On a variational approach to truncated problems of moments.

C.-G. Ambrozie, Prague

Abstract

We characterize the existence of the L^1 solutions of the truncated moments problem in several real variables on unbounded supports by the existence of the maximum of certain concave Lagrangian functions. A natural regularity assumption on the support is required.

Keywords: problem of moments, representing measure MSC: Primary 44A60, Secondary 49J99

1 Introduction

The present paper is concerned with the truncated problem of moments in several real variables, in the following context. Let $n \in \mathbb{N}$ and fix a closed subset $T \neq \emptyset$ of \mathbb{R}^n , a finite subset $I \subset (\mathbb{Z}_+)^n$ with $0 \in I$ and a set $g = (g_i)_{i \in I}$ of real numbers with $g_0 = 1$, where $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Typically a problem of moments [1] requires to establish if there exist Borel measures $\nu \geq 0$ on \mathbb{R}^n , supported on T, such that $\int_T |t^i| d\nu(t) < \infty$ and $\int_T t^i d\nu(t) = g_i$ for all $i \in I$. As usual $t^i = t_1^{i_1} \cdots t_n^{i_n}$ where $t = (t_1, \ldots, t_n)$ is the variable in \mathbb{R}^n and $i = (i_1, \ldots, i_n)$ is a multiindex. In this case we call ν a representing measure of g, and g_i the moments of ν . We are interested in those measures $\nu = f dt$ that are absolutely continuous with respect to the n-dimensional Lebesgue measure $dt = dt_1 \cdots dt_n$, in which case we call f a representing density of g. Namely the (class of equivalence of the) Lebesgue integrable function f is ≥ 0 almost everywhere (a.e.) on T, has finite moments of orders $i \in I$ and

$$\int_{T} t^{i} f(t)dt = g_{i} \quad (i \in I). \tag{1}$$

^{*}Supported by grants IAA100190903 GAAV and 201/09/0473 GACR, RVO: 67985840

Given partial information in the integral form $\int_T t^i f \rho dt = g_i$ about representing densities f on a probability space $(T, \rho dt)$, endowed with a reference density ρ , does not determine them uniquely. An approach favorite to physicists and statisticians is to choose that particular density f_{*}, minimizing the entropy functional $h(f) = \int_{\mathcal{T}} (f \ln f) \rho dt$ amongst all solutions of the moments constraints. This uniquely selects the unbiased probability distribution f_* (that proves to have the form $f_*(t) = e^{\sum_{i \in I} \lambda_i^* t^i}$) on the knowledge of the prescribed average values g_i of t^i , where t is considered as a T-valued random variable with repartition ρ [6], [9], [18], [20]. Under suitable hypotheses, f_* turns to exist, even for measures more general than ρdt . A main tool to this aim is Fenchel duality [8], [24], [26], [27], that deals with minimizing convex functions $h: X \to \mathbb{R} \cup \{\infty\}$ on convex subsets of locally convex spaces X, in connection with the dual problem of maximizing $-h^*$, where $h^*: X^* \to \mathbb{R} \cup \{\infty\}$ is the convex conjugate of h, called also its Legendre-Fenchel transform [26], [27], defined on the dual X^* of X by $h^*(y) = \sup\{\langle x, y \rangle - h(x) : h(x) < \infty\}$. Typically inf $h = \max(-h^*)$ and, briefly speaking, minimizing $\int_T f \ln f \rho dt$ as above is to find $\lambda^* = (\lambda_i^*)_{i \in I}$ maximizing $L(\lambda) = \sum_{i \in I} g_i \lambda_i - \int_T e^{\sum_{i \in I} \lambda_i t^i} \rho dt$. Many results exist in this direction [3], [5] - [9], [16], [17], [21] - [23]. Additional hypotheses are always necessary when the conclusion $\inf h = \min h$ is sought for, since there are g for which the primal attainment fails [16], [17] although problem (1) has solutions.

