Commutative Algebra 1

Labix

May 4, 2024

Abstract

Contents

1	Basic Notions of Rings 1.1 Radical Ideals	3
	1.2 Nilradical and Jacobson Ideals	3
2	Basic Notions of Modules	5
	2.1 Nakayama's Lemma	5
	2.2 Exact Sequences	
	2.3 Change of Rings	
3	Localization	6
	3.1 Localization of a Ring	6
	3.2 Localization at a Prime Ideal	7
	3.3 Properties of Localization	7
	3.4 Local Rings	
	3.5 Localization of a Module	8
	3.6 Local Properties	8
4	Noetherian Rings	9
	4.1 Ordering on the Monomials	9
	4.2 Monomial Ideals	10
	4.3 Groebner Bases	10
	4.4 Noetherian Rings	10
5	Primary Decomposition	12
	5.1 Support of a Module	12
	5.2 Associated Prime	12
	5.3 Primary Ideals	12
	5.4 Primary Decomposition	13
6		14
	6.1 Integral Extensions	14
	6.2 The Going-Up and Going-Down Theorems	
7	Discrete Valuation Rings	15
	7.1 Discrete Valuation Rings	15

1 Basic Notions of Rings

1.1 Radical Ideals

Definition 1.1.1: Radical of an Ideal

Let I be an ideal of a ring R. Define the radical of I to be

$$\sqrt{I} = \{ r \in R | r^n \in I \text{ for some } n \in \mathbb{N} \}$$

We say that an ideal is radical if $\sqrt{I} = I$.

1.2 Nilradical and Jacobson Ideals

Definition 1.2.1: Nilradicals

Let R be a ring. Define the nilradical of R to be

$$N(R) = \{r \in R \mid r \text{ is nilpotent}\}$$

Note that this is different from nilpotent ideals. However the Nilradical ideal is a nil ideal and every subideal of the nilradical is a nil ideal.

Proposition 1.2.2

Let R be a ring and N(R) its nilradical. Then the following are true.

- N(R) is an ideal of R
- $\bullet \ N(R/N(R)) = 0$

Proof.

- Suppose that r, s are nilpotent, meaning that $r^n = 0$ and $s^m = 0$. Then $(r + s)^{n+m} = 0$. Moreover, if $t \in R$ then $t \cdot r$ is also nilpotent
- Let $r \notin N(R)$. Every element $r + N(R) \in R/N(R)$ has the property that $r^n \neq 0$. Consider $(r + N(R))^n = r^n + N(R)$. If $r^n \in N(R)$ then $r^n = u$ for some nilpotent u, which means that r^n is nilpotent and thus r is nilpotent, a contradiction. This means that $r + N(R) \notin N(R/N(R))$ for all $r \notin N(R)$ and thus N(R/N(R)) = 0

Proposition 1.2.3

Let R be a commutative ring. The nilradical of R is the intersection of all prime ideals of R.

Proof. We want to show that

$$N(R) = \bigcap_{\substack{P \text{ a prime} \\ \text{ideal of } R}} P$$

Trivially N(R) is a prime ideal. Now suppose that $r \in R$ is in the intersection of all prime ideals. Then r^n also lies in every prime ideal.

Recall the notion of the Jacobson radical from Rings and Modules.

3

Definition 1.2.4: Jacobson Radical of a Ring

Let ${\cal R}$ be a ring. Define the Jacobson radical of ${\cal R}$ to be

$$J(R) = \bigcap_{\substack{M \text{ is a} \\ \text{maximal ideal} \\ \text{of } R}} M$$

2 Basic Notions of Modules

2.1 Nakayama's Lemma

Lemma 2.1.1: Nakayama's Lemma

Let R be a ring and I an ideal of R. Let M be a finitely generated R-module. If IM = M then there exists $r \in R$ with $r \equiv 1 \pmod{I}$ such that rM = 0.

Lemma 2.1.2

Let R be a local ring with maximal ideal m. Let M be a finitely generated R-module. If M=mM, then M=0.

Lemma 2.1.3

Let R be a local ring with maximal ideal m. Let M be a finitely generated R-module. Let $a_1, \ldots, a_n \in M$ such that $a_1 + mM, \ldots, a_n + mM$ spans M/mM as a vector space over R/m. Then a_1, \ldots, a_n generate M.

