

INTRODUCTION TO DATA MINING

INTRODUCTION TO DATA MINING

SECOND EDITION

PANG-NING TAN

Michigan State University

MICHAEL STEINBACH

University of Minnesota

ANUJ KARPATNE

University of Minnesota

VIPIN KUMAR

University of Minnesota

 $330~{\rm Hudson~Street},\,{\rm NY~NY~10013}$

Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge

Specialist, Higher Ed Portfolio Management: Matt Goldstein

Portfolio Management Assistant: Meghan Jacoby Managing Content Producer: Scott Disanno

Content Producer: Carole Snyder Web Developer: Steve Wright

Rights and Permissions Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications Inc (LSC): Maura Zaldivar-Garcia

Inventory Manager: Ann Lam

Product Marketing Manager: Yvonne Vannatta Field Marketing Manager: Demetrius Hall Marketing Assistant: Jon Bryant

Cover Designer: Joyce Wells, jWellsDesign

Full-Service Project Management: Chandrasekar Subramanian, SPi Global

Composition: SPi Global

Copyright ©2019 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsonhighed.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance or use of these programs.

Library of Congress Cataloging-in-Publication Data on File

Names: Tan, Pang-Ning, author. | Steinbach, Michael, author. | Karpatne, Anuj, author. | Kumar, Vipin. 1956- author.

Title: Introduction to Data Mining / Pang-Ning Tan, Michigan State University, Michael Steinbach, University of Minnesota, Anuj Karpatne, University of Minnesota, Vipin Kumar, University of Minnesota.

Description: Second edition. | New York, NY: Pearson Education, [2019] | Includes bibliographical references and index.

Identifiers: LCCN 2017048641 | ISBN 9780133128901 | ISBN 0133128903

Subjects: LCSH: Data mining.

Classification: LCC QA76.9.D343 T35 2019 | DDC 006.3/12-dc23 LC record available at

https://lccn.loc.gov/2017048641

1 18 ISBN-10: 0-13-312890-3 ISBN-13: 978-0-13-312890-1

 $To \ our \ families \ \dots$

Preface to the Second Edition

Since the first edition, roughly 12 years ago, much has changed in the field of data analysis. The volume and variety of data being collected continues to increase, as has the rate (velocity) at which it is being collected and used to make decisions. Indeed, the term, Big Data, has been used to refer to the massive and diverse data sets now available. In addition, the term data science has been coined to describe an emerging area that applies tools and techniques from various fields, such as data mining, machine learning, statistics, and many others, to extract actionable insights from data, often big data.

The growth in data has created numerous opportunities for all areas of data analysis. The most dramatic developments have been in the area of predictive modeling, across a wide range of application domains. For instance, recent advances in neural networks, known as deep learning, have shown impressive results in a number of challenging areas, such as image classification, speech recognition, as well as text categorization and understanding. While not as dramatic, other areas, e.g., clustering, association analysis, and anomaly detection have also continued to advance. This new edition is in response to those advances.

Overview As with the first edition, the second edition of the book provides a comprehensive introduction to data mining and is designed to be accessible and useful to students, instructors, researchers, and professionals. Areas covered include data preprocessing, predictive modeling, association analysis, cluster analysis, anomaly detection, and avoiding false discoveries. The goal is to present fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. As before, classification, association analysis and cluster analysis, are each covered in a pair of chapters. The introductory chapter covers basic concepts, representative algorithms, and evaluation techniques, while the more following chapter discusses advanced concepts and algorithms. As before, our objective is to provide the reader with a sound understanding of the foundations of data mining, while still covering many important advanced

vi Preface to the Second Edition

topics. Because of this approach, the book is useful both as a learning tool and as a reference.

To help readers better understand the concepts that have been presented, we provide an extensive set of examples, figures, and exercises. The solutions to the original exercises, which are already circulating on the web, will be made public. The exercises are mostly unchanged from the last edition, with the exception of new exercises in the chapter on avoiding false discoveries. New exercises for the other chapters and their solutions will be available to instructors via the web. Bibliographic notes are included at the end of each chapter for readers who are interested in more advanced topics, historically important papers, and recent trends. These have also been significantly updated. The book also contains a comprehensive subject and author index.

