

Gowin 功耗分析工具 用户指南

SUG282-2.6, 2024-05-09

版权所有 © 2024 广东高云半导体科技股份有限公司

GO₩IN富云、₩、Gowin以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明	
2018/01/30	1.2	初始版本。	
2018/08/16	1.3	更新 Vcc/Vccx 取值范围;更新界面截图。	
2018/10/26	1.4	支持 GW1NZ-1、GW1NSR-2C。	
2018/11/15	1.5	● 支持 GW1NSR-2; ● 删除 GW1N-6ES、GW1N-9ES、GW1NR-9ES。	
2019/02/25	1.6	 更新工作电压的配置; 支持 VCD File 的配置; 刪除指定 IO 翻转率的配置。 	
2019/05/17	1.7	支持器件 GW1N-1S。	
2020/03/09	1.8	支持器件 GW1NRF-4B、GW1NS-4、GW1NS-4C、GW1NSE-2C、GW1NSER-4C、GW1NSR-4、GW1NSR-4C、GW2A-18C、GW2A-55C、GW2AR-18C。	
2020/05/09	1.9	● 支持器件 GW1N-9C、GW1NR-9C、GW2ANR-18C; ● 删除器件 GW1N-2、GW1N-2B、GW1N-6。	
2020/09/17	2.0	支持车规级器件功耗分析。	
2021/06/16	2.1	● 更新界面截图;● 更新配置芯片工作条件描述。	
2021/08/05	2.2	 版本号 1.9.8Beta 修改为 1.9.8; 添加 GPE 功耗表格使用说明。	
2021/11/02	2.3	2.3 更新界面截图及相应描述。	
2022/12/20	2.4	更新界面截图及相应描述。	
2023/11/30	2.4.1	更新界面截图。	
2024/02/02	2.5	● 更新图 4-1 GPA 功耗分析报告; ● 更新章节 4.1 Power Messages 描述。	
2024/05/09	2.6	配置界面支持结温配置;更新环境温度/电路板温度可设置范围;更新功耗报告结构。	

i

目录

目:	₹	i
图	目录	iii
表	目录	. v
1 :	关于本手册	.1
	1.1 手册内容	
	1.2 相关文档	
	1.3 术语、缩略语	
	1.4 技术支持与反馈	
၁ 1	简介	
3 (GPA 窗口	
	3.1 启动 GPA 窗口	5
	3.1.1 创建/加载配置文件	5
	3.1.2 打开 GPA 窗口	6
	3.2 GPA 配置	7
	3.2.1 配置芯片工作条件	7
	3.2.2 配置信号翻转率	9
	3.2.3 配置时钟的工作使能特性	16
	3.3 产生 GPA 功耗分析报告	23
4 (GPA 功耗分析报告	24
	4.1 Power Messages	24
	4.1.1 Configure Information	25
	4.2 Power Summary	25
	4.2.1 Power Information	25
	4.2.2 Thermal Information	26
	4.2.3 Supply Information	26
	4.3 Power Details	26
	4.3.1 Power by Block Type	26
	4.3.2 Power by Hierarchy	27

	4.3.3 Power by Clock Domain	27
5	GPE 功耗估算工具	. 28
	5.1 POWER SUMMARY	28
	5.1.1 DEVICE	28
	5.1.2 THERMAL INFO	29
	5.1.3 VOLTAGE SOURCE POWER SUMMARY	29
	5.1.4 BLOCK POWER	30
	5.1.5 POWER SUMMARY	31
	5.2 CLOCK TREE BLOCK POWER	31
	5.3 IO BLOCK POWER	32
	5.3.1 INPUT & OUTPUT POWER	32
	5.3.2 BIDIRECTIONAL & TRI_STATE POWER	32
	5.4 LOGIC BLOCK POWER	33
	5.5 BSRAM BLOCK POWER	34
	5.5.1 SINGLE PORT BSRAM POWER	
	5.5.2 SEMI DUAL-PORT BSRAM POWER	35
	5.5.3 DUAL-PORT BSRAM POWER	35
	5.5.4 BLOCK ROM POWER	
	5.6 DSP BLOCK POWER	37
	5.7 PLL BLOCK POWER	38
	5.8 DLLDLY BLOCK POWER	38
附	'录 ▲ 结温的计算原理	39

图目录

图 3-1 新建配置文件	. 5
图 3-2 New GPA Config File 对话框	. 6
图 3-3 加载配置文件	. 6
图 3-4 GPA 窗口	. 7
图 3-5 General Setting 视图	. 8
图 3-6 Rate Setting 视图	. 10
图 3-7 Net Rate 视图	. 10
图 3-8 Net Finder 对话框	. 11
图 3-9 设置 Net 的翻转率	. 11
图 3-10 删除设置的翻转率	. 12
图 3-11 改变设置方式	. 12
图 3-12 提示翻转率为空的对话框	. 12
图 3-13 VCD File 视图	. 13
图 3-14 Add Vcd File 对话框	. 13
图 3-15 Select VCD File 对话框	. 14
图 3-16 Select Instance 对话框	. 14
图 3-17 设置波形文件起止时间	. 15
图 3-18 没有 VCD 文件提示框	. 15
图 3-19 Instance 为空提示框	. 15
图 3-20 Default Rate Setting 视图	. 16
图 3-21 Clock Setting 视图	. 16
图 3-22 Clock 视图	. 17
图 3-23 设置时钟使能	. 17
图 3-24 删除时钟使能设置	. 18
图 3-25 BSRAM 视图	. 18
图 3-26 对所有 BSRAM 设置全局使能	. 18
图 3-27 BSRAM Finder 对话框	. 19
图 3-28 指定 BSRAM 设置使能	. 20
图 3-29 IO 视图	. 20

图 3-30 Port Finder 对话框	21
图 3-31 指定 IO 设置使能特性	21
图 3-32 DFF 视图	22
图 3-33 DFF Finder 对话框	22
图 3-34 指定 DFF 设置使能特性	22
图 3-35 打开 GPA 功耗分析报告	23
图 4-1 GPA 功耗分析报告	24
图 4-2 Configure Information	25
图 4-3 Power Information	26
图 4-4 Thermal Information	26
图 4-5 Supply Information	26
图 4-6 Power By Block Type	27
图 4-7 Power By Hierarchy	27
图 4-8 Power By Clock Domain	27
图 5-1 DEVICE	28
图 5-2 THERMAL INFO	29
图 5-3 VOLTAGE SOURCE POWER SUMMARY	30
图 5-4 BLOCK POWER	30
图 5-5 POWER SUMMARY	31
图 5-6 CLOCK TREE BLOCK POWER	31
图 5-7 INPUT & OUTPUT POWER	32
图 5-8 BIDIRECTIONAL & TRI_STATE POWER	33
图 5-9 LOGIC BLOCK POWER	33
图 5-10 SINGLE PORT BSRAM POWER	34
图 5-11 SEMI DUAL-PORT BSRAM POWER	35
图 5-12 DUAL-PORT BSRAM POWER	36
图 5-13 BLOCK ROM POWER	36
图 5-14 DSP BLOCK POWER	37
图 5-15 PLL BLOCK POWER	38
図 5-16 DLLDLY BLOCK POWER	38

表目录

SUG282-2.6 v

1.1 手册内容

本手册描述高云半导体云源软件(以下简称云源)功耗分析工具的操作 方法。主要介绍工具的使用和功耗报告的分析,旨在帮助用户更加便捷地估 算和分析功耗。因软件版本更新,部分信息可能会略有差异,具体以用户软 件版本信息为准。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com</u> 可以下载、查看以下相关文档:

- SUG100, Gowin 云源软件用户指南
- SUG918, Gowin 云源软件快速入门指南

1.3 术语、缩略语

本手册中的相关术语、缩略语及相关释义请参见表 1-1。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
FPGA	Field Programmable Gate Array	现场可编程门阵列
GPA	Gowin Power Analyzer	功耗分析
GPE	Gowin Power Estimator	功耗估算
$ heta_{JA}$	Junction to Ambient	芯片与周围环境之间的热阻抗
$ heta_{JB}$	Junction to Board	器件与电路板之间的热阻抗
$ heta_{SA}$	Sink to Ambient	散热片与周围环境之间热阻抗

