MDI0002 – Matemática Discreta Aula 04 Álgebra de Conjuntos

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Álgebras

Álgebra refere-se a cálculos.

Exemplo: números reais e operações aritméticas (adição, multiplicação, ...)

Denominação alternativa para Matemática Discreta.

Conceito formal: será visto mais tarde.

Informalmente: operações definidas sobre um conjunto.

Álgebra de Conjuntos

Operações definidas sobre todos os conjuntos.

- Não Reversíveis: união, intersecção
- Reversíveis: complemento, conjunto das partes, produto cartesiano, união disjunta.

Conceitos importantes

- Diagramas de Venn: representação gráfica
- Paradoxo de Russell: auto-referência

Obs: Lógica \times Álgebra de Conjuntos

Relação direta entre conectivos lógicos e operações sobre conjuntos

Conectivo Lógico	Operação sobre Conjuntos
negação	complemento
disjunção	união
conjunção	intersecção

Relação Lógica	Relação sobre Conjuntos	
implicação	contingência	
equivalência	igualdade	

Diagramas de Venn

- Largamente conhecidos e utilizados.
- Usam figuras geométricas no plano.

Linguagem Diagramática

- auxilia entendimento de definições
- facilita desenvolvimento de raciocínios
- permite identificação e compreensão fácil e rápida dos componentes e relacionamentos

Um dado conjunto A

A

Um determinado elemento $b \in B$

O conjunto $C = \{1, 2, 3\}$

Para dado conjunto universo $U, C \subseteq U$

Em geral:

- *U* é representado por um retângulo
- demais conjuntos por elipses, círculos, etc
- em $C \subseteq U$, conjunto C é destacado para auxiliar visualmente

Aplicação dos Diagramas de Venn

Considere que

pode-se intuir que a noção de subconjunto é transitiva, isto é

$$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$$

Transitividade da Contingência

Teorema (Transitividade da Contingência)

Suponha A, B e C conjuntos. Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$.

Demonstração:

(Lembrando que $X \subseteq Y$ sse $\forall x \in X, x \in Y$)

Suponha que A, B e C são conjuntos quaisquer com $A \subseteq B$ e $B \subseteq C$.

Seja $a \in A$. Então:

 $a \in A \Rightarrow$ (pela definição de subconjunto e $A \subseteq B$)

 $a \in B \Rightarrow$ (pela definição de subconjunto e $B \subseteq C$)

 $a \in C$

Portanto, para qualquer $a \in A$, $a \in C$. Logo $A \subseteq C$.

Diagrama de Venn

Paradoxo de Russell

Conjunto:

coleção de zero ou mais elementos distintos os quais não possuem qualquer ordem associada

Existem conjuntos de conjuntos. Então...

um conjunto pode ser elemento de si mesmo?

Definição (Conjunto Ordinário)

Conjunto que não pertence a si mesmo.

Paradoxo de Russell

$$S = \{A \mid A \text{ \'e um conjunto ordin\'ario}\}$$

Conjunto de todos os conjuntos que não são elementos de si mesmos.

- determina uma contradição
- Paradoxo de Russell

Teorema (Paradoxo de Russell)

$$S = \{A \mid A \text{ \'e um conjunto ordin\'ario}\}$$

não é conjunto.

Demonstração

Suponha que S $\acute{\mathbf{e}}$ conjunto. S é um elemento de si mesmo? Caso 1. Suponha que $S \in S$

$$S \in S \Rightarrow$$
 S não é um conjunto ordinário \Rightarrow
 $S \notin S$

[pela definição de conj. ordinário] [pela definição de S]

Caso 2. Suponha que $S \notin S$

$$S \notin S \Rightarrow$$
 [pela definição de co S é um conjunto ordinário \Rightarrow [pela definição de S] $S \in S$

[pela definição de conj. ordinário]

Absurdo! Logo S não é conjunto.

Paradoxo de Russel

A notação por compreensão

- permite definir algo que não é conjunto
- *S* seria um subconjunto do conjunto de todos os conjuntos
- como S não é conjunto...

não existe o conjunto de todos os conjuntos

Ou seja: nem toda coleção de elementos constitui um conjunto.

Operações Não Reversíveis

As operações mais comuns nos estudos da Álgebra de Conjuntos.

