

Organization

Lecturers

- B. Hofmann-Wellenhof, K. Legat, M. Wieser

Division

2 lectures + 2 labs (block)

Dates

Tuesday, 14:15-15:45, A111

Wednesday, 08:15-09:45, A111

Thursday, 08:15-09:45, A111

Friday, 08:15-09:45, A111

see detailed schedule

General contents

Encyclopedic knowledge in navigation

Preamble (1)

"Navigare necesse est, vivere non est necesse!"
 Plutarch, Greek philosopher

Motivation

- Increasing importance of navigation in daily life
- Differences between surveying and navigation are disappearing
- Foundation of the Austrian Institute of Navigation (OVN), 1998
- Book "Navigation Principles of positioning and guidance", 2003
- Institute name: Navigation and Satellite Geodesy, 2004

Preamble (2)

Main goals

- Presentation of present navigation systems and techniques
- Focus on principles rather than on details

Difficulties

- Limited practical experience of the lecturers in certain topics
- Missing equipment at the Institute

Examinations

- Oral examination on the lectures (typically 30 min)
- Permanent controlling and program elaboration in the labs

Contents (1)

Lecture

- 1. Introduction
- 2. Historical review
- 3. Mathematical fundamentals
- 4. Physical fundamentals
- 5. Maps
- 6. Terrestrial navigation
- 7. Terrestrial radio navigation
- 8. Celestial navigation
- 9. Satellite-based navigation
- 10. Outlook

Contents (2)

Labs

- 1. Terrestrial navigation
- 2. Satellite-based navigation
 - Hand-held GPS receivers
 - DGPS experiments
 - Data exchange formats
- Programs
 - 1. Orbit computation
 - 2. Single-point positioning
 - 3. DGPS / Atmospheric models / Carrier-phase smoothing

Literature

- Structural script(www.posnav.tugraz.at)
- Book "Navigation"
- List of specific references for each chapter

1 Introduction (1)

1.1 Goals of the course

- Lectures
 - Encyclopedic view of navigation (Book: Chaps. 1-10)
 - Extension of geodetic knowledge towards real-time applications
- Labs
 - Experiments
 - Emphasis on satellite-based navigation
 - Single-point positioning (navigation solution)
 - Differential positioning
- Advanced course: "Navigation Systems" (→ Master studies)
 - Other navigation systems
 - Integrated navigation (sensor fusion)

1 Introduction (2)

1.2 Definitions and terms

Position

- "Where am I?" ... answered by a set of coordinates
- Related to a well-defined coordinate reference frame (definition of origin and coordinate axes is required)
- Distinguish: Absolute vs. relative positions
- Position determination
 ≅ positioning

Location

- "Where am I?" ... answered in terms of topological relations
- Location determination
 ⊆ localization
 ⊆ detection

State vector

- Position, velocity, attitude (→ 3D objects)
- Parameters are usually time-dependent (>> kinematics)

1 Introduction (3)

Routing and guidance

Route planning: "Where to go?", "How to go?"

Guidance: "What to do next?"

Navigation

- Deals with moving 3D objects (mostly vehicles)
 Note: positioning usually deals with points
- Components
 - Trajectory determination
 - Guidance
- Origin: Latin "navis agere"
- Similar: Greek "nautics"

1 Introduction (4)

- Additional definitions
 - Types of positioning techniques
 - Self-positioning vs. remote positioning
 - Autonomous vs. dependent
 - Real-time vs. post processing
 - Types of navigation techniques
 - Navigation vs. surveillance
 - Autonomous (onboard) vs. nonautonomous (dependent on a communication facility)

1 Introduction (5)

Traditional relations

Characteristic	Surveying	Navigation
Positioning accuracy	high	low
Observation technique	static	kinematic
Processing	offline	online

→ Differences are diminishing

1 Introduction (6)

Terms of navigation

Trajectory	A polygon connecting subsequent positions of a vehicle determined by a navigation system
Route	A detailed list of maneuvers to be performed by a vehicle to reach a destination
Leg	A segment of a route between to consecutive maneuvers
Waypoint	A distinct point on a route that usually corresponds to a change of course direction

