

Travail d'Étude et de Recherche Master Informatique 1 ière année (GMIN20B)

William Dyce Thibaut Marmin Namrata Patel Clément Sipieter

Université Montpellier 2 Encadré par Violaine Prince et Guillaume Tisserant

Introduction

Outils de travail

Analyse Générale

Conclusion & Perspectives

Analyse & Implémentation

Introduction

Rappel historique

Projet de recherche

Un modèle de conscience

artificielle

Outils de travail

Conclusion & Perspectives

Analyse Générale

Analyse & Implémentation

Rappel historique Deep Blue

Deep Blue

- Programme d'échecs développé par IBM.
- Victoire contre Garry Kasparov en 1997.
- Premier défaite d'un grand maître sous contraintes normales de temps.

Rappel historique Deep Blue

Deep Blue

- Programme d'échecs développé par IBM.
- Victoire contre Garry Kasparov en 1997.
- Premier défaite d'un grand maître sous contraintes normales de temps.

Robert Levinson

- « But doesn't know that it's playing chess. »
- Est-ce donc vraiment de l'intelligence?

Théorie des Jeux

Théorème du Minimax

- Élaboré par John Von Neumann en 1928.
- Stratégie optimale pour jeux compétitives tels les échecs.

Théorie des Jeux

Théorème du Minimax

- Élaboré par John Von Neumann en 1928.
- Stratégie optimale pour jeux compétitives tels les échecs.

Équilibre de Nash

- Définit par John Forbes Nash en 1950.
- Fondation de la Théorie des Jeux.

Théorie des Jeux

Théorème du Minimax

- Élaboré par John Von Neumann en 1928.
- Stratégie optimale pour jeux compétitives tels les échecs.

Équilibre de Nash

- Définit par John Forbes Nash en 1950.
- Fondation de la Théorie des Jeux.

Élagage Alpha-beta

- Conçu par John McCarthy en 1958.
- Amélioration du Minimax.

Domaine d'application

- Jeux compétitifs à somme nulle.
- Durée et nombre d'options finis.

Domaine d'application

- Jeux compétitifs à somme nulle.
- Durée et nombre d'options finis.

Temps de calcul

- Complexité moyenne $O(b^{\frac{d}{2}})$ avec élagage.
 - d : profondeur de l'arbre de décision.
 - b : facteur de branchement.
- Utilisation d'heuristiques, donc perte d'optimalité.

Projet de recherche

Une approche alternative

- Apprentissage
- Reconnaissance de formes (concepts)?
- Classification
- polyvalence du système???

Un modèle de conscience artificielle Origine du modèle

- « Conscience artificielle » par Guillaume Tisserant, Guillaume Maurin, Ndongo Wade et Anthony Willemot (Projet du module 'Cognition' en M2, 2010)
- Modèle de représentation de la Conscience proposé dans le Chapitre 4.

Un modèle de conscience artificielle

Version simplifiée du modèle

Introduction

Analyse Générale

Analyse générale Restrictions appliquées au modèle Vision globale du modèle opérationnel Outils de travail

Conclusion & Perspectives

Analyse & Implémentation

Contraintes de réalisation

Temporelle, d'effectifs et de compétences

- Temps : travail à réaliser en trois mois
- Effectif: quatre membres dans l'équipe
- Compétences :
 - Compétences requises à la **fin** du semestre
 - = Compétences nécessaires pour la réalisation du projet
 - Cours données souvent trop tard pour assurer leur bonne application au projet

Restrictions appliquées au modèle

Environnement, fonctionnement

- Environnement :
 Limitation à un type précis de jeu
- Fonctionnement : Retrait et simulation des parties
 - Retrait de la métamnèse
 - Simulation de la partie inconsciente

Vision globale du modèle opérationnel Séquence

Introduction

Outils de travail

Analyse Générale

Conclusion & Perspectives

Analyse & Implémentation

Environnement & simulation
Analyseur conceptuel Raisonneur
Mémoire

Conclusion partielle

Webservice game_service

Environnement "arbitre" du jeux (séparation des agents de l'environnement)

Representationnal State Transfer (REST)

- Technologie Java Servlet.
 - Requetes par HTTP.
 - Réponses en XML.
- Technologie HTML 5.
 - Asynchronous Javascript & XML (AJAX).
 - Bibliothèque jQuery.

