Dokumentation Wetterstation

Projektbezeichnung	Projektarbeit Mikrocomputertechnik
Projektleiter	Noah Canadea / Milan Bursac
Erstellt am	20.12.2021
Letzte Änderung am	10.01.2022
Status	abgeschlossen
Aktuelle Version	1.0

Änderungsverlauf

Nr.	Datum	Version	Geänderte Kapitel	Art der Änderung	Autor	Status
1	20.12.2021	0.5	Alle	Erstellung	Noah Canadea	ok
2	03.01.2022	0.6	6, 7, 8	Ergänzung	Noah Canadea	Ok
3	08.01.2022	0.7	Alle	Anpassungen	Noah Canadea	Ok
4	09.01.2022	1	Alle	Anpassungen und Ergänzungen	Milan Bursac	Ok

Inhalt

1	Sch	nemas	3
	1.1	Elektronik Schema ESP (Wetterstation)	3
	1.2	Aktivitätsdiagramme	
	1.2.		
	1.2.		
	1.3	MySQL Schema	
	1.4	Prinzipschema Cloud	
2	Sol	I – Ist Abgleich	
3		stprotokoll	
4	Zeit	tplan	10
5	Ver	wendete Produkte und Librarys	10
	5.1	Backend / Frontend	10
	5.2	ESP8266 Wetterstation Librarys	10
	5.3	ESP8266 Wetterstation Hardware	11
6	Das	shboards	11
7	Anh	nang	11

1 Schemas

1.1 Elektronik Schema ESP (Wetterstation)

1.2 Aktivitätsdiagramme

1.2.1 ESP Code (Wetterstation)

1.2.2 NodeRed (Backend)

Live Data Handler

Hystory Data Handler

1.3 MySQL Schema

1.4 Prinzipschema Cloud

2 Soll – Ist Abgleich

Soll	Ist	Erfüllt
4.1 Erheben folgender Messwerte:TemperaturLuftfeuchtigkeitLuftqualitätLuftdruck	Temperatur, Luftfeuchtigkeit, Luftqualität und Luftdruck werden aufgezeichnet.	JA
4.2 Erheben diverser Metriken der Wetterstation: - iP Adresse - Hostname - Systemzustand - Letztes Update der Station usw.	Die Station sendet diverse Metadaten an den Node-Red Server: - Hostname - Verbundene SSID - WiFi Stärke in RSSI - iP Adresse - Heap Fragmentierung - Freier Heap Speicher	JA
4.3 Persistente Speicherung der Messwerte in der Cloud: Sämtliche, aufgezeichneten Messwerte sollen auf einem zentralen Server in der Cloud für einen definierten Zeitraum gespeichert werden. Hierzu soll eine DB wie Bspw. MySQL verwendet werden, auf welche zu einem späteren Zeitpunkt weitere Systeme für die Auswertung angebunden werden können.	Die Messwerte werden von der Wetterstation als Json Payload per MQTT an den Node-Red gesendet. Dieser speichert die Werte anschließend in einem MySQL Server.	JA
4.4 Fehlererkennung: Die Wetterstation soll die Möglichkeit haben, im Falle eines Fehlers (Server Verbindung getrennt, keine Netzwerkverbindung usw.), dies mithilfe einer LED oder eines Displays zu signalisieren.	Verliert die Station die MQTT oder WLAN- Verbindung, wird dies mittels einer RGB LED signalisiert. Je nach Fehler, wird eine andere Farbe verwendet: Rot blinkend: Kein WLAN. Orange blinkend: MQTT Fehler	JA
5.1 Technologien Für die Entwicklung sollen Produkte und Technologien nach aktuellem Stand der Technik eingesetzt werden. Gibt es für eine spezifische Anforderung bereits eine Library, kann diese sofern ausgewiesen verwendet werden.	Sämtlicher Code wurde nach bestem Wissen und Stand der Technik entwickelt. Die verwendeten Module können im Punkt 3 dieses Dokuments entnommen werden.	JA
5.2 Sicherheit Sämtliche Systeme sollen nach aktuellem Stand der Technik abgesichert werden. Verbindungen, welche über das Internet aufgebaut werden, müssen mit Hilfe von SSL/TLS und gültigen Zertifikaten verschlüsselt sein, um ein Mitlesen oder Manipulieren der Daten seitens Dritter zu erschweren.	Das Node-Red UI und Grafana sind über HTTPs mit einem gültiges SSL Zertifikat gesichert. Sämtliche MQTT Kommunikation zwischen Wetterstation und Node-Red (Mosquitto) ist per TLS gesichert. Lediglich mit der Zertifikatsprüfung gibt es noch Probleme, weshalb diese zum aktuellen Zeitpunkt deaktiviert ist.	Teilweise
5.3 Hosting Weil der Kunde die Server nicht lokal betreiben möchte, sollen diese bei einem großen Cloud-Provider gehostet werden. Die Auswahl des Anbieters ist hierbei dem Entwickler überlassen.	Der MySQL Server, Grafana Server und Node-Red Server werden als separate Ubuntu VMs bei DigitalOcean gehostet.	JA

5.4 Erweiterbarkeit Um Erweiterungen zu einem späteren Zeitpunkt zu ermöglichen, müssen sämtliche Software-Module möglichst modular und erweiterbar konzipiert werden.	Der Source-Code der Wetterstation wurde möglichst modular aufgebaut. Für verschiedene Aufgaben wurden eigene Klassen erstellt (Bspw. für das MQTT Handling).	JA
	Die DB wurde so konzipiert, dass mehrere Wetterstationen gleichzeitig Daten aufzeichnen können.	

