Trigonometry

The word 'trigonometry' suggests 'tri'-three, 'gono'-angle, 'metry'-measurement. As such, trigonometry is basically about triangles, most especially right-angled triangles.

Important to note

(a) For a right angled triangle below

•
$$\sin\theta = \frac{a}{c}$$

$$\csc\theta = \frac{1}{\sin\theta} = \frac{c}{a}$$

•
$$\cos\theta = \frac{b}{c}$$

$$\sec\theta = \frac{1}{\cos\theta} = \frac{c}{b}$$

•
$$\tan\theta = \frac{\sin\theta}{\cos\theta} \frac{a}{b}$$
•

$$\cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{b}{a}$$

(b) All positive angles are measured anticlockwise from positive x-axis

(c) A circle drawn with the centre O, divides the co-ordinate axis into four equal parts called quadrants

The quadrants are also labelled anti-clockwise from the positive \mathbf{x} – axis.

The signs the trigonometric ratios in the quadrants are given below

Ratio	Quadrant			
	1 st	2 nd	3 rd	4 th
cosθ	+ <i>x</i>	-x	-x	+ <i>x</i>
	\overline{r}	r	r	\overline{r}
sinθ	+y	+y	<u>-y</u>	$\underline{-y}$
	\overline{r}	\overline{r}	r	r
tanθ	+y	<u>y</u>	<u>y</u>	$\underline{-y}$
	\overline{x}	-x $-r$	-r	\boldsymbol{x}
secθ	+r	<u>-r</u>		+r
	$\frac{\overline{x}}{x}$	\overline{x}	$\frac{x}{-r}$	$\frac{\underline{}}{x}$
cosecθ	+r	+r	<u>-r</u>	$\frac{x}{-r}$
	\overline{y}	\overline{y}	у	у
cotθ	+x	-x	+x	-x
	\overline{y}	y	y	\overline{y}

Note

- If θ is the angle in the 1^{st} quadrat
- In the 2^{nd} quadrat the angle is (180θ)
- In the 3^{rd} quadrat the angle is $(180 + \theta)$
- In the 4^{th} quadrat the angle is (360θ)

Solving equations

We make use of the quadrants to find the ranges of values within which the angle follows

Example 1

Solve the following equations for $0^0 \le \theta \le 360^0$

(i) $3\cos\theta + 2 = 0$ Solution $\cos\theta = -\frac{2}{3}$

But \cos is negative in the 2^{nd} and 3^{rd} quadrants.

Ignoring the negative sign, the angle obtained is referred to as the key or principle angle, i.e. key angle = $\cos^{-1}\frac{2}{3}$ = 48.2° (1d.p)

In the 2^{nd} quadrant, $\theta = 180 - 48.2 = 131.8^{0}$

In the 3^{rd} quadrant, $\theta = 180 + 48.2 = 228.2^{0}$

 $\therefore \{\theta: \theta=131.8^{\circ}, 228.2^{\circ}\}$

Note that: the key angle s not part of the solution but only a guide.

(ii) $4\cos^2\theta - 1 = 0$ Solution

$$\cos\theta = \sqrt{\frac{1}{4}} = \pm \frac{1}{2}$$

Key angle, $\theta = \cos^{-1} \frac{1}{2} = 60^{0}$

When $\cos\theta = \frac{1}{2}$ (positive is 1st and 4th quadrants)

 1^{st} quadrant $\theta = 60^{0}$

 4^{th} quadrant $\theta = 360 - 60 = 300^{0}$

When $\cos\theta = -\frac{1}{2}$ (positive is 2^{nd} and 3^{rd} quadrants)

 3^{rd} quadrant $\theta = 180 - 60 = 120^{0}$

 4^{th} quadrant $\theta = 180 + 60 = 240^{0}$

 $\therefore \{\theta: \theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}\}$

(iii) $\csc\theta + 2 = 0$

Solution

 $cosec\theta = -2 => sin\theta = -\frac{1}{2}$ (taking reciprocal)

Key angle = $\sin^{-1} \frac{1}{2} = 30^{\circ}$

In the 3^{rd} quadrant $\theta = 180 + 30 = 210^{0}$

In the 4^{th} quadrant $\theta = 360 - 30 = 330^{0}$

∴{ θ : θ = 210°, 330°}

(iv) $3\sec^2\theta - 4 = 0$

Solution

$$\sec\theta = \pm \frac{2}{\sqrt{3}} \Rightarrow \cos\theta = \pm \frac{\sqrt{3}}{2}$$

Key angle =
$$\cos^{-1} \frac{\sqrt{3}}{2} = 30^{\circ}$$

For
$$\cos\theta = \frac{\sqrt{3}}{2}$$
; $\theta = 30^{\circ}$, 330°

For
$$\cos\theta = -\frac{\sqrt{3}}{2}$$
; $\theta = 120^{\circ}$, 210°

 $\therefore \{\theta: \theta=30^{\circ}, 120^{\circ}, 210^{\circ}, 330^{\circ}\}$

(d) Definitions of angle

- (i) **Acute angle** is an angle between 0° and 90°. It lies in the 1st quadrant
- (ii) **Right angle** is an angle = 90°
- (iii) **Obtuse angle** is an angle between 90° and 180°. It lies in the 2nd quadrant
- (iv) **Reflex angle** is an angle between 180⁰ and 360⁰. It lies in the 3rd and 4th quadrant

Example 2

(a) If $\sin\theta = \frac{3}{5}$ and $0^{0} \le \theta \le 360^{0}$. Find the possible values of $3\tan\theta - \cot\theta$

If $\sin\theta = \frac{3}{5}$; θ lies in 1st or 2nd quadrants

In 1st quadrant

$$3\tan\theta - \cot\theta = 3\left(\frac{3}{4}\right) - \left(\frac{4}{3}\right) = \frac{11}{12}$$

In 2nd quadrant

$$3\tan\theta - \cot\theta = 3\left(-\frac{3}{4}\right) - \left(-\frac{4}{3}\right) = -\frac{11}{12}$$

 \therefore the possible values are $\pm \frac{11}{12}$

(b) If $\cos\theta = -\frac{8}{17}$ and θ is reflex, find the value of $4\sec^2\theta + \tan\theta$

Solution

If $\cos\theta = -\frac{8}{17}$ and θ is reflex, θ lies in the 3rd quadrant

$$4\sec^2\theta + \tan\theta = 4\left(-\frac{17}{8}\right)^2 + \frac{15}{8} = \frac{319}{16}$$

Example 3

Solve for θ , where $\theta^0 \le \theta \le 360^0$

(i) $3\tan^2 3\theta = 1$

Solution

$$\tan 3\theta = \pm \frac{1}{\sqrt{3}}$$

taking tan3 $\theta = \frac{1}{\sqrt{3}}$

$$\Rightarrow 3\theta = 30^{\circ}, 210^{\circ}, 390^{\circ}, 570^{\circ}, 750^{\circ}, 930^{\circ}$$
$$\theta = 10^{\circ}, 70^{\circ}, 130^{\circ}, 190^{\circ}, 250^{\circ}, 310^{\circ}$$

taking tan3 $\theta = -\frac{1}{\sqrt{3}}$

 $\Rightarrow 3\theta = 150^{\circ}, 330^{\circ}, 510^{\circ}, 690^{\circ}, 870^{\circ}, 1050^{\circ}$ $\theta = 50^{\circ}, 110^{\circ}, 170^{\circ}, 230^{\circ}, 290^{\circ}, 350^{\circ}$

 $\therefore \{\theta: \theta=10^{\circ}, 50^{\circ}, 70^{\circ}, 110^{\circ}, 130^{\circ}, 170^{\circ}, 190^{\circ}, 230^{\circ}, 250^{\circ}, 290^{\circ}, 310^{\circ}, 350^{\circ}\}$

Note

- If $\theta^0 \le \theta \le 360^0$ then $\theta^0 \le 3\theta \le 1080^0$ [multiply the interval through by 3]

(ii)
$$2\cos 2\theta + \sqrt{3} = 0$$

Solution

$$\cos 2\theta = -\frac{\sqrt{3}}{2}$$
 and $\theta^0 \le 2\theta \le 720^0$

$$2\theta = 150^{\circ}, 210^{\circ}, 510^{\circ}, 570^{\circ}$$

$$\therefore \{\theta: \theta = 75^{\circ}, 105^{\circ}, 255^{\circ}, 285^{\circ}\}$$

Set square angles: 30°, 45°, and 60°

(i) From equilateral triangle ABC with side equal to 1 unit

$$\cos 60^{\circ} = \sin 30^{\circ} = \frac{1}{2}$$

 $\cos 30^{\circ} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$
 $\tan 30^{\circ} = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$

$$\tan 60^{\circ} = \cot 30^{\circ} = \sqrt{3}$$

(ii) From the right angled triangle PQR below

$$\cos 45^0 = \sin 45^0 = \frac{1}{\sqrt{2}}$$

$$tan45^{0} = 1$$

Example 4

Without using tables or calculators find the value of

(i) cos240⁰

Solution

$$\cos 240^{0} = -\cos(240 - 180)^{0} = -\cos 60^{0} = -\frac{1}{2}$$

(ii) tan 3990°

Solution

$$\tan 3990^{\circ} = \tan [(360 \times 11) + 30]^{\circ} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

(iii) sin 570°

Solution

$$\sin 570^{0} = \sin \{(360 \times 1) + 210\}^{0} = -\sin 30 = -\frac{1}{2}$$

(iv) sec 225⁰

Solution

$$\sec 225^{\circ} = \sec (225 - 180)0 = \sec 45^{\circ} = -\sqrt{2}$$

The Pythagoras theorem

For any acute angle θ

 $x = r\cos\theta$ and $y = r\sin\theta$

By Pythagoras theorem

$$x^2 + y^2 = r^2$$

Substituting for x and y

$$(r\cos\theta)^2 + (r\sin\theta)^2 = r^2$$

$$r^2(\cos^2\theta + \sin^2\theta) = r^2$$

$$\therefore \cos^2\theta + \sin^2\theta = 1$$

Now
$$\tan\theta = \frac{y}{r} = \frac{r \sin\theta}{r \cos\theta} = \frac{\sin\theta}{\cos\theta}$$

$$\therefore \frac{\sin\theta}{\cos\theta} = \tan\theta$$

Identities

$$\cos^2\theta + \sin^2\theta = 1$$
(i)

Identity (i) $\div \cos^2 \theta$

1 + $tan^2θ = sec^2θ$ (ii)

Identiy (i) $\div \sin^2 \theta$

 $1 + \cot^2\theta = \csc^2\theta$ (iii)

Example 5

Show that

(i)
$$\sin^2\theta + (1 + \cos\theta)^2 = 2(1 + \cos\theta)$$

Solution

$$\sin^2\theta + (1 + \cos\theta)^2$$

$$= \sin^2 \theta + 1 + 2\cos\theta + \cos^2 \theta$$

$$= \sin^2 \theta + \cos^2 \theta + 1 + 2\cos\theta$$

=
$$1 + 1 + 2\cos\theta$$
 (Recall that $\sin^2\theta + \cos^2\theta = 1$)

$$= 2 + 2\cos\theta = 2(1 + \cos\theta)$$

$$\sin^2 \theta + (1 + \cos \theta)^2 = 2(1 + \cos \theta)$$

(ii)
$$\frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\sec\theta}{1+\csc\theta} = \tan\theta$$

Solution

$$\frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\sec\theta}{1+\cos\epsilon\theta} = \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\frac{1}{\cos\theta}}{1+\frac{1}{\sin\theta}}$$

$$=\frac{1+\sin\theta}{1+\cos\theta}\cdot\frac{\frac{\cos\theta+1}{\cos\theta}}{\frac{\sin\theta+1}{\sin\theta}}$$

$$=\frac{1+\sin\theta}{1+\cos\theta}\cdot\frac{\cos\theta+1}{\cos\theta}\div\frac{\sin\theta+1}{\sin\theta}\\ =\frac{1+\sin\theta}{1+\cos\theta}\cdot\frac{\cos\theta+1}{\cos\theta}x\frac{\sin\theta}{\sin\theta+1}$$

$$=\frac{\sin\theta}{\cos\theta}=\tan\theta$$

$$\therefore \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\sec\theta}{1+\csc\theta} = \tan\theta$$

(iii)
$$(\tan\theta + \sec\theta)^2 = \frac{1+\sin\theta}{1-\sin\theta}$$

$$(\tan\theta + \sec\theta)^2 = \left(\frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta}\right)^2 = \left(\frac{\sin\theta + 1}{\cos\theta}\right)^2$$
$$= \frac{(1 + \sin\theta)^2}{\cos^2\theta} = \frac{(1 + \sin\theta)^2}{1 - \sin^2\theta}$$

$$=\frac{(1+\sin\theta)(1+\sin\theta)}{(1+\sin\theta)(1-\sin\theta)} = \frac{1+\sin\theta}{1-\sin\theta}$$

$$\therefore (\tan\theta + \sec\theta)^2 = \frac{1 + \sin\theta}{1 - \sin\theta}$$

Example 6

Solve the following equations for $-180^{\circ} < x < 180^{\circ}$

(i)
$$2\cos^2\theta + \sin\theta - 1 = 0$$

Solution

$$2(1-\sin^2\theta)+\sin\theta-1=0$$

$$2\sin 2\theta - \sin \theta - 1 = 0$$

$$(\sin\theta - 1)(2\sin\theta + 1) = 0$$

Either
$$\sin\theta = 1$$
 or $\sin\theta = -\frac{1}{2}$

When
$$\sin\theta = 1$$
; $\theta = 90^{\circ}$

When
$$\sin\theta = -\frac{1}{2}$$
; $\theta = -150^{\circ}$, -30° , 210° , 330°

$$[\theta: \theta= -150^{\circ}, -30^{\circ}, 90^{\circ} \text{ for given range}]$$

(ii)
$$\cos\theta + \sqrt{3}\sin\theta = 1$$

Solution

1st approach

$$\sqrt{3}\sin\theta = 1 - \cos\theta$$

Squaring both sides

$$3\sin^2\theta = 1 - 2\cos\theta + \cos^2\theta$$

$$3(1-\cos^2\theta) = 1 - 2\cos\theta + \cos^2\theta$$

$$4\cos^2\theta - 2\cos\theta - 1 = 0$$

$$(2\cos\theta + 1)(\cos\theta - 1) = 0$$

$$\cos\theta = -\frac{1}{2} \qquad \cos\theta = 1$$

$$\theta = \pm 120^{0} \qquad \theta = 0^{0}$$

$$\theta = \pm 120^{\circ} \qquad \theta = 0^{\circ}$$

$$\therefore [\theta: \theta=0^{\circ}, \pm 120^{\circ}]$$

$$\sqrt{3}\sin\theta = 1 - \cos\theta$$

Dividing through by cosθ

$$\sqrt{3}\tan\theta = \sec\theta - 1$$

Squaring both sides

$$3\tan^2\theta = \sec^2\theta - 2\sec\theta + 1$$

$$3\tan^2\theta = \sec^2\theta - 2\sec\theta + 1$$

$$3[\sec^2\theta - 1] = \sec^2\theta - 2\sec\theta + 1$$

$$2\sec^2\theta + 2\sec\theta - 4 = 0$$

$$\sec^2\theta + \sec\theta - 2 = 0$$

$$(\sec\theta + 2)(\sec\theta - 1) = 0$$

$$\sec\theta = -2 \text{ or } \sec\theta = 1$$

$$\cos\theta = \frac{1}{2} \text{ or } \cos\theta = 1$$

$$\therefore [\theta: \theta=0^{\circ}, \pm 120^{\circ}]$$

$$\sqrt{3}\sin\theta = 1 - \cos\theta$$

Dividing through by sinθ

$$\sqrt{3} = \csc\theta - \cot\theta$$

Rearranging

$$\sqrt{3} + \cot\theta = \csc\theta$$

Squaring both sides

$$3 + 2\sqrt{3}\cot\theta + \cot^2\theta = \csc^2\theta$$

$$3 + 2\sqrt{3}\cot\theta + \cot^2\theta = 1 + \cot^2\theta$$

$$\cot\theta = \frac{1}{\sqrt{3}}$$
; => $\tan\theta = -\sqrt{3}$

$$: [\theta: \theta = -60^{\circ}, 120^{\circ}]$$

Example 7

(a) Given that 7 $\tan\theta + \cot\theta = 5\sec\theta$, derive a quadratic equation for sinθ. Hence or otherwise, find all values of θ in the interval $0^{\circ} \le \theta \le 180^{\circ}$ which satisfy the equation, giving your answer to the nearest 0.10 where necessary

$$7 \tan\theta + \cot\theta = 5 \sec\theta$$

$$7\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{5}{\cos\theta}$$

$$7\frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta} = \frac{5}{\cos\theta}$$

$$7\sin^2\theta + \cos^2\theta = 5\sin\theta$$

$$7\sin^2\theta + (1 - \sin^2\theta) = 5\sin\theta$$

$$6\sin^2\theta - 5\sin\theta + 1 = 0$$

$$(3\sin\theta - 1)(2\sin\theta - 1) = 0$$

$$\sin\theta = \frac{1}{3}$$
 $\sin\theta = \frac{1}{2}$ $\theta = 19.5^{\circ}, 160.5^{\circ}$ $\theta = 30^{\circ}, 150^{\circ}$

$$[\theta: \theta=19.5^{\circ}, 30^{\circ}, 150^{\circ}, 160.5^{\circ}]$$

Example 8

Find the solution of $3\cot\theta + \csc\theta = 2$ for $0^{\circ} \le \theta \le 180^{\circ}$.

