

METHOD AND APPARATUS FOR TRANSMITTING A TRAFFIC SIGNAL USING AN
ADAPTIVE ANTENNA ARRAY

5

FIELD OF THE INVENTION

The present invention generally relates to a wireless communication system, and more particularly to a method and apparatus for transmitting a traffic signal using an adaptive antenna array in a wireless communication system.

10

BACKGROUND OF THE INVENTION

A frequent goal in designing wireless communications systems is to increase the number of users that may be simultaneously served by the communications system. This is generally referred to as increasing system capacity. In multiple access communications systems, including code division multiple access (CDMA) wireless communications systems, the use of an adaptive antenna array at the base transceiver has been proposed for increasing system capacity.

An adaptive antenna array includes two or more radiating elements with dimensions, spacing, orientation, and illumination sequences that produce a field pattern on a per-user basis from a combination of fields emitted from individual elements that has greater field intensities in some directions and lesser field intensities in other directions. A base transceiver that adjusts field patterns of an adaptive antenna array on a per-user basis typically uses per-user pilots to fulfill the requirement that the pilot and traffic channel must be substantially in-phase for proper demodulation of the traffic channel. However, utilization of per-user pilots increases complexity and diminishes capacity of the communication system.

For example, per-user pilots dictate longer pilot sequences to accommodate a greater number of pilots, and there is a corresponding increase in complexity of the pilot searcher due to the longer pilot sequences, including increases in computational requirements. In addition, soft handoff complexity is increased with the use of per-user pilots and capacity is 5 reduced with the assignment of an additional per-user pilot during a soft handoff. Furthermore, additional pilots increase power requirements for each traffic channel, thereby reducing the amount of gain obtained with an adaptive antenna array.

In view of the foregoing, it should be appreciated that it would be desirable to provide methods and apparatus for transmitting a traffic channel with an adaptive antenna array without per-user pilots. Furthermore, additional desirable features will become apparent to one skilled in the art from the following detailed description of a preferred exemplary embodiment and appended claims.

10 15 BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like numerals denote like elements, and:

FIG. 1 is a method for transmitting a traffic signal from an adaptive antenna array such that a subscriber unit utilizes a non-dedicated pilot transmitted from a reference 20 antenna element for demodulation of the traffic signal according to a preferred exemplary embodiment of the present invention;

FIG. 2 is a method of selecting a reference antenna element according to a preferred exemplary embodiment of the present invention;

FIG. 3 is a method of selecting a reference antenna element that reduces feedback 25 communications between the base transceiver and the subscriber unit according to a preferred exemplary embodiment of the present invention;

FIG. 4 is a base transceiver configured to perform the method of FIG. 1 in conjunction with a subscriber unit according to a preferred exemplary embodiment of the present invention;

5 FIG. 5 is a subscriber unit configured to perform the method of FIG. 1 in conjunction with the base transceiver of FIG. 4 according to a preferred exemplary embodiment of the present invention; and

FIG. 6 is the channel impulse response estimator of FIG. 5 shown in greater detail according to a preferred exemplary embodiment of the present invention.

10 **DETAILED DESCRIPTION OF A PREFERRED EXEMPLARY EMBODIMENT**

15 The following detailed description of a preferred exemplary embodiment is merely exemplary in nature and is not intended to limit the invention or the application and use of the invention.

FIG. 1 illustrates a method 100 for transmitting a traffic signal from an adaptive antenna array such that a subscriber unit utilizes a non-dedicated pilot transmitted from a reference antenna element for demodulation of the traffic signal. The method 100 begins with a determination of channel impulse responses from antenna elements associated with a base transceiver to a subscriber unit 102. The antenna elements associated with the base transceiver can be an antenna element of the adaptive antenna array or an antenna element at or near the location of the base transceiver that is in operative communication with the base transceiver.

