- 1. Hazard koji nije imenski povezan: (?! ne sjećam se dobro pitanja)
 - a. WAR
 - b. WAW
 - c. podatkovna ovisnost
 - d. antiovisnost
- 2. Primjer SIMD računala je:
 - a. redundantno računalo u kojem više izvršnih jedinica obrađuje iste podatke
 - b. serijsko zbrajalo
 - c. Von Neumannovo računalo
 - d. vektorski procesor na grafičkoj kartici
- 3. Kako vektoriziranje algoritma utječe na učestalost hazarda:
 - a. nema značajnog utjecaja
 - b. smanjuje broj hazarda RAW
 - c. povećava broj hazarda RAW
 - d. korištenjem servisnih bitova
- 4. Kako se kod straničenja rješava problem brzine pristupa elementima stranične tablice:
 - a. cacheiranjem straničnih opisnika
 - b. povećanjem brzine radne memorije
 - c. korištenjem servisnih bitova
 - d. spremanje cijele stranične tablice
- 5. Za superskalarnost RISC arhitekuture je specifično da se usporedno prevođenje slijednog programa pospješuje prvenstveno:
 - a. dubokim prosječnim strukturama
 - b. adresnim preslikavanjem
 - c. statičkim raspoređivanjem instrukcija tijekom prevođenja
 - d. dinamičkim raspoređivanjem instrukcija u sklopovlju računala
- 6. Jedan od značajnih razloga prirasta broja instrukcija arhitekture x86 su:
 - a. nove instrukcije tipa MISD
 - b. nove instrukcije tipa SIMD
 - c. nove memorijske instrukcije
 - d. nove instrukcije granjanja
- 7. Koja svojstva instrukcije arhitekture MIPS omogućuju relativnog odredišta u okviru protočnog ID? (?! ne sjećam se dobro pitanja)
 - a. fiksni i jednostavni instrukcijski format
 - b. superskalarnost
 - c. veliki broj registara opće namjene

8.	 d. zakašnjele instrukcije Koliko bitova je potrebno za kodiranje reg. operanda u tipičnom RISC procesoru? a. 3 b. 5 c. 1 d. 2
9.	Ukoliko želimo oblikovati superskalarni procesor koji bi u prosjeku izvodio 2 instrukcije po ciklusu, broj procesnih jedinica mora biti: a. proizvoljan b. jednak dva c. znatno veći od dva d. manji od dva
10.	Koliko mem. operanada ima aritm. RISC instrukcija: a. oko 8 b. 0 c. 2 d. 1
11.	Jednostavna superskalarna organizacija se od skalarne prototočne organizacije s više procesnih jedinica razlikuje jer ima: a. izvršavanje izvan redosljeda b. mogućnost istovremenog pribavljanja i dekodiranja više instrukcija c. veći registarski skup d. efikasnu priručnu memoriju
12.	Zadana je priručna memorija s 8 linija po 16B i izravnim preslikavanjem. Svako promašeno čitanje bytea inicira prijenos podataka iz DRAMa od: a. 1B b. 16B c. 128B d. 64B
13.	Zadano je 32-bitno računalo s 1GB memorije RAM, 1MB PML2, te 16kB PML1. Koliki je LAP? a. 2^{20} B b. 2^{32} B c. 2^{14} B d. 2^{64} B

- 14. Ubrzanje arhitekture MIPS usljed protočnosti je:
 - a. najmanje 5 puta
 - b. točno 5 puta
 - c. najviše 4 puta
 - d. najviše 5 puta
- 15. Koja operacija se izvodi u segmentu EX arhitekture MIPS kod instrukcija upisa u mem:
 - a. zbrajanje mem operanada i izvornog registra
 - b. određivanje efektivne adrese
 - c. zbrajanje dva registra
 - d. pristup mem
- 16. U odnosu na period takta modernog procesora, latencija DRAM-a je u općenitom slučaju:
 - a. 10 puta manja
 - b. 10 puta veća
 - c. 1000 puta veća
 - d. 1000 puta manja