## IN THE CLAIMS:

1. (Currently Amended) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, comprising:

after sample exposure/coupling, simultaneously irradiating a plurality of the plural DNA probe cells out of said plurality of DNA probe cells of said DNA chip with a corresponding plurality of multi-spot excitation lights under a condition that each of spots of said multi-spot excitation lights corresponds to each of said plural DNA probe cells through an objective lens so as to generate fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of plural DNA probe cells;

separating said generated fluorescent lights from said plurality of multi-spot excitation lights into separate fluorescent lights along separate optical paths; and detecting said separate fluorescent lights simultaneously with a plurality of sensors, with each sensor corresponding to each of said DNA probe cells irradiated, so as to catalog positions and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.

2. (Currently Amended) The method as claimed in Claim 1, wherein said plurality of multi-spot excitation lights are arranged in a 1-dimensional or 2-dimensional configuration.

3. (Currently Amended) The method as claimed in Claim 1, comprising:

arranging said <del>plurality of multi-spot excitation lights irradiated onto said DNA</del>

chip on a straight line with a spacing of kd with reference to a spot diameter d and an integer k; and

repeating an operation in sequence k times, said operation being an operation where, after said irradiation with said plurality of multi-spot multi-spot excitation lights has been performed, said plurality of multi-spot multi-spot excitation lights are displaced in substantially a direction of said straight line by substantially d and said irradiation is performed again; and thereby

executing said inspecting substantially in said straight line direction; and displacing said DNA chip and said objective lens relatively at least in a direction substantially perpendicular to said straight line direction; and thereby inspecting a desired 2-dimensional area on said DNA chip.

- 4. (Currently Amended) The method as claimed in Claim 1, comprising providing fluorescent light detection deflecting means within said separate optical paths so that said generated fluorescent lights are synchronized with displacement of said plurality of multi-spot excitation lights and come onto substantially the same location on light-receiving apertures.
- 5. (Currently Amended) The method as claimed in Claim 4, wherein said fluorescent light detection deflecting means includes a wavelength selection beam

OSHIDA et al., SN 09/678,652 12 September 2005 Amdt. Reply to 12 APRIL 2005 Office Action

splitter for permitting said <del>plurality of multi-spot</del> excitation lights to pass therethrough and causing said generated fluorescent lights to be reflected.

- 6. (Currently Amended) The method as claimed in Claim 1, comprising providing a filter within a fluorescent light detecting optical path isolated from an excitation optical path, said filter permitting only said generated fluorescent lights to pass there-through while light-shielding said plurality of multi-spot multi-spot excitation lights.
- 7. (Currently Amended) The method as claimed in Claim 1, comprising forming said plurality of multi-spot excitation lights by using a plurality of laser light-sources.
- 8. (Currently Amended) The method as claimed in Claim 7, wherein said plurality of multi-spot excitation lights are obtained by:

guiding, into optical fibers, lights emitted from said plurality of laser lightsources; and causing said lights to be emitted from light-emitting ends of said optical fibers, said light-emitting ends being aligned with M desired pitches.

9. (Currently Amended) The method as claimed in Claim 1, wherein said plurality of multi-spot excitation lights include a plurality of different wavelengths, and the method comprising distinguishing ones of the DNA probe cells as different targets on said DNA chip, where a plurality of fluorescent materials responsive to

OSHIDA et al., SN 09/678,652 12 September 2005 Amdt. Reply to 12 APRIL 2005 Office Action

ones of the plurality of different wavelengths are used to distinguish a plurality of different targets.

- 10. (Currently Amended) The method as claimed in Claim 9, comprising:

  performing simultaneous irradiation with said plurality of multi-spot multi-spot
  excitation lights including said plurality of different wavelengths; and thereby
  distinguishing said different targets on said DNA chip so as to simultaneously
  detect said different targets in accordance with said plurality of fluorescent materials.
- 11. (Previously presented) The method as claimed in Claim 1, comprising: directing a second light with an oblique incident angle on an inspection plane of said DNA chip;

detecting a reflection position at which said second light is reflected on said inspection plane; and

controlling a relative distance between said inspection plane and said objective lens in accordance with a result of detection of said reflection position.

