

Application Note

TID MEMORY MAPS FOR MONZA SELF-SERIALIZATION

TECHNICAL REFERENCE

TABLE OF CONTENTS

1	Intro	duction	1
2		za Self-Serialization Formulas	
	2.1	Monza Series	2
	2.2	Monza Series Cycle Counter	3
	2.3	Serialization Bits	3
	2.4	Impinj M700 Series Memory Map	4
	2.4.1	Example - Impinj M750 Series 2 Serial Number	5
	2.5	Monza 6 Family TID Memory Map	6
	2.5.1	Example – Monza R6-P Series 1 Serial Number	8
	2.6	Monza 5 TID Memory Map	10
	2.6.1	Example – Monza 5 Series 1 Serial Number	11
	2.7	Monza 4 TID Memory Map	13
	2.8	Monza X Family TID Memory Map	15
3		ces	

1 INTRODUCTION

RFID tags have been applied to billions of apparel items and an increasing number of retailers are requesting RFID tagged items from their suppliers. RFID systems require that each item have a unique serial number so that it can be identified or counted; so brand owners are faced with the challenge of managing and encoding unique serial numbers across their global, and often complex, supply chains.

In the past, brand owners only had a choice between implementing and administering their own IT-based serialization systems or outsourcing serial number management to one or more qualified third-party service bureaus. These options for implementing or outsourcing serialization may force brand owners to change their business processes in ways that increase costs or decrease their supply chain responsiveness and flexibility.

With Monza® Self-Serialization brand owners have an easy-to-deploy and scalable EPC serialization method based on Impinj's breakthrough tag chip serial number management and an ecosystem of high-performance encoding solutions. Monza Self-Serialization enables brand owners to generate a serial number directly from their tag chip, eliminating the need for IT systems to coordinate, distribute and synchronize serial numbers. In addition, brand owners gain control and flexibility to choose when, where and how they manage their RFID tagging processes and deliver properly tagged products.

At the heart of Monza Self-Serialization are Impinj's endpoint ICs. Boasting leading encoding performance and built-in scalable serialization, these tag chips are supported by a global ecosystem of high-quality inlay manufacturers and service bureaus. Monza Self-Serialization allows RFID printer encoders and inline or bulk encoding solutions based on the Impinj ItemEncode software to construct a unique Serialized Global Trade Item Number (SGTIN) under the hood, using existing IT-based barcode and variable data management business processes.

Monza Self-Serialization allows:

- Scalable serialization built into Impinj endpoint ICs
- SGTIN serial numbers generated directly from Monza's unalterable Tag Identifier (TID)
- EPC data quality and integrity with verifiable SGTIN at any point in supply chain
- Forward compatible with future generations of Impinj endpoint ICs

Monza Self-Serialization is an easy to deploy and scalable chip-based serialization method for item-level RFID tagging where a unique EPC serial number is generated from the unalterable serialized Tag Identifier (TID) and encoded as part of a unique Electronic Product Code (EPC) into the EPC memory bank of an Impinj endpoint ICs.

This application note documents the use of the unalterable serialized Tag Identifier (TID) for generating serial numbers which may be stored in the EPC memory bank.

Table 1: TID Bits for Impinj Tag Chip Models

SERIALIZATION FAMILY	TAG CHIP	1 ST 32-BITS OF TID	NOTES
Monza	Impinj M750	E2801190	
Monza	Impinj M730	E2801191	
Monza	Monza R6-P	E2801170	
Monza	Monza R6-A	E2801171*	Wafer Mask Revision: 000
Monza	Monza R6-B	E2801171*	Wafer Mask Revision: 001
Monza	Monza R6	E2801160	
Monza	Monza 5	E2801130	
Monza	Monza 4D	E2801100	
Monza	Monza 4E	E280110C	
Monza	Monza 4QT	E2801105	
Monza	Monza 4i	E2801114	
MonzaX	Monza X-2K	E2801140	
MonzaX	Monza X-8K	E2801150	

^{*}Monza R6-A and Monza R6-B share the same Tag Model Number (TMN) but they can be distinguished by their wafer mask revision numbers. Monza R6-A has a wafer mask revision value of 000₂, and Monza R6-B has a wafer mask revision value of 001₂.

2 MONZA SELF-SERIALIZATION FORMULAS

To accommodate differences in TID serial number structures between Impinj endpoint ICs and to enable forward compatible innovation in future generations of Impinj endpoint ICs, Impinj utilizes Monza model specific "formulas" to specify which bits should be used from the TID and how those bits should be ordered to construct a unique serial number that can be used in EPC compliant or other customer specific tag data schemas.

