Linearized Equations of Motion

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2014

- Develop linear equations to describe small
- Apply to aircraft dynamic equations

perturbational motions

Reading: Flight Dynamics234-242, 255-266, 274-297, 321-325, 329-330

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html
http://www.princeton.edu/~stengel/FlightDynamics.html

1

How Is System Response Calculated?

- Linear and nonlinear, time-varying and timeinvariant dynamic models
 - Numerical integration ("time domain")
- Linear, time-invariant (LTI) dynamic models
 - Numerical integration ("time domain")
 - State transition ("time domain")
 - Transfer functions ("frequency domain")

Integration Algorithms

$$\mathbf{x}(T) = \mathbf{x}(0) + \int_{0}^{T} \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t) \right] dt$$

· Rectangular (Euler) Integration

$$\mathbf{x}(t_k) = \mathbf{x}(t_{k-1}) + \delta \mathbf{x}(t_{k-1}, t_k)$$

$$\approx \mathbf{x}(t_{k-1}) + \mathbf{f} \left[\mathbf{x}(t_{k-1}), \mathbf{u}(t_{k-1}), \mathbf{w}(t_{k-1}) \right] \delta t$$

$$\delta t = t_k - t_{k-1}$$

Trapezoidal (modified Euler) Integration (~MATLAB's ode23)

$$\mathbf{x}(t_{k}) \approx \mathbf{x}(t_{k-1}) + \frac{1}{2} \left[\delta \mathbf{x}_{1} + \delta \mathbf{x}_{2} \right]$$
where
$$\delta \mathbf{x}_{1} = \mathbf{f} \left[\mathbf{x}(t_{k-1}), \mathbf{u}(t_{k-1}), \mathbf{w}(t_{k-1}) \right] \delta t$$

$$\delta \mathbf{x}_{2} = \mathbf{f} \left[\mathbf{x}(t_{k-1}) + \delta \mathbf{x}_{1}, \mathbf{u}(t_{k}), \mathbf{w}(t_{k}) \right] \delta t$$

See MATLAB manual for descriptions of *ode45* and *ode15s*

Numerical Integration:
MATLAB Ordinary Differential Equation
Solvers*

•	Explicit Runge-Kutta
	Algorithm

- Adams-Bashforth-Moulton Algorithm
- Numerical Differentiation Formula
- Modified Rosenbrock Method
- · Trapezoidal Rule
- Trapezoidal Rule w/Back Differentiation

Solver	Problem Type	Order of Accuracy	When to Use
ode45	Nonstiff	Medium	Most of the time. This should be the first solver you try.
ode23	Nonstiff	Low	For problems with crude error tolerances or for solving moderately stiff problems.
ode113	Nonstiff	Low to high	For problems with stringent error tolerances or for solving computationally intensive problems.
ode15s	Stiff	Low to medium	If ode45 is slow because the problem is stiff.
ode23s	Stiff	Low	If using crude error tolerances to solve stiff systems and the mass matrix is constant.
ode23t	Moderately Stiff	Low	For moderately stiff problems if you need a solution without numerical damping.
ode23tb	Stiff	Low	If using crude error tolerances to solve stiff systems.

* http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/ode23.html. Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol. 18, 1997, pp 4-22.

Nominal and Actual Trajectories

Nominal (or reference) trajectory and control history

$$\left\{\mathbf{x}_{N}(t),\mathbf{u}_{N}(t),\mathbf{w}_{N}(t)\right\}$$
 for t in $\left[t_{o},t_{f}\right]$

x : dynamic state **u** : control input w: disturbance input

- Actual trajectory perturbed by
 - Small initial condition variation, $\Delta x_0(t_0)$
 - Small control variation, $\Delta u(t)$

$$\begin{aligned} \left\{ \mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t) \right\} & \text{for } t \text{ in } [t_o, t_f] \\ = \left\{ \mathbf{x}_N(t) + \Delta \mathbf{x}(t), \mathbf{u}_N(t) + \Delta \mathbf{u}(t), \mathbf{w}_N(t) + \Delta \mathbf{w}(t) \right\} \end{aligned}$$

