

NASA TECHNICAL NOTE

NASA TN D-2417

C 1

LOAN COPY: RETUR
AFWL (WLIL-2)
KIRTLAND AFB, N

0154870

NASA TN D-2417

HEAT-TRANSFER MEASUREMENTS AT
A MACH NUMBER OF 8 IN THE VICINITY
OF A 90° INTERIOR CORNER ALINED
WITH THE FREE-STREAM VELOCITY

by P. Calvin Stainback

Langley Research Center

Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • AUGUST 1964

0154870

HEAT-TRANSFER MEASUREMENTS AT A MACH NUMBER OF 8
IN THE VICINITY OF A 90° INTERIOR CORNER
ALINED WITH THE FREE-STREAM VELOCITY

By P. Calvin Stainback

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Commerce,
Washington, D.C. 20230 -- Price \$1.00

HEAT-TRANSFER MEASUREMENTS AT A MACH NUMBER OF 8
IN THE VICINITY OF A 90° INTERIOR CORNER
ALINED WITH THE FREE-STREAM VELOCITY

By P. Calvin Stainback
Langley Research Center

SUMMARY

An experimental investigation was conducted to determine the influence of the interaction of the flow field with the boundary layer on the heat transfer in the vicinity of an interior corner formed by the normal intersection of two planes when the line of intersection was alined with the free-stream velocity. The investigation was made at a nominal Mach number of 8, and the nominal unit Reynolds number per foot was varied from 0.23×10^6 to 10.07×10^6 .

The results indicated that the peak heating rate in the vicinity of the corner could be about 1.5 times the undisturbed flat-plate value outside the mutual boundary-layer interaction region. This high heating rate was attributed to the mutual interaction of the inviscid flow field with the boundary layer. Within the mutual boundary-layer interaction region a decrease in the heating rate was observed, and this result was in qualitative agreement with theoretical results.

INTRODUCTION

The flow of a fluid in the vicinity of an interior corner formed by two intersecting plates has received considerable theoretical and experimental attention in recent years since this simple geometric configuration can be expected to simulate adequately some of the major phenomena encountered on more complex junctions found in fluid machines, aircraft, and high-performance spacecraft.

Most of the theoretical investigations have been limited to the study of the boundary layer in the immediate vicinity of the corner. (See, for example, refs. 1 to 11.) This flow regime is designated herein as the near-corner viscous interaction region or simply the near-corner region. Until recently, most of the experimental investigations were limited to the study of the inviscid flow field and its ultimate interaction with the boundary layer outside the near-corner region (refs. 12 to 15). This region is designated herein as the far-corner interaction region. A theoretical study of the inviscid far-corner

interaction region can be found in reference 16 and an experimental study of the viscous near-corner region in reference 17. Recently, experimental studies conducted at a Mach number of 16 provided heat-transfer and pressure data in both the near and far interaction regions (refs. 18 and 19).

The present paper presents heat-transfer and flow-visualization data taken in both the near-corner and far-corner interaction regions at a Mach number of 8.00 and a range of Reynolds number per foot from 0.23×10^6 to 10.07×10^6 . The present data are presented in somewhat more detail than the heat-transfer data of references 18 and 19 and because of the difference in the free-stream Mach number and should serve to supplement the data of these references.

SYMBOLS

$$C = \frac{\delta}{x} \sqrt{R_x}$$

$$B = \left[N_{St} \sqrt{R_x} \right]_e / C$$

h aerodynamic heat-transfer coefficient, Btu/sec-ft²-°R

M_∞ free-stream Mach number

N_{St} Stanton number based on free-stream conditions

p pressure

q aerodynamic heat-transfer rate, Btu/sec-ft²

R unit Reynolds number (per foot) based on free-stream conditions

R_x Reynolds number based on free-stream conditions and distance from leading edge

T temperature

x distance from leading edge of model

y, z coordinate distances from corner of model

δ interaction boundary-layer thickness

Subscripts:

e effective flat-plate value

t stagnation conditions

w wall condition

DESCRIPTION OF MODEL

The corner heat-transfer model was machined from a single piece of 17-4 PH stainless-steel bar stock. Its overall dimensions were 4.50 by 4.50 by 11 inches. (See fig. 1 for details.) The sides which formed the corner were 0.50 inch thick and these produced a corner with an inside dimension of 4.00 inches in the vertical and transverse directions. The model was instrumented from 0.050 inch to 2.00 inches from the corner and 0.50 inch to 9.75 inches from the leading edge. The leading-edge thickness was approximately 0.002 inch.

The thermocouple stations were formed by machining 0.50-inch transverse slots 2.50 inches long in the reverse side of the model to produce a skin thickness 0.015 inch. Near the leading edge, where the 0.50-inch slots would have overlapped, a large cavity was machined to receive the thermocouples. All cavities were shielded from the flow by the support system or by cover plates.

At the corner two milling operations, 90° apart, were made at each longitudinal station in order to form a corner with 0.015-inch-thick walls. (See fig. 1.) As a result of this method of machining, an excess mass 0.015 by 0.015 inch was formed opposite the line of intersection of the planes forming the corner. This mass received no direct aerodynamic heating from the model surface; the heat stored in this mass was received from adjacent metal by conduction. In an attempt to reduce this conduction, the inside corner of this mass was chamfered 0.015 inch by 45° . Thermocouples were located on the chamfered surface and were used to monitor the conduction effects of the excess mass on the thermocouples located 0.05 inch from the corner. The elementary analysis of reference 13 indicated that the effect of the excess mass on the heating rate determined by the thermocouples 0.05 inch from the corner was less than 4 percent. This possible error was not taken into account in reducing the present data.

A total of 80 iron-constantan thermocouples (0.010 inch in diameter) were installed in the model. The thermocouple junctions were made by spot welding individual thermocouple wires on the reverse side of the model skin. The coordinates of the thermocouple stations are given in the following table:

<i>y, in.</i>	<i>x, in.</i>									
0.05										
.15										
.35										
.60										
1.00										
1.50										
2.00										
	0.50	0.75	1.00	1.50	2.25	3.25	4.50	6.00	7.75	9.75

A second model was made similar to the heat-transfer model and was used for the temperature-sensitive-paint and oil-flow investigation. This model was covered with plastic and fiber glass, except in the vicinity of the leading edge, to provide an insulating surface desirable for use with the temperature-sensitive-paint investigation.

