Oraux : Algèbre générale, polynômes

- 1. Banque CCINP 2024 : 85 Formule de Taylor-polynômes
- 2. Banque CCINP 2024 : 86 Petit théorème de Fermat
- 3. Banque CCINP 2024 : 94 congruences, jadis un problème de pirates...
- 4. [Classique, culture Math]

On note φ l'indicatrice d'Euler : Pour tout $n \geq 2$, $\varphi[n] = \operatorname{card}\{k \in [[1, n]]/k \land n = 1\} = \operatorname{card}((\mathbb{Z}/n\mathbb{Z})^*)$. Soit $n \geq 2$. Pour tout diviseur d de n, On pose $E_d = \{k \in [[1, n]]/k \land n = d\}$.

(a) Déterminer le cardinal de E_d (indication : On montrera que $\operatorname{card}(E_d) = \varphi(\frac{n}{d})$.

(b) En déduire que $n = \sum_{d/n} \varphi(d)$.

(indication On pourra dénombrer les différents diviseurs de n en les regroupant par paquets.)

5. [Centrale, CCINP]

Soient $P \in \mathbb{C}[X]$ non nul vérifiant $P(X^2) = P(X)P(X-1)$ et $a \in \mathbb{C}$ une racine de P.

- (a) Montrer que, pour tout $n \in \mathbb{N}$, a^{2^n} est racine de P.
- (b) En déduire que a est nul ou de module 1.
- (c) Montrer que l'on a aussi a = -1 ou |a + 1| = 1.
- (d) Déterminer alors tous les polynômes vérifiant cette relation.

6. [CCINP, Centrale]

(a) Montrer q'une matrice carrée d'ordre 2 à coefficients dans \mathbb{Z} est dans $GL_2(\mathbb{Z})$ (ie à coefficient dans \mathbb{Z} et inversible) si et seulement si son déterminant vaut 1 ou -1.

(b) Posons
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$.

Déterminer l'ordre de A, l'ordre de B, l'ordre de AB.

(c) Soit [G,.) un groupe commutatif, x un élément d'ordre fini $p \in \mathbb{N}^*$ et y un autre élément d'ordre fini $q \in \mathbb{N}^*$.

Que peut-on dire de l'ordre de xy?

7. [CCINP]

Soit f un morphisme d'un groupe G dans un groupe G'.

Montrer que si x est d'ordre fini n dans G, alors f(x) est d'ordre fini (dans G') divisant n.

Trouver tout les morphismes du groupe $(\mathbb{Z}/7\mathbb{Z}, +)$ dans $(\mathbb{Z}/13\mathbb{Z}, +)$.

Puis ceux de $(\mathbb{Z}/3\mathbb{Z}, +)$ dans $(\mathbb{Z}/12\mathbb{Z}, +)$.

8. [Mines Ponts] nombre de diviseurs d'un entier

Si $n \in \mathbb{N}^*$, soit d_n le nombre des diviseurs de n. On pose $D_n = d_1 + \cdots + d_n$.

- (a) Soient $n \in \mathbb{N}^*$ et $A = (a_{i,j})_{1 \leq i,j \leq n}$ ou $a_{i,j} = 1$ si i|j et zéro sinon. Exprimer $a_{i,1} + a_{i,2} + \cdots + a_{i,n}$ en fonction de n, de i et de la partie entière.
- (b) Montrer que $1 + \frac{1}{2} + \cdots + \frac{1}{n} \sim \ln n$.
- (c) Montrer que $D_n \sim n \ln n$.
- 9. [Centrale, Mines] (utiliser le fait que $\sqrt{2}$ est irrationnel.)
 - (a) Soit $P \in \mathbb{Z}[X]$. Montrer qu'il existe Q et R dans $\mathbb{Z}[X]$ tels que $P(X) = XQ(X^2) + R(X^2)$.
 - (b) Soit $P \in \mathbb{Z}[X]$. Si $\sqrt{2}$ est racine de P de multiplicité m, montrer que $-\sqrt{2}$ est racine de P de multiplicité m.