

BILKENT UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING CS464 HOMEWORK 1

BERAT BİÇER 21503050

Nov. 4, 2018 ANKARA; TURKEY

QUESTION 1

Question 1.1

$$P(Machine\ 2 \mid Loss) = P(Machine\ 2,\ Loss) \div P(Loss)$$

 $P(Loss) = P(Machine\ 1,\ Loss) + P(Machine\ 2,\ Loss)$
 $P(Machine\ 2 \mid Loss) = (900 / 1130) \div ((135 / 200) + (900 / 1130))$
 ≈ 0.54

Note that these values belong to "You" in the table.

Question 1.2

You:

$$P(Loss | Machine 1) = 60 / (40 + 60) = 0.6$$

 $P(Loss | Machine 2) = 828 / (828 + 212) \approx 0.8$

Friend:

$$P(Loss | Machine 1) = 75 / (25 + 75) = 0.25$$

 $P(Loss | Machine 2) = 72 / (18 + 72) = 0.8$

So, probability of "You" losing at machine 1 is less than probability of "Friend" losing at machine 1, whereas probabilities of "You" and "Friend" losing at machine 2 are approximately equal.

Question 1.3

Assuming we merge the machines by adding #wins and losses with respect to each player,

$$P(Loss \mid You) = 888 / (252 + 888) \approx 0.22$$

 $P(Loss \mid Friend) = 147 / (33 + 147) \approx 0.18$

This implies "You" is more likely to win compared to "Friend".

Question 1.4

Sequence Loss, Win, Win, Loss can only be generated as follows:

$$P(Loss \mid You)$$
, $P(Win \mid Friend)$, $P(Win \mid You)$, $P(Loss \mid Friend)$.

Since these events are independent, probability of generating this sequence, named P(s), is equal to

$$P(s) = P(Loss \mid You) \times P(Win \mid Friend) \times P(Win \mid You) \times P(Loss \mid Friend)$$
$$= 0.6 \times 0.25 \times 0.4 \times 0.75$$
$$= 0.045$$

QUESTION 2

Question 2.1

Since P(b=5) and P(r=5) are independent events, we can write $P(b=5, r=5 \mid C) = \frac{P(b=5, C) \times P(r=5, C)}{P(C)}$ $= \frac{1/4 \times 1/4}{4/6 \times 4/6} = \frac{1}{16}$

Question 2.2

Similar to Question 2.1, events are independent and we can write

$$P(b = 5, r = 5 | D) = \frac{P(b=5,D) \times P(r=5,D)}{P(D)}$$

= $\frac{1/3 \times 1/3}{1/2 \times 1/2} = \frac{4}{9}$

Question 2.3

Difference between Question 2.1 and Question 2.2 is related to the prior information, C and D respectively. Prior assumption generates a conditional probability, and thus even if expected outcome is common, probability values are different.

QUESTION 3

Question 3.1

Let $\lambda *$ be MLE estimator of λ where $X \sim Poisson(\lambda)$ and its probability distribution function $P(X = x) = (\lambda^x \times e^{-\lambda}) \div x!$. Then, log likelihood function is

$$\sum_{i} (x_i \times ln\lambda - \lambda - ln(x_i!)) = ln\lambda \times \sum_{i} (x_i) - n \times \lambda - \sum_{i} ln(x_i!).$$

Let this be A. To maximize value of A, we need to take its partial derivative with respect to λ and set it to 0:

$$f'_{\lambda}(A) = \frac{1}{\lambda} \times \sum_{i} (x_i) - n = 0 \Rightarrow \lambda * = \sum_{i} (x_i) \div n = \overline{X}.$$

Question 3.2

To calculate MAP of λ , denoted as λ' , we can say

$$argmax \frac{\prod\limits_{i} P(X_{i} \mid \lambda) \times g(\lambda)}{P(X_{1}, ..., X_{n})} = argmax \prod\limits_{i} P(X_{i} \mid \lambda) \times g(\lambda)$$

Since $P(X_1, ..., X_n)$ is constant. Let the value above be A. Then,

$$ln A = ln\lambda \times \sum_{i} (x_i) - n \times \lambda - \sum_{i} ln(x_i!) + ln k - (k+1) \times ln \lambda$$

To maximize it, we set its partial derivative with respect to λ to 0:

$$f'_{\lambda}(A) = \frac{1}{\lambda} \times \sum_{i} (x_i) - n - \frac{k+1}{\lambda} = 0 \implies \lambda' = \overline{X} - \frac{k+1}{n}$$

