Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 1 (9.10.2023 - 13.10.2023)

In dieser Übungsserie beschäftigen wir uns mit mathematischem Grundwissen. Sollten Sie hier größere Probleme haben, wird die Bearbeitung des OMBplus-Kurses (vgl. Infos in Moodle) empfohlen.

Die mit einem (*) markierten Aufgaben sind fakultativ und werden normalerweise nicht in der Ubung besprochen. Kurzlösungen wird es im Moodlekurs geben.

Aufgabe 1:

Stellen Sie die folgenden Zahlen als gebrochene Zahlen in der Form $\frac{p}{q}$ dar.

- (a) $\frac{1}{3} + \frac{2}{4}$, (b) $\frac{1}{4} + 0.25$,
- (c) $\frac{2}{6} + 0.35$, (d) $\frac{1}{1 \frac{1}{3}}$.

Aufgabe 2:

Berechnen Sie alle reellen Lösungen der folgenden Gleichungen.

(a)
$$2x^2 + 2x - 12 = 0$$
,

(a)
$$2x^2 + 2x - 12 = 0$$
, (b) $\frac{2}{3}x^2 + \frac{9}{5}x - \frac{28}{15} = 0$, (c) $4x^2 - 16x + 20 = 0$.

(c)
$$4x^2 - 16x + 20 = 0$$
.

Aufgabe 3:

Vereinfachen Sie die folgenden Ausdrücke soweit als möglich.

- (a) $\sqrt{e^{2 \ln 3}}$,
- (c) $100^{\log_{10} 3}$, (d) $(10^{1/2})^4$,
- (e) $\frac{a^2 \cdot a^{\frac{1}{3}}}{a^{\frac{2}{3}} \cdot a^{-\frac{4}{3}}}$, wobei a eine beliebige positive reelle Zahl sei.

Aufgabe 4:

Skizzieren Sie die Graphen der folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$.

(a) $f(x) = (x-1)^2 + 2$,

(b) $f(x) = x^2 + 2x - 2$,

(c) $f(x) = \sin(x)$,

(e) $f(x) = e^x$,

(d) $f(x) = \cos(x)$, (f) $f(x) = \frac{1}{x^2+1}$.

Aufgabe 5:

Betrachten Sie im Dezimalsystem die Zahlen x = 197 und y = 33.

- (a) Überführen Sie x und y in ihre Darstellungen x_2 und y_2 im Binärsystem.
- (b) Berechnen Sie im Binärsystem $x_2 + y_2$ und $x_2 y_2$.
- (c) Berechnen Sie im Binärsystem $x_2 \cdot y_2$ und $x_2 : y_2$ (mit Rest).

Hinweis: Im Dezimalsystem können Sie leicht eine Probe durchführen.

Aufgabe 6:

- (*) Berechnen Sie die Koordinaten der Schnittpunkte
- (a) der Geraden mit den Gleichungen y = 2x + 2 und y = 5 x,
- (b) der Gerade mit der Gleichung y = 15-2x und der Parabel mit der Gleichung $y = 2x^2+3$,
- (c) der Geraden mit der Gleichung y=5+x und des Kreises um den Koordinatenursprung mit dem Radius 5.

Aufgabe 7:

(*) Eine Gerade mit dem Anstieg –2 verlaufe durch den Punkt $P=\begin{pmatrix}3\\2\end{pmatrix}$. Die Gerade verläuft dann ebenfalls durch den Punkt $Q=\begin{pmatrix}7\\y_q\end{pmatrix}$. Wie lautet y_q ?