Bibliothèque game_logic

Classe BoardMatrix

Plateau sous forme matricielle avec accesseurs adaptés.

Bibliothèque game_logic

Classe BoardMatrix

Plateau sous forme matricielle avec accesseurs adaptés.

Classe abstraite Rules

- Forme du plateau? Configuration initiale?
- Qui joue en premier?
- Quand a-t-on gagné? Perdu? Un match nul?
- Quelles sont les coups possibles?

Bibliothèque game_logic

Classe BoardMatrix

Plateau sous forme matricielle avec accesseurs adaptés.

Classe abstraite Rules

- Forme du plateau? Configuration initiale?
- Qui joue en premier?
- Quand a-t-on gagné? Perdu? Un match nul?
- Quelles sont les coups possibles?

Classe Game

Associe un Rules, un BoardMatrix, un état, un joueur courant...

Environnement & Simulation Client Humain

- JQuery
- AJAX polling

Client machine frontière

- Représente les connaissances tirées de l'environnement
- Analyse ces connaissances afin d'en tirer des nouvelles

Analyseur conceptuel Analyse détaillée

• Représentation des connaissances : vocabulaire

- Graphes conceptuels de base ou
- Formules de logique du premier ordre
- Analyse des connaissances : méchanisme
 - Interrogation avec la mémoire
 - Recherche d'homomorphismes

Implémentation : Rôles du module

- Convertisseur :
 - Rend les données de l'environnement « lisibles » par l'IA
- Moteur d'inférence :
 - Applique les règles générés par l'IA afin d'en sortir des nouveaux concepts

Implémentation : Classes principales

- Choices (environnement): représente un plateau courant, un coup et l'ensemble des plateaux résultants de ce coup
- BoardMatrix(environnement) : représente un plateau en forme d'une matrice
- Choices_FOL (IA): version logique du premier ordre de Choices (même structure, attributs décrits par des formules logiques)
- CompleteBoardState (IA): version logique du premier ordre de BoardMatrix (classe qui décrit la configuration d'un plateau complet comme une liste de faits logiques)
- RelevantPartialBoardState (IA): classe qui décrit la configuration d'une sous-partie pertinante d'un plateau comme une règle logique

Implémentation détaillée

Convertisseur :

- Entrée (de l'environnement) : instance de « Choices »
- Algorithme qui transforme un « BoardMatrix » en un « CompleteBoardState »
- Sortie : instance de « Choices_FOL »

Moteur d'inférence :

- Entrée (de la mémoire) : instance de « RelevantPartialBoardState »
- Algorithme de saturation de la base de faits des « CompleteBoardState » par la règle d'entrée
- Ajout d'une liste de « RelevantPartialBoardState » présents dans chaque « CompleteBoardState » du pacquet « Choices_FOL »
- Sortie (passée à la mémoire) : instance de « Choices_FOL »

Raisonneur Moteur de choix

Raisonneur Moteur de choix

• $isCorner(x) \land isMine(x)$

Raisonneur Moteur de choix

- $isCorner(x) \land isMine(x)$
- $isMine(w) \land isOpp(x) \land isOpp(y) \land aligned(w, x, y) \land isEmpty(z) \land aligned(x, y, z)$

Raisonneur

Valuation des formes

• Valuation d'une forme :

$$P(Gain|Forme) = \frac{P(Forme|Gain) \times P(Gain)}{P(Forme)}$$

Fin de partie → mise à jour des formes rencontrées

Raisonneur

Moteur d'introspection

Extraction de formes

Raisonneur Moteur d'introspection

Extraction de formes

Raisonneur Moteur d'introspection

Extraction de formes

Raisonneur

Moteur d'introspection

Extraction de formes

Raisonneur

Moteur d'introspection

$$\dots$$
 isMine(x0) \land isOpp(x1) \land isOpp(x2) \land aligned(x0, x1, x2) \land isEmpty(x3) \land aligned(x1, x2, x3) \land \dots isCorner(x3) \dots

