

Topic Models

Jordan Boyd-Graber University of Colorado Boulder

3. NOVEMBER 2014

Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes

Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes
- Unsupervised

Conceptual Approach

From an **input corpus** and number of topics $K \to \text{words to topics}$

Jordan Boyd-Graber | Boulder Topic Models |

3 of 49

Conceptual Approach

From an input corpus and number of topics $K \to \mathbf{words}$ to topics

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

3 of 49

Conceptual Approach

For each document, what topics are expressed by that document?

Jordan Boyd-Graber | Boulder Topic Models

4 of 49

Topics from Science

evolution	disease	computer models
		information
	diseases	data
life	resistance	computers
origin	bacterial	system
biology	new	network
groups	strains	systems
phylogenetic	control	model
living	infectious	parallel
diversity	malaria	methods
group	parasite	networks
new	parasites	software
two	united	new
common	tuberculosis	simulations
	evolutionary species organisms life origin biology groups phylogenetic living diversity group new two	evolutionary species bacteria organisms diseases life resistance origin bacterial biology new groups strains phylogenetic control living infectious diversity malaria group parasite new parasites two united

Why should you care?

- Neat way to explore / understand corpus collections
 - E-discovery
 - Social media
 - Scientific data
- NLP Applications
 - Word Sense Disambiguation
 - Discourse Segmentation
 - Machine Translation
- Psychology: word meaning, polysemy
- Inference is (relatively) simple

Matrix Factorization Approach

- K Number of topics
- M Number of documents
- V Size of vocabulary

Jordan Boyd-Graber | Boulder Topic Models |

7 of 49

Matrix Factorization Approach

- K Number of topics
- M Number of documents
- V Size of vocabulary

- If you use singular value decomposition (SVD), this technique is called latent semantic analysis.
- Popular in information retrieval.

7 of 49

Alternative: Generative Model

- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference

Alternative: Generative Model

- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference
- Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.

Multinomial Distribution

- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation

Multinomial Distribution

- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation

Come from a Dirichlet distribution

$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$

 $\alpha = 3$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \alpha = 6$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \alpha = 30$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Boulder Topic Models

10 of 49

• If $\phi \sim \text{Dir}(()\alpha)$, $\mathbf{w} \sim \text{Mult}(()\phi)$, and $n_k = |\{w_i : w_i = k\}|$ then

$$p(\phi|\alpha, \mathbf{w}) \propto p(\mathbf{w}|\phi)p(\phi|\alpha)$$
 (1)

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1}$$
 (2)

$$\propto \prod_{k} \phi^{\alpha_k + n_k - 1}$$
 (3)

Conjugacy: this posterior has the same form as the prior

• If $\phi \sim \text{Dir}(()\alpha)$, $\mathbf{w} \sim \text{Mult}(()\phi)$, and $n_k = |\{w_i : w_i = k\}|$ then

$$p(\phi|\alpha, \mathbf{w}) \propto p(\mathbf{w}|\phi)p(\phi|\alpha)$$
 (1)

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1} \tag{2}$$

$$\propto \prod_{k} \phi^{\alpha_k + n_k - 1}$$
 (3)

12 of 49

Conjugacy: this posterior has the same form as the prior

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

13 of 49

Hollywood studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

13 of 49

Holly food studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

13 of 49

Holly ood studies are preparing to let people download and the electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

13 of 49

Hollwood studies are preparing to let people download and the electronic cools of movies over the Incrnet, much as record lakes now sell sens for 99 cools through Apple Computer's iTurns music story and other online services ...

• For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ

- For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α

- For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .

- For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution β_{z_n} .

- For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution β_{z_n} .

Topic Models: What's Important

- Topic models
 - Topics to word types—multinomial distribution
 - Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of pLSI, probabilistic version of LSA

Topic Models: What's Important

- Topic models (latent variables)
 - Topics to word types—multinomial distribution
 - Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of pLSI, probabilistic version of LSA

Evaluation

16 of 49

$$P(\mathbf{w} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u}) = \sum_{\mathbf{z}} P(\mathbf{w}, \mathbf{z} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u})$$

How you compute it is important too [?]

