Contents

1	math														1
	1.1	公式													1
	1.2	Rational													1
	1.3	歐拉函數													1
	1.4	質數與因數													2
	1.5	Pisano Period													2
	1.6	矩陣快速冪													2
	1.7	乘法逆元、組合數						Ī	Ī	Ī	Ī	Ċ	Ċ	Ī	3
	1.8	大步小步								Ċ		Ċ	Ċ	Ċ	3
	1.9	高斯消去									:	Ċ	Ċ		3
		IEI////1/24	•	•	•	•	•	٠	•	·	٠	·	·	·	·
2	字串														4
	2.1	KMP													4
	2.2	Z Algorithm .													4
	2.3	最長迴文子字串													4
3		rithm													4
	3.1	三分搜													4
	3.2														4
	3.3	greedy													5
	3.4														6
	3.5	SCC Tarjan .													6
	3.6	SCC Kosaraju													6
	3.7	ArticulationPo	oint	s	Ta	rj	an								6
	3.8	最小樹狀圖													7
	3.9	二分圖最大匹配													7
	3.10	Blossom Algori	ithn	1											7
	3.11	Astar													8
	3.12	JosephusProble	em												8
		KM													8
		LCA 倍增法													9
		LCA 樹壓平 RMQ													9
		LCA 樹錬剖分 .											Ċ	Ċ	9
		MCMF													10
															11
		Dancing Links												Ċ	11
4	Data	Structure													12
	4.1	BIT													12
	4.2	帶權併查集													12
	4.3	ChthollyTree													12
	4.4	權值線段樹													12
	4.5	線段樹 1D													13
	4.6	線段樹 2D													13
	4.7	Trie													14
	4.8	AC Trie													14
	4.9	單調隊列													14
5	Geom	•													15
	5.1	公式													15
	5.2	Template													15
	5.3	最小圓覆蓋													15
	5.4	Intersection													15
	5.5	Polygon													15
	5.6	旋轉卡尺													16
	5.7	凸包													16
	5.8	半平面相交													16
6	DP														16
	6.1	以價值為主的背包													16
	6.2	抽屜													16
		Barcode													16
		Deque 最大差距													17
		LCS 和 LIS													17
		RangeDP													17
		stringDP													17
	6.8	樹 DP 有幾個 pa													17
		TreeDP reroot													17
	6 10	Waightadl TS													1.8

1 math

1.1 公式

1. Most Divisor Number

	Range	最多因數數	因數個數
Г	109	735134400	1344
	2^{31}	2095133040	1600
	10^{18}	897612484786617600	103680
L	2^{64}	9200527969062830400	161280

2. Catlan Number

$$C_n = \frac{1}{n} {2n \choose n}, C_{n+1} = \frac{2(2n+1)}{n+2} C_n$$

 $C=1,1,2,5,14,42,132,429,1430,4862,\dots$

3. Faulhaber's formula

$$\sum_{k=1}^{n} k^{p} = \frac{1}{p+1} \sum_{r=0}^{p} \binom{p+1}{r} B_{r} n^{p-r+1}$$

where
$$B_0=1$$
, $B_r=1-\sum_{i=0}^{r-1} {r\choose i} \frac{B_i}{r-i+1}$

也可用高斯消去法找 deg(p+1) 的多項式,例:

$$\sum_{k=1}^{n} k^2 = a_3 n^3 + a_2 n^2 + a_1 n + a_0$$

$$\begin{bmatrix} 0^3 & 0^2 & 0^1 & 0^0 \\ 1^3 & 1^2 & 1^1 & 1^0 \\ 2^3 & 2^2 & 2^1 & 2^0 \\ 3^3 & 3^2 & 3^1 & 3^0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 0^2 \\ 0^2 + 1^2 \\ 0^2 + 1^2 + 2^2 \\ 0^2 + 1^2 + 2^2 + 3^2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 & 5 \\ 27 & 9 & 3 & 1 & 14 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 4 & 6 & 7 & 3 \\ 0 & 0 & 6 & 11 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1/3 \\ 1/2 \\ 1/6 \\ 0 \end{bmatrix}, \quad \sum_{k=1}^{n} k^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$

4. Lagrange Polynomial

拉格朗日插值法:找出 n 次多項函數 f(x) 的點 $(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)$

$$L(x) = \sum_{j=0}^{n} y_j l_j(x)$$

$$l_j(x) = \prod_{i=0, i \neq j}^n \frac{x - x_i}{x_j - x_i}$$

5. SG Function

$$SG(x) = mex\{SG(y)|x \to y\}$$

$$mex(S) = min\{n|n \in \mathbb{N}, n \notin S\}$$

6. Fibonacci

$$[f_{n-1} f_n] \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = [f_n f_{n+1}] 50$$

$$[f_n f_{n+1}] \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^p = [f_{n+p} f_{n+p+1}], p \in \mathbb{N}_{51}$$

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right] 53$$

7. Pick's Theorem

給定頂點座標均是整點(或正方形格子點)的簡單多邊形, 其面積 A 和內部格點數目 i、邊上格點數目 b 的關係為

$$A = i + \frac{b}{2} - 1$$

8. Euler's Formula

對於有 V 個點、E 條邊、F 個面 (含外部) 的連通平面圖

$$F + V - E = 2$$

(1)、(2)〇;(3)×, \overline{AC} 與 \overline{BD} 相交;(4)×,非連通圖

9. Simpson Integral

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

1.2 Rational

```
using 11 = long long;
   struct Rational {
     11 p, q;
     Rational(11 a=0, 11 b=1) {
       p = a, q = b;
       reduce();
10
     void reduce() {
       11 t = abs(\_gcd(p, q));
       p /= t, q /= t;
13
14
       if(q < 0) p = -p, q = -q;
15
16
17
     friend istream& operator>>(
18
       istream& i, Rational& r) {
       string s;
       i >> s:
       if(s.find('/') == string::npos) {
        r.p = stoi(s);
22
23
        r.q = 1;
       } else {
        r.p = stoi(s.substr(0, s.find('/')));
         r.q = stoi(s.substr(s.find('/')+1));
27
28
       r.reduce();
29
       return i;
     friend ostream& operator<<(</pre>
32
       ostream& o, Rational r) {
       if(r.p%r.q == 0) o << r.p/r.q;
35
       else o << r.p << "/" << r.q;
36
       return o;
37
38
39
   Rational operator+(Rational x, Rational y) {
    11 t = abs(\_gcd(x.q, y.q));
42
     return Rational(
43
       y.q/t*x.p + x.q/t*y.p, x.q/t*y.q);
44
45
   Rational operator-(Rational x, Rational y) {
46
47
    return x + Rational(-y.p, y.q);
48
   Rational operator*(Rational x, Rational y) {
    return Rational(x.p*y.p, x.q*y.q);
53
   Rational operator/(Rational x, Rational y) {
    return x * Rational(y.q, y.p);
56 }
```

1.3 歐拉函數

1.4 質數與因數

```
歐拉篩0(n)
   #define MAXN 47000 //sqrt(2^31)=46,340...
   bool isPrime[MAXN];
   int p[MAXN];
   int pSize=0;
   void getPrimes(){
     memset(isPrime, true, sizeof(isPrime));
     isPrime[0]=isPrime[1]=false;
     for(int i=2;i<MAXN;i++){</pre>
10
       if(isPrime[i]) p[pSize++]=i;
       for(int j=0;j<pSize&&i*p[j]<=MAXN;++j){</pre>
12
         isPrime[i*p[j]]=false;
         if(i%p[j]==0) break;
13
14
    }
15
16
   }
17
   最大公因數 O(log(min(a,b)))
18
19
   int GCD(int a, int b){
    if(b == 0) return a:
20
     return GCD(b, a%b);
22
   }
23
   質 因 數 分 解
24
   void primeFactorization(int n){
25
     for(int i=0; i<p.size(); ++i) {</pre>
       if(p[i]*p[i] > n) break;
27
28
       if(n % p[i]) continue;
       cout << p[i] << ' ';
29
       while(n%p[i] == 0) n /= p[i];
30
31
     if(n != 1) cout << n << ' ':
32
33
     cout << ' \ n';
34
35
   擴展歐幾里得算法 ax + by = GCD(a, b)
36
37
   int ext_euc(int a, int b, int &x, int &y) {
    if(b == 0){
39
      x = 1, y = 0;
40
       return a;
41
42
     int d = ext_euc(b, a%b, y, x);
43
     y -= a/b*x;
     return d:
44
45
   }
46
   int main(){
47
     int a, b, x, y;
48
     cin >> a >> b;
     ext_euc(a, b, x, y);
cout << x << ' ' << y << endl;
49
51
     return 0:
52
53
54
56
   歌德巴赫猜想
   解: 把偶數 N (6≤N≤10<sup>6</sup>) 寫成兩個質數的和。
   #define N 20000000
   int ox[N], p[N], pr;
59
   void PrimeTable(){
     ox[0] = ox[1] = 1;
61
     pr = 0;
62
     for(int i=2;i<N;i++){</pre>
63
       if(!ox[i]) p[pr++] = i;
64
65
       for(int j=0; i*p[j]<N&&j<pr; j++)</pre>
66
         ox[i*p[j]] = 1;
67
     }
   }
68
   int main(){
     PrimeTable();
70
71
     int n;
72
     while(cin>>n, n){
73
       int x:
74
       for(x=1;; x+=2)
75
         if(!ox[x] && !ox[n-x]) break;
```

printf("%d = %d + %d\n", n, x, n-x);

```
78 }
79
80 problem :
   給定整數 N,求N最少可以拆成多少個質數的和。
81
   如果N是質數,則答案為 1。
   如果N是偶數(N!=2),則答案為2(強歌德巴赫猜想)。
   如果N是奇數且N-2是質數,則答案為2(2+質數)。
   其他狀況答案為 3 (弱歌德巴赫猜想)。
86
87
   bool isPrime(int n){
     for(int i=2;i<n;++i){</pre>
88
       if(i*i>n) return true;
       if(n%i==0) return false;
90
91
92
     return true;
93 }
   int main(){
     int n:
95
96
     cin>>n:
97
     if(isPrime(n)) cout<<"1\n";</pre>
     else if(n%2==0||isPrime(n-2)) cout<<"2\n";</pre>
98
99
     else cout<<"3\n";</pre>
100 }
```

1.5 Pisano Period

1 #include <cstdio>

2 #include <vector>

while (b)

if (b & 1)

b >>= 1:

return res;

unsigned long long a, b;

int main()

int n;

33

35

36

37

38

39

40

41

42

43

44

45

47

}

3 using namespace std;

```
5
 6 Pisano Period + 快速冪 + mod
  Pisano Period:
      費氏數列在mod n的情況下會有循環週期,
      且週期的結束判斷會在fib[i - 1] == 0 &&
          fib[i] == 1時,
      此時循環週期長度是i-1
10
12
  所以這題是在找出循環週期後,
   用快速幂並mod(循環週期長度)即可AC(快速幂記得mod),
14
   此外fib要mod n,也要找週期,所以用預處理的方式列表
   */
15
  #define maxn 1005
17
18
19
20 Pisano period可證—個週期的長度會在[n, n ^ n]之間
21
22
  //很可惜,會爆
   // int fib[maxn][maxn * maxn];
23
24 //沙田 vector
  vector<int> fib[maxn];
26
  int period[maxn];
27
28
  int qpow(int a, unsigned long long b, int
       mod)
29
    if (b == 0)
30
31
      return a;
32
    long long res = 1;
```

res = ((a % mod) * (res % mod)) % mod;

a = ((a % mod) * (a % mod)) % mod;

```
//注意: 這裡沒算mod 1的循環長度,
49
     //因為mod 1都等於 0,沒有週期
50
    for (int i = 2; i < maxn; ++i)</pre>
51
52
      fib[i].emplace_back(0);
53
      fib[i].emplace_back(1);
54
      for (int j = 2; j < maxn * maxn; ++j)</pre>
55
56
        fib[i].emplace_back(
57
          (fib[i][j-1]%i+fib[i][j-2]%i)%i
58
59
60
        if (fib[i][j-1]==0&&fib[i][j]==1)
61
          period[i] = j - 1;
62
63
          break:
64
65
      }
    }
67
     scanf("%d", &t);
68
69
    while (t--)
70
71
      scanf("%11u %11u %d", &a, &b, &n);
72
73
      if (a == 0)
        puts("0");
74
      else if (n == 1) //當mod 1時任何數都是0,
75
76
        puts("0");
             //所以直接輸出Ø,避免我們沒算
77
                       //fib[1][i]的問題(Runtime
           error)
78
        printf("%d\n",
          fib[n][qpow(a % period[n], b,
79
               period[n])]):
80
81
    return 0;
```

1.6 矩陣快速翼

```
using 11 = long long;
   using mat = vector<vector<ll>>;
   const int mod = 1e9 + 7;
   mat operator*(mat A, mat B) {
    mat res(A.size(), vector<ll>(B[0].size()));
     for(int i=0; i<A.size(); i++) {</pre>
      for(int j=0; j<B[0].size(); j++) {</pre>
        for(int k=0; k<B.size(); k++) {</pre>
           res[i][j] += A[i][k] * B[k][j] % mod;
10
          res[i][j] %= mod;
11
12
13
      }
14
15
     return res;
16
17
18
   mat I = ;
   // compute matrix M^n
19
20
   // 需先 init I 矩陣
21
   mat mpow(mat& M, int n) {
    if(n <= 1) return n ? M : I;</pre>
22
    mat v = mpow(M, n>>1);
    return (n & 1) ? v*v*M : v*v;
24
25
26
27
   // 迴圈版本
   mat mpow(mat M, int n) {
    mat res(M.size(), vector<ll>(M[0].size()));
29
30
     for(int i=0; i<res.size(); i++)</pre>
      res[i][i] = 1;
31
     for(; n; n>>=1) {
32
33
      if(n & 1) res = res * M;
      M = M * M;
34
35
36
    return res;
```

1.7 乘法逆元、組合數

```
x^{-1} mod\ m
                                            (mod \ m)
          -\left\lfloor \frac{m}{x} \right\rfloor (m \ mod \ x)^{-1}, \quad \text{ otherwise }
                     1.
                                    if x = 1
                                                (mod \ m)
          (m-\left|\frac{m}{x}\right|)(m \mod x)^{-1},
                                    otherwise
   若 p \in prime, 根據費馬小定理, 則
        ax \equiv 1 \pmod{p}
ax \equiv a^{p-1} \pmod{p}
          x \equiv a^{p-2} \pmod{p}
   using ll = long long;
   const int maxn = 2e5 + 10;
   const int mod = 1e9 + 7;
   int fact[maxn] = {1, 1}; // x! % mod
   int inv[maxn] = {1, 1}; // x^(-1) % mod
   int invFact[maxn] = \{1, 1\}; // (x!)^{(-1)} % mod
   void build() {
 9
10
     for(int x=2; x<maxn; x++) {</pre>
        fact[x] = (11)x * fact[x-1] % mod;
11
12
        inv[x] = (11)(mod-mod/x)*inv[mod%x]%mod;
        invFact[x] = (ll)invFact[x-1]*inv[x]%mod;
13
14
15
   }
16
   // 前提: mod 為質數
17
18
   void build() {
     auto qpow = [&](11 a, int b) {
19
       11 \text{ res} = 1;
       for(; b; b>>=1) {
21
         if(b & 1) res = res * a % mod;
22
23
         a = a * a % mod;
24
25
        return res;
26
27
28
      for(int x=2; x<maxn; x++) {</pre>
29
       fact[x] = (11)x * fact[x-1] % mod;
        invFact[x] = qpow(fact[x], mod-2);
30
31
32
   }
33
   // C(a, b) % mod
34
   int comb(int a, int b) {
35
     if(a < b) return 0;</pre>
36
37
     11 x = fact[a];
    11 y = (11)invFact[b] * invFact[a-b] % mod;
38
39
     return x * y % mod;
40 }
```

1.8 大步小步

```
題意
2
   給定 B,N,P,求出 L 滿足 B^L N(mod P)。
   題 解
   餘數的循環節長度必定為 P 的因數,因此
       B^0 B^P,B^1 B^(P+1),...,
   也就是說如果有解則 L<N,枚舉0,1,2,L-1
        能得到結果,但會超時。
   將 L 拆成 mx+y,只要分別枚舉 x,y 就能得到答案,
   設 m=√P 能保證最多枚舉 2√P 次 ∘
 8 B^(mx+y) N(mod P)
 9 B^(mx)B^y N(mod P)
10 B^y N(B^(-m))^x (mod P)
   先求出 B^0,B^1,B^2,...,B^(m-1),
11
   再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的
       В^у∘
13 這種算法稱為大步小步演算法,
14 大步指的是枚舉 x (一次跨 m 步),
   小步指的是枚舉 y (一次跨 1 步)。
15
16
   複雜度分析
   利用 map/unorder_map 存放
17
       B^0,B^1,B^2,...,B^(m-1),
   枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
   存放和查詢最多 2√P 次,時間複雜度為
       0(\sqrt{P\log\sqrt{P}})/0(\sqrt{P}) o
20
  using LL = long long;
  LL B, N, P;
22
  LL fpow(LL a,LL b,LL c){
23
24
      LL res=1;
      for(;b;b >>=1){
25
26
          if(b&1)
             res=(res*a)%c:
27
28
          a=(a*a)%c;
      }
29
30
      return res;
31 }
  LL BSGS(LL a, LL b, LL p){
32
      a%=p,b%=p;
33
      if(a==0)
34
          return b==0?1:-1;
35
36
      if(b==1)
37
         return 0;
38
      map<LL, LL> tb;
      LL sq=ceil(sqrt(p-1));
39
40
      LL inv=fpow(a,p-sq-1,p);
      tb[1]=sq;
      for(LL i=1,tmp=1;i<sq;++i){</pre>
43
          tmp=(tmp*a)%p;
          if(!tb.count(tmp))
44
45
             tb[tmp]=i;
46
47
      for(LL i=0;i<sq;++i){</pre>
48
          if(tb.count(b)){
             LL res=tb[b];
49
             return i*sq+(res==sq?0:res);
50
51
          b=(b*inv)%p;
52
53
      return -1;
54
55 }
56 int main(){
57
      IOS; //輸入優化
      while(cin>>P>>B>>N){
58
59
          LL ans=BSGS(B,N,P);
60
          if(ans==-1)
             cout<<"no solution\n";</pre>
61
62
             cout<<ans<<'\n';
63
      }
64
65 }
```

1.9 高斯消去

```
• 計算 AX = B
       • 傳入:
               增廣矩陣 M = [A|B]
               equ= 有幾個 equation
               var= 有幾個 variable
       • 回傳:X = (x_0, ..., x_{n-1}) 的解集
       • ! 無法判斷無解或無限多組解!
   using DBL = double;
   using mat = vector<vector<DBL>>;
   vector<DBL> Gauss(mat& M, int equ, int var) {
    auto dcmp = [](DBL a, DBL b=0.0) {
      return (a > b) - (a < b);
     for(int r=0, c=0; r<equ && c<var; ) {</pre>
9
10
       int mx = r; // 找絕對值最大的 M[i][c]
       for(int i=r+1; i<equ; i++) {</pre>
11
12
        if(dcmp(abs(M[i][c]),abs(M[mx][c]))==1)
13
          mx = i:
14
15
       if(mx != r) swap(M[mx], M[r]);
16
17
       if(dcmp(M[r][c]) == 0) {
18
        c++;
19
        continue:
20
21
       for(int i=r+1; i<equ; i++) {</pre>
22
        if(dcmp(M[i][c]) == 0) continue;
23
24
        DBL t = M[i][c] / M[r][c];
25
        for(int j=c; j<M[c].size(); j++) {</pre>
          M[i][j] -= t * M[r][j];
26
27
      }
28
29
      r++, c++;
30
31
     vector<DBL> X(var);
32
     for(int i=var-1; i>=0; i--) {
33
34
      X[i] = M[i][var];
35
       for(int j=var-1; j>i; j--) {
36
        X[i] -= M[i][j] * X[j];
37
      X[i] /= M[i][i];
38
39
40
    return X;
41 }
```