20 The method 100 preferably determines one channel impulse response from an antenna element of the adaptive antenna array to the subscriber unit, more preferably determines a channel impulse response from more than one antenna element of the adaptive antenna array to the subscriber unit and most preferably determines a channel impulse

response for substantially all antenna elements of the adaptive antenna array to the subscriber unit. The channel impulse responses can be determined with any number of techniques, including transmission of an element pilot from an antenna element to the subscriber unit and estimation of the channel impulse response by the subscriber unit based
5 upon the transmission of the element pilot, for example. Once the channel impulse responses from antenna elements associated with the base transceiver to the subscriber unit are determined 102, the method 100 computes an adaptive array weight vector for the adaptive antenna array that is at least a function of a reference channel impulse response of one of the antenna elements configured as a reference antenna element and a channel
10 impulse response from at least one antenna element of the adaptive antenna array 104.

The adaptive array weight vector is preferably computed to maximize the Signal to Interference plus Noise Ratio (SINR) at the subscriber unit and to enable the subscriber unit to use the reference channel impulse response from the reference antenna element to the subscriber unit as a demodulation reference. This can be expressed in two parts:
15 maximizing the traffic signal power received by the subscriber unit (p_d), and minimizing the phase error on the traffic channel. While any number of base transceivers can be utilized in accordance with the present invention, a multi-path combining transceiver is used in the preferred exemplary embodiment, such as a RAKE receiver that is commonly used in CDMA communication systems. (See Proakis, "Digital Communications," Second Edition,
20 pp. 729-739, McGraw-Hill publishing, 1989, which is hereby incorporated by reference.) Therefore, the signal (r) received at the subscriber unit and measured at the combiner output of the subscriber unit during a single symbol time can be expressed as:

$$r = b\mathbf{v}^H \mathbf{H}\mathbf{w} + \mathbf{n} \quad (1)$$

Where: b is a complex scalar of the traffic channel symbol; \mathbf{v}^H is the complex conjugate
25 transpose of \mathbf{v} , which is an M element column vector containing the multi-path combining

weights of the multi-path receiver; \mathbf{H} is a matrix with M rows and N columns containing the channel impulse response determined from an element of the adaptive antenna array to an antenna element of the subscriber unit; \mathbf{w} is the adaptive array weight vector, which is an N element column vector; and \mathbf{n} is the M -by-1 column vector of noise samples with one element for each multi-path tap on each receive antenna.

The dimensions of the vectors of equation (1) are based upon the number of receive paths (M) (i.e., the number of taps (M) in the channel impulse response for the antennas of the base transceiver) and the number of transmit coefficients (N). It is preferable to use the same number of taps for each antenna, so the total number of taps over substantially all receive antennas (M) is:

$$M = KL \quad (2)$$

Where: L is the number of receive antennas and K is the number of taps to characterize the channel impulse response. While the preferred exemplary embodiment of the present invention will utilize a single receive antenna (i.e., $L=1$), any number of receive antenna can be used in accordance with the present invention. Furthermore, a non-frequency selective adaptive antenna array will be utilized in the preferred exemplary embodiment of the present invention, so there is one coefficient per transmit antenna element and the number of transmit coefficients (N) is the number of antenna elements. However, a frequency selective adaptive antenna array can be used in accordance with the present invention, in which case the number of transmit coefficients (N) is greater than the number of elements.

The dependence of the multi-path combining weights (\mathbf{v}) of the multi-path receiver on the reference element impulse response can be appreciated by considering the RAKE receiver. The column vector containing the multi-path combining weights (\mathbf{v}) of the RAKE receiver can be expressed as:

$$\mathbf{v} = \Sigma^{-1} \mathbf{h} \quad (3)$$

Where: \mathbf{h} is an M-by-1 column vector containing the reference element impulse response, which is one of the columns of the matrix with M rows and N columns containing the channel impulse response measured from an element of the adaptive antenna array to an antenna element of the subscriber unit (\mathbf{H}) if the reference antenna element is an antenna element of the adaptive antenna array; and Σ^{-1} is the inverse of the noise autocorrelation matrix (Σ), which can be expressed as:

$$\Sigma = E\{\mathbf{nn}^H\} \quad (4)$$

Where $E\{x\}$ is the expected value of the variable x .

The assumption is typically made for a RAKE receiver that the noise is uncorrelated, therefore the noise autocorrelation matrix (Σ) is a diagonal matrix containing the noise power on each path along the diagonal, and zeros elsewhere. If the channel is a flat fading channel, the subscriber unit has one antenna (i.e., M=1) and the M element column vector containing the multi-path combining weights (\mathbf{v}) is a scalar, the complex conjugate transpose of the multi-path combining weights (\mathbf{v}^H) does not combine multiple paths, but sets the receive signal phase to be opposite to that of the M-by-1 column vector containing the reference element impulse response (\mathbf{h}) in order to correct phase offsets induced by the channel. Therefore, the present invention is applicable to both multi-path and in flat fading channels.

