Задача 1 Нека G е контекстносвободната граматика:

$$G = \langle \{a, b\}, \{S, X\}, S, \{S \to aaSb | Xb, X \to \varepsilon | bbXa \} \rangle,$$

$$\mathcal{A} = \langle \{a, b\}, \{q_0, q_1\}, q_0, \{q_1\}, \{\langle q_0, a, q_1 \rangle, \langle q_1, a, q_0 \rangle, \langle q_1, b, q_1 \rangle, \langle q_0, b, q_0 \rangle \} \rangle.$$

$$L(G') = L(G) \circ L(\mathcal{A}) \cup (L(G))^*$$

 $\kappa amo:$

- или посочите как използвате изучавани конструкции,
- или докажете, че построената от вас граматика генерира съответния език.

Задача 2 Нека $\Sigma = \{a, b, c\}$. За дума $\alpha \in \Sigma^*$ с $A(\alpha)$ означаваме броя на буквите а в α . Аналогично с $B(\alpha)$ и $C(\alpha)$ бележим съответно броя на буквите b и c в α . За език $L \subseteq \Sigma^*$ с L_{seq} означаваме езика:

$$L_{seq} = \{ a^{A(\alpha)} b^{B(\alpha)} c^{C(\alpha)} \mid \alpha \in L \}.$$

Вярно ли е, че:

- 1. за всеки регулярен език $L\subseteq \Sigma^*$, езикът L_{seq} е контекстносвободен? Защо?
- 2. за всеки регулярен език $L \subseteq \{a,b\}^*$, езикът L_{seq} е контекстносвободен? Защо?

Забележка 1 Варианти могат да се получат с добавяне на коефициенти u/uли размяна на реда на буквите.

Задача 3 $Heкa\ \Sigma = \{a,b\}$. За език $L \subseteq \Sigma^*\ c\ L_{rev}$ бележим езика:

$$L_{rev} = \{\alpha \alpha^{rev} \mid \alpha \in L\}.$$

Вярно ли е, че:

- 1. за всеки регулярен език L, L_{rev} е контекстносвободен? Защо?
- 2. за всеки контекстносвободен език L, L_{rev} е контекстносвободен? Защо?

Забележка 2 Варианти могат да се получат като се добави регулярно условие за дължините на думите α (четност/нечетност). Друг начин за получаване на варианти е като вместо $\alpha\alpha^{rev}$ се дефинира $\alpha\alpha^{rev2}$, където:

$$\alpha^{rev2} = \begin{cases} \varepsilon, \ a\kappa o \ \alpha = \varepsilon \\ \beta^{rev2} xx, \ a\kappa o \ \alpha = x\beta \ за \ някоя буква \ x \in \Sigma \ u \ \beta \in \Sigma^*. \end{cases}$$

Задача 4 Нека $G = \langle \Sigma, \mathcal{N}, S, R \rangle$ е контекстносвободна граматика. Със Σ_{tr} означаваме азбуката $\Sigma_{tr} = \Sigma \cup \mathcal{N} \cup \{(,),','\}$. Нека:

$$Tr(G) = \{T \in \Sigma_{tr}^* \, | \, T \, \, e \, \,$$
дърво на извод в $G\}.$

Вярно ли е, че:

- 1. за всяка контекстносвободна граматика G, Tr(G) е контекстносвободен език? Защо?
- 2. за всяка контекстносвободна граматика $G, \Sigma_{tr}^* \setminus Tr(G)$ е контекстносвободен език? Защо?

Задача 5 Нека $G = \langle \Sigma, \mathcal{N}, S, R \rangle$ е контекстносвободна граматика. Със Σ_{der} означаваме азбуката $\Sigma_{der} = \Sigma \cup \mathcal{N} \cup \{\Rightarrow\}$. Нека:

$$Der(G) = \{w \in \Sigma_{der}^* \,|\, w\ e\ useod\ e\ G\}.$$

Вярно ли е, че:

- 1. че за всяка контекстносвободна граматика G, Der(G) е контекстносвободен? Защо?
- 2. че за всяка контекстносвободна граматика $G, \Sigma_{der}^* \backslash Der(G)$ е контекстносвободен? Защо?

Задача 6 Да се определи с доказателство кои от следните езици са контекстносвободни и кои не:

- 1. $L_1 = \{a^n b^m c^n d^m \mid m, n \in \mathbb{N}\}.$
- 2. $L_2 = \{a^n b^m c^m d^n \mid m, n \in \mathbb{N}\}.$
- 3. $L_3 = \{wc^n w^{rev} d^n \mid w \in \{a, b\}^*, n \in \mathbb{N}\}.$
- 4. $L_4 = \{wc^n d^n w^{rev} \mid w \in \{a, b\}^*, n \in \mathbb{N}\}.$
- 5. $L_5 = \{c^n w w^{rev} d^n \mid w \in \{a, b\}^*, n \in \mathbb{N}\}.$

Задача 7 Нека Σ е азбука с поне два символа. Вярно ли е, че за всеки два регулярни езика $L_1, L_2 \subseteq \Sigma^*$, езикът:

$$L = \{u_1 \circ u_2 \mid u_1 \in L_1, u_2 \in L_2 \ u \ |u_1| = 2|u_2|\}$$

е контекстносвободен? Защо?

