Example 1.6. Calculate the line integral of the function $\mathbf{v} = y^2 \,\hat{\mathbf{x}} + 2x(y+1) \,\hat{\mathbf{y}}$ from the point $\mathbf{a} = (1, 1, 0)$ to the point $\mathbf{b} = (2, 2, 0)$, along the paths (1) and (2) in Fig. 1.21. What is $\oint \mathbf{v} \cdot d\mathbf{l}$ for the loop that goes from \mathbf{a} to \mathbf{b} along (1) and returns to \mathbf{a} along (2)?

(i)
$$d\vec{c} = dx \hat{x}$$
, $y = 1$

$$\int \vec{v} \cdot d\vec{c} = \int_{1}^{2} y^{2} dx = \int_{1}^{2} dx = 1$$

(ii)
$$\int \vec{v} \cdot d\vec{v} = \int_{1}^{2} 2x (y+1) dy = 4 \int_{1}^{2} (y+1) dy = 4 \left(\frac{y^{2}}{2} + y\right) \int_{1}^{2} = 10$$

Path 2
$$x = y$$
 $dx = dy$ $d\vec{i} = dx + dy = \int_{1}^{2} x^{2} dx + \int_{1}^{2} 2x cx + i dx = 0$