ESERCIZI SVOLTI VLSM

ESERCIZIO 1 (Classe A): Dato l'indirizzo IP 10.1.0.0 partizionare la rete in 4 sottoreti utilizzando la tecnica VLSM secondo le seguenti specifiche:

- 1. Sottorete A: 1000 host
- 2. Sottorete B: 2000 host
- 3. Sottorete C: 200 host
- 4. Sottorete D: 75 host

Determinare il piano di indirizzamento

SOLUZIONE ESERCIZIO 1

- 1. Determino la classe di indirizzo 10.1.0.0 convertendo il byte più significativo: $(10)_{10} = (00001010)_2$. Poiché il primo bit è 0 → è un indirizzo di classe A perciò avrà una struttura del tipo N.H.H.H.
- 2. Il subnetting può essere fatto solo sugli ultimi 3 byte
- 3. Considero la sottorete con più host → la sottorete B e determino il numero di bit necessari ad indirizzare 2000 host . Max Int $\log_2 2000 = 11$. Occorrono 11 bit (teoricamente potrei indirizzare 2^{11} -2=2046 host
- 4. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-11=21 → la subnet mask avrà 21 bit a uno (a partire dal MSB) → 11111111. 111111111.11111000.00000000 \rightarrow 255.255.248.0
- 5. Determino l'indirizzo della prima sottorete (1° sottorete = numero 0_{10}) quindi tutti i bit dedicati al subnetting della subnet mask rappresentano lo zero decimale 00000000.00000 e ovviamente quelli dedicati agli host sono messi a zero → 000.00000000 . quindi, essendo un indirizzo di classe A il primo byte rimane invariato mentre agli altri 3 byte sostituirò i bit calcolati → l'indirizzo della prima sottorete sarà: 10.0.0.0
- 6. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host >
 - a. Primo byte (invariato): $\rightarrow 00001010 \rightarrow 10$
 - b. Secondo byte $\rightarrow 000000000 \rightarrow 0$
 - c. Terzo byte $\rightarrow 00000111 \rightarrow 7$
 - d. Quarto byte \rightarrow 11111111 \rightarrow 255

Indirizzo di broadcast \rightarrow 10.0.7.255

- 7. Determino il range di indirizzi utile: **10.0.0.1 10.0.7.254**
- 8. Considero la seconda sottorete con più host → la sottorete A e determino il numero di bit necessari ad indirizzare 1000 host . Max Int log₂ 1000 = 10. Occorrono 10 bit (teoricamente potrei indirizzare 2^{10} -2=1022 host)
- 9. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-10=22 → la subnet mask avrà 22 bit a uno (a partire dal MSB) →
 - 11111111. 111111111.11111100.00000000 \rightarrow 255.255.252.0
- 10. Determino l'indirizzo della seconda sottorete aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	00001010	00000000	00000111	11111111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	00001010	00000000	00001000	00000000	

NOTA: l'indirizzo ottenuto rappresenta la terza possibile sottorete avendo una subnet mask /22 infatti, sviluppando le combinazioni precedenti a questa avrei:

00001010.00000000.00000000000000000→ non utile perché convertendo avrei l'indirizzo della prima sottorete (10.0.0.0)

00001010.00000000.000001<mark>00.00000000 → non utile perché convertendo avrei un indirizzo da</mark> appartenente alla sottorete precedente (10.0.4.0) in particolare questo è il 1024° host della prima sottorete

Indirizzo della seconda sottorete: 10.0.8.0

- 11. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host \rightarrow
 - a. Primo byte (invariato): $\rightarrow 00001010 \rightarrow 10$
 - b. Secondo byte $\rightarrow 000000000 \rightarrow 0$
 - Terzo byte $\rightarrow 00001011 \rightarrow 11$
 - d. Quarto byte→111111111→255