2.2 Exact Sequences

2.3 Change of Rings

3 Localization

3.1 Localization of a Ring

Definition 3.1.1: Multiplicative Set

Let R be a commutative ring. $S\subseteq R$ is a multiplicative set if $1\in S$ and S is closed under multiplication: $x,y\in S$ implies $xy\in S$

Definition 3.1.2: Localization of a Ring

Let R be a commutative ring and $S\subseteq R$ be a multiplicative set. Define the ring of fractions of R with respect to S by

$$S^{-1}R = \left\{ \frac{r}{s} | r \in R, s \in S \right\} / \sim$$

where \sim is defined by

$$\frac{r}{s} \sim \frac{r'}{s'}$$
 if and only if $\exists v \in S \text{ such that } v(ru'-r'u) = 0$

If $S = \{1, f, f^2, ...\}$ then we write $S^{-1}R = R_f = R[1/f]$.

Proposition 3.1.3

Let $S^{-1}R$ be a ring of fractions.

- $\bullet \ \sim$ as defined in the ring of fractions is an equivalence relation
- $(S^{-1}R, +, \times)$ is a ring
- The map $\phi:R \to S^{-1}R$ defined by $\phi(r) \to \frac{r}{1}$ is a ring homomorphism

Proof.

- Trivial
- Define addition by $\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}$ and multiplication by $\frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}$. Clearly addition is abelian, and has identity $\frac{0}{1}$ and inverse $\frac{-r}{s}$ for any $\frac{r}{s} \in S^{-1}R$. Multiplication also has identity $\frac{1}{1}$.
- We have that $\phi(r+s) = \frac{r+s}{1} = \frac{r}{1} + \frac{s}{1} = \phi(r) + \phi(s)$ and $\phi(rs) = \frac{rs}{1} = \frac{r}{1} \cdot \frac{s}{1} = \phi(r) \cdot \phi(s)$ for any $r,s \in R$.

Theorem 3.1.4: Universal Property

Let $g:A\to B$ be a ring homomorphism such that g(s) is a unit in B for all $s\in S$. Then there exists a unique ring homomorphism $h:S^{-1}A\to B$ such that $g=h\circ \phi$. In other words, the following diagram commutes:

3.2 Localization at a Prime Ideal

Lemma 3.2.1

Let *R* be a ring and *P* a prime ideal of *R*. Then $R \setminus P$ is a multiplicative set.

Proof. By definition, $xy \in P$ implies $x \in P$ or $y \in P$, since $R \setminus P$ removes all these elements, we have that $x \notin P$ and $y \notin P$ implies that $xy \notin P$.

Definition 3.2.2: Localization on Prime Ideals

Let R be a commutative ring. Let P be a prime ideal. Denote

$$R_p = (R \setminus P)^{-1}R$$

the localization of R at P.

Lemma 3.2.3

Let R be an integral domain. Then the localization

$$(R \setminus (0))^{-1}R$$

is exactly the field of fractions of R.

3.3 Properties of Localization

Proposition 3.3.1

Localization commutes with direct sum of modules and quotient modules.

3.4 Local Rings

Definition 3.4.1: Local Rings

A ring R is said to be a local ring if it has a unique maximal ideal m. In this case, we say that R/m is the residue field of R.

Proposition 3.4.2

Let R be a ring and I an ideal of R. Then I is the unique maximal ideal of R if and only if I is the set containing all non-units of R.

Proof. Let I be the unique maximal ideal of R. Clearly I does not contain any unit else I=R. Now suppose that r is a non-unit. Suppose that $r\notin I$. Define $J=\{sr|s\in R\}$ Clearly J is an ideal. It must be contained in some maximal ideal. Since I is the unique maximal ideal, $J\subseteq I$. But this means that $r\in I$, a contradiction. Thus every non-unit is in I.

Suppose that I contains all non-units of R. Let $r \notin I$. Then there exists $s \notin I$ such that rs=1. Then (r+I)(s+I)=1+I in R/I. This means that every element of R/I has a multiplicative inverse which means that R/I is a field and thus I is a maximal ideal. Now let $J \neq I$ be another maximal ideal. Then J contains some unit r. This implies that J=R and thus I is the unique maximal ideal. \square

Proposition 3.4.3

Every localization R_p is a local ring.

Proof. Let I be the set of all non-units of R_p . It is sufficient to show that I is an ideal by the above lemma. Clearly if $i \in I$ then $r \cdot i$ is also not invertible. Explicitly, we have

$$I = \left\{ \frac{r}{s} \in R_p \middle| r \in p \right\}$$

Let $\frac{r_1}{s_1}, \frac{r_2}{s_2} \in I$, then $\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1s_2 + r_2s_1}{s_1s_2}$ is in I since $r_1, r_2 \in P$ and P being an ideal implies $r_1s_2 + r_2s_1 \in P$.

