

Document Title Specification of Fixed Poin	
	terpolation Routines
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	396
Document Status	published
Part of AUTOSAR Standard	Classic Platform
Part of Standard Release	R20-11

	Document Change History			
Date	Release	Changed by	Change Description	
2020-11-30	R20-11	AUTOSAR Release Management	Chapter 7.1 Error sections were updated	
2019-11-28	R19-11	AUTOSAR Release Management	Editorial changesChanged Document Status from Final to published	
2018-10-31	4.4.0	AUTOSAR Release Management	Editorial changes	
2017-12-08	4.3.1	AUTOSAR Release Management	Added: A new requirement (SWS_Ifx_00251) has been added under Section 7.6 to provide clarity on the rounding mechanism for intermediate result calculation.	
			 Removed: A requirement (SWS_Ifx_00250) has been removed as it is not realizable for all the scenarios. 	

Document Change History			
Date	Release	Changed by	Change Description
2016-11-30	4.3.0	AUTOSAR Release Management	 Added: Added a new requirement (SWS_Ifx_00250) to provide info on symmetricity for interpolation services. A note has been added in SWS_Ifx_00016 as a suggestion to provide hardware independent solution too. Modified: Section 2 has been updated to include abbreviation for (DET) Default Error tracer. Updated IFX document to support MISRA 2012 standard. (Removed redundant statements in SWS_Ifx_00809 which already exist in SWS_BSW document and SWS_SRS document) Modified the reference to SRS_BSW_General (SRS_BSW_00437) & (SRS_BSW_00436) for SWS_Ifx_00436 & SWS_Ifx_00999 requirements.
2015-07-31	4.2.2	AUTOSAR Release Management	Added: Added a new statement in Section 8.5 below the formula to provide more clarity to the users Modified: Updated the "Requirements traceability" section Updated Record layouts for distributed interpolation routines in SWS_Ifx_00185 Updated SWS_Ifx_00001 for naming convetion under Section 5.1, File Structure

Document Change History			
Date	Release	Changed by	Change Description
2014-10-31	4.2.1	AUTOSAR Release Management	Added:
			function parameters for SWS_Ifx_00004, SWS_Ifx_00014, SWS_Ifx_00015, SWS_Ifx_00017, SWS_Ifx_00020, SWS_Ifx_00022, SWS_Ifx_00025, SWS_Ifx_00027, SWS_Ifx_00030, SWS_Ifx_00032, SWS_Ifx_00205 & SWS_Ifx_00209. • Serial numbers in Section 3.2
2014-03-31	4.1.3	AUTOSAR	Modified:
		Release Management	 Removed columns Element6 & Element7 in the Record Layout table of SWS_lfx_00186.
2013-10-31	4.1.2	AUTOSAR	Corrections made for
		Release	IntMap_s16u8_s8 function in Rec-
		Management	ord Layout Table of SWS_lfx_00186
			 Corrected array-out-of-bounds for
			Ifx_IpoMap function
			 Editorial changes
2013-03-15	4.1.1	AUTOSAR Administration	 Rounding mechanism specified for DPRatio calculation
			 Corrected the formula for integrated map interpolation and map interpo- lation
			 Removed unwanted Ratio calculation for integrated fix-I map look up with rounding and Integrated fixmap look up without rounding and integrated map look-up without rounding Modified the reference to non-
			existant metamodel elementCalpr- mElementPrototype to Parameter- DataPrototype Corrected for 'DependencyOnArti-
			fact'
2011-12-22	4.0.3	AUTOSAR Administration	Removal of rounding off feature from 'MAP lookup routines'

Document Change History			
Date	Release Changed by Change Description		
2010-09-30	3.1.5	AUTOSAR	DPSearch function optimised using
		Administration	structure pointer
2010-02-02	3.1.4	AUTOSAR	Initial Release
		Administration	

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Table of Contents

1	Intro	oduction and functional overview	8
2	Acro	onyms and abbreviations	9
3	Rela	ated documentation	10
	3.1 3.2	Input documents	
4	Con	straints and assumptions	11
	4.1 4.2	Limitations	
5	Dep	endencies to other modules	12
	5.1	File structure	12
6	Req	uirements traceability	13
7	Fun	ctional specification	14
	7.1	Error classification	
	7.1.	1 Development Errors	14
		2 Runtime Errors	
	7.1.		
	7.1.		
	7.1.	5 Extended Production Errors	
	7.2	Using Library API	
	7.3 7.4	library implementationlibrary implementation	
8		tine specification	
	8.1	Imported types	
	8.2	Type definitions	
	8.3	Comment about rounding	
	8.4	Comment about routines optimization	
	8.4.	1 Target optimization	18
	8.4.	2 Optimization for routine numbers	19
	8.5	Interpolation routines definitions	
	8.5.	· · · · · · · · · · · · · · · · · · ·	
		2 Integrated data point search and interpolation	
		Record layouts for interpolation routines	
	8.6	Examples of use of functions	
	8.7	Version API	
		1 Ifx_GetVersionInfo	
	8.8	Call-back notifications	
	8.9	Scheduled routines	
	8.10	Expected Interfaces	
		0.1 Mandatory Interfaces	
		0.3 Configurable interfaces	
^			
9	Seq	uence diagrams	69

Specification of Fixed Point Interpolation Routines AUTOSAR CP R20-11

10 (Configuration specification	70
10.1	Published Information	70
10.2	Configuration option	70
11 1	Not applicable requirements	71

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture and below figure shows position of AUTOSAR library in layered architecture.

Figure: Layered architecture

Ifx routines specification specifies the functionality, API and the configuration of the AUTOSAR library dedicated to interpolation routines for fixed point values.

The interpolation library contains the following routines:

- Distributed data point search and interpolation
- Integrated data point search and interpolation

All routines are re-entrant and can be used by multiple applications at the same time.

2 Acronyms and abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation /	/ Description:		
Acronym:			
Cur	Curve for Interpolation		
DET	Default Error Tracer		
DPSearch	Data point search		
DPResult	Data point result		
lfx	Interpolation Fixed point		
IpoCur	Interpolation of curve used for distributed search and interpolation		
LkUpCur	Curve look-up used for distributed search and interpolation		
ІроМар	Interpolation of map used for distributed search and interpolation		
LkUpMap	Map look-up used for distributed search and interpolation		
IntlpoCur	Integrated interpolation of curve		
IntLkUpCur	Integrated curve look-up		
IntlpoFixCur	Integrated interpolation of fixed curve		
IntLkUpFixCur	Integrated fixed curve look-up		
IntlpoFixICur	Integrated interpolation of fixed interval curve		
IntLkUpFixICur	Integrated fixed interval curve look-up		
IntlpoMap	Integrated interpolation of map		
IntLkUpMap	Integrated map look-up		
IntlpoFixMap	Integrated interpolation of fixed map		
IntLkUpFixMap	Integrated fixed map look-up		
IntlpoFixIMap	Integrated interpolation of fixed interval map		
IntLkUpFixIMap	Integrated fixed interval map look-up		
Lib	Library		
Мар	Map for Interpolation		
s8	Mnemonic for the sint8, specified in AUTOSAR_SWS_PlatformTypes		
s16	Mnemonic for the sint16, specified in AUTOSAR_SWS_PlatformTypes		
s32	Mnemonic for the sint32, specified in AUTOSAR_SWS_PlatformTypes		
u8	Mnemonic for the uint8, specified in AUTOSAR_SWS_PlatformTypes		
u16	Mnemonic for the uint16, specified in AUTOSAR_SWS_PlatformTypes		
u32	Mnemonic for the uint32, specified in AUTOSAR_SWS_PlatformTypes		

3 Related documentation

3.1 Input documents

- [1] List of Basic Software Modules, AUTOSAR_TR_BSWModuleList.pdf
- [2] Layered Software Architecture, AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
- [3] General Requirements on Basic Software Modules, AUTOSAR_SRS_BSWGeneral.pdf
- [4] Specification of ECU Configuration, AUTOSAR_TPS_ECUConfiguration.pdf
- [5] Basic Software Module Description Template, AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf
- [6] Specification of Platform Types, AUTOSAR_SWS_PlatformTypes.pdf
- [7] Specification of Standard Types, AUTOSAR_SWS_StandardTypes.pdf
- [8] Requirement on Libraries, AUTOSAR_SRS_Libraries.pdf
- [9] Memory mapping mechanism, AUTOSAR_SWS_MemoryMapping.pdf
- [10] Software Component Template, AUTOSAR_TPS_SoftwareComponentTemplate.pdf
- [11] Specification of C Implementation Rules, AUTOSAR_TR_CImplementationRules.pdf
- [12] IFX_RecordLayout_Blueprint,
 AUTOSAR MOD IFX RecordLayout Blueprint.arxml

3.2 Related standards and norms

- [13] ISO/IEC 9899:1990 Programming Language C
- [14] ASAM MCD-2MC Version 1.6: Association for Standardisation of Automation and Measuring Systems.

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

5 Dependencies to other modules

5.1 File structure

[SWS_lfx_00001] The lfx module shall provide the following files:

 C files, Ifx_<name>.c used to implement the library. All C files shall be prefixed with 'Ifx'.

Implementation & grouping of routines with respect to C files is recommended as per below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function, eg.: Ifx_IntlpoMap_u16u8_u8.c etc.

Option 2 : <Name> can have common name of group of functions:

2.1 Group by object family:

eg.:Ifx IpoMap.c, Ifx IpoCur.c, Ifx DPSearch.c

2.2 Group by routine family:

eg.: Ifx IpoMap.c, Ifx IntlpoMap.c, Ifx IpoCur.c etc.

2.3 Group by method family:

eg.: Ifx_lpo.c, Ifx_Intlpo.c, Ifx_Lkup.c, Ifx_IntLkup.c, etc.

2.4 Group by architecture:

eg.: Ifx_lpoMap8.c, Ifx_lpoMap16.c

2.5 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Ifx functions, eq.: Ifx.c.

Using above options gives certain flexibility of choosing suitable granularity with reduced number of C files. Linking only on-demand is also possible in case of some options.

