Actuarial Experience Studies and Assumption Setting in R

New York R Conference 2022

Matt Heaphy, FSA, MAAA
June 9, 2022

Agenda

- Primer on actuaries and actuarial modeling
- Experience studies with dplyr
- Assumption setting with tidymodels
- Measuring performance using actuarial models
- Wrap-up

The views herein are based on the speaker's experience and opinions only and do not represent the views of the Society of Actuaries or the American Academy of Actuaries. The

data and analysis included in this presentation are theoretical only and contain simplifying assumptions that may not be true in the real world.

Actuaries and Actuarial Models

What is an Actuary?

An actuary is someone who uses statistics, financial mathematics, and deep domain expertise to quantify, price, and manage risks.

- One of the Original data professions
- Typically practicing in insurance (life, health, P&C) and pensions
- Society of Actuaries: 32K members worldwide¹

Actuarial Models

Actuarial Models are long term projection engines of cashflows, assets, and liabilities

Uses

- Projections / planning
- Valuation
- Pricing
- Risk management

Actuarial Present Value (APV)

- \(v^t\) = discount factor, the value of \$1 t years in the future, assuming a constant discount rate
- \(_{t}p_x^{\tau}\) = the probability that a policy issued at age x survives t years
- \(q_{x+t}^h\) = the probability that a policy age x+t expires due to hazard h
- \(DB_t\), \(SV_t\), \(WD_t\) = death, surrender, and withdrawal claim payments

Experience Studies

Simulated Deferred Annuity Data

Topic: predicting surrender rates on a deferred annuity product with an optional lifetime income benefit.

- Training data: 20,000 policies (3,585 surrendered)
- Test data: 5,000 policies (861 surrendered)

Cross-Tab Example

- pol_yr = policy year
- claims = # contract surrenders
- exposures = # policy years exposed to the hazard (surrenders)
- q_obs = Observed probability of surrender, claims / exposures
- q_exp = Expected probability of surrender
- ae_q_exp = Actual-to-expected ratio, q_obs / q_exp

pol_yr	claims	exposures	q_obs	q_exp	ae_q_exp
1	89	20,000	0.4%	0.4%	88.0%
2	144	18,635	0.8%	0.8%	99.5%
3	101	17,167	0.6%	0.8%	128.0%
4	168	15,773	1.1%	1.0%	96.3%
5	189	14,265	1.3%	1.3%	96.3%
6	173	12,804	1.4%	1.3%	99.7%
7	180	11,365	1.6%	1.6%	99.5%
8	207	9,977	2.1%	2.0%	98.2%
9	228	8,476	2.7%	2.5%	92.2%
10	197	7,010	2.8%	3.0%	106.0%
11	1,090	5,676	19.2%	19.1%	99.6%

Creating Exposure Records

Census data →

pol_yr	age	term	
Policy 1			
3	73	0	
Policy 2			
4	66	1	

Exposed data

pol_yr	age	term		
Policy 1				
1	73	0		
2	74	0		
3	75	0		
Policy 2				
1	66	0		
2	67	0		
3	68	0		
4	69	1		

```
expose <- function(dat) {</pre>
     dat |>
       slice(rep(row number(), pol yr)) |>
       group by (pol num) |>
 4
       mutate(
 6
         term = ifelse(row number() == pol yr, term, 0),
        pol_yr = row number(),
        age = age + pol yr - 1) >
 9
       ungroup()
10 }
11
    (study data <- expose(census))</pre>
# A tibble: 149,367 \times 9
  pol num term pol yr inc guar qual age product gender wd age
    <int> <dbl> <int> <fct> <fct> <dbl> <chr> <int>
                                       60 b
              0
                    1 FALSE
                               TRUE
                                                  F
                                                            64
 2
                               TRUE 61 b
                    2 FALSE
                                                            64
3
              0
                    3 FALSE
                               TRUE 62 b
                                                            64
                               TRUE 63 b
                    4 FALSE
                                                            64
              0
                    5 FALSE
                                       64 b
                               TRUE
                                                            64
 6
             0
                    6 FALSE
                               TRUE 65 b
                                                            64
                               FALSE 79 b
                                                            79
             0
                    1 TRUE
                                                 M
8
                               FALSE 80 b
                                                            79
                    2 TRUE
                                                 M
 9
                               FALSE 81 b
                                                            79
              0
                    3 TRUE
                                                 M
10
                                       82 b
                    4 TRUE
                               FALSE
                                                            79
                                                 M
# ... with 149,357 more rows
```

Experience Summary Function

```
claims exposures q_obs q_exp ae_q_exp 3,585 149,367 2.4% 2.4% 99.7%
```

```
1 study_data2 |> group_by(pol_yr) |>
2 exp_stats(expected = TRUE)
```

