<br>geinen passender | ~                  | nzept ab der Stelle der letzten ucht.                |  |  |  |  |
|                                                                                               | ☐ First Fit                                                                                           | ⊠ Next Fit                            | $\square$ Best fit | $\square$ Random                                     |  |  |  |  |
|                                                                                               |                                                                                                       |                                       |                    |                                                      |  |  |  |  |

Inhalt: Themen aus Foliensatz 5 Seite 1 von 11

| 9. | Kreuzen Sie an | , welches Speich | ierverwaltungko | onzept viele Minifi | ragmente pro- |
|----|----------------|------------------|-----------------|---------------------|---------------|
|    | duziert und am | langsamsten ar   | beitet.         |                     |               |
|    | ☐ First Fit    | □ Next Fit       | ⊠ Best fit      | ☐ Random            |               |

### Aufgabe 2 (Buddy-Verfahren)

Das Buddy-Verfahren zur Zuweisung von Speicher an Prozesse soll für einen 1024 kB großen Speicher verwendet werden. Führen Sie die angegeben Aktionen durch und geben Sie den Belegungszustand des Speichers nach jeder Anforderung oder Freigabe an.

|                                                                        | 1024 KB |                |        |        |               |        |  |  |
|------------------------------------------------------------------------|---------|----------------|--------|--------|---------------|--------|--|--|
| 65 KB Anforderung => A                                                 | А       | 128 KB         | 256    | КВ     | 512 KB        |        |  |  |
| 30 KB Anforderung => B                                                 | А       | B 32 64 KB     | 256    | КВ     | 512 KB        |        |  |  |
| 90 KB Anforderung => C                                                 | А       | B 32 64 KB     | С      | 128 KB | 512           | 2 KB   |  |  |
| 34 KB Anforderung => D                                                 | А       | B 32 D         | С      | 128 KB | 512           | КВ     |  |  |
| 130 KB Anforderung => E                                                | А       | B 32 D         | С      | 128 KB | Е             | 256 KB |  |  |
| Freigabe C                                                             | А       | B 32 D         | 128 KB | 128 KB | Е             | 256 KB |  |  |
|                                                                        | А       | B 32 D         | 256 KB |        | E             | 256 KB |  |  |
| Freigabe B                                                             | А       | 32 32 <b>D</b> | 256    | KB     | Е             | 256 KB |  |  |
|                                                                        | A       | 64 KB D        |        |        | E             | 256 KB |  |  |
| 275 KB Anforderung => F Nicht möglich, weil keine 275 kB am Stück frei | А       | 64 KB D        | 256    | КВ     | Е             | 256 KB |  |  |
| 145 KB Anforderung => G                                                | А       | 64 KB D        | (      | j .    | E             | 256 KB |  |  |
| Freigabe D                                                             | А       | 64 KB 64 KB    | (      | j      | Е             | 256 KB |  |  |
|                                                                        | Α       | 128 KB         | G      |        | Е             | 256 KB |  |  |
| Freigabe A                                                             | 128 KB  | 128 KB         | (      | ĵ      | Е             | 256 KB |  |  |
|                                                                        | 256     | KB             | G      |        | E             | 256 KB |  |  |
| Freigabe G                                                             | 128 KB  | 128 KB         | 256    | KB     | E             | 256 KB |  |  |
|                                                                        |         | 512            | KB     |        | E             | 256 KB |  |  |
| Freigabe E                                                             |         | 512            | KB     |        | 256 KB 256 KB |        |  |  |
|                                                                        |         | 512            | KB     |        | 512           | КВ     |  |  |
|                                                                        | 1024 KB |                |        |        |               |        |  |  |

Inhalt: Themen aus Foliensatz 5

Seite 2 von 11

#### Aufgabe 3 (Real Mode und Protected Mode)

1. Beschreiben Sie die Arbeitsweise des Real Mode.

Jeder Prozess kann direkt auf den gesamten adressierbaren Speicher zugreifen.

