Lecture 06:

Optimization

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units

Lecture 1: Course Overview and Introduction to Machine Learning

Lecture 2: Bayesian Methods in Machine Learning

classic ML tools & algorithms

Lecture 3: Dimensionality Reduction: Principal Component Analysis

Lecture 4: Linear and Non-linear Regression and Classification

Lecture 5: Unsupervised Learning: K-Means, GMM, Trees

Lecture 6: Adaptive Learning and Gradient Descent Optimization Algorithms

Lecture 7: Introduction to Artificial Neural Networks - The Perceptron

ANNs/AI/Deep Learning

Lecture 8: Introduction to Artificial Neural Networks - Building Multiple Dense Layers

Lecture 9: Convolutional Neural Networks (CNNs) - Part |

Lecture 10: CNNs - Part II

Lecture 11: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs)

Lecture 12: Combining LSTMs and CNNs

Lecture 13: Running Models on GPUs and Parallel Processing

Lecture 14: Project Presentations

Lecture 15: Transformer

Lecture 16: GNN

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

regression, e. g. curve fitting

minimize:

$$\chi_{red}^{2} = \frac{1}{N - p - 1} \sum_{i=1}^{N} \frac{(\hat{y}(model)_{i} - y_{i})^{2}}{\sigma_{i}^{2}}$$

classification

maximize: accuracy

$$S = -\sum_{i} p(true)_{i} \cdot \ln p(model)_{i}$$

Any algorithm needs a "goal" aka objective function that has to be optimized (finding an extreme)

Often, the extreme of the objective function is subject to **constrains**

$$S = -\sum_{i} p(true)_{i} \cdot \ln p(model)_{i}$$
 constrain: $\sum_{i} p_{i} = 1$

→ Lagrangian Multipliers and variational calculus

→ mathematically:

Free Energy like term = Energy like term – Entropy term

examples:

- Evidence Lower Bound
- Lasso method (linear regression)
- actual energy → Boltzmann distribution

etc

These functions are very complicated, not analytical (= no mathematical equation) at all

two most common approaches:

- gradient descent
- simulated annealing

These functions are very complicated, not analytical (= no mathematical equation) at all

two most common approaches:

- gradient descent
- simulated annealing

Any algorithm needs a "goal" aka **objective function** that has to be **optimized** (finding an **extreme**) \rightarrow extreme of an objective function

gradient descent

temperature profile in space and time

T: temperature

$$\frac{dT}{dt} = \frac{\partial T}{\partial x}\frac{dx}{dt} + \frac{\partial T}{\partial y}\frac{dy}{dt} + \frac{\partial T}{\partial z}\frac{dz}{dt} + \frac{\partial T}{\partial t} = \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \\ \frac{\partial T}{\partial z} \end{pmatrix} \circ \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{pmatrix} + \frac{\partial T}{\partial t}$$

 $= grad(T) \circ \vec{v}$

If *T* doesn't change with time!

Any algorithm needs a "goal" aka **objective function** that has to be **optimized** (finding an **extreme**) \rightarrow extreme of an objective function

gradient descent

concentration profile in space and time

E. Coli

c: concentration

$$\frac{dc}{dt} = \frac{\partial c}{\partial x}\frac{dx}{dt} + \frac{\partial c}{\partial y}\frac{dy}{dt} + \frac{\partial c}{\partial z}\frac{dz}{dt} + \frac{\partial c}{\partial t}$$

$$= \begin{pmatrix} \frac{\partial c}{\partial x} \\ \frac{\partial c}{\partial y} \\ \frac{\partial c}{\partial z} \end{pmatrix} \circ \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{pmatrix} + \frac{\partial c}{\partial t}$$

$$= grad(c) \circ \vec{v}$$
 If c doesn't change with time!

