Probabilistic Programming

Marius Popescu

popescunmarius@gmail.com

2019 - 2020

TensorFlow Probability / Edward2

Some History

TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU).

It is a probabilistic programming toolbox for machine learning researchers and practitioners provides modular abstractions for probabilistic reasoning and statistical analysis in the TensorFlow ecosystem.

.......

Data Scientists, Statisticians

Model Fitters, ML Researchers

Model Builders

TensorFlow Users

Layer 3: Inference techniques (Markov chain Monte Carlo, Variational Inference, Optimizers, Monte Carlo)

> Layer 2: Model Building (Edward2, Probabilistic layers, Trainable distributions.)

Layer 1: Statistical Building Blocks (Distributions, Bijectors)

> Layer 0: TensorFlow (LinearOperator)

Save time in model tuning and inference

Avoid re-inventing the wheel

Spend your time hypothesizing, instead of programming

Use off-the-shelf, performant libraries

Leverage community + scalable cloud compute

TFP Layer 1: Statistical Building Blocks

- o Distributions (tf.contrib.distributions, tf.distributions): A large collection of probability distributions and related statistics with batch and broadcasting semantics.
- O Bijectors (tf.contrib.distributions.bijectors): Reversible and composable transformations of random variables. Bijectors provide a rich class of transformed distributions, from classical examples like the log-normal distribution to sophisticated deep learning models such as masked autoregressive flows.

TFP Layer 2: Model Building

- o Edward2 (tfp.edward2): A probabilistic programming language for specifying flexible probabilistic models as programs.
- o Probabilistic Layers (tfp.layers): Neural network layers with uncertainty over the functions they represent, extending TensorFlow Layers.
- Trainable Distributions (tfp.trainable_distributions): Probability distributions parameterized by a single Tensor, making it easy to build neural nets that output probability distributions.

TFP Layer 3: Probabilistic Inference

- o Markov chain Monte Carlo (tfp.mcmc): Algorithms for approximating integrals via sampling. Includes Hamiltonian Monte Carlo, random-walk Metropolis-Hastings, and the ability to build custom transition kernels.
- o Variational Inference (tfp.vi): Algorithms for approximating integrals via optimization.
- Optimizers (tfp.optimizer): Stochastic optimization methods, extending TensorFlow Optimizers. Includes Stochastic Gradient Langevin Dynamics.
- Monte Carlo (tfp.monte_carlo): Tools for computing Monte Carlo expectations.

TFP Layer 4: Pre-made Models and Inference

- o Bayesian structural time series: High-level interface for fitting time-series models (i.e., similar to R's BSTS package).
- Generalized Linear Mixed Models: High-level interface for fitting mixed-effects regression models (i.e., similar to R's Ime4 package).

TensorFlow Basics

import tensorflow as tf

TensorFlow separates definition of computations from their execution

- o Phase 1: assemble a graph
- o Phase 2: use a session to execute operations in the graph.

This might change in the future; in TensorFlow 2.0 the Eager execution will be the standard execution mode.

What's a tensor?

In Mathematics

A tensor is an arbitrarily complex geometric object that maps in a (multi-)linear manner geometric vectors, scalars, and other tensors to a resulting tensor. Thereby, vectors and scalars themselves are considered as the simplest tensors.

 σ_{12}

 $\mathbf{T}^{(\mathbf{e}_3)}$

 $\mathbf{T}^{(\mathbf{e}_1)}$

In TensorFlow

An n-dimensional array{

- o 0-d / rank 0 tensor: scalar (number)
- o 1-d / rank 1 tensor: vector
- o 2-d / rank 2 tensor: matrix
- 0 ...


```
>>>import tensorflow as tf
>>>a = tf.add(3, 5)
```

Why x, y?

TF automatically names the nodes when you don't explicitly name them.

$$x = 3$$

$$y = 5$$


```
>>>import tensorflow as tf
>>>a = tf.add(3, 5)
```

Nodes: operators, variables, and constants

Edges: tensors

Tensors are data.

TensorFlow = tensor + flow = data + flow

Interpretation?

```
>>>import tensorflow as tf
>>>a = tf.add(3, 5)
>>>print(a)
Tensor("Add:0", shape=(), dtype=int32)
Not 8
```


How to get the value of a?

- O Create a session, assign it to variable sess so we can call it later
- Within the session, evaluate the graph to fetch the value of a

```
import tensorflow as tf
a = tf.add(3, 5)
sess = tf.Session()
print(sess.run(a))
sess.close()
```


How to get the value of a?

- o Create a session, assign it to variable sess so we can call it later
- Within the session, evaluate the graph to fetch the value of a

```
import tensorflow as tf
a = tf.add(3, 5)
    sess = tf.Session()
    with tf.Session() as sess:
        print(sess.run(a))
    sess.close()
```


tf.Session()

- A Session object encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.
- A TensorFlow session is used to run parts of the graph to get the variables we want.

