On the Perils of Cascading Robust Classifiers

Ravi Mangal*, Zifan Wang*, Chi Zhang*, Klas Leino, Corina Pasareanu, Matt Fredrikson

Carnegie Mellon University

Introduction Certifying Local Robustness for A Deep Classifier $\rightarrow \forall x', ||x'-x|| \le \epsilon \rightarrow F(x) = F(x')$ Certification Soundness

One Strategy to Promote Certified Robust Is Using Cascading Ensemble

Contribution

Cascading: An Unsound Certification

Decision boundaries of constituent models (Darker regions denote

certified robustness) Boundaries are actually much "thinner" compared to each constituent model

model diversity to begin with.

Weighted Voting: A Sound Certification

Definition of Weighted Voting

Decision

boundaries of

cascading ensemble

(w=0.3)

(w=0.4)

Certification of Ensemble: ROBUST (See proof of soundness in the paper)

Can Weighted Voting Certify More Points? (a thought experiment)

Let examples sorted as $x_1, x_2, ..., x_{100}$

Zoom-in view

can certify $x_0 \dots x_{24}, x_{50} \dots x_{74}$ and is correct. Certified Acc. = 50%

And we let the weight for each model to be 1/3, then for each of the first 75 examples the voting \longrightarrow Certified Acc. = 75% ensemble is both correct and certifiably robust.

Attacking Cascading Ensemble

Basic Idea

To attack a cascading ensemble at x, we find a neighbor of x, x', which can be certified with a different label on another constituent model F' \circ **prior to** the one that certifies x;

 \circ or all other models **prior to F' can not certify** x'.

Example

Suppose x can not be certified by model 1 and is certified by model 2 as label cat, we find a neighbor x' in the ϵ -ball that can be certified by model 1 with a different label than cat, e.g. \log .

Experiments

We test CasA on the cascading ensembles used in Wong et al. (2018) from their public repository. We copy and paste the Certified Acc. from their publication and show % of points that are claimed to be robust but later found to be not using CasA (False Positives). We report the Empirical Robust Accuracy of these cascading ensembles under CasA.

Model		emble	
Dataset $\ell_{ m p}$, ϵ Certified Unsound Certified ${}^{\%}$ Of False Positive Acc. Reported Results.	Clean Acc.	Empirical Robust Accuracy Under CasA	
MNIST $\ell_{\infty}, 0.1$ 95.54 96.63 88.71	96.62	11.17	
CIFAR-10 ℓ_{∞} , 2/255 52.65 64.87 10.47	65.13	<i>58.15</i>	
MNIST ℓ_2 , 1.58 43.52 75.58 44.72	80.43	43.46	
CIFAR-10 ℓ_2 , 36/255 50.26 58.72 2.70	58.76	57.17	

learn more check out our talk and the full paper for more! code available on GitHub