6 Requirements traceability

Requirement	Description	Satisfied by
SRS_BSW_00003	All software modules shall provide version and identification information	SWS_lfx_00815
SRS_BSW_00007	All Basic SW Modules written in C language shall conform to the MISRA C 2012 Standard.	SWS_lfx_00809
SRS_BSW_00304	All AUTOSAR Basic Software Modules shall use the following data types instead of native C data types	SWS_lfx_00812
SRS_BSW_00306	AUTOSAR Basic Software Modules shall be compiler and platform independent	SWS_lfx_00813
SRS_BSW_00318	Each AUTOSAR Basic Software Module file shall provide version numbers in the header file	SWS_lfx_00815
SRS_BSW_00321	The version numbers of AUTOSAR Basic Software Modules shall be enumerated according specific rules	SWS_lfx_00815
SRS_BSW_00348	All AUTOSAR standard types and constants shall be placed and organized in a standard type header file	SWS_lfx_00811
SRS_BSW_00374	All Basic Software Modules shall provide a readable module vendor identification	SWS_lfx_00814
SRS_BSW_00378	AUTOSAR shall provide a boolean type	SWS_lfx_00812
SRS_BSW_00379	All software modules shall provide a module identifier in the header file and in the module XML description file.	SWS_lfx_00814
SRS_BSW_00402	Each module shall provide version information	SWS_lfx_00814
SRS_BSW_00407	Each BSW module shall provide a function to read out the version information of a dedicated module implemen- tation	SWS_lfx_00815, SWS_lfx_00816
SRS_BSW_00411	All AUTOSAR Basic Software Modules shall apply a naming rule for enabling/disabling the existence of the API	SWS_lfx_00816
SRS_BSW_00437	Memory mapping shall provide the possibility to define RAM segments which are not to be initialized during startup	SWS_lfx_00810
SRS_BSW_00448	Module SWS shall not contain requirements from Other Modules	SWS_lfx_00999
SRS_LIBS_00001	The functional behavior of each library functions shall not be configurable	SWS_lfx_00818
SRS_LIBS_00002	A library shall be operational before all BSW modules and application SW-Cs	SWS_lfx_00800
SRS_LIBS_00003	A library shall be operational until the shutdown	SWS_lfx_00801
SRS_LIBS_00015	It shall be possible to configure the microcontroller so that the library code is shared between all callers	SWS_lfx_00806
SRS_LIBS_00017	Usage of macros should be avoided	SWS_lfx_00807
SRS_LIBS_00018	A library function may only call library functions	SWS_lfx_00808

7 Functional specification

7.1 Error classification

[SWS_lfx_00823][

Section 7.1 "Error Handling" of the document "General Specification of Basic Software Modules" describes the error handling of the Basic Software in detail. Above all, it constitutes a classification scheme consisting of five error types which may occur in BSW modules.]()

Based on this foundation, the following section specifies particular errors arranged in the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors

7.1.3 Transient Faults

There are no transient faults.

7.1.4 Production Error

There are no production errors

7.1.5 Extended Production Errors

There are no extended production errors

7.2 Initialization and shutdown

[SWS_lfx_00800] Flfx library shall not require initialization phase. A Library function may be called at the very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall be ready. (SRS_LIBS_00002)

[SWS_lfx_00801] Γ lfx library shall not require a shutdown operation phase. (SRS_LIBS_00003)

7.3 Using Library API

Ifx API can be directly called from BSW modules or SWC. No port definition is required. It is a pure function call.

The statement 'Ifx.h' shall be placed by the developer or an application code generator but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library, the developer should add an Implementation-DependencyOnArtifact in the BSW/SWC template.

minVersion and maxVersion parameters correspond to the supplier version. In case of AUTOSAR library, these parameters may be left empty because a SWC or BSW module may rely on a library behaviour, not on a supplier implementation. However, the SWC or BSW modules shall be compatible with the AUTOSAR platform where they are integrated.

7.4 library implementation

[SWS_lfx_00806] The Ifx library shall be implemented in a way that the code can be shared among callers in different memory partitions. (SRS_LIBS_00015)

[SWS_lfx_00807] 「Usage of macros should be avoided. The function should be declared as function or inline function. Macro #define should not be used. 」 (SRS_LIBS_00017)

[SWS_lfx_00808] 「A library function can call other library functions because all library functions shall be re-entrant. A library function shall not call any BSW modules functions, e.g. the DET. (SRS_LIBS_00018)

[SWS_Ifx_00809] The library, written in C programming language, should conform to the MISRA C Standard.

Please refer to SWS_BSW_00115 for more details.

(SRS_BSW_00007)

[SWS_lfx_00810] Feach AUTOSAR library Module implementation library>*.c and library>*.h shall map their code to memory sections using the AUTOSAR memory mapping mechanism. (SRS_BSW_00437)

[SWS_lfx_00811] FEach AUTOSAR library Module implementation library>*.c, that uses AUTOSAR integer data types and/or the standard return, shall include the header file Std_Types.h. (SRS_BSW_00348)

[SWS_lfx_00812] FAII AUTOSAR library Modules should use the AUTOSAR data types (integers, boolean) instead of native C data types, unless this library is clearly identified to be compliant only with a platform. J (SRS_BSW_00304, SRS_BSW_00378)

[SWS_lfx_00813] FAll AUTOSAR library Modules should avoid direct use of compiler and platform specific keyword, unless this library is clearly identified to be compliant only with a platform. eg. #pragma, typeof etc. (SRS_BSW_00306)

[SWS_lfx_00820] If input value is less than first distribution entry then first value of the distribution array shall be returned or used in the interpolation routines. If input value is greater than last distribution entry then last value of the distribution array shall be returned or used in the interpolation routines. ()

[SWS_lfx_00821] 「Axis distribution passed to lfx routines shall have strong monotony sequence.」()

8 Routine specification

8.1 Imported types

In this chapter, all types included from the following modules are listed:

Header file	Imported Type
Std_Types.h	boolean, sint8, uint8, sint16, uint16, sint32, uint32

It is observed that since the sizes of the integer types provided by the C language are implementation-defined, the range of values that may be represented within each of the integer types will vary between implementations.

Thus, in order to improve the portability of the software these types are defined in Platform_Types.h [AUTOSAR_SWS_PlatformTypes]. The following mnemonic are used in the library routine names.

Size	Platform Type	Mnemonic	Range
unsigned 8-Bit	boolean	NA	[TRUE, FALSE]
signed 8-Bit	sint8	s8	[-128, 127]
signed 16-Bit	sint16	s16	[-32768, 32767]
signed 32-Bit	sint32	s32	[-2147483648, 2147483647]
unsigned 8-Bit	uint8	u8	[0, 255]
unsigned 16-Bit	uint16	u16	[0, 65535]
unsigned 32-Bit	uint32	u32	[0, 4294967295]

Table 1: Mnemonic for Base Types

As a convention in the rest of the document:

- mnemonics will be used in the name of the routines (using <InTypeMn1> that means Type Mnemonic for Input)
- the real type will be used in the description of the prototypes of the routines (using <InType> or <OutType>).

8.2 Type definitions

Structure definition:

[SWS Ifx 00002][

Name	Ifx_DPResultU16_Type		
Kind	Structure		
	Index		
	Type uint16		
Elements	Comment Data point index		
	Ratio		
	Type uint16		

	Comment	Data point ratio
Description	Structure used for data point search for index and ratio	
Available via	lfx.h	

|()|

[SWS_lfx_00003][

Ratio shall have resolution of 2⁻¹⁶

|()

[SWS_lfx_00248][

Ratio shall be rounded towards zero

(()

[SWS_lfx_00200][

Ifx_DPResultU16_Type structure shall not be read/write/modified by the user directly. Only Ifx routines shall have access to this structure. I()

8.3 Comment about rounding

Two types of rounding can be applied:

Results are 'rounded off', it means:

• 0 <= X < 0.5 rounded to 0

• 0.5 <= X < 1 rounded to 1

• -0.5 < X <= 0 rounded to 0

• -1 < X <= -0.5 rounded to -1

Results are rounded towards zero.

- 0 <= X < 1 rounded to 0
- $-1 < X \le 0$ rounded to 0

8.4 Comment about routines optimization

8.4.1 Target optimization

The routines described in this library may be realized as regular routines or inline functions. For ROM optimization purposes, it is recommended that the c routines be realized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:

- Some routines can be replaced by another routine using integer promotion
- Some routines can be replaced by the combination of a limiting routine and a routine with a different signature.

8.4.2 Optimization for routine numbers

Many routines can be omitted by exchanging 'X' and 'Y' data types. With this method, reduction in total number of routines is possible in case of Map interpolation routines. This optimization of routine numbers is done based on below mentioned rules.

- Rule 1: Bigger data type of 'X' and 'Y' comes first. (16 Bit before 8 Bit)
- Rule 2: unsigned before signed (u16 before s16)
- Order: u32, s32, u16, s16, u8, s8

In this case, below routine can be replaced as:

Ifx_IntlpoMap_s8u16_u16
With
Ifx_IntlpoMap_u16s8_u16

Note: swapped inputs need another map value order in memory, see <u>record layout section</u>

8.5 Interpolation routines definitions

Interpolation between two given points is calculated as shown below.

result =
$$y_0 + (y_1 - y_0) \bullet \frac{x - x_0}{x_1 - x_0}$$

where: X is the input value x0 = data point before X x1 = data point after X y0 = value at x0 y1 = value at x1

Quantization error is by design and shall not be compensated in implementation.

Figure: Linear and lookup interpolation

There are two interpolation methods.

- Linear interpolation
- Lookup interpolation

Above figure differentiates linear and lookup integration method. Linear method interpolates result considering two data points, whereas lookup interpolation returns entry data point.

Data point arrays can be grouped as one array or one structure for all elements as shown below.

```
one array for all elements :
            uint8 Curve_u8 []={5,0,10,26,36,64,1,12,17,11,6};
one structure for all elements :
    struct
    { sint16 N = 5;
            uint8 X[] ={0,10,26,36,64};
            uint8 Y[] ={1,12,17,11,6};
    } Curve u8;
```

where, number of samples = 5

X axis distribution = 0 to 64

Y axis distribution = 1 to 6

Interpolation routines accepts arguments separately to support above scenarios. Routine call example is given below for array and structure grouping respectively.

Example:

```
uint8 lfx_IntlpoCur_u8_u8 (15, Curve_u8[0], &Curve_u8[1], &Curve_u8[6]); uint8 lfx_IntlpoCur_u8_u8 (15, Curve_u8.N, &Curve_u8.X, &Curve_u8.Y);
```

Interpolation can be calculated in two ways as shown below:

- 1. Distributed data point search and interpolation
- 2. Integrated data point search and interpolation

8.5.1 Distributed data point search and interpolation

In this interpolation method data point search (e.g. index and ratio) is calculated using routine Ifx_DPSearch_<InTypeMn> which returns result structure Ifx_DPResultU16_Type. It contains index and ratio information. This result can be used by curve interpolation, curve look-up interpolation, map interpolation and map look-up interpolation.

