[ТВиМС] ТЕОРМИН. (2 КУРС, IV СЕМЕСТР)

Часть 1. Теория вероятностей

- 1. Парадокс Бертрана
- 2. Классическое опр. вероятности. Задача о «Спортлото»
- 3. Задача об оптимальном дележе ставки
- 4. Геом. вероятности. Задача о встрече. Задача Бюффона
- 5. Вероятностное пространство.
- Свойства вероятности. Эквивалентности счетной аддитивности и непрерывности вероятности
- 7. Условные вероятности
- 8. Формула полной вероятности
- 9. Формула Байеса. Задача о детекторе лжи
- 10. Определение случайной величины
- 11. Замкнутость СЛВ относительно операций минимума, максимума и предельного перехода
- 12. Замкнутость СЛВ относительно арифметических операций
- 13. Функции распределения. Простейшие свойства
- 14. Понятие меры Лебега
- 15. Понятие интеграла Лебега
- 16. Классификация СЛВ. Дискретные случайные величины
- 17. Классификация СЛВ. Абсолютно непрерывные СЛВ
- 18. Классификация СЛВ. Сингулярные СЛВ
- 19. Мат. ожидание. Простейшие свойства. Задача о пенсионере
- 20. Медиана. Простейшие св-ва. Задача о предпринимателе
- 21. Задача о среднем годовом доходе
- 22. Дисперсия. Простейшие свойства
- 23. Ковариация. Коэффициент корреляции
- 24. Неравенства Маркова и Чебышева
- 25. Неравенство Гаусса. «Правило трех сигм»
- 26. Закон больших чисел в форме Чебышева
- 27. Неравенства Иенсена и Ляпунова
- 28. Коэффициенты эксцесса и асимметрии
- 29. Схема испытаний Бернулли. Биномиальное распределение
- 30. Теорема Пуассона. Распр. Пуассона. Задача о булочке
- 31. Задача об инсектициде
- 32. Теорема Муавра—Лапласа. Задача о докторе Споке
- 33. Нормальное распределение. Его коэффициент эксцесса
- 34. Нормальное распределение. Неравенства для хвостов
- 35. Задача о рейтинге. Решение по неравенству Чебышева
- 36. Задача о рейтинге. Решение по теореме Муавра—Лапласа
- 37. Схема испытаний Бернулли. Геом. распр. Его моменты
- 38. Предельная теорема для геом. распределение. Показательное распределение. Его моменты.
- 39. Показательное распр. Св-во отсутствия последействия.
- 40. Совместные распределения. Совместные плотности
- 41. Условные плотности и условные математические ожидания

- 42. Виды сходимости СЛВ. Соотношения между ними
- 43. Характеристические функции. Их простейшие свойства
- Теорема непрерывности соответствия между распределениями и хар. функциями (без док-ва)
- 45. ЗБЧ в форме Хинчина
- 46. ЦПТ
- 47. ЦПТ как оценка скорости сходимости в 3БЧ
- 48. Условие Линдеберга. Теорема Линдеберга Феллера
- 49. Теорема Ляпунова. Взаимосвязь условия Ляпунова и условия Линдеберга
- 50. Оценки скорости сходимости в ЦПТ

Часть 2. Математическая статистика

- 51. Статистическая структура. Выборка. Вариационный ряд. Порядковые статистики
- 52. Эмпирическая функция распределения. Независимость равномерного расстояния между теоретической и эмпирической функциями распределения от теоретической функции распределения
- 53. Эмпирическая функция распределения. Теорема Гливенко. Теорема Колмогорова. Репрезентативность выборки
- 54. Выборочные моменты, их свойства
- 55. Точечное оценивание. Неравенство Рао—Крамера. Эффективные оценки.
- 56. Достаточные статистики. Критерий факторизации
- 57. Оптимальные оценки. Теорема Блэкуэлла—Колмогорова
- 58. Полные статистики. Теорема Лемана—Шеффе
- 59. ОМП. Их асимптотические свойства
- 60. Оценки метода моментов
- 61. Интервальное оценивание. Метод центральной СЛВ
- 62. Интервальное оценивание с помощью точечной оценки
- 63. Основные понятия проверки статистических гипотез.
- 64. Критерий согласия Колмогорова
- 65. Критерий согласия хи-квадрат
- 66. Байесовский критерий различения двух простых гипотез
- 67. Лемма Неймана—Пирсона
- 68. Статистический анализ нормальных выборок. Распределения хи-квадрат и Стьюдента. Теорема Фишера

- 1. Парадокс Бертрана
- 2. Классическое опр. вероятности. Задача о «Спортлото»
- 3. Задача об оптимальном дележе ставки
- 4. Геом. вероятности. Задача о встрече. Задача Бюффона
- 5. Вероятностное пространство
- 6. Свойства вероятности. Эквивалентности счетной аддитивности и непрерывности вероятности
- 7. Условные вероятности
- 8. Формула полной вероятности
- 9. Формула Байеса. Задача о детекторе лжи
- 10.Определение случайной величины
- 11. Замкнутость СЛВ относительно операций min, max, lim
- 12. Замкнутость СЛВ относительно арифм. операций
- 13. Функции распределения. Простейшие свойства
- 14.Понятие меры Лебега
- 15. Понятие интеграла Лебега
- 16.Классификация СЛВ. Дискретные случайные величины
- 17. Классификация СЛВ. Абсолютно непрерывные СЛВ
- 18. Классификация СЛВ. Сингулярные СЛВ
- 19. Мат. ожидание, свойства. Задача о пенсионере
- 20. Медиана, свойства. Задача о предпринимателе
- 21. Задача о среднем годовом доходе
- 22. Дисперсия. Простейшие свойства
- 23. Ковариация. Коэффициент корреляции
- 24. Неравенства Маркова и Чебышева
- 25. Неравенство Гаусса. «Правило трех сигм»
- 26.Закон больших чисел в форме Чебышева
- 27. Неравенства Иенсена и Ляпунова
- 28. Коэффициенты эксцесса и асимметрии
- 29.Схема Бернулли. Биномиальное распределение
- 30. Теорема Пуассона. Распр. Пуассона. Задача о булочке
- 31. Задача об инсектициде
- 32. Теорема Муавра—Лапласа. Задача о докторе Споке
- 33. Нормальное распределение. Его коэффициент эксцесса
- 34. Нормальное распределение. Неравенства для хвостов
- 35. Задача о рейтинге. Решение по неравенству Чебышева
- 36.Задача о рейтинге. Реш. по теореме Муавра—Лапласа
- 37. Геом. распределение. Его моменты
- 38.ПТ для геом. распределения. Показательное распределение. Его моменты
- 39. Показательное распр. Св-во отсутствия последействия
- 40. Совместные распределения. Совместные плотности
- 41. Условные плотности и условные МО
- 42.Виды сходимости СЛВ. Соотношения между ними

- 43. Характеристические функции. Их простейшие свойства
- 44. Теорема непр. соответствия между распределениями и хар. функциями (без док-ва)
- 45.3БЧ в форме Хинчина
- 46.ЦПТ
- 47.ЦПТ как оценка скорости сходимости в 3БЧ
- 48. Условие Линдеберга. Теорема Линдеберга Феллера
- 49. Теор. Ляпунова. Связь (у) Ляпунова и (у) Линдеберга
- 50. Оценки скорости сходимости в ЦПТ
- 51.Статистическая структура
- 52.Эмпирическая функция распределения
- 53.Т. Гливенко. Т. Колмогорова. Репрезент-ть выборки
- 54. Выборочные моменты, их свойства
- 55. Точечное оценивание. Неравенство Рао—Крамера. Эффективные оценки.
- 56. Достаточные статистики. Критерий факторизации
- 57.Оптимальные оценки. Т. Блэкуэлла—Колмогорова
- 58.Полные статистики. Т. Лемана—Шеффе
- 59.ОМП. Их асимптотические свойства
- 60. Оценки метода моментов
- 61.Интервальное оценивание. Метод центральной СЛВ
- 62.Интервальное оценивание точечной оценкой
- 63. Основные понятия проверки статистических гипотез
- 64. Критерий согласия Колмогорова
- 65. Критерий согласия хи-квадрат Пирсона
- 66. Байесовский кр. различения двух простых гипотез
- 67. Лемма Неймана Пирсона
- 68.Статистический анализ нормальных выборок.
- 69. Распределения хи-квадрат и Стьюдента. Т. Фишера

Теория вероятностей

1 Парадокс Бертрана

- задача на геом. вероятность: выберем наудачу хорду AB в круге, треб. найти Р (дл. хорды > дл. стороны вписанного РС треугольника).

Парадокс в том, что Р опр-ся в зависимости от метода.

2 Классическое опр. вероятности. Задача о «Спортлото»

Элем. исходом (событием) ω наз. элемент **пр-ва элементарных исходов** (непустое мн-во Ω).

Говорят **событие** A **произошло,** если произошло \forall ЭС $\omega \in A$ – благоприятствующее A.

Вероятность — всегда ф-ция, опр. на мн-ве случайных (не элем.) событий $(\sum_{\omega \in \Omega} P(\{w\}) = 1)$. Пусть мн-во $\Omega = \{\omega_1, \dots, \omega_n\}$, причем все события равновероятны, т.е. $P(\{\omega_i\}) = 1/n \implies$ вер-ть $\forall A$ опр. ф-лой $P(A) = \frac{|A|}{|\Omega|} = \frac{\text{число элем.A}}{n}$. Основные св-ва:

- 1) $P(\theta) = 0, P(\Omega) = 1;$
- 2) $P(A \cup B) = P(A) + P(B) P(AB)$;
- 3) $P(\bar{A}) = 1 P(A)$.

Спортлото «6 из 49»: в урне 49 занумерованных шаров, извлекаются наудачу первые 6 и наз. их номера. Если играющий угадал 4,5,6 из номеров, то билет выигрышн. $P = \{\text{игрок угадает 5 номеров}\}$?

