Aussagenlogik und Prädikatenlogik 4. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Anton Freund, Jonathan Weinberger

SoSe 2018 Übung: 30.05.2018

Abgabe: 13.06.2018

Gruppenübung

Aufgabe G1 (Existenzquantor und Allquantor)

Man beweise:

- (a) Für jede Funktion $f: A \rightarrow \{0, 1\}$ gilt $1 \max(1 f(a): a \in A) = \min(f(a): a \in A)$.
- (b) Es gilt $\forall x \varphi \equiv \neg \exists x \neg \varphi$.

Lösung: (a) Nehme zunächst an, es gibt ein $a \in A$ mit f(a) = 0. Dann gilt

$$1 - \max(1 - f(a) : a \in A) = 1 - 1 = 0 = \min(f(a) : a \in A).$$

Nehme nun an, es gilt f(a) = 1 für alle $a \in A$. Dann gilt

$$1 - \max(1 - f(a) : a \in A) = 1 - 0 = 1 = \min(f(a) : a \in A).$$

(b) Sei \mathscr{I} eine beliebige Interpretation. Mit Teilaufgabe (a) (für die Funktion $f: A \to \{0, 1\}$ mit $f(a) = \varphi^{\mathscr{I}[x \mapsto a]}$) gilt

$$(\neg \exists x \, \neg \varphi)^{\mathscr{I}} = 1 - (\exists x \, \neg \varphi)^{\mathscr{I}} = 1 - \max((\neg \varphi)^{\mathscr{I}[x \mapsto a]} : a \in A) = \\ = 1 - \max(1 - \varphi^{\mathscr{I}[x \mapsto a]} : a \in A) = \min(\varphi^{\mathscr{I}[x \mapsto a]} : a \in A) = (\forall x \, \varphi)^{\mathscr{I}}.$$

Aufgabe G2 (Spielsemantik I)

Man betrachte die Struktur ($\mathbb{B} = \{0,1\},0,1$) zur Signatur $S = \{0,1\}$ mit zwei Konstantensymbolen 0 und 1, sowie die Formeln $\varphi(x_1) = (x_1 = 0)$ und $\psi(x_1) = (x_1 = 1)$. Geben Sie für beliebiges $a \in \mathbb{B}$ eine Gewinnstrategie des Verifizierers im Spiel mit Startposition ($\exists x_1 \varphi \land \exists x_1 \psi, a$) an. Geben Sie weiter eine Gewinnstrategie des Falsifizierers im Spiel mit Startposition ($\exists x_1 (\varphi \land \psi), a$) an. Folgern Sie, dass die Formeln $\exists x_1 \varphi \land \exists x_1 \psi$ und $\exists x_1 (\varphi \land \psi)$ nicht äquivalent sind.

Lösung: Im Spiel mit Startposition $(\exists x_1 \varphi \land \exists x_1 \psi, a)$ hat der Verifizierer die folgende Gewinnstrategie: Er wartet ab, welches Konjunktionsglied der Falsifizierer wählt. Falls dieser die Position $(\exists x_1 \varphi, a)$ spielt, so spielt der Verifizierer die Position $(\varphi, 0)$. Damit gewinnt er das Spiel, weil $\mathbb{B} \models \varphi(0)$ gilt. Falls der Falsifizierer die Position $(\exists x_1 \psi, a)$ spielt, so spielt der Verifizierer die Position $(\psi, 1)$. Damit gewinnt er das Spiel, weil $\mathbb{B} \models \psi(1)$ gilt.

Im Spiel mit Startposition $(\exists x_1(\varphi \land \psi), a)$ hat der Falsifizierer die folgende Gewinnstrategie: Er wartet ab, welches Element von $\mathbb B$ der Verifizierer wählt. Falls dieser die Position $(\varphi \land \psi, 0)$ spielt, so spielt der Falsifizierer die Position $(\psi, 0)$. Damit gewinnt er, weil $\mathbb B \nvDash \psi(0)$ gilt. Falls der Verifizierer die Position $(\varphi \land \psi, 1)$ spielt, so spielt der Falsifizierer die Position $(\varphi, 1)$. Damit gewinnt er, weil $\mathbb B \nvDash \varphi(1)$ gilt.

