Relational Knowledge Distillation

CVPR 2019

Wonpyo Park* POSTECH Dongju Kim POSTECH

Yan Lu Microsoft Research

Minsu Cho POSTECH

Wonbeom Jang

• Distilling the Knowledge in a Neural Network Hinton et al. In NIPS, 2014.

$$\sum_{x_i \in \mathcal{X}} \text{KL}\left(\text{softmax}\left(\frac{f_T(x_i)}{\tau}\right), \text{softmax}\left(\frac{f_S(x_i)}{\tau}\right)\right)$$

• FitNets: Hints for Thin Deep Nets Romero et al. In ICLR, 2015

$$\sum_{x_i \in \mathcal{X}} \left\| f_T(x_i) - \beta \big(f_S(x_i) \big) \right\|_2^2$$

• Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer

$$\sum_{x_{i} \in \mathcal{X}} \left\| \frac{Q_{T}^{i}}{\|Q_{T}^{i}\|} - \frac{Q_{S}^{i}}{\|Q_{S}^{i}\|} \right\|_{2}$$

• Label Refinery: Improving ImageNet Classification through Label Progression (Bagherinezhad et al. In arXiv, 2018.)

Individual Knowledge Distillation

$$\mathcal{L}_{IKD} = \sum_{x_i \in \mathcal{X}} l(f_T(x_i), f_S(x_i)), \tag{1}$$

transfers individual outputs of the teacher directly to the student

Relational Knowledge Distillation

$$\mathcal{L}_{RKD} = \sum_{(x_1,...,x_n)\in\mathcal{X}^N} l(\psi(t_1,...,t_n),\psi(s_1,...,s_n)), \quad (4)$$

distance-wise and angle-wise distillation losses that penalize structural differences in relations.

Relational knowledge distillation

$\mathcal{L}_{RKD} = \sum_{(x_1,...,x_n)\in\mathcal{X}^N} l(\psi(t_1,...,t_n),\psi(s_1,...,s_n)), \quad (4)$

$$\mathcal{L}_{\text{task}} + \lambda_{\text{KD}} \cdot \mathcal{L}_{\text{KD}},$$
 (11)

Relational Knowledge Distillation

$$t_i = f_T(x_i)$$

$$s_i = f_S(x_i)$$

 $(x_1, x_2, ..., x_n)$ is a n-tuple drawn from \mathcal{X}^N

 ψ is a relational potential function that measures a relational energy of the given n-tuple

Distance-wise distillation loss

$$\psi_{D}(t_{i}, t_{j}) = \frac{1}{\mu} \|t_{i} - t_{j}\|_{2},$$
 (5)

$$\mu = \frac{1}{|\mathcal{X}^2|} \sum_{(x_i, x_j) \in \mathcal{X}^2} \|t_i - t_j\|_2.$$
 (6)

$$\mathcal{L}_{\text{RKD-D}} = \sum_{(x_i, x_j) \in \mathcal{X}^2} l_{\delta}(\psi_{\text{D}}(t_i, t_j), \psi_{\text{D}}(s_i, s_j)), \quad (7)$$

$$l_{\delta}(x,y) = \begin{cases} \frac{1}{2}(x-y)^2 & \text{for } |x-y| \le 1, \\ |x-y| - \frac{1}{2}, & \text{otherwise.} \end{cases}$$
 (8)

Embedding Space

Angle-wise distillation loss

$$\psi_{A}(t_{i}, t_{j}, t_{k}) = \cos \angle t_{i}t_{j}t_{k} = \langle \mathbf{e}^{ij}, \mathbf{e}^{kj} \rangle$$
where $\mathbf{e}^{ij} = \frac{t_{i} - t_{j}}{\|t_{i} - t_{j}\|_{2}}, \mathbf{e}^{kj} = \frac{t_{k} - t_{j}}{\|t_{k} - t_{j}\|_{2}}.$ (9)

$$\mathcal{L}_{\text{RKD-A}} = \sum_{(x_i, x_j, x_k) \in \mathcal{X}^3} l_{\delta}(\psi_{\text{A}}(t_i, t_j, t_k), \psi_{\text{A}}(s_i, s_j, s_k)),$$

Embedding Space

(10)

Metric learning

$$\mathcal{L}_{\text{triplet}} = \left[\| f(x_a) - f(x_p) \|_2^2 - \| f(x_a) - f(x_n) \|_2^2 + m \right]_+.$$
(12)

- It aims to train an embedding model.
- In embedding space, distances between projected examples correspond to their semantic similarity.

