Machine Architecture Number Systems

Dr. Magnus Bordewich

Binary

So far a real CPU looks very much like the LMC, but with a few more instructions.

Of course, in a real CPU, everything is in **binary**...

So we need to know how to:

- represent numbers in binary
- represent negatives
- add, subtract, multiply and divide binary numbers

See the CPU animation in machine code.

TurningPoint

What is decimal 10 in binary?

Rank	Responses
1	
2	
3	
4	
5	
6	OTHER

What is binary 111 in decimal?

Rank	Responses
1	
2	
3	
4	
5	
6	OTHER

What is hex 1B in decimal?

Rank	Responses
1	
2	
3	
4	
5	
6	OTHER

Number systems

This lecture's objective: develop an understanding of the different number systems used when discussing computers including:

- Decimal used by humans
- Binary used when discussing issues close to the machine
- Hexadecimal used when humans are try to interpret what is happening in the machine

Decimal: 232

Binary: 11101000

Hex: E8

Roman: CCXXXII

All represent the same number of objects.

Decimal

Ten unique symbols 0 1 2 3 4 5 6 7 8 9

What does the decimal notation 432.75 mean?

The "decimal point", in general called **the radix point**, indicates the position of the 'units', immediately to the left of the radix point.

So we have 2 'units'

What is the 3? 10s

What is the 4? 100s

The 7? 1/10ths

The 5? 1/100ths

Positional number systems

We start with a particular ordered set of symbols. E.g. a,b,c or 0,1,2

The **base** (or **radix**) of the number system is the number of symbols (including 0).

E.g. 10 for decimal (0,1,2,3,4,5,6,7,8,9), 2 for binary (0,1).

We use positional number systems to represent values

$$cab.bc_3$$
 or 201.12_3

Note: subscript after a number gives the base

The contribution of a symbol x, which is the i^{th} symbol in the order, is $(i-1)^*$ base^{position}, where position is number of places to the **left** of the units.

E.g cab.bc₃ is
$$1*3^0+0*3^1+2*3^2+1*3^{-1}+2*3^{-2}$$

= $1+0+18+1/3+2/9=195/9$

Binary

2-symbol positional number system: symbols 0,1

Position	2	1	0	•	-1	-2
Baseposition	2 ²	21	20	•	2-1	2-2
Decimal value	4	2	1	•	.5	.25
Example	1	1	0	-	1	1

$$110.11_{2} =$$
 $1 * 2^{2} = 1 * 4$
 $1 * 2^{1} = 1 * 2$
 $0 * 2^{0} = 0 * 1$
 $1 * 2^{-1} = 1 * .5$
 $1 * 2^{-2} = 1 * .25$
 $= 0.25$
 $= 0.75_{10}$

What is 101000.01₂ in decimal?

Rank	Responses
1	
2	
3	
4	
5	
6	OTHER

Binary

Exercise:

What is 11101000.101₂ in decimal?

It is
$$0+0*2+0*2^2+1*2^3+0*2^4+1*2^5+1*2^6+1*2^7 + 1*2^{-1}+0*2^{-1}+1*2^{-3}$$

i.e. 8 + 32 + 64 + 128 + 1/2 + 1/8 = 232 5/8 in decimal + fraction

Binary

Each digit in a binary number system is known as a bit

Binary digIT

A bit can have only one of two possible values

0 or 1 (sometimes referred to as false & true or off & on).

Groups of bits are known as:

- **Nibble** 4 bits, $2^4 = 16$ possible values.
- Bytes 8 bits, $2^8 = 256$ possible values.
- Half word 16 bits, $2^{16} = 65,536$ possible values.
- Word 32 bits, $2^{32} = 4,294,967,296$ possible values.
- **Double word** 64 bits, 2^{64} = 18,446,744,073,709,551,616 values.

Note: "word" is CPU dependent – e.g. sometimes refers to 16 or 64 bits

Hexadecimal

16 distinct symbols: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Why do we need Hexadecimal?

Reading and writing binary values is difficult for humans

Advantages to using Hexadecimal

- More compact that other number systems
- Easy to convert between binary and hexadecimal

Programmers must be aware of what they are writing

- BEEF and BEEF₁₆ have very different meanings
- In Java use a prefix to denote a hexadecimal value: 0xBEEF = BEEF₁₆

Hexadecimal

Position	2	1	0	•	-1	-2
Baseposition	16 ²	16¹	16 ⁰	•	16 ⁻¹	16 ⁻²
Decimal Value	256	16	1	•	.0625	.00390625
Example	С	2	D	•	1	0

$$C * 16^2 = 12 * 256 = 3072.$$
 $2 * 16^1 = 2 * 16 = 32.$
 $D * 16^0 = 13 * 1 = 13.$
 $1 * 16^{-1} = 1 * .0625 = .0625$
 3117.0625_{10}

What is hex 10A.8 in decimal?