- União
- Intersecção

Definição (União de Conjuntos)

Dados A e B conjuntos, a união destes, $A \cup B$, é tal que

$$x \in A \cup B \Leftrightarrow x \in A \lor x \in B$$

- Digitos = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Vogais = $\{a, e, i, o, u\}$
- Pares = $\{0, 2, 4, 6, 8, 10, 12, 14, \ldots\}$

Digitos \cup Vogais = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, e, i, o, u\}$

 $\mathsf{Digitos} \cup \mathsf{Pares} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, \ldots\}$

Dígitos 1	0	a	Vogais
/ 3	2 \/	е	
5	4	i	
7	6 /\	0	
9	8 / \	u	

- $A = \{x \in \mathbb{N} \mid x > 2\}, B = \{x \in \mathbb{N} \mid x^2 = x\}$ $A \cup B = \{0, 1, 3, 4, 5, 6, \ldots\}$
- \mathbb{R} (reais), \mathbb{Q} (racionais), \mathbb{I} (irracionais) $\mathbb{R} \cup \mathbb{Q} = \mathbb{R}$ $\mathbb{R} \cup \mathbb{I} = \mathbb{R}$ $\mathbb{Q} \cup \mathbb{I} = \mathbb{R}$
- Seja \mathcal{U} o conjunto universo e $A \subseteq \mathcal{U}$ $\varnothing \cup \varnothing = \varnothing$ $\mathcal{U} \cup \varnothing = \mathcal{U}$ $\mathcal{U} \cup A = \mathcal{U}$ $\mathcal{U} \cup \mathcal{U} = \mathcal{U}$

Propriedades da União

Elemento Neutro

$$A \cup \varnothing = A = \varnothing \cup A$$

Idempotência

$$A \cup A = A$$

Comutatividade

$$A \cup B = B \cup A$$

Associatividade

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Associatividade da União

Teorema (Associatividade da União) Suponha que A, B e C são conjuntos quaisquer. Então

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Demonstração

```
Suponha que x \in A \cup (B \cup C).

x \in A \cup (B \cup C) \Leftrightarrow \qquad \text{[definição de união]}

x \in A \lor x \in (B \cup C) \Leftrightarrow \qquad \text{[definição de união]}

x \in A \lor (x \in B \lor x \in C) \Leftrightarrow \qquad \text{[associatividade de } \lor \text{]}

(x \in A \lor x \in B) \lor x \in C \Leftrightarrow \qquad \text{[definição de união]}

x \in (A \cup B) \lor x \in C \Leftrightarrow \qquad \text{[definição de união]}

x \in (A \cup B) \cup C

Portanto A \cup (B \cup C) = (A \cup B) \cup C.
```


Intersecção

Definição (Intersecção de Conjuntos)

Dados A e B conjuntos, a intersecção destes, $A \cap B$, é tal que

 $x \in A \cap B \Leftrightarrow x \in A \land x \in B$

- Digitos = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Vogais = $\{a, e, i, o, u\}$
- Pares = $\{0, 2, 4, 6, 8, 10, 12, 14, \ldots\}$

$$\mathsf{Digitos} \cap \mathsf{Vogais} = \varnothing$$

$$\mathsf{Digitos} \cap \mathsf{Pares} = \{0, 2, 4, 6, 8\}$$

•
$$A = \{x \in \mathbb{N} \mid x > 2\}, B = \{x \in \mathbb{N} \mid x^2 = x\}$$

 $A \cap B = \emptyset$

- \mathbb{R} (reais), \mathbb{Q} (racionais), \mathbb{I} (irracionais) $\mathbb{R} \cap \mathbb{Q} = \mathbb{Q}$ $\mathbb{R} \cap \mathbb{I} = \mathbb{I}$ $\mathbb{Q} \cap \mathbb{I} = \emptyset$
- Seja \mathcal{U} o conjunto universo e $A \subseteq \mathcal{U}$ $\varnothing \cap \varnothing = \varnothing$ $\mathcal{U} \cap \varnothing = \varnothing$ $\mathcal{U} \cap A = A$ $\mathcal{U} \cap \mathcal{U} = \mathcal{U}$

