Calcolo integrale — Primo compito di esonero

		O	_	
25 Marzo	2022 -	- Compito n.	—	

Istruzioni: le prime due caselle (V / F) permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes 0 \bigcirc).

Nome:					
Cognome:	 	 	 	 	
Matricola:					

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

1) Sia $0 < a_k \le 1$ tale che

$$\sum_{k=1}^{+\infty} a_k \text{ è convergente.}$$

- **1A)** La successione $\frac{1}{a_k}$ è illimitata.
- **1B)** Se $b_k > 0$ è tale che $\frac{b_k}{a_k}$ tende a zero, la serie di termine generico b_k è convergente.
- **1C)** La serie di termine generico $k^6 a_k$ può divergere.
- **1D)** La serie di termine generico a_k^3 può divergere.
- 2) Dire se le seguenti affermazioni sono vere o false.
- 2A) La serie di termine generico

$$\ln\left(1 + \frac{1}{\sqrt[7]{k}}\right) \cos\left(\frac{1}{k^3}\right)$$

è divergente.

- **2B)** La serie di termine generico $\frac{6^k k!}{k^k}$ è divergente.
- **2C**) La serie di termine generico $\frac{(-1)^k}{k^4}$ converge semplicemente ma non assolutamente.
- **2D)** La serie di termine generico $\frac{(-1)^k}{\sqrt[5]{k}}$ converge semplicemente ma non assolutamente.

3) Si consideri la funzione

$$f(x) = x^6 e^{2x}.$$

- **3A)** Il raggio di convergenza della serie di Taylor di f(x) è infinito.
- **3B)** Il coefficiente del termine di grado 6 nella serie di Taylor di f(x) vale 0.
- **3C)** Si ha $f^{(7)}(0) = 2$.
- **3D)** Sia $g(x) = \frac{f(x)}{x^5}$. Allora g'(0) = 1.
- 4) Si consideri la serie di potenze

$$\sum_{k=0}^{+\infty} \frac{a_k}{(k+1)^8} (x-6)^k.$$

- **4A)** Se $a_k \equiv 13$, il raggio di convergenza della serie è R = 8.
- **4B)** Se $a_k = 4^k$ il raggio di convergenza della serie è $R = \frac{1}{4}$.
- **4C**) Se $a_k = k!$, il raggio di convergenza della serie è 0.
- **4D)** Se $a_k = (k+1)^7$, la serie diverge per x = 5.

5) a) Si studi la convergenza della serie

$$\sum_{k=1}^{+\infty} \, k^3 \left[\sin \left(\frac{6}{k^2} \right) \right]^5.$$

b) Si studi la convergenza della serie

$$\sum_{k=0}^{+\infty} 7^k \left(e^{\frac{5}{k!}} - 1 \right).$$

c) Data

$$f(x) = x^4 e^{3 x^5},$$

se ne scriva la serie di Taylor e si calcoli $f^{(4)}(0)$.

d) Data

$$f(x) = x^3 \cos(5 x),$$

si calcolino $f^{(4)}(0)$ e $f^{(5)}(0)$.

6) Si consideri la serie

$$f(x) = \sum_{k=2}^{+\infty} \frac{(5x-8)^k}{k(k-1)}.$$

- ${\bf a)}$ Si scriva la serie come serie di potenze.
- b) Si determini il raggio di convergenza della serie.
- c) Si determini l'insieme di convergenza della serie.
- \mathbf{d}) Si determini la funzione f''(x).