

Nội dung

- 1. Đạo hàm và vi phân hàm hợp.
- 2. Đạo hàm và vi phân hàm ẩn
- 3. Ứng dụng _{TÀI LIỆU} SƯU TẬP

ĐẠO HÀM VÀ VI PHÂN CỦA HÀM HỢP

Trường hợp cơ bản: hợp của hàm 2 biến và hàm 2 biến

Cho
$$z = f(x, y)$$
 $v \grave{a} x = (x(u, v)), \quad y = y(u, v)$. Nếu z, x, y khả vi:

$$z'_{u} = f'_{x} \cdot x'_{u} + f'_{y} \cdot y'_{u}, \quad z'_{v} = f'_{x} \cdot x'_{v} + f'_{y} \cdot y'_{v},$$

$$\underline{C1}: \quad dz = z'_{u} du + z'_{v} dv \quad \text{(liên kết z và các biến cuối)}$$

$$\underline{C2}: \quad dz = f'_{x} dx + f'_{y} dy$$

$$= f'_{x} (x'_{u} du + x'_{v} dv) + f'_{y} (y'_{u} du + y'_{v} dv)$$

VÍ DŲ

1/Cho:
$$z = f(x, y) = e^{xy}$$
, $x = u^2$, $y = u + v$

tìm z'_{u} , z'_{v} , dz tại (u, v) = (1, 1).

ĐẠO HÀM VÀ VI PHÂN CỦA HÀM HỢP

Trường hợp riêng 1

Cho z = f(x) v a x = x(u, v) (hợp của 1 biến và 2 biến)

$$z'_u = f'(x) x'_u, \quad z'_v = f'(x) x'_v$$

<u>C1</u>: $dz = z'_u du + z'_v dv$ (liên kết z và các biến cuối)

$$\underline{C2}: dz = f'(x)dx = f'(x)(x'_u du + x_v dv)$$

Trường hợp riêng 2:

$$z = f(x,y)$$
 và $x = x(t)$, $y = y(t)$. (họp 2 biến và 1 biến)

$$z'(t) = f'_x \cdot x'(t) + f'_y \cdot y'(t)$$

C1:
$$dz = z'(t)dt$$
 (liên kết z và biến cuối)

C2:
$$dz = f'_x dx + f'_y dy = f'_x x'(t) dt + f'_y y'(t) dt$$

Trường hợp riêng 3:

$$z = f(x, y) v a y = y(x)$$
 (hợp 2 biến và 1 biến)

$$z'(x) = f'_x + f'_y \cdot y'(x)$$

$$dz = z'(x)dx$$
 (liên kết z và các biến cuối)

TÀI LIỆU SƯU TẬP

2/ Cho:
$$z = f(x) = \sin(x + x^2), x = \arctan\left(\frac{u}{v}\right)$$

Tính $z'_{u'}$, z'_{v} tại $(0, 1)$

3/ Cho:
$$z = f(x, y) = \sin(xy)$$
,

$$x = \arctan(t), y = e^t$$

Tính dz(t) tại t = 0

4/ Cho:
$$z = f(x, y) = \frac{\ln(y^2 + 1)}{x^2}$$

a/ Tính z'_x tại (1,0).

b/ Nếu $y = e^x$, tính z'(x) tại x = 1

5/ Cho: z = f(x - y, xy), với f là hàm khả vi

Tính z', z',

6/ Cho:
$$z = xf\left(\frac{x}{y^2}\right)$$
 với f là hàm khả vi

Chứng minh đẳng thức:

$$2xz_x' + yz_y' = 2z$$

7/ Cho:
$$z = f(x^2 - y, xy^2)$$
 với f là hàm khả vi TAI LIỆU SƯU TẬP

Tính dz theo dx, dy.

Úng dụng: Áp suất P(Kilopascal), thể tích V(lít) và nhiệt độ T(kelvin) của một mol chất khí lý tưởng có liên hệ với nhau qua phương trình PV=8.31 T. Tìm tốc độ biến thiên của áp suất khi nhiệt độ là 300K và tăng với tốc độ là 0.1K/s và thể tích là 100 L và tăng với tốc độ là 0.2 L/s.

