高等数学预备知识

§1. 常见函数、方程、数列及不等式

【知识点 1】一元二次函数

1.定义及配方法

$$y = ax^{2} + bx + c (a \ne 0) = a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

【例】将
$$y = x^2 + 4x + 9$$
配方

【**例**】将
$$y = 3x^2 - 12x + 12$$
 配方

【例】将
$$y = 3x^2 + 2x - 7$$
配方

2.性质

(1) 图像是一条抛物线,顶点坐标
$$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$$
,对称轴 $x = -\frac{b}{2a}$.

(2) 当
$$a>0$$
时,开口向上,在 $x=-\frac{b}{2a}$ 处取最小值 $\frac{4ac-b^2}{4a}$;
当 $a<0$ 时,开口向下,在 $x=-\frac{b}{2a}$ 处取最大值 $\frac{4ac-b^2}{4a}$;

(3) 当
$$a>0$$
时,在区间 $\left(-\infty,-\frac{b}{2a}\right)$ 内单调递减,在 $\left(-\frac{b}{2a},+\infty\right)$ 内单调递增;

当
$$a$$
< 0 时,在区间 $\left(-\infty,-\frac{b}{2a}\right)$ 内单调递增,在 $\left(-\frac{b}{2a},+\infty\right)$ 内单调递减

3.一元二次方程
$$\left(ax^2 + bx + c = 0, a \neq 0\right)$$

方程 $ax^2 + bx + c = 0$ 的根 \Leftrightarrow 函数 $y = ax^2 + bx + c$ 的零点

(1) 判别式 $\Delta = b^2 - 4ac$

 $\Delta > 0$ 时,则方程有两个不相等的实数根;

 $\Delta = 0$ 时,则方程有两个相等的实数根;

 $\Delta < 0$ 时,则方程无实数根.

(2) 一元二次方程的根

①因式分解
$$x^2 + (a+b)x + ab = (x+a)(x+b)$$

【例】将
$$x^2 - 5x - 14$$
 因式分解

【**例**】将
$$x^2 + 4x - 32$$
 因式分解

②求根公式
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

【例】将
$$3x^2 + 2x - 7$$
因式分解

【例】求
$$\int \frac{2x+3}{x^2-2x-3} dx$$

【知识点 2】一元 n 次多项式

1.定义

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$$

【例】求
$$f(x) = (x-1)(x-2)^2(x-3)^3(x-4)^4$$
 极值点的个数

2.乘法公式

(1)
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

(2)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(3)
$$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a^1 b^{n-1} + C_n^n a^0 b^n$$

(4)
$$a^2 - b^2 = (a+b)(a-b)$$

(5)
$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

(6)
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1})$$

【例】求
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x^2 - x \ln(1+x)}$$

【**例**】求 $x^n - 1$

3.多项式的除法及因式分解

$$f(x) = g(x)\varphi(x) + h(x)$$

【例】计算
$$\int \frac{x^3 - x^2 + 2x - 3}{x + 1} dx$$

【例】求
$$x^3 + 2x^2 - 13x + 10 = 0$$
的根

【知识点 3】圆、椭圆、双曲线、抛物线的方程

1. 圆的标准方程: 当圆心为 $C(x_0,y_0)$, 半径为 r , 标准方程为 $(x-x_0)^2+(y-y_0)^2=r^2$.

【例】求定积分 $\int_0^{\frac{\pi}{2}} \sqrt{1-x^2} dx$

2.椭圆的标准方程: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (焦点在x轴)或 $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ (焦点在y轴).

3.双曲线标准方程: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 或 $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

4.抛物线标准方程:右开口 $y^2=2px$,上开口 $x^2=2py$

左开口 $y^2 = -2px$, 下开口 $x^2 = -2py$

【知识点 4】数列

(一) 数列

1.定义:按照一定次序排列起来的一列数.

