San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Pushdown Automata

(Part 2)

Lecture 14 Day 14/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 14

- Feedback and Solution of Quiz 4 and Quiz +
- Summary of Lecture 13
- Lecture 14: Teaching ...
 - Pushdown Automata (part 2)

Solution and Feedback of Quiz 4 (Out of 22)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	19.84	22	17
02 (TR 4:30 PM)	18.27	22	10
03 (TR 6:00 PM)	18.9	22	14

Solution and Feedback of Quiz + (Out of 50)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	45.8	50	38
02 (TR 4:30 PM)	43.53	49	26
03 (TR 6:00 PM)	46.7	50	42

Summary of Lecture 13: We learned ...

PDAs

- NFAs are powerful enough to recognize just regular languages.
- To recognize non-regular languages, we need more powerful machines.
- We noticed that we needed writable memory.
- We added stack to NFAs and ...
- introduced PDAs to accept all or at least some of non-regular languages.
- PDA stands for ...

Pushdown Automata.

- PDAs have both deterministic (DPDA) and nondeterministic (NPDA) versions.
- We talked about the structure of PDAs.

- Condition for transition = ...
 - input symbol + top of stack
- We learned how to relax these conditions by λ.

Any question?

Summary of Lecture 13: We learned ...

PDAs

- PDAs halt when ...
 - ... the conditions for the next transition (zero transition) are not satisfied.

$$z \leftrightarrow h$$

 The conditions for a string being accepted by a process ...

$$(h \land c \land f) \leftrightarrow a$$

 The conditions for a string be rejected by a process ...

$$(\sim h \lor \sim c \lor \sim f) \leftrightarrow \sim a$$

- The content of the stack does not matter for accepting/rejecting.
- The stack alphabet and the input tape alphabet can be totally different.

Any question?

Design Examples

Example 14

Design a PDA to accept our famous language L = {aⁿbⁿ : n ≥ 0}.

Solution

- Strategy: read a's and push them in the stack regardless of top of the stack.
- When the first b is sensed, start popping a's to match them with b's.
- Continue popping a's until you are out of b.
- If end of stack is reached, means the number of a's and b's are equal, so, accept the string, otherwise, reject it.
 a, λ; a
 b, a; λ

Let's trace this solution for some strings.

DPDAs Operation Flowchart

Nondeterministic PDAs (NPDAs)

Nondeterministic PDAs

Determinism:

During any timeframe, there is no more than one transition.

Any violation of this makes a machine nondeterministic.

- What could be those violations?
 - λ-transition
 - When δ is multifunction

Let's explain each one in detail!

λ-transition in automata theory: The machine may unconditionally transit.

If we put λ in the condition places, we make a λ -transition.

This is our knowledge so far:

Automata Class	Transition Condition
DFA/NFA	Input Symbol
NPDA	Input Symbol + Top of stack

NPDAs λ-Transitions

 For example, in the following transition, conditions for transition are:

input symbol = 'a'

AND

top of the stack = 'b'

• So, if we put λ in the conditions places, we make a λ -transition.

NPDAs λ-Transitions

Definition

• For NPDAs, a transition is called λ -transition iff both input and pop parts of the label are λ .

Note

 If the machine initiates a new process starting from q_j, then after replicating the current configuration, it should initialize the stack by pushing w.

① NPDAs λ-Transitions

Note that w is a string and can be λ.

So, the λ-transition that is usually used in practice is:

 In this case, the machine does not need to do anything if it transits to q_i.

NPDAs: Multifunction Examples

Example 17

• Are the following transitions violations for determinism?

NPDAs: Multifunction Examples

Example 17 (cont'd)

• Are the following transitions violations for determinism?

NPDAs: Multifunction Examples

Example 17 (cont'd)

• Are the following transitions violations for determinism?

How NPDAs Behave If They Have Multiple Choices

We already know that:

All types of nondeterministic machines start parallel processing when they have multiple choices.

- In other words, for every possible choice, they create a new process and every process independently continues processing the string.
- The procedure of initiating new processes is exactly the same as NFAs.

How NPDAs Behave If They Have Multiple Choices

Procedure of Initiating New Processes

- It replicates its entire structure (transition graph + input tape + stack)
- 2. It initializes the new process with the current configuration.
- 3. The new process independently continues processing the rest of the input string.
- The only thing we need to know is:

What info do we need for the configuration?