Weil der Verifizierer eine Gewinnstrategie im Spiel mit Startposition $(\exists x_1 \varphi \land \exists x_1 \psi, a)$ hat, gilt $\mathbb{B} \vDash \exists x_1 \varphi \land \exists x_1 \psi$ (unabhängig vom Wert von a, weil die Formel $\exists x_1 \varphi \land \exists x_1 \psi$ keine freien Variablen hat). Weil der Falsifizierer eine Gewinnstrategie im Spiel mit Startposition $(\exists x_1(\varphi \land \psi), a)$ hat, gilt $\mathbb{B} \nvDash \exists x_1(\varphi \land \psi)$. Insbesondere können $\exists x_1 \varphi \land \exists x_1 \psi$ und $\exists x_1(\varphi \land \psi)$ nicht äquivalent sein.

Aufgabe G3 (Negationsnormalform)

Beweisen Sie, dass man zu jeder FO(S)-Formel φ eine äquivalente FO(S)-Formel φ^* in Negationsnormalform konstruieren kann. (Tipp: Argumentieren Sie per Induktion über φ und konstruieren Sie gleichzeitig eine NNF-Formel $\varphi^{\neg *} \equiv \neg \varphi$.)

Lösung: Als Basis der Induktion müssen wir atomare Formeln betrachten:

- Ist $\varphi = (t_1 = t_2)$, so setzen wir $\varphi^* := (t_1 = t_2)$ und $\varphi^{\neg *} := \neg (t_1 = t_2)$. Man beachte, dass dies NNF-Formeln sind.
- Ist $\varphi = Rt_1 \dots t_n$, so setzen wir $\varphi^* := Rt_1 \dots t_n$ und $\varphi^{\neg *} := \neg Rt_1 \dots t_n$.

Im Induktionsschritt müssen wir alle Fälle betrachten, in denen φ eine zusammengesetzte Formel ist:

- Sei $\varphi = \neg \psi$. Nach Induktionsvoraussetzung haben wir NNF-Formeln $\psi^* \equiv \psi$ und $\psi^{\neg *} \equiv \neg \psi$. Wir setzen nun $\varphi^* := \psi^{\neg *} \equiv \neg \psi = \varphi$ und $\varphi^{\neg *} := \psi^* \equiv \psi \equiv \neg \neg \psi = \neg \varphi$. (Übrigens: Um diesen Fall zu behandeln, war es nötig, gleichzeitig mit ψ^* die Formel $\psi^{\neg *}$ zu konstruieren: Ansonsten hätte man nicht gewusst, wie man φ^* definieren soll. Manchmal muss man also die Behauptung stärker machen, damit die Induktion funktioniert.)
- Sei $\varphi = \psi \wedge \theta$. Wir verwenden die Induktionsvoraussetzung und setzen $\varphi^* := \psi^* \wedge \theta^* \equiv \psi \wedge \theta = \varphi$, sowie $\varphi^{\neg *} := \psi^{\neg *} \vee \theta^{\neg *} \equiv \neg \psi \vee \neg \theta \equiv \neg (\psi \wedge \theta) = \neg \varphi$. Man beachte, dass φ^* und $\varphi^{\neg *}$ wieder NNF-Formeln sind.
- Sei $\varphi = \psi \lor \theta$. Wir verwenden die Induktionsvoraussetzung und setzen $\varphi^* := \psi^* \lor \theta^* \equiv \psi \lor \theta = \varphi$, sowie $\varphi^{\neg *} := \psi^{\neg *} \land \theta^{\neg *} \equiv \neg \psi \land \neg \theta \equiv \neg (\psi \lor \theta) = \neg \varphi$.
- Sei $\varphi = \forall x \psi$. Wir verwenden die Induktionsvoraussetzung und setzen $\varphi^* := \forall x \psi^* \equiv \forall x \psi = \varphi$, sowie außerdem $\varphi^{\neg *} := \exists x \psi^{\neg *} \equiv \exists x \neg \psi \equiv \neg \forall x \psi = \neg \varphi$. Man beachte, dass φ^* und $\varphi^{\neg *}$ wieder NNF-Formeln sind.
- Sei $\varphi = \exists x \ \psi$. Wir verwenden die Induktionsvoraussetzung und setzen $\varphi^* := \exists x \ \psi^* \equiv \exists x \ \psi = \varphi$, sowie außerdem $\varphi^{\neg *} := \forall x \ \psi^{\neg *} \equiv \forall x \ \neg \psi \equiv \neg \exists x \ \psi = \neg \varphi$.