SUG282-2.6 1(39)

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

SUG282-2.6 2(39)

2简介

功耗分析工具是高云半导体自主研发的一款用于分析 FPGA 电路功耗的工具,旨在帮助用户分析系统功耗,提高用户设计的性能和可靠性。

用户根据设计工程的实际情况,设置影响功耗的芯片型号、工作环境以及信号翻转率等参数,功耗分析工具根据用户设置的参数,自动估算用户设计的功耗,产生功耗分析报告。

主要功能:

- 计算静态功耗 静态功耗主要是指器件中晶体管泄露电流的功率消耗,静态功耗由芯片 本身的结构、封装、工艺、电压等特性,以及芯片工作环境等因素决定。
- 计算动态功耗 动态功耗是指芯片正常工作过程中产生的功耗,动态功耗由用户设计所 包含的逻辑电路和电路活动特性等因素决定。

主要特点:

- 支持设置影响静态功耗的多种因素
 - 支持设置结温
 - 支持设置环境温度
 - 支持设置空气流动
 - 支持设置散热片和电路板散热模式
 - 支持用户自定义热阻抗参数
- 支持多种方式计算信号翻转率
 - 用户指定 IO 和 Net 信号的翻转率
 - 依据仿真生成的波形文件计算翻转率
 - 支持指定默认翻转率
- 支持用户设置工作时钟、BSRAM、IO 和 DFF 的使能特性
- 功耗分析报告支持多种方式分析功耗
 - 支持按照电压类型分析功耗

SUG282-2.6 3(39)

- 支持按照 Block 类型分析功耗
- 支持按照设计层级关系分析功耗
- 支持按照时钟域分析功耗

SUG282-2.6 4(39)

3 GPA 窗口 3.1 启动 GPA 窗口

3_{GPA}窗口

GPA 窗口通过配置器件信息、工作环境因素、工作电压、设计文件中信号的翻转率以及时钟使能等参数,帮助用户更加准确地预估设计产生的功耗。GPA 窗口配置的简单使用示例可参考 SUG918, Gowin 云源软件快速入门指商。

3.1 启动 GPA 窗口

启动 GPA 窗口前,需创建或加载配置文件(.gpa)。

3.1.1 创建/加载配置文件

创建配置文件

操作步骤如下:

- 1. 在 "Design" 窗口中, 右击选择 "New File...", 弹出 "New" 对话框;
- 2. 选择创建 "GPA Config File",如图 3-1 所示;
- 3. 单击 "OK", 弹出 "New GPA Config File"对话框,如图 3-2 所示;
- 4. 输入配置文件的名称并选择创建路径,单击"OK",创建的 GPA 配置文件参见"Design > GPA Config Files"栏。

图 3-1 新建配置文件

SUG282-2.6 5(39)

3 GPA 窗口 3.1 启动 GPA 窗口

图 3-2 New GPA Config File 对话框

加载配置文件

操作步骤如下:

- 1. 在 "Design" 窗口中,右击选择 "Add Files…" , 弹出 "Select Files" 对话框:
- 2. 选择加载已存在的配置文件 (.gpa), 如图 3-3 所示, 单击 "Open", 加载的 GPA 配置文件在 "Design > GPA Config Files"显示。

图 3-3 加载配置文件

3.1.2 打开 GPA 窗口

综合成功后,双击"Design"窗口中的配置文件(.gpa),弹出该配置文件的配置窗口,如图 3-4 所示。

GPA 窗口包括"General Setting"视图(用于配置芯片工作条件)、 "Rate Setting"视图(用于配置信号翻转率)和"Clock Setting"视图(用于配置时钟使能)。

SUG282-2.6 6(39)

图 3-4 GPA 窗口

3.2 GPA 配置

为保证功耗分析的准确性,需根据实际设计设置芯片的工作条件,设计 文件中信号的翻转率,以及 Clock、BSRAM、IO、DFF 的工作使能特性。

3.2.1 配置芯片工作条件

"General Setting"视图主要用于配置芯片的工作条件、热阻抗、电压等特性参数。

如图 3-5 所示,"General Setting"视图包括设置芯片温度等级及工艺的 Operating Conditions 视图,设置芯片工作环境的 Environment 视图和设置芯片工作电压的 Voltage 视图。

SUG282-2.6 7(39)

图 3-5 General Setting 视图

参数介绍

- 1. Operating Conditions 视图
 - Grade: 温度等级。分为商业级(Commercial)、工业级(Industrial)以及车规级(Automotive),该设置影响芯片的最小和最大工作温度,商业级温度范围是 0° ~85°C,工业级温度范围是- 40° ~100°C,车规级温度范围是- 40° ~125°C;
 - Process: 工艺。根据芯片的工艺情况,分为典型(Typical)或最差(Worst)。

2. Environment 视图

Environment 视图主要用于设置结温、环境温度、空气流动、散热片、电路板散热模式等芯片的工作环境因素。工作环境因素主要对静态功耗产生影响,工作环境的不同会影响 FPGA 芯片的结温,从而影响芯片的静态功耗。空气流动主要影响芯片的散热性能;散热片用于指定芯片通过辅助装置的散热情况;电路板散热模式用于指定芯片通过板级的散热情况。

结温由外部温度、芯片功耗以及热阻抗决定。有关结温的计算原理,请参考*附录 A 结温的计算原理*。Environment 视图的配置参数详情如下:

Junction Temperature: 结温,单位℃,取值范围与 Grade 相关,为
 Grade 温度等级下芯片的工作温度范围,默认为 25.408℃;

SUG282-2.6 8(39)

 Ambient Temperature: 环境温度,单位℃,取值范围是-60℃~160℃, 默认为 25.000℃;

- Custom Theta JA: 用户指定芯片与周围环境之间的热阻抗 θ_{JA} 。单位 $^{\circ}$ C/W,取值范围是 0.001 $^{\circ}$ C/W~100 $^{\circ}$ C/W,默认为 25.000 $^{\circ}$ C/W;
- Heat Sink: 散热片。散热片包含 None、Low Profile、Medium Profile、High Profile 和 Custom 5 种选择模式。其中,None 表示未使用散热片,此时影响结温的热阻抗只有 θ_{JA} ; Custom 表示用户指定从散热片到周围环境的热阻抗 θ_{SA} ; Low Profile、Medium Profile、High Profile模式表示 θ_{IA} 由 GPA 自动计算;
- Air Flow: 空气流动。单位英尺/分钟(LFM)或者米/秒(m/s),界面显示单位是 LFM。包括 0 LFM、100LFM(0.5 m/s)、200 LFM(1.0 m/s)、400 LFM(2.0 m/s) 4 种选择模式; Air Flow 越大,芯片到周围环境的热阻抗越小,结温也就越小;
- Custom Theta SA: 散热片与环境之间的热阻抗 θ_{SA} 。单位 $^{\circ}$ C/W,取值范围是 0.001 $^{\circ}$ C/W~100 $^{\circ}$ C/W,默认为 25.000 $^{\circ}$ C/W;
- Board Thermal Model: 电路板散热模式。电路板散热模式用于表示温度经过电路板散发到外界的路径;包括 None、Custom 和 Typical 3 种选择模式。None 表示不考虑电路板的散热效应;Custom 表示用户指定从器件到电路板的热阻抗 θ_{JB} ;Typical 表示不需用户指定,由芯片封装决定 θ_{JB} ;
- Board Temperature: 电路板的温度;
- CustomTheta JB: 从器件到电路板(junction-to-board)的热阻抗θ_{JB}。
 只有在 Board Thermal Model 选择 Custom 的情况下方能指定。

3. Voltage 视图

- VCC:器件内核电压。单位 V,各系列器件的电压取值范围详见<u>官网</u>技术文档 Pinout 手册;
- VCCX:器件辅助电压。单位 V,各系列器件的电压取值范围详见<u>官</u> 网技术文档 Pinout 手册。

3.2.2 配置信号翻转率

Rate Setting 视图用于信号翻转率的配置,可直接对 IO 或 Net 设置翻转率,也可以采用默认翻转率。

如图 3-6 所示,Rate Setting 视图包括 Net Rate 视图、VCD File 视图和 Default Rate Setting 视图。

各视图的功能如下:

- Net Rate 视图用于配置用户指定 Net 翻转率;
- VCD File 视图用于加载仿真生成的波形文件;
- Default Rate Setting 视图用于配置 IO 和 Net 的全局默认翻转率。

SUG282-2.6 9(39)

注!

