Regressão Linear Múltipla

- 1. Análise Exploratória dos Dados
- 2. Criação do Modelo de Regressão Linear Múltipla
 - 2.1. Sklearn
 - 2.2. StatsModels
- 3. Remoção de Outliers
- 4. Considerando dados categóricos
- 5. Retirando Variáveis
- 6. Transformação de Variáveis
- 7. Na prática: Divisão Treino/Teste
- 8. Exercício

```
In [1]: #!pip install statsmodels
In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
sns.set() # Definir o tema do Matplotlib como sendo o tema padrão do Seaborn

In [3]: df = pd.read_csv('fish.csv')

In [4]: df.head()
```

Out[4]:		Species	Weight	Length1	Length2	Length3	Height	Width
	0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
	1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
	2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
	3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
	4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340

In [5]: df.shape

```
Out[5]: (159, 7)
        df.info()
In [6]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 159 entries, 0 to 158
         Data columns (total 7 columns):
              Column
                       Non-Null Count Dtype
              Species 159 non-null
                                         object
          1
              Weight 159 non-null
                                         float64
              Length1 159 non-null
                                         float64
              Length2 159 non-null
                                         float64
                                         float64
              Length3 159 non-null
              Height
                       159 non-null
                                         float64
              Width
                        159 non-null
                                         float64
         dtypes: float64(6), object(1)
         memory usage: 8.8+ KB
         df.describe().T
Out[7]:
                                                          25%
                                                                   50%
                                                                            75%
                  count
                                          std
                                                min
                             mean
                                                                                     max
                                                                        650.0000
          Weight 159.0 398.326415 357.978317 0.0000
                                                     120.00000
                                                               273.0000
                                                                                 1650.000
         Length1
                  159.0
                         26.247170
                                     9.996441 7.5000
                                                      19.05000
                                                                25.2000
                                                                         32.7000
                                                                                   59.000
                                                                27.3000
         Length2
                  159.0
                          28.415723
                                     10.716328
                                              8.4000
                                                      21.00000
                                                                         35.5000
                                                                                   63.400
         Length3
                  159.0
                         31.227044
                                    11.610246 8.8000
                                                      23.15000
                                                                29.4000
                                                                         39.6500
                                                                                   68.000
                                                        5.94480
           Height
                  159.0
                          8.970994
                                     4.286208 1.7284
                                                                 7.7860
                                                                         12.3659
                                                                                   18.957
           Width 159.0
                          4.417486
                                     1.685804 1.0476
                                                        3.38565
                                                                 4.2485
                                                                          5.5845
                                                                                    8.142
         df['Species'].unique()
         array(['Bream', 'Roach', 'Whitefish', 'Parkki', 'Perch', 'Pike', 'Smelt'],
Out[8]:
                dtype=object)
```

Análise Exploratória dos Dados

Como os dados se relacionam?

```
In [9]: sns.pairplot(df, hue='Species')
Out[9]: <seaborn.axisgrid.PairGrid at 0x250fe3d1790>
```


In [10]: sns.histplot(data=df, x='Width', hue='Species', kde=True)

Out[10]: <AxesSubplot:xlabel='Width', ylabel='Count'>

In [11]: # Matriz de correlação
 df.corr()

Out[11]:

	Weight	Length1	Length2	Length3	Height	Width
Weight	1.000000	0.915712	0.918618	0.923044	0.724345	0.886507
Length1	0.915712	1.000000	0.999517	0.992031	0.625378	0.867050
Length2	0.918618	0.999517	1.000000	0.994103	0.640441	0.873547
Length3	0.923044	0.992031	0.994103	1.000000	0.703409	0.878520
Height	0.724345	0.625378	0.640441	0.703409	1.000000	0.792881
Width	0.886507	0.867050	0.873547	0.878520	0.792881	1.000000

In [12]: plt.figure(figsize=(12,10))

Out[12]:

<AxesSubplot:>

Definir a Regressão Linear Múltipla

In [13]: df.head()

```
Out[13]:
                     Weight Length1 Length2 Length3 Height Width
                       242.0
                                 23.2
                                          25.4
                                                  30.0 11.5200 4.0200
              Bream
              Bream
                       290.0
                                 24.0
                                          26.3
                                                  31.2 12.4800 4.3056
                       340.0
                                                  31.1 12.3778 4.6961
              Bream
                                 23.9
                                          26.5
              Bream
                       363.0
                                 26.3
                                          29.0
                                                  33.5 12.7300 4.4555
              Bream
                       430.0
                                 26.5
                                          29.0
                                                  34.0 12.4440 5.1340
In [14]: y = df['Weight'] # Variável resposta
          X = df.drop(['Weight', 'Species'], axis=1) # Variáveis explicativas
In [15]: y
                 242.0
Out[15]:
                 290.0
          2
                 340.0
          3
                 363.0
                 430.0
                  . . .
          154
                  12.2
          155
                  13.4
          156
                  12.2
          157
                  19.7
          158
                  19.9
          Name: Weight, Length: 159, dtype: float64
         X.head()
In [16]:
             Length1 Length2 Length3 Height Width
Out[16]:
          0
                 23.2
                          25.4
                                  30.0 11.5200 4.0200
          1
                                  31.2 12.4800 4.3056
                 24.0
                          26.3
          2
                 23.9
                          26.5
                                  31.1 12.3778 4.6961
                                  33.5 12.7300 4.4555
          3
                 26.3
                          29.0
```

Scikit Learning

26.5

29.0

Etapas de utilização de um modelo de ML

- 1. Preparar o X (variáveis explicativas) e o y (variável resposta)
- 2. Fitar o modelo (treinar): calcular os coefientes da Regressão Linear.

