- O1 Struktura logického disku, číslování sektorů, cluster
- **O2** Zaváděcí záznam, hlavní adresář, typy FAT, struktura podadresářů
- Rozdíly FAT, VFAT 16 a VFAT 32, řešení dlouhých názvů
- Chyby FAT systému (programy k tomu určené a způsoby jejich odstraňování)
- **O5** Bezpečné odstraňování dat, fragmentace a defregmentace disku
- O6 Charakteristika a vnitřní struktura NTFS, porovnání s FAT
- Metasoubory a jejich funkce, struktura logického disku NTFS

Souborové systémy – základní principy a struktura logického disku

Souborový systém (file system) je **sada pravidel a datových struktur**, podle kterých operační systém (OS) **spravuje a organizuje data uložená na paměťových médiích** (např. HDD, SSD, USB). Umožňuje **ukládání, vyhledávání, čtení, zápis a mazání** souborů.

Bez souborového systému by OS **nemohl přistupovat k souborům** – viděl by jen neuspořádaný tok bitů.

Název	Využití	Omezení / Vlastnosti
FAT12	Diskety, velmi malá zařízení	Max. velikost disku ~32 MB, max. 4078 clusterů
FAT16	Starší verze DOS a Windows	Max. velikost 2 GB (někdy až 4 GB), omezení názvů
VFAT32 (FAT32)	Windows 95+	Max. soubor 4 GB, disk max. 2 TB, podpora dlouhých názvů
exFAT	Flash disky, SDXC	Moderní náhrada FAT32, větší soubory (nad 4 GB), bez journalingu
NTFS	Windows NT/XP a novější	Podpora práv, šifrování, journaling, větší disky i soubory

Logický disk je **logická jednotka vytvořená na fyzickém médiu** (*např. oddíl disku*). Při formátování se vytváří struktura, která **umožňuje přístup k datům.**

Rozdělení na dvě hlavní oblasti:

1. Organizační oblast (system area)

Obsahuje metadata potřebná pro chod souborového systému.

- Boot Record Zavaděč OS (např. BIOS/UEFI načítá tento sektor při startu), obsahuje informace o rozložení disku a typ souborového systému.
- FAT 1 a FAT 2 Alokační tabulky (File Allocation Tables):
 - o Uchovávají informaci o tom, **které clustery jsou volné, obsazené nebo poškozené**.
 - o Druhá tabulka slouží jako **záloha** (pro případ poškození první).
- Root Directory Hlavní adresář. Obsahuje položky (entry) pro soubory a složky, které jsou uloženy na nejvyšší úrovni adresářové struktury.

Celá tato oblast se vytváří **během vysokoúrovňového** (*logického*) **formátování** pomocí např. příkazu **format**.

2. Datová oblast

Hlavní část disku určená pro ukládání obsahu souborů.

- Clustery Nejmenší adresovatelná jednotka v souborovém systému. Každý soubor na disku zabírá minimálně jeden cluster (i když má jen pár bajtů).
 - o Např. při velikosti clusteru 4 KB zabere i 1B soubor celý 4KB cluster.
 - Čím větší disk, tím větší clustery což zvyšuje plýtvání místem (tzv. vnitřní fragmentace).

Číslování sektorů

CHS - Cylindr / Hlava / Sektor

Starší způsob číslování používaný u klasických rotačních disků (HDD):

- Cylindr skupina stop přes více ploten.
- Hlava (head) čtecí/zapisovací hlava pro konkrétní plochu plotny.
- Sektor nejmenší adresovatelná jednotka, obvykle 512 bajtů.
- Číslování:
 - Cylindr i hlava začínají od 0
 - Sektor začíná od 1

Nevýhoda: omezení kvůli BIOSu, neškálovatelné na velké disky.

LBA - Logical Block Addressing

Modernější způsob adresování sektorů na disku. Používá se od ATA-2 a je standardem dnes.

- Všechny sektory se číslují **sekvenčně od 0**, bez ohledu na geometrii disku.
- Každý sektor má 512 B (nebo i 4096 B u moderních disků tzv. AF/Advanced Format).
- 28bitová adresa umožňuje zaadresovat:
 - o 2²⁸ = 268435456 × 512B = 137 GB
- Novější verze (např. 48bitové LBA) umožňují přístup ke kapacitám v řádech TB a vyšších.

