Topikos - Sprint #1

Chino Catane Surya Das Austin Gary

Riana Jara Nhat Le Alex McBride

BRD Updates

Things updated (BRD V2.0):

- 1. SWOT
 - a. Opportunities
 - b. Threats
- 2. Technology & Depth
- 3. User Need

Goals

- 1. Provide news that is localized and more relevant to users
 We want to provide news that is in or near where the user lives. This
 news can consist of crimes, sports, city events, local politics etc.
- 2. Provide news in a way that is easy to access and understand We want to try to give clear, concise summaries of news stories to users so that way they can be informed without having to read long news articles. (However, if they wish to view the actual article, they can view it though a link that will be provided in the summary)

Goals (cont'd)

3. Provide an alternative to social media for news

Many people use social media as their news source. We want to give an alternative app that specifically focuses on presenting news and not a mix of different types of information.

4. Bring innovation to presenting news by having a map interface as the primary interface

We plan to use the Google Maps API to create the primary user interface, where it will pinpoint locations that news has been published in and the user can click to view a summary of that new

User Personas

User Personas

PROJECT: untitled PERSONA: Linda Wood	is	
NAME Linda Woods		TYPE Rational
	Goals: To find a source of new interests, and can help her ke her local area.	
Demographic	Background: As a real estate a housing market, especially of her career. This app can help that's is actually relevant to h	her local area is crucial for her get access to news
Pemale 32 years Solution to the state agent years Pemale 32 years Married	Motivations: In need of a source of news that is actually relevant to her interests	Frustrations: Tired of reading irrelevant news
Technology		
Browsers		

User Personas

User Stories

- As a user I want to be able to sign up for the app using email and password
- As a user I want to be able to login to the app to save my preferences
- As a user I want to be able to retrieve my account
- As a user I want to be able to set my location
- As a user I want to be able to click on a map icon to see the the summary of the article and link to original article
- As a user I want to have a list of articles that I have opened
- As a user I want to be able to periodically update the map and news
- As a user I want to be able to save news
- As a user I want the app to notify me when a news story happens nearby

Server Sitemap

Page Descriptions

Login Page

- Allows the user to enter a username and password, or use their google (and apple?) account to login

Register Page

- Allows the user to enter a username and password to register an account for the service

Location Page

- Allows the user to change the map location if their location is not detectable

Map Page

- Shows the user locations of news nearby with clickable icons

Summary Page

- Shows the user a quick summary of the news article

Page Descriptions (cont'd)

Menu Page

- Allows the user to open settings and other menus

Filter Page

- Allows the user to select what types of news they are shown

Settings Page

- Allows the user to change the look and feel of the app along with other things

Profile Page

- Shows stats and allows the user to change their password if applicable

Wireframes

Interfaces

- Users:
 Application deployed on iOS
- Application deployed on iOS / Android mobile devices
- Local News Publishers :Content supply
- Firebase Realtime Database:
 User authentication
- Google Compute Engine : Training Machine Learning model
- Google Maps API :
 Our primary user interface
- Amazon Web Services:
 Host application server

Additional Functional/Non-Functional Requirements

Requirements

Additional Functional Requirements

- Authentication/User Validation The system needs to be able to validate/authenticate user's identity when password-email combination is not found in the database.
- Historical Data The system should be able to keep a track of user and app history regarding news reports, dates, and filters.
- Response Time The <u>Localr</u> system should respond in real-time to any filter changes or news updates.
- Filter Control The application must allow users to set news topic filters to some degree, and must be able to display these filters and limit these filters accordingly, as well.

Non-Functional Requirements

- Modifiability The system must keep a relatively similar design to initial interface/page designs, and any changes to elements in the design must only change that element and that element alone.
- Usability User interface must implement a design with understandable, neutral font, images, and icons.
- Interoperability The app must work in constant correlation with the User database, and the machine learning aspect of the news reporting.
- Reliability News headlines displayed on the map must be current and must be updated for continued reliability.

