Homework 1

Evan Hughes

January 2023

- 1. Prove that $\sqrt{2}$ is not a rational number.
 - (a) Write down a descripton of the rational numbers $\mathbb Q$ in set builder notation.

$$\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$$
 (1)

(b) Write down a definition of $\sqrt{2}$.

$$\sqrt{2} = \frac{x}{y} \tag{2}$$

(c) Use (a) and (b) to derive a contradiction proving that $\sqrt{2}$ cannot be rational. As written in (a) a rational number can be expressed as a ratio of two integers. To show

that $\sqrt{2}$ is not rational we must show that it cannot be expressed as a ratio of two integers. We start by assuming $\sqrt{2}$ can be written as a ratio of two integers. If those integers share a common factor, then the fraction can be reduced to lowest terms by the Euclidean algorithm. Then $\sqrt{2}$ can be written as $\frac{a}{b}$ where a, b are coprime. b are two coprime integers, which by definition means one will be odd. This means that $\frac{a^2}{b^2} = 2 \rightarrow a^2 = 2b^2$. Therefore a^2 is even because it is 2 times an integer. Because a^2 is even, a must also be even. By the definition of even numbers a can be written as 2k where k is an integer. Substituting this into the equation $a^2 = 2b^2$ we get $(2k)^2 = 2b^2$ which is equivalent to $b^2 = 2k^2$. This means that b^2 is even because it is 2 times an integer. Because b^2 is even, b must also be even. Because both a and b are both even they are both divisible by 2 which contradicts the fact that they are coprime. Therefore $\sqrt{2}$ cannot be written as a ratio of two integers.

2. Use the Division Algorithm to prove that every odd integer is either in the form 4k+1 or 4k+3 for some $k \in \mathbb{Z}$. Let a be an odd integer, meaning a=2n+1 for some $n \in \mathbb{Z}$. We will prove that a is either in the form 4k+1 or 4k+3 for some $k \in \mathbb{Z}$. Using the division algorithm to divide a by 4 we get a=4q+r where $q \in \mathbb{Z}$ and $r \in \{0,1,2,3\}$.

If r=0 then a=4q meaning a is even because a=2(2q) which is 2 times and integer.

If r=1 then a=4q+1 meaning a is in the form 4k+1 for some $k \in \mathbb{Z}$. 4k+1 is odd because it is equivalent to 2(2k)+1 which is 2 times and integer plus 1.

If r=2 then a=4q+2 meaning a is even because a=2(2q+1) which is 2 times and integer.

If r=3 then a=4q+3 meaning a is in the form 4k+3 for some $k \in \mathbb{Z}$. 4k+3 is odd because it is equivalent to 2(2k+1)+1 which is 2 times and integer plus 1.

Therefore any odd integer is in the form 4k + 1 or 4k + 3 for some $k \in \mathbb{Z}$.

- 3. Which of the following sets are nonempty? Explain your answer for each.
 - (a) $A = \{r \in \mathbb{Q} : r^2 = 2\}$

Is empty because $r^2 = 2 \rightarrow r = \sqrt{2}$ which is irrational and not in \mathbb{Q} .

(b) $B = \{r \in \mathbb{R} : r^2 + 5r - 7 = 0\}$

Is nonempty because $\frac{-5\pm\sqrt{53}}{2} \in B$.

(c) $C = \{t \in \mathbb{Z} : 6t^2 - t - 1 = 0\}$

Is nonempty because $6t^2 - 5 - 1 = 0$ has no integer solutions.

4. Prove the Extended Division Algorithm.

If
$$a, b \in \mathbb{Z}$$
 and $b \neq 0$ then there exist a unique pair $(q, r) \in \mathbb{Z}^2$ such that $a = bq + r$ and $0 \leq r < b$

5. Explain what is wrong with the following proof that reflexivity is unnecessary in the definition of an equivalence relation.

Proof: Suppose \sim is an equivalence relation on a nonempty set X and that $a,b \in X$. If $a \sim b$, then by symmetry we must have that $b \sim a$. Now, by transitivity, we have that $a \sim b$ and $b \sim a$ implies that $a \sim a$. Therefore, if \sim is symmetric and transitive, then \sim is reflexive.

Then give an example of a set X and a relation R on it which is both symmetric and transitive, but not reflexive.

LATEXExercises

1. Construct the following displays.

$$1_A = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \tag{3}$$

$$\sqrt[3]{2}$$
 (4)

$$\frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{5}$$

$$\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{R} \text{ and } b \neq 0 \right\} / \sim \frac{a}{b} \sim \frac{c}{d} \iff ad - bc = 0$$
 (6)

2. Use the *ifthen* and *amsmath* packages to write a command called \ **piecewise** that will display a piecewise function.

 $\label{thm:command price} $$ \int_1[1]_{ \left(x)=\left(x\right) \in f_1(x) \mid f_2(x) \mid f_3(x) \mid f_3($

Example:
$$f(x) = \begin{cases} f_1(x)|\psi_1(x) \\ f_2(x)|\psi_2(x) \end{cases}$$