8 Dérivabilité et convexité

I- Dérivée en un point

1 - Nombre dérivé

Définition 8.1 – Soit f une fonction définie sur intervalle I et soit $x_0 \in I$. La fonction f est dite **dérivable en** x_0 si le taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie quand x tend vers x_0 . Cette limite est alors appelée **nombre dérivé** de f en x_0 et est notée $f'(x_0)$.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Exemple 8.2 -

- La fonction f définie sur **R** par $f(x) = x^2$ est dérivable en 1.
- Plus généralement, la fonction f est dérivable en tout $x_0 \in \mathbf{R}$.
- La fonction f définie sur \mathbf{R}^* par $f(x) = \frac{1}{x}$ est dérivable en tout $x_0 \in \mathbf{R}^*$.

Remarque 8.3 -

• En posant $h = x - x_0$, et sous réserve d'existence, on a également

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

• En pratique, on utilise la définition seulement pour montrer la dérivabilité aux "points à problèmes". En dehors de ces points, on justifie la dérivabilité à l'aide des propriétés de la Section II.

2 - Interprétation géométrique

Soit f une fonction définie sur un intervalle I et soit $x_0 \in I$. Notons M_0 le point de coordonnées $(x_0, f(x_0))$ et M le point de coordonnées (x, f(x)) pour $x \in I$. Le taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ correspond au coefficient directeur de la droite (MM_0) .

- Si f est dérivable en x_0 , alors ce coefficient directeur tend vers $f'(x_0)$ lorsque x tend vers x_0 . Par ailleurs, la droite (M_0M) tend vers une position limite qui est la tangente à la courbe représentative de f au point x_0 . Le nombre dérivé $f'(x_0)$ est alors le coefficient directeur de la tangente à la courbe f au point M_0 .
- Si la limite du taux d'accroissement est infinie, alors la courbe représentative de f possède en x₀ une tangente verticale d'équation x = x₀.

On résume cela dans la proposition suivante.

Proposition 8.4

Soit f une fonction définie sur un intervalle I et soit $x_0 \in I$.

• Si f est dérivable en x_0 , alors $f'(x_0)$ est le coefficient directeur de la tangente à la courbe représentative \mathscr{C}_f de f au point d'abscisse x_0 . L'équation de cette tangente est

$$y = f'(x_0)(x - x_0) + f(x_0).$$

• Si $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$, alors f n'est pas dérivable en x_0 et la courbe \mathscr{C}_f admet une tangente verticale au point d'abscisse x_0 .

Exemple 8.5 –

- Puisque la fonction f définie sur \mathbf{R} par $f(x) = x^2$ est dérivable en $x_0 = 1$ de dérivée f'(1) = 2, la courbe représentative de f admet au point M_0 de coordonnées (1;1) une tangente d'équation
- Au contraire, la fonction définie sur **R** par $f(x) = \sqrt{|x|}$ n'est pas dérivable en 0 et la courbe représentative de f admet une tangente verticale au point (0;0).

3 – Approximation affine

Soit f une fonction définie sur un intervalle I, dérivable en a et \mathscr{C}_f sa courbe représentative. Au voisinage de a, la tangente en a ressemble beaucoup à la courbe \mathscr{C}_f , on dit que la tangente est une **approximation affine** de la courbe \mathscr{C}_f au voisinage du point d'abscisse a.

Théorème 8.6

Soit f une fonction définie sur un intervalle I et soit $a \in I$. On suppose que f est dérivable en a. Alors pour h proche de 0, on a

$$f(a+h) \approx f(a) + hf'(a)$$
.

Exemple 8.7 – Calculer une valeur approchée de $\sqrt{1.02}$.

Corollaire 8.8

Soit f une fonction définie sur un intervalle I et soit $x_0 \in I$. Si f est dérivable en x_0 , alors f est continue en x_0 .

Remarque 8.9 – Une fonction peut être continue en un point sans être dérivable en ce point. Par exemple, la courbe ci-contre admet des demitangentes à gauche et à droite en a, mais pas de tangente en a.

4 - Nombre dérivé à droite et à gauche

Définition 8.10 – Soit f une fonction définie sur un intervalle I et soit $x_0 \in I$.

La fonction f est dite **dérivable à droite** en x_0 si le taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie quand x tend vers x_0^+ . Dans ce cas, cette limite est appelée **nombre dérivé à droite** de f en x_0 , et est notée $f'_d(x_0)$.

