

Tarea 1

Profesor: Andrés Meza

Auxiliar: Javiera Ahumada, Víctor Navarro

Fecha entrega: 15 abril 2019 (antes de las 23:59 horas)

• Para cada tarea se corregirán solo 2 problemas. Los mismos para todos los alumnos. Serán elegidos después de la entrega de las tareas.

- La tarea debe subida a u-cursos como un solo archivo en formato .ipynb, .html o .pdf antes de la fecha y hora indicada.
- No se aceptarán atrasos ni se recibirán archivos en los correos del profesor o los auxiliares.
- La solución de los problemas debe contener breves comentarios y explicaciones que faciliten su comprensión.
- **P1.** La función Si(x) puede ser calculada usando la siguiente serie infinita

$$\operatorname{Si}(x) = \int_0^x \frac{\sin t}{t} dt = \sum_{i=0}^\infty \frac{(-1)^i x^{2i+1}}{(2i+1)(2i+1)!}.$$

¿Cuántos términos de la serie se requieren para obtener un error relativo de 10^{-6} para los valores x = 0.1, 1.0, 10.0, 30.0, 100.0? Evalúe la suma y verifique los resultados numéricamente.

P2. Las viscosidad cinemática del agua μ_k varía con la temperatura T de la siguiente manera

$T(^{\circ}C)$	$\mu_k(10^{-3} \text{ m}^2/\text{s})$
0	1.79
21.1	1.13
37.8	0.696
54.4	0.519
71.1	0.338
87.8	0.321
100	0.296

Usando el método de interpolación de Lagrange, encuentre μ_k para $T=10^{\circ}\text{C}, 30^{\circ}\text{C}, 60^{\circ}\text{C} \text{ y} 90^{\circ}\text{C}.$

P3. Escriba su propio código que implemente el método de bisección para encontrar la o las raíces de la función $f(x) = \sin x + 3\cos x - 2$ en el rango (-2, 2). Grafique el número de iteraciones en función de la tolerancia de la solución.

P4. Se busca estudiar la dependencia del error para la expresión aproximada de la primera derivada con el paso Δx , donde el error absoluto se define por

error =
$$\left| \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} \right] - f'(x) \right|$$

Para eso, considere la función $f(x) = \sin(x)$, para la cual se conoce la derivada exacta $f'(x) = \cos(x)$. Evalúe el error en x = 2.RRR donde RRR son los tres últimos dígitos de su RUT, usando $\Delta x = 10^{-n}$, con $n = 0, 1, 2, 3, \ldots$

Grafique el error en función de Δx en una escala log-log. Interprete el resultado.