Introduction to Logic for Computer Science

Spring 2023

Assignment 3 (Deadline: 6:00pm on 12 May 2023)

Prof Hongseok Yang

Submit your solutions in KLMS. (Reminder: We adopt a very strict policy for handling dishonest behaviours. If a student is found to copy answers from fellow students or other sources in his or her homework submission, she or he will get F.)

1. Consider the following structures over a signature with a single binary relation symbol R:

$$U_{\mathcal{A}} = \mathbb{N} \text{ and } R_{\mathcal{A}} = \{(n, m) \in \mathbb{N} \times \mathbb{N} : n < m\}$$

$$U_{\mathcal{B}} = \mathbb{Z}$$
 and $R_{\mathcal{B}} = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : n < m\}$

$$U_{\mathcal{C}} = \mathbb{Q} \text{ and } R_{\mathcal{C}} = \{(n, m) \in \mathbb{Q} \times \mathbb{Q} : n < m\}$$

Give a formula that is satisfied by \mathcal{B} but not by \mathcal{A} , and a formula that is satisfied by \mathcal{C} but not by \mathcal{B} . (20 points)

2. Translate the following formula to rectified form, then to prenex form, and finally to Skolem form:

$$\forall z \,\exists y \, (Q(x,g(y),z) \vee \neg \forall x \, P(x)) \wedge \neg \forall z \,\exists x \, \neg R(f(x,z),z).$$

(20 points)

- 3. Are the following claims correct? Justify your answers.
 - (a) For any formula F and term t, if F is valid then F[t/x] is valid. (6 points)
 - (b) $\exists x (P(x) \to \forall y P(y))$ is valid. (7 points)
 - (c) For any formula F and constant symbol c, if F[c/x] is valid and c does not appear in F then $\forall x F$ is valid. (7 points)
- 4. Fix a signature σ . Consider a relation \sim on σ -assignments that satisfies the following two properties:
 - (P1) If $A \sim B$, then for every atomic formula F we have $A \models F$ iff $B \models F$.
 - (P2) If $\mathcal{A} \sim \mathcal{B}$, then for each variable x we have (i) for each $a \in U_{\mathcal{A}}$ there exists $b \in U_{\mathcal{B}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$, and (ii) for all $b \in U_{\mathcal{B}}$ there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$.

Prove that if $A \sim B$ then for any formula F, $A \models F$ if and only if $B \models F$. You may assume that F is built from atomic formulas using the connectives \land and \neg and the quantifier \exists .

(20 points)

- 5. In this question we work with first-order logic without equality.
 - (a) Consider a signature σ containing only a binary relation symbol R. For each positive integer n show that there is a satisfiable σ -formula F_n such that every model \mathcal{A} of F_n has at least n elements. (5 points)

(b) Consider a signature σ containing only unary predicate symbols P_1, \ldots, P_k . Using Question 4, or otherwise, show that any satisfiable σ -formula has a model with at most 2^k elements. (15 points)