What is New in the Second Edition? Some of the most significant improvements in the text have been in the two chapters on classification. The introductory chapter uses the decision tree classifier for illustration, but the discussion on many topics—those that apply across all classification approaches—has been greatly expanded and clarified, including topics such as overfitting, underfitting, the impact of training size, model complexity, model selection, and common pitfalls in model evaluation. Almost every section of the advanced classification chapter has been significantly updated. The material on Bayesian networks, support vector machines, and artificial neural networks has been significantly expanded. We have added a separate section on deep networks to address the current developments in this area. The discussion of evaluation, which occurs in the section on imbalanced classes, has also been updated and improved.

The changes in association analysis are more localized. We have completely reworked the section on the evaluation of association patterns (introductory chapter), as well as the sections on sequence and graph mining (advanced chapter). Changes to cluster analysis are also localized. The introductory chapter added the K-means initialization technique and an updated the discussion of cluster evaluation. The advanced clustering chapter adds a new section on spectral graph clustering. Anomaly detection has been greatly revised and expanded. Existing approaches—statistical, nearest neighbor/density-based, and clustering based—have been retained and updated, while new approaches have been added: reconstruction-based, one-class classification, and information-theoretic. The reconstruction-based approach is illustrated using autoencoder networks that are part of the deep learning paradigm. The data chapter has

Preface to the Second Edition vii

been updated to include discussions of mutual information and kernel-based techniques.

The last chapter, which discusses how to avoid false discoveries and produce valid results, is completely new, and is novel among other contemporary textbooks on data mining. It supplements the discussions in the other chapters with a discussion of the statistical concepts (statistical significance, p-values, false discovery rate, permutation testing, etc.) relevant to avoiding spurious results, and then illustrates these concepts in the context of data mining techniques. This chapter addresses the increasing concern over the validity and reproducibility of results obtained from data analysis. The addition of this last chapter is a recognition of the importance of this topic and an acknowledgment that a deeper understanding of this area is needed for those analyzing data.

The data exploration chapter has been deleted, as have the appendices, from the print edition of the book, but will remain available on the web. A new appendix provides a brief discussion of scalability in the context of big data.

To the Instructor As a textbook, this book is suitable for a wide range of students at the advanced undergraduate or graduate level. Since students come to this subject with diverse backgrounds that may not include extensive knowledge of statistics or databases, our book requires minimal prerequisites. No database knowledge is needed, and we assume only a modest background in statistics or mathematics, although such a background will make for easier going in some sections. As before, the book, and more specifically, the chapters covering major data mining topics, are designed to be as self-contained as possible. Thus, the order in which topics can be covered is quite flexible. The core material is covered in chapters 2 (data), 3 (classification), 5 (association analysis), 7 (clustering), and 9 (anomaly detection). We recommend at least a cursory coverage of Chapter 10 (Avoiding False Discoveries) to instill in students some caution when interpreting the results of their data analysis. Although the introductory data chapter (2) should be covered first, the basic classification (3), association analysis (5), and clustering chapters (7), can be covered in any order. Because of the relationship of anomaly detection (9) to classification (3) and clustering (7), these chapters should precede Chapter 9. Various topics can be selected from the advanced classification, association analysis, and clustering chapters (4, 6, and 8, respectively) to fit the schedule and interests of the instructor and students. We also advise that the lectures be augmented by projects or practical exercises in data mining. Although they

viii Preface to the Second Edition

are time consuming, such hands-on assignments greatly enhance the value of the course.

Support Materials Support materials available to all readers of this book are available at http://www-users.cs.umn.edu/~kumar/dmbook/.

- PowerPoint lecture slides
- Suggestions for student projects
- Data mining resources, such as algorithms and data sets
- Online tutorials that give step-by-step examples for selected data mining techniques described in the book using actual data sets and data analysis software

Additional support materials, including solutions to exercises, are available only to instructors adopting this textbook for classroom use. The book's resources will be mirrored at www.pearsonhighered.com/cs-resources. Comments and suggestions, as well as reports of errors, can be sent to the authors through dmbook@cs.umn.edu.