In order to obtain shadowgraphs of the shock inside the corner, a third model was constructed of steel; and a flat, front-surfaced mirror was set into the vertical side an inch from the leading edge. With this model it was possible to obtain double pass shadowgraphs of the shock generated by the transverse side of the model.

TEST PROCEDURE AND DATA REDUCTION

Testing of the corner model was conducted at the Langley Mach 8 variable-density tunnel. This tunnel is of the blowdown type and has an axially symmetric nozzle with contoured walls. The average test-section Mach number variation with stagnation pressure is presented in figure 2. The Mach numbers used to reduce the present data were obtained from an earlier partial calibration of the tunnel and except for the low stagnation pressure, where the earlier calibration curves were extrapolated, the results of the two calibrating curves were essentially the same.

The test-section unit Reynolds number per foot ranged from 0.23×10^6 to 10.07×10^6 for the heat-transfer tests; from 0.56×10^6 to 3.15×10^6 for the shadowgraph tests; and for the oil-flow and temperature-sensitive-paint investigation the Reynolds number per foot was 1.77×10^6 .

The heat-transfer data were obtained by the transient-heating technique. This technique provided for the establishment of steady flow in the test section with the model outside the tunnel; after steady operation had been obtained the model was inserted into the test section. The model was removed from the test section after about 4 seconds and was brought to isothermal conditions at approximately room temperature. The transient-heating times required to move the model through the tunnel boundary layer was about 0.05 second, and care was taken to eliminate this effect on measured temperature during data reduction.

The heat-transfer data were obtained by recording the temperature-time history of the model on magnetic tape with a digital data recorder. The temperature data were reduced to heating rates and Stanton number on a digital computing machine. (See ref. 20 for the details of data reduction.)

The temperature-sensitive-paint, oil-flow, and shadowgraph tests were similar to the heat-transfer tests. The temperature-sensitive-paint model is shown mounted on the test-section injection mechanism in the retracted position in figure 3.

The temperature-sensitive paint has the characteristic that the paint changes color as its temperature is increased. The paint used was a four-color-change type; however, only one color change was experienced during the present tests. This color change occurred from pink, the original color, to blue. A more detailed description of this paint and testing technique can be found in reference 21.

DISCUSSION OF RESULTS

The heat-transfer data in the form of Stanton number are presented in figure 4 as a function of Reynolds number for various unit Reynolds numbers and distances from the corner. The data are presented in tabular form in table I. Theoretical low-speed laminar (ref. 22) and turbulent (ref. 23) flat-plate heating curves are included in the figure for comparison with the present data. For reference, the leading-edge boundary-layer induced shock location, obtained from the shadowgraph results presented in figure 5, is also included in the figure. In figure 5(a) the shock location is indicated by its reflection from the mirror which is set into the vertical side of the model. Also presented in figure 5(b) are plots of shock locations for various unit Reynolds numbers. Some of these curves were obtained by extrapolating the measured data. It should be noted that the Reynolds number based on the shock distance from the leading edge is outside the Reynolds number range shown in some of the plots in figure 4.

At $y = 2.00$ and 1.50 inches, the Stanton number (fig. 4) agrees quite well with the theoretical laminar values except for $R_x > 4 \times 10^6$ where the disagreement can be attributed to transitional or turbulent flow. Although the shock crosses the $y = 1.50$ location ahead of the last thermocouple, there is little if any indication of this disturbance on the heating rate except for the aforementioned transition which will be discussed subsequently. As y is decreased to 1.00 inch there is some indication of an increase in the Stanton number behind the shock. This phenomenon is most evident at the lower unit Reynolds numbers. A further decrease in y to 0.60 inch reveals a pronounced increase in heating behind the shock and this increase is evident as y is decreased to 0.05 inch. At $y = 0.05$ inch the Stanton number is substantially less than the theoretical laminar value for large values of x . This decrease can be attributed to the mutual interaction of the boundary layers in the vicinity of the corner, a result in agreement with the near-corner interaction theories.

The regions with heating rates higher than the undisturbed laminar values are located in the far interaction regions and result from the mutual interaction of the two inviscid flow fields associated with the two plates forming the corner and their ultimate interaction with the boundary layer. The maximum value of this increased heating is about 1.5 to 2.0 times the theoretical laminar value and occurs at about 0.35 inch from the corner.

The area where the increase in heating occurs is well downstream of the projected shock location. This result can be seen from figure 4 and also from figure 6. This latter figure presents the temperature-sensitive-paint results. The dark areas (blue) represent regions with higher heating rates than the light areas (pink). The shock position has been superimposed on the photograph

and the high heating region is located downstream of the shock. This condition is more evident at large distances from the leading edge as a result of the "conical like" disturbances which originate at the leading edge of the corner.

It is interesting to note from figure 4 that if data were available only over a limited Reynolds number range, the increase in heating might erroneously be attributed to transition. However, for sufficiently large values of the Reynolds number the heating rate downstream of the peak heating region tends to decrease toward the laminar value. In fact, a comparison of the transition data at $R_x = 10.07 \times 10^6$ (per foot) for decreasing values of y from 2.00 to 0.05 inch indicates that the corner flow which causes the increased heating tends to suppress transition.

There is a slight indication that the heating rate in the immediate vicinity of the shock is reduced below the undisturbed value. This phenomenon can be seen a little clearer when the parameter $N_{St} \sqrt{R_x}$ is plotted as a function of x . Such a plot is presented in figure 7 for $y = 1.50$ inches, 0.60 inch, and 0.35 inch. If the data for $y = 1.50$ inches are assumed to represent the undisturbed flow over the model and a curve is faired through the data for all values of y , then a slight reduction in the heating rate in the vicinity of the shock can be discerned. This result suggests the possibility that the shock tends to produce an incipient boundary-layer-separation condition with its attendant thickening of the boundary layer.

