Ampliació de Matemàtiques Tema 2. Integrals de línia i teorema de Green

Lali Barrière Departament de Matemàtiques - UPC

Enginyeria de Sistemes Aeroespacials Enginyeria d'Aeroports Enginyeria d'Aeronavegació EETAC

Continguts

- 2.1 Corbes parametritzades
- 2.2 Integrals de línia de camps escalars
- 2.3 Integrals de línia de camps vectorials
- 2.4 Teorema de Green
- 2.5 Camps conservatius

2.1 Corbes parametritzades

Definició Una corba parametritzada o camí de \mathbb{R}^n és una aplicació contínua d'una interval tancat de \mathbb{R} en \mathbb{R}^n

$$\sigma: [a,b] \longrightarrow \mathbb{R}^n$$

$$t \longmapsto (\sigma_1(t), \dots, \sigma_n(t))$$

Els extrems del camí són $\sigma(a)$, l'origen, i $\sigma(b)$, el final.

Diem que tenim un camí tancat si $\sigma(a) = \sigma(b)$.

Si σ_i és \mathcal{C}^1 per a tot $i=1,\ldots,n$, diem que es tracta d'un camí \mathcal{C}^1 .

Notació

A \mathbb{R}^2 escrivim $\sigma(t) = (x(t), y(t))$.

A \mathbb{R}^3 escrivim $\sigma(t) = (x(t), y(t), z(t)).$

Observacions

- La gràfica d'un camí injectiu és una corba, $C=\sigma([a,b]).$
- ▶ Diferents parametritzacions poden donar lloc a la mateixa corba.
- L'orientació del camí σ és el sentit de recorregut de la corba C per σ .

Treballem amb camins C^1 (o C^1 a trossos).

Derivada d'un camí i longitud d'una corba

- \bullet $\sigma: \mathbb{R} \to \mathbb{R}^n \Rightarrow \sigma'(t) = (\sigma'_1(t), \dots, \sigma'_n(t))$
- ▶ La longitud de la corba $C = \sigma([a, b])$ és, si σ és injectiu:

$$\ell(C) = \int_{a}^{b} ||\sigma'(t)|| dt$$

Cas particular:
$$\sigma(x) = (x, f(x)) \Rightarrow \ell(C) = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

 $ightharpoonup \sigma$ posició, σ' velocitat, $||\sigma'(t)||$ mòdul de la velocitat

2.2 Integrals de línia de camps escalars

Definició

Si $\sigma:[a,b]\to\mathbb{R}^n$ és un camí \mathcal{C}^1 , i $f:\mathbb{R}^n\to\mathbb{R}$ és un camp escalar, tals que $f\circ\sigma$ és contínua en [a,b], la integral de f sobre σ és:

$$\int_{\sigma} f \, d\ell = \int_{a}^{b} f(\sigma(t)) ||\sigma'(t)|| dt$$

Si $C = \sigma([a,b])$, es pot dir integral de f sobre C: $\int_C f \, d\ell = \int_\sigma f \, d\ell$.

La integral de línia d'un camp escalar NO depèn de la parametrització de la corba.

Interpretació física Si f=1, la integral de línia sobre una corba és la longitud de la corba.

Si f és la densitat lineal de massa, la integral de línia sobre una corba és la massa total de la corba.

2.3 Integrals de línia de camps vectorials

Definició

Si $\sigma:[a,b]\to\mathbb{R}^n$ és un camí \mathcal{C}^1 , i $\vec{F}:\mathbb{R}^n\to\mathbb{R}^n$ és un camp vectorial, tals que $\vec{F}\circ\sigma$ és contínua en [a,b], la integral de f sobre σ és:

$$\int_{\sigma} \vec{F} \cdot d\vec{\ell} = \int_{a}^{b} \vec{F}(\sigma(t)) \cdot \sigma'(t) dt$$

La integral de línia d'un camp vectorial canvia de signe segons l'orientació.

Notació

$$\int_{\sigma} \vec{F} \cdot d\vec{\ell} = \int_{\sigma} F_x dx + F_y dy + F_z dz$$

$$ightharpoonup C$$
 tancada $\Rightarrow \int_{\sigma} \vec{F} \cdot d\vec{\ell} = \oint_{\sigma} \vec{F} \cdot d\vec{\ell}$ circulació

Interpretació física

Si \vec{F} és un camp de forces, $\int_{\sigma} \vec{F} \cdot d\vec{\ell}$ és el treball realitzat per la força quan una partícula es mou al llarg de la corba $C = \sigma([a,b])$.

Relació entre la integral de línia de camps vectorials i camps escalars

 $\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$ camp vectorial.

Definim $f:\mathbb{R}^n \to \mathbb{R}$ sobre el camí $\sigma:[a,b] \to \mathbb{R}^n$ com:

$$f(\sigma(t)) = \vec{F}(\sigma(t)) \cdot \frac{\sigma'(t)}{||\sigma'(t)||}$$

Aleshores:

$$\left(\vec{F}(\sigma(t)) \cdot \frac{\sigma'(t)}{||\sigma'(t)||}\right) ||\sigma'(t)|| = \vec{F}(\sigma(t)) \cdot \sigma'(t)$$

i, per tant:

$$\int_{\sigma} f \, d\ell = \int_{\sigma} \vec{F} \cdot d\vec{\ell}$$

La integral de línia d'un camp vectorial és la integral de línia del camp escalar obtingut en projectar sobre el vector tangent.

