TCP三次握手和四次挥手

三次握手

目的是**建立可靠的通信信道**,让双方确认自己与对方的发送与接收是正常的。

客户端

服务器

第一次握手: Client 什么都不能确认; Server 确认了对方发送正常,自己接收正常

第二次握手: Client 收到发回的SYN确认了: 自己发送、接收正常, 对方发送、接收正常; Server 确认了: 对方发送正常,自己接收正常 第三次握手: Client 确认了: 自己发送、接收正常,对方发送、接收 正常; Server 收到发回的ACK确认了: 自己发送、接收正常,对方发 送、接收正常

四次挥手 客户端 服务器

- 客户端-发送一个 FIN , 关闭客户端到服务器的数据传送。
- 服务器-发回一 个 ACK,确认序号为收到的序号加1。和 SYN 一样,一个 FIN 将占用一个序号。
- 服务器-发送一个FIN,关闭与客户端的连接。
- 客户端-发回 ACK 报文确认,并将确认序号设置为收到序号加1。

任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了TCP连接。

TCP, UDP 协议的区别

类型	特点			性能		应用场景	***
	是否面向连接	传输可靠性	传输形式	传输效率	所需资源	应用功意	首部字节
TCP	面向连接	可靠	字节流	慢	多	要求通信数据可需 (如文件传输、邮件传输)	20-60
UDP	无连接	不可靠	数据报文段	快	少	要求通信速度高 (如域名转换)	8个字节 (由4个字段组成)

UDP 在传送数据之前不需要先建立连接,远地主机在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 确是一种最有

效的工作方式(一般用于即时通信),比如: QQ 语音、 QQ 视频 、直播等等 TCP 一般用于文件传输、发送和接收邮件、远程登录等场景。

在浏览器中输入url地址 ->> 显示主页的过程

过程	使用的协议			
1. 浏览器查找域名的IP地址 (DNS查找过程:浏览器缓存、路由器缓存、DNS 缓存)	DNS:获取域名对应IP			
2. 浏览器向web服务器发送一个HTTP请求 (cookies会随着请求发送给服务器)				
3. 服务器处理请求 (请求 处理请求 & 它的参数、cookies、生成一个HTML 响应)	 TCP:与服务器建立TCP连接 IP:建立TCP协议时,需要发送数据,发送数据在网络层使用IP协议 OPSF:IP数据包在路由器之间,路由选择使用OPSF协议 ARP:路由器在与服务器通信时,需要将ip地址转换为MAC地址,需要使用ARP协议 HTTP:在TCP建立完成后,使用HTTP协议 			
4. 服务器发回一个HTML响应				
5. 浏览器开始显示HTML	访问网页			

总体来说分为以下几个过程:

- 1. DNS解析
- 2. TCP连接
- 3. 发送HTTP请求
- 4. 服务器处理请求并返回HTTP报文
- 5. 浏览器解析渲染页面
- 6. 连接结束

状态码

	类别	原因短语		
1XX	Informational (信息性状态码)	接收的请求正在处理		
2XX	Success (成功状态码)	请求正常处理完毕		
3XX	Redirection (重定向状态码)	需要进行附加操作以完成请求		
4XX	Client Error(客户端错误状态码)	服务器无法处理请求		
5XX	Server Error(服务器错误状态码)	服务器处理请求出错		