Линейные оболочки

V - линейное пространство над $\mathbb{K}, S \subset V$ - подмножество (не обязательно конечное). Если конечное: $a_1, \ldots, a_n \in S$, то взяли бы $\lambda_1 a_1 + \ldots + \lambda_n a_n$ - линейная комбинация.

Опр: 1. Динейное комбинацией элементов из S называется конечная сумма вида $\lambda_1 a_1 + \ldots + \lambda_n a_n$, где $\lambda_1, \ldots, \lambda_n \in \mathbb{K}, a_1, \ldots, a_n \in S$.

Множество индексов I \Rightarrow тогда можно брать сумму $\sum_{i \in I} \lambda_i a_i$. Эта сумма определена, если все λ_i кроме конечного числа равны 0.

Опр: 2. Динейной оболочкой $\langle S \rangle$ множества $S \subset V$ называется множество всех линейных комбинаций элементов из S.

Лемма 1. $\langle S \rangle$ является линейным подпространством в V (доказательство через суммы вида $\sum_{i \in I} \lambda_i a_i$).

Опр: 3. S называется линейно независимым, если из равенства любой линейной комбинации элементов из $S=0 \Rightarrow$ все коэффициенты этой линейной комбинации равны 0:

S - линейно независимо, если $\lambda_1 a_1 + \ldots + \lambda_n a_n = 0$, где $a_1, \ldots, a_n \in S \Rightarrow \lambda_1 = \ldots = \lambda_n = 0$.

S - линейно зависимо, если $\exists a_1, \ldots, a_n \in S, \lambda_1, \ldots, \lambda_n \in \mathbb{K}$, не все равные $0 \colon \lambda_1 a_1 + \ldots + \lambda_n a_n = 0$.

Если $S \subset S'$ и S - линейно зависимо, то S' - линейно зависим.

Если $S\subset S'$ и S' - линейно независимо, то S - линейно независимо.

Лемма 2. Если $\{a_1,\ldots,a_n\}$ - линейно независимы, а $\{a_1,\ldots,a_n,a_{n+1}\}$ - линейно зависимы, то a_{n+1} - есть линейная комбинация a_1,\ldots,a_n .

Лемма 3. Пусть $\{a_1, \ldots, a_n\}$ и $\{b_1, \ldots, b_m\}$ - линейно независимы и пусть $b_1, \ldots, b_m \in \langle a_1, \ldots, a_n \rangle$, тогда $m \leq n$.

□ Рассмотрим систему

$$\begin{cases} b_1 = \alpha_{11}a_1 + \dots + \alpha_{1n}a_n \\ \vdots & \vdots & \ddots & \vdots \\ b_m = \alpha_{m1}a_1 + \dots + \alpha_{mn}a_n \end{cases}$$

 b_1,\dots,b_m - линейно независимы $\Rightarrow \lambda_1b_1+\dots+\lambda_mb_m=0 \Rightarrow \lambda_1=\dots=\lambda_m=0 \Rightarrow$

$$0 = \lambda_1(\alpha_{11}a_1 + \ldots + \alpha_{1n}a_n) + \ldots + \lambda_m(\alpha_{m1}a_1 + \ldots + \alpha_{mn}a_n) =$$

$$= (\lambda_1 \alpha_{11} + \ldots + \lambda_m \alpha_{m1}) a_1 + (\lambda_1 \alpha_{12} + \ldots + \lambda_m \alpha_{m2}) a_2 + \ldots + (\lambda_1 \alpha_{1n} + \ldots + \lambda_m \alpha_{mn}) a_n = 0$$

Поскольку a_1, \ldots, a_n - линейно независимы, то получим, что все коэффициенты при $a_i = 0 \Rightarrow$ получим следующую однородную СЛУ на $\lambda_1, \ldots, \lambda_m$:

$$\begin{cases} \lambda_1 \alpha_{11} + \dots + \lambda_m \alpha_{m1} = 0 \\ \vdots & \ddots & \vdots \\ \lambda_1 \alpha_{1n} + \dots + \lambda_m \alpha_{mn} = 0 \end{cases}$$

От противного: пусть m > n (т.е. число неизвестных > числа уравнений) $\Rightarrow \exists$ ненулевое решение $(\lambda_1, \ldots, \lambda_m) \Rightarrow$ противоречие с $\lambda_1 = \ldots = \lambda_m = 0 \Rightarrow m \leq n$.