1 Introduction (7)

1.3 Quality parameters

Accuracy: Degree of conformance with the true position

absolute (predictable) vs. repeatable vs. relative

Availability: Percentage of time that the system is usable

Capacity: Maximal number of simultaneous users

Continuity: Ability to perform a function without interruption

Coverage: Surface area or space volume where the system

can be used

– Dimension: 1D, 2D, 3D

Integrity: Provision of timely warnings in case of failures

Reliability: Frequency of system failures

Update rate: Number of independent fixes per time unit

1 Introduction (8)

1.4 Applications and phases of navigation

- General remarks
 - Restriction to marine applications over centuries
 - Today: various types of transport and nontransport applications (on land, at sea, in the air, in space)
 - Many different types of navigation systems and techniques have been developed

Current trends

- Integration of individual navigation systems into complex information systems (→ sensor fusion)
- Integration of navigation with communication systems and contextual databases (→ location-based services)

1 Introduction (9)

- Phases of navigation
 - Land navigation
 - No well-defined phases
 - Transport vs. nontransport
 - Marine navigation
 - Oceanic
 - Coastal
 - Harbor approach and in-harbor
 - Inland waterways

1 Introduction (10)

Aeronautic navigation

- En route (domestic, oceanic, remote)
- Terminal areas
- Approach and landing (nonprecision vs. precision)
- Surface operations (off-runway)

Space navigation

- Launch
- On-orbit
- Re-entry and landing

1 Introduction (11)

1.5 Examples of user requirements

The requirements strongly depend on the application and phase

Application	Accuracy [m]
Land navigation	
Private transport	50 – 200
Public transport	20 – 50
• Emergency	5 – 20
Marine navigation	KISKE
Oceanic	≥ 200
Coastal	20 – 100
Harbor	5 – 20
Aeronautic navigation	C
• En route	≥ 100
 Landing (position / height) 	5 – 20 / 0.5 – 5

1 Introduction (12)

Availability: 99.0 – 99.999%

Continuity: Mainly related to aeronautic navigation

(depends on the phase of flight)

Coverage: Global / continental / regional / local

Dimension: Depends on the application and phase

Integrity: Typically, between 1 and 15 s (time to alarm)

Reliability: Usually defined at the 95% probability level

Update rate: Often around 1 Hz or more

1 Introduction (13)

1.6 Miscellaneous

Navigation alphabets

Letter	Phonetic	Morse	Letter	Phonetic	Morse
A	Alpha	• —	N	November	
В	Bravo	$-\cdots$	О	Oscar	
C	Charlie	$-\cdot-\cdot$	Р	Papa	
D	Delta	$-\cdots$	Q	Quebec	
E	Echo		R	Romeo	
F	Foxtrot	$\cdots - \cdot$	S	Sierra	
G	Golf		${ m T}$	Tango	-
H	Hotel		U	Uniform	
I	India		V	Victor	
J	Juliet		W	Whiskey	·
K	Kilo		X	X-ray	
L	Lima	$\cdot - \cdot \cdot$	Y	Yankee	-·
M	Mike		\mathbf{Z}	Zulu	

1 Introduction (14)

- Examples of navigation organizations
 - Standardization
 - International Organization for Standardization (ISO)
 - American National Standards Institute (ANSI)
 - Comité Européen de Normalisation (CEN)
 - Application-specific interests
 - International Civil Aviation Organization (ICAO)
 - International Maritime Organization (IMO)
 - International Hydrographic Organization (IHO)
 - National Aeronautics and Space Administration (NASA)
 - European Space Agency (ESA)

1 Introduction (15)

Other organizations

- International Association of Institutes of Navigation (IAIN)
- International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA)
- International Telecommunication Union (ITU)
- U.S. Federal Aviation Administration (FAA)
- U.S. Coast Guard (USCG) Navigation Center
- European Organisation for the Safety of Air Navigation (Eurocontrol)

1 Introduction (16)

References

- Department of Defense, Department of Transportation (2002a): 2001 Federal Radionavigation Plan. U.S. National Technical Information Service, Springfield, Virginia, DOT-VNTSC-RSPA-01-3/DOD-4650.5.
- Department of Defense, Department of Transportation (2002b): 2001 Federal Radionavigation Systems. U.S.National Technical Information Service, Springfield, Virginia, DOT-VNTSC-RSPA-01-3.1/DOD-4650.5.
- Hofmann-Wellenhof B, Legat K, Wieser M (2003): Navigation principles of positioning and guidance. Springer, Wien.
- National Imagery and Mapping Agency (1995): The American practical navigator. Publication no. 9, Bethesda (Maryland).