MSA Final Project - Spectrum Estimation with Compressive Sensing

Motivation

The data model is $x(n)=\sum_{p=1}^P\sigma_pe^{j2\pi f_pn}s_p(n)+w(n)$. We know that $s_p(n)=e^{j\pi/6}$; therefore, $\tilde{x}(n)=\sum_{p=1}^P\sigma_pe^{j2\pi f_pn}+\tilde{w}(n)$ where $\tilde{x}(n)=e^{-j\pi/6}x(n)$ and $\tilde{w}(n)=e^{-j\pi/6}w(n)$. Notice that $\tilde{w}(n)$ is still white gaussian with the same statistical characteristic.

Rewrite the above equation in matrix form, we have:

$$egin{bmatrix} ilde{x}(1) \ ilde{x}(2) \ dots \ ilde{x}(N) \end{bmatrix} = egin{bmatrix} \mathbf{v}(f_1) & \mathbf{v}(f_2) & \dots & \mathbf{v}(f_G) \end{bmatrix} egin{bmatrix} \sigma_{sparse}(1) \ \sigma_{sparse}(2) \ dots \ \sigma_{sparse}(G) \end{bmatrix} + egin{bmatrix} ilde{w}(1) \ ilde{w}(2) \ dots \ ilde{w}(N) \end{bmatrix}$$

where N is number of samples, G is the frequency grid. Notice that σ_{sparse} is P-sparse; therefore, we can apply the compressive sensing methods for the estimation.

We define
$$\mathbf{A} = egin{bmatrix} \mathbf{v}(f_1) & \mathbf{v}(f_2) & \dots & \mathbf{v}(f_G) \end{bmatrix}$$
 .

Descriptions of the estimators

This project implements four compressive sensing algorithms: Orthogonal Matching Pursuit (OMP), Compressive Sampling Matching Pursuit (CoSaMP), Iterative Hard Threshold (IHT) and Hard Thresholding Pursuit (HTP).

OMP

(1) Project Residual on Basis.

$$\mathbf{r_p} = \mathbf{A}^H (\mathbf{ ilde{x}} - \mathbf{A}oldsymbol{\sigma}_{sparse})$$

(2) Find largest Projection Basis

$$i = rg \max(\mathbf{r_p})$$

(3) Add it to the support

$$supp(oldsymbol{\sigma}_{sparse}) \leftarrow supp(oldsymbol{\sigma}_{sparse}) \cup \{i\}$$

(4) Find the LS solution corresponding to the given support. Notice that we take the real part since σ is a real-valued vector ($\mathbf{M}^{\#}$ denotes the pseudo inverse of \mathbf{M})

$$oldsymbol{\sigma}_{sparse}{}_{supp(oldsymbol{\sigma}_{sparse})} = \Re(\mathbf{A}_{:,supp(oldsymbol{\sigma}_{sparse})}^\# \mathbf{ ilde{x}})$$

(5) Repeat (1)-(4) for s times.

CoSaMP

(1) Project Residual on Basis.

$$\mathbf{r_p} = \mathbf{A}^H (\mathbf{ ilde{x}} - \mathbf{A}oldsymbol{\sigma}_{sparse})$$

(2) Find 2s largest Projection Basis

$$\mathcal{I} = rg \max(\mathbf{r_p}, 2s)$$

(3) Add it to the support

$$supp(oldsymbol{\sigma}_{sparse}) \leftarrow supp(oldsymbol{\sigma}_{sparse}) \cup \mathcal{I}$$

(4) Find the LS solution corresponding to the given support.

$$oldsymbol{\sigma}_{sparse}{}_{supp(oldsymbol{\sigma}_{sparse})} = \Re(\mathbf{A}_{:,supp(oldsymbol{\sigma}_{sparse})}^{\#}\mathbf{ ilde{x}})$$

(5) Find s largest magnitude on $oldsymbol{\sigma}_{sparse}$ leave them and set the others as zero

$$egin{aligned} \mathcal{J} &= rg \max(\mathbf{r_p}, s) \ \sigma_{sparse_{\left\{1,\ldots,G
ight\}/\mathcal{J}}} \leftarrow 0 \end{aligned}$$

(6) Repeat (1)-(5) for s times.

