## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-130039

(43)Date of publication of application: 09.05.2002

(51)Int.CI.

F02D 45/00 F02D 41/18

(21)Application number: 2000-326108

(71)Applicant: TOYOTA MOTOR CORP

**DENSO CORP** 

(22)Date of filing:

25.10.2000

(72)Inventor: KOBAYASHI DAISUKE

**OHATA AKIRA MUTO HARUFUMI DODA HISAYO** 

#### (54) FLOW RATE CALCULATING DEVICE

### (57)Abstract:

PROBLEM TO BE SOLVED: To provide a flow rate calculating device capable of precisely calculating the flow rate of fluid passing through a ventilation path.

SOLUTION: This flow rate calculating device calculates the air flow rate passing through a throttle valve 23 provided on the way to an intake pipe 20. On the assumption that the flow rate of fluid passing the throttle valve 23 is set to mt, the opening area of the throttle valve 23 is set to Ad, an upstream pressure in the upstream side of the throttle valve 23 is set to Pu, an upstream density in the upstream side of the throttle valve 23 is set to pu, a downstream pressure in the downstream side of the throttle valve is set to Pd, and a specific heat ratio of the passing air is set to k, the air flow rate mt is calculated from the following expression. mt= Ad.(Pu.pu)1/2.((((k-1)/(2.k)).(1-Pd/Pu)+Pd/Pu).(1-Pd/Pu))1/2.



#### LEGAL STATUS

[Date of request for examination]

16.07.2003

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]



JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

#### **CLAIMS**

[Claim(s)]

[Claim 1] In the flow rate calculation equipment which computes the flow rate of the fluid which passes the variable-aperture section prepared in the middle of an aeration path The opening area of mt and said variable-aperture section for the flow rate of said fluid which passes said variable-aperture section Ad, The upper consistency of the upstream of said variable-aperture section [ in / for the upper pressure of the upstream of said variable-aperture section in said aeration path / Pu and said aeration path ] rhou, Flow rate calculation equipment characterized by having an operation means to compute the flow rate mt of said fluid by the following formulas when the ratio of specific beat of Pd and said fluid is set to k for the down-stream pressure of the downstream of said variable-aperture section in said aeration path.

mt=Ad (Pu-rhou), 1/2 (k-1) (/(2andk)) (-(1-Pd/Pu)+Pd/Pu) (- (1-Pd/Pu)), 1/2.

[Claim 2] Said operation means is flow rate calculation equipment according to claim 1 characterized by computing the flow rate mt of said fluid using the following formulas. mt=Adand(Pu-rhou) 1/2, andphi (Pd/Pu).

In addition, Function phi (Pd/Pu) is 1/2 at the time (k-1) of 1/2 and (Pd/Pu)> (1/(1+k)) (/(2andk)) (-(1-Pd/Pu)+Pd/Pu) (- (1-Pd/Pu)) at the time (k/(2-(k+1))) of (Pd/Pu)<= (1/(1+k)).

[Claim 3] Said variable-aperture section is flow rate calculation equipment according to claim 1 or 2 characterized by being the throttle valve prepared in an internal combustion engine's inhalation-of-air path. [Claim 4] Said variable-aperture section is flow rate calculation equipment according to claim 1 or 2 which is a duty control valve and is characterized by setting up said opening area based on duty ratio.

[Translation done.]

#### \* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

#### **DETAILED DESCRIPTION**

[Detailed Description of the Invention]

[Field of the Invention] This invention relates to the flow rate calculation equipment which computes the flow rate of the fluid which passes the variable-aperture section prepared in the middle of an aeration path. [0002]

[Description of the Prior Art] It is the inhalation air content calculation approach which computes the air content inhaled by an internal combustion engine's gas column through the inlet pipe equipped with the throttle valve, and it considers that a throttle valve is an orifice and what calculates the air content which passes through that according to throttle opening using the formula of hydrodynamics is known so that JP,6-74076,A may indicate an aeration path conventionally as the technical technique which computes the flow rate of flowing fluid and which carries out flow rate calculation.

[0003] This flow rate calculation approach presupposes that it computes so that next presumed calculation may not be influenced, even if there is that presumed error while raising the presumed precision of a flow rate using a real pressure on the occasion of flow rate calculation.

[0004]

[Problem(s) to be Solved by the Invention] however, the fluid which uses the relational expression of adiabatic change and circulates by this flow rate calculation approach -- setting -- etc. -- from [ computing the flow rate on the assumption that entropy conditions are satisfied ] -- etc. -- there is a trouble that an exact flow rate is uncomputable under the situation that entropy conditions are not satisfied. Since \*\* entropy conditions are not necessarily satisfied when computing the air content which flows an internal combustion engine's inlet pipe especially, calculation of an exact flow rate is difficult.

