

Current Transducer LA 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

PN	Primary nominal r.m.s. cu	25		At	
	Primary current, measuring	0 ± 36		At	
I _₽ R _M	Measuring resistance		$R_{\text{M min}}$	R_{Mmax}	Ç
	with ± 15 V	@ ± 25 At max	100	320	Ω
		@ ± 36 At max	100	190	Ω
SN	Secondary nominal r.m.s.	current	25		mΑ
C C C d d	Conversion ratio	1-2-3-4-5 : 1000			
, "	Supply voltage (± 5 %)	± 15		V	
	Current consumption	10 + I		mA	
Ĺ	R.m.s. voltage for AC isol	ation test, 50 Hz, 1 mn	2.5	•	kV
Ľ	R.m.s. rated voltage 1), sa	afe separation	600		V
U	ba	asic isolation	1700		V

Ad	ccuracy - Dynamic performa	nce data			
X	Accuracy @ I _{PN} , T _A = 25°C		± 0.5		%
$\epsilon_{\scriptscriptstyle L}$	Linearity		< 0.2		%
			Тур	Max	
I _o	Offset current $^{2)}$ @ $I_p = 0$, $T_A = 25^{\circ}$	0	± 0.05	± 0.15	mA
I _O I _{OM} I _{OT}	Residual current 3 @ I = 0, after a	Residual current 3 @ $I_p = 0$, after an overload of 3 x I_{pN}			mΑ
I _{OT}	Thermal drift of I	0°C + 25°C	± 0.06	± 0.25	mΑ
01		+ 25°C + 70°C	± 0.10	± 0.35	mΑ
t,	Response time 4) @ 90 % of Ip max		< 1		μs
di/dt	di/dt accurately followed		> 50		A/µs
f	Frequency bandwidth (- 1 dB)		DC '	150	kHz

G	General data				
T _A	Ambient operating temperature	0 + 70	°C		
T s	Ambient storage temperature	- 25 + 85	°C		
R _P	Primary resistance per turn @ T ₄ = 25°C	< 1.25	mΩ		
Rs	Secondary coil resistance @ T ₄ = 70°C	110	Ω		
Ris	Isolation resistance @ 500 V, T _a = 25°C	> 1500	МΩ		
m	Mass	22	g		
	Standards 5)	EN 50178			

$I_{PN} = 5-6-8-12-25 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- · Optimized response time
- Wide frequency bandwidth
- · No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Pollution class 2

- 2) Measurement carried out after 15 mn functionning
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- 5) A list of corresponding tests is available

980909/8

Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch)

Number ofprimary turns	Primary nominal I _{PN} [A]	current maximum I _P [A]	Nominal output current I _{SN} [mA]	Turns ratio K _N	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	25	36	25	1/1000	0.3	0.023	5 4 3 2 1 IN 0-0-0-0-0 0-0-0-0-0 OUT 6 7 8 9 10
2	12	18	24	2/1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3	8	12	24	3/1000	2.5	0.21	5 4 3 2 1 IN 0-0 0 0-0 0-0 0 0-0 OUT 6 7 8 9 10
4	6	9	24	4/1000	4.4	0.37	5 4 3 2 1 IN 9 0-9 9 0 0 0-0 0 0 OUT 6 7 8 9 10
5	5	7	25	5/1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mechanical characteristics

- · General tolerance
- · Fastening & connection of primary
- Fastening & connection of secondary
- · Recommended PCB hole
- ± 0.2 mm
- 10 pins 0.7 x 0.6 mm
- 3 pins Ø 1 mm
- 1.2 mm

Remarks

- ${}^{ullet}\mathbf{I}_{\mathrm{S}}$ is positive when \mathbf{I}_{P} flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.