Celulární modely - pokračování

Sociální systémy a jejich simulace Jana Vacková

27.10.2021

Katedra matematiky FJFI ČVUT v Praze

Náplň dnešní přednášky

- Celulární modely Floor-Field model
- Celulární modely jako markovské řetězce

2/22

Celulární modely - Floor-Field

- 2D mřížka
- Inspirace:
 - Mravenci a jejich vylučování feromonů
 - Feromon = chemická substance značkující jejich cestu
 - Např. pro navádění dalších k potravě
 - Floor-Field proto předpokládá, že člověk také zanechává stopu
- Výhoda: dlouhodosahovost přechází v rámci výpočtu vlastně na krátkodosahovost (rychlejší)
- Hlavní myšlenka: systém polí

Celulární modely - Floor-Field - Princip polí

- Pohyb chodce je obecně ovlivněn:
 - Cílovou destinací (atraktorem)
 - Interakcí s ostatními agenty
 - Interakcí s infrastrukturou
- Floor-Field:
 - Statické pole
 - Dynamické pole

$$P(x \to y) \propto \exp \left\{ -\sum_F k_F F(y) \right\},$$

kde F značí pole a $k_F \in \langle 0, +\infty \rangle$ jeho parametr

4 / 22

- Značíme jako S
- Atraktivita buňky
- Typicky: S(y) = dist(y, A), kde A je atraktor (např. východ)
- Pro mřížku typická metrika dist(y, A) = počet kroků potřebných k dosažení A
- Když se směry potkávají, bereme minimum
- Pokud $k_S \rightarrow 0$, S nehraje roli
- Předpokládáme nyní von Neumannovo okolí

- Značíme jako S
- Atraktivita buňky
- Typicky: S(y) = dist(y, A), kde A je atraktor (např. východ)
- Pro mřížku typická metrika dist(y, A) = počet kroků potřebných k dosažení A
- Když se směry potkávají, bereme minimum
- Pokud $k_S \rightarrow 0$, S nehraje roli
- Předpokládáme nyní von Neumannovo okolí

- Značíme jako S
- Atraktivita buňky
- Typicky: S(y) = dist(y, A), kde A je atraktor (např. východ)
- Pro mřížku typická metrika dist(y, A) = počet kroků potřebných k dosažení A
- Když se směry potkávají, bereme minimum
- Pokud $k_S \rightarrow 0$, S nehraje roli
- Předpokládáme nyní von Neumannovo okolí

- Značíme jako S
- Atraktivita buňky
- Typicky: S(y) = dist(y, A), kde A
 je atraktor (např. východ)
- Pro mřížku typická metrika dist(y, A) = počet kroků potřebných k dosažení A
- Když se směry potkávají, bereme minimum
- Pokud $k_S \rightarrow 0$, S nehraje roli
- Předpokládáme nyní von Neumannovo okolí

- Značíme jako S
- Atraktivita buňky
- Typicky: S(y) = dist(y, A), kde A je atraktor (např. východ)
- Pro mřížku typická metrika dist(y, A) = počet kroků potřebných k dosažení A
- Když se směry potkávají, bereme minimum
- Pokud $k_S \rightarrow 0$, S nehraje roli
- Předpokládáme nyní von Neumannovo okolí

- Značíme jako S
- Atraktivita buňky
- Typicky: S(y) = dist(y, A), kde A je atraktor (např. východ)
- Pro mřížku typická metrika dist(y, A) = počet kroků potřebných k dosažení A
- Když se směry potkávají, bereme minimum
- Pokud $k_S \rightarrow 0$, S nehraje roli
- Předpokládáme nyní von Neumannovo okolí

Příklady výpočtu:

$$P(\downarrow \bigcirc) = \frac{e^{-7k_S}}{2e^{-7k_S} + e^{-8k_S} + 2e^{-9k_S}}$$
$$= \frac{e^{k_S}}{2e^{k_S} + 1 + 2e^{-k_S}}$$

$$P(\leftarrow \Box) = \frac{e^{-4k_S}}{e^{-4k_S} + e^{-3k_S} + e^{-2k_S}}$$
$$= \frac{e^{-k_S}}{e^{-k_S} + 1 + e^{k_S}}$$

9	8	9	10	9	8	9
8	7	8	94	8	74	8
7	G		8	4	0	4
6	5				5	
5	44	3			4	75
4	3	Ž	1	2		4
			A			

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - り Q (C)

Jana Vacková 01SSI - 6. přednáška 27.10.2021 11 / 22

Příklady výpočtu:

$$P(x \circlearrowleft) = \frac{1}{1 + 2e^{-k_S}}$$

(ロ) (個) (注) (注) 注 り(())

Celulární modely - Dynamické pole

• Chodec za sebou zanechává stopu

13 / 22

Celulární modely - Dynamické pole

- Chodec za sebou zanechává stopu
- Ale jak dlouho?

