Stat 171 - Exam 1 Show all of your work

Name: Solution

The frequency distribution shows the number of magazine subscriptions per household for 60 households of Macomb.

Number of magazines	0	1	2	3	4
Frequency	15	9	21	10	5

1. Identify the population and the sample.

Population: Households of the town. Sample: The 60 households of the town surveyed.

2. Determine whether the data is qualitative or quantitative. Explain your reasoning.

Quantitative. There are numbers and they are meaning ful as numbers.

3. Determine the level of measurement of the data set. Explain your reasoning.

Ratio. A household with 4 magazine subscriptions has twice as more magazine subscriptions as a household with 2 magazine subscriptions.

4. Find the mean, median, and the mode of the data set.

Mean:
$$\bar{\chi} = \frac{0.15 + 1.9 + 2.21 + 3.10 + 4.5}{15 + 9.121 + 10 + 5} = \frac{101}{60} \approx 1.7$$

Median: 30^{th} element: 2 \rightarrow median: $\frac{2+2}{2}=2$

Mode: 2, with f=21

5. Draw a pie chart for the given data set. Show your calculations.

_×	1 7	rel.f	angle
0	15	.25	90°
	9	.15	540
2	21	.35	1260
3	10	017	61°
4	5	.08	290
h:	Σf=60	= f/n =	∑angle=360°

It magzine subscriptions per households in a town.

Number of magazines	0	1	2	3	4
Frequency	15	9	21	10	5

6. Find a 5 number summary of the data set.

$$MM = 0$$

$$Max = 4$$

$$Q_1 = \frac{O+1}{2} = 0.5$$

$$Q_2 = \frac{2+2}{2} = 2$$

$$Q_3 = \frac{2+3}{2} = 2.5$$

7. Draw a box-and-whisker plot for the data set.

8. Find the variance, and the standard deviation of the sample data set. Show your calculations.

$$\left(\text{formulas: } s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}, \quad \sigma = \sqrt{\frac{\sum (x - \mu)^2}{n}}\right)$$

×	f	×.f	½ − ∑	$(x-\overline{x})\cdot f$	$(x-\overline{x})^2$	$(x-\bar{x})^2 \cdot f$
0	15	0	_1.68	-25.2	2.82	42.3
t	9	9	-0.68	-6.12	0.46	4.1
2	21	42	0.32	6.72	0.10	4.2
3	10	30	1.32	13.2	1.74	17.4
4	5	20	2.32	11.6	5.38	26-9
	Ef=60	\(\frac{1}{2}\text{x.f=101}\)		$\sum (x-\overline{x}) \cdot f = 0.2$		$\sum (x-x)^2 f = 94.9 = SS_x$
		101 = 1.6	8	You don't need to calculate this part		$S^{2} = \frac{SSx}{59} = \frac{94.9}{59} \approx 1.61$ $S \approx 1.27$ (st. dev.