In reference 11 the reduction in the heating rate within the mutual boundary-layer interaction region was found to vary linearly with distance from the corner. This variation can be expressed as

$$\frac{q}{q_e} = \frac{y}{\delta} \quad (0 \leq y \leq \delta) \quad (1)$$

If the definition of the aerodynamic-heat-transfer coefficient is used and the wall is assumed to be isothermal, equation (1) can be expressed as follows:

$$\frac{h}{h_e} = \frac{y}{\delta} \quad (0 \leq y \leq \delta) \quad (2)$$

This equation can be given in terms of the Stanton number and Reynolds number, based on free-stream conditions, as

$$\frac{\frac{N_{St} \sqrt{R_x}}{[N_{St} \sqrt{R_x}]_e}}{=} = \frac{y}{\delta} \quad (0 \leq y \leq \delta) \quad (3)$$

The interaction boundary-layer thickness can be expressed as (ref. 1)

$$\frac{\delta}{x} = \frac{C}{\sqrt{R_x}} \quad (4)$$

where C is a constant for a corner model with zero streamwise pressure gradient. Substituting equation (4) into (3) gives

$$N_{St} \sqrt{R_x} = B \frac{y}{x} \sqrt{R_x} \quad (0 \leq y \leq \delta) \quad (5)$$

where B is a constant and equal to $[N_{St} \sqrt{R_x}]_e / C$, provided the streamwise pressure gradient is negligible.

The heat-transfer data are presented in terms of the parameters of equation (5) for several free-stream unit Reynolds numbers in figure 8. This figure indicates that the variation of the heating rate with distance from the corner in the interaction region is essentially linear within the limits of the present investigation and tends to confirm the theoretical finding of reference 11.

For the present test conditions, the "undisturbed" conditions exterior to the near-corner viscous-interaction region are not the flat-plate values but would be the conditions between the near-corner region and the high heating region in the far-corner region.

From figure 8 this value of $[N_{St} \sqrt{R_x}]_e$ appears to be constant for all unit Reynolds numbers and has a value of about 0.475. Curves fitted to the data near the corner indicate that the value of B varies with unit Reynolds number and if $[N_{St} \sqrt{R_x}]_e$ is assumed constant, the value of C must vary with unit Reynolds number. This variation is shown in figure 9, where C is determined by the intersection of the faired curve with the assumed constant value of $[N_{St} \sqrt{R_x}]_e$ of 0.475. Values for C can also be obtained from figure 4 for $y = 0.05$ inch if it is assumed that the near-corner interaction region begins when the Stanton number deviates from the flat-plate-like variation that it has near the leading edge. Values for C calculated in this manner are also shown in figure 9 and the agreement in estimating C by the two methods is good. A curve fitted to the data indicated that $C \approx R^{0.459}$. The power of the unit Reynolds number is nearly 0.5 and indicates that δ is almost independent of unit Reynolds number and, therefore, is almost proportional to \sqrt{x} . Also, the heat-transfer parameter $N_{St} \sqrt{R_x}$ in the boundary-layer interaction region should correlate in terms of the geometric quantity y/\sqrt{x} . In figure 10 the heat-transfer parameter $N_{St} \sqrt{R_x}$ is plotted as a function of y/\sqrt{x} and shows that in the near-corner region the heat-transfer parameter can be correlated reasonably well in terms of this geometric quantity.

That δ is almost independent of unit Reynolds number can be seen by calculating δ for $R = 0.23 \times 10^6$ and $R = 10.07 \times 10^6$ from the values of C obtained from the curve in figure 9. These calculations would reveal that δ changes only 16 percent, whereas if C were a constant, δ would vary by a factor of 6.6.

Attempts were made to determine the reason for the relative invariance of δ with unit Reynolds number. The variation of δ can be influenced by the

boundary-layer induced pressure on the plate, which would be more effective in thinning the boundary layer for low unit Reynolds number than for high values. Reference 11 indicated that for Mach numbers greater than about 3.5 the boundary layer in the corner is "square," that is, the interaction boundary layer is equal to the undisturbed value. From this result the undisturbed boundary-layer thickness was approximated by estimating the pressure distribution, the ratio of the boundary-layer thickness in a pressure gradient to the zero-pressure-gradient value, and the zero-pressure-gradient boundary-layer thickness from references 24, 25, and 26, respectively. The results of these calculations are shown in figure 9 as a crosshatched area since C varies with x for cases where a pressure gradient exists. (It should be noted that C for the present case probably varies with x for a given unit Reynolds number, but the data are not sufficiently detailed to reveal this variation.) From figure 9 it can be seen that for the lowest unit Reynolds numbers the measured values of C and also δ are about one-half the estimated undisturbed values. This result indicates that some other phenomenon must be responsible for reducing the extent of the interaction boundary layer.

It was postulated in reference 27 that the leading edge of the corner produced a vortex system in the vicinity of the corner. If this postulate were correct, the vortex could influence the extent of the near-corner region by altering the flow at the outer edge of the boundary layer. In order to investigate the existence of a vortex system in the vicinity of the corner, several oil-flow tests were conducted. These tests were performed both by coating the corner model completely with a mixture of oil and lamp black and by using discrete dots of the mixture. Results of the test at a unit Reynolds number per foot of 1.77×10^6 of the completely coated model is shown in figures 11(a) and 11(b); results of the discrete-dot method are shown in figure 11(c). The two photographs in figures 11(a) and 11(c) show the general flow pattern obtained from both test methods. The other (fig. 11(b)) shows a closeup of the flow pattern in the vicinity of the corner and leading edge.

The flow pattern obtained from the model completely coated with the oil-lamp-black mixture reveals a high shear region near the leading edge in the vicinity of the corner. This result is in general agreement with the temperature-sensitive-paint results presented in figure 6, that is, the high heating region revealed by the temperature-sensitive-paint results is due to the fact that the shear stresses in the boundary layer are higher in the region of high heat-transfer rate than in adjacent regions. This result could be indicative of a vortex system in the vicinity of the corner.

The oil-flow results indicate some outflow from the corner which is greater than the outflow that could be expected from displacement effects. This effect could also be indicative of a vortex system.

