Dr. Juliane Hennecke

Chair of Empirical Microeconomics

ADVANCED MICROECONOMICS

Consumer Theory II - Utility Maximization

Winter Term 2025/2026

Hennecke Utility Maximization WS 2025/2026 1 / 37

Outline

- 1) Consumer Theory
 - 1.1) Preferences and Utility (L1)
 - 1.2) Utility Maximization (L2)
 - 1.3) Expenditure Minimization (L3)
 - 1.4) Demand Functions and Duality (L4+L5)
- 2) General Equilibrium
 - 2.1) Exchange Economy (L6)
 - 2.2) Welfare Economics and General Equilibrium (L7)
- 3) Decisions under Risk and Uncertainty
 - 3.1) Expected Utility (L8)
 - 3.2) Risk Preferences (L9)
 - **3.3)** Insurances (L10)
 - 3.4) Safety Regulations and the Value of a Statistical Life (11)
- 4) Behavioral Economics (L12)

- 1 Recap: Preferences and Utility
- **2** Constrained Optimization
- 3 Utility Maximization
 Decision Problem

Graphical Solution

Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- 4 The indirect utility function
- **5** Example
- **6** Summary

Literature

- Varian (2022): Chapter 4+5 (for refresher of basic concepts)
- Autor (2016): Lecture Notes 4

Recap: Preferences

- Preferences are the foundation of decisions taken by consumers.
- Mathematically, preferences can be expressed in form of binary preference relations between goods/alternatives.
- If preferences are rational (i.e., complete and transitive) and continuous, one can always find a utility function that represents the preferences (i.e., keeps the ordering of alternatives).
- Utility functions can be represented as indifference curves.
- Additional properties of preferences (monotonicity and convexity) buy additional (nice) properties of the utility functions and indifference curves.
- For consumer theory usually an ordinal interpretation (ranking of alternatives) of utility functions suffices.

- Recap: Preferences and Utility
- **2** Constrained Optimization
- 3 Utility Maximization

 Decision Problem

 Graphical Solution

 Mathematical Solution

 Non-Negativity Constraint and Kuhn-Tucker Approach
- 4 The indirect utility function
- **5** Example
- **6** Summary

Optimal Decisions based on Preferences

Assumptions:

- Consumers have well-defined preferences and we thus have a utility function that represents these preferences.
- Consumers know which alternatives they can afford (they know their budget, which depends on income and prices).
- Two mathematical approaches to find optimal consumption given budget constraints:
 - 1 Constrained utility maximization (today)
 - 2 Expenditure minimization for given utility level (next lecture)
- Both approaches deliver equal results ("duality").

Duality

Source: Autor (2016), Lecture Notes 4, p. 2.

- Recap: Preferences and Utility
- 2 Constrained Optimization
- **3** Utility Maximization

Decision Problem Graphical Solution

Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- 4 The indirect utility function
- **5** Example
- **6** Summary

- 1 Recap: Preferences and Utility
- **2** Constrained Optimization
- **3** Utility Maximization

Decision Problem

Graphical Solution
Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- **4** The indirect utility function
- **5** Example
- **6** Summary

Constrained utility maximization

- Three things needed to model a consumer's decision
 - 1 Utility function: Preferences
 - 2 Budget constraint: Income (I)
 - **3** Price vector: Prices of available goods (e.g. p_x price of x and p_y price of y)
- (2) and (3) deliver the **budget constraint**, e.g.

$$I \ge p_x x + p_y y$$

Consumer problem: Maximize utility for a given budget constraint

8 / 37

Hennecke Utility Maximization WS 2025/2026

The consumer's decision problem

Typical characteristics of the solution:

Budget exhaustion

Entire budget is spent (more is better) \rightarrow non-satiation

Psychic trade-off = market trade-off (for most solutions)

- Psychic trade-off Rate at which a person is willing to give up one good for another while maintaining the same level of utility = MRS
- Market trade-off Rate at which a person can exchange one good for another at the market = price ratio

9 / 37

- 1 Recap: Preferences and Utility
- **2** Constrained Optimization
- **3** Utility Maximization

Decision Problem

Graphical Solution

Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- 4 The indirect utility function
- 6 Example
- **6** Summary

Graphical illustration

Utility maximization reached in point (A)

Source: Autor (2016), Lecture Notes 4, p. 3

- Preferences: A > B, $A \sim D$ C > A
- Why might we expect someone to choose A?

