ORF 526 CONDENSED TOPIC NOTES MIKLOS RACZ

Emily Walters*

Friend Center 008

 $September\ 12^{th},\ 2018-December\ 31^{st},\ 2018$

CONTENTS

1	Elementary Probability Theory		2
	1.1	Conditional Probability	2
	1.2	Statistical Independence	2
	1.3	Random Variables	2
	1.4	Expected Value	3
	1.5	Variance	3
	1.6	Important Distributions	4
	1.7	Important Inequality Theorems	6
	1.8	Important Limit Theorems	6
2	Measure Theory		6
	2.1	(Sigma) Algebras	6
	2.2	Measures	7
	2.3	Measurable Functions	8
	2.4	Integration of Measurable Functions	8
3	Probability Spaces		8
	3.1	Expected Value	8
	3.2	Almost Sure and Almost Everywhere	8
	3.3	Inequalities and Bounds	8
	3.4	Borel-Cantelli Lemmas	8
	3.5	Law of Large Numbers, Central Limit Theorem	8
	3.6	Weak Convergence	8
4	Mar	kov Chains	8

^{*}ewalters@princeton.edu

1 Elementary Probability Theory

1.1 Conditional Probability

1.1 DEFINITION (Conditional Probability).

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

1.2 тнеокем (Baye's Theorem).

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}$$

1.2 Statistical Independence

1.3 DEFINITION (Statistical Independence). Two events A, B are statistically independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$$

1.3 Random Variables

1.4 DEFINITION (Elementary Definition of Random Variables). Given a sample space Ω , a random variable is a numeric function on Ω .

The distribution of random variables can be defined by a probability distribution function. This can take multiple forms.

1.5 DEFINITION (Cumulative Density Function).

$$F_X(x) = \mathbb{P}(X \le x)$$

1.6 DEFINITION (Probability Mass Function). The distribution of discrete random variables can be defined by a function of the form

$$f_X(x) = \mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$

1.7 Definition (Probability Density Function). The distribution of a continuous random variable can be defined by a function f_X where

$$\mathbb{P}\left(a \le X \le b\right) = \int_{a}^{b} f_X(x) dx$$

Notice that this also defines the cumulative density function as

$$F_X(x) = \int_{-\infty}^{x} f_X(t)dt$$

1.4 Expected Value

1.8 DEFINITION (Expected Value). The expected value of a discrete random variable X is defined as

$$\mathbb{E}\left[X\right] = \sum_{-\infty}^{\infty} x \mathbb{P}\left(X = x\right)$$

For a continuous random variable, we define it as

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{\infty} x f_X(x) dx$$

where f_X is the probability density function of X.

1.9 Remark (Properties of Expected Value). • Linearity: For $a, b \in \mathbb{R}$, $\mathbb{E}\left[aX + bY\right] = a\mathbb{E}\left[X\right] + b\mathbb{E}\left[Y\right]$.

- $\mathbb{E}[X]$ is finite if and only if $\mathbb{E}[|X|]$ is finite.
- $X \ge 0$ A.S., then $\mathbb{E}[X] \ge 0$.
- If $X \le Y$ A.S. and both $\mathbb{E}[X]$ and $\mathbb{E}[Y]$ exists (that is, $\min\{\mathbb{E}[X_+], \mathbb{E}[X_-]\} < \infty$ and $\min\{\mathbb{E}[Y_+], \mathbb{E}[Y_-]\} < \infty$), then $\mathbb{E}[X] \le \mathbb{E}[Y]$.
- If $\mathbb{E}\left[|X^b|\right] < \infty$ and $0 < a \le b$, then $\mathbb{E}\left[|X^a|\right] < \infty$.
- If X, Y are independent random variables then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

1.5 Variance

1.10 DEFINITION (Variance).

$$\sigma^2 = \operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}\left[X\right])^2\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2$$

1.11 DEFINITION (Covariance).

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])] \mathbb{E}[(Y - \mathbb{E}[Y])]$$

1.12 REMARK (Properties of Variance).

- $Var(X) \geq 0$.
- $Var(aX) = a^2 Var(X)$.
- $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, y)$.

1.6 Important Distributions

Bernoulli Distribution

1.13 REMARK. The Bernoulli distribution is the distribution of the random variable that takes the value 1 with probability p and the value 0 with probability (1-p).

1.14 FACT (Bernoulli Distribution Properties).

- Expected Value: $\mathbb{E}[X] = p$.
- Variance: Var(X) = p(1 p).

Binomial Distribution

1.15 REMARK. The binomial distribution is the probability distribution of the number of successes in a sequence of n experiments, each with probability of success p. In other words, the sum of n independent random variables each with a Bernoulli distribution and probability p.

