Register - B

<u>TEAM 2</u> - (1) Aasha Chanpa - 202304001

- (3) Divy Vasava 202304028
- (2) Astha Patel 202304032
- (4) Hiral Parmar 202304004

8-BIT Register Symbol

TOTAL PINS - 20

- InputOutput Pins BUS0 (LSB) to BUS7 (MSB) Bus to register
- Output Pins A0 (LSB) to A7 (MSB) Register to ALU
- Input Pin R and Input Pin W to read or write the data
- Input Pin CLK and Input Pin RESET

Functionality:-

This register is built using D flip-flops made from D latches .The first latch is called the **master**, The second latch is called the **slave**. Only when the clock changes from 0 to 1 does the value of D get passed to Q. Therefore, It acts like a rising-edge triggered flip-flop.

This register stores 8-bit of data and is designed to work as part of a larger system of 8-bit computer . It has three control lines:-

- 1. **W (Input Enable)**: Allows data from the bus to be loaded into the register only when it is active. When W pin is low, the register will hold the previous value
- 2. **R (Output Enable):** Allows the register to put the stored value back onto the shared bus when it is active. When R pin is low, the tri state buffer will open circuit the Bus and register's output (by giving high impedance as output)
- 3. **Clear (Reset):** A synchronous signal that resets the register output to zero when activated.

Schematic of 8 bit Register

Layout Of 1 Bit Register

Layout Of 1 Bit Register

Layout Of 8 Bit Register

Layout Of 8 Bit Register

Hierarchy of Files used in 8bit_register :-

- aasha1_bit
- 1. D_ff_reset_up <= D_ff_using_latch_up <= D_latch_up
- 2. Tri_buffer_up
- 3. nand2_up
- 4. inv_up

Delay:-

- 5. Before Post Layout Simulation 0.34 ns
- 6. After Post Layout Simulation 0.81 ns