

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Máximo Clique

Definición

Demostración
que Máximo
Clique es NPC

El problema de partición entera (Subset Sum)

Introducción ¿Subset Sum es

Complejidad y optimización Reducciones desde Vertex Cover

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Marzo de 2017

Contenido

Complejidad y optimización

Carlos Andrés Delgado S.

del Máximo Clique Definición

Definición Demostración que Máximo Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es 1 El problema del Máximo Clique

- Definición
- Demostración que Máximo Clique es NPC
- 2 El problema de partición entera (Subset Sum)
 - Introducción
 - ¿Subset Sum es NPC?

Contenido

- Complejidad y optimización
- Carlos Andrés Delgado S.

El problema del Máximo Clique

- Definición Demostración que Máximo Clique es NPC
- El problema de partición entera (Subse
- Introducción ¿Subset Sum es

- 1 El problema del Máximo Clique
 - Definición
 - Demostración que Máximo Clique es NPC
- 2 El problema de partición entera (Subset Sum)
 - Introducción
 - ¿Subset Sum es NPC?

Máximo Clique

Complejidad y optimización

Carlos Andrés Delgado S.

del Máxin Clique

Definición Demostraci

Demostración que Máximo Clique es NPO

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es NPC?

Definición

Una instancia es un grafo G = (V, E) y un entero $j \le VI$

Pregunta

¿El grafo contiene un clique de j vértices, donde cada subconjunto de V de tamaño j donde cada par de vértices está conectado entre ellos?

Máximo Clique

Complejidad y optimización

Carlos André Delgado S.

El problema del Máximo

Definición

Demostración que Máximo

El problema de partición entera (Subse

Introducción ¿Subset Sum es

Definición

Ejemplo, el siguiente grafo contiene un clique de tamaño 5.

Máximo Clique

Complejidad y optimización

Carlos Andrés Delgado S.

del Máxin Clique

Definición Demostració

Demostración que Máximo Clique es NP

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es NPC?

¿Máximo clique es NP?

Este problema es NP debido a que se deben enumerar todos los conjuntos de tamaño 0 hasta tamaño j y verificar que cada vértice en cada subconjunto está conectado con los otros. La complejidad de la enumeración es $O(2^{|v|})$ y la complejidad de la verificación de la conexión de los vértices es polinomial.

Complejidad y optimización

Delgado S.

El problema

Clique Definición

Demostración que Máximo Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es

Introducción

Vamos a realizar la verificación realizando una reducción de Vertex Cover(VC) a Máximo clique.

Importante

 $VC \leq_p M$ áximo Clique

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Máximo Clique Definición

Demostración que Máximo Clique es NPC

El problema de partición entera (Subset Sum)

Introducción ¿Subset Sum es NPC?

Procedimiento de reducción

Se toma un grafo y se encuentra su Vertex Cover. Al eliminar los vértices del cover, los vértices restantes forman un conjunto independiente, es decir vértices que no están conectados con ninguna arista.

Azul: Vertex cover, Rojo: conjunto independiente

Como se puede observar los problemas de Vertex Cover y Conjunto independiente son equivalentes.

Complejidad y optimización

Carlos André Delgado S.

El problema del Máximo Clique Definición Demostración

que Máximo Clique es NPC

El problema de partición entera (Subset Sum) Introducción

Procedimiento de reducción

Si se observa el más pequeño vertex cover de un grafo, es su máximo conjunto independiente. De acuerdo a esto el problema de encontrar el conjunto independiente de un grafo es NP Completo.

Procedimiento de reducción

En un conjunto independiente, no hay aristas. En un clique hay siempre una arista entre cada par de vértices, entonces estos grafos son **complementarios**. Entonces para transformar de conjunto independiente a clique sólo basta con crear las aristas faltantes.

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Máximo

Clique Definición

Demostración que Máximo Clique es NPC

El problema de partición entera (Subset Sum)

Introducción ¿Subset Sum es NPC?

Complejidad y optimización

Carlos Andrés Delgado S.

del Máximo Clique Definición

Demostración que Máximo Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es

Demostración reducción

Si VC es un vertex cover en G, entonces V - VC es un clique en G'. Si C es un clique G, V-C es un vertex cover en G'

Contenido

Complejidad y optimización

Carlos Andrés Delgado S.

del Máximo Clique

Definición Demostración que Máximo Clique es NPC

El problema de partición entera (Subset Sum)

Introducción ¿Subset Sum es NPC? 1 El problema del Máximo Clique

- Definición
- Demostración que Máximo Clique es NPC
- 2 El problema de partición entera (Subset Sum)
 - Introducción
 - ¿Subset Sum es NPC?

Partición entera

Complejidad y optimización

Carlos Andrés Delgado S.

del Máxim Clique

Definición Demostración que Máximo Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es

Definición

Una instancia es un conjunto cd S enteros y un entero objetivo t

Pregunta

¿Existe un subconjunto de S cuya suma se exactamente t?

