Álgebra y Álgebra II - Segundo Cuatrimestre 2018 Práctico 5 - Transformaciones Lineales

- (1) ¿Cuáles de las siguientes funciones de \mathbb{R}^n en \mathbb{R}^m son transformaciones lineales?
 - (a) T(x,y) = (1+x,y)
 - (b) T(x,y) = (y, x, x 2y)
 - (c) T(x,y) = xy
 - (d) T(x, y, z) = 3x 2y + 7z
- (2) ¿Cuáles de las siguientes funciones de \mathbb{R}^n en \mathbb{R}^m son transformaciones lineales?
 - (a) $T(x_1, \ldots, x_n) = (x_1, -x_1, x_2, -x_2, \ldots, x_n, -x_n)$
 - (b) $T(x_1, \ldots, x_n) = (x_1, 2x_2, \ldots, nx_n)$
 - (c) $T(x_1, \ldots, x_n) = (x_1, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_n)$
 - (d) $T(x_1, \ldots, x_n) = (x_1, x_1, x_2, \ldots, x_1, x_2, \ldots, x_n).$
- (3) Para cada una de las siguientes funciones de \mathbb{C} en \mathbb{C} decidir si son \mathbb{R} -lineales o \mathbb{C} -lineales.
 - (a) T(z) = iz,
 - (b) $R(z) = \overline{z}$,
 - (c) S(z) = Re(z) + Im(z).
- (4) En cada caso, si es posible, dar una transformación lineal T de \mathbb{R}^n en \mathbb{R}^m que satisfaga las condiciones exigidas. Si existe, estudiar la unicidad y si no existe explicar porqué no es posible definirla.
 - (a) T(0,1) = (1,2,0,0), T(1,0) = (1,1,0,0).
 - (b) T(1,1,1) = (0,1,3), T(1,2,1) = (1,1,3), T(2,1,1) = (3,1,0).
 - (c) T(1,1,1) = (3,2), T(1,0,1) = (1,1), T(0,1,0) = (1,0).
 - (d) T(0,1,1) = (1,2,0,0), T(1,0,0) = (1,1,0,0).
- (5) Sea $A = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 1 & 3 & 0 & 1 \\ -1 & -1 & 0 & 0 \\ 3 & 0 & 3 & 0 \\ 2 & 1 & 1 & 0 \end{bmatrix}$ y sea $T : \mathbb{R}^4 \to \mathbb{R}^5$ dada por T(x) = Ax.
 - (a) Decir cuáles de los siguientes vectores están en el núcleo: (1,2,3,4), (1,-1,-1,2), (1,0,2,1).
 - (b) decir cuáles de los siguientes vectores están en la imagen: (2,3,-1,0,1), (1,1,0,3,1), (1,0,2,1,0).

1

- (c) Dar una base del núcleo.
- (d) Dar una base de la imagen.

- (e) Describir la imagen implícitamente.
- (6) Para cada una de las siguientes matrices A_i sea T la transformación lineal dada por $T(x) = A_i x$:

$$A_1 = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & -1 & 1 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & 0 & 2 & -1 \end{bmatrix}.$$