8.5.1.1 Data Point Search

ISWS Ifx 000041

[2M2_IIX_000	04]		
Service Name	Ifx_DPSearch_ <intypemn></intypemn>		
Syntax	<pre>void Ifx_DPSearch_<intypemn> (Ifx_DPResultU16_Type* dpResult, <intype> Xin, <intype> N, const <intype>* X_array)</intype></intype></intype></intypemn></pre>		
Service ID [hex]	0x001 to 0x004		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
	Xin	Input value	
Parameters (in)	N	Number of samples	
	X_array	Pointer to the X axis distribution array	
Parameters (inout)	None		
Parameters (out)	dpResult	Pointer to the result structure	
Return value	None		

Description	Ifx_DPSearch_ <intypemn> routine searches the position of input Xin within the given distribution array X_array, and returns index and ratio necessary for interpolation.</intypemn>
Available via	lfx.h

]()

[SWS_lfx_00006][

If $(X_array[0] < Xin < X_array[N-1])$, then returned Index shall be the lowest index for which $(Xin < X_array[index + 1])$.

```
dpResult ->Index = index
dpResult ->Ratio = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])
I()
```

[SWS Ifx 00008][

If the input value matches with one of the distribution array values, then return the respective index and ratio = 0.

```
If (Xin == X_array[index]), then dpResult ->Index = index dpResult ->Ratio = 0 |()
```

[SWS_lfx_00009][

```
If (Xin < X_array[0]), then return first index of an array and ratio = 0 dpResult ->Index = 0 dpResult ->Ratio = 0 ]()
```

[SWS_lfx_00010][

```
If (Xin > X_array[N-1]), then return last index of an array and ratio = 0 dpResult ->Index = N - 1 dpResult ->Ratio = 0 |()
```

[SWS_lfx_00011][

The minimum value of N shall be 1 I()

[SWS_lfx_00013][

This routine returns index and ratio through the structure of type Ifx_DPResultU16_Type I()

Here is the list of implemented routines.

[SWS Ifx 00014][

<u>[0110,</u>	<u>, </u>
Service	Service prototype
ID[hex]	
0x001	void Ifx_DPSearch_u8 (Ifx_DPResultU16_Type*, uint8, uint8, const uint8 *)

0x002	void Ifx_DPSearch_s8 (Ifx_DPResultU16_Type*, sint8, sint8, const sint8 *)
0x003	void Ifx_DPSearch_u16 (Ifx_DPResultU16_Type*, uint16, uint16, const uint16 *)
0x004	void Ifx_DPSearch_s16 (Ifx_DPResultU16_Type*, sint16, sint16, const sint16 *)

()

8.5.1.2 Curve interpolation

[SWS_Ifx_00015][

Service Name	Ifx_IpoCur_ <outtypemn></outtypemn>	
Syntax	<pre><outtype> Ifx_IpoCur_<outtypemn> (const Ifx_DPResultU16_Type* dpResult, const <intype>* Val_array)</intype></outtypemn></outtype></pre>	
Service ID [hex]	0x005 to 0x008	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	dpResult	Data point search result
Parameters (in)	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype></outtype>	Result of the Interpolation
Description	Based on searched index and ratio information, this routine calculates and returns interpolation for curve.	
Available via	lfx.h	

|()

[SWS_lfx_00016][

index = dpResult->Index if dPResult->Ratio == 0 Result = Val_array[index] else

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio

Note:

In case of missing HW support the Software solution mentioned below could also be used to avoid 64-bit arithmetic operation.

if (Val_array[index] <= Val_array[index+1]) then
Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio

if (Val_array[index] > Val_array[index+1]) then

Result = Val_array[index] - (Val_array[index] - Val_array[index+1]) * dpResult->Ratio]()

[SWS_lfx_00201][

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized. I()

Here is the list of implemented routines.

[SWS_lfx_00017][

Routine ID[hex]	Routine prototype
0x005	sint8 Ifx_IpoCur_s8 (const Ifx_DPResultU16_Type*, const sint8 *)
0x006	sint16 lfx_lpoCur_s16 (const lfx_DPResultU16_Type*, const sint16 *)
0x007	uint16 lfx_lpoCur_u16 (const lfx_DPResultU16_Type*, const uint16 *)
0x008	uint8 Ifx_IpoCur_u8 (const Ifx_DPResultU16_Type*, const uint8 *)

(()

8.5.1.3 Curve look-up

[SWS_lfx_00020][

Service Name	Ifx_LkUpCur_ <outtypemn></outtypemn>	
Syntax	<pre><outtype> Ifx_LkUpCur_<outtypemn> (const Ifx_DPResultU16_Type* dpResult, const <intype>* Val_array)</intype></outtypemn></outtype></pre>	
Service ID [hex]	0x00A to 0x00D	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Poromotore (in)	dpResult	Data point search result
Parameters (in)	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype></outtype>	Entry point of the result array
Description	Based on searched index and ratio information, this routine calculates and returns entry point of the result array.	
Available via	lfx.h	

[SWS_lfx_00021][

Result = Val_array[dpResult->Index]]()

[SWS_lfx_00202][

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized. I()

Here is the list of implemented routines.

[SWS Ifx 00022][

Routing ID[hex]	, ,,
0x00A	sint8 Ifx_LkUpCur_s8 (const Ifx_DPResultU16_Type*, const sint8 *)
0x00B	sint16 lfx_LkUpCur_s16 (const lfx_DPResultU16_Type*, const sint16 *)
0x00C	uint16 lfx_LkUpCur_u16 (const lfx_DPResultU16_Type*, const uint16 *)
0x00D	uint8 Ifx_LkUpCur_u8 (const Ifx_DPResultU16_Type*, const uint8 *)

]()

8.5.1.4 Map interpolation

[SWS Ifx 00025][

[SWS_IIX_UUU	دع]		
Service Name	Ifx_IpoMap_ <outtypemn></outtypemn>		
Syntax	<pre><outtype> Ifx_IpoMap_<outtypemn> (const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>		
Service ID [hex]	0x010 to 0x013		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
	dpResultX	Data point search result for x axis	
Parameters	dpResultY	Data point search result for y axis	
(in)	num_value	Number of y axis points	
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Result of the Interpolation	

Description	Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this routine calculates and returns the interpolation result for map.
Available via	lfx.h

I()

[SWS_lfx_00026][

Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this routine calculates and returns the interpolation result for map.

```
BaseIndex = dpResultX->Index * num_value + dpResultY->Index
if (dpResultX->Ratio == 0)
  if (dpResultY->Ratio == 0)
    Result = Val_array [BaseIndex]
  else
    LowerY = Val_array [BaseIndex]
    UpperY = Val_array [BaseIndex + 1]
    Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio
else
  if (dpResultY->Ratio == 0)
    LowerX = Val_array[BaseIndex]
    UpperX = Val array[BaseIndex + num value]
    Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio
  else
    LowerY = Val_array [BaseIndex]
    UpperY = Val_array [BaseIndex + 1]
    LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
    LowerY = Val_array[BaseIndex + num_value]
    UpperY = Val_array[BaseIndex + num_value + 1]
    UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
    Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio
|()
```

[SWS Ifx 002031[

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized.

]()

Here is the list of implemented routines.

[SWS Ifx 00027][

Routine ID[hex]	Routine prototype		
	uint8 Ifx_IpoMap_u8 (const Ifx_DPResultU16_Type*, const Ifx_DPResultU16_Type*, uint16,		
0x010	const uint8 *)		
0x011	uint16 Ifx_IpoMap_u16 (const Ifx_DPResultU16_Type*, const Ifx_DPResultU16_Type*, uint16,		

	const uint16 *)		
	sint8 Ifx_IpoMap_s8 (const Ifx_DPResultU16_Type*,		
	const Ifx_DPResultU16_Type*,		
	uint16,		
0x012	const sint8 *)		
	sint16 Ifx_lpoMap_s16 (const Ifx_DPResultU16_Type*,		
	const lfx_DPResultU16_Type*,		
	uint16,		
0x013	const sint16 *)		

]()

8.5.1.5 Map look-up

[SWS_lfx_00030][

Service Name	Ifx_LkUpMap_ <outtypemn></outtypemn>			
Syntax	<pre><outtype> Ifx_LkUpMap_<outtypemn> (const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>			
Service ID [hex]	0x015 to 0x018	0x015 to 0x018		
Sync/Async	Synchronous			
Reentrancy	Reentrant			
	dpResultX	Data point search result for x axis		
Baramatara (in)	dpResultY	Data point search result for y axis		
Parameters (in)	num_value	Number of y axis points		
	Val_array	Pointer to the result axis distribution array		
Parameters (inout)	None			
Parameters (out)	None			
Return value	<outtype></outtype>	Entry point of the result array		
Description	Based on searched index and ratio information, this routine calculates and returns entry value of the result distribution array.			
Available via	lfx.h			

]()

[SWS_lfx_00031][

BaseIndex = dpResultX->Index * num_value + dpResultY->Index]()

[SWS_lfx_00033][

if(dpResultX->Ratio < 0.5 && dpResultY->Ratio < 0.5) then return Val_array [BaseIndex]

if(dpResultX->Ratio ≥ 0.5 && dpResultY->Ratio < 0.5) then return Val_array [BaseIndex + num_value]

if(dpResultX->Ratio < 0.5 && dpResultY->Ratio ≥ 0.5) then return Val_array [BaseIndex + 1]

if(dpResultX->Ratio ≥ 0.5 && dpResultY->Ratio ≥ 0.5) then return Val_array [BaseIndex + num_value + 1]]()

[SWS_lfx_00204][

Do not call this routine until you have searched the axis to ensure the search result contains valid data and is not used uninitialized.]()

Here is the list of implemented routines.

