ECN 6338 Cours 8

La génération de variables aléatoires univariées

William McCausland

2025-10-31

Survol du cours 8

- 1. Suites quasi-aléatoires
 - a. suites univariées
 - b. suites multivariées
- 2. Suites pseudo-aléatoires uniformes
- 3. Variables pseudo-aléatoires non-uniformes
 - a. par inversion de la fonction de répartition
 - b. par la méthode de rejet
 - c. par la méthode de Ziggurat
- 4. Variables pseudo-aléatoires multivariée "faisables"
 - a. de la loi gaussienne multivariée (généralisation de la loi gaussienne)
 - b. de la loi Dirichlet (généralisation de la loi beta)
 - c. de la loi Wishart (généralisation de la loi gamma)

Échantillonage

▶ L'échantillage est la génération de points $x_1, x_2, ..., x_i \in D \subseteq \mathbb{R}^d$ afin d'approximer un intégral du type

$$\int_D f(x) \, dx$$

par la moyenne

$$\mu(D) \cdot \frac{1}{n} \sum_{i=1}^{n} f(x_i),$$

où μ est la mesure de Lebesgue (volume) de D.

Deux types de suites : quasi- et pseudo-aléatoires

- Les suites de base sont des suites sur [0, 1].
- ▶ De la flexibilité vient avec des transformations de ces suites.
- ▶ Une suite *quasi-aléatoire* est justifiée par ses propriétés exactes de convergence en théorie des nombres.
- ▶ Une suite *pseudo-aléatoire* est justifiée par la démonstration qu'elle se comporte comme une suite de variables aléatoires uniformes et indépéndentes. La théorie de probabilité suggère plusieurs implications qu'on peut tester.
- ► En réalité, les deux types de suites sont déterministes.

400 points pseudo-aléatoire, 400 points quasi-aléatoire

Propriétés souhaitables des suites quasi-aléatoires

▶ Une suite quasi-aléatoire $\{x_i\}_{i=1}^{\infty} \subset D \subset \mathbb{R}^d$ est equidistribuée sur D si pour chaque fonction $f: D \to \mathbb{R}$, intégrable dans le sens de Riemann,

$$\lim_{n\to\infty}\mu(D)\frac{1}{n}\sum_{i=1}^n f(x_i)=\int_D f(x)\,dx.$$

▶ Cas univarié : $\{x_i\}_{i=1}^{\infty} \subset [a, b]$ est equidistribuée si pour chaque fonction $f: \mathbb{R} \to \mathbb{R}$, intégrable dans le sens de Riemann,

$$\lim_{n\to\infty}(b-a)\frac{1}{n}\sum_{i=1}^n f(x_i)=\int_a^b f(x)\,dx.$$

▶ En pratique, on cherche un taux de convergence rapide.

Une suite sur D = [0, 1] qui n'est pas équidistribuée

- Il y a des suites équidistribuées, mais leur construction n'est pas évidente.
- ▶ La suite $\{x_i\}_{i=1}^{\infty}$ suivante n'est pas équidistribuée :

$$\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{1}{8},\frac{3}{8},\frac{5}{8},\frac{7}{8},\frac{1}{16},\frac{3}{16},\ldots.$$

Pour la fonction $f(x) = x \operatorname{sur} [0, 1]$,

$$\int_0^1 f(x) \, dx = \int_0^1 x \, dx = \frac{1}{2}.$$

mais

$$\frac{1}{n}\sum_{i=1}^{n}f(x_{i})=\frac{1}{n}\sum_{i=1}^{n}x_{i} \neq \frac{1}{2}.$$

Suites équidistribuées sur D = [0, 1]

La suite $\{x_i\}_{i=1}^{\infty}$ de Halton (pour le nombre premier 2) est semblable, mais équidistribuée :

$$\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \frac{7}{8}, \frac{1}{16}, \frac{9}{16}, \dots$$

Pour θ irrationnel (réel et non une fraction d'entiers), la suite $\{i\theta - \lfloor i\theta \rfloor\}_{i=1}^{\infty}$ est équidistribuée ($\lfloor x \rfloor$ ici est la partie entière de x)

