Parametric Estimation

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

A class of distributions

- Loss distribution: not known with certainty
- Class of possible distributions?
 - \circ Suppose class of distributions f(x; heta)
 - $\circ x$ is loss (random variable)
 - \circ θ is vector of unknown **parameters**
- Example: Normal distribution
 - \circ Parameters: $heta=(\mu,\sigma)$, mean μ and standard deviation σ
- Parametric estimation: find 'best' θ^{\star} given data
- Loss distribution: $f(x, heta^{\star})$

Fitting a distribution

- Fit distribution according to error-minimizing criteria
 - Example: scipy.stats.norm.fit(), fitting Normal distribution to data
 - Result: optimally fitted mean and standard deviation

Advantages:

- Can visualize difference between data and estimate using histogram
- Can provide goodness-of-fit tests

Goodness of fit

- How well does an estimated distribution fit the data?
- Visualize: plot histogram of portfolio losses

Goodness of fit

- How well does an estimated distribution fit the data?
- Visualize: plot histogram of portfolio losses
- Normal distribution with norm.fit()

Goodness of fit

- How well does an estimated distribution fit the data?
- Visualize: plot histogram of portfolio losses
- Example:
 - Normal distribution with norm.fit()
 - Student's t-distribution with t.fit()
 - Asymmetrical histogram?

Anderson-Darling test

- Statistical test of goodness of fit
 - Test null hypothesis: data are Normally distributed
 - Test statistic rejects Normal distribution if larger than critical_values
- Import scipy.stats.anderson
- Compute test result using loss data

```
from scipy.stats import anderson
anderson(loss)
```

```
AndersonResult(statistic=11.048641503898523,
critical_values=array([0.57 , 0.649, 0.779, 0.909, 1.081]),
significance_level=array([15. , 10. , 5. , 2.5, 1. ]))
```

Skewness

- Skewness: degree to which data is nonsymmetrically distributed
 - Normal distribution: symmetric

Skewness

- Skewness: degree to which data is nonsymmetrically distributed
 - Normal distribution: symmetric
 - Student's t-distribution: symmetric

Skewness

- Skewness: degree to which data is nonsymmetrically distributed
 - Normal distribution: symmetric
 - Student's t-distribution: symmetric
- Skewed Normal distribution: asymmetric
 - Contains Normal as special case
 - Useful for portfolio data, where e.g. losses more frequent than gains
 - Available in scipy.stats as skewnorm

Testing for skewness

- Test how far data is from symmetric distribution: scipy.stats.skewtest
- Null hypothesis: no skewness
- Import skewtest from scipy.stats
- Compute test result on loss data
 - Statistically significant => use distribution class with skewness

```
from scipy.stats import skewtest
skewtest(loss)
```

```
SkewtestResult(statistic=-7.786120875514511, pvalue=6.90978472959861e-15)
```


Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Historical and Monte Carlo Simulation

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

Historical simulation

- No appropriate class of distributions?
- Historical simulation: use past to predict future
 - No distributional assumption required
 - Data about previous losses become simulated losses for tomorrow

Historical simulation in Python

- VaR: start with returns in asset_returns
- Compute portfolio_returns using portfolio weights
- Convert portfolio_returns into losses
- VaR: compute np.quantile() for losses at e.g. 95% confidence level
- Assumes future distribution of losses is exactly the same as past

```
weights = [0.25, 0.25, 0.25, 0.25]
portfolio_returns = asset_returns.dot(weights)
losses = - portfolio_returns
VaR_95 = np.quantile(losses, 0.95)
```

Monte Carlo simulation

- Monte Carlo simulation: powerful combination of parametric estimation and simulation
 - Assumes distribution(s) for portfolio loss and/or risk factors
 - Relies upon random draws from distribution(s) to create random path, called a run
 - \circ Repeat random draws \Rightarrow creates **set** of simulation runs
- Compute simulated portfolio loss over each run up to desired time
- Find VaR estimate as quantile of simulated losses