CHS Adressing

LBA Adressing

Cluster

- Cluster je **nejmenší adresovatelná jednotka na logickém disku**, kterou může operační systém vyčlenit pro uložení souboru nebo adresáře.
- Skládá se z určitého počtu sektorů (typicky 512 B na sektor), např. 1 cluster může mít 4 sektory → 2048 B.
- Velikost clusteru závisí na:
 - o velikosti disku
 - o zvoleném souborovém systému (FAT12, FAT16, FAT32)
- Každý cluster má právě jeden jedinečný záznam v FAT tabulce (slouží jako ukazatel nebo stavový záznam).
- Číslování clusterů začíná od čísla 2, protože čísla 0 a 1 jsou rezervována pro interní použití.
- Pokud soubor zabírá více clusterů, jejich pořadí určuje právě FAT tabulka tvoří řetězec.

Výpočty:

- Celkový počet sektorů:
 - o Kapacita logického disku / 512 B
- Počet sektorů v 1 clusteru (FAT32):
 - o Celkový počet sektoru / 2³² (v praxi závisí na specifikaci a implementaci OS)

Boot Record (Zaváděcí záznam)

- Jinak nazývaný Volume Boot Record nebo VBR, **případně první sektor logického disku**.
- Obsahuje klíčové informace potřebné ke spuštění OS a základní konfiguraci svazku.

Struktura Boot Recordu:

- 1. Spouštěcí kód svazku krátký program spuštěný BIOSem po zapnutí počítače.
 - Hledá aktivní oblast, ze které zavede (bootuje) operační systém.
- 2. Blok parametrů disku (BPB BIOS Parameter Block)
 - o Obsahuje technické informace o svazku:
 - velikost sektorů
 - počet sektorů v clusteru
 - počet FAT tabulek
 - počet záznamů v hlavním adresáři
 - celková velikost disku atd.

Důležité poznámky:

- Boot record se vytváří při rozdělení disku (např. pomocí nástroje fdisk, diskpart).
- Je umístěn na úplném začátku disku adresa CHS = 0/0/1.
- Je součástí MBR (Master Boot Record) hlavního zaváděcího záznamu disku.

Root Directory (Hlavní adresář)

- Kořenový adresář logického disku (např. C:\).
- Obsahuje položky pro soubory a složky uložené v nejvyšší úrovni hierarchie.

Informace uložené pro každý soubor/adresář:

- Název a přípona (např. AUTOEXEC.BAT)
- Velikost souboru v bajtech
- Datum a čas vytvoření / změny / posledního přístupu
- Atributy:
 - o Read-only, Hidden, System, Volume label, Subdirectory, Archive
- Číslo 1. clusteru, kde začíná obsah souboru/adresáře
- Kontrolní součet názvu (používá se např. u VFAT pro dlouhé názvy)

U souborového systému FAT se hlavní adresář nachází za druhou FAT tabulkou (FAT2).

FAT tabulka - File Allocation Table

- Alokační tabulka, podle které je pojmenován celý souborový systém FAT (FAT12, FAT16, FAT32).
- Uchovává informace o stavu a návaznosti jednotlivých clusterů na disku.
- Tabulka je vytvářena **při logickém formátování disku** (tzv. High Level Format).

Vlastnosti FAT tabulky:

- Každý **cluster má jeden záznam** v tabulce.
- Na disku se nachází dvě kopie FAT tabulky druhá slouží jako záloha (ochrana proti poškození).
- Umístění: za Boot Recordem.

Možné hodnoty záznamů v FAT tabulce:

Hodnota v záznamu	Význam
0000h	Cluster je volný (neobsazený)
FFF7h	Vadný cluster (bad sector)
XXXXh	Ukazuje na číslo dalšího clusteru v řetězci
FFF8h – FFFFh	EOF – konec souboru

Typy souborového systému FAT (File Allocation Table)

Souborový systém FAT má **tři základní varianty**, které se liší šířkou záznamu v tabulce FAT a tím i **počtem možných clusterů** (tedy maximální velikostí disku/svazku):

1. FAT12

- 12bitové záznamy → max. 212 = 4096 clusterů
- Vhodné pro malé paměti diskety
- Nepodporuje podadresáře
- Omezený počet souborů a malá kapacita (typicky do 32 MB)

2. FAT16

- 16bitové záznamy → max. 216 = 65 536 clusterů
- Zavádí podporu podadresářů
- Maximální velikost oddílu: **2-4 GB** (záleží na velikosti clusteru)
- Omezené možnosti názvů souborů (viz dále: 8.3 konvence)

