Disentangling Text

- 1. Towards Controlled Generation of Text by Hu et al. (https://arxiv.org/abs/1703.00955)
- 2. Style Transfer from Non-Parallel Text by Cross Alignment by Shen et al.

(https://arxiv.org/abs/1705.09655)

Presented by Kelly Zhang

What does "disentanglement" mean for text?

- This is still a pretty open question.
- But generally, it is separating the meaning of a piece of text from it's style (the way it's presented)
- Examples: That was a wonderful movie! → That was a horrible movie!
 - Sentiment
 - Tense It is hard to imagine a better tribute to this victory of survival than Nolan's spare, stunning, extraordinarily ambitious film. \rightarrow ?
 - Language
 - Word choice (ex: colloquialism vs. formal)

How is "disentanglement" measured?

One relatively easy way to discern that disentanglement is

successful is through generation

- One can then score the generations on qualities of interest
- For example on MNIST, one can
 - a) run a pre-trained classifier on generated digits to ensure "content" of generation is preserved
 - b) evaluate style transfer by visual similarity and nearest neighbors
 (I am not sure of an automatic way to do this)

```
0123456789
0123456789
0123456789
 123456789
0123456789
 123456789
0123456789
0123456789
0123456789
```

Variational Autoencoder for Generation

- VAEs encourages the latent state (z) of the autoencoder to be Gaussian (smooth) w/ KL
- This encourages the generations to be coherent when you sample a random z vector for variable generation
- This is one way to learn a mapping between inputs and latent states (will return to this idea)

Towards Controlled Generation of Text

3. Classification Loss- ensures condition is meaningful/recoverable

generations

Experiments and Results

- https://arxiv.org/pdf/1703.00955.pdf
- Semisupervised (convnet trained on different data)
 - Std = standard SST
 - S-VAE = augmented w/ gen. from semi-supervised VAE (give label, reconstruct Z)
 - H-reg = aug w/gen. from critic with entropy regularization on classifier
 - Ours = reconstruct c as well with critic
- Stanford Sentiment Treebank (subset 250 sentences + full)
- IMDB Text Corpus
- Lexicon (word level labels)
- Timebank Tense

Style Transfer from Non-Parallel Text: Aligned Autoencoder

Style Transfer from Non-Parallel Text: Cross-Aligned Autoencoder

Experiments and Results

- https://arxiv.org/pdf/1705.09655.pdf
- Sentiment Modification yelp
- Word Substitution Decipherment one to one MT
- Word Order Recovery

Measurements and Comparison

- No quantitative measure of whether the content of the sentence is retained
- Would like to see cross-aligned AE performance on SST and VAE model performance on Yelp data
- "Independency constraint" reconstructing the code to ensure usage is effective
- VAE model performance on Yelp seems very low
- (Cross-)Aligned Autoencoder models get rid of explicit assumptions on priors (compared to VAEs)
- How finicky are VAEs to optimize? Lower optimization time/resources is a major advantage on its own...
- Further applications
 - Machine translation for non-parallel corpora (finding sentences w/ similar meaning)
 - Entailment conditioned generation (https://arxiv.org/pdf/1606.01404.pdf)

VAEs vs. GANs for Generation

- Taken from a wonderful reddit post:
 https://www.reddit.com/r/MachineLearning/comments/4r3pjy/variational_autoencoders_vae_vs_generative/
- "The VAE naturally collapses most dimensions in the latent representations, and you generally get very interpretable dimensions out, the the training dynamics are generally a bit weird."
- "GAN is explicitly set up to optimize for generative tasks, though recently it also gained a set of models with a true latent space (BiGAN, ALI + site)."
- "There is some worry that VAE models spread probability mass to places it might not make sense, whereas GAN models may "miss modes" of the true distribution altogether."

Learning Mappings from Inputs to Latent Space + Generations (my impressions)

- Autoencoders
 - Simple, but no explicit guarantees on latent space properties.
- Autoregressive Models (Language models, MT, pixel CNNs)
 - Nice nice nice for generation. Interpolations? Disentanglement?
- VAEs
 - Strong prior assumption on latent space. Can work quite well, but training is tricky?
- GANs
 - Transform sampled noise to output. Can miss modes of real data's distribution. Problem of ensuring that the noise is used (not ignored by G).
- ALIGAN/BIGAN
 - https://ishmaelbelghazi.github.io/ALI/
 - Feature matching: https://arxiv.org/abs/1606.03498
- Adversarial Regularization on Z space
 - Fader networks: https://arxiv.org/abs/1706.00409
 - DrNet (Emily Denton): https://sites.google.com/view/drnet-paper/

Ponderings...

- What are good ways to learn mappings to latent spaces? Without restrictive priors? Aligning the hidden states limits lengths of generations
- VAEs seem to try to force a specific mapping
- Mapping noise to outputs generally requires randomly sampling noise
 - Should a generator be bijective? Or just surjective?
 - Mapping different noise to the same/similar output seems natural as halfway between a car and a dog shouldn't look real... right?

Non-injective generators map multiple noise to same output

Non-surjective generators miss modes