FONCTIONS AFFINES ET INÉQUATIONS

I Les inégalités

Remarque n°1.

Les propriétés énoncées restent valables avec les symboles < ; ≥ et ≤

Propriété n°1.

Soient a et b deux nombres réels. $a > b \Leftrightarrow a-b > 0$

preuve:

Immédiat car, par définition, $a > b \Leftrightarrow a-b \in \mathbb{R}_+^*$

Propriété n°2.

Soient
$$a, b$$
 et c trois nombres réels et d un nombre réel non nul.

 $a > b \Leftrightarrow a + c > b + c$
 $a > b \Leftrightarrow a - c > b - c$

Si $d > 0$
 $a > b \Leftrightarrow a d > b d$
 $a > b \Leftrightarrow a d > b d$
 $a > b \Leftrightarrow a d < b d$
 $a > b \Leftrightarrow a d < b d$

preuve:

•
$$a > b \Leftrightarrow a - b > 0 \Leftrightarrow a + c - c - b > 0 \Leftrightarrow (a + c) - (b + c) > 0 \Leftrightarrow a + c > b + c$$

• Si
$$d>0$$

 $a>b \Leftrightarrow a-b>0 \Leftrightarrow d(a-b)>0 \Leftrightarrow ad-bd>0 \Leftrightarrow ad>bd$
règle des signes

• Les autres équivalences se démontrent de la même manière que ces deux là Elles sont laissées à titre d'exercice.

Propriété n°3.

Soient a, b, c et d quatre nombres réels.

Si
$$a < b$$
 et $c < d$ alors $a + c < b + d$

preuve:

Si
$$a < b$$
 et $c < d$ alors $a - b < 0$ et $c - d < 0$ donc $(a - b) + (c - d) < 0$ (somme de deux nombres négatifs)
Or $(a - b) + (c - d) < 0 \Leftrightarrow a + c - b - d < 0 \Leftrightarrow (a + c) - (b + d) < 0 \Leftrightarrow a + c < b + d$

Exemple n°1.

Si
$$x \ge 3$$
 et $y \ge 12$ alors $x + y \ge 3 + 12$

Remarque n°2. Attention

Cette propriété ne fonctionne pas avec la soustraction, voici un contreexemple :

$$1 < 2$$
 et $3 < 10$ alors que $1 - 3 > 2 - 10$

II Les intervalles

Définition n°1. Une façon de voir l'ensemble des réels

L'ensemble des nombres réels, noté \mathbb{R} est l'ensemble des abscisses des points d'une droite graduée.

Définition n°2. Intervalles

Soit a et b deux nombre réels, les intervalles de $\mathbb R$ sont les parties de $\mathbb R$ définies par :

Intervalle	Ensemble des réels <i>x</i> tels que :	Représentation graphique
[a; b]	$a \leq x \leq b$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
]a ; b[a < x < b	$\frac{}{a} \qquad \qquad b \boxed{}$
[a ; b[$a \leq x < b$	
]a; b]	$a < x \leq b$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$[a ; +\infty[$	$a \le x$ on peut aussi écrire $x \ge a$	${a}$
$a : +\infty$	a < x on peut aussi écrire $x > a$	$\frac{}{a}$
$]-\infty$; b]	$x \leq b$	$\xrightarrow{\hspace*{1cm}b}$
]-∞ ; b[x < b	$\xrightarrow{b} \boxed{\hspace{1cm}}$

Remarque n°3.

- Les intervalles [a;b],]a;b[, [a;b[et]a;b[sont des intervalles bornés et a et b sont appelés les bornes.
- \rightarrow L'amplitude de l'intervalle vaut b-a
- \rightarrow $\begin{bmatrix} a \\ \vdots \\ b \end{bmatrix}$ est un intervalle fermé et $\begin{bmatrix} a \\ \vdots \\ b \end{bmatrix}$ est un intervalle ouvert.
- $\rightarrow \mathbb{R} =]-\infty ; +\infty[$

III Les inéquations

Définition n°3.

Une inéquation d'inconnue x est une inégalité qui peut être vraie pour certaines valeurs de x qu'on appelle alors solutions. Résoudre cette inéquation dans \mathbb{R} c'est trouver toutes les solutions réelles.

Exemple n°2. Décrire les solutions d'une inéquation

Énoncé:

Résoudre l'inéquation $-3x+7 \ge 11$ et écrire l'ensemble des solutions sous forme d'intervalle puis le représenter graphiquement.

Réponse:

$$-3x+7 \ge 11 \Leftrightarrow -3x \ge 4 \Leftrightarrow x \le -\frac{4}{3} \Leftrightarrow x \in \left] -\infty ; -\frac{4}{3} \right]$$

$$-\frac{4}{3}$$

Remarque n°4.