3. FAT32 (VFAT32)

- 32bitové záznamy, ale reálně se využívá jen 28 bitů pro adresování clusterů
- Max. počet clusterů: ~268 milionů
- Podpora velkých oddílů až 2 TB (Windows), teoreticky až 16 TB
- Lepší správa prostoru a výkon
- Zavádí ROOT DIR jako běžný adresář v datové oblasti → není omezen počtem záznamů

VFAT (Virtual FAT)

VFAT je rozšíření FAT16 a FAT32, které přineslo podporu dlouhých názvů souborů:

- Odstraňuje omezení **8.3 konvence** (8 znaků pro název + 3 pro příponu)
- Umožňuje:
 - Dlouhé názvy (až 255 znaků, včetně mezer a malých písmen)
 - 4 znaky pro příponu
- Zavádí skryté záznamy v adresáři pro dlouhé názvy se vytvoří více položek (každá pojme 13 znaků)
- U VFAT16 je problém: ROOT DIRECTORY má pevnou velikost (512 položek)

exFAT (Extended File Allocation Table)

Moderní systém vyvinutý Microsoftem jako náhrada FAT32 pro flash disky, SSD, SDXC karty.

Vlastnosti:

- Max. velikost svazku: 2⁶⁴ 1 sektor → až 16 EiB (teoreticky)
- Velké soubory nad **4 GB** (což FAT32 neumožňuje)
- Podpora až 255 znaků v názvu souboru
- Používá bitmapu pro správu volného místa → rychlejší alokace
- Možnost označit špatné clustery
- Podpora transakcí (snižuje riziko poškození dat)
- Nevýhoda: bez podpory oprávnění, šifrování (na rozdíl od NTFS)

Vlastnost	FAT12/16	VFAT16	VFAT32
Velikost FAT záznamu	12/16 bit	16 bit	32 bit (z toho 28 bitů využito)
Podpora dlouhých názvů	Ne (jen 8.3)	Ano (až 255 znaků)	Ano
ROOT DIRECTORY	Pevně na začátku, fixní délka	Pevně na začátku, max. 512 položek	Přesunut do 2. clusteru – bez omezení
Max. velikost souboru	~2-4 GB	~2-4 GB	4 GB / soubor (exFAT nemá toto omezení)
Efektivita	Nízká	Střední	Vyšší

Řešení dlouhých názvů souborů (LFN – Long File Names)

FAT12 / FAT16

- Používá tzv. 8.3 konvenci:
 - 8 znaků pro název souboru
 - o 3 znaky pro příponu
 - Např. README.TXT

VFAT a VFAT32

- Zavádějí LFN (až 255 znaků, včetně mezer a diakritiky)
- Každý dlouhý název je uložen jako více položek adresáře:
 - Počet položek = [počet znaků / 13] + 1
 - o 13 znaků na jednu LFN položku, +1 pro klasickou 8.3 verzi názvu
 - o Každý dlouhý název má i svůj "DOS ekvivalent" (např. DLOUHE~1.TXT)
- Ve VFAT32 je ROOT DIR přesunut do datové oblasti → neomezený počet záznamů

Struktura podadresářů ve FAT

Adresář (adresářová struktura) je speciální soubor, který **obsahuje záznamy o souborech a podadresářích.**

Root Directory (hlavní adresář)

- Vytváří ho OS nebo uživatel při formátování nebo instalaci systému.
- Umístění:
 - U FAT12/16 je root dir umístěn v organizační oblasti, hned za druhou FAT tabulkou.
 - ∘ U FAT32 (VFAT32) je přesunut do datové oblasti → umožňuje variabilní velikost.
- Má atribut **DIR** a **velikost 0**, i když zabírá určitý počet sektorů.
- Není považován za běžný soubor, ale tvoří kořenovou strukturu adresářového stromu.

Podadresář

- Vytvářen uživatelem nebo systémem při **ukládání složek uvnitř root dir nebo jiných** adresářů.
- Je uložen v datové oblasti, ve volném clusteru, který je vyhledán v FAT tabulce.
- Každý nový podadresář vždy zabere minimálně jeden celý cluster, i když neobsahuje žádné další záznamy.