3 Задача об оптимальном дележе ставки

- два игрока начали игру из неск. партий. Каждая непременно выигрывается одним. Тот, кто выигрывает первым 6 партий забирает обе равные ставки, внесенные вначале игры. Игру прекратили на счете 5:3. Как нужно разделить ставки безобидной игры?

4 Геом. вероятности. Задача о встрече. Задача Бюффона

Пусть имеется нек. обл. G, а в ней g с квадрируемой границей. Наудачу бросаем точку в $G \to$ вероятность попадания в g равна $p = \frac{mes\ g}{mes\ G} -$ **геом.** вероятность (задает равномерное в G распределение).

Задача о встрече: Два лица X,Y условились встретиться между 12 и 13 часами. Пришедший ждет 20 мин. и уходит. Найти Р встречи, если приход каждого в течение часа может произойти наудачу и моменты независимы.

кудр. 21

Задача (игла Бюффона): пл-ть разграфлена паралл. прямыми на $\rho=2a$. На пл-ть бросают иглу дл.2l<2a. Найти P={игра пересечет какую-нибудь прямую}.

5 Вероятностное пространство

о-алгеброй $\mathcal F$ наз. класс (мн-во) подмножеств Ω , обл: след. св-вами (аксиомами):

- 1) $\Omega \in \mathcal{F}$;
- 2) если $A_1, A_2, ... \in \mathcal{F} \Rightarrow \cup A_i \in \mathcal{F}, \cap A_i \in \mathcal{F};$
- 3) если $A \in \mathcal{F} \Rightarrow \bar{A} \in \mathcal{F}$.

Событием (случайным) наз. эл-т σ -алгебры \mathcal{F} .

Борелевской о-алгеброй \mathcal{B} наз. о-алгебра порожд. мнвом всех открытых интервалов (эл-ты — **бор. мн-ва**).

Пара (Ω, \mathcal{F}) наз. измеримым пространством.

Тройка (Ω, \mathcal{F}, P) наз. **вероятностным пространством** (вероятность — распределение вер-тей на изм. пр-ве) — не пр-во в топологическом смысле, а модель, в кот. опр. каждого след. элем. тройки базируется на пред.

6 <u>Свойства вероятности. Эквивалентности счетной аддитивности и непрерывности вероятности</u>

Вероятностью наз. действительная ф-ция случ. события $P: \mathcal{F} \to \mathbb{R}$, удовл. след. аксиомам:

- 1) неотриц: $P(A) \ge 0$, $\forall A \in \mathcal{F}$;
- 2) нормированность: $P(\Omega) = 1$;

3) о-аддитивность (счетная): если $A_1, A_2 \in \mathcal{F}, A_i A_j = \emptyset \Rightarrow P(\cup A_i) = \sum P(A_i)$.

Основные св-ва:

- 1) $P(\emptyset) = 0$; $P(\bar{A}) = 1 P(A)$;
- 2) $A \subset B \Rightarrow P(A) \leq P(B)$;
- 3) $P(A) \leq 1 \ \forall A \in \mathcal{F}$;
- 4) $P(A \cup B) = P(A) + P(B) P(AB);$
- 5) $P(\cup A_n) \leq \sum P(A_n)$;

Аксиома непрерывности: пусть посл-ть событий $\{B_n\}: B_{n+1} \subset B_n, B = \cap B_n \Rightarrow P(B_n) \to P(B), n \to \infty.$

Т. Треб. аксиомы нерп-ности $\sim \sigma$ -аддитивности.

7 Условные вероятности

Пусть A,B — события, причем P(B)>0. **Условной вероятностью** события A при условии, что произошло B, называется число P(A|B)=P(AB)/P(B).

События A, B - **независимые,** если P(AB) = P(A)P(B) (не путать с *несовместными* $AB = \emptyset$). Их **св-ва**:

- 1) P(B) > 0, HesaB. $A, B \sim P(A|B) = P(A)$;
- 2) A, B незав. $\Rightarrow \bar{A}, B$ незав.
- 3) A, B_1 незав, A, B_2 незав $\Rightarrow A, B_1 \cup B_2$ незав.

8 Формула полной вероятности

Пусть A - событие, $\{B_n\}$ - попарно несовместные: $P(B_i) > 0$, $A \subset \cup B_i \Rightarrow P(A) = \sum P(B_i)P(A|B_i)$. //площадь фигуры = сумме площ. фигур-составляющих Если $\cup B_i = \Omega \to \{B_n\}$ образуют **полную группу соб.**

9 Формула Байеса. Задача о детекторе лжи

Пусть A - событие, $\{B_n\}$ - попарно несовместные: $P(B_i) > 0, A \subset \cup B_i$ и P(A) > 0 \Rightarrow справедлива ф-ла Байеса: $P(B_k|A) = \frac{P(B_k)P(A|B_k)}{\sum P(B_i)P(A|B_i)}$.

Задача о детекторе лжи: есть хар-ки детектора джи $P(z=false|y=false)=0.99=\alpha,$ $P(z=false|y=true)=0.01=\beta.$

Пусть
$$P(y = false) = 0.01 = \gamma$$
.
 $\Rightarrow P(y = false|z = false) = \frac{\alpha \gamma}{\alpha \gamma + \beta(1-\gamma)} = \frac{1}{2}$.

10 Определение случайной величины

Сл.в. наз. ф-ция эл. события $\xi: \Omega \to \mathbb{R}$, обл. **св-вом** измеримости: $\xi^{-1}(B) = \{\omega | \xi(\omega) \in B\} \in \mathcal{A} \ \forall B \in \mathcal{B}$. **Т**. (критерий) Пусть $\mathcal{E}: \delta(\mathcal{E}) = \mathcal{B}$. Тогда $\xi(\omega)$ – сл.в. $\Leftrightarrow \forall E \in \mathcal{E} \{\omega : \xi(\omega) \in \mathcal{E}\} \in \mathcal{A}$.

11 Замкнутость СЛВ относительно операций min,max,lim Числ. ϕ -ция $g: \mathbb{R} \to \mathbb{R}$ наз-ся **борелевской \phi-цией,** если $\forall B \in \mathcal{B}$ $g^{-1}(B) \in \mathcal{B}$.

Т. Пусть g(x) – БФ, ξ – СЛВ \Rightarrow $\eta(\omega) = g(\xi(\omega))$ – СЛВ.

- \rightarrow ¹ Если ξ СЛВ \Rightarrow ξ^n , $\max(0, \xi)$, $\min(0, \xi)$ СЛВ.
- **Т**. Пусть $\{\xi_n\}$ СЛВ \Rightarrow $sup, inf, \overline{lim}, \underline{lim}$ СЛВ.
- 12 Замкнутость СЛВ относительно арифм. операций

Пусть $\exists x_i \in \mathbb{R} : A_i A_j = \emptyset, A_i \in \mathcal{A}, \cup A_i = \Omega \rightarrow \emptyset$

 $\xi(\omega) = \sum x_i \mathbb{I}_{Ai}(\omega)$ – дискретная СЛВ.

Если U $A_i = \Omega \to \xi(\omega)$ – простая СЛВ (может принимать конечное число значений).

Т. Пусть $\xi(\omega) \ge 0 \Rightarrow \exists \{\xi_n(\omega)\}: \forall n \ \xi_n -$ простая и $\xi_n \uparrow \xi$.

$$[\xi_{n} = \sum_{k=1}^{n2^{n}} \frac{k-1}{2^{n}} \mathbb{I}_{\{\omega: \frac{k-1}{2^{n}} \le \xi(\omega) \le \frac{k}{2^{n}}\}}(\omega) + n \cdot \mathbb{I}_{\{\omega: \xi(\omega) \ge n\}}(\omega)]$$

- \rightarrow Сущ простые $\{\dot{\xi}_n\}$: $|\xi_n| \leq |\xi|, \xi_n \to \xi$.
- **Т**. Пусть $\xi(\omega)$ –СЛВ $\Rightarrow \xi \pm \eta, \xi \times \eta, \xi/\eta$ СЛВ.
- 13 Функции распределения. Простейшие свойства

Распределением сл.в ξ наз. ϕ -цию $P_{\xi}(B) = P(\xi \in B)$. Ф-цией распределения сл.в. ξ наз. $F_{\xi} : \mathbb{R} \to \mathbb{R}$, опр-мая $F_{\xi}(x) = P(\{\omega : \xi(\omega) < x\}) = P_{\xi}\big((-\infty, x)\big) \, \forall x \in \mathbb{R}$. Простейшие св-ва:

- 1) $0 \le F_{\xi}(x) \le 1$;
- 2) неубывание: $x < y \Rightarrow F_{\xi}(x) \le F_{\xi}(y)$;
- 3) непр. слева: $\lim_{x \to x_0} F_{\xi}(x) = F(x_0)$;
- 4) огр. вариация: $\lim_{x\to 0-\infty} F = 0$, $\lim_{x\to 0+\infty} F = 1$.

14 Понятие меры Лебега

Мерой Лебега наз. мера, явл. **продолжением длины** с наим. алгебры, сод. мн-во всех откр. интервалов, **на борелевскую σ-алг.**

Т. Сущ. ед. мера λ на $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, значение кот. на \forall инт-ле равно его длине: $\lambda(a,b)=b-a$. Эта мера наз. мерой Лебега.

Наименьшей σ -алг, сод. В (явл. пересечением всех σ -алг, сод. В) наз. σ -алг, порожденной В: $\sigma(B)$.

Т. (**Каратеодори,** о продолжении вер. меры) Пусть (Ω, \mathcal{A}, P) – вер. пр-во в широком смысле \Rightarrow ! \exists вер. мера Q, опр. на $\sigma(\mathcal{A})$: Q(A) = P(A), $\forall A \in \mathcal{A}$.

15 Понятие интеграла Лебега

Есть измеримое пр-во (S, \mathcal{H}) с полной неотриц. счетноаддитивной мерой μ . Рассм. **простую ф-цию** $g: S \to \mathbb{R}$ (которая принимает не более счетного числа значений $g(s) = y_n \neq y_k (n \neq k)$, при $s \in S_n \in \mathcal{H}$, причем $\cup S_n = S$).