On garde en tête la propriété n°2 :

Lorsqu'on résout une inéquation,

- additionner ou soustraire un même nombre réel à chaque membre ne change pas l'ordre,
- multiplier ou diviser les membres par un même nombre positif ne change pas l'ordre,
- multiplier ou diviser les membres par un même nombre négatif change l'ordre.

IV Sens de variation et signe d'une fonction affine

Dans tout le paragraphe, $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto mx + p \end{cases}$ avec m et p des réels, est une fonction affine.

Propriété n°4. Rappel

Pour toute fonction affine, l'accroissement de la fonction est proportionnel à celui de la variable :

si $a \neq b$ alors

$$m = \frac{f(b) - f(a)}{b - a}$$

preuve:

Comme f est affine, pour tout $x \in \mathbb{R}$, f(x) = mx + p avec $p \in \mathbb{R}$. Pour $a \neq b$, on peut écrire :

$$\frac{f(b) - f(a)}{b - a} = \frac{mb + p - (ma + p)}{b - a} = \frac{mb - ma + p - p}{b - a} = \frac{m(b - a)}{b - a} = m$$

Remarque n°5. Sens de variation d'une fonction affine

La propriété précédente nous indique que si m>0 alors les images sont rangées dans le même ordre que les abscisses (on dit que la fonction est croissante) et que si m<0 alors les images sont rangées dans l'ordre contraire à celui des abscisses (on dit que la fonction est décroissante).

m < 0 f est strictement décroissante

m>0f est strictement croissante

Tableaux de variations

Définition n°4. Racine d'une fonction affine

On suppose $m \neq 0$.

On appelle racine de f le réel x_0 tel que $f(x_0)=0$

Propriété n°5.

$$x_0 = \frac{-p}{m}$$

Remarque n°6.

Le point de coordonnées $(x_0; 0)$ est le point d'intersection de la courbe représentative de f avec l'axe des abscisses.

Propriété n°6.

Signe d'une fonction affine

Tableaux de signes

Exemple n°3.

Pour
$$g:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2x+3 \end{cases}$$
, $m=-2$ et $p=3$

• Comme m < 0, on a le tableau de variations suivant :

х	$-\infty$	$+\infty$
g(x)	+ ∞	- ∞

Posons $x_0 = \frac{-p}{m} = \frac{-3}{-2} = 1.5$, on sait alors que

la droite représentant la fonction g coupe l'axe des abscisses au point (1,5;0) et on a le tableau de signe suivant :

x	$-\infty$	1	, 5	$+\infty$
g(x)		+	•	_

V Le résumé du cours

Les propriétés énoncées restent valables avec les symboles < ; ≥ et ≤

Soient a, b et c trois nombres réels et d un nombre réel non nul.

$$a > b \Leftrightarrow a-b > 0$$

$$a > b \Leftrightarrow a + c > b + c$$

$$a > b \Leftrightarrow a - c > b - c$$

Si d > 0

$$a > b \Leftrightarrow a d > b d$$

$$a > b \Leftrightarrow a d < b d$$

$$a > b \Leftrightarrow \frac{a}{d} > \frac{b}{d}$$

$$a > b \Leftrightarrow \frac{a}{d} < \frac{b}{d}$$

Soient a, b, c et d quatre nombres réels.

Si
$$a < b$$
 et $c < d$ alors $a + c < b + d$

Attention : Si on peut additionner des inégalités on ne peut pas les soustraire.

- \rightarrow Les intervalles $[a \ ; b]$, $[a \ ; b[$ et $[a \ ; b]$ sont des intervalles bornés et a et b sont appelés les bornes.
- \rightarrow L'amplitude de l'intervalle vaut b-a
- \rightarrow [a; b] est un intervalle fermé et]a; b[est un intervalle ouvert.
- $\rightarrow \mathbb{R}=]-\infty$; $+\infty$

Résoudre une inéquation

Énoncé:

$$-3x+7 \ge 11 \Leftrightarrow -3x \ge 4 \Leftrightarrow x \le -\frac{4}{3} \Leftrightarrow x \in \left] -\infty; -\frac{4}{3} \right]$$

 $\Leftrightarrow x \in \left] -\infty ; -\frac{4}{3} \right]$ et écrire l'ensemble

Résoudre l'inéquation $-3x+7 \ge 11$ et écrire l'ensemble des solutions sous forme d'intervalle puis le représenter graphiquement.

Réponse :

$$f:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto mx + p \end{cases}$$
 une fonction affine

m < 0

f est strictement décroissante

f est strictement croissante

Tableaux de variations

x	$-\infty$		$+\infty$
f(x)	- ∞	/	+ ∞

Tableaux de signes