CONCLUSIONS

The experimental investigation, at a Mach number of 8, of the flow in the vicinity of the corner formed by two perpendicular plates aligned with the free-stream velocity permits the following conclusions to be stated:

1. A high heat-transfer region exterior to the mutual boundary-layer-interaction region is associated with the flow-field interaction between the two plates and its ultimate interactions with the boundary layer. The heating in this region is approximately 1.5 theoretical flat-plate value without the flow-field interaction.

2. Within the mutual boundary-layer-interaction region a decrease occurs in the heating rate that is in qualitative agreement with rates from recent compressible-flow theory.

3. The mutual boundary-layer-interaction thickness as deduced from heat-transfer tests is relatively insensitive to the free-stream unit Reynolds number and is therefore almost proportional to \sqrt{x} , where x is the distance from the leading edge.

4. A slight reduction in the heating that takes place in the vicinity of the boundary-layer induced shock is apparently associated with a thickening of the boundary layer due to incipient boundary-layer-separation conditions caused by the shock.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 13, 1964.

REFERENCES

1. Loiziansky, L. G.: Interference of Boundary Layers. No. 249, Trans. Central Aero-Hydrodynamical Inst. (Moscow), 1936.
2. Loitsianskii, L. G., and Bolshakov, V. P.: On Motion of Fluid in Boundary Layer Near Line of Intersection of Two Planes. NACA TM 1308, 1951.
3. Carrier, G. F.: The Boundary Layer in a Corner. Quarterly Appl. Math., vol. IV, no. 4, Jan. 1947, pp. 367-370.
4. Sowerby, L., and Cooke, J. C.: The Flow of Fluid Along Corners and Edges. Quarterly Jour. Mech. and Appl. Math., vol. VI, pt. 1, Mar. 1953, pp. 50-70.
5. Dowdell, Rodger Birtwell: Corner Boundary Layer. M.S. Thesis, Yale Univ., 1952.
6. Oman, Richard A.: The Three-Dimensional Laminar Boundary Layer Along a Corner. Tech. Rep. No. 1 (Contract No. DA-19-020-ORD-4538), M.I.T., Jan. 1959. (Available from ASTIA as AD 211216.)
7. Kemp, Nelson Harvey: The Laminar Three-Dimensional Boundary Layer and a Study of the Flow Past a Side Edge. M. Aero. Eng. Thesis, Cornell Univ., June 1951. (Available from ASTIA as AD 45462.)
8. Levy, Richard H.: The Boundary Layer in a Corner. Contract AF 49(638)-465, Dept. Aero. Eng., Princeton Univ., Nov. 1959.
9. Cheng, Sin-I, and Levy, Richard H.: The Boundary Layer in a Corner. Rep. No. 485 (AFOSR TN 59-1165), Princeton Univ., Nov. 1959.
10. Krzywoblocki, M. Z.: On the Boundary Layer in a Corner by Use of the Relaxation Method. Ganita (Lucknow, India), vol. 7, no. 2, Dec. 1956, pp. 76-112.
11. Bloom, Martin H., and Rubin, Stanley: High-Speed Viscous Corner Flow. Jour. Aerospace Sci., vol. 28, no. 2, Feb. 1961, pp. 145-157.
12. Galowin, Lawrence: Heat Transfer Correlations for 90° Corner Interference Effects on Fin-Flat Plate Model at a Mach Number of 8. Tech. Rep. No. 207 (Contract No. AF 33(616)-6692), Gen. Appl. Sci. Labs., Inc., Feb. 8, 1961.
13. Stainback, P. Calvin: An Experimental Investigation at a Mach Number of 4.95 of Flow in the Vicinity of a 90° Interior Corner Alined With the Free-Stream Velocity. NASA TN D-184, 1960.
14. Rhudy, J. P., Hiers, R. S., and Rippey, J. O.: Pressure Distribution and Heat Transfer Test on Two Fin-Flat Plate Interference Models and Several Blunt Leading Edge Delta Wing Models. AEDC-TN-60-168 (Contract No. AF 40(600)-800S/A 11(60-110)), Arnold Eng. Dev. Co., Sept. 1960.

15. Jones, Robert A.: Heat-Transfer and Pressure Investigation of a Fin-Plate Interference Model at a Mach Number of 6. NASA TN D-2028, 1964.
16. Hains, Franklin D.: Supersonic Flow Near the Junction of Two Wedges. Jour. Aero/Space Sci. (Readers' Forum), vol. 25, no. 8, Aug. 1958, pp. 530-531.
17. Gersten, K.: Corner Interference Effects. NATO Rep. 299, AGARD, North Atlantic Treaty Organization (Paris), Mar. 1959.
18. Miller, D. S., Hijman, R., Redeker, E., Janssen, W. C., and Mullen, C. R.: A Study of Shock Impingements on Boundary Layers at Mach 16. Proc. 1962 Heat Transfer and Fluid Mechanics Inst. (Univ. Wash.), F. Edward Ehlers, James J. Kauzlarich, Charles A. Sleicher, Jr., and Robert E. Street, eds., Stanford Univ. Press, June 1962, pp. 255-278.
19. Caldwell, A. L., Haugseth, E. G., and Miller, D. S.: The Influence of Aerodynamic Interference Heating on Directional Stability Problems of Hypersonic Vehicles. Paper 63-6, Inst. Aerospace Sci., Jan. 1963.
20. Stainback, P. Calvin: Heat-Transfer Measurements at a Mach Number of 4.95 on Two 60° Swept Delta Wings With Blunt Leading Edges and Dihedral Angles of 0° and 45° . NASA TN D-549, 1961.
21. Stainback, P. Calvin: A Visual Technique for Determining Qualitative Aerodynamic Heating Rates on Complex Configurations. NASA TN D-385, 1960.
22. Eckert, Ernst R. G.: Survey on Heat Transfer at High Speeds. WADC Tech. Rep. 54-70, U.S. Air Force, Apr. 1954.
23. Van Driest, E. R.: The Problem of Aerodynamic Heating. Aero. Eng. Rev., vol. 15, no. 10, Oct. 1956, pp. 26-41.
24. Bertram, Mitchel H.: Boundary-Layer Displacement Effects in Air at Mach Numbers of 6.8 and 9.6. NASA TR R-22, 1959. (Supersedes NACA TN 4133.)
25. Bertram, Mitchel H., and Feller, William V.: A Simple Method for Determining Heat Transfer, Skin Friction, and Boundary-Layer Thickness for Hypersonic Laminar Boundary-Layer Flows in a Pressure Gradient. NASA MEMO 5-24-59L, 1959.
26. Van Driest, E. R.: Investigation of Laminar Boundary Layer in Compressible Fluids Using the Crocco Method. NACA TN 2597, 1952.
27. Bogdonoff, S. M., and Vas, I. E.: A Preliminary Investigation of the Flow in a 90° Corner at Hypersonic Speeds. Part I - Flat Plates With Thin Leading Edges at Zero Angle of Attack. D-143-978-013 (ARDC TR 57-202, AD 150 023), Bell Aircraft Corp., Dec. 20, 1957.

