The Public Private Key Pair

Edward Curren

@EdwardCurren

http://www.edwardcurren.com

Overview

What are asymmetric keys?
The math of key pairs
Where we store these keys
Generate key pairs

v8f!bLFYt5\$z2S%rN#r

2048 bit key = 245 byte data chunk

Chunk is padded and grows to 256 bytes

1 MB of data transmits 1,045,000 bytes

Order of transmitted data is not assured

ABCDEFG

@**\$&(**^%#!^*

ABCDEFG

Discrete Logarithm Problem

Discrete Logarithm Problem

Six Variables

148894445742041325547806458 4723979166030262739927958... 5271289425213239361064475310 3099711321803371747528344014 ...

$$p = 3$$
 $q = 11$
%
 $n = 33$

Public and Private Keys

Public Key: (e, n)

Private Key: (d, n)

$$m^{e} \mod n = c$$
 $72^{17} \mod 33 = 30$
 $c^{d} \mod n = m$
 $30^{13} \mod 33 = 6$

Encryption of "H" with our key pair.

$$p = 3$$
 $q = 11$ $n = 33$ $\phi(n) = 20$ $e = 17$ $d = 13$

$$m^{e} \mod n = c$$
 $13^{17} \mod 33 = 7$
 $c^{d} \mod n = m$
 $7^{13} \mod 33 = 13$

Encryption of ""\" with our key pair.

$$p = 3$$
 $q = 11$ $n = 33$ $\phi(n) = 20$ $e = 17$ $d = 13$

$$m^{e} \mod n = c$$
 $72^{11} \mod 323 = 98$
 $c^{d} \mod n = m$
 $98^{131} \mod 33 = 72$

Encryption of "H" with our new key pair.

$$p = 17$$
 $q = 19$ $n = 323$ $\phi(n) = 288$ $e = 11$ $d = 131$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$m^e \mod n = c$$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$m^e \mod n = c$$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$72^{17} \mod 33 = 30$$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$m^e \mod n = c$$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$c^d \mod n = m$$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$30^{13} \mod 33 = 6$$

p = 3, q = 11, n = 33, $\varphi(n) = 20$, e = 17, d = 13

$$13^{17} \mod 33 = 7$$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$7^{13} \mod 33 = 13$$

$$p = 3$$
, $q = 11$, $n = 33$, $\varphi(n) = 20$, $e = 17$, $d = 13$

$$m^e \mod n = c$$

p = 17, q = 19, n = 323, $\varphi(n) = 288$, e = 11, d = 131

$$72^{11} \mod 323 = 98$$

p = 17, q = 19, n = 323, $\varphi(n) = 288$, e = 11, d = 131

$$98^{131} \mod 323 = 72$$

PKCS#12

PKCS#11 and PKCS#15

Safe Bag

(OID) 1.2.840.113549.1.12.4...

Signing Certificate

(OID) 1.2.840.113549.1.12.4...

Encryption Certificate

(OID) 1.2.840.113549.1.12.4...

Certificate Chain

(OID) 1.2.840.113549.1.12.4...

Summary

Deep dive on the concepts

Will be generating keypairs in the project

