ENTENDIMENTO DO PROBLEMA - Ataque Cardiáco em Jovens e Adultos da África do Sul

O dataset abaixo foi retirado da plataforma Kaggle, pode ser encontrado no seguinte link: Heart Attack in Youth vs Adult in South Africa Dataset.

Ele contém fatores de risco de ataque cardíaco relacionados à indivíduos da África do Sul. Inclui detalhes demográficos, histórico médico, hábitos de estilo de vida e medidas clínicas para avaliar resultados de ataque cardíaco.

O conjunto de dados é projetado para modelagem preditiva, análise estatística e aplicações de aprendizado de máquina em pesquisa de saúde.

```
In [340...
```

```
#import and pacotes:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
import statsmodels.api as sm

from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
from scipy.stats import ks_2samp
```

Nome	Explicação
Patient_ID	Identificador único do paciente.
Age	Idade do paciente em anos.
Gender	Gênero do paciente: Masculino ou Feminino.
Cholesterol_Level	Nível de colesterol total no sangue, medido em miligramas por decilitro (mg/dL).
Blood_Pressure_Systolic	Pressão arterial sistólica do paciente, medida em milímetros de mercúrio (mmHg).
Blood_Pressure_Diastolic	Pressão arterial diastólica do paciente, medida em milímetros de mercúrio (mmHg).
Smoking_Status	Status de tabagismo do paciente: Fumante (Sim) ou Não Fumante (Não).
Alcohol_Intake	Nível de consumo de álcool: Baixo, Moderado ou Alto.
Physical_Activity	Nível de atividade física do paciente: Sedentário, Ativo ou Altamente Ativo.
Obesity_Index	Índice de Massa Corporal (IMC), que é uma medida de obesidade calculada a partir do peso e altura.
Diabetes_Status	Status de diabetes do paciente: Tem diabetes (Sim) ou Não tem diabetes (Não).

Nome	Explicação
Family_History_Heart_Disease	Histórico familiar de doenças cardíacas: Sim (se houver histórico) ou Não (se não houver).
Diet_Quality	Qualidade da dieta do paciente: Ruim, Média ou Boa.
Stress_Level	Nível de estresse do paciente: Baixo, Médio ou Alto.
Heart_Attack_History	Histórico de infarto do miocárdio: Já teve infarto (Sim) ou Nunca teve (Não).
Medication_Usage	Uso de medicação pelo paciente: Sim (usa medicação) ou Não (não usa medicação).
Triglycerides_Level	Nível de triglicerídeos no sangue, medido em miligramas por decilitro (mg/dL).
LDL_Level	Nível de LDL (lipoproteína de baixa densidade), conhecido como "colesterol ruim" (mg/dL).
HDL_Level	Nível de HDL (lipoproteína de alta densidade), conhecido como "colesterol bom" (mg/dL).
Heart_Attack_Outcome	Resultado de um ataque cardíaco: 0 (Não) ou 1 (Sim), indicando se o paciente sofreu um infarto.

In [342... df=pd.read_csv('heart_attack_south_africa.csv')
 df.head()

Male

Out[342		Patient_ID	Age	Gender	Cholesterol_Level	Blood_Pressure_Systolic	Blood_Pressure_[
	0	1	76	Female	156	94	
	1	2	39	Female	160	185	

254

173

 3
 4
 45
 Female
 261
 187

 4
 5
 48
 Male
 206
 189

Como temos uma variável categórica, vamos analisar o balanceamento:

In [344... df['Heart_Attack_Outcome'].value_counts()

Out[344... Heart_Attack_Outcome

2

58732
 41268

Name: count, dtype: int64

3

85

Não temos aqui um problema de balanceamento, até que as categorias estão bem equilibradas.

In [346... df.describe()

Out[346... **Patient ID** Age Cholesterol_Level Blood_Pressure_Systolic Blood_F

count	100000.000000	100000.000000	100000.000000	100000.000000
mean	50000.500000	56.929210	224.578740	144.317750
std	28867.657797	18.776713	43.316257	31.759636
min	1.000000	25.000000	150.000000	90.000000
25%	25000.750000	41.000000	187.000000	117.000000
50%	50000.500000	57.000000	225.000000	144.000000
75 %	75000.250000	73.000000	262.000000	172.000000
max	100000.000000	89.000000	299.000000	199.000000

• Idade: A média de idade dos pacientes é 56,9 anos, sendo que 25% têm 41 anos ou menos e 25% têm 73 anos ou mais, indicando uma amostra com predominância de adultos e idosos.

• Pressão Arterial:

- Sistólica: Média de 144,3 mmHg, acima do ideal (<120 mmHg).
- Diastólica: Média de 89,6 mmHg, superior ao recomendado (<80 mmHg).
- 25% da amostra tem pressão sistólica maior que 172 mmHg, sugerindo prevalência de hipertensão.
- Colesterol: O nível médio é 224,6 mg/dL, acima do recomendado (<190 mg/dL), com 75% dos pacientes acima de 187 mg/dL.
- Índice de Massa Corporal (IMC): A média é 29,0, acima do ideal (18,5 24,9), sugerindo uma predominância de sobrepeso/obesidade na amostra.
- Triglicerídeos: Média de 174,6 mg/dL (ideal: <150 mg/dL), com 25% dos pacientes acima de 237 mg/dL, indicando um fator de risco significativo.
- LDL (Colesterol Ruim): Média de 124,3 mg/dL, dentro do limite máximo (130 mg/dL), mas 25% da amostra ultrapassa 162 mg/dL.
- HDL (Colesterol Bom): Média de 49,5 mg/dL, acima do mínimo recomendado (>40 mg/dL), o que pode ser um fator protetor.
- Ocorrência de Infarto: 58,7% da amostra já sofreu um infarto, sugerindo um grupo de alto risco cardiovascular.