By Theorem 3 we prove that the feasibility of problem (1) is equivalent to the boundedness from above $\sup L < \infty$ with attainment $\sup L = \max L$ for the concave Lagrangian function L. This holds no matter whether $\inf h$ is attained or not (the general theory still provides us with $\inf h = \max L$).

Initiated by Stieltjes, Hausdorff, Hamburger and Riesz, the area of the truncated problems of moments nowadays knows various other approaches, based for instance on operator methods or sums-of-squares representations for positive polynomials [10] – [14], [19], [25]. Although important, these topics remain beyond the aim of this work, focused on our mentioned Theorem 3.

The author got the idea to consider L instead of h from the works [5] where a similar characterization exists, and [16], [17], drawn to his attention by professor Mihai Putinar. Our statement and proof are rather general, independent of these cited works.

2 Main results

We remind that a linear Riesz functional φ_{γ} [12] associated to a set $\gamma = (\gamma_i)_{i \in J}$ of real numbers γ_i for $J \subset \mathbb{Z}_+^n$ is defined on the polynomials p from the linear span of $X_1^{i_1} \dots X_n^{i_n}$ where $i = (i_1, \dots, i_n) \in J$ by $\varphi_{\gamma} X^i = \gamma_i$. One calls φ_{γ} T-positive [12] if $\varphi_{\gamma} p \geq 0$ whenever $p(t) \geq 0$ for all $t \in T$. If γ has representing measures $\nu \geq 0$ on T, φ_{γ} is T-positive since $\varphi_{\gamma} p = \int_T p \, d\nu$ for any such polynomial p. In the full case $J = \mathbb{Z}_+^n$ the T-positivity condition is sufficient for the existence of the representing measures, by the Riesz-Haviland theorem [15]. An analogue of this theorem [12] for the truncated case $I = \{i: |i| \leq 2k\}$ characterizes the existence of the representing measures by the existence of T-positive extensions of φ_{γ} to the space of polynomials of degree $\leq 2k + 2$. For later use, we state below a version of these results (Theorem 1) and a Fenchel theoretic result of dual attainment (Theorem 2).

Definitions We call T regular [4] if for any $t \in T$ and $\varepsilon > 0$ the Lebesgue measure of the set $\{x \in T : \|x - t\| < \varepsilon\}$ is positive. As usual $\|t\| = (\sum_{i=1}^n t_i^2)^{1/2}$. For any $i \in I$ set $\sigma_i = \{j \in \mathbb{Z}_+^n : j_k = \text{either } 0 \text{ or } i_k, 1 \le k \le n\}$. We call I regular [4] if $\sigma_i \subset I$ for all $i \in I$. Define Γ , $G \subset \mathbb{R}^N$ (N = card I) by $\Gamma = \{\gamma = (\gamma_i)_{i \in I} : \exists \text{ measures } \nu \ge 0 \text{ on } T \text{ with } \int_T t^i d\nu(t) = \gamma_i, i \in I\}$ and $G = \{\gamma = (\gamma_i)_{i \in I} \ne 0 : \exists f \in L^1_+(T, dt) \text{ such that } \int_T t^i f(t) dt = \gamma_i, i \in I\}$. The notation $L^p(T, \mu)$, $L^p(\mu)$ for μ measure on T, $1 \le p \le \infty$ has the usual meaning. In particular $L^1_+(T, \mu)$ is the set of all $f \in L^1(T, \mu)$, $f \ge 0$ μ -a.e. For $\gamma = (\gamma_i)_{i \in I}$, φ_{γ} is the linear functional defined on the span $P_I \subset \mathbb{R}[X_1, \ldots, X_n]$ of all X^i with $i \in I$ by $\varphi_{\gamma} X^i = \gamma_i$. Set $e_i = (0, \ldots, 1, \ldots, 0)$ for $1 \le i \le n$.

By [Theorem 6,[4]] the convex cone G is the dense interior of the cone Γ .

Theorem 1 [Theorem 7,[4]] Let $T \subset \mathbb{R}^n$ be a closed regular set, $I \subset \mathbb{Z}_+^n$ a finite regular set and $g = (g_i)_{i \in I}$ a set of numbers with $g_0 = 1$. Then $g \in G$ $\Leftrightarrow \varphi_g p > 0$ for every $p \in P_I \setminus \{0\}$ such that $p(t) \geq 0$ for all $t \in T$.

