Cây

Trần Vĩnh Đức

HUST

Ngày 7 tháng 9 năm 2017

Tài liệu tham khảo

- Norman L. Biggs, Discrete Mathematics, Oxford University Press, 2002.
- L. Lovász, J. Pelikán, K. Vesztergombi, *Discrete Mathematics: Elementary and Beyond*, Springer-Verlag New York, 2003.
- K. H. Rosen, Toán học rời rạc ứng dụng trong tin học.

Nội dung

Một số tính chất của cây

Đếm cây gán nhãn

Định nghĩa

Ta nói rằng đồ thị T là một cay nếu nó có hai tính chất:

- (T1) T liên thông;
- (T2) T không có chu trình.

Ví dụ

Các cây với 1,2 hoặc 3 đỉnh

Có hai cây với 4 đỉnh

Có ba cây với 5 đỉnh

Ta biết rằng có sáu cây (đôi một không đẳng cấu) với sáu đỉnh; hãy vẽ chúng.

Mệnh đề

Nếu T=(V,E) là một cây với ít nhất hai đỉnh, thì với mỗi cặp đỉnh x,y có duy nhất một đường đi từ x tới y.

Chứng minh.

Vì T liên thông nên có đường đi từ x tới y. Nếu có đường đi khác từ x tới y, vậy thì ta có chu trình

Mâu thuẫn với định nghĩa của cây.

Hãy chứng minh rằng tính chất:

- **(T3)** với mỗi cặp đỉnh x, y có duy nhất một đường đi từ x tới y; kéo theo cả hai tính chất:
- (T1) T liên thông; và
 - (T2) T không có chu trình.

Mênh đề

Nếu $T=(\,V,E)$ là một cây với ít nhất hai đỉnh, thì đồ thị thu được từ T bằng cách xóa đi một cạnh bất kỳ sẽ có hai thành phần liên thông, mỗi thành phần là một cây.

Mênh đề

Nếu $T=(\mathit{V},\mathit{E})$ là một cây với ít nhất hai đỉnh, thì $|\mathit{E}|=|\mathit{V}|-1.$

Chứng minh bằng quy nạp mạnh

Đặt
$$P(n) =$$
 "Cây với n đỉnh có $n-1$ cạnh"

Bước cơ sở: P(1) đúng. Tại sao?

Bước quy nạp: Giả sử $P(1), \cdots, P(k)$ đều đúng để chứng minh P(k+1).

- lacktriangle Xét T là cây với |V|=k+1 và xét uv là một cạnh của T.
- lacktriangle Xóa cạnh uv khỏi T ta được hai cây $T_1=(V_1,E_1)$ và $T_2=(V_2,E_2)$, ta có

$$|V_1| + |V_2| = |V|, |E_1| + |E_2| = |E| - 1.$$

Áp dụng giả thiết quy nạp ta được

$$|E| = |E_1| + |E_2| + 1$$

= $(|V_1| - 1) + (|V_2| - 1) + 1$
= $|V| - 1$.

Định lý

Nếu T=(V,E) là một cây với ít nhất hai đỉnh, vậy thì:

- (T3) với mỗi cặp đỉnh x, y có duy nhất một đường đi từ x tới y;
- (T4) đồ thị thu được từ T bằng cách xóa đi một cạnh bất kỳ sẽ có hai thành phần liên thông, mỗi thành phần là một cây;

(T5)
$$|E| = |V| - 1$$
.

Xét cây $T=(\mathit{V},\mathit{E})$ với $|\mathit{V}|\geq 2$. Hãy chứng minh rằng T có ít nhất hai đỉnh bậc 1.

Xét $T=(\mathit{V},\mathit{E})$ là cây với $|\mathit{V}| \geq 2$. Hãy dùng tính chất

(T5)
$$|E| = |V| - 1;$$

để chứng minh rằng T có ít nhất hai đỉnh bậc 1.

Ta nói rằng đồ thị F là một $\ref{rừng}$ nếu nó có tính chất:

(T2) F không có chu trình.

Hãy chứng minh rằng nếu $F=(\mathit{V},\mathit{E})$ là một rừng với c thành phần liên thông thì

$$|E| = |V| - c.$$

Định lý

Xét đồ thị $T=(\mathit{V},\mathit{E}).$ Các khẳng định sau đây là tương đương nhau:

- T là cây;
- 2. T không chứa chu trình và |E| = |V| 1;
- **3.** *T* liên thông và |E| = |V| 1;
- **4.** *T* là đồ thị liên thông, nhưng nếu xóa đi một cạnh bất kỳ thì đồ thị thu được là không liên thông;
- 5. Hai đỉnh khác nhau bất kỳ của T được nối với nhau bởi đúng một đường;
- **6.** T không chứa chu trình, nhưng nếu ta thêm một cạnh nối hai đỉnh không kề nhau trong T thì đồ thị nhận được có đúng một chu trình.

Bài tập Hãy chứng minh định lý trước.

Nội dung

Một số tính chất của cây

Đếm cây gán nhãn

Câu hỏi Có bao nhiều cây với n đỉnh?

Câu hỏi Hai cây này có trùng nhau?

Cây gán nhãn

- ► Ta cố định các đỉnh của cây, mỗi đỉnh được gán một nhãn.
- Hai cây là giống nhau nếu và chỉ nếu chúng có cùng tập cạnh.

Ví dụ

Hoán đổi nhãn 2 và 4 của cây gán nhãn dưới đây cho ta một cây gán nhãn khác.

