Quantum Speedup for Graph Sparsification, Cut Approximation and Laplacian Solving

Simon Apers¹ Ronald de Wolf ²

¹Inria, France and CWI, the Netherlands ²QuSoft, CWI and University of Amsterdam, the Netherlands

CQIF Seminar, University of Cambridge, Nov 2019

Graph Sparsification

undirected, weighted graph G = (V, E, w)n nodes and $m \in O(n^2)$ edges

undirected, weighted graph G = (V, E, w)n nodes and $m \in O(n^2)$ edges

adjacency-list access: query for neighbors of nodes

Graph Sparsification

"graph sparsification"

= reduce number of edges, while preserving certain quantities

"graph Laplacian"

$$L_G = D - A$$

with
$$(D)_{ii} = \sum_{j} w(i,j)$$
, $(A)_{ij} = w(i,j)$

"graph Laplacian"

$$L_G = D - A$$

with
$$(D)_{ii} = \sum_{j} w(i,j)$$
, $(A)_{ij} = w(i,j)$

= "linear-algebraic characterization" of graph ${\it G}$

"quadratic forms"

$$x^T L_G x$$
 and $x^T L_G^+ x$

describe cut values, eigenvalues, effective resistances, hitting times, ...

"spectral sparsification"

= approximately preserve all quadratic forms

$$x^T L_H x = (1 \pm \epsilon) x_T L_G x$$
 for all $x \in \mathbb{R}^n$

"spectral sparsification"

= approximately preserve all quadratic forms

$$x^T L_H x = (1 \pm \epsilon) x_T L_G x$$
 for all $x \in \mathbb{R}^n$
 $\Leftrightarrow x^T L_H^+ x = (1 \pm O(\epsilon)) x_T L_G^+ x$

"spectral sparsification"

= approximately preserve all quadratic forms

$$x^T L_H x = (1 \pm \epsilon) x_T L_G x \text{ for all } x \in \mathbb{R}^n$$

 $\Leftrightarrow x^T L_H^+ x = (1 \pm O(\epsilon)) x_T L_G^+ x$
 $\Leftrightarrow (1 - \epsilon) L_G \preceq L_H \preceq (1 + \epsilon) L_G$

Theorem (Spielman-Teng '04)

ullet every graph has ϵ -spectral sparsifier H with a number of edges

$$\widetilde{O}(n/\epsilon^2)$$

• H can be found in time $\widetilde{O}(m)$

cut approximation algorithms:

$$\widetilde{O}(m)$$
 (sparsification) + $\widetilde{O}(n)$ (approximate in H)

 $ightarrow \widetilde{O}(m)$ approximation algorithms for

- max cut (Arora-Kale'16)
- min cut (Karger'00)
- min st-cut (Peng'16)
- sparsest cut (Sherman'09)
- . .

! crucial component of Spielman-Teng breakthrough Laplacian solver: solution to $L_{HX}=b$ approximates $L_{GX}=b$

! crucial component of Spielman-Teng breakthrough Laplacian solver: solution to $L_{H^X}=b$ approximates $L_{G^X}=b$

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system $L_Gx = b$ can be solved in time $\widetilde{O}(m)$.

! crucial component of Spielman-Teng breakthrough Laplacian solver: solution to $L_{H^{X}}=b$ approximates $L_{G^{X}}=b$

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system $L_Gx = b$ can be solved in time $\widetilde{O}(m)$.

 $\widetilde{O}(m)$ approximation algorithms for

- electrical flows and max flows
- spectral clustering
- random walk properties
- learning from data on graphs
- ...

Our Contribution

this work:

1 quantum algorithm to find ϵ -spectral sparsifier H in time

$$\widetilde{O}(\sqrt{mn}/\epsilon)$$

Our Contribution

this work:

1 quantum algorithm to find ϵ -spectral sparsifier H in time

$$\widetilde{O}(\sqrt{mn}/\epsilon)$$

2 matching $\widetilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound

Our Contribution

this work:

1 quantum algorithm to find ϵ -spectral sparsifier H in time

$$\widetilde{O}(\sqrt{mn}/\epsilon)$$

- $\ \ \, \textbf{ matching } \widetilde{\Omega}(\sqrt{mn}/\epsilon) \text{ lower bound } \\$
- $oldsymbol{0}$ quantum speedup (roughly $\widetilde{O}(m)$ to $\widetilde{O}(\sqrt{mn})$) for
 - max cut, min cut, min st-cut, sparsest cut, ...
 - Laplacian solving, approximating resistances and RW properties, spectral clustering, . . .

this work:

quantum algorithm to find H in time

$$\widetilde{O}(\sqrt{mn}/\epsilon)$$

- 2 matching $\widetilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound
- 3 quantum speedup (roughly $\widetilde{O}(m)$ to $\widetilde{O}(\sqrt{mn})$) for
 - max cut, min cut, min st-cut, sparsest cut, ...
 - Laplacian solving, approximating resistances and RW properties, spectral clustering, . . .

