Question Number	Scheme	Marks	
6(a)	$a = S_1 = 1(15 + 2 \times 1) = 17$	B1	
	$S_2 = 2(15+2\times2)(=38) = 2a+d$	M1A1	
	$2 \times 17 + d = 38 \Longrightarrow d = 4$	A1	(4)
(b)	20th term = $a + 19d = 17 + 19 \times 4 = 93$	M1A1	(2)
(c)	$S_{2p} - 2S_p = 1 + S_{p-1}$		
	2p(15+4p)-2p(15+2p)=1+(p-1)(13+2p)	M1	
	$2p^2 - 11p + 12 = 0$	A1	
	$(2p-3)(p-4) = 0 \Rightarrow p = 4 \left(p \neq \frac{3}{2}; \text{ may not be seen}\right)$	M1A1	(4)
			[10]

Part	Mark	Notes
(a)	B1	For the first term $a = 17$
		$a = S_1 = 1(15 + 2 \times 1) = 17$
	M1	For the second term. Uses the given summation formula to form a linear equation in
		a and d for a minimally acceptable response of $k = 2a + d$ where k is a positive integer.
	A1	For the correct linear equation $38 = 2a + d$
	A1	For the correct value of $d = 4$
	ALT 1	
	B1	For the first term $a = 17$
	M1	For using a correct summation
		formula $n(15+2n) = \frac{n}{2}(2a+[n-1]d) \Rightarrow 30+2n = 2a-d+nd$
		and equates coefficients
	A1	For equating coefficients of <i>n</i>
		$4n = dn \Rightarrow d = \dots$ and $30 = 2a - 4 \Rightarrow a = \dots$
		For the correct value of $d = 4$

	ALT 2	
	B1	For the first term $a = 17$
	M1	Uses two values of <i>n</i> to set up a pair of simultaneous equations.e.g.
		$S_4 = 4(15 + 2 \times 4) = 92$ and $92 = \frac{4}{2}(2a + 3d) \Rightarrow 46 = 2a + 3d$
		$S_5 = 5(15 + 2 \times 5) = 125$ and $125 = \frac{5}{2}(2a + 4d) \Rightarrow 50 = 2a + 4d$
	A1	Attempts to solve the pair of equations
	A1	d=4
(b)	M1	For using the correct <i>n</i> th term formula with their a and their d $U_{20} = '17' + 19 \times '4' =$
	A1	For the correct 20 th term = 93
(c)	M1	Uses the given summation formula with the correct substitution
		2p(15+4p)-2p(15+2p)=1+(p-1)(13+2p)
	A1	For achieving the correct 3TQ
		$2p^2 - 11p + 12 = 0$
	ALT	
	M1	Uses the summation formula: Follow through their a and d
		$S_{2p} = \frac{2p}{2} (2 \times 17 + (2p-1)4) = p(30+8p)$
		$2S_p = 2 \times \frac{p}{2} (2 \times 17 + (p-1)4) = p(30 + 4p)$
		$S_{p-1} = \frac{p-1}{2} (2 \times 17 + (2[p-1]-1)4) = (p-1)(13+2p)$
		For a correct substitution into the given expression
		p(30+8p)-p(30+4p)=1+(p-1)(13+2p) oe
	A1	For achieving the correct 3TQ
		$2p^2 - 11p + 12 = 0$
	M1	For attempting to solve their 3TQ (provided it is a 3TQ) by any valid method.
		$2p^2 - 11p + 12 = (2p - 3)(p - 4) = 0 \Rightarrow p =,$
	A1	For $p = 4$
		If they give both roots of their 3TQ as an answer without rejecting $p = 1.5 \text{ A}0$

+