Factorization Machines (FM) and Fieldaware Factorization Machines (FFM)

Hung-Hsuan Chen https://www.ncu.edu.tw/~hhchen/

Degree-2 polynomial model (poly2)

Formula

$$y = \sum_{i=0}^{d} \theta_i x_i + \sum_{(j,k) \in C_2} \theta_{j,k} x_j x_k$$

- v: target
- $x_1, ..., x_d$: features
- x₀: bias
- $\theta_0,~\theta_1...,~\theta_d,\theta_{1,2},\theta_{1,3},...,\theta_{d-1,d}$: parameters to learn
- C_2 : 2-combination of elements in $[x_1, ..., x_d]$
- · The model can capture
 - Each feature's influence on the target
 - Each feature-pair's influence on the target

Linear model

Formula

$$y = \sum_{i=0}^{d} \theta_i x_i$$

- v: target
- $x_1, ..., x_d$: features
- x_0 : bias
- θ_0 , θ_1 ..., θ_d : parameters to learn
- The model can capture each feature's influence on the target

Factorization machines (FM)

Formula

$$y = \sum_{i=0}^{d} \theta_i x_i + \sum_{(j,k) \in C_2} \left\langle \boldsymbol{v}_j, \boldsymbol{v}_k \right\rangle x_j x_k$$

- y: target
- $x_1, ..., x_d$: features
- x₀: bias
- $\theta_0,~\theta_1...,~\theta_d, \pmb{v}_1,~\pmb{v}_d$: parameters to learn, each \pmb{v}_j is a vector of length ℓ
- C_2 : 2-combination of elements in $[x_1, ..., x_d]$

4

Poly2 vs FM (# parameters)

- If we have d features
 - # parameters for poly-2:

$$(d+1) + \binom{d}{2} = d+1 + \frac{d(d-1)}{2} \approx O(d^2)$$

■ # parameters for FM (assuming the length of the vector v_i is ℓ :

$$(d+1) + \ell d = 1 + (\ell+1)d \approx O(\ell d)$$

- If $d\gg \ell$, FM has fewer parameters to learn
 - FM is probably more appropriate when we have large but sparse features

Example: ad classification (cont')

· Standard one-hot encoding

USA	China	Thanksgi ving	Chinees new year	Movie	Game	Clicked?
1	0	1	0	1	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1

- Very large feature space
- Very sparse samples

Example: ad classification

Country	Day	Ad type	Clicked?
USA	Thanksgiving	Movie	1
China	Chinese New Year	Game	0
China	Thanksgiving	Game	1

Task: given features, predict click or not

Example take from: https://www.slideshare.net/EvgeniyMarinov/factorization-machines-and-applications-in-recommender-systems

Example: ad classification (cont')

- Features might be more important in "pairs"
 - Country == "USA" and Day == "Thanksgiving"
 - Country == "China" and Day == "Chinese new year"
- If we create features for every pair of features
 - Number of features goes from d to $\begin{pmatrix} d \\ 2 \end{pmatrix}$
 - Samples: still sparse

Gradients

$$\hat{y} = \theta_0 + \sum_{i=1}^d \theta_i x_i + \sum_{(j,k) \in C_2} \left\langle v_j, v_k \right\rangle x_j x_k$$

$$L := \left(y - \hat{y} \right)^2$$

$$\cdot \frac{\partial L}{\partial \theta_0} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \theta_0} = -2(y - \hat{y})$$

$$\cdot \frac{\partial L}{\partial \theta_i} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \theta_i} = -2(y - \hat{y})x_i (1 \le i \le d)$$

$$\cdot \frac{\partial L}{\partial v_{jf}} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial v_{jf}} = -2(y - \hat{y})v_{kf}x_j x_k$$

$$\cdot \frac{\partial L}{\partial v_{kf}} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial v_{kf}} = -2(y - \hat{y})v_{jf}x_j x_k$$

FFM example

Publisher (P)	Advertiser (A)	Gender (G)	Clicked?
ESPN	Nike	Male	Yes

- On ESPN, a male clicked an ad about Nike
- For FM:

$$\hat{y} = \theta_0 + \sum_{i=1}^{d} \theta_i x_i + \boldsymbol{v}_{ESPN} \cdot \boldsymbol{v}_{Nike} + \boldsymbol{v}_{ESPN} \cdot \boldsymbol{v}_{Male} + \boldsymbol{v}_{Nike} \cdot \boldsymbol{v}_{Male}$$

- Every feature has one corresponding latent vector to learn
- E.g., v_{ESPN} is used to learn the effect with Nike $(v_{ESPN} \cdot v_{Niko})$ and Male $(v_{ESPN} \cdot v_{Malo})$
- However, Nike and Male belong to different fields, the effects of $m{v}_{ESPN}$ on $(m{v}_{ESPN}\cdotm{v}_{Nike})$ and $(m{v}_{ESPN}\cdotm{v}_{Male})$ could be different

FFM example (cont')

Publisher (P)	Advertiser (A)	Gender (6)	Clicked?
ESPN	Nike	Male	Yes
Disney	LEGO	Male	No

• For FFM:

$$\begin{split} & \hat{\mathbf{y}}_1 = \theta_0 + \sum_{i=1}^d \theta_i \mathbf{x}_i + \boldsymbol{v}_{ESPN,A} \cdot \boldsymbol{v}_{Nike,P} + \boldsymbol{v}_{ESPN,G} \cdot \boldsymbol{v}_{Male,P} + \boldsymbol{v}_{Nike,G} \cdot \boldsymbol{v}_{Male,A} \\ & \hat{\mathbf{y}}_2 = \theta_0 + \sum_{i=1}^d \theta_i \mathbf{x}_i + \boldsymbol{v}_{Disney,A} \cdot \boldsymbol{v}_{LEGO,P} + \boldsymbol{v}_{Disney,G} \cdot \boldsymbol{v}_{Male,P} + \boldsymbol{v}_{LEGO,G} \cdot \boldsymbol{v}_{Male,A} \end{split}$$

- Every feature has K-1 corresponding latent vector to learn (K: number of "fields")
- E.g., to learn the effect of (ESPN, Nike), $v_{ESPN,A}$ is used because Nike belongs to field Advertiser. However, to learn the effect of (ESPN, Male), $v_{ESPN,G}$ is used because Male belongs to field Gender

Summary

- FM as an extension of linear model
- FM as a variation of poly2 model
- FFM as an extension of FM
- FM and FFM are especially useful when the features are large and sparse
 - E.g., advertisement click prediction

1

Quiz

- If we know that targets are influenced by each feature and each pair of features
 - Linear regression + original features can make good predictions (true of false)
 - Linear SVM + original features can make good predictions (true or false)
 - Polynomial kernel is helpful (true or false)
 - Linear regression + poly2 feature engineering is helpful (true) or false)
 - Linear SVM + poly2 feature engineering is helpful (true or false)
 - Factorization machine is helpful (true) or false)

create sudo feature by ourselves