用户指定配置的 Net 翻转率优先级最高,仿真生成的波形文件的 Net 翻转率优先级次之,全局默认 IO 和 Net 的翻转率优先级最低。

图 3-6 Rate Setting 视图

配置指定 Net 翻转率

Net Rate 视图用于设置用户指定 Net 的信号翻转率,如图 3-7 所示。 Net 信号翻转率的设置方式包括 TOGGLE RATE 模式和 SIGNAL RATE 模式。

单击 "%",选择 TOGGLE RATE 模式;或单击 "transition/s",选择 SIGNAL RATE 模式。

图 3-7 Net Rate 视图

注!

- TOGGLE RATE 模式: Value 值表示信号翻转速率与时钟频率的比,单位%;
- SIGNAL RATE 模式: Value 值表示信号的翻转率,单位 transition/s。
 对 Net 信号进行选择。操作步骤如下:

SUG282-2.6 10(39)

- 1. 单击" ", 弹出"Net Finder"对话框,如图 3-8 所示;
- 2. 在 Filter 文本框中输入 Net 的名称,单击 "Search";
- 3. 在显示的列表中选择要指定的 Net;
- 4. 单击"OK",完成 Net 信号的选择。

注!

亦可在表格编辑区右击选择"Add"。

图 3-8 Net Finder 对话框

注!

- "Filter"处支持通配符筛选;
- 列表处支持左键单选、Shift+左键和 Ctrl+左键的多选功能。
- 5. 选择的 Net 信号见 Net Rate 视图的表格编辑区,双击指定 Net 行对应的 Value 列单元格,在单元格中输入信号翻转率,如图 3-9 所示。

图 3-9 设置 Net 的翻转率

SUG282-2.6 11(39)

6. 在表格编辑区,选择要删除的行,单击 " 按钮,或右击选择 "Remove",弹出"Confirm"对话框,如图 3-10 所示,单击"Yes",删除该条 Net 翻转率的设置。

图 3-10 删除设置的翻转率

7. 对于已经设置的 Net 翻转率,不支持设置方式 TOGGLE RATE 和 SIGNAL RATE 之间的转换,当选择另外一种设置方式时,弹出"Sure to change unit?"对话框,提示用户如变换设置模式,将会清除已设置的 Net 翻转率,如图 3-11 所示。

图 3-11 改变设置方式

8. 对于表格编辑区中添加的 Net, 需设置 Value 值, 否则单击"保存"时, 会弹出翻转率为空的提示框, 如图 3-12 所示。

图 3-12 提示翻转率为空的对话框

加载仿真波形文件

VCD File 视图用于加载仿真生成的波形文件,如图 3-13 所示。波形文件作为计算 IO 和各 NET 翻转速率的依据,目前支持两类由 VCS 或 modelsim 仿真工具生成的波形文件: VCD 文件(Value Change Dump)和 SAIF 文件(Switching Activity Interchange File)。

SUG282-2.6 12(39)

图 3-13 VCD File 视图

注!

VCS、modelsim 工具的使用需要取得第三方授权。

加载仿真波形文件的操作步骤如下:

1. 单击" ",弹出"Add Vcd File"对话框,如图 3-14 所示;

图 3-14 Add Vcd File 对话框

注!

亦可在表格编辑区右击选择"Add Input File"。

- 3. 单击 "Instance" 右侧的 "证" 按钮, 弹出 "Select Instance" 对话框, 如图 3-16 所示, 选择要加载的 Instance, 单击 "OK" 按钮;
- 4. 如果"File"加载的是*.saif 文件,则选择"Signal Activity File";如果"File"

SUG282-2.6 13(39)

加载的是*.vcd 文件,则选择 "VCD File";

- 5. 当选择 "VCD File"时,时间配置区高亮,可设置选取 VCD 文件中的一部分时间段作为功耗分析的依据。在 Time Unit 处,单击下拉框,在下拉列表中选择时间单位 s、ms、us、ns 或 ps,如图 3-17 所示,在"Start Time"文本框中输入起始时间,在"End Time"文本框中输入停止时间;
- 6. 单击 "OK" 按钮,完成波形文件的加载。配置的 Instance 名称、波形文件名称和文件类型显示在 VCD File 视图:
- 7. 如图 3-13 所示,若勾选 "Filter glitch on VCD file"前面的复选框,表示过滤掉加载波形文件中的毛刺,目前该选项只对*.saif 文件有效。

图 3-15 Select VCD File 对话框

图 3-16 Select Instance 对话框

SUG282-2.6 14(39)

图 3-17 设置波形文件起止时间

注!

- "Signal Activity File"和"VCD File"用于指定加载文件的类型,应与加载的波形文件类型一致。
- 选择"Signal Activity File"按钮后,时间单位和起止时间呈不可配置状态。

"Add Vcd File"对话框中,如果"File"配置项为空,单击"OK"按钮,弹出没有 VCD 文件的 Warning 提示框,如图 3-18 所示。

图 3-18 没有 VCD 文件提示框

"Add Vcd File"对话框中,如果"Instance"配置项为空,单击"OK"按钮,弹出 Instance 为空的 Warning 提示框,如图 3-19 所示。

图 3-19 Instance 为空提示框

SUG282-2.6 15(39)

配置全局默认翻转率

Default Rate Setting 视图用于设置 IO 和 Net 信号的全局默认翻转率, 如图 3-20 所示。

在 Default Rate used for IO input signals 文本框中输入 IO 输入信号的翻转率,单击右侧下拉框,在下拉列表中选择翻转率单位%(TOGGLE RATE模式)或 transition/s(SIGNAL RATE模式)。

在 Default Rate used for remaining signals > Default Value 文本框中输入除 IO 输入信号之外的 IO 和未指定 Net 的默认翻转率,单击右侧下拉框,在下拉列表中选择翻转率单位%(TOGGLE RATE 模式)或 transition/s(SIGNAL RATE 模式)。

图 3-20 Default Rate Setting 视图

注!

- TOGGLE RATE 模式: Value 值表示信号翻转速率与时钟频率的比,单位%;
- SIGNAL RATE 模式: Value 值表示信号的翻转率,单位 transition/s;
- 其他情况下,按照各视图区配置信号翻转率的优先级的高低,决定 IO 和 Net 的翻转率。

3.2.3 配置时钟的工作使能特性

"Clock Setting"视图主要用于配置工作时钟以及 BSRAM、IO 和 DFF 时钟的工作使能特性。

如图 3-21 所示,"Clock Setting"视图包括 Clock 视图、BSRAM 视图、IO 视图和 DFF 视图。

图 3-21 Clock Setting 视图

SUG282-2.6 16(39)

配置工作时钟使能特性

"Clock"视图用于配置工作时钟使能特性,如图 3-22 所示,工作时钟源于 SDC 时序约束文件的指定,用户可对所有时钟进行全局使能设置,也可指定时钟进行使能设置,也可按象限对时钟进行使能设置。其中,按象限设置优先级最高,指定时钟设置优先级次之,时钟全局设置优先级最低。

图 3-22 Clock 视图

相应操作如下:

- 1. 在 "Global Enable"的文本框中输入所有时钟的全局使能时间百分比;
- 2. 单击" ",在表格编辑区会增加一行可编辑表格,如图 3-23 所示;
- 3. 指定某一行,双击 "Clock Name" 栏对应的单元格输入时钟名称;
- 4. 双击 "Clock Enable"一栏对应的单元格输入时钟使能时间百分比;
- 5. 双击 "Quad1"、"Quad2"、"Quad3"和 "Quad4" 栏对应的单元格, 对 4 个象限分别设置时钟使能时间百分比。

图 3-23 设置时钟使能

注!

