DNA repair and MSH2 gene

Types of DNA Damage Repair

Direct Repair of Damage

Mismatch Repair

Base Excision Repair

Nucleotide Excision Repair

Double-strand Break Repair

Damage Bypass

Review of Replication

DNA polymerase on lagging strand (just finishing an Okazaki fragment)

Mechanism of Mismatch repair

Recognition

Protein Binding

Incision

Degradation

Synthesis of new strand

Complement

Closing gaps

Genes Encoding Enzymes of Mismatch Repair

E. coli	S. cerevisiae	Human	Functions of Eukaryotic Proteins							
MutS	MSH2	MSH2	MutS α (with MSH6; 80-90%); MutS β (with MSH3)							
"	MSH3	MSH3	MutSβ (with MSH2); repair of larger loops							
"	MSH6	MSH6	MutSα (with MSH2); repair of mismatches and small loops							
MutL	MLH1	MLH1	Forms heterodimers with the other three MutL homologs							
"	PMS1	PMS2	MutLα (90%); Mismatch repair; endonuclease motif							
"	MLH2	PMS1	MutLβ; Role unknown							
"	MLH3	MLH3	MutLγ; Mismatch repair; endonuclease motif							
MutH	?	?	?							
uvrD	?	?	?							
?	Exonuclease I	Exonuclease I	Excision (5' to 3' polarity)							
2	RFC, PCNA,	RFC, PCNA,	Niels identification, con filing							
· ·	Polγ	Polγ	Nick identification; gap filling							

The eukaryotic genes are homologs of the corresponding *E. coli* genes both in terms of amino acid sequence and in terms of functional similarities. Whereas MutS and MutL function as homodimers, the eukaryotic proteins function as heterodimers. Heterodimers of MutS homologs are responsible for initial recognition of mismatches and small insertions/deletions, and heterodimers of MutL homologs interact with the resulting complex, as in *E. coli*.

Prokaryotic Mismatch Repair

Eukaryotic Mismatch Repair

Msh2p Important Domains

- Structural integrity residues (throughout)
- DNA binding region
- Protein-protein interacting regions
- ATPase domain

Review of Gene Expression

ORF Open Reading Frame

Flow of Genetic Information: Gene to Protein

			2nd ba	ase	
		U	С	Α	G
		UUU (Phe/F) Phenylalanine	UCU (Ser/S) Serine	UAU (Tyr/Y) Tyrosine	UGU (Cys/C) Cysteine
	U	UUC (Phe/F) Phenylalanine	UCC (Ser/S) Serine	UAC (Tyr/Y) Tyrosine	UGC (Cys/C) Cysteine
	ľ	UUA (Leu/L) Leucine	UCA (Ser/S) Serine	UAA Ochre (Stop)	UGA Opal (Stop)
		UUG (Leu/L) Leucine	UCG (Ser/S) Serine	UAG Amber (Stop)	UGG (Trp/W) Tryptophan
		CUU (Leu/L) Leucine	CCU (Pro/P) Proline	CAU (His/H) Histidine	CGU (Arg/R) Arginine
		CUC (Leu/L) Leucine	CCC (Pro/P) Proline	CAC (His/H) Histidine	CGC (Arg/R) Arginine
	С	CUA (Leu/L) Leucine	CCA (Pro/P) Proline	CAA (Gln/Q) Glutamine	CGA (Arg/R) Arginine
1st		CUG (Leu/L) Leucine	CCG (Pro/P) Proline	CAG (Gln/Q) Glutamine	CGG (Arg/R) Arginine
base		AUU (Ile/I) Isoleucine	ACU (Thr/T) Threonine	AAU (Asn/N) Asparagine	AGU (Ser/S) Serine
	A	AUC (Ile/I) Isoleucine	ACC (Thr/T) Threonine	AAC (Asn/N) Asparagine	AGC (Ser/S) Serine
	٦	AUA (Ile/I) Isoleucine	ACA (Thr/T) Threonine	AAA (Lys/K) Lysine	AGA (Arg/R) Arginine
		AUG (Met/M) Methionine, Start [A]	ACG (Thr/T) Threonine	AAG (Lys/K) Lysine	AGG (Arg/R) Arginine
		GUU (Val/V) Valine	GCU (Ala/A) Alanine	GAU (Asp/D) Aspartic acid	GGU (Gly/G) Glycine
	_	GUC (Val/V) Valine	GCC (Ala/A) Alanine	GAC (Asp/D) Aspartic acid	GGC (Gly/G) Glycine
	G	GUA (Val/V) Valine	GCA (Ala/A) Alanine	GAA (Glu/E) Glutamic acid	GGA (Gly/G) Glycine
		GUG (Val/V) Valine	GCG (Ala/A) Alanine	GAG (Glu/E) Glutamic acid	GGG (Gly/G) Glycine

Human MSH2 gene has 16 exons, coding for one protein with three functional domains:

No protein

AMINO AC	CID		AMINO ACID							
Aspartic acid	Asp	D	Alanine	Ala	Α					
Glutamic acid	Glu	Е	Glycine	Gly	G					
Arginine	Arg	R	Valine	Val	٧					
Lysine	Lys	K	Leucine	Leu	L					
Histidine	His	Н	Isoleucine	lle	1					
Asparagine	Asn		Proline	Pro	Р					
Glutamine	Gln	Q	Phenylalanine	Phe	F					
Serine	Ser	S	Methionine	Met	M					
Threonine	Thr	Т	Tryptophan	Trp	W					
Tyrosine	Tyr	Υ	Cysteine	Cys	C					

Representations of MSH2. (a) Putative functional regions of hMSH2. An amino-terminal DNA-binding region, a region that interacts with the mismatch-repair protein MutL (blue), and a carboxy-terminal MutS dimerization region are suggested by studies of deletion mutants of E. coli MutS [20]. Amino acids 827–846 comprise a helix-turn-helix motif suggested to interact with yMSH6 [21]. Studies of hMSH2 have implicated two regions in heterodimerization of hMSH2 with MSH3 and MSH6 (grey) [22]. Also indicated are the Walker A and B motifs required for ATP binding and hydrolysis [23]. The numbers above the boxes indicate amino acids delineating the functional regions; those below correspond to the missense mutations. (b) Alignment of human, mouse, rat and yeast MSH2. The numbers above the alignment correspond to hMSH2 amino-acid positions; those below correspond to yMSH2 residues. The missense mutations are indicated below the alignment.

MSH2 missense mutations	examined in this study.
-------------------------	-------------------------

Mutation in hMSH2	Homologous mutation in yMSH2	Allele frequency	Role in HNPCC*	Role in sporadic or early onset colon cancer*		
R524P	R542P	ND	+ †	-		
P622L	P640L	ND	+ [7]	-		
C697F	C716F	ND	+ [8]	-		
D506Y	D524Y	ND	_	+ [9]		
G322D	G317D	1-6% [8,10-14]	+ [17]	+ [15,16]		
Q419K	Q430K	1% [18]	-	-		
L390F	L402F	2% [18]	+ [19]	-		

The mutations are indicated in the single-letter amino-acid code.

sporadic or early onset colon cancer. [†]Although described as HNPCC [4], this patient did not fulfill the Amsterdam criteria and had ovarian cancer. ND, not determined.

^{*}These columns indicate whether a particular polymorphism has (+) or has not (-) been implicated in the development of HNPCC, or of

Problem Set

Creating mutagenic primers for site-directed mutagenesis in yeast VMA6

Here's the nucleotide sequence of the yeast VMA6 gene:

```
1 ATGGAAGGCG TGTATTTCAA TATTGACAAT GGGTTTATTG AAGGTGTAGT GAGAGGCTAC
  61 AGAAATGGGT TGTTATCTAA TAACCAATAC ATCAACTTAA CACAATGTGA CACGTTGGAA
 121 GATCTAAAAT TACAATTATC ATCAACTGAT TATGGTAATT TTCTTTCCTC TGTTTCCTCA
 181 GAGTCTTTGA CCACGTCATT GATTCAAGAA TATGCTTCTA GCAAGTTGTA CCACGAATTC
 241 AACTACATAA GAGACCAATC CAGTGGATCC ACGAGAAAGT TCATGGACTA TATCACTTAT
 301 GGTTACATGA TCGACAATGT AGCATTGATG ATTACAGGTA CTATTCATGA TCGTGATAAG
 361 GGTGAAATTT TACAACGTTG TCATCCGCTA GGTTGGTTTG ATACTTTGCC TACGTTGAGT
 421 GTTGCTACTG ATCTTGAATC CCTATACGAA ACCGTATTGG TGGATACCCC ACTGGCACCT
 481 TACTTCAAAA ACTGTTTTGA CACGGCAGAG GAGCTAGACG ATATGAACAT TGAAATTATT
 541 AGAAATAAGC TGTACAAGGC TTATTTAGAA GACTTTTACA ATTTTGTCAC TGAAGAAATT
 601 CCGGAACCTG CTAAAGAATG TATGCAAACA TTACTAGGGT TTGAAGCTGA CAGAAGAAGT
 661 ATCAATATTG CACTCAACTC TTTGCAAAGT TCAGATATTG ACCCAGATTT GAAAAGTGAC
 721 TTGTTACCTA ACATAGGTAA GTTGTACCCT CTTGCAACGT TTCACTTGGC GCAAGCCCAA
 781 GATTTCGAAG GAGTTAGAGC TGCTTTAGCT AACGTCTATG AGTATAGGGG ATTTTTGGAG
 841 ACTGGTAACT TAGAAGATCA CTTTTACCAA TTGGAAATGG AACTATGTAG AGATGCTTTC
 901 ACGCAACAAT TTGCCATCAG CACTGTTTGG GCCTGGATGA AATCCAAGGA ACAAGAAGTT
 961 AGGAATATTA CCTGGATTGC AGAATGTATC GCACAAAACC AAAGAGAAAG AATCAACAAT
1021 TATATTTCCG TTTATTGA
```

