6 Representables

Exercise 6.1. Find one more representable functor not mentioned above.

Solution. Let \mathscr{G} be a group that we consider as a Category with one element we call G. Consider a functor $F:\mathscr{G}\to \mathbf{Set}$. This functor corresponds to a G-set, i.e. the set M=F(G) is a \mathscr{G} -set. This means that given an element g in the group i.e. a morhphism $g:\mathscr{G}\to\mathscr{G}$ and an element $m\in M$ we can define $g\cdot m=F(g)(m)$. As F is a functor we get $\mathrm{id}_{G}\cdot m=m$ and $(g\circ h)\cdot m=g\cdot (h\cdot m)$.

A natural transformation is precicely a morphism of G-sets, and a natural ismomorphism is an isomorphism of G-sets.

We say that a \mathscr{G} -set M is free, if whenever there exists $m \in M$ such that $g \cdot m = m$, we already have $g = 1_G$.

We say that M is transitive or 1-transitive, if for each pair $m, m' \in M$ there exists a $g \in G$ with $g \cdot m = m'$.

We call M a G-torsor, if M is free and transitive.

We will show that the representable functors $G \to \mathbf{Set}$ are precisely the G-torsors.

Note that since there is only one object in G, there is only one representable functor, and hence all G-torsors are isomorphic. One can see G as a G-set via left multiplication, this is also a G-torsor.

We will first show that a representable functor is a G-torsor. So let $F := H_G$, and $M := F(G) = \mathcal{G}(G, G)$. In other words, M is the set of elements of G. The G-set structure is given by $g \cdot h := F(g)(h) = g \circ h$, i.e. by left multiplication.

This is a G-torsor: Indeed, if $g \cdot h = h$, then $g = g \cdot h \cdot h^{-1} = h \cdot h^{-1} = 1_G$. (This shows that M is free.) If $g, h \in M$, then $(hg^{-1}) \cdot g = h$. (This shows transitivity.)

Now let M' be any other G-torsor. We will show that $M \cong M'$, this will immediately give the desired isomorphism of functors. Choose any element $m_0 \in M'$. Then we define a morphism $f: M \to M', g \mapsto g \circ m_0$.

This is a morphism of G-sets:

$$f(h \circ g) = h \circ g \circ m_0 = h \circ f(g).$$

It is injective: Let $g, h \in M$ such that $g \circ m_0 = f(g) = f(h) = h \circ m_0$. Then $h^{-1} \circ g \circ m_0 = m_0$, since M' is free, we get $h^{-1}g = 1_G$, in other words g = h.

It is surjective: Let $m \in M'$ arbitrary. Since M' is transitive, there exists a $g \in G$ with $g \cdot m_0 = m$. Hence $f(g) = g \cdot m_0 = m$, i.e. f is surjective.

This concludes $M \cong M'$.

It is obvious, that if N is a G-set that is not a torsor, it cannot be is momorphic to a torsor, this concludes the claim.

Exercise 6.2. Let \mathscr{A} be a (locally small) category, and let $A, A' \in \mathscr{A}$ with $H_A \cong H_{A'}$. Prove directly that $A \cong A'$.

Proof. Let $\eta: H_A \to H_{A'}$ an isomorphism of functors. Consider the Sisomorphism

$$\eta_A \colon \mathscr{A}(A,A) = H_A(A) \to H_{A'}(A) = \mathscr{A}(A,A').$$

Let $f := \eta_A(id_A) : A \to A'$, and define $g := \eta_{A'}^{-1}(id_{A'}) : A' \to A$.

The idea is now to use the naturality condition to show that f and g are mutually inverse. This concludes the proof.

Exercise 6.3. Prove that the forgetful functor $U : \mathbf{CRing} \to \mathbf{Set}$ is isomorphic to $F := \mathbf{CRing}(\mathbb{Z}[x], -) = H_{\mathbb{Z}[X]}$.

Proof. We define a natural isomorphism $\eta: U \to F$. For this, let $R \in \mathbf{CRing}$ a commutative ring. Then define $\eta_R: U(R) \to F(R)$ via $r \mapsto f_r$, where we denote by f_r the map

$$f_r \colon \mathbb{Z}[X] \to R$$

 $g(X) \mapsto g(r)$

 η_R is clearly an ismorphism as it possesses an inverse $f \mapsto f(X)$. (Here we use the fact that ring morphisms map 1 to 1 and are additive and multiplicative)

So we only need to show that η is natural. So let $\psi \colon R \to S$ be a morhism of rings. Then we get for each $r \in R$

$$\eta_S(U(\psi)(r)) = \eta_S(\psi(r))
= f_{\psi(r)}
= \psi \circ f_r
= \psi \circ \eta_R(r)
= F(\psi)(\eta_R(r)).$$

This shows naturality. (Here we used that for a polynomial $g \in \mathbb{Z}[X]$ we have $g(\psi(r)) = \psi(g(r))$)

Exercise 6.4. The Sierpinski space is the two-point topological space S in which one of the singleton subsets is open but the other is not. Prove that for any topological space X, there is a canonical bijection between the open subsets of X and the continuous maps $X \to S$. Use this to show that the functor $O: \mathbf{Top}^{\mathrm{op}} \to Set$ of Example 4.1.19 is represented by S.

Proof. Let $S = \{x_0, \eta\}$ be the Sirpinski space, such that $\{\eta\}$ open. We will show that ther is a natural isomorphism $\phi \colon \mathcal{O} \to H_S$.

For a topological space X, we define

$$\phi_X \colon \mathcal{O}(X) \to H_S(X)$$

$$U \mapsto \left[x \mapsto \begin{cases} \eta & \text{if } x \in U \\ x_0 & \text{if } x \notin U \end{cases} \right]$$

This is well defined: Cleary $\phi_X(U)$ is a map $X \to S$. It is continuous, because $\phi_X(U)^{-1}(\{\eta\}) = U$ is open, and $\{\eta\}$ is the only non-trivial open subset of S.

It is an ismomorphism, since an inverse is given by $g \mapsto g^{-1}(\{\eta\})$.

So the only thing we need to check is naturality. We will show naturality for ϕ^{-1} because this is easier.

Let $f: X \to Y$ a continuous map of topological spaces. Then for $g \in H_S(X)$, i.e. $g: X \to S$ continuous, we have

$$\mathcal{O}(f)(\phi_X^{-1}(g)) = f^{-1}(g^{-1}(\{\eta\}))$$

$$= (g \circ f)^{-1}(\{\eta\})$$

$$= \phi_{X'}^{-1}(g \circ f)$$

$$= \phi_{X'}^{-1}(H_f(g)).$$

This is the naturality condition for ϕ^{-1} , hence we are done.