Surrender Experience by Policy Year


```
1 study_data2 |> group_by(pol_yr, inc_guar) |>
2 exp_stats(expected = TRUE)
```

Surrender Experience by Policy Year and Income Guarantee

Variable Importance

Variable importance plots can quickly highlight notable features that might otherwise have been missed.

```
1 model_dat <- study_data2 |>
2  mutate(term = as.factor(term))
3
4 rf_rec <- recipe(term ~ ., data = model_dat) |>
5  update_role(pol_num, q_exp, new_role = "ignore")
6
7 rf_spec <- rand_forest() |>
8  set_mode("classification") |>
9  set_engine("ranger", importance = "impurity")
10
11 rf_vip <- workflow(rf_rec, rf_spec) |> fit(model_dat)
```

```
1 library(vip)
2 rf_vip |> extract_fit_parsnip() |> vip()
```


Assumption Setting

Assumption Setting Methods

Goal: fit each model below and compare against observed experience and "correct" experience.

- 1. Traditional Tabular Assumption
- 2. Logistic Regression
- 3. Random Forest

Traditional Tabular Assumptions

- Start with experience studies
- Apply judgment, smoothing, and topsides as needed

```
1 trad_assump <- study_data |> group_by(pol_yr, inc_guar) |> exp_stats()
```

Initial Assumption

Traditional Assumption

One Approach

Naive Assumption

Logistic Regression

```
log spec <- logistic reg() |> set engine("glm")
   log rec <- recipe(term ~ ., data = model dat) |>
     update_role(pol num, q exp, new role = "ignore") |>
 4
     step mutate(sc group = case when (
 6
     pol yr <= 10 ~ "SC Period",
 7
    pol yr == 11 \sim "Shock",
    TRUE ~ "PostShock"
 9
     ) |> factor()) |>
10
    step dummy(all nominal predictors()) |>
11
     step ns(pol yr, age, deg free = 7) |>
     step interact(terms = ~starts with("sc group"):starts_with("inc_guar"))
12
13
     step interact(terms = ~starts with("pol yr"):starts with("inc quar")) |>
14
     step interact(terms = ~starts with("age"):starts with("inc quar"))
15
   log wf <- workflow(log rec, log spec)</pre>
17
18 log model <- fit(log wf, model dat)
```

Performance

Unpenalized Logistic Regression

Random Forest

```
rf spec <- rand forest() |>
     set mode("classification") |>
     set engine("ranger")
 4
   rf rec <- recipe(term ~ ., data = model dat) |>
     update role(pol num, q exp, new role = "ignore") |>
 6
     step mutate(sc group = case when (
     pol yr \leq 10 ~ "SC Period",
    pol yr == 11 \sim "Shock",
    TRUE ~ "PostShock"
10
11
    ) |> factor()) |>
12
    step dummy(all nominal predictors()) |>
13
     step interact(terms = ~starts with("sc group"):starts with("inc guar"))
14
     step interact(terms = ~starts with("pol yr"):starts with("inc guar"))
15
   rf wf <- workflow(rf rec, rf spec)</pre>
17
18 rf model <- fit(rf wf, model dat)
```

Performance

Random Forest

Actuarial Model Performance

Process

- Use the test data for active policies (4,139 records)
- For each model:
 - Generate predictions for future surrender probabilities
 - Calculate actuarial present values

Compare performance against the "correct" assumption

Other Assumptions

- Initial account value = \$2,000
- Annual withdrawals with income benefit = \$100 for life
- Annual withdrawals without income benefit = 5% of account value
- Interest credited rate = 3%
- Mortality = 2012 IAM Basic¹

Results

- All Actual-to-expected ratios near 100%
- Higher RMSE on the logistic model

Assumption	APV	A/E	Abs Diff	RMSE
Random Forest	\$7,376,821	100.0%	\$3,689	5.76
Logistic	\$7,402,574	100.3%	\$22,064	11.97
Tabular	\$7,375,744	99.9%	\$4,766	5.73

Why is the Logistic Model an Outlier?

- Poor fit to surrender rates after year 10
- Extrapolation beyond year 15 is not accurate

Unpenalized Logistic Regression

Results v2

- Applying a bit of post-processing judgment, we cap the pol_yr variable at 15
- The logistic model now performs much better

Assumption	APV	A/E	Abs Diff	RMSE
Random Forest	\$7,376,821	100.0%	\$3,689	5.76
Logistic	\$7,385,579	100.1%	\$5,069	2.69
Tabular	\$7,375,744	99.9%	\$4,766	5.73

Distribution of APV Residuals

Wrap-Up

Lessons

- Modern tools like R and tidymodels save time and unlock deeper insights, resulting in more precise models.
- Assumption setting should always consider downstream usage in actuarial models.

Expertise and professional judgment are still required!

Thank you!