[0005] Then, this invention is made in order to solve such a trouble, and it aims at offering the flow rate calculation equipment which can compute the flow rate of flowing fluid for an aeration path correctly. [0006]

[Means for Solving the Problem] Namely, the flow rate calculation equipment concerning this invention is set to the flow rate calculation equipment which computes the flow rate of the fluid which passes the variable-aperture section prepared in the middle of an aeration path. The opening area of mt and the variable-aperture section for the flow rate of the fluid which passes the variable-aperture section Ad, When the ratio of specific beat of Pd and a fluid is set to k, the down-stream pressure of the downstream of the variable-aperture section [ in / for the upper consistency of the upstream of the variable-aperture section / in / for the upper pressure of the upstream of the variable-aperture section in an aeration path / Pu and an aeration path / rhou and an aeration path ] It is characterized by having an operation means to compute the flow rate mt of a fluid by the following formulas. mt=Ad (Pu-rhou), 1/2 (k-1) (/(2andk)) (-(1-Pd/Pu)+Pd/Pu) (-(1-Pd/Pu)), 1/2.

[0007] Moreover, the flow rate calculation equipment concerning this invention is characterized by the above-mentioned operation means computing the flow rate mt of a fluid using the following formulas. mt=Adand(Pu-rhou) 1/2, andphi (Pd/Pu). In addition, Function phi (Pd/Pu) is 1/2 at the time (k/(2-(k+1))) of  $(Pd/Pu) \le (1/(1+k))$ , and is 1/2 at the time (k-1) of  $(Pd/Pu) \ge (1/(1+k))$  (/(2andk)) (-(1-Pd/Pu)+Pd/Pu) (-(1-Pd/Pu)).

[0008] Moreover, the flow rate calculation equipment concerning this invention is characterized by the above-mentioned variable-aperture section being the throttle valve prepared in an internal combustion engine's inhalation-of-air path.

[0009] Moreover, the above-mentioned variable-aperture section is a duty control valve, and the flow rate calculation equipment concerning this invention is characterized by setting up opening area based on duty

[0010] According to these invention, since the flow rate of a fluid is computed without being based on the relational expression of adiabatic change, calculation of the flow rate of a fluid can compute correctly under the conditions on which entropy conditions are not satisfied. [0011]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained to a detail with reference to an accompanying drawing. In addition, in explanation of a drawing, the same sign is given to the same element, and the overlapping explanation is omitted.

(The first operation gestalt)

[0012] The explanatory view of the flow rate calculation equipment applied to this operation gestalt at drawing 1 is shown.

[0013] As shown in this Fig., the flow rate calculation equipment concerning this operation gestalt is applied to the calculation of an air content which passes the throttle valve 23 of the inlet pipe 20 of an engine 2. The engine 2 is equipped with the adjustable valve timing device 5 in which have a good fluctuation valve system, for example, the closing motion timing of an inlet valve 3 and an exhaust valve 4 is changed. [0014] It connects with ECU6 electrically, and the adjustable valve timing device 5 operates based on the control signal outputted from ECU6, and outputs the detecting signal about valve timing to ECU6 through the detection sensors 7, such as a cam position sensor.

[0015] The crank position sensor 12 is formed in the engine 2. The crank position sensor 12 is a sensor which detects an engine speed, and it connects with ECU6 and it outputs the appearance signal for necropsy to ECU6.

[0016] The injector 9 which injects a fuel is formed in the combustion chamber 8 at the engine 2. An injector 9 is a fuel-injection means to supply a fuel to a combustion chamber 8, and is installed every cylinder 10 with which an engine 2 is equipped. The combustion chamber 8 is formed above the piston 11 arranged in the cylinder 10. The inlet valve 3 and the exhaust valve 4 are arranged in the upper part of a combustion chamber 8.

[0017] The inlet pipe 20 which consists of an intake manifold etc. is connected to the upstream of an inlet valve 3. The air cleaner 22 is installed in the upstream of an inlet pipe 20. Moreover, the throttle valve 23 is formed in the middle of the inlet pipe 20.

[0018] A throttle valve 23 is the variable-aperture section prepared in the middle of an inhalation-of-air path, operates based on the control signal of ECU6, changes throttle opening, and changes the opening area of an inhalation-of-air path in connection with it. The throttle opening of a throttle valve 23 is detected by the throttle position sensor 24, and is inputted into ECU6.

[0019] The air flow meter 25 is formed in the down-stream location of an air cleaner 22. An air flow meter 25 is an inhalation air content detection means to detect an inhalation air content. The detecting signal of an air flow meter 25 is inputted into ECU6.

[0020] ECU6 controls the whole equipment of flow rate calculation equipment, and the computer containing CPU, ROM, and RAM is constituted as a subject. The various control routines which contain a flow rate calculation routine in ROM are memorized.

[0021] Next, actuation of the flow rate calculation equipment concerning this operation gestalt is explained. [0022] <u>Drawing 2</u> is a flow chart which shows actuation of flow rate calculation equipment.

[0023] Step S10 (it is only hereafter indicated as "S10".) of this Fig. Suppose that it is the same about other steps. Reading of the throttle opening TA, engine-speed NE, and valve timing VT is performed.

[0024] Reading of the throttle opening TA is performed based on the output signal of a throttle position sensor 24. Reading of an engine speed NE is performed based on the output signal of the crank position sensor 12. Reading of valve timing VT is performed based on the output signal of the detection sensor 7. [0025] And it shifts to S12 and the operation of the air flow rate mt which passes the throttle valve 23 of an inlet pipe 20 is performed. The operation of this air flow rate mt is performed based on the following formula (1).

