МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ по дисциплине «Разработка программного обеспечения информационных систем»

Тема: Построение маршрутов - Neo4j

Студент гр. 5303	 Бычков А.Г.
Преподаватель	 Заславский М.М

Санкт-Петербург 2018

ЗАДАНИЕ

на индивидуальное домашнее задание

Студенты Бычков А.Г.	
Группа 5303	
Тема проекта: Построение маршрутов – Neo4j	
Исходные данные: Проект должен быть разработан с использованием ба	азы данных Neo4j
Содержание пояснительной записки: Содержание, Введение, Качественные требования использования, Модель данных, Разработанное пр	-
Предполагаемый объем пояснительной записки: Не менее 15 страниц.	
Дата выдачи индивидуального домашнего задания: 13. Дата сдачи индивидуального домашнего задания: 17. Дата защиты индивидуального домашнего задания: 1	01.2019
Студент гр.5303	Бычков А.Г.
Преподаватель	Заславский М.М.

АННОТАЦИЯ

В ходе выполнения данного индивидуального домашнего задания был реализован веб-сервис на основе СУБД Neo4j, с помощью которого выполняются следующие функции:

- построение маршрута из одной точки на карте в другую;
- просмотр координат выбранной точки на карте.

SUMMARY

In the course of this individual homework, a Neo4j-based web service was implemented, with the help of which the following functions are performed:

- building a route from one point on the map to another;
- view the coordinates of the selected point on the map.

СОДЕРЖАНИЕ

Введение	5
1. Качественные требования к решению	6
2. Сценарии использования	7
2.1. Сценарии использования для задачи импорта, представления, анализа и эксподанных	-
2.2. Вывод	7
3. Модель данных	8
3.1. Описание структуры	8
3.2. Нереляционная модель данных	9
3.3. Аналог модели данных для SQL СУБД	10
3.4. Запросы	12
3.5. Выводы	13
4. Разработанное приложение	14
4.1. Краткое описание	14
4.2. Использованные технологии	14
4.3. Ссылки на Приложение	14
Список использованных источников	16
Приложение А. Документация по сборке и развертыванию приложения	17
Приложение В. Инструкция для пользователя	18
Приложение С. Снимки экрана приложения	19

ВВЕДЕНИЕ

Начало теории графов как математической дисциплины было положено Эйлером в его знаменитом рассуждение о Кенигсбергских мостах. Однако эта статья Эйлера 1736 года была единственной в течение почти ста лет. Интерес к проблемам теории графов возродился около середины прошлого столетия и был сосредоточен главным образом в Англии. Имелось много причин для такого оживления изучения графов. Естественные науки оказали свое влияние на это благодаря исследованиям электрических цепей, моделей кристаллов и структур молекул. Развитие формальной логики привело к изучению бинарных отношений в форме графов.

Целью проекта является разработка приложения, с помощью которого можно построить маршрут из одной точки на карте в другую.

В проекте разработано веб-приложение на основе СУБД Neo4j.

1. КАЧЕСТВЕННЫЕ ТРЕБОВАНИЯ К РЕШЕНИЮ

Необходимо разработать веб-приложение, позволяющее построить маршрут из одной точки на карте в другую.

Основные функции:

- Координаты выбранной точки;
- Построение маршрутов.

2. СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

2.1. Сценарии использования для задачи импорта, представления, анализа и экспорта данных

- 1. «Построение маршрутов»
 - 1) Пользователь располагает маркер на карте и вводит радиус поиска точек дорог;
 - 2) Система отмечает на карте найденные точки дорог (автомобильные, пешие, водные) место, а также показывает координаты маркера.
 - 3) Пользователь кликом мыши выбирает стартовую точку и в поле над картой системой заполняется id начальной точки;
 - 4) Пользователь перемещает маркер в зону назначения на карте и вводит радиус поиска точек дорог;
 - 5) Система отмечает на карте найденные точки дорог (автомобильные, пешие, водные) место, а также показывает координаты маркера.
 - 6) Пользователь кликом мыши выбирает конечную точку и в поле над картой системой заполняется id конечной точки;
 - 7) Система автоматически вычисляет маршрут, в зависимости от выбранного типа маршрута (простейший/кратчайший по алгоритму Дейкстры), строит маршрут и выводит его на карту, отображая информацию о длине пути.

