

TC - 4ETI - CI : CAPTEURS INTELLIGENTS

L. LABRAK

Section ETI : Sciences du Numérique

CONVERSIONS DES SIGNAUX

La chaine d'acquisition

Entrée : simple ou différentielle

CAN

Définitions

Q (Quantum) ou LSB (Last Significant Bit) => Résolution

$$1 LSB = FSR/(2^n - 1)$$

Tension de pleine échelle (FSR) vs Tension de référence (VREF)

Caractéristique de transfert d'un CAN [1]

[1] Len Satller, Silicon labs, Application Notes

Erreur de quantification

Comment la réduire ?

Erreur de décalage

Constante sur toute la plage

Elements of Transfer Diagram for an Ideal Linear ADC

Erreur de Gain

Mesurée sur la dernière transition

DNL: Differential Non Linearity

Peut induire code manquant

Elements of Transfer Diagram for an Ideal Linear ADC

INL: Integral Non Linearity

Erreur cumulative sur chaque transition

CAN

Inclus l'ensemble des défauts à chaque transition

Retour sur l'échantillonage

Retour sur l'échantillonnage

- Sample (Track) and Hold

Retour sur l'échantillonnage

Acquisition Time (ta):

Temps nécessaire à la capacité C_H pour se charger à la valeur de la tension V_{IN} II dépend de 3 facteurs:

- 1. La constante de temps RC
- 2. Courant max de l'AOP
- 3. Slew rate de l'AOP

Retour sur l'échantillonage

Sample and Hold

Retour sur l'échantillonage

Incertitude sur l'ouverture :

Variation du temps d'ouverture d'un échantillon à l'autre

Temps d'établissement en mode bloqué :

Après application de la commande bloquage, il faut un certain temps pour atteindre le pourcentage d'erreur toléré 1%, 0.1%, 0.01%.

Offset:

Au moment du passage du blocage à l'échantillonnage (et inversement), il y a transfert de charge entre l'interrupteur (switch) et la capacité) => modification de la tension de sortie appelé pedestal error ou sample/hold offset

Retour sur l'échantillonnage

Sample and Hold : variation max et fréquence

Performances dynamiques

- Throughtput et temps de conversion
 - **100 MSPS** avec 13 clk => quelle est la fréquence d'horloge nécessaire?

- => 1/Throughput = NbrCycle* Tclk
- En déduire la fréquence max des signaux d'entrée

ADC0 du C8051F020

Table 5.1. 12-Bit ADC0 Electrical Characteristics (C8051F020/1)

VDD = 3.0V, AV+ = 3.0V, VREF = 2.40V (REFBE=0), PGA Gain = 1, -40°C to +85°C unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY					
Resolution		12			bits
Integral Nonlinearity				±1	LSB
Differential Nonlinearity	Guaranteed Monotonic			±1	LSB
Offset Error			-3±1		LSB
Full Scale Error	Differential mode		-7±3		LSB
Offset Temperature Coefficient			±0.25		ppm/°C
DYNAMIC PERFORMANCE (I	kHz sine-wave input, 0 to 1 dE	below Full	Scale, 10	0 ksps	
Signal-to-Noise Plus Distortion		66			dB
Total Harmonic Distortion	Up to the 5 th harmonic		-75		dB
Spurious-Free Dynamic Range			80		dB
CONVERSION RATE		•			
SAR Clock Frequency				2.5	MHz
Conversion Time in SAR Clocks		16			clocks
Track/Hold Acquisition Time		1.5			μs
Throughput Rate				100	ksps
NALOC DITUTO	•			•	
Input Voltage Range	Single-ended operation	0		VREF	V
*Common-mode Voltage Range	Differential operation	AGND		AV+	V
Input Capacitance			10		pF
TEMPERATURE SENSOR	•				
Nonlinearity		-1.0		+1.0	°C
Absolute Accuracy			±3		°C
Gain	PGA Gain = 1		2.86		mV/°C
Offset	PGA Gain = 1, Temp = 0°C		0.776		V
POWER SPECIFICATIONS					
Power Supply Current (AV+ sup- plied to ADC)	Operating Mode, 100 ksps		450	900	μА
Power Supply Rejection			±0.3		mV/V

