Ejercicio 1

En una ciudad determinada, el 30% de las personas son conservadores, el 50% son liberales y el 20% son independientes. Los registros muestran que en unas elecciones concretas, votaron el 65% de los conservadores, el 82% de los liberales y el 50% de los independientes.

a- Si se selecciona al azar una persona de la ciudad y se sabe que votó en las elecciones pasadas, ¿Cuál es la probabilidad de que sea un liberal?

b- Si se sabe que no votó ¿Cuál es la probabilidad de que sea un liberal?.

Ejercicio 2

Una caja contiene tres monedas con una cara en cada lado, cuatro monedas con una cruz en cada lado y dos monedas comunes, con una cara y una cruz cada una.

- a- Si se selecciona al azar una de estas nueve monedas y se lanza una vez ¿cuál es la probabilidad de obtener una cara?
 - b- Si se obtiene una cara, ¿cuál es la probabilidad de que la moneda sea de las comunes?
- c- Si se tira la moneda n veces y se obtienen n caras, ¿cuál es la probabilidad de que la moneda sea de las comunes?

Ejercicio 3 [Hoff, ej 2.1]

Ocupación del Hijo					
Ocupación del Padre	Agricultor	Operativo	Artesano	Ventas	Profesional
Agricultor	0.018	0.035	0.031	0.008	0.018
Operativo	0.002	0.112	0.064	0.032	0.069
Artesano	0.001	0.066	0.094	0.032	0.084
Ventas	0.001	0.018	0.019	0.010	0.051
Profesional	0.001	0.029	0.032	0.043	0.130

En la tabla anterior se presenta la distribución conjunta de la Ocupación del padre (Y_1) y la ocupación del hijo (Y_2) .

Se pide:

- a- La distribución marginal de la Ocupación del Padre (Y_1) .
- b- La distribución marginal de la Ocupación del Hijo (Y_2) .
- c- La distribución condicional de la Ocupación del Hijo, dado que la Ocupación del Padre es Agricultor $(Y_2|Y_1 = "Agricultor")$.
- d- La distribución condicional de la Ocupación del Padre dado que la Ocupación del Hijo es $Agricultor\ (Y_1|Y_2="Agricultor")$

Ejercicio 4 [Hoff, ej 2.2]

Sean Y_1 y Y_2 dos variables aleatorias independientes tales que $E(Y_i) = \mu_i$ y $Var(Y_i) = \sigma_i^2$. Tomamos a_1 y a_2 constantes.

Calcular:

a-
$$E(a_1Y_1 + a_2Y_2)$$
 y $Var(a_1Y_1 + a_2Y_2)$
b- $E(a_1Y_1 - a_2Y_2)$ y $Var(a_1Y_1 - a_2Y_2)$

Ejercicio 5 [Hoff, ej 2.3]

Sean X,Y y Z variables aleatorias con distribución conjunta (discreta o continua): $p(x, y, z) \propto f(x, z)g(y, z)h(z)$.

Mostrar que:

a- $p(x|y,z) \propto f(x,z)$

b- $p(y|x,z) \propto q(y,z)$

c- X e Y son condicionalmente independientes dado Z.

Ejercicio 6

Suponga que $n \sim Poisson(\lambda)$ y que $y|n \sim Binomial(n, p)$ con p conocido.

- a- Demostrar que la $E(y) = \lambda p$.
- b- Calcular V(y).
- c- Calcular la distribución marginal de y, p(y).

Ejercicio 7

Probar la regla de Bayes,

$$P(H_j|E) = \frac{P(E|H_j)P(H_j)}{\sum_{k=1}^{K} P(E|H_k)P(H_k)}$$

sabiendo que se cumple $P(A|B) = \frac{P(A \cap B)}{P(B)}$, para cualesquiera sucesos A y B.

Donde E es un evento cualquiera y $\{H_1, ..., H_k\}$ forman una partición de Ω .

Ejercicio 8 [Hoff, ej 2.5]

Tenemos dos urnas, la urna 1 posee un $40\,\%$ de bolas verdes y $60\,\%$ de bolas rojas, y la urna 2 contiene un $60\,\%$ de bolas verdes y $40\,\%$ de bolas rojas. Tiramos una moneda y luego seleccionamos una bola de la urna urna 1 o 2 en función de si la moneda cae cara o cruz , respectivamente.

Sea X una variable aleatoria que toma los valores 1 o 0 si la moneda cae a cara o cruz, y sea Y otra variable aleatoria que vale 1 o 0 si la pelota es de color verde o rojo.

- a- Escriba la función conjunta de X e Y en una tabla.
- b- Calcule E(Y). ¿Cuál es la esperanza de que la bola sea verde?.
- c- Calcule Var(Y|X=0), Var(Y|X=1) y Var(Y). Tomando a la varianza como la medición de la incertidumbre , explicar intuitivamente por qué una de estas variaciones es más grande que las demás.
- d- Supongamos que seleccionamos una pelota y es de color verde. ¿Cuál es la probabilidad de que la moneda haya caido del lado de la cruz?

Ejercicio 9 [Hoff, ej 2.6]

Sean A y B dos eventos condicionalmente independientes dado el evento C, que se denota $A \perp B|C.$

- a- Mostrar que esto implica que $A^c \perp B|C$, $A \perp B^c|C$ y $A^c \perp B^c|C$, donde A^c es no A.
- b- Encuentre un ejemplo donde se cumpla que $A \perp B|C$ pero no $A \perp B|C^c$