MA1101R Summary Notes

	Week 1
scope	 1.1 Linear Systems and their solutions 1.2 Elementary Row Operations 1.3 Row-Echelon Forms 1.4 Gaussian Elimination
objective	 What is a linear equation and a linear system? What is a general solution of a linear equation/system? What is the geometrical interpretation of a linear equation/syste and its solutions? How to find a general solution of a linear equation? What are the three elementary row operations (ERO)? How to perform ERO? What is meant by row equivalence? How to identify a row-echelon form (REF) and a reduced row-echelon form (RREF)? How to use REF / RREF to get solutions of linear system? What are Gaussian elimination (GE) and Gauss-Jordan elimination (GJE)? How to use GE / GJE to reduce an augmented matrix to a REF / RREF?
summary	 A linear equation with two or more variables has infinitely many solutions. A linear system has either no solution, exactly one solution, or infinitely many solutions. Elementary row operations do not change the solution set of a linear system. Two linear systems have the same solution set if their augmented matrices are row equivalent. The solutions of a LS can be obtained from its REF An augmented matrix has many REF but only one RREF Given any matrix, we can always apply GE (resp. GJE) to reduce the matrix into REF (resp. RREF)
Ex	• Exercise 1: 1 - 21

	Week 2
ā	1.4 Gaussian Elimination 1.5 Harragan Surfaces
scope	1.5 Homogeneous Linear System2.1 Introduction to Matrices
	2.1 Introduction to Matrices2.2 Matrix Operations
	How to tell the number of solutions of linear system from REF?
	How to use GE / GJE to solve indirect linear system problems?
	What is a homogeneous system?
	What is a trivial / non-trivial solution of a homogeneous system?
e e	What are the size, entries, order of a matrix?
objective	• What are diagonal, identity, symmetric, triangular matrices?
bje	How to perform matrix addition, matrix multiplication, scalar
0	multiplication and transpose?
	How to express certain matrices and operations using (i, j)-entries? What are approximately a first triangle and approximately a first triangle.
	What are some properties of matrix operations?What are some different ways to express matrix multiplication?
	What are some different ways to express matrix multiplication?How to express linear system in matrix equation form?
	A LS has no solution if and only if the last column of its REF is a pivot column
	 In a REF, # non-zero rows = # leading entries = # pivot columns
	In a consistent linear system,
	 if # variables = # non-zero rows, then the system has exactly one soln
	 if # variables > # non-zero rows, then the system has infinite solns
	 A homogeneous system is always consistent, as it always has the trivial solution.
>	• If a homogeneous system has a non-trivial solution, then it has infinitely many
nai	solutions.
summary	 A homogeneous system with more variables than equations has infinitely many solutions.
ns	 We do not refer to solutions for a non-homogeneous system as trivial or non-
	trivial.
	• (i, j) -entry of $AB = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$
	 Matrix multiplication: AB ≠ BA (in general)
	 Matrix multiplication: AB = 0 does not imply A = 0 or B = 0
	Linear system can be expressed in <i>matrix equation form</i> and <i>column form</i>
	• Matrix transpose: $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$
	• A is a symmetric matrix if and only if $\mathbf{A} = \mathbf{A}^T$
Ä	 Exercise 1: 22 - 30 Exercise 2: 1 - 24
	Exercise 2: 1 - 24

	Week 3
scope	 2.3 Inverses of Square Matrices 2.4 Elementary Matrices 2.5 Determinants
objective	 What is an invertible matrix? What is the inverse of a matrix? What are the powers of a matrix? What are elementary matrices? How are elementary matrices related to elementary row operations? How to find inverse of an elementary matrix? What are some different ways to show a matrix is invertible? How to find the inverse of an invertible matrix? What is the determinant of a matrix? What is cofactor expansion of a matrix?
summary	 If A is invertible, then AB₁ = AB₂ ⇒ B₁ = B₂ If A is invertible, then (AT)⁻¹ = (A⁻¹)⁻ If A, B are invertible, then (AB)⁻¹ = B⁻¹A⁻¹ There are three types of elementary matrices All elementary matrices are invertible A and B are row equivalent if A = E₁E₂E₁B where all Eᵢ are elementary matrices. A is invertible ↔ RREF of A is the identity matrix I A is invertible ↔ Ax = O has only trivial solution Cofactor expansion of a matrix along any row (column) gives the determinant Determinant of a triangular (diagonal) matrix is the product of its diagonal entries
Ex	• Exercise 2: 25 -47

