```
<diff/> <bvar> <ci>> x</ci> </bvar> <ci> x</ci> </ci>  
<apply> <times/> <ci> a </ci> <ci> u </ci>  
</apply> </apply> </math> <math> <apply> <eq/> <apply> <diff/> <bvar> <ci> x </ci> </bvar> <apply> <plus/> <ci> u </ci> <ci> v </ci> <ci> v </ci>
</apply> <apply> <plus/> <apply> <diff/> <bvar> <ci> ×</ci> </bvar> <ci> w </ci> </apply> <apply> <diff/> <bvar> <ci> × </ci> </apply> <apply> <diff/> <bvar> <ci> × </ci> </apply> <apply> <apply> <apply> <apply> <br/> <br/> × </ci> </apply> <apply> <appl
<apply> <diff/> <bvar> <ci> v </ci> <bvar> <ci> w </ci> <br/> <br/> <apply> </apply> </apply> </math> <math> <apply> <eq/> <apply> <diff/> <bvar> <ci> v
</bvar> <apply> <tímes/> <ci> u </ci> <ci> v </ci> </apply> </apply> <apply> <plus/> <apply> <tímes/> <ci> u </ci> <apply> <diff/> <bvar> <ci> v
</bvar> <ci> w </ci> </apply> </apply> <apply> <times/> <ci> v </ci> <apply> <diff/> <bvar> <ci> x </ci>  
</apply> </math> <math> <apply> <eq/> <apply> <diff/> <bvar> <ci> × </ci> </ci> </ci> </ci> + </ci>  
</apply> <apply> <plus/> <apply> <times/> <ci> v </ci> </ci> </apply> <apply> <cii v </ci> <cii v </ci> <cii v </ci>  
<times/> <ci> u </ci> <ci> w </ci> <apply> <diff/> <bvar> <ci> v </ci> <apply> <apply> <apply> <times/> <ci> v </ci> <apply> <apply> <apply> <times/> <ci> v </ci>
<apply> <diff/> <bvar> <ci> x </ci> </bvar> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> </math> <math> <apply> <eq/> <apply> <diff/> <bvar> <ci>
x </ci> </bvar> <apply> <divide/> <ci> u </ci> <ci> v </ci> </apply> <apply> <apply> <apply> <minus/> <apply> <times/> <ci> v </ci> <apply>
<diff/> <bvar> <ci>> x </ci> </bvar> <ci> u </ci> </apply> </apply> <apply> <ti> v </ci> <apply> <ci> v </ci> <apply> <diff/> <bvar> <ci> v </ci>
</apply> </apply> </apply> <apply> <power/> <ci> v </ci> <cn> 2 </cn> </apply> </apply> <apply> <minus/> <apply> <times/> <apply> <divide/> <cn> 1
</cn> <ci>> v </ci> </apply> <apply> <diff/> <bvar> <ci> x </ci> </ci> </apply> </apply> <apply> <times/> <apply> <diff/> <bvar> <ci> x </ci> </ci>
<apply> <power/> <ci> v </ci> <cn> 2 </cn> </apply> </app
</math> <math> <apply> <eq/> <apply> <diff/> <bvar> <ci> x </ci> </bvar> <apply> <power/> <ci> u </ci> </ci> n </ci> </apply> </apply> <apply> <apply> <times/:
<ci> n </ci> <apply> <power/> <ci> u </ci> <apply> <minus/> <ci> n </ci> <cn> 1 </cn> </apply> </apply> <apply> <diff/> <bvar> <ci> x </ci>
<ci> u </ci> </apply> </apply> </apply> </math> <math> <apply> <eq/> <apply> <diff/> <bvar> <ci> x </ci> </bvar> <apply> <root/> <ci> u </ci>
</apply> <apply> <times/> <apply> <divide/> <cn> 1 </cn> <apply> <times/> <cn> 2 </cn> <apply> <root/> <ci> u </ci> </apply> </apply> </apply>
<diff/> <bvar> <ci>> x </ci> </bvar> <ci>> u </ci> </apply> </apply> </apply> </math> <apply> <eq/> <apply> <diff/> <bvar> <ci>> x </ci>
<apply> <divide/> <cn> 1 </cn> <ci> u </ci> </apply> </apply> <apply> <times/> <apply> <minus/> <apply> <divide/> <cn> 1 </cn> <apply> <power/>
u </ci> <cn> 2 </cn> </apply> </apply> </apply> <apply> <diff/> <bvar> <ci> x </ci> </bvar> <ci> u </ci> </apply> </apply> </apply> </math>
<apply> <eq/> <apply> <diff/> <bvar> <ci> x </ci> </bvar> <apply> <divide/> <cn> 1 </cn> <apply> <poyer/> <ci> u </ci> <cn> n </cn> </apply> </apply>
</apply> <apply> <times/> <apply> <minus/> <apply> <divide/> <ci> n </ci> <apply> <power/> <ci> u </ci> <apply> <ppuy/> <apply> <ppuy/> <apply> <plus/> <ci> n </ci> <cn> 1 </cn>
</apply> </apply> </apply> </apply> <apply> <diff/> <bvar> <ci> x </ci> </bvar> <ci> u </ci> </apply> </apply> </apply> </apply> </math> <math> <apply> <eq/>
<apply> <diff/> <bvar> <ci> v </ci> </bvar> <apply> <inverse/> <apply> <sinh/> <ci> u </ci> </apply> </apply> </apply> </apply> <apply> <diff/> <bvar>
</ci> </bvar> <apply> <log/> <apply> <plus/> <ci> u </ci> <apply> <root/> <apply> <plus/> <apply> <power/> <ci> u </ci> </cn> </apply>
</cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <apply> <apply> <co>1 </cn> <apply> <root/> <apply> <plus/> <apply> <power/.
<ci> u </ci> <cn> 2 </cn> </apply> <cn> 1 </cn> </apply> </apply> </apply> <apply> <apply>  x </ci> x </ci> </bran> <ci> x </ci> </bran>
</apply> </math> <math> <apply> <eq/> <apply> <int/> <bvar> <ci> × </ci> </bvar> <apply> <divide/> <cn> 1 </cn> <apply> <times/> <ci> × </ci> <apply>
<root/> <apply> <fn> <ci> &plusminus; </ci> </fn> <apply> <power/> <ci> a </ci> <cn> 2 </cn> </apply> <apply> <apply> <power/> <ci> x </ci> <cn> 2
</apply> </apply> </apply> </apply> </apply> </apply> <apply> <apply> <apply> <times/> <apply> <divide/> <cn> 1 </cn> <ci> a </ci> </apply> <apply>
<log/> <apply> <divide/> <apply> <plus/> <ci> a </ci> <apply> <root/> <apply> <fn> <ci> &plusminus; </ci> </fn> <apply> <power/> <ci> a </ci>
</cn> </apply> <apply> <power/> <ci> x </ci> <cn> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply>
</math> <math> <apply> <eq/> <apply> <int/> <bvar> <ci> × </ci> </bvar> <apply> <divide/> <cn> 1 </cn> <apply> <plus/> <ci> a </ci> <apply> <times/:
<ci> b </ci> <apply> <power/> <ci> x </ci> <cn> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <apply> <apply> <or/> <apply> <times/> <apply> <divide/>
<cn> 1 </cn> <apply> <times/> <cn> 2 </cn> <apply> <root/> <apply> <minus/> <apply> <times/> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply>
</apply> </apply> <apply> <log/> <apply> <divide/> <apply> <plus/> <ci>> a</ci> <apply> <times/> <ci>> x</ci> <apply> <root/> <apply> <minus/> <apply>
<times/> <ci» a </ci» <ci» b </ci» </apply> </apply> </apply> </apply> </apply> <minus/> <ci» a </ci» <apply> <times/> <ci» x </ci» <apply>
<root/> <apply> <minus/> <apply> <tímes/> <ci> a </ci> <ci> b </ci> </apply> </apply
<times/> <apply> <divide/> <cn> 1 </cn> <apply> <root/> <apply> <minus/> <apply> <times/> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> </apply>
<apply> <power/> <apply> <tanh/> <apply> <divide/> <apply> <times/> <ci> × </ci> <apply> <root/> <apply> <minus/> <apply> <times/> <ci> a </ci>
b </ci» </apply> </apply> </apply> </apply> <ci» a </ci» </apply> 
</math> <math> <apply> <eq/> <apply> <int/> <bvar> <ci> x </ci> </bvar> <apply> <divide/> <cn> 1 </cn> <apply> <times/> <apply> <cos/> <apply>
<times/> <ci> a </ci> <ci> x </ci> </ci> </apply> </apply> <apply> <fi> <ci> &plusminus; </ci> </fi> <cn> 1 </cn> <apply> <sin/> <apply> <times/> <ci> a </ci
<ci> v. </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <apply> <apply> <apply> <fn> <ci> &minusplus; </ci> </fn> <apply> <divide/> <cn>
</cn> <apply> <times/> <cn> 2 </cn> <ci> a </ci> <tinb <ci> &plusminus; </ci> </ci> </fi> <cn> 1 </cn> <apply> <sin/> <apply> <times/> <ci> a </ci>
<ci> v</ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times/> <apply> <divide/> <cn> 1 </cn> <apply> <times/> <cn> 2 </cn> <ci> apply> <divide/> <cn> 1 </cn>
</ci> </apply> </apply> <apply> <log/> <apply> <tan/> <apply> <plus/> <apply> <divide/> <ci> &pi; </ci> <cn> 4 </cn> </apply> <apply> <divide/> <apply>
<times/> <ci> a </ci> <ci> x </ci> </ci> </ci> </ci> </cr> </trible>
<apply> <plus/> <cn> 1 </cn> <apply> <mínus/> <apply> <dívíde/> <cn> 1 </cn> <cn> 3 </cn> </apply> </apply> <apply> <divíde/> <cn> 1 </cn> <cn> 3 </cn> </apply> </apply> <apply> <divíde/> <cn> 1 </cn> <cn> 3 </cn>
5 </cn> </apply> <apply> <minus/> <apply> <divide/> <cn> 1 </cn> <cn> 7 </cn> </apply> </apply> <ci> &cdots; </ci> </apply> <apply> <apply> <aivide/>
π </ci> <cn> 4 </cn> </apply> </apply> </math> <math> <apply> <eq/> <apply> <plus/> <cn> 1 </cn> <apply> <divide/> <cn> 1 </cn> <apply> <power/>
<cn> 2 </cn> <cn> 2 </cn> </cn> </cn> </apply> </apply> </apply> <divide/> <cn> 1 </cn> <apply> <pn> 4cn> <cn> 3 </cn> </cn> <cn> 2 </cn> </apply> </apply> <apply> <apply>
<divide/> <cn> 1 </cn> <apply> <power/> <cn> 4 </cn> <cn> 2 </cn> </apply> </apply> <ci>&cdots; </ci> </apply> <apply> <divide/> <apply> <power/>
<ci>&pi; </ci> <cn> 2 </cn> </apply> <cn> 6 </cn> </apply> </apply> </math> <math> <apply> <eq/> <apply> <plus/> <cn> 1 </cn> <apply> <minus/>
<apply> <divide/> <cn> 1 </cn> <apply> <power/> <cn> 2 </cn> </cn> < </cn> </apply> </apply> </apply> <apply> <divide/> <cn> 1 </cn> <apply> <power/>
<cn> 3 </cn> <cn> 2 </cn> </apply> </apply> <apply> <minus/> <apply> <divide/> <cn> 1 </cn> <apply> <power/> <cn> 4 </cn> < 4 </cn> < <cn> 2 </cn>
</apply> </apply> <ci>\deltacdoty; </ci> </apply> <apply> <divide/> <apply> <power/> <ci>\delta\deltapi; </ci> <cn> 2 </cn> </apply> </cn> </cn> </apply> </apply>
</math> <math> <apply> <fora<u>ll/> <c</u>ondition> <u><appl</u>y> <in/> <ci> × </ci> <
                                                                                                                                                                                                  </ci>
<ci>&exponentiale; </ci> <ci> x <
                                                                                     (apply>
                                                                                                                    y> <plus/> <cn> 1 </cn
                                                                                                                                                                                                  <apply> <div
                                                                                                                                                                                                                                           <apply>
</apply> <apply> <factorial/> <cn
                                                                                                                                                                                                                                                                         </app
<cn> 3 </cn> </apply> </apply>
</ci> </apply> </apply> <ci> &cdo
                                                                                                                    /apply> </a
                                                                                                                                                                                                                                                                         upply:
\&reals; </ci> </apply> </condition
                                                                                                                                                      <díví
<plus/> <cn> 1 </cn> <apply> <mir
<cn> 2 </cn> </apply> </apply> =
</cn> </apply> </apply> </apply> <ci> &cdoty, </ci> <a<u>pply</u>>
<apply> <divide/> <apply> <power/> <ci> × </ci> <ci> n ·
</apply> </apply> </apply> </math> <math> <apply> <fo
<gt/> <ci> b </ci> <cn> 0 </cn> </apply> </apply> </con
a </ci> <ci> b </ci> </apply> </apply> <apply> <apply> <apply> <log/> <log/ase> <ci> g </ci> </logbase> <ci> a </ci> </apply> <apply> <apply> <log/>
<ci» g </ci» </logbase» <ci» b </ci» </apply> </apply> </apply> </math> <math> <apply> <forall/> <condition> <apply> <and/> <apply> <gt/:
```

Hans Hagen Hassel NL www.pragma-ade.com January 2001 / June 2008 / June 2011 / February 2015

copyright: PRAGMA ADE, Hasselt, NL

version : July 22, 2016 renderer : version 1 / mkiv

Table of Contents

introduction		3	3.4	eq, neq, gt, lt,		3.37	laplacian	62
				geq, leq	39	3.38	mean, sdev,	
What is MATHML		5	3.5	equivalent,			variance,	62
				approx,	39	3.39	moment,	65
1.1	backgrounds	5	3.6	minus, plus	40	3.40	determinant,	
1.2	two methods	7	3.7	times	41		transpose	65
			3.8	divide	42	3.41	selector	66
Prese	entational markup	11	3.9	power	43	3.42	card	67
			3.10	root, degree	43	3.43	domain,	
2.1	Introduction	11	3.11	sin, cos, tan, cot,			codomain, image	67
2.2	mi, mn, mo	11		SCS,	44	3.44	domainofapplication	68
2.3	mrow	14	3.12	log, ln, exp	45	3.45	semantics,	
2.4	msup, msub, msubsup	15	3.13	quotient, rem	46		annotation,	68
2.5	mfrac	16	3.14	factorial	46	3.46	integers, reals,	69
2.6	mfenced	17	3.15	min, max, gcd, lcm	47	3.47	pi, imaginaryi,	70
2.7	msqrt, mroot	18	3.16	and, or, xor, not	47	3.48	eulergamma,	
2.8	mtext	19	3.17	set, bvar	48		infinity,	70
2.9	mover, munder,	20	3.18	list	48	3.49	notanumber	70
2.10	ms	23	3.19	union, intersect,	49	3.50	true, false	70
2.11	menclose	23	3.20	conjugate, arg,		3.51	declare	71
2.12	merror	27		real,	49	3.52	csymbol	71
2.13	mmultiscripts,	27	3.21	abs, floor, ceiling	50			
2.14	mspace	28	3.22	interval	51	Mixe	d markup	73
2.15	mphantom	30	3.23	inverse	51			
2.16	mpadded	30	3.24	reln	52	4.1	introduction	73
2.17	mtable, mtr, mtd,	30	3.25	cartesianproduct,	52			
2.18	mcolumn	34	3.26	sum, product,		Direc	ctives	79
2.19	malignmark,			limit,	52			
	maligngroup	35	3.27	int, diff, partialdiff,	54	5.1	scripts	79
2.20	mglyph	35	3.28	fn	56	5.2	sign	80
2.21	mstyle	36	3.29	matrix, matrixrow	57	5.3	divide	83
2.22	afterword	36	3.30	vector	57	5.4	relation	84
			3.31	grad, curl, ident,	58	5.5	base	86
Content markup 3		37	3.32	lambda, bvar	58	5.6	function	86
			3.33	piecewise, piece,	59	5.7	limits	87
3.1	introduction	37	3.34	forall, exists,		5.8	declare	87
3.2	apply	37		condition	59	5.9	lambda	87
3.3	ci, cn, sep	38	3.35	factorof, tendsto	61	5.10	power	88
			3.36	compose	61	5.11	diff	88
			•					

5.12	vector	89
5.13	times	90
5.14	log	90
5.15	polar	91
5.16	e-notation	91
Type	setting modes	93
Getti	ng started	97
Bidi		99
Open	Math	101
Calc	103	
Ascii	Math	105
A fev	v examples	111
	derivatives	111
12.1		
12.2	integrals	119
12.2 12.3	series	119 124
12.2 12.3 12.4	series logs	119 124 130
12.2 12.3 12.4 12.5	series logs goniometrics	119 124 130 133
12.2 12.3 12.4 12.5 12.6	series logs goniometrics statistics	119 124 130 133 146
12.2 12.3 12.4 12.5	series logs goniometrics statistics	119 124 130 133
12.2 12.3 12.4 12.5 12.6 12.7	series logs goniometrics statistics	119 124 130 133 146
12.2 12.3 12.4 12.5 12.6 12.7	series logs goniometrics statistics matrices ode Math	119 124 130 133 146 148
12.2 12.3 12.4 12.5 12.6 12.7 Unice 13.1 13.2	series logs goniometrics statistics matrices ode Math entities properties	119 124 130 133 146 148 151 151
12.2 12.3 12.4 12.5 12.6 12.7 Unice 13.1 13.2 13.3	series logs goniometrics statistics matrices ode Math entities properties alphabets	119 124 130 133 146 148 151 151 176 184
12.2 12.3 12.4 12.5 12.6 12.7 Unice 13.1 13.2	series logs goniometrics statistics matrices ode Math entities properties alphabets	119 124 130 133 146 148 151 151

introduction

It is a well known fact that T_EX can do a pretty good job on typesetting math. This is one reason why many scientific articles, papers and books are typeset using T_EX. However, in these days of triumphing angle brackets, coding in T_EX looks more and more out of place.

From the point of view of an author, coding in T_EX is quite natural, given that some time is spent on reading the manuals. This is because not only the natural flow of the definition suits the way mathematicians think, but also because the author has quite some control over the way his thoughts end up on paper. It will be no surprise that switching to a more restricted way of coding, which also demands more keystrokes, is not beforehand considered to be better.

There are however circumstances that one wants to share formulas (or formula-like specifications) between several applications, one of which is a typesetting engine. In that case, a bit more work now, later saves you some headaches due to keeping the different source documents in sync.

The moment coding math in XML is discussed, those in favour stress that coding can be eased by using appropriate editors. Here we encounter a dilemma. For optimal usage, one should code in terms of content, that is, the principles that are expressed in a formula. Editors are not that strong in this area, and if they would be, editing would be not that much different from traditionally editing formulas: just keying in ideas using code that at first sight looks obscure. A more graphical oriented editor can help authors to compose formulas, but the underlaying coding will mainly be in terms of placing glyphs and boxes, and as a result the code will hardly be usable in other applications.

So either we code in terms of concepts, which permits sharing code among applications, and poses strong limitations on the influence of authors on the visual appearance. Or we use an interactive editor to fine tune the appearance of a formula and take for granted that reuse will be minimal or suboptimal.

In the following chapters we will discuss the mathematical language MATHML in the perspective of typography. As a typesetting vehicle, we have used ConTeXt. However, the principles introduced here and the examples that we provide are independent of ConTeXt. For a more formal exploration we recommend the MATHML specification.

This document is dedicated to all those ConTeXT users who like typesetting math. I'm sure that my father, who was a math teacher, would have liked proofreading this document. His absence was compensated by Tobias Burnus, Wang Lei, Ton Otten, and later members of the ConTeXT mailing list who carefully read the text, corrected the errors in my math, tested the functionality, and made suggestions. Any remaining errors are mine.

When we started supporting MATHML we were under the impression that it would be accepted and take of fast, but we were wrong. It toke much more than a decade for instance to see browsers support rendering. Being involved in typesetting educational content from XML files, we could use this subsystem ourselves, and this was useful in the sense that we ran into lots of contradicting and suboptimal MATHML code. However, the most interesting application has always been in the math4all project, where we went from TeX math, via content MATHML and open math to presentational MATHML. Nowadays web usage drives the coding and limitations in other programs (and rendering) are sometimes compensated by coding and our renderer then has to be able to recover nicely. Thanks to the enormous productivity of the main math4all author Frits Spijkers and the careful checking by my collegue Ton Otten, we could always keep op well. Development and support of the ConTeXT typesetting system is mostly done without any commercial

benefits and the amount of free time that we spend on it and especially its more obscure properties like MATHML is compensated by flexible and tolerant users like them.

One problem is that our own usage of MATHML changes over time. Some of our projects demand the use of this standard but at the same time the used sources need to satisfy other needs, for instance rendering on the web. For some 15 years now the changing demands and quality have made us oscillate between (often suboptimal) solutions that deal with the suboptimal code that comes from compromises. For instance the mentioned project is now using a mixture of MATHML and so called ASCIImath because that is the only way the enormous amount of math code can be rendered on the web. And even there we need to bend the rules, for instance to compensate for missing features or cultural differences. Eventually I will rewrite the rendering from scratch but I need time and a very good reason for that.

This version of the manual is produced by Context MkIV and is also used as testcase. The version rendered at Pragma ADE uses the Lucida Bright fonts. These can be bought at www.tug.org for a reasonable low price and are really worth the money.

Hans Hagen PRAGMA ADE Hasselt NL 2001 — 2016

What is MATHML

<- 1.1 backgrounds ->

MATHML showed up in the evolving vacuum between structural SGML markup and presentational HTML. Both SGML and HTML can be recognized by angle brackets. The disadvantage of SGML was that it was so open ended, that general tools could hardly be developed. HTML on the other hand was easy to use and became extremely popular and users as well as software vendors quickly spoiled the original ideas and created a mess. SGML never became really popular, but thanks to HTML people became accustomed to that kind of notation. So, when XML came around as a more restricted cousin of SGML, the world was kind of ready for it. It cannot be denied that by some clever marketing many of today's users think that they use something new and modern, while we are actually dealing with something from the early days of computing. A main benefit of XML is that it brought the ideas behind SGML (and medium neutral coding in general) to the users and at the same time made a major cleanup of HTML possible.

About the same time, MATHML was defined, both to bring math to the www, and to provide a way of coding math that will stimulate sharing the same code between different applications. At the end of 2000, the MATHML version 2 draft became a recommendation. In the process of rewriting the interpreter for CONTEXT MKIV mid 2008 a draft of MATHML version 3 has been used.

Now, imagine that we want to present a document on the internet using a format like HTML, either for viewing or for being spoken. Converting text and graphics is, given proper source coding, seldom a problem, but converting formulas into some angle bracket representation is more tricky. A way out of this is MATHML's presentational markup.

$$a + b = c$$

This simple formula, when coded in T_FX, looks like:

```
$$ a + b = c $$
```

In presentational MATHML we get:

In presentational MATHML, we use mostly begintags (<mi>) and end tags (</mi>). The *mrow* element is the basic building block of a formula. The *mi* element specifies a math identifier and *mo* is used for

operators. In the process of typesetting, both are subjected to interpretation in order to get the best visualization.

Converting T_EX code directly or indirectly, using printable output or even in-memory produced math lists, has been one of the driving forces behind presentational MATHML and other math related DTD's like EUROMATH. One may wonder if there are sound and valid reasons for going the opposite way. You can imagine that a converter from T_EX to MATHML produces *menclose*, *mspace*, *mstyle* and other elements that can have many spacing related attributes, but I wonder if any author is willing to think in those quantities. Visual editors of course are good candidates for producing presentational MATHML.

But wouldn't it be more efficient if we could express ideas and concepts in such a way that they could be handled by a broad range of applications, including a typesetting engine? This is why, in addition to presentational MATHML, there is also content MATHML. The previous formula, when coded in such a way, looks like:

This way of defining a formula resembles the so called polish (or stackwise) notation. Opposite to presentational markup, here a typesetting engine has to find out in what order and what way the content has to be presented. This may seem a disadvantage, but in practice implementing content markup is not that complicated. The big advantage is that, once we know how to typeset a concept, TeX can do a good job, while in presentational markup much hard coded spacing can spoil everything. One can of course ignore specific elements, but it is more safe to start from less and enhance, than to leave away something with unknown quantities.

Instead of using hard coded operators as in presentational MATHML, content markup uses empty elements like <plus/>. Many operators and functions are predefined but one can also define his own; in MATHML 3 this is further extended by adopting OPENMATH as variant.

Of course the main question to be answered now is to what extent the author can influence the appearance of a formula defined in content markup. Content markup has the advantage that the results can be more consistent, but taking away all control is counterproductive. The MATHML level 2 draft mentions that this level covers most of the pre university math. If so, that is a proper starting point, but especially educational math often has to be typeset in such ways that it serves its purpose. Also, (re)using the formulas in other applications (simulators and alike) is useful in an educational setting, so content markup is quite suitable.

How do we combine the advantages of content markup with the wish of an author to control the visual output and at the same time get an as high as possible typeset result. There are several ways to accomplish this. One is to include in the document source both the content markup and the T_FX specific code.

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <semantics>
```

The *annotation* element is one of the few that is permitted inside the *math* element. In this example, we embed pure T_EX code, which, when enabled is typeset in math mode. It will be clear that for a simple formula like this one, such redundant coding is not needed, but one can imagine more complicated formulas. Because we want to limit the amount of work, we prefer just content markup.

Remark: Some characters, fillers or whatever may not show up. This is due to the fact that the relevant tables for ConT_FXt MkIV are defined stepwise. In due time most relevant symbols will be accessible.

<- 1.2 two methods ->

The best way to learn MATHML is to key in formulas, so that is what we did as soon as we started adding MATHML support to CONTEXT. In some areas, MATHML provides much detail (many functions are represented by elements) while in other areas one has to fall back on the more generic function element or a full description. Compare the following definitions:

We prefer the first definition because it is more structured and gives more control over the result. There is only one 'unknown' quantity, x, and from the encapsulating element ci we know that it is an identifier.

 $\sin x$

 $\sin x$

In the content example, from the *apply sin* we can deduce that the following argument is an operand, either an *apply*, or a *ci* or *cn*. In the presentational alternative, the following elements can be braces, a math identifier, a row, a sequence of identifiers and operators, etc. There, the look and feel is hard coded.

<?context-mathml-directive function reduction no ?>

This directive, either issued in the XML file, or set in the style file, changes the appearance of the function, but only in content markup. It is because of this feature, that we favour content markup.

$$\sin(x)$$

 $\sin x$

Does this mean that we can cover everything with content markup? The answer to this is still unclear. Consider the following definition.

$$\int \left(\frac{1}{\cos\left(ax\right)\left(1\pm\sin\left(ax\right)\right)}\right) dx = \left(\frac{1}{2a\left(1\pm\sin\left(ax\right)\right)}\right) + \frac{1}{2a}\log\tan\left(\frac{\pi}{4} + \frac{ax}{2}\right)$$

Here we combine several cases in one formula by using \pm and \mp symbols. Because we only have *plus* and *minus* elements, we have to revert to the generic function element *fn*. We show the complete definition of this formula.

```
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
 <apply> <eq/>
   <apply> <int/>
     <apply> <divide/>
       < cn> 1 </ cn>
       <apply> <times/>
         <apply> <cos/>
           <apply> <times/>
             <ci> a </ci>
              <ci> x </ci>
           </apply>
          </apply>
          <apply> <fn> <ci> &plusminus; </ci> </fn>
           < cn> 1 </ cn>
            <apply> <sin/>
              <apply> <times/>
               <ci> a </ci>
               <ci> x </ci>
              </apply>
           </apply>
          </apply>
       </apply>
     </apply>
    </apply>
    <apply> <plus/>
     <apply> <fn> <ci> &minusplus; </ci> </fn>
       <apply> <divide/>
         < cn> 1 </ cn>
          <apply> <times/>
            <cn> 2 </cn>
```

```
<ci> a </ci>
            <apply> <fn> <ci> &plusminus; </ci> </fn>
              <cn> 1 </cn>
              <apply> <sin/>
                <apply> <times/>
                  <ci> a </ci>
                  <ci> x </ci>
                </apply>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>
      <apply> <times/>
        <apply> <divide/>
          <cn> 1 </cn>
          <apply> <times/>
            <cn> 2 </cn>
            <ci> a </ci>
          </apply>
        </apply>
        <apply> <log/>
          <apply> <tan/>
            <apply> <plus/>
              <apply> <divide/>
                <ci> &pi; </ci>
                <cn> 4 </cn>
              </apply>
              <apply> <divide/>
                <apply> <times/>
                  <ci> a </ci>
                  <ci> x </ci>
                </apply>
                <cn> 2 </cn>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>
    </apply>
  </apply>
```

The MATHML parser and typesetting engine have to know how to handle these special cases, because the visualization depends on the function (or operator). Here both composed signs are treated like the plus and minus signs, but in other cases an embraced argument may be needed.

Presentational markup

<- 2.1 Introduction ->

If a document contains presentational MATHML, there is a good chance that the code is output by an editor. Here we will discuss the presentation elements that make sense for users when they want to manually code presentational MATHML. In this chapter we show the default rendering, later we will discuss options.

Although much is permitted, we advise to keep the code as simple as possible, because then T_EX can do a rather good job on interpreting and typesetting it. Just let T_EX take care of the spacing.

<- 2.2 mí, mn, mo ->

Presentational markup comes down to pasting boxes together in math specific ways. The basic building blocks are these three character elements.

Because numbers are taken from an upright font, special numbers are taken care of automatically. Here are some from the MATHML specification:

2 0.123 0,000,000 2.1e10 0xFFeF MCMLXIX twentyone

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mn> 2
                    </mn> <mtext>&nbsp;&nbsp;</mtext>
    < mn > 0.123
                    </mn> <mtext>&nbsp;&nbsp;</mtext>
    < mn > 0,000,000
                    </mn> <mtext>&nbsp;&nbsp;</mtext>
    <mn> 2.1e10
                    </mn> <mtext>&nbsp;&nbsp;</mtext>
    <mn> 0xFFeF
                    </mn> <mtext>&nbsp;&nbsp;</mtext>
                    </mn> <mtext>&nbsp;&nbsp;</mtext>
    <mn> MCMLXIX
    <mn> twenty one </mn> <mtext>&nbsp;&nbsp;</mtext>
  </mrow>
```

Special characters can be accessed by their UNICODE point or by a corresponding entity. For some reason there is quite some duplication in entities, but we don't bother too much about it because after all UNICODE math (which has its own peculiarities) is the way to go. The specification has this somewhat strange formula definition:

$$2 + 3??\frac{1}{2}\pi?$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    < mn > 2 < /mn >
    < mo > + </mo >
    <mrow>
      <mn> 3</mn>
      <mo> &InvisibleTimes; </mo>
      <mi> &ImaginaryI; </mi>
    </mrow>
  </mrow>
  <mfrac>
    < mn > 1 < /mn >
    < mn > 2 < /mn >
  </mfrac>
  <mi> &pi; </mi>
  <mi> &ExponentialE; </mi>
And:
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mfrac>
    <mo> &DifferentialD; </mo>
    <mrow>
      <mo> &DifferentialD; </mo>
      <mi> x </mi>
    </mrow>
  </mfrac>
```

Visualizing the *mo* element involved some heuristics. For instance the size of fences depends on what they fence. In the following case you see how we can influence this. For practical pusposes we only support size 1.

(x) or (x) or
$$\left(\frac{1}{2}\right)$$

<math xmlns="http://www.w3c.org/mathm1" version="2.0">

```
<mrow>
    < mo> ( </ mo> < mi> x </ mi> < mo> ) </ mo>
  </mrow>
  <mtext> or </mtext>
  <mrow>
    <mo maxsize="1"> ( </mo> <mi> x </mi> <mo> ) </mo>
  </mrow>
  <mtext> or </mtext>
  <mrow>
    <mo maxsize="1"
                         > ( </mo>
        <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
    <mo stretchy="false"> ) </mo>
  </mrow>
class, id, style -
mi, mn
              dir
              href
              mathbackground
              mathcolor
              mathsize
              mathvariant
mo
              accent
              class, id, style
              dir
              fence
              form
              href
              largeop
              1space
              mathbackground
              mathcolor
              mathsize
              mathvariant
              maxsize
                                 + If stretchy is true, this attribute specifies the maximum size
                                    of the operator. Allowed values are: 'infinity' or an arbitrary
                                    length.
              minsize
              movablelimits
              rspace
              separator
              stretchy
              symmetric
```

<- 2.3 mrow ->

dir

The previous example demonstrated the use of *mrow*, the element that is used to communicate the larger building blocks. Although this element from the perspective of typesetting is not always needed, by using it, the structure of the formula in the document source is more clear. There is some messy magic going on when we try to fake fenced expressions.

 $x \ge 2$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow> <mi> x </mi> <mo> &geq; </mo> <mn> 2 </mn> 
y > 4
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mi> y </mi> <mo> &gt; </mo> <mn> 4 </mn>
< \chi >
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mo> &lt; </mo> <mi> x </mi> <mo> &gt; </mo>
  </mrow>
a < b < c
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mi> a </mi> <mo> &lt; </mo> <mi> b </mi> <mo> &lt; </mo> <mi> c </mi>
  </mrow>
Spacing between a sign and the following token is taken care of automatically by T<sub>F</sub>X:
                                        -1 - 1
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mo> - </mo>
    < mn > 1 < /mn >
    <mo> - </mo>
    < mn > 1 < /mn >
  </mrow>
class, id, style -
mrow
```

```
href -
mathbackground -
mathcolor -
```

<- 2.4 msup, msub, msubsup ->

Where in content markup super and subscript are absent and derived from the context, in presentational markup they are quite present.

```
x_1^2 $$ < \mathbf{math} \ \mathbf{xmlns} = \mathbf{http}: //\mathbf{www.w3c.org/mathml} \ \mathbf{version} = \mathbf
```

Watch the difference between both definitions and appearances. You can influence the default behaviour with processing instructions.

msub	class, id, style href mathbackground	-			
	mathcolor	_			
	subscriptshift	_			
msup	class, id, style	-			
	href	-			
	mathbackground				
	mathcolor	-			
	superscriptshift				
msubsup	class, id, style	-			
	href	-			
	mathbackground	-			
	mathcolor	-			

```
subscriptshift -
superscriptshift -
```

<- 2.5 mfrac ->

Addition, subtraction and multiplication is hard coded using the mo element with +, -, and \times (or nothing). You can use / for division, but for more complicated formulas you have to fall back on fraction building. This is why MATHML provides the mfrac.

$$\frac{x+1}{v+1}$$

You can change the width of the rule, but this is generally a bad idea. For special purposes you can set the line thickness to zero.

$$x \ge 2$$
$$y \le 4$$

A different kind of rendering is also possible, as shown in the following example.

$$\frac{x}{2}/\frac{x}{2}$$

mfrac	bevelled	+	Specifies the way the fraction is displayed. If true, the fraction line is bevelled, which means that numerator and denominator are displayed side by side and separated by a slash (/).
	class, id, style	_	
	denomalign	-	
	href	_	
	linethickness	+	The thickness of the horizontal fraction line. The default value is medium, but thin, thick, and other values can be set.
	mathbackground	_	
	mathcolor	_	
	numalign	-	

<- 2.6 mfenced ->

Braces are used to visually group sub-expressions. In presentational MATHML you can either hard code braces, or use the *mfenced* element to generate delimiters automatically. In CONTEXT, as much as possible, the operators and identifiers are interpreted, and when recognized treated according to their nature.

```
<math xmlns="http://www.w3c.org/mathml" version="2.0"> 
   <mfenced> <mi> a </mi> <mi> b </mi> <mn> 1 </mn> </mfenced> </math>
```

The fencing symbols adapt their size to the content. Their dimensions also depend on the way math fonts are defined. The standard T_EX fonts will give the same height of braces around x and y, but in other fonts the y may invoke slightly larger ones.

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mfenced open="[" close=")" separators=",">
      <mn> 0 </mn> <mn> 1 </mn>
  </mfenced>
</math>
```

The separators adapt their size to the fenced content too, just like the fences.

$$\left[\frac{1}{x} \left| \frac{1}{y} \right| \frac{1}{z} \right]$$

```
</mfenced>
(1 + x)
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mfenced>
    <mrow> <mn> 1 </mn> <mo> + </mo> <mi> x </mi> </mrow>
  </mfenced>
\{1|2+3-4
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mfenced open="{" close="" separators="|+-">
    <mn> 1 </mn> <mn> 2 </mn> <mn> 3 </mn> <mn> 4 </mn>
  </mfenced>
a1b2c3d4e
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mfenced open="a" close="e" separators="bcd">
    <mn> 1 </mn> <mn> 2 </mn> <mn> 3 </mn> <mn> 4 </mn>
  </mfenced>
mfenced
              class, id, style
                                    A string for the closing delimiter. The default value is ')' and
              close
                                    any white space is trimmed.
              href
              mathbackground
              mathcolor
              open
                                 + A string for the opening delimiter. The default value is '(' and
                                    any white space is trimmed.
                                 + A sequence of zero or more characters to be used for different
              separators
                                    separators, optionally divided by white space, which is ignored.
                                    The default value is ','.
```

<*-* 2.7 msgrt, mroot ->

<msqrt>

</msqrt>

<mi> b </mi>

The shape and size of roots, integrals, sums and products can depend on the size of the content.

<math xmlns="http://www.w3c.org/mathm1" version="2.0">

 \sqrt{b}

Presentational markup

```
\sqrt[2]{b}
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mroot>
    <mi> b </mi>
    < mn > 2 < /mn >
  </mroot>
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <mfrac> <mn> 1 </mn> <mi> b </mi> </mfrac>
    < mn > 2 < /mn >
  </mroot>
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mroot>
    <mfrac>
      < mn > 1 < /mn >
      <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> 
    </mfrac>
    <mn> 3 </mn>
  </mroot>
msqrt, mroot class, id, style -
             href
             mathbackground
             mathcolor
```

<- 2.8 mtext ->

If you put text in a *mi* element, it will come out rather ugly. This is due to the fact that identifiers are (at least in T_EX) not subjected to the kerning that is normally used in text. Therefore, when you want to add some text to a formula, you should use the *mtext* element.

<math xmlns="http://www.w3c.org/mathm1" version="2.0">

```
<mfrac>
     <mi> Some Text </mi>
     <mtext> Some Text </mtext>
     </mfrac>
</math>
```

As with all elements, leading and trailing spaces are ignored. If you really want a space in front or at the end, you should use one of the space tokens other than the ascii spacing tokens. You can also use entities like .

```
mtext class, id, style -
dir -
href -
mathbackground -
mathcolor -
mathsize -
mathvariant -
```

<- 2.9 mover, munder, munderover ->

Not all formulas are math and spacing and font rules may differ per discipline. The following formula reflects a chemical reaction.

$$2 \text{ H}_2 + \text{ O}_2 \xrightarrow{\text{explosion}} 2 \text{ H}_2 \text{ O}$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mrow>
      < mn > 2 < /mn >
      <msub> <mtext> H </mtext> <mn> 2 </mn> </msub>
    </mrow>
    < mo > + </mo >
    <msub> <mtext> 0 </mtext> <mn> 2 </mn> </msub>
    <munder>
      <mo> &RightArrow; </mo>
      <mtext> explosion </mtext>
    </munder>
    <mrow>
      < mn > 2 < /mn >
      <msub> <mtext> H </mtext> <mn> 2 </mn> </msub>
      <mtext> 0 </mtext>
    </mrow>
  </mrow>
```

The *munder*, *mover* and *munderover* elements can be used to put symbols and text or formulas on top of each other. When applicable, the symbols will stretch themselves to span the natural size of the text or

formula.

The following examples demonstrate how the relevant components of this threesome are defined.

$$x \xrightarrow{\text{maps to}} y$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mi> x </mi>
    <munder>
      <mo> &RightArrow; </mo>
      <mtext> maps to </mtext>
    </munder>
    <mi> y </mi>
  </mrow>
x \xrightarrow{\text{maps to } y}
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mi> x </mi>
    <munder>
      <mtext> maps to </mtext>
      <mo> &RightArrow; </mo>
    </munder>
    <mi> y </mi>
  </mrow>
x \xrightarrow{\text{maps to } y}
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mi> x </mi>
    <mover>
      <mtext> maps to </mtext>
      <mo> &RightArrow; </mo>
    </mover>
    <mi> y </mi>
  </mrow>
x \xrightarrow{\text{maps to}} y
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mi> x </mi>
```

22

```
<mover>
      <mo> &RightArrow; </mo>
      <mtext> maps to </mtext>
    </mover>
    <mi> y </mi>
  </mrow>
\infty
                                           ſ
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <munderover>
      <mi> &int; </mi>
      <mn> 1 </mn>
      <mi> &infin; </mi>
    </munderover>
  </mrow>
\hat{x} + \hat{x} + \hat{x}
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <mrow>
        <mover> <mi> x </mi> <mo> &#x2C6; </mo> </mover> <mo>+</mo>
        <mover> <mi> x </mi> <mo> &#x5E; </mo> </mover> <mo>+</mo>
        <mover> <mi> x </mi> <mo> &Hat;
                                           </mo> </mover>
    </mrow>
munder
             accentunder
              align
              class, id, style
             href
             mathbackground
             mathcolor
mover
             accent
              align
              class, id, style
             href
             mathbackground
             mathcolor
munderover
             accent
             accentunder
```

```
align -
class, id, style -
href -
mathbackground -
mathcolor -
```

<- 2.10 ms ->

This is a bit weird element. It behaves like *mtext* but puts quotes around the text.

```
"Some Text"
Some Text
```

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <mfrac>
        <ms> Some Text </ms>
        <mtext> Some Text </mtext>
        </mfrac>
</math>
```

You can specify the left and right boundary characters, either directly or (preferably) using entities like ".

+ A Famous Quotation +

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <ms lquote="+" rquote="+"> A Famous Quotation </ms>
  </math>
```

ms	class, id, style dir	- -	
	lquote	+	The opening quote character (depends on dir) to enclose the content. The default value is ".
	href mathbackground mathcolor mathsize mathvariant	- - - -	The closing quote mark (depends on dir) to enclose the content
	rquote	+	The closing quote mark (depends on dir) to enclose the content. The default value is ".

<- 2.11 menclose ->

This element is implemented but it is such a weird element that it's probably seldom used.

123

A bit more complex example (taken from the specification) demonstrates where those somewhat strange rendering options are good for:

$$\begin{array}{r}
 10 \\
 131 \overline{\smash{\big)}\ 1413} \\
 \underline{131} \\
 103 \\
 \end{array}$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mtable columnspacing="Opt" rowspacing="Opt">
    <mtr>
      <mtd></mtd>
      <mtd columnalign="right"><mn>10</mn></mtd>
    </mtr>
    <mtr>
      <mtd columnalign="right"><mn>131</mn></mtd>
      <mtd columnalign="right">
        <menclose notation="longdiv"><mn>1413</mn></menclose>
      </mtd>
    </mtr>
    <mtr>
      <mtd></mtd>
      <mtd columnalign="right">
        <mrow>
          <munder>
            <mn>131</mn>
            <mo>&UnderBar;</mo>
          </munder>
          <mphantom><mn>3</mn></mphantom>
        </mrow>
      </mtd>
```

```
</mtr>
<mtr>
<mtd><mtd></mtd>
<mtd columnalign="right"><mn>103</mn></mtd>
</mtr>
</mtable>
</math>
```

In MATHML 3 a few more notations showed up and to some extend we support them. We assume that the previously mentioned variants are always applied to the content first.

```
whatever
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
 <menclose notation="box downdiagonalstrike">
   <mtext>whatever/
 </menclose>
whatever
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
 <menclose notation="roundedbox updiagonalstrike">
   <mtext>whatever/
 </menclose>
whatever
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
 <menclose notation="circle verticalstrike horizontalstrike">
   <mtext>whatever/
 </menclose>
whatever
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
 <menclose notation="left top verticalstrike">
   <mtext>whatever/
 </menclose>
whatever
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
 <menclose notation="right bottom horizontalstrike">
   <mtext>whatever/
 </menclose>
```

```
<del>√whatever</del>
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <menclose notation="radical right bottom horizontalstrike">
    <mtext>whatever/
  </menclose>
<del>√whatever</del>
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <menclose notation="right bottom horizontalstrike radical">
    <mtext>whatever/
  </menclose>
The graphics are drawn at runtime by METAPOST. Currently we don't combine them into one which
would be more efficient in terms of output (not so much in runtime). You can define additional variants;
as an example we show one of the solutions:
\startuseMPgraphic{mml:enclose:box}
  draw OverlayBox
    withpen pencircle scaled (ExHeight/10);
\stopuseMPgraphic
\defineoverlay [mml:enclose:box] [\useMPgraphic{mml:enclose:box}]
   You can roll out your own:
\startuseMPgraphic{mml:enclose:mybox}
  draw OverlayBox enlarged (ExHeight/5)
    withpen pencircle scaled (ExHeight/10);
\stopuseMPgraphic
\defineoverlay [mml:enclose:mybox] [\useMPgraphic{mml:enclose:mybox}]
                                       whatever
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <menclose notation="mybox">
    <mtext>whatever/
  </menclose>
menclose
             class, id, style -
              href
```

mathbackground
 mathcolor
 notation
 + A list of notations, separated by white space, to apply to the child elements. The symbols are each drawn as if the others are not present, and therefore may overlap. Supported values are: longdiv, actuarial, radiacal, box downdiagonalstrike, roundedbox updiagonalstrike, circle verticalstrike horizontalstrike, right bottom horizontalstrike, etc.