Suites de Halton pour les trois premiers nombres premiers

i	x_i^2	(base 2)	x_i^3	(base 3)	x_i^5	(base 5)
1	$\frac{1}{2}$	0.12	<u>1</u>	0.13	0.2	0.1 ₅
2	$\frac{1}{4}$	0.01_{2}	$\frac{2}{3}$	0.23	0.4	0.25
3	$\frac{3}{4}$	0.11_{2}	$\frac{1}{9}$	0.01_{3}	0.6	0.3 ₅
4	1 8	0.001_{2}	$\frac{4}{9}$	0.11_{3}	8.0	0.4 ₅
5	<u>5</u> 8	0.101_{2}	$\frac{7}{9}$	0.213	0.24	0.11_{5}
6	<u>3</u>	0.011_{2}	$\frac{2}{9}$	0.023	0.44	0.21_{5}
7	7 8	0.111_{2}	$\frac{5}{9}$	0.12_{3}	0.64	0.31_{5}
8	$\frac{1}{16}$	0.0001_2	<u>8</u>	0.223	0.84	0.41_{5}
9	$\frac{9}{16}$	0.1001 ₂	<u>1</u> 27	0.001 ₃	0.28	0.125

Suites multivariés quasi-aléatoires

- ▶ Très souvent, $D = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_d, b_d]$, auquel cas on peut transformer à $D = [0, 1]^d$.
- ➤ On utilise un vecteur de suites univariées, toutes équidistribuées sur [0, 1].
- Mais cela ne suffit pas pour construire une suite multivariée équidistribuée.
- ▶ La suite multivariée de Halton est populaire et utilise les d premiers nombres premiers pour la construction.
- Suite de Weyl (torus, dans le paquet R quasiRNG) :

$$\{(i\sqrt{p_1}-\lfloor i\sqrt{p_1}\rfloor,\ldots,i\sqrt{p_d}-\lfloor i\sqrt{p_d}\rfloor)\}_{i=1}^{\infty},$$

où p_i est le j-ième nombre premier.

- Les suites de Haber, Niederreiter et Baker sont semblable mais utilisent d'autres nombres irrationnelles.
- La suite de Sobol est populaire mais difficile à décrire.

Suites univariées pseudo-aléatoires

- ▶ Une suite pseudo-aléatoire est une suite $\{u_i\}_{i=1}^{\infty}$ en \mathbb{R} pour laquelle le modèle $u_i \sim \operatorname{iid} U([0,1])$ est "bonne".
- R et d'autres langages ont des fonctions pour tirer des variables aléatoires de loi gamma (rgamma), beta (rbeta), gaussienne (rnorm) et plusieurs autres.
- ► Tous les tirages sont construits à partir de suites pseudo-aléatoires uniformes.
- ▶ Une telle construction est toujours appuyée par un résultat qui dit que si $u_i \sim \text{iid } U([0,1])$, les éléments (par exemple) du vecteur rnorm(100) sont iid N(0,1).
- ▶ L'hypothèse selon laquelle $X_i \sim \operatorname{iid} N(0,1)$, i = 1,2,... a de nombreuses implications testables.

Quelques implications de l'hypothèse $U_i \sim \operatorname{iid} U([0,1])$

- ► Soit *X* une variable aléatoire qu'on veut simuler.
- Admettons qu'on peut prouver que si $U_i \sim \operatorname{iid} U([0,1])$, la suite construite $\{X_i\}_{i=1}^{\infty}$ est iid avec la même loi que X.
- ▶ D'autres implications de l'hypothèse : pour chaque $f: \mathbb{R}^d \to \mathbb{R}$ telle que E[f(X)] et $\operatorname{Var}[f(X)]$ existent,

$$\hat{I} \equiv \frac{1}{n} \sum_{i=1}^{n} f(X_i) \stackrel{p.s.}{\rightarrow} I \equiv E[f(X)],$$

$$\sqrt{n}(\hat{I}-I) \stackrel{d}{\rightarrow} N(0, \operatorname{Var}[f(X_i)]).$$

▶ Cas spécial, $X_i = a + u_i(b - a) \sim U([a, b])$:

$$\frac{1}{n}\sum_{i=1}^n f(a+u_i(b-a)) \stackrel{p.s.}{\to} \frac{1}{b-a}\int_a^b f(x)\,dx.$$

Suites multivariées pseudo-aléatoires

Si U_1, U_2, U_3, \ldots est une suite iid de variables aléatoire U([0,1]), la suite

$$(U_1, U_2), (U_3, U_4), (U_5, U_6), \dots$$

est iid $U([0,1]^2)$.