Indirizzo di broadcast \rightarrow 10.0.11.255

- 12. Determino il range di indirizzi utile: **10.0.8.1 10.0.11.254**
- 13. Considero la terza sottorete con più host → la sottorete C e determino il numero di bit necessari ad indirizzare 200 host . Max Int $\log_2 200 = 8$. Occorrono 8 bit (teoricamente potrei indirizzare 2^{8} -
- 14. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-8=24 → la subnet mask avrà 24 bit a uno (a partire dal MSB) →

11111111. 11111111.111111111.000000000 \rightarrow 255.255.255.00

15. Determino l'indirizzo della terza sottorete aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	00001010	00000000	00001011	11111111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	00001010	00000000	00001100	0000000	

NOTA: l'indirizzo ottenuto rappresenta la tredicesima (12 decimale =00000000, 00001100) possibile sottorete avendo una subnet mask /24 (vedi punto analogo precedente). Indirizzo della terza sottorete: 10.0.12.0

- 16. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): $\rightarrow 00001010 \rightarrow 10$.
 - b. Secondo byte $\rightarrow 000000000 \rightarrow 0$
 - c. Terzo byte $\rightarrow 00001100 \rightarrow 12$
 - d. Quarto byte→111111111→255

Indirizzo di broadcast \rightarrow 10.0.12.255

- 17. Determino il range di indirizzi utile: 10.0.12.1 10.0.12.255
- 18. Considero l'ultima sottorete \rightarrow la sottorete D e determino il numero di bit necessari ad indirizzare 75 host. Max Int $\log_2 75 = 7$. Occorrono 7 bit (teoricamente potrei indirizzare $2^{^7}-2=126$ host)
- 19. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-7=25 → la subnet mask avrà 25 bit a uno (a partire dal MSB) →

11111111. 11111111.111111111.100000000 \rightarrow 255.255.255.128

20. Determino l'indirizzo della quarta sottorete **aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente**. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	00001010	00000000	00001100	11111111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	00001010	00000000	00001101	0000000	

NOTA: l'indirizzo ottenuto rappresenta la 27° (26 decimale =00000000. 00001101.0) possibile sottorete avendo una subnet mask /25 (vedi punto analogo precedente). Indirizzo della quarta sottorete: 10.0.13.0

- 21. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host ->
 - a. Primo byte (invariato): $\rightarrow 00001010 \rightarrow 10$.
 - b. Secondo byte $\rightarrow 000000000 \rightarrow 0$
 - c. Terzo byte $\rightarrow 00001101 \rightarrow 13$
 - d. Quarto byte → 01111111 → 127

Indirizzo di broadcast \rightarrow 10.0.13.127

- 22. Determino il range di indirizzi utile: 10.0.13.1 10.0.13.126
- 23. Definisco il piano di indirizzamento:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP	Ultimo IP
	sottorete	broadcast		utile	utile
В	10.0.0.0	10.0.7.255	255.255.248.0	10.0.0.1	10.0.7.254
A	10.0.8.0	10.0.11.255	255.255.252.0	10.0.8.1	10.0.11.254
C	10.0.12.0	10.0.12.255	255.255.255.0	10.0.12.1	10.0.12.254
D	10.0.13.0	10.0.13.127	255.255.255.127	10.0.13.1	10.0.13.126

Nota1: la maschera è variabile!

Nota2: il piano di indirizzamento con maschera fissa sarebbe stato:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP	Ultimo IP
Sottorete	sottorete	broadcast	Subject mask	utile	utile
В	10.0.0.0	10.0.7.255	255.255.248.0	10.0.0.1	10.0.7.254
A	10.0.8.0	10.0.15.255	255.255.248.0	10.0.8.1	10.0.15.254
С	10.0.16.0	10.0.23.255	255.255.248.0	10.0.16.1	10.0.23.254

D	10.0.24.0	10.0.31.255	255.255.248.127	10.0.24.1	10.0.31.254

Con maschera fissa avrei impegnato: $4*2^{\wedge 11}$ indirizzi IP = 8192 indirizzi IP Con maschera variabile ho impegnato: $1*2^{\wedge 11} + 1*2^{\wedge 10} + 1*2^{\wedge 8} + 1*2^{\wedge 7} = 3456$ indirizzi IP Ho risparmiato 8192-3456=4736 indirizzi IP!!!

