Paper / Subject Code: 49312 / Discrete Structures & Graph Theory	Nov 2023
Semill (R-2019) "C. Scheme" "AI & DS"	NOV
111/2023	
Time: 3 Hours Total Marks: 8	30
N.B. 1) Q.1 is compulsory. 2) Solve any 3 questions out of remaining 5 questions. 3) Assumptions made should be clearly stated. 4) Draw the figures wherever required.	
Q.1 Solve any four of the following questions.	
Prove using Mathematical Induction that $2 + 5 + 8 + \dots + (3n + 1) = n(3n+1)/2$	5
hasse diagram for this poset. Consider a set D ₁₆₅ . Find the elements of this set & draw the	5
c) How many strings of length 7 either begin with 2 zeros or end with 3 ones?	5
(1) Explain the term partition set with suitable example.	5
e) State the Pigeonhole principle and show that If there are 10 marbles in the jar & y marbles of the same colour.	you wo 5
Q.2 a) Let $A=\{0, 1, 2, 3, 4, 5\}$	10
 i) Explain the term group. ii) Prepare the composition table for the above set w.r.t. the operation of addit modulo 6. iii) Determine whether it is a group. iv) Whether elements of set A are invertible? If yes, then find the inverses of the elements. 	ion
v) Determine whether it is a cyclic group.	
b y	
Let $A = \{a_1, a_2, a_3, a_4, a_5\}$ and let R be a relation on A whose matrix is: $M_R = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ Find out transitive closure of R using Warshall's algorithm.	10
a) A large software development company employs 100 computer programmers. Of the 45 are proficient in Java, 30 in C#, 20 in Python, six in C# and Java, one in Java and Python in C# and Python, and just one programmer is proficient in all three languages about 100 computer programmers.	thon.

Page 1 of 3

Paper / Subject Code: 49312 / Discrete Structures & Graph Theory

Determine the number of computer programmers that are not proficient in any of these $\mathfrak{th}_{\mathfrak{l}_{\mathbb{Q}_0}}$

b) Explain the terms Conjunctive & Disjunctive Normal Form with suitable examples.

c)

Determine the sequence b_n whose recurrence relation is $b_n = 2b_{n-1} + 1$ with initial condition

Q.4

a) What is a lattice? Determine whether following hasse diagram represents a lattice.

b)

Consider (3, 8) an encoding function $e: B^3 \to B^8$ defined as

$$c(001) = 10111000$$

$$e(010) = 00101101$$

$$c(101) = 10001001$$

$$e(110) = 00011100$$

$$e(111) = 00110001$$

How many errors can 'e' detect & correct?

c) What are the necessary conditions for the isomorphism between 2 graphs? Determine 8 whether following 2 graphs are isomorphic.

Q.5

a) If the addition & multiplication modulo 10 is defined on a set of integers A={0, 2, 4, 6, 8}. Then determine whether this algebraic system is a ring.

8

6

6

rm (AI & DS)

A injective

$$f: R \to R \text{ is defined by } f(x) = x^2$$

$$finetion f: R \to R \text{ is defined by } f(x) = x^2$$

$$finetion f: R \to R \text{ is defined by } f(x) = x^2$$

$$finetion f: R \to R \text{ is defined by } f(x) = x^2$$

$$finetion f: R \to R \text{ is defined by } f(x) = x^2$$

$$finetion f: R \to R \text{ is defined by } f(x) = x^2$$

$$finetion f: R \to R \text{ is defined by } f(x) = x^2$$

iii) bijective

6

the terms Euler path & a circuit. the terms whether following graphs have Euler path or a circuit.

6

a)

b)

- Explain the following terms with suitable example (any 4)
 - i) Hamiltonian path & circuit
 - ii) Bipartite graph iii) Adjacency matrix
 - iv) Equivalence relation
 - v) Cartesian product
 - Solve the following using the laws of logic _{:p∨q∨}(~p∧~q∧r)↔p∨q∨r

4

8

8

 $f: R \to R$ is defined by $f(x) = x^3$

 $g: R \to R$ is defined by $g(x) = 4x^2 + 1$ $h: R \to R$ is defined by h(x) = 7x - 2

- Find the rule defining i) fog
- ii) gof
- iii) (goh)of