If the assumption is made that the traffic channel signal has unity power at the antenna output, the traffic signal power received by the subscriber unit (p_d) at the combiner output can be expressed as:

$$p_d = |\mathbf{v}^H \mathbf{H} \mathbf{w}|^2 \quad (5)$$

Where $|x|^2$ is the absolute value squared of the scalar x .

As previously provided in this detailed description of a preferred exemplary embodiment, the traffic signal power received by the subscriber unit (p_d) is preferably maximized in accordance with the present invention. Therefore, the adaptive array weight vector (w) is selected so that the received signal from the adaptive antenna array is matched to the M element column vector containing the multi-path combining weights (v) of the multi-path receiver after passing through the channel represented by the M rows and N columns containing the channel impulse response measure from an element of the antenna array to an antenna element of the subscriber unit (H). That is, the adaptive array weight vector (w) is selected to satisfy the following:

$$10 \quad w = H^H v / \|H^H v\|_2 \quad (6)$$

Where $\|x\|_2$ is the 2-norm of a vector x .

In addition to maximizing the traffic signal power received by the subscriber unit (p_d), the phase error of the traffic signal is preferably minimized to reduce significant perturbations in the phase of the traffic signal. In order to minimize the phase error of the traffic signal, a phase correction factor (Δ) is selected to reduce the phase errors from the received traffic signal at the multi-path combiner output as follows:

$$15 \quad \Delta = (v^H H w)^* / |v^H H w| \quad (7)$$

Where x^* is the complex conjugate of the variable x . Since the adaptive array weight vector (w) is selected to satisfy equation (6) in this preferred exemplary embodiment of the present invention, the phase correction factor (Δ) can be expressed as follows:

$$20 \quad \Delta = \frac{v^H H (H^H v / \|H^H v\|_2)}{|v^H H (H^H v / \|H^H v\|_2)|} = \frac{\|v^H H\|_2^2 / \|H^H v\|_2}{\|v^H H\|_2^2 / \|H^H v\|_2} = 1 \quad (8)$$

As shown in equation (8), the phase correction factor (Δ) is unity and the traffic channel phase is relatively undisturbed in relation to the transmission through the adaptive

array by the reference element with the particular adaptive array weight vector (w). Therefore, the subscriber unit can use the reference channel impulse response (h) of the reference antenna element to compute the multi-path combiner weights (v) without knowledge of other impulse responses.

5 As can be appreciated, limited amounts of phase error will not overly degrade the receiver performance. In fact, since channel estimates are generally imperfect, it is difficult to determine exact values of the phase correction factor (Δ). Therefore, an adaptive array weight vector (w) that is sufficiently close to those produced by equation (6) can be used as long as the adaptive array weight vector does not cause a value of the phase correction factor (Δ) that is large enough to substantially degrade the receiver performance.

10 The traffic signal power received by the subscriber unit (p_d) can be increased for a given channel with the selection of a reference antenna element. In view of this ability to increase the traffic signal power received by the subscriber unit (p_d) with the selection of a reference antenna element, the computation of an adaptive array weight vector (w) for the adaptive antenna array that is at least a function of the reference channel impulse response of one of the antenna elements configured as a reference antenna element and a channel impulse response from at least one antenna element of the adaptive antenna array 104 preferably selects the reference antenna element based upon a comparison of the traffic signal power received by the subscriber (p_d) with difference antenna elements configured 15 as the reference antenna element. Preferably, the reference antenna element is selected that provides an increase in traffic signal power received by the subscriber unit (p_d) as compared to another antenna element that is available as the reference antenna element, more preferably selects the reference antenna element that provides an increase in traffic signal power received by the subscriber unit (p_d) as compared to a majority of antenna 20 elements that are available as the reference antenna element, and most preferably selects the 25 elements that are available as the reference antenna element, and most preferably selects the

reference antenna element that provides an increase in traffic signal power received by the subscriber unit (p_d) as compared to substantially all of antenna elements that are available as the reference antenna element (i.e., maximizes the traffic signal power received by the subscriber unit (p_d)). The selection of the reference element can be accomplished with any 5 number of methods. In addition, the impulse responses for antenna elements are preferably used as the reference channel impulse response (\mathbf{h}) to determine a traffic signal power received by the subscriber unit (p_d) with equation (5), and the antenna element associated with the impulse response that provides an increase in the traffic signal power received by the subscriber unit (p_d) as compared to another antenna element is selected as the reference 10 antenna elements.