Lastly,
$$\lambda>1\Rightarrow\overline{X}-\frac{k+1}{n}\geq 1$$
. Assuming $\overline{X}=0$ and since $n>0$, we get
$$-\frac{k+1}{n}-1\geq 0\Rightarrow -k-1-n\geq 0$$

$$k<-n-1$$

Question 3.3

MLE estimator of λ , denoted as $\lambda*$ from Question 3.1, is written as $\lambda*=\overline{X}$. To calculate MAP estimator of λ , denoted as λ' where prior distribution of λ is given by $\lambda \sim Pareto(x \mid k, 1)$, we follow similar steps to those in Question 3.2. Note that $g(\lambda) = Uniform(a, b)$. Then, log likelihood function becomes

$$ln\lambda \times \sum_{i} (x_i) - n \times \lambda - \sum_{i} ln(x_i!) + ln U(a, b)$$

To find MAP estimator of λ , we set the partial derivative of the quantity above with respect to λ to 0:

$$\frac{1}{\lambda} \times \sum_{i} (x_i) - n + f'_{\lambda}(U(a, b)) = 0 \implies \lambda' = \overline{X} + \frac{\lambda}{n} \times f'_{\lambda}(U(a, b))$$

From equation of λ' , we can see that $\lambda * = \lambda' \Leftrightarrow f'_{\lambda}(U(a, b)) = 0$. Since U(a, b) = 0 for $\forall a, b$ where b > a, we are done.

QUESTION 4

Question 4.1

When maximizing a quantity that is in fractal form, maximizing the quantity itself is equivalent to maximizing its numerator as follows:

$$argmax \frac{A}{B} = argmax A$$

where A, B are some quantities and $B \neq 0$. Also, in the program, we do not require exact probability values. A relationship showing which label is more probable is sufficient to make predictions. Therefore, we can remove the divisor.

Question 4.2

We need to estimate, for each word in the vocabulary, the following:

- $\theta j \mid y=0$, probability that a particular word in a medical email will be in the j-th word of the vocabulary, $P(Xj \mid Y=0)$
- $\theta j \mid y = 1$, probability that a particular word in a space email will be in the j-th word of the vocabulary, $P(Xj \mid Y = 1)$

And lastly, we need to estimate π (y=0), probability that any particular email will be a space email. Knowing this value, π (y=1) can be calculated without estimation. Thus, total #parameters to estimate is 2*V+1 where V is vocabulary size, in this case 26507.

Question 4.3

There are 800 medical and 800 space emails in the training data, or %50 - %50 distribution. This implies training data has a balanced class distribution.

Question 4.4

Final accuracy is **0.1675.** The classifier predicted poorly for most cases. Total number of false predictions is **333**. MLE is a poor choice of estimate since for every word classifier has not seen before log likelihood value is negative infinity (log 0), and each time a negative infinity appears prediction is medical. That's why MLE is a poor estimator for this case.

```
import numpy as np
train features = np.loadtxt("dataset/question-4-train-features.csv",
dtype='i', delimiter=',')
train labels = np.loadtxt("dataset/question-4-train-labels.csv", dtype='i',
delimiter=',')
test features = np.loadtxt("dataset/question-4-test-features.csv", dtype='i',
delimiter=',')
test labels = np.loadtxt("dataset/question-4-test-labels.csv", dtype='i',
delimiter=',')
vocabulary size = len(train features[0])
N = len(train features)
sum T j y zero = 0
sum_T_j_y_one = 0
N one = 0
N \ zero = 0
# 1 space, 0 medical
for i in range(N):
    if train labels[i] == 0: # medical
       N \ zero = N \ zero + 1
        sum\ T\ j\ y\ zero\ =\ sum\ T\ j\ y\ zero\ +\ train\ features[i].sum(axis\ =\ 0)
    else: # space
        N one = N one + 1
        sum T j y one = sum T j y one + train features[i].sum(axis = 0)
T j y zero = np.zeros(vocabulary size)
T j y one = np.zeros(vocabulary size)
for i in range (vocabulary size):
    for j in range(N):
        if train labels[j] == 0:
```

```
T j y zero[i] = T j y zero[i] + train features[j][i]
        else:
            T j y one[i] = T j y one[i] + train features[j][i]
theta j y zero = np.zeros(vocabulary size)
theta j y one = np.zeros(vocabulary size)
for i in range (vocabulary size):
    theta j y zero[i] = float(T j y zero[i] / sum T j y zero)
    theta j y one[i] = float(T j y one[i] / sum T j y one)
    if theta j y zero[i] != 0:
        theta j y zero[i] = np.log(theta j y zero[i])
    if theta j y one[i] != 0:
        theta j y one[i] = np.log(theta j y one[i])
correct prediction count = 0
for i in range(len(test features)):
    weighted theta j y zero = float(0)
    weighted theta j y one = float(0)
    for j in range (vocabulary size):
        weighted_theta_j_y_zero = weighted_theta_j_y_zero +
float(theta j y zero[j] * test features[i][j])
        weighted theta j y one = weighted theta j y one +
float(theta j y one[j] * test features[i][j])
   prediction zero = np.log(float(N zero / N)) + weighted theta j y zero
   prediction \ one = np.log(float(N \ one \ / \ N)) + weighted theta j y \ one
   prediction = 0 if prediction zero >= prediction one else 1
    correct prediction count = correct prediction count + 1 if prediction ==
test labels[i] else correct prediction count
accuracy = float(correct prediction count / len(test features))
print("Accuracy -> " + str(accuracy))
print("False predictions -> " + str(len(test features) -
correct prediction count))
```

