

Facultade de Física Grao en Física Curso 2024-25 Traballo de Fin de Grao

Estudio del núcleo no ligado ¹⁰Li con ACTAR TPC

Autor:

Daniel Vázquez Lago

Titors

Beatriz Fernández Domínguez Departamento de física de partículas.

Cotitor:

Miguel Lozano González
Departamento de física de partículas.

Xullo 2025

O autor autoriza a consulta e emprego desta memoria para uso académico e de investigación (autorización detallada nas páxinas interiores).

Facultade de Física Grao en Física curso 2024-25 Traballo de Fin de Grao

Estudio del núcleo no ligado ¹⁰Li con ACTAR TPC

Autor: Daniel Vázquez Lago

Titor: Beatriz Fernández Domínguez, Departamento de física de partículas, Area de Física Atómica,

Molecular y Nuclear, beatriz.fernandez.dominguez@usc.es

Cotitor: Miguel Lozano González, Departamento de física de partículas

Data de presentación: Xullo 2025

Declaración asinada polo autor da orixinalidade do traballo

O autor do traballo declara que o presente é un traballo orixinal. Autoriza asemade ao control por persoal da Universidade de Santiago de Compostela da devandita orixinalidade, eventualmente mediante o emprego de bases de datos e a inclusión nelas.

En Santiago de Compostela, a 5 de Xullo de 2025. Asinado Daniel Vázquez Lago,

Autorización do autor á difusión do traballo (opcional)

O autor autoriza á difusión do traballo aos efectos considerados nos vixentes regulamentos de TFG e TFM da Universidade de Santiago de Compostela (Artigo 11.3) e de TFM do Máster en Física (Artigo 33), entendendo que esta autorización non inflúe na propiedade intelectual do traballo nen á posibilidade de publicar o mesmo total ou parcialmente por outros medios. Autoriza asemade a que a Facultade de Física desa Universidade dispoña de copia electrónica do traballo para o seu arquivo, consulta e emprego para usos académicos e de investigación coa mención específica ao autor. En Santiago de Compostela, a 5 de Xullo de 2026. Asinado Daniel Vázquez Lago,

- Resumo: Este traballo céntrase no estudo da función de onda do estado fundamental do ¹¹Li e no estudo da estructura do núcleo 10 Li mediante a reacción de trasferencia 11 Li $(d,t)^{10}$ Li. Esta reacción permite determinar as distintas proporcións dos orbitais $2s_{1/2}$ e $1p_{1/2}$ presentes no estado fundamental do $^{11}\mathrm{Li}$ e medir a espectroscopía do $^{10}\mathrm{Li}$. Empregouse o detector ACTAR TPC, que permite rexistrar con gran precisión as trazas das partículas grazas ao seu funcionamento en cinemática inversa e ao uso dun gas activo que actúa como obxectivo e medio de detección. Ademais, dispóñense muros de detectores de silicio que permiten medir a enerxía residual das partículas saíntes, clave para reconstruír a enerxía de excitación de ¹⁰Li. A simulación desenvolvida, baseada en métodos de Monte-Carlo, tivo en conta efectos como o straggling, a resolución enerxética dos detectores e a resolución angular. Os resultados obtidos mostran que a resolución angular é a principal fonte de incerteza, limitando a capacidade de separar claramente os estados $2s_{1/2}$ e $1p_{1/2}$. Mellorar esta precisión permitiría unha caracterización máis detallada dos estados resonantes de 10Li e, por extensión, do halo de 11Li. Tamén vemos perspectivas de mellora da estadística a través da recostrucción de trazas co detector ACTAR TPC. Este estudo contribúe á mellora dos modelos fenomenolóxicos que describen núcleos exóticos preto da dripline, fundamentais para comprender os procesos de nucleosíntese de elementos pesados no universo.
- Resumen: Este trabajo se centra en el estudio de la función de onda del estado fundamental del 11 Li y en el estudio de la estructura del núcleo 10 Li mediante la reacción de transferencia 11 Li $(d,t)^{10}$ Li. Esta reacción permite determinar las distintas proporciones de los orbitales $2s_{1/2}$ y $1p_{1/2}$ presentes en el estado fundamental del 11 Li y medir la espectroscopía del 10 Li . Se utilizó el detector ACTAR TPC, que permite registrar con gran precisión las trazas de las partículas gracias a su funcionamiento en cinemática inversa y al uso de un gas activo que actúa como objetivo y medio de detección. Además, se dispone de muros de detectores de silicio que permiten medir la energía residual de las partículas salientes, clave para reconstruir la energía de excitación de ¹⁰Li. La simulación desarrollada, basada en métodos de Monte Carlo, tuvo en cuenta efectos como el straggling, la resolución energética de los detectores y la resolución angular. Los resultados obtenidos muestran que la resolución angular es la principal fuente de incertidumbre, limitando la capacidad de separar claramente los estados $2s_{1/2}$ y $1p_{1/2}$. Mejorar esta precisión permitiría una caracterización más detallada de los estados resonantes de 10 Li y, por extensión, del halo de 11 Li. También se observan perspectivas de mejora de la estadística a través de la reconstrucción de trazas con el detector ACTAR TPC. Este estudio contribuye a la mejora de los modelos fenomenológicos que describen núcleos exóticos cerca de la dripline, fundamentales para comprender los procesos de nucleosíntesis de elementos pesados en el universo.
- **Abstract:** This work focuses on the study of the ground-state wave function of 11 Li and the structure of the 10 Li nucleus through the transfer reaction 11 Li(d,t) 10 Li. This reaction makes it possible to determine the different proportions of the $2s_{1/2}$ and $1p_{1/2}$ orbitals present in the ground state of 11 Li and to measure the spectroscopy of 10 Li. The ACTAR TPC detector was used, which allows for highly precise tracking of particles thanks to its operation in inverse kinematics and the use of an active gas that serves as both target and detection medium. In addition, walls of silicon detectors are available to measure the residual energy of the outgoing particles, which is key to reconstructing the excitation energy of 10 Li. The simulation developed, based on Monte Carlo methods, took into account effects such as straggling, the energy resolution of the detectors, and the angular resolution. The results obtained show that the angular resolution is the main

source of uncertainty, limiting the ability to clearly separate the $2s_{1/2}$ and $1p_{1/2}$ states. Improving this precision would enable a more detailed characterization of the resonant states of 10 Li and, by extension, of the halo of 11 Li. Prospects for improving statistics are also seen through track reconstruction with the ACTAR TPC detector. This study contributes to the improvement of phenomenological models that describe exotic nuclei near the dripline, which are essential for understanding the nucleosynthesis processes of heavy elements in the universe.

Agradecementos Agradezco enormemente a mis tutores por su paciencia, especialmente a Miguel sin el cual este trabajo habría sido imposible de realizar. También le quiero agradecer a mi padre y a toda mi familia su apoyo incondicional y ayuda en la corrección del texto.

Índice

1.	Introducción	2				
2.	Motivación experimental 2.1. Modelo de capas 2.2. Núcleos ricos en neutrones y protones 2.3. Núcleo halo 2.4. Litio 10 y Litio 11 2.5. Reacción de transferencia 11 Li(d,t)10 Li	2 2 3 4 5 6				
3.	Metodología3.1. ACTAR TPC3.2. Detectores de Silicio3.3. Cinemática3.3.1. Notación3.3.2. Cálculo de los ángulos y energías3.4. Pérdidas de energía en la materia3.5. Resolución angular3.6. Sección eficaz3.7. Estadística real vs simulada	7 7 8 9 10 11 12 12				
4.	Simulación	14				
5.	Análisis de los resultados 5.1. Reconstrucción sin fuentes de incertidumbre	18 18 19 20 20 21				
6.	Perspectivas de mejora	21				
7.	Conclusiones 2					
Re	eferencias	24				

1. Introducción

La física nuclear es una rama fundamental de la física que estudia las propiedades, estructura y transformaciones del núcleo atómico. Desde el descubrimiento de la radiactividad a finales del siglo XIX hasta el desarrollo de modelos nucleares avanzados en el siglo XXI, esta disciplina ha tenido un profundo impacto tanto en la comprensión de la materia como en múltiples aplicaciones tecnológicas y científicas. Entre estas destacan la producción de energía nuclear, las técnicas de diagnóstico y tratamiento médico, la datación radiométrica y el estudio de procesos astrofísicos como la nucleosíntesis estelar.

Los núcleos con un alto número de neutrones, según los modelos actuales, juegan un papel fundamental en los procesos astrofísicos, en particular en la producción de átomos pesados que hallamos en el universo. En este contexto, el estudio de sus características principales se hace fundamental para comprender cómo funcionan estas cadenas de producción de núcleos pesados, tanto para comprender bajo que condiciones aparecen y conocer cuales reacciones predominan y en qué clase de estrellas.

