Куркчи А. Э. МИО 1 из 2

Лекция №3

Согласно теореме 2, если имеется некоторая система линейно-независимых векторов, удовлетворяющих равенству $A_1x_1 + A_2x_2 + ... + A_nx_n = A_0$ (1), то любой из векторов, не входящий в базис можно разложить по этим базисам. $A_1x_{1j} + A_2x_{2j} + ... + A_nx_{nj} = A_j$ (2); Пусть имеется некоторая величина $\Theta > 0$ на которую мы умножим (2), а результат вычтем из (1).

$$\begin{split} &A_1(x_1-\Theta x_{1j})+A_2(x_2-\Theta x_{2j})+\ldots+A_n(x_n-\Theta x_{nj})+\Theta A_j=A_0;\\ &X^T{}_j=\{x_1-\Theta x_{1j};\,x_2-\Theta x_{2j};\,\ldots;\,x_n-\Theta x_{nj};\,\Theta;\,0;\,0;\,\ldots;\,0\}\\ &0<\Theta\leq x_i/x_{ij}\\ &\Theta=\min\{x_i/x_{ij}\}\\ &F(X)=CYMMA[i=1..n]\;(C_iX_i)=\delta_0\\ &F(X_j)=C_1(x_1-\Theta x_{1j})+\ldots+C_n(x_n-\Theta x_{nj})+C_j\Theta=F(X)-\Theta(C_1x_{1j}+C_2x_{2j}+\ldots+C_nx_{nj}-C_j)\\ &\delta_j=C_1x_{1j}+C_2x_{2j}+\ldots+C_nx_{nj}-C_j\\ &_4F=-\Theta\;\delta_i=>\text{приращение целевой функции} \end{split}$$

Метод искуственных переменных (искуственного базиса)

Метод ИП применяется тогда, когда хотя бы в одном из ограничений присутствуют знаки = или ≥.

Пусть система ограничений имеет вид $AX \ge A_0$, в результате канонизации получается выражение $AX - EX_{дол} = A_0$. В качестве начального приближения исходные переменные равны нулю (AX = 0), а $-EX_{дол} = A_0$; Из-за отрицательности дополнительных переменных вводится $AX - EX_{дол} + EX_{иск} = A_0$ и в качестве начального решения используется $EX_{иск} = A_0$.

Алгоритм

- 1. Канонизация системы ограничений (приведение к каноническому виду)
- Где были знаки = или ≥ добавляются искусственные переменные со знаком + (в каждое ограничение своя переменная)
- 3. Искусственные переменные добавляются в целевую функцию с множителем равным $\pm \mu$, знак + или определяется направлением оптимизации, если максимум то -, минимум +. Для того что бы быстрее избавиться от искусственных переменных, которые не имеют ценности
- 4. Построение симплекс-таблицы
- 5. Выполнение расчётов

Особенности:

- 1. Если строка симплекс-разностей указывает на достижение оптимального решения, а в базисе присутствуют искусственные переменные, то это говорит о несовместности системы ограничений
- 2. Если столбец, который соответствует вектору искусственной переменной выводится из базиса, то его удаляют из таблицы

$$2x_{1} + 1x_{2} \rightarrow \min$$

$$5x_{1} + 2x_{2} \ge 4$$

$$2x_{1} + 1x_{2} + 0x_{3} + 0x_{4} + 0x_{5} + \mu x_{6} + \mu x_{7}$$

$$3x_{1} + 3x_{2} \le 3$$

$$5x_{1} + 2x_{2} - 1x_{3} + 1x_{6} = 4$$

$$2x_{1} + 5x_{2} \ge 3$$

$$3x_{1} + 3x_{2} + 1x_{4} = 3$$

$$x_{1}, x_{2} \ge 0$$

$$2x_{1} + 5x_{2} - 1x_{5} + 1x_{7} = 3$$

		C _j	2	1	0	0	0	μ	μ
Б	Сь	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
A_6	μ	4	5	2	-1	0	0	1	0
A ₄	0	3	3	3	0	1	0	0	0
←A ₇	μ	3	2	5	0	0	-1	0	1
	δ	7μ	7μ - 2	7μ - 1	-μ	0	-μ	0	0
				1					

		Cj	2	1	0	0	0	μ
	СБ	A ₀	A ₁	A_2	A ₃	A ₄	A ₅	A ₆
←A ₆	μ	14/5	21/5	0	-1	0	2/5	1
A ₄	0	6/5	9/5	0	0	1	3/5	0
A_2	1	3/5	2/5	1	0	0	-1/5	0
	δ	$(14\mu + 3)/$	(21μ - 8)/ 5	0	-μ	0	(2 <i>μ</i> - 1)/5	0
			†					

		C _j	2	1	0	0	0
	Сь	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅
A ₁	2	2/3	1	0	-5/21	0	2/21
A ₄	0	0	0	0	3/7	1	3/7
A ₂	1	1/3	0	1	2/21	0	-17/105
	δ	5/3	0	0	-8/21	0	-13/105

F(X) = 5/3 $X^{T} = \{2/3 ; 1/3; 0; 0; 0\}$