Acknowledgments Many people contributed to the first and second editions of the book. We begin by acknowledging our families to whom this book is dedicated. Without their patience and support, this project would have been impossible.

We would like to thank the current and former students of our data mining groups at the University of Minnesota and Michigan State for their contributions. Eui-Hong (Sam) Han and Mahesh Joshi helped with the initial data mining classes. Some of the exercises and presentation slides that they created can be found in the book and its accompanying slides. Students in our data mining groups who provided comments on drafts of the book or who contributed in other ways include Shyam Boriah, Haibin Cheng, Varun Chandola, Eric Eilertson, Levent Ertöz, Jing Gao, Rohit Gupta, Sridhar Iyer, Jung-Eun Lee, Benjamin Mayer, Aysel Ozgur, Uygar Oztekin, Gaurav Pandey, Kashif Riaz, Jerry Scripps, Gyorgy Simon, Hui Xiong, Jieping Ye, and Pusheng Zhang. We would also like to thank the students of our data mining classes at the University of Minnesota and Michigan State University who worked with early drafts of the book and provided invaluable feedback. We specifically note the helpful suggestions of Bernardo Craemer, Arifin Ruslim, Jamshid Vayghan, and Yu Wei.

Joydeep Ghosh (University of Texas) and Sanjay Ranka (University of Florida) class tested early versions of the book. We also received many useful

Phansalkar, Geoff Prewett, Michael Ryoo, Daryl Shannon, and Mei Yang. Ronald Kostoff (ONR) read an early version of the clustering chapter

Ronald Kostoff (ONR) read an early version of the clustering chapter and offered numerous suggestions. George Karypis provided invaluable LATEX assistance in creating an author index. Irene Moulitsas also provided assistance with LATEX and reviewed some of the appendices. Musetta Steinbach was very helpful in finding errors in the figures.

We would like to acknowledge our colleagues at the University of Minnesota and Michigan State who have helped create a positive environment for data mining research. They include Arindam Banerjee, Dan Boley, Joyce Chai, Anil Jain, Ravi Janardan, Rong Jin, George Karypis, Claudia Neuhauser, Haesun Park, William F. Punch, György Simon, Shashi Shekhar, and Jaideep Srivastava. The collaborators on our many data mining projects, who also have our gratitude, include Ramesh Agrawal, Maneesh Bhargava, Steve Cannon, Alok Choudhary, Imme Ebert-Uphoff, Auroop Ganguly, Piet C. de Groen, Fran Hill, Yongdae Kim, Steve Klooster, Kerry Long, Nihar Mahapatra, Rama Nemani, Nikunj Oza, Chris Potter, Lisiane Pruinelli, Nagiza Samatova, Jonathan Shapiro, Kevin Silverstein, Brian Van Ness, Bonnie Westra, Nevin Young, and Zhi-Li Zhang.

The departments of Computer Science and Engineering at the University of Minnesota and Michigan State University provided computing resources and a supportive environment for this project. ARDA, ARL, ARO, DOE, NASA, NOAA, and NSF provided research support for Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. In particular, Kamal Abdali, Mitra Basu, Dick Brackney, Jagdish Chandra, Joe Coughlan, Michael Coyle, Stephen Davis, Frederica Darema, Richard Hirsch, Chandrika Kamath, Tsengdar Lee, Raju Namburu, N. Radhakrishnan, James Sidoran, Sylvia Spengler, Bhavani Thuraisingham, Walt Tiernin, Maria Zemankova, Aidong Zhang, and Xiaodong Zhang have been supportive of our research in data mining and high-performance computing.

It was a pleasure working with the helpful staff at Pearson Education. In particular, we would like to thank Matt Goldstein, Kathy Smith, Carole Snyder, and Joyce Wells. We would also like to thank George Nichols, who helped with the art work and Paul Anagnostopoulos, who provided LATEX support.

