Lógica

Mauro Polenta Mora

Ejercicio 9

Consigna

Considere un lenguaje de primer orden del tipo $\langle -; 1, 2; 1 \rangle$ con dos símbolos de función f_1 (unario) y f_2 (binario) y un símbolo de constante c_1 .

- (a) Defina inductivamente el conjunto TERM_C de los términos cerrados pertenecientes a dicho lenguaje.
- (b) Defina recursivamente la función $F: \mathrm{TERM}_C \to \mathbb{N}$ que calcula la cantidad de ocurrencias de c_1 en un término $t \in \mathrm{TERM}_C$.
- (c) Demuestre por inducción que para todo $t \in \text{TERM}_C$ se cumple que F(t) > 0.

Resolución

Recordatorio

Sea A el alfabeto de tipo $\langle r_1, \dots, r_n; a_1, \dots, a_m; k \rangle$

- Un término t es cerrado si $FV(t) = \emptyset$.
- Una fórmula es cerrada si $FV(\alpha) = \emptyset$. También se dice en este caso que α es una sentencia.
- Una fórmula α es abierta si no tiene cuantificadores.

Notación:

- $TERM_{CA} = \{t \in TERM_A \mid t \text{ es cerrado}\}$
- $SENT_A = \{\alpha \in FORM_A \mid \alpha \text{ es cerrada}\}$

Parte a

Para definir inductivamente $TERM_C$, observemos que los elementos que pertenezcan a él serán aquellos que son o tienen constantes en él. Ya que si tienen alguna variable, esta pertenecerá a FV(t).

Definimos $TERM_C$ por:

- 1. $c_1 \in TERM_C$
- 2. Si $t \in TERM_C$, entonces $f_1(t) \in TERM_C$

3. Si $t_1, t_2 \in TERM_C$, entonces $f_2(t_1, t_2) \in TERM_C$

Parte b

Basandonos en la definición dada en el paso anterior tenemos que:

$$F: TERM_C \to \mathbb{N} \ 1. \ F(c_1) = 1 \ 2. \ F(f_1(t)) = F(t) \ 3. \ F(f_2(t_1, t_2)) = F(t_1) + F(t_2)$$

Parte c

Queremos probar que para todo $t \in TERM_C$ se cumple que F(t) > 0.

Entonces definimos la propiedad P sobre $TERM_{C}$ de la siguiente forma:

$$P(t): F(t) > 0$$

PASO BASE

$$P(c_1): F(c_1) > 0$$

Observemos que esto se cumple trivialmente por la regla 1 de la definición de la función F, que nos dice que $F(c_1)=1$

PASO INDUCTIVO

PARTE 1

Primero probamos lo correspondiente a la parte 1, es decir que:

(H)
$$P(t) : F(t) > 0$$

$${\rm (I)}\ P(f_1(t)): F(f_1(t))>0$$

Esto también es muy trivial pues la definición de la función F, en la regla 2 nos dice que: $F(f_1(t)) = F(t)$. Por hipótesis tenemos que:

$$F(f_1(t)) = F(t) > 0$$

Aplicando transitividad probamos lo que queríamos verificar.

PARTE 2

- (H) $P(t_1): F(t_1) > 0$
- (I) $P(t_2): F(t_2) > 0$
- $(\mathbf{J}) \ P(f_2(t_1,t_2)) : F(f_2(t_1,t_2)) > 0$

Veamos que podemos decir de la tesis:

$$\begin{split} F(f_2(t_1,t_2)) \\ =& (\text{por regla 3 de } F) \\ F(t_1) + F(t_2) \\ >& (\text{por hipótesis inductiva}) \\ 0 + 0 \end{split}$$

Por lo que por transitividad probamos lo que queríamos verificar.

Esto concluye la prueba por inducción y podemos decir que:

$$\forall t \in TERM_C : F(t) > 0$$