1.16 FACT (Binomial Distribution Properties).

- PMF: $\mathbb{P}(X = k) = f(k, n, p) = \binom{n}{k} p^k (1 p)^{n-k}$.
- CDF: $\mathbb{P}(X \le k) = F(k, n, p) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$.
- Expected Value: $\mathbb{E}[X] = np$.
- Variance: Var(X) = np(1-p).

Geometric Distribution

1.17 REMARK. The geometric distribution describes the number of repeated Bernoulli trials (experiments with a probability of success p) needed to achieve one success. For example, how many times must a coin be flipped to get a heads.

1.18 FACT (Geometric Distribution Properties).

- PMF: $\mathbb{P}(X = k) = f(k, p) = (1 p)^{k-1}p$.
- CDF: $\mathbb{P}(X \le k) = F(k, p) = 1 (1 p)^k$.
- Expected Value: $\mathbb{E}[X] = \frac{1}{p}$.
- Variance: $Var(X) = \frac{1-p}{p^2}$.

Poisson Distribution

1.19 Remark. The Poisson distribution describes the probability that a given number of events will occur in a fixed length of time if the events occur at a constant rate and the chance of one occurring is independent of the time since the last event. For example, the number of meteors that strike the earth in one year. λ denotes the average number of events in a unit time.

1.20 FACT (Poisson Distribution Properties).

• PMF: $\mathbb{P}(X = k) = f(k, \lambda) = e^{-\lambda} \frac{\lambda^k}{k!}$.

• CDF: $\mathbb{P}(X \le k) = F(k, \lambda) = e^{-\lambda} \sum_{i=0}^{k} \frac{\lambda^i}{i!}$.

• Expected Value: $\mathbb{E}[X] = \lambda$.

• Variance: $Var(X) = \lambda$.

Exponential Distribution

1.21 REMARK. The exponential distribution describes the time between events in a Poisson point process. That is, a process in which events occur continuously and independently at a constant average rate. λ denotes the average number of events in a unit time.

1.22 FACT (Poisson Distribution Properties).

• PDF: $f(x, \lambda) = \lambda e^{-\lambda x}$.

• CDF: $\mathbb{P}(X \le k) = F(x, \lambda) = \int_{-\infty}^{x} f(t, \lambda) dt = 1 - e^{-\lambda x}$.

• Expected Value: $\mathbb{E}[X] = \frac{1}{\lambda}$.

• Variance: $Var(X) = \frac{1}{\lambda^2}$.

Normal Distribution

1.23 REMARK. The normal distribution is a continuous probability distribution with a number of unique properties. It is particularly important due to its relation to the central limit theorem.

1.24 FACT (Normal Distribution Properties).

• PDF: $f(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

• CDF: $\mathbb{P}(X \le k) = F(x, \lambda) = \int_{-\infty}^{x} f(t, \lambda) dt = \frac{1}{2} [1 + erf(\frac{x - \mu}{\sigma \sqrt{2}})]$, where erf, the error function, is non-elementary.

• Expected Value: $\mathbb{E}[X] = \mu$.

• Variance: $Var(X) = \sigma^2$.

1.7 Important Inequality Theorems

1.25 THEOREM (Markov's Inequality). Suppose X is a non-negative random variable and a>0. Then

$$\mathbb{P}\left(X \ge a\right) \le \frac{\mathbb{E}\left[X\right]}{a}$$

1.26 THEOREM (Chebyshev's Inequality). Let X be a random variable with $\mathbb{E}[X] = \mu$ finite and non-zero variance $\text{Var}(x) = \sigma^2$. Then for an real k > 0,

$$\mathbb{P}\left(|X - \mu| \ge k\sigma\right) \le \frac{1}{k^2}$$

1.8 Important Limit Theorems

1.27 THEOREM (Weak Law of Large Numbers). Let $\{X_i\}$ be i.i.d. random variables with mean μ , and let $S_n = \frac{X_1 + X_2 + \dots + X_n}{n}$. Then S_n converges to μ in probability. That is, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left(|S_n - \mu| > \epsilon\right) = 0$$

That is, for any ϵ , we can guarantee that S_n is within ϵ of μ with arbitrary probability given a sufficient n.

1.28 THEOREM (Strong Law of Large Numbers). Let $\{X_i\}$ be i.i.d. random variables with mean μ , and let $S_n = \frac{X_1 + X_2 + \dots + X_n}{n}$. Then S_n converges to μ almost surely. That is,

$$\mathbb{P}\left(\lim_{n\to\infty}S_n=\mu\right)=1$$

1.29 THEOREM (Central Limit Theorem). Let $\{X_i\}$ be i.i.d. random variables with mean μ and finite variance σ^2 , and let $S_n = \frac{X_1 + X_2 + \dots + X_n}{n}$. Then

$$\sqrt{n}(S_n - \mu) \to \mathcal{N}(0, \sigma^2)$$

as $n \to \infty$. That is, as $n \to \infty$, the cumulative distribution function of $\sqrt{n}(S_n - \mu)$ converges pointwise to the CDF of the normal distribution centered at 0 with variance σ^2 .

