

Sistemas Digitais (SD)

Elementos de Tecnologia Funções Lógicas

Aula Anterior

Na aula anterior:

- ▶ Álgebra de Boole
 - Operações básicas
 - Propriedades
 - Portas Lógicas
- ▶ Leis de DeMorgan
 - Simplificação algébrica

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

- ▶ Elementos de Tecnologia
 - Circuitos integrados
 - Famílias lógicas
- ▶ Funções lógicas
 - Circuitos com portas NAND
 - Circuitos com portas NOR

Bibliografia:

- M. Mano, C. Kime: Secções 6.1, 2.1 a 2.2, 2.8 a 2.9
- G. Arroz, J. Monteiro, A. Oliveira: Secções 3.1, 3.2 e 2.1

ELEMENTOS DE TECNOLOGIA

- Os circuitos digitais são realizados com circuitos integrados.
- Um circuito integrado é um cristal semicondutor, habitualmente de silício, que contém os componentes electrónicos que formam as portas lógicas. É habitualmente designado por chip.

O chip é montado dentro de um empacotamento cerâmico ou plástico e são construídas ligações do chip para os pinos externos do integrado.

O número de pinos pode variar entre 14 (para os empacotamentos mais pequenos) e várias centenas.

 Os circuitos integrados podem ser classificados segundo o nº de portas lógicas que utilizam:

SSI (Small-scale integration)	MSI (Medium-scale integration)	LSI (Large-scale integration)	VLSI (Very Large-scale integration)
≤10 Portas	≤100 Portas	≤10.000 Portas	>10.000 portas
Portas básicas (AND, OR,)	Funções elementares (ADD, SUB)	Processadores simples	Processadores complexos (ex.: microprocessadores)

- O desenho de circuitos VLSI tipicamente baseia-se em linguagens específicas de descrição de hardware, nomeadamente VHDL e Verilog.
 - ▶ Exemplo:

```
-- import std_logic from the IEEE library
library IEEE;
use IEEE.std_logic_1164.all;
-- this is the entity
entity ANDGATE is
  port (
        I1 : in std_logic;
        I2 : in std_logic;
        O : out std_logic);
end entity ANDGATE;
-- this is the architecture
architecture RTL of ANDGATE is
begin
        O <= I1 and I2;
end architecture RTL;</pre>
```


■ Bolachas de silício e interligações:

	Intel 4004	Intel Core2
Diam. waffer	50 mm	300 mm
N. Transistores	$2,3 \times 10^3$	4 x 10 ⁸
Pistas (fios)	10 x 10 ⁻⁶ m	45 x 10 ⁻⁹ m

Processadores

INTEL 4004

Ano: 1971

Freq.: 108 kHz 2.300 Trans.

INTEL 8086

Ano: 1978

Freq.: 5 MHz

29.000 Trans.

INTEL Pentium 4

Ano: 2000

Freq.: 1,5 GHz

42.000.000 Trans.

INTEL Core i7 (quad)

Ano: 2008

Freq.: 3 GHz

731.000.000 Trans.

Tecnologias:

- ▶ Os CIs são também classificados de acordo com a tecnologia em que são fabricados.
- ▶ Os circuitos de uma dada tecnologia agrupam-se em famílias lógicas segundo os circuitos electrónicos que constituem as suas portas básicas.
- ► Historicamente, as tecnologias mais importantes são:

Abrev.	Nome completo	Observações
RTL	Resistor-Transistor Logic	Drimaires famílias lágiases, completemente absolutes
DTL	Diode-Transistor Logic	Primeiras famílias lógicas - completamente obsoletas.
TTL	Transistor-Transistor Logic	Popular e barata. Disponível um grande número de componentes SSI e MSI. Usada durante várias décadas.
ECL	Emitter-Coupled Logic	Usada em alguns circuitos que operam em alta frequência.
MOS (pMOS,nMOS)	Metal-Oxide Semiconductor	
CMOS	Complementary Metal-Oxide Semiconductor	Baixo consumo de potência. Grande capacidade de integração. Tecnologia actualmente dominante.
BiCMOS	Bipolar Complementary Metal-Oxide Semiconductor	Combina CMOS com TTL, usada em casos em que só CMOS não garante capacidade de "drive".
GaAs	Gallium-Arsenide	Usada em circuitos que operam em muito alta frequência.

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

LEI DE MOORE

O número de transistores num circuito integrado duplica a cada 2 anos

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

LEI DE MOORE

Durante a última década, limitações tecnológicas têm vindo a impor tectos difíceis de ultrapassar...

