Group 8 DSF PT6-Phase 2 Project

Members

- steve.abonyo@student.moringaschool.com
- brian.kariithi@student.moringaschool.com
- rosaline.mungai@student.moringaschool.com
- ruth.nyakio@student.moringaschool.com
- lynette.mwiti@student.moringaschool.com
- ivan.wawire@student.moringaschool.com

1. Business Understanding

Overview:

Housing sales in a northwestern county between the year 2014 and 2015

Problem Statement:

Finsco Limited, a real estate group investing in USA real estate has opened a consultancy arm. for their first project, they would like to understand how home renovations might increase the estimated value of homes, and by what amount.

The goal is to get insights to provide advice to homeowners, real estate investors and clients who do house-flipping

They have tasked the Hepta Group to conduct multiple linear regression modelling to analyze house sales in a Northwestern County they have been provided with.

Stakeholders:

- -Homeowners: These are the people who want to increase the value of their homes and want to know the kind of renovations to do.
- -Real estate agency: The company that is conducting this model to help homeowners know what renovations to do to increase the value of their homes.

Understanding:

We have several parameters/variables in our data that when adjusted/improved, may positively affect the value of homes in this county. We need to find and observe which parameter greatly influences the value of the homes and perhaps, what parameters might give the best value of the homes.

Our dependent variable is the value of homes; what we are trying to predict.

Our independent variables are the home renovations, and there are several, we will use this to help us find the best possible values of the homes.

The above two concepts (dependent and independent) lead us to the concept we are going to use which is the multiple linear regression. Multiple linear

regression is used when we want to predict a dependent variable (value of homes) using two or more independent variables (the several parameters present in our data).

Key items to check before we build the model;

- Have a basic understanding of the data
- Which parameters greatly/least influence the value of homes for the homeowners?
- Which parameters are irrelevant to our model (through observation after understanding our problem)

Implications

- With the insights provided, Finsco Limited and its clients can strategically invest in real estate by choosing renovations that significantly increase home values.
- Homeowners working with Finsco's consultancy learn which renovations offer the best returns, helping them wisely enhance their properties.
- House flippers working with FINSCO consultancy can tailor their strategies to target high-ROI renovations.
- The consultancy's success not only benefits Finsco and its clients but also stimulates economic growth through increased renovation and property transaction activities.

2. Data understanding

Data Source & Size

The data we are going to use is called kc_house_data.csv from the King County House Sales and it has 21597 records.

Variables description

Below is the description of our variables;

- id Unique identifier for a house
- date Date house was sold
- price Sale price (prediction target)
- bedrooms Number of bedrooms
- bathrooms Number of bathrooms
- sqft_living Square footage of living space in the home
- sqft lot Square footage of the lot
- floors Number of floors (levels) in house
- waterfront Whether the house is on a waterfront
 - Includes Duwamish, Elliott Bay, Puget Sound, Lake Union, Ship Canal, Lake Washington, Lake Sammamish, other lake, and river/slough waterfronts
- view Quality of view from house
 - Includes views of Mt. Rainier, Olympics, Cascades, Territorial, Seattle Skyline,
 Puget Sound, Lake Washington, Lake Sammamish, small lake / river / creek, and other
- condition How good the overall condition of the house is. Related to maintenance of house.

- See the King County Assessor Website for further explanation of each condition code
- grade Overall grade of the house. Related to the construction and design of the house.
 - See the King County Assessor Website for further explanation of each building grade code
- sqft_above Square footage of house apart from basement
- sqft_basement Square footage of the basement
- yr_built Year when house was built
- yr_renovated Year when house was renovated
- zipcode ZIP Code used by the United States Postal Service
- lat Latitude coordinate
- long Longitude coordinate
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of .the nearest 15 neighbors

The target variable from the above dataset is the price, where as the others form the predictor/independent variables. From these datasets we can already start seeing some predictor variables that may have an impact on the target variable (ofcourse this is by observation), for example how will changing the number of bedrooms affect the house prices for the home owners.

Limitations:

From a quick observation of the data, we have noticed the presence of missing values in some of the predictor variables like waterfront and view. We will first have to check if the variables having missing values significantly affect the value of homes or not. Also we have noticed that there are non-numerical variables. Linear regression only uses numerical columns. We will have to adjust this columns to numbers if at all we are going to use them in building our model (NB: it is a requirement that we use atleast one non-numeric column)

```
In [1]: # Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Load the dataset
data = pd.read_csv('kc_house_data.csv')

# Displaying the first few rows of the data frame
data.head()
```

```
Out[1]:
                  id
                           date
                                    price bedrooms bathrooms sqft_living sqft_lot floors
        0 7129300520 10/13/2014 221900.0
                                                 3
                                                          1.00
                                                                   1180
                                                                           5650
                                                                                    1.0
          6414100192
                       12/9/2014 538000.0
                                                          2.25
                                                                   2570
                                                                           7242
                                                                                   2.0
        2 5631500400
                       2/25/2015 180000.0
                                                 2
                                                          1.00
                                                                    770
                                                                           10000
                                                                                   1.0
        3 2487200875
                      12/9/2014 604000.0
                                                          3.00
                                                                   1960
                                                                           5000
                                                                                   1.0
          1954400510
                       2/18/2015 510000.0
                                                 3
                                                          2.00
                                                                   1680
                                                                           8080
                                                                                   1.0
       5 rows × 21 columns
In [2]:
        # Getting basic information about the datatype
        print(data.info())
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 21597 entries, 0 to 21596
      Data columns (total 21 columns):
           Column
                        Non-Null Count Dtype
       ---
           -----
                          -----
           id
       0
                          21597 non-null int64
       1
           date
                         21597 non-null object
           price
                         21597 non-null float64
       2
       3
           bedrooms
                          21597 non-null int64
          bathrooms
                          21597 non-null float64
       4
       5
           sqft_living 21597 non-null int64
           sqft_lot
                          21597 non-null int64
       6
       7
           floors
                          21597 non-null float64
       8
           waterfront
                        19221 non-null object
       9
                         21534 non-null object
           view
       10 condition
                          21597 non-null object
       11 grade
                          21597 non-null object
       12 sqft above
                         21597 non-null int64
       13 sqft basement 21597 non-null object
       14 yr built
                          21597 non-null int64
       15 yr_renovated
                          17755 non-null float64
       16 zipcode
                          21597 non-null int64
       17 lat
                          21597 non-null float64
       18 long
                          21597 non-null float64
       19 sqft living15 21597 non-null int64
       20 sqft lot15
                          21597 non-null int64
       dtypes: float64(6), int64(9), object(6)
      memory usage: 3.5+ MB
      None
In [3]: # Descriptive statistics of our dataset
        data.describe()
```

[3]:		id	price	bedrooms	bathrooms	sqft_living	sqf
	4		<u> </u>				
	ount	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700
n	nean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941
	std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264
	min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.2000006
	25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.0400006
	50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.6180006
	75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500
	max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359
4							+
id dat pri bed bat sqf flo wat vie con gra sqf yr_ yr_	te ice ice drooms throom ft_liv ft_lot cors terfro ade ft_abo ft_bas built renov code	ring 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					

data.sample(5)

Out[5]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	fl
	21437	2254502071	5/23/2014	375000.0	2	2.50	750	1430	
	8905	822059038	7/31/2014	290000.0	6	4.50	2810	11214	
	10235	3876200060	5/2/2014	382500.0	4	1.75	1560	8700	
	13619	8078390150	6/26/2014	675750.0	4	2.50	2770	10274	
	955	510002065	3/23/2015	700000.0	4	1.00	1980	4560	

