

드라이브 스루를 위한 온디바이스 수어 인식 앱 개발

CONTENTS

CONTENTS 01

프로젝트 개요

CONTENTS 02

테스트 계획

CONTENTS 03

테스트 관리

CONTENTS 04

테스트 케이스

五是型是 718

프로젝트 개요

드라이브 스루 온디바이스 수어 인식 앱 개발

청각장애인의 비대면 주문 접근성 향상 필요 드라이브 스루 환경에서 수어로 원활한 주문 가능성 확보

<목표>

1. 실시간 수어 인식 및 번역을 통해 고객의 수어 주문을 자동으로 텍스트화 및 주문 입력 2. 직원 음성 인식 기능으로 의사소통의 양방향 지원 3. 온디바이스 처리를 통한 빠르고 안정적인 사용자 경험 제공

日人三月草

데스트 계획

목표

드라이브 스루용 온디바이스 수어 인식 기반 주문 시스템이 기능적으로 정상 동작하며, 주문 처리 과정이 신뢰성 있고 사용자 친화적으로 구현되었는지를 확인한다.

테스트 될 요소

- 주문 항목 자동 입력 및 수정 기능
- 주문 내역 확인 및 최종 제출 기능
- 음성 및 텍스트 피드백 제공 기능
- 오프라인 상태에서의 정상 동작
- 사용자 인터페이스(山) 반응 및 조작 편의성

테스트되지 않을 요소

- 네트워크 기반 백엔드 서버와의 통신 기능
- 결제 및 요금 청구 처리
- 카메라, 마이크 등 하드웨어 자체의 결함 진단
- 과부하 및 스트레스 테스트
- 보안 관련 테스트
- 시스템 복구 및 장애 대응 테스트

데스트 계획

테스트 단계

- 단위 테스트 수어 인식 모듈, 음성 인식 모듈 등 개별 기능 검증
- 통합 테스트 수어 및 음성 인식 모듈과 주문 처리 기능의 연계 검증
- 시스템 테스트 전체 주문 프로세스 기능 및 성능, 예외 처리 검증
- 인수 테스트
 드라이브 스루 환경을 모사한 사용자 시나리오 테스트

적용 테스트 기법 블랙 박스 테스트, 성능 테스트

PASS/FAIL 기준

- 기능 커버리지: 시스템 요구사항 명세서에 명시된 모든 기능이 정상적으로 수행됨을 확인
- 수어 및 음성 인식 정확도: 🖫 🗥 이상의 정확도
- UI/UX: 사용자 조작 중 치명적인 오류나 혼란을 유발하는 문제가 없어야 함
- 성능: 인식 응답 시간은 D.5초 이내여야 하며, 시스템
 자원 사용이 과도하지 않아야 한다.

테스트 산출물

- 테스트 계획
- 테스트 케이스 명세
- 테스트 결과 보고서
- 사용자 시나리오별 테스트 결과 요약

테스트 관리

작업 순서

- 1. 테스트 계획
- 2. 테스트 설계
- 3. 테스트 수행
- 4. 버그 관리
- 5. 결과 문서화

기술 자원

- 온디바이스 수어 인식 앱이 설치된 테스트용
 모바일 디바이스
- 수어 및 음성 인식 테스트용 데이터셋
- 성능 모니터링 도구
- 버그 및 이슈 관리용 소프트웨어
- 테스트 시나리오 및 케이스 관리 도구

인력 자원

- 이어진: 전체 개발 관리프로젝트 일정 수립, 진행 상황 점검 및 전체 개발 총괄
- 김도현:수어 인식 AI 모델 개발모델
 학습 및 추론, TFLite 변환 및 온디바이스
 최적화 수행.
- 박채연: MediaPipe 기반 키포인트 추출
 및 연동 구현 실시간 키포인트 추출, 추론
 파이프라인 구성 및 앱 내 연동 처리 담당.

테스트 관리

위험 요소와 비상 대처 상황

- 1. 수어 및 음성 인식 데이터셋이 부족할 경우
- -> 데이터셋 확보 및 보완 작업을 사전에 진행하며, 부족 시 추가 데이터 수집 일정을 조정하여 테스트 기간에 반영한다.
- 2. 테스트 중 앱 비정상 종료나 심각한 버그 발생
- -> 로그 수집 및 신속한 버그 분석 체계 마련, 임시 패치 적용 후 재테스트 실시
- 3. 일정 지연
- -> 우선순위가 높은 테스트 케이스를 선별하여 집중 수행하고, 테스트 범위 조정 및 인력 재배치를 검토한다.

居
 居
 居
 居
 田
 名
 田
 の
 日
 こ
 こ
 こ
 の
 日
 の
 の

테스트 케이스

Id	테스트 대상	테스트 조건	테스트 데이터	예상 결과
SI-1	수어 인식 텍스트 변환	고객이 수어를 천천히 정확하게 수행	"감자튀김" 수어	"감자튀김" 텍스트가 직원 화면에 정확 히 전달됨
SI-2	수어 인식 텍스트 변환	연속 수어 수행	"햄버거" "콜라"	"햄버거", "콜라" 순서대로 직원 화면에 표시됨
SI-3	수어 인식 텍스트 변환	손 일부만 보이거나 빠른 동작 수행	불완전한 "치즈버거" 수어	"수어를 인식할 수 없습니다. 다시 시도 해주세요." 출력
SI-4	수어 인식 텍스트 변환	비등록 수어 수행	메뉴에 없는 동작	"등록되지 않은 수어입니다." 출력
VO-1	직원 음성 인식 텍스트 출력	명확한 발화	"주문 확인해드릴게요. 햄버거 맞 으시죠?"	청각장애인 화면에 텍스트 그대로 출력
VO-2	직원 음성 인식 텍스트 출력	빠른 말투 + 약간의 억양 포함	"콜라 추가해드릴까요?"	정확도 90% 이상으로 텍스트 출력됨
RT-1	수어 및 음성 인식 반응 속도	수어 또는 음성 입력 직후 시스템 응 답 시간 측정	수어: "콜라" / 음성: "감사합니 다"	입력 후 0.5초 이내에 텍스트가 화면에 출력되어야 함

감사합니다