More specifically, and with reference to FIG. 2, a method of selecting a reference antenna element 200 is illustrated according to a preferred exemplary embodiment of the present invention. The method 200 begins with an initialization of a maximum traffic signal power (\max_p_d) and an antenna element identifier (i) 202. After the initialization of the 15 maximum traffic signal power (\max_p_d) and antenna element identifier (i) 202 is completed, the adaptive array weight vector ($\mathbf{w}(i)$) and the traffic signal power ($p_d(i)$) are computed with the i^{th} antenna element as the reference antenna element 204. Preferably, these computations are conducted as previously described in this detailed description of a preferred exemplary embodiment.

20 The computations of the adaptive array weight vector ($\mathbf{w}(i)$) and the traffic signal power ($p_d(i)$) are followed by a comparison of the traffic signal power ($p_d(i)$) computed with the i^{th} antenna element as the reference antenna element and the current value of the maximum traffic signal power (\max_p_d) 206. If the traffic signal power ($p_d(i)$) computed with the i^{th} antenna element as the reference antenna element is greater than the current

value of the maximum traffic signal power (\max_p_d), the maximum antenna element values (i.e., w_{\max} , i_{\max} and \max_p_d) are updated with the values of the i^{th} antenna element as the reference antenna element 208.

Once the maximum antenna element values are updated 208 or the traffic signal power ($p_d(i)$) computed with the i^{th} antenna element as the reference antenna element is less than or equal to the current value of the maximum traffic signal power (\max_p_d), the antenna element identifier (i) is incremented to identify another antenna element 210 and a query is made to determine if the desired number of antenna elements have been evaluated as the reference antenna element 212. As previously provided in this detailed description of a preferred exemplary embodiment, the evaluation is preferably for at least two antenna elements available as the reference element, more preferably for a majority of antenna elements that are available as the reference element, and most preferably for substantially all or all of the antenna elements that are available as the reference element. If the evaluations for the antenna elements as the reference antenna element have not been completed, the method 200 continues with the computation of the adaptive array weight vector ($w(i)$) and the traffic signal power ($p_d(i)$) with the i^{th} antenna element as the reference antenna element 204. If the evaluation of each antenna element as the reference antenna element have been completed, the antenna element having values currently stored as the maximum antenna element values (i.e., w_{\max} , i_{\max} and \max_p_d) is selected as the reference antenna element 214, the method ends 216.

Referring to FIG. 1, after the adaptive array weight vector for the adaptive antenna array is computed that is at least a function of a reference channel impulse response of one of the antenna elements configured as the reference antenna element and a channel impulse response from at least one antenna element of the adaptive antenna array 104, information related to the identification of the antenna element selected as the reference antenna element

to the subscriber unit is preferably communicated to the appropriate apparatus of the communication system 106 (e.g., the base transceiver transmits the identification of the antenna element selected as the reference antenna element if the base transceiver is selecting the reference antenna element). However, it should be understood that this step is optional

5 based upon which apparatus or combination of apparatuses of the communication system is configured to compute the adaptive array weight vector and/or select the reference antenna element. The method 100 proceeds with the configuring of the adaptive antenna array with the adaptive array weight vector 108 and the traffic signal is transmitted with the adaptive antenna array such that the subscriber unit utilizes a pilot transmitted from the reference

10 antenna element for demodulation of the traffic signal 110.

As can be appreciated and as previously provided in this detailed description of a preferred exemplary embodiment, the method 100 of FIG. 1 can be performed by an apparatus of the communication system other than base transceiver or by a combination of apparatuses of the communication system, including, but not limited to the subscriber unit.