Os dados indicam um perfil de pacientes com fatores de risco significativos para doenças cardiovasculares, como hipertensão, colesterol elevado, obesidade e triglicerídeos altos.

Analise Univariada:

```
In [349...
          def grafico_count_todas(df, limite_categorico=10):
              colunas_categoricas = [col for col in df.columns if df[col].nunique() <= lim</pre>
              total = len(colunas_categoricas)
              linhas = (total // 3) + (total % 3 > 0)
              plt.figure(figsize=(15, 5 * linhas))
              for i, col in enumerate(colunas_categoricas, 1):
                  plt.subplot(linhas, 3, i)
                  sns.countplot(data=df, x=col, hue=col, legend=False)
                  plt.title(f'Distribuição de {col}')
                  plt.xlabel(col)
                  plt.ylabel('Contagem')
                  plt.xticks(rotation=45)
              plt.tight_layout()
              plt.show()
          grafico_count_todas(df)
```


A Análise Univariada nos permite observar alguns pontos como:

- Temos a mesma distribuição de pacientes do sexo masculino e feminino;
- 70% dos pacientes analisados não são fumantes;
- 20% dos pacientes fazem alta ingestão de alcool e o restante é divido entre uso médio e baixo;
- 50% dos nossos pacientes são sedentários;
- Apenas 20% possuem diabetes;
- Apenas 30% possuem um nível baixo de estresse;
- 30% possuem uma dieta pobre em nutrientes;

Analise Bivariada:

```
def analise_bivariada(df, target='Heart_Attack_Outcome', limite_categorico=10):
In [352...
              colunas_categoricas = [col for col in df.columns if df[col].nunique() <= lim</pre>
              colunas_numericas = [col for col in df.select_dtypes(include=['int64', 'floa
              # Variáveis categóricas:
              total = len(colunas_categoricas)
              if total > 0:
                  linhas = (total // 3) + (total % 3 > 0)
                  plt.figure(figsize=(18, 5 * linhas))
                  for i, col in enumerate(colunas_categoricas, 1):
                      plt.subplot(linhas, 3, i)
                      sns.countplot(data=df, x=col, hue=target)
                      plt.title(f'{col} x {target}')
                      plt.xticks(rotation=45)
                  plt.tight_layout()
                  plt.show()
              # Variáveis numéricas:
              total = len(colunas numericas)
              if total > 0:
                  linhas = (total // 3) + (total % 3 > 0)
                  plt.figure(figsize=(18, 5 * linhas))
                  for i, col in enumerate(colunas numericas, 1):
                      plt.subplot(linhas, 3, i)
                      sns.boxplot(data=df, x=target, y=col)
                      plt.title(f'{col} por {target}')
                  plt.tight_layout()
                  plt.show()
          analise_bivariada(df)
```


A análise bivariada nos permite observar os seguintes pontos:

- A proporção de pessoas que sofreram ataque cardíaco é significativamente maior entre fumantes em comparação aos não fumantes. Esse mesmo padrão é observado em indivíduos com diabetes ou com histórico familiar de doenças cardíacas.
- A incidência de ataques cardíacos também tende a ser mais elevada entre pessoas com níveis mais altos de colesterol, obesidade, idade avançada, pressão arterial sistólica e diastólica.

Veificação de nulos:

Out[355... Patient_ID 0 Age 0 Gender 0 Cholesterol_Level 0 Blood_Pressure_Systolic 0 Blood_Pressure_Diastolic 0 Smoking_Status 0 Alcohol_Intake 0 Physical_Activity 0 Obesity_Index 0 Diabetes_Status 0 Family_History_Heart_Disease Diet_Quality 0 Stress_Level 0 Heart_Attack_History 0 Medication Usage 0 Triglycerides_Level 0 LDL_Level 0 HDL_Level 0 Heart_Attack_Outcome dtype: int64

Verificação de duplicados:

In [357...

```
# Verificar duplicatas
duplicates = df[df.duplicated()]
print(duplicates)
```

Empty DataFrame

Columns: [Patient_ID, Age, Gender, Cholesterol_Level, Blood_Pressure_Systolic, Blood_Pressure_Diastolic, Smoking_Status, Alcohol_Intake, Physical_Activity, Obesit y_Index, Diabetes_Status, Family_History_Heart_Disease, Diet_Quality, Stress_Level, Heart_Attack_History, Medication_Usage, Triglycerides_Level, LDL_Level, HDL_Level, Heart_Attack_Outcome]

Index: []

verificação dos tipos de dados:

In [359...