Giải:

Nếu t biểu thị cho thời gian chạy theo giây thì tại thời điểm được cho T=300, dT/dt=0.1, V=100, dV/dt=0.2. Vì

TÀI LIỆU SỬU TẬP
$$P = 8.31 \frac{1}{V}$$

Từ quy tắc đạo hàm hàm hợp suy ra

$$\frac{dP}{dt} = \frac{\partial P}{\partial T} \frac{dT}{dt} + \frac{\partial P}{\partial V} \frac{dV}{dt}$$

$$= \frac{8.31}{100} (0.1) - \frac{8.31(300)}{100^2} .(0.2) = -0.04155$$
TAI LIÊU SU'U TÂP

Áp suất giảm với tốc độ khoảng 0.042 KPa/s.

• Vi dụ 3: Một nhà thuốc bán hai loại vitamin tổng hợp là loại A và loại B. Một nghiên cứu thị trường chỉ ra rằng nếu loại A được bán ra với giá x dollars mỗi hộp và loại B được bán với giá y dollars mỗi hộp, thì nhu cầu của thị trường đối với vitamin loại A là $Q(x,y) = 200 - 10x^2 + 20y$ hộp mỗi tháng.

Bên cạnh đó, nhà thuốc cũng dự đoán, sau t tháng, giá của loại A, loại B lần lượt là:

x=2+0.05t dollars mỗi hộp, Và $y=2+0.1\sqrt{t}$ dollars mỗi hộp Vậy sau 4 tháng thì nhu cầu của thị trường đối với loại A thay đổi thế nào?

Vậy sau 4 tháng, nhu cầu thị trường đối với loại A sẽ giảm 1.7 hộp mỗi tháng

TẠI LIỆU SƯU TẬP

Bài 1: Nhiệt độ tại một điểm (x,y) là T(x,y), được tính bằng độ C. Một con rệp bò sao cho vị trí của nó sau t giây được cho bởi phương trình $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, trong đó x và y được tính bằng cm. Hàm nhiệt độ thỏa mãn $T'_x(2,3) = 4 v à T'_y(2,3) = 3$. Nhiệt độ tăng bao nhiều trên đường đi của con rệp sau 3 giây?

Bài 2: Sản lượng lúa mì W trong năm được cho tùy thuộc vào nhiệt độ trung bình và lượng mưa hằng năm R. Nhà khoa học ước tinh nhiệt độ trung bình tăng với tỷ lệ $0.15^{\circ}C/n$ ăm và lượng mưa giảm với tỷ lrrj 0.1cm/năm. Họ cũng dự tính tại mức sản xuất hiện hành $\frac{\partial W}{\partial T} = -2 v$ à $\frac{\partial W}{\partial R} = 8$.

a. Dấu của đạo hàm riêng này có ý nghĩa gì?

b. Ước tính tốc độ biến thiên hiện hành của sản lượng múa

mì

Đạo hàm và vi phân cấp cao của hàm hợp

Xét trường hợp cơ bản, các trường hợp khác tương tự.

Cho
$$z = f(x, y)$$
 $vax = x(u, v)$, $y = y(u, v)$

$$z''_{uu} = (f'_{x}.x'_{u} + f'_{y}.y'_{u})$$

$$= [(f'_{x})'_{u}.x'_{u} + f'_{x}.x''_{uu}] + [(f'_{y})'_{u}.y'_{u} + f'_{y}.y''_{uu}]$$

$$z''_{uv} = (f'_{x}.x'_{u} + f'_{y}.y'_{u})'_{v}$$

$$= [(f'_{x})'_{v}.x'_{u} + f'_{x}.x''_{uv}] + [(f'_{y})'_{v}.y'_{u} + f'_{y}.y''_{uv}]$$

$$z''_{vv} = (f'_{x}.x'_{v} + f'_{y}.y'_{v})'_{v}$$

$$= [(f'_{x})'_{v}.x'_{v} + f'_{x}.x''_{vv}] + [(f'_{y})'_{v}.y'_{v} + f'_{y}.y''_{vv}]$$

Các đhàm $(f'_x)'_w$, $(f'_x)'_v$, $(f'_y)'_w$, $(f'_y)'_v$, phải tính theo hàm hợp.

