

Instituto Federal de Educação, Ciência e Tecnologia do Pará Campus Belém

Diretoria de Ensino

Departamento de Ensino de Processos Industriais Curso de Engenharia de Controle e Automação

Professor: André Maurício Damasceno Ferreira Disciplina: Lógica e Controle Fuzzy

Reprodução do Artigo:

ZHAO, Z. Y.; TOMIZUKA, M. & ISAKA, S.

Fuzzy Gain Scheduling of PID Controllers *in* IEEE Transactions on Systems, Man and Cybernetics, v.23, n.5, pp. 1392-1398, September/October, 1993.

Luís Augusto Mesquita de Castro

Mauro Gomes da Silva

Belém – PA

Instituto Federal de Educação, Ciência e Tecnologia do Pará Campus Belém

Professor: André Maurício Damasceno Ferreira Graduação em Engenharia de Controle e Automação

Disciplina: Lógica e Controle Fuzzy

Turma: C310-9MH

Luís Augusto Mesquita de Castro Matrícula: 2010310005

Mauro Gomes da Silva Matrícula: 2010310021

Reprodução do Artigo:

ZHAO, Z. Y.; TOMIZUKA, M. & ISAKA, S.

Fuzzy Gain Scheduling of PID Controllers *in* IEEE Transactions on Systems, Man and Cybernetics, v.23, n.5 September/October, 1993.

Trabalho desenvolvido para a disciplina Lógica e Controle Fuzzy, do curso de Engenharia de Controle e Automação, sob orientação do professor André Maurício Damasceno Ferreira como parte integrante da nota correspondente à 1ª Avaliação.

Belém – PA

1. Resumo

Este trabalho reproduz com o auxílio da ferramenta computacional MATLAB a resposta ao degrau unitário de três sistemas dinâmicos distintos, quando esses são controlados via PID a parâmetros fixos (Kitamori, 1979; Ziegler & Nichols, 1942) e PID a parâmetros variáveis, onde os parâmetros do controlador são modificados conforme um sistema *fuzzy* (Zadeh,1965; Wang; 1996) que utiliza o sinal de erro e sua primeira derivada como variáveis de entrada para se obter como saída os parâmetros do controlador PID a cada instante de tempo.

Comparações são feitas entre o comportamento dos três sistemas controlados tanto por controlador PID convencional quanto por PID adaptativo, onde se comprova que um PID adaptativo com o universo de discurso das variáveis de entrada e saída do sistema *fuzzy* bem ajustado possui desempenho superior quando comparado a um PID convencional (Zhao *et al.*, 1993).

Além do PID fuzzy com ganho programado, este trabalho apresenta mais duas opções de PIDs adaptativos utilizando sistemas fuzzy para comparação de desempenho com PID convencional, a primeira opção é um PD fuzzy com controle integral com ganho fuzzy e a segunda opção é um PD fuzzy em conjunto com um PI fuzzy. Simulações realizadas comparam o desempenho de um PID convencional proposto para os três sistemas existentes com o desempenho obtido por meio das duas abordagens usando sistemas fuzzy, avaliando-se tempo de acomodação, sobressinal e esforço de controle para cada configuração de controlador mais processo.

2. Introdução

O controlador mais usado em processos industriais é o controlador PID (Proporcional Integral Derivativo), pois possui uma estrutura simples e um desempenho robusto para uma ampla faixa de sistemas dinâmicos presentes na indústria. O projeto desse controlador exige somente a especificação de três parâmetros: o ganho proporcional K_p , a constante de tempo integral T_i e a constante de tempo derivativo T_d . Todavia, a otimização da seleção de tais parâmetros ainda é objeto de estudo e desenvolvimento de métodos para redução de tempo gasto para essa tarefa (Kuo, 1987; Takahashi *et al.*, 1970).

O artigo reproduzido neste trabalho propõe o uso de um sistema *fuzzy* para encontrar os parâmetros ótimos do controlador PID a cada instante de tempo k, onde o sistema *fuzzy* possui como entrada o sinal de erro e(k) e a sua primeira diferença $\Delta e(k)$, essas informações são tratadas pelo sistema, tendo três variáveis como saída: K'_p , K'_d e α . Essas variáveis de saída são convertidas em K_p , K_i e K_d a cada instante de tempo k, levando a obtenção de um PID a parâmetros variáveis.

Resumidamente, o sistema *fuzzy* utiliza descrições linguísticas de especialistas humanos no controle de um processo e as representa como regras ou relações *fuzzy*. Esta base de conhecimento é usada por um mecanismo de inferência, em conjunto com algum conhecimento dos estados do processo (variáveis medidas do processo), a fim de determinar as ações de controle (Zhao *et al.*, 1993). No artigo, um melhor desempenho é alcançado com o uso do sistema *fuzzy* para determinar os parâmetros do controlador PID em comparação com um PID a parâmetros fixos.