Hausübung

Aufgabe H1 (Vertauschung von Allquantoren)

(12 Punkte)

Man zeige:

(a) Für jede Funktion $f: A \times B \rightarrow \{0, 1\}$ gilt

$$\min(\min(f(a,b):b \in B):a \in A) = \min(f(a,b):a \in A,b \in B) = \min(\min(f(a,b):a \in A):b \in B).$$

(b) Für jede Belegung $\beta: \mathcal{V} \to A$, unterschiedliche Variablen x und y und beliebige $a, b \in A$ gilt

$$\beta[x \mapsto a][y \mapsto b] = \beta[y \mapsto b][x \mapsto a].$$

(c) Es gilt $\forall x \forall y \varphi \equiv \forall y \forall x \varphi$.

Lösung: (a) [4 Punkte] Wir zeigen zunächst die erste Gleichheit: Wähle dazu $a_0 \in A$ und $b_0 \in B$ mit $f(a_0, b_0) = \min(f(a, b) : a \in A, b \in B)$. Wegen der Minimalität von $f(a_0, b_0)$ gilt

$$f(a_0, b_0) \le \min(f(a, b) : b \in B)$$

für beliebiges $a \in A$. Hieraus folgt

$$\min(f(a, b) : a \in A, b \in B) = f(a_0, b_0) \le \min(\min(f(a, b) : b \in B) : a \in A).$$

Andererseits ist

$$\min(\min(f(a,b):b\in B):a\in A) \le \min(f(a_0,b):b\in B) \le f(a_0,b_0) = \min(f(a,b):a\in A,b\in B).$$

Zusammen ergibt das

$$\min(\min(f(a, b) : b \in B) : a \in A) = \min(f(a, b) : a \in A, b \in B).$$

Die zweite Gleichheit zeigt man genauso: Wegen der Minimalität von $f(a_0,b_0)$ gilt

$$f(a_0, b_0) \le \min(f(a, b) : a \in A)$$

für beliebiges $b \in B$. Hieraus folgt

$$\min(f(a, b) : a \in A, b \in B) = f(a_0, b_0) \le \min(\min(f(a, b) : a \in A) : b \in B).$$

Andererseits ist

$$\min(\min(f(a,b):a\in A):b\in B) \le \min(f(a,b_0):a\in A) \le f(a_0,b_0) = \min(f(a,b):a\in A,b\in B).$$

Zusammen ergibt das

$$\min(f(a,b):a\in A,b\in B)=\min(\min(f(a,b):a\in A):b\in B).$$

(b) [4 Punkte] Wir müssen $\beta[x \mapsto a][y \mapsto b](z) = \beta[y \mapsto b][x \mapsto a](z)$ für jede Variable z zeigen: Ist z die Variable x (und daher verschieden von y), so gilt

$$\beta[x \mapsto a][y \mapsto b](z) = \beta[x \mapsto a](z) = a = \beta[y \mapsto b][x \mapsto a](z).$$