Hennecke Utility Maximization WS 2025/2026 10 / 37

Graphical illustration

Utility maximization reached in point (A)

Source: Autor (2016), Lecture Notes 4, p. 3

- Why?
 - Slope of budget set is $-\frac{p_x}{p_y}$
 - Slope of indifference curves is $MRS = \frac{MU_x}{MU_y}$
 - In (A) → market trade-off = psychic trade-off (MRS)

Hennecke Utility Maximization WS 2025/2026 11 / 37

Interior solutions

The typical case

 The consumer chooses a combination of x and y (because she gains positive utility from the consumption of both goods)

Hennecke Utility Maximization WS 2025/2026 12 / 37

Corner solutions - Example 1

 Vertical indifference curves - Consumer is indifferent to the consumption of one good (here y), utility increases only with consumption of x, consumer purchases x exclusively

Source: Autor (2016), Lecture Notes 4, p. 5

 Consumers with these preferences would consume negative amounts of y to gain more x if they could

Corner solutions - Example 2

- Very strong preferences for good y (relative to x)
 - For example: Steak for a vegetarian.

Source: Autor (2016), Lecture Notes 4, p. 6

 Consumers with these preferences would consume negative amounts of x to gain more y if they could.

Corner solution - Example 3

- Indivisibility of x and y (integer constraint) → only two possible bundles of goods: (0,10) (=corner solution) or (1,1)
 - Example: Car and parking permits If I have an own car (x) the city only issues me one permit (y), if I don't have a car, I am allowed to buy 10 (for visitors, rentals).

Source: Autor (2016), Lecture Notes 4, p. 7.

 Normally, we just ignore this problem and assume that goods are divisible

- 1 Recap: Preferences and Utility
- **2** Constrained Optimization
- **3** Utility Maximization

Graphical Solution

Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- 4 The indirect utility function
- **5** Example
- **6** Summary

Mathematical Optimization

Lagrange Approach

An approach for constrained optimization problem by transforming it into an unconstrained problem (using a Lagrange multiplier λ)

Goal:

$$\max_{x,y} U(x,y)$$
 s.t. (such that) $p_x x + p_y y \leq I$

Lagrange function:

$$\mathcal{L} = U(x, y) + \lambda (I - p_x x - p_y y)$$

Lagrange Approach

First order conditions (FOCs)

1
$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial U}{\partial x} - \lambda p_x = MU_x - \lambda p_x = 0$$
2 $\frac{\partial \mathcal{L}}{\partial y} = \frac{\partial U}{\partial y} - \lambda p_y = MU_y - \lambda p_y = 0$
3 $\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_x x - p_y y = 0$

Rearranging (1) and (2) gives

$$\lambda = \frac{MU_x}{p_x} = \frac{MU_y}{p_y}$$

$$\frac{MU_x}{MU_y} = \frac{p_x}{p_y}$$

$$(MRS = \text{price ratio})$$

• (3) tells us that entire budget is spent in optimum (budget exhaustion)

How to interpret the Lagrange Multiplier (λ) ?

• λ captures the additional utility that a consumer receives from one additional unit of income (which is the same independent of the good it is spent on at the optimal level of consumption)

$$\lambda = \frac{MU_x}{p_x} = \frac{MU_y}{p_y} = \frac{MU_n}{p_n}$$

 $ightarrow \lambda$ is also called the **shadow price** of the budget constraint

$$\lambda = \frac{dU(x^*, y^*)}{dI}$$

- where $x=x^*$ and $y=y^*$ are the amounts of x and y consumed at the optimum
- Remember: this increase in utility cannot be interpreted cardinally, just ordinally!