2.1 Monza Series

- Impinj endpoint ICs contain 2-bit Monza Series ID in the TID memory bank to identify the serial number pool that the serial number was generated from. These tag chips can support Series 0 [00] through Series 3 [11].
- Currently, there are two different serialization families: Monza and MonzaX.
- For a serialization family and a given series there is a unique set of 38-bit serial number values which may be shared across multiple tag chip models. Serial numbers are not unique across multiple series and serialization families. As an example, Monza R6 Series 1 and Monza 5 Series 1 are each independent SKUs that contain serial numbers from the same Monza Series 1 serial number pool. Meanwhile, Monza 4 Series 0, Monza 5 Series 1 and Monza X-8K Series 3 span multiple serialization families and multiple series, so these serial numbers come from different pools and would not be guaranteed unique.

- End users can utilize Monza Self-Serialization on tag chips with different serial number sources (Example: Monza 5 Series 1 and Monza 4 Series 0) by assigning a unique serialization prefix (MSB of generated 38-bit serial number) to each.
- The 96-bit TIDs and 96-bit serial numbers for all Impinj endpoint ICs are unique.
- Currently the "Monza" serialization family uses Series 1 and the "MonzaX" serialization family uses Series 3 specifically for the Monza X tag chip family.

2.2 Monza Series Cycle Counter

- The Series Cycle Counter is a Series specific 1-bit value that increments when the series rolls over.
- The cycle counter is used to identify series rollover by downstream customers and to maintain 96bit TID uniqueness.
- The cycle counter is not contained in the TID memory of Impinj M700, Monza 5, Monza 4, Monza X-2K or Monza X-8K tag chips and is always set to zeros. The Monza 6 family tag chips supports the cycle counter in TID NVM.

2.3 Serialization Bits

Impinj endpoint ICs come with a 48-bit serialized number found in bits 30_h - $5F_h$ of TID memory. This number may include additional information such as the Monza Series ID and the Monza Series Cycle Counter along with a 38-bit serial number that is unique for a serialization family for a given series as defined for each Impinj endpoint ICs in the following sections.

The table below shows how the bits from Monza Self-Serialization are used for generating serialized 96-bit EPC values.

Table 2: Supported EPC Memory Serialization Bits When Using Monza Self-Serialization

BITS	DATA (ZEROS FROM MSS)	VALUES
35	FFFFFFFFFFFFFF80000000	[61-bits Data][35-bit Serial Number]
36	FFFFFFFFFFFFFF00000000	[60-bits Data][36-bit Serial Number]
37	FFFFFFFFFFFFE00000000	[59-bits Data][37-bit Serial Number]
38	FFFFFFFFFFFFC00000000	[58-bits Data][38-bit Serial Number]
96	000000000000000000000000000000000000000	[96-bit Serial Number]

2.4 Impinj M700 Series Memory Map

Table 3: Impinj M700 Series TID Memory Map

, , , , , , , , , , , , , , , , , , , ,																		
Bit Address	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F		
50 _h -5F _h	Х	Х	Х	Х	Х	х	х	Х	Х	Х	Х	х	х	х	х	Х		
40_{h} - $4F_{h}$	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	х	х	х	х	х	Х		
30 _h -3F _h	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х		
20 _h -2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0			
10 _h -1F _h 0 0 0 1 0					0	0	0	1	1	0	0	1	0	0	0	M		
00 _h -0F _h	1	1		0		1		1	0	0	0	0	0	0	0			
					MEM	IORY I	MAP L	EGEN	D									
Segment			L	Location			its		Bina	ary		Value						
ISO / IEC 15963 Clas	s Ident	ifier	00 _h -07 _h			8	8	111(00010			GS1 E	EPCglob	oal Clas	s 1 Gen	2		
XTID Indicator	(X bit)		08 _h			,	1	1					tes the		ence o	f an		
Security Indicato	r (S bit)	09 _h				1	0				Does not implement Authenticate or Challenge commands						
File Indicator (F bit)			0A _h		,	1	0				Does not implement the FileOpen command						
Mask Designer Ident	ifier (M	DID)		0B _h -13 _h	n	S)*	0000	0000	1								
Tag Model Numbe	I)	14 _h -1F _h			1	2	0001	11001	M000		Impinj M700 series, whe variable M specifies the tag • "1" for Impinj M730 • "0" for Impinj M750							
EPC Tag Data Stand	ader	20 _h -2F _h			1	6	0010000000000000			Supports extended TID (XTID) – 48-bit SN								
Wafer Mask Re		30 _h -32 _h			(3						Indicates the Mask Revision for the tag						

Note: The values for x denotes the unique serialization values for each chip, and the M denotes the model specific TMN numbers. *The GS1 currently defines the MDID as the 9 bit value from $0B_h$ to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 100000000001_b or 801_b.

