

СДО Росдистант > Текущий курс > Сопротивление материалов 2 > 1. Расчет на прочность при прямом изгибе > Промежуточный тест 1

Тест начат	4/07/2022, 16:54
Состояние	Завершено
Завершен	4/07/2022, 16:54
Прошло времени	9 сек.
Баллы	0,0/21,0
Оценка	0,0 из 3,0 (0%)

Для данной балки определите, чему равно минимально допустимое значение стороны квадрата [b], при котором выполняется условие прочности, если $[\sigma]$ = 160 МПа.

Выберите один ответ:

- [*b*] = 9,1 см
- \bigcirc [b] = 11,5 cm
- \bigcirc [b] = 10,9 cm
- (b) = 7,3 cm

Правильный ответ: [b] = 9,1 см

Для данной балки с соответствующими эпюрами внутренних силовых факторов, имеющей сечение произвольной формы, определите, чему равен из условия прочности характерный размер сечения [a], если балка изготовлена из хрупкого материала с допускаемыми напряжениями $[\sigma]_p = 40 M \Pi a$ и $[\sigma]_c = 120 M \Pi a$. Момент инерции сечения $I_{x_p} = 0,018 a^4$.

Выберите один ответ:

- [a] = 18,8 см
- [a] = 21,6 см
- [a] = 24,1 см
- \bigcirc [a] = 27,2 cm

Правильный ответ: [а] = 21,6 см

Вопрос 3

Нет ответа

Балл: 1,0

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, чему равна величина максимального нормального напряжения в опасных точках опасного сечения, если размеры сечения b = 5 см, h = 15 см.

Выберите один ответ:

- σ_{max} = 120 MΠa
- σ_{max} = 133 MΠa
- σ_{max} = 187 ΜΠa
- σ_{max} = 225 MΠa

Правильный ответ: $\sigma_{\rm max}$ = 133 МПа

Для данной балки с соответствующими эпюрами внутренних силовых факторов, имеющей сечение произвольной формы, определите, чему равен из условия прочности характерный размер сечения [a], если балка изготовлена из хрупкого материала с допускаемыми напряжениями $[\sigma]_p = 100 M \Pi a$ и $[\sigma]_c = 200 M \Pi a$. Момент инерции сечения $I_{x_c} = 139,4a^4$.

Выберите один ответ:

- \bigcirc [a] = 1,2 cm
- [a] = 0,9 cm
- [a] = 1,7 см
- [a] = 2,3 cm

Правильный ответ: [а] = 1,7 см

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите с помощью таблиц сортамента прокатной стали, какой номер двутавра подходит по условию прочности, если [d] = 160 МПа.

Выберите один ответ:

- Двутавр № 16
- Двутавр № 10
- Двутавр № 24*а*
- Двутавр № 20*а*

Правильный ответ: Двутавр № 20а

Балка изготовлена из хрупкого материала с допускаемыми напряжениями $\left[\sigma\right]_{\text{D}}$ = 100 МПа и $\left[\sigma\right]_{\text{C}}$ = 200 МПа.

Выберите один ответ:

- О Сечение расположено рационально
- Сечение расположено нерационально, его нужно перевернуть на 180°
- Сечение расположено нерационально, его нужно перевернуть на 90°
- Сечение расположено нерационально, его нужно перевернуть на 270°

Правильный ответ: Сечение расположено рационально

Для данной балки с соответствующими эпюрами внутренних силовых факторов, имеющей сечение произвольной формы, определите, чему равен из условия прочности характерный размер сечения [a], если балка изготовлена из хрупкого материала с допускаемыми напряжениями $[\sigma]_s = 200 M \Pi a$ и $[\sigma]_s = 300 M \Pi a$. Момент инерции сечения $I_{sc} = 117.3 a^4$.

Выберите один ответ:

- [a] = 1,1 cm
- [a] = 0,8 cm
- \bigcirc [a] = 2,2 cm
- \bigcirc [a] = 1,5 cm

Правильный ответ: [а] = 1,5 см

Вопрос **8**

Нет ответа

Балл: 1,0

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, чему равна величина максимального нормального напряжения в опасных точках опасного сечения, если b = 9 см.

Выберите один ответ:

- σ_{max} = 120 MΠa
- σ_{max} = 185 MΠa
- σ_{max} = 165 MΠa
- σ_{max} = 41 MΠa

Правильный ответ: $\sigma_{\rm max}$ = 185 МПа

Балка изготовлена из хрупкого материала с допускаемыми напряжениями $[\sigma]_{\rm p}$ = 100 МПа и $[\sigma]_{\rm c}$ = 200 МПа.

Выберите один ответ:

- О Сечение расположено рационально
- Сечение расположено нерационально, его нужно перевернуть на 180°
- Сечение расположено нерационально, его нужно перевернуть на 90°
- Сечение расположено нерационально, его нужно перевернуть на 360°

Правильный ответ: Сечение расположено нерационально, его нужно перевернуть на 180°

Для данной балки с соответствующими эпюрами внутренних силовых факторов, имеющей сечение произвольной формы, определите, рационально ли расположено сечение или его нужно перевернуть на 180°.