Theorem 2 [Corollary 2.6,[8]] Let \mathcal{T} be a space with finite measure $\mu \geq 0$, $1 \leq p \leq \infty$ and $a_i \in L^q(\mu)$, $g_i \in \mathbb{R}$ for $i \in I$ = finite where $\frac{1}{p} + \frac{1}{q} = 1$. Let $\phi : \mathbb{R} \to (-\infty, \infty]$ be proper, convex, lower semicontinuous with $\phi|_{(0,\infty)} < \infty$. If there are $x \in L^p(\mu)$, x > 0 a.e. such that $\phi \circ x \in L^1(\mu)$ and $\int_{\mathcal{T}} a_i x d\mu = g_i$, then the quantities

$$P = \inf \{ \int_{\mathcal{T}} \phi(x(t)) d\mu(t) : x \in L^{p}(\mu), x \geq 0 \text{ a.e., } \phi \circ x \in L^{1}(\mu), \int_{\mathcal{T}} a_{i} x d\mu = g_{i} \, \forall i \, \},$$

$$D = \max\{\sum_{i \in I} g_i \lambda_i - \int_{\mathcal{T}} \phi^* (\sum_{i \in I} \lambda_i a_i(t)) d\mu(t) : \lambda_i \in \mathbb{R}, \ \phi^* \circ \sum_{i \in I} \lambda_i a_i \in L^1(\mu) \}$$

are equal, $-\infty \leq P = D < \infty$ and the maximum D is attained.

Theorem 3 is a reminiscent to [Theorem 4, [3]], where $\int_T f \ln f \rho dt$ is minimized subject to $\int_T t^i f \rho dt = g_i$ under stronger hypotheses on ρ , like $\rho(t) \sim e^{-\varepsilon ||t||^p}$ with p > 2k (to fit the notation in [3], let a = 1 and our $f := \rho f$, whence $L_{\rho,a,g}(\lambda) = L(\lambda - \lambda_0) + 1$, with $\lambda_0 = (\lambda_{0i})_{i \in I}$ where $\lambda_{0i} = \delta_{i,0}$ and $\delta_{i,j}$ is Kronecker's symbol, $\delta_{i,j} = 1$ if i = j and 0 if $i \neq j$). Although we do not obtain here the existence of a maximum entropy solution f_* , our present hypothesys on ρ are weaker, while condition $g \in G$ still characterized in Lagrangian terms. Our proof below relies on Theorem 1 ([Theorem 7,[4]]) and Theorem 2 ([Corollary 2.6,[8]]).

Theorem 3 Let $T \subset \mathbb{R}^n$ be a closed regular set. Let $I \subset \mathbb{Z}_+^n$ be a finite regular set such that $\max_{i \in I} |i| = 2k$ where $k \in \mathbb{N}$. Assume $2ke_{\iota} \in I$ $(1 \leq \iota \leq n)$. Let $g = (g_i)_{i \in I}$ be a set of numbers with $g_0 = 1$. Fix $\rho \in L^1(T, dt)$, $\rho > 0$ a.e. The following statements (a) and (b) are equivalent:

(a) There exist functions $f \in L^1_+(T, dt)$ such that $\int_T |t^i| f(t) dt < \infty$ and

$$\int_T t^i f(t) dt = g_i \quad (i \in I);$$

(b) The functional $L: \mathbb{R}^N \to \mathbb{R} \cup \{-\infty\}$ defined by

$$L(\lambda) = \sum_{i \in I} g_i \lambda_i - \int_T e^{\sum_{i \in I} \lambda_i t^i} \rho(t) dt, \qquad \lambda = (\lambda_i)_{i \in I}$$

is bounded from above and $\sup L$ is attained in a (unique) point λ^* .