[0026]

mt=Adand(Pu-rhou) 1/2, andphi (Pd/Pu) .... (1)

[0027] Here, Function phi (Pd/Pu) is 1/2 at the time (k/(2-(k+1))) of  $(Pd/Pu) \le (1/(1+k))$ , and are the time (k-1) of (Pd/Pu) > (1/(1+k)) (/(2andk)) (-(1-Pd/Pu)+Pd/Pu) (1-Pd/Pu), and 1/2.

[0028] Moreover, it is the ratio of specific beat of the air with which the upper pressure of the upstream of the throttle valve 23 of an inlet pipe 20 and rhou are inhaled for opening area [ in / in Ad / the location of the throttle valve 23 of an inlet pipe 20 ], and Pu, and the down-stream pressure of the downstream of the

throttle valve 23 of an inlet pipe 20 and k are inhaled for the upper consistency of the upstream of the throttle valve 23 of an inlet pipe 20, and Pd.

[0029] The operation of the concrete air flow rate mt is performed as follows.

[0030] Since it is decided that an air flow rate and the pressure-of-induction-pipe force will be meaning when an engine 2 is a steady state, if the amount of steady flows at this time is set to mtTA and static pressure is set to PdTA, the following formula (2) will be materialized based on an above-mentioned formula (1).

[0031]

mtTA=Adand(Pu-rhou) 1/2, andphi (PdTA/Pu) .... (2)

[0032] Here, if it supposes that a formula (1) is materialized also in transients other than a steady state, and is dealt with as that for which Ad (Pu-rhou) and 1/2 do not depend on up-and-down differential pressure by the same throttle opening in a formula (1) and a formula (2) and Ad (Pu-rhou) and 1/2 are eliminated by the formula (1) and the formula (2), the following formula (3) will be obtained.

[0033]

Mt=mtTA-phi(Pd/Pu)/phi (PdTA/Pu) .... (3)

[0034] And since the throttle opening TA, engine-speed NE, and valve timing VT can determine mtTA at the time of a steady state, and phi (PdTA/Pu), mtTA/phi (PdTA/Pu) is set up as a table of the throttle opening TA, engine-speed NE, and valve timing VT, and phi (Pd/Pu) is set up as a table of Pd.

[0035] Thereby, according to the throttle opening TA, engine-speed NE, and valve timing VT, the air flow rate mt which passes a throttle valve 23 is computable using a formula (3).

[0036] In addition, in calculation of the above-mentioned air flow rate mt, the air flow rate mt of a transient may be computed by setting up mtTA and PdTA at the time of a steady state as a table of the throttle opening TA, engine-speed NE, and valve timing VT, respectively, setting up phi (Pd/Pu) as a table of Pd, and referring to by Pd and PdTA.

[0037] Moreover, since the inhalation air content to the throttle opening TA and an engine 2 is equal in the case of a steady state, the air flow rate mt of a transient may be computed by setting up PdTA as a table of the throttle opening TA, engine-speed NE, and valve timing VT, computing mtTA, setting up phi (Pd/Pu) as a table of Pd, and referring to by Pd and PdTA with a charging efficiency.

[0038] Moreover, the upper pressure Pd may form a pressure sensor in an inlet pipe 20, may use an actual measurement for it, and may determine it by presumption from detection values, such as an air flow meter 25. Furthermore, the table of phi (Pd/Pu) may set an argument to Pd, or may make it Pd/Pu.

[0039] Next, the calculation result in the flow rate calculation equipment concerning this operation gestalt is explained.

[0040] The calculation result of the throttle passage air content in the flow rate calculation equipment applied to this operation gestalt at <u>drawing 3</u>, the calculation result of the throttle passage air content in the flow rate calculation equipment used as the example of a comparison, and the observation result of a high response flowmeter are shown. Time amount change of throttle opening [ in / in <u>drawing 4</u> / calculation of <u>drawing 3</u> ] and <u>drawing 5</u> express time amount change of the pressure-of-induction-pipe force (intake pressure).

[0041] As shown in <u>drawing 3</u>, it turns out that the calculation result in the flow rate calculation equipment concerning this operation gestalt is well followed in the actual measurement of a high response flowmeter, and the flow rate is computed correctly. On the other hand, it turns out that the calculation result in the flow rate calculation equipment used as the example of a comparison is not followed in the part into which the passage air content started at the actual measurement of a high response flowmeter, and the flow rate is not computed correctly.

[0042] Here, what computes the throttle passage air content mt based on the following formula (4) was used for the flow rate calculation equipment used as the example of a comparison.

mt=Ad (Pu-rhou), 1/2, phi 1 (Pd/Pu) .... (4)

[0044] Functions phi 1 (Pd/Pu) are 1 (2/(k+1))/(k-1) (2.k/(k+1)) and 1/2 here at the time of (Pd/Pu)<=(2/(k+1)) k/(k-1). It is 1 (- (2/k-(Pd/Pu)(k+1)/k) (2.k/(k-1)) (Pd/Pu))/2 at the time of (Pd/Pu)>(2/(k+1)) k/(k-1).

