20. Affine Räume

Man möchte vom Anschauungsraum \mathbb{R}^3 abstrahieren:

- \bullet statt \mathbb{R} beliebige Körper K
- statt Dimension 3 beliebige Dimensionen $< \infty$

Aufgabe: Finde die "richtige" Verallgemeinerung der vertrauten **geometrischen** Begriffe, sodass bekannte geometrische Sätze richtig bleiben.

Im Folgenden sei K stets ein beliebiger Körper.

20.1. Grundbegriffe

Definition: Sei V K-VRm mit $\dim(V) = n < \infty$.

(a) Eine Menge $A \neq \emptyset$ heißt affiner Raum mit Richtungsvektorraum V, falls (V,+) auf A operiert, d.h. es existiert eine Paarung "+" genannt Translation $V \times A \rightarrow A$, $(x,P) \mapsto x+P$, mit der Eigentschaft:

$$\forall P, Q \in A \exists_1 x \in V : Q = x + P$$

- (b) Elemente von A heißen **Punkte**. Der zu gegebenen Punkten P, Q eindeutig bestimmte Vektor x mit Q = x + P heißt der **Translationsvektor von** P **nach** Q. Schreibe: $x := \overrightarrow{PQ}$
- (c) $\dim(A) := \dim(V)$ heißt **Dimension von** A.

Bemerkung: (1) Vorsicht in (1) wird das Zeichen "+" für verschiedene Verknüpfungen benutzt.

(2) Es gilt für $P, Q, R, \in A$:

$$\overrightarrow{PP} = 0$$

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

$$\overrightarrow{QP} = -\overrightarrow{PQ}$$

(3) A besteht aus genau einer Bahn:

$$\forall P \in A : A = V + P := \{x + P \mid x \in V\}$$

Beispiel: Der affine Standardraum $\mathbb{A}_n(K)$ ist definiert als Punktmenge $\mathbb{A} := K^n$ und $V := K^n$, mit Translation := Addition in K^n , d.h. für $P, Q \in K^n$ gilt:

$$\overrightarrow{PQ} = Q - P$$

Definition: Eine Teilmenge $B \neq \emptyset$ eines affinen Raumes A heißt (affiner) Teilraum oder lineare Varietät von A, falls ein VRm $U_B \leq V$ existiert, sodass B affiner Raum ist, mit Richtungsvektorraum U_B (unter der in A gegebenen Operation). Auch $B = \emptyset$ werde affiner Teilraum genannt. Spezielle affine Teilräume B sind:

- (a) Gerade \iff dim(B) = 1
- (b) **Ebene** \iff dim(B) = 2
- (c) **Hyperebene** \iff dim $(B) = \dim(A) 1$

Lemma:

(1) Ist $B \neq \emptyset$ affiner Teilraum, dann gilt:

$$U_B = \{ \overrightarrow{PQ} \mid P, Q \in B \}$$

- (2) Sind $\emptyset \neq B \subseteq C$ affine Teilräume und dim $(B) = \dim(C)$, dann ist B = C.
- (3) Durch zwei Punkte $P \neq Q$ in A geht genau eine Gerade.

$$PQ := K \cdot \overrightarrow{PQ} + P = \{\lambda \cdot \overrightarrow{PQ} + P \mid \lambda \in K\} \le A$$

Diese wird die **Verbindungsgerade** von P und Q genannt.

(4) Drei Punkte $P, Q, R \in A$ liegen genau dann auf **einer** Geraden, wenn gilt, dass \overrightarrow{PQ} und \overrightarrow{QR} linear abhängig sind.

Beweis: (1) "⊇" ✓

"⊆" Da B affiner Teilraum mit Richtung U_B ist, gilt für alle $P,Q \in B$:

$$\exists_1 x \in B : x = \overrightarrow{PQ} \iff x + P = Q$$

(2) Aus (1) folgt mit $B \subseteq C$, dass $U_B \subseteq U_C$ gilt. Da diese die gleiche Dimension haben muss dann schon $U_B = U_C$ gelten. Für $P \in B \cap C$ gilt dann:

$$B = U_B + P = U_C + P = C$$

(3) Es ist klar, dass P und Q auf der Geraden PQ liegen, daher muss lediglich die Eindeutigkeit gezeigt werden.

Sei B eine Gerade mit $P, Q \in B$ und $U := U_B$. Da $P \neq Q$ ist, ist $\overrightarrow{PQ} \in U$ nicht der Nullvektor. Da außerdem dim U = 1 ist, gilt:

$$U = K \cdot \overrightarrow{PQ}$$

Daraus folgt:

$$B = U + P = PQ$$

(4) Sei $x:=\overrightarrow{PQ}$ und $y:=\overrightarrow{QR}$. Es existiert genau dann eine Gerade B mit $P,Q,R\in B$, wenn gilt:

$$\exists \text{ VRm } U : \dim U = 1, x, y \in U$$

Also genau dann, wenn x und y linear abhängig sind.