Solution

$$3\cot\theta + \csc\theta = 2$$

$$3\frac{\cos\theta}{\sin\theta} + \frac{1}{\sin\theta} = 2$$

$$(3\cos\theta + 1)^2 = (2\sin\theta)^2$$

$$9\cos^2\theta + 6\cos\theta + 1 = 4\sin^2\theta$$

$$9\cos^2\theta + 6\cos\theta + 1 = 4(1 - \cos^2\theta)$$

$$13\cos^2\theta + 6\cos\theta - 3 = 0$$

$$\cos\theta = \frac{-6 \pm \sqrt{6^2 + 4x3x13}}{2x13}$$

$$\cos\theta = 0.3021$$
 | $\cos\theta = 0.7637$

$$\theta = 72.40$$
 $\theta = 40.2$

$$\therefore [\theta: \theta = 72.4^{\circ}, 40.2^{\circ}]$$

Elimination of trigonometric parameter

This involves the use of identities to eliminate the trigonometric values in equation

Example 9

(a) If $x = \tan\theta + \sec\theta$ and $y = \tan\theta - \sec\theta$; show that xy + 1 = 0Solution

$$x + y = tan\theta$$

$$x - y = 2sec\theta$$

$$\sec\theta = \frac{1}{2}(x-y)$$

Using identity: $1 + \tan^2 \theta = \sec^2 \theta$

1 + (x + y) 2 =
$$\left[\frac{1}{2}(x - y)\right]^2$$

$$4 + x^2 + 2xy + y^2 = x^2 - 2xy + y^2$$

$$4xy + 4 = 0$$

$$xy + 1 = 0$$
 as required

(b) $x = 2 + 3\sin\theta$ and $y = 3 + 2\cos\theta$ show that $4(x - 2)^2 + (y - 3)^2 = 36$ Solution

$$x = 2 + 3\sin\theta = \sin\theta = \frac{x-2}{3}$$

$$y = 3 + 2\cos\theta = \cos\theta = \frac{y-3}{2}$$

Using identity $\sin^2\theta + \cos^2\theta = 1$

$$\left(\frac{x-2}{3}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$$

$$4(x-2)^2 + (y-3)^2 = 36$$
 as required

(c) $x = 2\sin\theta$ and $y = \tan\theta$, prove that

$$x = \pm \frac{2y}{\sqrt{(1+y^2)}}$$

Solution

$$x = 2\sin\theta$$
; => $\csc\theta = \frac{2}{x}$

$$y = tan\theta$$
; => $cot\theta = \frac{1}{y}$

Using identity: $1 + \cot^2 \theta = \csc^2 \theta$

$$1 + \left(\frac{1}{y}\right)^2 = \left(\frac{2}{x}\right)^2$$

$$\chi = \pm \frac{2y}{\sqrt{(1+y^2)}}$$

Revision exercise 1

- 1. Solve for θ , where $\theta^0 \le \theta \le 360^0$
- (a) $\sec\theta \csc\theta + 2\sec\theta 2\csc\theta 4 = 0$ $[\theta: \theta = 60^{\circ}, 210^{\circ}, 300^{\circ}, 330^{\circ}]$
- (b) $\tan^2\theta (\sqrt{3} + 1)\tan\theta + \sqrt{3} = 0$ $[\theta: \theta = 45^\circ, 60^\circ, 225^\circ, 240^\circ]$
- 2. Show that

(a)
$$\frac{1-\cos\theta+\sin\theta}{1-\cos\theta} = \frac{1+\cos\theta+\sin\theta}{\sin\theta}$$

- (b) $tan\theta + cot\theta = sec\theta cosec\theta$
- (c) $\cos^4\theta \sin^4\theta + 1 = 2\cos^2\theta$

(d)
$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2\csc\theta$$

(e)
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} = \sec\theta + \tan\theta$$

- 3. Solve the following equations for $-180^{\circ} \le x \le 180^{\circ}$
- (i) $2\cos^2\theta + \sin\theta 1 = 0$

$$[\theta: \theta = -150^{\circ}, -30^{\circ}, 90^{\circ}]$$

(ii) $\sin 2\theta + 5\cos 2\theta = 3$ $[\theta: \theta = \pm 45^{\circ}, \pm 135^{\circ}]$

6

(iii) $4\cot^2\theta + 24\csc\theta + 39 = 0$

 $[\theta: \theta = 16.6^{\circ}, 23.6^{\circ}, 156.4^{\circ}, 163.4^{\circ}]$

- 4. Solve each of the following equations in the stated range
- (a) $4\cos^2\theta + 2\sin\theta = 4$ $0^0 \le \theta \le 360^0$ $[\theta: \theta = 0^0, 48.6^0, 131.4^0, 180^0, 360^0]$
- (b) $2\sec^2\theta 4\tan\theta 2 = -180^\circ \le \theta \le 360^\circ$ $[\theta: \theta = -135^\circ, -161.6^\circ, 18.4^\circ, 45^\circ]$
- (c) $5\cos^2 3\theta = 3(1 + \sin 3\theta), \quad 0^0 \le \theta \le 360^0$ $[\theta: \theta = 7.9^0, 52.1^0, 90^0, 127.9^0, 172.1^0]$
- 5. Solve for θ ; $00 \le \theta \le 3600$
 - (a) $\tan\theta + 3\cot\theta = 4$ $[\theta: \theta = 45^{\circ}, 71.6^{\circ}, 225^{\circ}, 251.6^{\circ}]$
 - (b) $4\cos\theta 3\sin\theta = 2$ [θ : $\theta = 29.50, 256.70$]
- 6. Solve
 - (a) $\cos\theta + \sqrt{3}\sin\theta = 2$ $0 \le \theta \le \pi$ $\left[\theta = \frac{\pi}{2}\right]$
 - (b) $2\cos\theta \csc\theta = 0$ $0^{\circ} \le \theta \le 270^{\circ}$ $[\theta: \theta = 45^{\circ}, 225^{\circ}]$
 - (c) $2\sin^2\theta + 3\cos\theta = 0$ $0^0 \le \theta \le 360^0$ $[\theta: \theta = 240^0, 120^0]$
 - (d) $3\sin\theta + 4\cos\theta = 2 -180^{\circ} \le \theta \le 180^{\circ}$ [$\theta : \theta = -29.55^{\circ}, 103.29^{\circ}$]
 - (e) $3\tan^2\theta + 2\sec^2\theta = 2(5 3\tan\theta)$ for $0^0 < \theta < 180^0$ [θ : $\theta = 38.66^0$, 116.57^0]
 - 7. Without using a tables or calculator, show that $\tan 15^{\circ} = 2 \sqrt{3}$
 - 8. Solve equation $8\cos^4\theta - 10\cos^2\theta + 3 \text{ for } 0^0 \le \theta \le 180^0$ $[\theta: \theta = 30^0, 45^0, 135^0, 150^0]$
 - 9. Eliminate θ from the following equation
 - (a) $x = asec\theta$ and $y = b + ccos\theta$ [ac = x(y - b)]
 - (b) $x = \sec\theta + \tan\theta$ and $y = \sec\theta \tan\theta$ [xy = 1]
 - 10. Solve the simultaneous equation Cos x + 4siny = 1 4secx - 3cosecy = 5 for values of x and y between 0^0 and 360^0 $[x = 78.8^0, 281.5^0; y = 11.5^0, 168.5^0]$
 - 11. Prove each of the following identities

- (a) Sinxtanx + cosx = secx
- (b) Cosecx + tanxsecx = cosecxsec²x
- (c) Cosecx sinx = cotxcosx
- (d) $(\sin x + \cos x)^2 1 = 2\sin x \cos x$
- 12. Eliminate θ from each of the following pairs of relationships
 - (a) $x = 3\sin\theta$, $y = \csc\theta$ [xy = 3]
 - (b) $5x = \sin\theta$, $y = 2\cos\theta [100x^2 + y^2 4 = 0]$
 - (c) $x = 3 + \sin\theta$, $y = \cos\theta [(x-3)^2 + y^2 = 1]$
 - (d) $x = 2 + \sin\theta, \cos\theta = 1+y$ $[(x-2)^2 + (y+1)^2 = 1]$

Measuring angles in radians

A radian is defined as an angle subtended at the centre of a circle by an arc that is equal to the radius of the circle. One radian is represented by π , where $\pi = \frac{22}{7}$

How to convert between degrees and radians

1 revolution = circumference of a circle

But circumference of a circle subtends an angle 2π at the centre.

$$\Rightarrow 1 \text{ revolution} = 2\pi = 360^{0}$$

$$\pi = 180^{0}$$

$$1^{0} = \frac{\pi}{180} \text{ radians}$$

$$x^{0} = \frac{\pi}{180} x \text{ radians}$$

Example 10

Convert the following angles to radians

- (a) 330⁰
- (b) 90°
- (c) 30°

(a)
$$330^0 = \frac{\pi}{180} \times 330 = \frac{11\pi}{6}$$
 radians

(b)
$$90^0 = \frac{\pi}{180} \times 90 = \frac{\pi}{2}$$
 radians

(b)
$$90^0 = \frac{\pi}{180} x \ 90 = \frac{\pi}{2}$$
 radians
(c) $30^0 = \frac{\pi}{180} x \ 30 = \frac{\pi}{6}$ radians

Converting radians to degrees

 2π radians = 360°

$$1 \text{ radian} = \frac{180^0}{\pi}$$

x radians =
$$\frac{180^{\circ}}{\pi}$$
 x

Example 11

Convert each of the following radians to degrees

- (i) $\frac{\pi}{3}$ radians (ii) $\frac{2\pi}{5}$ radians
- (iii)

Solution

(i)
$$\frac{\pi}{3}$$
 radians = $\frac{180^{\circ}}{\pi}$ $x \frac{\pi}{3} = 60^{\circ}$

(ii)
$$\frac{2\pi}{5}$$
 radians = $\frac{180^{\circ}}{\pi} \times \frac{2\pi}{5} = 72^{\circ}$

(iii)
$$\pi \text{ radians} = \frac{180^{\circ}}{\pi} x \pi = 180^{\circ}$$

Some equivalent angles in degrees and radians

Example 12

Find each of the following values

(a)
$$\sin\left(\frac{2\pi}{3}\right)$$

(b)
$$\cos\left(\frac{4\pi}{3}\right)$$

(c)
$$\tan\left(\frac{7\pi}{4}\right)$$

Solution

Convert the angles from radian to degrees

(a)
$$\sin\left(\frac{2\pi}{3}\right) = \sin\left(\frac{2 \times 180}{3}\right) = \sin 120^{0} = \frac{\sqrt{3}}{2}$$

(b) $\cos\left(\frac{4\pi}{3}\right) = \cos\left(\frac{4 \times 180}{3}\right) = \cos 240^{0} = -\frac{1}{2}$
(d) $\tan\left(\frac{7\pi}{4}\right) = \tan\left(\frac{7 \times 180}{4}\right) = \tan 60^{0} = \sqrt{3}$

(b)
$$\cos\left(\frac{4\pi}{3}\right) = \cos\left(\frac{4 \times 180}{3}\right) = \cos 240^{\circ} = -\frac{1}{2}$$

(d)
$$tan\left(\frac{7\pi}{4}\right) = tan\left(\frac{7x \ 180}{4}\right) = tan60^{\circ} = \sqrt{3}$$

Length of an arc

Suppose that the angle subtended by the length L of an arc AB of a circle is θ as shown.

$$\frac{L}{\theta} = \frac{2\pi r}{2\pi}$$

 $L = r\theta$ where θ must be in radians

Example 13

Find the length of an arc of a circle of radius 14 if it subtends an angle

- (i)
- (ii)

(i)
$$L = r\theta = 14 x \frac{\pi}{4} = 11 cm$$

(ii) Convert degrees to radians
$$150^{0} = \frac{\pi}{180} x 150 = \frac{5\pi}{6} \text{ radians}$$

$$L = 14 x \frac{5\pi}{6} = 36.67 \text{cm}$$

Example 14

A sector was drawn which had a perimeter of 80cm, and centre angle of 130° . Calculate the radius

Solution

The sides of a sector are composed of an arc, and two more sides which are radii of a circle.

$$2r + L = 80$$

$$L = 80 - 2r$$

Converting 130° to radians

$$130^0 = \frac{\pi}{180} \times 130 = \frac{13\pi}{18}$$

But
$$L = r\theta$$

$$80 - 2r = \frac{13\pi r}{18}$$

$$2r + \frac{13\pi r}{18} = 80$$

$$\frac{(36+13\pi)r}{18} = 80$$

$$r = 18.74cm$$

Area of a sector of a circle

A sector of a circle is a portion of the interior of a circle intercepted by a central angle.

The area of a sector of a circle of radius r and central angle θ is given by

$$A = \left(\frac{\theta}{2\pi}\right)\pi r^2 = \left(\frac{\theta}{2}\right)r^2$$

Where θ must be in radians

Example 15

Find the area of a sector with radius 14cm and angle (i) $\frac{\pi}{4}$ (ii) 1200

Solution

(i)
$$A = \left(\frac{\theta}{2}\right) r^2 = \left(\frac{\pi}{8}\right) . 14^2 = 77 \text{cm}^3$$

(ii) Converting 120° to radians

$$120^0 = \frac{\pi}{180} \times 120 = \frac{2\pi}{3}$$

$$A = \left(\frac{\theta}{2}\right) r^2 = \left(\frac{\pi}{3}\right) . 14^2 = 205.25 \text{cm}^3$$

Solving trigonometric functions whose range is in radians

When the range of the trigonometric function is in radians, the answer should be given in radians

Example 16

Solve the following equations for the ranges indicated

(i)
$$\cos\theta + \sqrt{3}\sin\theta = 1$$

 $0 \le \theta \le \pi$

Solution

$$\sqrt{3}\sin\theta = 1-\cos\theta$$

Squaring both sides

$$3\sin^2\theta = 1 - 2\cos\theta + \cos^2\theta$$

$$3(1 - \cos^2\theta) = 1 - 2\cos\theta + \cos^2\theta$$

$$4\cos^2\theta - 2\cos\theta - 1 = 0$$

$$(2\cos\theta + 1)(\cos\theta - 1) = 0$$

$$cosθ = -\frac{1}{2}$$

$$θ = ± 1200$$

$$cosθ = 1$$

$$θ = 00$$

$$\pm 1200 = \pm \frac{\pi}{180} x \ 120 = \pm \frac{2\pi}{3}$$
 Radians

$$0^0 = 0$$
 radians

$$\therefore \left[\theta \colon \theta = 0, \pm \frac{2\pi}{3}\right]$$

(ii)
$$2\cos^2\theta + \sin\theta - 1 = 0$$
 $0 \le \theta \le \pi$

Solution

$$2(1 - \sin^2\theta) + \sin\theta - 1 = 0$$

$$2\sin 2\theta - \sin \theta - 1 = 0$$

$$(\sin\theta - 1)(2\sin\theta + 1) = 0$$

Either
$$\sin\theta = 1$$
 or $\sin\theta = -\frac{1}{2}$

When
$$\sin\theta = 1$$
; $\theta = 90^{\circ}$

When
$$\sin\theta = -\frac{1}{2}$$
; $\theta = -150^{\circ}$, -30° , 210° , 330°

$$[\theta: \theta = \frac{\pi}{180} \times 90 = \frac{\pi}{2} \text{ for given range}]$$

Revision exercise 2

- 1. Express each of the following in radians
 - (a) $30^{0} \left[\frac{\pi}{6} \right]$
 - (b) $45^{\circ} \left[\frac{\pi}{4} \right]$
 - (c) $120^{0} \left[\frac{2\pi}{3} \right]$
 - (d) $300^{0} \left[\frac{5\pi}{3} \right]$
- 2. Express the following angle in degrees
 - (a) $\frac{\pi}{3}$ rad [60°]
 - (b) $\frac{\pi}{8}$ rad [22.5°]
 - (c) $3\pi \text{ rad } [540^{\circ}]$
 - (d) $5.2\pi \text{ rad}[936^{\circ}]$
- 3. A sector of the circle of radius 7 cm subtends an angle $\frac{\pi}{3}$ radians at the centre. Calculate the
 - (a) Length of the arc $\left[6\frac{2}{3}cm\right]$
 - (b) Perimeter of the sector $\left[20\frac{2}{3}cm\right]$
 - (c) Area of the sector $\left[\frac{77}{3}cm^2\right]$
- AOB is a sector of a circle, centre O, and is such that OA = OB = 7cm and angle AOB is 300. Calculate the
 - (a) Perimeter of sector AOB $\left[17\frac{2}{3}cm\right]$
 - (b) The area of AOB $\left[\frac{77}{6}cm^2\right]$
- 5. Find the value each of the following
 - (a) $Sin\pi [0]$
 - (b) $\cos 3\pi$ [-1]
 - (c) $\tan \frac{\pi}{3} \left[\sqrt{3} \right]$

- 6. Solve the following equations for the ranges indicated
 - (a) $2\sec^2\theta = 3 + \tan\theta \text{ for } 0 \le \theta \le 2\pi$ $[\theta: \theta = 0.25\pi, 0.85\pi, 1.25\pi, 1.85\pi]$
 - (b) $2\sin^2 x \cos x + \cos x 1$ for $0 \le \theta \le 2\pi$ $[\theta: \theta = 0.38\pi, 1.62\pi, 2\pi]$
 - (c) $2\tan\theta + 4\cot\theta = \csc\theta \text{ for } -\pi \le \theta \le \pi$ $\left[\theta: \theta = \pm \frac{1}{3}\pi, \pm 0.73\pi\right]$

Graphs of trigonometric functions

The following are the characteristic of the three major trigonometric functions

The sine function

- It is continuous (with no breaks)
- The range -1 ≤ sinθ ≤ 1
- The shape of the graph from θ = 0 to θ = 2π is repeated every 2π radians
- This is called a periodic or cyclic function and the width of the repeating pattern that is measured on horizontal axis is called a **period**. The sine wave has a period of 2π , a maximum value of +1 and a minimum value of -1.
- The greatest value of sine wave is called the amplitude.

The coosine function

- It is continuous (with no breaks)
- The range -1 ≤ sinθ ≤ 1
- Has a period of 2π
- The shape is the same as the sine wave but displaced a distance $\frac{\pi}{2}$ to the left on the horizontal axis. This is called a **phase** shift

The tan function

- The tan function is found using; $tan\theta = \frac{sin\theta}{cos\theta}.$ It follows that $tan\theta = 0$ when $sin \theta = 0$; and $tan\theta$ is undefined when $cos\theta = 0$
- The graph is continuous, but undefined when $\theta = -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$
- The range of values for $tan\theta$ is unlimited
- It has a period π

Compound angles

Consider a cardboard ABCD of unit diagonal that stands on the edge A, making an angle β with the horizontal ground. Let the unit diagonal AC be inclined at an angle α to the side AB (see diagram)

Angles EAB= ABG(Alternative angles)

∴ Angle ABG =
$$\beta$$

Angle [ABG + GBC] =
$$90^{\circ}$$

∴ Angle GBC =
$$90 - \beta$$

From triangle GBC,

Angle BCG =
$$180 - (90 + 90 - \beta)$$

From

(1) Triangle ABC:

$$\cos\alpha = \frac{AB}{AC} = \frac{AB}{1}$$
; => AB = $\cos\alpha$

(2) Triangle ABE:

$$\cos \beta = \frac{AE}{AB} = \frac{AE}{\cos \alpha}; \Rightarrow AE = \cos \beta \cos \alpha$$

$$\sin \beta = \frac{BE}{AB} = \frac{BE}{\cos \alpha}; \Rightarrow BE = \cos \alpha \sin \beta$$

(3) Triangle BCG:

$$cosβ = \frac{CG}{BC} = \frac{CG}{sinα}; \Rightarrow CG = sinαcosβ$$

 $sinβ = \frac{BG}{BC} = \frac{BG}{sinα}; \Rightarrow BG = sinαsinβ$

(4) Triangle ACF:

$$cos(\alpha + \beta) = \frac{AF}{AC} = \frac{AF - BG}{1} = AE - BG$$

 $\therefore \cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$

$$sin(\alpha + \beta) = \frac{CF}{AC} = \frac{CG - GF}{1} = CG + GF$$

$$\therefore \sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

It follows that

(i) $cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$

(ii)
$$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$$

[substituting $-\beta$ for β)

(iii)
$$sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$$

(iv)
$$sin(\alpha - \beta) = sin\alpha cos\beta - cos\alpha sin\beta$$

[substituting $-\beta$ for β)

These can also be derived using vector approach.

Consider two unit vectors $\underline{\textit{OA}}$ and $\underline{\textit{OB}}$ each inclined at angles α and β , respectively to the positive x-axis

Using the definition of a vector product:

$$\underline{OA}.\underline{OB} = |\underline{OA}|.|\underline{OB}|\cos(\alpha - \beta)$$

Since OA and OB are unit vectors,

$$|OA| = |OB| = 1$$

$$\therefore OA.OB = \cos(\alpha - \beta)$$

$$\Rightarrow$$
 $(\cos \alpha \underline{i} + \sin \alpha j)$. $(\cos \beta \underline{i} + \sin \beta j) = \cos(\alpha - \beta)$

$$\therefore$$
 cosαcosβ + sinαsinβ = cos(α -β)

Substituting 90 $-\alpha$ for α

$$cos(90 - \alpha)cos\beta + sin(90 - \alpha)sin\beta$$

$$= \cos(90 - \alpha - \beta)$$

:sinαcosβ + cosαsinβ = sin(α +β)

Other expansions can be similar substitutions

i.e.
$$\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$$
$$= \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta}$$

Dividing through by cosαcosβ

$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta}$$

Similarly

$$tan(\alpha - \beta) = \frac{tan\alpha - tan\beta}{1 + tan\alpha tan\beta}$$

The following is a summary of compound angles

- 1. $\cos (\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
- 2. $\cos{(\alpha \beta)} = \cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta}$
- 3. $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha$
- 4. $\sin (\alpha \beta) = \sin \alpha \cos \beta \sin \beta \cos \alpha$
- 5. $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta}$
- 6. $\tan (\alpha \beta) = \frac{\tan \alpha \tan \beta}{1 + \tan \alpha \tan \beta}$

Example 17

Calculate the value of sin15° given that sin45° = $\cos 45 = \frac{1}{\sqrt{3}}$, $\sin 30^\circ = \frac{1}{3}$ and $\cos 30^\circ = \frac{\sqrt{3}}{3}$

$$\sin 15^{0} = \sin (45^{0} - 30^{0})$$

$$= \sin 45^{\circ} \cos 30^{\circ} - \sin 30^{\circ} \cos 45^{\circ}$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}-\frac{1}{2}\cdot\frac{1}{\sqrt{2}}=\frac{\sqrt{3}-1}{2\sqrt{2}}=0.2588$$

Example 18

Prove that
$$tan(45^0 + A) = \frac{1 + tanA}{1 - tanA}$$

From tan
$$(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta}$$

$$\tan(45^{0} + A) = \frac{\tan 45^{0} + \tan \beta}{1 - \tan 45^{0} \tan \beta}$$
$$= \frac{1 + \tan A}{1 + \tan A}$$

Example 19

Acute angles A and B are such that: $\cos A = \frac{1}{2}$, $\sin B \frac{1}{3}$. Show without using tables or calculator that $\tan (A + B) = \frac{9\sqrt{3} + 8\sqrt{2}}{5}$

Solution

Using $\cos^2\theta + \sin^2\theta = 1$

$$\left(\frac{1}{2}\right)^2 + \sin^2 A = 1$$

$$\sin^2 A = \frac{3}{4} => \sin A = \frac{\sqrt{3}}{2}$$

$$tanA = \frac{\sqrt{3}}{2} \div \frac{1}{2} = \sqrt{3}$$

Similarly;

$$\cos^2 B + \left(\frac{1}{3}\right)^2 = 1$$

$$\cos B = \frac{2\sqrt{2}}{3}$$

$$tanB = \frac{2\sqrt{2}}{3} \div \frac{1}{3} = \frac{1}{2\sqrt{2}}$$

But

From tan
$$(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta}$$
$$= \frac{\sqrt{3} + \frac{1}{2\sqrt{2}}}{1 - \sqrt{3} \cdot \frac{1}{2\sqrt{2}}}$$

$$=\frac{(2\sqrt{2}\sqrt{3}+1)(2\sqrt{2}+\sqrt{3})}{(2\sqrt{2}-\sqrt{3})(2\sqrt{2}+\sqrt{3})}$$

$$\tan (A + B) = \frac{9\sqrt{3} + 8\sqrt{2}}{5}$$

Example 20

Solve $cos(\theta + 35^{\circ}) = sin(\theta + 25^{\circ})$ for $0^{\circ} \le \theta \le 360^{\circ}$

 $Cos\theta cos35^{0} - sin\theta sin35^{0} = sin\theta cos25^{0} + cos\theta sin25^{0}$

Dividing through by $cos\theta$

 $Cos35^{\circ} - tan\theta sin35^{\circ} = tan\theta cos25^{\circ} + sin25^{\circ}$

$$\tan\theta = \frac{\cos 35^{0} - \sin 25^{0}}{\cos 35^{0} + \sin 25^{0}} = \frac{0.3965337825}{1.479884223}$$

 $\theta = 15^{\circ}$, 195° for $0^{\circ} \le \theta \le 360^{\circ}$

Example 21

(a) Prove than $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ Solution $\frac{2tan\theta}{1+tan^2\theta} = \frac{2sin\theta}{cos\theta} \div \left(1 + \frac{sin^2\theta}{cos^2\theta}\right)$ $= \frac{2sin\theta}{cos\theta} \div \left(\frac{cos^2\theta + sin^2\theta}{cos^2\theta}\right)$ $= \frac{2sin\theta}{cos\theta} \div \left(\frac{1}{cos^2\theta}\right)$ $= 2sin\theta cos\theta = sin2\theta$

(b) Solve $\sin 2\theta = \cos \theta$ for $0^0 \le \theta \le 90^0$ Solution $\sin 2\theta = \cos \theta$ $2\sin \theta \cos \theta = \cos \theta$ $\sin \theta = \frac{1}{2}$ $\theta = 30^0$ for $0^0 \le \theta \le 90^0$

Example 22

Given that α , β and γ are angles of a triangle, show that $\tan\alpha + \tan\beta + \tan\gamma = \tan\alpha\tan\beta\tan\gamma$

Hence find $tan\gamma$ if $tan\alpha = 1$ and $tan\gamma = 2$.