Evaluation

Measures predictive power, not what the topics are

$$P(\mathbf{w} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u}) = \sum_{\mathbf{z}} P(\mathbf{w}, \mathbf{z} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u})$$

How you compute it is important too [?]

16 of 49

Word Intrusion

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

17 of 49

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

We ask users to find the word that doesn't belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder

1 / 10 crash	accident	accident board		tibetan	safety	
2 / 10 commercial	network	television	advertising	viewer	layoff	
3 / 10 arrest	crime	inmate	pitcher	prison	death	
4 / 10 hospital	doctor	health	care	medical	tradition	

Jordan Boyd-Graber | Boulder Topic Models |

19 of 49

- Order of words was shuffled
- Which intruder was selected varied
- Model precision: percentage of users who clicked on intruder

Jordan Boyd-Graber | Boulder Topic Models

19 of 49

Word Intrusion: Which Topics are Interpretable?

Model Precision: percentage of correct intruders found

20 of 49

Interpretability and Likelihood

Model Precision on New York Times

within a model, higher likelihood \neq higher interpretability

21 of 49

Interpretability and Likelihood

Topic Log Odds on Wikipedia

across models, higher likelihood \neq higher interpretability

21 of 49

Evaluation Takeaway

- Measure what you care about
- If you care about prediction, likelihood is good
- If you care about a particular task, measure that

We are interested in posterior distribution

$$\rho(Z|X,\Theta) \tag{4}$$

23 of 49

We are interested in posterior distribution

$$p(Z|X,\Theta) \tag{4}$$

• Here, latent variables are topic assignments z and topics θ . X is the words (divided into documents), and Θ are hyperparameters to Dirichlet distributions: α for topic proportion, λ for topics.

$$p(\mathbf{z}, \boldsymbol{\beta}, \boldsymbol{\theta} | \mathbf{w}, \alpha, \lambda) \tag{5}$$

We are interested in posterior distribution

$$p(Z|X,\Theta) \tag{4}$$

• Here, latent variables are topic assignments z and topics θ . X is the words (divided into documents), and Θ are hyperparameters to Dirichlet distributions: α for topic proportion, λ for topics.

$$p(\mathbf{z}, \boldsymbol{\beta}, \boldsymbol{\theta} | \mathbf{w}, \alpha, \lambda)$$
 (5)

23 of 49

$$p(\mathbf{w}, \mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\beta} | \alpha, \lambda) = \prod_{k} p(\beta_{k} | \lambda) \prod_{d} p(\theta_{d} | \alpha) \prod_{n} p(z_{d,n} | \theta_{d}) p(w_{d,n} | \beta_{z_{d,n}})$$

- A form of Markov Chain Monte Carlo
- Chain is a sequence of random variable states
- Given a state $\{z_1, \ldots z_N\}$ given certain technical conditions, drawing $z_k \sim p(z_1, \ldots z_{k-1}, z_{k+1}, \ldots z_N | X, \Theta)$ for all k (repeatedly) results in a Markov Chain whose stationary distribution is the posterior.
- For notational convenience, call \mathbf{z} with $z_{d,n}$ removed $\mathbf{z}_{-d,n}$

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

25 of 49

Hollywood studies are preparing to let people download and the electronic comes of movies over the Inchet, much as record labels now sell sens for 99 cents through Apple Compter's iTuns music store and other of the services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Hollywood studies are preparing to let people download and lan electronic copies of movies over the Incenet, much as record lates now sell sens for 99 cents through Apple Computer's iTunes music story and other contine services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Holywood studies are preparing to let people download and the electronic copies of movies over the Internet, much as record later now cell soms for 99 cents through Apple Computer's i Trans music story and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

Hollwood studies are preparing to let people download and the electronic copies of movies over the Incenet, much as record lates now sell soms for 99 cents through Apple Computer's iTures music storand other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Holywood studies are preparing to let people download and for electronic copies of movies over the Incenet, much as record labels now sell sons for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

25 of 49

Holywood studies are preparing to let people download and the electronic comes of movies over the Increet, much as record labels now sell sens for 99 cents through Apple Computer's iThins music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

25 of 49

Holly ood studies are preparing to let people down and and the electronic copies of movies over the Incenet, much as record labels now sell somes for 99 cents through Apple Computer's iTures music story and other online services ...

