ECE2049 Homework #1

Submitted by: Jack C. Bergin

Date: 02/07/21

Question	Grade
1 25	
2 15	
3 10	
4 10	
5 25	
6-15	
Total: 100	

YOU MUST ATTACH THIS COVER SHEET TO YOUR HW!!

Problem 1:

Part A:

I. The loop iterated through 10,922 times. The loop will be exited when kk exceeds the 32767 int range limit and goes back to 0 thus exiting with the while loop logic.

First Loop:

- Kk Value:
 - Start: 1
 - End: 4
- Mm Value:
 - Start: 32767End: 16383
- In-Val Value:
 - Start: 0
 - End: 1

Final Loop:

- Kk Value:
 - Start:32766
 - End: 0
- Mm Value:
 - Start: 15
 - End: 15
- In-Val Value:
 - Start: 1
 - End: 1

II. The last 3 loops are going to have the values: 252, 254, 0 because char hits its overflow at 255.

Problem 1 (Continued):

Part B:

```
unsigned char trial, tP_history[175];
while(trial<175){
       unsigned char tP=alphaTouchPad();
       tP_history[trial]=tP;
       if(tP=='A'){
              led_on(0);
       if(trial=='B'){
              led_on(1);
       if(trial=='C'){
              led_on(2);
       if(trial=='D'){
              led_on(3);
       if(trial=='E'){
              led_on(4);
       else{
              led_all_off();
       trial++;
}
```

Problem 1 (Continued):

```
Part C:
```

```
int main(){
 //Declare arrays and needed variables
  int sizeCnst = 500;
  int alphaCnst = 0.9;
  int rawArray[500];
  int expoArray[500];
 //Give values to both arrays
  for (int i = 0; i < sizeCnst; i++){
   rawArray[i] = (rand()\%2001)-2000
  for (int j = 0; j < sizeCnst; j++){
   if(j=0)
     expoArray[j] = rawArray[j]
   else{
     expoArray[j] = (1-alphaConst) * rawArray[j] + alphaConst * expoArray[j-1];
   }
 //Print out the array values
  for (int k = 0; k < sizeCnst(); k++){
   printf("Raw Data: ", rawArray[k], "\n");
 for (int g = 0; g < sizeCnst(); g++){
   printf("Exponential Average: ", expoArray[g], "\n");
return 0;
}
```

Problem 2:

a) Express the following numbers as 16 bit unsigned integers 1652, 11000, 256. Show all your work.

1652:

- 1652/2 = 826 0
- -826/2 = 413 0
- -413/2 = 206 R1 1
- -206/2 = 103 0
- -103/2 = 51 R1 1
- -51/2 = 25 R1 1
- -25/2 = 12 R1 1
- -12/2 = 6 0
- -6/2 = 3 0
- -3/2 = 1 R1 1
- $\frac{1}{2} = R1 1$

0000 0110 0111 0100b

11000:

- 11000/2 = 5500 0
- 5500/2 = 2750 0
- 2750/2 = 1375 0
- 1375/2 = 687 R1 1
- -687/2 = 343 R1 1
- -343/2 = 171 R1 1
- -171/2 = 85 R1 1
- -85/2 = 42 R1 1
- -42/2 = 21 0
- -21/2 = 10 R1 1
- -10/2 = 5 0
- -5/2 = 2 R1 1
- -2/2 = 1 0
- $\frac{1}{2} = 1 R1 1$

0001 0101 0111 1000b

Problem 2 (Continued):

256:

- -256/2 = 128 0
- -128/2 = 64 0
- -64/2 = 32 0
- -32/2 = 16 0
- -16/2 = 8 0
- -8/2 = 4 0
- -4/2 = 2 0
- -2/2 = 1 0
- $-\frac{1}{2} = 1 R1 1$

0000 0001 0000 0000b

- b) Express the following number as 16 bit signed (two's complement)integers -7, 6200, -32750. Show all your work.
- $-7 = 1000\ 0000\ 0000\ 0111b$
 - 0111 1111 1111 1000 +1
 - = 0111 1111 1111 1001
- $6200 = 0001\ 1000\ 0011\ 1000b$
 - Because the most significant number is positive the 2's complement is the same as the original 16 bit representation: 0001 1000 0011 1000.
- $-32750 = 1111 \ 1111 \ 1110 \ 1110b$ $0000 \ 0000 \ 0001 \ 0001 + 1$
 - $= 0000\ 0000\ 0001\ 0010$

You are given the following 16-bit numbers 2A56h, 0C45h, and E25Ah. Each of these values could be interpreted as.

