

Álgebra Linear e Geometria Analítica – Prof. Aline Paliga

INTRODUÇÃO

Definição: chama-se matriz de ordem *m* por *n* a um quadro de *m* x*n* elementos dispostos em *m* linhas e *n* colunas.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Cada elemento da matriz está afetado por dois índices: a_{ij}

$$A = [a_{ij}]$$

7.1 TIPO DE MATRIZES

Matriz linha é uma matriz de ordem 1 por *n*.

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_n \end{bmatrix}$$

 $A = [a_1 \quad a_2 \quad a_3 \quad \dots \quad a_n]$ $a_1 \quad a_2$ Matriz coluna é uma matriz de ordem n por $1. \Rightarrow A = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

Matriz quadrada é uma matriz cujo número de linhas é igual ao número de colunas.

Matriz retangular é uma matriz na qual m≠n.

Diagonal principal: numa matriz quadrada, os elementos em que i=j constituem a diagonal principal.

$$a_{11}, a_{22}, a_{33}, \dots, a_{mn}$$

Diagonal secundária : numa matriz quadrada, os elementos em que i+j=n+1, constituem a diagonal secundária.

$$a_{1n}, a_{2n-1}, a_{3n-2}, \dots, a_{n1}$$

Matriz diagonal é uma matriz em que todos os elementos são nulos quando i≠j.

Matriz escalar é uma matriz diagonal que tem os elementos iguais entre si para i=j.

$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Matriz unidade (identidade): é uma escalar de qualquer ordem em que todos os elementos são iguais a um para i=j.

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz zero é uma matriz em que todos os elementos são nulos.

$$0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

7.2 IGUALDADE E OPERAÇÕES DE MATRIZES

7.2.11GUALDADE

Duas matrizes , $A = \begin{bmatrix} a_{ij} \end{bmatrix} e$ $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ de ordem (m,n) são iguais se, e se somente se, $a_{ij} = b_{ij}$.

$$\begin{bmatrix} 2 & 4 \\ 3 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ 0 & 2 \end{bmatrix}$$

7.2.2ADIÇÃO

A soma de duas matrizes $A = \begin{bmatrix} a_{ij} \end{bmatrix} e$ $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ de ordem (m,n), é uma matriz $C = \begin{bmatrix} c_{ij} \end{bmatrix}$ tal que:

$$c_{ij} = \mathbf{a}_{ij} + b_{ij}$$

$$\begin{bmatrix} 5 & -2 & 3 \\ 2 & 1 & -4 \\ 1 & 0 & 2 \\ 3 & -1 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 1 & 3 \\ 4 & 2 & 5 \\ 0 & 2 & -2 \\ -3 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 6 \\ 6 & 3 & 1 \\ 1 & 2 & 0 \\ 0 & -1 & 9 \end{bmatrix}$$

7.2.2.1 PROPRIEDADES DA ADIÇÃO

$$I)A + (B+C) = (A+B) + C$$

$$II)A + 0 = 0 + A = A$$

$$III$$
) – $A + A = A - A = 0$

$$IV$$
) $A + B = B + A$

7.2.3SUBTRAÇÃO

A diferença A-B de duas matrizes de ordem (m,n) é uma matriz C tal que:

$$c_{ij} = a_{ij} - b_{ij}$$

7.2.4 PRODUTO DE MATRIZ POR UM ESCALAR

Se λ é um escalar, o produto de uma matriz A por este escalar é uma matriz B tal que:

$$b_{ij} = \lambda a_{ij}$$

$$5 \times \begin{bmatrix} 4 & -2 & 1 \\ 3 & -5 & 0 \end{bmatrix} = \begin{bmatrix} 5 \times 4 & 5 \times (-2) & 5 \times 1 \\ 5 \times 3 & 5 \times (-5) & 5 \times 0 \end{bmatrix} = \begin{bmatrix} 20 & -10 & 5 \\ 15 & -25 & 0 \end{bmatrix}$$

7.2.4.1PROPRIEDADES DA MULTIPLICAÇÃO DE MATRIZ POR ESCALAR

$$I)(\lambda\mu)A = \lambda(\mu A)$$

$$II)(\lambda + \mu)A = \lambda A + \mu A$$

$$III)\lambda(A + B) = \lambda A + \lambda B$$

$$IV)1A = A$$

7.2.5PRODUTO DE UMA MATRIZ POR OUTRA

Sejam as matrizes $A_{(1,4)}$ e $B_{(4,1)}$:

Sejam as matrizes
$$A_{(1,4)} \in B_{(4,1)}$$
.

$$A = \begin{bmatrix} 6 \\ 4 \\ 5 \\ 3 \end{bmatrix} \quad C_{(1,1)} = \begin{bmatrix} c_{11} \\ c_{11} \\ c_{11} = 4 \times 6 + 3 \times 4 + 2 \times 5 + 5 \times 3 \\ c_{11} = 24 + 12 + 10 + 15 \\ c_{11} = 61$$

7.2.5.1 CÁLCULO DE UM ELEMENTO QUALQUER DE UMA MATRIZ PRODUTO

Sejam as matrizes $A_{(2,3)}$ e $B_{(3,3)}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$A_{(2,3)}$$
 × $B_{(3,3)} = C_{(2,3)} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$

$$c_{23} = 2^{a} linha de A \times 3^{a} coluna de B =$$

= $a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$

7.2.5.2COMUTATIVIDADE DA MULTIPLICAÇÃO DE DUAS MATRIZES

$$A_{(3,5)}$$
 × $B_{(5,6)}$ = $C_{(3,6)}$
 $B_{(5,6)}$ × $A_{(3,5)}$ = não é possível
 $A_{(4,3)}$ × $B_{(3,4)}$ = $C_{(4,4)}$
 $B_{(3,4)}$ × $A_{(4,3)}$ = $D_{(3,3)}$
 $A_{(2,2)}$ × $A_{(2,2)}$ = $C_{(2,2)}$
 $A_{(2,2)}$ × $A_{(2,2)}$ = $D_{(2,2)}$

A multiplicação de duas matrizes, em geral, não é comutativa.

$$\mathbf{1}^{o} \quad CASO)$$

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix} e \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{AI} = \begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix}$$

$$\mathbf{IA} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix}$$

A multiplicação de uma matriz A por uma matriz unidade I é comutativa.

$$A = \begin{bmatrix} 11 & 3 \\ 7 & 2 \end{bmatrix} e \quad B = \begin{bmatrix} 2 & -3 \\ -7 & 11 \end{bmatrix}$$

$$AB = \begin{bmatrix} 11 & 3 \\ 7 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -7 & 11 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$BA = \begin{bmatrix} 2 & -3 \\ -7 & 11 \end{bmatrix} \begin{bmatrix} 11 & 3 \\ 7 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

AB=BA=I

diz-se *inversa* de A e se representa por A⁻¹

$$AA^{-1} = A^{-1}A = I$$

B é a matriz inversa de A.

7.3 MATRIZ TRANSPOSTA

A matriz transposta de uma matriz A, de ordem m por n, é a matriz A^T de ordem n por m, que se obtém da matriz A permutando as linhas pelas colunas de mesmo índice.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}; A^{T} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

7.3.1 PROPRIEDADES DA MATRIZ

TRANSPOSTA

$$I)(A+B)^{T} = A^{T} + B^{T}$$

$$II)(\lambda A)^T = \lambda A^T$$

$$III)(A^T)^T = A$$

$$IV)(AB)^T = B^T A^T$$

Propriedade IV
$$(AB)^T = B^T A^T$$

$$A_{(3,2)} = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ 2 & 4 \end{bmatrix} \quad e \quad B_{(2,2)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$A_{(3,2)} \times B_{(2,2)} = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 10 & 14 \\ 6 & 8 \\ 14 & 20 \end{bmatrix}$$

$$\left(AB \right)^T = \begin{bmatrix} 10 & 6 & 14 \\ 14 & 8 & 20 \end{bmatrix}$$

$$B^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix}$$

$$B^{T} \times A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 10 & 6 & 14 \\ 14 & 8 & 20 \end{bmatrix}$$

7.4 MATRIZ SIMÉTRICA

Uma matriz quadrada $S = [a_{ij}]$ é simétrica $S^T = S$.

$$S = S^{T} = \begin{bmatrix} 1 & 5 & 9 \\ 5 & 3 & 8 \\ 9 & 8 & 7 \end{bmatrix}$$

Observação: o produto de uma matriz quadrada A por sua transposta é uma matriz simétrica.

