1 Summary - Decays
parent radio nucleid -> spontaneous decay -> daughter nucleid
Types: Ldecay -> dparticle gets ejected or cluster decay (heavier particle sole 12c) Solecay -> pt Note 12c) or firming electron capture or N-0 p
Y decay: nuclear energy transition → por e- gets ejected usually paired with Lor sdecay
decays follow an exponential law: $\lambda = -\frac{dN/dt}{N}$ $\lambda = -\frac{dN/dt}{N$
$N(t) = N_0 e^{-\lambda t}$ N_0 number of nuclei at $t = 0$
half life $t_{1/2} = \frac{0.693}{3}$ = the time it takes for educe to half
d decay: - D Coulomb repulsion effect, becomes important at heavy buclei LD Z ² strong force ~ A
-Denergetically the & particle is the "eariest" to eject, largest energy release for light particles A X -D 2-2 X N-2 + & 1 denote the description of the descripti
possent daughter
The energ the release can be calculated from the wars difference $Q = (m_X - m_{X'} - m_{X'}) c^2 = I_{X'} + I_{X'}$
Q>O for decays Egets carried away as hinetic E
I must be relatively large Tx' ~ 21. of energy = recoile (few cm)

2) => from Q we can measure atomic masses for X'
large Q - short half life
- event and even N - or shorter half life - event odd - even and odd-odd pairs have been relatively longer t1/2
- adding in -t increases the t1/2
Theory: &-particle curide the parent nucleus -> tunneling -o decay
- potential well + Coulomb potential denintegration probability: $J = JP$ of the boundary
7- pobability of traunit
nimplified model is a good representation however some
discrepancies with asserbances
discrepancy 2 - momentum got - shape of the nucleus is not symmetric Lo radius is changing
(alaulating half lifes or shows which decays are less likely to happen e.g. & envision more likely than "Cemission
(proton decay: energetically forbidden, but can happen very thereof)
Angular mom. and parity parity change: (-1) ex
-8 which (the order
if initial & final the same: le even
if initial & final the same: le even -11- different: le codol
L decay: a given initial state can decay into a variety of states in the
decay: a given initial state can decay into a variety of states in the daughter - "fine structure" of L decay
decays to different E levels: (1) centrifugal force (from rot) raises the barrier (1) excitation E lowers the barrier telative decay probability: 9+ is the highest 2+, 4+,6+,8+ les libely
(1) excitation to lowers the
recause occurry,

(2) - 1 - 1 - 1 - Clair a roya delle b
3) - I due to the wave func. being more dofferent Lo the particle must go from 0+ to rot or vibrational state
it a 2 of 37 will
parity: 0-03 l, odd 0+-03 possible 0+-03 t not possible
o s car partitude
if the inital and final spin are not a more combination
if the inital and final spin are not 0 more combination e.g. 2+-02- if lx=1 or lx=3
Lo measure from angular destribution of decay
also indicate the shape of the nucleus 3-4 times more amission from the elongated ride
3-4 times that american from the
elongates
- Applications: - power source
- lancer frequent
- smoke detectors
d-decay spectroscopy - D map excited states
B-decay: 5-: n-0p++e-+ Ve
B-decay: 15-: n-opte-tre pt-ontette Touly bound pt
/9 .
e-capture: p+te> n + Ve)
-o A stays the same, Z and N change stable state
To unstable nuclei decay untill they reach a stable state
Lo unstable nuclei
1 locado de create new particles
Energy release: energy spectrum of e- is continous! - decay - I spectrum is discrete
Energy selease: energy spectrum of e is continued, decay
- L spectrum is discrete hartral 4 2
- L'spectnum is discrete hactral 4-12 spin = 1/2
(1-00 0.1 1-100000)
16-decay of free n (half lefe of Nowin)
n-tptet2
$G = (m - m_p - m_p)c^2$

(9) Q=Tp+Te+Ty Lo share the energy - outinous spectrum from Q and the meanised marses we know that Vivery light small mass of e- and V -> relativistic motion * X -> * X' +e-+ D 15 decay in nucleus: (Q = [MN (2X)-MN (2+1X')me]c2 Lo nuclear mars (no e-) $Q_{\mathcal{F}} = \left[m(x) - m(x') \right] c^2 - mass measurments$ Qp=Te+ED 5 decay: 2 XN -> 2-1 X'N+1 + 5+ + D Qs+=[m(AX)-m(AX')-2me]c2 e- capture: AXN +e- -> AXN+1 + V excited state -> if an inner e-gets captured to penission from another c-filling the hole -D energy of y tiding & of e-At and e- capture lad to the same final nucleus but not always are both energetically possible if 1st possible -se-capture possible, ent notes the other way Fermi theory of sdecay - must create the new particles - c- and) are relativistic _ must explain continous e-spectrum Tinterpretation as a wear interaction B the probability of transitions depends on the density of