En général, si $\{U_i\}_{i=1}^{\infty} \sim \operatorname{iid} U([0,1])$,

$$\{V_j\}_{i=1}^{\infty} = \{(U_{(j-1)d+1}, U_{(j-1)d+2}, \dots, U_{jd})\}_{i=1}^{\infty} \sim \mathrm{iid}\ U([0,1]^d).$$

256 points pseudo-aléatoire dans $[0,1]^2$

```
set.seed(1234567890); x <- runif(256); y <- runif(256)
plot(x, y, asp=1, pch=20, xlim=c(0,1), ylim=c(0,1), xaxs='s
abline(h=seq(0.0, 1.0, by=0.1), col='grey'); abline(v=seq(0.0, 1.0, by=0.1))</pre>
```


Implications testables de l'hypothèse $U_i \sim \operatorname{iid} U([0,1])$

Si $U_i \sim \operatorname{iid} U([0,1]^2)$, le nombre de fois $U_i \in [0.2,0.3] \times [0.3,0.4]$ (par exemple) dans les premiers 256 tirages est $\operatorname{Bi}(256,0.01)$:

- distribution binomiale,
- paramètre de nombre d'essais égal à 256,
- paramètre de probabilité égal à 0.01.

Distribution binomial Bi(256, 0.01) des comptes

256 points de la suite de Sobol sur $[0,1]^2$

```
plot(sobol(256, 2), asp=1, pch=20, xlim=c(0,1), ylim=c(0,1)
abline(h=seq(0.0, 1.0, by=0.1), col='grey')
abline(v=seq(0.0, 1.0, by=0.1), col='grey')
```


256 points de la suite de Halton sur $[0,1]^2$

```
plot(halton(256, 2), asp=1, pch=20, xlim=c(0,1), ylim=c(0,1)
abline(h=seq(0.0, 1.0, by=0.1), col='grey')
abline(v=seq(0.0, 1.0, by=0.1), col='grey')
```


Méthodes pour les suites pseudo-aléatoires

- ▶ Il y a plusieurs suites pseudo-alétoires proposées.
- Souvent, il y a un état x_i , interne et invisible, qui suit une règle déterministe $x_i = f(x_{i-1}, x_{i-2}, ...)$ et une suite de nombres u_i (la suite sortante) qui suit une régle déterministe $u_i = g(x_i)$, où g est une fonction à sens unique qui rend infaisable le calcul de l'état à partir des observations des u_i .
- Une méthode répandue est le Mersenne Twister.
- Les Tests Diehard est une suite de tests de plusieurs implications de l'hypothèse que $U_i \sim \text{iid } U(0,1)$.
- L'utilisateur peut initialiser l'état avec le choix d'une graine (seed), pour la reproductibilité.

set.seed(1234567890)

Sinon, l'état est souvent une fonction de l'heure actuelle (en UNIX, le nombre de secondes depuis le début de 1/1/1970)

Variables (pseudo)-aléatoires non-uniformes

- 1. Méthode de l'inversion de la fonction de répartition
- 2. Méthode de rejet
- 3. Méthode de Ziggurat

Inversion de la fonction de répartition I

Théorème 2.1 de Devroye : Supposez que F(x) est une fonction de répartition continue; son inverse F^{-1} est définie par

$$F^{-1}(u) = \inf \{x \colon F(x) = u\}, \ 0 \le u \le 1.$$

Alors

- 1. Si la variable aléatoire U suit la loi uniforme sur [0,1], la fonction de répartition de la variable aléatoire $X \equiv F^{-1}(U)$ est F.
- 2. Si la variable aléatoire X a F comme fonction de répartition, la loi de F(X) est la loi uniforme sur [0,1].

Le deuxième résultat est utilisé souvent en économétrie : transformation intégrale de probabilité, valeurs p.