5 rows × 21 columns

```
In [6]: # Getting data types of our dataset
        data.dtypes
Out[6]:
        id
                           int64
                           object
        date
                         float64
        price
        bedrooms
                           int64
        bathrooms
                         float64
        sqft_living
                           int64
        sqft_lot
                           int64
        floors
                         float64
        waterfront
                          object
```

view object condition object grade object int64 sqft_above sqft_basement object yr_built int64 float64 yr_renovated zipcode int64 lat float64 long float64

int64

int64

sqft_lot15
dtype: object

sqft_living15

In [7]: # Explore unique values and frequency counts for categorical variables
 categorical_cols = ['waterfront', 'view', 'condition', 'grade', 'zipcode']
 for col in categorical_cols:
 print(data[col].value_counts())

```
waterfront
      NO 19075
      YES
               146
      Name: count, dtype: int64
      view
      NONE
                   19422
      AVERAGE
                   957
      GOOD
                    508
      FAIR
                     330
      EXCELLENT
                     317
      Name: count, dtype: int64
      condition
                   14020
      Average
      Good
                   5677
      Very Good
                  1701
                   170
      Fair
      Poor
                      29
      Name: count, dtype: int64
      grade
      7 Average
                     8974
      8 Good
                      6065
      9 Better
                     2615
      6 Low Average 2038
      10 Very Good
                     1134
      11 Excellent
                       399
      5 Fair
                       242
      12 Luxury
                       89
      4 Low
                         27
      13 Mansion
                        13
      3 Poor
                         1
      Name: count, dtype: int64
      zipcode
      98103
             602
      98038
             589
      98115
             583
      98052
             574
      98117
             553
              . . .
      98102
               104
      98010
             100
      98024
               80
      98148
                57
      98039
                50
      Name: count, Length: 70, dtype: int64
In [8]: # Visualising how data using histogram
        # Histograms for only numerical variables
        data.hist(bins=20, figsize=(15,10))
        plt.show()
```


Tableau dashboard

In order to have better understanding of the data, a tableaue dashboard was produced. Below is the link to the dashboard

https://public.tableau.com/views/KingCountySalesDashboard-Group8/KingCountySalesdashboard?:language=en-US&publish=yes&:sid=&:display_count=n&:origin=viz_share_link

A. Data Cleaning

```
In [9]:
         data['sqft_basement'].value_counts()
         ## 1st we can see there are a lot of zeros
         ## the missing values are 454(indicated as ?)
Out[9]:
         sqft basement
         0.0
                    12826
                      454
                      217
         600.0
         500.0
                      209
         700.0
                      208
         1920.0
                        1
         3480.0
                        1
         2730.0
                        1
         2720.0
                        1
         248.0
         Name: count, Length: 304, dtype: int64
         ## lets strip the ? to be an empty space then we impute the blanks
In [10]:
         data['sqft_basement'] = data['sqft_basement'].replace('?',None).astype("float")
```

Dropping Columns

```
In [13]: ## We have decided to drop these columns

dropped_columns = ['date', 'view', 'sqft_above', 'sqft_basement', 'yr_renovated'
    data1 = data.drop(columns = dropped_columns)
    data1.head(2)
```

Out[13]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	condition
	0	221900.0	3	1.00	1180	5650	1.0	NaN	Average
	1	538000.0	3	2.25	2570	7242	2.0	NO	Average
	4								+

Missing Data

Column waterfront has missing values, we will fill the missing values with NA as they are empty spaces. We don't want to manipulate the analysis by increasing the number of YES's/NO's

```
In [14]: print("Missing values:", data1['waterfront'].isna().sum())
    print("Table BEFORE dealing with missing values")
    data1['waterfront'].value_counts()

Missing values: 2376
    Table BEFORE dealing with missing values

Out[14]: waterfront
    NO     19075
    YES     146
    Name: count, dtype: int64

In [15]: data1['waterfront'].fillna("NA",inplace=True)
    print("Missing values:", data1['waterfront'].isna().sum())
```

```
print("Table AFTER dealing with missing values")
  data1['waterfront'].value_counts()

Missing values: 0
  Table AFTER dealing with missing values

Out[15]: waterfront
    NO     19075
    NA     2376
    YES     146
    Name: count, dtype: int64
```

Encoding Data

```
In [16]: # Checking the data types of our columns
         data1.dtypes
                       float64
Out[16]: price
          bedrooms
                         int64
                      float64
          bathrooms
          sqft_living int64
         sqft_i...
sqft_lot inc
float64
chiect
         waterfront object condition object
                        object
          grade
         yr_built
                         int64
          dtype: object
```

They are 3 i.e., waterfront, condition and grade

Based on our business problem which is *Advice to homeowners by a real estate agency on how home renovations might increase the estimated values of their homes and by what amount using multiple linear regression*, we are going to choose condition variable, encode it and use it in our model.

The reason is because if we improve the condition of the house e.g from average to good, then the value of the home might increase.

Following the above decision, we will drop the other two categorical variables i.e., waterfront and grade

We are going to use ordinal encoding to transform our selected categorical variable to numeric variable. Why we have selected ordinal encoding is because the choices observe some sequence/hierarchy

```
In [17]: # Summary and count of the condition column values
         data1['condition'].value_counts()
Out[17]: condition
                    14020
         Average
         Good
                     5677
                     1701
         Very Good
         Fair
                       170
         Poor
                        29
         Name: count, dtype: int64
In [18]: ## Create the codes
         condition_codes = {'Poor':1, 'Fair':2, 'Average':3, 'Good':4, 'Very Good':5}
```

price bedrooms bathrooms sqft_living sqft_lot floors waterfront condition

5650

1.0

NA

Average

1180

2570

7242

2.0

1951

Out[18]:

```
## Inputting our codes back into our data frame
data1['condition_coded'] = data1['condition'].replace(condition_codes)
data1.head(2)
```

	0	221900.0	3	1.00	1180	5650	1.0	1955	
Out[19]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	condition_cod
In [19]:	dr da	op_column	s = ['water a1.drop(col	ns that cont rfront', 'co lumns = drop	ondition',				
	4								>
	1	538000.0	3	2.25	2570	7242	2.0	N	NO Average
		22.7500.0		1.00	1100	3030	1.0		, werage

1.00

2.25

Correlation

538000.0

0 221900.0

3

 sqft_living
 0.701917

 bathrooms
 0.525906

 bedrooms
 0.308787

 floors
 0.256804

 sqft_lot
 0.089876

 yr_built
 0.053953

 condition_coded
 0.036056

 Name: price, dtype: float64

From the correlation results above we can already start to see that variables like sqft_living, bathrooms, bedrooms and floors will produce a better model as compared to their other counterparts.

