Single Transistor Amplifier

Mario Alberto García-Ramíez, PhD

MU-JTSU JI

June 14, 2017

Amplification

Transistor as an amplifier

Intro

- Previously, we applied the input signal either to the base or gate and the output was taken from collector or drain
- ▶ By considering that both transistors have 3-terminals, we can "only" use collector & emitter or drain & source to get the signal
- As before, we're going to use the same 4-resistor configuration, coupling and by-pass capacitors are also used to modify the signal input/output as well as the ac characteristics

Input/Output signals at BJT

Large signal model for BJT allow us to know where the input signal for a forward bias BJT is

$$i_{C} = I_{S} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) \right] i_{B} = \frac{i_{C}}{\beta_{F}} = \frac{I_{S}}{\beta_{F}} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) \right]$$

$$i_{E} = \frac{I_{S}}{\alpha_{F}} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) \right]$$

- ► To increase 'ls' quite a bit, we also need to increase v_{BE} as $v_{BE} = v_B v_E$
- ► A signal needs to be added to base or emitter, collector has no effect whatsoever in terminal currents

Input/Output signals at BJT

- ▶ By increasing I_C & I_E create larger voltages across R_C and R_6
- ▶ As i_B is a β factor smaller than i_C or i_E , base is no used for output signal
- As for the FET, $i_S=i_D=rac{K_n}{2}(v_{GS}-V_{TN})^2$ and $i_G=0$
- ▶ To vary significantly ls, v_{GS} need to change as $v_{GS} = v_G v_S$
- Input signal can be injected though gate or source at FET
- ▶ By varying drain voltage, has a minor effect on terminal currents $(\lambda \neq 0)$, ergo drain is not appropriate for signal injection
- ▶ On the other hand, gate terminal is not used as output terminal due to $i_G = 0$
- ► There are 3-main families of amplifiers: Common-Emitter/Common-Source (C-E/C-S), Common-Base/Common-Gate (C-B/C-G) and Common-Collector/Common-Drain (C-C/C-D)

Common-Emitter/Common-Source (C-E/C-S)

▶ In those diagramas R_6 has been divided between R_4 and C_2

Common-Collector/Common-Drain (C-C/C-D)

- ► In here signals are injected into the base/gate and the output is in emitter or source
- ▶ Collector/drain are bypassed by C_2
- C-C & C-D amplifiers pride a voltage gain =1, moreover, input signals can be fairly large without exceeding the small-signal limits

Common-Base/Common-Gate (C-B/C-G)

- ► ac signals are injected into the emitter/source and extracted from the collector/drain
- ▶ Base/gate terminals are bypassed by C_2 , those are common connections between input/output ports
- ▶ It shows a voltage gain at much lower input resistance

- We consider that we found Q-point and values for I_C and V_{CE} and $R_B = R_1 \mid\mid R_2, R_4$ is eliminated due to C_3 and $R_I = R_C \mid\mid R_3$
- ▶ NOTE: r₀ is removed due to we already know ;)

► Terminal voltage gain is defined as

$$A_{v}^{CE} = \frac{v_0}{v_i} = \left(\frac{v_0}{v_b}\right)\left(\frac{v_b}{v_i}\right) = A_{v}^{CE}\left(\frac{v_b}{v_1}\right) \text{ where } A_{vt}^{CE} = \left(\frac{v_c}{v_b}\right)$$

• as $v_c = -\beta_0 i_b R_L$, we've got that

$$A_{vt}^{CE} = \frac{v_c}{V_b} = -\frac{\beta_0 R_L}{r_{\pi} + (\beta_0 + 1) R_E} \approx -\frac{g_m R_L}{1 + g_m R_E}$$

where $\beta_0\gg 1$ and $\beta_0=g_mr_\pi$

▶ The input resistance is defined as

$$R_{iB} = \frac{v_b}{i_b} = r_\pi + (\beta_0 + 1)R_E \approx r_\pi (1 + g_m R_E)$$

- ▶ The overall input resistance $R_{in}^{CE} = R_B \mid\mid R_{iB}$
- ► The voltage gain of the amplifier, that includes the source resistance, the v_b at the BJT is

$$v_b = v_i \frac{R_B \parallel R_{iB}}{R_I + (R_B \parallel R_{iB})}$$

► As a result of the above equations, the total voltage gain is defined as

$$A_{v}^{CE} = A_{v}^{CE} \left(\frac{v_{b}}{v_{i}} \right) = -\left(\frac{g_{m}R_{L}}{1 + g_{m}R_{E}} \right) \left[\frac{R_{B} \mid\mid R_{iB}}{R_{I} + \left(R_{B} \mid\mid R_{iB} \right)} \right]$$

- If we consider that the source resistance is small $R_I \ll R_B \mid\mid R_{iB}$, we've $A_v^{CE} = A_{vt}^{CE} = -\frac{g_m R_L}{1+g_m R_E}$
- In order to get a large signal as possible we consider a zero resistance at emitter $R_E=0$ $A_v^{CE}\approx -g_mR_L=-g_m(R_C\mid\mid R_3)$ and $A_v^{CE}\approx -10V_{CC}$
- ▶ To amplify the condition for voltage at emitter is: $v_e = (\beta_0 + 1)i_bR_E = \frac{(\beta_0 + 1)R_E}{r_\pi + (\beta_0 + 1)R_E}v_b \approx \frac{g_mR_E}{1 + g_mR_E}v_b \approx v_b$
- As for current $i_E \approx \frac{v_b}{R_E}$, $v_0 = -i_c R_L = -\alpha_0 i_e R_L \approx -i_e R_L$, ergo $A_{vt}^{CE} = -\frac{g_m R_L}{1+g_m R_E} \approx -\frac{R_L}{R_E}$

