Lecture 19-20: Single-cell genomics

- Introduction, Missing value imputation,
 Dimensionality reduction
- Trajectory inference, Spatial reconstruction

BREAKTHROUGH OF THE YEAR

Development cell by cell

With a trio of techniques, scientists are tracking embryo development in stunning detail

A zebrafish embryo at an early stage of development. Fluorescent markers highlight cells expressing genes that help determine the type of cell they will become. (JEFFREY FARRELL, SCHIER LAB/HARVARD UNIVERSITY)

The single-cell revolution is just starting.

Elizabeth Pennisi

Stegle (2015) Nat. Rev. Genet.

PCA geometrically projects data onto a lower-dimensional space

- Each lower dimension is a 'linear' combination of correlated original dimensions.
- The principal components (PCs) represent the directions of maximum variation.

scRNA-seq data has:

- a high frequency of zero values, often referred to as dropouts, and
- high levels of noise due to the low amounts of input RNA obtained from individual cells.

Zero values in scRNA-seq may arise due to:

- low experimental sensitivity, e.g. sequencing sampling noise, technical dropouts during library preparation, or
- biologically the gene is not expressed in the particular cell.

Zero values in scRNA-seg may arise due to:

- low experimental sensitivity, e.g. sequencing sampling noise, technical dropouts during library preparation, or
- because biologically the gene is not expressed in the particular cell.

Imputation is a common approach when dealing with sparse genomics data: predict missing values from the rest of the measured values.

One challenge when imputing expression values is to distinguish true zeros from missing values.

scRNA-seq data imputation methods use information internal to the dataset to be imputed.

 Some degree of circularity → false positive results when identifying marker genes, gene-gene correlations, or testing differential expression.

Many imputation methods:

- **SAVER, Drimpute & scimpute**: use models of the expected gene expression distribution to distinguish true biological zeros from zeros originating from technical noise.
 - \circ Assume homogenous cell populations \rightarrow identify clusters of similar cells to which an appropriate mixture model is fitted.
 - Values falling above a given probability threshold to originate from technical effects are subsequently imputed.
- MAGIC & knn-smooth: perform data smoothing.
 - Infer values of missing data + reduces noise present in observed values (using information from neighbouring data points).
 - Use each cell's k nearest neighbours either through the application of diffusion models or weighted sums respectively.

Many imputation methods:

	Designed for single cell	Local or global	Beyesian method	Need other information	Imputation strategy
LLSimpute	N	local	N	No. of nearest genes	1
Low-rank	N	global	N	error tolerance δ	2
BISCUIT	Y	global	Y	dispersion parameter	1 and 2
scUnif	Υ	global	Υ	cell labels	2
MAGIC	Y	global	N	diffusion time	2
scImpute	Y	local	N	dropout rate cutoff	2
DrImpute	Y	local	N	cluster numbers	2
SAVER	Y	global	Y	size factor	1

Strategy 1 represents imputing dropout based on co-expressed or similar genes, while strategy 2 denotes imputing dropout by borrowing information from similar cells.

Manifold learning

MAGIC

Lineage tracing

genetic lineage tracing

transcriptome lineage trajectories

Single cells belonging to different cell types

Gene expression gradients phylogenetic tree.

Lineage tracing