Our newly coded condition variable is the least on the correlation table, implying it will not be very significant to our model when compared to the rest.

```
In [21]: data2.info()
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 21597 entries, 0 to 21596
       Data columns (total 8 columns):
        # Column Non-Null Count Dtype
       --- -----
                          -----
        0 price
1 bedrooms
                         21597 non-null float64
21597 non-null int64
        2 bathrooms
                         21597 non-null float64
        3 sqft_living 21597 non-null int64
          sqft_lot
                         21597 non-null int64
        5 floors
                          21597 non-null float64
        6 yr_built 21597 non-null int64
        7
           condition_coded 21597 non-null int64
       dtypes: float64(3), int64(5)
       memory usage: 1.3 MB
In [22]: data2.isna().sum()
        ##by now we dont have any missing value
Out[22]: price
         bedrooms
                          0
         bathrooms
         sqft_living
         sqft_lot
         floors
         yr_built
         condition_coded
         dtype: int64
In [23]: ## The final data to proceed to the modelling step
        df = data2.copy(deep=True)
        df.head()
Out[23]:
```

•		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	condition_cod
	0	221900.0	3	1.00	1180	5650	1.0	1955	
	1	538000.0	3	2.25	2570	7242	2.0	1951	
	2	180000.0	2	1.00	770	10000	1.0	1933	
	3	604000.0	4	3.00	1960	5000	1.0	1965	
	4	510000.0	3	2.00	1680	8080	1.0	1987	
	4								•

3. Modelling

A. Data Splitting

- Variable X contains all the independent features except the 'price' column.
- y contains the 'price' column, the target variable.
- We will use 20% of the data for testing and 80% for training.

```
In [24]: from sklearn.model_selection import train_test_split
```

```
# Getting out independent features. We will exclude the price
X = df.drop('price', axis=1)

# Dependent variable price which is our target
y = df['price']

# Split the data into training and testing sets
# We will use 20% of the data for testing and 80% for training.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
```

B. Simple Linear Regression for each Independent Variable

```
# We are going to create a function for plotting a simple linear regression mode
In [25]:
         # This will make the plotting of linear regression models for all our features e
         # Importing necessary libraries
         import statsmodels.api as sm
         import seaborn as sns
         # Creating a function for simple linear regression
         def simple_linear_regression(X, y):
             # Add constant to X
             X = sm.add\_constant(X)
             # Fit OLS regression model
             model = sm.OLS(y, X).fit()
             # Get the coefficients
             intercept = model.params.iloc[0]
             slope = model.params.iloc[1]
             # Predictions
             y pred = model.predict(X)
             # Plotting
             # plt.figure(figsize=(6, 4))
             # sns.scatterplot(x=X.iloc[:, 1], y=y, alpha=0.5)
             # sns.lineplot(x=X.iloc[:, 1], y=y_pred, color='red')
             # plt.title(f'{X.columns[1]} vs Price')
             # plt.xlabel(X.columns[1])
             # plt.ylabel('Price')
             # plt.show()
             plt.figure(figsize=(8, 6)) #Set figure size
             plt.scatter(X.iloc[:, 1], y ,color="blue", label="Data points") #original da
             plt.plot(X.iloc[:, 1], y_pred, color="red", label="Line of best fit") ## not
             plt.title(f'{X.columns[1]} vs Price')
             plt.xlabel(X.columns[1])
             plt.ylabel('Price')
             plt.legend()
             plt.grid(True)
             plt.show()
             # Print the summary of the regression results
             print(model.summary())
             print('')
             print(f"price = {slope}*({X.columns[1]}) + {intercept}, This is in the form
```

```
print("f_value:", model.fvalue)
print("p_value:", model.f_pvalue)
print('')
```

i. sqft_living

```
In [26]: X_sqft_living = X_train[['sqft_living']]
y = y_train
simple_linear_regression(X_sqft_living, y)
```


======	======= pr:	==== ice	R-squa	======= red:	=======	0.489
			•			0.489
L	east Squar	res	_			1.656e+04
):	0.00
ĺ	•		•	•		-2.4012e+05
	172	277	AIC:			4.802e+05
	172	275	BIC:			4.803e+05
		1				
	nonrobi	ıst				
======	=======		======	=======		=======
coef	std err		t	P> t	[0.025	0.975]
'4e+04	4945.683	-	8.238	0.000	-5.04e+04	-3.11e+04
.2624	2.170	12	8.675	0.000	275.008	283.516
:======	12143.9	==== 926	Durbin	======== -Watson:	=======	2.010
	0.0	900	Jarque	-Bera (JB):		489855.060
	2.8	394	Prob(J	B):		0.00
	28 /	125	Cond.	No.		5.64e+03
	Tue, coef 4e+04	Least Squar Tue, 09 Apr 26 18:37: 172 172 nonrobut coef std err 4e+04 4945.683 2.2624 2.170 12143.9	Tue, 09 Apr 2024 18:37:11 17277 17275 1 nonrobust coef std err	OLS Adj. R Least Squares F-stat Tue, 09 Apr 2024 Prob (18:37:11 Log-Li 17277 AIC: 17275 BIC: 1 nonrobust coef std err t 4e+04 4945.683 -8.238 2.2624 2.170 128.675 12143.926 Durbin 0.000 Jarque 2.894 Prob(J	OLS Adj. R-squared: Least Squares F-statistic: Tue, 09 Apr 2024 Prob (F-statistic) 18:37:11 Log-Likelihood: 17277 AIC: 17275 BIC: 1 nonrobust coef std err t P> t 4e+04 4945.683 -8.238 0.000 2624 2.170 128.675 0.000 12143.926 Durbin-Watson: 0.000 Jarque-Bera (JB): 2.894 Prob(JB):	OLS Adj. R-squared: Least Squares F-statistic: Tue, 09 Apr 2024 Prob (F-statistic): 18:37:11 Log-Likelihood: 17277 AIC: 17275 BIC: 1 nonrobust coef std err t P> t [0.025] 4e+04 4945.683 -8.238 0.000 -5.04e+04 2.2624 2.170 128.675 0.000 275.008 12143.926 Durbin-Watson: 0.000 Jarque-Bera (JB): 2.894 Prob(JB):

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.64e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
price = 279.262427562963*(sqft_living) + -40744.59249028359, This is in the form y = mx+c
```

f_value: 16557.204671729098

p_value: 0.0

- The coefficient for sqft_living is approximately 279. For every 1 unit increase in square footage of living space (sqft_living), the house price is estimated to increase by \$279, whereas, while other sqft_living is constant the house price is expected to decrease by 40744.
- Given a p-value of 0.000, the coefficient for sqft_living is statistically significant. This means that the sqft_living space has a significant impact on the house price.
- The R-squared value is 0.489, indicating that ~ 49.2% of the variance in house prices
 is explained by the sqft_living space. This suggests that the model provides a
 moderate fit to the data.
- The F-statistic is 1.656e+04, with a p-value of 0.000, which means that our regression model is statistically significant.

ii. Bedrooms