2. «Информация по координате»

- 1) Пользователь располагает маркер на карте;
- 2) Система отмечает на карте найденные точки дорог (автомобильные, пешие, водные) место, а также показывает координаты маркера.

2.2. Вывод

При использовании конечным пользователем преобладают операции чтения, так как основной функцией является поиск точек на карте и отображение маршрутов.

3. МОДЕЛЬ ДАННЫХ

Модель данных для нереляционной базы данных.

Рисунок 1 – Модель данных нереляционной БД

3.1. Описание структуры

Узел Node (зелёный цвет)

Описывает точку дороги. Содержит поля:

- id встроенный идентификатор узла (int64);
- node_osm_id идентификатор точки OpenStreetMap (int64);
- lon координата (долгота) точки (float);
- lat координата (широта) точки (float).

Узел Way (синий цвет)

Описывает дорогу(транспортную/пешую/водную). Содержит поля:

- id идентификатор маршрута (int64);
- way_osm_id идентификатор дороги OpenStreetMap (int64);
- oneway описание направления дороги (string);
- highway/waterway описание типа дороги (string).

Связь FIRST_PATH

Связывает узел Way с первой точкой Node в неё. Содержит поля:

- id идентификатор (int64);
- from id идентификатор точки источника (int64);
- to id идентификатор точки стока (int64).

Связь РАТН

Связывает узлы Node между собой. Содержит поля:

- id идентификатор (int64);
- from id идентификатор точки источника (int64);
- to id идентификатор точки стока (int64);
- length расстояние между точками в метрах (float).

3.2. Нереляционная модель данных

Расчет памяти для Neo4j:

Средний размер Node: 24 байта;

Средний размер Way: 40 байт;

Средний размер First Path: 24 байт;

Средний размер Path: 28 байт.

Размер данных:

узлы: 0.98 * |V| * size(NODE) + 0.02 * |V| * size(WAY)

связи между узлами: 1.07 * 0.98 * |V| * size(PATH) + 0.02 * |V| * size(FIRST PATH)

Коэффициенты 0.98 и 0.02 выбраны из расчёта, что в среднем 1 дорога содержит 49 узлов, а 1.07 из расчёта что из 1 из 20 узлов соединён более чем с двумя другими узлами.

Итоговый размер данных: $0.98 * |V| * (size(NODE) + 1.07 * size(PATH)) + 0.02 * |V| * (size(FIRST_PATH) + size(WAY)) = <math>54.16 * |V|$ где |V| - количество узлов в графе.

3.3. Аналог модели данных для SQL СУБД

На рисунке 1 представлена модель данных для реляционной базы данных.

Рисунок 2 – Модель данных реляционной БД

Описание назначений коллекций, типов данных и сущностей

6 коллекций:

1-ая Way - хранит данные о путях.

- id () идентификатор пути;
- tags id id тега пути

2-ая Node - хранит точки

- id идентификатор точки;
- х координата х
- у координата у
- tags id id тега пути
 - 3-я Relation хранит отношения

- id идентификатор точки;
- tags id id тега пути

<u>4-ая Member - хранит данные об участниках</u>

- id идентификатор участника;
- relation id идентификатор отношения
- type хранит тип
- ref хранит ссылку на id участника отношения
- role роль участника отношения

5-ая NodesWay

- id идентификатор
- way id идентификатор пути;
- node точки;

6-ая Tags

- id идентификатор
- tags id идентификатор тега
- key ключ тега
- val значение тега

Оценка удельного объема информации, хранимой в модели

Среднее количество тегов = 100;

Среднее количество nodes = 100

Среднее количество relation = 1000000

Среднее количество member = 10000000

Size (nodes) = 152

Size (way) = 88

Size (NodesWay) = 36

Size (Way) = 24
Size (Relarion) = 24
Size (Member) = 100
Size =
$$(10088 + 12 + 100(88 + 88100) + 100100) * n$$

3.4. Запросы

Примеры запросов представлены в таблице 1.