- (a) Dar una base del núcleo,
- (b) dar una base de la imagen, y
- (c) describir la imagen implícitamente.
- (7) Para cada una de las siguientes transformaciones lineales calcular el núcleo y la imagen; describir ambos subespacios implícita y explícitamente.
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x,y) = (x-y, x+y, 2x+3y).
 - (b) $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, S(x, y, z) = (x y + z, 2x y + 2z).
- (8) En cada caso definir, cuando sea posible, una transformación lineal T de \mathbb{R}^3 en \mathbb{R}^3 que satisfaga las condiciones exigidas. Cuando no sea posible explicar porqué no es posible.
 - (a) $\dim \operatorname{Im} T = 1$.
 - (b) $\dim \operatorname{Im} T = 2 \text{ y } \dim \operatorname{Nu} T = 2.$
 - (c) $(1, 1, 0) \in \operatorname{Im} T \ y \ (0, 1, 1) \in \operatorname{Nu} T$.
 - (d) $(1,1,0) \in \operatorname{Im} T$, (0,1,1), $(1,2,1) \in \operatorname{Nu} T$.
 - (e) $\operatorname{Im} T \subseteq \operatorname{Nu} T$.
 - (f) Nu $T \subseteq \operatorname{Im} T$.
- (9) Para cada una de las siguientes transformaciones lineales calcular el núcleo y la imagen; describir ambos subespacios implícita y explícitamente.
 - (a) $D: P_4 \longrightarrow P_4$, D(p(x)) = p'(x).
 - (b) $T: M_{2\times 2}(\mathbb{K}) \longrightarrow \mathbb{K}, T(A) = \operatorname{tr}(A).$
 - (c) $L: P_3 \longrightarrow M_{2\times 2}(\mathbb{R}), L(ax^2 + bx + c) = \begin{bmatrix} a & b+c \\ b+c & a \end{bmatrix}.$
 - (d) $Q: P_3 \longrightarrow P_4, Q(p(x)) = (x+1)p(x).$
- (10) Sea $V = P_n$. Decidir cuáles de las siguientes transformaciones lineales de V en V son isomorfismos.

(a)
$$T(p(x)) = p(x-1)$$
, (b) $S(p(x)) = xp'(x)$, (c) $Q(p(x)) = p(x) + p'(x)$.

- (11) Escribir las matrices de las transformaciones lineales de los Ejercicios 7 y 9 respecto de las bases canónicas de los espacios involucrados.
- (12) Sean C_n , n = 2, 3, las bases canónica de \mathbb{R}^2 y \mathbb{R}^3 respectivamente. Sean $\mathcal{B}_2 = \{(1,0), (1,1)\}$ y $\mathcal{B}_3 = \{(1,0,0), (1,1,0), (1,1,1)\}$ bases de \mathbb{R}^2 , \mathbb{R}^3 , respectivamente.
 - (a) Escribir la matriz de cambio de base $P_{\mathcal{C}_n,\mathcal{B}_n}$ de \mathcal{C}_n a $\mathcal{B}_n,\,n=2,3$.
 - (b) Escribir la matriz de cambio de base $P_{\mathcal{B}_n,\mathcal{C}_n}$ de \mathcal{B}_n a \mathcal{C}_n , n=2,3.
 - (c) ¿Qué relación hay entre $P_{\mathcal{C}_n,\mathcal{B}_n}$ y $P_{\mathcal{B}_n,\mathcal{C}_n}$?
- (13) Sean C_n , B_n como en el ejercicio anterior.
 - (a) Dar las matrices de las transformaciones del Ejercicio 7 respecto de las bases \mathcal{B}_n y \mathcal{C}_n .
 - (b) Dar las matrices de las transformaciones del Ejercicio 7 respecto de las bases \mathcal{C}_n y \mathcal{B}_n .
 - (c) Dar las matrices de las transformaciones del Ejercicio 7 respecto de las bases \mathcal{B}_n y \mathcal{B}_n . Ayuda: Utilizar los Ejercicios 11 y 12.
- (14) Sea $T: V \to W$ una transformación lineal mostrar que:
 - (a) Si $T \equiv 0$ entonces para cualesquiera bases \mathcal{B}_V y \mathcal{B}_W de V y W respectivamente, la matriz de T respecto de ellas es la matriz nula.
 - (b) Si Nu T es no trivial entonces existe una base \mathcal{B}_V de V tal que para cualquier base \mathcal{B}_W de W la matriz de T respecto de ellas tiene al menos una columna nula. Más aún, se puede elegir \mathcal{B}_V de tal manera que tenga dim Nu T columnas nulas.
 - (c) Existen bases \mathcal{B}_V y \mathcal{B}_W de V y W respectivamente tal que la matriz de T respecto de ellas es $\begin{bmatrix} Id_m & 0 \\ 0 & 0 \end{bmatrix}$ donde $m = \dim \operatorname{Im}(T)$.
- (15) Decidir si las siguientes afirmaciones son verdaderas o falsas:
 - (a) Si $T: \mathbb{R}^4 \to \mathbb{R}^3$ es una transformación lineal entonces dim NuT=1.
 - (b) Existen dos transformaciones lineales $T: \mathbb{R}^2 \to \mathbb{R}^3$ y $S: \mathbb{R}^3 \to \mathbb{R}^2$ tales que $TS = \mathrm{Id}$.
 - (c) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$T(1,1,0) = (1,0,0),$$
 $T(-1,1,0) = (1,1,1),$ $T(1,0,0) = (1,1,0).$

