Задача А. Мега-инверсии

 Имя входного файла:
 mega.in

 Имя выходного файла:
 mega.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Инверсией в перестановке p_1, p_2, \ldots, p_N называется пара (i,j) такая, что i < j и $p_i > p_j$. Назовём мега-инверсией в перестановке p_1, p_2, \ldots, p_N тройку (i,j,k) такую, что i < j < k и $p_i > p_j > p_k$. Напишите алгоритм для быстрого подсчёта количества мега-инверсий в перестановке.

Формат входного файла

Первая строка входного файла содержит целое число N ($1 \le N \le 100\,000$). Следующие N чисел описывают перестановку: p_1, p_2, \ldots, p_N ($1 \le p_i \le N$), все p_i попарно различны. Числа разделяются переводами строк.

Формат выходного файла

Единственная строка выходного файла должна содержать одно число, равное количеству мега-инверсий в перестановке p_1, p_2, \ldots, p_N .

Примеры

mega.in	mega.out
4	4
4	
3	
2	
1	

Задача В. Разреженные таблицы

 Имя входного файла:
 sparse.in

 Имя выходного файла:
 sparse.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Формат входного файла

В первой строке входного файла даны три натуральных числа $n, m \ (1 \leqslant n \leqslant 10^5, 1 \leqslant m \leqslant 10^7)$ и $a_1 \ (0 \leqslant a_1 < 16\,714\,589)$ — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и $v_1 \ (1 \leqslant u_1, v_1 \leqslant n)$ — первый запрос.

Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \mod 16714589.$$

Например, при n=10, $a_1=12345$ получается следующий массив: $a=(12345,\ 305498,\ 7048017,\ 11694653,\ 1565158,\ 2591019,\ 9471233,\ 570265,\ 13137658,\ 1325095).$

Запросы генерируются следующим образом:

$$u_{i+1} = ((17 \cdot u_i + 751 + ans_i + 2i) \bmod n) + 1,$$

$$v_{i+1} = ((13 \cdot v_i + 593 + ans_i + 5i) \bmod n) + 1,$$

где ans_i — ответ на запрос номер i.

Формат выходного файла

В выходной файл выведите u_m , v_m и ans_m (последний запрос и ответ на него).

Примеры

sparse.in	sparse.out
10 8 12345	5 3 1565158
3 9	

Задача C. Range Variation Query

 Имя входного файла:
 rvq.in

 Имя выходного файла:
 rvq.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

В начальный момент времени последовательность a_n задана следующей формулой: $a_n = n^2 \mod 12345 + n^3 \mod 23456$.

Требуется много раз отвечать на запросы следующего вида:

- найти разность между максимальным и минимальным значениями среди элементов $a_i, a_{i+1}, \ldots, a_j$;
- присвоить элементу a_i значение j.

Формат входного файла

Первая строка входного файла содержит натуральное число k — количество запросов (1 $\leq k \leq 100\,000$). Следующие k строк содержат запросы, по одному на строке. Запрос номер i описывается двумя целыми числами x_i, y_i .

Если $x_i > 0$, то требуется найти разность между максимальным и минимальным значениями среди элементов a_{x_i}, \ldots, a_{u_i} . При этом $1 \le x_i \le y_i \le 100\,000$.

Если $x_i < 0$, то требуется присвоить элементу $a_{|x_i|}$ значение y_i . В этом случае $-100\,000 \leqslant \leqslant x_i \leqslant -1$ и $|y_i| \leqslant 100\,000$.

Формат выходного файла

Для каждого запроса первого типа в выходной файл требуется вывести одну строку, содержащую разность между максимальным и минимальным значениями на соответствующем отрезке.

ЛКШ.2012.Август.В.День 2 Летняя Компьютерная Школа, Берендеевы поляны, 30 июля 2012 года

Примеры

rvq.in	rvq.out
7	34
1 3	68
2 4	250
-2 -100	234
1 5	1
8 9	
-3 -101	
2 3	

Примеры

	painter.in	painter.out
7		0 0
W	2 3	1 2
В	2 2	1 4
В	4 2	1 4
В	3 2	2 6
В	7 2	3 5
W	3 1	0 0
W	0 10	

Задача D. Художник

 Имя входного файла:
 painter.in

 Имя выходного файла:
 painter.out

 Ограничение по времени:
 4 секунды

 Ограничение по памяти:
 256 мегабайт

Не успев дорисовать свой гениальный футуристический шедевр, М. Калевич увлёкся рисованием одномерных чёрно-белых картин. Он пытается найти оптимальные местоположение и количество чёрных участков картины. Для этого он проводит на прямой белые и чёрные отрезки и после каждой из таких операций хочет знать количество чёрных отрезков на получившейся картине и их суммарную длину.

Изначально прямая белая. Ваша задача — написать программу, которая после каждой такой операции выводит в выходной файл интересующие художника данные.

Формат входного файла

В первой строке входного файла содержится общее количество нарисованных отрезков $(1\leqslant N\leqslant 100\,000)$. В последующих N строках содержится описание операций. Каждая операция описывается строкой вида c x l, где c — цвет отрезка ('W' для белых отрезков и 'B' для чёрных), а сам отрезок имеет вид [x;x+l], причём координаты обоих концов — целые числа, по модулю не превосходящие $500\,000$. Длина задаётся положительным целым числом.

Формат выходного файла

После выполнения каждой из операций необходимо вывести в выходной файл на отдельной строке количество чёрных отрезков на картине и их суммарную длину, разделённые одним пробелом.