$\begin{array}{ccc} \text{EECS 16A} & \text{Designing Information Devices and Systems I} \\ \text{Spring 2020} & \text{Discussion 10A} \end{array}$

For Reference: Example Circuits

1. Op-Amp Rules and Negative Feedback Rule

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{SS} = -V_{DD}$) for reference:

- (a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are I^+ and I^-)? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?
- (b) Suppose we add a resistor of value R_L between u_{out} and ground. What is the value of v_{out} ? Does your answer depend on R_L ? In other words, how does R_L affect Av_C ? What are the implications of this with respect to using op-amps in circuit design?

For the rest of the problem, consider the following op-amp circuit in negative feedback:

- (c) Assuming that this is an ideal op-amp, what is v_{out} ?
- (d) Draw the equivalent circuit for this op-amp and calculate v_{out} in terms of A, v_{in} , and R_L for the circuit in negative feedback. Does v_{out} depend on R_L ? What is v_{out} in the limit as $A \to \infty$?

2. Charge Sharing Algorithm

For the switch capacitor circuit below, calculate the value of all node voltages at the end phase 2, as a function of the voltage source V_s and the capacitors C_1 , C_2 .

3. Dividers for Days

(a) Solve the following circuit for v_x .

- (b) You have access to two voltage sources, V_1 and V_2 . You can use two resistors (as long as $0 \le R < \infty$). How would you design a circuit that produces a voltage $v_x = \frac{1}{3}V_1 + \frac{2}{3}V_2$?
- (c) You have two current sources I_1 and I_2 . You also have a load resistor $R_L = 6 \,\mathrm{k}\Omega$. Similar to the first part, you can use whatever resistors you want (as long as they are finite integer values). How would you design a circuit such that the current running through R_L is $I_L = \frac{2}{5}(I_1 + I_2)$?