Data Mining & Machine Learning

CS37300 Purdue University

Nov 1, 2023

Optimization of NNs

- An accelerated variant of Batch SGD
 - Can parallelize gradient evaluations across multi-core architectures
 - Batch size has a regularizing effect
- Adaptive learning rate
- Challenges
 - Local minima, saddle points
 - Vanishing/Exploding gradients
 - III-conditioned Hessians

Today's topics

Unsupervised learning

- Descriptive modeling: representation
- Partition-based clustering
 - k-means

Descriptive models

- Descriptive models summarize the data
 - Global summary
 - Model main features of the data
- Two main approaches:
 - Cluster analysis
 - Density estimation

Modeling task

- Data representation: training set $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$ where each $\underline{x}_i \in \mathbb{R}^d$
- Task—depends on approach
 - Clustering: partition the instances into groups of similar instances
 - Density estimation: determine a compact representation of the full joint distribution of the random variable $X \in \mathbb{R}^d$, that is, $P(X) = P(X_1, X_2, ..., X_d)$

Cluster analysis

- Decompose or partition samples into groups such that:
 - Intra-group similarity is high
 - Inter-group similarity is low
- Measure of distance/similarity is crucial

Cluster analysis

- Huge body of work
 - Also known as unsupervised learning, segmentation, etc.
- Difficult to evaluate success
 - If goal is to find "interesting" clusters, then it is difficult to quantify
 - If goal is to find "similar" clusters, then success depends on distance measure

Application examples

- Marketing: discover distinct groups in customer base to develop targeted marketing programs
- Land use: identify areas of similar use in an earth observation database to understand geographic similarities
- City-planning: group houses according to house type, value, and location to identify "neighborhoods"
- Earth-quake studies: Group observed earthquakes to see if they cluster along continent faults

Clustering algorithms

- Types:
 - Partition-based methods
 - Hierarchical clustering (divisive/agglomerative)
 - Probabilistic model-based methods

- Different algorithms find clusters of different "shapes"
 - Appropriate shape will depend on application

Algorithm examples

- k-means clustering (partition-based)
- Spectral clustering (hierarchical-divisive)
- Nearest neighbor clustering (hierarchical-agglomerative)
- Mixture models (probabilistic model-based)

Today's topics

- Descriptive modeling: representation
- Partition-based clustering
 - k-means

Partition-based

- Input: dataset D = $\{\underline{x}_1, \underline{x}_2, ..., \underline{x}_n\}$
- Output: k clusters $C = \{C_1, ..., C_k\}$ such that each \underline{x}_i is assigned to a unique C_i
- Evaluation: Score(C,D) is maximized/minimized
 - Combinatorial optimization: search among kⁿ allocations of n objects into k classes to maximize score function
 - Exhaustive search is intractable
 - Most approaches use iterative improvement algorithms

- Algorithm:
 - Start with k randomly chosen centroids
 - Repeat until no changes in assignments
 - Assign each sample to closest centroid
 - Recompute cluster centroids

k-means example (here k=3)

Dataset D = $\{\underline{x}_1, \underline{x}_2, ..., \underline{x}_8\}$

Start with k randomly chosen centroids $\underline{r}_1, ..., \underline{r}_k$

Assign each sample to closest centroid

Recompute cluster centroids $\underline{r}_1, ..., \underline{r}_k$

Assign each sample to closest centroid

Recompute cluster centroids $\underline{r}_1, ..., \underline{r}_k$

Clustering score functions

- Goal:
 - Compact clusters: minimize within cluster distance
 - Separated clusters: maximize between cluster distance
- score(C,D) = f(wc(C,D), bc(C))
 - Score measures quality of clustering C for dataset D
 - Many score functions are a combination of within-cluster (wc) and between-cluster (bc) distance measures

Clustering score functions

• score(C,D) = f(wc(C,D), bc(C))

cluster j centroid:

$$\underline{r}_j = \frac{1}{\left| C_j \right|} \sum_{\underline{x}_i \in C_j} \underline{x}_i$$

between-cluster distance:

$$bc(C) = \sum_{1 \le j \le m \le k} \left\| \underline{r}_j - \underline{r}_m \right\|^2$$

within-cluster distance:

$$wc(C,D) = \sum_{j=1}^{k} \sum_{\underline{x}_i \in C_j} \left\| \underline{x}_i - \underline{r}_j \right\|^2$$

- Algorithm:
 - Start with k randomly chosen centroids
 - Repeat until no changes in assignments
 - Assign each sample to closest centroid
 - Recompute cluster centroids (average of points in the cluster)

Score function:
$$\operatorname{score}(C,D) = \operatorname{wc}(C,D) = \sum_{j=1}^{k} \sum_{\underline{x}_i \in C_j} \left\| \underline{x}_i - \underline{r}_j \right\|^2$$

- Does it terminate?
 - Yes, the objective function decreases on each iteration. It usually converges quickly.
- Does it converge to an optimal solution?
 - No, the algorithm terminates at a local optima which depends on the starting seeds.
- What is the time complexity?
 - ∝ k n L , where L is the number of iterations

- Strengths:
 - Relatively efficient
 - Finds spherical clusters
- Weaknesses:
 - Terminates at local optimum (sensitive to initial seeds)
 - Applicable only when mean is defined
 - Susceptible to outliers/noise

Variations

- Selection of initial centroids
 - Run with multiple random selections, pick result with best score
 - Use hierarchical clustering to identify likely clusters and pick seeds from distinct groups

- Algorithm modifications:
 - Recompute centroid after each point is assigned
 - Allow for merge and split of clusters (for instance, if cluster becomes empty, start a new one from randomly selected point)

K-means++

- Selection of initial centroids
 - Choose a first center uniformly at random from the data points
 - For each data point x, computer D(x)= distance from x to the nearest center that has already been chosen
 - Choose the next center randomly according to a probability distribution P with P(x) proportional to D(x)² for each x
 - Repeat until we have k centers chosen, then run the k-means algorithm

- With this initialization, k-means typically converges faster
- Also, this initialization guarantees (in expectation) that the k-means score function upon convergence is withing a factor log(k) of optimal

k-means summary

- Knowledge representation
 - k clusters are defined by canonical members (centroids)
- Model space the algorithm searches over?
 - All possible partitions of the examples into k groups
- Score function?
 - Minimize within-cluster Euclidean distance
- Search procedure?
 - Iterative refinement correspond to greedy hill-climbing

Take-home Quiz

Due Nov 3 at 9am on Gradescope

Please build an AdaBoost ensemble of decision stumps on the following data.
Make sure to include detailed steps in your submission.

x1	x2	Decision
2	3	true
2.1	2	true
4.5	6	true
4	3.5	false
3.5	1	false
5	7	true
5	3	false
6	5.5	true
8	6	false
8	2	false

Hint: The correct ensemble only uses three decision stumps to achieve 100% accuracy.