## 12.-17. (Canceled)

18. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, comprising:

branching a laser beam so as to form eight or more beams, said laser beam being emitted from at least one laser light-source;

after sample exposure/coupling, simultaneously irradiating a corresponding eight or more of the DNA probe cells on an inspection plane of a DNA chip with said eight or more beams, respectively, so as to generate fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of DNA probe cells;

separating fluorescent lights emitted from irradiated ones of the DNA probe cells of said DNA chip, from reflected lights of said eight or more beams;

detecting said separated fluorescent lights simultaneously with a plurality of sensors, each sensor corresponding to each irradiated said DNA probe cell, respectively; and

getting information from said DNA chip by cataloging position and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.

19. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, comprising:

branching a laser beam into a plurality of beams having substantially the same intensity, said laser beam being emitted from at least one laser light-source;

OSHIDA et al., SN 09/678,652 12 September 2005 Amdt. Reply to 12 APRIL 2005 Office Action

after sample exposure/coupling, simultaneously projecting said plurality of beams onto a corresponding plurality of the DNA probe cells on an inspection plane of the DNA chip through a projection optical unit, so as to generate fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of DNA probe cells;

detecting, through an imaging optical unit, images of fluorescent lights emitted from irradiated ones of the DNA probe cells of said DNA chip simultaneously with a plurality of sensors, each sensor corresponding to each irradiated said DNA probe cell, respectively; and

getting information from said DNA chip by cataloging position and intensities of detected fluorescent lights concerning a coupled state of the hybridized target DNA on said DNA chip.

- 20. (Previously presented) The method as claimed in Claim 19, wherein said DNA chip is inspected by irradiating said DNA chip with said beams while displacing said DNA chip and said beams relatively in a 2-dimensional manner.
- 21. (Previously presented) The method as claimed in Claim 19, wherein said DNA chip is irradiated with said beams arranged in 2-dimensions.
- 22. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones

of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, comprising:

after sample exposure/coupling, simultaneously irradiating a plurality of the DNA probe cells of said DNA chip with a corresponding plurality of multi-spot excitation lights so as to emit fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of DNA probe cells;

separating said fluorescent lights emitted from ones of the DNA probe cells of said DNA chip, from said plurality of multi-spot excitation lights:

detecting images of said fluorescent lights simultaneously by use of a plurality of light detecting devices capable of executing a photon counting, each sensor corresponding to each irradiated said DNA probe cell, respectively;

photon-counting, individually, each photon signal obtained from said respective light detecting devices;

storing, individually, data of photon-counted numbers Npm detected by said respective light detecting devices;

changing positions of said plurality of multi-spot excitation lights and a position of said DNA chip relatively, so as to store data of said photon-counted numbers from said respective light detecting devices;

collecting stored data on said photon-counted numbers over desired locations on said DNA chip;

constructing a fluorescent light image from said collected data; and deriving information for said DNA chip from said collected data, by cataloging positions and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.

23. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, comprising:

after sample exposure/coupling, simultaneously irradiating a plurality of the DNA probe cells of said DNA chip with a sheet-shaped excitation light so as to emit fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of DNA probe cells;

separating said fluorescent lights emitted from ones of the DNA probe cells, from said sheet-shaped excitation lights; detecting images of said fluorescent lights simultaneously by use of a plurality of light detecting devices capable of executing a photon counting, each sensor corresponding to each irradiated said DNA probe cell, respectively;

photon-counting, individually, each photon signal obtained from said respective light detecting devices;

storing, individually, data of photon-counted numbers Npm detected by said respective light detecting devices;

changing positions of irradiation areas and a position of said DNA chip relatively, so as to store in sequence data of said photon-counted numbers from said respective light detecting devices; collecting stored data on said photon-counted numbers over desired locations on said DNA chip;

OSHIDA et al., SN 09/678,652 12 September 2005 Amdt. Reply to 12 APRIL 2005 Office Action

constructing a fluorescent light image from said collected data, and deriving information for said DNA chip from said collected data, by cataloging positions and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.