	Week 4
be	2.5 Determinants3.1 Euclidean n-spaces
scope	3.1 Edelidedii ii Spaces
	How do matrix operations affect determinants?
	What is the relation between invertibility and determinant?
\ Ve	What is the adjoint of a matrix?
i C i	What is Cramer's rule?
objective	What is an n-vector ?
0	What are some operations on n-vectors?
	• What is a Euclidean n-space R ⁿ ?
	How to express subsets of R ⁿ ?
	• $\det(\mathbf{A}) = \det(\mathbf{A}^T)$
	• If A has two identical rows (columns), then det(A) = 0
	Interchanging two rows/columns will change determinant by a negative sign
	Adding a multiple of a row (column) to another will not change determinant.
	• A is invertible \leftrightarrow det(A) \neq 0
_	• If \mathbf{A} is $n \times n$ and \mathbf{c} is a scalar, then $\det(\mathbf{c}\mathbf{A}) = \mathbf{c}^n \det(\mathbf{A})$
ma	
summary	 det(A⁻¹) = 1/det(A) A⁻¹ = [1/det(A)] adj(A)
ns	 Cramer's rule is a method to solve Ax = b when A is invertible
	• 2-vectors and 3-vectors can be expressed geometrically and algebraically
	 n-vectors (n > 3) can only be expressed algebraically
	 Subsets of Rⁿ can be expressed in implicit and explicit forms
	 Lines/planes are subsets of R² and R³
	 Solution set of n variable LS is a subset of Rⁿ
Ä	• Exercise 2: 48 - 61
	• Exercise 3: 1 - 7

	Week 5
scope	 3.2 Linear Combinations and Linear Spans 3.3 Subspaces
objective	 What is a linear combination? How to express a vector as a linear combination? What is a linear span? What is a subspace? What are some examples of subspaces of Rⁿ? What is a solution space of a linear system? How to show a linear span is contained in another?
summary	 Linear span (of v₁, v₂,, vₙ) = the set of all linear combinations (of v₁, v₂,, vₙ) A subset of Rⁿ is a subspace if it is a linear span of some fixed n-vectors A subspace of Rⁿ always contains the zero vector Any linear combination of vectors in a subspace V is again a vector in V. {0} and Rⁿ are subspaces of Rⁿ In R² and R³, span{u} is a line if u≠0; span{u, v} is a plane if u not parallel to v. The solution set of a homogeneous system with n variables is a subspace of Rⁿ. To show span(S₁) ⊆ span(S₂), just need to show every vector in S₁ is a linear combination of vectors in S₂. If u ∈ span(S), then span(S) = span(S ∩ u)
Ж	• Exercise 3: 8 - 24

	Week 6
scope	3.4 Linear Independence3.5 Bases
objective	 What is a linearly independent/dependent set? How to show that a set is linearly (in)dependent? What are some conditions on linearly (in)dependent sets? What is a basis for a vector space? How to show that a set is a basis? How to find a basis for a vector space? What are coordinate vectors?
summary	 u and v are scalar multiples of each other ↔ {u, v} is linearly dependent. If S contains 0, then S is linearly dependent. S is linearly dependent ↔ at least one vector in S is a linear combination of the other vectors in S {u, v} ⊆ R² are linearly independent ↔ span{u, v} = R² {u, v, w} ⊆ R³ are linearly independent ↔ span{u, v, w} = R³ If S ⊆ R¹ and S has more than n elements, then S is linearly dependent. R¹ has the standard basis (for all n) Every non-zero vector space has infinitely many different bases All bases for the same vector space V has the same number of vectors (called the dimension of V). Every vector in a vector space can be expressed as linear combination of a basis in a unique way S is a basis for span(S) ↔ S is linearly indep
Ж	• Exercise 3: 25 - 35

	Week 7
scope	3.6 Dimensions3.7 Transition Matrices
objective	 What is the dimension of a vector space? How to compute dimension for a vector space? What are some conditions for a set to be a basis for a vector space? What is a transition matrix? How to compute transition matrices? What is the relation between same coordinate vectors w.r.t. different bases?
summary	 If S has more than dim(V) of vectors, then S is linearly dependent If S has less than dim(V) of vectors, then S cannot span V dim(solution space) = # parameters in gen. soln. W ⊆ V ⇒ dim(W) ≤ dim(V) W ⊆ V and dim(W) = dim(V) ⇒ W = V S is linearly independent and S = dim V ⇒ S is a basis for V S spans V and S = dim V ⇒ S is a basis for V A is an invertible n×n matrix ↔ rows (columns) of A form a basis for Rⁿ Suppose P is the transition matrix from S to T. Then W _T = P [w]_S for any vector w in V P is invertible P⁻¹ is the transition matrix from T to S
Ä	• Exercise 3: 36 - 49