5

2

38

00000

01

Supports Series 0 – Series 3

Impinj M700, Series 0 [00] - Series 3 [11] 96-bit Serial Number Formula

50_h-54_h

55_h-56_h

[00h:07h][08h:13h][14h:1Fh] 1010 0101 0000 0[30h:32h] 000[50h:56h][57h:5Fh][40h:4Fh][33h:3Fh]

Impinj M700, Series 0 [00] - Series 3 [11] 38-bit Serial Number Formula

[57h:5Fh][40h:4Fh][33h:3Fh]

Reserved for Future Use

Monza Series ID

Serial Number

2.4.1 Example - Impinj M750 Series 2 Serial Number

Table 4: TID Memory Map EXAMPLE - Impinj M750 Series TID E2801190200069F009420300

	IMPINJ M750 TID MEMORY BANK															
Bit Address	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
50 _h -5F _h	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
40 _h -4F _h	0	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0
30 _h -3F _h	0	1	1	0	1	0	0	1	1	1	1	1	0	0	0	0
20 _h -2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10 _h -1F _h	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0
00 _h -0F _h	1	1	1				1		1	0	0	0	0	0	0	0

	MEI	MORY MAP	LEGEND	
Segment	Location	Bits	Binary	Value
ISO / IEC 15963 Class Identifier	00 _h -07 _h	8	11100010	GS1 EPCglobal Class 1 Gen 2
XTID Indicator (X bit)		1	1	Indicates the presence of an extended TID (XTID)
Security Indicator (S bit)	09 _h	1	0	Does not implement Authenticate or Challenge commands
File Indicator (F bit)	0A _h	1	0	Does not implement the FileOpen command
Mask Designer Identifier (MDID)	0B _h -13 _h	9*	00000001	Impinj
Tag Model Number (TMN)	14 _h -1F _h	12	000110010000	"0" for Impinj M750
EPC Tag Data Standard Header	20 _h -2F _h	16	00100000000000000	Supports extended TID (XTID) – 48-bit SN
Wafer Mask Revision	30 _h -32 _h	3	011	Indicates the Mask Revision for the tag
Reserved for Future Use	50 _h -54 _h	5	00000	
Monza Series ID	55 _h -56 _h	2	01	Supports Series 0 – Series 3
Serial Number		38	1000000000000100 1010000100100111 110000	

^{*}The GS1 currently defines the MDID as the 9 bit value from $0B_h$ to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 1000000000001_b or 801_h .

• Impinj M750 Example, Series 2 [10] 96-bit Serial Number Formula

[00h:07h][08h:13h][14h:1Fh] 1010 0101 0000 0[30h:32h] 000[50h:56h][57h:5Fh][40h:4Fh][33h:3Fh]

96-bit Serial Number (binary):

1110 0010 1000 0000 0001 0001 1001 0000 1010 0101 0000 0011 0000 0000 0110 0000 0000 0001 0010 1000 0100 1001 1111 0000

96-bit Serial Number (hex):

E280 1190 A503 0060 0128 49F0

Impinj M750 Example, Series 2 [10] 38-bit Serial Number Formula

[57h:5Fh][40h:4Fh][33h:3Fh]

38-bit Serial Number (binary):

10 0000 0000 0001 0010 1000 0100 1001 1111 0000

38-bit Serial Number (hex):

