B.Sc. Semester-III Examination, 2022-23 MATHEMATICS [Honours]

Course ID: 32114 Course Code: SH/MTH/304/GE-3

Course Title: Algebra

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

UNIT-I

Answer any five of the following questions:

 $2 \times 5 = 10$

- a) Prove that for any complex number z, $|z| \ge \frac{1}{\sqrt{2}} (|\text{Re } z| + |\text{Im } z|)$.
- b) Construct an equivalence relation on the set $A = \{1, 2, 3\}$.
- C) Using principle of mathematical induction prove that 3²ⁿ-8n-1 is divisible by 64 where n is a positive integer.
- d) Apply Descartes rule of signs to examine the nature of the roots of the equation $x^2 + x^3 x^3 = 0$.

- e) Let λ be an eigenvalue of an $n \times n$ matrix A. Show that λ^4 is an eigenvalue of the matrix A^4 .
- f) Show that the mapping $f: S \to \mathbb{R}$ defined by $f(x) = \frac{x}{1-|x|}$, where S = (-1, 1), is bijective.
- g) Prove that $S \times S$ is an equivalence in S.
- h) Express the matrix A as a product of elementary matrices, where $A = \begin{pmatrix} 3 & 2 \\ 2 & 5 \end{pmatrix}$.

UNIT-II

2. Answer any **four** of the following questions:

 $5\times4=20$

- a) Show that one of the values of $(1+i\sqrt{3})^{\frac{3}{4}} + (1-i\sqrt{3})^{\frac{3}{4}}$ is $\sqrt[4]{32}$.
- b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x+y, x-2y, 3x+y).

Show that T is non-singular and find T^{-1} .

c) If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, then find the equation whose roots are $\frac{\beta + \gamma}{\alpha^2}$, $\frac{\gamma + \alpha}{\beta^2}$, $\frac{\alpha + \beta}{\gamma^2}$.

- d) A mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by
- $(x, y, z) = (x+2y+3z, 3x+2y+z, x+y+z), (x, y, z) \in \mathbb{R}^3.$

Show that T is a linear mapping. Find Ker T and the dimension of Ker T.

- Show that the solutions of the equation $(1+x)^{2n} + (1-x)^{2n} = 0 \quad \text{are} \quad x = \pm i \tan \frac{(2r-1)\pi}{4n},$ r = 1, 2, ..., n.
- f) i) If $d=\gcd(a, m)$, then show that

$$ax \equiv ay \pmod{m} \leftrightarrow x \equiv y \pmod{\frac{m}{d}}.$$

ii) Find the least positive residues in

$$3^{36} \pmod{77}$$
. $3+2=5$

UNIT-III

3. Answer any one of the following questions:

$$10 \times 1 = 10$$

- a) i) Find the sum of 99th powers of the roots of the equation $x^7 1 = 0$.
 - ii) Show that $3x^5 4x^2 + 6 = 0$ has at least two imaginary roots.

iii) Diagonalise the matrix

$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}.$$
 3+2+5=10

- b) i) Find the linear mapping $T: R^3 \to R^3$ if T(1, 0, 0) = (2, 3, 4), T(0, 1, 0) = (1, 2, 3), T(0, 0, 1) = (1, 1, 1). Find the matrix of T relative to the ordered basis $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$.
 - ii) Find the dimension of the subspace W of \mathbb{R}^3 where

$$W = \{(x, y, z) : x + 2y + z = 0, 2x + y + 3z = 0\}.$$

iii) If p is prime, greater than 3, show that 24 divides $(p^2 - 1)$. (2+2)+3+3=10