Таблица 1 – Примеры запросов

Формулировка	Neo4j	SQL
запроса		
Поиск дорог	MATCH (a:WAY	SELECT * FROM Way
	{osm_way_id: \$id})	w WHERE w.type ==
	RETURN a	"restriction";
Информация по	MATCH (a:NODE	SELECT * FROM tip t
координатам	{osm_node_id: \$id})	WHERE t.wayId == \$id;
	RETURN a.lat as latitude, a.lon	
	as longitude	
Ближайшую к	MATCH ()-[:PATH]->(a)	SELECT * FROM Node
координате	WHERE	n WHERE $n.x > 55.7$
	distance(point({latitude: a.lat,	AND $n.x < 55.8$ AND
	longitude: a.lon}),	n.y > 55.7 AND n.y <
	point({latitude: \$lat, longitude:	55.8;
	\$lon})) < (\$radius * 1000)	
	RETURN a as node,	
	distance(point({latitude: a.lat,	
	longitude: a.lon}),	
	point({latitude: \$lat, longitude:	
	\$lon})) AS dist	

ORDER	BY	dist	
LIMIT 1			

3.5. Выводы

Для рассматриваемой задачи наиболее подходящей базой данных будет нереляционная БД, т.к. сложность запросов будет меньше. Но у нереляционной базы данных тоже есть свои недостатки – объем затрачиваемой памяти больше.

4. РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ

4.1. Краткое описание

Разработанное приложение осуществляет построение маршрутов. Приложение состоит из главной станицы, на которой отображаются следующие формы:

- 1. Форма с координатами маркера, id стартовой и конечной точек, длины маршрута;
- 2. Карта, на которой отображаются маршруты и найденные точки.

4.2. Использованные технологии

При написании приложения использовались следующие технологии:

- JavaScript основной язык программирования, использованный для вывода маршрутов и обращения к СУБД;
- Neo4j графовая база данных, взятая за основу и для изучения в данной работе;
- npm менеджер пакетов, входящий в состав Node.js;
- MapBox GL JS библиотека с открытым исходным кодом, написанная на JavaScript, предназначенная для отображения карт на веб-сайтах;
- HTML стандартизированный язык разметки документов;
- CSS формальный язык описания внешнего вида документа, написанного с использованием языка разметки.

4.3. Ссылки на Приложение

Исходный код приложения и инструкция по установке находятся по ссылке:

https://github.com/moevm/nosql2018-neo4j_routing

ЗАКЛЮЧЕНИЕ

В ходе выполнения данного индивидуального домашнего задания было разработано приложение с использованием графовой базы данных Neo4j, с помощью которого выполняются следующие функции:

- построение маршрута из одной точки на карте в другую;
- просмотр координат выбранной точки.

Приложение работает корректно. При создании приложения были изучены особенности работы нереляционных баз данных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Dyl T., Przeorski K. Mastering Full Stack React Web Development. 2017.
- 2. Gackenheimer C. Introduction to React. Apress, 2015.
- 3. Добро пожаловать на OpenStreetMap! URL: https://www.openstreetmap.org/#map=16/54.3561/18.6303 (дата обращения: 19.12.2018).

ПРИЛОЖЕНИЕ А. ДОКУМЕНТАЦИЯ ПО СБОРКЕ И РАЗВЕРТЫВАНИЮ ПРИЛОЖЕНИЯ

Инструкция по сборке и запуску:

- 1. Скачать проект из репозитория.
- 2. Запустить сервер Neo4j.
- 3. Импортировать данные OSM.
- 4. В папке с проектом в консоли выполнить команду "npm install".
- 5. В папке с проектом в консоли выполнить команду "npm start".
- 6. Перейти в браузере по адресу: http://localhost:3000.

ПРИЛОЖЕНИЕ В. ИНСТРУКЦИЯ ДЛЯ ПОЛЬЗОВАТЕЛЯ

При входе на сайт отображается географическая карта.

В левом верхнем углу располагается поиск по карте. Пользователь может выбрать тип построения маршрута: простой/кратчайший по алгоритму Дейкстры.

Просмотреть координаты места можно расположив маркер на нём. В строке над картой будут показаны координаты данного места.

Построить маршрут пользователь может, выбрав пункт отправления и пункт назначения.

ПРИЛОЖЕНИЕ С. СНИМКИ ЭКРАНА ПРИЛОЖЕНИЯ

На рисунках 3-4 изображены снимки экрана приложения.

Рисунок 3 – Вид главной страница при запуске

Рисунок 4 – Построение маршрута