Be wary that in general localizations does not result in a local ring. This happens only when we are localizing with respect to a prime ideal. The importance of prime ideals is not explicit in the above because only using prime ideals P can $R \setminus P$ be a multiplicative set which ultimately allows localization to make sense.

3.5 Localization of a Module

Definition 3.5.1: Localization of a Module

Let R be a commutative ring and $S \subseteq R$ be a multiplicative set Let M be a R-module. Define the ring of fractions of M with respect to S by

$$S^{-1}M = \left\{ \frac{m}{s} | m \in M, s \in S \right\} / \sim$$

where \sim is defined by

$$\frac{m}{s} \sim \frac{m'}{s'}$$
 if and only if $\exists v \in S$ such that $v(mu' - m'u) = 0$

If $S = \{1, f, f^2, ...\}$ then we write $S^{-1}M = M_f = M[1/f]$.

Proposition 3.5.2

Let S be a multiplicative set of a ring R. Then localization at S preservers exact sequences.

Proposition 3.5.3

Let M be an A-module. Then the $S^{-1}A$ modules $S^{-1}M$ is isomorphic to $S^{-1}A \otimes_A M$. More precisely, there exists a unique isomorphism $f: S^{-1}A \otimes_A M \to S^{-1}M$ such that

$$f((a/s) \otimes m) = am/s$$

3.6 Local Properties

Definition 3.6.1: Local Properties

A property P of a ring A or of an A-module M is said to be a local property if the following is true. A (M) has the property P if and only if A_p (M_p) has the property P for every prime ideal p.

4 Noetherian Rings

4.1 Ordering on the Monomials

Recall that a monomial in $R[x_1, \dots, x_n]$ is an element in the polynomial ring of the form $x_1^{a_1} \cdots x_n^{a_n}$. For simplicity we write this as $x^{(a_1, \dots, a_n)}$.

Definition 4.1.1: Monomial Ordering

A monomial ordering on a polynomial ring $k[x_1, \ldots, x_n]$ is a relation > on \mathbb{N}^n . This means that the following are true.

- > is a total ordering on \mathbb{N}^n
- If a > b and $c \in \mathbb{N}^n$ then a + c > b + c
- > is a well ordering on \mathbb{N}^n (any nonempty subset of \mathbb{N}^n has a smallest element)

Definition 4.1.2: Lexicographical Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathrm{lex}} b$ if in the first nonzero entry of a-b is positive.

In practise this means that the we value more powers of x_1

Definition 4.1.3: Graded Lex Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathsf{grlex}} b$ if either of the following holds.

- $|a| = \sum_{k=1}^{n} a_k > \sum_{k=1}^{n} b_k = |b|$
- |a| = |b| and $a >_{lex} b$

Definition 4.1.4: Graded Lex Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathsf{grlex}} b$ if either of the following holds.

- $|a| = \sum_{k=1}^{n} a_k > \sum_{k=1}^{n} b_k = |b|$
- |a| = |b| and the last nonzero entry of a b is negative.

In practise we value lower powers of the last variable x_n .

Proposition 4.1.5

The above three orders are all monomial orderings of $k[x_1, \ldots, x_n]$.

Definition 4.1.6: Multidegree

Let $f \in k[x_1, \dots, x_n]$ be a polynomial in the form $f = \sum_{v \in \mathbb{N}^n} c_v x^v$. Define the multidegree of f to be

$$\mathrm{multideg}(f) = \max_{>} \{ v \in \mathbb{N}^n | a_v \neq 0 \}$$

where > is a monomial ordering on $k[x_1, \ldots, x_n]$.

Definition 4.1.7: Leading Objects

Let $f \in k[x_1, ..., x_n]$ be a polynomial in the form $f = \sum_{v \in \mathbb{N}^n} c_v x^v$.

- \bullet Define the leading coefficient of f to be $\mathrm{LC}(f) = c_{\mathrm{multideg}(\mathbf{f})} \in k$
- Define the leading monomial of f to be $LM(f) = c_{multideg(f)} \in k$
- Define the leading term of f to be $LT = LC(f) \cdot LM(f)$

Proposition 4.1.8: Division Algorithm in $k[x_1, \ldots, x_n]$

4.2 Monomial Ideals

Definition 4.2.1: Monomial Ideals

An ideal $I \subset k[x_1, \dots, x_n]$ is said to be a monomial ideal if I is generated by a set of monomials $\{x^v|v\in A\}$ for some $A\subset \mathbb{N}^n$. In this case we write

$$I = \langle x^v | v \in A \rangle$$

Lemma 4.2.2

Let $I = \langle x^v | v \in A \rangle$ be an ideal of $k[x_1, \ldots, x_n]$. Then a monomial x^w lies in I if and only if $x^v | x^w$ for some $v \in A$. Moreover, if $f = \sum_{w \in \mathbb{N}^n} c_w x^w \in k[x_1, \ldots, x_n]$ lies in I, then each x^w is divisible by x^v for some $v \in A$.

