第一章 MIPS 导论: 汇编指令集

不同的核(Cluster)之间的传输通过总线,吞吐降低。改善架构存在必要。

1.1 什么是汇编语言?

汇编语言(Assembly Language)是 CPU 可以接收的基本操作,各个 CPU 系列存在不同。

1.2 指令集 (Instruction Set Architectures)

随着计算机的发展,需要不同的功能,对应着生成许多的指令集不同的实现。

最初出现的 VAX 有许多的指令,可以执行很大的运算。对应的 RISC 指令集将指令变成更细粒度的实现,虽然很多的问题需要巨量的指令数目,但是速度优于 VAX ,更小的指令用量更大,带来更规整的芯片布局,从而时钟周期会更小。RISC 阵营包括: ARM,MIPS 以及 RISC-V。

MIPS 汇编语言贴近硬件的实现,没有变量类型的概念,操作的单元是寄存器,算数操作的来源只能是寄存器。寄存器的速度与其硬件开销存在制衡,MIPS 中只有 32 位寄存器,满足大部分的需求,并且硬件便于实现。那么这样的 32-bit 称为一个字(word)。

寄存器可以用数字或者名称引用,数字形式: \$1,\$2,...,\$32 定义如下:

- \$16 \$23 → \$s0 \$s7 对应 C 变量
- \$8 \$15 → \$t0 \$t7 对应临时变量
 在汇编语言中,寄存器没有类型,通过操作判断其类型。
 在写 MIPS 时,需要注意添加注释(#)。

1.3 运算指令格式

规整的格式:一个操作符加上三个操作数 1 2,3,4,其中

- 1. 操作符号
- 2. 目标操作数: dest
- 3. 第一源操作数: src1
- 4. 第二源操作数: src2

如果需要 0 ,我们可以直接引用一个特殊的零寄存器: \$zero\$。MIPS 中没有原生的 mov 而是使用 add \$s0,\$s1,\$s2。同样地,可以用 add \$zero,\$zero,\$s0 用来产生流水线的气泡。

如果需要常数,我们可以使用立即数指令: addi \$s0,\$s1,10。

1.4 内存与寄存器

内存大而慢,寄存器小而快,有一些和内存进行交互的指令也就是数据传输指令。 这类的指令要求源与目标的地址,此外还有一个偏移量 offset: 8(\$t0) 指向的是指针为 \$t0 + 8的内存。

规整的格式:一个1w操作符加上三个操作数 1 2,3(4),其中

- 1. 操作符号
- 2. 目标寄存器位置: dest
- 3. 偏移量: offset
- 4. 源内存位置基址: src

规整的格式:一个sw操作符加上三个操作数 1 2,3(4),其中

- 1. 操作符号
- 2. 目标内存位置: dest
- 3. 偏移量: offset
- 4. 源寄存器位置基址: src

1.5 数据对齐

为了保证取字的迅速以及地址的规整性,需要规定内存地址的对齐。

1.6 条件分支

为了支持 for-loop/while-loop/do-while-loop/if-else/switch-case 的实现, 定义一系列的条件分支指令。

j label 会跳转(jump)到标记了label的位置。类似的还有beq, bne, slt, slti (branch if equal, branch if not equal, set on less than, set on less than immediate).

1.7 对字节的操作

由于对字节的操作十分常见,提供了字节级别的操作,如 lb, sb, 不进行符号位的扩展。可以使用 addu 类的指令来停止对溢出的处理(抛出异常)。

1.8 逻辑操作

比如有左移右移指令,可以分为逻辑型以及算数型用来区分右移的符号扩展。

1.9 函数调用

我们需要明确,函数的参数传递方式以及返回方式。MIPS 支持 4 个寄存器的函数调用,更多的参数通过栈进行调用。

函数作为程序的一部分,也会加载到内存中,需要在调用前进行参数准备,并且返回到调用的位置,所以需要将调用位置保存下来通过 jr 移交控制。那么这里的 jr 和之前的 j 有什么区别呢?由于操作数是来自寄存器,也就是编程者可以控制的,更加灵活的跳转到不同的调用位置。

引入了 jal ,将返回位置隐式存储到 \$ra ,在调用后可以直接返回。

为了保护函数调用的上下文,需要使用栈维护变量以及函数返回地址。

按照规则, saved regs 由被访问者进行维护, temp regs 由访问者进行保存。

1.10 机器级表示