TABLE I.- HEAT-TRANSFER DATA

(a) $R = 0.23 \times 10^6$; $T_t = 1105^\circ R$; (b) $R = 0.42 \times 10^6$; $T_t = 12000^\circ R$; (c) $R = 0.56 \times 10^6$; $T_t = 1285^\circ R$; (d) $R = 0.96 \times 10^6$; $T_t = 13200^\circ R$; $P_t = 36.6$ psia; $M_\infty = 7.72$ $P_t = 73.2$ psia; $M_\infty = 7.74$ $P_t = 122$ psia; $M_\infty = 7.765$ $P_t = 211$ psia; $M_\infty = 7.81$

x , in.	q , $\frac{\text{Btu}}{\text{sec-ft}^2}$	T_w , $^\circ F$	h , $\frac{\text{Btu}}{\text{sec-ft}^2 \cdot ^\circ F}$	x , in.	q , $\frac{\text{Btu}}{\text{sec-ft}^2}$	T_w , $^\circ F$	h , $\frac{\text{Btu}}{\text{sec-ft}^2 \cdot ^\circ F}$	x , in.	q , $\frac{\text{Btu}}{\text{sec-ft}^2}$	T_w , $^\circ F$	h , $\frac{\text{Btu}}{\text{sec-ft}^2 \cdot ^\circ F}$	x , in.	q , $\frac{\text{Btu}}{\text{sec-ft}^2}$	T_w , $^\circ F$	h , $\frac{\text{Btu}}{\text{sec-ft}^2 \cdot ^\circ F}$
$y = 0.05$ in.															
0.50	0.26065	78.03	0.00059	0.50	0.44911	78.67	0.00085	0.50	0.64086	89.06	0.00109	0.50	0.89662	88.19	0.00146
.75	.21610	77.37	.00049	.75	.35987	80.08	.00068	.75	.51181	87.29	.00092	.75	.71146	86.77	.00115
1.00	.16720	75.97	.00038	1.00	.29034	79.28	.00055	1.00	.45629	85.77	.00077	1.00	.56021	85.42	.00091
1.50	.14209	75.97	.00032	1.50	.23508	77.88	.00045	1.50	.36137	83.90	.00061	1.50	.44630	84.10	.00072
2.25	.07739	74.81	.00017	2.25	.11493	76.20	.00029	2.25	.20423	82.83	.00035	2.25	.15408	83.57	.00043
3.25	.06237	74.91	.00014	3.25	.11037	75.12	.00021	3.25	.14413	82.26	.00024	3.25	.16600	83.00	.00027
4.50	-----	-----	-----	4.50	-----	-----	-----	4.50	-----	-----	-----	4.50	.01158	73.28	.00002
6.00	.02822	74.92	.00006	6.00	.05085	74.98	.00010	6.00	.07022	83.32	.00012	6.00	.07297	82.76	.00012
7.75	.02109	74.51	.00005	7.75	.03958	74.65	.00008	7.75	.04412	83.44	.00007	7.75	.01388	83.30	.00002
9.75	.01610	73.67	.00004	9.75	.36771	73.54	.00028	9.75	.03602	82.97	.00006	9.75	.01350	82.75	.00002
$y = 0.15$ in.															
0.50	0.26145	77.95	0.00059	0.50	0.45093	77.95	0.00086	0.50	0.59579	89.61	0.00101	0.50	0.76446	88.89	0.00124
.75	.20379	76.07	.00046	.75	.36868	79.71	.00070	.75	.51599	87.81	.00087	.75	.62074	87.49	.00101
1.00	.18100	75.94	.00041	1.00	.31417	77.16	.00060	1.00	.42425	85.25	.00072	1.00	.54628	86.35	.00089
1.50	.16122	75.75	.00036	1.50	.27388	78.82	.00052	1.50	.39649	88.19	.00067	1.50	.61971	85.80	.00100
2.25	.12897	75.39	.00029	2.25	.22534	76.85	.00042	2.25	.33427	85.13	.00056	2.25	.47143	85.48	.00076
3.25	.08811	76.24	.00020	3.25	.18249	76.74	.00035	3.25	.26902	84.78	.00046	3.25	.09272	85.31	.00061
4.50	.05310	74.42	.00012	4.50	.09576	75.46	.00018	4.50	.14297	85.59	.00024	4.50	.56753	86.28	.00092
6.00	.06102	74.33	.00014	6.00	.10694	75.35	.00020	6.00	.14994	85.11	.00026	6.00	.20079	83.83	.00033
7.75	.06248	74.82	.00014	7.75	.07799	74.97	.00015	7.75	.15182	84.83	.00026	7.75	.17441	84.88	.00028
9.75	.02458	74.65	.00006	9.75	.07692	75.32	.00013	9.75	.10382	85.85	.00018	9.75	.11276	85.86	.00187
$y = 0.35$ in.															
0.50	0.26145	77.70	0.00056	0.50	0.43956	77.83	0.00083	0.50	0.62005	90.01	0.00106	0.50	0.73740	89.62	0.00120
.75	-----	-----	-----	.75	-----	-----	-----	.75	.44326	88.08	.00075	.75	.51874	88.13	.00084
1.00	.14770	75.39	.00033	1.00	.25323	76.43	.00048	1.00	.34627	86.63	.00059	1.00	.46248	86.94	.00075
1.50	.14402	75.14	.00032	1.50	.23762	77.43	.00045	1.50	.33887	85.10	.00057	1.50	.39597	85.68	.00064
2.25	.13430	76.19	.00030	2.25	.26203	76.09	.00042	2.25	.30401	85.19	.00051	2.25	.37127	85.88	.00060
3.25	.14649	75.28	.00033	3.25	.21759	76.00	.00041	3.25	.30177	87.47	.00051	3.25	.38912	85.98	.00071
