Deep Learning Service for Efficient Data Distribution Aware Sorting

Presenter: Xiaoke Zhu

Beihang University

November 23, 2024

Background

- Fundamental CS problem
- Traditional sorting algorithm: Quick Sort, Merge Sort, QuickX Sort ...
- ▶ ML-enhanced algorithms: Learned Data Structures & Algorithms, SageDB Sort ...
- Sorting is a well-studied topic, but we argue that leveraging ML models offers a way to further accelerate it.

Motivation

Learned Sorting

- Train a model f.
- Use f to predict the final position of each key in the sorted output.

Mapping elements by learned model

SageDB Sort

Limitations of SageDB Sort

A toy example

- QuickDraw game dataset Google Creative Lab 50,426,265 records schema: 'key-id', 'word', 'country code', 'timestamp', 'recognized'
- Near 10% elements are conflicts
- SageDB Sort addresses collisions using traditional sorting algorithms, which incurs computational overhead when collisions is too large

Algorithm name	Time (sec.)	Sorting Rate (elements/sec.)	Conflicting rate(%)
std::heap sort	13.46	3746.44	-
std::sort	23.71	2127.19	-
SageDB Sort	10.53	4790.125	9.16

NN-sort

Architecture

Example

The complexity

symbols	notations		
n	the amount of data elements to be sorted		
σ_i	collision rate per iteration		
e _i	the number of data elements that were out-of-order in the i -th iteration		
ϵ	the predefined limit of iterations		
t	the number of completed iterations		
θ	The operations required for data to pass through f		

$$T(n, e, \sigma, t, \theta) = \begin{cases} 1, & \text{if } n = 1 \\ C_1 n^2 + C_2 n \log n + C_3 n, & \text{if } n > 1 \end{cases}$$

$$C_1 = \left[\frac{1}{2} \sum_{i=1}^t e_i (1 - \sigma_i) (\prod_{j=1}^{i-1} \sigma_j)^2\right], C_2 = \prod_{j=1}^t \sigma_j$$

$$C_3 = \sum_{i=1}^{t} \left[\theta \sum_{j=1}^{i} \sigma_j + (1 - e_i)(1 - \alpha_i) \prod_{j=1}^{i-1} \sigma_j + \prod_{j=1}^{i} \sigma_j\right] + (\prod_{j=1}^{t} \sigma_j) \log(\prod_{j=1}^{t} \sigma_j)$$

Experimental Results: overall performance

Experimental Results: other results

Impact of Iterations

Impact of data distribution

Operations between traditional sorting algorithm and NN-sort

Thanks