<- 2.12 merror ->

There is not much chance that this element will end up in a math textbook, unless the typeset output of programs is part of the story.

<- 2.13 mmultiscripts, mprescripts ->

This element is one of the less obvious ones. The next two examples are taken from the specification. The *multiscripts* element takes an odd number of arguments. The second and successive child elements alternate between sub- and superscript. The empty element *none* —a dedicated element *mnone* would have been a better choice— serves as a placeholder.

```
R_{i}{}^{j}{}_{kl} <math xmlns="http://www.w3c.org/mathm1" version="2.0"> <mmultiscripts> <mi> R </mi> <mi> i </mi> <none/>
```

```
<none/>
    <mi> j </mi>
    <mi> k </mi>
    <none/>
    <mi> l </mi>
    <none/>
    <mone/>
    <mone/>
    </mmultiscripts>
</math>
```

The *mmultiscripts* element can also be used to attach prescripts to a symbol. The next example demonstrates this. The empty *prescripts* element signals the start of the prescripts section.

```
427Qb_4
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mmultiscripts>
    <mi> Qb </mi>
    < mn > 4 < /mn >
    <none/>
    <mprescripts/>
    <mn> 427 </mn>
    <none/>
  </mmultiscripts>
mmultiscripts class, id, style -
             href
              mathbackground
              mathcolor
              subscriptshift
              superscriptshift -
```

<- 2.14 mspace ->

Currently not all functionality of the *mspace* element is implemented. Over time we will see what support is needed and makes sense, especially since this command can spoil things. We only support the units that make sense, so units in terms of pixels —a rather persistent oversight in drafts— are kindly ignored.

```
<mtext> care </mtext>
</mrow>
</math>
```

As you can see here, spaces inside a mtext matter too! The next example is more tight.

```
use | \underset{\text{lem}}{\text{|me|}} | \underset{\text{lopt}}{\text{|with|}} | \underset{\text{lopt}}{\text{|care}}
```

You can also pass a sample text:

```
\frac{44}{112233}
```

```
mspace class, id, style -
depth -
height -
linebreak -
mathbackground -
spacing - The desired width of the space.
width - The desired width of the space.
```

<- 2.15 mphantom ->

A phantom element hides its content but still takes its space. A phantom element can contain other elements.

```
who is afraid of
                                                    elements
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
               who is afraid of </mtext>
                                             <mspace width=".5em" />
    <mtext>
                                </mphantom> <mspace width=".5em" />
    <mphantom> phantom
    <mtext>
               elements
                                </mtext>
  </mrow>
class, id, style -
mphantom
             mathbackground
```

<- 2.16 mpadded ->

As with a few other elements, we first have to see some practical usage for this, before we could implement the functionality needed.

mpadded	class, id, style	-
	depth	-
	height	-
	href	-
	lspace	-
	mathbackground	-
	mathcolor	-
	voffset	-
	width	-

<- 2.17 mtable, mtr, mtd, mlabeledtr ->

As soon as you want to represent a matrix or other more complicated composed constructs, you end up with spacing problems. This is when tables come into view. Because presentational elements have no deep knowledge about their content, tables made with presentational MATHML will in most cases look worse than those that result from content markup.

We have implemented tables on top of the normal XML (HTML) based table support in CONTEXT, also known as natural tables. Depending on the needs, support for the *mtable* element will be extended.

The *mtable* element takes a lot of attributes. When no attributes are given, we assume that a matrix is wanted, and typeset the content accordingly.

$$\begin{pmatrix} x_{1,1} & 1 & 0 \\ 0 & x_{2,2} & 1 \\ 0 & 1 & x_{3,3} \end{pmatrix}$$

31

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mrow>
    <mo> ( </mo>
    <mtable>
      <mtr>
        <mtd> <msub> <mi> x </mi> <mn> 1,1 </mn> </msub> </mtd>
        <mtd> <mn> 1 </mn> </mtd>
        <mtd> <mn> 0 </mn> </mtd>
      </mtr>
      <mtr>
        <mtd> <mn> 0 </mn> </mtd>
        <mtd> <msub> <mi> x </mi> <mn> 2,2 </mn> </msub> </mtd>
        <mtd> <mn> 1 </mn> </mtd>
      </mtr>
      <mtr>
        <mtd> <mn> 0 </mn> </mtd>
        <mtd> <mn> 1 </mn> </mtd>
        <mtd> <msub> <mi> x </mi> <mn> 3,3 </mn> </msub> </mtd>
      </mtr>
    </mtable>
    <mo> ) </mo>
  </mrow>
100100100
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mtable columnalign="left center right">
    <mtr>
      <mtd frame="solid"> <mn> 100 </mn> </mtd>
      <mtd
                        > <mn> 100 </mn> </mtd>
                        > <mn> 100 </mn> </mtd>
      <mtd
    </mtr>
    <mtr>
      <mtd
                        > <mn> 10
                                   </mn> </mtd>
      <mtd frame="solid"> <mn> 10
                                   </mn> </mtd>
      <mtd
                        > <mn> 10
                                   </mn> </mtd>
    </mtr>
    <mtr>
                                   </mn> </mtd>
      <mtd
                        > <mn> 1
      <mtd
                        > <mn> 1
                                   </mn> </mtd>
      <mtd frame="solid"> <mn> 1
                                   </mn> </mtd>
    </mtr>
  </mtable>
```

A special case is the labeled row *mlabeledtr*. This one is meant for numbering equations. However, in a properly formatted document there is probably some encapsulating structure that takes care of this. Therefore we discard the first child element. We show an example taken from the specification.

```
E = m?c^2
```

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mtable>
    <mlabeledtr>
      <mtd>crap</mtd>
      <mtd>
        <mrow>
          <mi>E</mi>
          <mo>=</mo>
          <mrow>
            <mi>m</mi>
            <mi>&it;</mi>
            <msup>
              <mi>c</mi>
              <mn>2</mn>
            </msup>
          </mrow>
        </mrow>
      </mtd>
    </mlabeledtr>
  </mtable>
```

Although the underlying table mechanism can provide all the support needed (and even more), not all attributes are yet implemented. We will make a useful selection.

```
columnalign keyword: left center (middle) right columnspacing a meaningful dimension rowspacing a meaningful dimension frame keyword: none (off) solid (on) color a named color identifier background a named color identifier
```

We only support properly named colors as back- and foreground colors. The normal $ConT_EXT$ color mapping mechanism can be used to remap colors. This permits (read: forces) a consistent usage of colors. If you use named backgrounds . . . the sky is the limit.

```
mtable align -
alignmentscope -
class, id, style -
```

columnalign + Specifies the horizontal alignment of the cells. Multiple values separated by space are allowed and apply to the corresponding columns (e.g. columnalign="left right center"). Possible values are: left, center (default) and right. columnlines columnspacing Specifies the space between table columns. +columnwidth displaystyle equalcolumns equal rows frame framespacing groupalign href mathbackground The background color. The text color. mathcolor minlabelspacing rowalign rowlines rowspacing Specifies the space between table rows. side width class, id, style mtd columnalign columnspan Specifies whether the cell gets a frame. frame groupalign href mathbackground mathcolor rowalign rowspan mtr, labeledtrclass, id, style columnalign + Overrides the horizontal alignment of cells specified by <mtable> for this row. groupalign href mathbackground The background color. mathcolor The text color. rowalign

<- 2.18 mcolumn ->

This element is new in MATHML 3 and is kind of special in the sense that the content is analyzed. It would have made more sense just to provide some proper structure instead since it's intended use is rather well defined.

Because it is not much fun to implement such a messy element we only support it partially and add what comes on our way. Here are a few examples (more or less taken from the reference).

12

```
\times 12
                                          24
                                         12
                                         144
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mcolumn>
    <mn>12</mn>
    <mrow> <mo>&times;</mo> <mn>12</mn> 
    <mline spacing="000"/>
    <mn>24</mn>
    <mrow> <mn>12</mn> <mspace spacing="0"/> </mrow>
    <mline spacing="000"/>
    <mn>144</mn>
  </mcolumn>
123
                                        456 +
                                        579
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mcolumn>
    <mn>123</mn>
    <mrow> <mn>456</mn> <mo>+</mo> 
    <mline spacing="000+"/>
    <mn>579</mn>
  </mcolumn>
1,23
                                        4,56+
                                        5,79
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mcolumn>
    < mn > 1,23 < / mn >
    <mrow> <mn>4,56</mn> <mo>+</mo>
```

```
<mline spacing="0,00+"/>
    < mn > 5.79 < / mn >
  </mcolumn>
52
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <mcolumn>
    <mstyle mathsize="71%">
        <menclose notation="bottom"> <mn>10</mn> </menclose>
    </mstyle>
    <mn>52</mn>
    <mrow> <mo>&minus;</mo> <mn>7</mn> </mrow>
    <mline spacing="45"/>
    <mn>45</mn>
  </mcolumn>
```

Similar effects can be accomplished with the *mtable* element.

<- 2.19 malignmark, maligngroup ->

This element is used in tables and is not yet implemented, first because I still have to unravel its exact usage, but second, because it is about the ugliest piece of MATHML markup you will encounter.

```
malignmark class, id, style - edge -
```

<- 2.20 mglyph ->

This element is for those who want to violate the ideas of general markup by popping in his or her own glyphs. Of course one should use entities, even if they have to be defined.

$$A + B = C$$

mglyph	alt	+	This attribute defines the alternative text describing the image.
	class, id, style	-	
	height	-	
	href	-	
	mathbackground	-	
	src	-	
	valign	-	
	width	-	

<- 2.21 mstyle ->

This element is implemented but not yet discussed since we want more control over its misuse.

mstyle	dir	_	
	decimalpoint	-	
	displaystyle	-	
	infixlinebreakstyle	-	
	scriptlevel	+	Controls mostly the font-size. The higher the scriptlevel, the smaller the font size. This attribute accepts a non-negative integer, as well as a '+' or a '-' sign, which increments or decrements the current value.
	scriptminsize scriptsizemultiplier	-	

<- 2.22 afterword ->

You may have noticed that we prefer content MATHML over presentational MATHML. So, unless you're already tired of any math coded in angle brackets, we invite you to read the next chapter too.

Content markup

<- 3.1 introduction ->

In this chapter we will discuss the MATHML elements from the point of view of typesetting. We will not pay attention to other rendering techniques, like speech generation. Some elements take attributes and those often make more sense for other applications than for a typesetting engine like T_EX, which has a strong math engine that knows how to handle math.

One of the most prominent changes in MATHML 3 is support for an OPENMATH like coding. Here the *csymbol* takes the place of the empty element as first argument of an *apply*. There are more symbols in OPENMATH then we supported in the interpreter, but in due time (depending on demand) we will add more. At the time of writing this the draft was really a draft which made it hard to grasp all the implications for rendering so we probably need to overhaul the code sometime in the future.

Another change is the usage of *apply* that has been delegated to *bind*. One may wonder why this hadn't happen before. For the moment we treat the *bind* as if it were an *apply*.

<- 3.2 apply ->

If you are dealing with rather ordinary math, you will only need a subset of content MATHML. For this reason we will start with the most common elements. When you key in XML directly, you will encounter the *apply* element quite often, even in a relatively short formula like the following.

-1

In most cases the *apply* element is followed by a specification disguised as an empty element.

Later we will see more complex examples but here we already show the different ways of encoding. First we show the traditional MATHML 2 method:

$$\forall_x : x \ge 4$$

```
</apply>
```

This is now called 'pragmatic' MATHML. Using symbols and bind this becomes 'strict' MATHML:

```
\forall_x : x \ge 4
```

<- 3.3 ci, cn, sep ->

These elements are used to specify identifiers and numbers. Both elements can be made more explicit by using attributes.

type	set	use a representation appropriate for sets
	vector	mark this element as vector
	function	consider this element to be a function
	fn	idem

When set is specified, a blackboard symbol is used when available.

```
x \in \mathbb{N}
```

The *function* specification makes sense when the *ci* element is used in for instance a differential equation.

type	integer	a whole number with an optional base
	logical	a boolean constant
	rational	a real number
	complex-cartesian	a complex number in $x + iy$ notation
	complex	idem
	complex-polar	a complex number in polar notation

You're lucky when your document uses decimal notation, otherwise you will end up with long specs if you want to be clear in what numbers are used.

```
1A2C_{16} + 0101_{16} = 1B2D_{16} <math xmlns="http://www.w3c.org/mathm1" version="2.0"> <apply> <eq/> <apply> <plus/> <cn type="integer" base="16"> 1A2C </cn> <cn type="integer" base="16"> 0101 </cn> </apply> <cn type="integer" base="16"> 1B2D </cn> </apply> </math>
```

Complex numbers have two components. These are separated by the *sep* element. In the following example we see that instead of using a *ci* with set specifier, the empty element *complexes* can be used. We will see some more of those later.

```
(+\,i)\in\mathbb{C} <math xmlns="http://www.w3c.org/mathm1" version="2.0"> <apply> <in/> <cn type="complex"> 2 <sep/> 5 </cn> <complexes/> </apply> </math>
```

<- 3.4 eq, neq, gt, lt, geq, leq ->

Expressions, and especially those with eq are typical for math. Because such expressions can be quite large, there are provisions for proper alignment.

```
It a < b leq a \le b eq a = b neq a \ne b gt a > b geq a \ge b a \le b \le c
<math xmlns="http://www.w3c.org/mathm1" version="2.0"> <apply> <leq/> <ci> a </ci> <ci> b </ci> <ci> c </ci> </apply> </math>
```

<- 3.5 equivalent, approx, implies ->

Equivalence, approximations, and implications are handled like eq and alike and have their own symbols.

```
a + b \equiv b + a
```

This document is typeset with LUAT_EX built upon T_EX version 3.14159, and given that T_EX is written by a mathematician, it will be no surprise that:

```
3.14159 \approx \pi
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <approx/>
    <cn> 3.14159 </cn>
    <pi/>
  </apply>
x + 4 = 9 \Rightarrow x = 5
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <implies/>
    <apply> <eq/>
      <apply> <plus/>
        <ci> x </ci>
        <cn> 4 </cn>
      </apply>
      < cn> 9 </cn>
```

<- 3.6 minus, plus ->

</apply>

</apply>

<apply> <eq/> <ci> x </ci> <cn> 5 </cn>

Addition and subtraction are main building blocks of math so you will meet them often.

$$37 - x$$

```
</apply>
```

In most cases there will be more than one argument to take care of, but especially *minus* will be used with one argument too. Although <cn> -37 </cn> is valid, using *minus* is sometimes more clear.

You should pay attention to combinations of *plus* and *minus*. Opposite to presentational MATHML, in content markup you don't think and code sequential.

```
-x + 37
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <plus/>
    <apply> <minus/>
      <ci> x </ci>
    </apply>
    <cn> 37 </cn>
  </apply>
In MATHML 3 we can also be more vebose:
                                        a + x
<math xmlns="http://www.w3c.org/mathm1" version="3.0">
    <apply> <csymbol cd="arith1">plus</csymbol>
        <ci>a</ci>
        <ci>x</ci>
    </apply>
```

<- 3.7 times ->

Multiplication is another top ten element. Although 3p as content of the *ci* element would have rendered the next example as well, you really should split off the number and mark it as *cn*. When this is done consistently, we can comfortably change the font of numbers independent of the font used for displaying identifiers.

```
3p
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <times/>
```

In a following chapter we will see how we can add multiplication signs between variables and constants.

<- 3.8 divide ->

When typeset, a division is characterized by a horizontal rule. Some elements, like the differential element *diff*, generate their own division.

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

This example also demonstrates how to mix *plus* and *minus*.

```
<math xmlns='http://www.w3c.org/mathm1' version='2.0'>
  <apply> <eq/>
    <apply> <plus/>
      < cn > 1 < / cn >
      <apply> <minus/>
        <apply> <divide/>
          < cn> 1 </ cn>
          <cn> 3 </cn>
        </apply>
      </apply>
      <apply> <divide/>
        <cn> 1 </cn>
        <cn> 5 </cn>
      </apply>
      <apply> <minus/>
        <apply> <divide/>
          <cn> 1 </cn>
          <cn> 7 </cn>
        </apply>
      </apply>
      <ci> &cdots; </ci>
    </apply>
    <apply> <divide/>
      <ci> &pi; </ci>
      <cn> 4 </cn>
    </apply>
 </apply>
```

$$\frac{-b--b-\sqrt{a}}{(b-b)--b-\sqrt{a}}$$

<- 3.9 power ->

In presentational MATHML you think in super- and subscripts, but in content MATHML these elements are not available. There you need to think in terms of *power*.

The *power* element is clever enough to determine where the superscript should go. In the case of the sinus function, by default it will go after the function identifier.

<- 3.10 root, degree ->

If you study math related DTD's —these are the formal descriptions for SGML or XML element collections—you will notice that there are not that many elements that demand a special kind of typography: differential equations, limits, integrals and roots are the most distinctive ones.

$$\sqrt[3]{64} = 4$$

Contrary to *power*, the *root* element uses a specialized child element to denote the degree. The positive consequence of this is that there cannot be a misunderstanding about what role the child element plays, while in for instance *power* you need to know that the second child element denotes the degree.

```
<- 3.11 sin, cos, tan, cot, scs, sec, ... ->
```

All members of the family of goniometric functions are available as empty element. When needed, their argument is surrounded by braces. They all behave the same.

```
sin arcsin sinh arcsinh
cos arccos cosh arccosh
tan arctan tanh arctanh
cot arccot coth arccoth
csc arccsc csch arccsch
sec arcsec sech arcsech
```

These functions are normally typeset in a non italic (often roman) font shape.

```
\sin(x + y) = \sin x \cos y + \cos x \sin y
```

By default the typesetting engine will minimize the number of braces that surrounds the argument of a function.

You can specify π as an entity π or as empty element pi. In many cases it is up to your taste which one you use. There are many symbols that are only available as entity, so in some respect there is no real reason to treat π different.

<- 3.12 log, ln, exp ->

The *log* and *ln* are typeset similar to the previously discussed goniometric functions. The *exp* element is a special case of *power*. The constant *e* can be specified with *exponentiale*.

$$ln(e+2) \approx 1.55$$

<- 3.13 quotient, rem ->

The result of a division can be a rational number, so $\frac{5}{4}$ is equivalent to 1.25 and 1.25 × 4 gives 5. An integer division will give 1 with a remainder 2. Many computer languages provide a div and mod function, and since MATHML is also meant for computation, it provides similar concepts, represented by the elements *quotient* and *rem*. The representation of *quotient* is rather undefined, but the next one is among the recommended alternatives.

|a/b|

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <quotient/>
        <ci> a </ci>
        <ci> b </ci>
        </apply>
        </math>
```

<- 3.14 factorial ->

<ci> n </ci>

Showing the representation of a factorial is rather dull, so we will use a few more elements as well as a processing instruction to illustrate the usage of *factorial*.

 $n! = n \times (n-1) \times (n-2) \times \cdots \times 1$

$$context-mathml-directive times symbol yes ?

n$$

```
<apply> <minus/> <ci> n </ci> <cn> 1 </cn> </apply>
<apply> <minus/> <ci> n </ci> <cn> 2 </cn> </apply>
<csymbol definitionUrl="cdots"/>
<cn> 1 </cn>
</apply>
</apply>
</math>
```

The processing instruction is responsible for the placement of the \times symbols.

<- 3.15 mín, max, gcd, lcm ->

These functions can handle more than two arguments. When typeset, these are separated by commas.

$$z = \min\left\{ (x+y), 2x, \frac{1}{y} \right\}$$

<- 3.16 and, or, xor, not ->

Logical expressions can be defined using these elements. The operations are represented by symbols and braces are applied when needed.

$$1001_2 \wedge 0101_2 = 0001_2$$

```
<- 3.17 set, byar ->
```

The appearance of a *set* depends on the presence of the child element *bvar*. In its simplest form, a set is represented as a list.

```
\{1,4,8\} \neq ?
```

A set can be distinguished from a vector by its curly braces. The simplest case is just a comma separated list. The next example demonstrates the declarative case. Without doubt, there will be other alternatives.

$${x \mid 2 < x < 8}$$

<- 3.18 list ->

This element is used in different contexts. When used as a top level element, a list is typeset as follows.

When used in a context like *partialdiff*, the list specification becomes a subscript.

```
D_{1,1,3}f
```

The function specification in this formula (which is taken from the specs) can also be specified as <fn> <ci> f </ci> </fn> (which is more clear).

<- 3.19 union, intersect, ... ->

There is a large number of set operators, each represented by a distinctive symbol.

These operators are applied as follows:

```
U \cup V
```

<- 3.20 conjugate, arg, real, imaginary ->

The visual representation of *conjugate* is a horizontal bar with a width matching the width of the expression.

$$\overline{x+?y}$$

The arg, real and imaginary elements trigger the following appearance.

$$\arg(x + ?y)$$

$$\Re(x + ?y)$$
i

<- 3.21 abs, floor, ceiling ->

There are a couple of functions that turn numbers into positive or rounded ones. In computer languages names are used, but in math we use special boundary characters.

$$|-5| = 5$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <apply> <abs/> <cn> -5 </cn> </apply>
    <cn> 5 </cn>
  </apply>
|5.5| = 5
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <apply> <floor/> <cn> 5.5 </cn> </apply>
    <cn> 5 </cn>
  </apply>
[5.5] = 6
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <apply> <ceiling/> <cn> 5.5 </cn> </apply>
    <cn> 6 </cn>
  </apply>
```

<- 3.22 interval ->

An interval is visualized as: [1, 10]. The *interval* element is a container element and has a begin and endtag. You can specify the closure as attribute:

(a,b]

The following closures are supported:

open	(a,b)
closed	[a,b]
open-closed	(a,b]
closed-open	[a,b)

In strict MATHML we use symbols instead of attributes to define the openess:

(a, x)

<- 3.23 inverse ->

This operator is applied to a function. The following example demonstrates that this is one of the few cases (if not the only one) where the first element following an *apply* begintag is an *apply* itself.

 $\sin^{-1} x$

This element is a left-over from the first MATHML specification and its usage is no longer advocated. Its current functionality matches the functionality of *apply*.

<- 3.25 cartesíanproduct, vectorproduct, scalarproduct, outerproduct ->

The context of the formula will often provide information of what kind of multiplication is meant, but using different symbols to represent the kind of product certainly helps.

outer

 $a \otimes b$

<- 3.26 sum, product, limit, lowlimit, uplimit, bvar ->

Sums, products and limits have a distinctive look, especially when they have upper and lower limits attached. Unfortunately there is no way to specify the x_i in content MATHML. In the next chapter we will see how we can handle that.

$$\sum_{i=1}^{n} \frac{1}{x}$$

53

When we omit the limits, the *bvar* is still typeset.

$$\prod_{i} \frac{1}{x}$$

You can specify the condition under which the function is applied.

$$\prod_{x\in\mathbb{R}}f\left(x\right)$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <apply> <apply> 
    <bvar>
      <ci> x </ci>
    </bvar>
    <condition>
      <apply> <in/>
        <ci> x </ci>
        <ci type="set"> R </ci>
      </apply>
    </condition>
    <apply> <ci type="fn"> f </ci>
      <ci> x </ci>
    </apply>
  </apply>
```

<- 3.27 int, diff, partialdiff, bvar, degree ->

These elements reach a high level of abstraction. The best way to learn how to use them is to carefully study some examples.

$$\frac{d\left(\int\limits_{p}^{q}f(x,a)\ dx\right)}{da}$$

The *bvar* element is essential, since it is used to automatically generate some of the components that make up the visual appearance of the formula. If you look at the formal specification of these elements, you will notice that the appearance may depend on your definition. How the formula shows up, depends not only on the *bvar* element, but also on the optional *degree* element within.

<math xmlns="http://www.w3c.org/mathm1" version="2.0">

55

```
<apply> <diff/>
    <ci> f </ci>
  </apply>
\frac{d^2f(x)}{dx^2}
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <diff/>
    <bvar>
      <ci> x </ci>
      <degree> <cn> 2 </cn> </degree>
    </bvar>
    <apply> <fn> <ci> f </ci> </fn>
      <ci> x </ci>
    </apply>
  </apply>
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <partialdiff/>
    <bvar>
      <degree> <cn> 2 </cn> </degree>
      <ci> x </ci>
    </bvar>
    <bvar> <ci> y </ci> </bvar>
    <bvar> <ci> x </ci> </bvar>
    <degree> <cn> 4 </cn> </degree>
    <ci type="fn"> f </ci>
  </apply>
\frac{d^k f(x,y)}{x \, df(x,y)}
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <partialdiff/>
    <bvar>
      <ci> x </ci> <degree> <ci> m </ci> </degree>
    </bvar>
    <bvar>
      <ci> y </ci> <degree> <ci> n </ci> </degree>
    </bvar>
    <degree> <ci> k </ci> </degree>
```

```
<apply> <ci type="fn"> f </ci>
      <ci> x </ci>
      <ci> y </ci>
    </apply>
  </apply>
\frac{d^{m+n}f\left( x,y\right) }{x\,df\left( x,y\right) }
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <partialdiff/>
    <bvar>
      <ci> x </ci> <degree> <ci> m </ci> </degree>
    </bvar>
    <bvar>
      <ci> y </ci> <degree> <ci> n </ci> </degree>
    </bvar>
    <apply> <ci type="fn"> f </ci>
      <ci> x </ci>
      <ci> y </ci>
    </apply>
  </apply>
```

When a degree is not specified, it is deduced from the context, but since this is not 100% robust, you can best be complete in your specification.

These examples are taken from the MATHML specification. In the example document that comes with this manual you can find a couple more.

<- 3.28 fw ->

There are a lot of predefined functions and operators. If you want to introduce a new one, the fn element can be used. In the following example we have turned the \pm and \mp symbols into (coupled) operators.

$$(x \pm 1) (x \mp 1) = x^2 - 1$$

The typeset result depends on the presence of a handler, which in this case happens to be true.

<- 3.29 matrix, matrixrow ->

A matrix is one of the building blocks of linear algebra and therefore both presentational and content MATHML have dedicated elements for defining it.

$$\begin{pmatrix} 23 & 87 & c \\ 41 & b & 33 \\ a & 65 & 16 \end{pmatrix}$$

<- 3.30 vector ->

We make a difference between a vector specification and a vector variable. A specification is presented as a list:

When the *vector* element has one child element, we use a right arrow to identify the variable as vector.

$$\overrightarrow{A} \times \overrightarrow{B}$$

```
<math xmlns="http://www.w3c.org/mathml" version="2.0">
    <apply> <vectorproduct/>
        <vector> <ci> A </ci> </vector>
        <vector> <ci> B </ci> </vector>
        </apply>
</math>
```

<- 3.31 grad, curl, ident, divergence ->

These elements expand into named functions, but we can imagine that in the future a more appropriate visualization will be provided as an option.

```
\operatorname{grad} A \neq \operatorname{curl} B \neq \operatorname{identity} C \neq \operatorname{div} D
```

<- 3.32 lambda, bvar ->

The lambda specification of a function needs a *bvar* element. The visualization can be influenced with processing instructions as described in a later chapter.

$$x \mapsto \sin\left(x - \frac{x}{2}\right)$$

<- 3.33 piecewise, piece, otherwise ->

There are not so many elements that deal with combinations of formulas or conditions. The *piecewise* is the only real selector available. The following example defines how the state of n depends on the state of x.

$$n = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <ci> n </ci>
    <piecewise>
      <piece>
        <apply> <minus/>
          <cn> 1 </cn>
        </apply>
        <apply> <lt/>
         <ci> x </ci>
         < cn> 0 </cn>
        </apply>
      </piece>
      <piece>
        <cn> 1 </cn>
        <apply> <gt/>
         <ci> x </ci>
          < cn> 0 </cn>
        </apply>
      </piece>
      <otherwise>
        < cn> 0 < /cn>
      </otherwise>
    </apply>
```

We could have used a third *piece* instead of (optional) *otherwise*.

<- 3.34 forall, exists, condition ->

Conditions are often used in combination with elements like *forall*. There are several ways to convert and combine them in formulas and environments, so you may expect more alternatives in the future.

$$\forall_x \, x < 9 \mid x < 10$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <forall/>
```

The next example is taken from the specifications with a few small changes.

```
\forall_x \ x \in \mathbb{N} \mid \exists_{p,q} \ p \in \mathbb{P} \land q \in \mathbb{P} \land p + q = 2x
```

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
 <apply> <forall/>
   <bvar> <ci> x </ci> </bvar>
   <condition>
     <apply> <in/>
       <ci> x </ci>
       <ci type="set"> N </ci>
     </apply>
   </condition>
   <apply> <exists/>
     <condition>
       <apply> <and/>
         <apply> <in/>
           <ci> p </ci>
           <ci type="set"> P </ci>
         </apply>
         <apply> <in/>
           <ci> q </ci>
           <ci type="set"> P </ci>
         </apply>
         <apply> <eq/>
           <apply> <plus/> <ci> p </ci> <ci> q </ci> </apply>
           <apply> <times/> <cn> 2 </cn> <ci> x </ci> </apply>
         </apply>
       </apply>
     </condition>
   </apply>
```

```
</apply>
```

<- 3.35 factorof, tendsto ->

The *factorof* element is applied to its two child elements and contrary to most functions, the symbol is placed between the elements instead of in front.

```
a \mid b
```

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <factorof/>
        <ci> a </ci>
        <ci> b </ci>
        </apply>
</math>
```

The same is true for the *tendsto* element.

```
a \rightarrow b
```

<- 3.36 compose ->

This is a nasty element since it has to take care of braces in special ways and therefore has to analyse its child elements.

```
(f \circ g \circ h)
```

<- 3.37 laplacían ->

A laplacian function is typeset using a ∇ (nabla) symbol.

<- 3.38 mean, sdev, variance, median, mode ->

When statistics shows up in math text books, the *sum* element is likely to show up, probably in combination with the for statistics meaningful symbolic representation of variables. The mean value of a series of observations is defined as:

 $\nabla^2 x$

$$\overline{x} = \frac{\sum x}{n}$$

$$\overline{x} = \frac{1}{n} \sum x$$

<math xmlns="http://www.w3c.org/mathm1" version="2.0">

Of course this definition is not that perfect, but we will present a better alternative in the chapter on combined markup. The definition of the standard deviation is more complicated:

$$\sigma\left(x\right)\approx\sqrt{\frac{\sum\left(x-\overline{x}\right)}{n-1}}$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <approx/>
    <apply> <sdev/>
      <ci> x </ci>
    </apply>
    <apply> <root/>
      <apply> <divide/>
        <apply> <sum/>
          <apply> <power/>
            <apply> <minus/>
              <ci> x </ci>
              <apply> <mean/>
                <ci> x </ci>
              </apply>
            </apply>
            <cn> 2 </cn>
          </apply>
        </apply>
        <apply> <minus/>
          <ci> n </ci>
          <cn> 1 </cn>
        </apply>
      </apply>
    </apply>
  </apply>
```

The next example demonstrates the usage of the *variance* in its own definition.

$$\sigma\left(x\right)=\overline{\left(x-\overline{x}\right)}\approx\frac{1}{n-1}\sum\left(x-\overline{x}\right)$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <apply> <variance/>
      <ci> x </ci>
    </apply>
    <apply> <approx/>
      <apply> <mean/>
        <apply> <power/>
          <apply> <minus/>
            <ci> x </ci>
            <apply> <mean/>
              <ci> x </ci>
            </apply>
          </apply>
          <cn> 2 </cn>
        </apply>
      </apply>
      <apply> <times/>
        <apply> <divide/>
          <cn> 1 </cn>
          <apply> <minus/>
            <ci> n </ci>
            < cn> 1 </ cn>
          </apply>
        </apply>
        <apply> <sum/>
          <apply> <power/>
            <apply> <minus/>
              <ci> x </ci>
              <apply> <mean/>
                <ci> x </ci>
              </apply>
            </apply>
            <cn> 2 </cn>
          </apply>
        </apply>
      </apply>
    </apply>
  </apply>
```

The *median* and *mode* of a series of observations have no special symbols and are presented as is.

<- 3.39 moment, momentabout, degree ->

Because MATHML is used for a wide range of applications, there can be information in a definition that does not end up in print but is only used in some cases. This is illustrated in the next example.

$$\langle X^3 \rangle$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <moment/>
        <degree>
        <cn>        3 </cn>
        </degree>
        <momentabout>
        <ci>        p </ci>
        </momentabout>
        <ci>X </ci>
        </apply>
</math>
```

<- 3.40 determinant, transpose ->

These two (and the following) are used to manipulate matrices, either or not in a symbolic way. A simple determinant or transpose looks like:

|A|

When the *determinant* element is applied to a full blown matrix, the braces are omitted and replaced by the vertical bars.

$$|I| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

<math xmlns='http://www.w3c.org/mathml' version='2.0'>

<- 3.41 selector ->

The *selector* element can be used to index a matrix cell or variable. This element honors the braces.

 $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

A more common usage of the selector is the following:

 \boldsymbol{X}

It is possible to pass a comma separated list of indices:

 $x_{1,2}$

```
</apply>
```

If you want to have a more verbose index, you can use the *csymbol* element, flagged with text encoding.

```
x_{\text{max}}
```

<- 3.42 card ->

A cardinality is visualized using vertical bars.

```
|A| = 5
```

<- 3.43 domain, codomain, image ->

The next couple of examples are taken from the MATHML specification and demonstrate the usage of the not that spectacular domain related elements.

```
domain f = \mathbb{R}
```

These are typically situations where the *fn* element may show up.

 $codomain f = \mathbb{Q}$

This example from the MATHML specification demonstrates a typical usage of the *image* element. As with the previous two, it is applied to a function, in this case the predefined *sin*.

<- 3.44 domainofapplication ->

This is another seldom used element. Actually, this element is a further specification of the outer level applied function.

$$\int_{C} f$$

<- 3.45 semantics, annotation, annotation-xml ->

We will never know what Albert Einstein would have thought about MATHML. But we do know for sure that coding one of his famous findings in XML takes much more tokens that it takes in T_FX.

Within a *semantics* element there can be many *annotation* elements. When using ConT_EXT, the elements that can be identified as being encoded in T_EX will be treated as such. Currently, the related *annotation-xml* element is ignored.

```
e = mc^2
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <semantics>
    <apply> <eq/>
      <ci> e </ci>
      <apply> <times/>
        <ci> m </ci>
        <apply> <power/>
          <ci> c </ci>
          <cn> 2 </cn>
        </apply>
      </apply>
    </apply>
    <annotation encoding="tex">
      e = m c^2
    </annotation>
  </semantics>
```

Another variant that we support is called 'calcmath' which is an efficient way to enter school math. The syntax resembles the one used in advanced calculators.

<- 3.46 integers, reals, ... ->

Sets of numbers are characterized with special (often blackboard) symbols. These symbols are not always available.

integers	\mathbb{Z}
reals	\mathbb{R}
rationals	\mathbb{Q}
naturalnumbers	N

complexes \mathbb{C} primes \mathbb{P}

<- 3.47 pi, imaginaryi, exponentiale ->

Being a greek character, π is a distinctive character. In most math documents the imaginary i and exponential e are typeset as any math identifier.

pi π imaginaryi i exponentiale e

<- 3.48 eulergamma, infinity, emptyset ->

There are a couple of more special tokens. As with the other ones, they can be changed by reassigning the corresponding entities.

eulergamma y infinity ∞ emptyset ?

<- 3.49 notanumber ->

Because MATHML is used for more purposes than typesetting, there are a couple of elements that do not make much sense in print. One of these is *notanumber*, which is issued by programs as error code or string.

$$\frac{x}{0} = \text{NaN}$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <eq/>
        <apply> <divide/>
        <ci> x </ci>
        <cn> 0 </cn>
        </apply>
        <notanumber/>
        </apply>
    </math>
```

<- 3.50 true, false ->

When assigning to a boolean variable, or in boolean expressions one can use 0 or 1 to identify the states, but if you want to be more verbose, you can use these elements.

```
1_2 \equiv \text{true}
```

<- 3.51 declare ->

Reusing definitions would be a nice feature, but for the moment the formal specification of this element does not give us the freedom to use it the way we want.

```
declare A as (a, b, c)
```

<- 3.52 csymbol ->

This element will be implemented as soon as we have an application for it.

Míxed markup

<- 4.1 introduction ->

The advantage of presentational markup is that you can build complicated formulas using super- and subscripts and other elements. The drawback is that the look and feel is rather fixed and cannot easily be adapted to the purpose that the document serves. Take for instance the difference between

$$\log_2 x$$

and

$$^{2}\log x$$

Both formulas were defined in content MATHML, so no explicit super- and subscripts were used. In the next chapter we will see how to achieve such different appearances.

There are situations where content MATHML is not rich enough to achieve the desired output. This omission in content MATHML forces us to fall back on presentational markup.

$$P_1 = P_2 = 1.01 \approx 1$$

Here we used presentational elements inside a content *ci* element. We could have omitted the outer *ci* element, but since the content MATHML parser may base its decisions on the content elements it finds, it is best to keep the outer element there.

The lack of an index element can be quite prominent. For instance, when in an expose about rendering we want to explore the mapping from coordinates in user space to those in device space, we use the following formula.

$$(D_x, D_y, 1) = (U_x, U_y, 1) \begin{pmatrix} s_x & r_x & 0 \\ r_y & s_y & 0 \\ t_x & t_y & 1 \end{pmatrix}$$

<math xmlns="http://www.w3c.org/mathm1" version="2.0">

```
<apply> <eq/>
   <vector>
     <ci> <msub> <mi> D </mi> <mi> x </mi> </msub> </ci>
     <ci> <msub> <mi> D </mi> y </mi> </msub> </ci>
     < cn> 1 </ cn>
   </vector>
   <apply> <times/>
     <vector>
       <ci> <msub> <mi> U </mi> <mi> x </mi> </msub> </ci>
       <ci> <msub> <mi> U </mi> y </mi> </msub> </ci>
       < cn> 1 </ cn>
     </vector>
     <matrix>
       <matrixrow>
         <ci> <msub> <mi> s </mi> <mi> x </mi> </msub> </ci>
         <ci> <msub> <mi> r </mi> <mi> x </mi> </msub> </ci>
         < cn> 0 < /cn>
       </matrixrow>
       <matrixrow>
         <ci> <msub> <mi> r </mi> <mi> y </mi> </msub> </ci>
         <ci> <msub> <mi> s </mi> y </mi> </msub> </ci>
         < cn> 0 </cn>
       </matrixrow>
       <matrixrow>
         <ci> <msub> <mi> t </mi> x </mi> </msub> </ci>
         <ci> <msub> <mi> t </mi> y </mi> </msub> </ci>
         <cn> 1 </cn>
       </matrixrow>
     </matrix>
   </apply>
 </apply>
```

Again, the *msub* element provides a way out, as in the next examples, which are adapted versions of formulas we used when demonstrating the statistics related elements.

$$\overline{x} = \frac{1}{n} \sum_{i} x$$

75

```
<ci> n </ci>
      </apply>
      <apply> <sum/>
         <bvar> <ci> i </ci> </bvar>
         <ci> x </ci>
      </apply>
    </apply>
  </apply>
\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <apply> <mean/>
      <ci> x </ci>
    </apply>
    <apply> <times/>
      <apply> <divide/>
         < cn> 1 </ cn>
         <ci> n </ci>
      </apply>
      <apply> <sum/>
         <bvar> <ci> i </ci> </bvar>
        <lowlimit> <cn> 1 </cn> </lowlimit>
         <uplimit> <cn> n </cn> </uplimit>
         <ci> x </ci>
      </apply>
    </apply>
  </apply>
\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <apply> <mean/>
      <ci> x </ci>
    </apply>
    <apply> <times/>
      <apply> <divide/>
         <cn> 1 </cn>
        <ci> n </ci>
      </apply>
      <apply> <sum/>
```

You can also use a selector for indexing, so in practice we can avoid the mixed mode:

$$(D_x, D_y, 1) = (U_x, U_y, 1) \begin{pmatrix} s_x & r_x & 0 \\ s_y & r_y & 0 \\ t_x & t_y & 1 \end{pmatrix}$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <vector>
      <apply> <selector/> <ci> D </ci> <ci> x </ci> </apply>
      <apply> <selector/> <ci> D </ci> <ci> y </ci> </apply>
      < cn > 1 < / cn >
    </vector>
    <apply> <times/>
      <vector>
        <apply> <selector/> <ci> U </ci> <ci> x </ci> </apply>
        <apply> <selector/> <ci> U </ci> <ci> y </ci> </apply>
        <cn> 1 </cn>
      </vector>
      <matrix>
        <matrixrow>
          <apply> <selector/> <ci> s </ci> <ci> x </ci> </apply>
          <apply> <selector/> <ci> r </ci> <ci> x </ci> </apply>
          < cn> 0 </cn>
        </matrixrow>
        <matrixrow>
          <apply> <selector/> <ci> s </ci> <ci> y </ci> </apply>
          <apply> <selector/> <ci> r </ci> <ci> y </ci> </apply>
          < cn> 0 </cn>
        </matrixrow>
        <matrixrow>
          <apply> <selector/> <ci> t </ci> <ci> x </ci> </apply>
          <apply> <selector/> <ci> t </ci> <ci> y </ci> </apply>
          < cn> 1 </ cn>
        </matrixrow>
      </matrix>
    </apply>
  </apply>
```

Directives

Some elements can be tuned by changing their attributes. Especially when formulas are defined by a team of people or when they are taken from a repository, there is a good chance that inconsistencies will show up.

In ConT_EXT, you can influence the appearance by setting the typesetting parameters of (classes of) elements. You can do this either by adding processing instructions, or by using the ConT_EXT command \setupMMLappearance. Although the first method is more in the spirit of XML, the second method is more efficient and consistent. As a processing instruction, a directive looks like:

```
<?context-mathml-directive element key value ?>
```

This is equivalent to the CONTEXT command:

```
\setupMMLappearance [element] [key=value]
```

Some settings concern a group of elements, in which case a group classification (like sign) is used.

```
<- 5.1 scripts ->
```

By default, nested super- and subscripts are kind of isolated from each other. If you want a combined script, there is the *msubsup*. You can however force combinations with a directive.

<- 5.2 sign ->

The core element of MATHML is *apply*. Even simple formulas will often have more than one (nested) *apply*. The most robust way to handle nested formulas is to use braces around each sub formula. No matter how robust this is, when presented in print we want to use as less braces as possible. The next example shows addition as well as subtraction.

7 + 5 - 3

$$$$

In principle subtraction is adding negated numbers, so it would have been natural to have just an addition (*plus*) and negation operator. However, MATHML provides both a *plus* and *minus* operator, where the latter can be used as a negation. So in fact we have:

$$7 + 5 + (-3)$$

Now imagine that a teacher wants to stress this negation in the way presented here, using parentheses. Since all the examples shown here are typeset directly from the MATHML source, you may expect a solution, so here it is:

By default signs are reduced, but one can disable that at the document and/or formula level using a processing instruction at the top of the formula. There are of course circumstances where the parentheses cannot be left out.

$$a + (b + c) + d$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <plus/>
        <ci> a </ci>
```

```
<apply> <plus/> <ci> b </ci> <ci> c </ci> </apply>
    <ci> d </ci>
  </apply>
a - (b - c) - d
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <minus/>
   <ci> a </ci>
   <apply> <minus/> <ci> b </ci> <ci> c </ci> </apply>
   <ci> d </ci>
  </apply>
a + (b - c) + d
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <plus/>
    <ci> a </ci>
   <apply> <minus/> <ci> b </ci> <ci> c </ci> </apply>
   <ci> d </ci>
  </apply>
a - (b + c) - d
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <minus/>
    <ci> a </ci>
   <apply> <plus/> <ci> b </ci> <ci> c </ci> </apply>
   <ci> d </ci>
  </apply>
Another place where parentheses are not needed is the following:
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <minus/>
    <apply> <exp/>
      <cn> 3 </cn>
   </apply>
  </apply>
```

This means that the interpreter of this kind of MATHML has to analyze child elements in order to choose the right way to typeset the formula. The output will look like:

By default, as less braces as possible are used. As demonstrated, a special case is when *plus* and *minus* have one sub element to deal with. If you really want many braces there, you can turn off sign reduction.

