

Qualcomm Technologies, Inc.

RPM 硬件固化与调试概述

80-P9301-16SC 版本 F

机密和专有信息 - Qualcomm Technologies, Inc.

禁止公开披露:如若发现本文档在公共服务器或网站上发布,请报告至:DocCtrlAgent@qualcomm.com。

限制分发: 未经 Qualcomm 配置管理部门的明确批准,不得向 Qualcomm Technologies, Inc. 或其关联公司的员工之外的任何人分发。

机密和专有信息 - Qualcomm Technologies, Inc.

禁止公开披露:如若发现本文档在公共服务器或网站上发布,请报告至:DocCtrlAgent@qualcomm.com。

限制分发: 未经 Qualcomm 配置管理部门的明确批准,不得向 Qualcomm Technologies, Inc. 或其关联公司的员工之外的任何人分发。

未经 Qualcomm Technologies, Inc. 的明确书面许可,不得使用、复印、复制或修改其全部或部分内容,或以任何方式向其他人泄露其内容。

本文中提到的所有 Qualcomm 产品是 Qualcomm Technologies, Inc. 和/或其子公司的产品。

Qualcomm 和 FSM 是 Qualcomm Incorporated 在美国和其他国家/地区所注册的商标。其他产品和品牌名称可能是其各自所有者的商标或注册商标。

本技术资料可能受美国和国际出口、再出口或转让(统称"出口")法律的约束。严禁违反美国和国际法律。

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2017–2018 Qualcomm Technologies, Inc. 和/或其子公司。保留所有权利。

修订历史记录

版本	日期	说明	
А	2017年5月19日	初始版本	
В	2017年5月19日	增加了幻灯片 27 到 55 以说明 RPMh 硬件模块的调试详情	
С	2017年8月	在幻灯片 43、47、48 和 49 中增加了不同硬件模块的 CMM 脚本 更新了幻灯片 46, 其中增加了有关 CMM 脚本的详细信息	
D	2017年10月	增加了幻灯片 30 和 31,介绍解析 RAM 转储中调试信息的 Hansei 解析器工具更新了本演示文稿的标题	
Е	2018年6月	• 增加了幻灯片 11 和 12 以介绍直接资源表决器和 RPM 和 RPMh 中的任务	
F	2018年8月	• 增加了有关了解 Hansei 输出的幻灯片 33、34、35 和 36	
2012 Sugained			

议程

目标	<u>5</u>
RPM 与 RPMh 架构对比	<u>6</u>
调压器管理	<u>13</u>
频率管理	<u>19</u>
	<u>25</u>
休眠管理 调试 AOP RAM 转储 调试 ARC	<u>30</u>
调试 ARC	<u>38</u>
调试 BCM	<u>44</u>
调试 PDC	<u>51</u>
调试 VRM	<u>57</u>
调试客户端驱动程序 – 子系统 RPMh 驱动程序	
SoC 休眠	<u>68</u>

目标

- 本演示文稿结束后,您将了解以下内容:
 - RPM 硬件固化 (RPMh) 架构
 - RPM 和 RPMh 在以下用例中的操作差异:
 - 调压器管理
 - 频率管理
 - 休眠管理
 - 调试 RPMh 硬件块

第1节

RPM 与 RPMh 架构对比

关于 RPMh

- RPMh 是一种以硬件为基础,软件为辅助的解决方案
- · 凭借硬件加速转换, RPMh 显著缩短传输延迟
 - RPMh 解决方案具备以下优势:
 - 使系统加速 3 到 10 倍,缩短现有转换时间线
 - 使用时间 (DoU) 延长 2.5%
 - 使用实时响应处理器 (AOP) 帮助调试

硬件固化前的 RPM 架构

RPMh 架构

将 RPMh 架构映射到 RPM 架构

RPMh	功能	RPM		
解算器(仅适用于传感器和显示屏) (SLVR)	休眠模式决策	各客户端的休眠软件		
资源状态协调器 (RSC)	子系统资源控制的休眠和唤醒状态	子系统电源管理器 (SPM) 和 RPM 软件		
电源域控制器 (PDC)	子系统休眠和唤醒(包括中断管理)	Modem 电源管理器 (MPM) 和 RPM 软件		
聚合资源控制器 (ARC)	共享电压工作点控制	SPM、MPM 和 RPM 软件		
总线时钟管理器 (BCM)	总线和存储器时钟控制	RPM 软件		
调压器管理器 (VRM)	调压器、晶体振荡器 (XO) 缓冲区和 晶体控制	MPM 和 RPM 软件		
电源控制总线 (PCB)	资源和电源控制消息传输	片上网络 (NoC) 和处理器间 通信 (IPC)		
AOP	复杂聚合或相关性处理以及解决方法	RPM 软件		
	解算器(仅适用于传感器和显示屏)(SLVR) 资源状态协调器 (RSC) 电源域控制器 (PDC) 聚合资源控制器 (ARC) 总线时钟管理器 (BCM) 调压器管理器 (VRM) 电源控制总线 (PCB)	解算器(仅适用于传感器和显示屏) (SLVR) 资源状态协调器 (RSC) 子系统资源控制的休眠和唤醒状态 电源域控制器 (PDC) 子系统休眠和唤醒(包括中断管理) 聚合资源控制器 (ARC) 共享电压工作点控制 总线时钟管理器 (BCM) 总线和存储器时钟控制 调压器管理器 (VRM) 调压器、晶体振荡器 (XO) 缓冲区和 晶体控制 电源控制总线 (PCB) 资源和电源控制消息传输		

