

Ejercicio 4 - Docker Compose

Proyecto Docker: Sara García Barbas y Gerald Alexis Rueda Tejedo

Introducción

¿Qué es Docker Compose?

¿Que es htop?

Paso 1

Paso 2

Paso 3

Introducción

En este tutorial desplegaremos http en un contenedor Docker utilizando **Docker Compose.** http es una herramienta interactiva que permite monitorear procesos en sistemas basados en Unix de manera visual e intuitiva.

Docker Compose facilita la gestión de contenedores, permitiendo definir y ejecutar aplicaciones multicontenedor con un solo archivo de configuración. Configurar htop en un contenedor es útil para monitorear el rendimiento de un sistema de forma aislada o dentro de un entorno de desarrollo.

Al finalizar este tutorial, tendremos un contenedor con <a href="http://

¿Qué es Docker Compose?

Docker Compose es una herramienta que permite definir y gestionar aplicaciones multi-contenedor en **Docker** utilizando un solo archivo de configuración, generalmente llamado docker-compose.yml.

Con **Docker Compose**, en lugar de ejecutar y configurar cada contenedor manualmente con comandos de docker run, podemos definir todos los servicios, volúmenes, redes y variables de entorno en un archivo YAML. Luego, con un solo comando (docker-compose up), Docker se encarga de construir y ejecutar toda la aplicación.

¿Qúe es htop?

htop es una herramienta de monitoreo de procesos interactiva para sistemas **Unix** (Linux, macOS, BSD) que permite visualizar en tiempo real el uso de CPU, memoria, procesos y otros recursos del sistema. Es una alternativa más avanzada y amigable a top, con una interfaz más intuitiva y colorida.

Paso 1

En nuestra máquina virtual abrimos un terminal y comprobamos si tenemos docker-compose instalado

docker-compose --version

```
Terminal Q = - - ×

cliente@clienteLinux ~$ docker-compose --version

No se ha encontrado la orden «docker-compose», pero se puede instalar con:

sudo snap install docker # version 27.2.0, or

sudo apt install docker-compose # version 1.29.2-1

Consulte «snap info docker» para ver más versiones.

cliente@clienteLinux ~$
```

Si no lo tenemos instalado, ejecutaremos:

```
sudo apt install docker-compose -y
```

```
cliente@clienteLinux ~$ sudo apt install docker-compose -y
[sudo] contraseña para cliente:
Leyendo lista de paquetes... Hecho
Creando árbol de dependencias... Hecho
Leyendo la información de estado... Hecho
Se instalarán los siguientes paquetes adicionales:
    docker-ce docker-ce-cli python3-attr python3-distutils python3-docker
    python3-dockerpty python3-docopt python3-dotenv python3-jsonschema
    python3-lib2to3 python3-pyrsistent python3-setuptools python3-texttable
    python3-websocket
```

Si comprobamos la versión, vemos que ahora ya si lo tenemos instalado:

```
docker-compose --version
```

```
cliente@clienteLinux ~ docker-compose --version docker-compose version 1.29.2, build unknown cliente@clienteLinux ~
```

Paso 2

En nuestra máquina virtual creamos un nuevo directorio al que llamaremos <a href="http://ntop.nuestra.nuevo.

Desde el directorio que acabamos de crear, abrimos un terminal

Vamos a crear nuestro archivo compose.yami y añadirle el siguiente contenido:

nano docker-compose.yaml

```
Terminal
                                                                  Q
Ħ
 GNU nano 6.2
                                   docker-compose.yaml
ersion: '3.8
                                    Versión de Compose
ervices:
                                  # Nombre del servicio
  image: alpine
  container_name: cont_htop
  stdin_open: true
  tty: true
  command: sh -c "apk add --no-cache htop && htop" # Instala htop y lo ejecuta
                Guardar
                                          ^K Cortar
                                                          Ejecutar
                                                                      ^C Ubicación
 Ayuda
                              Buscar
```

¿Por qué la imagen Alpine?

Alpine Linux es una distribución de Linux minimalista y liviana, ideal para contenedores Docker por lo siguiente:

- Es pequeña (~5 MB), reduciendo así el tiempo de descarga y arranque.
- Es segura.
- **Es eficiente**, usa must y busybox en lugar de glibc y herramientas más pesadas.

¿Qué es Alpine?

Es un sistema operativo basado en Linux, diseñado para ser **ligero y seguro**. Se usa mucho en Docker porque consume menos recursos que distribuciones como Ubuntu o Debian.

La combinación de **Alpine Linux** con **htop** en Docker es útil por:

1. **Ligereza:** Alpine es una imagen mínima (~5 MB), lo que hace que el contenedor sea rápido y eficiente.

- 2. **Monitorización sin sobrecarga:** http://permite visualizar el uso de CPU, memoria y procesos sin consumir muchos recursos.
- 3. **Simplicidad:** Solo necesitamos instalar http con apk add --no-cache http y ejecutarlo.

Esta combinación es ideal para depurar o monitorear procesos dentro de un contenedor sin inflar su tamaño.

¿No podemos usar solo http?

No se puede usar http solo en Docker porque necesita un sistema operativo base. Docker no ejecuta aplicaciones de forma independiente, sino dentro de contenedores basados en imágenes de sistemas como Alpine, Ubuntu o Debian.

