Analysis of Fibonacci Heaps

He Sun

Amortized Analysis via Potential Method

INSERT: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

• EXTRACT-MIN: actual $\mathcal{O}(\operatorname{trees}(H) + d(n))$

amortized $\mathcal{O}(d(n))$?

■ DECREASE-KEY: actual $\mathcal{O}(\# \text{ cuts}) < \mathcal{O}(\text{marks}(H))$ amortized $\mathcal{O}(1)$?

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

21 39 41

Lifecycle of a node

Amortized Analysis of Decrease-Key

Actual Cost -

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

First Coin → pays cut Second Coin \sim increase of trees(H)

Change in Potential -

- trees(H') = trees(H) + x
- marks $(H') \le \text{marks}(H) x + 2$

$$\Rightarrow \Delta \Phi \le x + 2 \cdot (-x + 2) = 4 - x.$$

Scale up potential units

Amortized Cost ----

$$\widetilde{c}_i = c_i + \Delta \Phi \le \mathcal{O}(x+1) + 4 - x = \mathcal{O}(1)$$

Amortized Analysis of EXTRACT-MIN

Actual Cost —

• EXTRACT-MIN: $\mathcal{O}(\operatorname{trees}(H) + d(n))$

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential

- \blacksquare marks(H') ? < marks(H)
- trees $(H') \le d(n) + 1$
- $\Rightarrow \Delta \Phi \leq d(n) + 1 \text{trees}(H)$

Amortized Cost -

$$\widetilde{c}_i = c_i + \Delta \Phi \le \mathcal{O}(\operatorname{trees}(H) + d(n)) + d(n) + 1 - \operatorname{trees}(H) = \mathcal{O}(d(n))$$

How to bound d(n)?

Fibonacci Numbers

For k = 2, 3, ..., the kth Fibonacci number is defined by

$$F_k = F_{k-1} + F_{k-2}.$$

In particular, $F_0 = 0$ and $F_1 = 1$.

We can write

$$F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}},$$

where

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618, \qquad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618.$$

Lower Bounding Degrees of Children

We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \le \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees

$$\Rightarrow \boxed{\forall 1 \leq i \leq k \colon \quad d_i \geq i - 2}$$

From Degrees to Minimum Subtree Sizes

$$\forall 1 \leq i \leq k : d_i \geq i - 2$$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

By induction, we have that

$$N(k) \ge 2 + \sum_{i=2}^{k} N(i-2).$$

Homework

 $N(k) \ge F(k+2)$, where F(k) is the kth Fibonacci number.

Exponential Growth of Fibonacci Numbers

Lemma 19.4

For all integers $k \geq 0$, the (k+2)nd Fib. number satisfies $F(k+2) \geq \varphi^k$, where $\varphi = (1+\sqrt{5})/2 = 1.61803\dots$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $φ^1 \approx 1.619 < 2$ ✓
- Inductive Step $(k \ge 2)$:

$$\begin{split} F(k+2) &= F(k+1) + F(k) \\ &\geq \varphi^{k-1} + \varphi^{k-2} \qquad \text{(by the inductive hypothesis)} \\ &= \varphi^{k-2} \cdot (\varphi+1) \\ &= \varphi^{k-2} \cdot \varphi^2 \qquad \qquad (\varphi^2 = \varphi+1) \\ &= \varphi^k \qquad \qquad \Box \end{split}$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN amortized cost $\mathcal{O}(d(n))$ $\mathcal{O}(\log n)$
- DECREASE-KEY amortized cost $\mathcal{O}(1)$

$$n \ge N(k) \ge F(k+2) \ge \varphi^k$$

$$\Rightarrow \qquad \log_{\varphi} n \ge k$$

What if we don't have marked nodes?

• INSERT: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\operatorname{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n)) \neq \mathcal{O}(\log n)$

$$\Phi(H) = \operatorname{trees}(H)$$

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Мінімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	Can we perform EXTRACT-MIN in $o(\log n)$?	
DELETE	$\mathcal{O}(1)$	$O(\log n)$		
If this was possible, then there would be a sorting algorithm with runtime $o(n \log n)!$				
EXTRACT-MIN = MIN + DELETE				

Recent Studies of Fibonacci Heaps

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