NPDAs' Configuration

- 1. Current state of the transition graph
- Input string + Position of the read-head
- 3. The stack and its content

1

4.4. How NPDAs Accept/Reject Strings

We already know a process of NPDAs accepts a string iff:

$$(h \land c \land f) \leftrightarrow a$$

- But how about if we have multiple processes?
- The rule is the same as NFAs':
 Overall, NPDAs accept a string iff at least one process recognize it.
- And for rejection:

Overall, NPDAs reject a string iff all processes reject it.

An Interesting NPDA!

Consider the following NPDA:

- What does it do when we input a string?
- Check your answer with JFLAP.

Homework: PDAs Design

- Design a PDA for each of the following languages:
 - 1. $L = \{a^nb^{2n} : n \ge 0\}$ over $\Sigma = \{a, b\}$
 - 2. $L = \{a^n b^m c^{n+m} : n \ge 1, m \ge 1\}$ over $\Sigma = \{a, b, c\}$
 - 3. $L = \{w : n_a(w) > n_b(w)\}$ //number of a's > number of b's
 - 4. $L = \{ww^R : w \in \{a, b\}^*\}$
 - 5. $L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\}$ //number of a's = number of b's
 - 6. $L = \{1^n + 1^m = 1^{n+m} : n \ge 1, m \ge 1\}$ over $\Sigma = \{1, +, =\}$ (Unary addition)

6. Definitions

NPDAs Transition Function

- In this section, we are going to formally (mathematically) define the NPDAs.
- What is the important part of this definition?
- As usual, the transition function.

- So, let's take some examples on transition functions.
- And try to figure out what the transition functions look like.
- Note that NPDAs' definition is more general than DPDAs'.
 - In other words, we can use NPDAs' definition to describe DPDAs.

Transition Function: DFAs, NFAs, NPDAs

Class	Transition	Sub-Rule Example Transition Function
DFAs	q_1 q_2	$\delta (q_1, a) = q_2$ $\delta : Q \times \Sigma \rightarrow Q$
NFAs	q_1 b q_2 λ q_3	$\delta (q_1, b) = \{q_2, q_3\}$ $\delta (q_2, a) = \{\}$ $\delta : Q \times \Sigma \rightarrow 2^Q$
NPDAs	q_1 q_2 q_3	$δ (q_1, a, x) = ???$ $δ: ???$

NPDAs Transition Function: Examples

Example 18

Write the sub-rule of the following transition.

Solution

$$\delta (q_2, a, x) = \{(q_5, yx)\}$$

 $\delta (q_2, b, x) = \{\}$

Example 19

Write the sub-rules of the following transition.

Solution

$$\delta (q_1, \lambda, c) = \{(q_2, yx)\}$$

$$\delta (q_1, a, \lambda) = \{(q_3, \lambda)\}$$

NPDAs Transition Function: Examples

Example 20

Write the sub-rule of the following transition.

Solution

- The condition for transitions for both edges are the same.
- Therefore, we need only one sub-rule.

$$\delta(q_1, a, x) = \{(q_2, yx), (q_3, \lambda)\}$$

Transition Function: DFAs, NFAs, NPDAs

Class	Transition	Sub-Rule Example Transition Function
DFAs	q_1 q_2	$\delta (q_1, a) = q_2$ $\delta : Q \times \Sigma \rightarrow Q$
NFAs	q_1 b q_2 λ q_3	$\delta (q_1, b) = \{q_2, q_3\}$ $\delta (q_2, a) = \{\}$ $\delta : Q \times \Sigma \rightarrow 2^Q$
NPDAs	q_1 q_2 q_1 q_3	$\delta (q_1, a, x) = \{(q_2, yx), (q_3, \lambda)\}$ $\delta: ???$

Transition Function: DFAs, NFAs, NPDAs

Class	Transition	Sub-Rule Example Transition Function
DFAs	q_1 q_2	$\delta (q_1, a) = q_2$ $\delta : Q \times \Sigma \rightarrow Q$
NFAs	q_1 b q_2 λ q_3	$\delta (q_1, b) = \{q_2, q_3\}$ $\delta (q_2, a) = \{\}$ $\delta : Q \times \Sigma \rightarrow 2^Q$
NPDAs	q_1 q_2 q_1 q_3	δ (q ₁ , a, x) = {(q ₂ , yx), (q ₃ , λ)} δ: Q x (Σ U {λ}) x (Γ U {λ}) \rightarrow 2 ^{Q x Γ*}

6. Formal Definition of NPDAs

• An NPDA M is defined by the septuple (7-tuple):

$$M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$

- Where:
 - Q is a finite and nonempty set of states of the transition graph.
 - $-\Sigma$ is a finite and nonempty set of symbols called input alphabet.
 - Γ is a finite and nonempty set of symbols called stack alphabet.
 - δ is called transition function and is defined as:

δ: Q x (Σ U {λ}) x (Γ U {λ}) →
$$2^{Q \times \Gamma^*}$$
 δ is total function.

