Institut für Theoretische Teilchenphysik

Klassische Theoretische Physik I WS 2014

Übungsblatt 3 Abgabe: 14.11.2014 Besprechung: 21.11.2014

Prof. Dr. U. Nierste Dr. M. Spinrath, Dr. S. Schacht

Bitte schreiben Sie Ihren Namen auf jedes Blatt ihrer Lösung und geben Sie auf der ersten Seite Ihre Tutorgruppe (Ort, Zeit, Name des Tutors) an.

Aufgabe 5: Eine Ameise befindet sich zum Zeitpunkt t=0 am Ort $x_0\geq 0$ eines Gummibandes, das bei x=0 eingespannt ist. Die Länge des Gummibandes ist $L(t)=L_0+v_Gt$, d.h. es wird mit der (konstanten) Geschwindigkeit v_G gedehnt. Die Ameise läuft mit Geschwindigkeit v_A zuf das Ende des Gummibandes zu. Parameter, die in die Kompetenz anderer KIT-Fakultäten fallen (Lebensdauer der Ameise, Zerreißlänge des Gummibandes) werden auf ∞ gesetzt.

a) (1 Punkt) – Verifizieren Sie, dass der im Intervall [t,t+dt] zurückgelegte Weg der Ameise $dx=v_Adt+v_G\frac{x(t)}{L(t)}dt$ ist.

Betrachten Sie r(t) = x(t)/L(t) und drücken Sie \dot{r} durch L_0 , v_G und v_A aus.

- **b)** (1 Punkt) Berechnen Sie r(t). (Achten Sie dabei auf die Anfangsbedingung $r(0) = x_0/L_0$.) Geben Sie die Zeit T an, zu der die Ameise den Endpunkt x = L erreicht hat.
- c) (1 Punkt) Betrachten Sie den Fall $L_0 = 1m$, $v_G = 1\frac{m}{s}$, $v_A = 1cm/s$. Wann erreicht die Ameise im Fall $x_0 = 0$ das Ende? Geben Sie T in Vielfachen des Alters des Universums von $13.8 \cdot 10^9$ Jahren an.

Inwieweit verbessert sich die Lage, wenn die Ameise einen Vorsprung $x_0 = L_0/2 = 0,5m$ bekommt?

d) (1 Punkt) Für $x_0 = 0$ betrachten wir nun eine diskretisierte Version des Problems: Im Intervall $[(n-1)\Delta t, n\Delta t]$, $n \in \mathbb{N}$, läuft zunächst die Ameise um ein Stück Δx , danach (zum Zeitpunkt $n\Delta t$) wird das Gummiband instantan von der Länge nL_0 auf die Länge $(n+1)L_0$ gedehnt. x_n bezeichne den Ort der Ameise nach dem n-ten Schritt (jedoch noch vor dem anschließenden Dehnen des Bandes), und wir betrachten $r_n = x_n/(nL_0)$, d.h. nach dem ersten Schritt ist $r_1 = \Delta x/L_0$. Welchen Fortschritt $\Delta r_k = r_k - r_{k-1}$ (für $k \geq 2$) macht die Ameise im

k-ten Schritt? Zeigen Sie, dass r_n proportional zur k-ten Schritt?

e) (1 Punkt) Während Physikerinnen und Physikern Integrale leicht von der Hand gehen, bereiten ihnen Summen oft Schwierigkeiten. Die *Euler-Maclaurin-Formel* erlaubt es, eine Summe durch ein Integral anzunähern:

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} dx f(x) + \frac{f(n) + f(1)}{2} + \sum_{k=1}^{l} \frac{B_{2k}}{(2k)!} \left(f^{(2k-1)}(n) - f^{(2k-1)}(1) \right) + R_{2l}, \quad (1)$$

wobei das Restglied R_{2l} in der Näherung vernachlässigt wird. $f^{(j)}$ steht für die j-te Ableitung von f, und die $Bernoulli-Zahlen\ B_j$ sind $B_2=1/6,\ B_4=-1/30...$ Wir betrachten $r_3=\frac{11}{6}\frac{\Delta x}{L_0}$ und $r_{20}=3.59774\frac{\Delta x}{L_0}$. Berechnen Sie für beide Zahlen die Näherungen aus Gl. (1) für die Fälle $l=0,\ l=1$ und l=2.

Hinweise: Sie können d) und e) auch dann lösen, wenn Sie a)-c) nicht bearbeitet haben.

Aufgabe 6: Wir betrachten ein Fahrzeug mit Masse m, das sich zum Zeitpunkt t=0 mit der Geschwindigkeit v_0 bewegt, und für $t\geq 0$ durch die Luftreibung gebremst wird. Die Geschwindigkeit v(t) erfüllt die Differentialgleichung

$$\dot{v} = -\alpha v - \beta v^2, \qquad \alpha, \beta \ge 0.$$
 (2)

 $m\alpha v$ und $m\beta v^2$ sind die Beträge der Stokes'schen und der Newton'schen Reibungskraft.

- a) (1 Punkt) Berechnen Sie die Partialbruchzerlegung von $\frac{1}{\alpha v + \beta v^2}$ für $\alpha \neq 0$.
- b) (2 Punkte) Bestimmen Sie v(t). Achten Sie beim Integrieren darauf, dass das Argument des Logarithmus' dimensionslos ist. Drücken Sie die Integrationskonstante durch v_0 aus. Zeichnen Sie v(t) für $0 \le t \le 20s$ für den Fall $v_0 = 36m/s$, $\alpha = 2, 5 \cdot 10^{-2} s^{-1}$, $\beta = 4 \cdot 10^{-3} m^{-1}$. Tragen Sie in die selbe Zeichnung die Lösungen für die Fälle ein, dass $\alpha = 0$ bzw. $\beta = 0$ gesetzt wird.

Hinweise: Sie können analog zur Gl. (10) der Vorlesung vorgehen. Betrachten Sie die Fälle $\alpha = 0$ und $\alpha \neq 0$ getrennt.

c) (2 Punkte) Bestimmen Sie x(t) zur Anfangsbedingung $x(0) = x_0$. Zeichnen Sie den Weg $x(\infty) - x_0$, den das Fahrzeug zum Ausrollen braucht, als Funktion von α für $0 < \alpha \le 2, 5 \cdot 10^{-2} s^{-1}$ für die in b) angegebenen Werte von v_0 und β . Hinweis: Substituieren Sie $z = e^{-\alpha t}$, um das Integral über v(t) zu lösen.