df.dtypes

```
Out[359...
          Patient_ID
                                            int64
          Age
                                            int64
          Gender
                                           object
          Cholesterol_Level
                                            int64
          Blood_Pressure_Systolic
                                           int64
          Blood_Pressure_Diastolic
                                            int64
          Smoking_Status
                                           object
          Alcohol_Intake
                                           object
          Physical_Activity
                                           object
          Obesity_Index
                                          float64
          Diabetes_Status
                                           object
          Family_History_Heart_Disease
                                           object
                                           object
          Diet_Quality
          Stress_Level
                                           object
          Heart_Attack_History
                                           object
          Medication Usage
                                           object
          Triglycerides_Level
                                            int64
          LDL_Level
                                            int64
          HDL_Level
                                            int64
          Heart_Attack_Outcome
                                            int64
          dtype: object
```

Vamos verificar os valores unicos para cada variável do tipo object e substituir para numérico, pois assim facilitará a nossa análise.

```
In [361... #célula utilizada para verificar todos os unique:
    df['Family_History_Heart_Disease'].unique()

Out[361... array(['No', 'Yes'], dtype=object)
```

Substituição dos unique para numéricos.

Aqui seguiremos um padrão:

- 0: homem, low e no.
- 1: famele, moderado/médio e yes.
- 2: high, good.

```
In [363... # Conversão: Masculino -> 0, Feminino -> 1
    df['Gender'] = df['Gender'].map({'Male': 0, 'Female': 1})

# Conversão: Fumante -> 1, Não Fumante -> 0
    df['Smoking_Status'] = df['Smoking_Status'].map({'Yes': 1, 'No': 0})

# Conversão: Low -> 0, Moderate -> 1, high -> 2
    df['Alcohol_Intake'] = df['Alcohol_Intake'].map({'Low': 0, 'Moderate': 1, 'High'}

# Conversão: Sedentary -> 0, Active -> 1, Highly Active -> 2
    df['Physical_Activity'] = df['Physical_Activity'].map({'Sedentary': 0, 'Active':

# Conversão: no -> 0, yes -> 1
    df['Diabetes_Status'] = df['Diabetes_Status'].map({'No': 0, 'Yes': 1})

# Conversão: no -> 0, yes -> 1
    df['Family_History_Heart_Disease'] = df['Family_History_Heart_Disease'].map({'No': 0, 'Yes': 1})

# Conversão: Good -> 0, Average -> 1, Poor -> 2
```

```
df['Diet_Quality'] = df['Diet_Quality'].map({'Poor': 0, 'Average': 1, 'Good': 2}
# Conversão: Good -> 0, Average -> 1, Poor -> 2
df['Stress_Level'] = df['Stress_Level'].map({'Low': 0, 'Medium': 1, 'High': 2})
# Conversão: no -> 0, yes -> 1
df['Heart_Attack_History'] = df['Heart_Attack_History'].map({'No': 0, 'Yes': 1})
# Conversão: no -> 0, yes -> 1
df['Medication_Usage'] = df['Medication_Usage'].map({'No': 0, 'Yes': 1})
# Exibir o DataFrame
df.head()
```

Out[363... Patient_ID Age Gender Cholesterol_Level Blood_Pressure_Systolic Blood_Pressure_I 0 76 1 1 156 94 2 39 160 185 1 1 2 3 0 254 173 85 3 4 261 187 45 1 0 206 189

Verificação novamente dos tipos:

48

5

dtype: object

4

```
In [365...
          df.dtypes
Out[365...
           Patient_ID
                                               int64
                                               int64
           Age
           Gender
                                               int64
           Cholesterol_Level
                                              int64
           Blood_Pressure_Systolic
                                              int64
           Blood_Pressure_Diastolic
                                              int64
           Smoking_Status
                                              int64
           Alcohol Intake
                                              int64
           Physical_Activity
                                              int64
           Obesity Index
                                            float64
           Diabetes_Status
                                              int64
           Family_History_Heart_Disease
                                              int64
                                              int64
           Diet_Quality
           Stress Level
                                              int64
           Heart_Attack_History
                                              int64
           Medication_Usage
                                              int64
           Triglycerides_Level
                                              int64
           LDL_Level
                                              int64
           HDL_Level
                                              int64
           Heart_Attack_Outcome
                                              int64
```

Podemos deletar a variável que traz o ID do paciente, pois essa não tem poder preditivo:

```
In [367...
          df.drop('Patient_ID', axis=1, inplace=True)
```

Agora todas as nossas variáveis são numéricas. A seguir, exibiremos a matriz de correlação:

In [369...

Calcular a correlação entre as variáveis numéricas correlation_matrix = df.corr()

Exibir a matriz de correlaçãO correlation_matrix

Out[369...

