

Netdev 0x13 Prague, Czech Republic

Don Wallwork Andy Gospodarek

Compute and Connectivity Division (CCX)

Network Services Running on a Server

Migrate Services off Compute Server?

What can the hardware do?

OVS Performance on Single Xeon Core

- Data collected using Dell R730
 - Dual socket Intel Xeon E5-2697v4 @2.6GHz
 - Broadcom BCM57414 2x25Gbps NIC
 - RHEL 7.6
 - kernel-3.10.0-957.1.3.el7
 - openvswitch-2.9.0-83.el7fdp.1
- Layer 3 forwarding, no network overlay

OVS Throughput per Core

2.6GHz/560kpps = 4600 cycles/packet !!
Nearly linear scaling

What about other packet sizes?

Consistently around 4600 cycles/packet

What if the flow isn't already known?

- Kernel hit: 4600 cycles/packet
- Kernel miss: 50,000 cycles/packet
- Miss 10.8x more costly than hit

What about a mix of known and unknown flows?

What about hardware acceleration?

Assumptions:

- 10x faster miss processing
- 8 cores dedicated to miss processing
- HW rate of 90MPPS
- Hit rate dominates throughput

What about DPDK?

 Kernel dataplane with HW acceleration outperforms DPDK

Amdhal's Law

$$S_{latency}(s) = \frac{1}{(1-p) + \frac{p}{s}}$$

- Slatency is the theoretical speedup of a task
- s is the speedup of the part of the task that is improved
- · p is the proportion of the execution time that the original task occupied

Amdhal's Law Applied

$$S_{latency}(s) = \frac{1}{1 - 0.75 + \frac{0.75}{10}} = 3.1$$

- s = 10 (10x speedup)
- p = 0.75 (percentage of time previously spend on datapath miss processing)
- S_{latency} = 3.1x speedup

Migrate Network Services off Compute Server

Moving OVS to **OVS** consumes 4 **SmartNIC frees 4** server cores server cores **CPU CPU** NIC NIC TruFlow Stingray

Migrate Services off Compute Server

OVS consumes 4 server cores

Moving OVS to SmartNIC frees 4 server cores

Utopia: Hardware acceleration of datapath in SmartNIC

OVS Performance: 4x Xeon cores vs. Stingray

- OVS performance on 4 Xeon cores
 - Performance scales roughly linearly per core
 - Stingray 8x A72 cores offer similar performance
- SmartNIC frees 4 Xeon cores for revenue generating applications
 - Generate up to \$4,000 additional revenue per year
- Dedicated network processing HW accelerates performance → TruFlowTM
 - Increases PPS
 - Reduces power
 - Supports IPv6, VXLAN encap with no performance degradation

Friends Don't Let Friends Run OVS on Application Servers

- Cost of flow setup and aging is high compared to kernel datapath processing
- Changing the number of cores processing new flows and aging old ones does not demonstrably change packet processing speed when compared to kernel or hardware datapath
- Moving OVS Control Plane and Dataplane to a Stingray/SmartNIC is a compelling option to save server resources

Thank You