Po vytvoření adresáře jsou automaticky vloženy dvě speciální položky:

Název	Význam	Kam ukazuje
·	Odkaz sám na sebe (aktuální adresář)	Na stejný cluster, kde je adresář vytvořen
	Odkaz na nadřazený adresář (o úroveň výš)	Na cluster rodičovského adresáře

- Tyto záznamy umožňují **pohyb v adresářové hierarchii** (např. pomocí příkazů cd ..).
- Záznam v FAT pro tento cluster se **ihned po vytvoření změní z 0 na EOF** (konec souboru).

Záznam souboru na disk (uložení souboru)

Postup:

- 1. OS vyhledá ve FAT tabulce první volný cluster (hodnota 0), kam lze uložit data.
- 2. Do tohoto clusteru v datové oblasti se uloží první část souboru.
- 3. OS upraví příslušný záznam ve FAT:
 - Pokud je soubor menší nebo rovný velikosti jednoho clusteru → zapíše se EOF (např. FFF8h).
 - o Pokud je soubor větší, OS najde další volný cluster, pokračuje v ukládání dat a:
 - v FAT zapíše číslo dalšího clusteru do předchozího záznamu,
 - proces se opakuje až do konce souboru,
 - poslední cluster je označen jako EOF.

```
Příklad struktury: (čísla v závorkách jsou čísla clustrů ve kterých jsou adresaře
- C:\SPSE (100)
                     \sut (101)
                     \priz (102)
                                      \ sekret (103)
                                      \ knih (104)
                                      \ jaz (105) \soubor.txt 1 KB (106)
 C:\SPSE\priz
                      DIR
                               102 (č. cl. daného adresáře - znovunačtení)
                             100 (č. clustru nadřazeného adresáře )
                      DIR
             sekret DIR
                     DIR
                              104
             knih
             jaz
                      DIR
                               105
 C:\ SPSE\priz\jaz\
                             105 (č. cl. daného adresáře - znovunačtení)
                     DIR
                             102 (č. clustru nadřazeného adresáře)
            soubor.txt 1 KB 106
```

Zápis do adresáře:

- Po dokončení zápisu dat do datové oblasti OS vytvoří záznam v adresáři, který obsahuje:
 - o **Jméno a příponu** souboru (v 8.3 nebo LFN formátu)
 - o Atributy souboru (skrytý, systémový atd.)
 - o Datum a čas vytvoření / změny
 - Velikost souboru v bajtech
 - o Číslo prvního clusteru, kde soubor začíná

Shrnutí – klíčové body k zapamatování

Prvek	Umístění	Poznámka
Root Directory	Organizační oblast (FAT12/16), datová oblast (FAT32)	Pevná/variabilní velikost
Podadresář	Datová oblast	Zabírá vždy min. 1 cluster, ihned obsahuje . a
Záznam ve FAT	1 záznam na 1 cluster	Spojuje clustery do řetězců podle potřeby
EOF (End of File)	Značí poslední cluster souboru	Typicky FFF8h a vyšší hodnoty (záleží na typu FAT)

Chyby FAT systému

Ztracený cluster (Lost cluster)

- Ve FAT tabulce není žádný záznam, který by na cluster ukazoval, ale cluster obsahuje data.
- Data zůstávají v datové oblasti, ale nejsou "dostupná" přes žádný soubor.
- Může jít o pozůstatek po špatně ukončeném zápisu nebo pádu systému.

Překřížený cluster (Cross-linked cluster)

- Na jeden a tentýž cluster ukazují dva různé záznamy ve FAT.
- Dochází ke **sdílení jednoho clusteru dvěma soubory**, což je **chybné** vede k přepsání dat jednoho souboru druhým.

Poškozený FAT

- Vzniká, pokud má soubor alokováno více clusterů, ale některý ukazatel ve FAT:
 - o ukazuje na neexistující cluster,
 - o nebo přesahuje velikost disku/oddílu.
- FAT tabulka je **nekonzistentní** může dojít ke ztrátě dat nebo chybě při čtení.

Fragmentace

- Soubor je rozdělen do více nenavazujících clusterů, rozptýlených po různých místech disku.
- Fragmentace nevzniká při čtení, ale při častém mazání a ukládání souborů různé velikosti.
- Nevýhody:
 - o **Pomalejší načítání** hlavička disku musí přeskakovat mezi sektory.
 - o Nižší šance na úspěšné obnovení dat při poškození.
 - Vyskytuje se hlavně u HDD (ne u SSD tam není fyzická hlava).