2 字串

2.1 KMP

```
const int maxn = 1e6 + 10;
                         // len(a), len(b)
   int n. m:
3
   int f[maxn];
                         // failure function
   char a[maxn], b[maxn];
   void failureFuntion() { // f[0] = 0
7
      for(int i=1, j=0; i<m; ) {</pre>
8
          if(b[i] == b[j]) f[i++] = ++j;
10
          else if(j) j = f[j-1];
11
          else f[i++] = 0;
12
  }
13
14
15
   int kmp() {
      int i = 0, j = 0, res = 0;
16
      while(i < n) {</pre>
17
18
          if(a[i] == b[j]) i++, j++;
19
          else if(j) j = f[j-1];
20
          else i++:
21
          if(j == m) {
              res++; // 找到答案
22
23
              j = 0; // non-overlapping
24
25
      }
26
      return res:
  }
27
   // Problem: 所有在b裡,前後綴相同的長度
   // b = ababcababababcabab
30
   // f = 001201234123456789
   // 前9 = 後9
32
  // 前4 = 前9的後4 = 後4
   // 前2 = 前4的後2 = 前9的後2 = 後2
35
  for(int j=m; j; j=f[j-1]) {
36
      // j 是答案
```

2.2 Z Algorithm

```
1 const int maxn = 1e6 + 10;
   int z[maxn]; // s[0:z[i]) = s[i:i+z[i])
 3
   string s;
   void makeZ() { // z[0] = 0
     for(int i=1, l=0, r=0; i<s.length(); i++) {</pre>
       if(i<=r && z[i-1]<r-i+1) z[i] = z[i-1];</pre>
 8
 9
       else {
        z[i] = max(0, r-i+1);
10
         while(i+z[i]<s.length() &&</pre>
11
              s[z[i]]==s[i+z[i]]) z[i]++;
12
       if(i+z[i]-1 > r) l = i, r = i+z[i]-1;
13
     }
14
15 }
```

2.3 最長迴文子字串

```
1 | #include < bits/stdc++.h>
   #define T(x) ((x)%2 ? s[(x)/2] : '.')
   using namespace std;
 5
   string s;
   int n;
 8
   int ex(int 1,int r){
10
     while(l-i>=0&&r+i<n&&T(l-i)==T(r+i)) i++;</pre>
11
     return i;
12 }
13
14
   int main(){
15
     cin>>s:
     n=2*s.size()+1;
16
17
     int mx=0:
18
     int center=0;
     vector<int> r(n);
19
     int ans=1:
20
21
     for(int i=1;i<n;i++){</pre>
22
23
       int ii=center-(i-center);
24
       int len=mx-i+1;
25
       if(i>mx){
         r[i]=ex(i,i);
27
         center=i;
28
         mx=i+r[i]-1;
29
       else if(r[ii]==len){
30
31
         r[i]=len+ex(i-len,i+len);
32
         center=i:
33
         mx=i+r[i]-1;
34
35
       else r[i]=min(r[ii].len):
36
       ans=max(ans,r[i]);
37
     cout<<ans-1<<"\n";
38
39
     return 0:
40 }
```

3 algorithm

3.1 三分搜

```
題意
   給定兩射線方向和速度,問兩射線最近距離。
    題 解
3
   假設 F(t) 為兩射線在時間 t 的距離, F(t)
        為二次函數,
   可用三分搜找二次函數最小值。
   struct Point{
      double x, y, z;
      Point() {}
9
      Point(double _x,double _y,double _z):
10
          x(_x),y(_y),z(_z){}
11
      friend istream& operator>>(istream& is,
           Point& p) {
12
          is >> p.x >> p.y >> p.z;
13
          return is;
14
15
      Point operator+(const Point &rhs) const{
          return Point(x+rhs.x,y+rhs.y,z+rhs.z);
16
17
18
      Point operator-(const Point &rhs) const{
19
          return Point(x-rhs.x,y-rhs.y,z-rhs.z);
20
21
      Point operator*(const double &d) const{
22
          return Point(x*d,y*d,z*d);
23
      Point operator/(const double &d) const{
24
25
          return Point(x/d,y/d,z/d);
26
      double dist(const Point &rhs) const{
27
28
          double res = 0;
29
          res+=(x-rhs.x)*(x-rhs.x);
          res+=(y-rhs.y)*(y-rhs.y);
30
          res+=(z-rhs.z)*(z-rhs.z);
31
32
          return res:
33
      }
34
  };
  int main(){
35
36
               //輸入優化
37
      int T;
38
      cin>>T;
39
      for(int ti=1;ti<=T;++ti){</pre>
40
          double time:
          Point x1,y1,d1,x2,y2,d2;
41
          cin>>time>>x1>>y1>>x2>>y2;
42
43
          d1=(y1-x1)/time;
44
          d2=(y2-x2)/time;
45
          double L=0,R=1e8,m1,m2,f1,f2;
46
          double ans = x1.dist(x2);
          while(abs(L-R)>1e-10){
47
              m1=(L+R)/2;
48
49
              m2=(m1+R)/2:
              f1=((d1*m1)+x1).dist((d2*m1)+x2);
50
51
              f2=((d1*m2)+x1).dist((d2*m2)+x2);
              ans = min(ans,min(f1,f2));
52
53
              if(f1<f2) R=m2;
              else L=m1;
54
55
56
          cout<<"Case "<<ti<<": ";
57
          cout << fixed << setprecision(4) <<</pre>
               sqrt(ans) << ' \ '';
58
59 }
```



```
      1 用途:在區間 [1, r]加上一個數字v。

      2 b[1] += v; (b[0~1]加上v)

      3 b[r+1] -= v; (b[r+1~n]減去v (b[r]仍保留v))

      4 給的 a[]是前綴和數列,建構 b[],

      5 因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],

      6 所以 b[i] = a[i] - a[i-1]。
```

```
在 b[1] 加上 v,b[r+1] 減去 v,
                                                         int nextR=-1;
                                               54
                                                                                              131 }
   最後再從 0 跑到 n 使 b[i] += b[i-1]。
                                                         for(int j=R; j>=L; -- j){
                                                                                              132 最少延遲數量問題
                                               55
   這樣一來, b[] 是一個在某區間加上v的前綴和。
                                                            if(a[j]){
                                               56
                                                                                              133 //problem
   int a[1000], b[1000];
                                               57
                                                                nextR=j;
                                                                                                  給定 N 個工作,每個工作的需要處理時長為 Ti ,
                                                                                              134
   // a: 前綴和數列, b: 差分數列
                                                                                              135
                                                                                                  期限是 Di, 求一種工作排序使得逾期工作數量最小。
11
                                               58
                                                                break;
  int main(){
12
                                               59
                                                                                              136
                                                                                                  //solution
                                                                                                  期限越早到期的工作越先做。
13
      int n, 1, r, v;
                                               60
                                                                                              137
                                                         if(nextR==-1){
14
      cin >> n;
                                               61
                                                                                                  將工作依照到期時間從早到晚排序,
                                                                                              138
15
      for(int i=1; i<=n; i++){</pre>
                                               62
                                                            ans=-1:
                                                                                              139
                                                                                                  依 序 放 入 工 作 列 表 中 , 如 果 發 現 有 工 作 預 期 ,
         cin >> a[i];
16
                                               63
                                                            break;
                                                                                                  就從目前選擇的工作中,移除耗時最長的工作。
                                                                                              140
17
         b[i] = a[i] - a[i-1]; //建構差分數列
                                               64
                                                         }
                                                                                              141
                                                                                                  上述方法為 Moore-Hodgson s Algorithm。
                                               65
                                                         ++ans;
18
                                                                                              142
19
      cin >> 1 >> r >> v:
                                               66
                                                         i=nextR+r;
                                                                                              143
      b[1] += v;
                                               67
                                                                                                  給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
20
                                                                                              144
21
      b[r+1] -= v;
                                               68
                                                      cout<<ans<<'\n';
                                                                                              145
                                                                                                  //solution
22
      for(int i=1; i<=n; i++){</pre>
                                               69 }
                                                                                              146
                                                                                                  和最少延遲數量問題是相同的問題,只要將題敘做轉換。
         b[i] += b[i-1];
                                               70 最多不重疊區間
                                                                                                  工作處裡時長 → 烏龜重量
23
                                                                                              147
         cout << b[i] << ' ';
                                                                                                  工作期限 → 烏龜可承受重量
24
                                                  //problem
25
                                                  給你 n 條線段區間為 [Li,Ri],
                                                                                                  多少工作不延期 → 可以疊幾隻烏龜
                                               72
                                                                                              149
                                                                                                  //code
26 }
                                               73
                                                  請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
                                                                                              150
                                               74
                                                  //solution
                                                                                              151
                                                                                                  struct Work{
                                                  依照右界由小到大排序,
                                                                                              152
                                                                                                     int t. d:
                                                  每次取到一個不重疊的線段,答案 +1。
                                                                                              153
                                                                                                     bool operator<(const Work &rhs)const{</pre>
   3.3 greedy
                                                                                                        return d<rhs.d;</pre>
                                               77
                                                  //code
                                                                                              154
                                               78
                                                  struct Line{
                                                                                              155
  刪數字問題
                                               79
                                                     int L.R:
                                                                                              156
                                                                                                  };
   //problem
                                                      bool operator<(const Line &rhs)const{</pre>
                                                                                                  int main(){
                                               80
                                                                                              157
   給定一個數字 N(≤10<sup>1</sup>00),需要刪除 K 個數字,
 3
                                               81
                                                          return R<rhs.R:
                                                                                              158
                                                                                                     int n=0:
   請問刪除 K 個數字後最小的數字為何?
                                                                                                     Work a[10000];
                                               82
                                                                                              159
   //solution
                                               83
                                                  };
                                                                                              166
                                                                                                     priority_queue<int> pq;
   刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i
                                                                                                     while(cin>>a[n].t>>a[n].d)
                                                  int main(){
                                               84
                                                                                              161
       位數,
                                               85
                                                     int t;
                                                                                              162
   扣除高位數的影響較扣除低位數的大。
                                               86
                                                      cin>>t:
                                                                                              163
                                                                                                     sort(a,a+n);
   //code
                                               87
                                                     Line a[30]:
                                                                                              164
                                                                                                     int sumT=0.ans=n:
   int main(){
9
                                                      while(t--){
                                                                                                     for(int i=0;i<n;++i){</pre>
                                               88
                                                                                              165
10
      string s;
                                               89
                                                         int n=0:
                                                                                                        pq.push(a[i].t);
                                                                                              166
11
      int k;
                                               90
                                                         while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R6)
                                                                                                         sumT+=a[i].t;
12
      cin>>s>>k;
                                               91
                                                            ++n;
                                                                                                         if(a[i].d<sumT){</pre>
                                                                                              168
13
      for(int i=0;i<k;++i){</pre>
                                               92
                                                         sort(a,a+n);
                                                                                              169
                                                                                                            int x=pq.top();
         if((int)s.size()==0) break:
14
                                               93
                                                         int ans=1,R=a[0].R;
                                                                                              170
                                                                                                            pq.pop();
15
          int pos =(int)s.size()-1;
                                                         for(int i=1;i<n;i++){</pre>
                                                                                              171
                                                                                                            sumT-=x;
                                               94
16
         for(int j=0;j<(int)s.size()-1;++j){</pre>
                                                             if(a[i].L>=R){
                                               95
                                                                                              172
                                                                                                            --ans:
17
             if(s[j]>s[j+1]){
                                                                ++ans;
                                               96
                                                                                              173
                                                                                                        }
18
                pos=j;
                                               97
                                                                R=a[i].R;
                                                                                              174
                break;
19
                                               98
                                                            }
                                                                                              175
                                                                                                     cout<<ans<<'\n';
20
             }
                                                                                              176 }
                                                         }
                                               99
21
         }
                                                         cout<<ans<<'\n';
                                               100
                                                                                              177
22
         s.erase(pos,1);
                                              101
                                                     }
                                                                                                  任務調度問題
                                                                                              178
23
                                              102
                                                                                              179
                                                                                                  //problem
24
      while((int)s.size()>0&&s[0]=='0')
                                              103
                                                  最小化最大延遲問題
                                                                                              180
                                                                                                  給定 N 項工作,每項工作的需要處理時長為 Ti,
25
         s.erase(0,1);
                                                                                                  期限是 Di,如果第 i 項工作延遲需要受到 pi
                                              104 //problem
                                                                                              181
      if((int)s.size()) cout<<s<'\n';</pre>
26
                                                  給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                                                                       單位懲罰,
      else cout<<0<<'\n';
27
                                                  期限是 Di,第 i 項工作延遲的時間為
                                              106
                                                                                              182
                                                                                                  請問最少會受到多少單位懲罰。
  3
28
                                                       Li=max(0,Fi-Di),
                                                                                              183
                                                                                                  //solution
  最小區間覆蓋長度
29
                                              107
                                                  原本Fi 為第 i 項工作的完成時間,
                                                                                              184
                                                                                                  依照懲罰由大到小排序,
   //problem
                                                  求一種工作排序使 maxLi 最小。
                                                                                                  每項工作依序嘗試可不可以放在
                                                                                              185
   給定 n 條線段區間為 [Li,Ri],
31
                                              109
                                                  //solution
                                                                                                      Di-Ti+1, Di-Ti, ..., 1, 0,
   請問最少要選幾個區間才能完全覆蓋 [0,S]?
                                                  按照到期時間從早到晚處理。
                                              110
                                                                                                  如果有空閒就放進去,否則延後執行。
                                                                                              186
   //solution
                                              111
                                                   //code
                                                                                              187
   先將 所有 區間 依照 左界 由 小 到 大 排 序,
                                                  struct Work{
                                              112
                                                                                              188
35
   對於當前區間「Li.Ri],要從左界 >Ri 的所有區間中,
                                                      int t, d;
                                                                                                  給定 N 項工作,每項工作的需要處理時長為 Ti,
                                              113
                                                                                              189
36
   找到有著最大的右界的區間,連接當前區間。
                                              114
                                                      bool operator<(const Work &rhs)const{</pre>
                                                                                                  期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
                                                                                              190
37
                                                         return d<rhs.d:
                                              115
                                                                                                       單位獎勵,
   //problem
38
                                                                                                  請問最多會獲得多少單位獎勵。
                                              116
                                                                                              191
   長度 n 的直線中有數個加熱器,
                                              117 };
                                                                                              192
                                                                                                  //solution
   在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
                                              118
                                                  int main(){
                                                                                              193
                                                                                                  和上題相似,這題變成依照獎勵由大到小排序。
   問最少要幾個加熱器可以把 [0,n] 的範圍加熱。
                                              119
                                                      int n;
                                                                                              194
                                                                                                  //code
   //solution
                                              120
                                                      Work a[10000];
                                                                                                  struct Work{
                                                                                              195
43
  對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器
                                                      cin>>n:
                                                                                              196
                                                                                                     int d,p;
                                              121
   更新已加熱範圍,重複上述動作繼續尋找加熱器。
                                              122
                                                      for(int i=0;i<n;++i)</pre>
                                                                                              197
                                                                                                     bool operator<(const Work &rhs)const{</pre>
45
   //code
                                                                                                        return p>rhs.p;
                                                         cin>>a[i].t>>a[i].d;
                                              123
                                                                                              198
46
   int main(){
                                              124
                                                      sort(a,a+n);
                                                                                              199
47
      int n, r;
                                              125
                                                      int maxL=0,sumT=0;
                                                                                              200
                                                                                                  };
      int a[1005];
48
                                              126
                                                      for(int i=0;i<n;++i){</pre>
                                                                                              201
                                                                                                  int main(){
49
      cin>>n>>r;
                                              127
                                                         sumT+=aΓil.t:
                                                                                                     int n:
                                                                                              202
50
      for(int i=1;i<=n;++i) cin>>a[i];
                                              128
                                                         maxL=max(maxL,sumT-a[i].d);
                                                                                              203
                                                                                                     Work a[100005];
      int i=1,ans=0;
                                                                                                     bitset<100005> ok;
51
                                              129
                                                                                              204
52
      while(i<=n){</pre>
                                                      cout<<maxL<<'\n';</pre>
                                                                                                     while(cin>>n){
```

53

int R=min(i+r-1,n),L=max(i-r+1,0)

```
Jc11
                                                                        FJCU
          ok.reset();
                                                  54 int dinic() {// O((V^2)E)
206
                                                                                                   67
                                                                                                         for (int i = 1; i <= n; ++i) {</pre>
          for(int i=0;i<n;++i)</pre>
                                                        int result = 0;
207
                                                 55
                                                                                                   68
              cin>>a[i].d>>a[i].p;
                                                        while(bfs()) {
                                                                                                             if (dfn[i] == 0)
208
                                                 56
                                                                                                   69
209
           sort(a,a+n);
                                                  57
                                                            memset(dfs_idx, 0, sizeof(dfs_idx));
                                                                                                   70
                                                                                                                dfs(i);
                                                            result += dfs(S, inf);
210
          int ans=0:
                                                 58
                                                                                                   71
                                                                                                         }
          for(int i=0;i<n;++i){</pre>
                                                 59
                                                                                                   72
                                                                                                         printf("%11d %11d\n", totalCost, ways %
211
              int j=a[i].d;
212
                                                 60
                                                        return result;
                                                                                                              MOD):
213
              while(j--)
                                                 61 }
                                                                                                   73
                                                                                                         return 0;
214
                 if(!ok[j]){
                                                                                                   74 }
215
                     ans+=a[i].p;
216
                     ok[j]=true;
                                                    3.5 SCC Tarjan
217
                     break:
                                                                                                      3.6 SCC Kosaraju
218
                                                  1 //單純考SCC,每個SCC中找成本最小的蓋,如果有多個一樣小
219
                                                    //的要數出來,因為題目要方法數
220
          cout<<ans<<'\n';
                                                                                                    1 //做兩次dfs, O(V + E)
                                                  3 //注意以下程式有縮點,但沒存起來,
221
                                                                                                      //g 是原圖, g2 是反圖
                                                   4 //存法就是開一個array -> ID[u] = SCCID
222 }
                                                                                                      //s是dfs離開的節點
                                                  5 #define maxn 100005
                                                                                                      void dfs1(int u) {
                                                    #define MOD 1000000007
                                                                                                         vis[u] = true;
                                                  7 long long cost[maxn];
   3.4 dinic
                                                                                                         for (int v : g[u])
                                                  8 vector<vector<int>> G;
                                                  9 int SCC = 0;
                                                                                                         s.push_back(u);
                                                 10 stack<int> sk;
   const int maxn = 1e5 + 10;
```

31

32

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

53

54

55

56

58

59

60

61

63

64

65

int main() {

int n:

int m:

int u, v;

scanf("%d", &n);

scanf("%d", &m);

//如果是*SCC*

++SCC;

while (1) {

if (dfn[u] == low[u]) {

int currWays = 0;

sk.pop():

int v = sk.top();

inStack[v] = 0;

long long minCost = 0x3f3f3f3f;

if (minCost > cost[v]) {

currWays = 1;

++currWays;

ways = (ways * currWays) % MOD;

if(v == u)

break:

totalCost += minCost:

for (int i = 1; i <= n; ++i)</pre>

scanf("%11d", &cost[i]);

G.assign(n + 5, vector<int>());

for (int i = 0; i < m; ++i) {</pre>

scanf("%d %d", &u, &v);