```
sign reduction yes use as less braces as possible no always use braces
```

We will demonstrate these alternatives with an example.

$$a + \sin b + c^5 + \sin^2 d + e$$

We need quite some code to encode this formula.

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <plus/>
    <ci> a </ci>
    <apply> <sin/>
      <ci> b </ci>
    </apply>
    <apply> <power/>
      <ci> c </ci>
      <cn> 5 </cn>
    </apply>
    <apply> <power/>
      <apply> <sin/>
        <ci> d </ci>
      </apply>
      <cn> 2 </cn>
    </apply>
    <ci> e </ci>
  </apply>
```

With power reduction turned off, we get:

$$a + \sin b + c^5 + (\sin d) + e$$

As directive we used:

<?context-mathml-directive power reduction no ?>

The following example illustrates that we should be careful in coding such formulas; here the *power* is applied to the argument of *sin*.

$$a + \sin b + c^5 + \sin \left(d^2\right) + e$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <plus/>
        <ci> a </ci>        <apply> <sin/>
```

<- 5.3 divide ->

Divisions can be very space consuming but there is a way out: using a forward slash symbol. You can set the level at which this will take place. By default, fractions are typeset in the traditional way.

$$\frac{1}{1+\frac{1}{x}}$$

```
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <divide/>
    <cn> 1 </cn>
    <apply> <plus/>
      < cn> 1 </ cn>
      <apply> <divide/>
         < cn> 1 </ cn>
         <ci> x </ci>
      </apply>
    </apply>
  </apply>
\frac{1}{1 + \frac{1}{1 + \frac{1}{x}}}
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <divide/>
    <cn> 1 </cn>
    <apply> <plus/>
      < cn> 1 </ cn>
      <apply> <divide/>
```

$$\frac{1}{1+1/x}$$

$$\frac{1}{1+1/(1+1/x)}$$

<?context-mathml-directive divide level 1 ?>

$$\frac{1}{1+\frac{1}{x}}$$

$$\frac{1}{1+\frac{1}{1+1/x}}$$

<?context-mathml-directive divide level 2 ?>

<- 5.4 relation ->

You should keep in mind that (at least level 2) content MATHML is not that rich in terms of presenting your ideas in a visually attractive way. On the other hand, because the content is highly structured, some intelligence can be applied when typesetting them. By default, a relation is not vertically aligned but typeset horizontally.

If an application just needs raw formulas, definitions like the following are all right.

The typeset result will bring no surprises:

$$a + b + c = d + e = f + g + h + i = 123$$

But, do we want to show a formula that way? And what happens with much longer formulas? You can influence the appearance with processing instructions.

relation	align	no	don't align relations	
		left	align all relations left	
		right	align all relations right	
		first	place the leftmost relation left	
		last	place the rightmost relation right	

The next couple of formulas demonstrate in what way the previously defined formula is influenced by the processing instructions.

$$a+b+c = d+e = f+g+h+i = 123$$

<?context-mathml-directive relation align left ?>

$$a+b+c$$

$$= d+e$$

$$= f+g+h+i$$

$$= 123$$

<?context-mathml-directive relation align right ?>

$$a+b+c=d+e$$

$$=f+g+h+i$$

$$=123$$

<?context-mathml-directive relation align first ?>

$$a+b+c =$$

$$d+e =$$

$$f+g+h+i = 123$$

<?context-mathml-directive relation align last ?>

<- 5.5 base ->

When in a document several number systems are used, it can make sense to mention the base of the number. There are several ways to identify the base.

base	symbol	numbers	a (decimal) number
		characters	one character
		text	a mnemonic
		no	no symbol

By default, when specified, a base is identified as number.

<?context-mathml-directive base symbol text ?>

<- 5.6 function ->

There is a whole bunch of functions available as empty element, like *sin* and *log*. When a function is applied to a function, braces make not much sense and placement is therefore disabled.

<- 5.7 limits ->

When limits are placed on top of the limitation symbol, this generally looks better than when they are placed alongside. You can also influence limit placement per element. This feature is available for *int*, *sum*, *product* and *limit*.

```
limit location top place limits on top of the symbols right attached limits as super/subscripts
```

$$\int_{0}^{1} dx$$

<?context-mathml-directive int location top ?>

$$\int_0^1 dx$$

<?context-mathml-directive int location right ?>

<- 5.8 declare ->

Currently declarations are not supposed to end up in print. By default we typeset a message, but you can as well completely hide declarations.

```
declare state start show declarations stop ignore (hide) declarations
```

<- 5.9 lambda ->

There is more than one way to visualize a lambda function. As with some other settings, changing the appearance can best take place at the document level.

Taking the power of a function looks clumsy when braces are put around the function. Therefore, by default, the power is applied to the function symbol instead of the whole function.

<- 5.11 diff ->

Covering all kind of differential formulas is not trivial. Currently we support two locations for the operand (function). By default the operand is placed above the division line.

```
<bvar>
      <ci> x </ci>
      <degree> <cn> 2 </cn> </degree>
    </bvar>
    <apply> <fn> <ci> f </ci> </fn>
      <apply> <plus/>
        <apply> <times/>
          <cn> 2 </cn>
          <ci> x </ci>
        </apply>
        <cn> 1 </cn>
      </apply>
    </apply>
  </apply>
d^2f(2x+1)
                                         dx^2
```

<?context-mathml-directive diff location top ?>

$$\frac{d^2}{dx^2}\left(f(2x+1)\right)$$

<?context-mathml-directive diff location right ?>

<- 5.12 vector ->

</apply>

Depending on the complication of a vector or on the available space, you may wish to typeset a vector horizontally or vertically. By default a vector is typeset horizontally.

```
vector direction horizontal put vector elements alongside
                                stack vector elements
                   vertical
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <eq/>
    <vector>
      <ci> x </ci>
      <ci> y </ci>
      <ci> z </ci>
    </vector>
    <vector>
      < cn> 1 </ cn>
      < cn> 0 </cn>
      < cn> 1 </ cn>
    </vector>
```

```
(x,y,z)=(1,0,1) <?context-mathml-directive vector direction horizontal ?> (x,y,z)=(1,0,1) <?context-mathml-directive vector direction vertical ?>
```

<- 5.13 times ->

Depending on the audience, a multiplication sign is implicit (absent) or represented by a regular times symbol or a dot.

```
times symbol
                     don't add a symbol
               no
                yes separate operands by a times (\times)
                dot separate operands by a dot (·)
auto
       symbol
               no
                     don't check for succesive numbers
                    separate succesive numbers by a times (\times)
                yes
                dot separate succesive numbers by a dot (·)
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <plus/>
    <ci> x </ci>
    <apply> <times/>
      <cn> 2 </cn>
      <ci> x </ci>
    </apply>
  </apply>
x + 2x
<?context-mathml-directive times symbol no ?>
                                           x + 2 \times x
<?context-mathml-directive times symbol yes ?>
                                           x + 2 \cdot x
<?context-mathml-directive times symbol dot ?>
```

<- 5.14 log ->

The location of a logbase depends on tradition and/or preference, which is why we offer a few alternatives: as pre superscript (in the right top corner before the symbol) or as post subscript (in the lower left corner after the symbol).

```
log location right place logbase at the right top
               left
                     place logbase at the lower left
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <log/>
    <lase>
      <ci> 3 </ci>
    <apply> <plus/>
      <ci> x </ci>
      < cn> 1 </ cn>
    </apply>
  </apply>
\log_3(x+1)
<?context-mathml-directive log location right ?>
                                       3\log(x+1)
<?context-mathml-directive log location left ?>
<- 5.15 polar ->
For polar notation we provide several renderings:
polar alternative a explicit polar notation
                      exponential power notation
                      exponential function notation
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <cn type="polar"> 2 <sep/> <pi/> </cn>
Polar (2, \pi)
<?context-mathml-directive polar alternative a ?>
                                           \rho^{+i}
<?context-mathml-directive polar alternative b ?>
                                        \exp(+i)
<?context-mathml-directive polar alternative c ?>
```

<- 5.16 e-notation ->

Depending on the context, you may want to typeset the number 1.23e4 not as this sequence, but using a multiplier construct. As with the *times*, we support both multiplication symbols.

Typesetting modes

Math can be typeset inline or display. In order not to widen up the text of a paragraph too much, inline math is typeset more cramped. Since MATHML does provide just a general purpose *math* element we have to provide the information needed using other elements. Consider the following text.

To what extent is math supposed to reflect the truth and nothing but the truth? Consider the simple expression 10 = 3 + 7. Many readers will consider this the truth, but then, can we assume that the decimal notation is used?

$$10 = 3 + x$$

In many elementary math books, you can find expressions like the previous. Because in our daily life we use the decimal numbering system, we can safely assume that x = 7. But, without explicitly mentioning this boundary condition, more solutions are correct.

$$10 = 3 + 5 \tag{1.a}$$

In formula 1.a we see an at first sight wrong formula. But, if we tell you that octal numbers are used, your opinion may change instantly. A rather clean way out of this confusion is to extend the notation of numbers by explicitly mentioning the base.

$$10_8 = 3_8 + 5_8 \tag{2.b}$$

Of course, when a whole document is in octal notation, a proper introduction is better than annotated numbers as used in formula 2.a.

In terms of XML this can look like:

```
<apply> <eq/>
      < cn > 10 < / cn >
      <apply> <plus/>
        <cn> 3 </cn>
        <ci> x </ci>
      </apply>
    </apply>
  </formula>
In many elementary math books, you can find expressions like the
previous. Because in our daily life we use the decimal numbering system,
we can safely assume that
    <math xmlns="http://www.w3c.org/mathm1" version="2.0">
        <apply> <eq/>
            <ci> x </ci>
            <cn> 7 </cn>
        </apply>
    </math>. But, without explicitly mentioning this boundary condition,
more solutions are correct.
<formula label="octal" sublabel="a">
  <math xmlns="http://www.w3c.org/mathm1" version="2.0">
    <apply> <eq/>
      <cn> 10 </cn>
      <apply> <plus/>
        <cn> 3 </cn>
        <cn> 5 </cn>
      </apply>
    </apply>
  </formula>
In <textref label="octal">formula</textref> we see an at first sight
wrong formula. But, if we tell you that octal numbers are used, your
opinion may change instantly. A rather clean way out of this confusion
is to extend the notation of numbers by explicitly mentioning the base.
<subformula label="octal base" sublabel="b">
  <math xmlns="http://www.w3c.org/mathm1" version="2.0">
```

<apply> <eq/>

</apply>

<apply> <plus/>

<cn type="integer" base="8"> 10 </cn>

<cn type="integer" base="8"> 3 </cn>
<cn type="integer" base="8"> 5 </cn>

```
</apply>
</math>
</subformula>
```

Of course, when a whole document is in octal notation, a proper introduction is better than annotated numbers as used in <textref label="octal base">formula</textref>. </document>

Math that is part of the text flow is automatically handled as inline math. If needed you can encapsulate the code in an *imath* environment. Display math is recognized as such when it is a separate paragraph, but since this is more a T_EX feature than an XML one, you should encapsulate display math either in a *dmath* element or in a *formula* or *subformula* element.

For a while you can use attribute mode with values display or inline. Recent MATHML specifications provide the display attribute with values block or inline. We support both.

Getting started

A comfortable way to get accustomed to MATHML is to make small documents of the following form:

```
\usemodule[mathml]
\starttext
\startbuffer
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <cos/>
    <ci> x </ci>
  </apply>
\stopbuffer
\processxmlbuffer
\stoptext
   As you see, we can mix MATHML with normal TEX code. A document like this is processed in the normal
way using the context command. If you also want to see the original code, you can say:
\usemodule[mathml]
\starttext
\startbuffer
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <cos/>
    <ci> x </ci>
  </apply>
\stopbuffer
\processxmlbuffer
\typebuffer
```

Like T_EX and METAPOST code, buffers can contain MATHML code. The advantage of this method is that we only have to key in the data once. It also permits you to experiment with processing instructions.

\stoptext

```
\startbuffer[mml]
<math xmlns="http://www.w3c.org/mathm1" version="2.0">
  <apply> <log/>
    <ld><logbase> <cn> 3.5 </cn> </logbase>
    <ci> x </ci>
  </apply>
\stopbuffer
\startbuffer[pi]
 <?context-mathml-directive log location right ?>
\stopbuffer
\processxmlbuffer[pi,mml]
\startbuffer[pi]
 <?context-mathml-directive log location left ?>
\stopbuffer
\processxmlbuffer[pi,mml]
```

If you like coding your documents in T_EX but want to experiment with MATHML, combining both languages in the way demonstrated here may be an option. When you provide enough structure in your T_EX code, converting a document to XML is then not that hard to do. Where coding directly in XML is kind of annoying, coding MATHML is less cumbersome, because you can structure your formulas pretty well, especially since the fragments are small so that proper indentation is possible.

Bídí

Support for bidirectional math is not entirely trivial as it demands a font that supports it. When they were released, the stix fonts were not that useable and Khaled Hosny turned them into the xits fonts that are now quite complete and useable in an OpenType and Unicode environment. He also added support for right to left math.

Normally you will only use that in a right to left typeset document, in which case you have a setup like this:

```
\setuptobodyfont
  [xitsbidi]
\setupalign
  [r21]
\setupmathematics
  [align=r21]
\starttext

Some text.
\startformula \sqrt{^2\over 4} \stopformula

Some more text
\stoptext
```

As MATHML has no global settings you need to control it specifically. At some point we might decide to provide some global flags but that depends on how the general bidi layout machinery evolves. Here we just stick to an example:

unable to close msup with sup

The order of input is still rather left to right which makes sense as we're sort of structuring the math input.

OpenMath

Because OpenMath is now a subset of MathML we can to some extend also support this coding. We do a straightforward remapping to content MathML so any rendering that is supported there is also supported in the equivalent OpenMath code.

y = f(x) - f(x - 1)

</0MA>
</0MA>
</0MA>
</0MOBJ>

Because in practice we may use a mixture of math encodings this can come in handy because it saves conversion of the XML source.

CalcMath

We support two types of annotation markup: T_EX (tex) and what we call 'calculator math' (calcmath). The second type is also available directly. Inline calcmath is coded using the *icm* element.

This is an inline formula $\sin(x^2 + \frac{1}{x})$ just to demonstrate the idea of calculator math.

<document>

This is an inline formula $<icm>sin(x^2+1/x)</icm>$ just to demonstrate the idea of calculator math.

</document>

If one edits the XML file directly this can type quite some coding. For more complex formulas one can revert to content MATHML, or when interactivity is needed to OPENMATH.

The argument that one should use a dedicated editor for math instead is not that convincing for authors who have to key on lots of small snippets of math. And one can always transform this code in its more bloated variant. The calcmath converter is dedicated to Frits Spijkers, author of Dutch math schoolbooks and fluent in all those math encodings methods we force upon him. The code resembles that used in the calculators at schools and we used it in projects with computer aided feedback where students had to key in math. When there is demand for this input method we will provide more details.

AscúMath

A few years back we included some basic support for ASCIIMATH as a proof of concept not knowing that one day we were forced to fully support it in a project. In one of our projects CONTEXT is the backend for generating math books for high school math. Input is XML and math is coded in presentational MATHML. We should say "was coded", because in the Spring of 2014 another party in the project (the one responsible for the web part) converted the MATHML into ASCIIMATH on behalve of their web authoring tool.

Where we would have chosen to use the MATHML annotation attribute, they had chosen to flatten the structured MATHML into less structured ASCIIMATH. And there was no way back. We're talking of tens of thousands of files here.¹

On the web ASCIIMATH is mostly interpreted by MathJax's JAVASCRIPT in combination with CSS. Since we didn't want to depend on a JAVASCRIPT conversion in CONTEXT we started to completely rewrite our ASCIIMATH module. We also needed a bit more control in order to meet specific demands of the publisher, like formatting numbers, support for characters not in the normal repertoire, checking and tracing, and the speed of rendering had not to be affected.

If you invoke the AsciiMath module with \usemodule[asciimath] the command \asciimath{...} is available for testing purposes. Within the curly brackets you can type an AsciiMath expression.

Normally an ASCIIMATH expression in XML/HTML is enclosed by back-quotes:

`x^2`

But we rather stick to the XML like coding:

```
<am>x^2</am>
```

This is equivalent to the T_EX command: x^2

The interpretation of such a formula is no problem. But let's give a few examples where ASCIIMATH lacks structure or needs a (sometimes bizar) interpretation to obtain adequate rendering:

Behaviour of superscripts and subscripts depends on operator that preceds a number or variable:

```
\sin^{-1}(x) \sin^{-1}(x)
\sin^{+1}(x) \sin^{+1}(x)
```

A script can be either one character or a number made from more characters:

```
`int_a^b f(x)` \int_a^b f(x)

`int_aa^bb f(x)` \int_a^a a^f(x)

`int_1000^2000 f(x)` \int_{1000}^{2000} f(x)
```

Behaviour of operator depends on character, where some characters have special meaning:

Around the same time Google decided to drop native MATHML support from Chrome so one might wonder why MATHML was developed in the first place.

```
`d/dx` \frac{d}{dx}
`q/qx` \frac{q}{a}x
```

Behaviour of the curly brackets is somewhat peculiar because at times they are not used for grouping anymore:

```
\begin{array}{ccc} (a/b)/\{d/c\} & \frac{a}{b} \\ (a/b)/\{d/c\} & \frac{a}{b}/\left\{\frac{d}{c}\right\} \end{array}
```

Behaviour depends on sequence of scripts (solved in ConT_FXT):

```
int_0^1 f(x)dx \int_0^1 f(x)dx
int^1_0 f(x)dx \int_0^1 0f(x)dx
```

During the development of the ASCIIMATH support we used the MathJax interpretor as a reference since that is available on the web. At the time of writing documentation was limited so some trial and error was involved in writing the parser. As usual we started from examples. Below we give a number of those examples so you can familiarize yourself with ASCIIMATH. Note that you can use TEX-like math coding and even use the backslash, but be warned for unexpected behaviour. In a webpage backticks are used to indicate ASCIIMATH.

```
a/b//c/d=(ad)/(bd)//(bc)/(bd)=ad//bc=(ad)/(bc) \frac{a}{b} / \frac{c}{d} = \frac{ad}{bd} / \frac{bc}{bd} = ad/bc = \frac{ad}{bc}
[[a,b],[c,d]]((n),(k)) \begin{bmatrix} a & b \\ c & d \end{bmatrix} \binom{n}{k}
1/x = \{(1, \text{text}\{\text{if }\} \text{ x!=0}), (\text{text}(\text{undefined}), \text{ text}(\text{if }) \text{ x=0}):\} \qquad \frac{1}{x} = \begin{cases} 1 & \text{if } x \neq 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}
<<a,b>> text{ and } [ (x,y),(u,v) ] \langle a,b \rangle and \begin{bmatrix} x & y \\ u & v \end{bmatrix}
(a,b] = \{x \text{ in } RR \mid a < x \le b\}  (a,b] = \{x \in \mathbb{R} | a < x \le b\}
langle larr; 0,4] \langle \leftarrow; 0,4]
 ; 0,4] \langle \leftarrow ; 0,4]
[0, rarr rangle [0, \rightarrow)
[0, \rightarrow)
5/|CD|=8/5 \frac{5}{|CD|}=\frac{8}{5}
|MD|/|CD| = |AD|/|MD| \frac{|MD|}{|CD|} = \frac{|AD|}{|MD|}
x 1t 4 vv x gt 1 x < 4 \lor x > 1
x \1t 4 vv x \gt 1 x < 4 \lor x > 1
x &1t; 4 vv x > 1 x < 4 \lor x > 1
\lim_{x\to\infty} (x\infty) 1/x=0 \qquad \lim_{x\to\infty} \frac{1}{x} = 0
text(D)_{-}(f) D_f
p = |q| p \perp q
                                                                                  n times
g \cdot g \cdot stackrel (text(n times) ) (...·g) g \cdot g \cdot ... \cdot g
stackrel(+)(\rightarrow) rightarrow
stackrel(+)(rightarrow) rightarrow
((a_{11}), cdots, a_{1n}), (vdots, ddots, vdots), (a_{m1}), cdots, a_{mn})) \qquad \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{pmatrix}
```

Unfortunately AsciiMath can be unpredictable which is a side effect of the fact that a high degree of tolerance is built in. We strongly advice to use spaces to make your results predictable.

o ox x = xo
$$o \otimes x = xo$$

a ax x = xa $aaxx = xa$
ooxx=xo $\infty \times = xo$
aaxx=xa $aa \times = xa$

One of the properties is that T_EX commands are supported, that is,. with a few exceptions: P and S don't produce ¶ and §. Also, don't confuse these symbols with the entities supported by MATHML: in ASCIIMATH circ is circle and not a circumflex. Also, <, > are converted into < and > while & becomes & $a\mp$;. As usual with input formats that start out simple, in the end they become so complex that one can wonder why to use them. It is the usual problem of using one system for everything.

The following examples are similar to the once shown elsewhere in this document.

<? derivatives ?>

$$(da)/(dx) = 0 \qquad \frac{da}{dx} = 0$$

$$(d(au))/(dx) = a \quad (du)/(dx) \qquad \frac{d(au)}{dx} = a\frac{du}{dx}$$

$$(d(u+v+w))/(dx) = (du)/(dx) + (dv)/(dx) + (dw)/(dx) \qquad \frac{d(u+v+w)}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx}$$

$$(d(uv))/(dx) = u \quad (du)/(dx) + v \quad (dv)/(dx) \qquad \frac{d(uv)}{dx} = u\frac{du}{dx} + v\frac{dv}{dx}$$

$$(d(uvw))/(dx) = vw(du)/(dx) + uw(dv)/(dx) + uv(dw)/(dx) \qquad \frac{d(uvw)}{dx} = vw\frac{du}{dx} + uw\frac{dv}{dx} + uv\frac{dv}{dx}$$

$$(d(u/v))/(dx) = (v(du)/(dx) - u(dv)/(dx)) + (v^2) = 1/v \quad (du)/(dx) - u/v^2 \quad (dv)/(dx)$$

$$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx}$$

$$(d(u^n))/(dx) = n(u)^n - 1 \quad (dv)/(dx) \qquad \frac{d(u^n)}{dx} = n(u)^{n-1}\frac{dv}{dx}$$

$$(d(u^n))/(dx) = 1/(2 \text{ sqrt}(u)) \quad (du)/(dx) \qquad \frac{d\sqrt{u}}{dx} = \frac{1}{2\sqrt{u}}\frac{du}{dx}$$

$$(d(1/u))/(dx) = -1/u^2 \quad (du)/(dx) \qquad \frac{d(\frac{1}{u})}{dx} = -\frac{1}{u^2}\frac{du}{dx}$$

$$(d(1/(u^n)))/(dx) = -n/u^n \quad (n+1) \quad (du)/(dx) \qquad \frac{d(\frac{1}{u^n})}{dx} = -\frac{n}{u^{n+1}}\frac{du}{dx}$$

$$(d \log (u + \text{ sqrt}(u^2+1)))/(dx) = 1/(\text{sqrt}(u^2+1)) \quad (du)/(dx) \qquad \frac{d\log(u+\sqrt{u^2+1})}{dx} = \frac{1}{\sqrt{u^2+1}}\frac{du}{dx}$$

<? integral ?>

int (1 / (x sqrt(a^2 +- x^2))) dx = - 1/a log (a + sqrt(a^2 +- x^2)) / x
$$\int \left(\frac{1}{x\sqrt{a^2\pm x^2}}\right) dx = -\frac{1}{a} \frac{\log \left(a + \sqrt{a^2\pm x^2}\right)}{x}$$

int (1 / (a + bx^2)) = 1 / (2 sqrt(-ab)) log (a + x sqrt(-ab)) / (a - x sqrt(-ab)) vv 1 / sqrt(-ab) tanh^(-1) (x sqrt (-ab)) / a
$$\int \left(\frac{1}{a+bx^2}\right) = \frac{1}{2\sqrt{-ab}} \frac{\log\left(a+x\sqrt{-ab}\right)}{a-x\sqrt{-ab}} \vee \frac{1}{\sqrt{-ab}} \tanh^{-1} \frac{x\sqrt{-ab}}{a}$$
 int (1 / (cos(ax) (1 +- sin(ax)))) dx = (1 / (2a(1 +- sin(ax)))) + 1 / (2a) log tan(pi/4 + (ax)/2)
$$\int \left(\frac{1}{\cos(ax)(1\pm\sin(ax))}\right) dx = \left(\frac{1}{2a(1\pm\sin(ax))}\right) + \frac{1}{2a} \log\tan\left(\frac{\pi}{4} + \frac{ax}{2}\right)$$

<? series ?>

<? logs ?>

AA
$$a > 0 \land \land b > 0$$
 | {:log_g:} $a + \{:log_g:\}$ $b \forall a > 0 \land b > 0 | log_g a + log_g b$
AA $a > 0 \land \land b > 0$ | {:log_g:} $a/b = \{:log_g:\}$ $a - \{:log_g:\}$ $b \forall a > 0 \land b > 0 | log_g \frac{a}{b} = log_g a - log_g a$
AA b in RR $\land \land a > 0$ | {:log_g:} $a \land b = b$ {:log_g:} $a \forall b \in \mathbb{R} \land a > 0 | log_g a^b = b log_g a$
AA $a > 0$ | {:log_g:} $a = (\{:log_p:\} a)$ / ({:log_p:} $a > 0 | log_g a = \frac{log_p a}{log_a a}$

<? goniometrics ?>

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \qquad \sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y \qquad \sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\sin(x+y) = \cos x \cos y - \sin x \sin y \qquad \sin(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(x-y) = \cos x \cos y + \sin x \sin y \qquad \sin(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = (\tan x + \tan y) / (1 - \tan x \tan y) \qquad \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = (\tan x - \tan y) / (1 + \tan x \tan y) \qquad \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$\sin p + \sin q = 2 \sin (p+q)/2 \cos (p-q)/2 \qquad \sin p + \sin q = 2 \frac{\sin(p+q) \cos(p-q)}{2}$$

$$\sin p - \sin q = 2 \cos (p+q)/2 \sin (p-q)/2 \qquad \sin p - \sin q = 2 \frac{\cos(p+q) \sin(p-q)}{2}$$

$$cosp + cosq = 2 cos (p+q)/2 cos (p-q)/2$$
 $cos p + cos q = 2 \frac{cos (p+q)}{2} \frac{cos (p-q)}{2}$

2 cos alpha cos beta = cos(alpha + beta) + cos(alpha - beta) 2 cos
$$\alpha$$
 cos β = cos(α + β) + cos(α - β)

-2
$$\sin$$
 alpha \cos beta = $\sin(\text{alpha} + \text{beta})$ - $\sin(\text{alpha} - \text{beta})$ - $2\sin\alpha\cos\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$

AA
$$\triangle$$
 ABC | a / (sin alpha) + b / (sin beta) + c / (sin gamma) $\forall \triangle ABC \left| \frac{a}{\sin \alpha} + \frac{b}{\sin \beta} + \frac{c}{\sin \gamma} \right|$

AA
$$\triangle$$
 ABC | {:(a^2 = b^2 + c^2 - 2bc cos alpha), (b^2 = a^2 + c^2 - 2ac cos beta), (c^2 = a^2 + b^2 - 2ab cos gamma):}
$$\forall \triangle ABC \begin{vmatrix} a^2 = b^2 + c^2 - 2bc \cos \alpha \\ b^2 = a^2 + c^2 - 2ac \cos \beta \\ c^2 = a^2 + b^2 - 2ab \cos \gamma \end{vmatrix}$$

<? statistics ?>

bar x =
$$1/n$$
 sum x_i $\overline{x} = \frac{1}{n} \sum x_i$

sigma (x) ~~ sqrt ((x_i - (bar x)^2) / (n-1))
$$\sigma(x) \approx \sqrt{\frac{x_i - (\overline{x})^2}{n-1}}$$

sigma (x)^2 ~~ bar ((x_i - bar x)^2) = 1/(n-1) sum (x_i - bar x)^2
$$\sigma(x)^2 \approx \overline{(x_i - \overline{x})^2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

<? matrices ?>

$$|\{:(\sin \alpha),(\sin \beta)\}| = \sin (\alpha) + \sin \alpha \cos \alpha = \sin \alpha \cos \alpha = \sin \alpha \cos \beta = \sin \alpha \cos \beta$$

$$|I| = | \{: (1,0), (0,1):\} | = 1 \qquad |I| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

A few examples

<- 12.1 derivatives ->

```
\frac{da}{dx} = 0
derivate 12.1
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
         <apply> <eq/>
                  <apply> <diff/>
                           <ci> a </ci>
                  </apply>
                  <ci> 0 </ci>
         </apply>
\frac{dx}{dx} = 1
derivate 12.2
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
         <apply> <eq/>
                  <apply> <diff/>
                           <ci> x </ci>
                  </apply>
                  < cn> 1 </ cn>
         </apply>
\frac{d\left(au\right)}{dx} = a\frac{du}{dx}
derivate 12.3
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
         <apply> <eq/>
                  <apply> <diff/>
                           <br/>

                           <apply> <times/>
                                    <ci> a </ci>
                                    <ci> u </ci>
                           </apply>
                  </apply>
                  <apply> <times/>
                           <ci> a </ci>
```

```
<apply> <diff/>
        <bvar> <ci> x </ci> </bvar>
        <ci> u </ci>
      </apply>
    </apply>
  </apply>
\frac{d(u+v+w)}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx}
derivate 12.4
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <diff/>
      <apply> <plus/>
        <ci> u </ci>
        <ci> v </ci>
        <ci> w </ci>
      </apply>
    </apply>
    <apply> <plus/>
      <apply> <diff/>
        <ci> u </ci>
      </apply>
      <apply> <diff/>
        <ci> v </ci>
      </apply>
      <apply> <diff/>
        <bvar> <ci> x </ci> </bvar>
        <ci> w </ci>
      </apply>
    </apply>
  </apply>
\frac{d(uv)}{dx} = u\frac{du}{dx} + v\frac{dv}{dx}
derivate 12.5
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <diff/>
      <bvar> <ci> x </ci> </bvar>
      <apply> <times/>
        <ci> u </ci>
        <ci> v </ci>
```

```
</apply>
   </apply>
    <apply> <plus/>
     <apply> <times/>
       <ci> u </ci>
       <apply> <diff/>
         <ci> u </ci>
       </apply>
     </apply>
     <apply> <times/>
       <ci> v </ci>
       <apply> <diff/>
         <ci> v </ci>
       </apply>
     </apply>
   </apply>
  </apply>
\frac{d(uvw)}{dx} = vw\frac{du}{dx} + uw\frac{dv}{dx} + uv\frac{dw}{dx}
derivate 12.6
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
   <apply> <diff/>
     <bvar> <ci> x </ci> </bvar>
     <apply> <times/>
       <ci> u </ci>
       <ci> v </ci>
       <ci> w </ci>
     </apply>
   </apply>
   <apply> <plus/>
     <apply> <times/>
       <ci> v </ci>
       <ci> w </ci>
       <apply> <diff/>
         <ci> u </ci>
       </apply>
     </apply>
     <apply> <times/>
       <ci> u </ci>
       <ci> w </ci>
       <apply> <diff/>
```

```
<ci> v </ci>
       </apply>
      </apply>
      <apply> <times/>
       <ci> u </ci>
        <ci> v </ci>
       <apply> <diff/>
         <ci> w </ci>
       </apply>
      </apply>
    </apply>
 </apply>
\frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx}
derivate 12.7
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
   <apply> <diff/>
      <apply> <divide/>
       <ci> u </ci>
       <ci> v </ci>
      </apply>
    </apply>
    <apply> <divide/>
      <apply> <minus/>
       <apply> <times/>
         <ci> v </ci>
         <apply> <diff/>
           <ci> u </ci>
         </apply>
       </apply>
       <apply> <times/>
         <ci> u </ci>
         <apply> <diff/>
           <ci> v </ci>
         </apply>
       </apply>
      </apply>
      <apply> <power/>
```

```
<ci> v </ci>
        <cn> 2 </cn>
      </apply>
    </apply>
    <apply> <minus/>
      <apply> <times/>
        <apply> <divide/>
          < cn> 1 </ cn>
          <ci> v </ci>
        </apply>
        <apply> <diff/>
          <bvar> <ci> x </ci> </bvar>
          <ci> u </ci>
        </apply>
      </apply>
      <apply> <times/>
        <apply> <divide/>
          <cn> u </cn>
          <apply> <power/>
            <ci> v </ci>
            <cn> 2 </cn>
          </apply>
        </apply>
        <apply> <diff/>
          <ci> v </ci>
        </apply>
      </apply>
    </apply>
  </apply>
\frac{d\left(u^{n}\right)}{dx}=n\left(u\right)\frac{du}{dx}
derivate 12.8
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <diff/>
      <bvar> <ci> x </ci> </bvar>
      <apply> <power/>
        <ci> u </ci>
        <ci> n </ci>
      </apply>
    </apply>
    <apply> <times/>
      <ci> n </ci>
      <apply> <power/>
```

```
<ci> u </ci>
                                     <apply> <minus/>
                                              <ci> n </ci>
                                              < cn> 1 </ cn>
                                     </apply>
                            </apply>
                            <apply> <diff/>
                                     <ci> u </ci>
                            </apply>
                  </apply>
         </apply>
\frac{d\sqrt{u}}{dx} = \frac{1}{2\sqrt{u}}\frac{du}{dx}
derivate 12.9
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
         <apply> <eq/>
                  <apply> <diff/>
                            <br/>

                            <apply> <root/>
                                     <ci> u </ci>
                            </apply>
                   </apply>
                   <apply> <times/>
                            <apply> <divide/>
                                     < cn> 1 </ cn>
                                     <apply> <times/>
                                              <cn> 2 </cn>
                                              <apply> <root/>
                                                        <ci> u </ci>
                                              </apply>
                                     </apply>
                            </apply>
                            <apply> <diff/>
                                     <bvar> <ci> x </ci> </bvar>
                                     <ci> u </ci>
                            </apply>
                  </apply>
         </apply>
```

```
derivate 12.10
```

</apply>

<apply> <times/>

$$\frac{d\left(\frac{1}{u}\right)}{dx} = -\frac{1}{u^2}\frac{du}{dx}$$

```
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <diff/>
      <bvar> <ci> x </ci> </bvar>
      <apply> <divide/>
        <cn> 1 </cn>
        <ci> u </ci>
      </apply>
    </apply>
    <apply> <times/>
      <apply> <minus/>
        <apply> <divide/>
          < cn> 1 </ cn>
          <apply> <power/>
            <ci> u </ci>
            <cn> 2 </cn>
          </apply>
        </apply>
      </apply>
      <apply> <diff/>
        <ci> u </ci>
      </apply>
    </apply>
  </apply>
\frac{d\left(\frac{1}{u^n}\right)}{dx} = -\frac{n}{(u)}\frac{du}{dx}
derivate 12.11
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <diff/>
      <bvar> <ci> x </ci> </bvar>
      <apply> <divide/>
        < cn> 1 </ cn>
        <apply> <power/>
          <ci> u </ci>
          < cn> n </ cn>
        </apply>
      </apply>
```

```
<apply> <minus/>
        <apply> <divide/>
          <ci> n </ci>
          <apply> <power/>
             <ci> u </ci>
             <apply> <plus/>
               <ci> n </ci>
               <cn> 1 </cn>
             </apply>
          </apply>
        </apply>
      </apply>
      <apply> <diff/>
        <ci> u </ci>
      </apply>
    </apply>
  </apply>
\frac{d}{dx} = \frac{d\log\left(u + \sqrt{u^2 + 1}\right)}{dx} = \frac{1}{\sqrt{u^2 + 1}}\frac{du}{dx}
derivate 12.43
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <diff/>
      <bvar> <ci> x </ci> </bvar>
      <apply> <inverse/>
        <apply> <sinh/>
          <ci> u </ci>
        </apply>
      </apply>
    </apply>
    <apply> <diff/>
      <bvar> <ci> x </ci> </bvar>
      <apply> <log/>
        <apply> <plus/>
          <ci> u </ci>
          <apply> <root/>
             <apply> <plus/>
               <apply> <power/>
                 <ci> u </ci>
                 <cn> 2 </cn>
               </apply>
               <cn> 1 </cn>
             </apply>
```

```
</apply>
         </apply>
      </apply>
    </apply>
    <apply> <times/>
      <apply> <divide/>
         < cn> 1 </ cn>
         <apply> <root/>
           <apply> <plus/>
             <apply> <power/>
               <ci> u </ci>
                <cn> 2 </cn>
             </apply>
             < cn> 1 </ cn>
           </apply>
         </apply>
      </apply>
      <apply> <diff/>
         <bvar> <ci> x </ci> </bvar>
         <ci> u </ci>
      </apply>
    </apply>
  </apply>
<- 12.2 integrals ->
                            \int \left(\frac{1}{x\sqrt{a^2+x^2}}\right) dx = -\frac{1}{a} \log \frac{a+\sqrt{a^2\pm x^2}}{x}
integral 12.22
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <int/>
      <bvar> <ci> x </ci> </bvar>
      <apply> <divide/>
         < cn> 1 </ cn>
         <apply> <times/>
           <ci> x </ci>
           <apply> <root/>
             <apply> <fn> <ci> &plusminus; </ci> </fn>
                <apply> <power/>
                  <ci> a </ci>
                  <cn> 2 </cn>
                </apply>
                <apply> <power/>
```

```
<ci> x </ci>
                   <cn> 2 </cn>
                 </apply>
              </apply>
            </apply>
         </apply>
       </apply>
     </apply>
     <apply> <minus/>
       <apply> <times/>
         <apply> <divide/>
            <cn> 1 </cn> <ci> a </ci>
         </apply>
         <apply> <log/>
            <apply> <divide/>
              <apply> <plus/>
                 <ci> a </ci>
                 <apply> <root/>
                   <apply> <fn> <ci> &plusminus; </ci> </fn>
                      <apply> <power/>
                        <ci> a </ci>
                        <cn> 2 </cn>
                     </apply>
                     <apply> <power/>
                        <ci> x </ci>
                        <cn> 2 </cn>
                     </apply>
                   </apply>
                 </apply>
              </apply>
              <ci> x </ci>
            </apply>
         </apply>
       </apply>
    </apply>
  </apply>
\textit{integral 12.61} \quad \int \left(\frac{1}{a+bx^2}\right) dx = \frac{1}{2\sqrt{-ab}}\log\frac{a+x\sqrt{-ab}}{a-x\sqrt{-ab}} \vee \frac{1}{\sqrt{-ab}}\tanh^{-1}\frac{x\sqrt{-ab}}{a}
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <int/>
       <bvar> <ci> x </ci> </bvar>
       <apply> <divide/>
```

```
< cn> 1 </ cn>
    <apply> <plus/>
      <ci> a </ci>
      <apply> <times/>
        <ci> b </ci>
        <apply> <power/>
          <ci> x </ci>
          <cn> 2 </cn>
        </apply>
      </apply>
    </apply>
  </apply>
</apply>
<apply> <or/>
  <apply> <times/>
    <apply> <divide/>
      < cn> 1 </ cn>
      <apply> <times/>
        <cn> 2 </cn>
        <apply> <root/>
          <apply> <minus/>
            <apply> <times/>
              <ci> a </ci>
              <ci> b </ci>
            </apply>
          </apply>
        </apply>
      </apply>
    </apply>
    <apply> <log/>
      <apply> <divide/>
        <apply> <plus/>
          <ci> a </ci>
          <apply> <times/>
            <ci> x </ci>
            <apply> <root/>
              <apply> <minus/>
                <apply> <times/>
                   <ci> a </ci>
                  <ci> b </ci>
                </apply>
              </apply>
            </apply>
          </apply>
        </apply>
```

```
<apply> <minus/>
        <ci> a </ci>
        <apply> <times/>
          <ci> x </ci>
          <apply> <root/>
            <apply> <minus/>
              <apply> <times/>
                <ci> a </ci>
                <ci> b </ci>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>
    </apply>
  </apply>
</apply>
<apply> <times/>
  <apply> <divide/>
    < cn> 1 </ cn>
    <apply> <root/>
      <apply> <minus/>
        <apply> <times/>
          <ci> a </ci>
          <ci> b </ci>
        </apply>
      </apply>
    </apply>
  </apply>
  <apply> <power/>
    <apply> <tanh/>
      <apply> <divide/>
        <apply> <times/>
          <ci> x </ci>
          <apply> <root/>
            <apply> <minus/>
              <apply> <times/>
                <ci> a </ci>
                <ci> b </ci>
              </apply>
            </apply>
          </apply>
        </apply>
        <ci> a </ci>
      </apply>
```

```
</apply>
         <apply> <minus/>
           <cn> 1 </cn>
         </apply>
       </apply>
     </apply>
   </apply>
 </apply>
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
 <apply> <eq/>
   <apply> <int/>
     <bvar> <ci> x </ci> </bvar>
     <apply> <divide/>
       < cn> 1 </ cn>
       <apply> <times/>
         <apply> <cos/>
           <apply> <times/>
             <ci> a </ci>
             <ci> x </ci>
           </apply>
         </apply>
         <apply> <fn> <ci> &plusminus; </ci> </fn>
           <cn> 1 </cn>
           <apply> <sin/>
             <apply> <times/>
               <ci> a </ci>
               <ci> x </ci>
             </apply>
           </apply>
         </apply>
       </apply>
     </apply>
   </apply>
   <apply> <plus/>
     <apply> <fn> <ci> &minusplus; </ci> </fn>
       <apply> <divide/>
         <cn> 1 </cn>
         <apply> <times/>
           <cn> 2 </cn>
           <ci> a </ci>
           <apply> <fn> <ci> &plusminus; </ci> </fn>
             <cn> 1 </cn>
```

```
<apply> <times/>
                    <ci> a </ci>
                    <ci> x </ci>
                  </apply>
               </apply>
             </apply>
           </apply>
         </apply>
      </apply>
      <apply> <times/>
         <apply> <divide/>
           < cn> 1 </ cn>
           <apply> <times/>
             <cn> 2 </cn>
             <ci> a </ci>
           </apply>
        </apply>
         <apply> <log/>
           <apply> <tan/>
             <apply> <plus/>
                <apply> <divide/>
                  <ci> &pi; </ci>
                  <cn> 4 </cn>
               </apply>
               <apply> <divide/>
                  <apply> <times/>
                    <ci> a </ci>
                    <ci> x </ci>
                  </apply>
                  <cn> 2 </cn>
               </apply>
             </apply>
           </apply>
        </apply>
      </apply>
    </apply>
  </apply>
<- 12.3 series ->
                                    1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}
serie 12.1
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
```

<apply> <sin/>

```
<apply> <eq/>
    <apply> <plus/>
      <cn> 1 </cn>
      <apply> <minus/>
         <apply> <divide/>
           < cn> 1 </ cn>
           <cn> 3 </cn>
         </apply>
      </apply>
      <apply> <divide/>
         <cn> 1 </cn>
         <cn> 5 </cn>
      </apply>
      <apply> <minus/>
         <apply> <divide/>
           < cn> 1 </ cn>
           <cn> 7 </cn>
         </apply>
      </apply>
      <ci> &cdots; </ci>
    </apply>
    <apply> <divide/>
      <ci> &pi; </ci>
      <cn> 4 </cn>
    </apply>
 </apply>
1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}
serie 12.2
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <plus/>
      < cn> 1 </ cn>
      <apply> <divide/>
         <cn> 1 </cn>
         <apply> <power/>
           <cn> 2 </cn>
           <cn> 2 </cn>
         </apply>
      </apply>
      <apply> <divide/>
         < cn> 1 </ cn>
         <apply> <power/>
           <cn> 3 </cn>
```

```
<cn> 2 </cn>
         </apply>
      </apply>
      <apply> <divide/>
         < cn> 1 </ cn>
         <apply> <power/>
           <cn> 4 </cn>
           <cn> 2 </cn>
         </apply>
      </apply>
      <ci> &cdots; </ci>
    </apply>
    <apply> <divide/>
      <apply> <power/>
         <ci> &pi; </ci>
         <cn> 2 </cn>
      </apply>
      <cn> 6 </cn>
    </apply>
  </apply>
1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}
serie 12.3
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <plus/>
      <cn> 1 </cn>
      <apply> <minus/>
         <apply> <divide/>
           < cn> 1 </ cn>
           <apply> <power/>
             <cn> 2 </cn>
             <cn> 2 </cn>
           </apply>
         </apply>
      </apply>
      <apply> <divide/>
         <cn> 1 </cn>
         <apply> <power/>
           <cn> 3 </cn>
           <cn> 2 </cn>
         </apply>
      </apply>
      <apply> <minus/>
```

```
<apply> <divide/>
           < cn> 1 </ cn>
           <apply> <power/>
             <cn> 4 </cn>
             <cn> 2 </cn>
           </apply>
         </apply>
      </apply>
      <ci> &cdots; </ci>
    </apply>
    <apply> <divide/>
      <apply> <power/>
         <ci> &pi; </ci>
         <cn> 2 </cn>
      </apply>
      <cn> 12 </cn>
    </apply>
  </apply>
\forall x \in \mathbb{R} \mid ?^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots
serie 12.1
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <forall/>
    <condition>
      <apply> <in/>
         <ci> x </ci>
         <ci> &reals; </ci>
      </apply>
    </condition>
    <apply> <eq/>
      <apply> <power/>
         <ci> &exponentiale; </ci>
         <ci> x </ci>
      </apply>
      <apply> <plus/>
         < cn> 1 </ cn>
         <ci> x </ci>
         <apply> <divide/>
           <apply> <power/>
             <ci> x </ci>
             <cn> 2 </cn>
           </apply>
           <apply> <factorial/>
             <cn> 2 </cn>
```

