Deriving $\hat{q} = \sqrt{(\mu/s)}$

Step-by-Step Mathematical Derivation

Model Assumptions

Before we begin, recall our key assumptions:

- Infinite population size (no genetic drift)
- · Random mating
- Recessive deleterious allele (a)
- Mutation rate $A \rightarrow a = \mu$ per generation
- Selection coefficient against aa = s
- Fitness: AA = 1, Aa = 1, aa = 1 s
- No reverse mutation (a → A negligible)
- No migration

Define the Equilibrium Condition

At mutation-selection balance, the input of new a alleles by mutation equals the removal of a alleles by selection:

Input by mutation = Removal by selection

Concept: Think of this as a bathtub with water flowing in (mutation) and draining out (selection). At equilibrium, the water level stays constant because inflow equals outflow.

2 Calculate Input by Mutation

Each generation, a fraction μ of A alleles mutate to become a alleles.

Number of A alleles \approx 2Np (since p \approx 1 for rare deleterious alleles)

Mutations per generation = $2Np \times \mu$

Since we're working with frequencies, we can use the proportion:

 $\Delta q_{mut} = \mu$

Why μ and not μ p? Because when the deleterious allele is rare, almost all alleles are A (p \approx 1), so the mutation input is approximately μ .

3 Calculate Removal by Selection

For a recessive deleterious allele, selection only acts against the aa homozygotes.

Frequency of aa genotypes $= q^2$

Each aa individual has fitness (1 - s)

Selection removes a fraction s of aa individuals

Each removed aa individual carries 2 a alleles

But we need the change in allele frequency, not individual count

Using the formula for selection against recessives:

$$\Delta q_{sel} = -sq^2$$

Note: The negative sign indicates that selection decreases the frequency of the deleterious allele.

4 Set Up the Equilibrium Equation

At equilibrium, the net change in q is zero:

$$\Delta q_{\text{mut}} + \Delta q_{\text{sel}} = 0$$

 $\mu - sq^2 = 0$

Critical Insight: This simple equation captures the essence of mutation-selection balance. Mutation adds a alleles at rate μ , while selection removes them at rate sq².

5 Solve for Equilibrium Frequency

Now we solve the equilibrium equation for q:

$$\mu - sq^2 = 0$$

$$sq^2 = \mu$$

$$q^2 = \mu/s$$

$$q^= \sqrt{(\mu/s)}$$

Beautiful Result: The equilibrium frequency depends on the square root of the ratio between mutation rate and selection coefficient. This makes intuitive sense - it's a balance between two opposing forces.

6 Interpret the Result

Let's examine what $\hat{q} = \sqrt{(\mu/s)}$ tells us:

- If μ increases \rightarrow \hat{q} increases (more mutation input)
- If s increases \rightarrow \hat{q} decreases (stronger selection)
- The square root means changes are dampened
- If $\mu = s$, then $\hat{q} = 1$ (but this rarely happens)

Biological Significance: This explains why recessive genetic disorders persist in populations. Even with strong selection (s \approx 1), they maintain equilibrium frequencies determined by their mutation rates.

7 Numerical Example

Let's apply the formula to a real scenario:

For cystic fibrosis:

 $\mu \approx 1 \times 10^{-6}$ (estimated mutation rate)

s = 1 (lethal recessive)

 $\hat{q} = \sqrt{(0.000001 / 1)} = \sqrt{0.000001} = 0.001$

Carrier frequency = $2pq \approx 2 \times 0.001 = 0.002$ (1 in 500)

Note: The actual carrier frequency for cystic fibrosis in European populations is about 1 in 25, suggesting either higher mutation rates or historical heterozygote advantage.

8 Comparison with Other Inheritance Patterns

It's instructive to compare with other cases:

Dominant deleterious: $\hat{q} = \mu/s$

Additive: $\hat{q} = \mu/(hs)$ where h is dominance coefficient

Recessive: $\hat{q} = \sqrt{(\mu/s)}$ \leftarrow We derived this!

Key Difference: Recessive deleterious alleles reach much higher equilibrium frequencies because selection only acts against homozygotes.

9 Limitations and Refinements

Our derivation made several simplifying assumptions:

- Infinite population size
- Constant mutation rate
- No reverse mutation
- No migration
- Random mating
- Selection only on viability

Real-world complexities: In actual populations, genetic drift, fluctuating environments, and other factors modify these predictions. However, the basic $\hat{q} = \sqrt{(\mu/s)}$ provides an excellent starting point.

10

Practice Derivation

Now try deriving the equilibrium for a dominant deleterious allele:

Given: Selection acts against both Aa and aa genotypes

Find: Show that $\hat{q} = \mu/s$

Hint: For dominants, $\Delta q_{sel} = -sq$

Your derivation here...

Summary of Key Points

- Mutation-selection balance occurs when input equals removal
- For recessives: $\Delta q_{mut} = \mu$, $\Delta q_{sel} = -sq^2$
- Equilibrium: μ sq² = 0 \rightarrow \hat{q} = $\sqrt{(\mu/s)}$
- The square root reflects that selection only acts against homozygotes
- This explains persistence of recessive genetic disorders

BGEN 55 - Advanced Genetics II | Deriving $\hat{q} = \sqrt{(\mu/s)}$

Developed by CAE Cadorna © 2025