$\mathbf{QNC}_1 \subset \mathbf{noisy}\mathbf{-BQP}$

Michael Benor David Ponarovsky

September 18, 2024

1 Notations.

 C_g - good qLDPC, C_{ft} - concatenation code (ft stands for fault tolerance). For a code C_y we use Φ_y , E_y , D_y to denote the channel maps circuits into the circuits compute in the code space, the encoder, and the decoder. We use Φ_U to denote the 'Bell'-state storing the gate U.

2 The Noise Model

3 Fault Tolerance (With Resets gates) at Linear Depth.

Claim 3.1. There is $p_{th} \in (0,1)$ such that if $p < p_{th}$ then any quantum circuit C with depth D and width W can be computed by p-noisy, resets allowed, circuit C', with a depth at most $\max\{D, \log(WD)\}$.

3.1 Initializing Magic for Teleportation gates and encodes ancillaries.

The Protocol:

- 1. Initializing zeros. Divide the qubits into |B|-size blocks. Encodes each block in C_g via $D_{ft}\Phi_{ft}[E_g]|0^{|B|}\rangle$.
- 2. Initializing Magic for Teleportation gates encoded in C_g via $D_{ft}\Phi_{ft}[E_g]|\Phi_U\rangle$ for each gate U in the original circit .
- 3. Each gate is replaced by gate teleportation.
- 4. At any time tick, any block runs a single round of error reduction.

Claim 3.2. Assume that an error $|e| = \gamma n$, i.e e is supported on less than γn bits, then a single correction round reduce e into an error e' such $|e'| < \nu |e|$.

Definition 3.1. We will say that a CSS code C is monotonic if for for any two codewords $X_1, X_2 \in C_X/C_Z^{\perp}$ such that $X_1 = \sum_i g_i^{(1)}, X_2 = \sum_i g_i^{(2)}$ and $\{g^{(1)}\} \cap \{g^{(1)}\} = \emptyset$ it holds that:

$$|X_1 + X_2| > \frac{3}{2} (|X_1| + |X_2|)$$

For example, the Toric code is monotonic. In addition it's straightforwardly to see that concatenation of two monotonies code yield monotonic code.

Claim 3.3. The gate $D_{ft}\Phi_{ft}[E_g]$ initializes states encoded in C_g subject to p-noise channel.

Proof. Clearly $\Phi_{ft}[E_g]$ success, with high probability, let's say $1 - \frac{1}{poly(n)}$, to encode in to $C_{ft} \circ C_g$. Denote by E_i, D_i the encoder and the decoder at the ith level of the concatination construction. Recall that by definition $D_i E_i = I$, or in other words $D_i = E_i^{\dagger}$, Hence for any paulis $P_1, P_2, ... P_l$ such P_i 's can be corrected by E_i, D_i , and any two quantum states we have the following:

$$\mathcal{N}(D) = ((\mathcal{N}(D))^{\dagger})^{\dagger} = \left(\sum_{P_{1}, P_{2}, \dots, P_{i} \in \mathcal{P}} \mathbf{Pr} \left[P_{1}, P_{2}, \dots, P_{i}\right] (D_{1}P_{2}D_{2}, \dots, P_{i-1}D_{i}P_{i})^{\dagger}\right)^{\dagger}$$

$$= \left(\sum_{P_{1}, P_{2}, \dots, P_{i} \in \mathcal{P}} \mathbf{Pr} \left[P_{1}, P_{2}, \dots, P_{i}\right] P_{i}E_{i}P_{i-1}E_{i-1}, \dots, P_{1}E_{1}\right)^{\dagger}$$

$$= \left(\left(1 - \frac{1}{poly(n)}\right) P_{i}E + \frac{1}{poly(n)}A\right)^{\dagger}$$

And notice that \star is with probability $1 - \frac{1}{poly(n)}$ equals to $E_i E_{i-1}..., E_1 = E$. Hence $\mathcal{N}(D)$ equals to $(PE)^{\dagger} = PD$.

$$\langle \psi' | P_i E_i P_{i-1} E_{i-1}, ..., P_1 E_1 \psi \rangle = \langle \psi' P_i D_i P_{i-1} D_{i-1}, ..., P_1 D_1 | \psi \rangle$$

Thus for any pauli-channel $\mathcal{N}: L(H) \to L(H)$, and ψ' which is a codeword we get:

$$\begin{split} \langle \psi' \mathcal{N}(D) | \psi \rangle &= \sum_{P_1, P_2, \dots, P_i \in \mathcal{P}} \mathbf{Pr} \left[P_1, P_2, \dots, P_i \right] \langle \psi' P_i D_i P_{i-1} D_{i-1}, \dots, P_1 D_1 | \psi \rangle \\ &= \sum_{P_1, P_2, \dots, P_i \in \mathcal{P}^{\star}} \mathbf{Pr} \left[P_1, P_2, \dots, P_i \right] \langle \psi' | P_i E_i P_{i-1} E_{i-1}, \dots, P_1 E_1 \psi \rangle \pm O(\frac{1}{poly(n)}) \\ &= \sum_{P_1, P_2, \dots, P_i \in \mathcal{P}^{\star}} \mathbf{Pr} \left[P_1, P_2, \dots, P_i \right] \langle \psi' | P_i E \psi \rangle \pm O(\frac{1}{poly(n)}) \\ &\leq \sum_{P_i \in \mathcal{P}} \mathbf{Pr} \left[P_i \right] \langle \psi' | P_i E \psi \rangle \pm O(\frac{1}{poly(n)}) \\ &\leq \sum_{P_i \in \mathcal{P} / \mathcal{P}^{\star}} \mathbf{Pr} \left[P_i \right] \langle \psi' | P_i E \psi \rangle \pm O(e^{-d \cdot n}) \pm O(\frac{1}{poly(n)}) \\ &\leq \sum_{P_i \in \mathcal{P} / \mathcal{P}^{\star}} \mathbf{Pr} \left[P_j \in B_d \left(P_i \right) \right] \langle \psi' | P_i E \psi \rangle \pm O(e^{-d \cdot n}) \pm O(\frac{1}{poly(n)}) \end{split}$$

Using the fact that the concatenation code is monotonic (Definition 3.1) we get that the probability to have physical fault P_j .

Claim 3.4. With probability $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$, the total amount of noise been absorb in a block, in any time t, is less than γn .

Proof. Consider the ith block, denoted by B_i . Using the Hoeffding's inequality we have that the probability that more than $\beta|B|$ bits are flipped at time t is less than $\leq 2e^{-2|B|(\beta-p)}$. Using the union bounds over all the blocks at all the different time location we get that with probability $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$. Denote by X_t the support's size of the error over B_i at time t. Now using Claim 3.2, given that $X_{t-1} \leq \gamma n$ it follows that total amount of error absorbed by a block until time t can be bounded by:

$$X_t \le \nu \cdot (X_{t-1} + \beta |B|) \le \nu(\gamma + \beta)|B| \le \gamma |B|$$