8-3-1 [OPS] In an air (use the PG model) standard Brayton cycle, air enters the compressor at 0.1 MPa, 20°C (atmospheric conditions), and a mass flow rate of 10 kg/s. The pressure leaving the compressor is 1 MPa, and the maximum temperature in the cycle is 1225° C. If the heat addition can be assumed to take place from a reservoir at 1500° C, (a) perform an exergy inventory and draw an exergy flow diagram for the cycle. Determine (b) the thermal efficiency ($\eta_{\text{th,Brayton}}$) and (c) the exergetic efficiency.

Table 1 Properties at various state points in the gas turbine plant at rated conditions

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	<i>h</i> kJ/kg
State 0	100	293	0	6.86972	-5.01747
State 1	100	293	0	6.86972	-5.01747
State 2	1000	566.33997	2.741	6.86972	269.127
State 3	1000	1498	9.230	7.84591	1204.1927
State 4	100	775	1.978	7.84591	478.99313

Table 2 Device-specific analysis

Plant	Device	ΔΨ	$\dot{W_u}$	Exergy	i Nelo İ	Exergetic
Component		MW	MW	Supplied	MW	Efficiency
			-01	from	٥.	%
			25	Reservoir		
			Ctale in St.	MW		
Compressor	A	2.741	-2.741		0	100
Combustion	В	6.489	I the Opposite	+ 7.80	1.316	83.19
Chamber		zečiely	CESTILISON THE WE			
Turbine	С	7.252	+ 7.252	0	0	100
	D	1.979	0	0	1.979	
Total Plant	d	their egle egloy	4.511	7.80	3.295	57.8

(a) Rate of exergy supplied by the reservoir at 1773 K,

$$\dot{Q}_{\text{in}} \times (1 - \frac{T_o}{T_R}) = 9.35 \text{ MW} \times (1 - \frac{293 \text{K}}{1773 \text{K}}) = 7.80 \text{ MW}$$

(b) In order to determine the thermal efficiency, η_{th} , the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 4510.552 \text{ kW}$$

 $\dot{Q}_{in} = 9350.658 \text{ kW}$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{4510.552 \text{ kW}}{9350.658 \text{ kW}} = 0.482 = 48.2\%$$

(c) To calculate the exergetic efficiency, $\eta_{\scriptscriptstyle II}$,

$$\begin{split} \dot{W}_{net} &= 4510.6 \text{ kW} \\ \dot{W}_{max} &= \dot{W}_{rev} = \dot{W}_{net} + \dot{I} \\ \dot{W}_{max} &= 4510.55 + 3295 = 7805.5 \text{ kW} \\ \eta_{II} &= \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{4510.5 \text{ kW}}{7805.5 \text{ kW}} = 0.578 = 57.8\% \end{split}$$

Exergy diagram for the total plant (on MW basis)

8-3-2 [OPH] Repeat problem 8-3-1 [OPS] assuming a compressor efficiency of 80% and a turbine efficiency of 80%.

Analysis

Heat Source at 1500 °C (1773 K)

Dead State: P0 = 0.1 MPa and T0 = 20 °C (293 K)

Compressor efficiency, $\eta_c = 80\%$

Turbine efficiency, $\eta_t = 80\%$

Table 1 Properties at various state points in the gas turbine plant at rated conditions

	<i>p</i> kPa	T K		$ kJ/(kg \cdot K) $	<i>h</i> kJ/kg
State 1	100	293	0	6.86972	-5.01747
State 2	1000	566.33997	2.741	6.86972	269.127
State 3	1000	634.637	3.092	6.98398	337.663
State 4	1000	1498	9.230	7.84591	1204.1927
State 5	100	775	1.978	7.84591	478.99313
State 6	100	920	2.926	8.0774	624.0331