[SWS_lfx_00032][

Routine ID[hex]	Routine prototype		
	uint8 Ifx_LkUpMap_u8 (const Ifx_DPResultU16_Type*,		
	const lfx_DPResultU16_Type*,		
	uint16,		
0x015	const uint8 *)		
	uint16 Ifx_LkUpMap_u16 (const Ifx_DPResultU16_Type*,		
	const lfx_DPResultU16_Type*,		
	uint16,		
0x016	const uint16 *)		
	sint8 Ifx_LkUpMap_s8 (const Ifx_DPResultU16_Type*,		
	const Ifx_DPResultU16_Type*,		
	uint16,		
0x017	const sint8 *)		
	sint16 lfx_LkUpMap_s16 (const lfx_DPResultU16_Type*,		
	const Ifx_DPResultU16_Type*,		
	uint16,		
0x018	const sint16 *)		

()

8.5.1.6 Map look-up without rounding

[SWS_lfx_00205][

Service Name	Ifx_LkUpBaseMap_ <outtypemn></outtypemn>		
Syntax	<pre><outtype> Ifx_LkUpBaseMap_<outtypemn> (const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>		
Service ID [hex]	0x0A5 to 0x0A8		

Sync/Async	Synchronous		
Reentrancy	Reentrant		
	dpResultX	Data point search result for x axis	
Paramatara (in)	dpResultY	Data point search result for y axis	
Parameters (in)	num_value	Number of y axis points	
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype> Entry point of the result array</outtype>		
Description	Based on searched index and ratio information, this routine calculates and returns entry value of the result distribution array.		
Available via	lfx.h		

(()

[SWS_lfx_00206][

BaseIndex = dpResultX->Index * num_value + dpResultY->Index J()

[SWS_lfx_00207][

Return Value = Val_array [BaseIndex] I()

[SWS_lfx_00208][

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized.

]()

Here is the list of implemented routines.

[SWS_lfx_00209][

Routine ID[hex]	Routine prototype
	uint8 Ifx_LkUpBaseMap_u8 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x0A5	const uint8 *)
	uint16 Ifx_LkUpBaseMap_u16 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x0A6	const uint16 *)
	sint8 Ifx_LkUpBaseMap_s8(const Ifx_DPResultU16_Type*,
0x0A7	const lfx_DPResultU16_Type*,

		uint16,
L		const sint8 *)
		sint16 Ifx_LkUpBaseMap_s16 (const Ifx_DPResultU16_Type*,
		const Ifx_DPResultU16_Type*,
		uint16,
	0x0A8	const sint16 *)

]()

8.5.2 Integrated data point search and interpolation

In this method of interpolation, single routine does data point search (e.g. Index and ratio) and interpolation for curve, map or look-up table.

8.5.2.1 Integrated curve interpolation

[SWS_lfx_00035][

Service Name	lfx_IntlpoCur_ <intypemn>_<outtypemn></outtypemn></intypemn>		
Syntax	<pre><outtype> Ifx_IntIpoCur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>		
Service ID [hex]	0x01A to 0x029		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
	Xin	Input value	
Parameters (in)	N	Number of samples	
raiameters (m)	X_array	Pointer to the X axis distribution array	
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Result of the Interpolation	
Description	This routine calculates interpolation of a curve at position Xin using below equation.		
Available via	lfx.h		

]()

[SWS_lfx_00036][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]).

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])
Result = Val_array[index] + (Val_array[index+1] - Val_array[index])*RatioX |()

[SWS_lfx_00037][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,
Result = Val_array[index]
]()

[SWS_lfx_00038][

If (Xin < X_array[0]) then, Result = Val_array[0] J()

[SWS_lfx_00039][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] I()

[SWS_lfx_00040][

The minimum value of N shall be 1 (()

Here is the list of implemented routines.

[SWS_lfx_00041][

<u> </u>	· · · J
Routine ID[hex]	Routine prototype
0x01A	uint8 Ifx_IntIpoCur_u8_u8 (uint8, uint8, const uint8 *, const uint8 *)
0x01B	uint16 Ifx_IntlpoCur_u8_u16 (uint8, uint8, const uint8 *, const uint16 *)
0x01C	sint8 Ifx_IntIpoCur_u8_s8 (uint8, uint8, const uint8 *, const sint8 *)
0x01D	sint16 Ifx_IntIpoCur_u8_s16 (uint8, uint8, const uint8 *, const sint16 *)
0x01E	uint8 Ifx_IntlpoCur_u16_u8 (uint16, uint16, const uint16 *, const uint8 *)
0x01F	uint16 Ifx_IntlpoCur_u16_u16 (uint16, uint16, const uint16 *, const uint16 *)
0x020	sint8 Ifx_IntlpoCur_u16_s8 (uint16, uint16, const uint16 *, const sint8 *)
0x021	sint16 Ifx_IntlpoCur_u16_s16 (uint16, uint16, const uint16 *, const sint16 *)
0x022	uint8 Ifx_IntlpoCur_s8_u8 (sint8, sint8, const sint8 *, const uint8 *)
0x023	uint16 Ifx_IntlpoCur_s8_u16 (sint8, sint8, const sint8 *, const uint16 *)
0x024	sint8 Ifx_IntIpoCur_s8_s8 (sint8, sint8, const sint8 *, const sint8 *)
0x025	sint16 Ifx_IntlpoCur_s8_s16 (sint8, sint8, const sint8 *, const sint16 *)
0x026	uint8 Ifx_IntlpoCur_s16_u8 (sint16, sint16, const sint16 *, const uint8 *)
0x027	uint16 Ifx_IntlpoCur_s16_u16 (sint16, sint16, const sint16 *, const uint16 *)
0x028	sint8 Ifx_IntIpoCur_s16_s8 (sint16, sint16, const sint16 *, const sint8 *)
0x029	sint16 Ifx_IntlpoCur_s16_s16 (sint16, sint16, const sint16 *, const sint16 *)
1./\	

]()

8.5.2.2 Integrated curve look-up

[SWS_lfx_00045][

Service Name	lfx_IntLkUpCur_ <intypemn>_<outtypemn></outtypemn></intypemn>
--------------	---

Syntax	<pre><outtype> Ifx_IntLkUpCur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>			
Service ID [hex]	0x030 to 0x03F	0x030 to 0x03F		
Sync/Async	Synchronous			
Reentrancy	Reentrant			
	Xin	Input value		
Davamatava (in)	N	Number of samples		
Parameters (in)	X_array	Pointer to the X axis distribution array		
	Val_array	Pointer to the result axis distribution array		
Parameters (inout)	None			
Parameters (out)	None			
Return value	<outtype></outtype>	Entry point of the result array		
Description	This routine returns respective entry value of the result at position Xin based on below equations.			
Available via	lfx.h			

(()

[SWS_lfx_00046][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]). Result = Val_array[index]]()

[SWS_lfx_00047][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,
Result = Val_array[index]
]()

[SWS_lfx_00048][

If (Xin < X_array[0]) then, Result = Val_array[0] I()

[SWS_lfx_00049][

If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]
J()

[SWS_lfx_00050][

The minimum value of N shall be 1 J()

Here is the list of implemented routines.

[SWS_lfx_00051][

Routine ID[hex]	Routine prototype
0x030	uint8 Ifx_IntLkUpCur_u8_u8 (uint8 , uint8, const uint8 *, const uint8 *)
0x031	uint16 Ifx_IntLkUpCur_u8_u16 (uint8 , uint8, const uint8 *, const uint16 *)
0x032	sint8 Ifx_IntLkUpCur_u8_s8 (uint8 , uint8, const uint8 *, const sint8 *)
0x033	sint16 Ifx_IntLkUpCur_u8_s16 (uint8 , uint8, const uint8 *, const sint16 *)
0x034	uint8 Ifx_IntLkUpCur_u16_u8 (uint16 , uint16, const uint16 *, const uint8 *)
0x035	uint16 Ifx_IntLkUpCur_u16_u16 (uint16 , uint16, const uint16 *, const uint16 *)
0x036	sint8 Ifx_IntLkUpCur_u16_s8 (uint16 , uint16, const uint16 *, const sint8 *)
0x037	sint16 Ifx_IntLkUpCur_u16_s16 (uint16 , uint16, const uint16 *, const sint16 *)
0x038	uint8 Ifx_IntLkUpCur_s8_u8 (sint8 , sint8, const sint8 *, const uint8 *)
0x039	uint16 Ifx_IntLkUpCur_s8_u16 (sint8 , sint8, const sint8 *, const uint16 *)
0x03A	sint8 Ifx_IntLkUpCur_s8_s8 (sint8, sint8, const sint8 *, const sint8 *)
0x03B	sint16 Ifx_IntLkUpCur_s8_s16 (sint8, sint8, const sint8 *, const sint16 *)
0x03C	uint8 Ifx_IntLkUpCur_s16_u8 (sint16, sint16, const sint16 *, const uint8 *)
0x03D	uint16 Ifx_IntLkUpCur_s16_u16 (sint16, sint16, const sint16 *, const uint16 *)
0x03E	sint8 Ifx_IntLkUpCur_s16_s8 (sint16, sint16, const sint16 *, const sint8 *)
0x03F	sint16 Ifx_IntLkUpCur_s16_s16 (sint16, sint16, const sint16 *, const sint16 *)

<u>]()</u>

8.5.2.3 Integrated fix-curve interpolation

ISWS Ifx 000551

[2442_IIX_00033	<u> </u>		
Service Name	lfx_IntlpoFixCur_ <intypemn>_<outtypemn></outtypemn></intypemn>		
Syntax	<pre><outtype> Ifx_IntIpoFixCur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>		
Service ID [hex]	0x040 to 0x043		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	Xin	Input value	
	N	Number of samples	
	Val_array	Pointer to the result axis distribution array	
	Offset	Offset of the first sampling value for X-axis	

	Shift	'Shift' is the power of 2, (2^Shift) represents X-axis distribution point interval
Parameters (inout)	None	
Parameters (out)	None	
Return value	<out Type></out 	Result of the Interpolation
Description	This routine calculates interpolation of a curve at position Xin using below equations.	
Available via	lfx.h	

()

[SWS_lfx_00056][

X axis distribution points shall be calculated based on Offset and Shift values.

X_array [index] = Offset + index * 2^{Shift}

If Offset = 10, Shift = 2 and N = 5 then, $X_{array}[5] = \{10, 14, 18, 22, 26\}$ J()

[SWS_lfx_00057][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]).

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * RatioX | ()

[SWS_lfx_00058][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index])
Result = Val_array[index]
I()

[SWS_lfx_00059][

If (Xin < X_array[0]) then,
Result = Val_array[0]
I()</pre>

[SWS Ifx 00060][

If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]
]()

[SWS_lfx_00061][

The minimum value of N shall be 1 J()

Here is the list of implemented routines.

