Question No. 01

Solutions

We know that a function
$$f(x)$$
 has a fixed point at $x=a$ if,

$$f(a) = a$$

(a) $g(x) = \frac{1}{2} \left(\frac{1}{2} + \frac{9}{2} \right), \quad y = 3$.

So,
$$g(r) = g(3) = \frac{1}{2} \left(\frac{3+9}{3} \right)$$

$$= \frac{1}{2} \left(\frac{6}{3} \right)$$

$$= \frac{1}{2} \left(\frac{6}{3} \right)$$

$$= \frac{1}{3} \left(\frac{6}{3} \right)$$
Thus, $g(x)$ has a fixed point at given $y = 3$.

(b) $g(x) = 2+1 - \tan(x)$, $y = \pi$.

So,
$$g(r) = g(\pi) = \pi + 1 - \tan(\pi + \frac{\pi}{4})$$
So,
$$g(r) = g(\pi) = \pi + 1 - \tan(\pi + \frac{\pi}{4})$$

$$= \kappa + 1 - 1 \qquad \text{if } \tan(\kappa) = 1$$

$$= \kappa$$

$$= \gamma$$

$$= \gamma$$
Thus, $g(x)$ has a fixed point at given $r = \pi$.

Question 2:

Solution:

Solution:

$$f(x) = x^{2} - Sinx = 0;$$

By taking derivative of the above function get,

$$df = \partial x - 2 - \cos(x);$$

$$x^{3}$$

(a) Newton Ralphson (1.5)

Approximate inverse rods 1.06822.


```
% Prediction for 2000  P\_2000 = (c(1)+c(2)*exp(c(3)*(2000-1900)/100))*100; \\ fprintf('Prediction for 2000: %f\n', P\_2000); \\ fprintf('Exact population for 2000 (internet): 282.2\n');
```

<u>output</u>

c: [-0.571814,1.342413,0.926683] Prediction for 2000: 281.927718

Exact population for 2000 (internet): 282.2

plot

Problem 4

MATLAB Script:

```
clear
clc
close all
n = 6;
x = linspace(0, 2.5, n+1);
y = sin(x.^2);

t = x(:); y = y(:);
n = length(t) - 1;
h = diff(t);

Z = zeros(n);
I = eye(n); E = I(1:n-1,:);
J = I - diag(ones(n-1,1),1);
H = diag(h);

AL = [I Z Z Z];
vL = y(1:n);
```

```
AR = [I H H^2 H^3];
vR = y(2:n+1);
A1 = E*[Z J 2*H 3*H^2];
v1 = zeros(n-1,1);
A2 = E*[Z Z J 3*H];
v2 = zeros(n-1,1);
nakL = [zeros(1,3*n) [1 -1 zeros(1,n-2)]];
nakR = [zeros(1,3*n) [zeros(1,n-2) 1 -1]];
A = [AL; AR; A1; A2; nakL; nakR];
v = [vL; vR; v1; v2; 0; 0];
z = A \setminus v;
rows = 1:n;
a = z(rows);
b = z(n+rows);
c = z(2*n+rows);
d = z(3*n+rows);
S = zeros(size(x));
xx = 0:0.001:2.5;
for k = 1:n
    index = (x>=t(k)) & (x<=t(k+1));
    S(index) = polyval([d(k) c(k) b(k) a(k)], x(index)-t(k));
end
plot(xx, sin(xx.^2))
hold on
plot(x, y, 'o')
hold on
% plot(xx,S(xx))
yy = spline(x, y, xx);
plot(xx,yy)
xlabel('x'), ylabel('y(x)')
title('Cubic Spline Interpolation')
legend('Actual Function', 'Nodes', 'Interpolated Function')
Plot:
```


Question No.05
Solutions-
@ Given that,
$P(x) = \beta + \frac{r-\alpha}{2h} + \frac{\alpha-2\beta}{2h^2} x^2$. given points are $(-h, \alpha)$, $(0, \beta)$ and (h, r) .
let,
They $f(xi) = p(xi) \forall i = 0,1,2$ They $f(xi) = p(xi) \forall i = 0,1,2$ They $f(xi) = p(xi) \forall i = 0,1,2$
$P(-h) = a - hb^{2} + h^{2}c = a \rightarrow 1$ $p(0) = a = \beta \rightarrow 2$ $p(h) = a + hb + h^{2}c = a \rightarrow 3$
By solving eq $0, 2 3 3 \omega e get$, $A = B; b = \frac{1}{2} - \frac{1}{2}; c = \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$ Hence, $P(x) = \frac{1}{2} + \frac{1}{2} - $

