Paul Gustafson

Texas A&M University - Math 607 Instructor: Thomas Schlumprecht

HW 11

1 Let f be increasing on [0,1] and

$$g(x) = \limsup_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$
, for $0 < x < 1$.

Prove that if $A = \{x \in (0,1) : g(x) > 1\}$ then

$$f(1) - f(0) \ge m^*(A)$$
.

Hint: Vitali's Lemma.

Proof. To avoid worrying about endpoints, extend f to be constant on $(-\infty, 0]$ and $[1, \infty)$. This does not change A.

For each $x \in A$, pick a sequence $(h_{x,n})$ with $\lim_{n\to\infty} h_{x,n} \to 0$ and

$$\lim_{n \to \infty} \frac{f(x + h_{x,n}) - f(x - h_{x,n})}{2h_{x,n}} > 1,$$

for all n.

Then $\mathcal{B} = \{B(h_{x,n},x) : x \in A\}$ forms a Vitali cover for A. Let $\epsilon > 0$. We can pick a finite set $\mathcal{F} \subset \mathcal{B}$ of disjoint balls with $m(\bigcup \mathcal{F}) > m^*(A) - \epsilon$. Let $(a_i,b_i)_{i=1}^n$ be an enumeration of \mathcal{F} with $a_1 < b_1 < a_2 < \ldots < b_n$. Then $f(1) - f(0) \ge \sum_{i=1}^n f(b_i) - f(a_i) \ge b_i - a_i > m^*(A) - \epsilon$. Letting $\epsilon \to 0$, we have $f(1) - f(0) \ge m^*(A)$.

2 Let $f:[a,b]\to\mathbb{R}$ be an increasing function. Using Vitali's lemma, show that

$$m({D^+f(x) \neq D^-f(x)}) = 0.$$

where $D^+(f)$ is the upper derivative from the right, and $D^-(f)$ is the lower derivative from the right.

Proof. Acknowledgement: I looked at http://www.math.ucla.edu/~ralston/245a.1.08f/Vitali.pdf for hints.

It suffices to show that $E_{p,q} = \{x \in [a,b] : D^-f(x) has measure 0 for every <math>p,q \in \mathbb{Q}$ with p < q.

Let $\epsilon > 0$. Pick an open set $U \supset E_{p,q}$ with $m(U) < m^*(E_{p,q}) + \epsilon$.

If $x \in E_{p,q}$, then there exist arbitrarily small h for which $\frac{f(x+h)-f(x)}{h} < p$. Thus intervals of the form $[x, x+h) \subset U$ with this property form a Vitali cover for $E_{p,q}$. By the Vitali lemma, we can pick a disjoint finite subset of these intervals $([x_k, x_k + h_k))_{k=1}^n$ such that $\sum_k h_k > m^*(E_{p,q}) - \epsilon$.

Similarly for $y \in E_{p,q} \cap \bigcup_k [x_k, x_k + h_k]$ there exist arbitrarily small l for which $\frac{f(y+l)-f(y)}{l} > q$. Thus, sets of the form [y,y+l) with this property form

a Vitali cover for $E_{p,q} \cap \bigcup_k [x_k, x_k + h_k)$. Moreover, by throwing sets out of the cover, we can assume that each interval [y, y + l) lies within an interval $[x_k, x_k + h_k)$. By the Vitali Lemma, we get a disjoint finite subset of these intervals $([y_j, y_j + l_k))_{j=1}^m$ with

$$\sum_{k} l_{k} > m^{*}(E_{p,q} \cap \bigcup_{k} [x_{k}, x_{k} + h_{k})) - \epsilon$$

$$= m(\bigcup_{k} [x_{k}, x_{k} + h_{k})) - m^{*}(E_{p,q}^{c} \cap \bigcup_{k} [x_{k}, x_{k} + h_{k})) - \epsilon$$

$$> (m^{*}(E_{p,q}) - \epsilon) - m^{*}(E_{p,q}^{c} \cap U) - \epsilon$$

$$> m^{*}(E_{p,q}) - 3\epsilon$$

Then we have

$$q(m^*(E_{p,q}) - 3\epsilon) = q \sum_k l_k$$

$$< \sum_j f(y_j + l_j) - f(x_j)$$

$$\leq \sum_k f(x_k + h_k) - f(x_k)$$

$$$$< p(m^*(E_{p,q}) - \epsilon).$$$$

Letting $\epsilon \to 0$, we have $0 \le (p-q)m^*(E_{p,q})$, so $m^*(E_{p,q}) = 0$.