2. Begründen Sie warum der Real Mode für Mehrprogrammbetrieb (Multitasking) ungeeignet ist.

Es gibt keinen Speicherschutz.

3. Beschreiben Sie die Arbeitsweise des Protected Mode.

Jeder Prozess darf nur auf seinen eigenen virtuellen Speicher zugreifen. Virtuelle Speicheradressen übersetzt die CPU mit Hilfe der MMU in physische Speicheradressen.

4. Beschreiben Sie was virtueller Speicher ist.

Jeder Prozess besitzt einen eigenen Adressraum. Der Adressraum ist eine Abstraktion des physischen Speichers. Es handelt sich dabei um virtuellen Speicher. Er besteht aus logischen Speicheradressen, die von der Adresse 0 aufwärts durchnummeriert sind und er ist unabhängig von der verwendeten Speichertechnologie und den gegebenen Ausbaumöglichkeiten.

5. Erklären Sie, warum mit virtuellem Speicher der Hauptspeicher besser ausgenutzt wird.

Die Prozesse müssen nicht am Stück im Hauptspeicher liegen. Externe Fragmentierung entsteht, spielt aber keine Rolle.

6. Beschreiben Sie was Mapping ist.

Abbilden des virtuellen Speichers auf den realen Speicher.

7. Beschreiben Sie was Swapping ist.

Prozess des Ein- und Auslagerns von Daten in den/vom Arbeitsspeicher vom/in den Hintergrundspeicher (Festplatten/SSDs).

8. Geben Sie den Namen der Komponente der CPU an, die virtuellen Speicher ermöglicht.

Memory Management Unit (MMU).

9. Beschreiben Sie die Aufgabe der Komponente aus Teilaufgabe 8.

Virtuelle Speicheradressen übersetzt die CPU mit Hilfe der MMU in physische Speicheradressen.

Inhalt: Themen aus Foliensatz 5 Seite 3 von 11

10. Nennen Sie ein Konzept von virtuellem Speicher.

Paging.

11. Geben Sie an, welche Form der Fragmentierung beim Konzept aus Teilaufgabe 10 entsteht.

Interne Fragmentierung entsteht beim Paging (aber nur in der letzten Seite eines Prozesses).

12. Beschreiben Sie die Aufgabe und den Inhalt des Page-Table Base Register (PTBR).

Das PTBR speichert die Speicheradresse, bei der die Seitentabelle des laufenden Prozesses anfängt.

13. Beschreiben Sie die Aufgabe und den Inhalt des Page-Table Length Register (PTLR).

Das PTLT speichert speichert die Länge der Seitentabelle des laufenden Prozesses.

14. Beschreiben Sie wie eine Page Fault Ausnahme (Exception) entsteht.

Ein Prozess versucht auf eine Seite zuzugreifen, die nicht im physischen Hauptspeicher ist.

15. Beschreiben Sie wie das Betriebssystem auf eine Page Fault Ausnahme (Exception) reagiert.

Das Betriebssystem behandelt die Ausnahme mit folgenden Schritten:

- Daten auf dem Sekundärspeicher (SDD/HDD) lokalisieren.
- Die Seite in eine freie Hauptspeicherseite laden.
- Seitentabelle aktualisieren.
- Kontrolle an den Prozess zurückgeben. Dieses fährt die Anweisung, die zum Page Fault führte, erneut aus.
- 16. Beschreiben Sie wie eine Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception) entsteht.

Ein Prozess versucht auf eine virtuelle Speicheradresse zuzugreifen, auf die er nicht zugreifen darf.

17. Beschreiben Sie die Auswirkung einer Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception).

Bei einigen Windows-Betriebssystemen aus der Vergangenheit waren Schutzverletzungen häufig ein Grund für Systemabstürze und hatten einen "Blue Screen" zur Folge. Unter Linux wird als Ergebnis das Signal SIGSEGV erzeugt.

