Remark 2.4. The function p is convex. So the one-sided Gateaux-derivatives

$$D_g^+ p(f) = \lim_{t \to 0} 1/t (p(f+tg) - p(f))$$
 and

$$D_q^-$$
 p(f) = $\lim_{t \uparrow 0} 1/t$ (p(f+tg) - p(f))

exist and satisfy $D_g^-p(f) \le D_g^+p(f)$ for all f, g \in E (cf. Moreau (1966)). Moreover,

(2.9)
$$D_q^+ p(f) = \sup \{ \langle g, \phi \rangle : \phi \in dp(f) \}$$
,

(2.10)
$$D_{q}^{-} p(f) = \inf \{ \langle q, \phi \rangle : \phi \in dp(f) \}$$
.

Thus A is p-dissipative if and only if D_{Af}^- p(f) ≤ 0 , and A is strictly p-dissipative if and only if D_{Af}^+ p(f) ≤ 0 for all f $\in D(A)$.

Corollary 2.5. Let A be a closable operator. If A is p-dissipative, then so is its closure.

Theorem 2.6. Let p be a continuous sublinear functional on a real Banach space E . Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$. The following assertions are equivalent.

- (i) $p(T(t)f) \le p(f)$ for all $t \ge 0$, $f \in E$.
- (ii) A is strictly p-dissipative.
- (iii) There exists a core D of A such that $\mathbf{A}_{\mid \mathbf{D}}$ is p-dissipative.

<u>Proof.</u> Assume that (i) holds. Let $f \in D(A)$, $\phi \in dp(f)$. Then $\langle Af, \phi \rangle = \lim_{t \to 0} 1/t (\langle T(t)f, \phi \rangle - \langle f, \phi \rangle)$

 $= \lim_{t\to 0} 1/t(\langle T(t)f, \phi \rangle - p(f))$

 $\leq \lim \sup_{t \to 0} 1/t(p(T(t)f) - p(f)) \leq 0$.

This proves (ii).

It is trivial that (ii) implies (iii). So let us assume (iii). Then it follows from Cor. 2.5 that A is p-dissipative. Hence by (2.8) $p(\lambda R(\lambda,A)g) \leq p(g) \quad \text{for all} \quad g \in E \ , \ \lambda > \omega(A) \ . \ \text{Hence} \quad \lambda R(\lambda,A) \quad \text{is} \\ p\text{-contractive for} \quad \lambda > \omega(A) \ . \ \text{This implies that} \quad T(t) \quad \text{is p-contractive by the formula} \quad (1.3)$

 $T(t) = \lim_{t\to 0} (n/tR(n/t,A))^n$ (strongly) for $t \ge 0$.

We have shown that for generators, p-dissipativity is equivalent to p-contractivity of the semigroup. Now we will consider a p-dissipative operator A (which is not a generator a priori) and investigate under which additional hypotheses A is the generator of a