Design of Mission-Critical Apps & Systems:

Expanding to RT Theory for RTES Design

Dr. Sam Siewert

Electrical, Computer and Energy Engineering

Embedded Systems Engineering Program

- Solve RT Problem
- Construct a System

Review of Resource Space – CPU, Memory, I/O, and Power

Embedded I/O

Scaling Embedded Systems – Bus and Network Methods **Device Interfaces and Drivers**

Profiling and Tracing Methods

Embedded Memory

Shared Memory Multi-Service RT Systems

Message Queues, Ring Buffers Avoiding Priority Inversion RAM disks

SECDED Memory Protection

Hamming Code ECC RAM interfaces

Persistent Memory

Nand flash devices, SSD Write Amplification and Wear Leveling **Simple Software RAID systems**

Mission Critical - No SPOF (Single Point of Failure) RTES Design for HA, Design for HR

Design for Both

Integration of RMA with HA/HR Applications and Systems

Example Designs

Applications – Digital Media (Audio, Video, Computer Vision) Systems – UAS/UAV, Small Satellites, Avionics, and Robotics

