Assignment 3 of MATP6610/4820

(Due on Feb-21-2020 in class)

Problem 1

Let $g(\mathbf{x}) = \|\mathbf{x}\|_{\infty}$ for $\mathbf{x} \in \mathbb{R}^n$.

- 1. Let n=2. Evaluate the proximal mapping \mathbf{prox}_g at $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- 2. (Only for 6610 students:) Let n = 2. Evaluate \mathbf{prox}_g at $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- 3. (bonus question:) For general $n \ge 1$, give the explicit formula of $\mathbf{prox}_g(\mathbf{x})$.

Problem 2

For ill-conditioned problems, the conjugate gradient (CG) method may converge very slowly, and a better method is the preconditioned conjugate gradient (PCG) method. Consider the quadratic minimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}, \qquad (\text{QuadMin})$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\mathbf{b} \in \mathbb{R}^n$. Write a solver for (QuadMin) by the PCG method. We will use a non-singular triangular matrix \mathbf{C} as the preconditioner.

- 1. Let $\mathbf{C} \in \mathbb{R}^{n \times n}$ be a non-singular upper triangular matrix. Write a solver $\mathbf{pcg_linsolv}$ for the linear system $\mathbf{C}^{\top}\mathbf{C}\mathbf{y} = \mathbf{r}$. Treat \mathbf{C} and \mathbf{r} as the input of the solver. Recall that to solve the linear system, we can first solve $\mathbf{C}^{\top}\mathbf{z} = \mathbf{r}$ by forward substitution and then solve $\mathbf{C}\mathbf{y} = \mathbf{z}$ by back substitution.
- 2. Write a Matlab function quadMin_pcg with input A, C, and b, where C is a non-singular upper triangular matrix, used as the conditioning matrix. Within your PCG solver, use pcg_linsolv as the linear solver for solving linear systems in the form of $C^{\top}Cy = r$. Also test your function by running the provided test file test_pcg.m and compare to the instructor's function. Print your code and the results you get.

Problem 3

Consider the constrained quadratic minimization problem:

$$\underset{\mathbf{x}}{\text{minimize }} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}, \text{ s.t. } l_i \leq x_i \leq u_i, \forall i = 1, \dots, n,$$
 (C-QuadMin)

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$, and $\mathbf{l} \in \mathbb{R}^n$ and $\mathbf{u} \in \mathbb{R}^n$ are lower and upper bounds.

- 1. Let $\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $l_1 = l_2 = 0$, and $u_1 = u_2 = 1$. Set the initial vector $\mathbf{x}^0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Do by hand two iterations the projected gradient method with constant step size $\alpha_k = 0.5$, $\forall k$
- 2. Use the instructor's provided file quadMin_pg.m to write a Matlab function quadMin_pg with input A, b, l, u, initial vector x0, and maximum iteration number maxit. Also test your function by running the provided test file test_pg.m and compare to the instructor's function. Print your code and the results you get.

Problem 4 (Only for 6610 students)

Suppose we have two iterative algorithms \mathcal{A} and \mathcal{B} for solving the problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} f(\mathbf{x}).$$

Denote \mathbf{x}^k as the k-th iterate and \mathbf{x}^* one optimal solution. For the algorithm \mathcal{A} , its periteration complexity is 2n, and its convergence rate is

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{C_0}{k}, \, \forall k \ge 1, \tag{1}$$

where C_0 is a constant depending on the initial point. For the algorithm \mathcal{B} , its per-iteration complexity is $4n^2$, and its convergence rate is

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le C_0 \eta^k, \, \forall k \ge 1,$$

where C_0 is the same constant as that in (1), and $\eta \in (0,1)$ is a constant.

- 1. Given $\varepsilon > 0$, suppose we want to have a point \mathbf{x}^k such that $f(\mathbf{x}^k) f(\mathbf{x}^*) \leq \varepsilon$. Estimate from the convergence rate results how many iterations each algorithm needs to run.
- 2. We measure efficiency by the total complexity (i.e., per-iteration complexity multiplying by iteration number). Discuss how small ε should be such that the algorithm \mathcal{B} is more efficient.