Caducidade em Idosos

Camille Menezes, Jeff Caponero e Michel Miler

Sumário

Introdução	2
Modelo	2
Resultados	2
Análise descritiva	
Modelo de regressão logística	3
Estimativas pontuais	4
Análise Residual	5
Observações Atípicas	6
Referências	6

Introdução

É importante a compreensão das mudanças psicológicas associadas ao envelhecimento. Por isso, este trabalho tem como objetivo analisar um grupo de cinquenta e quatro indivíduos considerados idosos, submetidos a um exame psiquiátrico para avaliar a presença ou ausência de sintomas de caduquice. Acredita-se que os escores obtidos em exames psicológicos prévios podem estar relacionados com a ocorrência desses sintomas. Assim, a presente pesquisa propõe a utilização de um modelo de regressão logística para investigar essa relação.

Os dados são provenientes de (Agresti, 1990, pgs. 122-123). Ao longo deste trabalho, será realizada uma análise descritiva com objetivo de entender um pouco mais as variáveis consideradas, a construção do modelo de regressão com diferentes funções de ligação, a apresentação de resultados inferenciais e estimativas pontuais. Além disso, também será apresentado a análise de resíduos, com foco na identificação de observações atípicas.

Modelo

Queremos analisar como o valor do score obtido no exame psicológico impacta na chance de idoso apresentar caducância ou não. Desse modo, o modelo a ser definido será o modelo MLG binomial com função de ligação logito, então sendo Y_i a variável que indica se o idoso "i" apresenta caducância ou não, temos que

- $\begin{array}{l} \bullet \ \ \, Y_i \sim Binomial(1,\mu_i) \\ \bullet \ \, log(\frac{\mu_i}{1-\mu_i}) = \alpha + \beta x_i \end{array}$

onde

- x_i é a variável score
- $\frac{\ddot{\mu}_i}{1-\mu_i}$ é a chance
- α é o efeito escalar no logarítmo da chance do idoso apresentar caducância
- β é efeito no logarítmo da chance do idoso apresentar caducância quando uma unidade é adicionada na variável score
- $exp(\beta)$ é efeito na razão da chance do idoso apresentar caducância quando uma unidade é adicionada na variável score
- α é o efeito escalar no logarítmo da chance do idoso apresentar caducância ou não.

Resultados

Análise descritiva

Na amostra de idosos incluídos no estudo, 74% não demonstraram sinais de caduquice. A Tabela 1 apresenta um resumo dos escores registrados por esses idosos.

Tabela 1: Estatísticas-resumo para a variável score dos idosos com ou sem caducância

	Min	Q1	Median	Mean	Q3	Max	Std.Dev	CV	Skewness	Kurtosis
Com Caducância	4	7	8,5	8,93	11	14	3,17	0,36	0,26	-1,21
Sem Caducância	4	10	13,0	12,50	15	20	3,46	0,28	-0,08	-0,24

Na Tabela 1, é possível observar que a média dos scores para os idosos com caducância é menor do que para os sem caducância. A média e a mediana para ambos cenários aparentam estar bem próximas entre si, além da métrica de simetria estar próxima de zero, indicando que a distribuição dos scores é simétrica para os idosos com ou sem caducância. Para a curtose, é notável que a distribuição dos scores para os idosos com caducância é mais platicúrtica que para os idosos sem caducância.

Figura 1: Boxplot para a variável score dos idosos com ou sem caducância

Através dos boxplots da Figura 1, é possível observar que para os idosos sem caducância, existe uma maior variabilidade dos scores abaixo da mediana, enquanto que para os scores dos com caducância há uma variabilidade maior entre a mediana e o terceiro quartil. Tanto pela Tabela 1 quanto pela Figura 1, já é possível notar que há uma tendência a qual menores scores estão mais associados com idosos com caducância.

Modelo de regressão logística

Com base nos dados é possível avaliar um modelo de regressão logístico.

Tabela 2: Resultados para o modelo com função de ligação logito.

	Estimativa	EP	Est. z	$\Pr(> z)$
Intercepto	2,4040	1,1918	2,0171	0,0437
Score	-0,3235	0,1140	-2,8385	0,0045

Todos os coeficientes foram significativos ao nível de 5%. Como a variável score não assume valor zero, o coeficiente do intercepto não apresenta interpretabilidade. A variável score apresenta um coeficiente de -0.3235. Isso indica que, a chance do idoso apresentar caduquice com o aumento de uma unidade na variável score é $\exp(-0.3235) = 0.7236$.

O deviance residual é menor do que a deviance nulo 61.806 e 51.017, respectivamente, e também é mais próximo dos graus de liberdade, o que sugere que o modelo com a variável score se ajusta melhor aos dados do que um modelo que não inclui essa variável. Isso indica que a variável score tem algum poder explicativo na variabilidade da caduquice em idosos.

Figura 2: Função de distribuição acumulada logística

Estimativas pontuais

Com base no modelo escolhido é possível estimar os valores de β e ϕ para o modelo.

Os valores estimados foram de $\alpha = -0.2625$ e de $\beta_1 = 0.1159$. Com 3 iterações obteve-se a precisão de 10^{-6} .

Análise Residual

Considerando os resíduos Studentizado (tsi) padronizado e o componente do desvio padronizado (tdi) apresente os seguintes gráficos tsi, tdi versus valores ajustados, tsi , tdi versus valores observados e os respectivos gráficos do envelope simulado.

Figura 3: Análise residual. (a) Valores ajustados em função dos resíduos; (b) Valores ajustados em função dos resíduos studentizados.

Figura 4: Análise residual. (a) Observações em função dos resíduos; (b) Observações em função dos resíduos studentizados.

Observações Atípicas

Identifique as observações atípicas. Comente cada gráfico.

Figura 5: Análise de ajuste do modelo. (a) Componentes do desvio; (b) Resíduo de Willians.

Referências

Agresti A. (1990). Categorical Data Analysis. John Wiley, New York.