5

Both Paths Satisfy the Dynamic Equations

Dynamic models for the actual and the nominal problems are the same

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t)], \quad \mathbf{x}_{N}(t_{o}) \text{ given}$$

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t)], \quad \mathbf{x}(t_{o}) \text{ given}$$

Differences in initial condition and forcing perturb rate of change and the state

$$\begin{cases} \Delta \mathbf{x}(t_o) = \mathbf{x}(t_o) - \mathbf{x}_N(t_o) \\ \Delta \mathbf{u}(t) = \mathbf{u}(t) - \mathbf{u}_N(t) \\ \Delta \mathbf{w}(t) = \mathbf{w}(t) - \mathbf{w}_N(t) \end{cases} \text{ in } \begin{bmatrix} t_o, t_f \end{bmatrix}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_N(t) + \Delta \dot{\mathbf{x}}(t) \\ \mathbf{x}(t) = \mathbf{x}_N(t) + \Delta \mathbf{x}(t) \end{cases} \text{ in } \begin{bmatrix} t_o, t_f \end{bmatrix}$$

$$\left\{
\begin{array}{l}
\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_{N}(t) + \Delta \dot{\mathbf{x}}(t) \\
\mathbf{x}(t) = \mathbf{x}_{N}(t) + \Delta \mathbf{x}(t)
\end{array}
\right\} \text{ in } \left[t_{o}, t_{f}\right]$$

Approximate Neighboring Trajectory as a Linear Perturbation to the Nominal Trajectory

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t]$$

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_{N}(t) + \Delta \dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}_{N}(t) + \Delta \mathbf{x}(t), \mathbf{u}_{N}(t) + \Delta \mathbf{u}(t), \mathbf{w}_{N}(t) + \Delta \mathbf{w}(t), t]$$

Approximate the new trajectory as the sum of the nominal path plus a linear perturbation

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_{N}(t) + \Delta \dot{\mathbf{x}}(t)$$

$$\approx \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t] + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Delta \mathbf{u}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Delta \mathbf{w}(t)$$

7

Linearized Equation Approximates Perturbation Dynamics

Solve for the nominal and perturbation trajectories separately

Nominal Equation
$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t], \quad \mathbf{x}_{N}(t_{o}) \quad \text{given} \quad \begin{aligned} \dim(\mathbf{x}) &= n \times 1 \\ \dim(\mathbf{u}) &= m \times 1 \\ \dim(\mathbf{w}) &= s \times 1 \end{aligned}$$

Perturbation Equation

$$\Delta \dot{\mathbf{x}}(t) \approx \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}} \Delta \mathbf{x}(t) \Big] + \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}} \Delta \mathbf{u}(t) \Big] + \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}} \Delta \mathbf{w}(t) \Big] \\ \triangleq \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t) + \mathbf{L}(t) \Delta \mathbf{w}(t), \quad \Delta \mathbf{x}(t_{o}) \text{ given} \end{bmatrix}$$

Jacobian Matrices Express Solution Sensitivity to Small Perturbations

Stability matrix, F, is square

$$\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{X}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} \mathbf{g}_{\mathbf{w} = \mathbf{w}_N(t)}$$

9

Sensitivity to Control Perturbations, G

$$\mathbf{G}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} & \cdots & \frac{\partial f_{1}}{\partial u_{m}} \\ \frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}} & \cdots & \frac{\partial f_{2}}{\partial u_{m}} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_{n}}{\partial u_{1}} & \frac{\partial f_{n}}{\partial u_{2}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}} \end{bmatrix}_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}}$$

Sensitivity to Disturbance Perturbations, G

$$\mathbf{L}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} = \begin{bmatrix} \frac{\partial f_1}{\partial w_1} & \frac{\partial f_1}{\partial w_2} & \cdots & \frac{\partial f_1}{\partial w_s} \\ \frac{\partial f_2}{\partial w_1} & \frac{\partial f_2}{\partial w_2} & \cdots & \frac{\partial f_2}{\partial w_s} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial w_1} & \frac{\partial f_n}{\partial w_2} & \cdots & \frac{\partial f_n}{\partial w_s} \end{bmatrix}_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} \mathbf{x}$$