Sparsification by edge sampling:

- **1** associate probabilities $\{p_e\}$ to every edge
- 2 keep every edge e with probability p_e , rescale its weight by $1/p_e$

Sparsification by edge sampling:

- lacktriangle associate probabilities $\{p_e\}$ to every edge
- $oldsymbol{2}$ keep every edge e with probability p_e , rescale its weight by $1/p_e$

ensures that

$$\mathbb{E}(w_e^H) = w_e^G, \quad \mathbb{E}(L_H) = L_G$$

Sparsification by edge sampling:

- lacktriangle associate probabilities $\{p_e\}$ to every edge
- 2 keep every edge e with probability p_e , rescale its weight by $1/p_e$

ensures that

$$\mathbb{E}(w_e^H) = w_e^G, \quad \mathbb{E}(L_H) = L_G$$

note that
$$\mathbb{E}(\# \text{ edges}) = \sum_e p_e \gg 1$$

Sparsification by edge sampling:

- lacktriangle associate probabilities $\{p_e\}$ to every edge
- 2 keep every edge e with probability p_e , rescale its weight by $1/p_e$

"important" edges should get higher p_e

? how to quantify "importance" of edges ?

? how to quantify "importance" of edges ?

ightarrow high *effective resistance* R_e = effective resistance between endpoints after replacing all edges with resistors

? how to quantify "importance" of edges ?

ightarrow high *effective resistance* R_e = effective resistance between endpoints after replacing all edges with resistors

red edge: $R_e \in \Omega(1)$, black edges: $R_e \in O(1/n)$

Sparsification by edge sampling:

- lacktriangle associate probabilities $\{p_e\}$ to every edge
- 2 keep every edge e with probability p_e , rescale its weight by $1/p_e$

Theorem (Spielman-Srivastava '08)

Setting

$$p_e = w_e R_e \log(n) / \epsilon^2$$

yields w.h.p. an ϵ -spectral sparsifier with $\widetilde{O}(n/\epsilon^2)$ edges.

Sparsification by edge sampling:

- lacktriangle associate probabilities $\{p_e\}$ to every edge
- 2 keep every edge e with probability p_e , rescale its weight by $1/p_e$

Theorem (Spielman-Srivastava '08)

Setting

$$p_e = w_e R_e \log(n) / \epsilon^2$$

yields w.h.p. an ϵ -spectral sparsifier with $\widetilde{O}(n/\epsilon^2)$ edges.

? how to calculate R_e 's ? ? how to sample according to R_e 's ?

Alternative route:

Iterative sparsification:

- find and keep $\widetilde{O}(n/\epsilon^2)$ "most important" edges
- $\ensuremath{ 2 }$ keep remaining edges independently with prob. 1/2, and rescale weight

Alternative route:

Iterative sparsification:

- find and keep $\widetilde{O}(n/\epsilon^2)$ "most important" edges
- $\ensuremath{ f 2}$ keep remaining edges independently with prob. 1/2, and rescale weight

? how to find "most important" edges ?

Alternative route:

Iterative sparsification:

- find and keep $\widetilde{O}(n/\epsilon^2)$ "most important" edges
- $\ensuremath{ 2 }$ keep remaining edges independently with prob. 1/2, and rescale weight

? how to find "most important" edges ?

1st attempt: grow spanning tree = subgraph with n-1 edges that connects all nodes

Iterative sparsification:

- lacktriangledown construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanning trees, keep these edges

Graph Spanners

! spanning trees capture connectivity, but not effective resistance

$$R^H(s,t)\gg R^G(s,t)$$

Graph Spanners

"graph spanner" F

"graph spanner" F

ullet subgraph of G with $\widetilde{O}(n)$ edges

"graph spanner" F

- subgraph of G with $\widetilde{O}(n)$ edges
- all distances stretched by factor log n:

$$\operatorname{dist}_G(s,t) \leq \operatorname{dist}_F(s,t) \leq \log(n) \operatorname{dist}_G(s,t)$$

"graph spanner" F

- subgraph of G with $\widetilde{O}(n)$ edges
- all distances stretched by factor $\log n$:

$$\operatorname{dist}_G(s,t) \leq \operatorname{dist}_F(s,t) \leq \log(n) \operatorname{dist}_G(s,t)$$