Satz 25 (Teilraumkriterium):

Sei A affiner Raum mit Richtung V und sei $\emptyset \neq B \subseteq A$. Dann sind äquivalent:

- (1) B ist affiner Teilraum.
- (2) Es existieren $P \in A$ und $U \leq V$, sodass gilt:

$$B = U + P$$

(3) Falls |K| > 2, so ist auch äquivalent:

$$\forall P, Q \in B : P \neq Q \implies PQ \subseteq B$$

(4) Falls $A = \mathbb{A}_n(K)$, so ist auch äquivalent, dass B Lösungsmenge eines LGS ist.

Beweis: Die Äquivalenz ergibt sich aus folgendem Ringschluss:

 $(1) \Longrightarrow (2)$ Ist B affiner Teilraum, so gilt:

$$\exists U \leq V : \forall P \in U : B = U + P$$

 $(2) \Longrightarrow (1)$ B = U + P ist affiner Teilraum, denn U operiert auf B und für $Q, R \in B$: gilt:

$$\exists x, y \in U : Q = x + P, R = y + P \text{ und}$$

$$\exists_1 \text{ Translation } \overrightarrow{QR} = y - x \in U$$

Daraus folgt, dass U affiner Teilraum ist.

 $(1) \Longrightarrow (3)$ Sei B affiner Teilraum mit $P, Q \in B, P \neq Q$. Dann gilt:

$$\overrightarrow{PQ} \in U_B$$

$$\implies \forall \lambda \in K : \lambda \cdot \overrightarrow{PQ} + P \in B$$

$$\implies PQ \subseteq B$$

 $(3) \Longrightarrow (2) \ \text{Setze} \ U := \{\overrightarrow{PQ} \mid P, Q \in B\} \subseteq V.$

Zeige zunächst: Für alle $P \in B$ gilt:

$$U + P \subseteq B$$

D.h. für alle $y \in U$ gilt:

$$y + P \in B$$

" \subseteq " Sei also $0 \neq y \in U$, dann existiert ein $Q \neq R \in B$, sodass gilt:

$$y = \overrightarrow{QR}$$

Setze $z := \overrightarrow{PQ}$.

Fall y, z linear abhängig:

Aus dem Lemma folgt, dass P,Q,R auf der Geraden $QR=\{\lambda\cdot y+P\mid \lambda\in K\} \subseteq B$ liegen. Insbesondere gilt:

$$y + P \in B$$

Fall y, z linear unabhängig:

Wähle $\lambda \in K \setminus \{0,1\}$. Betrachte $S := \frac{\lambda}{\lambda - 1}y + P$, $N := \lambda z + P$.

Dann ist $N \in PQ \subseteq B$.

Annahme: N = R. Dann gilt:

$$N = \lambda z + p$$

$$= R$$

$$= y + z + P$$

Daraus folgt, dass y und z linear abhängig sind. \not Es gilt also $N \neq R$. Ferner gilt, dass S, N, R auf einer Geraden liegen, denn:

$$\overrightarrow{NR} = y + z - \lambda z = y + (1 - \lambda)z$$
 und

$$\overrightarrow{SN} = \lambda z - \frac{\lambda}{1-\lambda} y = \frac{\lambda}{\lambda-1} ((\lambda-1)z - y)$$

sind linear abhängig.

Aus $N, R \in B$ folgt:

$$S \in NR \overset{(3)}{\subseteq} B$$

Außerdem gilt: $S \neq P$, also $SP \in B$ und damit $y + P \in B$

Es gilt sogar: B = U + P, da für alle $Q \in B$ gilt:

$$Q = \overrightarrow{PQ} + P \in U + P$$

Es bleibt zu zeigen: $U \leq V$ (Untervektorraum)

Seien $x, y \in U, \alpha \in K$. O.B.d.A lässt sich $x \neq 0$ annehmen, etwa $x = \overrightarrow{PQ}, P, Q \in B$. Dann gilt:

$$\alpha x + P \in PQ \subseteq B \implies \alpha x \in U$$

Also genügt es zu zeigen, dass x+y in U liegt. Sei P':=x+P. Dann gilt mit $x=\overrightarrow{PQ}$ und $y+P\in U+P\subseteq B$:

$$(x+y) + P = x + (y+P) \in U + P' \subseteq B$$

$$\implies x + y \in U$$

20.2. Eigenschaften affiner Teilräume

Lemma:

Sei $I \neq \emptyset$ Indexmenge und $(B_i)_{i \in I}$ eine Familie affiner Teilräume von A. Dann ist $B := \bigcap_{i \in I} B_i$ affiner Teilraum von A mit Richtung $U_B = \bigcap_{i \in I} U_{B_i}$, falls $B \neq \emptyset$.