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}.$$

De même, f est dite **dérivable à gauche** en x_0 si le taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie quand x tend vers x_0^- . Dans ce cas, cette limite est appelée **nombre dérivé à gauche** de f en x_0 , et est notée $f'_g(x_0)$.

$$f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}.$$

Proposition 8.11

Soit f une fonction définie sur un intervalle I et soit $x_0 \in I$. Alors la fonction f est dérivable en x_0 si et seulement si f est dérivable à gauche et à droite en x_0 **ET** que $f'_d(x_0) = f'_g(x_0)$. Dans ce cas, on a $f'_g(x_0) = f'(x_0) = f'_d(x_0)$.

La fonction f dont la courbe est donnée cicontre est dérivable à gauche et à droite en x_0 , mais pas en x_0 car $f'_g(x_0) \neq f'_d(x_0)$.

II - Fonction dérivée

Définition 8.12 – Soit f une fonction définie sur un intervalle I. On dit que f est **dérivable sur** I, si f est dérivable en tout point $x \in I$. La fonction f': $\begin{matrix} I & \to & \mathbf{R} \\ x & \mapsto & f'(x) \end{matrix}$ est appelée la **fonction dérivée** de la fonction f.

Exemple 8.13 -

- La fonction carrée est dérivable sur R.
- La fonction inverse est dérivable sur R*.
- La fonction $\sqrt{\cdot}$ est dérivable sur $]0; +\infty[$.

1 - Dérivée des fonctions usuelles

Le tableau suivant indique les dérivées des fonctions usuelles.

f est définie sur	f(x)	f'(x)	f est dérivable sur	
R	k	0	R	
R	х	1	R	
R	x^n	nx^{n-1}	R pour n entier $n \geqslant 2$	
R*	$\frac{1}{x}$	$-\frac{1}{x^2}$	R*	
R*	$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	\mathbf{R}^* pour n entier $n \geqslant 1$	
[0;+∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0;+∞[

2 - Opérations sur les fonctions dérivables

Soient u et v deux fonctions dérivables sur un intervalle I.

Opération	Dérivée		
Somme	(u+v)'=u'+v'		
Multiplication par une constante k	$(ku)' = k \times u'$		
Produit	(uv)' = u'v + uv'		
Quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$		
Composition	$(v \circ u)' = u' \times (v' \circ u)$		

Remarque 8.14 – La formule de dérivation de la composition de deux fonctions permet de déterminer de nombreuses formules de dérivations.

Fonction	Dérivée		
u^n pour $n > 0$	$(u^n)' = nu'u^{n-1}$		
\sqrt{u}	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$		
$\frac{1}{u}$	$\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$		

Exemple 8.15 – Calculer les dérivées des fonctions suivantes.

•
$$f(x) = 2x^2 - x + 5$$

•
$$g(x) = (x+3)\sqrt{x}$$

$$h(x) = \frac{2x-5}{x^2+3}$$

•
$$i(x) = x\sqrt{x} - x$$

•
$$j(x) = \sqrt{x^2 + 1}$$

$$\bullet \quad k(x) = \frac{1}{2x^2 + 3}$$

Proposition 8.16

- Une fonction polynomiale est dérivable sur **R**.
- Une fraction rationnelle est dérivable sur son ensemble de définition.

3 - Dérivées successives

Exemple 8.17 – Soit f la fonction définie sur \mathbf{R} par $f(x) = x^3 - 3x^2 + 5x + 1$. La fonction f est dérivable et La fonction f' est dérivable et La fonction f'' est dérivable et

Définition 8.18 – Soit f une fonction définie sur un intervalle I.

- On dit que f est **deux fois dérivable** si f et f' sont dérivables. Dans ce cas, on note f'' ou $f^{(2)}$ la dérivée de f'.
- Plus généralement, on dit que f est n fois dérivable $(n \ge 1)$ si, pour tout entier $1 \le p \le n-1$, $f^{(p)}$ est dérivable. On note alors $f^{(n)} = (f^{(n-1)})'$.

ATTENTION! La notation $f^{(p)}$ n'a rien à voir avec la notion de puissance!

Exemple 8.19 – Soit f la fonction définie sur $\mathbf{R} \setminus \{1\}$ par $f(x) = \frac{1}{1-x}$. Alors pour tout $x \in \mathbf{R} \setminus \{1\}$,

III - Application à l'étude des variations d'une fonction

1 - Monotonie et signe de la dérivée

Théorème 8.20

Soit f une fonction définie et dérivable sur un intervalle I. Alors

f est constante sur $I \iff \forall x \in I, \quad f'(x) = 0.$

ATTENTION! Le résultat est faux si I n'est pas un intervalle. Ainsi la fonction définie sur \mathbb{R}^* par f(x) = -1 si x < 0 et f(x) = 1 si x > 0, vérifie f'(x) = 0 pour tout $x \in \mathbb{R}^*$, mais f n'est pas constante.