4.50	.12452	75.06	.00028	4.50	.20315	77.32	.00038	4.50	.30405	86.17	.00051	4.50	.37681	86.09	.00061
6.00	.10126	75.28	.00022	6.00	.18766	77.17	.00032	6.00	.26586	88.57	.00045	6.00	.36806	86.21	.00060
7.75	.08632	75.25	.00019	7.75	.13878	75.96	.00026	7.75	.26863	86.91	.00041	7.75	.55656	86.77	.00055
9.75	.06097	75.21	.00014	9.75	.12240	75.17	.00023	9.75	.20635	87.96	.00035	9.75	.27649	87.91	.00045
$y = 0.60$ in.															
0.50	0.24719	77.70	0.00056	0.50	0.45158	78.42	0.00086	0.50	0.63261	91.56	0.00108	0.50	0.77748	91.19	0.00127
.75	-----	-----	-----	.75	.36107	79.38	.00069	.75	.50099	89.54	.00085	.75	.60935	89.67	.00094
1.00	.14770	75.39	.00033	1.00	.28200	78.32	.00053	1.00	.40584	89.89	.00069	1.00	.47864	87.93	.00078
1.50	.14402	75.14	.00032	1.50	.22271	77.25	.00044	1.50	.31966	85.39	.00054	1.50	.39685	86.17	.00064
2.25	.13430	76.19	.00030	2.25	.16561	75.34	.00031	2.25	.22179	84.77	.00037	2.25	.30247	85.97	.00049
3.25	.14649	75.28	.00033	3.25	.14618	74.93	.00028	3.25	.18411	84.67	.00031	3.25	.33988	85.68	.00039
4.50	.12452	75.06	.00028	4.50	.15917	76.32	.00030	4.50	.21520	85.63	.00036	4.50	.26072	86.95	.00042
6.00	.09951	75.45	.00022	6.00	.13710	76.87	.00032	6.00	.22681	86.74	.00038	6.00	.28730	86.80	.00046
7.75	.08968	74.98	.00019	7.75	.17137	74.95	.00026	7.75	.23147	87.36	.00039	7.75	.27761	87.26	.00044
9.75	.05082	74.79	.00014	9.75	.16249	75.10	.00031	9.75	.19778	89.76	.00034	9.75	.26705	88.34	.00044
$y = 1.00$ in.															
0.50	0.23799	77.83	0.00058	0.50	0.41207	77.99	0.00078	0.50	0.60323	91.93	0.00103	0.50	0.73763	91.82	0.00121
.75	.18498	75.99	.00042	.75	.33252	79.27	.00063	.75	.45216	89.76	.00078	.75	.57505	89.98	.00094
1.00	.18182	76.75	.00033	1.00	.27406	76.61	.00052	1.00	.40965	88.15	.00069	1.00	.49932	88.76	.00081
1.50	.16264	75.21	.00028	1.50	.20671	77.29	.00039	1.50	.33968	88.61	.00058	1.50	.42166	86.20	.00064
2.25	.09445	76.02	.00021	2.25	.17686	76.91	.00034	2.25	.25272	85.93	.00042	2.25	.33011	87.32	.00052
3.25	.07797	75.39	.00018	3.25	.13442	75.64	.00025	3.25	.20500	86.76	.00034	3.25	.26219	86.84	.00043
4.50	.05780	74.64	.00013	4.50	.10654	75.13	.00020	4.50	.16150	87.34	.00027	4.50	.21387	87.04	.00034
6.00	.06430	75.08	.00014	6.00	.10217	74.61	.00018	6.00	.14214	87.52	.00024	6.00	.19422	86.12	.00002
7.75	.06896	75.71	.00015	7.75	.11419	75.67	.00022	7.75	.15722	88.57	.00027	7.75	.19437	87.21	.00002
9.75	.06164	75.31	.00011	9.75	.09595	74.96	.00017	9.75	.16828	89.59	.00028	9.75	.17338	88.82	.00028
$y = 1.50$ in.															
0.50	0.25564	76.07	0.00058	0.50	0.42234	77.80	0.00080	0.50	0.60534	92.28	0.00103	0.50	0.75748	92.15	0.00124
.75	.20065	75.47	.00045	.75	.33484	76.82	.00063	.75	.47459	93.19	.00081	.75	.61349	90.69	.00100
1.00	.15915	75.30	.00036	1.00	.27941	76.38	.00053	1.00	.41340	88.43	.00070	1.00	.50156	89.16	.00082
1.50	.15420	74.96	.00034	1.50	.20562	76.79	.00038	1.50	.31799	87.18	.00054	1.50	.44052	88.35	.00071
2.25	.10557	74.72	.00023	2.25	.18593	75.03	.00035	2.25	.26288	88.55	.00044	2.25	.32252	88.12	.00053
3.25	.07555	75.09	.00017	3.25	.14434	75.20	.00027	3.25	.22308	87.95	.00037	3.25	.27247	87.88	.00044
4.50	.06094	74.69	.00014	4.50	.11270	75.05	.00021	4.50	.15250	86.99	.00026	4.50	.21578	87.92	.00035
6.00	.05295	74.86	.00012	6.00	.08984	74.40	.00017	6.00	.13071	88.59	.00022	6.00	.19222	88.13	.00051
7.75	.05253	74.72	.00012	7.75	.09619	74.69	.00018	7.75	.10939	88.71	.00019	7.75	.16917	88.27	.00028
9.75	.05006	74.64	.00011	9.75	.08765	75.13	.00017	9.75	.11633	90.					

