Организация вычислительных систем

Операционные системы

Лекция №0

Ульяновск, УлГТУ, кафедра «Информационные системы»

Цифровой компьютер— устройство или система, способное выполнять заданную, четко определенную последовательность операций.

Программа — последовательность команд, описывающих решение определенной задачи.

Машинный язык — система команд (набор кодов операций) конкретной вычислительной машины, которая интерпретируется непосредственно процессором или микропрограммами этой вычислительной машины.

Трансляция – преобразование программы, представленной на одном из языков программирования, в программу на другом языке и, в определенном смысле, равносильную первой.

Интерпретация – покомандное выполнение исходного кода программы без предварительной компиляции.

Многоуровневая компьютерная организация (продолжение)

Современные многоуровневые машины

Схема компьютера с одним центральным процессором и двумя устройствами ввода-вывода.

Выполнение команд

Центральный процессор выполняет каждую команду за несколько шагов:

- 1. Вызывается и переносится в регистр команд следующая команда из памяти.
- 2. Изменение положения счетчика команд. (Указывает на следующую команду).
- 3. Определение типа вызванной команды.
- 4. Определение адреса слова при использовании слова из памяти.
- 5. Перенос слова в регистр центрального процессора при необходимости.
- 6. Выполнение команды.
- 7. Переход к шагу 1 для выполнения следующей команды.

Сложные команды обрабатываются с помощью интерпретации путем разбиения их на более мелкие (элементарные) команды.

Тракт данных обычной фон-неймановской машины.

Системы RISC и CISC

CISC (компьютер с полным набором команд) – концепция проектирования процессоров, которая характеризуется следующим набором свойств:

- нефиксированное значение длины команды;
- арифметические действия кодируются в одной команде;
- небольшое число регистров, каждый из которых выполняет строго определенную функцию.

RISC (компьютер с сокращенным набором команд) – архитектура процессора, в которой быстродействие увеличивается за счет упрощения инструкций, чтобы их декодирование было более простым, а время выполнения – меньшим.

Принципы проектирования современных универсальных процессоров (принципы RISC):

- 1. Все команды должны выполняться непосредственно аппаратным обеспечением.
- 2. Компьютер должен запускать как можно больше команд в секунду.
- 3. Команды должны легко декодироваться.
- 4. К памяти должны обращаться только команды загрузки и сохранения.
- 5. Регистров должно быть много.

Параллелизм на уровне команд – Конвейеры

Пятиступенчатый конвейер а); состояние каждой ступени в зависимости от количества пройденных циклов б) (показано 9 циклов).

Параллелизм на уровне команд – Суперскалярные архитектуры

Сдвоенный пятиступенчатый конвейер с общим блоком выборки команд а); суперскалярный процессор с пятью функциональными блоками б).

Параллелизм на уровне процессоров – Матричные компьютеры

Векторные процессоры — архитектура при которой используются векторные регистры для сложения однородных данных. SISD (одиночный поток команд, одиночный поток данных) — архитектура компьютера, в которой один процессор выполняет один поток команд, оперируя одним потоком данных.

SIMD (одиночный поток команд, множественный поток данных) – архитектура компьютера, в которой один процессор выполняет один поток команд, оперируя множеством потоков данных.

MISD (множественный поток команд, одиночный поток данных) — архитектура компьютера, в которой несколько функциональных модулей (два или более) выполняют различные операции над одними данными.

MIMD (множественный поток команд, множественный поток данных) — архитектура компьютера, в которой несколько функциональных модулей (два или более) выполняют различные операции над множеством данных.

Параллелизм на уровне процессоров – Мультипроцессоры и мультикомпьютеры

Мультипроцессор с единственной шиной и общей памятью а); мультипроцессор с собственной локальной памятью для каждого

Иерархическая структура памяти

Пример аналогового сигнала.

Пример цифрового сигнала.

Представление функции.

Условные обозначения пяти основных вентилей.

Реализация булевых функций

Конструирование вентилей НЕ а), И б), и ИЛИ в) только на базе вентилей НЕ-И или НЕ-ИЛИ.