 \rightarrow captures connectivity and distance

"graph spanner" F

- subgraph of G with $\widetilde{O}(n)$ edges
- all distances stretched by factor log n:

$$\operatorname{dist}_G(s,t) \leq \operatorname{dist}_F(s,t) \leq \log(n) \operatorname{dist}_G(s,t)$$

→ captures connectivity and distance

Theorem (Awerbuch '84)

- Any graph G contains a spanner $F \subseteq G$ with $\widetilde{O}(n)$ edges
- F can be found in time $\widetilde{O}(m)$

Iterative sparsification:

- construct $\widetilde{O}(1/\epsilon^2)$ disjoint *spanners*, keep these edges
- ullet keep remaining edges independently with prob. 1/2, and rescale weight

Iterative sparsification:

- **①** construct $\widetilde{O}(1/\epsilon^2)$ disjoint *spanners*, keep these edges
- $oldsymbol{2}$ keep remaining edges independently with prob. 1/2, and rescale weight

Theorem (Koutis-Xu '14)

W.h.p., the resulting graph is an ϵ -spectral sparsifier with a number of edges

$$m/2 + \widetilde{O}(n/\epsilon^2)$$

Iterative sparsification:

- construct $\widetilde{O}(1/\epsilon^2)$ disjoint *spanners*, keep these edges
- $\ensuremath{ f 2 }$ keep remaining edges independently with prob. 1/2, and rescale weight

Theorem (Koutis-Xu '14)

W.h.p., the resulting graph is an ϵ -spectral sparsifier with a number of edges

$$m/2 + \widetilde{O}(n/\epsilon^2)$$

 \rightarrow repeat $O(\log n)$ times: ϵ -cut sparsifier with $O(n/\epsilon^2)$ edges

Iterative sparsification:

- construct $\widetilde{O}(1/\epsilon^2)$ disjoint *spanners*, keep these edges
- $\ensuremath{ f 2 }$ keep remaining edges independently with prob. 1/2, and rescale weight

Theorem (Koutis-Xu '14)

W.h.p., the resulting graph is an ϵ -spectral sparsifier with a number of edges

$$m/2 + \widetilde{O}(n/\epsilon^2)$$

- o repeat $O(\log n)$ times: ϵ -cut sparsifier with $O(n/\epsilon^2)$ edges
- ightarrow spectral sparsification in time $\widetilde{O}(m/\epsilon^2)$ (can be improved to $\widetilde{O}(m)$)

= quantum spanner construction + k-independent advice

Iterative sparsification:

- construct $\widetilde{O}(1/\epsilon^2)$ disjoint *spanners*, keep these edges
- 2 keep remaining edges independently with prob. 1/2, and rescale weight

 $ightarrow \widetilde{O}(m)$ spanner construction is main cost

Iterative sparsification:

- construct $\widetilde{O}(1/\epsilon^2)$ disjoint *spanners*, keep these edges
- ullet keep remaining edges independently with prob. 1/2, and rescale weight
 - $ightarrow \widetilde{O}(m)$ spanner construction is main cost

Theorem (this work)

There is a quantum algorithm that constructs a spanner in time

$$\widetilde{O}(\sqrt{mn})$$

construct "centers":

$$V = A_0 \supset A_1 \supset A_2 \supset \cdots \supset A_{\log(n)-1} \supset A_{\log(n)} = \emptyset$$

such that $A_{i+1} \subset A_i$ is random subset of size $|A_i|/2$

for all nodes v, route local "clusters" C(v):

$$\forall v \in A_i - A_{i+1} : C(v) = \{ w \mid \delta(w, v) < \delta(w, A_{i+1}) \}$$

for all nodes v, route local "clusters" C(v):

for all nodes v, route local "clusters" C(v):

grow "shortest-path tree" T(v) from v, spanning C(v)

for all nodes v, route local "clusters" C(v):

grow "shortest-path tree" T(v) from v, spanning C(v) \to complexity $\widetilde{O}(|E(C(v))|)$

let *H* be the union of all shortest-path trees:

$$H = \bigcup_{v} T(v)$$

Theorem (Thorup-Zwick '01)

With high probability, H is a spanner and can be constructed in time

$$\widetilde{O}\Big(\mathbb{E}\sum_{v}|E(C(v))|\Big)\in\widetilde{O}(m)$$

Theorem (Dürr-Heiligman-Høyer-Mhalla '04)

There is a quantum algorithm to construct a shortest-path tree in a graph with n nodes and m edges in time

$$\widetilde{O}(\sqrt{mn})$$

Theorem (Dürr-Heiligman-Høyer-Mhalla '04)

There is a quantum algorithm to construct a shortest-path tree in a graph with n nodes and m edges in time

$$\widetilde{O}(\sqrt{mn})$$

for a cluster C(v) with |C(v)| nodes and |E(C(v))| edges:

$$\widetilde{O}(|E(C(v))|)$$
 (classical) $\longrightarrow \widetilde{O}(\sqrt{|C(v)||E(C(v))|})$ (quantum)

