Machine Learning for Graphs and Sequential Data Exercise Sheet 03

VAE & GAN

Problem 1: Below we show pseudocode for implementing 3 autoencoder-like neural net architectures. The observed data is denoted as $\boldsymbol{x} \in \mathbb{R}^D$. Here, $g_{\boldsymbol{\lambda}} : \mathbb{R}^D \to \mathbb{R}^L$ and $f_{\boldsymbol{\psi}} : \mathbb{R}^L \to \mathbb{R}^D$ are fully connected feedforward neural networks with learnable parameters $\boldsymbol{\lambda}$ and $\boldsymbol{\psi}$. The output layers of $g_{\boldsymbol{\lambda}}$ and $f_{\boldsymbol{\psi}}$ have no (i.e. have linear) activation functions. \mathcal{N} denotes the normal distribution, I_N is the $N \times N$ identity matrix, and $\mathbf{0}_N$ is the vector of all zeros of length N.

For each of the architectures below, explain whether it's **necessary** to use the reparametrization trick to compute the gradient of the loss \mathcal{L} w.r.t. **both** λ and ψ . Answer "Yes" or "No" and provide a justification. If the answer is "Yes", modify the code to implement the reparametrization trick.

a) Model 1

$$egin{aligned} oldsymbol{z}_i &\sim \mathcal{N}(oldsymbol{x}_i, oldsymbol{I}_D) \ oldsymbol{h}_i &= g_{oldsymbol{\lambda}}(oldsymbol{z}_i) \ & ilde{oldsymbol{x}}_i &= f_{oldsymbol{\psi}}(oldsymbol{h}_i) \ \mathcal{L} &= \|oldsymbol{x}_i - ilde{oldsymbol{x}}_i\|_2^2 \end{aligned}$$

No, the samples do not depend on learnable parameters here.

b) Model 2

$$egin{aligned} m{h}_i &= g_{m{\lambda}}(m{x}_i) \ m{z}_i &\sim \mathcal{N}(m{h}_i, m{I}_L) \ & ilde{m{x}}_i &= f_{m{\psi}}(m{z}_i) \ \mathcal{L} &= \|m{x}_i - ilde{m{x}}_i\|_2^2 \end{aligned}$$

Yes, We need to replace line 2 with the following operations:

$$egin{aligned} oldsymbol{\epsilon}_i &\sim \mathcal{N}(oldsymbol{0}_L, oldsymbol{I}_L) \ oldsymbol{z}_i &= oldsymbol{h}_i + oldsymbol{\epsilon}_i \end{aligned}$$

c) Model 3

$$\begin{aligned} & \boldsymbol{h}_i = g_{\boldsymbol{\lambda}}(\boldsymbol{x}_i) \\ & \boldsymbol{z}_i \sim \mathcal{N}(\boldsymbol{0}_L, \boldsymbol{I}_L) \\ & \tilde{\boldsymbol{x}}_i = f_{\boldsymbol{\psi}}(\boldsymbol{h}_i + \boldsymbol{z}_i) \\ & \mathcal{L} = \|\boldsymbol{x}_i - \tilde{\boldsymbol{x}}_i\|_2^2 \end{aligned}$$

No, the samples do not depend on learnable parameters here.

Problem 2: Consider the same setup as in the previous problem. The model specified below is **not well defined**. Your task is to find the problem with the model and modify the pseudo code to fix it.

In addition, if you think it's **necessary** to use the reparametrization trick, include it in your implementation.

$$egin{aligned} m{h}_i &= g_{m{\lambda}}(m{x}_i) \ m{z}_i &\sim \mathcal{N}(m{0}_L, \mathrm{diag}(m{h}_i)) \ & ilde{m{x}}_i &= f_{m{\psi}}(m{z}_i) \ \mathcal{L} &= \|m{x}_i - ilde{m{x}}_i\|_2^2 \end{aligned}$$

The covariance matrix of the normal distribution must be positive definite for the model to be well-defined. For the diagonal covariance, this means that all entries must be positive. We can ensure this by using the exponential function

$$\boldsymbol{h}_i = \exp(g_{\boldsymbol{\lambda}}(\boldsymbol{x}_i))$$

Since the samples z_i depend on the parameters λ of the encoder, we need to use the reaparametrization trick when sampling z_i . For this, we replace line 2 with the following operations:

$$oldsymbol{\epsilon}_i \sim \mathcal{N}(oldsymbol{0}_L, oldsymbol{I}_L) \ oldsymbol{z}_i = oldsymbol{\epsilon}_i \odot \sqrt{oldsymbol{h}_i}$$

Problem 3: The loss used in generative adversarial networks (GANs) can be written in the following form:

