This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) <u>A chiral</u> Chiral dopant having a laterally alkylated phenyl unit of the general formula I:

$$R-(A-Z)_n$$
 Q^* (I)

in which:

Q* is a unit having an asymmetric carbon atom,

K is $-CH_2$ -, -O-, $-CH_2CH_2$ -, $-OCH_2$ -, $-CH_2O$ -, $-OCF_2$ -, $-CF_2O$ -, $-C\equiv C$ -, -CH=CH- or a single bond,

L and M are alkyl, cycloalkyl, O-alkyl, or aryl, where L must be different from M,

R is -H, F, Cl, or an alkyl or alkenyl radical having from 1 to 12 carbon atoms or alkenyl radical having 2 to 12 carbon atoms, which is unsubstituted or at least monosubstituted by halogen, and in which one or more non-adjacent -CH₂-groups are optionally may be replaced by -O- or -S- and/or -C≡C-, as well as F or Cl,

A <u>are</u>, independently of one another, are a single bond, 1,4-phenylene, in which, in addition, one or more H atoms <u>are optionally may be</u> replaced by F, 1,4-cyclohexylene, in which, in addition, one or two CH₂ groups <u>are optionally may be</u> replaced by -O-, or 1,4-bicyclo[2.2.2]octanyl,

Z <u>are</u>, independently of one another, are a single bond, -CH₂-CH₂-, -O-CH₂-,

-CH₂-O-, -CF₂-O-, -O-CF₂-, -CF₂-CF₂- or -C
$$\equiv$$
C-,

V and W <u>are</u>, independently of one another, <u>H</u>, <u>F</u>, <u>Cl</u>, or a <u>are</u> linear or branched alkyl or alkoxy having from 1 to 12 carbon atoms which is unsubstituted or monosubstituted or polysubstituted by halogen, or H, F or Cl,

X and Y <u>are</u>, independently of one another, are <u>H</u>, <u>F</u>, <u>Cl</u>, trimethylsilyl, or a linear or branched alkyl or alkoxy having o or p carbon atoms which is unsubstituted or monosubstituted or polysubstituted by halogen, where

o and p $\frac{\text{are}}{\text{are}}$, independently of one another, $\frac{\text{are}}{\text{are}}$ identical or different and are integers in the range from 1 to 12, H, F or Cl, where in the case of H, F and Cl, o or p = 0, or trimethylsilyl, and

n is from 1 to 3,

with the proviso that X and/or Y is/are either an unsubstituted or halogen-substituted alkyl or alkoxy radical having o or p carbon atoms, where the sum o + p is ≥ 2 , or a trimethylsilyl radical.

2. (Currently Amended) <u>A chiral Chiral</u> dopant according to Claim 1, wherein one of characterised in that unit Q* having an asymmetric carbon atom has the following structure

in which

L and M are alkyl, is cycloalkyl, O-alkyl, alkenyl, alkynyl or aryl, where L must be different from M.

3. (Currently Amended) <u>A chiral Chiral</u> dopant according to Claim 1, wherein characterised in that unit Q* is having an asymmetric carbon atom has one of the

following structures:

$$-O$$
 H $C^*-C_6H_{13}$ (m) $-O$ $C^*-C_2H_5$ (r)

or
$$O \stackrel{H}{\swarrow} C^{*}-C_{2}H_{5}$$
 (s).

4. (Currently Amended) <u>A chiral</u> dopant according to Claim 1, <u>which is a compound of formula (Ia), (Ib) or (Ic)</u> characterised in that it has one of the following basic structures:

$$R-(A-Z)_n$$
 X Q^*

$$R-(A-Z)_n \xrightarrow{\qquad \qquad } Q^* \tag{Ib}$$

$$R-(A-Z)_n \xrightarrow{F} X$$

$$Q^*$$

$$(Ic)_{\underline{\cdot}}$$

- 5. (Cancelled)
- 6. (Currently Amended) <u>A liquid-crystalline Liquid-crystalline mixture</u> comprising at least one chiral dopant according to Claim 1.
- 7. (Currently Amended) <u>An electro-optical</u> Electro-optical display element containing a liquid-crystalline mixture according to Claim 6.
- 8. (New) A chiral dopant according to Claim 1, wherein one of L and M is alkyl.
- 9. (New) A chiral dopant according to Claim 1, wherein both L and M are alkyl.
 - 10. (New) A chiral dopant according to Claim 1, wherein Q* is

$$H_3C$$
 \star
 H_3C
 CH_3
 \star
 CH_3
 CH_3
 \star
 CH_3
 CH_3

$$H_3C$$
 CH_3
 CH_3

$$O_{C^*-C_2H_5}$$
 (s).

