Mathematics Methods for Computer Science

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

 ${\sf Solvability}$

Solving Linear Systems

Gaussian Elimination

Analyzina

LU Factorization

LU with Pivoting

Lecture

Linear Systems and LU

Linear System

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

Solvability

Solving Linear Systems

Gaussian Flimination

Analyzing

LU Factorization

LU with Pivoting

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ 1 \end{array}\right)$$

"Completely Determined"

Case 2: No Solution

Solvability

Solving Linear Systems

Gaussian Flimination

Analyzing

LU Factorization

LU with Pivoting

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ 1 \end{array}\right)$$

" OverDetermined" 过定,即无解

Case 3: Infinitely Many Solutions

Solvability

Salving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ -1 \end{array}\right)$$

" UnderDetermined"

Solvability

inear Systems

Gaussian Elimination

Analyzin

LU Factorization

LU with Pivoting

Proposition

If $A\vec{x} = \vec{b}$ has two distinct solutions \vec{x}_0 and \vec{x}_1 , it has infinitely many solutions.

这个是一定正确的,因为对于 x_0 与 x_1 , 取任意0 < c < 1, 则有无穷多的新的 $x = c * x_0 + (1 - c) * x_1$, 满足线性方程。

Common Misconception

Solvability

Salving Linear Systems

Gaussian Flimination

Analyzing

LU Factorization

LU with Pivoting

Solvability can depend on $\vec{b}!$

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ 0 \end{array}\right)$$

Solvability

Dependence on Shape of Matrix A

tall指的是m>n

Proposition

Tall matrices admit unsolvable right hand sides.

wi de指的是m<n

Proposition

Wide matrices admit right hand sides with infinite numbers of solutions.

or

No wide matrix system admits a unique solution.

wi de一般有无穷多解,而tall则存在有唯一解、无解等多种可能。

Solvability

Linear Systems

Gaussian Elimination

Analyzin

LU Factorization

All matrices will be:

- Square: $A \in \mathbb{R}^{n \times n}$,
- Invertible: nonsingular, i.e. $A\vec{x}=\vec{b}$ is solvable for any \vec{b}

invertible:可逆的

Inverting Matrices

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzin

LU Factorization

III with Pivotin

Do not compute A^{-1} if you do not need it.

- Not the same as solving $A \vec{x} = \vec{b}$
- Can be slow and poorly conditioned

Solvability

Solving Linear Systems

Gaussian Flimination

Analyzing

LU Factorization

$$y - z = -1 3x - y + z = 4 \iff \begin{pmatrix} 0 & 1 & -1 & | & -1 & | & \\ 3 & -1 & 1 & | & 4 & | & \\ x + y - 2z = -3 & & & 1 & | & -2 & | & -3 & \end{pmatrix}$$

- Permute rows ^{换行}
- Row scaling 对某一行成一个系数
- Forward/back substitution 进行两行之间的线性组合

Gaussian Eliminatior

Analyzin

LU Factorization

LU with Pivoting

这个映射意思是说,将m维矩阵的每一行的索引对应到一个新的索引,从而实现换行操作,如:{1,2,3}->{3,1,2}

$$\sigma: \{1, \dots, m\} \to \{1, \dots, m\}$$

$$P_{\sigma} \equiv \begin{pmatrix} - & \vec{e}_{\sigma(1)}^{\top} & - \\ - & \vec{e}_{\sigma(2)}^{\top} & - \\ & \cdots & \\ - & \vec{e}_{\sigma(m)}^{\top} & - \end{pmatrix}$$

Row Operations: Row Scaling

Solvability

Solving Linear Systems

Gaussian Flimination

Analyzing

LU Factorization

$$S_a \equiv \begin{pmatrix} a_1 & 0 & 0 & \cdots \\ 0 & a_2 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_m \end{pmatrix}$$

Row Operations: Elimination

(很常用)

Solvabilit

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorizatio

LU with Pivotin

"Scale row k by constant c and add result to row l"

$$E \equiv \left(I + c\vec{e_l}\vec{e_k}^T\right)$$

e_I与e_k均为列向量,作用就是取出原来矩阵中的某一行。

Solving via Elimination Matrices

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$\begin{pmatrix}
0 & 1 & -1 & -1 \\
3 & -1 & 1 & 4 \\
1 & 1 & -2 & -3
\end{pmatrix}$$

Reverse order!