Beweis: Sei $B \neq \emptyset$, dann existiert ein $P \in \bigcap_{i \in I} B_i$. Setze $U := \bigcap_{i \in I} U_{B_i} \leq V$. Dann gilt für ein $Q \in A$:

$$Q \in U + P \iff \forall i \in I : Q \in U_{B_i} + P$$

$$\iff Q \in \bigcap_{i \in I} B_i$$

$$\iff Q \in B$$

Daraus folgt: B = U + P

Definition: Sei M Teilmenge von A, C die Menge aller affinen Teilräume von A, die M enthalten.

Dann heißt:

$$[M] := \bigcap_{B \in C} B$$

die affine Hülle von M.

Für $M = \{P_1, \dots, P_m\}$ schreibe: $[P_1, \dots, P_m] := [M]$.

Beispiel: Sei $P \neq Q$, dann ist [P,Q] = PQ die Gerade durch P und Q.

Lemma:

Seien $P_0, \ldots, P_m \in A$ und sei $x_i := \overrightarrow{P_0P_i} \in V$ für alle $i \in \{1, \ldots, m\}$. Dann gilt:

$$[P_0,\ldots,P_m] = \langle x_1,\ldots,x_m \rangle + P_0$$

Insbesondere ist dim $[P_0, \ldots, P_m] \leq m$.

Falls gilt: dim $[P_0, \ldots, P_m] = m$ sagt man, P_0, \ldots, P_m sind in allgemeiner Lage.

Beweis: " \subseteq " Für alle $i \in \{1, ..., m\}$ gilt:

$$P_i = x_i + P_0 \subseteq \langle x_1, \dots, x_m \rangle + P_0$$

"⊇" Sei $\sum_{i=1}^{m} \alpha_i x_i + P_0 \in \langle x_1, \dots, x_m \rangle + P_0$, und sei $B \supseteq \{P_0, \dots, P_m\}$ beliebiger affiner Teilraum. Dann gilt:

$$\forall i \in \{1, \dots, m\} : x_i = \overrightarrow{P_0 P_i} \in U_B$$

$$\implies \sum_{i=1}^m \alpha_i x_i \in U_B$$

$$\implies \sum_{i=1}^m \alpha_i x_i + P_0 \in U_B + P_0 = B$$

Da dies für einen beliebigen affinen Teilraum B gilt, der $\{P_0, \ldots, P_m\}$ enthält, gilt dies für alle solche Teilräume. Sei C die Menge aller affinen Teilräume die $\{P_0, \ldots, P_m\}$ enthalten. Dann folgt:

$$\forall B \in C : \sum_{i=1}^{m} \alpha_i x_i + P_0 \in B$$

$$\iff \sum_{i=1}^{m} \alpha_i x_i + P_0 \in \bigcap_{B \in C} B$$

$$\iff \sum_{i=1}^{m} \alpha_i x_i + P_0 \in [P_0, \dots, P_m]$$

Satz 26:

Seien $A_1 := U_1 + P_1, A_2 := U_2 + P_2$ affine Teilräume von A. Dann gilt:

(1)
$$U_{[A_1 \cup A_2]} = U_1 + U_2 + \langle \overrightarrow{P_1 P_2} \rangle$$

(2)
$$A_1 \cap A_2 \neq \emptyset \implies \dim([A_1 \cup A_2]) = \dim A_1 + \dim A_2 - \dim(A_1 \cap A_2)$$

 $A_1 \cap A_2 = \emptyset \implies \dim([A_1 \cup A_2]) = \dim A_1 + \dim A_2 - \dim(U_1 \cap U_2) + 1$

Beweis: (1) Sei
$$y := \overrightarrow{P_1P_2}$$
 und $U := U_1 + U_2 + \langle y \rangle$.
Zu Zeigen: $U + P_1 = [A_1 \cup A_2]$, d.h. $U_{[A_1 \cup A_2]} = U$

"⊆" Für einen beliebigen affinen Raum $B \supseteq A_1 \cup A_2$ gilt: $U_B \ge U_1, U_2, \langle y \rangle$. Also gilt für $x = x_1 + x_2 + \alpha y \in U$ mit $x_1 \in U_1, x_2 \in U_2$:

$$x = x_1 + x_2 + \alpha y \in U_B$$

$$\implies x + P_1 \in U_B + P_1 = B$$

$$\implies x + P_1 \in \bigcap B = [A_1 \cup A_2]$$

 \supseteq "Zu zeigen: $A_1 \cup A_2 \subseteq U + P_1$ "

$$A_1 = U_1 + P_1 \subseteq U + P_1$$

 $A_2 = U_2 + P_2 = U_2 + y + P_1 \subseteq U + P_1$

(2) Fall $A_1 \cap A_2 \neq \emptyset$: Nach Lemma gilt $U_{A_1 \cap A_2} = U_1 \cap U_2$, und dass $P_1 = P_2$ wählbar ist.