Sin embargo, estudiar núcleos ricos en neutrones presenta una gran dificultad, al ser sistemas muy poco estables e incluso no ligados. Precisamente por la dificultad de producción en muchos casos se necesitan instalaciones y experimentos muy particulares, diseñados específicamente para medir reacciones nucleares. Entre estos experimentos encontramos en ACTAR TPC con implicación directa de la USC a través del IGFAE, y que, como veremos, nos permitirá caracterizar con precisión reacciones nucleares de trasferencia con las que podremos extraer información acerca de núcleos tan exóticos como el ¹⁰Li .

2. Motivación experimental

2.1. Modelo de capas

El modelo de capas se basa principalmente en la descripción del núcleo a través del llamado **campo medio** o **campo autoconsistente**, que sería un promedio de todas las fuerzas de interacción entre los nucleones [15]. Luego el mecanismo para obtener las funciones de onda de los nucleones es sencillo: consisten en aplicar la ecuación de Schrödinger con el potencial determinado, obteniendo entonces una serie discreta de estados que se irían rellenando según el principio de exclusión de Pauli, tal y como sucede con el modelo atómico. Dado que la interacción nuclear es de corto alcance, el potencial que modelice la interacción debe tener una forma similar a la densidad nuclear, que es constante dentro del núcleo, decayendo con un parámetro de difusividad hasta llegar a cero. Uno de los primeros potenciales utilizados fue el del oscilador armónico (por su simplicidad matemática), aunque actualmente existen potenciales más realistas, como el potencial de Woods-Saxon.

Sin embargo con esto no era suficiente para explicar algunos de los hallazgos experimentales, ya que el modelo sin interacción espín-órbita no fue capaz de reproducir la serie de los números mágicos. Estos son ciertos valores de N y Z para los cuales los núcleos muestran una estabilidad inusual, que se manifiesta en una energía de separación de los nucleones (protones o neutrones) superior al valor con otros N y Z. La interacción que permitía describir los números mágicos hallados, junto los otros dos términos, era la interacción espín-órbita, en el llamado **modelo de capas de Goeppert-Mayer** [13], que representamos en la Figura 1.

Existen más potenciales que los aquí mencionados, algunos más complejos que tienen en cuenta términos fenomenológicos, como la deformación quadrupolar, obteniendo el *modelo de Nilsson* [14], o, por ejemplo, términos de apareamiento (modelo Seniority o BCS [4]).

En general, el modelo de Goeppert-Mayer funciona muy bien para los núcleos estables. Sin embargo, no siempre predicen correctamente el orden y ocupación de niveles con determinados momentos angulares en núcleos exóticos. Incluir términos adicionales al potencial que puedan parametrizar las interacciones en núcleos exóticos llevará a un reordenamiento de los niveles nucleares que puede cambiar drásticamente la energía, paridad y momento angular (entre otros).

Precisamente por eso es importante estudiarlos, para comparar las predicciones de los modelos nucleares con datos experimentales y así evaluar tanto la validez como las limitaciones del modelo de capas tradicional. Por ello, el estudio de estos sistemas no solo permite entender mejor la estructura nuclear, sino también refinar las herramientas teóricas utilizadas para describirla.

Figura 1: modelo de capas de Goeppert-Mayyer [13], con la secuencia de números mágicos dibujada.

2.2. Núcleos ricos en neutrones y protones

Los núcleos ricos en un tipo particular de nucleón (proton o neutrón) resultan sumamente interesantes, no solo porque son fundamentales a la hora de entender los procesos-r astrofísicos [22] (proceso de captura rápida de neutrones) o los procesos-rp (captura rápida de protones). Los procesos-r son responsables de la creación de la mayor parte de núcleos muy pesados (60 < A), que se dan en la expansión tras un colapso del núcleo de una supernova, o la descompresión de la materia neutrónica emitida por la fusión de una estrella binaria compacta de neutrones, mientras que los procesos-rp ocurren hacia el final de las estrellas supermasivas, novas y en estrellas de neutrones, produciendo núcleos con A hasta \sim 127.

Además revelan nuevas estructuras nucleares (halos nucleares, modificación del orden de las capas nucleares y números mágicos...), muy interesantes desde el punto de vista teórico.

Estas nuevas estructuras nucleares ponen a prueba modelos teóricos y arrojan información necesaria para adaptar modelos fenomenológicos. Estos permitirán obtener resultados teóricos a otros núcleos ricos en neutrones, imposibles de medir en experimentos actualmente por la incapacidad actual de producirlos (debido a su baja estabilidad y su falta de estados ligados).

La mayor parte de estructuras exóticas la encontramos en la *dripline*, tanto de protones como de neutrones. Decimos que un núcleo ligado está en el límite de la *dripline* de neutrones cuando añadir un neutrón más produce un estado no ligado. Es decir, con energía de ligadura de neutrones negativa, exceptuando los casos en los que añadir dos neutrones produzca un estado ligado. Y manera análoga para los protones. En la Figura 2 podemos ver la *dripline* de protones y neutrones dibujada en la carta

nuclear de núcleos conocidos¹.

Los núcleos cerca de la *dripline* presentan formas exóticas, comportamientos anómalos que no son vistos en núcleos en la estabilidad. Entre estos comportamientos encontramos los núcleos halo.

Figura 2: Dripline de neutrones (linea roja) para átomos ligeros, usando datos de [8] y la aplicación web [5].

Existen muchas maneras de obtener información acerca de la *dripline*. Por un lado encontramos decaimientos beta, que nos permiten conocer la masa, espín y momentos angulares de dichos núcleos. Por otro lado, las interacciones y secciones eficaces elásticas nos hablan acerca el radio y distribuciones de densidades, las distribuciones a diferentes energías y momentos angulares, así como la presencia de núcleos halo. Las reacciones inelásticas de trasferencia o resonancias elásticas nos pueden arrojar información acerca de estados nucleares no ligados [9]. Nosotros nos centraremos en los núcleos con un alto número de neutrones, cerca de la *dripline* de neutrones.

2.3. Núcleo halo

El halo de neutrones es, en esencia, una manifestación del efecto túnel cuántico, que surge cuando un estado nuclear ligado se encuentra muy próximo al continuo energético [21]. Se entiende como una estructura formada por pocos cuerpos, un núcleo central (core) fuertemente ligado y uno o más nucleones externos débilmente ligados. A los núcleos formados por dos nucleones y un *core*, tal que el estado con un núcleón y un *core* es no ligado [6], lo llamamos **núcleo Borremeano**, y podemos encontrar entre ellos ⁶He, ¹¹Li, ¹⁴Be y ¹⁷B.

Para que se de una estructura de halo se necesita una combinación de energía de ligadura de neutrones muy pequeña (< 1 MeV) y una fuerza de corto alcance (como es la fuerza nuclear) [21], que en el caso del ¹¹Li es de $S_{2n} = 369.15(65)$ keV [17]. Además, los núcleos halo deben estar en órbitas de bajo momento angular (l = 0, 1), es decir, ondas S y P. Esto es importante porque la barrera centrífuga de valores de l alto inhibe la creación de núcleos halo [21]. El requerimiento de que la energía de ligadura sea pequeña hace que la mayor parte de los halos solo puedan tener uno o dos neutrones orbitando. Dicha combinación de factores permite que la función de onda del neutrón tenga una probabilidad significativa de encontrarse fuera del potencial nuclear, en regiones que serían prohibidas clásicamente alrededor del *core* núcleo. Esto a su vez conduce a que el tamaño del núcleo sea más grande de lo normal, como se puede ver en la Figura 3.

¹Núcleo conocido es aquel núcleo con algunas de sus características medidas (masa, modos de desintegración...).

Figura 3: tamaño de diferentes núcleos, destacando el gran radio del litio 11 para su bajo número atómico.

Precisamente esto fue demostrado para el ¹¹Li en 1985 por Tanihata *et al* [18] y [19], que por aquel entonces era un candidato a ser un núcleo halo. En este experimento hallaron que su radio era un 30% mayor que el núcleo ⁹Li. Teóricamente, los núcleos en este estado manifiestan una interacción leve entre *core* y halo [9]. Por tanto la distribución de carga debía ser similar entre el ⁹Li y el ¹¹Li . Esto fue probado por ISOLDE, en el CERN, estudiando el momento cuadrupolar eléctrico [2] y momento dipolar magnético [1] a través de decaimientos beta. También se había predicho que la presencia de halos estarían asociadas a grandes secciones eficaces, lo cual también fue demostrado experimentalmente.