15 The subscriber unit can be configured to determine channel impulse responses from antenna elements associated with the base transceiver to the subscriber unit 102 and compute an adaptive array weight vector for the adaptive antenna array that is at least a function of a reference channel impulse response of one of the antenna elements configured as a reference antenna element and a channel impulse response from at least one antenna element of the adaptive antenna array 104 as previously described in this detailed description of a preferred exemplary embodiment. However, in order to minimize feedback requirements between the base transceiver and the subscriber unit, the subscriber unit is preferably configured to selecting an adaptive array weight vector (w) from a predefined number of adaptive array weight vectors stored in a codebook that is known by the

20 subscriber unit and the base transceiver. Therefore, the adaptive array weight vector (w) is selected from the codebook for a particular antenna element configured as the reference

25

element that maximizes the traffic signal power received by the subscriber unit (p_d).

Although the traffic signal power received by the subscriber unit (p_d) is increased with the adaptive array weight vector (w) selected from the code book, this increase can be less than if the weights are not constrained to be in a code book, and the adaptive array weight vector

5 (w) was not limited to the predefined set provided in the codebook. In addition, the traffic channel phase may be perturbed such that the phase correction factor (Δ) may not be unity.

In view of the non-unity phase correction factor when the array weight vector (w) is selected from the codebook, the subscriber unit preferably computes a phase correction, which is applied at the multi-path combiner output to correct the traffic channel phase. If the phase correction is applied to the traffic channel component of the received signal expressed in equation (1), the traffic channel phase component (d) of the received signal at the subscriber unit can be expressed as:

$$d = b\Delta v^H \mathbf{H}w = b(v^H \mathbf{H}w)^* / |v^H \mathbf{H}w| v^H \mathbf{H}w = b |v^H \mathbf{H}w| \quad (9)$$

Since $|v^H \mathbf{H}w|$ is a real scalar, the phase of the received signal (b) is unperturbed, and coherent demodulation is available.

As previously discussed in this detailed description of a preferred exemplary embodiment, the traffic signal power received by the subscriber unit (p_d) can be increased for a given channel with the selection of a reference antenna element. However, as the subscriber unit is preferably configured to select the adaptive array weight vector from a codebook, the selection method of FIG. 3 is preferably performed to select the reference antenna element. Referring to FIG. 3, the method 300 begins with an initialization of a maximum traffic signal power (\max_p_d) and an antenna element identifier (i) 302. After the initialization of the maximum traffic signal power (\max_p_d) and antenna element identifier (i) 302 is completed, the adaptive array weight vector ($w(i)$) and the traffic signal

power ($p_d(i)$) are computed with the i^{th} antenna element as the reference antenna element 304.

The array weight vector ($w(i)$) and traffic signal power ($p_d(i)$) are computed by searching the codebook over multiple predefined values of the adaptive array weight vector 5 (w) for the value of the adaptive array weight vector ($w(i)$) that produces the largest value of the traffic signal power ($p_d(i)$). Preferably, the computation of the traffic signal power ($p_d(i)$) is conducted as previously described in this detailed description of preferred exemplary embodiment. The computation of the adaptive array weight vector ($w(i)$) and the traffic signal power ($p_d(i)$) 304 is followed by a comparison of the traffic signal power ($p_d(i)$) computed with the i^{th} antenna element as the reference antenna element and the current value of the maximum traffic signal power (max_p_d) 308. If the traffic signal power ($p_d(i)$) computed with the i^{th} antenna element as the reference antenna element is greater than the current value of the maximum traffic signal power (max_p_d), the maximum antenna element values (i.e., w_{max} , i_{max} and max_p_d) are updated with the values 15 of the i^{th} antenna element as the reference antenna element 310.

Once the maximum antenna element values are updated 310 or the traffic signal power ($p_d(i)$) computed with the i^{th} antenna element as the reference antenna element is less than or equal to the current value of the maximum traffic signal power (max_p_d), the antenna element identifier (i) is incremented to identify another antenna element 312 and a 20 query is made to determine if the desired number of antenna elements have been evaluated as the reference antenna element 314. As previously provided in this detailed description of a preferred exemplary embodiment, the evaluation is preferably for at least two antenna elements available as the reference element, more preferably for a majority of antenna elements that are available as the reference element, and most preferably for substantially all 25 or all of the antenna elements that are available as the reference element. If the evaluations

for the antenna elements as the reference antenna element have not been completed, the method 300 continues with the computation of the adaptive array weight vector ($w(i)$) and the traffic signal power ($p_d(i)$) with the i^{th} antenna element as the reference antenna element 304. If the desired number of antenna elements has been evaluated as the reference antenna 5 element, the phase correction factor is computed 316 as previously described in this detailed description of a preferred exemplary embodiment and the method 300 ends.