	Week 8
scope	 4.1 Row spaces and Column spaces 4.2 Ranks 4.3 Nullspaces and Nullities
objective	 What are row space and column space of a matrix? How to find bases for row /column spaces? How to use row /column spaces to find bases for vector spaces? How to extend a basis? What is the relation between column space and consistency of linear system? What is the rank of a matrix? What is the relation between rank and invertibility of a matrix? What is the relation between rank and consistency of linear system? What is the nullspace and nullity of a matrix? What is the Dimension Theorem? What is the relation between nullspace and solution set of a linear system?
summary	 The row space (resp. column space) of an m x n matrix is a subspace of Rⁿ (resp. R^m) Row operations preserve row space but do not preserve column space If R is an REF of A, then the non-zero rows of R form a basis for row space of A Those columns of A that correspond to the pivot columns in an REF form a basis for the column space of A A basis for span(S) can be found using row space or column space methods We can extend a basis using row space method Row space and column space of a matrix have the same dimension (rank) Largest possible rank of an m×n matrix is min{m,n} An n×n matrix A is invertible ↔ rank(A) = n ↔ nullity(A) = 0 Dimension Theorem: rank(A) + nullity(A) = # of columns of A For the linear system Ax = b if b belongs to column space of A, system is consistent solution set of the system= (Nullspace of A) + (fix solution of Ax = b)
Ä	• Exercise 4: 1 - 26

	Week 9
scope	 5.1 Inner Products in Rⁿ 5.2 Orthogonal and Orthonormal Bases
	SIZ Granogonar and Granomar Dases
a)	 What are the algebraic representation of length, distance and angles in Rⁿ? What is the dot product of vectors?
objective	 What is an orthogonal/orthonormal set? How to normalize a vector?
bje	What are the properties of orthogonal sets?
0	What is the projection of a vector onto a subspace?
	What is Gram-Schmidt Process ?
	• $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}^{T}$ (RHS is matrix multiplication, \mathbf{u} , \mathbf{v} as rows)
	• $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^{T} \boldsymbol{v}$ (RHS is matrix multiplication, \boldsymbol{u} , \boldsymbol{v} as columns)
	• $\boldsymbol{u} \cdot \boldsymbol{u} = 0 \leftrightarrow \boldsymbol{u} = 0 \leftrightarrow \boldsymbol{u} = \boldsymbol{0}$ • If \boldsymbol{u} is non-zero, then $\frac{1}{ \boldsymbol{u} } \boldsymbol{u}$ is a unit vector
	• If S is an orthogonal set of nonzero vectors, then S is linearly independent
	• If $S = \{u_1, u_2,, u_k\}$ is an orthogonal basis for V and $w \in V$, then
summary	$\mathbf{w} = \frac{\mathbf{w} \cdot \mathbf{u}_1}{\ \mathbf{u}_1\ ^2} \mathbf{u}_1 + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\ \mathbf{u}_2\ ^2} \mathbf{u}_2 + \dots + \frac{\mathbf{w} \cdot \mathbf{u}_k}{\ \mathbf{u}_k\ ^2} \mathbf{u}_k$
	$\ \mathbf{u}_1\ ^2$ $\ \mathbf{u}_2\ ^2$ $\ \mathbf{u}_k\ ^2$ $\ \mathbf{u}_k\ ^2$
	 If p is the projection of w onto a subspace V, then
l n	• w - p is orthogonal to V
0)	 d(w, p) ≤ d(w, v) for any vector v in V
	• If $S = \{ \boldsymbol{u_1}, \boldsymbol{u_2},, \boldsymbol{u_k} \}$ is an orthogonal basis for V , then the projection of \boldsymbol{w}
	onto <i>V</i> is
	$\mathbf{p} = \frac{\mathbf{w} \cdot \mathbf{u}_1}{\ \mathbf{u}_1\ ^2} \mathbf{u}_1 + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\ \mathbf{u}_2\ ^2} \mathbf{u}_2 + \dots + \frac{\mathbf{w} \cdot \mathbf{u}_k}{\ \mathbf{u}_k\ ^2} \mathbf{u}_k$
	$\ \mathbf{u}_1\ ^{2^{-k_1}} \cdot \ \mathbf{u}_2\ ^{2^{-k_2}} \cdot \ \mathbf{u}_k\ ^{2^{-k_k}}$
	Gram-Schmidt Process converts any basis for a vector space to an orthogonal (orthonormal) basis
Ä	• Exercise 5: 1 - 20