ESERCIZIO 2 (Classe B): Dato l'indirizzo IP **150.150.0.0** partizionare la rete in 4 sottoreti utilizzando la tecnica VLSM secondo le seguenti specifiche:

- 1. Sottorete A: 100 host
- 2. Sottorete B: 5000 host
- 3. Sottorete C: 500 host
- 4. Sottorete D: 25 host

Determinare il piano di indirizzamento

SOLUZIONE ESERCIZIO 2

- Determino la classe di indirizzo 150.150.0.0 convertendo il byte più significativo: (150)₁₀ = (10010110)₂. Poiché i primi bit sono 10 → è un indirizzo di classe B perciò avrà una struttura del tipo N.N.H.H.
- 2. Il subnetting può essere fatto solo sugli ultimi 2 byte
- 3. Considero la sottorete con più host → la sottorete B e determino il numero di bit necessari ad indirizzare 5000 host . Max Int log₂ 5000 = 13. Occorrono 13 bit (teoricamente potrei indirizzare 2¹³-2=8192 host
- 4. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-13=19 → la subnet mask avrà 19 bit a uno (apartire dal MSB) →

11111111. 11111111.11100000.00000000 \rightarrow 255.255.224.0

- 5. Determino l'indirizzo della prima sottorete (1° sottorete = numero 0₁₀) quindi tutti i bit dedicati al subnetting della subnet mask rappresentano lo zero decimale 000 e ovviamente quelli dedicati agli host sono messi a zero → 00000.00000000 . quindi, essendo un indirizzo di classe B il primo e il secondo byte rimangono invariati mentre agli altri 2 byte sostituirò i bit calcolati → l'indirizzo della prima sottorete sarà: 150.150.0.0
- 6. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 10010110 \rightarrow 150
 - b. Secondo byte (invariato): $\rightarrow 10010110 \rightarrow 150$
 - c. Terzo byte $\rightarrow 000111111 \rightarrow 31$
 - d. Quarto byte→111111111→255

Indirizzo di broadcast → 150.150.31.255

- 7. Determino il range di indirizzi utile: 150.150.0.1 150.150.31.254
- 8. Considero la seconda sottorete con più host → la sottorete C e determino il numero di bit necessari ad indirizzare 500 host . Max Int log₂ 500 = 9. Occorrono 9 bit (teoricamente potrei indirizzare 2^{^9}-2=510 host)
- 9. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-9=23 → la subnet mask avrà 23 bit a uno (a partire dal MSB) →

11111111. 11111111.11111110.00000000 \rightarrow 255.255.254.0

10. Determino l'indirizzo della seconda sottorete **aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente**. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte (rimane invariato)	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	10010110	10010110	00011111	11111111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	10010110	10010110	00100000	0000000	

NOTA: l'indirizzo ottenuto rappresenta la 65° possibile sottorete avendo una subnet mask /23 infatti, sviluppando le combinazioni precedenti a questa otterrei indirizzi non utili perché appartenenti alla sottorete precedente

Indirizzo della seconda sottorete: 150.150.32.0

- 11. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): $\rightarrow 10010110 \rightarrow 150$
 - b. Secondo byte (invariato) $\rightarrow 10010110 \rightarrow 150$
 - c. Terzo byte $\rightarrow 00100001 \rightarrow 33$
 - d. Quarto byte \rightarrow 111111111 \rightarrow 255

Indirizzo di broadcast →150.150.33.255

- 12. Determino il range di indirizzi utile: 150.150.32.1 150.150.33.254
- Considero la terza sottorete con più host → la sottorete A e determino il numero di bit necessari ad indirizzare 100 host . Max Int log₂ 100 = 7. Occorrono 7 bit (teoricamente potrei indirizzare 2^{^7}-2=126 host)
- 14. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-7=25 → la subnet mask avrà 25 bit a uno (a partire dal MSB) →