[0045] the formula (4) of calculation of this example of a comparison -- the conservation of mass (formula (5)) and the law of conservation of energy (formula (6)) -- reaching -- etc. -- it is the formula drawn by the relational expression (formula (7)) of the adiabatic change on condition of entropy condition formation. [0046]

Au-rho u-vu=Ad-rho d-vd .... (5) [0047]

vu2/2+(k/(k-1)) - (Pu/rhou) = vd2/2+(k/(k-1)) - (Pd/rhod) .... (6)

[0048] Pu/rho uk=Pd/rho dk .... (7)

[0049] In addition, rhod is [ the air rate of flow of the upstream of a throttle valve 23 and vd of the downstream consistency of the downstream of the throttle valve 23 of an inlet pipe 20 and vu ] the air rates of flow of the downstream of a throttle valve 23.

[0050] On the other hand, the flow rate calculation equipment concerning this operation gestalt is computing the throttle passage air content mt based on an above-mentioned formula (1). A formula (1) is a formula drawn by the above-mentioned conservation of mass (formula (5)), the law of conservation of energy (formula (6)), and the following law of conservation of momentum (formula (8)).

rhod-vd2, Ad-rhou-vu2, andAu=Pu-Au-Pd-Ad+p- (Ad-Au) .... (8)

[0052] In addition, p is the whole upstream mean pressure of a throttle valve 23.

[0053] If the opening area Au of the upstream is considered as infinity when it considers as the opening area Au of the upstream of a throttle valve 23, consistency rhou, a pressure Pu, and the rate of flow vu and considers as the opening area Ad of a throttle valve 23, consistency rhod, a pressure Pd, and the rate of flow vd, as shown in drawing 6, it will be set to vu=0 from the conservation of mass of a formula (5). [0054] Moreover, if vu=0 is taken into consideration, it will become p=Pu from the law of conservation of momentum of a formula (8). Therefore, a law of conservation of momentum serves as rhod-vd2=Pu-Pd. [0055] Therefore, a formula (1) and (the case of (Pd/Pu)> (1/(1+k))) are drawn as a throttle passage air content mt. Drawing 7 graph-izes phi (Pd/Pu) of the formula (1) in the flow rate calculation equipment concerning this operation gestalt (in the case of k= 1.4).

[0056] As mentioned above, according to the flow rate calculation equipment concerning this operation gestalt, the air flow rate which passes the throttle valve 23 of an inlet pipe 20 is computed using the formula (1) drawn by the conservation of mass (formula (5)), the law of conservation of energy (formula (6)), and the law of conservation of momentum (formula (8)), without being premised on \*\* entropy condition formation. For this reason, the throttle-valve 23 passage air flow rate in which \*\* entropy conditions are not necessarily satisfied is correctly computable.

(The second operation gestalt)

[0057] Next, the flow rate calculation equipment concerning the second operation gestalt is explained. [0058] Although the flow rate calculation equipment concerning the first operation gestalt explained the case where it applies to the calculation of an air content which passes the throttle valve 23 of the inlet pipe 20 of an engine 2, the flow rate calculation equipment concerning this operation gestalt is flow rate calculation equipment which computes the flow rate of the fluid which passes the variable-aperture section prepared in the middle of an aeration path, and when the variable-aperture section is a duty control valve, it applies.

[0059] For example, control valves, such as an EGR valve and a purge control valve, repeat ON and OFF, and the flow rate calculation equipment concerning this operation gestalt is applied to what computes the flow rate which circulates using the formula (1) mentioned above when duty control was carried out and the flow rate of a fluid was adjusted.

[0060] In this case, when the control frequency of duty control is smaller than the count frequency of a flow rate, an opening area actual as an opening area Ad of a formula (1) is substituted, and calculation of a flow rate is performed.

[0061] On the other hand, as shown in <u>drawing 8</u>, when the control frequency of duty control is larger than the count frequency of a flow rate, the opening area Ad of a formula (1) is set up based on the duty ratio of duty control. That is, the average opening area in computation time spacing deltat is used as an opening area Ad, and calculation of a flow rate is performed.

[0062] Even if it is in the flow rate calculation equipment concerning such this operation gestalt, calculation of a flow rate is possible like the flow rate calculation equipment concerning the first operation gestalt, and the flow rate of the fluid which passes the variable-aperture section can be computed correctly.

[0063]

[Effect of the Invention] Since the flow rate of a fluid is computed without being based on the relational expression of adiabatic change according to this invention as explained above, calculation of the flow rate of a fluid can compute correctly under the conditions on which entropy conditions are not satisfied.

[Translation done.]

## \* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

## **DRAWINGS**







[Drawing 3]









[Drawing 7]



[Translation done.]

