ARJUNA (NEET)

Vector

DPP-12

1. Two force $\vec{F}_1 = 5N$ due east and $F_2 = 10 \text{ N}$ due north then resultant of these two force

- (A) $5\sqrt{5}$ N
- (B) 15 N
- (C) 5 N
- (D) $\sqrt{5}$ N

2. Two vector of magnitude 2 then resultant of these two vector may be?

- (A) 2
- (B) 8
- (C) 5
- (D) 6

Two vector of magnitude same A and resultant of these two vector is also A then angle between these two vector must be

- (A) 45°
- (B) 90°
- (C) 120°
- (D) 180°

Two vector of magnitude equal to each other and 10 then resultant of these two vector at 60° is

- (A) $10\sqrt{3}$
- (B) 10
- (C) 0
- (D) 20

Which of the following relation is correct between \vec{A} , \vec{B} & \vec{C} if $\vec{C} = \vec{A} + \vec{B}$

- (A) B + A < C < B A
- (B) $A \le C \ge B$
- (C) $A B \le C \le A + B$
- (D) A B < C < A + B

6. If $\vec{R} = \vec{A} + \vec{B}$ and $|\vec{R}| = |\vec{A}| = |\vec{B}|$ then angle between \vec{A} and \vec{B} may be

- (A) 90°
- (B) 120°
- (C) 60°
- (D) 45°

7. If $\vec{R} = \vec{A} + \vec{B}$ and $R^2 = A^2 + B^2$ then angle between \vec{A} and \vec{B} may be

- (A) 90°
- (B) 60°
- (C) 120°
- (D) 80°

8. If $\vec{R} = \vec{A} + \vec{B}$ and R = A + B then angle between \vec{A} & \vec{B} must be

- (A) 90°
- (B) 60°
- (C) 0°
- (D) 180°

9. Given $\vec{A} = 2\hat{i} + 3\hat{j}$, the angle between \vec{A} and Y-axis is

- (A) $\sin^{-1}\frac{2}{3}$ (B) $\cos^{-1}\frac{2}{3}$ (C) $\tan^{-1}\frac{2}{3}$ (D) $\tan^{-1}\frac{3}{2}$

10. Two forces, each numerically equal to 5 N, are acting as shown in the figure. Then the resultant is

- (A) 2.5 N
- (B) 5 N
- (C) $5\sqrt{3}$ N
- (D) 10 N

11. Two forces of magnitudes F and $\sqrt{3}$ F act at right angles to each other. Their resultant makes an angle β with F. The value of β is

- (A) 30°
- (B) 45°
- (C) 60°
- (D) 135°

12. A truck travelling due north at 20 ms⁻¹ turns west and travels with same speed. What are the changes in velocity?

- (A) $20\sqrt{2} \text{ ms}^{-1} \text{ south-west}$
- (B) 40 ms⁻¹ south-west
- (C) $20\sqrt{2} \text{ ms}^{-1} \text{ north-west}$
- (D) 40 ms⁻¹ north-west

ANSWERS KEY

- 1. (A)
- 2. (A)
- 3. (C)
- 4. (A)
- 5. (C)
- **6. (B)**
- 7. (A)
- 8. (C)
- 9. (C)
- 10. (B)
- 11. (C)
- 12. (A)

Note - If you have any query/issue

Mail us at support@physicswallah.org

