Jegyzőkönyv

а

fényhullámhossz és diszperzió méréséről (9)

Készítette: Tüzes Dániel

Mérés ideje: 2008-10-15, szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-10-22

A mérés célja

A feladat egy gázkisülési cső (spektrállámpa) multikromatikus spektruma segítségével meghatározni egy prizma diszperzióját. A mérés során optikai rács segítségével határozzuk meg a gáz által kibocsátott fény hullámhosszait.

Elvi alapok

Az optikai rács egy olyan plán parallel lemez, melyen sötét és világos helyek ismétlődnek megadott szabály szerint, egyszerű esetben világos és sötét sávok egymástól állandó távolságra. A fény hullámtermészetéből adódóan, ha egy ilyen rácsra rávilágítunk és a rács mintázatának skálája összemérhető a fény hullámhosszával, akkor ez a hullámtermészet meg is nyilvánul. Egyszerű esetben, sötét és világos sávok váltakozásakor a megfelelő közelítésekkel olyan Fraunhofer-féle elhajlási képet kapunk, melyben a sötét helyek jól elválasztják a pontszerű, fényes helyeket. Az ernyőn keletkező fényes hely (intenzitásmaximum) rácsra merőleges egyenessel α szöget zár be: $k_{\in \mathbb{Z}} \cdot \lambda = d \sin \alpha$, ahol d a rácson két sötét vonal egymástól vett távolsága, λ a fény hullámhossza. A rácsállandót ismerve meghatározhatjuk d-t, a szöget megmérve pedig a hullámhosszakat is megkapjuk.

Egy közeg törésmutatója függhet (és a gyakorlat azt mutatja, hogy függ is) a beérkező fény hullámhosszától, ezt nevezzük diszperziónak. Ha egy prizma törőszögét ismerjük, akkor a minimális eltérítési szögek függvényében lehetőség van megmondani az egyes hullámhosszakhoz tartozó törésmutató értékét. Különböző fényhullámhosszakra megmérve a törésmutatót, abból interpolációval következtethetünk más hullámhosszakra vonatkozó törésmutatóra is, ezáltal mint hullámhossz-mérő eszköz működhet a prizma.

A mérési módszer ismertetése

a spektrállámpa kibocsátott fényeinek hullámhosszmérése

A mérőeszköz vázlati képe jobbra található. Technikai okok miatt a spektrállámpa által kibocsátott fényt (látható tartományba eső elektromágneses sugárzást) vizsgáljuk csak. A forrásból jövő fényt egy optikai rendszer párhuzamosítja, majd az optikai rácsra vezeti, amelyből szóródó fényt egy másik optikai rendszer fókuszálja és nagyítja, lehetővé téve a bezárt szög (a) megmérését.

A mérési előkészülethez hozzátartozik a mintatartó helyes beállítása. Ennek során biztosítjuk, hogy a beérkező fénysugárral párhuzamos legyen az optikai rács talpára merőleges sík. A mérés első lépéseként az optikai rácsot a fénysugárra merőlegesen állítjuk be. Elméleti megfontolásokból tudhatjuk, a kimenő fénysugarak a beérkezőhöz képesti eltérülés szögének maximuma van, szimmetrikusan a jobb- és baloldalra. A tárgyasztal elforgatásával egyik irányba megkereshetjük az egyik, a másik irányba forgatásával a másik maximumot. A két maximum számtani közepén a rács merőleges lesz a beeső fénysugarakkal.

Megkeressük az elhajlás nélkül tovahaladó fénysugarat. Ez könnyen felismerhető fehéres színe és nagy intenzitása miatt. A mérőeszköz segítségével meghatározzuk az eltérülés szögét, és örömmel nyugtázzuk, ha ez 0-nak adódik. Ezután egyik irányba indulva megkeressük az első maximumot az ibolyaszín irányából várva. Feljegyezzük a leolvasón látató értéket, és ezt megismételjük a spektrum többi színeire is, illetve a spektrum egyik színére több k mellett is. A mérést megismételjük a másik irányba is. Mérési adatainkból meghatározhatjuk a fény hullámhosszát, mert az k rácsállandó adott: $k = \sin \alpha / (k)$. k = 1 esetben vizsgáljuk meg tehát a fentiek szerint a teljes látható spektrumot, továbbá egy színt több k értékre!

prizma diszperziójának meghatározása

Ha ismerjük a prizma φ törőszögét, akkor a minimális ε eltérítés szögének ismeretében meghatározhatjuk az adott hullámhosszhoz tartozó törésmutatót: $n_{\lambda} = \sin\left(\frac{\varphi + \varepsilon_{\lambda}}{2}\right) / \sin\left(\frac{\varphi}{2}\right)$.

A prizma törőszögének meghatározásához a prizmát (annak •jelölésével a forrás felé) szemmel szembeállítottam a bejövő fénysugarakkal, majd a két irányba a törőlapokról teljes visszaverődést szenvedő fénysugarakhoz tartozó szöget leolvastam. Elméleti megfontolásokkal tudhatjuk, hogy a mért β_1 és β_2 szögekből a törőszög $\varphi = \frac{360^\circ - \beta_1 + \beta_2}{2}$.

Ezután már minden adat rendelkezésünkre áll a diszperzió meghatározásához. A prizmát úgy helyezve, hogy a megfelelő törőszögen haladjon át a fénysugár, megkeresve a prizmán áthaladó fénysugarak képét a távcsőben, az egyes színekhez tartozó szöget lejegyeztem.

