

Perfect Sampling in Turnstile Streams Beyond Small Moments

David P. Woodruff¹, Shenghao Xie², Samson Zhou² Carnegie Mellon University¹, Texas A&M University²

To appear in PODS 2025

Model

Frequency vector: Given a set *S* of *m* elements from [n], let f; be the frequency of element i.

$$1\ 1\ 2\ 1\ 3\ 1\ 2\ 3 \rightarrow [4,\ 2,\ 2,\ 0] := f$$

Streaming model: Elements of the data set S arrives sequentially in a data stream.

Turnstile stream: Updates can increase and decrease the coordinates of f.

Goal: Evaluation of a given function on f, using sublinear space in the size m of input S.

Problem

Approximate L_p sampler: Given $\varepsilon > 0$, sample $i \in [n]$ with probability $(1+\varepsilon)\frac{|f_i|^p}{\|f\|_p^p} + \frac{1}{\operatorname{poly}(n)}$, where $\|f\|_p^p := f_1^p +$ $f_{2}^{p} + ... + f_{n}^{p}$

Perfect L_p sampler: Sample $i \in [n]$ with probability $\frac{\|f_i\|_p^p}{\|f\|_p^p} + \frac{1}{\text{poly}(n)}$, where $\|f\|_p^p := f_1^p + f_2^p + \dots + f_n^p$.

Motivation: Minimal bias; privacy protection. Application: DDoS attack detection; database management; distributed computing.

Serve as subroutine in essential problems: F_p moment estimation, finding heavy-hitter, finding duplicates.

Previous Results: $p \le 2$

· · · · · · · · · · · · · · · · · · ·	
Space UB	Remark
$O\left(\frac{1}{\varepsilon^{\max(1,p)}}\log^2 n\right), [JST11]$	<i>p</i> < 2, approximate
$O\left(\frac{1}{\varepsilon^2}\log^3 n\right)$, [JST11]	p = 2, approximate
O(log ² n), [JW18]	<i>p < 2</i> , perfect
O(log ³ n), [JW18]	p = 2, perfect
Space LB	Remark
$\Omega(\log^2 n)$, [JST11]	<i>p < 2</i> , approximate

Perfect Sampler for $p \ge 2$

Why $p \ge 2$ matters? Prioritize elements with larger contributions. Have applications to sparse signal recovery, outlier detection, and high-dimensional data analysis.

Theorem 1: Given $p \ge 2$, there exists a perfect L_p sampler on a turnstile stream that uses $n^{1-2/p}$ polylog(n) bits of space. Moreover, it obtains a $(1+\varepsilon)$ -estimation to the sampled item using $\frac{1}{c^2} n^{1-2/p} polylog(n)$ bits of space. Rejection Sampling: Use perfect L₂ sampler to sample *i* w.p. $\frac{|f_i|^2}{\|f\|_0^2}$. Reject each sample w.p. $p_i = \|f_i\|^{p-2}$. $\frac{\|f\|_2^2}{n^{1-2/p} \cdot \|f\|_2^p}$. Use unbiased estimates of each term in the actual implementation. Rejection probability is well-defined: $0 < p_i < 1$. In expectation, returning each index i w.p. $\frac{|f_i|^p}{||f||_p^p} + \frac{1}{\text{poly}(n)}$.

Sketching dimension lower bound: $\Omega(n^{1-2/p} \log n)$ for L_p sampler using linear sketch.

Rejection Sampling Framework

Perfect G sampler: Given a non-negative function G, sample $i \in [n]$ with probability $\frac{G(f_i)}{\sum_{j=1}^n G(f_j)} + \frac{1}{\text{poly}(n)}$. L_0 sampler: Sample $i \in [n]$ with probability $\frac{1}{\|f\|_0} + \frac{1}{\operatorname{poly}(n)}$. Framework: Suppose that H > G(z). Obtain a L_0 sample, then reject with probability $\frac{G(t_i)}{U}$.

Function	Space
G(z) = log(1 + z)	$O(\log^3 n)$
$G(z) = min(T, z ^p)$	$O(T\log^2 n)$
$G(z) = \sum_{d=1}^{D} a_d z ^d$	n ^{max(0,1-2/p)} polylog(n)

Approximate Sampler for $p \ge 2$

Theorem 2: Given $p \ge 2$, there exists an approximate L_p sampler that uses $n^{1-2/p} \log^2(n) \log(\frac{1}{\epsilon}) polylog \log(n)$ bits of space and has update time $\frac{1}{s}$ polylog $(\frac{1}{s}, n)$. Exponential scalings: Draw *n* i.i.d. exponential random variables (e_1, \ldots, e_n) , obtain vector $z \in \mathbb{R}^n$ by $z_i = \frac{t_i}{e_i^{1/p}}$. $Pr[D(1) = i] = \frac{|f_i|^p}{||f||_p^p}, z_{D(i)}$ is the *i*-th largest coordinate. Statistical test: Use CountSketch to estimate z. Reject If $z_{D(1)}$ and $z_{D(2)}$ is close. \rightarrow Cannot detect the max. Dependency: The failure probability depends on which index achieves the max, leading to incorrect distribution. Duplication: [JW18] duplicates each coordinate n^c times

 $O(\log^2{(n^c)})$ for p < 2, $O(n^{c^{1-2/p}})$ for p > 2Two-stage Countsketch: Maintain CountSketch1 for the vector w consisted of the maximum of duplications of each entry: $w_i = \max_j f_i / e_{i,i}^{1/p}$, select the largest $\log(\frac{1}{\epsilon})$ entry. Maintain CountSketch2 for the total vector z with w zeroed out, only record the first $log(\frac{1}{s})$ entry.

and scale with different exponentials.

Application

Norm estimation of post-processing subsets: Given a post-processing subset *Q*, there is an algorithm that gives a $(1+\varepsilon)$ -estimation to $||f_Q||_p^p$. For $||f_Q||_p^p < \infty \cdot ||f_Q||_p^p$, the algorithm uses $\frac{1}{\pi c^2} n^{1-2/p} polylog(n)$ bits of space.

References

[JST11] Hossein Jowhari, Mert Saglam, Gábor Tardos. Tight Bounds for Lp Samplers, Finding Duplicates in Streams, and Related Problems. PODS 2011. [JW18] Jayaram Rajesh, David P.Woodruff. Perfect Lp Sampling in a Data Stream. FOCS 2018.