	Age	Gender	Cholesterol_Level	Blood_Pressure_Sys
Age	1.000000	-0.000265	-0.000364	3.672133
Gender	-0.000265	1.000000	0.001288	1.561311
Cholesterol_Level	-0.000364	0.001288	1.000000	-1.240133
Blood_Pressure_Systolic	0.003672	0.001561	-0.001240	1.000000
Blood_Pressure_Diastolic	-0.001093	-0.000438	0.005179	-1.568419
Smoking_Status	-0.001992	0.003381	-0.002368	-2.310456
Alcohol_Intake	0.001440	0.000312	-0.001211	3.378105
Physical_Activity	0.001244	-0.002084	0.001546	-2.231550
Obesity_Index	-0.001118	0.001526	-0.000109	-3.730381
Diabetes_Status	0.004342	0.001644	-0.002158	-5.901092
Family_History_Heart_Disease	0.001038	0.002607	0.002946	2.520226
Diet_Quality	-0.003163	-0.001768	0.001665	3.930109
Stress_Level	0.000031	-0.000681	0.000613	4.228029
Heart_Attack_History	0.001438	0.001375	0.000608	1.777125
Medication_Usage	-0.000674	0.003214	0.002553	-7.560601
Triglycerides_Level	0.001992	0.001929	0.001935	-2.962143
LDL_Level	0.001466	0.001228	-0.000127	6.897071
HDL_Level	-0.001979	-0.003194	-0.002934	2.398179
Heart_Attack_Outcome	0.298683	0.001068	0.283860	1.485734
4				

A tabela acima está um pouco extensa, por isso, iremos plotar um gráfico que também traz essa correlação e nos permite verificar melhor:

```
In [371...
```

```
# Calcular a correlação de todas as variáveis com 'Heart_Attack_Outcome'
correlation_with_heart_attack = df.corr()['Heart_Attack_Outcome'].drop('Heart_At

# Ordenar as correlações de forma decrescente
sorted_correlation = correlation_with_heart_attack.abs().sort_values(ascending=F

# Plotar um gráfico de barras das variáveis com maior correlação
plt.figure(figsize=(10, 6))
sorted_correlation.plot(kind='bar', color='skyblue')
plt.title('Correlação das variáveis com Heart_Attack_Outcome')
plt.xlabel('Variáveis')
plt.ylabel('Correlação')
plt.xticks(rotation=45)
plt.show()
```


De acordo com o gráfico acima, temos como maiores correlação com a nossa target as seguintes variáveis:

- Age → 0.2987 (correlação positiva)
- Smoking_Status → 0.2990 (correlação positiva)
- Cholesterol_Level → 0.2839 (correlação positiva)
- Obesity_Index → 0.2964 (correlação positiva)
- Diabetes_Status → 0.2508 (correlação positiva)
- Family_History_Heart_Disease → 0.2789 (correlação positiva)
- Blood_Pressure_Systolic → 0.1486 (correlação positiva)
- Blood_Pressure_Diastolic → 0.1402 (correlação positiva)

A seguir, vamos plotar o heatmap da nossa matriz de correlação para identificar possíveis casos de multicolineariedade:

```
In [374...
                                                                 #matriz de correlação:
                                                                 plt.figure(figsize=(12,8))
                                                                 sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
                                                                 plt.show()
                                                                                                                                                                   Gender
                                                                                                0.8
                                                                        Family_History_Heart_Disease - 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
                                                                                                                Diet_Quality --0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 1.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.4
                                                                                                                 Heart_Attack_History - 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 
                                                                                              0.2
                                                                                            Triglycerides_Level - 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00
                                                                                                                        HDL_Level --0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 1.00 -0.00
                                                                              Heart_Attack_Outcome - 0.30 0.00 0.28 0.15 0.14 0.30 0.00 -0.00 0.30 0.25 0.28 -0.01 0.00 0.00 0.01 -0.00 0.00 -0.00 1.00
                                                                                                                                                                                                                                                                                                                                                                                                 Stress_Leve
                                                                                                                                                                                                                                                                Smoking_Status
                                                                                                                                                                                                        Cholesterol_Level
                                                                                                                                                                                                                            Blood_Pressure_Systolic
                                                                                                                                                                                                                                              Blood_Pressure_Diastolic
                                                                                                                                                                                                                                                                                  Alcohol_Intake
                                                                                                                                                                                                                                                                                                     Physical_Activity
                                                                                                                                                                                                                                                                                                                        Obesity_Index
                                                                                                                                                                                                                                                                                                                                            Diabetes_Status
                                                                                                                                                                                                                                                                                                                                                             amily_History_Heart_Disease
                                                                                                                                                                                                                                                                                                                                                                                Diet_Quality
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             LDL_Level
                                                                                                                                                                                                                                                                                                                                                                                                                     Heart_Attack_History
                                                                                                                                                                                                                                                                                                                                                                                                                                         Medication_Usage
                                                                                                                                                                                                                                                                                                                                                                                                                                                            Triglycerides_Leve
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Heart Attack Outcome
```

Através do plot acima podemos ver que não temos multicolineariedade no nosso df. A seguir criar um metadados para ver o IV das variáveis:

```
In [376... metadados = pd.DataFrame(df.dtypes, columns=['dtype'])
    metadados['valores_unicos'] = df.nunique()
    metadados['papel'] = 'covariavel'
    metadados.loc['Heart_Attack_Outcome','papel'] = 'resposta'
    metadados
```

Out[376...

In [377...