2 Measure Theory

2.1 (Sigma) Algebras

2.1 DEFINITION. A collection *C* of subsets of *E* (the universe) is called an algebra if:

- $\emptyset \in C$.
- $A \in C \implies A^c \in C$.

• $A, B \in C \implies A \cup B \in C$.

C is a σ -algebra if:

- $\emptyset \in C$.
- $A \in C \implies A^c \in C$.
- $A_1, A_2, \dots \in C \implies \bigcup_{i=1}^{\infty} A_i \in C$.

Noticed the strengthened version of property three.

Examples:

- $\mathcal{E} = \{\emptyset, E\}$ trivial σ -algebra.
- $\mathcal{E} = 2^E$, the discrete σ -algebra.
- **2.2** THEOREM (Intersections and Unions of σ -Algebras). Any (countable or uncountable) intersection of σ -algebras is a σ -algebra.
 - The union of two σ -algebras is not necessarily a σ -algebra.
- 2.3 DEFINITION. Generated σ -algebra] Let $\mathcal C$ be a collection of subsets of E. Take all σ -algebras that contain $\mathcal C$. Take their intersection. This σ -algebra is called the σ -algebra generated by $\mathcal C$, and is denoted by $\sigma(\mathcal C)$.
- 2.4 DEFINITION (Borel Algebras and Borel Sets). If E is a topological space, and C is the collection of all open sets of E, then $\sigma(C)$ is called the Borel σ -algebra. Its elements are called Borel sets. The Borel σ -algebra is denoted by \mathcal{B}_E or $\mathcal{B}(E)$.
- 2.5 definition (Measurable Spaces and Measurable Sets). A pair (E,\mathcal{E}) is a measurable space if \mathcal{E} is a σ -algebra on E. The sets in \mathcal{E} are called measurable sets.
- 2.6 DEFINITION (Measurable Rectangles). Let (E,\mathcal{E}) , (F,\mathcal{F}) are two measurable spaces. If $A \subset E$ and $B \subset F$ are measurable sets, then $A \times B$ is called a measurable rectangle.
- 2.7 DEFINITION (Products of Measurable Spaces). The product $(E \times F, \mathcal{E} \otimes \mathcal{F})$ where $\mathcal{E} \otimes \mathcal{F} = \sigma(\{A \times B \mid A \in \mathcal{E}, B \in \mathcal{F}\})$, is a measurable space.

2.2 Measures

2.8 DEFINITION (Measure). $\mu: \mathcal{E} \to \mathbb{R}^+$ is a measure on (E, \mathcal{E}) if

- 1. $\mu(\emptyset) = 0$
- 2. If $A_1, A_2, \dots \in \mathcal{E}$ are pairwise disjoint, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

Property (2) is called countable additivity or σ -additivity.

2.9 DEFINITION (Probability Measure). A probability measure is a measure μ such that $\mu(E)=1$.

2.10 DEFINITION. A probability space is a triple (E, \mathcal{E}, μ) such that (E, \mathcal{E}) is a measurable space, and μ is a probability measure.

Probability spaces are often denoted $(\Omega, \mathcal{F}, \mathbb{P})$.

Examples of Measures

- 1. The Dirac Measure. $x \in E$, $\delta_x(A) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$
- 2. The Counting Measure. $D \in E$, $\mu(A) = \#$ of points in $A \cap D$. If D is countable, then $\mu(A) = \sum_{x \in D} \delta_x(A)$.
- 3. Discrete Measure. $D \subset E$ countable, m(x) is some real value for every $x \in D$. $\mu(A) = \sum_{x \in D} m(x) \delta_x(A)$.
- 4. The Uniform Measure on $\{1, 2, ..., n\}$. The discrete measure with $m(x) = \frac{1}{n}$.
- 5. The Lebesgue Measure. Leb(A) = length of A where A is an interval.
 - 2.3 Measurable Functions
 - 2.4 Integration of Measurable Functions

3 PROBABILITY SPACES

- 3.1 Expected Value
- 3.2 Almost Sure and Almost Everywhere
 - 3.3 Inequalities and Bounds
 - 3.4 Borel-Cantelli Lemmas
- 3.5 Law of Large Numbers, Central Limit Theorem
 - 3.6 Weak Convergence

4 Markov Chains