Any algorithm needs a "goal" aka objective function that has to be optimized (finding an extreme)

gradient descent

finding **a** and **b** of a van-der-Waals gas

if critical points are not accessible

→ fitting curve, finding **a** and **b**

These functions are very complicated, not analytical (= no mathematical equation) at all

two most common approaches:

- gradient descent
- simulated annealing

If $\Delta E(x, y)$ is **negative**:

→ always move

(a ball always rolls down the hill)

If $\Delta E(x, y)$ is **positive**:

- → calculate the **probability to move**
- → leaves some chance to escape local minimum

T: temperature

Boltzmann factor

$$p_{move} \sim \exp\left[-\frac{\Delta E(x,y)}{T}\right]$$

simulated annealing

slowly reducing T \rightarrow making larger jumps ($\Delta E(x, y)$) less likely over time

If $\Delta E(x, y)$ is **negative**: \rightarrow **always move** (a ball always rolls down the hill)

If $\Delta E(x, y)$ is **positive**: \rightarrow calculate the **probability to move** \rightarrow leaves some chance to

T: temperature

escape local minimum

Boltzmann factor

$$p_{move} \sim \exp\left[-\frac{\Delta E(x,y)}{T}\right]$$

simulated annealing

Metropolis (Chem 273):

- 1) suggest a random move Δx and Δy
- 2) calculate $\Delta E(x, y)$ based on Δx and Δy
- 3) move or not:
 - a) move if $\Delta E(x, y) < 0$
 - b) if $\Delta E(x, y) > 0$
 - draw a $\operatorname{random\ number} \rho$ from a $\operatorname{uniform\ distribution}$ in the interval (0,1)
 - move if $\rho < \exp\left[-\frac{\Delta E(x,y)}{T}\right]$
- 4) reduce *T* and repeat

Berkeley Machine Learning Algorithms:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

50 I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

main application: ANN!

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t=2) = x(t=1) - \varepsilon \frac{dy}{dx} \Big|_{x(t=1)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t=3) = x(t=2) - \varepsilon \frac{dy}{dx} \Big|_{x(t=2)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t = 4) = x(t = 3) - \varepsilon \frac{dy}{dx} \Big|_{x(t=3)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t = 4) = x(t = 3) - \varepsilon \frac{dy}{dx} \Big|_{x(t=3)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t=2) = x(t=1)$$

$$\left. - \right|_{x(t=1)} \frac{dy}{dx} \right|_{x(t=1)}$$

$\frac{\partial y}{\partial x_1}\Big|_{x_1^*; x_2^*} \approx \frac{y(x_1^* + \Delta x_1, x_2^*) - y(x_1^* - \Delta x_1, x_2^*)}{2\Delta x_1}$

$$\frac{\partial y}{\partial x_2}\Big|_{x_1^*; x_2^*} \approx \frac{y(x_1^*, x_2^* + \Delta x_2) - y(x_1^*, x_2^* - \Delta x_2)}{2\Delta x_2}$$

$$\frac{\partial y}{\partial x_1}\bigg|_{\substack{x_1^*; \, x_2^*; \dots; \, x_N^*}} \approx \frac{y(x_1^* + \Delta x_1, \, x_2^*, \dots, x_N^*) - y(x_1^* - \Delta x_1, \, x_2^*, \dots, x_N^*)}{2\Delta x_1}$$

$$\frac{\partial y}{\partial x_2}\bigg|_{\substack{x_1^*; \, x_2^*; \dots; \, x_N^*}} \approx \frac{y(x_1^*, x_2^* + \Delta x_2, \dots, x_N^*) - y(x_1^*, x_2^* - \Delta x_2, \dots, x_N^*)}{2\Delta x_2}$$

$$\left. \frac{\partial y}{\partial x_i} \right|_{x_1^*; x_2^*; \dots; x_N^*} \approx \frac{y(\dots, x_i^* + \Delta x_i, \dots, x_N^*) - y(\dots, x_i^* - \Delta x_i, \dots, x_N^*)}{2\Delta x_i}$$

$$\frac{\partial y}{\partial x_N}\bigg|_{\substack{x_1^*; \, x_2^*; \dots; \, x_N^*}} \approx \frac{y(x_1^*, x_2^*, \dots, x_N^* + \Delta x_N) - y(x_1^*, x_2^*, \dots, x_N^* - \Delta x_N)}{2\Delta x_N}$$

