Mechanics of Materials

Lecture 5 - Axial Load

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

February 15, 2021

1

schedule

- 15 Feb Axial Load (not on exam 1)
- 17 Feb Exam Review
- 19 Feb Homework 2 Due, Homework 1 Self-grade Due
- 22 Feb Exam 1
- 26 Feb Project 1 Due

outline

- saint venant's principle
- elastic axial deformation
- superposition
- statically indeterminate

saint venant's principle

2

saint venant's principle

- We use Saint Venant's principle to generalize various loading applications
- If we apply a concentrated force, near where we apply it (for example, along a pin), the stress will not be very uniform
- Far away from that point, however, the stress will be uniform, whether we apply the force with 1 pin, 2 pins, or via a uniform grip

4

saint venant's principle

- We use saint venant's principle to replace difficult to model loads with easier ones
- There are two conditions
 - 1. The load must be statically equivalent
 - Our region of interest must be far enough away from the point where the load was applied

saint venant's principle

Figure 1: An image showing what the stress field looks like in a body both near to an applied load and far away.

elastic axial deformation

axially loaded member

 We can use Hooke's Law to find the deformation of a general body under axial loading (below the elastic limit)

Figure 2: If we consider some homogeneous body with an applied load, we can look at a small section of this body with an applied load of N(x) which is initially dx wide, but under load stretches an additional d delta

axially loaded member

 For some differential element, we can consider the internal forces and stresses

$$\sigma = \frac{N(x)}{A(x)} = E(x)\epsilon(x) = E(x)\left(\frac{d\delta}{dx}\right)$$

• We can solve this for $d\delta$ to find

$$d\delta = \frac{N(x)dx}{A(x)E(x)}$$

 We integrate this over the length of the bar to find the total displacement 7

sign convention

- In general, we consider a force or stress to be positive if it causes tension and elongation
- It is negative if it causes compression and contraction

9

example 4.2

A steel rod with a 10mm diameter is attached to a rigid collar passing through an aluminum tube with cross-sectional area of 400 mm2. Find the displacement at C if $E_{st}=200$ GPa and $E_{al}=70$ GPa.

example 4.4

The cone shown has a specific weight of $\gamma=6$ kN/m3 and E=9 GPa. Determine how far the end is displaced due to gravity.

superposition

11

superposition

- Some problems are too complicated to solve all at once
- Instead, we break them up into two simpler problems
- Each "sub-problem" must still satisfy equilibrium
- Problem must be linear and the deformation should be small enough that it does not cause moment-equilibrium issues

12

statically indeterminate

statically indeterminate

- There are many problems that are at least slightly over-constrained
- While this is common engineering practice, it creates too many variables for statics analysis
- These problems are called "statically indeterminate"

13

statically indeterminate

- One extra equation we can use is called "compatibility" or the "kinematic condition"
- We know that at the displacement must be equal on both sides of any arbitrary section we make in a member
- We can separate a member into two parts, then use compatibility to relate the two unknown forces

statically indeterminate

15

example 4.7

Assuming the bottom bar is rigid, find the force developed in each bar. AB and EF have cross-sectional areas of 50 mm2 while CD has a cross-sectional area of 30 mm2.

Figure 3: A 0.8 m long rigid horizontal bar is supported by hanging from 3 vertical rods. Rod