Collective Robotics Part 2: Short Journey Through Nearly Everything

Prof. Dr. Javad Ghofrani

Hochschule
Bonn-Rhein-Sieg
University of Applied Sciences

Simple task: collision avoidance

(Takafumi Suzuki and Masaki Takahashi)

Finite state machines as robot controllers (1/2)

Left sensor s_l

Right sensor s_r

Threshold θ_r , θ_l

(big values mean a close-by object was detected)

'timer': the state is left when a certain time period has elapsed

Finite state machines as robot controllers (2/2)

general case:

any condition T for the transition is possible

Simple population model

swarm size N only two possible states: A and B variable a counts robots currently in state A variable b counts robots currently in state b b variable b counts robots currently in state b b b fraction of robots that are in state A: a = $\frac{a}{N}$

State transitions & robot-robot interactions (1/2)

State transitions & robot-robot interactions (2/2)

 \widehat{a} gives the number of neighboring robots of robot R_1 plus itself that are currently in state A

 \hat{b} for state B

|N| is size of neighborhood

$$|N| + 1 = \hat{b} + \hat{a}$$

fraction of robots in state A:

$$\widehat{\alpha} = \frac{\widehat{a}}{|N| + 1}$$

next:

say, a robot's state transitions between A and B depend exclusively on $\widehat{\alpha}$

Minimal example: collective decision-making

task in collective decision-making: find a consensus (100% of the robots in the swarm agree on a decision) we use $\hat{\alpha}$ and a threshold of 0.5:

majority rule: reinforce the current majority

Towards a macroscopic perspective

```
What's the effect on the swarm level? we can interpret \hat{\alpha} as a local measurement of the global situation \alpha \Rightarrow local sampling (later)
```

generally: $\alpha \neq \widehat{\alpha}$

could we hope for $\alpha \approx \widehat{\alpha}$?

for a so-called 'well-mixed' system (without bias) we can assume in average: $\alpha \approx \hat{\alpha}$ but well-mixed assumption does often not hold!

this is a small taste of the \Rightarrow micro-macro problem (later)

A macroscopic perspective (1/2)

Measurement of $\hat{\alpha}$ is probabilistic

State transitions for a given \hat{lpha} are deterministic

We have a look into the combinatorics of all possible neighborhoods

For simplicity, small neighborhood of |N| = 2

probability
$$P_{B\rightarrow A}$$
 to switch from B to A is

$$P_{B\to A}(\alpha) = (1-\alpha)\alpha^2 \tag{1}$$

probability to switch from A to B is fully symmetric

$$P_{A\to B}(\alpha) = \alpha(1-\alpha)^2 \tag{2}$$

A macroscopic perspective (2/2)

$$P_{B\to A}(\alpha) = (1-\alpha)\alpha^2$$

$$P_{A\to B}(\alpha) = \alpha(1-\alpha)^2$$

Expected macroscopic dynamics

How does the swarm fraction α develop over time? normalized by a considered time interval Δ t expected change $\Delta\alpha$ of α :

$$\frac{\Delta\alpha(\alpha)}{\Delta t} = \frac{1}{N} \left((1 - \alpha)\alpha^2 \right) - \frac{1}{N} (\alpha(1 - \alpha)^2) \tag{3}$$

Dynamics & feedbacks

$$\frac{\Delta\alpha(\alpha)}{\Delta t} = \frac{1}{N} \left((1 - \alpha)\alpha^2 \right) - \frac{1}{N} (\alpha(1 - \alpha)^2)$$

here for $\Delta t = 1$, N = 10

1/N: assumed switching rate of one robot per per time step

What kind of feedback do we see here? positive feedback only!

Self-organizing system

Does this robot swarm qualify as self-organizing system?

```
positive feedback \( \times \)
negative feedback \( \times \)
initial fluctuations \( \sqrt \)
multiple interactions \( \sqrt \)
balance between exploitation and exploration \( \times \)
```

Discussion: How could exploration be included?