Propriedades da Intersecção

Elemento Neutro

$$A \cap \mathcal{U} = A = \mathcal{U} \cap A$$

Idempotência

$$A \cap A = A$$

Comutatividade

$$A \cap B = B \cap A$$

Associatividade

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Propriedades da União e da Intersecção

Distributividade da intersecção sobre a união

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Distributividade da união sobre a intersecção

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Distributividade da intersecção sobre a união

Teorema (Distributividade da intersecção sobre a união) Suponha que A, B e C são conjuntos quaisquer. Então

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Demonstração

```
Suponha que x \in A \cap (B \cup C).

x \in A \cap (B \cup C) \Leftrightarrow \qquad [d]

x \in A \land x \in (B \cup C) \Leftrightarrow \qquad [d]

x \in A \land (x \in B \lor x \in C) \Leftrightarrow \qquad [taggs]

(x \in A \land x \in B) \lor (x \in A \land x \in C) \Leftrightarrow \qquad [d]

x \in (A \cap B) \lor x \in (A \cap C) \Leftrightarrow \qquad [d]

x \in (A \cap B) \cup (A \cap C)

Portanto A \cap (B \cup C) = (A \cap B) \cup (A \cap C).
```

[definição de intersecção]
[definição de união]
[tautologia]
[definição de intersecção]
[definição de união]

Operações Reversíveis

Operação Reversível:

 a partir do resultado, é possível recuperar os operandos originais

Operações Reversíveis em Álgebras de Conjuntos

- Complemento
- Conjunto das Partes
- Produto Cartesiano
- União Disjunta

Complemento

Definição (Complemento de um Conjunto) Dado A um conjunto qualquer, o seu complemento, \overline{A} , é tal que

$$x \in \overline{A} \Leftrightarrow x \notin A$$

•
$$\mathcal{U} = \mathsf{Digitos} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

•
$$A = \{0, 1, 2\}$$

$$\overline{A} = \{3, 4, 5, 6, 7, 8, 9\}$$

Г			——Dígitos —		
:	3	4	0	6	
	9	5	1 2	8	7

•
$$A = \{0, 1, 2\}, U = \mathbb{N}$$

 $\overline{A} = \{x \in \mathbb{N} \mid x > 2\}$

- \mathbb{R} conjunto universo $\overline{\mathbb{Q}} = \mathbb{I}$ $\overline{\mathbb{I}} = \mathbb{Q}$
- Para qualquer conjunto universo \mathcal{U} e $A \subseteq \mathcal{U}$ $\overline{\varnothing} = \mathcal{U} \qquad \overline{\mathcal{U}} = \varnothing$ $A \cup \overline{A} = \mathcal{U} \qquad A \cap \overline{A} = \varnothing$

Propriedades com o Complemento

Duplo Complemento

$$\overline{\overline{A}} = A$$

DeMorgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Conjunto das Partes

Definição (Conjunto das Partes)

Dado A um conjunto qualquer, o seu conjunto das partes, 2^A ou $\mathcal{P}(A)$, é tal que

$$\{X \mid X \subseteq A\}$$

Dados
$$A = \{a\}, B = \{a, b\}, C = \{a, b, c\}$$

• $2^{\varnothing} = \{\varnothing\}$
• $2^{A} = \{\varnothing, \{a\}\}$
• $2^{B} = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}$
• $2^{C} = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
Dado $D = \{a, \varnothing, \{a, b\}\}, \{a, \varnothing\}, \{a, \{a, b\}\}, \{a, \emptyset\}, \{a, b\}\}, \{a, \emptyset\}, \{a, \emptyset\}, \{a, \emptyset\}, \{a, \emptyset\}\}$

Número de Elementos de 2^A

Dado X um conjunto finito

- Supondo n o número de elementos de X
- Notação: |X| = n
- Então $|2^X| = 2^n$
- ou seja: $|2^X| = 2^{|X|}$

Reversibilidade de 2^X

Sabendo-se quem é 2^X , podemos calcular quem é X

união de todos os conjuntos pertencentes à 2^X

$$X = \bigcup_{A \in 2^X} A$$

$$2^F = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

•
$$F = \emptyset \cup \{a\} \cup \{b\} \cup \{a,b\} = \{a,b\}$$

$$2^{\textit{G}} = \{\varnothing, \{\clubsuit\}, \{\diamondsuit\}, \{\heartsuit\}, \{\clubsuit, \diamondsuit\}, \{\clubsuit, \heartsuit\}, \{\heartsuit, \diamondsuit\}, \{\clubsuit, \diamondsuit, \heartsuit\}\}$$

