

# CS 3251- Computer Networks 1: Security Protocols (2)

Professor Patrick Traynor 11/26/13 Lecture 27

#### Announcements

- Project 4
  - Due Thursday at 5pm
- That's it!
  - ... except for the final exam



# In the News...



## Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message Integrity, Authentication
- 8.4 Securing e-mail
- 8.5 Securing TCP connections: SSL
- 8.6 Network layer security: IPsec
- 8.7 Securing wireless LANs
- 8.8 Operational security: firewalls and IDS

# What is network-layer confidentiality?

- between two network entities:
  - sending entity encrypts datagram payload, payload could be:
    - TCP or UDP segment, ICMP message, OSPF message ....
- all data sent from one entity to other would be hidden:
  - web pages, e-mail, P2P file transfers, TCP SYN packets ...
- "blanket coverage"



# Virtual Private Networks (VPNs)

#### motivation:

- institutions often want private networks for security.
  - costly: separate routers, links, DNS infrastructure.
- VPN: institution's inter-office traffic is sent over public Internet instead
  - encrypted before entering public Internet
  - logically separate from other traffic

# Virtual Private Networks (VPNs)



#### IPsec services

- data integrity
- origin authentication
- replay attack prevention
- confidentiality
- two protocols providing different service models:
  - AH
  - ESP

# Two IPsec protocols

- Authentication Header (AH) protocol
  - provides source authentication & data integrity but not confidentiality
- Encapsulation Security Protocol (ESP)
  - provides source authentication, data integrity, and confidentiality
  - more widely used than AH



# Security associations (SAs)

- before sending data, "security association (SA)" established from sending to receiving entity
  - SAs are simplex: for only one direction
- ending, receiving entitles maintain state information about SA
  - recall:TCP endpoints also maintain state info
  - IP is connectionless; IPsec is connection-oriented!
- how many SAs in VPN w/ headquarters, branch office, and n traveling salespeople?

# Example SA from R1 to R2

#### • R1 Stores:

- 32-bit SA identifier: Security Parameter Index (SPI)
- origin SA interface (200.168.1.100)
- destination SA interface (193.68.2.23)
- type of encryption used (e.g., 3DES with CBC)
- encryption key
- type of integrity check used (e.g., HMAC with MD5)
- authentication key



# IPsec datagram

focus for now on tunnel mode with ESP



## Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message Integrity, Authentication
- 8.4 Securing e-mail
- 8.5 Securing TCP connections: SSL
- 8.6 Network layer security: IPsec
- 8.7 Securing wireless LANs
- 8.8 Operational security: firewalls and IDS

# IEEE 802.11 security

- war-driving: drive around Bay area, see what 802.11 networks available?
  - More than 9000 accessible from public roadways
  - ▶ 85% use no encryption/authentication
  - packet-sniffing and various attacks easy!
- securing 802.11
  - encryption, authentication
  - first attempt at 802.11 security:
     Wired Equivalent Privacy (WEP): a failure
  - current attempt: 802.11i



# Wired Equivalent Privacy (WEP):

- authentication as in protocol ap4.0
  - host requests authentication from access point
  - access point sends 128 bit nonce
  - host encrypts nonce using shared symmetric key
  - > access point decrypts nonce, authenticates host
- no key distribution mechanism
- authentication: knowing the shared key is enough

# 802.11 WEP encryption



Sender-side WEP encryption

# Breaking 802.11 WEP encryption

#### security hole:

- 24-bit IV, one IV per frame, -> IV's eventually reused
- IV transmitted in plaintext -> IV reuse detected
- attack:
  - ▶ Trudy causes Alice to encrypt known plaintext d<sub>1</sub> d<sub>2</sub> d<sub>3</sub> d<sub>4</sub> ...
  - Trudy sees: c<sub>i</sub> = d<sub>i</sub> XOR k<sub>i</sub><sup>IV</sup>
  - Trudy knows c<sub>i</sub> d<sub>i</sub>, so can compute k<sub>i</sub><sup>IV</sup>
  - Trudy knows encrypting key sequence  $k_1^{IV} k_2^{IV} k_3^{IV} \dots$
  - Next time IV is used, Trudy can decrypt!

# 802. I I i: improved security

- numerous (stronger) forms of encryption possible
- provides key distribution
- uses authentication server separate from access point

# 802. I li: four phases of operation



## EAP: extensible authentication protocol

- EAP: end-end client (mobile) to authentication server protocol
- EAP sent over separate "links"
  - mobile-to-AP (EAP over LAN)
  - ▶ AP to authentication server (RADIUS over UDP)



## Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message Integrity, Authentication
- 8.4 Securing e-mail
- 8.5 Securing TCP connections: SSL
- 8.6 Network layer security: IPsec
- 8.7 Securing wireless LANs
- 8.8 Operational security: firewalls and IDS

#### Firewalls

firewall

isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others.