Monte Carlo simulation in Python

• Step One:

- Import Normal distribution norm from scipy.stats
- Define total_steps (1 day = 1440 minutes)
- Define number of runs N
- Compute mean mu and standard deviation sigma of portfolio_losses data

```
from scipy.stats import norm
total_steps = 1440
N = 10000
mu = portfolio_losses.mean()
sigma = portfolio_losses.std()
```

Monte Carlo simulation in Python

- Step Two:
 - Initialize daily_loss vector for N runs
 - Loop over N runs
 - Compute Monte Carlo simulated Loss vector
 - Uses norm.rvs() to draw repeatedly from standard Normal distribution
 - Draws match data using mu and sigma scaled by 1/total_steps

```
daily_loss = np.zeros(N)
for n in range(N):
    loss = ( mu * (1/total_steps) +
        norm.rvs(size=total_steps) * sigma * np.sqrt(1/total_steps) )
```

Monte Carlo simulation in Python

• Step Three:

- Generate cumulative daily_loss, for each run n
- Use np.quantile() to find the VaR at e.g. 95% confidence level, over daily_loss

```
daily_loss = np.zeros(N)
for n in range(N):
    loss = mu * (1/total_steps) + ...
        norm.rvs(size=total_steps) * sigma * np.sqrt(1/total_steps)
        daily_loss[n] = sum(loss)
VaR_95 = np.quantile(daily_loss, 0.95)
```

Simulating asset returns

- Refinement: generate random sample paths of asset returns in portfolio
 - Allows more realism: asset returns can be individually simulated
 - Asset returns can be correlated
 - Recall: efficient covariance matrix e_cov
 - Used in Step 2 to compute asset returns
- Exercises: Monte Carlo simulation with asset return simulation

Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Structural breaks

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

Risk and distribution

- Risk management toolkit
 - Risk mitigation: MPT
 - Risk measurement: VaR, CVaR
- Risk: dispersion, volatility
 - Variance (standard deviation) as risk definition
- Connection between risk and distribution of risk factors as random variables

Stationarity

- Assumption: distribution is same over time
- Unchanging distribution = stationary
- Global financial crisis period efficient frontier
 - Not stationary
- Estimation techniques require stationarity
 - Historical: unknown stationary distribution from past data
 - Parametric: assumed stationary distribution class
 - Monte Carlo: assumed stationary distribution for random draws

Structural breaks

- Non-stationary => perhaps distribution *changes* over time
- Assume specific points in time for change
 - Break up data into sub-periods
 - Within each sub-period, assume stationarity
- Structural break(s): point(s) of change
 - Change in 'trend' of average and/or volatility of data

Example: China's population growth

- Examine period **1950 2019**
- Trend is roughly *linear*...

Example: China's population growth

- Examine period 1950 2019
- Trend is roughly linear...
- ...but seems to slow down from around 1990
- Possible structural break near 1990.
- Implies distribution of net population (births
 deaths) changed
- Possible reasons: government policy, standard of living, etc.

The Chow test

- Previous example: visual evidence for structural break
- Quantification: statistical measure
- Chow Test:
 - Test for existence of structural break given linear model
 - Null hypothesis: no break
 - Requires three OLS regressions
 - Regression for entire period
 - Two regressions, before and after break
 - Collect sum-of-squared residuals
 - Test statistic is distributed according to "F" distribution

The Chow test in Python

- Hypothesis: structural break in 1990 for China population
- Assume linear "factor model":

$$\log(\text{Population}_t) = \alpha + \beta * \text{Year}_t + u_t$$

- OLS regression using statsmodels 's OLS object over full period 1950 2019
 - Retrieve sum-of-squared residual res.ssr

```
import statsmodels.api as sm
res = sm.OLS(log_pop, year).fit()
print('SSR 1950-2019: ', res.ssr)
```