[SWS_lfx_00062][

Routine ID[hex]	Routine prototype
0x040	uint8
0x041	uint16 Ifx_IntIpoFixCur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x042	sint8 lfx_IntlpoFixCur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x043	sint16 Ifx_IntIpoFixCur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)

]()

8.5.2.4 Integrated fix-curve look up

[SWS_lfx_00070][

Service Name		ixCur_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntLkUpFixCur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>		
Service ID [hex]	0x045 to 0x048		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	Xin	Input value	
	N	Number of samples	
	Val_array	Pointer to the result axis distribution array	
	Offset	Offset of the first sampling value for X-axis	
	Shift	'Shift' is the power of 2, (2^Shift) represents X-axis distribution point interval	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Entry point of the result array	
Description	This routine returns respective entry value of the result distribution array at position Xin based on below equations.		
Available via	lfx.h		

]()

[SWS_lfx_00071][

X axis distribution points shall be calculated based on Offset and Shift values.

X_array [index] = Offset + index * 2^{Shift}

If Offset = 10, Shift = 2 and N = 5 then, $X_{array}[5] = \{10, 14, 18, 22, 26\}$ J()

[SWS_lfx_00072][

If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).
Result = Val_array[index]
|()</pre>

[SWS_lfx_00073][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,
Result = Val_array[index]
|()

[SWS_lfx_00074][

If (Xin < X_array[0]) then, Result = Val_array[0] I()

[SWS_lfx_00075][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] I()

[SWS_lfx_00076][

The minimum value of N shall be 1 ()

Here is the list of implemented routines.

[SWS Ifx 00077][

Routine prototype
uint8
uint16 Ifx_IntLkUpFixCur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
sint8 Ifx_IntLkUpFixCur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
sint16 Ifx_IntLkUpFixCur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)

]()

8.5.2.5 Integrated fix- I curve interpolation

[SWS_lfx_00080][

Service Name	Ifx_IntlpoFixICur_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntIpoFixICur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>	

	<pre><intype> N, const <intype>* Val_array, <intype> Offset, <intype> Interval)</intype></intype></intype></intype></pre>	
Service ID [hex]	0x04A to 0x04D	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
	Xin	Input value
	N	Number of samples
Parameters (in)	Val_array	Pointer to the result axis distribution array
	Offset	Offset of the first sampling value for X-axis
	Interval	represents X-axis distribution point fix interval
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype> Result of the Interpolation</outtype>	
Description	This routine calculates interpolation of a curve at position Xin using below equations.	
Available via	lfx.h	

I()

[SWS_lfx_00081][

X axis distribution points shall be calculated based on Offset and Interval values. X_array [index] = offset + index * Interval

```
If Offset = 5, Interval = 12 and N = 5 then,

X_{array}[5] = \{5, 17, 29, 41, 53\}

I()
```

[SWS_lfx_00082][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]).

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * RatioX |()

[SWS_lfx_00083][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index])
Result = Val_array[index]

]()

[SWS_lfx_00084][

If (Xin < X_array[0]) then, Result = Val_array[0] J()

[SWS_lfx_00085][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] J()

[SWS_lfx_00086][

The minimum value of N shall be 1 |()

Here is the list of implemented routines.

[SWS_lfx_00087][

Routine ID[hex]	Routine prototype
0x04A	uint8 Ifx_IntIpoFixICur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x04B	uint16 Ifx_IntlpoFixICur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x04C	sint8 Ifx_IntIpoFixICur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x04D	sint16 Ifx_IntIpoFixICur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)

]()

8.5.2.6 Integrated fix- I curve look up

[SWS_lfx_00090][

Service Name	Ifx_IntLkUpFixICur_ <intypemn>_<outtypemnt></outtypemnt></intypemn>	
Syntax	<pre><outtype> Ifx_IntLkUpFixICur_<intypemn>_<outtypemnt> (</outtypemnt></intypemn></outtype></pre>	
Service ID [hex]	0x050 to 0x053	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
	Xin	Input value
Doromotoro (in)	N	Number of samples
Parameters (in)	Val_array	Pointer to the result axis distribution array
	Offset	Offset of the first sampling value for X-axis

	Interval	represents X-axis distribution point fix interval
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype> Entry point of the result array</outtype>	
Description	This routine returns respective entry value of the result distribution array at position Xin based on below equations.	
Available via	lfx.h	

]()

[SWS_lfx_00091][

X axis distribution points shall be calculated based on Offset and Interval values. X_array [index] = offset + index * Interval

```
If Offset = 5, Interval = 12 and N = 5 then,

X_{array}[5] = \{5, 17, 29, 41, 53\}

]()
```

[SWS_lfx_00092][

If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).
Result = Val_array[index]
|()</pre>

[SWS_lfx_00093][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

```
If (Xin == X_array[index])
Result = Val_array[index]
|()
```

[SWS_lfx_00094][

If (Xin < X_array[0]) then,
Result = Val_array[0]
|()</pre>

[SWS Ifx 00095][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] I()

[SWS_lfx_00096][

The minimum value of N shall be 1 |()

Here is the list of implemented routines.

[SWS_lfx_00097][

Routine ID[hex]	Routine prototype
0x050	uint8 Ifx_IntLkUpFixICur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x051	uint16 Ifx_IntLkUpFixICur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x052	sint8 Ifx_IntLkUpFixICur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x053	sint16 Ifx_IntLkUpFixICur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)

]()

8.5.2.7 Integrated map interpolation

[SWS Ifx 00098][

[SWS_IfX_00098	<u> </u>	
Service Name	lfx_IntIpoMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntIpoMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>	
Service ID [hex]	0x060 to 0x087	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
	Xin	Input value for X axis
	Yin	Input value for Y axis
	Nx	Number of X axis samples
Parameters (in)	Ny	Number of Y axis samples
	X_array	Pointer to the X axis distribution array
	Y_array	Pointer to the Y axis distribution array
	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype></outtype>	Result of the Map Interpolation
Description	This routine calculates Interpolation of a map at position X and Y using below equations.	
Available via	lfx.h	

[SWS Ifx 00099][Index calculation: indexX = minimum value of index if (X array[indexX] < Xin < X array[indexX+1])indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1]) BaseIndex = IndexX * Ny + indexY I()[SWS Ifx 00100][Ratio calculation: RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX]) RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY]) I()[SWS Ifx 00101][LowerY = Val_array [BaseIndex] UpperY = Val array [BaseIndex + 1] LowerX = LowerY + (UpperY - LowerY) * RatioY LowerY = Val array [BaseIndex + Ny] UpperY = Val_array [BaseIndex + Ny + 1] UpperX = LowerY + (UpperY - LowerY) * RatioY Result = LowerX + (UpperX - LowerX) * RatioX |()|[SWS [fx_00102][If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_array[indexY+1]) Result = Val_array [BaseIndex] + (Val_array [BaseIndex+1] - Val_array[BaseIndex]) * RatioY |()|[SWS Ifx 00103][If (Yin == Y array[indexY]) and (X array[indexX] < Xin < X array[indexX+1]) Result = Val array [BaseIndex] + (Val array [BaseIndex+Ny] - Val array[BaseIndex]) * RatioX]() [SWS Ifx 00104][If (Xin == X_array[indexX]) and (Yin == Y_array[indexY]) Result = Val_array [BaseIndex] 1() [SWS Ifx 00105][If Xin < X_array[0], then indexX = 0.

]()

RatioX = 0

[SWS_lfx_00106][

If Xin > X_array[Nx-1], then indexX = Nx - 1, RatioX = 0 J()

[SWS_lfx_00107][

If Yin < Y_array[0], then indexY = 0, RatioY = 0

[SWS_lfx_00108][

If Yin > Y_array[Ny-1], then indexY = Ny - 1, RatioY = 0 J()

[SWS_lfx_00109][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

[SWS Ifx 00110][

	X_00110]
Routine ID[hex]	Routine prototype
0x060	uint8 Ifx_IntIpoMap_u16u8_u8 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const uint8 *)
0x061	uint16 lfx_IntlpoMap_u16u8_u16 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const uint16 *)
0x062	sint8 Ifx_IntIpoMap_u16u8_s8 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const sint8 *)
0x063	sint16 Ifx_IntIpoMap_u16u8_s16 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const sint16 *)
0x064	uint8 lfx_IntlpoMap_u16u16_u8 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint8 *)
0x065	uint16 Ifx_IntIpoMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *)
0x066	sint8 lfx_IntIpoMap_u16u16_s8 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const sint8 *)
0x067	sint16 Ifx_IntlpoMap_u16u16_s16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *)
0x068	uint8 Ifx_IntIpoMap_u16s8_u8 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const uint8 *)
0x069	uint16 lfx_IntIpoMap_u16s8_u16 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const uint16 *)
0x06A	sint8 Ifx_IntIpoMap_u16s8_s8 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const sint8 *)
0x06B	sint16 lfx_IntIpoMap_u16s8_s16 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const sint16 *)
0x06C	uint8 lfx_IntlpoMap_u16s16_u8 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const uint8 *)

0x06D	uint16 Ifx_IntlpoMap_u16s16_u16 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const uint16 *)
0x06E	sint8 Ifx_IntlpoMap_u16s16_s8 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const sint8 *)
0x06F	sint16 Ifx_IntIpoMap_u16s16_s16 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const sint16 *)
0x070	uint8 lfx_IntIpoMap_s16u8_u8 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const uint8 *)
0x071	uint16 lfx_IntIpoMap_s16u8_u16 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const uint16 *)
0x072	sint8 lfx_IntlpoMap_s16u8_s8 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const sint8 *)
0x073	sint16 Ifx_IntIpoMap_s16u8_s16 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const sint16 *)
0x074	uint8 lfx_IntlpoMap_s16s8_u8 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const uint8 *)
0x075	uint16 lfx_IntlpoMap_s16s8_u16 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const uint16 *)
0x076	sint8 lfx_IntlpoMap_s16s8_s8 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const sint8 *)
0x077	sint16 Ifx_IntIpoMap_s16s8_s16 (sint16, sint8, sint16, sint16, const sint16 *, const sint16 *, const sint16 *)
0x078	uint8 lfx_IntlpoMap_s16s16_u8 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const uint8 *)
0x079	uint16 lfx_IntlpoMap_s16s16_u16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)
0x07A	sint8 lfx_IntIpoMap_s16s16_s8 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const sint8 *)
0x07B	sint16 lfx_IntlpoMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)
0x07C	uint8 lfx_IntIpoMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint8 *)
0x07D	uint16 Ifx_IntlpoMap_u8u8_u16 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint16 *)
0x07E	sint8 lfx_IntlpoMap_u8u8_s8 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const sint8 *)
0x07F	sint16 Ifx_IntIpoMap_u8u8_s16 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const sint16 *)
0x080	uint8 lfx_IntlpoMap_u8s8_u8 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const uint8 *)
0x081	uint16 Ifx_IntIpoMap_u8s8_u16 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const uint16 *)
0x082	sint8 lfx_IntlpoMap_u8s8_s8 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const sint8 *)
0x083	sint16 Ifx_IntIpoMap_u8s8_s16 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const sint16 *)
0x084	uint8 lfx_IntlpoMap_s8s8_u8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const uint8 *)
0x085	uint16
0x086	sint8 lfx_IntIpoMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint8 *)
0x087	sint16 Ifx_IntIpoMap_s8s8_s16 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint16 *)