# (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-130039

(P2002-130039A)

(43) 公開日 平成14年5月9日(2002.5.9)

(51) Int.Cl.7 F02D 45/00 離別記号 364

F 0 2 D 45/00

FΙ

テーマコード(参考) 364D 3G084

366

366Z 3G301

41/18

E

41/18

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号

特願2000-326108(P2000-326108)

(22)出願日

平成12年10月25日(2000.10.25)

(71)出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(71)出願人 000004260

株式会社デンソー

愛知県刈谷市昭和町1丁目1番地

(72)発明者 小林 大介

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(74)代理人 100088155

弁理士 長谷川 芳樹 (外1名)

最終頁に続く

#### (54) 【発明の名称】 流量算出装置

#### (57)【要約】

【課題】 通気経路を流れる流体の流量を正確に算出で きる流量算出装置を提供すること。

【解決手段】 吸気管20の途中に設けられるスロット ルバルブ23を通過する空気流量を算出する流量算出装 置であって、スロットルバルブ23を通過する流体の流 量をmt、スロットルバルブ23の開口面積をAd、ス ロットルバルブ23の上流側の上流圧力をPu、スロッ トルバルブ23の上流側の上流密度をρu、スロットル バルブ23の下流側の下流圧力をPd、流通する空気の 比熱比をkとしたときに、次の式により空気流量mtを 算出する。

 $m t = A d \cdot (P u \cdot \rho u)^{1/2} \cdot (((k-1) /$  $(2 \cdot k) \cdot (1 - P d/P u) + P d/P u \cdot$  $(1-Pd/Pu))^{1/2}$ 



#### 【特許請求の範囲】

【請求項1】 通気経路の途中に設けられる可変絞り部を通過する流体の流量を算出する流量算出装置において、

前記可変絞り部を通過する前記流体の流量をmt、前記可変絞り部の開口面積をAd、前記通気経路における前記可変絞り部の上流側の上流圧力をPu、前記通気経路における前記可変絞り部の上流側の上流密度をρu、前記通気経路における前記可変絞り部の下流側の下流圧力をPd、前記流体の比熱比をkとしたときに、以下の式 10により前記流体の流量mtを算出する演算手段を備えたこと、を特徴とする流量算出装置。

m t = A d · (P u ·  $\rho$  u) <sup>1/2</sup> · (((k-1) / (2 · k)) · (1-P d/P u) + P d/P u) · (1-P d/P u)) <sup>1/2</sup>。

【請求項2】 前記演算手段は、以下の式を用いて前記 流体の流量m t を算出することを特徴とする請求項1に 記載の流量算出装置。

 $m t = A d \cdot (P u \cdot \rho u)^{1/2} \cdot \Phi (P d/P u)$ 。 なお、関数 $\Phi (P d/P u)$  は、

 $(Pd/Pu) \le (1/(1+k)) obs (k/(2 \cdot (k+1)))^{1/2}$ 

(Pd/Pu) > (1/(1+k)) のとき (((k-1)/(2·k))·(1-Pd/Pu)+Pd/Pu)・(1-Pd/Pu)) 1/2。

【請求項3】 前記可変絞り部は、内燃機関の吸気経路 に設けられるスロットルバルブであることを特徴とする 請求項1又は2に記載の流量算出装置。

【請求項4】 前記可変絞り部は、デューティー制御弁であり、前記開口面積がデューティー比に基づき設定されることを特徴とする請求項1又は2に記載の流量算出装置。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、通気経路の途中に 設けられる可変絞り部を通過する流体の流量を算出する 流量算出装置に関するものである。

#### [0002]

【従来の技術】従来、通気経路を流れる流体の流量を算出する流量算出する技術手法として、特開平6-74076号公報に記載されるように、スロットル弁を備えた吸気管を通じて内燃機関の気筒に吸入される空気量を算出する吸入空気量算出方法であって、スロットル弁をオリフィスとみなし、スロットル開度に応じそこを通過する空気量を流体力学の式を用いて求めるものが知られている。

【0003】この流量算出方法は、流量算出に際し実圧力を用いて流量の推定精度を向上させると共に、その推定誤差があっても次回の推定算出に影響しないように算出を行うとするものである。

#### [0004]

【発明が解決しようとする課題】しかしながら、この流量算出方法では、断熱変化の関係式を用いており、流通する流体において等エントロピー条件が成立することを前提として流量を算出していることから、等エントロピー条件が成立しない状況の下では正確な流量が算出できないという問題点がある。特に、内燃機関の吸気管を流れる空気量を算出する場合、必ずしも等エントロピー条件が成立しないため、正確な流量の算出が困難である。

【0005】そこで本発明は、このような問題点を解決するためになされたものであって、通気経路を流れる流体の流量を正確に算出できる流量算出装置を提供することを目的とする。

#### [0006]

【課題を解決するための手段】すなわち、本発明に係る流量算出装置は、通気経路の途中に設けられる可変絞り部を通過する流体の流量をmt、可変絞り部の開口面積をAd、通気経路における可変絞り部の上流側の上流圧力をPu、通気経路における可変絞り部の上流側の上流密度を  $\rho$ u、通気経路における可変絞り部の下流側の下流圧力をPd、流体の比熱比をkとしたときに、以下の式により流体の流量mtを算出する演算手段を備えたことを特徴とする。mt=Ad·(Pu· $\rho$ u)  $^{1/2}$ ·((((k-1) / (2·k))·(1-Pd/Pu)+Pd/Pu)·(1-Pd/Pu))  $^{1/2}$ 。

【0007】また本発明に係る流量算出装置は、前述の演算手段が以下の式を用いて流体の流量m t を算出する 30 ことを特徴とする。m t = A d · (P u ·  $\rho$  u)  $^{1/2}$  ·  $\Phi$  (P d / P u) 。 なお、関数  $\Phi$  (P d / P u) は、 (P d / P u)  $\leq$  (1 / (1+k)) のとき (k / (2 · (k+1)))  $^{1/2}$ であり、 (P d / P u) > (1 / (1+k)) のとき ((((k-1) / (2 · k)) · (1-P d / P u) + P d / P u) · (1-P d / P u))  $^{1/2}$ である。

