微生物组—宏基因组分析专题研讨会第18期

30 总结

易生信 2023年4月9日

宏基因组实验分析流程

DNA提取

随机打断 测序

质控,(组装 注释)比对

物种功能 组成分析

数据分析的基本思想

大数据

大表

小表

ID	WT6	WT3	0E4	WT2	0E3	WT1
OTU 265	18	18	6	11	20	15
0TU ⁻ 36	63	77	57	194	155	163
OTU_102	2 20	44	18	77	18	43
0TU_49	106	92	25	137	76	65
0TU_276	9	5	22	5	22	5
0TU 186	55	0	3	0	0	2
0TU_58	77	75	28	84	53	64
0TU_111	0	6	3	3	2	2
0TU_30	100	142	78	111	124	145
0TU 51	87	79	21	38	42	102
0TU 135	3	0	1	2	0	1
OTU_113	37	0	1	0	3	0
0TU_18	166	150	126	318	130	265
$0TU^{-}4$	498	343	189	804	224	626
0TU_3	459	690	340	1039	568	580
0TU_704	3	14	12	8	9	4
0TU_14	176	283	110	314	169	232

buzas gibson 0.0571 0.0329 1489.8 0.990

序列: 106~109

特征表: 101~3 X 103~5

统计表: 1~N X 10^{1~3} 图: 10^{1~3}个点和统计信息

宏基因组分析流程

常用物种和功能基因注释数据库(图标右)和对应的软件(图标下)

BIOCONDA

- o Bioconda是conda系统的生物信息软件专用频道,包括4部分:
- o 可用软件清单 http://bioconda.github.io/conda-package index.html
- 软件布署系统,方便用户定制软件及依赖关系
- o 8527个生物信息软件/包及多版本,如收录fastqc就有29个版本
- 超千人添加、修改、升级和维护软件清单
- 。 2017年发布于bioRxiv; 2018年以通讯发表于*Nature Methods*,以后可以优雅的引用它(吃水不忘挖井人),三年内被引600+次
- o 添加频道: conda config --add channels bioconda

质控软件安装

- # 质量评估软件fastqc conda install fastqc fastqc -v # FastQC v0.12.1
- #多样品评估报告汇总multiqc conda install multiqc multigc --version # multigc, version 1.14
- # 质量控制流程kneaddata,安装最新/指定版解决ID问题 conda install kneaddata kneaddata --version # 0.12.0 #如有问题,可用=指定版本

conda install kneaddata=0.12.0

注意记录安装软件版本!

默认安装工作环境兼容的最新 版,保证可运行且功能最全

有问题时安装指定版本,确保 分析结果正确;

分析开始前必须设置环境变量

○ # 公共数据库database位置,如db公用可能为/db,而自己下载可能 为~/db

- \circ db= \sim /db
- # Conda软件software安装目录,如db公用可能为/conda,而自己下载可能为~/miniconda3
- o soft=~/miniconda3
- o #wd为项目工作目录work directory, 如meta
- o wd=~/meta

了解宏基因组分析起始文件(上传到服务器)

o 测序数据:成对测序文件seq/*.fq.gz,通常为压缩的gz格式

```
C1_1.fq.gz C3_1.fq.gz C5_1.fq.gz N1_1.fq.gz N3_1.fq.gz N5_1.fq.gz C1_2.fq.gz C3_2.fq.gz C5_2.fq.gz N1_2.fq.gz N3_2.fq.gz N5_2.fq.gz
```

@SRR3586062.883556

CTTGGGGCTGCTGAGCTTCATGCTCCCCTCCTGCCTCAAGGACAATAAGGAGATCTTCGACAAGCCTGCAGCAGCTCGCATCGACGCCTCATCGCTGAGG

+

GACGGTGTCCTCAGGACCCTTCAGTGCCTTCATGATCTGCTCAGAGGTGATGGAGTCACGGACGAGATTCGTCGTGTCAGCACGTAGGATGCGGTCGCCTG

+

o 实验设计: 样本名和分组 result/metadata.txt

SampleID	Group	Replicate	Sex	Individual	GSA	CRR
C1	Cancer	1	Male	p136	CRA002355	CRR117732
C2	Cancer	2	Male	p143	CRA002355	CRR117733
N6	Normal	6	Female	p156	CRA002355	CRR117743

并行质量控制(质控)实例

○ 样本名列表从命令行管道传入,-j 2控制2个任务并行,红色为需要修改的部分

```
tail -n+2 result/metadata.txt|cut -f1|rush -j 2 \
"kneaddata -i seq/{1}_1.fq.gz -i seq/{1}_2.fq.gz \
-o temp/qc -v -t 3 --remove-intermediate-output \
--trimmomatic ~/miniconda3/envs/kneaddata/share/trimmomatic/ \
--trimmomatic-options 'ILLUMINACLIP:
~/miniconda3/envs/kneaddata/share/trimmomatic/adapters/TruSeq2-
PE.fa:2:40:15 SLIDINGWINDOW:4:20 MINLEN:50' \
--reorder --bowtie2-options '--very-sensitive --dovetail' \
```


