University of Copenhagen

Union-Find

Author: William Henrich Due

1 Definitions

Definition 1.1 (Union-Find). The union-find data structure U represents a partition of a set S if:

- 1. $a \neq \emptyset$ for all $a \in \mathcal{C}(U)$
- 2. $a \cap b = \emptyset$ for all $a, b \in \mathcal{C}(U)$ where $a \neq b$
- 3. $\bigcup_{a \in \mathcal{C}(U)} a = S$

where $\mathcal{C}: \mathbb{P}(U) \to \mathbb{P}(\mathbb{P}(S))$ converts the data structure U into a partition of S.

Definition 1.2 (Union-Find Set). The set $\mathbb{U}_n := \mathbb{P}(\mathbb{N}_{\leq n} \times (\mathbb{N}_{\leq n} \cup \{0\}))$ is the set of all union-find data structures of size n. Each element $U \in \mathbb{U}_n$ is a set containing tuples (i, p) where:

- 1. $i \in \mathbb{N}_{\leq n}$ is a unique index identifying the element i.e. $|\{\pi_1(u) : u \in U\}| = n$.
- 2. $p \in \mathbb{N}_{\leq n} \cup \{0\}$ is the index of the parent element. If p = 0 then the element is a root.

Definition 1.3 (Cycle). A cycle exists in a set $U \in \mathbb{U}_n$ if:

- 1. i = p for some $(i, p) \in U$ or
- 2. $p_1 = i_2, p_2 = i_3, \dots, p_m = i_1$ for some $(i_1, p_1), (i_2, p_2), \dots, (i_m, p_m) \in U$ where m > 1.

Definition 1.4 (Find Root). The root of an element i in a cycleless union-find data structure $U \in \mathbb{U}_n$ is denoted $\mathcal{P}_U : \mathbb{N}_{\leq n} \to \mathbb{N}_{\leq n}$ defined as:

$$\mathcal{P}_{U}(i) := \begin{cases} i & \text{if } p = 0 \\ \mathcal{P}_{U}(p) & \text{if } p \neq 0 \end{cases} \text{ where } (j, p) \in U \land i = j.$$

The root represents the set that the element i belongs to, i.e. all elements with the same root belong to the same set.

Proposition 1.1 (Termination of Find Root). The function $\mathcal{P}_U(i)$ defined in definition 1.3 terminates for all i where $1 \leq i \leq n$ if $U \in \mathbb{U}_n$ has no cycles.

Proof. The proof is trivially true.

Proposition 1.2 (Representation of Union-Find). A cycleless union-find structure $U \in \mathbb{U}_n$ fulfills definition 1.1 for the following conversion function:

$$C(U) := \{ \{ f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p \} : p \in \mathbb{N}_{\leq n} \} \setminus \{\emptyset\}$$

where $f: \mathbb{N}_{\leq n} \to S$ is a bijective function mapping indices to elements in the set S.

Proof. Let $U \in \mathbb{U}_n$ be a union-find data structure fulfilling the three criteria in proposition 1.2. We will show that U fulfills the three criteria in definition 1.1.

- 1. By definition of \mathcal{C} it is clear that $a \neq \emptyset$ for all $a \in \mathcal{C}(D)$ since \mathcal{C} only includes non-empty sets.
- 2. Let $a, b \in \mathcal{C}(D)$ where $a \neq b$ then by definition $a = \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p_a\}$ and $b = \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p_b\}$ for some $p_a, p_b \in \mathbb{N}_{\leq n}$ where $p_a \neq p_b$. Since if $p_a = p_b$ then a = b it follows that $a \cap b = \emptyset$.
- 3. Let $s \in S$ then since U is a union-find data structure of size n there exists $(i, p) \in U$ for some i and p. Let $r = \mathcal{P}_U(i)$ then by definition of \mathcal{C} it follows that $s \in \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = r\} \in \mathcal{C}(U)$. Since s was arbitrary it follows that $\bigcup_{a \in \mathcal{C}(U)} a = S$.

Definition 1.5 (Substitute Parent). The function for substitutin a parent of an element i to p in a cycleless union-find data structure $U \in \mathbb{U}_n$ is denoted $\mathcal{S}_U : \mathbb{N}_{\leq n} \times \mathbb{N}_{\leq n} \to \mathbb{P}(\mathbb{U}_n)$ and defined as:

$$S_U(i,p) := (U \setminus \{(i,p')\}) \cup \{(i,p)\} \text{ where } (i,p') \in U$$

Definition 1.6 (Equivalence Set). The set of equivalent indices of an element i in a cycleless union-find data structure $U \in \mathbb{U}_n$ is defined as:

$$\mathcal{E}_U(i) := \{j : j \in \mathbb{N}_{\leq n} \land \mathcal{P}_U(j) = \mathcal{P}_U(i)\}$$