Theorem (Dürr-Heiligman-Høyer-Mhalla '04)

There is a quantum algorithm to construct a shortest-path tree in a graph with n nodes and m edges in time

$$\widetilde{O}(\sqrt{mn})$$

for a cluster C(v) with |C(v)| nodes and |E(C(v))| edges:

$$\widetilde{O}(|E(C(v))|)$$
 (classical) $\longrightarrow \widetilde{O}(\sqrt{|C(v)||E(C(v))|})$ (quantum)

total time:

$$\widetilde{O}\Big(\sum_{v}\sqrt{|C(v)||E(C(v))|}\Big)$$

Thorup-Zwick spanner algorithm + DHHM SPT quantum algorithm: total time complexity $\widetilde{O}\bigg(\sum \sqrt{|C(v)||E(C(v))|}\bigg)$

Thorup-Zwick spanner algorithm + DHHM SPT quantum algorithm: total time complexity $\widetilde{O}\left(\sum_{v}\sqrt{|C(v)||E(C(v))|}\right)$

Cauchy-Schwarz:

$$\widetilde{O}\bigg(\sum_{v}\sqrt{|C(v)||E(C(v))|}\bigg)\in\widetilde{O}\bigg(\sqrt{\sum_{v}|C(v)|}\sqrt{\sum_{v}|E(C(v))|}\bigg)$$

Thorup-Zwick spanner algorithm + DHHM SPT quantum algorithm: total time complexity $\widetilde{O}\left(\sum_{v}\sqrt{|C(v)||E(C(v))|}\right)$

Cauchy-Schwarz:

$$\widetilde{O}\bigg(\sum_{v}\sqrt{|C(v)||E(C(v))|}\bigg)\in\widetilde{O}\bigg(\sqrt{\sum_{v}|C(v)|}\sqrt{\sum_{v}|E(C(v))|}\bigg)$$

Thorup-Zwick:

$$\mathbb{E}\left(\sum_{v}|C(v)|\right)\in\widetilde{O}(n),\quad \mathbb{E}\left(\sum_{v}|E(C(v))|\right)\in\widetilde{O}(m)$$

Thorup-Zwick spanner algorithm + DHHM SPT quantum algorithm: total time complexity $\widetilde{O}\left(\sum_{v}\sqrt{|C(v)||E(C(v))|}\right)$

Cauchy-Schwarz:

$$\widetilde{O}\bigg(\sum_{v}\sqrt{|C(v)||E(C(v))|}\bigg)\in \widetilde{O}\bigg(\sqrt{\sum_{v}|C(v)|}\sqrt{\sum_{v}|E(C(v))|}\bigg)$$

Thorup-Zwick:

$$\mathbb{E}\left(\sum_{v}|C(v)|\right)\in\widetilde{O}(n),\quad \mathbb{E}\left(\sum_{v}|E(C(v))|\right)\in\widetilde{O}(m)$$

$$\longrightarrow$$
 with high probability: $\widetilde{O}\left(\sum_{v}\sqrt{|C(v)||E(C(v))|}\right)\in\widetilde{O}(\sqrt{mn})$

Thorup-Zwick spanner algorithm + DHHM SPT quantum algorithm: total time complexity $\widetilde{O}\left(\sum_{v}\sqrt{|C(v)||E(C(v))|}\right)$

Theorem (this work)

There is a quantum algorithm that constructs with high probability a spanner in time

$$\widetilde{O}(\sqrt{mn})$$

THUILUP ZVION.

$$\mathbb{E}\left(\sum_{v}|C(v)|\right)\in \widetilde{O}(n), \quad \mathbb{E}\left(\sum_{v}|E(C(v))|\right)\in \widetilde{O}(m)$$

$$\longrightarrow$$
 with high probability: $\widetilde{O}\left(\sum_{v}\sqrt{|C(v)||E(C(v))|}\right)\in\widetilde{O}(\sqrt{mn})$

Iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- $\ensuremath{ f 2 }$ keep remaining edges independently with prob. 1/2, and rescale weight

Iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- ullet keep remaining edges independently with prob. 1/2, and rescale weight

? how to keep track of "intermediate" graph with O(m) edges in time o(m)?

Iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- $\ensuremath{ 2 }$ keep remaining edges independently with prob. 1/2, and rescale weight

? how to keep track of "intermediate" graph with O(m) edges in time o(m)?

adjacency list query: $|i,k,0\rangle \xrightarrow{O_G} |i,k,l\rangle$ (l is k-th neighbor of i)

adjacency list query: $|i,k,0\rangle \xrightarrow{O_G} |i,k,l\rangle$ (l is k-th neighbor of i)

add random advice string $x \in \{0,1\}^m$ $\frac{1 |0|0|1|1|0|1|1|0|0}{\downarrow}$ edge i discarded edge j kept

adjacency list query: $|i,k,0\rangle \xrightarrow{O_G} |i,k,l\rangle$ (l is k-th neighbor of i)

adjacency list + advice string: $|i,k,0,0\rangle \stackrel{O_G \otimes O_x}{\longrightarrow} |i,k,l,x(k,l)\rangle$

when encountering edge (k, l) with x(k, l) = 0, set its weight/conductance to zero:

$$|k,l,0\rangle \xrightarrow{O_G} |k,l,x(k,l)\cdot w(k,l)\rangle$$

when encountering edge (k, l) with x(k, l) = 0, set its weight/conductance to zero:

$$|k,l,0\rangle \xrightarrow{O_G} |k,l,x(k,l)\cdot w(k,l)\rangle$$

ightarrow grow spanners in intermediate graphs using adj. list + advice string

Iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- 2 use *random advice string* to keep remaining edges independently with prob. 1/2, and rescale weight

Iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- 2 use *random advice string* to keep remaining edges independently with prob. 1/2, and rescale weight

! time O(m) to generate random advice string $x \in \{0,1\}^m$!

Iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- 2 use *random advice string* to keep remaining edges independently with prob. 1/2, and rescale weight

! time O(m) to generate random advice string $x \in \{0,1\}^m$!

classical solution: "lazy sampling" (generate bits on demand)

Iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- 2 use *random advice string* to keep remaining edges independently with prob. 1/2, and rescale weight

! time O(m) to generate random advice string $x \in \{0,1\}^m$!

- classical solution: "lazy sampling" (generate bits on demand)
- quantum this is not possible: can address all bits in the string in superposition

k-wise independent string $x \in \{0,1\}^m$

k-wise independent string
$$x \in \{0, 1\}^m$$

= behaves uniformly random on every subset of k bits

$$\forall S \subset [m], \ |S| \le k, \ z \in \{0, 1\}^{|S|} : \Pr(x_S = z) = 1/2^{|S|}$$

Fact

Quantum algorithm cannot distinguish uniformly random string from 2q-wise independent string using $\leq q$ queries.

Fact

Quantum algorithm cannot distinguish uniformly random string from 2q-wise independent string using $\leq q$ queries.

Proof.

Polynomial method (Beals-Buhrman-Cleve-Mosca-de Wolf '98):

outcome of any binary measurement after q queries can be described by multilinear polynomial in x(i)'s of degree $\leq 2q$

Fact

Quantum algorithm cannot distinguish uniformly random string from 2q-wise independent string using $\leq q$ queries.

Proof.

Polynomial method (Beals-Buhrman-Cleve-Mosca-de Wolf '98):

outcome of any binary measurement after q queries can be described by multilinear polynomial in x(i)'s of degree $\leq 2q$

Expectation of every term, and thus of entire polynomial, hence depends on $\leq 2q$ input bits. This cannot distinguish 2q-wise independent x from uniformly random x.

T-time quantum algorithm only requires 2T-wise independent advice

T-time quantum algorithm only requires 2T-wise independent advice

 \rightarrow can we efficiently simulate such advice for $T \in o(m)$?

T-time quantum algorithm only requires 2T-wise independent advice

ightarrow can we efficiently simulate such advice for $T \in o(m)$? classic construction: random degree-2T polynomials $f \Omega(T)$ time per query

luckily, there is other interest: "efficient *k*-independent hash functions"

luckily, there is other interest: "efficient *k*-independent hash functions"

based on new constructions of expanders and hash tables:

Theorem (Christiani-Pagh-Thorup '15)

Can construct in preprocessing time $\widetilde{O}(k)$ a k-independent oracle that simulates queries to a k-wise independent string in time $\widetilde{O}(1)$ per query.

luckily, there is other interest: "efficient *k*-independent hash functions"

based on new constructions of expanders and hash tables:

Theorem (Christiani-Pagh-Thorup '15)

Can construct in preprocessing time $\widetilde{O}(k)$ a k-independent oracle that simulates queries to a k-wise independent string in time $\widetilde{O}(1)$ per query.

Corollary

Any time-T quantum algorithm using uniformly random advice can be simulated in time $\widetilde{O}(T)$ without advice.