3. Controlador PID convencional

A função de transferência de um controlador PID é mostrada na Equação 1:

$$G_c(s) = K_p + K_i/s + K_d s \tag{1}$$

Onde, K_p , K_i e K_d são os ganhos proporcional, integral e derivativo, respectivamente. Outra forma equivalente e útil do controlador PID é dada pela Equação 2 (Dorf, 2001; Ogata, 1998):

$$G_c(s) = K_n(1 + 1/(T_i s) + T_d s)$$
 (2)

Onde, T_i e T_d são as constantes de tempo integral e derivativo, respectivamente, sendo $T_i = K_p/K_i$ e $T_d = K_d/K_p$. A expressão equivalente em tempo discreto para o controlador PID utilizado neste trabalho é dada por:

$$u(k) = K_p e(k) + K_i T_s \sum_{i=1}^n e(i) + \frac{K_d}{T_s} \Delta e(k)$$

Onde, u(k) é o sinal de controle, e(k) é o erro entre o sinal de referência e a saída do processo, T_s é o período de amostragem para o controlador, e $\Delta e(k) \triangleq e(k) - e(k-1)$. Encontrar parâmetros ótimos de um controlador PID para um dado processo não é trivial. Tanto um PID analógico quanto um PID digital necessitam que seus parâmetros sejam sintonizados para que o sistema apresente o comportamento desejado, satisfazendo as especificações de projeto.

O controlador PID convencional não apresenta um desempenho satisfatório no controle de sistemas com parâmetros variantes no tempo ou que possuam não linearidades. O artigo reproduzido nesse trabalho apresenta uma possível solução para resolver esse problema: a utilização de um controlador PID *fuzzy* com ganho programado, ou seja, os parâmetros do controlador PID são variáveis, sendo ajustados pelo sistema *fuzzy*.

4. Controlador PID Fuzzy com Ganho Programado

Na Figura 1 é mostrado o diagrama de blocos de um sistema de controle PID fuzzy com ganho programado. O método utilizado neste trabalho consiste em explorar a lógica fuzzy e o raciocínio aproximado para determinar os parâmetros do controlador.

Figura 1. Diagrama de blocos do controlador PID *fuzzy* com ganho programado.

Supõe-se que K_p , K_d estão em intervalos descritos por $\left[K_{p,min}, K_{p,max}\right]$ e $\left[K_{d,min}, K_{d,max}\right]$, respectivamente. Por conveniência, K_p e K_d são normalizados no intervalo entre $\left[0,1\right]$ por meio da seguinte transformação linear:

$$K'_{p} = (K_{p} - K_{p,min})/(K_{p,max} - K_{p,max})$$

$$K'_{d} = (K_{d} - K_{d,min})/(K_{d,max} - K_{d,max})$$
(3)

No esquema proposto, os parâmetros do controlador PID são determinados com base no erro atual e(k) e a sua primeira diferença $\Delta e(k)$. A constante de tempo de integral relaciona-se com a constante de tempo derivativo por meio da expressão:

$$T_i = \alpha T_d \tag{4}$$

Dessa forma, o ganho integral é obtido por:

$$K_i = K_p/(\alpha T_d) = K_p^2/(\alpha K_d) \tag{5}$$

Os parâmetros K_p' , K_d' e α , são determinados por um conjunto de regras *fuzzy* do tipo:

Se
$$e(k)$$
 é A_i e $\Delta e(k)$ é B_i , então K'_p é C_i , K'_d é D_i , e $\alpha = \alpha_i$

$$i = 1, 2, \cdots, m. \tag{6}$$

Onde A_i , B_i , C_i e D_i , são conjuntos *fuzzy* e α_i é uma constante. As funções de pertinência desses conjuntos *fuzzy* e(k) e $\Delta e(k)$ são mostradas na Figura 2.

Figura 2. Funções de pertinência para e(k) e $\Delta e(k)$.

Onde NS é Negativo Pequeno; NM é Negativo Médio; NB é Negativo Grande; ZO é Aproximadamente Zero; PS é Positivo Pequeno; PM é Positivo Médio e PB é Positivo Grande.

Os conjuntos fuzzy C_i e D_i são Grande e Pequeno, respectivamente. Esses dois conjuntos diferem dos conjuntos usados no artigo reproduzido e são caracterizados por funções de pertinência para K_p' e K_d' como mostrado na Figura 3.

Figura 3. Funções de pertinência para K'_p e K'_d .

Na Figura 4 são mostradas as funções de pertinência Singleton que a variável linguística α pode assumir:

Figura 4. Funções de pertinência *Singleton* para α .

Onde, S é Pequeno; MS é Médio Pequeno; M é Médio e B é Grande. Por exemplo, se α for dito pequeno, então α assumirá o valor igual a 2.