11

Scalar Example

Actual System
$$\dot{x}(t) = ax(t) + bx^2(t) + cu(t) + dw^3(t)$$

Nominal System
$$\dot{x}_N(t) = ax_N(t) + bx_N^2(t) + cu_N(t) + dw_N^3(t)$$

Perturbation System
$$\Delta \dot{x}(t) = a\Delta x(t) + 2bx_N \Delta x(t) + c\Delta u(t) + 3dw_N^2 \Delta w(t)$$

Numerical Example

$$a = 1, b = 2, c = 3, d = 4$$

$$\dot{x}(t) = x(t) + 2x^{2}(t) + 3u(t) + 4w^{3}(t)$$

$$\Delta \dot{x}(t) = \Delta x(t) + 4x_N \Delta x(t) + 3\Delta u(t) + 12w_N^2 \Delta w(t)$$

Comparison of Damped Linear and Nonlinear Systems

Linear Spring

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -10x_1(t) - x_2(t)$$

Displacement

Rate of Change

Spring Damper

Linear plus Stiffening Cubic Spring

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) - 10x_1^3(t) - x_2(t)$$

Linear plus Weakening Cubic Spring

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) + 0.8x_1^3(t) - x_2(t)$$

Spring Force vs. Displacement

13

MATLAB Simulation of Linear and Nonlinear Dynamic Systems

MATLAB Main Script

% Nonlinear and Linear Examples clear tspan = [0 10];xo = [0, 10];[t1,x1 = ode23('NonLin',tspan,xo);xo = [0, 1];[t2,x2] = ode23('NonLin',tspan,xo);xo = [0, 10];[t3,x3] = ode23('Lin',tspan,xo);xo = [0, 1];[t4,x4] = ode23('Lin',tspan,xo);subplot(2,1,1)plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g') ylabel('Position'), grid subplot(2,1,2)plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g') xlabel('Time'), ylabel('Rate'), grid

Linear System

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -10x_1(t) - x_2(t)$$

function xdot = Lin(t,x)
% Linear Ordinary Differential Equation
% x(1) = Position
% x(2) = Rate
xdot = [x(2)
-10*x(1) - x(2)];

Nonlinear System

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) + 0.8x_1^3(t) - x_2(t)$$

```
function xdot = NonLin(t,x)
% Nonlinear Ordinary Differential Equation
% x(1) = Position
% x(2) = Rate
xdot = [x(2)
-10*x(1) + 0.8*x(1)^3 - x(2)]; 14
```


Linear and nonlinear responses are indistinguishable with small initial condition

Linear and Weakening Cubic Springs: Small and Large Initial Conditions

17

Stiffening Linear-Cubic Spring Example

Nonlinear, time-invariant (NTI) equation

Linear, Time-Varying (LTV)

Approximation of

Perturbation Dynamics

$$\dot{x}_1(t) = f_1 = x_2(t)$$

$$\dot{x}_2(t) = f_2 = -10x_1(t) - 10x_1^3(t) - x_2(t)$$

Integrate equations to produce nominal path

$$\begin{bmatrix} x_{1_N}(0) \\ x_{2_N}(0) \end{bmatrix} \Rightarrow \int_0^{t_f} \begin{bmatrix} f_{1_N} \\ f_{2_N} \end{bmatrix} dt \Rightarrow \begin{bmatrix} x_{1_N}(t) \\ x_{2_N}(t) \end{bmatrix} \quad in \quad [0, t_f]$$

Analytical evaluation of partial derivatives

$$\frac{\partial f_1}{\partial x_1} = 0; \quad \frac{\partial f_1}{\partial x_2} = 1$$

$$\frac{\partial f_2}{\partial x_1} = -10 - \frac{30x_{1_N}^2(t)}{30x_2}; \quad \frac{\partial f_2}{\partial x_2} = -1$$

$$\frac{\partial f_2}{\partial u} = 0; \quad \frac{\partial f_1}{\partial w} = 0$$

$$\frac{\partial f_2}{\partial u} = 0; \quad \frac{\partial f_2}{\partial w} = 0$$

$$\frac{\partial f_1}{\partial u} = 0; \quad \frac{\partial f_1}{\partial w} = 0$$

$$\frac{\partial f_2}{\partial u} = 0; \quad \frac{\partial f_2}{\partial w} = 0$$

