Startup Success Prediction Model

David Adrián Rodríguez García & Víctor Caínzos López

Preprocesado: Preparación de los datos

En primer lugar se realizará un análisis del dataset **startup_data.csv** para el cual se realizará la limpieza de los datos espurios o nulos y se procederá al filtrado de las columnas representativas y la recodificación de variables cualitativas a cuantitativas.

Data Missing dataframe: Contiene los datos eliminados del dataset original.

		feature	missing	(%) of total
()	closed_at	587	63.67
_	1	age_first_milestone_year	152	16.49
2	2	age_last_milestone_year	152	16.49
3	3	state_code.1	1	0.11

Data Spurious dataframe: Contiene los datos sin sentido del dataset original.

	age_first_funding_year	age_last_funding_year	age_first_milestone_year	age_last_milestone_year	age
88	0.8822	0.8822	0	0	-8
558	-9.0466	-9.0466	-6.0466	-3.8822	-4
73	1.6685	9.337	7.3808	10.474	-2
350	0.3288	0.3288	-0.4192	-0.4192	0
690	0	0.6904	0	0.6904	0

Data Skewness dataframe: Contiene los datos con alta dispersión del dataset original.

	feature	skewness
0	funding_total_usd	27.7868
1	state_code	2.54287
2	relationships	2.33271
3	age_first_funding_year	2.32396
4	avg_participants	1.75802

Boxplot Feature Skewness > 2: Muestra la dispersión de los datos para las características con asimetría mayor que 2.

Boxplot Norm Features: Muestra la dispersión de los datos para las características normalizadas.

X dataframe: Contiene la matriz de características.

	state_code	age_las	st_fundir	ıg_year	age_firs	t_milestone_year	age_last_milestone_year	funding_rounds
0	0			3.0027		4.6685	6.7041	3
1	0			9.9973		7.0055	7.0055	4
2	0			1.0329		1.4575	2.2055	1
3	0			5.3151		6.0027	6.0027	3
4	0			1.6685		0.0384	0.0384	2
	milestones	is_CA	is_NY	is_MA	is_TX			
0	3	1	0	0	0			

	milestones	is_CA	is_NY	is_MA	is_TX					
1	1	1	0	0	0					
2	2	1	0	0	0					
3	1	1	0	0	0					
4	1	1	0	0	0					
	is_otherstate	is_sc	oftware	is_web	is_mob	oile is_e	entei	rprise		
0	0		0	0		0		0		
1	0		0	0		0		1		
2	0		0	1		0		0		
3	0		1	0		0		0		
4	0		0	0		0		0		
	is_advertising	g is_g	gamesvid	leo is_e	commer	ce is_b	ioted	ch is	_con	sulting
0	()		0		0		0		0
1	()		0		0		0		0
2	()		0		0		0		0
3	()		0		0		0		0
4	()		1		0		0		0
	is_othercateg	ory	has_VC	has_ang	el has	_roundA	ha	as_roun	dB	<u>-</u>
0		1	0		1	0			0	
1		0	1		0	0			1	-
2		0	0		0	1			0	-
3		0	0		0	0			1	
4		0	1		1	0			0	
	has_roundC	has_r	oundD	avg_part	ticipants	is_top!	500	age	_	
0	0		0		1		0	7	=	
1	1		1		4.75		1	14	_	
2	0		0		4		1	5	_	
3	1		1		3.3333		1	12	_	
4	0		0		1		1	2		
	norm_fundin	g_total	_usd n	orm_age_	_first_fun	ding_yea	r ı	norm_r	elati	onships
0		0.26	8198			0.376383	3		C).333333
1		0.62	3283			0.5789			C).553655
2		0.41	5358			0.22659	6		C).430827
3		0.62	3093			0.45310	1		C).430827
4		0.3	6268			(0			0.26416

t dataframe: Contiene el vector de etiquetas.

	labels
0	1
1	1
2	1
3	1
4	0

Entrenamiento: Comparativa de modelos de aprendizaje automático

Se procederá a comparar los resultados obtenidos de diferentes modelos de aprendizaje automático variando tanto el tipo de modelo como los hiperparámetros de los que depende con el objetivo de obtener el mejor modelo que prediga el éxito o fracaso de las diferentes startups

