

CLOUDNATIVE SECURITYCON

NORTH AMERICA 2023

Network Security at Scale

Bernard Van De Walle, Splunk Mitch Connors, Aviatrix

Meet Your Speakers

Bernard Van De Walle
Principal software engineer, Splunk
K8s, Istio, Envoy operations at scale
Previously at Cruise

Mitch Connors

Principal software engineer, Aviatrix
Istio Member since 2018
Istio TOC

splunk>cloud

• Splunk Cloud: Cloud Native splunk

- Scale: ~ 35 K8s clusters
 - Distributed across all regions
 - AWS and GCP
- Cloud agnostic, K8s, Istio, Envoy

AGENDA

- L3/L4: Cloud Provider
 - VPC
 - Network Load Balancer
- L3/L4: Kubernetes
 - Services
 - Network Policies
- L7: Istio/Envoy
 - AuthN/AuthZ

Cloud Provider L3/L4

Standard VPC

- Isolated standard VPC
- 3 set of subnets:
 - Private for Kubernetes workloads
 - Public for Internet connectivity
 - Internal for Splunk connectivity

Network ACLs

- Stateless
- Applied by subnet
- Basic L3/L4 capabilities
- Provides a catch-all last resort set of rules
- Example:
 - Internal subnet SRC 10.x/8

Kubernetes nodes

- Cluster nodes deployed on private IP space
- Multiple node-groups:
 - Ingress (Gateways)
 - Generic
 - Workload-specific

Security Groups

- Stateful
- Applied per instance
- Allow for fine-grained traffic across specific instances
- Example:
 - Ingress node-group ->Generic node-group

Ingress connectivity

- Connectivity through NLBs
 - Public NLBs
 - Internal NLBs
- Connectivity through Ingress Gateways (Envoy/Istio)

Internal connectivity (transit gateway)

- Internal connectivity through AWS transit gateway
 - Internal SRC IP advertised only
 - Connected to Splunk firewall

Cloud connectivity (Aviatrix)

- Cloud services connectivity through Aviatrix
 - Flat network
 - Supports overlapping IPs

Aviatrix Network Domains

- By Default All connected domains are routable in flat network across clouds, regions, on-prem
- Network Domains limit routes
- Prod can talk to Shared, Dev can talk to Shared, Dev cannot talk to Prod

Kubernetes L3/L4

Kubernetes deployment

- Self-Service platform
- External connectivity ONLY through NLBs
- Pod to pod connectivity and Network policies through Calico

ValidatingWebhook

- Splunk validating webhook
- Denies service type load-balancer
- Plenty of open implementations
 - OPA
 - K-Rail (https://github.com/cruise-automation/k-rail)

NetworkPolicies on K8S

- K8S-centric,L3/L4, stateful
- Implemented by your CNI plugin (Cilium, Calico,...)

```
apiVersion: networking.k8s.io/v1
     kind: NetworkPolicy
     spec:
       podSelector:
         matchLabels:
           app: backend
       ingress:
         - from:
             - podSelector:
                 matchLabels:
                   app: monitor
12
         - from:
13
             namespaceSelector:
                 matchLabels:
                   name: frontend
15
               podSelector:
17
                 matchLabels:
18
                   app: frontend
```


Istio L7

Istio Service Mesh

- Application Layer Networking
 - All POST requests from svc A route to this subset of svc B
 - What is the success latency from svc A to svc B?
 - svc A may send GET requests to svc B only at path /foo/*/bar
- How do we do it?

Istio Service Mesh

In-transit encryption

- Run the mesh in permissive mode
- Monitor the passthrough cluster and alert teams not using mTLS
- Alternative to strict mode

```
Metrics >
    sum(federate:istio_requests_total:sum_rate2m{
        reporter="source",
        k8s_cluster="$cluster",
        destination_service_name="PassthroughCluster"})
    by (destination_service)
```


Gateway provisioning

- Ingress only through NLB/gateways
 - For all types of traffic (HTTP/TCP)
- NLB/Gateways per
 - Ingress source (public/internal)
 - Workload types/Blast radius
- Gateway provisioned in istio-gateway namespace