34.0 12.4440 5.1340

3. Predizer outros valores de X, utilizando o modelo treinado.

```
In [17]: lr = LinearRegression()
In [18]: lr.fit(X, y)
         LinearRegression()
Out[18]:
        lr.intercept # intercepto (Beta 0)
In [19]:
          -499.58695535694164
Out[19]:
In [20]: lr.coef_
         array([ 62.35521443, -6.52675249, -29.02621861, 28.29735132,
                 22.47330665])
         Regressão Linear Simples
         $$ y = \beta_0 + \beta_1 \ x $$
         Regressão Linear Múltipla
         y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 
In [21]: y[0]
         242.0
Out[21]:
         X.loc[0] # A primeira Linha do DF X
         Length1
                    23.20
Out[22]:
         Length2
                    25.40
         Length3
                    30.00
         Height
                    11.52
                     4.02
         Width
         Name: 0, dtype: float64
        lr.intercept_ + lr.coef_[0] * X.loc[0]['Length1'] + lr.coef_[1] * X.loc[0]['Length2'] + lr.coef_[2] * X.loc[0]['Length3'] + lr.coef_[3] * X.loc[0]['Height']
         326.81612777212615
Out[23]:
         Predição para todos os dados do Dataset
In [24]: X.head()
```

```
Length1 Length2 Length3 Height Width
Out[24]:
                23.2
                         25.4
                                 30.0 11.5200 4.0200
          0
                                 31.2 12.4800 4.3056
         1
                24.0
                         26.3
                                 31.1 12.3778 4.6961
          2
                23.9
                         26.5
                                 33.5 12.7300 4.4555
          3
                26.3
                         29.0
          4
                26.5
                         29.0
                                 34.0 12.4440 5.1340
In [25]: y
                 242.0
Out[25]:
                 290.0
          2
                 340.0
          3
                 363.0
                 430.0
                 . . .
          154
                  12.2
          155
                  13.4
         156
                  12.2
          157
                  19.7
          158
                  19.9
         Name: Weight, Length: 159, dtype: float64
In [26]: y_pred = lr.predict(X) # Valor predito/estimado do meu Y (Peso dos peixes)
In [27]: X.head()
            Length1 Length2 Length3 Height Width
Out[27]:
          0
                23.2
                         25.4
                                 30.0 11.5200 4.0200
                                 31.2 12.4800 4.3056
         1
                24.0
                         26.3
          2
                23.9
                                 31.1 12.3778 4.6961
                         26.5
          3
                26.3
                         29.0
                                 33.5 12.7300 4.4555
                26.5
                                 34.0 12.4440 5.1340
```

29.0

In [28]: **y_pred**

```
array([ 326.81612777,
                       369.57859339,
                                      370.82418025,
                                                      439.05613854
                                      496.15134252,
        444.16916821,
                       466.12531938,
                                                      473.62398623,
                       540.44545602,
        511.95189321.
                                      536.53040775,
                                                      551.80179482,
        540.3150434 ,
                       556.0586456 ,
                                      584.39982147,
                                                      607.28049765,
        608.21493286,
                       602.63015994,
                                      645.87687859,
                                                      629.752138
        636.94759733,
                       671.89658763,
                                      645.00106119,
                                                      651.90331312,
        670.71263903.
                       666.68027257.
                                      688.73713396.
                                                      698.76730011.
        720.43978287,
                       796.13010587,
                                      803.62924782,
                                                      807.54330665,
        867.35964459,
                       911.56438073,
                                      894.45974647,
                                                      -89.13240595,
         34.59573548,
                        76.61669964,
                                       91.9448575 ,
                                                     141.5233585 ,
                                      132.18181968,
        148.11845226,
                       135.97771966,
                                                      160.54902275,
        197.22186967,
                       182.36104273,
                                      197.43654712,
                                                      210.10228652,
        225.46574556,
                       221.7914616 ,
                                      249.24362069,
                                                      286.00318882
        331.92493631,
                       344.59908139,
                                      505.82109937,
                                                      301.84880663,
        305.71765485,
                                      539.81247674,
                       373.5551134 ,
                                                      695.31306022,
        798.77573778,
                        13.38283184,
                                       23.99680891,
                                                      96.17908694,
        152.41893132,
                       192.66943342,
                                      192.27759854,
                                                      219.17494849,
        241.65405111,
                       298.44378665,
                                      365.57045736,
                                                      402.31855666,
       -250.77187008.
                       -91.48700757,
                                      -38.54162814.
                                                      19.85042062.
                                       80.13844941,
         24.77285292,
                        58.20999915,
                                                      90.61111209,
         92.29357535,
                      101.29545207,
                                      135.98567529,
                                                     136.79043594,
        138.51392229, 163.12202729,
                                      171.28725007,
                                                      160.62810848
        173.9278636 , 167.27798604,
                                      167.86562382,
                                                      182.36631538,
                                      177.77282219,
        208.85263622, 190.61210644,
                                                      223.29495289.
        265.45783158,
                       241.77314035,
                                      272.75253811,
                                                      267.22058995,
        295.89108639,
                       369.56514031,
                                      411.50260444,
                                                      366.12664052,
        362.85546671,
                       374.59364283,
                                      395.07208356,
                                                      435.57517102,
        443.59186169,
                       620.34496346,
                                      644.92999622,
                                                      716.12966982,
        712.40160009,
                       725.52056816,
                                      713.93316545,
                                                      717.91289343,
                       770.19311624,
        803.68733248,
                                      846.27084699,
                                                      809.69340158,
        807.1691595 ,
                      833.8228606 ,
                                      783.19613944,
                                                      880.14086852,
        890.72452163, 920.25772656,
                                      927.61035407,
                                                      947.51616468
        383.5635105 ,
                       412.9323248 ,
                                      451.29129927,
                                                      539.96640029,
        599.58148752, 574.21202976,
                                      699.68727978,
                                                      689.87959129,
        726.40822496, 739.34856983,
                                      810.28881195,
                                                      832.64029335,
        966.66723972, 1103.88858947, 1152.75248089, 1152.75248089
       1265.84301875, -224.38232605, -199.39843558, -200.96951453,
       -178.04747934, -177.75895011, -180.77278307, -160.73343833,
       -163.38304118, -162.0175998 , -160.60811584, -145.53543881,
       -137.84341252, -83.27975801, -82.00569369])
```

```
242.0
               290.0
               340.0
               363.0
               430.0
        154
                12.2
        155
                13.4
        156
                12.2
        157
                 19.7
                 19.9
         158
         Name: Weight, Length: 159, dtype: float64
In [30]: from sklearn.metrics import r2_score
         r2_score(y, y_pred)
         0.8852867046546207
Out[30]:
In [31]: lr.score(X, y)
         0.8852867046546207
Out[31]:
```

