Introducció (2): Evolució de la computació

Charles Babbage (1791-1871)

- Màquina calculadora (difference engine) 1822:
 - Aplicada a calcular taules matemàtiques, reduir l'error humà.
 - Mai arriba a construir una màquina completa (1/9)
 - Construida amb elements mecànics
- Màquina analítica (analytic engine) 1833:
 - Ordinador mecànic d'us general
 - Unitat central de processat i unitat de memòria
 - Controlada per un programa d'instruccions
 - Tampoc arriba a veure mai una versió completa (tampoc se sap si realment es podria construir aquest tipus de màquina emprant només elements mecànics)
- Ambdós conceptes són digitals
- > Ada Byron (Lady Lovelace) descriu el primer algorisme per la màquina analítica.

Universal Turing Machine

- 1936, Turing inventa la computació moderna.
- Introdueix conceptes nous: el computador pot modificar el programa, el computador ha d'aprendre de l'experiència (amb Konrad Suse, memòria del computador pot guardar tant les instruccions com les dades)
- Durant la segona guerra mundial ha de deixar de treballar en aquest concepte.

Bombe

 1941, Alan Turing i Harold Keen completen la primera màquina electromecànica per desencriptar codis militars Nazis (encriptats per la màquina ENIGMA)

Harvard Mark I

- Màquina analògica basada en la màquina analítica de Babbage
- Construida 1944 per IBM
- Utilitza senyals electromagnètiques per moure les parts mecàniques i controlar alguns relés
- 15,5 metres de llarg, 2,4 metres d'alt i 60 cm de profunditat.
 Pesa unes 5 tonelades.
- Té un rellotge de sincronisme amb un període de 0,015 segons
- Triga:
 - 0,3 segons per a sumar
 - 6 segons per a multiplicar
 - 1 minut per a un càlcul d'un sinus

S'avariava un cop per setmana

HISTÒRIA MODERNA DE LA COMPUTACIÓ

Atanasoff

- Durant els anys 30 John Atanasoff construeix el "Linear Equation Solver"
- Atanasoff dexideix que la manera correcta per a "computar" és emprant "electrònica digital" (empra tubs de buit)

Colossus

- Primer prototip funcional completament digital (1944)
- 1600 tubs de buit
- Programa d'instruccions extern

ENIAC (Electronic Numerical Integrator And Computer)

- Presentat el 1946, conté elements electrònics. Realitza operacions 1000 cops més ràpid que els seus homòlegs electromecànics
- Disenyat per John Mauchly i J. Prespert Eckert. Pesa 30 tones, ocupa 72 m2 i consumeix 200K W.
- von Neuman entra a l'equip de l'ENIAC i proposa que la memòria de programa sigui interna ... Finalment és externa:
 - Seqüències d'instruccions són executades independentment del resultat dels càlculs
- L'ENIAC:
 - Llegeix 120 cartes per minut
 - Triga 200 us per fer sumes i 6 ms per dividir
 - o Conté 18000 tubs de buit

EDVAC(Electronic Discrete Variable Automatic Computer)

- Eckert, Mauchly, John von Neumann i d'altres disenyen l'EDVAC per solucionar els problemes derivats del sistema de programació extern de l'ENIAC => ara el programa pot ser manipulat com a dades
- Primer report de l'EDVAC presentat al 1945 per von Neumann, més tard (1973) s'atribuirà, també, la invenció a John Atanasoff
- L'EDVAC:
 - o Triga 864 us per fer sumes i 2,9 ms per multiplicacions
 - o Conté 4000 tubs de buit

HISTÒRIA MODERNA DE LA COMPUTACIÓ

Més informació:

- http://plato.stanford.edu/entries/computing-history/
- http://www.computerhistory.org/timeline/
- http://computerpionee.rs/timeline/or/theoretical-computer-science

1947 s'inventa el transistor bipolar:

- Substitueixen els tubs de buit en els nous computadors
- Incrementen la velocitat, disminueixen consum, preu i àrea
- Dona pas a la computació «moderna»

ESTRUCTURA BÀSICA D'UN COMPUTADOR

Els dispositius bàsics d'un ordinador són:

- CPU:
 - UC (Unitat de Control)
 - UP (unitat d'execució)
- Memòria Principal
- Dispositius d'E/S

Què passa sota el meu programa?

