十、RSA问题与加密

哈尔滨工业大学 张宇 2024春

概览

- 1. RSA问题 (数论基础)
- 2. 攻击"书本上的RSA"
- 3. 实践中的RSA加密方案

RSA简介

- □RSA: Ron Rivest, Adi Shamir and Leonard Adleman, 三位作者于1977年 发表RSA加密方案。
- □RSA问题: 给定 \$N = pq\$ (两个不同的大质数的乘积) 并且 $\$y \in \mathbb{Z}^*_N\$$, 计算 $\$y^{-e}\$$, 即\$y\$模\$N\$下的\$e\$次方根。
- □开放问题: RSA问题比分解 \$N\$ 更容易吗?
- □RSA相关标准: PKCS\#1 (RFC3447/8017), ANSI X9.31, IEEE 1363
- □密钥长度: 1,024 到 4,096 比特
- □已知最强的公开密码学分析: 768比特密钥已经被破解
- □RSA挑战赛:破解 RSA-2048 来赢得 \\$200,000 USD
- □密钥长度比较: 3072比特RSA密钥安全强度相当于128比特对称密钥

Symmetric	RSA
80 bits	1024 bits
128 bits	3072 bits
256 bits	15360 bits

书本上的RSA

o 构造:

- Gen: 输入 1^n 运行 $\mathsf{GenRSA}(1^n)$ 产生 N,e,d。 $pk = \langle N,e \rangle$ 和 $sk = \langle N,d \rangle$ 。
- Enc: 输入 pk 和 $m \in \mathbb{Z}_N^*$,获得密文 $c := [m^e \mod N]$.
- Dec: 输入 sk 和 $m \in \mathbb{Z}_N^*$,获得明文 $m := [c^d \mod N]$.
- 不安全性:由于"书本上的RSA"是确定性的,在我们已经提出的任何安全定义下都是不安全的。
- 。 下面学习问题: 如何产生 N, e, d? 什么是 \mathbb{Z}_N^* ? 如何计算 $m^e \mod N$? 这个难题是 TDP? 为什么很难?
- 。 参考教材:《A Computational Introduction to Number Theory and Algebra》 (Version 2) Victor Shoup。

质数与模运算

- \circ 整数集合 \mathbb{Z} , $a,b,c\in\mathbb{Z}$ 。
- a 整除 b: $a \mid b$ 如果 $\exists c, ac = b$ (否则 $a \nmid b$). $b \not\in a$ 的倍数。如果 $a \not\in \{1, b\}$,那么 $a \not\in b$ 的因子。
- \circ p>1 是质数(素数),如果其没有因子;否则,是合数。
- \circ $\forall a, b$, ∃ 商 q, 余数 r: a = qb + r, 且 $0 \le r < b$.
- 。 最大公因子 $\gcd(a,b)$ 是最大的整数 c 使得 $c\mid a$ 且 $c\mid b$ 。 $\gcd(0,b)=b$, $\gcd(0,0)$ 未定义。
- \circ *a* 和 *b* 是互质,如果 gcd(a,b)=1。
- 。 余数 $r = [a \mod N] = a b\lfloor a/b \rfloor$ 并且 r < N. N 称为模。
- $\circ \ \mathbb{Z}_N = \{0, 1, \dots, N-1\} = \{a \bmod N | a \in \mathbb{Z}\}.$
- 。 a 是模 N 下可逆的 $\iff \gcd(a,N)=1$ 。如果 $ab\equiv 1\pmod N$,那么 $b=a^{-1}$ 是模 N 下 a 的乘法逆。

Primes and Modular Arithmetic

- The set of **integers** \mathbb{Z} , $a, b, c \in \mathbb{Z}$.
- p > 1 is **prime** if it has no factors; otherwise, **composite**.
- **Greatest common divisor** gcd(a, b) is the largest integer c such that $c \mid a$ and $c \mid b$. gcd(0, b) = b, gcd(0, 0) undefined.
- Remainder $r = [a \mod N] = a b\lfloor a/b \rfloor$ and r < N. N is called **modulus**.
- $\mathbb{Z}_N = \{0, 1, \dots, N 1\} = \{a \mod N | a \in \mathbb{Z}\}.$
- a is invertible modulo $N \iff \gcd(a, N) = 1$. If $ab \equiv 1 \pmod{N}$, then $b = a^{-1}$ is multiple inverse of a modulo N.