- 亦可通过在表格编辑区空白处, 右击选择"Add", 在表格编辑区增加一行可编辑表格;
- Clock Name 应与设计文件/SDC 时序约束文件中的时钟名称保持一致。
- 6. 在表格编辑区内,选择要删除的行,单击" ",弹出"Confirm"对话框,如图 3-24 所示,单击"Yes",删除对该时钟的使能设置。

SUG282-2.6 17(39)

图 3-24 删除时钟使能设置

注!

亦可通过选择要删除的行,右击选择"Remove",弹出"Confirm"对话框。

配置 BSRAM 的使能特性

BSRAM 视图主要用于设置 BSRAM 的时钟以及读写操作的工作使能特性,如图 3-25 所示。用户可对设计文件中所有 BSRAM 的时钟以及读写进行全局使能设置,也可指定单个 BSRAM 进行使能设置。其中,指定单个 BSRAM 的使能设置的优先级高于所有 BSRAM 的全局使能设置。

图 3-25 BSRAM 视图

对所有 BSRAM 设置使能,如图 3-26 所示,相关设置如下所示:

- 1. 在"Clock Enable"文本框中输入 BSRAM 的工作时钟使能时间百分比;
- 2. 在 "Read Probability" 文本框中输入 BSRAM 读数据的时间百分比;
- 3. 在 "Write Probability" 文本框中输入 BSRAM 写数据的时间百分比。

图 3-26 对所有 BSRAM 设置全局使能

注!

- Clock Enable、Read Probability 以及 Write Probability 参数对设计文件中所有的 BSRAM 有效;
- 如某一 BSRAM 不存在读功能,则忽略 Read Probability 参数,如不存在写功能,则忽略 Write Probability 参数。

对指定 BSRAM 设置使能,先添加 BSRAM, 然后对指定 BSRAM 设置使能。

SUG282-2.6 18(39)

添加 BSRAM

单击" ", 弹出"BSRAM Finder"对话框, 如图 3-27 所示;

- 1. 在 Filter 文本框中输入 BSRAM 的实例化名称,单击 "Search";
- 2. 在显示的列表中选择要指定的 BSRAM,单击"OK",完成 BSRAM 的添加。

图 3-27 BSRAM Finder 对话框

注!

- 亦可在表格编辑区空白处右击选择 "Add", 弹出 "BSRAM Finder" 对话框;
- "Filter"处支持通配符筛选;
- 列表处支持左键单选、Shift+左键和 Ctrl+左键的多选功能。

对指定 BSRAM 设置使能

添加的 BSRAM 实例化名称在 BSRAM 视图的表格编辑区显示,如图 3-28 所示,具体操作步骤如下:

- 1. 选中某一行,双击 "ClockA Enable" 栏对应的单元格,输入 BSRAM 的 ClockA 时钟使能时间百分比:
- 2. 双击"ReadA Probability"栏对应的单元格输入 BSRAM 的 ClockA 读数据的时间百分比:
- 3. 双击"WriteA Probability"栏对应的单元格输入 BSRAM 的 ClockA 写数据的时间百分比;
- 4. 双击 "ClockB Enable" 栏对应的单元格输入 BSRAM 的 ClockB 时钟使能时间百分比:
- 5. 双击"ReadB Probability" 栏对应的单元格输入 BSRAM 的 ClockB 读数据的时间百分比:
- 6. 双击"WriteB Probability" 栏对应的单元格输入 BSRAM 的 ClockB 写数据的时间百分比。

SUG282-2.6 19(39)

图 3-28 指定 BSRAM 设置使能

注!

- 如指定的 BSRAM 不存在 A 口的读功能,则 ReadA Probability 栏不可编辑,如不存在 B 口的写功能,则 WriteB Probability 栏不可编辑;
- 如指定的 BSRAM 不存在 B 端口,则 ClockB Enable、ReadB Probability、WriteB Probability 栏不可编辑。

删除对该 BSRAM 的使能设置。

- 1. 在表格编辑区中,选择要删除的行,单击" ",弹出"Confirm"对 话框,如图 3-24 所示;
- 2. 单击 "Yes",删除对该 BSRAM 的使能设置。

注!

亦可通过选中要删除的行,右击选择"Remove", 弹出"Confirm"对话框。

配置 IO 使能特性

"IO"视图主要用于配置 IO 的 OEN 使能和输出负载等特性,如图 3-29 所示。

可指定对设计文件中的双向 Buffer 设置 OEN 使能百分比,用于计算输入/输出的功耗,如未指定,采用默认值 50%;可指定对设计文件中的 TLVDS Buffer 设置负载电容值,单位 pF,用于计算输出功耗,如未指定,采用默认值 5pF。

图 3-29 IO 视图

- 1. 单击" ¹",弹出"Port Finder"对话框,如图 3-30 所示;
 - a) 在 Filter 文本框中输入 Port 的名称,单击 "Search":
 - b) 在显示的列表中选择要指定的Port,单击"OK",完成Port的添加。

SUG282-2.6 20(39)

图 3-30 Port Finder 对话框

注!

- 亦可在表格编辑区空白处右击选择 "Add", 弹出 "Port Finder" 对话框;
- "Filter"处支持通配符筛选;
- 列表处支持左键单选、Shift+左键和 Ctrl+左键的多选功能。
- 2. 指定 IO 设置使能特性
 - a) 添加的 Port 名称显示在 IO 视图的表格编辑区,如图 3-31 所示;
 - b) 指定某一行,双击 "Out Enable" 栏对应的单元格输入 OEN 使能时间百分比:
 - c) 双击 "Load Capacity" 栏对应的单元格输入负载电容值。

图 3-31 指定 IO 设置使能特性

注!

当指定的 Buffer 没有 OEN 功能时, "Out Enable"不可编辑。

- 3. 删除对该 IO 的使能设置
 - a) 在表格编辑区内,选择要删除的行,单击"[™]",弹出"Confirm"对话框,如图 3-24 所示;
 - b) 单击"Yes",删除对该 IO 的使能设置。

注!

亦可通过选中要删除的行,右击选择"Remove", 弹出"Confirm"对话框。

配置 DFF 使能特性

"DFF"视图主要用于配置 DFF 工作时钟的使能特性,如图 3-32 所示。

SUG282-2.6 21(39)

图 3-32 DFF 视图

1. 添加 DFF

- a) 单击 "¹",弹出 "DFF Finder"对话框,如图 3-33 所示;
- b) 在 Filter 文本框中输入 DFF 的实例化名称,单击 "Search";
- c) 在显示的列表中选择需指定的 DFF, 单击 "OK", 完成 DFF 的添加。

图 3-33 DFF Finder 对话框

注!

- 亦可通过在表格编辑区右击选择"Add", 弹出"DFF Finder"对话框:
- "Filter"处支持通配符筛选;
- 列表处支持左键单选、Shift+左键和 Ctrl+左键的多选功能。
- 2. 指定 DFF 设置使能特性
 - a) 添加的 DFF 的实例化名称显示在 DFF 视图的表格编辑区,如图 3-34 所示;
 - b) 指定某一行,双击"Value"栏对应的单元格,输入 DFF 时钟使能时间百分比。

图 3-34 指定 DFF 设置使能特性

SUG282-2.6 22(39)

3. 删除对该 DFF 的时钟使能设置

- a) 在表格编辑区中,选择要删除的行,单击 "ズ",弹出 "Confirm" 对话框,如图 3-24 所示;
- b) 单击"Yes",删除对该 DFF 的时钟使能设置。

注!

