Implicit nonlinear complementarity: A new approach to contact dynamics

Emo Todorov

Applied Mathematics and Computer Science & Engineering
University of Washington

ICRA 2010

Multi-joint dynamics with contact

• Continuous-time dynamics (may not have solution):

$$M(\mathbf{q}) d\mathbf{w} = \mathbf{n} (\mathbf{q}, \mathbf{w}) dt + K(\mathbf{q})^T \mathbf{f}$$

 $K(\mathbf{q}) \mathbf{w} = \mathbf{v}$

q, **w** joint position and velocity

f, **v** contact impulse and velocity

M joint-space inertia matrix

n Coriolis, centripetal, gravitational, applied forces

K contact Jacobian

f,v are related through (an approximation to) the laws of contact and friction

• Discrete-time dynamics (always have solution):

Euler discretization with time step Δ yields $d\mathbf{w} \approx \mathbf{w}_{t+\Delta} - \mathbf{w}_t$,

$$M_t \mathbf{w}_{t+\Delta} = M_t \mathbf{w}_t + \Delta \mathbf{n}_t + K_t^T \mathbf{f}_{t+\Delta}$$

$$K_t \mathbf{w}_{t+\Delta} = \mathbf{v}_{t+\Delta}$$

LCP formulation of contact

We need to solve

$$M\mathbf{w} = \mathbf{c} + K^T \mathbf{f}$$
$$K\mathbf{w} = \mathbf{v}$$

Find f, v by solving

$$A\mathbf{f} + \mathbf{v}_0 = \mathbf{v}$$

 $A = KM^{-1}K^{T}$: inverse inertia in contact space

 $\mathbf{v}_0 = KM^{-1}\mathbf{c}$: contact velocity in the absence of contact force

Compute w as

$$\mathbf{w} = M^{-1} \left(\mathbf{c} + K^T \mathbf{f} \right)$$

 $\mathbf{f} = [f^N; \mathbf{f}^F]$ and $\mathbf{v} = [v^N; \mathbf{v}^F]$ should satisfy the constraints

Complementarity

$$f^{N} \geq 0$$
, $v^{N} \geq 0$, $f^{N}v^{N} = 0$
 \mathbf{v}^{F} parallel to \mathbf{f}^{F}
 $\langle \mathbf{v}^{F}, \mathbf{f}^{F} \rangle \leq 0$, $\|\mathbf{f}^{F}\| \leq \mu f^{N}$

The latter constraints are nonlinear, however the friction cone can be approximated with a *n*-sided pyramid, yielding a linear complementarity problem (LCP).

Widely used: ODE, PhysX, Havoc...

Problems with LCP and motivation for our method

- ullet The approximation to the friction cone is inaccurate for small n
- Large *n* results in too many auxiliary variables that slow down the solver
- Available algorithms are either slow (Lemke) or introduce additional approximations often resulting in spring-damper-like behavior
- The best general-purpose algorithm for solving LCPs is the PATH algorithm, which replaces the LCP with a nonlinear equation (and solves it using a non-smooth Newton method)
- If we are going to replace the LCP with a nonlinear equation, do we need the LCP in the first place? Or can we construct a nonlinear equation directly, without approximating the friction cone and introducing auxiliary variables? Yes we can.

Implicit nonlinear complementarity

Instead of solving $A\mathbf{f} + \mathbf{v}_0 = \mathbf{v}$ under complementarity constraints on \mathbf{f} , \mathbf{v} , we design functions $\mathbf{f}(\mathbf{x})$, $\mathbf{v}(\mathbf{x})$ such that the constraints are satisfied for all \mathbf{x} , and then solve the (unconstrained) nonlinear equation

$$A\mathbf{f}\left(\mathbf{x}\right)+\mathbf{v}_{0}=\mathbf{v}\left(\mathbf{x}\right)$$

x is a hybrid variable encoding both contact velocities and contact forces.

normal forces and velocities:

stick / slip break

0 x N

friction forces and velocities:

 $\mathbf{v}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \mathbf{x}$, thus the (non-smooth) equation becomes

$$\mathbf{r}(\mathbf{x}) \triangleq (A - I) \mathbf{f}(\mathbf{x}) - \mathbf{x} + \mathbf{v}_0 = 0$$

The functions f and v

normal forces and velocities:

$$f^{N}(\mathbf{x}) = \max(0, -x^{N})$$

 $v^{N}(\mathbf{x}) = \max(0, x^{N})$

friction forces and velocities:

$$s(\mathbf{x}) \triangleq \min\left(1, \frac{\mu f^{N}(\mathbf{x})}{\|\mathbf{x}^{F}\|}\right)$$

$$\mathbf{f}^{F}(\mathbf{x}) = -s(\mathbf{x}) \mathbf{x}^{F}$$

$$\mathbf{v}^{F}(\mathbf{x}) = \mathbf{x}^{F} - s(\mathbf{x}) \mathbf{x}^{F}$$

3D forces and velocities:

Shape of the function f

$$\mathbf{f}^{F}(\mathbf{x}) = -\min\left(1, \frac{\mu \max\left(0, -x^{N}\right)}{\|\mathbf{x}^{F}\|}\right)\mathbf{x}^{F}$$

Root-finding via optimization

Solving $\mathbf{r}(\mathbf{x}) = 0$ is equivalent to minimizing the objective function

$$\ell\left(\mathbf{x}\right) = \frac{1}{2} \left\| \mathbf{r}\left(\mathbf{x}\right) \right\|^{2}$$

This is a non-linear least squares problem, which (in principle) can be handled by a Gauss-Newton method:

$$J(\mathbf{x}) = \frac{\partial \mathbf{r}(\mathbf{x})}{\partial \mathbf{x}}$$
 Jacobian/subdifferential of $\mathbf{r}(\mathbf{x})$

$$J(\mathbf{x})^T \mathbf{r}(\mathbf{x})$$
 gradient of $\ell(\mathbf{x})$

$$J(\mathbf{x})^T J(\mathbf{x})$$
 approximate Hessian of $\ell(\mathbf{x})$

The (stabilized) Newton iteration is

$$\mathbf{x} \leftarrow \mathbf{x} - \left(J(\mathbf{x})^T J(\mathbf{x}) + \lambda I \right)^{-1} J(\mathbf{x})^T \mathbf{r}(\mathbf{x})$$

 λ is adapted online in Levenberg-Marquardt fashion.

Optimization with edge-aware linesearch

Second-order methods avoid the chattering characteristic of first-order methods (green):

Here we use the "dogleg" method which involves two linesearnes (red). The Cauchy point is the minimum along the gradient.

Non-smoothness can still cause chattering:

We explicitly consider the intersections of the red lines with the edges where $\mathbf{r}\left(x\right)$ is non-smooth (planes and cones).

Numerical results

With $\mu = 1$ and $n_c = 16$ contacts the algorithm takes 5 iterations per time step (no warm start) and accepts the Newton point (without linesearch) on 70% of iterations.

Each iteration here is faster than an iteration of an LCP solver because we are factorizing smaller matrices: $3n_c$ -by- $3n_c$ as opposed to, say, $10n_c$ -by- $10n_c$.

μ	$n_b = 5$ $n_c = 7$	$n_b = 10$ $n_c = 16$	$n_b = 15$ $n_c = 27$
0.1	3.8	4.8	6.5
	99 %	98 %	90 %
0.5	2.6	5.3	7.5
	95 %	85 %	73 %
1.0	2.8	4.9	10.2
	90 %	71 %	60 %
2.0	2.9	4.6	16.2
	88 %	71 %	55 %