直接资源表决器

- 基于 RPMh 的主机
 - 应用程序 (APPS)
 - TrustZone (TZ)
 - Hypervisor
 - HLOS
 - Modem
 - 软件
 - _ 硬件
 - LPASS
 - 传感器
 - 安全处理器
 - AOP
 - GPU
 - 显示屏

资源	基于 RPM	基于 RPMh
CX, MX	RPM 软件控制的资源	ARC 处理的资源
XO 时钟	RPM 软件控制的资源	ARC 处理的资源
GFX	APPS 控制的资源	ARC 处理的资源
Modem 子系统 (MSS)	MPSS 控制的电源轨	ARC 处理的资源
共享时钟 (NoC、DDR)	RPM 软件控制的资源	BCM 处理的资源
PMIC 资源 (SMPS、LDO)	RPM 软件控制的资源	VRM 处理的资源

• 直接资源表决器 (DRV) 符合数字电源轨的资源相 关性。

例如,MX >= CX

- 资源必须使用相应加速器的地址进行表决。
 - CmdDB 驱动程序支持使用资源名称对加速器映射进行寻址。
 - CmdDB 位于 DDR 共享内存中。对于所需信息,所有子系统均具备 CmdDB API。

RPM 和 RPMh 中的任务

任务	基于 RPM 软件	基于 RPMh
立即请求资源	写入 MSG RAM 并发送 IPC(所有子系统中的 RPM 软件驱动程序)	写入 RSC TSC 寄存器并向 AOP 发送数据包(所有子系统中的 RPMh 驱动程序)
关断或唤醒请求	子系统 SPM 到 RPM 软件	子系统 RSC > 子系统 PDC
唤醒中断功能支持	MPM 中断控制器	PDC 中断控制器
激活或休眠设置信息	存储在 RPM 端	存储在子系统端(所有子系统中的 RPMh 驱动程序)
电源轨驱动程序	RPM 电源轨驱动程序	子系统 PDC 接收数据包并将其路由到 ARC 基于硬件的 ARC 聚合和处理
CPR 驱动程序	RPM CPR 驱动程序	基于硬件的 CPR 中断处理
时钟或总线驱动程序	RPM 时钟或总线驱动程序	基于硬件的 BCM 聚合和处理 (RSC > PDC > BCM)
PMIC 驱动程序	RPM PMIC 驱动程序	基于硬件的 VRM 聚合和处理 (RSC > PDC > VRM)
DDR 低功耗模式	RPM DDR 驱动程序	向 SHRM 发送的基于硬件的 DDR_AUX 通知
资源的最新状态	RPM 数据结构	硬件加速器寄存器配置 (ARC、CPRF、BCM 和 VRM)
Vdd 最小化	RPM 休眠驱动程序	基于硬件的 ARC 聚合和处理
实时响应子系统 (AOSS) 休眠	_	AOP 软件处理

第2节

调压器管理

RPM 调压器控制

RPMh 调压器控制

RPMh 调压器控制 - 表决数字电压域

RPMh 调压器控制 – 表决调压器

RPMh 调压器控制 – CPR 微调

第3节

频率管理

RPM 频率控制

RPMh 频率控制

RPMh 频率控制 - 带宽表决

RPMh 频率控制 - 内存控制器

RPMh 频率控制 - 内存控制器 - 带宽表决

第4节

休眠管理

RPM 休眠管理

RPM 休眠管理

RPMh 休眠管理 – 进入休眠

RPMh 休眠管理 – 退出休眠

第5节

调试 AOP RAM 转储

机密和专有信息 – Qualcomm Technologies, Inc. | 可能包含美国和国际出口管制信息 | 80-P9301-16SC 版本 F

AOP 调试脚本

• 保存转储

- 在 AOP TRACE32 窗口的实时调试设置中, 停止进程并通过运行以下命令保存转储。

do <aop build>\aop_proc\core\bsp\aop\scripts\aop_dump.cmm

- AOP 转储也是系统崩溃后收集的 RAM 转储的一部分。
- 加载转储
 - 运行以下命令,在 TRACE32 仿真器中加载 AOP 转储:

do <aop build>\aop_proc\core\bsp\aop\scripts\aop_load_dump.cmm <dump path>

- 解析 AOP 用户日志
 - 1. 通过 AOP TRACE32 以实时方式或使用仿真器运行以下命令:

do <aop build>\aop_proc\core\power\ulog\scripts\aop_ulogdump.cmm <output path>

2. 从 MS-DOS 控制台运行以下命令:

<aop build>\aop_proc\core\bsp\aop\scripts\aop_log_hfam.py -f "<path>\AOP External Log.ulog"
-tbl <aop build>\aop_proc\core\api\debugtrace\tracer_event_tbl.h > AOP_ulog_parsed.txt

Hansei RAM 转储解析器

- Hansei 工具用于解析 RAM 转储输出的调试信息
- 安装
 - 1. 访问 https://www.python.org/ 下载 Python v2.7.x。如需检查 Python 的当前版本,输入以下命令:

 python -V
 - 2. 安装支持 ARM 编译器的 pyelftools 库,使用 https://bitbucket.org/pplesnar/pyelftools-pp 中提供的版本输入以下命令开始安装:

python setup.py install

- Hansei 脚本已随 AOP 共同发布
 - 位置 aop_proc\core\bsp\aop\scripts\hansei\
 - Hansei 引用编译版本中的多份文件,需要从 AOP 编译版本执行 Hansei
- 如需使用脚本进行 RAM 转储解析,输入以下命令:

aop_proc\core\bsp\aop\scripts\hansei\hansei.py --elf <aop>.elf -o . -t 845
dumpfile <ramdump folder>

了解 Hansei 输出

Aop-summary.txt 文件

提供 AOP 固件的平台信息和状态,例如,是正在运行还是处于致命场景。如果由于故障(例如,总线、使用、硬件/内存管理故障)而处于致命场景,则将汇总故障详细信息。

· .BIN 文件夹

包含所需二进制文件(CODERAM.BIN、DATARAM.BIN 和 MSGRAM*.BIN)和 AOP elf 的备份,以供将来参考。还包含 CMM 脚本,可用于加载二进制文件,以供进一步调试。

Requests_By_Master 文件夹

每个子系统有一个单独的文件夹,其中包含每个资源的表决。例如,AOP_drv6.txt、APPS_drv2.txt 等等。 **注意:** 如果 SDI 无法备份 RPMh 二进制文件,则不会生成此文件夹。

Requests_For_Resource 文件夹

- arc vt.txt:包含电源轨资源(例如:CX和MX)表决的列表以及转储收集时每个资源的状态。
- bcm vt.txt:包含时钟资源(例如:DDR、SNOC和CNOC)表决的列表以及转储收集时每个时钟的状态。
- vrm_vt.txt:包含 PMIC 资源(例如:s1a、s2a、l2a 等等)表决的列表以及收集转储时每个 SPMS/LDO 的 状态。
- cprf.txt: 包含每个电源轨的 CPRF 控制设置和电压表。
- rpmh_summary.txt:包含每个 RPMh 资源管理器的忙碌/空闲状态。

注意:如果 SDI 无法备份 RPMh 二进制文件,则不会生成此文件夹。

了解 Hansei 输出(续)

· .Ulog 日志二进制文件

从转储中提取的 "AOP DDR Log.ulog"和 "AOP External Log.ulog"记录二进制文件。

- aop-rawts.txt(定时器节拍(19.2 MHz 时钟)的时间戳)和 aop-log.txt(以秒为单位的时间戳)通过"AOP External Log.ulog"来解析,并且包含 RPMh 驱动程序、进入休眠/退出休眠和异常中的总体 AOP 固件记录。
- ddr-rawts.txt(定时器节拍(19.2 Mhz 时钟)的时间戳)和 ddr-log.txt(以秒为单位的时间戳)通过 "AOP DDR Log.ulog"来解析,并且包含 ddr_mgr 驱动程序中关于 Qualcomm® FSM™ 平台的电压和频率事件的记录。

Npa-dump.txt 文件

包含向 NPA 注册的资源状态(如果 AOP 固件中包含多个客户端)。还包含来自每个客户端的请求。

Task_info.txt 文件

包含一个列表,其中列出 AOP 固件中运行的任务及其优先级、等待事件、等待信号和状态(是否已暂停)。

• Cmd_db.txt 文件

包含 RPMh 管理的资源及其表决地址的列表。

Sleep_stats.txt 文件

包含 AOP/AOSS 低功耗统计信息(sleep_count(进入低功耗模式的次数)、last_entered_at、last_exited_at、accumulated_duration(系统持续处于 LPM 模式的总累计时间))。

aosd: AOSS 深度休眠

cxsd: CX 深度睡眠

了解 Hansei 输出(续)