Introducing Gaussian Elimination

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

III Factorization

LU with Pivoting

Big idea:

General strategy to solve linear systems via row operations.

Elimination Matrix Interpretation

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$A\vec{x} = \vec{b}$$

$$E_1 A \vec{x} = E_1 \vec{b}$$

$$E_2 E_1 A \vec{x} = E_2 E_1 \vec{b}$$

$$\vdots$$

$$\underbrace{E_k \cdots E_2 E_1 A}_{I_{n \times n}} \vec{x} = \underbrace{E_k \cdots E_2 E_1}_{A^{-1}} \vec{b}$$

Shape of Systems

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$(A|\vec{b}) \equiv \left(egin{array}{cccc} imes imes$$

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$\begin{pmatrix}
\mathbf{x} & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{pmatrix}$$

Row Scaling

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$\begin{pmatrix}
\boxed{1} & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{pmatrix}$$

Row Scaling

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$\begin{pmatrix}
\textcircled{1} & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{pmatrix}$$

Forward Substitution

上面的行乘以系数,然后改变下面的行的数值

Solvability

Solving Linear System

Gaussian Elimination

Analyzing

LU Factorization

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & \textcircled{1} & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{pmatrix}$$

Upper Triangular Form

对矩阵A从上到下顺序执行forward substitution之后即可以得到上三角矩阵

Solvability

Solving Linear Systen

Gaussian Elimination

Analyzing

LU Factorization

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & 1 & \times & \times \\
0 & 0 & 0 & 1 & \times
\end{pmatrix}$$

Back Substitution

与forward方向相反,从下至上

Solvability

Solving Linear System

Gaussian Elimination

Analyzing

LU Factorization

$$\begin{pmatrix}
1 & \times & \times & 0 & | \times \\
0 & 1 & \times & 0 & | \times \\
0 & 0 & 1 & 0 & | \times \\
0 & 0 & 0 & ① & | \times
\end{pmatrix}$$

Back Substitution

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$\left(\begin{array}{ccc|c}
1 & \times & 0 & 0 & \times \\
0 & 1 & 0 & 0 & \times \\
0 & 0 & ① & 0 & \times \\
0 & 0 & 0 & 1 & \times
\end{array}\right)$$

Steps of Gaussian Elimination

Solvability

Solving Linear System

Gaussian Eliminatio

Analyzing

LU Factorization

- Forward substitution: For each row i = 1, 2, ..., m
 - Scale row to get pivot 1
 - For each j > i, subtract multiple of row i from row j to zero out pivot column
- Backward substitution: For each row i=m,m-1,...,1
 - For each j < i, zero out rest of column

Total Running Time

Solvability

inear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$O(n^3)$$

n^2 * n, 第一个n^2表示元素个数 , 第二个n表示 进行消去时每一个元素都被处理了n次(因为每次进行 行之间的线性组合都会直接影响到此行的所有元素。) Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

直接交换两行

Analyzing

$$A = \left(\begin{array}{cc} \varepsilon & 1\\ 1 & 0 \end{array}\right)$$

Pivoting

Call and the

Solving Linear System

Gaussian Elimina

Analyzing

LU Factorization

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- Full pivoting

$$\begin{pmatrix}
1 & 10 & -10 \\
0 & 0.1 & 9 \\
0 & 4 & 6.2
\end{pmatrix}$$

Elimination Matrix Interpretation

Solvability

Solving Linear System

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$egin{aligned} Aec{x}_1 &= ec{b}_1 \ Aec{x}_2 &= ec{b}_2 \ dots \end{aligned}$$

Can we restructure A to make this more efficient?

Does each solve take $O(n^3)$ time?

Solvability

inear System

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

Steps of Gaussian elimination depend only on structure of A

Avoid repeating identical arithmetic on A?