# Firewalls: why

- prevent denial of service attacks:
  - SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections
- prevent illegal modification/access of internal data
  - e.g., attacker replaces CIA's homepage with something else
- allow only authorized access to inside network
  - set of authenticated users/hosts
- three types of firewalls:
  - stateless packet filters, stateful packet filters, application gateways

# Stateless packet filtering



- internal network connected to Internet via router firewall
- router filters packet-by-packet, decision to forward/drop packet based on:
  - source IP address, destination IP address
  - TCP/UDP source and destination port numbers
  - ICMP message type
  - TCP SYN and ACK bits

# Stateless packet filtering: example

- example I: block incoming and outgoing datagrams with IP "Protocol field" = 17 and with either source or dest port = 23.
  - result: all incoming, outgoing UDP flows and telnet connections are blocked.
- example 2: Block inbound TCP segments with ACK=0.
  - result: prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside.

# Stateless packet filtering: more examples

| Policy                                                                              | Firewall Setting                                                             |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| No outside Web access.                                                              | Drop all outgoing packets to any IP address, port 80                         |  |  |
| No incoming TCP connections, except those for institution's public Web server only. | Drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80  |  |  |
| Prevent Web-radios from eating up the available bandwidth.                          | Drop all incoming UDP packets - except DNS and router broadcasts.            |  |  |
| Prevent your network from being used for a smurf DoS attack.                        | Drop all ICMP packets going to a "broadcast" address (e.g. 130.207.255.255). |  |  |
| Prevent your network from being tracerouted                                         | Drop all outgoing ICMP TTL expired traffic                                   |  |  |

#### **Access Control Lists**

\* ACL: table of rules, applied top to bottom to incoming packets: (action, condition) pairs

| action | source<br>address    | dest<br>address         | protocol | source<br>port | dest<br>port | flag<br>bit |
|--------|----------------------|-------------------------|----------|----------------|--------------|-------------|
| allow  | 222.22/16            | outside of<br>222.22/16 | TCP      | > 1023         | 80           | any         |
| allow  | outside of 222.22/16 | 222.22/16               | TCP      | 80             | 80 > 1023    |             |
| allow  | 222.22/16            | outside of<br>222.22/16 | UDP      | > 1023         | 53           |             |
| allow  | outside of 222.22/16 | 222.22/16               | UDP      | 53             | > 1023       |             |
| deny   | all                  | all                     | all      | all            | all          | all         |

# Stateful packet filtering

- stateless packet filter: heavy handed tool
  - admits packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no TCP connection established:

| action | source<br>address    | dest<br>address | protocol | source<br>port | dest<br>port | flag<br>bit |
|--------|----------------------|-----------------|----------|----------------|--------------|-------------|
| allow  | outside of 222.22/16 | 222.22/16       | TCP      | 80             | > 1023       | ACK         |

- stateful packet filter: track status of every TCP connection
  - track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
  - timeout inactive connections at firewall: no longer admit packets

# Stateful packet filtering

 ACL augmented to indicate need to check connection state table before admitting packet

| action | source<br>address       | dest<br>address         | proto | source<br>port | dest<br>port | flag<br>bit | check<br>conxion |
|--------|-------------------------|-------------------------|-------|----------------|--------------|-------------|------------------|
| allow  | 222.22/16               | outside of<br>222.22/16 | TCP   | > 1023         | 80           | any         |                  |
| allow  | outside of<br>222.22/16 | 222.22/16               | TCP   | 80             | > 1023       | ACK         | X                |
| allow  | 222.22/16               | outside of<br>222.22/16 | UDP   | > 1023         | 53           |             |                  |
| allow  | outside of<br>222.22/16 | 222.22/16               | UDP   | 53             | > 1023       |             | X                |
| deny   | all                     | all                     | all   | all            | all          | all         |                  |

# Application gateways

- filters packets on application data as well as on IP/TCP/ UDP fields.
- example: allow select internal users to telnet outside.



- I. require all telnet users to telnet through gateway.
- 2. for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway.

# Application gateways

- filter packets on application data as well as on IP/TCP/UDP fields.
- example: allow select internal users to telnet outside



- I. require all telnet users to telnet through gateway.
- 2. for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway.

## Limitations of firewalls and gateways

- Pspoofing: router can't know if data "really" comes from claimed source
- if multiple app's. need special treatment, each has own app. gateway
- client software must know how to contact gateway.
  - e.g., must set IP address of proxy in Web browser

- filters often use all or nothing policy for UDP
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks

## Intrusion detection systems

- packet filtering:
  - operates on TCP/IP headers only
  - no correlation check among sessions
- IDS: intrusion detection system
  - deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
  - examine correlation among multiple packets
    - port scanning
    - network mapping
    - DoS attack

## Intrusion detection systems

 multiple IDSs: different types of checking at different locations



# Network Security (summary)

#### Basic techniques.....

- cryptography (symmetric and public)
- message integrity
- end-point authentication

#### .... used in many different security scenarios

- secure email
- secure transport (SSL)
- → IP sec
- ▶ 802.11

#### Operational Security: firewalls and IDS