# SOC542 Statistical Methods in Sociology II Interactions

Thomas Davidson

Rutgers University

February 27, 2023

### **Plan**

- ► Introducing interactions
- ► Types of interactions and their interpretations
- ► Marginal effects

#### What is an statistical interaction?

Consider the following population model:

$$y = \beta_0 + \beta_1 x + \beta_2 z + u$$

- ► The coefficients  $\beta_1$  and  $\beta_2$  measure the relationship between x and y and z and y, respectively.
  - ► The interpretation of either coefficient requires that we hold the other constant. >- What if we expect the effect of x to vary as a function of z?

#### What is an statistical interaction?

▶ If we expect there to be an **interaction** between *x* and *z*, such that the effect of *x* on *y* varies according to the level of *z*, we can add an **interaction term** into our model formula.

$$y = \beta_0 + \beta_1 x + \beta_2 z + \beta_3 xz + u$$

- $\triangleright$   $\beta_0$  and  $\beta_1$  are now considered as the **main effects**.
- $\triangleright$   $\beta_3$  is the coefficient for the interaction term, representing the effect of x times z.

#### A simple population model

```
N <- 1000
x <- rnorm(N)
z <- rnorm(N)
y <- 3*x + 2*z + -5*(x*z) + rnorm(N, 10)</pre>
```

### **Comparing models**

| (1)       | (2)                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------|
| 10.029*** | 10.010***                                                                                               |
| (0.153)   | (0.032)                                                                                                 |
| 2.935***  | 2.981***                                                                                                |
| (0.157)   | (0.033)                                                                                                 |
| 2.099***  | 2.016***                                                                                                |
| (0.151)   | (0.031)                                                                                                 |
|           | -4.980***                                                                                               |
|           | (0.034)                                                                                                 |
| 1000      | 1000                                                                                                    |
| 0.351     | 0.972                                                                                                   |
| 0.350     | 0.972                                                                                                   |
| 269.689   | 11455.353                                                                                               |
| 4.82      | 1.00                                                                                                    |
|           | 10.029***<br>(0.153)<br>2.935***<br>(0.157)<br>2.099***<br>(0.151)<br>1000<br>0.351<br>0.350<br>269.689 |

#### **Example: intersectional inequalities**

- ► We can use interaction terms as a way to encode theoretical knowledge about the relationship between variables.
- ► For example, if we expect there to be differences in income related to the interaction between sex and race, we can add an interaction term to a model:

$$Income = \beta_0 + \beta_1 Sex + \beta_2 Race + \beta_3 Age + \beta_4 Sex * Race + u$$

#### Main effects and interactions

- ▶ In general, it is recommended to include the main effects in any model with interactions.
  - Type II errors are more likely when interpreting interaction terms with main effects omitted.
  - ► The interpretation of the model can change substantially if main effects are excluded.¹

<sup>&</sup>lt;sup>1</sup>See this Stata blog for further discussion: https://stats.oarc.ucla.edu/stata/faq/what-happens-if-you-omit-the-main-effect-in-a-regression-model-with-an-interaction/

#### **Dummy-dummy**

$$y = \beta_0 + \beta_1 Male + \beta_2 Union + \beta_3 Male * Union + u$$

#### **Dummy-dummy**

|                                | (1)       | (2)       | (3)       | (4)       |
|--------------------------------|-----------|-----------|-----------|-----------|
| (Intercept)                    | 20.308*** | 33.095*** | 26.552*** | 33.181*** |
|                                | (1.323)   | (3.614)   | (3.788)   | (5.808)   |
| sex                            | 10.104*** |           | 9.756***  | -0.933    |
|                                | (1.902)   |           | (1.910)   | (7.355)   |
| union                          |           | -2.204*   | -1.694    | -3.492*   |
|                                |           | (0.971)   | (0.963)   | (1.534)   |
| ${\sf sex} \times {\sf union}$ |           |           |           | 2.965     |
|                                |           |           |           | (1.970)   |
| Num.Obs.                       | 900       | 900       | 900       | 900       |
| R2                             | 0.030     | 0.006     | 0.034     | 0.036     |
| R2 Adj.                        | 0.029     | 0.005     | 0.032     | 0.033     |
| F                              | 28.211    |           |           |           |
| RMSE                           | 28.49     | 28.85     | 28.44     | 28.40     |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### **Dummy-dummy**

$$y = \beta_0 + \beta_1 Male + \beta_2 Union + \beta_3 Male * Union + u$$

- Female and non-unionized are the reference categories.
- $\triangleright$   $\beta_1$  and  $\beta_2$  represent the main effects of sex and union membership on the outcome.
- ► The coefficient  $\beta_3$  represents the expected difference in the effect of union membership for men versus women.<sup>2</sup>
- ▶ The expected income for a male unionized worker is  $\beta_0 + \beta_1 + \beta_2 + \beta_3$ . The same quantity for a female unionized worker is  $\beta_0 + \beta_2$ .

