Previsione Serie Storica di Monossido di Carbonio

Lorgna Lorenzo 829776

Contenuti

Introduzione

Obiettivi e descrizione del dataset

01

Preprocessing e Analisi esplorativa

Sistemazione feature, Missing values, Divisione in train e test

Modelli sviluppati

ARIMA, UCM, MACHINE LEARNING 03

Conclusioni e Previsioni

Conclusioni sul progetto

Introduzione

Introduzione

Obiettivo

Il progetto si pone come obiettivo l'implementazione di diversi algoritmi con lo scopo di effettuare una previsione di valori di monossido di carbonio (CO)

- ARIMA
- UCM
- MACHINE LEARNING

Introduzione

Dataset

Il dataset fornito rappresenta una **serie storica univariata** relativa a misurazioni orarie di CO. I dati sono organizzati nelle seguenti 3 colonne:

- Date
- Hour
- CO

I dati a disposizione si riferiscono al periodo: 10 marzo 2004 00:00 - 28 febbraio 2005 23:00

L'intento è prevedere il mese di marzo 2005

Preprocessing e Analisi esplorativa

Preprocessing

Valori duplicati

Si è verificata la presenza o meno di record duplicati evidenziandone l'assenza

Valori mancanti

Sono presenti **365 valori mancanti** per la feature CO. I valori mancanti sono stati sostituti con una **media** dei due valori precedenti e i due valori successivi, presi alla medesima ora e giorno della settimana

Sistemazione feature

Le due feature **Date e Hour** sono state accorpate. Sono state generate altre fetaure quali ad esempio: **dayofweek**, **month**, **year** e **dayofmonth**

Train e Test split Il dataset è stato diviso in train e test, come mostrato. Si è deciso di considerare come **test set** febbraio 2005, l'ultimo mese a disposizione (**7.9% delle osservazioni**). Tutti i dati precedenti per il **training** del modello (**92.1% delle osservazioni**)

Analisi esplorativa

Assenza di un trend evidente

Analisi esplorativa

Distribuzione annuale e mensile

Distribuzione settimanale e giornaliera

Modelli sviluppati

ARIMA

Analisi non stazionarietà in varianza

Analisi non stazionarietà in media

Augmented Dickey-Fuller test p-value: 0.197302

Procedura di Box e Jenkins

- verifica della stazionarietà della serie
- identificazione del modello ARIMA
- stima dei parametri
- verifica del modello tramite analisi dei residui

Applicazione logaritmo e differenza stagionale

ARIMA

I parametri considerati sono:

- p, d, q
- P, D, Q

Modello	AIC
ARIMA (0, 1, 0)(0, 1, 0)[24]	-15544
ARIMA (0, 1, 0)(0, 1, 1)[24]	-19685
ARIMA (0, 1, 0)(1, 1, 1)[24]	-19742
ARIMA (2, 1, 2)(1, 1, 1)[24]	-20260
ARIMA (2, 1, 2)(1, 1, 1)[24] con regressori	-20297

Previsioni sul test con il modello migliore ARIMA (2, 1, 2)(1, 1, 1)[24] con 3 sinusoidi a periodo 168

UCM

parametri considerati sono:

- LEVEL
- SEASONAL

Previsioni sul test con il modello migliore con componenti:

- LEVEL: Random walk with drift
- SEASONAL: 3 sinusoidi di periodo 24 e 2 sinusoidi di periodo 168

Modello	MAPE (%)	AIC
No trend	100.73	132294.86
Deterministic constant	12.16	104027.66
Local level	12.20	91661.99
Random walk	12.20	91569.99
Deterministic trend	11.95	104028.77
Local linear deterministic trend	12.04	91654.41
Random walk with drift	12.04	91652.40
Local Linear trend	12.04	91656.40
Smooth trend	2412.27	94506.95
Random trend	1487.71	96516.59

MACHINE LEARNING - KNN

Strategia multi-step multi-output (MIMO)

I parametri considerati sono:

- **p**: numero di valori passati che vengono considerati. Diverse prove con (2,4,6, ... ,36,38,40)
- **k**: numero di sottosequenze simili da prendere in considerazione. Diverse prove con (24*7, 24*14, 24*21)

Previsioni sul test con il modello migliore con parametri:

• **p**: 504

• **k**: 18

MACHINE LEARNING - LSTM

I parametri considerati sono:

- lookback
- Numero di layer e numero di neuroni
- Numero di epoche
- batchsize

Previsioni sul test con il modello migliore con la seguente **architettura**:

- Layer LSTM da 10 neuroni
- LeakyReLU come funzione di attivazione
- Layer di Droput con dropout rate di 0.2
- Layer LSTM da 5 neuroni
- LeakyReLU come funzione di attivazione
- Layer di output di tipo Dense da 1 neurone

100 epoche, batchsize pari a 32, shuffle=False, Adam optimizer, EarlyStopping

Operazioni di **preprocessing** necessarie:

- Normalizzazione dataset
- Rigenerazione train test set
- Reshape strutture dati

Conclusioni e Previsioni

Previsioni

Previsioni marzo 2005

Conclusioni

Conclusioni

Il miglior modello osservando le performance sul test set in termini di MAPE è stato ottenuto dalla rete **LSTM**, della famiglia machine learning. Per quanto riguarda invece i modelli ARIMA e UCM registrano performance molto simili.

Sviluppi futuri

Ipotizzando alcuni sviluppi futuri si potrebbe porre una maggiore attenzione alla modellazione della **stagionalità** per cercare di avere dei risultati migliori e ai parametri delle reti neurali per evitare problemi di **overfitting**.

Grazie per l'attenzione!