Network Security Analytics

ML-Powered Intrusion Detection System

Efe Sirin - S4808746 & Amr Abdou - S4678753

University of Groningen

Outline

- Introduction
- ② Dataset
- Model Training & Evaluation
- Metwork Monitoring Infrastructure
- Conclusion

Introduction

Project Overview

- Goal: Complete end-to-end network intrusion detection system
- Approach: ML-powered anomaly detection
- Dataset: CICIDS2017 Comprehensive network traffic dataset
- Architecture: Full ELK Stack + Suricata + ML API

Complete System Architecture

Pipeline: Network \rightarrow Suricata \rightarrow Filebeat \rightarrow Logstash \rightarrow {Elasticsearch/Kibana, ML API}

Dataset

Dataset: CICIDS2017

Dataset Characteristics

8 CSV files covering different days and attack types

File	Content
Monday-WorkingHours	Benign traffic
Tuesday-WorkingHours	FTP-Patator, SSH-Patator
Wednesday-workingHours	DoS attacks, Heartbleed
Thursday-Morning	Web attacks (Brute Force, XSS, SQL Injection)
Thursday-Afternoon	Infiltration
Friday-Morning	Botnet (Ares)
Friday-Afternoon (PortScan)	Port Scanning
Friday-Afternoon (DDoS)	DDoS attacks

Features: 78 network flow features (duration, packet counts, byte counts, etc.)

Exploratory Analysis of the Dataset

Key Exploration Steps:

- Load and merge all CSV files
- Analyze class distribution (benign vs. attacks)
- Identify missing values and outliers

Insight

The dataset is highly imbalanced – perfect for OCSVM approach!

Model Training & Evaluation

OCSVM with CICIDS2017¹

Core Principle

Train on benign traffic, classify deviations as anomalies (potential attacks)

Advantages:

- Inherent data class imbalance handling
- Detects novel/unknown attacks
- No need for labeled attack data

Use Case:

Zero-day attack detection

Models on CICIDS2017. arXiv preprint.

Efe Sirin - S4808746 & Amr Abdou - S4678753 (Univers

¹Xu, Z. & Liu, Y. (2025). Robust Anomaly Detection in Network Traffic: Evaluating Machine Learning

Training Pipeline Architecture

Data Preprocessing Steps

- **1 Load Data:** Merge 8 CSV files (approx. 2.8M records)
- 2 Label Processing:
 - Binary classification: BENIGN (1) vs. ATTACK (-1)
 - Filter benign traffic for training
- Feature Cleaning:
 - Remove infinite values
 - Handle missing data
 - Remove constant features
- Normalization:
 - StandardScaler for feature scaling
 - Save scaler for deployment
- Train/Test Split:
 - 80% benign traffic for training
 - 20% benign + all attacks for testing

Training Results

Model Summary (Sept 28, 2025)

Training Configuration:

Mode: Full dataset

• Random Seed: 42 (reproducibility)

Benign Train Ratio: 80%

Cache Size: 22 GB (optimized for performance)

Metric	Score
Accuracy	0.5798 (57.98%)
Precision	0.6381 (63.81%)
Recall	0.5484 (54.84%)
F1-Score	0.5898 (58.98%)

Performance Analysis

Strengths:

- Good precision (63.81%)
 - When flagged as attack, likely correct
 - Low false positive rate
- Balanced F1-score (58.98%)

Considerations:

- Moderate recall (54.84%)
 - Some attacks may be missed
 - Trade-off with false positives
- Room for optimization

Note on OCSVM Performance

OCSVM is designed for anomaly detection, not perfect classification. The model prioritizes detecting abnormal patterns while minimizing false alarms.

Training Configuration

OCSVM Hyperparameters

```
# Model hyperparameters
kernel='rbf'  # Radial Basis Function
gamma='scale'  # Auto-computed: 1/(n_features * X.var())
nu=0.05  # 5% anomaly tolerance
max_iter=1000  # Maximum iterations
```

Training Configuration

```
# Data split
train_ratio=0.8  # 80% benign for training
random_state=42  # Reproducibility
cache_size=22000  # 22GB cache for performance
```

OCSVM Model Configuration

Hyperparameters

Kernel: RBF (Radial Basis Function)

- Captures non-linear patterns
- Formula: $K(x, x') = \exp(-\gamma ||x x'||^2)$

Nu (ν): 0.05

- Upper bound on training errors
- Lower bound on support vectors
- 5% anomaly tolerance

Gamma: 'scale' (auto-computed)

•
$$\gamma = \frac{1}{n_{\text{-}} \text{features} \times X.\text{var}()}$$

Controls decision boundary smoothness

Max Iterations: 1000

16 / 24

Network Monitoring Infrastructure

Technology Stack

Data Collection & Processing:

- Suricata: IDS/IPS engine
- Filebeat: Log shipper
- Logstash: Log processor
- Elasticsearch: Search & analytics
- Kibana: Visualization

Machine Learning:

- Python: Core language
- scikit-learn: OCSVM model
- FastAPI: REST API
- Docker: Containerization
- DVC: Data versioning

Container Orchestration

All components deployed via Docker Compose for easy setup and scaling

Suricata IDS - Network Traffic Analysis

What is Suricata?

Open-source network IDS/IPS and network security monitoring engine

Key Capabilities:

- Real-time packet inspection: Deep packet analysis
- Protocol detection: HTTP, TLS, DNS, and more
- EVE JSON output: Structured event logging
- PCAP processing: Offline traffic analysis

Our Configuration:

- Flow tracking
- Protocol parsing
- Alert generation
- JSON event logging

Output Events:

- Alerts
- Flow records
- HTTP logs
- TLS/DNS metadata

ELK Stack - Log Management Pipeline

Elastic Stack Components

Industry-standard log collection, processing, and visualization

- Filebeat (Log Shipper): Monitors Suricata logs, lightweight forwarding agent with pre-configured module
- Logstash (Processing): Receives, parses, enriches, and transforms events; forwards to Elasticsearch and ML API
- Elasticsearch (Storage): Indexes security events with fast full-text search and time-series optimization
- 4 Kibana (Visualization): Interactive dashboards for real-time monitoring and alert visualization

Data Flow Through the Pipeline

Conclusion

Project Achievements

Complete IDS System:

- End-to-end network monitoring pipeline
- Real-time threat detection
- Production-ready containerized deployment

ML-Powered Detection:

- OCSVM model trained on 2.8M flows
- 63.81% precision, 58.98% F1-score
- RESTful API for real-time inference

Operational Stack:

- ELK stack for log management
- Suricata for network analysis
- Docker Compose orchestration

Thank You!

Questions?

Project: Network Security Analytics
Complete ML-Powered IDS System

 $\mathsf{Suricata} \to \mathsf{ELK} \; \mathsf{Stack} \to \mathsf{OCSVM} \; \mathsf{API} \to \mathsf{Real-time} \; \mathsf{Detection}$