2.4. Litio 10 y Litio 11

El 10 Li es un estado no ligado, lo que implica que solo puede vivir a través de estados resonantes en algún tipo de reacción. En principio, el 11 Li en su estado fundamental (ground state), según el modelo de capas típico, debería tener una componente principal de $1p_{1/2}$, tal y como mostramos en Figura 4. Sin embargo es sabido que debido al carácter tan exótico del 10 Li es de esperar un reordenamiento de las capas, por lo que es posible que el término con $2s_{1/2}$ de lugar a un estado con menos energía, como se ve en Figura 5.

¿Por qué es interesante conocer el núcleo no ligado 10 Li? Por que la función de ondas del 11 Li puede expresarse en realidad como una superposición de diferentes resonancias del 10 Li y un neutrón que ocupa una de las capas definiendo, el espín-paridad del estado que observamos [16]. Así pues, el estado fundamental del 11 Li estará formado por el acoplo del estado del litio 10 y varios posibles estados orbitales del neutrón restante. El modelo de capas predice que las dos componentes que más contribuyen al estado fundamental son los orbitales $2s_{1/2}$ y $1p_{1/2}$, tal que

$$|^{11}\operatorname{Li}_{g,s}\rangle = \alpha|^{10}\operatorname{Li}\otimes\nu(2s_{1/2})\rangle + \beta|^{10}\operatorname{Li}\otimes\nu(1p_{1/2})\rangle + \cdots$$
 (1)

 α y β nos dan una medida de cuanto afectan estas componentes al estado fundamental.

El reordenamiento producido por el uso de términos adicionales, como podrían ser las interacciones tensoriales y pairing [20], llevan a que el estado $2s_{1/2}$ se introduzca entre el $1p_{3/2}$ y el $1p_{1/2}$. Fuere cual fuere el término que origina el reordenamiento, lo que si sabemos es que el modelo de capas evoluciona a medida que nos movemos hacia la *dripline*, desplazando la energía de los orbitales y la posición de los números mágicos.

Figura 4: Capas del ¹¹Li cuando le arrancamos un neutrón, según el modelo de capas tradicional.

Figura 5: Capas del ¹¹Li cuando le arrancamos un neutrón, según el modelo de capas modificado.

Existen diferentes formas de explorar los estados resonantes, siempre a partir de reacciones de trasferencia, que son aquellas que suceden entre dos núcleos en su estado fundamental y que se trasfieren algún tipo de nucleón [3]. Un ejemplo podría ser ${}^9\mathrm{Be}({}^9\mathrm{Be},{}^8\mathrm{B})^{10}\mathrm{Li}$. Diferentes experimentos se pusieron en marcha para poder hallar cual era el estado fundamental y cuales los estados excitados del ${}^{10}\mathrm{Li}$, si el ${}^{1}p_{1/2}$ o el ${}^{2}s_{1/2}$. Algunas de las reacciones probadas fueron ${}^9\mathrm{Li}(\mathrm{d},\mathrm{p})\mathrm{Li}$ o ${}^{10}\mathrm{Be}^{12}(\mathrm{C},{}^{12}\mathrm{N})^{10}\mathrm{Li}$. La mayor parte de éstas mostraron que efectivamente el primer estado excitado es el ${}^{1}p_{1/2}$, mientras que el estado fundamental era el ${}^{2}s_{1/2}$ [16]. Las reacciones anteriores no son capaces de estudiar el grado de influencia que tenían estas resonancias en el ${}^{11}\mathrm{Li}$, por lo que había una necesidad de buscar reacciones que sí lo hicieran.

A través de reacciones que quiten neutrones al 11 Li, tal y como pueden ser 11 Li(p,d) 10 Li o 11 Li(d,t) 10 Li, se podría estudiar esta interacción neutrón- 10 Li , a través de la ocupación de los orbitales, que podemos obtener gracias a las secciones eficaces.

2.5. Reacción de transferencia ¹¹Li(d,t)¹⁰Li

La reacción en la que nos vamos centrar es

$$^{11}\text{Li} + d \rightarrow t + ^{10}\text{Li} \tag{2}$$

particularmente interesante dentro del estudio del 11 Li , debido a su capacidad para proporcionar información directa sobre los espines y paridad del neutrón del 11 Li , a través de su eliminación. Además, a diferencia de muchas reacciones que sólo permiten estudiar el espectro excitado de 10 Li, esta reacción accede directamente a las configuraciones de un solo neutrón en 11 Li. Esto nos permite obtener el factor espectroscópico que nos permite hallar α y β de Ecuación (1), o lo que es lo mismo, la probabilidad de que dicho neutrón esté en uno y otro orbital.

¿Por qué resulta relevante estudiar 11 Li $(d,t)^{10}$ Li? En primer lugar, permite investigar el papel de los estados resonantes de 10 Li en la estructura del halo de 11 Li. Dado que 10 Li es inestable y no tiene un estado ligado, su estudio experimental es muy complicado, y esta reacción permite observar sus resonancias de forma más directa. [16].

En segundo lugar, la eliminación de un neutrón del ¹¹Li, trasfiriéndolo al ¹⁰Li, nos permite obtener características específicas de momento angular y energía, mostrando la naturaleza de las configura-

ciones $s_{1/2}$ y $p_{1/2}$ en el estado fundamental de ¹¹Li, i.e. nos permite conocer la función de ondas en el estado fundamental. [7].

Por último, es sensible a los factores espectroscópicos. Esto quiere decir que somos capaces de medir el grado de ocupación una cierta configuración de un neutrón y ¹⁰Li en el estado fundamental de ¹¹Li, lo cual no es accesible en muchas otras reacciones. [16]. Conociendo todos los factores espectroscópicos podremos obtener la probabilidad de ocupación de uno u otro orbital.

Además, al igual que las otras funciones de trasferencia, permite ajustar mejor los parámetros de los modelos fenomenológicos, guiando los modelos existentes y las interacciones nucleares, con el objetivo de caracterizar correctamente otros núcleos exóticos cerca de la *dripline* de neutrones.

3. Metodología

3.1. ACTAR TPC

ACTAR TPC (ACtive TARget and Time Projection Chamber) es un detector diseñado para estudiar núcleos exóticos con tiempos de vida medios muy cortos, que con detectores tradicionales (en los que serían las partículas ligeras las que se acelerarían para bombardear al núcleo de interés) no se podrían estudiar. Esto se debe a su funcionamiento en cinemática inversa, en la que el núcleo pesado actúa como haz. Esta configuración provoca que la cinemática en el sistema de centro de masas difiera notablemente de la cinemática directa habitual en el laboratorio, lo que convierte su estudio en un aspecto de gran relevancia.

De esta forma, el gas que llena ACTAR TPC participa directamente en la reacción de interés y también como medio de detección (tal y como veremos mas adelante), confiriéndole su carácter de *detector activo*. Es gaseoso por varios motivos. Uno de ellos es poder usar la ionización de la partícula a través del gas para obtener trazas a partir del rastro de ionización que dejan todas las partículas cargadas. Bajo la presencia un campo eléctrico, los electrones de la ionización derivan hacia el ánodo, constituido por un detector segmentado en *pads* donde se amplifica su carga. El tiempo de llegada de los electrones Δt sirve de estimación de la posición z, conocida da velocidad de deriva del gas, un parámetro inherente a su presión y composición. Otro de los motivos es que nos permite conocer con gran precisión el punto en el que sucedió la reacción (vértice), lo que no podríamos hacer en un experimento donde el *target* fuera un sólido. Como las pérdidas de energía estas bien medidas [23], conocido el punto de inicio, el punto final de la partícula y la energía final, podemos obtener la energía de la partícula de salida en el vértice, lo cual nos permitirá calcular las variables cinemáticas (energías y ángulos) con gran precisión.

Hablando de las características técnicas, ACTAR TPC tiene una dimensión de $606 \times 606 \times 335 \text{ mm}^3$, que sería toda la estructura azul violácea de la Figura 6; con una caja en el interior de dimensiones $256 \times 256 \times 255 \text{ mm}^3$, llamada **cámara de deriva**, que es precisamente donde está el campo eléctrico que nos permite recolectar los electrones ionizados (en la parte superior) con detectores de $2 \times 2 \text{ mm}^2$. En la Figura 6 se corresponde con la caja negra que está en el interior de la azul-violácea. Para nuestro experimento el interior lo llenaremos con una mezcla de dos gases: 90% D₂ e 10% CF₄ a una presión de 900 mbar (deuterio molecular y tetrafluorometano).