11111111. 11111111.111111111.10000000 \rightarrow 255.255.255.128

15. Determino l'indirizzo della terza sottorete **aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente**. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

8	Primo byte (rimane invariato)	Secondo Byte (rimane invariato)	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	10010110	10010110	00100001	11111111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	10010110	10010110	00100010	0000000	

NOTA: l'indirizzo ottenuto rappresenta la 69° possibile sottorete avendo una subnet mask /25 infatti, sviluppando le combinazioni precedenti a questa otterrei indirizzi non utili perché appartenenti alla sottorete precedente

Indirizzo della terza sottorete: 150.150.34.0

- 16. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 10010110 \rightarrow 150
 - b. Secondo byte (invariato) $\rightarrow 10010110 \rightarrow 150$
 - c. Terzo byte $\rightarrow 00100010 \rightarrow 34$
 - d. Quarto byte $\rightarrow 011111111 \rightarrow 127$

Indirizzo di broadcast \rightarrow 150.150.34.127

17. Determino il range di indirizzi utile: 150.150.34.1 – 150.150.34.126

- 18. Considero l'ultima sottorete \rightarrow la sottorete D e determino il numero di bit necessari ad indirizzare 25 host . Max Int $\log_2 25 = 5$. Occorrono 5 bit (teoricamente potrei indirizzare 2^{5} -2=30 host)
- 19. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-5=27 → la subnet mask avrà 27 bit a uno (a partire dal MSB) →

11111111. 11111111.111111111.11100000 \rightarrow 255.255.255.224

20. Determino l'indirizzo della quarta sottorete **aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente**. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte (rimane invariato)	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	10010110	10010110	00100010	01111111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	10010110	10010110	00100010	10000000	

NOTA: l'indirizzo ottenuto rappresenta la 276° possibile sottorete avendo una subnet mask /27 infatti, sviluppando le combinazioni precedenti a questa otterrei indirizzi non utili perché appartenenti alla sottorete precedente

Indirizzo della terza sottorete: 150.150.34.128

- 21. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): $\rightarrow 10010110 \rightarrow 150$
 - b. Secondo byte (invariato) $\rightarrow 10010110 \rightarrow 150$
 - c. Terzo byte $\rightarrow 00100010 \rightarrow 34$
 - d. Quarto byte $\rightarrow 100111111 \rightarrow 159$

Indirizzo di broadcast \rightarrow 150.150.34.159

- 22. Determino il range di indirizzi utile: 150.150.34.129 150.150.34.158
- 23. Definisco il piano di indirizzamento:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP utile	Ultimo IP
	sottorete	broadcast			utile
В	150.150.0.0	150.150.31.255	255.255.224.0	150.150.0.1	150.150.31.254
C	150.150.32.0	150.150.33.255	255.255.252.0	150.150.32.1	150.150.33.254
Α	150.150.34.0	150.150.34.127	255.255.255.0	150.150.34.1	150.150.34.126
D	150.150.34.128	150.150.34.159	255.255.255.127	150.150.34.129	150.150.34.158

Nota1: la maschera è variabile!

Nota2: il piano di indirizzamento con maschera fissa sarebbe stato:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP	Ultimo IP utile
	sottorete	broadcast		utile	
В	150.150.0.0	150.150.31.255	255.255.224.0	150.150.0.1	150.150.31.254
С	150.150.32.0	150.150.63.255	255.255.224.0	150.150.32.1	150.150.63.254
A	150.150.64.0	150.150.95.255	255.255.224.0	150.150.64.1	150.150.95.254
D	150.150.96.0	150.150.127.255	255.255.224.0	150.150.96.1	150.150.127.254

Con maschera fissa avrei impegnato: $4*2^{\wedge 13}$ indirizzi IP = 32768 indirizzi IP Con maschera variabile ho impegnato: $1*2^{\wedge 13} + 1*2^{\wedge 9} + 1*2^{\wedge 7} + 1*2^{\wedge 5} = 8864$ indirizzi IP Ho risparmiato 32768-8864=23904 indirizzi IP!!!

