The following listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) An electro-optical liquid-crystal display comprising a layer of liquid-crystal medium between two substrates with organic alignment layers on inside surfaces of each of said substrates;

the liquid-crystal layer having a twist angle, from one substrate to the other, of 110° - 360° ; the liquid-crystal layer having a surface tilt angle of 2° - 20° ; and

each of said organic alignment layers having a thickness of 3 nm-150 nm, and

wherein the difference from 1 of the steepness of the electric-optical characteristic line, represented by the formula V_{90}/V_{10} -1, is half or less of the corresponding value of an otherwise identical display in which the layer thicknesses of each of the alignment layers is 100 nm.

- 2. (Previously Presented) A display according to claim 1, at least one of said alignment layers has a layer thickness of 4 nm-60 nm.
 - 3. (Cancelled)
- 4. (Previously Presented) A display according to claim 1, wherein the steepness of the electro-optical characteristic line V_{90}/V_{10} is 1.06 or less.
- 5. (Previously Presented) A display according to claim 1, wherein the threshold voltage (V_{10}) of the display is 1.20 V or less.
- 6. (Previously Presented) A display according to claim 1, wherein said liquidcrystal medium comprises one or more compound(s) of formula I

$$R^1 - O - COO - O + CN$$

wherein

- R¹ is alkyl having 1 to 7 carbon atoms, alkoxy having 1 to 7 carbon atoms, alkoxyalkyl having 2 to 7 carbon atoms, alkenyl having 2 to 7 carbon atoms or alkenyloxy having 2 to 7 carbon atoms, and
- Y^1 is H or F.
- 7. (Previously Presented) A display according to claim 1, wherein said liquid crystal medium comprises at least one compound of formula II

$$R^{2} \xrightarrow{Q^{21}} CN$$

$$V^{21} \qquad II$$

wherein

R² is alkyl having 1 to 7 carbon atoms, alkoxy having 1 to 7 carbon atoms, alkoxyalkyl having 2 to 7 carbon atoms, alkenyl having 2 to 7 carbon atoms or alkenyloxy having 2 to 7 carbon atoms, and

Y²¹ and Y²² are each, independently, H or F.

8. (Previously Presented) A display according to claim 6, wherein said liquid crystal medium comprises at least one compound of formula Π

$$R^2 - CN$$

$$V^{21}$$

$$V^{22}$$

$$V^{22}$$

wherein

R² is alkyl having 1 to 7 carbon atoms, alkoxy having 1 to 7 carbon atoms, alkoxyalkyl having 2 to 7 carbon atoms, alkenyl having 2 to 7 carbon atoms or alkenyloxy having 2 to 7 carbon atoms, and

Y²¹ and Y²² are each, independently, H or F.

9. (Previously Presented) A display according to claim 6, wherein said liquid crystal medium comprises at least one compound of formula III

$$R^{31}$$
- $(-A^{31})$ - Z^{31} - $)_{o}(-A^{32})$ - Z^{32} - $)_{p}$ - A^{33} - Z^{33} - A^{34} - A^{34} - A^{32}

wherein

- R³¹ and R³² are each, independently of one another, alkyl having 1 to 7 carbon atoms, alkoxy having 1 to 7 carbon atoms, alkoxyalkyl, having 2 to 7 carbon atoms, alkenyl having 2 to 7 carbon atoms, or alkenyloxy having 2 to 7 carbon atoms, and
- Z³¹, Z³² and Z³³ are each, independently of one another, -CH₂CH₂-, -CH=CH-, -COO- or a single bond,

$$\begin{array}{c}
- \overline{A^{31}} \\
- \overline{A^{32}} \\
- \overline{A^{33}} \\
- \overline{A^{34}}
\end{array}$$
 and

are each, independently of one another,

o and p, independently of one another, are 0 or 1.

10. (Previously Presented) A display according to claim 7, wherein said liquid crystal medium comprises at least one compound of formula III

$$R^{31}$$
- $(-A^{31})$ - Z^{31} - $)_{o}(A^{32})$ - Z^{32} - $)_{p}$ - A^{33} - Z^{33} - A^{34} - A^{32} - A^{32}

wherein

R³¹ and R³² are each, independently of one another, alkyl having 1 to 7 carbon atoms, alkoxy having 1 to 7 carbon atoms, alkoxyalkyl, having 2 to 7 carbon atoms, alkenyl having 2 to 7 carbon atoms, or alkenyloxy having 2 to 7 carbon atoms, and

 Z^{31} , Z^{32} and Z^{33} are each, independently of one another, -CH₂CH₂-, -CH=CH-, -COO- or a single bond,

$$A^{31}$$
, A^{32} , A^{33} and A^{34} are each, independently of one another,

o and p, independently of one another, are 0 or 1.