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \mathbb{E}_{p^*(\boldsymbol{x})}[\log D_{\boldsymbol{\phi}}(\boldsymbol{x})] + \mathbb{E}_{p(\boldsymbol{z})}[\log(1 - D_{\boldsymbol{\phi}}(f_{\boldsymbol{\theta}}(\boldsymbol{z})))]$$

where $p^*(\boldsymbol{x})$ is the true data distribution, $p(\boldsymbol{z})$ is the distribution of the noise, $f_{\boldsymbol{\theta}}$ is the generator, and $D_{\boldsymbol{\phi}}$ is the discriminator.

a) For a given generator (fixed parameters θ) assume there exists a discriminator $D_{\phi^*}(x)$ with parameters ϕ^* such that for all x:

$$D_{\phi^*}(\boldsymbol{x}) = \frac{p^*(\boldsymbol{x})}{p^*(\boldsymbol{x}) + p_{\boldsymbol{\theta}}(\boldsymbol{x})}$$

where $p_{\theta}(x)$ is the distribution learned by the generator. Show that D_{ϕ^*} is **optimal**, i.e. $\phi^* = \arg \max_{\phi} \mathcal{L}(\theta, \phi)$.

Hint: $\arg\max_{y}[a\log(y) + b\log(1-y)] = \frac{a}{a+b}$ for any $a, b \in \mathbb{R}_0^+, a+b > 0$.

$$\max_{D_{\phi}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \max_{D_{\phi}} \mathbb{E}_{p^{*}(\boldsymbol{x})}[\log D_{\phi}(\boldsymbol{x})] + \mathbb{E}_{p(\boldsymbol{z})}[\log(1 - D_{\phi}(f_{\boldsymbol{\theta}}(\boldsymbol{z})))]$$
(1)

$$= \max_{D_{\phi}} \mathbb{E}_{p^*(\boldsymbol{x})}[\log D_{\phi}(\boldsymbol{x})] + \mathbb{E}_{p_{\theta}(\boldsymbol{x})}[\log(1 - D_{\phi}(\boldsymbol{x}))]$$
 (2)

$$= \max_{D_{\phi}} \int \left[p^*(\boldsymbol{x}) \log D_{\phi}(\boldsymbol{x}) + p_{\theta}(\boldsymbol{x}) \log(1 - D_{\phi}(\boldsymbol{x})) \right] d\boldsymbol{x}$$
(3)

It's not obvious how we can find the discriminator D_{ϕ^*} that maximizes this integral. What if instead of maximizing the integral, we found the optimal discriminator for every single x? This would only allow us to achieve higher values of our optimization objective

$$\leq \int \max_{D_{\phi}} \left[p^*(\boldsymbol{x}) \log D_{\phi}(\boldsymbol{x}) + p_{\theta}(\boldsymbol{x}) \log(1 - D_{\phi}(\boldsymbol{x})) \right] d\boldsymbol{x} \tag{4}$$

Finding the optimal discriminator for specific fixed x is easy. We use the formula from the problem statement, where we set $y = D_{\phi}(x)$, $a = p^*(x)$, and $b = p_{\theta}(x)$.

$$D_{\phi^*}(\boldsymbol{x}) = \underset{D_{\phi}(\boldsymbol{x})}{\operatorname{arg max}} (p^*(\boldsymbol{x}) \log D_{\phi}(\boldsymbol{x}) + p_{\theta}(\boldsymbol{x}) \log(1 - D_{\phi}(\boldsymbol{x})))$$

$$= \frac{p^*(\boldsymbol{x})}{p^*(\boldsymbol{x}) + p_{\theta}(\boldsymbol{x})}$$
(5)

That is, if our discriminator satisfies the property from Equation 5 for every \boldsymbol{x} , then it maximizes the expression under the integral sign in Equation 4 for every \boldsymbol{x} . Finally, if our discriminator D_{ϕ^*} maximizes the expression under the integral sign in Equation 4 for every \boldsymbol{x} , then it also maximizes the entire integral in Equation 3.

Putting everything together, we have shown, that the discriminator that satisfies Equation 5 for every point x is the optimal discriminator for the GAN loss (assuming fixed generator parameters θ).

- b) What is value of the optimal $D_{\phi^*}(x)$ when:
 - The generator is optimal i.e. $p_{\theta}(x) = p^*(x)$
 - The generator assigns a zero probability $p_{\theta}(x) = 0$ to a sample x whereas $p^*(x) \neq 0$
 - The generator assigns a non-zero probability $p_{\theta}(\mathbf{x}) \neq 0$ to a sample \mathbf{x} whereas $p^*(\mathbf{x}) = 0$
 - If $p_{\theta}(x) = p^*(x)$, then $D_{\phi^*}(x) = \frac{1}{2}$
 - If $p_{\theta}(x) = 0$ and $p^*(x) \neq 0$, then $D_{\phi^*}(x) = 1$. The discriminator classifies all such samples as "Real".
 - If $p_{\theta}(\mathbf{x}) \neq 0$ and $p^*(\mathbf{x}) = 0$, then $D_{\phi^*}(\mathbf{x}) = 0$. The discriminator classifies all such samples as "Fake".