Лекция 4 Перенос обучения

Разработка нейросетевых систем Канев Антон Игоревич

Предобученные модели

model = torch.hub.load("pytorch-cifar-models", "cifar100_mobilenetv2_x0_5", pretrained=True)

Задача до

Предобученная модель распознает виды животных

Задача после

Дообученная модель распознает породы собак

Перенос обучения

Перенос обучения - transfer learning

Transfer Learning

Заморозка модели

- После заморозки весов преобученной модели наступает этап обучения новых слоев
- Заморозка нужна чтобы не испортить уже обученные веса

```
for i, (name, param) in enumerate(new_model.named_parameters()):
if i < total - keep_last:
    param.requires_grad = False
else:
    params_to_update.append(param)
    print("\t",name)
    param.requires_grad = True</pre>
```


Обучаемые параметры: 1.fc.weight 1.fc.bias

Total params: 272,019 Trainable params: 195

Non-trainable params: 271,824

Fine Tuning- дообучение

- Когда последние слои не обучены, они вносят большую ошибку и через обратное распространение влияют на первые
- После обучения выходных слоев все остальные веса можно разморозить и продолжить обучение
- Это позволяет тонко настроить все веса под нашу задачу и еще больше повысить точность

Django

- Django это MVC фреймворк
- При обработке запроса сначала обрабатывается URL
- Решается, какой view будет его обрабатывать
- View обращается к БД или нейросети
- Результаты вносятся в шаблон Template, получается HTML

Стохастический градиентный спуск

 $L(f(\pmb{x}(i);\pmb{\theta}),\pmb{y}(i)$ – значение функции потерь $f(\pmb{x}(i);\pmb{\theta})$ – результат вычисления нейронной сети от входа $\pmb{x}(i)$ и параметров (весов) $\pmb{\theta}$

Обновление на k-ой итерации стохастического градиентного спуска (СГС)

Require: скорость обучения ϵ_k

Require: Начальные значения параметров $oldsymbol{ heta}$

while критерий остановки не выполнен do

Выбрать из обучающего набора мини-батч m примеров $\{x(1), ..., x(m)\}$ и соответствующие им метки y(i).

Вычислить оценку градиента: $g \leftarrow + (1/m) \nabla_{\boldsymbol{\theta}} \Sigma_{i} L(f(\boldsymbol{x}(i); \boldsymbol{\theta}), \boldsymbol{y}(i)).$

Применить обновление: $\theta \leftarrow \theta - \epsilon g$.

end while

Adagrad

Алгоритм AdaGrad по отдельности адаптирует скорости обучения всех параметров модели. Для параметров, по которым частная производная функции потерь наибольшая, скорость обучения уменьшается быстро, а если частная производная мала, то и скорость обучения уменьшается медленнее. В итоге больший прогресс получается в направлениях пространства параметров со сравнительно пологими склонами

Алгоритм AdaGrad

Require: глобальная скорость обучения arepsilon Require: начальные значения параметров $oldsymbol{ heta}$

Require: небольшая константа δ , например 10-7, для обеспечения численной устойчивости.

Инициализировать переменную для агрегирования градиента $r{=}0$

while критерий остановки не выполнен do

Выбрать из обучающего набора мини-пакет m примеров $\{x(1), ..., x(m)\}$ и соответствующие им метки y(i).

Вычислить градиент: $\boldsymbol{g} \leftarrow (1/\mathrm{m}) \ \nabla_{\boldsymbol{\theta}} \ \Sigma_i \ L(f(\boldsymbol{x}(i); \boldsymbol{\theta}), \boldsymbol{y}(i)).$

Агрегировать квадраты градиента: $r \leftarrow r + g \odot g$.

