WHAT IS CLAIMED IS:

1	1. A multicolor display comprising
2	a substrate; and
3	at least one multicolor generation site coupled to said substrate, each of
4	said at least one multicolor generation sites comprised of:
5	at least two light emitting regions proximate to one another;
6	at least one wavelength conversion layer applied to at least one of
7	said at least two light emitting regions, wherein said at least two light emitting
8	regions in combination with said at least one wavelength conversion layer emit at
9	least two different colors; and
10	an opaque material interposed between said at least two light
11	emitting regions, said opaque material preventing cross-talk between said at least
12	two light emitting regions.
1	2. A multicolor display comprising
2	a substrate; and
3	a multicolor generation site grown on said substrate comprising:
4	at least two LEDs proximate to one another;
5	a first wavelength conversion layer applied to a light emitting
6	surface of a first of said at least two LEDs, wherein said at least two LEDs in
7	combination with said first wavelength conversion layer emit at least two different
8	colors; and
9	an opaque material interposed between said at least two LEDs, said
10	opaque material preventing cross-talk between said at least two LEDs.
10	opaque material preventing cross tank between said at least two 2225.
1	3. The multicolor display of claim 2, wherein said at least two LEDs
2	are comprised of three individual LEDs proximate to one another.
1	4. The multicolor display of claim 3, further comprised of a second
2	wavelength conversion layer applied to a light emitting surface of a second of said three
3	individual LEDs, wherein said three individual LEDs in combination with said first and
4	second wavelength conversion layers emit three different colors.

1	5. The multicolor display of claim 2, wherein said at least two LEDs
2	emit light at a wavelength in the range of wavelengths between 4,000 and 4,912
3	Angstroms.
1	6. A multicolor display comprising
2	a substrate; and
3	a plurality of multicolor generation sites grown on said substrate, each of
4	said plurality of multicolor generation sites comprised of:
5	at least two LEDs proximate to one another;
	a wavelength conversion layer deposited on a light emitting surface
6 7	of a first of said at least two LEDs, wherein said at least two LEDs in combination
8	with said wavelength conversion layer emit at least two different colors; and
9	an opaque material interposed between said at least two LEDs, said
	opaque material preventing cross-talk between said at least two LEDs.
10	opaque material preventing cross-talk between said at least two LEDs.
1	7. The multicolor display of claim 6, further comprising an index
2	matching layer interposed between said wavelength conversion layer and said light
3	emitting surface of said first LED.
1	8. The multicolor display of claim 6, further comprising a protective
2	layer deposited on an exterior surface of said wavelength conversion layer.
1	9. The multicolor display of claim 6, further comprising a protective
2	layer deposited on a light emitting surface of a second of said at least two LEDs.
1	10. The multicolor display of claim 6, wherein said substrate is
2	selected from the group consisting of sapphire, silicon carbide and gallium nitride.
1	11. The multicolor display of claim 6, wherein said at least two LEDs
2	emit light at a wavelength in the range of wavelengths between 4,000 and 4,912
3	Angstroms.
J	* ***Darr aa.
1	12. The multicolor display of claim 6, further comprising a cross-talk
2	minimization layer interposed between said substrate and said at least two LEDs.

1	13. The multicolor display of claim 12, wherein said cross-talk
2	minimization layer is comprised of a Bragg reflector.
1	14. The multicolor display of claim 12, wherein said cross-talk
2	minimization layer is comprised of a partially absorbing layer.
1	15. A multicolor display comprising
2	a substrate; and
3	a plurality of multicolor generation sites grown on said substrate, each of
4	said plurality of multicolor generation sites comprised of:
5	three LEDs proximate and immediately adjacent to one another;
6	a first wavelength conversion layer deposited on a light emitting
7	surface of a first of said three LEDs; and
8	a second wavelength conversion layer deposited on a light emitting
9	surface of a second of said three LEDs, wherein said three LEDs in combination
10	with said first and second wavelength conversion layers emit three different
11	wavelengths; and
12	an opaque material interposed between said three LEDs, said
13	opaque material preventing cross-talk between said three LEDs.
1	16. The multicolor display of claim 15, wherein said substrate is
2	selected from the group consisting of sapphire, silicon carbide and gallium nitride.
1	17. The multicolor display of claim 15, wherein said first and second
2	wavelength conversion layers are selected from the group of materials consisting of
3	phosphors and active polymers.
1	18. The multicolor display of claim 15, wherein said three LEDs emit
2	light at a wavelength in the range of wavelengths between 4,000 and 4,912 Angstroms.
1	19. The multicolor display of claim 15, wherein said first wavelength
2	conversion layer converts light in a first wavelength range of between 4,000 and 4,912
3	Angstroms to light in a second wavelength range of between 4,912 and 5,750 Angstroms.
1	20. The multicolor display of claim 15, wherein said second
2	wavelength conversion layer converts light in a first wavelength range of between 4,000

3	and 4,912 Angstroms to light in a second wavelength range of between 0,470 and 7,000
4	Angstroms.
1	21. The multicolor display of claim 15, further comprising:
2	a first index matching layer interposed between said first wavelength
3	conversion layer and said light emitting surface of said first LED; and
4	a second index matching layer interposed between said second wavelength
5	conversion layer and said light emitting surface of said second LED.
1	The multicolor display of claim 15, further comprising:
2	a first protective layer deposited on an exterior surface of said first
3	wavelength conversion layer; and
4	a second protective layer deposited on an exterior surface of said second
5	wavelength conversion layer.
1	23. The multicolor display of claim 22, wherein said first and second
2	protective layers are equivalent layers.
1	24. The multicolor display of claim 22, further comprising a third
2	protective layer deposited on a light emitting surface of a third of said three LEDs.
1	25. The multicolor display of claim 15, further comprising a plurality
2	of channels within said substrate, said plurality of channels separating adjacent LEDs of
3	said three LEDs, wherein said opaque material is deposited within said plurality of channels.
•	
1	26. The multicolor display of claim 15, further comprising a cross-talk
2	minimization layer interposed between said substrate and said at least two LEDs.
1	27. The multicolor display of claim 26, wherein said cross-talk
2	minimization layer is comprised of a Bragg reflector.
1	28. The multicolor display of claim 26, wherein said cross-talk
2	minimization layer is comprised of a partially absorbing layer.