Data of the integrated electricity and gas system

Figure 1 The topology of the test system

Power system

Table I Parameter of the generation units

No	Туре	Min (MW)	Max (MW)	Efficiency (Mm3/day/MW)	Ramping (%/min)
G1	Coal	20	20 250 /		2
G2	Coal	20	250	/	2
G3	Coal	20	180	/	2
G4	Coal	20	240	/	2
G5	Gas	20	250	0.004	10
G6	Gas	20	250	0.004	10

Table II Bidding block of the generation units (MW)

No	Block 1	Block 2	Block 3	Block 4	Block 5
G1	100	45	45	45	45
G2	70	35	35	35	35
G3	60	30	30	30	30
G4	80	40	40	40	40
G5	80	40	40	40	40
G6	80	40	40	40	40

Table III Bidding price of the generation units (\$/MMBtu)

No	Block 1	Block 2	Block 3	Block 4	Block 5
G1	7.6	8.5	9.8	12.6	25.3
G2	7.9	8.7	9.4	19.6	24.1
G3	7.5	9.4	10.6	19.7	23.1
G4	7.6	8.6 10.5 15.6		15.6	19.1
G5	6.6	8.6	10.6	15.5	18.6
G6	8.1	9.5	11.2	15.5	18.8

Table IV Parameter of the branch

Reactance	Capacity
Ref [1]	Inf.

Gas system

Table V Parameter of the gas suppliers

Na	Min	Max
No	(Mm3)	(Mm3)
W1	0	0.031
W2	0	0.037
W3	0	0.032
W4	0	0.025
W5	0	0.040

Table VI Bidding block of the gas suppliers (Mm3)

No	Block 1	Block 2	Block 3	Block 4	Block 5
W1	0.007	0.006	0.006	0.006	0.006
W2	0.009	0.009	0.007	0.007	0.005
W3	0.008	0.006	0.006	0.006	0.006
W4	0.005	0.005	0.005	0.005	0.005
W5	0.010	0.007	0.007	0.007	0.007

Table VII Bidding price of the generation units (\$/MMBtu)

No	Block 1	Block 2	Block 3	Block 4	Block 5
W1	5.2	6.2	8.5	10.6	13.6
W2	5.2	7.2	9.5	11.5	14.6
W3	5.4	6.5	8.8	11.8	14.2
W4	5.1	6.5	8.2	8.2 9.8	
W5	6.9	8.7	9.4	11.4	14.5

Table VIII Parameter of the pipeline

С	Bar	Capacity
Ref	[2]	Inf.

Data of the MEDs

The electricity, gas, and heat demand of terminal load

The electricity and gas load can refer to the [3].

Table IX Heat demand (MW)

1	2	3	4	5	6	7	8	9	10	11	12
175	168	195	184	165	166	174	181	175	165	156	177
13	14	15	16	17	18	19	20	21	22	23	24
187	177	190	172	170	194	201	187	177	170	165	175

Table X Load portion of the MEDs

No	1	2	3	4	5	6	7	8	9	10
Portion	0.092	0.12	0.095	0.087	0.096	0.089	0.101	0.109	0.103	0.0961

The piecewise function of the MEDs in different k_3

1. $k_3 > k_1 > k_2$

$$\Delta L_{E} = \begin{cases} -P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \rho_{E} > k_{3}\rho_{G} \\ -P_{G2E}^{\max} + P_{P2H} & : \rho_{E} = k_{3}\rho_{G} \\ -P_{G2E}^{\max} + \min\left(L_{H0}, P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ -P_{G2E} + \min\left(L_{H0}, P_{P2H}^{\max}\right) & : \rho_{E} = k_{1}\rho_{G} \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) & : \rho_{E} = k_{1}\rho_{G} \end{cases} \quad \Delta L_{G} = \begin{cases} k_{1}P_{G2E}^{\max} + \min\left(L_{H0}, P_{G2H}^{\max}\right) & : \rho_{E} > k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + P_{G2H} & : \rho_{E} = k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{P2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \min\left(0, L_{H0} - P_{H2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \min\left(0, L_{H0} - P_{H2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \min\left(0, L_{H0} - P_{H2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \min\left(0, L_{H0} - P_{H2H}^{\max}\right) & : k_{1}\rho_{G} < \rho_{E} < k_{3}\rho_{G} \\ k_{1}P_{G2E}^{\max} + \min\left(0, L_{H0} - P_{H2H}^{$$

