Übung Automatentheorie, Aufgabenblatt 4

Abgabe bis: Mittwoch, 12. November 2014, 13.15 Uhr

- **H 4-1:** Beweisen Sie Theorem 2.4. :
 - (a) Sei A eine Menge, M ein Monoid, und $f:A\mapsto M$ eine Abbildung. Dann gibt es einen Morphismus $g:A^*\mapsto M$ mit $g|_A=f$. Weiterhin ist g durch diese Eigenschaften eindeutig bestimmt.
 - (b) Sei M ein Monoid. Dann gibt es eine Menge A und einen Epimorphismus $g: A^* \mapsto M$.
- **H 4-2:** (a) Geben Sie einen (\mathbb{N} , max)-Automaten an, der die Sprache $\{2,3,6\}$ erkennt!
 - (b) Geben Sie einen $(\mathbb{Z}, +)$ -Automaten an, der die Sprache aller ungeraden ganzen Zahlen erkennt!
- H 4-3: Geben Sie die syntaktischen Monoide folgender Sprachen an:
 - (a) $\{a, aaa\}^*$ im Monoid $\{a\}^*$.
 - (b) $\{ba\}^*$ im Monoid $\{a, b\}^*$.
 - (c) $\{2,3,6\}$ im Monoid (\mathbb{N} , max).
 - (d) $\{7\}$ im Monoid $(\mathbb{Z}, +)$.
 - (e) $\{(n, n) : n \in \mathbb{N}\}$ im Monoid $(\mathbb{N}, +)^2$.

Die Antworten zu folgenden Fragen müssen nicht schriftlich abgegeben werden, sollten jedoch mündlich vorbereitet werden:

- **S 4-1:** Wieviele Untermonoide hat das Monoid ($\{0, 1, 2, 4\}$, min)? Wieviele Untermonoide hat das Monoid (\mathbb{N} , max)?
- **S 4-2:** Die Abbildung | ... | a liefert die Anzahl der Vorkommen des Buchstaben a in einem Wort über dem Alphabet {a, b}. Zeigen Sie, dass dies ein Morphismus ist! Welche Kongruenz über {a, b}* induziert dieser Morphismus?
 - Ist die Abbildung $|...|_{ab}$, die die Anzahl der Vorkommen eines Faktors ab in einem Wort über dem Alphabet $\{a,b\}$ liefert, ebenfalls ein Morphismus?
- **S 4-3:** (a) Sei $A = \{a, b, c, d\}$, M das Monoid $(\mathbb{N}, +)$, und f die durch $a \mapsto 1$, $b \mapsto 1$, $c \mapsto 2$, und $d \mapsto 3$ bestimmte Abbildung. Welches ist hier der Morphismus g aus Theorem 2.4.(a)?
 - (b) Sei $A = \{a, b, c\}$, M das Monoid (\mathbb{N}, \cdot) , und f die durch $a \mapsto 2$, $b \mapsto 3$, und $c \mapsto 5$. bestimmte Abbildung. Welches ist hier der Morphismus g aus Theorem 2.4.(a)?
 - Zeigen Sie auch, dass diese Morphismen tatsächlich Morphismen sind!