G[u].emplace_back(v);

minCost = cost[v];

else if (minCost == cost[v]) {

```
const int inf = 0x3f3f3f3f;
   struct Edge {
       int s, t, cap, flow;
 5 };
 6
   int n, m, S, T;
   int level[maxn], dfs_idx[maxn];
   vector<Edge> E;
   vector<vector<int>> G;
10
   void init() {
11
       S = 0:
       T = n + m;
12
13
       E.clear();
14
       G.assign(maxn, vector<int>());
   }
15
   void addEdge(int s, int t, int cap) {
16
       E.push_back({s, t, cap, 0});
17
       E.push_back({t, s, 0, 0});
18
       G[s].push_back(E.size()-2);
19
20
       G[t].push_back(E.size()-1);
   }
21
22
   bool bfs() {
       queue<int> q({S});
23
24
       memset(level, -1, sizeof(level));
25
       level[S] = 0;
26
       while(!q.empty()) {
           int cur = q.front();
27
28
           a.pop():
29
           for(int i : G[cur]) {
              Edge e = E[i];
30
              if(level[e.t]==-1 &&
31
                    e.cap>e.flow) {
                  level[e.t] = level[e.s] + 1;
32
33
                  q.push(e.t);
34
              }
35
           }
       }
36
37
       return ~level[T];
38
   }
   int dfs(int cur, int lim) {
39
40
       if(cur==T || lim==0) return lim;
       int result = 0;
41
42
       for(int& i=dfs_idx[cur]; i<G[cur].size()</pre>
            && lim; i++) {
           Edge& e = E[G[cur][i]];
43
           if(level[e.s]+1 != level[e.t])
44
                continue:
           int flow = dfs(e.t, min(lim,
                e.cap-e.flow));
           if(flow <= 0) continue;</pre>
46
           e.flow += flow;
47
           result += flow;
48
49
           E[G[cur][i]^1].flow -= flow;
           lim -= flow;
50
51
52
       return result;
53 }
```

```
if (!vis[v]) dfs1(v);
                                                    9 }
11 int dfn[maxn];
                                                    10
12 int low[maxn];
                                                       void dfs2(int u) {
                                                    11
13 bool inStack[maxn];
                                                    12
                                                          group[u] = sccCnt;
14 int dfsTime = 1;
                                                    13
                                                           for (int v : g2[u])
15 long long totalCost = 0;
                                                              if (!group[v]) dfs2(v);
                                                    14
16 long long ways = 1;
                                                    15 }
17 void dfs(int u) {
                                                    16
      dfn[u] = low[u] = dfsTime;
18
                                                    17
                                                       void kosaraju() {
19
       ++dfsTime:
                                                           sccCnt = 0;
                                                    18
20
       sk.push(u);
                                                           for (int i = 1; i <= n; ++i)
                                                    19
21
       inStack[u] = true;
                                                    20
                                                              if (!vis[i]) dfs1(i);
       for (int v: G[u]) {
22
                                                    21
                                                           for (int i = n; i >= 1; --i)
           if (dfn[v] == 0) {
                                                              if (!group[s[i]]) {
                                                    22
24
              dfs(v):
                                                    23
                                                                  ++sccCnt:
25
              low[u] = min(low[u], low[v]);
                                                    24
                                                                  dfs2(s[i]);
26
                                                    25
                                                              }
27
          else if (inStack[v]) {
                                                    26 }
              //屬於同個SCC且是我的back edge
28
29
              low[u] = min(low[u], dfn[v]);
30
```

3.7 ArticulationPoints Tarjan

```
vector<vector<int>>> G;
   int N, timer;
   bool visited[105];
   int dfn[105]; // 第一次visit的時間
   int low[105];
   //最小能回到的父節點
   //(不能是自己的parent)的visTime
8 int res:
   void tarjan(int u, int parent) {
10
      int child = 0;
11
12
      bool isCut = false;
      visited[u] = true;
13
      dfn[u] = low[u] = ++timer;
      for (int v: G[u]) {
15
          if (!visited[v]) {
16
17
              ++child;
18
              tarjan(v, u);
19
              low[u] = min(low[u], low[v]);
20
              if (parent != -1 && low[v] >=
                   dfn[u])
21
                 isCut = true;
22
23
          else if (v != parent)
              low[u] = min(low[u], dfn[v]);
24
25
      //If u is root of DFS
26
            tree->有兩個以上的children
      if (parent == -1 && child >= 2)
27
          isCut = true;
28
29
      if (isCut) ++res;
30 }
31 int main() {
```

21

31

```
Jc11
       char input[105];
32
       char* token:
33
       while (scanf("%d", &N) != EOF && N) {
34
35
           G.assign(105, vector<int>());
           memset(visited, false,
36
                sizeof(visited));
           memset(low, 0, sizeof(low));
37
           memset(dfn, 0, sizeof(visited));
38
39
           timer = 0:
40
           res = 0;
41
           getchar(); // for \n
           while (fgets(input, 105, stdin)) {
42
43
               if (input[0] == '0')
44
                  break;
45
               int size = strlen(input);
46
               input[size - 1] = ' \setminus 0';
47
               --size:
               token = strtok(input, " ");
48
               int u = atoi(token);
49
               int v;
50
               while (token = strtok(NULL, " "))
51
                    {
52
                  v = atoi(token);
53
                  G[u].emplace_back(v);
54
                  G[v].emplace_back(u);
               }
55
56
57
           tarjan(1, -1);
           printf("%d \ n", res);
58
59
60
       return 0;
61 }
```

3.8 最小樹狀圖

```
const int maxn = 60 + 10;
   const int inf = 0x3f3f3f3f;
   struct Edge {
      int s, t, cap, cost;
  }; // cap 為頻寬 (optional)
 6
   int n, m, c;
   int inEdge[maxn], idx[maxn], pre[maxn],
        vis[maxn]:
   // 對於每個點,選擇對它入度最小的那條邊
   // 找環,如果沒有則 return;
10
   // 進行縮環並更新其他點到環的距離。
   int dirMST(vector<Edge> edges, int low) {
11
12
      int result = 0, root = 0, N = n;
13
      while(true) {
          memset(inEdge, 0x3f, sizeof(inEdge));
14
15
          // 找所有點的 in edge 放進 inEdge
          // optional: low 為最小 cap 限制
16
17
          for(const Edge& e : edges) {
18
              if(e.cap < low) continue;</pre>
              if(e.s!=e.t &&
19
                   e.cost<inEdge[e.t]) {</pre>
                 inEdge[e.t] = e.cost;
20
21
                 pre[e.t] = e.s;
              }
22
23
24
          for(int i=0; i<N; i++) {</pre>
              if(i!=root && inEdge[i]==inf)
25
26
                 return -1;//除了root 還有點沒有in
                      edge
27
28
          int seq = inEdge[root] = 0;
29
          memset(idx, -1, sizeof(idx));
          memset(vis, -1, sizeof(vis));
30
          // 找所有的 cycle,一起編號為 seq
31
32
          for(int i=0; i<N; i++) {</pre>
33
              result += inEdge[i];
              int cur = i;
34
35
              while(vis[cur]!=i &&
                   idx[cur]==-1) {
                 if(cur == root) break;
36
                 vis[cur] = i;
37
                 cur = pre[cur];
38
```

```
39
              if(cur!=root && idx[cur]==-1) {
40
                  for(int j=pre[cur]; j!=cur;
41
                       j=pre[j])
42
                      idx[j] = seq;
                  idx[cur] = seq++;
43
              }
44
45
46
           if(seq == 0) return result; // 沒有
               cvcle
47
           for(int i=0; i<N; i++)</pre>
              // 沒有被縮點的點
48
49
              if(idx[i] == -1) idx[i] = seq++;
50
           // 縮點並重新編號
51
           for(Edge& e : edges) {
52
              if(idx[e.s] != idx[e.t])
                  e.cost -= inEdge[e.t];
53
              e.s = idx[e.s];
              e.t = idx[e.t];
55
56
          N = seq;
57
          root = idx[root];
58
59
60 }
```

3.9 二分圖最大匹配

```
1 /* 核心: 最大點獨立集 = |V| -
        /最大匹配數/,用匈牙利演算法找出最大匹配數 */
  vector<Student> boys;
 3 vector<Student> girls;
 4 vector<vector<int>> G;
 5 bool used[505];
   int p[505];
 6
 7
   bool match(int i) {
      for (int j: G[i]) {
          if (!used[j]) {
10
              used[j] = true;
11
              if (p[j] == -1 || match(p[j])) {
                 p[j] = i;
12
                  return true;
13
14
              }
15
          }
16
17
       return false;
18 }
19
   void maxMatch(int n) {
      memset(p, -1, sizeof(p));
20
      int res = 0;
21
      for (int i = 0; i < boys.size(); ++i) {</pre>
22
          memset(used, false, sizeof(used));
23
          if (match(i))
24
25
              ++res;
26
      }
      cout << n - res << '\n';
27
```

3.10 Blossom Algorithm

```
1 const int maxn = 500 + 10;
   struct Edge { int s, t; };
   int base[maxn], match[maxn], p[maxn], inq[maxn];
   bool vis[maxn], flower[maxn];
   vector<Edge> G[maxn];
  queue<int> q;
10
11 int lca(int a, int b) {
   memset(vis, 0, sizeof(vis));
12
     while(1) {
13
      a = base[a];
14
      vis[a] = true;
```

```
if(match[a] == -1) break;
16
17
       a = p[match[a]];
     }
18
     while(1) {
19
       b = baseΓb1:
20
       if(vis[b]) return b;
       b = p[match[b]];
22
23
24
     return -1;
25
  }
26
   void set_path(int x, int father) {
27
28
     while(x != father) {
29
30
       tmp = match[x];
       flower[base[x]]=flower[base[tmp]]=1;
32
       tmp = p[tmp]:
       if(base[tmp]!=father) p[tmp] = match[x];
34
35
    }
36
   }
37
   void blossom(int x, int y) {
     memset(flower, 0, sizeof(flower));
39
     int father = lca(x, y);
40
     set_path(x, father);
41
     set_path(y, father);
42
     if(base[x] != father) p[x] = y;
     if(base[y] != father) p[y] = x;
44
     for(int i=1; i<=n; i++) {</pre>
       if(!flower[base[i]]) continue;
46
       base[i] = father;
47
       if(!inq[i]) {
48
49
         q.push(i);
50
         inq[i] = true;
51
52
    }
53 }
54
   bool bfs(int root) {
     int cur, y, nxt;
56
     q = queue<int>();
     q.push(root);
58
59
     memset(inq, 0, sizeof(inq));
60
     memset(p, -1, sizeof(p));
     for(int i=1; i<=n; i++) base[i] = i;</pre>
61
     while(!q.empty()) {
63
64
       cur = q.front();
65
       q.pop();
       inq[cur] = false;
66
67
68
       for(auto e : G[cur]) {
         if(base[e.s] == base[e.t]) continue;
69
         if(match[e.s] == e.t) continue;
70
71
         if(e.t == root ||
72
           (~match[e.t] && ~p[match[e.t]])) {
           blossom(cur, e.t);
73
         } else if(p[e.t] == -1) {
74
75
          p[e.t] = cur;
76
           if(match[e.t] == -1) {
77
             cur = e.t;
            while(cur != -1) {
78
79
              y = p[cur];
              nxt = match[v]:
80
              match[cur] = y;
82
              match[y] = cur;
              cur = nxt;
83
            }
85
            return true;
           } else {
87
             q.push(match[e.t]);
88
             inq[match[e.t]] = true;
89
        }
90
91
       }
92
    }
     return false;
```

7

```
3.13 KM
   }
                                                              for (Edge& edge: G[curr.u]) {
94
                                                   60
                                                                 if (cnt[edge.v] < k) {</pre>
95
                                                   61
   int maxMatch() {
                                                   62
                                                                     pq.push({edge.v, curr.g +
96
                                                                                                       1 #define maxn 505
97
     int res = 0;
                                                                          edge.w, curr.g + edge.w
                                                                                                         int W[maxn][maxn];
     memset(match, -1, sizeof(match));
98
                                                                          + h[edge.v]});
                                                                                                         int Lx[maxn], Ly[maxn];
     for(int i=1; i<=n; i++) {</pre>
99
                                                                                                         bool S[maxn], T[maxn];
       if(match[i]==-1 && bfs(i)) res++;
                                                             }
100
                                                   64
                                                                                                         //L[i] = j \rightarrow S_i配給T_j, -1 for 還沒匹配
101
                                                   65
                                                                                                         int L[maxn];
102
     return res;
                                                   66
                                                          return -1;
                                                                                                       7
                                                                                                         int n;
103 }
                                                   67
                                                                                                         bool match(int i) {
                                                   68
                                                      int main() {
                                                                                                             S[i] = true;
                                                   69
                                                          int n, m;
                                                                                                             for (int j = 0; j < n; ++j) {</pre>
                                                                                                      10
                                                          while (scanf("%d %d", &n, &m) && (n != 0
   3.11
            Astar
                                                                                                                 // KM重點
                                                               && m != 0)) {
                                                                                                      12
                                                                                                                 // Lx + Ly >= selected_edge(x, y)
                                                   71
                                                              G.assign(n + 5, vector<Edge>());
                                                                                                                 // 要想辦法降低Lx + Lv
   /*A*求k短路
                                                                                                      13
                                                   72
                                                              invertG.assign(n + 5, vector<Edge>());
                                                                                                      14
                                                                                                                 // 所以選Lx + Ly == selected_edge(x, y)
     f(x) = g(x) + h(x)
                                                              int s, t, k;
                                                   73
                                                                                                                 if (Lx[i] + Ly[j] == W[i][j] &&
                                                                                                      15
     g(x) 是實際cost, h(x) 是估計cost
                                                              scanf("%d %d %d", &s, &t, &k);
                                                                                                                      !T[j]) {
     在此h(x)用所有點到終點的最短距離,則當用Astar找點 75
                                                              int u, v, w;
                                                                                                      16
                                                                                                                    T[j] = true;
     當該點cnt[u] == k時即得到該點的第k短路
                                                   76
                                                              for (int i = 0; i < m; ++i) {</pre>
                                                                                                                    if ((L[j] == -1) || match(L[j])) {
                                                                                                      17
                                                                 scanf("%d %d %d", &u, &v, &w);
                                                   77
                                                                                                      18
                                                                                                                        L[j] = i;
   #define maxn 105
                                                                 G[u].emplace_back(Edge{u, v, w});
                                                   78
                                                                                                      19
                                                                                                                        return true;
   struct Edge {
                                                   79
                                                                 invertG[v].emplace_back(Edge{v,
                                                                                                      20
 9
       int u, v, w;
                                                                      u, w});
                                                                                                                 }
                                                                                                      21
10
   };
                                                   80
                                                              }
                                                                                                      22
                                                                                                             }
   struct Item_pqH {
11
                                                             memset(h, 0x3f, sizeof(h));
                                                   81
                                                                                                      23
                                                                                                             return false;
12
       int u, w;
                                                              dijkstra(t, s);
                                                   82
                                                                                                      24 }
       bool operator <(const Item_pqH& other)</pre>
13
                                                   83
                                                              printf("%d\n", Astar(s, t, k));
                                                                                                         //修改二分圖上的交錯路徑上點的權重
                                                          }
                                                   84
                                                                                                          //此舉是在通過調整vertex labeling看看
           return this->w > other.w;
14
                                                   85
                                                          return 0;
                                                                                                          //能不能產生出新的增廣路
15
                                                   86 }
                                                                                                         //(KM的增廣路要求Lx[i] + Ly[j] == W[i][j])
16 };
                                                                                                         //在這裡優先從最小的diff調調看,才能保證最大權重匹配
17
   struct Item_astar {
                                                                                                      30
                                                                                                         void update()
18
       int u, g, f;
                                                      3.12
                                                               JosephusProblem |
                                                                                                      31
       bool operator <(const Item_astar& other)</pre>
19
                                                                                                      32
                                                                                                             int diff = 0x3f3f3f3f;
                                                                                                             for (int i = 0; i < n; ++i) {</pre>
                                                                                                      33
           return this->f > other.f;
20
                                                    1 //JosephusProblem,只是規定要先砍1號
                                                                                                      34
                                                                                                                 if (S[i]) {
21
       }
                                                      //所以當作有n - 1個人,目標的13順移成12
                                                                                                      35
                                                                                                                    for (int j = 0; j < n; ++j) {
   };
22
                                                      //再者從Ø開始比較好算,所以目標12順移成11
                                                                                                      36
                                                                                                                        if (!T[j])
23
   vector<vector<Edge>> G;
                                                                                                      37
                                                                                                                            diff = min(diff, Lx[i] +
   //反向圖,用於建h(u)
                                                                                                                                 Ly[j] - W[i][j]);
   vector<vector<Edge>> invertG;
                                                    6 int getWinner(int n, int k) {
                                                                                                      38
                                                                                                                    }
   int h[maxn];
                                                          int winner = 0;
                                                                                                                 }
                                                                                                      39
   bool visited[maxn];
                                                          for (int i = 1; i <= n; ++i)</pre>
                                                                                                      40
   int cnt[maxn];
28
                                                              winner = (winner + k) % i;
                                                                                                      41
                                                                                                             for (int i = 0; i < n; ++i) {
   //用反向圖去求出每一點到終點的最短距離,並以此當作h(+16)
                                                          return winner;
                                                                                                                 if (S[i]) Lx[i] -= diff;
                                                                                                      42
   void dijkstra(int s, int t) {
                                                   11 }
                                                                                                      43
                                                                                                                 if (T[i]) Ly[i] += diff;
       memset(visited, 0, sizeof(visited));
                                                   12
                                                                                                      44
                                                                                                             }
32
       priority_queue<Item_pqH> pq;
                                                   13
                                                      int main() {
                                                                                                      45
33
       pq.push({s, 0});
                                                   14
                                                          int n;
                                                                                                         void KM()
                                                                                                      46
34
       h[s] = 0;
                                                          while (scanf("%d", &n) != EOF && n){
                                                   15
                                                                                                      47
35
       while (!pq.empty()) {
                                                   16
                                                                                                      48
                                                                                                             for (int i = 0; i < n; ++i) {
          Item_pqH curr = pq.top();
36
                                                              for (int k = 1; k \le n; ++k){
                                                                                                                 L[i] = -1;
                                                                                                      49
37
          pq.pop();
                                                                 if (getWinner(n, k) == 11){
                                                   18
                                                                                                                 Lx[i] = Ly[i] = 0;
                                                                                                      50
38
          visited[curr.u] = true;
                                                                     printf("%d\n", k);
                                                   19
                                                                                                                 for (int j = 0; j < n; ++j)
                                                                                                      51
39
          for (Edge& edge: invertG[curr.u]) {
                                                   20
                                                                     break;
                                                                                                                    Lx[i] = max(Lx[i], W[i][j]);
                                                                                                      52
              if (!visited[edge.v]) {
40
                                                   21
                                                                                                      53
41
                  if (h[edge.v] > h[curr.u] +
                                                   22
                                                             }
                                                                                                      54
                                                                                                             for (int i = 0; i < n; ++i) {
                       edge.w) {
                                                          }
                                                   23
                                                                                                      55
                                                                                                                 while(1) {
                      h[edge.v] = h[curr.u] +
42
                                                   24
                                                          return 0;
                                                                                                      56
                                                                                                                    memset(S, false, sizeof(S));
                           edge.w;
                                                   25 }
                                                                                                      57
                                                                                                                    memset(T, false, sizeof(T));
                     pq.push({edge.v,
43
                                                   26
                                                                                                      58
                                                                                                                    if (match(i))
                           h[edge.v]});
                                                   27
                                                      // O(k \log(n))
                                                                                                      59
                                                                                                                        break:
                  }
44
                                                      int josephus(int n, int k) {
                                                   28
45
              }
                                                        if (n == 1) return 0;
                                                                                                                        update(); //去調整vertex
                                                                                                      61
          }
46
                                                        if (k == 1) return n - 1;
                                                   30
                                                                                                                             labeling以增加增廣路徑
47
       }
                                                        if (k > n) return (josephus(n-1,k)+k)%n;
                                                   31
                                                                                                      62
                                                                                                                 }
48
   }
                                                   32
                                                        int res = josephus(n - n / k, k);
                                                                                                      63
                                                                                                             }
49
   int Astar(int s, int t, int k) {
                                                        res -= n % k;
                                                   33
                                                                                                      64
                                                                                                         }
       memset(cnt, 0, sizeof(cnt));
50
                                                        if (res < 0)
                                                   34
                                                                                                      65
                                                                                                         int main() {
       priority_queue<Item_astar> pq;
51
                                                   35
                                                          res += n; // mod n
                                                                                                             while (scanf("%d", &n) != EOF) {
52
       pq.push({s, 0, h[s]});
                                                   36
                                                                                                                 for (int i = 0; i < n; ++i)</pre>
                                                                                                      67
53
       while (!pq.empty()) {
                                                          res += res / (k - 1); // 还原位置
                                                   37
                                                                                                                    for (int j = 0; j < n; ++j)
                                                                                                      68
          Item_astar curr = pq.top();
54
                                                   38
                                                        return res;
                                                                                                      69
                                                                                                                        scanf("%d", &W[i][j]);
55
          pq.pop();
                                                   39 }
                                                                                                      70
                                                                                                                 KM():
          ++cnt[curr.u];
56
                                                                                                      71
                                                                                                                 int res = 0;
           //終點出現k次,此時即可得k短路
57
                                                                                                                 for (int i = 0; i < n; ++i) {
                                                                                                      72
          if (cnt[t] == k)
58
                                                                                                                    if (i != 0)
                                                                                                      73
59
              return curr.g;
```

```
printf(" %d", Lx[i]);
74
75
              else
76
                  printf("%d", Lx[i]);
77
              res += Lx[i];
78
           }
79
           puts("");
           for (int i = 0; i < n; ++i) {
80
81
              if (i != 0)
82
                  printf(" %d", Ly[i]);
83
84
                  printf("%d", Ly[i]);
85
              res += Ly[i];
86
           puts("");
87
88
           printf("%d\n", res);
89
90
       return 0;
```

