Problems Abstract Algebra First List

Abel Doñate Muñoz

- 1 Let f be a morphism in a category \mathcal{C} . Prove the following:
 - (a) If f an isomorphism then f is a monomorphism and an epimorphism.
 - (b) The inclusion of \mathbb{Z} in \mathbb{Q} is a monomorphism and an epimorphism in the category of rings but not an isomorphism.

We begin with the proof of (a). Since $f: A \to B$ is an isomorphism, that means there exist $g: B \to A$ such that both $g \circ f = Id_A$ and $f \circ g = Id_B$.

Let h, k morphisms of the category that fulfill $f \circ h = f \circ k$. Then by composing from the left with g we have

$$g \circ f \circ h = g \circ f \circ k \Rightarrow Id_A \circ h = Id_A \circ k \Rightarrow h = k$$

so we conclude f is a monomorphism.

Let h, k morphisms of the category that fulfill $h \circ f = k \circ f$. Then by composing from the right with g we have

$$h \circ f \circ g = k \circ f \circ g \Rightarrow h \circ Id_B = k \circ Id_B \Rightarrow h = k$$

so we conclude f is an epimorphism.

We move to the proof of (b). Let $i: \mathbb{Z} \to \mathbb{Q}$ the inclusion in \mathbb{Q} $(i: n \mapsto n)$. Now let $h, k \in \text{Hom}_{rings}(A, \mathbb{Z})$ such that $i \circ h = i \circ k$. It is clear that, since $i(n) = n \ \forall n \in \mathbb{Z}$, then $h(a) = k(a) \ \forall a \in A$, concluding h = k and i monomorphism.

Now let $h, k \in \text{Hom}_{rings}(\mathbb{Z}, A)$ such that $h \circ i = k \circ i$. It is clear that, since $i(n) = n \ \forall n \in \mathbb{Z}$, then $h(i(a)) = k(i(a)) \Rightarrow h(a) = k(a) \ \forall a \in A$, concluding h = k and i epimorphism.

Suppose i is an isomorphism. Thus, it must exists $g:\mathbb{Q}\to\mathbb{Z}$ such that $i\circ g=Id_{\mathbb{Q}}$ and $g\circ i=Id_{\mathbb{Z}}$. Let $a\in\mathbb{Z}$ such that $g(\frac{1}{2})=a$. Then $i\circ g(\frac{1}{2})=i(a)=a\neq\frac{1}{2}$, so $i\circ g\neq Id_{\mathbb{Q}}$, concluding f is not an isomorphism.

4 Pullbacks in the category of abelian groups: Let A and B be abelian groups together with homomorphisms $f: A \to S$ and $g: B \to S$. Prove that

$$A \times_S B = \{(a,b) \in A \times B | f(a) = g(b)\}$$

Let $U = \{(a,b) \in A \times B | f(a) = g(b)\}$. We will show that the pullback $A \times_S B$ is, in fact, U. We construct the following diagram:

(insert diagram)

We first construct the morphisms π_A and π_B that make the square commute. Those are

$$\begin{cases} \pi_A((a,b)) = a \\ \pi_B((a,b)) = b \end{cases} \Rightarrow f \circ \pi_A((a,b)) = f(a) = g(b) = g \circ \pi_B((a,b)) \ \forall (a,b) \in U$$

thus, the square commutes.

Now we construct h from h_A and h_B . Note that, for the two triangular diagrams to commute, the h must fulfill:

$$\begin{cases} \pi_A(h(c)) = h_A(c) \\ \pi_B(h(c)) = h_B(c) \end{cases} \quad \forall c \in C \quad \Rightarrow \quad h = (h_A, h_B)$$

and the h is unique, concluding the proof.

5 Pushouts in the category of abelian groups: Let A and B be abelian groups together with homomorphisms $f: S \to A$ and $g: S \to B$. Prove that

$$A \sqcup_S B = \frac{A \oplus B}{W}$$

where W is the subgroup generated by (f(s), -g(s)) with $s \in S$.

Let $U = \frac{A \oplus B}{W}$. We will show that the pushout $A \sqcup_S B$ is, in fact, U. We construct the following diagram: (insert diagram)

We first construct the morphisms i, j such that the square diagram commutes. We propose

$$i(a) = [(a, 0)]$$
 $j(b) = [(0, b)]$

and we check for commutativity for all $s \in S$

$$\begin{cases} i \circ f(s) = [(f(s), 0)] \\ j \circ g(s) = [(0, g(s))] \end{cases} \text{ but } [(0, g(s))] = [(0, g(s)) + (f(s), -g(s))] = [(f(s), 0)] \Rightarrow i \circ f = j \circ g \ \forall s \in S \end{cases}$$

so we have proved the square commutes.

Now we construct the morphism h through h_A and h_B . We construct it in the following way:

$$\begin{cases} h([(a,0)]) = h_A(a) \\ h([(0,b)]) = h_B(b) \end{cases} \Rightarrow h([(a,b)]) = h([(a,0)] + [(0,b)]) = h([(a,0)]) + h([(0,b)]) = h_A(a) + h_B(b)$$

and clearly this is well defined and unique as morphism in the category of abelian groups, so the other triangular diagrams commute as well and we conclude with the proof.