Proof. Since $L(0) > -\infty$, $L \not\equiv -\infty$. Since $g_0 = 1$, each of the conditions (a) and (b) implies that T has positive Lebesgue measure, finite or not. Hence by means of Jensen's inequality one can show that L is strictly concave. Then whenever $\sup L$ is finite and attained at some point λ^* , this λ^* is unique.

(a) \Rightarrow (b) The regularity condition on T is not necessary for this implication. Let $\mu = \tilde{\rho}dt$ be the measure on T with density $\tilde{\rho} := \rho e^{-\sum_{i=1}^{n} t_i^{2k}}$. Then $0 < \mu(T) < \infty$. Since (1) has a solution f, then $\tilde{f} := f/\tilde{\rho}$ satisfies

$$\int_{T} t^{i} \tilde{f}(t) d\mu(t) = g_{i} \quad (i \in I).$$
(2)

By [Theorem 2.9, [8]], see also [Lemma 4, [4]] for $\beta=0$, problem (2) has also a solution $f_0\in L^\infty(T)$ with $f_0>0$ a.e. The conclusion $\sup L<\infty$ may hold either directly by Theorem 2, or by an elementary argument as shown below. Let $x=f_0(t)$ a.e. and $y=\|f_0\|_\infty+1$ in the inequalities $-e^{-1}\leq x\ln x\leq y\ln y$ for $0\leq x\leq y,\,y\geq 1$, then integrate with respect to μ . Hence $f_0\ln f_0\in L^1(T,\mu)$. Fix $\lambda=(\lambda_i)_{i\in I}$. Let $x=f_0(t)$ and $y=\sum_{i\in I}\lambda_i t^i$ in the simple version $x\ln x-x\geq xy-e^y$ of Fenchel's inequality [27], then integrate. It follows, using (2) for f_0 , that

$$\int_T f_0 \ln f_0 d\mu - \int_T f_0 d\mu \ge \sum_{i \in I} g_i \lambda_i - \int_T e^{\sum_{i \in I} \lambda_i t^i} d\mu(t) = L(\lambda - \lambda_0) + \sum_{i \in I} g_i \lambda_{0i}$$

where $\lambda_0 = (\lambda_{0i})_{i \in I}$ with $\lambda_{0i} = \sum_{\iota=1}^n \delta_{i, 2ke_{\iota}}$ and $\delta_{i,j}$ is Kronecker's symbol. Since λ was arbitrary, we get $\sup_{\lambda} L(\lambda) < \infty$. Now for the attainment $\sup L = \max L$, we need Theorem 2 as follows. Use $|t_j| \leq (\sum_{\iota=1}^n t_{\iota}^{2k})^{1/2k}$,

$$|t^{i}| = |t_{1}|^{i_{1}} \cdots |t_{n}|^{i_{n}} \le \left(\sum_{\iota=1}^{n} t_{\iota}^{2k} + 1\right)^{|i|/2k} \le \sum_{\iota=1}^{n} t_{\iota}^{2k} + 1 \quad (|i| \le 2k)$$

and $\nu+1 \leq e^{\nu}$ for $\nu=\sum_{i=1}^n t_i^{2k}$ to get $\int_T |t^i| d\mu(t) \leq \int_T \rho dt < \infty$ for $i \in I$. Then let: $\mathcal{T}=T$, the measure $\mu=\tilde{\rho}dt$, $p=\infty$, the moment functions $a_i(t)=t^i$ and the integrand ϕ be defined by $\phi(x)=x\ln x$ for x>0, $\phi(0)=0$ and $\phi(x)=+\infty$ for x<0. The feasibility hypotheses is fulfilled by $x=f_0$. The convex conjugate $\phi^*(y)=\sup_{x\geq 0}(xy-x\ln x)$ of ϕ is given by $\phi^*(y)=e^{y-1}$ for $y\in\mathbb{R}$. We get the attainment $D=\sup \mathcal{L}$ for $\mathcal{L}(\lambda)=L(\lambda-\lambda_0')+\sum_{i\in I}g_i\lambda_{0i}'$ where $\lambda_0'=(\lambda_{0i}')_{i\in I}$ with $\lambda_{0i}'=\lambda_{0i}+\delta_{i,0}$. Thus we obtain a λ^* such that $\sup L=L(\lambda^*)$.

