3-D Container Packing with Weight and Multi Drop Constraints

Manishnantha M

Indian Institute of Technology - Madras Guided by Prof. N. S. Narayanaswamy

> B.Tech. Project May 17, 2023

Presentation Overview

- 1 Introduction
 - Bin Packing and Applications
 - Problem Statement
- 2 Dataset
 - OR Library
- 3 Approach & Heuristic
 - Exponential Nature of Problem
 - Pruning of Tree
 - Time Complexity
- 4 Results
 - Baselines for Comparison
 - Volume Utilisation & Packed Item Ratio
 - Runtime vs n
 - Runtime with Parallelisation
- 5 Demo
- 6 References

Bin Packing and Application

Definition

The bin packing problem is an optimization problem, in which items of different sizes must be packed into a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of bins used

Type	Application
1-DBP	Cutting Stock, Machine Scheduling
2-DBP	Memory Allocation
3-DBP	Logistics, Container Packing

Table: Applications of Bin Packing

Problem Statement

Formulate, build, and test a heuristic to pack objects, each with its own weight, load bearing, and destination constraints, into a container of fixed dimensions with the **aim of maximising the Volume Utilisation of the container**

Dataset

- OR Library's Container Loading with Weight Restrictions Dataset used for testing
- Generated in [Bischoff, 2006]
- Each problem contains:
 - Container dims (587 \times 233 \times 220 cm³)
 - Number of Items
 - Items' dims, allowed orientations & load bearing limits
- Delivery Location randomly generated & added

20 ft ISO Container

Figure: A Standard 587 \times 233 \times 220 cm^3 cargo container

Exponential Nature of Problem

- 3-D Bin Packing is **NP-Hard**, no known polynomial time solutions exist
- The max. number of states possible when n items are packed:

$$s(n) = 6^n \cdot \prod_{k=1}^n (2k-1)$$
 (1)

■ Increases rapidly with n, $s(15) \approx 2.91 \times 10^{27}$

Exponential Nature of Problem Contd.

Figure: s(n) vs n

Pruning of Tree

Figure: A tree search with m = 3, $t_w = 2$, n = 4

May 17, 2023

Time Complexity

- Tree Search heuristic built on Python3 and tested
- Pruning based on highest potential VU
- Time Complexity of Algorithm

$$\mathbf{T}_{3D} = \mathcal{O}(t_w \cdot n^3 \cdot d_m^2) \tag{2}$$

■ GPU Parallelization applied to obtain improved complexity

$$\mathbf{T}_{3D}' = \mathcal{O}(t_{\mathsf{w}} \cdot n^3) \tag{3}$$

Baselines for Comparison

- [Bischoff and Ratcliff, 1995] generated OR Library's thpack
 - tested without load and delivery constraints
 - $\mu_{VU} = 0.802$
- [Bischoff, 2006] generated OR Library's wtpack
 - tested **without** delivery constraints
 - $\mu_{VU} = 0.854, \sigma_{VU} = 0.043$

Baselines for Comparison Contd.

- [Christensen and Rousøe, 2009] also uses similar Tree Search heuristic
 - tested on thpack without load constraints.
 - With 10 delivery locations, $\mu_{VU} = 0.696, \sigma_{VU} = 0.087$
- [Wang and Chen, 2010] uses a hybrid genetic algorithm for 3-DBP
 - tested on thpack without load and delivery constraints
 - $\mu_{VU} = 0.811, \sigma_{VU} = 0.038$

Volume Utilisation & Packed Item Ratio

- Tested on OR Library's wtpack, generated in [Bischoff, 2006]
- On average, about 60% of the Container was filled, and 65% of the items to be packed were packed

$$\mu_{
m VU} = 0.602$$

$$\sigma_{VU} = 0.127$$

$$\mu_{\sf PIR} = 0.650$$

$$\sigma_{\text{PIR}} = 0.131$$

Runtime vs n

Figure: Time to run (T_{3D}) vs No. of items (n)

Runtime with Parallelisation

Figure: Time taken to pack the same randomly picked problems from ${\tt wtpack1}$ with and without parallelization

Demo

Demo of the Algorithm working on a demo input

References

H. Wang and Yanjie Chen (2010)
A hybrid genetic algorithm for 3D bin packing problems
2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) 703–707

E.E.Bischoff (2006)
Three-dimensional packing of items with limited load bearing strength *European Journal of Operational Research* 168(3), 952 – 966.

E.E.Bischoff, M.S.W. Ratcliff (1995) Issues in the development of approaches to container loading *Omega* 23(4), 377 – 390.

Thank You

