

Goodle GMS

Evaluación automatizada avanzada Taller de aprendizaje

David Muñoz de la Peña, Fabio Gómez-Estern Universidad de Sevilla

Taller CEA EJS. Madrid, 10/3/2011

Goodle GMS

D. Muñoz, F. Gómez-Estern

1

Organización del curso

Motivación

Herramientas existentes

Solución propuesta

Conceptos básicos

Interfaz de usuario

Opciones

Modelo de ejecución

Robustez y aspectos prácticos

Estudio de casos

Ejercicios de programación

Ejercicios basados en Matlab

Ejercicios basados en EJS

Talleres

Taller CEA EJS. Madrid, 10/3/2011

Conclusiones

Goodle GMS

D. Muñoz, F. Gómez-Estern

2

Motivatción

La evaluación automática es una pieza clave del e-Learning

PROS

El profesor se centra en tareas creativas

Garantiza la equidad en la evaluación

Permite la evaluación continua

Reduce la subjetividad en la corrección

Ayuda a planificar los exámenes con más rigor

Permite hacer un seguimiento detallado del trabajo del alumno (estadísticas de trabajo, historial de envíos...)

Dota al alumno de recursos parta el aprendizaje

Permite realizar ejercicios individualizados

Permite introducir información aleatoria en los enunciados;

Permite ajustar el nivel de dificultad dinámicamente en función de la evolución del alumno

Permite implementar estrategias de evaluación colaborativa y competitiva.

Personalized exams (based on random data generation)

Abre nuevas posibilidades aún por explorar

Taller CEA EJS. Madrid, 10/3/2011

Goodle GMS

D. Muñoz, F. Gómez-Estern

Motivación

Nadie es perfecto!

INCONVENIENTES

Es siempre deseable eliminar toda subjetividad en los procesos de evaluación?

Puede ser un obstáculo a las soluciones diferentes e innovativas propuestas por los alumnos.

Requiere un intenso esfuerzo de análisis a priori de posibles respuestas

Limitaciones propias de las tecnologías disponibles:

Tests de elección múltiple

Validación por coincidencia textual

Sin embargo, en ingeniería resulta insuficiente para calificar la funcionalidad y rendimiento de los diseños (controladores, programación de algoritmos...)

Goodle GMS

WebCT

Características

Software bajo licencia privada

Dificil de instalar y mantenter (soporte necesario)

Potente gestión de alumnos y cursos (campus-wide)

Dificultades para su extensión

Exámenes disponibles

Elección múltiple, Comparación de textos, Aritmética básica

Características

Open source

Funciona en servidores PC con requisitos mínimos (servidor open source)

Utilidades de gestión potentes

Fácilmente extensible, comunidad software libre

Exámenes

Elección múltiple, Comparación de textos

Taller CEA EJS. Madrid. 10/3/2011

Goodle GMS

D. Muñoz, F. Gómez-Estern

Goodle GMS

Nueva herramienta con capacidades intermedias entre los casos anteriores

Carcterísticas

Open source (Matlab requerido)

Fácil instalación, multiplataforma

Capacidad de gestión de cursos

Completamente extensible

Exámenes

Elección múltiple, Comparación de textos

...y una nueva: modelo de evaluación de caja negra

Goodle GMS

Más sobre el modelo de caja negra

Principios

No se evalúan conceptos aislados, sino diseños completos

Los alumnos disponen de medios para comprobar la bondad de sus soluciones antes de entregarlas

Las soluciones no son únicas, ni tienen por qué ser exactas

Cada alumno puede resolver una versión o parte diferente del problema

Las notas se calculan según los resultados de la ejecución del código del alumno

Las entregas de trabajos han de ser comprobadas sintácticamente antes de su aceptación

Areas de aplicación (en educación)

Programación (modelo de solución exacta)

Problemas matémáticos (sol. exacta)

Diseño de controladores (basado en especificaciones)

Diseño de filtros en telecomunicaciones

Diseño de circuitos electrónicos

Diseño mecánico y estructural

Taller CEA EJS. Madrid, 10/3/2011

Goodle GMS

Arquitectura de la aplicación

Servidor Web Apache

Servidor Open source

Base de datos SQL

Lenguaje PHP.

Opcionalmente: Matlab (controlado mediante COM y TCP/IP)

Usuarios

Administradores

Profesores (diseñadores de ejercicios)

Profesores (monitores prácticas)

Estudiantes

Estructuras de datos

Grupos de alumnos

Ejercicios

Asignaciones

Turnos y asistencias

Calificaciones

Taller CEA EJS. Madrid, 10/3/2011

Goodle GMS

D. Muñoz, F. Gómez-Estern

9

Interfaz del profesor

Definición de un ejercicio

Enunciado PDF

Código de inicialización

Código de evaluación

Selección de opciones

Options

Plataforma de ejecución

Compilador C/C++ externo: para cursos de informática

Matlab: para matemáticas en ingeniería en general

Palabras prohibidas: para evitar código pernicioso o "atajos"

Modo de ejecución: única o múltiple

Filtro de sintaxis configurable

Filtro de IP para restringir envíos fuera del aula

Evaluación competitiva: la nota depende de un ranking

Taller CEA EJS. Madrid, 10/3/2011

Goodle GMS

Cursos pasados

Detalles del curso

Teoría de Sistemas, 2º Ingeniería Industrial.

280 estudiantes

100% de las prácticas evaluadas automáticamente

50% de la teoría evaluada automáticamente

Entorno controlado (Filtros IP, ejercicios personalizados)

5 profesores

Resultados

Incremento en la calificación final (aunque la tasa de abandono no mejora) La asistencia a prácticas aumenta significativamente Encuesta de satisfacción

Otros cursos

Control Automático (340 alumnos). Ingeniería de Telecomunicación Control Automático (380 alumnos). Ingeniería Industrial Programación C/C++ (610 alumnos). Ingeniería Industrial Optimización y Control Óptimo (20 alumnos). Ingeniería Industrial Programación Matlab (200 alumnos) Ing. Aeronáutica e Ing. Civil

Taller CEA EJS. Madrid, 10/3/2011

Goodle GMS

D. Muñoz, F. Gómez-Estern

2:

Resultados

Grade	Exercise 3	Exercise 4
1	5	9
0.9	24	2
0.8	21	2
0.7	24	4
0.6	49	3
0.5	49	11
0.4	24	43
0.3	31	118
0.2	15	60
0.1	7	7

Goodle GMS

Trabajo en curso

Desarrollar una amplia librería de ejercicios

Tarea dificil: implementar evaluadores Disponible hoy: 7 cursos en la Universidad de Sevilla Se esta estudiando crear un asistente para el diseño de evaluadores

Acumular experiencias con los modos cooperativo y competitivo

Proyecto Open Source

Licencia GNU Extensibilidad en modos Control de versiones

Otros lenguajes

Avances en la integración con EJS Curso de programación en Java Programación en ensamblador

Taller CEA EJS. Madrid, 10/3/2011

Goodle GMS

D. Muñoz, F. Gómez-Estern

27

MUCHAS GRACIAS