20012849F0

2.5 Monza 6 Family TID Memory Map

Table 5: Monza 6 TID Memory Map

			_															
			1) MEMO	DRY B	ANK												
Bit Address	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F		
50 _h -5F _h	Х	х	Х	х	х	Х	Х	х	Х	Х	Х	х	х	х	Х	х		
40 _h -4F _h	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	х	х	х	Х	Х		
30 _h -3F _h	Х	Х	Х	Х	х	Х	Х	х	Х	Х	Х	х	х	х	х	Х		
20 _h -2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0		
10 _h -1F _h	0	0	0	1	0	0	0	1	0	1	1	M	M	M	M	M		
00 _h -0F _h	1	1	1				1		1	0	0	0	0	0	0	0		
					ME	MORY	MAP	LEGEN	D									
Segment			L	ocatio	n	В	its		Bina	ıry				Value				
ISO / IEC 15963 Clas	s Ident	ifier		00 _h -07 _t		1	3	1110	010			GS1 EPCglobal Class 1 Gen 2						
XTID Indicator	(X bit)		08 _h				1	1						e prese (XTID)	ence o	fan		
Security Indicato	r (S bit)	09 _h				1	0						lement comma		ticate		
File Indicator (F bit)		0A _h			1 0						Does comm		lement t	the <i>File</i>	Open		
Mask Designer Ident	ifier (M	DID)	()B _h -13 _l	h	9)*	0000	00001									
Tag Model Numbe	er (TMN	l)	,	14 _h -1F _i	h	1	2	0001	011MM	MMM		Monza 6 family, where MMMMM specifies the Monza 6 tag model (See Table 6)						
EPC Tag Data Stand	ard Hea	ader	2	20 _h -2F _i	h	1	6	0010	0000	00000	000	Suppo 48-bit		ended T	TD (XT	D) –		
Wafer Mask Re	vision		;	30 _h -32 _h	n	;	3					Indica the ta		Mask	Revisio	n for		
Integra™ TID F	Parity		33 _h				1	(Parity	y)			Bit is set to guarantee bits 30:5F have even parity						
Reserved for Fut	ure Use	•	50 _h -52 _h			;	3	000										
Monza Series	s ID		!	53 _h -54 _h		:	2	01 Supports Series 0 – S							Series 3			

Note: The values for x denotes the unique serialization values for each chip, and the M denotes the model specific TMN numbers. *The GS1 currently defines the MDID as the 9 bit value from $0B_h$ to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 1000000000001_b or 801_h .

38

34_h

0

Monza Series Cycle Counter

Serial Number

Series rollover indicator

Table 6: Monza 6 Model Numbers

TAG MODEL	TAG MODEL NUMBER	WAFER MASK REVISION
Monza R6	000101100000	011
Monza R6-A	000101110001	000
Monza R6-B	000101110001	001
Monza R6-P	000101110000	000

Monza 6 Series 0 [00] – Series 3 [11] 96-bit Serial Number Formula

 $[00_h:07_h] [08_h:13_h] [14_h:1F_h] [30_h:32_h] 0 \quad [50_h:52_h] 0 \quad 0000 \quad 0000 \quad 0[53_h:54_h] 0 \quad 0[34_h] [55_h:5F_h] [40_h:4F_h] [35_h:3F_h]$

Monza 6 Series 0 [00] – Series 3 [11] 38-bit Serial Number Formula

[55_h:5F_h][40_h:4F_h][35_h:3F_h]

- Implementation notes:
 - Monza 6 family tag chip's EPC is pre-serialized using the 96-bit serial number formula above.
 - Last 48-bits of TID should always have even parity.

2.5.1 Example – Monza R6-P Series 1 Serial Number

Table 7: TID Memory Map EXAMPLE - Monza R6-P TID E280117020001089CCEB08DF

Table 7. TID MEITO	ı y ıvıc	лр L7	VAIVI		10	MININIZA KO-F TID E200117020001009CCEB00DF												
					MC	NZA 6	5 TID I	ИЕМО	RY BAN	NK								
Word	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F		
50 _h -5F _h	0	0	0	0	1	0	0	0	1	1	0	1	1	1	1	1		
40 _h -4F _h	1	1	0	0	1	1	0	0	1	1	1	0	1	0	1	1		
30 _h -3F _h	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1		
20 _h -2F _h	20 _h -2F _h 0 0 1							0	0	0	0	0	0	0	0	0		
10 _h -1F _h	1F _h 0 0 0 1 0 0 1 0 1 1								1	0	0	0	0					
00 _h -0F _h	1		0	0	1	0	1	0	0	0	0	0	0	0				
						МЕМС	ORY M	AP LE	GEND									
Segment			L	ocati	on	В	its		Bi	nary				Value				
ISO / IEC 15963 Class	dent	ifier	C	00 _h -07	7 _h	3	8	1110	0010			GS1 EPCglobal Class 1 Gen 2						
XTID Indicator ()	X bit)		08 _h		1		1					ites the			f an			
Security Indicator	(S bit)	09 _h			1	0					not imp allenge			ticate			
File Indicator (F	bit)		0A _h			1	0				Does comm	not imp and	lement 1	the <i>File</i>	Open			
Mask Designer Identif	fier (M	DID)	O)B _h -1;	3 _h	9*		0000	00001			Impinj						
Tag Model Number	r (TMN	1)	1	4 _h -1F	h	1	2	0001	101110	000		Tag model number (Monza R6-P)						
EPC Tag Data Standa	ırd Hea	ader	2	20 _h -2F	= _h	1	6	0010	00000	000000	0	Supports extended TID (XTID) – 48-bit SN						
Wafer Mask Rev	ision		3	30 _h -32	2 _h	;	3	000				Indica the ta	ites the	Mask	Revisio	n for		
Integra™ TID Pa	arity			33 _h			1	1					set to g even pa		e bits 3	80:5F		
Reserved for Futu	re Use	Э	5	50 _h -52	2 _h	;	3	000										
Monza Series	ID		5	53 _h -54	4 _h	:	2	01				Suppo	orts Seri	ies 0 – 9	Series 3			
Monza Series Cycle	Coun	ter		34 _h			1	0				Series	s rollove	r indica	tor			
Serial Number	er					3	38			111100		30037	989513	decim	al)			