Vi phân cấp hai của hàm hợp: ÂF (u, v là biến độc lập)

$$d^{2}z = z_{uu}''du^{2} + 2z_{uv}''dudv + z_{vv}''dv^{2}$$

VÍ DU

1/ Cho:
$$z = f(x, y) = x^2 y$$
, $x = u + v$, $y = u - v$

Tính z''_{uu} , z''_{uv} tại (u, v) = (1, 1) (x = 2, y = 0)

$$z'_{u} = 2xy \times x'_{u} + x^{2} \times y'_{u}$$

$$= 2xy \times 1 + x^{2} \times 1 = 2xy + x^{2}$$

$$= 2xy \times 1 + x^{2} \times 1 = 2xy + x^{2}$$

$$z''_{uu} = (2xy + x^2)'_u = 2(x'_u y + xy'_u) + 2xx'_u$$

$$= 2(y+x) + 2x = 4x + 2y$$

$$\Rightarrow z''_{uu}(1,1) = 8$$

$$z_{u}' = 2xy + x^{2}$$

$$x = u + v, y = u - v$$

$$z''_{uv} = (2xy + x^2)'_{v} = 2(x'_{v}y + xy'_{v}) + 2xx'_{v}$$
$$= 2(y - x) + 2x = 2y$$

TÀI LIỆU SƯU TẬP

$$z''_{uv}(1, 1) = 0$$

2/ Cho:
$$z = f(x, y) = x^2 y$$
, với $x = t^2$, $y = \ln t$

Tính d^2z theo dt tại t=1

3/ Cho:
$$z = f(x^2 - y)$$
 với f là hàm khả vi cấp 2.

Tính z"xx, z"xy, Z'BởI HCMUT-CNCP

ĐẠO HÀM VÀ VI PHÂN HÀM ẨN

Hàm ẩn 1 biến : Giả sử hàm ẩn y = y(x) xác định bởi phương trình F(x, y) = 0. Để tính y'(x), lấy đạo hàm phương trình F = 0 theo x và giải tìm y'(x).

Lưu ý: Sử dụng đạo hàm hàm họp ta có:

$$G(x) = F(x, y) = 0$$
, $voi y = y(x)$

$$\Rightarrow G'(x) = F'_{x} + F'_{y}y'(x) = 0$$

$$y'(x) = -\frac{F_x'}{F_x'}$$

 $y'(x) = -\frac{F_x'}{F_{KH}} \times \frac{\text{Xem } x, y \text{ là 2 biến độc lập}}{\text{khi lấy đh của } F}.$

Hàm ẩn 2 biến : z = z(x, y) xác định từ pt :

$$F(x, y, z) = 0$$
 (1).

Lấy đạo hàm (1) theo x (hoặc y) rồi giải tìm các đạo hàm riêng của z.

$$G(x,y) = F(x,y,z) = 0$$

$$\Rightarrow G'_{x} = F'_{x} + F'_{z} \cdot z'_{x} = 0$$

$$\Rightarrow G'_{x} = F'_{x} + F'_{z} \cdot z'_{x} = 0$$
HEMUT-CNEP
$$Z'_{x} = -\frac{F'_{x}}{F'_{z}}$$

$$z'_{x} = -\frac{F'_{x}}{F'_{z}}, \qquad z'_{y} = -\frac{F'_{y}}{F'_{z}}$$

x, y, z là các biến độc lập khi tính F'_x , F'_y , F'_z .

VÍ DỤ

Cho
$$y = y(x)$$
 xác định từ pt: $e^y + xy - e = 0(1)$
Tìm $y'(0)$.