Inversion de la fonction de répartition II

Preuve de 1:

$$\Pr[F^{-1}(U) \le x] = \Pr[\inf\{y : F(y) = U\} \le x]$$

= $\Pr[U \le F(x)] = F(x).$

Preuve de 2 :

$$\Pr[F(X) \le U] = \Pr[X \le F^{-1}(u)] = F(F^{-1}(u)) = u.$$

Quelques exemples où l'inverse analytique est disponible

Loi	F(x)	$F^{-1}(u)$
Exponentiel	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}\log(1-u)$
Cauchy	$rac{1}{2}+rac{1}{\pi} an^{-1}\left(rac{x-ar{x}}{\sigma} ight)$	$\bar{x} + \sigma \tan \left(\pi \left(u - \frac{1}{2}\right)\right)$
Pareto, $x \ge b > 0$	$1-\left(\frac{b}{x}\right)^a$	$\frac{b}{(1-u)^{1/a}}$
Weibull, $x \ge 0$	$1-e^{(x/\lambda)^k}$?

Lois non-uniformes par la méthode de rejet

- Deux densités de la méthode de rejet :
 - densité cible f(x) (on veut simuler de cette loi)
 - densité de proposition g(x) (tirer de cette loi est facile)
- ▶ Il faut que g(x) domine f(x) dans le sens que

$$\sup_{x} \frac{f(x)}{g(x)} \equiv M < \infty$$

- La méthode consiste en répétant les étapes suivantes jusqu'à une acceptation
 - tirer X de la loi avec densité g(x)
 - tirer U de la loi uniforme sur [0,1]
 - ▶ accepter X comme un tirage de la loi cible si $U \le f(X)/(g(X)M)$.

La méthode de rejet : probabilité d'acceptation

▶ La probabilité conditionnelle d'accepter, sachant X, est

$$\Pr\left[U \leq \frac{f(X)}{Mg(X)} \middle| X\right] = \frac{f(X)}{Mg(X)}.$$

La probabilité inconditionnelle est (plus de rigueur ici)

$$E_g\left[\frac{f(X)}{Mg(X)}\right] = \int \frac{f(x)}{Mg(x)}g(x) dx = \frac{1}{M}\int f(x) dx = \frac{1}{M}.$$

▶ La probabilité conjointe que $X \in [x, x + dx]$ et on accepte est proportionnelle à f(x) :

$$g(x) dx \cdot \frac{f(x)}{Mg(x)} = \frac{1}{M} f(x) dx.$$

Exemple, loi gaussienne tronqué à $(-\infty, c]$, c > 0.

Considérez la loi cible avec densité

$$f(x) = \frac{1}{\Phi(c)} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} 1_{(-\infty, c]}(x),$$

où c > 0.

- lacktriangle C'est une loi gaussienne tronqué à la région $(-\infty,c]$.
- Notez que l'intégral de f(x) est 1.
- ightharpoonup Choisissez maintenant la loi N(0,1) comme loi de proposition :

$$g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

- $M \equiv \sup f(x)/g(x) = 1/\Phi(c).$
- lacktriangle Avec la méthode de rejet, on accept X non-tronqué ssi X < c:

$$\frac{f(X)}{Mg(X)} = \begin{cases} 1 & X \le c \\ 0 & X > c \end{cases}$$

Exemple, loi gaussienne tronqué à (c, ∞) , c > 0.

- Si on utilise la même g(x), la probabilité d'acceptation inconditionnelle sera $1 \Phi(c)$, qui peut être très petite.
- ightharpoonup Première idée alternative : choisir une loi exponentielle avec taux λ et déplacement par c :

$$g(x) = \lambda e^{-\lambda(x-c)} 1_{(c,\infty)}(x).$$

- La dérivée de $\log f(x)$ est -x et la dérivée de $\log g(x)$ est $-\lambda$.
- ▶ On met les deux en égalité à x = c avec le choix $\lambda = c$.
- Le ratio f(x)/g(x) est maximisé à $x=c^+$, où

$$M = \frac{f(c^+)}{g(c^+)} = \frac{e^{-c^2/2}}{\sqrt{2\pi}(1 - \Phi(c))c}.$$

Pour c = 2, M = 1.186608 et la probabilité d'acceptation est $M^{-1} = 0.8427385$.