Subgraphs

```
x = 2
y = 3
add_op = tf.add(x, y)
mul_op = tf.multiply(x, y)
useless = tf.multiply(x, add_op)
pow_op = tf.pow(add_op, mul_op)
with tf.Session() as sess:
    z = sess.run(pow_op)
```


Because we only want the value of pow_op and pow_op doesn't depend on useless, session won't compute value of useless

Subgraphs

Possible to break graphs into several chunks and run them parallelly across multiple CPUs, GPUs, TPUs, or other devices

Visualization with TensorBoard

```
import tensorflow as tf
a = tf.constant(2, name = 'a')
b = tf.constant(3, name = 'b')
x = tf.add(a, b, name = 'x')
writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
with tf.Session() as sess:
    # writer = tf.summary.FileWriter('./graphs', sess.graph)
    print(sess.run(x))
writer.close()
```

Visualization with TensorBoard

Run:

```
python yourprogram.py
tensorboard --logdir="./graphs" --port 6006
```

Then open your browser and go to:

http://localhost:6006/

Visualization with TensorBoard

Summary ?
Dataflow edge ?

Reference edge ?

Control dependency edge ?

Tensors

tf.Tensor

Internally, TensorFlow represents tensors as n-dimensional arrays of base datatypes.

A tf. Tensor has the following properties:

- o a data type (float32, int32, Or string, for example)
- o a shape

Shape

The TensorFlow documentation uses three notational conventions to describe tensor dimensionality: rank, shape, and dimension number.

Rank	Shape	Dimension number	Example
0	0	0-D	A 0-D tensor. A scalar.
1	[D0]	1-D	A 1-D tensor with shape [5].
2	[D0, D1]	2-D	A 2-D tensor with shape [3, 4].
3	[D0, D1, D2]	3-D	A 3-D tensor with shape [1, 4, 3].
n	[D0, D1, Dn-1]	n-D	A tensor with shape [D0, D1, Dn-1].

Shapes can be represented via Python lists / tuples of ints, or with the tf.TensorShape.

Shape

O Getting a tf. Tensor object's shape:

O Changing the shape of a tf. Tensor:

Data Type

- O To inspect a tf. Tensor's data type use the Tensor.dtype property.
- O It is possible to cast tf. Tensors from one datatype to another using tf.cast:

```
# Cast a constant integer tensor into floating point.
```

```
float_tensor = tf.cast(tf.constant([1, 2, 3]), dtype=tf.float32)
```

Creating Tensors: Constants

Constants

```
a = tf.constant(3, name='a')
a = tf.constant([2, 2], name='a')
a = tf.constant([[0, 1], [2, 3]], name='a')
```

```
tf.zeros(shape, dtype=tf.float32, name=None)
```

Creates a tensor of shape and all elements will be zeros

```
tf.zeros([2, 3], tf.int32) ==> [[0, 0, 0], [0, 0, 0]]
```

```
tf.zeros_like(input_tensor, dtype=None, name=None, optimize=True)
```

Creates a tensor of shape and type (unless type is specified) as the input_tensor but all elements are zeros.

```
# input_tensor is [[0, 1], [2, 3], [4, 5]]

tf.zeros_like(input_tensor) ==> [[0, 0], [0, 0], [0, 0]]
```

```
tf.ones(shape, dtype=tf.float32, name=None)
tf.ones_like(input_tensor, dtype=None, name=None, optimize=True)
```

```
tf.fill(dims, value, name=None)
```

Creates a tensor filled with a scalar value.

```
tf.fill([2, 3], 8) ==> [[8, 8, 8], [8, 8, 8]]
```

Constants as Sequences

```
tf.lin_space(start, stop, num, name=None)
tf.lin_space(10.0, 13.0, 4) ==> [10. 11. 12. 13.]

tf.range(start, limit=None, delta=1, dtype=None, name='range')
tf.range(3, 18, 3) ==> [3 6 9 12 15]
tf.range(5) ==> [0 1 2 3 4]
```

Randomly Generated Constants

```
tf.random_normal
tf.truncated_normal
tf.random_uniform
tf.random_shuffle
tf.random_crop
tf.multinomial
tf.random_gamma
```

Creating Tensors: Operations

Variables

tf. Variable class

```
# create variables with tf.Variable
s = tf.Variable(2, name="scalar")
m = tf.Variable([[0, 1], [2, 3]], name="matrix")
W = tf.Variable(tf.zeros([784,10]))

# create variables with tf.get_variable
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
```

tf. Variable holds several ops

```
x = tf.Variable(...)
x.initializer # init op
x.value() # read op
x.assign(...) # write op
x.assign_add(...) # and more
```

You have to initialize your variables

```
import tensorflow as tf

W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())

with tf.Session() as sess:
    print(sess.run(W))

Initializer is an op. You need to execute it within the context of a session
```

