

DEPARTMENT OF COMPUTER, CONTROL AND MANAGEMENT ENGINEERING

FP1 Control of the Variable Length Pendulum

UNDERACTUATED ROBOTICS

Professors: Leonardo Lanari Giuseppe Oriolo Students: Michele Cipriano Karim Ghonim Khaled Wahba

Contents

1	Introduction	2
2	Problem Formulation	2
3	Total Energy Shaping 3.1 Experiments	3
4	Partial Energy Shaping 4.1 Motion Analysis	3 3
5	Conclusion	3

1 Introduction

Ch. 8.1. Introduction [1].

2 Problem Formulation

Let's consider a variable length pendulum (VLP) with massless rod and without any friction. Let $\theta(t)$ be the angle between the pendulum and the y-axis (counterclockwise), let l(t) be the length of the pendulum, let m be the mass of the pendulum and f(t) be the force acting on the mass. Let (x_G, y_G) be the coordinates of the mass:

$$x_G = l(t)\sin\theta(t) \tag{1}$$

$$y_G = l(t)\cos\theta(t) \tag{2}$$

Let T be the kinetic energy of the VLP:

$$T = \frac{1}{2}m(\dot{x}_G^2 + \dot{y}_G^2) = \frac{1}{2}m(l(t)\dot{\theta}^2(t)) + \frac{1}{2}m(\dot{l}(t))^2 \tag{3}$$

Let P be the potential energy of the VLP:

$$P = mgy_G = -mgl(t)\cos\theta(t) \tag{4}$$

The Lagrangian of the VLP is L = T - P. Using Euler-Lagrange equation, it is possible to determine the motion equation of the VLP:

$$\ddot{\theta}(t) + \frac{2\dot{l}(t)\dot{\theta}(t)}{l(t)} + \frac{g\sin\theta(t)}{l(t)} = 0$$
 (5)

$$m\ddot{l}(t) - ml(t)\dot{\theta}^{2}(t) - mg\cos\theta(t) = f(t)$$
(6)

with f(t) force applied to the mass.

Let's consider $u = \ddot{l}(t)$ as control input for the next sections. Since there is no control input controlling directly $\theta(t)$, the system is underactuated.

Let's assume m=1. Let the total mechanical energy of the system E_T be:

$$E_T = T + P = \frac{1}{2}\dot{l}^2(t) + \frac{1}{2}(l(t)\dot{\theta}(t))^2 - gl(t)\cos\theta(t)$$
 (7)

Let the desired trajectory of swing E_r be:

$$E_r = \frac{1}{2} (l_r \dot{\theta}(t))^2 - g l_r \cos \theta(t)$$
(8)

with E_r desired energy and l_r desired length of the pendulum. Moreover, being $\theta_{\text{max}} \in (0, \pi]$ maximal angle of the desired swing:

$$E_r = -gl_r \cos\theta_{\text{max}} \tag{9}$$

Given the above assumptions, let's consider the problem of trajectory tracking control, which consists in determining whether it is possible to design a control law u such that:

$$\lim_{t \to \infty} E_T = E_r \qquad \lim_{t \to \infty} \dot{l} = 0 \qquad \lim_{t \to \infty} l = l_r \tag{10}$$

3 Total Energy Shaping

Ch. 8.3.1.

3.1 Experiments

Ch. 8.5 (singular points in controller 8.18).

4 Partial Energy Shaping

Ch. 8.3.2.

4.1 Motion Analysis

Ch. 8.4 (Convergence of Energy in 8.4.1, Closed-Loop Equilibrium Points in 8.4.2).

4.2 Experiments

Ch. 8.5 (controller 8.23 with initial state $(-\pi/6, 2, 0, 0)$ and $(-\pi/3, l_{de}, 0, 0)$).

5 Conclusion

Ch. 8.6.

References

[1] X. Xin and Y. Liu, Control Design and Analysis for Underactuated Robotic Systems. Springer Publishing Company, Incorporated, 2014.