Problems from lecture 1

- 1. Solve the problem mentioned in the part Complete metric spaces.
- Let X be a metric space with some metric ρ. Prove that all subsets of X are open iff every subset of X which consists of a single point is open.

Problem mentioned in part Complete metric spaces

A: $\tilde{L}_2(a,b)$ is incomplete. Indeed, consider $\tilde{L}_2(-1,1)$ and prove that the following sequence

$$f_n(x) = \begin{cases} 1, & x \in [1/n, 1], \\ nx, & x \in [-1/n, 1/n], \\ -1, & x \in [-1, -1/n]. \end{cases}$$

is fundamental, but the limit is not in $\tilde{L}_2(-1,1)$ (home assignment task).

Problems from lecture 2

- 1. Write Newton's method for the equation $f(x) = x^2 a = 0$, where a > 0 is a given constant. Find a region where the starting point x_0 should be such that the method converges. **Note:** Use fixed-point theorem.
- 2. Let x_n and y_n be sequences such that $||x_n|| \le 1$ and $||y_n|| \le 1$, $(x_n, y_n) \to 1$. Prove that $||x_n y_n|| \to 0$.
- 3. Let ϕ_k be orthogonal system in H, $x \in H$ and C_k be Fourier coefficients. Prove that if n > m, then

$$||x - \sum_{k=1}^{n} C_k \phi_k|| \le ||x - \sum_{k=1}^{m} C_k \phi_k||$$

4. Let $D_1\supset D_2\supset\dots$ be a sequence of nested closed balls in Banach space. Prove that their intersection is not empty.

Problems from lecture 3

Problem 1

Consider \mathbb{R}^2 with standard scalar product and linear subset L defined as

$$L = \{(x, y) : 2x - y = 0\}$$

with inherited scalar product. Define following functional on L

$$\phi(x,y) = x$$

- Find the norm of $\phi: L \to \mathbb{R}$
- Prove that it can be extended uniquely to R² with the same norm
- Find explicit form of the extended functional

Problem 2

Consider following normed space:

$$B = (C^{\infty}[0,1], ||f(x)|| = \max_{[0,1]} |f(x)|)$$

and linear map

$$\frac{d}{dx}: B \to B$$

Find its norm or show that it is unbounded.