Testes t para comparação de médias de dois grupos independentes

Acadêmicas do curso de Zootecnia -Aline Cristina Berbet Lopes Amanda da Cruz Leinioski Larissa Ceccon

Teste de Hipóteses

• Os testes de hipótese constituem uma forma de inferência estatística. Hipóteses são afirmações sobre parâmetros populacionais e são testadas para ver se são consideradas verdadeiras ou não.

Teste t de Student

- É um teste de hipótese que usa conceitos estatísticos para rejeitar ou não uma hipótese nula quando a estatística de teste (*t*) segue uma distribuição t de Student.
- Teste t pode ser conduzido para:
- Comparar uma amostra com uma população
- Comparar duas amostras pareadas
- Comparar duas amostras independentes
- Este trabalho tem como objetivo explicar e exemplificar a comparação de duas amostras independentes.

Por que utilizar a comparação de duas amostras independentes?

- Este teste se aplica a planos amostrais onde se deseja comparar dois grupos independentes. Esses grupos podem ter sido formados de duas maneiras diferentes:
- a) Extraiu-se uma amostra da população A e outra amostra da população B;
- b) Indivíduos da mesma população foram alocados aleatoriamente a um dos dois tratamentos em estudo.

Quando utilizar?

- Quando o objetivo é comparar duas populações quanto a uma variável quantitativa, é muito comum que os pesquisadores não conheçam os parâmetros de nenhuma delas, isto é, sejam desconhecidas as médias (μ) e também os desvios padrão (σ) populacionais;
- Dessa forma, muitos estudos biológicos são realizados com duas amostras independentes de indivíduos, denominadas grupo experimental e grupo controle, respectivamente.

• Suponha duas populações distintas, compostas por um número grande de indivíduos.

• Seja X uma variável aleatória (contínua) de interesse...

Na população 1, a média de $X \notin \mu_1$

Na população 2, a média de $X \notin \mu_2$

- O objetivo seria comparar as médias populacionais μ1 e μ2.
- O teste de hipótese seria: H_0 : $\mu_1 = \mu_2$

$$H_1$$
: $\mu_1 \neq \mu_2$

• Um estudo objetivou analisar a associação entre diversas variáveis com a síndrome metabólica (SM) em indivíduos de origem japonesa, com mais de 30 anos de idade, residentes em um município do interior de São Paulo.

População 1: indivíduos comSM

População 2: indivíduos sem SM

Pergunta-se...

- Indivíduos com SM e sem SM possuem, em média, valores iguais para a pressão arterial sistólica (PAS)?
 - μ_1 é a média da PAS na população 1;
 - μ_2 é a média da PAS na população 2.
- Testando as hipóteses: H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$
- Lembrando que σ₁é o desvio padrão da PAS na população 1, e σ₂
 é o desvio padrão da PAS na população 2;
- Pressupondo que $\sigma = \sigma_1 = \sigma_2$.

• De cada uma dessas populações retira-se uma amostra de tamanho n.

❖ População 1:amostra detamanho n₁

❖ População 2: amostra de tamanho n₂

 Se a variável de interesse segue uma distribuição próxima de uma curva normal em ambas populações,

$$T = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

• Segue uma distribuição t Student com n₁+ n₂-2 graus de liberdade.

• Se a hipótese
$$H_0$$
 é verdadeira $T_0 = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$

• Portanto, testamos H_0 encontrando um valor t_0 para T_0 , com base em amostras de tamanho n_1 e n_2 retiradas das respectivas

populações
$$t_0 = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{S_p^2 (\frac{1}{n_1} + \frac{1}{n_2})}}$$

- Mas o que seria S_p^2 ? Estamos pressupondo que a variável de interesse tem o desvio padrão igual nas duas populações.
- Entretanto, isso não significa que os desvios padrão S_1 e S_2 que encontraremos nas amostras serão iguais.
- Assim temos que S_p^2 é uma estimativa da variância populacional σ^2 .
- S_p^2 é uma média entre as variâncias amostrais S_1^2 e S_2^2 , ponderada pelos respectivos graus de liberdade $n_1 1$ e $n_2 1$.

• Então teremos
$$S_p^2 = \frac{(n_1 - 1)S_p^2 + (n_2 - 1)S_p^2}{n_1 + n_2 - 2}$$
.

• Lembrando que se H_0 é verdadeira, t_0 é um valor de uma variável aleatória que segue uma distribuição t Student com $n_1 + n_2 - 2$ graus de liberdade.

•
$$t_0 = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
 em que $S_p^2 = \frac{(n_1 - 1)S_p^2 + (n_2 - 1)S_p^2}{n_1 + n_2 - 2}$

- Seja o tamanho da amostra da população 1 = 52;
 população 2 = 50.
- Seja um nível de significância α = 0,05;
- 1- α =0,95.
- O número de graus de liberdade é 52+50-2=100.

Na tabela...