3.14 LCA 倍增法

```
//倍增法預處理O(nlogn),查詢O(logn),
   //利用1ca找樹上任兩點距離
   #define maxn 100005
   struct Edge {
    int u, v, w;
 6
   };
   vector<vector<Edge>> G; // tree
7
   int fa[maxn][31]; //fa[u][i] -> u的第2<sup>i</sup>個祖先
   long long dis[maxn][31];
10
   int dep[maxn];//深度
   void dfs(int u, int p) {//預處理fa
      fa[u][0] = p; //因為u的第2^0 = 1的祖先就是p
12
13
      dep[u] = dep[p] + 1;
14
      //第2^{i}的祖先是(第2^{i} - 1)個祖先)的
15
      //第2<sup>^</sup>(i - 1)的祖先
16
       //ex: 第8個祖先是 (第4個祖先)的第4個祖先
      for (int i = 1; i < 31; ++i) {</pre>
17
          fa[u][i] = fa[fa[u][i - 1]][i - 1];
18
19
          dis[u][i] = dis[fa[u][i - 1]][i - 1]
               + dis[u][i - 1];
20
      //遍歷子節點
21
22
      for (Edge& edge: G[u]) {
          if (edge.v == p)
23
24
              continue;
          dis[edge.v][0] = edge.w;
25
26
          dfs(edge.v, u);
27
28
   }
29
   long long lca(int x, int y) {
       //此函數是找lca同時計算x \cdot y的距離 -> dis(x,
30
           lca) + dis(lca, y)
       //讓y比x深
31
      if (dep[x] > dep[y])
32
33
          swap(x, y);
34
      int deltaDep = dep[y] - dep[x];
35
      long long res = 0;
36
       //讓y與x在同一個深度
37
      for (int i = 0; deltaDep != 0; ++i,
            deltaDep >>= 1)
          if (deltaDep & 1)
38
39
              res += dis[y][i], y = fa[y][i];
40
      if (y == x) //x = y \rightarrow x y彼此是彼此的祖先
41
          return res:
42
       //往上找,一起跳,但x \times y不能重疊
      for (int i = 30; i >= 0 && y != x; --i) {
43
          if (fa[x][i] != fa[y][i]) {
44
45
              res += dis[x][i] + dis[y][i];
46
              x = fa[x][i];
47
              y = fa[y][i];
48
49
      //最後發現不能跳了,此時x的第2<sup>0</sup>0 =
50
            1個祖先(或說y的第2^{0} =
            1的祖先 )即為 x 、 v的 1 ca
      res += dis[x][0] + dis[y][0];
51
```

```
52
      return res;
53 }
54 int main() {
    int n, q;
    while (~scanf("%d", &n) && n) {
56
57
      int v, w;
58
      G.assign(n + 5, vector<Edge>());
          for (int i = 1; i <= n - 1; ++i) {
59
60
        scanf("%d %d", &v, &w);
        G[i + 1].push_back({i + 1, v + 1, w});
61
62
        G[v + 1].push_back({v + 1, i + 1, w});
63
          dfs(1, 0);
64
65
          scanf("%d", &q);
66
          int u:
67
          while (q--) {
             scanf("%d %d", &u, &v);
68
             70
    }
71
72
    return 0;
```

3.15 LCA 樹壓平 RMO

O(nlogn)建立,O(1)查詢),求任意兩點距離,

//如果用笛卡兒樹可以壓到0(n)建立,0(1)查詢

1 //樹壓平求LCA RMQ(sparse table

```
//理論上可以過,但遇到直鏈的case dfs深度會stack
        overflow
   #define maxn 100005
   struct Edge {
 6
    int u, v, w;
 7 \ };
 8 int dep[maxn], pos[maxn];
   long long dis[maxn];
10 int st[maxn * 2][32]; //sparse table
11 int realLCA[maxn * 2][32];
        //最小深度對應的節點,及真正的LCA
   int Log[maxn]; //取代std::log2
13
   int tp; // timestamp
   vector<vector<Edge>> G; // tree
14
   void calLog() {
    Log[1] = 0;
16
17
     Log[2] = 1;
18
     for (int i = 3; i < maxn; ++i)</pre>
19
      Log[i] = Log[i / 2] + 1;
20 }
21
   void buildST() {
     for (int j = 0; Log[tp]; ++j) {
22
       for (int i = 0; i + (1 << j) - 1 < tp;
23
            ++i) {
         if (st[i - 1][j] < st[i - 1][j + (1 <<</pre>
24
              i - 1)]) {
25
          st[i][j] = st[i - 1][j];
26
          realLCA[i][j] = realLCA[i - 1][j];
27
28
        else {
          st[i][j] = st[i - 1][j + (1 << i -
           realLCA[i][j] = realLCA[i - 1][j + (1)]
30
               << i - 1)];
        }
31
32
      }
    }
33
34 } // O(nlogn)
35 int query(int 1, int r) {// [1, r] min
        depth即為1ca的深度
     int k = Log[r - 1 + 1];
36
     if (st[1][k] < st[r - (1 << k) + 1][k])
37
      return realLCA[1][k];
38
39
40
       return realLCA[r - (1 << k) + 1][k];</pre>
41 }
42
   void dfs(int u, int p) {//euler tour
```

pos[u] = tp;

```
st[tp][0] = dep[u];
44
45
     realLCA[tp][0] = dep[u];
46
     ++tp:
     for (int i = 0; i < G[u].size(); ++i) {</pre>
47
48
      Edge& edge = G[u][i];
       if (edge.v == p) continue;
       dep[edge.v] = dep[u] + 1;
50
       dis[edge.v] = dis[edge.u] + edge.w;
51
52
       dfs(edge.v, u);
      st[tp++][0] = dep[u];
53
54
55
   }
56
   long long getDis(int u, int v) {
57
    if (pos[u] > pos[v])
58
      swap(u, v);
59
     int lca = query(pos[u], pos[v]);
     return dis[u] + dis[v] - 2 *
60
          dis[query(pos[u], pos[v])];
61
  }
62
   int main() {
    int n, q;
63
      calLog():
64
     while (~scanf("%d", &n) && n) {
      int v, w;
66
67
       G.assign(n + 5, vector<Edge>());
68
       tp = 0;
          for (int i = 1; i \le n - 1; ++i) {
69
70
         scanf("%d %d", &v, &w);
        G[i].push_back({i, v, w});
71
72
        G[v].push_back({v, i, w});
73
74
          dfs(0, -1);
75
          buildST();
76
          scanf("%d", &q);
77
          int u;
          while (q--) {
78
              scanf("%d %d", &u, &v);
79
              printf("%11d%c", getDis(u, v),
80
                   (q) ? ' ' : '\n');
81
    }
82
83
    return 0;
```

3.16 LCA 樹鍊剖分

```
1 #define maxn 5005
2 //LCA,用來練習樹鍊剖分
3 //題意: 給定樹,找任兩點的中點,
  //若中點不存在(路徑為even),就是中間的兩個點
   int dfn[maxn];
  int parent[maxn];
  int depth[maxn];
  int subtreeSize[maxn];
   //樹鍊的頂點
  int top[maxn];
11
  //將dfn轉成node編碼
12
  int dfnToNode[maxn];
13
   //重兒子
   int hson[maxn];
14
15
   int dfsTime = 1;
   //tree
16
   vector<vector<int>> G;
18
   //處理parent、depth、subtreeSize、dfnToNode
   void dfs1(int u, int p) {
19
      parent[u] = p;
20
      hson[u] = -1;
21
      subtreeSize[u] = 1;
22
      for (int v: G[u]) {
23
24
          if (v != p) {
25
             depth[v] = depth[u] + 1;
             dfs1(v. u):
26
             subtreeSize[u] += subtreeSize[v];
27
             if (hson[u] == -1 ||
28
                  subtreeSize[hson[u]] <</pre>
                  subtreeSize[v]) {
                 hson[u] = v;
29
```

```
int y = getK_parent(v, dis
                                                                                                                        dis[edge.v] = dis[u] +
30
              }
                                                  102
                                                                                                      38
           }
                                                                              / 2);
31
                                                                                                                             edge.cost;
32
       }
                                                                         if (x > y)
                                                                                                                        parent[edge.v] = edgeIndex;
                                                  103
                                                                                                      39
   }
                                                                             swap(x, y);
                                                                                                                        outFlow[edge.v] =
                                                  104
                                                                                                      40
                                                                                                                             min(outFlow[u], (long
                                                                         printf("The fleas jump
34
   //實際剖分 <- 參數 t是 top的意思
                                                  105
   //t初始應為root本身
                                                                              forever between %d
                                                                                                                             long)(edge.cap -
                                                                              and %d.\n", x, y);
   void dfs2(int u, int t) {
36
                                                                                                                             edge.flow));
37
       top[u] = t;
                                                                     }
                                                                                                      41
                                                                                                                        if (!inqueue[edge.v]) {
                                                  106
38
       dfn[u] = dfsTime;
                                                  107
                                                                     else {
                                                                                                      42
                                                                                                                            q.push(edge.v);
       dfnToNode[dfsTime] = u;
                                                                         //技巧: 讓深的點v往上dis /
                                                                                                                            inqueue[edge.v] = true;
39
                                                  108
                                                                                                      43
40
       ++dfsTime;
                                                                              2步 = y,
                                                                                                      44
       //葉子點 -> 沒有重兒子
                                                                         //這個點的parent設為x
                                                                                                                    }
41
                                                  109
                                                                                                      45
42
       if (hson[u] == -1)
                                                  110
                                                                         //此時的x、y就是答案要的中點兩點46
                                                                                                                 }
43
           return:
                                                  111
                                                                         //主要是往下不好找,所以改用深的黏
44
       //優先對重兒子dfs,才能保證同一重鍊dfn連續
                                                  112
                                                                         int y = getK_parent(v, dis
                                                                                                      48
                                                                                                             //如果dis[t] > O代表根本不賺還倒賠
45
       dfs2(hson[u], t);
                                                                              / 2);
                                                                                                      49
                                                                                                             if (dis[t] > 0)
       for (int v: G[u]) {
46
                                                                         int x = getK_parent(y, 1);
                                                                                                                 return false:
                                                  113
                                                                                                      50
47
           if (v != parent[u] && v != hson[u])
                                                                         if (x > y)
                                                                                                             maxFlow += outFlow[t];
48
              dfs2(v, v);
                                                                                                             minCost += dis[t] * outFlow[t];
                                                  115
                                                                             swap(x, y);
                                                                                                      52
49
                                                                         printf("The fleas jump
                                                                                                             //一路更新回去這次最短路流完後要維護的
                                                  116
                                                                                                      53
50
   }
                                                                              forever between %d
                                                                                                      54
                                                                                                             //MaxFlow演算法相關(如反向邊等)
   //不斷跳鍊,當跳到同一條鍊時,深度小的即為LCA
                                                                              and %d.\n", x, y);
                                                                                                             int curr = t;
                                                                                                      55
51
   //跳鍊時優先鍊頂深度大的跳
                                                  117
                                                                     }
                                                                                                      56
                                                                                                             while (curr != s) {
53
   int LCA(int u, int v) {
                                                  118
                                                                 }
                                                                                                      57
                                                                                                                 edges[parent[curr]].flow +=
       while (top[u] != top[v]) {
                                                  119
                                                             }
                                                                                                                      outFlow[t];
54
           if (depth[top[u]] > depth[top[v]])
                                                          3
                                                                                                                 edges[parent[curr] ^ 1].flow -=
55
                                                  120
                                                                                                      58
              u = parent[top[u]];
                                                                                                                      outFlow[t];
56
                                                  121
                                                          return 0;
57
           else
                                                  122 }
                                                                                                      59
                                                                                                                 curr = edges[parent[curr]].u;
                                                                                                             }
58
              v = parent[top[v]];
                                                                                                      60
59
                                                                                                      61
                                                                                                             return true;
                                                                                                      62 }
       return (depth[u] > depth[v]) ? v : u;
60
                                                      3.17
                                                               MCMF
                                                                                                         long long MCMF() {
61
                                                                                                      63
   int getK_parent(int u, int k) {
                                                                                                             long long maxFlow = 0;
62
                                                                                                      64
63
       while (k-- && (u != -1))
                                                                                                      65
                                                                                                             long long minCost = 0;
                                                    1 #define maxn 225
           u = parent[u];
                                                                                                             while (SPFA(maxFlow, minCost))
64
                                                      #define INF 0x3f3f3f3f
                                                                                                      66
65
       return u:
                                                                                                      67
                                                      struct Edge {
   }
                                                                                                      68
                                                                                                             return minCost;
66
                                                          int u, v, cap, flow, cost;
67
   int main() {
                                                    5 };
                                                                                                      69 }
                                                                                                      70
                                                                                                         int main() {
68
       int n:
                                                    6 //node size, edge size, source, target
       while (scanf("%d", &n) && n) {
                                                                                                      71
                                                                                                             int T;
69
                                                      int n, m, s, t;
           dfsTime = 1;
                                                                                                      72
                                                                                                             scanf("%d", &T);
70
                                                      vector<vector<int>> G;
           G.assign(n + 5, vector<int>());
                                                                                                             for (int Case = 1; Case <= T; ++Case){</pre>
71
                                                    9 vector<Edge> edges;
                                                                                                      73
                                                                                                                 //總共幾個月, 囤貨成本
72
           int u, v;
                                                   10 bool inqueue[maxn];
                                                                                                      74
73
           for (int i = 1; i < n; ++i) {
                                                                                                      75
                                                                                                                 int M, I;
                                                   11 long long dis[maxn];
              scanf("%d %d", &u, &v);
                                                                                                                 scanf("%d %d", &M, &I);
74
                                                   12
                                                      int parent[maxn];
                                                                                                      76
75
              G[u].emplace_back(v);
                                                                                                                 //node size
                                                                                                      77
                                                   13 long long outFlow[maxn];
76
              G[v].emplace_back(u);
                                                                                                                 n = M + M + 2;
                                                   14 void addEdge(int u, int v, int cap, int
                                                                                                      78
77
                                                                                                                 G.assign(n + 5, vector<int>());
                                                                                                      79
           dfs1(1, -1);
78
                                                                                                      80
                                                                                                                 edges.clear();
                                                   15
                                                          edges.emplace_back(Edge{u, v, cap, 0,
           dfs2(1, 1);
79
                                                                                                      81
                                                                                                                 s = 0;
                                                               cost});
                                                                                                                 t = M + M + 1;
80
           int q;
                                                                                                      82
                                                   16
                                                          edges.emplace_back(Edge{v, u, 0, 0,
           scanf("%d", &q);
81
                                                                                                      83
                                                                                                                 for (int i = 1; i <= M; ++i) {
                                                               -cost}):
                                                                                                                    int produceCost, produceMax,
82
           for (int i = 0; i < q; ++i) {</pre>
                                                                                                      84
                                                   17
                                                          m = edges.size();
              scanf("%d %d", &u, &v);
                                                                                                                          sellPrice, sellMax,
83
                                                          G[u].emplace_back(m - 2);
                                                   18
84
               //先得到LCA
                                                          G[v].emplace_back(m - 1);
                                                                                                                          inventoryMonth;
                                                   19
              int lca = LCA(u, v);
                                                                                                                    scanf("%d %d %d %d %d",
85
                                                                                                      85
                                                   20 }
86
               //計算路徑長(經過的邊)
                                                                                                                          &produceCost, &produceMax,
                                                      //一邊求最短路的同時一邊MaxFLow
                                                   21
                                                                                                                          &sellPrice, &sellMax,
              int dis = depth[u] + depth[v] - 2
87
                                                      bool SPFA(long long& maxFlow, long long&
                                                                                                                          &inventoryMonth);
                   * depth[lca];
                                                           minCost) {
               //讓v比u深或等於
                                                                                                                    addEdge(s, i, produceMax,
88
                                                   23
                                                          // memset(outFlow, 0x3f,
                                                                                                      86
89
              if (depth[u] > depth[v])
                                                                                                                         produceCost);
                                                               sizeof(outFlow));
90
                  swap(u, v);
                                                                                                      87
                                                                                                                     addEdge(M + i, t, sellMax,
                                                   24
                                                          memset(dis, 0x3f, sizeof(dis));
              if (u == v) {
                                                                                                                          -sellPrice);
91
                                                          memset(inqueue, false, sizeof(inqueue));
                                                   25
                  printf("The fleas meet at
                                                                                                                     for (int j = 0; j <=</pre>
                                                          queue<int> q;
                                                                                                      88
                                                   26
                       %d.\n", u);
                                                                                                                          inventoryMonth; ++j) {
                                                          q.push(s);
                                                   27
93
                                                                                                      89
                                                                                                                        if (i + j \ll M)
                                                   28
                                                          dis[s] = 0;
              else if (dis % 2 == 0) {
                                                                                                                            addEdge(i, M + i + j, INF,
94
                                                   29
                                                          inqueue[s] = true;
                                                                                                      90
95
                  //路徑長是even -> 有中點
                                                                                                                                 I * i):
                                                   30
                                                          outFlow[s] = INF;
                  printf("The fleas meet at
                                                                                                      91
96
                                                          while (!q.empty()) {
                                                   31
                       %d.\n", getK_parent(v,
                                                                                                                 }
                                                              int u = q.front();
                                                                                                      92
                                                   32
                       dis / 2));
                                                                                                                 printf("Case %d: %11d\n", Case,
                                                   33
                                                              q.pop();
97
              }
                                                                                                                      -MCMF());
                                                              inqueue[u] = false;
                                                   34
98
                                                                                                      94
                                                                                                             }
                                                              for (const int edgeIndex: G[u]) {
                                                   35
99
                  //路徑長是odd -> 沒有中點
                                                                                                      95
                                                                                                             return 0;
                                                   36
                                                                  const Edge& edge =
                  if (depth[u] == depth[v]) {
                                                                                                      96 }
100
                                                                       edges[edgeIndex];
101
                      int x = getK_parent(u, dis
                                                                  if ((edge.cap > edge.flow) &&
                                                   37
                           / 2);
                                                                       (dis[edge.v] > dis[u] +
                                                                       edge.cost)) {
```

```
莫隊
   3.18
                                                                   add(r);
                                                    67
                                                                                                        57
                                                                                                                       result[idx] = row[i];
                                                               }
                                                    68
                                                                                                        58
                                                                                                                           remove(col[j]);
                                                    69
                                                               while (r > querys[i].r) {
                                                                                                        59
   /*利用prefix前綴XOR和
                                                    70
                                                                   sub(r);
     如果要求[x, y]的XOR和只要回答prefix[y]
                                                    71
                                                                   --r;
                                                                                                        61
          prefix[x - 1]即可在0(1)回答
                                                    72
                                                                                                        62
                                                                                                                           recover(col[j]);
     同時維護cnt[i]代表[x, y]XOR和 == i的個數
                                                                                                                   }
                                                    73
                                                               ans[querys[i].id] = res;
                                                                                                        63
     如此我們知道[1, r]可以快速知道[1 - 1, r], [1
                                                                                                                   recover(c);
                                                    74
                                                                                                        64
          + 1, r], [1, r - 1], [1, r + 1]的答案
                                                    75
                                                           for (int i = 1; i <= m; ++i){
                                                                                                        65
                                                                                                                   return false;
     就符合Mo's algorithm的思維O(N * sqrt(n))
                                                               printf("%11d\n", ans[i]);
                                                                                                               }
                                                    76
                                                                                                        66
     每次轉移為0(1),具體轉移方法在下面*/
                                                    77
                                                                                                        67
   #define maxn 100005
                                                    78
                                                           return 0;
                                                                                                                     depth 版
   //在此prefix[i]是[1, i]的XOR和
                                                                                                        68
                                                                                                                   if(R[0] == 0) {
   int prefix[maxn];
                                                                                                        69
   //log_2(1000000) =
                                                                                                                            注意init值
        19.931568569324174087221916576937...
                                                                                                        70
                                                                                                                       return:
                                                                 Dancing Links
   //所以開到1 << 20
                                                                                                                   }
                                                                                                        71
   //cnt[i]代表的是有符合nums[x, y] such that
12
                                                                                                        72
                                                                                                                   int c = R[0];
        nums[x] ^ nums[x + 1] ^ ... ^ nums[y] ==
                                                     1 struct DLX {
                                                                                                        73
                                                           int seq, resSize;
                                                                                                        74
   //的個數
13
                                                           int col[maxn], row[maxn];
                                                                                                        75
   long long cnt[1 << 20];</pre>
                                                           int U[maxn], D[maxn], R[maxn], L[maxn];
                                                                                                        76
                                                                                                                   remove(c);
   //塊大小 -> sqrt(n)
15
                                                           int rowHead[maxn], colSize[maxn];
                                                                                                        77
  int sqrtQ;
16
                                                           int result[maxn];
                                                                                                        78
17
   struct Query {
                                                           DLX(int r, int c) {
                                                                                                        79
                                                                                                                           remove(col[j]);
18
       int 1, r, id;
                                                               for(int i=0; i<=c; i++) {</pre>
                                                                                                        80
                                                                                                                       dfs(idx+1);
       bool operator < (const Query& other)</pre>
19
                                                                  L[i] = i-1, R[i] = i+1;
                                                                                                        81
            const {
                                                                  U[i] = D[i] = i;
                                                    10
                                                                                                        82
                                                                                                                           recover(col[j]);
           if (this->l / sqrtQ != other.l /
20
                                                                                                                   }
                                                                                                        83
                sqrtQ)
                                                              L[R[seq=c]=0]=c;
                                                    12
                                                                                                        84
                                                                                                                   recover(c);
21
              return this->1 < other.1;</pre>
                                                               resSize = -1;
                                                    13
                                                                                                        85
                                                                                                               }
22
           //奇偶排序(優化)
                                                    14
                                                               memset(rowHead, 0, sizeof(rowHead));
                                                                                                        86 };
23
          if (this->1 / sart0 & 1)
                                                               memset(colSize, 0, sizeof(colSize));
                                                    15
24
              return this->r < other.r;</pre>
                                                    16
25
          return this->r > other.r;
                                                           void insert(int r, int c) {
                                                    17
26
                                                               row[++seq]=r, col[seq]=c,
                                                    18
  };
27
                                                                    ++colSize[c];
   Query querys[maxn];
28
                                                    19
                                                               U[seq]=c, D[seq]=D[c], U[D[c]]=seq,
   long long ans[maxn];
                                                                    D[c]=seq;
   long long res = 0;
30
                                                    20
                                                               if(rowHead[r]) {
31
   int k;
                                                                  L[seq]=rowHead[r],
32
   void add(int x) {
                                                                        R[seq]=R[rowHead[r]];
33
       res += cnt[k ^ prefix[x]];
                                                                  L[R[rowHead[r]]]=seq,
                                                    22
34
       ++cnt[prefix[x]];
                                                                        R[rowHead[r]]=seq;
   }
35
                                                    23
   void sub(int x) {
36
                                                    24
                                                                   rowHead[r] = L[seq] = R[seq] =
37
       --cnt[prefix[x]];
       res -= cnt[k ^ prefix[x]];
38
                                                    25
39 }
                                                    26
40
   int main() {
                                                    27
                                                           void remove(int c) {
41
       int n, m;
                                                    28
                                                               L[R[c]] = L[c], R[L[c]] = R[c];
       scanf("%d %d %d", &n, &m, &k);
42
                                                               for(int i=D[c]; i!=c; i=D[i]) {
                                                    29
43
       sqrtQ = sqrt(n);
                                                    30
                                                                   for(int j=R[i]; j!=i; j=R[j]) {
       for (int i = 1; i <= n; ++i) {</pre>
44
                                                    31
                                                                      U[D[j]] = U[j];
45
          scanf("%d", &prefix[i]);
                                                                      D[U[i]] = D[i];
                                                    32
46
          prefix[i] ^= prefix[i - 1];
                                                                      --colSize[col[j]];
                                                    33
47
                                                                  }
                                                    34
       for (int i = 1; i <= m; ++i) {</pre>
48
                                                    35
                                                               }
49
          scanf("%d %d", &querys[i].1,
                                                           }
                                                    36
                &querys[i].r);
                                                           void recover(int c) {
                                                    37
50
           //減1是因為prefix[i]是[1,
                                                    38
                                                               for(int i=U[c]; i!=c; i=U[i]) {
                i]的前綴XOR和,所以題目問[1,
                                                                   for(int j=L[i]; j!=i; j=L[j]) {
                                                    39
                r]我們要回答[1 - 1, r]的答案
                                                                      U[D[j]] = D[U[j]] = j;
51
           --querys[i].l;
                                                    41
                                                                      ++colSize[col[j]];
52
          querys[i].id = i;
                                                    42
53
                                                               }
                                                    43
       sort(querys + 1, querys + m + 1);
54
                                                    44
                                                              L[R[c]] = R[L[c]] = c;
55
       int 1 = 1, r = 0;
                                                    45
       for (int i = 1; i <= m; ++i) {</pre>
56
                                                           bool dfs(int idx=0) { // 判斷其中一解版
                                                    46
57
          while (1 < querys[i].1) {</pre>
                                                               if(R[0] == 0) {
                                                    47
58
              sub(1);
                                                    48
                                                                   resSize = idx;
59
              ++1;
                                                    49
                                                                   return true:
60
                                                    50
61
          while (1 > querys[i].1) {
                                                               int c = R[0]:
                                                    51
62
                                                               for(int i=R[0]; i; i=R[i]) {
              add(1);
63
                                                    53
                                                                   if(colSize[i] < colSize[c]) c = i;</pre>
                                                    54
65
          while (r < querys[i].r) {</pre>
                                                    55
                                                               remove(c);
66
```