Основные цифровые логические схемы

1. Комбинаторные схемы:

- ightharpoonup мультиплексоры соединяет один из 2^n входов с одним выходом;
- ightharpoonup демультиплексоры соединяет один вход с одним из 2^n выходов;
- декодеры в зависимости от входного значения устанавливает в состояние ИСТИНА один из выходов;
- компараторы сравнивает 2 слова, возвращает 1, если они равны, иначе 0.

2. Арифметические схемы:

- схемы сдвига сдвиг значения влево и вправо;
- сумматоры сложение чисел;
- арифметико-логические устройства выполнения операций И, ИЛИ, сложение на двумя словами.
- 3. Тактовые генераторы вызывает серию импульсов для синхронизации событий.

4. Схемы памяти:

- ► SR-защелки запоминает предыдущее состояние;
- синхронные SR-защелки изменяет значение только в определенный момент;
- синхронные D-защелки изменяет значение только в определенный момент, устраняет состояние неопределенности;
- триггеры смена состояния при переходе синхронизирующего сигнала с 0 на 1 и с 1 на 0;
- регистры конфигурация нескольких триггеров.

Тракт данных

Сигналы АЛУ:

- ▶ F₀ и F₁ задание входных сигналов A и B;
- ► ENA и ENB разрешение входных сигналов A и B;
- ► INVA инверсия входного сигнала А;
- ► INC перенос бита в младший разряд (прибавление единицы к результату).

Пример тракта данных.

F_0	F ₁	ENA	ENB	INVA	INC	Значение
0	1	1	0	0	0	А
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1	0	1	1	0	0	B
1	1	1	1	0	0	A + B
1	1	1	1	0	1	A + B + 1
1	1	1	0	0	1	A + 1
1	1	0	1	0	1	B + 1
1	1	1	1	1	1	B - A
1	1	0	1	1	0	B - 1
1	0	1	0	1	1	-A
0	0	1	1	0	0	АИВ
0	1	1	1	0	0	А ИЛИ В
0	1	0	0	0	0	0
0	1	0	0	0	1	1
0	1	0	0	1	0	-1

Временная диаграмма цикла тракта данных. MPC – счетчик микропрограмм. MIR – регистр микрокоманд.

Цикл тракта данных:

- 1. Установка сигналов управления.
- 2. Загрузка значений регистров в шину В.
- 3. Работа АЛУ и схемы сдвига.
- 4. Запись результатов в регистры из шины С.

Пример формата команды.

6 групп полей микрокоманды (36 сигналов):

- 1. Addr адрес следующей микрокоманды.
- 2. ЈАМ определение метода выбора следующей микрокоманды.
- 3. ALU функции АЛУ и схемы сдвига.
- 4. С указание регистров для чтения из шины С.
- 5. Мет функции памяти.
- 6. В указание регистров для записи в шину В.

Пример микроархитектуры.

Повышение производительности

Концепции микроархитектуры для повышения производительности:

- 1. Выбор системы команд (RICS, CISC и т. д.).
- 2. Конвейеризация инструкций.
- 3. Кэш.
- 4. Прогнозирование ветвления (использование результатов последних ветвлений для предсказания будущих).
- 5. Суперскалярность.
- 6. Исполнение не по порядку (исполнение инструкций, данные для которых доступны в кэше в данный момент).
- 7. Подмена регистров.
- 8. Многопроцессорность и многопоточность и др.

Уровень архитектуры набора команд

Уровень архитектуры набора команд – промежуточное звено между компиляторами и аппаратным обеспечением.

Регистры

	Регистр назначе	ы общег ения	О	Сегментные регистры		
	15	8 7	0	15	0	
AX	AH	AL	_	CS	98	
BX	BH BL		la la	DS		
CX	CH	CL	-	SS		
DX	DH DL		10	ES	ES	
	15	SI DI	0	15 FLAGS	0	
	Регистр	ы-указат	ели	Указатель команд		
	15		0	15	0	
	BP			IP		
		SP		12-	-	

Регистры на примере процессора Intel 8086.

Форматы команд

Форматы команд для трехадресной машины.

Поток управления

Поток управления – последовательность выполнения команд в ходе работы программы.

- 1. Процедуры.
- 2. Рекурсивные процедуры.
- 3. Сопрограммы.
- 4. Перехват исключений.
- 5. Прерывания.