Classification d'images

Sommaire

- 1. Contexte
- 2. Projet
- 3. Données
- 4. CNN
- 5. Transfert learning
- 6. API
- 7. Conclusion

Contexte et projet :

- association de protection des animaux.
- temps de référencer les images des animaux qu'ils ont accumulées depuis plusieurs années.

- 1. Prétraitement
- 2. CNN
- 3. Transfert learning
- 4. Point d'entrée API (web app)

Python / Notebook Jupyter / Colab /

DONNÉES

DONNÉES

Stanford Dogs Dataset

L'ensemble de données de Stanford Dogs contient des **20,580 images de 120 races de chiens** du monde entier.

Cet ensemble de données a été construit à l'aide d'images et d'annotations d'ImageNet pour la tâche de catégorisation fine des images.

cairn

CNN

Démarche

- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Conv2D - 16 (3x3)

MaxPooling (2x2)

Démarche

- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Conv2D - 16 (3x3)

MaxPooling (2x2)

Conv2D - 32 (3x3)

MaxPooling (2x2)

Sur-apprentissage

- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Image augmentation

Dropout

Image augmentation

Sur-apprentissage

Sur-apprentissage

TensorFlow Hub

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Layer (type)	Output Shape	Param #
========================= keras_layer (KerasLayer)	(None, 1280)	======================================
dense (Dense)	(None, 120)	153720

TensorFlow Hub

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Dense (120, relu)

Image augmentation

Dropout

TensorFlow Hub

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Dense (120, relu)

Image augmentation

Dropout

TensorFlow Hub

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Dense (120, relu)

Image augmentation

Dropout

TensorFlow Hub

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Dense (120, relu)

Image augmentation

Dropout

TensorFlow Hub

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Dense (120, relu)

Image augmentation

Dropout

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Image augmentation

Hypertuning

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Image augmentation

Keras tuner

Ir = [0.1, 0.01, 0.001]

Hypertuning

- MobilNet V2
- loss = Categorical_Crossentropy
- Callback "val_loss", patience = 10
- Validation split = 0.33
- Dense layer (120, softmax)

Image augmentation

Ir = 0.001

Accuracy = 0.80

Prédictions

Model predictions (blue: correct, red: incorrect)

API

MobilNet V2

https://dogs-prediction.herokuapp.com/

CONCLUSION

Dash

PERSPECTIVES

Perspectives

- Autres modèles de transfert learning
- Whitening
- Image augmentation plus faible
- Différentes librairies (ex = PyTorch)

MERCI!

@xavbarbier

https://www.linkedin.com/in/barbierxavier/

https://github.com/xavierbarbier/

contact@xavierbarbier.com