As regras *fuzzy* na Equação 6 podem ser obtidas da experiência do operador. Neste caso, as regras são obtidas do comportamento desejado para a saída do processo a uma entrada degrau. Na Figura 5, é mostrado um exemplo de comportamento desejado para um processo. No início, ou seja, em torno do ponto a deseja-se um sinal de controle grande, para gerar um tempo de subida rápido.

Figura 5. Resposta ao degrau de um processo

Para produzir um sinal de controle grande, o controlador PID deve ter um grande ganho proporcional, um grande ganho integral, e um pequeno ganho derivativo. Assim, o ganho proporcional K_p' pode ser representado por um conjunto fuzzy grande, e o ganho derivativo K_d' por um conjunto fuzzy pequeno. A ação integral é determinada em relação à ação derivativa, como mostrado na Equação 4. Sendo assim, α deve ser pequeno para que controlador PID possua uma forte ação integral. Portanto, a regra fuzzy ao redor do ponto α é:

Se
$$e(k)$$
 é PB e $\Delta e(k)$ é ZO, então K_p' é Grande, K_d' é Pequeno e $\alpha=2$

No ponto b da Figura 5, deseja-se um sinal de controle pequeno para evitar um grande sobressinal. Para o ponto ao redor de b o controlador PID deve ter um pequeno ganho proporcional, um grande ganho derivativo, e um pequeno ganho integral. Assim, será considerada a seguinte regra fuzzy para o ponto b:

Se e(k) é ZO e $\Delta e(k)$ é NB, então K_p' é Pequeno, K_d' é Grande e $\alpha=5$

Assim, um conjunto de regras fuzzy baseado na experiência humana pode ser usado para ajustar o ganho proporcional K_p' , o ganho derivativo K_d' e a constante α . As regras de ajuste para as variáveis K_p' , K_d' e α são dadas nas Tabelas 1, 2 e 3, respectivamente. A letra B simboliza um conjunto fuzzy Grande, assim como a letra S simboliza um conjunto fuzzy Pequeno.

Tabela 1. Regras fuzzy para o ajuste de K_p' .

	$\Delta e(k)$							
		NB	NM	NS	ZO	PS	PM	РВ
	NB	В	В	В	В	В	В	В
	NM	S	В	В	В	В	В	S
e(k)	NS	S	S	В	В	В	S	S
	ZO	S	S	S	В	S	S	S
	OS	S	S	В	В	В	S	S
	PM	S	В	В	В	В	В	S
	PB	В	В	В	В	В	В	В

Tabela 2. Regras fuzzy para o ajuste de K'_d .

$\Delta e(k)$								
		NB	NM	NS	ZO	PS	PM	PB
	NB	S	S	S	S	S	S	S
	NM	В	В	S	S	S	В	В
e(k)	NS	В	В	В	S	В	В	В
	ZO	В	В	В	В	В	В	В
	PS	В	В	В	S	В	В	В
	PM	В	В	S	S	S	В	В
	PB	S	S	S	S	S	S	S

Como as funções de pertinência para e(k) e $\Delta e(k)$ são funções triangulares igualmente espaçadas (Figura 2), é válida a seguinte relação:

$$\sum_{i=1}^{m} \mu_i = 1 \tag{7}$$

O processo de defuzzificação pode ser feito usando:

$$K'_{p} = \sum_{i=1}^{m} \mu_{i} K'_{p,i}$$
 (8a); $K'_{d} = \sum_{i=1}^{m} \mu_{i} K'_{d,i}$ (8b); $\alpha = \sum_{i=1}^{m} \mu_{i} \alpha_{i}$ (8c)

				$\Delta e(k)$				
		NB	NM	NS	ZO	PS	PM	PB
	NB	2	2	2	2	2	2	2
	NM	3	3	2	2	2	3	3
e(k)	NS	4	3	3	2	3	3	4
	ZO	5	4	3	3	3	4	5
	PS	4	3	3	2	3	3	4
	PM	3	3	2	2	2	3	3
	PB	2	2	2	2	2	2	2

Tabela 3. Regras *fuzzy* para o ajuste da constante α .

Na Figura 6, a implicação *fuzzy* é feita usando o produto algébrico entre as pertinências da parte antecedente da regra *fuzzy*, como mostrado na Equação 9:

Figura 6. Processo de implicação para uma regra fuzzy.