Paso 3

Abrimos un terminal en la carpeta donde guardamos el archivo docker-compose.yamı y ejecutamos:

docker-compose up

```
cliente@clienteLinux ~/Documentos/htop$ docker-compose up
Pulling htop (alpine:)...
latest: Pulling from library/alpine
1f3e46996e29: Downloading [>
                                                                       36.88k
1f3e46996e29: Downloading [=============================
                                                                       2.568M
1f3e46996e29: Extracting [>
                                                                      65.54kB
1f3e46996e29: Extracting [==============
                                                                      1.376MB
1f3e46996e29: Extracting [===================
                                                                      3.642MB
1f3e46996e29: Pull complete
Digest: sha256:56fa17d2a7e7f168a043a2712e63aed1f8543aeafdcee47c58dcffe38ed51099
Status: Downloaded newer image for alpine:latest
Creating cont_htop ... done
Attaching to cont_htop
cont_htop | fetch_https://dl-cdn.alpinelinux.org/alpine/v3.21/main/x86_64/APKINDEX.tar.
cont_htop | fetch https://dl-cdn.alpinelinux.org/alpine/v3.21/community/x86_64/APKINDEX
.tar.gz
```

Ahora ejecutamos:

```
docker ps
docker exec -it 6b149a8f1cee htop
```

```
cliente@clienteLinux ~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
6b149a8f1cee alpine "sh -c 'apk add --no..." 31 minutes ago Up About a mi
nute 6b149a8f1cee_cont_htop
```

```
cliente@clienteLinux ~ docker exec -it 6b149a8f1cee htop
```

Se nos iniciará la interfaz de htop y ya podremos usarlo:

Si presionamos la tecla F1 o sobre el texto Help veremos las distintas funcuionalidades de htop y las teclas asociadas a dichas funcionalidades:

```
Terminal
                                                                                                   Q =
htop 3.3.0 - (C) 2004-2019 Hisham Muhammad. (C) 2020-2024 htop dev team.
Released under the GNU GPLv2+. See 'man' page for more info.
CPU usage bar: [low/normal/kernel/guest
Memory bar: [used/shared/compressed/buffers/cache
Swap bar: [used/cache/frontswap
                                                                                 used/total]
                                                                                 used/total]
Type and layout of header meters are configurable in the setup screen.
Process state: R: running; S: sleeping; t: traced/stopped; Z: zombie; D: disk sleep
         #: hide/show header meters
                                                          S-Tab: switch to previous screen tab
      Tab: switch to next screen tab
                                                          Space: tag process
  Arrows: scroll process list
                                                                c: tag process and its children
  Digits: incremental PID search
                                                               U: untag all processes
                                                           F9 k: kill process/tagged processes
F7 ]: higher priority (root only)
F8 [: lower priority (+ nice)
     F3 /: incremental name search
F4 \: incremental name filtering
     F5 t: tree view
        p: toggle program path
m: toggle merged command
                                                               a: set CPU affinity
                                                               e: show process environment
         Z: pause/resume process updates
                                                               i: set IO priority
        u: show processes of a single user
H: hide/show user process threads
                                                               l: list open files with lsof
x: list file locks of process
         K: hide/show kernel threads
                                                               s: trace syscalls with strace
         O: hide/show processes in containers
F: cursor follows process
                                                               w: wrap process command in multiple lines
                                                               Y: set scheduling policy
 + - *: expand/collapse tree/toggle all F2 C S: setup

N P M T: sort by PID, CPU%, MEM% or TIME F1 h ?: show this help screen
I: invert sort order F10 q: quit
                                                          F10 q: quit
  F6 > .: select sort column
```

Las principales acciones que podremos realizar son:

1. Ver el uso del sistema

- CPU: Muestra el uso de cada núcleo de la CPU en tiempo real con gráficos de barras.
- Memoria: Visualizar el uso de la RAM y swap.
- Carga del sistema: Muestra la carga promedio del sistema (load average).

2. Gestionar procesos

- **Ver procesos activos**: Muestra una lista completa de los procesos en ejecución, con detalles como PID, usuario, uso de CPU y memoria.
- Ordenar procesos: Podremos ordenar los procesos por uso de CPU, memoria, nombre, etc. (Tecla F6).

3. Buscar y filtrar procesos

• **Buscar un proceso**: Presionando F3 y escribiendo el nombre del proceso para buscarlo.

• **Filtrar procesos**: Usar F4 para aplicar filtros a los procesos que se están mostrando, por ejemplo, por nombre.

4. Matar procesos

• **Matar un proceso**: Seleccionando un proceso y presionando F9 para terminarlo (se pueden elegir diferentes señales para terminar el proceso, como SIGTERM o SIGKILL).

5. Ver la jerarquía de procesos

 Modo árbol: Cambia la vista para mostrar los procesos en forma de árbol jerárquico con F5, lo que ayuda a ver qué procesos son padres e hijos.

6. Cambiar la prioridad de los procesos

• Cambiar la prioridad: Usando F7 y F8 para ajustar la prioridad de un proceso (cambiar su "nice value").

7. Personalización

• **Configurar la visualización**: Presionando F2 abriremos el menú de configuración, donde podremos cambiar cómo se muestran los procesos y ajustar las opciones de visualización.

8. Ver estadísticas detalladas

 También podremos ver detalles sobre el uso del sistema, como las interrupciones, los contextos de los procesos, el uso de discos, etc.