Statsmodels

In [32]: X

Out[32]:		Length1	Length2	Length3	Height	Width
	0	23.2	25.4	30.0	11.5200	4.0200
	1	24.0	26.3	31.2	12.4800	4.3056
	2	23.9	26.5	31.1	12.3778	4.6961
	3	26.3	29.0	33.5	12.7300	4.4555
	4	26.5	29.0	34.0	12.4440	5.1340
	•••					
	154	11.5	12.2	13.4	2.0904	1.3936
	155	11.7	12.4	13.5	2.4300	1.2690
	156	12.1	13.0	13.8	2.2770	1.2558
	157	13.2	14.3	15.2	2.8728	2.0672
	158	13.8	15.0	16.2	2.9322	1.8792

159 rows × 5 columns

```
In [33]: x = sm.add_constant(X)

model = sm.OLS(y, x).fit()

model.summary()
```

Out[33]:

OLS Regression Results

Dep. Variable:			Weight			R-squared			0.885
	Mode	l:			OLS		Adj. I	R-squared	0.882
	Method	l:	Le	ast :	Squares			236.2	
	Date	: T	hu, 1	1 N	ov 2021	P	rob (F	4.95e-70	
	Time	00:42:54				Log-l	-987.96		
No. Obse	rvations	:			159			AIC	: 1988.
Df R	:			153			BIC	2006.	
D	l:			5					
Covarian	:		no	nrobust					
	c	oef	std	err		t	P> t	[0.025	0.975]
const	-499.58		29.5		-16.894		0.000	-558.010	-
Length1	62.35	52	40.2	209	1.55	ı	0.123	-17.081	141.791
Length2	-6.52	268	41.7	759	-0.156	6	0.876	-89.025	75.971
Length3	-29.02	262	17.3	353	-1.673	3	0.096	-63.309	5.256
Height	28.29	974	8.7	729	3.242	2	0.001	11.052	45.543
Width	22.47	733	20.3	372	1.103	3	0.272	-17.773	62.720
0	nibus:	20	989	_	urbin-W			0.424	
On	20.	989	U	urpin-w	vat	son:	0.424		
Prob(Om	0.	000	Jar	que-Bei	ra ((JB):	27.307		
	0.	792		Pro	ob((JB):	1.18e-06		
Κι	ırtosis:	4.	269		Cor	nd.	No.	315.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Análise do Erro da Regressão

```
-79.578593
                -30.824180
         3
                -76.056139
                -14.169168
                   . . .
         154
                172.808116
         155
                158.935439
         156
                150.043413
         157
                102.979758
         158
                101.905694
         Length: 159, dtype: float64
In [35]: y - y_pred # cálculo do resíduo
                -84.816128
Out[35]:
                -79.578593
                -30.824180
                -76.056139
                -14.169168
                   . . .
         154
                172.808116
         155
                158.935439
         156
                150.043413
         157
                102.979758
         158
                101.905694
         Name: Weight, Length: 159, dtype: float64
         1. A média do erro deve ser zero
         model.resid.mean()
In [36]:
         8.231570561447199e-14
Out[36]:
         2. A distribuição dos erros deve seguir uma distribuição normal
```

-84.816128

sns.histplot(model.resid, kde=True)

<AxesSubplot:ylabel='Count'>

In [37]:

3. Erro deve ser descorrelacionado

In [38]: plt.scatter(y_pred, model.resid)

Out[38]: <matplotlib.collections.PathCollection at 0x250819fe580>

Removendo Outliers

```
In [39]: df.drop(['Species', 'Weight'], axis=1).boxplot()
```

Out[39]: <AxesSubplot:>

In [40]: df[['Weight']].boxplot()

Out[40]: <AxesSubplot:>


```
In [41]:
    def calc_min_and_max_range(dados_coluna):
        Q1 = dados_coluna.quantile(q=0.25) # Primeiro quartil
        Q3 = dados_coluna.quantile(q=0.75) # Terceiro quartil

        IQR = Q3 - Q1 # Intervalo interquartílico

        inf = Q1 - 1.5 * IQR
        sup = Q3 + 1.5 * IQR

        return inf, sup
```

In [42]: df.columns

```
Index(['Species', 'Weight', 'Length1', 'Length2', 'Length3', 'Height',
                 'Width'],
                dtype='object')
         colunas = ['Weight', 'Length1', 'Length2', 'Length3']
In [43]:
In [44]: for coluna in colunas:
              inf, sup = calc min and max range(df[coluna])
              df = df[(df[coluna] > inf) & (df[coluna] < sup)]</pre>
In [45]: df
          df.shape
         (155, 7)
Out[45]:
In [46]:
         df.drop(['Species', 'Weight'], axis=1).boxplot()
         <AxesSubplot:>
Out[46]:
          50
          40
```



```
In [47]: df[['Weight']].boxplot()
```

Out[47]: <AxesSubplot:>

Modelo de Regressão sem Outliers

```
In [48]: X = df.drop(['Species', 'Weight'], axis=1)
y = df['Weight']
```

In [49]: X

Out[49]:

	Length1	Length2	Length3	Height	Width
0	23.2	25.4	30.0	11.5200	4.0200
1	24.0	26.3	31.2	12.4800	4.3056
2	23.9	26.5	31.1	12.3778	4.6961
3	26.3	29.0	33.5	12.7300	4.4555
4	26.5	29.0	34.0	12.4440	5.1340
154	11.5	12.2	13.4	2.0904	1.3936
155	11.7	12.4	13.5	2.4300	1.2690
156	12.1	13.0	13.8	2.2770	1.2558
157	13.2	14.3	15.2	2.8728	2.0672
158	13.8	15.0	16.2	2.9322	1.8792