Ingress setup

- Gateway CRD
 - Istio-gateway namespace
- VirtualService CRD
 - Workload namespace
- Certificate through Let'sEncrypt
- Gated through ValidationWebhook

```
envoy
apiVersion: networking.istio.io/v1betal
                                                        apiVersion: networking.istio.io/vlbetal
                                                        kind: VirtualService
 namespace: istio-gateway
                                                          namespace: myservice
 selector:

    istio-gateway/myservice

   - myservice.splunkcloud.com
     number: 443
                                                                host: myservice.myservice.svc.cluster.local
                                                                 number: 8443
apiVersion: cert-manager.io/vl
 name: acs-cert
 namespace: istio-gateway
```

dnsNames:

name: letsencrypt

Service abstraction layer

- "Golden path" abstraction layer for 80% of the use cases
- A single abstraction layer for:
 - VirtualServices,
 DestinationRules, Gateways and
 ServiceEntry CRD
 - Certificate management
 - DNS management
- OpenAPI spec per service
- Abstraction Layer controller scrapes those openAPI specs

Layer7 Authentication

- Gateways authenticate requests through envoy ExtAuthZ
- extAuthZ-proxy allows plugins by adding them inline
- Bogus requests are blocked on the gateway

• More info: External Authorization — envoy 1.26.0-dev-7cc893 documentation

IP/HTTP AllowList with Istio

- AllowLists on L4-L7
- Mix and match IP and HTTP concepts

```
apiVersion: security.istio.io/vlbetal
     kind: AuthorizationPolicy
     spec:
      action: ALLOW
      rules:
      - from:
         - source:
             ipBlocks:
             -1.2.3.4
         to:
         - operation:
             methods:
12
13
             - GET
             paths:
14
             - /myservice/api/v1/*
15
      selector:
         matchLabels:
17
           istio: ingressgateway-default
```


JWT Auth with Istio

JWT validation in Istio

```
apiVersion: security.istio.io/vlbetal
kind: RequestAuthentication
metadata:
namespace: myservice
spec:
jwtRules:
    - issuer: vault.splunkcloud
    jwks: '{ "keys": [ {"kty": "RSA", "e": "AQAB", "use": "sig", "alg": "RS256", "n": "..."} }
selector:
matchLabels:
lapp.kubernetes.io/name: myservice
```


Life of an ingress request

VPC/K8s apply policies
 per connection

Istio/Envoy apply policies

per request

Pain Points

Running One Proxy Per Instance

- Every instance of every application gets a sidecar instance
- Pros: Envoy can control all traffic
- Cons: So. Many. Envoys.
 - Vertical Scaling becomes extremely expensive.

Managing the Magic

- Pods ≠ Deployment Spec
 - Injection modifies Pods, not Deployments
- Pods ≠ Deployment + Injection
 - Injection only occurs at Pod creation time
- Which version of Envoy?
 - _(ツ)_/

Sidecars can be automatically added to applicable Kubernetes pods using a mutating webhook admission controller provided by lstio.

When you set the istio-injection=enabled label on a namespace and the injection webhook is enabled, any new pods that are created in that namespace will automatically have a sidecar added to them.

-istio.io

Ambient Reduces User Pain

- One L4 Proxy per Node
- One scalable L7 Proxy per Service
 Account + Gateway
- All proxies are managed through Deployments/Daemonsets
- Pods = Deployment Spec
- For more info:

istio.io/latest/blog/2022/introducing-ambient-mesh/

Conclusion

Defense at Every Layer

	Identity	Policy	Observability
VPC Network ACLs	IP/Ports/VM	Network ACLs SecurityGroups	VPC Flow Logs
Aviatrix	Network Domains	Network Domains	Copilot Flow Logs
K8S	IP/Ports/Pods	NetworkPolicy	Node Telemetry
Istio	ServiceAccount Request Headers	AuthN/AuthZ AuthorizationPolicies RequestPolicies	Istio Telemetry

Self-service platforms are hard

- Safeguards to avoid users shooting themselves in the foot
- Provide a Golden Path to avoid configuration errors

• **Defense in depth**: Add redundant security at all layers

Observability is key

- Help debug
- Detect misconfiguration

Please scan the QR Code above to leave feedback on this session