Theorem 4.2.3: Dickson's Lemma

Every monomial ideal is finitely generated. In particular, every monomial ideal $I=\langle x^v|v\in A\rangle$ is of the form

$$I = \langle x^{v_1}, \dots, x^{v_n} \rangle$$

where $v_1, \ldots, v_n \in A$.

4.3 Groebner Bases

4.4 Noetherian Rings

Definition 4.4.1: Noetherian Ring

A commutative ring is said to be Noetherian if it satisfies the ascending chain condition on ideals. Meaning if every chain oif ideals $I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots$ is eventually constant for some $n \in \mathbb{N}$, with $I_n = I_{n+1} = I_{n+2} = \ldots$

Proposition 4.4.2

The following are equivalent for a ring R.

- \bullet R is a Noetherian ring
- Every ideal in R is finitely generated
- Every nonempty set of ideal has a maximal element.

Proposition 4.4.3

If A is a Noetherian and ϕ is a homomorphism of A onto a ring B, then B is Noetherian.

Theorem 4.4.4: Hilbert's Basis Theorem

If R is a Noetherian ring, then $R[x_1, \ldots, x_n]$ is a Noetherian ring.

Proposition 4.4.5

Let R be a Noetherian ring and I be an ideal in R. Then R/I is Noetherian.

5 Primary Decomposition

5.1 Support of a Module

Definition 5.1.1: Support of a Module

Let M be an A-module. The support of M is the subset

 $Supp(M) = \{ P \text{ a prime ideal of } A | M_P \neq 0 \}$

5.2 Associated Prime

Definition 5.2.1: Associated Prime

Let M be an A-module. An associated prime P of M is a prime ideal of A such that there exists some $m \in M$ such that $P = \operatorname{Ann}(m)$.

5.3 Primary Ideals

Definition 5.3.1: Primary Ideals

Let R be a ring. An ideal Q of R is called primary if

- \bullet $Q \neq R$
- $fg \in Q$ implies $f \in Q$ or $g^m \in Q$ for some m > 0

Lemma 5.3.2

If Q is primary, then \sqrt{Q} is prime.

Lemma 5.3.3

Let R be a Noetherian ring and I be a proper ideal that is not primary. Then

$$I = J_1 \cap J_2$$

for some ideals $J_1, J_2 \neq I$.

Definition 5.3.4: P-Primary Ideals

Let A be a ring and P a prime ideal. An ideal Q is P-primary if Q is primary and $Q = \operatorname{rad}(P)$

Theorem 5.3.5

Let A be a Noetherian ring and Q an ideal of A. Then Q is P-primary if and only if $Ann(A/Q) = \{P\}$.

5.4 Primary Decomposition

We want to express ideal I in R as $I = P_1^{e_1} \cdots P_n^{e_n}$ similar to a factorization of natural numbers, for some prime ideals P_1, \dots, P_n . However this notion fails and thus we have the following new type of ideal.

Definition 5.4.1: Primary Decompositions

A primary decomposition of an ideal I is an expression $I=Q_1\cap\cdots\cap Q_r$ with each Q_i primary.

The decomposition is said to be irredundant if $I \neq \bigcap_{i \neq j} Q_i$ for any j. The decomposition is said to be minimal if r is the smallest possible such decomposition for I.

Irredundant in this sense means that removing any one primary ideal in the intersection fails to become a decomposition of I.

Theorem 5.4.2

Every proper ideal in a Noetherian ring has a primary decomposition.

Lemma 5.4.3

Let $\phi:R\to S$ be a ring homomorphism and Q be a primary ideal in S. Then $\phi^{-1}(Q)$ is primary in R.

6 Integral Dependence

6.1 Integral Extensions

Definition 6.1.1: Integral Elements

Let B be a ring and let $A \subseteq B$ be a subring. Let $b \in B$. We say that b is integral over A if there exists a monic polynomial $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in A[x]$ such that p(b) = 0.

Proposition 6.1.2

Let *B* be a ring and let $A \subseteq B$. Let $b \in B$. Then the following are equivalent.