Table 2. Device-specific analysis

		ı	11-	12 11 20 10 3	*	1
Plant	Device	ΔΨ	$\dot{W}_{\mu\nu}$	Exergy	İ	Exergetic
Component		MW	MW	Supplied	MW	Efficiency
		1,1	.xeb.00 1/1/00	from		%
			Will Reader Chic	Reservoir		
		2007	William of the William	MW		
Compressor	A	3.092	- 3.4268	0	0.3348	90.22
Combustion	В	6.138		+ 7.233	1.095	84.86
Chamber	Nie	Mo blo ses 44 We	(III)			
Turbine	C	6.304	+ 5.802	0	0.5024	92.03
Hx	D	2.926	0	0	2.926	0
		10	_			
Total Plant			2.3752	7.233	4.8582	32.8

(a) Rate of exergy supplied by the reservoir at 1773 K,

$$\dot{Q}_{\text{in}} \times (1 - \frac{T_o}{T_R}) = 8.6653 \text{ MW} \times (1 - \frac{293 \text{ K}}{1773 \text{ K}}) = 7.233 \text{ MW}$$

(b) In order to determine the thermal efficiency, $\eta_{\it th}$, the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 2374.79 \text{ kW}$$

 $\dot{Q}_{in} = 8665.29 \text{ kW}$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{2374.79 \text{ kW}}{8665.29 \text{ kW}} = 0.274 = \frac{27.4\%}{8665.29 \text{ kW}}$$

(c) To calculate the exergetic efficiency, η_{II} ,

$$\begin{split} \dot{W}_{net} &= 2374.79 \text{ kW} \\ \dot{W}_{max} &= \dot{W}_{rev} = \dot{W}_{net} + \dot{I} \\ \dot{W}_{max} &= 2374.79 + 4858.2 = 7232.99 \text{ kW} \\ \eta_{II} &= \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{2374.79 \text{ kW}}{7232.99 \text{ kW}} = 0.328 = 32.8\% \end{split}$$

Exergy diagram for the entire plant (on MW basis)

8-3-3 [OPN] Air (use the IG model) enters the compressor of an ideal air standard Brayton cycle at 100 kPa, 290 K (atmospheric conditions) and a mass flow rate (m) of 6 kg/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1500 K. A regenerator with an effectiveness of 70% is incorporated in the cycle. If the heat addition can be assumed to take place from a reservoir at 1800 K, (a) perform an exergy inventory and draw an exergy flow diagram for the cycle. Determine (b) the thermal efficiency ($\eta_{\text{th,Brayton}}$) and (c) the exergetic efficiency. (d) Calculate the rate of exergy destruction (I) in the regenerator.

Analysis

Heat Source at 1800 K

Dead State: p0 = 100 kPa and T0 = 290 K Assume

Table 1 Properties at various state points in the gas turbine plant at rated conditions

	p kPa	T K	$ \Psi = \dot{m}\psi $ MW	$ kJ/(kg \cdot K) $	<i>h</i> kJ/kg
State 0	100	290	0	6.85888	-8.16232
State 1	100	290	0	6.85888	-8.16232
State 2	1000	553.80	1.6205	6.85888	261.9332
State 3	1000	1500	6.1337	7.97851	1338.8127
State 4	100	848.916	1.578	7.97851	579.54
State 5	1000	762.065	2.362	7.19931	484.258
State 6	100	644.02	0.7652	7.67905	357.215

Table 2 Device-specific analysis

Plant Component	Device	ΔΨ MW	\dot{W}_u MW	Exergy Supplied	<i>İ</i> MW	Exergetic Efficiency
	(lig	Sit College St. Co.	Sittle Office	from Reservoir MW		%
Compressor	A	1.6205	- 1.6205	0	0	100
Regenerator Air Side Exhaust Side	В	0.7415	0	0	0.0713	91.22
Combustion Chamber	С	3.772	0	4.301	0.5293	87.70
Turbine	D	4.5557	+4.5557	0	0	100
	Е	0.7652	0	0	0.7652	0
Total Plant			2.9352	4.301	1.3658	68.242

(a) Rate of exergy supplied by the reservoir at 1800 K,

$$\dot{Q}_{in} \times (1 - \frac{T_o}{T_R}) = 5.127 \text{ MW} \times (1 - \frac{290 \text{K}}{1800 \text{K}}) = 4.301 \text{ MW}$$

