A finite-step convergent derivative-free method for unconstrained optimization

Yunqing Huang

Xiangtan University

joint work with Kai Jiang

June 2019

Outline

- Motivation
- Algorithm Description
- Numerical Results
- Summary

Outline

- Motivation
- 2 Algorithm Description
- Numerical Results
- 4 Summary

Unconstrained optimization

$$\min_{x} f(x)$$
, where $f: \mathbb{R}^n \mapsto \mathbb{R}$.

Unconstrained optimization

$$\min_{x} f(x)$$
, where $f: \mathbb{R}^n \mapsto \mathbb{R}$.

• Directional search method: direction + step length

Unconstrained optimization

$$\min_{x} f(x)$$
, where $f: \mathbb{R}^n \mapsto \mathbb{R}$.

• Directional search method: direction + step length

Trust region method

Motivation

• The blind climbs mountains

Motivation

• The blind climbs mountains

• Boundary search: no direction, "no step length"

Outline

- Motivation
- 2 Algorithm Description
- Numerical Results
- 4 Summary

Suspected minimum point

Definition (Suspected minimum point)

For a given function f(x), \tilde{x} is a suspected minimum point (SMP) if $f(\tilde{x}) \leq f(x)$ for $\forall x \in \partial U(\tilde{x}, \rho)$, where $\partial U(\tilde{x}, \rho) = \{y : ||y - \tilde{x}|| = \rho\}$ is the boundary of a neighborhood $U(\tilde{x}, \rho)$ of \tilde{x} .

- A minimizer ⇒ A SMP
- There exists, at least, a minimizer in $U(\tilde{x}, \rho)$ if f is continuous
- The distance of the SMP and a minimizer is smaller than ρ .

Hill-Climbing method with a Stick (**HiCS**)

Consider the unconstrained optimization problem

$$\min_{x} f(x)$$
, where $f: \mathbb{R}^n \to \mathbb{R}$.

Algorithm 1 HiCS

- 1: **Initialization:** given x_0 and ρ .
- 2: **for** $k = 0, 1, 2, \dots$

Find $\bar{x} = \operatorname{argmin}_{y \in O(x_k, \rho)} f(y)$ If $f(\bar{x}) < f(x_k)$, then set $x_{k+1} = \bar{x}$.

Otherwise, a SMP is found, and declare the iteration successful.

8/38

Finite-Step Convergence

Theorem (Finite-step convergence)

Suppose that objective function f(x) is continuous and the search domain Ω is a compact set. If there are not two SMPs x_* and x^* satisfying $|x_* - x^*| = \rho$ such that $f(x^*) = f(x_*)$, Then HiCS algorithm converges in finite steps.

Finite-Step Convergence

Theorem (Finite-step convergence)

Suppose that objective function f(x) is continuous and the search domain Ω is a compact set. If there are not two SMPs x_* and x^* satisfying $|x_* - x^*| = \rho$ such that $f(x^*) = f(x_*)$, Then HiCS algorithm converges in finite steps.

Sketch of proof.

- The HiCS algorithm produces $\{x_n, f(x_n)\}_{n=0}^{\infty}$.
- From the assumption, f(x) is bounded, then the decreasing sequence $\{f(x_n)\}$ is convergent. Assume that $f(x_n) \to A$.
- Exists a convergent subsequence $\{x_{n_k}\}\subset \{x_n\}$, s.t. $x_{n_k}\to x^*$.
- We have a bounded subsequence $\{x_{n_k-1}\}\subset \{x_n\}$ which satisfies $|x_{n_k}-x_{n_k-1}|=\rho$. Obviously, $f(x_{n_k-1})\to A$.
- $\{x_{n_k-1}\}$ has a convergent subsequence $\{x_{n_m}\}$, s.t. $x_{n_m} \to x_*$.
- From $\{x_{n_m}\}$, we have a subsequence $\{x_{n_m+1}\}\subset \{x_{n_k}\}$ satisfying $|x_{n_m}-x_{n_m+1}|=\rho$, and $x_{n_m+1}\to x^*$.
- We have $|x^* x_*| = \rho$, but $f(x^*) = f(x_*) = A$. This implies that x^* and x_* are both SMP.