Quantum iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- construct k-independent oracle

Quantum iterative sparsification:

- use quantum algorithm to construct $\widetilde{O}(1/\epsilon^2)$ disjoint spanners, keep these edges
- construct k-independent oracle

ightarrow per iteration: complexity $\widetilde{O}(\sqrt{mn}/\epsilon^2)$

- $O(\log m)$ steps of quantum iterative sparsification, each requiring time $\widetilde{O}(\sqrt{mn}/\epsilon^2)$
- ② use Grover search to retrieve $\widetilde{O}(n/\epsilon^2)$ surviving edges

- $O(\log m)$ steps of quantum iterative sparsification, each requiring time $\widetilde{O}(\sqrt{mn}/\epsilon^2)$
- 2 use Grover search to retrieve $\widetilde{O}(n/\epsilon^2)$ surviving edges

Theorem (this work)

There is a quantum algorithm that constructs an ϵ -cut sparsifier with $\widetilde{O}(n/\epsilon^2)$ edges in time

$$\widetilde{O}(\sqrt{mn}/\epsilon^2)$$

we can improve $\epsilon\text{-dependency}$ in the runtime:

we can improve ϵ -dependency in the runtime:

① create rough ϵ -spectral sparsifier H for $\epsilon = 1/10$

ightarrow time $\widetilde{O}(\sqrt{mn})$ using our former algorithm

we can improve ϵ -dependency in the runtime:

- **①** create rough ϵ -spectral sparsifier H for $\epsilon=1/10$
 - ightarrow time $\widetilde{O}(\sqrt{mn})$ using our former algorithm
- use Spielman-Srivastava to estimate effective resistances for H
 - ightarrow time $\widetilde{O}(n)$ using Laplacian solving

we can improve ϵ -dependency in the runtime:

- **①** create rough ϵ -spectral sparsifier H for $\epsilon=1/10$
 - ightarrow time $\widetilde{O}(\sqrt{mn})$ using our former algorithm
- use Spielman-Srivastava to estimate effective resistances for H
 - ightarrow time $\widetilde{O}(n)$ using Laplacian solving
- **3** sample $\widetilde{O}(n/\epsilon^2)$ edges from G using these estimates
 - ightarrow time $\widetilde{O}(\sqrt{mn/\epsilon^2})$ using quantum sampling

we can improve ϵ -dependency in the runtime:

- **①** create rough ϵ -spectral sparsifier H for $\epsilon = 1/10$
 - ightarrow time $\widetilde{O}(\sqrt{mn})$ using our former algorithm
- ② use Spielman-Srivastava to estimate effective resistances for H
 - ightarrow time $\widetilde{O}(n)$ using Laplacian solving
- **3** sample $\widetilde{O}(n/\epsilon^2)$ edges from G using these estimates
 - ightarrow time $\widetilde{O}(\sqrt{mn/\epsilon^2})$ using quantum sampling

Theorem (this work)

There is a quantum algorithm that constructs an ϵ -cut sparsifier with $\widetilde{O}(n/\epsilon^2)$ edges in time

$$\widetilde{O}(\sqrt{mn}/\epsilon)$$

this work:

• quantum algorithm to find H in time

$$\widetilde{O}(\sqrt{mn}/\epsilon)$$

- 3 quantum speedup (roughly $\widetilde{O}(m)$ to $\widetilde{O}(\sqrt{mn})$) for
 - max cut, min cut, min st-cut, sparsest cut, ...
 - Laplacian solving, approximating resistances and RW properties, spectral clustering, ...

Matching Lower Bound

intuition:

finding N marked elements among M elements takes time

$$\Omega(\sqrt{MN})$$

Matching Lower Bound

intuition:

finding N marked elements among M elements takes time

$$\Omega(\sqrt{MN})$$

ightarrow finding $\widetilde{O}(n/\epsilon^2)$ edges of sparsifier among m edges takes time

$$\Omega(\sqrt{mn}/\epsilon)$$

Unsparsifiable Graph

consider random graph B_ϵ

- bipartite with $1/\epsilon^2$ nodes left and right
- ullet every left node connected to random subset of $1/(2\epsilon^2)$ right nodes

Unsparsifiable Graph

let $H(n,\epsilon)$ consist of $\epsilon^2 n/2$ random copies of B_{ϵ}

 $H(n,\epsilon)$ has n nodes and $O(n/\epsilon^2)$ edges

Unsparsifiable Graph

let $H(n, \epsilon)$ consist of $\epsilon^2 n/2$ random copies of B_{ϵ}

 $H(n,\epsilon)$ has n nodes and $O(n/\epsilon^2)$ edges

Theorem (Andoni et al. '16)

With large probability, any ϵ -cut sparsifier of $H(n,\epsilon)$ must contain constant fraction of edges

Hiding a Sparsifier

"hide" $H(n,\epsilon)$ in larger $G(n,m,\epsilon)$ with O(n) nodes and O(m) edges