Metric learning

(a) Results on CUB-200-2011 [40]

	Baseline (Triplet [31])	FitNet [27]	Attention [47]	DarkRank [7]	RKD-D	Ours RKD-A	RKD-DA
$\ell 2$ normalization	O	О	О	О	O / X	O / X	O / X
ResNet18-16	37.71	42.74	37.68	46.84	46.34 / 48.09	45.59 / 48.60	45.76 / 48.14
ResNet18-32	44.62	48.60	45.37	53.53	52.68 / 55.72	53.43 / 55.15	53.58 / 54.88
ResNet18-64	51.55	51.92	50.81	56.30	56.92 / 58.27	56.77 / 58.44	57.01 58.68
ResNet18-128	53.92	54.52	55.03	57.17	58.31 / 60.31	58.41 / 60.92	59.69 / 60.67
ResNet50-512	61.24		•		•		

(b) Results on Cars 196 [14]

	Baseline (Triplet [31])	FitNet [27]	Attention [47]	DarkRank [7]	RKD-D	Ours RKD-A	RKD-DA
$\ell 2$ normalization	О	О	O	О	O / X	O / X	O / X
ResNet18-16	45.39	57.46	46.44	64.00	63.23 / 66.02	61.39 / 66.25	61.78 / 66.04
ResNet18-32	56.01	65.81	59.40	72.41	73.50 / 76.15	73.23 / 75.89	73.12 / 74.80
ResNet18-64	64.53	70.67	67.24	76.20	78.64 / 80.57	77.92 / 80.32	78.48 / 80.17
ResNet18-128	68.79	73.10	71.95	77.00	79.72 / 81.70	80.54 / 82.27	80.00 / 82.50
ResNet50-512	77.17						

Metric learning

Table 2: Recall@1 of self-distilled models. Student and teacher models have the same architecture. The model at Gen(n) is guided by the model at Gen(n-1).

	CUB [40]	Cars [14]	SOP [21]
ResNet50-512-Triplet	61.24	77.17	76.58
ResNet50-512@Gen1	65.68	85.65	77.61
ResNet50-512@Gen2	65.11	85.61	77.36
ResNet50-512@Gen3	64.26	85.23	76.96

Metric learning

RKD performing better without 12 normalization.

L2 norm forces out- put points of an embedding model to lie on the surface of unit-hypersphere, and thus a student model without 12 norm is able to fully utilize the embedding space.

	Ours	
RKD-D	RKD-A	RKD-DA
O / X	O / X	O / X
46.34 / 48.09	45.59 / 48.60	45.76 / 48.14
52.68 / 55.72	53.43 / 55.15	53.58 / 54.88
56.92 / 58.27	56.77 / 58.44	57.01 / 58.68
58.31 / 60.31	58.41 / 60.92	59.69 / 60.67

	Ours	
RKD-D	RKD-A	RKD-DA
O / X	O / X	O / X
63.23 / 66.02	61.39 / 66.25	61.78 / 66.04
73.50 / 76.15	73.23 / 75.89	73.12 / 74.80
78.64 / 80.57	77.92 / 80.32	78.48 / 80.17
79.72 / 81.70	80.54 / 82.27	80.00 / 82.50

Metric learning

Students excelling teachers.

Continuous target la- bels of RKD (e.g., distance or angle) may also carry useful information, which cannot properly be encoded in binary (positive/negative) ground-truth labels used in conventional losses, i.e., the triplet loss.

