EINFÜHRUNG IN DIE GEOMETRIE UND TOPOLOGIE Blatt 2

Jendrik Stelzner

26. April 2014

Aufgabe 2.1:

Definition. Sei X ein topologischer Raum und $x \in X$. Eine Kollektion \mathcal{B} von Umgebungen von x heißt Umgebungsbasis von x, falls es für jede Umgebung N von x ein $M \in \mathcal{B}$ gibt, so dass $M \subseteq N$.

Wir sagen, dass X das erste Abzählbarkeitsaxiom erfüllt, bzw. dass X erstabzählbar ist, falls es für alle $x \in X$ eine abzählbare Umgebungsbasis \mathcal{B}_x von x gibt.

Bemerkung 1. Jeder metrische Raum ist erstabzählbar. Für einen metrischen Raum X und $x \in X$ bildet nämlich

$$\mathcal{B}_x := \{ B_{\varepsilon}(x) : \varepsilon > 0, \varepsilon \in \mathbb{Q} \}$$

offensichtlich eine Umgebungsbasis von x.

Bemerkung 2. Besitzt $x \in X$ eine abzählbare Umgebungsbasis \mathcal{B} , so besitzt x auch eine abzählbare Umgebungsbasis \mathcal{U} von offenen Umgebungen. Es enthält nämlich jedes $B \in \mathcal{B}$ eine offene Umgebung U_B von x. Es sei dann

$$\mathcal{U} := \{U_B : B \in B\}.$$

Dass $\mathcal U$ eine Umgebungsbasis von x ist, folgt daraus, dass es für jede Umgebung N von x ein $B \in \mathcal B$ gibt mit $B \subseteq N$, und deshalb

$$U_B \subseteq B \subseteq N$$
.

Bemerkung 3. Sind X,Y topologische Räume und $X\cong Y$, so ist offenbar X genaudann erstabzählbar, wenn Y erstabzählbar ist.

Die drei Räume A,B,C sind paarweise nicht homöomorph zueinander. Zunächst zeigen wir, dass die hawaiischen Ohrring als einziger der drei Räume kompakt sind.

Der Raum A ist nicht kompakt, da ein Teilraum $X \subseteq \mathbb{R}^n$ genau dann kompakt ist, wenn X in \mathbb{R}^n abgeschlossen und beschränkt ist. Da A offenbar nicht beschränkt ist, ist A nicht kompakt.

Die hawaiischen Ohrringe sind kompakt: Ist $\mathcal U$ eine offene Überdeckung von B in $\mathbb R^2$, so gibt es ein $U_0 \in \mathcal U$ mit $0 \in U_0$. Da U_0 offen in $\mathbb R^2$ ist, gibt es ein $\varepsilon > 0$ mit $B_\varepsilon(0) \subseteq U_0$. Es sei $N \in \mathbb N$, $N \ge 1$, so dass $N > 1/\varepsilon$. Bezeichnet K_n den Kreis mit Mittelpunkt (0,1/n) und Radius 1/n für alle $n \ge 1$, so ist also

$$B = \bigcup_{n \ge 1} K_n \subseteq U_0 \cup \bigcup_{n=1}^N K_n.$$

Da alle K_n offenbar abgeschlossen und beschränkt sind, also kompakt, und die endliche Vereinigung kompakter Mengen offenbar kompakt ist, besitzt $\mathcal U$ als offene Überdeckung von $\bigcup_{n=1}^N K_n$ eine endliche Teilüberdeckung $\mathcal V \subseteq \mathcal U$ von $\bigcup_{n=1}^N K_n$. Es ist daher $\mathcal V \cup \{U_0\} \subseteq \mathcal U$ eine endliche Teilüberdeckung von B. Das zeigt, dass die hawaiischen Ohrringe kompakt ist.

Der Raum C ist nicht kompakt. Bezeichnet $\pi:\mathbb{R}\to\mathbb{R}/\sim$ die kanonische Projektion, so ist nach der Definition der Quotiententopologie eine Teilmenge $U\subset C$ genau dann offen, wenn $\pi^{-1}(U)$ offen in \mathbb{R} ist. Für $A\subseteq\mathbb{R}$ mit $A\cap\mathbb{Z}=\emptyset$ oder $A\cap\mathbb{Z}=\mathbb{Z}$ ist $\pi^{-1}(\pi(A))=A$, also ist $\pi(U)$ offen in C für jede offene Menge $U\subseteq\mathbb{R}$, für die $U\cap\mathbb{Z}=\emptyset$ oder $U\cap\mathbb{Z}=\mathbb{Z}$. Für die offene Überdeckung

$$\mathcal{U} := \left\{ \bigcup_{n \in \mathbb{Z}} B_{1/3}(n) \right\} \cup \bigcup_{n \in \mathbb{Z}} \{(n, n+1)\}$$

von $\mathbb R$ ist daher $\mathcal V:=\{\pi(U):U\in\mathcal U\}$ eine offene Überdeckung von C. Da es für alle n+1/2 mit $n\in\mathbb Z$ eine eindeutige Menge in $\mathcal U$ gibt, die n+1/2 enthält, und π auf $\mathbb R-\mathbb Z$ injektiv ist, folgt daraus, dass es für alle $\pi(n+1/2)$ mit $n\in\mathbb Z$ eine eindeutige Menge in $\mathcal V$ gibt, die $\pi(n+1/2)$ enthält. Deshalb besitzt $\mathcal V$ keine endliche Teilüberdeckung. Das zeigt, dass C nicht kompakt ist.

Damit haben wir gezeigt, dass die hawaiischen Ohhringe kompakt ist, A und C aber nicht. Also sind die hawaiischen Ohrring zu keinem der anderen beiden Räume homöomorph.

Nach Bemerkung 1 ist A erstabzählbar. Wir zeigen nun noch, dass C nicht erstabzählbar ist, wodurch sich nach Bemerkung 3 ergibt, dass auch A und C nicht homöomorph sind.

Angenommen, C ist erstabzählbar. Dann hat $\pi(0) \in C$ nach Bemerkung 2 eine abzählbare Umgebungsbasis $\mathcal{U} = \{U_n : n \in \mathbb{Z}\}$ von offenen Umgebungen. Wir schreiben $V_n := \pi^{-1}(U_n)$ für alle $n \in \mathbb{N}$ und setzen

$$\mathcal{V} := \{V_n : n \in \mathbb{Z}\}.$$

Für alle $n\in\mathbb{Z}$ gilt, dass $\mathbb{Z}\subseteq V_n$, da $\pi(0)\in U_n$, und dass V_n offen ist, da U_n offen ist und π stetig. Für alle $n\in\mathbb{Z}$ gibt es daher ein $r_n>0$ so dass $B_{r_n}(n)\subseteq V_n$. Für alle $n\in\mathbb{Z}$ definieren wir

$$r'_n := \min\{r_n/2, 1/3\}$$

und setzen

$$W:=\bigcup_{n\in\mathbb{Z}}B_{r_n'}(n).$$

W ist eine offene Menge mit $\mathbb{Z} \subseteq W$ und $W \subsetneq V_n$ für alle $n \in \mathbb{Z}$, wobei sich W und V_n um je überabzählbar viele Element unterschieden. Daher ist $\pi(W) \subseteq C$ eine offene Umgebung von $\pi(0) \in C$ mit $\pi(W) \subsetneq U_n$ für alle $n \in \mathbb{Z}$. Dies steht im Widerspruch dazu, dass \mathcal{U} eine Umgebungsbasis von $\pi(0)$ ist.