- For LDA, we will sample the topic assignments
- Thus, we want:

$$p(z_{d,n} = k | \mathbf{z}_{-d,n}, \mathbf{w}, \alpha, \lambda) = \frac{p(z_{d,n} = k, \mathbf{z}_{-d,n} | \mathbf{w}, \alpha, \lambda)}{p(\mathbf{z}_{-d,n} | \mathbf{w}, \alpha, \lambda)}$$

Jordan Boyd-Graber | Boulder Topic Models |

26 of 49

- For LDA, we will sample the topic assignments
- Thus, we want:

$$p(z_{d,n} = k | \mathbf{z}_{-d,n}, \mathbf{w}, \alpha, \lambda) = \frac{p(z_{d,n} = k, \mathbf{z}_{-d,n} | \mathbf{w}, \alpha, \lambda)}{p(\mathbf{z}_{-d,n} | \mathbf{w}, \alpha, \lambda)}$$

- The topics and per-document topic proportions are integrated out / marginalized
- Let $n_{d,i}$ be the number of words taking topic i in document d. Let $v_{k,w}$ be the number of times word w is used in topic k.

$$=\frac{\int_{\theta_{d}}\left(\prod_{i\neq k}\theta_{d}^{\alpha_{i}+n_{d,i}-1}\right)\theta_{d}^{\alpha_{k}+n_{d,i}}d\theta_{d}\int_{\beta_{k}}\left(\prod_{i\neq w_{d,n}}\beta_{k,i}^{\lambda_{i}+v_{k,i}-1}\right)\beta_{k,w_{d,n}}^{\lambda_{i}+v_{k,i}}d\beta_{k}}{\int_{\theta_{d}}\left(\prod_{i}\theta_{d}^{\alpha_{i}+n_{d,i}-1}\right)d\theta_{d}\int_{\beta_{k}}\left(\prod_{i}\beta_{k,i}^{\lambda_{i}+v_{k,i}-1}\right)d\beta_{k}}$$

Integral is normalizer of Dirichlet distribution

$$\int_{\beta_k} \left(\prod_i \beta_{k,i}^{\lambda_i + \nu_{k,i} - 1} \right) d\beta_k = \frac{\prod_i^V |\beta_i + \nu_{k,i}|}{|\sum_i^V \beta_i + \nu_{k,i}|}$$

Integral is normalizer of Dirichlet distribution

$$\int_{\beta_k} \left(\prod_i \beta_{k,i}^{\lambda_i + \nu_{k,i} - 1} \right) d\beta_k = \frac{\prod_i^V |\beta_i + \nu_{k,i}|}{|\sum_i^V \beta_i + \nu_{k,i}|}$$

So we can simplify

$$\frac{\int_{\theta_d} \left(\prod_{i\neq k} \theta_d^{\alpha_i+n_{d,i}-1}\right) \theta_d^{\alpha_k+n_{d,i}} d\theta_d \int_{\beta_k} \left(\prod_{i\neq w_{d,n}} \beta_{k,i}^{\lambda_i+v_{k,i}-1}\right) \beta_{k,w_{d,n}}^{\lambda_i+v_{k,i}} d\beta_k}{\int_{\theta_d} \left(\prod_i \theta_d^{\alpha_i+n_{d,i}-1}\right) d\theta_d \int_{\beta_k} \left(\prod_i \beta_{k,i}^{\lambda_i+v_{k,i}-1}\right) d\beta_k} = \\ \frac{\frac{|\alpha_k+n_{d,k}+1}{|\sum_i^K \alpha_i+n_{d,i}+1} \prod_{i\neq k}^K |\alpha_k+n_{d,k}|}{\frac{|\beta_k|}{|\sum_i^V \lambda_i+v_{k,i}+1} \prod_{i\neq w_{d,n}}^V |\lambda_k+v_{k,w_{d,n}}}{\frac{|\beta_k|}{|\sum_i^V \lambda_i+v_{k,i}}} = \frac{\frac{|\beta_k|}{|\sum_i^V \lambda_i+v_{k,i}} \prod_{i\neq w_{d,n}}^V |\lambda_k+v_{k,w_{d,n}}}{\frac{|\beta_k|}{|\sum_i^V \lambda_i+v_{k,i}}}$$