3 Assume that $f:[a,b]\to\mathbb{R}$ is continuous and that $D^+f(x)>0$, for all $x\in[a,b]$. Show that f is nondecreasing on [a,b].

Proof. Suppose f is not nondecreasing. Then there exist $a \le c < d \le b$ with f(c) > f(d). By the extreme value theorem, f achieves a maximum M on [c,d]. Let $u = \sup\{x \in [c,d] : f(x) = M\}$. Since f is continuous, f(u) = M. Since $M \ge f(c) > f(d)$, we have u < d. Moreover, f(x) < M for all $x \in [u,d]$. Thus $D^+f(u) \le 0$, a contradiction.

4 Determine whether or not the following functions are of bounded variation on [-1,1].

(a)
$$f(x) = x^2 \sin(1/x^2)$$
, $x \neq 0, f(0) = 0$

(b)
$$f(x) = x^2 \sin(1/x)$$
, $x \neq 0$, $f(0) = 0$.

Proof. For (a), we have

$$T_{-1}^{1}(f) \ge \sum_{n=1}^{N} |f((n\pi)^{-1/2} - f((n\pi + \pi/2)^{-1/2})|$$

$$= \sum_{n=1}^{N} |(n\pi + \pi/2)^{-1})|$$

$$\to \infty$$

as $N \to \infty$, so f is not of bounded variation. For (b), if $(x_n)_{n=0}^N$ is a partition of [-1,1]

$$\sum_{n=1}^{N} |f(x_n) - f(x_{n-1})| \le C + 2\sum_{n=1}^{\infty} |f((n\pi - \pi/2)^{-1}) - f((n\pi + \pi/2)^{-1})|$$

$$= C + 2\sum_{n=1}^{\infty} (n\pi - \pi/2)^{-2} + (n\pi + \pi/2)^{-2},$$

which converges. Hence f is of bounded variation.

5 Let f be of bounded variation on [a, b], then

$$\int_{a}^{b} |f'(t)| dt \le T_a^b(f).$$

Proof. We have

$$\int_{a}^{b} |f'(t)|dt = \int_{a}^{b} |\frac{1}{2}(T_{a}^{t}(f) + f)' - \frac{1}{2}(T_{a}^{t}(f) - f)'|dt$$

$$\leq \frac{1}{2} \int_{a}^{b} |(T_{a}^{t}(f) + f)'| + |(T_{a}^{t}(f) - f)'|dt$$

$$= \frac{1}{2} \int_{a}^{b} (T_{a}^{t}(f) + f)' + (T_{a}^{t}(f) - f)'dt$$

$$= \int_{a}^{b} (T_{a}^{t}(f))'dt$$

$$\leq T_{a}^{b}(f),$$

where the last inequality follows from decomposing the function $t \mapsto T_a^t(f)$ into its absolutely continuous and singular parts.

6 Construct an increasing function on \mathbb{R} whose discontinuities are \mathbb{Q} .

Proof. Let δ_x denote the Dirac measure at x. Let (q_n) be an enumeration of \mathbb{Q} . Let $\nu = \sum_{n=1}^{\infty} 2^{-n} \delta_{q_n}$. Let $f(x) = \nu((-\infty, x))$. Then f is increasing and has discontinuities at every rational point.

If x is irrational and $\epsilon > 0$, pick N such that $2^{-N} < \epsilon$. Pick $\delta > 0$ such that $d(x,q_n) > \delta$ for all $n \leq N$. Suppose $d(x,y) < \delta$. WLOG suppose x < y. We have $|f(x) - f(y)| = \nu((x,y)) \leq \sum_{n=N+1}^{\infty} 2^{-n} = 2^{-N} < \epsilon$.