		-		Probabilidade p				
gl	0,60	0,70	0,75	0,80	0,85	0,90	0,925	0,95
1	1,376	1,963	2,414	3,078	4,165	6,314	8,449	12,706
2	1,061	1,386	1,604	1,886	2,282	2,920	3,443	4,303
3	0,978	1,250	1,423	1,638	1,924	2,353	2,681	3,182
4	0,941	1,190	1,344	1,533	1,778	2,132	2,392	2,776
5	0,920	1,156	1,301	1,476	1,699	2,015	2,242	2,571
6	0,906	1,134	1,273	1,440	1,650	1,943	2,151	2,447
7.	0,896	1,119	1,254	1,415	1,617	1,895	2,090	2,365
8	0,889	1,108	1,240	1,397	1,592	1,860	2,046	2,306
9	0,883	1,100	1,230	1,383	1,574	1,833	2,013	2,262
10	0,879	1,093	1,221	1,372	1,559	1,812	1,987	2,228
11	0,876	1,088	1,214	1,363	1,548	1,796	1,966	2,201
12	0,873	1,083	1,209	1,356	1,538	1,782	1,949	2,179
13	0,870	1,079	1,204	1,350	1,530	1,771	1,935	2,160
14	0,868	1,076	1,200	1,345	1,523	1,761	1,923	2,145
15	0,866	1,074	1,197	1,341	1,517	1,753	1,913	2,131
16	0,865	1,071	1,194	1,337	1,512	1,746	1,904	2,120
17	0,863	1,069	1,191	1,333	1,508	1,740	1,897	2,110
18	0,862	1,067	1,189	1,330	1,504	1,734	1,890	2,101
19	0,861	1,066	1,187	1,328	1,500	1,729	1,884	2,093
20	0,860	1,064	1,185	1,325	1,497	1,725	1,878	2,086
21	0,859	1,063	1,183	1,323	1,494	1,721	1,873	2,080
	100		. 101	200		100	.01	
99	0,845	1,042	1,157	1,290	1,451	1,660	1,799	1,984
100	0,845	1,042	1,157	1,290	1,451	1,660	1,799	1,984
110	0.045	1.041	1156	1 200	1.450	1 650	1 707	1.093

• Não se rejeita H_0 se encontrar um valor de $t_0 > -1,984$

$$t_0 < 1,984$$

$$n_1$$
=52 n_2 =50 \bar{x}_1 =142,1 mmHg \bar{x}_2 = 121,6 mmHg S_1 = 23,0 mmHg S_2 = 21,3 mmHg $S_p^2 = \frac{(52-1)23,0^2+(50-1)21,3^2}{52+50-2} = 492,0981$

$$t_0 = \frac{142,1 - 121,6}{\sqrt{492,0981 \left(\frac{1}{52} + \frac{1}{50}\right)}} \cong 4,67$$

- Como $t_0 > t^*$, rejeita-se H_0 para um nível de significância de 0,05.
- Assim temos evidências de que na população de indivíduos de origem japonesa, com mais de 30 anos e residentes no município do interior de São Paulo, com SM e sem SM possuem médias diferentes de PAS.

• Num estudo comparativo do tempo médio de adaptação, uma amostra aleatória, de 50 homens e 50 mulheres de um grande complexo industrial, produziu os seguintes resultados:

	Homens	Mulheres	
Média	3,2 anos	3,7 anos	
Desvio padrão	0,8 anos	0,9 anos	

• Que conclusões você poderia tirar para a população dessa indústria? Quais suposições você deve fazer?

- Queremos determinar se há diferença entre o tempo de adaptação de homens e mulheres. Devemos supor que o tempo de adaptação tem distribuição Normal. A amostra foi colhida de maneira independente. As variâncias populacionais, ainda que desconhecidas, sejam as mesmas.
- Queremos testar a hipótese que as médias são iguais, isto é,
 H0:μH=μM, ou equivalentemente, H0:μH μM = 0. Note que as suposições acima podem (ou melhor, devem) todas ser verificadas através de testes de hipótese específicos.

• O teste T com variâncias iguais mas desconhecidas é baseado na seguinte estatística:

$$T = rac{ar{X}_H - ar{X}_M}{S_p \sqrt{rac{1}{n_H} + rac{1}{n_M}}} \sim t_{(n_H + n_M - 2)}$$

• Onde Sp, o desvio padrão comum é dado por:

$$S_p^2 = \frac{(n_H - 1)S_H^2 + (n_M - 1)S_M^2}{n_H + n_M - 2}$$

• No problema apresentado, sp = 0.8514

A estatística observada foi:

$$t_0 = \frac{3.2 - 3.7}{0.8514\sqrt{\frac{1}{50} + \frac{1}{50}}} = -2.9363$$

• Note que a região crítica agora é dada por:

$$RC(0.05) = \{ [T < -1.984] \cup [T > 1.984] \}$$

onde q = -1.984 é o ponto tal que P([T < q]) = 0.025, etc.

• E como −2.9363 ∈ RC, rejeitamos a hipótese nula. Ou seja, há evidência em favor da diferença entre o tempo médio de adaptação dos homens e das mulheres.

Referências

- Comparação entre duas amostras independentes. Disponível em PDF: http://docente.lages.ifsc.edu.br/liciana.garcia/MaterialDidatico/Aulas%20pdf%20Biotec/Aula%206_Comparacao%20entre%20duas%20amostras%20indep.pdf
- Exemplo de exercício: níveis séricos de frutosamina. Disponível em: http://leg.ufpr.br/~shimakur/CE055/node87.html
- Teste de hipóteses Comparação entre duas médias populacionais Amostras independentes. Disponível em: https://www.youtube.com/watch?v=ZsAd2QND_wc
- Teste *t* de Student. Disponível em PDF: http://sistemas.eeferp.usp.br/myron/arquivos/2540410/e8fc3b72347400901a275 0cb214bf4e0.pdf
- Estatística Não-Paramétrica. Disponível em PDF: http://people.ufpr.br/~prbg/public_html/ce050/apostcap4a.PDF

Referências

- Teste de Hipótese. Disponível em: http://stat2.med.up.pt/cursop/print_script.php3?capitulo=testet&numero=3&tit ulo=Testes%20de%20Hip%F3tese%20Teste%20T
- Bioestatística. Disponível em: http://www.pucrs.br/famat/helio/Caderno_Bio_puc
- Instituto de Matemática, Estatística e Computação Científica Aula p12. Disponível em PDF: http://www.ime.unicamp.br/~hildete/Aula_p12.pdf

obrigada!!

(GOO)