Teorema fonamental del càlcul

Si $\sigma:[a,b]\to\mathbb{R}^n$ és un camí \mathcal{C}^1 , i $f:\mathbb{R}^n\to\mathbb{R}$ és un camp escalar \mathcal{C}^1 aleshores:

$$\int_{\sigma} \vec{\nabla} f \cdot d\vec{\ell} = f(\sigma(b)) - f(\sigma(a))$$

Recordem El gradient de f és el vector de derivades parcials. En el cas d'un camp a \mathbb{R}^2 :

$$\vec{\nabla} f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right)$$

Si $\vec{F} = \vec{\nabla} f$, diem que el camp f és el potencial de \vec{F} .

2.4 Teorema de Green

- ▶ El teorema de Green relaciona la integral de línia d'un camp vectorial a \mathbb{R}^2 sobre una corba tancada amb una integral doble sobre l'interior de la corba (el recinte del pla encerclat per la corba).
- ▶ Diem que una parametrització d'una corba tancada i simple (sense autointerseccions) té orientació positiva si el recorregut donat per la parametrització deixa l'interior de la corba a l'esquerra d'aquesta.
- Escrivim C^+ o bé σ^+ per indicar que la corba C, parametritzada per σ , té orientació positiva.

Teorema de Green

Si:

- C és una corba tancada, simple i \mathcal{C}^1 a trossos,
- ightharpoonup D és la regió del pla interior a la corba C,
- $\vec{F}(x,y) = (P(x,y),Q(x,y))$ és un camp vectorial \mathcal{C}^1 .

Aleshores:

$$\oint_{C^+} P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy$$

El teorema de Green es pot fer servir per calcular una integral de línia mitjançant una integral doble o bé, inversament, per calcular una integral doble mitjançant una integral de línia.

Aplicacions del teorema de Green

$$\qquad \qquad \text{\` Area}(D) = \iint_D dx\,dy = \frac{1}{2}\oint_{C^+}\!x\,dy - y\,dx = -\oint_{C^+}\!y\,dx = \oint_{C^+}\!x\,dy$$

lacktriangle Si existeixen dues funcions P(x,y) i Q(x,y) tals que

$$f(x,y) = \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y)$$

llavors es pot utilitzar el teorema de Green per calcular

$$\iint_D f(x,y)dx\,dy$$

Regions amb forats

El teorema de Green també és vàlid sobre regions amb forats, si s'orienten bé les vores.

És a dir, si $\vec{F} = (P, Q)$:

$$\oint_{C_{+}^{+}} \vec{F} \cdot d\vec{\ell} + \oint_{C_{-}^{-}} \vec{F} \cdot d\vec{\ell} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

2.5 Camps conservatius

Un camp de forces és conservatiu si el treball que realitza una partícula que es mou entre dos punts no depèn del camí que segueix.

Teorema de caracterització dels camps conservatius

 \vec{F} camp vectorial \mathcal{C}^1 a $D\subset\mathbb{R}^2.$ Les tres condicions següents són equivalents:

- 1. $\oint_C \vec{F} \cdot d\vec{\ell} = 0$, per a tota corba tancada simple.
- 2. $\int_{C_1} \vec{F} \cdot d\vec{\ell} = \int_{C_2} \vec{F} \cdot d\vec{\ell}$, on C_1 i C_2 tenen els mateixos extrems.
- 3. Existeix un camp escalar f, \mathcal{C}^2 , anomenat potencial, tal que: $\vec{F} = \vec{\nabla} f$.

Quan es compleix qualsevol d'aquestes tres condicions diem que \vec{F} és un camp conservatiu.

El teorema ens diu que un camp vectorial és conservatiu si i només si és el gradient d'un camp escalar.

Condició necessària

▶ Si $\vec{F} = (P, Q)$ és un camp conservatiu, aleshores:

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

► En canvi, si es compleix

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

no es pot assegurar que el camp $\vec{F}=(P,Q)$ sigui conservatiu.

▶ Per això és necessari també que el domini del camp sigui simplement connex, és a dir, no tingui forats.

Camps conservatius sense singularitats

Teorema de caracterització dels camps conservatius sense singularitats

 $ec{F}$ camp vectorial \mathcal{C}^1 a \mathbb{R}^2 . Les quatre condicions següents són equivalents:

- 1. $\oint_C \vec{F} \cdot d\vec{\ell} = 0$, per a tota corba tancada simple.
- 2. $\int_{C_1} \vec{F} \cdot d\vec{\ell} = \int_{C_2} \vec{F} \cdot d\vec{\ell}$, on C_1 i C_2 tenen els mateixos extrems.
- 3. Existeix un camp escalar f, \mathcal{C}^2 , anomenat potencial, tal que: $\vec{F} = \vec{\nabla} f$.
- 4. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, on $\vec{F} = (P, Q)$.

Quan es compleix qualsevol d'aquestes quatre condicions diem que \vec{F} és un camp conservatiu.

El teorema val també per a camps amb domini simplement connex.