Mérési eredmények, hibaszámítás

a spektrállámpa kibocsátott fényeinek hullámhosszmérése

Az egyes színekhez tartozó szögeket az alábbi táblázatban foglalom össze, először a jobbra mért, majd a balra mért szögeket (a periodicitást figyelembe véve), alattuk az átlagukkal:

	ibolya	lila	kék	türkiz	zöld	fűzöld	sárga	sárga	vörös
szög	346°11'35" 13°48'38"		343°58'42" 16°1'0"	343°32'22" 16°26'42"		341°12'22" 18°46'58"	340°6'16" 19°54'06"	340°01'22" 19°58'44"	337°39'58" 22°19'44"
átl.(°)	13,809	14,901	16,019	16,453	17,454	18,788	19,897	19,978	22,331
λ (nm)	404,18	435,44	467,29	479,60	507,90	545,37	576,29	578,54	643,39

A megadott képlet alapján a színekhez fel is tüntettem a hullámhosszukat. A rácsállandó értéke 15000 vonal/inch .

A mérés során többször szem elől tévesztettem, hogy hányadik színt mérem, így visszaellenőrizve a korábbi értékeket, azokban a korábban mérttől eltérést tapasztaltam, melynek nagysága általában nem haladta meg a 40"-et. A hullámhosszat kifejező egyenlet infinitezimális megváltozásából a hullámhossz közelítő hibájára kapjuk, hogy $\Delta\lambda = \frac{\Delta\alpha}{\tan\alpha}\lambda$. Így a leolvasási pontosságból adódóan a hullámhossz hibája nem több mint $\pm 0,4nm$. Figyelembe veendő, hogy a rács a beérkező fényre nem pont merőleges.*

Feladat volt továbbá a teljes elsőrendű spektrum vizsgálatán kívül egy szín további rendjeinek vizsgálata. Sajnálatos módon a további rendekben nehéz volt megállapítani, hogy az adott maximum milyen színű, de az első rend intenzitásaiból arra következtetni lehetett.

lila	k=1	k=2	k=3
szög	345°5'48",14°53'52"	329°0'46", 30°54'20"	309°22'20",50°20'36"
átlag(°)	14,901	30,946	50,858
hullámhossz (nm)	435,44	435,38	437,77

prizma diszperziójának meghatározása

A mérés első lépéseként meghatároztam a fent részletezett módszerrel a törőszöget, melynek során mért $\beta_1=307^\circ37'32$ " és $\beta_2=67^\circ18'24$ " értékekből a prizma törőszöge 59,84°. Az egyes színekhez tartozó elhajlási szögeket az alábbi táblázatban foglalom össze:

	ibolya	lila	kék	türkiz	zöld	fűzöld	sárga	sárga	vörös
szög	40°01'12"	39°23'0"	39°8'8"	39°3'10"	38°53'20"	38°41'0"	38°33'40"	38°33'4"	38°19'44"
n	1,5342	1,5270	1,5242	1,5233	1,5212	1,5191	1,5177	1,5175	1,5150

A szög értékekből meghatározható a törésmutató a már ismertetett formula alapján. A kapott eredményeket grafikusan is ábrázoltam:

A grafikus ábrázolásból jól látható, hogy valószínűleg az első szög értékét hibásan olvastam le, mérési hibának tekinthető. Az egyes hullámhosszakhoz tartozó törésmutató hibáját a

$$\frac{\Delta n}{n} = \alpha \cdot \frac{1}{\tan \alpha} + \beta \frac{1}{\tan \beta}$$
összefüggésből határozhatjuk meg, ahol $2\alpha = \varphi + \varepsilon$ és $2\beta = \varphi$. Becsléseim alapján $\Delta \varepsilon = 0.5$ ' és $\Delta \varphi = 40$ ", így $\Delta n \approx 0.005$.

*: számoljuk ki az ebből adódó hibát! Legyen az eltérülés szöge $\alpha_{j,b}$ a jobb és bal irányba, és zárjon be a feltételezett merőlegessel a rács ε szöget! Láthatjuk, hogy a megszokott(a mellékletben is tárgyalt) útkülönbségre adott kifejezés értékét korrigálni kell, konkrétan értéke egyik irányba való eltérüléskor $k\lambda = d\sin\left(\alpha_j - \varepsilon\right) + d\sin\varepsilon$ és $k\lambda = d\sin\left(\alpha_b + \varepsilon\right) + d\sin\left(-\varepsilon\right)$ a másik irányba vett eltérülésekor . A két mennyiség összegére trigonometrikus azonosságot alkalmazva, és felhasználva, hogy az eltérülések különbsége elhanyagolható ε -hoz képes, kapjuk, hogy $d\cdot\sin\alpha\cdot\cos\varepsilon = k\lambda$, ezért $\Delta\lambda = \frac{d\sin\alpha}{k}|\cos\varepsilon - 1|$. Behelyettesítve a konkrét értékéket láthatjuk, hogy ebből a pontatlanságból származó hiba $\Delta\lambda \approx 0,05$ nm, ami töredéke a szög leolvasási pontatlanságából adódó hibának.

Feladat

Első átfedéshez az szükséges, hogy valamely k+1 rendben a vörös szín "megelőzze" az ibolyát (és itt most nem politikáról van szó), vagyis $\lambda_{v\bar{o}r\bar{o}s}k>\lambda_{ibolva}(k+1)$, ebből kapjuk, hogy

 $k>\frac{\lambda_{ibolya}}{\lambda_{v\ddot{o}r\ddot{o}s}-\lambda_{ibolya}} \approx 1,7$, vagyis a 2-ik rendbeli vöröst megelőzheti a 3-ik rendbeli ibolya. Ezzel analóg gondolatmenettel látható, hogy k>4,2 esetére kettős átfedés is lehetséges.

Mellékletek

[1]: Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 2003.