^{*}The GS1 currently defines the MDID as the 9 bit value from 0B_h to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 100000000001_b or 801_h.

Monza R6-P Example, Series 0 [00] – Series 3 [11] 96-bit Serial Number Formula

 $[00_h:07_h] [08_h:13_h] [14_h:1F_h] [30_h:32_h] 0 \quad [50_h:52_h] 0 \quad 0000 \quad 0000 \quad 0[53_h:54_h] 0 \quad 0[34_h] [55_h:5F_h] [40_h:4F_h] [35_h:3F_h]$

Series 1 96-bit Serial Number (binary):

Series 1 96-bit Serial Number (hex):

E280117000000206FE675889

• Monza R6-P Example, Series 0 [00] - Series 3 [11] 38-bit Serial Number Formula

[55_h:5F_h][40_h:4F_h][35_h:3F_h]

Series 1 38-bit Serial Number (binary):

00 0110 1111 1110 0110 0111 0101 1000 1000 1001

Series 1 38-bit Serial Number (hex):

06FE675889

2.6 Monza 5 TID Memory Map

Table 8: Monza 5 TID Memory Map

abic o. monza c			<i>y</i> a	۲												
				IM	PINJ I	TID ME	MOR	Y BAN	K							
Bit Address	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
50 _h -5F _h	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х
40_{h} - $4F_{h}$	Х	Х	х	Х	Х	Х	х	Х	Х	х	Х	Х	Х	х	Х	Х
30 _h -3F _h	X	Х	Х	Х	Х	Х	0**	Х	Х	х	Х	Х	Х	х	Х	х
20 _h -2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10 _h -1F _h	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0
00 _h -0F _h	0	1		1	0	0	0	0	0	0	0					
					ME	MORY	MAP	LEGE	ND							
Segme	nt		L	ocatio	n	Bits			Bin	ary				Value		
ISO / IEC 15963 CI	ass Ider	ntifier	00 _h -07 _h				8	111	00010			GS1 E	EPCglob	oal Cla	ss 1 Ge	n 2
XTID Indicato	r (X bit)		08 _h				1	1					tes the		sence	of an
Security Indica	tor (S bi	it)		09 _h			1 0					Does not implement Authenticate or Challenge commands				
File Indicator	(F bit)			0A _h			1	0				Does not implement the FileOpen command				
Mask Designer Ide	ntifier (I	MDID)	()B _h -13	h	Ś)*	000	00000	1		Impin				
Tag Model Num	N)		14 _h -1F	n	1	2	000	10011	0000		Monza	a 5 fami	ly TMN	١		
EPC Tag Data Star	eader	20 _h -2F _h			1	6	0010000000000000				Supports extended TID (XTID) – 48-bit SN					
Wafer Mask R	evision			30,-33		4					Indicates the Mask Revision for					

Note: The values for X will be replaced by the unique serialization values for each chip.

30_h-33_h

50_h-52_h

53_h-54_h

01

2

38

the tag

Supports Series 0 – Series 3

Table 9: Monza 5 Model Numbers

Reserved for Future Use

Monza Series ID

Serial Number

TAG MODEL	TAG MODEL NUMBER	WAFER MASK REVISION
Monza 5	000100110000	0011

Monza 5 Series 0 [00] 96-bit Serial Number Formula

^{*} The GS1 currently defines the MDID as the 9 bit value from 0B_h to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 100000000001_b or 801_b.

