

Week HW 7, KIN ENERGY NEWTON EULER

Theorem on the Change of Kinetic Energy of a System Newton-Euler equation

Task 1

A step ladder ABC, hinged at B, rests on a smooth horizontal floor, as shown on the figure. AB = BC = 2l.

The centres of gravity are at the midpoints D and E of the rods. The radius of gyration of each part of the ladder about the axis passing through the center of gravity is p.

The distance between B and the floor is h. At the certain moment the ladder collapses due to the rupture of a ling FG between the two halves of the ladder. Neglecting the effect of friction in the hinge, determine:

- 1. the velocity v_1 of the point B at the moment, when it hits the floor;
- 2. the velocity v_2 of point B at the moment, when it is at a distance $\frac{1}{2}h$ from the floor.

Answer:
$$v_1 = 2l\sqrt{\frac{gh}{l^2 + p^2}}, v_2 = \frac{1}{2}\sqrt{gh\frac{16l^2 - h^2}{2(l^2 + p^2)}}.$$

Task 1

Task 2 (Coding)

System description

You have a a cart pole. Body 1 is a slider, mass m_1 , it moves without friction.

AB is a massless rod with length I. Body 2 with mass m_2 is connected to AB in point B.

It's a 2 DoF system. You should take x and ϕ as a representation of this system. The origin of each coordinate should be the same as on the picture.

Initial conditions:

1.
$$x = 0$$
, $\phi = 10^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, $t = 0$;

2.
$$x = 0.5$$
, $\phi = 45^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, $t = 0$;

3.
$$x = 0.5$$
, $\phi = -135^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, $t = 0$;

Parameters: $m_1 = 5 \text{ kg}$, $m_2 = 1 \text{ kg}$, I = 1 m.

Task 2

Tasks description

You should solve this problem using:

- Newton-Euler method;
- 2. Model-oriented design applications (SimInTech, or MATLAB Simulink).

Tasks

- 1. To derive a differential equation of the motion, using **Newton-Euler** approach.
- 2. To create plots x(t), $\phi(t)$, $\dot{x}(t)$, $\dot{\phi}(t)$.
- 3. To make a simulation of this system. Show velocities and accelerations for 1, 2 bodies (coding approach).

Artifacts

- 1. Report in .pdf or in .md.
- 2. For Newton-Euler method code, GIFs, plots.
- 3. For SimInTech .prt, for Simulink .slx file which contains a description of the system, GIFs, plots.