We are grateful to the following Pearson reviewers: Leman Akoglu (Carnegie Mellon University), Chien-Chung Chan (University of Akron), Zhengxin Chen

x Preface to the Second Edition

(University of Nebraska at Omaha), Chris Clifton (Purdue University), Joydeep Ghosh (University of Texas, Austin), Nazli Goharian (Illinois Institute of Technology), J. Michael Hardin (University of Alabama), Jingrui He (Arizona State University), James Hearne (Western Washington University), Hillol Kargupta (University of Maryland, Baltimore County and Agnik, LLC), Eamonn Keogh (University of California-Riverside), Bing Liu (University of Illinois at Chicago), Mariofanna Milanova (University of Arkansas at Little Rock), Srinivasan Parthasarathy (Ohio State University), Zbigniew W. Ras (University of North Carolina at Charlotte), Xintao Wu (University of North Carolina at Charlotte), and Mohammed J. Zaki (Rensselaer Polytechnic Institute).

Over the years since the first edition, we have also received numerous comments from readers and students who have pointed out typos and various other issues. We are unable to mention these individuals by name, but their input is much appreciated and has been taken into account for the second edition.

Contents

Pı	refac	e to the Second Edition	\mathbf{v}
1	Inti	roduction	1
	1.1	What Is Data Mining?	4
	1.2	Motivating Challenges	5
	1.3	The Origins of Data Mining	7
	1.4	Data Mining Tasks	9
	1.5	Scope and Organization of the Book	13
	1.6	Bibliographic Notes	15
	1.7	Exercises	21
2	Dat		23
4	2.1	Types of Data	2 3
	2.1	2.1.1 Attributes and Measurement	27
			34
	2.2		34 42
	2.2	Data Quality	42
			42
	0.2	2.2.2 issues itelated to ripplications	49 50
	2.3	Data Preprocessing	51
		- 00 0000	52
		r	56
		v	58
		2.3.4 Feature Subset Selection	
		2.3.5 Feature Creation	61 63
		2.3.6 Discretization and Binarization	69
	0.4	2.3.7 Variable Transformation	
	2.4	Measures of Similarity and Dissimilarity	71 72
		2.4.1 Basics	-
		2.4.2 Similarity and Dissimilarity between Simple Attributes.	74
		2.4.3 Dissimilarities between Data Objects	76 70
		2.4.4 Similarities between Data Objects	78

xii Contents

		2.4.5	Examples of Proximity Measures 79
		2.4.6	Mutual Information
		2.4.7	Kernel Functions*
		2.4.8	Bregman Divergence*
		2.4.9	Issues in Proximity Calculation
			Selecting the Right Proximity Measure
	2.5		graphic Notes
	2.6	_	ses
3	Clas	sificat	ion: Basic Concepts and Techniques 113
•	3.1		Concepts
	3.2		al Framework for Classification
	3.3		on Tree Classifier
	0.0	3.3.1	A Basic Algorithm to Build a Decision Tree
		3.3.2	Methods for Expressing Attribute Test Conditions 124
		3.3.3	Measures for Selecting an Attribute Test Condition 127
		3.3.4	Algorithm for Decision Tree Induction
		3.3.5	Example Application: Web Robot Detection
		3.3.6	Characteristics of Decision Tree Classifiers
	3.4		Overfitting
	0.1	3.4.1	Reasons for Model Overfitting
	3.5		Selection
		3.5.1	Using a Validation Set
		3.5.2	Incorporating Model Complexity
		3.5.3	Estimating Statistical Bounds
		3.5.4	Model Selection for Decision Trees
	3.6		Evaluation
		3.6.1	Holdout Method
		3.6.2	Cross-Validation
	3.7	Presen	ce of Hyper-parameters
		3.7.1	Hyper-parameter Selection
		3.7.2	Nested Cross-Validation
	3.8	Pitfalls	s of Model Selection and Evaluation 172
		3.8.1	Overlap between Training and Test Sets 172
		3.8.2	Use of Validation Error as Generalization Error 172
	3.9	Model	Comparison*
		3.9.1	Estimating the Confidence Interval for Accuracy 174
		3.9.2	Comparing the Performance of Two Models 175
	3.10		graphic Notes
			ses

