MATH FOR ECON I

Problem Set 4*

Exercise 1

Let A and B be any two sets in \mathbb{R}^n . Show that:

$$(a) co(A) + co(B) = co(A + B).$$

Assume now and for the rest of the exercise that A and B are convex.

- (b) True or false: If $A \cap B \neq \emptyset$, $aff(A \cap B) = aff(A) \cap aff(B)$.
- (c) If $ri(A) \cap ri(B) \neq \emptyset$, then $ri(A) \cap ri(B) = ri(A \cap B)$.
- (d) If $ri(A) \cap ri(B) = \emptyset$, then A and B can be properly separated.

Exercise 2

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be an affine map (that is, T(x) = A(x) + b for some linear function $A: \mathbb{R}^n \to \mathbb{R}^m$ and vector $b \in \mathbb{R}^m$). Show that if $C \subset \mathbb{R}^n$ is convex, then $T(C) \subset \mathbb{R}^m$ is also convex.

Exercise 3

Let M = T + z be a linear manifold in \mathbb{R}^n . We want to construct the orthogonal projection map $P_M : \mathbb{R}^n \to M$, that is a function such that $P_M(y) = x$ if d(y, x) = d(y, M). As we showed in class, there exist $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$ such that $M = \{x \in \mathbb{R}^n | Ax = b\}$.

- (a) Show that T = null(A) and that $T^{\perp} = \{A^T \lambda \mid \lambda \in \mathbb{R}^m\}.$
- (b) Show that for any $y \in \mathbb{R}^n$, $x^* = P_M(y)$ if and only if $x^* \in M$ and $\langle y x^*, x x^* \rangle = 0$ for all $x \in M$. Conclude that $x^* = P_M(y)$ if and only if $x^* \in M$ and $y x^* \in T^{\perp}$.

^{*}Due by November, Wed 13th, 7pm.

(c) Assume that m < n and that A has rank m (so A is full rank). Show that there exists a matrix $B \in \mathbb{R}^{n \times n}$ and a vector $d \in \mathbb{R}^n$ such that $P_M(y) = By + d$ for all $y \in \mathbb{R}^n$. Explicitly construct B and d.

Exercise 4

Leontief Production: Each industry produces a single consumption good using as inputs the goods produced by other industries and raw materials. There are n consumption (intermediary) goods and m raw materials. The economy is endowed with $\omega_k > 0$ units of raw material k, k = 1, ..., m. The production of one unit of (consumption) good j requires a_{ij} units of good i (i = 1, ..., n) and b_{kj} units of raw material k (k = 1, ..., m). If for each i = 1, ..., n, x_i and c_i denote, respectively, the total amount of good i that is produced and consumed (by consumers), then

$$x = Ax + c$$
.

The production schedule x is feasible if $x \geq 0$, $(I - A)x \geq 0$ and $Bx \leq \omega$. The feasible schedule x is efficient if there is no feasible schedule y such that $(I - A)y \geq (I - A)x$ and $(I - A)y \neq (I - A)x$. Show that if x is efficient then there exist price vectors $p \in \mathbb{R}^n_+$ and $q \in \mathbb{R}^m_+$ such that $(p^T, q^T) \neq (0, 0)$,

$$p^{T}(I-A) - q^{T}B \le 0$$
, $(p^{T}(I-A) - q^{T}B)x = 0$, and $q^{T}(\omega - Bx) = 0$.

Conversely, if for some feasible x such prices exist and p > 0, then x is efficient. Note that the first condition says that no production activity is strictly profitable, while the second condition implies that $p_j = \sum_i p_i a_{ij} + \sum_k q_k b_{kj}$ if $x_j > 0$. That is, any industry that produces a strictly positive amount of output, makes 0 profits. The last condition implies that $q_k = 0$ when $\sum_j b_{kj} x_j < \omega_k$.

Hint: You may find it easier here to use a separation argument rather than Farkas Lemma.