Tìm số cây gán nhãn với 2,3,4, và 5 đỉnh?

Định lý (Cayley)

Số cây gán nhãn với n đỉnh là n^{n-2} .

Trong phần còn lại của mục này, ta sẽ đi chứng minh định lý Cayley.

Lưu trữ cây: dùng ma trận kề

Mệnh đề

Số lượng cây gán nhãn với n đỉnh phải không nhiều hơn $2^{(n^2-n)/2}$. Tại sao?

Lưu trữ cây: dùng danh sách cạnh

7 8 9 6 3 0 2 6 9 9 2 2 0 2 4 1

Mệnh đề

Số lượng cây gán nhãn với n đỉnh phải ít hơn $2^{2n\log_2 n}.$

Tại sao?

Lưu trữ cây: dùng Father code

- Cố định một đỉnh làm gốc (ví dụ đỉnh có nhãn nhỏ nhất).
- Liệt kê các cạnh giống như lưu trữ dùng danh sách cạnh (theo hai dòng); tuy nhiên
- với mỗi cạnh, đỉnh ở dòng dưới luôn là đỉnh gần gốc hơn (hay còn gọi là cha của) đỉnh ở dòng trên, và
- các đỉnh ở trên được sắp thứ tự.

Father code: Ví dụ

Father code

- ▶ Nếu cây có n đỉnh thì dòng đầu tiên luôn là $1, 2, \dots, n-1$.
- Tại sao số 0 không xuất hiện ở dòng đầu tiên?
- Vậy ta có thể xóa dòng đầu tiên.
- ► Father code là dòng thứ 2.

Xét các "mã" sau:

- 1. (0, 1, 2, 3, 4, 5, 6, 7);
- 2. (7,6,5,4,3,2,1,0);
- 3. (0,0,0,0,0,0,0,0);
- 4. (2,3,1,2,3,1,2,3).

Những mã nào ở trên có thể là "father codes" của cây?

Mệnh đề

Số lượng cây gán nhãn với n đỉnh phải không nhiều hơn $n^{n-1}.$

Lưu trữ cây: dùng Prüfer code mở rộng

Thuật toán tính Prüfer code mở rộng từ cây

- Nếu cây không có cạnh nào thì thuật toán dừng.
- Tìm đỉnh u có bậc 1 và có nhãn nhỏ nhất khác 0.
- 3. Gọi cạnh có đầu mút u là $\{u,v\}$. Ghi ra $\frac{u}{v}$.
- **4.** Xóa đỉnh u và cạnh $\{u, v\}$ khỏi cây.
- Quay lại bước 1.

Prüfer code mở rộng

1 3 4 5 6 7 8 9 2 6 0 2 6 2 9 9 2 0

Câu hỏi

Tại sao vị trí cuối ở hàng dưới luôn là 0?

Bổ đề

Hàng đầu tiên của một Prüfer code mở rộng có thể tính được từ hàng thứ hai.

Ví dụ

Giả sử ta có một Prüfer code mở rộng còn thiếu hàng trên như sau:

Đỉnh x_1 phải thỏa mãn ba điều kiện:

- 1. $x_1 \in \{0, 1, \dots, 7\}$. Tại sao?
- 2. x_1 là đỉnh bậc 1, có nhãn nhỏ nhất khác 0.
- 3. khi xây dựng dãy từ cây, x_1 bị xóa khỏi cây ở bước đầu tiên.

Điều kiện 3 chỉ ra rằng x_1 sẽ không xuất hiện trong hàng 2. Tại sao? Từ điều kiện 2, ta được $x_1=5$. Tại sao?

Ví dụ

Tiếp tục ví dụ trước, bây giờ ta có:

Đỉnh x_2 phải thỏa mãn ba điều kiện:

- 1. $x_2 \in \{0, 1, \dots, 7\}$. Tại sao?
- 2. x_2 là đỉnh bậc 1, có nhãn nhỏ nhất khác 0 và 5.
- 3. khi xây dựng dãy từ cây, x_2 bị xóa khỏi cây ở bước thứ hai.

Vậy $x_2 = 2$.

Hãy hoàn thành nốt hàng trên của Prüfer code mở rộng sau

Khẳng định

Mỗi phần tử ở hàng đầu tiên của Prüfer code mở rộng là số nguyên nhỏ nhất thỏa mãn:

- ở hàng đầu tiên, số này không xuất hiện trước nó;
- ở hàng thứ hai, số này không xuất hiện ở dưới nó hoặc phía sau nó.

Ví dụ

Prüfer code

- ► Ta không cần lưu trữ toàn bộ Prüfer code mở rộng, mà
- ightharpoonup ta chỉ cần lưu tữ dãy gồm n-2 phần tử của hàng thứ hai.
- Dãy này gọi là Prüfer code của cây.
- ▶ Vậy thì, Prüfer code là một dãy số độ dài n-2, với mỗi phần tử của nó là một số nguyên từ 0 đến n-1.

Bổ đề

Mọi dãy có độ dài n-2 gồm các số nguyên giữa 0 và n-1 đều là Prüfer code của một cây n đỉnh nào đó.

Ta đã hoàn thành chứng minh định lý sau chưa?

Định lý (Cayley)

Số cây gán nhãn với n đỉnh là n^{n-2} .

Bài tập (Lập trình)

Viết chương trình nhập vào một dãy là mã Prüfer của một cây và in ra cây đó. Bạn có thể hiện cây ở dạng danh sách cạnh, hoặc sử dụng công cụ Graphviz để vẽ tự động.