- 24. (Previously presented) The method as claimed in Claim 22, wherein said multi-spot excitation lights include 10 or more microscopic spots.
- 25. (Previously presented) The method as claimed in Claim 24, wherein said multi-spot excitation lights include 50 or more microscopic spots.
- 26. (Previously presented) The method as claimed in Claim 24, wherein said microscopic spots are arranged on a 1-dimensional straight line or a 2-dimensional array.
- 27. (Previously Presented) The method as claimed in Claim 22, wherein said multi-spot excitation lights are colored lights having 2 or more wavelengths.
- 28. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, by detecting fluorescent lights generated from a fluorescent material on a DNA sample, comprising:

and

after sample exposure/coupling, simultaneously irradiating a plurality of the DNA probe cells of said DNA chip with a corresponding plurality of multi-spot excitation lights or a sheet-shaped excitation light so as to generate fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of DNA probe cells, separating said fluorescent lights from said plurality of multi-spot excitation lights irradiated onto said DNA sample, said multi-spot excitation lights including M microscopic spots, where M is an integer;

detecting fluorescent light images from said fluorescent lights emitted from said DNA chip with the use of a plurality of M light detecting devices in an average pixel detecting time of (300 µsec/M) or less, each light detecting device corresponding to each irradiated said DNA probe cell, respectively;

storing, individually, signals obtained from said respective light detecting devices:

changing, relatively, positions of said multi-spot excitation lights or said sheetshaped excitation light and a position of said DNA chip so as to store said signals in sequence;

collecting said stored signals over desired locations on said DNA chip; constructing a fluorescent light image from said collected and stored signals;

deriving information on said DNA chip from said collected data, by cataloging positions and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.

29. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, by detecting fluorescent lights generated from a fluorescent material on a DNA sample, comprising:

after sample exposure/coupling, simultaneously irradiating a plurality of the DNA probe cells of said DNA chip with a corresponding plurality of multi-spot excitation lights or a sheet-shaped excitation light so as to generate fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of DNA probe cells, separating said fluorescent lights from said plurality of multi-spot excitation lights irradiated onto said DNA sample, said multi-spot excitation lights including M microscopic spots having a diameter or focus-achieving width which is smaller than 3 µm and larger than 0.3 µm, said sheet-shaped excitation lights having a width that is smaller than 3 µm and larger than 0.3 µm, where M is the number of microscopic spots;

detecting fluorescent light images emitted from said DNA chip simultaneously with use of a plurality of light detecting devices, each sensor corresponding to each irradiated said DNA probe cell, respectively;

storing, individually, signals obtained from said respective light detecting devices; changing, relatively, positions of said multi-spot excitation lights or said sheet-shaped excitation light and a position of said DNA chip so as to store said signals in sequence;

OSHIDA et al., SN 09/678,652 12 September 2005 Amdt. Reply to 12 APRIL 2005 Office Action

collecting said stored signals over desired locations on said DNA chip; constructing a fluorescent light image from said collected signals; and

deriving information for said DNA chip from said collected data, by cataloging positions and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.

30.-35. (Canceled)

36. (Currently Amended) The method as claimed in Claim 1, wherein said plurality of the DNA probe cells of said DNA chip are simultaneously irradiated with the corresponding plurality of multi-spot excitation lights for a time  $\Delta t$  that is longer than a fluorescent light attenuation time.

37. (Previously Presented) The method as claimed in Claim 1, wherein each light of said multi-spot excitation lights having a spot diameter d that is smaller than the dimensional size D of a DNA probe cell that it irradiates.

