运筹学第三次作业参考答案(20230308)

1. 将以下线性规划问题转化为标准形式

$$\max x_1 + x_2 - 2x_3$$
s. t.
$$x_1 - 2x_2 + 3x_3 \ge 7$$

$$3x_1 + 2x_2 - x_3 \le 3$$

$$0 \le x_1 \le 4$$

$$-2 \le x_2 \le 5$$

解:

形式不唯一,但请尽量将变量全移到左边,常数全移到右边,目标函数不 含常数。

$$\max x_1 + x_2^+ - x_2^- - 2x_3^+ + 2x_3^-$$
s.t.
$$x_1 - 2x_2^+ + 2x_2^- + 3x_3^+ - 3x_2^- - x_4 = 7$$

$$3x_1 + 2x_2^+ - 2x_2^- - x_3^+ + x_3^- + x_5 = 3$$

$$x_1 + x_6 = 4$$

$$x_2^+ - x_2^- + x_7 = 5$$

$$-x_2^+ + x_2^- + x_8 = 2$$

$$x_1, x_2^-, x_2^+, x_3^-, x_3^+, x_4, x_5, x_6, x_7, x_8 \ge 0$$

2. 利用 Bland 规则求解下述线性规划问题。

$$\max \frac{3}{4}x_4 - 20x_5 + \frac{1}{2}x_6 - 6x_7$$
s.t.
$$x_1 + \frac{1}{4}x_4 - 8x_5 - x_6 + 9x_7 = 0$$

$$x_2 + \frac{1}{2}x_4 - 12x_5 - \frac{1}{2}x_6 + 3x_7 = 0$$

$$x_3 + x_6 = 1$$

$$x_i \ge 0, i = 1, 2, \dots 7$$

解:

BV	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	RHS
x_1	1	0	0	1/4	-8	-1	9	0
x_2	0	1	0	1/2	-12	-1/2	3	0
x_3	0	0	1	0	0	1	0	1
	0	0	0	3/4	-20	1/2	-6	0

BV	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	RHS
x_4	4	0	0	1	-32	-4	36	0
x_2	-2	1	0	0	4	3/2	-15	0
x_3	0	0	1	0	0	1	0	1
	-3	0	0	0	4	7/2	-33	0
	1							
BV	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	RHS
<i>x</i> ₄	-12	8	0	1	0	8	-84	0
x_5	-1/2	1/4	0	0	1	3/8	-15/4	0
x_3	0	0	1	0	0	1	0	1
	-1	-1	0	0	0	2	-18	0
BV	x_1	x_2	<i>x</i> ₃	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	RHS
<i>x</i> ₆	-3/2	1	0	1/8	0	1	-21/2	0
x_5	1/16	-1/8	0	-3/64	1	0	3/16	0
x_3	3/2	-1	1	-1/8	0	0	21/2	1
	2	-3	0	-1/4	0	0	3	0
BV	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	RHS
x_6	0	-2	0	-1	24	1	-6	0
x_1	1	-2	0	-3/4	16	0	3	0
x_3	0	2	1	1	-24	0	6	1
	0	1	0	5/4	-32	0	-3	0
	•							
BV	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_6	0	0	1	0	0	1	0	1
x_1	1	0	1	1/4	-8	0	9	1
x_2	0	1	1/2	1/2	-12	0	3	1/2
	0	0	-1/2	3/4	-20	0	-6	-1/2
BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	RHS
<i>x</i> ₆	0	0	1	0	0	1	0	1
x_1	1	-1/2	3/4	0	-2	0	15/2	3/4
r	0	2	1	1	-24	0	6	1
x_4								

此时所有检验数均为负数,得到最优解 $\mathbf{x} = (3/4,0,0,1,0,1,0)^{\mathsf{T}}$,最优值为 $z_{max} = 5/4$

3. 用两阶段方法求解下述线性规划问题,并完成后附讨论。

$$\max 2x_1 - 4x_2 + 5x_3 - 6x_4$$
s.t. $x_1 + 4x_2 - 2x_3 + 8x_4 = 2$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 = 1$$

$$x_i \ge 0, i = 1, 2, 3, 4$$

讨论:

在应用两阶段方法时可能遇到原问题有可行解,但系数矩阵不是行满秩矩阵的情况,如下面的例子所示,此时会出现什么情况?应该如何处理?