Performances dynamiques

- Le SNR

$$f_{eff} = \frac{1}{T} \int_0^T A^2 \sin^2 \omega t \, dt = \frac{A^2}{2}$$
$$E(\epsilon^2) = \frac{1}{q} \int_{-q/2}^{+q/2} \epsilon^2 d \, \epsilon = \frac{q^2}{12}$$

Performances dynamiques

- Le SNR

Error at the jth step

$$E_j = (V_j - V_l)$$

The mean square error over the step

$$\overline{E}_{j}^{2} = \frac{1}{q_{1}} \int_{-q/2}^{+q/2} E_{j}^{2} dE = \frac{q^{2}}{12}$$

Assuming equal steps, the total error is $\overline{N}^2 = q^2/12$ (Mean square quantization noise)

For an input sine wave $F(t) = A \sin \omega t$, the signal power

$$\overline{F}^{2}(t) = \frac{1}{2\pi} \int_{0}^{2\pi} A^{2} \sin^{2}\omega t \, d\omega t = \frac{A^{2}}{2}$$

and
$$q = \frac{2A}{2^n} = \frac{A}{2^{n-1}}$$

$$SNR = 10 Log \left(\frac{F^2}{n^2}\right) = 10 Log \left(\frac{A^2/2}{A^2/3 \times 2^n}\right)$$

$$SNR = 6.02n + 1.76 dB$$

$$ENOB = \frac{SNR_{dB} - 1,76}{6.02}$$

Performances

– Dynamiques : THD – SINAD - SFDR

$$SNR = 20\log\left(\frac{S}{N}\right),\,$$

THD =
$$20 \log \left(\frac{S}{D}\right)$$
 SINAD = $20 \log \left(\frac{S}{N+D}\right)$

ADC0 du C8051F020

Table 5.1. 12-Bit ADC0 Electrical Characteristics (C8051F020/1)

VDD = 3.0V, AV+ = 3.0V, VREF = 2.40V (REFBE=0), PGA Gain = 1, -40°C to +85°C unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY					
Resolution			12		bits
Integral Nonlinearity				±1	LSB
Differential Nonlinearity	Guaranteed Monotonic			±1	LSB
Offset Error			-3±1		LSB
Full Scale Error	Differential mode		-7±3		LSB
Offset Temperature Coefficient			±0.25		ppm/°C
DYNAMIC PERFORMANCE (10	kHz sine-wave input, 0 to 1 dE	below Full	scale, 10	0 ksps	
Signal-to-Noise Plus Distortion		66			dB
Total Harmonic Distortion	Up to the 5 th harmonic		-75		dB
Spurious-Free Dynamic Range			80		dB
CONVERSION KATE	•	•			
SAR Clock Frequency				2.5	MHz
Conversion Time in SAR Clocks		16			clocks
Track/Hold Acquisition Time		1.5			μs
Throughput Rate				100	ksps
ANALOG INPUTS					
Input Voltage Range	Single-ended operation	0		VREF	V
*Common-mode Voltage Range	Differential operation	AGND		AV+	V
Input Capacitance			10		pF
TEMPERATURE SENSOR					
Nonlinearity		-1.0		+1.0	°C
Absolute Accuracy			±3		°C
Gain	PGA Gain = 1		2.86		mV/°C
Offset	PGA Gain = 1, Temp = 0°C		0.776		V
POWER SPECIFICATIONS					
Power Supply Current (AV+ sup- plied to ADC)	Operating Mode, 100 ksps		450	900	μА
Power Supply Rejection			±0.3		mV/V

ARCHITECTURES: SAR

Registre à approximations successives

ARCHITECTURES: Double Rampe

ARCHITECTURES: Flash et Semi-Flash

Le codeur détecte le nombre d'entrées au niveau 0 et code ce nombre sur N bits en sortie (A B C).

ARCHITECTURES: Flash et Semi-Flash

- Nous prenons le cas particulier $V_{IN} = 2.7 \text{ V}$, calculer le nombre numérique D_{MSB} présent à la sortie du CAN1 (nous arrondirons à la valeur immédiatement inférieure).
- Calculer V₃, la tension de sortie du CNA. En déduire V₄, la tension d'entrée du CAN2.
- Calculer le nombre numérique **D**_{LSB} présent à la sortie du CAN2.
- En déduire la donnée D, résultat de la conversion à la sortie du registre.