Defragmentace

- Proces, kdy se fragmentovaný soubor **znovu spojí do jednoho celku** fyzicky se přesune na sousední clustery.
- Zlepší se výkon čtení a zápisu.
- Nástroje:
 - Vestavěné nástroje OS (např. "Defragmentace a optimalizace jednotek" ve Windows)
 - Specializované nástroje:
 - O&O Defrag, Diskeeper, Auslogics Disk Defrag apod.
- U **SSD disků se nedoporučuje defragmentovat**, protože nemá význam a zkracuje životnost paměti *(používá se místo toho TRIM)*.

Mazání souborů z disku

- 1. Vhození do koše (Recycle Bin)
 - Soubor není fyzicky odstraněn jen přesunut do speciální složky "Koš".
 - Lze jej jednoduše obnovit.
- 2. Skutečné vymazání (mazání v OS)
 - OS při mazání neodstraňuje data z clusteru
 - Udělá pouze:
 - o Přepíše první znak názvu souboru v adresáři znakem E5h značí "smazaný" záznam.
 - Změní záznamy ve FAT: clustery dříve obsazené tímto souborem se nastaví na 0 =
 volné
 - Data zůstávají v datové oblasti, dokud je nepřepíše jiný soubor.
 - Tato data je možné částečně obnovit pomocí nástrojů jako Recuva, Photorec, TestDisk apod.

Bezpečné odstranění dat (skartace)

- Fyzické přepsání dat v clusterech aby nebylo možné data obnovit.
- Není součástí běžného mazání, provádí se speciálními nástroji.
- Nástroje:
 - o Wipelnfo, DiskWipe, TuneUp Shredder, Eraser

Metody přepsání:

Metoda	Popis
Rychlá	1× přepsání (např. nulami) – nedostatečné pro citlivá data
Bezpečná (DOD 5220.22-M)	3× přepsání: 00000000, 11111111 (FFh), 10101010 (F6h) → opakovat
Guttmanova metoda	35 průchodů s různými vzory – extrémně bezpečná, ale pomalá

Shrnutí - klíčové pojmy:

Pojem	Význam
Ztracený cluster	Obsahuje data, ale žádný záznam ve FAT na něj neodkazuje
Překřížený cluster	Na jeden cluster ukazují 2 záznamy ve FAT
Poškozený FAT	Chybný odkaz v řetězci clusterů
Fragmentace	Soubory nejsou fyzicky uloženy za sebou → pomalejší čtení
Defragmentace	Přeskládání souborů na disk, aby byly spojité
Vymazání souboru	E5h v názvu + clustery označeny jako volné, ale data zůstávají
Skartace	Bezpečné přepsání dat, znemožňuje jejich obnovu

Charakteristika NTFS (New Technology File System)

Moderní souborový systém vyvinutý firmou Microsoft (od Windows NT). Slouží k organizaci dat na logickém disku – stejně jako FAT, ale s mnohem vyššími možnostmi a bezpečností.

Transakční systém zápisu

- NTFS pracuje s transakcemi každý zápis je rozdělen na dílčí kroky:
 - a. Přenos dat do řadiče disku
 - b. Vyhledání volného místa
 - c. Samotný zápis dat
 - d. Záznam o poloze do systémové tabulky
- Podstata transakce:
 - o Provádí se buď celá, nebo vůbec.
 - o Pokud dojde k **přerušení** (např. výpadek napájení), operace je **vrácena zpět** (rollback)
 - → nedochází ke ztrátě clusteru jako u FAT.

Výhody NTFS oproti FAT

Žurnálování (journaling)

- Každý zápis je zaznamenán do žurnálu (\$LogFile).
- Pokud dojde k chybě, systém umí:
 - o dokončit neúplný zápis,
 - o nebo zrušit rozpracované změny.

Přemapování vadných clusterů

• Při zápisu systém **automaticky vyhne poškozeným místům**.

Komprese dat

• Podpora automatické komprese souborů/složek bez potřeby externích nástrojů.

Přístupová práva

- Systém ACL (Access Control List) umožňuje určit:
 - o kdo smí soubor číst, zapisovat, mazat atd.
- Zabezpečení na úrovni jednotlivých souborů i složek.

Diskové kvóty

• Možnost **omezit velikost dat**, které může konkrétní uživatel uložit na disk.