<sup>&</sup>lt;sup>2</sup>Note the symmetrical interpretation here: the difference in the effect of sex for union members versus non-members. See McElreath 8.2 for further discussion.

#### **Continuous-dummy**

$$y = \beta_0 + \beta_1 Age + \beta_2 Sex + \beta_3 Age * Sex + u$$

### **Continuous-dummy**

|                  | (1)            | (2)           |
|------------------|----------------|---------------|
| (Intercept)      | 4.489          | 7.431*        |
|                  | (2.553)        | (3.394)       |
| age              | 0.353***       | 0.286***      |
|                  | (0.053)        | (0.074)       |
| sex              | 10.158***      | 3.941         |
|                  | (1.523)        | (4.967)       |
| $age \times sex$ |                | 0.140         |
|                  |                | (0.106)       |
| Num.Obs.         | 1358           | 1358          |
| R2               | 0.064          | 0.065         |
| R2 Adj.          | 0.063          | 0.063         |
| F                | 46.342         | 31.488        |
| RMSE             | 27.97          | 27.95         |
| * p < 0.05,      | ** p < 0.01, * | *** p < 0.001 |

**Rutgers University** 

#### **Continuous-dummy**

$$y = \beta_0 + \beta_1 Age + \beta_2 Sex + \beta_3 Age * Sex + u$$

- ▶ The coefficients  $\beta_1$  and  $\beta_2$  represent the main effects of age and sex on income.
- ► For females,  $\beta_1$  represents the relationship between age and income. For males, the relationship is  $\beta_1 + \beta_3$ .
  - ▶ Thus, the interaction term allows the *slope* to vary according to sex.

#### **Continuous-continuous**

$$y = \beta_0 + \beta_1 Age + \beta_2 Educ + \beta_3 Age * Educ + u$$

#### **Continuous-continuous**

|                                        | (1)        | (2)      |
|----------------------------------------|------------|----------|
| (Intercept)                            | -32.587*** | -2.246   |
|                                        | (4.263)    | (12.926) |
| age                                    | 0.333***   | -0.340   |
|                                        | (0.051)    | (0.275)  |
| educ                                   | 3.026***   | 0.850    |
|                                        | (0.258)    | (0.913)  |
| $age \times educ$                      |            | 0.048*   |
|                                        |            | (0.019)  |
| Num.Obs.                               | 1357       | 1357     |
| R2                                     | 0.122      | 0.126    |
| R2 Adj.                                | 0.121      | 0.124    |
| F                                      | 94.136     | 65.057   |
| RMSE                                   | 27.10      | 27.04    |
| * p < 0.05, ** p < 0.01, *** p < 0.001 |            |          |

#### Continuous-continuous

$$y = \beta_0 + \beta_1 Age + \beta_2 Educ + \beta_3 Age * Educ + u$$

- ► The intercept no longer has a meaningful education (income when age and education equal zero).
  - ► GHV 12.2 discuss standardization to make intercepts more interpretable in such contexts.
- $\triangleright$   $\beta_1$  and  $\beta_2$  represent the main effects of age and education.
- ▶ The interaction term  $\beta_3$  captures how the effect of education on income varies as a function of age.

#### Continuous-continuous

▶ The effect of education on income is now also a function of age:

$$\frac{\Delta y}{\Delta_{\textit{Educ}}} = \beta_2 + \beta_3 \textit{Age}$$

Similarly,

$$\frac{\Delta y}{\Delta_{Age}} = \beta_1 + \beta_3 Educ$$

#### Continuous-continuous

▶ If Age changes by  $\triangle$ Age and Educ by  $\triangle$ Educ, the expected change in y is:

$$\Delta y = (\beta_1 + \beta_3 Educ) \Delta Age + (\beta_2 + \beta_3 Age) \Delta Educ + \beta_3 \Delta Age \Delta Educ$$

The coefficient  $\beta_3$  represents the effect of a unit increase in age and education, beyond the sum of the individual effects of unit increases alone.