亦可通过选中要删除的行,右击选择"Remove",弹出"Confirm"对话框。

3.3 产生 GPA 功耗分析报告

GPA 文件的配置完成后,单击"冒"按钮,进行保存,在"Process"窗口中,双击"Place&Route",进行整个工程的布局布线操作,产生 GPA 功耗分析报告。

在"Process"窗口中,双击"Place&Route > Power Analysis Report", 弹出 GPA 功耗分析报告,如图 3-35 所示。

图 3-35 打开 GPA 功耗分析报告

SUG282-2.6 23(39)

4 GPA 功耗分析报告 4.1 Power Messages

4GPA 功耗分析报告

GPA 功耗分析报告显示根据用户设置的功耗参数计算所得的功耗预估结果,旨在帮助用户更方便地分析设计功耗,解决用户自行计算难题。

GPA 功耗分析报告的结构分为标题导航和正文内容两部分,如图 4-1 所示。标题导航用于层级显示报告内容的标题,与正文内容进行超链接,旨在帮助用户更加便捷地查找所需内容。

功耗分析报告内容主要分为 Power Messages、Power Summary 和 Power Details 三部分。Power Messages 主要介绍器件信息、设计工程的文件以及 GPA 部分配置信息;Power Summary 主要介绍用户设置的参数以及计算出的功耗结果;Power Details 主要介绍 Block 类型、设计层级关系和时钟域方面的功耗情况。

图 4-1 GPA 功耗分析报告

Power Messages

Configure Information

Power Summary

- Power Information
- Thermal Information
- Supply Information

Power Details

- Power By Block Type
- Power By Hierarchy
- Power By Clock Domain

Power Summary

Power Information:

Total Power (mW)	7.640
Quiescent Power (mW)	7.030
Dynamic Power (mW)	0.611

Thermal Information:

Junction Temperature	25.200
Theta JA	29.000
Max Allowed Ambient Temperature	84.800

4.1 Power Messages

Power Messages 包含功耗分析报告的标题(Report Title),设计文件信息(Design File)、物理约束文件信息(Physical Constraints File)、时序约束文件信息(Timing Constraints File)、云源版本信息(Tool Version)、芯片型号(Part Number)、器件信息(Device)、器件版本信息(Device Version,若器件无版本信息,则不显示该行)、功耗分析报告的创建时间(Created Time)以及法律声明(Legal Announcement)。

SUG282-2.6 24(39)

4 GPA 功耗分析报告 4.2 Power Summary

4.1.1 Configure Information

Configure Information 用于报告 GPA 配置界面的部分配置信息,如图 4-2 所示。

图 4-2 Configure Information

Configure Information:

Grade	Commercial	(1)
Process	Typical	2
Ambient Temperature	25.000	3
Use Custom Theta JA	false	4
Heat Sink	Medium Profile	5
Air Flow	LFM_0	6
Use Custom Theta SA	false	7
Board Thermal Model	Custom	8
Board Temperature	25.000	9
Use Custom Theta JB	true	10
Related Vcd File		11
Related Saif File		12
Filter Glitches	false	13
Default IO Toggle Rate	0.125	14)
Default Remain Toggle Rate	0.125	15)

- ① 温度等级
- (2) 工艺
- ③ 环境温度
- ④ 用户是否自定义 θ_{IA}
- (5) 散热片模式
- ⑥ 空气流动
- ⑦ 用户是否自定义 θ_{SA}
- ⑧ 电路板散热模式
- 9 电路板温度
- 10 用户是否自定义 θ_{IB}
- ① 用户加载的 vcd 文件 路径
- ① 用户加载的 saif 文件 路径
- (13) 是否过滤毛刺
- (14) IO 信号翻转率
- (15) 其它信号翻转率

4.2 Power Summary

Power Summary 包括报告总功耗的 Power Information、报告热阻抗等信息的 Thermal Information 和报告电压信息的 Supply Information。

4.2.1 Power Information

Power Information 用于报告总功耗、总静态功耗和总动态功耗,如图 4-3 所示。

SUG282-2.6 25(39)

4 GPA 功耗分析报告 4.3 Power Details

图 4-3 Power Information

Power Information:

Total Power (mW)	1.925
Quiescent Power (mW)	1.354
Dynamic Power (mW)	0.570

4.2.2 Thermal Information

Thermal Information 用于报告结温、热阻抗 θ_{JA} 、热阻抗 θ_{JB} 和最大允许的环境温度,如图 4-4 所示。

图 4-4 Thermal Information

Thermal Information:

Junction Temperature	25.019	1
Theta JA	5.550	2
Theta JB	3.600	3
Max Allowed Ambient Temperature	84.981	4

1 结温

② 热阻抗 θ_{IA}

③ 热阻抗 θ_{IB}

4) 最大允许的环境温度

注!

- Junction Temperature: 裸片的工作温度;
- 当结温大于芯片最大允许的工作温度时,结温标红。

4.2.3 Supply Information

Supply Information 用于报告器件的内核电压、辅助电压、IO Bank 电压,及其动态电流,静态电流和功耗,如图 4-5 所示。

图 4-5 Supply Information

Supply Information:

Voltage Source	Voltage	Dynamic Current(mA)	Quiescent Current(mA)	Power(mW)
VCC	1.200	0.208	2.461	3.202
VCCX	2.500	0.085	0.682	1.918
VCCIO12	1.200	0.070	0.016	0.103
VCCIO18	1.800	0.015	0.013	0.050

4.3 Power Details

Power Details 包括按照 Block 类型报告功耗的 Power By Block Type,按照设计的层级关系报告功耗的 Power By Hierarchy 和按照时钟域报告功耗的 Power By Clock Domain 部分。

4.3.1 Power by Block Type

Power By Block Type 是按照 Block 的类型报告设计文件所包括的 Block

SUG282-2.6 26(39)

4 GPA 功耗分析报告 4.3 Power Details

的总功耗、静态功耗和平均翻转率,如图 4-6 所示。Block 的类型包括 Logic、IO、BSRAM、DSP、PLL、DQS 以及 DLLDLY 等多种类型。

图 4-6 Power By Block Type

Power Details

Power By Block Type:

Block Type	Total Power(mW)	Static Power(mW)	Average Toggle Rate(millions of transitions/sec)
IO	1.624	0.296	23.438
BSRAM	2.033	NA	NA

注!

NA 表示不考虑该项参数。

4.3.2 Power by Hierarchy

Power By Hierarchy 是按照设计文件的层级关系报告设计文件中从顶层到底层模块的总功耗及动态功耗,如图 4-7 所示。

图 4-7 Power By Hierarchy

Power By Hierarchy:

Hierarchy Entity	Total Power(mW)	Block Dynamic Power(mW)
top	0.015	0.015(0.015)
top/sub_inst1/	0.008	0.008(0.000)
top/sub_inst2/	0.008	0.008(0.000)

4.3.3 Power by Clock Domain

Power By Clock Domain 是按照时钟域报告工作时钟的名称、频率和动态功耗,如图 4-8 所示。

图 4-8 Power By Clock Domain

Power By Clock Domain:

Clock Domain	Clock Frequency(Mhz)	Total Dynamic Power(mW)
clk2	100.000	0.053
clk1	100.000	0.072

SUG282-2.6 27(39)

5 GPE 功耗估算工具 5.1 POWER SUMMARY

5GPE 功耗估算工具

GPE 功耗估算工具以表格配置形式计算功耗,通过配置芯片型号、工作环境、工作电压、信号的翻转率以及时钟使能等参数,帮助用户更加准确的估算设计产生的功耗。

5.1 POWER SUMMARY

POWER SUMMARY 主要包括 DEVICE、THERMAL INFO、VOLTAGE SOURCE POWER、BLOCK POWER、POWER SUMMARY 模块。

- DEVICE: 配置器件信息;
- THERMAL INFO: 配置环境温度及热阻抗信息, 计算结温;
- VOLTAGE SOURCE POWER:显示各电压源的电流及功耗;
- BLOCK POWER: 显示各模块的总动态功耗:
- POWER SUMMARY:显示各电压源的总静态功耗、总动态功耗及总功耗。

5.1.1 DEVICE

DEVICE 配置如图 5-1。该模块可配置芯片的器件、封装、速度等级、工艺等。

图 5-1 DEVICE

DEVICE			
DEVICE	GW2A_55C		
PACKAGE	PBGA484		
SPEED GRADE	8		
PROCESS	WORST		
TEMP GRADE	COMMERCIAL		

DEVICE:器件信息;● PACKAGE:封装信息;

SUG282-2.6 28(39)

5 GPE 功耗估算工具 5.1 POWER SUMMARY

- SPEED GRADE: 芯片速度等级信息;
- PROCESS: 工艺,根据芯片的工艺情况,分为典型(TYPICAL)或最 差(WORST):
- TEMP GRADE: 选择商业级(COMMERCIAL)、工业级(INDUSTRIAL) 或车规级(AUTOMOTIVE)。

注!