Referring to FIG. 1, after the adaptive array weight vector for the adaptive antenna array is computed that is at least a function of a reference channel impulse response of one of the antenna elements configured as the reference antenna element and a channel impulse response from at least one antenna element of the adaptive antenna array 104, information related to the identification of the reference antenna element is communicated to the appropriate apparatus of the communication system 106 (e.g., the subscriber unit transmits the identification of the antenna element selected as the reference antenna element and the adaptive array weight vector to the base transceiver). The method 100 proceeds with the configuring of the adaptive antenna array with the adaptive array weight vector 108 and the traffic signal is transmitted with the adaptive antenna array such that the subscriber unit utilizes a pilot transmitted from the reference antenna element for demodulation of the traffic signal 110.

As previously provided in this detailed description of a preferred exemplary 20 embodiment, the foregoing methods can be performed by the base transceiver, which shall herein refer to a base receiver, base transmitter, or a combination base transmitter and a base receiver, subscriber unit, base transceiver and subscriber unit, or any other apparatus of the communication system individually or in conjunction with the base transceiver and/or the subscriber unit. Therefore, there are numerous apparatus configurations that can be utilized 25 in accordance with the present invention and the following descriptions of a base transceiver

and subscriber unit are presented only as examples and should not be construed to limit the scope of the apparatus of the invention as set forth in the appended claims.

Referring to FIG. 4, a base transceiver 400 is illustrated that is configured to perform the method of FIG. 1 according to a preferred exemplary embodiment of the present invention. The base transceiver 400 includes, but is not limited to, an antenna array 402 having a first antenna element 404 and second antenna element 406, a transmitter control data receiver 408, element filters (410,412,414,416), pilot summers (418,420), traffic signal summers (422,424), up-converters (426,428), weight decoder 430, and data receive antenna 432, which can be an element of the adaptive antenna array 402 or a separate antenna element from the adaptive antenna array 402. While only a first antenna element 404 and second antenna element 406 are presented in this exemplary description of the base transceiver 400, it should be understood that any number of elements could be used in the adaptive antenna array 402.

The base transceiver 400 is configured to emit a first element pilot (P_1) 434 and a second element pilot (P_2) 436 to a subscriber unit from the first antenna element 404 and the second antenna element 406, respectively. The first element pilot (P_1) 434 and second element pilot (P_2) 436 that are emitted by the first antenna element 404 and second antenna element 406 and received by the subscriber unit so that the subscriber unit is able to characterize the channel. The first element pilot (P_1) 434 and second element pilot (P_2) 436 also provide phase references for coherent demodulation, and can be used by the subscriber unit to determine a channel input response for the channels extending from the first antenna element 404 and second antenna element 406 to the subscriber unit.

The first element pilot (P_1) 434, second element pilot (P_2) 436, and any other element pilot emitted by the base transceiver or other apparatus of the communication system is preferably implemented with a direct-sequence spread spectrum signal and preferably constructed to have low cross correlation with other signals transmitted from the

base transceiver 400. The element pilots of the base transceiver 400 may be constructed from an orthogonal sequence, such as the Walsh-Hadamard sequences used in IS-95 or may be formed from other low cross correlation sequences, such as different offsets of a pseudonoise (PN) sequence, for example. (See TIA/EIA/IS-95-A, Mobile Station-Base 5 Station Capability Standard for Dual Mode Wide Band Spread Spectrum Cellular System, March 1995, published by the Electronic Industries Association (EIA), 2001 I Street, N.W., Washington, D.C., 2000, for a description of the Walsh-Hadamard sequences, which is hereby incorporated by reference).