155 rows × 5 columns

```
242.0
                290.0
                340.0
                363.0
                430.0
         154
                12.2
         155
                 13.4
         156
                 12.2
         157
                 19.7
         158
                 19.9
         Name: Weight, Length: 155, dtype: float64
         Sklearn
        lr = LinearRegression()
In [51]:
In [52]: lr.fit(X, y)
         LinearRegression()
Out[52]:
        lr.score(X, y)
In [53]:
         0.9069290835432218
Out[53]:
In [54]: y_pred = lr.predict(X)
In [55]: r2_score(y, y_pred)
         0.9069290835432218
Out[55]:
         Statsmodels
In [56]: x = sm.add_constant(X)
         model = sm.OLS(y, x).fit()
```

model.summary()

Out[57]:

OLS Regression Results

Variable	:		Weight		R-square	ed:	0.907
Model	:		OLS	Adj.	R-square	ed:	0.904
Method	:	Least	Squares		ic:	290.4	
Date	: Т	hu, 11 N	lov 2021	Prob	(F-statisti	c):	6.45e-75
Time	:		00:43:33	Log-	Likelihoo	d:	-925.92
rvations	:		155		Α	IC:	1864.
esiduals	:		149		В	IC:	1882.
f Model	:		5				
се Туре	:	no	onrobust				
cc	oef	std err	t	P> t	[0.02	25	0.975]
-407.80)29	25.200	-16.183	0.000	-457.59	98	-358.008
117.12	278	32.241	3.633	0.000	53.4	19	180.837
-58.91	44	33.359	-1.766	0.079	9 -124.83	32	7.003
-38.83	324	13.769	-2.820	0.00	5 -66.04	41	-11.624
39.44	119	7.022	5.617	0.000	25.50	66	53.318
56.39	74	16.515	3.415	0.00	1 23.7	63	89.032
	0.0	20 5	1		0.544		
inibus:	9.8	28 D i	urbin-Wa	tson:	0.544		
nibus):	0.0	07 Jar	que-Bera	(JB):	10.392		
Skew:	0.6	09	Prob	(JB):	0.00554		
ırtosis:	2.6	46	Cond	l. No.	307.		
	Model Method Date Time rvations esiduals f Model ace Type -407.80 117.12 -58.91 -38.83 39.44 56.39 nibus: nibus): Skew:	Time: rvations: esiduals: f Model: cee Type: coef -407.8029 117.1278 -58.9144 -38.8324 39.4419 56.3974 anibus: 9.8 nibus): 0.0 Skew: 0.6	Model: Method: Least Date: Thu, 11 N Time: rvations: esiduals: f Model: ce Type: nc coef std err -407.8029 25.200 117.1278 32.241 -58.9144 33.359 -38.8324 13.769 39.4419 7.022 56.3974 16.515 nibus: 9.828 Denibus): 0.007 Jar Skew: 0.609	Model: OLS Method: Least Squares Date: Thu, 11 Nov 2021 Time: 00:43:33 rvations: 155 esiduals: 149 f Model: 5 ice Type: nonrobust coef std err t -407.8029 25.200 -16.183 117.1278 32.241 3.633 -58.9144 33.359 -1.766 -38.8324 13.769 -2.820 39.4419 7.022 5.617 56.3974 16.515 3.415 anibus: 9.828 Durbin-Wall prob Prob	Model: OLS Adj. Method: Least Squares Date: Thu, 11 Nov 2021 Proberty Time: 00:43:33 Logs rvations: 155 Logs esiduals: 149 Frace Type: nonrobust coef std err t P> t -407.8029 25.200 -16.183 0.000 117.1278 32.241 3.633 0.000 -58.9144 33.359 -1.766 0.073 -38.8324 13.769 -2.820 0.000 39.4419 7.022 5.617 0.000 56.3974 16.515 3.415 0.007 Inibus: 9.828 Durbin-Watson: nibus): 0.007 Jarque-Bera (JB): Skew: 0.609 Prob(JB):	Model: OLS Adj. R-squares Date: Thu, 11 Nov 2021 Prob (F-statistical) Time: 00:43:33 Log-Likelihoo rvations: 155 A esiduals: 149 B f Model: 5 Foce Type: nonrobust coef std err t P> t [0.02] -407.8029 25.200 -16.183 0.000 -457.59 117.1278 32.241 3.633 0.000 -53.4 -58.9144 33.359 -1.766 0.079 -124.83 -38.8324 13.769 -2.820 0.005 -66.04 39.4419 7.022 5.617 0.000 25.56 56.3974 16.515 3.415 0.001 23.76 mibus: 9.828 Durbin-Watson: 0.544 mibus): 0.007 Jarque-Bera (JB): 10.392 Skew: 0.609 Prob(JB): 0.00554	Model: OLS Adj. R-squared: Date: Thu, 11 Nov 2021 Prob (F-statistic): Time: 00:43:33 Log-Likelihood: rvations: 155 AIC: esiduals: 149 BIC: f Model: 5 Feature cc Type: nonrobust P> t [0.025] -407.8029 25.200 -16.183 0.000 -457.598 117.1278 32.241 3.633 0.000 -53.419 -58.9144 33.359 -1.766 0.079 -124.832 -38.8324 13.769 -2.820 0.005 -66.041 39.4419 7.022 5.617 0.000 25.566 56.3974 16.515 3.415 0.001 23.763 Inibus: 9.828 Durbin-Watson: 0.544 Inibus: 0.609 Prob(JB): 0.00554