Ist z die Variable y (und daher verschieden von x), so gilt

$$\beta[x \mapsto a][y \mapsto b](z) = b = \beta[y \mapsto b](z) = \beta[y \mapsto b][x \mapsto a](z).$$

Ist z verschieden von x und y, so gilt

$$\beta[x \mapsto a][y \mapsto b](z) = \beta[x \mapsto a](z) = \beta[y \mapsto b](z) = \beta[y \mapsto b][x \mapsto a](z).$$

(c) [4 Punkte] Schreibt man $\forall x \forall y \varphi$, so nimmt man üblicherweise an, dass x und y verschiedene Variablen sind (tatsächlich ist die Behauptung in (c) trivial, wenn x und y die gleiche Variable sind). Sei nun $\mathscr{I} = (\mathscr{A}, \beta)$ eine beliebige Interpretation. Laut Teilaufgabe (b) gilt

$$\mathscr{I}[x \mapsto a][y \mapsto b] = (\mathscr{A}, \beta[x \mapsto a][y \mapsto b]) = (\mathscr{A}, \beta[y \mapsto b][x \mapsto a]) = \mathscr{I}[y \mapsto b][x \mapsto a]$$

für beliebige $a, b \in A$. Zusammen mit Teilaufgabe (a) berechnet man

$$(\forall x \forall y \varphi)^{\mathscr{I}} = \min((\forall y \varphi)^{\mathscr{I}[x \mapsto a]} : a \in A) = \min(\min(\varphi^{\mathscr{I}[x \mapsto a][y \mapsto b]} : b \in A) : a \in A) = \min(\varphi^{\mathscr{I}[x \mapsto a][y \mapsto b]} : a, b \in A) = \min(\varphi^{\mathscr{I}[y \mapsto b][x \mapsto a]} : a, b \in A) = \min(\min(\varphi^{\mathscr{I}[y \mapsto b][x \mapsto a]} : a \in A) : b \in A) = \min((\forall x \varphi)^{\mathscr{I}[y \mapsto b]} : b \in A) = (\forall y \forall x \varphi)^{\mathscr{I}}.$$

Aufgabe H2 (Spielsemantik II)

(12 Punkte)

Sei ≤ ein zweistelliges Relationssymbol in Infixnotation. Betrachten Sie den FO(≤)-Satz

$$\varphi = \forall x_1 \forall x_2 \exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((x_4 \preceq x_1 \land x_4 \preceq x_2) \rightarrow x_4 \preceq x_3 \right) \right)$$

und die Struktur $\mathcal{A} = (A, \preceq^{\mathcal{A}})$ mit $A = \{0, 1, 2\}$ und $\preceq^{\mathcal{A}} = \{(0, 0), (0, 1), (0, 2), (1, 2)\}.$

- (a) Geben Sie eine zu φ äquivalente Formel φ' in Negationsnormalform an.
- (b) Zeigen Sie $\mathscr{A} \not\models \varphi$, indem Sie eine Gewinnstrategie des Falsifizierers im Spiel zur Startposition $(\varphi', (a_1, a_2, a_3, a_4))$ angeben, wobei $a_1, \ldots, a_4 \in A$ beliebig sind. (Tipp: Es kann hilfreich sein, wenn Sie sich zunächst klar machen, warum \mathscr{A} kein Modell von φ ist, etwa indem Sie \mathscr{A} als gerichteten Graphen zeichnen.)

Lösung:

(a) [4 Punkte] Wir formen φ in Negationsnormalform um:

$$\varphi = \forall x_1 \forall x_2 \exists x_3 \Big((x_3 \leq x_1 \land x_3 \leq x_2) \land \forall x_4 \Big((x_4 \leq x_1 \land x_4 \leq x_2) \rightarrow x_4 \leq x_3 \Big) \Big)$$

$$\equiv \forall x_1 \forall x_2 \exists x_3 \Big((x_3 \leq x_1 \land x_3 \leq x_2) \land \forall x_4 \Big(\neg (x_4 \leq x_1 \land x_4 \leq x_2) \lor x_4 \leq x_3 \Big) \Big)$$

$$\equiv \underbrace{\forall x_1 \forall x_2 \exists x_3 \Big((x_3 \leq x_1 \land x_3 \leq x_2) \land \forall x_4 \Big((\neg x_4 \leq x_1 \lor \neg x_4 \leq x_2) \lor x_4 \leq x_3 \Big) \Big)}_{=:\varphi'}.$$