Daraus folgt $U = U_1 + U_2$ (mit y = 0). Also gilt: $[A_1 \cup A_2] = U_1 + U_2 + P_1$ mit:

$$\dim [A_1 + A_2] = \dim (U_1 + U_2)$$

$$= \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

$$= \dim A_1 + \dim A_2 - \dim (A_1 \cap A_2)$$

Fall $A_1 \cap A_2 = \emptyset$: Annahme: $y \in U_1 + U_2$. Dann ist $y = x_1 + x_2$ für ein $x_1 \in U_1, x_2 \in U_2$. Daraus folgt:

$$x_1 + P_1 = -x_2 + y + P_1 = -x_2 + P_2 \in A_1 \cap A_2$$

Also ist $y \notin U_1 + U_2$. Daraus folgt:

$$\dim U = \dim (U_1 + U_2) + 1$$

Der restliche Beweis erfolgt analog zum ersten Fall.

Definition: Affine Teilräume B, C von A heißen parallel, wenn gilt:

$$U_B \leq U_C$$
 oder $U_C \leq U_B$

Schreibe: $B \parallel C$.

Beispiel: Man denke nicht nur an parallele Geraden oder Ebenen, sondern etwa auch an Gerade || Ebene.

Bemerkung: (1) Auf den Teilräumen einer festen Dimension ist Parallelität eine Äquivalenzrelation.

- (2) Aus $B \parallel C$ folgt: $(B \subseteq C) \lor (B \supseteq C) \lor (B \cap C = \emptyset)$
- (3) Für alle $P \in A$ und alle affinen Teilräume $B \neq \emptyset$ existiert genau ein affiner Teilraum C mit:
 - (a) $P \in C$

(b) $B \parallel C$

(c)
$$\dim C = \dim B$$

Beweis: (1) Leichte Übung!

(2) Sei $P \in B \cap C$ und o.B.d.A $U_B \leq U_C$. Dann gilt:

$$B = U_B + P \le U_C + P = C$$

(3) Es muss $C = U_B + P$ gelten, da aus b) und c) folgt: $U_C = U_B$

Satz 27:

Sei A affiner Raum mit dim A=n>1, $G\subseteq A$ Gerade und H Hyperebene in A. Dann gilt:

$$(1) \ G \cap H = \emptyset \implies G \parallel H$$

$$(2) G \not \parallel H \implies \exists P : G \cap H = \{P\}$$

Bemerkung: $\dim G \cap H \leq \dim G = 1 \implies G \cap H = \begin{cases} \emptyset \\ \text{Punkt} \\ \text{Gerade} \end{cases}$

Beweis: (1) Sei $G \cap H = \emptyset$, dann ist $G \cup H$ echte Obermenge von H. Es gilt also:

$$H \subsetneq G \cup H \subseteq [G \cup H]$$

Daraus folgt für die Dimensionen:

$$n-1 = \dim H < \dim[G \cup H] \le n$$

 $\implies \dim[G \cup H] = n$
 $\implies [G \cup H] = A$

Aus der Dimensionsformel für die affine Hülle folgt:

$$n = \dim[G \cup H]$$

$$= \dim G + \dim H - \dim(U_G \cap U_H) + 1$$

$$= n - \dim(U_G \cap U_H) + 1$$

Daraus folgt:

$$\dim(U_G \cap U_H) = 1 = \dim U_G$$

$$\implies U_G \cap U_H = U_G$$

$$\implies U_G \subseteq U_H$$

$$\implies G \parallel H$$

(2) Aus (1) folgt, dass $G\cap H$ nicht die leere Menge ist, wenn G und H nicht parallel sind.

Sei nun $G':=G\cap H$ eine Gerade. Dann gilt:

$$G' \subseteq G$$

$$\implies G' = G$$

$$\implies G \subseteq H$$

$$\implies G \parallel H$$

Also kann $G \cap H$ auch keine Gerade sein, wenn G und H nicht parallel sind. Mit der Vorbemerkung folgt daraus, dass $G \cap H$ ein Punkt sein muss.