for(int i=D[c]; i!=c; i=D[i]) {

```
11
       for(int j=R[i]; j!=i; j=R[j])
       if(dfs(idx+1)) return true;
       for(int j=L[i]; j!=i; j=L[j])
void dfs(int idx=0) { // 判斷最小 dfs
       resSize = min(resSize, idx); //
   for(int i=R[0]; i; i=R[i]) {
       if(colSize[i] < colSize[c]) c = i;</pre>
   for(int i=D[c]; i!=c; i=D[i]) {
       for(int j=R[i]; j!=i; j=R[j])
       for(int j=L[i]; j!=i; j=L[j])
```

DataStructure

4.1 BIT

```
template <class T> class BIT {
   private:
    int size;
     vector<T> bit;
    vector<T> arr;
 6
 7
   public:
    BIT(int sz=0):
       size(sz), bit(sz+1), arr(sz) {}
10
     /** Sets the value at index idx to val. */
     void set(int idx, T val) {
12
      add(idx, val - arr[idx]);
13
15
     /** Adds val to the element at index idx.
     void add(int idx, T val) {
17
18
      arr[idx] += val;
       for (++idx; idx<=size; idx+=(idx & -idx))</pre>
19
20
         bit[idx] += val;
    }
21
22
     /** The sum of all values in [0, idx]. */
23
24
     T pre_sum(int idx) {
25
      T total = 0;
                                                    24
      for (++idx; idx>0; idx-=(idx & -idx))
26
                                                    25
         total += bit[idx];
27
       return total;
28
29
30 };
                                                    28
```

4.2 帶權併查集

```
    val[x] 為 x 到 p[x] 的距離 (隨題目變化更改)

       merge(u, v, w)
              u \xrightarrow{w} v
              pu = pv 時,val[v] - val[u] \neq w 代表有誤
       ・ 若 [l,r] 的總和為 w,則應呼叫 merge(1-1, r, w)
   const int maxn = 2e5 + 10;
   int p[maxn], val[maxn];
 3
   int findP(int x) {
       if(p[x] == -1) return x;
       int par = findP(p[x]);
       val[x] += val[p[x]]; //依題目更新val[x]
       return p[x] = par;
10
  }
11
   void merge(int u, int v, int w) {
12
13
       int pu = findP(u);
       int pv = findP(v);
       if(pu == pv) {
15
          // 理論上 val[v]-val[u] == w
16
          // 依題目判斷 error 的條件
17
18
          return:
19
       val[pv] = val[u] - val[v] + w;
20
21
       p[pv] = pu;
22 }
```

4.3 ChthollyTree

13

16

18

20

22

23

27

30

33

34

37

38

39

41

42

43

51

52

53

55

56

57

58

60

if (k <= 0)

return p.first;

```
64
1 //重點:要求輸入資料隨機,否則可能被卡時間
                                                65 }
  struct Node {
                                                66
      long long l, r;
      mutable long long val;
      Node(long long 1, long long r, long long
                                                69
          : 1(1), r(r), val(val){}
                                                70
      bool operator < (const Node& other)</pre>
                                                71
                                                72
          return this->l < other.l;</pre>
                                                73
                                                74
10 };
                                                75
  set<Node> chthollyTree;
                                                76
   //將[1, r] 拆成 [1, pos - 1], [pos, r]
                                                77
  set<Node>::iterator split(long long pos) {
                                                78 }
      //找第一個左端點大於等於pos的區間
                                                79
      set<Node>::iterator it =
           chthollyTree.lower_bound(Node(pos,
                                                81
      //運氣很好直接找到左端點是pos的區間
      if (it != chthollyTree.end() && it->l ==
                                                83
          pos)
          return it;
      //到這邊代表找到的是第一個左端點大於pos的區間
                                                85
      //it - 1即可找到左端點等於pos的區間
                                                86
      //(不會是別的,因為沒有重疊的區間)
      --it:
      long long l = it->l, r = it->r;
                                                87
      long long val = it->val;
                                                88
      chthollyTree.erase(it);
                                                89 }
      chthollyTree.insert(Node(1, pos - 1,
           val)):
      //回傳左端點是pos的區間iterator
      return chthollyTree.insert(Node(pos, r,
           val)).first;
29 }
  //區間賦值
  void assign(long long l, long long r, long
       long val) {
      //<注意>
      //end與begin的順序不能調換,因為end的split可能會改
      //因為end可以在原本begin的區間中
      set<Node>::iterator end = split(r + 1),
           begin = split(1);
      //begin到end全部刪掉
      chthollyTree.erase(begin, end);
                                                10
      //填回去[1, r]的區間
                                                11
      chthollyTree.insert(Node(1, r, val));
                                                12
40 }
                                                13
  //區間加值(直接一個個區間去加)
                                                14
  void add(long long 1, long long r, long long
                                                15
                                                16
      set<Node>::iterator end = split(r + 1);
                                                17
      set<Node>::iterator begin = split(1);
                                                18
      for (set<Node>::iterator it = begin; it
                                                19
           != end; ++it)
                                                20
          it->val += val;
47 }
                                                21 }
  //查詢區間第k小 -> 直接把每個區間丟去vector排序
                                                22
49 long long getKthSmallest(long long 1, long
       long r, long long k) {
                                                24
      set<Node>::iterator end = split(r + 1);
                                                25
      set<Node>::iterator begin = split(1);
                                                26
      //pair -> first: val, second: 區間長度
                                                27
      vector<pair<long long, long long>> vec;
                                                28
      for (set<Node>::iterator it = begin; it
                                                29
           != end; ++it) {
          vec.push_back({it->val, it->r - it->l
                                                31
                                                32 }
      sort(vec.begin(), vec.end());
                                                33
      for (const pair<long long, long long>&
          p: vec) {
                                                35
         k -= p.second;
                                                36
```

```
62
      //不應該跑到這
63
      return -1;
  //快速冪
   long long qpow(long long x, long long n,
       long long mod) {
      long long res = 1;
      x \% = mod;
      while (n)
          if (n & 1)
            res = res * x % mod;
          n >>= 1;
          x = x * x % mod;
      return res;
  //區間n次方和
  long long sumOfPow(long long 1, long long r,
       long long n, long long mod) {
      long long total = 0;
      set<Node>::iterator end = split(r + 1);
      set<Node>::iterator begin = split(1);
      for (set<Node>::iterator it = begin; it
           != end; ++it)
          total = (total + qpow(it->val, n,
              mod) * (it->r - it->l + 1)) %
      return total;
```

4.4 權值線段樹

```
//權值線段樹 + 離散化 解決區間第k小問題
//其他網路上的解法: 2個heap, Treap, AVL tree
#define maxn 30005
int nums[maxn];
int getArr[maxn];
int id[maxn];
int st[maxn << 2];</pre>
void update(int index, int 1, int r, int qx)
   if (1 == r)
       ++st[index];
   int mid = (1 + r) / 2;
   if (qx <= mid)</pre>
       update(index * 2, 1, mid, qx);
       update(index * 2 + 1, mid + 1, r, qx);
   st[index] = st[index * 2] + st[index * 2
        + 1];
//找區間第k個小的
int query(int index, int 1, int r, int k) {
   if (1 == r)
       return id[1];
   int mid = (1 + r) / 2;
   //k比左子樹小
   if (k <= st[index * 2])
      return query(index * 2, 1, mid, k);
       return query(index * 2 + 1, mid + 1,
            r, k - st[index * 2]);
int main() {
   cin >> t;
   bool first = true;
   while (t--) {
       if (first)
```

37

```
Jc11
               first = false;
39
                                                       33
40
           else
                                                       34
               puts("");
41
                                                       35
42
           memset(st, 0, sizeof(st));
                                                       36
           int m, n;
43
                                                       37
           cin >> m >> n;
44
                                                       38
           for (int i = 1; i <= m; ++i) {</pre>
45
                                                       39
46
               cin >> nums[i];
47
               id[i] = nums[i];
48
                                                       42
49
           for (int i = 0; i < n; ++i)
                                                       43
               cin >> getArr[i];
50
                                                       44
51
           //離散化
                                                       45
52
           //防止m == 0
                                                       46
53
           if (m)
54
               sort(id + 1, id + m + 1);
                                                       47
           int stSize = unique(id + 1, id + m +
55
                                                       48
                1) - (id + 1);
           for (int i = 1; i <= m; ++i) {</pre>
56
                                                       50
57
               nums[i] = lower_bound(id + 1, id
                                                       51
                    + stSize + 1, nums[i]) - id;
                                                       52
58
                                                       53
59
           int addCount = 0;
                                                       54
60
           int getCount = 0;
                                                       55
61
           int k = 1;
                                                       56
62
           while (getCount < n) {</pre>
                                                       57
               if (getArr[getCount] == addCount)
63
                                                       58
                   printf("%d \ n", query(1, 1,
64
                        stSize, k));
                                                       60
                   ++k;
65
66
                   ++getCount;
                                                       61
67
               }
68
               else {
                   update(1, 1, stSize,
69
                        nums[addCount + 1]);
                   ++addCount;
70
71
               }
72
           }
73
       }
74
       return 0;
```

4.5 線段樹 1D

```
1 #define MAXN 1000
  int data[MAXN]; //原數據
  int st[4 * MAXN]; //線段樹
  int tag[4 * MAXN]; //懶標
  inline int pull(int 1, int r) {
   // 隨題目改變 sum、max、min
   // 1、r是左右樹的 index
      return st[l] + st[r];
  }
   void build(int 1, int r, int i) {
10
   // 在[1, r]區間建樹,目前根的index為i
      if (1 == r) {
12
          st[i] = data[l];
13
14
          return;
15
16
      int mid = 1 + ((r - 1) >> 1);
      build(1, mid, i * 2);
17
18
      build(mid + 1, r, i * 2 + 1);
      st[i] = pull(i * 2, i * 2 + 1);
19
20
21
   int qry(int ql, int qr, int l, int r, int i){
22
   // [q1,qr]是查詢區間, [1,r]是當前節點包含的區間
      if (ql <= 1 && r <= qr)
23
24
          return st[i];
25
      int mid = 1 + ((r - 1) >> 1);
26
      if (tag[i]) {
          //如果當前懶標有值則更新左右節點
27
28
          st[i * 2] += tag[i] * (mid - 1 + 1);
29
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i];
30
          tag[i*2+1] += tag[i];
31
32
          tag[i] = 0;
```

```
int sum = 0;
      if (ql <= mid)</pre>
                                                 26
          sum+=query(ql, qr, l, mid, i * 2);
                                                 27
      if (ar > mid)
          sum+=query(ql, qr, mid+1, r, i*2+1);
                                                 28
      return sum:
                                                 29
40 }
                                                 30
41 void update(
                                                 31
      int ql,int qr,int l,int r,int i,int c) {
                                                 32
   // [q1,qr]是查詢區間, [1,r]是當前節點包含的區間
   // c是變化量
                                                 33
      if (ql <= 1 && r <= qr) {</pre>
                                                 34
          st[i] += (r - 1 + 1) * c;
               //求和,此需乘上區間長度
                                                 35
          tag[i] += c;
                                                 36
          return:
      int mid = 1 + ((r - 1) >> 1);
      if (tag[i] && 1 != r) {
          //如果當前懶標有值則更新左右節點
          st[i * 2] += tag[i] * (mid - 1 + 1);
                                                 39
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i];//下傳懶標至左節點
          tag[i*2+1] += tag[i];//下傳懶標至右節點
                                                 41
          tag[i] = 0;
                                                 42
      if (ql <= mid) update(ql, qr, l, mid, i</pre>
                                                 43
           * 2, c);
                                                 44
      if (qr > mid) update(ql, qr, mid+1, r,
                                                 45
           i*2+1, c);
                                                 46
      st[i] = pull(i * 2, i * 2 + 1);
                                                 47
62 }
63 //如果是直接改值而不是加值,query與update中的tag與st的
64 //改值從+=改成=
```

4.6 線段樹 2D

```
1 //純2D segment tree 區間查詢單點修改最大最小值
2 #define maxn 2005 //500 * 4 + 5
3 int maxST[maxn][maxn], minST[maxn][maxn];
 4 int N:
5
   void modifyY(int index, int 1, int r, int
        val, int yPos, int xIndex, bool
        xIsLeaf) {
       if (1 == r) {
          if (xIsLeaf) {
8
              maxST[xIndex][index] =
                   minST[xIndex][index] = val;
              return;
10
11
          maxST[xIndex][index] =
               max(maxST[xIndex * 2][index],
               maxST[xIndex * 2 + 1][index]);
          minST[xIndex][index] =
12
               min(minST[xIndex * 2][index],
               minST[xIndex * 2 + 1][index]);
13
14
      else {
15
          int mid = (1 + r) / 2;
16
          if (yPos <= mid)</pre>
              modifyY(index * 2, 1, mid, val,
17
                   yPos, xIndex, xIsLeaf);
18
          else
19
              modifyY(index * 2 + 1, mid + 1,
                   r, val, yPos, xIndex,
                   xIsLeaf);
          maxST[xIndex][index] =
21
               max(maxST[xIndex][index * 2],
               maxST[xIndex][index * 2 + 1]);
          minST[xIndex][index] =
22
               min(minST[xIndex][index * 2],
               minST[xIndex][index * 2 + 1]);
23
      }
24 }
```

```
25 void modifyX(int index, int 1, int r, int
        val, int xPos, int yPos) {
      if (1 == r) {
          modifyY(1, 1, N, val, yPos, index,
               true):
      else {
          int mid = (1 + r) / 2;
          if (xPos <= mid)</pre>
              modifyX(index * 2, 1, mid, val,
                   xPos, yPos);
          else
              modifyX(index * 2 + 1, mid + 1,
                   r, val, xPos, yPos);
          modifyY(1, 1, N, val, yPos, index,
                false);
      }
37 }
38 void queryY(int index, int 1, int r, int
        yql, int yqr, int xIndex, int& vmax,
        int &vmin) {
      if (yql <= 1 && r <= yqr) {</pre>
          vmax = max(vmax,
               maxST[xIndex][index]);
          vmin = min(vmin,
               minST[xIndex][index]);
      }
      else
      {
          int mid = (1 + r) / 2;
          if (yql <= mid)</pre>
              queryY(index * 2, 1, mid, yql,
                   yqr, xIndex, vmax, vmin);
          if (mid < yqr)</pre>
              queryY(index * 2 + 1, mid + 1, r,
                   yql, yqr, xIndex, vmax,
                   vmin);
50
      }
   void queryX(int index, int 1, int r, int
        xql, int xqr, int yql, int yqr, int&
```

13

vmax, int& vmin) { if (xql <= 1 && r <= xqr) {</pre> queryY(1, 1, N, yql, yqr, index, vmax, vmin); else { int mid = (1 + r) / 2;if (xql <= mid)</pre> queryX(index * 2, 1, mid, xql, xqr, yql, yqr, vmax, vmin); if (mid < xqr)</pre> queryX(index * 2 + 1, mid + 1, r,xql, xqr, yql, yqr, vmax, vmin): } 63 } int main() { while (scanf("%d", &N) != EOF) { int val; for (int i = 1; i <= N; ++i) { for (int j = 1; $j \le N$; ++j) { scanf("%d", &val); modifyX(1, 1, N, val, i, j); } } int q; int vmax, vmin; int xql, xqr, yql, yqr;

51

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

char op;

scanf("%d", &q);

getchar(); //for \n

scanf("%d %d %d %d", &xql,

vmax = -0x3f3f3f3f;