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [58]: sns.histplot(model.resid, kde=True)
Out[58]: <AxesSubplot:ylabel='Count'>
```


In [59]: plt.scatter(y_pred, model.resid)

Out[59]: <matplotlib.collections.PathCollection at 0x25082462520>

Considerando os Dados Categóricos

Out[61]:		Weight	Length1	Length2	Length3	Height	Width	Species_Parkki	Species_Perch	Species_Pike	Species_Roach	Species_Smelt	Species_Whitefish
	0	242.0	23.2	25.4	30.0	11.5200	4.0200	0	0	0	0	0	0
	1	290.0	24.0	26.3	31.2	12.4800	4.3056	0	0	0	0	0	0
	2	340.0	23.9	26.5	31.1	12.3778	4.6961	0	0	0	0	0	0
	3	363.0	26.3	29.0	33.5	12.7300	4.4555	0	0	0	0	0	0
	4	430.0	26.5	29.0	34.0	12.4440	5.1340	0	0	0	0	0	0
	154	12.2	11.5	12.2	13.4	2.0904	1.3936	0	0	0	0	1	0
	155	13.4	11.7	12.4	13.5	2.4300	1.2690	0	0	0	0	1	0
	156	12.2	12.1	13.0	13.8	2.2770	1.2558	0	0	0	0	1	0
	157	19.7	13.2	14.3	15.2	2.8728	2.0672	0	0	0	0	1	0
	158	19.9	13.8	15.0	16.2	2.9322	1.8792	0	0	0	0	1	0

155 rows × 12 columns

In [63]: df.head()

```
Out[63]:
             Species Weight Length1 Length2 Length3 Height Width species
                       242.0
                                                  30.0 11.5200 4.0200
                                                                           0
          0
              Bream
                                 23.2
                                         25.4
                                24.0
                                         26.3
                                                  31.2 12.4800 4.3056
              Bream
                       290.0
                                                                           0
                       340.0
                                         26.5
                                                  31.1 12.3778 4.6961
              Bream
                                 23.9
                                                                           0
                       363.0
                                 26.3
                                         29.0
                                                  33.5 12.7300 4.4555
                                                                           0
              Bream
             Bream
                       430.0
                                26.5
                                         29.0
                                                  34.0 12.4440 5.1340
                                                                           0
```

```
In [64]: X = df.drop(['Species', 'Weight'], axis=1)
```

```
In [65]: X.head()
             Length1 Length2 Length3 Height Width species
Out[65]:
          0
                 23.2
                          25.4
                                  30.0 11.5200 4.0200
                                                            0
                 24.0
                          26.3
                                  31.2 12.4800 4.3056
                                  31.1 12.3778 4.6961
                 23.9
                          26.5
                 26.3
                          29.0
                                  33.5 12.7300 4.4555
                 26.5
                          29.0
                                  34.0 12.4440 5.1340
In [66]: y = df['Weight']
```

Avaliando o modelo com a presença dos Dados Categóricos

Sklearn

```
lr = LinearRegression()
In [68]: lr.fit(X, y)
         LinearRegression()
Out[68]:
In [69]: lr.coef_
         array([ 82.46690596, -96.25250448, 23.16478763, 36.16223965,
                 91.38483721, 46.69845839])
In [70]: lr.intercept_
          -632.5641109755825
Out[70]:
In [71]: lr.score(X, y)
         0.9241405510725724
Out[71]:
In [72]: y_pred = lr.predict(X)
In [73]: r2_score(y, y_pred)
         0.9241405510725724
```

Statsmodels

```
In [74]: x = sm.add_constant(X)
           model = sm.OLS(y, x).fit()
           model.summary()
                                OLS Regression Results
Out[74]:
                                      Weight
                                                                   0.924
               Dep. Variable:
                                                    R-squared:
                     Model:
                                         OLS
                                                Adj. R-squared:
                                                                   0.921
                                 Least Squares
                    Method:
                                                     F-statistic:
                                                                   300.5
                       Date: Thu, 11 Nov 2021 Prob (F-statistic): 3.22e-80
                                     00:43:58
                                                Log-Likelihood:
                                                                 -910.08
                      Time:
           No. Observations:
                                         155
                                                          AIC:
                                                                   1834.
                Df Residuals:
                                         148
                                                           BIC:
                                                                   1855.
                  Df Model:
                                           6
            Covariance Type:
                                    nonrobust
                          coef std err
                                             t P>|t|
                                                        [0.025
                                                                  0.975]
              const -632.5641 45.006
                                       -14.055 0.000
                                                      -721.501
                                                               -543.627
           Length1
                      82.4669
                               29.812
                                         2.766 0.006
                                                        23.555
                                                                 141.379
           Length2
                      -96.2525 30.898
                                        -3.115 0.002 -157.310
                                                                 -35.195
           Length3
                       23.1648
                               16.433
                                         1.410 0.161
                                                         -9.309
                                                                  55.639
             Height
                      36.1622
                                6.386
                                         5.662 0.000
                                                        23.542
                                                                  48.782
             Width
                      91.3848
                                16.133
                                         5.665 0.000
                                                        59.504
                                                                 123.265
                                8.059
            species
                      46.6985
                                         5.795 0.000
                                                        30.773
                                                                  62.624
                 Omnibus: 8.560
                                   Durbin-Watson:
                                                     0.693
           Prob(Omnibus): 0.014 Jarque-Bera (JB):
                                                     8.485
                    Skew: 0.561
                                          Prob(JB): 0.0144
```

Notes:

Kurtosis: 3.236

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

360.

Cond. No.

Análise do Erro

In [75]: sns.histplot(model.resid, kde=True)

Out[75]: <AxesSubplot:ylabel='Count'>

In [76]: plt.scatter(y_pred, model.resid)

Out[76]: <matplotlib.collections.PathCollection at 0x2508254b550>

In [77]: sns.jointplot(data=df, x='Width', y='Weight', kind='reg')

Out[77]: <seaborn.axisgrid.JointGrid at 0x25082559fd0>

Remoção de Variáveis Desnecessárias