ARCHITECTURES: Pipeline

ARCHITECTURES: Sigma Delta

ARCHITECTURES: Sigma Delta

ARCHITECTURES: Sigma Delta

ARCHITECTURES: Comparaison

LES CNA (ou DAC)

Définitions

Q (Quantum) ou LSB (Last Significant Bit) => Résolution

$$1 LSB = FSR/(2^n - 1)$$

Tension de pleine échelle (FSR) vs Tension de référence (VREF)

LES CNA (ou DAC)

CNA

Elements of Transfer Diagram for an Ideal Linear DAC

LES CNA(ou DAC)

Erreur de décalage

Actual Diagram

LES CNA(ou DAC)

Erreur de Gain

LES CNA(ou DAC)

DNL: Differential Non Linearity

LES CNA(ou DAC)

INL: Integral Non Linearity

Elements of Transfer Diagram for an Ideal Linear DAC

LES CNA(ou DAC)

Total Error (Absolute Accuracy)

Retour sur l'échantillonage

DAC du C8051F020

Table 8.1. DAC Electrical Characteristics

VDD = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), No Output Load unless otherwise specified

CONDITIONS	MIN	TYP	MAX	UNITS
•	ie .	•	'	
	12		bits	
		±2		LSB
			±l	LSB
No Output Filter 100 kHz Output Filter 10 kHz Output Filter		250 128 41		μVrms
Data Word = 0x014		±3	±30	mV
		6		ppm/°C
		±20	±60	mV
		10		ppm/°C
		-60		dB
DACnEN = 0		100		kΩ
		300		μA
Data Word = 0xFFF		15		mA
•				
Load = 40pF		0.44		V/µs
Load = 40pF, Output swing from code 0xFFF to 0x014		10		μs
	0		VREF- 1LSB	V
		10		μs
I _L = 0.01mA to 0.3mA at code 0xFFF		60		ppm
h DAC)				
Data Word = 0x7FF		110	400	μА
	100 kHz Output Filter 10 kHz Output Filter Data Word = 0x014 DACnEN = 0 Data Word = 0xFFF Load = 40pF Load = 40pF, Output swing from code 0xFFF to 0x014 I _L = 0.01mA to 0.3mA at code 0xFFF	100 kHz Output Filter 10 kHz Output Filter Data Word = 0x014 DACnEN = 0 Data Word = 0xFFF Load = 40pF Load = 40pF, Output swing from code 0xFFF to 0x014 0 I _L = 0.01mA to 0.3mA at code 0xFFF	±2	±2

Performances

– Dynamiques : SNR - THD – SINAD - SFDR

$$SNR = 20 \log \left(\frac{S}{N}\right),$$

Performances

Dynamiques : Settling time, Voltage swing

DAC du C8051F020

Table 8.1. DAC Electrical Characteristics

VDD = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), No Output Load unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE	•	•		•	
Resolution		12		bits	
Integral Nonlinearity			±2		LSB
Differential Nonlinearity				±l	LSB
Output Noise	No Output Filter 100 kHz Output Filter 10 kHz Output Filter		250 128 41		μVrms
Offset Error	Data Word = 0x014		±3	±30	mV
Offset Tempco			6		ppm/°C
Gain Error			±20	±60	mV
Gain-Error Tempco			10		ppm/°C
VDD Power Supply Rejection Ratio			-60		dВ
Output Impedance in Shutdown Mode	DACnEN = 0		100		kΩ
Output Sink Current			300		μA
Output Short-Circuit Current	Data Word = 0xFFF		15		mA
DYNAMIC PERFORMANCE	<u> </u>				
Voltage Output Slew Rate	Load = 40pF		0.44		V/µs
Output Settling Time to 1/2 LSB	Load = 40pF, Output swing from code 0xFFF to 0x014		10		μs
Output Voltage Swing		0		VREF- 1LSB	v
Startup Time			10		μs
ANALOG OUTPUTS					
Load Regulation	I _L = 0.01mA to 0.3mA at code 0xFFF		60		ppm
POWER CONSUMPTION (eac	h DAC)				
Power Supply Current (AV+ sup- plied to DAC)	Data Word = 0x7FF		110	400	μА

ARCHITECTURES : R pondérées

ARCHITECTURES: R-2R

ARCHITECTURES : Courants pondérés

Références bibliographiques

- [1] Len Satller, Silicon labs, Application Notes
- [2] Understanding Data converters, Application report, Texas Instruments

MERCI DE VOTRE ATTENTION!

L. LABRAK