Задача 8 Нека Σ е азбука с поне два символа. Вярно ли е, че за всеки регулярен език $L_1 \subseteq \Sigma^*$, езикът:

$$L = \{ u \in L_1 \mid u = u^{rev} \}$$

е контекстносвободен? Защо?

Задача 9 За контекстносвободна граматика $G = \langle \Sigma, \mathcal{N}, S, R \rangle$ с odd(G) означаваме множеството от думи:

 $odd(G) = \{w \mid u$ ма нечетен брой дървета на извод $T \in Tr(G, S)$ с $word(T) = w\}.$

Вярно ли e, че за всяка контекстносвободна граматика G, odd(G) e контекстносвободен eзик? 3ащо?

Задача 10 За дума $w = w_1 w_2 \dots w_n$ с сус $^r(w)$ бележим множеството от всички думи от вида $w_i w_{i+1} \dots w_n w_{i-1} \dots w_1$. Вярно ли е, че за всяка азбука и за всеки контекстносвободен език L над тази азбука език $^{\tau}$ т:

$$L' = \{ w \mid \exists w' \in L(w \in cyc^r(w')) \}$$

е контекстносвободен? Защо?

Задача 11 Нека Σ е азбука с $|\Sigma| \ge 2$. Вярно ли е, че за всеки контекстносвободен език $L \subseteq \Sigma^*$:

- 1. $L_1 = \{xz \mid \exists y \in \Sigma^*(xyz \in L)\}$ е контекстносвободен? Защо?
- 2. $L_3 = \{uxz \mid \exists v, y \in \Sigma^*(uvxyz \in L)\}$ е контекстносвободен? Защо?

Задача 12 Нека Σ е азбука с поне два символа. За езици $L_1, L_2 \subseteq \Sigma^*$ дефинираме езика:

$$I(L_1, L_2) = \{xyz \mid xz \in L_2, y \in L_1\}.$$

Вярно ли е, че:

- 1. за всеки L_1 контекстносвободен и L_2 регулярен, $I(L_1, L_2)$ е контекстносвободен? Защо?
- 2. за всеки L_1 регулярен и L_2 контекстносвободен, $I(L_1, L_2)$ е контекстносвободен? Защо?
- 3. за всеки L_1 контекстносвободен и L_2 контекстносвободен, $I(L_1, L_2)$ е контекстносвободен? Защо?

Задача 13 Нека Σ е азбука с поне два символа. За езици $L_1, L_2 \subseteq \Sigma^*$ дефинираме езика:

$$D(L_1, L_2) = \{xz \mid \exists y \in L_1(xyz \in L_2)\}.$$

Вярно ли е, че за всеки L_1 регулярен и L_2 контекстносвободен, $I(L_1, L_2)$ е контекстносвободен? Защо?

Задача 14 *Нека* $\Sigma = \{a,b\}, \ A = \langle \Sigma, \{p,q\}, \{p\}, \Delta, \{q\} \rangle$ е краен автомат с преходи:

$$\Delta = \{ \langle p, a, p \rangle, \langle p, b, q \rangle, \langle q, b, p \rangle, \langle q, a, q \rangle \},$$

а $\Gamma = \langle \Sigma, \{S,A\}, S,R \rangle$ е контекстносвободна граматика с правила:

$$R = \{S \to aA|bSb, A \to AA|aAb|bAa|\varepsilon\}.$$

Ако $L_A=L(A)$ и $L_\Gamma=L(\Gamma)$, да се построи контекстносвободна граматика за езика:

$$L = (L_A \circ L_\Gamma) \cup L_\Gamma^*$$

като:

• или посочите как използвате изучавани конструкции,

• или докажете, че построената от вас граматика генерира съответния език.

Задача 15 Да се провери с доказателство дали е контекстносвободен езикът:

- 1. $L = \{\alpha\beta \in \{0, 1, 2\}^* \mid |\alpha| \le 2|\beta| \ u \ \beta \ e \ npeфикс на \alpha\}.$
- 2. $L = \{\alpha\beta \in \{0, 1, 2\}^* \mid |\alpha| \le 2|\beta| \ u \ \beta^{rev} \ e \ npe \phi u \kappa c \ Ha \ \alpha\}$

Задача 16 Нека $a_0, a_1, a_2, \ldots, a_k$ са естествени числа, за които $a_k \neq 0$. Нека $p(x) = \sum_{i=0}^k a_i x^i$ и L_p е езикът:

$$L_p = \{0^n 1^{p(n)} \mid n \in \mathbb{N}\}.$$

Да се намерят всички k и всички k-орки от естествени числа a_0, \ldots, a_k с $a_k \neq 0$, за които L_p е контекстносвободен.

Задача 17 Нека $\alpha \in \Sigma^*$. Подредица на α наричаме дума β , която се получава от α чрез премахването на някои от буквите, без да се променя реда на оставащите. Пишем $\beta \leq \alpha$. В частност, $\alpha \leq \alpha$ и $\varepsilon \leq \alpha$. Ако L е език, то

$$Subseq(L) = \{\alpha \, | \, (\exists \beta \in L) (\alpha \preccurlyeq \beta)\}.$$

Вярно ли е, че:

- 1. за всеки регулярен език L, език σm Subseq(L) е регулярен? Защо?
- 2. за всеки контекстносвободен език L, езикът Subseq(L) е контекстносвободен? Защо?