```
plt.figure(figsize=(12,10))
sns.heatmap(df.corr(), cmap='coolwarm', annot=True, vmin=-1, vmax=1)
In [78]:
           <AxesSubplot:>
```

Out[78]:

In [79]: df_minimal = df.drop(['Length2', 'Length3'], axis=1)

In [80]: df_minimal.head()

Out[80]:

	Species	Weight	Length1	Height	Width	species
0	Bream	242.0	23.2	11.5200	4.0200	0
1	Bream	290.0	24.0	12.4800	4.3056	0
2	Bream	340.0	23.9	12.3778	4.6961	0
3	Bream	363.0	26.3	12.7300	4.4555	0
4	Bream	430.0	26.5	12.4440	5.1340	0

```
In [107...
             plt.figure(figsize=(12,10))
              sns.heatmap(df_minimal.corr(), cmap='coolwarm', annot=True, vmin=-1, vmax=1)
Out[107]: <AxesSubplot:>
                                                                                                                             1.00
             Weight
                                                                                                     -0.31
                                                                                                                           - 0.75
                                                                                                                           - 0.50
              Length1
                                                                                                     -0.21
                                                                                                                           - 0.25
              Height
                                                                                                                           - 0.00
                                                                                                                           - -0.25
             Width
                                                                                                     -0.37
                                                                                                                            <del>-</del> -0.50
                                                                                                                           - -0.75
              species
                        -0.31
                                            -0.21
                                                                                  -0.37
                        Weight
                                          Length1
                                                              Height
                                                                                  Width
                                                                                                    species
```

```
In [81]: X = df_minimal.drop(['Weight', 'Species'], axis=1)
y = df_minimal['Weight']
```

Sklearn

```
In [82]: df_minimal.head()
```

```
Out[82]:
            Species Weight Length1 Height Width species
                      242.0
                               23.2 11.5200 4.0200
             Bream
              Bream
                      290.0
                               24.0 12.4800 4.3056
                                                       0
                      340.0
                               23.9 12.3778 4.6961
             Bream
                               26.3 12.7300 4.4555
             Bream
                      363.0
             Bream
                      430.0
                               26.5 12.4440 5.1340
                                                       0
In [83]: lr = LinearRegression()
         lr.fit(X, y)
In [84]:
         LinearRegression()
Out[84]:
In [85]: lr.coef_
         array([ 8.38798067, 38.62601654, 71.33662497, 40.94951776])
Out[85]:
        lr.intercept_
In [86]:
          -616.1785382243611
Out[86]:
         lr.score(X, y)
In [87]:
         0.9191610055608289
Out[87]:
         Statsmodels
In [88]: X.head()
```

```
Out[88]: X.head()

Out[88]: Length1 Height Width species

0 23.2 11.5200 4.0200 0

1 24.0 12.4800 4.3056 0

2 23.9 12.3778 4.6961 0

3 26.3 12.7300 4.4555 0
```

26.5 12.4440 5.1340

0

```
In [89]: x = sm.add_constant(X)
```

model = sm.OLS(y, x).fit()
model.summary()

Out[89]:

Dep. Variable:	Weight	R-squared:	0.919
Model:	OLS	Adj. R-squared:	0.917
Method:	Least Squares	F-statistic:	426.4

OLS Regression Results

Juaic	wethou.	. Squares	i -statistic.	720.7
/ 202	Date: Thu, 11 N	Nov 2021	Prob (F-statistic):	8.25e-81
:44:2	Time:	00:44:26	Log-Likelihood:	-915.00
15	No. Observations:	155	AIC:	1840.
150	Df Residuals:	150	BIC:	1855.
4	Df Model:	4		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-616.1785	34.377	-17.924	0.000	-684.104	-548.253
Length1	8.3880	1.901	4.413	0.000	4.632	12.144
Height	38.6260	4.395	8.788	0.000	29.941	47.311
Width	71.3366	11.873	6.008	0.000	47.877	94.796
species	40.9495	6.243	6.560	0.000	28.615	53.284

 Omnibus:
 7.998
 Durbin-Watson:
 0.630

 Prob(Omnibus):
 0.018
 Jarque-Bera (JB):
 8.391

 Skew:
 0.566
 Prob(JB):
 0.0151

 Kurtosis:
 2.875
 Cond. No.
 140.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [90]: model.resid

```
Out[90]:
               -84.332657
               -57.403232
         3
               -50.974877
               -23.007332
                 ...
        154
               106.061108
        155
               101.354660
        156
               103.650892
        157
                21.028195
        158
                27.312307
         Length: 155, dtype: float64
In [91]: y_est = lr.predict(X)
In [92]: y_est
```

-68.167556

