Image Processing

Image Processing Dr. Márton Szemenyei Associate Professor 2024

Lecturer

Dr. Márton Szemenyei

Associate Professor

szemenyei@iit.bme.hu

IB411

(463) 4025

Subject information

Subject focus: Teams & Moodle

Slides

Notes

Questions

Data sheet

https://portal.vik.bme.hu/kepzes/targyak/VIIIAD01

Suggested literature

Online published notes (pdf)

Requirements

Midterms

27th November (Wednesday) 18-20, Q1

Essay questions

30% (18/60p) needed

Retake: 11th December (Wednesday) 10-12, ?

Practicals

12 Practicals, in IB410

You need to show up at least 8 times (NO REDO OPPORTUNITIES!)

Online Test at the end of each practical, we take the best 8

30% (18/60p) needed, can retake 3 on the 14th week (but only if you were present)

Final grade

Midterms+Practicals, 40% (46/120p) needed

Grade goes up every 18 points

Scheduling plan

Lectures 1-8

Traditional computer vision

Lectures 9-13

Intelligent vision systems

Midterms, 27th November, 18:00

Retake, 11th December, 10:00

Scheduling plan

Week	Wednesday	Room	Thursday	Room
1	Introduction	IB410	Python basics	IB410
2	Image Correction	IB410	Color tracking	IB410
3	Frequency Domain	IB410	OCR	IB410
4	Feature Detection I	IB410	OCR in Frequency	IB410
5	Feature Detection II	IB410	Stereo Vision	IB410
6	Segmentation	IB410	Document orientation	IB410
7	Binary Images	IB410	Disparity, distance	IB410
8	National Holiday		Motion detection	IB410
9	Neural Network Basics	IB410	Object separation	IB410
10	Convolutional Networks	IB410	Motion tracking	IB410
11	Deep Learning in Practice	IB410	Neural Network basics	IB410
12	Detection, Segmentation	IB410	Holiday	
13	Unsupervised Learning	IB410	Classification	IB410
14	Detection	IB410	Practical Test Retakes	IB410

Course Goals

How do we call the function? → "Google"

Connections

Why

How

What

Which

Goal: Vision

Computer vision

Computer vision

Classification

Detection

Segmentation

Computer Vision

Image Understanding

Problem: Semantic Gap


```
[ [105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
[ 91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85]
[ 76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85]
[ 99 81 81 93 120 131 127 100 95 98 102 99 96 93 101 94]
[ 106 91 61 64 69 91 88 85 101 107 109 98 75 84 96 95]
[ 114 108 85 55 55 69 64 54 64 87 112 129 98 74 84 91]
[ 133 137 147 103 65 81 80 65 52 54 74 84 102 93 85 82]
[ 128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101]
[ 125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98]
[ 127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84]
[ 115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
[ 89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 80]
[ 63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87]
[ 62 65 82 89 78 71 80 101 124 126 119 101 107 114 131 119]
[ 63 65 75 88 89 71 62 81 120 138 135 105 81 98 110 118]
[ 87 65 71 87 106 95 69 45 76 130 126 107 92 94 105 112]
[ 118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107]
[ 164 146 112 80 82 120 124 104 76 48 45 66 88 101 102 109]
[ 157 170 157 120 93 86 114 132 112 97 69 55 70 82 99 94]
[ 130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86]
[ 128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]
[ 122 121 102 80 82 86 94 117 145 148 153 102 58 78 92 107]
[ 122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 84]]
```


Difficulty: lighting

Difficulty: deformation

Difficulty: occlusion

Difficulty: intra-class variation

Traditional vision

Imaging

Image correction

Image features

Decision making

Human Vision

Human colour vision

Photo diode

All diodes are sensors

Photovoltaic mode

Photoelectric mode

Faster reaction

More noise

Phototransistor

Charge-Coupled Device (CCD)

Analog shift registers

Full frame CCD

No per-pixel storage External shutter required

Frame-transfer CCD

CCD behind the photo sensors

Interline CCD

CCD between photoactive columns

CMOS

Advantages and disadvantages

Less consumption

Smaller delay

Cheaper design

Higher speed

More noise

Less sensitivity

Pixel-level pre-processing CNN, AER...

Bayer

3CCD

Camera types

Sensitivity range

Visible range

Infrared

Spatiality

Traditional (2D)

Line camera (1D)

Depth sensors (3D)

Stereo camera

Structured light

LIDAR

Image basics

Typically: 1D/2D/3D array (pixel/voxel array)

Resolution

Bit depth

1Bit image, Dithering

Digital noise

Video stream

Typical: A series of pictures (BUT...)

Goal: Double the temporal resolution TV standards!

Motion

Focus

Perceived colour

Role of colour components

Storage

Image (3648 x 2736 - 10MPx, colour): 30MB

Video (HD1080, 30fps, 1 hour): 672GB (1.5Gbit/sec)

CT (1000³,12 bit): 1GB

Compression: human vision!