IHT

(1) Update $oldsymbol{\sigma}_{sparse}$ by projection on basis.

$$oldsymbol{\sigma}_{sparse}^{(next)} = oldsymbol{\sigma}_{sparse} + rac{1}{G} \mathbf{A}^H (\mathbf{ ilde{x}} - \mathbf{A} oldsymbol{\sigma}_{sparse})$$

(2) Find s largest value in $oldsymbol{\sigma}_{sparse}$ leave them and set the others as zero

$$\mathcal{I} = rg \max(oldsymbol{\sigma}_{sparse}^{(next)}, s) \ \sigma_{sparse}^{\quad (next)}_{\{1,\ldots,G\}/\mathcal{I}} \leftarrow 0$$

$$oldsymbol{\sigma}_{sparse} \leftarrow oldsymbol{\sigma}_{sparse}^{(next)}$$

(3) Repeat (1)-(2) for s times.

HTP

(1) Update $oldsymbol{\sigma}_{sparse}$ by projection on basis.

$$oldsymbol{\sigma}_{sparse}^{(next)} = oldsymbol{\sigma}_{sparse} + rac{1}{G} \mathbf{A}^H (\mathbf{ ilde{x}} - \mathbf{A} oldsymbol{\sigma}_{sparse})$$

(2) Find s largest value in σ_{sparse}

$$\mathcal{I} = rg \max(oldsymbol{\sigma}_{sparse}^{(next)}, s)$$

(3) Find LS Solution baesd on the support leave them and set the others as zero

$$oldsymbol{\sigma_{sparse}}_{T} = \Re(\mathbf{A}_{:,\mathcal{I}}^{\#}\mathbf{ ilde{x}}) \ \sigma_{sparse}_{\{1,\ldots,G\}/\mathcal{I}} \leftarrow 0$$

(4) Repeat (1)-(3) for s times.

Monte-Carlo experiments

The number of grids for each algorithm is select as follows:

Algorithm	Grid Size
OMP	1000
CoSaMP	200
IHT	200
НТР	200

We find that for CoSaMP, IHT and HTP, when the Grid Size is set larger than 200, it has a large probability to suffer severe degradation. This might results from parllel finding s sparse solution in one single iteration.

The simulation data is generated by the following statistical model:

Var.	Statistical Model
------	-------------------

Var.	Statistical Model		
f	uniform [-0.5,0.5] & independent		
σ	uniform [0.5,1.5] & independent		
σ_w	uniform [0.1,1.5]		

The following table shows the average score for each algorithm in the monte-carlo runs (run for 1000 simulation):

	OMP	CoSaMP	IHT	НТР
Sigma Score (0~10)	8.4020	5.9340	7.2490	5.8030
F Score (0~10)	9.6030	7.9890	7.6740	6.4440
Sigma_w Score (0~5)	4.7240	2.9440	3.5640	3.2790

It is clear that OMP domainates other three algorithm in all three scores; therefore, we choose to estimate the data by the OMP algorithm.

How to run?

- (1) Run "top.m" for generating the estimating results
- (2) Run "test.m" to run monte-carlo simulations on all algorithms

File Description

- top.m: run OMP and generate results
- test.m: monte-carlo runs for all algorithm
- OMP.m: Orthogonal Matching Pursuit Algorithm
- CoSaMP.m: Compressive Sampling Matching Pursuit
- IHT.m: Iterative Hard Threshold
- HTP.m: Hard Thresholding Pursuit
- MSA_Final.mat: Input signal
- MSA_Final_Results.mat: Results of estimation