				Contents	xiii
1	Clas	sificat	ion: Alternative Techniques		193
	4.1		of Classifiers		193
	4.2		Based Classifier		
		4.2.1	How a Rule-Based Classifier Works		
		4.2.2	Properties of a Rule Set		
		4.2.3	Direct Methods for Rule Extraction		
		4.2.4	Indirect Methods for Rule Extraction		
		4.2.5	Characteristics of Rule-Based Classifiers		
	4.3	Neares	st Neighbor Classifiers		
		4.3.1	Algorithm		
		4.3.2	Characteristics of Nearest Neighbor Classific		
	4.4	-	Bayes Classifier		
		4.4.1	Basics of Probability Theory		
		4.4.2	Naïve Bayes Assumption		
	4.5		ian Networks		
	1.0	4.5.1	Graphical Representation		
		4.5.2	Inference and Learning		
		4.5.3	Characteristics of Bayesian Networks		
	4.6		ic Regression		
	1.0	4.6.1	Logistic Regression as a Generalized Linear		
		4.6.2	Learning Model Parameters		
		4.6.3	Characteristics of Logistic Regression		
	4.7		cial Neural Network (ANN)		
	4.1	4.7.1	Perceptron		
		4.7.2	Multi-layer Neural Network		
		4.7.3	Characteristics of ANN		
	4.8		Learning		
	4.0	4.8.1	Using Synergistic Loss Functions		
		4.8.2	Using Responsive Activation Functions		
		4.8.3	Regularization		
		4.8.4	Initialization of Model Parameters		
		4.8.5			
	4.0		Characteristics of Deep Learning		
	4.9		ort Vector Machine (SVM)		
		4.9.1	Margin of a Separating Hyperplane		
		4.9.2	Linear SVM		
		4.9.3	Soft-margin SVM		
		4.9.4	Nonlinear SVM		
	4.40	4.9.5	Characteristics of SVM		
	4.10		able Methods		
		4.10.1	Rationale for Ensemble Method		297

xiv Contents

		4.10.2	Methods for Constructing an Ensemble Classifier	297
		4.10.3	Bias-Variance Decomposition	300
		4.10.4	Bagging	302
		4.10.5	Boosting	305
		4.10.6	Random Forests	310
		4.10.7	Empirical Comparison among Ensemble Methods	312
	4.11	Class	Imbalance Problem	313
		4.11.1	Building Classifiers with Class Imbalance	314
		4.11.2	Evaluating Performance with Class Imbalance	318
		4.11.3	Finding an Optimal Score Threshold	322
			Aggregate Evaluation of Performance	
	4.12	Multic	class Problem	. 330
	4.13	Bibliog	graphic Notes	. 333
	4.14	Exerci	ses	345
5			on Analysis: Basic Concepts and Algorithms	357
	5.1		inaries	
	5.2	_	ent Itemset Generation	
		5.2.1	The Apriori Principle	
		5.2.2	Frequent Itemset Generation in the Apriori Algorithm	
		5.2.3	Candidate Generation and Pruning	
		5.2.4	Support Counting	
		5.2.5	Computational Complexity	
	5.3		Generation	
		5.3.1	Confidence-Based Pruning	
		5.3.2	Rule Generation in <i>Apriori</i> Algorithm	
		5.3.3	An Example: Congressional Voting Records	
	5.4	Compa	act Representation of Frequent Itemsets	
		5.4.1	Maximal Frequent Itemsets	
		5.4.2	Closed Itemsets	
	5.5		ative Methods for Generating Frequent Itemsets*	
	5.6	FP-Gr	rowth Algorithm*	
		5.6.1	FP-Tree Representation	
		5.6.2	Frequent Itemset Generation in FP-Growth Algorithm	
	5.7	Evalua	ation of Association Patterns	
		5.7.1	Objective Measures of Interestingness	
		5.7.2	Measures beyond Pairs of Binary Variables	
		5.7.3	Simpson's Paradox	416
	5.8	Effect	of Skewed Support Distribution	. 418
	5.9	Biblio	graphic Notes	424

