Logic - Notes

Dom Hutchinson

February 3, 2020

Contents

1	Introduction	2
	1.1 Alphabets & Strings	4
	1.2 Countable Sets	2
2	First-Order Languages	3
	2.1 Induction of Terms & Formulae	6

1 Introduction

1.1 Alphabets & Strings

Definition 1.1 - Alphabet

An Alphabet is a set of symbols from which Strings can be created.

Definition 1.2 - String

A String over a set \mathcal{A} is any sequence $\alpha := \langle a_1, \dots, a_n \rangle$ where $a_1, \dots, a_n \in \mathcal{A}$. N.B. Here we say α has length n and $\alpha \in \mathcal{A}^n$.

Definition 1.3 - Power Set

Let \mathcal{A} be an alphabet. We define

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}} \mathcal{A}^n = \{ \langle a_1, \dots, a_n \rangle : n \in \mathbb{N}; a_1, \dots, a_n \in \mathcal{A} \}$$

This means \mathcal{A}^* is the set of all possible strings over alphabet \mathcal{A} .

Remark 1.1 - Concatenating Strings

Define Strings $\alpha := \langle a_1, \dots, a_n \rangle \in \mathcal{A}^n$ and $\beta := \langle b_1, \dots, b_m \rangle \in \mathcal{A}^m$.

We define Concatenation of α & β as $\alpha\beta := \langle a_1, \ldots, a_n, b_1, \ldots, b_m \rangle$ Note that

$$\alpha\beta \neq \langle \alpha, \beta \rangle = \langle \langle a_1, \dots, a_n \rangle, \langle b_1, \dots, b_m \rangle \rangle$$

N.B. Sometimes the following notation is used $\alpha * \beta$.

Example 1.1 - English Alphabet

If we define an alphabet $\mathcal{A} := \{`a`, \ldots, `z`\}$ then $\langle `t`, `h`, `i`, `s`\rangle$ is a *String* of \mathcal{A} .

Remark 1.2 - Ambiguity when using multiple Alphabets

Consider the Alphabets $A_1 := \{0, 1, \dots, 9\} \& A_2 := \mathbb{N}$.

Then we are unsure which of the following definitions of 123 is valid

$$\langle 123 \rangle$$
, $\langle 12, 3 \rangle$, $\langle 1, 23 \rangle$, $\langle 1, 2, 3 \rangle$

Remark 1.3 - $A := \{0,1\}$ is sufficient to describe any language - binary

Remark 1.4 - Describing Formal Languages

When describing a Formal Language we need to provide two things

- i) An Alphabet which defines what symbols are allowed.
- ii) A Grammar which defines what combinations of symbols are allowed.

1.2 Countable Sets

Definition 1.1 - Countable Set

A set X is said to be Countable if

$$\exists$$
 a surjection $f: \mathbb{N} \to X$
 \exists an injection $f: X \to \mathbb{N}$

Definition 1.2 - Countably Infinite Set

A set X is said to be Countably Infinite if \exists a bijection $f: X \to \mathbb{N}$.

Theorem 1.1 - Power set is Countable

If set \mathcal{A} is countable then \mathcal{A}^* is countable.

Proof 1.1 - *Theorem 1.1*

Let $f: \mathcal{A} \longrightarrow \mathbb{N}$ (This function exists trivally since we define \mathcal{A} to be countable).

Define the following function $g(\cdot): \mathcal{A}^* \longrightarrow \mathbb{N}$

$$g(\langle a_1, \dots, a_n \rangle) := p_1^{f(a_1)+1} \cdot \dots \cdot p_n^{f(a_n)+1}$$

where p_i is the i^{th} prime.

Since each natural number can be described by a unique composition of primes and since $f(\dot{)}$ is injective, then $g(\cdot)$ is injective.

Thus there exists an injection from \mathcal{A}^* to \mathbb{N} , making \mathcal{A}^* countable.