Théorème 8.21

Soit f une fonction définie et dérivable sur un intervalle I. Alors

- f est croissante (resp. décroissante) sur I si et seulement si $f'(x) \ge 0$ (resp. $f'(x) \le 0$) pour tout $x \in I$.
- f est strictement croissante (resp. strictement décroissante) sur I si et seulement si f' est strictement positive (resp. strictement négative) sur I sauf éventuellement en un nombre fini de points où f' peut s'annuler.

Exemple 8.22 – On considère la fonction f définie sur **R** par $f(x) = x^3$.

Méthode 8.23 - Étudier les variations d'une fonction

- 1. On justifie que la fonction est bien dérivable.
- 2. On calcule la dérivée de la fonction.
- 3. On détermine le signe de la dérivée.
- 4. On en déduit les variations de la fonction.

Exemple 8.24 – Soit f la fonction définie sur **R** par $f(x) = 2x^3 - 15x^2 + 36x + 7$. Étudier les variations de la fonction f.

2 - Extrema locaux

On rappelle qu'un extremum est un maximum ou un minimum.

Théorème 8.25

Soit f une fonction dérivable sur un intervalle I de \mathbf{R} et x_0 un réel appartenant à I.

- 1. Si f admet un extremum local en x_0 , alors $f'(x_0) = 0$.
- 2. Si la dérivée f' s'annule en x_0 en changeant de signe, alors f admet un extremum local en x_0 .

x	а		x_0		b
f'(x)		+	0	_	
f			max		•

Exemple 8.26 – Reprenons l'exemple de la fonction définie sur **R** par $f(x) = 2x^3 - 15x^2 + 36x + 7$.

3 – Exemple: étude d'une fonction

Exemple 8.27 – Soit f la fonction définie sur **R** par $f(x) = 1 - \frac{4x - 3}{x^2 + 1}$.

1. Calculer f'(x).

2. Étudier les variations de la fonction f.

3. Tracer l'allure de la courbe représentative de f.

IV- Convexité

1 - Définition

Définition 8.28 – Soit f une fonction dérivable sur un intervalle I et \mathscr{C}_f sa courbe représentative.

- Dire que la fonction f est convexe sur I signifie que la courbe \mathscr{C}_f est située au-dessous de chacune de ses cordes.
- Dire que la fonction f est **concave** sur I signifie que la courbe \mathscr{C}_f est située **au-dessus de chacune de ses cordes**.

Théorème 8.29

Soit f une fonction dérivable sur un intervalle I. Alors

- f est convexe sur I si et seulement si sa courbe est située entièrement au-dessus de chacune de ses tangentes.
- f est concave sur I si et seulement si sa courbe est située entièrement au-dessous de chacune de ses tangentes.

Exemple 8.30 – La fonction inverse $x \mapsto \frac{1}{x}$ est concave sur $]-\infty;0[$ et convexe sur $]0;+\infty[$.

2 – Dérivation et convexité

Théorème 8.31

Soit f une fonction deux fois dérivable sur un intervalle I. Alors

- f est **convexe** sur I si et seulement si pour tout $x \in I$, $f''(x) \ge 0$.
- f est **concave** sur I si et seulement si pour tout $x \in I$, $f''(x) \le 0$.

Exemple 8.32 – Soit f la fonction définie sur **R** par $f(x) = x^5 - 5x^4$.

3 - Point d'inflexion

Définition 8.33 – Soit f une fonction et \mathscr{C}_f sa courbe représentative. Un **point d'inflexion** de la courbe \mathscr{C}_f est un point où la courbe \mathscr{C}_f traverse sa tangente en ce point. C'est aussi le point où la convexité change de sens.

Exemple 8.34 – La courbe représentative de la fonction cube définie sur **R** par $f(x) = x^3$ admet comme point d'inflexion l'origine (le point de coordonnées (0;0)) du repère.

La courbe \mathcal{C}_f traverse sa tangente en O donc (0;0) est un point d'inflexion.

Théorème 8.35

Soit f une fonction deux fois dérivable sur un intervalle I et soit $x_0 \in I$. Le point $M_0(x_0, f(x_0))$ est un point d'inflexion de la courbe \mathcal{C}_f si et seulement si f'' s'annule en changeant de signe en x_0 .

Exemple 8.36 – Soit f la fonction définie sur \mathbf{R} par $f(x) = x^5 - 5x^4 - 40x + 120$ et \mathscr{C}_f sa courbe.