Nominal (NTI) and Perturbation (LTV) Dynamic Equations

Nonlinear, time-invariant (NTI) nominal equation

$$\begin{aligned} \dot{\mathbf{x}}_{N}(t) &= \mathbf{f}[\mathbf{x}_{N}(t)], \quad \mathbf{x}_{N}(0) \ given \\ \dot{x}_{1_{N}}(t) &= x_{2_{N}}(t) \\ \dot{x}_{2_{N}}(t) &= -10x_{1_{N}}(t) - 10x_{1_{N}}^{3}(t) - x_{2_{N}}(t) \end{aligned}$$

Example
$$\begin{bmatrix} x_{1_N}(0) \\ x_{2_N}(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \end{bmatrix}$$

Perturbations approximated by linear, time-varying (LTV) equation

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t), \quad \Delta \mathbf{x}(0) \ given$$

$$\begin{bmatrix} \Delta \dot{x}_1(t) \\ \Delta \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -(10 + 30x_{1_N}^2(t)) & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1(t) \\ \Delta x_2(t) \end{bmatrix}$$

19

Comparison of Approximate and Exact Solutions

Initial Conditions

$$x_{2_N}(0) = 9$$

$$\Delta x_2(0) = 1$$

$$x_{2_N}(t) + \Delta x_2(t) = 10$$

$$x_2(t) = 10$$

 $\mathbf{x}_{N}(t)$ $\Delta \mathbf{x}(t)$

$$\mathbf{x}_N(t) + \Delta \mathbf{x}(t)$$

 $\mathbf{x}(t)$

$$\dot{\mathbf{x}}_{N}(t)$$

 $\Delta \dot{\mathbf{x}}(t)$

$$\dot{\mathbf{x}}_N(t) + \Delta \dot{\mathbf{x}}(t)$$

$$\dot{\mathbf{x}}(t)$$

 $\dot{\mathbf{x}}(t)$

Suppose Nominal Initial Condition is Zero

Nominal solution remains at equilibrium

$$\dot{\mathbf{x}}_N(t) = \mathbf{f}[\mathbf{x}_N(t)], \quad \mathbf{x}_N(0) = 0, \quad \mathbf{x}_N(t) = 0 \text{ in } [0, \infty]$$

Perturbation equation is linear and time-invariant (LTI)

$$\begin{bmatrix} \Delta \dot{x}_1(t) \\ \Delta \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ [-10 - 30(0)] & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1(t) \\ \Delta x_2(t) \end{bmatrix}$$

21

Separation of the Equations of Motion into Longitudinal and Lateral-Directional Sets

Rigid-Body Equations of Motion (Scalar Notation)

State Vector

Rate of change of Translational Velocity

$$\dot{u} = X / m - g \sin \theta + rv - qw$$

$$\dot{v} = Y / m + g \sin \phi \cos \theta - ru + pw$$

$$\dot{w} = Z / m + g \cos \phi \cos \theta + qu - pv$$

 Rate of change of Translational Position

$$\dot{x}_I = (\cos\theta\cos\psi)u + (-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi)v + (\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi)w$$

$$\dot{y}_I = (\cos\theta\sin\psi)u + (\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi)v + (-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi)w$$

$$\dot{z}_I = (-\sin\theta)u + (\sin\phi\cos\theta)v + (\cos\phi\cos\theta)w$$

Rate of change of Angular Velocity $(I_{xy} = I_{yz} = 0)$

$$\begin{split} \dot{p} &= \left(I_{zz}L + I_{zz}N - \left\{I_{zz}\left(I_{yy} - I_{zz} - I_{zz}\right)p + \left[I_{zz}^2 + I_{zz}\left(I_{zz} - I_{yy}\right)\right]r\right\}q\right) + \left(I_{zz}I_{zz} - I_{zz}^2\right) \\ \dot{q} &= \left[M - \left(I_{zz} - I_{zz}\right)pr - I_{zz}\left(p^2 - r^2\right)\right] + I_{yy} \\ \dot{r} &= \left[I_{zz}L + I_{zz}N - \left\{I_{zz}\left(I_{yy} - I_{zz} - I_{zz}\right)r + \left[I_{zz}^2 + I_{zz}\left(I_{zz} - I_{yy}\right)\right]p\right\}q\right) + \left(I_{zz}I_{zz} - I_{zz}^2\right) \end{split}$$

 Rate of change of Angular Position

$$\dot{\phi} = p + (q\sin\phi + r\cos\phi)\tan\theta$$

$$\dot{\theta} = q\cos\phi - r\sin\phi$$

$$\dot{\psi} = (q\sin\phi + r\cos\phi)\sec\theta$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ \hline x_6 \\ \hline x_7 \\ x_8 \\ x_9 \\ x_{10} \\ x_{11} \\ x_{12} \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \\ x \\ y \\ \hline z \\ p \\ q \\ r \\ \phi \\ \psi \end{bmatrix}$$

23

Reorder the State Vector

 x_1 и x_2 ν x_3 w X_4 \boldsymbol{x} y x_5 z, x_6 p x_7 q x_8 x_9 φ x_{10} θ x_{11} ψ x_{12}

First six elements of the state are longitudinal variables

Second six elements of the state are lateraldirectional variables

Longitudinal Equations of Motion

Dynamics of velocity, position, angular rate, and angle primarily in the vertical plane

$$\dot{u} = X / m - g \sin \theta + rv - qw \qquad \qquad \triangleq \dot{x}_1 = f_1$$

$$\dot{w} = Z / m + g \cos \phi \cos \theta + qu - pv \qquad \triangleq \dot{x}_2 = f_2$$

$$\dot{x}_{I} = (\cos\theta\cos\psi)u + (-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi)v + (\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi)w \quad \triangleq \dot{x}_{3} = f_{3}$$

$$\dot{z}_{I} = (-\sin\theta)u + (\sin\phi\cos\theta)v + (\cos\phi\cos\theta)w \qquad \qquad \triangleq \dot{x}_{4} = f_{4}$$

$$\dot{q} = \left[M - (I_{xx} - I_{zz}) pr - I_{xz} (p^2 - r^2) \right] \div I_{yy} \quad \triangleq \dot{x}_5 = f_5$$

$$\dot{\theta} = q \cos \phi - r \sin \phi \qquad \qquad \triangleq \dot{x}_6 = f_6$$

$$\dot{\mathbf{x}}_{Lon}(t) = \mathbf{f} \left[\mathbf{x}_{Lon}(t), \mathbf{u}_{Lon}(t), \mathbf{w}_{Lon}(t) \right]$$

$$\dot{\mathbf{x}}_{Lon}(t) = \mathbf{f}[\mathbf{x}_{Lon}(t), \mathbf{u}_{Lon}(t), \mathbf{w}_{Lon}(t)]$$

Lateral-Directional Equations of Motion

Dynamics of velocity, position, angular rate, and angle primarily out of the vertical plane

$$\dot{v} = Y / m + g \sin \phi \cos \theta - ru + pw \qquad \triangleq \dot{x}_7 = f_7$$

$$\dot{y}_I = (\cos \theta \sin \psi) u + (\cos \phi \cos \psi + \sin \phi \sin \theta \sin \psi) v +$$

$$(-\sin \phi \cos \psi + \cos \phi \sin \theta \sin \psi) w \qquad \triangleq \dot{x}_8 = f_8$$

$$\dot{p} = \left(I_{zz}L + I_{xz}N - \left\{I_{xz}\left(I_{yy} - I_{xx} - I_{zz}\right)p + \left[I_{xz}^{2} + I_{zz}\left(I_{zz} - I_{yy}\right)\right]r\right\}q\right) \div \left(I_{xx}I_{zz} - I_{xz}^{2}\right) \triangleq \dot{x}_{9} = f_{9}$$

$$\dot{r} = \left(I_{xz}L + I_{xx}N - \left\{I_{xz}\left(I_{yy} - I_{xx} - I_{zz}\right)r + \left[I_{xz}^{2} + I_{xx}\left(I_{xx} - I_{yy}\right)\right]p\right\}q\right) \div \left(I_{xx}I_{zz} - I_{xz}^{2}\right) \triangleq \dot{x}_{10} = f_{10}$$

$$\dot{\phi} = p + (q\sin\phi + r\cos\phi)\tan\theta \triangleq \dot{x}_{11} = f_{11}$$

$$\dot{\psi} = (q\sin\phi + r\cos\phi)\sec\theta \qquad \triangleq \dot{x}_{12} = f_{12}$$

$$\dot{\mathbf{x}}_{LD}(t) = \mathbf{f}[\mathbf{x}_{LD}(t), \mathbf{u}_{LD}(t), \mathbf{w}_{LD}(t)]$$

Sensitivity to Small Motions

(12 x 12) stability matrix for the entire system

$$\mathbf{F}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial w} & \cdots & \frac{\partial f_1}{\partial \psi} \\ \frac{\partial f_2}{\partial u} & \frac{\partial f_2}{\partial w} & \cdots & \frac{\partial f_2}{\partial \psi} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_{12}}{\partial u} & \frac{\partial f_{12}}{\partial w} & \cdots & \frac{\partial f_{12}}{\partial \psi} \end{bmatrix}$$

Four (6 x 6) blocks distinguish longitudinal and lateral-directional effects

Effects of longitudinal perturbations on longitudinal motion

Effects of lateral-directional perturbations on longitudinal motion

$$\mathbf{F} = \begin{bmatrix} \mathbf{F}_{Lon} & \mathbf{F}_{Lat-Dir}^{Lon} \\ \hline \mathbf{F}_{Lon}^{Lat-Dir} & \mathbf{F}_{Lat-Dir} \end{bmatrix}$$

Effects of longitudinal perturbations on lateral-directional motion

Effects of lateral-directional perturbations on lateral-directional motion

27

Sensitivity to Small Control Inputs

(12 x 6) control matrix for the entire system

$$\mathbf{G}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial \delta E} & \frac{\partial f_1}{\partial \delta T} & \frac{\partial f_1}{\partial \delta F} & \frac{\partial f_1}{\partial \delta A} & \frac{\partial f_1}{\partial \delta A} & \frac{\partial f_1}{\partial \delta R} & \frac{\partial f_1}{\partial \delta SF} \\ \frac{\partial f_2}{\partial \delta E} & \frac{\partial f_2}{\partial \delta T} & \frac{\partial f_2}{\partial \delta F} & \frac{\partial f_2}{\partial \delta A} & \frac{\partial f_2}{\partial \delta A} & \frac{\partial f_2}{\partial \delta R} & \frac{\partial f_2}{\partial \delta SF} \\ \frac{\partial f_{12}}{\partial \delta E} & \frac{\partial f_{12}}{\partial \delta T} & \frac{\partial f_{12}}{\partial \delta F} & \frac{\partial f_{12}}{\partial \delta A} & \frac{\partial f_{12}}{\partial \delta A} & \frac{\partial f_{12}}{\partial \delta A} & \frac{\partial f_{12}}{\partial \delta SF} \end{bmatrix}$$

Four (6 x 3) blocks distinguish longitudinal and lateraldirectional control effects

Effects of longitudinal controls on longitudinal motion

Effects of lateral-directional controls on longitudinal motion

$$\mathbf{G} = \begin{bmatrix} \mathbf{G}_{Lon} & \mathbf{G}_{Lat-Dir}^{Lon} \\ \mathbf{G}_{Lon}^{Lat-Dir} & \mathbf{G}_{Lat-Dir} \end{bmatrix}$$

Effects of longitudinal controls on lateral-directional motion

Effects of lateral-directional controls on lateral-directional motion

Sensitivity to Small Disturbance Inputs

$\mathbf{w}(t) = 1$	$u_{w}(t)$	Axial wind, m / s
	$u_{w}(t)$ $w_{w}(t)$	Normal wind, m / s
	$q_{_{\scriptscriptstyle W}}(t)$	Pitching wind shear, deg / s or rad / s
	$q_{w}(t) \\ v_{w}(t)$	Lateral wind, m / s
	$p_{w}(t)$	Rolling wind shear, deg / s or rad / s
	$r_{w}(t)$	Yawing wind shear, deg / s or rad / s

 Four (6 x 3) blocks distinguish longitudinal and lateral-directional effects

Effects of longitudinal disturbances on longitudinal motion

Effects of lateral-directional disturbances on longitudinal motion

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{Lon} & \mathbf{L}_{Lat-Dir}^{Lon} \\ \mathbf{L}_{Lon}^{Lat-Dir} & \mathbf{L}_{Lat-Dir} \end{bmatrix}$$

Effects of longitudinal disturbances on lateral-directional motion

Effects of lateral-directional disturbances on lateral-directional motion

29

 $\Delta p_w(t)$

 $\Delta r_{w}(t)$

Decoupling Approximation for Small Perturbations from Steady, Level Flight

Restrict the Nominal Flight Path to the Vertical Plane

 Nominal lateraldirectional motions are zero

$$\begin{vmatrix} \dot{\mathbf{x}}_{Lat-Dir_N} &= \mathbf{0} \\ \mathbf{x}_{Lat-Dir_N} &= \mathbf{0} \end{vmatrix}$$

 Nominal longitudinal equations reduce to

$$\dot{u}_{N} = X / m - g \sin \theta_{N} - q_{N} w_{N}$$

$$\dot{w}_{N} = Z / m + g \cos \theta_{N} + q_{N} u_{N}$$

$$\dot{x}_{I_{N}} = (\cos \theta_{N}) u_{N} + (\sin \theta_{N}) w_{N}$$

$$\dot{z}_{I_{N}} = (-\sin \theta_{N}) u_{N} + (\cos \theta_{N}) w_{N}$$

$$\dot{q}_{N} = \frac{M}{I_{yy}}$$

$$\dot{\theta}_{N} = q_{N}$$

31

Restrict the <u>Nominal</u> Flight Path to Steady, Level Flight

- Specify nominal airspeed (V_N) and altitude $(h_N = -z_N)$
- · Calculate conditions for trimmed (equilibrium) flight
 - See Flight Dynamics and FLIGHT program for a solution method

$$0 = X / m - g \sin \theta_N - q_N w_N$$

$$0 = Z / m + g \cos \theta_N + q_N u_N$$

$$V_N = (\cos \theta_N) u_N + (\sin \theta_N) w_N$$

$$0 = (-\sin \theta_N) u_N + (\cos \theta_N) w_N$$

$$0 = \frac{M}{I_{yy}}$$

$$0 = q_N$$

Trimmed State Vector is constant

$$\begin{bmatrix} u \\ w \\ z \\ q \\ \theta \end{bmatrix}_{Trim} = \begin{bmatrix} u_{Trim} \\ w_{Trim} \\ V_N(t-t_0) \\ z_N \\ 0 \\ \theta_{Trim} \end{bmatrix}$$

Small Longitudinal and Lateral- Directional Perturbation Effects are

Uncoupled in Steady, Symmetric, Level Flight

- Assume the airplane is symmetric and its nominal path is steady, level flight
 - Small longitudinal and lateral-directional perturbations are <u>approximately</u> uncoupled from each other
 - (12 x 12) system is
 - · block diagonal
 - constant, i.e., linear, time-invariant (LTI)
 - · decoupled into two separate (6 x 6) systems

E _	\mathbf{F}_{Lon}	0
I -	0	$\mathbf{F}_{Lat-Dir}$

C –	\mathbf{G}_{Lon}	0
G –	0	$\mathbf{G}_{Lat-Dir}$

33

(6 x 6) LTI Longitudinal Perturbation Model

Dynamic Equation

$$\Delta \dot{\mathbf{x}}_{Lon}(t) = \mathbf{F}_{Lon} \Delta \mathbf{x}_{Lon}(t) + \mathbf{G}_{Lon} \Delta \mathbf{u}_{Lon}(t) + \mathbf{L}_{Lon} \Delta \mathbf{w}_{Lon}(t)$$