【0008】また本発明に係る流量算出装置は、前述の可変絞り部が内燃機関の吸気経路に設けられるスロットルバルブであることを特徴とする。

40 【0009】また本発明に係る流量算出装置は、前述の 可変絞り部がデューティー制御弁であり、開口面積がデ ューティー比に基づき設定されることを特徴とする。

【0010】これらの発明によれば、断熱変化の関係式に基づかずに流体の流量を算出するため、等エントロピ条件が成立しない条件の下で流体の流量の算出が正確に算出できる。

#### [0011]

【発明の実施の形態】以下、添付図面を参照して本発明 の実施の形態を詳細に説明する。なお、図面の説明にお 50 いて同一の要素には同一の符号を付し、重複する説明を

省略する。

(第一実施形態)

【0012】図1に本実施形態に係る流量算出装置の説 明図を示す。

【0013】本図に示すように、本実施形態に係る流量 算出装置は、エンジン2の吸気管20のスロットルバル ブ23を通過する空気量の算出に適用したものである。 エンジン2は、可変動弁機構を備えたものであり、例え ば、吸気弁3及び排気弁4の開閉タイミングを変化させ る可変バルブタイミング機構5を備えている。

【0014】可変バルブタイミング機構5は、ECU6 と電気的に接続されており、ECU6から出力される制 御信号に基づいて作動し、カムポジションセンサなどの 検出センサ7を介してECU6にバルブタイミングに関 する検出信号を出力する。

【0015】エンジン2には、クランクポジションセン サ12が設けられている。クランクポジションセンサ1 2は、エンジン回転数を検出するセンサであり、ECU 6と接続され、ECU6に対し検出信号を出力する。

【0016】エンジン2には、燃焼室8に燃料を噴射す 20 るインジェクタ9が設けられている。インジェクタ9 は、燃料を燃焼室8へ供給する燃料噴射手段であり、エ ンジン2が備えるシリンダ10ごとに設置されている。 燃焼室8は、シリンダ10内に配設されたピストン11 の上方に形成されている。燃焼室8の上部には、吸気弁 3及び排気弁4が配設されている。

【0017】吸気弁3の上流側には、インテークマニホ ルドなどからなる吸気管20が接続されている。吸気管 20の上流側には、エアクリーナ22が設置されてい 3が設けられている。

【0018】スロットルバルブ23は、吸気経路の途中 に設けられる可変絞り部であり、ECU6の制御信号に\*

【0027】ここで、関数Φ(Pd/Pu)は、(Pd /Pu)  $\leq (1/(1+k))$  のとき  $(k/(2\cdot(k))$  $+1)))^{1/2}$   $rac{1}{2}$   $rac{1}$   $rac{1}$  k)) のとき (((k-1)/(2·k)) · (1-P  $d/Pu) + Pd/Pu) \cdot (1-Pd/Pu))^{1/2}$ である。

【0028】また、Adは吸気管20のスロットルバル ブ23の位置における開口面積、Puは吸気管20のス ロットルバルブ23の上流側の上流圧力、ρuは吸気管 20のスロットルバルブ23の上流側の上流密度、Pd※

【0032】ここで、式(1)が定常状態以外の過渡状 態でも成立するとし、式(1)及び式(2)において同 ースロットル開度で $Ad\cdot(Pu\cdot\rho u)^{1/2}$ が上下の 差圧に依存しないものとして取り扱い、式(1)及び式

\*基づいて作動しスロットル開度を変化させ、それに伴い 吸気経路の開口面積を変化させる。スロットルバルブ2 3のスロットル開度は、スロットルポジションセンサ2 4により検出され、ECU6に入力される。

【0019】エアクリーナ22の下流位置には、エアフ ローメータ25が設けられている。エアフローメータ2 5は、吸入空気量を検出する吸入空気量検出手段であ る。エアフローメータ25の検出信号は、ECU6に入 力される。

10 【0020】 ECU6は、流量算出装置の装置全体の制 御を行うものであり、CPU、ROM、RAMを含むコ ンピュータを主体として構成されている。ROMには、 流量算出ルーチンを含む各種制御ルーチンが記憶されて

【0021】次に、本実施形態に係る流量算出装置の動 作について説明する。

【0022】図2は、流量算出装置の動作を示すフロー チャートである。

【0023】本図のステップS10(以下、単に「S1 - 0」と示す。他のステップについても同様とする。)に て、スロットル開度TA、エンジン回転数NE、バルブ タイミングVTの読み込みが行われる。

【0024】スロットル開度TAの読み込みは、スロッ トルポジションセンサ24の出力信号に基づいて行われ る。エンジン回転数NEの読み込みは、クランクポジシ ョンセンサ12の出力信号に基づいて行われる。バルブ タイミングVTの読み込みは、検出センサ7の出力信号 に基づいて行われる。