Results dataframe: Muestra los resultados de los mejores modelos obtenidos

Folds	KNN_train_accuracy	KNN_val_accuracy	SVC_train_accuracy	SVC_val_accuracy I	DNN_train_accuracy
1	0.760748	0.791045	0.656075	0.664179	0.741308
2	0.773832	0.731343	0.654206	0.649254	0.809252
3	0.764486	0.723881	0.654206	0.656716	0.782523
4	0.783178	0.80597	0.656075	0.649254	0.786355
5	0.779851	0.744361	0.658582	0.654135	0.805131
Folds	DNN_val_accuracy	KNN_train_recall K	NN_val_recall SVC_tr	ain_recall SVC_val_r	ecall
1	0.685448	0.968391	0.943182	1	1
2	0.723134	0.948424	0.954023	1	1
3	0.834701	0.948424	0.988506	1	1
4	0.779104	0.962751	0.977011	1	1
5	0.809774	0.962751	0.942529	1	1
Folds	DNN_train_recall	DNN_val_recall KNN	_train_specificity KN	N_val_specificity SV	C_train_specificity
1	0.741308	0.685448	0.374332	0.5	0.0160428
2	0.809252	0.723134	0.446237	0.319149	0.00537634
3	0.782523	0.834701	0.419355	0.234043	0.00537634
4	0.786355	0.779104	0.446237	0.489362	0.0107527
5	0.805131	0.809774	0.438503	0.369565	0.0213904
Folds	SVC_val_specificity	DNN_train_specificity	DNN_val_specificity	/ KNN_train_precisi	on KNN_val_precisio
1	0.0217391	0.739167	0.675625	0.7422	91 0.78301
2	0	0.810327	0.72808	0.7626	73 0.72173
3	0.0212766	0.784196	0.830804	0.7539	86 0.70491

Folds	SVC_val_specificity	DNN_train_specificit	y DNN_val_specificity	KNN_train_precision	KNN_val_precision
4	0	0.78711	3 0.757545	0.765376	0.779817
5	0	0.80437	5 0.839928	0.761905	0.738739
Folds	SVC_train_precision	SVC_val_precision	DNN_train_precision	DNN_val_precision	
1	0.654135	0.661654	0.741308	0.685448	
2	0.653558	0.649254	0.809252	0.723134	
3	0.653558	0.654135	0.782523	0.834701	
4	0.654784	0.649254	0.786355	0.779104	
5	0.656015	0.654135	0.805131	0.809774	

Boxplot models: Muestra los valores de exactitud de los diferentes modelos

Contraste de hipótesis: Comparación de modelos mediante el test de Kruskal-Wallis

```
modelDNN modelSVC -0.1117 0.003 -0.1818 -0.0416 True
modelKNN modelSVC -0.1046 0.0048 -0.1747 -0.0345 True
```

Matrices de confusión: Compara los valores reales con los valores predichos para cada modelo

Matriz de confusión KNN

Matriz de confusión SVC

Matriz de confusión DNN

	Clase Real 0	Clase Real 1
Clase Predicha 0	29	24
Clase Predicha 1	7	108

Curva ROC: Compara el ajuste entre la especificidad y la sensibilidad para cada modelo

Informe de clasificación: Compara los resultados de cada modelo de clasificación

Classificatio	n report for	model KN	IN:	
	precision	recall	f1-score	support
0	0.83	0.35	0.49	55
1	0.75	0.96	0.84	113
accuracy			0.76	168
macro avg	0.79	0.66	0.67	168
weighted avg	0.78	0.76	0.73	168

Classification report for model SVC:					
	precision	recall	f1-score	support	
0	0.00	0.00	0.00	55	
1	0.67	1.00	0.80	113	
accuracy			0.67	168	
macro avg	0.34	0.50	0.40	168	
weighted avg	0.45	0.67	0.54	168	
weighted avg	0.45	0.67	0.54	168	

Classification report for model DNN:

	precision	recall	f1-score	support
0	0.81	0.55	0.65	53
1	0.82	0.94	0.87	115
accuracy			0.82	168
macro avg	0.81	0.74	0.76	168
weighted avg	0.81	0.82	0.80	168

Exactitud media: Compara la exactitud de cada modelo en función de sus hiperparámetros

Curva de validación: Compara los resultados del modelo en función de sus hiperparámetros

Hiperparámetros: Muestra el dataframe con los hiperparámetros usados en el entrenamiento

Hiperparámetros del modelo KNN

	n_neighbors	weights	
hyperparams	92	uniform	

Hiperparámetros del modelo SVC

	С	decision_function_shape	gamma	kernel	probability
hyperparams	0.01811	ovo	scale	poly	True

Hiperparámetros de la red neuronal

	neurons	activation		
layer 0	16	sigmoid		
layer 1	15	relu		
layer 2	17	relu		
layer 3	2	softmax		
optimizer lr				
compiler	Adam	0.00081		