2.数列的通项: $a_1, a_2, \dots, a_n \dots \{a_n\}$

3.数列的增减:从第二项起,每一项大于前一项的数列,叫做递增数列,

$$a_n > a_{n-1}, n = 2, 3, 4, \cdots;$$

从第二项起,每一项小于前一项的数列,叫做递减数列, $a_n < a_{n-1}, n=2,3,4,\cdots$

4. 数列 $\{a_n\}$ 的前 n 项 S_n 和与通项 a_n 的关系

$$S_n = a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i$$
, $S_{n-1} = a_1 + a_2 + \dots + a_{n-1}$

$$a_n = \begin{cases} S_1, & n = 1 \\ S_n - S_{n-1}, & n \ge 2 \end{cases}$$

(二) 等差数列

1.定义:如果一个数列从第2项起,每一项与前一项的差等于同一个数,那么这个数列就叫 等差数列.这个常数称为公差 d.

2. 等差数列的通项公式

 $a_{\scriptscriptstyle 1}$

$$a_2 = a_1 + d$$

$$a_3 = a_2 + d = a_1 + 2d$$

: :

$$a_n = a_{n-1} + d = a_1 + (n-1)d$$

$$a_n = a_1 + (n-1)d$$

$$a_n = a_m + (n - m)d$$

- 3. d > 0 , 数列单调递增; d < 0 , 数列单调递减; d = 0 , 常数列.
- 4. 等差数列的前n 项和 S_n

$$S_n = \frac{n(a_1 + a_n)}{2}$$

$$S_n = na_1 + \frac{n(n-1)d}{2}$$

(三) 等比数列

1.定义: 如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个

数列为等比数列.这个常数称为公比 $q(q \neq 0)$.

2. 通项公式

$$a_n = a_1 q^{n-1}$$

$$a_n = a_m q^{n-m}$$

3. 等比数列的前n项和 S_n

$$S_n = \begin{cases} na_1, & q = 1 \\ \frac{a_1(1 - q^n)}{1 - q} & q \neq 1 \end{cases}$$

【例】求
$$-1 < x < 1$$
时,求 $\sum_{n=0}^{\infty} x^n$

【知识点 5】常见不等式

- 1. $a+b \ge 2\sqrt{ab}$, a>0, b>0, 当 a=b 时等号成立
- 2. $ab \le \left(\frac{a+b}{2}\right)^2$, 当a=b时等号成立
- 3. $-|a| \le a \le |a|$
- 4. $||a| |b|| \le |a \pm b| \le |a| + |b|$
- 5. $a-1<[a] \le a$, [a]叫对a取整,即不超过a的最大的整数

例
$$y = [3.2] = 3$$
, $y = [-3.2] = -4$

【例】已知
$$x_{n+1} = \sqrt{x_n(3-x_n)}$$
 , 证明 $\{x_n\}$ 有界.

练习题:

1. 求 $y = x^3 - 4x^2 - 19x - 4$ 的零点,并画出函数草图

【答案】
$$x = -2$$
 , $x = -1$ 以及 $x = 7$

2.求多项式 $2x^3 - 3x^2 + 7x + 5$ 除 x + 2 的商与余数

【答案】
$$2x^3 - 3x^2 + 7x + 5 = (x+2)(2x^2 - 7x + 21) - 37$$

3.写出以(1,-2)为圆心,1为半径的右半圆方程

【答案】
$$y = 1 + \sqrt{-y^2 - 4y - 3}$$

$$4.$$
将 $\frac{1}{\sqrt[3]{x}-\sqrt[3]{a}}$ 分母有理化

【答案】
$$\frac{1}{\sqrt[3]{x} - \sqrt[3]{a}} = \frac{x^{\frac{2}{3}} + a^{\frac{1}{3}}x^{\frac{1}{3}} + a^{\frac{2}{3}}}{x - a}$$

$$5.$$
求 $\sum_{n=0}^{\infty} \frac{1}{3^n}$

【答案】
$$\frac{3}{2}$$

§2. 函数的定义与性质

【知识点 1】函数的定义

设D是一个非空的实数集,如果有一个对应规则 f ,对每一个 $x \in D$,都能对应唯一的一个实数 y ,则这个对应规则 f 称为定义在 D 上的一个函数,记以 y = f(x) ,称 x 为函数的自变量, y 为 函数 的 因变量或 函数 值, D 称 为 函数 的 定义 域, 并 把 实数 集 $Z = \{y | y = f(x), x \in D\}$ 称为函数的值域.