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & 0 \end{bmatrix} \therefore A^{T} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 3 \\ 2 & 2 & 0 \end{bmatrix}$$

$$\mathbf{S} = \mathbf{A} \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 3 \\ 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 8 & 6 & 0 \\ 6 & 4 & -3 \\ 0 & -3 & 0 \end{bmatrix}$$

7.5 MATRIZ ANTISSIMÉTRICA

Uma matriz quadrada $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ é antissimétrica $A^T = -A$. Exemplo:

$$A = \begin{bmatrix} 0 & 3 & 4 \\ -3 & 0 & -6 \\ -4 & 6 & 0 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 0 & -3 & -4 \\ 3 & 0 & 6 \\ 4 & -6 & 0 \end{bmatrix}$$
$$A^{T} = -A$$

Os elementos dispostos simetricamente em relação à diagonal principal são opostos e os elementos da diagonal principal são nulos.

7.6 MATRIZ ORTOGONAL

Uma matriz M cuja inversa coincide com a transposta é denominada matriz *ortogonal* $M^{-1} = M^{T}$

ou seja: $MM^T = M^TM = I$

$$M = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \qquad M^{T} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$MM^{T} = M^{T}M = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

7.7 MATRIZ TRIANGULAR

7.7.1SUPERIOR

Uma matriz A é dita matriz triangular *superior* se tem os elementos nulos para i>j.

$$A = \begin{bmatrix} 5 & 4 & 7 & 9 \\ 0 & 3 & -8 & 4 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

7.7.2 INFERIOR

Uma matriz A é dita matriz triangular *inferior* se tem os elementos nulos para i<j.

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 2 & 7 & 0 & 0 \\ -3 & 4 & 3 & 0 \\ 6 & -2 & 8 & 9 \end{bmatrix}$$

7.8 DETERMINANTES

Definição: é um número real associado a uma matriz quadrada. Notação: det A ou |A|

Ordem de um determinante: é a ordem da matriz a que o mesmo corresponde.

Termo principal: é o produto dos elementos da diagonal principal.

$$a_{11}, a_{22}, a_{33}, \dots, a_{mn}$$

Termo secundário: é o produto dos elementos da diagonal secundária.

$$a_{1n}, a_{2n-1}, a_{3n-2}, \dots, a_{n1}$$

7.8.1 DETERMINANTES DE 1ª ORDEM

O determinante da matriz $A = [a_{11}]$ será o próprio elemento a_{11} .

Exemplo: $A = [3] \Rightarrow \det A = 3$

7.8.2 DETERMINANTES DE 2ª ORDEM

O determinante associado à matriz A é o número real obtido pela diferença entre o termo principal e o termo secundário.

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Exemplo:

$$A = \begin{bmatrix} 7 & 5 \\ 2 & 4 \end{bmatrix}$$

$$\det A = \begin{bmatrix} 7 & 5 \\ 2 & 4 \end{bmatrix} = 7 \times 4 - 5 \times 2 = 28 - 10 = 18$$

7.8.3 DETERMINANTES DE 3ª ORDEM

Cálculo do determinante pela primeira linha:

$$\begin{bmatrix} a_{11} & -a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}; a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}; a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}; a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\det A = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

7.8.4 DETERMINANTES DE 4ª ORDEM

Cálculo do determinante pode ser desenvolvido por qualquer linha ou coluna, sempre respeitando a alternância de sinais que precedem o produto.

Exemplo:

$$\det A = \begin{vmatrix} 3 & 2 & 1 & 4 \\ 0 & 1 & 9 & 8 \\ 5 & 6 & 7 & 2 \\ 3 & 1 & 4 & 6 \end{vmatrix}$$

Desenvolvendo pela primeira linha:

$$\det A = 3 \begin{vmatrix} 1 & 9 & 8 \\ 6 & 7 & 2 \\ 1 & 4 & 6 \end{vmatrix} - 2 \begin{vmatrix} 5 & 7 & 2 \\ 3 & 4 & 6 \end{vmatrix} + 1 \begin{vmatrix} 5 & 6 & 2 \\ 3 & 1 & 6 \end{vmatrix} - 4 \begin{vmatrix} 5 & 6 & 7 \\ 3 & 1 & 4 \end{vmatrix}$$

7.8.5 PROPRIEDADES DOS DETERMINANTES

I) O determinante de A não se altera quando se trocam as linhas pelas colunas.

