Probabilidad Cálculo de probabilidades

Edimer David Jaramillo - Bioestadística 1

Febrero de 2019

Probabilidad condicional

Probabilidad condicional (1/2)

Para dos eventos A y B, con $P(B) \ge 0$,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

=> Probabilidad de que suceda A, dado que ya sucedió B

Nota: P(A|B) no representa lo mismo que P(B|A).

Las probabilidades condicionales, satisfacen los siguientes axiomas:

- $P(\Omega|B) = 1$
- $P[(A \cup C)|B] = P(A|B) + P(C|B)$, si y solo si $P(A \cap C) = \emptyset$

Probabilidad condicional (2/2)

Ejemplo (1/2)

• **Ejemplo 1:** se realizó una encuesta con la finalidad de determinar hábitos de lectura en hombres y mujeres. El resultado se resume en la siguiente tabla:

Género	Le gusta leer	No le gusta leer	Total
Hombre	40	20	60
Mujer	50	10	60
Total	90	30	120

Ejemplo (2/2)

Si se elige una persona al azar, calcular:

- La probabilidad de que sea mujer. Rta: 0.50
- La probabilidad de que sea mujer y le guste leer. Rta: 0.42
- La probabilidd de que sea hombre. Rta: 0.50
- La probabilidad de que le guste leer dado que es mujer. Rta: 0.84
- La probabilidad de que sea hombre o mujer. Rta: 1.0

Probabilidad de la intersección (regla de la multiplicación)

Probabilidad de la intersección

Contribuye al cálculo de probabilidades de dos eventos simultáneos. Si A y B son dos eventos cualquiera (dependientes) en un espacio muestral S y $P(A) \neq 0$, entonces:

$$P(A \cap B) = P(A)P(B|A)$$

Ejemplo

• **Ejemplo 1:** la urna A contiene cuatro bolas rojas y tres azules, mientras que la urna B contiene ocho bolas rojas y dos azules. Se toma un bola de la urna A (sin ver su color) y se deposita en la urna B, para luego elegir una bola de esta última. Calcular la probabilidad de que ambas bolas elegidas de las urnas sean rojas. **Rta: 0.4675**

Probabilidad total (1/2)

El teorema o regla de la probabilidad total, permite obtener probabilidades marginales o de eventos simples en función de los elementos de una partición. Diremos que si $A_1, A_2, ..., A_k$ son eventos que constituyen una **partición** $A_i \cap A_i = \emptyset \land \bigcup_{i=1}^k A_i = S$, entonces:

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + P(B \cap A_3) + ... + P(B \cap A_k)$$

Probabilidad total (2/2)

Ejemplo

• **Ejemplo 1:** una empresa del sector agropecuario recarga sus extintores para incendios con tres empresas diferentes A, B y C. De registros históricos se sabe que el porcentaje de recargas defectuosas de A, B y C son 3%, 4% y 6%, respectivamente. El porcentaje de recargas realizadas por la empresa en cada una de las empresas ha sido 35%, 45% y 20% para A, B y C, respectivamente. El día de ayer se recibió un extintor recargado pero se desconoce la procedencia. ¿Cuál es la probabilidad de que esté defectuoso? **Rta: 0.0405**

Teorema de Bayes

Teorema de Bayes (1/2)

Se usa para responder preguntas de tipo **condicional**. Diremos que si $A_1, A_2, ..., A_k$ son eventos que constituyen una **partición** del espacio muestral S con $P(A_i) > 0$, para i = 1, 2, ..., k, entonces para cualquier evento B en S tal que P(B) > 0, se tiene:

- Causa A_r
- Efecto B
- $P(A_r|B)$: dado que se observó el efecto B, cuál es la probabilidad de que la causa haya sido A_r .

$$P(A_r|B) = \frac{P(A_r)P(B|A_r)}{\sum_{i=1}^k P(A_i)P(B|A_i)} = \frac{P(A_r \cap B)}{P(A)}$$

Ejemplo

• **Ejemplo 1:** hay dos métodos de capacitación en una empresa. El porcentaje de fracaso del método A es 20% y el de B 10%; sin embargo, como el método B es más costoso se aplica solamente el 30% del tiempo (el otro 70% se emplea A). Un trabajador recibió la capacitación con uno de los métodos pero **no aprendió la destreza**. ¿Cuál es la probabilidad de que el trabajador haya sido capacitado a través del método A? **Rta: 0.8235**

Ejercicios

Ejercicios (1/4)

- **Ejercicio 1:** En una cadena de televisión se hizo una encuesta a 2500 personas para saber la audiencia de un debate y una película, ambos emitidos en horas distintas. 2100 vieron la película, 1500 vieron el debate y 350 no vieron ninguno de los dos programas. Si se elige una persona al azar, obtener:
 - La probabilidad de que viera la película y el debate. Rta: 0.58
 - La probabilidad de que viera la película, sabiendo que vio el debate.
 Rta: 0.9667
 - Sabiendo que vio la película, ¿cuál es la probabilidad de que viera el debate? Rta: 0.6904

Ejercicios (2/4)

• **Ejercicio 2:** de una baraja estándar de 52 cartas, sea *A* el evento de sacar un As en la primera extracción y *B* sacar un As en la segunda extracción. Calcular la probabilidad de sacar dos Ases en dos extracciones sin devolver la carta extraída. **Rta:** 0.004521

Ejercicios (3/4)

- **Ejercicio 3:** se registran datos para el uso de gafas de sol en hombres y mujeres. Se tiene que de 17 hombres 5 utilizan gafas y de 20 mujeres 8 utilizan gafas. Obtener:
 - La probabilidad de elegir una persona al azar y que use gafas. Rta:
 0.3513
 - La probabilidad de elegir una persona al azar y que no use gafas. Rta:
 0.6486

Ejercicios (4/4)

- Ejercicio 4: los clientes de una empresa se encargan de evaluar los diseños preliminares de varios productos. Por registros históricos, se sabe que en el pasado, el 95% de los productos con mayor éxito en el mercado recibieron buenas evaluaciones, el 60% de los productos con éxito moderado recibieron buenas evaluaciones y el 10% de los productos con poco éxito recibieron buenas evaluaciones. Además, el 40% de los productos ha tenido mayor éxito, el 35% éxito moderado y el 25% una baja aceptación. A partir de la información, obtener:
 - Si un nuevo diseño obtiene una buena evaluación, ¿cuál es la probabilidad de que se convierta en un producto de gran éxito? Rta: 0.6178
 - Si un producto no obtiene una buena evaluación, ¿cuál es la probabilidad de que se convierta en un producto de gran éxito? Rta: 0.0519