Inhalt: Themen aus Foliensatz 5 Seite 4 von 11

18. Geben Sie an, was der Kernelspace enthält.

Der Kernelspace enthält den Betriebssystemkern (Kernel) und Kernelerweiterungen (Treiber).

19. Geben Sie an, was de Userspace enthält.

Der Userspace enthält den aktuell ausgeführten Prozess, der um den Erweiterungsspeicher ("Swap", Windows: "Page-File") vergrößert wird.

## Aufgabe 4 (Speicherverwaltung)

Kreuzen Sie bei jeder Aussage zur Speicherverwaltung an, ob die Aussage wahr oder falsch ist.

| 1. | Real Mode ist                    | für Multitasking-Systeme geeignet.                                                                          |
|----|----------------------------------|-------------------------------------------------------------------------------------------------------------|
|    | $\square$ Wahr                   | ⊠ Falsch                                                                                                    |
| 2. |                                  | d Mode läuft jeder Prozess in seiner eigenen, von anderen Pro-<br>otteten Kopie des physischen Adressraums. |
|    | $\boxtimes$ Wahr                 | ☐ Falsch                                                                                                    |
| 3. | Bei statischer l                 | Partitionierung entsteht interne Fragmentierung.                                                            |
|    | ⊠ Wahr                           | ☐ Falsch                                                                                                    |
| 4. | Bei dynamisch                    | er Partitionierung ist externe Fragmentierung unmöglich.                                                    |
|    | $\square$ Wahr                   | ⊠ Falsch                                                                                                    |
| 5. | Beim Paging h                    | aben alle Seiten die gleiche Länge.                                                                         |
|    | ⊠ Wahr                           | ☐ Falsch                                                                                                    |
| 6. | Ein Vorteil lan                  | ger Seiten beim Paging ist geringe interne Fragmentierung.                                                  |
|    | $\square$ Wahr                   | ⊠ Falsch                                                                                                    |
| 7. | Ein Nachteil k<br>werden kann.   | eurzer Seiten beim Paging ist, das die Seitentabelle sehr groß                                              |
|    | $\boxtimes$ Wahr                 | ☐ Falsch                                                                                                    |
| 8. | Die MMU über<br>belle in physiso | rsetzt beim Paging logische Speicheradressen mit der Seitentache Adressen.                                  |
|    | ⊠ Wahr                           | ☐ Falsch                                                                                                    |
|    |                                  |                                                                                                             |

Inhalt: Themen aus Foliensatz 5

| 9. | Moderne Betriebssysteme    | (für | x86) | arbeiten | $\mathrm{im}$ | Protected | Mode | und | verwen- |
|----|----------------------------|------|------|----------|---------------|-----------|------|-----|---------|
|    | den ausschließlich Paging. |      |      |          |               |           |      |     |         |

 $\boxtimes$  Wahr  $\square$  Falsch

#### Aufgabe 5 (Seiten-Ersetzungsstrategien)

1. Erklären Sie, warum die optimale Ersetzungsstrategie OPT nicht implementiert werden kann.

Weil man nicht in die Zukunft schauen kann und damit ist die zukünftige Zugriffsfolge unbekannt.

2. Führen Sie die gegebene Zugriffsfolge mit den Ersetzungsstrategien Optimal, LRU, LFU und FIFO einmal mit einem Datencache mit einer Kapazität von 4 Seiten und einmal mit 5 Seiten durch. Berechnen Sie auch die Hitrate und die Missrate für alle Szenarien.

Optimale Ersetzungsstrategie (OPT):

Hinweis: Wenn bei der optimalen Ersetzungsstrategie eine Seite verdrängt werden muss, wird die Seite verdrängt, auf die am längsten in der Zukunft nicht zugegriffen wird.



