Exercice

Soient $\Re(O, x, y, z)$ un référentiel absolu supposé galiléen muni de la base orthonormée directe $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ et $\Re_1(O, x_1, y_1, z_1)$ un référentiel relatif muni de la base orthonormée directe $(\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\varphi}, \overrightarrow{i})$. Au cours du temps, les axes (Ox) et (Ox_1) restent colinéaires. Dans le plan vertical (yOz), une tige circulaire de centre C et de rayon a est maintenue fixe. Un anneau M de masse m glisse sans frottement sur la tige circulaire. Il est repéré par $OM = 2asin\varphi\overrightarrow{e}_{\rho}$ où $\varphi = (\overrightarrow{j}, \overrightarrow{OM})$. On désigne par $(\overrightarrow{\tau}, \overrightarrow{n}, \overrightarrow{i})$ la base de Frénet comme l'indique la figure (\overrightarrow{n}) est le vecteur dirigé vers le centre de cercle).

Figure 1: Figure d'étude

Toutes les expressions vectorielles doivent être exprimées dans la base $(\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\varphi}, \overrightarrow{i})$.

- 1. Vérifier que la vitesse de rotation de \mathfrak{R}_1 par rapport à \mathfrak{R} est donnée par $\overrightarrow{\Omega}(\mathfrak{R}_1/\mathfrak{R}) = \dot{\varphi}\overrightarrow{i}$.
- 2. Répondre aux questions suivantes :
 - (a) Calculer $\overrightarrow{V}_r(M)$ et $\overrightarrow{V}_a(M)$ respectivement les vitesses relative et absolue de M.
 - (b) En déduire $\overrightarrow{\tau}$ le vecteur tangent à la trajectoire.
 - (c) Déterminer \overrightarrow{n} le vecteur normal à la trajectoire.
- 3. Déterminer $\overrightarrow{\gamma}_r(M)$ l'accélération relative de M.
- 4. Déterminer $\overrightarrow{\gamma}_e(M)$ l'accélération d'entrainement de M.
- 5. Déterminer $\overrightarrow{\gamma}_c(M)$ l'accélération de Coriolis de M.
- 6. En déduire $\overrightarrow{\gamma}_a(M)$ l'accélération absolue de M.