Debido a la cinemática de la reacción, existe una cierta probabilidad de que algunas partículas tengan suficiente energía como para atravesar el gas sin pararse, siendo imposible entonces reconstruir su energía en el vértice. Por eso se disponen a lo largo de los lados de ACTAR cuatro muros de silicios:

dos en frente, en la dirección perpendicular al haz, y otros dos distribuidos a izquierda y derecha, como se ve en Figura 7. Estos facilitan la medición de la energía residual de la partícula a la salida de la región activa, y su mecanismo de funcionamiento se describirá más adelante, en el Apartado 3.2.

Se puede ver la disposición de los silicios usada en la Figura 7. Estos silicios tuvieron que colocarse a una distancia prudencial de ACTAR ~ 16.5 cm, ya que aunque disminuya la eficiencia geométrica es posible que el campo eléctrico de los mismos distorsione el campo eléctrico de deriva. Consideraremos la notación lo y ro para los silicios de la izquierda y derecha respectivamente y fo y f1 para la doble capa de silicios en la parte frontal. Los muros fo y f1 están consituídos por 12 unidades, de 5×5 cm² de superficie y 1.5 mm de espesor; y los muros lo y ro por 12 unidades de superficie 8 \times 5 cm² de superficie y 0.5 mm de espesor.

Figura 6: Dibujo en 3D asistido por ordenador (CAD) de ACTAR TPC. Imagen de [12].

Figura 7: Dibujo de la geometría implementada en la simulación.

3.2. Detectores de Silicio

Los detectores de silicio están formados por uniones PN en los que la partícula incidente genera pares de electrones-hueco. Gracias a la presencia de una pequeña diferencia de potenicial externa introducida para que la unión esté en inversa, generando una amplia zona de vaciamiento que ocupa gran parte del detector, estos electrones derivan por acción del campo E intrínseco a la unión. Recogidos en unos conectores, la corriente eléctrica generada por ellos será directamente proporcional a su número, y este a la energía depositada por la partícula.

La **resolución energética intrínseca** *R* es una propiedad característica del dector y tiene en cuenta, entre otros factores, las fluctuaciones estadísticas en el número de partes electrón hueco generados. La resolución relacionada con el FWHM (*Full Width Half Maximum*) de la distribución estadística de la energía depositada en el silicio y con la energía de la propia partícula, tal que

$$FWHM = R \cdot E \tag{3}$$

y dado que $\sigma = 2.35 \cdot \text{FWHM}$, tenemos que la σ de la distribución gaussiana que parece seguir la energía depositada es:

$$\sigma = \frac{R \cdot E}{2.35} \tag{4}$$

La **resolución esperada** es [11]:

$$R = 2.35\sqrt{\frac{0.12w}{E}} \tag{5}$$

donde w es la energía promedio para la creación de un par electrón-hueco en el semiconductor. El valor de la creación de un par electrón-hueco depende del tipo de semiconductor y de la temperatura. Por ejemplo, en el caso del silicio, para una $T=300~\rm K$ tendremos $w=3.62~\rm eV$, y para $T=77~\rm K$ tendremos $w=3.81~\rm eV$, por lo que es muy importante tener controlado el ambiente. Nosotros usamos valores experimentales para obtener la σ de la distribución [11]. En particular sabemos que para una energía de 5.5 MeV tenemos una resolución de 50 keV para nuestras partículas. De esto podemos concluir extrapolando esta información que la σ de nuestra simulación es:

$$\sigma = \frac{0.0213}{2.35} \sqrt{E} \text{ MeV} \tag{6}$$

Podemos ver una dependencia con la raíz cuadrada de σ con E, lo que nos dice que a mayor energía peor resolución. Los silicios f0 y f1, como ya dijimos, tendrán un tamaño de $5 \times 5 \times 0.15$ cm³, suficientemente gruesos como para parar gran parte de las partículas incidentes. Un término muy importante que se suele usar cuando hablamos de detectores de silicio es *el punch-through*. Decimos que ocurre *el punch-through* cuando la partícula atraviesa completamente el detector/medio sin depositar toda su energía en él. En nuestro caso, que detectaremos tritios con los silicios f0 y f1, el *punch-through* sucede a partir de la energía de 24.42 MeV, que pudimos obtener a partir de una interpolación lineal de los valores experimentales [23], mientras que para l0 y r0 será de 12.82 MeV. Si inciden con un ángulo respecto la normal al silicio dado que recorrerán más distancia es posible que lleguemos a medir partículas con energía superior a la de *punch-through*.

3.3. Cinemática

En este apartado trataremos de resolver la cinemática de la reacción de interés 11 Li $(d,t)^{10}$ Li. Resolver la cinemática basicamente implica obtener los ángulos de las partículas salientes y sus energías en función de la energía cinética de la partícula incidente en el sistema laboratorio, que en nuestro experimento será de 7.5 MeV/A (MeV por nucleón, en nuestro caso esto nos lleva a 82.5 MeV), el ángulo del centro de masas (que es el afectado por la sección eficaz) y la energía de excitación de la partícula 10 Li.

La cinemática responde únicamente a las leyes de conservación de la energía-momento, por lo que no tendremos que tener en cuenta ni interacciones electromagnéticas ni nucleares. La sección eficaz que influye en el ángulo de salida, que encierra la física nuclear de la interacción, será discutida más adelante.

3.3.1. Notación

Dado que en función del sistema de referencia tendremos un valor de momento u otro, necesitaremos especificar que sistema de referencia seguimos. Para esto, consideremos p_1 como el momento en el sistema laboratorio y p_1' en el sistema del centro de masas. En la siguiente figura presentamos un esquema de ambos sistemas de referencia, y como son las partículas para cada uno de ellos.

Figura 8: Sistema Laboratorio

Figura 9: Sistema Centro de Masas

Cálculo de los ángulos y energías 3.3.2.

En este apartado trataremos de obtener los ángulos de salida de las partículas 3 y 4 (y sus energías) en función de las variables conocidas: energía cinética y masas de las partículas. Para esto necesitaremos calcular las energías de las partículas en el sistema centro de masas, ya que las relaciones de conservación de la energía es mucho mas sencilla en este sistema referencial. Luego podremos recuperarlas usando la transformada de Lorentz.

Como podemos ver en las figuras, en el sistema laboratorio la partícula 1 está en movimiento mientras que la partícula 2 está en reposo. Recordamos que la masa de una partícula excitada i viene dada por

$$m_i = m_{i,g,s} + E_{ex} \tag{7}$$

donde E_{ex} es la energía de excitación y $m_{i,g,s}$ la energía en su estado fundamental. Esto nos lleva a que sus momentos, en el sistema de referencia del laboratorio:

$$P_1 = (E_1/c, \mathbf{p}_1)$$
 $P_2 = (m_2c, 0)$ (8)

$$P_3 = (E_3/c, \mathbf{p}_3)$$
 $P_4 = (E_4/c, \mathbf{p}_4)$ (9)

Por otro lado, los momentos en el sistema de referencia del centro de masas vendrán dados por

$$P_1' = (E_1'/c, \mathbf{p}_1') \quad P_2 = (E_2'/c, -\mathbf{p}_1')$$
 (10)

$$P'_{1} = (E'_{1}/c, \mathbf{p}'_{1}) \quad P_{2} = (E'_{2}/c, -\mathbf{p}'_{1})$$

$$P'_{3} = (E'_{3}/c, \mathbf{p}'_{3}) \quad P_{4} = (E'_{4}/c, -\mathbf{p}'_{3})$$
(10)

Asumiremos que la partícula 1 incidente se mueve únicamente en el eje x tal que $\mathbf{p}_1 = (p_1, 0, 0)$. En ese caso el sistema centro de masas se moverá respecto al sistema laboratorio en el eje x, por lo que habrá que aplicar la transformaciones de Lorentz, siendo válidas para cualquier cuadrimomento. Definimos las energías totales como $E_{tot} = E_1 + E_2$ y como $E'_{tot} = E'_1 + E'_2$, siendo esta última la energía del centro de masas, que verifica que

$$E'_{tot} \equiv E_{CM} = E^2_{tot} - c^2 p_1^2 \tag{12}$$

Tanto E_{tot} como E_{tot}' son variables conocidas. Nos interesa calcular las energías E_3' y E_4' , que usando la transformación de Lorentz nos servirán para estudiar las energías E_3 y E_4 , así como los momentos. Así pues:

$$E_3' = \frac{1}{2} \left(E_{tot}' + \frac{m_3^2 c^4 - m_4^2 c_4}{E_{tot}'} \right) \tag{13}$$

A partir de estos valores de E_3' podemos calcular el valor de los momentos p_3' (en módulo). Podemos suponer sin ningún tipo de problema que la coordenada x de los momentos vienen dadas por

$$p_{3x}' = p_3' \cos(\theta_3') \tag{14}$$

de este modo podemos aplicar las transformaciones de Lorentz para hallar los valores del $\cos(\theta_3)$ y $\cos(\theta_4)$. Así:

$$p_3\cos(\theta_3) = \gamma(p_3'\cos(\theta_3') + \beta E_3'/c) \qquad (15)$$

despejando $cos(\theta)$ obtenemos:

$$\cos(\theta_3) = \frac{\gamma}{p_3} (p_3' \cos(\theta_3') + \beta E_3'/c) \qquad (16)$$

El cálculo de p_4 es completamente análogo. En la siguiente Figura 10 podemos ver la dependencia entre el ángulo θ_3 y θ_4 y la energía cinética de salida, en la que podemos ver una función que las relaciona inequívocamente. Podemos observar que a medida que aumentamos la energía de excitación se comprime el ángulo y el rango de las energías cinéticas que abarca la cinemática. Cabe destacar que en la figura usamos una energía de excitación que no se corresponde con una excitación física del 10 Li , buscando que se vea el efecto de la energía de excitación en al cinemática.