(b) [8 Punkte] Wir geben eine Gewinnstrategie des Falsifizierers im Spiel mit Startposition (φ' , (a_1 , a_2 , a_3 , a_4)) an, wobei a_1 , a_2 , a_3 , $a_4 \in A$ beliebig sind: Zunächst zieht der Falsifizierer in die Position

$$\bigg(\forall x_2 \exists x_3 \Big((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \Big((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \Big) \Big), (2, a_2, a_3, a_4) \bigg).$$

Dann ist er nochmal dran und zieht nach

$$\bigg(\exists x_3 \Big((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \Big((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \Big) \Big), (2, 2, a_3, a_4) \bigg).$$

Nun hat der Verifizierer drei Möglichkeiten:

 $a_3 \mapsto 2$: Angenommen, der Verfizierer zieht in die Position

$$((x_3 \le x_1 \land x_3 \le x_2) \land \forall x_4 ((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3), (2, 2, 2, a_4)).$$

Dann kann der Falsifizierer nach

$$(x_3 \leq x_1 \land x_3 \leq x_2, (2, 2, 2, a_4))$$

und

$$(x_3 \le x_1, (2, 2, 2, a_4))$$

ziehen. Er gewinnt wegen $\mathscr{A} \not\models 2 \leq 2$.

 $a_3 \mapsto 1$: Angenommen, der Verfizierer zieht in die Position

$$((x_3 \le x_1 \land x_3 \le x_2) \land \forall x_4 ((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3), (2, 2, 1, a_4)).$$

Dann kann der Falsifizierer nach

$$(\forall x_4 ((\neg x_4 \leq x_1 \vee \neg x_4 \leq x_2) \vee x_4 \leq x_3), (2, 2, 1, a_4))$$

und

$$((\neg x_4 \leq x_1 \lor \neg x_4 \leq x_2) \lor x_4 \leq x_3, (2, 2, 1, 1))$$

ziehen. Von hier aus kann der Verifizierer nur die Endpositionen $(\neg x_4 \leq x_1, (2, 2, 1, 1)), (\neg x_4 \leq x_2, (2, 2, 1, 1))$ und $(x_4 \leq x_3, (2, 2, 1, 1))$ erreichen. Wegen $\mathcal{A} \models 1 \leq 2$ und $\mathcal{A} \not\models 1 \leq 1$ gewinnt der Falsifizierer in jeder dieser Endpositionen.

 $a_3 \mapsto 0$: Angenommen, der Verfizierer zieht in die Position

$$((x_3 \le x_1 \land x_3 \le x_2) \land \forall x_4 ((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3), (2, 2, 0, a_4)).$$

Dann kann der Falsifizierer nach

$$(\forall x_4 ((\neg x_4 \leq x_1 \vee \neg x_4 \leq x_2) \vee x_4 \leq x_3), (2, 2, 0, a_4))$$

und

$$((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3, (2, 2, 0, 1))$$

ziehen. Von hier aus kann der Verifizierer nur die Endpositionen $(\neg x_4 \leq x_1, (2, 2, 0, 1)), (\neg x_4 \leq x_2, (2, 2, 0, 1))$ und $(x_4 \leq x_3, (2, 2, 0, 1))$ erreichen. Wegen $\mathscr{A} \models 1 \leq 2$ und $\mathscr{A} \not\models 1 \leq 0$ gewinnt der Falsifizierer in jeder dieser Endpositionen.