Question 4.5

Final accuracy is **0.9675**, whereas number of false predictions is **13**. Code for this part is as follows:

```
import numpy as np

train_features = np.loadtxt("dataset/question-4-train-features.csv",
dtype='i', delimiter=',')
```

```
train labels = np.loadtxt("dataset/question-4-train-labels.csv", dtype='i',
delimiter=',')
test features = np.loadtxt("dataset/question-4-test-features.csv", dtype='i',
delimiter=',')
test labels = np.loadtxt("dataset/question-4-test-labels.csv", dtype='i',
delimiter=',')
vocabulary size = len(train features[0])
N = len(train features)
sum T j y zero = 0
sum T j y one = 0
N one = 0
N \text{ zero} = 0
# 1 space, 0 medical
for i in range(N):
    if train labels[i] == 0: # medical
        N \ zero = N \ zero + 1
        sum\ T\ j\ y\ zero\ =\ sum\ T\ j\ y\ zero\ +\ train\ features[i].sum(axis\ =\ 0)
    else: # space
        N one = N one + 1
        sum\ T\ j\ y\ one\ =\ sum\ T\ j\ y\ one\ +\ train\ features[i].sum(axis\ =\ 0)
T j y zero = np.zeros(vocabulary size)
T j y one = np.zeros(vocabulary size)
sum_T_j_y_zero = sum_T_j_y_zero + vocabulary_size
sum T j y one = sum T j y one + vocabulary size
for i in range (vocabulary size):
    for j in range(N):
        if train labels[j] == 0:
            T j y zero[i] = T j y zero[i] + train features[j][i]
        else:
            T j y one[i] = T j y one[i] + train features[j][i]
theta j y zero = np.zeros(vocabulary size)
theta j y one = np.zeros(vocabulary size)
for i in range (vocabulary size):
    theta j y zero[i] = float((T j y zero[i] + 1) / sum T j y zero)
    theta j y one[i] = float((T j y one[i] + 1) / sum T j y one)
    if theta j y zero[i] != 0:
        theta j y zero[i] = np.log(theta j y zero[i])
    if theta j y one[i] != 0:
        theta j y one[i] = np.log(theta j y one[i])
```

```
correct prediction count = 0
for i in range(len(test features)):
    weighted theta j y zero = float(0)
    weighted theta j y one = float(0)
    for j in range (vocabulary size):
        weighted theta j y zero = weighted theta j y zero +
float(theta j y zero[j] * test features[i][j])
        weighted theta j y one = weighted theta j y one +
float(theta j y one[j] * test features[i][j])
   prediction zero = np.log(float(N zero / N)) + weighted theta j y zero
   prediction \ one = np.log(float(N \ one \ / \ N)) + weighted theta j y \ one
   prediction = 0 if prediction zero >= prediction one else 1
    correct prediction count = correct prediction count + 1 if prediction ==
test labels[i] else correct prediction count
accuracy = float(correct prediction count / len(test features))
print("Accuracy -> " + str(accuracy))
print("False predictions -> " + str(len(test features) -
correct prediction count))
```

