SEDSI 2022

Tobin Turner

2022-02-15

Contents

1	SEDSI 2022						
2	Motivation						
3	Real life example						
4	Son	ne Options	11				
	4.1	Spring 2022	11				
	4.2	Or a figure	12				
	4.3	Or an Image	13				
	4.4	Or an Equation	14				
	4.5	Or a table of something	14				
5	Woı	rkflow Summary	15				
	5.1	R (engine) and Rstudio (IDE)	15				
	5.2	bookdown package	16				
	5.3	github	16				
	5.4	netlify	17				
6	Lab	3: coronavirus visualization, data wrangling, and dates	19				
	6.1	Let's look like Applied Analytics Superstars and make some neat	10				

4 CONTENTS

SEDSI 2022

Reproducible Data and RMarkdown Tobin Turner

Motivation

A COVID Classroom

A Learning Management System Nightmare

Concise, Precisely Organized, Frequently Revised Assignments and Schedules

Date	Topic
Wednesday, February 16, 2022	SEDSI in Jacksonville
Thursday, February 17, 2022	Present at 2:45 PM
Friday, February 18, 2022	Celebrate a successful DASI Session

Real life example

Show the student data as an en exaple of reproducible research—> then seguway to teacher from reproducible research focus.

Some Options

This is just a cool place to put stuff¹.

Like a schedule, for example:

Footnotes are put inside the square brackets after a caret 2 . Like this one.1

Spring 2022 4.1

Date	Topic
Monday, January 10, 2022 Wednesday, January 12, 2022 Friday, January 14, 2022 Monday, January 17, 2022	R basics and install R basics and workflows QUIZ 1 MLK Holiday
Wednesday, January 19, 2022 Friday, January 21, 2022 Monday, January 24, 2022	Objects, Vectors, and Arithmetic QUIZ 2 Summaries and Subscripting

 $[\]frac{1}{2}$ Footnotes are always neat. And useful. Like this one!

4.2 Or a figure

4.3 Or an Image

4.3.1 Hero 1

4.3.2 Hero 2

	mpg	cyl	disp	hp	drat	wt	qsec	vs
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1

Table 4.2: A table of the first 10 rows of the mtcars data.

4.4 Or an Equation

Here is a ${\bf fun}$ equation for my SEDSI DASI friends:

$$f\left(k\right) = \binom{n}{k} p^{k} \left(1 - p\right)^{n - k} \tag{4.1}$$

4.5 Or a table of something

4.5.1 Fun example table

Workflow Summary

5.1~R~(engine) and Rstudio (IDE)

5.2 bookdown package

5.3 github

5.4. NETLIFY 17

5.4 netlify

Lab 3: coronavirus visualization, data wrangling, and dates

The package is available on GitHub here and is updated daily.

I use the coronavirus package and use the coronavirus::update_data() function to keep the data current. This also has the dates preformatted which can be nice.

6.1 Let's look like Applied Analytics Superstars and make some neat visuals.

```
coronavirus::update_dataset()
#> Rows: 627405 Columns: 15
#> -- Column specification ------
#> Delimiter: ","
#> chr (8): province, country, type, iso2, iso3, combined_...
#> dbl (6): lat, long, cases, uid, code3, population
#> date (1): date
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> Updates are available on the coronavirus Dev version, do you want to update? n/Y
```

```
library(coronavirus)
library(dplyr)
library(ggplot2)
```

I'd recommend you always start by trying to understand a bit about the data.

```
head(coronavirus)
           date province country
                                             long
                                                       type
                                    lat
#> 1 2020-01-22 Alberta Canada 53.9333 -116.5765 confirmed
#> 2 2020-01-23 Alberta Canada 53.9333 -116.5765 confirmed
#> 3 2020-01-24 Alberta Canada 53.9333 -116.5765 confirmed
#> 4 2020-01-25 Alberta Canada 53.9333 -116.5765 confirmed
#> 5 2020-01-26 Alberta Canada 53.9333 -116.5765 confirmed
#> 6 2020-01-27 Alberta Canada 53.9333 -116.5765 confirmed
     cases
           uid iso2 iso3 code3
                                   combined key population
#> 1
        0 12401 CA CAN
                            124 Alberta, Canada
                                                  4413146
                           124 Alberta, Canada
#> 2
        0 12401
                 CA CAN
                                                  4413146
#> 3
        0 12401
                  CA CAN
                            124 Alberta, Canada
                                                  4413146
#> 4
        0 12401
                  CA CAN
                            124 Alberta, Canada
                                                  4413146
#> 5
         0 12401
                  CA CAN
                            124 Alberta, Canada
                                                  4413146
#> 6
         0 12401
                            124 Alberta, Canada
                  CA CAN
                                                   4413146
    continent_name continent_code
#> 1 North America
#> 2 North America
                               NA
#> 3 North America
                               NA
     North America
                               NA
                               NA
#> 5 North America
#> 6 North America
                               NA
```

For example, what does this summary let us know?

1. Can you create a visual showing the cases over time for Russia, Spain, US, and Venezuela? Also, why might filter(cases >= 0) be worth using?

$6.1.\ \ LET'S\ LOOK\ LIKE\ APPLIED\ ANALYTICS\ SUPERSTARS\ AND\ MAKE\ SOME\ NEAT\ VISUALS. 21$

2. Can you show deaths over time for Russia, Spain, US, and Venezuela? And can you play with your geoms and make something neat?

