Exercice 1.

On définit sur E =]-1,1[la loi * par :

$$\forall x, y \in E, \ x * y = \frac{x+y}{1+xy}$$

- 1. Montrer que cette loi * est interne dans E.
- 2. Montrer que * est commutative.
- 3. la loi * est-elle associative?
- 4. La loi * admet-elle un élément neutre?
- 5. Les éléments de E admettent-ils des symétriques pour *.
- 6. Que peut-on dire de (E, *)?

Exercice 2.

Dans $G = \mathbb{R} \setminus \{-1\}$ on définit la loi * par :

$$\forall x, y \in G, \ x * y = x + y + xy.$$

- 1. Montrer que (G,*) est un groupe abélien.
- 2. Résoudre dans (G,*) l'équation a*x = b.

Exercice 3.

Soit (H,*) un groupe et soit l'ensemble $C = \{c \in H, \forall x \in H, c*x = x*c\}$. Montrer que C est un sous-groupe de H.

Exercice 4.

Soit un entier $k \geq 2$ et soit l'application :

$$f: (\mathbb{Z}, +) \longrightarrow (\mathbb{Z}, +)$$

 $n \mapsto f(n) = kn$

- 1. Montrer que f est un morphisme de groupes.
- 2. Déterminer $f^{-1}(\{e'\})$, où e' est l'élément neutre de $(\mathbb{Z},+)$. Que peut-on dire de cet ensemble?

Exercice 5.

Dans \mathbb{R}^2 , on définit les lois de composition internes suivantes :

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \times (c,d) = (ac,ad+bc)$

Montrer que $(\mathbb{R}^2, +, \times)$ est un anneau commutatif.

Exercice 6.

On définit sur \mathbb{R} deux lois \oplus et \otimes par :

$$x \oplus y = x + y - 1$$
$$x \otimes y = x + y - xy$$

Montrer que $(\mathbb{R}, \oplus, \otimes)$ est un corps commutatif.