Modular Arthrmetic

a and I are said to be congruent to each other under module N, if they leave same remainder whom divided by N. (M bom) & = D 13 = 41 (mod 7)

13 med 7 = 6 41 mod 7= 6

> (13+35+5) %-7= (6+0+5)= (11) %-7=4 (41+35+5)0/07= (6+0+5)0/07=(11)0/07=4

 \rightarrow (13 x 4) % 7= (52) % 7 = 3 (41x4)°/-7= (164)°/-7=3

if a=l- (mod N)

a-b=0 (mod N)

Proof:

a= N*KI+R b= N*K2+R

a-l= N* (K1-K2)

13 = 41 (mod 7)

41-13= 28

a-b= N* K a= N*K+ b

K com be + ve or -ve.

13= 7* (-4)+41 41 = 7*(4) + 13 > If a* b= c a (mod N) * b (mod N) = c (mod N)
a /0 N * b 0/0 N = c 0/0 N 13 = 3 (mod 5) and 9 = 4 (mod M) (13.7.5) * (9.7.5) = (117.7.5) 3* 4 = 2 (mod 5) 12 = 2 (mod 5) If a*b=c a (mod N) * & (mod N) = c (mod N) M * 42 = 43 (N*KI+HI)* (N*KZ+HZ) = (N*K3+HZ) N*N*K1*K2+N*K1+42+N*K2*21+21*43 = N* K3+ H3 N*N*KI*K2+N*KI*12+N*K2*11-N*K3=113-(11/2) N*(N* K1* K2+ K1*2+ K2*21- K3)=23-(H1*42) = ((a o/ 0 N)* (Do/ 0 N) o/ 0 N & Find the last digit of 2573* 34268? To find last digit
[2573 * 39268] %10 (3 * 8) % 10 = 4

(N2+ 453+324+781+ 523+250+313) % 2= ? Q: 10+1+0+1+1+0+1)%2 (4) % 2 = 0 > Divisibility by I and 3. check whether number 4819250393285 is divisible by 9. EX. 13345/9 = (1*10^4)+2*10^3+3*15^2+4*10^1+5*10^0) = (1* (999+1)+2* (999+1)+3* (99+1)+4* (9+1) +5*()) 9.9 = (1*(0+1) + 2*(0+1) + 3*(0+1) + 4*(0+1) + 5*(1))*/9 $= \frac{(1+2+3+4+5)}{(15)} = \frac{(1+2+3+4+4+5)}{(15)} = \frac{(1+2+3+4+5)}{(15)} = \frac{(1+2+4+5)}{(15)} = \frac{(1+2+4+5)$ Remainder is not zoro so not divisible by 9 [M2+453+324+781+533+250+712) %3=? (1+0+0+1+2+1+0) %-3 (5) % = 2 Not divisible by 3 (7+3+0+7+2+7+3)%9 = 299.9=2 Not divisible by 9

If $a \equiv D \pmod{N}$ then $a^*K \equiv D^*K \pmod{N}$

> Expenentiation in modular arthmetic:

If $1b \equiv 1 \pmod{3}$

Here
$$16^{5} = 1^{5} \pmod{3}$$

Proof \Rightarrow
 $a = N * 9 + 9 - 8$
 $a^{6} = (N * 9 + 9 - 8) + (C(K, 1) + A^{6} + B^{6}) + (C(K, 1) + A^{6}) + (C$

8: Find 2^123456789 (mod 3)

$$[23456789 = 0 \pmod{3}]$$

 $2^{123456789} = (2^{3})^{41152263}$
 $(8^{41152263})^{9} \cdot 7$
 $8 = 1 \pmod{7}$
 $(1^{41152263})^{9} \cdot 7 = 1$