$$\left. \begin{array}{c|c} \left. \frac{\partial y}{\partial x_1} \right|_{x_1^*; \, x_2^*; \dots; \, x_N^*)} \\ \cdots \\ \left. \frac{\partial y}{\partial x_i} \right|_{x_1^*; \, x_2^*; \dots; \, x_N^*} \\ & = grad(y)_x \\ \text{gradient of } \end{array}$$

gradient of y wrt x

Berkeley Machine Learning Algorithms:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

$$\Delta x = -\left. \frac{e}{x} \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

$$\Delta x = -\left. \frac{\epsilon}{\epsilon} \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

x(t = 5)

2 > 0

called *learning rate*

$$\Delta x = -\left. \frac{e}{\varepsilon} \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

$$\rightarrow$$
 smaller ε ?

$$\frac{dy}{dx}\bigg|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

e > 0

called *learning* rate

$$\Delta x = -\left. \frac{e}{x} \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

... and so on...

 \rightarrow smaller ε ?

Takes too long!

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

<u>learning rate as function of t:</u>

$$\boldsymbol{\varepsilon}(t) = \frac{\boldsymbol{\varepsilon}_0}{1 + \kappa t}$$
 decay rate κ

$$\Delta x = -\left. \frac{dy}{dx} \right|_{x(t)}$$

2 > 0

defines how large the leap Δx is

called *learning rate*

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

learning rate as function of t:

$$\boldsymbol{\varepsilon}(t) = \frac{\boldsymbol{\varepsilon}_0}{1 + \kappa t}$$
 decay rate κ

$$\Delta x = -\left. \frac{dy}{dx} \right|_{x(t)}$$

2 > 0

defines how large the leap Δx is

called *learning rate*

can also be a stepwise function (learning rate schedule)

<u>learning rate as function of t:</u>

Learning Rate Schedule

$$\boldsymbol{\varepsilon}(t) = \frac{\boldsymbol{\varepsilon}_0}{1 + \kappa t} \qquad \text{decay rate } \kappa$$

$$\Delta x = -\left. \frac{e}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

can also be a stepwise function (learning rate schedule)

$$\epsilon \to \frac{\epsilon}{\sqrt{grad(y)_x}}$$

adaptive gradient, aka AdaGrad

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

150 125

pressure [MPa] 22 20 20

25

400

600

800

temperature [K]

1000

1200

1400

Momentum

even with AdaGrad and learning rate schedule

→ would get stuck in local minimum

need to roll over → momentum

taking the **average** of **N** previous gradients

$$\langle grad(y)_{x(t)} \rangle = \frac{1}{N} [grad(y)_{x(t-1)} + grad(y)_{x(t-2)} + \dots + grad(y)_{x(t-N)}]$$

but we want more recent gradients to contribute more than older gradients

 \rightarrow weighted average with weighting factor μ_k

$$\langle grad(y)_{x(t)} \rangle = \sum_{k=t-N}^{t-1} \mu_k \cdot grad(y)_{x(k)}$$

Finding a clever way to adjust μ_k during every iteration t

weighted average with weighting factor μ_k

Momentum

Finding a clever way to adjust μ_k during every iteration t

$$\langle grad(y)_{x(0)} \rangle = grad(y)_{x(0)}$$
 $\mu_0 = (0,1)$

$$\langle \operatorname{grad}(y)_{x(1)} \rangle = \operatorname{grad}(y)_{x(1)} + \mu_0 \cdot \operatorname{grad}(y)_{x(0)}$$

weighted average with weighting factor μ_k

Momentum

Finding a clever way to adjust μ_k during every iteration t

$$\langle grad(y)_{x(0)} \rangle = grad(y)_{x(0)}$$
 $\mu_0 = (0,1)$

$$\langle \operatorname{grad}(y)_{x(1)} \rangle = \operatorname{grad}(y)_{x(1)} + \mu_0 \cdot \operatorname{grad}(y)_{x(0)}$$