2. Tìm đạo hàm cấp 2 tại x = 1 của hàm ẩn y = y(x) xác định bởi pt:

$$y^3 + x^2y - x + 1 = 0 \quad (1)$$

Lấy đạo hàm (1) theo x

$$3y^2.y' + 2xy + x^2y' - 1 = 0$$
 (2)

Lấy đạo hàm (2) theo x

$$3 \left[2y.(y')^2 + y^2y'' \right] + 2(y + xy') + 2xy' + x^2y'' = 0$$
 (3)

$$y^3 + x^2y - x + 1 = 0$$
 (1)

$$3y^2 \cdot y' + 2xy + x^2y' - 1 = 0$$
 (2)

$$6y.(y')^{2} + 3y^{2}y'' + 2(y' + xy') + 2xy' + x^{2}y'' = 0 (3)$$

$$x = 1 \xrightarrow{(1)} y(1) = 0 \xrightarrow{(2)} y'(1) = 1$$

TÀI LIỆU SƯU TẬP Thay
$$x = 1$$
, $y = 0$, $y^{80} = 1$ vào (3)

$$0+0+2(0+1)+2+y''(1)=0$$

$$\Rightarrow y''(1) = -4$$

Cách 2:
$$F(x,y) = y^3 + x^2y - x + 1 = 0$$
 (1)

$$y' = -\frac{F_x'}{F_y'} = -\frac{2xy - 1}{3y^2 + x^2}$$

$$x = 1 \xrightarrow{(1)} y(1) = 0 \xrightarrow{(2)} y'(1) = 1$$

$$y'' = \left(-\frac{2xy - 1}{3y^2 + x^2}\right) \lim_{\substack{\text{BOTHEMUT-ENCP} \\ x}} y''(1) = 1$$

$$= -\frac{2(y+xy')(3y^2+x^2)-(2xy-1)(6yy'+2x)}{(3y^2+x^2)^2}$$
(3)

$$y'' = -\frac{2(y+xy')(3y^2+x^2)-(2xy-1)(6yy'+2x)}{(3y^2+x^2)^2}$$
(3)

Thay
$$x = 1$$
, $y = 0$, $y' = 1$ vao (3)
$$y'' = -\frac{2(0+1)(0+1)}{(0+1)^{2}} = -4$$

Ví dụ

$$3/$$
 Cho $z = z(x, y)$, thỏa pt:

$$F(x, y, z) = z - ye^{x/z} = 0$$
 (1)

Tìm
$$z'_{x}$$
, z'_{y} tại $(x, y) = (0, 1)$.

TÀI LIỆU SƯU TẬP

Ví dụ

$$4$$
/ Cho $z = z(x, y)$, thỏa pt:

$$F(x, y, z) = xy - \sinh(x + y - z) = 0$$
 (1)

Tìm
$$z''_{xx}$$
, z''_{xy} tại $(x, y) = (1, 0)$.

TÀI LIÊU SƯU TẤP

5/ Cho
$$z = z(x, y)$$
, thoa ption

$$F(x, y, z) = z^3 - 4xz + y^2 - 4 = 0 (1)$$

Tìm
$$dz(1, -2)$$
 nếu $z(1, -2) = 2$

Cho mặt cong (S): z = z(x, y) có phương trình:

$$xy + 2yz - 5zx + 5 = 0$$

Viết phương trình tiếp diện tại điểm $M_0(1; 1; 2)$ với mặt cong (S).

Chú ý

- 1. Đường cong (C) có phương trình: F(x,y) = 0Pháp vecto của (C) tại $M_0(x_0, y_0)$: $\vec{n} = k$. $\nabla F(M_0), k \neq 0$
- 2. Mặt cong (S) có phương trình: F(x, y, z) = 0Pháp vecto của (S) tại $M_0(x_0, y_0, z_0)$: $\vec{n} = k \nabla F(M_0), k \neq 0$

Hàm ẩn z = z(x, y) xác định bởi phương trình:

$$x^2 + 2y^2 + z^2 - 4x + 2z - 1 = 0$$

Viết phương trình tiếp diện với đồ thị của hàm số này tại

 $M_0(2,-1,-3)$ và chỉ ra một pháp vector tại $M_0(2,-1,-3)$

hợp với chiều dương trục Oy một góc nhọn.