ESERCIZIO 3 (Classe C): Dato l'indirizzo IP **192.168.0.0** partizionare la rete in 4 sottoreti utilizzando la tecnica VLSM secondo le seguenti specifiche:

- 5. Sottorete A: 29 host
- 6. Sottorete B: 60 host
- 7. Sottorete C: 13 host
- 8. Sottorete D: 5 host

Determinare il piano di indirizzamento

SOLUZIONE ESERCIZIO 3

- 24. Determino la classe di indirizzo 192.168.0.0 convertendo il byte più significativo: (192)₁₀ = (11000000)₂. Poiché i primi bit sono 110 → è un indirizzo di classe C perciò avrà una struttura del tipo N.N.N.H.
- 25. Il subnetting può essere fatto solo sull'ultimo byte
- 26. Considero la sottorete con più host → la sottorete B e determino il numero di bit necessari ad indirizzare 60 host . Max Int log₂ 60 = 6. Occorrono 6 bit (teoricamente potrei indirizzare 2⁶-2=62 host
- 28. Determino l'indirizzo della prima sottorete (1° sottorete = numero 0₁₀) quindi tutti i bit dedicati al subnetting della subnet mask rappresentano lo zero decimale 00 e ovviamente quelli dedicati agli host sono messi a zero → 000000 . quindi, essendo un indirizzo di classe C i primi tre byte rimangono invariati mentre all'ultimo byte sostituirò i bit calcolati → l'indirizzo della prima sottorete sarà: 192.168.0.0
- 29. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 11000000 \rightarrow 192
 - b. Secondo byte (invariato) $\rightarrow 10101000 \rightarrow 168$
 - c. Terzo byte (invariato) $\rightarrow 00000000 \rightarrow 0$
 - d. Quarto byte $\rightarrow 001111111 \rightarrow 63$

Indirizzo di broadcast \rightarrow 192.168.0.63

- 30. Determino il range di indirizzi utile: **192.168.0.1 192.168.0.62**
- 31. Considero la seconda sottorete con più host → la sottorete A e determino il numero di bit necessari ad indirizzare 29 host . Max Int log₂ 29 = 5. Occorrono 5 bit (teoricamente potrei indirizzare 2⁵-2=30 host)
- 33. Determino l'indirizzo della seconda sottorete **aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente**. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte (rimane invariato)	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	11000000	10101000	00000000	00111111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	11000000	10101000	00000000	01000000	

NOTA: l'indirizzo ottenuto rappresenta la 3° possibile sottorete avendo una subnet mask /27 infatti, sviluppando le combinazioni precedenti a questa otterrei indirizzi non utili perché appartenenti alla sottorete precedente

Indirizzo della seconda sottorete: 192.168.0.64

- 34. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): $\rightarrow 11000000 \rightarrow 192$
 - b. Secondo byte (invariato) $\rightarrow 10101000 \rightarrow 168$
 - c. Terzo byte (invariato) $\rightarrow 00000000 \rightarrow 0$
 - d. Quarto byte $\rightarrow 010111111 \rightarrow 95$

Indirizzo di broadcast \rightarrow 192.168.0.95

- 35. Determino il range di indirizzi utile: 192.168.0.65–192.168.0.94
- 36. Considero la terza sottorete con più host → la sottorete C e determino il numero di bit necessari ad indirizzare 13 host . Max Int log₂ 13 = 4. Occorrono 4 bit (teoricamente potrei indirizzare 2⁴-2=16 host)
- 37. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-4=28 → la subnet mask avrà 28 bit a uno (a partire dal MSB) →

11111111. 11111111.11111111.11110000 \rightarrow 255.255.255.240

38. Determino l'indirizzo della terza sottorete **aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente**. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte (rimane invariato)	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	11000000	10101000	00000000	01011111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	11000000	10101000	00000000	01100000	