Première idée, code pour la graphique

```
# Point de troncation, probabilité de la région (c, infty)
c = 2
A = 1 - pnorm(c, 0, 1)
# Grille de points, densité cible (qaussienne tronquée)
x = seq(c-0.2, 4, by=0.001)
f = (dnorm(x) / A) * (x > c)
# Densité de proposition, M, aPr
lambda = c
g = lambda * exp(-lambda * (x-c)) * (x > c)
M = dnorm(c) / (A*lambda)
aPr = 1/M
c(M, aPr)
```

[1] 1.1866078 0.8427385

Première idée, graphique

```
plot(x, f, type='l')
lines(x, g*M, col='blue', lty='dashed')
```


Deuxième idée

- ▶ Retenons $g_{\lambda}(x) = \lambda e^{-\lambda(x-c)} 1_{(c,\infty)}$, mais cherchons la valeur optimal de λ .
- ▶ On peut écarter $\lambda < c$, où $f(x)/g_{\lambda}(x)$ est maximisée à x = c.
- Pour $\lambda > c$, $f(x)/g_{\lambda}(x)$ est maximisé au même point x^* que

$$\log f(x) - \log g_{\lambda}(x) = k - \frac{1}{2}x^2 + \lambda(x - c)$$

- ▶ La dérivée est $-x + \lambda = 0$ alors $f(x)/g_{\lambda}(x)$ est maximal à $x^* = \lambda$, peu importe la valeur de $\lambda > c$.
- Maintentant on calcule M comme fonction de λ :

$$\left. \frac{f(x)}{g_{\lambda}(x)} \right|_{x=\lambda} = \frac{e^{-\lambda^2/2}}{\sqrt{2\pi}(1-\Phi(c))} \cdot \frac{1}{\lambda e^{-\lambda(\lambda-c)}} = \frac{e^{\lambda^2/2-\lambda c}}{\sqrt{2\pi}(1-\Phi(c))\lambda}$$

▶ Une condition de premier ordre nécessaire pour un minimum :

$$\lambda - c - \frac{1}{\lambda} = 0.$$

• Une racine plus grand que $c: \lambda^* = (c + \sqrt{c^2 + 4})/2$

• Une racine plus grand que
$$c: \lambda^* = (c + \sqrt{c^2 + 4})/c^2$$

Deuxième idée, code

[1] 1.0710705 0.9336453

```
# Densité de proposition, M, aPr
lambda = (c + sqrt(4 + c^2))/2
g = lambda * exp(-lambda * (x-c)) * (x > c)
M = exp(lambda^2/2 - lambda*c) / (A*sqrt(2*pi)*lambda)
aPr = 1/M
c(M, aPr)
```

Deuxième idée, graphique

```
plot(x, f, type='l')
lines(x, g*M, col='blue', lty='dashed')
```


Deuxième idée, comparaison efficace de U et f/Mg

Rappel : pour $x \ge c$,

$$\frac{f(x)}{g(x)} = \frac{e^{-x^2/2}}{\sqrt{2\pi}(1 - \Phi(c))} \cdot \frac{1}{\lambda e^{-\lambda(x-c)}},$$
$$M = \frac{e^{\lambda^2/2 - \lambda c}}{\sqrt{2\pi}(1 - \Phi(c))\lambda}.$$

La probabilité conditionnele d'acceptation f(x)/(Mg(x)) simplife à

$$\frac{f(x)}{Mg(x)} = e^{-(x-\lambda)^2/2}.$$

Notez que $e^{-(x-\lambda)^2/2} \ge 1 - \frac{(x-\lambda)^2}{2}$, qui permet une acceptation rapide si $U \le 1 - \frac{(x-\lambda)^2}{2}$, sans évaluer la fonction exponentielle.

La méthode Ziggurat

Commentaires sur la construction de la Ziggurat

- ▶ n = 256 niveaux est typique (8 bits aléatoire, car $256 = 2^8$).
- ▶ L'aire de la couche i, $(y_{i+1} y_i)x_i = A$ est constante.
- ▶ L'aire constante donne $y_{i+1} = (A/x_i) + y_i$ en termes de x_i , y_i .
- L'inversion de $y_{i+1} = f(x_{i+1})$ donne $x_{i+1} = f^{-1}(y_{i+1})$ (la monotonicité est importante).
- ▶ Si le support de la loi cible est $[0, \infty)$, la couche zéro est la région en dessous de min $(y_1, f(x))$, qui doit avoir l'aire A.
- ▶ Le coût élevé de la construction de la Ziggurat est justifié si nous ne devons le faire qu'une seule fois.
- ▶ Convenable pour les lois N(0,1), Exp(1), parce que
 - ▶ $N(\mu, \sigma)$ et $Exp(\lambda)$ sont des transformations simples de N(0, 1) et Exp(1).
 - La densité $\phi(x)$ de la loi N(0,1) est symmétrique autour de zéro, montone pour x > 0.
 - La densité de la loi Exp(1) est monotone sur son support $[0,\infty)$.