Performance Requirements

- The app launch time should be less than three seconds to not frustrate the user.
- The map's portion of the app should allow for 1,000 concurrent users
- Each user should be able to send 5 update requests per hour
- The map should scroll seamlessly on mid range phones.
- Screen to screen response time should be under 2 seconds
- The server should update news stories every one to two hours

Future Iterations

- 1. Add more users stories
- 2. Add feature short description of articles
- 3. Add feature multiple news filters applied at once
- 4. Add feature sharing articles
- 5. Add feature save locations that they want to view news in

Architecture Diagrams

System Information Diagram:

- Architecture Pattern: Layered Architecture
- Languages and Frameworks: Javascript,
 Node.js, ReactNative
- Databases used: MongoDB or PostGRESQL
- Cloud platform: AWS
- API's used: Maps API, News API, Firebase API

Architecture Diagrams

Use Case (trigger and event):

Architecture Trade-off Analysis

Criteria/Selection	(Integration of Maps Interface w/ User Database)	(Integration of Article Filtering with User Choices)	Weight
User Recognition	+	+	10
Database Searching	+	+	10
Security & Maintenance	-	+	5
Migration between iOS & Android	-	+	5
Affordability	+	-	5

Machine Learning Model - Bag of Words

Objective: Classify news articles by topic

Key Ideas: (1) Use headlines to represent articles

- (2) Treat headlines as a collection of unrelated words thrown into a bag
- (3) Similar bags contains similar words

Machine Learning Model - Bag of Words

Step 1 : Build a Dictionary

"Rockets Letting Russell Westbrook Be Himself" (Sports)

"InfoWars host Alex Jones charged with a DWI in Texas" (Entertainment)

```
Dictionary =
```

{rockets, let, russell, wesbrook, infowars, host, alex, jones, charge, dwi, texas }

Machine Learning Model (cont'd)

Step 2 : Calculate conditional probabilities and save

Topics

News Article Dataset

	T ₀	T ₁	T ₂	 T _m
w _o	P(w ₀ T ₀)	P(w ₀ T ₁)	P(w ₀ T ₂)	 P(w ₀ T _m)
w ₁	P(w ₁ T ₀)	P(w ₁ T ₁)	P(w ₁ T ₂)	 P(w ₁ T _m)
W ₂	P(w ₂ T ₀)	P(w ₂ T ₁)	P(w ₂ T ₂)	 P(w ₂ T _m)
W _n	P(w ₀ T _m)	P(w ₁ T _m)	P(w ₂ T _m)	 P(w _n T _m)

Machine Learning Model (cont'd)

Step 3 : Vectorize Headlines

Dictionary = { rockets, james, clippers, let, guard, russell, harden, westbrook,, 992 more words }

Article Headline = "Rockets Letting Russell Westbrook Be Himself"

_	rockets	james	clippers	let	guard	russell	harden	westbrook	992 more	
_	Yes	No	No	Yes	No	Yes	No	Yes	992 more	

= [1, 0, 0, 1, 0, 1, 0, 1, ... 992 more]

Machine Learning Model - Bag of Words

Step 4: Use Bayes' rule with a simplifying assumption to calculate probabilities

$$P(T_i \mid Some Article) = P(T_i \mid Some Headline) = P(T_i \mid w_0, w_1, w_2, w_3,, w_n)$$

Bayes' Rule assuming conditional independence:

$$P(T_{0} | Some Article) = P(w_{0} | T_{0}) * P(w_{1} | T_{0}) * P(w_{2} | T_{0}) * ... * P(w_{n} | T_{0}) * P(T_{0})$$

$$P(w_{0}, w_{1}, w_{2}, w_{3},, w_{n})$$

P(T₁ | Some Article) =
$$P(w_0 | T_1) * P(w_1 | T_1) * P(w_2 | T_1) * ... * P(w_n | T_1) * P(T_1)$$