Aop_serv_msgram_parse.txt 文件

包含与 AOP 服务驱动程序进行的中断处理相对应的日志记录。作为 ISR 处理的一部分,将记录以下内容:

- *ISR 编号和收到的时间戳
- *向 AOP 服务发出的相应信号
- *资源/信号转换: 当前状态和所需状态
- *中断处理过程中的其他参数和阶段

ddr_mgr_msgram_parse.txt RAM 日志

包含与 ddr_mgr 驱动程序进行的中断处理相对应的日志记录 (主要用于 MC/Shub 切换。)作为 ISR 处理的一部分,将记录以下内容:

- *ISR 编号和收到的时间戳
- *ISR 处理的多个阶段
- *MC/Shub 频率等级转换:当前状态和所需状态
- *依赖于 CX/MX/VDDA 转换(如果有)
- *中断处理过程中的其他参数和阶段

了解 Hansei 输出(续)

• PDC 文件夹

每个子系统有一个单独的文件夹,其中包含相应子系统的 pdc 状态/配置。例如: PDC_AOP.txt、PDC_APPS.txt 等等。

- PDC_MODE_STATUS:在直通模式下,子系统处于活动状态;在定序器模式下,子系统处于休眠状态。
- ENABLE_PDC: 是否启用 PDC。
- TIMER_MATCH_VALUE_HI 和 TIMER_MATCH_VALUE_Lo: 相应子系统的下一次唤醒时间。
- IRQ_CFG、IRQ_ENABLE 和 IRQ_STATUS: 当子系统中端控制器无法正常工作时,PDC 代表子系统监视唤醒中断。其中一部分中断是对每个PDC 均可见的 GP 中断,另一部分中断特定于此 PDC。
 - CFG: 配置中断的触发方式(例如, 电平/边沿/上升沿/下降沿触发)。
 - Enable: 启用 PDC 正在监视的中断并唤醒子系统。
 - STATUS:显示中断的状态(是否发生)。

注意: 如果 SDI 无法备份 RPMh 二进制文件,则不会生成此文件夹。

RPMh 调试

- 调试基于硬件寄存器和状态
- · RAM 转储捕获 RPMh 硬件寄存器和状态
- · 从 AOP 版本运行 CMM 脚本,以解析 RAM 转储

第6节

调试 ARC

ARC 资源

- 处理需要额外协调的复杂硬件模块
- 可根据需要协调 ARC 和其他加速器(CPRF、VRM、DDR_Aux 等)
- 表决单元处于操作级别
- ARC 资源
 - 电压轨
 - CX 或 MX
 - SSC_CX 或 SSC_MX
 - VDDMSS
 - EBI
 - GFX
 - 带有电源状态的常规资源
 - XO
 - DDR_SS

ARC 调试

- 解析各资源时(例如电源轨), CMM 脚本检查以下事项:
 - 常规状态
 - 各客户端的表决
 - 内部状态
- 示例调试方案
 - ARC 尚未转换资源状态 通过检查资源的内部状态完成调试
 - ARC 未达到预期状态
 - 通过检查各客户端的表决完成调试
 - 通过检查资源内部状态完成深入调试

ARC 转储脚本

- arc dump.cmm [op=<output file path>]
 - 转储每项 ARC 资源的所有信息
 - 如果未指定输出文件,则在 TRACE32 区域中转储 输出
 - 针对 RM 列表和 DRV 列表, 查看生成的 ARC 转储

```
RMO : cx
    Status
        Enable: 1
    OLs
        Curr:
                0x2
        Agg:
                0x1
        Dest :
                0x1
        Solved: 0x0
        Seq:
                0x1
    Sequencer
                       Seq busy-'hang'
        Busy:
                1
        PC :
                108
        Instr : 0x400F
    Votes
        DRV0 : 0x0
        DRV1 : 0 \times 0
                          ■ Decider DRV
        DRV2 : 0x1*
                           Other DRV votes
        DRV29 : 0x0
RM1 : mx
```

Other RM details ARC RM Map ARC DRV Map

注意: OL - 操作级别: DRV - 表决器

ARC 转储脚本 DRV 过滤器

- arc_dump.cmm drvs=mss,aop
 [op=<output file path>]
 - 可以过滤输出中的特定 DRV
- MSS_SW 和 AOP 转储适用以下内容:
 - 各 ARC 资源的表决
 - 当前和目标操作级别
 - 定序器状态

```
DRV10 : mss
    RMO : cx
        vote :
                 0 \times 0
        curr ol : 0x6
        dest ol : 0x6
        seq busy: 0x0
                         ■ Intermediate RMs
    RM6 : mss
        vote : 0x4* ← Decider vote
        curr ol : 0x4
        dest ol : 0x4
        seq busy: 0x0
DRV6 : aop
    RM0 : CX
        vote : 0x6* ← Decider vote
        curr ol : 0x6
        dest ol : 0x6
        seq busy: 0x0
```

