M51131L

2 CHANNEL ELECTRONIC VOLUME BALANCE

DESCRIPTION

The M51131L is a semiconductor integrated circuit designed for dual-channel electronic volume balance control.

It is housed in a 14-pin plastic molded zig-zag line package and left/right independent volume control or left/right simultaneous volume control plus balance control can be selected by the DC voltages.

Built-in pass through function enables automatic level control in combination with the ALC amplifier circuit.

FEATURES

- Two control modes can be selected.
 (Left/right independent volume control mode or left/right simultaneous volume + balance control mode)
- Pass through switch is included to output the input signal as it is, irrespective of the volume/balance control voltages.
- Shock noise reduction pin is included to reduce pass through switch on/off shock noise.
- Built-in reference supply voltage circuit
 output current 10mA (typ.)
- Maximum permissible input
- 3.4Vrms (typ.) (f=1kHz, THD=1%)
- High attenuation
 105dB (typ.) (f=1kHz, Vi=2Vrms, JIS-A)
- Low distortion rate 0.005% (typ.) (f=1kHz, Vi=500mVrms, 15kHz LPF)
- Good channel separation
 102dB (typ.) (f=1kHz, V₀=2Vrms, JIS-A)

APPLICATION

High-fidelity VTR, Television set, Radio cassette player, Car stereo set, High-fidelity amplifier, Cassette deck player

RECOMMENDED OPERATING CONDITIONS

Rated supply voltage range $8\sim15V$ Rated supply voltage 15V

14-pin plastic molded ZIP

PIN ASSIGNMENT

Pin No.	Name	Operation	Typical DC voltage		
①	Power supply	DC 8~15V is applied (rated voltage 12V)			
2	Input 1	Maximum permissible input 3. 4Vrms (typ.)	5. 5V		
③	Output 1		4.8V		
4	Reference supply voltage output	Maximum output current 10mA (typ.), built-in short circuit protection circuit	5.2V		
⑤	Filter .		12V		
6	No connection	Can be used for wire repeater to GND, etc.			
7	GND				
8	Volume/volume 1 control Left/right simultaneous volume or channel 1 volume is controlled by this value in the range of 0 to 5.2V DC.				
9	Pass through switch shock noise reduction	Transit noise to the ear is softened by slowly switching between pass through and VCA with time constant when the pass through switch is turned on/off. The time constant is determined by externally connected capacitor. T(Sec)=1.2×C×20k	5.2V for pass through and 0V for VCA		
10	Balance/volume 2 control	Balance or channel 2 volume is controlled with 0 to 5. 2V.			
11)	Pass through/VCA switch	Operates as VCA with 0V, and passes through the input to output with 5.2V.			
10	Control mode switch	Operates as channel 1 volume at pin (§) and as channel 2 volume at pin (§) with 0V. Operates as channel 1 and channel 2 simultaneous volume at pin (§) and as balance at pin (§) with 5. 2V.			
13	Output 2		4.8V		
<u> </u>	Input 2	Maximum permissible input 3.4Vrms (typ)	5. 5V		

ABSOLUTE MAXIMUM RATINGS ($T_a=25$ °C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		15.5	V
Icc	Circuit current		40	mA
Pd	Power dissipation	When mounted on PC board	800	mW
Kθ	Thermal derating	T _a ≥25℃	8.0	mW/℃
Topr	Operating temperature		-20~+75	င
T _{stg}	Storage temperature		-40~+125	°C

TYPICAL CHARACTERISTICS

THERMAL DERATING (MAXIMUM RATING)

Ambient tmeperature Ta (℃)

CIRCUIT CURRENT VS. SUPPLY VOLTAGE

SUPPLY VOLTAGE Vcc (V)

Note 1. V_{OL}2 mode means left/right independent volume control mode.

ATTENUATION VS. VOLUME CONTROL

VOLUME CONTROL VOLTAGE VVOL (V)

TOTAL HARMONIC DISTORTION VS. OUTPUT VOLTAGE

ATTENUATION VS. FREQUENCY CHARACTERISTICS

FREQUENCY f (Hz)

ATTENUATION VS. BALANCE CONTROL VOLTAGE

BALANCE CONTROL V_{BAL} (L)

Note 2. BAL mode means left/right simultaneous volume and balance control mode.

OUTPUT NOISE VOLTAGE VS. ATTENUATION

ATTENUATION ATT (dB)

CROSSTALK VS. FREQUENCY CHARACTERISTICS

FREQUENCY f (Hz)

MITSUBISHI ELEK (LINEAR)

2 CHANNEL ELECTRONIC VOLUME BALANCE

$\textbf{ELECTRICAL CHARACTERISTICS} \; (\texttt{T}_{a}=25^{\circ}\texttt{C}, \; \texttt{V}_{\texttt{CC}}=12 \texttt{V}, \; \texttt{f}=1 \texttt{kHz}, \; \texttt{V}_{i}=1 \texttt{Vrms}, \; \texttt{Volume Max}, \; \texttt{unless otherwise noted})$