```
</apply>
         </apply>
         <apply> <divide/>
           <apply> <power/>
             <ci> x </ci>
             <cn> 3 </cn>
           </apply>
           <apply> <factorial/>
             <cn> 3 </cn>
           </apply>
         </apply>
         <ci> &cdots; </ci>
         <apply> <divide/>
           <apply> <power/>
             <ci> x </ci>
             <ci> n </ci>
           </apply>
           <apply> <factorial/>
             <ci> n </ci>
           </apply>
         </apply>
         <ci> &cdots; </ci>
       </apply>
    </apply>
  </apply>
\forall x \in \mathbb{R} \mid (?) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1) \frac{x^n}{n!} \dots
serie 12.2
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <forall/>
    <condition>
       <apply> <in/>
         <ci> x </ci>
         <ci> &reals; </ci>
       </apply>
    </condition>
    <apply> <eq/>
       <apply> <power/>
         <ci> &exponentiale; </ci>
         <apply> <minus/>
           <ci> x </ci>
         </apply>
       </apply>
       <apply> <plus/>
```

```
< cn> 1 </ cn>
    <apply> <minus/>
      <ci> x </ci>
    </apply>
    <apply> <divide/>
      <apply> <power/>
        <ci> x </ci>
        <cn> 2 </cn>
      </apply>
      <apply> <factorial/>
        <cn> 2 </cn>
      </apply>
    </apply>
    <apply> <minus/>
      <apply> <divide/>
        <apply> <power/>
          <ci> x </ci>
          <cn> 3 </cn>
        </apply>
        <apply> <factorial/>
          <cn> 3 </cn>
        </apply>
      </apply>
    </apply>
    <ci> &cdots; </ci>
    <apply> <times/>
      <apply> <power/>
        <apply> <minus/>
          <cn> 1 </cn>
        </apply>
        <ci> n </ci>
      </apply>
      <apply> <divide/>
        <apply> <power/>
          <ci> x </ci>
          <ci> n </ci>
        </apply>
        <apply> <factorial/>
          <ci> n </ci>
        </apply>
      </apply>
      <ci> &cdots; </ci>
    </apply>
  </apply>
</apply>
```

```
</apply>
<- 12.4 logs ->
                           \forall a > 0 \land b > 0 \mid \log_q ab = \log_q a + \log_q b
log 12.1
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <forall/>
    <condition>
      <apply> <and/>
        <apply> <gt/>
          <ci> a </ci>
          < cn> 0 </cn>
        </apply>
        <apply> <gt/>
          <ci> b </ci>
          < cn> 0 </cn>
        </apply>
      </apply>
    </condition>
    <apply> <eq/>
      <apply> <log/>
        <ld><logbase> <ci> g </ci> </logbase>
        <apply> <times/>
          <ci> a </ci>
          <ci> b </ci>
        </apply>
      </apply>
      <apply> <plus/>
        <apply> <log/>
          <ld><logbase> <ci> g </ci> </logbase>
          <ci> a </ci>
        </apply>
        <apply> <log/>
          <ld><logbase> <ci> g </ci> </logbase>
          <ci> b </ci>
        </apply>
      </apply>
    </apply>
  </apply>
```

```
\forall a > 0 \land b > 0 \mid \log_g \frac{a}{b} = \log_g a - \log_g b
log 12.2
<math xmlns='http://www.w3c.org/mathm1' version='2.0'>
  <apply> <forall/>
    <condition>
       <apply> <and/>
         <apply> <gt/>
           <ci> a </ci>
           <cn> 0 </cn>
         </apply>
         <apply> <gt/>
           <ci> b </ci>
           < cn> 0 </cn>
         </apply>
       </apply>
    </condition>
    <apply> <eq/>
       <apply> <log/>
         <ld><logbase> <ci> g </ci> </logbase>
         <apply> <divide/>
           <ci> a </ci>
           <ci> b </ci>
         </apply>
       </apply>
       <apply> <minus/>
         <apply> <log/>
           <logbase> <ci> g </ci> </logbase>
           <ci> a </ci>
         </apply>
         <apply> <log/>
           <ld><logbase> <ci> g </ci> </logbase>
           <ci> b </ci>
         </apply>
       </apply>
    </apply>
  </apply>
\forall b \in \mathbb{R} \land a > 0 \mid \log_a a^b = b \log_a a
log 12.3
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <forall/>
    <condition>
       <apply> <and/>
         <apply> <in/>
           <ci> b </ci>
```

```
<ci> &reals; </ci>
         </apply>
         <apply> <gt/>
           <ci> a </ci>
           < cn> 0 </cn>
         </apply>
      </apply>
    </condition>
    <apply> <eq/>
      <apply> <log/>
         <ld><logbase> <ci> g </ci> </logbase>
         <apply> <power/>
           <ci> a </ci>
           <ci> b </ci>
         </apply>
      </apply>
      <apply> <times/>
         <ci> b </ci>
         <apply> <log/>
           <ld><logbase> <ci> g </ci> </logbase>
           <ci> a </ci>
         </apply>
      </apply>
    </apply>
  </apply>
\forall \, a > 0 \, \bigg| \, \log_g a = \frac{\log_p a}{\log_p g}
log 12.4
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <forall/>
    <condition>
      <apply> <and/>
         <apply> <qt/>
           <ci> a </ci>
           < cn> 0 </cn>
         </apply>
      </apply>
    </condition>
    <apply> <eq/>
      <apply> <log/>
         <ld><logbase> <ci> g </ci> </logbase>
         <ci> a </ci>
      </apply>
      <apply> <divide/>
```

```
<apply> <log/>
          <ld><logbase> <ci> p </ci> </logbase>
          <ci> a </ci>
        </apply>
        <apply> <log/>
          <ld><logbase> <ci> p </ci> </logbase>
          <ci> g </ci>
        </apply>
      </apply>
    </apply>
  </apply>
<- 12.5 goniometrics ->
gonio 12.1
                             \sin(x + y) = \sin x \cos y + \cos x \sin y
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <sin/>
      <apply> <plus/>
        <ci> x </ci>
        <ci> y </ci>
      </apply>
    </apply>
    <apply> <plus/>
      <apply> <times/>
        <apply> <sin/>
          <ci> x </ci>
        </apply>
        <apply> <cos/>
          <ci> y </ci>
        </apply>
      </apply>
      <apply> <times/>
        <apply> <cos/>
          <ci> x </ci>
        </apply>
        <apply> <sin/>
          <ci> y </ci>
        </apply>
      </apply>
    </apply>
  </apply>
```

```
gonio 12.2
                             \sin(x - y) = \sin x \cos y - \cos x \sin y
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <sin/>
      <apply> <minus/>
        <ci> x </ci>
        <ci> y </ci>
      </apply>
    </apply>
    <apply> <minus/>
      <apply> <times/>
        <apply> <sin/>
          <ci> x </ci>
        </apply>
        <apply> <cos/>
          <ci> y </ci>
        </apply>
      </apply>
      <apply> <times/>
        <apply> <cos/>
          <ci> x </ci>
        </apply>
        <apply> <sin/>
          <ci> y </ci>
        </apply>
      </apply>
    </apply>
  </apply>
gonio 12.3
                             \cos(x + y) = \cos x \cos y - \sin x \sin y
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <cos/>
      <apply> <plus/>
        <ci> x </ci>
        <ci> y </ci>
      </apply>
    </apply>
    <apply> <minus/>
      <apply> <times/>
        <apply> <cos/>
          <ci> x </ci>
        </apply>
```

```
<apply> <cos/>
          <ci> y </ci>
        </apply>
      </apply>
      <apply> <times/>
        <apply> <sin/>
          <ci> x </ci>
        </apply>
        <apply> <sin/>
          <ci> y </ci>
        </apply>
      </apply>
    </apply>
  </apply>
\cos(x - y) = \cos x \cos y + \sin x \sin y
gonio 12.4
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <cos/>
      <apply> <minus/>
        <ci> x </ci>
        <ci> y </ci>
      </apply>
    </apply>
    <apply> <plus/>
      <apply> <times/>
        <apply> <cos/>
          <ci> x </ci>
        </apply>
        <apply> <cos/>
          <ci> y </ci>
        </apply>
      </apply>
      <apply> <times/>
        <apply> <sin/>
          <ci> x </ci>
        </apply>
        <apply> <sin/>
          <ci> y </ci>
        </apply>
      </apply>
    </apply>
  </apply>
```

```
\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}
gonio 12.5
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <tan/>
      <apply> <plus/>
         <ci> x </ci>
         <ci> y </ci>
      </apply>
    </apply>
    <apply> <divide/>
      <apply> <plus/>
         <apply> <tan/>
           <ci> x </ci>
         </apply>
         <apply> <tan/>
           <ci> y </ci>
         </apply>
      </apply>
      <apply> <minus/>
         < cn> 1 </ cn>
         <apply> <times/>
           <apply> <tan/>
             <ci> x </ci>
           </apply>
           <apply> <tan/>
             <ci> y </ci>
           </apply>
         </apply>
      </apply>
    </apply>
  </apply>
\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}
gonio 12.6
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <tan/>
      <apply> <minus/>
         <ci> x </ci>
         <ci> y </ci>
      </apply>
    </apply>
    <apply> <divide/>
```

```
<apply> <minus/>
        <apply> <tan/>
          <ci> x </ci>
        </apply>
        <apply> <tan/>
          <ci> y </ci>
        </apply>
      </apply>
      <apply> <plus/>
        <cn> 1 </cn>
        <apply> <times/>
          <apply> <tan/>
             <ci> x </ci>
          </apply>
          <apply> <tan/>
            <ci> y </ci>
          </apply>
        </apply>
      </apply>
    </apply>
  </apply>
\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}
gonio 12.7
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <plus/>
      <apply> <sin/>
        <ci> p </ci>
      </apply>
      <apply> <sin/>
        <ci> q </ci>
      </apply>
    </apply>
    <apply> <times/>
      <cn> 2 </cn>
      <apply> <sin/>
        <apply> <divide/>
          <apply> <plus/>
             <ci> p </ci>
            <ci> q </ci>
          </apply>
          <cn> 2 </cn>
        </apply>
      </apply>
```

```
<apply> <cos/>
        <apply> <divide/>
          <apply> <minus/>
             <ci> p </ci>
            <ci> q </ci>
          </apply>
          <cn> 2 </cn>
        </apply>
      </apply>
    </apply>
  </apply>
\sin p - \sin q = 2\cos\frac{p+q}{2}\sin\frac{p-q}{2}
gonio 12.8
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <minus/>
      <apply> <sin/>
        <ci> p </ci>
      </apply>
      <apply> <sin/>
        <ci> q </ci>
      </apply>
    </apply>
    <apply> <times/>
      <cn> 2 </cn>
      <apply> <cos/>
        <apply> <divide/>
          <apply> <plus/>
            <ci> p </ci>
            <ci> q </ci>
          </apply>
          <cn> 2 </cn>
        </apply>
      </apply>
      <apply> <sin/>
        <apply> <divide/>
          <apply> <minus/>
            <ci> p </ci>
            <ci> q </ci>
          </apply>
          <cn> 2 </cn>
        </apply>
      </apply>
    </apply>
```

```
</apply>
\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}
gonio 12.9
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <plus/>
      <apply> <cos/>
        <ci> p </ci>
      </apply>
      <apply> <cos/>
        <ci> q </ci>
      </apply>
    </apply>
    <apply> <times/>
      <cn> 2 </cn>
      <apply> <cos/>
        <apply> <divide/>
           <apply> <plus/>
             <ci> p </ci>
             <ci> q </ci>
          </apply>
           <cn> 2 </cn>
        </apply>
      </apply>
      <apply> <cos/>
        <apply> <divide/>
           <apply> <minus/>
             <ci> p </ci>
             <ci> q </ci>
           </apply>
           <cn> 2 </cn>
        </apply>
      </apply>
    </apply>
  </apply>
\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}
gonio 12.10
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <minus/>
      <apply> <cos/>
        <ci> p </ci>
```

```
</apply>
      <apply> <cos/>
        <ci> q </ci>
      </apply>
    </apply>
    <apply> <minus/>
      <apply> <times/>
        <cn> 2 </cn>
        <apply> <sin/>
           <apply> <divide/>
              <apply> <plus/>
               <ci> p </ci>
               <ci> q </ci>
             </apply>
             <cn> 2 </cn>
          </apply>
        </apply>
        <apply> <sin/>
           <apply> <divide/>
             <apply> <minus/>
               <ci> p </ci>
               <ci> q </ci>
             </apply>
             <cn> 2 </cn>
          </apply>
        </apply>
      </apply>
    </apply>
  </apply>
2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)
gonio 12.11
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <times/>
      <cn> 2 </cn>
      <apply> <sin/>
        <ci> &alpha; </ci>
      </apply>
      <apply> <cos/>
        <ci> &beta; </ci>
      </apply>
    </apply>
    <apply> <plus/>
      <apply> <sin/>
```

```
<apply> <plus/>
          <ci> &alpha; </ci>
          <ci> &beta; </ci>
        </apply>
      </apply>
      <apply> <sin/>
        <apply> <minus/>
          <ci> &alpha; </ci>
          <ci> &beta; </ci>
        </apply>
      </apply>
    </apply>
  </apply>
2\cos\alpha\sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)
gonio 12.12
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <times/>
      <cn> 2 </cn>
      <apply> <cos/>
        <ci> &alpha; </ci>
      </apply>
      <apply> <sin/>
        <ci> &beta; </ci>
      </apply>
    </apply>
    <apply> <minus/>
      <apply> <sin/>
        <apply> <plus/>
          <ci> &alpha; </ci>
          <ci> &beta; </ci>
        </apply>
      </apply>
      <apply> <sin/>
        <apply> <minus/>
          <ci> &alpha; </ci>
          <ci> &beta; </ci>
        </apply>
      </apply>
    </apply>
  </apply>
```

```
2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)
gonio 12.13
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <times/>
      <cn> 2 </cn>
      <apply> <cos/>
         <ci> &alpha; </ci>
      </apply>
      <apply> <cos/>
        <ci> &beta; </ci>
      </apply>
    </apply>
    <apply> <plus/>
      <apply> <cos/>
         <apply> <plus/>
           <ci> &alpha; </ci>
           <ci> &beta; </ci>
        </apply>
      </apply>
      <apply> <cos/>
         <apply> <minus/>
           <ci> &alpha; </ci>
           <ci> &beta; </ci>
        </apply>
      </apply>
    </apply>
  </apply>
gonio 12.14
                             -2\sin\alpha\cos\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <minus/>
      <apply> <times/>
        <cn> 2 </cn>
         <apply> <sin/>
           <ci> &alpha; </ci>
        </apply>
         <apply> <cos/>
           <ci> &beta; </ci>
         </apply>
      </apply>
    </apply>
    <apply> <minus/>
```

```
<apply> <sin/>
         <apply> <plus/>
           <ci> &alpha; </ci>
           <ci> &beta; </ci>
         </apply>
       </apply>
       <apply> <sin/>
         <apply> <minus/>
           <ci> &alpha; </ci>
           <ci> &beta; </ci>
         </apply>
       </apply>
    </apply>
  </apply>
\forall \triangle ABC \left| \frac{a}{\sin \alpha} + \frac{b}{\sin \beta} + \frac{c}{\sin \gamma} \right|
gonio 12.15
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <forall/>
    <condition>
       <mrow>
         <mi> &bigtriangleup; </mi>
         <mi> A </mi>
         <mi> B </mi>
         <mi> C </mi>
       </mrow>
    </condition>
    <apply> <plus/>
       <apply> <divide/>
         <ci> a </ci>
         <apply> <sin/>
           <ci> &alpha; </ci>
         </apply>
       </apply>
       <apply> <divide/>
         <ci> b </ci>
         <apply> <sin/>
           <ci> &beta; </ci>
         </apply>
       </apply>
       <apply> <divide/>
         <ci> c </ci>
         <apply> <sin/>
           <ci> &gamma; </ci>
```

```
</apply>
       </apply>
    </apply>
  </apply>
a^2 = b^2 + c^2 - 2bc \cos \alpha
                                 \forall \triangle ABC \begin{vmatrix} b^2 = a^2 + c^2 - 2ac \cos \beta \\ c^2 = a^2 + b^2 - 2ab \cos \gamma \end{vmatrix}
gonio 12.16
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <forall/>
    <condition>
       <mrow>
         <mi> &bigtriangleup; </mi>
         <mi> A </mi>
         <mi> B </mi>
         <mi> C </mi>
       </mrow>
    </condition>
    <apply> <eq/>
       <apply> <power/>
         <ci> a </ci>
         <cn> 2 </cn>
       </apply>
       <apply> <plus/>
         <apply> <power/>
           <ci> b </ci>
           <cn> 2 </cn>
         </apply>
         <apply> <power/>
           <ci> c </ci>
           <cn> 2 </cn>
         </apply>
         <apply> <minus/>
           <apply> <times/>
              <cn> 2 </cn>
              <ci> b </ci>
              <ci> c </ci>
              <apply> <cos/>
                <ci> &alpha; </ci>
              </apply>
           </apply>
         </apply>
       </apply>
    </apply>
```

```
<apply> <eq/>
   <apply> <power/>
     <ci> b </ci>
     <cn> 2 </cn>
   </apply>
   <apply> <plus/>
     <apply> <power/>
       <ci> a </ci>
       <cn> 2 </cn>
     </apply>
     <apply> <power/>
       <ci> c </ci>
       <cn> 2 </cn>
     </apply>
     <apply> <minus/>
       <apply> <times/>
         <cn> 2 </cn>
         <ci> a </ci>
         <ci> c </ci>
         <apply> <cos/>
           <ci> &beta; </ci>
         </apply>
       </apply>
     </apply>
   </apply>
 </apply>
<apply> <eq/>
   <apply> <power/>
     <ci> c </ci>
     <cn> 2 </cn>
   </apply>
   <apply> <plus/>
     <apply> <power/>
       <ci> a </ci>
       <cn> 2 </cn>
     </apply>
     <apply> <power/>
       <ci> b </ci>
       <cn> 2 </cn>
     </apply>
     <apply> <minus/>
       <apply> <times/>
         <cn> 2 </cn>
         <ci> a </ci>
         <ci> b </ci>
```

```
<apply> <cos/>
                <ci> &gamma; </ci>
             </apply>
           </apply>
         </apply>
      </apply>
    </apply>
  </apply>
<- 12.6 statistics ->
                                           \overline{x} = \frac{1}{n} \sum x_i
statistic 12.1
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <mean/>
      <ci> x </ci>
    </apply>
    <apply> <times/>
      <apply> <divide/>
         < cn> 1 </ cn>
         <ci> n </ci>
      </apply>
      <apply> <sum/>
         <ci> <msub> <mi> x </mi> i </mi> </msub> </ci>
      </apply>
    </apply>
  </apply>
\sigma\left(x\right) \approx \sqrt{\frac{\sum \left(x_{i} - \overline{x}\right)}{n - 1}}
statistic 12.2
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <approx/>
    <apply> <sdev/>
      <ci> x </ci>
    </apply>
    <apply> <root/>
      <apply> <divide/>
         <apply> <sum/>
           <apply> <power/>
             <apply> <minus/>
                <ci> <msub> <mi> x </mi> i </mi> </msub> </ci>
```

```
<apply> <mean/>
                   <ci> x </ci>
                </apply>
              </apply>
              <cn> 2 </cn>
           </apply>
         </apply>
         <apply> <minus/>
           <ci> n </ci>
           < cn> 1 </ cn>
         </apply>
       </apply>
    </apply>
  </apply>
\sigma\left(x\right)\approx\overline{\left(x_{i}-\overline{x}\right)}=\frac{1}{n-1}\sum\left(x_{i}-\overline{x}\right)
statistic 12.3
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <approx/>
    <apply> <variance/>
       <ci> x </ci>
    </apply>
    <apply> <eq/>
       <apply> <mean/>
         <apply> <power/>
           <apply> <minus/>
              <ci> <msub> <mi> x </mi> i </mi> </msub> </ci>
              <apply> <mean/>
                <ci> x </ci>
              </apply>
           </apply>
           <cn> 2 </cn>
         </apply>
       </apply>
       <apply> <times/>
         <apply> <divide/>
           < cn> 1 </ cn>
           <apply> <minus/>
              <ci> n </ci>
              < cn> 1 </ cn>
           </apply>
         </apply>
         <apply> <sum/>
           <apply> <power/>
              <apply> <minus/>
```

```
<ci> <msub> <mi> x </mi> i </mi> </msub> </ci>
              <apply> <mean/>
                <ci> x </ci>
              </apply>
            </apply>
            <cn> 2 </cn>
          </apply>
        </apply>
      </apply>
    </apply>
  </apply>
<- 12.7 matrices ->
                                 |\sin\alpha|\cos\alpha|
                                             = \sin(\alpha - \beta)
matrix 12.1
                                |\sin\beta|\cos\beta
<math xmlns='http://www.w3c.org/mathml' version='2.0'>
  <apply> <eq/>
    <apply> <determinant/>
      <matrix>
        <matrixrow>
          <apply> <sin/> <ci> &alpha; </ci> </apply>
          <apply> <cos/> <ci> &alpha; </ci> </apply>
        </matrixrow>
        <matrixrow>
          <apply> <sin/> <ci> &beta; </ci> </apply>
          <apply> <cos/> <ci> &beta; </ci> </apply>
        </matrixrow>
      </matrix>
    </apply>
    <apply> <sin/>
      <apply> <minus/>
        <ci> &alpha; </ci>
        <ci> &beta; </ci>
      </apply>
    </apply>
  </apply>
```

matrix 12.2

$$|I| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

Unicode Math

<- 13.1 entities ->

Support for MATHML showed up in ConT_EXT by the end of second millenium. The first more or less complete version of this manual dates from the end of 1999. At that time UNICODE math was no fact yet and entities were the way to get special symbols done. Mapping the names of symbols onto something that could be rendered was up to the XML processors and typesetting engine.

Nowadays we can use UNICODE directly although it has the drawback that not all editing applications show the corresponding shapes. It is for this reason that entities will have their use for a while. In the next table we see the official ones. The table is actually larger, but we only show the shapes that have a math property in the Context character database. The full list is supported and can be found in the following documents:

http://www.w3.org/2003/entities/2007/w3centities-f.ent http://www.w3.org/2003/entities/2007/htmlmathml-f.ent

t		000C6	AElig	m		02235	Because
m	&	00026	AMP	t	\mathscr{B}	0212C	Bernoullis
t		00386	Aacgr	m	В	00392	Beta
t		000C1	Aacute	t	\mathfrak{B}	1D505	Bfr
t		00102	Abreve	m	В	00392	Bgr
t		000C2	Acirc	t	\mathbb{B}	1D539	Bopf
t	A	00410	Acy	m	J	002D8	Breve
t	\mathcal{A}	1D504	Afr	t	\mathscr{B}	0212C	Bscr
m	A	00391	Agr	m	≎	0224E	Bumpeq
t		000C0	Agrave	t	Ч	00427	CHcy
m	A	00391	Alpha	t	©	000A9	COPY
t		00100	Amacr	t		00106	Cacute
t	\wedge	02A53	And	m	\bigcap	022D2	Cap
t		00104	Aogon	m		02145	CapitalDifferentialD
t	A	1D538	Aopf	t	\mathbb{C}	0212D	Cayleys
t		02061	ApplyFunction	t		0010C	Ccaron
t		000C5	Aring	t		000C7	Ccedil
t	${\mathcal A}$	1D49C	Ascr	t		00108	Ccirc
m	:=	02254	Assign	m	∰	02230	Cconint
t		000C3	Atilde	t		0010A	Cdot
t		000C4	Auml	t	ه	000B8	Cedilla
m	\	02216	Backslash	m		000B7	CenterDot
t	〒	02AE7	Barv	t	\mathbb{C}	0212D	Cfr
t	$\overline{\wedge}$	02306	Barwed	m	X	003A7	Chi
t	Б	00411	Всу	m	\odot	02299	CircleDot

```
02296 CircleMinus
                                                       \Downarrow
   \Theta
                                                             021D3 DoubleDownArrow
m
                                                    m
        02295 CirclePlus
                                                             021D0
                                                                    DoubleLeftArrow
   \oplus
                                                       \Leftarrow
m
                                                    m
        02297 CircleTimes
                                                             021D4 DoubleLeftRightArrow
   \otimes
                                                       \Leftrightarrow
m
                                                    m
   ∳
        02232 ClockwiseContourIntegral
                                                             02AE4 DoubleLeftTee
                                                    t
                                                       \Rightarrow
m
                                                             027F8 DoubleLongLeftArrow
        0201D CloseCurlyDoubleQuote
t
                                                    m
                                                       \Leftarrow
        02019 CloseCurlyQuote
                                                            027FA DoubleLongLeftRightArrow
t
                                                       \iff
                                                    m
   ::
        02237 Colon
                                                             027F9 DoubleLongRightArrow
                                                       \Longrightarrow
m
                                                    m
        02A74 Colone
                                                             021D2 DoubleRightArrow
m
   ::=
                                                       \Rightarrow
                                                    m
        02261 Congruent
                                                             022A8 DoubleRightTee
   \equiv
                                                       \models
m
                                                    m
   ∯
        0222F
                Conint
                                                       \uparrow
                                                             021D1 DoubleUpArrow
m
                                                    m
   ∮
        0222E ContourIntegral
                                                       1
                                                             021D5 DoubleUpDownArrow
m
                                                    m
   \mathbb{C}
                Copf
                                                       02225 DoubleVerticalBar
m
        02102
                                                    m
   П
        02210 Coproduct
                                                       \downarrow
                                                             02193
                                                                    DownArrow
m
                                                    m
   ∳
        02233 CounterClockwiseContourIntegrat
                                                       \overline{\downarrow}
                                                             02913 DownArrowBar
m
        02A2F Cross
                                                       ↓↑
                                                             021F5 DownArrowUpArrow
t
   ×
   C
t
        1D49E Cscr
                                                    t
                                                             00311 DownBreve
        022D3 Cup
                                                             02950 DownLeftRightVector
m
   \bigcup
                                                    t
                                                       \overline{\phantom{a}}
        0224D CupCap
                                                             0295E DownLeftTeeVector
m
   \simeq
                                                    t
                                                       \overline{\phantom{a}}
        02145
                DD
                                                             021BD DownLeftVector
m
                                                    m
        02911
                DDotrahd
                                                             02956 DownLeftVectorBar
m
                                                    t
   Ъ
        00402 DJcy
                                                             0295F DownRightTeeVector
t
                                                    t
                                                       -
   S
        00405 DScy
                                                             021C1 DownRightVector
t
                                                    m
        0040F
                                                             02957
                                                                    DownRightVectorBar
t
   Ц
                DZcy
                                                    t
   ‡
        02021
                                                       Т
                                                             022A4
                                                                    DownTee
m
                Dagger
                                                    m
   ¥
        021A1 Darr
                                                       Ţ
                                                             021A7 DownTeeArrow
m
                                                    m
                                                       \Downarrow
        02AE4
                Dashv
                                                             021D3 Downarrow
t
   =
                                                    m
                                                       Ø
        0010E
                Dcaron
                                                             1D49F Dscr
t
                                                    t
   Д
        00414
                                                             00110 Dstrok
t
                Dcy
                                                    t
   \nabla
        02207
                                                             00389 EEacgr
                Del
                                                    t
m
   \Delta
        00394
                Delta
                                                       Η
                                                             00397 EEgr
m
                                                    m
   Ð
        1D507
                Dfr
                                                             0014A ENG
t
                                                    t
   Λ
        00394
                Dgr
                                                    t
                                                             000D0 ETH
m
        000B4
                DiacriticalAcute
m
                                                    t
                                                             00388 Eacgr
        002D9
                DiacriticalDot
                                                    t
                                                             000C9
                                                                    Eacute
m
        002DD
                DiacriticalDoubleAcute
                                                             0011A Ecaron
t
                                                    t
        00060
                DiacriticalGrave
                                                    t
                                                             000CA Ecirc
m
        002DC DiacriticalTilde
                                                       Э
                                                             0042D Ecy
m
                                                    t
        022C4
                Diamond
   \Diamond
                                                    t
                                                             00116 Edot
m
                                                       €
        02146
                DifferentialD
                                                             1D508
                                                                   Efr
m
                                                    t
        1D53B
                Dopf
                                                       E
                                                             00395 Egr
   \mathbb{D}
t
                                                    m
        8A000
                Dot
                                                             000C8 Egrave
m
                                                    t
        020DC DotDot
                                                       \in
                                                             02208 Element
t
                                                    m
                                                             00112
   \doteq
        02250
                DotEqual
                                                                    Emacr
m
                                                    t
   ∯
                DoubleContourIntegral
        0222F
                                                             025FB EmptySmallSquare
                                                    t
                                                       m
                DoubleDot
        8A000
                                                             025AB
                                                                    EmptyVerySmallSquare
m
                                                    t
```

t		00118	Eogon	t		00124	Hcirc
t	E	1D53C	Eopf	t	Ó	0210C	Hfr
m	E	00395	Epsilon	t	${\mathcal H}$	0210B	HilbertSpace
t	==	02A75	Equal	t	Н	0210D	Hopf
m	\equiv	02242	EqualTilde	t		02500	HorizontalLine
m	=	021CC	Equilibrium	t	${\mathcal H}$	0210B	Hscr
t	E	02130	Escr	t		00126	Hstrok
t	\equiv	02A73	Esim	m	≎	0224E	HumpDownHump
m	Н	00397	Eta	t	≏	0224F	HumpEqual
t		000CB	Euml	t	E	00415	IEcy
m	3	02203	Exists	t		00132	IJlig
m		02147	ExponentialE	t	Ë	00401	I0cy
t	Φ	00424	Fcy	t		0038A	Iacgr
t	£	1D509	Ffr	t		000CD	Iacute
t	•	025FC	FilledSmallSquare	t		000CE	Icirc
t	•	025AA	FilledVerySmallSquare	t	И	00418	Icy
t	F	1D53D	Fopf	t		003AA	Idigr
m	\forall	02200	ForAll	t		00130	Idot
t	${\mathscr F}$	02131	Fouriertrf	m	$\mathfrak I$	02111	Ifr
t	${\mathscr F}$	02131	Fscr	m	I	00399	Igr
t	Ϋ́	00403	GJcy	t		000CC	Igrave
m	>	0003E	GT	m	$\mathfrak I$	02111	Im
m	Γ	00393	Gamma	t		0012A	Imacr
m	F	003DC	Gammad	m		02148	ImaginaryI
t		0011E	Gbreve	m	\Rightarrow	021D2	Implies
t		00122	Gcedil	m	\iint	0222C	Int
t		0011C	Gcirc	m	ſ	0222B	Integral
t	Γ	00413	Gcy	m	\cap	022C2	Intersection
t		00120	Gdot	m		02063	InvisibleComma
t	6	1D50A	Gfr	t		02062	InvisibleTimes
m	>>>	022D9	Gg	t		0012E	Iogon
m	Γ	00393	Ggr	t		1D540	Iopf
t	\mathbb{G}	1D53E	Gopf	m	I	00399	Iota
m	\geq	02265	GreaterEqual	t	\mathscr{I}	02110	Iscr
m	\geq	022DB	GreaterEqualLess	t		00128	Itilde
m	\geq	02267	GreaterFullEqual	t	I	00406	Iukcy
t	≽	02AA2	GreaterGreater	t		000CF	Iuml
m	\geq	02277	GreaterLess	t		00134	Jcirc
m	\geqslant	02A7E	GreaterSlantEqual	t	Й	00419	Jcy
m	\gtrsim	02273	GreaterTilde	t	J	1D50D	Jfr
t	\mathcal{G}	1D4A2	Gscr	t	J	1D541	Jopf
m	>>	0226B	Gt	t	\mathscr{J}	1D4A5	Jscr
t	Ъ	0042A	HARDcy	t	J	00408	Jsercy
m	~	002C7	Hacek	t	ϵ	00404	Jukcy
m	^	002C6	Hat	t	X	00425	KHcy