Solution

 $\alpha + \beta + \gamma = 180^{\circ}$ (angle sum of a triangle)

 $\tan (\alpha + \beta + \gamma) = \tan 180^{0} = 0$

 $tan[(\alpha + \beta) + \gamma] = 0$

 $\frac{\tan(\alpha+\beta)+\tan\gamma}{1-\tan(\alpha+\beta)\tan\gamma}=0$

 \therefore tanα + tanβ + tanγ = tanαtanβtanγ

Example 23

In a triangle ABC, prove that $\cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C$ = $\cot \frac{1}{2}A\cot \frac{1}{2}B\cot \frac{1}{2}C$

Solution

$$\frac{1}{2}(A+B+C) = \frac{1}{2}(180^0) = 90^0$$

$$\cot\left[\frac{1}{2}(A+B+C)\right] = \cot 90^0 = 0$$

$$\Rightarrow \frac{1-tan\left(\frac{1}{2}A+\frac{1}{2}B\right)tan\frac{1}{2}C}{tan\left(\frac{1}{2}A+\frac{1}{2}B\right)+tan\frac{1}{2}C}=0$$

$$1 = \tan\left(\frac{1}{2}A + \frac{1}{2}B\right)\tan\frac{1}{2}C$$

$$1 = \left(\frac{tan_{\frac{1}{2}}^{\frac{1}{2}A} + tan_{\frac{1}{2}B}^{\frac{1}{2}B}}{1 - tan_{\frac{1}{2}A}^{\frac{1}{2}tan_{\frac{1}{2}B}}}\right) tan\frac{1}{2}C$$

$$1 - \tan\frac{1}{2}A \tan\frac{1}{2}B$$

$$= \tan \frac{1}{2} A \tan \frac{1}{2} C + \tan \frac{1}{2} B \tan \frac{1}{2} C$$

$$1 = \tan \frac{1}{2} A \tan \frac{1}{2} B + \tan \frac{1}{2} A \tan \frac{1}{2} C + \tan \frac{1}{2} B \tan \frac{1}{2} C$$

Dividing each side by $tan \frac{1}{2} Atan \frac{1}{2} Btan \frac{1}{2} C$

$$\cot \frac{1}{2}A\cot \frac{1}{2}B\cot \frac{1}{2}C = \cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C$$

Example 24

Prove that the angle θ , between the straight line $y = m_1x + c_1$ and the straight line $y = m_2x + c_2$ is given by $\tan \theta = \frac{m_2 - m_1}{1 + m_2 m_1}$

Let the lines be inclines at angles α and β with the x-axis respectively

From the diagram above

$$\theta = \beta - \alpha$$

 \Rightarrow tan θ = tan($\beta - \alpha$) $= \frac{tan\beta - tan\alpha}{1 + tan\beta tan\alpha}$ $tan\theta = \frac{m_2 - m_1}{1 + m_2 m_1}$

Revision exercise 3

- 1. (a) show that $sin(\alpha + \beta) sin(\alpha \beta) =$ 2cosasinB
 - (b) If $sin(\alpha + \beta) = 5cos(\alpha \beta)$ show that $\tan \alpha = \frac{5 - \tan \beta}{1 + \tan \beta}$
 - (c) Without using tables or calculator, show that $\cos 15^{\circ} = \sin 75^{\circ}$
 - (d) If $\alpha + \beta = 45^{\circ}$, show that $\tan \alpha = \frac{1 \tan \beta}{1 + \tan \beta}$
- 2. Prove that:
 - (i) $\frac{\sin(\alpha+\beta)}{\cos(\alpha-\beta)} + 1 = \frac{(1+\tan\beta)(1+\cot\alpha)}{\cos\alpha+\tan\beta}$ (ii) $\tan\alpha \tan\beta = \frac{\sin(\alpha-\beta)}{\cos\alpha\cos\beta}$

 - (iii) $cot\alpha + cot\beta = \frac{\sin(\alpha+\beta)}{\sin\alpha\sin\beta}$

 - (iv) $\frac{\sin(\alpha-\beta)}{\sin(\alpha+\beta)} = \frac{\tan\alpha \tan\beta}{\tan\alpha + \tan\beta}$ (v) $\frac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)} = \frac{\cot\alpha\cot\beta + 1}{\cot\alpha\cot\beta 1}$ (vi) $\cot(A+B) = \frac{\cot A \cot B 1}{\cot A + \cot B}$
- 3. (a) Determine solution of tan2x + 2sinx = 0for $0^{\circ} \le x \le 180^{\circ} [x: x = 0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}]$ (vii) Show that in triangle ABC, tanA + tanB + tanC = tanAtanBtanC
- 4. Find the values of tan α for each of the following
 - (a) $\sin(\alpha 30^{\circ}) = \cos \alpha [\sqrt{3}]$
 - (b) $\sin(\alpha + 45^{\circ}) = \cos \alpha [\sqrt{2} 1]$
 - (c) $\cos(\alpha + 60^{\circ}) = \sin \alpha [2 \sqrt{3}]$
 - (d) $\sin(\alpha + 60^{\circ}) = \cos(\alpha 60^{\circ})$ [1]
 - (e) $\cos(\alpha + 60^{\circ}) = 2\cos(\alpha + 30^{\circ}) [4 + 3\sqrt{3}]$
 - (f) $\sin(\alpha + 60^{\circ}) = \cos(45^{\circ} \alpha) \left[\frac{\sqrt{3} \sqrt{2}}{\sqrt{2} 1} \right]$
- 5. Given that
 - (a) $tan(\alpha \beta) = \frac{1}{2}$ and $tan\alpha = 3$ find the value of tanβ [1]
 - (b) $tan(\alpha + \beta) = 5$ and $tan\beta = 2$ find the value of $\tan \alpha \left| \frac{3}{11} \right|$
- 6. Given that

- (a) $tan(\theta 45^{\circ}) = 4$, find the value of θ
- (b) $\tan (\theta + 60^{\circ})$ find the value of $\cot \theta$ $[8 + 5\sqrt{3}]$

Double angles and half angles

(b) From $\cos (\theta + \theta) = \cos\theta \cos\theta - \sin\theta \sin\theta$ \Rightarrow $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$(i)

Either

$$\cos 2\theta = \cos^2 \theta - 1 + \cos^2 \theta (\cos^2 \theta + \sin^2 \theta = 1]$$

$$\cos 2\theta = 2\cos^2 \theta - 1$$
(ii)

Or

$$\cos 2\theta = 1 - \sin^2 \theta - \sin^2 \theta$$

$$\Rightarrow$$
 cos2 θ = 1 – 2sin² θ (iii)

It follows that

$$\cos^2\theta = \frac{1}{2}(1 + \cos 2\theta)$$
(iv)

$$\sin^2\theta = \frac{1}{2}(1 - \cos 2\theta)$$
(iv)

The identities imply

$$\cos 6\theta = \cos^2 3\theta - \sin^2 3\theta$$

$$=2\cos^2 3\theta - 1 = 1 - 2\sin^2 3\theta$$

$$\cos\theta = \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}$$

$$=2\cos^2\frac{\theta}{2} - 1 = 1 - 2\sin^2\frac{\theta}{2}$$

(c)
$$sin(\theta + \theta) = sin\theta cos\theta + cos\theta sin\theta$$

 $\Rightarrow sin2\theta = 2sin\theta cos\theta$

It follows that

 $sin6\theta = 2sin3\theta cos3\theta$

$$\sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$$

(d)
$$\tan (\theta + \theta) = \frac{\tan \theta + \tan \theta}{1 - \tan \theta \tan \theta}$$

$$\Rightarrow \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

$$\Rightarrow tan2\theta = \frac{2tan\theta}{1-tan^2\theta}$$

It follows that

$$tan\theta = \frac{2tan\frac{\theta}{2}}{1-tan^2\frac{\theta}{2}}$$

$$tan6\beta = \frac{2tan3\beta}{1-tan^23\beta}$$

Note that in all cases, the angles on the right hand side are half the angles on the left hand side [half angle formulae]

Example 25

Show that

(a)
$$cosec2\theta + cot2\theta = cot\theta$$

Solution

$$\begin{aligned} cosec2\theta \ + \ cot2\theta &= \frac{1}{sin2\theta} + \frac{cos2\theta}{sin2\theta} \\ &= \frac{1 + cos2\theta}{sin2\theta} \\ &= \frac{1 + 2cos^2\theta - 1}{2sin\theta cos\theta} \\ &= \frac{2cos^2\theta}{2sin\theta cos\theta} = cot\theta \end{aligned}$$

(b)
$$tan3\theta = \frac{3tan\theta - tan^3\theta}{1 - 3tan^2\theta}$$

Hence deduce that if $3\theta + \alpha = 45^0$, then
$$tan\alpha = \frac{1 - 3tan\theta - 3tan^2\theta + tan^3\theta}{1 + 2tan\theta - 3tan^2\theta - tan^3\theta}$$

Solution

$$\tan 3\theta = \tan(2\theta + \theta) = \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta}$$

$$= \left\{ \left(\frac{2\tan \theta}{1 - \tan^2 \theta} \right) + \tan \theta \right\} \div \left\{ 1 - \left(\frac{2\tan \theta}{1 - \tan^2 \theta} \right) \tan \theta \right\}$$

$$= \frac{2\tan \theta + \tan \theta - \tan^3 \theta}{1 - \tan^2 \theta - 2\tan^2 \theta} = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

$$\therefore \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

Hence
$$3\theta + \alpha = 45^{\circ} => \alpha = 45^{\circ} - 3\theta$$

$$Tan\alpha = tan(45^0 - 3\theta)$$

$$= \frac{\tan 45^{0} - \tan 3\theta}{1 + \tan 45^{0} \tan 3\theta} = \frac{1 - \tan 3\theta}{1 + \tan 3\theta}$$

$$= \frac{1 - \left(\frac{3tan\theta - tan^3\theta}{1 - 3tan^2\theta}\right)}{1 + \left(\frac{3tan\theta - tan^3\theta}{1 - 3tan^2\theta}\right)}$$

$$= \frac{1 - 3tan\theta - 3tan^2\theta + tan^3\theta}{1 + 2tan\theta - 3tan^2\theta - tan^3\theta}$$

$$\therefore \tan \alpha = \frac{1 - 3\tan\theta - 3\tan^2\theta + \tan^3\theta}{1 + 2\tan\theta - 3\tan^2\theta - \tan^3\theta}$$

Example 26

If $\tan \alpha = \frac{3}{4}$ and α is acute, without using tables or calculator work out the value of

(a) tan2α

$$tan2\alpha = \frac{2tan\alpha}{1 - tan^2\alpha} = \frac{2x\frac{3}{4}}{1 - \left(\frac{3}{4}\right)^2} = \frac{\frac{2}{2}}{\frac{3}{4}} = \frac{24}{7}$$

(b) $\tan \frac{\alpha}{2}$

similarly
$$tan\alpha = \frac{2tan_2^{\alpha}}{1-tan_2^{2\alpha}} = \frac{3}{4}$$

$$\Rightarrow 3\tan^2\frac{\alpha}{2} + 8\tan\frac{\alpha}{2} - 3 = 0$$

$$(3\tan\frac{\alpha}{2} - 1)(\tan\frac{\alpha}{2} + 3) = 0$$

$$\tan\frac{\alpha}{2} = \frac{1}{2} \text{ or } \tan\frac{\alpha}{2} = -3$$

Since α is acute, tan α cannot be negative

$$\therefore \tan \frac{\alpha}{2} = \frac{1}{3}$$

Example 27

(a) Show that $\cos 3\alpha = 4\cos^2 \alpha - 3\cos \alpha$. Hence solve the equation $4x^3 - 3x - \frac{\sqrt{3}}{3} = 0$ for $0^0 < \alpha < 180^0$

Solution

$$Cos3α = cos(2α + α)$$

$$= cos2αcosα - sin2αsinα$$

$$= (2cos²α - 1)cosα - 2sin²αcosα$$

$$= (2cos²α - 1)cosα - 2(1-cos²α)cosα$$

$$= 2cos³α - cosα - 2cosα + 2cos³α$$

$$= 4cos²α - 3cosα$$

Hence
$$4x^3 - 3x = \frac{\sqrt{3}}{3}$$

i.e.
$$4\cos^2 \alpha - 3\cos \alpha = \frac{\sqrt{3}}{3}$$

$$0^{0} \le \alpha \le 180^{0}$$
; $\cos 3\alpha = \frac{\sqrt{3}}{3}$

For the range $0^{\circ} \le \alpha \le 180^{\circ}$

$$\Rightarrow$$
 0° \leq 3 α \leq 540°

$$3\alpha = 54.7^{\circ}, 414.7^{\circ}$$

 $\alpha = 18.23^{\circ}, 138.23^{\circ} (2d.p)$
 $[\alpha: \alpha = 18.23^{\circ}, 138.23^{\circ}]$

[α : α = 18.23°, 138.23°] (b) Given that $t = \tan 22\frac{1}{2}$, show that $t^2 + 2t - 1 = 0$, Hence show that $\tan 22\frac{1}{2}^0 = -1 + \sqrt{2}$ Solution $\tan 45^0 = \frac{2tan22\frac{1}{2}^0}{1-tan^222\frac{1}{2}^0}$ $1 = \frac{2t}{1-t^2}$ $1 - t^2 = 2t$ $t^2 + 2t - 1 = 0$ (as required) solving $t = \frac{-2\pm\sqrt{2^2-(4x_1x_1-1)}}{2x_1}$ $t = \frac{-2\pm2\sqrt{2}}{2} = -1 \pm \sqrt{2}$ Since $22\frac{1}{2}^0$ is an acute angle, $\tan 22\frac{1}{2}^0 = -1 + \sqrt{2}$ is positive

Example 28

∴tan22 $\frac{1}{3}^{0}$ = -1+ $\sqrt{2}$

(a) Show that $3\sin\theta = 3\sin\theta - 4\sin^3\theta$. Hence solve the equation $\sin 3\theta + \sin \theta = 0$ for $0^{0} \le \theta \le 360^{0}$ Solution $Sin3\theta = sin(2\theta + \theta)$ $= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ = $2\sin\theta\cos^2\theta + (1-2\sin^2\theta)\sin\theta$ = $2\sin\theta(1-\sin^2\theta) + (1-2\sin^2\theta)\sin\theta$ $= 3\sin\theta - 4\sin^3\theta$ Hence $\sin 3\theta + \sin \theta = 0$ $3\sin\theta - 4\sin^3\theta + \sin\theta = 0$ $4\sin\theta - 4\sin^3\theta = 0$ $4\sin\theta(1-\sin^2\theta)=0$ $4\sin\theta(1-\sin\theta)(1+\sin\theta) = 0$ $\sin\theta = 0$; $\theta = 0^{\circ}$, 180° , 360° $\sin\theta = 1$; $\theta = 90^{\circ}$ $sino = -1; \theta = 270^{\circ}$

 θ : θ = 0°, 90°, 180°, 270°, 360°

(b) Prove that $\cot 2\theta = \frac{\cot^2 \theta - 1}{2\cot \theta}$. Hence solve the equation $\cot 2\theta + 2\cot \theta = 2$ for $0^0 \le \theta \le 360^0$

Solution

$$\cot 2\theta = \frac{\cos 2\theta}{\sin 2\theta} = \frac{\cos^2 \theta - \sin^2 \theta}{2\sin \theta \cos \theta}$$

dividing through by $\sin^2\theta$

$$\cot 2\theta = \frac{\cot^2 \theta - 1}{2\cot \theta}$$

Hence, $\cot 2\theta + 2\cot \theta = 0$

$$\frac{\cot^2\theta - 1}{2\cot\theta} + 2\cot\theta = 0$$

$$5\cot^2\theta - 4\cot\theta - 1 = 0$$

$$(5\cot\theta + 1)(\cot\theta - 1) = 0$$

$$\cot\theta = -\frac{1}{5} \operatorname{or} \cot\theta = 0$$

$$\Rightarrow$$
 tan θ = -5 ot tan θ = 1

When $\tan\theta = -5$; $\theta = 101.3^{\circ}$, 281.3°

When
$$\tan \theta = 1$$
, $\theta = 45^{\circ}$, 225°

∴
$$\{\theta: \theta=45^{\circ}, 101.3^{\circ}, 225^{\circ}, 281.3^{\circ}\}$$

Revison exercise 4

- 1. Prove that
- (a) $\sin\alpha \csc\beta + \cos\alpha \sec\beta = 2\sin(\alpha + \beta)\csc2\beta$

(b)
$$\cos^6 \theta + \sin^6 \theta = 1 - \frac{3}{4} \sin^2 2\theta$$

(c)
$$\frac{sin3\alpha}{1+2cos2\alpha}=sin\alpha$$
 and hence deduce that $sin15^0=\frac{\sqrt{3}-1}{2\sqrt{2}}$

2. (a) Solve the equation for
$$\theta$$
, $0^0 \le \theta \le 360^0$ $\sin^2\theta - 2\sin\theta\cos\theta - 3\cos^2\theta = 0$ [θ : $\theta = 71.6^0$, 135^0 , 251.6^0 , 315^0] (b) show that $\frac{\cos\theta}{1+\sin\theta} = \cot(\frac{\theta}{2}+45^0)$. Hence or otherwise solve the equation

$$\frac{\cos\theta}{1+\sin\theta} = \frac{1}{2} \text{ for } 0^0 \le \theta \le 360^0 \ [\theta = 36.8^0]$$

3. (a) solve the equation
$$4\cos 2\theta - 2\cos \theta + 3$$

= 0 for $0^0 \le \theta \le 360^0$
[θ : θ = 60^0 , 104.5^0 , 255.5^0 , 300^0]

(c) Solve the equation
$$\sin \theta + \sin \frac{\theta}{2} = 0$$
 for $0^{\circ} \le \theta \le 360^{\circ}$

- $[\theta: \theta=-360^{\circ}, -240^{\circ}, 0^{\circ}, 2405^{\circ}, 360^{\circ}]$
- 4. (a) Prove that $\tan \left(\frac{\pi}{4} + \theta\right) \tan \left(\frac{\pi}{4} \theta\right) =$ 2tan2θ
 - (b) By expressing $2\sin\theta\sin(\theta + \alpha)$ as difference of cosines of two angles or otherwise, where α is constant, find its least value $\left| \frac{-a}{2} \right|$
 - (c) Solve for θ in the equation $\cos\theta - \cos(\theta + 60^{\circ}) = 0.4 \text{ for}$ $0^{\circ} \le \theta \le 360^{\circ} [\theta = 126.4^{\circ}, 353.6^{\circ}]$
- 5. (a) Show that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$. Hence solve the equation $4x^3 - 3x - \frac{\sqrt{3}}{3} = 0$ [x: x = -0.746, -0.204, 0.959]
 - (b) Find all solutions of the equation $5\cos x - 4\sin x = 6$ in the range $-180^{\circ} \le x \le 180^{\circ} [x: x = -59.1^{\circ}, -18.3^{\circ}]$
- 6. (a) Express $\sqrt{\left(\frac{\sin 2\theta \cos 2\theta 1}{2 2\sin 2\theta}\right)}$ in terms of $\tan\theta \left[\frac{1}{\sqrt{(\tan\theta - 1)}} \right]$
 - (b) Find the solution of the equation $\sqrt{3\sin\theta} - \cos\theta + 1 = 0$ for $0 \le \theta \le 2\pi$ $\left[\theta:\theta=\frac{4}{3}\pi,2\pi\right]$
- (c) Factorize $\cos\theta \cos 3\theta \cos 7\theta + \cos 9\theta$ in form Acospθsinqθsinrθ where A, p, q and r are constants [A= -4, p = 5, q = 5, r = 2]
- 7. (a) Given that $\sin \alpha + \sin \beta = p$ and $\cos \alpha + \cos \beta = q$ show that
 - (i) $\tan\left(\frac{\alpha+\beta}{2}\right) = \frac{p}{q}$
 - (ii) $\cos(\alpha + \beta) = \frac{q^2 p^2}{a^2 + n^2}$
 - (b) Solve the simultaneous equation: $\cos \alpha + 4\sin \beta = 1$ $4\sec\alpha - 3\csc\beta = 5 [\theta = 78.5^{\circ}, 281.5^{\circ}]$
- 8. (a) Express $\sin\theta + \sin 3\theta$ in form pcosθsingθ where p and q are constant [p = 2, q = 2]
 - (b) Find the solution of $cos7\theta + cos5\theta = 2cos\theta$ for $0^{0} \le \theta \le 360^{0} [0^{0}, 60^{0}, 270^{0}, 360^{0}]$
 - (c) Prove that $\frac{sinA+sin4A+sin7A}{cosA+cos4A+cos7A} = tan4A$
- Eliminate θ from each of the following pairs of expression
 - (a) $x+1 = \cos 2\theta$, $y = \sin \theta [x + 2y^2 = 0]$
 - (b) $x = \cos 2\theta$, $y = \cos \theta 1$ [$x = 2y^2 + 4y + 1$] 17

- (c) $y 3 = \cos 2\theta$, $x = 2 \sin \theta$ $[2x^2 - 8x + y + 4 = 0]$
- 10. Solve the following equations for $-180^{\circ} \le \theta \le 180^{\circ}$
 - (a) $\sin 2\theta + \sin \theta = 0 [\pm 120^{\circ}, \pm 180^{\circ}]$
 - (b) $\sin 2\theta 2\cos^2\theta = 0 \left[-135^0, 45^0, \pm 90^0 \right]$
 - (c) $3\cos 2\theta + 2 + \cos \theta = 0 [\pm 70.5^{\circ}, \pm 120^{\circ}]$
 - (d) $\sin 2\theta = \tan \theta [0^{\circ}, \pm 45^{\circ}, \pm 135^{\circ}, \pm 180^{\circ}]$
- 11. Solve the following equations for $-360^{\circ} \le \theta \le 360^{\circ}$, giving your answer correct to 1 decimal place
 - (a) $\sin\theta = \sin(\frac{\theta}{2})[0^0, \pm 120^0, \pm 360^0]$
 - (b) $3\cos(\frac{\theta}{2}) = 2\sin\theta \ [\pm 180^{\circ}, 97.2^{\circ}, 262.8^{\circ}]$
 - (c) $2\sin\theta = \tan\left(\frac{\theta}{2}\right)$ $[0^{\circ}, \pm 120^{\circ}, \pm 240^{\circ}, \pm 360^{\circ}]$
 - (d) $2\cos\theta = 15\cos(\frac{\theta}{2}) + 2 [\pm 209^{\circ}]$
- 12. Prove the following identities
 - (a) $2\cos^2\theta \cos 2\theta = 1$
 - (b) $2\cos 2\theta = \csc \theta \sec \theta$
 - (c) $2\cos^3\theta + \sin 2\theta \sin \theta = 2\cos\theta$
 - (d) $tan\theta + cot\theta = 2cosec2\theta$
 - (e) $\cos^4\theta \sin^4\theta = \cos 2\theta$
 - $\frac{1-\cos 2\theta}{1+\cos 2\theta} = \tan^2 \theta$
 - (g) $\cot \theta \tan \theta = 2 \cot 2\theta$
 - (h) $\cot 2\theta + \csc \theta = \cot \theta$
 - $\frac{\cos 2\theta}{\cos \theta + \sin \theta} = \cos \theta \sin \theta$ $\frac{\sin 2\theta}{1 \cos 2\theta} = \cot \theta$

 - (k) $cos2\theta = \frac{1-tan^2\theta}{1+tan^2\theta}$ (l) $tan3\theta = \frac{3tan\theta tan^3\theta}{1-3tan^2\theta}$ (m) $tan\left(\frac{\theta}{2}\right) = \frac{sin\theta}{1+cos\theta}$
- 13. Express $\tan 22\frac{1}{2}^0$ in the form $a + b\sqrt{2}$ where a and b are integers $[a = -1, b = \pm 1]$
- 14. Solve the equation
- $4\cos\theta 2\cos 2\theta = 3$ for $0 \le \theta \le \pi \left| \frac{\pi}{3} \right|$
- (ii) $\cos 2\theta + \cos 3\theta + \cos \theta = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$ $[\theta = 45^{\circ}, 120^{\circ}, 135^{\circ}]$
- (iii) $\cos\theta + \sin 2\theta = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$ $[\theta = 90^{\circ}, 210^{\circ}, 270^{\circ}, 330^{\circ}]$
- (iv) $2\sin 2\theta = 3\cos \theta \text{ for } -180^{\circ} \le \theta \le 180^{\circ}$ $[\theta = -90^{\circ}, 48.6^{\circ}, 90^{\circ}, 132.4^{\circ}]$
- (v) $\sin\theta 4\sin 4\theta = \sin 2\theta \sin 3\theta$ for $-\pi \leq \theta \leq \pi \left[\frac{-\pi}{5}, \frac{-\pi}{2}, \frac{-3\pi}{5}, 0, \frac{\pi}{2}, \frac{\pi}{5}, \frac{3\pi}{5}\right]$

Harmonic form

These are trigonometric functions expressed in the form of $\mathbf{Rcos}(\mathbf{x} \pm \boldsymbol{\alpha})$ and $\mathbf{Rsin}(\mathbf{x} \pm \boldsymbol{\alpha})$. They are in two ways

- (i) solving equations in the form $a\cos\theta + b\sin\theta + c = 0$
- (ii) determining the maximum and minimum values of the function $acos\theta + bsin\theta + c = 0$ where a, b and c are constants

A: Solving equations

Example 29

- (a) Express $3\cos\theta 4\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R and α are constants Solution
 - Let $3\cos\theta 4\sin\theta = R\cos(\theta + \alpha)$ = $R(\cos\theta\cos\alpha - \sin\theta\sin\alpha)$ = $R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$

Comparing coefficient of $\cos\theta$ and $\sin\theta$

- $R\cos\alpha = 3$ (i)
- $Rsin\alpha = 4$ (ii)
- Eqn (ii) \div eqn (i)
- $\tan \alpha = \frac{4}{3}$; $\alpha = 53.1^{\circ}$
- Eqn. $(i)^{2}$ + eqn. $(ii)^{2}$
- $R^2\cos^2\alpha + R^2\sin^2\alpha = 3^2 + 4^2 = 25$
- $R^{2}[\cos^{2}\alpha + \sin^{2}\alpha] = 25$
- $R^2 = 25$
- R = 5
- $3\cos\theta 4\sin\theta = 5\cos(\theta + 53.1^{\circ})$
- (b) Solve the equation $3\cos\theta 4\sin\theta = 5$ for $0^0 \le \theta \le 360^0$.

Solution

 $3\cos\theta - 4\sin\theta = 5\cos(\theta + 53.1^{\circ})$

 $\Rightarrow 5\cos(\theta + 53.1^{\circ}) = 5$ $\cos(\theta + 53.1^{\circ}) = 1$ $x + 53.1^{\circ} = 0^{\circ}, 360^{\circ}$ $x = -53.1^{\circ}, 306.9^{\circ}$

Hence $x = 306.9^{\circ}$

Example 30

- (a) Express $\sin\theta \sqrt{3}\cos\theta$ in the form $R\sin(\theta \alpha)$ Solution Let $\sin\theta \sqrt{3}\cos\theta = R\sin(\theta \alpha)$ = $R(\sin\theta\cos\alpha \cos\theta\sin\alpha)$
 - **Equating coefficients**
 - $R\cos\alpha = 1$ (i)
 - Rsin $\alpha = \sqrt{3}$(ii)
 - Eqn. (ii) \div eqn. (i)
 - $\tan \alpha = \sqrt{3}$: => $\alpha = 60^{\circ}$
 - $R^{2}[\cos^{2}\alpha + \sin^{2}\alpha] = 4$
 - $R^2 = 4$: R = 2
 - $\therefore \sin\theta \sqrt{3}\cos\theta = 2\sin(\theta 60^{\circ})$
- (b) Solve the equation
 - $\sin\theta \sqrt{3}\cos\theta + 1 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$
 - $\sin\theta \sqrt{3}\cos\theta = 2\sin(\theta 60^{\circ})$
 - \Rightarrow 2sin(θ 60°) + 1 = 0
 - $\sin(\theta 60^{\circ}) = -\frac{1}{2}$
 - $\theta 60^{\circ} = 210^{\circ}, 330^{\circ}$
 - $\theta = 270^{\circ}, 390^{\circ}$

Hence $\theta = 270^{\circ}$ for the given range

Example 31

- (a) Express $4\cos\theta 5\sin\theta$ in the form $A\cos(\theta + \beta)$, where A is constant and β is an acute angle
 - Let $4\cos\theta 5\sin\theta = A\cos(\theta + \beta)$
 - = $A(\cos\theta\cos\beta \sin\theta\sin\beta)$
 - = $A\cos\theta\cos\beta$ $R\sin\theta\sin\beta$

Comparing coefficient of $cos\theta$ and $sin\theta$

- $A\cos\beta = 4$ (i)
- Asin $\beta = 5$ (ii)
- Eqn (ii) \div eqn (i)
- $\tan \alpha = \frac{5}{4}$; $\alpha = 51.3^{\circ}$
- Eqn. $(i)^{2}$ + eqn. $(ii)^{2}$
- $A^2\cos^2\beta + A^2\sin^2\beta = 4^2 + 5^2 = 41$
- $A^{2}[\cos^{2}\alpha + \sin^{2}\alpha] = 41$
- $A^2 = 41$

18

- $A = \sqrt{41}$
- $3\cos\theta 4\sin\theta = \sqrt{41}\cos(\theta + 51.3^{\circ})$
- (b) Solve the equation $3\cos\theta 4\sin\theta = 2.2$ for $0^0 \le \theta \le 360^0$ Solution
- $3\cos\theta 4\sin\theta = \sqrt{41}\cos(\theta + 51.3^{\circ})$

$$\Rightarrow \sqrt{41\cos(\theta + 51.3^{\circ})} = 2.2$$

$$\cos(\theta + 51.3^{\circ}) = \frac{2.2}{\sqrt{41}} = 0.3436$$

$$(\theta + 51.3^{\circ}) = 69.9^{\circ}, 290.1^{\circ}$$

$$\therefore \theta = 18.6^{\circ}, 238.3^{\circ}$$

B: Maximum and minimum values

The maximum and minimum values of a circular function may be obtained using three methods

- (i) Express the given function either in for Rcos ($\theta \pm \alpha$) or Rsin($\theta \pm \alpha$) if possible, where R and α are constants.
- (ii) Differentiating the given function with respect to the given function say θ
- (iii) Sketching the graphs of the function given and noting their maximum and minimum points.

In this chapter approach I will be considered.

Example 32

Determine the maximum and minimum values of the following, stating the value of θ for which they occur

Now for $sin(\theta + 30^{\circ}) = -1$

 $\sin(\theta + 30^{\circ}) = -1$

$$\theta + 30^{\circ} = 270^{\circ}$$

The minimum value occurs when

$$\theta = 240^{\circ} = \frac{4\pi}{3}$$

The minimum value is $\left(\frac{4\pi}{3}, 5\right)$

And maximum value occurs when

$$\sin(\theta + 30^{0}) = 1$$

 \Rightarrow Minimum value = 2(1) + 7 = 9

Now for $sin(\theta + 30^{\circ}) = 1$

$$\theta + 30^{\circ} = 90^{\circ}$$

$$\theta = 60^{\circ} = \frac{\pi}{3}$$

The maximum value is $\left(\frac{\pi}{3}, 9\right)$

(b) $5\cos\theta - 12\sin\theta - 13$

Solution

Let $5\cos\theta - 12\sin\theta = R\cos(\theta - \alpha)$

= $R(\cos\theta\cos\alpha + \sin\theta\sin\alpha)$

= $R\cos\theta\cos\alpha + R\sin\theta\sin\alpha$

Comparing coefficient of $cos\theta$ and $sin\theta$

 $R\cos\alpha = 5$ (i)

 $Rsin\alpha = 12$ (ii)

Eqn (ii) ÷ eqn (i)

 $\tan \alpha = \frac{12}{5}$; $\alpha = 67.4^{\circ}$

Ean. $(i)^{2}$ + ean. $(ii)^{2}$

 $R^2\cos^2\alpha + R^2\sin^2\alpha = 5^2 + 12^2 = 169$

 $R^{2}[\cos^{2}\alpha + \sin^{2}\alpha] = 169$

 $R^2 = 169$

R = 13

 $2\cos\theta - 12\sin\theta = 13\cos(\theta - 67.4^{\circ})$

 \Rightarrow 5cos θ - 12sin θ - 13 = 13cos(θ - 67.4°)-13

The minimum value occurs when

$$\cos(\theta - 67.4^{\circ}) = -1$$

 \Rightarrow Minimum value = 13(-1) -13 = -26

Now for $\cos(\theta - 67.4^{\circ}) = -1$

$$\theta - 67.4^{\circ} = 180^{\circ}$$

$$\theta = 247.4^{\circ}$$

The minimum value is $(247.4^{\circ}, -26)$

And maximum value occurs when

$$cos(\theta - 67.4^{\circ}) = 1$$

 \Rightarrow Minimum value = 13(1) - 13 = 0

Now for $cos(\theta - 67.4^{\circ}) = 1$ $\theta - 67.4^{\circ} = 0^{\circ}$ $\theta = 67.4^{\circ}$

The maximum value is $(67.4^{\circ}, 0)$

Example 33

(a) Given that $p = 2\cos\theta + 3\cos 2\theta$ and $q = 2\sin\theta + 3\sin 2\theta$, show that $1 \le p^2 + q^2 \le 25$ If $p^2 + q^2 = 19$ and θ is acute, find θ and show that $pq = \frac{-5\sqrt{3}}{4}$

Solution

$$p^2 = 4\cos^2\theta + 12\cos\theta\cos 2\theta + 9\cos^2 2\theta \dots (i)$$

$$q^2 = 4\sin^2\theta + 12\sin\theta\sin2\theta + 9\sin^22\theta$$
(ii)

Eqn. (i) + eqn. (ii)

$$p^2 + q^2 = 4 + 12(\cos\theta\cos2\theta + \sin\theta\sin2\theta) + 9$$

$$p^2 + q^2 = 13 + 12\cos\theta [\cos(-\theta) = \cos\theta]$$

But $-1 \le \cos\theta \le 1$

Multiplying through by 12

 $-12 \le 12\cos\theta \le 12$

Adding 13 throughout

$$1 \le 12\cos\theta + 12 \le 25$$

$$\therefore 1 \le p^2 + q^2 \le 25$$
 as required

If
$$p^2 + q^2 = 19$$
, =>13 + 12cos θ = 19

$$cosθ = \frac{1}{2}$$
; θ = 60° [θ is acute]

$$\Rightarrow$$
 p = 2cos60⁰ + 3cos120⁰ = 1 - $\frac{3}{2}$ = $-\frac{1}{2}$

q =
$$2\sin 60^{\circ} + 3\sin 120^{\circ} = \sqrt{3} + 3\frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}$$

$$\therefore pq = \left(-\frac{1}{2}\right) \left(\frac{5\sqrt{3}}{2}\right) = \frac{5\sqrt{3}}{4}$$

(b) Express $f(x) = 5\sin^2\theta - 3\sin\theta\cos\theta + \cos^2\theta$ in the form $p + q\cos(2\theta - \alpha)$ Hence show that $\frac{1}{2} \le f(x) \le 5\frac{1}{2}$ Solution

Using
$$\sin^2\theta = \frac{1}{2}(1 - \cos 2\theta)$$
 and
$$\cos^2\theta = \frac{1}{2}(1 + \cos 2\theta)$$

$$f(x) = \frac{5}{2}(1-\cos 2\theta) - 3\sin\theta\cos\theta + \frac{1}{2}(1+\cos 2\theta)$$
$$= \frac{5}{2} - \frac{5}{2}\cos 2\theta - 3 \cdot \frac{2}{2}\sin\theta\cos\theta + \frac{1}{2} + \frac{1}{2}\cos 2\theta$$
$$= 3 - 2\cos 2\theta - \frac{3}{2}\sin 2\theta$$
$$= 3 - [2\cos\theta + \frac{3}{2}\sin 2\theta]$$

Now:

$$3 - [2\cos\theta + \frac{3}{2}\sin 2\theta] \equiv p + q\cos(2\theta - \alpha)$$
$$= 3 + [q\cos 2\theta\cos\alpha + q\sin 2\theta\sin\alpha]$$

By comparing:
$$p = 3$$
, $q \sin \alpha = \frac{3}{2}$ and

$$acos\alpha = 2$$

$$\Rightarrow$$
 tan $\alpha = \frac{3}{4}$; $\alpha = 36.9^{\circ}$

And
$$q = \sqrt{\left\{ \left(\frac{3}{2} \right)^2 + (2)^2 \right\}} = \frac{5}{2}$$

⇒
$$3 - [2\cos\theta + \frac{3}{2}\sin 2\theta] = 3 - \frac{5}{2}\cos(2\theta - 36.9^{\circ})$$

But $-1 \le \cos(2\theta - 36.9^{\circ}) \le 1$
Multiplying through by $-\frac{5}{2}$

$$\frac{5}{2} \ge -\frac{5}{2}\cos(2\theta - 36.9^0) \ge -\frac{5}{2}$$

Adding 3 throughout

$$3 - \frac{5}{2} \le 3 - \frac{5}{2} \cos(2\theta - 36.9^{\circ}) \le 3 + \frac{5}{2}$$
$$\therefore \frac{1}{2} \le f(x) \le 5 \frac{1}{2}$$

(c) Find the maximum and minimum points of the function; $f(x) = 3\cos\theta - 4\sin\theta + 20$ for $0^{\circ} \le \theta \le 360^{\circ}$ Solution