Hiding a Sparsifier

"hide" $H(n,\epsilon)$ in larger $G(n,m,\epsilon)$ with O(n) nodes and O(m) edges

unit weight to edges in $H(n,\epsilon)$, others zero weight o ϵ -spectral sparsifier of $G(n,m,\epsilon)$ must find constant fraction of $H(n,\epsilon)$

adjacency list \sim bit string $x \in \{0,1\}^m$ with structure!

adjacency list \sim bit string $x \in \{0,1\}^m$ with structure! single copy of B_{ϵ} :

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

adjacency list \sim bit string $x \in \{0,1\}^m$ with structure! single copy of B_{ϵ} :

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

output constant fraction of 1-bits = "relational problem" with complexity $\widetilde{\Omega}(1/\epsilon^2)$

 $\rightarrow \text{complexity for solving } \epsilon^2 n \text{ copies} = \widetilde{\Omega}(n)$

"hidden" copy of B_ϵ : every entry of adjacency list is hidden among $N=m/(n\epsilon^2)$ entries

"hidden" copy of B_ϵ : every entry of adjacency list is hidden among $N=m/(n\epsilon^2)$ entries

output constant fraction 1-bits, each described by OR_N -function = relational problem composed with OR_N

Proving a Lower Bound

? quantum lower bound for composition relational problem and OR_N -function ($\Omega(\sqrt{N})$)?

Proving a Lower Bound

? quantum lower bound for composition relational problem and OR_N -function ($\Omega(\sqrt{N})$)?

Theorem (proof by A.Belovs and T.Lee, independently)

The query complexity of an efficiently verifiable relational problem, with lower bound L, composed with the OR_N -function, is $\Omega(L\sqrt{N})$.

Proving a Lower Bound

? quantum lower bound for composition relational problem and OR_N -function ($\Omega(\sqrt{N})$?

Theorem (proof by A.Belovs and T.Lee, independently)

The query complexity of an efficiently verifiable relational problem, with lower bound L, composed with the OR_N -function, is $\Omega(L\sqrt{N})$.

for
$$L = n$$
 and $N = m/(n\epsilon^2)$:

Corollary

The query complexity of explicity outputting an ϵ -spectral sparsifier of a graph with n nodes and m edges is

$$\widetilde{\Omega}(\sqrt{mn}/\epsilon)$$
.

this work:

quantum algorithm to find H in time

$$\widetilde{O}(\sqrt{mn}/\epsilon)$$

- 2 matching $\widetilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound
- **3** quantum speedup (roughly $\widetilde{O}(m)$ to $\widetilde{O}(\sqrt{mn})$) for
 - max cut, min cut, min st-cut, sparsest cut, ...
 - Laplacian solving, approximating resistances and RW properties, spectral clustering, . . .

MIN CUT:

find cut (S, S^c) that minimizes $val_G(S)$

MIN CUT:

find cut (S, S^c) that minimizes $val_G(S)$

classically: can find MIN CUT in time $\widetilde{O}(m)$ (Karger '00)

MIN CUT of $\epsilon\text{-cut}$ sparsifier H gives $\epsilon\text{-approximation}$ of MIN CUT of G

MIN CUT of ϵ -cut sparsifier H gives ϵ -approximation of MIN CUT of G

quantum sparsification
$$(\widetilde{O}(\sqrt{mn}/\epsilon))$$
 + classical MIN CUT on H $(\widetilde{O}(n/\epsilon^2))$ = $\widetilde{O}(\sqrt{mn}/\epsilon)$ algorithm for ϵ -MIN CUT

	Classical	Quantum (this work)
.878-MAX CUT	$\widetilde{O}(m)$ (Arora-Kale'16)	$\widetilde{O}(\sqrt{mn})$
ϵ -MIN CUT	$\widetilde{O}(m)$ (Karger'00)	$\widetilde{O}(\sqrt{mn}/\epsilon)$
ϵ -MIN st -CUT	$\widetilde{O}(m+n/\epsilon^5)$ (Peng'16)	$\widetilde{O}(\sqrt{mn}/\epsilon + n/\epsilon^5)$
$\sqrt{\log n}$ -SP. CUT/	$\widetilde{O}(m+n^{1+\delta})$ (Sherman'09)	$\widetilde{O}(\sqrt{mn} + n^{1+\delta})$
-BAL. SEPARATOR		

general linear system

$$Ax = b$$

general linear system

$$Ax = b$$

ightarrow given A and b, complexity of finding x is $\widetilde{O}(n^{\omega})$ for $\omega < 2.373$

general linear system

$$Ax = b$$

ightarrow given A and b, complexity of finding x is $\widetilde{O}(n^{\omega})$ for $\omega < 2.373$