$$\max 2x_1 - 4x_2 + 5x_3 - 6x_4$$
s.t.
$$x_1 + 4x_2 - 2x_3 + 8x_4 = 2$$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 = 1$$

$$2x_1 + 2x_2 - 5x_3 + 4x_4 = 1$$

$$x_i = 3 \ 0, i = 1, 2, 3, 4$$

解:

第一阶段,添加人工变量 x_5, x_6 ,得到辅助问题

$$\max -x_5 - x_6$$
s. t. $x_1 + 4x_2 - 2x_3 + 8x_4 + x_5 = 2$
 $-x_1 + 2x_2 + 3x_3 + 4x_4 + x_6 = 1$
 $x_i \ge 0, i = 1, 2, ..., 6$

BV	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	RHS
x_5	1	4	-2	8	1	0	2
x_6	-1	2	3	4	0	1	1
	0	6	1	12	0	0	3
	•						
BV	x_1	x_2	<i>x</i> ₃	χ_4	x_5	<i>x</i> ₆	RHS
χ_4	1/8	1/2	-1/4	1	1/8	0	1/4
x_6	-3/2	0	4	0	-1/2	1	0
	-3/2	0	4	0	-3/2	0	0
BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	RHS
x_4	1/32	1/2	0	1	3/32	1/16	1/4
x_3	-3/8	0	1	0	-1/8	1/4	0
	0	0	0	0	-1	-1	0

第二阶段,去掉人工变量对应的列,目标函数变为 $\max 2x_1 - 4x_2 + 5x_3 - 6x_4$,继续迭代

BV	x_1	x_2	x_3	x_4	RHS
x_4	1/32	1/2	0	1	1/4
x_3	-3/8	0	1	0	0
	65/16	-1	0	0	3/2

BV	x_1	x_2	<i>x</i> ₃	χ_4	RHS
x_1	1	16	0	32	8
x_3	0	6	1	12	3
	0	-66	0	-130	-31

所有检验数均为负数,得到最优解 $x = (8,0,3,0)^{\mathsf{T}}$,最优值为 $z_{max} = 31$

讨论: 当系数矩阵不是行满秩时,仍然尝试使用两阶段法。第一阶段,添加人工变量 x_5, x_6, x_7 ,得到

$$\max -x_5 - x_6 - x_7$$
s. t.
$$x_1 + 4x_2 - 2x_3 + 8x_4 + x_5 = 2$$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 + x_6 = 1$$

$$2x_1 + 2x_2 - 5x_3 + 4x_4 + x_7 = 1$$

$$x_i \ge 0, i = 1, 2, ..., 7$$

BV	x_1	<i>x</i> ₂	<i>x</i> ₃	χ_4	x_5	<i>x</i> ₆	<i>x</i> ₇	RHS
x_5	1	4	-2	8	1	0	0	2
x_6	-1	2	3	4	0	1	0	1
x_7	2	2	-5	4	0	0	1	1
	2	8	-4	16	0	0	0	4

BV	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	RHS
x_4	1/8	1/2	-1/4	1	1/8	0	0	1/4
x_6	-3/2	0	4	0	-1/2	1	0	0
x_7	3/2	0	-4	0	-1/2	0	1	0
	0	0	0	0	-2	0	0	0

此时没办法再改进,但人工变量 x_6 , x_7 仍在基中,这是因为系数矩阵不是行满秩。解决方法: 去掉冗余行对应的人工变量(x_6 或 x_7),继续迭代。

BV	x_1	x_2	χ_3	x_4	x_5	<i>x</i> ₆	RHS
x_4	1/8	1/2	-1/4	1	1/8	0	1/4
x_6	-3/2	0	4	0	-1/2	1	0
	-3/2	0	4	0	-3/2	0	0

该表与之前求解原问题的情况一模一样,继续进行二阶段法即可。

4. 对于线性规划问题

$$\max 6x_1 - 2x_2 + 10x_3$$
s.t. $a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 \le b_i, i = 1, 2$

$$x_i \ge 0, j = 1, 2, 3$$

其中 $b_i \ge 0$, $\forall i$,引入松弛变量 x_4 , x_5 获得初始顶点,然后进行一步单纯型迭代得到下面的线性规划问题,

$$\max \quad \gamma_{1}x_{1} + \gamma_{3}x_{3} + \gamma_{4}x_{4} + \gamma_{5}x_{5} + 20$$

$$s.t. \quad \beta_{11}x_{1} + x_{2} + 2x_{3} + \beta_{14}x_{4} = 5$$

$$\beta_{21}x_{1} + \beta_{22}x_{2} + \frac{1}{3}x_{3} + \beta_{24}x_{4} + \frac{1}{3}x_{5} = \eta$$

$$x_{j} \ge 0, \ \forall j$$

- 1)请指出上述迭代的进出基变量(说明理由);
- 2) 请确定上述两个模型的参数值。

解:

1) 根据题意先列出这两步的单纯形表

BV	x_1	x_2	x_3	x_4	x_5	RHS	
x_4	a_{11}	a_{12}	a_{13}	1	0	b_1	
x_5	a_{21}	a_{22}	a_{23}	0	1	b_2	
	6	-2	10	0	0		

(1)

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	RHS	
?	eta_{11}	1	2	eta_{14}	0	5	(2)
?	eta_{21}	eta_{22}	1/3	eta_{24}	1/3	η	(2)
	γ_1	0	γ_3	γ_4	γ_5	-20	

由表(1)的检验数行可知,进基变量应为 x_1 或 x_3 ,出基变量应为 x_4 或 x_5 。表(2) x_5 列第二行由 1 变为 1/3,说明第二行进行了系数相除的操作,所以出基变量为 x_5 。观察 x_3 列,其值不为(0,1)^T,不可能进基。所以进基变量为 x_1 。

2) 根据上一问的分析,表(2)更新为

 BV	x_1	x_2	x_3	x_4	x_5	RHS	
x_4	0	1	2	1	0	5	(24)
x_1	1	eta_{22}	1/3	0	1/3	η	(2)
	0	0	γ_3	γ_4	γ_5	-20	•

由于第二行同时除以 3,所以 $a_{21}=3\beta_{21}=3$, $a_{22}=3\beta_{22}$, $a_{23}=1$, $b_2=3\eta$ 。再由表(2') x_5 列可知, x_4 行没有进行加减的操作,所以该行系数没有发生改变, $a_{11}=0$, $a_{12}=1$, $a_{13}=2$, $b_1=5$ 。

表(2')的检验数可直接计算

$$\gamma_3 = 10 - 6 \times \frac{1}{3} = 8$$

 $\gamma_4 = 0$

 $\gamma_5 = 0 - 6 \times \frac{1}{3} = -2$

再由表(2') x_2 列检验数知 $0 = -2 - 6\beta_{22}$,得到 $\beta_{22} = -1/3$, $\alpha_{22} = 3\beta_{22} = -1$ 。

根据
$$6\eta=20$$
,得到 $\eta=10/3$, $b_2=3\eta=10$. 综上,所有参数值为
$$a_{11}=0, a_{12}=1, a_{13}=2, b_1=5$$

$$a_{21}=3, a_{22}=-1, a_{23}=1, b_2=10$$

$$\beta_{11}=0, \beta_{14}=1$$

$$\beta_{21}=1, \beta_{22}=-\frac{1}{3}, \beta_{24}=0, \eta=\frac{10}{3}$$

$$\gamma_1=0, \gamma_3=8, \gamma_4=0, \gamma_5=-2$$

5. 对于线性规划问题

$$\min x_1 + x_2$$

s. t. $x_1 \ge 0$

- 1) 请指出该可行域是否有顶点;
- 2) 请将其转换为标准形式,再指出标准形式下的可行域是否有顶点;
- 3) 比较 1) 与 2) 的结论, 并做出解释:

解:

- 1) 可行域是 \mathbb{R}^2 上的 x_1 非负部分区域,画图可知没有顶点。也可以用定义验证,即任给点 $(x_1,x_2),x_1\geq 0$,存在两个点 $(x_1,x_2+1),(x_1,x_2-1)$,使得所给点是两个点的中点,因此没有顶点。
- 2) 标准形式为

min
$$x_1 + x_2^+ - x_2^-$$

s.t. $x_1, x_2^+, x_2^- \ge 0$

容易验证(0,0,0)是一个顶点。即假设存在 $v_1,v_2,\lambda \in [0,1]$ 使得(0,0,0) = λv_1 + $(1-\lambda)v_2$,因为 $v_1,v_2 \geq 0$,所以只可能 $v_1,v_2 = 0$,因此(0,0,0)是一个顶点。

3) 标准形式下的顶点(0,0,0)对应原问题可行域的(0,0),而我们知道(0,0)不是顶点。 在引入松弛变量时,本质上已经将原问题转变成另外一个相关但不同的问题, 而新问题就会出现之前所没有的性质。在本例题中,标准形式的维度变得更 高,新可行域与原可行域形成多对一的映射关系,例如原可行域(0,0)实际上 对应标准形式中无穷多个点。