Da der Falsifizierer eine Gewinnstrategie im Spiel zur Startposition (φ' , (a_1, a_2, a_3, a_4)) hat, gilt $\mathscr{A} \nvDash \varphi'$ (unabhängig von $a_1, \ldots a_4$, weil φ' keine freien Variablen hat). Wegen $\varphi \equiv \varphi'$ folgt $\mathscr{A} \nvDash \varphi$.

Aufgabe H3 (Logik ohne Gleichheit)

(12 Punkte)

Wir betrachten eine Signatur S und Ihre Erweiterung $\hat{S} := S \cup \{\sim\}$ um ein zweistelliges Relationssymbol \sim , das die Gleichheit simulieren soll. Zu jeder FO(S)-Formel φ konstruieren wir eine FO $^{\neq}(\hat{S})$ -Formel φ^{\sim} , indem wir jede Teilformel $t_1 = t_2$ von φ durch die Formel $t_1 \sim t_2$ ersetzen. Wir wollen zeigen, dass φ erfüllbar ist (durch ein Modell mit mengentheoretischer Gleichheit), wenn φ^{\sim} ein Modell hat, das die Gleichheitsaxiome für \sim erfüllt. Sei dazu $\mathscr A$ eine \hat{S} -Struktur, die die Gleichheitsaxiome für \sim erfüllt. Für jedes $a \in A$ können wir dann die Äquivalenzklasse

$$[a] := [a]_{\sim \mathscr{A}} := \{b \in A \mid a \sim^{\mathscr{A}} b\}$$

betrachten (man beachte $[a] = [b] \Leftrightarrow a \sim^{\mathcal{A}} b$). Wie in der Vorlesung definieren wir eine S-Struktur \mathcal{A}_0 durch

$$A_0 := \{ [a] \mid a \in A \},$$

$$c^{\mathscr{A}_0} := [c^{\mathscr{A}}],$$

$$f^{\mathscr{A}_0}[a_1] \dots [a_n] := [f^{\mathscr{A}} a_1 \dots a_n],$$

$$([a_1], \dots, [a_n]) \in R^{\mathscr{A}_0} : \iff (a_1, \dots, a_n) \in R^{\mathscr{A}}.$$

Da \mathcal{A} die Gleichheitsaxiome erfüllt, ist dies wohldefiniert. Zu jeder Belegung $\beta: \mathcal{V} \to A$ definieren wir eine Belegung $\beta^=: \mathcal{V} \to A_0$ durch

$$\beta^{=}(x) := [\beta(x)].$$

Für $\mathscr{I} = (\mathscr{A}, \beta)$ schreiben wir $\mathscr{I} = (\mathscr{A}_0, \beta^=)$. Beweisen Sie die folgenden Aussagen:

- (a) Sei $\mathscr{I} = (\mathscr{A}, \beta)$ eine Interpretation über der Struktur \mathscr{A} . Dann gilt $t^{\mathscr{I}} = [t^{\mathscr{I}}]$ für jeden S-Term t.
- (b) Sei $\beta: \mathcal{V} \to A$ eine Belegung. Dann gilt $\beta[x \mapsto a]^{=} = \beta^{=}[x \mapsto [a]]$ für jedes $a \in A$.
- (c) Sei $\mathscr{I} = (\mathscr{A}, \beta)$ eine Interpretation über der Struktur \mathscr{A} . Dann ist $\mathscr{I} \models \varphi^{\sim}$ äquivalent zu $\mathscr{I} \models \varphi$.

Lösung: (a) [4 Punkte] Man beweist die Aussage durch Induktion über den Aufbau des Terms *t*. Als Basis der Indukion müssen wir Variablen und Konstanten betrachten:

- Sei t = x eine Variable. Mit der Definition von $\mathscr{I}^{=}$ ist $t^{\mathscr{I}^{=}} = \beta^{=}(x) = \lceil \beta(x) \rceil = \lceil t^{\mathscr{I}} \rceil$.
- Sei t = c eine Konstante. Mit der Definition von $c^{\mathcal{A}_0}$ ist $t^{\mathcal{I}} = c^{\mathcal{A}_0} = [c^{\mathcal{A}}] = [t^{\mathcal{I}}]$.