2. $k_1 > k_3 > k_2$

$$\Delta L_E = \begin{cases} -P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ \rho_E > k_1 \rho_G \\ -P_{G2E} + \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ \rho_E = k_1 \rho_G \\ \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ k_3 \rho_G < \rho_E < k_1 \rho_G \\ P_{P2H} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) & : \ k_2 \rho_G < \rho_E < k_3 \rho_G \end{cases} \quad \Delta L_G = \begin{cases} k_1 P_{G2E}^{\max} + \min\left(L_{H0}, P_{G2H}^{\max}\right) & : \ \rho_E = k_1 \rho_G \\ \min\left(L_{H0}, P_{G2H}^{\max}\right) & : \ k_3 \rho_G < \rho_E < k_1 \rho_G \\ \min\left(L_{H0}, P_{G2H}^{\max}\right) & : \ k_2 \rho_G < \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) & : \ k_2 \rho_G < \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) + P_{P2G} & : \ \rho_E = k_2 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) + P_{P2G} & : \ \rho_E < k_2 \rho_G \end{cases} \quad \max\left(0, L_{H0} - P_{P2H}^{\max}\right) - k_2 P_{P2G} & : \ \rho_E < k_2 \rho_G \\ \max\left(0, L_{H0} - P_{P2H}^{\max}\right) - k_2 P_{P2G} & : \ \rho_E < k_2 \rho_G \end{cases}$$

3. $k_1 > k_2 > k_3$

$$\Delta L_E = \begin{cases} -P_{G2E}^{\max} + \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ \rho_E > k_1 \rho_G \\ -P_{G2E} + \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ \rho_E = k_1 \rho_G \\ \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ \rho_E = k_1 \rho_G \\ \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ k_2 \rho_G < \rho_E < k_1 \rho_G \\ \max\left(0, L_{H0} - P_{G2H}^{\max}\right) & : \ k_2 \rho_G < \rho_E < k_1 \rho_G \\ \max\left(0, L_{H0} - P_{G2H}^{\max}\right) + P_{P2G} & : \ \rho_E = k_2 \rho_G \\ \max\left(0, L_{H0} - P_{G2H}^{\max}\right) + P_{P2G}^{\max} & : \ k_3 \rho_G < \rho_E < k_2 \rho_G \\ P_{P2H} + P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E = k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{P2H}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{P2G}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0}, P_{H0}^{\max}\right) - k_2 P_{H0}^{\max} & : \ \rho_E < k_3 \rho_G \\ \min\left(L_{H0},$$

Parameter of the ECE in the MEDs

Table XI Capacity of ECE in the MEDs (MW)

No	P2G	G2E 1	G2E 2	P2H	G2H
MED 1	15	10	10	20	10
MED 2	15	10	10	20	20

MED 3	15	10	10	20	20
MED 4	15	10	10	10	10
MED 5	15	10	10	20	15
MED 6	15	10	10	20	20
MED 7	15	10	10	25	10
MED 8	15	10	10	10	25
MED 9	15	10	10	10	25
MED 10	15	10	10	20	20

Bidding example of the MEDs

Table XII Bidding price of the MEDs' self-elasticity curve (\$/MMBtu)

Price	Block 1	Block 2	Block 3	Block 4	Block 5
Electricity Price	13.5	11	9	8	7
Gas Price	11	10	9.5	8	6.5

The bidding price of a MED's complementary-elasticity curve is listed in Table XIII.

Table XIII Bidding price of the MEDs' complementary-elasticity curve (\$/MMBtu)

No	Price	Block 1	Block 2	Block 3	Block 4	Block 5
MED 1	Electricity Price	16	16.7	11.76	10	5.6
	Gas Price	12	7	8	9	10

Data of the clearing algorithm

Table XIV The initial values for clearing algorithm

Lagrange multipliers	Shared variables	Penalty factor		
α^0, β^0	$\overline{P_{\scriptscriptstyle i,t}^0}, \overline{Q_{\scriptscriptstyle i,t}^0}, \overline{P_{\scriptscriptstyle d,t}^0}, \overline{Q_{\scriptscriptstyle d,t}^0}$	$ ho_{g}^{0}, ho_{d}^{0}$		
1	0	0.1		

- [1] https://matpower.org/docs/ref/matpower5.0/case ieee30.html
- [2] D. De Wolf and Y. Smeers, "The gas transmission problem solved by an extension of the simplex algorithm," Management Science, vol. 46, no. 11, pp. 1454–1465, 2000.
- [3] C. Wang, W. Wei, J. Wang, F. Liu, and S. Mei, "Strategic Offering and Equilibrium in Coupled Gas and Electricity Markets," IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 290–306, Jan. 2018.