Data Modeling and Visualisation

CCT490H5F - Social Data Analytics

Professor Alex Hanna

October 20, 2016

∀ FiveThirtyEight

Will Trump Win the Primary in Wisconsin?

∀ FiveThirtyEight

⊌ FiveThirtyEight

⊌ FiveThirtyEight

⊌ FiveThirtyEight

Data Modeling

A *model* is a simplified representation of reality.

Data Modeling

A *model* is a simplified representation of reality.

A *mathematical model* is a representation of reality using numbers.

- Description: You want to summarise data.
- Explanation: You want replicate the working of the world with existing data.
- *Prediction*: You want to forecast the future from past data.

- Description: You want to summarise data.
- Explanation: You want replicate the working of the world with existing data.
- Prediction: You want to forecast the future from past data.

- Description: You want to summarise data.
- Explanation: You want replicate the working of the world with existing data.
- Prediction: You want to forecast the future from past data.

- Description: You want to summarise data.
- Explanation: You want replicate the working of the world with existing data.
- Prediction: You want to forecast the future from past data.

Modeling is a data reduction process.

- Description: You want to summarise data.
- Explanation: You want replicate the working of the world with existing data.
- Prediction: You want to forecast the future from past data.

Modeling is a data reduction process.

"All models are wrong but some are useful." - George Box, statistician

Example: More Tweets, More Votes

DiGrazia et al. 2013. "More Tweets, More Votes: Social Media as a Quantitative Indicator of Political Behavior"

The more times a 2010 US House candidate was mentioned, the more likely it is they will be elected.

Other things which affect votes

- Incumbency
- · Ideological leaning
- Age
- Education
- Gender
- Race
- Media markets

- Dependent variable: Republican percent of the vote share (vote_share)
- Independent variables
 - Republican percent of Twitter mention share (mshare
 - Republican incumbency (rep_inc)

- Dependent variable: Republican percent of the vote share (vote_share)
- Independent variables
 - Republican percent of Twitter mention share (mshare)
 - Republican incumbency (rep_inc)

- Dependent variable: Republican percent of the vote share (vote_share)
- Independent variables
 - Republican percent of Twitter mention share (mshare)
 - Republican incumbency (rep_inc)

- Dependent variable: Republican percent of the vote share (vote_share)
- Independent variables
 - Republican percent of Twitter mention share (mshare)
 - Republican incumbency (rep_inc)

Description of MTMV Data: Crosstabs

 rep_inc
 42.119264
 39.360672

 1
 67.516408
 72.170127

```
In [60]: ## vote share and mention share standard deviation
## by Republican incumbency
gr_mtmv[['vote_share', 'mshare']].std()
```

Out[60]:

	vote_share	mshare
rep_inc		
0	13.850496	27.930878
1	7.005758	28.911278

Explanation of MTMV Data: Correlation

```
In [8]: from scipy.stats.stats import pearsonr
print(pearsonr(df_mtmv['mshare'], df_mtmv['vote_share'])[0])
0.508867322507
```

Pearson correlation: measure of the linear dependence between two variables X and Y. Ranges from [-1, 1].

Explanation of MTMV Data: Linear Regression

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	8.2099	24.490	0.335	0.738	-39.936 56.356
rep_inc	18.3989	1.008	18.257	0.000	16.418 20.380
mshare	0.0543	0.015	3.639	0.000	0.025 0.084
pct_white	0.4735	0.026	18.028	0.000	0.422 0.525
pct_college	-0.3384	0.073	-4.619	0.000	-0.482 -0.194
med_hhinc	0.1132	0.051	2.211	0.028	0.013 0.214
pct_female	0.0418	0.464	0.090	0.928	-0.870 0.953

Regression: statistical technique which models the relationship between multiple variables.

Exercise: Build your own model!

Visualisation

Purposes of visualisation

- Exploring data
- Confirming mode
- Presenting results

a Anscombe's quartet (1973)

Visualisation

Purposes of visualisation

- Exploring data
- Confirming model
- Presenting results

a Anscombe's quartet (1973)

Visualisation

Purposes of visualisation

- Exploring data
- Confirming model
- Presenting results

a Anscombe's quartet (1973)

- Understand the variable beyond mean, median, standard deviation, etc.
- Should be first part of exploring data
- Types
 - Histogram
 - Density

- Understand the variable beyond mean, median, standard deviation, etc.
- Should be first part of exploring data
- Types
 - Histogram
 - Density

- Understand the variable beyond mean, median, standard deviation, etc.
- Should be first part of exploring data
- Types
 - Histogram
 - Density

- Understand the variable beyond mean, median, standard deviation, etc.
- Should be first part of exploring data
- Types
 - Histogram
 - Density

- Understand the variable beyond mean, median, standard deviation, etc.
- Should be first part of exploring data
- Types
 - Histogram
 - Density

Univariate visualisations: Comparing variables

Bivariate and multivariate visualisations

- Understanding variable relationships
- First part of model exploration

Bivariate and multivariate visualisations

- Understanding variable relationships
- First part of model exploration

Multivariate visualisation: Adding color

Model confirmation

guessthecorrelation.com