8.5.2.8 Integrated map look-up

[SWS_lfx_00111][

Service Name	Ifx_IntLkUpMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntLkUpMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>	
Service ID [hex]	0x08A to 0x08D	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
	Xin	Input value for X axis
	Yin	Input value for Y axis
	Nx	Number of X axis samples
Parameters (in)	Ny	Number of Y axis samples
	X_array	Pointer to the X axis distribution array
	Y_array	Pointer to the Y axis distribution array
	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype> Entry point of the result array</outtype>	
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	
Available via	lfx.h	

]()

[SWS_lfx_00112][

Index calculation:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

[SWS_lfx_00113][


```
Ratio calculation:
if (indexX < (Nx - 1))
RatioX = (Xin - X array[indexX]) / (X array[indexX+1] - X array[indexX])
else
RatioX = 0
if (indexY < (Ny - 1))
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
else
RatioY = 0
|()|
[SWS_lfx_00114][
if(RatioX < 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex]
if(RatioX ≥ 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex + Ny]
if(RatioX < 0.5 && RatioY ≥ 0.5) then
Result = Val_array [BaseIndex + 1]
if(RatioX ≥ 0.5 && RatioY ≥ 0.5) then
Result = Val_array [BaseIndex + Ny + 1]
|()
[SWS Ifx 00116][
If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()
[SWS_lfx_00117][
If Xin < X array[0], then
indexX = 0
I()
[SWS_lfx_00118][
If Xin > X_array[Nx-1], then
indexX = Nx - 1
|()|
[SWS_lfx_00119][
If Yin < Y_array[0], then
indexY = 0
|()|
[SWS Ifx 00120][
If Yin > Y_array[Ny-1], then
indexY = Ny - 1
]()
```


[SWS_lfx_00121][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

[SWS_lfx_00122][

Routine ID[hex]	Routine prototype
0x08A	uint8 Ifx_IntLkUpMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint8 *, const uint8 *)
	sint8 Ifx_IntLkUpMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint8 *, const sint8 *,
	uint16 Ifx_IntLkUpMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint16 *)
	sint16 Ifx_IntLkUpMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)

]()

8.5.2.9 Integrated map look-up without rounding

[SWS_lfx_00211][

	5W5_ITX_UU211]		
Service Name	Ifx_IntLkUpBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax	<pre><outtype> Ifx_IntLkUpBaseMap_<intypemn><intypemn>_<outtype mn=""> (</outtype></intypemn></intypemn></outtype></pre>		
Service ID [hex]	0x0AA to 0x0AD		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number of X axis samples	
Parameters (in)	Ny	Number of Y axis samples	
	X_array	Pointer to the X axis distribution array	
	Y_array	Pointer to the Y axis distribution array	
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None		

Parameters (out)	None	
Return value	<outtype> Entry point of the result array</outtype>	
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	
Available via	lfx.h	

]()

[SWS_lfx_00212][

Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()</pre>

[SWS_lfx_00214][

Return Value = Val_array [BaseIndex] I()

[SWS_lfx_00216][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
]()

[SWS_lfx_00217][

If Xin < X_array[0], then indexX = 0 |()

[SWS_lfx_00218][

If Xin > X_array[Nx-1], then indexX = Nx - 1 |()

[SWS Ifx 00219][

If Yin < Y_array[0], then indexY = 0 |()

[SWS_lfx_00220][

If Yin > Y_array[Ny-1], then indexY = Ny - 1

[SWS_lfx_00221][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines. [SWS_lfx_00222][

<u> </u>	[0110_11X_00111]			
Routine ID[hex]	Routine prototype			
0x0AA	uint8 Ifx_IntLkUpBaseMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint8 *)			
0x0AB	sint8 Ifx_IntLkUpBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint8 *)			
	uint16 Ifx_IntLkUpBaseMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *)			
	sint16 Ifx_IntLkUpBaseMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)			

]()

Integrated fix- map interpolation 8.5.2.10

[SWS Ifx 00123][

Service Name	Ifx_IntIpoFixMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Mn> (e> Yin, e> Nx, e> Ny, <intype>* Val_array, e> OffsetX, e> ShiftX, e> OffsetY,</intype>	
Service ID [hex]	0x090 to 0x093		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
	Ny	Number to Y axis samples	
Paramatara (in)	Val_array	Pointer to the result axis distribution array	
Parameters (in)	OffsetX	Offset of the first sampling value for X-axis	
	ShiftX	'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
	ShiftY	'Shift' is the power of 2 (2AShiftV) represents V-axis distribution	

Parameters (inout)	None		
Parameters (out)	None		
Return value	<out Type></out 	Result of the Interpolation	
Description	This routine equations.	e calculates Interpolation of a map at position X and Y using below	
Available via Ifx.h			

|()

[SWS_lfx_00124][

X and Y axis distribution points shall be calculated based on Offset and Shift values.

```
X_array[index] = OffsetX + index * 2<sup>ShiftX</sup>
Y_array[index] = OffsetY + index * 2<sup>ShiftY</sup>

If Offset = 10, Shift = 2 and N = 5 then,
axis = {10, 14, 18, 22, 26} (applicable to X and Y axis)
J()
```

[SWS_lfx_00125][

Index calculation:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

[SWS_lfx_00126][

Ratio calculation:

```
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX]) RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY]) ]()
```

[SWS Ifx 00127][

```
LowerY = Val_array [BaseIndex]
UpperY = Val_array [BaseIndex + 1]
LowerX = LowerY + (UpperY - LowerY) * RatioY

LowerY = Val_array [BaseIndex + Ny]
UpperY = Val_array [BaseIndex + Ny + 1]
UpperX = LowerY + (UpperY - LowerY) * RatioY

Result = LowerX + (UpperX - LowerX) * RatioX |

()
```

[SWS_lfx_00128][

If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_array[indexY+1])
Result = Val_array [BaseIndex] + (Val_array [BaseIndex+1] - Val_array[BaseIndex]) *
RatioY
J()</pre>

[SWS_lfx_00129][

If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_array[indexX+1])

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+Ny] - Val_array[BaseIndex])

* RatioX
|()

[SWS_lfx_00130][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
]()

[SWS_lfx_00131][

If Xin < X_array[0], then indexX = 0, RatioX = 0 J()

[SWS_lfx_00132][

If Xin > X_array[Nx-1], then indexX = Nx - 1, RatioX = 0 I()

[SWS_lfx_00133][

If Yin < Y_array[0], then indexY = 0, RatioY = 0

[SWS Ifx 00134][

If Yin > Y_array[Ny-1], then indexY = Ny - 1, RatioY = 0 |()

[SWS_lfx_00135][

The minimum value of Nx and Ny shall be 1 I()

Here is the list of implemented routines.

ISWS Ifx 001361[

-	[0.10_11X_00.100]			
	Routine ID[hex]	Routine prototype		
	0x090	uint8 Ifx_IntIpoFixMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8, uint8)		

0x091	uint16 lfx_IntlpoFixMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)		
0x092	sint8 Ifx_IntIpoFixMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)		
0x093	sint16 lfx_IntIpoFixMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)		

]()

8.5.2.11 Integrated fix- map look up

[SWS_lfx_00139][

Service Name	Ifx_IntLkUpFixMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax	Mn> (<pre>PYin, Nx, Ny, InType>* Val_array, OffsetX, ShiftX, OffsetY,</pre>	
Service ID [hex]	0x095 to 0x098		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
	Ny	Number to Y axis samples	
Parameters (in)	Val_array	Pointer to the result axis distribution array	
raiailleters (III)	OffsetX	Offset of the first sampling value for X-axis	
	ShiftX	'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
	ShiftY Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval		
Parameters (inout)	None		
Parameters (out)	None		

Return value	<outtype></outtype>	Entry point of the result array
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	
Available via Ifx.h		

|()

[SWS_lfx_00140][

X and Y axis distribution points shall be calculated based on Offset and Shift values.

```
X_array[index] = offsetX + index * 2<sup>ShiftX</sup>
Y_array[index] = offsetY + index * 2<sup>ShiftY</sup>

If Offset = 10, shift = 2 and N = 5 then,
axis = {10, 14, 18, 22, 26} (applicable to X and Y axis)
]()
```

[SWS_lfx_00141][

Index calculation:

```
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()</pre>
```

[SWS_lfx_00143][

```
Ratio calculation:
if (indexX < (Nx - 1))
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
else
RatioX = 0
if (indexY < (Ny - 1))
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
else
RatioY = 0
]()
```

[SWS Ifx 00144][

```
if(RatioX < 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex]
if(RatioX ≥ 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex + Ny]
if(RatioX < 0.5 && RatioY ≥ 0.5) then
Result = Val_array [BaseIndex + 1]
```


if(RatioX \geq 0.5 && RatioY \geq 0.5) then Result = Val_array [BaseIndex + Ny + 1] \rfloor ()

[SWS_lfx_00145][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS_lfx_00146][

If Xin < X_array[0], then indexX = 0 |()

[SWS_lfx_00147][

If Xin > X_array[Nx-1], then indexX = Nx - 1 |()

[SWS_lfx_00148][

If Yin < Y_array[0], then indexY = 0

[SWS_lfx_00149][

If Yin > Y_array[Ny-1], then indexY = Ny - 1 |()

[SWS_lfx_00150][

The minimum value of Nx and Ny shall be 1 |()

Here is the list of implemented routines.

