Cryptanalysis of Polar Bear

John Mattsson

Mahdi M. Hasanzadeh Elham Shakour Shahram Khazaei

Overview

- Description of Polar Bear
- Guess-and-determine attack
- First attack (Mattsson)
- Improved attack (Hasanzadeh *et al*)
- Analysis
- Fix

- Synchronous stream cipher by Mats Näslund and Johan Håstad.
- Submitted to eStream เป็นเปลี่ยว
- Based on RC4 table shuffling but with two irregularly clocked LFSRs for stepping.

Polar Bear Key and IV Schedule

steps (look at msbs)

Polar Bear Output Generation

Guess-and-Determine Attack

- 1. Guess some parts of the internal state
- Determine other parts of the state under some assumption.
- 3. Check if the guess is right and the assumption holds

Key size			
Guess	Assumption	Work	

- If 2^{Guessed bits} · (1/probability) · Determine work < 2^{key}
 - ⇒ Successful attack

First Attack (Mattsson)

- Assumptions:
 - 1. Stepping (2, 2, 2, 2, 2, 2) for R^0 and R^1
 - 2. First 8 α -values different
 - 3. Next 40 α -values different

• Assumed probability = $2^{-10} \cdot 2^{-4.8} = 2^{-14.8}$

Under these assumptions Polar Bear looks like this

First Attack (Mattsson)

- Stepping (2, 2, 2, 2, 2, 2) for *R*⁰ and *R*¹
- Guess 64 bits in R^1

■ Computational complexity: $O(2^{64}) \cdot O(2^{14.8}) = O(2^{78.8})$

Improved Attack (Hasanzadeh et al)

- Assumptions:
 - 1. Stepping (2, 2, 2, 2, 2, 2, 2, 2) for *R*⁰ and (2, 3, 3, 3, 3, 2, 3, 2) for *R*¹
 - 2. First 64 α -values different

• Assumed probability = $2^{-14} \cdot 2^{-12.4} = 2^{-26.4}$

Improved Attack (Hasanzadeh et al)

- Stepping (2, 2, 2, 2, 2, 2, 2, 2) for *R*⁰ and (2, 3, 3, 3, 3, 2, 3, 2) for *R*¹
- Guess 31 bits in R¹
- Done!

```
22 21 20 19
18 17 16 15
14 13
12 11
10 9
8 7 6 5 4 3 2 1 0

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Z<sub>15</sub> Z<sub>14</sub> Z<sub>13</sub> Z<sub>12</sub>
Z<sub>11</sub> Z<sub>10</sub> Z<sub>9</sub> Z<sub>8</sub>
Z<sub>7</sub> Z<sub>6</sub>
Z<sub>5</sub> Z<sub>4</sub>
Z<sub>3</sub> Z<sub>2</sub>
Z<sub>1</sub> Z<sub>0</sub>
```

■ Computational complexity: $O(2^{31}) \cdot O(2^{26.4}) = O(2^{57.4})$

Why were these attacks possible?

- Table *D8* initially known, mixes slowly.
- Short LFSRs. It is even possible to guess the entire small LFSR and still be under O(2¹²⁸).
- Trinomials as feedback polynomials.
- The LFSR stages are too related by stepping, output, and update.

Fix

- We propose that the security is enhanced by adding a key-dependant premixing of D8
 - 1. Expand the key to 768 bytes
 - 2. For i = 0 to 767 Swap($D8[i \pmod{256}]$, D8[key[i]])
- We belive this is the fastest and simplest way. Only adding computational cost during the key schedule.

Summary

■ Two attacks were presented. One "simple" $O(2^{78.8})$ and one more sophisticated $O(2^{57.4})$

Analysis

A fix was suggested I'll be back