#### **Dummy-categorical**

|                        | (1)       | (2)       |
|------------------------|-----------|-----------|
| (Intercept)            | 22.657*** | 21.686*** |
| sex                    | 10.354*** | 12.357*** |
| raceBlack              | -8.753*** | -4.062    |
| raceOther              | -9.069*** | -8.545*   |
| $sex \times raceBlack$ |           | -11.600** |
| $sex\timesraceOther$   |           | -1.164    |
|                        |           |           |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### **Dummy-categorical**

$$y = \beta_0 + \beta_1 Male + \beta_2 Black + \beta_3 Other + \beta_4 Black Male + \beta_5 Other Male + u$$

- ► There is a separate coefficient for the interaction between the dummy variable and each of the categories, with the exception of the reference group.
- ▶ The interpretation is the same as the dummy-dummy model.

#### **Continuous-categorical**

|                        | (1)       | (2)       |
|------------------------|-----------|-----------|
| (Intercept)            | 12.391*** | 11.405*** |
| age                    | 0.334***  | 0.356***  |
| raceBlack              | -8.403*** | -1.744    |
| raceOther              | -6.901**  | -8.009    |
| $age \times raceBlack$ |           | -0.158    |
| $age \times raceOther$ |           | 0.030     |
|                        |           |           |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### Categorical-categorical

|                                                           | (1)       | (2)       |
|-----------------------------------------------------------|-----------|-----------|
| (Intercept)                                               | 23.151*** | 22.096*** |
| raceBlack                                                 | -8.627*** | -4.916    |
| raceOther                                                 | -8.231*** | -7.528    |
| bibleInspired Word                                        | 4.485*    |           |
| bibleAncient Book                                         | 8.583***  |           |
| $raceWhite \times bibleInspired \ Word$                   |           | 5.815*    |
| raceBlack $	imes$ bibleInspired Word                      |           | 2.259     |
| raceOther  	imes  bibleInspired  Word                     |           | 2.473     |
| $raceWhite \times bibleAncient \; Book$                   |           | 10.015*** |
| raceBlack  	imes  bibleAncient   Book                     |           | -3.627    |
| ${\sf raceOther} \times {\sf bibleAncient} \; {\sf Book}$ |           | 14.067*   |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### Three-way interactions

|                                     | (1)       | (2)       |
|-------------------------------------|-----------|-----------|
| (Intercept)                         | 29.210*** | 34.756*** |
| sex                                 | 9.774***  | -0.909    |
| raceBlack                           | -8.485**  | -4.235    |
| raceOther                           | -9.443**  | -9.296*   |
| union                               | -1.740    | -3.413*   |
| $sex \times raceWhite \times union$ |           | 3.353     |
| sex 	imes raceBlack 	imes union     |           | 0.182     |
| $sex \times raceOther \times union$ |           | 3.275     |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### **Interpreting interactions**

- Interactions terms make models more challenging to interpret.
  - Like polynomial regression, the effect of a single predictor is represented by more than one coefficient (e.g.  $y = \beta_0 + \beta_1 x + \beta_2 z + \beta_3 xz + u$ ).
- Three-way and more complex interactions are even more difficult to interpret and should be avoided unless there are strong theoretical reasons to use them.

#### **Definitions**

- ➤ A marginal effect is the relationship between change in single predictor and the dependent variable while holding other variables constant.
- The average marginal effect (AME) is the average change in the outcome y as a function of a unit change in  $x_i$  over all observations.
  - Coefficients in a standard OLS model represent average marginal effects.
- ► This quantity becomes more complicated to calculate when interaction terms are included, since the effect of a change in x<sub>i</sub> now depends on multiple parameters.

#### **Computing marginal effects**

- Frequentist marginal effects computed by calculating partial derivatives and variance approximations are used to construct confidence intervals.
  - e.g.  $ME(x_i) = \frac{\delta y}{\delta x_i}$ .
  - We can use the margins package in R to do this.<sup>3</sup>
- ▶ Bayesian marginal effects can be calculated by sampling from the posterior distribution.

<sup>&</sup>lt;sup>3</sup>See Thomas Leeper's documentation for the margins package for further details.