[SWS_lfx_00151][

Routine ID[hex]	Routine prototype
0x095	uint8 Ifx_IntLkUpFixMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8, uint8)
0x096	uint16 Ifx_IntLkUpFixMap_u16u16_u16(uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16)
0x097	sint8 Ifx_IntLkUpFixMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x098	sint16 Ifx_IntLkUpFixMap_s16s16_s16(sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

|()

8.5.2.12 Integrated fix- map look up without rounding

[SWS_lfx_00225][

Service Name	Ifx_IntLkUpFixBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax	<pre><outtype> Ifx_IntLkUpFixBaseMap_<intypemn><out typemn=""> (</out></intypemn></outtype></pre>		
Service ID [hex]	0x0B0 to 0x0	B3	
Sync/Async	Synchronous		
Reentrancy	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
	Ny	Number to Y axis samples	
Paramatara (in)	Val_array	Pointer to the result axis distribution array	
Parameters (in)	OffsetX	Offset of the first sampling value for X-axis	
	ShiftX	'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
	ShiftY	'Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Entry point of the result array	
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.		
Available via Ifx.h			

]()

[SWS_lfx_00226][

X and Y axis distribution points shall be calculated based on Offset and Shift values.


```
X_array[index] = offsetX + index * 2<sup>ShiftX</sup>
Y array[index] = offsetY + index * 2<sup>ShiftY</sup>
If Offset = 10, shift = 2 and N = 5 then,
axis = {10, 14, 18, 22, 26} (applicable to X and Y axis)
|()|
[SWS_lfx_00227][
Index calculation:
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()|
[SWS_lfx_00229][
Return Value = Val_array [BaseIndex]
|()|
[SWS_lfx_00230][
If (Xin == X array[indexX]) and (Yin == Y array[indexY])
Result = Val_array [BaseIndex]
I()
[SWS Ifx 00231][
If Xin < X array[0], then
indexX = 0
(()
[SWS_lfx_00232][
If Xin > X_array[Nx-1], then
indexX = Nx - 1
(()
[SWS_lfx_00233][
If Yin < Y_array[0], then
indexY = 0
|()|
[SWS Ifx 00234][
If Yin > Y_array[Ny-1], then
indexY = Ny - 1
|()|
```

[SWS_lfx_00235][

The minimum value of Nx and Ny shall be 1 ()

Here is the list of implemented routines.

[SWS_lfx_00236][

Routine	Routine prototype

ID[hex]	
	uint8 Ifx_IntLkUpFixBaseMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8)
0x0B1	uint16 Ifx_IntLkUpFixBaseMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)
0x0B2	sint8 Ifx_IntLkUpFixBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x0B3	sint16 Ifx_IntLkUpFixBaseMap_s16s16_s16(sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

<u>]()</u>

8.5.2.13 Integrated fix- I map interpolation

[SWS_lfx_00153][

Service Name	lfx_IntIpoFixIMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax	<pre><outtype> Ifx_IntIpoFixIMap_<intypemn><intypemn>_<outtype mn=""> (</outtype></intypemn></intypemn></outtype></pre>		
Service ID [hex]	0x09A to 0x09D		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	Xin Yin Nx Ny Val_array OffsetX IntervalX OffsetY IntervalY	Input value for X axis Input value for Y axis Number to X axis samples Number to Y axis samples Pointer to the result axis distribution array Offset of the first sampling value for X-axis represents X-axis distribution point interval Offset of the first sampling value for Y-axis represents Y-axis distribution point interval	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Result of the Interpolation	

Description	This routine calculates Interpolation of a map at position X and Y using below equations.
Available via	lfx.h

|()

[SWS_lfx_00154][

X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis)

]()
```

[SWS_lfx_00155][

Index calculation:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

[SWS_lfx_00156][

Ratio Calculation:

```
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
I()
```

[SWS Ifx 00157][

```
LowerY = Val_array [BaseIndex]
UpperY = Val_array [BaseIndex + 1]
LowerX = LowerY + (UpperY - LowerY) * RatioY

LowerY = Val_array [BaseIndex + Ny]
UpperY = Val_array [BaseIndex + Ny + 1]
UpperX = LowerY + (UpperY - LowerY) * RatioY

Result = LowerX + (UpperX - LowerX) * RatioX
J()
```

[SWS_lfx_00158][

```
If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_array[indexY+1])

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+1] - Val_array[BaseIndex]) *

RatioY

I()
```

[SWS_lfx_00159][

If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_array[indexX+1])

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+Ny] - Val_array[BaseIndex])

* RatioX

J()

[SWS_lfx_00160][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS_lfx_00161][

If Xin < X_array[0], then indexX = 0, RatioX = 0]()

[SWS_lfx_00162][

If Xin > X_array[Nx-1], then indexX = Nx - 1, RatioX = 0]()

[SWS_lfx_00163][

If Yin < Y_array[0], then indexY = 0, RatioY = 0

[SWS_lfx_00164][

If Yin > Y_array[Ny-1], then indexY = Ny - 1, RatioY = 0

[SWS_lfx_00165][

The minimum value of Nx and Ny shall be 1 ()

Here is the list of implemented routines.

[SWS_lfx_00166][

Routine ID[hex]	Routine prototype
	uint8 Ifx_IntIpoFixIMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
	uint16 lfx_IntIpoFixIMap_u16u16_u16(uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)
	sint8 Ifx_IntIpoFixIMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8)
	sint16 lfx_IntIpoFixIMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

8.5.2.14 Integrated fix- I map look up

[SWS Ifx 00169][

[SWS_lfx_0016	الور				
Service Name	Ifx_IntLkUpFixIMap_	_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>			
Syntax	<pre><outtype> Ifx_IntLkUpFixIMap_<intypemn><intypemn>_<outtype mn=""> (</outtype></intypemn></intypemn></outtype></pre>				
Service ID [hex]	0x0A0 to 0x0A3				
Sync/Async	Synchronous				
Reentrancy	Reentrant				
	Xin	Input value for X axis			
	Yin	Input value for Y axis			
	Nx	Number to X axis samples			
	Ny	Number to Y axis samples			
Parameters (in)	Val_array	Pointer to the result axis distribution array			
	OffsetX	Offset of the first sampling value for X-axis			
	IntervalX	represents X-axis distribution point interval			
	OffsetY	Offset of the first sampling value for Y-axis			
	IntervalY	represents Y-axis distribution point interval			
Parameters (inout)	None				
Parameters (out)	None				
Return value	<outtype></outtype>	Entry point of the result array			
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.				
Available via	lfx.h				

]()

X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY
If Offset = 10, Interval = 2 and N = 5 then,
axis = \{10, 12, 14, 16, 18\} (applicable to X and Y axis)
|()|
[SWS Ifx 00171][
Index calculation:
indexX = minimum value of index if (X array[indexX] < Xin < X array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()|
[SWS_lfx_00173][
Ratio calculation:
if (indexX < (Nx - 1))
RatioX = (Xin - X array[indexX]) / (X array [indexX+1] - X array [indexX])
else
RatioX = 0
if (indexY < (Ny - 1))
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
else
RatioY = 0
|()|
[SWS Ifx 00174][
if(RatioX < 0.5 && RatioY < 0.5) then
Result = Val array [BaseIndex]
if(RatioX ≥ 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex + Ny]
if(RatioX < 0.5 && RatioY ≥ 0.5) then
Result = Val_array [BaseIndex + 1]
if(RatioX \geq 0.5 && RatioY \geq 0.5) then
Result = Val array [BaseIndex + Ny + 1]
I()
[SWS Ifx 00175][
If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
I()
```

[SWS_lfx_00176][

If Xin < X_array[0], then indexX = 0]()

[SWS_lfx_00177][

If Xin > X_array[Nx-1], then indexX = Nx - 1]()

[SWS_lfx_00178][

If Yin < Y_array[0], then indexY = 0 |()

[SWS_lfx_00179][

If Yin > Y_array[Ny-1], then indexY = Ny - 1 J()

[SWS_lfx_00180][

The minimum value of Nx and Ny shall be 1]()

Here is the list of implemented routines.

[SWS Ifx 00181][

<u> </u>	1
Routine ID[hex]	Routine prototype
0x0A0	uint8 Ifx_IntLkUpFixIMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
	uint16 Ifx_IntLkUpFixIMap_u16u16_u16(uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16)
	sint8 Ifx_IntLkUpFixIMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8)
	sint16 Ifx_IntLkUpFixIMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

]()

8.5.2.15 Integrated fix- I map look up without rounding

ISWS Ifx 002491

LOTTO_IIX_COL	, · <u> </u>				
Service Name	lfx_IntLkUpFixIBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>				
Syntax	<pre><outtype> Ifx_IntLkUpFixIBaseMap_<intypemn><intypemn>_<out typemn=""> (</out></intypemn></intypemn></outtype></pre>				

Service ID [hex]	0x0B4 to 0x0B7					
Sync/Async	Synchronous					
Reentrancy	Reentrant					
	Xin	Input value for X axis				
	Yin	Input value for Y axis				
	Nx	Number to X axis samples				
	Ny	Number to Y axis samples				
Parameters (in)	Val_array	Pointer to the result axis distribution array				
	OffsetX	OffsetX Offset of the first sampling value for X-axis				
	IntervalX represents X-axis distribution point interval					
	OffsetY Offset of the first sampling value for Y-axis					
	IntervalY	valY represents Y-axis distribution point interval				
Parameters (inout)	None					
Parameters (out)	None					
Return value	<outtype> Entry point of the result array</outtype>					
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.					
Available via	lfx.h					

()

[SWS_lfx_00237][

X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis)