Laplacian system

$$Lx = b$$

general linear system

$$Ax = b$$

ightarrow given A and b, complexity of finding x is $\widetilde{O}(n^{\omega})$ for $\omega < 2.373$

Laplacian system

$$Lx = b$$

 \to given L and b, complexity of finding x is near-linear $\widetilde{O}(m)\in\widetilde{O}(n^2)$ (Spielman-Teng '04)

approximate Laplacian system using spectral sparsifier:

Lemma

Consider Laplacian system $L_G x = b$. If H is ϵ -spectral sparsifier of G, and \tilde{x} solution to $L_H x = b$, then

$$\|\tilde{x} - x\|_{L_G} \le 2\epsilon \|x\|_{L_G},$$

where
$$||v||_{L_G} = ||L_G^{1/2}v||$$
.

approximate Laplacian system using spectral sparsifier:

Lemma

Consider Laplacian system $L_{G}x = b$. If H is ϵ -spectral sparsifier of G, and \tilde{x} solution to $L_H x = b$, then

$$\|\tilde{x} - x\|_{L_G} \le 2\epsilon \|x\|_{L_G},$$

where
$$||v||_{L_G} = ||L_G^{1/2}v||$$
.

quantum sparsification $(\widetilde{O}(\sqrt{mn}/\epsilon))$ + Laplacian solver on $H(\widetilde{O}(n/\epsilon^2))$ $= \widetilde{O}(\sqrt{mn}/\epsilon)$ quantum algorithm for Laplacian solving

55 / 57

	Classical	Quantum (this work)
ϵ -Laplacian Solving	$\widetilde{O}(m)$ (ST'04)	$\widetilde{O}(\sqrt{mn}/\epsilon)$
ϵ -Effective Resistance	$\widetilde{O}(m)$	$\widetilde{O}(\sqrt{mn}/\epsilon)$
(single)	O(m)	prior: $\widetilde{O}(n^{3/2}/\epsilon^{3/2})$
ϵ -Effective Resistance	$\widetilde{O}(m+n/\epsilon^4)$	$\widetilde{O}(\sqrt{mn}/\epsilon + n/\epsilon^4)$
(all)	(Spielman-Srivastava'08)	$O(\sqrt{mn/\epsilon + n/\epsilon})$
O(1)-Cover Time	$\widetilde{O}(m)$	$\widetilde{O}(\sqrt{mn})$
	(Ding-Lee-Peres'10)	
k bottom	$\widetilde{O}(m+kn/\epsilon^2)$	$\widetilde{O}(\sqrt{mn}/\epsilon + kn/\epsilon^2)$
eigenvalues		prior, $k = 1$: $\widetilde{O}(n^2/\epsilon)$
Spectral k-means	$\widetilde{O}(m+n\operatorname{poly}(k))$	$\widetilde{O}(\sqrt{mn} + n\operatorname{poly}(k))$
clustering	$O(m + n \operatorname{poly}(k))$	$O(\sqrt{mn+n}\operatorname{poly}(\kappa))$

• complexity $\widetilde{O}(\sqrt{mn}/\epsilon)$ of quantum Laplacian solver has linear dependence on error ϵ . Can we improve this to logarithmic?

- complexity $\widetilde{O}(\sqrt{mn}/\epsilon)$ of quantum Laplacian solver has linear dependence on error ϵ . Can we improve this to logarithmic?
- \bullet Laplacian solvers led to breakthrough $\widetilde{O}(m)$ algorithms for max flow. Can we find quantum speedup for max flow?

- complexity $\widetilde{O}(\sqrt{mn}/\epsilon)$ of quantum Laplacian solver has linear dependence on error ϵ . Can we improve this to logarithmic?
- Laplacian solvers led to breakthrough $\widetilde{O}(m)$ algorithms for max flow. Can we find quantum speedup for max flow?
- exact min cut can be found classically in $\widetilde{O}(m)$, we find ϵ -approximate in $\widetilde{O}(\sqrt{mn}/\epsilon)$. Can we also find exact min cut?

- complexity $\widetilde{O}(\sqrt{mn}/\epsilon)$ of quantum Laplacian solver has linear dependence on error ϵ . Can we improve this to logarithmic?
- ullet Laplacian solvers led to breakthrough $\widetilde{O}(m)$ algorithms for max flow. Can we find quantum speedup for max flow?
- exact min cut can be found classically in $\widetilde{O}(m)$, we find ϵ -approximate in $\widetilde{O}(\sqrt{mn}/\epsilon)$. Can we also find exact min cut?
- spectral sparsification extended to hypergraphs, sums of PSD matrices, streaming, ... and is related to spectral sketching and data regression. Quantum speedup for these problems?