Recitation 3

Rank Nullity Theorem

Theorem (Rank-Nullity Theorem)

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then

$$\operatorname{rank}(L) + \dim(\operatorname{Ker}(L)) = m.$$

- Important theorem (check that you can reproduce the proof).
- Other things to keep in mind:
 - $rank(AB) \leq \min(rank(A), rank(B))$
 - For $c_1, c_2, \ldots, c_m \in \mathbb{R}^n$,

$$\mathsf{rank}(c_1, c_2, \dots, c_m) = \mathsf{rank}(\begin{bmatrix} c_1 & c_2 & \dots & c_m \end{bmatrix}) = \mathsf{rank}\left(\begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_m \end{bmatrix} \right)$$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \\ 3 & -1 & -1 \\ 4 & -2 & 0 \end{bmatrix}$$

- 1. Find a basis of the kernel of A.
- 2. Find the rank of A. Did you need to perform additional computations?
- 3. Find a basis of the image of A. Did you need to perform additional computations?

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \\ 3 & -1 & -1 \\ 4 & -2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \\ 3 & -1 & -1 \\ 4 & -2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \\ 3 & -1 & -1 \\ 4 & -2 & 0 \end{bmatrix}$$

- 1. $\exists A, B \text{ s.t } AB \text{ is invertible.}$
- 2. $\exists A, B \text{ s.t.} BA \text{ is invertible.}$

- 1. $\exists A, B \text{ s.t } AB \text{ is invertible.}$
- 2. $\exists A, B \text{ s.t.} BA \text{ is invertible.}$

- 1. $\exists A, B \text{ s.t } AB \text{ is invertible.}$
- 2. $\exists A, B \text{ s.t.} BA \text{ is invertible.}$

- 1. $\exists A, B \text{ s.t } AB \text{ is invertible.}$
- 2. $\exists A, B \text{ s.t.} BA \text{ is invertible.}$

Symmetric Matrices

- $lacksquare A \in \mathbb{R}^{n imes n}$ symmetric if $A_{ij} = A_{ji}$ for all $i,j \in [1:n]$.
- Symmetric matrices appear often and have good properties:
 - Orthogonal Projections (Lec. 4) are symmetric.
 - Spectral Theorem (Lec. 7) "symmetric matrices have an orthonormal basis of eigenvectors".
 - ▶ PCA (Lec. 7): Covariance matrix is symmetric.
 - Convexity (Lec. 9,11): Hessian Matrix (matrix of second derivative) is symmetric

- 1. Show that $\forall x \in \mathbb{R}^n$, $x^{\top}A^{\top}Ax \geq 0$.
- 2. When is $x^{\top}A^{\top}Ax = 0$?
- 3. Show that $Ker(A) = Ker(A^{\top}A)$.
- **4.** Use this to show rank $(A) = \operatorname{rank}(A^{\top}A)$.
- 5. Now show that $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$.

- 1. Show that $\forall x \in \mathbb{R}^n$, $x^{\top}A^{\top}Ax \geq 0$.
- 2. When is $x^{\top}A^{\top}Ax = 0$?
- 3. Show that $Ker(A) = Ker(A^{T}A)$.
- 4. Use this to show $rank(A) = rank(A^{T}A)$.
- 5. Now show that $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$.

- 1. Show that $\forall x \in \mathbb{R}^n$, $x^{\top}A^{\top}Ax \geq 0$.
- 2. When is $x^{\top}A^{\top}Ax = 0$?
- 3. Show that $Ker(A) = Ker(A^{T}A)$.
- 4. Use this to show $rank(A) = rank(A^{T}A)$.
- 5. Now show that $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$.

- 1. Show that $\forall x \in \mathbb{R}^n$, $x^{\top}A^{\top}Ax \geq 0$.
- 2. When is $x^{\top}A^{\top}Ax = 0$?
- 3. Show that $Ker(A) = Ker(A^{T}A)$.
- 4. Use this to show $rank(A) = rank(A^{T}A)$.
- 5. Now show that $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$.

- 1. Show that $\forall x \in \mathbb{R}^n$, $x^{\top}A^{\top}Ax \geq 0$.
- 2. When is $x^{\top}A^{\top}Ax = 0$?
- 3. Show that $Ker(A) = Ker(A^{T}A)$.
- 4. Use this to show $rank(A) = rank(A^{T}A)$.
- 5. Now show that $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$.