```
⋚
                                                          022DA LessEqualGreater
   X
        003A7 KHgr
m
                                                  m
                                                     ≦
   K
        0040C
                                                           02266 LessFullEqual
t
               KJcy
                                                  m
   K
                                                     ≶
                                                          02276 LessGreater
        0039A Kappa
m
                                                  m
        00136
               Kcedi1
                                                          02AA1 LessLess
t
                                                  t
                                                     ≪
   K
        0041A
                Kcy
                                                     \leq
                                                          02A7D LessSlantEqual
t
                                                  m
   Ŕ
        1D50E
                                                           02272 LessTilde
t
               Kfr
                                                     \lesssim
                                                  m
                                                          1D50F Lfr
   K
        0039A
                                                     £
                Kgr
                                                  t
m
                                                          0039B Lgr
   \mathbb{K}
        1D542
                                                     Λ
t
                Kopf
                                                  m
   K
        1D4A6
                                                          022D8
                                                                 L1
t
               Kscr
                                                     <
                                                  m
   Љ
        00409
               LJcy
                                                     ⊭
                                                           021DA Lleftarrow
t
                                                  m
        0003C LT
                                                           0013F Lmidot
   <
                                                  t
m
                                                          027F5 LongLeftArrow
t
        00139
               Lacute
                                                  m
   Λ
        0039B
               Lambda
                                                          027F7 LongLeftRightArrow
m
                                                  m
        027EA Lang
                                                          027F6 LongRightArrow
m
                                                  m
t
   L
        02112 Laplacetrf
                                                  m
                                                     \Leftarrow
                                                          027F8 Longleftarrow
m
        0219E Larr
                                                  m
                                                          027FA Longleftrightarrow
        0013D Lcaron
                                                          027F9 Longrightarrow
t
                                                  m
                                                     \Longrightarrow
        0013B Lcedil
                                                     \mathbb{L}
                                                           1D543 Lopf
t
                                                  t
   Л
        0041B Lcv
                                                           02199 LowerLeftArrow
t
                                                  m
                                                     V
   (
        027E8 LeftAngleBracket
                                                     1
                                                           02198 LowerRightArrow
m
                                                  m
                                                     L
        02190 LeftArrow
   ←
                                                           02112 Lscr
                                                  t
m
                                                     4
                                                           021B0 Lsh
        021E4 LeftArrowBar
   m
                                                  m
   \stackrel{\longleftarrow}{\rightarrow}
        021C6 LeftArrowRightArrow
                                                           00141 Lstrok
                                                  t
m
        02308 LeftCeiling
                                                     «
                                                           0226A
                                                                 Lt
m
   ſ
                                                  m
   027E6 LeftDoubleBracket
                                                           02905 Map
                                                  t
                                                     →
m
   1
        02961 LeftDownTeeVector
                                                          0041C Mcy
                                                     Μ
t
                                                  t
   1
        021C3 LeftDownVector
                                                           0205F
                                                                  MediumSpace
m
                                                  t
   1
        02959 LeftDownVectorBar
                                                     \mathfrak{M}
                                                          02133 Mellintrf
t
                                                  t
        0230A LeftFloor
                                                     210
                                                          1D510 Mfr
   l
                                                  t
m
        02194 LeftRightArrow
                                                           0039C Mgr
m
   \longleftrightarrow
                                                  m
                                                     Μ
   _
        0294E LeftRightVector
                                                     \mp
                                                           02213 MinusPlus
t
                                                  m
   \dashv
        022A3
               LeftTee
                                                  t
                                                     M
                                                           1D544 Mopf
m
        021A4 LeftTeeArrow
                                                     \mathfrak{M}
                                                          02133 Mscr
   ←
                                                  t
m
t
   4
        0295A LeftTeeVector
                                                     Μ
                                                           0039C Mu
                                                  m
        022B2 LeftTriangle
                                                     Њ
                                                           0040A NJcy
m
   ◁
                                                  t
        029CF LeftTriangleBar
                                                  t
                                                           00143 Nacute
t
        022B4 LeftTriangleEqual
                                                           00147 Ncaron
t
   ⊴
                                                  t
t
   1
        02951 LeftUpDownVector
                                                  t
                                                           00145
                                                                  Ncedil
   1
        02960 LeftUpTeeVector
                                                  t
                                                     Η
                                                           0041D
t
                                                                  Ncy
        021BF LeftUpVector
                                                           0200B NegativeMediumSpace
   1
m
                                                  t
   1
        02958 LeftUpVectorBar
                                                           0200B NegativeThickSpace
                                                  t
t
        021BC LeftVector
                                                  t
                                                           0200B NegativeThinSpace
m
        02952 LeftVectorBar
   I<del>---</del>
                                                           0200B NegativeVeryThinSpace
t
                                                  t
        021D0 Leftarrow
                                                           0226B NestedGreaterGreater
   \Leftarrow
                                                     \gg
                                                  m
m
        021D4 Leftrightarrow
                                                           0226A NestedLessLess
   \Leftrightarrow
                                                  m
                                                     \ll
m
```

t	2π	1D511	Nfr	m	⊈	02288	NotSubsetEqual
m	N	0039D	Ngr	m	<i>∓</i> ⊁	02281	•
t	11	02060	NoBreak	m	<i>"</i> ≽	02AB0	NotSucceedsEqual
t		000A0	NonBreakingSpace	m	_ ≱	022E1	•
m	N	02115	Nopf	m	≿	0227F	NotSucceedsTilde
t	=	02AEC	Not	m	\sim	02283	NotSuperset
m	#	02262	NotCongruent	m	⊉	02289	NotSupersetEqual
m	*	0226D	NotCupCap	m	<i>+</i> -	02241	NotTilde
m	#	02226	NotDoubleVerticalBar	m	≄	02244	NotTildeEqual
m	#	02209	NotElement	m	<i>,</i> ≇	02247	NotTildeFullEqual
m	<i>∓</i> ≠	02260	NotEqual	m	<i>∓</i> ≉	02249	NotTildeTilde
m	<i>.</i> ≂	02242	NotEqualTilde	m	ł	02224	NotVerticalBar
m	∄	02204	NotExists	t	\widehat{n}	1D4A9	Nscr
m	<i>≠</i> ≯	0226F	NotGreater	t	, ,	000D1	Ntilde
m	<i>"</i> ≱	02271	NotGreaterEqual	m	N	0039D	Nu
m	<i>i</i> ≥	02267	NotGreaterFullEqual	t	-,	00152	OElig
m	_ ≫	0226B	NotGreaterGreater	t		0038F	OHacgr
m	*	02279	NotGreaterLess	m	Ω	003A9	OHgr
m	>	02A7E	NotGreaterSlantEqual	t		0038C	0acgr
m	≵	02275	NotGreaterTilde	t		000D3	Oacute
m	.,~ -≎	0224E	NotHumpDownHump	t		000D4	Ocirc
t	<u>∽</u>	0224F	NotHumpEqual	t	O	0041E	0cy
m	⋪	022EA	NotLeftTriangle	t		00150	0db1ac
t	, -	029CF	NotLeftTriangleBar	t	Ø	1D512	0fr
m	⊉	022EC	NotLeftTriangleEqual	m	O	0039F	0gr
m	<i>,</i> ≮	0226E	NotLess	t		000D2	Ograve
m	≰	02270	NotLessEqual	t		0014C	Omacr
m	<i>,</i> ≸	02278	NotLessGreater	m	Ω	003A9	Omega
m	«	0226A	NotLessLess	m	O	0039F	Omicron
m	\leq	02A7D	NotLessSlantEqual	t	\mathbb{O}	1D546	Oopf
m	≴	02274	NotLessTilde	t	"	0201C	OpenCurlyDoubleQuote
t	≽	02AA2	NotNestedGreaterGreater	t	6	02018	OpenCurlyQuote
t	≪	02AA1	NotNestedLessLess	t	W	02A54	0r
m	⊀	02280	NotPrecedes	t	\mathcal{O}	1D4AA	0scr
m	\leq	02AAF	NotPrecedesEqual	t		000D8	Oslash
m	⋠	022E0	NotPrecedesSlantEqual	t		000D5	Otilde
m	∌	0220C	NotReverseElement	t	®	02A37	Otimes
m	\not	022EB	NotRightTriangle	t		000D6	Ouml
t		029D0	NotRightTriangleBar	m		0203E	OverBar
m	⊭	022ED	NotRightTriangleEqual	m	~~	023DE	OverBrace
m		0228F	NotSquareSubset	m		023B4	OverBracket
m	⊭	022E2	NotSquareSubsetEqual	m	^	023DC	OverParenthesis
m	\Box	02290	NotSquareSuperset	m	Φ	003A6	PHgr
m	⊉	022E3	NotSquareSupersetEqual	m	Ψ	003A8	PSgr
m	\subset	02282	NotSubset	m	9	02202	PartialD

t	П	0041F	Pcy	t	Ţ	0295D	RightDownTeeVector
t	\mathfrak{P}	1D513	Pfr	m	ļ	021C2	RightDownVector
m	П	003A0	Pgr	t	<u>}</u>	02955	RightDownVectorBar
m	Φ	003A6	Phi	m	J	0230B	RightFloor
m	П	003A0	Pi	m	<u>-</u>	022A2	RightTee
m	±	000B1	PlusMinus	m	\mapsto	021A6	RightTeeArrow
t	Ó	0210C	Poincareplane	t	\vdash	0295B	RightTeeVector
m	\mathbb{P}	02119	Popf	m	\triangleright	022B3	RightTriangle
t	$\prec \! <$	02ABB	Pr	t		029D0	RightTriangleBar
m	\prec	0227A	Precedes	t	⊵	022B5	RightTriangleEqual
m	\preceq	02AAF	PrecedesEqual	t	t	0294F	RightUpDownVector
m	\preccurlyeq	0227C	PrecedesSlantEqual	t	1	0295C	RightUpTeeVector
m	\preceq	0227E	PrecedesTilde	m	1	021BE	RightUpVector
m	″	02033	Prime	t	<u> 1</u>	02954	RightUpVectorBar
m	П	0220F	Product	m	_	021C0	RightVector
m	::	02237	Proportion	t	<u>→</u> ı	02953	RightVectorBar
m	∞	0221D	Proportional	m	\Rightarrow	021D2	Rightarrow
t	\mathscr{P}	1D4AB	Pscr	m	\mathbb{R}	0211D	Ropf
m	Ψ	003A8	Psi	t	\Rightarrow	02970	RoundImplies
m	"	00022	QUOT	m	⇒	021DB	Rrightarrow
t	Q	1D514	Qfr	t	\mathcal{R}	0211B	Rscr
m	\mathbb{Q}	0211A	Qopf	m	 	021B1	Rsh
t	2	1D4AC	Qscr	t		029F4	RuleDelayed
t	⊦- ≫	02910	RBarr	t	Щ	00429	SHCHcy
t	®	000AE	REG	t	Ш	00428	SHcy
t		00154	Racute	t	Ь	0042C	SOFTcy
m		027EB	Rang	t		0015A	Sacute
m	→	021A0	Rarr	t	\Rightarrow	02ABC	Sc
m	>>>	02916	Rarrtl	t		00160	Scaron
t		00158	Rcaron	t		0015E	Scedi1
t		00156	Rcedil	t		0015C	Scirc
t	P	00420	Rcy	t	C	00421	Scy
m	R	0211C	Re	t	5	1D516	Sfr
m	\ni	0220B	ReverseElement	m	Σ	003A3	Sgr
m	=	021CB	ReverseEquilibrium	m	\downarrow	02193	ShortDownArrow
t	11	0296F	ReverseUpEquilibrium	m	←	02190	ShortLeftArrow
m	R	0211C	Rfr	m	\rightarrow	02192	ShortRightArrow
m	P	003A1	Rgr	m	↑	02191	ShortUpArrow
m	P	003A1	Rho	m	Σ	003A3	Sigma
m	>	027E9	RightAngleBracket	m	0	02218	SmallCircle
m	\rightarrow	02192	RightArrow	t	S	1D54A	Sopf
m	→ I	021E5	RightArrowBar	m	$\sqrt{}$	0221A	Sqrt
m	$\stackrel{\textstyle o}{\leftarrow}$	021C4	RightArrowLeftArrow	m		025A1	Square
m	1	02309	RightCeiling	m	П	02293	SquareIntersection
m	${ \mathbb J}$	027E7	RightDoubleBracket	m		0228F	SquareSubset

m	⊑	02291	SquareSubsetEqual	m	†	0219F	Uarr
m	\exists	02290	SquareSuperset	t	8	02949	Uarrocir
m	_ ⊒	02292	SquareSupersetEqual	t	$\ddot{\mathbf{y}}$	0040E	Ubrcy
m		02294	SquareUnion	t	-	0016C	Ubreve
t	_ S	1D4AE	Sscr	t		000DB	Ucirc
m	*	022C6	Star	t	\mathbf{y}	00423	Ucy
m	©	022D0	Sub	t		00170	Udblac
m	©	022D0	Subset	t		003AB	Udigr
m	\subseteq	02286	SubsetEqual	t	u	1D518	Ufr
m	_ ≻	0227B	Succeeds	m	Y	003A5	Ugr
m	<i>.</i> ≽	02AB0	SucceedsEqual	t	-	000D9	Ugrave
m	≽	0227D	SucceedsSlantEqual	t		0016A	Umacr
m	<i>x</i> ≿	0227F	SucceedsTilde	m		0203E	UnderBar
m	~ ∋	0220B	SuchThat	m		023DF	UnderBrace
m	Σ	02211	Sum	m	<i>س</i> ہ	023B5	UnderBracket
m	⊒ ∋	022D1	Sup	m		023DD	UnderParenthesis
m	\supset	02283	Superset	m	Ŭ	022C3	Union
m	\supseteq	02287	SupersetEqual	m	⊕	0228E	UnionPlus
m	— ∋	022D1	Supset	t	Ü	00172	Uogon
t	_	000DE	THORN	t	\mathbb{U}	1D54C	Uopf
m	Θ	00398	THgr	m	↑	02191	UpArrow
t	TM	02122	TRADE	t		02912	UpArrowBar
t	Ћ	0040B	TSHcy	m	↑↓	021C5	UpArrowDownArrow
t	Ц	00426	TScy	m	‡	02195	UpDownArrow
t	_	00009	Tab	t	11	0296E	UpEquilibrium
m	T	003A4	Tau	m	<u></u>	022A5	UpTee
t		00164	Tcaron	m	1	021A5	UpTeeArrow
t		00162	Tcedil	m	_ ↑	021D1	Uparrow
t	T	00422	Tcy	m		021D5	Updownarrow
t	T	1D517	Tfr	m	ĸ	02196	UpperLeftArrow
m	T	003A4	Tgr	m	1	02197	UpperRightArrow
m		02234	Therefore	t		003D2	Upsi
m	Θ	00398	Theta	m	Υ	003A5	Upsilon
t		0205F	ThickSpace	t		0016E	Uring
t		02009	ThinSpace	t	$\mathcal U$	1D4B0	Uscr
m	~	0223C	Tilde	t		00168	Utilde
m	\simeq	02243	TildeEqual	t		000DC	Uum1
m	\cong	02245	TildeFullEqual	m	⊫	022AB	VDash
m	\approx	02248	TildeTilde	t	Ш	02AEB	Vbar
t	T	1D54B	Topf	t	В	00412	Vcy
m		020DB	TripleDot	m	⊩	022A9	Vdash
t	${\mathcal T}$	1D4AF	Tscr	t	⊩	02AE6	Vdash1
t		00166	Tstrok	m	\vee	022C1	Vee
t		0038E	Uacgr	m		02016	Verbar
t		000DA	Uacute	m		02016	Vert
					••		

m		02223	VerticalBar	t	\sim	0223F	acd
m		0007C	VerticalLine	t		000E2	acirc
t		02758	VerticalSeparator	m	,	000B4	acute
m	}	02240	VerticalTilde	t	a	00430	acy
t		0200A	VeryThinSpace	t		000E6	aelig
t	\mathfrak{v}	1D519	Vfr	t		02061	af
t	\bigvee	1D54D	Vopf	t	\mathfrak{a}	1D51E	afr
t	\mathscr{V}	1D4B1	Vscr	m	α	003B1	agr
m	II⊢	022AA	Vvdash	t		000E0	agrave
t		00174	Wcirc	m	ĸ	02135	alefsym
m	\wedge	022C0	Wedge	m	Х	02135	aleph
t	\mathfrak{w}	1D51A	Wfr	m	α	003B1	alpha
t	\mathbb{W}	1D54E	Wopf	t		00101	amacr
t	\mathscr{W}	1D4B2	Wscr	m	П	02A3F	amalg
t	\mathfrak{X}	1D51B	Xfr	m	&	00026	amp
m	Ξ	0039E	Xgr	m	\wedge	02227	and
m	Ξ	0039E	Xi	t	\wedge	02A55	andand
t	\mathbb{X}	1D54F	Xopf	t	A	02A5C	andd
t	\mathscr{X}	1D4B3	Xscr	t	1	02A58	andslope
t	R	0042F	YAcy	t	Λ	02A5A	andv
t	Ϊ	00407	YIcy	m	_	02220	ang
t	Ю	0042E	YUcy	t		029A4	ange
t		000DD	Yacute	m	_	02220	angle
t		00176	Ycirc	m	4	02221	angmsd
t	Ы	0042B	Ycy	t		029A8	angmsdaa
t	y	1D51C	Yfr	t		029A9	angmsdab
t	\mathbb{Y}	1D550	Yopf	t		029AA	angmsdac
t	¥	1D4B4	Yscr	t		029AB	angmsdad
t		00178	Yuml	t		029AC	angmsdae
t	Ж	00416	ZHcy	t		029AD	angmsdaf
t		00179	Zacute	t		029AE	angmsdag
t		0017D	Zcaron	t		029AF	angmsdah
t	3	00417	Zcy	m	L	0221F	angrt
t		0017B	Zdot	t	Ь	022BE	angrtvb
t		0200B	ZeroWidthSpace	t		0299D	angrtvbd
m	Z	00396	Zeta	m	≮	02222	angsph
t	3	02128	Zfr	t		000C5	angst
m	Z	00396	Zgr	t		0237C	angzarr
m	\mathbb{Z}	02124	Zopf	t		00105	aogon
t	$\mathcal{Z}_{\!$	1D4B5	Zscr	t		1D552	aopf
t		003AC	aacgr	m	\approx	02248	ар
t		000E1	aacute	t	\cong	02A70	apE
t		00103	abreve	t	â	02A6F	apacir
t	_∞	0223E	ac	m	≊	0224A	ape
t	[∞]	0223E	acE	t	\approx	0224B	apid

	,	00007				10000	
m	·	00027	apos	t	ρ	1D6D2	b.rho
m	\approx	02248	approx	t	6	1D6E0	b.rhov
m	≊	0224A	approxeq	t	σ	1D6D4	b.sigma
t		000E5	aring	t	ς	1D6D3	b.sigmav
t	a	1D4B6	ascr	t	τ	1D6D5	b.tau
m	*	0002A	ast	t	θ	1D6C9	b.thetas
m	\approx	02248	asymp	t	9	1D6DD	b.thetav
m	\simeq	0224D	asympeq	t	υ	1D6D6	b.upsi
t		000E3	atilde	t	ξ	1D6CF	b.xi
t		000E4	auml	t	ζ	1D6C7	b.zeta
m	∳	02233	awconint	t	F	02AED	bNot
t	∳	02A11	awint	m	\cong	0224C	backcong
t	Δ	1D6AB	b.Delta	m		003F6	backepsilon
t	Γ	1D6AA	b.Gamma	m	`	02035	backprime
t	F	1D7CA	b.Gammad	m	~	0223D	backsim
t	Λ	1D6B2	b.Lambda	t	\sim	022CD	backsimeq
t	Ω	1D6C0	b.Omega	t	\overline{V}	022BD	barvee
t	Φ	1D6BD	b.Phi	t	$\overline{\wedge}$	02305	barwed
t	П	1D6B7	b.Pi	t	$\overline{\wedge}$	02305	barwedge
t	Ψ	1D6BF	b.Psi	m		023B5	bbrk
t	Σ	1D6BA	b.Sigma	t		023B6	bbrktbrk
t	Θ	1D6AF	b.Theta	m	\cong	0224C	bcong
t	Y	1D6BC	b.Upsi	t	б	00431	bcy
t	Ξ	1D6B5	b.Xi	t	,,	0201E	bdquo
t	α	1D6C2	b.alpha	m	.:	02235	becaus
t	β	1D6C3	b.beta	m	.:	02235	because
t	χ	1D6D8	b.chi	t		029B0	bemptyv
t	δ	1D6C5	b.delta	m		003F6	bepsi
t	3	1D6C6	b.epsi	t	\mathscr{B}	0212C	bernou
t	€	1D6DC	b.epsiv	m	β	003B2	beta
t	η	1D6C8	b.eta	m	ב	02136	beth
t	γ	1D6C4	b.gamma	m	Q	0226C	between
t		1D7CB	b.gammad	t	6	1D51F	bfr
t	ι	1D6CA	b.iota	m	β	003B2	bgr
t	K	1D6CB	b.kappa	m	\cap	022C2	bigcap
t	×	1D6DE	b.kappav	m	\bigcirc	025EF	bigcirc
t	λ	1D6CC	b.lambda	m	\bigcup	022C3	bigcup
t	μ	1D6CD	b.mu	m	\odot	02A00	bigodot
t	ν	1D6CE	b.nu	m	\oplus	02A01	bigoplus
t	ω	1D6DA	b.omega	m	\otimes	02A02	bigotimes
t	φ	1D6D7	b.phi	m		02A06	bigsqcup
t	ф	1D6DF	b.phiv	m		02605	bigstar
t	π	1D6D1	b.pi	m	∇	025BD	bigtriangledown
t	$\boldsymbol{\varpi}$	1D6E1	b.piv	m	\triangle	025B3	bigtriangleup
t	Ψ	1D6D9	b.psi	m	+	02A04	biguplus

m	\vee	022C1	bigvee	t		0250C	boxdr
m	\wedge	022C0	bigwedge	t		02500	boxh
m	<i>-</i> →	0290D	bkarow	t		02565	boxhD
t		029EB	blacklozenge	t		02568	boxhU
t		025AA	blacksquare	t		0252C	boxhd
t	•	025B4	blacktriangle	t		02534	boxhu
t	•	025BE	blacktriangledown	m	\Box	0229F	boxminus
t	•	025C2	blacktriangleleft	m	\blacksquare	0229E	boxplus
t	•	025B8	blacktriangleright	m	\boxtimes	022A0	boxtimes
t	u	02423	blank	t		0255B	boxuL
t		02592	blk12	t		02558	boxuR
t		02591	blk14	t		02518	boxul
t		02593	b1k34	t		02514	boxur
t		02588	block	t		02502	boxv
m	=	0003D	bne	t		0256A	boxvH
m	=	02261	bnequiv	t		02561	boxvL
t		02310	bnot	t		0255E	boxvR
t		1D553	bopf	t		0253C	boxvh
m	\perp	022A5	bot	t		02524	boxvl
m	\perp	022A5	bottom	t		0251C	boxvr
m	\bowtie	022C8	bowtie	m	1	02035	bprime
t		02557	boxDL	m	•	002D8	breve
t		02554	boxDR	t		000A6	brvbar
t		02556	boxD1	t	в	1D4B7	bscr
t		02553	boxDr	t		0204F	bsemi
t		02550	boxH	m	~	0223D	bsim
t		02566	boxHD	t	\simeq	022CD	bsime
t		02569	boxHU	m	\	0005C	bsol
t		02564	boxHd	t		029C5	bsolb
t		02567	boxHu	t		027C8	bsolhsub
t		0255D	boxUL	m	•	02022	bull
t		0255A	boxUR	m	•	02022	bullet
t		0255C	boxUl	m	≎	0224E	bump
t		02559	boxUr	t	≙	02AAE	bumpE
t		02551	boxV	t	<u>~</u>	0224F	bumpe
t		0256C	boxVH	t	<u>~</u>	0224F	bumpeq
t		02563	boxVL	t		00107	cacute
t		02560	boxVR	m	\cap	02229	сар
t		0256B	boxVh	t	\bigcap	02A44	capand
t		02562	boxV1	t	Θ	02A49	capbrcup
t		0255F	boxVr	t	\sim	02A4B	capcap
t		029C9	boxbox	t	0	02A47	capcup
t		02555	boxdL	t	\cap	02A40	capdot
t		02552	boxdR	m	\cap	02229	caps
t		02510	boxdl	t		02041	caret

n	n	~	002C7	caron	t	≐	02A6D	congdot
1	t	\Box	02A4D	ccaps	m	∮	0222E	conint
1	t		0010D	ccaron	t		1D554	copf
1	t		000E7	ccedil	m	\coprod	02210	coprod
1	t		00109	ccirc	t	©	000A9	сору
1	t	U	02A4C	ccups	t		02117	copysr
1	t	⊗	02A50	ccupssm	m	\downarrow	021B5	crarr
1	t		0010B	cdot	t		02717	cross
n	n		022EF	cdots	t	С	1D4B8	cscr
1	t	3	000B8	cedil	t		02ACF	csub
1	t		029B2	cemptyv	t	□	02AD1	csube
1	t	¢	000A2	cent	t	D	02AD0	csup
n	n		000B7	centerdot	t	₽	02AD2	csupe
1	t	c	1D520	cfr	m		022EF	ctdot
1	t	ч	00447	chcy	t	\supset	02938	cudarrl
n	n	\checkmark	02713	check	t	\rightarrow	02935	cudarrr
n	n	\checkmark	02713	checkmark	m	$ \preccurlyeq$	022DE	cuepr
n	n	χ	003C7	chi	m	⋟	022DF	cuesc
1	t	\bigcirc	025CB	cir	m	\sim	021B6	cularr
1	t		029C3	cirE	t	F	0293D	cularrp
n	n	^	002C6	circ	m	\cup	0222A	cup
n	n	<u>•</u>	02257	circeq	t	$\stackrel{>}{\sim}$	02A48	cupbrcap
n	n	\mathcal{O}	021BA	circlearrowleft	t	X	02A46	cupcap
n	n	\mathcal{O}	021BB	circlearrowright	t	ω	02A4A	cupcup
1	t	®	000AE	circledR	t	\cup	0228D	cupdot
n	n	(\$)	024C8	circledS	t	\bigvee	02A45	cupor
n	n	*	0229B	circledast	m	\cup	0222A	cups
n	n	0	0229A	circledcirc	m	\sim	021B7	curarr
n	n	Θ	0229D	circleddash	t	<u>-</u>	0293C	curarrm
n	n	<u>•</u>	02257	cire	m	\neq	022DE	curlyeqprec
1	t	∮	02A10	cirfnint	m	⋟	022DF	curlyeqsucc
1	t	٩	02AEF	cirmid	m	Υ	022CE	curlyvee
1	t		029C2	cirscir	m	人	022CF	curlywedge
n	n	*	02663	clubs	t	¤	000A4	curren
n	n	.	02663	clubsuit	m	\sim	021B6	curvearrowleft
n	n	:	0003A	colon	m	\sim	021B7	curvearrowright
n	n	:=	02254	colone	m	Υ	022CE	cuvee
n	n	:=	02254	coloneq	m	人	022CF	cuwed
n	n	,	0002C	comma	m	∳	02232	cwconint
1	t	@	00040	commat	m	∱	02231	cwint
n	n	С	02201	comp	t		0232D	cylcty
n	n	0	02218	compfn	m	\Downarrow	021D3	dArr
n	n	С	02201	complement	t	\	02965	dHar
n	n	\mathbb{C}	02102	complexes	m	†	02020	dagger
n	n	\cong	02245	cong	m	٦	02138	daleth

m	\downarrow	02193	darr	m	1	021C3	downharpoonleft
t	_	02010	dash	m	ļ	021C2	downharpoonright
m	\dashv	022A3	dashv	t	⊦- ≫	02910	drbkarow
t	>	0290F	dbkarow	m		0231F	drcorn
t	"	002DD	dblac	t		0230C	drcrop
t		0010F	dcaron	t	d	1D4B9	dscr
t	Д	00434	dcy	t	S	00455	dscy
m		02146	dd	t		029F6	dsol
m	‡	02021	ddagger	t		00111	dstrok
m	$\downarrow\downarrow$	021CA	ddarr	m	٠.	022F1	dtdot
t	Ħ	02A77	ddotseq	t	∇	025BF	dtri
t	٥	000B0	deg	t	•	025BE	dtrif
m	δ	003B4	delta	m	↓ ↑	021F5	duarr
t		029B1	demptyv	t	11	0296F	duhar
t	\perp	0297F	dfisht	t		029A6	dwangle
t	δ	1D521	dfr	t	Ų	0045F	dzcy
m	δ	003B4	dgr	m	~~	027FF	dzigrarr
m	1	021C3	dharl	t	Ħ	02A77	eDDot
m	ļ	021C2	dharr	m	÷	02251	eDot
m	\Diamond	022C4	diam	t		003AD	eacgr
m	\Diamond	022C4	diamond	t		000E9	eacute
m	*	02666	diamondsuit	t	<u>*</u>	02A6E	easter
m	*	02666	diams	t		0011B	ecaron
m		000A8	die	m		02256	ecir
t		003DD	digamma	t		000EA	ecirc
t	\in	022F2	disin	m	=:	02255	ecolon
m	÷	000F7	div	t	Э	0044D	ecy
m	÷	000F7	divide	t		00117	edot
m	*	022C7	divideontimes	m		02147	ee
m	*	022C7	divonx	t		003AE	eeacgr
t	ħ	00452	djcy	m	η	003B7	eegr
m		0231E	dlcorn	m	≒	02252	efDot
t		0230D	dlcrop	t	e	1D522	efr
m	\$	00024	dollar	t	₹	02A9A	eg
t		1D555	dopf	m	3	003B5	egr
m		002D9	dot	t		000E8	egrave
m	÷	02250	doteq	m	≽	02A96	egs
m	÷	02251	doteqdot	t	≽	02A98	egsdot
m	÷	02238	dotminus	t	₹	02A99	el
m	÷	02214	dotplus	t		023E7	elinters
m		02026	dots	m	ℓ	02113	ell
m	⊡	022A1	dotsquare	m	\leq	02A95	els
t	$\overline{\overline{\wedge}}$	02306	doublebarwedge	t	€	02A97	elsdot
m	\downarrow	02193	downarrow	t		00113	emacr
m	$\downarrow\downarrow$	021CA	downdownarrows	m	Ø	02205	empty

m	Ø	02205	emptyset	t		0FB01	filig
m	Ø	02205	emptyv	m	f	00066	fjlig
t		02003	emsp	m	b	0266D	flat
t		02004	emsp13	t		0FB02	fllig
t		02005	emsp14	t		025B1	fltns
t		0014B	eng	t		00192	fnof
t		02002	ensp	t		1D557	fopf
t		00119	eogon	m	A	02200	forall
t		1D556	eopf	m	ф	022D4	fork
t	#	022D5	epar	t	lacktriangle	02AD9	forkv
t		029E3	eparsl	t	f	02A0D	fpartint
t	₹	02A71	eplus	t	1/2	000BD	frac12
m	8	003B5	epsi	t		02153	frac13
m	8	003B5	epsilon	t	1/4	000BC	frac14
m	€	003F5	epsiv	t		02155	frac15
m	<u> </u>	02256	eqcirc	t		02159	frac16
m	=:	02255	eqcolon	t		0215B	frac18
m	\equiv	02242	eqsim	t		02154	frac23
m	≽	02A96	eqslantgtr	t		02156	frac25
m	<	02A95	eqslantless	t	3/4	000BE	frac34
m	=	0003D	equals	t		02157	frac35
m	?	0225F	equest	t		0215C	frac38
m	=	02261	equiv	t		02158	frac45
t	≝	02A78	equivDD	t		0215A	frac56
t		029E5	eqvparsl	t		0215D	frac58
m	≓	02253	erDot	t		0215E	frac78
t	≞→	02971	erarr	m	/	02044	frasl
t	e	0212F	escr	m	_	02322	frown
m	÷	02250	esdot	t	f	1D4BB	fscr
m	\equiv	02242	esim	m	≥	02267	gE
m	η	003B7	eta	m	\geq	02A8C	gE1
m	ð	000F0	eth	t		001F5	gacute
t		000EB	euml	m	γ	003B3	gamma
t	€	020AC	euro	t		003DD	gammad
m	!	00021	excl	m	≋	02A86	gap
m	3	02203	exist	t		0011F	gbreve
t	E	02130	expectation	t		0011D	gcirc
m		02147	exponentiale	t	Γ	00433	gcy
m	≒	02252	fallingdotseq	t		00121	gdot
t	ф	00444	fcy	m	\geq	02265	ge
t		02640	female	m	\geq	022DB	gel
t		0FB03	ffilig	m	\geq	02265	geq
t		0FB00	fflig	m	\geqq	02267	geqq
t		0FB04	ffllig	m	\geqslant	02A7E	geqslant
t	f	1D523	ffr	m	\geqslant	02A7E	ges

t	\triangleright	02AA9	gescc	t		0200A	hairsp
t	≽	02A80	gesdot	t	1/2	000BD	half
t	≽	02A82	gesdoto	t	\mathcal{H}	0210B	hamilt
t	÷	02A84	gesdotol	t	ъ	0044A	hardcy
m	\geq	022DB	gesl	m	\longleftrightarrow	02194	harr
t	\geqslant	02A94	gesles	t	↔	02948	harrcir
t	g	1D524	gfr	m	↔ >	021AD	harrw
m	≫	0226B	gg	m	ħ	0210F	hbar
m	>>>	022D9	999	t		00125	hcirc
m	γ	003B3	ggr	t	•	02665	hearts
m	λ	02137	gimel	t	•	02665	heartsuit
t	ŕ	00453	gjcy	m		02026	hellip
m	\geq	02277	gl	t	-¦-	022B9	hercon
t	\geqq	02A92	glE	t	\mathfrak{h}	1D525	hfr
t	><	02AA5	gla	m	$\boldsymbol{\varsigma}$	02925	hksearow
t	×	02AA4	glj	m	2	02926	hkswarow
m	≩	02269	gnE	m	\Leftrightarrow	021FF	hoarr
m	≩	02A8A	gnap	t	÷	0223B	homtht
m	≩	02A8A	gnapprox	m	←	021A9	hookleftarrow
m	≥	02A88	gne	m	\hookrightarrow	021AA	hookrightarrow
m	≥	02A88	gneq	t		1D559	hopf
m	≩	02269	gneqq	t		02015	horbar
m	⋧	022E7	gnsim	t	κ	1D4BD	hscr
t		1D558	gopf	m	ħ	0210F	hslash
m	`	00060	grave	t		00127	hstrok
t	g	0210A	gscr	t		02043	hybull
m	\gtrsim	02273	gsim	t	-	02010	hyphen
t	≥	02A8E	gsime	t		003AF	iacgr
t	⋛	02A90	gsiml	t		000ED	iacute
m	>	0003E	gt	m		02063	ic
t	\triangleright	02AA7	gtcc	t		000EE	icirc
t	≫	02A7A	gtcir	t	И	00438	icy
m	≽	022D7	gtdot	t		00390	_
t	-	02995	gtlPar	t		003CA	J
t	>	02A7C	gtquest	t	e	00435	iecy
m	≋	02A86	gtrapprox	t	i	000A1	iexcl
t	≩	02978	gtrarr	m	\Leftrightarrow	021D4	iff
m	>	022D7	gtrdot	t	í	1D526	ifr
m	VIIV VIV	022DB	gtreqless	m	ι	003B9	igr
m		02A8C	gtreqqless	t		000EC	igrave
m	\geq	02277	gtrless	m	cccc	02148	ii
m	≳	02273	gtrsim	t	∭	02A0C	iiiint
m	≩	02269	gvertneqq	m	\iiint	0222D	iiint
m	≩	02269	gvnE	t		029DC	iinfin
m	\Leftrightarrow	021D4	hArr	m	1	02129	iiota

t		00133	ijlig	m	×	003F0	kappav
t		0012B	imacr	t		00137	kcedil
m	$\mathfrak I$	02111	image	t	К	0043A	kcy
t	Ŧ	02110	imagline	t	k	1D528	kfr
m	$\mathfrak I$	02111	imagpart	m	К	003BA	kgr
t	1	00131	imath	t		00138	kgreen
t	••	022B7	imof	t	X	00445	khcy
t		001B5	imped	m	χ	003C7	khgr
m	\in	02208	in	t	Ŕ	0045C	kjcy
t		02105	incare	t	\Bbbk	1D55C	kopf
m	∞	0221E	infin	t	Ŕ	1D4C0	kscr
t		029DD	infintie	m	\	021DA	lAarr
t	1	00131	inodot	m	⇐	021D0	1Arr
m	ſ	0222B	int	t	- ≪	0291B	lAtail
m	Τ	022BA	intcal	t	←	0290E	1Barr
m	\mathbb{Z}	02124	integers	m	≦	02266	1E
m	Τ	022BA	intercal	m	\leq	02A8B	1Eg
t	∱	02A17	intlarhk	t	=	02962	lHar
t	_	02A3C	intprod	t		0013A	lacute
t	ë	00451	iocy	t		029B4	laemptyv
t		0012F	iogon	t	\mathscr{L}	02112	lagran
t		1D55A	iopf	m	λ	003BB	lambda
m	ι	003B9	iota	m	<	027E8	lang
t	_	02A3C	iprod	t		02991	langd
t	j	000BF	iquest	m	<	027E8	langle
t	i	1D4BE	iscr	m	≨	02A85	lap
m	\in	02208	isin	t	«	000AB	laquo
t	€	022F9	isinE	m	←	02190	larr
t	Ė	022F5	isindot	m	ı←	021E4	larrb
t	∈	022F4	isins	t	•←	0291F	larrbfs
t	\in	022F3	isinsv	t	•←	0291D	larrfs
m	\in	02208	isinv	m	←	021A9	larrhk
t		02062	it	m	← ₽	021AB	larrlp
t		00129	itilde	t	(02939	larrpl
t	i	00456	iukcy	t	←	02973	larrsim
t		000EF	iuml	m	← <	021A2	larrtl
t		00135	jcirc	t	>	02AAB	lat
t	й	00439	jcy	t	\prec	02919	latail
t	ĵ	1D527	jfr	t	≥	02AAD	late
t	J	00237	jmath	t	≥	02AAD	lates
t		1D55B	jopf	m	← -	0290C	lbarr
t	j	1D4BF	jscr	t		02772	1bbrk
t	j	00458	jsercy	m	{	0007B	lbrace
t	ϵ	00454	jukcy	m	[0005B	1brack
m	К	003BA	kappa	t		0298B	1brke