判断是否为同一个函数,只需要找两个条件:第一,看定义域是否相同;第二,看对应法则是否相同,如果满足以上两点,则一定是同一个函数.

【**例**】圆的方程 $x^2 + y^2 = 1$ 是函数吗?

【例】 $f(x) = \ln x^2 - \ln x$ 是同一个函数吗?

【例】设 f(x) 的定义域为[0,1] ,求 $f(x^2)$ 与 $f(\sin x)$ 的定义域

【知识点 2】函数的有界性

设函数 y=f(x) 在 X 内有定义,若存在正数 M,使 $x\in X$ 都有 $|f(x)|\leq M$ 则称 f(x) 在 X 上是有界的.

【补充】若 $\lim_{x \to x_0} f(x) = \infty$,则称 f(x) 为 $x \to x_0$ 时的无穷大量

【注】无穷大量一定是无界量, 无界量不一定是无穷大量

【**例**】函数 $y = x \sin x$ 在定义域是否有界, $\lim_{x \to +\infty} x \sin x$ 是否是无穷大量

【知识点 3】函数的奇偶性

设区间 X 关于原点对称,若对 $x \in X$,都有 f(-x) = -f(x) ,则称 f(x) 在 X 上是奇函数;若对 $x \in X$,都有 f(-x) = f(x) ,则称 f(x) 在 X 上是偶函数。

【**例**】讨论函数 $y = \ln(x + \sqrt{x^2 + 1})$ 的奇偶性

【注 1】偶函数图像关于 γ 轴对称,奇函数图像关于原点对称;

【注 2】奇函数的导函数是偶函数,偶函数的导函数是奇函数。 奇函数的原函数是偶函数,偶函数的原函数不一定是奇函数。

【注3】奇函数+奇函数=奇函数; 偶函数+偶函数=偶函数;

奇函数+偶函数=非奇非偶函数。

奇函数×奇函数=偶函数; 偶函数×偶函数=偶函数;

奇函数×偶函数=奇函数。

【例】判断下列函数的奇偶性

(1)
$$y = \frac{1-x^2}{1+x^2}$$
 (2) $y = 3x^2 - x^3$ (3) $y = \sin x - \cos x + 1$
(4) $y = \frac{a^x + a^{-x}}{2}$ (5) $y = x(x-1)(x+1)$

【例】求定积分
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) dx$$

【知识点 4】函数的周期性

设 f(x) 在 X 上有定义,如果存在常数 $T \neq 0$,使得任意 $x \in X$, $x + T \in X$,都有 f(x+T)=f(x),则称 f(x)是周期函数,称 T 为 f(x)的周期.

由此可见,周期函数有无穷多个周期,一般我们把其中最小正周期称为周期.

【注】周期函数的导函数仍然是周期函数;周期函数的原函数未必是周期函数。

【例】函数
$$y = \sin(\frac{\pi}{3} - \frac{x}{2})$$
 的最小正周期是 ().

A π B 2π C -4π D 4π

【知识点 5】函数的单调性

设f(x)在X上有定义,若对任意 $x_1 \in X$, $x_2 \in X$, $x_1 < x_2$ 都有 $f(x_1) < f(x_2)$ 则 称 f(x)在 X 上是单调增加的;若对任意 $x_1 \in X$, $x_2 \in X$, $x_1 < x_2$ 都有 $f(x_1) \leqslant f(x_2)$ 则 称 f(x) 在 X 上是单调不减

设函数 f(x)在(a,b)内可导, 如果恒有 f'(x) > 0 (<0)则 f(x)在(a,b)内单调增加 (单 调减少); 如果恒有 $f'(x) \ge 0 (\le 0)$, 则 f(x)在(a,b)内单调不减 (单调不增).

【注】函数 f(x)在(a,b)内 $f'(x) \ge 0$,则 f(x)在(a,b)内单调递增,反之不然.