Onde, μ_{A_i} , é o valor da pertinência do conjunto $\mathit{fuzzy}\,A_i$, dado um valor de e(k), e μ_{B_i} , o valor da pertinência do conjunto $\mathit{fuzzy}\,B_i$ dado um valor de $\Delta e(k)$, sendo $K'_{p,i}$ o valor de K'_p correspondendo a μ_i . O valor de $K'_{d,i}$ é obtido da mesma forma. A partir dos valores obtidos do sistema fuzzy , utiliza-se as seguintes relações para determinar os parâmetros do controlador PID:

$$K_p = \left(K_{p,max} - K_{p,min}\right)K_p' + K_{p,min} \tag{10a}$$

$$K_d = \left(K_{d,max} - K_{d,min}\right)K_d' + K_{d,min} \tag{10b}$$

$$K_i = K_p^2/(\alpha K_d) \tag{10c}$$

No artigo reproduzido, a escolha dos limites do universo de discurso de K'_p e K'_d é calculada por meio das seguintes equações:

$$K_{p,min} = 0.32K_u;$$
 $K_{p,max} = 0.6K_u$ $K_{d,min} = 0.08K_uT_u;$ $K_{d,max} = 0.15K_uT_u$ (11)

Onde K_u e T_u são os valores do ganho crítico e do período crítico, respectivamente. Essas variáveis são determinadas levando cada sistema simulado neste trabalho ao seu respectivo limiar de estabilidade, ou seja, a saída medida da planta é uma oscilação sustentada. Nas seções seguintes todas as simulações se realizaram com período de amostragem $T_s = 0.01 \, s$ e sinal de controle limitado em um intervalo u = [-10.10].

5. Simulações PID Convencional e PID Fuzzy com Ganho Programado

Nesta seção serão apresentadas as simulações da resposta a uma entrada do tipo degrau unitário para os sistemas $G_1(s)$, $G_2(s)$ e $G_3(s)$, quando esses sistemas são controlados via PID convencional e PID *fuzzy* com ganho programado.

 Simulação para o sistema G₁(s): A função de transferência do sistema é dada por:

$$G_1(s) = \frac{e^{-0.5s}}{(s+1)^2} \tag{12a}$$

Na Figura 7 é mostrado o diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_1(s)$ mais controlador PID convencional sintonizado pelo método de Ziegler-Nichols ou Kitamori.

Figura 7. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_1(s)$.

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_1(s)$ mais controlador PID *fuzzy* com ganho programado é mostrado na Figura 8.

Figura 8. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_1(s)$.

Os parâmetros utilizados para sintonia do controlador PID convencional tanto pelo método de Ziegler-Nichols quanto pelo método de Kitamori são dados na Tabela 4 (Zhao *et al.*, 1993).

Processo	Controlador PID Ziegler-Nichols	Controlador PID Kitamori
	$K_p = 2,808$	$K_p = 2,212$

 $T_i = 1,640$ $T_d = 0,410$

 $G_1(s)$

Tabela 4. Parâmetros para sintonia do controlador PID.

Os limites do universo de discurso declarados na *Fuzzy Logic Toolbox* do MATLAB para as variáveis de entrada e saída do controlador PID *fuzzy* com ganho programado para comparação com o controlador ajustado por métodos clássicos são mostrados na Tabela 5.

Tabela 5. Parâmetros para sintonia do controlador PID adaptativo.

Processo	Limites do Universo de Entrada	Limites do Universo de Saída
	e(k) = [-0.5; 0.5]	$K'_p = [0,1]$
$G_1(s)$	$\Delta e(k) = [-0.005; 0.005]$	$K'_d = [0,1]$
	-	$\alpha = [1,6]$

Na Figura 9 é mostrada a resposta a uma entrada do tipo degrau unitário para o sistema de segunda ordem $G_1(s)$ quando este é controlado por controlador PID convencional sintonizado por dois métodos clássicos de ajuste dos parâmetros e quando o mesmo é controlado por controlador PID *fuzzy* com ganho programado.

 $T_i = 2,039$ $T_d = 0,519$

Figura 9. Resposta ao degrau de $G_1(s)$ para diferentes controladores.

A evolução temporal dos parâmetros do controlador PID *fuzzy* com ganho programado é mostrada na Figura 10.

Figura 10. Evolução dos parâmetros do controlador PID *fuzzy* com ganho programado para $G_1(s)$.

 Simulação para o sistema G₂(s): A função de transferência do sistema é dada por:

$$G_2(s) = \frac{4,228}{(s+0.5)(s^2+1.64s+8.456)}$$
(12b)

Na Figura 11 é mostrado o diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_2(s)$ mais controlador PID convencional sintonizado pelo método de Ziegler-Nichols ou Kitamori.

Figura 11. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_2(s)$.

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_2(s)$ mais controlador PID *fuzzy* com ganho programado é mostrado na Figura 12.

Figura 12. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_2(s)$.

Os parâmetros utilizados para sintonia do controlador PID convencional pelo método de Ziegler-Nichols são dados na Tabela 6 (Zhao *et al.*, 1993). A sintonia pelo método de Kitamori não é realizada no artigo reproduzido para a planta $G_2(s)$.

i abela 6.	Parametros	para sintonia	do controlador PID.

Processo	Controlador PID Ziegler-Nichols	Controlador PID Kitamori
	$K_p = 2,190$	-
$G_2(s)$	$T_i = 1,030$	-
	$T_d = 0.258$	-

Os limites do universo de discurso declarados na *Fuzzy Logic Toolbox* do MATLAB para as variáveis de entrada e saída do controlador PID *fuzzy* com ganho

programado para comparação com o controlador ajustado pelo método clássico é mostrado na Tabela 7.