...
$$isMine(y0) \land isOpp(y1) \land isOpp(y2) \land aligned(y0, y1, y2) \land isEmpty(y3) \land aligned(y1, y2, y3) \land ... isCorner(y3) ...$$

Memory

Interface

+getRelevantPartialBoardStates(): List<RelevantPartialBoardState>
+putOption(option:Option_FOL)

+getGradedOptions(): List<Pair<Option_FOL, Double>>

+OptionChosen(option:Option_FOL) +BeginOfGame()

+EndOfGame(status:GameStatus.score:int)

•0000000

+getLastWonGames(n:int): List<Game>
+getLastLostGames(n:int): List<Game>

+getAllRPBS(n:int): List<Pair<RelevantPartialBoardState, Double>>

+putRelevantStructure(rpbs:RelevantPartialBoardState): long +addAssociation(cbs_id:long,rpbs:RelevantPartialBoardState)

Mémoire Mémoire épisodique

TEMPS

T E M P S

Mémoire Mémoire épisodique

TEMPS

Mémoire Mémoire épisodique

Mémoire Mémoire épisodique

Mémoire Mémoire épisodique

Mémoire épisodique

Mémoire Mémoire sémantique

Vision en matrice

	RPBS_1	RPBS_2	RPBS_3	RPBS_4	RPBS_5
CBS_1				•	
CBS_2	•		•	•	•
CBS_3		•	•		
CBS_4		•		•	•
CBS_5			•		•
CBS_6				•	
CBS_7	•	•	•	•	
CBS_8)	•			

Mémoire Mémoire sémantique

Vision en graphe

Mémoire Persistance

Neo4i

- Logiciel libre (GPLv3 / AGPLv3)
- SGBD NoSQL orienté graphe
- Respect des caractéristiques ACID
- Multiple versions (embedded in Java)

Mémoire Persistance

Élements

- Noeud racine
- Noeuds
- Relations (orientées)
- Types de relations
- Attributs (Noeuds & Relations)

Comment typer les noeuds?

Persistance

Élements

- Noeud racine
- Noeuds
- Relations (orientées)
- Types de relations
- Attributs (Noeuds & Relations)

Comment typer les noeuds?

- 1. Créer un noeud Maitre
- 2. Créer une relation typée Racine → Maitre
- 3. Créer des relations typées Maitre → Noeuds

Mémoire

Mémoire

Mémoire

Graphe de la mémoire épisodique

Mémoire

Graphe de la mémoire épisodique

Graphe de la mémoire épisodique

Graphe de la mémoire épisodique

Mémoire

Mémoire

Mémoire

Graphe complet de la mémoire

Optimisation

Structures de données

Optimisation MultiThreading

Optimisation Autre

Analyse et implémentation d'un modèle de conscience artificielle

Introduction

Outils de travail

Analyse Générale

Conclusion & Perspectives

Analyse & Implémentation

Outils de travail

GIT - Un gestionnaire de version décentralisé

- Logiciel libre (GNUv2)
- Simple d'utilisation
- Hébergement via GitHub

https://github.com/marminthibaut/artificial_consciousness/

Outils de travail

Etherpad - Éditeur de texte collaboratif

Aperçu d'un pad hébergé sur framapad.org

- Logiciel libre Licence Apache v2
- Collaboratif en temps réel
- Complet Chat, couleurs, etc.
- Hébergement via Framapad http://framapad.org/

Outils de travail Développement

Logiciel Libre (EPL) / EDI renommé

Javadoc

- Standard industriel
- Réutilisation du code source

Log4j

- Outil libre (Apache v2)
- Journalisation

Pas libre. . . / Plugin Eclipse & autres EDI

Analyse et implémentation d'un modèle de conscience artificielle

Introduction

Analyse Générale

Analyse & Implémentation

Outils de travail

Conclusion & Perspectives
Conclusion
Perspectives

Conclusion

Découverte de nouveaux outils / travail collaboratif en équipe

Perspectives

Ce qui (n') a (pas) été réussi Sacrifices faits (système opérationelle) Problèmes rencontrés (NP-complétude) Forces et faiblesses du sysème Pistes à suivre pour une suite éventuelle Évaluation du système à faire

Perspectives Un treillis en mémoire?