Rest of RMs

ARC 转储脚本 RM 过滤器

- arc_dump.cmm rms=mx,mss
 [op=<output file path>]
 - 可以过滤输出中的特定 RM
- CX 和 MSS 资源转储适用以下内容:
 - 各种操作级别
 - 定序器状态
 - DRV 表决

```
RM1 : mx
    Status
        Enable:
    OLs
        Curr:
                  0 \times 4
                  0x4
        Agg:
                  0 \times 4
        Dest :
        Solved: 0x0
        Seq:
                  0x4
    Sequencer
        Busy:
                  0
        PC:
                 36
        Instr:
                  0x5005
    Votes
        DRV0 : 0x0
        DRV1 : 0 \times 0
        DRV2 : 0x4★ ← Decider DRV
                         Other DRV votes
        DRV29 : 0x0
RM6 : mss
                          MSS details
```


第7节

调试 BCM

BCM 资源

- 处理共享时钟、电源域和内存控制器提示
- 表决单元特定于域:
 - 帯宽
 - 延迟
 - 其他
- BCM 资源
 - 系统总线时钟和域
 - 系统 NoC 和聚合 NoC
 - 内存 NoC
 - 多媒体 NoC
 - 配置 NoC
 - 其他共享时钟资源
 - Qualcomm 通用外设 (QUP) v3
 - IPA
 - Crypto

BCM 调试

- 解析各资源时(例如 BCM 或虚拟时钟域 (VCD)), CMM 脚本检查以下事项:
 - 常规状态
 - 各客户端的表决
 - 内部状态
- 示例调试方案
 - BCM 卡断 检查 VCD 的 BCM 状态
 - BCM 未达到预期聚合状态
 - 检查 VCD 的聚合状态
 - 检查由 VCD 驱动的 BCM 表决表

BCM 转储脚本

- BCMDump.cmm [<output dir>]
 - 转储各 VCD 和 BCM 实例的所有信息
 - 如果未指定输出文件,将输出转储到 TRACE32 区域
 - 以下是 VCD 列表:

MC	0
SHUB	1
SHRM	2
SNoC	3
MMNoC	4
CNoC	5
Crypto	6
IPA	7
QUP	8
DDR_SS	10
活动客户端向量	11
未使用	9, 12-15
	-

```
BCM Front End:
VCDO: AGG BW: 0x1533 FINAL CP: 0x8 AGG CP 0x8
 BCM SNDs:
 SND0: SEL CP: 0x0
BCM Back End:
VCDO: CLK DEST STATE: 0x8 COMBINED CP: 0x8 SW CP SNAP: 0x0
WRITTEN CP: 0x8 CURR CP: 0x8
 BCM Back End Sequencers:
VCD0: IDLE: 0x1 CURR_PC: 0x3E
Vote Table for DRV ID: 0
Vote Table for DRV ID: 1
Vote Table for DRV ID: 2
BCMO: VALID: 0x1 VOTE X: 0x0 VOTE Y: 0x1533
BCM3: VALID: 0x1 VOTE X: 0x0 VOTE Y: 0x8
       注意:
       • CP - 时钟规划

    VCD - 虚拟时钟域
```

• SND – SNoC 域

BCM 前端

- 包含有关 VCD 状态的信息:
 - 聚合带宽值 (AGG_BW)
 - 最终选定的时钟规划 (FINAL_CP)、SND CP 聚合 以及聚合的 CP (AGG_CP); AGG_CP 选择基于 AGG_BW
- BCM 特殊节点 CP 选择
 - SEL_CP:根据延迟表决和当前表决负载选择的 CP

VCD0: AGG_BW: 0x1533 FINAL_CP: 0x8 AGG CP 0x8

VCD1: AGG_BW: 0x1900 FINAL_CP:

0x5 AGG_CP 0x5

BCM SNDs:

SND0: SEL_CP: 0x0

SND1: SEL CP: 0×0

. . .

