Assignment #6

Due: April 10, 2022

- 1. Balls and bins revisited. There are 10 bins numbered 1, 2, ..., 10. n balls are thrown into the 10 bins. For each ball, the probability that it falls into bin i is $\frac{1}{10}$ for i = 1, 2, ..., 10. Different balls are thrown independently of each other. Let Y be the number of balls in bin 1. Let Z be the total number of balls in bins 6, 7, 8, 9, 10.
 - (a) Find P(Y = y|Z = z). Please specify the range of y, z.
 - (b) Given Z = z, find the estimator $\hat{y}(z)$ that minimizes conditional MSE $\mathsf{E}[(\hat{y}(z) Y)^2 | Z = z]$.
 - (c) Find the conditional MSE $E[(\hat{y}(z) Y)^2 | Z = z]$ for the estimator in part (b).
 - (d) Find the linear LMS estimator of Y given Z = z.
 - (e) Find E[Z] and Var[Z].
 - (f) Find E[Y] and Var[Y].
 - (g) Find Cov(Y, Z).

Hint: Use the law of total expectation. Try to first determine the conditional pmf.

- (h) Find the linear LMS estimator of Z given Y.
- (i) Find the corresponding (overall) MSE for the estimator in part (h).
- 2. Estimation vs. detection. Let the signal

$$X = \begin{cases} +1, & \text{with probability } \frac{1}{2}, \\ -1, & \text{with probability } \frac{1}{2}, \end{cases}$$

and the noise $Z \sim \text{Unif}[-2,2]$ be independent random variables. Their sum Y = X + Z is observed.

- (a) Find the LMS estimate of X given Y
- (b) Find the (overall) MSE for the estimator you find in part (a).
- (c) Now suppose we use a decoder to decide whether X = +1 or X = -1 so that the probability of error is minimized. Find the MAP decoder and its probability of error. Compare the MAP decoder's MSE to the least MSE.
- 3. Stick breaking. Given a stick of length 1, break it into two pieces at a location chosen uniform at random. Denote the breaking location by X, then $X \sim \text{Unif}[0,1]$. Keep the piece corresponding to the interval [X,1]. Break it again into two pieces at a location chosen uniform at random. Denote the second breaking location by Y, then $Y|\{X=x\} \sim \text{Unif}[x,1]$.

- (a) Find the estimator of X given Y that minimizes the MSE $E[(\hat{X} X)^2]$.
- (b) Find the conditional MSE given Y = y for the estimator you find in part (a).
- (c) Find the covariance Cov(X, Y).
- (d) Find the linear LMS estimator of X given Y.
- (e) Find the MSE for the estimator you find in part (d)
- 4. Estimation based on a function of the observation. Let Θ be a positive random variable, with known mean μ and variance σ^2 , to be estimated on the basis of a measurement X of the form $X = \sqrt{\Theta}W$. We assume that W is independent of Θ with zero mean, unit variance, and known fourth moment $\mathsf{E}[W^4]$. Thus, the conditional mean and variance of X given Θ are 0 and Θ , respectively, so we are essentially trying to estimate the variance of X given an observed value.
 - (a) Find the linear LMS estimator of Θ based on X = x.
 - (b) Let $Y = X^2$. Find the linear LMS estimator of Θ based on Y = y.
- 5. Neural net. Let Y = X + Z, where the signal $X \sim \text{Unif}[-1,1]$ and noise $Z \sim N(0,1)$ are independent. We want to estimate sgn(X), where

$$\operatorname{sgn}(x) = \begin{cases} -1 & x \le 0 \\ +1 & x > 0. \end{cases}$$

(a) Find the function g(y) that minimizes

$$MSE = \mathsf{E}[(\mathrm{sgn}(X) - g(Y))^2].$$

Express your answer in terms of the cumulative distribution function of N(0,1)

$$\Phi(z) \triangleq \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

- (b) Plot g(y) as a function of y.
- 6. Communication in Gaussian noise. In a communication system, a transmitter wants to send some signal to a receiver over a noisy medium. Suppose the signal Θ is a Gaussian distributed random variable $\Theta \sim \mathcal{N}(0, \sigma_{\Theta}^2)$. The noise in the medium is modeled as a Gaussian distributed random variable $W \sim \mathcal{N}(0, \sigma_W^2)$ independent of the signal. The receiver observes $X = 2\Theta + W$.
 - (a) Find the estimator of Θ given X that minimizes the MSE $\mathsf{E}[(\hat{\Theta} \Theta)^2]$.
 - (b) Find the MSE for the estimator you found in part (a).
 - (c) Find the linear LMS estimator of Θ given X.
 - (d) Find the MSE for the estimator you found in part (c).
 - (e) Find the LMS estimator of Θ^2 given X.
 - (f) Find the linear LMS estimator of Θ^2 given X.