# Big data processing Fundamentals of Computing and Data Display

Christoph Kern Ruben Bach

(c.kern, r.bach)@uni-mannheim.de

## Outline

- Introduction
- 2 MapReduce
  - Hadoop and Spark
- 3 AWS
- 4 Tools for R
  - data.table
  - (do)parallel
  - sparklyr
- 5 Resources
- 6 References

#### Introduction

#### Approaches to programming with big data

- Utilize local machine better (multiple cores)
  - Various R packages for parallelization available
- Use better remote machine
  - e.g. AWS
- Use multiple remote machines (cluster)
  - Hadoop
  - Spark

#### Things to care about/ bottlenecks

- Processing capacity
- Disk, memory storage
- Transfer speed



# MapReduce

#### A programming paradigm for parallel computing

- Map
  - Input: A list of key-value pairs
  - Apply a (user-specified) map function (utilize multiple mappers)
- ② Shuffle
  - Sorts and groups map output by keys
- 3 Reduce
  - Apply a reduce function on the grouped data
  - Output: List of values

# MapReduce

Figure: MapReduce example<sup>1</sup>



¹https://www.geeksforgeeks.org/mapreduce-understanding-with-real-life-example/ ←□→←夏→←夏→←夏→←夏→

# Hadoop

#### A MapReduce implementation

- Hadoop Distributed File System (HDFS)
  - Input is split into blocks and stored on different nodes
  - Blocks are also replicated across nodes
- Bringing compute to the data
  - Combining computing and storage at each node
  - Enables fast data access (data locality)

Figure: Traditional (a) and Hadoop's (b) computing approach<sup>3</sup>



<sup>&</sup>lt;sup>3</sup>Foster et al. 2017

# Hadoop

Figure: MapReduce process in Hadoop<sup>4</sup>



<sup>&</sup>lt;sup>4</sup>Foster et al. 2017

## Spark

#### A beyond-MapReduce cluster-computing framework

- Iterative processes in MapReduce typically require writing data to storage system
  - Slow data sharing, many read-write operations
- Spark builds on resilient distributed datasets (RDD)
  - Distributed collections of objects that may be computed on different nodes
  - RDDs can be kept loaded in memory for fast access

- 1 Introduction
- 2 MapReduce
  - Hadoop and Spark
- 3 AWS
- 4 Tools for R
  - data.table
  - (do)parallel
  - sparklyr
- 5 Resources
- 6 References

#### Amazon Web Services (AWS)

- Amazon Elastic Compute Cloud (EC2)
- Amazon Simple Storage Service (Amazon S3)
- ...many more

#### EC2 instances

- https://aws.amazon.com/ec2/instance-types/
- Optimized for different tasks
  - General purpose, compute, memory, storage, ...
- 0.5 GB up to 3904 GB of memory
- 1 core up to 96 cores
- Free tier t2.micro instance



## Amazon Machine Image (AMI)

- Pre-packed system for usage on own server
- Operating system + (potentially) software
- Pre-configured RStudio Server AMIs available!
  - http://www.louisaslett.com/RStudio\_AMI/

#### Setup process

- ① Create AWS account and sign in
- 2 Choose an (RStudio Server) AMI
- 3 Choose an instance type
- Edit the security group settings and open ports
  - 22 for SSH
  - 80 for HTTP
  - 443 for HTTPS
  - 8787 for RStudio Server
- 5 Create (or choose) a key pair and download file
- 6 Launch Instance
- Open the public DNS in your favorite browser
- 8 Login to Rstudio Server
  - Your Username: rstudio
  - Your Password: <Your Instance ID>



## Tools for R

- 1 Introduction
- 2 MapReduce
  - Hadoop and Spark
- 3 AWS
- 4 Tools for R
  - data.table
  - (do)parallel
  - sparklyr
- 5 Resources
- 6 References

## Tools for R

## Selected tools for big(ger) data processing in R

- Import and transform data with enhanced data frames
  - data.table
- Speed up processing by parallelizing code
  - parallel, doparallel
- Utilize Spark cluster
  - sparklyr

Table: Data import in R

|                         | data.table | Base R                  | $readr^5$    | foreign     | haven        |
|-------------------------|------------|-------------------------|--------------|-------------|--------------|
|                         | data.table | data.frame              | tibble       | data.frame  | tibble       |
| Generic / Text Files    | fread()    | read.table()            | read_delim() |             |              |
| Comma-Separated fread() | read.csv() | read_csv()              |              |             |              |
|                         | iread()    | read.csv2()             | read_csv2()  |             |              |
| Tab-Separated           | fread()    | <pre>read.delim()</pre> | $read_tsv()$ |             |              |
| rab-Separateu           |            | read.delim2()           | read_tsv2()  |             |              |
| SPSS files              |            |                         |              | read.spss() | read_sav()   |
| Stata files             |            |                         |              | read.dta()  | $read_dta()$ |
| SAS files               |            |                         |              | read.ssd()  | read_sas()   |