Размерность линейных пространств

Процесс определения размерности линейного пространства

- (1) В V есть ненулевой элемент: нет \Rightarrow размерность V = 0, да \Rightarrow есть вектор a_1 ;
- (2) В V есть a_2 : a_1, a_2 линейно независимые: нет \Rightarrow размерность V = 1, да \Rightarrow есть a_2 ;
- (3) В V есть a_3 : a_1, a_2, a_3 линейно независимые: нет \Rightarrow размерность V=2, да \Rightarrow есть a_3 ;

Есть два случая:

- 1) Процесс заканчивается на n-ом шаге, тогда размерность = n;
- 2) Процесс не заканчивается, тогда размерность $V = \infty$;

Обозначение: размерность пространства - $\dim V$.

Проверим независимость процесса от выбора a_1, a_2, a_3, \ldots .

 \square Пусть есть два выбора $a_1, a_2, \ldots; b_1, b_2, \ldots$; если оба бесконечны, то не важно как выбираем.

<u>Случай 1</u>: a_1, \ldots, a_n - заканчивается на шаге $n; b_1, b_2, \ldots$ - бесконечный. $b_1, b_2, \ldots \in \langle a_1, \ldots, a_n \rangle \Rightarrow$ выберем конечное $n+1: b_1, \ldots, b_{n+1} \Rightarrow$ по лемме $n+1 \leq n \Rightarrow$ противоречие.

<u>Случай 2</u>: a_1, \ldots, a_n ; b_1, \ldots, b_m - разный набор элементов и пусть m > n (и симметричная ситуация n > m) пусть такое реализовалось \Rightarrow процесс закончится на шаге $n \Rightarrow \nexists$ элемента a_{n+1} , который вместе с предыдущими элементами был бы независимым $\Rightarrow \forall b \in V, b$ - линейная комбинация $a_1, \ldots, a_n \Rightarrow b_1, \ldots, b_m \in \langle a_1, \ldots, a_n \rangle \Rightarrow$ по лемме $m \leq n \Rightarrow$ противоречие с m > n.

Пример: Линейное пространство строк длины $k, (a_1, \ldots, a_k)$: k штук $\begin{cases} (1, 0, \ldots, 0) \\ (0, 1, \ldots, 0) \\ \vdots \\ (0, 0, \ldots, 1) \end{cases} \Rightarrow \dim V = k.$

Пример: Пространство бесконечных последовательностей: $\dim V = \infty$.

Пример: Пространство многочленов степени $\leq n$. dim V = n+1: $1, x, x^2, \dots, x^n$. Если бы были линейно зависимыми, то $\exists \lambda_i \neq 0$: $\lambda_0 + \lambda_1 x + \dots + \lambda_n x^n = 0$, но такого не может быть \Rightarrow линейно независимы: берем $x = 0 \Rightarrow \lambda_0 = 0$, берем производную $\Rightarrow x = 0 \Rightarrow \lambda_1 = 0$ и так далее.

Опр: 4. Множество элементов в линейном пространстве $S \subset V$ назовем максимальным, если любой элемент $a \in V$ также принадлежит $\langle S \rangle$.

Лемма 4. Если $\dim V$ конечна, то в V, \exists максимальное линейно независимое подмножество.

□ По алгоритму поиска размерности линейного пространства.

Опр: 5. Максимальное линейно независимое подмножество называется базисом.

Пример: V_1 - пространство всех бесконечных последовательностей. V_2 - пространство всех финитных бесконечных последовательностей (финитная \Leftrightarrow с какого-то момента начинаются только 0).

 $S = \{(1,0,0,0,\dots), (0,1,0,0,\dots), (0,0,1,0,\dots), (0,0,0,1,\dots),\dots\}$ - базис в V_1 , но не базис в V_2 . $(1,1,1,1,\dots) \in V_1$ - не может быть представлена в виде конечной линейной комбинации из S.

Далее считаем, что все линейные пространства будут конечномерными, $\dim V \neq \infty$.

Лемма 5. Пусть $L \subset V$ - линейное подпространство, e_1, \ldots, e_k - базис в L, dim V = n. Тогда $k \leq n$ и $\exists e_{k+1}, \ldots, e_n$ такие, что e_1, \ldots, e_n - базис в V (т.е. базис подпространства можно дополнить до базиса объемлющего пространства).

 \square Если n < k, то $e_1, \ldots, e_k \in L \subset V \Rightarrow$ противоречие $\Rightarrow n \ge k$.