^{**} This bit is always fixed to zero on Monza 5. For this reason, it is not included in the Serial Number formula.

Monza 5 Series 0 [00] 38-bit Serial Number Formula

 $000[55_h:5C_h][41_h:4F_h][5D_h:5F_h][40_h][38_h:3F_h]$

Monza 5 Series 1 [01] – Series 3 [11] 96-bit Serial Number Formula

 $[00_h:07_h] [08_h:13_h] [14_h:1F_h] [30_h:33_h] [50_h:52_h] 0 \ 0000 \ 0000 \ 0000 \ 0[53_h:54_h] 0 \ 00[55_h:5F_h] [40_h:4F_h] [34_h:35_h] [37_h:3F_h]$

Monza 5 Series 1 [01] – Series 3 [11] 38-bit Serial Number Formula

[55_h:5F_h][40_h:4F_h][34_h:35_h][37_h:3F_h]

2.6.1 Example – Monza 5 Series 1 Serial Number

Table 10: TID Memory Map EXAMPLE - Monza 5 TID E280113020003993EEE1088E

	IMPINJ M750 TID MEMORY BANK															
Bit Address	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
50 _h -5F _h	0	0	0	0	1	0	0	0	1	0	0	0	1	1	1	0
40 _h -4F _h	1	1	1	0	1	1	1	0	1	1	1	0	0	0	0	1
30 _h -3F _h	0	0	1	1	1	0	0**	1	1	0	0	1	0	0	1	1
20 _h -2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10 _h -1F _h	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0
00 _h -0F _h	1	1	1				1		1	0	0	0	0	0	0	0
					ME	MORY	MAD	LECE	ND							

MEMORY MAP LEGEND										
Segment	Location	Bits	Binary	Value						
ISO / IEC 15963 Class Identifier	00 _h -07 _h	8	11100010	GS1 EPCglobal Class 1 Gen 2						
XTID Indicator (X bit)		1	1	Indicates the presence of an extended TID (XTID)						
Security Indicator (S bit)	09 _h	1	0	Does not implement Authenticate or Challenge commands						
File Indicator (F bit)	0A _h	1	0	Does not implement the FileOpen command						
Mask Designer Identifier (MDID)	0B _h -13 _h	9*	000000001	Impinj						
Tag Model Number (TMN)	14 _h -1F _h	12	000100110000	Monza 5 family						
EPC Tag Data Standard Header	20 _h -2F _h	16	00100000000000000	Supports extended TID (XTID) – 48-bit SN						
Wafer Mask Revision	30 _h -33 _h	4	0011	Indicates the Mask Revision for the tag						
Reserved for Future Use	50 _h -52 _h	3	000							
Monza Series ID	53 _h -54 _h	2	01	Supports Series 0 – Series 3						
Serial Number		38	0001000111011101 1101110000110110 010011							

^{*} The GS1 currently defines the MDID as the 9 bit value from 0B_h to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 100000000001_b or 801_h.

** This bit is always fixed to zero on Monza 5. For this reason, it is not included in the Serial Number formula.

Monza 5 Example – Series 1 [01] – Series 3 [11] 96-bit Serial Number Formula

 $[00_h:07_h] [08_h:13_h] [14_h:1F_h] [30_h:33_h] [50_h:52_h] 0 \ 0000 \ 0000 \ 0[53_h:54_h] 0 \ 00[55_h:5F_h] [40_h:4F_h] [34_h:35_h] [37_h:3F_h]$

Series 1 96-bit Serial Number (binary):

Series 1 96-bit Serial Number (hex):

E28011303000020477770D93

Monza 5 Example – Series 1 [01] – Series 3 [11] 38-bit Serial Number Formula

[55_h:5F_h][40_h:4F_h][34_h:35_h][37_h:3F_h]

Series 1 38-bit Serial Number (binary):

00 0100 0111 0111 0111 0111 0000 1101 1001 0011

Series 1 38-bit Serial Number (hex):