Componentes TTL:

- Designação:
 - 54 / 74 Série 74 = standard
 Série 54 = aplicações militares

- L / LS / S / " " / H tipos diferentes de transístores e compromissos diferentes de velocidade vs. potência dissipada.
- A família LS é actualmente a mais popular.

		Atraso	Potência Dissipada	Produto Pot.*Atr.
74	Standard	10 ns	10 mW	100 pJ
74LS	Low-Power Schottky	9,5 ns	2 mW	19 pJ
74S	Schottky	3 ns	19 mW	57 pJ
74L	Low-Power	33 ns	1 mW	33 pJ
74H	High-Power	6 ns	22 mW	132 pJ

Componentes TTL:

► Exemplos:

Exemplo de Componentes Disponíveis						
Dispositivo	Função					
'00	4 NAND2					
'02	4 NOR2					
'04	6 NOT					
'08	4 AND2					
'20	2 NAND4					
'21	2 AND4					
'27	3 NOR3					
'30	1 NAND8					
'32	4 OR2					
'126	4 Buffers Tri-State					
'136	4 XOR2					

Níveis lógicos:

- V_{OH} Tensão mínima de saída fornecida pela porta lógica, quando a saída se encontra no nível lógico alto (HIGH)
- V_{OL} Tensão máxima de saída fornecida pela porta lógica, quando a saída se encontra no nível lógico baixo (LOW)
- V_{IH} Tensão mínima de entrada interpretada pela porta lógica como nível lógico alto (HIGH)
- V_{IL} Tensão máxima de entrada interpretada pela porta lógica como nível lógico baixo (LOW)

Níveis lógicos:

ΔH e ΔL - Correspondem às margens de ruído, i.e., à diferença máxima entre os níveis de tensão fornecidos pelas saídas e os níveis de tensão admitidos nas entradas para uma interpretação correcta dos sinais.

Níveis lógicos:

► Famílias lógicas diferentes consideram, em geral, limites de tensão diferentes para a interpretação dos níveis lógicos

FAN-IN e FAN-OUT:

Fan-In: Nº de entradas disponíveis de uma porta lógica.

Fan-Out: Nº de entradas de portas lógicas a que podemos ligar a

saída de uma porta, sem degradar o desempenho do

circuito.

➤ Os circuitos MOS podem ser ligados a um nº grande de outras portas MOS sem degradação do sinal, mas o atraso aumenta com o nº de ligações.

▶ A velocidade de operação das portas TTL não depende do fan-out, mas a qualidade do sinal degrada-se a partir de um certo nº de ligações.

Lógica positiva:

- ▶ Os catálogos dos fabricantes definem as portas lógicas em termos dos níveis H – "High", e L – "Low", e não dos valores lógicos 0 e 1.
 - Sistema de lógica positiva: H ≡ 1, L ≡ 0.
 - Sistema de **lógica negativa**: H ≡ 0, L ≡ 1.

Atribuição de nomes a sinais:

- ▶ Os nomes dos sinais são uma forma importante de documentação. Devem ser usados nomes que ajudem a perceber a função de cada sinal:
 - se um determinado sinal faz acender um LED deve ser designado, por exemplo, como AcendeLED, e não como X3.

- ▶ É também importante distinguir se o sinal faz acender o LED quando tem o valor H ou quando tem o valor L.
- ► Esta distinção é feita habitualmente usando os sufixos _H ou _L. Diz-se, no primeiro caso, que o sinal é activo a H (ou activo a 1) e, no segundo caso, que o sinal é activo a L (ou activo a 0).
 - AcendeLED_H o sinal é activo a H, quer dizer que acende o LED quando o sinal vale H.
 - AcendeLED_L o sinal é activo a L, quer dizer que acende o LED quando o sinal vale L.

Nota: quando o sufixo é omisso considera-se habitualmente que o sinal é activo a H.

FUNÇÕES LÓGICAS

Existem 16 funções de 2 variáveis Booleanas:

X	y	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅ 1 1 1 1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

► Funções já conhecidas:

$$f_0(x, y) = 0$$
 $f_{10}(x, y) = y$
 $f_3(x, y) = \overline{x}$ $f_{12}(x, y) = x$
 $f_5(x, y) = \overline{y}$ $f_{14}(x, y) = x + y$ **OR**
 $f_8(x, y) = x \cdot y$ **AND** $f_{15}(x, y) = 1$

Funções NOR e NAND:

$$f_1(x, y) = \overline{x} \cdot \overline{y} = \overline{x + y}$$
 NOR
 $f_7(x, y) = \overline{x} + \overline{y} = \overline{x} \cdot \overline{y}$ NAND

Funcionam como uma porta OR (ou uma porta AND) seguida de uma porta NOT

X	У	f_1	f_7
0	0	1	1
0	1	0	1
1	0	0	1
1	1	0	0

► Simbologia:

Nas tecnologias mais comuns (p.ex. CMOS), as portas NOR e NAND (portas inversoras) requerem menos transístores que as portas OR e AND (portas não inversoras).

