aunch System

23 February 2018

Michael D. Watson, Ph.D.

Consortium Team
UAH
George Washington University
Iowa State
Texas A&M
University of Colorado at Colorado
Springs (UCCS)
Missouri University of S&T
University of Michigan
Doty Consulting Services
AFRL Wright Patterson

Outline

Understanding Systems Engineering

- Postulates
- Hypothesis
- Principles

Systems Engineering Domain

- System Integration
 - -System State Variables
 - Goal Function Tree
 - State Analysis Model
 - -System Value Model
 - System Integrating Physics
 - -System Autonomy
 - -Multidisciplinary Design Optimization (MDO)
 - -Engineering Statistics
 - -Methods of System Integration
- Discipline Integration
 - Sociological Concepts in Systems Engineering
 - –Information Flow
 - -Systems Thinking (Cognitive Science)
 - -Policy and Law
 - -System Dynamics

Summary

Understanding Systems Engineering

Motivation

System Engineering of Complex Systems is not well understood

System Engineering of Complex Systems is Challenging

- System Engineering can produce elegant solutions in some instances
- System Engineering can produce embarrassing failures in some instances
- Within NASA, System Engineering does is frequently unable to maintain complex system designs within budget, schedule, and performance constraints

"How do we Fix System Engineering?"

- Michael D. Griffin, 61st International Astronautical Congress, Prague, Czech Republic, September 27-October 1, 2010
- Successful practice in System Engineering is frequently based on the ability of the lead system engineer, rather than on the approach of system engineering in general
- The rules and properties that govern complex systems are not well defined in order to define system elegance

4 characteristics of system elegance proposed as:

- System Effectiveness
- System Efficiency
- System Robustness
- Minimizing Unintended Consequences

Understanding Systems Engineering

- Definition System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system.
 - Elegant System A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation.

Primary Focus

- System Design and Integration
 - Identify system couplings and interactions
 - Identify system uncertainties and sensitivities
 - -Identify emergent properties
 - –Manage the effectiveness of the system
- Engineering Discipline Integration
 - Manage flow of information for system development and/or operations
 - Maintain system activities within budget and schedule

Supporting Activities

Process application and execution

Systems Engineering Postulates

System Integration (physical/logical system)

Discipline Integration (social system)

Both System and Discipline Integration

- Postulate 1: Systems engineering is product specific and context dependent
- Postulate 2: The Systems Engineering domain consists of subsystems, their interactions among themselves, and their interactions with the system environment
- Postulate 3: The function of Systems Engineering is to integrate engineering disciplines in an elegant manner
- Postulate 4: Systems engineering influences and is influenced by organizational structure and culture
- Postulate 5: Systems engineering influences and is influenced by budget, schedule, policy, and law
- Postulate 6: Systems engineering spans the entire system life-cycle
- Postulate 7: Understanding of the system evolves as the system development or operation progresses
- Postulate 7 Corollary: Understanding of the system degrades during operations if system understanding is not maintained.

Systems Engineering Principles

- Principle 1: Systems engineering integrates the system and the disciplines considering the budget and schedule constraints
- Principle 2: Complex Systems build Complex Systems
- Principle 3: The focus of systems engineering during the development phase is a progressively deeper understanding of the interactions, sensitivities, and behaviors of the system
 - Sub-Principle 3(a): Requirements and models reflect the understanding of the system
 - Sub-Principle 3(b): Requirements are specific, agreed to preferences by the developing organization
 - Sub-Principle 3(c): Requirements and design are progressively defined as the development progresses
 - Sub-Principle 3(d): Hierarchical structures are not sufficient to fully model system interactions and couplings
 - Sub-Principle 3(e): A Product Breakdown Structure (PBS) provides a structure to integrate cost and schedule with system functions
 - Sub-Principle 3(f): As the system progresses through development, a deeper understanding of the organizational relationships needed to develop the system are gained.
- Principle 4: Systems engineering has a critical role through the entire system life-cycle
 - Sub-Principle 4(a): Systems engineering obtains an understanding of the system
 - Sub-Principle 4(b): Systems engineering models the system
 - Sub-Principle 4(c): Systems engineering designs and analyzes the system
 - Sub-Principle 4(d): Systems engineering tests the system
 - Sub-Principle 4(e): Systems engineering has an essential role in the assembly and manufacturing of the system
 - Sub-Principle 4(f): Systems engineering has an essential role during operations and decommissioning

Systems Engineering Principles

- Principle 5: Systems engineering is based on a middle range set of theories
 - Sub-Principle 5(a): Systems engineering has a physical/logical basis specific to the system
 - Sub-Principle 5(b): Systems engineering has a mathematical basis
 - -Systems Theory Basis
 - Decision & Value Theory Basis (Decision Theory and Value Modeling Theory)
 - Model Basis
 - State Basis (System State Variables)
 - -Goal Basis (Value Modeling Theory)
 - Control Basis (Control Theory)
 - Knowledge Basis (Information Theory)
 - -Predictive Basis (Statistics and Probability)
 - Sub-Principle 5(c): Systems engineering has a sociological basis specific to the organization
- Principle 6: Systems engineering maps and manages the discipline interactions within the organization
- Principle 7: Decision quality depends on the coverage of the system knowledge present in the decision-making process
- Principle 8: Both Policy and Law must be properly understood to not overly constrain or under constrain the system implementation
- Principle 9: Systems engineering decisions are made under uncertainty accounting for risk

Systems Engineering Principles

- Principle 10: Verification is a demonstrated understanding of all the system functions and interactions in the operational environment
 - Ideally requirements are level and balanced in their representation of system functions and interactions
 - In practice requirements are not balanced in their representation of system functions and interactions
- Principle 11: Validation is a demonstrated understanding of the system's value to the system stakeholders
- Principle 12: Systems engineering solutions are constrained based on the decision timeframe for the system need

System Engineering Hypotheses

- Hypothesis 1: If a solution exists for a specific context, then there
 exists at least one ideal Systems Engineering solution for that
 specific context
 - Hamilton's Principle shows this for a physical system

$$-\int_{t_1}^{t_2} (\delta T - \delta V + \delta W) dt = 0$$

- Hypothesis 2: System complexity is greater than or equal to the ideal system complexity necessary to fulfill all system outputs
- Hypothesis 3: Key Stakeholders preferences can be accurately represented mathematically
- Hypothesis 4: The real physical system is the perfect model of the system
 - Kullback-Liebler Information shows the actual system is the ideal information representation of the system

$$-I(f,g) = \int f(x)\log(f(x)) dx - \int f(x)\log(g(x|\theta)) dx = 0$$

Methods of System Design and Integration

Goal: Techniques to Enable Integrated System Design and Assessments by the Systems Engineer

System Models Contain an Understanding of the System

- Allow systems engineers to:
 - Define system functions based on the system state variables
 - Understand stakeholders expectations on system value (i.e., capabilities)
 - Integrate discipline engineering models into a system level physics based model (e.g., system exergy)
 - Design and Analyze system responses and behaviors at the System level
 - MagicDraw Enterprise (SysML)
 - Matlab
 - Matlab StateFlow
 - Microsoft Excell

System Value

Goal: Utilize system state variables to understand the interactions of the system in relation to system goals and system execution

System Value Model

- A System Value Model is a mathematical representation of Stakeholders Preferences (Expectations) for the system
 - The basic structure is straight forward
 - The sociology/psychology of representing the Preferences can be a challenge
- The System Value Model is the Basis of System Validation!!!
 - The Requirements and Design Models form the basis of System Verification
 - The System Value Model forms the basis of System Validation
- Constructing an SLS Value Model to compare to System Validation results
 - Can expand to Integrated Stack with input from MPCV and GSDO
- System Value model also provides basis for a measure of System Robustness
 - How many mission types are supported by the system?

	Status	Gradient	Value
Efficiency	90%	150,000	135,000
Weight	700	-130	-91,000
Reliability	1500	2	3,450
Maintainability	7.8	-340	-2,652
Maintenance Cost	500	-1	-250
Support Equipment	12	-15	-180
Manufacturing Cost	700	-1	-700
Design Value		\$	43,668

$$\pi = f_{aircraft} \quad x_1, x_2, \dots, x_n$$

$$v_{e} = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \frac{\partial \pi}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial y_{j}} y_{j} \right)$$

$$v_{t} = \sum_{k=1}^{p} \left(\sum_{j=1}^{m} \frac{\partial v_{e}}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial z_{k}} z_{k} \right)$$

Launch Vehicle Value Model

Launch Vehicle Value related to impact to national GDP

Rockets are thermodynamic systems, there thermo-economics

can be applied

$$\begin{split} \dot{C}_T &= \sum_i c_{ei} \ \dot{\in}_i + \sum_n \dot{Z}_n \\ c_{ei} &= \frac{\frac{\$}{kg}}{J/kg} \rightarrow (\frac{propellant\ cost}{exergy}) = \$/J \\ \dot{\in}_i &= \frac{kg}{yr} \left(\frac{J}{kg}\right) \rightarrow \left(\frac{mass}{year}\right) * HHV = \frac{J}{yr}. \\ \dot{Z}_n &= L_R * unit\ cost + \frac{manuf\ actoring\ base\ cost}{yr} \end{split}$$

Mission Reliability is an important value

$$R_{mission}(R_m) = R_{launch} * A_O * R_{flight}$$

Value to Satellite Industry can be used as a basis for value

Δdiameter:	diameter:	Satellite Benefit (value of payload)	\$ Value (Billions)
	4	Commerical Communications:	\$45.69
1	. 5	Optical Sensing:	\$24.80
3	8	Interplanetary Missions:	\$6.53
2	10	Astronomical Telescope:	\$1.31

Human Exploration:	(measured by using % of US GDP)	\$ Value:
National Renown:	0.06 =	\$ 1,116,000,000,000.00
Extended Science	0.1 =	\$ 1,860,000,000,000.00
Technological Gains:	0.056 =	\$ 1,041,600,000,000.00
Medical Advances:	0.1 =	\$ 1,860,000,000,000.00

The Satellite Network in Context

- Number of satellites increased 47% over 5 years (from 994 in 2012)
- » Satellites launched 2012 2016 increased 53% over previous 5 years
 - » Average 144/vear
 - Due mostly to small/very small satellites in LEO (<1200 kg)
- » Average operational lives of larger (mostly communications) satellites becoming longer, exceeding 15 years; 247 active sats launched before 2002
- 520 satellites in GEO (mostly communications)
- 59 countries with operators of at least one satellite (some in regional consortia)
- U.S. entities operate 594 satellites

Launch Vehicle Value Model

Launch Vehicle Value based on 3 factors (currently)

Value is not cost!!!! It includes cost.

Industry Value

Launch Vehicle Value	=	Benefit -Ct
Value to Scientific Uses	=	\$63,008,431,752.36
Value to Commerical Services	=	\$20,584,576,252.36
Value to Resource Mining	=	(\$2,252,876,665.31)
Value to Human Exploration	=	\$ 2,936,540,961,752.35
Total Value	=	\$3,017,881,093,091.75

Mission Reliability (96%)

- $-V_2 = (R_m)(Value \ of \ Satellite \ Benefit)$
- $-V_L = (1 R_m)(Value \ of \ Satellite \ Benefit)$
- + Unit Cost + Satellite Cost

V2(Commerical Communication)	=	\$43,859,739,840.00
V2(Optical Sensing	=	\$23,809,573,056.00
V2(Interplanetary)	=	\$6,265,677,120.00
V2(Astronomical Telescope)	=	\$1,253,135,424.00
total V2	=	\$75,188,125,440.00

Value Lost from Failed Mission		
V(L)(Commerical Communication	=	\$7,995,274,012.95
V(L)(Optical Sensing	=	\$6,538,291,607.03
V(L)(Interplanetary)	=	\$3,732,182,001.85
V(L)(Astronomical Telescope)	=	\$2,930,436,400.37
total Value Lost	=	\$21,196,184,022,20

	V(L)(Commencal Communication)II –	\$1,553,214,012.53
	V(L)(Optical Sensing	=	\$6,538,291,607.03
	V(L)(Interplanetary)	=	\$3,732,182,001.85
	V(L)(Astronomical Telescope)	=	\$2,930,436,400.37
Payload Accommodation	total Value Lost	=	\$21,196,184,022.20
$-V_3 = \Delta diameter * \left(\frac{\Delta value \ of \ payload}{mater}\right)$			

Launch Vehicle Value	Value
Revenue Value (V1)	\$3,017,881,093,091.75
Mission Reliability Value (V2)	\$66,294,779,977.80
Payload Size Value (10m Fairiing) (V3)	\$78,320,964,000.00

Satellite Benefit (\$B)	4 meters	5 meters	8 meters	10 meters	
Commerical Communications:	\$45.69	\$45.69	\$45.69	\$45.69	
Optical Sensing:	\$12.40	\$24.80	\$24.80	\$24.80	
Interplanetary Missions:	\$2.61	\$5.87	\$6.53	\$6.53	
Astronomical Telescope:	\$0.00	\$0.00	\$0.13	\$1.31	
Total:	\$60.70	\$76.36	\$77.15	\$78.32	

System Physics and System Integrating Physics

Goal: Utilize the key system physics to produce an elegant system design

System Integrating Physics

- Consortium is researching the significance of identifying and using the System Integrating Physics for Systems Engineering
 - First Postulate: Systems Engineering is Product Specific.
 - States that the Systems are different, and therefore, the Integrating Physics for the various Systems is different
- Launch Vehicles
 - · Thermodynamic System
- Spacecraft
 - Robotic
 - Integrated through the bus which is a thermodynamic system
 - Each Instrument may have a different integrating physics but integrates with the bus thermodynamically
 - Crew Modules
 - Integrated by the habitable volume (i.e., ECLSS)
 - A thermodynamic system
 - Entry, Descent, and Landing (EDL)
 - Integrated by thermodynamics as spacecraft energy is reduced in EDL
- Other Thermodynamic Systems
 - Fluid Systems
 - Electrical Systems
 - Power Plants
 - Automobiles
 - Aircraft
 - Ships
- Not all systems are integrated by their Thermodynamics
 - Optical Systems
 - Logical Systems
 - Data Systems
 - Communication Systems
 - Biological Systems
- System Integrating Physics provides the engineering basis for the System Model

Launch Vehicle and Crew Module System Exergy Balance

Launch Vehicle Exergy Balance

$$\begin{split} &\Delta m_{prop} \sum_{stage} \left(h_{prop} + \frac{V_e^2}{2} \right) - X_{des} \\ &= \left(M_{vehicle,final} \frac{V_{vehicle,final}^2}{2} - M_{vehicle,initial} \frac{V_{vehicle,initial}^2}{2} \right) \\ &+ \left(\frac{GM_EM_{vehicle,initial}}{r_{altitude,initial}} - \frac{GM_EM_{vehicle,final}}{r_{altitude,final}} \right) \end{split}$$

$$\eta_{ex} = 1 - \frac{X_{des}}{X_{expended}}$$

S-II Center Engine Cut-Off AS-512, Apollo 17 S-1C Stage Separation S-II Stage Separation S-1C Center Engine Cut-Off S-IVB Burn 1 Cut-Off Exergy Efficiency LEO Insertion S-IVB Burn 2 Engine S-II Engine Mixture Ratio Shift Mikture Ratio Shift S-IVB Burn 2 Cut-Off Max Q S-!VB Separation 0.15 Vehicle Velocity (ft/s)

Crew Module Exergy Balance

$$\Delta X_{ECLSS} = \Delta X_{ACS} + \Delta X_{AR} + \Delta X_{THC} + \Delta X_{WRM} + \Delta X_{WM}$$

$$\begin{split} &\sum_{process} m_{fluid} \left(\left(h_{final} - h_{cabin} \right) - T_{cabin} \left(s_{final} - s_{cabin} \right) + \left(\frac{V_{final}^2}{2} \right) \right) \\ &- \sum_{process} m_{fluid} \left(\left(h_{initial} - h_{cabin} \right) - T_{cabin} \left(s_{initial} - s_{cabin} \right) + \left(\frac{V_{initial}^2}{2} \right) \right) \\ &= \sum_{process} \left(1 - \frac{T_{cabin}}{T_{crew}} \right) Q_{crew} - \sum_{process} \left(\frac{T_{cabin} - T_{coolant}}{T_{coolant}} \right) Q_{TMS} + \sum_{process} W_{EPS} \\ &- P_{cabin} \left(Vol_{final} - Vol_{initial} \right) \\ &+ m_{in} \left[\sum_{process} \left(h_{in} - h_{cabin} \right) - T_{cabin} \left(s_{in} - s_{cabin} \right) + \left(\frac{V_{in}^2}{2} \right) \right] \end{split}$$

Spacecraft Exergy Balance and Optical Transfer Function

Spacecraft Exergy Balance

$$\begin{split} &\Delta m_{propellant,engine} \left(h_{prop,engine} + \frac{V_{e,engine}^2}{2} \right) \\ &+ \Delta m_{propellant,thruster} \left(h_{prop,thruster} + \frac{V_{e,thruster}^2}{2} \right) \\ &+ \sum_{t} \left(\sigma Ae \left(T_{radiator}^4 - T_{space}^4 \right) + V_{bus} I_{bus} \cos \left(\theta \right) \right) \! \Delta t - X_{des} \\ &= \left(\underbrace{M_{vehicle,final} \left(\frac{I_{c,final} \omega_{vehicle,final}^2}{2} + \frac{V_{vehicle,final}^2}{2} \right)}_{} \end{split}$$

Optical Transfer Function

$$\begin{split} & \iint\limits_{-\infty}^{\infty} \psi_{obj} s_f dx dy \\ & = \iint\limits_{-\infty}^{\infty} \psi_{obj} (x_0 + \epsilon x, y_0 + \epsilon y) e^{j\left(\frac{k_0}{2f_1}\right)(x^2 + y^2)} circ(x + \Delta x + \delta x, y + \Delta y + \delta y) dx dy \end{split}$$

Where

$$\epsilon x = 1.22\lambda_0 \left(\frac{f_1}{d_0 + \epsilon z + \omega_y \Delta t} \right) + v_x \Delta t + \omega_y \Delta t$$

$$\epsilon y = 1.22\lambda_0 \left(\frac{f_1}{d_0 + \epsilon z + \omega_x \Delta t} \right) + v_y \Delta t + \omega_x \Delta t$$

$$f_1 = -\frac{R}{2} = -\frac{\sqrt{(x + \Delta x + \delta x)^2 + (y + \Delta y + \delta y)^2 + (z + \Delta z + \delta z)^2}}{2}$$

$$\Delta x = \alpha x \Delta T$$
$$\Delta y = \alpha y \Delta T$$

 $C^2 > 4Mk$ Over Damped

$$\delta x = c_1 e^{-\left(\frac{C}{2M} - \frac{1}{2M}\sqrt{C^2 - 4Mk}\right)t} + c_2 e^{-\left(\frac{C}{2M} + \frac{1}{2M}\sqrt{C^2 - 4Mk}\right)t}$$

 $C^2 = 4Mk$ Critically Damped

$$\delta x = (c_1 + c_2)e^{-\left(\frac{C}{2M}\right)t}$$

 $C^2 < 4Mk$ Under Damped

$$\delta x = c_3 e^{-\left(\frac{C}{2M}\right)t} \cos\left(\sqrt{4Mk - C^2}t - \varphi\right)$$

$$\tan(\varphi) = \frac{x'(0)}{x(0)\sqrt{\frac{k}{M}}}$$

$$c_3^2 = \sqrt{x(0)^2 + \frac{M}{k}x'(0)^2}$$

Mars Interplanetary Exergy Analysis

$$e_{transfer} = 1 - \frac{r_{periapsis}}{a_{transfer}}$$

$$V_{periapsis,transfer} = \sqrt{\mu_{planet} \left(\frac{2}{r_{periapsis}} - \frac{1}{a_{transfer}}\right)}$$

$$V_{periapsis,parking} = V_{periapsis,transfer} - \Delta V$$

$$a_{parking} = 1 / \left(\left(\frac{2}{r_{periapsis}} \right) - \left(\frac{v_{periapsis,parking}}{\mu_{planet}} \right) \right)$$

$$e_{parking} = 1 - \frac{r_{periapsis,parking}}{a}$$

$$r_{apoapsis} = r_{periapsis} \left(\frac{1 + e_{parking}}{1 - e_{parking}} \right)$$

Mars Interplanetary Exergy Analysis

Mass	Velocity	ΔKE _{sten}	Distance	ΔPE _{sten}
$M_f = M_i$	$V_f > V_i$	+	$r_f > r_i$	+
$M_f = M_i$	$V_f < V_i$	i -	$r_f < r_i$	i—
$\begin{cases} M_f > M_i \\ M_f = XM_i \end{cases}$	$\begin{cases} V_f > V_i \\ V_f = ZV_i \end{cases}$	+	$\begin{cases} r_f > r_i \\ r_f = Y r_i \end{cases}$	$\begin{cases} + & (Y > X) \\ - & (Y < X) \end{cases}$
$\begin{cases} M_f > M_i \\ M_f = XM_i \end{cases}$	$\begin{cases} V_f < V_t \\ V_t = ZV_f \end{cases}$	$\begin{cases} - (Z^2 > X) \\ + (Z^2 < X) \end{cases}$	$\begin{cases} r_f < r_i \\ r_i = Yr_f \end{cases}$	-
$\begin{cases} M_f < M_i \\ M_i = XM_f \end{cases}$	$\begin{cases} V_f > V_i \\ V_f = ZV_i \end{cases}$	$\begin{cases} + (Z^2 > X) \\ - (Z^2 < X) \end{cases}$	$\begin{cases} r_f > r_i \\ r_f = Yr_i \end{cases}$	+
$\begin{cases} M_f < M_i \\ M_i = XM_f \end{cases}$	$\begin{cases} V_f < V_i \\ V_i = ZV_f \end{cases}$	-	$\begin{cases} r_f < r_i \\ r_i = Y r_f \end{cases}$	$\begin{cases} - & (Y > X) \\ + & (Y < X) \end{cases}$

Air Launched Rocket Exergy Analysis

747-400 lifting a 2 stage rocket to launch altitude and velocity

Horizontal Distance (Miles)

Methods of Engineering Discipline Integration

Goal: Understand How Organizational Structures influence Design and Operations Success of Complex Systems

Sociological Concepts in Systems Engineering

- Specification of Ignorance is important in the advancement of the understanding of the system
- Consistent use of Terminology is important for Communication within the Organization
- Opportunity Structures
 - Provide opportunity to mature ideas
 - Task teams, working groups, communities of practice, etc.
- Socially Expected Durations will exist about the project
- Both Manifest and Latent Social Functions exist in the organization
- Social Role Sets
 - Individuals have a set of roles for their position
- Cultural Subsets will form
 - i.e., disciplines can be a subset within the organization
 - Insider and Outsider attitudes can form
 - Be Aware of the Self-Fulfilling Prophecy, Social Polarization
- Reconsiderations Process (i.e., Reclama Process)
 - Provides ability to manage social ambivalence
 - Must be able to recognize social beliefs that may be contributing to the disagreement
 - Helps to avoid putting people in to social dysfunction or complete social anomie
 - Conformity
 - Innovation
 - Ritualism
 - Retreatism
 - Rebellion

Unintended Consequences

- Unintended Consequences are the result of human mistakes.
 - Physics do not fail, we do not recognize the consequences.
- Based on sociology, followed the work of Robert K. Merton in classifying unintended consequences.
 - "The Unanticipated Consequences of Social Action", 1936

Classification

- Ignorance (limited knowledge of the problem)
- Historical Precedent (confirmation bias)
- Error (mistakes in calculations, working from habit)
- Short Sightedness (imperious immediacy of interest, focusing on near term and ignoring long term consequences)
- Cultural Values (cultural bias in what can and cannot happen)
- Self Defeating Prophecy (by stating the hypothesis you induce a set of conditions that prevent the hypothesis outcome)

Information Flow

- Information Flow through a program/project/activity is defined by Information Theory
 - Organizational communication paths
 - Board Structure
- Decision Making follows the First Postulate
 - Decision Process is specific to the decision being made
 - Tracked 3 SLS CRs, with 3 separate task team processes, all had equally rated effectiveness

SLS SE&I MANAGEMENT STRUCTURE June 9, 2014 version () ORE [1] - ORGANIZATIONS MARVED TO DESCRIPTION										
SLS PROGRAM OFFICE ORGANIZATION	CHIEF ENGINEERS OFFICE ORGANIZATION	Systems Engineering (EV01)	Vehicle Management (EV40)	Structures & Environments (StE) (EV30) [EV30, ER40, ES21, ES22]	Propulsion (ER01) [ALL ER EXCEPT ER40]	Production (EM01)	Integrated Avionics and Software (ESO1) [ALL ES EXCEPT ES21,ES22]	Operations (EO01) [ALL EO, ES10]	Test (ET01)	S&MA (QD01)
SLS Program Manager SLS Program Deputy Manager SLS Associate Program Manager Assistant PM Procurement	Program Chief Engineer Program Deputy Chief Engineer SE&I Technical Manager Assistant CE for Affordability Tech. Assist. Cross Program Integ. Tech. Assist. Ext. Interface Integ.	LSE: EV01 Alt: EV70 Alt: EV73	DLE: EV40 Alt EV40	DLE: EV30 Alt: EV30	DLE: ER01 Alt: ER51 Alt: ER24	DLE: EM03 Alt: EM03 Alt: EM03	DLE: ES30 Alt: ES01	DLE: E004 Alt: E004	DLE: ET10	Program CSO Deputy CSO QD02 SE&I S&MA Lead QD35
Stages Element Manager Stages Deputy Element Manager - Avionics Manager - Core Stage Manager - Integration Manager	Stages Chief Engineer Stages Deputy Chief Engineer Stages Deputy CE - Avionics Stages Deputy Chief Engineer - Test	EV70 Alt: EV71	EDLE: EV41	EDLE: EV34	EDLE: ER22	EDLE: EM03 Alt: EM32	EDLE: ES12	EDLE: EO40	EDLE: ET10	QD33
Booster Element Manager Booster Deputy Element Manager - Control Systems Manager - Assem & Struct Systems Manager - Motor/BSIM ASM - Booster CEI/interface Mgr	Booster Chief Engineer Booster Deputy Chief Engineer	ER50	EDLE: EV40	EDLE: ER40	EDLE: ER51	EDLE: EM03	EDLE: ES12	EDLE: EO40		QD31
Engines Element Manager Engines Deputy Element Manager	Engines Chief Engineer Engines Deputy Chief Engineer	ER20	EDLE: EV43	EDLE: ER41	EDLE: ER21	EDLE: EM03	EDLE: ES12	EDLE: ER21		QD32
Spacecraft/Payload Integration and Evolution (SPIE) Office Manager SPIE Deputy Manager	SPIE CE SPIE Deputy CE	EV70 Alt: EV70	EDLE: EV41	EDLE: EV30	EDLE: ER23	EDLE: EM03	EDLE: ES10	EDLE: EO40	EDLE: ET30	QD22
	SPIE CE SPIE Deputy CE				EDLE: ER01 Alt: ER21	EDLE: EM03				QD31

- Margin is maintained by the Organization, not in the margin management tables
 - Biased Information Sharing
 - Margin Management is focused on Managing the Disciplines (informed by the System Integrating Physics)
- SLS Organizational Structure was defined by the LSE as a recommendation to the Chief Engineer and the Program Manager

Discipline Integration Models

- System Dynamics Model
- - Agent Based Model (ABM)
- Discrete Event Simulation

- MagicDraw Enterprise (SysML)
- Matlab
- Matlab StateFlow
- **JAVA**
- **Anylogic**
- Extend

Summary

- Discussed approach to Engineering an Elegant System
- Systems Engineering Framework and Principles
 - System Integration
 - **Engineering Discipline Integration**
- Several methods and tools are available for conducting integrated system design and analysis
 - System Integration
 - System State Variables
 - Goal Function Tree
 - State Analysis Model
 - System Value Model
 - System Integrating Physics
 - Topics Not Discussed
 - System Autonomy
 - Multidisciplinary Design Optimization (MDO)
 - Engineering Statistics
 - Discipline Integration
 - Sociological Concepts in Systems Engineering
 - Information Flow
 - Topics Not Discussed
 - Systems Thinking (Cognitive Science)
 - Policy and Law
 - Systém Dynamics Modeling
- Systems Engineering Approach defined in two documents
 "Engineering Elegant Systems: Theory of Systems Engineering"

 - "Engineering Elegant Systems: The Practice of Systems Engineering"
 - Send requests for documents to: michael.d.Watson@nasa.gov

Backup

Consortium

Research Process

- Multi-disciplinary research group that spans systems engineering areas
- Selected researchers who are product rather than process focused

List of Consortium Members

- Michael D. Griffin, Ph.D.
- Air Force Research Laboratory Wright Patterson, Multidisciplinary Science and Technology Center: Jose A. Camberos, Ph.D., Kirk L. Yerkes, Ph.D.
- George Washington University: Zoe Szajnfarber, Ph.D.
- Iowa State University: Christina L. Bloebaum, Ph.D., Michael C. Dorneich, Ph.D.
- Missouri University of Science & Technology: David Riggins, Ph.D.
- NASA Langley Research Center: Anna R. McGowan, Ph.D., Peter A. Parker, Ph.D.
- The University of Alabama in Huntsville: Phillip A. Farrington, Ph.D., Dawn R. Utley, Ph.D., Laird Burns, Ph.D., Paul Collopy, Ph.D., Bryan Mesmer, Ph.D., P. J. Benfield, Ph.D., Wes Colley, Ph.D.
- Doty Consulting: John Doty, Ph.D.
- The University of Michigan: Panos Y. Papalambros, Ph.D.
- Ames Research Center: Peter Berg
- Glenn Research Center: Karl Vaden

Previous Consortium Members

- Massachusetts Institute of Technology: Maria C. Yang, Ph.D.
- The University of Texas, Arlington: Paul Componation, Ph.D.
- Texas A&M University: Richard Malak, Ph.D.
- Tri-Vector Corporation: Joey Shelton, Ph.D., Robert S. Ryan, Kenny Mitchell
- The University of Colorado Colorado Springs: Stephen B. Johnson, Ph.D.
- The University of Dayton: John Doty, Ph.D.
- Stevens Institute of Technology Dinesh Verma
- Spaceworks John Olds (Cost Modeling Statistics)
- Alabama A&M Emeka Dunu (Supply Chain Management)
- George Mason John Gero (Agent Based Modeling)
- Oregon State Irem Tumer (Electrical Power Grid Robustness)
- Arkansas David Jensen (Failure Categorization)

System State Variables

Goal: Utilize system state variables to understand the interactions of the system in relation to system goals and system execution

System State Models

 System Stage Models represent the system as a whole in terms of the hardware and software states that the system transitions through during operation

Goal Function Tree (GFT) Model

- "Middle Out" model of the system based on the system State Variables
- Shows relationship between system state functions (hardware and software) and system goals
- Does not contain system physical or logical relationships and is not executable

System State Machine Model

- Models the integrated State Transitions of the system as a whole (i.e., hardware states and software states)
- Confirms system functions as expected
 - Checks for system hazardous, system anomalies, inconsistent state progression, missing states, improper state paths (e.g., short circuits in hardware and/or software design)
 - Confirms that the system states progress as stated in the system design
- Executable model of system

Booster – CS Ascent GFT

System Works

System State Machine Model

- The state analysis model is split into two main components:
 - Manager software model
 - System Plant
- Modeled using MATLAB Stateflow
 - Allows the software model to look like the SysML Activity Diagrams
 - Allows the System Plant to be modeled as State Machines
 - Allows those two models to interact with each other within the MATLAB environment
 - Facilitates the ability to generate custom analysis tools
- Reads in command sequence to execute model

State Analysis Model for SLS M&FM

■Over 3,500 States in the Vehicle

System Design and Optimization

Goal: Apply system design and optimization tools to understand and engineer system interactions

Multidisciplinary Design Optimization

Martins, J. R R. A., Lambe, A. B., "Multidisciplinary Design Optimization: A Survey of Architectures", AIAA Journal, Vol. 51, No. 9, September 2013, pp 2049 – 2075

Engineering Statistics

Goal: Utilize statistical methods to understand system uncertainties and sensitivities

Systems Engineering makes use of Frequentist Approaches, Bayesian Approaches, Information Theoretic Approaches as appropriate

Optimal Sensor Information Configuration

 Applying Akaike Information Criteria (AIC) corrected (AICc) to assess sensor coverage for a system

$$AICc(F) = -2\left(I^{KL}(F|G)\right) + 2K + \frac{2K(K+1)}{n-K-1}$$

- Two Views of Information Content
 - AIC Information
 - Information is viewed as the number of meaningful parameters
 - Parameters with sufficient measurements to be reasonable estimates
 - Fisher Information Matrix
 - Defines information as the matrix of partial second derivatives
 - Information is the amount of parameters with non zero values (so provides an indication of structure)
 - This value converges to a maximum as the number of parameters goes to infinity
 - Does not contain an optimum, always increases with added parameters
- AIC/AICc has an adjustment factor to penalize sensor arrangements where: number of sensors < 3x(number of measurements)
- Provides an optimization tool for use with System Models

Methods of System Integration

Goal: System Design and Analysis

System Design and Integration

