Anharmonski oscilator

Filip Jesenšek (28231064)

October 29, 2025

Abstract

V tem poročilu preučujemo anharmonski oscilator, opisan s Hamiltonovo funkcijo $H=H_0+\lambda q^4$, kjer je $H_0=\frac{1}{2}(p^2+q^2)$ Hamiltonian harmonskega oscilatorja. Z numerično diagonalizacijo v bazi lastnih stanj harmonskega oscilatorja določimo lastne energije in lastne valovne funkcije za različne vrednosti anharmonskega parametra λ . Analiziramo tudi konvergenco rezultatov z velikostjo matrike in primerjamo različne metode izračuna.

Contents

1	Uvo	od	2		
	1.1	Teoretično ozadje	2		
	1.2	Numerični pristop	2		
2	Metode				
	2.1	Konstrukcija Hamiltonove matrike	2		
	2.2	Diagonalizacija	2		
3	Rezultati				
	3.1	Primerjava metod	3		
	3.2	Odvisnost od anharmonskega parametra λ	4		
	3.3	Lastne valovne funkcije	5		
	3.4	Konvergenca z velikostjo matrike	6		
	3.5	Struktura matrik	7		
	3.6	Energijski nivoji			
4	Dodatna naloga: Potencial z dvema minimumoma				
	4.1	Opis problema	9		
	4.2	Rezultati			
5	Zak	Zakliuček 1			

1 Uvod

1.1 Teoretično ozadje

Anharmonski oscilator je klasičen problem v kvantni mehaniki, ki omogoča preučevanje perturbacijskih metod in numeričnih tehnik. Osnovni Hamiltonian je podan z:

$$H = H_0 + \lambda q^4 = \frac{1}{2}(p^2 + q^2) + \lambda q^4$$

kjer je λ anharmonski parameter. V brezdimenzijskih enotah merimo energijo v enotah $\hbar\omega$, gibalno količino v $(\hbar m\omega)^{1/2}$ in dolžino v $(\hbar/m\omega)^{1/2}$.

Lastna stanja nemotenega sistema H_0 so znana:

$$|n\rangle = (2^n n! \sqrt{\pi})^{-1/2} e^{-q^2/2} \mathcal{H}_n(q)$$

z lastnimi energijami $E_n^0 = n + \frac{1}{2}$.

1.2 Numerični pristop

Za numerično reševanje problema sestavimo Hamiltonovo matriko v bazi lastnih stanj harmonskega oscilatorja. Matrični elementi koordinate q so podani z:

$$\langle i|q|j\rangle = \frac{1}{2}\sqrt{i+j+1} \ \delta_{|i-j|,1}$$

2 Metode

2.1 Konstrukcija Hamiltonove matrike

Uporabili smo tri različne metode za konstrukcijo matrike q^4 :

- 1. **Analitična metoda**: Direkten izračun matričnih elementov $\langle i|q^4|j\rangle$ z uporabo analitičnih izrazov
- 2. Kvadriranje q^2 : Konstrukcija matrike q^2 in njeno kvadriranje
- 3. **Potenciranje** q: Konstrukcija matrike q in njeno četrto potenciranje
- 4. **Rekurzivna metoda**: Uporaba rekurzivnih relacij za Hermitove polinome

2.2 Diagonalizacija

Za diagonalizacijo Hamiltonovih matrik smo uporabili NumPy-jevo funkcijo numpy.linalg.eigh, specializirano za simetrične matrike. Za velike matrike (N>1000) smo uporabili redkokonske metode iz knjižnice SciPy.

3 Rezultati

3.1 Primerjava metod

Na sliki 1 primerjamo različne metode izračuna. Analitična metoda se je izkazala za najhitrejšo, medtem ko so vse metode dajale enake rezultate z natančnostjo 10^{-10} .

Figure 1: Primerjava različnih metod izračuna: (a) hitrost izvajanja, (b) primerjava energij, (c) razlike glede na analitično metodo, (d) konvergenca z velikostjo matrike

3.2 Odvisnost od anharmonskega parametra λ

Slika 2 prikazuje, kako se energijski nivoji spreminjajo z anharmonskim parametrom λ . Pri $\lambda = 0$ opazimo značilne energije harmonskega oscilatorja $E_n = n + 1/2$. Z večanjem λ se energije povečujejo, pri čemer višji nivoji kažejo močnejši odklon.