- (d) Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ y A la matriz de T con respecto a una base β . Si A es escalón reducida por filas con r filas no nulas entonces la dimensión de la imagen de T es r.
- (e) Si $T:V\to W$ es un isomorfismo entonces TS es un isomorfismo para toda transformación lineal $S:W\to W$.

EJERCICIOS ADICIONALES

(1) Sea T la reflexión en \mathbb{R}^2 con respecto a la recta y = x. Sea \mathcal{B} la base ordenada $\{(1,1),(1,-1)\}.$

- (a) Dar la matriz de T respecto de \mathcal{B} .
- (b) Dar la matriz de T respecto de C_2 (ver Ej. 13).
- (2) Sea T la proyección de \mathbb{C}^2 dada por $T(x_1, x_2) = (x_1, 0)$. Sea \mathcal{B} la base canónica de \mathbb{C}^2 y sea \mathcal{B}' la base ordenada $\{(1, i), (-i, 2)\}$.
 - (a) Dar la matriz de T respecto del par \mathcal{B} , \mathcal{B}' .
 - (b) Dar la matriz de T respecto de \mathcal{B}' .
- (3) Sea $g \in \mathcal{C}^1[0,1]$ fija. Sea $T : \mathcal{C}^1[0,1] \longrightarrow \mathcal{C}[0,1]$ definida por T(f) = (fg)'.
 - (a) Probar que T es lineal.
 - (b) Calcular el núcleo de T.
 - (c) Describir el núcleo en los casos $g(x) = e^x$ y g(x) = x y calcular su dimensión.
- (4) Sean $T: V \longrightarrow W$ y $S: W \longrightarrow Z$ transformaciones lineales. Probar que:
 - (a) Si T y S son survectivas, entonces ST es survectiva.
 - (b) Si T y S son inyectivas, entonces ST es inyectiva.
 - (c) Si S no es survectiva, entonces ST no es survectiva.
 - (d) Si T no es inyectiva, entonces ST no es inyectiva.
 - (e) Puede ser S survectiva y ST no.
 - (f) Puede ser que T invectiva y ST no.
- (5) Sea $T: \mathbb{C} \longrightarrow \mathbb{R}^{2\times 2}$ definida por $T(a+ib) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.
 - (a) Probar que T es \mathbb{R} -lineal.
 - (b) Probar que T es inyectiva. Notar que eso implica que el espacio vectorial real de los números complejos es isomorfo al subespacio de matrices 2×2 de la forma $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.
 - (c) Probar además que $T(z_1z_2) = T(z_1)T(z_2)$ para todo par de complejos z_1, z_2 .
- (6) Sea V el espacio de matrices reales $n \times n$ y sea A una matriz fija. Sean L_A y T_A las transformaciones lineales de V en V definidas por:

$$L_A(B) = AB;$$
 $T_A(B) = AB - BA.$

- (a) Demostar que $L_A = 0$ si y solo si A = 0.
- (b) ¿Es cierto que $T_A = 0$ si y solo A = 0?
- (c) Determinar $\{A: I \in \operatorname{Im} L_A\}$ y $\{A: I \in \operatorname{Im} T_A\}$.
- (7) Sean V y W espacios vectoriales sobre un cuerpo \mathbb{K} y sea U un isomorfismo de V en W. Probar que L: $\operatorname{Hom}(V,V) \longrightarrow \operatorname{Hom}(W,W)$, definida por $L(T) = UTU^{-1}$ es un isomorfismo.

- (8) Sea T la transformación lineal de P_3 en P_3 definida por T(p(x))=p(x-2).
 - (a) Calcular T^t .
 - (b) Escribir la matriz de T en la base canónica.
 - (c) Escribir la matriz de T^t en la base dual de la base canónica de P_3 .