13 / 22

Celulární modely - Dynamické pole

- Chodec za sebou zanechává stopu
- Ale jak dlouho?
- A v jakém rozsahu?
- Nutné další parametry difuze a rozpadu
- Složitější než statické pole

13 / 22

Celulární modely - Floor-Field - Formálně

- V jedné buňce může být maximálně jeden chodec
- Chodec se může pohnout jen do buňky ze svého okolí
- Proto pro $y \in N_x \cap \mathbb{L}$ píšeme

$$P(x \to y | \operatorname{stav} N_x) = \frac{\exp\left\{-k_S S(y)\right\} \cdot \mathbb{I}_M}{\sum_{y \in N_x \cap \mathbb{L}} \exp\left\{-k_S S(y)\right\} \cdot \mathbb{I}_M},$$

 $\mathsf{kde}\ \mathit{M} = \{\mathit{y} = \mathit{x} \lor [\mathit{y} \neq \mathit{x} \land \mathit{y} \ \mathsf{pr\'{a}zdn\'{a}}]\}$

Jana Vacková 01SSI - 6. přednáška 27.10.2021 14 / 22

Celulární modely - Floor-Field - Formálně

- V jedné buňce může být maximálně jeden chodec
- Chodec se může pohnout jen do buňky ze svého okolí
- Proto pro $y \in N_x \cap \mathbb{L}$ píšeme

$$P(x \to y | \operatorname{stav} N_x) = \frac{\exp\left\{-k_S S(y)\right\} \cdot \mathbb{I}_M}{\sum_{y \in N_x \cap \mathbb{L}} \exp\left\{-k_S S(y)\right\} \cdot \mathbb{I}_M},$$

$$\mathsf{kde}\ M = \{ y = x \lor [y \neq x \land y \, \mathsf{prázdná}] \}$$

- Možné konflikty při paralelním updatu:
 - Nishinari řešil třením

 - \bullet S pravděpodobností μ se nic nestane a nikdo se nepohne
 - ullet S pravděpodobností $1-\mu$ se náhodně vybraný chodec pohne

Celulární modely jako Markovské procesy

- ullet Množina lokálních stavů $S=\{0,1,\ldots,|S|-1\}$
- ullet Stav buňky $x\in\mathbb{L}$ ozn. jako $au(x)\in S$
- ullet Stav celé mřížky $au \in X \subseteq S^{\mathbb{L}}$, kde X je stavový prostor
- ullet Množina přípustných stavů $S^{\mathbb{L}}:=\{f\,|\,f:\mathbb{L} o S\}$
- Časový průběh

$$\{\tau_t|t\in T\}\,$$

kde $T=\mathbb{N}_0$ nebo $T=\langle 0,+\infty \rangle$, kde

$$au_t = (au_t(x))_{x \in \mathbb{L}} \in S^{\mathbb{L}}$$

← □ ▶ ← □ ▶

$$S = \{0, 1, 2\}, \qquad \mathbb{L} = \{(i, j) \mid i, j \in \{1, 2\}\}$$

Jana Vacková 01SSI - 6. přednáška 27.10.2021 16 / 22

$$S = \{0, 1, 2\}, \qquad \mathbb{L} = \{(i, j) \mid i, j \in \{1, 2\}\}$$

$$S^{\mathbb{L}} = \left\{ \begin{array}{c|c} s_{11} & s_{12} \\ \hline s_{21} & s_{22} \end{array} : s_{ij} \in S = \{0, 1, 2\} \right\}$$

Jana Vacková 01SSI - 6. přednáška 27.10.2021 16 / 22

$$S = \{0, 1, 2\}, \qquad \mathbb{L} = \{(i, j) \mid i, j \in \{1, 2\}\}$$

$$S^{\mathbb{L}} = \left\{ \begin{array}{c|c} s_{11} & s_{12} \\ \hline s_{21} & s_{22} \end{array} \right\} : s_{ij} \in S = \{0, 1, 2\}$$

$$|S^{\mathbb{L}}| = 3^4 = 81$$

Jana Vacková 01SSI - 6. přednáška 27.10.2021 16 / 22

$$S = \{0, 1, 2\},$$
 $\mathbb{L} = \{(i, j) \mid i, j \in \{1, 2\}\}$

$$S^{\mathbb{L}} = \left\{ \begin{array}{c|c} s_{11} & s_{12} \\ \hline s_{21} & s_{22} \end{array} \right\} : s_{ij} \in S = \{0, 1, 2\}$$

$$|S^{\mathbb{L}}| = 3^4 = 81$$

$$X = \left\{ \tau \in S^{\mathbb{L}} \left| \sum_{x \in \mathbb{L}} \tau(x) = 2 \right. \right\}$$