BCM 后端

- 根据 VCD 的状态决定的后端:
 - CLK_DEST_STATE 下一个选定的 CP
 - COMBINED_CP 结合软件和硬件选择的 CP
 - SW_CP_SNAP 软件覆盖 CP 选择(不常见)
 - WRITTEN_CP 由 BCM 写入的当前 CP
 - CURR_CP 当前确认的 CP
- 后端定序器状态
 - 空闲
 - 0×1=不繁忙
 - CURR_PC
 - 超过最后一个运行指令的单一指令

BCM 后端:

VCD0: CLK DEST STATE: 0x8

COMBINED CP: 0x8 SW CP SNAP: 0x0

WRITTEN CP: 0x8 CURR CP: 0x8

VCD1: CLK DEST STATE: 0x5

COMBINED CP: 0x5 SW CP SNAP: 0x0

WRITTEN CP: 0x5 CURR CP: 0x5

. . .

BCM 后端定序器:

VCD0: IDLE: 0x1 CURR PC: 0x3E

VCD1: IDLE: 0x1 CURR PC: 0x3E

. . .

BCM 表决表

- 每个 DRV 的 BCM 表决状态:
 - VALID 表决有效性
 - VOTE_X = 与资源相关,通常为 AB
 - VOTE_Y 与资源相关,通常为 IB

Vote Table for DRV ID: 0

Vote Table for DRV ID: 1

Vote Table for DRV ID: 2

BCM0: VALID: 0x1 VOTE X: 0x0

VOTE Y: 0x1533

BCM3: VALID: 0x1 VOTE X: 0x0

VOTE Y: 0x8

第8节

调试 PDC

关于 PDC

- 运行休眠序列,关闭子系统的关键资源
- 运行唤醒序列,唤醒关键资源,使子系统 RSC 进入运行状态
- · 当子系统处于 RPMh 辅助电源深度休眠状态时,处理唤醒中断

PDC 调试

- 解析各资源时(例如全局或子系统), CMM 脚本检查以下事项:
 - 常规状态
 - 中断请求 (IRQ) 配置
- 示例调试方案
 - PDC 卡断 检查 DRV 的 PDC, 然后检查 DRV
 - 子系统唤醒出现问题
 - 检查 PDC IRQ 状态
 - 检查预期中断的 IRQ 配置

子系统的 PDC 用户日志

- 在非 HLOS 中,运行 uLogDump.cmm 解析 PDC 日志: ULogDump.cmm <output file path> PDC Log
- 示例日志

```
Content-Type: text/pdc-driver-1.0; title=PDC Driver
0x2F92FC02: Initializing target
0x2F93089E: Initializing main driver
0x2F930B86: Interrupt configuration (Number of Interrupts: 15)
0x2F930DA4: GPIO configuration (Number of GPIOs: 96) (Number of MUXs: 20)
0x2F9F7231: TCS Resource lookup: (Name: cx.lvl) (Base address: 0x30000)
0x2F9F77ED: TCS Resource lookup: (Name: mx.lvl) (Base address: 0x30010)
0x2F9F8287: TCS Resource lookup: (Name: xo.1v1) (Base address: 0x30080)
0x2F9F89DA: TCS write (Resource: xo.lvl) (TCS.Cmd: 0.0) (hlvl: 1)
0x2F9F8BC0: TCS write (Resource: cx.lvl) (TCS.Cmd: 0.1) (hlvl: 1)
0x2F9F8DE2: TCS write (Resource: mx.lvl) (TCS.Cmd: 0.2) (hlvl: 1)
0x2F9F9195: TCS write (Resource: xo.lvl) (TCS.Cmd: 1.0) (hlvl: 1)
0x2F9F9381: TCS write (Resource: cx.lvl) (TCS.Cmd: 1.1) (hlvl: 0)
0x2F9F969E: TCS write (Resource: mx.lvl) (TCS.Cmd: 1.2) (hlvl: 1)
0x2F9F9903: TCS write (Resource: mx.lvl) (TCS.Cmd: 2.0) (hlvl: 2)
0x2F9F9C0F: TCS write (Resource: cx.lvl) (TCS.Cmd: 2.1) (hlvl: 2)
0x2F9F9ED1: TCS write (Resource: xo.lvl) (TCS.Cmd: 2.2) (hlvl: 3)
0x2F9FA04A: TCS registers programmed successfully
0x2FB5EF50: Config subsystem int 475 (PDC bit: 0) (trigger: 4)
0x2FD0A43E: Successfully enabled 4 of 5 profiling units
```

PDC 转储脚本(第1页,共2页)

- pdc_dump.cmm ss=<subsystem name>
 [op=<output file path>]
 - 各 PDC 有关以下内容的转储信息:
 - 定序器
 - 触发命令集 (TCS)
 - IRQ
 - 参数