Exemplo:

$$\begin{vmatrix} 2 & 7 \\ 5 & 3 \end{vmatrix} = 2 \times 3 - 7 \times 5 = 6 - 35 = -29$$

$$\begin{vmatrix} 2 & 5 \\ 7 & 3 \end{vmatrix} = 2 \times 3 - 5 \times 7 = 6 - 35 = -29$$

II) O determinante é nulo se uma linha ou coluna da matriz A for nula.

$$\begin{vmatrix} 1 & 3 & 5 \\ 2 & -9 & 8 \\ 0 & 0 & 0 \end{vmatrix} = 0 \qquad \begin{vmatrix} 1 & 0 & 5 \\ 2 & 0 & 8 \\ 5 & 0 & 16 \end{vmatrix} = 0$$

III) Se a matriz A possui duas linhas ou duas colunas iguais ou proporcionais, o determinante é nulo.Exemplo:

$$\det A = \begin{vmatrix} 5 & 5 & 2 \\ 3 & 1 \\ 4 & 6 \end{vmatrix} = 5 \times \begin{vmatrix} 3 & 1 \\ 4 & 6 \end{vmatrix} - 5 \times \begin{vmatrix} 3 & 1 \\ 4 & 6 \end{vmatrix} + 2 \times \begin{vmatrix} 3 & 3 \\ 4 & 4 \end{vmatrix} = C1 = C2$$

$$= 5 \times (3 \times 6 - 1 \times 4) - 5 \times (3 \times 6 - 1 \times 4) + 2 \times (3 \times 4 - 4 \times 3) =$$

$$= 5 \times 14 - 5 \times 14 + 2 \times 0 = 70 - 70 + 0 = 0$$

$$\det A = \begin{vmatrix} 2 & 3 \\ 6 & 9 \end{vmatrix}$$

$$= 2 \times 9 - 3 \times 6 = 18 - 18 = 0$$
L2=3L1

IV) O determinante da matriz diagonal A (superior ou inferior) é igual ao termo principal, ou seja, é igual ao produto dos elementos da diagonal principal.

$$\det A = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = 1 \times \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} - 3 \begin{vmatrix} 0 & 3 \\ 0 & 2 \end{vmatrix} + 5 \times \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} =$$

$$= 1 \times (1 \times 2 - 3 \times 0) - 3 \times (0 \times 2 - 3 \times 0) + 5 \times (0 \times 0 - 1 \times 0) =$$

$$= 1 \times 1 \times 2 = 2$$

V) Trocando-se entre si duas linhas (ou colunas) da matriz A, o determinante muda de sinal, isto é, fica multiplicado por -1:

$$\det A = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 0 & 2 \\ 0 & 4 & 12 \end{vmatrix}$$

$$= 1 \times \begin{vmatrix} 0 & 2 \\ 4 & 12 \end{vmatrix} - 3 \begin{vmatrix} 0 & 2 \\ 0 & 12 \end{vmatrix} + 5 \times \begin{vmatrix} 0 & 0 \\ 0 & 4 \end{vmatrix} =$$

$$= 1 \times (0 \times 12 - 2 \times 4) - 3 \times (0 \times 12 - 2 \times 0) + 5 \times (0 \times 4 - 0 \times 0) =$$

$$= -8$$

$$\det A = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 4 & 12 \\ 0 & 0 & 2 \end{vmatrix}$$

$$=1 \times \begin{vmatrix} 4 & 12 \\ 0 & 2 \end{vmatrix} - 3 \begin{vmatrix} 0 & 12 \\ 0 & 2 \end{vmatrix} + 5 \times \begin{vmatrix} 0 & 4 \\ 0 & 0 \end{vmatrix} =$$

$$=1 \times (2 \times 4 - 0 \times 12) - 3 \times (0 \times 2 - 12 \times 0) + 5 \times (0 \times 0 - 4 \times 0) =$$

$$=8$$

$$\det A = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 0 & 2 \\ 0 & 4 & 12 \end{vmatrix} = -1 \begin{vmatrix} 1 & 3 & 5 \\ 0 & 4 & 12 \\ 0 & 0 & 2 \end{vmatrix}$$

VI) Quando se multiplicam por um número real todos os elementos de uma linha (ou de uma coluna) da matriz A, o determinante fica multiplicado por esse número.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Exemplo:

Dada a matriz A₁ que já calculamos o detA anteriormente:

$$\det A_1 = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 4 & 12 \\ 0 & 0 & 2 \end{vmatrix} = 8$$

Suponha que se deseja multiplicar a 2ª linha por ¼:

$$\det A_2 = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix} =$$

$$=1 \times \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} - 3 \begin{vmatrix} 0 & 3 \\ 0 & 2 \end{vmatrix} + 5 \times \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} =$$

$$=1 \times (1 \times 2 - 3 \times 0) - 3 \times (0 \times 2 - 3 \times 0) + 5 \times (0 \times 0 - 1 \times 0) =$$

$$=2$$

$$\det A_2 = k \det A_1 = \frac{1}{4} 8 = 2$$

Para não alterar o determinante da matriz então:

$$\det A_{1} = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 4 & 12 \\ 0 & 0 & 2 \end{vmatrix} = 4 \times \begin{vmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix}$$

Então escreveremos assim:

$$\det A_{1} = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 4 & 12 \\ 0 & 0 & 2 \end{vmatrix} \rightarrow \frac{1}{4}L_{2}$$

$$\det A_{1} = 4 \times \begin{vmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix}$$

VII) Um determinante não se altera quando se somam aos elementos de uma linha (coluna) na matriz A os elementos correspondentes de uma outra linha (coluna) previamente multiplicados por um número real diferente de zero.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 + ka_1 & b_2 + kb_1 & c_2 + kc_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Exemplo:

$$\det A = \begin{vmatrix} 1 & 2 & 4 \\ 4 & 10 & 12 \\ 5 & 7 & 9 \end{vmatrix}$$

Desenvolvendo esse determinante pela primeira linha: $\det A = -34$

Substituindo a 2^ª linha do detA pela soma de seus elementos com os elementos correspondentes da 1^ª linha previamente multiplicados por -4.

$$\det A = \begin{vmatrix} 1 & 2 & 4 \\ 4 & 10 & 12 \\ 5 & 7 & 9 \end{vmatrix} \rightarrow L_2 = L_2 + (-4)L_1$$

$$\det A = \begin{vmatrix} 1 & 2 & 4 \\ 0 & 2 & -4 \\ 5 & 7 & 9 \end{vmatrix} = -34$$

7.8.6 CÁLCULO DO DETERMINANTE POR TRIANGULAÇÃO

Utilizando a propriedade IV, podemos calcular o determinante de qualquer ordem, com operações adequadas para transformar a matriz A numa matriz triangular, tudo de acordo com as propriedades definidas anteriormente.

$$\det A = \begin{vmatrix} 2 & 1 & 7 \\ 1 & 3 & 2 \\ 5 & 3 & 4 \end{vmatrix}$$

O determinante calculado pelo desenvolvimento da $1^{\underline{a}}$ linha: $\det A = -66$

$$\det A = \begin{vmatrix} 2 & 1 & 7 \\ 1 & 3 & 2 \\ 5 & 3 & 4 \end{vmatrix} \rightarrow \frac{1}{2} L_{1}$$

$$\det A = 2 \times \begin{vmatrix} 1 & \frac{1}{2} & \frac{7}{2} \\ 1 & 3 & 2 \\ 5 & 3 & 4 \end{vmatrix} \rightarrow L_2 = L_2 + (-1)L_1$$

$$\det A = 2 \times \begin{vmatrix} 1 & \frac{1}{2} & \frac{7}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} \\ 5 & 3 & 4 \end{vmatrix} \rightarrow L_3 = L_3 + (-5)L_1$$

$$\det A = 2 \times \begin{vmatrix} 1 & \frac{1}{2} & \frac{7}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} \\ 0 & \frac{1}{2} & -\frac{27}{2} \end{vmatrix} \rightarrow \frac{2}{5}L_2$$

$$\begin{vmatrix} 1 & \frac{1}{2} & \frac{7}{2} \end{vmatrix}$$

$$\begin{vmatrix} 0 & \frac{1}{2} & -\frac{27}{2} \\ 1 & \frac{1}{2} & \frac{7}{2} \\ 0 & 1 & -\frac{6}{10} \\ 0 & \frac{1}{2} & -\frac{27}{2} \end{vmatrix} \rightarrow L_3 = L_3 + \left(-\frac{1}{2}\right)L_2$$

$$\det A = 2 \times \frac{5}{2} \begin{vmatrix} 1 & \frac{1}{2} & \frac{7}{2} \\ 0 & 1 & -\frac{6}{10} \\ 0 & 0 & -\frac{132}{10} \end{vmatrix}$$

$$\det A = 2 \times \frac{5}{2} \times 1 \times 1 \times \left(-\frac{132}{10} \right) = -66$$

