Algorithmen und Datenstrukturen

Vincent Dahmen 6689845 Roberto Seidel 6537468 Rafael Heid 6704828

6. November 2015

3.1

Für den ersten Algorithmus gilt:

Die äußere Schleife wird n mal betreten.

Die inneren beiden Schleifen werden jeweils n mal betreten.

Daraus folgt eine gesamte Laufzeit von (n * (n + n)) was in $O(n^2)$ liegt.

Für den zweiten Algorithmus gilt:

Die äußere Schleife wird n mal betreten (Grenze bei 2n, aber Schritt bei n+=2).

Die Innere Schleife wird
n mal ausgeführt (Schleife wird $2 \cdot n$ mal betreten, geht aber nur bi
s $\frac{n}{2})$

Daraus folgt eine gesamte Laufzeit von $(n \cdot (2 \cdot \frac{n}{2})) \in O(n^2)$.

3.2

3.3

$$T_1(n) := \begin{cases} c_1, & \text{für } n = 1\\ 8 \cdot T_1(\frac{n}{2}) + d_1 \cdot n^3, & \text{sonst} \end{cases}$$

mit a = 8 und b = 2 ist $\log_b(a) = 3$ und $f(n) = d_1 \cdot n^3$

Unter Verwendung des 1. Falles des Mastertheorems gilt:

 $T(n) \in \Theta(n^{\log_b(a)})$, falls $f(n) \in O(n^{\log_b(a)-\epsilon})$ für ein $\epsilon > 0$.

Dies gilt hier leider nicht, da für kein $\epsilon > 0$ die Ungleichung $d_1 \cdot n^3 \leq n^{3-\epsilon}$ erfüllt ist, beziehungsweise nur für bestimmte d_1 .

Betrachtung des 2. Falles des Mastertheorems:

Es gilt:
$$T(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$$
, falls $f(n) \in \Theta(n^{\log_b(a)})$

Da für $\lim_{n\to\infty} \frac{f(n)}{n^{\log_b(a)}} = \lim_{n\to\infty} \frac{d_1 \cdot n^3}{n^3} = \lim_{n\to\infty} \frac{d_1 \cdot 1}{1} = d_1$ die Beziehung $f(n) \in \Theta(n^{\log_b(a)})$ erfüllt ist. Damit gilt $T_1(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$.

$$T_2(n) := \left\{ \begin{array}{l} c_2, & \text{für } n=1 \\ 5 \cdot T_2(\frac{n}{4}) + d_2 \cdot n^2, & \text{sonst} \end{array} \right.$$
 mit $a=5$ und $b=4$ ist $\log_b(a) \approx 1,16$ und $f(n)=d_2 \cdot n^2$ Unter Betrachtung des 3. Falles des Mastertheorems gilt:
$$T(n) \in \Theta(f(n)), \text{ falls } f(n) \in \Omega(n^{\log_b(a)+\epsilon}) \text{ für ein } \epsilon > 0 \text{ und } a \cdot f(\frac{n}{b}) \leq \delta \cdot f(n)$$
 für ein $\delta < 1$ und große n . Mit $\epsilon = 0, 5$:
$$\lim_{n \to \infty} \frac{f(n)}{n^{\log_b(a)+\epsilon}} = \lim_{n \to \infty} \frac{d_2 \cdot n^2}{n^{1,16+0,5}} = \lim_{n \to \infty} \frac{d_2 \cdot n^2}{n^{1,66}} = \lim_{n \to \infty} \frac{d_2 \cdot n^{0,34}}{1} = \infty$$
 Hiermit ist $f(n) \in \Omega(n^{\log_b(a)+\epsilon})$.

3.4