Séries numériques

I. Généralités.

1) Définitions

def: Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Pour $n\in\mathbb{N}$, on pose $S_n=\sum_{k=0}^n u_k$. La série de terme général u_n est la cuite (S_n) . Pour $n\in\mathbb{N}$ S_n est la somme partielle de rang n de la série de terme général u_n

la suite $(S_n)_{n\in\mathbb{N}}$. Pour $n\in\mathbb{N}$, S_n est la somme partielle de rang n de la série de terme général u_n .

Th (liens entre la suite (u_n) et la série de terme général u_n).

Pour tout entier naturel n, $S_{n+1} = S_n + u_{n+1}$ (définition de la suite (S_n) par récurrence).

Pour tout entier naturel non nul n, $u_n = S_n - S_{n-1}$ (récupération du terme général).

 $\mathbf{def}:$ La série de terme général $\mathfrak{u}_n, n \in \mathbb{N}$, converge si et seulement si la suite des sommes partielles $(S_n)_{n \in \mathbb{N}}$ converge.

Dans ce cas, la limite de la suite $(S_n)_{n\in\mathbb{N}}$ se note $\sum_{k=0}^{+\infty} u_k$ et s'appelle la somme de la série de terme général u_n (le symbole

 $\sum_{k=0}^{+\infty}u_k$ ne désigne donc pas la série mais la somme de la série).

L'expression $S_n = \sum_{k=0}^n u_k$ est une fonction de n mais pas de k (la variable k est muette). On peut écrire $\forall n \in \mathbb{N}$,

 $\sum_{k=0}^n u_k = \dots \text{ mais on n'écrit surtout pas } \forall k \in \mathbb{N}, \ \sum_{k=0}^n u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ n'est pas une fonction de } k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ et peut pas } u_k = \dots \text{ L'expression } \sum_{k=0}^{+\infty} u_k \text{ et peut pas } u_k = \dots \text{ et peut pas } u$

 $\mathrm{donc}\;\mathrm{se}\;\mathrm{noter}\;\sum_{n=0}^{+\infty}u_n,\,\sum_{p=0}^{+\infty}u_p\,\ldots$

On ne modifie pas la nature d'une série en changeant la valeur d'un nombre fini de terme de la suite (mais on change éventuellement sa somme éventuelle).

2) Séries grossièrement divergentes

Th: Si la série de terme général u_n converge, u_n tend vers 0 quand n tend vers $+\infty$.

Si u_n ne tend pas vers 0, la série de terme général u_n diverge.

Démonstration. Si la série de terme général u_n converge vers S, alors la suite $(u_n) = (S_n - S_{n-1})$ converge vers S - S = 0.

def : Une série est grossièrement divergente si et seulement si son terme général ne tend pas vers 0.

Par exemple, la série de terme général $(-1)^n$ est une série grossièrement divergente.

3) Reste à l'ordre n d'une série convergente.

def: On suppose que la série de terme général u_n converge. Le reste à l'ordre n est défini pour tout entier naturel n par

$$R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_k.$$

Th: R_n tend vers 0 quand n tend vers $+\infty$.

Par exemple, l'expression $\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ tend vers 0 quand n tend vers $+\infty$ alors que l'expression $\sum_{k=n+1}^{+\infty} \frac{1}{k}$ n'est pas définie.

4) L'espace vectoriel des suites, termes généraux de séries convergentes

Th: Si les séries de termes généraux respectifs u_n et v_n convergent, la série de terme général $\lambda u_n + \mu v_n$ converge et de plus,

$$\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n.$$

Dit autrement, l'ensemble E des suites à coefficients dans \mathbb{K} qui sont des termes généraux de séries convergentes est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$ et l'application $(\mathfrak{u}_n)\mapsto \sum_{n=0}^{+\infty}\mathfrak{u}_n$ est une forme linéaire sur E.

Danger. On peut décomposer en une combinaison linéaire quand toutes les séries considérées convergent et sinon, on ne peut pas. Par exemple, la série de terme général $\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$ converge (car son terme général est équivalent à $\frac{1}{2n^2}$) mais on ne peut pas écrire $\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)\right) = \sum_{n=1}^{+\infty} \frac{1}{n} - \sum_{n=1}^{+\infty} \ln\left(1 + \frac{1}{n}\right).$ Par contre, on peut travailler sur des sommes fin

$$\begin{split} \sum_{n=1}^N \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)\right) &= \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^N \ln\left(1 + \frac{1}{n}\right) = \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^N \left(\ln(n+1) - \ln(n)\right) \\ &= \left(\sum_{n=1}^N \frac{1}{n}\right) - \ln(N+1) \text{ (somme t\'elescopique)}. \end{split}$$

5) Séries absolument convergentes

a) Suites réelles, suites complexes.