- $-q_0 \in Q$ is the initial state of the transition graph.
- Z ∈ Γ is a special symbol called stack start symbol.
- $F \subseteq Q$ is the set of accepting states of the transition graph.

6. Formal Definition of NPDAs

7. NPDAs vs NFAs

- Let's assume that we've constructed an NFA for an arbitrary language L.
- Can we always construct an NPDA for L?
- Yes! Why?
- We should prove that we can always convert an NFA's definition to an NPDA's definition.

Let's show this through an example first.

Example 21

Convert the following NFA to an NPDA.

$$\delta : \begin{cases} \delta(q_0, a) = \{q_0\} \\ \delta(q_0, b) = \{q_1\} \end{cases}$$

NFA

NPDA

Example 21 (cont'd)

Convert the following NFA to an NPDA.

$$\delta : \begin{cases} \delta(q_0, a) = \{q_0\} \\ \delta(q_0, b) = \{q_1\} \end{cases}$$

δ:
$$\begin{cases} \delta(q_0, a, \lambda) = \{(q_0, \lambda)\} \\ \delta(q_0, b, \lambda) = \{(q_1, \lambda)\} \end{cases}$$

NFA

NPDA

Homework

Convert the following NFA to an NPDA.

NPDA

NFAs Can be Converted to NPDAs

	NFA	NPDA
States	$Q = \{q_0, q_1, q_2\}$	$Q = \{q_0, q_1, q_2\}$
Alphabet	$\Sigma = \{a, b\}$	$\Sigma = \{a, b\}$
Stack alphabet	N/A	Γ = {Z}
Sub-rule	$\delta (q_i, a) = \{q_j\}$	$\delta (q_i, x, \lambda) = \{(q_j, \lambda)\}$
Initial state	q_0	q_0
Stack start symbol	N/A	Z
Final states	$F = \{q_1\}$	$F = \{q_1\}$

 As the previous example showed, there is a simple algorithm to convert an NFA to an NPDA.

Algorithm: Converting NFAs' Formal Definition to NPDAs'

 Change all NFAs' sub-rules to NPDAs format by adding λ in the pop and push parts. i.e.:

$$\delta (q_i, x) = \{q_j, q_{j+1}, \dots, q_{j+n}\}$$
changes to

$$\delta(q_i, x, \lambda) = \{(q_j, \lambda), (q_{j+1}, \lambda), ..., (q_{j+n}, \lambda)\}$$

- Set Γ = {Z}.
- Set the stack start symbol as Z.
- The rest of the definitions, (i.e. Q, Σ , q_0 , F) are the same.

- Let's assume that we've constructed an NPDA for an arbitrary language L.
- Can we always construct an NFA for L?
- No! Why?
- There is no way to simulate the stack operations by NFAs!
- It means, there is no way to simulate a read/write memory like stack with a read-only memory.
- Moreover, we know at least the following languages for which we can construct NPDAs but it is impossible to construct NFAs.

```
- L = {a<sup>n</sup>b<sup>n</sup> : n ≥ 0}
- L = {ww<sup>R</sup> : w ∈ Σ*}
```

 Let's summarize our knowledge and figure out what would be the next step.

(1)

Machines and Languages Association

- The set of languages that NFAs recognize is a proper subset of the set of languages that PDAs recognize.
 - We'll explain later what the "context free" meaning is.
- So, PDAs are more powerful than NFAs.

PDAs for More Complex Languages

- Design a PDA for the following language:
- L = $\{a^nb^nc^n : n \ge 1\}$ over Σ = $\{a, b, c\}$

Solution

- Struggling?!
- After some struggling, you realize that you cannot construct any NPDA for these language! Why?
- You'd get the same problem if you try to construct a PDA for the following language:
- L = {ww : $w \in \Sigma^*$ } over $\Sigma = \{a, b\}$

PDAs for More Complex Languages

- The reason is ...
 - ... we need more control on the memory.
 - ... stack is not so flexible in storing and manipulating data.
 - ... if you access the older data, you'd lose newer data.

8. What is the Next Step?

 The next step is to define a new class of machines that recognizes all or part of the remaining non-regular languages.

Project (Optional)

- Design a new class of machines like PDAs but use "Queue" for the memory.
- Pick a name for your machine.
- Discuss what kind of languages it can recognize.
- Compare its power with PDAs'.

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790