Commentaires sur le tirage des variables aléatoires

- Supposez que la Ziggurat est déjà construite.
- ▶ La méthode de Ziggurat consiste en répétant les étapes suivantes jusqu'à une acceptation :
 - ▶ tirer l'index de la couche, de la loi uniforme sur $\{0, 1, ..., n-1\}$.
 - tirer U_x de la loi uniforme sur $[0, x_i]$.
 - ▶ Si $U_x \le x_{i+1}$, accepter U_x comme le tirage de la loi cible.
 - ▶ Sinon, tirer U_y de la loi uniforme sur $[y_i, y_{i+1}]$, accepter U_x comme le tirage si $f(U_x) \leq U_y$.
- ▶ Si le support de la loi cible est $[0, \infty)$, le tirage de la couche zéro doit utiliser une autre méthode.
- L'aire constante des régions est importante pour un coût de tirage qui ne dépend pas de *n*.
- Pour *n* grand, on accepte avec haute probabilité sans tirer U_y ni évaluer $f(U_x)$.

Une Ziggurat (édifice religieux mésopotamien)

Figure 1: Ziggurat

Ziggurat de neige

Figure 2: Ziggurat de neige

Variables (pseudo)-aléatoires multivariées "faisables"

- 1. de la loi gaussienne multivariée (généralisation de la loi gaussienne)
- 2. de la loi Dirichlet (généralisation de la loi beta)
- 3. de la loi Wishart (généralisation de la loi gamma)

Tirer de la loi multivariée gaussienne

- ► Une transformation linéaire d'un vecteur de variables aléatoires gaussiennes
- ▶ Pour tirer $Y \sim N(\mu, \Sigma)$,
 - ▶ Tirer $X \sim N(0, I_n)$
 - Effectuer la décomposition de Cholesky $\Sigma = LL^{\top}$.
 - $Y = \mu + LX$.
- Variants:
 - loi uniforme sur la surface d'une hypersphère
 - loi uniforme sur une hypersphère
 - ▶ loi t de Student et autres mélanges de lois gaussiennes

Tirer de la loi Dirichlet

- ▶ Généralisation de la loi $Be(\alpha, \beta)$ (beta)
- Elle est une loi sur le n-simplexe Δⁿ standard (ou de probabilité)

$$\Delta^n \equiv \left\{ x \in \mathbb{R}^n \colon x_i \geq 0, \ i = 1, \dots, n, \ \sum_{i=1}^n = 1 \right\}$$

- ▶ Pour tirer $Y \sim \text{Di}(\alpha_1, \ldots, \alpha_n)$,
 - ▶ Tirer $X_i \sim \text{indep. Ga}(\alpha_i, \beta)$, i = 1, ..., n.
 - ightharpoonup Soit $X_{\text{tot}} = \sum_{i=1}^{n} X_i$.
 - $Y \equiv X_{\text{tot}}^{-1}(X_1,\ldots,X_n) \sim \text{Di}(\alpha_1,\ldots,\alpha_n).$
- Variants :
 - Loi uniforme sur un simplexe standard (Di(1,...,1))
 - Loi uniforme sur un simplexe arbitraire par transformation linéaire

Tirer de la loi Wishart

- Généralisation de la loi $Ga(\alpha, \beta)$ (gamma)
- ► Elle est une loi sur l'espace de matrices symmétriques et définies positives.
- ▶ Pour tirer $\Sigma \sim Wi(\nu, V)$, où V est une matrice définie positive,
 - Effectuer la décomposition de Cholesky $V = LL^{\top}$.
 - ▶ Tirer la matrice A : ses éléments sont indépendants et

$$A_{ij} = \begin{cases} N(0,1) & i < j \\ \chi^{2}(\nu - i + 1) & i = j \\ 0 & i < j \end{cases}$$

- ▶ $Σ ≡ LAA^TL^T$ (LA est le facteur triangulaire inférieure de Σ)
- ▶ Variant : loi de Wishart inverse