Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра информатики

ОТЧЕТ

к лабораторной работе № 3 на тему **ПРОЕКТИРОВАНИЕ ТЕХНИЧЕСКОЙ СОСТАВЛЯЮЩЕЙ**

Студент	Т. А. Русакович
Руководитель	Е. В. Тушинская
Нормоконтролер	Е. В. Тушинская
Рецензент	Е. В. Тушинская

СОДЕРЖАНИЕ

1 Цель работы	3
2 Проектирование технической составляющей	
2.1 Алгоритм авторизации	
2.2 Алгоритм кредитования	
2.3 Алгоритм покупки токенов	
Заключение	

1 ЦЕЛЬ РАБОТЫ

Целью лабораторной работы является проектирование технической составляющей приложения, разработка трех блок-схем, описывающих основные алгоритмы программы, в том числе уникальный функционал.

2 ПРОЕКТИРОВАНИЕ ТЕХНИЧЕСКОЙ СОСТАВЛЯЮЩЕЙ

Далее будут описаны алгоритмы авторизации, кредитования и покупки токенов, а также представлены их блок-схемы.

2.1 Алгоритм авторизации

На рисунке 2.1 изображена блок-схема алгоритма авторизации. Для авторизации пользователю необходимо ввести идентификационный номер паспорта и пароль, далее при неуспешной валидации возвращается начальная форма ввода. Иначе отправляется запрос в базу данных для аутентификации пользователя, если соответствующие идентификатор и хеш-пароль не найдены, то пользователь снова возвращается на форму ввода. Если находит, то возвращает пользовательские данные, такие как email и uuid. Далее формируется JWT-токен, создается случайный шестизначный численный код.

Рисунок 2.1 – Блок-схема алгоритма авторизации

Код отправляется пользователю на email, а JWT-токен записывается в базу данных как значение по ключу кода. Далее пользователь вводит полученный код, по данному коду ищется JWT-токен в базе данных, в случае отсутствия пользователь возвращается на начальную форму вводу. Иначе получает токен.

Таким образом была разработан и описан алгоритм авторизации.

2.2 Алгоритм кредитования

На рисунке 2.2 изображена блок-схема алгоритма кредитования. Для осуществления кредитования пользователь должен выбрать тип кредита, который должен зависеть от валюты, срока и типа выплат, а также выбрать сумму и счет. В случае выбора неверных данных пользователь возвращается на страницу выбора. Иначе формируется запрос в базу данных для изменения данных по указанному счету и внесения кредита в таблицу.

Рисунок 2.2 – Блок-схема алгоритма кредитования

Таким образом был разработан и описан алгоритм кредитования.

2.3 Алгоритм покупки токенов

На рисунке 2.3 изображена блок-схема алгоритма покупки токена. Первым делом для работы с блокчейном и формирования подписей транзакций удобным образом пользователю необходимо подключить криптокошелек. Далее необходимо ввести сумму токенов для покупки, а также указать счет, средствами которого осуществляется покупка. Если пользователь ввел неверные данные, то он возвращается на странице ввода.

Рисунок 2.5 – UML-диаграмма компонентов приложения

Если пользователь ввел верные данные, то далее идет подключение к сети, формирование транзакции на приобретение токенов, далее пользователь через кошелек подписывает транзакцию. Далее транзакция отправляется в блокчейн-сеть и в случае успеха возвращает сообщение об успехе и изменяет состояние счета в базе данных. Иначе пользователь возвращается на этап формирования транзакции.

Таким образом был разработан и описан алгоритм покупки токенов.

ЗАКЛЮЧЕНИЕ

В результате выполнения лабораторной работы были разработаны и описаны алгоритмы авторизации, кредитования и покупки токенов. Также были разработаны блок-схемы данных алгоритмов.