```
≶
        0298F
                1brks1d
                                                             02A91
t
                                                    t
                                                                    1gE
        0298D
                lbrkslu
                                                       λ
                                                             003BB
                                                                    lar
t
                                                    m
        0013E
                1caron
                                                             021BD
                                                                    lhard
t
                                                    m
        0013C
                1cedi1
                                                             021BC
                                                                    lharu
t
                                                    m
                                                       _
                                                             0296A
                                                                    lharul
        02308
                lceil
m
                                                    t
                1cub
        0007B
                                                             02584
                                                                    1hb1k
m
   {
                                                    t
        0043B
                                                             00459
                1cy
                                                                    ljcy
t
   Л
                                                    t
                                                       Љ
        02936
                                                             0226A
                                                                    11
                1dca
                                                       «
t
                                                    m
t
        0201C
                1dquo
                                                       ⇇
                                                             021C7
                                                                    llarr
                                                    m
        0201E
                ldquor
                                                             0231E
                                                                    11corner
t
                                                    m
        02967
                1drdhar
                                                             0296B
                                                                    11hard
   t
                                                    t
                                                       =
        0294B
                ldrushar
                                                             025FA
                                                                    lltri
t
                                                    t
                                                       021B2
                1dsh
                                                    t
                                                             00140
                                                                     lmidot
m
   \leq
        02264
                1e
                                                             023B0
                                                                    lmoust
m
                                                    m
m
   ←
        02190
                leftarrow
                                                    m
                                                             023B0
                                                                    Imoustache
                leftarrowtail
                                                             02268
m
   ←<
        021A2
                                                    m
                                                       ≨
                                                                    1nE
                                                       ≨
        021BD
                leftharpoondown
                                                             02A89
                                                                    lnap
m
                                                    m
        021BC
                leftharpoonup
                                                       ≨
                                                             02A89
                                                                    Inapprox
m
   _
                                                    m
   ₽
        021C7
                leftleftarrows
                                                             02A87
                                                       ≨
                                                                     lne
m
                                                    m
        02194
                leftrightarrow
                                                             02A87
                                                                     Ineq
m
                                                    m
                                                       ≨
   \leftrightarrows
        021C6
                leftrightarrows
                                                       ≨
                                                             02268
                                                                    Ineqq
m
                                                    m
                                                             022E6
        021CB
                leftrightharpoons
                                                       ⋦
                                                                    Insim
   4
m
                                                    m
        021AD
                leftrightsquigarrow
                                                             027EC
                                                                    loang
   ₩
                                                    t
m
        022CB
                leftthreetimes
                                                       4
                                                             021FD
                                                                     loarr
m
   \lambda
                                                    m
   ⋚
        022DA
                leg
                                                       027E6
                                                                    lobrk
m
                                                    m
        02264
                                                             027F5
                                                                    longleftarrow
   \leq
                leq
m
                                                    m
   \leq
                                                             027F7
                                                                    longleftrightarrow
        02266
                lega
m
                                                    m
   \leq
        02A7D
                legslant
                                                             027FC
                                                                   longmapsto
m
                                                    m
        02A7D
                                                             027F6
                                                                    longrightarrow
   \leq
                les
m
                                                    m
   \triangleleft
        02AA8
                lescc
                                                             021AB
                                                                    looparrowleft
t
                                                    m
                                                       ←
   ⋖
        02A7F
                lesdot
                                                             021AC
                                                                    looparrowright
t
                                                    m
t
   ⋞
        02A81
                lesdoto
                                                    t
                                                             02985
                                                                    lopar
   ⋖
        02A83
                lesdotor
                                                             1D55D
                                                                    lopf
t
                                                    t
   \leq
m
        022DA
                lesg
                                                    t
                                                       \oplus
                                                             02A2D
                                                                    loplus
   ≶
        02A93
                lesges
                                                       (×
                                                             02A34
                                                                    lotimes
t
                                                    t
   ≨
                                                             02217
        02A85
                lessapprox
                                                       *
                                                                     lowast
m
                                                    m
        022D6
                                                             0005F
                                                                    lowbar
   ⋖
                lessdot
m
                                                    t
   VII VIV
        022DA
                                                       \Diamond
                                                             025CA
                                                                    loz
                lesseggtr
m
                                                    m
        02A8B
                                                       \Diamond
                                                             025CA
                                                                    lozenge
m
                lesseqqgtr
                                                    m
   ≶
        02276
                lessgtr
                                                             029EB
                                                                    lozf
m
                                                    t
   ≲
        02272
                                                       (
                                                             00028
                lesssim
                                                                    lpar
m
                                                    m
        0297C
                lfisht
                                                             02993
                                                                    lparlt
t
   \vdash
                                                    t
        0230A
                1floor
                                                       \stackrel{\longleftarrow}{}
                                                             021C6
                                                                     Irarr
   l
m
                                                    m
   ſ
        1D529
                1fr
                                                             0231F
                                                                     Ircorner
t
                                                    m
   ≶
                                                                    1rhar
        02276
                ٦g
                                                             021CB
m
                                                    m
                                                       =
```

		02065	7			00256	
t	=	0296D	lrhard	m	μ	003BC	mgr
t		0200E	lrm	m	Ω	02127	mho
t	Δ	022BF	lrtri	t	μ	000B5	micro
t	(02039	lsaquo	m		02223	mid
t	ℓ	1D4C1	lscr	m	*	0002A	midast
m	1	021B0	lsh	t	P	02AF0	midcir
m	≲	02272	lsim	m	•	000B7	middot
t	<u>≶</u>	02A8D	lsime	m	_	02212	minus
t		02A8F	lsimg	m		0229F	minusb
m	[0005B	lsqb	m	÷	02238	minusd
t	'	02018	lsquo	t	.	02A2A	minusdu
t	,	0201A	lsquor	m	=	02213	minusplus
t		00142	lstrok	t	Ψ	02ADB	mlcp
m	<	0003C	1t	m		02026	mldr
t	\triangleleft	02AA6	ltcc	m	\mp	02213	mnplus
t	≪	02A79	ltcir	m	F	022A7	models
m	<	022D6	ltdot	t		1D55E	mopf
m	\rightarrow	022CB	lthree	m	\mp	02213	mp
m	\bowtie	022C9	ltimes	t	m	1D4C2	mscr
t	≨	02976	ltlarr	t	8	0223E	mstpos
t	?<	02A7B	ltquest	m	μ	003BC	mu
t		02996	ltrPar	m	-0	022B8	multimap
t	⊲	025C3	ltri	m	-0	022B8	mumap
t	⊴	022B4	ltrie	m	>>>	022D9	nGg
t	•	025C2	ltrif	m	>>	0226B	nGt
t	4	0294A	lurdshar	m	>>	0226B	nGtv
t	$\stackrel{\leftarrow}{\Rightarrow}$	02966	luruhar	m	#	021CD	nLeftarrow
m	≨	02268	lvertneqq	m	#	021CE	nLeftrightarrow
m	≨	02268	lvnE	m	~	022D8	nLl
t	:=	0223A	mDDot	m	«	0226A	nLt
m	-	000AF	macr	m	«	0226A	nLtv
t		02642	male	m	≯	021CF	nRightarrow
m	¥	02720	malt	m	⊯	022AF	
m	¥	02720	maltese	m	l⊬	022AE	nVdash
m	\mapsto	021A6	map	m	∇	02207	
m	\mapsto	021A6	mapsto	t		00144	nacute
m	Ţ	021A7	mapstodown	m	_	02220	nang
m	←	021A4	mapstoleft	m	≉	02249	nap
m	1	021A5	mapstoup	t	≋	02A70	napE
t		025AE	marker	t	≋	0224B	napid
t	<u>,</u>	02A29	mcomma	t		00149	napos
t	M	0043C	mcy	m	≉	02249	napprox
t	_	02014	mdash	m	4	0266E	natur
m	¥	02221	measuredangle	m	1 }	0266E	
t	m	1D52A	_	m	1 N	02115	naturals
L	***	TOJER	11111	111	1 /	02113	nacarars

t		000A0	nbsp	m	≰	02270	nle
m	≎	0224E	nbump	m	<i>↔</i>	0219A	nleftarrow
t	<u>∽</u>	0224F	nbumpe	m	↔	021AE	nleftrightarrow
t	$\bar{\cap}$	02A43	ncap	m	≰	02270	nleq
t		00148	ncaron	m	≦	02266	nleqq
t		00146	ncedil	m	\leq	02A7D	nleqslant
m	≇	02247	ncong	m	\leq	02A7D	nles
t	≐	02A6D	ncongdot	m	≮	0226E	nless
t	Ū	02A42	ncup	m	≴	02274	nlsim
t	Н	0043D	ncy	m	≮	0226E	nlt
t	_	02013	ndash	m	⋪	022EA	nltri
m	#	02260	ne	m	⊉	022EC	nltrie
m	7	021D7	neArr	m	ł	02224	nmid
m	<i>?</i> *	02924	nearhk	t		1D55F	nopf
m	7	02197	nearr	m	\neg	000AC	not
m	1	02197	nearrow	m	∉	02209	notin
m	÷	02250	nedot	t	€	022F9	notinE
m	≢	02262	nequiv	t	Ė	022F5	notindot
t	X	02928	nesear	m	∉	02209	notinva
m	\equiv	02242	nesim	t	€	022F7	notinvb
m	∄	02204	nexist	t	\equiv	022F6	notinvc
m	∄	02204	nexists	m	∌	0220C	notni
t	n	1D52B	nfr	m	∌	0220C	notniva
m	\geq	02267	ngE	t	⋾	022FE	notnivb
m	≱	02271	nge	t	⋽	022FD	notnivc
m	≱	02271	ngeq	m	#	02226	npar
m	\geq	02267	ngeqq	m	#	02226	nparallel
m	\geqslant	02A7E	ngeqslant	t	//	02AFD	nparsl
m	\geqslant	02A7E	nges	m	9	02202	npart
m	ν	003BD	ngr	t	۶	02A14	npolint
m	≵	02275	ngsim	m	\prec	02280	npr
m	>	0226F	ngt	m	≰	022E0	nprcue
m	>	0226F	ngtr	m	\preceq	02AAF	npre
m	\Leftrightarrow	021CE	nhArr	m	\prec	02280	nprec
m		021AE	nharr	m	\leq	02AAF	npreceq
t	#	02AF2	nhpar	m	≯	021CF	nrArr
m	\ni	0220B	ni	m	→	0219B	nrarr
t	€	022FC	nis	t	^→	02933	nrarrc
t	\Rightarrow	022FA	nisd	m	∼f	0219D	nrarrw
m	\ni	0220B	niv	m	→	0219B	nrightarrow
t	Њ	0045A	njcy	m	rightharpoons	022EB	nrtri
m	#	021CD	nlArr	m	⊭	022ED	nrtrie
m	\leq	02266	nlE	m	*	02281	nsc
m	↔	0219A	nlarr	m	*	022E1	nsccue
t		02025	nldr	m	≽	02AB0	nsce

+	m	1D4C3	nccr	+	_	022B4	nvltrie
t	n	02224	nscr nshortmid	t	⊴	02264	nvrArr
m	∤ }			t	\$		
m	#	02226	nshortparallel	t 	\trianglerighteq	022B5	nvrtrie
m	≁	02241	nsim	m	~ _	0223C	nvsim
m	≄	02244	nsime	m		021D6	nwArr
m	≄	02244	nsimeq	m	5	02923	nwarhk
m	∤	02224	nsmid	m	_	02196	nwarr
m	#	02226	nspar	m	<u> </u>	02196	nwarrow
m	⊭	022E2	nsqsube	t	X	02927	nwnear
m	⊉	022E3	nsqsupe	m	(\$)	024C8	oS
m	⊄ -	02284	nsub	t		003CC	oacgr
m	\subseteq	02AC5	nsubE	t		000F3	oacute
m	⊈	02288	nsube	m	*	0229B	oast
m	\subset	02282	nsubset	m	0	0229A	ocir
m	⊈	02288	nsubseteq	t		000F4	ocirc
m	\subseteq	02AC5	nsubseteqq	t	O	0043E	осу
m	*	02281	nsucc	m	Θ	0229D	odash
m	\succeq	02AB0	nsucceq	t		00151	odblac
m	\supset	02285	nsup	t	\oplus	02A38	odiv
m	\supseteq	02AC6	nsupE	m	\odot	02299	odot
m	⊉	02289	nsupe	t		029BC	odsold
m	\supset	02283	nsupset	t		00153	oelig
m	⊉	02289	nsupseteq	t		029BF	ofcir
m	\supseteq	02AC6	nsupseteqq	t	0	1D52C	ofr
m	≹	02279	ntgl	t		002DB	ogon
t		000F1	ntilde	m	O	003BF	ogr
m	≸	02278	ntlg	t		000F2	ograve
m	⋪	022EA	ntriangleleft	t		029C1	ogt
m	⊉	022EC	ntrianglelefteq	t		003CE	ohacgr
m	⋫	022EB	ntriangleright	t		029B5	ohbar
m	⊭	022ED	ntrianglerighteq	m	ω	003C9	ohgr
m	ν	003BD	nu	m	Ω	003A9	ohm
m	#	00023	num	m	∮	0222E	oint
t		02116	numero	m	Ů	021BA	olarr
t		02007	numsp	t		029BE	olcir
m	¥	022AD	nvDash	t		029BB	olcross
t	⇔	02904	nvHarr	m		0203E	oline
m	\simeq	0224D	nvap	t		029C0	olt
m	⊬	022AC	nvdash	t		0014D	omacr
m	., ≥	02265	nvge	m	ω	003C9	omega
m	<u> </u>	0003E	nvgt	m	0	003BF	omicron
t		029DE	nvinfin	t	J	029B6	omid
t	#	02902	nvlArr	m	Θ	02386	ominus
m	≤	02364	nvle	t	J	1D560	oopf
m	<u> </u>	00026	nvlt	t		029B7	opar
111	Œ	00020	11 V 1 C	C		02301	σραι

t		029B9	operp	m	ħ	0210F	plankv
m	\oplus	02325	oplus	m	+	0002B	plus
m	V	02228	or	t	· Î	02A23	plusacir
m	U	021BB	orarr	m	田	0229E	plusb
t	\forall	02A5D	ord	t	÷	02A22	pluscir
t	o	02134	order	m	÷	02214	plusdo
t	o	02134	orderof	t	÷	02A25	plusdu
t	<u>a</u>	000AA	ordf	t	±	02A72	pluse
t	<u>o</u>	000BA	ordm	m	_ ±	000B1	plusminus
t	0-•	022B6	origof	m	_ ±	000B1	plusmn
t	W	02A56	oror	t	+	02A26	plussim
t	V	02A57	orslope	t	+2	02A27	plustwo
t	V	02A5B	orv	m	±	000B1	pm
t	a	02134	oscr	t	•	02A15	pointint
t		000F8	oslash	t	,	1D561	popf
m	0	02298	osol	t	£	000A3	pound
t		000F5	otilde	m	\prec	0227A	pr
m	\otimes	02297	otimes	m	\leq	02AB3	prE
t	ŝ	02A36	otimesas	m	≾≋	02AB7	prap
t		000F6	ouml	m	\preccurlyeq	0227C	prcue
t		0233D	ovbar	m	\preceq	02AAF	pre
m		02225	par	m	\prec	0227A	prec
m	¶	000B6	para	m	≨	02AB7	precapprox
m		02225	parallel	m	\preccurlyeq	0227C	preccurlyeq
t	#	02AF3	parsim	m	\leq	02AAF	preceq
t	//	02AFD	parsl	m	≨	02AB9	precnapprox
m	9	02202	part	m	≨	02AB5	precneqq
t	П	0043F	рсу	m	\precsim	022E8	precnsim
m	%	00025	percnt	m	\preceq	0227E	precsim
m		0002E	period	m	,	02032	prime
t	‰	02030	permil	m	\mathbb{P}	02119	primes
m	\perp	022A5	perp	m	≨	02AB5	prnE
t		02031	pertenk	m	⋨	02AB9	prnap
t	\mathfrak{p}	1D52D	pfr	m	\precsim	022E8	prnsim
m	π	003C0	pgr	m	Π	0220F	prod
m	φ	003C6	phgr	t		0232E	profalar
m	φ	003C6	phi	t		02312	profline
m	ф	003D5	phiv	t		02313	profsurf
t	m	02133	phmmat	m	∞	0221D	prop
t		0260E	phone	m	∞	0221D	propto
m	π	003C0	pi	m	\preceq	0227E	prsim
m	Ψ	022D4	pitchfork	t	\prec	022B0	prurel
m	ω	003D6	piv	t	p	1D4C5	pscr
m	ħ	0210F	planck	m	Ψ	003C8	psgr
m	h	0210E	planckh	m	Ψ	003C8	psi

t		02008	puncsp	t		0298E	rbrksld
t	q	1D52E	qfr	t		02990	rbrkslu
t	\iiint	02A0C	qint	t		00159	rcaron
t		1D562	qopf	t		00157	rcedil
m	////	02057	qprime	m	1	02309	rceil
t	9	1D4C6	qscr	m	}	0007D	rcub
t	H	0210D	quaternions	t	p	00440	rcy
t	∮	02A16	quatint	t	\hookrightarrow	02937	rdca
m	?	0003F	quest	t	~	02969	rdldhar
m	?	0225F	questeq	t	"	0201D	rdquo
m	"	00022	quot	t	"	0201D	rdquor
m	\Rightarrow	021DB	rAarr	m	L	021B3	rdsh
m	\Rightarrow	021D2	rArr	m	\mathfrak{R}	0211C	real
t	>	0291C	rAtail	t	$\mathcal R$	0211B	realine
t	>	0290F	rBarr	m	\mathfrak{R}	0211C	realpart
t	\Rightarrow	02964	rHar	m	\mathbb{R}	0211D	reals
m	\sim	0223D	race	t		025AD	rect
t		00155	racute	t	®	000AE	reg
m	$\sqrt{}$	0221A	radic	t	\rightarrow	0297D	rfisht
t		029B3	raemptyv	m]	0230B	rfloor
m	>	027E9	rang	t	r	1D52F	rfr
t		02992	rangd	m	ρ	003C1	rgr
t		029A5	range	m	_	021C1	rhard
m	>	027E9	rangle	m	_	021C0	rharu
t	»	000BB	raquo	t	\Rightarrow	0296C	rharul
m	\rightarrow	02192	rarr	m	ρ	003C1	rho
t	≅→	02975	rarrap	t	9	003F1	rhov
m	→ I	021E5	rarrb	m	\rightarrow	02192	rightarrow
t	→ •	02920	rarrbfs	m	\rightarrow	021A3	rightarrowtail
t	^→	02933	rarrc	m	-	021C1	rightharpoondown
t	→•	0291E	rarrfs	m	_	021C0	rightharpoonup
m	\hookrightarrow	021AA	rarrhk	m	$\stackrel{\textstyle o}{\leftarrow}$	021C4	rightleftarrows
m	↔	021AC	rarrlp	m	=	021CC	rightleftharpoons
t	→	02945	rarrpl	m	\Rightarrow	021C9	rightrightarrows
t	~ →	02974	rarrsim	m	~⁴	0219D	rightsquigarrow
m	\rightarrow	021A3	rarrtl	m	<	022CC	rightthreetimes
m	~⁴	0219D	rarrw	m	۰	002DA	ring
t	\succ	0291A	ratail	m	≓	02253	risingdotseq
m	:	02236	ratio	m	$\stackrel{\textstyle \rightarrow}{\leftarrow}$	021C4	rlarr
m	\mathbb{Q}	0211A	rationals	m	=	021CC	rlhar
m	-→	0290D	rbarr	t		0200F	rlm
t		02773	rbbrk	m		023B1	rmoust
m	}	0007D	rbrace	m		023B1	rmoustache
m]	0005D	rbrack	t	†	02AEE	rnmid
t		0298C	rbrke	t		027ED	roang

m	\rightarrow	021FE	roarr	m	`	02198	searr
m]	027E7	robrk	m	`	02198	searrow
t	-	02986	ropar	m	§	000A7	sect
t		1D563	ropf	m	;	0003B	semi
t	+)	02A2E	roplus	t	X	02929	seswar
t	×	02A35	rotimes	m	\	02216	setminus
m)	00029	rpar	m	\	02216	setmn
t		02994	rpargt	t		02736	sext
t	j	02A12	rppolint	m	ς	003C2	sfgr
m	$\stackrel{\cdot}{\Rightarrow}$	021C9	rrarr	t	5	1D530	sfr
t	>	0203A	rsaquo	m	_	02322	sfrown
t	r	1D4C7	rscr	m	σ	003C3	sgr
m	 	021B1	rsh	m	#	0266F	sharp
m]	0005D	rsqb	t	Щ	00449	shchcy
t	,	02019	rsquo	t	Ш	00448	shcy
t	,	02019	rsquor	m		02223	shortmid
m	~	022CC	rthree	m		02225	shortparallel
m	\rtimes	022CA	rtimes	t	_	000AD	shy
t	\triangleright	025B9	rtri	m	σ	003C3	sigma
t	⊵	022B5	rtrie	m	ς	003C2	sigmaf
t	•	025B8	rtrif	m	ς	003C2	sigmav
t		029CE	rtriltri	m	~	0223C	sim
t	=	02968	ruluhar	t	÷	02A6A	simdot
t		0211E	rx	m	\simeq	02243	sime
t		0015B	sacute	m	\simeq	02243	simeq
t	,	0201A	sbquo	t	\approx	02A9E	simg
m	\succ	0227B	sc	t	\cong	02AA0	simgE
m	≽	02AB4	scE	t	\approx	02A9D	siml
m	≿≋	02AB8	scap	t	\cong	02A9F	simlE
t		00161	scaron	m	\cong	02246	simne
m	≽	0227D	sccue	t	$\widetilde{+}$	02A24	simplus
m	≥	02AB0	sce	t	~	02972	simrarr
t		0015F	scedil	m	←	02190	slarr
t		0015D	scirc	m	\	02216	smallsetminus
m	≨	02AB6	scnE	t	*	02A33	smashp
m	≿ ≋	02ABA	scnap	t		029E4	smeparsl
m	\succcurlyeq	022E9	scnsim	m		02223	smid
t	}	02A13	scpolint	m	\smile	02323	smile
m	\succeq	0227F	scsim	t	<	02AAA	smt
t	C	00441	scy	t	≤	02AAC	smte
m	•	022C5	sdot	t	≤	02AAC	smtes
m	⊡	022A1	sdotb	t	Ь	0044C	softcy
t	₹	02A66	sdote	m	/	0002F	sol
m	Ø	021D8	seArr	t		029C4	solb
m	5	02925	searhk	t		0233F	solbar

t		1D564	sopf	t	\subseteq	02AC7	subsim
m	^	02660	spades	t	\subseteq	02AD5	subsub
m		02660	spadesuit	t	U	02AD3	subsup
m		02225	spar	m	>	0227B	succ .
m	 П	02293	sqcap	m	≿	02AB8	succapprox
m	П	02293	sqcaps	m	≽	0227D	succcurlyeq
m	Ш	02294	sqcup	m	<u>≻</u>	02AB0	succeq
m	Ш	02294	sqcups	m	≿ ≉	02ABA	succnapprox
m		0228F	sqsub	m	≱	02AB6	succneqq
m	⊑	02291	sqsube	m	<i>≿</i>	022E9	succnsim
m		0228F	sqsubset	m	≿	0227F	succsim
m	⊑	02291	sqsubseteq	m	Σ	02211	sum
m	\Box	02290	sqsup	t		0266A	sung
m	⊒	02292	sqsupe	m	\supset	02283	sup
m	\Box	02290	sqsupset	t	1	000B9	sup1
m	⊒	02292	sqsupseteq	t	2	000B2	sup2
m		025A1	squ	t	3	000B3	sup3
m		025A1	square	m	\supseteq	02AC6	supE
t	•	025AA	squarf	t	⊃	02ABE	supdot
t		025AA	squf	t	$\Rightarrow \in$	02AD8	supdsub
m	\rightarrow	02192	srarr	m	\supseteq	02287	supe
t	s	1D4C8	sscr	t	≐	02AC4	supedot
m	\	02216	ssetmn	t		027C9	suphsol
m	\smile	02323	ssmile	t	$\supset \subset$	02AD7	suphsub
m	*	022C6	sstarf	t	⊋	0297B	suplarr
t		02606	star	t	$\stackrel{x}{\mathrel{\sim}}$	02AC2	supmult
m		02605	starf	m	\supseteq	02ACC	supnE
m	€	003F5	straightepsilon	m	⊋	0228B	supne
		00313	9 .				
m	ф	003D5	straightphi	t	\supseteq	02AC0	supplus
m m	ф -		- ·	t m	⊋ ⊃		
	ф - С	003D5	straightphi			02AC0	supplus
m	-	003D5 000AF	straightphi strns	m	\supset	02AC0 02283	supplus supset
m m		003D5 000AF 02282	straightphi strns sub	m m	⊃ ⊇	02AC0 02283 02287	supplus supset supseteq
m m m		003D5 000AF 02282 02AC5	straightphi strns sub subE	m m m	⊃ ⊇ ⊒	02AC0 02283 02287 02AC6	supplus supset supseteq supseteqq
m m m		003D5 000AF 02282 02AC5 02ABD	straightphi strns sub subE subdot	m m m m		02AC0 02283 02287 02AC6 0228B	supplus supset supseteq supseteqq supsetneq
m m m t		003D5 000AF 02282 02AC5 02ABD 02286	straightphi strns sub subE subdot sube	m m m m		02AC0 02283 02287 02AC6 0228B 02ACC	supplus supset supseteq supseteqq supsetneq supsetneqq
m m t m		003D5 000AF 02282 02AC5 02ABD 02286 02AC3	straightphi strns sub subE subdot sube subedot	m m m m		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8	supplus supset supseteq supsetneq supsetneqq supsetneqq supsim
m m t m t		003D5 000AF 02282 02AC5 02ABD 02286 02AC3 02AC1	straightphi strns sub subE subdot sube subedot subedot	m m m m t		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4	supplus supset supseteq supsetneq supsetneqq supsetneqq supsim supsub
m m t m t		003D5 000AF 02282 02AC5 02ABD 02286 02AC3 02AC1 02ACB	straightphi strns sub subE subdot sube subedot submult subnE	m m m m t t		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4 02AD6	supplus supset supseteq supsetneq supsetneqq supsim supsub supsup
m m t m t		003D5 000AF 02282 02AC5 02ABD 02286 02AC3 02AC1 02ACB 0228A	straightphi strns sub subE subdot sube subedot submult subnE subne subplus subrarr	m m m m t t		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4 02AD6 021D9	supplus supset supseteq supsetneq supsetneqq supsim supsub supsup swArr
m m t m t t m t		003D5 000AF 02282 02AC5 02ABD 02286 02AC1 02ACB 0228A 02ABF 02979 02282	straightphi strns sub subE subdot sube subedot submult subnE subne subplus	m m m t t t		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4 02AD6 021D9 02926	supplus supset supseteq supsetneq supsetneqq supsim supsub supsup swArr swarhk
m m t m t t t		003D5 000AF 02282 02AC5 02ABD 02286 02AC3 02AC1 02ACB 0228A 02ABF 02979 02282	straightphi strns sub subE subdot sube subedot submult subnE subne subplus subrarr subset subseteq	m m m t t t m		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4 02AD6 021D9 02926 02199 02199 0292A	supplus supset supseteq supsetneq supsetneqq supsim supsub supsup swArr swarhk swarr
m m t m t t m t t		003D5 000AF 02282 02AC5 02ABD 02286 02AC1 02ACB 0228A 02ABF 02979 02282 02286 02AC5	straightphi strns sub subE subdot sube subedot submult subnE subne subplus subrarr subset subseteq subseteqq	m m m t t t m m		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4 02AD6 021D9 02926 02199 02199 02199	supplus supset supseteq supsetneq supsetneqq supsim supsub supsub supsup swArr swarhk swarr swarrow
m m t m t t m t t m m m		003D5 000AF 02282 02AC5 02ABD 02286 02AC3 02AC1 02ACB 0228A 02ABF 02979 02282 02286 02AC5 02AC5	straightphi strns sub subE subdot sube subedot submult subnE subne subplus subrarr subset subseteq subseteqq subsetneq	m m m t t t m m		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4 02AD6 021D9 02926 02199 02199 0292A 000DF 02316	supplus supset supseteq supseteqq supsetneqq supsetneqq supsim supsub supsup swArr swarnk swarr swarrow swnwar szlig target
m m m t m t t m m t m m m		003D5 000AF 02282 02AC5 02ABD 02286 02AC1 02ACB 0228A 02ABF 02979 02282 02286 02AC5	straightphi strns sub subE subdot sube subedot submult subnE subne subplus subrarr subset subseteq subseteqq	m m m t t m m m		02AC0 02283 02287 02AC6 0228B 02ACC 02AC8 02AD4 02AD6 021D9 02926 02199 02199 02199	supplus supset supseteq supseteqq supsetneqq supsetneqq supsim supsub supsub supsup swArr swarhk swarr swarrow swnwar szlig

m		023B4	tbrk	t	A		triplus
t		00165	tcaron	t		029CD	trisb
t		00163	tcedil	t	\triangle	02A3B	tritime
t	T	00442	tcy	t		023E2	trpezium
m		020DB	tdot	t	t	1D4C9	tscr
t		02315	telrec	t	Ц	00446	tscy
t	t	1D531	tfr	t	ħ	0045B	tshcy
m	τ	003C4	tgr	t		00167	tstrok
m	÷	02234	there4	m	Ø	0226C	twixt
m	÷	02234	therefore	m	←	0219E	twoheadleftarrow
m	θ	003B8	theta	m	→	021A0	twoheadrightarrow
m	9	003D1	thetasym	m	\uparrow	021D1	uArr
m	9	003D1	thetav	t	11	02963	uHar
m	θ	003B8	thgr	t		003CD	uacgr
m	\approx	02248	thickapprox	t		000FA	uacute
m	~	0223C	thicksim	m	↑	02191	uarr
t		02009	thinsp	t	f y	0045E	ubrcy
m	\approx	02248	thkap	t		0016D	ubreve
m	~	0223C	thksim	t		000FB	ucirc
t		000FE	thorn	t	y	00443	ucy
m	~	002DC	tilde	m	$\uparrow\downarrow$	021C5	udarr
m	×	000D7	times	t		00171	udblac
m	\boxtimes	022A0	timesb	t	11	0296E	udhar
t	\times	02A31	timesbar	t		003B0	udiagr
t	×	02A30	timesd	t		003CB	udigr
m	\iiint	0222D	tint	t	Υ	0297E	ufisht
t	X	02928	toea	t	u	1D532	ufr
m	Т	022A4	top	m	υ	003C5	ugr
t		02336	topbot	t		000F9	ugrave
t	ſ	02AF1	topcir	m	1	021BF	uharl
t		1D565	topf	m	1	021BE	uharr
t	Π	02ADA	topfork	t		02580	uhblk
t	X	02929	tosa	m		0231C	ulcorn
m	"	02034	tprime	m		0231C	ulcorner
t	тм	02122	trade	t		0231C	ulcrop
t	Δ	025B5	triangle	t		025F8	ultri
t	_ ▽	025BF	triangledown	t	V	0016B	umacr
t		025C3	triangleleft	m		0010B	uml
t		023C3	trianglelefteg	t		00073	uogon
	⊴	0225C	triangleq			1D566	•
m			-	t	^		uopf
t	٥ <u>/</u>	025B9	triangleright	m	↑	02191	uparrow
t	<u>⊳</u>	022B5	trianglerighteq	m	‡	02195	updownarrow
t 	<u>^</u>	025EC	tridot	m	1	021BF	upharpoonleft
m	<u></u>	0225C	trie 	m		021BE	upharpoonright
t	Δ	02A3A	triminus	m	+	0228E	uplus

m	υ	003C5	upsi	m		0007C	vert
t		003D2	upsih	t	v	1D533	vfr
m	υ	003C5	upsilon	m	\triangleleft	022B2	vltri
m	† †	021C8	upuparrows	m	\subset	02282	vnsub
m		0231D	urcorn	m	\supset	02283	vnsup
m		0231D	urcorner	t		1D567	vopf
t		0230E	urcrop	m	∞	0221D	vprop
t		0016F	uring	m	\triangleright	022B3	vrtri
t	\triangle	025F9	urtri	t	v	1D4CB	vscr
t	u	1D4CA	uscr	m	≨	02ACB	vsubnE
m		022F0	utdot	m	⊊	0228A	vsubne
t		00169	utilde	m	⊋	02ACC	vsupnE
t	Δ	025B5	utri	m	\supseteq	0228B	vsupne
t	•	025B4	utrif	t		0299A	vzigzag
m	$\uparrow \uparrow$	021C8	uuarr	t		00175	wcirc
t		000FC	uuml	t	\triangle	02A5F	wedbar
t		029A7	uwangle	m	\wedge	02227	wedge
m	\Diamond	021D5	vArr	m	<u>^</u>	02259	wedgeq
t	\perp	02AE8	vBar	m	SO	02118	weierp
t	÷	02AE9	vBarv	t	w	1D534	wfr
m	⊨	022A8	vDash	t		1D568	wopf
t		0299C	vangrt	m	Ø	02118	wp
m	ϵ	003F5	varepsilon	m	}	02240	wr
m	×	003F0	varkappa	m	}	02240	wreath
m	Ø	02205	varnothing	t	w	1D4CC	wscr
m	ф	003D5	varphi	m	\cap	022C2	хсар
m	$\boldsymbol{\varpi}$	003D6	varpi	m	\bigcirc	025EF	xcirc
m	∞	0221D	varpropto	m	\bigcup	022C3	xcup
m	‡	02195	varr	m	∇	025BD	xdtri
t	6	003F1	varrho	t	x	1D535	xfr
m	ς	003C2	varsigma	m	ξ	003BE	xgr
m	⊊	0228A	varsubsetneq	m	\iff	027FA	xhArr
m	≨	02ACB	varsubsetneqq	m	\longleftrightarrow	027F7	xharr
m	\supseteq	0228B	varsupsetneq	m	ξ	003BE	xi
m	⊋	02ACC	varsupsetneqq	m	$ \leftarrow $	027F8	xlArr
m	9	003D1	vartheta	m	←	027F5	xlarr
m	\triangleleft	022B2	vartriangleleft	m	\longmapsto	027FC	xmap
m	\triangleright	022B3	vartriangleright	t	\ni	022FB	xnis
t	В	00432	vcy	m	\odot	02A00	xodot
m	\vdash	022A2	vdash	t		1D569	xopf
m	\vee	02228	vee	m	\oplus	02A01	xoplus
m	V	022BB	veebar	m	\otimes	02A02	xotime
m	$\stackrel{\vee}{=}$	0225A	veeeq	m	\Longrightarrow	027F9	xrArr
m	÷	022EE	vellip	m	\longrightarrow	027F6	xrarr
m		0007C	verbar	t	\boldsymbol{x}	1D4CD	xscr

m		02A06	xsqcup	t		000FF	yuml
m	+	02A04	xuplus	t		0017A	zacute
m	\triangle	025B3	xutri	t		0017E	zcaron
m	\vee	022C1	xvee	t	3	00437	zcy
m	\wedge	022C0	xwedge	t		0017C	zdot
t		000FD	yacute	t	3	02128	zeetrf
t	Я	0044F	yacy	m	ζ	003B6	zeta
t		00177	ycirc	t	3	1D537	zfr
t	Ы	0044B	усу	m	ζ	003B6	zgr
m	¥	000A5	yen	t	Ж	00436	zhcy
t	y	1D536	yfr	m	~~	021DD	zigrarr
t	ï	00457	yicy	t		1D56B	zopf
t		1D56A	yopf	t	z	1D4CF	zscr
t	y	1D4CE	yscr	t		0200D	zwj
t	Ю	0044E	yucy	t		0200C	zwnj

<- 13.2 properties ->

A different way to look at this is UNICODE itself. Here's the list of characters that have a math related property in CONTEXT.

00021	!	close	0003A	:	relation
00022	"	default	0003B	;	punctuation
00023	#	binary	0003C	<	relation
00024	\$	binary	0003D	=	relation
00025	%	binary	0003E	>	relation
00026	&	binary	0003F	?	close
00027	•	default	00041	A	variable
00028	(open	00042	В	variable
00029)	close	00043	C	variable
0002A	*	binary	00044	D	variable
0002B	+	binary	00045	E	variable
0002C	,	punctuation	00046	F	variable
0002E		punctuation	00047	G	variable
0002F	/	middle ordinary	00048	Н	variable
00030	0	number	00049	I	variable
00031	1	number	0004A	J	variable
00032	2	number	0004B	K	variable
00033	3	number	0004C	L	variable
00034	4	number	0004D	M	variable
00035	5	number	0004E	N	variable
00036	6	number	0004F	O	variable
00037	7	number	00050	P	variable
00038	8	number	00051	Q	variable
00039	9	number	00052	R	variable

00053	S	variable	000A8		topaccent
00054	T	variable	000AC	\neg	ordinary
00055	U	variable	000AF	-	topaccent
00056	V	variable	000B1	\pm	binary
00057	\mathbf{W}	variable	000B4	,	topaccent
00058	X	variable	000B6	\P	box
00059	Y	variable	000B7		binary
0005A	Z	variable	000D7	\times	binary
0005B	[open	000F0	ð	ordinary
0005C	\	nothing	000F7	÷	binary
0005D]	close	0019B	χ	variable
0005E	٨	topaccent	002C6	^	topaccent
00060	`	topaccent	002C7	~	topaccent
00061	a	variable	002D8	S	topaccent
00062	b	variable	002D9		topaccent
00063	C	variable	002DA	۰	topaccent
00064	d	variable	002DC	~	topaccent
00065	e	variable	00302	^	topaccent
00066	f	variable	00303	~	topaccent
00067	g	variable	00338	/	relation
00068	h	variable	00391	A	variable
00069	i	variable	00392	В	variable
0006A	j	variable	00393	Γ	variable
0006B	k	variable	00394	Δ	variable
0006C	l	variable	00395	E	variable
0006D	m	variable	00396	Z	variable
0006E	n	variable	00397	Н	variable
0006F	0	variable	00398	Θ	variable
00070	p	variable	00399	I	variable
00071	q	variable	0039A	K	variable
00072	r	variable	0039B	Λ	variable
00073	S	variable	0039C	M	variable
00074	t	variable	0039D	N	variable
00075	u	variable	0039E	Ξ	variable
00076	\mathbf{V}	variable	0039F	O	variable
00077	W	variable	003A0	П	variable
00078	X	variable	003A1	P	variable
00079	У	variable	003A3	Σ	variable
0007A	Z	variable	003A4	T	variable
0007B	{	open	003A5	Υ	variable
0007C		close delimiter nothing open	003A6	Φ	variable
		relation	003A7	X	variable
0007D	}	close	003A8	Ψ	variable
000A5	¥	nothing	003A9	Ω	variable
000A7	§	box	003B1	α	variable

003B2	β	variable	02063		binary
003B3	γ	variable	0207A	+	binary
003B4	δ	variable	0207B	-	binary
003B5	3	variable	020D7	→	topaccent
003B6	ζ	variable	020DB		topaccent
003B7	η	variable	020DD		binary default
003B8	θ	variable	020DE		default
003B9	ι	variable	020DF		default
003BA	К	variable	020E7	\neg	topaccent
003BB	λ	variable	020E9		topaccent
003BC	μ	variable	02102	\mathbb{C}	variable
003BD	ν	variable	02107	3	variable
003BE	ξ	variable	0210E	h	variable
003BF	0	variable	0210F	ħ	ordinary variable
003C0	π	variable	02111	I	default
003C1	ρ	variable	02113	ℓ	default
003C2	ς	variable	02115	N	variable
003C3	σ	variable	02118	SO	default
003C4	τ	variable	02119	P	variable
003C5	υ	variable	0211A	$\mathbb Q$	variable
003C6	φ	variable	0211C	\mathfrak{R}	default
003C7	χ	variable	0211D	\mathbb{R}	variable
003C8	Ψ	variable	02124	\mathbb{Z}	variable
003C9	ω	variable	02126		variable
003D1	9	variable	02127	Ω	variable
003D5	ф	variable	02129	ı	variable
003D6	$\overline{\omega}$	variable	0212B	Å	variable
003DC	F	variable	02132	Ⅎ	ordinary
003F0	×	ordinary	02135	ĸ	default
003F5	ϵ	variable	02136	ב	default
003F6		variable	02137	λ	default
02016		close delimiter nothing open	02138	٦	default
02020	†	binary box	02141		ordinary
02021	‡	binary box	02142		ordinary
02022	•	binary	02143		ordinary
02026		inner	02144		ordinary
02032	′	nothing	02145		nothing
02033	″	nothing	02146		nothing
02034	///	nothing	02147		nothing
02035	١	nothing	02148		nothing
02036	11	nothing	02149		nothing
02037	***	nothing	0214A		ordinary
0203E		over under	0214B	38	binary
02044	/	close ordinary	02190	←	over relation under
02057	////	nothing	02191	↑	relation

02192	\rightarrow	over relation under	021BF	1	relation
02193	\downarrow	relation	021C0	_	relation
02194	\longleftrightarrow	relation	021C1	~	relation
02195	‡	relation	021C2	ļ	relation
02196	*	relation	021C3	1	relation
02197	1	relation	021C4	$\stackrel{\textstyle \rightarrow}{\leftarrow}$	relation
02198	7	relation	021C5	↑↓	relation
02199	₹	relation	021C6	$\stackrel{\longleftarrow}{\rightarrow}$	relation
0219A	<!--</del-->	relation	021C7	\(\tau \)	relation
0219B	→	relation	021C8	↑ ↑	relation
0219C	k ∽	relation	021C9	\Rightarrow	relation
0219D	~⁴	relation	021CA	$\downarrow\downarrow$	relation
0219E	←	relation	021CB	=	relation
0219F	†	relation	021CC	=	relation
021A0	→	relation	021CD	#	relation
021A1	*	relation	021CE	#	relation
021A2	←<	relation	021CF	#	relation
021A3	\rightarrow	relation	021D0	←	relation
021A4	\leftarrow	relation	021D1	\uparrow	relation
021A5	1	relation	021D2	\Rightarrow	relation
021A6	\mapsto	relation	021D3	\Downarrow	relation
021A7	Ţ	relation	021D4	\Leftrightarrow	relation
021A8	<u>‡</u>	ordinary	021D5	1	relation
021A9	←	relation	021D6	4	relation
021AA	\hookrightarrow	relation	021D7	7	relation
021AB	← ₽	relation	021D8	Ø	relation
021AC	↔	relation	021D9	<u>U</u>	relation
021AD	*	relation	021DA	\	relation
021AE	<!--</del-->→	relation	021DB	\Rightarrow	relation
021AF		relation	021DC	* ~~	relation
021B0	1	relation	021DD	~~	relation
021B1	 	relation	021DE	‡	relation
021B2	4	relation	021DF	‡	relation
021B3	L,	relation	021E0	∢ ····	relation
021B4	↴	ordinary	021E1	↑	relation
021B5	\downarrow	ordinary	021E2	>	relation
021B6	~	relation	021E3	.	relation
021B7	\sim	relation	021E4	ı←	relation
021B8	<u> </u>	relation	021E5	→ I	relation
021B9	← →	relation	021E6		ordinary
021BA	Ů	relation	021E7	Û	ordinary
021BB	U	relation	021E8	⇔	ordinary
021BC	_	relation	021E9	Û	ordinary
021BD	_	relation	021EB	î	ordinary
021BE	1	relation	021EB	->>	relation
V			V		· CIUCIOII

02155	1.4		02220	0	la 2 a
021F5	↓ ↑	relation	02229	\cap	binary
021F6	⇉	relation relation	0222A 0222B	∪ ∫	binary
021F7	→→	relation relation		•	limop nothing
021F8	<+	relation relation	0222C 0222D	ΩΩ	limop nothing
021F9	↔→	relation relation	0222D 0222E	∰ ∭	limop nothing
021FA	-11>			ը. ∳	limop
021FB	< 	relation	0222F	ιπι ∯	limop
021FC	< >	relation	02230	∰	limop
021FD	←	relation	02231	∱	limop
021FE	→	relation	02232	∳ (limop
021FF	↔	relation	02233	∳	limop
02200	A	ordinary	02234	÷	relation
02201	C	ordinary	02235		relation
02202	9	default	02236	:	punctuation
02203	3	ordinary	02237	::	relation
02204	∄	ordinary	02238	÷	binary
02205	Ø	default	02239	- :	relation
02207	∇	default	0223C	~	relation
02208	\in	relation	0223D	~	relation
02209	∉	relation	02240	l	binary
0220B	\ni	relation	02241	4	relation
0220C	∌	relation	02242	$\overline{\sim}$	relation
0220F	П	limop	02243	\simeq	relation
02210	Ц	limop	02244	≄	relation
02211	\sum	limop	02245	\cong	relation
02212	-	binary relation	02246	\cong	relation
02213	=	binary	02247	≇	relation
02214	÷	binary	02248	\approx	relation
02216	\	binary	02249	≉	relation
02217	*	binary	0224A	\approx	relation
02218	0	binary	0224C	≅	relation
02219	•	binary	0224D	\simeq	relation
0221A		ordinary radical root	0224E	≎	relation
0221D	∞	relation	02250	÷	relation
0221E	∞	default	02251	÷	relation
0221F	L	ordinary	02252	≒	relation
02220	_	ordinary	02253	=	relation
02221	4	ordinary	02254	:=	relation
02222	≮	ordinary	02255	=:	relation
02223		binary	02256	<u> </u>	relation
02224	†	binary relation	02257	<u>•</u>	relation
02225		relation	02259	<u>^</u>	relation
02226	#	relation	0225A	$\underline{\underline{\vee}}$	relation
02227	\wedge	binary	0225B	<u>*</u>	relation
02228	V	binary	0225C	<u></u>	relation

0225D	<u>def</u>	relation	0228A	⊊	relation
0225E	<u>m</u>	relation	0228B	⊋	relation
0225F	<u>?</u>	relation	0228E	+	binary
02260	#	relation	0228F		relation
02261	≡	relation	02290	\supset	relation
02262	≢	relation	02291		binary
02263	≣	relation	02292	⊒	binary
02264	\leq	relation	02293	П	binary
02265	\geq	relation	02294	\sqcup	binary
02266	≦	relation	02295	\oplus	binary
02267	\geq	relation	02296	Θ	binary
02268	≨	relation	02297	\otimes	binary
02269	≩	relation	02298	\oslash	binary
0226A	~	relation	02299	\odot	binary
0226B	\gg	relation	0229A	0	binary
0226C	Ø	relation	0229B	*	binary
0226D	*	relation	0229C		binary
0226E	≮	relation	0229D	Θ	binary
0226F	>	relation	0229E	\blacksquare	binary
02270	≰	relation	0229F	\Box	binary
02271	≱	relation	022A0	\boxtimes	binary
02272	≲	relation	022A1	⊡	binary
02273	\gtrsim	relation	022A2	\vdash	relation
02274	≴	relation	022A3	\dashv	relation
02275	≵	relation	022A4	Т	default
02276	≶	relation	022A5	\perp	default relation
02277	≷	relation	022A7	þ	relation
02278	≸	relation	022A8	⊨	relation
02279	≹	relation	022A9	⊩	relation
0227A	\prec	relation	022AA	II⊢	relation
0227B	\succ	relation	022AB	⊫	relation
0227C	\preccurlyeq	relation	022AC	\vdash	relation
0227D	≽	relation	022AD	¥	relation
0227E	\preceq	relation	022AE	l⊬	relation
0227F	\succeq	relation	022AF	ı⊭	relation
02280	\prec	relation	022B2	\triangleleft	binary
02281	*	relation	022B3	\triangleright	binary
02282	\subset	relation	022B8	-0	relation
02283	\supset	relation	022BA	Τ	binary
02284	otin	relation	022BB	$\underline{\vee}$	binary
02285	$\not\supset$	relation	022BC	$\overline{\wedge}$	binary
02286	\subseteq	relation	022C0	\wedge	limop
02287	\supseteq	relation	022C1	\bigvee	limop
02288	⊈	relation	022C2	\cap	limop
02289	⊉	relation	022C3	\bigcup	limop

022C4	\Diamond	binary	02308	ſ	open
022C5		binary punctuation	02309	1	close
022C6	*	binary	0230A	ί	open
022C7	*	binary	0230R	ļ	close
022C8	\bowtie	relation	0230B 0231C	J	open
022C9	×	binary	0231D		close
022CA	×	binary	0231E		open
022CB	λ	binary	0231E		close
022CC	<i>/</i>	binary	02322	_	relation
022CE	Υ	binary	02323	\smile	relation
022CF	人	binary	023B0		open
022D0	<u> </u>	relation	023B1		close
022D1	∍	relation	023B4		topaccent
022D2		binary	023B5		botaccent
022D3	U	binary	023DC	$\widehat{}$	topaccent
022D4	ф	relation	023DD		botaccent
022D6	<	binary	023DE	\asymp	topaccent
022D7	> >	binary	023DF		botaccent
022D8	<i></i>	relation	023E0	<i>ن</i> ب	topaccent
022D9	>>>	relation	023E1		botaccent
022DA		relation	024C7		ordinary
022DB	VI>	relation	024C8	(\$)	ordinary
022DC	< <	relation	025A0		ordinary
022DD	>	relation	025A1		ordinary
022DE	*	relation	025A2		ordinary
022DF	>	relation	025B2	<u> </u>	binary
022E0	≰	relation	025B3	<u> </u>	binary ordinary
022E1	*	relation	025B6	•	binary
022E2	⊭	relation	025B7	\triangleright	binary
022E3	≠	relation	025BC	▼	binary
022E4	+ F	relation	025BD	∇	binary
022E5	<i>∓</i> ⊋	relation	025C0	•	binary
022E6	, ≨	relation	025C1	\triangleleft	binary
022E7	⋧	relation	025CA	\Diamond	ordinary
022E8	<i>x</i>	relation	025EF		binary
022E9	≿	relation	02605		ordinary
022EA	<i>A</i>	relation	02660	^	default
022EB	≯	relation	02661		default
022EC	⊉	relation	02662		default
022ED	⊭	relation	02663	.	default
022EE	:	inner	02666	*	ordinary
022EF		inner	0266D	Ь	default
022F0		inner	0266E	4	default
022F1	٠.	inner	0266F	#	default
02300		ord	02713	✓	nothing
					3

02720	¥	nothing	02A74	:: =	relation
027E6		open	02A7D	\leq	relation
027E7		close	02A7E	\geqslant	relation
027E8	<	open	02A85	≨	relation
027E9	>	close	02A86	≋	relation
027EA		open	02A87	≨	relation
027EB		close	02A88	≥	relation
027EE		open	02A89	≨	relation
027EF		close	02A8A	≩	relation
027F5	←	relation	02A8B	V≝ VIIV VIIA	relation
027F6	\longrightarrow	relation	02A8C	\geq	relation
027F7	\longleftrightarrow	relation	02A95	\leq	relation
027F8	\Leftarrow	relation	02A96	≽	relation
027F9	\Longrightarrow	relation	02AAF	\leq	relation
027FA	\iff	relation	02AB0	\succeq	relation
027FB	\leftarrow	relation	02AB1	\preceq	relation
027FC	\longmapsto	relation	02AB2	≽	relation
027FD	\iff	relation	02AB3	\leq	relation
027FE	\Longrightarrow	relation	02AB4	*Y	relation
027FF	***	relation	02AB5	≨	relation
02906	\rightleftarrows	relation	02AB6	≩	relation
02907	\Rightarrow	relation	02AB7	≨	relation
0290A	⇑	relation	02AB8	≿	relation
0290B	₩	relation	02AB9	≨	relation
0290C	← -	relation	02ABA	≽	relation
0290D	-→	relation	02AC5	\subseteq	relation
02911	>	relation	02AC6	\supseteq	relation
02916	>>>	relation	02ACB	≨	relation
02917	>+>>	relation	02ACC	⊋	relation
02921	\	relation	12035		ordinary
02922	1	relation	1D6A4	ı	default
02923	5	relation	1D6A5	J	default
02924	7	relation	1D6FB	∇	default
02925	5	relation	1D717	$\boldsymbol{\vartheta}$	default
02926	2	relation	1D718	×	default
02980		delimiter	1D71A	ϱ	variable
02A00	\odot	limop	FE302	^	topaccent
02A01	\oplus	limop	FE303	~	topaccent
02A02	\otimes	limop	FE321		relation
02A03	$\overline{\cup}$	limop	FE322		relation
02A04	+	limop	FE323		relation
02A05	\prod	limop	FE324		relation
02A06	Ш	limop	FE350	_	relation
02A09	X	limop	FE351	=	relation
02A3F	П	binary	FE352	_ <u>→</u>	relation
	_	··· ,		_	2.22.011

FE3B4		topaccent	FE3DE	~~	topaccent
FE3B5		botaccent	FE3DF	بہا	botaccent
FE3DC	^	topaccent	FE940	Ä	topaccent
FE3DD		botaccent			

<- 13.3 alphabets ->

Traditionally (in T_EX) one enters ASCII characters to represent identifiers and use a font switch to get for instance a bold rendering. In UNICODE it is more natural to use code points that represent the meaning. So, instead if enterinf

So instead of keying in byte U+0058 for a bold x one will use an UTF sequence representing U+1D431. Because there are not than many editors that show all those UNICODE characters it still makes sense to use regular latin and greek alphabets combined with directives that tell what real alphabet is used. For CONTEXT it does not matter what approach is chosen: both work ok and internally characters are mapped onto the right slot. When a font does not provide a shape a fallback is chosen. Technically one can construct a complete math font by combining all kind of fonts, but this is normally not needed.

Here we show the combinations of styles and alternatives. Not all combinations are present in UNICODE. Actually, as UNICODE math is rather agnostic of cultural determined math rendering, at some point CONTEXT could provide more.² Also, modern OPENTYPE fonts can have alternatives, for instance variants of script, blackboard or fraktur. This is not related to UNICODE and it makes no sense to encode that in MATHML, but a setup of the rendering.

regular normal	0123456789	00034 - 00035
regular normal	<u>αβγδεζηθικλμνξοπρςστυ</u> φχψ <u>ωθ</u> φ <u></u> ωχ <u>ο?ε</u>	00039 - 00031
regular normal	a <u>bcdefghijklmnopqrstuvwxyz</u>	00039 - 00031
regular normal	<u>ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ</u>	00039 - 00039
regular normal	$\underline{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$	00036 - 00039
	0123456789	1D7CE - 1D7D7
	αβγδεζηθικλμνξοπρςστυφχψωθφ ω χο?ε	1D6C2 - 1D6DC
	abcdefghijklmnopqrstuvwxyz	1D41A - 1D433
	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ	1D6A8 - 1D6C0
	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D400 - 1D419
	0123456789	00034 - 00035
	αβγδεζηθικλμνξοπρςστυφχψω ϑ φ \overline{w} χ ϱ ? ϵ	1D6FC - 1D716
	abcdefghijklmnopqrstuvwxyz	1D44E - 1D467
	$AB\Gamma\Delta EZH\Theta IK\Lambda MN\Xi O\Pi P\Sigma T\Upsilon\Phi X\Psi\Omega$	1D6E2 - 1D6FA
	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D434 - 1D44D
	0123456789	1D7CE - 1D7D7
	αβγδεζηθικλμνξοπρςστυφχψωθφ ω χο?ε	1D736 - 1D750
	abcdefghijklmnopqrstuvwxyz	1D482 - 1D49B
	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ	1D71C - 1D734
	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D468 - 1D481
sansserif normal	0123456789	1D7E2 - 1D7EB

² An example is the German handwriting style Suetterlin that is still used for vectors.

sansserif nor	mal α	<u>βγδεζηθικλμνξοπρςστυφχψωθφωχο?ε</u>	00039 - 00031
sansserif nor	mal ab	ocdefghijklmnopqrstuvwxyz	1D5BA - 1D5D3
sansserif nor	mal $\underline{\mathbf{A}}$	<u>ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ</u>	00039 - 00039
sansserif nor	mal AE	BCDEFGHIJKLMNOPQRSTUVWXYZ	1D5A0 - 1D5B9
	01	123456789	1D7EC - 1D7F5
	α	βγδεζηθικλμνξοπρςστυφχψωθφ ω χو?ε	1D770 - 1D78A
	ab	ocdefghijklmnopqrstuvwxyz	1D5EE - 1D607
	A	ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ	1D756 - 1D76E
	Αŀ	BCDEFGHIJKLMNOPQRSTUVWXYZ	1D5D4 - 1D5ED
	<u>0</u> <u>1</u>	<u>123456789</u>	00034 - 00035
	α	<u>βγδεζηθικλμνξοπρςστυφχψωθφωχε?ε</u>	00039 - 00031
		ocdef ghi j klmnop qr stuv w x y z	1D622 - 1D63B
	<u>A</u>	<u>ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ</u>	00039 - 00039
		BCDEFGHIJKLMNOPQRSTUVWXYZ	1D608 - 1D621
	01	123456789	1D7EC - 1D7F5
	α	βγδεζηθικλμνξοπρςστυφχψωθφϖχε?ε	1D7AA - 1D7C4
	al	bcdef ghijk Imnop grstuv w x y z	1D656 - 1D66F
	Al	ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ	1D790 - 1D7A8
	Al	BCDEFGHIJKLMNOPQRSTUVWXYZ	1D63C - 1D655
monospaced no	rmal 01	123456789	1D7F6 - 1D7FF
monospaced no	rmal α	βγ <u>δεζηθικλμν</u> ξ <u>οπρςστυφχψωθφωχο?ε</u>	00039 - 00031
monospaced no	-	ocdefghijklmnopqrstuvwxyz	1D68A - 1D6A3
monospaced no	rmal $\underline{\mathbf{A}}$	<u>ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ</u>	00039 - 00039
monospaced no	rmal AI	BCDEFGHIJKLMNOPQRSTUVWXYZ	1D670 - 1D689
	01	123456789	1D7EC - 1D7F5
	α	βγδεζηθικλμνξοπρςστυφχψωθφ ω χو?ε	1D770 - 1D78A
	ab	ocdefghijklmnopqrstuvwxyz	1D5EE - 1D607
	ΑI	ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ	1D756 - 1D76E
	ΑI	BCDEFGHIJKLMNOPQRSTUVWXYZ	1D5D4 - 1D5ED
	<u>0</u> <u>1</u>	<u>123456789</u>	00034 - 00035
	α	<u>βγδεζηθικλμνξοπρςστυφχψωθφωχε?ε</u>	00039 - 00031
	ak	ocdef ghi jklmnopqrstuvwxyz	1D622 - 1D63B
	<u>A</u>	<u>ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ</u>	00039 - 00039
	Al	BCDEFGHIJKLMNOPQRSTUVWXYZ	1D608 - 1D621
	01	123456789	1D7EC - 1D7F5
	α	βγδεζηθικλμνξοπρςστυφχψωθφϖχε?ε	1D7AA - 1D7C4
	al	bcdef ghijklmnopqrstuvwxyz	1D656 - 1D66F
	Al	ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ	1D790 - 1D7A8
	Al	BCDEFGHIJKLMNOPQRSTUVWXYZ	1D63C - 1D655
fraktur norma	1 <u>0</u> <u>1</u>	<u>123456789</u>	00034 - 00035
fraktur norma	1 <u>α</u>	<u>βγδεζηθικλμνξοπρςστυφχψωθφωκ</u> <u>ς</u> ?ε	00039 - 00031
fraktur norma	1 ab	cdefghíjklmnopgrstuvwxyz	1D51E - 1D537
fraktur norma	1 <u>A</u>	<u>ΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ</u>	00039 - 00039
fraktur norma	1 242	3CDE56BIJRLMNOPQRSTUVWXY3	1D504 - 02128
	<u>0</u> <u>1</u>	<u>123456789</u>	00034 - 00035

		00020 00021
	<u>αβγδεζηθικλμνξοπρςστυφχψωθφωκε?ε</u>	00039 - 00031
	abcdefghijklimnopgrstuvwxyz	1D51E - 1D537
	$\underline{A}\underline{B}\underline{\Gamma}\underline{\Delta}\underline{E}\underline{Z}\underline{H}\underline{\Theta}\underline{I}\underline{K}\underline{\Lambda}\underline{M}\underline{N}\underline{\Xi}\underline{O}\underline{\Pi}\underline{P}\underline{\Sigma}\underline{T}\underline{Y}\underline{\Phi}\underline{X}\underline{\Psi}\underline{\Omega}$	00039 - 00039
	ABCDESGOJALMIOPQRSTUVWXY3	1D504 - 02128
	0123456789	00034 - 00035
	<u>αβγδεζηθικλμνξοπρςστυφχψωθφωκε?ε</u>	00039 - 00031
	abcdefghijklmnopgrstuvwxyz	1D51E - 1D537
	$\underline{A}\underline{B}\underline{\Gamma}\underline{\Delta}\underline{E}\underline{Z}\underline{H}\underline{\Theta}\underline{I}\underline{K}\underline{\Lambda}\underline{M}\underline{N}\underline{\Xi}\underline{O}\underline{\Pi}\underline{P}\underline{\Sigma}\underline{T}\underline{Y}\underline{\Phi}\underline{X}\underline{\Psi}\underline{\Omega}$	00039 - 00039
	ABCDEF66IJKLMNOPQRSTUVWXY3	1D504 - 02128
	0123456789	00034 - 00035
	<u>αβγδεζηθικλμνξοπρςστυφχψωθφωκ</u> <u>ε</u> ?ε	00039 - 00031
	abcdefghijklmnopgrstuvwxyz	1D51E - 1D537
	<u>ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ</u>	00039 - 00039
	ABCD&f663JkLWNOPQRSTUVWXY3	1D504 - 02128
script normal	0123456789	00034 - 00035
script normal	<u>αβγδεζηθικλμνξοπρςστυ</u> φχψ <u>ωθ</u> φ <u>ω</u> χ <u>ε?ε</u>	00039 - 00031
script normal	abcdef ghijkl mnopgrstuvwxyz	1D4B6 - 1D4CF
script normal	$\underline{AB\Gamma\Delta EZH\Theta IK\Lambda MN\Xi O\Pi P\Sigma TY\Phi X\Psi\Omega}$	00039 - 00039
script normal	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D49C - 1D4B5
	0123456789	00034 - 00035
	<u>αβγδεζηθικλμνξοπρςστυφχψωθφωκε?ε</u>	00039 - 00031
	abcdef ghi jkl mnopqrstuvwxyz	1D4B6 - 1D4CF
	$\frac{AB\Gamma\Delta EZH\Theta IK\Lambda MN\Xi O\Pi P\Sigma TY\Phi X\Psi\Omega}{AB\Gamma\Delta EZH\Theta IK\Lambda MN\Xi O\Pi P\Sigma TY\Phi X\Psi\Omega}$	00039 - 00039
	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D49C - 1D4B5
	0123456789	00034 - 00035
	<u>αβγδεζηθικλμνξοπρςστυ</u> φχψ <u>ωθ</u> φ <u>ω</u> κ <u>ρ?ε</u>	00031 - 00031
	abcdefghijklmnopqrstuvwxyz	1D4B6 - 1D4CF
	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ	00039 - 00039
	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D49C - 1D4B5
	0123456789	00034 - 00035
	αβγδεζηθικλμνξοπρςστυφχψωθφωχε?ε	00039 - 00031
	abcdef ghi jkl mnopgrstuvwxyz	1D4B6 - 1D4CF
	$\underline{\mathbf{A}}\underline{\mathbf{B}}\underline{\Gamma}\underline{\Delta}\underline{\mathbf{E}}\underline{\mathbf{Z}}\underline{\mathbf{H}}\underline{\Theta}\underline{\mathbf{I}}\underline{\mathbf{K}}\underline{\Lambda}\underline{\mathbf{M}}\underline{\mathbf{N}}\underline{\mathbf{E}}\underline{O}\underline{\mathbf{\Pi}}\underline{\mathbf{P}}\underline{\Sigma}\underline{\mathbf{T}}\underline{\mathbf{Y}}\underline{\Phi}\underline{\mathbf{X}}\underline{\Psi}\underline{\Omega}$	00039 - 00039
	ABCDEFGHIJKLMNOPLRSTUVWXYZ	1D49C - 1D4B5
blackboard normal	?????????	1D7D8 - 1D7E1
blackboard normal	<u>αβ?δεζηθικλμνξο?ρςστυφχψωθφωχο?ε</u>	00039 - 00031
blackboard normal	????????k????????????	1D552 - 1D56B
blackboard normal	$\underline{A}\underline{B}?\underline{\Delta}\underline{E}\underline{Z}\underline{H}\underline{\Theta}\underline{I}\underline{K}\underline{\Lambda}\underline{M}\underline{N}\underline{\Xi}\underline{O}?\underline{P}\underline{\Sigma}\underline{T}\underline{Y}\underline{\Phi}\underline{X}\underline{\Psi}\underline{\Omega}$	00039 - 00039
blackboard normal	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D538 - 02124
	?????????	1D7D8 - 1D7E1
	<u>αβ?δεζηθικλμνξο?ρςστυφχψωθφωχε?ε</u>	00039 - 00031
	????????k????????????	1D552 - 1D56B
	$\underline{A}\underline{B}?\underline{\Delta}\underline{E}\underline{Z}\underline{H}\underline{\Theta}\underline{I}\underline{K}\underline{\Lambda}\underline{M}\underline{N}\underline{\Xi}\underline{O}?\underline{P}\underline{\Sigma}\underline{T}\underline{\Upsilon}\underline{\Phi}\underline{X}\underline{\Psi}\underline{\Omega}$	00039 - 00039
	ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D538 - 02124
	?????????	1D7D8 - 1D7E1

<u>αβ?δεζηθικλμν</u> ξ <u>ο</u> ?ρς <u>στυ</u> φχψ <u>ωθ</u> φ <u>ω</u> χ <u>ο?ε</u>	00039 - 00031
????????k????????????	1D552 - 1D56B
$\underline{AB}?\underline{\Delta EZH\ThetaIK\Lambda MN\XiO}?\underline{P\SigmaT\Upsilon\Phi X\Psi\Omega}$	00039 - 00039
ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D538 - 02124
?????????	1D7D8 - 1D7E1
<u>αβ?δεζηθικλμν</u> ξ <u>ο</u> ?ρς <u>στυ</u> φχψ <u>ωθ</u> φ <u></u> ωχ <u>ο</u> ?ε	00039 - 00031
????????\k???????????	1D552 - 1D56B
$\underline{AB}?\underline{\Delta EZH\ThetaIK\Lambda MN\XiO}?\underline{P\SigmaT\Upsilon\Phi X\Psi\Omega}$	00039 - 00039
ABCDEFGHIJKLMNOPQRSTUVWXYZ	1D538 - 02124

<- 13.4 scripts ->

Glyphs (traditionally) come in three sizes. The script and scriptscript sizes can be downscaled from text size but most math fonts have additional glyphs tuned for smaller sizes. The next table shows some of this.

