3. Demonstrate your understanding of the material through a final project uploaded to GitHub.

Syllabus

This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

Module	Content
Module 1 Meet Online on 01/25/2021	 Module 1: Python Preliminaries Part 1.1: Course Overview Part 1.2: Introduction to Python Part 1.3: Python Lists, Dictionaries, Sets & JSON Part 1.4: File Handling Part 1.5: Functions, Lambdas, and Map/ReducePython Preliminaries We will meet online this week! (first online meeting)
Module 2 Week of 02/01/2021	 Module 2: Python for Machine Learning Part 2.1: Introduction to Pandas for Deep Learning Part 2.2: Encoding Categorical Values in Pandas Part 2.3: Grouping, Sorting, and Shuffling Part 2.4: Using Apply and Map in Pandas Part 2.5: Feature Engineering in Padas Module 1 Program due: 02/02/2021 Icebreaker due: 02/02/2021
Module 3 Week of 02/08/2021	 Module 3: TensorFlow and Keras for Neural Networks Part 3.1: Deep Learning and Neural Network Introduction Part 3.2: Introduction to Tensorflow & Keras Part 3.3: Saving and Loading a Keras Neural Network Part 3.4: Early Stopping in Keras to Prevent Overfitting Part 3.5: Extracting Keras Weights and Manual Neural Network Calculation Module 2: Program due: 02/09/2021

Module	Content
Module 4 Week of 02/15/2021	 Module 4: Training for Tabular Data Part 4.1: Encoding a Feature Vector for Keras Deep Learning Part 4.2: Keras Multiclass Classification for Deep Neural Networks with ROC and AUC Part 4.3: Keras Regression for Deep Neural Networks with RMSE Part 4.4: Backpropagation, Nesterov Momentum, and ADAM Training Part 4.5: Neural Network RMSE and Log Loss Error Calculation from Scratch Module 3 Program due: 02/16/2021
Module 5 Meet Online on 02/22/2021	 Module 5: Regularization and Dropout Part 5.1: Introduction to Regularization: Ridge and Lasso Part 5.2: Using K-Fold Cross Validation with Keras Part 5.3: Using L1 and L2 Regularization with Keras to Decrease Overfitting Part 5.4: Drop Out for Keras to Decrease Overfitting Part 5.5: Bootstrapping and Benchmarking Hyperparameters Module 4 Program due: 02/23/2021 We will meet online this week! (2nd Online Meeting)
Module 6 Week of 03/01/2021	 Module 6: CNN for Vision Part 6.1: Image Processing in Python Part 6.2: Keras Neural Networks for MINST and Fashion MINST Part 6.3: Implementing a ResNet in Keras Part 6.4: Computer Vision with OpenCV Part 6.5: Recognizing Multiple Images with Darknet Module 5 Program due: 03/02/2021

Module	Content
Module 7 Week of 03/08/2021	 Module 7: Generative Adversarial Networks (GANs) Part 7.1: Introduction to GANS for Image and Data Generation Part 7.2: Implementing a GAN in Keras Part 7.3: Face Generation with StyleGAN and Python Part 7.4: GANS for Semi-Supervised Learning in Keras Part 7.5: An Overview of GAN Research Module 6 Assignment due: 03/09/2021
Module 8 Meet Online on 03/15/2021	 Module 8: Kaggle Part 8.1: Introduction to Kaggle Part 8.2: Building Ensembles with Scikit-Learn and Keras Part 8.3: How Should you Architect Your Keras Neural Network: Hyperparameters Part 8.4: Bayesian Hyperparameter Optimization for Keras Part 8.5: Current Semester's Kaggle Module 7 Assignment due: 03/16/2021 We will meet online this week! (3rd Meeting)
Module 9 Week of 03/22/2021	 Module 9: Transfer Learning Part 9.1: Introduction to Keras Transfer Learning Part 9.2: Popular Pretrained Neural Networks for Keras. Part 9.3: Transfer Learning for Computer Vision and Keras Part 9.4: Transfer Learning for Languages and Keras Part 9.5: Transfer Learning for Keras Feature Engineering Module 8 Assignment due: 03/23/2021

Module	Content
Module 10 Week of 03/29/2021	 Module 10: Time Series in Keras Part 10.1: Time Series Data Encoding for Deep Learning, TensorFlow and Keras Part 10.2: Programming LSTM with Keras and TensorFlow Part 10.3: Image Captioning with Keras and TensorFlow Part 10.4: Temporal CNN in Keras and TensorFlow Part 10.5: Temporal CNN in Keras and TensorFlow Module 9 Assignment due: 03/30/2021
Module 11 Week of 04/05/2021	 Module 11: Natural Language Processing Part 11.1: Getting Started with Spacy in Python Part 11.2: Word2Vec and Text Classification Part 11.3: Natural Language Processing with Spacy and Keras Part 11.4: What are Embedding Layers in Keras Part 11.5: Learning English from Scratch with Keras and TensorFlow Module 10 Assignment due: 04/06/2021
Module 12 Week of 04/19/2021	 Module 12: Reinforcement Learning Kaggle Assignment due: 04/19/2021 (approx 4-6PM, due to Kaggle GMT timezone) Part 12.1: Introduction to the OpenAl Gym Part 12.2: Introduction to Q-Learning for Keras Part 12.3: Keras Q-Learning in the OpenAl Gym Part 12.4: Atari Games with Keras Neural Networks Part 12.5: How Alpha Zero used Reinforcement Learning to Master Chess

Module	Content
Module 13 Meet Online on 04/26/2010	 Module 13: Deployment and Monitoring Part 13.1: Flask and Deep Learning Web Services Part 13.2: Deploying a Model to AWS Part 13.3: Using a Keras Deep Neural Network with a Web Application Part 13.4: When to Retrain Your Neural Network Part 13.5: Al at the Edge: Using Keras on a Mobile Device We will meet online this week! (4th Meeting)
Module 14 Week of 05/03/2021	 Module 14: Other Neural Network Techniques Part 14.1: What is AutoML Part 14.2: Using Denoising AutoEncoders in Keras Part 14.3: Training an Intrusion Detection System with KDD99 Part 14.4: Anomaly Detection in Keras Part 14.5: New Technology in Deep Learning Final Project due 05/11/2021

Datasets

• Datasets can be downloaded here

Releases 8

Fall 2020 semester Latest on Dec 29, 2020

+ 7 releases

Packages

No packages published