Tabela 7. Parâmetros p	oara sintonia	do controlador I	PID adaptativo.
rabbia i i arambirbi b	Jana Onneonia	ac commonaci	aaaptati o

Processo	Limites do Universo de Entrada	Limites do Universo de Saída
	e(k) = [-0,1;0,1]	$K'_p = [0,1]$
$G_2(s)$	$\Delta e(k) = [-0.01; 0.01]$	$K'_d = [0,1]$
	-	$\alpha = [1,6]$

Na Figura 13 é mostrada a resposta a uma entrada do tipo degrau unitário para o sistema de terceira ordem $G_2(s)$ quando este é controlado por controlador PID convencional sintonizado pelo método de Ziegler-Nichols para ajuste dos parâmetros e quando o mesmo é controlado por controlador PID *fuzzy* com ganho programado.

Figura 13. Resposta ao degrau de $G_2(s)$ para diferentes controladores.

 Simulação para o sistema G₃(s): A função de transferência do sistema é dada por:

$$G_1(s) = \frac{27}{(s+1)(s+3)^3} \tag{12c}$$

Na Figura 14 é mostrado o diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_3(s)$ mais controlador PID convencional sintonizado pelo método de Ziegler-Nichols ou Kitamori.

Figura 14. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_3(s)$.

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_3(s)$ mais controlador PID *fuzzy* com ganho programado é mostrado na Figura 15.

Figura 15. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_3(s)$.

Os parâmetros utilizados para sintonia do controlador PID convencional tanto pelo método de Ziegler-Nichols quanto pelo método de Kitamori são dados na Tabela 8 (Zhao *et al.*, 1993).

Processo	Controlador PID Ziegler-Nichols	Controlador PID Kitamori
	$K_p = 3,072$	$K_p = 2,357$
$G_3(s)$	$T_i = 1,352$	$T_i = 1,649$
	$T_d = 0.338$	$T_d = 0.414$

Tabela 8. Parâmetros para sintonia do controlador PID.

Os limites do universo de discurso declarados na *Fuzzy Logic Toolbox* do MATLAB para as variáveis de entrada e saída do controlador PID *fuzzy* com ganho programado para comparação com o controlador ajustado por métodos clássicos são mostrados na Tabela 9.

Tabela 9. Parâmetros para sintonia do controlador PID adaptativo.

Processo	Limites do Universo de Entrada	Limites do Universo de Saída
	e(k) = [-0.5; 0.5]	$K'_p = [0,1]$
$G_3(s)$	$\Delta e(k) = [-0.005; 0.005]$	$K'_d = [0,1]$
	-	$\alpha = [1,6]$

Na Figura 16 é mostrada a resposta a uma entrada do tipo degrau unitário para o sistema de quarta ordem $G_3(s)$ quando este é controlado por controlador PID convencional sintonizado por dois métodos clássicos de ajuste dos parâmetros e quando o mesmo é controlado por controlador PID *fuzzy* com ganho programado.

Figura 16. Resposta ao degrau de $G_3(s)$ para diferentes controladores.

6. Simulações PID Convencional e PD Fuzzy com Controle Integral com Ganho Fuzzy

Nesta seção os três sistemas citados anteriormente (Equações 12a, 12b e 12c) são controlados via controlador PD *fuzzy* com controle integral com ganho *fuzzy*. Para efeito de comparação, o desempenho dos sistemas controlados por essa configuração é mostrado juntamente com o desempenho dos sistemas quando controlados por controlador PID clássico, sintonizado conforme Tabelas 4, 6 e 8.

Esta configuração possui para o controlador PD *fuzzy* a base de regras mostrada na Tabela 10, onde o sistema *fuzzy* utiliza e(k) e $\Delta e(k)$ como variáveis de entrada e a variável $u_{PD}(k)$ como saída. AZ significa *Almost Zero*.

Tabela 10. Base de regras para o controlador PD fuzzy.

	$\Delta e(k)$							
		NB	NM	NS	AZ	PS	PM	PB
	NB	NB	NB	NB	NM	NM	NS	AZ
	NM	NB	NB	NB	NM	NS	AZ	PS
e(k)	NS	NB	NM	NM	NS	AZ	PS	PM
	AZ	NB	NS	NS	AZ	PS	PM	PB
	PS	NM	NS	AZ	PS	PM	PB	PB
	PM	NS	AZ	PS	PM	PB	PB	PB
	PB	AZ	PS	PM	PM	PB	PB	PB

Na Tabela 11 é mostrada a base de regras para o ganho *fuzzy* utilizada nesta configuração.