<sup>&</sup>lt;sup>5</sup>Up to 10x faster than Base R, 1.2-2x slower than data.table (https://readr.tidyverse.org/).  $= \times 4 = \times 9 = 1$ 

#### What is a data.table?

- Enhanced data frame
- Recommended for large datasets
- Comes with its own (SQL-inspired) syntax
  - DT[i, j, by]
  - WHERE (i), SELECT or UPDATE (j), GROUP BY (by)
- (Or) can be used as a dplyr backend
  - https://cran.r-project.org/web/packages/dtplyr/

## Table: Working with data.table

#### (a) Selecting rows

| Action               | data.table           |
|----------------------|----------------------|
| Select specific rows | DT[c(1,2,5:10)]      |
| Select last row      | DT[.N]               |
| Filter by condition  | DT[a==15]            |
| Select first k rows  | head(DT, k), DT[1:k] |
| Select last k rows   | tail(DT, k)          |
|                      |                      |

#### (b) Selecting columns

| Action              | data.table                      |  |  |
|---------------------|---------------------------------|--|--|
| Select by col. num. | DT[ , c(1,3:5)]                 |  |  |
| Select by name      | DT[ , .(A,B,C)]                 |  |  |
| Modify column       | <pre>DT[ , .(A,round(B))]</pre> |  |  |
| Create new column   | DT[, .(A, M = B+C)]             |  |  |

Table: Working with data.table

(a) Adding and Updating Columns

| Action                        | data.table                                 |
|-------------------------------|--------------------------------------------|
| Update / Create new var.      | DT[, X := k]                               |
| Update / Create multiple vars | <pre>DT[, c("M","N") := list(A,B/2)]</pre> |
| Remove a column               | DT[, A := NULL]                            |
| Replacing missing val.        | <pre>DT[is.na(A), A := k]</pre>            |

(b) Aggregating

| Action |                                    | data.table                                       |  |  |
|--------|------------------------------------|--------------------------------------------------|--|--|
|        | By one group                       | <pre>DT[,.(agg = f(X)), by=A]</pre>              |  |  |
|        | By multiple groups                 | DT[,.(agg = f(X)), by=.(A,B)]                    |  |  |
|        | Multiple vars, same function       | DT[,.(agg1 = f(X), agg2=f(Y)), by=.(A,B)]        |  |  |
|        | Multiple vars, different functions | DT[,.(agg1 = f(X), agg2=g(Y,Z),by=.(A,B,N=f(C))] |  |  |

# (do)parallel

#### When to parallelize?

- Perfectly ("embarrassingly") parallel vs. inherently serial problems
  - Is function 2 independent or dependent on the output of function 1?
- Overhead
  - Copying data/ code when initializing parallelization reduces theoretical gains



 $<sup>^{7}</sup>_{\rm https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html}$ 

# (do)parallel

## Two approaches to parallel processing in R

- apply-like iterations: parallel
  - multicore
    - Fork/ copy process to multiple processors on one machine (excludes Windows)
  - snow
    - Spawn new process on local or remote machine (cluster of computers)
  - vignette("parallel")
- For loops: doparallel
  - parallel
  - foreach
  - vignette("gettingstartedParallel")

## sparklyr

#### An R interface to Spark

- Provides a dplyr backend to communicate with data in a Spark cluster
- Integrated into RStudio IDE
- Connect to a local Spark cluster from within R
  - Install Spark locally: spark\_install()
  - ② Connect: spark\_connect(master = "local")
  - 3 Experiment with Spark
  - 4 Disconnect: spark\_disconnect()
- Connect to a remote Spark cluster

## sparklyr

#### Example workflow

- Connect to Spark
- Copy data from R, file system, database to Spark
- Communicate with data in Spark
  - Using dplyr language
  - Using SQL with DBI and dbGetQuery()
- Run analysis within Spark (MLlib)
- Extract results, create plots in R

Figure: Moving data from/to Spark



#### Resources

- Spark for Social Science
  - https://urbaninstitute.github.io/spark-social-science-manual/
- R Task View
  - https://cran.r-project.org/web/views/HighPerformanceComputing.html
- R Tools
  - https://github.com/Rdatatable/data.table/wiki
  - http://spark.rstudio.com/
- Cheatsheets
  - https://github.com/rstudio/cheatsheets/raw/master/datatable.pdf
  - https://github.com/rstudio/cheatsheets/raw/master/sparklyr.pdf

#### References

Foster, I., Ghani, R., Jarmin, R. S., Kreuter, F., and Lane, J. (Eds.). (2017). *Big Data and Social Science: A Practical Guide to Methods and Tools*. Boca Raton, FL: CRC Press Taylor & Francis Group.

White, T. (2015). Hadoop: The Definitive Guide. Sebastopol, CA: O'Reilly Media.