•
$$F = \emptyset \cup \{\clubsuit\} \cup \{\diamondsuit\} \cup \{\heartsuit\} \cup \{\clubsuit, \diamondsuit\} \cup \{\clubsuit, \heartsuit\} \cup \{\heartsuit, \diamondsuit\} \cup \{\clubsuit, \diamondsuit, \heartsuit\} = \{\clubsuit, \diamondsuit, \heartsuit\}$$

Produto Cartesiano

Noção de sequência finita Sequência de *n* componentes: *n*-upla ordenada

- n objetos, em uma ordem fixa
- Par ordenado

$$\langle x,y\rangle$$
 ou (x,y)

n-upla ordenada

$$\langle x_1, x_2, \dots, x_n \rangle$$
 ou (x_1, x_2, \dots, x_n)

Não confundir
$$\langle x_1, x_2, \dots, x_n \rangle$$
 com $\{x_1, x_2, \dots, x_n\}$

$$\langle x, y \rangle \neq \langle y, x \rangle$$

Produto Cartesiano

Definição (Produto Cartesiano)

Sejam A e B conjuntos, o produto cartesiano $A \times B$ é o conjunto

$$A \times B = \{ \langle a, b \rangle \mid a \in A \land b \in B \}$$

Notação: Produto cartesiano de um conjunto com ele próprio

$$A \times A = A^2$$

$$A = \{a\}, B = \{a, b\}, C = \{0, 1, 2\}$$

$$A \times B = \{\langle a, a \rangle, \langle a, b \rangle\}$$

$$B \times C = \{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle\}$$

$$C \times B = \{\langle 0, a \rangle, \langle 0, b \rangle, \langle 1, a \rangle, \langle 1, b \rangle, \langle 2, a \rangle, \langle 2, b \rangle\}$$

$$A^{2} = \{\langle a, a \rangle\}$$

$$A \times \mathbb{N} = \{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, \dots\}$$

Produto Cartesiano é não associativo

$$A = \{a\}, B = \{a, b\}, C = \{0, 1, 2\}$$

$$A \times (B \times C) = \{\langle a, \langle a, 0 \rangle \rangle, \langle a, \langle a, 1 \rangle \rangle, \langle a, \langle a, 2 \rangle \rangle, \langle a, \langle b, 0 \rangle \rangle, \langle a, \langle b, 1 \rangle \rangle, \langle a, \langle b, 2 \rangle \rangle\}$$

$$(A \times B) \times C = \{\langle \langle a, a \rangle, 0 \rangle, \langle \langle a, a \rangle, 1 \rangle, \langle \langle a, a \rangle, 2 \rangle, \langle \langle a, b \rangle, 0 \rangle, \langle \langle a, b \rangle, 1 \rangle, \langle \langle a, b \rangle, 2 \rangle\}$$

Dado A conjunto qualquer

$$\varnothing \times A = \varnothing$$

$$A \times \emptyset = \emptyset$$

$$\varnothing^2 = \varnothing$$

Distributividade do Produto Cartesiano

Sobre a união

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Sobre a intersecção

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Reversibilidade do Produto Cartesiano

Nem sempre é possível

- Resultado da operação: conjunto vazio
- Não é possível definir todos os operandos originais

Caso
$$A \times B \neq \emptyset$$

$$A = \{x \mid \langle x, y \rangle \in A \times B\}$$

$$B = \{ y \mid \langle x, y \rangle \in A \times B \}$$

União Disjunta

Pessoas da família Silva e Souza

- Silva = {João, Maria, José}
- Souza = {Pedro, Ana, José}

Silva ∪ Souza = {João, Maria, Pedro, Ana, José}

- José ocorre somente uma vez
- A operação não refleta uma "reunião familiar"
- José Silva não é a mesma pessoa que José Souza

