SANGHMITRA KANDPAL
50
ML.
Assignment -1
8.) What do you -
a.) What do you -
Asymptotic notations are mathematical tools used to describe the
limiting behavior of functions as their is size approaches indivity
drymptotic notations are mathematical tools used to describe the limiting behavior of functions as their infraige approaches indirity. They are used characterize the efficiency of algorithms.
represent the upper bound of a sh. provides on upper limit
on the growth late of a sh.
$eg - O(n^2)$
represents the upper bound of a sn. provides an upper limit on the growth late of a sn. eg - O (n²) worst case time complexity grows quadratically with if
size.
(2) Omigo (n) —
land land of the
lowed bound of a for, provides loncer limit on the growth
eg - I(n).
worst - case TC, server liseral ill
eg - r (n). Norst - case TC geones linearly with if size. (3) Theta (0)
(3) Thata (0)_
expresents both upper of lower bound, provides a tight bound of the growth state of a fr.
or the growth the of a for. I flowers a tight bound
29 - O(n)
worst-case TC grows linearly.
4) small o notation—
represents an upper bound that is not the
29 - O (n2) I asymptotically tight.
4) small of notation— represents an upper bound that is not asymptotically tight. If W.C. TC grows slower than quadratically.
January.
V

4)
$$T(n) = \int_{1}^{3} 2T(n-1)-1$$
 if $n>0$

1 otherwise.

lol \Rightarrow $T(n) = 2T(n-1)-1$.

xub. $T(n-1)$

$$T(n) = 2 (2T(n-2)-1)-1$$

$$= 2^{2} \cdot T(n-3)-2-1$$

continue to xub. —

$$T(n) = 2^{3} \cdot T(n-3) - 2^{2}-2-1$$

After K stips —

$$T(n) = 2^{3} \cdot T(n-k) - (2^{k-1} + 2^{k-2} + 2+1)$$
 $n-k=0$
 $[n=k]$

xo putting $K=n$;

 $T(n) = 2^{n} \cdot T(0) - (2^{n-1} + 2^{n-2} + 2+1)$
 $T(n) = 2^{n} \cdot T(0) - (2^{n-1} + 2^{n-2} + 2+1)$
 $T(n) = 2^{n} \cdot T(0) - (2^{n-1} + 2^{n-2} + 2+1)$
 $T(n) = 2^{n} \cdot T(n) - (2^{n-1} + 2^{n-2} + 2+1)$
 $T(n) = 2^{n} \cdot T(n) - (2^{n-1} + 2^{n-2} + 2+1)$
 $T(n) = 2^{n} \cdot T(n) - (2^{n-1} + 2^{n-2} + 2+1)$
 $T(n) = 2^{n} \cdot T(n) - (2^{n-1} + 2^{n-2} + 2+1)$
 $T(n) = 2^{n} \cdot T(n) - (2^{n-1} + 2^{n-2} + 2+1)$

5.) int
$$i=1$$
, $s=1$;

while $(3<=n)$ — $(1+2+3+ s=s+i$,

punt $("\#")$;

 $f(n)=0$ (i^2)
 $f(n)=0$ $f(n)=0$ $f(n)=0$ $f(n)=0$

8) function (int n)

if
$$(n=1)$$

atturn;

for $(i=1; i <= n; i++)$ — $(n \text{ times})$

point $("*");$

grantian $(n-3);$ — recursive call so $(n-3)$

TC —

 $= O(n \times n \times (n-3))$
 $= O(n/3)$
 $= O(n/3$