Resistance at the BJT collector R_{iC} is defined by $R_{th} = R_B \mid\mid R_I$, ergo $R_{iC} = r_0 \left(1 + \frac{\beta_0 R_E}{R_{th} + r_\pi + R_E}\right) + \left(R_{th} + r\pi\right) \mid\mid R_E \approx r_0 \left(1 + \frac{\beta_0 R_E}{R_{th} + r_\pi + R_E}\right)$ by having a few considerations we've got

$$R_{iC} \approx r_0[1 + g_m(R_E || r_\pi)] = r_0 + \mu_f(R_E || r_\pi)$$

The output resistance is defined as

$$R_{out}^{CE} = R_C \mid\mid R_{iC} = R_C \mid\mid r_0 \left(1 + \frac{\beta_0 R_E}{R_{th} + r\pi + R_E} \right)$$

- ▶ In a similar way as for the previous configuration we've got that the source voltage gain is $A_{vt}^{CS} = -\frac{g_m R_L}{1+g_m R_S}$
- ▶ The Common-Source voltage gain general expression is defined as $A_v^{CS} = -\frac{g_m R_L}{1+g_m R_S} \left(\frac{R_G}{R_G + R_I}\right)$

- ▶ Gain for large R_S $A_{vt}^{CS} = -\frac{g_m R_L}{1 + g_m R_S} \approx -\frac{R_L}{R_S}$
- When there is a low resistance at source $A_{\nu}^{C} \approx -g_{m}R_{L} = -g_{m}(R_{D} \mid\mid R_{3})$
- ▶ The common-source output resistance is defined as $R_{out}^{CS} = R_D \mid\mid R_{iD} = R_D \mid\mid r_0(1 + g_m R_S) \approx R_D$

Common-Collector Amplifier

Figure 14.15 (a) ac equivalent circuit for the C-C amplifer. (b) ac equivalent circuit for the C-D amplifer.

- ▶ The voltage gain is defined as $v_0 = (\beta_0 + 1)i_bR_L$, where $R_L = R_3 \mid\mid R_6$
- ▶ the input current is related to the applied voltage as $v_b = i_b r_{\pi} + (\beta_0 + 1)i_b R_I = i_b [r_{\pi} + (\beta_0 + 1)R_I]$

- The input resistance is defined as $R_{iB} = rac{v_b}{i_b} = r_\pi + (eta_0 + 1)R_L pprox r_\pi (1 + g_m R_L)$
- ▶ As for R_{in} , we've $R_{in}^{CC} = R_B \mid\mid R_{iB} = R_B \mid\mid r_\pi (1 + g_m R_L)$, where $R_L = R_6 \mid\mid R_3$
- The overall gain voltage is defined as

$$A_{v}^{CC} = A_{vt}^{CC} \left[\frac{R_B \mid\mid R_{iB}}{R_I + (R_B \mid\mid R_{iB})} \right]$$

• for the MOSFET it is $A_{v}^{CC} = A_{vt}^{CC} \left(\frac{v_b}{v_i} \right)$ ergo,

$$A_{v}^{CC} = A_{vt}^{CC} \left(\frac{R_G}{R_I + R_G} \right)$$

- ▶ The output resistance is defined as $i_{x} = -i \beta_{0}i = \frac{v_{x}}{r\pi + R_{th}} \beta_{0}\left(-\frac{v_{x}}{r\pi + R_{th}}\right), \text{ rearranging terms}$ $R_{iE} = \frac{r_{\pi} + R_{th}}{\beta_{0} + 1} \approx g_{m}^{-1} + R_{th}\beta_{0}^{-1}, \text{ fixing the terms and}$ considering that $\beta_{0} \gg 1$ $R_{iS} = gm^{-1}$
- ▶ The current gain is defined as $A^{CC}_{it} = \frac{i_1}{i} = \beta_0 + 1$ and $A^{CD}_{it} = \infty$

Multistage ac Coupled Amplifiers

Multistage ac Coupled Amplifiers

Multistage ac Coupled Amplifiers

- ▶ In this example, C_1 , C_3 , C_5 , and C_6 are coupling capacitors that provide dc isolation between stages
- It allows independent design of the bias circuitry
- ► C₂ and C₄ are bypass capacitors that are used to get the highest voltage gain from both configurations
- First stage is as CS amp, it has a high input impedance with ish voltage gain, second stage is a CE amp, it gives high voltage gain and the third is a voltage follower, it has los output resistance
- ► According to: M_1 : K_n =10mA/V², V_{TN} =-2V, λ = 0.02 V^{-1} Q_2 : β_F =150, V_A = 80V, V_{BE} =0.7V

 $Q_3:\beta_F$ 80, $V_A=60V$, $V_{BF}=0.7V$