2.2 HUMAnN2计算物种和功能组成

mkdir -p temp/humann2

如果数据库位置正确,只需输入文件和输出目录,经rush管理批量任务队列

tail -n+2 result/metadata.txt|cut -f1|rush -j 2 \

'humann2 --input temp/concat/{1}.fq \

--output temp/humann2/'

#核心步骤,测序数据2X8=16线程,用时1h,真实数据可能要几小时至几天

MetaPhIAn2结果常用展示方式

humann2_barplot绘制功能的物种组成

Linear discriminant analysis Effect Size (LEfSe)

LEfSe分析即LDA Effect Size分析,是一种用于发现和解释高维度数据生物标志(基因、通路和分类单元等)的分析工具,可以进行两个或多个分组的比较,它强调统计意义和生物相关性,能够在组与组之间寻找具有统计学差异的生物标志(Biomarker)。

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. *Genome biology*, *12*(6), R60.

STAMP结果组间差异功能扩展柱状图

基于NCBI数据库的Kraken2物种注释


```
### 多样本并行物种注释
```

mkdir -p temp/kraken2

tail -n+2 result/metadata.txt|cut -f1|rush -j 3 \

'kraken2 --db ~/db/kraken2/pluspfp8g --paired temp/qc/{1}*.fastq \

- --threads 3 --use-names --report-zero-counts \
- --report temp/kraken2/{1}.report \
- --output temp/kraken2/{1}.output'
- #屏幕会输出各样品注释比例,和运行时间 10 20 min

Kraken2物种多样性分析

#提取种级别、抽平、计算6种alpha多样性指数

Rscript \$sd/kraken2alpha.R \

- --input result/kraken2/tax_count.mpa \
- --depth 0 \
- --species result/kraken2/tax_count.txt \
- --normalize result/kraken2/tax_count.norm \
- --output result/kraken2/tax_count.alpha

#绘制箱线图,可选richness/chao1/shannon...

Rscript \$sd/alpha_boxplot.R \

- -i result/kraken2/tax_count.alpha \
- -a shannon \
- -d result/metadata.txt \
- -n Group \
- -o result/kraken2/\
- -w 89 -e 59

多样性可视化

o Bracken的Reads更多,Alpha多样性丰富度大于Kraken2的结果

o Beta多样性可选距离有 bray_curtis, euclidean, jaccard, manhattan

dis=bray_curtis

Rscript \$sd/beta_pcoa.R \

- --input result/kraken2/beta/\${dis}.txt \
- --design result/metadata.txt \
- --group Group \
- --width 89 --height 59 \
- --output result/kraken2/pcoa.\${dis}.pdf

统计结果文件: beta_pcoa_stat.txt P值有波动但比较稳定

Sun Jan 03 16:19:07 2021

Cancer Normal 0.300669933006699

P值有波动但比较稳定 Sun Jan 03 17:55:04 2021

Cancer Normal 0.309269073092691

易生信, 毕生缘; 培训版权所有。

物种组成

o 以门(P)/种(S)水平为例,结果包括output.sample/group.pdf两个文件

tax=S

Rscript \${sd}/tax_stackplot.R \

- --input result/kraken2/bracken.\${tax}.txt --design result/metadata.txt \
- --group Group --output result/kraken2/bracken.\${tax}.stackplot \

--legend 8 --width 89 --height 59

易生信, 毕生缘; 培训版权所有。

物种组成——热图

调整输入文件为spf文件,即物种丰度表格

可选分类级Kingdom / Phylum / Class / Order / Family / Genus / Species、分类显示数量

Rscript

db/script/metaphlan_hclust_heatmap.R \

- -i result/kraken2/tax_count.spf \
- -t Genus \
- -n 25 \
- -o result/kraken2/heatmap_Genus

物种组成——箱线图

o #绘制属水平Top30箱线图

Rscript \${db}/script/metaphlan_boxplot.R \

- -i result/kraken2/tax_count.spf \
- -t Genus \
- -n 30 \
- -o result/kraken2/boxplot_Genus

o #绘制门水平Top10箱线图

Rscript \${db}/script/metaphlan_boxplot.R \

- -i result/kraken2/tax_count.spf \
- -t Phylum \
- -n 10 -w 4 -e 2.5 \
- -o result/kraken2/boxplot_Phylum

高水平文章发表前三部曲

-. 图片拼图美化

二. 原始数据上传存档

三. 整理图表对应数据和分析代码

Yong-Xin Liu, Yuan Qin, Tong Chen, Meiping Lu, Xubo Qian, Xiaoxuan Guo & Yang Bai. A practical guide to amplicon and metagenomic analysis of microbiome data. *Protein & Cell* 2021,12:315, https://doi.org/10.1007/s13238-020-00724-8

Protein Cell: 扩增子和宏基因组数据分析实用指南

扫码关注生信宝典, 学习更多生信知识

扫码关注宏基因组, 获取专业学习资料

易生信,没有难学的生信知识

