A Quant's Guide to TensorFlow for Prediction

Matthew Dixon¹

Illinois Institute of Technology

June 7th 2017 @quiotaLLC

Deep Architectures in TensorFlow

Figure: Most commonly used deep learning architectures for modeling. Source: http://www.asimovinstitute.org/neural-network-zoo

Growth of TensorFlow

Source: Andrei Karpathy's arXiv-sanity database

Why Deep Learning in Finance?

- Capture complex, non-linear, relationships between variables to improve predictive power
- Regularization framework for automatic variable selection and prevention of over-fitting
- Not suitable for all problems in finance, but different architectures broaden the applicability

Example: Limit Order Book Updates

Figure: An exemplary sequence of limit order book updates before and after the arrival of a sell market order. The sell order is observed to match the supply of liquidity on offer at the best bid price and the entire book moves down by a tick. The sequence has been restricted to the top five levels of the order book.

Receiver Operator Characteristics

Table: The Receiver Operator Characteristic (ROC) curves of the deep learner and the elastic net method are shown for (left) downward, (middle) neutral, or (right) upward next price movement prediction.

Model Sensitivity

Hidden layers	DNN	EL-DNN
1	0.5057967179	0.5691572606
2	0.5340439642	0.5555855057
3	0.5724887077	0.578907192
4	0.5819864454	0.6474221372
5	0.5794411575	0.65784692

Approach 1: Statistical Inference based strategies

Approach 2: Markov Decision Process based strategies

Actions results in a change of state

Define a set of states, actions and rewards

Goal: find an optimal set of decisions, Q-values, which maximize a utility function

Examples: Q-Learning

Pros: Learn an optimal strategy based on optimal sequence of decisions

Cons: Complex and less programming support

The Bias-Variance Tradeoff

Table: The learning curves of the deep learner are used to assess the bias-variance tradeoff and are shown for (left) downward, (middle) neutral, or (right) upward price prediction. The variance is observed to reduce with an increased training set size and shows that the deep learning is not-overfitting. The bias on the test set is also observed to reduce with increased training set size.