Using SIXFRAME, the correct open reading frame (ORF 1) can be identified:

```
M E G V Y F N I D N G F I E G V V R G Y
    atggaaggcqtqtatttcaatattgacaatggqtttattgaaggtgtagtgagaggctac 60
    R N G L L S N N Q Y I N L T Q C D T L E
    agaaatqqqttqttatctaataaccaatacatcaacttaacacaatqtqacacqttqqaa 120
    D L K L O L S S T D Y G N F L S S V S S
E S L T T S L I Q E Y A S S K L Y H E F
   gagtetttgaccacgteattgatteaagaatatgettetageaagttgtaccacgaatte 240
    N Y I R D O S S G S T R K F M D Y I T Y
241 aactacataagagaccaatccagtggatccacgagaaagttcatggactatatcacttat 300
    G Y M I D N V A L M I T G T I H D R D K
301 ggttacatgatcgacaatgtagcattgatgattacaggtactattcatgatcgtgataag 360
    G E I L Q R C H P L G W F D T L P T L S
361 ggtgaaattttacaacgttgtcatccgctaggttggtttgatactttgcctacgttgagt 420
    V A T D L E S L Y E T V L V D T P L A P
421 gttgctactgatcttgaatccctatacgaaaccgtattggtggataccccactggcacct 480
    Y F K N C F D T A E E L D D M N I E I I
481 tacttcaaaaactqttttqacacqqcaqaqqqqctaqacqatatqaacattqaaattatt 540
    R N K L Y K A Y L E D F Y N F V T E E I
   agaaataagctgtacaaggcttatttagaagacttttacaattttgtcactgaagaaatt 600
    P E P A K E C M Q T L L G F E A D R R S
601 ccqqaacctqctaaaqaatqtatqcaaacattactaqqqttttqaaqctqacaqaaqaaqt 660
    I N I A L N S L Q S S D I D P D L K S D
661 atcaatattgcactcaactctttgcaaagttcagatattgacccagatttgaaaagtgac
    L L P N I G K L Y P L A T F H L A O A O
721 ttgttacctaacataggtaagttgtaccctcttgcaacgtttcacttggcgcaagcccaa 780
    D F E G V R A A L A N V Y E Y R G F L E
781 qatttcqaaqqaqttaqaqctqctttaqctaacqtctatqaqtataqqqqatttttqqaq 840
    T G N L E D H F Y Q L E M E L C R D A F
841 actggtaacttagaagatcacttttaccaattggaaatggaactatgtagagatgctttc 900
    T Q Q F A I S T V W A W M K S K E Q E V
901 acqcaacaatttqccatcaqcactqtttqqqcctqqatqaaatccaaqqaacaaqaaqtt 960
    R N I T W I A E C I A Q N Q R E R I N N
Y I S V Y *
1021 tatatttccgtttattga 1038
```

To simplify the analysis, a shorter gene fragment can be generated using the nucleic editing tool

	L	L	Р	N	I	G	K	L	Y	Р	L	A	Τ	F	Η	\mathbf{L}	A	Q	A	Q	
1	tt	gtt	acc	taa	cat	agg	taa	gtt	gta	CCC	tct	tgc	aac	gtt	tca	ctt	ggc	gca	agc	ccaa	60
	D	F	E	G	V	R	A	A	L	Α	N	V	Y	E	Y	R	G	F	L	E	
61	ga	ttt	cga	agg	agt	tag	agc	tgc	ttt	agc	taa	cgt	cta	tga	gta	tag	ggg	att	ttt	ggag	120
	Т	G	N	L	E	D	Η	F	Y	Q	L	E	M	E	L	С	R	D	A	F	
121	ac	tgg	taa	ctt	aga	aga	tca	ctt	tta	cca	att	gga	aat	gga	act	atg	tag	aga	tgc	tttc	180
	Т	Q	Q	F	A	I	S	Т	V	W	A	W	M	K	S	K	E	Q	E	V	
181	ac	gca	aca	att	tgc	cat	cag	cac	tgt	ttg	ggc	ctg	gat	gaa	atc	caa	gga	aca	aga	<mark>a</mark> gtt	240
	R	N	I	Т	W	I	A	E	С	I	A	Q	N	Q	R	E	R	I	N	N	
241	ag	gaa	tat	tac	ctg	gat	tgc	aga	atg	tat	cgc	aca	aaa	cca	aag	aga	aag	aat	caa	caat	300
	Y	I	S	V	Y	*															
301	ta	tat	ttc	cgt	tta	ttg	a	318													