&yql, &xqr, &yqr);

scanf("%c", &op);

if (op == 'q') {

while (q--) {

```
84
                   vmin = 0x3f3f3f3f;
85
                  queryX(1, 1, N, xql, xqr,
                       yql, yqr, vmax, vmin);
                  printf("%d %d\n", vmax, vmin);
87
              }
              else {
88
                  scanf("%d %d %d", &xql, &yql,
89
                        &val);
                  modifyX(1, 1, N, val, xql,
                        yql);
91
              }
92
           }
93
       }
94
       return 0;
95
```

```
4.7 Trie
   const int maxc = 26;
                             // 單字字符數
   const char minc = 'a';
                            // 首個 ASCII
3
   struct TrieNode {
    int cnt:
    TrieNode* child[maxc];
 6
    TrieNode() {
8
      cnt = 0;
      for(auto& node : child) {
10
11
        node = nullptr;
12
    }
13
14
   };
15
16
   struct Trie {
17
    TrieNode* root;
18
19
    Trie() { root = new TrieNode(); }
20
21
     void insert(string word) {
      TrieNode* cur = root;
22
       for(auto& ch : word) {
23
24
         int c = ch - minc;
25
         if(!cur->child[c])
26
          cur->child[c] = new TrieNode();
         cur = cur->child[c];
27
28
29
      cur->cnt++;
30
31
     void remove(string word) {
32
       TrieNode* cur = root;
33
34
       for(auto& ch : word) {
         int c = ch - minc;
35
36
         if(!cur->child[c]) return;
37
        cur = cur->child[c];
38
      }
39
      cur->cnt--;
40
41
42
     // 字典裡有出現 word
43
     bool search(string word, bool prefix=0) {
      TrieNode* cur = root;
44
       for(auto& ch : word) {
45
         int c = ch - minc;
46
         if(!(cur=cur->child[c])) return false;
47
48
49
       return cur->cnt || prefix;
50
51
     // 字典裡有 word 的前綴為 prefix
52
53
    bool startsWith(string prefix) {
54
       return search(prefix, true);
55
56 };
```

4.8 AC Trie

```
1 const int maxn = 1e4 + 10; // 單字字數
   const int maxl = 50 + 10; // 單字字長
   const int maxc = 128; // 單字字符數
   const char minc = ' ';
                           // 首個 ASCII
   int trie[maxn*maxl][maxc]; // 原字典樹
   int val[maxn*max1];
                          // 結尾(單字編號)
   int cnt[maxn*max1];
                            // 結尾(重複個數)
   int fail[maxn*maxl];
                            // failure link
   bool vis[maxn*maxl];
                            // 同單字不重複
12
   struct ACTrie {
    int seq, root;
13
14
15
    ACTrie() {
      seq = 0;
17
       root = newNode();
18
19
    int newNode() {
20
21
       for(int i=0; i<maxc; i++) trie[seq][i]=0;</pre>
      val[seq] = cnt[seq] = fail[seq] = 0;
22
23
       return seq++;
24
25
     void insert(char* s, int wordId=0) {
26
27
      int p = root;
28
       for(; *s; s++) {
        int c = *s - minc;
29
        if(!trie[p][c]) trie[p][c] = newNode();
30
31
        p = trie[p][c];
32
33
      val[p] = wordId;
34
      cnt[p]++;
35
36
37
    void build() {
38
       queue<int> q({root});
39
       while(!q.empty()) {
        int p = q.front();
        q.pop();
41
42
        for(int i=0; i<maxc; i++) {</pre>
43
          int& t = trie[p][i];
44
          if(t) {
            fail[t] = p?trie[fail[p]][i]:root;
45
46
            q.push(t);
47
          } else {
48
            t = trie[fail[p]][i];
49
50
51
      }
52
53
54
    // 要存 wordId 才要 vec
     // 同單字重複match要把所有vis取消掉
56
     int match(char* s, vector<int>& vec) {
       int res = 0;
57
      memset(vis, 0, sizeof(vis));
58
59
       for(int p=root; *s; s++) {
        p = trie[p][*s-minc];
        for(int k=p; k && !vis[k]; k=fail[k]) {
61
          vis[k] = true;
          res += cnt[k];
63
          if(cnt[k]) vec.push_back(val[k]);
64
65
        }
66
67
      return res; // 匹配到的單字量
    }
68
69 };
70
71 ACTrie ac;
                 // 建構,初始化
72 ac.insert(s); // 加字典單字
73 // 加完字典後
74 ac.build();
                 // !!! 建 failure link !!!
75 ac.match(s); // 多模式匹配(加vec存編號)
```

4.9 單調隊列

```
"如果一個選手比你小還比你強,你就可以退役了。"
   給出一個長度為 n 的數組,
   輸出每 k 個連續的數中的最大值和最小值。
   #include <bits/stdc++.h>
   #define maxn 1000100
   using namespace std;
   int q[maxn], a[maxn];
   int n, k;
13
   //得到這個隊列裡的最小值,直接找到最後的就行了
15
   void getmin() {
       int head=0,tail=0;
16
17
       for(int i=1;i<k;i++) {</pre>
18
          while(head<=tail&&a[q[tail]]>=a[i])
                tail--:
19
          q[++tail]=i;
20
       for(int i=k; i<=n;i++) {</pre>
21
          while(head<=tail&&a[q[tail]]>=a[i])
22
                tail--;
23
          α[++tail]=i:
          while(q[head]<=i-k) head++;</pre>
24
25
          cout<<a[q[head]]<<" ";
26
27
       cout<<endl;</pre>
28 }
   // 和上面同理
   void getmax() {
30
31
       int head=0,tail=0;
       for(int i=1;i<k;i++) {</pre>
32
33
          while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
34
          q[++tail]=i;
35
       for(int i=k;i<=n;i++) {</pre>
36
          while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
37
38
          q[++tail]=i;
39
          while(q[head]<=i-k) head++;</pre>
          cout<<a[q[head]]<<" ";
40
41
       cout<<endl;
42
43 }
44
   int main(){
45
46
       cin>>n>>k; //每k個連續的數
       for(int i=1;i<=n;i++) cin>>a[i];
47
48
       getmax();
49
50
       return 0;
51 }
```

5 Geometry

5.1 公式

1. Circle and Line

```
兩平行直線 L_1:ax+by+c_1=0 \  \, \not \! \, \mathbb{L}_2:ax+by+c_2=0 的距離 d(L_1,L_2)=\frac{|c_1-c_2|}{\sqrt{a^2+b^2}}
```

設三角形頂點為 $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$

點 A, B, C 的對邊長分別為 a, b, c

點 $P(x_0, y_0)$ 到直線 L: ax + by + c = 0 的距離

 $d(P,L) = \frac{|ax_0 + by_0 + c|}{\sqrt{2}}$

2. Triangle

```
三角形面積為 \Delta
重心為 (G_x,G_y),內心為 (I_x,I_y),
外心為 (O_x,O_y) 和垂心為 (H_x,H_y)
\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}
G_x = \frac{x_1 + x_2 + x_3}{3}, G_y = \frac{y_1 + y_2 + y_3}{3}
I_x = \frac{ax_1 + bx_2 + cx_3}{a + b + c}, I_y = \frac{ay_1 + by_2 + cy_3}{a + b + c}
O_x = \begin{vmatrix} \frac{x_1^2 + y_2^2 & y_1 & 1 \\ x_2^2 + y_2^2 & y_2 & 1 \\ x_3^2 + y_3^2 & y_3 & 1 \\ x_3^2 + y_3^2 & y_3 & 1 \\ x_1 & x_2 & y_2 & 1 \\ x_2 & x_2^2 + y_2^2 & 1 \\ x_3 & x_2^2 + y_2^2 & 1 \\ x_1 & x_2 & x_2^2 + y_2^2 & 1 \\ x_1 & x_2 & x_2^2 + y_2^2 & 1 \\ x_1 & x_2 & x_2^2 + y_2^2 & 1 \\ x_1 & x_2 & x_2^2 + y_2^2 & 1 \\ x_1 & x_2 & x_2^2 + y_2^2 & 1 \\ x_1 & x_2 & x_1 & x_2 & 1 \\ x_1 & x_2 & x_1 & x_2 & x_1 \\ x_1 & x_2 & x_1 & x_2 & x_1 \\ x_1 & x_2 & x_1 & x_2 & x_1 & x_2 \\ & & & & & & & & & & & \\ H_x = - \frac{x_1 & x_2 x_3 + y_2 y_3 & 1}{x_2 & x_1 x_3 + y_1 y_3 & 1} \\ H_y = - \frac{x_1 & x_2 x_3 + y_2 y_3 & 1}{x_3 & x_1 x_2 + y_1 y_2 & 1}
```

任意三角形,重心、外心、垂心共線

$$G_x = \frac{2}{3}O_x + \frac{1}{3}H_x, G_y = \frac{2}{3}O_y + \frac{1}{3}H_y$$

5.2 Template

```
using DBL = double;
   using TP = DBL; // 存點的型態
   const DBL pi = acos(-1);
   const DBL eps = 1e-8;
   const TP inf = 1e30;
   const int maxn = 5e4 + 10;
   struct Vector {
10
    TP x, y;
    Vector(TP x=0, TP y=0): x(x), y(y) {}
    DBL length();
12
   using Point = Vector;
   using Polygon = vector<Point>;
15
16
17
   Vector operator+(Vector a, Vector b) {
   return Vector(a.x+b.x, a.y+b.y); }
   Vector operator-(Vector a, Vector b) {
19
   return Vector(a.x-b.x, a.y-b.y); }
20
21
   Vector operator*(Vector a, DBL b) {
22
   return Vector(a.x*b, a.y*b); }
   Vector operator/(Vector a, DBL b) {
   return Vector(a.x/b, a.y/b); }
24
  TP dot(Vector a, Vector b) {
26
27
   return a.x*b.x + a.y*b.y;
29 TP cross(Vector a, Vector b) {
```

```
30
      return a.x*b.y - a.y*b.x;
31 }
32 DBL Vector::length() {
      return sqrt(dot(*this, *this));
 34
   DBL dis(Point a, Point b) {
 35
      return sqrt(dot(a-b, a-b));
36
 37 }
 38 Vector unit_normal_vector(Vector v) {
     DBL len = v.length();
 39
 40
      return Vector(-v.y/len, v.x/len);
 41 }
 42
    struct Line {
 44
     Point p;
 45
      Vector v;
      DBL ang;
 46
      Line(Point _p={}, Vector _v={}) {
 48
 49
       v = v;
 50
       ang = atan2(v.y, v.x);
51
      bool operator<(const Line& 1) const {</pre>
       return ang < 1.ang;</pre>
53
 54
55 };
 56
 57
    struct Segment {
       Point s, e;
 58
 59
        Segment(): s({0, 0}), e({0, 0}) {}
        Segment(Point s, Point e): s(s), e(e) {}
60
        DBL length() { return dis(s, e); }
1 61
1 62 };
63
    struct Circle {
     Point o:
65
 66
      Circle(): o({0, 0}), r(0) {}
      Circle(Point o, DBL r=0): o(o), r(r) {}
68
      Circle(Point a, Point b) { // ab 直徑
 69
       o = (a + b) / 2;
70
       r = dis(o, a);
 71
 72
73
      Circle(Point a, Point b, Point c) {
        Vector u = b-a, v = c-a;
        DBL c1=dot(u, a+b)/2, c2=dot(v, a+c)/2;
        DBL dx=c1*v.y-c2*u.y, dy=u.x*c2-v.x*c1;
 77
       o = Point(dx, dy) / cross(u, v);
 78
        r = dis(o, a);
79
      bool cover(Point p) {
80
81
       return dis(o, p) <= r;</pre>
82
 83 };
```

5.3 最小圓覆蓋

5.4 Intersection

```
1 // 除 intersection(Line a, Line b) 之外,
   // 皆尚未丟 online judge
   int dcmp(DBL a, DBL b=0.0) {
    return (a > b) - (a < b);
   bool hasIntersection(Point p, Segment s) {
     return dcmp(cross(p-s.s, s.s-s.e))==0&&
           dcmp(dot(p.x-s.s.x, p.x-s.e.x)) \le 0\&\&
10
11
           dcmp(dot(p.y-s.s.y, p.y-s.e.y)) <= 0;
12 }
13
   bool hasIntersection(Point p, Line 1) {
    return dcmp(cross(p-1.p, 1.v)) == 0;
15
16
17
18
   DBL dis(Line 1, Point p) {
    DBL t = cross(p, 1.v) + cross(1.v, 1.p);
19
20
    return abs(t) / sqrt(dot(1.v, 1.v));
21 }
22
23
   Point intersection(Line a, Line b) {
    Vector u = a.p - b.p;
24
    DBL t = 1.0 \times cross(b.v, u)/cross(a.v, b.v);
    return a.p + a.v*t;
27 }
28
   // 返回 p 在 1 上的垂足(投影點)
29
   Point getPedal(Line 1, Point p) {
    DBL len = dot(p-1.p, 1.v) / dot(1.v, 1.v);
    return l.p + l.v * len;
33 }
```

5.5 Polygon

```
// 判斷點 (point) 是否在凸包 (p) 內
   bool pointInConvex(Polygon& p, Point point) {
    // 根據 TP 型態來寫,沒浮點數不用 dblcmp
    auto dblcmp=[](DBL v){return (v>0)-(v<0);};</pre>
     // 不包含線上,改 '>=' 為 '>
    auto test = [&](Point& p0, Point& p1) {
      return dblcmp(cross(p1-p0, point-p0))>=0;
9
    p.push_back(p[0]);
    for(int i=1; i<p.size(); i++) {</pre>
10
      if(!test(p[i-1], p[i])) {
11
        p.pop_back();
12
        return false;
13
14
15
16
    p.pop_back();
17
    return true;
18 }
   // 計算簡單多邊形的面積
20
   // ! p 為排序過的點 !
   DBL polygonArea(Polygon& p) {
    DBL sum = 0;
    for(int i=0, n=p.size(); i<n; i++)</pre>
      sum += cross(p[i], p[(i+1)%n]);
    return abs(sum) / 2.0;
26
```

旋轉卡尺 5.6

```
// 回傳凸包內最遠兩點的距離
   int longest_distance(Polygon& p) {
     auto test = [&](Line 1, Point a, Point b) {
     return cross(l.v,a-l.p)<=cross(l.v,b-l.p);</pre>
 5
 6
    if(p.size() <= 2) {
7
      return cross(p[0]-p[1], p[0]-p[1]);
8
     }
9
     int mx = 0:
     for(int i=0, j=1, n=p.size(); i<n; i++) {</pre>
10
11
       Line l(p[i], p[(i+1)%n] - p[i]);
12
       for(;test(1,p[j],p[(j+1)%n]);j=(j+1)%n);
       mx = max({
13
14
        mx,
         dot(p[(i+1)%n]-p[j], p[(i+1)%n]-p[j]),
15
16
         dot(p[i]-p[j], p[i]-p[j])
17
      });
    }
18
19
     return mx;
20 }
   5.7 凸包
       • TP 為 Point 裡 x 和 y 的型態
       • struct Point 需要加入並另外計算的 variables:
              1. ang, 該點與基準點的 atan2 值
              2. d2, 該點與基準點的 (距離)<sup>2</sup>
       · 注意計算 d2 的型態範圍限制
 1 using TP = long long;
   using Polygon = vector<Point>;
   const TP inf = 1e9; // 座標點最大值
   Polygon convex_hull(Point* p, int n) {
     auto dblcmp = [](DBL a, DBL b=0.0) {
      return (a>b) - (a<b);
 8
9
     auto rmv = [&](Point a, Point b, Point c) {
10
      return cross(b-a, c-b) <= 0; // 非浮點數
11
12
       return dblcmp(cross(b-a, c-b)) <= 0;</pre>
13
14
     // 選最下裡最左的當基準點,可在輸入時計算
15
16
     TP lx = inf, ly = inf;
17
     for(int i=0; i<n; i++) {</pre>
      if(p[i].y<ly || (p[i].y==ly&&p[i].x<lx)){</pre>
18
19
         lx = p[i].x, ly = p[i].y;
20
    }
21
22
23
     for(int i=0; i<n; i++) {</pre>
24
       p[i].ang=atan2(p[i].y-ly,p[i].x-lx);
25
       p[i].d2 = (p[i].x-lx)*(p[i].x-lx) +
                (p[i].y-ly)*(p[i].y-ly);
26
27
     sort(p, p+n, [&](Point& a, Point& b) {
28
29
      if(dblcmp(a.ang, b.ang))
        return a.ang < b.ang;</pre>
30
31
       return a.d2 < b.d2;</pre>
    });
32
33
     int m = 1; // stack size
34
     Point st[n] = \{p[n]=p[0]\};
35
36
     for(int i=1; i<=n; i++) {</pre>
37
      for(;m>1&&rmv(st[m-2],st[m-1],p[i]);m--);
       st[m++] = p[i];
38
39
```

40

return Polygon(st, st+m-1);

5.8 半平面相交

```
1 using DBL = double;
   using TP = DBL; // 存點的型態
   using Polygon = vector<Point>;
   const int maxn = 5e4 + 10;
   // Return: 能形成半平面交的凸包邊界點
   Polygon halfplaneIntersect(vector<Line>&nar){
     sort(nar.begin(), nar.end());
10
     // DBL 跟 Ø 比較, 沒符點數不用
     auto dblcmp=[](DBL v){return (v>0)-(v<0);};</pre>
11
12
     // p 是否在 1 的左半平面
     auto lft = [&](Point p, Line 1) {
13
14
      return dblcmp(cross(1.v, p-1.p)) > 0;
15
16
     int ql = 0, qr = 0;
17
     Line L[maxn] = {nar[0]};
18
19
     Point P[maxn];
20
21
     for(int i=1; i<nar.size(); i++) {</pre>
       for(; ql<qr&&!lft(P[qr-1],nar[i]); qr--);</pre>
22
23
       for(; ql<qr&&!lft(P[ql],nar[i]); ql++);</pre>
24
       L[++qr] = nar[i];
       if(dblcmp(cross(L[qr].v,L[qr-1].v))==0) {
25
        if(lft(nar[i].p,L[--qr])) L[qr]=nar[i];
26
27
28
       if(ql < qr)
29
        P[qr-1] = intersection(L[qr-1], L[qr]);
30
31
     for(; ql<qr && !lft(P[qr-1], L[ql]); qr--);</pre>
     if(qr-ql <= 1) return {};</pre>
32
     P[qr] = intersection(L[qr], L[ql]);
     return Polygon(P+ql, P+qr+1);
34
35 }
```

DP 6

6.1 以價值為主的背包

```
/*w 變得太大所以一般的01背包解法變得不可能
    觀察題目w變成10^9
    而 v_i變成 10^3
    N不變 10^2
    試著湊湊看dp狀態
    dp[maxn][maxv]是可接受的複雜度
     剩下的是轉移式,轉移式變成
    dp[i][j] = w \rightarrow
         當目前只考慮到第i個商品時,達到獲利j時最少的weight
         = w
    所以答案是dp[n][1 \sim maxv]找價值最大且裝的下的*/
   #define maxn 105
   #define maxv 100005
  long long dp[maxn][maxv];
  long long weight[maxn];
   long long v[maxn];
15
  int main() {
      int n;
16
      long long w;
17
      scanf("%d %11d", &n, &w);
18
19
      for (int i = 1; i <= n; ++i) {
          scanf("%11d %11d", &weight[i], &v[i]);
20
21
22
      memset(dp, 0x3f, sizeof(dp));
      dp[0][0] = 0;
23
      for (int i = 1; i <= n; ++i) {</pre>
24
          for (int j = 0; j <= maxv; ++j) {</pre>
25
             if (j - v[i] >= 0)
26
                 dp[i][j] = dp[i - 1][j -
                      v[i]] + weight[i];
              dp[i][j] = min(dp[i - 1][j],
28
                   dp[i][j]);
          }
29
30
      }
      long long res = 0;
31
32
      for (int j = maxv - 1; j \ge 0; --j) {
          if (dp[n][j] <= w) {</pre>
33
34
             res = j;
35
             break;
36
          }
37
      printf("%11d\n", res);
38
      return 0;
39
40 }
```