NOTA: l'indirizzo ottenuto rappresenta la 6° possibile sottorete avendo una subnet mask /28 infatti, sviluppando le combinazioni precedenti a questa avrei otterrei indirizzi non utili perché appartenenti alla sottorete precedente

Indirizzo della terza sottorete: 192.168.0.96

- 39. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): $\rightarrow 11000000 \rightarrow 192$
 - b. Secondo byte (invariato) $\rightarrow 10101000 \rightarrow 168$
 - c. Terzo byte (invariato) $\rightarrow 00000000 \rightarrow 0$
 - d. Quarto byte $\rightarrow 01101111 \rightarrow 111$

Indirizzo di broadcast \rightarrow 192.168.0.111

40. Determino il range di indirizzi utile: 192.168.0.97–192.168.0.110

- 41. Considero l'ultima sottorete → la sottorete D e determino il numero di bit necessari ad indirizzare 5 host. Max Int log₂ 5 = 3. Occorrono 3 bit (teoricamente potrei indirizzare 2³-2=6 host)
- 42. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-3=29 → la subnet mask avrà 29 bit a uno (a partire dal MSB) →

11111111. 11111111.111111111.11111000 \rightarrow 255.255.255.248

43. Determino l'indirizzo della quarta sottorete **aggiungendo il numero decimale 1 all'indirizzo di broadcast della sottorete precedente**. In questo modo sono certo di evitare indirizzi IP compresi nel range della sottorete precedente:

	Primo byte (rimane invariato)	Secondo Byte (rimane invariato)	Terzo Byte	Quarto byte	operazione
Indirizzo broadcast rete precedente	11000000	10101000	00000000	01101111	+
Addendo	00000000	00000000	00000000	00000001	=
Risultato (indirizzo sottorete successiva	11000000	10101000	00000000	01110000	

NOTA: l'indirizzo ottenuto rappresenta la 276° possibile sottorete avendo una subnet mask /27 infatti, sviluppando le combinazioni precedenti a questa avrei otterrei indirizzi non utili perché appartenenti alla sottorete precedente

Indirizzo della terza sottorete: 192.168.0.112

- 44. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 11000000 \rightarrow 192
 - b. Secondo byte (invariato) $\rightarrow 10101000 \rightarrow 168$
 - c. Terzo byte (invariato) $\rightarrow 00000000 \rightarrow 0$
 - d. Quarto byte $\rightarrow 01110111 \rightarrow 119$

Indirizzo di broadcast \rightarrow 192.168.0.119

- 45. Determino il range di indirizzi utile: 192.168.0.113–192.168.0.118
- 46. Definisco il piano di indirizzamento:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP utile	Ultimo IP
	sottorete	broadcast			utile
В	192.168.0.0	192.168.0.63	255.255.255.192	192.168.0.1	192.168.0.62
A	192.168.0.64	192.168.0.95	255.255.255.224	192.168.0.65	192.168.0.94
C	192.168.0.96	192.168.0.111	255.255.255.240	192.168.0.97	192.168.0.110
D	192.168.0.112	192.168.0.119	255.255.255.248	192.168.0.113	192.168.0.118

Nota1: la maschera è variabile!

Nota2: il piano di indirizzamento con maschera fissa sarebbe stato:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP	Ultimo IP utile
	sottorete	broadcast		utile	
В	192.168.0.0	192.168.0.63	255.255.255.192	192.168.0.1	192.168.0.62
A	192.168.0.64	192.168.0.95	255.255.255.192	192.168.0.65	192.168.0.94
С	192.168.0.96	192.168.0.111	255.255.255.192	192.168.0.97	192.168.0.110
D	192.168.0.112	192.168.0.119	255.255.255.192	192.168.0.113	192.168.0.118

Con maschera fissa avrei impegnato: $4*2^{6}$ indirizzi IP = 256 indirizzi IP Con maschera variabile ho impegnato: $1*2^{6} + 1*2^{5} + 1*2^{4} + 1*2^{3} = 120$ indirizzi IP Ho risparmiato 256-120=136 indirizzi IP!!!