Figura 10: Cinemática de la reacción 11 Li $(d,t)^{10}$ Li para energía incidente de 7.5 MeV/A, donde se muestra la energía cinética del tritio (izquierda) frente su ángulo de salida.

3.4. Pérdidas de energía en la materia

Las pérdidas de energía por culpa de la interacción con la materia son sumamente importantes en el estudio de cualquier detector, ya que tendrán que ser tenidas en cuenta a la hora de recuperar la energía en el laboratorio de las partículas ligeras. La mejor manera de caracterizar la pérdida de energía de una partícula en un medio viene dada por la **ecuación de Bethe-Bloch** (en nuestro caso usarmeos la aproximación no relativista), que nos dice que el poder de frenado lineal *S*, definido como la pérdida de energía de la partícula dividida por la longitud diferencial de la trayectoria [10]

$$S = -\frac{dE}{dx} \simeq \frac{4\pi e^4}{m_e} \left(\rho \frac{N_A}{M}\right) \frac{z^2 Z}{v^2} \ln \left(\frac{2m_e v^2}{I}\right) \tag{17}$$

donde z es el número atómico incidente, Z la de la partícula absorbente, v la velocidad de la partícula incidente, N_A el número de avogadro, M la masa atómica del gas, ρ su densidad (por lo que dependerá de la presión, un parámetro importante) e I representa el potencial promedio de excitación e ionización del absorbente. Se trata como un parámetro determinado experimentalmente para cada elemento cuyo orden de magnitud se sitúa alrededor de unas decenas de eV.

Entrando ya en nuestro detector, mientras que para describir la interacción partículas-silicio esta ecuación es suficiente, ACTAR TPC contendrá una mezcla de gases, por lo que la ecuación de la

pérdida no será exactamente la anterior, sino que responderá a la regla de Bragg-Kleeman [10]

$$\frac{1}{N_c} \left(\frac{dE}{dx} \right)_c = \sum_i W_i \frac{1}{N_i} \left(\frac{dE}{dx} \right)_i \tag{18}$$

siendo W_i el peso del gas i y N_i la densidad atómica tal que $N_i = \rho N_A/M_i$.

El valor de -dE/dx a lo largo de la trayectoria de una partícula también se llama su pérdida específica de energía, una "tasa" de pérdida de energía. En realidad esta ecuación nos habla de un promedio, ya que la interacción partículapartícula es un fenómeno estadístico que es muy poco probable. Debido precisamente a esta baja probabilidad, cada partícula, pese a que tenga una energía inicial idéntica, recorrerá una distancia diferente (o lo que es lo mismo, para un mismo rango recorrido dos partículas no tendrán porque tener la misma energía inicial). Estas fluctuaciones debido a su naturaleza estocástica en la energía cinética las llamamos straggling. Este straggling nos lleva a un error indefectible en la recuperación de la energía cinética experimental y simulada cuando aplicamos esta ecuación.

Figura 11: Rango para cada energía para el tritio en el gas.

El **rango** se define como la distancia para la cual las partículas se paran en el medio. El rango depende de la energía inicial, por lo que existe una relación uno a uno del rango y la energía inicial, tal y como podemos ver en la Figura 11. Además el fenómeno estadístico nos dice que cada rango tendrá una distribución de probabilidad única (i.e., un *straggling*). Así pues, conociendo el vértice de interacción y el momento en el que se frena, podremos obtener el rango de la partícula, que al tener una relación uno a uno con la energía podremos usar para extraer información de la energía de la partícula en el vértice.

3.5. Resolución angular

Gracias a la TPC podemos reconstruir la traza del tritio que nos da información acerca del ángulo θ_{lab} de las partículas resultantes de la reacción. Experimentalmente esta información viene en forma de una nuble de puntos que hay que clusterizar y ajustar (mediante una regresión lineal 3D), y una vez conocida da dirección del haz, θ se obtiene como el ángulo entre ambas direcciones. En experimentos previos [12] se ha visto que la resolución en esta variable, ligada al tamaño finito de los pads, se sitúa en 1° FWHM. Como veremos más adelante, este factor será el dominante entre nuestras incertidumbres.

3.6. Sección eficaz

La **sección eficaz diferencial** nos da información acerca de la distribución de probabilidad de que una partícula saliente tenga una dirección respecto el haz inicial específico. Se define como el área

efectiva por unidad de ángulo sólido d $\Omega(\theta,\phi)$ que caracteriza la dispersión en cada dirección. Matemáticamente se expresa como

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega(\theta,\phi)},\tag{19}$$

donde $d\sigma$ es la sección eficaz para partículas dispersadas dentro de un elemento de ángulo sólido $d\Omega(\theta,\phi)$. Por otro lado la sección eficaz global nos habla de la probabilidad de interacción de dos partículas en un canal determinado (elástico, inelástico...) modelado a través de una superficie efectiva, lo que nos viene a decir que contiene información física sobre el espín, paridad... ya que todos estos factores están relacionados con la interacción entre las partículas.

Esta sección eficaz diferencial es diferente para cada excitación, la de 0.0 MeV (ground-state) y anchura 0.1 MeV asociado con el orbital $2s_{1/2}$ y la de 0.2 MeV y anchura 0.2 MeV asociada con el orbital $1p_{1/2}$, tal y como podemos ver en la Figura 12, por lo que la distribución a samplear en $\theta_{\rm CM}$ dependerá del estado a considerar.

Figura 12: Sección eficaz teórica que usaremos para ambas excitaciones.

3.7. Estadística real vs simulada

En nuestra simulación emitimos una cantidad de partículas a nuestra elección, suficiente para tener una buena estadística y un costo computacional moderado. En el experimento no todas las partículas del beam interaccionan con el gas de la TPC según la reacción de interés $^{11}{\rm Li}(d,t)^{10}{\rm Li}$, ya que se trata de un fenómeno probabilístico determinado por la sección eficaz; además, no todos los eventos son detectados, lo que afecta la eficiencia del sistema (el cociente entre eventos detectados y eventos que realmente ocurren es la eficiencia). Tenemos, de alguna forma, que obtener una relación entre el número de cuentas procedentes del experimento con el que nos queremos comparar y la simulación, de tal modo que podamos relacionar los resultados entre ambas. Así:

$$N_{\text{eventos}} = N_{\text{beam}} \cdot N_{\text{targets}} \cdot \sigma \cdot \varepsilon \tag{20}$$

donde σ es la sección eficaz total integrada en todo el ángulo solido y ε es la eficiencia.

Por otro lado, para la simulación todas las partículas de entrada experimentarán dicha reacción con un 100 % de probabilidad, teniendo en cuenta la sección eficaz más como una distribución del ángulo de salida que como un factor de probabilidad de que suceda la reacción. En la simulación el número de eventos es, denotándolo con una prima:

$$N'_{\rm eventos} = N_{\rm iter} \cdot \varepsilon$$
 (21)

siendo ε la misma eficiencia que la de la Ecuación (20). Lógicamente en ambos casos tendremos la misma eficiencia ya que los factores geométricos y de interacción radiación-materia están incluidos en la simulación.

Para recuperar los eventos reales tendremos que multiplicar por un factor α calculado a través de la división de los valores anteriores:

$$\alpha = \frac{N_{\text{eventos}}}{N_{\text{eventos'}}} = \frac{N_{\text{beam}} \cdot N_{\text{targets}} \cdot \sigma}{N_{\text{iter}}}$$
(22)

Para poder relacionar correctamente un histograma de la simulación y el histograma real bastará con multiplicarla por este factor α , tal que:

Histograma real =
$$\alpha$$
 · Histograma simulado (23)

Ahora tenemos que calcular de alguna forma este α . Primero debemos de hacer la integral de σ , obteniendo

$$\sigma(0.0) \text{ [mb]} \quad \sigma(0.20) \text{ [mb]}$$
108.68 83.67

Tabla 1: Valores de la sección eficaz total para ambas excitaciones.