```
In [27]: # Call the function for bedrooms
X_bedrooms = X_train[['bedrooms']]
print("Regression results for bedrooms:")
simple_linear_regression(X_bedrooms, y)
```

Regression results for bedrooms:

Dep. Variab	ole:	р	rice	R-sq	uared:		0.095
Model:			OLS	Adj.	R-squared:		0.095
Method:		Least Squ	ares	F-sta	atistic:		1820.
Date:		Tue, 09 Apr	2024	Prob	(F-statistic):	0.00
Time:		18:3	7:12	Log-l	Likelihood:		-2.4506e+05
No. Observa	ations:	1	7277	AIC:			4.901e+05
Df Residual	ls:	1	.7275	BIC:			4.901e+05
Df Model:			1				
Covariance	Type:	nonro	bust				
========		========	=====			=======	
	coef	std err		t	P> t	[0.025	0.975]
const	1.301e+05	1e+04	13	3.006	0.000	1.1e+05	1.5e+05
bedrooms	1.218e+05	2855.071	42	2.659	0.000	1.16e+05	1.27e+05
Omnibus:	=======	 15325	.768	===== :Durb	======== in-Watson:	=======	2.012
Prob(Omnibu	us):	6	.000	Jarqı	ue-Bera (JB):		1091222.015
Skew:	•	3	.965		, ,		0.00
Kurtosis:		41	.118	Cond	` '		14.2
			=====			=======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

price = 121794.12831776463*(bedrooms) + 130065.79490555076, This is in the form y

= mx+c

f_value: 1819.779672482757

p_value: 0.0

- The coefficient for bedrooms is around 121,794. Meaning additional bedroom in a house, the price of the house might increase by USD 121,794, whereas if there are no other changes in bedrooms, the the value of the house will be 130065.
- The p-value of 0.000 means the coefficient for bedrooms is statistically significant
- The R-squared value is 0.095, meaning ~ 9.5% of the variance in house prices is explained by the number of bedrooms.
- The F-statistic is 1820.0, with a p-value of 0.000, meaning the regression model is statistically significant.

iii. Bathrooms

```
In [28]: # Call the function for bathrooms
X_bathrooms = X_train[['bathrooms']]
print("Regression results for bathrooms:")
simple_linear_regression(X_bathrooms, y)
```

Regression results for bathrooms:


```
______
Dep. Variable:
                   price R-squared:
                                            0.276
Model:
OLS Adj. R-squared:
0.275
Method:
Least Squares F-statistic:
5669.
Date:
Tue, 09 Apr 2024 Prob (F-statistic):
0.00
Time:
18:37:12 Log-Likelihood:
-2.4314e+05
No. Observations:
Df Residuals:
                   17277 AIC:
                                         4.863e+05
Df Residuals:
                   17275 BIC:
                                          4.863e+05
Df Model:
Covariance Type: nonrobust
______
          coef std err t P>|t| [0.025 0.975]
______
const 1.141e+04 6958.084 1.640 0.101 -2228.620
                                          2.5e+04
bathrooms 2.5e+05 3084.344 81.052 0.000 2.44e+05 2.56e+05
______
                 14070.987 Durbin-Watson:
Omnibus:
                                             2.027
                  0.000 Jarque-Bera (JB): 794843.170
Prob(Omnibus):
                   3.522 Prob(JB):
Skew:
                                             0.00
                  35.473 Cond. No.
                                             7.76
Kurtosis:
______
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
price = 249991.5449970878*(bathrooms) + 11409.928954557778, This is in the form y
= mx+c
```

f_value: 6569.388742409433

p_value: 0.0

- The coefficient for bathrooms is approximately 250,000. This means that for an additional bathroom in a house, the price of the house will increase by USD 250,000 whereas if no renovation is done in bathrooms, then the value of the house is expected to be 11409.
- The coefficient for bathrooms is statistically significant, as indicated by the p-value of 0.000.
- This suggests that the number of bathrooms has a significant impact on the house price.

iv. Sqft Lot

```
In [29]: # Call the function for sqft_lot
X_sqft_lot = X_train[['sqft_lot']]
print("Regression results for sqft_lot:")
simple_linear_regression(X_sqft_lot, y)
```

Regression results for sqft_lot:

Dep. Variable:	price	R-squared:	0.007
Model:	OLS	Adj. R-squared:	0.007
Method:	Least Squares	F-statistic:	119.0
Date:	Tue, 09 Apr 2024	Prob (F-statistic	1.26e-27
Time:	18:37:12	Log-Likelihood:	-2.4587e+05
No. Observations:	17277	AIC:	4.917e+05
Df Residuals:	17275	BIC:	4.918e+05
Df Model:	1		
Covariance Type:	nonrobust		
=======================================			
coe		t P> t	[0.025 0.975]
const 5.303e+0			5.24e+05 5.36e+05
sqft_lot 0.727	5 0.067 1	0.000	0.597 0.858
Omnibus:	 15595.690	Durbin-Watson:	2.006
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1044159.618
Skew:	4.109	Prob(JB):	0.00
Kurtosis:	40.188	Cond. No.	4.73e+04
=======================================	=========	:========:	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.73e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
price = 0.7274845493935727*(sqft_lot) + 530271.7004753138, This is in the form y
= mx+c
```

f_value: 119.0405586196337 p_value: 1.2627869637889872e-27

- The coefficient for sqft_lot is approximately 0.727, meaning a one-unit increase in the square footage of the lot, the price of the house will increase by USD 0.727, if no other change is sqft_lot is done in the house, then the value of the home is expected to be 530271.
- Given the p-value of 0.000, This suggests that the square footage of the lot has a significant impact on the house price.
- Approximately 0.8% of the variance in house prices is explained by the square footage of the lot (sqft_lot).
- The overall regression model is statistically significant.

v. Floors

```
In [30]: # Call the function for floors
X_floors = X_train[['floors']]
print("Regression results for floors:")
simple_linear_regression(X_floors, y)
```

Regression results for floors:

========				=====	========	=======	========
Dep. Variab	ole:	pr	ice	R-squ	uared:		0.066
Model:			OLS	Adj.	R-squared:		0.066
Method:		Least Squa	ires	F-sta	atistic:		1213.
Date:		Tue, 09 Apr 2	024	Prob	(F-statistic):	5.31e-257
Time:		18:37	':1 3	Log-l	Likelihood:		-2.4534e+05
No. Observa	ations:	17	277	AIC:			4.907e+05
Df Residual	ls:	17	275	BIC:			4.907e+05
Df Model:			1				
Covariance	Type:	nonrob	ust				
========				=====			
	coe	f std err		t	P> t	[0.025	0.975]
const	2.801e+0	7971.267	35	.139	0.000	2.64e+05	2.96e+05
floors	1.745e+0	5008.961	34	.834	0.000	1.65e+05	1.84e+05
Omnibus:	=======	 15790.	===== 117	===== :Durb	======== in-Watson:	======	2.008
Prob(Omnibu	ıs):	0.	000	Jarqı	ue-Bera (JB):		1148912.256
Skew:	•	4.	163	Prob	(JB):		0.00
Kurtosis:		42.	073	Cond	. No.		6.38
========	========		=====	=====	=========	=======	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

price = 174483.3344052792*(floors) + 280103.3012835714, This is in the form y = m

f_value: 1213.423949281076 p_value: 5.308358683083986e-257

- The coefficient for floors is approximately 174,483. This means that for every additional floor in a house, the price of the house will increase by USD 174,483, if floor(floor modification) is not changed, then the value of the house is expected to be 280103.
- As indicated by the p-value of 0.000, the number of floors has a significant impact on the house price.
- Around 6.7% of the variance in house prices is explained by the number of floors (floors)
- The overall regression model is statistically significant given the F-statistic

vi. Year Built

```
In [31]: # Call the function for yr_built
X_yr_built = X_train[['yr_built']]
print("Regression results for yr_built:")
simple_linear_regression(X_yr_built, y)
```