注意:子系统名称可以是 APPS、Modem、音频、传感器、AOP、调试、GPU、显示和计算

```
定序器
      Start:
                  ()×()
                  0
      Busy:
      PC:
                  0 \times 0
                 0×E1
      Instr:
      Timer: 0×0
      Pwr Override: (0 \times 0, 0 \times 0)
      Wait Override: (0 \times 0, 0 \times 0)
      Br Override: (0\times0, 0\times0)
                     (0 \times 0, 0 \times 0, 0 \times 0, 0 \times 0)
      Branches:
                          (0 \times 0, 0 \times 0,
      Delays:
0 \times 0, 0 \times 0
TCS<sub>0</sub>
       AMC Mode: 0
            En Mask:
                                    0 \times 7
            Wait Mask:
                                    \cap
            Idle: 0
            CMD0
                  slave: 3, addr: 0x80, data: 0x1
                  resp req: 0, triggerd: 0, issued: 0,
ackd: 0
            CMDc
```

TCSn

PDC 转储脚本(第2页,共2页)

IRQ(软件)

```
Num: (ss irq, gpio, en, status, cfg,
                                            owner)
         (475,
                                            high,
                                                     0)
    0:
                             0,
                                   0,
    1:
         (476,
                             0,
                                            falling,
                                                      OFFFFFFF)
                                            falling,
    2:
                                   0,
                                                      OFFFFFFF)
        (477,
                             0,
                                            falling,
    3:
        (478,
                             0,
                                                      OFFFFFFF)
                                           falling,
    4:
        (479,
                            Ο,
                                                     OFFFFFFF)
                                           falling,
    5:
        (480,
                                                     OFFFFFFF)
    6:
        (481,
                            0,
                                           falling,
                                                     OFFFFFFF)
  IRQn
```

参数

- 版本
 - 主要 1
 - _ 次要 0
- 一 资源
 - − DRV − 2
 - TCS 3
 - cmds/tcs 4
 - ProfUnit 5
 - Timestamp 0
- 定序器
 - CMD 96
 - XPwrCtrl 1
 - XWaitInput 1
 - AOP IRQ 2
- IRQ 和 GPIO
 - IRQ 15
 - GPIO 96
 - GP SEL 30

第9节

调试 VRM

关于 VRM

- · VRM 与 AOP 配合,管理 PMIC 调压器和时钟缓冲区中表决的执行
- 支持对以下资源类型进行表决:
 - 调压器(使能、模式、电压和余量)
 - XOB(使能)
 - XO (使能)
- 包含当前资源状态 (CRS) 寄存器, 指示处于稳定状态的最终 VRM 资源设置

VRM 调试

- CMM 脚本
 - vrm.cmm: 显示 DRV 表决、CRS 状态和 PMIC 状态
 - vrm dump.cmm: 转储 RPMH VRM 寄存器
- 有关调试方案,参见 Non-HLOS PMIC Voltage Regulator and Clock Software User Guide (80-P9301-78)

第 10 节

调试客户端驱动程序 – 子系统 RPMh 驱动程序

RPMh 驱动程序功能

- 管理运行系统客户端表决配置
 - 发送或管理活动或立即的表决集
 - 配置休眠或唤醒的表决集
- 跟踪软件资源表决
- 使用单一软件处理多个 DRV 和客户端

RPMhDriverLog

- 由 Qualcomm 崩溃分析门户 (QCAP) 生成
- 转储 RPMh 驱动程序活动:
 - 发出表决集
 - 等待表决集完成
 - 管理休眠进入和退出活动

注意: CMM 脚本仅适用于非 HLOS。HLOS 具有专属日志。例如 Linux 使用 Ftrace。

示例 RPMhDriverLog

```
0xD917234: rpmh issue command set (CLIENT: ICB) (DRV ID: 0x0000000A) (SET: 0) (NUM CMDS: 1) ← DRV 0xA VOTE SET
   from ICB
                  resource command (ADDRESS: 0x000500A0) (DATA: 0x40000000) ) Resource vote information
0xD917EFD:
                  configuring TCS (DRV ID: 10) (TCS ID: 0) (AMC?: 1)
0xD918ABB:
0xD918AE3:
                            (CLIENT: ICB) (REQ ID: 7)
0xD918F60:
                  TCS SENT (TCS INDEX: 0) (TCS ID: 0)
                                                                                  Vote triggered in hardware
                  req id (REQ ID: 7)
                                                                                   ID for this request is 7
0xD918F8A:
0xD918FD4: rpmh in flight sleep update (CMDQ EMPTY? ==
0xD919102: rpmh finish amc (HW DRV: 0x0000000A) (SW DRV: 0x0000000A)
                                                                                  Callback to complete vote
                  TCS IDLE (TCS ID: 0)
0xD9191C1:
                                                                                  Finished ICB client request ID 7
0xD9191E6:
                  finished req: (CLIENT: ICB) (REQ ID: 7)
```