Gamma Function Identity

$$z = \frac{\Gamma(z+1)}{\Gamma(z)} \tag{6}$$

28 of 49

$$\frac{\frac{\left|\alpha_{k}+n_{d,k}+1\right|}{\left|\sum_{i}^{K}\alpha_{i}+n_{d,i}+1\right|}\prod_{i\neq k}^{K}\left|\alpha_{k}+n_{d,k}\right|}{\frac{\prod_{i\neq k}^{K}\left|\alpha_{i}+n_{d,i}\right|}{\left|\sum_{i}^{V}\lambda_{i}+v_{k,i}+1\right|}\frac{\frac{\left|\lambda_{w_{d,n}}+v_{k,w_{d,n}}+1\right|}{\left|\sum_{i}^{V}\lambda_{i}+v_{k,i}\right|}}{\frac{\prod_{i\neq k}^{V}\left|\lambda_{i}+v_{k,i}\right|}{\left|\sum_{i}^{V}\lambda_{i}+v_{k,i}\right|}}$$

$$=\frac{n_{d,k}+\alpha_{k}}{\sum_{i}^{K}n_{d,i}+\alpha_{i}}\frac{v_{k,w_{d,n}}+\lambda_{w_{d,n}}}{\sum_{i}v_{k,i}+\lambda_{i}}$$

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word $w_{d,n}$

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} \mathbf{v}_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type $w_{d,n}$
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word $w_{d,n}$

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word $w_{d,n}$

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word $w_{d,n}$

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word $w_{d,n}$

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} \mathbf{v}_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word $w_{d,n}$

Sample Document

Etruscan	trade	price	temple	market

Sample Document

Etruscan	trade	price	temple	market

Randomly Assign Topics

Randomly Assign Topics

Jordan Boyd-Graber | Boulder Topic Models |

33 of 49

Total Topic Counts

3	2 trade		1 price		3 temple		1 market
Etruscan							
Total counts — from all docs				1		2	3
	mar	Etruscan		1		0	35
		mark	et	5	0	0	1
		price		4	2	1	0
		ole		0	0	20	
	trade		9	1	0	8	1
							- 2

Total Topic Counts

3	2	1	3	1
Etruscan	trade	price	temple	market

35 Etruscan market 50

Total Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i}^{K} v_{k,i} + \lambda_i}$$

Total Topic Counts

3	2	1	3	1
Etruscan	trade	price	temple	market

35 Etruscan market 50

Total Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,\mathbf{w}_{d,n}} + \lambda_{\mathbf{w}_{d,n}}}{\sum_{i} \mathbf{v}_{k,i} + \lambda_i}$$

We want to sample this word ...

3	2	1		3	1
Etruscan	trade	pric	e	temple	market
			1	2	3
/	Etrus	scan		0	35
/	mark	cet	50	0	1
(*)	price	2	42	2 1	0
	temp	ole	(0	20
	trade	9	10	8	1

We want to sample this word ...