Definition 1.7 (Equivalent Union-Find Structures). Two cycleless union-find data structures $U, U' \in \mathbb{U}_n$ are equivalent if:

$$\mathcal{E}_{U'}(i) = \mathcal{E}_{U}(i)$$
 for all $i \in \mathbb{N}_{\leq n}$

Definition 1.8 (Well-formed Union). For a cycleless union-find data structure $U \in \mathbb{U}_n$ the union of two elements $i \sim j$ where $i, j \in \mathbb{N}_{\leq n}$ is well-formed if it results in a cycleless union-find data structure $U' \in \mathbb{U}_n$ such that:

- 1. $\mathcal{E}_{U'}(i) = \mathcal{E}_U(i) \cup \mathcal{E}_U(j)$ and
- 2. $\mathcal{E}_{U'}(k) = \mathcal{E}_{U}(k)$ for all $k \in \mathbb{N}_{\leq n} \setminus (\mathcal{E}_{U}(i) \cup \mathcal{E}_{U}(j))$.

Definition 1.9 (Sequential Unions). Given a sequence of union relations $i_1 \sim j_1, i_2 \sim j_2, \ldots, i_m \sim j_m$ where $i_k, j_k \in \mathbb{N}_{\leq n}$ for all $1 \leq k \leq m$ and a initial $U \in \mathbb{U}_n$. The final union-find data structure $U' \in \mathbb{U}_n$ is defined as:

$$U_{0} := \{(i,0) : i \in \mathbb{N}_{\leq n}\}$$

$$q_{k} := \min\{\mathcal{P}_{U_{k-1}}(j_{k}), \mathcal{P}_{U_{k-1}}(i_{k})\} \text{ for } 1 \leq k \leq m$$

$$p_{k} := \max\{\mathcal{P}_{U_{k-1}}(j_{k}), \mathcal{P}_{U_{k-1}}(i_{k})\} \text{ for } 1 \leq k \leq m$$

$$U_{k} := \begin{cases} U_{k-1} & \text{if } p_{k} = q_{k} \\ \mathcal{S}_{U_{k-1}}(q_{k}, p_{k}) & \text{if } p_{k} \neq q_{k} \end{cases} \text{ for } 1 \leq k \leq m$$

$$U' := U_{m}$$

Proposition 1.3 (Sequential Unions is Well-formed). Given a sequence of union relationss $i_1 \sim j_1, i_2 \sim j_2, \ldots, i_m \sim j_m$ where $i_k, j_k \in \mathbb{N}_{\leq n}$ for all $1 \leq k \leq m$ and a cycleless union-find data structure $U \in \mathbb{U}_n$. The final union-find data structure $U' \in \mathbb{U}_n$ defined in definition 1.9 is well-formed.

Proof. To prove that U' is well-formed we need to show that each union in the sequence is well-formed. This can be shown by induction on the index k of the union in the sequence.

- For U_0 it is clear that $\mathcal{E}_{U_0}(i) = \{i\}$ for all $i \in \mathbb{N}_{\leq n}$ since all elements are their own root.
- Assume that U_{k-1} is well-formed for some $1 \leq k \leq m$. We will show that U_k is well-formed. Let $q_k = \min\{\mathcal{P}_{U_{k-1}}(j_k), \mathcal{P}_{U_{k-1}}(i_k)\}$ and $p_k = \max\{\mathcal{P}_{U_{k-1}}(j_k), \mathcal{P}_{U_{k-1}}(i_k)\}$.
 - 1. If $p_k = q_k$ then by definition $U_k = U_{k-1}$ and thus U_k is well-formed by the inductive hypothesis.
 - 2. If $p_k \neq q_k$ then since q_k is a root $(q_k, 0) \in U_{k-1}$ and by definition of S.

$$U_k := (U_{k-1} \setminus \{(q_k, 0)\}) \cup \{(q_k, p_k)\}$$
 where $(q_k, 0) \in U_{k-1}$

Now $p_k = \mathcal{P}_{U_k}(q_k)$ hence $\mathcal{P}_{U_k}(q) = p_k$ for all $q \in \mathcal{E}_{U_{k-1}}(q_k)$. And by definition of p_k it follows that $\mathcal{P}_{U_k}(p) = p_k$ for all $p \in \mathcal{E}_{U_{k-1}}(p_k)$. Thus $\mathcal{E}_{U_k}(i_k) = \mathcal{E}_{U_{k-1}}(i_k) \cup \mathcal{E}_{U_{k-1}}(j_k)$ and since all other elements

are unaffected by the union it follows that $\mathcal{E}_{U_k}(l) = \mathcal{E}_{U_{k-1}}(l)$ for all $l \in \mathbb{N}_{\leq n} \setminus (\mathcal{E}_U(i) \cup \mathcal{E}_U(j))$.

Finally since U_{k-1} is cycleless and q_k is a root it follows that U_k is cycleless and thus U_k is well-formed.