Partición entera

Complejidad y optimización

Carlos Andrés Delgado S.

del Máximo Clique

Definición Demostración que Máximo Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es

Ejemplo

$$S = \{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}, \, T = 3754$$

Su solución es:

$$S_s = \{1, 16, 256, 1040, 1093, 1284\}$$

Porque
$$1 + 16 + 256 + 1040 + 1093 + 1284 = 3654$$

Partición entera

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Máximo Clique

Definición
Demostración
que Máximo
Clique es NPC

El problema de partición entera (Subs Sum)

Introducción ¿Subset Sum es

¿Partición entera es NP?

Partición entera es un problema NP, debido a que es realizar todas las enumeraciones de S y comprobar su suma, si este conjunto tiene tamaño n, es necesario realizar 2^n enumeraciones.

Complejidad y optimización

Carlos André Delgado S.

del Máxir Clique

Definición Demostración que Máximo Clique es NPO

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es

Introducción

Vamos a realizar la verificación realizando una reducción de Vertex Cover(VC) a Subset Sum.

Importante

 $VC \leq_p \mathsf{Subset} \mathsf{Sum}$

Complejidad y optimización

Carlos André Delgado S.

El problema del Máximo Clique

Definición Demostración que Máximo Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es

Procedimiento

Para este problema, se va trabajar en la representación de grafos llamada matriz de incidencia.

Complejidad y optimización

Carlos André Delgado S.

del Máximo Clique Definición

Definición Demostración que Máximo Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es NPC?

Procedimiento

De la matriz de incidencia de un grafo se analiza lo siguiente:

- ¿Cuantos 1 tiene cada columna?. Exactamente dos debido a que representa una arista
- ¿Cuantos 1 tiene cada fila?. Depende del grado de cada vértice

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Máximo Clique Definición Demostración que Máximo Clique es NPC

de partición entera (Subset Sum) Introducción ¿Subset Sum es NPC?

Procedimiento

En el procedimiento de reducción desde VC, se van a crear |V| + |E| números desde G(V, E)

- 1 Para cada vertice (fila) calcular $x_i = 4^{|E|} + \sum_{j=0}^{|E|-1} b[i,j]4^j$, por ejemplo para la fila de A tenemos 11110 entonces tenemos $4^5 + 4^4 + 4^3 + 4^2 + 4^1 + 0 * 4^0$
- 2 Para cada arista (columna) será $y_i = 4^j$
- 3 El entero objetivo t se calcula así: $x_i = k4^{|E|} + \sum_{j=0}^{|E|-1} 2*4^j$, donde k es el tamaño del cover. Si se observa este representa la suma de escoger todas las aristas (2 vértices por arista).

Complejidad y optimización

Carlos André Delgado S.

del Máximo
Clique
Definición
Demostración
que Máximo
Clique es NPC

El problema de partición entera (Subse Sum)

Introducción ¿Subset Sum es NPC?

Procedimiento

Para calcular el valor tomamos los valores calculados de cada vértice que está en el cover, los sumamos y adicionamos uno o más y_i esta suma debe dar exactamente t.

Complejidad y optimización

Carlos André Delgado S.

El problema del Máximo Clique

Definición Demostración que Máximo Clique es NPC

El problema de partición entera (Subs Sum)

Introducción ¿Subset Sum es NPC?

Ejemplo

Para el caso anterior k = 2 y el cover es el conjunto $\{A, C\}$.

1 Calculando el objetivo:
$$t = 2 * 4^5 + \sum_{j=0}^{|4|} 2 * 4^j = 2730$$

- **2** Calculamos $x_A = 11110 = 1364$
- 3 Calculamos $x_C = 00011 = 1029$
- 4 Si realizamos la suma obtenemos $x_A + x_C = 2393$
- 5 Si se le suman los pesos de las aristas y_0, y_2, y_3, y_4 , la suma da $2393 + 4^0 + 4^2 + 4^3 + 4^4 = 2730$

Complejidad y optimización

Carlos André Delgado S.

del Máximo
Clique
Definición
Demostración
que Máximo
Clique es NPC

de partición entera (Subset Sum) Introducción ¿Subset Sum es NPC?

Demostración

- Cualquier solución de S contiene exactamente k vértices/números.
- La base mínima de trabajo es 3 debido a que la suma de los 1 no presenta acarreo (un valor que pasa de una columna a otra)
- 3 En la reducción *t* representa el peso total (suma) de las aristas
- 4 Al escoger una cobertura (conjunto de vértices) su suma con una o más aristas debe dar exactamente t, es decir está cubierto.

Preguntas

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Máximo Clique

Definición Demostración que Máximo

El problema de partición entera (Subset

Introducción ¿Subset Sum es