				Contents	XV
	5.10	Exerci	ises		438
3	Ass	ociatio	on Analysis: Advanced Concepts		451
,	6.1		ing Categorical Attributes		
	6.2		ing Continuous Attributes		
		6.2.1	Discretization-Based Methods		
		6.2.2	Statistics-Based Methods		458
		6.2.3	Non-discretization Methods		
	6.3	Handl	ing a Concept Hierarchy		462
	6.4	Seque	ntial Patterns		464
		6.4.1	Preliminaries		465
		6.4.2	Sequential Pattern Discovery		468
		6.4.3	Timing Constraints*		473
		6.4.4	Alternative Counting Schemes*		477
	6.5	Subgra	aph Patterns		479
		6.5.1	Preliminaries		480
		6.5.2	Frequent Subgraph Mining		483
		6.5.3	Candidate Generation		487
		6.5.4	Candidate Pruning		
		6.5.5	Support Counting		493
	6.6	Infreq	uent Patterns*		493
		6.6.1	Negative Patterns		494
		6.6.2	Negatively Correlated Patterns		495
		6.6.3	Comparisons among Infrequent Patterns, Ne	_	
			terns, and Negatively Correlated Patterns .		
		6.6.4	Techniques for Mining Interesting Infrequent		
		6.6.5	Techniques Based on Mining Negative Patte		
		6.6.6	Techniques Based on Support Expectation .		
	6.7		graphic Notes		
	6.8	Exerci	ises		510
7	Clus	ster A	nalysis: Basic Concepts and Algorithms	5	525
	7.1	Overv			528
		7.1.1	What Is Cluster Analysis?		528
		7.1.2	Different Types of Clusterings		529
		7.1.3	Different Types of Clusters		
	7.2	K-mea	ans		
		7.2.1	The Basic K-means Algorithm		535
		7.2.2	K-means: Additional Issues		544
		7.2.3	Bisecting K-means		547

xvi Contents

		7.2.4	K-means and Different Types of Clusters	519
		7.2.4 $7.2.5$	Strengths and Weaknesses	
		7.2.6	K-means as an Optimization Problem	
	7.3		merative Hierarchical Clustering	
	1.0	7.3.1	Basic Agglomerative Hierarchical Clustering Algorithm	
		7.3.1	Specific Techniques	
		7.3.2	The Lance-Williams Formula for Cluster Proximity	
		7.3.4	Key Issues in Hierarchical Clustering	
		7.3.4	Outliers	
		7.3.6	Strengths and Weaknesses	
	7.4	DBSC		
	1.4	7.4.1	Traditional Density: Center-Based Approach	
		7.4.1 $7.4.2$	The DBSCAN Algorithm	
		7.4.2 $7.4.3$	Strengths and Weaknesses	
	7.5		er Evaluation	
	1.0	7.5.1	Overview	
		7.5.1	Unsupervised Cluster Evaluation Using Cohesion and	011
		1.0.2	Separation	574
		7.5.3	Unsupervised Cluster Evaluation Using the Proximity	011
		1.0.0	Matrix	582
		7.5.4	Unsupervised Evaluation of Hierarchical Clustering	
		7.5.5	Determining the Correct Number of Clusters	
		7.5.6	Clustering Tendency	
		7.5.7	Supervised Measures of Cluster Validity	
		7.5.8	Assessing the Significance of Cluster Validity Measures.	
		7.5.9	Choosing a Cluster Validity Measure	
	7.6		graphic Notes	
	7.7		ises	
	1.1	LACIC		000
8	Clu	ster A	nalysis: Additional Issues and Algorithms	613
	8.1	Chara	acteristics of Data, Clusters, and Clustering Algorithms .	614
		8.1.1	Example: Comparing K-means and DBSCAN	614
		8.1.2	Data Characteristics	615
		8.1.3	Cluster Characteristics	617
		8.1.4	General Characteristics of Clustering Algorithms	619
	8.2	Proto	type-Based Clustering	621
		8.2.1	Fuzzy Clustering	
		8.2.2	Clustering Using Mixture Models	
		8.2.3	Self-Organizing Maps (SOM)	
	8.3	Densi	ty-Based Clustering	