【0025】そして、S12に移行し、吸気管20のス る。また、吸気管20の途中には、スロットルバルブ2 30 ロットルバルブ23を通過する空気流量mtの演算が行 われる。この空気流量m t の演算は、次の式 (1) に基 づいて行われる。

[0026]

 $m t = A d \cdot (P u \cdot \rho u)^{1/2} \cdot \Phi (P d/P u) \cdots (1)$ 

※は吸気管20のスロットルバルブ23の下流側の下流圧 力、kは吸入される空気の比熱比である。

【0029】具体的な空気流量mtの演算は、例えば、 以下の通りに行われる。

【0030】エンジン2が定常状態であるときには空気 40 流量及び吸気管圧力が一意に決まるので、このときの定 常流量をm t ta、定常圧力をP d taとすると、上述の式 (1) に基づいて、次の式(2) が成立する。

[0031]

 $m t \tau_A = A d \cdot (P u \cdot \rho u)^{1/2} \cdot \Phi (P d \tau_A / P u) \cdot \cdots (2)$ 

(2)によりAd・(Pu・ρu)<sup>1/2</sup>を消去すると、 次の式(3)が得られる。

[0033]

 $m t = m t \tau_A \cdot \Phi (P d/P u) / \Phi (P d\tau_A/P u) \cdots (3)$ 

【0034】 そして、定常状態時のm t τ A 及びΦ (Pd TA/Pu) はスロットル開度TA、エンジン回転数N E、バルブタイミングVTにより決定できるので、mt TA/Φ (PdTA/Pu) をスロットル開度TA、エンジ ン回転数NE、バルブタイミングVTのテーブルとして 設定し、Φ (Pd/Pu)をPdのテーブルとして設定 する。

【0035】これにより、スロットル開度TA、エンジ ン回転数NE、バルブタイミングVTに従い、式(3) を用いて、スロットルバルブ23を通過する空気流量m t を算出することができる。

【0036】なお、前述の空気流量mtの算出におい て、定常状態時のm t TA及びP dTAをそれぞれスロット ル開度TA、エンジン回転数NE、バルブタイミングV Tのテーブルとして設定し、Φ (Pd/Pu)をPdの テーブルとして設定しPd、PdTAで参照することによ り、過渡状態の空気流量mtの算出を行ってもよい。

【0037】また、定常状態の場合、スロットル開度T Aとエンジン2への吸入空気量は等しいので、Pdtaを スロットル開度TA、エンジン回転数NE、バルブタイ 20 いないことが分かる。 ミングVTのテーブルとして設定し、充填効率によって m t τ A を算出し、Φ (Pd/Pu)をPdのテーブルと して設定しPd、PdTAで参照することにより、過渡状 態の空気流量m t を算出してもよい。

$$m t = A d \cdot (P u \cdot \rho u)^{1/2} \cdot \Phi l (P d/P u) \cdot \cdots (4)$$

【0044】ここで、関数Φ1 (Pd/Pu) は、 (P  $d/Pu) \le (2/(k+1))^{k/(k-1)} obsec (2)$  $/(k+1))^{1/(k-1)} \cdot (2 \cdot k/(k+1))^{1/2} \tilde{c}$ b,  $(Pd/Pu) > (2/(k+1))^{k/(k-1)}$ ときに $((2 \cdot k/(k-1)) \cdot ((Pd/Pu))$  $^{2/k} - (Pd/Pu)^{(k+1)/k}))^{1/2}$  rbas.

【0045】この比較例の算出の式(4)は、質量保存※

$$v u^2 / 2 + (k / (k-1)) \cdot (P u / \rho u) = v d^2 / 2 + (k / (k-1)) \cdot (P d / \rho d) \cdots (6)$$

[0048]  $Pu/\rho u^{k} = Pd/\rho d^{k}$  .... (7)

【0049】なお、ρdは、吸気管20のスロットルバ ルブ23の下流側の下流密度、 v u は、スロットルバル ブ23の上流側の空気流速、vdは、スロットルバルブ 23の下流側の空気流速である。

【0050】一方、本実施形態に係る流量算出装置は、★40

$$\rho d \cdot v d^2 \cdot A d - \rho u \cdot v u^2 \cdot A u = P u \cdot A u - P d \cdot A d + p$$

$$\cdot (A d - A u) \quad \cdots \quad (8)$$

【0052】なお、pはスロットルバルブ23の上流の 全体平均圧力である。

【0053】図6に示すように、スロットルバルブ23 の上流側の開口面積Au、密度ρu、圧力Pu、流速v uとし、スロットルバルブ23の開口面積Ad、密度ρ d、圧力Pd、流速vdとしたときに、上流側の開口面 積Auを無限大として考えると、式(5)の質量保存則 から、vu=0となる。

\*【0038】また、上流圧力Pdは、吸気管20に圧力 センサを設けて実測値を用いてもよいし、エアフローメ ータ25などの検出値から推定により決定してもよい。 更に、Φ (Pd/Pu) のテーブルは、引数をPdにし ても、Pd/Puにしてもよい。

【0039】次に、本実施形態に係る流量算出装置にお ける算出結果について説明する。

【0040】図3に本実施形態に係る流量算出装置にお けるスロットル通過空気量の算出結果、比較例となる流 10 量算出装置におけるスロットル通過空気量の算出結果及 び高応答流量計の実測結果を示す。図4は図3の算出に おけるスロットル開度の時間変化、図5は吸気管圧力 (吸気圧) の時間変化を表したものである。

