XUAN ZHANG

berylxzhang.github.io • 3124835937 • berylxzhang@gmail.com

EDUCATION

The University of Pennsylvania

September 2020 - December 2021

Master of Computer Science and Information Technology

The University of Chicago

September 2018 - August 2020

Master of Science in Molecular Engineering

TECHNICAL STRENGTHS

Languages C, C++, Python, Bash, Java, C#, JavaScript, Swift, LATEX

Libraries and Frame- React, Spring MVC/Boot, Node.js, Tensorflow, Android, .NET, Django

works

Software MATLAB, Kubernetes, Linux, Nginx, Jenkins, GCC, GNU Make, GDB

Databases PostgreSQL, MySQL, DynamoDB, Redis, Bigtable, GraphQL, MongoDB

Cloud Technologies Amazon Web Services, Google Cloud, Microsoft Azure

WORK EXPERIENCE

Wells Sinkware Corp.

June 2023 - Now

Marketing Data Analyst, Chicago, IL

- Developed Python-based software for label-carton matching on e-commerce platforms, enhancing efficiency.
- Implemented a Python inventory system to synchronize real-time stock across sales channels, increasing accuracy.
- Created Python solutions for sales data aggregation, streamlining reporting and supporting decisions.
- Designed analytics tools in Python for performance reporting, promoting data-driven growth.
- Updated the company website for better user experience and functionality.

SMS Assist, Inc.

October 2021 - December 2022

Software Engineer II, Chicago, IL

- Enhanced SMS Assist's client, affiliate, and internal portals, and ClientAPI, using C#, Type-Script, and React; fixed customer-reported bugs.
- Developed client API endpoints for MySQL data exchange.
- Analyzed and resolved production bugs using MongoDB and Sumo Logic.
- Supported urgent customer requests, aiding sales and growth.
- Reviewed code across the tech stack, ensuring quality and maintainability.

University of Chicago

October 2018 - December 2019

Research Assistant, Chicago, IL

- Implemented machine learning and statistical modeling to enhance algorithm performance, quality, and data accuracy.
- Collaborated with Ferguson's research teams to validate Takens' Delay Embedding Theorem, bridging research innovations with practical applications.
- Designed and optimized algorithms including Artificial Neural Networks (ANN), Wasserstein Generative Adversary Networks (W-GAN), and unsupervised machine learning techniques such as diffusion maps and h-NLPCA for molecular chain analysis.