# Week 3: 01125 Fundamental Topological Concepts and Metric Spaces

Andreas Heidelbach Engly [s170303], Anton Ruby Larsen [s174356], and Mads Esben Hansen [s174434]

24th of January 2020



## 3.21

Let S be a point set with more than one element equipped with the discrete topology.

1)

Show that a topological space M is connected if and only if every continuous mapping  $f: M \to S$  is constant.

Proof. " $\Rightarrow$ "

Assume M is connected. We now choose an  $n \in f(M)$ , and define A and B such that:

$$A = \{m \in M \mid f(m) = n\}, B = \{m \in M \mid f(m) \neq n\}$$

Then  $A = f^{-1}(\{n\})$  and  $B = f^{-1}(S \setminus \{n\})$  where both n and  $S \setminus n$  are open subsets of S, and therefore both A and B are open in M. We also know that:

$$A \cap B = \emptyset \quad \land \quad M = A \cup B$$

From this it follows that:

$$B = M \backslash A$$

This means A is both open and closed. We also know that A is non-empty, since  $n \in f(M)$ . According to Lemma 3.8.1 it follows directly that A = M. In turn the function  $f: M \to S$  is a constant function with value n.

"⇐"

Let any continuous mapping  $f:M\to S$  be constant, and assume that M is not connected. Now, cf. Lemma 3.8.1, there exists a non-empty, open, closed, and proper subset  $U\subset M$  which implies that  $M\backslash U$  is also non-empty, open, and closed in M.

Let's now consider the function,  $h: M \to S$ :

$$h(x) = \begin{cases} 0, & x \in U \\ 1, & x \in M \backslash U \end{cases}$$

Cf. Def. 2.4.12 and since  $h^{-1}(\{0\}) = U$  is open, and the same holds for  $h^{-1}(\{1\}) = M \setminus U$ , h is continuous. Since both U and  $M \setminus U$  is non-empty, it is clear that h is not constant. This is a obvious contradiction of our initial assumptions. In other words, any continuous mapping  $f: M \to S$  cannot be constant, if M is disconnected. Thus for any continuous function f, if f is constant it implies that M is connected.

2)

Let  $\{W_i \mid i \in I\}$  be a family of connected subsets in a topological space M, such that for every pair of sets  $W_i$  and  $W_j$  from the family it holds that  $W_i \cap W_j \neq \emptyset$ . Show that the union  $\bigcup_{i \in I} W_i$  is a connected subset in M.

*Proof by contradiction.* Let's assume  $\bigcup_{i \in I} W_i$  is not connected. This means there exists  $U \subseteq M$ , and  $V \subseteq M$  non-empty, open and disjoint sets s.t.:

$$\cup_{i\in I} W_i = U \cup V$$

Now let's define a function  $g:U\cup V\to \{1,0\}$  s.t.:

$$g(x) = \begin{cases} 0, & x \in U \\ 1, & x \in V \end{cases}$$

Cf. Def. 2.4.12 and since  $g^{-1}(\{0\}) = U$  is open, and the same holds for  $g^{-1}(\{1\}) = V$ , g is continuous. Let's choose an arbitrary  $x_0 \in U$ . Then there must exist an i s.t.  $x_0 \in W_i$ . Since g is continuous and  $W_i$  is connected, then  $g(W_i)$  must cf. theorem 3.8.4 also be connected. So  $g(W_i) = \{0\}$  must be true. We further know that for any  $j \in I$  we have that  $W_i \cap W_j \neq \emptyset$ , this together with theorem 3.8.4 implies that  $g(W_j) = \{0\}$ . Since we chose j to be any element in I, it must hold for all elements in I. This means that g must be constant and in turn  $V = \emptyset$ . This is a contradiction and thus the union  $\bigcup_{i \in I} W_i$  must be a connected subset in M.

## 3.27

Let  $f: X \to Y$  be a continuous map between metric spaces  $(X, d_X)$  and  $(Y, d_Y)$ . Prove that if  $S \subset X$  is a pathwise connected subset in X, then the image  $f(S) \subset Y$  under f is a pathwise connected subset in Y.

*Proof.* We define  $f(x), f(y) \in f(S)$ , where  $x, y \in S$  and a continuous map g.

$$g: [0,1] \to S \text{ s.t. } g(0) = x \land g(1) = y$$

We know a continuous map like g exists due to S being pathwise connected.(Def 3.8.5)

Now we define a composite map h.

$$h: [0,1] \to f(S), \text{ where } h = f \circ g$$

We know h is a continuous map due to theorem 2.4.13. and,

$$h(0) = f(g(0)) = f(x)$$
  
 $h(1) = f(g(1)) = f(y)$ 

Both  $f(x), f(y) \in f(S)$  and therefore the image  $f(S) \subset Y$  under f complies with all criteria in Def 3.8.5 and is therefore a pathwise connected subset in Y.

### 4.3

Let  $E=C^{\infty}([0,2\pi],\mathbb{R})$  be the vector space of differentiable functions  $f:[0,2\pi]\to\mathbb{R}$  of class  $C^{\infty}$ .

For  $f \in E$  we set:

$$\begin{split} \|f\|_0 &= \sup\{\ |f(x)|\ |x \in [0,2\pi]\} \\ \|f\|_1 &= \sup\{\ |f(x)| + |f'(x)||x \in [0,2\pi]\} \end{split}$$

1)

Show that  $||f||_0$  and  $||f||_1$  are norms in E.

*Proof.* In order for  $||f||_0$  and  $||f||_1$  to be norms in E, they must satisfy NORM 1, NORM 2, and NORM 3 listed on page 84.