0477770D93

2.7 Monza 4 TID Memory Map

Table 11: Monza 4 TID Memory Map

Table 11: Monza 4 TID Memory Map																
IMPINJ M750 TID MEMORY BANK																
Bit Address	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
50 _h -5F _h	х	х	х	х	х	Х	х	Х	Х	Х	х	Х	Х	х	Х	Х
40 _h -4F _h	Х	Х	Х	х	х	Х	х	Х	х	Х	х	Х	Х	х	Х	Х
30 _h -3F _h	х	х	х	х	х	х	х	Х	х	х	0**	Х	Х	х	Х	Х
20 _h -2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10 _h -1F _h	0	0	0	1	0	0	0	1	0	0	0	M	M	M	M	M
00 _h -0F _h	1	1	1				1		1	0	0	0	0	0	0	0
	MEMORY MAP LEGEND															
Segmen	nt		L	ocatio	n	В	its		Bin	ary		Value				
ISO / IEC 15963 Cla	ıss Ider	tifier	(00 _h -07 _h			8	111	11100010			GS1 EPCglobal Class 1 Gen 2				n 2
XTID Indicator	r (X bit)					,	1	1	1			Indicates the presence of extended TID (XTID)				of an
Security Indicat	or (S bi	it)		09 _h			1	0				Does not implement Authenticate or Challenge commands				
File Indicator	(F bit)			0A _h			1	0				Does not implement the File command				eOpen
Mask Designer Ider	Designer Identifier (MDID) 0B _h -13 _h				h	9)*	000	00000	1		Impinj				
Tag Model Number (TMN) 14 _h -1F _h				1	2 0001000ммммм				Monza 4 family, where MMMMM specifies the Monza 4 tag model (See Table 12)							
EPC Tag Data Stan	dard He	eader	20 _h -2F _h			1	16 0010000000000000			Supports extended TID (XTID)						
Wafer Mask R	Revision 30 _h -33 _h			h		4					Indicates the Mask Revision for the tag					
Reserved for Fu	Reserved for Future Use 50 _h -52 _h						3	000								
Monza Serie	Monza Series ID 53 _h -54 _h					:	2	01				Supports Series 0 – Series 3				
Serial Num	ber					3	8									

Note: The values for X will be replaced by the unique serialization values for each chip.

^{*} The GS1 currently defines the MDID as the 9 bit value from $0B_h$ to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 1000000000001_b or 801_h .

^{**} This bit is always fixed to zero on Monza 5. For this reason, it is not included in the Serial Number formula.

Table 12: Monza 4 Model Numbers

TAG MODEL	TAG MODEL NUMBER	WAFER MASK REVISION
Monza 4D	000100000000	0111
Monza 4E	000100001100	0111
Monza 4QT	000100000101	0111
Monza 4i	000100010100	0111

Monza 4 Series 0 [00] 96-bit Serial Number Formula

 $[00_h:07_h] [08_h:13_h] [14_h:1F_h] [30_h:33_h] [50_h:52_h] 0 0000 0000 0000 0[53_h:54_h] 0 0000 0[55_h:5C_h] [41_h:4F_h] [5D_h:5F_h] [40_h] [36_h:39_h] [3C_h:3F_h]$

Monza 4 Series 0 [00] 38-bit Serial Number Formula

 $000\,[55_h\!:\!5C_h]\,[41_h\!:\!4F_h]\,[5D_h\!:\!5F_h]\,[40_h]\,[36_h\!:\!39_h]\,[3C_h\!:\!3F_h]$

Monza 4 Series 1 [01] – Series 3 [11] 96-bit Serial Number Formula

 $\begin{array}{l} [00_h:07_h] \ [08_h:13_h] \ [14_h:1F_h] \ [30_h:33_h] \ \ [50_h:52_h] \ 0 \ 0000 \ 0000 \ 0000 \ 0[53_h:54_h] \ 0 \ 00 \ [55_h:5F_h] \ [40_h:4F_h] \ [34_h:35_h] \ [38_h] \ [36_h:39_h] \ [3C_h:3F_h] \end{array}$