Tabela 11. Base de regras para o ganho fuzzy.

e(k)	NB	NM	NS	AZ	os	PM	PB
K_{fuzzy}	PS	PM	PM	PB	PM	PM	PS

O sinal de controle é gerado por:

$$u(k) = u_{PD}(k) + K_{fuzzy} \sum e(k)$$

• Simulação para o sistema $G_1(s)$:

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_1(s)$ mais controlador PD fuzzy com controle integral com ganho fuzzy é mostrado na Figura 17.

Figura 17. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_1(s)$.

Os limites do universo de discurso declarados na *Fuzzy Logic Toolbox* do MATLAB para as variáveis de entrada e saída do controlador PD *fuzzy* com controle integral com ganho *fuzzy* para comparação com o controlador ajustado por métodos clássicos são mostrados nas Tabelas 12 e 13.

Tabela 12. Parâmetros para sintonia do controlador PD *fuzzy*.

Processo	Limites do Universo de Entrada	Limites do Universo de Saída	
$G_1(s)$	e(k) = [-1,1]	u — [4.4]	
$u_1(s)$	$\Delta e(k) = [-0.025; 0.025]$	$u_{PD} = [-4,4]$	

Tabela 13. Parâmetros para sintonia do ganho fuzzy.

	Processo	Limites do Universo de Entrada	Limites do Universo de Saída
_	$G_1(s)$	e(k) = [-0.5; 0.5]	$K_{fuzzy} = [0,1]$

Na Figura 18 é mostrada a resposta a uma entrada do tipo degrau unitário para o sistema de segunda ordem $G_1(s)$ quando este é controlado por controlador PID convencional sintonizado de acordo com a Tabela 4 e quando o mesmo é controlado por controlador PD *fuzzy* com controle integral com ganho *fuzzy*.

Figura 18. Resposta ao degrau de $G_1(s)$ para diferentes controladores.

Simulação para o sistema G₂(s):

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_2(s)$ mais controlador PD *fuzzy* com controle integral com ganho *fuzzy* é mostrado na Figura 19.

Figura 19. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_2(s)$.

Os limites do universo de discurso declarados na *Fuzzy Logic Toolbox* do MATLAB para as variáveis de entrada e saída do controlador PD *fuzzy* com controle integral com ganho *fuzzy* para comparação com o controlador ajustado por métodos clássicos são mostrados nas Tabelas 14 e 15.

Tabela 14. Parâmetros para sintonia do controlador PD fuzzy.

Processo	Limites do Universo de Entrada	Limites do Universo de Saída
$G_2(s)$	e(k) = [-1,1]	$u_{PD} = [-3,3]$
$u_2(s)$	$\Delta e(k) = [-0.02; 0.02]$	$u_{PD} = [-3,3]$

Tabela 15. Parâmetros para sintonia do ganho fuzzy.

Processo	Limites do Universo de Entrada	Limites do Universo de Saída
$G_2(s)$	e(k) = [-1,1]	$K_{fuzzy} = [0,1]$

Na Figura 20 é mostrada a resposta a uma entrada do tipo degrau unitário para o sistema de terceira ordem $G_2(s)$ quando este é controlado por controlador PID convencional sintonizado de acordo com a Tabela 6 e quando o mesmo é controlado por controlador PD *fuzzy* com controle integral com ganho *fuzzy*.

Figura 20. Resposta ao degrau de $G_2(s)$ para diferentes controladores.

• Simulação para o sistema *G*₃(*s*):

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_3(s)$ mais controlador PD *fuzzy* com controle integral com ganho *fuzzy* é mostrado na Figura 21.

Figura 21. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_3(s)$.

Os limites do universo de discurso declarados na *Fuzzy Logic Toolbox* do MATLAB para as variáveis de entrada e saída do controlador PD *fuzzy* com controle integral com ganho *fuzzy* para comparação com o controlador ajustado por métodos clássicos são mostrados nas Tabelas 16 e 17.

Tabela 16. Parâmetros para sintonia do controlador PD *fuzzy*.

Processo	Limites do Universo de Entrada	Limites do Universo de Saída
$C_{i}(a)$	e(k) = [-1,1]	a. — [4.4]
$G_3(s)$	$\Delta e(k) = [-0.025; 0.025]$	$u_{PD} = [-4,4]$

Tabela 17. Parâmetros para sintonia do ganho fuzzy.

Processo	Limites do Universo de Entrada	Limites do Universo de Saída
$G_3(s)$	e(k) = [-0.5; 0.5]	$K_{fuzzy} = [0,1]$

Na Figura 22 é mostrada a resposta a uma entrada do tipo degrau unitário para o sistema de terceira ordem $G_3(s)$ quando este é controlado por controlador PID convencional sintonizado de acordo com a Tabela 8 e quando o mesmo é controlado por controlador PD *fuzzy* com controle integral com ganho *fuzzy*.