Mathematical derivation of the shadow price

- Proof: $\lambda = \frac{dU(x^*, y^*)}{dI}$.
- Change in utility at optimal level $(x = x^*, y = y^*)$ with change in income:

$$\frac{d\mathcal{L}}{dI}\Big|_{x=x^*,y=y^*} = \frac{\partial \mathcal{L}}{\partial x} \frac{\partial x}{\partial I}\Big|_{x^*,y^*} + \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial I}\Big|_{x^*,y^*} + \frac{\partial \mathcal{L}}{\partial I}$$

$$= (MU_x - \lambda p_x)|_{x^*,y^*} \frac{\partial x^*}{\partial I} + (MU_y - \lambda p_y)|_{x^*,y^*} \frac{\partial y^*}{\partial I} + \frac{\partial \mathcal{L}}{\partial I}$$

Remember FOCs: $MU_x - \lambda p_x = 0$ and $MU_y - \lambda p_y = 0$

$$\frac{d\mathcal{L}}{dI} \bigg|_{x=x^*,y=y^*} = \frac{\partial \mathcal{L}}{\partial I}$$

$$= \lambda$$

Envelope Theorem

 Knowing the Envelope Theorem would have spared us from doing the calculations on the last slide.

Envelope Theorem in Utility Maximization

In the optimum (small) changes in income will not result in changes in the optimal values of x and y, but will only lead to changes in utility by relaxing the budget constraint

 The theorem applies to situations more generally where multiple values are chosen to optimize a function and we see (small) changes in one variable at the optimum.

Envelope Theorem in General

At the optimum in case of small changes only the **direct effect** of the change is relevant, **indirect effects** resulting from re-optimization of other variables can be ignored.

- 1 Recap: Preferences and Utility
- **2** Constrained Optimization
- **3** Utility Maximization

Decision Problem
Graphical Solution
Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- 4 The indirect utility function
- **5** Example
- **6** Summary

Non-negativity constraint

- So far we have only looked at interior solutions, where consumers buy non-zero amount of both goods.
- Remember: Corner solutions can exist if consumers have strong preferences for one of the two goods.
- Consumers with these preferences would consume negative amounts of one good to gain even more of the other good if they could but this is not possible
- → Additional constraints:

Non-negativity constraint

 $x \ge 0$ and $y \ge 0$

21 / 37

Corner Solutions

- The non-negativity constraints are irrelevant for interior solutions as they do not bind. They can therefore be ignored
- But what if we had a corner solution (e.g. demand for steak for a vegetarian)?

- Non-negativity constraints would be binding and would have to be taken into account in the optimization
- In most cases, we won't get MRS = price ratio because it would give us a negative consumption level for one good.

- Kuhn-Tucker approach allows for incorporating non-negativity constraints
- The optimization approach following Kuhn and Tucker (1951) allows for explicitly incorporating non-negativity constraints in an optimization problem.
 - For simplicity, we will assume only the constraint on y is relevant. (It works analogously for x).
- Optimization problem:

$$\max_{x,y\geq 0} U(x,y) \text{ s.t.} p_x x + p_y y \leq I$$

• Lagrange function:

$$\mathcal{L} = U(x,y) + \lambda(I - p_x x - p_y y) + \mu(y - 0)$$

Hennecke Utility Maximization WS 2025/2026 23 / 37

Kuhn-Tucker Conditions for a maximum

First Order Conditions

$$2 \frac{\partial \mathcal{L}}{\partial y} = MU_y - \lambda p_y + \mu = 0$$

- **3** $\mu y = 0$
 - Complementary slackness Either the constraint is slack $(\mu = 0)$ or the constraint is binding (y = 0)

Possible solutions

Three cases (for equation 3 to hold):

1
$$y \neq 0, \mu = 0$$

2
$$y = 0, \mu = 0$$

3
$$y = 0, \mu \neq 0$$
 (as $\mu \geq 0$, here $\mu > 0$)

Hennecke Utility Maximization

1. Case: $y \neq 0, \mu = 0$

- FOC (2) gives $MU_y \lambda p_y = 0$
- ... and thus $\frac{MU_y}{p_y} = \lambda$
- With FOC (1), we get

$$\frac{MU_x}{p_x} = \lambda = \frac{MU_y}{p_y}.$$

or

$$\frac{p_x}{p_y} = \frac{MU_x}{MU_y}.$$

→ i.e. if the non-negativity constraint is not binding, we get the usual interior solution

- **2.** Case: $y = 0, \mu = 0$
 - FOC (2) $MU_y \lambda p_y = 0$
 - and thus $\frac{MU_y}{p_y} = \lambda$.
 - With FOC 1, we get

$$\frac{MU_x}{p_x} = \lambda = \frac{MU_y}{p_y}.$$

or

$$\frac{p_x}{p_y} = \frac{MU_x}{MU_y}.$$

- \rightarrow Since y=0 we have a corner solution, although $\mu=0$ and thus the non-negativity constraint is slack.
 - I.e. in this case, the corner solution is equal to the optimum without non-negativity constraints (market trade-off = psychic trade-off)

- **3. Case:** $y = 0, \mu > 0$
 - FOC (2) gives $MU_y \lambda p_y + \mu = 0$
 - Since $\mu > 0$, we know $MU_y \lambda p_y < 0$
 - and thus

$$\frac{MU_y}{p_y} < \lambda$$

• With FOC (1) this gives

$$\lambda = \frac{MU_x}{p_x} > \frac{MU_y}{p_y}$$

- Marginal utility of x relative to p_x is higher than marginal utility of y compared to p_y
- Interpretation: At a given price ratio, consumer would like to consume even more x and less y, but can't as the non-negativity constraint is binding.

- 1 Recap: Preferences and Utility
- 2 Constrained Optimization
- **3** Utility Maximization

Consistent Colorina

Mathematical Calut

Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- 4 The indirect utility function
- **5** Example
- **6** Summary

Indirect utility function

- The indirect utility function (V()) is the value of the maximized utility
- It measures the maximal utility that a consumer can achieve as a function of income and price levels for a given utility function (value function)
- The indirect utility function results from plugging $x^*(p, I)$ and $y^*(p, I)$ into the (direct) utility function
- Distinction
 - (Direct) utility function U(x, y).
 - Indirect utility function $V(p, I) = U(x^*(p, I), y^*(p, I))$.

30 / 37

Indirect utility function

- Why? V(p,I) is useful because it spares us to re-calculate maximal utility when prices or income change.
 - If we have derived the indirect utility function once, we can calculate the maximum utility for any combination of income and prices.
 - Helpful when working with individual demand functions (i.e. quantity of consumption as a function of price and income)

Indirect utility function - Formal

Derivation

- For every combination of
 - Utility function $(U(x_1, x_2, ..., x_n))$
 - Income (*I*)
 - Price vector $(p_1, p_2, ..., p_n)$

constrained maximization results in optimally demanded amounts of the goods

$$x_1^*(p_1, p_2, ..., p_n, I)$$
, ..., $x_n^*(p_1, p_2, ..., p_n, I)$.

ullet Plugging these into U() results in the indirect utility function

$$V(p_1,...,p_n,I) = U(x_1^*(p_1,p_2,...,p_n,I),...,x_n^*(p_1,p_2,...,p_n,I)).$$

Overview

- 1 Recap: Preferences and Utility
- **2** Constrained Optimization
- **3** Utility Maximization

Graphical Solution

Mathematical Solution

Non-Negativity Constraint and Kuhn-Tucker Approach

- 4 The indirect utility function
- **5** Example
- **6** Summary

Example

- Example $U(x, y) = x^{\frac{1}{2}}y^{\frac{1}{2}}$
- This utility function satisfies the preference axioms
 - completeness (defined for all possible values of x, y > 0)
 - transitivity
 - continuity
 - non-satiation

$$\begin{split} \frac{\partial U}{\partial x} &= M U_x &= \frac{1}{2} x^{-\frac{1}{2}} y^{\frac{1}{2}} > 0 \ \, \forall x > 0 \\ \frac{\partial U}{\partial y} &= M U_y &= \frac{1}{2} x^{\frac{1}{2}} y^{-\frac{1}{2}} > 0 \ \, \forall y > 0 \\ &: M U_x = \frac{\partial U}{\partial x} = U_x = \frac{1}{4x} > 0 \ \, \forall x > 0, \\ M U_y &= U_y = \frac{3}{4y} > 0 \ \, \forall y > 0 \end{split}$$

- ... with decreasing marginal utility $\frac{\partial^2 U}{\partial x^2} = -\frac{1}{4}x^{-\frac{3}{2}}y^{\frac{1}{2}} < 0$ and $\frac{\partial^2 U}{\partial x^2} = -\frac{1}{4}x^{\frac{1}{2}}y^{-\frac{3}{2}} < 0$
- convex (diminishing MRS)

Example Diminishing MRS

- Moving along an indifference curve for this utility function: $\bar{U}=x^{\frac{1}{2}}y^{\frac{1}{2}}$.
- Total derivative: $0 = \frac{1}{2}x^{-\frac{1}{2}}y^{\frac{1}{2}}dx + \frac{1}{2}x^{\frac{1}{2}}y^{-\frac{1}{2}}dy$
- and thus $-\frac{dy}{dx} = \frac{y}{x} = MRS$
- MRS decreases in x (1st derivative w.r.t. x: $-\frac{y}{x^2} < 0$) and increases in y (1st derivative w.r.t. y: $\frac{1}{x} > 0$).
- \rightarrow The more y (and less x) a consumer has, the more y she is willing to give up for one unit of x.