#função cálculo IV

	dtype	valores_unicos	papel
Age	int64	65	covariavel
Gender	int64	2	covariavel
Cholesterol_Level	int64	150	covariavel
Blood_Pressure_Systolic	int64	110	covariavel
Blood_Pressure_Diastolic	int64	60	covariavel
Smoking_Status	int64	2	covariavel
Alcohol_Intake	int64	3	covariavel
Physical_Activity	int64	3	covariavel
Obesity_Index	float64	221	covariavel
Diabetes_Status	int64	2	covariavel
Family_History_Heart_Disease	int64	2	covariavel
Diet_Quality	int64	3	covariavel
Stress_Level	int64	3	covariavel
Heart_Attack_History	int64	2	covariavel
Medication_Usage	int64	2	covariavel
Triglycerides_Level	int64	250	covariavel
LDL_Level	int64	150	covariavel
HDL_Level	int64	60	covariavel
Heart_Attack_Outcome	int64	2	resposta

```
def IV(variavel, resposta):
              tab = pd.crosstab(variavel, resposta, margins=True, margins_name='total')
              rótulo_evento = tab.columns[0]
              rótulo_nao_evento = tab.columns[1]
              tab['pct_evento'] = tab[rótulo_evento]/tab.loc['total',rótulo_evento]
              tab['ep'] = tab[rótulo_evento]/tab.loc['total',rótulo_evento]
              tab['pct_nao_evento'] = tab[rótulo_nao_evento]/tab.loc['total',rótulo_nao_ev
              tab['woe'] = np.log(tab.pct_evento/tab.pct_nao_evento)
              tab['iv_parcial'] = (tab.pct_evento - tab.pct_nao_evento)*tab.woe
              return tab['iv_parcial'].sum()
In [378...
          #Loop:
          for var in metadados[metadados.papel=='covariavel'].index:
              if (metadados.loc[var, 'valores_unicos']>6): #para mais que 6 valores unico
                  metadados.loc[var, 'IV'] = IV(pd.qcut(df[var],5,duplicates='drop'), df.H
              else:
                  metadados.loc[var, 'IV'] = IV(df[var], df.Heart_Attack_Outcome)
```

metadados

Out[378...

	dtype	valores_unicos	papel	IV
Age	int64	65	covariavel	0.462877
Gender	int64	2	covariavel	0.000005
Cholesterol_Level	int64	150	covariavel	0.511672
Blood_Pressure_Systolic	int64	110	covariavel	0.101007
Blood_Pressure_Diastolic	int64	60	covariavel	0.087411
Smoking_Status	int64	2	covariavel	0.417627
Alcohol_Intake	int64	3	covariavel	0.000037
Physical_Activity	int64	3	covariavel	0.000037
Obesity_Index	float64	221	covariavel	0.439663
Diabetes_Status	int64	2	covariavel	0.308958
Family_History_Heart_Disease	int64	2	covariavel	0.372500
Diet_Quality	int64	3	covariavel	0.000218
Stress_Level	int64	3	covariavel	0.000025
Heart_Attack_History	int64	2	covariavel	0.000015
Medication_Usage	int64	2	covariavel	0.000123
Triglycerides_Level	int64	250	covariavel	0.000112
LDL_Level	int64	150	covariavel	0.000061
HDL_Level	int64	60	covariavel	0.000179
Heart_Attack_Outcome	int64	2	resposta	NaN

Geralmente, utiliza-se no modelo, as variáveis com IV maior que 2%, seriam elas:

- Age;
- Cholesterol_Level;
- Blood_Pressure_Systolic;
- Blood_Pressure_Diastolic;
- Smoking_Status;
- Obesity_Index;
- Diabetes_Status;
- Family_History_Heart_Disease.

Treino e Teste:

```
In [381... # Definir X (features) e y (target)
X = df.drop(columns=['Heart_Attack_Outcome']) # Remove a variável alvo
y = df['Heart_Attack_Outcome'] # Define a variável alvo
```

```
# Separar em treino (80%) e teste (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
# Criar DataFrames completos de treino e teste
df_train = pd.concat([X_train, y_train], axis=1)
df_test = pd.concat([X_test, y_test], axis=1)

# Exibir tamanhos das amostras
print(f"Tamanho do df_train: {df_train.shape}")
print(f"Tamanho do df_test: {df_test.shape}")
```

Tamanho do df_train: (80000, 19)
Tamanho do df_test: (20000, 19)

Equação de Regressão:

Out[384...

Generalized Linear Model Regression Results

Model:GLMDf Residuals:79981Model Family:BinomialDf Model:18Link Function:LogitScale:1.0000Method:IRLSLog-Likelihood:-21677.Date:Sun, 04 May 2025Deviance:43354.Time:14:42:28Pearson chi2:5.38e+04
Link Function:LogitScale:1.0000Method:IRLSLog-Likelihood:-21677.Date:Sun, 04 May 2025Deviance:43354.
Method: IRLS Log-Likelihood: -21677. Date: Sun, 04 May 2025 Deviance: 43354.
Date: Sun, 04 May 2025 Deviance: 43354.
Time: 14:42:28 Pearson chi2: 5.38e+04
No. Iterations: 7 Pseudo R-squ. (CS): 0.5568