Let
$$3\cos\theta - 4\sin\theta = R\cos(\theta + \alpha)$$

= Rcosθcos α - Rsinθsin α

Comparing coefficient of $\cos\theta$ and $\sin\theta$

$$R\cos\alpha = 3$$
(i)

$$Rsin\alpha = 4$$
 (ii)

$$\tan \alpha = \frac{4}{3}$$
; $\alpha = 53.1^{\circ}$

Eqn. (i)
2
 + eqn. (ii) 2

$$R^2\cos^2\alpha + R^2\sin^2\alpha = 3^2 + 4^2 = 25$$

$$R^2[\cos^2\alpha + \sin^2\alpha] = 25$$

$$R^2 = 25$$

20

$$\therefore 3\cos\theta - 4\sin\theta = 5\cos(\theta - 53.1^{\circ})$$

$$\Rightarrow 3\cos\theta - 4\sin\theta + 20 = 5\cos(\theta - 53.1^{\circ}) + 20$$

The minimum value occurs when

$$cos(\theta - 53.1^{\circ}) = -1$$

 \Rightarrow Minimum value = 5(-1) +20 = 15

Now for
$$\cos(\theta - 53.1) = -1$$

$$\theta - 53.1^{\circ} = 180^{\circ}$$

$$\theta = 126.8^{\circ}$$

The minimum value is $(126.8^{\circ}, 15)$

And maximum value occurs when

$$cos(\theta - 53.1^{\circ}) = 1$$

 \Rightarrow Minimum value = 5(1) 20 = 25

Now for
$$\cos(\theta - 53.1^{\circ}) = 1$$

$$\theta$$
 + 53.1° = 0°, 360°

$$\theta = -53.1^{\circ}, 306.8^{\circ}$$

The maximum value is $(306.8^{\circ}, 25)$

Example 34

Find the maximum and minimum points of the following

(a)
$$f(\theta) = \frac{1}{3 + \sin\theta - 2\cos\theta}$$

Solution

Let $sin\theta - 2cos\theta = Rsin(\theta - \alpha)$

= $Rsin\theta cos\alpha$ - $Rcos\theta sin\alpha$

Comparing coefficient of $\cos\theta$ and $\sin\theta$

$$R\cos\alpha = 1$$
(i)

$$Rsin\alpha = 2$$
 (ii)

$$\tan \alpha = 2$$
; $\alpha = 63.4^{\circ}$

Eqn.
$$(i)^{2}$$
 + eqn. $(ii)^{2}$

$$R^2 \cos^2 \alpha + R^2 \sin^2 \alpha = 1^2 + 2^2 = 5$$

$$R^{2}[\cos^{2}\alpha + \sin^{2}\alpha] = 5$$

$$R^2 = 5$$

$$R = \sqrt{5}$$

$$\sin\theta - 2\cos\theta = \sqrt{5}\sin(\theta - 63.4^{\circ})$$

$$\Rightarrow 3 + \sin\theta - 2\cos\theta = \sqrt{5}\sin(\theta - 63.4^{\circ}) + 3$$

$$\Rightarrow f(\theta) = \frac{1}{3 + \sqrt{5}\sin(\theta - 63.4^{\circ})}$$

Note: for a fractional function, a maximum point is obtained when the

denominator is minimum and the vice versa for the maximum point

The minimum value occurs when

$$\sin(\theta - 63.4^{\circ}) = 1$$

 \Rightarrow Minimum value = $\frac{1}{3+\sqrt{5}} = 0.31$

Now for $sin(\theta - 63.4) = 1$

$$\theta - 63.4^{\circ} = 90^{\circ}$$

$$\theta = 153.4^{\circ}$$

The minimum value is (153.4°. 0.31)

And maximum value occurs when

$$\sin(\theta - 63.4^{\circ}) = -1$$

 \Rightarrow Maximum value = $\frac{1}{3+\sqrt{5(-1)}}$ = 1.31

Now for $sin(\theta - 63.4^{\circ}) = -1$

$$\theta - 63.4^{\circ} = 270^{\circ}$$

$$\theta = 333.4^{\circ}$$

The maximum value is $(333.4^{\circ}, 1.31)$

(b)
$$f(\theta) = \frac{1}{4sin\theta - 3cos\theta + 6}$$

Solution

Let $4\sin\theta - 3\cos\theta = R\sin(\theta - \alpha)$

= Rsinθcosα - Rcosθsinα

Comparing coefficient of $\cos\theta$ and $\sin\theta$

$$R\cos\alpha = 4$$
(i)

$$Rsin\alpha = 3$$
 (ii)

Eqn (ii)
$$\div$$
 eqn (i)

$$\tan \alpha = 0.75$$
; $\alpha = 36.9^{\circ}$

Eqn.
$$(i)^2$$
 + eqn. $(ii)^2$

$$R^2 \cos^2 \alpha + R^2 \sin^2 \alpha = 3^2 + 4^2 = 25$$

$$R^{2}[\cos^{2}\alpha + \sin^{2}\alpha] = 25$$

$$R^2 = 25$$

$$R = 5$$

$$4\sin\theta - 3\cos\theta = 5\sin(\theta - 36.9^{\circ})$$

$$\Rightarrow 4\sin\theta - 3\cos\theta + 6 = 5\sin(\theta - 36.9^{\circ}) + 6$$

$$\Rightarrow f(\theta) = \frac{1}{5\sin(\theta - 36.9^0) + 6}$$

The minimum value occurs when

$$\sin(\theta - 36.9^{\circ}) = 1$$

$$\Rightarrow \text{ Minimum value} = \frac{1}{5(1)+6} = \frac{1}{11}$$

Now for
$$sin(\theta - 63.4) = 1$$

$$\theta - 36.9^{\circ} = 90^{\circ}$$

$$\theta = 126.9^{\circ}$$

The minimum value is $(126.9^0. \frac{1}{11})$

And maximum value occurs when

$$\sin(\theta - 36.9^{\circ}) = -1$$

$$\Rightarrow \text{ Maximum value} = \frac{1}{5(-1)+6} = 1$$

Now for
$$sin(\theta - 36.9^{\circ}) = -1$$

$$\theta - 36.9^{\circ} = 270^{\circ}$$

$$\theta = 306.9^{\circ}$$

The maximum value is $(306.9^0, 1)$

The t-formula

Although this form has been tackled indirectly, it is formally stated here

Suppose that $t = \tan \frac{\theta}{2}$, we have

From the triangle above

$$cos\frac{1}{2}\theta = \frac{1}{\sqrt{1+t^2}}$$
 and $sin\frac{1}{2}\theta = \frac{t}{\sqrt{1+t^2}}$

But
$$cos\theta = cos^2 \frac{1}{2}\theta - sin^2 \frac{1}{2}\theta$$

$$= \left(\frac{1}{\sqrt{1+t^2}}\right)^2 - \left(\frac{t}{\sqrt{1+t^2}}\right)^2$$

$$\therefore \cos\theta = \frac{1-t^2}{1+t^2}$$

And
$$sin\theta = 2sin\frac{1}{2}\theta cos\frac{1}{2}\theta$$

$$=2\left(\frac{t}{\sqrt{1+t^2}}\right)\left(\frac{1}{\sqrt{1+t^2}}\right)$$

$$\therefore \sin\theta = \frac{2t}{1+t^2}$$

The t- formula is used widely in solving equations and proving trigonometric identities. These can be extended as follows

(i) For t=
$$\tan\theta$$
, $\sin 2\theta = \frac{2t}{1+t^2}$ and $\cos 2\theta = \frac{1-t^2}{1+t^2}$

(ii) For t=
$$\tan\left(\frac{5x}{4}\right)$$
, $\sin\left(\frac{5x}{2}\right) = \frac{2t}{1+t^2}$ and $\cos\left(\frac{5x}{2}\right) = \frac{1-t^2}{1+t^2}$

Example 35

Show that if $t = \tan\theta$, then $\sin 2\theta = \frac{2t}{1+t^2}$ and $2\theta = \frac{1-t^2}{1+t^2}$. Hence solve the equation $\sqrt{3}\cos 2\theta + \sin 2\theta = 1$ for $0^0 \le \theta \le 360^0$.

Solution

From the triangle above

$$cos\theta = \frac{1}{\sqrt{1+t^2}} \text{ and } sin\theta = \frac{t}{\sqrt{1+t^2}}$$

But
$$cos2\theta = cos^2\theta - sin^2\theta$$

$$= \left(\frac{1}{\sqrt{1+t^2}}\right)^2 - \left(\frac{t}{\sqrt{1+t^2}}\right)^2$$

$$\therefore \cos 2\theta = \frac{1-t^2}{1+t^2}$$

And $sin2\theta = 2sin\theta cos\theta$

$$= 2\left(\frac{t}{\sqrt{1+t^2}}\right)\left(\frac{1}{\sqrt{1+t^2}}\right)$$

$$\therefore \sin 2\theta = \frac{2t}{1+t^2}$$

Hence
$$\sqrt{3}\cos 2\theta + \sin 2\theta = 1$$

$$\Rightarrow \sqrt{3\left(\frac{1-t^2}{1+t^2}\right)} + \left(\frac{2t}{1+t^2}\right) = 1$$

$$\sqrt{3} - \sqrt{3t^2} + 2t = 1 + t^2$$

$$(1+\sqrt{3})t^1 - 2t + 1 - \sqrt{3} = 0$$

$$t = \frac{2 \pm \sqrt{2^2 - 4(1 + \sqrt{3})(1 - \sqrt{3})}}{2(1 + \sqrt{3})} = \frac{2 \pm \sqrt{12}}{2(1 + \sqrt{3})} = \frac{1 \pm \sqrt{3}}{1 + \sqrt{3}}$$

$$t = \frac{1+\sqrt{3}}{1+\sqrt{3}} = 1$$
 or

$$t = \left(\frac{1 - \sqrt{3}}{1 + \sqrt{3}}\right) \left(\frac{1 - \sqrt{3}}{1 - \sqrt{3}}\right) = -2 + \sqrt{3}$$

If
$$tan\theta = 1$$
; $\theta = 450$, 2250

If
$$\tan\theta = -2 + \sqrt{3}$$
; $\theta = 165^{\circ}$, 345°

$$\theta$$
: θ = 45°, 165°, 225°, 345°

Example 36

Find all the solutions of the equation $5\cos\theta - 4\sin\theta = 6$ for $-180^{\circ} \le \theta \le 180^{\circ}$

Solution

Let
$$t = \tan \frac{\theta}{2}$$
 then

$$\cos\theta = \frac{1-t^2}{1+t^2}$$

$$sin\theta = \frac{2t}{1+t^2}$$

$$\Rightarrow 5\left(\frac{1-t^2}{1+t^2}\right) - 4\left(\frac{2t}{1+t^2}\right) = 6$$

$$5(1-t^2) - 8t = 6(1+t^2)$$

$$5 - 5t^2 - 8t = 6 + 6t^2$$

$$11t^2 + 8t + 1 = 0$$

$$t = \frac{-8 \pm \sqrt{8^2 - 4 \times 11 \times 1}}{2 \times 11} = \frac{-8 \pm 4.4721}{22}$$

$$t = \frac{-8+4.4721}{22} = -0.1604$$
 or

$$t = \frac{-8 - 4.4721}{22} = -0.5669$$

Taking t = -0.1604

$$tan\frac{\theta}{2} = -0.1604; \ \theta = -18.2^{\circ}$$

Taking t = -0.5669

$$\tan\frac{\theta}{2} = -0.5669; \ \theta = -59.1^{\circ}$$

∴
$$\theta$$
 = -59.1°, -18.2°

Example 37

Solve the equation

$$3\tan^2\theta + 2\sec^2\theta = 2(5 - 3\tan\theta)$$
 for $0^0 < \theta < 180^0$

Let
$$t = \tan \theta$$

 $3t^2 - 2(1 + t^2) = 2(5 - 3t)$
 $5t^2 + 6t - 8 = 0$
 $t = \frac{-6 \pm \sqrt{6^2 - 4(5)(-8)}}{2(5)} = \frac{-6 \pm 14}{10} = -2 \text{ or } \frac{4}{5}$
Taking $t = -2$; $\theta = \tan^{-1}(-2) = 116.57^0$
Taking $t = \frac{4}{5}$; $\theta = \tan^{-1}(\frac{4}{5}) = 38.66^0$
Hence $\theta = 38.66^0$, 116.57^0

Example 38

Show that $tan4\theta = \frac{4t(1-t^2)}{t^4-6t^2+1}$, where $t = tan\theta$.

Solution

$$\tan 4\theta = \frac{2 \tan 2\theta}{1 - \tan^2 2\theta} \text{ and } \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$= \frac{2\left(\frac{2t}{1 - t^2}\right)}{1 - \left(\frac{2t}{1 - t^2}\right)^2}$$

$$= \frac{4t(1 - t^2)}{t^4 - 6t^2 + 1}$$

Example 39

Solve the equation $\cos\theta + \sin\theta + 1 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$

Solution

$$\cos\theta + \sin\theta + 1$$

Let
$$t = tan \frac{\theta}{2}$$

$$\frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2} = 1$$

$$1 - t^2 + 2t = 1(1 + t^2)$$

$$\therefore \tan \frac{\theta}{2} = -1$$

$$\frac{\theta}{2} = 135^{\circ}, 315^{\circ}$$

$$\theta = 270^{\circ}, 630^{\circ}$$

Hence
$$\theta = 270^{\circ}$$

Revision exercise 5

- 1. Solve equation $3\cos\theta + 4\sin\theta = 2$ for $0^0 \le \le 360^0$ [119.6°, 346.7°]
- 2. (a) Show that $\cos 4x = \frac{tan^4x 6tan^2x + 1}{tan^4x + 2tan^2x + 1}$
 - (b) Show that if $q = \cos 2x + \sin 2x$, then $(1+q)\tan^2 x 2\tan x + q 1 = 0$.

Deduce that if the roots of the above equation are $tanx_1$ and $tanx_2$, the $tan(x_1+x_2) = 1$

- 3. Find the values of R and $tan\alpha$ in each of the following equations
 - (a) $2\cos\theta + 5\sin\theta = R\sin(\theta + \alpha) \left[\sqrt{29}, \frac{2}{5}\right]$
 - (b) $2\cos\theta + 5\sin\theta = R\cos(\theta \alpha) \left[\sqrt{29}, \frac{5}{2} \right]$
 - (c) $\sqrt{3}\cos\theta + \sin\theta = R\cos(\theta \alpha) \left[2, \frac{1}{\sqrt{3}}\right]$
 - (d) $5\sin\theta 12\cos\theta = R\sin(\theta \alpha) \left[13, \frac{12}{5}\right]$
 - (e) $\cos\theta \sin\theta = R\cos(\theta + \alpha) \left[\sqrt{2}, 1\right]$
- Find the greatest and least values and state the smallest non-negative value of x for which each occurs
 - (i) $12\sin x + 5\cos x [13, 67.4^{\circ}; -13, 247.4^{\circ}]$
 - (ii) $2\cos x + \sin x$ $[\sqrt{5}, 26.6^{\circ}; -\sqrt{5}, 206.6^{\circ}]$
 - (iii) 7 + 3sinx 4cosx [12, 143.1°; 2, 323.1°]
 - (iv) $10 2\sin x + \cos x$ $[10 + \sqrt{5}, 296.6^{\circ}; 10 - \sqrt{5}, 116.6^{\circ}]$
 - (v) $\frac{1}{2+sinx+cosx} \left[\frac{2+\sqrt{2}}{2}, 225^{0}; \frac{2-\sqrt{2}}{2}, 45^{0} \right]$
 - (vi) $\frac{1}{7-2\cos x + \sqrt{5}\sin x} \left[\frac{1}{4}, 311.8^{\circ}; \frac{1}{10}, 131.8^{\circ} \right]$
 - (vii) $\frac{3}{5cosx-12sinx+16}$ [1, 112.6°; $\frac{3}{29}$, 292.6°]
- 5. Solve each of the following equations for $0^0 \le x \le 360^0$
 - (a) $\sin x + \sqrt{3}\cos x = 1 [90^{\circ}, 330^{\circ}]$
 - (b) $4\sin x 3\cos x = 2 [60.4^{\circ}, 193.3^{\circ}]$
 - (c) $\sin x + \cos x = \frac{1}{\sqrt{2}} [105^{\circ}, 345^{\circ}]$
 - (d) $5\sin x + 12\cos x = 7 [80.0^{\circ}, 325.2^{\circ}]$
 - (e) $7\sin x 4\cos x = 3 [51.6^{\circ}, 187.9^{\circ}]$
 - (f) $\cos x 3\sin x = 2 [237.7^{\circ}, 339.2^{\circ}]$
 - (g) $5\cos x + 2\sin x = 4[63.8^{\circ}, 339.8^{\circ}]$
 - (h) $9\cos 2x 4\sin 2x = 6 [14.2^{\circ}, 141.8^{\circ}, 194.2^{\circ}, 321.8^{\circ}]$
 - (i) $7\cos x + 6\sin x = 2[118.1^0, 323.1^0]$
 - (j) $9\cos x 8\sin x = 12 [313.6^{\circ}, 323.1^{\circ}]$

The factor formulae

The following identities were developed from compound angles

$$cos(A + B) = cosAcosB - sinAsinB(i)$$

$$cos(A - B) = coaAcosB + sinAsinB(ii)$$

$$sin(A + B) = sinAcosB + sinBcosA(iii)$$

$$sin(A - B) = sinAcosB - sinBcosA(iv)$$

$$cos(A + B) + cos(A - B) = 2cosAcosB$$

$$cos(A + B) - cos(A - B) = -2cosAcosB$$

$$sin(A + B) + sin(A - B) = 2sinAcosB$$

$$sin(A + B) - sin(A - B) = -2sinBcosA$$

For simplification, $A + B = \alpha$ and $A - B = \beta$

Add:
$$2A = \alpha + \beta$$
 i.e. $A = \left(\frac{\alpha + \beta}{2}\right)$

Subtract 2B =
$$\alpha$$
 - β i.e. A = $\left(\frac{\alpha - \beta}{2}\right)$

Substituting for A and B in the above equation

$$\cos \alpha + \cos \beta = 2\cos \left(\frac{\alpha + \beta}{2}\right)\cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin \alpha + \sin \beta = 2\sin \left(\frac{\alpha + \beta}{2}\right)\cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2\cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Example 40

Show that if X, Y and Z are angles of a triangle, then

(a)
$$\cos X + \cos Y + \cos Z - 1 = 4\sin \frac{X}{2}\sin \frac{Y}{2}\sin \frac{Z}{2}$$

solution

LHS
$$\cos X + \cos Y + \cos Z - 1$$

$$=2\cos\frac{X+Y}{2}\cos\frac{X-Y}{2}+1-2\sin^2\frac{Z}{2}-1$$

(to eliminate -1)

$$=2\cos\frac{180^{0}-Z}{2}\cos\frac{X-Y}{2}-2\sin^{2}\frac{Z}{2}$$

$$(since X + Y = 180^{0} - Z)$$

$$= 2\sin\frac{Z}{2}\cos\frac{X-Y}{2} - 2\sin^2\frac{Z}{2}$$

(Since
$$cos(90^{\circ} - A) = sinA$$
)

$$=2\sin\frac{z}{2}\left[\cos\frac{x-y}{2}-2\sin^2\left\{\frac{180^0-(x+y)}{2}\right\}\right]$$

$$=2\sin\frac{Z}{2}\left[\cos\frac{X-Y}{2}-\cos\left\{\frac{X+Y)}{2}\right\}\right]$$

(Since
$$\sin (90^{\circ} - A) = \cos A$$
)

$$=2\sin\frac{z}{2}\left[-2\sin\frac{x}{2}\sin\frac{-y}{2}\right]$$

$$=2\sin\frac{Z}{2}\left[2\sin\frac{X}{2}\sin\frac{Y}{2}\right]$$

(Since
$$sin(-A) = -sinA$$
)

$$4sin \frac{x}{2} sin \frac{y}{2} sin \frac{z}{2}$$
 as required

(b) Sin3X + sin3Y + sin3Z =
-
$$4\cos\frac{3X}{2}\cos\frac{3Y}{2}\cos\frac{3Z}{2}$$