União Disjunta

- Distingue elementos com mesma identificação
- Considera os operandos conjuntos disjuntos
- Garante que não existem elementos em comum
 - associa uma identificação do conjunto origem
 - um tipo de "sobrenome"

(elemento, identificação da origem)

União Disjunta

Definição (União Disjunta)

Dados $A \in B$ conjuntos, sua união disjunta, $A \uplus B$, é o conjunto

$$A \uplus B = \{\langle a, 0 \rangle \mid a \in A\} \cup \{\langle b, 1 \rangle \mid b \in B\}$$

$$A \uplus B = \{a_A \mid a \in A\} \cup \{b_B \mid b \in B\}$$

Há diversas formas de denotar A ⊎ B

• Importante é distinguir o conjunto originário


```
Silva = \{João, Maria, José\}
Souza = \{Pedro Ana, José\}
  Silva ⊎ Souza =
                            {\langle João, Silva\rangle, \langle Maria, Silva\rangle, \langle José, Silva\rangle,
                             (Ana, Souza), (Pedro, Souza), (José, Souza)}
D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
V = \{a, e, i, o, u\}
P = \{0, 2, 4, 6, 8, 10, 12, \ldots\}
D \uplus V = \{0_D, 1_D, 2_D, 3_D, 4_D, 5_D, 6_D, 7_D, 8_D, 9_D, a_V, e_V, i_V, o_V, u_V\}
 D \uplus P = \{0_D, 1_D, 2_D, 3_D, 4_D, 5_D, 6_D, 7_D, 8_D, 9_D, 0_P, 2_P, 4_P, \ldots\}
```


$$A = \{x \in \mathbb{N} \mid x > 2\} \text{ e } B = \{x \in \mathbb{N} \mid x^2 = x\}$$

$$A \uplus B = \{0_B, 1_B, 3_A, 4_A, 5_A, \ldots\}$$

$$A = \{a, b, c\}$$

- \bullet $\varnothing \uplus \varnothing = \varnothing$
- $A \uplus \varnothing = \{\langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle\}$
- $A \uplus A = \{\langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle, \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle\}$

Reversibilidade da União Disjunta

Dado $A \uplus B$

$$A = \{x \mid \langle x, 0 \rangle \in A \uplus B\}$$

$$B = \{x \mid \langle x, 1 \rangle \in A \uplus B\}$$

Exemplos:

$$\{\langle a, 0 \rangle, \langle b, 0 \rangle, \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle\}$$

• Operandos: $\{a, b\}$ e $\{a, b, c\}$

Ø

● Operandos: Ø e Ø

$$\{\langle a, 1 \rangle, \langle b, 1 \rangle\}$$

• Operandos: \emptyset e $\{a, b\}$

Mais uma Operação NÃO Reversível

Definição (Diferença)

Dados A e B conjuntos, o primeiro conjunto menos o segundo, ou seja, a diferença de A e B é o conjunto

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

- Digitos = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Vogais = $\{a, e, i, o, u\}$
- Pares = $\{0, 2, 4, 6, 8, 10, 12, 14, \ldots\}$

$$\mathsf{Digitos} - \mathsf{Vogais} = \mathsf{Digitos}$$

$$\mathsf{Digitos} - \mathsf{Pares} = \{1, 3, 5, 7, 9\}$$

Dígitos 1	0	Vogais
/ 3	2 \/	e
5	4	i }
7	6 /\	0 /
9	8	u /

•
$$A = \{x \in \mathbb{N} \mid x > 2\}, B = \{x \in \mathbb{N} \mid x^2 = x\}$$

 $A - B = \{3, 4, 5, 6, ...\}$
 $B - A = \{0, 1\}$

- \mathbb{R} (reais), \mathbb{Q} (racionais), \mathbb{I} (irracionais) $\mathbb{R} - \mathbb{Q} = \mathbb{I}$ $\mathbb{R} - \mathbb{I} = \mathbb{Q}$ $\mathbb{Q} - \mathbb{I} = \mathbb{Q}$
- Seja \mathcal{U} o conjunto universo e $A \subseteq \mathcal{U}$ $\varnothing \varnothing = \varnothing$ $\mathcal{U} \varnothing = \mathcal{U}$ $\mathcal{U} A = \overline{A}$ $\mathcal{U} \mathcal{U} = \varnothing$

