CS 228: Tutorial Solutions

Aryaman Maithani

Problem Set 4

Notation: $\mathbb{N} = \{1, 2, 3, \ldots\}$ denotes the set of positive integers.

1. Given: $\varphi = \forall x \exists y R(x, y) \land \exists y \forall x \neg R(x, y)$.

 φ is satisfiable over the following structure: $\mathcal{A} = (\mathbb{N}, \mathbb{R}^{\mathcal{A}})$, where $\mathbb{R}^{\mathcal{A}} = \{(x, y) \in \mathbb{N}^2 : y = x + 1\}$. Note that \mathbb{N} is infinite and countable.

It is clear that given any x, if we choose y = x + 1, then $y \in \mathbb{N}$ and we have that R(x, y).

Also, given $y = 1 \in \mathbb{N}$, and given any $x \in \mathbb{N}$, it not true that R(x, 1). (There is no natural number n such that n + 1 = 1.)

Another example could have been to take any infinite countable set X as universe and choose a particular element $x_0 \in X$ and say that $R^A = \{(x, y) \in X^2 : y = x_0\}$. That is, any element is related to x_0 and only to x_0 .

2.

(i) $\varphi_B(x,y) = (\forall z (P(z,x) \leftrightarrow P(z,y))) \land \neg F(x).$

(All parents of x are parents of y and vice-versa and x is not a female.)

(ii)
$$\varphi_A(x,y) = F(x) \land \left(\forall z \big(P(z,y) \to \exists w [P(z,w) \land P(w,y)] \big) \right)$$

(x is a female and given any parent of x, that parent is the grandparent of y.)

(iii) $\varphi_C(x,y) = \forall g \forall p ([P(g,p) \land P(p,x)] \rightarrow [\exists p'(P(g,p') \land P(p',y) \land \neg p = p')]).$

(Note that I've assumed first cousin.)

- (iv) $\varphi_O(x) = \forall p \forall x' (P(p, x) \to x = x').$
- (If p is a parent of x and x' is a human such that p is a parent of x', then x and x' must be the same.)
- (v) Guess $\varphi_H(x,y)$ which says that "x is a husband of y" cannot be defined.

3.

$$\forall n[(\text{Even}(n) \land \neg \exists z (\text{Zero}(z) \land z + 2 = n)) \rightarrow (\exists p \exists q (\text{Prime}(p) \land \text{Prime}(q) \land n = p + q))].$$

- 4. Let \mathcal{A} be a structure of τ . Let $c_{\mathcal{A}}$ denote the fixed element that is assigned to c.
- (A1) $\forall x \forall y \forall z [op(x, op(y, z)) = op(op(x, y), z)].$
- (A2) $\forall x (op(x, c_{\mathcal{A}}) = x).$
- (A3) $\forall x \exists y (op(x, y) = c_{\mathcal{A}}).$
- (A4) $\forall x \forall y \forall z [op(x, z) = op(y, z) \rightarrow x = y].$

5.

- (i) Take the structure \mathcal{A} whose universe just consists of 0. It trivially satisfies ψ .
- (ii) Let \mathcal{A} be the structure with universe as $\{0,1\}$ and + defined as:

$$0+0=0$$
, $0+1=0$, $1+0=0$, $1+1=0$.

This clearly does not satisfy φ_2 .

(iii) No, that is not the case. For example, take \mathcal{A} whose universe consists of all 2×2 invertible matrices with real entries with + defined to multiplication and 0 to be the identity element. Then, it is clear that this \mathcal{A} satisfies ψ but not α as there exist invertible matrices which do not commute.

A simpler (but more abstract) is the S_3 group. You may look it up.

(iv) (a) Let $A = \{0, 1\}$ and let + be defined as

$$0+0=0, 0+1=1, 1+0=1, 1+1=1.$$

This satisfies $\varphi_1 \wedge \varphi_2$ but not ψ .

(b) Let $A = \{0, 1, 2\}$ and let + be defined as

+	0	1	2
0	0	1	2
1	1	0	1
2	2	1	0

Then, A satisfies $\varphi_2 \wedge \varphi_3$ but not ψ as $1 + (1 + 2) = 1 + 1 = 0 \neq 2 = 0 + 2 = (1 + 1) + 2$.

(c) Let \mathcal{A} be the structure with universe as $\{0,1\}$ and + defined as:

$$0 + 0 = 0$$
, $0 + 1 = 0$, $1 + 0 = 0$, $1 + 1 = 0$.

This satisfies $\varphi_1 \wedge \varphi_3$ but not ψ .

7. Let the structure be \mathcal{G} with $u(\mathcal{G}) = \{1, 2\}$. And $E^{\mathcal{G}} = \{(1, 1), (1, 2), (2, 1)\}$.

This satisfies the latter but not the former.

It does not satisfy the former as one can take x=2, then no matter what y is, z takes all possible values. In particular, z takes the value 2. As $(2,2) \notin E^{\mathcal{G}}$, we have it that E(x,z) is not true. Thus, the former sentence is not true.

For the latter sentence, choose x = 1. For y = 1, choose z = 1 and for y = 2, choose z = 1. Thus, we are done.

6. The above example illustrates the difference.

8. (a)
$$\varphi_{45} = (\exists^{\geq 45} x(x=x)) \land \neg (\exists^{\geq 46} x(x \neq x)).$$

(b)
$$\forall x_1 \forall x_2 \dots \forall x_{n-1} \exists x_n (x_n = x_n \land x_n \neq x_{n-1} \land x_n \neq x_{n-2} \land \dots \land x_n \neq x_2 \land x_n \neq x_1).$$

9. By 8. (b), we have shown that $\exists^{\geq n}$ can actually be written as a FO formula. Thus, we can use it freely. So, the answer is simply $(\exists^{\geq n} x(x=x)) \land \neg (\exists^{\geq (m+1)} x(x \neq x))$.