4□ b 4 □

16 / 22

$$S = \{0, 1, 2\}, \qquad \mathbb{L} = \{(i, j) \mid i, j \in \{1, 2\}\}$$

$$S^{\mathbb{L}} = \left\{ \begin{array}{c|c} s_{11} & s_{12} \\ \hline s_{21} & s_{22} \end{array} : s_{ij} \in S = \{0, 1, 2\} \right\}$$

$$|S^{\mathbb{L}}| = 3^4 = 81$$

$$X = \left\{ \tau \in S^{\mathbb{L}} \middle| \sum_{x \in \mathbb{L}} \tau(x) = 2 \right\}$$

$$= \left\{ \begin{array}{c|c} 1 & 1 \\ \hline 0 & 0 \end{array}, \begin{array}{c|c} 0 & 0 \\ \hline 1 & 1 \end{array}, \begin{array}{c|c} 1 & 0 \\ \hline 0 & 0 \end{array}, \begin{array}{c|c} 0 & 1 \\ \hline 0 & 0 \end{array}, \begin{array}{c|c} 0 & 0 \\ \hline 0 & 1 \end{array}, \begin{array}{c|c} 0 & 0 \\ \hline 0 & 0 \end{array}, \begin{array}{c|c} 0 & 0 \\ \hline 0 & 0 \end{array}, \begin{array}{c|c} 0 & 0 \\ \hline 0 & 0 \end{array}, \begin{array}{c|c} 0 & 0 \\ \hline 0 & 2 \end{array}, \begin{array}{c|c$$

Celulární modely jako Markovské procesy - Náš typický př.

- ullet Mřížka $\mathbb L$ o počtu buněk $L:=|\mathbb L|$
- Stavový prostor

$$X_L = S^L = \{0, 1, \dots, |S| - 1\}^L$$

Jana Vacková 01SSI - 6. přednáška 27.10.2021 17 / 22

Celulární modely jako Markovské procesy - Náš typický př.

- ullet Mřížka $\mathbb L$ o počtu buněk $L:=|\mathbb L|$
- Stavový prostor

$$X_L = S^L = \{0, 1, \dots, |S| - 1\}^L$$

Nebo s fixním počtem částic je stavový prostor

$$X_{L,N} = \left\{ au \in S^L \left| \sum_{x \in \mathbb{L}} au(x) = N \right. \right\}$$

Jana Vacková 01SSI - 6. přednáška 27.10.2021 17 / 22

Celulární modely jako Markovské procesy - Náš typický př.

- ullet Mřížka $\mathbb L$ o počtu buněk $L:=|\mathbb L|$
- Stavový prostor

$$X_L = S^L = \{0, 1, \dots, |S| - 1\}^L$$

Nebo s fixním počtem částic je stavový prostor

$$X_{L,N} = \left\{ au \in S^L \left| \sum_{x \in \mathbb{L}} au(x) = N \right. \right\}$$

Většinou budeme mít stavový prostor

$$X_{L,N} = \left\{ au \in \{0,1\}^L \left| \sum_{x \in \mathbb{L}} au(x) = N \right. \right\}$$

Jana Vacková 01SSI - 6. přednáška 27.10.2021 17 / 22

Celulární modely jako Markovské procesy

- Markovský proces $\{\tau_t | t \in T\}$
- Rozdělení na stavech v čase t je p(t) skládající se z $p_{\tau}(t) = P(\tau_t = \tau)$
- Matice pravděpodobností přechodu P(t) skládající se z $p_{\tau\sigma}(t) = P(\tau_t = \sigma | \tau_0 = \tau)$
- Předpokládáme homogenní markovský proces, tj. $p_{\tau\sigma}(t) = P(\tau_t = \sigma | \tau_0 = \tau) = P(\tau_{t+s} = \sigma | \tau_s = \tau), \forall s > 0$
- Stacionární rozdělení π definováno jako $\pi = \pi P(t)$
- Víme, že p(t) = p(0) P(t)

