

Fuzzy Logic | Set 2 (Classical and Fuzzy Sets)

Difficulty Level: Medium • Last Updated: 24 Jan, 2022

Prerequisite: Fuzzy Logic | Introduction

In this post, we will discuss classical sets and fuzzy sets, their properties and operations that can be applied on them.

Set: A set is defined as a collection of objects, which share certain characteristics.

Classical set

- 1. Classical set is a collection of **distinct** objects. For example, a set of students passing grades.
- 2. Each individual entity in a set is called a **member** or an **element** of the set.
- 3. The classical set is defined in such a way that the universe of discourse is splitted into two groups **members** and **non-members**. Hence, In case classical sets, **no partial membership exists**.
- 4. Let A is a given set. The membership function can be use to define a set A is given by:

$$\mu A(x)=\{1 \text{ if } x \in A$$

0 if x ∉ A }

$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

- This operation is also called **logical OR**.
- Intersection:

$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

- This operation is also called logical AND.
- Complement:

Sale Ends Soon!
DSA Data Structures Algorithms Write & Earn Interview Preparation Topic-wise Practice C++ Java Python Competitive Program

• Difference:

$$A \mid B = \{x \mid x \in A \text{ and } x \notin B\}$$

- 1. Properties of classical sets: For two sets A and B and Universe X:
 - Commutativity:

• Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

• Idempotency:

• Identity:

- $A \cup \emptyset = A$
- $A \cap X = A$
- $A \cap \emptyset = \emptyset$
- $A \cup X = X$

If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

Fuzzy set:

- 1. **Fuzzy set** is a set having **degrees of membership** between 1 and 0. Fuzzy sets are represented with tilde character(~). For example, Number of cars following traffic signals at a particular time out of all cars present will have membership value between [0,1].
- 2. Partial membership exists when member of one fuzzy set can also be a part of other fuzzy sets in the same universe.
- 3. The degree of membership or truth is not same as probability, fuzzy truth represents membership in vaguely defined sets.
- 4. A fuzzy set A~ in the universe of discourse, U, can be defined as a set of ordered pairs and it is given by

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | x \in X\}$$

1. When the universe of discourse, U, is **discrete and finite**, fuzzy set A~ is given by

$$ilde{A} = \sum_{i=1}^n rac{\mu_{ ilde{A}}(x_i)}{x_i} = rac{\mu_{ ilde{A}}(x_1)}{x_1} + rac{\mu_{ ilde{A}}(x_2)}{x_2} + \ldots + rac{\mu_{ ilde{A}}(x_n)}{x_n}$$

$$ilde{A} = \int rac{\mu_{ ilde{A}}(x)}{x_n} dx$$

- 1. Fuzzy sets also satisfy every property of classical sets.
- 2. Common Operations on fuzzy sets: Given two Fuzzy sets A^{\sim} and B^{\sim}
 - **Union**: Fuzzy set C~ is union of Fuzzy sets A~ and B~:

•

$$\mu_{\tilde{c}}(x) = \max(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

• **Intersection**: Fuzzy set D~ is intersection of Fuzzy sets A~ and B~:

•

$$\mu_{\tilde{D}}(x) = \min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

• Complement: Fuzzy set E~ is complement of Fuzzy set A~:

•

$$\mu_{\tilde{E}}(x) = 1 - \mu_{\tilde{A}}(x)$$

- 1. Some other useful operations on Fuzzy set:
 - Algebraic sum:

$$\mu A + B(x) = \mu A(x) + \mu B(x) - \mu A(x)$$
. $\mu B(x)$

• Algebraic product:

• Bounded sum:

$$\mu A_{\oplus}B(x)=\min\{1, \mu A(x) + \mu B(x)\}$$

• Bounded difference:

Sources:

- (1) http://staff.cs.upt.ro/~todinca/cad/Lectures/cad_fuzzysets.pdf
- (2) Principles of Soft Computing

Master Advanced Data Structures

DSA Live Classes For Working Professionals

Previous

Fuzzy Logic | Introduction

Common Operations on Fuzzy Set with Example and Code

RECOMMENDED ARTICLES

Page: 1 2 3

Next

1 Fuzzy Logic Control System 24, Nov 20

Common Operations on Fuzzy Set with Example and Code
31, Jul 20

Puzzy Logic | Introduction

Comparison Between Mamdani and Sugeno Fuzzy Inference System 21, May 20

O3 Classical Computing vs Quantum Computing

07 ML | Fuzzy Clustering

☐ ☐ Difference Between Crisp Set and Fuzzy Set

Artificial Intelligence – Temporal Logic

Article Contributed By: Vote for difficulty Current difficulty: Medium Abhishek rajput @Abhishek rajput Medium Hard Easy Normal Expert Improved By: saurabh1990aror Article Tags: fuzzy-logic, Advanced Computer Subject Improve Article Report Issue

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments

A-143, 91n Floor, Sovereign Corporate lower, Sector-136, Noida, Uttar Pradesh - 201305 feedback@geeksforgeeks.org

Company	Learn	News	Languages	Web Development	Contribute
About Us	Algorithms	Top News	Python	Web Tutorials	Write an Article
Careers	Data Structures	Technology	Java	Django Tutorial	Improve an Article
In Media	SDE Cheat Sheet	Work & Career	CPP	HTML	Pick Topics to Write
Contact Us	Machine learning	Business	Golang	JavaScript	Write Interview Experience
Privacy Policy	CS Subjects	Finance	C#	Bootstrap	Internships
Copyright Policy	Video Tutorials	Lifestyle	SQL	ReactJS	Video Internship
	Courses	Knowledge	Kotlin	NodeJS	

@geeksforgeeks, Some rights reserved