11. (Previously Presented) A display according to claim 8, wherein said liquid crystal medium comprises at least one compound of formula III

$$R^{31}$$
- $(-A^{31})_0$ $(-A^{32})_0$ $-A^{32}$ - $-D_0$ $-A^{33}$ - $-D^{33}$ $-D^{34}$ - $-D^{32}$

wherein

R³¹ and R³² are each, independently of one another, alkyl having 1 to 7 carbon atoms, alkoxy having 1 to 7 carbon atoms, alkoxyalkyl, having 2 to 7 carbon atoms, alkenyl having 2 to 7 carbon atoms, or alkenyloxy having 2 to 7 carbon atoms, and

 Z^{31} , Z^{32} and Z^{33} are each, independently of one another, -CH₂CH₂-, -CH=CH-, -COO- or a single bond,

$$A^{31}$$
,
 A^{32} ,
 A^{32} ,
 A^{33} and
 A^{34}

are each, independently of one another,

$$\overline{}$$

o and p, independently of one another, are 0 or 1.

- 12. (Previously Presented) In a method of displaying information using an electro-optical liquid-crystal display, the improvement wherein said display is one in accordance with claim 1.
- 13. (Previously Presented) A display according to claim 1, wherein said organic alignment layers are a polyamide layer.
- 14. (Previously Presented) A display according to claim 1, wherein said alignment layers each have a layer thickness of 7 nm-80 nm.
- 15. (Previously Presented) A display according to claim 1, wherein said alignment layers each have a layer thickness of 8 nm-60 nm.
- 16. (Previously Presented) A display according to claim 1, wherein said alignment layers each have a layer thickness of 10 nm-25 nm.
- 17. (Previously Presented) A display according to claim 1, wherein said display has a nematic phase range of at least -20° to 70°, a birefringence of 0.100 to 0.180, a threshold voltage of less than or equal to 1.8 V, and a steepness value of the electro-optical characteristic line of less than or equal to 1.100.
- 18. (Previously Presented) A display according to claim 1, wherein said alignment layers each have a refractive index of 1.550 to 1.800.
 - 19. (Previously Presented) A display according to claim 1, wherein said liquid-

crystal layer having a surface tilt angle of 3°-15°.

20. (Previously Presented) An electro-optical liquid-crystal display comprising a layer of liquid-crystal medium between two substrates with alignment layers on inside surfaces of each of said substrates; the liquid-crystal layer having a twist angle, from one substrate to the other, of 110°-360°; the liquid-crystal layer having a surface tilt angle of 2°-20°;

each of said alignment layers having a thickness of 3 nm-150 nm; and at least one of said alignment layers is an organic layer, and

wherein the difference from 1 of the steepness of the electric-optical characteristic line, represented by the formula V_{90}/V_{10} -1, is half or less of the corresponding value of an otherwise identical display in which the layer thicknesses of each of the alignment layers is 100 nm.

21. (Cancelled)

- 22. (Previously Presented) A display according to claim 20, at least one of said alignment layers has a layer thickness of 4 nm-60 nm.
- 23. (Previously Presented) In a method of displaying information using an electro-optical liquid-crystal display, the improvement wherein said display is one in accordance with claim 20.

24. (Cancelled)

- 25. (Currently Amended) A display according to claim $\underline{20}$ 24, wherein the steepness of the electro-optical characteristic line V_{90}/V_{10} is 1.06 or less.
- 26. (Currently Amended) A display according to claim $\underline{20}$ 24, wherein the threshold voltage (V₁₀) of the display is 1.20 V or less.
- 27. (Currently Amended) A display according to claim <u>20</u> 24, wherein said organic alignment layers are a polyamide layer.

- 28. (Currently Amended) A display according to claim <u>20</u> 24, wherein said alignment layers each have a layer thickness of 7 nm-80 nm.
- 29. (Currently Amended) A display according to claim <u>20</u> 24, wherein said alignment layers each have a layer thickness of 8 nm-60 nm.
- 30. (Currently Amended) A display according to claim <u>20</u> 24, wherein said alignment layers each have a layer thickness of 10 nm-25 nm.
- 31. (Currently Amended) A display according to claim 20 24, wherein said display has a nematic phase range of at least -20° to 70°, a birefringence of 0.100 to 0.180, a threshold voltage of less than or equal to 1.8 V, and a steepness value of the electro-optical characteristic line of less than or equal to 1.100.
- 32. (Currently Amended) A display according to claim <u>20</u> 24, wherein said alignment layers each have a refractive index of 1.550 to 1.800.
- 33. (Currently Amended) A display according to claim <u>20</u> 24, wherein said liquid-crystal layer having a surface tilt angle of 3°-15°.
- 34. (Currently Amended) In a method of displaying information using an electrooptical liquid-crystal display, the improvement wherein said display is one in accordance with claim 20 24.
- 35. (New) An electro-optical liquid-crystal display comprising a layer of liquid-crystal medium between two substrates with alignment layers on inside surfaces of each of said substrates; the liquid-crystal layer having a twist angle, from one substrate to the other, of 110°-360°; the liquid-crystal layer having a surface tilt angle of 2°-20°; and each of said alignment layers having a thickness of 3 nm-150 nm, and

wherein the difference from 1 of the steepness of the electric-optical characteristic line, represented by the formula V_{90}/V_{10} -1, is half or less of the corresponding value of an otherwise identical display in which the layer thicknesses of each of the alignment layers is 100 nm.