【例】证明:
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2} (-1 < x < 1)$$

【练习题】

1.判断
$$f(x) = \ln\left(\frac{1-x}{1+x}\right)$$
的奇偶性

【答案】偶函数

2.判断
$$f(x) = x \left(\frac{1}{2^x - 1} + \frac{1}{2} \right)$$
的奇偶性

【答案】偶函数

3.设 f(x) 的定义域是 R ,存在常数 $c \neq 0$,使 f(x+c) = -f(x) ,证明 f(x) 是周期函数

【解析】
$$f(x+2c) = -f(x+c) = f(x)$$

4.函数 $f(x) = x \cos x$

- (A) 在 $(-\infty, +\infty)$ 内无界. (B) 在 $(-\infty, +\infty)$ 内有界.
- (C) $\lim_{x \to \infty} f(x) = \infty$. (D) $\lim_{x \to \infty} f(x)$ 为常数.

【答案】(A)

5.设函数 $f(x) = x \cdot \tan x \cdot e^{\sin x}$,则 f(x) 是 ()

- (A) 偶函数
- (B) 无界函数 (C) 周期函数
- (D) 单调函数

【答案】(B)

§3. 基本初等函数

【知识点 1】幂函数 $y = x^a$ (a为常数)

1.当 a 为正整数时

【1】定义域: (-∞,+∞);

值域: a 为奇数时 $(-\infty, +\infty)$; a 为偶数时 $[0, +\infty)$

- 【2】有界性:无界; a 为偶数时有下界
- 【3】奇偶性: a为奇数时,奇函数; a为偶数时,偶函数
- 【4】周期性: 非周期函数
- 【5】单调性: a 为奇数时, 单调递增;

a 为偶数时, $(-\infty,0)$ 单调递减, $(0,+\infty)$ 单调递增

2.当 a 为负整数时

【1】定义域: $(-\infty,0)\cup(0,+\infty)$;

值域: a为奇数时 $(-\infty,0)\cup(0,+\infty)$; a为偶数时 $(0,+\infty)$

- 【2】有界性:无界; a为偶数时有下界
- 【3】奇偶性: a为奇数时,奇函数; a为偶数时,偶函数
- 【4】周期性: 非周期函数
- 【5】单调性: a 为奇数时, $(-\infty,0)$ 单调递减, $(0,+\infty)$ 单调递减 a 为偶数时, $(-\infty,0)$ 单调递增, $(0,+\infty)$ 单调递减

3.当 a 为正有理数 $\frac{1}{n}$ 时

【1】定义域: n 为奇数时, $(-\infty, +\infty)$; n 为偶数时 $[0, +\infty)$

值域: a 为奇数时 $(-\infty, +\infty)$; a 为偶数时 $[0, +\infty)$

- 【2】有界性:无界; a 为偶数时有下界
- 【3】奇偶性: n 为奇数时, 奇函数; n 为偶数时, 非奇非偶函数
- 【4】周期性:非周期函数
- 【5】单调性: a为奇数时,单调递增; a为偶数时, $[0,+\infty)$ 单调递增
- 【例】求极限 $\lim_{x\to +\infty} \frac{x+x^2}{x^2}$

【例】求极限
$$\lim_{x\to 0} \frac{x+x^2}{x^2}$$

【知识点 2】指数函数 $y = a^x$ (a 为常数且 a > 0, $a \ne 1$)

- 【1】定义域: $(-\infty, +\infty)$; 值域: $(0, +\infty)$
- 【2】有界性:有下界,整体无界
- 【3】奇偶性: 非奇非偶函数
- 【4】周期性:非周期函数
- 【5】单调性: a > 1时, 单调递增; a < 1时, 单调递减.
- 【例】求极限 $\lim_{x\to +\infty} e^x$
- 【例】求极限 $\lim_{x\to -\infty} e^x$

【知识点 3】对数函数 $y = \log_a x$ (a为常数且 a > 0, $a \ne 1$)