(b) \Rightarrow (a) Let $\lambda^* \in \mathbb{R}^N$ such that $\sup L = L(\lambda^*)$. We prove that φ_g satisfies the positivity condition in Theorem 1. Let $p = \sum_{i \in I} \lambda_i X^i$, $p \not\equiv 0$ be arbitrary such that $p(t) \leq 0$ for $t \in T$. The vector $\lambda := (\lambda_i)_{i \in I}$ is then $\not\equiv 0$. For any r > 0, set $e_r(t) = e^{r\sum_{i \in I} \lambda_i t^i}$. Thus $e_r(t) \leq 1$ for $t \in T$. Then the integral term $\int_T e_r \rho dt$ of $L(r\lambda) = r\sum_{i \in I} g_i \lambda_i - \int_T e_r \rho dt$ remains bounded as $r \to \infty$. Hence $\varphi_g p = \sum_{i \in I} g_i \lambda_i \leq 0$, for otherwise the linear term $r\varphi_g p$ of $L(r\lambda)$ would give $\sup L = \infty$ that is false. Assume that $\varphi_g p = 0$. Then the restriction of the function L to the half-line $\ell := \{r\lambda : r > 0\}$ is given by the function $r \mapsto -\int_T e_r \rho dt$. This function is finite, bounded and strictly monotonically increasing on $(0,\infty)$. Use to this aim that $0 < e_r \leq 1$, $\int_T \rho dt < \infty$, $e_r = e^{rp}$ with $p \leq 0$ and $L|_{\ell}$ is strictly concave. Then a finite

limit $\lim_{r\to\infty} L(r\lambda) = \sup_{\ell} L$ exists, in particular $\sup_{r>1} |L(r\lambda)| < \infty$. For a>0,

$$\infty > L(\lambda^* + a\lambda) = \sum_{i \in I} g_i \lambda_i^* + a \sum_{i \in I} g_i \lambda_i - \int_T e^{\sum_{i \in I} \lambda_i^* t^i} e^{a \sum_{i \in I} \lambda_i t^i} \rho(t) dt$$

$$\geq \sum_{i \in I} g_i \lambda_i^* + r \cdot 0 - \int_T e^{\sum_{i \in I} \lambda_i^* t^i} \rho(t) dt = L(\lambda^*) = \max L \geq L(0) > -\infty$$

because $\sum_{i\in I} g_i \lambda_i = 0$ and $\sum_{i\in I} \lambda_i t^i \leq 0$ for all $t\in T$. Hence L is finite on every point of the half-line $\{\lambda^* + a\lambda\}_{a>0}$. Note that λ^* cannot be colinear with λ due the behaviour of L on ℓ : firstly, $\lambda^* \notin \ell$ because L reaches its global maximum only in λ^* while $L|_{\ell}$ increases strictly along ℓ as $r \to \infty$. Also $\lambda^* \notin \{0\} \cup (-\ell)$, for otherwise the concavity of the restriction $L|_{\mathbb{R}\lambda}$: $\mathbb{R}\lambda \to \{-\infty\} \cup \mathbb{R}$ of L to the line $\mathbb{R}\lambda$ would imply, for some $r \geq 0$ with $\lambda^* = -r\lambda$, that $L(r\lambda) \geq L(0) = L(\frac{1}{2}(\lambda^* + r\lambda)) \geq \frac{1}{2}(L(\lambda^*) + L(r\lambda))$, whence $L(\lambda^*) \leq L(r\lambda) < \sup L|_{\ell} \leq \sup L = L(\lambda^*)$ that is impossible. Thus $\lambda^* \notin \mathbb{R}\lambda$. Then a 2-dimensional drawing shows that for every r > 1 there is a unique point x_r of intersection of the segments $(\lambda^*, r\lambda)$ and $(\lambda, \lambda^* + \lambda)$. Write to this aim $x_r = s\lambda^* + (1-s)r\lambda = s'\lambda + (1-s')(\lambda^* + \lambda)$ with coefficients $s = s_r, s' = s'_r$, use the linear independence of λ^* , λ and get s = (r-1)/r, s'=1-s whence $s, s'\in (0,1)$ and $\lim_{r\to\infty} s'_r=0$. Then $\lim_{r\to\infty} x_r=\lambda^*+\lambda$. The concavity (and hence, continuity [27]) of L on the segment $(\lambda, \lambda^* + \lambda)$ gives $\lim_{r\to\infty} L(x_r) = L(\lambda^* + \lambda) < L(\lambda^*)$ with strict inequality, because the point λ^* of maximum of L is unique. But $L(x_r) = L(s\lambda^* + (1-s)r\lambda) \geq$ $sL(\lambda^*) + (1-s)L(r\lambda)$ and letting $r \to \infty$ we derive, using $\lim_{r\to\infty} s_r = 1$ and $\sup_{r\geq 1} |L(r\lambda)| < \infty$, that $\lim_{r\to\infty} L(x_r) \geq L(\lambda^*)$. We got a contradiction. Then $\varphi_q p < 0$. The feasibility of problem (1) follows then by Theorem 1. \square