7.9 MATRIZ INVERSA

Anteriormente viu-se que, dada uma matriz quadrada A, de ordem n, se existir uma matriz B que satisfaça à condição:

então B é a inversa de A e se representa por A⁻¹.

$$AA^{-1} = A^{-1}A = I$$

7.9.1 MATRIZ SINGULAR

É uma matriz quadrada cujo determinante é nulo.

$$\det A = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = 0$$

A matriz singular NÃO TEM INVERSA.

7.9.2MATRIZ NÃO-SINGULAR

É uma matriz quadrada cujo determinante é diferente de zero. Também chamada de matriz regular. Exemplo:

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 2 & 2 \\ 3 & 1 & 3 \end{bmatrix} \qquad \det A = \begin{vmatrix} 2 & 3 & 1 \\ 5 & 2 & 2 \\ 3 & 1 & 3 \end{vmatrix} = -20$$

A matriz não-singular SEMPRE TEM INVERSA.

7.9.3PROPRIEDADES DA MATRIZ INVERSA

- I) Se a matriz A admite inversa (detA≠0), esta é única.
- II) Se a matriz A é não-singular, sua inversa A-1 também é.
- III) A matriz unidade I é não-singular (detI=1) e é a sua própria inversa: $I=I^{-1}$.
- IV) Se a matriz A é não-singular, sua transposta A^{T} também é. A matriz inversa de $A^{T} = (A^{-1})^{T}$.
- V)Se as matrizes A e B são não-singulares e de mesma ordem, o produto AB é uma matriz não-singular. A matriz inversa de AB é a matriz B⁻¹A⁻¹

7.9.3PROPRIEDADES DA MATRIZ INVERSA

- I) Se a matriz A admite inversa (detA≠0), esta é única.
- II) Se a matriz A é não-singular, sua inversa A-1 também é.
- III) A matriz unidade I é não-singular (detI=1) e é a sua própria inversa: $I=I^{-1}$.
- IV) Se a matriz A é não-singular, sua transposta A^{T} também é. A matriz inversa de $A^{T} = (A^{-1})^{T}$.
- V)Se as matrizes A e B são não-singulares e de mesma ordem, o produto AB é uma matriz não-singular. A matriz inversa de AB é a matriz B⁻¹A⁻¹

7.9.4 OPERAÇÕES ELEMENTARES

Determinam-se *operações elementares* de uma matriz as seguintes operações:

- I)Permutação de duas linhas (ou de duas colunas).
- II) Multiplicação de todos os elementos de uma linha (ou coluna) por um número real diferente de zero.
- III)Substituição dos elementos de uma linha (coluna)pela soma deles com os elementos correspondentes de outra linha (colunas) previamente multiplicados por um número real diferente de zero.

7.9.5 EQUIVALÊNCIA DE MATRIZES

Dadas as matrizes A e B, de mesma ordem, diz-se que a matriz B é *equivalente* à uma matriz A, e se representa por B~A, se for possível transformar A em B por meio de uma sucessão finita de operações elementares. Como se vê, as operações elementares já foram vistas nas propriedades V, VI e VII dos determinantes. As propriedades VI e VII alteravam seu valor, daí a necessidade de efetuar compensações. Não é o caso, porém das matrizes: as operações elementares têm por objetivo transformar, por intermédio delas, uma matriz A em uma matriz B, equivalente a ela.