11. (New) A chiral dopant according to Claim 3, which is a compound of formula (Ia), (Ib) or (Ic)

$$R-(A-Z)_n$$
 Q^* (Ia)

$$R-(A-Z)_n \xrightarrow{\qquad \qquad } Q^* \tag{Ib}$$

$$R\text{-}(A\text{-}Z)_n \xrightarrow{\qquad \qquad } Q^* \qquad \qquad (Ic).$$

12. (New) A chiral dopant according to Claim 9, which is a compound of formula (Ia), (Ib) or (Ic)

$$R-(A-Z)_n$$
 Q^* (Ia)

$$R-(A-Z)_n \xrightarrow{\qquad \qquad } Q^* \tag{Ib}$$

$$R\text{-}(A\text{-}Z)_n \xrightarrow{\qquad \qquad } Q^* \qquad \qquad (Ic).$$

13. (New) A chiral dopant according to Claim 10, which is a compound of formula (Ia), (Ib) or (Ic)

$$R-(A-Z)_n$$
 Q^* (Ia)

$$R-(A-Z)_n \xrightarrow{\qquad \qquad } Q^* \tag{Ib}$$

$$R-(A-Z)_n \xrightarrow{F} X$$
 (Ic).

14. (New) A chiral dopant according to Claim 1, which is a compound of one of the following formulae

$$R-(A-Z)_n$$
 (laa)

$$R-(A-Z)_n$$
 (lab)

$$R-(A-Z)_{n} \xrightarrow{C_{2}H_{5}} Q^{*}$$

$$R-(A-Z)_{n} \xrightarrow{Q^{*}} Q^{*}$$
 (lad)

$$R-(A-Z)_{n} \xrightarrow{Si(CH_{3})_{3}} Q^{*}$$

$$R-(A-Z)_n$$
 Q^*
 CF_3
(laf)

$$R-(A-Z)_n$$
 Q^* CH_3

$$R-(A-Z)_{n} \xrightarrow{OCH_{3}} Q^{*}$$

$$OCH_{3}$$

$$OCH_{3}$$

$$R-(A-Z)_n$$
 (lai)

$$R-(A-Z)_n \xrightarrow{\qquad \qquad } Q^*$$
 (Iba)

$$R-(A-Z)_n \xrightarrow{\qquad \qquad } Q^* \qquad \qquad (Ibb)$$

$$R-(A-Z)_{n} \xrightarrow{F} C_{2}H_{5}$$

$$Q^{*}$$
(lbc)

$$R-(A-Z)_{n} \xrightarrow{\qquad \qquad } Q^{*}$$
 (Ibe)

$$R-(A-Z)_{n} \xrightarrow{\qquad \qquad } CF_{3}$$

$$CF_{3}$$
 (lbf)

$$R-(A-Z)_n \xrightarrow{ \begin{subarray}{c} \begin{suba$$

$$R-(A-Z)_{n} \xrightarrow{\qquad \qquad \qquad } Q^{*}$$
 (Ibh)
$$OCH_{3}$$

$$R-(A-Z)_{n} \xrightarrow{\qquad \qquad \qquad } Q^{*}$$
 (Ibi)

$$R-(A-Z)_n$$
 Q^*
(Ica)

$$R-(A-Z)_n$$
 Q^*
(Icb)

$$R-(A-Z)_{n} \xrightarrow{F} C_{2}H_{5}$$

$$Q^{*}$$
(Icc)

$$R-(A-Z)_{n} \xrightarrow{F} OC_{2}H_{5}$$

$$Q^{*}$$
(Icd)

$$R-(A-Z)_{n} \xrightarrow{F} Si(CH_{3})_{3}$$
 (Ice)

$$R-(A-Z)_n$$
 P
 Q^*
 CF_3
 CF_3
 CF_3
 CF_3

$$R-(A-Z)_n$$
 Q^*
 (Ici)