器件 GW2A 55C 即云源中的 GW2A-55C。

5.1.2 THERMAL INFO

THERMAL INFO 配置如图 5-2。该模块可配置环境温度,空气流动及电路板信息。

图 5-2 THERMAL INFO

THERMAL INFO								
AMBIENT TEMP(°C)	25							
AIR FLOW	0							
BOARD	1SOP							
⊖JA (℃/▼)	36.176							
JUNCTION TEMP(°C)	30.992							

- AMBIENT TEMP:环境温度可配置范围为-40℃~125℃,其中商业级温度范围是 0℃~85℃,工业级温度范围是-40℃~100℃,车规级温度范围是-40℃~125℃;
- AIR FLOW: 空气流动,单位为英尺/分钟(LFM),可选项有 0、100、200、400:
- BOARD: 符合 JEDEC 标准的 PCB 板;
- θ」A: 热阻抗 θ」A 不可配置, 热阻抗 θ」A 由器件封装、空气流动及电路板 决定;
- JUNCTION TEMP: 结温不可配置,结温由外部温度、芯片功耗以及热阻抗决定。当结温大于芯片最大允许的工作温度时,结温单元格底色标红。

注!

鼠标悬浮在红色三角处,显示该项含义解释,下同。

5.1.3 VOLTAGE SOURCE POWER SUMMARY

VOLTAGE SOURCE POWER SUMMARY 模块如图 5-3, 该模块显示各电压源的静态电流、动态电流以及总功耗。

SUG282-2.6 29(39)

5 GPE 功耗估算工具 5.1 POWER SUMMARY

VO	OLTAGE SOU	RCE POWI	ER SUMMA	ARY
	VOLTAGE (V)	ICCQ(A)	ICC(A)	POWER (W)
VCC	1	0.080	0.000	0.080
VCCX	3.3	0.026	0.000	0.086
VCCO 3.3	3.3	0.000	0.000	0.000
VCCO 2.5	2.5	0.000	0.000	0.000
VCCO 1.8	1.8	0.000	0.000	0.000
VCCO 1.5	1.5	0.000	0.000	0.000
VCC0 1.2	1.2	0. 000	0. 000	0. 000

图 5-3 VOLTAGE SOURCE POWER SUMMARY

- VOLTAGE: 各电压源的电压,可配置 VCC、VCCX 电压,单位为 V:
- ICCQ: 各电压源的静态电流,单位为 A;
- ICC: 各电压源的动态电流,单位为 A:
- POWER: 各电压源的总功耗,即静态功耗+动态功耗,单位为W:
- VCC: 内核电压:
- VCCX: 辅助电压;
- VCCO: bank 电压, VCCO 3.3 代表 bank 电压为 3.3V,对于 VCCO 2.5, VCCO 1.8, VCCO 1.5, VCCO 1.2 也是同理。bank 电压不可配置,由 IO BLOCK 中的 IO_TYPE 决定。

5.1.4 BLOCK POWER

BLOCK POWER 如图 5-4,该模块显示各子模块的总动态功耗。

图 5-4 BLOCK POWER

BLOCK POW	ER
BLOCK	POTER (T)
CLOCK TREE	0.000
IO	0.000
LOGIC	0.000
BSRAM	0.000
DSP	0.000
PLL	0.000
DLLDLY	0.000

- BLOCK:包括 <u>CLOCK TREE</u> 模块、<u>IO</u> 模块、<u>LOGIC</u> 模块、<u>BSRAM</u> 模块、<u>DSP</u> 模块、<u>PLL</u> 模块、<u>DLLDLY</u> 模块,单击各子模块,可跳转至子模块功耗计算的 sheet,查看具体的功耗;
- POWER: 各子模块的总动态功耗,单位为W。

SUG282-2.6 30(39)

5.1.5 POWER SUMMARY

POWER SUMMARY 如图 5-5,该模块显示所有电压源的总静态功耗,总动态功耗及总功耗。

图 5-5 POWER SUMMARY

- QUIESCENT POWER: 所有电压源的总静态功耗,单位为W:
- DYNAMIC POWER: 所有电压源的总动态功耗,单位为W;
- TOTAL POWER: 所有电压源的总功耗,单位为W。

5.2 CLOCK TREE BLOCK POWER

CLOCK TREE BLOCK POWER 如图 5-6,通过配置时钟频率、时钟信号的总扇出、时钟使能来计算时钟树的功耗。

图 5-6 CLOCK TREE BLOCK POWER

C	LOCK TR	REE BLO	CK POWI	ER								
CLOCK NAME FREQUECY TOTAL ENABLE POWER (W)												
	0.000	0	100%	0.000000								
	0.000	0	100%	0.000000								
	0.000	0	100%	0.000000								
	0.000	0	100%	0.000000								
	TOT	AL POWER	R (W)	0.00000								

- CLOCK NAME: 时钟名字:
- FREQUENCY: 时钟频率,单位 MHz;
- TOTAL FANOUT: 时钟信号的总扇出;
- ENABLE: 时钟使能百分比;
- POWER: 表格中每行时钟的功耗,单位为W;
- TOTAL POWER: 所有时钟的总功耗,单位为W。

SUG282-2.6 31(39)

5 GPE 功耗估算工具 5.3 IO BLOCK POWER

5.3 IO BLOCK POWER

5.3.1 INPUT & OUTPUT POWER

INPUT & OUTPUT POWER 用于配置输入 Buffer、输出 Buffer 的功耗,如图 5-7。通过配置时钟频率、IO_TYPE、IO 数据速率、IO 翻转率、负载电容、I/O 的数目来计算 IO 的功耗。

图 5-7 INPUT & OUTPUT POWER

			INPUT	& OU'	TPUT POWE	R			
CLOCK NAME	FREQUECY (MHz)	IO TYPE	IO DATA RATE	TOGGLE RATE	OUTPUT CAPACITIVE LOAD(pF)	IN PINs	OUT PINs	BANK	POTER (T)
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	0	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	0	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	0	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	0	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	0	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	0	0	0.000000
							TOTAL P	OVER	0.000000

- CLOCK NAME: 时钟名字:
- FREQUENCY: 时钟频率,单位 MHz;
- IO_TYPE: IO_TYPE 及 DRIVE;
- IO DATA RATE: IO 的数据速率,可选项有 SDR、DDR;
- TOGGLE RATE: IO 的平均翻转率,单位为%,表示 IO 翻转速率与时钟 频率的比值;
- OUTPUT CAPACITIVE LOAD: 作用于输出信号的负载电容;
- IN PINs: 输入 PIN 或差分对的数目;
- OUT PINs:输出 PIN 或差分对的数目;
- BANK: I/O 所在的 bank;
- POWER: 表格中每行 IO 的功耗,单位为 W:
- TOTAL POWER: INPUT & OUTPUT POWER 模块配置的 IO 的总功耗, 单位为 W。

5.3.2 BIDIRECTIONAL & TRI STATE POWER

BIDIRECTIONAL & TRI_STATE POWER 用于配置双向 Buffer 和三态输出 Buffer 的功耗,如图 5-8。通过配置时钟频率、IO_TYPE、IO 数据速率、IO 翻转率、负载电容、输出使能、INOUT 的数目来计算 IO 的功耗。

SUG282-2.6 32(39)

		BIDIRE	ECTIO	NAL &	TRI_STATE	E POWI	ER		
CLOCK NAME	FREQUECY (THz)	IO TYPE	IO DATA RATE	TOGGLE RATE	OUTPUT CAPACITIVE LOAD(pF)	INOUT PINs	OUTPUT ENABLE	BANK	POWER (W)
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	100.00%	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	100.00%	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	100.00%	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	100.00%	0	0.000000
	0.000	LVCMOS18_8mA	SDR	12.50%	0	0	100.00%	0	0.000000
							TOTAL H		0.000000
							IO POWI	ER (W)	0

