Unidade 3 – Testes para duas amostras relacionadas Teste de Wilcoxon

O teste de Wilcoxon também é utilizado para verificar a existências de diferenças entres duas situações. Difere-se do teste dos Sinais pois agora verificaremos também a magnitude das diferenças entre os pares. Para tal, esse é o primeiro teste que iremos estudar que envolve a atribuição de postos.

Hipóteses:

H_o: os tratamentos não diferem entre si;

H₁: os tratamentos diferem entre si;

Procedimento:

- Determinar a diferença (d_i) , com sinal, entre os pares. Se ocorrer $d_i = 0$, elimina-se o par;
- Atribuir postos aos d_i's independentemente do sinal (módulo). No caso de d_i's iguais, atribuir a média dos postos;
- Determinar T = a menor das somas de postos de mesmo sinal, ou seja, somar todos que tiveram sinal negativo (considere o módulo) e todos que tiveram sinal positivo. T é a menor das duas somas;
- Determinar n = total de di's com sinal (lembre-se que descartamos os valores zero);

- Para decisão:

- se n \leq 25, uma tabela específica mostra os valores críticos de T.
- se T \leq T_{tabelado}, rejeita-se $^{H_{\circ}}$, p \leq α ; se T > T α , aceita-se $^{H_{\circ}}$, p > α .

- se n > 25, utiliza-se a aproximação à distribuição normal, calculando-se o valor de z pela equação:

$$Z = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} \sim N(0,1)$$

Rejeita-se H_0 , se $p \le \alpha$;

Aplicaremos o teste de Wilcoxon no mesmo exemplo feito com o teste dos Sinais.

Exemplo: uma empresa submeteu oito de seus funcionários a um treinamento intensivo sobre um novo método a ser implantado, visando a um maior rendimento na produção. O resultado em número diário de peças produzido está na tabela abaixo. Aplique o teste de Wilcoxon ao nível de significância de 10%, para decidir se o novo método deve substituir o antigo.

Funcionário	Método antigo	Método novo
1	18	24
2	15	14
3	19	22
4	23	28
5	12	16
6	16	20
7	18	20
8	17	18

 $^{\mathrm{H}_{\mathrm{o}}}$: os tratamentos não diferem entre si;

 H_1 : os tratamentos diferem entre si;

Resolução: Primeiramente fazemos as diferenças entre cada par considerando agora a magnitude da diferença

Funcionário	Método antigo	Método novo	Diferença
1	18	24	(18-24) = -6
2	15	14	+1
3	19	22	-3
4	23	28	-5
5	12	16	-4
6	16	20	-4
7	18	20	-2
8	17	18	-1

O próximo passo é fazer a atribuição dos postos para os |di|. Observe que temos diferenças com mesmo |di| (1 e 4). Nesse caso teremos que obter a média dos postos (esse tópico foi abordado nos conceitos iniciais da disciplina). Dessa forma calcularemos os "pré-postos" para somente depois obtermos os posto. Se não houvessem valores iguais, não precisaríamos dos pré-postos.

Funcionário	M antigo	M novo	di	di	Pré-Postos	Postos
1	18	24	(18-24) = -6	6	8	8
2	15	14	+1	1	1	1,5
3	19	22	-3	3	4	4
4	23	28	-5	5	7	7
5	12	16	-4	4	5	5,5
6	16	20	-4	4	6	5,5
7	18	20	-2	2	3	3
8	17	18	-1	1	2	1,5

Lembre-se que os postos dos valores |di| iguais, são a média dos pré-postos. Ou seja, |di|=1 terá posto: (1+2)/2=1,5. |di|=4 terá posto: (5+6)/2=5,5. Após atribuirmos os postos, voltamos com os sinais, para auxiliar na identificação daqueles que tem valores +e -. Depois somamos todos os valores +e -.

di	di	Pré-Postos	Postos
(18-24) = -6	6	8	-8
+1	1	1	+1,5
-3	3	4	-4
-5	5	7	-7
-4	4	5	-5,5
-4	4	6	-5,5
-2	2	3	-3
-1	1	2	-1,5

Somando os negativos: 8 + 4 + 7 + 5,5 + 5,5 + 3 + 1,5 = 34,5

Os positivos: 1,5 (é o único valor).

A estatística do teste, que chamamos de T (o R chama de V), é a menor soma. Assim T=1,5.

Pela tabela do Teste de Wilcoxon, para N=8, $\alpha=0.05$ (bilateral), o valor de $T_{tabelado}$ é 4.

Como o T que calculamos é menor, 1,5 < 4, rejeitamos a hipótese nula, ou seja, existem evidências que os métodos antigo e novo diferem entre si.