Ищем элемент с номером k+1: линейно независим с предыдущими $e_1, \ldots, e_k, e_{k+1}$ - линейно независимы. Если такого нет, то $\forall a \in V \Rightarrow a \in L$. Если нашли \Rightarrow ищем дальше до тех пор, пока не сможем найти следующий элемент $\Rightarrow \ldots \Rightarrow$ дошли до размерности пространства V.

Следствие 1. Если $L \subset V$ и dim $L = \dim V$, то L = V.

 \square (От противного): Пусть $L \neq V \Rightarrow \exists a \in V : a \notin L \Rightarrow e_1, \ldots, e_k$ - базис в L. Добавим к нему $a \Rightarrow e_1, \ldots, e_k, a$ - линейно независимы. Иначе $a \in \langle e_1, \ldots, e_k \rangle \Rightarrow \dim V > \dim L \Rightarrow$ противоречие.

Утв. 1. Пусть e_1, \ldots, e_n - базис в $V \Rightarrow \forall x \in V, \exists x_1, \ldots, x_n \in \mathbb{K} : x = x_1 e_1 + \ldots + x_n e_n$, причем данное выражение - единственно.

 \square Пусть $x = x_1e_1 + \ldots + x_ne_n$, $x = y_1e_1 + \ldots + y_ne_n \Rightarrow 0 = (x_1 - y_1)e_1 + \ldots + (x_n - y_n)e_n \Rightarrow$ так как e_1, \ldots, e_n - линейно независимы $\Rightarrow x_i - y_i = 0 \Rightarrow x_i = y_i$.

Опр: 6. $\forall x \in V, e_1, \dots, e_n$ - базис в $V, \exists! x_1, \dots, x_n \in \mathbb{K} : x = x_1e_1 + \dots + x_ne_n$, которые называются координатами элемента x в базисе e_1, \dots, e_n .

Пусть e_1, \dots, e_n ; $\widetilde{e}_1, \dots, \widetilde{e}_n$ - базисы в V. Выразим $\begin{cases} \widetilde{e}_1 &= c_{11}e_1 + \dots + c_{n1}e_n \\ \vdots &\vdots &\vdots &\Rightarrow \text{получим матрицу} \\ \widetilde{e}_n &= c_{1n}e_1 + \dots + c_{nn}e_n \end{cases}$

$$(\widetilde{e}_1 \ldots \widetilde{e}_n) = (e_1 \ldots e_n) \cdot \begin{pmatrix} c_{11} \ldots c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} \ldots c_{nn} \end{pmatrix}, C = \begin{pmatrix} c_{11} \ldots c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} \ldots c_{nn} \end{pmatrix}$$

C - матрица перехода к новым координатам (C - невырожденная, $|C| \neq 0$).

 $x \in V \Rightarrow x = x_1e_1 + \ldots + x_ne_n = \widetilde{x}_1\widetilde{e}_1 + \ldots + \widetilde{x}_n\widetilde{e}_n = \widetilde{x}_1(c_{11}e_1 + \ldots + c_{n1}e_n) + \ldots + \widetilde{x}_n(c_{1n}e_1 + \ldots + c_{nn}e_n) = (\widetilde{x}_1c_{11} + \ldots + \widetilde{x}_nc_{1n})e_1 + \ldots + (\widetilde{x}_1c_{n1} + \ldots + \widetilde{x}_nc_{nn})e_n \Rightarrow$ коэффициенты при векторах e_1, \ldots, e_n - совпадают, тогда:

$$\begin{cases} x_1 &=& \widetilde{x}_1 c_{11} + \ldots + \widetilde{x}_n c_{1n} \\ \vdots &\vdots &\vdots \\ x_n &=& \widetilde{x}_1 c_{n1} + \ldots + \widetilde{x}_n c_{nn} \end{cases} \Rightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_{11} & \ldots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \ldots & c_{nn} \end{pmatrix} \begin{pmatrix} \widetilde{x}_1 \\ \vdots \\ \widetilde{x}_n \end{pmatrix} = C \begin{pmatrix} \widetilde{x}_1 \\ \vdots \\ \widetilde{x}_n \end{pmatrix}$$

Обозначение: $x^i y_i = \sum_{i=1}^n x^i y_i = x^1 y_1 + \ldots + x^n y_n$, один индекс верхний, другой нижний \Rightarrow будет подразумеваться суммирование.