3	2	1		3	1
Etruscan	trade	pric	e te	mple	marke
			1	2	3
	Etrus	can	1	0	35
	mark	et	50	0	1
	price		42	1	0
	temp	le	0	0	20
	trade		10	8	1
				1	

Decrement its count

3	?	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
market	50	0	1
price	42	1	0
temple	0	0	20
trade	10	7	1
		1	

What is the conditional distribution for this topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Jordan Boyd-Graber Boulder Topic Models

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Topic 1 Topic 2 Topic 3

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Tonic 1 Tonic 2 Tonic 3

Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Tonic 1 Tonic 2 Tonic 3

Sampling Equation

$$\frac{\mathbf{n_{d,k}} + \alpha_k}{\sum_{i}^{K} \mathbf{n_{d,i}} + \alpha_i} \frac{\mathbf{v_{k,w_{d,n}}} + \lambda_{w_{d,n}}}{\sum_{i} \mathbf{v_{k,i}} + \lambda_i}$$

Part 2: How much does each topic like the word?

3	?	1	3	1
Etruscan	trade	price	temple	market

Topic 1	Topic	2	Topic 3	
		1	2	3
	trade	10	7	1

Part 2: How much does each topic like the word?

3	?	1	3	1
Etruscan	trade	price	temple	market

Topic 1 Sampling Equation	Topic 2	Topic 3	
$\bar{\Sigma}$	$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,i}}}{\sum_{i}^{K} v_{d,i}}$	<u> </u>	
	uaue	10 /	1

Part 2: How much does each topic like the word?

3	?	1	3	1
Etruscan	trade	price	temple	market

Topic 1 Sampling Equation	Topic 2	Topic 3	
	$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,\mathbf{w}_{d,n}}}{\sum_{i}^{K} \mathbf{v}_{k}}$		
	uaue	10 /	

Geometric interpretation

3	?	1	3	1
Etruscan	trade	price	temple	market

Jordan Boyd-Graber | Boulder Topic Models

Geometric interpretation

3	?	1	3	1
Etruscan	trade	price	temple	market

Jordan Boyd-Graber | Boulder Topic Models

Geometric interpretation

3	?	1	3	1
Etruscan	trade	price	temple	market

Jordan Boyd-Graber | Boulder Topic Models

Update counts

3	?	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
market	50	0	1
price	42	1	0
temple	0	0	20
trade	10	7	1
	1	-	

42 of 49

Update counts

3	1	1		3	1
Etruscan	trade	pric	e t	temple	market
/			1	2	3
	Etru	scan	1	. 0	35
	mar	ket	50	0	1
	price	2	42	1	0
	tem	ple	C	0	20
	trad	e	11	. 7	1
			1		

Update counts

3	1	1	3	1
Etruscan	trade	price	temple	market

Jordan Boyd-Graber | Boulder Topic Models

Details: how to sample from a distribution

Jordan Boyd-Graber | Boulder Topic Models |

Algorithm

- 1. For each iteration i:
 - 1.1 For each document d and word n currently assigned to z_{old} :
 - 1.1.1 Decrement $n_{d,z_{old}}$ and $v_{z_{old},w_{d,n}}$
 - 1.1.2 Sample $z_{new} = k$ with probability proportional to $\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$
 - 1.1.3 Increment $n_{d,z_{new}}$ and $v_{z_{new},w_{d,n}}$

Implementation

Algorithm

- 1. For each iteration i:
 - 1.1 For each document d and word n currently assigned to z_{old} :
 - 1.1.1 Decrement $n_{d,z_{old}}$ and $v_{z_{old},w_{d,n}}$
 - 1.1.2 Sample $z_{new} = k$ with probability proportional to $\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$
 - 1.1.3 Increment $n_{d,z_{new}}$ and $v_{z_{new},w_{d,n}}$

Desiderata

- Hyperparameters: Sample them too (slice sampling)
- Initialization: Random
- Sampling: Until likelihood converges
- Lag / burn-in: Difference of opinion on this
- Number of chains: Should do more than one

Available implementations

- Mallet (http://mallet.cs.umass.edu)
- LDAC (http://www.cs.princeton.edu/ blei/lda-c)
- Topicmod (http://code.google.com/p/topicmod)

Wrapup

- Topic Models: Tools to uncover themes in large document collections
- Gibbs Sampling: Technique for inference when EM doesn't cut it
- In class: Gibbs sampling example (LDA homework)

Inference