HDD: 100-300 MB/sec

Image content

RGB

(R, G, B)

8 bits 0-255

0.0 - 1.0

0%-100%

#rrggbb

Hexadecimal value

R 0 G 0 b 0 R 255 G 255

В **255**

R 128

G 128

B 128

R 255

G 0

B **0**

R 0

G **255**

B **0**

R 255

G 255

B 0

R 51

G 163

B **163**

R 75

G 31

B 111

Colorspace conversion

Grey shading

$$I = G_c \cdot [R \quad G \quad B]$$

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = C \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix} \qquad \begin{bmatrix} R \\ G \\ B \end{bmatrix} = C^{-1} \cdot \begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix}$$

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ 1 \end{bmatrix} = C_{4x4} \cdot \begin{bmatrix} R \\ G \\ B \\ 1 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \\ 1 \end{bmatrix} = C_{4x4}^{-1} \cdot \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ 1 \end{bmatrix}$$

Greyscale

Luma (Y) [0.299 0.587 0.114] [0.30 0.59 0.11]

BT709 [**0.2125 0.7154 0.0721**]

RMI [0.5 0.419 0.081]

Intensity [1/3 1/3 1/3]

Channel R/G/B channel

Value
$$V = \max(R, G, B)$$

Luminance
$$L = \frac{\max(R, G, B) + \min(R, G, B)}{2}$$

Camera colorspaces

$$C_{YUV} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{bmatrix}$$

$$C_{YIQ} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{bmatrix}$$

$$R = Y + 1,140 \cdot V$$

 $G = Y - 0,394 \cdot U - 0,581 \cdot V$
 $B = Y + 2,032 \cdot U$

Compression (JPEG)

$$C_{\text{YCbCr}} = \begin{bmatrix} 0.299 & 0.587 & 0.114 & 0 \\ -0.168736 & -0.331264 & 0.5 & 128 \\ 0.5 & -0.418688 & -0.081312 & 128 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(Y,Cb,Cr: 8 bit positive)

$$R = Y + 1,402 \cdot (C_R - 128)$$

$$G = Y - 0,34414 \cdot (C_B - 128)$$

$$-0,71414 \cdot (C_R - 128)$$

$$B = Y + 1.772 \cdot (C_B - 128)$$

HSV

S 1.000

Value

$$V = \max(R, G, B)$$
if $V \stackrel{?}{=} 0$ then $H = S = 0$; exit
$$m = \min(R, G, B)$$

$$S = \frac{V - m}{V}$$

if $S \stackrel{?}{=} 0$ then H = 0; exit

 $c_r = \frac{V - R}{V - m}; c_g = \frac{V - G}{V - m}; c_b = \frac{V - B}{V - m}$ if $R \stackrel{?}{=} V$ then $H = 60 \cdot (c_b - c_g)$ mod 360; exit if $G \stackrel{?}{=} V$ then $H = 120 + 60 \cdot (c_r - c_b)$; exit if $B \stackrel{?}{=} V$ then $H = 240 + 60 \cdot (c_q - c_r)$; exit

H 0°	H 0°	H 0°
S 0.000	S 0.000	S 0.000
V 0.000	V 1 .000	V 0 .500
H O°	H 120°	H 60°

S 1.000

S 1.000

HSL

 $mx = \max(R, G, B); mn = \min(R, G, B)$

$$L = \frac{mx + mn}{2}$$

if $mx \stackrel{?}{=} mn$ then H = S = 0; exit

$$S = \frac{mx - mn}{1 - |2L - 1|}$$

$$c_r = \frac{G-B}{mx-mn}$$
; $c_g = \frac{B-R}{mx-mn}$; $c_b = \frac{R-G}{mx-mn}$

if $R \stackrel{?}{=} mx$ then $H = 60 \cdot c_r \mod 360$; exit

if
$$G \stackrel{?}{=} mx$$
 then $H = 120 + 60 \cdot c_g$; exit

if
$$B \stackrel{?}{=} mx$$
 then $H = 240 + 60 \cdot c_b$; exit

H 0° S 0.000 L 0.000

H 0° S 0.000 L **1**.000 H 0° S 0.000 L **0**.500

H 0° S 1.000 L **0**.500 H 120°
S 1.000
L 0.500

H 60° S **1**.000 L **0**.500

H 180° S **0**.523 L **0**.420

H 273° S 0.563 L 0.278

HSI

$$m = \min(R, G, B)$$

$$I = \frac{R + G + B}{3}$$
if $I \stackrel{?}{=} 0$ then $H = S = 0$; exit
$$S = 1 - m \cdot \frac{3}{R + G + B}$$
if $S \stackrel{?}{=} 0$ then $H = 0$; exit
$$H = \begin{cases} \cos^{-1} z & \text{ha } G \ge R \\ 2\pi - \cos^{-1} z & \text{ha } G < R \end{cases}$$

$$z = \frac{2B - G - R}{2 \cdot \sqrt{R^2 + G^2 + B^2 - RG - RB - GB}}$$

H 0° S 0.000 I 0.000

H 0° S 0.000 I **1**.000 H 0° S 0.000 I **0**.500

H 0°
S 1.000
I 0.333

H 120°
S 1.000
I 0.333

H 60°
S **1**.000
I **0**.667

H 180° S **0**.594 I **0**.494 H 273° S **0**.571 I **0**.282

Colour temperature

Use of the space