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-31.1586	0.258	-120.689	0.000	-31.665	-30.653
Age	0.0900	0.001	101.856	0.000	0.088	0.092
Gender	-0.0171	0.024	-0.703	0.482	-0.065	0.031
Cholesterol_Level	0.0375	0.000	99.947	0.000	0.037	0.038
Blood_Pressure_Systolic	0.0276	0.000	64.970	0.000	0.027	0.028
Blood_Pressure_Diastolic	0.0467	0.001	60.889	0.000	0.045	0.048
Smoking_Status	3.8858	0.038	102.713	0.000	3.812	3.960
Alcohol_Intake	0.0013	0.016	0.080	0.936	-0.031	0.033
Physical_Activity	-0.0056	0.016	-0.358	0.720	-0.036	0.025
Obesity_Index	0.2670	0.003	102.010	0.000	0.262	0.272
Diabetes_Status	3.8985	0.043	90.917	0.000	3.814	3.983
Family_History_Heart_Disease	3.8907	0.040	97.576	0.000	3.813	3.969
Diet_Quality	-0.0212	0.017	-1.221	0.222	-0.055	0.013
Stress_Level	-0.0088	0.017	-0.505	0.613	-0.043	0.025
Heart_Attack_History	0.0038	0.034	0.112	0.911	-0.063	0.070
Medication_Usage	0.0374	0.024	1.538	0.124	-0.010	0.085
Triglycerides_Level	-0.0003	0.000	-1.681	0.093	-0.001	4.69e-05
LDL_Level	3.278e-06	0.000	0.012	0.991	-0.001	0.001
HDL_Level	0.0003	0.001	0.359	0.720	-0.001	0.002

Obtivemos aqui, que as variáveis estatisticamente significativas para o modelo são as mesmas já citadas anteriormente ao analisar o Information Value, são elas:

- Age;
- Cholesterol_Level;

- Blood_Pressure_Systolic;
- Blood_Pressure_Diastolic;
- Smoking_Status;
- Obesity_Index;
- Diabetes_Status;
- Family_History_Heart_Disease.

Portanto, criaremos o próximo modelo utilizando essas variáveis:

```
In [386... formula= '''
Heart_Attack_Outcome ~ Age + Cholesterol_Level + Blood_Pressure_Systolic + Blood
'''
r2 = smf.glm(formula, data=df_train, family=sm.families.Binomial()).fit()
r2.summary()
```

Out[386...

Generalized Linear Model Regression Results

Dep. Variable:	Heart_Attack_Outcome	No. Observations:	80000
Model:	GLM	Df Residuals:	79991
Model Family:	Binomial	Df Model:	8
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-21681.
Date:	Sun, 04 May 2025	Deviance:	43362.
Time:	14:42:29	Pearson chi2:	5.37e+04
No. Iterations:	7	Pseudo R-squ. (CS):	0.5567

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-31.2094	0.250	-124.981	0.000	-31.699	-30.720
Age	0.0900	0.001	101.861	0.000	0.088	0.092
Cholesterol_Level	0.0375	0.000	99.963	0.000	0.037	0.038
Blood_Pressure_Systolic	0.0276	0.000	64.971	0.000	0.027	0.028
Blood_Pressure_Diastolic	0.0467	0.001	60.886	0.000	0.045	0.048
Smoking_Status	3.8860	0.038	102.726	0.000	3.812	3.960
Obesity_Index	0.2670	0.003	102.023	0.000	0.262	0.272
Diabetes_Status	3.8974	0.043	90.919	0.000	3.813	3.981
Family_History_Heart_Disease	3.8903	0.040	97.587	0.000	3.812	3.968

A seguir, utilizaremos uma classificação em árvore com as variáveis acima para observarmos quais dessas variáveis ela traz como principais nós de decisão a fim de as utilizarmos com o objetivo de validar ou simplificar o nosso modelo.

```
In [388... # Separando features e target
X_train = df_train[['Age', 'Cholesterol_Level', 'Blood_Pressure_Systolic', 'Blood_Smoking_Status', 'Obesity_Index', 'Diabetes_Status', 'Family y_train = df_train['Heart_Attack_Outcome']

# Criando e treinando a árvore
tree_model = DecisionTreeClassifier(max_depth=4, random_state=42) # Limitando p
tree_model.fit(X_train, y_train)

# Visualizando a árvore
plt.figure(figsize=(30, 16))
plot_tree(tree_model, feature_names=X_train.columns, class_names=['No Attack', 'plt.show()
```


Nas três primeiras camadas da nossa árvore a gente encontra Idade (nó raiz), Obesidade, Colesterol e Pressão Sistólica, respectivamente nessa ordem de importância. Vamos tentar um novo modelo de regressão com as 3 variáveis principais.

```
In [390... formula= '''
Heart_Attack_Outcome ~ Age + Cholesterol_Level + Obesity_Index
'''
r3 = smf.glm(formula, data=df_train, family=sm.families.Binomial()).fit()
r3.summary()
```

Out[390...

Generalized Linear Model Regression Results

Dep. Variable:	Heart_Attack_Outcome	No. Observations:	80000
Model:	GLM	Df Residuals:	79996
Model Family:	Binomial	Df Model:	3
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-42466.
Date:	Sun, 04 May 2025	Deviance:	84932.
Time:	14:42:30	Pearson chi2:	7.79e+04
No. Iterations:	5	Pseudo R-squ. (CS):	0.2547
Covariance Type:	nonrobust		
	coof std ove	- D> - 10.03E	0.0751

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-9.5448	0.079	-120.190	0.000	-9.700	-9.389
Age	0.0426	0.000	88.166	0.000	0.042	0.044
Cholesterol_Level	0.0177	0.000	85.133	0.000	0.017	0.018
Obesity_Index	0.1251	0.001	87.801	0.000	0.122	0.128

Avaliando as métricas:

Modelo 1: Todas as variáveis:

Treino:

```
In [393...
          # Fazer previsões no conjunto de treino
          df train['score'] = r1.predict(df train)
          # Acurácia (usando threshold de 0.5 para classificação)
          acc = metrics.accuracy_score(df_train.Heart_Attack_Outcome, df_train.score > 0.5
          # AUC
          fpr, tpr, thresholds = metrics.roc curve(df train.Heart Attack Outcome, df train
          auc = metrics.auc(fpr, tpr)
          # Recall
          recall = metrics.recall_score(df_train.Heart_Attack_Outcome, df_train.score > 0.
          # KS (Kolmogorov-Smirnov)
          ks = ks 2samp(
              df_train.loc[df_train.Heart_Attack_Outcome == 1, 'score'],
              df_train.loc[df_train.Heart_Attack_Outcome == 0, 'score']
          ).statistic
          # Gini
          gini_test = 2 * auc_test - 1
          # Exibir métricas
          print('Acurácia (Treino): {0:.1%} \nAUC (Treino): {1:.1%} \nRecall (Treino): {2:
```

```
.format(acc, auc, recall, ks))
from sklearn.metrics import ConfusionMatrixDisplay

# Matriz de confusão com rótulos
y_true = df_train.Heart_Attack_Outcome
y_pred = df_train.score > 0.5
cm = metrics.confusion_matrix(y_true, y_pred)

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Sem Ataque', disp.plot(cmap=plt.cm.Blues)
plt.title('Matriz de Confusão - Treino')
plt.show()
```

Acurácia (Treino): 87.4% AUC (Treino): 95.3% Recall (Treino): 89.8% KS (Treino): 74.8% Gini (Treino): 89.8%

Matriz de Confusão - Treino

Teste:

```
# KS
ks_test = ks_2samp(
   df_test.loc[df_test.Heart_Attack_Outcome == 1, 'score'],
   df_test.loc[df_test.Heart_Attack_Outcome == 0, 'score']
).statistic
# Gini
gini_test = 2 * auc_test - 1
# Imprimir as métricas para o conjunto de teste
print('Acurácia (Teste): {0:.1%} \nAUC (Teste): {1:.1%} \nRecall (Teste): {2:.1%
      .format(acc_test, auc_test, recall_test, ks_test))
# Matriz de confusão com rótulos
y_true = df_test.Heart_Attack_Outcome
y_pred = df_test.score > 0.5
cm = metrics.confusion_matrix(y_true, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Sem Ataque',
disp.plot(cmap=plt.cm.Blues)
plt.title('Matriz de Confusão - Teste')
plt.show()
```

Acurácia (Teste): 87.7% AUC (Teste): 95.5% Recall (Teste): 89.9% KS (Teste): 75.4% Gini (Teste): 89.9%

Modelo 2: Variáveis com IV (Information Value) > 2%

Treino:

```
In [397...
          # Fazer previsões no conjunto de treino
          df_train['score'] = r2.predict(df_train)
          # Acurácia (usando threshold de 0.5 para classificação)
          acc = metrics.accuracy_score(df_train.Heart_Attack_Outcome, df_train.score > 0.5
          # AUC
          fpr, tpr, thresholds = metrics.roc curve(df train.Heart Attack Outcome, df train
          auc = metrics.auc(fpr, tpr)
          # Recall
          recall = metrics.recall_score(df_train.Heart_Attack_Outcome, df_train.score > 0.
          # KS (Kolmogorov-Smirnov)
          ks = ks_2samp(
              df_train.loc[df_train.Heart_Attack_Outcome == 1, 'score'],
              df_train.loc[df_train.Heart_Attack_Outcome == 0, 'score']
          ).statistic
          # Gini
          gini_test = 2 * auc_test - 1
          # Exibir métricas
          print('Acurácia (Treino): {0:.1%} \nAUC (Treino): {1:.1%} \nRecall (Treino): {2:
                .format(acc, auc, recall, ks))
          # Matriz de confusão com rótulos
          y_true = df_train.Heart_Attack_Outcome
          y_pred = df_train.score > 0.5
          cm = metrics.confusion_matrix(y_true, y_pred)
          disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Sem Ataque',
          disp.plot(cmap=plt.cm.Blues)
          plt.title('Matriz de Confusão - Treino')
          plt.show()
         Acurácia (Treino): 87.4%
         AUC (Treino): 95.3%
         Recall (Treino): 89.7%
         KS (Treino): 74.8%
         Gini (Treino): 89.7%
```


Teste:

```
In [399...
          # Obter as previsões no conjunto de teste
          df_test.loc[:, 'score'] = r2.predict(df_test)
          # Acurácia
          acc_test = metrics.accuracy_score(df_test.Heart_Attack_Outcome, df_test.score >
          # AUC
          fpr_test, tpr_test, thresholds_test = metrics.roc_curve(df_test.Heart_Attack_Out
          auc_test = metrics.auc(fpr_test, tpr_test)
          # Recall
          recall = metrics.recall_score(df_test.Heart_Attack_Outcome, df_test.score > 0.5)
          # KS
          ks test = ks 2samp(
              df_test.loc[df_test.Heart_Attack_Outcome == 1, 'score'],
              df_test.loc[df_test.Heart_Attack_Outcome == 0, 'score']
          ).statistic
          # Gini
          gini_test = 2 * auc_test - 1
          # Imprimir as métricas para o conjunto de teste
          print('Acurácia (Teste): {0:.1%} \nAUC (Teste): {1:.1%} \nRecall (Teste): {2:.1%
                .format(acc_test, auc_test, gini_test, ks_test))
          # Matriz de confusão com rótulos
          y_true = df_test.Heart_Attack_Outcome
          y_pred = df_test.score > 0.5
          cm = metrics.confusion_matrix(y_true, y_pred)
```

```
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Sem Ataque',
    disp.plot(cmap=plt.cm.Blues)
    plt.title('Matriz de Confusão - Teste')
    plt.show()
```