Theorem 1.2 - If A is countable, then so are $A^*, (A^*)^*, \dots$

2 First-Order Languages

Definition 2.1 - First-Order Language, \mathcal{L}

The Alphabet of a First-Order Language, comprises of the following, pairwise disjoint, categories (and nothing else)

- i) Negation, \neg , and implication, \longrightarrow .
- ii) For all, \forall .
- iii) Infinitely many variables, $\{v_0, v_1, \dots\}$.
- iv) Parentheses, '(' ')', and comman ','.
- v) Equality, \equiv , which is the only logical predicate symbol with 2-arity.
- vi) A set of constant symbols, $\{c_1, c_2, \dots\}$. (Possibly empty)
- vii) For each $n \ge 1$, a set of n-arity function symbols $\{f_1^n, f_2^n, \dots\}$. (Possibly empty)
- viii) For each $n \ge 1$, a set of *n*-arity non-logical predicate symbols $\{P_1^n, P_2^n, \dots\}$. (Possibly empty)

N.B. We denote the set of variables by $Var := \{v_0, v_1, \dots\}$; denote a language as \mathcal{L} and the alphabet of \mathcal{L} as $\mathcal{A}_{\mathcal{L}}$.

N.B. In this course Alphabets are restricted to being Countable.

Definition 2.2 - Negation, \neg

Negation returns in the inverse of a predicate (DO I MEAN PREDICATE)

$$\begin{array}{c|c} P & \neg P \\ \hline T & F \\ F & T \end{array}$$

Definition 2.3 - *Implication*, \longrightarrow

Implication returns whether one predicate being true necessarily implies a second predicate being true

$$\begin{array}{c|cc} P & Q & P \rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

Remark 2.1 - First-Order Languages don't have \land , \lor , \exists

Alphabets for First-Order Languages do not contain propositional connectives for AND, \land , OR, \lor , or EXISTS, \exists since they can be expressed as a combination of negation & implication.

$$\begin{array}{ccc} P \vee Q & \Longleftrightarrow & \neg P \to Q \\ P \wedge Q & \Longleftrightarrow & \neg (P \to \neg Q) \\ \exists \; x \; \mathrm{st} \; P(x) \; \mathrm{is} \; \mathrm{true} & \Longleftrightarrow & \neg (\forall \; x, \; \neg P(x)) \end{array}$$

P	Q	$\neg P$	$\neg P \rightarrow Q$	P	Q	$\neg Q$	$P \rightarrow \neg Q$	$\neg (P \to \neg Q)$
$\overline{\mathrm{T}}$	Τ	F	T	T	T	F	F	T
${ m T}$	\mathbf{F}	F	T	Τ	F	T	${f T}$	F
\mathbf{F}	\mathbf{T}	F	${ m T}$	F	T	F	T	F
\mathbf{F}	\mathbf{F}	F	\mathbf{F}	F	\mathbf{F}	T	Τ	F

Example 2.1 - Recursive Defintion

Consider the following, normal, deifition

x is a multiple of
$$5 \iff \exists y \in \mathbb{Z} \text{ st } y.5 = x$$

We can instead use the recursive definition

- i) 0 is a multiple of 5.
- ii) If n is a multiple of 5 then n + 5 is a multiple of 5.

Definition 2.4 - *L-Term & Complexity*

Let \mathcal{L} be a First-Order Language.

We define \mathcal{L} -Terms & Complexity, $cp(\cdot)$, together using the following recursive definition

- i) If s is a variable or a constant symbol, then s is an \mathcal{L} -Term with cp(s) = 0. N.B. Terms with $cp(\cdot) = 0$ are called Atomic Terms.
- ii) If f is a function symbol with k-arity & if a_1, \ldots, a_k are \mathcal{L} -Terms then $f(a_1, \ldots, f_k)$ is an \mathcal{L} -Term with complexity

$$cp(f(a_1,...,a_k)) := \max\{cp(a_1),...,cp(a_k)\} + 1$$

N.B. Terms with $cp(\cdot) \geq 1$ are called Compound Terms.