Remarks Since λ^* may be on the boundary of dom $L := \{\lambda : L(\lambda) > -\infty\}$, one cannot prove (b) \Rightarrow (a) by derivating under the integral in λ^* , and the h-minimization may fail [17]. Additional hypotheses may compel λ^* to be interior to dom L [16] in which case the entropy minimization can be obtained [24], providing the particular solution $f_*(t) = e^{\sum_{i \in I} \lambda_i^* t^i}$, see for instance [3]. For example let $T = \mathbb{R}^n$, $I = \{i : |i| \leq 2k\}$ and $\rho(t) = e^{-||t||^{2k}}$. By Theorem 3, problem (1) is feasible if and only if L is bounded from above and attains its maximum in a point λ^* , even when a minimum entropy solution does not exist. By Fatou's lemma and Lebesgue's dominated convergence theorem, $f_0 := e^{\sum_{|i| \leq 2k} \lambda_i^* t^i}$ has finite moments of order $\leq 2k$, we can get $\int t^i f_0 dt = g_i$

for |i| < 2k and $\int t_i^{2k} f_0 dt \le g_{2ke_i}$ $(1 \le i \le n)$, but the equalities (1) may fail for |i| = 2k [17]. By integration in polar coordinates, the homogeneous polynomial $p := \sum_{|i|=2k} \lambda_i^* X^i$ is shown to always satisfy $p(t) \le 0$ on \mathbb{R}^n ; if moreover p(t) < 0 for all $t \ne 0$, then λ^* is interior to dom L and f_0 is indeed a solution of problem (1), $f_0 = f_*$. We omit the details and refer the reader to [16], [17].

Note also that whenever ρ is at our disposal, various choices may be tried [3] to facilitate the numerical maximization of $L = L_{\rho}$.

Acknowledgements The present work was supported by the grants IAA100190903 of GAAV and 201/09/0473 GACR, RVO: 67985840.

References

- [1] N.I. Akhiezer, The classical moment problem and some related questions in analysis (English translation), Univ. Math. Monographs. Edinburgh-London: Oliver & Boyd, 1965. Zbl 0135.33803
- [2] C.-G. Ambrozie, Maximum entropy and moment problems, Real Anal. Exchange 29:2(2003/04), 607–627. Zbl 1083.44501
- [3] C.-G. Ambrozie, Multivariate truncated moments problems and maximum entropy, arXiv:1111.7123
- [4] C.-G. Ambrozie, A Riesz-Haviland type result for truncated moment problems with solutions in L^1 , arXiv:1111.6555, J. Operator Theory, to appear.
- [5] G. Blekherman; J.B. Lasserre, The truncated K-moment problem for closure of open sets, arXiv:1108.0627 2011.
- [6] J.M. Borwein, Maximum entropy and feasibility methods for convex and nonconvex inverse problems, Optimization: A Journal of Mathematical Programming and Operations Research 61:1(2012).
- [7] J.M. Borwein; A.S. Lewis, Convergence of best entropy estimates, SIAM J. Optimization 1:2(1991), 191–205. Zbl 0756.41037