Los parámetros que usaremos tendrán en cuente un haz de ¹¹Li con una intensidad de 3000 partículas por segundo que durará 6 días, por lo que

$$N_{\rm beam} = 1.6 \times 10^9 \text{ particulas}$$
 (24)

Para calcular el número de partículas del gas en la dirección incidente usamos:

$$N_{\text{targets}} = f_d N_{\text{gas}} l_x \tag{25}$$

donde hemos usado que la fracción de deuterio es 78.26%, la densidad del gas es $N_{\rm gas}=4.99\times 10^{19}$ átomos/cm³ y que $l_x=25.5$ cm [23]. Empleando $N_{iter}=10^6$, podemos obtener un valor α :

$$\alpha(0.0) = 0.17$$
 $\alpha(0.2) = 0.13$ (26)

4. Simulación

En esta parte de la memoria presentamos el funcionamiento de la simulación, basada en un método de Monte-Carlo, tal y como especificamos a continuación. Nosotros vamos a simular la reacción de trasferencia $^{11}\text{Li}(d,t)^{10}\text{Li}$, aunque en el experimento se medirán de forma simultánea las reacciones $^{11}\text{Li}(d,p)^{12}\text{Li}$ y $^{11}\text{Li}(d,d)^{11}\text{Li}$, cada una con un objetivo diferente.

El algoritmo de simulación se detalla a continuación, para cada uno de sus pasos:

1. Debido a la naturaleza de estado no ligado del ¹⁰Li este aparece como una resonancia, por lo que manera intrínseca la energía de excitación del núcleo sigue una distribución de Breit-Wigner, que tendremos que tener en cuenta.

La distribución de Breit-Wigner es una función utilizada para modelar la distribución en energía de estados resonantes inestables. Representa la probabilidad de encontrar un sistema con una energía cercana a la energía central de la resonancia E_{ex} , con un ancho Γ que caracteriza su vida media τ ($\Gamma \propto 1/\tau$). La forma de la distribución refleja el hecho de que las resonancias tienen una anchura finita en energía debido al principio de incertidumbre.

La ecuación de la distribución de Breit-Wigner, g(E), es:

$$g(E) = \frac{A \cdot \Gamma^2}{(E - E_{ex})^2 + \Gamma^2 / 4},\tag{27}$$

donde E es la energía, E_{ex} la energía central de la resonancia, Γ el ancho de la misma, y A es un factor de normalización.

Así pues, con cada interacción generaremos a partir de la energía resonante media E_{ex} y la anchura de la resonancia $\Gamma(E_{ex})$ un valor aleatorio que siga dicha distribución, como se puede ver en Figura 13 y Figura 14.

Figura 13: Distribución de las energías de excitación sampleadas $E^* = 0.0$ MeV y $\Gamma = 0.1$ MeV.

Figura 14: Distribución de las energías de excitación sampleadas $E^* = 0.2$ MeV y $\Gamma = 0.2$ MeV.

2. Suponemos que el haz incidente tiene una energía de 7.5 MeV/A, que interacciona en un punto aleatorio a lo largo de la dirección del haz con una dirección $\hat{\mathbf{x}}$. El punto de interacción se elige de forma aleatoria, con una distribución uniforme a lo largo del eje X a lo largo de la dimensión de la cámara de deriva, mientras que en los ejes Z e Y se eligen a través de una distribución gaussiana centrada en el centro de la cámara de deriva con $\sigma = 3$ mm, tal y como mostramos en Figura 15. Estos valores están basados en los valores típicos de los haces que encontramos en el TRIUMF, Canadá, donde se realizará el experimento.

Figura 15: Distribución de los vértices de impactos a lo largo de los ejes.

3. Lo siguiente en considerar es la cinemática. Una vez elegida la E_{ex} y el punto de interacción, lo que tenemos que hacer es calcular la energía cinética y ángulo en el sistema laboratorio del tritio. Será fundamental tener en cuenta las pérididas de energía del ¹¹Li entre la entrada del detector y el vértice de reacción, que realizaremos a través de las tablas de SRIM. Para conocer la dirección de salida del tritio y su energía tendremos que generar un valor aleatorio de la distribución del ángulo en el centro de masas θ_{CM} , que obtendremos usando la distribución de probabilidad dada por de la sección eficaz Figura 12. Por otro lado tendremos ϕ_{CM} que por definición será igual que ϕ_{lab} al estar definido en el plano normal a la transfomación Lorentz, y vendrá dado por una distribución uniforme entre 0 y 2π .

A través de las ecuaciones del apartado 3.3 podremos obtener T_{lab} y la dirección del tritio en el sistema laboratorio. Podemos ver en la Figura 16 y Figura 17 el valor de la energía cinética del tritio y el ángulo de salida, en un gráfico denominada cinemática de la reacción, en función de la energía de excitación.

Figura 16: Cinemática sampleada para $E^* = 0.0$ **Figura 17:** Cinemática sampleada para $E^* = 0.2$ MeV.

- 4. También tendremos que tener en cuenta la distribución experimental de los ángulos θ_{lab} , que tal y como ha sido descrito será una normal con FWHM de 1°. Así pues, tendremos que aplicar esta distribución nada más obtener un θ_{lab} .
- 5. Lo siguiente que debemos considerar es si la partícula llega a alguno de los silicios, ubicados según la geometría de Figura 7. Para ello trazamos una recta con la dirección del tritio y calculamos la energía con la que llega a dicho silicio. Si la energía es mayor que cero y alcanza a uno de éstos su detección es posible. Lógicamente deberemos considerar *straggling* y pérdidas de energía, por lo que gran parte de los tritios no llegarán a los silicios, puesto que al tener muy baja energía se detienen antes. En la Figura 18 podemos ver la distribución de los tritios que llegan a los silicios, aunque gran parte de estos llegan con una energía mayor de la de *punch-through*.

Figura 18: Distribución de los impactos en las 4 layers de silicios.

Se implementa en la cara contraria a la entrada de las partículas una capa de silicios doble, para poder ampliar el número de partículas detectadas y así poder obtener una mejor estadística, sobretodo para aquellas partículas que tengan una alta energía, hasta \sim 43 MeV, mientras que solo con f0, l0 y r0 hasta \sim 32 MeV. Para poder afirmar que una partícula ha sido detectada entonces tendrá que frenarse en alguno de los silicios l0, r0, f0 o f1. En aquellos que se frenen en f1 tendremos que considerar la energía depositada también en el silicio f0 así como las energías pérdidas entre ambos silicios.

La energía depositada la obtendremos como una distribución gaussiana centrada en la energía depositada promedio y σ dada por Ecuación (6).

6. Todos los pasos anteriores eran propiamente la simulación, obteniendo todos los valores que podríamos medir el experimento. En este apartado vamos a reconstruir los valores de interés, tal y como se haría en el laboratorio. A partir de las energías depositadas en los silicios y la posición en la que han sido detectados, podemos determinar inequívocamente la energía del tritio en el punto de interacción. Conociendo la energía cinética y en ángulo $\theta_{\rm Lab}$ podemos calcular unívocamente la energía de excitación del 10 Li, ya que esta determina la curva de la cinemática, tal y como podemos ver en la Figura 10. Debido a las diferentes fuentes de incertidumbre implementadas en los anteriores pasos, la distribución de energía de excitación del 10 Li que podamos reconstruir no será una Briet-Wigner, sino una convolución de la distribución de esta con una gaussiana, llamada **función Voigt**

$$V(E; \sigma, \Gamma) \equiv \int_{-\infty}^{\infty} G(E'; \sigma) g(E - E'; \Gamma) dE'$$
 (28)

siendo $G(E';\sigma)$ la distribución gaussiana y $g(E,\Gamma)$ la distribución Briet-Wigner. En la Figura 19 representamos las distribuciones Voigt, gaussiana y Briet-Wigner, donde se puede ver la diferencia entre las tres.

Figura 19: Distribuciones Breit-Wigner, Gauss y Voigt para $\mu = 0$ y $\Gamma = \sigma = 0.2$.