- Software escrit en llenguatge d'alt nivell (Application Software)
- System software
 - Compilador tradueix el programa a codi màquina
 - Sistema operatiu:
 - Interfície I/O
 - Mem. Management
 - Programació (temporal) tasques
 - Compartir recursos
- Hardware:
 - Processador
 - Memòria
 - Controladors I/O

Diferents nivells d'un programa

High-level language

Assembly language

Hardware representation

ESTRUCTURA BÀSICA D'UN COMPUTADOR

Els dispositius bàsics d'un ordinador són:

- CPU:
 - UC (Unitat de Control)
 - UP (unitat d'execució)
- Memòria Principal
- Dispositius d'E/S

Dins de la CPU

- Datapath: realitza les operacions amb les dades
- Control: controla les tasques del datapath, memòria, ...
- Cache memory
 - Petita i ràpida memòria SRAM per accedir ràpidament a les dades

Apple A5

EVOLUCIÓ TECNOLÒGICA

- Tecnologia electrònica continua evolucionant
 - Incrementant capacitat i rendiment
 - Reducció de costs

DRAM capacity

Year	Technology	Relative performance/cost	
1951	Vacuum tube	1	
1965	Transistor	35	
1975	Integrated circuit (IC)	900	
1995	Very large scale IC (VLSI)	2,400,000	
2013	Ultra large scale IC	250,000,000,000	

Microprocessador	Any	# Transistors*	Freqüència
4004	1971	2.300	100 kHz
8080	1974	6.000	2 MHz
8086	1978	29.000	4,77 - 10 MHz
80286	1982	134.000	6 - 25 MHz
80386	1985	275.000	16 - 33 MHz
80486	1989	1.200.000	25 - 50 MHz
Pentium	1993	3.100.000	60 - 120 MHz
Pentium II	1997	7.500.000	233 - 333 MHz
Pentium III (Katmai)	1999	9.500.000	450 MHz-1,4GHz
Pentium 4 (256kB caché)	2000	42.000.000	1,4 – 3,4 GHz
Itanium 2 (9MB caché)	2004	592.000.000	1,67 GHz
Intel Core 2 Duo (4MB L2 caché)	2006	291.000.000	1,86 - 3.3 GHz
Intel Core 2 Quad	2006	586.000.000	2,33 – 3,2 GHz
Intel Core i7 (8MB L3 caché)	2008	781.000.000	2,66 – 3,33 GHz
Intel Core i7 Sandy Bridge-E (i7-3970x: 20MB L3caché, 8 cores)	2011	2.270.000.000	3,5 – 4,0 GHz

Relació aproximada de mides

Nota: al 2007 el ARM Cortex-A9 té 26.000.000 transistors...

^{*}Tant el nº de transistors com la freqüència en alguns dels processadors mostrats depenen molt del model, ja que en alguns casos s'han fet molts models diferents d'un mateix microprocessador.

Llei de Moore: (1965) El número de "transistors" als circuits integrats es duplicaria cada 12 mesos. Això ho preveia fins al 1975, aquest any va fer un ajust a 24 mesos. Encara es compleix avui dia.

Font: http://bonnerfamilyoffice.com/wp-content/uploads/2014/07/20140721-DRE1.png

Llei de Moore : (1965) El número de "transistors" als circuits integrats es duplicaria cada 12 mesos. Això ho preveia fins al 1975, aquest any va fer un ajust a 24 mesos. Encara es compleix avui dia.

Compliment de la llei de Moore als Microprocessadors d'Intel

Evolució del número de Transistors a les Memòries

Logic and Memory performance gap

Amortitzar els dissenys, cada cop més complexes, dels processadors és molt important per garantir la viabilitat.

Apollo Guidance Computer (AGC) 1966

Dissenyat pel MIT pel programa *Apollo* i que anava tant al mòdul de comandament (CM) com al lunar (LM). El feien servir els astronautes per funcions de guiat, navegació i control de les naus.

Els astronautes es comunicaven amb el AGC mitjançant un teclat numèric anomenat DSKY.

El AGC va ser un dels primers ordinadors basats en "Circuits Integrats"

Processador	 4100 ICs, cada un amb 3 transistors (12300 Tx) Paraula: 16bits (15 de dades més 1 de paritat) 4 Registres (+20 espec.) 11 Instruccions 	
Freqüència	2,048 MHz	
Memòria	 Organitzada en paraules de 16-bit. RAM: 2048 paraules (magnetic core memory) ROM: 36864 paraules (core rope memory) 	

PD-NASA