Regression results for yr_built:


```
______
Dep. Variable:
                                                      0.002
                       price R-squared:

        Model:
        OLS
        Adj. R-squared:
        0.002

        Method:
        Least Squares
        F-statistic:
        40.19

        Date:
        Tue, 09 Apr 2024
        Prob (F-statistic):
        2.36e-10

        Time:
        18:37:13
        Log-Likelihood:
        -2.4591e+05

Time:
No. Observations:
                       17277 AIC:
                                                   4.918e+05
                       17275 BIC:
Df Residuals:
                                                    4.918e+05
Df Model:
Covariance Type: nonrobust
______
            coef std err t P>|t| [0.025 0.975]
______
const -6.465e+05 1.87e+05 -3.450 0.001 -1.01e+06 -2.79e+05
yr_built 602.6068 95.054 6.340 0.000 416.292 788.922
______
                    15607.659 Durbin-Watson:
Omnibus:
                                                       2.005
Prob(Omnibus):
                    0.000 Jarque-Bera (JB): 1044645.468
                       4.115 Prob(JB):
                                             0.00
1.32e+05
Skew:
                      40.194 Cond. No.
Kurtosis:
______
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.32e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
price = 602.6068272638458*(yr_built) + -646471.1768189413, This is in the form y = mx+c
```

f_value: 40.19104577848836 p_value: 2.3601119184005135e-10

- The coefficient for yr_built is approximately 602.61. For every additional year since the year built, the price of the house is estimated to increase by USD 602.61, if year is not considered, then still the value of the house is expected to decrease by 646471.
- The year the house was built has a significant influence on the house price.
- 0.2% of the variance in house prices is explained by the year the house was built
- The regression model is statistically significant given the F-statistic

vii. Condition Coded

```
In [32]: # Call the function for condition_coded
X_condition_coded = X_train[['condition_coded']]
print("Regression results for condition_coded:")
simple_linear_regression(X_condition_coded, y)
```

Regression results for condition coded:

==========	=======	=======	========	=======	========	=====	
Dep. Variable:		price	R-squared:			0.001	
Model:		OLS	Adj. R-squa	red:	0.001		
Method:	Lea	st Squares	F-statistic	:	24.91		
Date:	Tue, 0	9 Apr 2024	Prob (F-sta	tistic):	6.08e-07		
Time:		18:37:13	Log-Likelih	ood:	-2.459	1e+05	
No. Observations	:	17277	AIC:		4.91	.8e+05	
Df Residuals:		17275	BIC:		4.91	.8e+05	
Df Model:		1					
Covariance Type:		nonrobust					
					========	======	
==							
	coef	std err	t	P> t	[0.025	0.97	
5]							
const	4.681e+05	1.49e+04	31.367	0.000	4.39e+05	4.97e+	
05							
condition_coded	2.146e+04	4300.180	4.991	0.000	1.3e+04	2.99e+	
04							
	=======		========	=======	========	=====	
Omnibus:		15577.833	Durbin-Wats			2.003	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	103637		
Skew:		4.104	Prob(JB):			0.00	
Kurtosis:		40.045	Cond. No.			20.0	
===========	========	=======	========	=======	========	=====	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
price = 21460.518165208247*(condition\_coded) + 468134.58549233497, This is in the form y = mx+c
```

f_value: 24.906181000021636
p_value: 6.077447064239542e-07

- The coefficient for condition_coded is approximately USD 21,460. If the condition improves for example from good to very good, the price of the house might increase by USD 21,460, if no change in the condition of the house, then the value of the house will be 468134
- This suggests that the condition code of the house has an impact on the house price.
- ~ 0.2% of the variance in house prices is explained by the condition code of the house
- The regression model is statistically significant.

C. Multiple Linear Regression

We use training data to model our multiple linear regression

```
In [33]: import statsmodels.api as sm

# Add a constant term to the independent variables (required for OLS regression)
X_train_ols = sm.add_constant(X_train)
```

```
# Create and fit the OLS model
ols_model = sm.OLS(y_train, X_train_ols)
ols_results = ols_model.fit()

# Print the summary of the OLS regression results
print(ols_results.summary())
```

=======================================	========	:========	======================================	:=======		=====	
Dep. Variable:		price	R-squared:			0.556	
Model:		OLS	Adj. R-squa	red:		0.555	
Method:	Lea	st Squares	F-statistic	:	3084.		
Date:	Tue, 0	9 Apr 2024	Prob (F-sta	tistic):		0.00	
Time:		18:37:13	Log-Likelih	ood:	-2.389	92e+05	
No. Observation	s:	17277	AIC:			79e+05	
Df Residuals:		17269	BIC:		4.7	79e+05	
Df Model:		7					
Covariance Type		nonrobust					
==							
	coef	std err	t	P> t	[0.025	0.97	
5]							
const	6.342e+06	1.62e+05	39.263	0.000	6.03e+06	6.66e+	
06							
bedrooms	-6.779e+04	2503.940	-27.072	0.000	-7.27e+04	-6.29e+	
04		4245 405	45.000			= 24	
bathrooms	6.513e+04	4315.497	15.093	0.000	5.67e+04	7.36e+	
04	202 1740	2 269	90 733	0.000	205 574	308.7	
sqft_living 76	302.1749	3.368	89.723	0.000	295.574	308.7	
sqft_lot	-0.3332	0.046	-7.310	0.000	-0.423	-0.2	
44	-0.3332	0.040	-7.510	0.000	-0.423	-0.2	
floors	5.817e+04	4264.216	13.642	0.000	4.98e+04	6.65e+	
04	3.01, 6.01	12011220	13.012	0.000		0.036	
yr_built	-3290.3978	81.902	-40.175	0.000	-3450.934	-3129.8	
62							
condition_coded	1.869e+04	3122.388	5.987	0.000	1.26e+04	2.48e+	
04							
Omnibus:	=======	11729.996	======= Durbin-Wats		========	2.002	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	46682	29.361	
Skew:		2.748	Prob(JB):			0.00	
Kurtosis:		27.865	Cond. No.		3.8	85e+06	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.85e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Summary of the Multiple Regression Model

Model Performance

- The R-squared value of 0.556 indicates that ~ 55.6% of the variance in the price is explained by the independent variables included in the model.
- A high F-statistic of 3084 and a low Prob(F-statistic)) means that our model is statistically significant.
- Intercept (const): The intercept is the estimated value of the dependent variable when all independent variables are set to zero. In this case, it's approximately USD 6.35 million.

Coefficients for independent variables:

- bedrooms: For each additional bedroom, there is an estimated decrease of approximately USD 67,790 in the price.
- bathrooms: For each additional bathroom, there is an estimated increase of approximately USD 65,1300 in the price.
- sqft_living: For each additional square foot of living space, there is an estimated increase of approximately USD 302.17 in the price.
- sqft_lot: For each additional square foot of lot size, there is an estimated decrease of approximately USD 0.333 in the price.
- floors: For each additional floor, there is an estimated increase of approximately USD 58,170 in the price.
- yr_built: For each additional year of the house's age, there is an estimated decrease of approximately USD 3,290 in the price.
- condition_coded: Improvement of the overall condition of the house from 1 rating to another (e.g. good to very good) will increase the price of the house by approximately USD 19,610

Summary

• The high condition number suggests potential multicollinearity or numerical problems in the model.

D. Multicollinearity

i. Exploring Data for Multicollinearity

In [34]: # Previwing our data - independent variables
X_train.head(2)

Out[34]: bedrooms bathrooms sqft_living sqft_lot floors yr_built condition_coded 2093 4 2.0 2130 2800 1.0 1922 5 9738 1.0 1160 3700 1.5 1909 3

In [35]: # Training data preview - target variable
 y_train.head(2)

Out[35]: 2093 800000.0 9738 315000.0

Name: price, dtype: float64

In [36]: X = X_train

X.corr()

Out[36]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	со
	bedrooms	1.000000	0.511014	0.577830	0.034186	0.180796	0.158268	
	bathrooms	0.511014	1.000000	0.758566	0.085941	0.503578	0.507776	
	sqft_living	0.577830	0.758566	1.000000	0.169754	0.356850	0.318708	
	sqft_lot	0.034186	0.085941	0.169754	1.000000	-0.002811	0.050062	
	floors	0.180796	0.503578	0.356850	-0.002811	1.000000	0.488767	
	yr_built	0.158268	0.507776	0.318708	0.050062	0.488767	1.000000	
	condition_coded	0.022288	-0.134546	-0.062333	-0.010503	-0.262695	-0.366237	
	4							•
In [37]:	# Scatterplot f	or our inde	ependent var	riables				

pd.plotting.scatter_matrix(X,figsize = [9, 9]); plt.show()

In [38]: ## Getting the correlation of the independent variables
X.corr()

Out[38]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	со
bedrooms	1.000000	0.511014	0.577830	0.034186	0.180796	0.158268	
bathrooms	0.511014	1.000000	0.758566	0.085941	0.503578	0.507776	
sqft_living	0.577830	0.758566	1.000000	0.169754	0.356850	0.318708	
sqft_lot	0.034186	0.085941	0.169754	1.000000	-0.002811	0.050062	
floors	0.180796	0.503578	0.356850	-0.002811	1.000000	0.488767	
yr_built	0.158268	0.507776	0.318708	0.050062	0.488767	1.000000	
condition_coded	0.022288	-0.134546	-0.062333	-0.010503	-0.262695	-0.366237	
4							•

Generally, a correlation with an absolute value around 0.7-0.8 or higher is considered a high correlation. We will use 0.75 as our cut-off

