Driving Scene Segmentation: Lane Detection For Autonomous Car

Team 6: Tejas Mahale, Chaoran Chen, Wenhui Zhang

Introduction

The goal of this project is to conduct lane detection in case of quick steering scenario of AutoCars.

Dataset

- Carla simulator dataset
 - o open-source simulator for autonomous driving research
 - o 3,000 images along with semantic labels with resolution 600 x 800 x 3

Dataset

- Carla simulator dataset
 - o Drive a car in urban conditions to get train images and corresponding encoded label images
 - Almost all types of weather conditions and different time of day for the images.

Related Works on Structured DL: Deep learning on graphs etc.

Challenges

- 1) Classification: object associated to a specific semantic concept
- → use label map with GCN;
- 2) Localization: classification label for a pixel not aligned with score map
- →use camera to world space projection;
- 3) Noisy Gradient Prediction:
- → use Batch Norm and Boundary Refinement, with optimization method of Adam.

Data Preprocessing

• Cropping car hood and sky portion

600 x 800 x 3

360 x 800 x 3

Data Preprocessing

 Decodify 	R	G	В	int24	
	00000000	00000000	00000000	0	min (near)
	11111111	11111111	11111111	16777215	max (far)

- 1.To decodify our depth first we get the int24. R + G*256 + B*256*256
- 2. Then normalize it in the range [0, 1]. Ans / (256*256*256 1)
- 3.And finally multiply for the units that we want to get. We have set the far plane at 1000 metres. Ans

Data Preprocessing

- Encoded image to Segmented image
 - Every pixel of label image is red channel class label
 - Retained class labels with road and vehicle and converted them to green and blue respectively

+1		
Value	Tag	
0	None	
1	Buildings	
2	Fences	
3	Other	
4	Pedestrians	
5	Poles	
6	RoadLines	
→ 7	Roads	
8	Sidewalks	
9	Vegetation	
→ 10	Vehicles	
11	Walls	
12	TrafficSigns	

GCN and Adam

Fig 1: Classification network; B: Conventional segmentation network, mainly designed for localization; C: Our Global Convolutional Network.

Require: ϵ (set to 0.0001), decay rates ρ_1 (set to 0.9), ρ_2 (set to 0.9), θ , δ

Initialize moments variables s = 0 and r = 0, time step t = 0

- 1: while stopping criteria not met do
- Sample example $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ from training set
- Compute gradient estimate: $\hat{\mathbf{g}} \leftarrow +\nabla_{\theta} L(f(\mathbf{x}^{(i)};\theta),\mathbf{y}^{(i)})$
- $t \leftarrow t + 1$
- Update: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 \rho_1)\hat{\mathbf{g}}$
- Update: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 \rho_2) \hat{\mathbf{g}} \odot \hat{\mathbf{g}}$
- Correct Biases: $\hat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1-\rho_1^t}, \hat{\mathbf{r}} \leftarrow \frac{\mathbf{r}}{1-\rho_2^t}$
- Compute Update: $\Delta \theta = -\epsilon \frac{\hat{\mathbf{s}}}{\sqrt{\hat{\mathbf{r}}} + \delta}$ Apply Update: $\theta \leftarrow \theta + \Delta \theta$
- 10: end while

Fig 2: ADAptive Moments

Reparameterize a deep network to reduce co-ordination of update across layers

$$H = egin{bmatrix} h_{11} & h_{12} & h_{13} & \dots & h_{1k} \ h_{21} & h_{22} & h_{23} & \dots & h_{2k} \ dots & dots & dots & dots & dots \ h_{m1} & h_{m2} & h_{m3} & \dots & h_{mk} \end{bmatrix} egin{bmatrix} \mu = rac{1}{m} \sum_{j} H_{:,j} \ \sigma = \sqrt{\delta + rac{1}{m} \sum_{j} (H - \mu)_{j}^{2}} \ h_{m1} & h_{m2} & h_{m3} & \dots & h_{mk} \end{bmatrix} \ \bullet & \mu \text{ is a vector with } \mu \text{j the column mean} \ \end{pmatrix} H = egin{bmatrix} h_{11} & h_{12} & h_{13} & \dots & h_{1k} \ h_{21} & h_{22} & h_{23} & \dots & h_{2k} \ dots & dots & dots & dots & dots \ h_{m1} & h_{m2} & h_{m3} & \dots & h_{mk} \ \end{bmatrix}$$