Monza 4 Series 1 [01] – Series 3 [11] 38-bit Serial Number Formula

 $[55_h:5F_h][40_h:4F_h][34_h:35_h][3B_h][36_h:39_h][3C_h:3F_h]$

2.8 Monza X Family TID Memory Map

Table 13: Monza X TID Memory Map

able 13. Monza X 11b Memory Map																
IMPINJ M750 TID MEMORY BANK																
Word	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
50 _h -5F _h	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
40 _h -4F _h	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
30 _h -3F _h	Х	Х	Х	Х	Х	х	0**	Х	х	Х	Х	Х	Х	х	Х	Х
20 _h -2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10 _h -1F _h	0	0	0	1	0	0	0	1	0	1	0	M	0	0	0	0
00 _h - 0 F _h	1	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0
MEMORY MAP LEGEND																
Segmen	Segment Location				n	Bits Binary					Value					
ISO / IEC 15963 Cla	ıss Ider	ntifier	(00 _h -07 _l	n		8	11100010			GS1 EPCglobal Class 1 Gen 2				n 2	
XTID Indicator	r (X bit)						1	1				Indicates the presence of a extended TID (XTID)			of an	
Security Indicat	or (S bi	it)		09 _h			1	0				Does not implement Authentor Challenge commands				nticate
File Indicator	(F bit)			0A _h			1	0				Does not implement the FileOpe command			eOpen	
Mask Designer Identifier (MDID) 0B _h -13 _h				9)*	000	00000	1		Impinj						
Tag Model Numl	ber (TM	N)	14 _h -1F _h			1	2	0001010M0000				Tag Model Number, where M specifies either Monza X-2K or Monza X-8K (See Table 14)				
EPC Tag Data Stan	dard He	eader	r 20 _h -2F _h			1	6	00100000000000000				Supports extended TID (XTID)				
Wafer Mask Revision			;	30 _h -33	1	,	4				Indicates the Mask Revision for the tag					

Note: The values for X will be replaced by the unique serialization values for each chip.

50_h-52_h

53_h-54_h

3

2

38

000

11

the tag

Supports Series 0 - Series 3

Series rollover indicator

Table 14: Monza X Model Numbers

Reserved for Future Use

Monza Series ID

Serial Number

TAG MODEL	TAG MODEL NUMBER	WAFER MASK REVISION
Monza X-2K	000101000000	0010
Monza X-8K	000101010000	0001

^{*} The GS1 currently defines the MDID as the 9 bit value from OB_h to 13_h in the Tag Data Standard (TDS). A previous TDS definition included the X, S and F bits in the MDID. For applications using a 12-bit MDID, the value would be 1000000000001_b or 801_h .

^{**} This bit is always fixed to zero on Monza 5. For this reason, it is not included in the Serial Number formula.

Monza X Series 1 [01] – Series 3 [11] 96-bit Serial Number Formula

 $\begin{array}{c} [00_h:07_h] \ [08_h:13_h] \ [14_h:1F_h] \ [30_h:33_h] \ \ [50_h:52_h] \ 0 \ 0000 \ 0000 \ 0000 \ 0[53_h:54_h] \ 0 \ 00 \ [55_h:5F_h] \ [40_h:4F_h] \ [34_h:35_h] \ [37_h:3F_h] \end{array}$

• Monza X Series 1 [01] - Series 3 [11] 38-bit Serial Number Formula

[55_h:5F_h][40_h:4F_h][34_h:35_h][37_h:3F_h]

3 NOTICES

Copyright © 2020, Impinj, Inc. All rights reserved.

Impinj gives no representation or warranty, express or implied, for accuracy or reliability of information in this document. Impinj reserves the right to change its products and services and this information at any time without notice.

EXCEPT AS PROVIDED IN IMPINJ'S TERMS AND CONDITIONS OF SALE (OR AS OTHERWISE AGREED IN A VALID WRITTEN INDIVIDUAL AGREEMENTWITH IMPINJ), IMPINJ ASSUMES NO LIABILITY WHATSOEVER AND IMPINJ DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY, RELATED TO SALE AND/OR USE OF IMPINJ PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY PATENT, COPYRIGHT, MASKWORK RIGHT, OR OTHER INTELLECTUALPROPERTY RIGHT IS GRANTED BY THIS DOCUMENT.

Impinj assumes no liability for applications assistance or customer product design. Customers should provide adequate design and operating safeguards to minimize risks.

Impinj products are not designed, warranted or authorized for use in any product or application where a malfunction may reasonably be expected to cause personal injury or death, or property or environmental damage ("hazardous uses"), including but not limited to military applications; life-support systems; aircraft control, navigation or communication; air-traffic management; or in the design, construction, operation, or maintenance of a nuclear facility. Customers must indemnify Impinj against any damages arising out of the use of Impinj products in any hazardous uses

Impinj, and Impinj products and features are trademarks or registered trademarks of Impinj, Inc. For a complete list of Impinj Trademarks, visit www.impinj.com/trademarks. All other product or service names may be trademarks of their respective companies.

The products referenced in this document may be covered by one or more U.S. patents. See www.impinj.com/patents for details.