- 【1】定义域: $(0,+\infty)$; 值域: $(-\infty,+\infty)$
- 【2】有界性: 无界
- 【3】奇偶性: 非奇非偶函数
- 【4】周期性: 非周期函数
- 【5】单调性: a > 1时, 单调递增; a < 1时, 单调递减.
- 【例】试比较 $x \to +\infty$ 时, $e^x, x^n (n > 0), \ln x$ 的大小关系

【知识点 4】三角函数

- **1.正弦函数** $y = \sin x$, $x \in (-\infty, +\infty)$, $y \in [-1,1]$,
 - 余弦函数 $y = \cos x$, $x \in (-\infty, +\infty)$, $y \in [-1,1]$,

- 【1】定义域: (-∞,+∞); 值域: [-1,1]
- 【2】有界性:有界
- 【3】奇偶性: $y = \sin x$, 奇函数; $y = \cos x$, 偶函数
- 【4】周期性: $T=2\pi$
- 【5】单调性: $y = \sin x$: $-\frac{\pi}{2} < x < \frac{\pi}{2}$ 时, 单调递增; $y = \cos x$: $0 < x < \pi$ 时, 单调递

2.正切函数
$$y = \tan x$$
, $x \neq k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$, $y \in (-\infty, +\infty)$,

余切函数
$$y = \cot x$$
 , $x \neq k\pi$, $k \in \mathbb{Z}$, $y \in (-\infty, +\infty)$;

【1】定义域:
$$y = \tan x$$
: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; $y = \cot x$: $(0, \pi)$

【4】周期性:
$$T = \pi$$

【5】单调性:
$$y = \tan x$$
: $-\frac{\pi}{2} < x < \frac{\pi}{2}$ 时, 单调递增;

$$y = \cot x$$
: $0 < x < \pi$ 时, 单调递减.

【知识点 5】反三角函数

1.反正弦函数
$$y = \arcsin x$$
 , $x \in [-1,1]$, $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$,

反余弦函数
$$y = \arccos x$$
 , $x \in [-1,1]$, $y \in [0,\pi]$,

图 1-20(a)

图 1-20 (b)

【1】定义域: [-1,1]

值域: $y = \arcsin x : y \in [-\frac{\pi}{2}, \frac{\pi}{2}]; y = \arccos x : y \in [0, \pi]$

【2】有界性:有界

【3】奇偶性: $y = \arcsin x$: 奇函数; $y = \arccos x$: 非奇非偶函数.

【4】周期性:非周期函数

【5】单调性: $y = \arcsin x$: 单调递增; $y = \arccos x$: 单调递减.

2.反正切函数 $y = \arctan x$, $x \in (-\infty, +\infty)$, $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$,

反余切函数 $y = \operatorname{arc} \cot x$, $x \in (-\infty, +\infty)$, $y \in (0, \pi)$.

【1】定义域: (-∞,+∞)

值域:
$$y = \arctan x : y \in [-\frac{\pi}{2}, \frac{\pi}{2}]; y = \operatorname{arccot} x : y \in [0, \pi]$$

【2】有界性:有界

【3】奇偶性: $y = \arctan x$: 奇函数; $y = \operatorname{arccot} x$: 非奇非偶函数.

【4】周期性:非周期函数

【5】单调性: $y = \arctan x$: 单调递增; $y = \operatorname{arccot} x$: 单调递减.

【例】试证明以下两式

$$\arcsin x + \arccos x = \frac{\pi}{2} \ (-1 \le x \le 1)$$
$$\arctan x + \operatorname{arc} \cot x = \frac{\pi}{2}$$

【注】常见不等关系

(1) x > 0 时, $x > \sin x$; x < 0 时 $x < \sin x$

(2)
$$0 < x < \frac{\pi}{2}$$
 时, $\sin x < x < \tan x$

(3)
$$x > 0$$
 时, $x > \ln(1+x)$

(4)
$$x \in R$$
 时, $e^x - 1 \geqslant x$

【练习题】

1.求下列函数的定义域

(1)
$$y = \frac{1}{x} - \sqrt{1 - x^2}$$
; (2) $y = \sin \sqrt{x}$; (3) $y = \tan(x+1)$