RPMh 驱动器调试方案

- 一组表决卡断,可能导致以下错误:
 - rpmh_barrier() 卡断
 - RPMhDriverLog 中写入!!!!VOTE_SET_IS_STUCK!!!!
 - RPMhDriverLog 中写入 BUS_TIMEOUT
- 如需在一组表决卡断时调试方案:
 - 1. 检查 RPMhDriverLog,确定卡断的请求。
 - 2. 查看 RSC 中表决集的内容,确认以下事项:
 - 存在未完成的命令。
 - 针对给定子系统将 PDC_EN 位置 1。
 - 3. 根据发出请求的地址或客户端,建立命令适用的 RPMh 块。
 - 4. 为该硬件块(ARC、VRM 或 BCM)检查 RPMh 块
 - 有关示例,参见<u>幻灯片 62</u> 到 <u>幻灯片 64</u> "示例调试程序 表决组卡断"。

示例调试程序 - 表决组卡断(第1页,共3页)

```
0xD917234: rpmh issue command set (CLIENT: ICB) (DRV ID:
                                                  0x000000A)
                                                                        检查 RPMhDriverLog 中的以下
0xD917EFD:
            resource command (ADDRESS: 0x000500A4) (DATA:
                                                                        几项,确定卡断的请求。
0 \times 40000000)
            configuring TCS (DRV ID: 10) (TCS ID: 0) (AMC?: 1)
0xD918ABB:
                                                                           客户端
0xD918AE3:
                   (CLIENT: ICB) (REQ ID: 7)
            TCS SENT (TCS INDEX: 0) (TCS ID: 0
                                                                           表决
0xD918F60:
                                                                           调用者的跟踪 ID
            req id (REQ ID: 7)
0xD918F8A:
                                                                           等待跟踪 ID
0xD918FD4: rpmh in flight sleep update (CMDQ EMPTY? == 0)
0xD919102: rpmh barrier all (CLIENT: ICB) (DRV ID:
                                      0x0000000A) (REQ ID: 7)
```

示例调试程序 - 表决组卡断(第2页,共3页)

查看表决集内容,确认以下事项:

- + 针对给定子系统将 PDC_EN 置位
- 表决匹配
- 存在未完成的表决

示例调试程序 - 表决组卡断(第3页,共3页)

0xD917234: rpmh_issue_command_set (CLIENT: ICB) (DRV_ID:
0x0000000A)

检查 BCM 块的 RPMh 块

第 11 节

SoC 休眠

RPM - SoC 休眠

- 系统休眠与休眠模式紧密相关:
 - XO 关断
 - VDD-MIN

RPMh - SoC 休眠

- · SoC 资源休眠状态是独立的
- 资源具备休眠状态,不具备休眠模式
 - XO 关闭
 - VDD-CX
 - 保持
 - 深度休眠(关闭)
 - VDD-MX
 - 保持
- · 子系统进入低功耗状态时,显示 AOSS 的休眠状态

参考资料

标题	文档号	
Qualcomm Technologies, Inc.		
Non-HLOS Voltage Regulator Software User Guide	80-P9301-78	
DDR Debugging and Test Guide	80-NR123-1	
SDM845 NON-HLOS PMIC Software Overview	80-P9301-26	
SDM845 RPM FAQs	KBA-170707163551	
资源		
https://www.python.org/	_	
https://bitbucket.org/pplesnar/pyelftools-pp	_	
https://cap.qti.qualcomm.com/	_	

缩略词

缩略词或术语	定义
AMC	激活模式控制器 (Active mode controller)
ARC	聚合资源控制器 (Aggregated resource controller)
AOP	实时响应处理器 (Always-on processor)
AOSS	实时响应子系统 (Always-on subsystem)
BCM	总线时钟管理器 (Bus clock manager)
CPRF	核心功率降低辅助器 (Core power reduction facilitator)
CRS	当前资源状态 (Current resource state)
DRV	直接资源表决器或客户端 (Direct resource voters or clients)
IRQ	中断请求 (Interrupt request)
NPA	节点电源架构 (Node power architecture)
PCB	电源控制总线 (Power control bus)
PDC	电源域控制器 (Power domain controller)
RBCPR	Rapid Bridge 核心功率降低 (Rapid Bridge core power reduction)
RSC	资源状态协调器 (Resource state coordinator)
SLVR	休眠模式解算器 (Sleep mode solver)

缩略词(续)

缩略词或术语	定义
TCS	触发命令集 (Triggered command set)
VCD	虚拟时钟域 (Virtual clock domain)
VRM	调压器管理器 (Voltage regulator manager)
QCAP	Qualcomm 崩溃分析门户 (Qualcomm crash analysis portal)
QUP	Qualcomm 通用外设 (Qualcomm universal peripheral)
	2012-03-123 Real Park

问题?

欲了解更多信息或者存在技术问题,可访问: https://createpoint.qti.qualcomm.com