Jana Vacková 01SSI - 6. přednáška 18 / 22

Celulární modely jako Markovské procesy - Diskrétní čas

- $T = \mathbb{N}_0$
- $p(n) = p(0) P^n$ a p(n) = p(n-1) P
- $\pi = \pi P$, proto $\pi(P I) = 0$, tj. $(P I)^T \pi^T = 0$, odkud $\pi^T \in \ker(P I)^T$
- \bullet $\sum_{\tau} \pi_{\tau} = 1$
- $p_{\tau}(n) = p_{\tau}(n-1) \left(1 \sum_{\sigma \neq \tau} P_{\tau\sigma}\right) + \sum_{\sigma \neq \tau} p_{\sigma}(n-1) P_{\sigma\tau}$, odkud

$$p_{ au}(n) - p_{ au}(n-1) = -\sum_{\sigma
eq au} p_{ au}(n-1) P_{ au\sigma} + \sum_{\sigma
eq au} p_{\sigma}(n-1) P_{\sigma au}$$

4□ b 4 □

Jana Vacková 01SSI - 6. přednáška 27.10.2021 19 / 22

Celulární modely jako Markovské procesy - Diskrétní čas

- $T = \mathbb{N}_0$
- $p(n) = p(0) P^n$ a p(n) = p(n-1) P
- $\pi = \pi P$, proto $\pi(P I) = 0$, tj. $(P I)^T \pi^T = 0$, odkud $\pi^T \in \ker(P I)^T$
- $\sum_{\tau} \pi_{\tau} = 1$
- $p_{\tau}(n) = p_{\tau}(n-1) \left(1 \sum_{\sigma \neq \tau} P_{\tau \sigma}\right) + \sum_{\sigma \neq \tau} p_{\sigma}(n-1) P_{\sigma \tau}$, odkud

$$p_{ au}(n) - p_{ au}(n-1) = -\sum_{\sigma \neq au} p_{ au}(n-1) P_{ au\sigma} + \sum_{\sigma \neq au} p_{\sigma}(n-1) P_{\sigma au}$$

• Pro π pak tedy platí:

$$0 = -\sum_{\sigma \neq \tau} \pi_{\tau} P_{\tau \sigma} + \sum_{\sigma \neq \tau} \pi_{\sigma} P_{\sigma \tau}$$

Celulární modely jako Markovské procesy - Spojitý čas

- $T = \langle 0, +\infty \rangle$
- p(t) = p(0) P(t) a p'(t) = p(t) Q, kde Q = P'(0)
- $\pi = \pi P(t) \Leftrightarrow \pi Q = 0$, odkud

$$\pi^T \in \ker Q^T$$

- \bullet $\sum_{ au} \pi_{ au} = 1$
- $Q_{ au au} = -\sum_{\sigma
 eq au} Q_{ au\sigma}$, proto

$$ho_ au'(t) = -\sum_{\sigma
eq au} Q_{ au\sigma}
ho_ au(t) + \sum_{\sigma
eq au} Q_{\sigma au}
ho_\sigma(t)$$

4□ b 4 □

Jana Vacková 01SSI - 6. přednáška 27.10.2021 20 / 22

Celulární modely jako Markovské procesy - Spojitý čas

- $T = \langle 0, +\infty \rangle$
- p(t) = p(0) P(t) a p'(t) = p(t) Q, kde Q = P'(0)
- $\pi = \pi P(t) \Leftrightarrow \pi Q = 0$, odkud

$$\pi^T \in \ker Q^T$$

- $\sum_{\tau} \pi_{\tau} = 1$
- $Q_{ au au} = -\sum_{\sigma
 eq au} Q_{ au\sigma}$, proto

$$ho_ au'(t) = -\sum_{\sigma
eq au} Q_{ au\sigma}
ho_ au(t) + \sum_{\sigma
eq au} Q_{\sigma au}
ho_\sigma(t)$$

• Pro π pak tedy platí:

$$0 = -\sum_{\sigma \neq \tau} \pi_{\tau} Q_{\tau\sigma} + \sum_{\sigma \neq \tau} \pi_{\sigma} Q_{\sigma\tau}$$

 Jana Vacková
 01SSI - 6. přednáška
 27.10.2021
 20 / 22

Celulární modely jako Markovské procesy

• Dává dobrý smysl zapisovat souhrnně diskrétní i spojitý čas pomocí intenzity přechodu z au do σ

$$w(\tau \to \sigma) = \left\{ \begin{array}{ll} P_{\tau\sigma} & \dots & T = \mathbb{N}_0 \\ Q_{\tau\sigma} & \dots & T = \langle 0, +\infty \rangle \end{array} \right.$$

Pro stacionární rozdělení pak tedy souhrnně můžeme psát

$$0 = -\sum_{\sigma
eq au} \pi_{ au} w(au
ightarrow \sigma) + \sum_{\sigma
eq au} \pi_{\sigma} w(\sigma
ightarrow au)$$

4□ > 4₫ > 4 ½ > 4 ½ > ½ 9 < ℃</p>

Konec dnešní přednášky. :-)

Jana Vacková 01SSI - 6. přednáška 27.10.2021 22 / 22