A partir de esta distribución podremos obtener el valor de la energía de excitación, cual es el valor de σ dada por todas las diferentes combinaciones, Γ , la altura y media de la distribución a partir del ajuste que minimice la χ^2 . Lógicamente el valor medio de la energía de excitación y la anchura de la resonancia serán los valores que le hayamos introducido (o al menos idealmente). Entre las diferentes combinaciones que encontramos tenemos:

$$\sigma_{tot}^2 = \sigma_{straggling}^2 + \sigma_{sil}^2 + \sigma_{\theta}^2 \tag{29}$$

Seleccionando que contribución de incertidumbres queremos considerar podremos evaluar que contribución tiene cada una de ellas, y por tanto cuál de ellas afecta más al experimento, al menos según el algoritmo aquí considerado.

5. Análisis de los resultados

En esta sección vamos a analizar los resultados obtenidos en la simulación, centrándonos principalmente en las diferentes contribuciones de cada fuente de incertidumbre a la anchura σ . Vamos a usar la notación $\sigma(E^*)$ como la anchura gaussiana a la distribución de energía de excitación reconstruida para E^* .

5.1. Reconstrucción sin fuentes de incertidumbre

En primer lugar vamos a analizar la reconstrucción de la energía de excitación sin considerar ninguna fuente de incertidumbre de las aquí modeladas. Como podemos ver en la imagen Figura 20, obtenemos prácticamente una distribución Breit-Wigner, con

$$\sigma_0(0) = 10.2 \pm 9.0 \text{ keV}$$
 $\sigma_0(0.2) = 2.8 \pm 2.5 \text{ keV}$ (30)

Uno de los posibles origenes de este término es que ROOT exija numéricamente un σ real no nulo para que la convolución Voigt sea computable. También podría deberse a errores numéricos fruto

del cálculo con números finitos.

Figura 20: E_{ex} para σ_0 . Izquierda, los espectros y ajuste Voigt. Derecha, los espectros y su suma.

5.2. Reconstrucción solo con straggling y resolución del silicio

En este apartado vamos a analizar la reconstrucción de la energía de excitación considerando únicamente el *straggling* y la resolución del silicio, es decir, $\sigma_{straggling}$ y σ_{sil} , que se pueden considerar como

$$\sigma_{str}^2 = \sigma_{straggling}^2 + \sigma_{sil}^2 \tag{31}$$

Como podemos ver en la imagen Figura 21, ahora ya vemos más superposición en los picos, tal que en la suma de ambos histogramas no diferenciamos dos picos como sí teníamos en el caso anterior. Curiosamente, es el efecto de la incertidumbre el que ahora hace que el pico más ancho sea el pico del estado fundamental y no del estado excitado. Todo esto se refleja en los resultados obtenidos:

$$\sigma_{str}(0) = 78.60 \pm 0.63 \text{keV}$$
 $\sigma_{str}(0.2) = 62.50 \pm 0.93 \text{keV}$ (32)

Figura 21: E_{ex} para σ_{str} . Izquierda, los espectros y ajuste Voigt. Derecha, los espectros y su suma.

En un principio el *straggling* debería contribuir por igual a ambos picos al tener una energía de excitación muy parecida y prácticamente el mismo rango. La diferencia radica en las secciones eficaces. Si nos fijamos en las secciones eficaces Figura 12 y en la cinemática sampleada Figura 16 y Figura 17, vamos claramente que para $E^* = 0.0$ existe una mayor cantidad de estados con energías pequeñas,

por lo que en realidad sufrirán más *straggling* (en promedio) los tritios procedentes de interacciones en los que participa el estado fundamental.

5.3. Reconstrucción solo con resolución angular

Aquí solo vamos a tener en cuenta el efecto de la dispersión angular, con el cual obtenemos una anchura gaussiana tal que:

$$\sigma_{\theta}(0.0) = 202.40 \pm 0.91 \text{ MeV} \quad \sigma_{\theta}(0.2) = 171.3 \pm 1.0 \text{ MeV}$$
 (33)

con un valor mucho más grande que el procedente de la interacción con la materia. En la imagen Figura 22 podemos ver como ya no diferenciamos visualmente los picos en el histograma apilado.

Figura 22: E_{ex} para σ_{θ} . Izquierda, los espectros y ajuste Voigt. Derecha, los espectros y su suma.

5.4. Reconstrucción con todas las fuentes de incertidumbre

Aquí vamos a tener en cuenta todos las fuentes de incertidumbre implementadas, obteniendo así:

$$\sigma_{tot}(0.0) = 218.80 \pm 0.98 \text{ MeV} \quad \sigma_{tot}(0.2) = 171.3 \pm 1.0 \text{ MeV}$$
 (34)

e, igual que en el caso anterior, no podemos distiguir visualmente los picos del histograma apilado Figura 23.

Figura 23: E_{ex} para σ_{tot} . Izquierda, los espectros y ajuste Voigt. Derecha, los espectros y su suma.

5.5. Resumen de resultados

En la Tabla 2 mostramos los resultados de todas las σ para las distribuciones gaussianas dentro de la función Voigt. Como podemos comprobar las σ , si tenemos en cuenta todas las fuentes de incertidumbre y la anchura de la resonancia de cada una de las distribuciones, son mucho más grandes que la distancia entre las energías del estado fundamental y el primer excitado. Para obtener un buen *fit* con el que poder obtener las energías de excitación tendríamos que ajustar las dos funciones Voigt con una sigma constante fijada, con los valores obtenidos en esta simulación. La σ aquí obtenida podría ser un parámetro constante que permitiría hacer el ajuste real y determinar las anchuras Γ en el experimento del TRIUMF, Canadá. En la Tabla 3 podemos ver las anchuras Γ que obtenemos con la reconstrucción, que, en general, son muy similares a los valores que hemos introducido manualmente en la simulación (de media un 5 % menor excepto para $\Gamma_0(0.2)$).

	$\sigma(0.0)$ [keV]	$\sigma(0.20)$ [keV]
σ_{tot}	218.80 ± 0.98	182.2 ± 1.0
σ_{str}	78.60 ± 0.63	62.50 ± 0.93
$\sigma_{ heta}$	202.40 ± 0.91	171.3 ± 1.0
σ_0	10.2 ± 9.0	2.8 ± 2.5

Tabla 2: σ del ajuste voigt a la distribución de energía de excitación reconstruida.

	$\Gamma(0.0)$ [keV]	$\Gamma(0.20)$ [keV]
Γ_{tot}	96.0 ± 1.4	194.2 ± 1.4
Γ_{str}	99.70 ± 0.93	197.2 ± 1.0
$\Gamma_{ heta}$	98.0 ± 1.3	195.9 ± 1.4
Γ_0	97.30 ± 0.95	177.10 ± 0.81

Tabla 3: Γ del ajuste voigt a la distribución de energía de excitación reconstruida.

6. Perspectivas de mejora

Hemos visto que con los detectores de silicio somos capaces de reconstruir las energías de excitación. Sin embargo, con estos no somos capaces de recuperar la cinemática de baja energía. Es aquí donde radica una de las ventajas de la TPC, que nos permite recuperar estadística a partir de un *trigger* interno llamado *L1*, basado en la multiplicidad de los *pads* de lectura. Esto es, en el número de electrones que llega a cada uno de los *pads*. Este *trigger* se activará cuando el número de *pads* activados sea mayor a un límite impuesto por el usuario.

Para que los eventos sean medidos satisfactoriamente por este $trigger\ L1$ necesitamos que los tritios se frenen en algún punto superior al plano XY de la cámara de deriva, ya que es en esta región de la TPC donde se encuentran los pads que medirán los electrones. Sin embargo, no todas las partículas que se frenen nos servirán para poder reconstruir la cinemática, dado que puede existir ruido (electrónico, fluctuaciones de señal...) que dispararía medidas continuamente en ruido. Además los pads tienen una resolución limita debido a su tamaño de $2 \times 2 \text{ mm}^2$. Estos factores no permiten obtener conclusiones con aquellas partículas que recorran menos de 20 mm en la proyección del plano XY, deontado por L_{xy} . En la Figura 24 podemos ver precisamente el rango de todas las partículas que se frenan respecto el ángulo, y el límite impuesto $L_{xy} > 20 \text{ mm}$.

Figura 24: Rango vs θ de los eventos con $E_x = 0.0$ MeV y el rango teórico.

Con el siguiente porcentaje de eventos recuperables dentro de todos los que se paran (cociente entre aquellos eventos con rango mayor de 2 cm y todos los que se frenan), tal que:

$E_x = 0.0 \text{ MeV}$	$E_x = 0.20 \text{ MeV}$
36.50%	64.23 %

Tabla 4: porcentaje de eventos recuperables.

Esto nos indica que podremos recuperar una pequeña zona de baja energía que por las características de la sección eficaz y la cinemática se corresponderán a un gran porcentaje sobre los eventos globales. En la Figura 25 podemos observar la cinemática de los eventos recuperables gracias al trigger, que como se ve incluye un amplio rango en θ y cinemática de baja energía.