Solution

$$= 2\sin\frac{3(X+Y)}{2}\cos\frac{3(X-Y)}{2} + 2\sin\frac{3Z}{2}\cos\frac{3Z}{2}$$

$$=2\sin\frac{3(180^{0}-Z)}{2}\cos\frac{3(X-Y)}{2}+2\sin\frac{3Z}{2}\cos\frac{3Z}{2}$$

$$= -2\cos\frac{3Z}{2}\cos\frac{3(X-Y)}{2} + 2\sin\frac{3Z}{2}\cos\frac{3Z}{2}$$

Since
$$sin(270^0 - A) = -cosA$$

$$=-2\cos\frac{3Z}{2}\left[\cos\frac{3(X-Y)}{2}-\sin\frac{3Z}{2}\right]$$

$$=-2\cos\frac{3Z}{2}\left[\cos\frac{3(X-Y)}{2}-\sin\frac{3\{180^{0}-(X+Y)\}}{2}\right]$$

$$= -2\cos\frac{3Z}{2} \left[\cos\frac{3(X-Y)}{2} - \cos\frac{3(X+Y)}{2} \right]$$

$$=-2\cos\frac{3Z}{2}\left[2\cos\frac{3X}{2}+\cos\frac{-3Y}{2}\right]$$

Since cos(-A) = cosA

$$= -4\cos\frac{3X}{2}\cos\frac{3Y}{2}\cos\frac{3Z}{2}$$

(c)
$$\cos 4X + \cos 4Y + \cos 4Z + 1$$

= 4cos2Xcos2Ycos2Z

Solution

LHS:
$$cos4X + cos4Y + cos4Z + 1$$

$$= 2\cos 2(X + Y)\cos 2(X - Y) + 2\cos^2 2Z - 1 + 1$$

$$= 2\cos 2(180^{\circ} - Z)\cos 2(X - Y) + 2\cos^{2}2Z$$

$$= 2\cos 2Z[\cos 2(X - Y) + \cos 2\{180^{0} - (X + Y)\}]$$

$$= 2\cos 2Z[\cos 2(X - Y) + \cos 2(X + Y)]$$

Since
$$cos(-A) = cosA$$

$$(d) \sin^2 Y + \sin^2 Z = 1 + \cos(Y - Z)\cos X$$

LHS:
$$\sin^2 Y + \sin^2 Z$$

$$= \frac{1}{2}(1 - \cos 2Y) + \frac{1}{2}(1 - \cos 2Z)$$

$$=\frac{1}{2}(2-\cos 2Y-\cos 2Z)$$

$$=1-\frac{1}{2}(\cos 2Y + \cos 2Z)$$

$$= 1 - \cos(180^{\circ} - X)\cos(Y - Z)$$

$$=1 + \cos(Y - Z)\cos X$$

Example 41

 (a) Factorize cosθcos3θ – cos7θ + cos9θ and express it in the form Acospθsinqθsinrθ wher A, p, q and r are constants

Solution

$$f(\theta) = \cos \theta + \cos \theta - (\cos \theta + \cos \theta)$$

$$= 2\cos 5\theta \cos 4\theta - 2\cos 5\theta \cos 2\theta$$

$$=2\cos 5\theta(\cos 4\theta - \cos 2\theta)$$

=
$$-4\cos 5\theta(-\sin 3\theta\sin \theta)$$

$$=-4\cos 5\theta \sin 3\theta \sin \theta$$

$$\Rightarrow$$
 A = -4, p = 5, q = 3, r = 1

(b) Given that

$$p = \sin \alpha + \sin \beta$$

$$q = \cos\alpha + \cos\beta$$
. Show that

$$\frac{2pq}{p^2+q^2} = \sin(\alpha + \beta)$$

$$\frac{2pq}{p^2+q^2}$$

$$= \frac{2(sin\alpha + sin\beta)(cos\alpha + cos\beta)}{sin^2\alpha + 2sin\alpha sin\beta + sin^2\beta + cos^2\alpha + 2cos\alpha cos\beta + cos^2\beta}$$

$$=\frac{2\left[2sin\frac{\alpha+\beta}{2}cos\frac{\alpha-\beta}{2}\right]\left[2cos\frac{\alpha+\beta}{2}cos\frac{\alpha-\beta}{2}\right]}{2+2(cos\alpha cos\beta+sin\alpha sin\beta)}$$

$$=\frac{2\left[2sin\frac{\alpha+\beta}{2}cos\frac{\alpha+\beta}{2}\right]\left[2cos^2\frac{\alpha-\beta}{2}\right]}{2+2cos(\alpha-\beta)}$$

$$=\frac{2\left[sin(\alpha+\beta)\right]\left[1+cos(\alpha-\beta)\right]}{2\left[1+cos(\alpha-\beta)\right]}$$

$$=sin(\alpha+\beta)$$

Example 42

Solve $5\cos^2 3\theta = 3(1 + \sin 3\theta)$ for $0^0 \le \theta \le 90^0$.

Solution

$$5\cos^2 3\theta = 3(1 + \sin 3\theta)$$

$$5(1 - \sin^2 3\theta) = 3(1 + \sin 3\theta)$$

$$5 - 5\sin^2 3\theta = 3 + 3\sin 3\theta$$

$$5\sin^2 3\theta + 3\sin 3\theta - 0 = 0$$

$$(\sin 3\theta + 1)(5\sin 3\theta - 2) = 0$$

$$\sin 3\theta + 1 = 0$$

$$3\theta = \sin^{-1}(-1) = -90^{\circ}, 270^{\circ}$$

Example 43

(a) solve the equation
$$\cos 2x = 4\cos^2 x - 2\sin^2 x$$

for $0 \le \theta \le 180^0$
 $\cos 2x = 4\cos^2 x - 2\sin^2 x$
 $\cos^2 x - \sin^2 x = 4\cos^2 x - 2\sin^2 x$
 $3\cos^2 x - \sin^2 x = 0$
 $4\cos^2 x - 1 = 0$
 $(2\cos x + 1)(2\cos x - 1) = 0$
Either
 $2\cos x + 1 = 0$
 $\cos x = -\frac{1}{2}$
 $x = \cos^{-1}(-\frac{1}{2}) = 120^0$
Or
 $2\cos x - 1 = 0$
 $\cos x = \frac{1}{2}$
 $x = \cos^{-1}(\frac{1}{2}) = 60^0$
 $\therefore x(60^0, 120^0)$

Alternatively
$$\cos 2x = 4\cos^2 x - 2\sin^2 x$$

$$= \frac{4}{2}(1 + \cos 2x) - \frac{2}{2}(1 - \cos 2x)$$

$$= 2 + 2\cos 2x - 1 + \cos 2x$$

$$2\cos 2x + 1 = 0$$

$$\cos 2x = \frac{1}{2}$$

$$2x = \cos_{-1}(-\frac{1}{2}) = 120^{\circ}, 240^{\circ}$$

$$x = 60^{\circ}, 120^{\circ}$$

Alternatively $\cos 2x = 4\cos^2 x - 2\sin^2 x$ $\cos^2 x - \sin^2 x = 4\cos^2 x - 2\sin^2 x$ $3\cos^2 x - \sin^2 x = 0$ $\sin^2 x = 3\cos^2 x$ $\tan^2 x = 3$ $\tan x = \pm \sqrt{3}$ Either $\tan x = \sqrt{3}$ $x = \tan^{-1} \sqrt{3} = 60^{\circ}$ Or $\tan x = -\sqrt{3}$ $x = \tan^{-1} -\sqrt{3} = 120^{\circ}$ Hence $x = 60^{\circ}$, 120°

Alternatively $\cos 2x = 4\cos^2 x - 2\sin^2 x$ $1-2\sin^2 x = 4(1-\sin^2 x) - 2\sin^2 x$ $1 = 4 - 4\sin^2 x$ $4\sin^2 x = 3$ $\sin^2 x = \frac{3}{4}$ $\sin x = \pm \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$

$$x = 60^{\circ}, 120^{\circ}$$

Alternatively $\cos 2x = 4\cos^2 x - 2\sin^2 x$ $1-2\sin^2 x = 4\cos^2 x - 2\sin^2 x$ $4\cos^2 x = 1$ $\cos x = \pm \sqrt{\frac{1}{4}} = \pm \frac{1}{2}$ $x = 60^{\circ}, 120^{\circ}$

(b) Show that if $\sin(x + \alpha) = p\sin(x - \alpha)$ then $\tan x = \left(\frac{p+1}{p-1}\right)\tan\alpha$. Hence solve the equation $\sin(x + \alpha) = p\sin(x - \alpha)$ for p = 2 and $\alpha = 1$

 20° .

$$\begin{aligned} & \operatorname{sinxcos}\alpha + \operatorname{coxsin}\alpha = \operatorname{p}(\operatorname{sinxcos}\alpha - \operatorname{coxsin}\alpha) \\ & \operatorname{cosxsin}\alpha\left(\operatorname{p}+1\right) = \operatorname{sinxcos}\alpha\left(\operatorname{p}-1\right) \\ & \operatorname{cosxsin}\alpha\left(\frac{p+1}{p-1}\right) = \operatorname{sinxcos}\alpha \\ & \frac{\operatorname{cosxsin}\alpha}{\operatorname{sinxcos}\alpha}\left(\frac{p+1}{p-1}\right) = \frac{\operatorname{sinxcos}\alpha}{\operatorname{sinxcos}\alpha} \\ & tanx = \left(\frac{p+1}{p-1}\right)\tan\alpha \\ & \operatorname{For}\sin(x+20^0) = 2\sin(x-20^0) \\ & tanx = \frac{2+1}{2-1}tan20^0 = 3\tan20^0 \\ & x = \tan^{-1}(3tan20^0) = 47.52^0 \end{aligned}$$

Example 44

Prove that in any triangle ABC,

$$\frac{\sin(A-B)}{\sin(A+B)} = \frac{a^2 - b^2}{c^2}$$

Solution

$$\frac{a^2 - b^2}{c^2} = \frac{(2R\sin A)^2 - (2R\sin B)^2}{(2R\sin C)^2}$$

$$= \frac{4R^2(\sin^2 A - \sin^2 B)}{4R^2 \sin^2 C}$$

$$= \frac{(\sin A + \sin B)(\sin A - \sin B)}{\sin^2 [180^0 - (A + B)]}$$

$$= \frac{2\sin(\frac{A + B}{2})\cos(\frac{A - B}{2}) \cdot 2\cos(\frac{A + B}{2})\sin(\frac{A - B}{2})}{\sin^2 (A + B)}$$

$$= \frac{\sin(A + B)\sin(A - B)}{\sin^2 (A + B)}$$

$$= \frac{\sin(A - B)}{\sin(A + B)}$$

Inverse trigonometric functions

Note that

(a) If
$$\theta = \cos^{-1}\left(\frac{1}{2}\right)$$
 then $\cos\theta = \frac{1}{2}$
(b) $\tan^{-1}(\tan\alpha) = \tan(\tan^{-1}\alpha) = \alpha$

(b)
$$tan^{-1}(tan\alpha) = tan(tan^{-1}\alpha) = \alpha$$

(c)
$$\cos^{-1}[\cos(x+y)]$$

= $\cos[\cos^{-1}(x+y) = x+y]$
(d) $\sin(\sin^{-1}\theta) = \sin^{-1}(\sin^{-1}\theta)$

To avoid errors test the values

Example 45

Show that

(a)
$$\tan^{-1} \frac{1}{3} + \sin^{-1} \frac{1}{\sqrt{5}} = \frac{\pi}{4}$$

Solution
 $A = \tan^{-1} \frac{1}{3}$ and $B = \sin^{-1} \frac{1}{\sqrt{5}}$

$$\Rightarrow \tan A = \frac{1}{3} \text{ and } B = \frac{1}{\sqrt{5}}$$

$$\sqrt{5}$$

$$B$$

$$\Rightarrow$$
 tan B = $\frac{1}{2}$

LHS =
$$\tan^{-1} \frac{1}{3} + \sin^{-1} \frac{1}{\sqrt{5}} = A + B$$

= $\tan^{-1} [\tan(A + B)]$
= $\tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \left(\frac{1}{3}\right)\left(\frac{1}{2}\right)} \right)$
= $\tan^{-1} \frac{3+3}{6-1}$
= $\tan^{-1} \frac{5}{5} = \tan^{-1} 1 = \frac{\pi}{4}$

(b)
$$2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$$

Solution
Let A = $\tan^{-1} \frac{1}{3}$ and B = $\tan^{-1} \frac{1}{7}$
 $\Rightarrow \tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$

LHS:
$$\tan^{-1} \tan(2A + B)$$
 but $\tan 2A = \frac{2\frac{1}{3}}{1 - (\frac{1}{3})^2} = \frac{3}{4}$

$$= \tan^{-1} 1$$

$$= \frac{\pi}{4}$$
(c) $\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$

Let
$$\theta = \cos^{-1} x$$
; $\Rightarrow x = \cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

$$\sin x = \frac{\pi}{2} - \theta$$

$$\therefore \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$$

Example 46

Solve the equations

(a)
$$\tan^{-1}(2\theta + 1) + \tan^{-1}(2\theta - 1) = \tan^{-1}(2)$$

Solution

Let A =
$$\tan^{-1}(2\theta + 1)$$
 and B = $\tan^{-1}(2\theta - 1)$
 $\Rightarrow \tan A = 2\theta + 1$ and $\tan B = 2\theta - 1$

$$\therefore$$
 A + B = $\tan^{-1} 2$ or $\tan(A + B) = 2$

$$\frac{2\theta + 1 + 2\theta - 1}{1 - (2\theta + 1)(2\theta - 1)} = 2$$

$$4\theta = 2(1 - 4\theta^2 - 1)$$

$$2\theta^2 + \theta - 1 = 0$$

$$(2\theta - 1)(\theta + 1) = 0$$

$$\theta = \frac{1}{2}$$
 or $\theta = -1$

(b)
$$\tan^{-1}(1+\theta) + \tan^{-1}(1-\theta) = 32$$

Let A = $\tan^{-1}(1+\theta)$ and B = $\tan^{-1}(1-\theta)$

$$\Rightarrow$$
 tanA = 1 + θ and tanB =1 - θ

$$\therefore$$
 A + B = 32 or tan(A +B) = tan32

Introducing tangents

$$\frac{1+\theta+1-\theta}{1-(1+\theta)(1-\theta)} = tan 32$$

$$\theta^2$$
tan32 = 2

$$\theta = \sqrt{2cot32} = \pm 1.789$$

Example 47

If
$$x = tan^{-1}\alpha$$
 and $y = tan^{-1}\beta$;

Show that
$$x + y = \tan^{-1} \left(\frac{\alpha + \beta}{1 - \alpha \beta} \right)$$

Solution

$$tanx = \alpha$$
; $tany = \beta$

$$(x + y) = tan[tan^{-1}(x + y)]$$

$$= \tan^{-1} \left(\frac{\alpha + \beta}{1 - \alpha \beta} \right)$$

Example 48

Solve the equation

$$\tan^{-1}\left(\frac{1}{x-1}\right) + \tan^{-1}(x+1) = \tan(-2)$$

Solution

Let A =
$$\tan^{-1} \left(\frac{1}{x-1} \right)$$
 and B = $\tan^{-1} (x + 1)$

$$\Rightarrow$$
 A + B = tan⁻¹(-2)

$$\frac{\frac{1}{x-1} + (x+y)}{1 - \left(\frac{1}{x-1}\right)(x+y)} = -2$$

$$\frac{1+x^2 - 1}{x-1-x-1} = -2$$

$$\therefore x^2 = 4; x = \pm 2$$

Example 50

Without using tables or calculators determine the values of $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{9}$.

Solution

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8}$$

$$=\frac{\frac{\frac{1}{2}+\frac{1}{5}}{1-\left(\frac{1}{2}\right)\left(\frac{1}{5}\right)}+\tan^{-1}\frac{1}{8}$$

$$=\tan^{-1}\frac{7}{9}+\tan^{-1}\frac{1}{8}$$

$$= \frac{\frac{7}{9} + \frac{1}{8}}{1 - \left(\frac{7}{9}\right)\left(\frac{1}{8}\right)} = \tan^{-1}\left(\frac{65}{65}\right) = \frac{\pi}{4}$$

Example 51

Solve equations

(a)
$$\cos^{-1} x + \cos^{-1} x \sqrt{8} = \frac{\pi}{2}$$

Let A =
$$\cos^{-1} x$$
 and B = $\cos^{-1} x \sqrt{8}$

$$A + B = \frac{\pi}{2}$$

$$x(x\sqrt{8}) - \left(\sqrt{1 - x^2}\right)\left(\sqrt{1 - 8x^2}\right) = 0$$
$$x(x\sqrt{8}) = \left(\sqrt{1 - x^2}\right)\left(\sqrt{1 - 8x^2}\right)$$

$$8x^4 = (1 - x^2)(1 - 8x^2)$$

$$1-9x^2=0$$

$$(1-3x)(1+3x)=0$$

Either
$$x = \frac{1}{3}$$
 or $x = -\frac{1}{3}$

We discard the negative value, so the root is $X = \frac{1}{1}$

(b)
$$2\sin^{-1}\left(\frac{x}{2}\right) + \sin^{-1}(x\sqrt{2}) = \frac{\pi}{2}$$

Solution

Let A =
$$\sin^{-1}\left(\frac{x}{2}\right)$$
 and B = $\sin^{-1}(x\sqrt{2})$

$$2A + B = \frac{\pi}{2}$$

$$2A = \frac{\pi}{2} - B$$

$$Sin(2A) = \sin\left(\frac{\pi}{2} - B\right)$$

2SinAcosA = cosB

$$2\left(\frac{x}{2}\right).\sqrt{1-\frac{x^2}{4}} = \sqrt{1-2x^2}$$

$$x.\sqrt{\frac{4-x^2}{4}} = \sqrt{1-2x^2}$$

$$\frac{x}{2}$$
. $\sqrt{4-x^2} = \sqrt{1-2x^2}$

$$\frac{x^2}{4}.(4-x^2)=(1-2x^2)$$

$$X^4 - 12x^2 + 4 = 0$$

$$x^2 = \frac{12 \pm \sqrt{144 - 4(4 \times 1)}}{2 \times 1}$$

$$x^2 = \frac{12 \pm \sqrt{128}}{2} = 6 \pm 4\sqrt{2}$$

$$x = \sqrt{6 \pm 4\sqrt{2}}$$

After testing for $x = \sqrt{6 + 4\sqrt{2}}$ and for $x = \sqrt{6 - 4\sqrt{2}}$, the value that satisfies the equation is $x = \sqrt{6 - 4\sqrt{2}} = 0.5858$

Hence the value of x = 0.5858

Revision exercise 6

- 1. If $p = \sin \alpha + \sin \beta$ and $q = \cos \alpha + \cos \beta$ show that $\frac{p}{a} = tan \frac{\alpha + \beta}{2}$
- 2. (a) Prove that:
 - (i) $(\sin 2x \sin x)(1 + 2\cos x) = \sin 3x$

 - (ii) $\cos 4\theta = \frac{\tan^4\theta 6\tan^2\theta + 1}{\tan^4\theta + 2\tan^2\theta + 1}$ (iii) $\frac{\sin x + 2\sin 2x + \sin 3x}{\sin x + 2\sin x + \sin 3x} = \tan^2\frac{x}{2}$
- 3. Solve the equation for $0^{\circ} \le x \le 180^{\circ}$:
 - (a) $\sin x + \sin 3x + \sin 5x + \sin 7x = 0$ $[x: x = 0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}]$
 - (b) $\sin 7x + \sin x + \sin 5x + \sin 3x = 0$ $[x: x = 60^{\circ}, 180^{\circ}]$
 - (c) $\sin x + \sin 4x = 0$ [x: $x=0^{\circ}$, 60° , 72° , 144° , 180°]
 - (d) $\cos(x + 10^{\circ}) \cos(x + 30^{\circ}) = 0$ [70⁰]
 - (e) $\cos 5x \sin 2x = \cos x$ $[x: x = 0^{\circ}, 70^{\circ}, 90^{\circ}, 110^{\circ}, 180^{\circ}]$
 - (f) $\sin 2x + \sin 10x + \cos 4x = 0$ $[x: x = 22.5^{\circ}, 35^{\circ}, 55^{\circ}, 67.5^{\circ}, 95^{\circ}]$ 112.5°, 115°, 157.5°, 175°]
- 4. Show that
 - (a) $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
 - (b) $2\sin^{-1}\left(\frac{1}{2}\right) = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$
 - (c) the positive value that satisfies the equation $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$ is
 - (d) $\tan^{-1}(-x) = -\tan^{-1}x$
 - (e) $\cos^{-1}\left(\frac{63}{65}\right) + 2\tan^{-1}\left(\frac{1}{5}\right) = \sin^{-1}\left(\frac{3}{5}\right)$
- 5. Prove that
 - (a) $\frac{\sin A \sin B}{\sin A + \sin B} = \tan \left(\frac{A B}{2}\right) \cot \left(\frac{A + B}{2}\right)$
 - (b) $\sin 3x + \sin x = 4 \sin x \cos^2 x$
 - (c) $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x} = \tan 2xx$
 - (d) sin(A + B) sin(A B) = 2cosAsinB
 - (e) $\frac{\sin 5x + \sin x}{\sin 4x + \sin 2x} = 2\cos x \sec x$
 - (f) $\cos 3x + \cos x = 4\cos^2 x 2\cos x$

Solution to triangles

In a triangle ABC

(a) Six elements are considered: three angles and three sides

Capital letters denote angles and **small bold and italics letters** sides

- (b) The opposite side of angle A is a, of angle B is b and of angle C is c.
- (c) The angle sum of a triangle is two right angles i.e. $A + B + C = 180^{\circ}$
- (d) The sides are independent except that the sum of the two sides of the triangle should be equal to or greater than the third side

How to deal with triangles

- 1. The cosine rule
 - (a) Given an acute angle A

From triangle

ACD:
$$x^2 + h^2 = b^2$$
(i)

BCD:
$$(c - x)^2 + h^2 = a^2$$

$$c^2 - 2cx + x^2 + h^2 = a^2$$
 (ii)

Substituting eqn. (i) into eqn. (ii)

$$c^2 - 2cx + b^2 = a^2$$

But

$$x = b \cos A$$

$$\Rightarrow b^2 + c^2 - 2bc \cos A = a^2$$

$$a^2 = b^2 + c^2 - 2bc \cos A \qquad (1)$$

Similarly;

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 (2)

$$c^2 = a^2 + b^2 - 2ab\cos C$$
 (3)

It follows that

$$cosA = \frac{b^2 + c^2 - a^2}{2bc}$$

$$cosB = \frac{a^2 + c^2 - b^2}{2ac}$$

$$cosC = \frac{a^2 + b^2 - c^2}{2ab}$$

(b) Given an obtuse angle A

In triangle ABC, A is an obtuse angle and CD is the altitude.