FailedPreconditionError: Attempting to use uninitialized value Variable

You have to initialize your variables

```
# The easiest way is initializing all variables at once:
with tf.Session() as sess:
    sess.run(tf.global variables initializer())
# Initialize only a subset of variables:
with tf.Session() as sess:
    sess.run(tf.variables initializer([a, b]))
# Initialize a single variable
W = tf.Variable(tf.zeros([784,10]))
with tf.Session() as sess:
    sess.run(W.initializer)
```

Eval() a variable

```
# W is a random 700 x 10 variable object
W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:
     sess.run(W.initializer)
     <del>print(W)</del>
     print(W.eval())
Tensor("Variable/read:0", shape=(700, 10), dtype=float32)
[-0.76781619 - 0.67020458  1.15333688  ..., -0.98434633 -1.25692499
   -0.90904623]
  [-0.36763489 - 0.65037876 - 1.52936983 ..., 0.19320194 - 0.38379928
   0.44387451]
  [ 0.12510735 -0.82649058  0.4321366  ..., -0.3816964  0.70466036
   1.33211911]
  . . . ,
```

tf.Variable.assign()

```
W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:
    sess.run(W.initializer)
    print(W.eval())
```

10

W.assign(100) creates an assign op. That op needs to be executed in a session to take effect.

```
W = tf.Variable(10)
assign_op = W.assign(100)
with tf.Session() as sess:
    sess.run(W.initializer)
    sess.run(assign_op)
    print(W.eval())
```


tf.Variable.assign()

```
# create a variable whose original value is 2
my_var = tf.Variable(2, name="my_var")

# assign a * 2 to a and call that op a_times_two
my_var_times_two = my_var.assign(2 * my_var)

with tf.Session() as sess:
    sess.run(my_var.initializer)
    sess.run(my_var_times_two)  # the value of my_var now is 4
    sess.run(my_var_times_two)  # the value of my_var now is 8
    sess.run(my_var_times_two)  # the value of my_var now is 16
```

"Hello World!"

Monty Hall Problem

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

TFP Solution

```
import tensorflow as tf
from tensorflow_probability import edward2 as ed
N = 10000
car door = ed.Categorical(probs=tf.constant([1. / 3., 1. / 3., 1. / 3.]), sample shape = N, name = 'car door')
picked_door = ed.Categorical(probs=tf.constant([1. / 3., 1. / 3., 1. / 3.]), sample_shape = N, name = 'picked_door')
preference = ed.Bernoulli(probs=tf.constant(0.5), sample shape = N, name = 'preference')
host choice = tf.where(tf.not equal(car door, picked door),
                       3 - car door - picked door,
                       tf.where(tf.equal(car_door, 2 * tf.ones(N, dtype=tf.int32)),
                                preference,
                                tf.where(tf.equal(car door, tf.ones(N, dtype=tf.int32)),
                                         2 * preference,
                                         1 + preference)), name = 'host choice')
#changed_door = 3 - host_choice - picked door
```

changed_door = tf.subtract(tf.subtract(3, host_choice), picked_door, name = 'changed_door')

Running

```
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    car_door_samples, picked_door_samples, changed_door_samples = sess.run([car_door, picked_door, changed_door])

print("probability to win of a player who stays with the initial choice:", (car_door_samples == picked_door_samples).mean())

print("probability to win of a player who switches:", (car_door_samples == changed_door_samples).mean())
```

The Results

```
{C:\My\ProbabilisticProgrammingCourse\TFPandEdward2\11} - Far 3.0.5225 x64 Administrator
                                                                               ::\...ogrammingCourse\TFPandEdward2\11>
                                                                            11:06 AN
 :\...ogrammingCourse\TFPandEdward2\11>
   ...ogrammingCourse\TFPandEdward2\11>
   ...ogrammingCourse\TFPandEdward2\11>
  \...ogrammingCourse\TFPandEdward2\11>
  \langle \dotsogrammingCourse\TFPandEdward2\11>
   ...ogrammingCourse\TFPandEdward2\11>
   ...ogrammingCourse\TFPandEdward2\11>
  \...ogrammingCourse\TFPandEdward2\11>
:\...ogrammingCourse\TFPandEdward2\11>python_monty_hall.py
2018-12-10 11:06:39.311511: I tensorflow/core/platform/cpu_feature_guard.cc:141]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX2
probability to win of a player who stays with the initial choice: 0.3335
probability to win of a player who switches: 0.6665
C:\...ogrammingCourse\TFPandEdward2\11>python monty_hall.py
2018-12-10 11:06:50.328939: I tensorflow/core/platform/cpu_feature_guard.cc:141]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX2
probability to win of a player who stays with the initial choice: 0.3331
probability to win of a player who switches: 0.6669
C:\...ogrammingCourse\TFPandEdward2\11>
```