抽屜 6.2

```
1 long long dp[70][70][2];
   // 初始條件
  dp[1][0][0] = dp[1][1][1] = 1;
4 for (int i = 2; i \le 66; ++i){
      // i個抽屜0個安全且上方0 =
      // (底下i - 1個抽屜且1個安全且最上面L) +
      // (底下n - 1個抽屜0個安全且最上方為0)
      dp[i][0][0]=dp[i-1][1][1]+dp[i-1][0][0];
      for (int j = 1; j <= i; ++j) {</pre>
10
         dp[i][j][0] =
11
           dp[i-1][j+1][1]+dp[i-1][j][0];
12
         dp[i][j][1] =
13
           dp[i-1][j-1][1]+dp[i-1][j-1][0];
15 } //答案在 dp[n][s][0] + dp[n][s][1]);
```

6.3 Barcode

```
1 int N, K, M;
2 long long dp[55][55];
 // n -> 目前剩多少units
4 // k -> 目前剩多少bars
```

```
// m -> 1 bar最多多少units
   long long dfs(int n, int k) {
       if (k == 1) {
          return (n <= M);</pre>
9
10
       if (dp[n][k] != -1)
11
          return dp[n][k];
12
       long long result = 0;
       for (int i = 1; i < min(M + 1, n); ++i)</pre>
           { // < min(M + 1, n)是因為n不能==0
           result += dfs(n - i, k - 1);
15
16
       return dp[n][k] = result;
17
  }
18
   int main() {
19
       while (scanf("%d %d %d", &N, &K, &M) !=
            EOF) {
          memset(dp, -1, sizeof(dp));
          printf("%11d\n", dfs(N, K));
21
22
23
       return 0;
24 }
```

6.4 Deque 最大差距

```
1 /*定義 dp[1][r]是1 ~ r時與先手最大差異值
    轉移式: dp[1][r] = max{a[1] - solve(1 + 1,
         r), a[r] - solve(1, r - 1)}
    裡面用減的主要是因為求的是相減且會一直換手,
    所以正負正負...*/
   #define maxn 3005
   bool vis[maxn][maxn];
   long long dp[maxn][maxn];
   long long a[maxn];
   long long solve(int 1, int r) {
      if (1 > r) return 0;
      if (vis[l][r]) return dp[l][r];
      vis[1][r] = true;
12
      long long res = a[l] - solve(l + 1, r);
      res = max(res, a[r] - solve(1, r - 1));
14
15
      return dp[1][r] = res;
16 }
17
  int main() {
18
      printf("%l1d\n", solve(1, n));
19
```

6.5 LCS 和 LIS

```
1 //LCS 和 LIS 題目轉換
  LIS 轉成 LCS
     1. A 為原序列, B=sort(A)
     2. 對 A,B 做 LCS
  LCS 轉成 LIS
     1. A, B 為原本的兩序列
     2. 最 A 序列作編號轉換,將轉換規則套用在 B
     3. 對 B 做 LIS
9
     4. 重複的數字在編號轉換時後要變成不同的數字,
10
       越早出現的數字要越小
     5. 如果有數字在 B 裡面而不在 A 裡面,
12
       直接忽略這個數字不做轉換即可
```

6.6 RangeDP

```
1 //區間dp
 int dp[55][55];
 // dp[i][j] -> [i,j] 切割區間中最小的 cost
 int cuts[55];
 int solve(int i, int j) {
     if (dp[i][j] != -1)
        return dp[i][j];
     //代表沒有其他切法,只能是cuts[j] - cuts[i] 33 int main() {
```

```
if (i == j - 1)
          return dp[i][j] = 0;
10
       int cost = 0x3f3f3f3f;
11
       for (int m = i + 1; m < j; ++m) {
          //枚舉區間中間切點
13
           cost = min(cost, solve(i, m) +
15
            solve(m, j) + cuts[j] - cuts[i]);
16
17
       return dp[i][j] = cost;
18 }
19
   int main() {
      int 1,n;
20
21
       while (scanf("%d", &1) != EOF && 1){
           scanf("%d", &n);
22
23
           for (int i = 1; i <= n; ++i)</pre>
              scanf("%d", &cuts[i]);
          cuts[0] = 0;
25
           cuts[n + 1] = 1;
          memset(dp, -1, sizeof(dp));
27
28
          printf("ans = %d.\n", solve(0,n+1));
      }
29
30
       return 0;
```

6.7 stringDP

```
j+1, \\ dp[i-1, j-1],
                                   if S_1[i] = S_2[j] 18
 dp[i, j - 1] \\ dp[i - 1, j]
                      +1, \quad \text{if } S_1[i] \neq S_2[j]  19
```

Edit distance S_1 最少需要經過幾次增、刪或換字變成 S_2

```
Longest Palindromic Subsequence
          dp[l+1, r-1]
```

6.8 樹 DP 有幾個 path 長度為 k

```
1 #define maxn 50005
                                                   32
2 #define maxk 505
                                                   33
 3 //dp[u][u的child且距離u長度k的數量]
                                                   34
 4 long long dp[maxn][maxk];
                                                   35
   vector<vector<int>> G;
                                                   36
 6 int n, k;
                                                   37
   long long res = 0;
                                                   38
   void dfs(int u, int p) {
                                                   39
       //u自己
                                                   40
       dp[u][0] = 1;
                                                   41
11
       for (int v: G[u]) {
                                                   42
          if (v == p)
12
                                                   43
13
              continue;
                                                   44
          dfs(v. u):
14
                                                   45
          for (int i = 1; i <= k; ++i) {
15
                                                   46
              //子樹v距離i - 1的等於對於u來說距離i的
16
                                                   47
17
              dp[u][i] += dp[v][i - 1];
                                                   48
18
                                                   49
19
20
       //統計在u子樹中距離u為k的數量
       res += dp[u][k];
21
                                                   50
       long long cnt = 0;
                                                   51
       for (int v: G[u]) {
23
                                                   52
24
        if (v == p)
                                                   53
25
          continue; //重點算法
        for (int x = 0; x \le k - 2; ++x) {
28
            dp[v][x]*(dp[u][k-x-1]-dp[v][k-x-2]);
29
      }
30
31
      res += cnt / 2:
```

```
6.9 TreeDP reroot
```

printf("%11d\n", res);

dfs(1, -1);

return 0;

34

35

36

37

38 }

```
/*re-root\ dp\ on\ tree\ O(n+n+n)\ ->\ O(n)*/
                                             class Solution {
                                             public:
                                                 vector<int> sumOfDistancesInTree(int n,
                                                       vector<vector<int>>& edges) {
                                                     this->res.assign(n, 0);
                                                     G.assign(n + 5, vector<int>());
                                                     for (vector<int>& edge: edges) {
                                                         G[edge[0]].emplace_back(edge[1]);
                                          9
                                                         G[edge[1]].emplace_back(edge[0]);
                                          10
                                                     memset(this->visited, 0,
                                                          sizeof(this->visited));
                                                     this->dfs(0):
                                                     memset(this->visited, 0,
                                          13
                                                           sizeof(this->visited));
                                                     this->res[0] = this->dfs2(0, 0);
                                                     memset(this->visited. 0.
                                                           sizeof(this->visited));
                                                     this->dfs3(0, n);
                                          16
                                         17
                                                     return this->res;
                                                }
                                             private:
                                                 vector<vector<int>> G;
                                                 bool visited[30005]:
                                                 int subtreeSize[30005];
                                          22
                                          23
                                                 vector<int> res;
                                         24
                                                 //求subtreeSize
\begin{array}{cccc} dp[l+1,r-1] & \text{ if } & S[l] = S[r] & \textbf{25} \\ \max\{dp[l+1,r],dp[l,r-1]\} & \text{ if } & S[l] \neq S[r] & \textbf{26} \end{array}
                                                 int dfs(int u) {
                                                     this->visited[u] = true;
                                         26
                                          27
                                                     for (int v: this->G[u])
                                                         if (!this->visited[v])
                                          28
                                                             this->subtreeSize[u] +=
                                                                   this->dfs(v);
                                                     //自己
                                                     this->subtreeSize[u] += 1;
                                                     return this->subtreeSize[u];
                                                 //求res[0], 0到所有點的距離
                                                 int dfs2(int u, int dis) {
                                                     this->visited[u] = true;
                                                     int sum = 0;
                                                     for (int v: this->G[u])
                                                         if (!visited[v])
                                                             sum += this->dfs2(v, dis + 1);
                                                     //要加上自己的距離
                                                     return sum + dis:
                                                 //算出所有的res
                                                 void dfs3(int u, int n) {
                                                     this->visited[u] = true;
                                                     for (int v: this->G[u]) {
                                                         if (!visited[v]) {
                                                             this->res[v] = this->res[u] +
                                                                   this->subtreeSize[v];
                                                             this->dfs3(v, n);
                                                         }
                                                     }
                                                 }
                                          54 };
```

6.10 WeightedLIS		6.11	DP Lis	st			77	l I	1	1	1 1
0.10 Heighteuris		V. 11	DI LIS	, .			78				
1 #define maxn 200005	1						. 79 . 80	l	 I	 I	
2 long long dp[maxn];	2						81	i	i		
<pre>3 long long height[maxn]; 4 long long B[maxn];</pre>	4		I 		·		82				
<pre>5 long long st[maxn << 2];</pre>	5		Į.	!!!	ļ		83 84		1	 	
6 void update(int p, int index, int l, int r, long long v) {	, 6 7		 	 		 	85				
7 if (1 == r) {	8		I	1 1		l I	86 87	l I	1	 	
<pre>8 st[index] = v; 9 return;</pre>	9 10		 	l I	 	l l	88				
10 }	11		I	I I		l I	89 90	l I	I		
int mid = (1 + r) >> 1;	12		I	1 1		l I	91		 	 	
12	13 14		I	 			92	!	Ţ	!	ļ ļ
14 else	15		i	i i	İ	i i	93 94		 	 	
15	; 16 17		 I	 I I	 I	 I I	95	1	1	1	1
17 max(st[index<<1],st[(index<<1)+1]);	18		i	i i			96 97		 	 	
18 }	19						98	ı	1	I	1
<pre>19 long long query(int index, int 1, int r, ir q1, int qr) {</pre>	1 t 20		 	 		1 I	99	1	1	I	1
20 if (ql <= l && r <= qr)	22		<u>-</u>			· 	100	l	 	 	
21	23 24		 	 		 	102	i	i	i	i i
23 long long res = -1;	25		' 			' 	103 104	I	 I	 I	I I
24	26		1				105	i	i	 	
<pre>25</pre>	27		 	 	 	 	106				
27 if (mid < qr)	29		1				107 108		i	 	
28	30 106. a		 	 	 	 	109				
30 return res;	32		I	1 1		l I	110 111	l I	1	 	
31	33 34		l 	l I		l I	112				
33 int n;	35		I	1 1		l I	113 114	ļ	I		
34 scanf("%d", &n);	36		I	1 1		l I	115		 	 	
35	37 38		I	 			116	!	1	1	
37 for (int i = 1; i <= n; ++i)	39		i	i i	İ	i i	117 118	 	 	 	
<pre>38</pre>	40 41		 I	 I I	 I	 I I	119	I	1	1	1
update(height[1], 1, 1, n, B[1]);	42		İ	i i			120 121		 	 	
41 for (int i = 2; i <= n; ++i) {	43 44						122	1	1	1	1
<pre>42 long long temp; 43 if (height[i] - 1 >= 1)</pre>	44 45		 	 		 	123	I	1	I	1 1
44 temp =	46					· 	124 125	ı		 I	
45 B[i]+query(1,1,n,1,height[i]-1 46 else); 47 48					 	126	i	i	i	i i
47 temp = B[i];	49					· 	127 128	I	 I	 I	I I
<pre>48</pre>	50 51						129	i	i	İ	i i
49	52		I 		·		130				
51 printf("%11d\n", res);	53		l	!!!		!!!	131 132		İ	 	
52 return 0; 53 }	54 55		l 	 	 	 	133				
1 -	56		1				134 135		1	 	
	57 58		 	 	 	 	136	·			
	59		I	1 1			137 138	I	1		
	60		I	1 1		l I	139		' 		
	61 62		I	 		I I	140 141	ļ	!	!	
	63		Ì	İ İ		l i	141	 	 	 	· · · · · · · · · · · · · · · · · · ·
	64 65		 I	 I I	· · I	 I I	143	Ţ	1	I	1 1
	66		i	i i		i i	144 145		 	 	
	67 68		 I	 I '	 I	 I '	146	I	I	I	1
	69		İ	, ! 		, I 	147 148		 	 	
	70 71						149	I		1	1 1
	71 72		1 	ı 	 	ı I I	150	I	1	1	I İ
	73						151 152	 	 	 	
	74 75		I I	 	 	 	153	i	İ	I	ı i
	76			· '		· '	154				

	Jc11						FJCU						1	19
155 156	1	1	I	I I	233 234	1	I I	1	311 312		I	l I	 	I
157 158	i- I	i I	<u>-</u>	<u>-</u> 	235	<u>'</u> I	:i I I	<u>-</u> 	313	<u>-</u>	<u>-</u>	<u>-</u>	. <u>-</u>	. <u>.</u> 1
159 160	<u> </u>	<u> </u>	<u> </u>	İ	237 238	İ	<u>i</u> i	<u> </u> 	315 316	i	 	<u> </u>	İ	. <u>-</u>
161 162	 	I I	 	1 1	239 240	 	 	 	317 318	I	 	 	1	
163 164	!	<u>!</u>	!	<u> </u>	241	<u>!</u>	 ! !	<u>!</u>	320	<u>!</u>	<u> </u>	<u> </u>	!	. <u>-</u>
165 166		 		 	243	 	 	 	321	 	 	 	 	
167 168 169				 	245 246 247	 	 	 	323 324 325	 			 	
170 171	1	I I	I	1	248 249	I I	I I	I	326 327	I	1	l I	1	
172 173	i- I	i I	 I	<u>-</u> 	250 251	<u>'</u> I	:i I I	<u>:</u>	328	'	<u>-</u>	<u>-</u> I	. <u>-</u> 	. <u>-</u> 1
174 175	I	<u> </u>		<u> </u>	252 253	<u> </u>	l I	 	330 331	I	 	 		 -
176 177	 	 		 	254 255	 	 	l I	332 333		 	 		
178 179	!	! !	!	<u>!</u>	256	! !	 ! !	<u>!</u>	334	! !	<u> </u>	<u> </u>	!	- !
180 181		 	 	 	258 259 260	 	 	 	336	 	 	 	 	 -
182 183 184				 	261	 	 	 	338 339 340	 			 	
185 186	1	1	I	1	263 264	 	I I	I	341 342	I	I	I	I	l I
187 188	i	i I	 I	<u>-</u> 	265 266	<u>-</u> I	: I I	<u>:</u>	343	<u>-</u> 	<u>-</u>	<u>-</u> I	. <u>:</u> 	. <u>-</u> 1
189 190	<u> </u>	<u> </u>	<u> </u>	İ	267 268	İ	<u>i</u> i	<u> </u> 	345 346	i	 	<u> </u>	İ	<u> </u>
191 192	 	I I		 	269 270	 	 	 	347 348	I	 	 	1	
193 194	!	!	!	<u> </u>	271	<u> </u>	! !	<u>!</u>	349	!	!	<u> </u>	!	-
195 196 197		 	 	 	273 274 275	 	 	 	351 352 353	 	 	 	 	 -
197 198 199				 	276	 	 	 	354	 			 	
200	1	1	l I	1	278 279	I I	I I	l I	355 356 357	I	l I	I I	I	I I
202 203	i	i I	<u>-</u>	<u>-</u> 	280 281	 	: I I	i I	358 359	i I	<u>-</u>	<u>-</u> - I	. <u>:</u> 	. <u>-</u> 1
204 205	I	<u> </u>		 	282 283	<u> </u>	l I	 	360 361	I	 	 	 	. <u>-</u>
206 207	 	 		 	284 285	 	 	l I	362 363		 	 		
208	!	<u>!</u>	!	ļ	286	 !	 ! !	<u>!</u>	364	! !	ļ	<u> </u>	!	<u>-</u>
210 211 212			 	 	288 289	 	 	 I	366 367 368	 	 	 	 	
212 213 214				 	290 291 292	 	 	 	368 369 370	 		 	 	
215 216	1	1	l I	 	293 294	 	I I I I	 	371 372		l I	l I	 	
217 218	i	i I	<u>:</u>	<u>-</u> 	295 296	i I	 I I	i 	373	i I	<u></u>	<u>-</u> -	. <u>:</u> 	. <u>-</u>
219 220	I	I		I	297 298	l 	l I	 	375 376	<u> </u>	 	 	 	 -
221 222	 	 	l	 	299	 		 	377 378		 	 	1	
223 224	!	<u>!</u>	!	 !	302	 !	 ! !	 !	379	 	 	ļ		-
225 226	 	 	 	 	303 304	 	 ' '	 	381	 	 	 	 	- -
227 228 229		 		 	305 306 307	 	ı 	 	383 384 385	 	 	 	 	
239 230 231					308 309		 		386 387					
232					310				388					-

390	! 	! 	İ	 	467					546		i	
391					469					547			
392 393					470 471					548		I	
394	 	 			471			 		549 550			l I
395	l 1	I	I	1	473	1 1		I	I I :	551	1 1	1	l l
396 397	 l	l 	 	 	474 475	 		 		552 553			
398		I	I	1	475					554		1	1
399	i i	İ	İ		477	į i i	i	İ	I I :	555	l l	İ	i i
400 401	 	 I			478			. – – – – – . I		556 557			
402	l 	! 			479 480]]		558		i	
403	 				481					559			
404 405		 -			482 483					560 561			
406	 	ı 			484					562			I I
407		l	I	[485	į į		l	I I :	563	1 1	1	
408 409	 	l 	 	 	486 487			 		564 565			
410	l 1	I	I	1	488	l i		I	I I :	566		1	l I
411	l I	I	I	1	489	1		I	I I :	567	l I	I	l l
412 413	 	 I	I		490 491					568 569		1	I I
414		İ	i	i	492	i i		, 		570		i	
415	 	 '			493					571			
416 417	l !	 	I I	I	494 495					572 573		l I	
418	 · 				496			' 		574			
419		ļ	1		497	!				575		I	
420 421	 	I 	 	 	498 499			 		576 577		 	l I
422	l I	I	I	1	500	1		l	l I:	578	1 1	I	l I
423 424	 l	l 	I	I	501 502			l 		579			
424	 		1	I .	502					580 581		1	l I
426	i i	i	i	i i	504	i i	i	İ	I I	582	į i	i	i i
427 428	 	 I			505			. – – – – – . I		583			
429	 	! 	<u> </u>		506 507			 		584 585		1	
430	 				508					586			
431 432		 -			509 510					587 588			
433	 ·				511					589			· · · · · ·
434	l !	l	1	[512	ļ ļ		l	l I :	590	ļ ļ	1	l I
435 436	 	l 	 	 	513 514	 		 		591 592			
437	l 1	I	I	1	515	l i		I	l I :	593	l I	I	l I
438	l 1	I	I	1	516	1		I		594		I	l I
439 440	 	 I	1	I	517 518					595 596		1	
441	i i	İ	i	i	519	i i	i		I I	597	I I	i	i i
442 443	 I	 I			520			. – – – – – . I		598			
444	ı 	! 		 	521 522		 	! 		599 600			ı I
445	 				523					601			
446 447	 	 	 		524 525			[602 603		1	
447	 ı	ı 	ı 	ı 	525					604			ı l
449	l I	!	Į.	I I	527	ļ ļ l		<u> </u>	I I -	605	I I	1	
450 451	 	l 	I	l 	528 529		l 	l 		606 607		 	I
452	l 1	I	I	I	530	l I				608	1 1	1	l I
453	l I	I	I	1	531	1		I	l I	609	I I	I	l l
454 455	 	 I	I	 I	532 533			 I		610 611	l I		
456		İ	i		534			! 	I I -	612		İ	. '
457	 				535					613			
458 459	 	l I	I I	 	536 537] 		614 615		l I	
460	 ,		· 		538					616			
461	ļ !	ļ	ļ.		539	!			I I -	617	I I	1	ļ ļ
462 463	 I 	I 	I	l 	540 541		l 	l 		618 619		 	ı l
464	l I	I	I	I	542	1 1		I	I I	620		1	I I
465	l I	I	I	l I	543	1 1		I	I I -	621	I I	1	I I
466	 				544					622			