- [8] J.M. Borwein; A.S. Lewis, *Duality relationships for entropy-like minimization problems*, SIAM J. Cont. Optimization 29:2(1991), 325–338. Zbl 0797.49030
- [9] J.M. Van Campenhout; T.M. Cover, *Maximum entropy and conditional probability*, IEEE Trans. Inf. Theory IT–27(1981), 483–489. Zbl 0459.94009
- [10] G. Cassier, Problème des moments sur un compact de \mathbb{R}^n et décomposition de polinômes à plusieurs variables, J. Funct. Analysis, 58(1984), 254-266. Zbl 0556.44006
- [11] D. Cichoń; J. Stochel; F.H. Szafraniec, Riesz-Haviland criterion for incomplete data, J. Math. Anal. Appl. 380:1(2011), 94-104.
- [12] R.E. Curto; L.A. Fialkow, An analogue of the Riesz-Haviland theorem for the truncated moment problem, J. Funct. Anal. 255:10(2008), 2709–2731. Zbl 1158.44003
- [13] R.E. Curto; L.A. Fialkow; H.M. Moeller, The extremal truncated moment problem, Integral Equations Operator Theory 60:2(2008), 177–200. Zbl 1145.47012
- [14] B. Fuglede, The multidimensional moment problem, Exp. Math. 1(1983), 47–65. Zbl 0514.44006
- [15] E.K. Haviland, On the momentum problem for distributions in more than one dimension, I, Amer. J. Math. 57(1935), 562–568. Zbl 0015.10901
- [16] C.D. Hauck; C.D. Levermore; A.L. Tits, Convex duality and entropy-based moment closures; characterizing degenerate densities, SIAM J. Control Optim. 47:4(2008), 1977–2015. Zbl 1167.49033
- [17] M. Junk, Maximum entropy for reduced moment problems, Math. Models Methods Appl. Sci. 10:7(2000), 1001–1025. Zbl 1012.44005
- [18] A.M. Kagan; Y.V. Linnik; C.R. Rao, Characterization problems in mathematical statistics, New York, Wiley, 1983. Zbl 0271.62002

- [19] S. Kuhlmann; M. Marshall; N. Schwartz, Positivity, sums of squares and the multi-dimensional moment problem. II, Adv. Geom. 5:4(2005), 583–606. Zbl 1095.14055
- [20] S. Kullback, Information theory and statistics, John Wiley and Sons, New York, 1959. Zbl 0897.62003
- [21] A.S. Lewis, Consistency of moment systems, Can. J. Math. 47(1995), 995–1006.
- [22] C. Léonard, Minimization of entropy functionals, J. Math. Anal. Appl. $346:1(2008),\,183-204.$ Zbl 1152.49039
- [23] L.R. Mead; N. Papanicolaou, Maximum entropy and the problem of moments, J. Math. Phys. 25:8(1984), 2404–2417.
- [24] J.J. Moreau, Sur la polaire d'une fonction semi-continue supérieurement, Comptes Rendus de l'Academie des Sciences, vol. 258(1964). Zbl 0144.30501
- [25] M. Putinar; F.-H. Vasilescu, Solving moment problems by dimensional extension, Ann. of Math. (2) 149:3(1999), 1097–1107.
- [26] R.T. Rockafellar, Extension of Fenchel's duality for convex functions, Duke Math. J. 33(1966), 81–89. Zbl 0138.09301
- [27] R.T. Rockafellar, *Convex analysis*, Princeton University Press, Princeton, New Jersey, 1970. Zbl 0932.90001

Institute of Mathematics, AS CR Zitna 25 115 67 Prague 1 Czech Republic ambrozie@math.cas.cz

and: Institute of Mathematics "Simion Stoilow" - Romanian Academy, PO Box 1-764, 014700 Bucharest, Romania