$$\langle \operatorname{grad}(y)_{x(2)} \rangle = \operatorname{grad}(y)_{x(2)} + \mu_0 \left[\operatorname{grad}(y)_{x(1)} + \mu_0 \operatorname{grad}(y)_{x(0)} \right]$$

$$\mu_{k=2} = \mu_0 \ \mu_0 = \mu_0^2$$

$$\langle \operatorname{grad}(y)_{x(3)} \rangle = \operatorname{grad}(y)_{x(3)} + \mu_0 \left[\operatorname{grad}(y)_{x(2)} + \mu_0 \left[\operatorname{grad}(y)_{x(1)} + \mu_0 \cdot \operatorname{grad}(y)_{x(0)} \right] \right]$$

... and so on...

weighted average with weighting factor μ_k

$$\mu_0 = (0,1)$$
 called "momentum"

$$\langle \operatorname{grad}(y)_{\chi(3)} \rangle = \operatorname{grad}(y)_{\chi(3)} +$$

$$\mu_0 \left[grad(y)_{x(2)} + \mu_0 \left[grad(y)_{x(1)} + \mu_0 \cdot grad(y)_{x(0)} \right] \right]$$
 ... and so on...

Momentum

class Optimizer:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

50 I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

Outline

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

Any algorithm needs a "goal" aka **objective function** that has to be **optimized** (finding an **extreme**)

L1 and L2

Often, the extreme of the objective function is subject to **constrains**

sometimes we have some prior knowledge about the independent variables

recall: linear regression

finding best β by

$$\min_{\beta} \left\{ \frac{1}{N} \| Y - X\beta \|^2 \right\}$$

now:

constrain: encourages sparsity of $oldsymbol{eta}$

$$\min_{\beta} \left\{ \frac{1}{N} \| Y - X\beta \|^2 + \lambda \| \beta \|^1 \right\}$$

λ Lagrangian Multiplier

called L1 regularization, or LASSO

Any algorithm needs a "goal" aka **objective function** that has to be **optimized** (finding an **extreme**)

L1 and L2

Often, the extreme of the objective function is subject to **constrains**sometimes we have some **prior knowledge** about the **independent variables**

L1 regularization

We often have even hard constrains based on the laws of physics!

Any algorithm needs a "goal" aka **objective function** that has to be optimized (finding an extreme)

L1 and L2

Often, the extreme of the objective function is subject to **constrains** sometimes we have some **prior knowledge** about the **independent variables**

recall: linear regression

finding best β by

$$\min_{\beta} \left\{ \frac{1}{N} \| Y - X\beta \|^2 \right\}$$

now:

$$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T Y \longrightarrow \min_{\beta} \left\{ \frac{1}{N} \|Y - X\beta\|^2 + \lambda \|\beta\|^2 \right\}$$

Lagrangian Multiplier

called L2 regularization, or RIDGE penalizes large β

L1 and L2 regularization

L1 and L2

$$x(t=2) = x(t=1) - \varepsilon \frac{d[y + \lambda_1 || x ||^1 + \lambda_2 || x ||^2]}{dx} \Big|_{x(t=1)}$$

$$x(t=2) = x(t=1) - \varepsilon \frac{dy}{dx} \Big|_{x(t=1)}$$

$$-\left.\varepsilon\frac{\lambda_1 d\|x\|^1}{dx}\right|_{x(t=1)} -\left.\varepsilon\frac{\lambda_2 d\|x\|^2}{dx}\right|_{x(t=1)}$$

- gradient descent does not stop if values for x are too large and prefers sparsity
- note: the derivative of $||x||^1$ returns the sign (i. e. direction)
- usually $\lambda \ll ||x||^n$
- will be important for ANNs later

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT... WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

More Fine Tuning

gradient descent (cyan), momentum (magenta), RMSProp (green), Adam (blue)

Berkeley Optimization:

<u>TowardsDataScience</u>

gradient descent (cyan), momentum (magenta), AdaGrad (white), RMSProp (green), Adam (blue)

Berkeley Machine Learning Algorithms:

Thank you very much for your attention!

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT... WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE

