DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

Senyai i Sistemes ii	
17 de Gener de 2007	Final T06
Data notes provisionals:	24 de Gener
Període d'al.legacions:	24 a 26 de Gener
Data notes revisades:	30 de Gener

Professors: J.R. Casas, J. Hernando, J.B. Mariño, E. Monte, P. Salembier.

Informacions addicionals:

- Durada de la prova: 1h 45 min
- Poseu el vostre nom, el número de DNI i el número d'identificació de la prova al full de codificació de respostes, codificant-los amb les marques a les caselles corresponents
- Totes les marques del full de respostes s'han de fer en llapis (B, HB preferiblement)
- Les preguntes poden tenir més d'una resposta correcta (tres com a màxim). Les respostes errònies resten punts. Utilitzeu la numeració de la dreta (opció d'anul·lar respostes)
- No podeu utilitzar llibres, apunts, taules, formularis, calculadores o telèfon mòbil.

Número d'identificació de la prova: 230 11485 54 0 00

- **1.** Indicar las afirmaciones correctas:
 - **1A:** Una secuencia periódica de f = 8/36 describe un solo ciclo en un periodo de 9 muestras
 - **1B:** Si $x[n] = A\cos(\omega_0 n + \phi)$, entonces $y[n] = (-1)^n \cdot x[n] = A\cos[(\omega_0 \pi)n + \phi]$
 - **1C:** Al muestrear un tono de 12 kHz con frecuencia de muestreo de 16 kHz y sin filtro antialiasing, resulta una señal discreta periódica de periodo 4 muestras
 - **1D:** El criterio de Nyquist establece que, para una señal paso-banda, el muestreo sin aliasing sólo es posible cuando la frecuencia de muestreo es mayor que el doble de la frecuencia máxima de la señal
- **2.** Considere los tres sistemas definidos por la siguientes relaciones de entrada y salida:

$$S_1\{x[n]\} = x[M-n], \quad S_2\{x[n]\} = \sum_{r=-\infty}^{\infty} x[n+rP], \quad S_3\{x[n]\} = x[n-1] + x[n+1]$$

indique las afirmaciones correctas

2A: El sistema S_2 es estable y no causal

2B:
$$S_1 \{ S_2 \{ S_3 \{ x[n] \} \} \} = \sum_{r=-\infty}^{\infty} (x[M-n+rP-1]+x[M-n+rP+1])$$

- **2C:** La concatenación en cascada de los tres sistemas siempre genera una señal periódica (independientemente del orden de los sistemas)
- **2D:** La respuesta impulsional de S_1 es $h[n] = \delta[M-n]$

Figura 1

- 3. En el esquema de la Figura 1 suponemos $F_{m1} = F_{m2} = 8$ kHz, T{} es el sistema $h[n] = \delta[n] \delta[n-4]$, los filtros antialiasing y reconstructor son ideales con frecuencia $F_A = F_R = 3.9$ kHz y x(t) es una señal periódica con frecuencia fundamental F_0 ($\neq 0$) y todos sus armónicos diferentes de cero. Indicar las afirmaciones correctas:
 - **3A:** La respuesta frecuencial del filtro h[n] se anula para $\omega = \pi/4$ y $\omega = 3\pi/4$
 - **3B:** Si $F_0 = 2$ kHz, y(t) es igual a cero
 - **3C:** Si $F_0 = 3$ kHz, y(t) es una señal sinusoidal
 - **3D:** Si $F_0 = 1$ kHz, y(t) es una señal de energía finita
- **4.** Considerando **ventanas de igual longitud**, señale las afirmaciones correctas:
 - 4A: La ventana rectangular presenta mejor resolución frecuencial que la de Hamming
 - **4B:** La ventana de Hamming presenta mejor sensibilidad que la rectangular
 - **4C:** Los filtros diseñados con una ventana de Hamming presentan una banda de transición menos ancha que los diseñados con una ventana rectangular
 - **4D:** Los filtros diseñados con una ventana rectangular presentan un rizado en bandas de paso y atenuadas de menor amplitud que los diseñados con una ventana Hamming

Número d'identificació de la prova: 230 11485 54 0 00

5. Una señal periódica x[n] de periodo fundamental $x_o[n] = \begin{cases} x[n] & 0 \le n < P \\ 0 & \text{otro } n \end{cases}$ se enventana con una ventana

v[n] de L muestras: $x_L[n] = x[n]v[n]$. Si $V(e^{j\omega})$ y $X_L(e^{j\omega})$ son, respectivamente, las transformadas de Fourier de v[n] y $x_L[n]$, y $X_o(e^{j\omega})$ y $X_o[k]$ son la transformada de Fourier y la DFT de P muestras de $x_o[n]$, indique las expresiones correctas:

5A:
$$X(e^{j\omega}) = \frac{2\pi}{P} \sum_{k=0}^{P-1} X_o[k] \delta(\omega - \frac{2\pi}{P}k)$$

5B:
$$x[n] = \frac{1}{P} \sum_{k=0}^{P-1} X_o[k] e^{i\frac{2\pi}{P}kn}$$

5C:
$$X_L(e^{j\omega}) = \frac{2\pi}{P} \sum_{r=-\infty}^{\infty} \sum_{k=0}^{P-1} X_o[k] \delta(\omega - \frac{2\pi}{P}k - 2\pi r)$$

5D:
$$X_L(e^{j\omega}) = \frac{1}{P} \sum_{k=0}^{P-1} X_o[k] V(e^{j(\omega - \frac{2\pi}{P}k)})$$

- 6. Una señal que contiene dos tonos de frecuencias $f_0 = \frac{1}{4}$ y f_1 y amplitudes respectivas $A_0 = 2$ y A_1 , se enventana con una ventana rectangular de L = 30 muestras. Seleccione las respuestas correctas:
 - **6A:** Si $f_1 = 3/10$ y $A_1 = 1/9$, al calcular el módulo de la transformada de Fourier podremos distinguir con claridad dos tonos
 - **6B:** Si $f_1 = 7/20$ y $A_1 = 2$, al calcular el módulo de la transformada de Fourier mediremos que el tono a f_1 tendrá una amplitud de 30 aproximadamente
 - **6C:** La posición del máximo del primer lóbulo secundario de la ventana rectangular ocurre en $\omega_{\rm s}=4\pi/L$
 - **6D:** La amplitud del máximo del primer lóbulo secundario de la ventana rectangular es de aproximadamente $A_s = 2L/3\pi$
- 7. Un filtro paso banda ideal de respuesta frecuencial $H_{id}(e^{j\omega}) = \begin{cases} 1 & \omega_c \frac{B_{\omega}}{2} \le |\omega| \le \omega_c + \frac{B_{\omega}}{2} \\ 0 & \text{resto } \omega \end{cases}$ se aproxima

mediante enventanado de su respuesta impulsional, $h_{id}[n]$, con una ventana rectangular de L muestras $v_L[n] = \begin{cases} 1 & 0 \le n < L \\ 0 & \text{resto } n \end{cases}$ (L impar). Indique las respuestas correctas

- **7A:** La respuesta impulsional del filtro paso banda ideal es $h_{id}[n] = \frac{2}{\pi n} \sin\left(\frac{B_{\omega}n}{2}\right) \cos\left(\omega_{c}n\right)$
- **7B:** El filtro de respuesta impulsional $h[n] = h_{id}[n]v_L[n]$ es de fase lineal
- **7C:** El filtro de respuesta impulsional $h[n] = h_{id}[n (L-1)/2]v_L[n]$ es causal y de fase lineal
- **7D:** El filtro de respuesta impulsional $h[n] = h_{id}[n]v_L[n]$ presenta bandas de transición más estrechas que $h[n] = h_{id}[n]v_{2L}[n]$, con $v_{2L}[n] = v_L[n] + v_L[n-L]$
- **8.** Indicar las afirmaciones correctas sobre la contribución de un polo, $z = pe^{j\omega_0}$ $(0 \le p < 1)$, de la función de transferencia de un sistema al módulo de la respuesta frecuencial, $M(\omega)$, en ω_0 :
 - **8A:** La contribución del polo a $M(\omega)$ en $\omega = \omega_0$ es proporcional $(1-p)^{-1}$
 - **8B:** El ancho de banda a 3dB de la resonancia en $M(\omega)$ en $\omega = \omega_0$ debida a la presencia del polo será mayor para $p \approx 1$ que para $p \ll 1$
 - **8C:** Si el sistema presenta un cero en $z = ce^{j\omega_0}$ con $0 \le c << p$, el comportamiento de la respuesta frecuencial en el entorno de ω_0 estará dominada por la contribución del cero
 - **8D:** Si el sistema presenta un cero de multiplicidad impar en $z=e^{j\omega_0}$, se generará un salto de fase π en la respuesta frecuencial para $\omega=\omega_0$ aunque $p\approx 1$

Número d'identificació de la prova: 230 11485 54 0 00

- **9.** En el diagrama de la Figura 1 se muestra un sistema discreto T{} que trabaja en un entorno analógico **en tiempo real**, donde los filtros antialiasing y reconstructor son ideales y cumplen la condición de Nyquist. La frecuencia de muestreo del conversor A/D es 8 kHz, el sistema es el que se muestra en la Figura 2 y la frecuencia F_{m2} es la **adecuada**. H es un filtro interpolador paso bajo de ganancia N en la banda de paso y con frecuencias límite de la banda de paso y atenuada $f_p = 0.15$ y $f_a = 0.20$, respectivamente. Si consideramos interpolación correcta cuando la señal deseada queda incluida en la banda de paso_y_las réplicas a eliminar incluidas en la banda eliminada, indicar las respuestas correctas entre las siguientes:
 - **9A:** Si N=2, el sistema reproduce en la salida y(t) correctamente cualquier señal sinusoidal x(t) cuya frecuencia no exceda 2.4 kHz
 - **9B:** Si N=3, el sistema reproduce en la salida y(t) correctamente cualquier señal sinusoidal x(t) cuya frecuencia no exceda 3.2 kHz
 - **9C:** Si N=2, el sistema reproduce en la salida y(t) correctamente cualquier señal sinusoidal x(t) cuya frecuencia no exceda 3.6 kHz
 - **9D:** Si N=3, el sistema reproduce en la salida y(t) correctamente cualquier señal sinusoidal x(t) cuya frecuencia no exceda 3.6 kHz

- 10. En el diagrama de la Figura 1 se muestra un sistema discreto $T\{\}$ que trabaja en un entorno analógico en tiempo real, donde los filtros antialiasing y reconstructor son ideales y cumplen la condición de Nyquist. Si la frecuencia de muestreo del conversor A/D es 8 kHz, el sistema es el diezmador que se muestra en la Figura 3 y la frecuencia F_{m2} es la **adecuada**, indicar las respuestas correctas entre las siguientes:
 - **10A:** Si N=2 y x(t) es una sinusoide de frecuencia 1 kHz, y(t) es una sinusoide de frecuencia 3 kHz
 - **10B:** Si N=2 y x(t) es una sinusoide de frecuencia 3 kHz, y(t) es una combinación de dos sinusoides de frecuencias 1 y 3 kHz
 - **10C:** Si N=2 y x(t) es una sinusoide de frecuencia 3 kHz, y(t) es una sinusoide de frecuencia 1 kHz
 - **10D:** Si N=3 y x(t) es una sinusoide de frecuencia 3 kHz, y(t) es una sinusoide de frecuencia 1/3 kHz

SOLUCIONS

Pregunta 1: BC

Pregunta 2: BC

Pregunta 3: BC

Pregunta 4: AB

Pregunta 5: BD

Pregunta 6: BD

Pregunta 7: AC

Pregunta 8: AD

Pregunta 9: AB

Pregunta 10: CD