```
00061 a
                                             \chi^a = \chi^a
000AA a
                               x^a = x^a
                                                          feminine ordinal indicator
                               x^2 = x^2
                                             x^2 = x^2
              00032
000B2
                                                           superscript two
                               x^3 = x^3
                                             x^3 = x^3
000B3
              00033
                                                          superscript three
                               \mathbf{x}^1 = \mathbf{x}^1
              00031
                         1
                                             \chi^{1} = \chi^{1}
000B9
                                                          superscript one
                               \mathbf{x}^{\mathrm{o}} = \mathbf{x}^{\mathrm{o}}
                                             \chi^o = \chi^o
000BA
              0006F
                                                           masculine ordinal indicator
                               x^h = x^h
                                             \chi^h = \chi^h
002B0
              00068
                                                          modifier letter small h
                               x^? = x^?
                                             x^{?} = x^{?}
002B1
              00266
                                                          modifier letter small h with hook
                                x^j = x^j
                                             \chi^j = \chi^j
002B2
              0006A
                                                          modifier letter small j
                               \mathbf{x}^{\mathbf{r}} = \mathbf{x}^{\mathbf{r}}
                                             \chi^r = \chi^r
002B3
              00072
                                                          modifier letter small r
                               x^? = x^?
                                             \chi^? = \chi^?
002B4
              00279
                                                          modifier letter small turned r
                               x^? = x^?
                                             x^{?} = x^{?}
002B5
              0027B
                                                          modifier letter small turned r with hook
                                x^? = x^?
002B6
              00281
                                             \chi^? = \chi^?
                                                          modifier letter small capital inverted r
                               x^W = x^W
                                            \chi^w = \chi^w
002B7
              00077
                                                          modifier letter small w
                               x^y = x^y
                                             \chi^y = \chi^y
002B8
              00079
                                                          modifier letter small y
                                             x^{?} = x^{?}
                               x^? = x^?
002E0
              00263
                                                          modifier letter small gamma
                                x^l = x^l
                                             x^l = x^l
002E1
              0006C
                                                          modifier letter small l
                                             \chi^s = \chi^s
                               x^s = x^s
                                                          modifier letter small s
002E2
              00073
                                             \chi^{\chi} = \chi^{\chi}
002E3
              00078
                               \mathbf{x}^{\mathbf{x}} = \mathbf{x}^{\mathbf{x}}
                                                          modifier letter small x
                               x^? = x^?
                                             \chi^? = \chi^?
002E4
              00295
                                                          modifier letter small reversed glottal stop
                                \mathbf{x}^? = \mathbf{x}^?
                                             \chi^? = \chi^?
010FC
              010DC
                                                          modifier letter georgian nar
                               x^A = x^A
                                             \chi^A = \chi^A
01D2C
              00041
                                                          modifier letter capital a
                               x^? = x^?
                                             \chi^? = \chi^?
01D2D
              000C6
                                                          modifier letter capital ae
                               x^B = x^B
                                             \chi^B = \chi^B
01D2E
              00042
                          В
                                                          modifier letter capital b
                              \mathbf{x}^{\mathrm{D}} = \mathbf{x}^{\mathrm{D}}
                                             \chi^D = \chi^D
              00044
                         D
                                                          modifier letter capital d
01D30
                                             \chi^E = \chi^E
                               x^E = x^E
                                                          modifier letter capital e
01D31
               00045
                               x^? = x^?
                                             x^{?} = x^{?}
01D32
              0018E
                                                          modifier letter capital reversed e
                             \mathbf{x}^{\mathrm{G}} = \mathbf{x}^{\mathrm{G}}
                                             \chi^G = \chi^G
01D33
              00047
                         G
                                                          modifier letter capital g
                              \mathbf{x}^{\mathrm{H}} = \mathbf{x}^{\mathrm{H}}
                                            \chi^H = \chi^H
01D34
              00048
                         Η
                                                          modifier letter capital h
                                x^{I} = x^{I}
                                             \chi^I = \chi^I
01D35
              00049
                                                           modifier letter capital i
```

```
x^{J} = x^{J}
                                             \chi^J = \chi^J
                                                          modifier letter capital j
01D36
              0004A
                         J
                               x^K = x^K
                                            x^K = x^K
                        K
01D37
              0004B
                                                          modifier letter capital k
                               \mathbf{x}^{L} = \mathbf{x}^{L}
                                             \chi^L = \chi^L
                        L
01D38
              0004C
                                                          modifier letter capital l
                              x^M = x^M
                                            \chi^M = \chi^M
              0004D
                        M
                                                          modifier letter capital m
01D39
                               x^N = x^N
                                            \chi^N = \chi^N
              0004E
                         N
                                                          modifier letter capital n
01D3A
                               \mathbf{x}^{\mathrm{O}} = \mathbf{x}^{\mathrm{O}}
                                            \chi^O = \chi^O
01D3C
              0004F
                         0
                                                          modifier letter capital o
01D3D
              00222
                               x^? = x^?
                                             x^{?} = x^{?}
                                                          modifier letter capital ou
                               x^P = x^P
                                             \chi^P = \chi^P
              00050
                         P
                                                          modifier letter capital p
01D3E
                               x^R = x^R
                                             \chi^R = \chi^R
                         R
01D3F
              00052
                                                          modifier letter capital r
                               \mathbf{x}^{\mathrm{T}} = \mathbf{x}^{\mathrm{T}}
                                            \chi^T = \chi^T
01D40
              00054
                         Τ
                                                          modifier letter capital t
                               x^U = x^U
                                            \chi^U = \chi^U
01D41
              00055
                         U
                                                          modifier letter capital u
                              \boldsymbol{x}^{W} = \boldsymbol{x}^{W}
                                            \chi^W = \chi^W
01D42
              00057
                         W
                                                          modifier letter capital w
                               x^a = x^a
                                             x^a = x^a
01D43
              00061
                                                          modifier letter small a
                               x^? = x^?
                                             \chi^? = \chi^?
01D44
              00250
                                                          modifier letter small turned a
                                x^? = x^?
                                             \chi^? = \chi^?
01D45
              00251
                                                          modifier letter small alpha
                               x^? = x^?
                                             x^{?} = x^{?}
              01D02
                                                          modifier letter small turned ae
01D46
                               x^b = x^b
                                             \chi^b = \chi^b
01D47
              00062
                         b
                                                          modifier letter small b
                               x^d = x^d
                                             x^d = x^d
01D48
              00064
                         d
                                                          modifier letter small d
                               x^e = x^e
                                             \chi^e = \chi^e
              00065
                          e
                                                          modifier letter small e
01D49
                               x^? = x^?
                                             \chi^? = \chi^?
01D4A
              00259
                                                          modifier letter small schwa
              0025B
                               x^? = x^?
                                             \chi^? = \chi^?
                                                          modifier letter small open e
01D4B
                               x^? = x^?
                                             \chi^? = \chi^?
              0025C
                                                          modifier letter small turned open e
01D4C
                               \mathbf{x}^{\mathbf{g}} = \mathbf{x}^{\mathbf{g}}
                                             \chi^g = \chi^g
01D4D
              00067
                                                          modifier letter small g
                         k
                               x^k = x^k
                                             \chi^k = \chi^k
01D4F
              0006B
                                                          modifier letter small k
                         m 	 x^m = x^m
                                            \chi^m = \chi^m
01D50
              0006D
                                                          modifier letter small m
                               x^? = x^?
                                             \chi^? = \chi^?
01D51
              0014B
                         ŋ
                                                          modifier letter small eng
                               x^0 = x^0
                                             \chi^o = \chi^o
              0006F
                                                          modifier letter small o
01D52
01D53
              00254
                               x^? = x^?
                                             \chi^? = \chi^?
                                                          modifier letter small open o
                                \mathbf{x}^? = \mathbf{x}^?
                                             \chi^? = \chi^?
01D54
              01D16
                                                          modifier letter small top half o
                                x^? = x^?
                                             \chi^? = \chi^?
01D55
              01D17
                                                          modifier letter small bottom half o
                               x^p = x^p
                                             \chi^p = \chi^p
01D56
              00070
                                                          modifier letter small p
                                             \chi^t = \chi^t
01D57
              00074
                               \mathbf{x}^{\mathsf{t}} = \mathbf{x}^{\mathsf{t}}
                                                          modifier letter small t
                               \mathbf{x}^{\mathbf{u}} = \mathbf{x}^{\mathbf{u}}
                                             \chi^u = \chi^u
01D58
              00075
                         u
                                                          modifier letter small u
                               x^? = x^?
                                             x^{?} = x^{?}
              01D1D
01D59
                                                          modifier letter small sideways u
                                             \chi^? = \chi^?
                                x^? = x^?
01D5A
              0026F
                                                          modifier letter small turned m
                               x^v = x^v
                                             \chi^{\nu} = \chi^{\nu}
                                                          modifier letter small v
01D5B
              00076
                               x^? = x^?
                                             \chi^? = \chi^?
01D5C
              01D25
                                                          modifier letter small ain
                               x^{\beta} = x^{\beta}
                                             \chi^{\beta} = \chi^{\beta}
01D5D
              003B2
                                                          modifier letter small beta
                               x^{\gamma} = x^{\gamma}
                                            \chi^{\gamma} = \chi^{\gamma}
01D5E
              003B3
                                                          modifier letter small greek gamma
                               x^{\delta} = x^{\delta}
                                             \chi^{\delta} = \chi^{\delta}
01D5F
              003B4
                                                          modifier letter small delta
                               x^{\phi} = x^{\phi}
                                            \chi^{\varphi} = \chi^{\varphi}
01D60
              003C6
                                                          modifier letter small greek phi
                               x^{\chi} = x^{\chi}
                                             \chi^{\chi} = \chi^{\chi}
01D61
              003C7
                                                          modifier letter small chi
01D62
              00069
                                                          latin subscript small letter i
                                x_i = x_i
                                             \chi_i = \chi_i
01D63
              00072
                                                          latin subscript small letter r
                          r
                                x_r = x_r
                                             \chi_r = \chi_r
                                                          latin subscript small letter u
01D64
              00075
                               x_u = x_u
                                             x_u = x_u
```

```
latin subscript small letter v
01D65
              00076
                             x_v = x_v
                                          \chi_{\nu} = \chi_{\nu}
01D66
              003B2
                                                       greek subscript small letter beta
                             x_{\beta} = x_{\beta}
                                          \chi_{\beta} = \chi_{\beta}
01D67
                                                       greek subscript small letter gamma
              003B3
                                          x_{\gamma} = x_{\gamma}
                              X_{\gamma} = X_{\gamma}
01D68
              003C1
                                          \chi_{\rho} = \chi_{\rho}
                                                       greek subscript small letter rho
                             x_0 = x_0
01D69
              003C6
                                                       greek subscript small letter phi
                             x_{\varphi} = x_{\varphi}
                                          \chi_{\varphi} = \chi_{\varphi}
                                                       greek subscript small letter chi
01D6A
              003C7
                             x_{\chi} = x_{\chi}
                                          x_{\chi} = x_{\chi}
                             X^H = X^H
01D78
              0043D
                                          \chi^{\text{H}} = \chi^{\text{H}}
                                                       modifier letter cyrillic en
                              x^? = x^?
              00252
                                          \chi^? = \chi^?
                                                       modifier letter small turned alpha
01D9B
                              \mathbf{x}^{\mathrm{c}} = \mathbf{x}^{\mathrm{c}}
                                           \chi^c = \chi^c
01D9C
              00063
                                                       modifier letter small c
                        C
                                           x^{?} = x^{?}
01D9D
                              x^? = x^?
              00255
                                                       modifier letter small c with curl
                             x^{\delta} = x^{\delta}
                                           \chi^{\delta} = \chi^{\delta}
01D9E
              000F0
                        ð
                                                       modifier letter small eth
                              x^? = x^?
                                           x^{?} = x^{?}
01D9F
              0025C
                                                       modifier letter small reversed open e
                                           x^f = x^f
                              x^f = x^f
01DA0
              00066
                                                       modifier letter small f
                              x^? = x^?
                                           \chi^? = \chi^?
01DA1
              0025F
                                                       modifier letter small dotless j with stroke
                              x^? = x^?
                                           \chi^? = \chi^?
01DA2
              00261
                                                       modifier letter small script g
                              x^? = x^?
                                           x^{?} = x^{?}
              00265
                                                       modifier letter small turned h
01DA3
                                           x^{?} = x^{?}
                              x^? = x^?
01DA4
              00268
                                                       modifier letter small i with stroke
                              x^? = x^?
                                           \chi^? = \chi^?
01DA5
              00269
                                                       modifier letter small iota
                                           x^{?} = x^{?}
                              x^? = x^?
              0026A
                                                       modifier letter small capital i
01DA6
                              x^? = x^?
                                           \chi^? = \chi^?
                                                       modifier letter small capital i with stroke
01DA7
              01D7B
              0029D
                              x^? = x^?
                                           \chi^? = \chi^?
                                                       modifier letter small j with crossed-tail
01DA8
                              x^? = x^?
                                           \chi^? = \chi^?
              0026D
                                                       modifier letter small l with retroflex hook
01DA9
                              x^? = x^?
                                           \chi^? = \chi^?
                                                       modifier letter small I with palatal hook
01DAA
              01D85
                              x^? = x^?
                                           \chi^? = \chi^?
01DAB
              0029F
                                                       modifier letter small capital l
                              x^? = x^?
                                           \chi^? = \chi^?
01DAC
              00271
                                                       modifier letter small m with hook
01DAD
              00270
                              x^? = x^?
                                           \chi^? = \chi^?
                                                       modifier letter small turned m with long leg
                              x^? = x^?
                                           \chi^? = \chi^?
              00272
                                                       modifier letter small n with left hook
01DAE
                              x^? = x^?
                                           \chi^? = \chi^?
01DAF
              00273
                                                       modifier letter small n with retroflex hook
                              x^? = x^?
                                           \chi^? = \chi^?
01DB0
              00274
                                                       modifier letter small capital n
                              x^? = x^?
                                           \chi^? = \chi^?
01DB1
              00275
                                                       modifier letter small barred o
                              x^? = x^?
                                           \chi^? = \chi^?
01DB2
              00278
                                                       modifier letter small phi
                                           x^? = x^?
                              x^? = x^?
01DB3
              00282
                                                       modifier letter small s with hook
                              x^? = x^?
                                           x^{?} = x^{?}
01DB4
              00283
                                                       modifier letter small esh
                              x^? = x^?
                                           \chi^? = \chi^?
              001AB
01DB5
                                                       modifier letter small t with palatal hook
                                           \chi^? = \chi^?
                              \mathbf{x}^? = \mathbf{x}^?
01DB6
              00289
                                                       modifier letter small u bar
                              x^? = x^?
                                           \chi^? = \chi^?
01DB7
              0028A
                                                       modifier letter small upsilon
                              x^? = x^?
                                           \chi^? = \chi^?
01DB8
              01D1C
                                                       modifier letter small capital u
                              x^? = x^?
                                           \chi^? = \chi^?
01DB9
              0028B
                                                       modifier letter small v with hook
                              x^? = x^?
                                           \chi^? = \chi^?
01DBA
              0028C
                                                       modifier letter small turned v
                              x^z = x^z
                                           \chi^z = \chi^z
01DBB
              0007A
                        Z
                                                       modifier letter small z
                              x^? = x^?
                                           \chi^? = \chi^?
                                                       modifier letter small z with retroflex hook
01DBC
              00290
                              x^{?} = x^{?}
                                          \chi^{?} = \chi^{?}
                                                       modifier letter small z with curl
01DBD
              00291
                              x^? = x^?
                                           \chi^? = \chi^?
01DBE
              00292
                                                       modifier letter small ezh
                              x^{\theta} = x^{\theta}
                                          \chi^{\theta} = \chi^{\theta}
01DBF
              003B8
                                                       modifier letter small theta
                                          \chi^0 = \chi^0
                             \mathbf{x}^0 = \mathbf{x}^0
02070
              00030
                        0
                                                       superscript zero
```

```
\boldsymbol{x}^i = \boldsymbol{x}^i
                                           \chi^i = \chi^i
02071
              00069
                        i
                                                       superscript latin small letter i
                             x^4 = x^4
                                          \chi^4 = \chi^4
                        4
02074
              00034
                                                       superscript four
                        5
                             \mathbf{x}^5 = \mathbf{x}^5
                                          \chi^{5} = \chi^{5}
02075
              00035
                                                       superscript five
                             \mathbf{x}^6 = \mathbf{x}^6
                                          x^6 = x^6
02076
              00036
                        6
                                                       superscript six
                             x^7 = x^7
                                          x^7 = x^7
02077
              00037
                                                       superscript seven
                             x^8 = x^8
                                          x^8 = x^8
02078
              00038
                                                       superscript eight
02079
              00039
                             x^9 = x^9
                                          x^9 = x^9
                                                       superscript nine
0207A
              0002B
                             x^+ = x^+
                                          \chi^+ = \chi^+
                                                       superscript plus sign
0207B
              02212
                             \mathbf{x}^- = \mathbf{x}^-
                                          \chi^- = \chi^-
                                                       superscript minus
0207C
              0003D
                             x^{=} = x^{=}
                                          \chi^{=} = \chi^{=}
                                                       superscript equals sign
0207D
              00028
                        (
                             \mathbf{x}^{(}=\mathbf{x}^{(}
                                          x^{(} = x^{(}
                                                       superscript left parenthesis
0207E
              00029
                        )
                             \mathbf{x}^{0} = \mathbf{x}^{0}
                                          x^{\prime} = x^{\prime}
                                                       superscript right parenthesis
                                          \chi^n = \chi^n
                             \mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}}
0207F
              0006E
                        n
                                                       superscript latin small letter n
02080
              00030
                        0
                             x_0 = x_0
                                                       subscript zero
                                          x_0 = x_0
02081
              00031
                        1
                             x_1 = x_1
                                          \chi_1 = \chi_1
                                                       subscript one
02082
              00032
                             x_2 = x_2
                                          x_2 = x_2
                                                       subscript two
02083
              00033
                        3
                             x_3 = x_3
                                          x_3 = x_3
                                                       subscript three
02084
              00034
                        4
                                          \chi_4 = \chi_4
                                                       subscript four
                             x_4 = x_4
02085
              00035
                                          x_5 = x_5
                                                       subscript five
                             x_5 = x_5
02086
              00036
                        6
                                                       subscript six
                             x_6 = x_6
                                          x_6 = x_6
02087
              00037
                        7
                                          x_7 = x_7
                                                       subscript seven
                             x_7 = x_7
02088
              00038
                        8
                                          x_8 = x_8
                                                       subscript eight
                             x_8 = x_8
02089
              00039
                        9
                             x_9 = x_9
                                          x_9 = x_9
                                                       subscript nine
0208A
              0002B
                        +
                                          \chi_+ = \chi_+
                                                       subscript plus sign
                             x_{+} = x_{+}
0208B
              02212
                                          \chi_- = \chi_-
                                                      subscript minus
                             x_{-} = x_{-}
0208C
              0003D
                             x_{-} = x_{-}
                                          \chi_{=} = \chi_{=}
                                                       subscript equals sign
0208D
              00028
                             x_0 = x_0
                                          \chi_{(} = \chi_{(}
                                                       subscript left parenthesis
0208E
              00029
                        )
                             \mathbf{x}_{0} = \mathbf{x}_{0}
                                          x_0 = x_0
                                                       subscript right parenthesis
02090
              00061
                             x_a = x_a
                                          x_a = x_a
                                                      latin subscript small letter a
02091
              00065
                                          x_e = x_e
                                                       latin subscript small letter e
                             x_e = x_e
02092
              0006F
                                                       latin subscript small letter o
                        o
                             x_0 = x_0
                                          \chi_o = \chi_o
02093
              00078
                        \mathbf{X}
                             X_X = X_X
                                          \chi_{\chi} = \chi_{\chi}
                                                      latin subscript small letter x
02094
              00259
                        G
                             x_? = x_?
                                          \chi_? = \chi_?
                                                      latin subscript small letter schwa
02095
              00068
                        h
                             x_h = x_h
                                          x_h = x_h
                                                      latin subscript small letter h
02096
              0006B
                        k
                                                       latin subscript small letter k
                             x_k = x_k
                                          x_k = x_k
              0006C
02097
                        1
                                                       latin subscript small letter l
                              x_l = x_l
                                          x_l = x_l
02098
              0006D
                                         \chi_m = \chi_m
                                                      latin subscript small letter m
                        m
                             x_m = x_m
02099
              0006E
                        n
                                                      latin subscript small letter n
                             x_n = x_n
                                          x_n = x_n
0209A
              00070
                                                      latin subscript small letter p
                        р
                             x_p = x_p
                                          \chi_p = \chi_p
0209B
              00073
                                                       latin subscript small letter s
                                          \chi_s = \chi_s
                             x_s = x_s
0209C
              00074
                                                       latin subscript small letter t
                                          \chi_t = \chi_t
                             \mathbf{x}_t = \mathbf{x}_t
02C7C
              0006A
                              x_j = x_j
                                          \chi_j = \chi_j
                                                       latin subscript small letter j
                             \mathbf{x}^{\mathrm{V}} = \mathbf{x}^{\mathrm{V}}
                                          \chi^V = \chi^V
02C7D
              00056
                                                       modifier letter capital v
02D6F
              02D61
                             x^? = x^?
                                          x^? = x^?
                                                       tifinagh modifier letter labialization mark
03192
              04E00
                              x^? = x^?
                                          \chi^? = \chi^?
                                                       ideographic annotation one mark
```

03193	04E8C	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation two mark
03194	04E09	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation three mark
03195	056DB	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation four mark
03196	04E0A	$x^? = x^?$	$x^? = x^?$	ideographic annotation top mark
03197	04E2D	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation middle mark
03198	04E0B	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation bottom mark
03199	07532	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation first mark
0319A	04E59	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation second mark
0319B	04E19	$x^? = x^?$	$x^? = x^?$	ideographic annotation third mark
0319C	04E01	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation fourth mark
0319D	05929	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation heaven mark
0319E	05730	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation earth mark
0319F	04EBA	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	ideographic annotation man mark
0A69C	0044A	$X_{P}=X_{P}$	$\chi^{\scriptscriptstyle \mathrm{T}} = \chi^{\scriptscriptstyle \mathrm{T}}$	modifier letter cyrillic hard sign
0A69D	0044C	$X_P = X_P$	$\chi^{\scriptscriptstyle \mathrm{b}}=\chi^{\scriptscriptstyle \mathrm{b}}$	modifier letter cyrillic soft sign
0A770	0A76F	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	modifier letter us
0A7F8	00126 Ħ	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	modifier letter capital h with stroke
0A7F9	00153 œ	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	modifier letter small ligature oe
0AB5C	0A727	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	modifier letter small heng
0AB5D	0AB37	$x^? = x^?$	$x^? = x^?$	modifier letter small l with inverted lazy s
0AB5E	0026B	$\mathbf{x}^? = \mathbf{x}^?$	$x^? = x^?$	modifier letter small l with middle tilde
0AB5F	0AB52	$x^? = x^?$	$x^? = x^?$	modifier letter small u with left hook

<- 13.5 bold ->

There are two ways to look at bold math. First there are bold alphabets and bold symbols and these have some meaning. Then there is what we can best call boldened math that is used in section titles and such. The normal bold then becomes heavy. The next table shows (for the font used here) what bold shapes are available.

```
U+00030
          0
              U+1D7CE
                         0
                            DIGIT ZERO
U + 00031
          1
              U+1D7CF
                         1
                            DIGIT ONE
          2
                         2
U+00032
              U+1D7D0
                            DIGIT TWO
U+00033
          3
              U+1D7D1
                         3
                            DIGIT THREE
U+00034
          4
              U+1D7D2
                         4
                            DIGIT FOUR
U+00035
              U+1D7D3
                         5
                            DIGIT FIVE
          5
U+00036
          6
              U+1D7D4
                         6
                            DIGIT SIX
U+00037
          7
              U+1D7D5
                         7
                            DIGIT SEVEN
U+00038
          8
              U+1D7D6
                         8
                            DIGIT EIGHT
U+00039
          9
              U+1D7D7
                         9
                            DIGIT NINE
U + 00041
              U+1D400
                            LATIN CAPITAL LETTER A
          \boldsymbol{A}
                        A
U+00042
          В
              U+1D401
                        В
                            LATIN CAPITAL LETTER B
U+00043
          C
              U+1D402
                        C
                            LATIN CAPITAL LETTER C
U+00044
          D
              U+1D403
                        \mathbf{D}
                            LATIN CAPITAL LETTER D
U+00045
                        E
                            LATIN CAPITAL LETTER E
          Ε
              U+1D404
```

```
LATIN CAPITAL LETTER F
U+00046
          F
              U+1D405
                        F
U+00047
                        G
                            LATIN CAPITAL LETTER G
          G
              U+1D406
              U+1D407
U+00048
          Н
                        Η
                            LATIN CAPITAL LETTER H
                            LATIN CAPITAL LETTER I
U+00049
          I
              U+1D408
                        I
                            LATIN CAPITAL LETTER J
U+0004A
              U+1D409
                        J
          J
U+0004B
                            LATIN CAPITAL LETTER K
          K
              U+1D40A
                        K
U+0004C
                            LATIN CAPITAL LETTER L
          L
              U+1D40B
                        L
                            LATIN CAPITAL LETTER M
U+0004D
          M
              U+1D40C
                        M
U+0004E
              U+1D40D
                        N
                            LATIN CAPITAL LETTER N
          Ν
U+0004F
          0
              U+1D40E
                        \mathbf{o}
                            LATIN CAPITAL LETTER O
U+00050
          P
              U+1D40F
                        P
                            LATIN CAPITAL LETTER P
U + 00051
                            LATIN CAPITAL LETTER Q
          Q
              U+1D410
                        Q
U+00052
          R
              U+1D411
                        R
                            LATIN CAPITAL LETTER R
U+00053
          S
              U+1D412
                        S
                            LATIN CAPITAL LETTER S
U+00054
          Τ
              U+1D413
                        T
                            LATIN CAPITAL LETTER T
U+00055
          U
              U+1D414
                        U
                            LATIN CAPITAL LETTER U
U+00056
          V
              U+1D415
                        V
                            LATIN CAPITAL LETTER V
U+00057
          W
              U+1D416
                        \mathbf{W}
                            LATIN CAPITAL LETTER W
U+00058
                            LATIN CAPITAL LETTER X
          X
              U+1D417
                        X
U+00059
          Y
              U+1D418
                        Y
                            LATIN CAPITAL LETTER Y
U+0005A
                        Z
                            LATIN CAPITAL LETTER Z
          Z
              U+1D419
U + 00061
                            LATIN SMALL LETTER A
              U+1D41A
                        a
          а
U+00062
              U+1D41B
                            LATIN SMALL LETTER B
          b
                        b
U+00063
              U+1D41C
                            LATIN SMALL LETTER C
          С
                        \mathbf{c}
U+00064
          d
              U+1D41D
                        d
                            LATIN SMALL LETTER D
                            LATIN SMALL LETTER E
U+00065
              U+1D41E
          е
                        e
U+00066
                        f
                            LATIN SMALL LETTER F
          f
              U+1D41F
U+00067
              U+1D420
                            LATIN SMALL LETTER G
                        g
          g
U+00068
              U+1D421
                            LATIN SMALL LETTER H
          h
                        h
U+00069
          i
              U+1D422
                         i
                            LATIN SMALL LETTER I
U+0006A
              U+1D423
                        j
                            LATIN SMALL LETTER J
          j
U+0006B
          k
              U+1D424
                        k
                            LATIN SMALL LETTER K
U+0006C
          1
              U+1D425
                        1
                            LATIN SMALL LETTER L
U+0006D
          m
              U+1D426
                        m
                            LATIN SMALL LETTER M
U+0006E
              U+1D427
                            LATIN SMALL LETTER N
          n
                        n
U+0006F
              U+1D428
                            LATIN SMALL LETTER O
          0
                        0
                            LATIN SMALL LETTER P
U+00070
              U+1D429
          р
                        p
U+00071
                            LATIN SMALL LETTER Q
              U+1D42A
          q
                        q
U+00072
              U+1D42B
                            LATIN SMALL LETTER R
          r
                        r
U+00073
              U+1D42C
                            LATIN SMALL LETTER S
                        S
          S
U+00074
              U+1D42D
                            LATIN SMALL LETTER T
                         t
          t
U+00075
                            LATIN SMALL LETTER U
              U+1D42E
          и
                        u
U+00076
              U+1D42F
                            LATIN SMALL LETTER V
          ν
                        \mathbf{v}
U+00077
              U+1D430
                            LATIN SMALL LETTER W
          W
                        W
                            LATIN SMALL LETTER X
U+00078
              U+1D431
                        \mathbf{X}
```

```
U+00079
                           LATIN SMALL LETTER Y
             U+1D432
                        \mathbf{y}
U+0007A
             U + 1D433
                            LATIN SMALL LETTER Z
          Z
                        Z
U + 00391
             U + 00391
                           GREEK CAPITAL LETTER ALPHA
          Α
                        Α
                           GREEK CAPITAL LETTER BETA
U+00392
             U+00392
                        В
          В
                           GREEK CAPITAL LETTER GAMMA
U+00393
          Γ
             U+1D6AA
                        Γ
U+00394
             U+00394
                           GREEK CAPITAL LETTER DELTA
          Δ
                        Δ
U+00395
             U+00395
                        Ε
                           GREEK CAPITAL LETTER EPSILON
          Ε
          Z
                        Z
                           GREEK CAPITAL LETTER ZETA
U+00396
             U+00396
U+00397
             U+00397
                        Η
                           GREEK CAPITAL LETTER ETA
          Η
U+00398
          Θ
             U+00398
                        Θ
                           GREEK CAPITAL LETTER THETA
U+00399
          Ι
             U+00399
                        I
                           GREEK CAPITAL LETTER IOTA
U+0039A
             U+0039A
                        K
                           GREEK CAPITAL LETTER KAPPA
          K
U+0039B
          Λ
             U+0039B
                        Λ
                           GREEK CAPITAL LETTER LAMDA
U+0039C
          Μ
             U+0039C
                       M
                           GREEK CAPITAL LETTER MU
U+0039D
          N
             U+0039D
                        N
                           GREEK CAPITAL LETTER NU
          Ξ
                        Ξ
                            GREEK CAPITAL LETTER XI
U+0039E
             U+0039E
U+0039F
             U+0039F
                        O
                           GREEK CAPITAL LETTER OMICRON
          0
U+003A0
          П
             U+1D6B7
                       Π
                           GREEK CAPITAL LETTER PI
U+003A1
          P
                        P
                            GREEK CAPITAL LETTER RHO
             U+003A1
                        Σ
U+003A3
          Σ
             U+003A3
                            GREEK CAPITAL LETTER SIGMA
U+003A4
             U+003A4
                           GREEK CAPITAL LETTER TAU
          T
                        T
U+003A5
             U+003A5
                           GREEK CAPITAL LETTER UPSILON
          Υ
                        Υ
U+003A6
             U+003A6
                        Φ
                           GREEK CAPITAL LETTER PHI
          Φ
U+003A7
          X
             U+003A7
                        X
                           GREEK CAPITAL LETTER CHI
U+003A8
          Ψ
             U+003A8
                        Ψ
                           GREEK CAPITAL LETTER PSI
U+003A9
                           GREEK CAPITAL LETTER OMEGA
             U+003A9
                        Ω
          Ω
U+003B1
             U+003B1
                           GREEK SMALL LETTER ALPHA
                        α
          α
U+003B2
          β
             U+003B2
                        β
                           GREEK SMALL LETTER BETA
U+003B3
             U+1D6C4
                           GREEK SMALL LETTER GAMMA
          γ
                        γ
U+003B4
          δ
             U+003B4
                        δ
                            GREEK SMALL LETTER DELTA
U+003B5
             U+003B5
                        ε
                            GREEK SMALL LETTER EPSILON
          ε
U+003B6
          ζ
             U+003B6
                        ζ
                           GREEK SMALL LETTER ZETA
U+003B7
                           GREEK SMALL LETTER ETA
          η
             U+003B7
                        η
                           GREEK SMALL LETTER THETA
U+003B8
          \theta
             U+003B8
                        \theta
U+003B9
             U+003B9
                           GREEK SMALL LETTER IOTA
          ι
                        ι
                           GREEK SMALL LETTER KAPPA
U+003BA
             U+003BA
          ĸ
                        κ
U+003BB
             U+003BB
                           GREEK SMALL LETTER LAMDA
                        λ
          λ
                           GREEK SMALL LETTER MU
U+003BC
             U+003BC
          μ
                        μ
U+003BD
             U+003BD
                            GREEK SMALL LETTER NU
          ν
                        ν
U+003BE
          ξ
             U+003BE
                        ξ
                            GREEK SMALL LETTER XI
U+003BF
             U+003BF
                           GREEK SMALL LETTER OMICRON
          0
                        0
U+003C0
                           GREEK SMALL LETTER PI
             U+1D6D1
                        π
U+003C1
             U+003C1
                           GREEK SMALL LETTER RHO
          ρ
                        ρ
U+003C2
             U+003C2
                           GREEK SMALL LETTER FINAL SIGMA
                        ζ
          ς
                            GREEK SMALL LETTER SIGMA
U+003C3
             U+003C3
                        \sigma
```

```
GREEK SMALL LETTER TAU
U+003C4
               U+003C4
                           τ
U+003C5
                               GREEK SMALL LETTER UPSILON
               U+003C5
                           υ
           n
U+003C6
                               GREEK SMALL LETTER PHI
               U+003C6
           \varphi
                          \varphi
                               GREEK SMALL LETTER CHI
U+003C7
               U+003C7
           χ
                           χ
                               GREEK SMALL LETTER PSI
U+003C8
               U+003C8
           Ψ
                           Ψ
                               GREEK SMALL LETTER OMEGA
U+003C9
               U+003C9
                          \omega
           (I)
U+003D1
           9
                           9
                               GREEK THETA SYMBOL
               U+003D1
U+003D5
           φ
               U+003D5
                           φ
                               GREEK PHI SYMBOL
U+003D6
               U+003D6
                               GREEK PI SYMBOL
           \overline{\omega}
                          \omega
U+003F0
               U+003F0
                               GREEK KAPPA SYMBOL
           ×
                           ×
U+003F1
                               GREEK RHO SYMBOL
               U+003F1
           \varrho
                           \varrho
U+003F4
           ?
               U+003F4
                               GREEK CAPITAL THETA SYMBOL
U+003F5
               U+003F5
                           \epsilon
                               GREEK LUNATE EPSILON SYMBOL
           \epsilon
U+02032
               U+02032
                               PRIME
U+02102
           \mathbb{C}
               U+02102
                           \mathbb{C}
                               DOUBLE-STRUCK CAPITAL C
                           ?
                               SCRIPT SMALL G
U+0210A
           \boldsymbol{g}
               U+1D4F0
          {\mathcal H}
U+0210B
               U+1D4D7
                               SCRIPT CAPITAL H
                         {\mathscr H}
U+0210C
           Ð
               U+1D573
                           ?
                               BLACK-LETTER CAPITAL H
U+0210D
                               DOUBLE-STRUCK CAPITAL H
           Н
               U+0210D
                           Н
U+0210E
           h
               U+1D489
                           h
                               PLANCK CONSTANT
U+02110
           Ŧ
               U+1D4D8
                          Ŧ
                               SCRIPT CAPITAL I
U+02111
                           3
                               BLACK-LETTER CAPITAL I
           \mathfrak{I}
               U+1D574
U+02112
          \mathscr{L}
               U+1D4DB
                          Ŀ
                               SCRIPT CAPITAL L
U+02115
           \mathbb{N}
               U+02115
                           \mathbb{N}
                               DOUBLE-STRUCK CAPITAL N
U + 02119
           P
               U+02119
                           P
                               DOUBLE-STRUCK CAPITAL P
U+0211A
               U+0211A
                           \mathbb{Q}
                               DOUBLE-STRUCK CAPITAL Q
           \mathbb{Q}
U+0211B
                               SCRIPT CAPITAL R
           R
               U+1D4E1
                          R
U+0211C
           R
               U+1D57D
                           R
                               BLACK-LETTER CAPITAL R
U+0211D
               U+0211D
                           \mathbb{R}
                               DOUBLE-STRUCK CAPITAL R
           \mathbb{R}
U+02124
           \mathbb{Z}
               U+02124
                           \mathbb{Z}
                               DOUBLE-STRUCK CAPITAL Z
U+02128
           3
               U+1D585
                           ?
                               BLACK-LETTER CAPITAL Z
U+0212C
           \mathscr{B}
               U+1D4D1
                          B
                               SCRIPT CAPITAL B
U+0212D
           C
                           ?
                               BLACK-LETTER CAPITAL C
               U+1D56E
                           ?
U+0212F
           e
               U+1D4EE
                               SCRIPT SMALL E
U + 02130
           8
               U+1D4D4
                           E
                               SCRIPT CAPITAL E
U+02131
          {\mathscr F}
               U+1D4D5
                          \mathscr{F}
                               SCRIPT CAPITAL F
               U+1D4DC
                               SCRIPT CAPITAL M
U+02133
          \mathfrak{M}
                          \mathfrak{M}
               U+1D4F8
                           ?
U+02134
                               SCRIPT SMALL O
           o
                           ?
U+0213C
               U+0213C
                               DOUBLE-STRUCK SMALL PI
U+0213D
           ?
               U+0213D
                           ?
                               DOUBLE-STRUCK SMALL GAMMA
                           ?
U+0213E
           ?
               U+0213E
                               DOUBLE-STRUCK CAPITAL GAMMA
           ?
                           ?
U+0213F
               U+0213F
                               DOUBLE-STRUCK CAPITAL PI
U + 02140
           ?
               U + 02140
                           ?
                               DOUBLE-STRUCK N-ARY SUMMATION
U+02202
           9
               U+02202
                           9
                               PARTIAL DIFFERENTIAL
                           \nabla
U+02207
           \nabla
               U+02207
                               NABLA
```

```
MATHEMATICAL ITALIC CAPITAL A
U+1D434
              U+1D468
                        \boldsymbol{A}
          \boldsymbol{A}
                             MATHEMATICAL ITALIC CAPITAL B
U+1D435
          В
              U+1D469
                         В
U+1D436
          C
                         \boldsymbol{C}
                             MATHEMATICAL ITALIC CAPITAL C
              U+1D46A
                             MATHEMATICAL ITALIC CAPITAL D
U+1D437
          D
              U+1D46B
                        \boldsymbol{D}
                             MATHEMATICAL ITALIC CAPITAL E
U+1D438
          Е
              U+1D46C
                         E
U+1D439
                             MATHEMATICAL ITALIC CAPITAL F
          F
              U+1D46D
                         F
                             MATHEMATICAL ITALIC CAPITAL G
U+1D43A
              U+1D46E
                         G
          G
                             MATHEMATICAL ITALIC CAPITAL H
U+1D43B
          Η
              U+1D46F
                        Η
U+1D43C
              U+1D470
                             MATHEMATICAL ITALIC CAPITAL I
          Ι
                         Ι
U+1D43D
              U+1D471
                         J
                             MATHEMATICAL ITALIC CAPITAL J
          J
U+1D43E
          K
              U+1D472
                         K
                             MATHEMATICAL ITALIC CAPITAL K
U+1D43F
                             MATHEMATICAL ITALIC CAPITAL L
          L
              U+1D473
                         L
U+1D440
          M
              U+1D474
                        M
                             MATHEMATICAL ITALIC CAPITAL M
U+1D441
          N
              U+1D475
                        N
                             MATHEMATICAL ITALIC CAPITAL N
U+1D442
          O
              U+1D476
                        0
                             MATHEMATICAL ITALIC CAPITAL O
                             MATHEMATICAL ITALIC CAPITAL P
U+1D443
          P
              U+1D477
                         P
U+1D444
                             MATHEMATICAL ITALIC CAPITAL Q
          Q
              U+1D478
                         \boldsymbol{Q}
U+1D445
          R
              U+1D479
                         R
                             MATHEMATICAL ITALIC CAPITAL R
U+1D446
          S
                         S
                             MATHEMATICAL ITALIC CAPITAL S
              U+1D47A
U+1D447
          T
              U+1D47B
                         T
                             MATHEMATICAL ITALIC CAPITAL T
                             MATHEMATICAL ITALIC CAPITAL U
U+1D448
          U
              U+1D47C
                         \boldsymbol{U}
U+1D449
                             MATHEMATICAL ITALIC CAPITAL V
          V
              U+1D47D
                         V
U+1D44A
              U+1D47E
                             MATHEMATICAL ITALIC CAPITAL W
          W
                        W
                             MATHEMATICAL ITALIC CAPITAL X
U+1D44B
          X
              U+1D47F
                        \boldsymbol{X}
U+1D44C
          Y
              U+1D480
                         Y
                             MATHEMATICAL ITALIC CAPITAL Y
U+1D44D
          Z
              U+1D481
                         Z
                             MATHEMATICAL ITALIC CAPITAL Z
                             MATHEMATICAL ITALIC SMALL A
U+1D44E
              U+1D482
                         a
          а
U+1D44F
              U+1D483
                             MATHEMATICAL ITALIC SMALL B
          b
                         b
U+1D450
                             MATHEMATICAL ITALIC SMALL C
              U+1D484
                         \boldsymbol{c}
          \mathcal{C}
U+1D451
          d
              U+1D485
                         d
                             MATHEMATICAL ITALIC SMALL D
U+1D452
              U+1D486
                             MATHEMATICAL ITALIC SMALL E
          е
                         e
U+1D453
          f
              U+1D487
                         f
                             MATHEMATICAL ITALIC SMALL F
                             MATHEMATICAL ITALIC SMALL G
U+1D454
              U+1D488
          g
                         g
U+1D456
          i
              U+1D48A
                         i
                             MATHEMATICAL ITALIC SMALL I
U+1D457
              U+1D48B
                             MATHEMATICAL ITALIC SMALL J
          j
                         j
U+1D458
          k
              U+1D48C
                         k
                             MATHEMATICAL ITALIC SMALL K
                             MATHEMATICAL ITALIC SMALL L
U+1D459
          1
              U+1D48D
                         1
                             MATHEMATICAL ITALIC SMALL M
U+1D45A
              U+1D48E
          m
                        m
U+1D45B
              U+1D48F
                             MATHEMATICAL ITALIC SMALL N
                         n
          n
U+1D45C
              U+1D490
                             MATHEMATICAL ITALIC SMALL O
          0
                         0
U+1D45D
                             MATHEMATICAL ITALIC SMALL P
              U+1D491
                         p
          p
                             MATHEMATICAL ITALIC SMALL Q
U+1D45E
              U+1D492
          q
                         q
                             MATHEMATICAL ITALIC SMALL R
U+1D45F
              U+1D493
                         r
          r
U + 1D460
              U+1D494
                             MATHEMATICAL ITALIC SMALL S
                         S
          S
                             MATHEMATICAL ITALIC SMALL T
U+1D461
              U+1D495
                         t
```