Hitrate: 15/24 = 0,625Missrate: 9/24 = 0,375



Hitrate: 17/24 = 0,7083333Missrate: 7/24 = 0,2916666 Ersetzungsstrategie Least Recently Used (LRU):

Hinweis: Wenn bei der Ersetzungsstrategie LRU eine Seite verdrängt werden muss, wird die Seite verdrängt, auf die am längsten nicht zugegriffen wurde.



Hitrate: 11/24 = 0,4583333%Missrate: 13/24 = 0,5416666%



Hitrate: 14/24 = 0,583333%Missrate: 10/24 = 0,416666%

Ersetzungsstrategie Least Frequently Used (LFU):

Hinweis: Wenn bei der Ersetzungsstrategie LFU eine Seite verdrängt werden muss, wird die Seite verdrängt, auf die am wenigsten zugegriffen wurde. Es wird für jede Seite in der Seitentabelle ein Referenzzähler geführt, der die

Anzahl der Zugriffe speichert. Ist der Speicher voll und kommt es zum Miss, wird die Seite entfernt, deren Referenzzähler den niedrigsten Wert hat.



Hitrate: 12/24 = 0.5Missrate: 12/24 = 0.5



Hitrate: 15/24 = 0,625Missrate: 9/24 = 0,375

#### Ersetzungsstrategie FIFO:

Hinweis: Wenn bei der Ersetzungsstrategie FIFO eine Seite verdrängt werden muss, wird die Seite verdrängt, die sich am längsten im Speicher befindet.



Hitrate: 11/24 = 0,4583333Missrate: 13/24 = 0,5416666



Hitrate: 15/24 = 0,625Missrate: 9/24 = 0,375 3. Beschreiben Sie die Kernaussage der Anomalie von Laszlo Belady.

FIFO führt bei bestimmten Zugriffsmustern bei einem vergrößerten Speicher zu schlechteren Ergebnissen.

4. Zeigen Sie Belady's Anomalie, indem sie die gegebene Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität von 3 Seiten und einmal mit 4 Seiten durchführen. Berechnen Sie auch die Hitrate und die Missrate für beide Szenarien.

| Anfragen: | 3 | 2 | 1 | 0 | 3 | 2 | 4 | 3 | 2 | 1 | 0 | 4 |  |
|-----------|---|---|---|---|---|---|---|---|---|---|---|---|--|
| Seite 1:  | 3 | 3 | 3 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 |  |
| Seite 2:  |   | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 |  |
| Seite 3:  |   |   | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |  |

Hitrate: 3/12 = 25%Missrate: 9/12 = 75%

| Anfragen: | 3 | 2 | 1 | 0 | 3 | 2 | 4 | 3 | 2 | 1 | 0 | 4 |
|-----------|---|---|---|---|---|---|---|---|---|---|---|---|
| Seite 1:  | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 0 | 0 |
| Seite 2:  |   | 2 | 2 | 2 | 2 | 2 | 2 | M | 3 | ო | ω | 4 |
| Seite 3:  |   |   | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| Seite 4:  |   |   |   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

Hitrate: 2/12 = 16,66%Missrate: 10/12 = 83,33%

# Aufgabe 6 (Zeitgesteuerte Kommandoausführung, Sortieren, Umgebungsvariablen)

1. Erzeugen Sie in Ihrem Benutzerverzeichnis (Home-Verzeichnis) ein Verzeichnis Entbehrlich und schreiben Sie einen Cron-Job, der immer Dienstags um 1:25 Uhr morgens den Inhalt von Entbehrlich löscht.

Die Ausgabe des Kommandos soll in eine Datei LöschLog.txt in Ihrem Home-Verzeichnis angehängt werden.