The channel impulse responses for the channels extending from the first antenna element 404 and second antenna element 406 to the subscriber unit may be determined using any number of techniques and devices, including a determination by a channel impulse response estimator, which will be subsequently described with reference to FIG. 6. The channel impulse responses are utilized by the subscriber unit to compute an adaptive array weight vector for the adaptive antenna array that is at least a function of a reference channel impulse response of one antenna element in operable communication with the base transceiver 400 (e.g., the first antenna element 404 or second antenna element 406) configured as reference antenna element and a channel impulse response from at least one of the antenna elements of the adaptive antenna array 402. The adaptive array weight vector computed by the subscriber unit and the identification of the reference antenna element is 10 transmitted by the subscriber unit as transmitter control data that is quantized and received by the data receive antenna 432. However, the subscriber unit can be configured to transmit the channel impulse responses as the transmitter control data and the base transceiver 400 can be configured to compute the adaptive array weight vector. The transmitter control data received by receive data antenna 432 is provided to the transmit control data receiver 408. 15 The transmit control data receiver 408 passes the preferably quantized transmitter control data to the weight decoder 430 for decoding of the array weight vector.

The base transceiver 400 is also configured to receive traffic channel signals for multiple users (i.e., Tch_1 438 through TCH_U 440), where U is the number of users) and split each of the traffic channel signal N -ways, which are provided to the N element filters (410,412,414,416) associated with a traffic channel signal (i.e., Tch_1 438 through TCH_U 440, which receive their filter coefficients from weight decoder 430. The outputs of the element filters (410,412) are summed with the element pilots (434,436) by the pilot summers (418,420), summed with the other traffic channel signals by the traffic signal summers (422,424), upconverted with upconverters (426,428), and transmitted from the antenna of the adaptive antenna array 402 (e.g., the first antenna element 404 or second antenna element 406 of the adaptive antenna array 402).

The element filters (410,412,414,416) are preferably digital filters whose coefficients are the values of the adaptive array weight vector that are calculated as previously described in this detailed description of a preferred exemplary embodiment. If the adaptive array weight vector is not frequency selective, the element filters (410,412,414,416) are each composed of a single complex number. If the adaptive array weight vector is frequency selective, the adaptive array weight vectors contain more than one complex number. The element filters (410,412,414,416) can be implemented with any number of filters including conventional digital filters as described by Crochier & Rabiner, "Multirate Digital Signal Processing," Prentice-Hall, 1983, which is hereby incorporated by reference.

Referring to FIG. 5, a subscriber unit 500 is illustrated that is configured to perform the method of FIG. 1 according to a preferred exemplary embodiment of the present invention. The subscriber unit 500 includes, but is not limited to an antenna 502, a receiver 504, a channel impulse response estimator 506, a weight calculator 508, RAKE weight computer 507, a phase correction calculator 510; a control data transmitter 512; despreaders (514,516), multipliers (518,520); channel summer 522 and multiplier 524. The antenna 502

of the subscriber unit 500 is configured to receive and transmit signals to and from the base transceiver. The antenna 502 is coupled to the receiver 504, which converts the RF signal from the antenna, providing the baseband signal 505 to the channel impulse response estimator 506 for determination of the channel impulse responses extending from the 5 antenna elements of the antenna array to the subscriber unit 500.

Referring to FIG. 6, the channel impulse response estimator 506 is shown in greater detail. The channel impulse response estimator 506 is configured to determine the channel impulse responses for channels existing between the base transceiver and the subscriber unit. The channel impulse response estimator 506 receives the down converted baseband signal ($r(t)$) 505, which is provided to matched filters (602,604) that also receive pilot inputs (606,608) corresponding to the element pilots emitted by the antenna elements associated with the base transceiver. The matched filters (602,604) convolve the baseband signal ($r(t)$) 505 with the time reversed complex conjugate of the element pilots, produce the channel input responses (H). The length of the matched filters (602,604) is preferably selected to be long enough to average out noise, but short enough so the matched filters (602,604) are responsive to changes in the channel. These channel impulse responses (H) produced by the matched filters (602,604) are presented to a transmitter control data transmitter of the subscriber unit.