Ф-ция $f:S \to \mathbb{R}$ наз. суммируемой по Лебегу на S, если \exists посл-ть простых суммируемых ф-ций $g_n \rightrightarrows f$ и $\lim_{n\to\infty}\int_S g_n d\mu = I$ - интеграл Лебега. (пример ф-ции, инт-мой по Лебегу, но не по Риману – ф-ция Дирихле)

16 Классификация СЛВ. Дискретные случайные величины

СЛВ наз. **дискретной,** если сущ. не более чем счетное мн-во B, т.ч. $P_{\xi}(B)=1$.

Вырожденное $\xi = ^{\text{п.н.}} a$, если $P(\xi = a) = 1$.

Классическое: $P(\xi = x_i) = \frac{1}{n}$, $\forall x_i \in \mathbb{R}$.

Бернулли $\xi \sim Bi(n,p)$: $P(\xi = k) = C_n^k p^k (1-p)^{n-k}$.

Пуассоновское $\xi \sim Pois(\lambda)$, $\lambda > 0$: $P(\xi = k) = \frac{e^{-\lambda} \lambda^k}{k!}$.

Геом. $\xi \sim \mathcal{G}(p), p \in (0,1)$: $P(\xi = k) = (1-p)p^k$.

17 Классификация СЛВ. Абсолютно непрерывные СЛВ

Распр. СЛВ P_{ξ} наз. **абс. непр,** если \exists такая $f(x) \ge 0$: $\forall B \in \mathcal{B}: P_{\xi}(B) = \int_{B} f(x) dx$, где f(x) – плотность.

Равномерное $\xi \sim U[a,b]$: $f(x) = \begin{cases} 1/(b-a), x \in [a,b]; \\ 0, x \notin [a,b]. \end{cases}$ По Коши $\xi \sim K(a,\sigma)$: $f(x) = 1/\pi(1+x^2), x \in (-\infty,\infty).$

Экспоненциальное $\xi \sim E(\lambda)$: $f(x) = 1/\pi(1 + x^2)$, $x \in (-\infty, \infty)$

Нормальное $\xi \sim N(a, \sigma^2)$: $f(x) = \frac{1}{sqrt(2\pi\sigma^2)} e^{-\frac{(x-\sigma)^2}{2\sigma^2}}$, причем $N(a, \sigma^2)(x) = N(0,1)\left(\frac{x-a}{\sigma}\right)$ – стандартное.

причем $N(a,\sigma^2)(x)=N(0,1)\left(\frac{x-a}{\sigma}\right)$ — **стандартное. Гамма** $\xi\in\Gamma(\alpha,\lambda)$: $f(x)=\begin{cases} 0,x\leq 0,\\ c\cdot x^{\lambda-1}e^{-\alpha x},x>0, \end{cases}$ где c выч. из св-в плотности $c=\alpha^\lambda\Gamma(\lambda),\Gamma=\int_0^\infty x^{\lambda-1}e^{-x}dx.$ //для счета ϕ -ция Лапласа - $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}dt$

18 Классификация СЛВ. Сингулярные СЛВ

СЛВ ξ им. сингулярное распр., если $\exists B \in \mathcal{B}, \lambda(B) = 0$: $P(\xi \in B) = 1$, но при этом $P(\xi = x) = 0 \ \forall x \in B$. Такое распр. сосредоточено на несчетном мн-ве с МЛ нуль (например, на лестнице Кантора). **Св-ва:**

- 1) $F_{\xi}(x) \in C$; F'(x) = 0 по мере Лебега;
- 2) $F(+\infty) F(-\infty) = 1$.

Кривая Кантора на $K = [0,1] \setminus \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} \left[\frac{3k-2}{3^n}, \frac{3k-1}{3^n} \right].$

Т. Лебега о разложении: $F_{\xi}(x) = \alpha_1(\mathrm{дскp}) + \alpha_2(\mathrm{непp}) + \alpha_3(\mathrm{синг}), \ \alpha_1 + \alpha_2 + \alpha_3 = 1.$ Синг F, мн-во т. роста - меры 0.

19 Мат. ожидание, свойства. Задача о пенсионере

Мат. ожиданием СЛВ ξ наз. $\mathbb{E}\xi = \int_{\Omega} \xi(\omega)P(d\omega) = \int_{\infty}^{\infty} x f_{\xi}(x) dx$ [дискретный сл. - $\mathbb{E}\xi = \sum_{i=1}^{\infty} x_i P(\xi = x_i)$], если этот инт-л (сумма) сх-ся абсолютно. *Смысл:* коорд. центра тяжести прямой. $//m(a_i) = p_i$

Свойства $\mathbb{E}\xi$ (для простых СЛВ):

- 1) $\xi \ge 0 \Rightarrow \mathbb{E}\xi \ge 0$;
- 2) $\mathbb{E}(a\xi + b\eta) = a\mathbb{E}\xi + b\mathbb{E}\eta$;
- 3) $\xi \ge \eta \ (\forall \omega) \Rightarrow \mathbb{E} \xi \ge \mathbb{E} \eta$;
- 4) $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$;
- 5) ξ , η незав $\Rightarrow \mathbb{E}(\xi \eta) = \mathbb{E}\xi \times \mathbb{E}\eta$.

Также число $E\xi = \int_{-\infty}^{+\infty} x \ dF_{\xi}(x), F_{\xi}(x) - \Phi P \ \xi.$

Задача о пенсионере: человек тратит на перемещение из $a \to b$ усилия $(b-a)^2$. Пусть X — коорд. точки, в кот. нужно попасть. Где он должен жить, чтобы мин. усилия на перемещение?

[Средние усилия на перем. из неслуч. $x \to$ случ. X им. вид: $\mathbb{E}(X-x)^2=x^2-2x\mathbb{E}X+\mathbb{E}X^2-\min$ в $x_0=\mathbb{E}X$.] //Королев, с.41

20 Медиана, свойства. Задача о предпринимателе

Медианой распределения СЛВ ξ наз. μ : $P(\xi \le \mu) \ge \frac{1}{2}$, $P(\xi \ge \mu) \ge 1/2$. *Смысл:* точка, левее и правее которой сосредоточено ровно по 1/2 всей вер. массы (см. f(x)). Для распр. с непр. монот. $F: \mu$ – реш. $F(\mu) = 1/2$.

Задача о предпренимателе: аналог зад. о пенсионере, но усилия =|b-a|. Как затратить мин. усилий? [Докажем, что минимальны в медиане μ , т.е. решение \to к док-ву $\mathbb{E}|x-\mu| \le \mathbb{E}|x-d| \ \forall d \in \mathbb{R}$. Пусть $d>\mu \Rightarrow$

$$|x-d|-|x-\mu|= egin{cases} \mu-d, x \geq d, \\ d+\mu-2x, \mu < x < d, \Rightarrow \\ d-\mu, x \leq \mu. \end{cases}$$
 $\mathbb{E}|x-d|-\mathbb{E}|x-\mu|=(\mu-d)\left(\mathbb{E}\mathbb{I}_{[d,\infty)}(x)+\mathbb{E}\mathbb{I}_{(\mu,d)}(x)\right)+(d-\mu)\mathbb{E}\mathbb{I}_{(-\infty,\mu]}(x)=(d-\mu)[P(x \leq \mu)-P(x \geq \mu)] \geq 0$ по опр. медианы.] //Королев, с.43

21 Задача о среднем годовом доходе

- имеется $0 < \alpha < 1$, а вероятность того, что доход выб. наугад человека > x есть α^x . Каков средний доход? [Пусть X — СЛВ, равная сред. доходу наугад выб. человека $\to F(x) = P(X < x) = 1 - \alpha^x$, $f(x) = c\alpha^x \to$ находим c из усл: $\int_0^\infty f(x) dx = 1$, $c = \ln 1/\alpha$, $\mathbb{E} X = c \int_0^\infty x \alpha^x dx = 1/c$. Медиана — корень ур-я $1 - \alpha^x = \frac{1}{2}$ $\to \mu = \log_\alpha \frac{1}{2}$, мода — точка c точка c тах плотностью $\to f(x) = c\alpha^x - max \to mod <math>c$ = 0.] // Королев, c.45

22 Дисперсия. Простейшие свойства

Моментом порядка $\alpha>0$ СЛВ ξ наз-ся $\mathbb{E}\xi^{\alpha}$. Центральным моментом порядка α наз. $\mathbb{E}(\xi-\mathbb{E}\xi)^{\alpha}$. Дисперсией СЛВ наз. центральный момент порядка 2: $\mathbb{D}\xi=\mathbb{E}(\xi-\mathbb{E}\xi)=\mathbb{E}\xi^2-(\mathbb{E}\xi)^2$. Смысл: хар-т степень разброса значений СЛВ вокруг её МО (центра тяжести). Простейшие св-ва:

- 1) $\mathbb{D}(c-\xi) = c^2 \mathbb{D}\xi$; $\mathbb{D}(\xi+c) = \mathbb{D}\xi$;
- 2) $\mathbb{D}\xi \geq 0$; $\mathbb{D}\xi = 0 \Leftrightarrow \exists c : \mathbb{D}(\xi = c) = 1$;
- 3) Если ξ , η незав. $\Rightarrow \mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta$;
- 4) Для $\forall \xi, \eta$ с конеч. 2ми моментами: $\mathbb{D}(\xi+\eta)=\mathbb{D}\xi+\mathbb{D}\eta+2(\mathbb{E}(\xi\eta)-\mathbb{E}\xi\mathbb{E}\eta);$
- 5) минимум СКО СЛВ от точек числовой прямой есть СКО от её МО: $\min_a \mathbb{E}(\xi a)^2 = D\xi$.

Среднеквадратическое отклонение $\sigma = \sqrt{\mathbb{D}\xi}$.