```
In [39]: # Checking how many correlations have is more than 0.75
abs(X.corr()) > 0.75
```

Out[39]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	condition
bedrooms	True	False	False	False	False	False	
bathrooms	False	True	True	False	False	False	
sqft_living	False	True	True	False	False	False	
sqft_lot	False	False	False	True	False	False	
floors	False	False	False	False	True	False	
yr_built	False	False	False	False	False	True	
condition_coded	False	False	False	False	False	False	
4							

"bathrooms" and "sqft_living" are highly correlated. Also, This relationship may influence regression model stability and interpretation.

```
In [40]: df2=X.corr().abs().stack().reset_index().sort_values(0, ascending=False)
         # zip the variable name columns (Which were only named level_0 and level_1 by de
         df2['pairs'] = list(zip(df2.level_0, df2.level_1))
         # set index to pairs
         df2.set_index(['pairs'], inplace = True)
         #d rop level columns
         df2.drop(columns=['level_1', 'level_0'], inplace = True)
         # rename correlation column as cc rather than 0
         df2.columns = ['cc']
         df2.drop_duplicates(inplace=True)
In [41]: # Returning pairs that are highly correlated
         df2[(df2.cc>.75) & (df2.cc <1)]
Out[41]:
                                      CC
                          pairs
          (bathrooms, sqft_living) 0.758566
In [42]: ## Lets use heatmap to check the correlation
         import seaborn as sns
         sns.heatmap(X.corr(), center=0);
```


In [43]: # Preview the new df
X.head()

Out[43]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	condition_coded
	2093	4	2.00	2130	2800	1.0	1922	5
	9738	3	1.00	1160	3700	1.5	1909	3
	4382	3	1.75	1820	15570	1.0	1948	3
	11641	3	1.75	1660	8301	1.0	1955	5
	13114	2	2.25	1390	1222	3.0	2009	3

In [44]: # Create new df
data = X.copy()
data.head()

Out[44]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	condition_coded
	2093	4	2.00	2130	2800	1.0	1922	5
	9738	3	1.00	1160	3700	1.5	1909	3
	4382	3	1.75	1820	15570	1.0	1948	3
	11641	3	1.75	1660	8301	1.0	1955	5
	13114	2	2.25	1390	1222	3.0	2009	3

We will create a new column called bathroom_density to hold the ratio of bathrooms to the number of bedrooms

,		bearooms	battiiooiiis	sqrt_iiviiig	sqrt_iot	110013	yi_banc	condition_coded	
	2093	4	2.00	2130	2800	1.0	1922	5	
	9738	3	1.00	1160	3700	1.5	1909	3	
	4382	3	1.75	1820	15570	1.0	1948	3	
	11641	3	1.75	1660	8301	1.0	1955	5	
	13114	2	2.25	1390	1222	3.0	2009	3	
	4								•

ii. Dropping column bathrooms

"Bathrooms" has a correlation coefficient of 0.76 with "sqft_living", indicating a high positive correlation. "Bathrooms" has a correlation coefficient of 0.51 with "bedrooms", indicating a moderate positive correlation

Also

"Bathrooms" has a correlation coefficient of 0.525906 with "price", indicating a moderate positive correlation. "Sqft_living" has a higher correlation coefficient of 0.701917 with "price", indicating a stronger positive correlation.

So we will drop the bathrooms column

In [47]: # Drop the 'bathrooms' column from the DataFrame
 data.drop('bathrooms', axis=1, inplace=True)
 data.head()

		• • • • • • • • • • • • • • • • • • • •						
Out[47]:		bedrooms	sqft_living	sqft_lot	floors	yr_built	condition_coded	bathroom_den
	2093	4	2130	2800	1.0	1922	5	0.500
	9738	3	1160	3700	1.5	1909	3	0.333
	4382	3	1820	15570	1.0	1948	3	0.583
	11641	3	1660	8301	1.0	1955	5	0.583
	13114	2	1390	1222	3.0	2009	3	1.125
	4							•
Tn [40].	data s	nn/)						

In [48]: data.corr()

Out[48]:		bedrooms	sqft_living	sqft_lot	floors	yr_built	condition_	cod
	bedrooms	1.000000	0.577830	0.034186	0.180796	0.158268	0.0)222
	sqft_living	0.577830	1.000000	0.169754	0.356850	0.318708	-0.0)623
	sqft_lot	0.034186	0.169754	1.000000	-0.002811	0.050062	-0.0)105
	floors	0.180796	0.356850	-0.002811	1.000000	0.488767	-0.2	2626
	yr_built	0.158268	0.318708	0.050062	0.488767	1.000000	-0.3	3662
	condition_coded	0.022288	-0.062333	-0.010503	-0.262695	-0.366237	1.0	0000
	bathroom_density	-0.234908	0.311833	0.062219	0.418674	0.425651	-0.1	1629
	4							•
In [49]:	<pre>## Rechecking the abs(data.corr())</pre>		on between	the featu	res			
Out[49]:		bedrooms	sqft_living	sqft_lot	floors yr_b	ouilt condi	tion_coded	ba
	bedrooms	True	False	False	False F	alse	False	
	sqft_living	False	True	False	False F	alse	False	
	sqft_lot	False	False	True	False F	alse	False	
	floors	False	False	False	True F	alse	False	
	yr_built	False	False	False	False	True	False	
	condition_coded	False	False	False	False F	alse	True	
	bathroom_density	False	False	False	False F	alse	False	
	4							•
In [50]:	<pre># creating anothe X_train = data.co</pre>		the data as	5 X-Train				
In [51]:	<pre>#### Exploring th X_bathdensity = X print("Regression simple_linear_reg</pre>	<pre>(_train[['b results f</pre>	athroom_der or yr_built	nsity']] ::")				

Regression results for yr_built:


