

# **MAX-MARGIN SVMS**

**SYRACUSE UNIVERSITY**School of Information Studies

#### THE SHAPE OF DECISION BOUNDARY

Some data are not linearly separable.



Support vector machine (SVM): An algorithm that can solve both linearly separable and inseparable problems

Find a linear hyperplane (decision boundary) that can separate the data.



One possible solution:



#### Another possible solution:



Numerous possible solutions:



School of Information Studies

Which one is better: B1 or B2?

How do you define better? (E.g., "least square fitting"?)



Find a hyperplane that maximizes the margin => B1 is better than B2.



**SYRACUSE UNIVERSITY**School of Information Studies



### **SUPPORT VECTORS**

Support vectors are the training examples ("vectors") that are located on the margins.



### **DECISION BOUNDARY**

Only support vectors determine the decision boundary.



### **NON-SUPPORT VECTORS**

Training examples that are not support vectors do not participate in prediction.



#### **MODEL COMPLEXITY**

The number of support vectors is an indicator of the complexity of the trained SVM model.



#### PREDICTION CONFIDENCE

The distance between the example and the decision boundary is an indicator of prediction confidence: The farther the better.



### PREDICTION CONFIDENCE

SVM's prediction result can be sorted by confidence and thus is suitable for semi-supervised learning and active learning.

Variant SVMs algorithm can be used for regression.