(4)
$$y = \arcsin(x-3)$$
; (5) $y = \sqrt{3-x} + \arctan\frac{1}{x}$; (6) $y = \ln(x+1)$

【答案】(1) [-1,0)
$$\cup$$
(0,1]; (2) [0,+ ∞); (3) $\left\{x \mid x \in \mathbf{R} \perp x \neq \left(k + \frac{1}{2}\right)\pi - 1, k \in \mathbf{Z}\right\}$

- (4) [2,4]; (5) $(-\infty,0)\cup(0,3]$; (6) $(-1,+\infty)$
- 2. 设 f(x) 的定义域为[0,1], 求 $f(e^x)$, $f(\ln x)$, $f(\arctan x)$, $f(\cos x)$ 的定义域

【答案】
$$(-\infty,0]$$
; $[1,\mathbf{e}]$; $[0,\tan 1]$; $\left[2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right], n \in \mathbf{Z}$

3.下列函数哪些是周期函数,对于周期函数,指出其周期

$$(1)y = \cos(x-2)$$
 $(2)y = \cos 4x$

$$(3) y = 1 + \sin \pi x \qquad (4) y = x \cos x$$

$$(5) y = \sin^2 x.$$

【答案】(1) $l = 2\pi$; (2) $l = \frac{\pi}{2}$; (3) l = 2; (4) 不是周期函数; (5) $l = \pi$

§4. 指数、对数以及三角函数的运算

【知识点 1】指数运算

(1)
$$a^m a^n = a^{m+n}$$
, $\frac{a^m}{a^n} = a^{m-n}$

$$(2) (a^m)^n = a^{m \cdot n}$$

$$(3) (ab)^m = a^m \cdot b^m$$

(4)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m, a > 0$$

(5)
$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}}, a > 0$$

【例】(2012-03) 求极限 $\lim_{x\to 0} \frac{e^{x^2}-e^{2-2\cos x}}{x^4}$.

【知识点 2】对数运算

(1)
$$\log_a(MN) = \log_a M + \log_a N$$

(2)
$$\log_a(\frac{M}{N}) = \log_a M - \log_a N$$

(3)
$$\log_a M^b = b \log_a M$$

【例】
$$y = x^{\sin x}$$
,求 $\frac{dy}{dx}$

【知识点 3】三角函数相关公式

1.三角函数的定义

(1) 正弦:
$$\sin \alpha = \frac{\text{对边}}{\text{斜边}}$$
; 余弦: $\cos \alpha = \frac{\text{邻边}}{\text{斜边}}$

(2) 正切:
$$\tan \alpha = \frac{\text{对边}}{\text{邻边}}$$
; 余切: $\cot \alpha = \frac{\text{邻边}}{\text{对边}}$

(3) 正割:
$$\sec \alpha = \frac{1}{\cos \alpha} = \frac{\text{斜边}}{\text{邻边}};$$
 余割: $\csc \alpha = \frac{1}{\sin \alpha} = \frac{\text{斜边}}{\text{对边}}$

2.同角三角函数的基本关系式

倒数关系: $\sin \alpha \cdot \csc \alpha = 1$, $\cos \alpha \cdot \sec \alpha = 1$, $\tan \alpha \cdot \cot \alpha = 1$

商数关系:
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
, $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$

平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$, $1 + \tan^2 \alpha = \sec^2 \alpha$, $1 + \cot^2 \alpha = \csc^2 \alpha$

3.特殊角度的三角函数值

(1)
$$\sin\frac{\pi}{6} = \frac{1}{2}, \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}, \tan\frac{\pi}{6} = \frac{\sqrt{3}}{3}$$

(2)
$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \cos \frac{\pi}{3} = \frac{1}{2}, \tan \frac{\pi}{3} = \sqrt{3}$$

(3)
$$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \tan \frac{\pi}{4} = 1$$

