# Synopsis of the research conducted thus far

Theoritical model

Chiller setup

Temperature acquisition

#### First trial: code everything from scratch

Antoine equations, Raoult's law

$$K_{i} = \frac{y_{i}}{\phi_{i}^{N}} - \ln \phi^{k} = \frac{B_{i}}{B^{k}} (Z^{k} - 1) - \ln (Z^{k} - B^{k}) - \frac{A^{k}}{B^{k} 2 \sqrt{2}} \ln \left( \frac{Z^{k} + B^{k} (1 + \sqrt{2})}{Z^{k} + B^{k} (1 - \sqrt{2})} \right) \left( \frac{2 \sum_{j=1}^{2} x_{j} A_{j}}{A^{k}} - \frac{B_{i}}{B_{k}} \right)$$

#### First trial: code everything from scratch

#### Peng-Robinson EOS



### Success: plot Pxy and Txy curves





#### Failure: plot PT curves





#### Second tentative: use Thermopack library

Thermopack is a thermodynamics library for multi-component and multi-phase thermodynamics developed at SINTEF Energy Research and NTNU Department of Chemistry.



#### Focus on our range

Our domain: 6MPa, 0°C to room temperature (20°C), 85% CO2 + 15% N2.



#### Comparison with real data



Experimental data from: S. F. Westman, H. G. J. Stang, S. W. Løvseth, A. Austegard, I. Snustad, S. Ø. Størset, and I. S. Ertesvåg, Vapor–Liquid Equilibrium Data for the Carbon Dioxide and Nitrogen (CO2 + N2) System at the Temperatures 223, 270, 298 and 303 K and Pressures up to 18 MPa, Fluid Phase Equilibria 409, 207 (2016).

#### Comparison between models



#### Real data in the vicinity of our domain





#### To sum up



Theoritical model

Chiller setup

Temperature acquisition

#### The use of the chiller and preparation of the cooling liquid



For temperatures less than 20°C chiller needs a special cooling fluid



50%

50%

#### Stability of the Chiller



Theoritical model

Chiller setup

Temperature acquisition

#### Uncertainty interval of thermocouples



### Uncertainty interval of thermocouples



## What's next?

Measure the temperature of the cooling lines

**Viscometry** 

Preparing the gas mixture