\$ mkdir ~/Entbehrlich

\$ crontab -e

Folgende Zeile eintragen:

25 1 \* \* 2 rm -rfv /home/USERNAME/Entbehrlich/\* >> /home/USERNAME/LöschLog.txt

2. Schreiben Sie einen Cron-Job, der alle 3 Minuten zwischen 14:00 und 15:00 Uhr an jedem Dienstag im Monat November eine Zeile mit folgendem Aussehen (und den aktuellen Werten) an die Datei Datum.txt anhängt:

Heute ist der 30.10.2008 Die Uhrzeit ist 09:24:42 Uhr

\$ crontab -e

Folgende Zeile eintragen:

3. Schreiben Sie einen at-Job, der um 17:23 Uhr heute eine Liste der laufenden Prozesse ausgibt.

Das Kommandozeilenwerkzeug at müssen Sie evtl. erst installieren.
Unter Debian/Ubuntu geht das mit:
\$ sudo apt update && sudo apt install at
Unter CentOS/Fedora/RedHat geht das mit:

\$ sudo yum install at

\$ at 1723 today

Folgende Zeile eintragen:

ps -r

4. Schreiben Sie einen at-Job, der am 24. Dezember um 8:15 Uhr morgens den Text "Endlich Weihnachten!" ausgibt.

\$ at 0815 DEZ 24

Folgende Zeile eintragen:

echo "Endlich Weihnachten!"

5. Erzeugen Sie in Ihrem Home-Verzeichnis eine Datei Kanzler.txt mit folgendem Inhalt:

Willy Brandt 1969

|    | ngela  | Merkel      | 2005      |       |    |               |
|----|--------|-------------|-----------|-------|----|---------------|
| Ge | erhard | l Schröde:  | r 1998    |       |    |               |
| Kι | ırtGed | org Kiesing | er 1966   |       |    |               |
| Не | elmut  | Kohl        | 1982      |       |    |               |
| Ko | onrad  | Adenaue     | r 1949    |       |    |               |
| Не | elmut  | Schmidt     | 1974      |       |    |               |
| Lι | ıdwig  | Erhard      | 1963      |       |    |               |
|    |        |             |           |       |    |               |
| \$ | echo   | "Willy      | Brandt    | 1969" | >> | ~/Kanzler.txt |
| \$ | echo   | "Angela     | Merkel    | 2005" | >> | ~/Kanzler.txt |
| \$ | echo   | "Gerhard    | Schröder  | 1998" | >> | ~/Kanzler.txt |
| \$ | echo   | "KurtGeorg  | Kiesinger | 1966" | >> | ~/Kanzler.txt |
| \$ | echo   | "Helmut     | Kohl      | 1982" | >> | ~/Kanzler.txt |
| \$ | echo   | "Konrad     | Adenauer  | 1949" | >> | ~/Kanzler.txt |
| \$ | echo   | "Helmut     | Schmidt   | 1974" | >> | ~/Kanzler.txt |
| \$ | echo   | "Ludwig     | Erhard    | 1963" | >> | ~/Kanzler.txt |
|    |        |             |           |       |    |               |

- 6. Geben Sie die Datei Kanzler.txt sortiert anhand der Vornamen aus.
  - \$ sort ~/Kanzler.txt
- 7. Geben Sie die Datei Kanzler.txt sortiert anhand des dritten Buchstabens der Nachnamen aus.
  - \$ sort -k+2.4 ~/Kanzler.txt
- 8. Geben Sie die Datei Kanzler.txt sortiert anhand des Jahres der Amtseinführung aus.
  - \$ sort -k3 ~/Kanzler.txt
- 9. Geben Sie die Datei Kanzler.txt rückwärts sortiert anhand des Jahres der Amtseinführung aus und leiten Sie die Ausgabe in eine Datei Kanzlerdaten.txt.
  - \$ sort -k3 -nr ~/Kanzler.txt > ~/Kanzlerdaten.txt
- 10. Erzeugen Sie mit dem Kommando export eine Umgebungsvariable VAR1 und weisen Sie dieser den Wert Testvariable zu.
  - \$ export VAR01=Testvariable
- 11. Geben Sie den Wert von VAR1 in der Shell aus.
  - \$ printenv VAR01
- 12. Löschen Sie die Umgebungsvariable VAR1.
  - \$ unset VAR01