- 15. (New) A chiral dopant according to Claim 14, which is a compound of formula (Iab), (Iac), (Iag) or (Ibe).
 - 16. (New) A chiral dopant according to Claim 15, wherein Q* is

$$-O$$
 H $C^{*-}C_{6}H_{13}$ (m) $-O$ $C^{*-}C_{2}H_{5}$ (r)

or
$$O / C^* - C_2 H_5$$
 (s).

 $17. \hspace{0.5cm} \text{(New)} \hspace{0.5cm} A \hspace{0.1cm} \text{chiral dopant according to Claim 1, wherein } R\text{-}(A\text{-}Z)_n \hspace{0.1cm} \text{is of}$ one of the following formulae

$$alkyl \longrightarrow F \qquad \qquad (17)$$

wherein alkyl is an alkyl radical having 1 to 12 carbon atoms, which is straight-chain or branched.

- 18. (New) A chiral dopant according to Claim 17, wherein alkyl is a straight-chain alkyl radical having 1, 2, 3, 4, 5, 6 or 7 carbon atoms.
- 19. (New) A chiral dopant according to Claim 17, wherein R-(A- $Z)_n$ is of formula (5), (7), (9), (17) or (19).
- 20. (New) A chiral dopant according to Claim 1, wherein the compound of formula I is a compound of one of the following formulae

$$R^{1} \longrightarrow \begin{array}{c} F & C_{2}H_{5} \\ Q^{1} & (lac') \end{array}$$

$$R^{1} \xrightarrow{F} F \xrightarrow{Si(CH_{3})_{3}} Q^{1}$$
 (lbe')

R ¹		Q ¹	
		CH	
alkyl———	(5´)	H * CH ₃	(h)
		011	
alkyl	(7´)	H * CH ₃	(h)
Alkyl———————————————————————————————————	(9´)	H * CH ₃	(h)
		011	
alkyl————	(17′)	H * CH ₃	(h)
alkyl———————————————————————————————————	(19´)	H * CH ₃	(h)
alkyl———	(5′)	H ₃ C CH ₃	(i)
alkyl————	(7´)	H ₃ C CH ₃	(i)
alkyl—————	(9′)	H ₃ C CH ₃	(i)

alkyl—	(17′)	H ₃ C CH ₃	(i)
alkyl — — —	(19′)	H ₃ C CH ₃	(i)
alkyl———	(5′)		(m)
alkyl—————	(7')		(m)
alkyl———————————————————————————————————	(9´)		(m)
alkyl———	(17′)	-0 H C*-C ₆ H ₁₃ H ₃ C	(m)
alkyl	(19´)	— O H C*-C ₆ H ₁₃ H ₃ C	(m)
alkyl———	(5´)	-0 C*-C ₂ H ₅	(r)
alkyl————	(7′)	-0 C*-C ₂ H ₅	(r)

alkyl———————————————————————————————————	(9′)	-0 C*-C ₂ H ₅	(r)
alkyl———	(17′)	-0 C*-C ₂ H ₅	(r)
alkyl	(19′)	—O C*-C ₂ H ₅	(r)
alkyl———	(5´)	O H C*-C ₂ H ₅ CH ₃	(s)
alkyl—————	(7′)	O H C*-C ₂ H ₅	(s)
alkyl——————	(9´)	O H C*-C ₂ H ₅	(s)
alkyl————	(17′)	O H C*-C ₂ H ₅ CH ₃	(s)
alkyl———————————————————————————————————	(19′)	O H C*-C ₂ H ₅	(s)

wherein alkyl is a straight-chain alkyl radical having 1 to 7 carbon atoms.

are, each independently of one another, is an alkyl radical and/or an alkoxy radical having from 1 to 7 carbon atoms, which is straight-chain or branched.