EE 255: ELECTRIC POWER

Experiment: Transformer Design

(3 hours)

<u>DATE</u> :	•••••	•••••	•••••	•••••	•••••	•
REG. NO:	• • • • •	••••	•••••		• • • • • • • • • • • •	

Selection of Core material:

The transformer core, which provides the flux linkage between the primary and secondary coils of the transformer must be selected, based on:

- (1) Magnetization characteristics the variation of flux density (B) with ampere-turn per meter (A)
- (2) Core loss the variation of power loss per kg weight of the core (W) with flux density (B)

Manufacturers provide these characteristics as curves or tables. The core material selected for this particular case is grain oriented 3 silicon cold rolled steel (GOSS) laminate. For this laboratory class, consider the transformer core, which is constructed using laminates of the form and dimensions shown in Figure 1.

Figure 1: Dimension of the transformer core

Turns per volt ratio:

This depends on the core material and can be calculated as follows.

For a sine wave supply, the induced e.m.f. (E) can be calculated by,

$$E = 4.44 \cdot \phi_m \cdot N \cdot f$$
 $(\phi_m = Maximum flux density)$

By substituting $\phi_m = B_m \cdot A$, f = 50 Hz,

$$E = 4.44 \cdot B_m \cdot A \cdot N \cdot 50 \cdot S_f$$

Here stacking factor S_f , which compensates the reduction in iron area because of the insulating layer on the lamination, can be taken as 0.9.

For the selected lamination materials, the maximum flux density can be taken as 1.0 Tesla.

$$A = T \times S \times 10^{-6}$$

$$E = 4.44 \times 1.0 \times T \times S \times 10^{-6} \times N \times 50 \times 0.9$$

Turns per volt ratio =
$$(N/E) = 5005 / (T \times S)$$

Note: for an ideal transformer E = V.

The primary voltage of the transformer is 110 V and the induced voltage in the secondary has to be selected according to your group number. Using the (N/E) ratio calculated above, the number of turns required for primary and secondary can be calculated.

Primary and secondary currents:

$$I_{load,primary} = VA/V_{primary}$$
 and $I_{load,secondary} = VA/V_{secondary}$

For a small transformer, magnetizing current I_m can be approximated to 30% of I_{load,primary}.

Therefore,
$$I_m = I_{load,primary} \times 0.3$$

If the transformer is operated at full load at unity power factor operation, then the magnetizing current is in quadrature with the load current.

Therefore, total current of primary coil at full load =
$$(I_{load}^2 + I_m^2)^{1/2}$$

Selection of coil wires for windings:

The winding coils are chosen so that they can withstand the maximum current (the current through the coil at maximum load) and are selected by referring to coil manufacturer's data sheets e.g. See Appendix.

Available window area:

Available window area $= H \times L$ –area loss when the bobbin is inserted (see Fig.2)

$$= H \times L - 1.5 \times 2 \times L - 1.5 \times (H-1.5-1.5) \text{ (mm}^2)$$

Figure 2: Area loss due to bobbin

Total area consumed by the coils:

Let d is the diameter of a copper a coil. ratio of effective copper area = $(\pi \times d^2/4)/(d^2) = 0.78$

Figure 3: Total copper area

Total area consumed by the coils = $(N_p \times cross\ sectional\ area\ of\ primary\ coil + N_s \times cross\ sectional\ area\ of\ secondary\ coil)/0.78$

This should less than available window area.

Pre-lab Calculations

Data

Core size:

T = 25 mm S = 26 mm H = 38 mm L = 12 mm

Calculations

- 1. Calculate the number of turns required for the primary
- 2. Calculate the number of turns required for the secondary
- 3. Calculate I_{load,primary}, I_{load,secondary}, I_m and total primary current
- 4. Select suitable coils for primary and secondary windings using Table in Appendix. When you come to the lab, please check the availability of coils in the laboratory and select the nearest coil gauge for your calculated value.
- 5. Calculate the total available window area and area consumed by the coils. Check whether you can accommodate the windings within the window area available.

Appendix

Wire Gauge	Diameter/ mm	Area/ mm ²	Current/ A
(SWG)			
26	0.46	0.166	0.38
28	0.38	0.101	0.26
29	0.35	0.096	0.22
30	0.305	0.073	0.18
36	0.178	0.024	0.068
39	0.127	0.012	0.032
40	0.12	0.011	0.027

^{30, 36, 39, 40 -} Primary Coil 26, 28, 29 - Secondary Coil

EE 255 ELECTRIC POWER TRANSFORMER DESIGN

The rating of the transformers to be designed by the respective groups are given below. You should design your transformer according to those ratings. All the calculations should be done prior to the practical and you have to bring the report when you are attending to the practical.

Group No	VA rating	Primary Voltage/ V	Secondary Voltage/
01	2	110	10
02	3	110	15
03	2	110	10
04	3 2	110	15
05	2	110	10
06	3	110	15
07	2	110	10
08	3	110	15
09	2	110	10
10	6	110	24
11	2	110	8
12	9	110	25
13	2	110	8
14	6	110	24
15	3	120	12
16	9	120	25
17	3	120	12
18	9	120	25
19	3	120	9
20	7	120	20
21	3	120	9
22	9	120	24
23	7	120	20
24	9	120	24
25	7	120	24
26	6	120	24
27	9	120	24
28	6	120	24

Load Test

Apparatus

- 1. Single phase transformer
- 2. Variac (230V, 50 Hz)
- 3. Wattmeters -2 Nos (120 V/1A)
- 4. Voltmeters 2 Nos (0-150V & 0-30V)
- 5. Ammeters -2 Nos (0-0.5A)
- 6. Rheostat

Procedure

Figure 4: Load test circuit diagram

- 1. Connect the circuit as shown in figure 4 and set the variac to zero position.
- 2. Set the rheostat to the maximum position.
- 3. Adjust the variac and set the primary voltage to 230V.
- 4. Set the secondary current values as given in the table by varying the rheostat.
- 5. Record the readings of Wattmeters, ammeters and voltmeters.

Observations

Secondary Percentage current value		Primary Side			Secondary Side	
full load(%)	(A)	Voltmeter/V	Ammeter/A	Wattmeter/W	Voltmeter/V	Wattmeter/W
30						
40						
50						
60						
80						
90						
100						

Calculations

$$\begin{split} \text{Pp=Vp.Ip.Cos}(\theta), \\ \text{Power Factor, Cos}(\theta) &= P_P / \left(V_P.I_P \right) \\ &= \dots \\ &= \dots \\ \\ \text{Voltage regulation} \\ &= \left(V_{NL} - V_{FL} \right) \times 100 \\ \hline &V_{FL} \\ &= \dots \\ \\ &= \dots \\ \\ \text{Efficiency} \\ &= P_{OUT} \times 100 \\ \hline &P_{IN} \\ &= \dots \\ \end{split}$$

Results

Percentage full load (%)	Power Factor	Voltage Regulation (%)	Efficiency (%)
30			
40			
50			
60			
80			
90			
100			

• Plot the variation of Voltage regulation Vs. percentage full load and Efficiency Vs. Full load

Discussion

1. Compare and contrast the Voltage regulation Vs. percentage full load, obtained for the transformer used in the single phase transformer laboratory and that of the transformer wound by you. Clearly state the possible reasons for any deviation.

2.	Compare and contrast the Efficiency Vs. percentage full load, obtained for the transformer used in the single phase transformer laboratory and that of the transformer wound by you. Clearly state the possible reasons for any deviation.		