7.9.6 TRANSFORMAÇÃO DE UMA MATRIZ NA MATRIZ UNIDADE

Qualquer matriz quadrada A não-singular, pode ser transformada numa *equivalente* à I por meio de uma sucessão finita de operações elementares. Exemplo:

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix} \rightarrow L_{1} = \frac{1}{2}L_{1} *$$

$$A_{1} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix} \rightarrow L_{2} = L_{2} + (-4)L_{1}$$

$$A_{2} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & -4 \\ 2 & 5 & 3 \end{bmatrix} \rightarrow L_{3} = L_{3} + (-2)L_{1}$$

$$A_{3} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & -4 \\ 0 & 4 & 0 \end{bmatrix} \rightarrow L_{23} *$$

$$A_{4} = \begin{vmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 4 & 0 \\ 0 & 0 & -4 \end{vmatrix} \rightarrow L_{2} = \left(\frac{1}{4}\right)L_{2} *$$

$$A_{2} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & -4 \\ 2 & 5 & 3 \end{bmatrix} \rightarrow L_{3} = L_{3} + (-2)L_{1} \qquad A_{5} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{bmatrix} \rightarrow L_{3} = \left(-\frac{1}{4}\right)L_{3} *$$

$$A_6 = \begin{vmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \rightarrow L_1 = L_1 + \left(-\frac{1}{2}\right)L_2$$

$$A_7 = \begin{vmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \rightarrow L_1 = L_1 + \left(-\frac{3}{2}\right)L_3$$

$$A_8 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Tendo em vista que o $\det A_8=1$ e as operações com * alteram o $\det A$, as operações a seguir anularão as alterações e permitirão calcular :

$$\det A = 2 \times (-1) \times 4 \times (-4) \times 1 = 32$$

7.9.7 INVERSÃO DE UMA MATRIZ POR MÉTODO DE OPERAÇÕES ELEMENTARES

A mesma sucessão finita de operações que transformam a matriz A em I, transforma a matriz I na matriz A⁻¹. Para determinar a matriz inversa de A:

- a)coloca-se ao lado do matriz A a matriz I, separada por um traço vertical;
- b)transforma-se, por meio de operações elementares, a matriz A na matriz I, aplicando-se, simultaneamente, à matriz I, colocada ao lado da matriz A, as mesmas operações elementares.

Exemplo:

Determinar a inversa de A.

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 3 & 1 & 0 & 0 \\ 4 & 2 & 2 & 0 & 1 & 0 \\ 2 & 5 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow L_1 = \frac{1}{2}L_1 *$$

$$\begin{bmatrix} 1 & 1/2 & 3/2 | 1/2 & 0 & 0 \\ 4 & 2 & 2 & 0 & 1 & 0 \\ 2 & 5 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow L_2 = L_2 + (-4)L_1$$

$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & 0 & -4 & -2 & 1 & 0 \\ 2 & 5 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow L_3 = L_3 + (-2)L_1$$

$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & 0 & -4 & -2 & 1 & 0 \\ 0 & 4 & 0 & -1 & 0 & 1 \end{bmatrix} \rightarrow L_{23} *$$

$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & 4 & 0 & -1 & 0 & 1 \\ 0 & 0 & -4 & -2 & 1 & 0 \end{bmatrix} \rightarrow L_2 = \left(\frac{1}{4}\right) L_2 *$$

$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & 4 & 0 & -1 & 0 & 1 \\ 0 & 0 & -4 & -2 & 1 & 0 \end{bmatrix} \rightarrow L_2 = \left(\frac{1}{4}\right) L_2 *$$

$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & -1/4 & 0 & 1/4 \\ 0 & 0 & -4 & -2 & 1 & 0 \end{bmatrix} \rightarrow L_3 = \left(-\frac{1}{4}\right)L_3 *$$

$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & -1/4 & 0 & 1/4 \\ 0 & 0 & 1 & 1/2 & -1/4 & 0 \end{bmatrix} \rightarrow L_1 = L_1 + \left(-\frac{1}{2}\right)L_2$$

$$\begin{bmatrix} 1 & 0 & 3/2 & 5/8 & 0 & -1/8 \\ 0 & 1 & 0 & -1/4 & 0 & 1/4 \\ 0 & 0 & 1 & 1/2 & -1/4 & 0 \end{bmatrix} \rightarrow L_1 = L_1 + \left(-\frac{3}{2}\right)L_3$$

$$\begin{bmatrix} 1 & 0 & 0 & -1/8 & 3/8 & -1/8 \\ 0 & 1 & 0 & -1/4 & 0 & 1/4 \\ 0 & 0 & 1 & 1/2 & -1/4 & 0 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -1/8 & 3/8 & -1/8 \\ -1/4 & 0 & 1/4 \\ 1/2 & -1/4 & 0 \end{bmatrix}$$