Resposta ao degrau unitário para o sistema G₃(s) para diferentes controladores

1.4

1.2

PID sintonizado via Ziegier-Nichols
PID sintonizado via Kitamori
PID fuzzy com controle integral com ganho fuzzy

0.8

0.9

0.0

0.0

Tempo(s)

Figura 22. Resposta ao degrau de $G_3(s)$ para diferentes controladores.

7. Simulações PID Convencional e PD Fuzzy em conjunto com PI Fuzzy

Nesta seção os três sistemas usados no artigo reproduzido (Equações 12a, 12b e 12c) são controlados via controlador PD *fuzzy* em conjunto com PI *fuzzy*. O desempenho a uma entrada do tipo degrau unitário das plantas controladas por essa configuração é mostrado juntamente com o desempenho dos sistemas quando controlados por controlador PID clássico, sintonizado conforme os métodos de sintonia presentes nas Tabelas 4, 6 e 8.

Nesta configuração o controlador PI também é fuzzy, no entanto difere do controlador PD fuzzy, pois sua base de regras é unidimensional, usando somente a informação do erro atual e(k). As funções de pertinência para controlador PI fuzzy podem possuir a mesma estrutura apresentada para o controlador PD fuzzy, ou seja, funções triangulares igualmente espaçadas. Na Tabela 18 é mostrada a base de regras para o controlador PI fuzzy. A base de regras para o controlador PD fuzzy é a mesma empregada na seção anterior (Tabela 10). Os limites das funções de pertinência utilizadas para o controlador PI fuzzy devem ser menores que os limites utilizados para o controlador PD fuzzy.

Tabela 28. Base de regras para o controlador PI fuzzy.

e(k)	NB	NM	NS	AZ	os	PM	PB
u_{PI}	NB	NM	NS	AZ	OS	PM	PB

Dessa forma, o sinal de controle é gerado por:

$$u(k) = u_{PD}(k) + u_{PI}(k)$$

Nas Tabelas 18 e 19 são mostrados os limites do universo de discurso declarados na *Fuzzy Logic Toolbox* do MATLAB para as variáveis de entrada e saída do controlador PD *fuzzy* em conjunto com PI *fuzzy*. Todas as simulações apresentadas nesta seção do trabalho utilizam o mesmo universo de discurso.

Tabela 18. Parâmetros para sintonia do controlador PD *fuzzy*.

Processos	Limites do Universo de Entrada	Limites do Universo de Saída
$G_1(s), G_2(s)$ e	e(k) = [-1,1]	$u_{PD} = [-3,3]$
$G_3(s)$	$\Delta e(k) = [-0.02; 0.02]$	$\mu_{PD} = \begin{bmatrix} 3, 3 \end{bmatrix}$

Tabela 19. Parâmetros para o controlador PI fuzzy.

Processos	Limites do Universo de Entrada	Limites do Universo de Saída
$G_1(s), G_2(s)$ e	2(b) - [11]	
$G_3(s)$	e(k) = [-1,1]	$u_{PI} = [-0,008;0,008]$

Simulação para o sistema G₁(s):

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_1(s)$ mais controlador PD *fuzzy* em conjunto com PI *fuzzy* é mostrado na Figura 23.

Figura 23. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_1(s)$.

Na Figura 24 é mostrada a resposta a uma entrada do tipo degrau unitário para o sistema de segunda ordem $G_1(s)$ quando este é controlado por controlador PID convencional sintonizado de acordo com a Tabela 4 e quando o mesmo é controlado por controlador PD *fuzzy* em conjunto com PI *fuzzy*.

Figura 24. Resposta ao degrau de $G_1(s)$ para diferentes controladores.

• Simulação para o sistema $G_2(s)$:

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_2(s)$ mais controlador PD *fuzzy* em conjunto com PI *fuzzy* é mostrado na Figura 25.

Figura 25. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_2(s)$.

Na Figura 26 é mostrado a resposta a uma entrada do tipo degrau unitário para o sistema de terceira ordem $G_2(s)$ quando este é controlado por controlador PID convencional sintonizado de acordo com a Tabela 6 e quando o mesmo é controlado por controlador PD *fuzzy* em conjunto com PI *fuzzy*.

Figura 26. Resposta ao degrau de $G_2(s)$ para diferentes controladores.

Simulação para o sistema G₃(s):

O diagrama de blocos construído em ambiente MATLAB/SIMULINK para a planta $G_3(s)$ mais controlador PD *fuzzy* em conjunto com PI *fuzzy* é mostrado na Figura 27.

Figura 27. Diagrama de blocos em ambiente MATLAB/SIMULINK para $G_3(s)$.

Na Figura 28 é mostrado a resposta a uma entrada do tipo degrau unitário para o sistema de quarta ordem $G_3(s)$ quando este é controlado por controlador PID convencional sintonizado de acordo com a Tabela 8 e quando o mesmo é controlado por controlador PD *fuzzy* em conjunto com PI *fuzzy*.