1																
Column	623	ļ.	į.	ļ.	Ţ			ļ.	l	ļ	!	779	ļ ļ	Ţ	!	ļ ļ
Column	624	 	 	 	 			 	 	 	 			 	 	
1	626	1	I	1	-	7	04	1	l	I	1	782	1	1	I	1
1	627	 	 	 	 	7 7	05 06		 	 	 	783 784		 	 	
1	629	I	I	1	I	7	07	1	l	I	1	785	ı	1	1	1 1
1	630	l		l				I	l 	l	l	786	I	l	Ι	l I
Color	632	1	I	I	ı	7	10	1	I	I	1	788	ı	1	Ι	1 1
1	633	 		l	 			I	l 	I	1	789	I	1	1	l l
SS	635	I						1	 		1	790	I	1		I I
	636	1	I	I	I	7	14	1	I	I	1	792	I	1	I	1 1
1	638	I						1	 	1	1		I	1		I I
1	639	I	I	1	I	7	17	1	I	I	1	795	I	1	1	1 1
1	641	 						Ι	 			796	I			I I
	642	Ì	Ì	Ī	ĺ	7	20	İ	l	ĺ	1	798	ĺ	Ī	Ī	i i
	643	 I	 		 I			I	 I	I				 		I I
1	645	Ì	İ	i	i	7	23	İ	İ	İ	i	801	i	Ì	İ	i i
1	646 647	 I	 I		I			I	 I	 I		802 I 803	l	 I		I I
	648	i	i	i	i	7	26	i	İ	i	i	804	i	i	i	i i
	649 650	 I	 I					I	 I	 I		805 806	l	 		
	651	i	i	i	i	7	29	i	i I	i	i	807	i	i	i	i i
	652	 I						1	. – – – – – I				1	 I		I I
	654	i	i	i	i			i	! 	i	i		i	i	i	i i
	655															
1	657	 	İ	İ		7	35	İ	 		1	813		1		
	658					7	36					814				
661	660	¦		I I				i	l 	 	1	815		ł	I I	
	661	<u>:</u>		:		7	39			· 	·	817			·	
1	662	¦	l I	l I	l I			ł	l I	 	1			1	I I	I I
	664	:	:	:		7	42			:	<u>:</u>	820		- <u>-</u>	·	:: :
1	665	 		l I	l I	7 7	43	}	 	 	1	821 822		1	1	
	667					7	45			· 	·	823	'		·	·
	668	l I		l I	l			l I	 	1	1	824 825		I I	l I	
	670					7	48			·	·	826	'		·	·
673	671 672	l I	 	l I	l I	7 7	49 50	1	 	1	1	827 828	l I	1	1	
	673					7	51		· 			829			·	
1	674 675	l I		l	l I	7 7	52	[[1	1			1	l I	
	676					7	54		' 			832			. '	
1	677 678	l I		I	l	7 7	55	I I	 	1	1	833 834	l I	1	I	
	679					7	57					835				
682	680 681			l I	l I	7	58 59	l I	 			836 827	l I	I I	1	
	682	I				7	60		ı 	' 		838				
1	683			l '				1	 				l I	I	1	
686 764 842 687 765 843 688	685	 	 		 	7	63	l	I 	I 	1	841		 	·	ı l
688	686		1	ļ	1	7	64	1	 		1	842	ļ !	I	1	
	688	 	 	l 				l 	I 	I 				 		ı l
691	689	!	Į.	ļ	ļ	7	67	!			1	845	ļ.	1	!	
692 770 848 693 771 849 694	690 691	 	 	I	 	7 7	69	 	l 	l 	I	847		 		ı l
694	692	ļ	į.	ļ	Ţ	7	70	<u>į</u>	l	ļ	!	848	!	Į.	!	1 1
695	693 694	 	 	<u> </u>	 			 	l 	 	 	849 850	 	 	 	I I
697	695	ļ.	Ţ	Ţ	Ţ	7	73	Į.	l	1	Į.	851	ļ	Ţ	ļ.	I I
698	696 697	 	 	 	 			 	 	 				 	 	I I
	698	1	1	I	I	7	76	1	l		1	854	I	1	I	1
	699 700	<u> </u>	 	I	<u> </u>			<u> </u>	l 	 		855 856		 	 	l l
	, 50					,	, 0					030	I			

857	1	1	1	1		935	1	1	I	1	1013	1	1	1	1 1
858	I	1	I	I	9		1	I	1	I	1014	1	1	1	1 1
859						937					1015				
860	!	!	!	!	9		!	!	!	!	1016	!	!		
861 862		 		 		939	 	 	 	 	1017 1018	 	 	 	
863	1	1	1	1		941	1	1	1	1	1018	1	1	1	1
864	i i	i	i	i	9		i	i	i	i	11020	i	i	i	1
865				'		943					1021				
866	1	1	1	1	9		1	1	ı	1	1022	1	1		1 1
867	ĺ	İ	ĺ	i		945	ĺ	İ	ĺ	ĺ	1023	İ	İ	İ	i i
868						946					1024				
869	I	1	I	1		947	I	I		1	1025	I	1		1 1
870	I	ı	I			948	I	1		ı	1026	I	1		
871						949					1027				
872	ļ	!	!	!	9		!	!	!	!	1028	!	!	!	!!!
873 874	 	 	I	 		951 952	 	 	 	 	1029 1030	 	 	 	
875	I	1		1		953	I	1	1	1	1031	1	1	1	1
876	 	1	i	i	9		i I	-	<u> </u>	-	1031		1	i i	
877	 	' 	I			955	l 		 	' 	1033		 	 	
878	1	1	1	1		956	1	1	1	1	1034	1	1	1	1 1
879	i	i	i	i	9	957	i	i	i	i	1035	i	i	i	i i
880			·			958		· 	· 	·	1036			· 	
881	1	1	1	1	9	959	1	I	1	1	1037	1	1	1	1
882	1	1	I	1	9	960	1	1	1	1	1038	1	1	1	I i
883					9	961					1039				
884	I	1	I	1	9		1	1	1	I	1040	1	I	I	1 1
885	I	I	I	1	9		1	1	I	I	1041	1	I	1	1 1
886	·					964					1042				
887	Į.	1	ļ	1		965	Į		ļ	ļ	1043	ļ .	I	I	
888	I	ı	ı			966	1	I	ı	ı	1044	I	I	ı	1
889						967					1045				
890 891	l I	!	!	-	9	968	1	!		!	1046 1047	-	1	1	
892	 	। 	 	 		970	 		 	। 	1048			 	·
893	1	1	1	1	9		1	1	1	1	1049	1	1	1	1 1
894	i	i	i	i		972	i	i	i	i	1050	i	i	i	i
895			<u>:</u>			973			'		1051		·		
896	1	1	I	1	9		1	1	1	ı	1052	1	1	1	1 1
897	ĺ	İ	ĺ	i	9		ĺ	Ī	ĺ	Ì	1053	İ	İ	i	i i
898					9	976					1054				
899	1	1	I	- 1	9		1	1		- 1	1055	1	1		1 1
900	I	1	I	1		978	1	I		I	1056	I	1		1 1
901						979					1057				
902	ļ.	!	!	!	9	980	ļ.	!	!	ļ.	1058	ļ.	!	!	!!!
903	I	ı	ı	ı	9	981	I	I	l	ı	1059 1060	ı	1		1 1
904						982					1060				
905	ļ	!	!		5	983		1	ļ	!	1061	!	1		
906 907	 	 		 		984	I	 	 	 	1062 1063	l 	 	 	· · · · · · · · · · · · · · · · · · ·
908	ı	1	1	1		986	1	1	1	ı	1064	ı	1	1	
909	<u> </u>	i		i		987	;		<u> </u>		1065	;	i	i	
910		· 				988		· 			1066		· 		·
911	1	I	I	1	9		1	Ι	1	1	1067	1	I	1	
912	i	Ì	i	i	j		i	Ì	i	i	1068	i	1	İ	ı
913					9	991					1069				
914	1	1	I	1		992	1	1	I	1	1070	1	1	1	1 1
915	I	1	I	1		993	1	I	1	I	1071	1	1	1	1
916						994					1072				
917	ļ.	1	!	!		995	Į.	!	!	ļ.	1073	I .	!	ļ.	I 1
918	I	I	I	I		996	I	I	I	I	1074	I	I	I	1 1
919	· · · · · · · · · · · · · · · · · · ·		ı			997	ı		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	11075				
920 921	l I	1	l I	I	9	998	I I	l I	l I	I I	1076 1077	I I	I	I I	1 1
921	 	 	 	 			 	 	 	 	10//	 	1	 	
922		1	I	1	 16	200	ı	1	I	1	1079	ı	1	I	
923	 	1	l I	i	16	202	I I	I I	l I	I I	1079	I I	1	i I	
925	l 				16	203	l 	' 			1081	l 			
926	1	1	1	1	16		1	ı	ı	1	1082	1	1	1	
927	i	i	i	i	10	005	i	i	i	i	1083	i	i	i	·
928			· 		16	906				· 	1084				
929	1	1	I	1	16	907	1	1	1	1	1085	1	1	1	1 1
930	1	1	I	1	16	806	1	1	1	1	1086	1	1	1	I i
931					16	909					1087				
932	I	1	I	1	16		1	I	1	I	1088	1	1	1	1
933	1	1	I	1	16		1	I	I	I	1089	1	1	1	1 1
934					16	912					1090				

													_
1091 1092	1	Į.	ļ		ļ		1	1247 1248		ļ	ļ	!	I
1093				1171				1249			 		
1094 1095	 	 	l	1172 1173	 			1250 1251		l	l		
1096 1097	 I	 I	 I	1174 	 I	I	 I	1252 1253	 	 I	 I	 	 I
1098	i	i	i	1176	i	i i	i	1254	i	i	i	i	i
1099 1100	I	 	Ι	1177 1178		I I		1255 1256			 		1
1101 1102		 	 				 	1257 1258		 	 		
1103 1104	[1	1	1181 1182	1		Į.	1259 1260	ļ ļ	ļ.	1		
1105		 		1183				1261	 			·	
1106 1107	 	 	l		 			1262 1263		l	l		
1108 1109	 I	 I	 I	1187 1187	I	I	 I	1264 1265	 	 I	 I		 I
1110	i	i	i	1188	i	i i	i	1266	i	i	i	i	i
1111 1112		l	l	1189 	l		 	1267 1268	I	l	I		1
I113 I114		 					I	1269 1270	 	 	 		
1115 1116	-	1	l I	1193 1194	1		Į.	1271 1272	l I	l I	I		
1117		'	·'	1195			· <u>'</u>	1273					
1118 1119		 	l	1196 1197	 			1274 1275		l I	I		
1120 1121	 I	 I		1198 	 I		 I	1276 1277	 		 I		 I
1122	i	i	i	1200	i	i i	i	1278	i	i	i	i	i
1123 1124		I	Ι	1201 1202	Ι	I I		1279 1280	l	 	I		1
1125 1126	I	 	 		I		I	1281 1282	 	I	 	 	
1127 1128	[Į.	1	1205 1206	1		ļ	1283 1284	l I	I	I		
1129	 	 		1207	 			1285			 		
1130 1131	 	 	l		 			1286 1287		l I	I	 	
1132 1133	 I	 I		1210 1211			 I	1288 1289	 				 I
1134	i	i	i	1212	i	i i	i	1290	i	i	i	i	i
1135 1136		 	Ι	1214				1291 1292	l	 	 		1
1137 1138	ا 		 	1215			I	1293 1294	 		 		
1139 1140	-	1	l I	1217 1218	1		Į.	1295 1296	l I	l I	I		I
1141			'	1219				1297					
1142 1143	 	l I	l I		 			1298 1299		l I	l I	1	
1144 1145	ا ا	 I	 I		I	I I	 I	1300 1301		 I	 I		 I
1146 1147	i	i i	i	1224	i	i i	i	1302 1303	<u> </u>	i 	i	İ	i
1148	I	ļ	ļ.	1226	į.	į i	ļ	1304	ļ	!	!	!	l
1149 1150	l	 	 	1227 1228	 	ı l	I	1305 1306		 	 	 	
1151 1152	 	1	l I		 		 	1307 1308	l I	1	I	1	
1153				1231	· · · · · · · · · · · · · · · · · · ·		·	1309					
1154 1155		 	l I	1232 1233	 		 	1310 1311		l I	l I		
1156 1157	l	 I	 		I		 I	1312 1313	 	 	 I	 	 I
1158 1159		i	i		<u>i</u>	<u>i</u> i	i	 1314 1315	i	i	i	i	i
1160	1	!	!	1238	į.	į I	!	1316	!	!	!	!	ļ
1161 1162		l	 		 	I I	I	1317 1318		 	 		
1163 1164	 	1	l I		 		l I	1319 1320	l I	1	I	 	
1165				1243	· 		·	1321				· 	
1166 1167	ļ			1244 1245	1			1322 1323			İ		
1168				1246				1324					

	JCII					1.3	CU							
1325	1	1	1		1	1	ı	1	1481	1	1	I	I	I
1326 1327	 	I	 			 	 	 	1482 1483 -	 	 	 	 	
1328	Ţ	Ţ	Ţ	1406	1	Į.	Ţ	Ţ	1484	1	1	I	I	I
1329 1330	 	 	 			 	 	 	1485 1486 -	 	 	 	 	
1331	1	1	1	1409	1	1	1	I	1487	1	1	I	I	I
1332 1333	 	 	 			 	 	 	1488 1489 -	 	 	 	 	
1334	!	į.	į.	1412	Ţ	Į.	ļ.	Ţ	1490	į.	1	Į.	Į.	I
1335 1336	 	 	 			 	 	 	1491 1492 -	 	 	 	 	
1337	!	Į.	ļ.	1415	Į.	ļ.	ļ.	Į.	1493	į.	Į.	ļ.	I	ļ
1338 1339						 			1494 1495 -	 	 	l 	 	
1340	!	!	ļ	1418	Į.	!	į.	Į.	1496	!	!	Į.	!	ļ
1341 1342						 	 	 	1497 1498 -	 	 	 	 	
1343	!	1	I	1421	I		ļ	Į.	1499	1		1	I	1
1344 1345	I			1422 1423				 	1500 1501 -			 	 	
1346 1347	ļ	Į.	I		Į.		ļ	I	1502 1503	!		I	I	1
1348				1426		 			1504	·				
1349 1350	1	1	I		1		ļ	I	1505 1506	ļ		1	I	
1351				1429					1507 -					
1352 1353	l I	1	l I		1		I	I	1508 1509	ļ	Į I	1	1	
1354				1432					1510 -					
1355 1356	l I	[l I	1433 1434	 		l I	I	1511 1512	ļ	1	1	1	
1357				1435					1513 -					
1358 1359	l I	1	l I				l I	I	1514 1515	ļ		1	1	
1360				1438					1516 -				' 	
1361 1362	l I	1	l I				l I	I	1517 1518	ļ		1	1	1
1363				1441					1519 -				' 	
1364 1365	l I	1	l I		1		I	I	1520 1521	ļ	Į I	1	1	1
1366				1444					1522 -					
1367 1368	I	<u> </u>	l I		 		I	l I	1523 1524	ļ	1	1	[
1369				1447					1525 -				' 	
1370 1371	l I	l I	l				l I	l I	1526 1527	I I		1	 	1
1372				1450	'		'		1528 -					
1373 1374	l I	l I	l	1451 1452			l I	l I	1529 1530	I I		1	 	1
1375	<u>'</u>	·	·	1453		<u>'</u>	<u>-</u>	<u>'</u>	1531 -	<u>'</u>	·	<u></u>		
1376 1377	l I	 	l		l I	l	l I	l I	1532 1533	ļ		1	 	1
1378		·		1456	·		<u>-</u>	<u>-</u>	1534 -	<u>-</u>	·			
1379 1380	l I	 	l		 	l	l I	l I	1535 1536	-	1	1	 	1
1381	<u>'</u>	· ·	:	1459			<u>:</u>	<u>:</u>	1537 -	· ·		· 		. <u>-</u>
1382 1383	1	 	l I		 		l I	l I	1538 1539	 	1	I I	 	1
1384		·		1462		<u>:</u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1540 -	·				
1385 1386	1	 	l I		 	 	l I	I I	1541 1542	 	1	I I	I 	1
1387	<u>.</u>			1465		<u>:</u>		:	1543 -	·				
1388 1389	1	 	l I		 		l I	l I	1544 1545	 	1	 	I 	1
1390	<u>·</u>	· ·		1468		<u>·</u>	<u>-</u>	<u>·</u>	1546 -	· ·				
1391 1392			l		l I	l		l I	1547 1548	-	l I	1	l I	1
1393	<u>:</u>	·		1471			<u>-</u>		1549 -	· ·				
1394 1395	1	 	l I		 		l I	l I	1550 1551	 	1	 	I 	1
1396	<u>:</u>			1474			· · · · · · · · · · · · · · · · · · ·		1552 -	· ·				
1397 1398	 	 			 	 	l I	l I	1553 1554	 	1	 	! 	1
1399	· 			1477		· 			1555 -					-
1400 1401	1 	 	l I		I 	 		 	1556 1557	 	1	 	! 	1
1402				1480					1558					

	-	1011					FJC	<u> </u>							23
1	559	ļ	Ţ	ļ		ļ ļ	ļ	ļ	Ţ		į	ļ	1	į.	Ţ
Se				 		 					 	 	 	 	
1	562	Į.	ļ	Į.	1640	ļ	Į.	!	!	1718	ļ	!	!	ļ	ļ
	564 -	I		 	1642	 				1720	I	 		 	
1	565	1	I	I		1	I	1	l I		I I	I	I	I	
	567 -				1645				·	1723				' 	
148		l I	I	I		I	l		l I	1724 1725	l I	I	I	l I	I
1	570 -	'	· <u>-</u>	'	1648		·'		·	1726	<u>'</u>	-		- <u>-</u>	
1	571 572	l I	l	l			l				-	-	l	1	l I
	573 -				1651					1729					
	575		İ		1653			l	i	1731	i	i			
	576 - 577	 I		 I		I	 I		I		 I	 I		 I	 I
	578	i	i	i	1656	i	i	i	i	1734	i	i	i	i	i
	579 - 580 -	 I		 		I	 I				 I	 I	 I	 	 I
	581	İ	i	i	1659	i	i	i	İ	1737	i	İ	i	İ	İ
	583		 						 	1739	 	I		 	
88	584		I	 	1662	l	<u> </u>		 	1740	 	 	 	 	
Second Column	586	1	1	1	1664	1	I	1	I	1742	I	1	1	I	I
1	589	Į.	Į.	Į.	1667	ļ.	ļ.	!	ļ.	1745	į.	!	Į.	ļ.	ļ
	590 591 -	 		 		 	 		 		I	 	 	 	
	592	1	1	I	1670	ļ	I	1	ļ	11748	Į I	I	I	I	
	594 -	·			1672				·	1750					
	595 596	I	I	l	1673 11674	I	l		l I	1751 1752	ļ	I	l	I	
	597 -	·'	· <u>'</u>	<u>'</u>	1675		·'		·	1753	<u>'</u>			- <u>-</u>	
	598 599	l I		l			l I		l I		 	I	l I	 	
	500 -	·	·		1678		·			1756			·	·	
1	502	 	i	l I			l I	i	i	1757	ľ	İ	l I		
	503 - 504			 I		I			I		I			 I	 I
	505	i	i	i	1683	i	i	i	i	1761	i	i	i	i	i
		 I		 I		I	 I		I		 I	 I		 I	 I
10	808	i	i	i	1686	i	i	i	i	1764	i	i	i	i	i
	509 - 510		 	 					Ι		 	 		 	
113	511		l	 				_ I	 		 	 	 	 	
115	513	1	1	I	1691	I	I	1	I	1769	I	1	1	I	I
16	614 615 -	 	I	 					 	1770 1771	 	 	 	 	
18	516	ļ	ļ	ļ.	1694	!	ļ	ļ.	ļ.	1772	Į.	ļ	ļ.	ļ.	ļ
	518 -		I	 	1696		 		 	1774	 		 	 	
	519			ļ	1697	ļ	ļ	I	I	1775	ļ	1	1	1	
	521 -		l 	l 	1699	 		 	l 	1777	 			 	
1702	522			 	1700		 	l	l I	1778 1779		l	I I	 	
	524 -				1702					1780				' 	
1705	525 526		 	l I			l I	l I	l I		 	l I	l I	 	
	627 -			:	1705	<u>'</u>	<u>.</u>		· 	1783	·	-		· 	
1708	529			 	1707		l l	 		1/84 1785	 	 	 	 	
	530 -	 I		 I	1708	I				1786	 I	 I		 I	 I
i34 1712 1790	532						İ		i	1788			i		
i35 1713 1791	533 - 534	 I	 I	 I		 	 I		 I		 I	 I		 I	 I
Sto	535	i	i	i	1713	i	i	i	i	1791	i	i	i	i	i
	536 -				1714					1792					