(a) Given that
$$\int p(s) ds$$

$$= \int \left\{ \beta + \frac{1}{2h} + \frac{1}{2h^2} \right\} ds$$

$$= \int \left\{ \beta + \frac{1}{2h^2} + \frac{1}{2h^2} \right\} ds$$

$$= \frac{2h\beta + 0 + \alpha - 2\beta + \delta}{h^2} \cdot \frac{1 \cdot h^3}{3}$$

$$So_{9} \mid h$$

$$\int p(s) ds = -h \left[f(x_{0}) + 4f(x_{1}) + f(x_{2}) \right]$$
-h

(3) let xi = a+ih for n=(b-a), i=0,1,2,--,n Since, f is approximated by P(n) we take sub-interval [x, x] and take $\chi_0 = \chi$ $\chi_1 = \chi_1$ $\chi_2 = \chi_1$ Hence, $x_{i-1} < x_{i} < x_{i+1}$ and $x_{i-1} = x_{i-1} < x_{i} = h$. Applying the formula to (3) we get => $p(s)d(s) = \frac{h}{3} \left[f(x_{i-1}) + 4f(x_i) + f(x_{i+1}) \right]$ p(x) = f(x) in $\begin{bmatrix} x & x \\ i-1 & i+1 \end{bmatrix}$

(4) Assume that n=2m for an integer m let, $\chi_0=a$; $\chi_i=a+ih$; (i=1,2,3,-(n+1))and n = b = a+nh Since n is divided by a then 2n = b f(x)dx No=9 20 f(x)dx f(x0) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x3) + f(x3

```
\frac{1}{3} \left[ f(x_{n-2}) + u \left( f(x_{n-1}) + f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + f(x_1) + \dots + f(x_n) \right) + a \left( f(x_1) + f(x_n) + \dots + f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_n) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_n) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_n) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_n) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_n) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_n) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_n) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_1) + u \left( f(x_n) \right) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_1) + u \left( f(x_n) \right) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_1) + u \left( f(x_n) \right) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_1) + u \left( f(x_n) \right) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_1) + u \left( f(x_n) \right) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_1) + u \left( f(x_n) \right) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(x_1) + u \left( f(x_n) \right) \right) + u \left( f(x_n) \right) \right]
= \frac{1}{3} \left[ f(x_0) + u \left( f(x_1) + u \left( f(
```

```
a)
```

clc;

clear all; clear all;

f=@(x) x*log(x+1); % function

a=0; % lower limit b=1; % upper limit

n=1; k=1;

Err(1)=0;

while(n<=1024)

N(k)=10*n;

h=(b-a)/n;% step length

x=a:h:b;

for i=1:length(x)

y(i)=f(x(i));

end

```
% Trapezoid formula
l=length(x);
Th=((h/2)*((y(1)+y(1))+2*(sum(y)-y(1)-y(1))));
Error=abs(Th-1/4); % error
n=n*2;
Trpa(k)=Th;
Err(k+1)=Error;
Log_err(k) = log2(Err(k)/Err(k+1));
k=k+1;
end
disp('n Integral value log2(e_(n/2)/e_n) ')
disp('_
Log_err(1)=0;
for i=1:k-1
fprintf('%0.5f \t %15e \t %15f \n',N(i),Trpa(i), Log_err(i))
end
loglog(N,Err(1:k-1))
hold on
loglog(N,1./N.^2,'r')
legend('Error','0(h)^2')
title('Comparing with second order')
```

%%%%% Soltion

n	Integral value	log2 (e_(n/2)/e_n)
10.00000	3.465736e-01	0.000000
20.00000	2.746531e-01	1.969861
40.00000	2.562010e-01	1.991202
80.00000	2.515527e-01	1.997684
160.00000	2.503883e-01	1.999413
320.00000	2.500971e-01	1.999853
640.00000	2.500243e-01	1.999963
1280.00000	2.500061e-01	1.999991
2560.00000	2.500015e-01	1.999998
5120.00000	2.500004e-01	1.999999
10240.00000	2.500001e-01	2.000000
>>		