```
array([ 310.16755632,
                        374.33265682,
                                       397.40323192,
                                                       413.97487659
        453.00733204,
                        485.52995708,
                                       532.86732025,
                                                       439.29012903,
        501.82357143,
                        526.18265575,
                                       537.07166278,
                                                       523.12375578,
        470.97316402,
                        530.54322831,
                                       576.92441571,
                                                       624.79490425,
        589.85672805,
                        586.5836176 ,
                                       613.07854642,
                                                       611.50175402,
        628.02828085,
                        648.07932379,
                                       624.28743343,
                                                       685.38595968,
        677.40426383.
                       714.29573605.
                                       718.66804681.
                                                       713.520606 .
        753.49813303,
                       868.08794455,
                                       823.96454112,
                                                       824.76371276,
        893.3672191 ,
                        898.67281725,
                                       837.74029923,
                                                      -145.04278855,
        -30.88456124,
                         -5.88604729,
                                        20.84436192,
                                                        75.85810384,
         73.34562688,
                         65.45287002,
                                        58.68468898,
                                                        87.91672307,
        106.05379254,
                       140.92411645,
                                        91.11326004,
                                                       120.04305249,
                                       190.27479014,
        173.92063746,
                       135.45459912,
                                                       175.09530938,
        289.74447449,
                        305.95071904,
                                       420.591803 ,
                                                       290.38775843,
        285.56883784,
                       353.48151919,
                                       587.88680125,
                                                       671.62218962,
        721.24946268,
                         50.3640604 ,
                                        45.75639218,
                                                       120.11027626,
        185.78433818,
                        239.39953804,
                                       230.82650397,
                                                       272.25812506,
        274.04723852,
                        345.46110649,
                                       423.49781582,
                                                       449.12137737,
       -207.45049724.
                        -68.64194177,
                                       -15.42977471,
                                                        38.55482355.
         66.36367563,
                       122.17706201,
                                       112.17480776,
                                                       127.1722779 ,
        112.00567409,
                         94.32332155,
                                       180.47146654,
                                                       171.50650558,
        188.49683685,
                        208.19968205,
                                       194.46365694,
                                                       184.6914826 ,
        202.84571037,
                       193.76859648,
                                       213.68113939,
                                                       204.29101838,
        240.44496986.
                       210.15108307.
                                       184.00359642.
                                                       236.0682991 .
        279.44090103,
                       251.25855359,
                                       294.44642811,
                                                       252.0437799 ,
        300.55832641,
                       329.80931009,
                                       446.95862491,
                                                       346.75889692,
        342.29372941,
                       367.71709212,
                                       366.85257071,
                                                       396.91606498,
                       620.17569833,
        415.35552681,
                                       667.86534501,
                                                       820.0989604 ,
        742.75515548,
                       723.46406939,
                                       702.41317605,
                                                       700.35807971,
        818.49718875,
                       712.1770829 ,
                                       859.21528969,
                                                       824.83691226
        826.46510716,
                        868.53823349,
                                       761.87613353,
                                                       859.13999094,
        861.50858102,
                       896.35366887,
                                       952.48146887,
                                                       916.61686981,
        296.08204213,
                       371.55530177,
                                       404.92380171,
                                                       410.12558549,
        494.39808925,
                       421.29411413,
                                       513.63823937,
                                                       505.80085115,
        591.59759182,
                       558.96542984,
                                       599.31310016,
                                                       644.50408762,
        778.72464597, -150.57804551, -127.68063534, -137.07863975,
        -99.97915787, -109.15318338, -111.79942405,
                                                       -98.60115289,
                                       -93.86110838,
       -107.01174097, -107.788281 ,
                                                       -87.9546605 ,
        -91.45089221.
                         -1.32819531,
                                        -7.41230702])
```

In [93]: plt.scatter(y_est, model.resid)

Out[93]: <matplotlib.collections.PathCollection at 0x25083016d00>

Transformação de Variáveis

```
In [94]: sns.lmplot(data=df_minimal, x='Width', y='Weight')
```

Out[94]: <seaborn.axisgrid.FacetGrid at 0x250830573d0>

Transformação log & Transformação log-log (duplo)

```
In [95]: df_minimal.shape
         (155, 6)
Out[95]:
In [96]: df_minimal = df_minimal[df_minimal['Weight'] != 0]
         df minimal.shape
In [97]:
         (154, 6)
Out[97]:
        df_minimal['Width']
In [98]:
                4.0200
Out[98]:
                4.3056
         2
                4.6961
                4.4555
         3
                5.1340
                 . . .
         154
                1.3936
                1.2690
         155
         156
                1.2558
         157
                2.0672
                1.8792
         158
         Name: Width, Length: 154, dtype: float64
        np.log(df_minimal['Width'])
                1.391282
Out[99]:
                1.459917
         2
                1.546732
         3
                1.494139
                1.635885
                  . . .
         154
                0.331890
         155
                0.238229
         156
                0.227773
         157
                0.726195
         158
                0.630846
         Name: Width, Length: 154, dtype: float64
        np.log(df_minimal['Weight'])
In [100...
```

```
5.669881
                  5.828946
           3
                  5.894403
                  6.063785
                    . . .
          154
                  2.501436
          155
                  2.595255
          156
                  2.501436
          157
                  2.980619
          158
                  2.990720
          Name: Weight, Length: 154, dtype: float64
          plt.scatter(np.log(df_minimal['Width']), np.log(df_minimal['Weight']))
 In [101...
          <matplotlib.collections.PathCollection at 0x250830ee7f0>
Out[101]:
           7
           6
           5
           4
           3
             0.0
                        0.5
                                  1.0
                                             1.5
                                                        2.0
           -np.inf
In [102...
Out[102]:
          plt.scatter(np.log(df_minimal['Length1']), np.log(df_minimal['Weight']))
 In [103...
```

5.488938

<matplotlib.collections.PathCollection at 0x250831480d0>

Out[103]:

In [104... plt.scatter(np.log(df_minimal['Height']), np.log(df_minimal['Weight']))

Out[104]: <matplotlib.collections.PathCollection at 0x2508319b6a0>


```
In [105... df['species']
```

Name: species, Length: 155, dtype: int64

```
In [106... df_log = df_minimal.copy()
          df log['Weight'] = np.log(df log['Weight'])
 In [107...
           df_log['Width'] = np.log(df_log['Width'])
          df_log['Height'] = np.log(df_log['Height'])
          df_log['Length1'] = np.log(df_log['Length1'])
In [108... df_log.head()
Out[108]:
             Species Weight Length1
                                        Height
                                                 Width species
           0 Bream 5.488938 3.144152 2.444085 1.391282
                                                             0
                                                             0
               Bream 5.669881 3.178054 2.524127 1.459917
              Bream 5.828946 3.173878 2.515905 1.546732
               Bream 5.894403 3.269569 2.543961 1.494139
              Bream 6.063785 3.277145 2.521239 1.635885
                                                             0
In [109... sns.pairplot(df_log.drop(['species'], axis=1), hue='Species')
Out[109]: <seaborn.axisgrid.PairGrid at 0x25082ff27f0>
```



```
In [110... X = df_log.drop(['Species', 'Weight'], axis=1)
y = df_log['Weight']
```

In [111... X.head()

Out[111]:		Length1	Height	Width	species
	0	3.144152	2.444085	1.391282	0
	1	3.178054	2.524127	1.459917	0
	2	3.173878	2.515905	1.546732	0
	3	3.269569	2.543961	1.494139	0
	4	3.277145	2.521239	1.635885	0

Sklearn

