SUMMER-2012

UNIT-1

Q.1 a) Show that
$$(P \vee Q) \wedge (\neg P \wedge (P \wedge Q)) \Leftrightarrow (\neg P \wedge Q)$$
. (7)

- **b)** Obtain disjunctive normal form of $\neg (P \lor Q) \leftrightarrow (P \land Q)$ (6)
- Q.2 a) Obtain principle disjunctive normal form of

$$(P \wedge Q) \vee (\neg P \wedge R) \vee (Q \wedge R) \tag{6}$$

b) What is tautology? Show that

$$((P \lor Q) \land \neg(\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R) \text{ is a tautology.}$$

UNIT-2

- **Q.3 a)** Show that $R \wedge (P \vee Q)$ is a valued conclusing form the premises $P \vee Q$, $Q \to R$, $P \to M$ and $\neg M$. (7)
- **b)** What do you mean by Predicate? Symbolize the expression "All the world loves a lover" (6)
- **Q.4 a)** Show that $S \vee R$ is a tautology implied by

$$(P \lor Q) \land (P \to R) \land (Q \to S)$$
 (6)

b) Show that $(\exists x)M(x)$ follows logically from the premises $(x)(H(x) \to M(x))$ and $(\exists x)H(x)$ (7)

UNIT-3

Q.5 a) Draw Venn diagram to illustrate

A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A, B, C are any three sets. (7) **b)** Let P = $\{\langle 1,2\rangle, \langle 2,4\rangle, \langle 3,3\rangle\}$ and Q = $\{\langle 1,3\rangle, \langle 2,4\rangle, \langle 4,2\rangle\}$ show

- **b)** Let $P = \{\langle 1,2 \rangle, \langle 2,4 \rangle, \langle 3,3 \rangle\}$ and $Q = \{\langle 1,3 \rangle, \langle 2,4 \rangle, \langle 4,2 \rangle\}$ show that **i.** $D(P \cup Q) = D(P) \cup D(Q)$ **ii.** $R(P \cap Q) = R(P) \cap R(Q)$ (7)
- **Q.6** (a) i) What is equivalence relation? Explain with example.
- ii. Give general properties of binary operation. (6)
- **b)** Draw Venn diagrams showing (8)
 - **i.** $A \cup B \subset A \cup C$ but $B \not\subset C$

iii. $A \cup B = A \cup C$ but $B \neq C$	
iv. $A \cap B = A \cap C$ but $B \neq C$	
UNIT-4	
Q.7 a) Design composition table for algebraic system.	
$(Z_m, +_m)$ and $(Z_m, *_m)$ where $m = 5$.	(6)
b) Find all subgroups of	
i. $(Z_{12}, +_{12})$ ii. $(Z_5, +_5)$	
Q.8 a) Find out left coset of H in $(Z_4, +_4)$ H = $\{[0], [2]\}$	(6)
b) Define terms	
i. Groupii. Monoid Homomorphism	
iii. Semi group iv. Semigroup Homonorphism	(6)
Q.9 a) Find minimum sum-of-products expression following function using k-map.	of
i. $f(a,b,c) = \Sigma (0, 1, 4, 6)$	(3)
ii. $f(a, b, c, d) = \Sigma (0, 5, 7, 8, 12, 14)$	(4)
b) Obtain sum of product canonical form of –	
i. $x_1 \oplus x_2$ ii. $x_1 \oplus (x_2 * x_3)$	(5)
UNIT-5	
Q.10 a) Obtain sum of products canonical forms –	
i. $(x \oplus y) * (y \oplus z)$ ii. $(x * z) \oplus (x * y)$	(8)
b) Define terms:	
i. Lattice	(2)
ii. Sub lattice	(2)
iii. Direct product	(3)
UNIT-6	
Q.11 a) What do you mean by isomorphic diagraph? Shathat following diagraphs are isomorphic.	10W (6)

ii. $A \cap B \subset A \cap C$ but $B \not\subseteq C$

b) What is adjacency matrix? Obtain adjacency matrix of following diagraph. Also find paths of length of 1 and 2 form v_1 to v_4 .

Q.12 a) Find complement of diagraph in the Q.11(b) (6)

b) What do you mean by reachability? Find indegee, out degree and elementary cycles of the graph given below. (7)