(b) In order to determine the thermal efficiency, η_{th} , the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 2935.06 \text{ kW}$$

$$\dot{Q}_{in} = 5127.325 \text{ kW}$$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{2935.06 \text{ kW}}{5127.32 \text{ kW}} = 0.5724 = 57.24\%$$

(c) To calculate the exergetic efficiency, η_{II} ,

$$\dot{W}_{net} = 2935.06 \text{ kW}$$
Wmax = Wnet + Total Exergy Destroyed
Wmax = 2935.02 + 1365.8 = 4301 kW
$$\eta_{II} = \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{2935.06 \text{ kW}}{4301 \text{ kW}} = 0.6824 = 68.24\%$$

Check:

 $\eta_{II} = 1$ - % Total Exergy Destroyed

$$\eta_{II} = 1 - 0.31758 = 0.68242, 68.24 \%$$

(d) Exergy destroyed in regenerator = 71.3 kW (which is negligible)

Exergy diagram for the entire plant (on MW basis)

8-3-4 Repeat problem 8-3-3 without having the regenerator.

Air enters the compressor of an ideal air standard Brayton cycle 100 kPa, 290 K, with a mass flow rate of 6 kg/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1500 K If the heat addition can be assumed to takes place from a reservoir at 1800 K, (a) perform an exergy inventory and draw an exergy flow diagram for the cycle. Determine (b) the thermal efficiency and (c) the exergetic efficiency.

Analysis

Heat Source at 1800 K

Dead State: P0 = 100 kPa and T0 = 290 K - Assume

Table 1, Property values, exergy flows and entropy production rates at various state points in the gas turbine plant at rated conditions

	p kPa	T K	$ \Psi = \dot{m}\psi $ $ MW $	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	100	290	0	6.85888	-8.16232
State 1	100	290	0	6.85888	-8.16232
State 2	1000	553.80	1.6205	6.85888	261.9332
State 3	1000	1500	6.1337	7.97851	1338.8127
State 4	100	848.916	1.578	7.97851	579.54

 Table 2
 Device-specific analysis

Plant	Device	$ \Delta\dot{\Psi} $	Will William	Exergy	İ	Exergetic
Component		MW	MW	Supplied	MW	Efficiency
		scie W	COSTINO TO THE WO	from		%
		orote sole of	Se Illie Of Ill	Reservoir		
		it is ide and	i o iii	MW		
Compressor	A	1.6205	1.6205	0	0	100
Combustion	В	4.5132	0	5.420	0.9068	83.27
Chamber		or will de				
Turbine	С	4.5557	+4.5557	0	0	100
	D	1.578	0	0	1.578	0
Total Plant			2.9352	5.420	2.4848	54.155
1 Otal I lant			2.7332	3.420	2.4040	34.133

(a) Rate of exergy supplied by the reservoir at 1800 K,

$$\dot{Q}_{\text{in}} \times (1 - \frac{T_o}{T_R}) = 6.461 \text{ MW} \times (1 - \frac{290 \text{ K}}{1800 \text{ K}}) = 5.42 \text{ MW}$$

(b) In order to determine the thermal efficiency, η_{th} , the Cycle Panel from TEST was used.

$$\dot{V}_{net} = 2935.06 \text{ kW}$$

$$\dot{Q}_{in} = 6461 \text{ kW}$$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{2935.06 \text{ kW}}{6461 \text{ kW}} = 0.4542 = 45.42\%$$

(c) To calculate the exergetic efficiency, η_n ,

$$\dot{W}_{net} = 2935.06 \text{ kW}$$
Wmax = Wnet + Total Exergy Destroyed
Wmax = 2935.02 + 2484.8 = 5420 kW
$$\eta_{II} = \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{2935.06 \text{ kW}}{5420 \text{ kW}} = 0.5415 = 54.15\%$$

Check:

$$\eta_{{\scriptscriptstyle I\hspace{-.1em}I}}=1$$
 - % Total Exergy Destroyed

$$\eta_{II} = 1 - 0.45844 = 0.54155, 54.155 \%$$

Exergy diagram for the entire plant (on MW basis)