3 Testprotokoll

Test	Erwartetes Ergebnis	Tatsächliches Ergebnis	Erfüllt
Simulieren einer	Die LED Blinkt einige	Die LED Blinkt einige Male Rot und	Ja
fehlenden WLAN-	Male Rot und pausiert	pausiert anschliessend. Dies	
Verbindung der	anschliessend. Dies	geschieht so lange, bis die WLAN-	
Wetterstation.	geschieht so lange, bis	Verbindung wieder aufgebaut ist.	
	die WLAN-Verbindung		
	wieder aufgebaut ist.		
Simulieren einer	Die LED Blinkt einige	Die LED Blinkt einige Male Violett	Ja
fehlenden MQTT-	Male Violett und	und pausiert anschliessend. Dies	
Verbindung der	pausiert anschliessend.	passierte so lange, bis die MQTT-	
Wetterstation.	Dies geschieht so lange,	Verbindung wieder hergestellt	
	bis die MQTT-	wurde.	
	Verbindung wieder		
	aufgebaut ist.	Auf dem NodeRed Dashboard ist	
		nach 50s eine Warnmeldung	
	Auf dem NodeRed	erschienen, dass die Station keine	
	Dashboard sollte nach	Daten mehr sendet.	
	überschreiten des		
	Updateintervall um 20s		
	eine Meldung		
	erscheinen, dass die		
	Station offline ist.		
Betreiben der Station	Die Station sollte ohne	Die Station ist Stand 08.01.2022	Ja
für einen längeren	Probleme über einen	seit über einer Woche	
Zeitraum, um	längeren Zeitraum	kontinuierlich in Betrieb. Bis jetzt	
sicherzustellen, dass	betrieben werden	konnten keine Probleme	
diese Stabil läuft.	können. Die	festgestellt werden. Auch das	
	aufgezeichneten Daten	Updateintervall wird zeitlich	
	werden hierbei mit dem	eingehalten.	
	definierten		
	Updateintervall an den		
	NodeRed gesendet.		
Validieren der	Die von der	Wir haben die vom BME 680	JA
Genauigkeit der	Wetterstation	Sensor aufgezeichneten Daten mit	
Messdaten.	gesammelten Daten	einem anderen Produkt (Netatmo)	
	sollten relativ genau	abgeglichen. Die Messwerte sind	
	sein.	hierbei ziemlich genau. Bei der	
		Temperatur beträgt der	
		Unterschied Bspw. höchstens 0.2 –	
		0.4°C.	

4 Zeitplan

,,	_	_	_	_		_
	06.12.21	13.12.21	20.12.21	27.12.21	03.01.22	09.01.12
Sensor bestellen	-	-	-	-	-	-
sensor bestellen	M	-	-	-	-	-
Aktivitätadia aram	-	-	-	-	-	-
Aktivitätsdiagram	M	M	M	M	-	-
Handura na día grana	-	-	-	-	-	-
Hardwaredíagram	M	M	-	-	-	M
Software schreiben	-	M	M	M	M	-
Software Schreiben	-	N	N	N	N	-
Node-RED konfigurieren	-	-	-	-	-	-
Node-RED konnguneren	N	N	N	N	N	-
Disital Occas Samuer aufacture	N	-	-	-	-	-
Digital Ocean Server aufsetzen	-	-	-	-	-	-
Massuitta kanfigurianan	N	-	-	-	-	-
Mosquitto konfigurieren	-	-	-	-	-	-
MusCOL kamfigurianan	N	-	-	-	-	-
MySQL konfigurieren	-	-	-	-	-	-
Crafana kanfisuriaran	N	N	N	N	N	-
Grafana konfigurieren	-	-	-	-	-	-
Dokumentation schreiben	M	M	M	M	M	M
Dokumentation schreiben	M	M	N	N	N	-
Pflichtenheft	-	-	-	-	-	-
rmentennert	-	-	-	N	N	N
Dräsantation	-	-	-	-	М	М
Präsentation	-	-	-	-	-	-
Testprotokoll	-	-	-	-	М	М
restprotokon	-	-	-	-	N	N
Korrekturen	-	-	-	-	М	М
Korrekturen	-	-	-	-	N	N

5 Verwendete Produkte und Librarys

5.1 Backend / Frontend

- Node-Red: Backend und Frontend UI.
 - o Node-red-dashboard: Diverse UI Elemente.
 - o Node-red-node-mysql: Verbindungen zum MySQL Server.
 - o Node-red-contrib-counter: Baustein welcher einen Counter ausgibt.
- MySQL: DB Server zur Speicherung der Messwerte.
- Grafana: Visualisierung der MySQL Daten.
 - <u>DynamicText</u>: Modul zur darstellung von dynamischem Text basierend auf SQL Querys.

5.2 ESP8266 Wetterstation Librarys

- Adafruit BME680: Library zum Auslesen der Sensorwerte.
- ESP8266WiFi: Library für WLAN und TLS Verbindungen.
- <u>PubSubCLient</u>: Library für MQTT Verbindungen zwischen Node-Red und Wetterstation.
- NTPClient: Library für Zeitsync per NTP.
- ArduinoJson: Library zum parsen von Daten zu Json Objekten.

5.3 ESP8266 Wetterstation Hardware

- NodeMCU ESP8266: Hauptmodul
- RGB LED: Status LED
- <u>BME 680</u>: Wettersensor

6 Dashboards

- Grafana Dashboard
- Node-Red Dashboard

7 Anhang

- Plattform IO Projekt der Wetterstation
- NodeRed Konfiguration
- Grafana Konfiguration
- SQL Statements zur Erstellung der DB
- Pflichtenheft