Беспилотный транспорт в Арктике

Шустов Роман; Николаев Роман; Николаев Артемий.

Актуальность

Арктика - самая холодная и ветреная территория, где экстремальные условия делают передвижение сложным. Температура может опускаться до -80°С, а скорость ветра достигает ураганных значений, создавая опасные условия. Из-за удаленности и труднодоступности передвижение по территории проблематично.

Разработка беспилотного транспорта для Арктики необходима для обеспечения безопасного перемещения, минимизации рисков и доступа к удаленным районам. Этот проект способствует развитию инноваций и поддержанию устойчивости экосистемы региона.

Проблемы

- <u>Ограничения погодных условий:</u> экстремальные климатические условия в Арктике, такие как низкие температуры, сильные ветры, метели и туманы, могут ограничивать использование вертолетов и других средств транспортировки.
- <u>Ограниченная доступность:</u> некоторые районы Арктики могут быть труднодоступными для традиционных транспортных средств из-за сложного рельефа и ледяных полей.
- <u>Высокие затраты:</u> транспортировка грузов и персонала в Артике может быть дорогостоящей из-за необходимости использования специализированных средств и оборудования.

Основные методы транспортировки в Арктике включают:

- 1. <u>Вертолеты</u> являются одним из наиболее распространенных и универсальных средств транспортировки в Арктике.
- **2**. <u>Снегоходы</u> используются для передвижения по ледяным поверхностям и снежным полям в Арктике.
- 3. <u>Гусеничные транспортные средства</u> используются для передвижения по пересеченной местности и ледяным полям.

4. <u>Легковые автомобили</u> обеспечивают удобство и мобильность для персонала, но ограничены в использовании на ледяных поверхностях.

Преимущества **беспилотного транспорта:**

1) Обеспечение безопасности: использование беспилотных транспортных средств для минимизации риска и быстрой реакции на изменения в окружающей среде, избегая опасных участков и предотвращая аварии.

2) Повышение эффективности передвижения, сокращение времени и затрат на транспортировку грузов и персонала, улучшение доступа к удаленным районам, ускорение научных и исследовательских работ, и оптимизация использования ресурсов.

3)Использование беспилотного транспорта вместо традиционных средств передвижения поможет снизить негативное воздействие на окружающую среду благодаря экологически чистым и энергоэффективным моделям, способствуя сохранению уникальной природной среды Арктики.

4) Стимуляция инноваций в автоматизации, ИИ, дистанционном управлении и дронах, расширение границы технического прогресса для экстремальных условий.

Цель проекта

Разработка прототипа беспилотного транспортного средства для Арктики и системы управления блока поддержания температуры.

Задачи проекта:

- ▶Провести литературный обзор по данной тематике.
- ➤ Создать 3D-модель беспилотного транспортного средства для Арктики.
- ▶Спроектировать систему управления блока поддержания температуры.

Модель нашего беспилотного транспорта

Разработка встроенных систем на tinkercad

Система поддержания температуры

Система навигации в пространстве

Разработка системы поддержания температуры на tinkercad

При отрицательной температуре (-20°C) загорается синяя лампочка.

При высокой температуре (+20 °C) загорается жёлтая лампочка.

*

Система навигации в пространстве

Лампочка горит, потому что объект приблизился в поле зрения датчика.

Выбор двигателя

Производитель	Модель	Тяговый двигатель
Nissan	Tino, Leaf, Altra	СДПМ
Honda	Insight, Accord, Civic	СДПМ
Toyota	Prius C & V	СДПМ
Toyota	Highlander, Avalon	СДПМ
Toyota	Camry	СДПМ
Ford	Fusion SE Hybrid	СДПМ
Ford	C Max Hybrid SEL	СДПМ
Hyundai	Blueon	СДПМ
Chevrolet	Volt & Energi	СДПМ
Renault	Kangoo	АД
Chevrolet	Silverado	АД
Daimler Chrysler	Durango	АД
Tesla	Roadster	АД
Honda	Fit EV	АД
Toyota	Reva4	АД
REVA	NXR	АД
Ford	Focus Electric	АД
Ford	Transit Connect	АД
GM	EV1	АД
BMW	X5	АД
Volkswagen	e-Crafter	СДПМ
Volvo	FM Electric (грузовик)	АД
ЛиАЗ	ЛиА3-6274.20 «e-Citymax	АД
	18» (автобус)	
КамАЗ	КАМАЗ-6282 (автобус)	АД
VolgaBus	Ситиритм 12 ELF	АД

Критерии оценивания:

- Термическая защита
- Защита от влаги, коррозии и льда
- Сопротивление вибрации
- Низкая мощность пуска
- Энергоэффективность.

Условия моделирования

- I. Спроектирована 3D-модель беспилотного транспортного средства.
- II. Разработана система управления блока поддержания температуры на базе микроконтроллера Arduino Uno.
- III. Проведён подбор аппаратной базы для системы поддержания температуры в грузовом отсеке.

Выводы:

- 1. Наша модель обладает значительными преимуществами по сравнению с традиционными методами передвижения в Арктике.
- 2. Использование беспилотного транспорта может быть экономически целесообразным благодаря снижению операционных расходов, увеличению производительности и доступу к ранее недоступным районам.
- 3. При правильной настройке и обучении системы управления риск аварий снижается, что способствует обеспечению безопасности перевозок в условиях экстремальных климатических условий.