 $\mathrm{Si}\ (u_n)\ \mathrm{est}\ \mathrm{une}\ \mathrm{suite}\ \mathrm{r\acute{e}elle},\ \mathrm{pour}\ n\in\mathbb{N},\ \mathrm{on}\ \mathrm{pose}\ u_n^+=\mathrm{Max}\{u_n,0\}\ \mathrm{et}\ u_n^-=-\mathrm{Min}\{u_n,0\}=\mathrm{Max}\{-u_n,0\}.\ \mathrm{Pour}\ \mathrm{tout}\ \mathrm{entier}\}$

•
$$u_n = u_n^+ - u_n^-$$
, $|u_n| = u_n^+ - u_n^-$,

•
$$u_n = u_n^+ - u_n^-$$
, $|u_n| = u_n^+ - u_n^-$,
• $u_n^+ = \frac{|u_n| + u_n}{2}$, $u_n^- = \frac{|u_n| - u_n}{2}$

 $\mathbf{Th}: \mathrm{Soit}\; (\mathfrak{u}_{\mathfrak{n}})$ une suite réelle. Si les séries de termes généraux respectifs $\mathfrak{u}_{\mathfrak{n}}^+$ et $\mathfrak{u}_{\mathfrak{n}}^-$ convergent, alors la série de terme général u_n converge et dans ce cas, $\sum_{n=0}^{+\infty}u_n=\sum_{n=0}^{+\infty}u_n^+-\sum_{n=0}^{+\infty}u_n^-.$

 ${\bf Th}: {
m Soit}\; (\mathfrak{u}_{\mathfrak{n}})$ une suite complexe. La série de terme général $\mathfrak{u}_{\mathfrak{n}}$ converge si et seulement si les séries de termes généraux respectifs $\operatorname{Re}(u_n)$ et $\operatorname{Im}(u_n)$ convergent et dans ce cas, $\sum_{n=0}^{+\infty}u_n=\sum_{n=0}^{+\infty}\operatorname{Re}(u_n)+i\sum_{n=0}^{+\infty}\operatorname{Im}(u_n).$

b) Définition. Soit (u_n) une suite de nombres complexes. La série de terme général u_n est absolument convergente si et seulement si la série de terme générale $|u_n|$ est convergente.

Th: Si la série de terme général u_n est absolument convergente, alors la série de terme général u_n est convergente (se démontre en passant par \mathfrak{u}_n^+ et \mathfrak{u}_n^- pour les suite réelles puis par $\mathrm{Re}(\mathfrak{u}_n)$ et $\mathrm{Im}(\mathfrak{u}_n)$ pour les suites complexes).

6) Lien suites-séries. Séries télescopiques

Th: La suite u_n et la série de terme général $u_{n+1} - u_n$ sont de mêmes natures. De plus, si la suite (u_n) converge vers $\ell, \ \mathrm{alors} \ \sum^{+\infty} \left(u_{n+1} - u_n \right) = \ell - u_0 \ (\mathrm{s\acute{e}rie} \ \mathrm{t\acute{e}lescopique}).$

Ce résultat est par exemple utilisé pour établir la formule de STIRLING : $n! \sum_{n \to +\infty} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$. On étudie la convergence de la suite $u_n = \frac{n!}{\left(\frac{n}{n}\right)^n \sqrt{n}}$ en étudiant la convergence de la série de terme général $w_n = \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(u_{n+1}\right) - \ln\left(u_n\right) = \ln\left(\frac{u_{n+1}}{u_n}\right)$ $1-\left(n+\frac{1}{2}\right)\ln\left(1+\frac{1}{n}\right).$

II. Séries de référence.

On a trois types de séries de référence : les séries géométriques, les séries de RIEMANN et la série exponentielle.

Th: Pour tout nombre complexe q, la série géométrique de terme général q^n converge si et seulement si |q| < 1 (alors que la suite géométrique (q^n) converge si et seulement si |q| < 1 ou q = 1). De plus

$$\forall q \in \mathbb{C}, |q| < 1 \Rightarrow \sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}.$$

Th: Pour tout réel α , la série de terme général $\frac{1}{n^{\alpha}}$ (ou encore la série de RIEMANN d'exposant α) converge si et seulement si $\alpha > 1$ (se démontre en comparant à des intégrales).

 $\mathbf{Th}: \text{Pour tout } z \in \mathbb{C}, \text{ la série de terme général } \frac{z^n}{n!} \text{ converge et } \sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^z.$

III. Séries à termes réels positifs. Ce paragraphe concerne plus généralement les séries à termes réels de signe constant à partir d'un certain rang.

1) Théorème fondamental

Soit (u_n) une suite de réels positifs. La série de terme général u_n converge si et seulement si la suite (S_n) des sommes partielles est majorée (puisque la suite (u_n) est positive, la suite (S_n) est croissante).

Dans le cas contraire, $\sum_{n=0}^{+\infty} u_n = +\infty$.

