Exam 2

Matthew Tiger

December 11, 2016

Problem 1. A function $f: \mathbb{C} \to \mathbb{C}$ is defined by $f(z) = z^8$. Find the fixed points of f. Use your calculations to find the real linear and quadratic factors of the polynomial $p(z) = z^7 - 1$.

Solution. The fixed points of f are the solutions to the equation

$$f(z) - z = z^8 - z = z(z^7 - 1) = 0.$$

Thus, the fixed points of f are z=0 and the 7-th roots of unity, i.e. the points $z=e^{2\pi ki/7}$ for $k=0,1,\ldots,6$.

Note that for $z, \alpha \in \mathbb{C}$, we have that

$$(z-\alpha)(z-\overline{\alpha}) = z^2 - \overline{\alpha}z - \alpha z + \alpha \overline{\alpha} = z^2 - 2\operatorname{Re}(\alpha)z + |\alpha|^2$$

is a polynomial with real coefficients.

Using the 7-th roots of unity, we can obtain the following factorization of p(z):

$$p(z) = \prod_{k=0}^{6} (z - e^{2\pi ki/7}).$$

Let $\alpha_k = e^{2\pi ki/7}$. From the previous note, the real quadratic factors of p(z) are obtained by multiplying each factor $(z - \alpha_k)$ with $(z - \overline{\alpha_k})$, if α_k and $\overline{\alpha_k}$ are both roots of p(z). For $k = 1, \ldots, 6$, we have that α_k is a root of p(z) and

$$\overline{\alpha_k} = e^{-2\pi ki/7} = e^{2\pi(7-k)i/7} = \alpha_{7-k},$$

which is also a root of p(z). Therefore, the real linear and quadratic factors of p(z) are given by

$$p(z) = (z - \alpha_0) (z - \alpha_1) (z - \alpha_6) (z - \alpha_2) (z - \alpha_5) (z - \alpha_3) (z - \alpha_4)$$

$$= (z - 1) (z - \alpha_1) (z - \overline{\alpha_1}) (z - \alpha_2) (z - \overline{\alpha_2}) (z - \alpha_3) (z - \overline{\alpha_3})$$

$$= (z - 1) (z^2 - 2\operatorname{Re}(\alpha_1)z + 1) (z^2 - 2\operatorname{Re}(\alpha_2)z + 1) (z^2 - 2\operatorname{Re}(\alpha_3)z + 1),$$

where $Re(\alpha_k) = \cos(2\pi k/7)$.

Problem 2. Let K_c be the filled-in Julia set of $f_c(z) = z^2 + c$.

- a. Find the fixed points and the period 2 points of f_{-6} .
- b. Show that $2\sqrt{2} \in K_{-6}$ and find another point in K_{-6} , distinct from those found so far.
- c. Do any of the points you have found lie in the Julia set of f_{-6} ?
- d. Is $-6 \in \mathcal{M}$ where \mathcal{M} is the Mandelbrot set?

 \square

Problem 3. Let $f(z) = z^2 + c$. Find the values of c so that z = i is a period 2 point. Find the fixed points in each case and determine their stability. Is $c \in \mathcal{M}$?

 \square

Problem 4. Show that the function $H(z) = \frac{z-i}{z+i}$ gives a conjugacy between the Newton map N_{f_1} of $f_1(z) = z^2 + 1$ and the function $f_0(z) = z^2$. Deduce the Julia set of N_{f_1} and show that it is chaotic on its Julia set.

Solution. \Box

Problem 5. Let p(z) be a polynomial of degree d > 1 with Newton function

$$N_p(z) = z - \frac{p(z)}{p'(z)}.$$

- a. If $p(\alpha) = 0$ and $p'(\alpha) \neq 0$, show that α is a fixed point of multiplicity two for N_p , i.e. there is a rational function k(z) = m(z)/n(z) with $n(\alpha) \neq 0$ and $N_p(z) \alpha = (z \alpha)^2 k(z)$.
- b. If $p(\alpha) = 0$, $p'(\alpha) \neq 0$, and $p''(\alpha) = 0$, show that α is a fixed point of multiplicity three for N_p .

 \Box

Problem 6. a. Show that for $p_{\alpha}(z) = z(z-1)(z-\alpha)$, the Newton function $N_{p_{\alpha}}$ has a critical point where $z = (\alpha + 1)/3$.

b. For what values of α does p_{α} satisfy $p(\alpha) = 0$, $p'(\alpha) \neq = 0$, and $p''(\alpha) = 0$?

 \Box

Problem 7. Let $0 < \mu < \lambda < 1$ and let $h : [0,1] \to [0,1]$ be a homeomorphism with $h \circ L_{\mu}(x) = L_{\lambda} \circ h(x)$ for all $x \in [0,1]$.

- a. Show that h is orientation-preserving.
- b. Show that h(x) + h(1-x) = 1 for all $x \in [0,1]$. Deduce that h(1/2) = 1/2.
- c. Show that $h(\mu/4) = \lambda/4$ and h(x) > x for 0 < x < 1/2 and h(x) < x for 1/2 < x < 1.

 Solution.

Problem 8. Prove that if $f_c(z) = z^2 + c$ has an attracting periodic point, then $c \in \mathcal{M}$, the Mandelbrot set.

 \square