From triangle

ACD:
$$x^2 + h^2 = b^2$$
(i)

BCD:
$$(c - x)^2 + h^2 = a^2$$

$$c^2 - 2cx + x^2 + h^2 = a^2$$
(ii)

Substituting eqn. (i) into eqn. (ii)

$$c^2 - 2cx + b^2 = a^2$$

Rut

$$x = b\cos (180^{\circ} - A) = -bc\cos A$$

From triangle ACD

$$a^2 = b^2 + c^2 - 2bc\cos A$$
 as before

The cosine rule can be derived using the vector approach.

Given a triangle above with BC = \boldsymbol{a} , AC = \boldsymbol{c} and AB = \boldsymbol{b}

$$BC = BA + AC = AC - AB$$

$$a = b - c$$

$$\Rightarrow a.a = (b-c)(b-c)$$

$$= b.b - 2b.c + c.c$$

$$= b.b + c.c - 2b.c$$

$$\therefore a^2 = b^2 + c^2 - 2bc \cos A$$
since $b.c = |bc| \cos A$

Example 52

Solve the triangle in which AB = 6cm, BC = 4cm and angle ACB = $48^{\circ}12'$

Solution

Using:
$$\mathbf{b}^2 = \mathbf{a}^2 + \mathbf{c}^2 - 2\mathbf{a}\mathbf{c}\cos B$$

= $6^2 + 4^2 - 2(6)(4)\cos 48.2^0$

$$1^0$$
 (degree) = 60' (minutes)

$$b = 4.47cm$$

Using:
$$cosA = \frac{b^2 + c^2 - a^2}{2bc} = \frac{20.0 + 36 - 16}{2(4.47)(6)}$$

$$A = 41.8^{\circ}$$

But A + B + C =
$$180^{\circ}$$

$$41.8^{\circ} + 48.2^{\circ} + C = 180^{\circ}$$

$$C = 90^{\circ}$$

 \therefore AC = 4.47cm, angles BAC = 41.8° and ACB = 90°

Example 53

In a triangle ABC, prove that

(a)
$$a^2 = (b-c)^2 + 4bcsin^2 \left(\frac{A}{2}\right)$$
 hence that $a = (b-c)sec\alpha$ where $tan\alpha = \frac{\sqrt{bc}sin\left(\frac{A}{2}\right)}{b-c}$ From $cosA = 1-2 sin^2 \left(\frac{A}{2}\right)$ Substituting for $cosA$ into the $cosine$ formula $a^2 = b^2 + c^2 - 2bccosA$ $a^2 = b^2 + c^2 - 2bc[1 - 2 sin^2 \left(\frac{A}{2}\right)]$

$$a^2 = b^2 + c^2 - 2bc + 4 \sin^2(\frac{A}{2})$$

 $a^2 = (b - c)^2 + 4bc\sin^2(\frac{A}{2})$

Hence, substituting for $\sin^2\left(\frac{A}{2}\right)$ into $\tan\alpha$ expression we get

$$a^2 = (b - c)^2 + (b - c)^2 tan^2 \alpha$$

$$a^2 = (b - c)^2 (1 + tan^2 \alpha)$$

$$a^2 = (b - c)^2 sec^2 \alpha$$

$$a = (b - c)sec\alpha$$

2. The Sine Rule

The figure shows a circle with centre O and radius r circumscribing triangle ABC

Angle BOC = 2A [angle subtended by the same arc at the centre of the circle is twice the angle formed at any point on the circumference]

Triangle BOC is isosceles

OD bisects angle BOC and side BC

From triangle BOD

$$sinA = \frac{a}{2r}$$
 i.e. $\frac{a}{sinA} = 2r$

if instead we consider triangles AOC and AOB, we obtain $\frac{b}{sinB}=2r$ and $\frac{c}{sinC}=2r$

In general:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Example 54

Solve the triangle in which AB = 5cm, AC = 4cm and angle ACB = 600

Solution

Using sine rule

$$\frac{b}{sinB} = \frac{c}{sinC} \Rightarrow B = \sin^{-1}\left(\frac{bsinC}{c}\right)$$

$$B = \sin^{-1}\left(\frac{4}{5}\sin 60^{0}\right) = 43.9^{0}$$

From A + B + C+ = 180°

$$A = (180 - 60 - 43.9)^{0} = 76.1^{0}$$

Similarly a =
$$\frac{bsinA}{sinB} = \frac{4sin76.1^{\circ}}{sin43.9^{\circ}} = 5.6cm$$

$$\therefore \overline{AB} = 5.6cm, B\hat{A}C = 76.1^{\circ}, A\hat{B}C = 43.9^{\circ}$$

Example 55

Prove that in any triangle

$$\frac{a^2-b^2}{c^2} = \frac{\sin(A-B)}{\sin(A+B)}$$

Solution

From sine rule formula; a = 2rsinA, b = 2rsinB, c = 2rsinC

By substitution

$$\frac{a^2 - b^2}{c^2} = \frac{(2r\sin A)^2 - (2r\sin B)^2}{(2r\sin C)^2} = \frac{\sin^2 A - \sin^2 B}{\sin^2 C}$$

But A + B + C = 180°

$$C = 180^{\circ} - (A + B)$$

$$sinC = sin[180^{0} - (A + B)] = sin (A + B)$$

By substitution

$$\frac{a^2 - b^2}{c^2} = \frac{\sin^2 A - \sin^2 B}{\sin(A+B)} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\sin(A+B)}$$

$$=\frac{2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B).2\cos\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)}{\sin(A+B)}$$

$$= \frac{2\sin\frac{1}{2}(A-B)\cos\frac{1}{2}(A-B)}{\sin(A+B)} = \frac{\sin(A-B)}{\sin(A+B)}$$

Hence
$$\frac{a^2 - b^2}{c^2} = \frac{\sin(A - B)}{\sin(A + B)}$$

Example 56

Prove that in any triangle ABC,

$$\sin\frac{1}{2}(B-C) = \frac{b-c}{a}\cos\frac{1}{2}A$$

Solution

From sine rule formula; a = 2rsinA, b = 2rsinB, c = 2rsinC

By substitution

$$\frac{b-c}{a} = \frac{2rsinB - 2rsinC}{2rsinA} = \frac{SinB - sinC}{sinA}$$

But A + B + C =
$$180^{\circ}$$

$$A = 180^{0} - (B + C)$$

$$sinA = sin[180^{0} - (B + C)] = sin(B + C)$$

By substitution

$$\frac{b-c}{a} = \frac{SinB-sinC}{sinA} = \frac{SinB-sinC}{sin(B+C)}$$
$$= \frac{2cos\frac{1}{2}(B+C)sin\frac{1}{2}(B+C)}{2cos\frac{1}{2}(B+C)cos\frac{1}{2}(B+C)}$$
$$= \frac{sin\frac{1}{2}(B+C)}{cos\frac{1}{2}(B+C)}$$

From A + B + C = 180°

$$B + C = 180^{\circ} - A$$

$$\frac{1}{2}(B+C) = \left(90^{\circ} - \frac{1}{2}A\right)$$

$$\sin\frac{1}{2}(B+C) = \sin\left(90^{0} - \frac{1}{2}A\right) = \cos\frac{1}{2}A$$

By substitution

$$\frac{b-c}{a} = \frac{\sin\frac{1}{2}(B+C)}{\cos\frac{1}{2}A}$$

$$\therefore \sin\frac{1}{2}(B-C) = \frac{b-c}{a}\cos\frac{1}{2}A$$

3. The Tangent Rule

It states that in a triangle ABC

$$tan\frac{1}{2}(A-B) = \left(\frac{a-b}{a+b}\right)cot\frac{1}{2}C$$

$$tan\frac{1}{2}(C-A) = \left(\frac{c-a}{c+a}\right)cot\frac{1}{2}B$$

$$\tan\frac{1}{2}(b-c) = \left(\frac{b-c}{b+c}\right)\cot\frac{1}{2}A$$

Proof

$$From \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

a = 2rsinA, b = 2rsinB, c = 2rsinC

$$\begin{split} \frac{a-b}{a+b} &= \frac{2rsinA - 2rsinB}{2rsinA + 2rsinB} = \frac{sinA - sinB}{sinA + sinB} \\ &= \frac{2cos\frac{1}{2}(A+B)sin\frac{1}{2}(A-B)}{2sin\frac{1}{2}(A+B)cos\frac{1}{2}(A-B)} \\ &= \frac{2cos(90 - \frac{1}{2}C)sin\frac{1}{2}(A-B)}{2sin(90 - \frac{1}{2}C)cos\frac{1}{2}(A-B)} \\ &= \frac{cos(90 - \frac{1}{2}C)tan\frac{1}{2}(A-B)}{sin\frac{1}{2}(90 - C)} \\ &= \frac{sin\frac{1}{2}Ctan\frac{1}{2}(A-B)}{cos\frac{1}{2}C} \end{split}$$

$$\frac{a-b}{a+b} = \tan \frac{1}{2} C \tan \frac{1}{2} (A-B)$$

$$\therefore \tan \frac{1}{2}(A - B) = \left(\frac{a - b}{a + b}\right) \cot \frac{1}{2}C$$

Example 56

Show that in a triangle PQR

$$\tan\frac{1}{2}(Q-C) = \left(\frac{q-r}{q+r}\right)\cot\frac{1}{2}P$$

Hence solve the triangle in which q =15.32, r = 28.6 and $P = 39^{\circ}52'$

Solution

$$\operatorname{From} \frac{p}{\sin P} = \frac{q}{\sin Q} = \frac{r}{\sin R}$$

$$\frac{q-r}{q+r} = \frac{2rsinQ - 2rsinR}{2rsinQ + 2rsinR} = \frac{sinQ - sinR}{sinQ + sinR}$$

$$=\frac{2cos\frac{1}{2}(Q+R)sin\frac{1}{2}(Q-R)}{2sin\frac{1}{2}(Q+R)cos\frac{1}{2}(Q-R)}$$

$$=\frac{2\cos(90-\frac{1}{2}P)\sin\frac{1}{2}(Q-R)}{2\sin(90-\frac{1}{2}P)\cos\frac{1}{2}(Q-R)}$$

$$=\frac{\cos(90-\frac{1}{2}P)\tan\frac{1}{2}(Q-R)}{\sin\frac{1}{2}(90-P)}$$

$$=\frac{\sin^{\frac{1}{2}Ptan^{\frac{1}{2}}(Q-R)}}{\cos^{\frac{1}{2}P}}$$

$$\frac{q-r}{q+r} = \tan\frac{1}{2}P\tan\frac{1}{2}(Q-R)$$

$$\therefore \tan \frac{1}{2}(Q - R) = \left(\frac{q - r}{q + r}\right) \cot \frac{1}{2}P$$

Hence

$$tan\frac{1}{2}(Q-R) = \frac{15.32 - 28.6}{15.32 + 29.6}cot39^{0}52'$$
$$= -0.3621$$

$$\frac{1}{2}(Q-R) = -19.9^{\circ}$$
 i.e. Q – R = -39.9°

$$O + R = 180 - 39.9 = 140.1^{\circ}$$

Solving $Q = 50.15^{\circ}$ and $R = 89.95^{\circ}$

Now p =
$$\frac{qsinP}{sinO} = \frac{15.32sin\left[39 + \frac{52}{60}\right]^0}{sin 50.15} = 12.79$$

$$\therefore$$
p = 12.79, Q =50.15°, R = 89.95°

Example 57

Show that
$$\frac{a+b-c}{a+b+c} = tan \frac{1}{2} A tan \frac{1}{2} B$$

$$\begin{split} \text{HS} &= \frac{a+b-c}{a+b+c} \\ &= \frac{2r sinA + 2r sinB - 2r sinC}{2r sinA + 2r sinB + 2r sinC} \\ &= \frac{sinA + sinB - sinC}{sinA + sinB + sinC} \\ &= \frac{2sin\frac{1}{2}(A + B)cos\frac{1}{2}(A - B) - 2sin\frac{1}{2}Ccos\frac{1}{2}C}{2sin\frac{1}{2}(A + B)cos\frac{1}{2}(A - B) - 2sin\frac{1}{2}Ccos\frac{1}{2}C} \\ &= \frac{2sin(90 - \frac{1}{2}C)cos\frac{1}{2}(A - B) - 2sin\frac{1}{2}Ccos\frac{1}{2}C}{2sin(90 - \frac{1}{2}C)cos\frac{1}{2}(A - B) - 2sin\frac{1}{2}Ccos\frac{1}{2}C} \\ &= \frac{2cos\frac{1}{2}Ccos\frac{1}{2}(A - B) - 2sin\frac{1}{2}Ccos\frac{1}{2}C}{2os\frac{1}{2}Ccos\frac{1}{2}(A - B) - 2sin\frac{1}{2}Ccos\frac{1}{2}C} \\ &= \frac{cos\frac{1}{2}(A - B) - sin\frac{1}{2}C}{cos\frac{1}{2}(A - B) + sin\frac{1}{2}C} \end{split}$$

$$= \frac{\cos \frac{1}{2}(A-B) - \sin \left(90 - \frac{1}{2}(A+B)\right)}{\cos \frac{1}{2}(A-B) + \sin \left(90 - \frac{1}{2}(A+B)\right)}$$

$$= \frac{\cos \frac{1}{2}(A-B) + \cos \frac{1}{2}(A+B)}{\cos \frac{1}{2}(A-B) + \cos \frac{1}{2}(A+B)}$$

$$= \frac{-2\sin \frac{1}{2}A\sin \left(-\frac{1}{2}B\right)}{\cos \frac{1}{2}A + \cos \frac{1}{2}B}$$

$$= \tan \frac{1}{2}A \tan \frac{1}{2}B$$

Expressions for sinA, $\sin \frac{1}{2} A$ and $\cos \frac{1}{2} A$ in terms of the sides of the triangle

(a) sinA

From the identity

$$\sin^{2}A = 1 - \cos^{2}A = (1 - \cos A)(1 + \cos A)$$

$$= \left(1 - \frac{b^{2} + c^{2} - a^{2}}{2bc}\right) \left(1 + \frac{b^{2} + c^{2} - a^{2}}{2bc}\right)$$

$$= \left(\frac{2bc - b^{2} + c^{2} - a^{2}}{2bc}\right) \left(\frac{2bc + c^{2} + c^{2} - a^{2}}{2bc}\right)$$

$$= \frac{[a^{2} - (b - c)^{2}][(b - c)^{2} - a^{2}]}{4b^{2}c^{2}}$$

$$\therefore \sin^2 A = \frac{(a+c-b)(a+b-c)(b+c-a)(b+c+a)}{4b^2c^2}$$

Let $s = \frac{1}{2}[perimeter\ of\ triangle]$

$$=\frac{1}{2}[a+b+c]$$

$$2s = [a + b + c]$$

$$a + b = 2s - c$$
; i.e. $a + b - c = 2s - c - c = 2(s - c)$

$$a + c = 2s - b$$
; i.e. $a + c - b = 2s - b - b = 2(s - b)$

$$b + c = 2s - a$$
; i.e. $b + c - a = 2s - a - a = 2(s - a)$

Similarly,
$$\sin B = \frac{2}{ac} \sqrt{s(s-a)(s-b)(s-c)}$$

$$\operatorname{sinC} = \frac{2}{ab} \sqrt{s(s-a)(s-b)(s-c)}$$

(b) $\sin \frac{1}{2} A$ and $\cos \frac{1}{2} A$

From
$$\sin^2 \frac{1}{2} A = \frac{1}{2} (1 - \cos A)$$

$$= \frac{1}{2} \left(1 - \frac{b^2 + c^2 - a^2}{2bc} \right)$$

$$= \left(\frac{2bc - b^2 + c^2 - a^2}{4bc} \right)$$

$$= \left(\frac{a^2 - (b - c)^2}{4bc} \right)$$

$$= \left(\frac{(a + c - b)(a + b - c)}{4bc} \right)$$

$$= \left(\frac{2(s - b) \cdot 2(s - c)}{4bc} \right)$$

$$= \left(\frac{(s - b)(s - c)}{bc} \right)$$

Similarly;

$$\sin^{\frac{1}{2}}B = \sqrt{\left(\frac{(s-b)(s-c)}{ac}\right)}$$

$$\sin\frac{1}{2}C = \sqrt{\left(\frac{(s-b)(s-c)}{ab}\right)}$$

Also;

$$\cos^{2\frac{1}{2}}A = \frac{1}{2}(1 + \cos A)$$

$$= \left(\frac{2bc+b^{2}+c^{2}-a^{2}}{4bc}\right)$$

$$= \left(\frac{(b+c)^{2}-a^{2}}{4bc}\right)$$

$$= \left(\frac{(b+c-a)(a+b+c)}{4bc}\right)$$

$$= \left(\frac{2(s-a).2s}{4bc}\right)$$

$$= \left(\frac{s(s-a)}{bc}\right)$$

$$\cdot \cos \frac{1}{2}A = \sqrt{\left(\frac{(s-a)}{bc}\right)}$$

Similarly;

$$\cos\frac{1}{2}B = \sqrt{\left(\frac{(s-b)}{ac}\right)}$$

$$\cos\frac{1}{2}C = \sqrt{\left(\frac{(s-c)}{ab}\right)}$$

The expression for $tan \frac{1}{2}A$ can be deduced as follows

$$\tan \frac{1}{2}A = \frac{\sin \frac{1}{2}A}{\cos \frac{1}{2}A} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

Similarly;

$$\tan\frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$$

$$\tan\frac{1}{2}C = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$

Area of a triangle

Area,
$$\Delta = \frac{1}{2}(base)(perpendicular\ height)$$

= $\frac{1}{2}ch$
= $\frac{1}{2}cbsinA$

Substituting for

$$sinA = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}$$

$$\Delta = \frac{1}{2}bcx\frac{2}{bc}\sqrt{s(s-a)(s-b)(s-c)}$$

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

This a convenient form given the three sides of a triangle. The formula is called Hero's formula from the first mathematician who suggested it.

Example 58

The area of a triangle is 336m². The sum of the three sides is 84m and one side is 28m. Calculate the length of the remaining two sides

Solution

Given $\Delta = 336$, a + b + c = 84 and a = 28

$$s = \frac{1}{2}(a+b+c) = \frac{1}{2}(84) = 42$$

$$28 + b + c = 84$$

$$b + c = 56$$
, or $c = 56 - b$

But
$$\Delta^2 = s(s-a)(s-b)(s-c)$$

$$336^2 = 42(42-28)(42-b)(42-56+b)$$

$$b^2 - 56b + 780 = 0$$

$$b = \frac{56 \pm \sqrt{56^2 - 4x \, 1 \, x \, 780}}{2 \, x \, 1}$$

$$b = 30 \text{ or } 26$$

substituting for c = 56 - b

$$c = 26 \text{ or } 30$$

∴the remaining sides are 30m and 26m

Applications of trigonometry in finding distances and bearings

Example 59

A vertical pole BAD stands with its base D on a horizontal plane where BA = a and AD = b. A point P is situated on the horizontal plane at a distance C from D and the angle APB = θ .

