Conditional (Computational)

... security

Provides security against an adversary with no restrictions

(e.g., unlimited computing power, time, memory)

Stands against brute force

Good in theory, poor in practice

For all m possible plaintext (i.e., in \mathcal{M}) and any c ciphertext (i.e., in C) such that Pr[C=c]>0, it holds:

$$Pr[M=m \mid C=c] = Pr[M=m]$$

Perfect secrecy (Shannon 1949)

For all m_0 , m_1 plaintexts of the same length (i.e., $|m_0| = |m_1|$) and for all c ciphertext, it holds:

$$Pr[Enc(k,m_0)=c] = Pr[Enc(k,m_1)=c]$$

where the key k is randomly chosen in the key space \mathcal{K}

Theorem (limitation):

Let (Enc, Dec) be a perfectly-secret encryption scheme over a plaintext space \mathcal{M} and a key space \mathcal{K} . Then it holds that $|\mathcal{K}| \ge |\mathcal{M}|$ (i.e., the length of the key is larger or equal to the length of the message).

Provides security against an adversary with computational restrictions

(e.g., limited computing power, time, memory)

Suitable for practice

Weaker than unconditional security

A scheme is secure if any adversary \mathcal{A} that runs the attack in a time t succeeds the attack with probability at most ε .

Time t, probability ε can be:

- Fixed
- Functions of a security parameter: n

PPT(Probabilistic Polynomial in Time) Adversary:

- t(n) is **polynomial** in n
- $\varepsilon(n)$ is **negligible** in n:

 $\forall p(n), \exists n_d \text{ such that } \forall n \geqslant n_d \text{ it holds } \varepsilon(n) < 1/p(n)$ $p(n) = n^d$ and d constant