Systèmes dynamiques Feuille d'exercices 1

Exercice 1. Points prépériodiques

Soit $f: X \to X$ une application définie sur une ensemble X. On dit qu'un point $x \in X$ est prépériodique si x n'est pas périodique et s'il existe $n \in \mathbb{N}$ tel que $f^n(x)$ est périodique.

- 1. Donner un exemple d'application ayant un point prépériodique. Peut-on trouver un exemple bijectif ?
- 2. Montrer que si X est fini, alors tout point est périodique ou prépériodique. Montrer également qu'il existe des points périodiques.

Exercice 2. Lemme de prolongation

Soit $V: \mathbf{R}^n \to \mathbf{R}^n$ un champ de vecteurs continu et

$$\dot{x} = V(x)$$

l'équation différentielle associée. Soit $x:(a,b)\to \mathbf{R}^n$ une solution de cette équation. On suppose qu'il existe un compact K tel que $x(t)\in K$ pour tout $t\in (a,b)$. Montrer que la limite $\lim_{t\to b} x(t)$ existe.

Exercice 3. Automorphismes linéaires du tore de dimension 2

On note $\mathbf{T}^2 = \mathbf{R}^2/\mathbf{Z}^2$ le tore de dimension 2. On appellera feuilletage de \mathbf{T}^2 une partition $\mathbf{T}^2 = \bigsqcup_{F \in \mathcal{F}} F$ où pour tout $F \in \mathcal{F}$, il existe une immersion $\mathbf{R} \to \mathbf{T}^2$ (i.e. une application \mathcal{C}^{∞} de différentielle partout non nulle) d'image F.

1. Donner une condition nécessaire et suffisante pour que l'endomorphisme $f_A: \mathbf{T}^2 \to \mathbf{T}^2$ associé à une matrice $A \in \mathrm{Mat}_{2 \times 2}(\mathbf{Z})$ soit un automorphisme.

Dans toute la suite, A désigne une matrice de $SL(2, \mathbf{Z})$.

- 2. On suppose que $|\operatorname{tr} A| \in \{0,1\}$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $(f_A)^n = \operatorname{id}_{\mathbb{T}^2}$.
- 3. On suppose que $|\operatorname{tr} A| = 2$. Montrer qu'il existe un feuilletage en cercles de \mathbf{T}^2 , préservé par f_A et que f_A (resp. f_A^2) agit par rotation sur chacun des cercles si $\operatorname{tr}(A) = 2$ (resp. $\operatorname{tr}(A) = -2$). On dit que f_A est un twist de Dehn.
- 4. On suppose que $|\operatorname{tr} A| > 2$.
 - (a) Montrer que A admet deux valeurs propres réelles distinctes λ, λ^{-1} avec $|\lambda| > 1$ et que les vecteurs propres associés ont des pentes irrationnelles.
 - (b) Montrer qu'il existe deux feuilletages \mathcal{F}^s et \mathcal{F}^u de \mathbf{T}^2 , globalement préservés par f_A , tels que chaque feuille est dense dans \mathbf{T}^2 , et tels que la différentielle de f_A multiplie par $|\lambda^{-1}|$ la norme des vecteurs tangents aux feuilles de \mathcal{F}^s et par $|\lambda|$ celle des vecteurs tangents aux feuilles de \mathcal{F}^u .

Exercice 4. Persistance des orbites périodiques non dégénérées pour les flots

On considère un champ de vecteur $V: \mathbf{R}^n \to \mathbf{R}^n$ lisse (i.e. de classe \mathcal{C}^{∞}) et complet (i.e. son flot existe en tout temps). On note $\varphi: \mathbf{R} \times \mathbf{R}^n \to \mathbf{R}^n$ son flot,

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi(t,x) = V(\varphi(t,x)), \quad t \in \mathbf{R}, \quad x \in \mathbf{R}^n.$$

On suppose qu'il existe $x_0 \in \mathbf{R}^n$ et $\tau_0 > 0$ tels que $\varphi(\tau_0, x_0) = x_0$ et $V(\varphi(t, x_0)) \neq 0$ pour tout $t \in \mathbf{R}$.