### Marginal effects and OLS regression

|             | (1)        |  |
|-------------|------------|--|
| (Intercept) | -38.952*** |  |
| (           | (4.250)    |  |
| sex         | 11.317***  |  |
|             | (1.447)    |  |
| age         | 0.315***   |  |
|             | (0.050)    |  |
| educ        | 3.154***   |  |
|             | (0.253)    |  |
|             |            |  |

#### Marginal effects and OLS regression

Note how the average marginal effects are equal to the OLS coefficients.

```
library(margins)
me <- margins(m)
summary(me)</pre>
```

```
## factor AME SE z p lower upper
## age 0.3148 0.0504 6.2424 0.0000 0.2160 0.4137
## educ 3.1538 0.2534 12.4477 0.0000 2.6572 3.6504
## sex 11.3172 1.4475 7.8185 0.0000 8.4802 14.1542
```

#### Marginal effects with non-linear variables

|               | (1)                    |
|---------------|------------------------|
| (Intercept)   | -77.887***             |
| sex           | 11.300***              |
| age           | 2.239***               |
|               | -0.021***              |
| educ          | 3.063***               |
| * - < 0.0E ** | _ < 0.01 *** _ < 0.001 |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### Marginal effects with non-linear variables

The margins commands are the same as above. Note how the AME now represents the total effect of age across the two parameters. There is no separate marginal effect for age squared.

```
## factor AME SE z p lower upper
## age 0.3915 0.0510 7.6752 0.0000 0.2915 0.4914
## educ 3.0625 0.2499 12.2569 0.0000 2.5728 3.5523
## sex 11.3001 1.4255 7.9271 0.0000 8.5061 14.0940
```

#### Marginal effects with non-linear variables

We can also visualize the marginal effect of age in a continuous space, highlighting how it incorporates the squared term.



#### Marginal effects with interactions

|                   | (1)        |  |
|-------------------|------------|--|
| (Intercept)       | -71.606*** |  |
| sex               | -2.586     |  |
| age               | 2.211***   |  |
|                   | -0.021***  |  |
| educ              | 2.780***   |  |
| $sex \times educ$ | 0.513      |  |
| $sex \times age$  | 0.149      |  |
|                   |            |  |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### Marginal effects with interactions

In this case, we can isolate the average marginal effect of each predictor.

```
## factor AME SE z p lower upper
## age 0.3913 0.0510 7.6747 0.0000 0.2913 0.4912
## educ 3.0239 0.2511 12.0412 0.0000 2.5317 3.5161
## sex 11.2892 1.4244 7.9255 0.0000 8.4974 14.0810
```

#### **Plotting marginal effects**

The margins package includes a plot() function to show the results of the table. The output can also be modified using ggplot2.



#### Plotting conditional marginal effects

The cplot function can be used to plot the marginal effect while conditioning on another predictor. In this case, the marginal effect of sex on income over the range of age.

```
cplot(m, x = "age", dx = "sex", what = "effect")
```



#### **Bayesian estimation**

|                   | OLS               | Bayesian          |
|-------------------|-------------------|-------------------|
| sex               | -2.586            | -1.865            |
|                   | [-18.771, 13.599] | [-18.286, 13.949] |
| age               | 2.211             | 2.193             |
|                   | [1.628, 2.795]    | [1.649, 2.779]    |
|                   | -0.021            | -0.021            |
|                   | [-0.027, -0.015]  | [-0.027, -0.015]  |
| educ              | 2.780             | 2.801             |
|                   | [2.070, 3.491]    | [2.092, 3.496]    |
| $sex \times educ$ | 0.513             | 0.473             |
|                   | [-0.467, 1.494]   | [-0.476, 1.473]   |
| $sex \times age$  | 0.149             | 0.144             |
|                   | [-0.047, 0.344]   | [-0.049, 0.331]   |

#### **Bayesian marginal effects**

To get average marginal effects, we need to compute the expected value of the outcome at different levels of predictors.

#### **Bayesian marginal effects**



#### Marginal effects and generalized linear models

▶ In generalized linear models (GLMs), which will be out main focus after spring break, the coefficients often do not have clear interpretations on the outcome scale, making marginal effects evne more important for interpretation.<sup>4</sup>

<sup>&</sup>lt;sup>4</sup>See the recommended reading, Mize 2019, for further discussion.

#### Next week

### **Topic**

- ▶ Missing data
- ▶ Model specification, comparison, and robustness

### Lab

Specifying and interpreting interaction terms