Im Induktionsschritt müssen wir zusammengesetzte Terme betrachten:

- Sei $t = f t_1 \dots t_n$. Nach Induktionsvoraussetzung gilt $t_i^{\mathscr{I}} = [t_i^{\mathscr{I}}]$ für $i = 1, \dots, n$. Zusammen mit der Definition von $f^{\mathscr{A}_0}$ erhält man $t^{\mathscr{I}} = f^{\mathscr{A}_0} t_1^{\mathscr{I}} \dots t_n^{\mathscr{I}} = f^{\mathscr{A}_0} [t_1^{\mathscr{I}}] \dots [t_n^{\mathscr{I}}] = [f^{\mathscr{A}} t_1^{\mathscr{I}} \dots t_n^{\mathscr{I}}] = [t^{\mathscr{I}}]$.
- (b) [4 Punkte] Wir müssen $\beta[x \mapsto a]^{=}(y) = \beta^{=}[x \mapsto [a]](y)$ für jede Variable y zeigen. Ist y dieselbe Variable wie x, so hat man

$$\beta[x \mapsto a]^{=}(x) = [\beta[x \mapsto a](x)] = [a] = \beta^{=}[x \mapsto [a]](x).$$

Sind x und y verschiedene Variablen, so gilt

$$\beta[x \mapsto a]^{=}(y) = [\beta[x \mapsto a](y)] = [\beta(y)] = \beta^{=}(y) = \beta^{=}[x \mapsto [a]](y).$$

- (c) [4 Punkte] Man argumentiert per Induktion über den Aufbau von φ . Als Basis der Induktion müssen wir atomare Formeln betrachten. Es gilt hier, zwei Fälle zu unterscheiden:
 - Sei $\varphi=(t_1=t_2)$. Dann ist also $\varphi^\sim=(t_1\sim t_2)$. Mit Teilaufgabe (a) hat man

$$\mathscr{I} \vDash \varphi^{\sim} \Longleftrightarrow t_1^{\mathscr{I}} \sim^{\mathscr{A}} t_2^{\mathscr{I}} \Longleftrightarrow [t_1^{\mathscr{I}}] = [t_2^{\mathscr{I}}] \Longleftrightarrow t_1^{\mathscr{I}^=} = t_2^{\mathscr{I}^=} \Longleftrightarrow \mathscr{I}^= \vDash \varphi.$$

• Sei $\varphi = Rt_1 \dots t_n$. Dann ist $\varphi^{\sim} = Rt_1 \dots t_n$ und somit

$$\mathscr{I} \vDash \varphi^{\sim} \iff (t_1^{\mathscr{I}}, \dots, t_n^{\mathscr{I}}) \in R^{\mathscr{A}} \iff ([t_1^{\mathscr{I}}], \dots, [t_n^{\mathscr{I}}]) \in R^{\mathscr{A}_0} \iff (t_1^{\mathscr{I}}, \dots, t_n^{\mathscr{I}}) \in R^{\mathscr{A}_0} \iff \mathscr{I} \vDash \varphi.$$

Im Induktionsschritt müssen wir die verschiedenen Möglichkeiten für zusammengesetzte Formeln betrachten:

• Sei $\varphi = \neg \psi$, also $\varphi^{\sim} = \neg \psi^{\sim}$. Nach Induktionsvoraussetzung ist $\mathscr{I} \models \psi^{\sim}$ äquivalent zu $\mathscr{I} \models \psi$. Hieraus folgt

$$\mathscr{I} \models \varphi^{\sim} \Leftrightarrow \mathscr{I} \models \neg \psi^{\sim} \Leftrightarrow \mathscr{I} \not\models \psi^{\sim} \Leftrightarrow \mathscr{I}^{=} \not\models \psi \Leftrightarrow \mathscr{I}^{=} \models \neg \psi \Leftrightarrow \mathscr{I}^{=} \models \varphi.$$