	Baseline (Triplet [31])	FitNet [27]	Attention [47]	DarkRank [7]	RKD-D	Ours RKD-A	RKD-DA
$\ell 2$ normalization	О	О	О	О	O / X	O / X	O / X
ResNet18-16	45.39	57.46	46.44	64.00	63.23 / 66.02	61.39 / 66.25	61.78 / 66.04
ResNet18-32	56.01	65.81	59.40	72.41	73.50 / 76.15	73.23 / 75.89	73.12 / 74.80
ResNet18-64	64.53	70.67	67.24	76.20	78.64 / 80.57	77.92 / 80.32	78.48 / 80.17
ResNet18-128	68.79	73.10	71.95	77.00	79.72 / 81.70	80.54 / 82.27	80.00 / 82.50
ResNet50-512	77.17						

Metric learning

RKD as a training domain adaptation.

These results reveal an interesting effect of RKD that it strongly adapts models on the training domain at the cost of sacrificing generalization to other domains.

Figure 3: Recall@1 on the test split of Cars 196, CUB-200-2011, Stanford Dog and CIFAR-100. Both Triplet (teacher) and RKD-DA (student) are trained on Cars 196. The left side of the dashed line shows results on the training domain, while the right side presents results on other domains.

Metric learning

		CUB-200-2011 [40]				Cars 196 [14]			Stanford Online Products [21]				
	K	1	2	4	8	1	2	4	8	1	10	100	1000
	LiftedStruct [21]-128	47.2	58.9	70.2	80.2	49.0	60.3	72.1	81.5	62.1	79.8	91.3	97.4
	N-pairs [34]-64	51.0	63.3	74.3	83.2	71.1	79.7	86.5	91.6	67.7	83.8	93.0	97.8
	Angular [41]-512	54.7	66.3	76.0	83.9	71.4	81.4	87.5	92.1	70.9	85.0	93.5	98.0
GoogLeNet [35]	A-BIER [22]-512	57.5	68.7	78.3	86.2	82.0	89.0	93.2	96.1	74.2	86.9	94.0	97.8
	ABE8 [13]-512	60.6	71.5	79.8	87.4	<u>85.2</u>	90.5	94.0	96.1	76.3	88.4	94.8	98.2
	RKD-DA-128	60.8	72.1	81.2	89.2	81.7	88.5	93.3	96.3	74.5	88.1	95.2	98.6
	RKD-DA-512	61.4	73.0	81.9	89.0	82.3	89.8	94.2	96.6	75.1	88.3	95.2	98.7
	Margin [42]-128	63.6	74.4	83.1	90.0	79.6	86.5	91.9	95.1	72.7	86.2	93.8	98.0
ResNet50 [10]	RKD-DA-128	<u>64.9</u>	<u>76.7</u>	<u>85.3</u>	<u>91.0</u>	84.9	<u>91.3</u>	<u>94.8</u>	<u>97.2</u>	<u>77.5</u>	<u>90.3</u>	<u>96.4</u>	<u>99.0</u>

Image classification

Table 4: Accuracy (%) on CIFAR-100 and Tiny ImageNet.

	CIFAR-100 [15]	Tiny ImageNet [46]
Baseline	71.26	54.45
RKD-D	72.27	54.97
RKD-DA	72.97	56.36
HKD [11]	74.26	57.65
HKD+RKD-DA	74.66	58.15
FitNet [27]	70.81	55.59
FitNet+RKD-DA	72.98	55.54
Attention [47]	72.68	55.51
Attention+RKD-DA	73.53	56.55
Teacher	77.76	61.55

Few-shot Learning

As the prototypical networks build on shallow net- works that consist of only 4 convolutional layers, we use the same architecture for the student model and the teacher, *i.e.*, self-distillation, rather than using a smaller student net- work.

Table 5: Accuracy (%) on Omniglot [16].

	5-Way	y Acc.	20-Wa	y Acc.
	1-Shot 5-Shot		1-Shot	5-Shot
RKD-D	98.58	99.65	95.45	98.72
RKD-DA	98.64	99.64	95.52	98.67
Teacher	98.55	99.56	95.11	98.68

Table 6: Accuracy (%) on *mini*ImageNet [39].

	1-Shot 5-Way	5-Shot 5-Way
RKD-D	49.66 ± 0.84	67.07 ± 0.67
RKD-DA	50.02 ± 0.83	68.16 ± 0.67
FitNet	50.38 ± 0.81	-68.08 ± 0.65
Attention	34.67 ± 0.65	46.21 ± 0.70
Teacher	49.1 ± 0.82	66.87 ± 0.66