Referring to FIG. 5, in addition to the transmitter control data transmitter 512, the 20 vector representations of the channel impulse responses (H) produced by the channel impulse response estimator 506 are also provided to the weight calculator 508 and the phase correction calculator 510. The weight calculator 508 computes the array weight vector (w) from the channel impulse responses as previously discussed in this detailed description of a preferred exemplary embodiment. For each time instant (t), the array weights vector (w) 25 and the selected reference antenna element identified during the computation of the array

weight vector ($i_{\max}(t)$) are provided to transmit control data transmitter 512 for transmission to the base transceiver.

The array weight vector (w) is also provided to the phase correction calculator 510, which also receives the channel impulse responses from the channel impulse response estimator 506. The phase correction calculator 510 calculates the phase correction factor ($\Delta(t)$) to correct for residual phase error that is not corrected with the utilization of the array weight vector (w) at the each time instant (t). The phase correction factor ($\Delta(t)$) is provided to a delay element 516 in order to provide a delay that is sufficient to allow implementation of the array weight vector (w) by the base transceiver (i.e., the delay ensures that the base transceiver is using the array weight vector (w) for which the phase correction factor $\Delta(t)$ was computed by the phase correction calculator 512. The delayed phase correction factor $\Delta(t-T)$ produced by the delay element 516 is used by the multiplier 524, the output of which is a phase corrected signal suitable for demodulation and decoding by conventional methods.

Once the base transceiver is transmitting with adaptive array weight vector (w) for the delayed phase correction $\Delta(t-T)$, the subscriber unit 500 is configured to coherently demodulate the transmitted traffic signal. More specifically, the output of receiver 504 is despread by despreaders (514,516), which correlate with a despread sequence ($PN(t)$) 526 and a delayed copy of the PN sequence ($PN(t-\tau)$) 528. The outputs of the despreaders (514,516) are provided to the multipliers (518,520), which multiply the outputs by combining weights (v_1, v_2) produced by the RAKE weight computer 507.

The RAKE weight computer 507 computes the combining weights (v_1, v_2) using any number of suitable techniques. For example, and as previously discussed in conjunction with the equation (2), a common technique that can be used to compute the combining weights (v_1, v_2) is the maximum ratio combining technique, which sets the combining

weights (v_1, v_2) to the complex conjugate of the channel responses that are weighted by the noise power. When the reference antenna element is an element of the antenna array, equation (2) can be expressed as:

$$v_j = \mathbf{H}_{j,i_{\max}}^* / \sigma_j^2 \quad (10)$$

5 Where v_j is the RAKE combining weight for a delay (j), $\mathbf{H}_{j,i_{\max}}^*$ is the complex conjugate of the element of the channel impulse response matrix (\mathbf{H}) at row j and column i_{\max} , and σ_j^2 is the noise power on the output of the despreaders matched to delay (j).

In order to determine the combining weights in accordance with equation (10), the RAKE weight computer 507 is provided with the identification of the antenna element that is selected as the reference antenna element when adaptive array weight vector (\mathbf{w}) is applied at the base transceiver. Therefore, the output of the RAKE weight computer 507 is provided to a second delay element 517. This means that the antenna element selected as the reference antenna element that is computed at a time (t) ($i_{\max}(t)$) is delayed by a delay time (T) as previously discussed with reference to the delay of the phase correction factor.

15 The outputs of the despreaders (514,516) and the delayed combining weights are multiplied by the multipliers (518,520), the outputs of the multipliers (518,520) are summed by the summer 522, and the multiplier 524 performs the phase correction with a multiplication of the output of the summer 522 and the delayed phase correction factor. The output of the summer 522 is provided to a demodulator (not shown) for subsequent processing.

20 From the foregoing description, it should be appreciated that the foregoing method and apparatus of the present invention provides methods and apparatus for transmitting a traffic channel with an adaptive antenna array without per-user pilots. In addition, the methods and apparatus of the present invention provide traffic signals intended for a subscriber unit in higher-gain antenna lobes pointed in the direction of the subscriber unit 25 and nulls in the antenna pattern that are likely directed to other subscriber units without the

need for per-user pilots, high-capacity, and complex signaling between the base transceiver and the subscriber unit. In addition, the foregoing detailed description of a preferred exemplary embodiment is not intended to be exhaustive or to limit the invention. Rather, the foregoing detailed description of a preferred exemplary embodiment is intended to enable 5 one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications, with such modifications and variations within the scope of the invention as set forth in the appended claims.

20
15
10
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
950