图 5-8 BIDIRECTIONAL & TRI_STATE POWER

- CLOCK NAME: 时钟名字:
- FREQUENCY: 时钟频率,单位 MHz;
- IO_TYPE: IO_TYPE 及 DRIVE;
- IO DATA RATE: IO 的数据速率,选项包含 SDR、DDR;
- TOGGLE RATE: IO 的平均翻转率,单位为%,表示 IO 翻转速率与时钟 频率的比值;
- OUTPUT CAPACITIVE LOAD: 作用于输出信号的负载电容:
- INOUT PINs: 双向 Buffer、三态输出 buffer PIN 或差分对的数目;
- **OUTPUT ENABLE**:输出使能百分比;
- BANK: I/O 所在的 bank, 可通过设置 bank, 观察每个 bank 上的功耗;
- POWER: 表格中每行 IO 的功耗,单位为W;
- TOTAL POWER: BIDIRECTIONAL & TRI_STATE POWER 模块配置的 IO 的总功耗,单位为 W;
- IO POWER: 所有 IO 的总功耗,即 INPUT & OUTPUT POWER 模块及 BIDIRECTIONAL & TRI_STATE POWER 模块所有 IO 的功耗,单位为 W。

5.4 LOGIC BLOCK POWER

LOGIC BLOCK POWER 如图 5-9。通过配置时钟频率、LUT、SSRAM、ALU、FF 的数目、信号的平均扇出及平均翻转率,从而计算 Logic 的功耗。

图 5-9 LOGIC BLOCK POWER

		LO	GIC	BLO	CK 1	POWER		
CLOCK NAME	FREQUECY (IHz)	LUTs	SSRA∎s	ALUs	FFs	AVERAGE FANOUT	TOGGLE RATE	POWER (W)
	0.000	0	0	0	0	1	12.50%	0.000000
	0.000	0	0	0	0	1	12.50%	0.000000
	0.000	0	0	0	0	1	12.50%	0.000000
	0.000	0	0	0	0	1	12.50%	0.000000
	0.000	0	0	0	0	1	12.50%	0.000000
	0.000	0	0	0	0	1	12.50%	0.000000
					TO	TAL POW	ER (W)	0.000000

SUG282-2.6 33(39)

- CLOCK NAME: 时钟名字:
- FREQUENCY: 时钟频率,单位 MHz;
- LUTs: 时钟驱动的 LUT 的数目;
- SSRAMs: 时钟驱动的 SSRAM 的数目;
- ALUs: 时钟驱动的 ALU 的数目;
- FFs: 时钟驱动的 FF 的数目;
- AVERAGE FANOUT: 时钟驱动的 logic 模块的信号平均扇出,可取值为 1、2、3、4、5:
- TOGGLE RATE: 时钟驱动的 logic 模块的信号的平均翻转率,单位为%, 表示信号翻转速率与时钟频率的比值;
- POWER: 表格中每行 logic 的功耗,单位为 W;
- TOTAL POWER: 所有 logic 的总功耗,单位为W。

5.5 BSRAM BLOCK POWER

5.5.1 SINGLE PORT BSRAM POWER

SINGLE PORT BSRAM POWER 如图 5-10,通过配置时钟频率、时钟使能、读使能、写使能、数据位宽、数据信号翻转率、BSRAM 的数目来计算单端口 BSRAM 的功耗。

图 5-10 SINGLE PORT BSRAM POWER

	SINGLE PORT BSRAM POWER											
CLOCK NAME	FREQUECY (THz)	ENABLE RATE	READ RATE	WRITE RATE	BIT VIDTH	TOGGLE RATE	SPs	POTER (T)				
	0.000	100%	100%	50%	1	12.50%	0	0.000000				
	0.000	100%	100%	50%	1	12.50%	0	0.000000				
	0.000	100%	100%	50%	1	12.50%	0	0.000000				
	0.000	100%	100%	50%	1	12.50%	0	0.000000				
	0.000	100%	100%	50%	1	12.50%	0	0.000000				
						TOTAL PO	OVER	0.000000				

- CLOCK NAME: 时钟名字:
- FREQUENCY: 单端口 BSRAM 的时钟频率,单位 MHz:
- ENABLE RATE: 单端口 BSRAM 的时钟使能百分比:
- READ RATE:单端口 BSRAM 的读使能百分比;
- WRITE RATE: 单端口 BSRAM 的写使能百分比;
- BIT WIDTH: 单端口 BSRAM 的数据位宽;
- TOGGLE RATE:单端口 BSRAM 的数据信号的平均翻转率;
- SPs: 单端口 BSRAM 的数目,小蜜蜂和晨熙家族的单端口 BSRAM 类型有 SP、SPX9:
- POWER: 表格中每行单端口 BSRAM 的功耗,单位为 W;
- TOTAL POWER: 所有单端口 BSRAM 的总功耗,单位为 W。

SUG282-2.6 34(39)

5.5.2 SEMI DUAL-PORT BSRAM POWER

SEMI DUAL-PORT BSRAM POWER 如图 5-11,通过配置时钟频率、时钟使能、读使能、写使能、数据位宽、数据信号翻转率、BSRAM 的数目来计算伪双端口 BSRAM 的功耗。

图 5-11 SEMI DUAL-PORT BSRAM POWER

				SI	SMI DUA	T-LOR	RT BSRAM	POWER	į.				
PORTA PORTB													
PORTA CLOCK NAME	FREQUECY (THz)	ENABLE RATE	VRITE RATE	BIT VIDTH	TOGGLE RATE	PORTB CLOCK NAME	FREQUECY (THz)	ENABLE RATE	READ RATE	BIT ▼IDTH	TOGGLE RATE	SDPs	POWER (W)
	0.000	100%	100%	1	12.50%		0.000	100%	100%	1	12.50%	0	0.00000
	0.000	100%	100%	1	12.50%		0.000	100%	100%	1	12.50%	0	0.00000
	0.000	100%	100%	1	12.50%		0.000	100%	100%	1	12.50%	0	0.00000
	0.000	100%	100%	1	12.50%		0.000	100%	100%	1	12.50%	0	0.00000
	0.000	100%	100%	1	12.50%		0.000	100%	100%	1	12.50%	0	0.00000
											TOTAL F		0. 000000

- PORTA: 配置 A 端口的时钟频率、时钟使能、写使能、数据位宽及翻转率:
- PORTB: 配置 B 端口的时钟频率、时钟使能、读使能、数据位宽及翻转率:
- PORTA CLOCK NAME: 伪双端口 BSRAM A 端口的时钟名字;
- PORTB CLOCK NAME: 伪双端口 BSRAM B 端口的时钟名字:
- FREQUENCY: 伪双端口 BSRAM 时钟频率,单位 MHz;
- ENABLE RATE: 伪双端口 BSRAM 时钟使能百分比:
- READ RATE: 伪双端口 BSRAM 的读使能百分比:
- WRITE RATE: 伪双端口 BSRAM 的写使能百分比;
- BIT WIDTH: 伪双端口 BSRAM 数据位宽;
- TOGGLE RATE: 伪双端口 BSRAM 数据信号的平均翻转率;
- SDPs: 伪双端口 BSRAM 的数目,小蜜蜂和晨熙家族的伪双端口 BSRAM 类型有 SDPB、SDPX9B;
- POWER: 表格中每行伪双端口 BSRAM 的功耗,单位为 W:
- TOTAL POWER: 所有伪双端口 BSRAM 的总功耗,单位为 W。

5.5.3 DUAL-PORT BSRAM POWER

DUAL-PORT BSRAM POWER 如图 5-12,通过配置时钟频率、时钟使能、读使能、写使能、数据位宽,数据信号翻转率、BSRAM 的数目来计算双端口 BSRAM 的功耗。

SUG282-2.6 35(39)