Вычислить обновление: $\Delta \boldsymbol{\theta} \leftarrow -\epsilon / (\delta + \sqrt{r}) \odot \boldsymbol{g}$

Применить обновление: $\theta \leftarrow \theta + \Delta \theta$. end while

RMSProp

AdaGrad уменьшает скорость обучения, принимая во внимание всю историю квадрата градиента, и может случиться так, что скорость станет слишком малой еще до достижения такой выпуклой структуры. В алгоритме RMSProp используется экспоненциально затухающее среднее, т. е. далекое прошлое отбрасывается

Require: глобальная скорость обучения arepsilon, скорость затухания ho Require: начальные значения параметров $oldsymbol{ heta}$

Require: небольшая константа δ , например 10^{-6} , для стабилизации деления на малые числа Инициализировать переменную для агрегирования градиента $m{r}=0$

while критерий остановки не выполнен do

Выбрать из обучающего набора мини-пакет m примеров $\{x(1), ..., x(m)\}$ и соответствующие им метки yi.

Вычислить градиент: $\boldsymbol{g} \leftarrow (1/\mathrm{m}) \ \nabla_{\boldsymbol{\theta}} \ \Sigma_i \ L(f(\boldsymbol{x}(i); \boldsymbol{\theta}), \boldsymbol{y}(i)).$

Агрегировать квадраты градиента: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$.

Вычислить обновление параметров: $\Delta {m heta} \leftarrow -\epsilon/\sqrt{(\delta+r)} \odot {m g}$

Применить обновление: $\theta \leftarrow \theta + \Delta \theta$.

end while

Импульсный метод

Стохастический градиентный спуск (СГС) с учетом импульса

Require: скорость обучения arepsilon, параметр импульса lpha

Require: начальные значения параметров θ , начальная

скорость v

while критерий остановки не выполнен do

Выбрать из обучающего набора мини-пакет m примеров

 $\{x(1),\dots,x(m)\}$ и соответствующие им метки y(i).

Вычислить оценку градиента:

$$g \leftarrow (1/\mathrm{m}) \nabla_{\theta} \Sigma_{\mathrm{i}} L(f(x(i); \theta), y(i)).$$

Вычислить обновление скорости: $v \leftarrow \alpha v - \varepsilon g$.

Применить обновление: $\theta \leftarrow \theta + v$.

end while

Импульсный алгоритм можно рассматривать как имитацию движения частицы, подчиняющейся динамике Ньютона.

Adam

«Adam» — сокращение от «adaptive moments» (адаптивные моменты). Его правильнее всего рассматривать как комбинацию RMSProp и импульсного метода

Require: величина шага ε (по умолчанию 0.001).

Require: коэффициенты экспоненциального затухания для оценок моментов ρ и ρ , принадлежащие диапазону [0, 1) (по умолчанию 0.9 и 0.999 соответственно).

Require: небольшая константа δ для обеспечения численной устойчивости (по умолчанию 10^{-8}).

Require: начальные значения параметров $oldsymbol{ heta}$.

Инициализировать переменные для первого и второго моментов $\pmb{s} = \pmb{0}$, $\pmb{r} = \pmb{0}$

Инициализировать шаг по времени t=0

while критерий остановки не выполнен do

Выбрать из обучающего набора мини-пакет m примеров $\{x(1), ..., x(m)\}$ и соответствующие им метки y_i .

Вычислить градиент: $\mathbf{g} \leftarrow (1/m) \nabla \boldsymbol{\theta} \Sigma i L(f(\mathbf{x}(i); \boldsymbol{\theta}), \mathbf{y}(i)).$

Обновить смещенную оценку первого момента: $\mathbf{s} \leftarrow \rho_1 \, \mathbf{s} + (1 - \rho_1) \, \mathbf{g}$

Обновить смещенную оценку второго момента: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$

Скорректировать смещение первого момента: $s \leftarrow s/(1 - \rho_t)$

Скорректировать смещение второго момента: $r \leftarrow r/(1-\rho_t)$

Вычислить обновление: $\delta\theta = -\epsilon s/\sqrt{(\delta+r)}$

Применить обновление: $\theta \leftarrow \theta + \Delta \theta$.

end while

Другие оптимизаторы