```
______
Dep. Variable:
                   price R-squared:
                                             0.078
                    OLS Adj. R-squared:
Model:
                                             0.078
             Least Squares F-statistic:
Method:
                                             1460.
        Tue, 09 Apr 2024 Prob (F-statistic): 1.18e-306
18:37:17 Log-Likelihood: -2.4523e+05
Date:
Time:
No. Observations:
                   17277 AIC:
                                           4.905e+05
                    17275 BIC:
Df Residuals:
                                           4.905e+05
Df Model:
Covariance Type: nonrobust
______
             coef std err t P>|t| [0.025 0.9
75]
______
          2.311e+05 8551.700 27.028 0.000 2.14e+05 2.48e
const
bathroom_density 4.835e+05 1.27e+04 38.204 0.000 4.59e+05 5.08e
______
Omnibus:
                 15134.349 Durbin-Watson:
                   0.000 Jarque-Bera (JB):
                                         982780.240
Prob(Omnibus):
                   3.918 Prob(JB):
Skew:
                                             0.00
                  39.108 Cond. No.
Kurtosis:
                                              6.71
______
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
price = 483465.1676656219*(bathroom_density) + 231135.55331064545, This is in the
form y = mx + c
```

f_value: 1459.5795917258044 p value: 1.1842970305104985e-306

iii. Feature Selections and modelling

```
In [52]: # Concatenate X train and y train into a single data frame (We need both price a
         train_data = pd.concat([X_train, y_train], axis=1)
         # Calculate the p correlation coefficient
         correlation_matrix = train_data.corr()
         # Extract the correlations
         correlation_with_y = correlation_matrix['price'].drop('price')
         correlation = correlation_with_y.sort_values(ascending=False)
         correlation
```

```
In [53]: # Multiple Regression (top 4 most corr)
         # Extract the feature variables and target variable
         X = X_train[['sqft_living', 'bedrooms', 'bathroom_density','floors']]
         y = y_{train}
         X = sm.add_constant(X)
         # Fit OLS regression model
         select_model = sm.OLS(y, X).fit()
         # Scatter plot
         plt.figure(figsize=(8, 6))
         sns.scatterplot(x=select_model.fittedvalues, y=select_model.resid, alpha=0.5)
         plt.axhline(y=0, color='red', linestyle='--')
         plt.title('Residual Plot')
         plt.xlabel('Fitted values')
         plt.ylabel('Residuals')
         plt.show()
         # Print the summary of the regression results
         print(select_model.summary())
```


=======================================						====	
Dep. Variable:			R-squared:			0.503	
Model:			Adj. R-squan		0.503		
Method:	Leas	st Squares	F-statistic	•	4372.		
Date:	Tue, 09	9 Apr 2024	Prob (F-stat	tistic):		0.00	
Time:		18:37:17	Log-Likelih	ood:	-2.3988	3e+05	
No. Observations:	:	17277	AIC:		4.798	3e+05	
Df Residuals:		17272	BIC:		4.798	3e+05	
Df Model:		4					
Covariance Type:		nonrobust					
=======================================	========	========	:========	=======	========		
	coef	std err	t	P> t	[0.025	0.9	
75]					-		
const	7.783e+04	1.19e+04	6.552	0.000	5.45e+04	1.01e	
+05							
sqft_living 884	311.6452	3.183	97.914	0.000	305.407	317.	
bedrooms +04	-5.631e+04	3127.702	-18.005	0.000	-6.24e+04	-5.02e	
bathroom_density	1515.7304	1.26e+04	0.121	0.904	-2.31e+04	2.61e	
floors +04	2069.2793	4247.491	0.487	0.626	-6256.234	1.04e	
Omnibus:		 11850.922	======== Durbin-Watso		 :	==== 2.005	
Prob(Omnibus):		0.000	Jarque-Bera	444443			
Skew:						0.00	
Kurtosis:		27.202	Cond. No.		1.86	5e+04	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.86e+04. This might indicate that there are strong multicollinearity or other numerical problems.

iv. All Features Modelling

```
In [54]: # Building a model with all the features

X_train_c = sm.add_constant(X_train)
final_multiple_model = sm.OLS(y_train, X_train_c)
final_multiple_model = final_multiple_model.fit()

# Print a summary of the regression results

# Scatter plot
plt.figure(figsize=(8, 6))
sns.scatterplot(x=final_multiple_model.fittedvalues, y=final_multiple_model.resi
plt.axhline(y=0, color='red', linestyle='--')
plt.title('Residual Plot')
plt.xlabel('Fitted values')
plt.ylabel('Residuals')
plt.show()
```

Print the summary of the regression results
print(final_multiple_model.summary())

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Tue, 09	price OLS st Squares 9 Apr 2024 18:37:17 17277 17269 7 nonrobust	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	: tistic):	3059. .stic): 0.00		
=== 75]	coef	std err	t	P> t	[0.025	0.9	
 const	6.027e+06	1.58e+05	38.135	0.000	5.72e+06	6.34e	
+06 bedrooms	-4.021e+04		-13.325	0.000	-4.61e+04	-3.43e	
+04 sqft_living 983	314.9737	3.066	102.731	0.000	308.964	320.	
sqft_lot 261	-0.3508	0.046	-7.683	0.000	-0.440	-0.	
floors +04	6.064e+04	4287.097	14.144	0.000	5.22e+04	6.9e	
yr_built 342	-3173.2507	81.072	-39.141	0.000	-3332.159	-3014.	
<pre>condition_coded +04</pre>	1.91e+04	3129.629	6.103	0.000	1.3e+04	2.52e	
bathroom_density +05	1.521e+05	1.25e+04	12.199	0.000	1.28e+05	1.77e	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		11767.200 0.000 2.754 28.177	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.	(ЈВ):	47816	0.00 6e+06	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.76e+06. This might indicate that there are strong multicollinearity or other numerical problems.

The Final equation for our model

 $price = (-40,210 \times bedrooms) + (314.97 \times sqft_living) - (0.35 \times sqft_lot) + (60,640 \times floors) - (-3173.25 \times yr_built) + (19,100 \times condition_coded) + (152,100 \times bathroom_density) + 6,027,000$

Model Performance

- R-squared: 55.8% of the variance in the price is explained by the independent variables included in the model.
- F-statistic: We have a high F-statistic of 3059 and a low F-statistic probability which suggests that the overall model is statistically significant.

v. Further Adressing the multicollineary using VIFs

```
In [55]: from statsmodels.stats.outliers_influence import variance_inflation_factor
    from statsmodels.tools.tools import add_constant

# Add constant term to the independent variables
X_train_with_const = add_constant(X_train[['bedrooms', 'sqft_living', 'sqft_lot'

# Calculate VIFs for each independent variable
    vif_data = pd.DataFrame()
    vif_data["feature"] = X_train_with_const.columns
    vif_data["VIF"] = [variance_inflation_factor(X_train_with_const.values, i) for i

# Print VIFs
    print(vif_data)
```

	feature	VIF
0	const	7142.086783
1	bedrooms	2.262858
2	sqft_living	2.281996
3	sqft_lot	1.042720
4	floors	1.532751
5	yr_built	1.625214
6	condition_coded	1.184428
7	bathroom_density	2.005565

Conclusion on multicollinearity

The VIF values for all independent features are below the commonly used threshold of 5. This means that there is low multicollinearity among the features. We will conclude based on this that our model is stable and reliable for house price prediction given our features.

E. Model Evaluation