State Vector

$$\Delta \mathbf{x}_{Lon} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta x_4 \\ \Delta x_5 \\ \Delta x_6 \end{bmatrix}_{Lon} = \begin{bmatrix} \Delta u \\ \Delta w \\ \Delta x \\ \Delta z \\ \Delta q \\ \Delta \theta \end{bmatrix}$$

$$\Delta \mathbf{u}_{Lon} = \begin{bmatrix} \Delta \delta T \\ \Delta \delta E \\ \Delta \delta F \end{bmatrix}$$

Disturbance Vector

$$\Delta \mathbf{w}_{Lon} = \begin{bmatrix} \Delta u_{wind} \\ \Delta w_{wind} \\ \Delta q_{wind} \end{bmatrix}$$

34

LTI Longitudinal Response to Initial Pitch Rate

(6 x 6) LTI Lateral-Directional Perturbation Model

Dynamic Equation

$$\Delta \dot{\mathbf{x}}_{Lat-Dir}(t) = \mathbf{F}_{Lat-Dir} \Delta \mathbf{x}_{Lat-Dir}(t) + \mathbf{G}_{Lat-Dir} \Delta \mathbf{u}_{Lat-Dir}(t) + \mathbf{L}_{Lat-Dir} \Delta \mathbf{w}_{Lat-Dir}(t)$$

State Vector

$$\Delta \mathbf{x}_{Lat-Dir} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta x_4 \\ \Delta x_5 \\ \Delta x_6 \end{bmatrix}_{Lat-Dir} = \begin{bmatrix} \Delta v \\ \Delta y \\ \Delta p \\ \Delta r \\ \Delta \phi \\ \Delta \psi \end{bmatrix}$$

Control Vector

$$\Delta \mathbf{u}_{Lat-Dir} = \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \\ \Delta \delta SF \end{bmatrix}$$

Disturbance Vector

$$\Delta \mathbf{w}_{Lon} = \begin{bmatrix} \Delta v_{wind} \\ \Delta p_{wind} \\ \Delta r_{wind} \end{bmatrix}$$

LTI Lateral-Directional Response to Initial Yaw Rate

Next Time: Longitudinal Dynamics

Reading:
Flight Dynamics
452-464, 482-486
Airplane Stability and Control
Chapter 7

Supplemental Material

39

How Do We Calculate the Partial Derivatives?

$$\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}$$

$$\mathbf{G}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}}$$

$$\mathbf{L}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}$$

- Numerically
 - First differences in f(x,u,w)
- Analytically
 - Symbolic evaluation of analytical models of F, G, and L

Numerical Estimation of the Jacobian Matrix, F(t)

$$f_{1}\begin{bmatrix} \left(x_{1} + \Delta x_{1}\right) \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} - f_{1}\begin{bmatrix} \left(x_{1} - \Delta x_{1}\right) \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} - f_{1}\begin{bmatrix} \left(x_{1} - \Delta x_{1}\right) \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} = f_{1}\begin{bmatrix} \left(x_{1} - \Delta x_{2}\right) \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} - f_{1}\begin{bmatrix} \left(x_{2} - \Delta x_{2}\right) \\ \dots \\ x_{n} \end{bmatrix} - f_{1}\begin{bmatrix} \left(x_{2} - \Delta x_{2}\right) \\ \dots \\ x_{n} \end{bmatrix} = \frac{1}{2\Delta x_{1}} + \frac{1}{2\Delta x_{2}} + \frac{1}{2\Delta x_{2}} + \frac{1}{2\Delta x_{2}} = \frac{1}{2\Delta x_{2}} + \frac{1}{2\Delta x_{2}} = \frac{1}{2\Delta x_{2}} + \frac{1}{2\Delta x_{2}} = \frac{1}{2\Delta x_{2}} + \frac{1}{2\Delta x_{2}} + \frac{1}{2\Delta x_{2}} = \frac{1}{2\Delta x_{2}} = \frac{1}{2\Delta x_{2}} + \frac{1}{2\Delta x_{2}} = \frac{1$$

Continue for all $n \times n$ elements of F(t)

41

Numerical Estimation of the Jacobian Matrix, G(t)

Continue for all $n \times m$ elements of G(t)

Numerical Estimation of the Jacobian Matrix, L(t)

Continue for all $n \times s$ elements of L(t)

43