SSR 1950-2019: 0.29240576138055463

The Chow test in Python

- Break 1950 2019 into **1950 1989** and **1990 2019** sub-periods
- Perform OLS regressions on each sub-period
 - Retrieve res_before.ssr and res_after.ssr

```
pop_before = log_pop.loc['1950':'1989']; year_before = year.loc['1950':'1989'];
pop_after = log_pop.loc['1990':'2019']; year_after = year.loc['1990':'2019'];
res_before = sm.OLS(pop_before, year_before).fit()
res_after = sm.OLS(pop_after, year_after).fit()
print('SSR 1950-1989: ', res_before.ssr)
print('SSR 1990-2019: ', res_after.ssr)
```

```
SSR 1950-1989: 0.011741113017411783
SSR 1990-2019: 0.0013717593339608077
```

The Chow test in Python

- Compute the F-distributed Chow test statistic
 - Compute the numerator
 - k = 2 degrees of freedom = 2 OLS coefficients α , β
 - Compute the denominator
 - 66 degrees of freedom = total number of data points (70) 2*k

```
numerator = (ssr_total - (ssr_before + ssr_after)) / 2
denominator = (ssr_before + ssr_after) / 66
chow_test = numerator / denominator
print("Chow test statistic: ", chow_test, "; Critical value, 99.9%: ", 7.7)
```

```
Chow test statistic: 702.8715822890057; Critical value, 99.9%: 7.7
```

Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Volatility and extreme values

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

Chow test assumptions

- Chow test: identify statistical significance of possible structural break
- Requires: pre-specified point of structural break
- Requires: linear relation (e.g. factor model) $\log(\operatorname{Population}_t) = lpha + eta * \operatorname{Year}_t + u_t$

Structural break indications

- Visualization of trend may not indicate break point
- Alternative: examine volatility rather than trend
 - Structural change often accompanied by greater uncertainty => volatility
 - Allows richer models to be considered (e.g. stochastic volatility models)

Rolling window volatility

- Rolling window: compute volatility over time and detect changes
- Recall: 30-day rolling window
 - Create rolling window from ".rolling()" method
 - Compute the volatility of the rolling window (drop unavailable dates)
 - Compute summary statistic of interest, e.g. .mean(), .min(), etc.

```
rolling = portfolio_returns.rolling(30)
volatility = rolling.std().dropna()
vol_mean = volatility.resample("M").mean()
```

Rolling window volatility

 Visualize resulting volatility (variance or standard deviation)

```
import matplotlib.pyplot as plt
vol_mean.plot(
   title="Monthly average volatility"
).set_ylabel("Standard deviation")
plt.show()
```


Rolling window volatility

- Visualize resulting volatility (variance or standard deviation)
- Large changes in volatility => possible structural break point(s)
- Use proposed break points in linear model of volatility
 - Variant of Chow Test
- Guidance for applying e.g. ARCH, stochastic volatility models

```
vol_mean.pct_change().plot(
   title="$\Delta$ average volatility"
).set_ylabel("% $\Delta$ stdev")
plt.show()
```


Extreme values

- VaR, CVaR: maximum loss, expected shortfall at particular confidence level
- Visualize changes in maximum loss by plotting VaR?
 - Useful for large data sets
 - Small data sets: not enough information
- Alternative: find losses exceeding some threshold
- ullet Example: VaR_{95} is maximum loss 95% of the time
 - $\circ~$ So 5% of the time, losses can be expected to $\emph{exceed}~\mathrm{VaR}_{95}$
- Backtesting: use previous data ex-post to see how risk estimate performs
 - Used extensively in enterprise risk management

Backtesting

- Suppose $\mathrm{VaR}_{95} = 0.03$
- Losses exceeding 3% are then extreme values
- Backtesting: around 5% (100% 95%) of previous losses should exceed 3%
 - More than 5%: distribution with wider ("fatter") tails
 - Less than 5%: distribution with narrower tails
- CVaR for backtesting: accounts for tail better than VaR

Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