I()
```

[SWS_lfx_00238][

Index calculation:

 $indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1]) indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1]) BaseIndex = IndexX * Ny + indexY$

(()

[SWS_lfx_00240][

Return Value = Val_array [BaseIndex] I()

[SWS Ifx 00241][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS_lfx_00242][

If Xin < X_array[0], then indexX = 0]()

[SWS_lfx_00243][

If Xin > X_array[Nx-1], then indexX = Nx - 1 |()

[SWS_lfx_00244][

If Yin < Y_array[0], then indexY = 0

[SWS_lfx_00245][

If Yin > Y_array[Ny-1], then indexY = Ny - 1]()

[SWS_lfx_00246][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

[SWS Ifx 00247][

Routine ID[hex]	Routine prototype
	uint8 Ifx_IntLkUpFixIBaseMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8)
	uint16 Ifx_IntLkUpFixIBaseMap_u16u16_u16(uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)
0x0B6	sint8 lfx_IntLkUpFixIBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
	sint16 lfx_IntLkUpFixIBaseMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

()

8.5.3 Record layouts for interpolation routines

Record layout specifies calibration data serialization in the ECU memory which describes the shape of the characteristics. Single record layout can be referred by multiple instances of interpolation ParameterDataPrototype. Record layouts can be nested particular values refer to the particular property of the object. With different properties of record layouts it is possible to specify complex objects.

8.5.3.1 Record layouts for map values

Due to optimization, the orientation of map values in memory is different depending on the usage of the inputs. See section 8.4.2.

- 1. If the "X" and "Y" inputs are not swapped then, values "Val" of maps have to be in COLUMN DIR order.
- 2. If the "X" and "Y" inputs are swapped then, values "Val" of maps have to be in ROW_DIR order.

According to ASAM standard [ASAM MCD-2MC Version 1.5.1 and 1.6], COL-UMN_DIR and ROW_DIR are formats of storing map values (Val[]) and more information can be found in ASAM standard.

8.5.3.2 Record layout definitions

Below table specifies record layouts supported for distributed interpolation routines.

[SWS_Ifx_00185] [

Record layout Name	Element1	Element2
Distr_s8	sint8 N	sint8 X[]
Distr_u8	uint8 N	uint8 X[]
Distr_s16	sint16 N	sint16 X[]
Distr_u16	uint16 N	uint16 X[]
Cur_u8	uint8 Val[]	
Cur_u16	uint16 Val[]	
Cur_s8	sint8 Val[]	
Cur_s16	sint16 Val[]	
Map_u8	uint8 Val[]	
Map_u16	uint16 Val[]	
Map_s8	sint8 Val[]	
Map_s16	sint16 Val[]	

Table: Record layouts for distributed interpolation routines ()

Below table specifies record layouts supported for integrated interpolation routines.

[SWS_Ifx_00186] [

S.No	Record Layout Name	Element1	Element2	Element3	Element4	Element5
1	IntCur_u8_u8	uint8 N	uint8 X[]	uint8 Val[]		
2	IntCur_u8_u16	uint8 N	uint8 X[]	uint16 Val[]		
3	IntCur_u8_s8	uint8 N	uint8 X[]	sint8 Val[]		
4	IntCur_u8_s16	uint8 N	uint8 X[]	sint16 Val[]		
5	IntCur_u16_u8	uint16 N	uint16 X[]	uint8 Val[]		
6	IntCur_u16_u16	uint16 N	uint16 X[]	uint16 Val[]		

7	IntCur u16 co	uint16 N	uint16 YII	sint8 Val[]		
	IntCur_u16_s8	uint16 N	uint16 X[]	Li .		
9	IntCur_u16_s16	uint16 N	uint16 X[]	sint16 Val[]		
	IntCur_s8_u8 IntCur_s8_u16	sint8 N	sint8 X[]	uint8 Val[]		
10	IntCur_s8_u16 IntCur_s8_s8	sint8 N	sint8 X[]	uint16 Val[] sint8 Val[]		
12	IntCur_s8_s16	sint8 N	sint8 X[]	sint16 Val[]		
13	IntCur_s16_u8	sint16 N	sint16 X[]	uint8 Val[]		
14	IntCur_s16_u16	sint16 N	sint16 X[]	uint16 Val[]		
15	IntCur_s16_s8	sint16 N	sint16 X[]	sint8 Val[]		
16	IntCur_s16_s16	sint16 N	sint16 X[]	sint16 Val[]		
17 18	FixIntCur_u8_u8	uint8 N	uint8 Val[]			
	FixIntCur_u16_u16	uint16 N	uint16 Val[]			
19 20	FixIntCur_s8_s8	sint8 N	sint8 Val[]			
	FixIntCur_s16_s16	sint16 N	sint16 Val[]	uint0 VII	uint0 VII	uint0 \/aIII
21	IntMap_u8u8_u8	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	uint8 Val[]
22	IntMap_u8u8_u16	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	uint16 Val[]
23	IntMap_u8u8_s8	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	sint8 Val[]
24	IntMap_u8u8_s16	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	sint16 Val[]
25	IntMap_u8s8_u8	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	uint8 Val[]
26	IntMap_u8s8_u16	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	uint16 Val[]
27	IntMap_u8s8_s8	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	sint8 Val[]
28	IntMap_u8s8_s16	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	sint16 Val[]
29	IntMap_u16u8_u8	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	uint8 Val[]
30	IntMap_u16u8_u16	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	uint16 Val[]
31	IntMap_u16u8_s8	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	sint8 Val[]
32	IntMap_u16u8_s16	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	sint16 Val[]
33	IntMap_u16u16_u8	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	uint8 Val[]
34	IntMap_u16u16_u16	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	uint16 Val[]
35	IntMap_u16u16_s8	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	sint8 Val[]
36	IntMap_u16u16_s16	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	sint16 Val[]
37	IntMap_u16s8_u8	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	uint8 Val[]
38	IntMap_u16s8_u16	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	uint16 Val[]
39	IntMap_u16s8_s8	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	sint8 Val[]
40	IntMap_u16s8_s16	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	sint16 Val[]
41	IntMap_u16s16_u8	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	uint8 Val[]
42	IntMap_u16s16_u16	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	uint16 Val[]
43	IntMap_u16s16_s8	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	sint8 Val[]
44	IntMap_u16s16_s16	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	sint16 Val[]
45	IntMap_s8s8_u8	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	uint8 Val[]
46	IntMap_s8s8_u16	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	uint16 Val[]
47	IntMap_s8s8_s8	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	sint8 Val[]
48	IntMap_s8s8_s16	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	sint16 Val[]
49	IntMap_s16u8_u8	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	uint8 Val[]
50	IntMap_s16u8_s8	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	sint8 Val[]
51	IntMap_s16u8_u16	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	uint16 Val[]
52	IntMap_s16u8_s16	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	sint16 Val[]
53	IntMap_s16s8_u8	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	uint8 Val[]
54	IntMap_s16s8_u16	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	uint16 Val[]
55	IntMap_s16s8_s8	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	sint8 Val[]
56	IntMap_s16s8_s16	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	sint16 Val[]
57	IntMap_s16s16_u8	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	uint8 Val[]
58	IntMap_s16s16_u16	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	uint16 Val[]

59	IntMap_s16s16_s8	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	sint8 Val[]
60	IntMap_s16s16_s16	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	sint16 Val[]
61	IntMap_u8u16_u8	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	uint8 Val[]
62	IntMap_u8u16_u16	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	uint16 Val[]
63	IntMap_u8u16_s8	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	sint8 Val[]
64	IntMap_u8u16_s16	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	sint16 Val[]
65	IntMap_u8s16_u8	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	uint8 Val[]
66	IntMap_u8s16_u16	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	uint16 Val[]
67	IntMap_u8s16_s8	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	sint8 Val[]
68	IntMap_u8s16_s16	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	sint16 Val[]
69	IntMap_s8u8_u8	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	uint8 Val[]
70	IntMap_s8u8_u16	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	uint16 Val[]
71	IntMap_s8u8_s8	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	sint8 Val[]
72	IntMap_s8u8_s16	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	sint16 Val[]
73	IntMap_s8s16_u8	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	uint8 Val[]
74	IntMap_s8s16_u16	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	uint16 Val[]
75	IntMap_s8s16_s8	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	sint8 Val[]
76	IntMap_s8s16_s16	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	sint16 Val[]
77	IntMap_s8u16_u8	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	uint8 Val[]
78	IntMap_s8u16_u16	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	uint16 Val[]
79	IntMap_s8u16_s8	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	sint8 Val[]
80	IntMap_s8u16_s16	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	sint16 Val[]
81	IntMap_s16u16_u8	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	uint8 Val[]
82	IntMap_s16u16_u16	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	uint16 Val[]
83	IntMap_s16u16_s8	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	sint8 Val[]
84	IntMap_s16u16_s16	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	sint16 Val[]
85	FixIntMap_u8_u8	uint8 Nx	uint8 Ny	uint8 Val[]		
86	FixIntMap_u16_u16	uint16 Nx	uint16 Ny	uint16 Val[]		
87	FixIntMap_s8_s8	sint8 Nx	sint8 Ny	sint8 Val[]		
88	FixIntMap_s16_s16	sint16 Nx	sint16 Ny	sint16 Val[]		

Table: Record layouts for integrated interpolation routines ()

Note: As mentioned in in <u>chapter 8.4,</u> interpolation routines optimization is achieved by swaping X and Y axis during function call for Call-back notifications for below mentioned record layouts.

From Map_u8u16_u8 (S. No 61) to Map_s16u16_s16 (S. No 84)

8.6 Examples of use of functions

None

8.7 Version API

8.7.1 Ifx GetVersionInfo

[SWS Ifx 00815][

<u> </u>	- 1
Service Name	Ifx_GetVersionInfo

Syntax	<pre>void Ifx_GetVersionInfo (Std_VersionInfoType* versioninfo)</pre>	
Service ID [hex]	0xff	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	None	
Parameters (inout)	None	
Parameters (out)	versioninfo	Pointer to where to store the version information of this module. Format according [BSW00321]
Return value	None	
Description	Returns the version information of this library.	
Available via	lfx.h	

J(SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_00321)

The version information of a BSW module generally contains:

Module Id

Vendor Id

Vendor specific version numbers (SRS_BSW_00407).

[SWS_lfx_00816] [

If source code for caller and callee of Ifx_GetVersionInfo is available, the Ifx library should realize Ifx_GetVersionInfo as a macro defined in the module's header file. (SRS_BSW_00407, SRS_BSW_00411)

8.8 Call-back notifications

None.

8.9 Scheduled routines

The Ifx library does not have scheduled routines.

8.10 Expected Interfaces

None

8.10.1 Mandatory Interfaces

None

8.10.2 Optional Interfaces

None

8.10.3 Configurable interfaces

None

9 Sequence diagrams

Not applicable.

10 Configuration specification

10.1 Published Information

[SWS_lfx_00814] The standardized common published parameters as required by SRS_BSW_00402 in the General Requirements on Basic Software Modules [3] shall be published within the header file of this module and need to be provided in the BSW Module Description. The according module abbreviation can be found in the List of Basic Software Modules [1]. \(\) (SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379)

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration option

[SWS_Ifx_00818] The Ifx library shall not have any configuration options that may affect the functional behavior of the routines. I.e. for a given set of input parameters, the outputs shall be always the same. For example, the returned value in case of error shall not be configurable. (SRS_LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning library implementation, e.g. for resources consumption optimization.

11 Not applicable requirements