b)

```
clc;
clear all;
clear all;
f=@(x) \exp(x)^*\cos(x); % function
a=0; % lower limit
b=pi/2; % upper limit
n=1;
k=1;
Err(1)=0;
while(n<=1024)
N(k)=10*n;
h=(b-a)/n;% step length
x=a:h:b;
for i=1:length(x)
y(i)=f(x(i));
end
% Trapezoid formula
l=length(x);
Th=((h/2)*((y(1)+y(1))+2*(sum(y)-y(1)-y(1))));
Error=abs(Th-(exp(pi/2)-1)/2); % error
n=n*2;
Trpa(k)=Th;
```

```
 Err(k+1) = Error; \\ Log\_err(k) = log2(Err(k)/Err(k+1)); \\ k = k+1; \\ end \\ disp('n Integral value log2(e\_(n/2)/e\_n) ') \\ disp('\_\______') \\ Log\_err(1) = 0; \\ for i = 1:k-1 \\ fprintf('\%0.5f \t \%15e \t \%15f \n',N(i),Trpa(i), Log\_err(i)) \\ end \\ loglog(N,Err(1:k-1)) \\ hold on \\ loglog(N,1./N.^2,'r') \\ legend('Error','0(h)^2') \\ title('Comparing with second order')
```

%%%%%% Solution

n	Integral value	log2(e_(n/2)/e_n)
10.00000	7.853982e-01	0.000000
20.00000	1.610760e+00	1.927058
40.00000	1.830822e+00	1.984475
80.00000	1.886587e+00	1.996294
160.00000	1.900573e+00	1.999084
320.00000	1.904072e+00	1.999772
640.00000	1.904947e+00	1.999943
1280.00000	1.905166e+00	1.999986
2560.00000	1.905220e+00	1.999996
5120.00000	1.905234e+00	1.999999
10240.00000	1.905238e+00	2.000000
>>		

C)

clc;

```
clear all;
close all;
a=0; % lower limit
b=1; % upper limit
n=1;
k=1;
Err(1) = 0;
while (n \le 1024)
N(k) = 10*n;
h=(b-a)/n;% step length
x=a:h:b;
for i=1:length(x)
y(i) = f(x(i));
end
% Trapezoid formula
l=length(x);
Th=((h/2)*((y(1)+y(1))+2*(sum(y)-y(1)-y(1))));
Error=abs(Th-4/9); % error
n=n*2;
Trpa(k) = Th;
Err(k+1) = Error;
Log err(k)=log2( Err(k) / Err(k+1));
k=k+1;
end
disp('n Integral value log2(e (n/2)/e n) ')
disp('
                                                                  ')
Log err(1)=0;
for i=1:k-1
fprintf('%0.5f \t %15e \t %15f \n', N(i), Trpa(i), Log err(i))
loglog(N, Err(1:k-1))
hold on
loglog(N,1./N.^2,'r')
legend('Error','0(h)^2')
title('Comparing with second order')
n Integral value log2(e (n/2)/e n)
10.00000
                                         0.000000
                         NaN
20.00000
                         NaN
                                              NaN
40.00000
                         NaN
                                              NaN
80.00000
                         NaN
                                              NaN
160.00000
                         NaN
                                              NaN
320.00000
                         NaN
                                              NaN
640.00000
                                              NaN
                         NaN
1280.00000
                         NaN
                                              NaN
2560.00000
                         NaN
                                              NaN
5120.00000
                                              NaN
                         NaN
10240.00000
                             NaN
                                                  NaN
```



```
function [C,X,Y] = cheby(f,n,a,b)
if nargin==2
    a = -1;
    b=1;
end
d = pi/(2*n+2);
C = zeros(1,n+1);
for k=1:n+1,
 X(k) = cos((2*k-1)*d);
end
X = (b-a) * X/2 + (a+b)/2;
x = X;
Y = eval(f);
for k = 1:n+1,
  z = (2*k-1)*d;
  for j = 1:n+1,
    C(j) = C(j) + Y(k) * cos((j-1)*z);
  end
end
C = 2*C/(n+1);
C(1) = C(1)/2;
plot(X,Y)
title(['chebyshev at node:',num2str(n)])
hold on
plot(X,C,'ro')
end
```

```
clc
clear
close
x=0:pi/100:2*pi;
f = \cosh(\sin(x));
plot(x, f)
hold on
syms x
f = cosh(sin(x));
n=40;
a = -1;
b=1;
[C,X,Y] = cheby(f,n,a,b);
legend('original plot','chebyshev','coefficient list')
xlim([0 2*pi])
grid on
```