TABLE I.- HEAT-TRANSFER DATA - Concluded

(e) $R = 1.77 \times 10^6$; $T_t = 1358^\circ R$; $P_t = 395$ psia; $M_w = 7.87$
 (f) $R = 3.15 \times 10^6$; $T_t = 1392^\circ R$; $P_t = 725$ psia; $M_w = 7.93$
 (g) $R = 10.07 \times 10^6$; $T_t = 1467^\circ R$; $P_t = 2510$ psia; $M_w = 8.0$

x , in.	q , Btu sec-ft ²	T_w , °F	h , Btu sec-ft ² -°F	x , in.	q , Btu sec-ft ²	T_w , °F	h , Btu sec-ft ² -°F	x , in.	q , Btu sec-ft ²	T_w , °F	h , Btu sec-ft ² -°F
$y = 0.05$ in.											
0.50	1.18067	96.18	0.00184	0.50	1.68831	113.24	0.00255	0.50	3.72948	115.28	0.00516
.75	.92570	99.14	.00145	.75	1.38643	98.59	.00205	.75	2.75564	110.62	.00579
1.00	.79925	91.62	.00124	1.00	1.18824	96.05	.00175	1.00	2.34176	107.15	.00530
1.50	.66764	89.64	.00103	1.50	.97565	93.56	.00143	1.50	1.87214	104.03	.00295
2.25	.42450	90.85	.00066	2.25	.59972	90.86	.00087	2.25	1.04051	100.00	.00141
3.25	.32436	88.37	.00049	3.25	.45875	91.60	.00067	3.25	.88404	102.78	.00120
4.50	-----	-----	-----	4.50	-----	-----	-----	4.50	.13662	79.02	.00018
6.00	.16929	86.38	.00256	6.00	.24408	88.72	.00035	6.00	.47179	98.71	.00064
7.75	.13060	86.37	.00020	7.75	.20317	88.77	.00030	7.75	.45977	97.04	.00062
9.75	.06981	84.85	.00010	9.75	.09795	86.26	.00013	9.75	.52759	95.22	.00071
$y = 0.15$ in.											
0.50	1.11039	95.08	0.00173	0.50	1.64696	110.93	0.00248	0.50	3.24406	112.93	0.00447
.75	.86229	92.64	.00133	.75	1.27170	97.10	.00188	.75	2.19610	109.15	.00342
1.00	.76050	91.19	.00117	1.00	1.10139	95.32	.00162	1.00	2.24977	107.54	.00508
1.50	.77347	91.24	.00119	1.50	.98801	102.61	.00148	1.50	2.00339	121.20	.00279
2.25	.59261	90.13	.00098	2.25	.66884	97.48	.00099	2.25	1.72469	105.29	.00236
3.25	.45180	92.10	.00070	3.25	.71191	92.95	.00105	3.25	1.42793	102.48	.00194
4.50	.28290	89.85	.00042	4.50	.40036	90.20	.00058	4.50	.74798	104.81	.00102
6.00	.28727	87.35	.00040	6.00	.38951	93.25	.00057	6.00	.81768	105.49	.00111
7.75	.25453	87.72	.00039	7.75	.37873	90.02	.00055	7.75	.84123	97.48	.00114
9.75	.19271	89.78	.00299	9.75	.28081	92.68	.00041	9.75	.83055	104.52	.00113
$y = 0.35$ in.											
0.50	1.06218	95.72	0.00165	0.50	1.61951	110.72	0.00235	0.50	2.93024	113.14	0.00404
.75	.76616	92.77	.00119	.75	1.15364	103.44	.00172	.75	2.04174	108.05	.00280
1.00	.63644	91.14	.00098	1.00	.91613	94.58	.00135	1.00	1.74474	105.85	.00238
1.50	.57922	90.71	.00089	1.50	.79839	98.08	.00118	1.50	1.51715	112.71	.00209
2.25	.51149	90.13	.00077	2.25	.73859	99.35	.00109	2.25	1.51356	103.99	.00206
3.25	.50652	93.39	.00074	3.25	.73364	98.98	.00108	3.25	1.55390	105.30	.00212
4.50	.42431	93.96	.00070	4.50	.66078	99.63	.00098	4.50	1.34300	105.84	.00185
6.00	.46441	89.96	.00070	6.00	.64790	93.63	.00095	6.00	1.19490	102.78	.00162
7.75	.41630	92.24	.00064	7.75	.56551	96.11	.00085	7.75	1.09863	100.15	.00149
9.75	.33050	92.80	.00053	9.75	.45810	96.54	.00067	9.75	.88516	99.90	.00119
$y = 0.60$ in.											
0.50	1.13061	104.40	0.00178	0.50	1.60334	113.19	0.00242	0.50	3.10556	114.84	0.00429
.75	.92766	100.28	.00145	.75	1.34594	107.25	.00201	.75	-----	-----	-----
1.00	.68331	92.77	.00106	1.00	1.03916	96.37	.00153	1.00	2.08627	107.46	.00285
1.50	.58871	90.39	.00091	1.50	.85168	94.11	.00125	1.50	1.68529	104.20	.00230
2.25	.42917	92.54	.00067	2.25	.60915	97.39	.00090	2.25	1.18331	101.77	.00160
3.25	.34972	90.94	.00054	3.25	.52891	94.95	.00077	3.25	.97137	99.63	.00132
4.50	.35114	92.11	.00054	4.50	.53356	92.72	.00078	4.50	-----	-----	-----
6.00	.38130	92.90	.00059	6.00	.56992	93.40	.00083	6.00	.86077	99.45	.00117
7.75	.39842	92.20	.00062	7.75	.53610	96.02	.00079	7.75	1.05230	100.17	.00143
9.75	.34662	90.86	.00053	9.75	.48059	93.74	.00071	9.75	.95960	100.36	.00180
$y = 1.00$ in.											
0.50	1.05975	104.28	0.00167	0.50	1.52225	112.57	0.00230	0.50	2.91540	113.74	0.00402
.75	.82727	100.24	.00129	.75	1.21692	99.49	.00180	.75	2.35903	109.88	.00324
1.00	.69375	95.38	.00108	1.00	1.02053	97.45	.00151	1.00	2.14723	107.84	.00294
1.50	.59662	91.93	.00092	1.50	.88564	95.76	.00130	1.50	1.71379	104.39	.00233
2.25	.45993	91.25	.00071	2.25	.68159	94.97	.00100	2.25	1.52315	102.86	.00180
3.25	.33137	92.26	.00051	3.25	.52344	96.42	.00077	3.25	1.03208	99.92	.00140
4.50	.27781	89.86	.00043	4.50	.41524	96.06	.00061	4.50	.83848	100.51	.00114
6.00	.25982	91.29	.00040	6.00	.38313	91.92	.00056	6.00	.74575	105.63	.00102
7.75	.26815	89.97	.00041	7.75	.42270	95.03	.00062	7.75	.91254	99.74	.00124
9.75	.27033	92.66	.00040	9.75	.41564	96.72	.00062	9.75	1.32618	101.87	.00180
$y = 1.50$ in.											
0.50	1.04059	98.20	0.00016	0.50	1.53402	103.12	0.00228	0.50	2.87386	110.97	0.00396
.75	.87012	95.96	.00136	.75	1.19533	107.50	.00179	.75	2.10453	108.02	0.00329
1.00	.72903	93.91	.00113	1.00	1.05915	102.88	.00155	1.00	2.05841	105.77	.00281
1.50	.53255	95.86	.00083	1.50	.89598	96.22	.00126	1.50	1.67682	102.42	.00228
2.25	.46540	92.34	.00072	2.25	.65629	101.01	.00097	2.25	1.37387	101.65	.00186
3.25	.39026	91.29	.00061	3.25	.55595	98.43	.00082	3.25	1.16576	99.66	.00158
4.50	.30356	91.01	.00047	4.50	.46677	94.19	.00069	4.50	.91611	100.01	.00124
6.00	.25190	92.71	.00039	6.00	.37766	96.59	.00056	6.00	.84179	99.96	.00114
7.75	.23033	91.60	.00036	7.75	.36910	92.67	.00054	7.75	1.04088	100.25	.00141
9.75	.20916	91.72	.00033	9.75	.36367	94.85	.00057	9.75	2.19916	107.49	.00300
$y = 2.00$ in.											
0.50	1.08857	100.57	0.00170	0.50	1.54750	107.61	0.00232	0.50	2.94411	113.33	0.00406
.75	.88174	98.28	.00138	.75	1.27703	104.28	.00190	.75	2.41869	110.61	.00332
1.00	.75516	96.83	.00118	1.00	1.07651	102.42	.00165	1.00	-----	-----	-----
1.50	.60542	95.20	.00094	1.50	.91936	100.21	.00136	1.50	1.83403	105.65	.00250
2.25	.49020	96.18	.00077	2.25	.71082	96.89	.00109	2.25	1.49223	101.05	.00202
3.25	.41513	91.71	.00069	3.25	.65446	95.12	.00093	3.25	1.25311	99.24	.00170
4.50	.31252	93.16	.00049	4.50	.52036	94.71	.00076	4.50	1.04032	99.60	.00141
6.00	.27471	91.64	.00042	6.00	.42399	94.76	.00062	6.00	1.08914	101.74	.00148
7.75	.24804	91.33	.00038	7.75	.40479	96.81	.00060	7.75	1.90754	118.53	.00265
9.75	.22102	92.41	.00034	9.75	.45788	99.44	.00068	9.75	3.38590	112.25	.00471

