Al Application in Medicine: Liver

Yueh-Chou Lee NTU Math 17 October, 2019

Content

- Introduction
- Tools
- Hands-on
- Challenges
- References

Introduction

Introduction

- MeDA Lab: https://sites.google.com/view/aimiahub/aimia
- Team members:
 - Che-Yu Hsu (NTUH)
 - Cheng-En Lee (NTU AM)
 - Yueh-Chou Lee (NTU Math)
- Forecast Project
 - o Brain Tumor
 - Hypopharyngeal Cancer
 - Hepatocellular Carcinoma

Introduction (Goals)

- To reduce the workload of doctors
- To avoid doctors doing repetitive work
- To improve doctor-patient relationships

Tools

Tools

- Python
- 3D Slicer
- SimpleITK
- Radiomics

Tools (Python)

- Why Python? (C/C++, MATLAB, Python, etc.)
- Advantages
 - Easy to use
 - Interpreted Language
 - Quickly development and research
 - Many powerful open libraries
- Disadvantages
 - Speed is slower than C/C++
 - Memory Consumption

Tools (3D Slicer)

- What's 3D Slicer?
- Visualize data (images)
- Label the essential parts
- Include SimpleITK, VTK, PyQt
- Simpler than python

Tools (SimpleITK)

- What's SimpleITK?
- Processing medical images
- Easy to read and write medical images
- Powerful toolkit for image analysis
- Provide a high level of usability

Tools (Radiomics)

- What's Radiomics?
- Statistics features
- Shape, surface and volume information
- Reduce dimension of information
- Interpretable

Hands-on

Hands-on

- Introduce Workflow
- Download Material:
 https://yuehchou.github.io/courses/workshop/ai-application.html
- 2019 ESMO Discussion & Poster

Challenges

Challenges

- 1. Trust or not?
- 2. Hardly acquire data (e.g. medical images)
- 3. Lack of medical knowledge
- 4. Highly dependent on doctors

References

References (Tools)

- 1. 3D Slicer: https://www.slicer.org/
- 2. Radiomics: http://www.radiomics.io/pyradiomics.html
- SimpleITK: http://www.simpleitk.org/
- 4. VTK: https://vtk.org/
- 5. Python Introduction: https://yuanyuyuan.github.io/itcm/lab-1.html

References (Organizations & Conferences)

- 1. ESMO: https://www.esmo.org/
- 2. RSNA: https://www.rsna.org/
- MICCAI: http://www.miccai.org/
- 4. CodaLab: https://codalab.org/
- 5. LiTS: https://competitions.codalab.org/competitions/15595

Thanks

Questions & Comments