课堂练习

- 。 欧几里德算法(辗转相除法): $\gcd(a,b) = \gcd(b,[a \mod b])$.
 - \$\gcd(12, 27)\$
- 。 扩展欧几里德算法: 给定 a,N,寻找 X,Y 使得 $Xa+YN=\gcd(a,N)$ (贝祖定理)
 - 例子,求11 (mod 17)下的逆元,a = 11,N = 17,Xa + YN = r

```
r X Y m

17 0 1

11 1 0 1

6 -1 1 1

5 2 -1 1

1 -3 2
```

- 。 求余然后相加/乘
 - 计算 193028 · 190301 mod 100
- 。 消去律: 如果 gcd(a, N) = 1且 $ab \equiv ac \pmod{N}$, 那么 $b \equiv c \pmod{N}$.
 - a = 3, c = 10, b = 2, N = 24

群

$$\circ \ \ \mathbb{Z}_N^* \stackrel{\mathrm{def}}{=} \{a \in \{1, \dots, N-1\} | \gcd(a,N) = 1\}$$

- 群是一个集合 ⑤ 带有一个二元操作 ○:
 - 闭包: $\forall g,h \in \mathbb{G}, g \circ h \in \mathbb{G}$.
 - 单位元: \exists 单位元 $e \in \mathbb{G}$ 使得 $\forall g \in \mathbb{G}, e \circ g = g = g \circ e$.
 - 逆元: $\forall g \in G$, $\exists h \in \mathbb{G}$ 使得 $g \circ h = e = h \circ g$. $h \neq g$ 的逆元.
 - 结合律: $\forall g_1,g_2,g_3\in \mathbb{G}$, $(g_1\circ g_2)\circ g_3=g_1\circ (g_2\circ g_3)$.
- 。 \mathbb{G} with 是阿贝尔群,如果有交换律: $\forall g,h \in \mathbb{G}, g \circ h = h \circ g$.
- 。 逆元的存在意味着消去律
- 当 G 是有限群, |G| 是群的阶。
- o 问题: \mathbb{Z}_N^* 是乘法下的群吗? \mathbb{Z}_N 在乘法下呢? $\mathbb{Z}_{15}^* = ?$ $\mathbb{Z}_{13}^* = ?$

Group

$$\mathbb{Z}_N^* \stackrel{\text{def}}{=} \{ a \in \{1, \dots, N-1\} | \gcd(a, N) = 1 \}$$

A **group** is a set \mathbb{G} with a binary operation \circ :

- **Closure**:) $\forall g, h \in \mathbb{G}$, $g \circ h \in \mathbb{G}$.
- **■** (Existence of an Identity:) \exists identity $e \in \mathbb{G}$ such that $\forall g \in \mathbb{G}, e \circ g = g = g \circ e$.
- **(Existence of Inverses**:) $\forall g \in G$, $\exists h \in \mathbb{G}$ such that $g \circ h = e = h \circ g$. h is an **inverse** of g.
- (Associativity:) $\forall g_1, g_2, g_3 \in \mathbb{G}$, $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.

 \mathbb{G} with \circ is **abelian** if

Commutativity:) $\forall g, h \in \mathbb{G}, g \circ h = h \circ g$.

Existence of inverses implies cancellation law.

When \mathbb{G} is a **finite group** and $|\mathbb{G}|$ is the **order** of group.

$$\mathbb{Z}_{15}^* = ? \mathbb{Z}_{13}^* = ?$$
 Is \mathbb{Z}_N^* a group under '.'?

群指数

$$\circ \ g^m \stackrel{\mathrm{def}}{=} \underbrace{g \circ g \circ \cdots \circ g}_{m \ \mathrm{times}}.$$

- o 欧拉定理: \mathbb{G} 是有限群。那么, $\forall g \in \mathbb{G}, g^{|\mathbb{G}|} = 1$.
- 注:课上证明,将群中每个元素与 g 相乘后连乘等于群中元素连乘。
- 例子: 计算 $3 \in \mathbb{Z}_7^*$ 的所有幂。
- 。 费马小定理: $orall g \in \mathbb{G}$ and i, $g^i \equiv g^{[i \bmod |\mathbb{G}|]}$.
- o 注:这是欧拉定理的推论。
- o 例子: 计算 $3^{78} \in \mathbb{Z}_7^*$