Šifrování (EFS – Encrypting File System)

- Přímo na úrovni souborového systému (uživatel může zašifrovat soubor/složku).
- Šifrování je neviditelné pro aplikace data se automaticky dešifrují při čtení.

Neomezený počet položek v adresáři

• Na rozdíl od FAT není root dir omezen počtem položek.

Rychlejší vyhledávání

 NTFS funguje jako databázový systém – minimalizuje počet přístupů na disk díky interním strukturám.

Podpora velkých svazků

- MBR (Master Boot Record) podporuje NTFS oddíly až 2 TB.
- GPT (GUID Partition Table) umožňuje až 18 EB (exabajtů).

NTFS = Databázová struktura

- Každý soubor/složka má svůj záznam v hlavní tabulce souborů (MFT Master File Table).
- Po formátování se vytvoří **11 systémových souborů** (METADATA):
 - Např. \$MFT, \$Bitmap, \$LogFile, \$BadClus, \$Secure apod.
- NTFS tak **spravuje disk jako databázi souborů**, ne jako jednoduchý seznam jako FAT.

Porovnání NTFS vs. FAT:

Vlastnost	FAT	NTFS
Kompatibilita	Vysoká (Windows, Linux, macOS)	Omezená (nativně Windows, Linux: čtení/podpora přes ovladače)
Rok vzniku	~1977	~1993
Transakce	Ne	Ano
Žurnálování	Ne	Ano (\$LogFile)
Přístupová práva	Ne	Ano (ACL)
Šifrování	Ne	Ano (EFS)
Komprese	Ne	Ano
Diskové kvóty	Ne	Ano
Maximální velikost svazku	max. 2–4 GB (FAT16), 2 TB (FAT32)	2 TB (MBR), až 18 EB (GPT)
Maximální velikost souboru	4 GB (FAT32)	Prakticky neomezená
Fragmentace	Vyšší	Nižší (lepší alokace)
Rychlost vyhledávání	Nižší	Vyšší

NTFS poskytuje	Význam
Transakce a žurnálování	Zajišťují konzistenci i při havárii
Přístupová práva a šifrování	Zvýšená bezpečnost dat
Komprese a diskové kvóty	Efektivnější využití prostoru
Databázová struktura (MFT + metadata)	Rychlý a spolehlivý přístup k datům

Vnitřní struktura NTFS

Rozdělení prostoru NTFS svazku

NTFS strukturuje diskový prostor efektivně a robustně:

- 1. část: MFT + rezerva pro její růst
 - MFT (Master File Table) hlavní databáze souborového systému.
 - Rezerva cca 12 % disku je ponechána volná (nealokovaná), aby se MFT mohla rozšiřovat bez fragmentace.
- 2. část: **Uživatelova data** (soubory)
 - Data se ukládají za rezervovaným blokem.
 - Uprostřed disku je pro zvýšení spolehlivosti uložena kopie prvních 16 záznamů MFT (soubor \$MFTMirr), následují další uživatelská data.

NTFS tak **minimalizuje fragmentaci MFT** a zajišťuje ochranu struktury systému.

Umístění MFT

- Ihned za boot sektorem NTFS svazku.
- Bootovací záznam (soubor \$BOOT) obsahuje přesné umístění:
 - hlavní MFT tabulky
 - o a její kopie (\$MFTMirr)

MFT - Master File Table

- Základní databázová tabulka, kde je každý soubor na disku reprezentován záznamem pevné délky.
- NTFS nemá adresáře jako samostatné objekty i adresář je jen typ záznamu v MFT.

Vlastnosti:

- Každý záznam odpovídá 1 souboru nebo složce.
- Obsahuje kompletní **metadata**:
 - o iméno souboru
 - velikost
 - seznam fragmentů
 - o přístupová práva, časová razítka, atributy

Struktura:

- Prvních 16 záznamů = metasoubory → systémové, neviditelné, začínají \$
- Záznam 0 = popis samotné tabulky \$MFT
- Kopie těchto 16 záznamů se ukládá do \$MFTMirr (pro případ havárie disku)

Metasoubory v NTFS

Metasoubory jsou **skryté systémové soubory** – nejsou běžně viditelné a **používá je pouze OS** k řízení systému souborů.