#### NORM 1 (Positive definite):

For  $||f||_0$ :

The supremum of a set of absolute values will satisfy that  $||f||_0 \ge 0$  for all  $f \in E$ . The supremum will only be 0, if all values in the corresponding set of non-negative values are 0.

For  $||f||_1$ :

The argument for  $||f||_1$  is exactly as for  $||f||_0$ .

#### **NORM 2** (Uniform scaling):

For  $||f||_0$ :

$$\begin{split} &\|\alpha f\|_{0} = \sup\{\;|\alpha f(x)|\;|x \in [0,2\pi]\} = \sup\{\;|\alpha||f(x)|\;|x \in [0,2\pi]\} = \\ &|\alpha|\sup\{\;|f(x)|\;|x \in [0,2\pi]\} = |\alpha|\,\|f\|_{0} \end{split}$$

Clearly  $\|\cdot\|_0$  satisfies uniform scaling.

For  $||f||_1$ :

$$\begin{split} &\|\alpha f\|_1 = \sup\{\ |\alpha f(x)| + |\alpha f'(x)|\ |x \in [0, 2\pi]\} = \\ &\sup\{\ |\alpha||f(x)| + |\alpha||f'(x)|\ |x \in [0, 2\pi]\} = \\ &|\alpha|\sup\{\ |f(x)| + |f'(x)|\ |x \in [0, 2\pi]\} = |\alpha|\ \|f\|_1 \end{split}$$

Clearly  $\left\| \cdot \right\|_1$  satisfies uniform scaling.

```
\begin{aligned} & \text{NORM 3 (Triangle inequality):} \\ & \text{For } \|f\|_0 \colon \\ \|f+g\|_0 = \sup\{ \ |(f+g)(x)| \ |x\in[0,2\pi]\} = \\ & \sup\{ \ |f(x)+g(x)| \ |x\in[0,2\pi]\} \le \sup\{ \ |f(x)|+|g(x)| \ |x\in[0,2\pi]\} \le \\ & \sup\{ \ |f(x)| \ |x\in[0,2\pi]\} + \sup\{ \ |g(x)| \ |x\in[0,2\pi]\} = \\ & \|f\|_0 + \|g\|_0 \\ & \text{So } \|\cdot\|_0 \text{ satisfies the triangle inequality.} \end{aligned}
```

So  $\left\|\cdot\right\|_1$  satisfies the triangle inequality.

Define the linear mapping  $D: E \to E$  by associating to  $f \in E$  the derivative  $f' \in E$  of f, i.e.

$$D(f) = f' \text{ for } f \in E.$$

Show that for every  $n \in \mathbb{N}$  there exists a function  $f_n \in E$  for which  $||f_n||_0 = 1$  and  $||D(f_n)||_0 = n$ .

Utilize this to show that  $D: E \to E$  is not continuous, when E is equipped with the norm  $\|\cdot\|_0$ .

*Proof.* The following function is chosen,

$$f_n(x) = sin(nx),$$
  
 $D(f_n(x)) = n \cdot cos(nx).$ 

The norm of  $f_n$  and  $D(f_n)$  is found,

$$||f_n||_0 = \sup\{|\sin(nx)| \mid x \in [0, 2\pi]\} = 1$$
  
$$||D(f_n)||_0 = \sup\{|n \cdot \cos(nx)| \mid x \in [0, 2\pi]\} = n$$

We see that supremum of |sin(nx)| will equal 1, for all  $n \in \mathbb{N}$ .  $sup\{|cos(nx)|\}$  will as sinus also equal 1 for all  $n \in \mathbb{N}$  and hence  $sup\{|n \cdot cos(nx)|\}$  will equal n.

We now proceed with a proof by contradiction.

Consider the normed vector space  $\|\cdot\|_0$ . Assume that  $D: E \to E$  is continuous in E. By theorem 4.2.4.(4) we know,

$$\exists k \in \mathbb{R} : ||D(f_n)||_0 \le k \cdot ||f_n||_0, \ \forall f \in E, \ \forall n \in \mathbb{N}.$$

This must hold for the whole space. Hence we will investigate if it holds for the chosen function,  $f_n(x) = \sin(nx)$ .

$$\|D(sin(nx))\|_0 \leq k \cdot \|sin(nx)\|_0 \Rightarrow n < k$$

Now pick n=k+1. Then we get  $k+1 \leq k$ , which is a contradiction. Since  $D: E \to E$  does not comply with theorem 4.2.4.(4) we can through the same theorem (4.2.4.(1)) conclude that  $D: E \to E$  is not continuous equipped with the norm  $\|\cdot\|_0$ .

3)

Show that  $D: E_1 \to E_0$  is continuous when  $E_1$  is E equipped with the norm  $\|\cdot\|_1$ , and  $E_0$  is E equipped with the norm  $\|\cdot\|_0$ .

*Proof.* We will again use theorem 4.2.4.(4) that says,

$$\exists k \in \mathbb{R} : \left\| T(x) \right\|_W \leq k \cdot \left\| x \right\|_V, \ \forall x \in V.$$

In our case this translates to,

$$\begin{array}{c} \exists k \in \mathbb{R}: \|D(f)\|_0 \leq k \cdot \|f\|_1 \,, \; \forall f \in E \\ \sup\{|f'(x)| \mid x \in [0,2\pi]\} \leq k \cdot \sup\{|f(x)| + |f'(x)| \mid x \in [0,2\pi]\} \end{array}$$

Now we see that  $0 \le |f(x)|$  and therefore it will always be the case that  $\sup\{|f'(x)| \mid x \in [0,2\pi]\} \le \sup\{|f(x)| + |f'(x)| \mid x \in [0,2\pi]\}$ . Hence we choose k=1.

We can now cf. theorem 4.2.4. conclude that  $D: E_1 \to E_0$  is continuous.