群上算法

- \circ 加/减:线性时间 O(n).
- \circ 乘: 最初 $O(n^2)$ 。
 - Karatsuba (1960,当时23岁): $O(n^{\log_2 3})$ $(2^b x_1 + x_0) \times (2^b y_1 + y_0)$ 使用3个乘法。
 - 注: 因为 $x_1 \cdot y_0 + x_0 \cdot y_1 = (x_1 + x_0) \cdot (y_1 + y_0) x_1 \cdot y_1 x_0 \cdot y_0$ 。
 - 最佳渐进算法: $O(n \log n)$ 。
- \circ 除/求余: $O(n^2)$ 。
- 。 指数: $O(n^3)$, 平方指数法,例如计算8次幂并不需要乘8次,而是计算4次幂的平方,而4次幂来自2次幂平方。

Algorithm 1: Exponentiating by Squaring

input : $g \in G$; exponent $x = [x_n x_{n-1} \dots x_2 x_1 x_0]_2$ output: g^x

- 1 $y \leftarrow q; z \leftarrow 1$
- 2 for i=0 to n do
- $\mathbf{3} \quad | \quad \mathbf{if} \ x_i == 1 \ \mathbf{then} \ z \leftarrow z \times y$
- 4 $y \leftarrow y^2$
- 5 return z

欧拉phi函数

- 。 欧拉phi函数: $\phi(N) \stackrel{\mathrm{def}}{=} |\mathbb{Z}_N^*|$. $extit{ extit{z}: 整数乘法群的阶}$
- 。 算法基本定理: $N=\prod_i p_i^{e_i}$, $\{p_i\}$ 是不同的质数, $\phi(N)=\prod_i p_i^{e_i-1}(p_i-1)$ 。
- 例题: N = pq 其中 p, q 是不同质数。 $\phi(N) = ? \phi(12) = ? \phi(30) = ?$
- 。 欧拉定理与费马小定理: $a\in\mathbb{Z}_N^*$. $a^{\phi(N)}\equiv 1\pmod{N}$. otag: 前面证明过
- 。 如果 p 是质数并且 $a \in \{1, \ldots, p-1\}$,那么 $a^{p-1} \equiv 1 \pmod{p}$. 注:因为质数 p 乘法群的阶为p-1
- 例题: 3⁴³ mod 49 =?

基于群指数函数的排列

- \circ 指数函数 $f_e: \mathbb{Z}_N^* o \mathbb{Z}_N^*$ by $f_e(x) = [x^e od N]$.
- o 对指数函数求逆: y 的 e 次方根: $x^e \equiv y$, $x \equiv y^{1/e}$.
- 推论: 如果 $gcd(e, \phi(N)) = 1$, 那么 f_e 是排列。
- \circ 证明:令 $d=[e^{-1} mod \phi(N)]$,那么 f_d 是 f_e 的逆函数。 $y\equiv x^e; \quad f_d(y)\equiv y^d\equiv x^{ed}\equiv x.$
- 例题: 在 \mathbb{Z}_{10}^* 中, $e=3,\ d=?,\ f_e(3)=?,\ f_d(f_e(3))=?,\ 9^{\frac{1}{3}}=?$
- \circ 问题: 如果对于某些特别的N无法计算 $\phi(N)$,那么会如何? 如果不能分解N呢?

整数分解是难题

- 分解 N = pq. p, q 长度相同为 n.
- 。 尝试分解: $\mathcal{O}(\sqrt{N} \cdot \mathsf{polylog}(N))$.
- o Pollard's p-1 方法: 当 p-1 具有小质数因子时有效。
- o Pollard's rho 方法: $\mathcal{O}(N^{1/4} \cdot \mathsf{polylog}(N))$.
- 。 二次筛法 [Carl Pomerance]: 亚指数时间 $\mathcal{O}(\exp(\sqrt{n \cdot \log n}))$.
- 。 已知最优算法为通用数域筛法 [Pollard]: $\mathcal{O}(\exp(n^{1/3} \cdot (\log n)^{2/3}))$.

RSA问题是难题

- 。 思路: 分解难 \Longrightarrow 对于 N=pq, 找到 p,q 难 \Longrightarrow 计算 $\phi(N)=(p-1)(q-1)$ 难
 - \implies 无法模 $\phi(N)$ 计算
 - \implies 计算 $e^{-1} mod \phi(N)$ 难

这里存在一段空白

- \Longrightarrow RSA 问题难:给定 $y \in \mathbb{Z}_N^*$,计算 y^{-e} modulo N.
- 。 开放问题: RSA 比分解容易?