• Sei $\varphi = \psi \wedge \theta$, also $\varphi^{\sim} = \psi^{\sim} \wedge \theta^{\sim}$. Mit der Induktionsvoraussetzung gilt

$$\mathscr{I} \models \varphi^{\sim} \Leftrightarrow [\mathscr{I} \models \psi^{\sim} \text{ und } \mathscr{I} \models \theta^{\sim}] \Leftrightarrow [\mathscr{I}^{=} \models \psi \text{ und } \mathscr{I}^{=} \models \theta] \Leftrightarrow \mathscr{I}^{=} \models \varphi.$$

• Sei $\varphi = \psi \vee \theta$, also $\varphi^{\sim} = \psi^{\sim} \vee \theta^{\sim}$. Mit der Induktionsvoraussetzung gilt

$$\mathscr{I} \models \varphi^{\sim} \Leftrightarrow [\mathscr{I} \models \psi^{\sim} \text{ oder } \mathscr{I} \models \theta^{\sim}] \Leftrightarrow [\mathscr{I}^{=} \models \psi \text{ oder } \mathscr{I}^{=} \models \theta] \Leftrightarrow \mathscr{I}^{=} \models \varphi.$$

• Sei $\varphi = \forall x \, \psi$, also $\varphi^{\sim} = \forall x \, \psi^{\sim}$. Nach Induktionsvoraussetzung ist $(\mathscr{A}, \eta) \models \psi^{\sim}$ äquivalent zu $(\mathscr{A}_0, \eta^{=}) \models \psi$, für alle Belegungen $\eta : \mathscr{V} \to A$. Zusammen mit Teilaufgabe (b) folgt

$$\begin{split} \mathscr{I} \vDash \varphi^{\sim} &\iff [\text{für alle } a \in A \text{ gilt } (\mathscr{A}, \beta[x \mapsto a]) \vDash \psi^{\sim}] \quad \iff \\ &\iff [\text{für alle } a \in A \text{ gilt } (\mathscr{A}_0, \beta[x \mapsto a]^{=}) \vDash \psi] \quad \iff \\ &\iff [\text{für alle } a \in A \text{ gilt } (\mathscr{A}_0, \beta^{=}[x \mapsto [a]]) \vDash \psi] \quad \iff \\ &\iff [\text{für alle } [a] \in A_0 \text{ gilt } (\mathscr{A}_0, \beta^{=}[x \mapsto [a]]) \vDash \psi] \iff \mathscr{I}^{=} \vDash \varphi. \end{split}$$

• Sei $\varphi = \exists x \, \psi$, also $\varphi^{\sim} = \exists x \, \psi^{\sim}$. Nach Induktionsvoraussetzung ist $(\mathscr{A}, \eta) \models \psi^{\sim}$ äquivalent zu $(\mathscr{A}_0, \eta^{=}) \models \psi$, für alle Belegungen $\eta : \mathscr{V} \to A$. Zusammen mit Teilaufgabe (b) folgt

$$\mathscr{I} \vDash \varphi^{\sim} \iff [\text{für mindestens ein } a \in A \text{ gilt } (\mathscr{A}, \beta[x \mapsto a]) \vDash \psi^{\sim}] \iff \\ \iff [\text{für mindestens ein } a \in A \text{ gilt } (\mathscr{A}_0, \beta[x \mapsto a]^{=}) \vDash \psi] \iff \\ \iff [\text{für mindestens ein } a \in A \text{ gilt } (\mathscr{A}_0, \beta^{=}[x \mapsto [a]]) \vDash \psi] \iff \\ \iff [\text{für mindestens ein } [a] \in A_0 \text{ gilt } (\mathscr{A}_0, \beta^{=}[x \mapsto [a]]) \vDash \psi] \iff \mathscr{I}^{=} \vDash \varphi.$$