Another Clue: Upper Triangular Systems

Solvability

Solving Linear Systems

Gaussian Flimination

Analyzing

LU Factorization

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & 1 & \times & \times \\
0 & 0 & 0 & 1 & \times
\end{pmatrix}$$

After Back Substitution

这里说的是,对于一个上三角矩阵,可以再三角矩阵的基础上使用back方式进行进一步的优化,从而减少没必要进行的操作的次数(如x-0)

 $\begin{pmatrix}
1 & \times & \times & 0 & | \times \\
0 & 1 & \times & 0 & | \times \\
0 & 0 & 1 & 0 & | \times \\
\hline
0 & 0 & 0 & 1 & | \times
\end{pmatrix}$

No need to subtract the 0's explicitly! O(n) time

Solving Linear System

Gaussian Elimination

Analyzin

LU Factorization

Next Pivot: Same Observation

Solvability

Solving Linear System

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$\begin{pmatrix}
1 & \times & 0 & 0 & | \times \\
0 & 1 & 0 & 0 & | \times \\
\hline
0 & 0 & 1 & 0 & | \times \\
0 & 0 & 0 & 1 & | \times
\end{pmatrix}$$

Observation

Triangular systems can be solved in $O(n^2)$ time.

No need to subtract the 0's explicitly!

O(n) time

Upper Triangular Part of A

Solvability

Solving Linear System

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$A\vec{x} = \vec{b}$$

$$M_k \cdots M_1 A \vec{x} = M_k \cdots M_1 \vec{b}$$

Define:

$$U \equiv M_k \cdots M_1 A$$

这里的M_i 指的就是前面提到的转换矩阵,并且对于进行行之间线性组合的矩阵M,其本身就是下三角矩阵

Lower Triangular Part

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$U = M_k \cdots M_1 A$$

$$\Rightarrow A = (M_1^{-1} \cdots M_k^{-1}) U$$

$$\equiv LU$$

Why Is L Triangular?

Solvability

ving Linear System

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

E本身就是下三角矩阵,S也一定是对角阵,所以这些矩阵的乘积仍然为下三角矩阵,即为L。

$$S \equiv diag(a_1, a_2, \cdots)$$

$$E \equiv I + c\vec{e_l}\vec{e_l}^T$$

Proposition

The product of triangular matrices is triangular.

(可以考虑使用三角矩阵的定义进行证明,具体过程看教材)

Solving Systems Using LU

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$A\vec{x} = \vec{b}$$
$$\Rightarrow LU\vec{x} = \vec{b}$$

- Solve $L\vec{y} = \vec{b}$ using forward substitution.
- Solve $U\vec{x} = \vec{y}$ using backward substitution.

 $O(n^2)$ (given LU factorization)

Solving Systems Using LU

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

For example:

$$\begin{split} A\vec{x} &= \vec{b} & \text{set} \quad \vec{y} = U\vec{x} \\ \Rightarrow LU\vec{x} &= \vec{b} \\ \Rightarrow L\vec{y} &= \vec{b} & \Rightarrow \vec{y} = L^{-1}\vec{b} \\ \Rightarrow U\vec{x} &= \vec{y} & \Rightarrow \vec{x} = U^{-1}\vec{y} \end{split}$$

It's easier to get the inverse matrix of L/U than A.

Applications of LU

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

- Machine learning.
- Linear regression.
- Image processing.
- Computer graphics.
- **5**

Any linear equations solving process.

LU: Compact Storage

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$\left(egin{array}{cccc} U & U & U & U \ L & U & U & U \ L & L & U & U \ L & L & L & L \end{array}
ight)$$

Assumption: Diagonal elements of L are 1.

Warning: Do not multiply this matrix!

Computing LU Factorization

Solvability

ing Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivotin

Small modification of forward substitution step to keep track of L.1

¹See textbook for pseudocode.

Solvability

Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

Does every A admit a factorization

$$A = LU$$
?

不一定。因为对于A中的某些元素,在进行矩阵变换之后可能会出现精度问题。

Recall: Pivoting

Call and the

Solving Linear System

Gaussian Eliminatio

Analyzing

LU Factorization

LU with Pivoting

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- Full pivoting

$$\begin{pmatrix}
1 & 10 & -10 \\
0 & 0.1 & 9 \\
0 & 4 & 6.2
\end{pmatrix}$$

Pivoting by Swapping Columns

recall:对于矩阵A,对行的变化M表示为MA,对列的变化表示为AN。

Solvability

Solving Linear System

Gaussian Elimination

Analyzin

LU Factorization

$$\underbrace{(E_k \cdots E_1)}_{\text{elimination}} \cdot A \cdot \underbrace{(P_1 \cdots P_\ell)}_{\text{permutations}} \cdot \underbrace{(P_\ell^\top \cdots P_1^\top)}_{\text{inv. permutations}} \vec{x}$$

$$= (E_k \cdots E_1) \vec{b}$$

$$\downarrow \\ A = LUP$$