Prove that
$$\theta = \tan^{-1} \left(\frac{ac}{b^2 + ab + c^2} \right)$$

Solution

Let angle APD = α

For triangle APD: $\tan \alpha = \frac{b}{c}$

For triangle DPB: $tan(\theta+\alpha) = \frac{a+b}{c}$

$$\Rightarrow \frac{\tan\theta + \tan\alpha}{1 - \tan\theta \tan\alpha} = \frac{a + b}{c}$$

Substituting for $tan \alpha$

$$\Rightarrow \frac{\tan\theta + \frac{b}{c}}{1 - \left(\frac{b}{c}\right)\tan\theta} = \frac{a + b}{c}$$

 $c^2 \tan \theta + bc = ac + bc - ab \tan \theta - b^2 \tan \theta$

$$(b^2 + ab + c^2)\tan\theta = ac$$

$$\tan\theta = \frac{ac}{b^2 + ab + c^2}$$

$$\therefore \theta = \tan^{-1} \left(\frac{ac}{b^2 + ab + c^2} \right)$$

Example 60

The angle of the top of a vertical tower from a point A is 20° and from another point B is 50° . Given that A and B lie on the same horizontal plane in the same direction where AB = 100m. Find the height of the tower

Solution

Let OT be the height of the tower

$$A\hat{T}B = 50 - 30 = 30^{\circ}$$

Using sine rule

$$\frac{TB}{\sin 20^{\circ}} = \frac{100}{\sin 30^{\circ}}$$

$$TB = \frac{100 \sin 20^{0}}{\sin 30^{0}}$$

But OT = TBsin50⁰

$$OT = \frac{100 \sin 20^{0} \sin 50^{0}}{\sin 30^{0}} = 26.2 \text{m}$$

Example 61

From a point A, a pilot flies in the direction N38°20′W to point B 125km from A. He then flies in the direction S50°40′E for 125km. He wishes to return to A from this point. How far and in what direction must he fly.

From the digram

Let
$$B\hat{A}C = B\hat{C}A = \theta$$

$$\Rightarrow 2\theta + 13\frac{1}{3}^{0} = 180^{0}$$

$$\theta = 83\frac{1}{3}^{0}$$

But
$$38\frac{1}{3} + \alpha = \theta$$

$$38\frac{1}{3} + \alpha = 83\frac{1}{3}^{0}$$

$$\alpha = 45^{\circ}$$

From the sine rule

$$\frac{AC}{\sin 13\frac{1}{3}} = \frac{125}{\sin 83\frac{1}{3}}$$

$$AC = 29km$$

∴ he has to fly 29km in the direction S45⁰W

Example 62

(a) Prove that
$$tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$$

$$\tan (A - B) = \frac{\sin(A - B)}{\cos(A - B)}$$
$$= \frac{\sin A \cos B - \cos A \sin B}{\cos A \sin B + \sin A \sin B}$$

Diving numerator and denominator on the R.H.S by cosAcosB

$$\tan (A - B) = \frac{\frac{\sin A \cos B}{\cos A \cos B} - \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}} + \frac{\sin A \sin B}{\cos A \cos B}$$

$$= \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Hence show that
$$\frac{1-\tan 15^0}{1+\tan 15^0} = \frac{1}{\sqrt{3}}$$

$$\frac{1-\tan 15^{0}}{1+\tan 15^{0}} = \frac{\tan 45^{0} - \tan 15^{0}}{1+\tan 45^{0} \tan 15^{0}}$$
$$= \tan (45^{0} - 15^{0}) \tan 30^{0} = \frac{1}{\sqrt{3}}$$

- (b) Given that $\cos A = \frac{3}{5}$ and $\cos B = \frac{12}{13}$ where A and B are acute, find the values of
 - (i) tan(A + B)
 - (ii) cosec (A + B)

Solution

$$\cos A = \frac{3}{5}$$

$$\cos B = \frac{12}{13}$$

$$\sin A = \frac{4}{5}$$

$$\sin B = \frac{5}{12}$$

$$tan A = \frac{4}{3}$$

$$tanB = \frac{5}{12}$$

(i)
$$\tan (A + B) = \frac{\sin A \cos B + \cos A \sin B}{\cos A \sin B - \sin A \sin B}$$
$$= \frac{\frac{4}{5} \cdot \frac{12}{13} + \frac{3}{5} \cdot \frac{5}{13}}{\frac{3}{5} \cdot \frac{5}{13} - \frac{4}{5} \cdot \frac{5}{13}} = 3.9375$$

(ii) cosec (A + B) =
$$\frac{1}{\sin(A+B)}$$

= $\frac{1}{\sin A \cos B + \cos A \sin B}$
= $\frac{1}{\frac{4 \cdot 12}{5 \cdot 13} + \frac{3 \cdot 5}{5 \cdot 13}}$
= 1.0317

Example 63

Express $\cos (\theta + 30)^0 - \cos (\theta + 48)^0$ in the form RsinPsinQ, where R is constant.

Hence solve th3 equation

$$\cos (\theta + 30)^0 - \cos (\theta + 48)^0 = 0.2$$

Solution

$$\cos (\theta + 30)^{0} - \cos (\theta + 48)^{0}$$

$$= -2\sin\left(\frac{\theta + 30^{0} + \theta + 48^{0}}{2}\right)\sin\left(\frac{\theta + 30^{0} - \theta - 48^{0}}{2}\right)$$

$$= -2\sin (\theta + 39^{0})\sin(-9^{0})$$

$$cos (θ + 30)^{0} - cos (θ + 48)^{0} = 0.$$
⇒ -2sin (θ + 39°)sin(-9°) = 0.2
$$sin (θ + 39°) = 0.63925$$

$$θ + 39° = 39.74°$$

$$\theta = 0.74^{\circ}$$

Example 64

Express 7cos 2 θ + 6sin 2 θ in form Rcos (2 θ – α), where R is a constant and α is an acute angle.

$$7\cos 2\theta + 6\sin 2\theta \equiv R\cos (2\theta - \alpha)$$

 $7\cos 2\theta + 6\sin 2\theta \equiv R\cos 2\theta \cos \alpha +$

Rsin2θsinα

Comparing both sides

$$R\cos\alpha = 7$$
(i)

$$Rsin\alpha = 6$$
 (ii)

$$R = \sqrt{7^2 + 6^2} = \sqrt{85}$$

From equation (i)

$$\sqrt{85}\cos\alpha = 7$$

$$\alpha = cos^{-1} \left(\frac{7}{\sqrt{85}} \right) = 40.6^{\circ}$$

Hence solve $7\cos 2\theta + 6\sin 2\theta = 5 \text{ for } 0^0$ $\leq \theta \leq 180^0$. (07marks)

$$\therefore$$
 7cos 20 + 6sin 20 = $\sqrt{85}$ cos(20 – 40.6°) =5

$$2\theta - 40.6 = cos^{-1} \left(\frac{5}{\sqrt{85}} \right) = 57.16^{\circ}, 302.84^{\circ}$$

$$\theta = 48.88^{0}, 171.72^{0}$$

Revision exercise 7

- 1. Solve the triangles
- (a) a = 17m, b = 21.42m, $B = 51^{\circ}34'$

$$[A = 38.44^{\circ}, C = 90^{\circ}, c = 27.34m]$$

- (b) b = 107.2m, c= 76.69m, B = $102^{\circ}25'$ [A = 33.26° , C = 44.32° , a = 60.21m]
- (c) $a = 7m, b = 3.59m, C = 47^{\circ}$ [A = 103°2′, B = 29°52′, c= 5.25m]
- (d) $A = 60^{\circ}$, b = 8m, C = 15[a = 13, $B = 32.2^{\circ}$, $C = 87.8^{\circ}$]
- 2. Show that for all values of x

$$\cos x + \cos\left(x + \frac{2\pi}{3}\right) + \cos\left(x + \frac{3\pi}{3}\right) = 0$$

- 3. (a) Simplify $\frac{\sin 3\theta}{\sin \alpha} \frac{\cos 3\theta}{\cos \alpha} \left[\frac{2\sin(3\theta \alpha)}{\sin 2\alpha} \right]$
 - (b) Express $5\sin\theta + 12\cos\theta$ in the form $r\sin(\theta + \alpha)$ where r and α are constant. Hence determine the minimum value of $5\sin\theta + 12\cos\theta + 7$. [r = 13, α = 67.4°, -6]
 - (c) Given that $\tan \theta = \frac{3}{4}$, where θ is acute, find values of $\tan 2\theta$ and $\tan \frac{\theta}{2}$ [$\tan 2\theta = \frac{24}{7}$ and $\tan \frac{\theta}{2} = \frac{1}{3}$]
- 4. (a) Show that $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan \left(\frac{1}{7}\right) = \frac{\pi}{4}$
 - (b) Find x given that $\tan^{-1}(1+x) + \tan^{-1}(1-x) = 32$ [x = ±1.789]
 - (c) Given that $\sin \alpha + \sin \beta = p$ and $\cos \alpha + \cos \beta = q$ Show that $\sin(\alpha + \beta) = \frac{2pq}{p^2 + q^2}$
- 5. (a) By expressing $2\sin\theta\sin(\theta + \alpha)$ as a difference of cosines of two angles or otherwise, where α is constant, find the least value [minimum value = $\cos\alpha 1$. It occurs when $\theta = \frac{-a}{2}$]
 - (b) Solve for x in the equation $\cos x \cos(x + 60^{\circ}) = 0.4$ for $0^{\circ} \le x \le 360^{\circ} [x: x = 126.4^{\circ}, 353.6^{\circ}]$
- 6. (a) Prove that in any triangle ABC $\frac{b^2 c^2}{a^2} = \frac{\sin(B C)}{\sin(B + C)}$
 - (b) Show that for any isosceles triangle ABC with AB = c the base, is given by $\Delta = \frac{1}{2}c\sqrt{s(s-c)}$ where s is the perimeter of the triangle Given that $\Delta = \sqrt{3}$ and s = 4, determine the sides of the triangle [1, 3.5, 3.5]
- 7. Given that $\tan^{-1} \alpha = x$ and $\tan^{-1} \beta = y$, by expressing α and β as tangents ratio of x and y and manipulating the ratios show that $x + y = \tan^{-1} \left(\frac{\alpha + \beta}{1 \alpha \beta} \right)$

Hence or otherwise

(i) Solve for x in

$$\tan^{-1}\left(\frac{1}{x-1}\right) + \tan(x+1) = \tan(-2)$$

[x = ± 2]

(ii) Without using tables of calculators determine the value of

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8}\left[\frac{\pi}{4}\right]$$

- 8. (a) Prove that $\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC} = 2R$ where ABC has all angles acute and R is the radius of the circumcircle.
 - (b) From the top of a vertical cliff 10m high, the angle of depression of ship A is 10° and ship B is 15°. The Bearings of A and B from the cliff are 162° and 202.5° respectively. Find the bearing of B from A [301.5°]
- 9. (a) Prove that $(\sin 2x \sin x)(1 + 2\cos x) = \sin 3x$
 - (b) A vertical pole BAO stands with its base O on a horizontal plane, where BA = c and AO = b, a point P is situated on horizontal plane at a distance x from O and angle APB = θ Prove that $\tan \theta = \frac{cx}{x^2 + b^2 + bc}$ As P takes different positions on the horizontal plane, find the value of x for which θ is greatest.

 [18⁰26', when x = b = c]
- 10. (a) Prove that $\sin 3x = 3\sin x 4\sin^2 x$.
 - (b) Find all the solutions to $2\sin^2 x = 1$ for $00 \le x \le 360^\circ$. [x = 10° , 50° , 130° , 170° , 250° , 290°]
- 11. Solve $\cos x + \sqrt{3} \sin x = 2$ for $0^0 \le x \le 360^0$ [$x = 60^0$]
- 12. From the top of a tower 12.6m high, the angles of depression of ship A and B are 12° and 18° respectively. the bearing of ship A and ship B from the tower are 148° and 209.5° respectively
 Calculate
 - (i) How far the ships are from each other [53.14m]
 - (ii) The bearing of ship A from ship B[108.1°]
- 13. (a) Solve $\sin 3x + \frac{1}{2} = 2\cos^2 x$ for $0^0 \le x \le 360^0$ [$x = 30^0, 60^0, 120^0, 150^0, 240^0, 300^0$]
 - (b) Given that in any triangle ABC, $\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\left(\frac{A}{a}\right) \text{ solve the}$ triangle with two sides 5 and 7 and the included angle 45°.

$$[A = 45^{\circ}, B = 89.4^{\circ}, C = 45.6^{\circ}]$$

38

- 14. (a) Solve $\cot^2 x = 5(\cos x + 1)$ for $0^{0} \le x \le 360^{0} [9.6^{0}, 170.4^{0}, 270^{0}]$
 - (b) Use $\tan \frac{\theta}{2}$ =t to solve $5\sec \theta 2\sin \theta = 2$ for $0^{\circ} \le x \le 360^{\circ} [46.4^{\circ}, 270^{\circ}]$
- 15. Given that $\sin 2x = \cos 3x$, fins the values of $\sin \theta$, $0 \le x \le \pi$ [0.309 3dp]
- 16. (a) Show that

$$\tan\left(\frac{A+B}{2}\right) - \tan\left(\frac{A-B}{2}\right) = \frac{2sinB}{cosA + cosB}$$

- (b) Find in radians the solution of the equation $\cos\theta + \sin 2\theta = \cos 3\theta$ for $0 \leq \theta \leq \pi \left[0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\right]$
- 17. (a) Show that cotA + tan2A = cotAsec2A
 - (b) Show that $tan3x = \frac{3t t^3}{1 3t^2}$, where t = tanx. Hence or otherwise show that $\tan^{-1}\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$
- 18. (a) Find all the values θ , $00 \le \theta \le 3600$, which satisfies the equation $\sin^2\theta - \sin 2\theta - 3\cos^2\theta = 0 \ [\theta = 135^0, 315^0]$
 - (b) Show that $\frac{\cos x}{1+\sin x} = \cot\left(\frac{x}{2} + 45^{\circ}\right)$. Hence or otherwise solve $\frac{cosx}{1+sinx} = \frac{1}{2}$ $0^{0} \le x \le 360^{0} [x = 36.8^{0}]$
- 19. (a) Given that X, Y and Z are angles of a triangle XYZ. Prove that

$$\tan\left(\frac{X-Y}{2}\right) = \frac{x-y}{x+y}\cot\frac{Z}{2}.$$

Hence solve the triangle if x = 9cm, y =5.7cm and $Z = 57^{\circ}$. [z = 7.6cm, $X = 84.4^{\circ}$]

- (b) Use the substitution $t = tan(\frac{\theta}{2})$ to solve the equation $3\cos\theta - 5\sin\theta = -1$ for $0^{\circ} \le \theta \le 360^{\circ}$ [40.84°, 201.1°]
- 20. Prove that

$$\tan\left(\frac{\pi}{4} + \theta\right) - \tan\left(\frac{\pi}{4} - \theta\right) = 2\tan 2\theta$$

- 21. (a) Solve the equation $3\cos x + 4\sin x = 2$ for $0^{\circ} \le x \le 360^{\circ} [x = 119.5^{\circ}, 346.7^{\circ}]$
 - (b) If A, B, C are angles of a triangle. Show that
 - cos2A + cos2B + cos2C = -1 4cosAcosB
- 22. (a) Solve $2\sin 2\theta = 3$ for $-180^{\circ} \le x \le 180^{\circ}$ $[-90^{\circ}, 48.6^{\circ}, 90^{\circ}, 131.4^{\circ}]$
 - (b) Solve $\sin x \sin 4x = \sin 2x \sin 3x$ for $-\pi \le x \le \pi$

$$\left[-\frac{\pi}{5}, -\frac{\pi}{2}, -\frac{3\pi}{5}, 0, \frac{\pi}{5}, \frac{\pi}{5}, \frac{3\pi}{5}\right]$$

- 23. Without using tables or calculator, show that $tan150 = 2 - \sqrt{3}$
- 24. (a) Solve the equation cosx + cos2x = 1 for $0^{\circ} \le x \le 360^{\circ} [x = 38.67^{\circ}, 321.33^{\circ}]$

 - (b) (i) Prove that $\frac{cosA + cosB}{sinA + sinB} = cot \frac{A + B}{2}$ (ii) $\frac{cosA + cosB}{sinA + sinB} = tan \frac{C}{2}$ where A, B and C are angles of a triangle
- 25. Given that $sin(\theta 45^{\circ}) = 3cos(\theta + 45^{\circ})$ show that $tan\theta = 1$. Hence find θ if $0^{\circ} \le \theta \le 360^{\circ} [45^{\circ}, 225^{\circ}]$
- 26. (a) Use the factor formula to show that $\frac{\sin(A+2B)+\sin A}{\cos(A+2B)+\cos A} = \tan(A+B)$
 - (b) Express $y = 8\cos x + 6\sin x$ in the form $R\cos(x - \alpha)$ where R is positive and α Hence find the maximum and minimum values of $\frac{1}{8\cos x + 6\sin x + 15}$ [0.2, 0.04]
- 27. Express sinx + cosx in the form $R\cos(x \alpha)$. Hence, find the greatest value of sinx + cos x - 1. [0.4142]
- 28. (a) Solve $\cos x + \cos 3x = \cos 2x$, $0 \le x \le 360^{\circ}$ $[x = 45^{\circ}, 60^{\circ}, 135^{\circ}, 225^{\circ}, 300^{\circ}, 315^{\circ}]$
 - (b) Show that $tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 + sin\theta}{cos\theta}$
- 29. Show that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} = \tan^{-1}\frac{7}{9}$
- 30. (a) Solve $3\sin x + 4\cos x = 2$ for $-180^{\circ} \le x \le 180^{\circ}$. [-29.55°, 103.29°]
- (b) Show that in any triangle ABC $\frac{a^2-b^2}{c^2} = \frac{\sin(A-B)}{\sin(A+B)}$ 31. (a) Prove that $\frac{2tanx}{1+tan^2x} = sin2x$
- - (b) Solve $\sin 2x = \cos x$; $0^{0} \le x \le 90^{0}$ $[x = 30^{\circ}, 90^{\circ}]$
- 32. (a) Solve the equation $8\cos^4 x - 10\cos^2 x + 3 = 0$; $0^0 \le x \le 180^0$ $[30^{\circ}, 45^{\circ}, 135^{\circ}, 150^{\circ}]$
 - (b) Prove that $\cos 4A \cos 4B \cos 4C =$ 4sin2Bsin2Ccos2A -1 given that A, B and C are angles of a triangle
- 33. Given that cos 2A cos 2B = -p and sin2A - sin2B = q, prove that $sec(A + B) = \frac{1}{q} \sqrt{p^2 + q^2}$
- 34. Solve
- (a) $4\sin^2\theta 12\sin 2\theta + 35\cos^2\theta = 0$; for $0^{0} < \theta \le 90^{0} [74.0^{0}]$

- (b) $3\cos\theta 2\sin\theta = 2$, for $0^{0} \le \theta \le 360^{0}$ $[\theta: \theta = 22.62^{0}, 270.00^{0}]$
- 35. Solve the equation $\sin 2\theta + \cos 2\theta \cos 4\theta = \cos 4\theta \cos 6\theta$ for $0 \le \theta \le \frac{\pi}{4} \cdot \left[\theta = 0, \frac{3\pi}{16}\right]$
- 36. (a) solve the equation $\cos 2x = 4\cos^2 x 2\sin^2 x$ for $0 \le \theta \le 180^0 [\theta = 60^0, 120^0]$
 - (b) Show that if $\sin(x + \alpha) = p\sin(x \alpha)$ then $\tan x = \left(\frac{p+1}{p-1}\right)\tan\alpha$. Hence solve the equation $\sin(x + \alpha) = p\sin(x - \alpha)$ for p = 2 and $\alpha = 20^{\circ}$. $[x = 47.52^{\circ}]$
- 37. Solve the equation $3\tan^2\theta + 2\sec^2\theta = 2(5 3\tan\theta)$ for $0^0 < \theta < 180^0$ [$\theta = 38.66^0$, 116.57^0]
- 38. (a) Show that $tan4\theta = \frac{4t(1-t^2)}{t^4-6t^2+1}$, where $t = tan\theta$
 - (b) Solve the equation $\sin x + \sin 5x = \sin 2x + \sin 4x$ $\int \cos 0^{0} < x < 90^{0} \cdot [x = 60^{0}]$
- 39. Solve $2\cos 2\theta 5\cos \theta = 4$ for $0^0 \le \theta \le 360^0$. [$\theta = 138.59^0$, 221.41^0]

Thank you

Dr. Bbosa Science