Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev

EC

29/07/2022

CONTINUOUS INTERNAL EVALUATION- 2

Dept:EC	Sem / Div:IV	Sub:Control Systems	S Code:18EC43	
Date:04-08-2022	Time: 9:30-11:00 am	Max Marks: 50	Elective:N	
Note: Answer any 2	full questions, choosing	one full question from eac	h part.	

Q N	Questions	Marks	RBT	COs
	PART A		Accessions	American
_	The closed loop transfer function of second order system is (8) 10 What is the type of damping in the system.	7	L2	CO3
-	Obtain the steady state error ess of Type-0, Type-1 and Type-2 systems for Step input and Ramp input.	9	L3	CO3
c	With a neat sketch explain all the time domain specifications.	9	L2	CO3
·	OR		Action and passage and	Append to the second
2 a	For unity feedback control system the open loop transfer function, $G(s) = \underbrace{\frac{10(s+2)}{5^2(s+1)}}$	9	L3	CO3
	find i) the positional, velocity and acceleration error constant.			
	ii) steady state error when the input is $R(s) = \frac{3}{5} + \frac{2}{5^2} + \frac{1}{35^3}$			
	Find the C(s)/R(s) for the signal flow graph below in Fig.	9	L3	CO2
cI	Define rise time and derive the expressions for the same.	7	L3	CO3
	PART B		-	kuun caanb rou
a I	Derive the expression for unit step response of Underdamped econd order system.	9	L3	CO3

Prepared by: Prabha G S

O hat

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

EC

29/07/2022

CONTINUOUS INTERNAL EVALUATION- 2

b Find K1 so that &=0.35. Find the corresponding time domain specification for the figure below.	10	L3	CO3
R(s)			
c Describe the Masons gain formula.	6	L2	CO2
OR 4 a For a unity feedback control system with $G(s) = \frac{64}{s(s+9.6)}$	7	L3	CO3
Write the output response to a unit step input. Determine: i)The response at t=0.1second ii) Settling time for ±2% b Find the C(s)/ R(s) for the signal flow graph below in Fig.	10	L3	CO2
The the C(s) K(s) for the signar flow graph below in Fig.	10	LS	C02
R(3) 62 613 764 - H,			
c A unity feedback system has $G_1(s) = \frac{k}{S(s+2)(s^2+2s+5)}$	8	L3	CO3
i) For a unit ramp input it is desired that $eSS \le 0.2$. Find K. ii) Find ess if $9(k) = 2 + 4k + \frac{k^2}{2}$			

Prepared by: Prabha G S

HOD HOD