Figura 28. Resposta ao degrau de $G_3(s)$ para diferentes controladores.

8. Conclusões e Resultados

Todas as configurações propostas de controle por meio da lógica *fuzzy* incluem o conhecimento de um especialista humano, sendo estas estratégias simuladas para três plantas de ordens distintas, onde o desempenho dos controladores *fuzzy* foi bastante satisfatório mediante comparação a um controlador PID a parâmetros fixos. Melhorias no desempenho dos sistemas podem ser alcançadas pelo ajuste fino dos universos de discurso de entrada e saída do sistema *fuzzy*, alterações na base de regras, bem como a avaliação da influência de diferentes funções de pertinências para o desempenho dos controladores *fuzzy*.

As Tabelas 19, 20 e 21 contém o resumo dos resultados obtidos das simulações para cada sistema mais controlador PID convencional e controladores fuzzy. O tempo de acomodação Ta e o sobressinal máximo percentual OS(%) são mostrados para cada sistema.

Tabela 19. Resumo dos resultados de simulação para $G_1(s)$.

Resultados de Simulação para o Sistema $G_1(s)$			
Controlador	Tempo de Acomodação	Sobressinal	
PID Ziegler-Nichols	$T_a = 3,71 s$	<i>OS</i> (%) = 39,1%	
PID Kitamori	$T_a = 4,64 \text{ s}$	OS(%) = 12,8%	
PID fuzzy	$T_a = 3.2 s$	OS(%) = 3.81%	
com ganho programado			
PD fuzzy com controle	$T_a = 4.02 s$	OS(%) = 10,6%	
integral com ganho fuzzy	$I_a = 4,023$	03(70) - 10,070	
PD fuzzy em conjunto com PI fuzzy	$T_a = 3,32 s$	<i>OS</i> (%) = 8,3%	

Tabela 20. Resumo dos resultados de simulação para $G_2(s)$.

Resultados de Simulação para o Sistema $G_2(s)$			
Controlador	Tempo de Acomodação	Sobressinal	
PID Ziegler-Nichols	$T_a = 4,11 s$	OS(%) = 17,7%	
PID Kitamori	-	-	
PID fuzzy	$T_a = 2,89 s$	OS(%) = 4,97%	
com ganho programado	$I_a = 2,073$	03(70) = 4,77 70	
PD fuzzy com controle	$T_a = 3.34 s$	OS(%) = 3.4%	
integral com ganho fuzzy	$r_a = 3.343$	05(70) = 5,470	
PD fuzzy em conjunto	$T_a = 2,99 s$	OS(%) = 1,11%	
com PI fuzzy	a = 2,773	00(70) = 1,1170	

Tabela 21. Resumo dos resultados de simulação para $G_3(s)$.

Resultados de Simulação para o Sistema $G_3(s)$		
Controlador	Tempo de Acomodação	Sobressinal
PID Ziegler-Nichols	$T_a = 3,85 s$	OS(%) = 39,5%
PID Kitamori	$T_a = 3,26 s$	OS(%) = 16,6%
PID <i>fuzzy</i> com ganho programado	$T_a = 4,53 \text{ s}$	OS(%) = 7,11%
PD <i>fuzzy</i> com controle integral com ganho <i>fuzzy</i>	$T_a = 3,51 s$	OS(%) = 1,9%
PD fuzzy em conjunto com PI fuzzy	$T_a = 2,03 s$	OS(%) = 0.04%

9. Referências Bibliográficas

DORF, R. C.; BISHOP, R. H. **Sistemas de Controle Modernos**. 8ª Edição, Livros Técnicos e Científicos, 2001.

KITAMORI, T. A Method of Control Systems Design Based upon Partial Knowledge about Controlled Processes *in* Trans. SICE Japan, vol. 15, pp. 549-555, 1979.

KUO, B. C. **Automatic Control Systems**. 5th Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

OGATA, K. **Engenharia de Controle Moderno**. 3ª Edição, Livros Técnicos e Científicos, 1998.

TAKAHASHI, Y.; RABINS, M. J. & AUSLANDER, D. M. Control and Dynamic Systems. Menlo Park, NJ: Addison-Wesley, 1970.

WANG, L. X. A Course in Fuzzy Systems and Control. Prentice-Hall, 1996.

ZADEH, L. A. **Fuzzy Sets** *in* Information and Control, vol. 8, n. 3, pp. 338-353, June, 1965.

ZHAO, Z. Y.; TOMIZUKA, M. & ISAKA, S. Fuzzy Gain Scheduling of PID Controllers in IEEE Transactions on Systems, Man and Cybernetics, v.23, n.5 pp. 1392-1398, September/October, 1993.

ZIEGLER, J. G. & NICHOLS, N. B. **Optimum Settings for Automatic Controllers** *in* Trans. ASME, vol. 64, pp. 759-768, 1942.