Question 4.6

In this section. Mutual information scores are added to the code in Question 4.5.

```
import numpy as np
train features = np.loadtxt("dataset/question-4-train-features.csv",
dtype='i', delimiter=',')
train labels = np.loadtxt("dataset/question-4-train-labels.csv", dtype='i',
delimiter=',')
test features = np.loadtxt("dataset/question-4-test-features.csv", dtype='i',
delimiter=',')
test labels = np.loadtxt("dataset/question-4-test-labels.csv", dtype='i',
delimiter=',')
vocabulary size = len(train features[0])
N = len(train features)
sum T j y zero = 0
sum_T_j_y_one = 0
N one = 0
N \ zero = 0
# 1 space, 0 medical
for i in range(N):
    if train labels[i] == 0: # medical
```

```
N \ zero = N \ zero + 1
        sum_T_j y_zero = sum_T_j y_zero + train_features[i].sum(axis = 0)
    else: # space
       N one = N one + 1
        sum\ T\ j\ y\ one\ =\ sum\ T\ j\ y\ one\ +\ train\ features[i].sum(axis\ =\ 0)
T j y zero = np.zeros(vocabulary size)
T j y one = np.zeros(vocabulary size)
sum_T_j_y_zero = sum_T_j_y_zero + vocabulary_size
sum T j y one = sum T j y one + vocabulary size
for i in range (vocabulary size):
    for j in range(N):
       if train labels[j] == 0:
            T j y zero[i] = T j y zero[i] + train features[j][i]
        else:
            T j y one[i] = T j y one[i] + train features[j][i]
theta j y zero = np.zeros(vocabulary size)
theta j y one = np.zeros(vocabulary size)
for i in range (vocabulary size):
    theta j y zero[i] = float((T j y zero[i] + 1) / sum T j y zero)
    theta j y one[i] = float((T j y one[i] + 1) / sum T j y one)
    if theta j y zero[i] != 0:
        theta j y zero[i] = np.log(theta j y zero[i])
    if theta j y one[i] != 0:
        theta j y one[i] = np.log(theta j y one[i])
correct prediction count = 0
for i in range(len(test features)):
    weighted theta j y zero = float(0)
    weighted_theta_j_y_one = float(0)
    for j in range (vocabulary size):
        weighted_theta_j_y_zero = weighted_theta_j_y_zero +
float(theta j y zero[j] * test features[i][j])
        weighted theta j y one = weighted theta j y one +
float(theta j y one[j] * test features[i][j])
    prediction zero = np.log(float(N zero / N)) + weighted theta j y zero
   prediction one = np.log(float(N one / N)) + weighted theta j y one
   prediction = 0 if prediction zero >= prediction one else 1
    correct prediction count = correct prediction count + 1 if prediction ==
test labels[i] else correct prediction count
accuracy = float(correct prediction count / len(test features))
```

```
print("Accuracy -> " + str(accuracy))
print("False predictions -> " + str(len(test features) -
correct prediction count))
# Mutual information between class variable and features
for i in range (vocabulary size):
           N00 = float(0)
           N01 = float(0)
           N10 = float(0)
           N11 = float(0)
           for j in range(N):
                       if train features[j][i] == 0 and train labels[j] == 0: # N00 or N01
                                  N00 = N00 + 1
                      if train features[j][i] == 0 and train labels[j] != 0:
                                  N01 = N01 + 1
                       if train features[j][i] != 0 and train labels[j] == 0:
                                  N10 = N10 + 1
                       if train features[j][i] != 0 and train labels[j] != 0:
                                  N11 = N11 + 1
            first term = float((N11 / N) * (np.log2(N * N11) - np.log2(N10 + N11) 
np.log2(N01 + N11)))
            second term = float((N01 / N) * (np.log2(N * N01) - np.log2(N00 + N01) -
np.log2(N01 + N11)))
            third term = float((N10 / N) * (np.log2(N * N10) - np.log2(N10 + N11) -
np.log2(N00 + N10))
            forth term = float((N00 / N) * (np.log2(N * N00) - np.log2(N00 + N01) - np.log2(N00 + N01))
np.log2(N00 + N10))
           mi[i] = float(first term + second term + third term + forth term)
sorted mi = sorted(mi.items(), key = lambda kv: kv[1], reverse = True)
print(sorted mi)
```