Finite-Step Convergence

Theorem (Finite-step convergence)

Suppose that objective function f(x) is continuous and the search domain Ω is a compact set. If there are not two SMPs x_* and x^* satisfying $|x_* - x^*| = \rho$ such that $f(x^*) = f(x_*)$, Then HiCS algorithm converges in finite steps.

$$O(x_k, \rho) \rightarrow O_h(x_k, \rho)$$

The principles of sampling $O(x_k, \rho)$ without a priori information of objective function

- Symmetry
- Uniform distribution
- As few points as possible

$$O(x_k, \rho) \rightarrow O_h(x_k, \rho)$$

Cartesian coordinate axes

• Sampling points: 2n

$O(x_k, \rho) \to O_h(x_k, \rho)$: Regular Simplex

- Generate n-D regular simplex coordinates (n+1 vertices):
 - **1** For a regular simplex, the distances of its vertices $\{a_1, \ldots, a_n, a_{n+1}\}$ to its center are equal.
 - ② The angle subtended by any two vertices of *n*-dimension simplex through its center is $\theta = \arccos(-1/n)$.

Figure 1: cited from wiki

Refinement Strategy

• Principle: No-repeat, Uniform distribution

Refinement Strategy

• Principle: No-repeat, Uniform distribution

• Strategy: Rotation

Refinement Strategy

- Principle: No-repeat, Uniform distribution
- Strategy: Rotation
- Simplex: rotation matrices can be obtained through Euler angles
 - 1 2D case:

- 2 3D case: Movie: Iteration procedure
- 3 Computational complexity: m(n+1)

In practice, the HiCS algorithm can be given as follows

Algorithm 2 HiCS

```
1: Input x_0, \rho, and m_{\text{max}}
 2: for k = 0, 1, 2, \cdots do
 3:
     Set m=0
 4.
        if m < m_{\text{max}} then
 5:
           Discretize O(x_k, \rho) to obtain O_h^m(x_k, \rho)
           \bar{x} = \{x : f(x) = \min\{f(x_h), x_h \in O_h^m(x_k, \rho)\}\}
 6:
7:
           if f(\bar{x}) < f(x_k) then
 8:
               Set x_{k+1} = \bar{x}, and m = m_{\text{max}} + 1
 9:
           else
10:
               Set m = m + 1
11:
           end if
12:
        else
13:
            Declare that find a SMP, end program
14:
        end if
15: end for
```

Adaptive HiCS (AHiCS): adjust ρ

ullet We can repeat HiCS algorithm through changing ho

Algorithm 3 AHiCS

```
1: Input x_0, \rho, m_{\text{max}}, \varepsilon and \eta < 1
 2: if \rho > \varepsilon then
 3:
         for k = 0, 1, 2, \cdots do
 4:
            Set m=0
 5:
            if m \leq m_{\text{max}} then
6:
                 Discretize O(x_k, \rho) to obtain O_b^m(x_k, \rho)
 7:
                 \bar{x} = \{x : f(x) = \min\{f(x_h), x_h \in O_h^m(x_k, \rho)\}\}
8:
                 if f(\bar{x}) < f(x_k) then
9:
                    Set x_{k+1} = \bar{x}, and m = m_{\text{max}} + 1
10:
                 else
11:
                     Set m = m + 1
12:
                 end if
13:
          else
14:
                 Set \rho = \eta \rho
15:
             end if
16:
             Set k = k + 1
17:
         end for
18: end if
```

ullet The restart mechanism can be obtained by set $\eta>1$

Outline

- Motivation
- 2 Algorithm Description
- Numerical Results
- 4 Summary

Gauss Function

$$f(x) = -20 \exp\left(-\sum_{i=1}^{n} x_i^2\right).$$

• A unique global minimum 0 with f(0) = -20.

$$f(x) = -20 \exp\left(-\sum_{i=1}^{n} x_i^2\right).$$

- A unique global minimum 0 with f(0) = -20.
- Apply HiCS to 2D Gauss function with $x_0 = (0.57, -0.6)$, $\rho = 0.3$, $m_{max} = 4$. $(\|x\|_{\ell^2} = (\sum_{i=1}^n x_i^2)^{1/2})$

Iter.	ℓ^2 -distance	Fun. Val.
1	8.27587e-01	-1.00828e+01
1	5.40491e-01	-1.49334e+01
1	2.81712e-01	-1.84741e+01
1	2.15853e-01	-1.90895e+01
4	8.58004e-02	-1.98533e+01