- \bullet b is integral over A
- ullet The subring $A[b] \subseteq B$ is finite over A
- There exists an A sub-algebra $A' \subseteq B$ such that $A[b] \subseteq A'$ and A' is finite over A.

Definition 6.1.3: Integral Closure

Let B be an A-algebra. Define the subring

$$\tilde{A} = \{b \in B | b \text{ is integral over } A\}$$

to be the integral closure of A in B. If $\tilde{A} = A$, then we say that A is integrally closed in B.

Definition 6.1.4: Normal Domains

Let R be a domain. We say that R is normal (intergrally closed) if A is integrally closed in its field of fractions.

The integral closure of R in Frac(R) is called the normalization of R.

6.2 The Going-Up and Going-Down Theorems

7 Discrete Valuation Rings

7.1 Discrete Valuation Rings

Definition 7.1.1: Totally Ordered Group

A totally ordered group is a group G with a total order " \leq " such that it is

- a left ordered group: $a \le b$ implies $ca \le cb$ for all $a, b, c \in G$
- a right ordered group: $a \le b$ implies $ac \le bc$ for all $a, b, c \in G$

Definition 7.1.2: Valuation on a Field

Let K be a field. Let G be a totally ordered abelian group. A valuation on K with values in G is a map $v: K \setminus \{0\} \to G$ such that for all $x, y \in K^*$, we have

- v(xy) = v(x) + v(y)
- $v(x+y) \ge \min\{v(x), v(y)\}$

We use the convention that $v(0) = \infty$.

v is said to be a discrete valuation if $G = \mathbb{Z}$.

Proposition 7.1.3

Let K be a field and $v:K\to\mathbb{Z}$ a discrete valuation. Then

$$\{x \in K | v(x) \ge 0\}$$

is a subring of K.

Definition 7.1.4: Discrete Valuation Rings

The discrete valuation ring of a discrete valuation $v: K \to \mathbb{Z}$ is the subset

$$A = \{x \in K | v(x) \ge 0\}$$

Alternatively, any ring isomorphic to a discrete valuation ring of some discrete valuation is also called a discrete valuation.

Proposition 7.1.5

Let R be a discrete valuation ring with respect to the valuation v. Let $t \in R$ be such that v(t) = 1. Then the following are true.

- A nonzero element $u \in R$ is a unit if and only if v(u) = 0
- Every non-zero ideal of R is a principal ideal of the form (t^n) for some $n \ge 0$
- Every $r \in R \setminus \{0\}$ can be written in the form $r = ut^n$ for some unit u and $n \ge 0$.

Proof.

• Let R be a discrete valuation ring. Suppose that $x \in R$ is a unit. Then $v(x^{-1}) = -v(x)$. Then $-v(x), v(x) \ge 0$ implies v(x) = 0. Now if v(y) > 0, suppose for contradiction that $u \in R$ is an inverse of y, then

$$0 = v(1) = v(uy) = v(u) + v(y)$$

But v(y) > 0 implies that v(u) < 0 which implies that $u \notin R$, a contradiction.

- Let $t \in R$ such that v(t) = 1. Let $x \in m$ where v(x) = n > 0. Then $v(x) = nv(t) = v(t^n)$ means that every $x \in m$ is of the form t^n . Thus m = (t). Since every ideal I is a subset of this maximal ideal, any ideal is of the form $I = (t^n)$ for some n > 0.
- $\bullet\,$ Follows from the fact that (t^n) is the unique maximal ideal.

Proposition 7.1.6

Let R be an integral domain. Then the following are equivalent.

- *R* is a discrete valuation ring
- \bullet R is a UFD with a unique irreducible element up to multiplication of a unit
- \bullet R is a Noetherian local ring with a principal maximal ideal

Proof.

• (1) \Longrightarrow (3): We have seen that the set of non-units is precisely the set $m=\{x\in K|v(x)>0\}$. We show that this is an ideal. Clearly $x,y\in m$ implies $v(x+y)=\min\{v(x),v(y)\}>0$. Let $u\in R$. Then v(ux)=v(u)+v(x)>0 since v(x)>0 and $v(u)\geq 0$.

We have seen that every ideal is of the form (t^n) for some n>0. Thus every ascending chains of ideal must be of the form

$$(t^{n_1}) \subset (t^{n_2}) \subset \dots$$

for $n_1 > n_2 > \dots$ Since n_1, n_2, \dots is strictly decreasing, the chain must eventually stabilizes. This proves that R is Noetherian and has principal maximal ideal.

 \bullet (1) \Longrightarrow (3):