Step-1

Now consider the following:

$$(FEF^{-1})x = (FE)(F^{-1}x)$$
$$= F(E(F^{-1}x))$$

We know that when the product of either F or F^{-1} with x is carried out, a total of $\frac{1}{2}n\log_2 n$ multiplications are required.

Step-2

Thus, to obtain $F^{-1}x$, we need $\frac{1}{2}n\log_2 n$ number of multiplications. After that, we have to calculate $E(F^{-1}x)$. Now E is an n by n diagonal matrix. Thus, $E(F^{-1}x)$ needs n more multiplications. Finally, we carry out $F(E(F^{-1}x))$, which further requires $\frac{1}{2}n\log_2 n$ number of multiplications.

Therefore, in total, we require $\frac{1}{2}n\log_2 n + n + \frac{1}{2}n\log_2 n = n\log_2 n + n$ number of multiplications.

Step-3

Out of these, $\frac{1}{2} n \log_2 n$ multiplications come from each F and F^{-1} and the remaining n multiplications come from E.