P(w₀, w₁, w₂, w₃,, w_n)

P(
$$T_2$$
 | Some Article) = $P(w_0 | T_2) * P(w_1 | T_2) * P(w_2 | T_2) * ... * P(w_n | T_2) * P(T_2)$

P(w_0 , w_1 , w_2 , w_3 ,, w_n)

ML Model Deployment (1st Iteration)

ML Model Deployment (nth Iteration)

Risk Management

ID	Description	Mitigation Scheme	Severity Level	Date of Identification	Status
1	Incorrect Time Estimation	Have a person (Project Manager) take on the task of time management	High	3/9/2020	In Progress
2	Project Delays	Improve our time management (assign our tasks more specifically, ensure that we all understand the plan)	High	3/9/2020	In Progress
3	Conflicting Priorities	Have to discuss and come to an agreement about the design features and we plan to include and their implementation	High	3/9/2020	In Progress
4	Tradeoff between maximum functionality and maximum performance	Try to have a good balance of both (avoid overdoing on the features but want to still have some	High	3/9/2020	In Progress
5	Lack of Communicatio n	Have a person (Project Manager) consistently reach out to each team member	High	3/9/2020	In Progress

Performance Requirements

- The app launch time should be less than three seconds to not frustrate the user.
- The map's portion of the app should allow for 1,000 concurrent users (for now)
- Each user should be able to send 5 update requests per hour
- The map should scroll seamlessly on mid range phones.
- Screen to screen response time should be under 2 seconds
- The server should update news stories every one to two hours

Sprint Review - Gantt Chart

Project & Architecture Requirements					
RD & MP backlog and revision	Everyone	2/17/20	2/24/20	0	100%
Sprint Board Screenshot	Surya D	2/24/20	2/24/20	0	100%
Investment Form	Everyone	2/24/20	2/26/20	3	100%
App Logo	Riana J	2/24/20	3/9/20	1	100%
Set up the Database	Austin G	2/24/20	3/9/20	3	100%
PRD: Goals	Alex M	3/6/20	3/9/20	3	50%
PRD: User Personas	Nhat L	2/24/20	3/9/20	4	80%
PRD: User Stories	Austin G	2/24/20	3/9/20	6	75%
PRD: Server Sitemap	Surya D	2/24/20	3/9/20	4	75%
PRD: Page Descriptions	Austin G	2/24/20	3/9/20	4	75%
PRD: Wireframes	Chino C	2/24/20	3/9/20	7	50%
PRD: Interfaces	Chino C	2/24/20	3/9/20	5	80%
PRD: Additional Functional Requirements	Riana J	2/24/20	3/9/20	7	75%
PRD: Non- Functional Requirements	Riana J	2/24/20	3/9/20	7	80%
PRD: Performance Requirements	Austin G	2/24/20	3/9/20	5	80%
PRD: Future Iterations	Nhat L	2/24/20	3/9/20	4	80%
A&D: System Diagrams	Surya D	2/24/20	3/9/20	6	75%
A&D: Tradeoff Analysis	Riana J	2/24/20	3/9/20	6	75%
A&D: Machine Learning Write-Up	Chino C	2/24/20	3/9/20	5	80%
A&D: Risk Management	Alex M	2/24/20	3/9/20	3	80%
Sprint #1 Presentation	Everyone	3/11/20	3/11/20	0	100%

Sprint Review - Goals

- ✓ Product Requirements Document 11 tasks
- ✓ Architecture and Design Document 4 tasks
- ✓ Establish Database
- **✗** Establish User Login

Sprint Review - Burndown Chart

Est: 98

Act : 67

Avg: 4 hrs / day

Sprint Retrospective Conclusions

- 1. Meet outside lab / class time
- 2. Do better job of estimating time to complete tasks and distribute tasks more evenly (System / Architecture diagrams should have been split up into multiple tasks and assigned to multiple people)