Figure 1.- General model dimensions. All dimensions are in inches except as noted.

Figure 2.- Tunnel-test-section Mach number variation with stagnation pressure.

Figure 3.- Temperature-sensitive-paint corner model on test-section injection mechanism.
L-64-3094

(a) $y = 2.00$ in.

Figure 4.- Stanton number variation along model for various distances from the corner.

(b) $y = 1.50$ in.

Figure 4.- Continued.

(c) $y = 1.00$ in.

Figure 4.- Continued.

(d) $y = 0.60$ in.

Figure 4.- Continued.

(e) $y = 0.35$ in.

Figure 4.- Continued.

(f) $y = 0.15$ in.

Figure 4.- Continued.

(g) $y = 0.05$ in.

Figure 4.- Concluded.

$$R = 0.56 \times 10^6$$

$$R = 0.96 \times 10^6$$

$$R = 1.77 \times 10^6$$

Horizontal surface of model

$$R = 3.15 \times 10^6$$

L-64-3095

(a) Shadowgraphs of flow over corner model.

Figure 5.- Shadowgraph study.

(b) Shock location as obtained from shadowgraph results.

Figure 5.- Concluded.

Figure 6.- Corner-flow-model temperature-sensitive-paint results. $R = 1.77 \times 10^6$. L-64-3096

(a) $y = 1.50$ in.

Figure 7.- Heat-transfer-parameter variation along model for various distances from corner.

(b) $y = 0.60$ in.

Figure 7.- Continued.

(c) $y = 0.35$ in.
Figure 7.- Concluded.

(a) $R = 0.23 \times 10^6$.

Figure 8.- Heat-transfer parameter in the mutual boundary-layer interaction region.

(b) $R = 0.42 \times 10^6$.

Figure 8.- Continued.

(c) $R = 0.56 \times 10^6$.

Figure 8.- Continued.

(d) $R = 0.96 \times 10^6$.

Figure 8.- Continued.

(e) $R = 1.77 \times 10^6$.

Figure 8.- Continued.

(f) $R = 3.15 \times 10^6$.

Figure 8.- Continued.

Figure 8.- Concluded.

Figure 9.- Nondimensional boundary-layer-interaction parameter variation with unit Reynolds number.

Figure 10.- Correlation of heat-transfer parameter in mutual-boundary-layer-interaction region.
 $y = 0.05$ in.

(a) Completely coated technique. L-64-3097

Figure 11.- Corner-flow model; oil-flow results. $R = 1.77 \times 10^6$.

(b) Closeup of completely coated technique.

L-64-3098

Figure 11.- Continued.

(c) Discrete-dot technique.

L-64-3099

Figure 11.- Concluded.

2/7/85

56

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546