

Amendments to the Claims

- 1 1. (currently amended) A computer implemented method for improving a
2 solution to a combinatorial optimization problem including a plurality of
3 elements and a plurality of values, comprising the steps of:
 - 4 applying a priority algorithm in a form of an ordering function to an
5 instance of the combinatorial optimization problem to produce an initial
6 solution including an ordering of the elements;
 - 7 modifying the ordering of the elements of the initial solution to
8 produce a re-ordering of the elements;
 - 9 applying a placement function to map values to the corresponding
10 elements of the re-ordering; and
 - 11 repeating the modifying and the applying until all elements have been
12 placed to obtain an improved solution of the combinatorial optimization
13 problem, and storing the improved result in a memory.
- 1 2. (previously presented) The method of claim 1, in which the priority
2 algorithm is fixed.
- 1 3. (previously presented) The method of claim 1, in which the priority
2 algorithm is dynamic.
- 1 4. (original) The method of claim 1, in which the re-ordering is within a
2 predetermined distance of the ordering.

1 5. (original) The method of claim 4, in which the distance is a Kendall-tau
2 distance.

1 6. (previously presented) The method of claim 1, in which the re-ordering
2 uses a decision vector, and in which the decision vector has one field for
3 each element of the order, each field determining a new order of the element
4 in the re-ordering.

1 7. (original) The method of claim 1, in which the re-ordering is probabilistic.

1 8. (previously presented) A computer storing a computer program which
2 when executed by the computer performs a method for improving a solution
3 to a combinatorial optimization problem including a plurality of elements
4 and a plurality of values by performing the steps of:

5 applying a priority algorithm in a form of an ordering function to an
6 instance of the combinatorial optimization problem to produce an initial
7 solution including an ordering of the elements;

8 modifying the ordering of the elements to produce a re-ordering of the
9 elements;

10 applying a placement function to map values to the corresponding
11 elements of the re-ordering; and

12 repeating the modifying and the applying until all elements have been
13 placed to obtain a an improved solution of the combinatorial optimization
14 problem.

9. (canceled)

1 10. (previously presented) The method of claim 3, in which the re-ordering
2 is within a predetermined distance of the ordering.

1 11. (previously presented) The method of claim 10, in which the distance is
2 a Kendall-tau distance.

1 12. (previously presented) The method of claim 3, in which the re-ordering
2 uses a decision vector, and in which the decision vector has one field for
3 each element of the order, each field determining a new order of the element
4 in the re-ordering.

1 13. (previously presented) The method of claim 3, in which the re-ordering
2 is probabilistic.