Example

- Further assume I = 12 und $p_x = 1, p_y = 2$.
- The optimization problem is thus:

$$\max_{x,y>0} x^{\frac{1}{2}} y^{\frac{1}{2}} \ \text{s.t.} \ x+2y \leq 12$$

Using the Lagrange approach, we get the objective function:

$$\mathcal{L} = x^{\frac{1}{2}}y^{\frac{1}{2}} + \lambda(12 - x - 2y)$$

Hennecke Utility Maximization WS 2025/2026 35 / 37

Example

- And the FOCs

 - **2** $\frac{\partial \mathcal{L}}{\partial y} = \frac{1}{2}x^{\frac{1}{2}}y^{-\frac{1}{2}} 2\lambda = 0$
 - $\frac{\partial \mathcal{L}}{\partial \lambda} = 12 x 2y = 0$
- 1. and 2. lead to optimality condition

$$\frac{\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{1}{2}}}{\frac{1}{2}x^{\frac{1}{2}}y^{-\frac{1}{2}}} = \frac{y}{x} \text{ (MRS)} = \frac{1}{2} \text{ (price ratio)}$$

- And $\lambda = \frac{1}{2}x^{-\frac{1}{2}}y^{\frac{1}{2}} = \frac{1}{4}x^{\frac{1}{2}}y^{-\frac{1}{2}}$ (shadow price)
- Using optimality condition and budget constraint, we can calculate $x^*=6$ and $y^*=3$

Example of an indirect utility function

More generally:

$$\frac{y}{x} = \frac{p_x}{p_y} \text{ (optimality condition)}$$

Plugging these into the budget constraint yields

$$y^* = \frac{I}{2p_y}$$

and

$$x^* = \frac{I}{2p_x}.$$

Thus, the indirect utility function is

$$V(p_x, p_y, I) = \left(\frac{I}{2p_x}\right)^{\frac{1}{2}} \left(\frac{I}{2p_y}\right)^{\frac{1}{2}} = \frac{I}{2\sqrt{p_x p_y}}.$$

Hennecke Utility Maximization WS 2025/2026 37 / 37

Overview

- Recap: Preferences and Utility
- Constrained Optimization
- Outility Maximization

 - Non-Negativity Constraint and Kuhn-Tucker Approach
- 4 The indirect utility function
- **6** Summary

Summary

- Rational choice is the standard approach to model individual decision making, one way to implement this is constrained utility maximization.
- 2 For the (often relevant) interior solutions maximum utility is reached at the condition psychic trade-off = market trade-off.
- Graphically this is the point of tangency between an indifference curve and the budget line, i.e. slope of indifference curve (MRS)=slope of budget line (price ratio).
- 4 This can be shown mathematically via the Lagrange approach.
- Often, we just ignore non-negativity constraints on goods. But they can be taken into account by using the Kuhn-Tucker approach to allow for corner solutions
- **6** Using the solutions to the maximization problem, one can derive the indirect utility function

Hennecke Utility Maximization WS 2025/2026 37 / 37

Main Keywords

- Constrained Utility Maximization
- Budget Constraint
- Budget Exhaustion (Non-satiation)
- Market Trade-off = Psychic Trade-off
- Interior Solutions
- Corner Solutions
- Lagrange Approach
- Lagrange Multiplier (λ) / Shadow Price
- Marginal Utilities (MU_x, MU_y)
- First Order Conditions (FOCs)
- Envelope Theorem
- Non-Negativity Constraint
- Kuhn-Tucker Approach
- Complementary Slackness
- Indirect Utility Function V(p, I)

Questions?

Hennecke Utility Maximization WS 2025/2026 37 / 37