5 complete sodeany depends on 3 factors
A) p2(Q-Te) + awardahiluty of final Mates
(2) Termi function accounting for the willow coulomb fold +(E, F)
2) The nuclear matrix dement Mj: 2 - to account for particular initial and final states and the additional momentum from forbidden
and final states and the additional momentum from forbidden
terms (Pi) Is allowed decay
-s forbidden decay
N(p) × p2 (Q-Te)2 + (2',p)/Mg; 12 S(p,q)
Lal test: Ilune plot
Experimental test: Munie plot allowed decay (Q-Te) & \(\bigvert \frac{\nu(p)}{p^2 \overline{F(2',p)}}\) \in line against Te
forbidden (Q-Te) d (p ² F(2',p) S(piq)
- o lærge range of B-deay half-life:
- very short half-life - superallowed decay
B decay interaction - o wear interaction The theory: Termi model + particle exchange (W, 2 bosous) The theory: Termi model + particle exchange (W, 2 bosous)
Newtrino mars: from the shape of the e-chergy spectrum is most be
Angular hom and parity rules: Due orbital ang nom l=0 Se-= 1/2 20-= 1/2 -D parallel or antiparallel spin S=0 Fermi-decays
Due ophital ang nom l= 0
Se- = 1 so = 1 =0 parallel or antiparate
S=1 S=0 Ferni-decagh
Se- = 2 Sp- = 2 = 5 parattet of strong S=0 Fermi - decays. S=1 S=0 Fermi - decays.
Allowed decay: SI=0,1 STI=10
0+-8 0+ Fermi 0+-0 1+ G-T
0-01 9-1

```
6) first forbidden decay: lis not O
    l=1 first forbidden decay
                                 DI=0,1,2 DI=yes
                                 1 = 2,3, Dr=no
    l=2 second forbidden decay
    e=3 third _ 11-
                                 1=3,4 ST= yes
                                 B1=4,5 BT= L0
   e=4 forth - 11-
 Inverse B decay: capture of Yor D
             D+p -> n tet
             V +n -> p +e-
  double Blecay: 48 Ca -> Ti + 2e- +20
            nimellancously 2 15-decays -
         if V = \bar{V} = 0 hentinales 15/5 decay
     to very difficult to detect to experiments in mines to very long half lefes
 15-delayed nucleon emission
  precursor - D /3 decay inte excited state - > mecleon emersion (ptorn)
                                  to needs to be a high excitation state
    Egithe excited state needs to cover the = speparation E + Eg emitted particle + small receil E
    - D map excited States: Energy + population
  Applications:
                    - 15 light
                   - monitoring thickness
                   - cancer treatment
                   - medical imaging (PET)
                   - radio carbon dating
```

+ Gamma decay - worst Land Blecays are followed by & decay - - energy transition of the nucleus trough premersion -s very high E 0.1-10 MeV -o p wavelength Energetics: E; #= Eg + Ep + TR recoil initial final $\Delta E = E_i - E_g$ $\Delta E = E_p + \frac{E_p^2}{2M_{c}^2}$ $\Delta E \sim E_g$ low E prays so small recoil hight prays-s large recoil or radiation damage Angular hom & parity othitel ang nom - > L determines the moment : dipole, quadrupole
parity determins electric or magnetic: $\Delta T = 4000$ even -> electric $\Delta T = 4000$ if L=O - & monopole - > no y emersion -> internal conversion L=1 -0 dipole L=2 -0 quadrupole Internal conversion instead of a fr my an e gets the Dt and gets ejected to followed by premission from e-filling the hole Frinctic E = SE-BAlinding E Lo discrete energies depending on the orbit of the e- (K,L,M,N) -D generally both pencision and internal conversion happen Total decay probability: 2 = 2 + 2e

(8) internal conversion coefficient $d = \frac{Ae}{Ap}$ penission ingunerally nore likely nore likely hore likely hore likely holear tesonance: the nucleus can also absorbe radiation Applications: - cancer treatment - scanning containers - monitoring production in industry