	Week 10
scope	• 5.3 Best Approximation
	5.4 Orthogonal Matrices
S	6.1 Eigenvalues and Eigenvectors
	What is a Least Squares solution?
	 How to find the best approximate solution to inconsistent system?
ω	What is an orthogonal matrix?
Ę	How is orthogonal matrix related to orthonormal basis?
objective	How is transition matrix related to orthogonal matrix?
jdc	What are eigenvalue, eigenvectors and eigenspace?
	How to find eigenvalues and eigenvectors of a matrix?
	How to find basis for eigenspace of a matrix?
	How is eigenvalue related to invertibility of matrix?
	• The least squares solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by
	• the solutions of $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$
	• the solutions of $\mathbf{A}\mathbf{x} = \mathbf{p}$
	The inverse of an orthogonal matrix is its transpose
>	• Rows/columns of n x n orthogonal matrix form orthonormal basis for R ⁿ
summary	Transition matrix between two orthonormal bases is an orthogonal matrix
ш	• λ is an eigenvalue of $\mathbf{A} \Leftrightarrow \det(\lambda \mathbf{I} - \mathbf{A}) = 0$
Ju.	• 0 is an eigenvalue of $\mathbf{A} \Leftrightarrow \det(\mathbf{A}) = 0$
0,	 A is invertible ⇔ 0 is not an eigenvalue of A.
	The eigenvalues of a triangular matrix are the diagonal entries.
	• The eigenvectors of A are the solutions of $(\lambda \mathbf{I} - \mathbf{A}) \mathbf{x} = 0$
	• If \boldsymbol{u} and \boldsymbol{v} are eigenvectors of \boldsymbol{A} associated with the same eigenvalue λ , then
	u + v is an eigenvector of A .
Ä	• Exercise 5: 21 - 34
	• Exercise 6: 1 - 8

	Week 11
scope	 6.2 Diagonalization 6.3 Orthogonal Diagonalization
objective	 What is a diagonalizable matrix? How to determine if a matrix is diagonalizable? How to diagonalize a matrix? How to compute powers of matrix using diagonalization? How to solve linear recurrence relation using diagonalization? What is orthogonal diagonalization? What is the characterization of a matrix that is orthogonally diagonalizable? How to orthogonally diagonalize a symmetric matrix?
summary	 An n × n matrix A is diagonalizable ↔ A has n linearly independent eigenvectors A set of eigenvectors associated with different eigenvalues are linearly independent If geometric multiplicity < algebraic multiplicity for some eigenvalue, the matrix is not diagonalizable. If an n × n matrix A has n distinct eigenvalues, then A is diagonalizable. If A is diagonalizable, then A ^m = P (λ ₁ ^m λ ₂ ^m λ _n ^m) P ⁻¹
	 where P is the matrix of eigenvectors and λ_i are the eigenvalues A matrix is orthogonally diagonalizable if and only if it is symmetric. If A is a symmetric matrix, and u, v are two eigenvectors of A associated with distinct eigenvalues, then u and v are orthogonal
X	• Exercise 6: 9 - 30

	Week 12
scope	 7.1 Linear Transformations from Rⁿ to R^m 7.2 Ranges and Kernel
objective	 What is a linear transformation? How are linear transformations related to matrices? What are the conditions of a linear transformation? How to use basis to determine linear transformation? What is the composition of linear transformations? What are the range and kernel of a linear transformation? What are the rank and nullity of a linear transformation? What is the Dimension Theorem of linear transformation?
summary	 A linear transformation T: Rⁿ → R^m is a mapping between two vector spaces is defined by matrix multiplication maps zero vector to zero vector preserves linear combinations If A is the standard matrix of T, then T(u) = Au for all u ∈ Rⁿ If {u₁, u₂,, u_n} is a basis for Rⁿ, then T is completely determined by the images T(u₁), T(u₂),, T(u_n) The standard matrix of the composition T ∘ S is the product of the standard matrices of T and S. T: Rⁿ → R^m linear transformation with standard matrix A Range of T = column space of A (subspace of R^m) Kernel of T = nullspace of A (subspace of Rⁿ) rank(T) = rank(A) nullity(T) = nullity(A) rank(T) + nullity(T) = n
Ex	• Exercise 7: 1 - 17