23 Ковариация. Коэффициент корреляции

Ковариацией cov СЛВ ξ,η наз. число $cov(\xi,\eta)=\mathbb{E}((\xi-\mathbb{E}\xi)(\eta-\mathbb{E}\eta))=\mathbb{E}(\xi\eta)-\mathbb{E}\xi\mathbb{E}\eta$. Смысл: исп. как индикатор зависимости СЛВ (т.к если СЛВ незав. то по 3му св-ву дисперсии cov=0) (зав-ть при $cov\neq0$).

CB-BO:
$$D(\xi_1 + \dots + \xi_n) = \sum_{i,j} cov(\xi_i, \xi_j)$$
.

Коэффициентом корреляции ho СЛВ ξ,η : $\exists \mathbb{D}>0$ наз-ся число $ho(\xi,\eta)=\frac{cov(\xi,\eta)}{\sqrt{\mathbb{D}\xi}\sqrt{\mathbb{D}\eta}}$ — та же ковариация, нормир. так, что при \times на число не меняется её абс. значение. Свойства: 1) Если ξ,η незав. $\Rightarrow \rho(\xi,\eta)=0$; 2) всегда $|\rho(\xi,\eta)|\leq 1$; $=1\Leftrightarrow P(\eta=a\xi+b)=1$.

24 Неравенства Маркова и Чебышева

Т. (нер-во Маркова) Если $\mathbb{E}|\xi| < \infty \Rightarrow \forall x > 0$

$$P(|\xi| \ge x) \le \frac{\mathbb{E}|\xi|}{x}.$$

Т. (нер-во Чебышева) Если $\exists \mathbb{D} \xi \stackrel{\wedge}{\Rightarrow} \forall x > 0$

$$P(|\xi - \mathbb{E}\xi| \ge x) \le \frac{\mathbb{D}\xi}{x^2}$$
.

Смысл: для оценки $P(|\xi_n - \xi| \ge \varepsilon)$ сверху при больших $n \to \xi$ док-ва сх-ти по вероятности устремляем к 0).

25 Неравенство Гаусса. «Правило трех сигм»

Для унимодального распр. (обл. ед. модой — лок. max плотности распр.) с модой μ , верно **нер-во Гаусса:**

$$P(|\xi - \mu| \ge x) \le \frac{4}{3} \frac{\mathbb{D}\xi}{\varepsilon}, \varepsilon \ge \frac{2\mathbb{D}\xi}{\sqrt{3}}.$$

(равенство достиг. на равномерном распред.)

Правило Зо: практически все значения нормально распределённой СЛВ лежат в инт-ле $[\bar{x}-3\sigma,\bar{x}+3\sigma]$. Более строго — не менее чем с 99,7 % достоверностью значение нормально распределенной случайной величины лежит в указанном интервале (при усл., что \bar{x} истинная, а не получ. в рез-те обработки выборки).

26 Закон больших чисел в форме Чебышева

Посл-ть СЛВ с конеч. моментами удовл. **3БЧ,** если $\frac{\xi_1+\dots+\xi_n}{\dots}-\frac{\mathbb{E}\xi_1+\dots+\mathbb{E}\xi_n}{\dots}\to^p 0.$

Если сх-ть «почти наверное» $\stackrel{n}{\to}$ **УЗБЧ.**

Т. **(3БЧ Чебышева)** Для \forall посл-ти $\xi_1, \xi_2, ...$ попарно незав. и одинак. распр. СЛВ с конеч. 2м моментом $\mathbb{E}\xi_1^2 = \sigma^2 < \infty$ им. место сх-ть

$$rac{\xi_1+\cdots+\xi_n}{n} o^p\ \mathbb{E}\xi_1$$
, или $P\left(\left|rac{\Sigma\xi_i}{n}-\mathbb{E}\xi_1
ight|\geq arepsilon
ight) o 0.$

Смысл: среднее арифметическое большого числа слаг. СЛВ «стабилизируется» с ростом их числа — отклонения СЛВ «взаимно гасятся».

27 Неравенства Иенсена и Ляпунова

Т (нер-во Йенсена) Пусть ф-ция $g(\xi) \in \mathbb{R}$ выпукла \Rightarrow для \forall СЛВ ξ с конеч. 1м моментом $\mathbb{E}g(\xi) \geq g(\mathbb{E}\xi)$. Для вогнутых ф-ций знак меняется.

$$\begin{array}{ll}
\Rightarrow & \mathbb{E}e^{\xi} \geq e^{\mathbb{E}\xi}, \mathbb{E}\xi^2 \geq (\mathbb{E}\xi)^2, \mathbb{E}|\xi| \geq |\mathbb{E}\xi|, \\
\mathbb{E}\ln\xi \leq \ln(\mathbb{E}\xi), \mathbb{E}\frac{1}{\xi} \geq \frac{1}{\mathbb{E}\xi}, \mathbb{E}\sqrt{\xi} \leq \sqrt{\mathbb{E}\xi}.
\end{array}$$

Т (нер-во Ляпунова)

$$\left(\mathbb{E}|\xi|^{\beta}\right)^{1/\beta} \ge (\mathbb{E}|\xi|^{\alpha})^{1/\alpha}.$$

28 Коэффициенты эксцесса и асимметрии

Модой абс. непр. распр-я наз. \forall точку лок. max f(x). Распределение с ед. модой — **унимодальное.** Для описания «островершинности», «наклона» плотности УМ распред. используют след. характеристики:

Коэффициент ассиметрии с конечным 3м моментом:

$$\boldsymbol{\beta}_1 = \mathbb{E}\left(\frac{\xi - a}{\sigma}\right)^3$$
, $a = \mathbb{E}\xi$, $\sigma = \sqrt{\mathbb{D}\xi}$.

У симм. распр. $\beta_1=0$; если $\beta_1>0$ — плотность имеет более крутой наклон слева, пологий справа.

Коэффициент эксцесса с конеч. 4м моментом:

$$\boldsymbol{\beta}_2 = \mathbb{E}\left(\frac{\xi - a}{\sigma}\right)^4 - 3.$$

Для всех норм. распр. $\beta_2=0$: $\mathbb{E}\eta^4=3$. При $\beta_2>0$ — плотность имеет более острую вершину, чем у N_{a,σ^2} ; $\beta_2<0$ — более плоскую.

29 Схема Бернулли. Биномиальное распределение

Схема Бернулли — посл-ть незав. испытаний, в каждом из которых возм. «успех» или «неудача», $P_{\text{успеха}} = p$, $P_{\text{неудачи}} = 1 - p = q$. Тут $\Omega = \left\{ (a_1, \dots) \middle| a_i \in \{1,0\} \right\}$. Т. (ф-ла Бернулли) Пусть v_n — число успехов в n испытаниях $\to P(v_n = k) = C_n^k p^k q^{n-k}$. [Из независимости исп. $\Rightarrow P(A) = p^k q^{n-k}$. C_n^k — кол-во расположения k успехов на n местах.] СЛВ $\xi \sim Bi(n,p)$, если $P(\xi=k) = C_n^k p^k q^{n-k}$.

30 Теорема Пуассона. Распр. Пуассона. Задача о булочке

Задача о булочке: по ГОСТу изюмин в булочке 5шт. Какова вер-ть купить булочку без изюминок? $n \to \infty$ - число булочек в чане с тестом; $p_n \to 0$ — вер-ть изюмины в булочке

$$\Rightarrow P(\xi_k = 0) = e^{-5} \frac{5^{10}}{10!} \rightarrow e^{-5}.$$

31 Задача об инсектициде

Имеется поле с инсектицидом (n_1 жуков) и жилое поле (n_2 жуков). Нужно чтобы $n_1 \le n_2$. N_1, N_2 — реализация СЛВ n_1, n_2 соотв. и $N = Pois(\lambda)$. Бьем поле на большое число маленьких так, что в отдельном квадрате мб только 1 жук.

Сравним $\lambda_{1,2}\colon \lambda_1<\lambda_2\to$ инсектицид действует, $\lambda_1=\lambda_2$ — не действует. Обозначим $n=n_1+n_2$. Найдем $P(N_1=k|N_1+N_2=n)$. Считаем $N_{1,2}$ — незав. $\to P=\frac{P(N_1=k)P(N_2=n-k)}{P(N_1+N_2=n)}=C_n^k\left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^k\left(1-\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^{n-k}\Rightarrow N_1|N_1+N_2=n\sim Bi\left(n,\frac{\lambda_1}{\lambda_1+\lambda_2}\right).$ Гипотеза $H_0\colon \lambda_1=\lambda_2\to Bi\left(n,\frac{1}{2}\right)\to P_0(N_1\le n_1|N_1+N_2=n)=\frac{1}{2^n}\sum_{k=0}^{n_1}C_n^k<\varepsilon.$ Если вер-ть очень мада, но мы ее наблюдаем $\to H_0$

Если вер-ть очень мала, но мы ее наблюдаем $\to H_0$ неверна. Если не очень мала, вывод можем сделать: будем считать вер-ть невероятного события $\sim 10^{-5}$.

32 Теорема Муавра—Лапласа. Задача о докторе Споке Как следствие ЦПТ имеем:

Т. **(предельная т. Муавра-Лапласа)** Пусть A может произойти в $\forall n$ незав. испытаний с одинак. вероятностью p и $v_n(A)$ – число успехов \Rightarrow

$$rac{v_n(A)-np}{\sqrt{np(p-1)}} \Rightarrow N_{0,1}$$
 при $n o\infty$,

т.е. $\forall x < y \in \mathbb{R}$:

$$P\left(x \leq \frac{v_n(A) - np}{\sqrt{np(p-1)}} \leq y\right) o \Phi(y) - \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_x^y e^{-\frac{t^2}{2}} dt.$$
 [Тут $\mathbb{E}\xi_1 = p$, $\mathbb{D}\xi_1 = p(1-p)$, $v_n = \xi_1 + \dots + \xi_n o \mathsf{ЦПТ.}$]

Суд на доктором Споком: В суде заседают 12 человек, которых выб. из n=300 человек (из них 90 женщин). Подсудимый доктор Спок, подает протест, считая что женщин слишком много. Прав ли он?