Gauss Function

$$f(x) = -20 \exp\left(-\sum_{i=1}^{n} x_i^2\right).$$

- A unique global minimum 0 with f(0) = -20.
- Apply HiCS to 2D Gauss function with $x_0 = (0.57, -0.6)$, $\rho = 0.3$, $m_{max} = 4$. $(\|x\|_{\ell^2} = (\sum_{i=1}^n x_i^2)^{1/2})$

Iter.	ℓ^2 -distance	Fun. Val.
1	8.27587e-01	-1.00828e+01
1	5.40491e-01	-1.49334e+01
1	2.81712e-01	-1.84741e+01
1	2.15853e-01	-1.90895e+01
4	8.58004e-02	-1.98533e+01

- We can further apply AHiCS approach ($\eta = 0.5$) to this case.
 - 0

Movie: Iteration procedure

10D Gauss Function: finite-step convergence

- HiCS can capture the global minimizer within finite-step iterations
- The iterations of convergence of the HiCS with constant $\rho = 0.3$ for 10D Gauss function. The initial values were randomly generated in $[-1,1]^2$.

10D Gauss Function: finite-step convergence

• Decreasing ρ to 0.1 for 10D Gauss function. The initial values were randomly generated in $[-1,1]^2$.

50D Gauss Function: AHiCS

- Apply the AHiCS method to approximate the minimizer
- Setup: $\rho_0 = 10.0$, $m_{\rm max} = 32$, $\eta = (\sqrt{5} 1)/2$, initial position is randomly generated.

$$f(z) = \frac{1}{2} \max\{\|z - c_1\|^2, \|z - c_2\|^2\}, \quad z = (x, y),$$

where $c_1 = (1, -1)^T$, $c_2 = -c_1$, $\|\cdot\|$ denotes ℓ^2 -norm.

• continuous, strictly convex, but its gradient is discontinuous along the line x = y

Figure 2: Contours of the variant of the Dennis-Woods function

Y. Huang, XTU HiCS June 2019 22 / 38

• HiCS can capture the minimizer within finite-step iterations

Figure 3: The iterations of convergence of the HiCS with constant $\rho = 0.5$ for 2D Dennis-Woods function. The initial values were randomly generated in $[-5,5]^2$.

• HiCS: initial value $x_0 = (3.2, 1.5)$, $\rho = 0.5$, $m_{max} = 32$.

Iter.	ℓ^2 -distance	Fun. Val.	
	3.53412	8.94500	
1 (1-15)	+	↓	
	3.79272e-01	1.13987	
3	1.34218e-01	1.12407	
15	3.89309e-01	1.09854	
32	1.12185e-01	1.02906	

• HiCS: initial value $x_0 = (3.2, 1.5)$, $\rho = 0.5$, $m_{max} = 32$.

lter.	ℓ^2 -distance	Fun. Val.	
	3.53412	8.94500	
1 (1-15)	↓	↓	
	3.79272e-01	1.13987	
3	1.34218e-01	1.12407	
15	3.89309e-01	1.09854	
32	1.12185e-01	1.02906	

Movie: Iteration procedure

Dennis-Woods Function: Comparison

- The popular Nelder-Mead simplex algorithm fails
- The coordinate-search (CS) method (with predetermined search directions \mathcal{D}_{\oplus}) stalls

Figure 4 Application of the AHiCS method ($m_{\text{max}}=8$) and the CS method with $\mathcal{D}_{\oplus}=\{(1,0),(0,1),(-1,0),(0,-1)\}$, starting from $x_0=(1.1,0.9)$. The initial search radii are both $\rho_0=1.0$, the control factor $\eta=0.5$.

Ackley Function

- Many local minima and a unique global minimum 0 with f(0) = 0.
- Non-convex

$$f(x) = -20 \cdot \exp\left(-0.2 \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

Figure 5: 2D Ackley function

Ackley Function: 2D

- HiCS method has potential to capture different minimizer
- Initial value $x_0 = (4.1, 3.4)$
- $\rho = 0.9$: global minimizer
 - Movie: Iteration procedure
- $\rho = 0.55$: a local minimizer
 - Movie: Iteration procedure

Ackley Function: 2D

Has potential to distinguish different minima

Table 1: The convergent results and required iterations with differently constant ρ starting from the initial state $(x_0, y_0) = (4.1, 3.4)$.

