In a Pseudometric Space (X,d), is the set $B(x;r) = \{y \in X: d(x,y) \le r\}$ necessarily a closed set?

Suppose you had the point set 'S' centered around point 'a' and radius 'r'. A second point 'b' such that d(a,b) > r denotes a point from the complement of S. Let a third point 'c' denote some point within a cell centered at 'b', such that $d(b,c) \le \varepsilon$

 $r < d(a,b) \le d(a,c) + d(b,c) \le d(a,c) + \epsilon$ If d(a,c) > r, the point 'c' will not meet S

If $d(a,c) \le r$,

Subtracting d(a,c) from the inequality $0 \le r - d(a,c) < d(a,b) - d(a,c) \le \epsilon$ since d(a,b) - d(a,c) > 0, a new ϵ can always be generated, for example $\epsilon_2 = (d(a,b) - d(a,c))/2$, removing point 'c' from the cell

By the triangle inequality:

The complement of S must then be open, as any limit point captured in the cell of a point from this region could always be removed from the cell by reducing ε . Since the complement of S is open, S must be closed.