Acurácia (Teste): 87.7% AUC (Teste): 95.5% Recall (Teste): 91.1% KS (Teste): 75.3% Gini (Teste): 91.1%

Matriz de Confusão - Teste - 10000 - 8000 - 6000 - 4000 - 2000 - 2000 - 2000

Modelo 3: 3 maiores preditoras de acordo com a árvore de decisão:

Predicted label

Treino:

```
In [401... # Fazer previsões no conjunto de treino
    df_train['score'] = r3.predict(df_train)

# Acurácia (usando threshold de 0.5 para classificação)
    acc = metrics.accuracy_score(df_train.Heart_Attack_Outcome, df_train.score > 0.5

# AUC
    fpr, tpr, thresholds = metrics.roc_curve(df_train.Heart_Attack_Outcome, df_train.auc = metrics.auc(fpr, tpr)

# Recall
    recall = metrics.recall_score(df_train.Heart_Attack_Outcome, df_train.score > 0.

# KS (Kolmogorov-Smirnov)
ks = ks_2samp(
    df_train.loc[df_train.Heart_Attack_Outcome == 1, 'score'],
    df_train.loc[df_train.Heart_Attack_Outcome == 0, 'score']
```

Acurácia (Treino): 72.5% AUC (Treino): 80.1% Recall (Treino): 80.3% KS (Treino): 44.8% Gini (Teste): 80.3%

Matriz de Confusão - Treino

Teste:

```
In [403... # Obter as previsões no conjunto de teste
df_test.loc[:, 'score'] = r2.predict(df_test)

# Acurácia
acc_test = metrics.accuracy_score(df_test.Heart_Attack_Outcome, df_test.score >
# AUC
```

```
fpr_test, tpr_test, thresholds_test = metrics.roc_curve(df_test.Heart_Attack_Out
auc_test = metrics.auc(fpr_test, tpr_test)
# Recall
recall = metrics.recall_score(df_test.Heart_Attack_Outcome, df_test.score > 0.5)
# KS
ks_{test} = ks_{2samp}(
   df_test.loc[df_test.Heart_Attack_Outcome == 1, 'score'],
   df_test.loc[df_test.Heart_Attack_Outcome == 0, 'score']
).statistic
# Gini
gini_test = 2 * auc_test - 1
# Imprimir as métricas para o conjunto de teste
print('Acurácia (Teste): {0:.1%} \nAUC (Teste): {1:.1%} \nRecall (Teste): {3:.1%}
      .format(acc_test, auc_test, gini_test, recall, ks_test))
# Matriz de confusão com rótulos
y_true = df_test.Heart_Attack_Outcome
y_pred = df_test.score > 0.5
cm = metrics.confusion_matrix(y_true, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Sem Ataque',
disp.plot(cmap=plt.cm.Blues)
plt.title('Matriz de Confusão - Teste')
plt.show()
```

Acurácia (Teste): 87.7% AUC (Teste): 95.5% Recall (Teste): 89.9% KS (Teste): 75.3% Gini (Teste): 91.1%

Matriz de Confusão - Teste

Modelos de Regressão:

Métrica	Modelo 1 (18 variáveis)	Modelo 2 (8 variáveis)	Modelo 3 (3 variáveis)
Acurácia (Treino)	87.4%	87.4%	72.5%
AUC (Treino)	95.3%	95.3%	80.1%
Recall (Treino)	89.9%	89.7%	80.3%
KS (Treino)	74.8%	74.8%	44.8%
Gini (Treino)	89.8%	89.7%	80.3%
	-		
Acurácia (Teste)	87.7%	87.7%	87.7%
AUC (Teste)	95.5%	95.5%	95.5%
Recall (Teste)	89.9%	91.1%	89.9%
KS (Teste)	75.4%	75.3%	75.3%
Gini (Teste)	89.9%	91.1%	91.1%

Modelo 1:

- 18 variáveis;
- Alto desempenho em todas as métricas;
- Difícil interpretar por conta do alto número de variáveis.

Modelo 2:

- 8 variáveis;
- Alto desempenho em todas as métricas;
- Mais simples e interpretável que o modelo 1 e mantém performance muito semelhante.

Modelo 3:

- 3 variáveis;
- Queda brusca no treino em relação aos modelos anteriores para os dados de treino;
- Performance estranhamente boa para teste visto que esse desempenho é muito menor para treino;
- Arriscado para um problema sério como ataque cardiáco.

A nossa escolha entre os modelos de regressão será o Modelo 2, uma vez que é interpretável, simples e apresenta boas métricas de avaliação.