	ρ	0.1	0.3	0.5	0.55	0.58	0.6	1.0
	Iter.	7	3	2	6	7	15	7
ĺ	Min.	Loc_1	Loc_1	Loc_1	Loc_2	Loc_3	Global	Global

Ackley Function: 100D

• We apply HiCS to 100D Ackley with constant $\rho_0 = 2$. The initial value is randomly generated in $[-10, 10]^{100}$. $m_{\text{max}} = 32$.

lter.	ℓ^2 -distance	Fun. Val.			
	43.76984	13.40276			
1 (1-353)	\downarrow	↓			
	5.67057	3.65003			
3	5.76768	3.64961			
5	5.84103	3.64579			
5	5.75717	3.63706			
1	5.72732	3.63154			
1	5.68106	3.63021			
6	5.67458	3.60655			
12	5.76181	3.60569			
5	5.84496	3.59674			
1	5.76528	3.59377			
1	5.71754	3.59277			
2	5.90908	3.59054			
32 (m _{max})	5.93767	3.58252			

Ackley Function: 100D

ullet We can continue to apply AHiCS $(\eta=0.5)$ to 100D Ackley.

Ackley Function: 100D

- AHiCS can capture different minima with different ρ_0 .
- Setup: x_0 is randomly generated in $[-5,5]^{100}$, $m_{\rm max}=32$, $\eta=0.5$ and $\rho<10^{-14}$.
- x^* is the global minimizer.

Ackley Function: 2500D

• Apply AHiCS algorithm ($\eta=0.5$) to 2500D Ackley function with random initial value in $[-10,10]^{2500}$ and $\rho_0=3.5$, $m_{max}=16$.

Woods Function (CUTE)

$$F(x) = \sum_{i=1}^{n/4} \left[100(x_{4i-2} - x_{4i-3}^2)^2 + (1 - x_{4i-3})^2 + 90(x_{4i} - x_{4i-1})^2 + (1 - x_{4i-1})^2 + 10(x_{4i-2} + x_{4i} - 2)^2 + 0.1(x_{4i-2} - x_{4i})^2 \right].$$

The global minimizer is $(1,1,\ldots,1)$ with f=0. The initial value $x_j^{(0)}=-3.0$ if j is even, and $x_j^{(0)}=-1.0$ if j odd. We apply AHiCS algorithm to 320D Woods functions with $\rho_0=5$ and $m_{\max}=8$.

Y. Huang, XTU HiCS June 2019 33 / 38

ARWHEAD Function

$$F(x) = \sum_{i=1}^{n-1} [(x_i^2 + x_n^2)^2 - 4x_i + 3]$$

The least value of F is zero, which occurs when the variables take the values $x_j=1$, $j=1,2,\ldots,n-1$ and $x_n=0$. We apply AHiCS method ($\eta=0.5$) to 640D ARWHEAD function. The starting vector is given by $x_j^{(0)}=1$, $j=1,2,\ldots,n$, as Powell (2006) done. The search radius $\rho_0=3$ and $m_{\max}=32$.

CHROSEN Function

$$F(x) = \sum_{i=1}^{n-1} [(4(x_i - x_{i+1}^2)^2 + (1 - x_{i+1})^2]$$

The least value of F is zero, which occurs when the variables take the values $x_j = 1$, $j=1,2,\ldots,n$. We apply AHiCS method ($\eta=0.5$) to 100D CHROSEN function. The starting vector is given by $x_i^{(0)} = -1$, j = 1, 2, ..., n, as Powell (2006) done. The search radius $\rho_0 = 5$ and $m_{\text{max}} = 32$.

Y. Huang, XTU **HiCS** June 2019 35 / 38

Outline

- Motivation
- 2 Algorithm Description
- Numerical Results
- Summary

Summary

- Propose a Hill-Climbing method with a Stick (HiCS)
- Theory: Finite-step convergence
- An efficient method of obtaining $O_h(x_k, \rho)$: Simplex
- Be able to implement to high dimension optimization
- Other properties:
 - ullet Only one parameter ho
 - Capture the neighborhood of a minimizer
 - Has potential to approximate the global minimizer

Thanks for Your Attention!