- iii) Nothing else is an \mathcal{L} -Term
- *N.B.* We denote the set of \mathcal{L} Terms by $T_{\mathcal{M}_{\mathcal{L}}}$.

Example 2.2 - Complexity

Let $\{c, d, f, g, h, p\} \subseteq \mathcal{L}$ with c, d being constants, g, p being uniary functions & f, h being binary functions.

Show that the following is an \mathcal{L} -Term & find its Complexity

i) x is an \mathcal{L} -Term with cp(x) = 0 by (i).

Dom Hutchinson Logic - Notes February 3, 2020

- ii) c & d are \mathcal{L} -Terms with cp(c) = 0 = cp(d) by (i).
- iii) f(x,c) is an \mathcal{L} -Term with $cp(f) = \max 0, 0 + 1 = 1$ by (ii).
- iv) p(d) is an \mathcal{L} -Term with $cp(f) = \max 0 + 1 = 1$ by (ii).
- v) g(f(x,c),p(d)) is an \mathcal{L} -Term with $cp(g) = \max 1, 1+1=2$ by (ii).
- vi) h(g(f(x,c),p(d))) is an \mathcal{L} -Term with $cp(h) = \max 2 + 1 = 3$ by (ii).

Thus h(g(f(x,c),p(d))) is an \mathcal{L} -Term with Complexity 3.

Notation 2.1 - *More readble Functions*

WE often write $x \circ y$ instead of $\circ (x, y)$ as it is more readable (even though the later is technically the only correct notation). Similarly, x + y instead of +(x, y).

Definition 2.5 - Atomic Formulae

Let \mathcal{L} be a First-Order Language.

The atomic \mathcal{L} -Formulae are those strings over $\mathcal{A}_{\mathcal{L}}$ of the form

$$R(t_1,\ldots,t_n)$$
 for $n\in\mathbb{N}$

where R is a predicate symbol of \mathcal{L} with n-arity and t_1, \ldots, t_n are \mathcal{L} -terms. $N.B. \equiv (t_1, t_2)$ is an $Atomic \mathcal{L}$ -Formula for each \mathcal{L} terms t_1, t_2 .

Definition 2.6 - *L-Formulae & Complexity*

We define \mathcal{L} -Formulae & Complexity, $cp(\cdot)$, together using the following recursive definition

- i) If $\phi \in \mathcal{A}_{\mathcal{L}}^*$ is an Atomic \mathcal{L} -Formula then ϕ is an \mathcal{L} -Formula with $cp(\phi) = 0$.
- ii) If ϕ is an \mathcal{L} -Formula with $cp(\phi) = n$ then $\neg \phi$ is an \mathcal{L} -Formula with $cp(\neg \phi) = n + 1$.
- iii) If $\phi \& \psi$ are \mathcal{L} -Formulae then $\phi \to \psi$ is an \mathcal{L} -Formula with $cp(\phi \to \psi) = \max\{cp(\phi), cp(\psi)\} + 1$.
- iv) if ϕ is an \mathcal{L} -Formula then $\forall x \phi$ is an \mathcal{L} -Formula with $cp(\forall x \phi) = cp(\phi) + 1$, where x is a variable.

Remark 2.2 - Formulae are uniquely readable & parsable

Example 2.3 - L-Formulae Complexity

Let $\{R, f\} \subset \mathcal{L}$ be binary operations.

Show that the following is an \mathcal{L} -Formula

$$\forall v_0 (\neg R(f(v_0, v_2), v_2) \longrightarrow \underbrace{\equiv (v_0, v_2)}_{v_0 \equiv v_2}$$

