Colle 0 Régulateur – Corrigé

Un système matériel est constitué de 5 solides reliés au bâti (0). Les solides (1), (2), (3) et (5) sont des barres sans épaisseur, articulées par des pivots en O, A ou B de manière à demeurer dans un même plan noté $(\overrightarrow{x_1}, \overrightarrow{y_1})$. Cet ensemble est donc mobile en rotation autour de $\overrightarrow{z_1}$. On repère sa position angulaire par le paramètre ψ .

Au bâti (0), on associé le repère fixe \Re_0 .

À chaque S_i on associe une base $\mathfrak{B}_i\left(\overrightarrow{x_i},\overrightarrow{y_i},\overrightarrow{z_i}\right)$. Les repère \mathfrak{R}_i sont d'origine O ou A selon le cas.

Les rotations internes sont définies par θ_2 autour de $(O, \overrightarrow{y_1})$ et θ_3 autour de $(A, \overrightarrow{y_1})$.

Les barres (2) et (3) sont identiques, de longueur 2a et de masse $m_2 = m_3 = m$.

Les barres (1) et (5) ont une masse m_i et des longueurs ℓ_i . (4) est un volant d'inertie de masse M qui fait l'objet d'une liaison pivot d'axe $\left(G, \overrightarrow{x_3}\right)$ avec la barre (3). Un repère \mathcal{R}_4 est lié à ce volant dont on définit sa position par le paramètre angulaire φ .

On donne le paramétrage suivant.

Question 1 Proposer une matrice d'inertie pour chacun des solides.

Question 2 Déterminer les torseurs cinétiques suivants : $\{\mathscr{C}(1/0)\}_{O}$, $\{\mathscr{C}(2/0)\}_{O}$.

Question 3 Déterminer les torseurs dynamiques suivants : $\{\mathfrak{D}(1/0)\}_O$, $\{\mathfrak{D}(2/0)\}_O$. En déduire $\{\mathfrak{D}(1\cup 2/0)\}_O$

Correction

(1) est une tige d'axe $\overrightarrow{z_0}$ et de rayon négli $\overrightarrow{0}$. Au final :

geable. On a donc
$$I_O(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\mathfrak{R}_1} \qquad \qquad \left\{ \mathscr{C}(1/0) \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{0} \end{array} \right\}_O$$

C1-05

$$\begin{array}{lll} \textbf{Détermination de} \left\{\mathscr{C}\left(2/0\right)\right\}_O & \overline{\Omega\left(2/0\right)} &= -a\overline{z_2} \wedge \left(\psi\overline{z_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\sin\theta\overline{y_1} + \theta\overline{x_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\sin\theta\overline{y_1} + \theta\overline{x_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\sin\theta\overline{y_1} + \theta\overline{x_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\sin\theta\overline{y_1} + \theta\overline{x_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\sin\theta\overline{y_1} + \theta\overline{x_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\sin\theta\overline{y_1} + \theta\overline{x_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\psi\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\psi\sin\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= \\ a \left(\theta\cos\theta\overline{y_1} + \theta\overline{y_2}\right) &= a \left(\theta\cos\theta\overline{y_1} + \theta\overline$$

Question 4 Déterminer les torseur dynamique $\{\mathfrak{D}(4/0)\}_{G}$.

Correction

Question 5 Déterminer les torseur dynamique $\{\mathfrak{D} (1 \cup 2 \cup 3 \cup 4 \cup 5/0)\}_{O}$.

Correction

Question 6 Calculer l'énergie cinétique de l'ensemble du système dans son mouvement par rapport au bâti.

Correction