4.三角函数的诱导公式:

$$\sin(2k\pi + \alpha) = \sin \alpha \qquad \sin(2\pi - \alpha) = -\sin \alpha \qquad \sin(-\alpha) = -\sin \alpha$$

$$(1) \frac{\cos(2k\pi + \alpha) = \cos \alpha}{\tan(2k\pi + \alpha) = \tan \alpha} \qquad (2) \frac{\cos(2\pi - \alpha) = \cos \alpha}{\tan(2\pi - \alpha) = -\tan \alpha} \qquad (3) \frac{\cos(-\alpha) = \cos \alpha}{\tan(-\alpha) = -\tan \alpha}$$

$$\cot(2k\pi + \alpha) = \cot \alpha \qquad \cot(2\pi - \alpha) = -\cot \alpha \qquad \cot(-\alpha) = -\cot \alpha$$

$$\sin(\pi + \alpha) = -\sin \alpha \qquad \sin(\pi - \alpha) = \sin \alpha$$

(4)
$$\begin{aligned}
\cos(\pi + \alpha) &= -\cos \alpha \\
\tan(\pi + \alpha) &= \tan \alpha
\end{aligned}$$
 (5)
$$\begin{aligned}
\cos(\pi - \alpha) &= -\cos \alpha \\
\tan(\pi - \alpha) &= -\tan \alpha \\
\cot(\pi + \alpha) &= \cot \alpha
\end{aligned}$$

$$\cot(\pi - \alpha) &= -\cot \alpha$$

$$\sin(\pi/2 + \alpha) = \cos \alpha \qquad \sin(\pi/2 - \alpha) = \cos \alpha$$
(6)
$$\cos(\pi/2 + \alpha) = -\sin \alpha \atop \tan(\pi/2 + \alpha) = -\cot \alpha$$

$$\cot(\pi/2 + \alpha) = -\tan \alpha \qquad \cot(\pi/2 - \alpha) = \tan \alpha$$

【例】证明
$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx$$

5.辅助角公式

$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \varphi)$$
, $\sharp + \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$,

$$\tan \varphi = \frac{a}{b}$$
【例】求 $\int \frac{1}{\sin x + \cos x} dx$

6.倍角公式

(1)
$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

(2)
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

(3)
$$\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}$$

$$(4) \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

$$(5) \sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

(6)
$$\tan \alpha = \frac{1 - \cos 2\alpha}{\sin 2\alpha} = \frac{\sin 2\alpha}{1 + \cos 2\alpha}$$

【例】求 $\int \sin^2 x dx$

7.万能公式

$$\sin x = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}, \quad \cos x = \frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}, \quad \tan x = \frac{2\tan\frac{x}{2}}{1-\tan^2\frac{x}{2}}$$

【例】求
$$\int \frac{1}{2\sin x - \cos x + 5} \, \mathrm{d}x$$

7.求导公式

(1)
$$(\sin x)' = \cos x, (\cos x)' = -\sin x$$

(2)
$$(\tan x)' = \sec^2 x, (\cot x)' = -\csc^2 x$$

(3)
$$(\sec x)' = \sec x \tan x, (\csc x)' = -\csc x \cot x$$

【例】求∫tan² xdx

8.和差化积公式与积化和差公式

(1)
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

(2)
$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

(3)
$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

(4)
$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

(5)
$$\sin \alpha \cdot \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$$

(6)
$$\cos \alpha \cdot \cos \beta = \frac{1}{2} \left[\cos \left(\alpha + \beta \right) + \cos \left(\alpha - \beta \right) \right]$$

(7)
$$\cos \alpha \cdot \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$$

(8)
$$\sin \alpha \cdot \sin \beta = \frac{1}{2} \left[\cos (\alpha - \beta) - \cos (\alpha + \beta) \right]$$

9.和角公式和差角公式

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}$$

【练习题】

1.已知
$$\tan \theta + \frac{1}{\tan \theta} = 2$$
,求 $\sin \theta + \cos \theta$

2.求证
$$\frac{1 + 2\sin x \cos x}{\cos^2 x - \sin^2 x} = \frac{1 + \tan x}{1 - \tan x}$$