生成一个RSA问题

- \circ 令 GenModulus (1^n) 为一个概率多项式时间算法,输入 1^n ,输出 (N,p,q) ,其中 N=pq,并且 p,q 是 n 比特质数,除了有可忽略的概率失败。
- o 产生RSA问题算法简述:
 - 1. 由 $GenModulus(1^n)$ 产生(N, p, q);
 - 2. 计算 $\phi(N) := (p-1)(q-1)$;
 - 3. 寻找一个e,使得 $\gcd(e, \phi(N)) = 1$;
 - 4. 计算 $d := [e^{-1} \mod \phi(N)]$;
 - 5. 返回 N, e, d

RSA难题假设

- \circ RSA实验 RSAinv_{A,GenRSA}(n):
 - 1. 运行 $GenRSA(1^n)$ 来产生 (N, e, d)。
 - 2. 选择 $y \leftarrow \mathbb{Z}_N^*$ 。
 - 3. 敌手 \mathcal{A} 给定 N, e, y, 并输出 $x \in \mathbb{Z}_N^*$.
 - 4. $\mathsf{RSAinv}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1$,实验成功,如果 $x^e \equiv y \pmod{N}$,否则实验失败 0 。
- 。 定义: RSA问题相对于GenRSA是难的,如果 \forall PPT算法 \mathcal{A} , \exists negl 使得, $Pr[RSAinv_{\mathcal{A},GenRSA}(n)=1] \leq negl(n)$.

构造陷门排列

- 。 用 GenRSA 来定义一个排列族:
 - Gen: 输入 1^n , 运行 $\mathsf{GenRSA}(1^n)$ 来产生 (N,e,d) 并且 $I=\langle N,e\rangle,\mathsf{td}=d$, 令 $\mathcal{D}_I=\mathcal{D}_\mathsf{td}=\mathbb{Z}_N^*$.
 - Samp: 输入 I, 挑选一个随机元素 x of \mathbb{Z}_N^* .
 - $\bullet \ f_I(x) = [x^e \bmod N].$
 - 确定性求逆算法 $Inv_{td}(y) = [y^d \mod N]$.
- 。 将RSA问题规约到陷门排列求逆问题。

攻击e较小的书本上的RSA

- \circ 小 e 和 小 m 令模算术失去作用,不再是难题。
 - 如果 e = 3 并且 $m < N^{1/3}$,那么 $c = m^3$ 并且 m = ?
 - 在混合加密中, 1024比特 RSA 与 128比特 AES。
- 当小e 被使用时通用攻击:
 - e=3, 同一个消息 m 被发送给 3 个不同的接收者。
 - $lacksquare c_1 = [m^3 mod N_1]$, $c_2 = [m^3 mod N_2]$, $c_3 = [m^3 mod N_3]$.
 - N_1,N_2,N_3 互质, 并且 $N^*=N_1N_2N_3$,使用中国剩余定理可知, \exists 唯一的 $\hat{c} < N^*$:
 - $\hat{c} \equiv c_1 \pmod{N_1}, \hat{c} \equiv c_2 \pmod{N_2}, \hat{c} \equiv c_3 \pmod{N_3}.$
 - $\hat{c} \equiv m^3 \pmod{N^*}$. 由于 $m^3 < N^*$, $m = \hat{c}^{1/3}$.

共模攻击

- \circ 共模攻击使用相同的模数 N.
- 。 情况1:多个用户带有自己的密钥。每个用户可以以自己的 e,d 计算 $\phi(N)$,然后找到其他人的 d.
- 情况2: 用两个公钥为同一个消息加密。
 - 假设 $\gcd(e_1,e_2)=1$, $c_1\equiv m^{e_1}$ and $c_2\equiv m^{e_2}\pmod{N}$. $\exists X,Y$ 使得 $Xe_1+Ye_2=1$ (贝祖定理).
 - $lacksquare c_1^X \cdot c_2^Y \equiv m^{Xe_1} m^{Ye_2} \equiv m^1 \pmod{N}.$
 - $ullet N=15, e_1=3, e_2=5, c_1=8, c_2=2, m=?$

CCA攻击

- 。 使用CCA恢复消息: 敌手 $\mathcal A$ 选择一个随机数 $r\leftarrow\mathbb Z_N^*$ 并计算 $c'=[r^e\cdot c \bmod N]$,使用CCA获得 m'。那么,m=?
- 。 在拍卖中讲价格翻倍: $c = [m^e \mod N]$. $c' = [2^e c \mod N]$.