Figure 2: Odvisnost lastnih energij od anharmonskega parametra λ : (a) energijski nivoji, (b) odstopanje od harmonskega oscilatorja, (c) relativno odstopanje, (d) primerjava s perturbacijsko teorijo

3.3 Lastne valovne funkcije

Na sliki 3 vidimo, kako anharmonska motnja vpliva na obliko valovnih funkcij. Z večanjem λ se funkcije stiskajo proti sredini, kar je posledica hitre rasti potenciala q^4 .

Figure 3: Lastne valovne funkcije za različne vrednosti λ . Vsak podgraf prikazuje eno lastno stanje, pri čemer so funkcije za različne λ zamaknjene za lažjo primerjavo.

3.4 Konvergenca z velikostjo matrike

Slika 4 prikazuje konvergenco lastnih energij z velikostjo matrike N. Višja energijska stanja zahtevajo večje matrike za dosego enake natančnosti. Eksponent konvergence je približno 1.22 za vse vrednosti λ .

Figure 4: Analiza konvergence: (a-c) napaka energij za različne λ , (d) potrebna velikost matrike za dosego natančnosti 10^{-6}

3.5 Struktura matrik

Slika 5 prikazuje strukturo matrik v bazi harmonskega oscilatorja. Vse matrike so redke, kar omogoča učinkovito računanje tudi za velike dimenzije.

Figure 5: Struktura matrik: (a) matrika |q|, (b) matrika $|q^2|$, (c) matrika $|q^4|$, (d) razlika med analitično in potenčno metodo

3.6 Energijski nivoji

Slika 6 prikazuje celoten spekter energijskih nivojev. Pri $\lambda=0$ opazimo enakomerno razporejene nivoje harmonskega oscilatorja. Z večanjem λ se razmiki med nivoji povečujejo.

Figure 6: Energijski nivoji anharmonskega oscilatorja za različne vrednosti λ

4 Dodatna naloga: Potencial z dvema minimumoma

4.1 Opis problema

Preučujemo sistem s potencialom:

$$V(q) = -2q^2 + \frac{1}{10}q^4$$

ki ima dva minimuma pri $q=\pm\sqrt{10}$. Ustrezni Hamiltonian je:

$$H = \frac{p^2}{2} - 2q^2 + \frac{1}{10}q^4$$

Figure 7: Potencial z dvema minimumoma: (a) potencial in energijski nivoji, (b) prvih nekaj valovnih funkcij

4.2 Rezultati

Na sliki 7 vidimo karakteristično obliko potenciala z dvema minimuma in pripadajoče energijske nivoje. Zaradi simetrije potenciala so lastne funkcije razdeljene na sode in lihe.

\overline{n}	$E_n (\hbar \omega)$
0	-8.61188072
1	-8.61188051
2	-5.94973459
3	-5.94969760
4	-3.49155945
5	-3.48899003
6	-1.35382723
7	0.17228964
8	0.78052092
9	0.78052092

Table 1: Prvih 10 lastnih energij za potencial z dvema minimumoma

V tabeli 1 so prikazane prvih 10 lastnih energij. Opazimo kvazidegeneracijo med sodimi in lihimi stanji, ki je posledica tunelskega pojava med obema minimumoma.

5 Zaključek

Uspešno smo rešili problem anharmonskega oscilatorja z numerično diagonalizacijo. Glavne ugotovitve so:

- Analitična metoda za izračun q^4 je najučinkovitejša
- \bullet Lastne energije naraščajo s λ in odstopajo od linearne odvisnosti
- Konvergenca za n-toenergijo zahteva matriko velikosti $N \propto n^{1.22}$
- \bullet Valovne funkcije se z večanjem λ stiskajo proti sredini
- Za potencial z dvema minimumoma opazimo karakteristično kvazidegeneracijo

Numerični pristop se je izkazal za zelo učinkovitega za reševanje takšnih problemov in omogoča preučevanje sistemov, ki niso rešljivi analitično.