					DU	AL-PO	RT BSRAM	A POWE	R					
		PORTA						P	ORTB					
PORTA CLOCK NAME	FREQUECY (THz)	ENABLE RATE	READ RATE		BIT VIDTH	PORTB CLOCK NAME	FREQUECY (THz)	ENABLE RATE	READ RATE	VRITE RATE	BIT TIDTH	TOGGLE RATE	DPs	POVER
	0.000	100%	100%	50%	1		0.000	100%	100%	50%	1	12.50%	0	0.00000
	0.000	100%	100%	50%	1		0.000	100%	100%	50%	1	12.50%	0	0.00000
	0.000	100%	100%	50%	1		0.000	100%	100%	50%	1	12.50%	0	0.00000
	0.000	100%	100%	50%	1		0.000	100%	100%	50%	1	12.50%	0	0.00000
	0.000	100%	100%	50%	1		0.000	100%	100%	50%	1	12.50%	0	0.00000
												TOTA POWE	_	0.00000

图 5-12 DUAL-PORT BSRAM POWER

- PORTA: 配置 A 端口的时钟频率、时钟使能、读使能、写使能、数据位 宽及翻转率;
- PORTB: 配置 B 端口的时钟频率、时钟使能、读使能、写使能、数据位 宽及翻转率;
- PORTA CLOCK NAME:双端口 BSRAM A 端口的时钟名字:
- PORTB CLOCK NAME: 双端口 BSRAM B端口的时钟名字;
- FREQUENCY: 双端口 BSRAM 的时钟频率,单位 MHz;
- ENABLE RATE: 双端口 BSRAM 的时钟使能百分比;
- READ RATE: 双端口 BSRAM 的读使能百分比;
- WRITE RATE: 双端口 BSRAM 的写使能百分比;
- BIT WIDTH: 双端口 BSRAM 的数据位宽:
- TOGGLE RATE: 双端口 BSRAM 数据信号的平均翻转率;
- DPs:双端口 BSRAM 的数目,小蜜蜂和晨熙家族的双端口 BSRAM 类型有 DPB、DPX9B:
- POWER:表格中每行双端口 BSRAM 的功耗,单位为 W;
- TOTAL POWER: 所有双端口 BSRAM 的总功耗,单位为 W。

5.5.4 BLOCK ROM POWER

BLOCK ROM POWER 如图 5-13,通过配置时钟频率、时钟使能、读使能、数据信号翻转率、BLOCK ROM 的数目来计算 BLOCK ROM 的功耗。

图 5-13 BLOCK ROM POWER

	BLOCK ROM POWER											
CLOCK NAME	FREQUECY (∎Hz)	ENABLE RATE	READ RATE	BIT VIDTH	TOGGLE RATE	RO∎s	POTER (T)					
	0.000	100%	100%	1	12.50%	0	0.000000					
	0.000	100%	100%	1	12.50%	0	0.000000					
	0.000	100%	100%	1	12.50%	0	0.000000					
	0.000	100%	100%	1	12.50%	0	0.000000					
	0.000	100%	100%	1	12.50%	0	0.000000					
					TOTAL I		0.000000					
					BSRAT 7		0.000000					

SUG282-2.6 36(39)

- CLOCK NAME: 时钟名字:
- FREQUENCY: 只读存储器的时钟频率,单位 MHz;
- ENABLE RATE: 只读存储器的时钟使能百分比;
- READ RATE: 只读存储器的读使能百分比;
- BIT WIDTH: 只读存储器的数据位宽;
- TOGGLE RATE: 只读存储器数据信号的平均翻转率;
- ROMs: 只读存储器的数目,小蜜蜂和晨熙家族的只读存储器类型有pROM、pROMX9;
- POWER: 表格中每行 BLOCK ROM 的功耗,单位为 W;
- TOTAL POWER: 所有 BLOCK ROM 的总功耗,单位为 W;

5.6 DSP BLOCK POWER

DSP BLOCK POWER 如图 5-14。通过配置时钟频率、信号翻转率、DSP 类型及 DSP 的数目来计算 DSP 的功耗。

图 5-14 DSP BLOCK POWER

	DSI	P BLOC	K POWER						
CLOCK NAME	LOCK NAME FREQUECY TOGGLE DSP TYPE DSPs								
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
	0.000	12.50%	MULT9X9	0	0.000000				
				TAL WER	0.000000				

- CLOCK NAME: 时钟名字:
- FREQUENCY: 时钟频率,单位 MHz:
- TOGGLE RATE: DSP 输出信号的平均翻转率:
- DSP TYPE: DSP 的类型, 小蜜蜂和晨熙家族的 DSP 类型有 MULT9X9、MULT18X18、MULT36X36、PADD9、PADD18、MAULTALU18X18、MAULTALU36X18、MULTADDALU18X18、ALU54D;
- DSPs: DSP 的数目;
- POWER: 表格中每行 DSP 的功耗,单位为 W:
- TOTAL POWER: 所有 DSP 的总功耗,单位为 W。

SUG282-2.6 37(39)

5 GPE 功耗估算工具 5.7 PLL BLOCK POWER

5.7 PLL BLOCK POWER

PLL BLOCK POWER 如图 5-15。通过配置输入时钟频率及 PLL 的数目来计算 PLL 的功耗。

图 5-15 PLL BLOCK POWER

PLL BLOCK POWER				
CLOCK NAME	FREQUECY (MHz)	PLLs	POWER (W)	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	TOTAL POWER (W)		0. 000000	

- CLOCK NAME: 时钟名字:
- FREQUENCY: PLL 的输入时钟频率,单位 MHz;
- PLLs: PLL 的数目:
- POWER: 表格中每行 PLL 的功耗,单位为 W;
- TOTAL POWER: 所有 PLL 的总功耗,单位为 W。

5.8 DLLDLY BLOCK POWER

DLLDLY BLOCK POWER 如图 5-16,通过配置输入时钟频率及 DLLDLY 的数目来计算 DLLDLY 的功耗。

图 5-16 DLLDLY BLOCK POWER

DLLDLY BLOCK POWER				
CLOCK NAME	FREQUECY (MHz)	DLLDLYs	POTER	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	0.000	0	0.000000	
	TOTAL P	OWER (W)	0.000000	

- CLOCK NAME: 时钟名字:
- FREQUENCY: DLLDLY 的输入时钟频率,单位 MHz;
- DLLDLYs: DLLDLY的数目;
- POWER: 表格中每行 DLLDLY 的功耗,单位为 W;
- TOTAL POWER: 所有 DLLDLY 的总功耗,单位为 W。

SUG282-2.6 38(39)

附录 🛕 结温的计算原理

结温(TJ)是指裸片的工作温度,由外部温度(TA)、芯片功耗(P)以及芯片自身和外部的散热特性决定;裸片的温度通过散热的方式与外部环境达到平衡;散热的方式分为有散热片和无散热片两类:

● 无散热片模式

该模式主要通过开发板和芯片封装外壳(CASE)将热量散出,热阻抗(θ_{JA})表示消耗的单位功耗对应的温度的上升,单位($\mathbb{C}M$),受空气流动的影响,不使用散热片时,功率 P 和热阻抗 θ_{JA} 以及 TJ、TA 的关系如公式 1 所示:

$$P = (TJ - TA)/\theta_{IA}$$
 (公式 1)

● 散热片模式

芯片热量通过封装外壳,经媒介材料通过散热片扩散到外界,该条路径总的热阻抗称为 θ_{JA} ;亦可通过开发板将热量扩散到外界,该条路径的热阻抗称为 θ_{IB} 。

 θ_{JA} 包括三部分:从芯片到封装外壳的热阻抗 θ_{JC} ,从封装外壳到散热片的热阻抗 θ_{CS} 以及从散热片到周围环境的热阻抗 θ_{SA} ,计算公式如公式 2 所示:

$$\theta_{JA} = \theta_{JC} + \theta_{CS} + \theta_{SA} \tag{公式 2}$$

使用散热片时,功率 P 和热阻抗 θ_{JA} , θ_{JB} 及 TJ、TA、TB(板级温度)的 关系如公式 3 所示:

$$P = (TJ - TA) / \theta_{JA} + (TJ - TB) / \theta_{JB}$$
 (公式 3)

SUG282-2.6 39(39)