. - . - - -

RSA实现问题

- 。 将二进制串编码为 \mathbb{Z}_N^* 中元素: $\ell=\|N\|$ 。任意长度为 $\ell-1$ 的二进制串 m 可以被看作是 Z_N 中元素。尽管 m 不在 Z_N^* 中,RSA 仍工作。
- \circ e 的选择: e=3 或小 d 都是坏选择。 推荐 $e=65537=2^{16}+1$
- 使用中国剩余定理来加速解密: $[c^d \mod N] \leftrightarrow ([c^d \mod p], [c^d \mod q])$.
- 。 假设一个 n 比特整数指数预算需要 n^3 操作。RSA 解密花费 $(2n)^3=8n^3$,其中使用中国剩余定理需要 $2n^3$ 。

Padded RSA

- 思路:添加随机性来改进安全
- 。 构造:
 - 令 ℓ 为一个函数,对所有 n, $\ell(n) \leq 2n-2$,为被加密的消息长度。
 - Gen: 输入 1^n , 运行 $\mathsf{GenRSA}(1^n)$ 来产生 (N,e,d). 输出 $pk=\langle N,e\rangle$ 和 $sk=\langle N,d\rangle$ 。
 - Enc: 输入 $m \in \{0,1\}^{\ell(n)}$, 选择随机串 $r \leftarrow \{0,1\}^{\|N\|-\ell(n)-1}$. 输出 $c:=\lceil (r\|m)^e \bmod N \rceil$ 。注:填充随机串后加密
 - Dec: 计算 $\hat{m} := [c^d \mod N]$, 并输出 \hat{m} 中的低 $\ell(n)$ 个比特。 \hat{z} : 这部分为明文
- 。 ℓ 不应该太大 (理论上的 r 太小) 也不应该太小 (实践中的 m 太小)。
- 。 定理: 如果RSA问题相对于GenRSA 是难的,那么基于 $\ell(n) = \mathcal{O}(\log n)$ 的构造是 CPA安全的。
- 。 证明:与对称加密中CPA安全方案类似。

真实案例

CCA on PKCS#1 v1.5 in HTTPS [Bleichenbacher 1998]

The message is padded in a format "(00||02||s||0||m)", where "02" means version 1. Here we simplfy 00||02| as the MSB of plaintext.

Defense: treating incorrectly formatted message blocks in a manner ("return a random string as the message") indistinguishable from correctly formatted blocks. See [RFC 5246]

OAEP

- 。 最优非对称加密填充(Optimal Asymmetric Encryption Padding,OAEP): 将长度 n/2 的 m 编码为长度 2n 的消息 \hat{m} 。 G,H 是随机预言机。
- RSA-OAEP在ROM下是CCA安全的。(当RO实例化后可能不安全)
- 。 CPA攻击下,敌手不知道r,则m被完美保护;若要知道r,则必须知道s,这不可能。
- 。 CCA攻击下,无法有效进行解密查询,因为在应答前会检查明文中"00...0"。
- 。 局限性: 这个方案对RSA是安全的, 但对其他TDP可能不是。

实现攻击

- □计时攻击: [Kocher et al. 1997] 计算 c^d 所消耗的时间可能 泄漏 d。 (需要高解析时钟)
- □能耗攻击: [Kocher et al. 1999] 为计算c^d 智能卡消耗的能量可能泄漏d。
- □防御:将密文和随机数r绑定,解密r^{e}\cdot c。
- □密钥生成问题: (在 OpenSSL RSA 密钥生成过程中):
- □相同的 p 由多个设备产生(源自启动时的低熵),但是不同的 q (源自额外的随机性).
 - □ 问题: 不同设备的 N_1,N_2, \gcd(N_1,N_2) = ?
 - □ 实验结果: 可分解 0.4% 的公开的HTTPS密钥。

故障攻击

- \circ 故障攻击: 在解密过程中 $c^d \bmod N$ 发生的计算机故障可能泄漏 d 。
- 之前提到过使用中国剩余定理来加速解密:

$$[c^d \bmod N] \leftrightarrow ([m_p \equiv c^d \pmod p], [m_q \equiv c^d \pmod q])$$

- \circ 假设在计算 m_q 时发生错误,但在计算 m_p 时没有错误。
- $om m' \equiv c^d \pmod{p}$, $m' \not\equiv c^d \pmod{q}$.
- $\circ (m')^e \equiv c \pmod{p}, (m')^e \not\equiv c \pmod{q}$
- $\circ \gcd((m')^e c, N) = ?$
- 防御: 检查输出(但减慢 10%)。

本节小结

□RSA问题是TPD,但书本上RSA加密不安全,RSA-OAEP在ROM下是CCA安全的。