Let H be a design matrix having activations in any layer for m examples in the mini-batch

$$\mu = \frac{1}{m} \sum_{j} H_{:,j}$$

$$\sigma = \sqrt{\delta + \frac{1}{m} \sum_{j} (H - \mu)_{j}^{2}}$$

- column mean
- σ is a vector with σ the column standard deviation
- Hi,j is normalized by subtracting µj and dividing by σ

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} & \dots & h_{1k} \\ h_{21} & h_{22} & h_{23} & \dots & h_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{m1} & h_{m2} & h_{m3} & \dots & h_{mk} \end{bmatrix}$$

The new H allows convergence on extremely large datasets

Data Augmentation

• Rotation (0, 30 degree) and shifting (Width = (0, 0.2), height = (0, 0.1))

space

5

Data Distribution

Training	2400 images
Validation	300 images
Testing	300 images

Data Visualisation

The "semantic segmentation" camera classifies every object in the view by displaying it in a different color according to the object class

Conv + ReLU 3 x 3 x 21 x 21

Convolution 3 x 3 x 21 x 21

Method: GCN and Boundary Refinement

Metric = RMSE

Boundary Refinement

Sum

w x h x 21

w x h x 21

Architecture Model

Metric

- Mean Absolute Error:
 - Absolute pixel to pixel difference between two images(in our case ground truth image and predicted image)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

• Mean Square Error:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Parameters

Parameter	Value		
Optimizer	Adam		
Learning rate	0.001		
Number of Epoch	38		
Number of Filters	8, 16, 20, 32		

	Training		Validation	
	Minimum Square Error	Mean Absolute Error	Minimum Square Error	Mean Absolute Error
Initial Loss	1592.1951	13.3800	1443.7032	13.3908
10 Epoch	192.1637	3.1369	337.5560	6.8221
20 Epoch	102.3213	2.9696	119.4761	3.7389
30 Epoch	74.0532	2.0202	89.0769	2.8999
38 Epoch	42.7771	1.7011	61.4360	2.4999

Results on Test data:

Minimum Square Error	57.5875
Mean Absolute Error	2.2104

Original Image

MSE = 33.1541

MAE = 1.1523

Predicted image

References

- [1] Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
- [2] Geiger, Andreas, et al. "Vision meets robotics: The KITTI dataset." The International Journal of Robotics Research 32.11 (2013): 1231-1237.
- [3] Wang, Panqu, et al. "Understanding convolution for semantic segmentation." arXiv preprint arXiv:1702.08502 (2017).
- [4] Ilg, Eddy, et al. "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks." IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
- [5] M. Everingham, A. S. M. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The Pascal Visual Object Classes challenge: A retrospective," IJCV, vol. 111, iss. 1, 2014.
- [6] Xu, Huazhe, et al. "End-to-end learning of driving models from large-scale video datasets." IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
- [7] Neuhold, Gerhard, et al. "The mapillary vistas dataset for semantic understanding of street scenes." Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy. 2017.
- [8] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic object classes in video: A high-definition ground truth database." Pattern Recognition Letters 30.2 (2009): 88-97.
- [9] Oh, Sangmin, et al. "A large-scale benchmark dataset for event recognition in surveillance video." Computer vision and pattern recognition (CVPR), 2011 IEEE conference on. IEEE. 2011.
- [11] Sandipan Narote, Pradnya bhujbal, "A review of recent advances in lane detection and departure warning system", Volumn 73, Jan 18 Pattern Recognition Elsevier
- [12] Ze Wang, Qiang Qiu. "LaneNet: Real-Time Lane Detection Networks for Autonomous Driving", Computer Vision and Pattern Recognition arxiv.org [10] Chao Peng, Gang Yu, "Large Kernel Matters-improving semantic segmentation", CVPR 2017