Misura della caratteristica di un transistor BJT P-N-P in configurazione a emettitore comune

Bertasi Leonardo, Perniola Davide

Quarto turno

1 Introduzione

Il transistor BJT è un dispositivo bipolare a tre terminali, costituito quindi da tre regioni di semiconduttore con drogaggio alternato p-n-p o n-p-n. Le tre regioni sono chiamate emettitore, base e collettore. In questa prova abbiamo utilizzato transistor BJT 2N3906(BU) Silicio P-N-P in configuarzione a emettitore comune e misurato, utilizzando due diverse correnti di base I_B , la caratteristica di uscita, ovvero la corrente di collettore I_C in funzione della tensione tra collettore ed emettitore V_{CE} . Inoltre durante la prova sono stati utilizzati due potenziometri da $100k\Omega$ e $1k\Omega$, un alimentatore di bassa tensione un multimetro digitale e un oscilloscopio. Il circuito realizzato è riporato in Figura 1.

2 Risultati

In Tabella 1 e 2 sono riporate le misure dei valori di I_C e V_{CE} effettuate con corrente di base I_B rispettivamente di $(-0.21 \pm 0.02)mA$ e $(-0.11 \pm 0.02)mA$. Gli errori sui valori misurati con l'oscilloscopio sono stati ricavati considerando la somma quadratica dell'errore sulla lettura, sullo zero e del costruttore, secondo la relazione

$$\sigma = \sqrt{(\sigma_L + \sigma_Z)^2 + \sigma_C^2}$$

In Figura 2 sono riportati i risultati del fit ai dati sperimentali, effettuato nella regione attiva ($|V_{CE}| > 1$). Per ciascun valore di V_B , il parametro p_0 rappresenta la tensione di early, p_1

Figura 1: Rappresentazione schematica del circuito realizzato.

F.S(mV/div)	V(mV)	I(mA)
1000	-4000 ± 156	-37.54 ± 0.57
1000	-3800 ± 152	-36.69 ± 0.56
1000	-3600 ± 147	-36.41 ± 0.56
500	-3400 ± 114	-35.83 ± 0.55
500	-3200 ± 108	-35.65 ± 0.54
500	-3000 ± 103	-35.53 ± 0.54
500	-2800 ± 98	-35.16 ± 0.54
500	-2600 ± 93	-34.78 ± 0.53
500	-2400 ± 88	-34.53 ± 0.53
500	-2200 ± 83	-34.10 ± 0.52
500	-2000 ± 78	-33.85 ± 0.52
500	-1800 ± 74	-33.37 ± 0.51
500	-1600 ± 69	-32.82 ± 0.50
500	-1400 ± 65	-32.62 ± 0.50
500	-1200 ± 62	-32.08 ± 0.49
500	-1000 ± 58	-31.54 ± 0.48
500	-900 ± 57	-31.18 ± 0.48
500	-800 ± 55	-30.79 ± 0.47
500	-700 ± 54	-30.22 ± 0.46
500	-600 ± 53	-29.46 ± 0.45
200	-500 ± 25	-28.67 ± 0.44
100	-450 ± 17	-27.51 ± 0.42
100	-400 ± 16	-26.78 ± 0.41
100	-350 ± 15	-25.82 ± 0.40
100	-300 ± 13	-24.60 ± 0.48
100	-250 ± 13	-22.93 ± 0.45
100	-200 ± 12	-20.75 ± 0.32
100	-150 ± 11	-15.03 ± 0.24
100	-100 ± 10	-9.24 ± 0.15
50	-80 ± 6	-4.48 ± 0.08
50	-60 ± 5	-2.31 ± 0.04
50	-50 ± 5	-1.43 ± 0.03

Tabella 1: Risultati delle misure effettuate con corrente di base $I_B = -210 \mu A$

F.S(mV/div)	V(mV)	I(mA)
1000	-4000 ± 156	-19.32 ± 0.30
1000	-3800 ± 152	-19.37 ± 0.30
1000	-3600 ± 147	-19.28 ± 0.30
500	-3400 ± 114	-19.15 ± 0.30
500	-3200 ± 108	-19.15 ± 0.30
500	-3000 ± 103	-19.03 ± 0.30
500	-2800 ± 98	-18.96 ± 0.29
500	-2600 ± 93	-18.62 ± 0.29
500	-2400 ± 88	-18.55 ± 0.29
500	-2200 ± 83	-18.40 ± 0.29
500	-2000 ± 78	-18.29 ± 0.28
500	-1800 ± 74	-17.92 ± 0.28
500	-1600 ± 69	-17.70 ± 0.28
500	-1400 ± 65	-17.53 ± 0.27
500	-1200 ± 62	-17.34 ± 0.27
500	-1000 ± 58	-17.25 ± 0.27
500	-900 ± 57	-17.03 ± 0.27
500	-800 ± 55	-16.91 ± 0.26
500	-700 ± 54	-16.83 ± 0.26
500	-600 ± 53	-16.57 ± 0.26
200	-500 ± 25	-16.58 ± 0.26
100	-450 ± 17	-16.40 ± 0.26
100	-400 ± 16	-16.27 ± 0.25
100	-350 ± 15	-16.08 ± 0.25
100	-300 ± 13	-15.57 ± 0.24
100	-250 ± 13	-14.79 ± 0.23
100	-200 ± 12	-13.94 ± 0.22
100	-150 ± 11	-11.25 ± 0.18
100	-100 ± 10	-6.13 ± 0.10
50	-80 ± 6	-2.87 ± 0.05
50	-60 ± 5	-1.31 ± 0.03
50	-50 ± 5	-0.83 ± 0.02

Tabella 2: Risultati delle misure effettuate con corrente di base $I_B = -110 \mu A$

Analisi Ic-Vc Transistor a 100 IB

Analisi Ic-Vc Transistor a 200 IB

Figura 2: Rappresentazione schematica del circuito realizzato.

3 Conclusioni

Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e Lo scopo di questa prova è stato misurare le caratterisrticge e