```
In [56]: # Previewing the first 5 rows
X_test.head()
```

Out[56]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	yr_built	condition_coded
	2398	3	1.00	950	4500	1.0	1943	4
	14724	2	1.00	1190	6200	1.0	1948	3
	20980	4	3.00	5520	8313	2.0	2008	3
	12156	3	2.00	1980	12150	1.0	1994	3
	19485	2	1.75	1870	6625	1.0	1948	3

```
In [57]: ## Aligning test data with training data
    ## Deleting the bathrooms column
    # Adding the bathroom_density
    X_test["bathroom_density"] = X_test["bathrooms"] / X_test["bedrooms"]
    X_test.drop('bathrooms', axis=1, inplace=True)
    X_test.head()
```

Out[57]:		bedrooms	sqft_living	sqft_lot	floors	yr_built	condition_coded	bathroom_den
	2398	3	950	4500	1.0	1943	4	0.333
	14724	2	1190	6200	1.0	1948	3	0.500
	20980	4	5520	8313	2.0	2008	3	0.750
	12156	3	1980	12150	1.0	1994	3	0.666
	19485	2	1870	6625	1.0	1948	3	0.875
	4							•
In [58]: In [59]:	# Make X_test y_pred # Calc # We w mse_se rmse_s r_squa # Prin print(print(print(prediction _select = s _select = s ulate the e ill use MSE lect_model elect_model red_select_ t evaluation "Evaluation "Mean Squar "Root Mean "Root Mean "R-squared:	s using the madd_constellect_model valuation madd_system r, RSME and = mean_square model = r2	e model we tant(X_tel.predict metrics f R-square ared_erro (mse_sele _score(y_ for the more predict metrics f R-square ared_erro (mse_sele score(y_ for the more predict red (RMSE):", merer (RMSE)	rith selfest['scale (X_test) For the end to expr(y_test) ect_model with selfest, y with selfest; rr	dected fe interpolate of the select of the	ratures as used and process of the selected feature model ed_select) relect) reted features reatures:")	'bathroom_den

Evaluation metrics for model with selected features:

Mean Squared Error (MSE): 63854708809.887505

Root Mean Squared Error (RMSE): 252694.89272616393

R-squared: 0.5219348196988434

Conclusion of the select features model

- The Mean Squared Error (MSE) indicates that, on average, the model's predictions are off by approximately USD 63,854,708,809.
- The Root Mean Squared Error (RMSE) suggests that, on average, the model's predictions are off by approximately USD 252,694.89.
- The R-squared value of ~0.5004 suggests that around 52.19% of the variance in the price is explained by the selected features.

```
In [60]: # Make predictions using the model with all features
X_test_c = sm.add_constant(X_test) # Add constant term for intercept
y_pred_all = final_multiple_model.predict(X_test_c)

# Calculate evaluation metrics for the model with all features
mse_final_model = mean_squared_error(y_test, y_pred_all)
rmse_final_model = np.sqrt(mse_final_model)
r_squared_final_model = r2_score(y_test, y_pred_all)
```

```
# Print evaluation metrics for the model with all features
print("Evaluation metrics for model with all features:")
print("Mean Squared Error (MSE):", mse_final_model)
print("Root Mean Squared Error (RMSE):", rmse_final_model)
print("R-squared:", r_squared_final_model)
```

Evaluation metrics for model with all features:
Mean Squared Error (MSE): 58831328055.65425
Root Mean Squared Error (RMSE): 242551.7018197445

R-squared: 0.5595436894400523

Conclusion of all features model

Evaluation

- Mean Squared Error (MSE): Approximately USD 58,831,328,055
- Root Mean Squared Error (RMSE): Approximately USD 242,551.70
- R-squared: Approximately 0.60

Comparison of the select feature model

• The R-squared value is higher, meaning 55.6% of the variance in the price is explained by all the features.

Conclusion

• The model using all features provides better predictive performance compared to the model with selected features.

4. Results

- The size of the living area has a significant positive effect on the home price. For every additional square foot of living space, the price tends to increase by approximately \$282.20 on average.
- The number of bedrooms in a property also positively impacts its price. Each additional bedroom contributes to an average increase of about \$121,700 in the property price.
- The number of bathrooms in a property is positively correlated with its price. On average, each additional bathroom adds approximately \$254,400 to the property price.
- The size of the lot (in square feet) has a relatively minor impact on the property price. For every unit increase in the square footage of the lot, the price tends to increase by about \$0.82 on average.
- The number of floors in a property is also a significant factor in determining its price.
 On average, each additional floor contributes to an increase of around \$176,400 in the property price.

- The age of the property (year built) has a relatively minor impact on its price. For every additional year since the property was built, the price tends to increase by approximately \$600.43 on average.
- The coded condition of the property has a moderate effect on its price with the value of the house increasing by \$24,330 on average if the condition of the house improves from one rating to another (e.g 1 to 2)
- We proceeded and found out that the bathroom was highly correlated to other independent variables ie: bedrooms,sqft_living, floors, and yr_built where the correlation was above 0.75 which is a high positive correlation.
- We created a new column representing the ratio of bathrooms to the number of bedrooms
- Because of this high multicollinearity effect of the bathroom we dropped it
- The multiple regression model with select features shows an MSE of approximately 63 billion, an RMSE of around 25k, and an R-squared value of approximately 0.52.
- The model with all features yields an MSE of roughly 58.8 billion, an RMSE of about 242,551, and a higher R-squared value of around 0.6.
- This suggests that the model with all features performs slightly better, meaning that including additional features improves the model's predictive accuracy.

5. Recommendations to Finsco Limited

- 1. Finsco Limited can advise its client to focus on increasing the size of the living room: Renovations that increase the square footage of living space have a significant impact on home value. For every additional square foot of living space added, the estimated home value can increase by approximately USD 320 to USD 322.
- 2. Upgrading bedrooms can also increase clients' home value. Investing in bedroom renovations, such as improving the layout, fixtures, colours and furnishing, could increase the value of the property by around USD 48,290 to USD 65,110 per bedroom, based on our regression results.
- 3. Improve Overall Condition will increase the value of the property. Renovations focused on improving the condition of the home, such as repairing structural issues, outside colouring, updating fixtures, and mowing may result in an estimated value increase of approximately USD 20,530, according to our analysis.
- 4. Bathroom is a minimum requirement for a house, from our model and correlation test, we found out that it is highly correlated to most of the other independent variables, implying it impacts the value of homes a lot. Assumption, improving the quality of the bathroom will increase the value of the home.
- 5. Overall, making renovations in the entire house to improve the house's overall condition will be better than doing partial renovations in the bathrooms, and

bedrooms or increasing the living room space. Overall house improvements will have a better impact on the value of the property than just renovating part of the house

6. Next Steps

- 1. The Hepta team will gather feedback from the Finsco team after this first iteration and gather any additional requirements and feedback.
- 2. Market Research: Hepta group will conduct market research to identify trends and patterns in the real estate market such as renovations and, property features demands. This will help us make informed conclusions while we continue to improve on the model.
- 3. Data Enrichment: The Hepta group will also work with the Finsco team to ensure we have enough additional data on other features that might help us improve our model. This may include users' preferences, renovations past data and other features that might have property prices.
- 4. Model improvement: Our Data scientists will try other regression algorithms to compare and see if we can use a better model for this project.