Symbol	David and the second	T				
	Parameter	Test conditions	Min	Тур	Max	Unit
Icco	Circuit current	In quiescent state, volume: min		17		mA
ATTo	Attenuation			0		dB
A _{tt-∞}	Attenuation	V _i =2Vrms, JIS-A, volume: min		-105		dB
СВ	Channel balance			0		dB
THD	Total harmonic distortion	15kHz, LPF	1	0.01		%
Rį	Input resistor		1	150		kΩ
BAL	Balance attenuation	V _i =2Vrms, JIS-A		-105		dB
Nomin	Output raise valtage	$R_g=10k\Omega$ in quiescent state, JIS-A, volume: min		4.8		<i>μ</i> Vrms
Nomax	Output noise voltage	$R_g=10k\Omega$ in quiescent state, JIS-A		9		μVrms
V _{imax}	Maximum input voltage	THD=1%, volume: Center		3.4		Vrms
Vomax	Maximum output voltage	THD=1%		3.4		Vrms
Ст	Crosstalk	$R_g=0\Omega$, $V_i=2Vrms$, JIS-A		-102		dB
G _{vp}	Pass through voltage gain	Volume: min		+0.8		dB
C _{BP}	Pass through channel balance	Volume: min		0		dB

Note 3. The volume Max means the condition in which the same voltage as V_r is applied to pin ®.

- 4. The volume Center means the condition in which the same voltage as $V_{\rm f}/2$ is applied to pin \$.
- 5. The volume min means the condition in which pin (8) is connected to GND.

I/O TYPE

Note 6. All resistors, voltages, currents are shown in typical values.

Unit Resistance : Ω

Voltage : V

Current : A

TEST CIRCUIT

The JIS-A filter can be replaced with the following circuit.

Example of JIS-A filter equivalent circuit (Note that the output is multiplied by 100).

MITSUBISHI ELEK (LINEAR)

2 CHANNEL ELECTRONIC VOLUME BALANCE

SWITCH CONDITION AND TEST METHOD

0					-	Test method						
Symbol	Parameter	S ₁₋₁	S ₁₋₂	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈₋₁	S ₈₋₂	rest metrod
Icco	Circuit current	2	2	3	3	2	2	1	2	1	1	Measure the current flowing to pin ① in quiescent state
ATTo		1	1	1	1 2	2	2	1/2	2	1	1	Obtain from the quation ATT(dB)=20 $log(V_O/V_I)$.
A _{tt} −∞	Attenuation	1	1	3	3	2	2	1/2	1	1	1	ATT—∞ is JIS-A in
СВ	Channel balance	1	1	1	1 2	2	2	1→2	2	1	1	CB(dB)=ATT _{ch1} -ATT _{ch2}
THD	Total harmonic distortion	1	1	1	1 2	2	2	1/2	2	1	1	15kHz LPF in
Ri	Innut register	1	1	1	1	2	2	1	. 2	1→2		Given the output as V_{O1} when $S_8 \rightarrow 1$ and the output as V_{O2}
ואו	Input resistor	'_	'	1	,	2	2	2			1→2	when $S_8 \rightarrow 2$, $R_i(\kappa\Omega) = 150/(V_{O1}/V_{O2}-1)$
BAL	Balance attenuation	1	1	1	3	2	1	2	1	1	1	BAL(dB)=20 log(V _O /V _i)
Nomin	Output noise	2	2	3	3 2	2	2	1/2	1	1	1	JIS-A in
Nomax	voltage	2	2	1	1 2	2	2	1/2	1	1	1	JIS-A in
V _{imax}	Maximum input voltage	1	1	2	2	2	2	1/2	2	1	1	Input signal voltage when the output distortion rate is 1%.
Vomax	Maximum output voltage	1	1	1	1 2	2	2	1/2	2	1	1	Output signal voltage when the output distortion rate is 1%.
	Crosstalk	3	1	1 1	1	2	2	1	1 1	1	1	JIS-A in
Ст		1	3	<u> </u>				2		<u> </u>	_ '	$C_T(dB) = 20 \log(V_O(Vrms)/2(Vrms))$
Gvp	Pass through voltage gain	1	1	3	3	1	2	1/2	2	1	1	$G_{vp}(dB) = 20 \log(V_O/V_i)$
Свр	Pass through channel balance	1	1	3	3	1	2	1→2	2	1	1	C _{BP} (dB)=G _{vpch1} -G _{vpch2}

Note 5. If the parameter is separated into two rows, measurement is made for all the switching conditions in the upper row and all the switching conditions in the lower row.

APPLICATION EXAMPLES

(a) To control by left/right simultaneous variable volume and balancer

- *1 Volume/volume 1 control
- *2 Balance/volume 2 control
- *3 Control mode switch
- *4 Pass through switch shock noise reduction
- **★**5 Pass through/VCA switch

(b) To control by left/right independent volume

- *1 Volume/volume 1 control
- *2 Balance/volume 2 control
- *3 Control mode switch
- *4 Pass through switch shock noise reduction
- *5 Pass through/VCA switch

Difference between examples (a) and (b)

Pin	Example	Example				
No.	(a)	(ь)				
(8)	Volume	ch1 volume				
0	control	control				
10	Balance	ch2 volume				
W	control	control				
(12)	Connected	GND				
(12)	to pin ④	GND				

Unit Resistance : Ω

Capacitance : F

MITSUBISHI ELEK (LINEAR)

2 CHANNEL ELECTRONIC VOLUME BALANCE

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