22CHAPTER 6. LAB 3: CORONAVIRUS VISUALIZATION, DATA WRANGLING, AND DATES

3. Now let's do a plot of COVID rate (# confirmed cases / population). Something like this.

- 4. What is and **is not** useful about the previous illustration?
- 5. Make a chart with cumulative cases. Something like this:

$6.1.\ \ LET'S\ LOOK\ LIKE\ APPLIED\ ANALYTICS\ SUPERSTARS\ AND\ MAKE\ SOME\ NEAT\ VISUALS. 23$

6. With a little more time and a few extra packages, we ${f could}$ make a graph prettier. Try.

library(scales)
library(ggrepel)
library(glue)
library(lubridate)

Source: github.com/RamiKrispin/coronavirus

7. Now let's **really** have some fun. Let's illustrate death rates relative to confirmed cases. Why is this more challenging than anything we've done so far in this lab? We're going to have to make this data **tidy**.

One way to play this game.

Let's make a little table of just date, country, and deaths (with a meaning-ful variable name), and then count observations by coutry just to make sure eveything looks nice.

```
date country deaths
#> 1 2020-01-22 Russia
                              0
#> 2 2020-01-23
                 Russia
                              0
#> 3 2020-01-24
                 Russia
                              0
#> 4 2020-01-25
                 Russia
                              0
                              0
#> 5 2020-01-26
                 Russia
#> 6 2020-01-27
                 Russia
#>
       country
#> 1
        Russia 748
#> 2
         Spain 745
#> 3
            US 748
#> 4 Venezuela 747
```

Let's make a little table of just confirmed cases.

6.1. LET'S LOOK LIKE APPLIED ANALYTICS SUPERSTARS AND MAKE SOME NEAT VISUALS.25

```
#>
          date country confirmed
#> 1 2020-01-22 Russia
#> 2 2020-01-23 Russia
                               0
#> 3 2020-01-24 Russia
                               0
#> 4 2020-01-25 Russia
                              0
#> 5 2020-01-26 Russia
                              0
#> 6 2020-01-27 Russia
#>
      country
                n
       Russia 748
#> 1
#> 2
       Spain 748
#> 3
          US 748
#> 4 Venezuela 748
```

Let's join these together. I use $left_join$.

#>		date	country	deaths	confirmed
#>	1	2020-01-22	Russia	0	0
#>	2	2020-01-23	Russia	0	0
#>	3	2020-01-24	Russia	0	0
#>	4	2020-01-25	Russia	0	0
#>	5	2020-01-26	Russia	0	0
#>	6	2020-01-27	Russia	0	0
#>		country	n		
#>	1	Russia 7	748		
#>	2	Spain 7	748		
#>	3	US 7	748		
#>	4	Venezuela 7	748		

Let's add some cumulative statistics as well.

#>		date	country	deaths	confirmed	<pre>cumulative_cases</pre>
#>	1	2020-01-22	Russia	0	0	0
#>	2	2020-01-23	Russia	0	0	0
#>	3	2020-01-24	Russia	0	0	0
#>	4	2020-01-25	Russia	0	0	0
#>	5	2020-01-26	Russia	0	0	0
#>	6	2020-01-27	Russia	0	0	0
#>		cumulative_	deaths r	rate		
#>	1		0	0		
#>	2		0	0		
#>	3		0	0		
#>	4		0	0		
#>	5		0	0		
#>	6		0	0		

$26 CHAPTER\ 6.\ LAB\ 3:\ \textit{CORONAVIRUS}\ VISUALIZATION,\ DATA\ WRANGLING,\ AND\ DATES$

Now we can plot some more fun stuff.

#>	date	country	deaths
#>	Min. :2020-01-2	22 Length: 2992	Min. : 0.0
#>	1st Qu.:2020-07-2	26 Class : character	1st Qu.: 5.0
#>	Median :2021-01-2	29 Mode :character	Median : 123.0
#>	Mean :2021-01-2	29	Mean : 447.5
#>	3rd Qu.:2021-08-0)4	3rd Qu.: 633.0
#>	Max. :2022-02-0)7	Max. :4442.0
#>			NA's :4
#>	confirmed	cumulative_cases	cumulative_deaths
#>	Min. : -74937	Min. : 0	Min. : 0
#>	1st Qu.: 450	1st Qu.: 12782791	1st Qu.: 16728
#>	Median: 7723	Median : 23178262	Median : 97790
#>	Mean : 33599	Mean : 41557773	Mean :132138
#>	3rd Qu.: 27682	3rd Qu.:100031030	3rd Qu.:240231
#>	Max. :1369637	Max. :100527313	Max. :358016
#>			NA's :2120
#>	rate		
#>	Min. :-0.036576	3	
#>	1st Qu.: 0.004592	2	
#>	Median : 0.012829)	
#>	Mean : 0.021843	3	
#>	3rd Qu.: 0.023418	3	
#>	Max. : 3.840391		

$6.1.\ \ LET'S\ LOOK\ LIKE\ APPLIED\ ANALYTICS\ SUPERSTARS\ AND\ MAKE\ SOME\ NEAT\ VISUALS.27$

#> NA's :4

Cumulative deaths from COVID-19, selected countries

Source: github.com/RamiKrispin/coronavirus