[Строим гипотезу: $P(\xi \le 90) = \frac{1}{2}$, $\xi \sim Bi(300,p) \to H_0$: вер-ть попасть женщине в число 300-1/2. Пусть X- СЛВ, равная числу женщин. Имеем $P(X \le 90) = P\left(\frac{X-150}{\sqrt{75}} \le \frac{90-150}{\sqrt{75}}\right) \approx \Phi\left(\frac{90-150}{\sqrt{75}}\right) < 2 \cdot 3 \cdot 10^{-12} \Rightarrow$ Спок прав.]

- В Нормальное распределение. Его коэффициент эксцесса СЛВ ξ им. нормальное распр. $\xi \sim N_{a,\sigma^2}$ $(a \in \mathbb{R}, \sigma > 0)$, если ξ им. плотность $f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{(x-a)^2}{2\sigma^2}\}$, $x \in \mathbb{R}$. Для него коэфф. эксцесса $\beta_2 = \mathbb{E}\left(\frac{\xi \mathbb{E}\xi}{\sigma}\right)^4 3 = \mathbf{0}$. (т.к. 4й момент N_{a,σ^2} : $\mathbb{E}\left(\frac{\xi \mathbb{E}\xi}{\sigma}\right)^4 = 3$) //чернова (с.99 61) Ф-ция распр. $\xi \sim N_{a,\sigma^2}$: $\Phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(t-a)^2}{2\sigma^2}} dt$. Св-ва: 1) $\Phi(x) = \Phi_{0,1}\left(\frac{x-a}{\sigma}\right)$; 2) $P(x_1 < \xi < \xi_2) = \Phi(x_2) \Phi(x_1)$;
- **34** Нормальное распределение. Неравенства для хвостов ?1//2

35 Задача о рейтинге. Решение по неравенству Чебышева

Пусть x_1, \dots, x_n – мнения n человек. $x_i = \begin{cases} 1, p \\ 0, 1-p' \end{cases} \mathbb{E} x_i = p, \, \mathbb{D} x_i = p(1-p).$ Рейтинг Пупкина – вер-ть того, что след. человек проголосует за него. $\left|\frac{1}{n}\sum x_i - p\right| \to 0$, сколько человек проголосует за Пупкина, если $P\left(\left|\frac{1}{n}\sum x_i - p\right| \le \varepsilon\right) \ge \gamma$? //сколько нужно чел, чтобы с вер-тью $\ge \gamma$, относительная частота голоса $\frac{1}{n}\sum x_i$ отлич. от абс. вер-ти отдать голос p, не более чем на ε ?

Реш. по нер-ву Чебышева $(P(|\xi - \mathbb{E}\xi| \geq \varepsilon) \leq \frac{\mathbb{D}\xi}{\varepsilon^2})$: $P\left(\left|\frac{1}{n}\sum x_i - p\right| \leq \varepsilon\right) \geq 1 - \frac{1}{\varepsilon^2}\mathbb{D}\frac{1}{n}\sum x_i = 1 - \frac{p(1-p)}{n\varepsilon^2} \geq \gamma \Rightarrow n \geq \frac{1}{4\varepsilon^2(1-\gamma)}$. Пусть $\gamma = 0.95$, $\varepsilon = 10^{-3} \rightarrow n \geq 5 \cdot 10^6 = 1.96 \approx 2$ и $n > 10^6$.

36 Задача о рейтинге. Реш. по теореме Муавра—Лапласа Решение через т. М-Л:

$$\begin{split} &P\left(\left|\frac{1}{n}\sum x_i-p\right|\leq\varepsilon\right)=P\left(\left|\frac{\sum x_i-np}{\sqrt{np(1-p)}}\right|\leq\frac{\varepsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\approx\\ &2\Phi\left(\frac{\varepsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)-1\geq\gamma\to\Phi\left(\frac{\varepsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\geq\frac{\gamma+1}{2}.\\ &\text{Пусть }\alpha\in(0,1)\colon\Phi(u_\alpha)=\alpha,\,u_\alpha-\text{квантиль уровня }\alpha.\\ &\frac{\varepsilon\sqrt{n}}{\sqrt{p(1-p)}}\geq u_{\frac{\gamma+1}{2}}\to n\geq\frac{p(1-p)}{\varepsilon^2}u_{\frac{\gamma+1}{2}}^2\Rightarrow n\geq u_{\frac{\gamma+1}{2}}^2/4\varepsilon^2.\\ &\text{(учли, что }\max p(1-p)=\frac{1}{4}\operatorname{при}p=\frac{1}{2}).\\ &\text{Пусть }\gamma=0.95, \varepsilon=10^{-3}\Rightarrow\frac{\gamma+1}{2}=u_{0,975}. \end{split}$$

37 <u>Геом. распределение. Его моменты</u>

СЛВ ξ им. **геом. распределение** $\xi \sim G_p$, если ξ принимает знач. в вер-тями $P(\xi = k) = p(1-p)^{k-1}$. Смысл СЛВ – номер первого успешного исп. Бернулли. $\mathbb{E}\xi = \sum_{k=1}^{\infty} kpq^{k-1} = p\frac{d}{dq}(\sum_{k=1}^{\infty} q^k) = p\frac{d}{dq}(\frac{q}{1-q}) = \frac{1}{p};$ $\mathbb{D}\xi = \mathbb{E}\xi(\xi-1) + \mathbb{E}\xi - (\mathbb{E}\xi)^2 = \frac{2q}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{q}{p^2}.$

38 Предельная теорема для геом. распределения Показательное распределение. Его моменты

СЛВ ξ им. показательное распр. $\xi \sim E_{\alpha} \ (\alpha > 0)$, если ξ им. плотность $f_{\xi}(x) = \begin{cases} 0, x < 0, \\ \alpha e^{-\alpha x}, x \geq 0. \end{cases}$ $\mathbb{E} \xi^k = \int_{-\infty}^{\infty} x^k f_{\xi}(x) dx = \int_{0}^{\infty} x^k \alpha e^{-\alpha x} dx = \frac{k!}{\alpha^k}.$ $\mathbb{D} \xi = \mathbb{E} \xi^2 - (\mathbb{E} \xi)^2 = \frac{1}{\alpha^2}.$

39 Показательное распр. Св-во отсутствия последействия

Ф-ция распр. для $\boldsymbol{\xi} \sim \boldsymbol{E}_{\alpha}$: $F_{\xi}(x) = \begin{cases} 0, x < 0, \\ 1 - e^{-\alpha x}, x \geq 0 \end{cases}$ - для него вып. **св-во отсутствия последействия:** $\xi \in \mathbb{E}_{\alpha} \Rightarrow \forall x, y > 0 \ P(\xi > x + y | \xi > x) = P(\xi > y).$ Смысл: вероятность появления событий в любом промежутке времени не зависит от того, появлялись или не появлялись они до начала рассм. промежутка.

Ф-ция $P(\xi \in B) = P\{\omega | (\xi_1(\omega), ..., \xi_n(\omega)) \in B\}$ опр. для $\forall B \in \mathcal{B}_n$ наз. распред. сл. вектора ξ или **совместным** распр. СЛВ $\xi_1, ..., \xi_n$. (\mathcal{B}_n – бор. σ -алг. подмн-в \mathbb{R}^n) Ф-ция $F(x_1, ..., x_n) = P(\xi_1 < x_1, ..., \xi_n < x_n)$ опр. для $\forall x_i \in \mathbb{R}$ наз. совместной ф-цией распред. СЛВ $\{\xi_n\}$. Если $\exists f(x_1, ..., x_n) \geq 0$: $\forall B \in \mathcal{B}_n$ $P(\xi \in B) = \int_B f(x) dx$, то распр. наз. абс. непр., а f(x) – совм. плотностью. Маргинальные (частные) распр. СЛВ ξ_i – компонент ξ – ищут след. образом: $F_i(x_i) = F(+\infty, ..., x_i, ... + \infty)$. Смысл: совместное распр. нужно для отыскания ф-ций распр. от неск. СЛВ, ибо его невозможно опр. только по распр. слагаемых.

41 Условные плотности и условные МО

Пусть ξ, η – две СЛВ (мб многомерные) и $L(\eta)$ – мн-во, в кот. собраны все СЛВ $g(\eta)$ – борел. ф-ция. Введем ск.П. как $(\varphi, \eta) = \mathbb{E}(\varphi\eta)$, если МО существует. Условное МО $\mathbb{E}(\xi, \eta)$ СЛВ ξ отн. η можно предст. как рез-т проектир-я СЛВ ξ на L - СЛВ $\hat{\xi}$: $\mathbb{E}\left(\left(\xi - \hat{\xi}\right)g\right) = 0$ – тождество ортопроекции (\rightarrow УМО опр. неоднозначно). Св-ва:

- 1) $\mathbb{E}\xi^2 < \infty \Rightarrow \mathbb{E}(\xi \hat{\xi})^2 = \min \mathbb{E}(\xi g(\eta))^2$;
- 2) $\mathbb{E}|f(\eta)\xi| < \infty \Rightarrow \mathbb{E}(f(\eta)\xi|\eta) = ^{\Pi.H.} f(\eta)\mathbb{E}(\xi|\eta);$
- 3) $f(\eta) \in L$, $\mathbb{E}|f(\eta)| < \infty \Rightarrow \mathbb{E}(f(\eta)|\eta) = ^{\Pi.H.} f(\eta)$;
- 4) $\mathbb{E}\xi = \mathbb{E}[\mathbb{E}(\xi|\eta)]$, m.e. $\mathbb{E}\xi = \mathbb{E}\hat{\xi}$;

- 5) ξ , η незав. СЛВ $\Rightarrow \mathbb{E}(\xi|\eta) = \mathbb{E}\xi$. Хотим найти $h(y) = \mathbb{E}(\xi|\eta = y)$:
- 1) если ξ, η дискр. $h(y) = \sum_i a_i P(\xi = a_i | \eta = y)$ условное распр. ξ при усл. $\eta = y$.
- 2) если ξ,η абс. непр. и $f_{\xi,\eta}(x,y)$ совм. плотность, то $h(y)=\int_{\mathbb{R}}x\frac{f_{\xi,\eta}(x,y)}{f_{\eta}}dx$ при фикс. $y,\ h(y)$ МО усл. распр. с **усл. плотностью** $f(x|y)=\frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)}$.