```
In [112... lr = LinearRegression().fit(X, y)
In [113... lr.coef_
Out[113]: array([1.35293214, 0.65645409, 0.98258257, 0.000422266])
In [114... lr.score(X, y)
Out[114]: 0.994751565225584
```

Statsmodels

```
In [115... x = sm.add_constant(X)
model = sm.OLS(y, x).fit()
In [116... model.summary()
```

Out[116]:

OLS Regression Results

Dep. Variable:		Weight		R-squared		red:	0.995
Model:		OLS		Adj. R-squared		red:	0.995
Method:		Least Squares		F-statistic		stic:	7060.
Date:		: Thu, 1	Thu, 11 Nov 2021		Prob (F-statistic)		04e-168
Time:			00:45:04		Log-Likelihood		145.05
No. Observations:		154		AIC		AIC:	-280.1
Df Residuals:		149		BIC		BIC:	-264.9
Df Model:		4					
Covariance Type:			nonrobust				
	coef	std err	t	P> t	[0.025	0.975]	
const	-1.6468	0.123	-13.388	0.000	-1.890	-1.404	
Length1	1.3529	0.060	22.477	0.000	1.234	1.472	
Height	0.6565	0.050	13.150	0.000	0.558	0.755	
Width	0.9826	0.062	15.838	0.000	0.860	1.105	
species	0.0042	0.007	0.591	0.555	-0.010	0.018	
Omnibus:		25.328	Durbin-Watson:		1.64	18	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		57.37	79	
Skew:		-0.688	Prob(JB):		3.47e-	13	
Kurtosis:		5.655	Cond. No.		95	.1	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:

Removendo as espécies

Sklearn

Statsmodels

Na prática

- 1. Processo de treinamento do nosso modelo
- 2. Processo de teste do nosso modelo (validação)

Divisão treino-teste

- 70% dos dados para treino
- 30% dos dados para teste

```
In [117... from sklearn.model_selection import train_test_split

In [118... X.head()
```

Out[118]:		Length1	Height	Width	species
	0	3.144152	2.444085	1.391282	0
	1	3.178054	2.524127	1.459917	0
	2	3.173878	2.515905	1.546732	0
	3	3.269569	2.543961	1.494139	0

4 3.277145 2.521239 1.635885

```
Out[121]:
               Length1
                        Height Width species
           65 2.912351 2.185242 1.191738
                                              4
           99 3.135494 1.862451 1.303863
           51 3.161247 1.958206 1.362514
                                              1
           21 3.446808 2.772189 1.680902
           22 3.449988 2.742303 1.663945
                                              0
           64 2.862201 2.127303 1.070933
                                              3
           71 3.178054 2.430802 1.443147
           82 2.944439 1.739150 1.268355
                                              4
           11 3.356897 2.665240 1.571653
           96 3.091042 1.986915 1.314530
                                              4
          107 rows × 4 columns
 In [122... X_test.shape
Out[122]: (47, 4)
 In [123... y_train
                 5.010635
           65
Out[123]:
           99
                 5.192957
                 5.192957
           51
                 6.529419
           21
           22
                 6.429719
           64
                 4.787492
           71
                 5.703782
           82
                 4.700480
           11
                 6.214608
           96
                 5.416100
           Name: Weight, Length: 107, dtype: float64
 In [124... y_test.shape
Out[124]: (47,)
 In [125... lr = LinearRegression().fit(X_train, y_train)
```

In [126... lr.score(X_train, y_train)

Out[126]: 0.9952021736203663

In [127... y_pred = lr.predict(X_test)

In [128... y_test

```
4.442651
          81
Out[128]:
          107
                 5.703782
          117
                 6.476972
                 5.703782
          130
           32
                 6.829794
          78
                 4.356709
          39
                 4.787492
          92
                 5.010635
          139
                 6.646391
          135
                 6.234411
          42
                 4.787492
          62
                 4.094345
          16
                 6.551080
          97
                 4.976734
          66
                 4.941642
                 6.882437
           33
          4
                 6.063785
          1
                 5.669881
          79
                 4.382027
          85
                 4.867534
          140
                 6.856462
          102
                 5.703782
          109
                 6.242223
          54
                 5.966147
          101
                 5.384495
                 6.861711
           31
          95
                 5.135798
          49
                 5.081404
          119
                 6.745236
          93
                 4.976734
          124
                 6.907755
          43
                 5.010635
          70
                 5.609472
          69
                 5.298317
          56
                 5.598422
          98
                 5.236442
          134
                 6.122493
          25
                 6.586172
          67
                 5.135798
          145
                 1.902108
          75
                 3.941582
          86
                 4.787492
          87
                 4.787492
                 6.551080
          113
          128
                 5.298317
          90
                 4.700480
          44
                 4.976734
          Name: Weight, dtype: float64
```

```
Out[129]: array([ 78.1343844 ,
                                 288.14783254, 722.30252206,
                                                              297.62647471,
                 1112.95920841,
                                  81.1428284 , 117.01444537, 146.38062859,
                  654.67370296,
                                430.4835345 , 112.15438134,
                                                               56.2929047 ,
                  589.69124141,
                                162.25742895, 139.411906 , 1154.71669054,
                  425.71211499,
                                313.07661826,
                                                86.17408435, 126.60546482,
                  921.30580019,
                                314.34227501,
                                               536.54014054,
                                                              427.46001974,
                  224.77450991,
                                966.82953868, 151.65152768,
                                                             158.3938401 ,
                  914.74903269, 135.71999216, 1032.70877381, 132.22371138,
                  269.70437156, 204.01607314, 236.13539951, 190.46667443,
                  435.49209381, 767.76995838, 154.2593666,
                                                                5.91819643,
                   54.0103139 , 123.79930529 , 121.44585523 , 720.31730078 ,
                  194.49905152, 136.37081301, 137.37494339])
```