subgraph2vec						
Article	Data	Data	Comments or Questions			
Narayanan A ,	Aim:	Key results:	When subgraph of			
Chandramohan M ,	Learning latent representations	Benchmark Datasets	degree 0 are			
Chen L , et al.	of rooted subgraphs from large	$\textbf{Table 3: Average Accuracy } (\pm \ \text{std dev.}) \ \ \text{for subgraph 2vec and state-of-the-art graph kernels on benchmark graph classification datasets}$	considered,			
subgraph2vec:	graphs.		subgraph2vec provides			
Learning		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	node embeddings.			
Distributed	Contributions:	Clone Detection	How can we get the			
Representations of	 Propose subgraph2vec. 	Table 5: Clone Detection - Results	initial labels for each			
Rooted Sub-graphs	 Develop a modified 	$ \begin{array}{ c c c c c c } \hline Kernel & WL [6] & Deep WL_{YV} [7] & subgraph2vec \\ \hline Pre-training duration & - & 421.7 s & 409.28 s \\ & ARI & 0.67 & 0.71 & 0.88 \\ \hline \end{array} $	node? ✓			
from Large	version of the skipgram	ARI 0.07 0.71 0.88	What is the Deep WL			
Graphs[J]. 2016.	language model.	Malware Detection	kernel? ✓			
	Discuss how	Table 7: Malware Detection - Results				
	subgraph2vec's	Classifier WL [6] Deep WL _{YV} [7] subgraph2vec				
	representation learning	*				
	technique would help to	Background:				
	build the deep learning	language model				
	variant of WL kernel.					
	A 12 (2	Methods:				
	Applications:	Generate rooted subgraphs: WL Relabeling Process				
	 graph classification and 	Embeddings of those subgraphs: Radial Skip Gram Model				
	clustering tasks	Approximate the probability distribution: Negative Sampling				
	 code clone detection 	for each $sg_{cont} \in context_v^{(d)}$ do				
	 malware detection 	$ > \qquad \qquad J(\Phi) = -\log_{v} \Pr\left(sg_{cont} \Phi(sg_{v}^{(d)})\right) $				

graph matching						
Article	Data	Data	Comments or Questions			
Sussman Daniel,	Aim:	Key results:	● 三种padding方法没看明			
Park Youngser,	Finding the vertex correspondence between	Finding Kenyon Cells in a Drosophila Connectome	白。。			
Priebe Carey E, et	two noisy graphs with different number of					
al. Matched Filters	vertices where the smaller graph is still	10 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -				
for Noisy Induced	large.	20 40 00 80				
Subgraph	Contributions:	(b) Drosophila right Kenyon cells (a) and (b) show adjacency matri- ces for the two Drosphila connec-				
Detection 2019,	● Proposed a number of padding	tomes. Dark pixels correspond to a directed edge being present. The first 100 rows/columns of the left hemi-				
	methods to transform the noisy	sphere are the K-cells. Panel (c) shows the number of times that each node in the first head of the cell of the right hemisphere was matched to each node in the left hemisphere.				
	subgraph detection problem into a	(a) Drosophila left hemisphere (c) matched pair frequencies Fig. 5. Connectomes and matching analysis of the Drosophila connectomes.				
	graph matching problem.					
		Background:				
	Applications:	Subgraph Isomorphism				
	• determining whether a particular	Graph Matching Algorithms				
	activity pattern is present in a social	Statistical Models				
	network					
	detecting certain shapes in an image	Methods:				
	 discovering motifs in brain networks 	Padding Approaches: Naive Padding, Centered Padding, Oracle Padding				
		Graph Matching Approaches: FAQ algorithm				

Ontology matching						
Article	Data	Data	Comments or Questions			
Mohammadi M ,	Aim:	Key results:	● 需要补一补概率论的假设			
Hofman W , Tan Y	This paper examines the alignment	Comparison of two systems	检验部分			
H . A Comparative Study of Ontology	systems using statistical inference since averaging is statistically unsafe and	TABLE 1 The Tests for Comparison of Two Systems over N Datasets				
Matching Systems	inappropriate.	Test Presumptions Applicability				
via Inferential	Contributions:	Paired t Normality of differences $N>30$ Signed-rank symmetry of differences w.r.t median $N>10$ McNemar - $N<10$				
Statistics[J]. IEEE	It is the first paper considering the	Applicability is roughly the situation that test can be used and its results are				
Transactions on	statistical inference for	valid and differences refer to the differences in performance scores.				
Knowledge and	comparison of two or more	Comparison of multiple systems				
Data Engineering,	ontology matching systems.	TABLE 4 The Tests for Comparison of Multiple Systems over N Datasets				
2019, 31(4):615-	Applications:	Test Presumptions Applicability				
628.	The statistical methods are then	ANOVA t Sphericity N > 30 Friedman - N > 10				
	applied to benchmark and	Quade - N < 10				
	multifarm tracks from the	Applicability is roughly the situation that test results are valid.				
	ontology matching evaluation					
	initiative (OAEI) 2015 and their	Background:				
	results are reported and	Ontology matching				
	visualized by critical difference	Hypothesis testing				
	diagrams.	Methods:				
		Comparison of two systems: Paired t-Test, Wilcoxon Signed-Rank Test, McNemar's				
		Test				
		Comparison of multiple systems: Omnibus Tests, Post-Hoc Analysis				