42 Виды сходимости СЛВ. Соотношения между ними

Пусть задано ВП (Ω, \mathcal{F}, P) и посл-ть СЛВ ξ, ξ_1, ξ_2, \dots Виды сходимости к СЛВ ξ при $n \to \infty$: почти наверное - $\xi \to^{\text{п.н.}} \xi_n$ - $P\{\omega | \xi_n(\omega) \to \xi(\omega)\} = 1$; по вероятности - $\xi \to^P \xi$ - $\forall \varepsilon > 0$ $P(|\xi_n - \xi| > \varepsilon) \to 0$; в среднем порядка r - $\xi_n \to^{(r)} \xi - \mathbb{E}|\xi_n - \xi|^r \to 0$; по распределению - $\xi_n \to^d \xi$ - $\{F_{\xi n}(x)\} \to F_{\xi}(x)$; слабо - $\xi_n \to \xi$ - $\mathbb{E}f(\xi_n) \to \mathbb{E}f(\xi)$;

Соотношения:

43 Характеристические функции. Их простейшие свойства

Характеристической ф-цией СЛВ ξ наз. $\varphi_{\xi} \colon \mathbb{R} \to \mathbb{C}$, опр. $\forall t \in \mathbb{R} \colon \varphi_{\xi}(t) = \mathbb{E} e^{it\xi} = \int e^{itx} dF_{\xi}(x)$. Также наз. **преобразованием Фурье-Стилтьеса** и = $\int e^{it\xi} f_{\xi}(x) dx$. Существует всегда. **Основные свойства**:

- 1) $\forall \xi \varphi_{\xi}(0) = 1, |\varphi_{\xi}(t)| \leq 1 \forall t;$
- 2) $\forall \xi, a, b \varphi_{\xi a+b}(t) = e^{itb} \varphi_{\xi}(at);$
- 3) если ξ , η незав. $\Rightarrow \varphi_{\xi+\eta}(t) = \varphi_{\xi}(t)\varphi_{\eta}(t)$;
- 4) $\varphi_{\xi}(t)$ равномерно непрерывная;
- 5) $\mathbb{E}|\xi|^k < \infty, k \ge 1 \Rightarrow \exists \varphi_{\xi}^{(k)}(t): \varphi_{\xi}^{(k)}(t)|_{t=0} = i^k \mathbb{E}\xi^k;$
- 6) компл.-сопряженная $\bar{\varphi}_{\xi}(t) = \varphi_{\xi}(-t) = \varphi_{-\xi}(t)$.
- Т. Хар. ф-ция взаимноодн. опред. её распределение.

44 Теорема непрерывности соответствия между распределениями и хар. функциями (без док-ва)

Т. **(непрерывности)** Слабая сх-ть посл-ти СЛВ $\{\xi_n\} \to \xi$ эквивалентна сх-ти посл-ти соотв. характеристических ф-ций $\{\varphi_{\xi n}(t)\} \to \varphi_{\xi}(t)$ при $n \to \infty$ в кажд. $t \in \mathbb{R}$. //обычно исп. для док-ва слабой сх-ти

45 ЗБЧ в форме Хинчина

Т. **(ЗБЧ Хинчина)** Для \forall посл-ти $\xi_1, \xi_2, ...$ незав. в совокупности и одинак. распр. СЛВ с конеч. 1м моментом $\mathbb{E}|\xi_1|<\infty$ им. место сх-ть $\frac{\xi_1+\dots+\xi_n}{n}\to^p \mathbb{E}\xi_1.$

*Т. (УЗБЧ Колмогорова) Выполнен УЗБЧ (сх-ть почти наверное) \Leftrightarrow существование конечного $\mathbb{E}\xi_1$.

46 ЦПТ

Возьмем ЗБЧ Чебышёва: $\frac{S_n}{n} \to^p \mathbb{E} \xi_1$ или $\frac{S_n - n \mathbb{E} \xi_1}{n} \to^p 0$. Хотим домножить на что-то растущее, чтобы «погасить» стремление к нулю, получить что-то конечное. Оказывается: если $\times \sqrt{n}$

Т. **(ЦПТ Ляпунова)** Для \forall посл-ти $\xi_1, \xi_2, ...$ незав. и одинак. распр. СЛВ с конеч. дисперсией $0 < \mathbb{D}\xi_1 < \infty$ имеет место *слабая сходимость*: $\frac{S_n - n\mathbb{E}\xi_1}{\sqrt{n\mathbb{D}\xi_1}} \Rightarrow N_{0,1}$ посл-ти центрир. и нормир. сумм СЛВ к $N_{0,1} = \int_{-\infty}^{x} e^{-u^2/2} du$.

47 ЦПТ как оценка скорости сходимости в 3БЧ

Если вып. ЦПТ, то с**корость сх-ти в 3БЧ — порядка** $\frac{1}{\sqrt{n}}$. В случае, если $\exists \mathbb{E}, \nexists \mathbb{D}$ (вып 3БЧ, ЦПТ не вып.) — $n^{-\frac{\delta}{2}}$. [Введем $S_n = \xi_1 + \dots + \xi_n$, $a = \mathbb{E}\xi_1$. Из 3БЧ Чебышева $\frac{S_n}{n} - a \to^p 0$. Рассм. $\eta_n = \left| \frac{S_n - na}{n} \right|$. Ищем такие $c_n \in \mathbb{R}$: $\frac{\eta_n}{c_n} \to^d \xi$, ξ — невыр. в 0 и конечна. Пусть $c_n = \frac{1}{\sqrt{n}} \to P\left(\frac{\eta_n}{c_n} < x\right) = P\left(\left| \frac{S_n - na}{\sigma \sqrt{n}} \right| < \frac{x}{\sigma}\right) \to_{n \to \infty}$ Ф $\left(\frac{x}{\sigma}\right) - \Phi\left(-\frac{x}{\sigma}\right) = 2\Phi\left(\frac{x}{\sigma}\right) - 1$ — что-то конечное \Rightarrow такая СЛВ нам подходит.]

48 Условие Линдеберга. Теорема Линдеберга — Феллера

Рассм. ЦПТ в случае, когда НСЛВ , ξ_1, ξ_2, \ldots имеют разные распределения. Введем $a_i = \mathbb{E}\xi_i, b_i = \mathbb{D}\xi_i,$ $A_n = a_1 + \cdots + a_n = \mathbb{E}S_n, B_n^2 = b_1^2 + \cdots + b_n^2 = \mathbb{D}S_n \longrightarrow \mathbb{U}$ ЦПТ имеет вид **(*)** $P\left(\frac{S_n - A_n}{B_n} < x\right) \to \Phi(x)$, но если $S_n = \xi_1 + \theta_2 + \cdots + \theta_n$ (почти 0), то $S_n \sim \xi_1 \Longrightarrow \mathbb{E}S_n \to \mathbb{E}S_n$ необходимо доп. условие:

Т (Линдеберга-Феллера)

Если вып. усл. Линдеберга: $\forall \tau > 0$

 $rac{1}{B_n^2}\sum_{i=1}^n\int_{|x-a_i|> au B_n}(x-a_i)^2dF_i(x) o 0$ при $n o\infty$, где $F_i(x)=P(\xi_i< x)$ \Leftrightarrow

1) вып. ЦПТ: $P\left(\frac{S_n - A_n}{B_n} < x\right) \to \Phi(x) = \int_{-\infty}^x e^{-u^2/2} du;$

2) $\max_{1 \le i \le n} P\left(\frac{|\xi_i - a_i|}{B_n}\right) \to 0 \ \forall \varepsilon > 0$. (из н-ва Чебышева) (если СЛВ одинаково распределены, то усл. сущ. инт-ла \sim усл. сущ. дисперсии).

Практический вывод: если СЛВ одинак. распр., то $\exists \mathbb{D}$ \Leftrightarrow вып. ЦПТ (иначе в пределе не получ. норм. распр.).

49 Теор. Ляпунова. Связь (у) Ляпунова и (у) Линдеберга

Введем
$$m_i^3 = \mathbb{E}|\xi_i - a_i|^3$$
, $M_n^3 = m_1^3 + \dots + m_n^3$, $a_i = \mathbb{E}\xi_i$, $b_i = \mathbb{D}\xi_i$, $A_n = a_1 + \dots + a_n = \mathbb{E}S_n$, $B_n^2 = b_1^2 + \dots + b_n^2 = \mathbb{D}S_n {\rightarrow} B_n^3 = \left(\sqrt{B_n^2}\right)^3$.

Ляпуновской дробью называется

Т. Если **ляпуновская дробь** $\frac{M_n^3}{B_n^3} \to 0 \Rightarrow P\left(\frac{S_n - A_n}{B_n} < x\right) \to \Phi(x) \Rightarrow$ условие **Ляпунова сильнее** усл. Линдеберга.

Усл. Ляпунова вып. для одинак. распр. СЛВ $(\frac{M_n^3}{B_n^3} = \frac{m^3}{b^3 \sqrt{n}})$.