Rank	Responses
1	
2	
3	
4	
5	
6	OTHER

Hexadecimal

Exercise:

What is 1F8C.C₁₆ in decimal?

It is
$$12+8*16+15*16^2+1*16^3 + 12*16^{-1}$$

i.e.
$$12 + 8*16 + 15*256 + 1*4096 + 12/16$$

$$= 12 + 128 + 3840 + 4096 + 3/4 = 8076 3/4$$
 in decimal + fraction

GCHQ challenge

Can you crack it?

```
00
                                   00
   af c2 bf a3 81 ec
                                      31 c9
       75
          f9
             31
                 c0 ba
                               ad de
                                      02
                                          04
       08
          8a
             1c 0c 8a
                                88
                                   1c 04
c1 ca
                         3с
                                          88
c1 75
      e8
          e9 5c 00
                    00
                                e3
                                   81
                                      c3
5c 58
      3d
          41
              41
                                58
                                   3d
                                       42
       89
          d1
             89
                                   £3
                                          89
                                       а4
   df
                                          02
      29
          cf
             31 c0
                                   fe
                                      c0
       8a
          34
             1 e
1c 16
      8a
          17
             30
                 da 88
                                   75
                                      de
                                         31
      cd 80 90
fe c0
                 90
                                       41
                                   ff
                    e8
```

This is machine code written in hexadecimal.

GCHQ challenge

```
00171D4F
           EB 04
                             JMP SHORT 00171D55
00171D51
           AF
                             SCAS DWORD PTR ES: [EDI]
          C2 BFA3
00171D52
                             RETN OA3BF
        81EC 00010000
00171D55
                             SUB ESP, 100
00171D5B
           31C9
                             XOR ECX, ECX
00171D5D 880C0C
                             MOV BYTE PTR SS: [ESP+ECX], CL
00171D60
                             INC CL
           FEC1
00171D62 ^75 F9
                             JNZ SHORT 00171D5D
00171D64
           31C0
                             XOR EAX, EAX
00171D66 RA FFREADDE
                             MOV FDY DEADREFF
This code implements the Rivest Cipher 4 algorithm
00171D6E
           00D0
                             ADD AL, DL
00171D70
           C1CA 08
                             ROR EDX, 8
00171D73
           8A1C0C
                             MOV BL, BYTE PTR SS: [ESP+ECX]
```

Translation from Binary to Hex

- 1. Starting from the **radix point**, separate the binary number into groups of **four** binary digits (nibbles)
- 2. Then **translate each group** (nibble) into it hexadecimal equivalent, group by group, maintaining right to left order

Example:

```
11 0101 1101 1000.001<sub>2</sub> = 35D8.2_{16}
```

```
0011 0101 1101 1000 0010
3 5 D 8 2
```

Translation from Hex to Binary

- 1. Starting from the **radix point**, separate the hexadecimal number into digits.
- Then translate each digit into a 4-digit binary nibble, maintaining right to left order

Example:

EF02A.B4₁₆ = 1110 1111 0000 0010 1010 . 1011 0100₂

What is binary 111100.01 in hex?

Rank	Responses
1	
2	
3	
4	
5	
6	OTHER

What is hex BB.8 in binary?

Rank	Responses
1	
2	
3	
4	
5	
6	OTHER

Converting Decimal to Binary

- Repeatedly divide the number by 2, until you reach 0 / 2
- Put the remainders down **right to left** from radix point

Example: Convert 13₁₀ to its binary representation remainder

```
13/2 = 6 1 digit closest to radix point 6/2 = 3 0 3/2 = 1 1 left most digit
```

Result is 1101₂

Decimal Fractions to Binary

- Repeatedly multiply the number by 2, until fractional part is 0.
- If the *i*th result is greater than or equal to 1, place 1 in the *i*th position to the right of the radix, retain only fractional part.
- Else, place a 0 in the *i*th position to the right of the radix.

```
Example: 0.40625<sub>10</sub>
```

Answer 0.01101₂

```
0.40625*2 = 0.8125 0

0.8125*2 = 1.625 1

0.625*2 = 1.25 1

0.25*2 = 0.5 0

0.5*2 = 1.0 1
```

Other bases: What is 404₇ in decimal?

Rank	Responses
1	
2	
3	
4	
5	
6	Other

Other bases: What is 119₁₀ in base 6?

Rank	Responses
1	
2	
3	
4	
5	
6	Other

Other bases: What is 232₄ in base 5?

Rank	Responses
1	
2	
3	
4	
5	
6	Other

Animated examples

http://courses.cs.vt.edu/~csonline/NumberSystems/Lessons/index.html