38. (Previously Presented) The method as claimed in Claim 18, wherein said eight or more of the DNA probe cells are simultaneously irradiated with said eight or more beams, respectively, for a time  $\Delta t$  that is longer than a fluorescent light attenuation time.

OSHIDA et al., SN 09/678,652 12 September 2005 Amdt. Reply to 12 APRIL 2005 Office Action

- 39. (Previously Presented) The method as claimed in Claim 18, wherein each beam of said eight or more beams having a spot diameter d that is smaller than the dimensional size D of a DNA probe cell that it irradiates.
- 40. (Previously Presented) The method as claimed in Claim 19, wherein said plurality of beams are simultaneously projected for a time  $\Delta t$  that is longer than a fluorescent light attenuation time.
- 41. (Previously Presented) The method as claimed in Claim 19, wherein each beam having a spot diameter d that is smaller than the dimensional size D of a DNA probe cell that it irradiates.
- 42. (Previously Presented) The method as claimed in Claim 22, wherein the plurality of the DNA probe cells are irradiated for a time  $\Delta t$  that is longer than a fluorescent light attenuation time.
- 43. (Previously Presented) The method as claimed in Claim 22, wherein each light of said multi-spot excitation lights having a spot diameter d that is smaller than the dimensional size D of a DNA probe cell that it irradiates.
- 44. (Previously Presented) The method as claimed in Claim 23, wherein the plurality of the DNA probe cells are simultaneously irradiated for a time  $\Delta t$  that is longer than a fluorescent light attenuation time.

OSHIDA et al., SN 09/678,652 12 September 2005 Amdt. Reply to 12 APRIL 2005 Office Action

- 45. (Previously Presented) The method as claimed in Claim 28, wherein the plurality of the DNA probe cells excitation lights are simultaneously irradiated for a time  $\Delta t$  that is longer than a fluorescent light attenuation time.
- 46. (Previously Presented) The method as claimed in Claim 29, wherein the plurality of the DNA probe cells are simultaneously irradiated for a time  $\Delta t$  that is longer than a fluorescent light attenuation time.
- 47. (Previously Presented) The method as claimed in Claim 23, wherein said sheet-shaped excitation lights are colored lights having 2 or more wavelengths.
- 48. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, comprising:

after sample exposure/coupling, simultaneously irradiating plural DNA probe cells out of said plurality of DNA probe cells of said DNA chip with a corresponding plurality of multi-spot excitation lights under a condition that each spot of said multi-spot excitation lights corresponds to a DNA probe cell through an objective lens so as to generate fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plural DNA probe cells;

separating said generated fluorescent lights from said plurality of multi-spot excitation lights into separate fluorescent lights along separate optical paths; and

detecting said separate fluorescent lights simultaneously with a plurality of sensors, with each sensor corresponding to each of said DNA probe cells irradiated, so as to catalog positions and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.

49. (Previously Presented) A method of inspecting a coupled state of hybridized target DNA on a DNA chip that includes a plurality of DNA probe cells having a DNA probe to which fluorescently labeled target DNA may hybridize, ones of the DNA probe cells being of a microscopic dimensional size D, where DNA probes are arranged on the DNA chip in a predetermined array, comprising:

after sample exposure/coupling, simultaneously irradiating a plurality of the DNA probe cells of said DNA chip with a corresponding plurality of multi-spot excitation lights under a condition that each spot of the multi-spot excitation lights corresponds to one DNA probe cell through an objective lens so as to generate fluorescent lights from any fluorescently labeled target DNA hybridized to ones of the DNA probes of the plurality of DNA probe cells;

separating said generated fluorescent lights from said plurality of multi-spot excitation lights into separate fluorescent lights along separate optical paths;

detecting said separate fluorescent lights simultaneously with a corresponding plurality of sensors under a condition that each separate fluorescent light corresponds to one sensor, so as to catalog positions and intensities of detected fluorescent lights which are representative of a coupled state of the hybridized target DNA on said DNA chip.