50 Оценки скорости сходимости в ЦПТ

Можем оценить погрешность приближения в ЦПТ:

Т. **(нер-во Берри-Эссеена)** В усл. ЦПТ $\forall x \in \mathbb{R}$ и \forall распределения ξ_1 с конечным 3м моментом:

$$\sup_{\mathbf{X}} |P\left(\frac{S_n - n\mathbb{E}\xi_1}{\sqrt{n\mathbb{D}\xi_1}} < \mathbf{X}\right) - \Phi(\mathbf{X})| \le C_0 \cdot \frac{\mathbb{E}|\xi_1 - \mathbb{E}\xi_2|^3}{\sqrt{n}(\sqrt{\mathbb{D}\xi_1})^3}.$$

Есть такая $C_0 \ge 0.4784$, что $\forall S_n \downarrow 0 \; \exists \; \mathsf{HOPCB}$, что sup убывает медленнее S_n . Оценка скорости сх-ти ЦПТ:

$$\left| P\left(\frac{S_n - A_n}{B_n} < x \right) - \Phi(x) \right| \le C \cdot \frac{m^3}{\left(\sqrt{\mathbb{D}\xi_1} \right)^3 \sqrt{n} (1 + |x|)^3}, C \le 32.$$

Математическая статистика

51 Статистическая структура

- так называется совокупность (Ω, \mathcal{A}, P) , где Ω — мн-во элем. исходов, \mathcal{A} — σ -алгебра событий, P — семейство вер. мер на \mathcal{A} . Задача МС — на основе проведения неск. раз эксперимента, зная как он заканчивался, выбрать какую-либо вер-ть из P или сузить P.

Проведя эксперимент n раз, получим знач. $X_1,...X_n$ СЛВ $\xi\colon\Omega\to\mathbb{R}$, где $\mathcal{F}_{\mathcal{E}}$ частично или полн. неизвестно.

<u>Выборкой</u> объема n из распределения $\mathcal F$ наз-ся набор $\overline X=(X_1,\dots,X_n)$ из НОСЛВ, им. распр. $\mathcal F$.

Вариационный ряд — ряд из СЛВ выборки, упоряд. по возр. на каждом элем. исходе: $X_{(1)} \le \cdots \le X_{(n)}$, где $X_{(1)} = \min\{X_i\}$, $X_{(n)} = \max\{X_i\}$, а $X_{(k)}$ наз-ся k-тым членом ВР или **k-й** порядковой статистикой.

52 Эмпирическая функция распределения

Рассмотрим **реализацию** выборки на одном элем. исходе — числа $X_i = X_i(\omega_0), i = 1..n$. Разыграем новую СЛВ ξ^* , кот. принимает $X_1, ..., X_n$ с одинак. вер-тями:

$\boldsymbol{\xi}^*$	X_1	X_n
P^*	1/n	 1/n

Распределение ξ^* наз. **эмпирическим**

Пусть ω_0 меняется — все величины будут случайными. Тогда оценка истинной ф/распр. $F(y) = P(X_1 < y)$ - эмпирическая ф-ция распред., постр. по выборке \bar{X} объема n — случайная ф-ция $F_n^*\colon \mathbb{R} \times \Omega \to [0,1]$, т.ч. $F_n^*(y) = \frac{\text{колич.} X_i \in (-\infty,y)}{n} = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i < y) \ \forall y \in \mathbb{R}.$

Независимость равномерного расстояния между теоретической и эмпирической ф-циями распределения от теоретической ф-ции распределения **Т1** Пусть $X_1, ..., X_n$ — выборка из \mathcal{F} с ФР F и F_n^* — эмпирическая ФР, построенная по этой выбоке \Rightarrow $F_n^*(y) \to^p F(y)$ при $n \to \infty \ \forall y \in \mathbb{R}$. [$\mathbb{E}I(X_1 < y) = F(y) < \infty \Rightarrow$ применяем ЗБЧ Хинча:

53 <u>Т. Гливенко. Т. Колмогорова. Репрезент-ть выборки</u>

 $F_n^*(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i < y) \to^p \mathbb{E}I(X_1 < y) = F(y).$

Т. **(Гливенко-Кантелли)** В усл. Т1 $\sup |F_n^*(y) - F(y)| \to^p 0$ при $n \to \infty$ (характер «равномерный»). Вообще им. место сх-ть п.н. а скорость порядка $1/\sqrt{n}$:

Т. **(Колмогорова)** Пусть X_1, \dots, X_n — выборка из \mathcal{F} с ФР F и F_n^* - эмпирическая ФР $\Rightarrow \sqrt{n} \cdot \sup |F_n^*(y) - F(y)| \Rightarrow \eta$, где СЛВ η им. распр. Колмогорова с непр. ФР $K(x) = \left\{\sum_{j=-\infty}^{\infty} (-1)^j e^{-2j^2 x^2}, x \geq 0; \ 0, x < 0\right\}$.

Состоятельные хар-ки — т.ч. разница между ними и истинными. хар-ками →0 с ростом объема выборки. Введенные нами хар-ки состоятельны.

Некоторые св-ва эмпирической ФР:

- 1) $\mathbb{E}F_n^*(y) = F(y)$, т.е. ЭФР– **несмещенная** оц. для ИФР
- 2) $\mathbb{D}F_n^*(y) = F(y)(1 F(y))/n$;
- 3) $\sqrt{n}(F_n^*(y) = F(y)) \Rightarrow N_{0,F(y)(1-F(y))}$ при $F(y) \neq 0,1$, т.е. ЭФР **асимпт. норм.** оценка для ИФР;
- 4) $nF_n^* \sim Bi_{n,F(v)}$;

54 Выборочные моменты, их свойства

Все оценки явл. СЛВ, если $X_1, ..., X_n$ – набор СЛВ.

$$\mathbb{E}\xi = \mathbb{E}X_1 = a \to \bar{X} = \frac{1}{n}\sum_{i=1}^n X_i$$
 – выб. среднее;

$$\mathbb{E}\xi^k=\mathbb{E}X_1^k=m_k o \overline{X^k}=rac{1}{n}\sum_{i=1}^n X_i^k$$
 – выб. k-й момент;

- несмещенные, сост. и асимпт. норм. оценкой для ист.

$$\mathbb{D}\xi = \mathbb{D}X_1 = \sigma^2 \to S^2 = \frac{1}{n}\sum_{i=1}^n (X_i - X)^2$$
 – дисперсия;

- смещенная ($S_0^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - X)^2$ - несмещенная), асимпт. нормальные оценки истинной дисперсии.

 $\mathbb{E}g(\xi) o \overline{g(X)} = \frac{1}{n} \sum_{i=1}^n g(X_i)$ – общ. случай.

<u>Точечное оценивание. Неравенство Рао—Крамера.</u> <u>Эффективные оценки.</u>

Имеется выб. $X_1, ..., X_n$ объема n, извлеч. из распр. \mathcal{F}_{θ} , кот. известным образом зависит от неизв. параметра θ . Параметр $\theta \in \mathbf{\Theta}$ – мн-во всевозм. значений парам.

Статистикой наз. \forall борелевская ϕ -ция $T = T(X_1, ..., X_n)$. //измеримая, нужна для оценки θ и от него HE зависит! Некоторые св-ва оценок статистики:

- **несмещенная** если $\mathbb{E}T=\theta \ \forall \theta \in \Theta;$ (отсутствие ошибок в среднем)
- асимпт. несм. $\mathbb{E}T \to 0$ при $n \to \infty$;
- состоятельная $T \to p \theta$ при $n \to \theta$.

Оценка $T \in K_b$ (класс всех оценок со смещением $K_{b(\theta)} = \{T | \mathbb{E}T = \theta + b(\theta)\}$) наз. эффективной, если она лучше всех других оценок класса K_b в смысле сред-кв. подхода: $\forall T_1 \in K_b \ \mathbb{E}(T - \theta)^2 \leq \mathbb{E}(T_1 - \theta)^2$.

Условия регулярности:

- (R) Сущ. **носитель** $\mathbf{C} \subset \mathbb{R}$ (мн-во: $\forall \theta \in \Theta \ P(X_1 \in \mathcal{C}) = 1$) семейства распр. \mathcal{F}_{θ} : при кажд. $y \in \mathcal{C} \ \sqrt{f_{\theta}(y)} \in \mathcal{C}^1(\theta)$.
- (RR) Инф. Фишера $I(\theta) = \mathbb{E}\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(X_1)\right)^2 \in C(\theta), > 0.$
- **Т**. **(Рао-Крамера)** Пусть семейство распр. \mathcal{F}_{θ} удовл. усл. регулярности $\Rightarrow \forall$ оценки $T \in K_{b(\theta)} : \mathbb{D}T$ огр. на \forall компакте в Θ справедливо нер-во:

$$\mathbb{E}(T-\theta)^2 \geq \frac{\left(1+b'(\theta)\right)^2}{nI(\theta)} + b^2(\theta), \text{ r.e. } \mathbb{D}T \geq \frac{\left(1+b'(\theta)\right)^2}{nI(\theta)}.$$

Смысл: поиск эфф. оценки попарным сравнением — долго, нер-во Р-К позв. доказать эфф. (если есть) — в кажд. классе $K_b \equiv$ НГ для сред-кв. откл. \forall оценки.

56 Достаточные статистики. Критерий факторизации

Для одного неизв. парам. θ приходится хранить всю выборку (громадная). Хотим сократить хран. инф-ю, не потеряв никакие сведения о параметре.

Статистика $S = S(X_1, ..., X_n)$ наз. **достаточной** для θ , если $\forall s, B \in \mathcal{B}(\mathbb{R}^n)$ усл. распр. $P(X_1, ..., X_n \in B | S = s)$ не зависит. от парам. θ .

Смысл: нашли статистику – можем выкинуть выборку.

Т. (факторизационная Неймана-Фишера) Статистика S явл. достаточной \Leftrightarrow ф-ция правдоподобия

$$f(X_1,\ldots,X_n;\theta) = ^{\Pi.H.} h(\bar{X}) \cdot \Psi(S,\theta),$$

где кажд. из ф-ций зав. *только* от указ. аргументов. //Если выборка из Bi_p , Π_λ , E_α — ДС $S=nar{X}$ или $ar{X}$.

57 Оптимальные оценки. Т. Блэкуэлла—Колмогорова

58 Полные статистики. Т. Лемана—Шеффе

Пусть $X_i \in \mathcal{F}_{\theta}$, $\theta \in \Theta$.

