

The arphi function

- ϕ assigns a geocell to every match.
- φ partitions the set of matches.
- Example choices for φ are mapping the rule using a single point or the minimum dimension of all points.
- Example search patterns:
 - $\blacksquare_1 \longrightarrow \bigcirc_2 \longrightarrow \blacksquare_3$
 - 2. $(\bigcirc_1 - \bullet_2, \bigcirc_3 - \bullet_4)$
- Rules that map to one geocell, may have nodes/edges that map to another!

Mapping Rules to Geometric Cells (geocells)

Node Type **Negative Intermediate** Positive Dimension 2D

 1
 1
 2
 2
 3

 3
 1
 4
 2
 5

4 6 5

8 9 4

111 **8 1**2 **9**

Figure 16:

Mapping Rules to Geometric Cells (geocells)

The φ function

- ϕ assigns a geocell to every match.
- φ partitions the set of matches.
- Example choices for φ are mapping the rule using a single point or the minimum dimension of all points.
- Example search patterns:

$$\blacksquare_1 \longrightarrow \bigcirc_2 \longrightarrow \blacksquare_3$$

2.
$$(\bigcirc_1 - - \bullet_2, \bigcirc_3 - - \bullet_4)$$

 Rules that map to one geocell, may have nodes/edges that map to another!

Node Type

Negative

Positive

Dimension

2D

0D

The Reaction Grid

Context for the cell list

- A cell list¹ is a data structure to find combinations of objects within a given cut-off distance of each other.
 - Cell size defined using a user defined reaction radius.
 - Enables efficient geometric search of nearby objects and combinatorial matching of nearby components.
- The cell list is integral in the incremental update.
- The cell list can be used in the rule mapping function φ .
- Other potential methods are bounding volume hierarchies², k-d trees³, etc.
- 1. (Slattery, 2022); 2. (Ericson, 2004); 3. (Bentley, 1975)

Figure 17: ECC overlaid with a "reaction grid" from a cell list and "ghost cells".

Figure 18: Zoomed in version with graph rules shown.