Figura 25: Cinemática de los eventos que se frenan en la cámara de deriva y que son medidos (con rango $L \ge 20$ mm) con todas las fuentes de incertidumbre y $E_x = 0$ MeV.

7. Conclusiones

En este trabajo se ha estudiado el 10 Li y 11 Li desde una perspectiva teórica y experimental, basada en el modelo de capas y aplicando conocimientos teóricos y resultados experimentales previos.

Tras esto, caracterizamos la interacción 11 Li $(d,t)^{10}$ Li mostrando sus ventajas frente otras a la hora de estudiar la estructura del núcleo 11 Li , un tipo de núcleo halo. Por todas sus ventajas es una de las interacciones que se pondrán a punto en el detector ACTAR TPC, el cual también explicamos. En este contexto tratamos de simular con modelos teóricos de sección eficaz y conocimientos experimentales de los estados de dichos núcleos los resultados obtenibles con este dispositivo a través de un complejo algoritmo escrito en C++ y específicamente diseñado para ACTAR TPC.

La simulación puso entonces a prueba los posibles resultados de la reconstrucción de la energía de excitación incluyendo ciertos modelos para las fuentes de incertidumbre conocida, llegando a la conclusión de que el factor que más afecta es la resolución angular, y, en menor medida, el straggling energético. Pudimos obtener una σ con un valor similar a la separación de las energías de excitación cuando tenemos en cuenta todas las fuentes de incertidumbre, y fuimos capaces de reproducir las anchuras Γ sampleadas con bastante precisión. Las σ aquí obtenidas permitirán determinar las anchuras Γ a la hora de analizar el experimento real, ya que podrán ser usadas como parámetro fijo en el ajuste Voigt a los datos experimentales dado que ahora será Γ el parámetro libre.

Por último, se ha demostrado la posibilidad de recuperar eventos con ángulos y energías bajas, que no son cubiertos por los detectores de silicio, gracias al empleo del $trigger\,L1$. Esto permite obtener una cantidad de sucesos considerablemente superior a la que se obtiene considerando únicamente los silicios. No obstante, en la simulación actual no se ha incluido la contribución de estos eventos, lo que podría mejorar significativamente la estadística y, potencialmente, permitir la observación de picos de excitación con mayor población. Los datos obtenidos sugieren que sería posible recuperar aproximadamente un 36.50% de la estadística en la región de $E_{ex}=0.0$ MeV y hasta un 64.23% para $E_{ex}=0.2$ MeV en el rango de bajas energías.

Referencias

- [1] E Arnold et al. "Nuclear spin and magnetic moment of ¹¹Li". En: *Phys. Lett. B* 197 (1987), págs. 311-314. DOI: 10.1016/0370-2693(87)90390-X.
- [2] E. Arnold et al. "Quadrupole moment of 11Li". En: *Phys. Lett. B* 281.1 (1992), págs. 16-19. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(92)90266-7.
- [3] Carlos A. Bertulani y Angela Bonaccorso. "Direct Nuclear Reactions". En: *Handbook of Nuclear Physics*. Ed. por Isao Tanihata, Hiroshi Toki y Toshio Suzuki. Singapore: Springer Nature, 2023. Cap. 36. ISBN: 978-981-15-8817-4. DOI: 10.1007/978-981-15-8818-1-26.
- [4] Ricardo A Broglia y Vladimir Zelevinsky. *Fifty Years of Nuclear BCS*. WORLD SCIENTIFIC, 2013. DOI: 10.1142/8526. eprint: https://www.worldscientific.com/doi/pdf/10.1142/8526.
- [5] Brookhaven National Laboratory. *Nuclear Chart Colorful*. Accedido el 2 de julio de 2025. 2025. URL: https://www.nndc.bnl.gov/nudat2/.
- [6] M. Mazzocco C. Signorini y D. Pierroutsakou. "Low Energy Halo Nuclei". En: Handbook of Nuclear Physics. Ed. por Isao Tanihata, Hiroshi Toki y Toshio Suzuki. Singapore: Springer Nature, 2023. Cap. 29, págs. 1126-1200. ISBN: 978-981-15-8817-4. DOI: 10.1007/978-981-15-8818-1_25.
- [7] J. Casal, M. Gómez-Ramos y A.M. Moro. "Description of the 11Li(p,d)10Li transfer reaction using structure overlaps from a full three-body model". En: *Phys. Lett. B* 767 (2017), págs. 307-313. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2017.02.017.
- [8] W.J. Huang et al. "The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures*". En: *Chinese Physics C* 45.3 (mar. de 2021), pág. 030002. DOI: 10 . 1088/1674-1137/abddb0.
- [9] Björn Jonson. "Light dripline nuclei". En: *Phys. Rep.* 389.1 (2004), págs. 1-59. ISSN: 0370-1573. DOI: https://doi.org/10.1016/j.physrep.2003.07.004.
- [10] Glenn F Knoll. Radiation detection and measurement; 4th ed. New York, NY: Wiley, 2010.
- [11] William R Leo. Techniques for nuclear and particle physics experiments: a how-to approach; 2nd ed. Berlin: Springer, 1994. DOI: 10.1007/978-3-642-57920-2.
- [12] B. Mauss et al. "Commissioning of the ACtive TARget and Time Projection Chamber (ACTAR TPC)". En: *Nucl. Instrum. Methods Phys. Res. A* 940 (2019), págs. 498-504. ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2019.06.067.
- [13] Maria Goeppert Mayer. "On Closed Shells in Nuclei. II". En: *Phys. Rev.* 75 (12 jun. de 1949), págs. 1969-1970. DOI: 10.1103/PhysRev.75.1969.
- [14] Sven Gösta Nilsson. *Binding states of individual nucleons in strongly deformed nuclei*. Inf. téc. 16. This document exists only as a journal publication... 1955.
- [15] M.R. Pahlavani. "The Nuclear Mean Field Theory and Its Application to Nuclear Physics". En: *Selected Topics in Applications of Quantum Mechanics*. Ed. por Mohammad Reza Pahlavani. Rijeka: IntechOpen, 2015. Cap. 8. DOI: 10.5772/60517.
- [16] A. Sanetullaev et al. "Investigation of the role of 10Li resonances in the halo structure of 11Li through the Li11(p,d)Li10 transfer reaction". En: *Phys. Lett. B* 755 (2016), págs. 481-485. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2016.02.060.

- [17] M. Smith et al. "First Penning-Trap Mass Measurement of the Exotic Halo Nucleus ¹¹Li". En: *Phys. Rev. Lett.* 101 (20 nov. de 2008), pág. 202501. DOI: 10 . 1103 / PhysRevLett . 101 . 202501.
- [18] I. Tanihata et al. "Measurements of interaction cross sections and nuclear radii in the light p-shell region". En: *Phys. Lett. B* 160 (1985), págs. 380-384. DOI: 10.1016/0370-2693(85) 91382-X.
- [19] I. Tanihata et al. "Measurements of Nuclear Sizes and Densities of Neutron-Rich Light Nuclei by Interaction Cross Section". En: *Phys. Rev. Lett.* 55 (1985), págs. 2676-2679. DOI: 10.1103/PhysRevLett.55.2676.
- [20] Isao Tanihata. "Effects of Tensor Interactions in Nuclei". En: *Handbook of Nuclear Physics*. Ed. por Isao Tanihata, Hiroshi Toki y Toshio Suzuki. Singapore: Springer Nature, 2023. Cap. 26. ISBN: 978-981-15-8817-4. DOI: 10.1007/978-981-15-8818-1-26.
- [21] Isao Tanihata y Björn Jonson. "Halo Nuclei". En: *Handbook of Nuclear Physics*. Ed. por Isao Tanihata, Hiroshi Toki y Toshio Suzuki. Singapore: Springer Nature, 2023. Cap. 25, págs. 986-1025. ISBN: 978-981-15-8817-4. DOI: 10.1007/978-981-15-8818-1-25.
- [22] F.-K. Thielemann et al. "What are the astrophysical sites for the r-process and the production of heavy elements?" En: *Prog. Part. Nucl. Phys.* 66.2 (2011). Particle and Nuclear Astrophysics, págs. 346-353. ISSN: 0146-6410. DOI: https://doi.org/10.1016/j.ppnp.2011.01.032.
- [23] James F. Ziegler et al. "SRIM The stopping and range of ions in matter (2010)". En: *Nucl. Instrum. Methods Phys. Res. B* 268.11 (2010). 19th International Conference on Ion Beam Analysis, págs. 1818-1823. ISSN: 0168-583X. DOI: https://doi.org/10.1016/j.nimb.2010.02.091.