```
MATHEMATICAL ITALIC SMALL U
U+1D462
               U+1D496
U+1D463
                              MATHEMATICAL ITALIC SMALL V
               U+1D497
           ν
                          \boldsymbol{\nu}
U+1D464
                              MATHEMATICAL ITALIC SMALL W
               U+1D498
          W
                          w
                              MATHEMATICAL ITALIC SMALL X
U+1D465
               U+1D499
           X
                          X
                              MATHEMATICAL ITALIC SMALL Y
U+1D466
               U+1D49A
           y
                          y
U+1D467
                              MATHEMATICAL ITALIC SMALL Z
               U+1D49B
           \boldsymbol{Z}
                          \boldsymbol{z}
                              MATHEMATICAL SCRIPT CAPITAL A
U+1D49C
               U+1D4D0
          \mathcal{A}
                         {\mathcal A}
          C
                          C
                              MATHEMATICAL SCRIPT CAPITAL C
U+1D49E
               U+1D4D2
U+1D49F
          D
               U+1D4D3
                         Ø
                              MATHEMATICAL SCRIPT CAPITAL D
U+1D4A2
          G
               U+1D4D6
                          G
                              MATHEMATICAL SCRIPT CAPITAL G
U+1D4A5
               U+1D4D9
                              MATHEMATICAL SCRIPT CAPITAL J
          J
                          J
U+1D4A6
               U+1D4DA
                         K
                              MATHEMATICAL SCRIPT CAPITAL K
          K
U+1D4A9
          \mathfrak{N}
               U+1D4DD
                         \mathfrak{N}
                              MATHEMATICAL SCRIPT CAPITAL N
U+1D4AA
          0
               U+1D4DE
                          0
                              MATHEMATICAL SCRIPT CAPITAL O
U+1D4AB
          \mathscr{P}
               U+1D4DF
                          P
                              MATHEMATICAL SCRIPT CAPITAL P
                              MATHEMATICAL SCRIPT CAPITAL Q
U+1D4AC
          2
               U+1D4E0
                          2
                         S
U+1D4AE
               U+1D4E2
                              MATHEMATICAL SCRIPT CAPITAL S
          S
U+1D4AF
          {\mathcal T}
               U+1D4E3
                         \mathcal{T}
                              MATHEMATICAL SCRIPT CAPITAL T
U+1D4B0
                              MATHEMATICAL SCRIPT CAPITAL U
          \mathcal{U}
               U+1D4E4
                         \mathcal{U}
U+1D4B1
          V
               U+1D4E5
                          {\boldsymbol{\mathscr{V}}}
                              MATHEMATICAL SCRIPT CAPITAL V
                              MATHEMATICAL SCRIPT CAPITAL W
U+1D4B2
          W
               U+1D4E6
                         W
                              MATHEMATICAL SCRIPT CAPITAL X
U+1D4B3
          \mathscr{X}
               U+1D4E7
                         \mathscr{X}
                              MATHEMATICAL SCRIPT CAPITAL Y
U+1D4B4
               U+1D4E8
          ¥
                          ¥
                          \mathcal{Z}_{\!\scriptscriptstyle D}
                              MATHEMATICAL SCRIPT CAPITAL Z
U+1D4B5
          \mathcal{Z}_{\!\scriptscriptstyle D}
               U+1D4E9
U+1D4B6
               U+1D4EA
                          ?
                              MATHEMATICAL SCRIPT SMALL A
          a
           в
                          ?
                              MATHEMATICAL SCRIPT SMALL B
U+1D4B7
               U+1D4EB
U+1D4B8
                          ?
                              MATHEMATICAL SCRIPT SMALL C
           \mathcal{C}
               U+1D4EC
U+1D4B9
          ď
               U+1D4ED
                          ?
                              MATHEMATICAL SCRIPT SMALL D
U+1D4BB
               U+1D4EF
                          ?
                              MATHEMATICAL SCRIPT SMALL F
          h
                          ?
U+1D4BD
               U+1D4F1
                              MATHEMATICAL SCRIPT SMALL H
U+1D4BE
           i
               U+1D4F2
                          ?
                              MATHEMATICAL SCRIPT SMALL I
U+1D4BF
          j
               U+1D4F3
                          ?
                              MATHEMATICAL SCRIPT SMALL J
U+1D4C0
          ĸ
                          ?
                              MATHEMATICAL SCRIPT SMALL K
               U+1D4F4
          C
U+1D4C1
                          ?
                              MATHEMATICAL SCRIPT SMALL L
               U+1D4F5
U+1D4C2
               U+1D4F6
                          ?
                              MATHEMATICAL SCRIPT SMALL M
          m
                              MATHEMATICAL SCRIPT SMALL N
U+1D4C3
               U+1D4F7
                          ?
          n
                          ?
                              MATHEMATICAL SCRIPT SMALL P
U+1D4C5
               U+1D4F9
          p
                          ?
                              MATHEMATICAL SCRIPT SMALL Q
U+1D4C6
               U+1D4FA
                          ?
U+1D4C7
               U+1D4FB
                              MATHEMATICAL SCRIPT SMALL R
           r
U+1D4C8
               U+1D4FC
                          ?
                              MATHEMATICAL SCRIPT SMALL S
           s
                          ?
U+1D4C9
               U+1D4FD
                              MATHEMATICAL SCRIPT SMALL T
           t
U+1D4CA
                          ?
                              MATHEMATICAL SCRIPT SMALL U
               U+1D4FE
          u
U+1D4CB
                          ?
                              MATHEMATICAL SCRIPT SMALL V
               U+1D4FF
           11
U+1D4CC
                          ?
                              MATHEMATICAL SCRIPT SMALL W
               U+1D500
          w
                              MATHEMATICAL SCRIPT SMALL X
U+1D4CD
               U+1D501
           x
```

```
MATHEMATICAL SCRIPT SMALL Y
U+1D4CE
              U+1D502
          ¥
                         ?
U+1D4CF
                             MATHEMATICAL SCRIPT SMALL Z
              U+1D503
          z
              U+1D56C
U+1D504
          \mathcal{A}
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL A
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL B
U+1D505
          \mathfrak{Z}
              U+1D56D
                             MATHEMATICAL FRAKTUR CAPITAL D
                         ?
U+1D507
          Ð
              U+1D56F
U+1D508
          €
              U+1D570
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL E
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL F
U+1D509
          £
              U+1D571
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL G
U+1D50A
          6
              U+1D572
                         ?
U+1D50D
          3
              U+1D575
                             MATHEMATICAL FRAKTUR CAPITAL J
U+1D50E
          K
              U+1D576
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL K
U+1D50F
          £
              U+1D577
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL L
U+1D510
              U+1D578
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL M
          21)
U+1D511
          \mathfrak{M}
              U+1D579
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL N
                             MATHEMATICAL FRAKTUR CAPITAL O
U+1D512
          0
              U+1D57A
                         ?
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL P
U+1D513
          \mathfrak{P}
              U+1D57B
                             MATHEMATICAL FRAKTUR CAPITAL Q
U+1D514
                         ?
          Q
              U+1D57C
U+1D516
              U+1D57E
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL S
          5
U+1D517
          t
              U+1D57F
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL T
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL U
U+1D518
          u
              U+1D580
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL V
U+1D519
          \mathfrak{v}
              U+1D581
U+1D51A
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL W
          \mathfrak{w}
              U+1D582
U+1D51B
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL X
          \boldsymbol{\mathfrak{X}}
              U+1D583
                         ?
                             MATHEMATICAL FRAKTUR CAPITAL Y
U+1D51C
              U+1D584
          y
                         ?
                             MATHEMATICAL FRAKTUR SMALL A
U+1D51E
              U+1D586
          \mathfrak{a}
                         ?
                             MATHEMATICAL FRAKTUR SMALL B
U+1D51F
          6
              U+1D587
                         ?
                             MATHEMATICAL FRAKTUR SMALL C
U+1D520
              U+1D588
          \mathfrak{c}
                             MATHEMATICAL FRAKTUR SMALL D
U+1D521
          δ
              U+1D589
                         ?
U+1D522
              U+1D58A
                         ?
                             MATHEMATICAL FRAKTUR SMALL E
          e
U+1D523
          f
              U+1D58B
                         ?
                             MATHEMATICAL FRAKTUR SMALL F
                         ?
                             MATHEMATICAL FRAKTUR SMALL G
U+1D524
              U+1D58C
          \mathfrak{g}
                         ?
U+1D525
          h
              U+1D58D
                             MATHEMATICAL FRAKTUR SMALL H
U+1D526
           í
              U+1D58E
                         ?
                             MATHEMATICAL FRAKTUR SMALL I
U+1D527
              U+1D58F
                         ?
                             MATHEMATICAL FRAKTUR SMALL J
           Í
                         ?
                             MATHEMATICAL FRAKTUR SMALL K
U+1D528
          k
              U+1D590
U+1D529
           ſ
              U+1D591
                         ?
                             MATHEMATICAL FRAKTUR SMALL L
                         ?
                             MATHEMATICAL FRAKTUR SMALL M
U+1D52A
              U+1D592
          m
                         ?
                             MATHEMATICAL FRAKTUR SMALL N
U+1D52B
              U+1D593
          n
                         ?
                             MATHEMATICAL FRAKTUR SMALL O
U+1D52C
              U+1D594
          0
                         ?
U+1D52D
              U+1D595
                             MATHEMATICAL FRAKTUR SMALL P
          \mathfrak{p}
                             MATHEMATICAL FRAKTUR SMALL O
U+1D52E
              U+1D596
                         ?
          \mathfrak{q}
                         ?
                             MATHEMATICAL FRAKTUR SMALL R
U+1D52F
              U+1D597
          r
                         ?
                             MATHEMATICAL FRAKTUR SMALL S
U+1D530
              U+1D598
          5
U+1D531
              U+1D599
                         ?
                             MATHEMATICAL FRAKTUR SMALL T
          t
U+1D532
              U+1D59A
                         ?
                             MATHEMATICAL FRAKTUR SMALL U
          u
                             MATHEMATICAL FRAKTUR SMALL V
U+1D533
              U+1D59B
```

```
MATHEMATICAL FRAKTUR SMALL W
U+1D534
              U+1D59C
                         ?
U+1D535
                             MATHEMATICAL FRAKTUR SMALL X
              U+1D59D
          X.
                             MATHEMATICAL FRAKTUR SMALL Y
U+1D536
                         ?
              U+1D59E
          y
                         ?
                             MATHEMATICAL FRAKTUR SMALL Z
U+1D537
              U+1D59F
          3
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL A
U+1D538
          A
              U+1D538
                         A
U+1D539
              U+1D539
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL B
          \mathbb{B}
                         \mathbb{B}
U+1D53B
              U+1D53B
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL D
          \mathbb{D}
                         \mathbb{D}
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL E
U+1D53C
          \mathbb{E}
              U+1D53C
                         E
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL F
U+1D53D
              U+1D53D
                         \mathbb{F}
U+1D53E
          \mathbb{G}
              U+1D53E
                         \mathbb{G}
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL G
U+1D540
          U+1D540
                         MATHEMATICAL DOUBLE-STRUCK CAPITAL I
U+1D541
          U+1D541
                         \rfloor
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL J
U + 1D542
          K
              U + 1D542
                         K
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL K
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL L
U + 1D543
          \mathbb{L}
              U + 1D543
                         \mathbb{L}
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL M
U+1D544
          M
              U+1D544
                        M
U+1D546
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL O
          0
              U+1D546
                         0
U+1D54A
          S
              U+1D54A
                         S
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL S
U+1D54B
          T
              U+1D54B
                         {\mathbb T}
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL T
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL U
U+1D54C
          \mathbb{U}
              U+1D54C
                         \mathbb{U}
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL V
U+1D54D
          \mathbb{V}
              U+1D54D
                         \mathbb{V}
U+1D54E
              U+1D54E
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL W
          W
                        \mathbb{W}
              U+1D54F
U+1D54F
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL X
          \mathbb{X}
                         X
                             MATHEMATICAL DOUBLE-STRUCK CAPITAL Y
U+1D550
              U+1D550
          Y
                         Y
          ?
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL A
U+1D552
              U+1D552
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL B
U+1D553
          ?
              U+1D553
          ?
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL C
U+1D554
              U+1D554
U+1D555
          ?
              U+1D555
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL D
U+1D556
          ?
              U+1D556
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL E
U+1D557
          ?
              U+1D557
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL F
          ?
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL G
U+1D558
              U+1D558
          ?
                         ?
U+1D559
              U+1D559
                             MATHEMATICAL DOUBLE-STRUCK SMALL H
U+1D55A
          ?
              U+1D55A
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL I
U+1D55B
          ?
              U+1D55B
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL J
                         k
                             MATHEMATICAL DOUBLE-STRUCK SMALL K
U+1D55C
          k
              U+1D55C
U+1D55D
          ?
              U+1D55D
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL L
          ?
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL M
U+1D55E
              U+1D55E
U+1D55F
          ?
              U+1D55F
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL N
          ?
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL O
U+1D560
              U+1D560
          ?
                         ?
U+1D561
              U+1D561
                             MATHEMATICAL DOUBLE-STRUCK SMALL P
                             MATHEMATICAL DOUBLE-STRUCK SMALL Q
U+1D562
          ?
              U+1D562
                         ?
          ?
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL R
U+1D563
              U+1D563
          ?
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL S
U+1D564
              U+1D564
U+1D565
          ?
              U+1D565
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL T
U+1D566
          ?
              U+1D566
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL U
U+1D567
              U+1D567
                         ?
                             MATHEMATICAL DOUBLE-STRUCK SMALL V
```

```
MATHEMATICAL DOUBLE-STRUCK SMALL W
U+1D568
             U+1D568
                       ?
U+1D569
          ?
             U+1D569
                           MATHEMATICAL DOUBLE-STRUCK SMALL X
U+1D56A
          ?
             U+1D56A
                       ?
                           MATHEMATICAL DOUBLE-STRUCK SMALL Y
          ?
                       ?
                           MATHEMATICAL DOUBLE-STRUCK SMALL Z
U+1D56B
             U+1D56B
                           MATHEMATICAL SANS-SERIF CAPITAL A
U+1D5A0
          Α
             U+1D5D4
                       Α
U+1D5A1
             U+1D5D5
                           MATHEMATICAL SANS-SERIF CAPITAL B
          В
                       В
U+1D5A2
             U+1D5D6
                       C
                           MATHEMATICAL SANS-SERIF CAPITAL C
          C
U+1D5A3
                           MATHEMATICAL SANS-SERIF CAPITAL D
          D
             U+1D5D7
                       D
                           MATHEMATICAL SANS-SERIF CAPITAL E
U+1D5A4
          Ε
             U+1D5D8
                       Ε
U+1D5A5
          F
             U+1D5D9
                       F
                           MATHEMATICAL SANS-SERIF CAPITAL F
U+1D5A6
          G
             U+1D5DA
                       G
                           MATHEMATICAL SANS-SERIF CAPITAL G
U+1D5A7
             U+1D5DB
                       Н
                           MATHEMATICAL SANS-SERIF CAPITAL H
          Н
U+1D5A8
          Ι
             U+1D5DC
                       Ι
                           MATHEMATICAL SANS-SERIF CAPITAL I
                           MATHEMATICAL SANS-SERIF CAPITAL J
U+1D5A9
          J
             U+1D5DD
                       J
                           MATHEMATICAL SANS-SERIF CAPITAL K
U+1D5AA
          Κ
             U+1D5DE
                       K
                           MATHEMATICAL SANS-SERIF CAPITAL L
U+1D5AB
          L
             U+1D5DF
                       L
U+1D5AC
             U+1D5E0
                           MATHEMATICAL SANS-SERIF CAPITAL M
         Μ
                       Μ
U+1D5AD
         Ν
             U+1D5E1
                       Ν
                           MATHEMATICAL SANS-SERIF CAPITAL N
                           MATHEMATICAL SANS-SERIF CAPITAL O
U+1D5AE
          0
             U+1D5E2
                       0
                           MATHEMATICAL SANS-SERIF CAPITAL P
U+1D5AF
             U+1D5E3
                       Ρ
U+1D5B0
                           MATHEMATICAL SANS-SERIF CAPITAL Q
          Q
             U+1D5E4
                       Q
U+1D5B1
                           MATHEMATICAL SANS-SERIF CAPITAL R
          R
             U+1D5E5
                       R
                           MATHEMATICAL SANS-SERIF CAPITAL S
U+1D5B2
             U+1D5E6
                       S
          S
                           MATHEMATICAL SANS-SERIF CAPITAL T
U+1D5B3
          Т
             U+1D5E7
                       Т
                           MATHEMATICAL SANS-SERIF CAPITAL U
U+1D5B4
          U
             U+1D5E8
                       U
                           MATHEMATICAL SANS-SERIF CAPITAL V
U+1D5B5
          ٧
             U+1D5E9
                       ٧
U+1D5B6
                           MATHEMATICAL SANS-SERIF CAPITAL W
         W
             U+1D5EA
                       W
U+1D5B7
             U+1D5EB
                       X
                           MATHEMATICAL SANS-SERIF CAPITAL X
          Х
U+1D5B8
             U+1D5EC
                       Υ
                           MATHEMATICAL SANS-SERIF CAPITAL Y
          Υ
                           MATHEMATICAL SANS-SERIF CAPITAL Z
U+1D5B9
          Z
             U+1D5ED
                       Ζ
U+1D5BA
             U+1D5EE
                           MATHEMATICAL SANS-SERIF SMALL A
          a
                       a
U+1D5BB
          b
             U+1D5EF
                       b
                           MATHEMATICAL SANS-SERIF SMALL B
U+1D5BC
                           MATHEMATICAL SANS-SERIF SMALL C
          c
             U+1D5F0
                       c
U+1D5BD
                           MATHEMATICAL SANS-SERIF SMALL D
          d
             U+1D5F1
                       d
U+1D5BE
             U+1D5F2
                           MATHEMATICAL SANS-SERIF SMALL E
          e
                       e
                           MATHEMATICAL SANS-SERIF SMALL F
U+1D5BF
          f
             U+1D5F3
                       f
U+1D5C0
                           MATHEMATICAL SANS-SERIF SMALL G
             U+1D5F4
          g
                       g
                           MATHEMATICAL SANS-SERIF SMALL H
U+1D5C1
             U+1D5F5
          h
                       h
U+1D5C2
             U+1D5F6
                       i
                           MATHEMATICAL SANS-SERIF SMALL I
          i
                           MATHEMATICAL SANS-SERIF SMALL J
U+1D5C3
             U+1D5F7
          j
                       j
                           MATHEMATICAL SANS-SERIF SMALL K
U+1D5C4
             U+1D5F8
                       k
          k
                           MATHEMATICAL SANS-SERIF SMALL L
U+1D5C5
          Ι
             U+1D5F9
                       I
U+1D5C6
             U+1D5FA
                           MATHEMATICAL SANS-SERIF SMALL M
         m
                       m
U+1D5C7
             U+1D5FB
                           MATHEMATICAL SANS-SERIF SMALL N
          n
                       n
                           MATHEMATICAL SANS-SERIF SMALL O
U+1D5C8
             U+1D5FC
                       0
```

```
MATHEMATICAL SANS-SERIF SMALL P
U+1D5C9
             U+1D5FD
          р
                       р
U+1D5CA
                           MATHEMATICAL SANS-SERIF SMALL Q
             U+1D5FE
                       q
          q
U+1D5CB
                           MATHEMATICAL SANS-SERIF SMALL R
             U+1D5FF
          r
                       r
                           MATHEMATICAL SANS-SERIF SMALL S
U+1D5CC
             U+1D600
                       S
                           MATHEMATICAL SANS-SERIF SMALL T
U+1D5CD
             U+1D601
          t
                       t
U+1D5CE
             U+1D602
                           MATHEMATICAL SANS-SERIF SMALL U
          u
                       u
U+1D5CF
                           MATHEMATICAL SANS-SERIF SMALL V
             U+1D603
          ٧
                       ν
                           MATHEMATICAL SANS-SERIF SMALL W
U+1D5D0
             U+1D604
         W
                       w
U+1D5D1
             U+1D605
                           MATHEMATICAL SANS-SERIF SMALL X
                       X
          Х
U+1D5D2
             U+1D606
                           MATHEMATICAL SANS-SERIF SMALL Y
                       y
          У
U+1D5D3
             U+1D607
                           MATHEMATICAL SANS-SERIF SMALL Z
          Ζ
                       Z
U+1D608
             U+1D63C
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL A
          Α
                       Α
U+1D609
          В
             U+1D63D
                       В
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL B
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL C
U+1D60A
         C
             U+1D63E
                       C
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL D
U+1D60B
         D
             U+1D63F
                       D
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL E
U+1D60C
             U+1D640
                       Ε
          Ε
U+1D60D
          F
             U+1D641
                       F
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL F
U+1D60E
         G
             U+1D642
                       G
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL G
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL H
U+1D60F
             U+1D643
         Н
                       Н
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL I
U+1D610
          Ι
             U+1D644
                       Ι
U+1D611
             U+1D645
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL J
          J
                       J
             U+1D646
U+1D612
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL K
          Κ
                       Κ
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL L
U+1D613
             U+1D647
                       L
          L
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL M
U+1D614
         Μ
             U+1D648
                       Μ
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL N
U+1D615
         Ν
             U + 1D649
                       Ν
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL O
U+1D616
             U+1D64A
                       0
         0
U+1D617
          Ρ
             U+1D64B
                       P
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL P
U+1D618
             U+1D64C
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL Q
         Q
                       Q
U+1D619
             U+1D64D
                       R
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL R
          R
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL S
U+1D61A
          S
             U+1D64E
                       S
U+1D61B
          Т
             U+1D64F
                       T
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL T
U+1D61C
          U
             U+1D650
                       U
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL U
U+1D61D
         V
             U+1D651
                       V
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL V
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL W
U+1D61E
         W
             U+1D652
                       W
U+1D61F
         Χ
             U+1D653
                       X
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL X
U+1D620
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL Y
         Υ
             U+1D654
                       Y
U+1D621
             U+1D655
                           MATHEMATICAL SANS-SERIF ITALIC CAPITAL Z
          Ζ
                       Ζ
                           MATHEMATICAL SANS-SERIF ITALIC SMALL A
U+1D622
             U+1D656
                       а
          а
                           MATHEMATICAL SANS-SERIF ITALIC SMALL B
U+1D623
             U+1D657
          b
                       b
                           MATHEMATICAL SANS-SERIF ITALIC SMALL C
U+1D624
             U+1D658
                       C
          С
                           MATHEMATICAL SANS-SERIF ITALIC SMALL D
U+1D625
             U+1D659
          d
                       d
                           MATHEMATICAL SANS-SERIF ITALIC SMALL E
U+1D626
          е
             U+1D65A
                       e
U+1D627
             U+1D65B
                           MATHEMATICAL SANS-SERIF ITALIC SMALL F
          f
                       f
U+1D628
             U+1D65C
                           MATHEMATICAL SANS-SERIF ITALIC SMALL G
                       g
          g
U+1D629
                           MATHEMATICAL SANS-SERIF ITALIC SMALL H
             U+1D65D
                       h
```

```
MATHEMATICAL SANS-SERIF ITALIC SMALL I
U+1D62A
             U+1D65E
                        i
U+1D62B
                           MATHEMATICAL SANS-SERIF ITALIC SMALL J
          j
             U+1D65F
                       j
U+1D62C
             U+1D660
                           MATHEMATICAL SANS-SERIF ITALIC SMALL K
          k
                       k
                           MATHEMATICAL SANS-SERIF ITALIC SMALL L
U+1D62D
          1
             U+1D661
                        I
                           MATHEMATICAL SANS-SERIF ITALIC SMALL M
U+1D62E
             U+1D662
         m
                       m
U+1D62F
                           MATHEMATICAL SANS-SERIF ITALIC SMALL N
             U+1D663
          n
                       n
U + 1D630
                           MATHEMATICAL SANS-SERIF ITALIC SMALL O
             U+1D664
          0
                       0
                           MATHEMATICAL SANS-SERIF ITALIC SMALL P
U+1D631
             U+1D665
          p
                       p
                           MATHEMATICAL SANS-SERIF ITALIC SMALL O
U+1D632
             U+1D666
          q
                       q
U + 1D633
             U+1D667
                           MATHEMATICAL SANS-SERIF ITALIC SMALL R
          r
                       r
U+1D634
             U+1D668
                           MATHEMATICAL SANS-SERIF ITALIC SMALL S
          S
                       S
U+1D635
             U+1D669
                           MATHEMATICAL SANS-SERIF ITALIC SMALL T
          t
                        t
U + 1D636
             U+1D66A
                           MATHEMATICAL SANS-SERIF ITALIC SMALL U
                       и
          и
                           MATHEMATICAL SANS-SERIF ITALIC SMALL V
U+1D637
             U+1D66B
                       V
          V
                           MATHEMATICAL SANS-SERIF ITALIC SMALL W
U+1D638
          W
             U+1D66C
                       w
                           MATHEMATICAL SANS-SERIF ITALIC SMALL X
U+1D639
          Х
             U+1D66D
                       X
U+1D63A
                           MATHEMATICAL SANS-SERIF ITALIC SMALL Y
          У
             U+1D66E
                       y
U+1D63B
             U+1D66F
                           MATHEMATICAL SANS-SERIF ITALIC SMALL Z
          z
                       Z
U+1D670
                           MATHEMATICAL MONOSPACE CAPITAL A
          A
             U+1D5D4
                       Α
                           MATHEMATICAL MONOSPACE CAPITAL B
U+1D671
          В
             U+1D5D5
                       В
U+1D672
                       C
                           MATHEMATICAL MONOSPACE CAPITAL C
          C
             U+1D5D6
U+1D673
                           MATHEMATICAL MONOSPACE CAPITAL D
         D
             U+1D5D7
                       D
                           MATHEMATICAL MONOSPACE CAPITAL E
U+1D674
          Ε
             U+1D5D8
                       Ε
          F
                       F
                           MATHEMATICAL MONOSPACE CAPITAL F
U+1D675
             U+1D5D9
                           MATHEMATICAL MONOSPACE CAPITAL G
U+1D676
          G
             U+1D5DA
                       G
                           MATHEMATICAL MONOSPACE CAPITAL H
U+1D677
             U+1D5DB
                       Н
         Η
U+1D678
                       Ι
                           MATHEMATICAL MONOSPACE CAPITAL I
          Ι
             U+1D5DC
U+1D679
          J
             U+1D5DD
                           MATHEMATICAL MONOSPACE CAPITAL J
                       J
U+1D67A
             U+1D5DE
                           MATHEMATICAL MONOSPACE CAPITAL K
         K
                       K
                           MATHEMATICAL MONOSPACE CAPITAL L
U+1D67B
          \mathbf{L}
             U+1D5DF
                       L
U+1D67C
         M
             U+1D5E0
                       М
                           MATHEMATICAL MONOSPACE CAPITAL M
U+1D67D
         N
             U+1D5E1
                       Ν
                           MATHEMATICAL MONOSPACE CAPITAL N
U+1D67E
          0
                       0
                           MATHEMATICAL MONOSPACE CAPITAL O
             U+1D5E2
U+1D67F
                       Ρ
                           MATHEMATICAL MONOSPACE CAPITAL P
          Ρ
             U+1D5E3
U+1D680
          Q
             U+1D5E4
                       Q
                           MATHEMATICAL MONOSPACE CAPITAL Q
                           MATHEMATICAL MONOSPACE CAPITAL R
U+1D681
         R
             U+1D5E5
                       R
U+1D682
          S
                       S
                           MATHEMATICAL MONOSPACE CAPITAL S
             U+1D5E6
                           MATHEMATICAL MONOSPACE CAPITAL T
U+1D683
          Τ
             U+1D5E7
                       T
U+1D684
          U
             U+1D5E8
                       U
                           MATHEMATICAL MONOSPACE CAPITAL U
                           MATHEMATICAL MONOSPACE CAPITAL V
U+1D685
          V
             U+1D5E9
                       V
         W
                           MATHEMATICAL MONOSPACE CAPITAL W
U+1D686
             U+1D5EA
                       W
                           MATHEMATICAL MONOSPACE CAPITAL X
U+1D687
         X
             U+1D5EB
                       X
U+1D688
             U+1D5EC
                       Υ
                           MATHEMATICAL MONOSPACE CAPITAL Y
          Y
U+1D689
          Ζ
             U+1D5ED
                       Z
                           MATHEMATICAL MONOSPACE CAPITAL Z
                           MATHEMATICAL MONOSPACE SMALL A
U+1D68A
             U+1D5EE
          а
                       a
```

```
MATHEMATICAL MONOSPACE SMALL B
U+1D68B
          b
              U+1D5EF
                        b
U+1D68C
                            MATHEMATICAL MONOSPACE SMALL C
          C
              U+1D5F0
                        C
U+1D68D
          d
                        d
                            MATHEMATICAL MONOSPACE SMALL D
              U+1D5F1
                            MATHEMATICAL MONOSPACE SMALL E
U+1D68E
              U+1D5F2
          e
                        e
                            MATHEMATICAL MONOSPACE SMALL F
U+1D68F
          f
              U+1D5F3
                        f
U+1D690
                            MATHEMATICAL MONOSPACE SMALL G
              U+1D5F4
          g
                        g
                            MATHEMATICAL MONOSPACE SMALL H
U+1D691
          h
              U+1D5F5
                        h
              U+1D5F6
                        i
                            MATHEMATICAL MONOSPACE SMALL I
U+1D692
          i
U+1D693
              U+1D5F7
                        j
                            MATHEMATICAL MONOSPACE SMALL J
          j
U+1D694
          k
              U+1D5F8
                        k
                            MATHEMATICAL MONOSPACE SMALL K
U+1D695
          1
              U+1D5F9
                        ı
                            MATHEMATICAL MONOSPACE SMALL L
U+1D696
                            MATHEMATICAL MONOSPACE SMALL M
          m
              U+1D5FA
                        m
U+1D697
              U+1D5FB
                            MATHEMATICAL MONOSPACE SMALL N
          n
                        n
U+1D698
              U+1D5FC
                            MATHEMATICAL MONOSPACE SMALL O
          0
                        o
U+1D699
          р
              U+1D5FD
                        p
                            MATHEMATICAL MONOSPACE SMALL P
                            MATHEMATICAL MONOSPACE SMALL Q
U+1D69A
          q
              U+1D5FE
                        q
U+1D69B
          \mathbf{r}
                            MATHEMATICAL MONOSPACE SMALL R
              U+1D5FF
                        r
U+1D69C
              U+1D600
                            MATHEMATICAL MONOSPACE SMALL S
          s
                        S
U+1D69D
                            MATHEMATICAL MONOSPACE SMALL T
              U+1D601
          t
                        t
                            MATHEMATICAL MONOSPACE SMALL U
U+1D69E
              U+1D602
          u
                        u
                            MATHEMATICAL MONOSPACE SMALL V
U+1D69F
              U+1D603
          v
                        ν
                            MATHEMATICAL MONOSPACE SMALL W
U+1D6A0
              U+1D604
          W
                        W
                            MATHEMATICAL MONOSPACE SMALL X
U+1D6A1
              U+1D605
          \mathbf{X}
                        Х
                            MATHEMATICAL MONOSPACE SMALL Y
U+1D6A2
              U+1D606
          У
                        y
U+1D6A3
              U+1D607
                            MATHEMATICAL MONOSPACE SMALL Z
                        Z
          7.
                            MATHEMATICAL ITALIC CAPITAL ALPHA
U+1D6E2
              U+1D71C
          \boldsymbol{A}
                        \boldsymbol{A}
U+1D6E3
                            MATHEMATICAL ITALIC CAPITAL BETA
          В
              U+1D71D
                        В
U+1D6E4
          Γ
              U+1D71E
                        Γ
                            MATHEMATICAL ITALIC CAPITAL GAMMA
U+1D6E5
              U+1D71F
                            MATHEMATICAL ITALIC CAPITAL DELTA
          Δ
                        Δ
                            MATHEMATICAL ITALIC CAPITAL EPSILON
U+1D6E6
          Е
              U+1D720
                        E
U+1D6E7
          Z
              U+1D721
                        Z
                            MATHEMATICAL ITALIC CAPITAL ZETA
U+1D6E8
          Η
              U+1D722
                        \boldsymbol{H}
                            MATHEMATICAL ITALIC CAPITAL ETA
U+1D6E9
                            MATHEMATICAL ITALIC CAPITAL THETA
          \Theta
              U+1D723
                        \boldsymbol{\Theta}
                            MATHEMATICAL ITALIC CAPITAL IOTA
U+1D6EA
          Ι
              U+1D724
                        Ι
U+1D6EB
          K
              U+1D725
                        K
                            MATHEMATICAL ITALIC CAPITAL KAPPA
                            MATHEMATICAL ITALIC CAPITAL LAMDA
U+1D6EC
          Λ
              U+1D726
                        Λ
                            MATHEMATICAL ITALIC CAPITAL MU
U+1D6ED
          M
              U+1D727
                        M
                            MATHEMATICAL ITALIC CAPITAL NU
U+1D6EE
              U+1D728
          N
                        N
U+1D6EF
          Ξ
              U+1D729
                        Ξ
                            MATHEMATICAL ITALIC CAPITAL XI
U+1D6F0
          0
              U+1D72A
                            MATHEMATICAL ITALIC CAPITAL OMICRON
                        0
                            MATHEMATICAL ITALIC CAPITAL PI
U+1D6F1
          П
              U+1D72B
                        П
U+1D6F2
          P
              U+1D72C
                        P
                            MATHEMATICAL ITALIC CAPITAL RHO
U+1D6F3
          ?
              U+1D72D
                        ?
                            MATHEMATICAL ITALIC CAPITAL THETA SYMBOL
U+1D6F4
          Σ
              U+1D72E
                        \boldsymbol{\Sigma}
                            MATHEMATICAL ITALIC CAPITAL SIGMA
          T
                        T
                            MATHEMATICAL ITALIC CAPITAL TAU
U+1D6F5
              U+1D72F
```

```
MATHEMATICAL ITALIC CAPITAL UPSILON
U+1D6F6
          Υ
              U+1D730
                        Y
U+1D6F7
                        Ф
                            MATHEMATICAL ITALIC CAPITAL PHI
          Φ
              U + 1D731
U+1D6F8
              U+1D732
                        \boldsymbol{X}
                            MATHEMATICAL ITALIC CAPITAL CHI
          X
          Ψ
                        Ψ
                            MATHEMATICAL ITALIC CAPITAL PSI
U+1D6F9
              U+1D733
                            MATHEMATICAL ITALIC CAPITAL OMEGA
U+1D6FA
          Ω
              U+1D734
                        \Omega
U+1D6FB
          \nabla
              U+1D735
                            MATHEMATICAL ITALIC NABLA
                        \nabla
                            MATHEMATICAL ITALIC SMALL ALPHA
U+1D6FC
              U+1D736
                        α
          α
                        B
                            MATHEMATICAL ITALIC SMALL BETA
U+1D6FD
          β
              U+1D737
U+1D6FE
          γ
              U+1D738
                            MATHEMATICAL ITALIC SMALL GAMMA
                        γ
U+1D6FF
          δ
              U+1D739
                        δ
                            MATHEMATICAL ITALIC SMALL DELTA
U+1D700
              U+1D73A
                            MATHEMATICAL ITALIC SMALL EPSILON
                        ε
          ε
U+1D701
          ζ
                        ζ
                            MATHEMATICAL ITALIC SMALL ZETA
              U+1D73B
U+1D702
              U+1D73C
                            MATHEMATICAL ITALIC SMALL ETA
          η
                        n
                            MATHEMATICAL ITALIC SMALL THETA
U+1D703
          \theta
              U+1D73D
                        \theta
U+1D704
          ι
              U+1D73E
                         ι
                            MATHEMATICAL ITALIC SMALL IOTA
                            MATHEMATICAL ITALIC SMALL KAPPA
U+1D705
          κ
              U+1D73F
                        K
U+1D706
              U+1D740
                            MATHEMATICAL ITALIC SMALL LAMDA
          λ
                        λ
U+1D707
              U+1D741
                            MATHEMATICAL ITALIC SMALL MU
          μ
                        μ
U+1D708
                            MATHEMATICAL ITALIC SMALL NU
              U+1D742
          ν
                        ν
                        ξ
                            MATHEMATICAL ITALIC SMALL XI
U+1D709
          ξ
              U+1D743
                            MATHEMATICAL ITALIC SMALL OMICRON
U+1D70A
              U + 1D744
          0
                        0
                            MATHEMATICAL ITALIC SMALL PI
U+1D70B
              U+1D745
                        π
          π
                            MATHEMATICAL ITALIC SMALL RHO
U+1D70C
              U+1D746
                        ρ
          ρ
                            MATHEMATICAL ITALIC SMALL FINAL SIGMA
U+1D70D
              U+1D747
          ς
                        ς
                            MATHEMATICAL ITALIC SMALL SIGMA
U+1D70E
              U+1D748
          \sigma
                        \sigma
                            MATHEMATICAL ITALIC SMALL TAU
U+1D70F
              U+1D749
          τ
                        τ
                            MATHEMATICAL ITALIC SMALL UPSILON
U+1D710
              U+1D74A
          υ
                        υ
U+1D711
              U+1D74B
                            MATHEMATICAL ITALIC SMALL PHI
          φ
                        φ
U+1D712
              U+1D74C
                            MATHEMATICAL ITALIC SMALL CHI
          χ
                        χ
U+1D713
              U+1D74D
                            MATHEMATICAL ITALIC SMALL PSI
          Ψ
                        Ψ
U+1D714
              U+1D74E
                            MATHEMATICAL ITALIC SMALL OMEGA
          ω
                        \omega
U+1D715
          д
              U+1D74F
                        д
                            MATHEMATICAL ITALIC PARTIAL DIFFERENTIAL
U+1D716
                            MATHEMATICAL ITALIC EPSILON SYMBOL
          \epsilon
              U+1D750
                        \epsilon
          \theta
                        9
                            MATHEMATICAL ITALIC THETA SYMBOL
U+1D717
              U+1D751
U+1D718
              U+1D752
                            MATHEMATICAL ITALIC KAPPA SYMBOL
          ×
                        ×
                            MATHEMATICAL ITALIC PHI SYMBOL
U+1D719
              U+1D753
          φ
                        ф
                            MATHEMATICAL ITALIC RHO SYMBOL
U+1D71A
              U+1D754
          \varrho
                        \varrho
                            MATHEMATICAL ITALIC PI SYMBOL
U+1D71B
              U+1D755
                        \boldsymbol{\varpi}
          \overline{\omega}
U+1D7D8
          ?
              U+1D7D8
                        ?
                            MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO
U+1D7D9
          ?
              U+1D7D9
                        ?
                            MATHEMATICAL DOUBLE-STRUCK DIGIT ONE
          ?
                        ?
                            MATHEMATICAL DOUBLE-STRUCK DIGIT TWO
U+1D7DA
              U+1D7DA
          ?
                        ?
                            MATHEMATICAL DOUBLE-STRUCK DIGIT THREE
U+1D7DB
              U+1D7DB
U+1D7DC
          ?
              U+1D7DC
                        ?
                            MATHEMATICAL DOUBLE-STRUCK DIGIT FOUR
U+1D7DD
          ?
              U+1D7DD
                         ?
                            MATHEMATICAL DOUBLE-STRUCK DIGIT FIVE
                            MATHEMATICAL DOUBLE-STRUCK DIGIT SIX
U+1D7DE
              U+1D7DE
```

```
U+1D7DF
                           MATHEMATICAL DOUBLE-STRUCK DIGIT SEVEN
             U+1D7DF
U+1D7E0
             U+1D7E0
                           MATHEMATICAL DOUBLE-STRUCK DIGIT EIGHT
U+1D7E1
          ?
             U+1D7E1
                       ?
                           MATHEMATICAL DOUBLE-STRUCK DIGIT NINE
U+1D7E2
             U+1D7EC
                       0
                           MATHEMATICAL SANS-SERIF DIGIT ZERO
          0
                           MATHEMATICAL SANS-SERIF DIGIT ONE
U+1D7E3
                       1
          1
             U+1D7ED
U+1D7E4
          2
             U+1D7EE
                       2
                           MATHEMATICAL SANS-SERIF DIGIT TWO
U+1D7E5
          3
             U+1D7EF
                       3
                           MATHEMATICAL SANS-SERIF DIGIT THREE
U+1D7E6
          4
             U+1D7F0
                       4
                           MATHEMATICAL SANS-SERIF DIGIT FOUR
                           MATHEMATICAL SANS-SERIF DIGIT FIVE
U+1D7E7
          5
             U+1D7F1
                       5
             U+1D7F2
U+1D7E8
          6
                       6
                           MATHEMATICAL SANS-SERIF DIGIT SIX
U+1D7E9
          7
             U+1D7F3
                       7
                           MATHEMATICAL SANS-SERIF DIGIT SEVEN
U+1D7EA
          8
             U+1D7F4
                       8
                           MATHEMATICAL SANS-SERIF DIGIT EIGHT
                           MATHEMATICAL SANS-SERIF DIGIT NINE
U+1D7EB
          9
             U+1D7F5
                       9
                           MATHEMATICAL MONOSPACE DIGIT ZERO
U+1D7F6
         0
             U+1D7EC
                       0
                           MATHEMATICAL MONOSPACE DIGIT ONE
U+1D7F7
          1
             U+1D7ED
                       1
                           MATHEMATICAL MONOSPACE DIGIT TWO
U+1D7F8
          2
             U+1D7EE
                       2
U+1D7F9
          3
             U+1D7EF
                       3
                           MATHEMATICAL MONOSPACE DIGIT THREE
U+1D7FA
          4
             U+1D7F0
                       4
                           MATHEMATICAL MONOSPACE DIGIT FOUR
                           MATHEMATICAL MONOSPACE DIGIT FIVE
U+1D7FB
          5
             U+1D7F1
                       5
                           MATHEMATICAL MONOSPACE DIGIT SIX
U+1D7FC
          6
             U+1D7F2
                       6
U+1D7FD
          7
             U+1D7F3
                       7
                           MATHEMATICAL MONOSPACE DIGIT SEVEN
U+1D7FE
             U+1D7F4
                       8
                           MATHEMATICAL MONOSPACE DIGIT EIGHT
          8
U+1D7FF
             U+1D7F5
                       9
                           MATHEMATICAL MONOSPACE DIGIT NINE
          9
          ?
             U+1EEA1
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK BEH
U+1EEA1
U+1EEA2
          ?
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK JEEM
             U+1EEA2
U+1EEA3
          ?
             U+1EEA3
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK DAL
U+1EEA5
          ?
             U+1EEA5
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK WAW
U+1EEA6
          ?
             U+1EEA6
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK ZAIN
                           ARABIC MATHEMATICAL DOUBLE-STRUCK HAH
U+1EEA7
          ?
             U+1EEA7
                       ?
          ?
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK TAH
U+1EEA8
             U+1EEA8
          ?
                       ?
U+1EEA9
             U+1EEA9
                           ARABIC MATHEMATICAL DOUBLE-STRUCK YEH
U+1EEAB
          ?
             U+1EEAB
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK LAM
                       ?
U+1EEAC
          ?
             U+1EEAC
                           ARABIC MATHEMATICAL DOUBLE-STRUCK MEEM
          ?
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK NOON
U+1EEAD
             U+1EEAD
U+1EEAE
          ?
             U+1EEAE
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK SEEN
          ?
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK AIN
U+1EEAF
             U+1EEAF
U+1EEB0
          ?
             U+1EEB0
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK FEH
          ?
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK SAD
U+1EEB1
             U+1EEB1
                       ?
          ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK QAF
U+1EEB2
             U+1EEB2
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK REH
U+1EEB3
          ?
             U+1EEB3
          ?
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK SHEEN
U+1EEB4
             U+1EEB4
          ?
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK TEH
U+1EEB5
             U+1EEB5
                       ?
U+1EEB6
          ?
             U+1EEB6
                           ARABIC MATHEMATICAL DOUBLE-STRUCK THEH
U+1EEB7
          ?
             U+1EEB7
                       ?
                           ARABIC MATHEMATICAL DOUBLE-STRUCK KHAH
U+1EEB8
             U+1EEB8
                           ARABIC MATHEMATICAL DOUBLE-STRUCK THAL
```

U+1EEB9	?	U+1EEB9	?	ARABIC MAT	HEMATICAL	DOUBLE-STRUCK	DAD
U+1EEBA	?	U+1EEBA	?	ARABIC MAT	HEMATICAL	DOUBLE-STRUCK	ZAH
U+1EEBB	?	U+1EEBB	?	ARABIC MAT	HEMATICAL	DOUBLE-STRUCK	GHAIN