			Contents	xvii
		8.3.1	Grid-Based Clustering	. 644
		8.3.2	Subspace Clustering	. 648
		8.3.3	DENCLUE: A Kernel-Based Scheme for Density-Based	
			Clustering	. 652
	8.4	Graph	h-Based Clustering	
		8.4.1	Sparsification	
		8.4.2	Minimum Spanning Tree (MST) Clustering	. 658
		8.4.3	OPOSSUM: Optimal Partitioning of Sparse Similarities	
			Using METIS	. 659
		8.4.4	Chameleon: Hierarchical Clustering with Dynamic	
			Modeling	. 660
		8.4.5	Spectral Clustering	. 666
		8.4.6	Shared Nearest Neighbor Similarity	. 673
		8.4.7	The Jarvis-Patrick Clustering Algorithm	. 676
		8.4.8	SNN Density	
		8.4.9	SNN Density-Based Clustering	. 679
	8.5	Scalab	ble Clustering Algorithms	
		8.5.1	Scalability: General Issues and Approaches	. 681
		8.5.2	BIRCH	. 684
		8.5.3	CURE	. 686
	8.6	Which	h Clustering Algorithm?	. 690
	8.7	Biblio	ographic Notes	. 693
	8.8	Exerc	ises	. 699
9	And	omalv	Detection	703
	9.1		acteristics of Anomaly Detection Problems	
		9.1.1	A Definition of an Anomaly	
		9.1.2	Nature of Data	
		9.1.3	How Anomaly Detection is Used	
	9.2	Chara	acteristics of Anomaly Detection Methods	. 708
	9.3		stical Approaches	
		9.3.1	Using Parametric Models	. 710
		9.3.2	Using Non-parametric Models	
		9.3.3	Modeling Normal and Anomalous Classes	
		9.3.4	Assessing Statistical Significance	. 717
		9.3.5	Strengths and Weaknesses	. 718
	9.4	Proxii	mity-based Approaches	
		9.4.1	Distance-based Anomaly Score	
		9.4.2	Density-based Anomaly Score	
		9.4.3	Relative Density-based Anomaly Score	. 722

xviii Contents

		9.4.4	Strengths and Weaknesses	3
	9.5	Cluste	ring-based Approaches	4
		9.5.1	Finding Anomalous Clusters	4
		9.5.2	Finding Anomalous Instances	5
		9.5.3	Strengths and Weaknesses	8
	9.6	Recons	struction-based Approaches	8
		9.6.1	Strengths and Weaknesses	1
	9.7	One-cl	ass Classification	
		9.7.1	Use of Kernels	3
		9.7.2	The Origin Trick	4
		9.7.3	Strengths and Weaknesses	8
	9.8	Inform	ation Theoretic Approaches	8
		9.8.1	Strengths and Weaknesses	0
	9.9	Evalua	tion of Anomaly Detection	0
	9.10	Bibliog	graphic Notes	2
	9.11	Exercis	ses	9
10		_	False Discoveries 75	
	10.1		inaries: Statistical Testing	
			Significance Testing	
			Hypothesis Testing	
			Multiple Hypothesis Testing	
			Pitfalls in Statistical Testing	
	10.2		ing Null and Alternative Distributions	
			Generating Synthetic Data Sets	
			Randomizing Class Labels	
			Resampling Instances	
			Modeling the Distribution of the Test Statistic 78	
	10.3		ical Testing for Classification	
			Evaluating Classification Performance	
			Binary Classification as Multiple Hypothesis Testing 78	
			Multiple Hypothesis Testing in Model Selection 78	
	10.4		ical Testing for Association Analysis	
			Using Statistical Models	
			Using Randomization Methods	
	10.5		ical Testing for Cluster Analysis	
			Generating a Null Distribution for Internal Indices 79	
			Generating a Null Distribution for External Indices 79	
			Enrichment	
	10.6	Statist	ical Testing for Anomaly Detection 80	0

	Contents	xix
10.7 Bibliographic Notes		
Author Index		816
Subject Index		829
Copyright Permissions		839