- c) An unsigned number.
 - 1. $2A56h \rightarrow 10838$
 - 2. $0C45h \rightarrow 3141$
 - 3. $E25Ah \rightarrow 57946$
- d) Sign-magnitude numbers.
 - 1. $10838d \rightarrow 0010\ 1010\ 0101\ 0110$
 - 2. $3141d \rightarrow 0000110001000101$
 - 3. $57946d \rightarrow 1110\ 0010\ 0101\ 1010$
- e) A two's-complement number.
 - 1. $10838d \rightarrow 0010\ 1010\ 0101\ 0110 = 10838d$
 - 2. $3141d \rightarrow 0000 \ 1100 \ 0100 \ 0101 = 3141d$
 - 3. $57946d \rightarrow 1110\ 0010\ 0101\ 1010$

 $0001\ 1101\ 1010\ 0110\ +1 = -7590d$

Problem 3:

- a) Express the base 10 integer Y = 32141169 in BCD?
 - 32141169/2 = 16,070,584 R 1
 - -16,070,584/2 = 8,035,292 0
 - -8,035,292/2 = 4,017,646 0
 - -4,017,646/2 = 2008823 0
 - -2008823/2 = 1,004,411 R 1
 - -1,004,41/2 = 502,205 R 1
 - 502,205/2 = 251,102 R 1
 - -251,102/2 = 125,551 0
 - 125,551 = 62,775 R 1
 - 62,775/2 = 31,387 R 1
 - -31,387/2 = 15,693 R 1
 - 15693/2 = 7,846 R 1
 - -7,846/2 = 3,923 0
 - -3,923/2 = 1961 R 1
 - 1961/2 = 980 R 1
 - 980/2 = 490 0
 - -490/2 = 245 0
 - -245/2 = 122 R 1
 - -122/2 = 61 0
 - 61/2 = 30 R 1
 - -30/2 = 15 0
 - -15/2 = 7 R 1
 - -7/2 = 3 R 1
 - -3/2 = 1 R 1
 - $\frac{1}{2} = 1 R 1$
 - 0001 1110 1010 0110 1111 0111 0001b
- b) Assume that the variable X is encoded in BCD. What is the decimal equivalent value of X if $X = 0011\ 1001\ 0111\ 0110b$?

 $2^0+2^4+2^5+2^6+2^8+2^9+2^10+2^11+2^13+2^14+2^17+2^19+2^21+2^22+2^23+2^2+2^24=14710$

Problem 4:

- a) What are the ASCII codes (in hex) for the characters '0', '1', '2', '3''9'?
 - -0 = 0x30
 - -1 = 0x31
 - -2 = 0x32
 - -3 = 0x33
 - -4 = 0x34
 - -5 = 0x35
 - -6 = 0x36
 - -7 = 0x37
 - -8 = 0x38
 - -9 = 0x39
- b) In the lab you will regularly need to display numbers on the LCD screen. Thereforeyou will need to convert between integer digits and their ASCII representation and the reverse. What C code (variable declarations and 1 line of code) would you use to convert a single decimal digit to its ASCII code?
 - char decimalVal;
 - char asciiVal = decimalVal + 30;
- c) Assume the integer value D = 56987 has been converted for display into an array of ASCII values, declared as char $D_asc[8]$;

What value (in hex) should be stored in each array location so that the number would display properly (i.e. right justified with digits in left to right order) if printed on our Sharp LCD screen? Explain your reasoning. Hint: Check the Lab 0 demo code.

- D = 56987:
 - $5d \rightarrow +48$ (to properly set up hex conversion) $\rightarrow 53d \rightarrow 35h$
 - 6d \rightarrow +48 (to properly set up hex conversion) \rightarrow 54d \rightarrow 36h
 - 9d \rightarrow +48 (to properly set up hex conversion) \rightarrow 57d \rightarrow 39h
 - $8d \rightarrow +48$ (to properly set up hex conversion) $\rightarrow 56d \rightarrow 38h$
 - 7d \rightarrow +48 (to properly set up hex conversion) \rightarrow 55d \rightarrow 37h
 - $D_asc[7] = 0x20$
 - D asc[6] = 0x20
 - D asc[5] = 0x20
 - D asc[4] = 0x35
 - D asc[3] = 0x36
 - D asc[2] = 0x39
 - D asc[1] = 0x38
 - D asc[0] = 0x37

Problem 5:

Convert the following numbers from decimal to IEEE 32-BIT floating point format.

- a) 5.5d = 101.1b
- -S = 0
- E = 127 + 2 = 129
 - 10000001
- F = 1000
- 0x40b00000h
- b) -8.75d = 1000.11b
- -S = 1
- E = 127 + 3 = 130
 - 10000010
- F = 1100
- 0xc10c0000h

The following numbers are encoded using 32-bit IEEE floating point format. Find the decimal values that they represent.

- -7.125d
- 100.0625d

Problem 6: The MSP430 is little endian so the least significant byte is stored first.

Value	Address	Little Endian	Big Endian
"Tst"	02000h	74h	54h
	02001h	73h	73h
	02002h	54h	74h
-17.75	02003h	C1h	00h
	02004h	8Eh	00h
	02005h	00h	8Eh
	02006h	00h	C1h
ser_num	02007h	A9h	59h
	02008h	11h	68h
	02009h	97h	ABh
	0200Ah	5Ah	89h
	0200Bh	89h	5Ah
	0200Ch	ABh	97h
	0200Dh	68hh	11h
	0200Eh	59h	A9h
-3	0200Fh	FDh	FFh
	02010h	FFh	FDh
32766	02011h	FEh	7Fh
	02012h	7Fh	FEh
5	02013h	05h	05h
A95E13C4	02014h	C4h	A9h
	02015h	13h	5Eh

02016h	5Eh	13h
02017h	A9h	C4h