- i) v_0, v_2 are \mathcal{L} -Terms.
- ii) $f(v_0, v_2)$ is an \mathcal{L} -Term.
- iii) $R(f(v_0, v_2), v_2)$ is an \mathcal{L} -Formula with $cp(\cdot) = 0$.
- iv) $\neg R(f(v_0, v_2), v_2)$ is an \mathcal{L} -Formula with $cp(\cdot) = 0 + 1 = 1$.
- v) $\equiv (v_0, v_2)$ is an \mathcal{L} -Formula with $cp(\cdot) = 0$.
- vi) $\neq R(f(v_0, v_2), v_2) \longrightarrow \equiv (v_0, v_2)$ is an \mathcal{L} -Formula with $cp(\cdot) = \max\{0, 1\} + 1 = 2$.

vii)
$$\forall v_0 (\neg R(f(v_0, v_2), v_2) \longrightarrow \equiv (v_0, v_2))$$
 is an \mathcal{L} -Formula with $cp(\dot{}) = 2 + 1 = 3$.

Notation 2.2 - Convention for common operators

To make formulae more readble we general make the following allowances in notation

$$t_1 \equiv t_2$$
 for $\equiv (t_1, t_2)$
 $t_1 \not\equiv t_2$ for $\neg \equiv (t_1, t_2)$
 $t_1 < t_2$ for $< (t_1, t_2)$
 $t_1 \not\equiv t_2$ for $\neg \equiv (t_1, t_2)$

Further, when a formula is encapsulated by parantheses then we will often surpress the outermost parentheses (only), as they do not affect anything.

$$\phi \longrightarrow (\psi \longrightarrow \theta) \text{ for } (\phi \longrightarrow (\psi \longrightarrow \theta))$$

Definition 2.7 - *More complex operators*

- AND, $(\phi \wedge \psi) := \neg(\phi \longrightarrow \neg \psi)$.
- OR, $(\phi \lor \psi) := (\neg \phi \longrightarrow \psi)$.
- IFF, $(\phi \longleftrightarrow \psi) := (\phi \longrightarrow \psi) \land (\psi \longrightarrow \phi)$.
- EXISTS, $(\exists x\phi) := \neg \forall x \neg \phi$.

Notation 2.3 - Sets of \mathcal{L} Features

- $T_{\mathcal{M}_{\mathcal{L}}} := \text{Set of } \mathcal{L}\text{-Terms.}$
- $F_{\mathcal{M}_{\mathcal{L}}} := \text{Set of } \mathcal{L}\text{-Formulae}.$
- Var := Set of Variables.

Proposition 2.1 - $T_{\mathcal{M}_{\mathcal{L}}}$ & $F_{\mathcal{M}_{\mathcal{L}}}$ are always countable in this course since we assume \mathcal{L} to be finite.

2.1 Induction of Terms & Formulae

Theorem 2.1 - Inheritance of a Proeprty - L-Terms

Let P be a property of \mathcal{L} -Terms.

Suppose the following to be true

- i) All Atomic \mathcal{L} -Terms have property P.
- ii) $\forall k \in \mathbb{N}, \forall$ function symbols f with k-arity: If \mathcal{L} -Terms t_1, \ldots, t_k have property P then $f(t_1, \ldots, t_k)$ has P.

Then every \mathcal{L} -Term has property P.

Proof 2.1 - *Theorem 2.1*

This is a proof by contradiction. Suppose that i) & ii) are true but there exists some \mathcal{L} -Term which does not have P.

Let t be an \mathcal{L} -Term with minimum complexity st t does not have P.

Then $cp(t) \neq 0$ otherwise i) would be untrue.

Thus $t \equiv f(t_1, \ldots, t_k)$ by the minimlaity of cp(t).

We know that t_1, \ldots, t_k have P.

Thus $f(t_1, \ldots, t_k)$ has P. This is a contradiction.

Theorem 2.2 - Inheritance of a Proeprty - \mathcal{L} -Formulae Let P be a property of \mathcal{L} -Formula. Suppose the following to be true

- i) All Atomic \mathcal{L} -Formulae have property P.
- ii) If $\phi, \psi \in F_{\mathcal{M}_{\mathcal{L}}}$ have P then $\neg \phi, (\phi \to \psi)$ & $\forall x \phi$ have P to.

Then every \mathcal{L} -Formulae has property P.