Power Functions

Basics

Definition

A power function is a function of the form,

$$f(x) = ax^p$$

where $a \neq 0$ is a constant and p is a real number. Some examples of power functions include:

$$f_1(x) = 3x^2,$$

 $f_2(x) = x^{\frac{1}{3}},$
 $f_3(x) = -3\sqrt{x},$
 $f_4(x) = \frac{1}{2}x^{-\frac{1}{4}} = \frac{1}{2x^{\frac{1}{4}}}.$

Root functions, such as $f(x) = \sqrt{x}$ and $g(x) = \sqrt[3]{x}$, are examples of power functions. Graphically, power functions can resemble exponential or logarithmic functions for some values of x. However, as x gets very large, power functions and exponential or logarithmic functions begin to diverge from one another. An exponentially growing function will overtake a growing power function for large values of x. On the other hand, growing power functions will overtake logarithmic functions for large values of x.

Domain and Range

The $\underline{\text{domain}}$ of a power function depends on the value of the power p. We will look at each case separately.

1. p is a non-negative integer

The domain is all real numbers (i.e. $(-\infty,\infty)$).

2. *p* is a negative integer

The domain is all real numbers not including zero (i.e. $(-\infty, 0) \cup (0, \infty)$ or $\{x | x \neq 0\}$). We will revisit this case when we study rational functions.

3. p is a rational number expressed in lowest terms as r/s and s is **even**

A.
$$p > 0$$

The domain is non-negative real numbers (i.e. $[0,\infty)$ or $\{x|x\geq 0\}$).

B.
$$p < 0$$

The domain is positive real numbers (i.e. $(0,\infty)$ or $\{x|x > 0\}$).

4. p is a rational number expressed in lowest terms as r/s and s is **odd**

A.
$$p > 0$$

The domain is all real numbers.

B.
$$p < 0$$

The domain is all real numbers not including zero.

5. *p* is an irrational number

A.
$$p > 0$$

The domain is all non-negative real numbers.

B.
$$p < 0$$

The domain is all positive real numbers.

In the next section we will study the graphs of power functions.

Graphing power functions

<u>The Biology Project</u> > <u>Biomath</u> > <u>Power Functions</u> > **Basics**

The Biology Project

Department of Biochemistry and Molecular Biophysics

The University of Arizona

April 2006

Contact the Development Team

 $http://www.biology.arizona.edu\ All\ contents\ copyright\ \textcircled{\mathbb{C}}\ 2006.\ All\ rights\ reserved.$