2) Utilisation des relations de comparaison

Th: Soient (u_n) et (v_n) deux suites réelles telles que pour tout n à partir d'un certain rang, $0 \le u_n \le v_n$.

- Si la série de terme général u_n converge, alors la série de terme général u_n converge.
- Si la série de terme général u_n diverge, alors la série de terme général v_n diverge.

Th: Soient (u_n) et (v_n) deux suites réelles positives à partir d'un certain rang telles que $u_n = 0$ (v_n) .

- Si la série de terme général v_n converge, alors la série de terme général u_n converge.
- Si la série de terme général u_n diverge, alors la série de terme général v_n diverge.

Ce résultat n'est pas vrai pour des séries à termes réels quelconques. Par exemple, $\frac{1}{n \ln(n)} = o\left(\frac{(-1)^n}{n}\right)$ et pourtant la série de terme général $\frac{1}{n \ln(n)}$ diverge (à faire (série de BERTRAND)) et la série de terme général $\frac{(-1)^n}{n}$ converge (série alternée).

Théorème. Soient (u_n) et (v_n) deux suites réelles positives à partir d'un certain rang telles que $u_n = O(v_n)$.

- Si la série de terme général u_n converge, alors la série de terme général u_n converge.
- Si la série de terme général u_n diverge, alors la série de terme général v_n diverge.

Ce résultat n'est pas vrai pour des séries à termes réels quelconques. Le « O » est très utilisé dans les études de nature de séries.

Th: Soient (u_n) et (v_n) deux suites réelles positives à partir d'un certain rang telles que $u_n = 0$ (v_n) .

- Si la série de terme général u_n converge, alors la série de terme général u_n converge.
- Si la série de terme général u_n diverge, alors la série de terme général v_n diverge.

Th Soient (u_n) et (v_n) deux suites réelles strictement positives à partir d'un certain rang telles que $u_n \underset{n \to +\infty}{\sim} v_n$. Les séries de termes généraux respectifs u_n et v_n sont de même nature.

Ce résultat n'est pas vrai pour des séries à termes réels ou complexes quelconques. Par exemple, la série de terme général $u_n = \frac{(-1)^n}{n}$, $n \ge 1$, converge et on peut montrer que la série de terme général $\nu_n = \frac{(-1)^n}{n + (-1)^n}$ diverge (à faire). Pourtant, u_n et ν_n sont équivalents en $+\infty$.

IV. Séries alternées.

 $\mathbf{def:} \ \mathrm{Une} \ \mathrm{s\acute{e}rie} \ \mathrm{altern\acute{e}e} \ \mathrm{est} \ \mathrm{une} \ \mathrm{s\acute{e}rie} \ \mathrm{dont} \ \mathrm{le} \ \mathrm{terme} \ \mathrm{g\acute{e}n\acute{e}ral} \ \mathrm{est} \ \mathrm{de} \ \mathrm{la} \ \mathrm{forme} \ \mathrm{ou} \ \mathrm{bien} \ u_n = (-1)^n \nu_n, \ \mathrm{ou} \ \mathrm{bien} \ u_n = (-1)^{n+1} \nu_n, \ \mathrm{ou} \ \mathrm{bien} \ \mathrm{bi$

On note que dans ce cas, $v_n = |u_n|$ et que ou bien $u_n = (-1)^n |u_n|$, ou bien $u_n = (-1)^{n+1} |u_n|$.

La rédaction usuelle est : u_n est alterné en signe et sa valeur absolue tend vers 0 en décroissant.

Th: Toute série alternée converge (critère spécial aux séries alternées).

$$\mathbf{Th}: \mathrm{On} \; \mathrm{pose} \; S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n (-1)^k \, |u_k|, \; S = \sum_{k=0}^{+\infty} u_k = \sum_{k=0}^n (-1)^k \, |u_k| \; \mathrm{et} \; R_n = \sum_{k=n+1}^{+\infty} u_k = \sum_{k=0}^n (-1)^k \, |u_k|.$$

- $\bullet \ S, \ S_n \ \mathrm{et} \ R_n \ \mathrm{sont} \ \mathrm{du} \ \mathrm{signe} \ \mathrm{de} \ \mathrm{leur} \ \mathrm{premier} \ \mathrm{terme} \ \mathrm{respectif} \ (\mathrm{sgn}(S) = \mathrm{sgn} \ (u_0), \ \mathrm{sgn} \ (S_n) = \mathrm{sgn} \ (u_0), \ \mathrm{sgn} \ (R_n) = \mathrm{sgn} \ (u_{n+1})).$
- |S|, $|S_n|$ et $|R_n|$ sont majorés par la valeur absolue de leur premier terme respectif ($|S| \le |u_0|$, $|S_n| \le |u_0|$, $|R_n| \le |u_{n+1}|$).