One Sample T-test Women's Height

Data on the heights of women of different ages (women, age, height).

- Focusing on just the first column of young women (women from ages 20-24)

– Question:

Is the average height of women ages 20-24 different from 155cm?

TASK

1. Explore data and check normality

Histogram

QQ-plot

Test for normality

Descriptives

			Statistic	Std. Error
Sam20-24	Mean		162.5000	.99568
	95% Confidence Interval	Lower Bound	160.4636	
	for Mean	Upper Bound	164.5364	
	5% Trimmed Mean		162.5463	
	Median	162.5000		
	Variance	29.741		
	Std. Deviation		5.45357	
	Minimum	150.00		
	Maximum	175.00		
	Range	25.00		
	Interquartile Range	8.13		
	Skewness		149	.427
	Kurtosis		.136	.833

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Sam20-24	.120	30	.200 [*]	.967	30	.466

^{*.} This is a lower bound of the true significance.

Lilliefors Significance Correction

p-values HIGHER than 0.05. That's a good sign because we can assume our data is normal for our analysis

- 2. Define null and alternative hypothesis to the question.
- Question: Is the average height of women ages 20-24 different from 155cm
- Alternative Hypothesis: There is a difference (younger women different than 155cm)
 Based on our statistical test, there is evidence that younger women's height is higher than 155cm"

3. Run t-test (2-sample T-test)

One-Sample Statistics

				Std. Error
	N	Mean	Std. Deviation	Mean
Sam20-24	30	162.5000	5.45357	.99568

One-Sample Test

	Test Value	e = 155				
					95% Confidence Interval of	
				Mean	the Difference	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
Sam20-24	7.533	29	.000	7.50000	5.4636	9.5364

4. Interpret Results

- What is the test statistic, degrees of freedom, and p-value?
- t=7.533 DF=29 P-value< 0.05
- Determine if significant
- P-value < 0.05
- Significant
- Did you reject or fail to reject the null?
- Reject Null
- Are young women on average different from a height of 155cm? How so? Young women were significantly taller (mean=162.5) than the value of 155 cm (1 -sample t -test, t=7.533, DF=29, p value <0.0001)