Název	Význam
\$MFT	Master File Table – hlavní databáze všech souborů
\$MFTMirr	Kopie prvních 16 záznamů MFT, umístěná ve středu disku
\$LOGFILE	Transakční log, záznamy o změnách → slouží pro obnovu po havárii
\$VOLUME	Obsahuje sériové číslo svazku a čas vytvoření
\$ATTRDEF	Definice všech možných atributů (např. residentní, indexované)
\$BITMAP	Bitmapa obsazení clusterů – 1 = obsazeno, 0 = volný
	Kořenový adresář disku (root)
\$BOOT	Boot sektor – informace o zavádění systému
\$BADCLUS	Seznam vadných clusterů – OS je automaticky přeskakuje
\$QUOTA	Uživatelské kvóty – omezení velikosti dat na uživatele
\$UPCASE	Tabulka převodu malých na velká písmena – důležité pro porovnání

Shrnutí:

Prvek	Popis
MFT	Tabulka všech souborů – každý soubor = 1 záznam
Rezerva 12 %	Vyhrazený prostor pro rozšíření MFT → zamezuje fragmentaci
MFTMirr	Záloha MFT – jen prvních 16 záznamů
Metasoubory	Prvních 16 záznamů v MFT – systémové, začínají \$, nejsou viditelné
\$BITMAP	Mapuje obsazenost clusterů (1 = plný, 0 = volný)
\$LOGFILE	Transakční žurnál – záznamy operací před jejich dokončením
\$BADCLUS	Seznam vadných clusterů – systém je ignoruje
\$ATTRDEF	Definice vlastností souborových atributů

Registr Windows

- Registr Windows (Windows Registry) je hierarchická databáze, která obsahuje:
 - Informace o hardwaru (HW)
 - Nastavení uživatelů
 - Instalovaný software (SW)
 - Konfiguraci systému a aplikací
- Zásadní komponenta OS Windows načítá se při startu systému a pracuje neustále.

Velikost a složitost

- Obsahuje desítky tisíc záznamů:
 - Běžně **50 000-100 000 klíčů** a hodnot.
- Záznamy se ukládají ve formě klíčů, podklíčů a hodnot, podobně jako adresářová struktura.

Struktura registru

• Organizováno stromově (hierarchicky) do 5 hlavních větví:

Klíč (větev)	Popis
HKEY_CLASSES_ROOT	Asociace typů souborů s programy, informace o OLE a COM objektech
HKEY_CURRENT_USER	Nastavení aktuálně přihlášeného uživatele – pozadí, jazyk, vzhled
HKEY_LOCAL_MACHINE	Globální nastavení HW a SW pro všechny uživatele
HKEY_USERS	Konfigurace všech uživatelů, kteří mají účet v systému
HKEY_CURRENT_CONFIG	Aktuální HW profil, např. připojené tiskárny, rozlišení obrazovky

Práce s registrem

- Prohlížení a úprava pomocí nástroje Editor registru:
 - Spustit: regedit.exe
- Změny v registru mohou ovlivnit chod celého systému nutná opatrnost.

Oprava chyb v registru

- Chyby registru mohou způsobovat nestabilitu, pomalý chod nebo chyby systému.
- Používají se specializované nástroje pro vyčištění a opravu:
 - TuneUp Utilities
 - Norton Utilities
 - CCleaner (s opatrností)

Bod obnovení systému (System Restore Point)

- Bod obnovení je snímek systému uchovává:
 - o Informace o systémových souborech
 - Nastavení registru
 - o Ovladače a konfiguraci
- Neukládá uživatelská data (dokumenty, fotky, apod.)

Vytváření bodů obnovení

- Automaticky každých 7 dní (defaultně)
- Automaticky před následujícími událostmi:
 - Instalace nového softwaru
 - Aktualizace OS Windows
 - Zálohování systému
 - Instalace ovladačů (driverů)

Obnovení systému

- Slouží k návratu systému do předchozího funkčního stavu, pokud:
 - o byl nainstalován nefunkční software
 - o nové ovladače způsobují problémy
 - systém je nestabilní bez zjevné příčiny
- Obnova nemění osobní soubory (dokumenty, fotky atd.).

Oblast	Důležité poznatky
Registr Windows	Stromová databáze nastavení HW, SW, uživatelů
5 hlavních větví	HKEY_CLASSES_ROOT, CURRENT_USER, LOCAL_MACHINE, USERS, CONFIG
Editor registru	regedit.exe, práce s klíči a hodnotami
Čištění registru	Nástroje jako TuneUp, Norton, CCleaner
Bod obnovení	Ukládá systémová nastavení pro návrat při problémech
Vytváření bodů	Automaticky každých 7 dní a při instalacích
Obnova	Neovlivní osobní data, vrací systémové soubory a nastavení

Fragmentace (FAT/NTFS)

- Fragmentovaný soubor je takový, který není uložen ve spojitém řetězci clusterů, ale je rozdělen do různých částí disku (např. různých cylindrů).
- Typická u klasických HDD, kde čtecí hlava musí přeskakovat mezi sektory → zpomalení čtení.