De facto, as portas OR e AND é que são habitualmente realizadas com um porta NOR ou NAND seguida de uma porta NOT.

Funções OU-EXCLUSIVO:

$$f_6(x, y) = \overline{x} \cdot y + x \cdot \overline{y} = x \oplus y$$
 XOR
 $f_9(x, y) = \overline{x} \cdot \overline{y} + x \cdot y = \overline{x \oplus y}$ **XNOR**

XOR é verdadeira se uma e apenas uma das 2 entradas for verdadeira.

X	У	f_6	f_9
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

▶ Simbologia:

Funções baseadas no operador Booleano IMPLICAÇÃO:

▶ Simbologia:

Estas funções não estão habitualmente disponíveis como portas lógicas básicas para realização de sistemas digitais.

Portas com mais de 2 entradas:

- ► As operações AND e OR (e consequentemente as portas NAND e NOR) são facilmente generalizáveis para N-entradas.
- Uma porta AND de N entradas tem a saída a 1 sse todas as entradas estiverem a 1.
- ▶ Uma porta OR de N entradas tem a saída a 1 se pelo menos uma entrada estiver a 1.

▶ Simbologia:

■ Função OU-EXCLUSIVO com mais de 2 entradas:

$$x \oplus y \oplus z = (x \oplus y) \oplus z$$

► A porta XOR de 3 entradas é verdadeira se uma e apenas uma das 3 entradas for igual a 1, ou se as 3 entradas forem iguais a 1.

$$x_1 \oplus x_2 \oplus x_3 \oplus \cdots \oplus x_N = (((x_1 \oplus x_2) \oplus x_3) \oplus \cdots) \oplus x_N$$

- A porta XOR de N entradas é verdadeira se o número de entradas iguais a 1 for ímpar.
- ▶ De facto e embora usada genericamente, a designação OU-exclusivo só é estritamente correcta para a função de 2 variáveis.
- ► As funções de paridade são muito utilizadas em sistemas de comunicação que requerem detecção de erros: um bit de paridade é habitualmente usado para detectar erros de transmissão.

Circuitos com portas NAND:

- ► A porta NAND é considerada uma porta universal porque qualquer circuito digital pode ser realizado apenas com portas NAND.
- Qualquer função booleana é realizável apenas com portas NAND por substituição directa das operações NOT, AND e OR.
- ► A operação NOT é normalmente considerada em sentido lato, como uma NAND de 1 entrada.

Nalgumas tecnologias (p.ex. TTL) as portas NAND são as portas mais simples (portanto mais baratas), pelo que é vantajosa a realização de circuitos só com NANDs.

Circuitos com portas NAND (cont.):

▶ Uma função representada na forma de uma soma de produtos pode ser transformada numa forma directamente realizável apenas com portas NAND por simples aplicação da lei de DeMorgan.

$$f = x_1 \overline{x}_2 + \overline{x}_3 x_2 = \overline{x_1 \overline{x}_2 + \overline{x}_3 x_2} = \overline{x_1 \overline{x}_2} \cdot \overline{x}_3 x_2$$
$$= (x_1 \ nand \ \overline{x}_2) \ nand \ (\overline{x}_3 \ nand \ x_2)$$

Circuitos com portas NOR:

NOT -

Dual:

- Qualquer circuito pode ser realizado apenas com portas NOR.
- No caso de a função estar representada como um produto de somas, a transformação mantém a estrutura.

$$g = (x_1 + \overline{x}_2) \cdot (\overline{x}_3 + x_2) = \overline{(x_1 + \overline{x}_2) \cdot (\overline{x}_3 + x_2)} = \overline{(x_1 + \overline{x}_2) + (\overline{x}_3 + x_2)}$$
$$= (x_1 nor \overline{x}_2) nor (\overline{x}_3 nor x_2)$$

PRÓXIMA AULA

Próxima Aula

Tema da Próxima Aula:

- ▶ Funções lógicas:
 - Circuitos com portas NAND;
 - Circuitos com portas NOR;
- ▶ Representações normalizadas:
 - Soma de produtos;
 - Mintermos;
 - Produto de somas;
 - Maxtermos;
- ► Funções incompletamente especificadas.

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás