

CSI 436/536 (Fall 2024) Machine Learning

Lecture 2: Review of Linear Algebra

Chong Liu

Assistant Professor of Computer Science

Aug 29, 2024

Announcement

- Office hours:
 - Instructor: Tue 1:30-2:30pm @ HU 25
 - TA: Wed 1:30-2:30pm @ HU 25
 - Starting next week
- Enroll in Gradescope!
 - Entry code: EV6862
 - All homework via Gradescope
- No participation score today
 - Starting next week

Today's agenda

- Key objects:
 - Vector, matrix
- Operations:
 - Matrix-vector multiplication, matrix-matrix multiplication
- Properties vectors:
 - Norm (one vector), distance and angle (two vectors), linear (in)dependence, orthogonality (a "bag" of vectors)
- Properties of a matrix:
 - Rank, trace, determinant, symmetric, invertible
- Eigenvalues and eigenvectors

Vector and matrix

- Geometric meaning of a vector:
 - An arrow pointing from 0
 - A point in a coordinate system

$$\boldsymbol{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$$

- Matrix is a "bag" of vectors.
 - n-column vectors or m-row vectors.

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}.$$

Norms are "metrics". A few useful properties:

Generally, a vector norm is a mapping $\mathbb{R}^n \to \mathbb{R}$, with the properties

- \bullet $||x|| \ge 0$, for all x
- ||x|| = 0, if and only if x = 0
- $\bullet ||\alpha x|| = |\alpha|||x||, \alpha \in \mathbb{R}$
- $\bullet ||x+y|| \le ||x|| + ||y||$, for all x and y

l_p -norm is the most used vector norm

• Definition:

$$\|\mathbf{x}\|_p := \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}$$

- Different norms:
 - When p=1, l_1 -norm, Taxicab norm, Manhattan norm $\|m{x}\|_1 \coloneqq \sum_{i=1}^n |x_i|$
 - When $p=2,\,l_2$ -norm, Euclidean norm, quardratic norm, square norm
 - In literature, ||x|| usually denotes Euclidean norm

$$\|oldsymbol{x}\|_2 := \sqrt{x_1^2+\cdots+x_n^2}$$

• When $p \to \infty$, l_{∞} -norm

$$\|\mathbf{x}\|_{\infty} := \max_i |x_i|$$

In-class exercise

• Find l_1 -norm, l_2 -norm, l_{∞} -norm of vector x = [1,2,3,4,-5].

• Answer: $15, \sqrt{55}, 5$.

Properties of two vectors

- What can you do with them?
 - Add

•
$$z = x + y$$

•
$$[5,6,-2] = [1,3,5] + [4,3,-7]$$

•
$$g = x - y$$

•
$$[-3,0,12] = [1,3,5] - [4,3,-7]$$

• Weighted combination / linear combination

•
$$h = x + 2y$$

•
$$[9,10,-9] = [1,3,5] + 2 * [4,3,-7]$$

Relationship (similarity) of two vectors

Direction

- Angle
 - Dot product / inner product

•
$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$

•
$$\theta = cos^{-1} \left(\frac{\langle x, y \rangle}{\|x\| \|y\|} \right)$$

Three interpretations of matrix-vector Multiplication

- Interpretation 1: "Projecting x to m-directions"
 - Treat matrix A is as a "bag" of row-vectors
 - A is a m by n matrix
 - x is a n-dimensional vector

•
$$Ax = \begin{bmatrix} 6 & 2 & 4 \\ -1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 24 \\ -9 \end{bmatrix}$$

Projecting x from 3 dimensions to 2 dimensions.

Three interpretations of Matrix-Vector Multiplication

- Interpretation 2: "Weighted linear combination of column vectors"
 - Treat matrix A is as a "bag" of column-vectors
 - A is a m by n matrix
 - x is a n-dimensional vector

•
$$Ax = \begin{bmatrix} 6 & 2 & 4 \\ -1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 24 \\ -9 \end{bmatrix}$$

- The weight of column 1 is 4
- The weight of column 2 is -1

• ...

Three interpretations of matrix-vector Multiplication

- Interpretation 3: "A linear transformation of input vector x"
 - Treat matrix A is as an "operator" or a "function that takes a vector input and output another vector" $A: \mathbb{R}^n \to \mathbb{R}^m$

Scaling transformations can also be written as $A = \lambda I_2$ where I_2 is the identity matrix

In-class exercise: map each pixel to a new location

b) The **smiley face** visible to the right is transformed with various linear transformations represented by matrices A – F. Find out which matrix

$$\begin{array}{llll}
A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, & B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, & C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \\
D = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}, & E = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, & F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}/2$$

Matrix-Matrix multiplication

• Let $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$. Then, $C = AB = (c_{ij}) \in \mathbb{R}^{m \times n}$ is defined as follows:

$$c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}, ext{ for all } i=1,\cdots,m, j=1,\cdots,n.$$

- Key things to remember
 - Dimension check!
- Properties of a scalar-scalar multiplications (which ones are still valid for matrix-matrix multiplication?)
 - Commutative law: AB=BA?
 - Associative law: (AB)C=A(BC)?
 - Distributive law: A(B+C)=AB+BC?

Examples of matrix-matrix multiplication

Inner product and outer product of two vectors

$$\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^\mathsf{T} = egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} egin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = egin{bmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \ u_2 v_1 & u_2 v_2 & u_2 v_3 \ u_3 v_1 & u_3 v_2 & u_3 v_3 \ u_4 v_1 & u_4 v_2 & u_4 v_3 \end{bmatrix}$$

- Page rank (mathematics behind Google Search)
 - https://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

Neural networks

Computational Complexity of matrix Multiplication?

How many dot product needed? (A is m by n and B is n by p)

Fun fact: complexity of matrix multiplication is still an open problem

- 2 by 2 matrix multiplication
 - Naïve algorithm takes 8 multiplication
 - Strassen showed that one can get away with 7
- Divide and conquer gives $O(n^{\log_2 7}) \approx O(n^{2.807})$
 - Improves over $O(n^3)$ for reasonable sized matrices

Actually used in practice!

Timeline of matrix multiplication exponent

Year	Bound on omega	Authors
1969	2.8074	Strassen ^[1]
1978	2.796	Pan ^[11]
1979	2.780	Bini, Capovani [it], Romani ^[12]
1981	2.522	Schönhage ^[13]
1981	2.517	Romani ^[14]
1981	2.496	Coppersmith, Winograd ^[15]
1986	2.479	Strassen ^[16]
1990	2.3755	Coppersmith, Winograd ^[17]
2010	2.3737	Stothers ^[18]
2013	2.3729	Williams ^{[19][20]}
2014	2.3728639	Le Gall ^[21]
2020	2.3728596	Alman, Williams ^{[6][22]}
2022	2.371866	Duan, Wu, Zhou ^[3]
2023	2.371552	Williams, Xu, Xu, and Zhou ^[2]

Properties of a bag of vectors: linear independence

Important to consider for machine learning algorithm design

- Given a set of vectors $\{v_1, v_2, \cdots, v_n\} \in \mathbb{R}^m$, with $m \geq n$, consider the set of **linear combinations** $y = \sum_{j=1}^n \alpha_j v_j$ for arbitrary coefficients α_j 's.
- The vectors $\{v_1, v_2, \cdots, v_n\}$ are linearly independent, if $\sum_{j=1}^n \alpha_j v_j = 0$, if and only if $\alpha_j = 0$ for all $j = 1, \cdots, n$.
- Implication: if a set of vectors are linearly dependent, then one of them can be written as a linear combination of the others

In-class exercise: linear independence

Are these vectors linear dependent?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

Yes, because that $2v_1 + v_2 - v_3 = 0$. Or equivalently, $v_3 = 2v_1 + v_2$.

Discussion: are these vectors linearly independent?

When they are linearly independent, we call this "bag" of vectors a basis. A basis of size m *spans* an m-dimensional vector space.

• A set of m linearly independent vectors of \mathbb{R}^m is called a **basis** in \mathbb{R}^m : any vector in \mathbb{R}^m can be expressed as a linear combination of the basis vectors.

Properties of basis

- Vectors in a basis are mutually orthogonal
 - Dot product of any two of them is 0.

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Properties of a matrix

- General matrix
 - Rank: max number of independent column vectors / row vectors
 - Transpose: switch rows and columns

$$A \in \mathbb{R}^{m \times n}$$
 $A^T \in \mathbb{R}^{n \times m}$

- Square matrix
 - Trace: Sum of diagonal elements
 - Determinant:

$$tr\left(\begin{bmatrix} 5 & 3 & 5 \\ 4 & -1 & 2 \\ 2 & 0 & 7 \end{bmatrix}\right) = 5 - 1 + 7 = 11.$$
 $\det\left(\begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}\right) = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} = ad - bc$

Invertible matrix

$$A^{-1}A = I$$

Orthogonal matrix

$$A^{-1} = A^T$$

Symmetric matrix

$$A^T = A$$

Eigenvalues and eigenvectors of a (square) matrix

Let A be a $n \times n$ matrix. The vector $v \neq 0$ that satisfies

$$Av = \lambda v$$

for some scalar λ is called the eigenvector of A and λ is the eigenvalue corresponding to the eigenvector v.

- **1** A is symmetric, then $\lambda \in \mathbb{R}$.
- 2 A is symmetric and positive semi-definite, then $\lambda \geq 0$
- 3 A is symmetric and positive definite, then $\lambda > 0$

Positive (semi)-definite matrix

Very important property for optimization, kernel methods

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite, if and only if $x^T A x \geq 0$, for any $x \in \mathbb{R}^n$.
 - All eigenvalues of A are non-negative.
 - X^TAX for any $X \in \mathbb{R}^{n \times m}$ is positive semi-definite.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite, if and only if $x^T A x > 0$, for any $0 \neq x \in \mathbb{R}^n$.
 - All eigenvalues of A are positive.
 - All diagonal entries of A are positive.

In class exercise: prove $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ is a positive definite matrix

• Solution 1: prove $x^T A x \ge 0$ for any vector x.

- Solution 2: prove all eigenvalues of A are all non-negative.
 - Hint: solve $det(A \lambda I) = 0$ to find eigenvalues.