Vznik:

- Vzniká častým mazáním a zapisováním nových souborů, zejména když:
 - o nový soubor je větší než dostupné volné místo v sousedních clusterech,
 - o dojde k opětovnému využití dříve uvolněných fragmentů.

Nevýhody:

- Pomalejší načítání dat z disku.
- Nižší šance na úspěšné obnovení dat při poruše.
- Zátěž pro diskovou mechaniku (u HDD).

Defragmentace

- Proces, kdy se fragmentované části souboru přesunou do sousedních (spojených) clusterů.
- Výsledkem je, že:
 - o soubor leží v souvislé oblasti
 - o čtení probíhá rychleji a efektivněji.

Nástroje:

- Vestavěné nástroje ve Windows:
 - o "Defragmentace a optimalizace jednotek" (dfrgui.exe)
- Specializované programy:
 - O&O Defrag
 - o Diskeeper
 - o Auslogics Disk Defrag apod.
- U SSD disků se defragmentace nepoužívá místo ní se využívá TRIM, protože SSD nemají mechanické části a fragmentace neovlivňuje rychlost.

Mazání souborů z disku (FAT)

Vhození do koše

- Soubor není smazán, jen přesunut do složky "Koš" (Recycle Bin).
- Lze jednoduše obnovit.

Skutečné vymazání v OS:

- 1. Přepíše se první znak názvu souboru v adresáři na E5h → značí "smazaný".
- 2. Záznamy ve FAT (řetězec clusterů) se nastaví na 0 → označeny jako volné.
- 3. Data zůstávají v datové oblasti, dokud nejsou přepsána novými soubory.

Takto smazaný soubor je **stále možné obnovit**, pokud jeho data nebyla přepsána *(např. pomocí Recuva, TestDisk)*.

Bezpečné odstranění dat - skartace

- Trvalé odstranění dat, které znemožní jejich obnovu.
- Neprovádí se běžným mazáním, ale pomocí specializovaných programů:
 - WipeInfo, DiskWipe, TuneUp Shredder, Eraser (open-source)

Jak fungují:

- Vymažou první znak názvu + celý záznam v adresáři
- Přepíší datový obsah několikrát jinými hodnotami (např. nulami, náhodnými vzory)
- Výsledkem je, že ani forenzními nástroji nelze data obnovit.

Téma	Hlavní myšlenka
Fragmentace	Soubor rozdělen do nesouvislých částí → pomalejší čtení
Defragmentace	Spojení částí souboru do jednoho celku → rychlejší čtení
Vhození do koše	Soubor je stále fyzicky na disku, jen přesunut do složky
Mazání v OS (FAT)	Přepsání E5h, uvolnění FAT, data zůstávají fyzicky na disku
Skartace dat	Speciální přepis dat + odstranění všech stop → data trvale zničena

Obecné technické souvislosti – vše souvisí se vším

Pojem	Význam a vztah k tématu
MBR (Master Boot Record)	Starší způsob rozdělení disku (max. 4 primární oddíly), používá CHS adresování
GPT (GUID Partition Table)	Novější standard, umožňuje až 128 oddílů, používá LBA adresování
BIOS	Tradiční firmware, pracuje s MBR i FAT/NTFS, bez UEFI bootování
UEFI	Moderní firmware, vyžaduje GPT a podporuje jen FAT32 pro zavádění

- Pokud máme základní desku s BIOSem, můžeme použít starý MBR a třeba i NTFS. Ale pokud máš moderní UEFI, potřebuješ GPT a FAT32, protože UEFI NTFS zavaděč nepřečte.
- Celé to krásně ukazuje, jak se hardwarová architektura, souborové systémy a způsob ukládání dat vzájemně ovlivňují. To, jaký firmware máme, určuje, jaké schéma oddílů a souborové systémy můžeme použít. A i smazaný soubor nemusí být pryč, dokud ho neodstraníme správně třeba kvůli bezpečnosti, soukromí nebo auditu.