Статистика S наз. **полной,** если из $\mathbb{E}g(S)=0$ \Rightarrow $q(S) = ^{\text{п.н.}} 0 (q(x) - \text{борелевская } \phi$ -ция).

Смысл: чтобы в классе K_b оценка (ф-ция от S) была единственна (если \exists), а в \forall классе эфф.оценка – одна.

Т (Лемана-Шеффе) Пусть S — полн. и дост. статистика. Если оценка $T_S \in K_h$ явл. ϕ -цией от $S \Rightarrow$ она э ϕ ϕ . в K_h .

59 ОМП. Их асимптотические свойства

- выбираем такое θ , при кот. вер-ть получить данную выборку наибольшая.

Обозначим ф-цию $f_{\theta}(y) = \begin{cases} \Pi \Pi - \mathrm{Tb}, \mathcal{F}_{\theta} - \mathrm{aбc.} \, \mathrm{непр.} \\ P_{\theta}(X_1 = y), \mathcal{F}_{\theta} - \mathrm{дискр.} \end{cases}$ ф-ция $f(\bar{X}; \theta) = f_{\theta}(X_1) \cdot \ldots \cdot f_{\theta}(X_n) = \prod_{i=1}^n f_{\theta}(X_i)$ наз. ф-цией правдоподобия. Смысл: вер-ть с кот. выборка в данной серии прин. знач. $x_1, ..., x_n$ (или вокруг них). **Оценкой макс. правдоподобия** $\widehat{\boldsymbol{\theta}}$ для неизв. парам. θ

наз. значение θ , при кот. достигается $\max f(\bar{X}; \theta)$.

Асимпт. св-ва?

60 Оценки метода моментов

Сам метод: \forall момент СЛВ X_1 явл. ϕ -цией от $\theta \Rightarrow$ параметр. явл. ф-цией от теор. k-го момента. Выберем нек. $g(y): \mathbb{R} \to \mathbb{R}: \mathbb{E}g(X_1) = h(\theta)$ и $\exists h^{-1}$. Решим и пост. выб. момент: $\theta = h^{-1}(\mathbb{E}g(X_1))$, $heta^* = h^{-1}ig(\overline{g(X)}ig) = h^{-1}ig(rac{1}{n}\sum_{i=1}^n g(X_i)ig)$ – оценка метода моментов (ОММ). //обычно берут $a(v) = v^k$.

61 Интервальное оценивание. Метод центральной СЛВ

Т Оценка, полученная по OMM – состоятельна.

Есть выборка, мы указ. интервал, накрывающий параметр с зад. наперед вероятностью - интервальное **оценивание.** (чем шире инт-л, тем выше P).

Инт-л со случ. концами (θ^-, θ^+) наз. доверительным для парам. θ уровня доверия $1-\varepsilon$, если $\forall \theta \in \Theta$ $P(\theta^- < \theta < \theta^+) \ge 1 - \varepsilon$.

- 62 Интервальное оценивание точечной оценкой Интервал наз. точным, когда вер-ть того, что доверительный инт-л накроет параметр = $1 - \varepsilon$.
- 63 Основные понятия проверки статистических гипотез Дана выборка – набор НОРСЛВ $X_1, ... X_n$ из \mathcal{F} . Гипотезой (Н) наз. любое предполож. о распределении наблюдений: простая $H = \{ \mathcal{F} = \mathcal{F}_1 \}$ или сложная $H = \{ \mathcal{F} \in \mathbb{F} \}$, \mathbb{F} – подмн-во всех распр-й. **Критерием** $\delta = \delta(X_1, ..., X_n)$ наз. измеримое отображ.

 $\delta \colon \mathbb{R}^n \to \{H_1, \dots, H_k\}$ из мн-во знач. выб. \to мн-во гип. Произошла **ошибка і-го рода,** если кр. отверг H_i , а вероятность её ошибки $\alpha_i(\delta) = P_{H_i}(\delta(\bar{X}) \neq H_i)$.

Подходы к сравнению критериев:

- минимаксный: кр. δ не хуже ho в смысле мм подхода, если $\max\{\alpha_1(\delta), \alpha_2(\delta)\} \leq \max\{\alpha_1(\rho), \alpha_2(\rho)\};$
- байесовский<mark>.</mark>

64 Критерий согласия Колмогорова

Пусть $\rho(\bar{X})$ – борел. ф-ция, обл. св-вами: (К) если H_1 верна $\rightarrow \rho(\bar{X}) \Rightarrow \mathcal{G}$ – известное непр. распр. (КК) если H_1 неверна $\rightarrow |\rho(\bar{X})| \rightarrow^p \infty$ при $n \rightarrow \infty$. Для данной $\eta \in \mathcal{G}$ опр. \mathcal{C} : $\varepsilon = P(|\eta| \geq \mathcal{C})$ и построим $\delta(\bar{X}) = \begin{cases} H_1, |\rho(\bar{X})| < C, \\ H_2, |\rho(\bar{X})| > C. \end{cases}$ – критерий Согласия.

Имеется выборка $\bar{X}=(X_1,...,X_n)$ из \mathcal{F} . Проверяется простая гипотеза $H_1 = \{\mathcal{F} = \mathcal{F}_1\}$ против сложной альтернативы $H_2 = \{ \mathcal{F} \neq \mathcal{F}_1 \}$. Если \mathcal{F}_1 им. $F_1 \in \mathcal{C} \Rightarrow$ можем пользоваться критерием Колмогорова: пусть $\rho(\bar{X}) = \sqrt{n} \sup_{v} |F_{n}^{*}(y) - F_{1}(y)|$. Тогда если СЛВ им. распр. $K(y) \rightarrow \delta(\bar{X}) = \begin{cases} H_1, \rho(\bar{X}) < \mathcal{C}, \\ H_2, \rho(\bar{X}) \geq \mathcal{C}. \end{cases}$

65 | Критерий согласия хи-квадрат Пирсона

Область знач. предп. распр. \mathcal{F}_1 делят на интервалы, после чего строят ф-цию откл. ho по разностям теор. вертей попадания в интервалы и эмп. частот.

Пусть $\{A_n\}$ – попарно непересек. инт-лы группировки, разб. всю обл. значений \mathcal{F}_1 , v_i – число эл-тов выборки, попавший в A_i : $v_i = \sum_{i=1}^n I(X_i \in A_i)$ и $p_i > 0$ – теор.

вер. $P_{H_1}(X_1 \in A_j)$. Пусть $\rho(\bar{X}) = \sum_{j=1}^k \frac{(v_j - n p_j)^2}{n n_j}$.

Т (Пирсона) Если верна H_1 или $H'_1\{P(X_1 \in A_i) = p_i\} \Rightarrow$ при фикс. $k \rho(\bar{X}) \Rightarrow H_{k-1}, n \to \infty$.

66 Байесовский кр. различения двух простых гипотез

67 Лемма Неймана—Пирсона

Есть 2 гипотезы: $H_1 = \{X_i \in \mathcal{F}_1\}, H_2 = \{X_i \in \mathcal{F}_2\}$. Пл-ти распр-й $f_1(y)$, $f_2(y)$. Строим ф-ции правдоп. для ФР.

Пусть вып. предположения:

- \mathcal{F}_1 , \mathcal{F}_2 либо оба дискретны, либо оба абс.непр.
- Ф-ция $R(c) = P_{H_1}(T(\bar{X}) \ge c) \in (0, +\infty)$ по c, где R – хвост ф-ции распр. СЛВ T.

Отношение правдоподобия - $T(\overline{X}) = \frac{f_2(x_1,...x_n)}{f_1(x_1,...x_n)}$, его критерий (КОП): $\delta_c(\bar{X}) = \begin{cases} H_1, T(\bar{X}) < c, \\ H_2, T(\bar{X}) > c. \end{cases}$

- Т (лемма Н-П) Критерий отн. правдоподобия является
- 1) минимаксным при $c: \alpha_1(\delta_c) = \alpha_2(\delta_c)$;
- 2) байесовским при зад. априор. вер. r, s, если c = r/s;
- 3) HMK pasm. ε , $0 < \varepsilon \le P_{H_1}(f_2(\bar{X}) > 0)$, $c: \alpha_1(\delta_c) = \varepsilon$.

Статистический анализ нормальных выборок. Распределения хи-квадрат и Стьюдента. Т. Фишера

Основной вопрос – построение точных доверительных инт-лов для σ при неизв. a и наоборот в N_{a,σ^2} .

Берем НСЛВ $\{\xi_k\}$ со станд. $N_{0.1}$.

Распределение χ^2 Пирсона:

СЛВ $\chi^2 = \sum \xi_k^2 \sim \Gamma_{1/2,k/2}$. Обозн. H_k .

ЕЛВ
$$\chi^2 = \sum \xi_k^2 \sim \Gamma_{1/2,k/2}$$
. Обозн. H_k .
$$H_k = \begin{cases} \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} y^{\frac{k}{2}-1} e^{-\frac{y}{2}}, y \geq 0, \\ 2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right) & \mathbb{E} \chi^2 = k, \mathbb{D} \chi^2 = 2k. \end{cases}$$

Распределение Стьюдента:

СЛВ
$$t_k=\xi_0/\sqrt{\frac{\xi_1^2+\cdots+\xi_k^2}{k}}$$
 — k степ. свободы, обозн. T_k . $T_k=\frac{\xi}{\sqrt{\chi^2/k}}$, $\xi\in N_{0,1}$ и $\chi^2\in H_k$ — независимы.

Т. (Фишера) Пусть \bar{X} сост. из НСЛВ с $N_{0.1}$, C ортогональная м-ца, $ar{Y} = Car{X} \Rightarrow \forall k = 1..n-1$ СЛВ $T(\bar{X}) = \sum_{i=1}^{n} X_i^2 - Y_1^2 - \dots - Y_k^2$ не завис. от Y_i и им. распределение H_{n-k} .