【0041】図3に示すように、本実施形態に係る流量 算出装置における算出結果は、高応答流量計の実測値に よく追従しており、正確に流量が算出されていることが 分かる。一方、比較例となる流量算出装置における算出 結果は、通過空気量が立ち上がった部分で高応答流量計 の実測値に追従しておらず、流量が正確には算出されて

【0042】ここで、比較例となる流量算出装置は、ス ロットル通過空気量m t を次の式(4)に基づき、算出 するものを用いた。

[0043]

※則(式(5))、エネルギ保存則(式(6))及び等エ ントロピー条件成立を前提とする断熱変化の関係式(式 (7))により、導かれた式である。

[0046]

30 Au  $\cdot \rho$ u  $\cdot$  vu = Ad  $\cdot \rho$ d  $\cdot$  vd  $\cdot \cdot \cdot \cdot$  (5) [0047]

★スロットル通過空気量m t を上述の式(1) に基づき算 出している。式(1)は、上述の質量保存則(式 (5))、エネルギ保存則(式(6))及び次の運動量 保存則(式(8))により、導かれる式である。 [0051]

【0054】また、式(8)の運動量保存則から、vu =0も考慮すると、p=Puとなる。従って、運動量保 存則は、 $\rho d \cdot v d^2 = P u - P d と c a a$ 。

【0055】ゆえに、スロットル通過空気量mtとし て、式(1) ((Pd/Pu) > (1/(1+k))の 場合)が導かれる。図7は、本実施形態に係る流量算出 装置における式(1)のΦ(Pd/Pu)をグラフ化し 50 たものである (k=1.4の場合)。

-4-

7

【0056】以上のように、本実施形態に係る流量算出 装置によれば、等エントロピー条件成立を前提とせず に、質量保存則(式 (5))、エネルギ保存則(式

(6))及び運動量保存則(式(8))により導かれる式(1)を用いて、吸気管20のスロットルバルブ23を通過する空気流量を算出している。このため、必ずしも等エントロピー条件が成立しないスロットルバルブ23通過空気流量を正確に算出することができる。

#### (第二実施形態)

【0057】次に第二実施形態に係る流量算出装置について説明する。

【0058】第一実施形態に係る流量算出装置ではエンジン2の吸気管20のスロットルバルブ23を通過する空気量の算出に適用した場合について説明したが、本実施形態に係る流量算出装置は、通気経路の途中に設けられる可変絞り部を通過する流体の流量を算出する流量算出装置であって、可変絞り部がデューティー制御弁である場合に適用したものである。

【0059】例えば、本実施形態に係る流量算出装置は、EGR弁やパージ制御弁などの制御弁がオン、オフ 20 を繰り返してデューティー制御され流体の流量が調整される場合において、上述した式(1)を用いて流通する流量を算出するものに適用される。

【0060】この場合、デューティー制御の制御周波数が流量の計算周波数よりも小さいときには、式(1)の開口面積Adとして実際の開口面積を代入して流量の算出が行われる。

【0061】一方、図8に示すように、デューティー制御の制御周波数が流量の計算周波数よりも大きいときには、式(1)の開口面積Adは、デューティー制御のデ 30 ューティー比に基づいて設定される。すなわち、開口面

積Adとして、計算時間間隔Δtにおける平均開口面積が用いられて流量の算出が行われる。

【0062】このような本実施形態に係る流量算出装置にあっても、第一実施形態に係る流量算出装置と同様に流量の算出が可能であり、可変絞り部を通過する流体の流量を正確に算出することができる。

#### [0063]

【発明の効果】以上説明したように本発明によれば、断 熱変化の関係式に基づかずに流体の流量を算出するた 10 め、等エントロピ条件が成立しない条件の下で流体の流 量の算出が正確に算出できる。

#### 【図面の簡単な説明】

【図1】本発明の第一実施形態に係る流量算出装置の説明図である。

【図2】図1の流量算出装置の動作を示すフローチャートである。

【図3】図1の流量算出装置の算出結果を示した図であ る。

【図4】図3におけるスロットル開度の変化を示した図である。

【図5】図3における吸気圧の変化を示した図である。

【図 6 】図 1 の流量算出装置における算出式の説明図である。

【図7】図1の流量算出装置における算出式をグラフ化した図である。

【図8】第二実施形態に係る流量算出装置の説明図である。

#### 【符号の説明】

2 ···エンジン、 3 ···吸気弁、 4 ···排気弁、 6 ···ECU (演算手段)、 2 0 ···吸気管、 2 3 ···スロットルバル ブ。







## 【図4】



## 【図5】



【図6】



## 【図7】



フロントページの続き

(72)発明者 大畠 明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72) 発明者 武藤 晴文

愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 堂田 久代 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 F ターム(参考) 3G084 AA00 BA04 BA20 BA27 DA00 EC04 FA07 FA10 FA11 FA38 3G301 HA13 HA14 HA19 JA00 LA00 LA01 NA09 ND41 PA01Z PA07Z PA11Z PE03Z