1. Montrer que pour tout hyperplan affine Σ contenant x_0 et transverse à $V(x_0)$ il existe un voisinage U de x_0 dans \mathbf{R}^n et une application lisse $\tau: U \to \mathbf{R}$ telle que $\tau(x_0) = \tau_0$ et

$$\varphi(\tau(x), x) \in \Sigma, \quad x \in U.$$

En d'autres termes, Σ est une section de Poincaré locale pour le flot φ . On note

$$P_{\Sigma}: \ \Sigma \cap U \ \to \ \Sigma$$
$$x \ \mapsto \ \varphi(\tau(x), x)$$

l'application de retour associée à τ .

- 2. On suppose dans la suite que x_0 est une orbite périodique non dégénérée du flot φ , c'est-à-dire que 1 n'est pas valeur propre de $(dP_{\Sigma})_{x_0}$. Montrer que cette condition est intrinsèque, i.e. qu'elle ne dépend pas de l'hypersurface affine Σ choisie.
- 3. On considère maintenant une famille $(V_s)_{s \in [-1,1]}$ de champs de vecteurs telle que l'application $(s,x) \mapsto V_s(x)$ est lisse et $V_0 = V$. Montrer qu'il existe $\varepsilon > 0$ tel que pour tout $s \in (-\varepsilon, \varepsilon)$, il existe $x_s \in \Sigma$ et $\tau_s > 0$ tels que

$$\varphi_s(\tau_s, x_s) = x_s,$$

où φ_s est le flot associé à V_s . Montrer de plus que x_s et τ_s dépendent de manière lisse du paramètre $s \in (-\varepsilon, \varepsilon)$.

Exercice 5. Classes de conjugaison des applications expansives du cercle

On note $\mathbf{T} = \mathbf{R}/\mathbf{Z}$ le tore de dimension 1 et on note $[y] = y \mod 1$ pour tout $y \in \mathbf{R}$. On dit qu'une application continue $F: \mathbf{R} \to \mathbf{R}$ relève une application continue $f: \mathbf{T} \to \mathbf{T}$ si [F(x)] = f([x]) pour tout $x \in \mathbf{R}$.

1. Montrer que pour tout $f: \mathbf{T} \to \mathbf{T}$ continue, il existe un relèvement de f, et que tous les relèvements diffèrent d'un entier.

Dans toute la suite, on fixe une application continue $f: \mathbf{T} \to \mathbf{T}$.

2. Montrer qu'il existe $p \in \mathbf{Z}$ tel que F(x+1) = F(x) + p pour tout relèvement F de f et tout $x \in \mathbf{R}$. Cet entier s'appelle le degré de f.

On suppose dans la suite que $p \ge 1$.

- 3. Montrer que f a au moins p-1 points fixes.
- 4. En déduire que

$$\liminf_{n\to\infty}\frac{\log\#\mathrm{Fix}(f^n)}{n}\geq\log p,$$
 où $\mathrm{Fix}(f^n)$ est l'ensemble des points fixes de $f^n.$

5. Calculer $\#\text{Fix}(f^n)$.

On suppose dans la suite que p>1 et on fixe un relevé F de f. On note $\mathcal E$ l'ensemble des fonctions continues $H: \mathbf{R} \to \mathbf{R}$ telles que H(x+1) = H(x) + 1 pour tout $x \in \mathbf{R}$. Pour tout $H \in \mathcal{E}$ on définit une application $\Phi(H): \mathbf{R} \to \mathbf{R}$ par

$$\Phi(H)(x) = \frac{1}{p}H(F(x)), \quad x \in \mathbf{R}.$$

- 6. Montrer que Φ préserve \mathcal{E} et que $\Phi: \mathcal{E} \to \mathcal{E}$ a un unique point fixe H_0 . Indication : on pourra montrer que \mathcal{E} muni de la distance $d(H,G) = \sup_{\mathbf{R}} |H - G|$ est un espace métrique complet.
- 7. Montrer que H_0 relève une application continue $h_0: \mathbf{T} \to \mathbf{T}$ de degré 1, et que

$$h_0 \circ f = E_p \circ h_0$$

où $E_p: \mathbf{T} \to \mathbf{T}$ est l'application $[x] \mapsto [px]$.

8. On suppose de plus que F est \mathcal{C}^1 et que F'>1. En considérant l'application $\Psi:\mathcal{E}\to\mathcal{E}$ définie par $\Psi(H)(x) = F^{-1}(H(px))$, montrer que h_0 est un homéomorphisme de \mathbf{T}^2 .