Балка изготовлена из хрупкого материала с допускаемыми напряжениями $\left[\sigma\right]_{D} = 100 \text{ M}\Pi \text{a}$ и $\left[\sigma\right]_{C} = 200 \text{ M}\Pi \text{a}$.

Выберите один ответ:

- О Сечение расположено рационально
- Сечение расположено нерационально, его нужно перевернуть на 180°
- Сечение расположено нерационально, его нужно перевернуть на 270°
- Сечение расположено нерационально, его нужно перевернуть на 90°

Правильный ответ: Сечение расположено рационально

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, чему равна величина максимального нормального напряжения в опасных точках опасного сечения, если d = 12 см.

Выберите один ответ:

- σ_{max} = 118 ΜΠα
- σ_{max} = 59 ΜΠα
- σ_{max} = 206 MΠa
- σ_{max} = 177 ΜΠa

Правильный ответ: $\sigma_{\rm max}$ = 118 МПа

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, чему равна величина максимального нормального напряжения в опасных точках опасного сечения, если размеры сечения D = 20 см, d = 17 см.

Выберите один ответ:

- σ_{max} = 80 ΜΠα
- σ_{max} = 99 ΜΠα
- σ_{max} = 160 MΠa
- σ_{max} = 133 MΠa

Правильный ответ: $\sigma_{\rm max}$ = 80 МПа

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, чему равна величина максимального нормального напряжения в опасных точках опасного сечения, если сечение балки – двутавр № 24 (используйте таблицы сортамента прокатной стали).

Выберите один ответ:

- σ_{max} = 104 ΜΠa
- σ_{max} = 173 MΠa
- σ_{max} = 87 ΜΠα
- σ_{max} = 145 MΠa

Правильный ответ: σ_{\max} = 104 МПа

Балка изготовлена из хрупкого материала с допускаемыми напряжениями $[\sigma]_{\rm p}$ = 200 МПа и $[\sigma]_{\rm c}$ = 300 МПа.

Выберите один ответ:

- О Сечение расположено рационально
- Сечение расположено нерационально, его нужно перевернуть на 180°
- Сечение расположено нерационально, его нужно перевернуть на 90°
- Сечение расположено нерационально, его нужно перевернуть на 360°

Правильный ответ: Сечение расположено нерационально, его нужно перевернуть на 180°

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, чему равна величина минимально допустимого внешнего диаметра кольцевого сечения, если а = d/D = 0,9; [σ] = 160 МПа.

Выберите один ответ:

- [*D*] = 17,7 см
- D = 20,5 cm
- [*D*] = 22,4 cm
- O[D] = 15,6 cm

Правильный ответ: [D] = 17,7 см

Балка изготовлена из хрупкого материала с допускаемыми напряжениями [d_{$_0$} = 200 МПа и [d_{$_0$} = 300 МПа.

Выберите один ответ:

- О Сечение расположено рационально
- Сечение расположено нерационально, его нужно перевернуть на 90°
- Сечение расположено нерационально, его нужно перевернуть на 180°
- Сечение расположено нерационально, его нужно перевернуть на 270°

Правильный ответ: Сечение расположено рационально

Балка изготовлена из хрупкого материала с допускаемыми напряжениями $\left[\sigma\right]_{D}$ = 200 МПа и $\left[\sigma\right]_{C}$ = 300 МПа.

Выберите один ответ:

- О Сечение расположено рационально
- Сечение расположено нерационально, его нужно перевернуть на 180°
- Сечение расположено нерационально, его нужно перевернуть на 90°
- Сечение расположено нерационально, его нужно перевернуть на 360°

Правильный ответ: Сечение расположено нерационально, его нужно перевернуть на 180°

Для данной балки определите, чему равно минимально допустимое значение стороны прямоугольника [b], при котором выполняется условие прочности, если h/b=3, $[\sigma]=160$ МПа.

Выберите один ответ:

- [*b*] = 6,5 см
- (b) = 5.8 cm
- (b) = 4.7 cm
- (b) = 3,2 cm

Правильный ответ: [b] = 4,7 см

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, чему равна величина минимально допустимого диаметра круглого сечения, если [σ] = 160 МПа.

Выберите один ответ:

- [d] = 11,3 см
- O[d] = 14,2 cm
- □ [d] = 10,8 см
- \bigcirc [d] = 11,8 cm

Правильный ответ: [*d*] = 11,3 см

Для данной балки с соответствующими эпюрами внутренних силовых факторов, имеющей сечение произвольной формы, определите, чему равен из условия прочности характерный размер сечения [a], если балка изготовлена из хрупкого материала с допускаемыми напряжениями $[\sigma]_p = 40 M \Pi a$ и $[\sigma]_c = 120 M \Pi a$. Момент инерции сечения $I_{x_c} = 9,44 a^4$.

Выберите один ответ:

- [a] = 6,6 см
- [*a*] = 4,2 cm
- [a] = 4,8 cm
- [a] = 5,9 см

Правильный ответ: [а] = 4,8 см

Для данной балки с соответствующими эпюрами внутренних силовых факторов определите, какое сечение является наиболее опасным.

Выберите один ответ:

- \circ B
- \circ c
- \bigcirc D
- \circ κ

Правильный ответ: *D*