THE HALF WAVE RECTIFIER

❖ Theoretical Summary

A rectifier is a device that converts the sinusoidal alternating current (AC) into somewhat constant direct current (DC). Half wave rectifiers converts only one half-cycle of the AC voltage (positive in our case) and will block the other half.

The half wave rectifier is connected to a sinusoidal AC voltage source of 220V RMS and 50Hz through a step-down transformer, that steps the voltage down to \approx 13.3V RMS (\approx 37.8V peak to peak).

Components

- a. Tr Step-Down Transformer
- used to lower the voltage between the 2 circuits, while also increasing the current by the same factor
- N_1 nr. of coil turns from I
- N_2 nr. of coil turns from II (< N_1)
- V_{1m} voltage amplitude of I
- V_{2m} voltage amplitude of II
- $n = \frac{N1}{N2} = \frac{V_{1m}}{V_{2m}}$ transformation ratio
 - b. D Diode
- constitutes the rectifier of the circuit
- allows current to pass only in one direction, the positive half of the input sinusoidal wave
 - c. C Capacitor
- makes up the low-pass filter
- $\,$ used to smoothen the pulsating DC waveform
 - d. R_L Load Resistor

Values

- $R_L = 5k\Omega$
- C cases:
 - i. No capacitor
 - ii. 1 capacitor $C = 22\mu F$
 - iii. 2 capacitors in parallel $C = 44\mu F$
 - iv. 3 capacitors in parallel $C = 66\mu F$

٧.

Formulas

$$-Vm = \frac{Vpp}{2}$$

-
$$T=rac{1}{f}$$

- $V_{LDC}=rac{V_{2m}}{\pi}$ (no capacitor)
- $\Delta v_L=rac{V_{2m}}{C\cdot R\cdot f}$, $V_{LDC}=V_{2m}-rac{\Delta v_L}{2}$ (with capacitor)

Experimental Procedure

- make the circuit above
- using a multimeter (VAC domain), it is measured the voltage given by the transformer secondary -> amplitude ($A = V_{2m}$) & time period (T)
- For the 4 cases: SW open, SW closed(1C, 2C & 3C):
 - o output waveform v_L(t) is observed
 - \circ measurements are took for the DC component of the output voltage V_{LDC} and the ripple Δv_L

❖ Measurements – taken from screenshots of oscilloscope(lab 3)

$$- f = 50Hz => T = 20 ms = 0.02s$$

■ Case I – No C

$$V_{2pp} = 37.8V = V_{2m} = \frac{37.8}{2} = 18.9V$$

$$V_{LDC} = 5.80V$$

■ Case II - 1 C

$$V_{2pp} = 37.4V => V_{2m} = \frac{37.4}{2} = 18.7V$$

$$\Delta v_L = 1.88V$$
$$V_{LDC} = 17.76V$$

■ Case III – 2 C

$$V_{2pp} = 37.4V => V_{2m} = \frac{37.4}{2} = 18.7V$$

$$\Delta v_L = 1.1V$$

$$V_{LDC} = 18.15V$$

■ Case IV - 3 C

$$V_{2pp} = 37.4V => V_{2m} = \frac{37.4}{2} = 18.7V$$

$$\Delta v_L = 0.74V$$

$$V_{LDC} = 18.33V$$

Redresor monoalternanță

Fără filtru capacitiv

Redresor monoalternanță

Cu filtru capacitiv – doar ondulația $C=22 \mu F$

Redresor monoalternanță

Cu filtru capacitiv – doar ondulația $C=44~\mu F$

CASE IV

Redresor monoalternanță

Cu filtru capacitiv – doar ondulația C= 66 μF

Calculations

-
$$V_{2pp} = 37.8V = V_{2m} = \frac{37.8}{2} = 18.9V$$

$$- f = 50Hz => T = 20 ms = 0.02s$$

■ Case I – No C

$$V_{LDC} = \frac{18.9}{\pi} = 6.02V$$

■ Case II – 1 C

$$\Delta v_L = \frac{18.9}{22 \cdot 5 \cdot 50 \cdot 10^{-3}} = 3.44V$$

$$V_{LDC} = 18.9 - \frac{3.44}{2} = 17.18V$$

■ Case III – 2 C

$$\Delta v_L = \frac{18.9}{44 \cdot 5 \cdot 50 \cdot 10^{-3}} = 1.72V$$

$$V_{LDC} = 18.9 - \frac{1.72}{2} = 18.04V$$

■ Case IV – 3 C

$$\Delta v_L = \frac{18.9}{66 \cdot 5 \cdot 50 \cdot 10^{-3}} = 1.15V$$

$$V_{LDC} = 18.9 - \frac{1.15}{2} = 18.33V$$

❖ Simulations

❖ Tables

Experimental

CAPACITORS	V_{2m}	Δv_L	V_{LDC}
0	18.9	-	5.80
1	18.7	1.88	17.76
2	18.7	1.11	18.15
3	18.7	0.74	18.33

Calculation

CAPACITORS	Δv_L	V_{LDC}
0	-	6.02
1	3.44	17.18
2	1.72	18.04
3	1.15	18.33

***** Conclusion

Following the experiments & calculations, we can conclude that with the increase in capacitors, the output DC voltage also increases and the ripple decreases, smoothening the DC waveform.